

PCT/US2005/027239
moving from start (N-terminus or 5') to end (C-terminus or 3'), such that for an alignment that extends to p monomers (where $p > x$) there are $p-x+1$ such windows, each window has at least $x \cdot y$ identical aligned monomers, where: x is selected from 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 150, 200; y is selected from 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99; and if $x \cdot y$ is not an integer then it is rounded up to the nearest integer. The preferred pairwise alignment algorithm is the Needleman-Wunsch global alignment algorithm [Needleman & Wunsch (1970) *J. Mol. Biol.* 48, 443-453], using default parameters (e.g., with Gap opening penalty = 10.0, and with Gap extension penalty = 0.5, using the EBLOSUM62 scoring matrix). This algorithm is conveniently implemented in the *needle* tool in the EMBOSS package [Rice et al. (2000) *Trends Genet.* 16:276-277].

The nucleic acids and polypeptides of the invention may additionally have further sequences to the N-terminus/5' and/or C-terminus/3' of these sequences (a) to (d).

All of the Gram positive bacterial sequences referenced herein are publicly available through

15 PubMed on GenBank.

Streptococcus pneumoniae Adhesin Island Sequences

As discussed above, a *S. pneumoniae* AI sequence is present in the TIGR4 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences are set forth below.

20 SrtD (Sp0468) is a sortase. An example of an amino acid sequence of SrtD is set forth in SEQ ID NO: 80.

SEQ ID NO: 80

MSRTKLRALLGYLLMLVACLIPIYCFGQMVLQSLGQVKGHATFVKSMTTEMYQEQQNHSLAYNQRSLASQNRIIVDP
25 FLaEGYEVNQVSDDPAVYGYLSIPSLEIMEPVYLGADYHHLGMGLAHVDGTPLPLDGTCIRSVIAGHRAEPSPH
VFFRHLDQLKVGDALYYDNGQEIVEYQMMDEIIILPSEWEKLESVSSKNIMTLITCDPIPTFNKRLLVNFERVAV
YQKSDPQTAAVARVAFTKEGQSRSVATSQWLYRGLVVLAFLGILFVLWKLARLLRGK

SrtC (Sp0467) is a sortase. An example of an amino acid sequence of SrtC is set forth in SEQ ID NO: 81.

30 **SEQ ID NO: 81**

MSRYYYRIESNEVIKEFDETQSMDKAELEERWRLAQAFNATLKPSEILDPTFTEQEKKKGVSEYANMLKVHERIG
YVEIPAIIDQEIIPMYVGTSEDILQKGAGLLEGASLPVGGENHTVTIAHRLPTAELFSQLDKMKKGDIIFYLHVLD
35 QVLAYQVDQIYTVEPNDFEPVLIQHGEDYATLLTCTPYMINSHRLLVRGKRIPTYAPIAERNRAVRERGQFWLWL
LLGAMAVILLLYRVYRNRRIVKGLEKQLEGRHVKD

SrtB (SP0466) is a sortase. An example of an amino acid sequence of SrtB is set forth in SEQ ID NO: 82.

SEQ ID NO: 82

MAVMAYPIVSRLYYRVESNQQIADFDKEKATLDEADI DERMKLAQAFNDSLNNVVSGDPWSEEMKKGRAEYARM
40 LEIHERMGHVEIPVIDVDLPVYAGTAAEVLQQGAGHLEGTSLPIGGNSTHAVITAHTGLPTAKMFTDLTKLKVGD
KFYVHNKEVMAYQVDQVKVIEPTNFDDLLIVPGHDYVTLLTCTPYMINTHRLLVRGHRIPYVAEVVEEFIAANK
LSHLYRYLFYVAVGLIVILLWIIRRLRKKKKPKEKALKALKARKEVKVEDGQQ

Sp0465 is a hypothetical protein. An example of an amino acid sequence of Sp0465 is set forth in SEQ ID NO: 83.

SEQ ID NO: 83

MFLPFLSASLYLQTHHFIAPNRQSYLLRETRKSHFLLHHF

RrgC (SP0464) is a cell wall surface anchor family protein. RrgC contains a sortase substrate motif VPXTG (SEQ ID NO: 137), shown in italics in SEQ ID NO: 84.

SEQ ID NO: 84

MISRIFVMALCFSLVWGAHAVQAQEDHTLVLQLENYQEVVSQLPSRDGHRLQVWKLDSDSYDDRVQIVRDLHS
 WDENKLSSFKKTSFEMTFLENQIEVSHIPNGLYYVRSIIQTDAVSYPAEFLFEMTDQTVPLVIVAKKTDTMTTK
 VKLIKVDQDHNRLEGVGFKLVSARDVSEKEVPLIGEYRYSSSGQVGRTLYTDKNGEIIFTNLPLGNYRFKEVEP
 LAGYAVTLDLTDVQLVDHQLVITVVNQKLPRGNVDFMKVDGRTNTSLQGAMFKVMKEESGYTPVILQNGKEVVV
 TSGKDGRFRVEGLEYGTYLWELQAPTGYVQLTSPVSFTIGKDRKELTVVKNNKRPRIDVPDTGEETLYILML
 VAILLFGSGYYLTKKPNN

RrgB (Sp0463) is a cell wall surface anchor protein. RrgB contains a sortase substrate motif IPXTG (SEQ ID NO: 133), shown in italics in SEQ ID NO: 85.

SEQ ID NO: 85

MKSINKFLTMLAALLTASSLFSATVFAAGTTTSTVHKLLATGDMDKIANELETGNYAGNKVGVL PANAKE
 IAGVMFVWTNTNNEIIIDENGQTLGVNIDPQTFKLSGAMPATAMKKLTAEAGAKFTANLPAAKYKIYEIHSLS
 VGEDGATLTGSKAVPIEIELPLNDVVDAHVPKNTEAKPKIDKDFKGKANPDTPRVDKDPVNHQVGDVVEYEIV
 TKIPALANYATANWSDRMTEGLAFNKGTVKVTVDDVALEAGDYALTEVATGFDLKLTDAGLAKVNDQNAEKTVKI
 TYSATLNDKAIVEVPESENDVTFNFGNNPDHGNTPKPNKPNEGDLTLTKTWDATGAPIPAGAEATFDLVNAQTG
 KVVQTVTLTTDKNTVTVNGLDKNTEYKFVERSIKGYSADYQEITTAGEIAVKNWVDENPKPLDPTEPKVVTYGGK
 FVKVNDKDNRLAGAEFVIANADNAGQYLARKADKVSQEEKQLVTTKDALDRAVAAYNALTAQQQTQQEKEKVDK
 AQAAYNAAVIAANNAEFWVADKDNEVVKLVSDAQGRFEITGLLAGTYLEETKOPAGYALLTSRQFEVATATSY
 SATGQGIEYTAGSGKDDATKVVNKKITIPQTGGIGTIIFAVAGAAIMGIAVYAYVKNNKDEDQLA

RrgA (Sp0462) is a cell wall surface anchor protein. RrgA contains a sortase substrate motif YPXTG (SEQ ID NO: 186), indicated in italics in SEQ ID NO: 86.

SEQ ID NO: 86

MLNRETHMKKVRKIFQKAVAGLCCISQLTAFSSIVALAETPETS PAIGKVVVIKETGEKGALLGDAVFELKNNTDG
 TTFSQRTEAQTGEAIFSNIKPGTYLTLEAQPPVGYKESTKQWTVEVEKNGRTTVQGEQVENREEALSDQYPQTGT
 YPDVQTPYQIIKVDGSEKNGQHKALNPNPYERVIPEGTLSKRIYQVNLLDDNQYGIELTSGKTVYEQKDKSVPL
 DVVILLDNMSNSMSNIRNKNARERAEGEATRSLIDKITSSENRLVALVTYASTIFDGTEFTVEKGVADKNGKRLN
 DLSLFWNYDQTSFTNTKDYSYLKLTNDKNDLVEALKNKPTEAEHDGNRLMYQFGATFTQKALMKADEFILTQOAR
 QNSQKVIIFHITDGVPMTSYPINFNHFAPSQNQLNNAFFSKSPNKGILLSDFITQATSGEHTIVRGDGQSYQM
 FTDKTVYEKGAPAAPPVKPEKYSEMKAAGYAVIGDPINGGYIWLWNWRESILAYPFNSNTAKITNHGDPTRWYNG
 NIAPDGYDVFTVGIGINGDPGTDEATATSFMQSISSKPENYTNVTDTTKILEQLNRYFHTIVTEKKSIENGTTID
 PMGELIDILQLGTDGRFPADYTLTANDGSRLENGQAVGGPQNDGGLLKNAKVLYDTTEKIRVTGLYLGTDKVT
 LTYNVRLNDEFVSNKFYDTNGRTTLHPKEVEQNTVRDFPIP KIRDVRKYPEITISKEKKLG DIEFIKVKNNDK
 LRGAVFSLQKQHPDYPDIYGAIDONGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVN
 GEVRDVTSIVPQDIPAGYEFTNDKHYITNEPIPPKREYPRTGGIGMLPFYLGCMMSGVLLYTRKHP

RlrA (Sp0461) is a transcriptional regulator. An example of an amino acid sequence for RlrA is set forth in SEQ ID NO: 87.

SEQ ID NO: 87

MLNKYIEKRITDKITILNILLDIRSIELDELSTLTSLSQSKSLLSILQELQETFEEELTFNLDTQQVQLIEHHSHQ
 TNYYFHQLYNQSTILKILRFFLQLQGNQSNEFTQKEYIISIATGYRVRQKCGLLLRSVGLLVKNQVVGPEYRIRF
 LIALLOFHFGIEIYDLDNGSMDWVTHMIVQNSQLSHELLEITPDEYVHFSILVALTWKREFPLEFPESEKEFK
 LKNLFLMFYPILMEMHCQTYLEPHANMTFTOEELDYIIFLVYCSANSFSKDKWNQEKKTHTIQLILQHTRGKHLLSKF
 KNILGNDISNSLFLTALTFLTRTFLFGQLQNLVPYYNYYEHYGIESDKPLYHISKAIVQEWMTEQKIEGVIDQHR
 LYLFSLYLTETIFSSLPAIPIIFIILNNQADVNLIKSIIILRNFTDKVASVTGYNILISPPPSEEHLTEPLIIITTK
 EYLPYVKKQYPKGKHHFLTIALDLHVSQQRLIYTIVDIRKEAFDKRVAMIAKKAHYLL

As discussed above, a *S. pneumoniae* AI sequence is present in the *S. pneumoniae* strain 670

genome. Examples of *S. pneumoniae* AI sequences are set forth below.

PCT Orf1_670 is a transposase. An example of an amino acid sequence of orf1_670 is set forth in SEQ ID NO: 171.

SEQ ID NO: 171

MEHINHTLLIGIKDKNITLNKAIQHDTHIEVFATLDYHPPKCKHCKGKQIKYDFQKPSKIPFIEIGGFPSLIL
 5 KKRRFQCKSCRKVTAETTLVQKNCQISEMVRQKIAQLLNREALTHIASKLAISTSTSTVYRKLKQFHQFQEDYT
 TLPEILSWDEFSYQKGKLAIFIQDFNTKKIMTILDNRQTTIRNHFFKYSKEARKVKVVTVDMMSGYIPLIKKL
 FPNAKIVLDRFHIVQHMSRALNQTRINIMKQFDDKSLEYRALKYYWKFILKDSRKLSLKPFYARTFRETLPREC
 10 LKKIFTLVPELKDYDLYQLLFHLQEKENTDQFWGLIQDTLPHLNRTFKTTLSTFICYKNYITNAIELPYSNAKL
 EATNKLIKDIKRNAFGFRNFENFKKRIFIALNIKKERTKFVLSRA

Orf2_670 is a transcriptional regulator. An example of an amino acid sequence of Orf2_670 is set forth in SEQ ID NO: 172.

SEQ ID NO: 172

MLNKYIEKRITDKITILNILLDIRSIELDELSTLTSILQSKSLLSILQELQETFEEELTFNLDTQQVQLIEHHSHQ
 15 TNYYFHQLYNQSTIILKILRFFLILQGNQSNEFTQKEYISIATGYVRQKCGLLRSVGLDLVKNQVGPEYRIRF
 LIALLQFHFGIEIYDLDNGSMDWVTHMIVQSNSQLSHELLEITPDEYVHSILVALTWKRREFPLEFPESKEFEK
 LKNLFMYPILMEHCQTYLEPHANMTFTQEEELDYIFLVYCSANSSFSKDKWNQEKKHTTIQLILQHTRGKHLLSKF
 KNILGNDISNSLSFLTALTFLTRTFLGQLQNLPYNNYYEHYGIESDKPLYHISKAIVQEWMTEQKIEGVIDQHR
 20 LYLFLSLYLTETIFSSLPAIPIFIILNQADVNLIKSIIILRNFTDKVASVTGYNILISPSEEHLTEPLIIITTK
 EYLPYVKKQYPKGKHHFLTIALDLHVQSQRLIYQTIVDIRKEAFDKRVAMIAKKAHYLL

Orf3_670 is a cell wall surface anchor family protein. An example of an amino acid sequence of Orf3_670 is set forth in SEQ ID NO: 173.

SEQ ID NO: 173

MLNRETHMKKVKRKIFQKAVAGLCCISQLTAFSSIVALAETPETSPA1GKVVIKETGEGGALLGDAVFFELKNNTDG
 25 TTVSQRTEAQTGEAIFSNIKPGTYTLTEAQPPVGYPKSTKQWTVEVEKNGRTTVQGEQVENREEALSDQYPQTGT
 YPDVQTPYQIIKVDGSEKNGQHKALNPNPYERVIPEGTLSKRIYQVNLLDDNQYGIELTVSGKTTVETKEASTPL
 DVVILLDNNSNSMSNIRHNHAHRAEKAGEATRALVDKITSNPDNRVALVTYGSTIFDGSEATVEKGVADANGKILN
 DSALWTFDRTTFTAKTYNSFLNLTSDPTDQTIKDRIPSDEEELNPKDLMYQFGATFTQKALMTADDILTKQAR
 30 PNSKKVIFHITDGVPTMSYPINPKYTGTTQSYRTQLNNFKAKTPNNSGILLEDFVTWSADGEHKIVRGDGESYQM
 FTKKPVTDQYGVHQIILSITSMEQRAKLVSAFYRFYGTDLYLWRDSLAYPPNSSTDWINTNHGDPTWYYNGNMA
 QDGYDVFTVGVGNGDPGTDEATATRFMQSISSSPDNNTNVADPSQIQLQELNRYFTIVNEKKSIENGTTIDPMG
 ELIDFQLGADGRFDPADYTLTANDGSSLVNNVPTEGGPQNDGGLKNAVKFYDTTEKRIRVTGLYLGTEKEVTLTY
 NVRLNDQFVSNKFYDTNGRTTLHPKEVEKNTVRDFPIPKIRDVRKYPEITIPKEKKLGIEIFIKINKNDKKPLRD
 35 AVFSLQKQHPDYPDIYGAIDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEV
 RDVTSIVPQDIPAGYEFTNDKHYITNEPIPPKREYPRTGGIGMLPFYLGCMGGVLLYTRKHP

Orf4_670 is a cell wall surface anchor family protein. An example of an amino acid sequence of orf4_670 is set forth in SEQ ID NO: 174.

SEQ ID NO: 174

MKSINKFLTMALAALLTASSLFSAAATVFAADNVSTAPDAVTKTLTIHKLLSEDDLKTWDTNGPKGYDGTQSSLK
 DLTGVVAEEIPNVYFELQKYNLTDGKEKEENLKDSDKWTTVHGLLTTKDGKLIETSTLKVYRIREDRTKTTVGP
 NGQVLTGSKAVPALVTLPLVNNNGTVDAHVFPKNSYNKPVVDKRIADTLNYNDQNGLSIGTKIPYVVNTTIPSNN
 45 ATFATSFWSDEMTEGLTYNEDVTITLNNVAMDQADYEVTKGNNGFNKLTEAGLAKINGKDADQKIQITYSATLN
 SLAVADIPESENDITYHYGNHQDHGNTPKPTKPNNGQITVTKTWDSQPAEGVKATVQLVNAKTGEKGAPVELSE
 NNWTYTWGGLDINSIEYKVEEYNGSAEYTVESKGKLGKVNWKDNNPAPINPEEPRVKTYGKKFVKVDQKDTRLE
 NAQFVVKADSNKYIAFKSTAQQADEKAAATAKQKLDAAVAAYTNAAQDQAAQALVDQAAQOEYNVAYKEAKFGY
 VEVAGKDEAMVLTNTDQFQIISGLAAGTYKLEEIAPEGFAKIDDVEFVVGAGSWNQGEFNYLKDVQNDATKV
 VNKKITIPQTGGIGTIIFAVAGAAIMGIAVYAYVKNNKDEDQLA

50

Orf5_670 is a cell wall surface anchor family protein. An example of an amino acid sequence of orf5_670 is set forth in SEQ ID NO: 175.

SEQ ID NO: 175

MTMQKMOKMISRIFFVMALCFSLVWGAHAVQAQEDHTLVLQLENYQEVVSQLPSRDGHRLQVWKLDSSYSYDDRV
 55 QIVRDLHSDENKLSSFKKTSFEMTFLENQIEVSHIPNGLYYVRSIIQTDAVSVPAEFLFEMTDQTVPLVIVAK

KTDFTMTTKVKEIKVQDQDHNRLEGVGFKIVSVARDGSEKEVPLIGEYRYSSSGQVGRTLYTDKNGEIFVTNLPLGN
YRFKEVEPLAGYAVTTLDTDVQLVDHQLVTITVVNQKLPRGNVDFMKVGDRTNTSLQGAMFKVMKEESGHYPVL
QNGKEVVVTSGKDGRFRVEGLEYGTYYLWELQAPTGYVQLTPVSFTIGKDRKELVTVVVKNNKRPRIDV PDTGE
ETLYILMLVAILLFGSGYYLTKKPNN

5

Orf6_670 is a sortase. An example of an amino acid sequence of orf6_670 is set forth in SEQ ID NO: 176.

SEQ ID NO: 176

MLIKMVTKKQKRNNNLLGVVFFIGMAVMAYPLVSRLYYRVESNQQIADFDKEKATLDEADIDERMKLAQAFNDS
10 LNNVVSGDPWSEEMKKKGRAEYARMLEIHERMGHEIPVI DVDPVYAGTAAEVLQQGAGHLEGTSLPIGGNSTH
AVITAHTGLPTAKMFTDLTKLVGDKFYVHNKEVMAYQVDQVKVIEPTNFDLLIVPGHDYVTLLTCTPYMINT
HRLIVRGRHRIPYVAEEVEEFAANKLSHLYRYLFYVAVGLIVILLWIIRRLLKKKKQPEKALKALKARKEVKVE
DGQQ

15 Orf7_670 is a sortase. An example of an amino acid sequence of orf7_670 is set forth in SEQ ID NO: 177.

SEQ ID NO: 177

VSRYYYRIESNEVIKEFDETVSQMDKAELEERWRLAQAFNATLKPS EILDPFTEQEKKKGVSEYANMLKVHERIG
20 YVEIPAIDQEI PMYVGTSEEILQKGAGLLEGASLPVGGENHTVTAHRLPTAELFSQQLDKMKKGDFYLVHVD
QVLAYQVDQILTVEPNDFEPVLIQHGEDYATLLTCTPYMINSHRLLVRGKRIPYTAPIAERNRAVRERGQFWLWL
LLAALVMILVLSYGVYRHRRIVKGLEKQLEHHVKG

Orf8_670 is a sortase. An example of an amino acid sequence of orf8_670 is set forth in SEQ ID NO: 178.

SEQ ID NO: 178

MSKA KLQKLLGYLLMLVALVIVPVYCFGQMVLQSLGQVKGHEIFSES VTA DSYQEQLQRSL DYNQRLDSQN RIVDP
FLAEGYEVNYQVSDDPD AVYGYLSIPSLEIMEPVYLGADYHHLAMGLAHVDGTPLPVEKGIRSVIAGHRAEP SH
VFFRHLDQLKVGDALYYDNGQEIVEYQMM DTEII LPSEWEKLESVSSKNIMT LITCDPIPTFNKRLVNF ERVAV
YQKSDPQTAavarvaFTKEQSVSRVATS QWLYRGLVVL AFLGILF VLWKLARLLRGK

30

As discussed above, a *S. pneumoniae* AI sequence is present in the 19A Hungary 6 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 19A Hungary 6 are set forth below.

35 ORF2_19AH is a transcriptional regulator. An example of an amino acid sequence of ORF2_19AH is set forth in SEQ ID NO: 187.

SEQ ID NO: 187

MLNKYIEKRITDKITILNILLDIRSIELDELSTLTSQSKSLLSILQELQETFEELTNLDTQQVQLIEHHSHQ
TNYYFHQLYNQSTILKILRFFLQGNQS FNEFTQKEYI STATGYRV RQKC GLLLRSVGLDLVKNQVVGPEYRIRF
40 LIA LLQFHFGIEIYDLDNGSMDWVTHMIVQNSNSQLSHELL EITPDEYVHF SISL VALTWK RREFPLEF PESKEF
LKNL FMYPILMEHC QTYLEPHANMTFTQEE LDYI FFLVYCSANSSFSKDKWNQEKKTHTIQLILQHTRGKHLLSKF
KNILGNDISNSLSFLTALTFLTRTFLGLQNLVPYYNYYEHYGIESDKPLYHISKAIVQEW MTEQKIEGVIDQHR
LYLFSLYLTETIFSSLPAIPIFII LNQADVNLIKSIILRNFTDKVASVTGYN ILISPPSEEHLT EPLIIIITK
EYLPYVKKQYPKGKHHFLTIALDLHVSQQR LIYQTIVDIRKEAFDKRVAMIAKKAHYLL

45 ORF3_19AH is a cell wall surface protein. An example of an amino acid sequence of ORF3_19AH is set forth in SEQ ID NO: 188.

SEQ ID NO: 188

MKKVRKIFQKAVAGLCCISQLTAFSSIVALAETPETS PAIGKVV IKETGE GGALLGDAV FELKNNT DGTT VSQ RT
EAQTGEAIFSNIKPGTYTLTEAQPPVGYKPSTKQWTVEVEKNGRTTVQGEQVENRE EAL SDQY PQTG TYPDV QTP
YQIIKVDGSEKNGQHKALNPNPYERVIPEGTLSKRIYQVNNLDDNQYGI ELTVSGKTTV ETKEASTPLDV VILL D
50 NSNSMSNIRHNHAHRAEKAGEATRALV DKITSNPDNRVALV TYGSTIFDGSEATVEKGVADANGKILNDSALWTF
DRTTFTAKTNYNSFLNLTSDPTDIQTIKDRIPS DAEELN KDKL MYQFGATFTQK ALMTADD I LTQARPNSKKVI
FHITDGVP TMSYPINFKYTGTTQSYRTQLNNFKAKTPN SSGILLEDFVTWSADGEHKIVRG DGE SYQMFTKKPVT

DQYGVHQILSITSMEQRALKVAGYRFYGTDLYLYWRDSILAYPFNSSTDWITNHGDPPTWYYNGNMAQDGYDVF
 TVGVGVNGDPGTDEATATRFMQSISSSPDNYTNVADPSQILQELNRYFTIVNEKKSIENGTIDPMGELIDFQL
 GADGRFDADYTLTANDGSSLVNNVPTGGPONDGGLKNAKVFYDTTEKRIRVTGLYLGTEKVITLYNVRLNDQ
 5 FVSNKFYDTNGRTTLHPKEVEKNTVRDFPIPCKIRDVRKYPEITIPKEKKLGIEIFIKINKNDKPLRDAVFSLQK
 PQHDYPDIIYGAIDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEVRDTSIV
 PQDIPAGYEFTNDKHYITNEPIPPKREYPRGGIGMLPFYLIGCMMGGVLLYTRKNP

ORF4_19AH is a cell wall surface protein. An example of an amino acid sequence of ORF4_19AH is set forth in SEQ ID NO: 189.

SEQ ID NO: 189

MKSINKFLTMLAALLTASSLFSAAATVFAADNVSTAPDAVTKTILTICKLILSEDDLKWTWDTNGPKGYDGTQSSLK
 DLTGVVAEEIPNVYFELOKYNLTDGKEKENLKDSDKWTTVHGGLTTDGLKETSTLKGVYRIREDRTKTTYVGP
 NGQVLTGSKAVPALVTLPLVNNNGTVDAHVFPKNSYNKPVDKRIADTLNNDQNGLSIGTKIPYVVNTTIPSN
 ATFATSFWSDEMTEGLTYNEDVTITLNNVAMDQADYEVTKGXNGFNKLTEAGLAKINGKDAQKIQITYSATLN
 15 SLAVADIPESNDITYHYGNHQDHGNTPKPTKPNNGQITVTKTWDQSQAPEGVKATVQLVNAKTGEKVGAPVELSE
 NNWTTYTWSGLDNSIEYKVEEYNGYSAEYTVESKGKLGKVNWKDNNPAPINPEEPRVKTGKKFVKVDQKDTRLE
 NAQFVVVKADSNKYIAFKSTAQQAADEKAATAKQKLDAAVAAYTNAADKQAAQALVDQAAQQEYNVAYKEAKFGY
 VEVAGKDEAMVILTSNTDGQFQISGLAAGTYKLEEIAPEGFAKIDDVEFVVGAGSWNQGEFNYLKDVQKNDATKV
 VNKKITIPQTGGIGTIIFAVAGAAIMGIAVYAYVKNNKDEDQLA

20 ORF5_19AH is a cell wall surface protein. An example of an amino acid sequence of ORF5_19AH is set forth in SEQ ID NO: 190.

SEQ ID NO: 190

MTMQKMQKMISIFFVMALCFSLVWGAHAVQAQEDHTLVLQLENYQEVVSQLPSRDGHRLQVWKLDSSYSYDDRV
 QIVRDLHSWDENKLSSFKKTSFEMTFLENQIEVSHIPNGLYYVRSIIQTDAVSYPAEFLFEMTDQTVPLVIVAK
 KTDMMTTKVKLKVDQDHNRLEGVGFKLVSARDGSEKEVPLIGEYRYSSSGQVGRILYTDKNGEIFVTNLPLGN
 YRFKEVEPLAGYAVTLLTDVQLVDHQLVITVVNQKLPRGNVDFMKVDGRTNTSLQGAMFKVMKEESGHYTPVL
 25 QNGKEVVVTSGKDGRFRVEGLEYGTYYLWELOQAPTGYVQLTSPVSFTIGKDRKELVTVVKNNKRPRIDVPTGE
 ETLYIILMVAILLFGSGYYLTKKPNN

30 ORF6_19AH is a putative sortase. An example of an amino acid sequence of ORF6_19AH is set forth in SEQ ID NO: 191.

SEQ ID NO: 191

MLIKMVTKKKQKRNNNLLGVVFFIGMAVMAYPLVSRLYYRVESNQQIADFDEKEATLDEADIDERMKLAQAFNDS
 35 LNNVVSGDPWSEEMKKKGRAEYARMLEIHERMGHEIPVIDVLPVYAGTAEEVLQQGAGHLETSPLIGGNSTH
 AVITAHTGLPTAKMFTDLTKLVGDKFYVHNKEVMAVQVDQVKIEPTNFDDLLIVPGHDYVTLLCTPYMINT
 HRLLVRGHRIPYVAEEVEEEFIAANKLSHLYRYLFYVAVGLIVILWITRRLRKKKKQPEKALKALARKEVKVE
 DGQQ

40 ORF7_19AH is a putative sortase. An example of an amino acid sequence of ORF7_19AH is set forth in SEQ ID NO: 192.

SEQ ID NO: 192

M DNSRRSRKKGTKKKKHPLLLLIFLVGFAVAIYPLVSRYYYRIESNEVIKEFDETWSQMDKAELEERWRLAQAF
 NATLKPSEILDPTEQEKKGVSEANMLKVHERIGYVEIPAIDQEIPMYVGTSEEILQKGAGLLEGASLPVGGE
 45 NTHTVVTAHRGLPTAELFSQLDKMKKGDFYLVHLVDQVLTVEPNDFEPVLIQHGEDYATLLCTPYM
 INSHRLLVRGKRIPYAPIAERNRAVRERGQFWLWLLAALVMILVLSYGVYRHRRIVKGLEKQLEHHVKG

ORF8_19AH is a putative sortase. An example of an amino acid sequence of ORF8_19AH is set forth in SEQ ID NO: 193.

SEQ ID NO: 193

MSKAKLQKLLGYLLMLVALVIPHVYCFGQMVLQSLGQVKGHEIFSESSTADSYQEQLQRSLDYNQRLDSQNRIIVDP
 FLAEGYEVNYQVSDDPDADVGYLSIPSLEIMEPVYLGADYHHLAMGLAHVDGTPLPVEKGKIRSVIAGHRAEPSH
 VFFRHLQDKVGDALYYDNGQEIIVEYQMMDEIILPSEWEKLESVSSKNIMTLITCDPIPTFNKRLLVNFERAV
 55 YQKSDPQTAAVARVAFTEGQSVSRVATSQWLWYRGLVLAFCMGILFVLWKLARLLRGK

PCT/US2005/027239
As discussed above, a *S. pneumoniae* AI sequence is present in the 6B Finland 12 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 6B Finland 12 are set forth below.

ORF2_6BF is a transcriptional regulator. An example of an amino acid sequence of

5 ORF2_6BF is set forth in SEQ ID NO: 194.

SEQ ID NO: 194

MLNKYIEKRITDKTILNILLDIRSIELDELSTLTSQSksllsIQLQELQETFEEELTFNLDTQQVQLIEHHHSQ
TNYYFHQLYNQSTIILKILRFFLQGQNQSNEFTQKEYISIATGYVRQKCGLLRSVGLDLVKNQVVGPEYRIRF
10 LIALLQFHFGIEIYDLDNGSMWDVTHMIVQSNSQLSHELLEITPDEYHFSILVALTWKRREFPLEFPESKEFEK
LKNLFMYPILMEHCQTYLEPHANMTFTQEELDYIFLVYCSANSSFSKDWNQEKKTHTIQLILQHTRGKHLLSKF
KNILGNDISNSLSFLTALTFLTRTFLFGLQNLVPYYNNYYEHYGIESDKPLYHISKAIVQEWMTEQKIEGVIDQHR
LYLFSLYLTTETIFSSLPAIPIFIILNNQADVNLIKSIIILRNFTDKVASVTGYNILISPSSSEEHLTEPLIIITTK
EYLPYVKQYPKGKHHFLTIALDLHVSQRLLYQTIVDIRKEAFDKRVAMIAKKAHYLL

15 ORF3_6BF is a cell wall surface protein. An example of an amino acid sequence of
ORF3_6BF is set forth in SEQ ID NO: 195.

SEQ ID NO: 195

MKKVRKFQKAVAGLCCISQLTAFSSIVALAETPETSPAIGKVVIKETGEKGALLGDAVFELKNNTDGTTVSQRT
EAQTGEAIFSNIKPGTYTLTEAQPPVGYKPSTKQWTVVEKNGRTTVQGEQVENREEALSDQYPQTGTYPDVQTP
20 YQIIKVDGSEKNGQHKALNPNPYERVIPEGTLSKRIYQVNNLDDNQYGIETVSGKTTVETKEASTPLDVVIL
NSNSMSNRHNHAHRAEKAGEAATRALVDKITSNPDNRVALVTYGSTIFDGSEATVEKGVADANGKILNDSALWT
DRTTFTAKTNYNSFLNLTSPTDIQTIKDRI P SDAEELNKDKLMYQFGATFTQKALMTADDILTKQARPNSKKVI
FHITDGVPMSYPINFKYTGTTQSYRTQLNNFKAKTPNSSGILLEDFTWSADGEHKIVRGDGESYQMFTKKPV
25 DQYGVHQILSITSMEOQRAKLVSAQYRFYGTDLYLYWRDSILAYPFSSTDWITNHGDPTWYYNGNMAQDGYDVF
TGVGVGVNGDPGTDEATATRFMQSISSSPDNYTNVADPSQILQELNRYFTIVNEKKSIEENGTTIDPMGELIDFQL
GADGRFDPADYTLTANDGSVNNVPTGGPQNDGGLLKNAKVFYDTTEKRI RVTGLYLGTEKEVTLTYNVRLNDQ
FVSNKFYDTNGRTTLHPKEVEKNTVRDFPPIP KIRDVRKYPEITIPKEEKLGEIEFIKINKNDKPLRDAFSLQK
QHPDYPDIYGAIDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEVRDVTSIV
30 PQDIPAGYEFTNDKHYITNEPIP PKREYPTGGIGMLPFYLGCMGGVLLYTRKHP

ORF4_6BF is a cell wall surface protein. An example of an amino acid sequence of
ORF4_6BF is set forth in SEQ ID NO: 196.

SEQ ID NO: 196

MKSINKFLTMLAALLLTASSLFSAAATVFAADNVSTAPDAVTKTLTIHKLLLSEDDLKWTDTNGPKGYDGTQOSSLK
35 DLTGVVAEEIPNVYFELQKYNLTGKEKENLKDSDKWTTVHGGLTTKDGKLIETSTLKGVYRIREDRTKTTYVGP
NGQVLTGSKAVPALVTLPLVNNNGTVDAHVFPKNSYNKPVVDKRIADTLNYNDQNGLSIGTKIPYVVNTTIPSN
ATFATSFWSDEMTEGLTYEDVTITLNNVAMDQADYEVTKGNNNGFNLKLTEAGLAKINGKDADQKIQITYSATLN
SLAVADIPESNDITYHYGNHQDHGNTPKPTKPNNGQITVTKTWDSDQPAPEGVKATVQLVNAKTGEKGAPVELSE
40 NNWTYTWSDLNSIEYKVEEEYNGYSAEYTVESKGKLGKVNWKDNNPAPINPEEPRVKTGYKKFVKVDQKDTRLE
NAQFVVKKADSNKYIAFKSTAQQADEKAAATAKQKLDAAVAAYTNAADQAAQALVDQAAQYEVNAYKEAKFGY
VEVAGKDEAMVLTNTDGFQI SGLAAGTYKLEEIKAPEGFAKI DDVEFVVGAGSWNQGEFNYLKDVQNDATKV
VNKKITIPQTGGIGTII FAVAGAAIMGIAVYAYVKNNKDEDQLA

ORF5_6BF is a cell wall surface protein. An example of an amino acid sequence of

45 ORF5_6BF is set forth in SEQ ID NO: 197.

SEQ ID NO: 197

MTMQKMQKMSRIFVMALCFSLVWGAHAVQAQEDHTLVLQLEN YQEVVSQLPSRDGHRLQVWKDDSYSYDDRV
QIVRDLHSWDENKLSSFKKTSFEMTFLENQIEVSHIPNGLYYVRSIIQTD AVSYPAEFLFEMTDQTVPLVIVAK
50 KTD TMTTKVKLIKVDQDHNRLEGVGFKLVS VARDGSEKEVPLIGEYRYSSSGQVGR TL YTDKNGE I FVTNLPLGN
YRFKEVEPLAGYAVTLD TDVQLVDHQLV ITVVNQKLPRGNVDFMKV DGRNTS LQGAMFKVMKEESGHYTPV
QNGKEVVVTSGKDGRFRVEGLEYGTYYLWELQAPTGYVQLTSPVSFTIGKDTRKELVTVVKNNKRPRIDV PDTGE
ETLYI LMLVAILLFGSGYYLTKKPNN

PCT ORF6_6BF is a putative sortase. An example of an amino acid sequence of ORF6_6BF is set forth in SEQ ID NO: 198.

SEQ ID NO: 198

MLIKMVTKKQKRNNNLLGVVFIGMAVMAYPLVSRLYYRVESNQQIADFDKEKATLDEADI DERMKLAQAFNDS
5 LNNVVSGDPWSEEMKKGRAEYARMLETHERMGHVEIPVIDVDLPVYAGTAAEVLQQGAGHLEGTSLPIGGNSTH
AVITAHTGLPTAKMFTDLTKLVGDKFYVHNKEVMAQVDQVKVIEPTNF DLLIVPGHDYVTLLTCTPYMINT
HRLLVRGHRI PYVAEEEEEIAANKLSHLYRYLFYVAVGLIVILLWIIRRRLKKKKQPEKALKALKARKEVKVE
DGQQ

10 ORF7_6BF is a putative sortase. An example of an amino acid sequence of ORF7_6BF is set forth in SEQ ID NO: 199.

SEQ ID NO: 199

MDNSRRSRKKGTKKKKPL LLLLFLVGF AVAIYPLVS RYYYRIESNEVIKEFDET VS QMDKAEL EERWRLAQA F
NATLKPKSEI LD PFTEQ EKKKG VSE YANMLKVHERIGYVEI PAIDQ EIP MYVG TSEE I LQKGAGLLEGASLPVGGE
15 NTHTVVTAH RGLPTAELFSQLDKMKKG DVF YLHVLDQV LAYQVDQ ILTVEPND FEPV LIQHG EDYAT LLTCTPYM
INSHRLLVRGKRI PYTAPIAERNRAVR ERGQFWLWLLAALVMILVLSYGVYRHRRIVKG LEKQ LEEHHVKG

ORF8_6BF is a putative sortase. An example of an amino acid sequence of ORF8_6BF is set forth in SEQ ID NO: 200.

SEQ ID NO: 200

MSKAKLQKL LGYLLMLVALV I PVYCFGQMVLQSLGQVKGHEIFSES VTADS YQEQLQR SLDYNQRLDSQNRIVDP
FLAEGYE VNQVSDPD AVGY GLSIPS LEIMEPVYLGADYHHLAMGLAHV DGTPLP VEGKGIR SVIAGHRAEP SH
VFFRHLDQL KVGD ALYYDNGQ EIVEYQ MMDTEII LPSEWEKLESVSSKNIMTLITCDPI PT FNK RL VNF E RAV
YQKSDP QTAAVARV AFTKEGQSVSRVAT SQWL YRGLV VL AFLG I LFV LWKL ARLLRGK

25 As discussed above, a *S. pneumoniae* AI sequence is present in the 6B Spain 2 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 6B Spain 2 are set forth below.

ORF2_6BSP is a transcriptional regulator. An example of an amino acid sequence of ORF2_6BSP is set forth in SEQ ID NO: 201.

SEQ ID NO: 201

MILNKYIEKRITD KITILNILLDIRSIELDELSTLTSIQS KSLLSILQELQETFEEELTFNLDTQQVQLIEHHSHQ
TNYYFHQLYNQ STI LKIRF LQLQGNQ SFNEFTQKEYISIATGYRV RQKC GLLRSVGLDLVKNQVVGPEYRIRF
LIA LLQFHFGIEIYD LN DGSMDWV THMIVQ SNSQLS Helle IT PDEYVHF SilVAL TWKRREFPLEFPESKEFEK
LKNL FMYPILMEHCOTYLEPHANMTFTQEE LDYI FLVYCSANSSFSKDKWNQEKKTHTIQLILQHTRGKHLLSKF
35 KNILGNDISNSLSFITALTFLFGLQNLVPYYNYYEHYGIESDKPLYHISKAIVQEW MTEQKIEGVIDQHR
LYLFSLYLTETIFSSSLPAIPIFIILNNQADVNLIKSII LRNFTDKVASVTGYNILISPPPSEEHLTEPLIIITTK
EYLPYVKKQYPKGKHHFLTIALDHV S QQR LIYQTIVDIRKEAFDKRVAMI AKKAHYLL

40 ORF3_6BSP is a cell wall surface protein. An example of an amino acid sequence of ORF3_6BSP is set forth in SEQ ID NO: 202.

SEQ ID NO: 202

MKKVRKIFQKAVAGLCCISQLTAFSSIVALAE PETSP AIGK VVVI KETGEGGALLGDAV FELKNNTDGTTVSQRT
EAQTGEAIFSNIKPGTYTLTEAQP PVGYK PESTK QWTVEVEKNGRTTVQGEQVN REEAL SDQ YPQ TGTP DVQ TP
45 YQII KVDGSEKNGQHKALNPNPYERVI PEGT LSKR IYQVN NLDDNQY GIELT VSGKTTV ETKEASTPLDV VILL D
NSNSMSNIRHN HAHRAEKAGEA TRALV DKITSN PDNR V ALV TYGSTI FDG SEAT VEKG VADANG KILN DSAL WT
DR TTFTAKT YNYSFLN L TDPTD I QTI KDRIPS DAEELN KDKLMYQFGATFTQK ALM TADDI LTQ KARPN SKK VI
F HITDG VPTMSYPINF KYT GTT QSY RTQ LNN FKAKT PNS GILLE DFV TWSAD GEHK I VRGD GESY QMFT KKP VT
DQYGVHQI LSITSM E QRAK L VSAGYRFY GTD LY WRD S I LAY P FNS S TDW IT NHGD P T W YY NGN MAQD GY DV F
TVGVGVNGDPGTDEA T ATRFM QSI SS P D NY TNV ADPS QI LQEL NRY FYT IV NEKKS I ENGT IT DPM GEL ID F QL
50 GADGRFD PAD YT LT AND GSS LVNN VPTGGP QND GLL KNAK V FYD T TEK RIR VT G L Y LGT GEK V TL T NV RL ND Q
F VSNKF YDTN GRTT LHP KEVE KNT VRDF P I PK IRD VRK Y PEI T IPKE KKL GEIE FIKINKND KKPL RD AVF SL QK
QHPD YPDI YGAIDQ NGT YQNV RTG EDG KLT FK NL SDG K YR L FENSE PAGY KPV QNK PIV AFQ I VNG EVRD V TS IV
PQD I PAGY EFTND KHYITNEPI PPKREY PRTGGI GMLPFY LIGCMMGGVLLYTRKHP

PCT/US2005/027239
ORF4_6BSP is a cell wall surface protein. An example of an amino acid sequence of **ORF4_6BSP** is set forth in SEQ ID NO: 203.

SEQ ID NO: 203

5 MKSINKFLTMLAALLTASSLFSAAATVFAADNVSTAPDAVTKTTLTIHKLLLSEDDLKTWDTNGPKGYDGTQSSLK
 DLTGVVAEEIPNVYFELQKYNLTGKEKENLKDDSKWTTVHGGLTTKDGKIELTSLKGVYRIREDRTKTTYVGP
 NGQVLTGSKAVPALVTLPLVNNGNTVIDAHVFPKNSYNKPVVDKRIADTLNYNDQNGLSIGTKIPVVNTTIPSN
 ATFATSFWSDEMTGLEYTYNEDVTITLNNDQADYEVTKGNNGFNLKLTEAGLAKINGKDADQKIQITYSATLN
 10 SLAVADIPESDNDITYHYGNHQDHGNTPKPTKPNNQGITVTKTWDSQPAPEGVKATVQLVNAKTGEKVGAPVELSE
 NNWTYTWSGLDNSIEYKVVEEYNGYSAEYTVESKGKLGVKWNKDNNPAPINPEEPRVKTYGKKFVKVDQKDTRLE
 NAQFVVKADSNKYIAFKSTAQQADEKAAATAKQKLDAAVAAYTNAAQDQAAQALVDQAQQEYNVAYKEAKFGY
 15 VEVAGKDEAMVLTNSTDGQFQISGLAAGTYKLEEIKAPEGFAKIDDVEFVVGAGSWNQGEFNYLKDVKNDATKV
 VNKKITIPQTGGIGTIIFAVAGAAIMGIAYAYVKNNKDEDQLA

ORF5_6BSP is a cell wall surface protein. An example of an amino acid sequence of **ORF5_6BSP** is set forth in SEQ ID NO: 204.

SEQ ID NO: 204

15 MTMQKMQKMI SRFVFMALCFSLVWGAHAVQAQEDHTLVLQLENYQEVVSQLPSRDGHRLQVWKLDSSSYDDRV
 QIVRDLHSWDENKLSSFKKTSFEMTFLENQIEVSHI PNGLYYVRSII QTDAVSYPAEFLFEMTDQTVPLVIVAK
 20 KTDTMTTKVKLKVDQDHNRLEGVGFKLVSARDGSEKEVPLIGEYRYSSSGQVGRTLYTDKNGEI FVTNLPLGN
 YRFKEVEPLAGYAVTTLDTDVQLVDHQLVTITVVNQKLPRGNVDFMKVDGRTNTSLQGAMFKVMKEESGHYPVL
 QNGKEVVVTSGKDGRFRVEGLEYGTYYLWELOQAPTGYVQLTPVSFTIGKDTRKELVTVVKNKRPRIDV PDTGE
 ETLYILMLVAIILFGSGYYLTKKPNN

ORF6_6BSP is a putative sortase. An example of an amino acid sequence of **ORF6_6BSP** is set forth in SEQ ID NO: 205.

SEQ ID NO: 205

25 MLIKMVTKKKQKRNNNLLGVVFFIGMAVMAYPLVSRLYYRVESNQQIADFDEKATLDEADI DERMKLAQAFNDS
 LNNVVSGDPWSEEMKKKGRAEYARMLEIHERMGHEIPVIDVDLPLVYAGTAAEVLQQGAGHLEGTSLPIGGNSTH
 30 AVITAHTGLPTAKMFTDLTKLVGDKFYVHNKEVMAVQVDQVKVIEPTNFDDLLIVPGHDYVTLTCTPYMINT
 HRLLVRGHRI PYVAEVEEEFIAANKLSHLYRYLFYAVGLIVILLWIIRRLKKKKQPEKALKALKARKEVKVE
 DGQQ

ORF7_6BSP is a putative sortase. An example of an amino acid sequence of **ORF7_6BSP** is set forth in SEQ ID NO: 206.

SEQ ID NO: 206

35 MDNSRRSRKKGTKKKHPLLLLLFLVGFAVAIYPLVSRYYRIESNEVIKEFDETQSQMDKAELEERWRLAQAF
 NATLKPSEILDPTEQEKKGKVSEYANMLKVHERIGYVEIPAIQDEI PMYVGTSEEILQKGAGLLEGASLPVGGE
 NTHTVVTAHTRGLPTAELFSQLDKMKKGDFVYLHVLDQVILAYQVDQILTVEPNDFEPVLIQHGEDYATLLTCTPYM
 40 INSHRLLVRGKRI PYTAPIAERNRAVRERGQFWLWLLAALVMILVLSYGVYRHRRIVKGLEKQLEHHVKG

ORF8_6BSP is a putative sortase. An example of an amino acid sequence of **ORF8_6BSP** is set forth in SEQ ID NO: 207.

SEQ ID NO: 207

45 MSKAKLQKLLGYLLMLVALVIPVYCFGQMVLQSLGQVKGHEIFSESVDADS YQEQLQRSLDYNQRQLDSQN RIVDP
 FLAEGYEVNYQVSDDPDAVYGYLSIPSLEIMEPVYLGADYHHLAMGLAHVDGTPLPV EGKGIRSVIAGHRAEPSH
 VFFRHLQDKVGDALYYDNGQEIVEYQMMDEI I LPSEWEKLESVSSKNIMTLITCDPIPTFNKRLVNFERAV
 YQKSDPQTAavarvaFTKEGQSRSVATSQWLRYGLVVLAFGLGILFVLWKLARLLRGK

As discussed above, a *S. pneumoniae* AI sequence is present in the 9V Spain 3 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 9V Spain 3 are set forth below.

ORF2_9VSP is a transcriptional regulator. An example of an amino acid sequence of **ORF2_9VSP** is set forth in SEQ ID NO: 208.

SEQ ID NO: 208

MLNKYIEKRITDKITILNILLDIRSIELDELSTLTSQSKSLLSILQELQETFEEELTFNLDTQQVQLIEHHHSQ
 TNYYFHQLYNQSTILKILRFFLQGNQSNEFTQKEYISIATGYVRQKCGLLLRSVGLDLVKNQVGPEYRIRF
 5 LIAALLQFHFGIEIYDLNDGSMWDVTHMIVQSNSQLSHELLEITPDEYVHFSILVALTWKRREFPLEFPESKEFEK
 LKNLFMYPILMEHQCQTYLEPHANMTFTQEELDYIFLVYCSANSSFSKDKWNQEKKHTIQLILQHTRGKHLLSKF
 KNILGNDISNSLSFLTALTFLTRTFLFGLQNLPYNNYYEHYGIESDKPLYHISKAIVQEWMTEQKIEGVIDQHR
 LYLFSLYLTTETIFSSLPAIPIFIILNNQADVNLIKSIIILRNFTDKVASVTGYNILISPSEEHLTEPLIIITK
 EYLPYVKQYPKGKHHFLTIADLHSVQRLLYQTIVDIRKEAFDKRVAMIAKKAHYLL

10 ORF3_9VSP is a cell wall surface protein. An example of an amino acid sequence of
 ORF3_9VSP is set forth in SEQ ID NO: 209.

SEQ ID NO: 209

MKKVRKI FOKAVAGLCCISQLTAFSSIVALAETPETSPAIGKVVIKETGEGGALLGDAVFELKNNTNGTTVSQRT
 EAQTGEAIFSNIKPGTYTLTEAQPPVGYKPSTKORTVEVEKNGRTTVOQEOVENREEALSDOYPOTGTPDVQTP
 15 YQIIKVDGSEKNGQHKALNPNPYERVIPEGTLSKRIYQVNLLDDNQYIELTVSGKTVYERKDKSVPLDVVILLD
 NSNSMSNIRNKNRRAE~~R~~AGEATRSLIDKITSDPENRVALVTYASTIFDGTEFTVEKGVADKNGKRLNDSLFWNY
 DQTSFTTNTKDYSYLKLTDKNDKDIVELKNKVPTEAEDHDGNRLMYQFGATFTQKALMKADEILTQQARQNSQKVI
 20 FHITDGVPMTMSYPINFNHA~~T~~FAPS~~Y~~QNQLNAFFSKSPNKGILLSDFITQATSGEHTIVRGDGQSYQMFTDKTVY
 EKGAPAAFPVKPEKYSEM~~K~~AVG~~Y~~AVIGDPI~~G~~INGGYIWLWRESILAYPFNSNTAKITNHGDPTRWYYNGNIA~~P~~DGY
 DVFTVGIGINGDPGTDEATATSFMQSISSK~~P~~ENYTNVTD~~T~~TKILEQLNRYFHTIVTEK~~S~~IENG~~T~~IDPMGELID
 25 LQLGTDGRFD~~P~~ADY~~T~~LTANDGSRLENGQAVGGPQNDGG~~L~~LNKAVKFYDTEK~~R~~IRVTG~~L~~YLG~~T~~GEKV~~T~~LT~~N~~VRL
 NDQFVSNKFYDTNGRTTLHPKEVEKNTVRDFPIP~~K~~IRDVRK~~Y~~PAITIAKEKLGEIEFIKINKNDKPLRDAVFS
 LQKQHPD~~P~~DIYGAIDQNGTYQNVRTGEDGKLT~~F~~KNLSDGKYRLFENSEPAGYKPVQNKPIVA~~F~~QIVNGEVRDV~~T~~
 SIVPQDI~~P~~AGYEFTNDKHYITNEPI~~PP~~KREY~~P~~RTGGIGM~~L~~LY~~I~~G~~C~~MMGGV~~L~~LYTRKHP

25 ORF4_9VSP is a cell wall surface protein. An example of an amino acid sequence of
 ORF4_9VSP is set forth in SEQ ID NO: 210.

SEQ ID NO: 210

MKSINKFLTMLAALLLTASSLFSAA~~T~~VFAAGTTTSVTVH~~K~~LLATDGMDKIANELETGNYAGNKVGVL~~P~~ANAKE
 30 TAGVMFWWTNTNNEI~~I~~DEN~~G~~QTLGVNIDPQT~~F~~KLSGAMPATAMKKL~~T~~EAE~~G~~A~~K~~FNTANLPA~~A~~KYK~~I~~YEI~~H~~SLSTY
 VGEDGATLTGSKAV~~P~~IEI~~L~~PLNDVVDAH~~V~~PKNTEAKPK~~I~~D~~K~~F~~G~~KANPDT~~P~~RV~~D~~K~~T~~PV~~N~~HQVG~~D~~V~~V~~YE~~I~~
 TKI~~P~~ALANYATANWSDRMTEGLAFNKGTVK~~V~~T~~V~~DD~~V~~ALEAGDY~~A~~LT~~E~~EVATGF~~D~~L~~K~~L~~T~~DAGLAKVNDQNAEK~~T~~V~~K~~
 TYSATLNDKAI~~V~~E~~V~~PESND~~V~~T~~F~~NYGNNPDHGNTPKPNKPNENG~~D~~L~~T~~KT~~V~~WDATG~~A~~PI~~P~~AGAEATFDLVNA~~Q~~T~~G~~
 35 KV~~V~~Q~~V~~T~~V~~L~~T~~TDKNTV~~T~~V~~N~~GLD~~K~~NTEYKF~~V~~ERSIK~~G~~SADY~~Q~~E~~I~~T~~A~~GEIAVKNWKDENPKPLD~~P~~TEPKVV~~T~~Y~~G~~
 FVKVNDKDNRLAGAEFVIANADNAGQYLARKADKV~~S~~QEEKQLV~~V~~TTKD~~A~~LV~~D~~RA~~V~~A~~Y~~NALTAQQQTQ~~Q~~EKE~~K~~V~~D~~
 SATGQGIEYTAGSGKDDATKVVNKKITIPQTGGIGTII~~F~~AVAGAVIMGIAVYAYVKNNKDEDQ~~L~~A

40 ORF5_9VSP is a cell wall surface protein. An example of an amino acid sequence of
 ORF5_9VSP is set forth in SEQ ID NO: 211.

SEQ ID NO: 211

MTMQKM~~Q~~MQ~~Q~~MQ~~Q~~MQ~~Q~~MQ~~Q~~MQ~~Q~~MSR~~I~~FFV~~M~~ALCF~~S~~LV~~W~~GA~~H~~VA~~Q~~Q~~E~~D~~H~~TL~~V~~L~~V~~Q~~L~~EN~~Y~~Q~~E~~V~~V~~SQLPSRDGHRLQ~~W~~
 KLD~~D~~S~~S~~Y~~S~~Y~~D~~NRVQ~~I~~VR~~D~~L~~H~~SW~~D~~EN~~K~~L~~S~~FF~~K~~K~~T~~S~~F~~EM~~T~~FL~~E~~N~~Q~~I~~E~~V~~S~~HIP~~P~~NG~~L~~Y~~Y~~VR~~S~~I~~I~~Q~~T~~DA~~V~~S~~Y~~PA~~E~~FL~~F~~EM~~T~~
 45 DQ~~T~~VE~~P~~L~~V~~V~~I~~VA~~K~~KAD~~V~~T~~T~~K~~V~~K~~L~~IK~~V~~D~~Q~~D~~H~~NRLEG~~V~~GF~~K~~L~~V~~S~~V~~ARD~~G~~SE~~E~~KE~~V~~PL~~I~~GEY~~R~~Y~~S~~SS~~G~~Q~~V~~GR~~T~~LY~~T~~DK~~N~~
 GEIVV~~T~~N~~L~~PL~~G~~TY~~R~~FK~~E~~VE~~P~~LAG~~Y~~~~V~~T~~T~~M~~D~~D~~V~~QL~~V~~D~~H~~QL~~V~~T~~I~~TV~~V~~N~~Q~~KL~~P~~RG~~N~~V~~D~~FM~~K~~V~~D~~G~~R~~T~~N~~T~~S~~Q~~G~~AM~~F~~
 MKEENG~~H~~Y~~T~~P~~V~~L~~Q~~NG~~K~~EV~~V~~V~~V~~AS~~G~~K~~D~~GR~~R~~FR~~E~~VG~~E~~LEY~~G~~TY~~Y~~W~~E~~Q~~A~~P~~T~~GY~~V~~Q~~L~~T~~S~~P~~V~~S~~F~~T~~I~~G~~K~~D~~T~~R~~K~~E~~L~~V~~V~~K~~NN~~
 KRPRID~~V~~P~~D~~T~~G~~E~~E~~T~~L~~Y~~I~~ML~~V~~AI~~L~~LG~~S~~GY~~Y~~L~~T~~K~~K~~NN

50 ORF6_9VSP is a putative sortase. An example of an amino acid sequence of ORF6_9VSP is
 set forth in SEQ ID NO: 212.

SEQ ID NO: 212

MLIKMA~~K~~KKQKR~~N~~LLLG~~V~~VFFIGIAV~~M~~AYPL~~V~~S~~R~~LY~~R~~V~~E~~S~~N~~Q~~Q~~I~~A~~DF~~D~~KE~~K~~AT~~L~~DE~~A~~DI~~E~~RM~~K~~LA~~Q~~AF~~N~~
 LNNVVSG~~D~~P~~W~~SE~~E~~EM~~K~~KKGRA~~E~~Y~~A~~RM~~L~~E~~I~~HE~~R~~MG~~H~~V~~E~~I~~P~~AI~~D~~V~~D~~L~~P~~V~~Y~~AG~~T~~AE~~E~~V~~L~~Q~~Q~~G~~A~~H~~L~~E~~G~~T~~S~~L~~P~~IG~~G~~N~~S~~
 55 AVITA~~H~~T~~G~~L~~P~~T~~A~~K~~M~~F~~T~~D~~L~~T~~K~~L~~V~~G~~D~~K~~F~~Y~~V~~H~~N~~I~~K~~E~~V~~Y~~M~~Q~~V~~D~~Q~~V~~K~~V~~I~~E~~P~~T~~N~~F~~D~~LL~~L~~I~~V~~P~~G~~H~~D~~Y~~V~~T~~L~~L~~C~~TP~~Y~~
 H~~R~~LL~~V~~R~~G~~H~~R~~I~~P~~Y~~V~~A~~E~~V~~E~~E~~F~~I~~A~~AN~~K~~L~~H~~Y~~R~~Y~~L~~F~~Y~~V~~A~~G~~L~~I~~V~~I~~L~~W~~I~~I~~R~~RL~~R~~KK~~R~~Q~~S~~E~~R~~A~~L~~K~~E~~A~~T~~KE~~V~~
 DE

PCT/US2005/027239

ORF7_9VSP is a putative sortase. An example of an amino acid sequence of ORF7_9VSP is set forth in SEQ ID NO: 213.

SEQ ID NO: 213

MSKSRYSRKKSVKKKKNPFI^{LL}LFLVGLAVAMYPLVS^{RRYY}RIESNEVIKEFDETVSQMDKAELEERWRLAQAFNATLKPS^{EIL}DPTEQEKKKG^{VSE}YANMLKVHERIGYVEIPAIDQEIPMYVGTSEEILQKGAGLLEGASLPVGGE^{NT}HTVVTAHRLG^{PTAEL}FSQLDKMKKGDI^{FYL}HVL^{DQV}LAYQVDQIVTVEPND^{FEP}PVL^IQHG^{EDY}ATLLTCTPYM^TINSHRLLVRGK^{RIP}TAPIAERNRAVR^RERGQFWLWL^{LL}GAMAV^{ILL}LYRVYRNRRIVKG^{LE}KQLEGRHVKD

10 ORF8_9VSP is a putative sortase. An example of an amino acid sequence of ORF8_9VSP is set forth in SEQ ID NO: 214.

SEQ ID NO: 214

MSRTKL^RALLGYLLMLVACLIPIYCFGQMVLQLSGQVKGHATFVKSM^TTEMYQEQQNHSLAYNQR^LAQNRI^VD^PFLAEGYEVN^YQVS^{DDP}DAV^YGYLSIPS^LIMEPV^VYL^GADY^HLGMLAHVDGTPL^LPDGTGIRSVIAGHRAEP^SH^VFFR^HLDQLKVG^DALYYDNGQEIVEYQMM^DTE^EILP^SWEKLESVSSKNIM^MTLITCD^PTFNK^RLLVN^FERV^AV^YQKSDPQTAAVARVAFTKEGQS^VSRVATS^QWLYRGLVVLAFLG^ILFV^LWKL^ARLLRGK^K

As discussed above, a *S. pneumoniae* AI sequence is present in the 14 CSR 10 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 14 CSR 10 are set forth below.

20 ORF2_14CSR is a transcriptional regulator. An example of an amino acid sequence of ORF2_14CSR is set forth in SEQ ID NO: 215.

SEQ ID NO: 215

M^LNKYIEKR^ITD^KITILN^ILLDIRSIELDELSTL^TLSI^QSKS^LLSI^QELQETFEEELTFNLD^TQQVQLIEHHSHQ^TN^YYFHQLYNQ^ST^IL^KILRFFLQGNQS^FNEFTQKEYISIATGYVRQ^KC^GLLRSVGLDLVKNQVVGPEYR^IR^F²⁵L^IALLQFHFGIEIYD^ILN^DGSMDW^TH^MIVQ^SNSQLS^HELLEITP^DEYVHS^IL^VALT^WKRREFPLEF^PESKEFEK^KLKNL^FMPY^ILM^EH^CQ^TY^LE^EPHANMT^FTQ^EELDYI^FFLVYCSANSSFS^KDKWNQEK^KT^HT^IQ^LLQHTRGKHLLSK^FKNILGNDISNSLS^FL^TALT^FL^TRTFL^FGLQNL^VP^YY^NY^EHYGIESDK^PL^YH^ISKAIVQ^EWMTEQ^KIEGV^IDQHR^LYL^FLSLYL^TE^ET^IF^SSLPA^IP^IFT^ILN^NQADVN^LIKSI^ILRNFTDKVASVT^GYNILIS^PP^SEEH^LTEPL^IIT^{TT}KEYLPYVKKQYPKGKH^FL^TIALDLHVSQ^QR^LIYQTIVDIRKEAFDKRVAMIAKKAHYLL³⁰

ORF3_14CSR is a cell wall surface protein. An example of an amino acid sequence of ORF3_14CSR is set forth in SEQ ID NO: 216.

SEQ ID NO: 216

MKKVRK^IFQKAVAGLCC^ISQLTAFSS^IVALAETP^ESPA^IGKV^VI^EK^TGE^GGA^LGD^AV^FE^LKN^NT^DGT^TV^SQ^RT^E³⁵EAQ^TGE^AI^FSN^IKPG^TY^TL^TEA^QPPV^GY^KP^ST^KQ^WT^VE^EK^NG^RTT^VQ^GE^QV^EN^REE^ALS^DQ^YP^QT^GT^PD^VQ^TP^YQ^II^KV^DG^EK^NQ^HK^AL^NP^NP^YER^VI^EPG^TL^SK^RI^YQ^VNN^LDD^NQ^YG^IE^LT^VSG^KT^TV^ET^KE^AST^PLD^VV^IL^DNSNSMSNI^RHNHAHRAEKAGE^ATRALV^DKIT^SNP^DN^RVAL^VT^YG^ST^IF^DG^SE^AT^VE^KG^VA^DANG^KI^LN^DS^AWT^F⁴⁰D^RTT^FTAK^TY^NS^FLN^LT^SD^PT^DI^QT^IK^DR^IP^SDA^EE^LN^KD^KLY^QF^GAT^FT^QK^AL^MT^AD^DI^LT^QARP^NSK^KV^IF^HITDG^VP^TMS^YP^IN^FK^YT^GT^QS^YRT^QLN^NFK^AK^TPN^SSG^ILL^ED^FV^TWS^AD^GE^HK^IV^RG^DGES^YQ^MF^TKK^PV^T⁴⁵D^QY^GV^HQ^IL^SI^TS^MQ^ER^AK^LV^SAG^YR^FY^GT^DLY^LW^RD^ILA^YP^FN^SST^DW^IT^NH^GD^PT^TW^YY^NGN^MQ^DGY^DV^FTV^GV^GN^DPG^TD^EA^TT^ATR^FM^QS^ISS^SPD^NY^TN^VAD^PQ^IL^QE^LN^RY^FY^TI^VN^EK^KS^IE^GT^IT^DPM^GE^LI^DF^QL^GAD^GR^FD^PA^DY^TL^TAND^GSS^LV^NN^VP^TGG^PQ^ND^GLL^KNA^KV^FY^DT^EK^RI^VT^GY^LLG^TGE^KV^TL^TY^NVR^LND^QF^VSN^KF^YD^TN^GR^TT^LH^PKE^EV^KN^TV^RD^FI^PK^IR^DV^RK^YP^EI^TI^PK^EKK^LGE^IE^FI^KI^NK^ND^KK^PL^RD^AV^FSL^QK^QHP^DY^PD^IY^GA^ID^QN^GT^YQ^NV^RT^GE^DG^KL^TF^KN^LS^DG^KY^RL^FEN^SEP^AG^YK^PV^QN^KP^IV^AF^QI^VN^GE^VR^DV^TS^IV⁴⁵P^QD^IP^AG^YE^FT^ND^KH^YI^TN^EP^IPP^KRE^YP^RT^GGI^GML^PY^LIGC^MMMGG^VL^YTR^KH^P

ORF4_14CSR is a cell wall surface protein. An example of an amino acid sequence of ORF4_14CSR is set forth in SEQ ID NO: 217.

SEQ ID NO: 217

MKSINKFLTMLA^ALLTASSL^FSAATVFAADNV^STAP^DAV^TK^TL^IH^KLL^SED^DL^KT^WD^TNG^PK^GY^DG^TQ^SSL^K⁵⁰DL^TGV^VAA^EE^IP^NV^YFE^LQ^KY^NL^TD^GK^EK^NL^KD^DS^KW^TT^VH^GGL^TK^DGL^KI^ET^STL^KG^VR^IR^ED^RT^KT^TY^VG^PNG^QV^LT^GS^KA^VP^AL^VL^PV^NN^NG^TV^IDA^HV^FP^KN^SY^NK^PV^VD^KR^IA^DT^LN^YND^QN^GL^SI^GT^KI^PV^VN^TT^IP^SN^AT^LN^SLA^VA^DI^PE^SN^DI^TY^YGN^HQ^DH^GN^TP^KP^NN^GQ^IT^VT^KT^WD^SQ^PA^PE^GV^KA^TV^QLV^NAK^TGE^KV^GA^PV^EL^SE

NNWLYTWSGLDNSTEYKVEEIVNGYSAETVYESKGKLGVKNWKDNNPAPINPEEPRVKTYGKKFVVKVDQKDTRLE
NAQFVVKKADSNKYIAFKSTAQADEKAATAKQKLDAAVAAYTNAADKQAAQALVDQAOQQEYNVAYKEAKFGY
VEVAGKDEAMVLTSNDGQFQISGLAAGTYKLEEIKAPEGFAKIDDVEFVVGAGSWNQGEFNYLKDVKNDATKV
VNKKITIPQTGGIGTIIFAVAGAAIMGIAVYAYVKNNKDEDQLA

5

ORF5_14CSR is a cell wall surface protein. An example of an amino acid sequence of ORF5_14CSR is set forth in SEQ ID NO: 218.

SEQ ID NO: 218

MTMQKMOKMISRIFVMALCFSLVWGAHAVQAQEDHTLVLQLENQEVVSQLPSRDGHRLQVWKLDSSYSYDDRV
QIVRDLHSWDENKLSSFKKTSFEMTFLENQIEVSHIPNGLYYVRSTIQTDAVSYPAEFLFEMTDQTVEPNVAK
KTDTMTTKVVKLIKVDQDHNRLEGVGFKLVSVARDGSEKEVPLIGEYRYSSSGQVGRTLYTDKNGEIFVTNLPLGN
YRFKEVEPLAGYAVTTLDTDVQLVDHQVLVTITVVNQKLPRGNDFMKVDGRTNTSLQGAMFKVMKEESGHYPVL
QNGKEVVVTSGKDGRFRVEGLEYGTYYLWELOQAPTGYVQLTPVSFTIGKDTRKELTVVKNNKRPRIDVPTGE
ETLYILMLVAILLFGSGYYLTKKPNN

15

ORF6_14CSR is a putative sortase. An example of an amino acid sequence of ORF6_14CSR is set forth in SEQ ID NO: 219.

SEQ ID NO: 219

MLIKMVTKKKQRNNNLLGVVFFIGMAVMAYPLVSRLYYRVESNQQIAFDKEKATLDEADI DERMKLAQAFNDS
LNNVVSGDPWSEEMKKKGRAEYARMLEIHERMGHVEIPVIDVDPVYAGTAEEVLQQGAGHLEGTSLPIGGNSTH
AVITAHTGLPTAKMFTDLTKLVGDKFYVHNKEVMAYQVDQVKVIEPTNFDDLLIVPGHDYVTLLCTPYMINT
HRLLVRGHRIPYVAEVEEEFIAANKLSHYRYLFYVAVGLIVILLWIIRRLRKKKKQPEKALKALKARKEVKVED
DGQQ

25

ORF7_14CSR is a putative sortase. An example of an amino acid sequence of ORF7_14CSR is set forth in SEQ ID NO: 220.

SEQ ID NO: 220

MDNSRRSRKKGTKKKHPLLLLFLVGFAVAIYPLVSRYYYRIESNEVIKEFDETQSMDKAELEERWRLAQAF
NATLKPSIEJLDPFTEQEKKKGVSEYANMLKVHERIGYVEIPAIDQEIPMYVGTSEEILQKGAGLLEGASLPVGGE
NTHTVVTAAHTRGLPTAELFSQLDKMKKGDFVYLHVLDQVLAYQVDQILTVEPNDFEPVLIQHGEDYATLLTCPY
INSHRLLVRGKRIPTYAPIAERNRAVRERGQFWLWLLAALVMILVLSYGVYRHRRIVKGLEKQLEHHVKKG

ORF8_14CSR is a putative sortase. An example of an amino acid sequence of ORF8_14CSR is set forth in SEQ ID NO: 221.

35

SEQ ID NO: 221

MSKAKLQKLLGYLLMLVALVIPVYCFGQMVLQSLGQVKGHEIFSESVDTSYQEQLQRSLDYNQRQLDSQNRI
FLAEGYEVNYQVSDDPAVYGYLSIPSLEIMEPVYLGADYHHLAMGLAHVDGTPLPVEKGKIRSVIAGHRAEPSH
VFFRHLDQLKVGDALEYDNGQEIVEYQMMDETEIILPSEWEKLESVSSKNIMTLLTCDFIPTFNKRLVNFER
YQKSDPQTAavarvAFTKEGQSVSRVATSQWLRYGLVLAFLGILFVLWKLARLLRGK

40

As discussed above, a *S. pneumoniae* AI sequence is present in the 19F Taiwan 14 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 19F Taiwan 14 are set forth below.

45

ORF2_19FTW is a transcriptional regulator. An example of an amino acid sequence of ORF2_19FTW is set forth in SEQ ID NO: 222.

SEQ ID NO: 222

MLNKYIEKRITDKITILNILLDIRSIELDELSTLTSLSKSILLSILOELQETFEEELTFNLDTQQVQLIEHHSHQ
TNYYFHQLYNQSTILKILRFFLILQGNQSFNEFTQKEYISIATGYRVRQKCGLLLRSVGLDLVKNQVVGPEYRIRF
LIALLQFHFGIEIYDLNDGSMDWVTHMIVQSNSQLSHELLITEITPDEYVHFSILVALTWKRREFPLEFESKEFEK
50 LKNLFMYPILMEHCQTYLEPHANMFTQEEELDYIFLVYCSANSSFSKDKWNQEKKHTHIQLILQHTRGKHLLSKF
KNILGNDISNSLSFLTALTFLTRTFLFGLQNLVPYYNYYEHYGIESDKPLYHISKAIVQEWMTTEQKIEGVIDQHR
LYLFSLYLTETIFSSLPAIPIFIILNNQADVNLIKSIILRNFTDKVASVTGYNILISPPPSEEHLTEPLIIITKK
EYLPYVKQYPKGKHHFLTIALDLHVSQQRILYQTIVDIRKEAFDKRVAMIACKAHYLL

PCT/US05/23239

ORF3_19FTW is a cell wall surface protein. An example of an amino acid sequence of ORF3_19FTW is set forth in SEQ ID NO: 223.

SEQ ID NO: 223

5 MKKVRKI FQKAVAGLCCISQLTAFSSIVALAETPETS P AIGKVVI KETGE GGALLGDAV FELKNNTD GTTVS QRT
EAQTGEAIFSNIKPGTYTLTEAQOPPVGYKPSTKQWTVEKEKGRTTVQGEQVNREEALSDQYPQTGTYPDVQTP
YQIIKVDGSEKNGQHKALNP NYERVIPEGTLSKRI YQVNNLDDNQY GIELTVSGKTVYERKDKSVPLDVVILLD
NSNSMSNI RNKNARRAERAGEATRS LIDKITS DPDENRVALVTYASTI FDGT EFTVEKG VADKNGKRLNDSLFWNY
10 DQTSFTTNTKDYSYLKL TNDKNDIVELKNKVPTEAEDHDGNRLMYQFGATFTQKALMKADEILTOQARQNSQKVI
FHITDGVP TMSYPINFNHATFAPSYQNQNAFFSKSPNKG ILLSDFITQATS GEHTIVRGDGQSYQMFTDKTVY
EKGAPAAFPVKPEKYSEMKA VGYAVIGDPINGGYIWI NWRESI LA YPFNSNTAKITNHGAPTRWYYNGNIAPDGY
DVFTVGIGINGDPGTDEATATSF MQSISSK PENYTNTDTKILEQLNRYFTI VTEKKSIE NGTITDPMGELID
LQLGTDGRFD PADYTLTANDGSRL ENGQAVGGPQNDGGLL KNAVKF YDTTEKRIVTGLY LGTGEKVTLT NVRL
15 NDQFVSNKFYDTNGRTTLHPKEVKN TVRD FPIPKIR DVKYP AITIAKEKLGEIEFIKINKNDKKPLRDAVS
SIVPQDIPAGYEFTNDKHYITNEPIPPKREYPRTGGIGMLPFYI GCM MMGGVLLYTRKHP

ORF4_19FTW is a cell wall surface protein. An example of an amino acid sequence of ORF4_19FTW is set forth in SEQ ID NO: 224.

SEQ ID NO: 224

20 MKSINKFLTMLA ALLLTASSL FSAATVFAAGTTTSVTVHKLLATDGDM DKIANELETGNYAGNKVGVL PANAKE
IAGVMFVWTNTNNEI IDENGQ TLGVNI DPQTFKLSGAMPATAMK KLTEAEGAKFNTANLPA AKYK IYEI HSLSTY
VGEDGATLGSKAVPIEIELPLNDVVDAH VYPKNT EAKPKIDKDFKGKANPDT PRV DKT PVN HQGDVVEYEIV
TKI PALANYATANWSDRMTEG LAFNKGTVKTVDDVALEAGDYALTEVATGF DLKLT DAGLA KVNDQNAEKTVKI
25 TYSATLNDKAIVEPESNDVTFNYGNNP DHGNTPKPNKP NENGDLT LTKTW DATG API PAGAEATFD LVNA QTG
KVVQTVT LTTD KNTVTVN GLD KNT EYKFV ERSIKG YADYQE ITAGEIAVKNW KDENPKPLDPTEPKVV TYGKK
FVKVNDKDNRLAGAEFVIANADNAGQYLARKADKVSQEEKQLV VTTKDAL DRAV AAYN ALTAQQ QTQ QKEKE KVDK
AQAAYNAAVIAANNAFEWVADKDNEV VV KLVSDAQ RFEITG LLAGTYY LEETK QPAGY ALLTSRQK FEV TATSY
SATGQGIEYTAGSGKDDATKVVNKKITI PQTGGIGTI IFAVAGAVIMGIAVYAYVKNNKDEDQLA

30

ORF5_19FTW is a cell wall surface protein. An example of an amino acid sequence of ORF5_19FTW is set forth in SEQ ID NO: 225.

SEQ ID NO: 225

35 MTM QM QKM ISR IFV FMALC FS LVWG AHAVQ A QED H T L V L Q L E N Y Q E V V S Q L P S R D G H R L Q V W K L D D S Y D N R V
QIVRDLHSW DENKLSSFKK TS FEMTFLENQIEVSHI P N G L Y Y V R S I I Q T D A V S Y P A E F L F E M T D Q T V E P L V I V A K
KADTVTTKVKLIKVDQDHNRLEGVGFKLVSARDGSEKEVPLIGEYRYSSSGQVGRTLYTDKNGEIVVTNLPLGT
YRFKEVEPLAGYT VTTMDTDVQ LVDHQ LVTITV VNQKLPRGNVDFM KVDG RTNTSLQGAMFKVMKEENGHYPV L
40 QNGKEV VVASGKDGRFR VEGLEY GTYYLWELOQAPTGYVQ L TSPV SFTIGK DTRK ELVTVKNNKR PRIDV PDT GE
ETLYI LMLV A I L F G S G Y Y L T K K T N N

40

ORF6_19FTW is a putative sortase. An example of an amino acid sequence of ORF6_19FTW is set forth in SEQ ID NO: 226.

SEQ ID NO: 226

45 MLIKMAK T KKQKR NNLLLG VV FIGMAV MAYPLV SRL YYR VESN Q QI ADFD KEK ATLDEADIDERM KLAQ AFN DS
LNNVSGDPSEEMKKKGRAEYARMLEI HERMGH VHEI PAIDV DLPV YAGTAEEV LQ QGAGH LEGT SLP IGGN STH
AVITAHTGLPTAKMFTDLT KLVGDKFYVHN IKEV MAYQVDQV K VIEPTNF D D L L I V P G H D Y V T L L CTPYMINT
H RLL VRG H R I P Y V A E V E E F I A A N K L S H LY R Y L F Y V A V G L I V I L L W I I R R L R K K R Q S E R A L K A E A T K E V K V E
DE

50

ORF7_19FTW is a putative sortase. An example of an amino acid sequence of ORF7_19FTW is set forth in SEQ ID NO: 227.

SEQ ID NO: 227

MSKSRYSRKKS VKKKNP FILLLI FLVGLAVAMYPLV S R Y Y R I E S N E V I K E F D E T V S Q M D K A E L E E R W R L A Q A F
NATLK PSEILD PFTDQ EKKQGVSEYANMLKVHERIGYVEI PAIEQ EIPM VGT SEDILQKGAGLLEGASLPVGGE

NPHFVITFAHRGLTLEELTSQIDKMKKGDTFLHVLDQVLAYQVDQIVTVEPNDFEPVLIQHGQDYATLLTCTPYM
INSHRLLVRGKRIPYTAPIAERNRAVRERGQFWLWLLGAMAVILLLYRVYRNRRIVKGLEKQLEGRHVKD

ORF8_19FTW is a putative sortase. An example of an amino acid sequence of

5 ORF8_19FTW is set forth in SEQ ID NO: 228.

SEQ ID NO: 228

MSRTKLALLGYLLMLVACLIPIYCFGQMVLQSLGQVKGHATFVKSMTTEMYQEQQNHSLAYNQRLASQNRIVDP
FLAEQEVNYQVSDDPAVYGYLSIPSLEIMEPVYLGADYHHLGMGLAHVDGTPPLDGTGIRSVIAGHRAEPPSH
VFFRHLQLKVGDALEYDNGQEIVEYQMMDETEILLPSEWEKLESVSSKNIMTLITCDPIPTFNKRLLVNFERVAV
10 YQKSDPQTAAVARVAFTKEQSVSRATSQWLRYGLVVLAFGLGILFVLWKLARLLRGK

As discussed above, a *S. pneumoniae* AI sequence is present in the 23F Taiwan 15 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 23F Taiwan 15 are set forth below.

15 ORF2_23FTW is a transcriptional regulator. An example of an amino acid sequence of
ORF2_23FTW is set forth in SEQ ID NO: 229.

SEQ ID NO: 229

MLNKYIEKRITDKITILNILLDIRSIELDELSTLTSIQSksllsIQLQELQETFEEELTFNLDTQQVQLIEHHSHQ
TNYYFHQLYNQSTILKILRFFLQLGNQSNEFTQKEYISIATGYRVRQKCGLLRSGVLDLVKNQVGPEYRIRF
20 LIALLQFHFGIEIYDLDGSMDWVTHMIVQNSNSQLSHELLEITPDEYVHFSILVALTWKRREFPLEFPESEKEFEK
LKNLFMYPILMEHCQTYLEPHANMTFTQEEELDYIFLVYCSANSSFSKDKWNQEKKHTHTIQLILQHTRGKHLLSKF
KNILGNDISNSLSFLTALTFLTRFLFGLQNLVPYYNYYHYGIESDKPLYHISKAIVQEWMTEQKIEGVIDQHR
LYLFSLYLTTETIFSSLPAIPIFILNNQADVNLIKSIILRNFTDKVASVTGYNILISPPPSEEHLTEPLIIITTK
EYLPYVKQYPKGKHHFLTIALDLHVSQQRILYQTIVDIRKEAFDKRVAMIAKKAHYLL
25

ORF3_23FTW is a cell wall surface protein. An example of an amino acid sequence of
ORF3_23FTW is set forth in SEQ ID NO: 230.

SEQ ID NO: 230

MKKVRKIFQKAVAGLCCISQLTAFSSIVALAETPETSPAIGKVVIKETGEGGALLGDAVFELKNNTDGTTVSQRT
30 EAQTGEAIFSNIKPGTYTLTEAQOPPVGYKPSTKQWTVEKEVNGRTTVQGEQVENREEALSDQYPQTGYPDVQTP
YQIIKVDGSEKNGQHKALNPYERVIPEGTLSKRIYQVNLLDDNQYGIELTVSGKTVYEQKDKSVPLDVVILID
NSNSMSNRNKNARRAERAGEATRSLIDKITSDPENRVALVTYASTIFDGTEFTVEKGVADKNGKRLNDSLFWNY
DQTSFTTNTKDYSYLKLTNDKDNDIVELKNKVPTEAEHDGNRLMYQFGATFTQKALMKADEILTQQARQNSQKVI
35 FHTDGVPVPTMSYPINFNHFATFAPSYQNQLNAFFSKSPNKDGILLSDFITQATSGEHTIVRGDGQSYQMFTDKTVY
EKGAPAAPVKEPKYSEMAAGYAVIGDPINGGYIWLNWRESILAYPFNSNTAKITNHGDPTRWYYNGNIAPDGY
DVFTVGIGINGDPGTDEATATSFMQSISSKPENYTNVTDTTKILEQLNRYFHTIVTEKKSIENGTITDPMGELID
LQLGTDGRFDPADYTLTANDGSRLENGQAVGGPQNDGGLLKNAKVLYDTTEKRIRVTGLYLGTDKEVTLTYNVRL
40 NDEFVSNKFYDTNGRTTLHPKEVEQNTVRDFPIPCKIRDVRKYPEITISKEKLGDIIEFIKVNNDKPLRDAVFS
LQKQHPDYPDIYGAIDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEVRDV
SIVPQDIPAGYEFTNDKHYITNEPIPPKREYPRTGGIGMLPFYLIGCMMGGVLLYTRKHP

ORF4_23FTW is a cell wall surface protein. An example of an amino acid sequence of
ORF4_23FTW is set forth in SEQ ID NO: 231.

SEQ ID NO: 231

MKSINKFLTILAALLLTVSSLFSAAATVFAAEQKTKTLTVHKLLMTDQELDAWNSDAITTAGYDGSQNFEQFKQLQ
45 GVPQGVTEISGVAFELQSYTGPQGKEQENLTNDAVWTAVNKGVTTETGVKFDTVEVQGKPLDNHYTLEAGHNGFILKLNEKGLEAINGKDAEATITLKYTATL
GKVLTMKAVPALITPLVNQNGVVENAHVYPKNSEDKPTATKTFDTAAGFVDPGEKGLAIGTKVPIYVTTTIPK
NSTLATAFWSDDEMTEGLDYNGDVVVNYNGQPLDNHYTLEAGHNGFILKLNEKGLEAINGKDAEATITLKYTATL
50 NALAVADVPEANDVTFHYGNNGHGNTPKPKPKNGELTITKTWADAKDAPPIAGVEVTFDLVNAQTGEVVKVPGH
ETGIVLNQTNNTWFTATGLDNNTEYKFVERTIKGYSADYQTITETGKIAVKNWDENPEPINPEEPRVKTYGKKF
VKVDQKDERLKEAQFVVKNEQGKYLAALKSAAQQAVNEKAAAEEKQALDAATAAYTNAADKNAAQAVVDAAQKTYN
DNYRAARFGYVEVERKEDALVLTNTDGQFQISGLAAGSYTLEETKAPEGFAKLGDVKEVGAGSWNQGDFNYLK
DVQKNDATKVVNKKITIPQTGGIGTIIFAVAGAVIMGIAVYAYVKNNKDEDQLA

PCT/TW/F/23FTW is a cell wall surface protein. An example of an amino acid sequence of ORF5_23FTW is set forth in SEQ ID NO: 232.

SEQ ID NO: 232

MTMQKMQKMRIFVVALCFSLVWGAHAVQAQEDHTLVLQLENYQEVVSQLPSRDGHRLQVWKLDSSYSDNVRV
 5 QIVRDLHSWDENKLSSFKKTSFEMTFLENQIEVSHIPNGLYYVRSTIQTDAVSYPAEFLFEMTDQTVPLVIVAK
 KADTVTTKVLIKVDQDHNRLEGVGFKLVSARDGSEKEVPLIGEYRYSSSGQVGRTLYTDKNGEIVVTNLPLGT
 YRFKEVEPLAGYTVTMDTDVQLVDHQLVTITVNVNQKLPRGNDFMKVDGRNTSLQGAMFKVMKEENGHYTPVL
 10 QNGKEVVVASGKDGRFRVEGLEYGTYYLWELQAPTGYVQLTSPVSFTIGKDTRKELVTVVKNRPRIDV PDTGE
 ETLYILMLVAILLFGSGYYLTKKTN

ORF6_23FTW is a putative sortase. An example of an amino acid sequence of ORF6_23FTW is set forth in SEQ ID NO: 233.

SEQ ID NO: 233

MLIKMVTKKQKRNNLLLGVVFIGMAVMAYPLVSRILYYRVESNQQIAFDKDEKATLDEADIDERMKLAQAFNDS
 15 LNNVVSGDPWSEEMKKKGRAEYARMLEIHERMGHVEIPVIDVLPVYAGTAAEVLQQGAGQLEGTSLPIGGNSTH
 AVITAHTGLPTAKMFTDLTKLVGDKFYVHNKEVMAQVDQVKVIEPTNFDDLLIVPGHDYVTLTCTPYMINT
 HRLLVRGHRIPYVAEEEEEIAANKLSHLYRYLFYVAVGLIVILLWIIRRLRKKKKQPEKALKALKARKEVKE
 DGQQ

ORF7_23FTW is a putative sortase. An example of an amino acid sequence of ORF7_23FTW is set forth in SEQ ID NO: 234.

SEQ ID NO: 234

M DNSRRSRKKGTKKKHPLLLLLFLVGFAVAIYPLVSRYYYRIESNEVIKEFDETQSMDKAELERWRILAQAF
 NATLKPSIELDRAFTEQEKKKGVSEYANMLKVHERIGYVEIPAIDQEIIPMYVGTSEEILQKGAGLLEGASLPVGGE
 25 NTHTVVTAHRLGPTAELFSQLDKMKKGDFVYLVHLDQVLAYQVDQILTVEPNDFEPVLIQHGKDYATLLTCTPYM
 INSHRLLVRGKRIPYTAPIAERNRAVRERGQFWLWLLAALVMILVLSYGVYRHRIVKGLEKQLEHHVKG

ORF8_23FTW is a putative sortase. An example of an amino acid sequence of ORF8_23FTW is set forth in SEQ ID NO: 235.

SEQ ID NO: 235

MSKAQLKLLGYLLMLVALVIPVYCFGQMVLQSLGQVKGHEIFSESVDTADSYQEQLQRSLDYNQRQLDSQNRI VDP
 FLAEGYEVNQVSDDPAVYGYLSIPSLEIMEPVYLGADYHHLAMGLAHVDGTPLPVEGKGIRSVIAGHRAEP SH
 VFFRHLQLKGDALYYDNGQEIIVEYQMMDEIIILPSEWEKLESVSSKNIMTLITCDPIPTFNKRLVNFERVAV
 YQKSDPQTAavarvaFTKEGQSRSVATSQWLRYGLVVLAFLGILFVLWKLARLLRGK

As discussed above, a *S. pneumoniae* AI sequence is present in the 23F Poland 16 *S. pneumoniae* genome. Examples of *S. pneumoniae* AI sequences from 23F Poland 16 are set forth below.

ORF2_23FP is a transcriptional regulator. An example of an amino acid sequence of

ORF2_23FP is set forth in SEQ ID NO: 236.

SEQ ID NO: 236

M LN KYIEKRITDKITILNILLDIRSIELDELSTLTSIQLSKSLLSILQELQETFEEELTFNLDTQQVQLIEHHSHQ
 TNYYFHQLYNQSTILKILRFFLQGNQSFNEFTQKEYISIATGYVRQKCGILLRSVGLDLVKNQVVGPEYRIRF
 45 L I A L L Q F H G I E I Y D L N D G S M D W V T H M I V Q S N S Q L S H E L L E I T P D E Y V H F S I L V A L T W K R R E F P L E F P E S K E F E K
 L K N L F M Y P I L M E H C Q T Y L E P H A N M T F T Q E E L D Y I F L V Y C S A N S S F S K D K W N Q E K K T H T I Q L I L Q H T R G K H L L S K F
 K N I L G N D I S N S L S F L T A L T F L T R T F L F G L Q N L V P Y Y N Y Y E H Y G I E S D K P L Y H I S K A I V Q E W M T E Q K I E G V I D Q H R
 L Y L F S L Y L T E T I F S S L P A I P I F I I L N N Q A D V N L I K S I I L R N F T D K V A S V T G Y N I L I S P P P S E E H L T E P L I I I T K
 E Y L P Y V K K Q Y P K G K H F L T I A L D L H V S Q Q R L I Y Q T I V D I R K E A F D K R V A M I A K K A H Y L L

ORF3_23FP is a cell wall surface protein. An example of an amino acid sequence of ORF3_23FP is set forth in SEQ ID NO: 237.

SEQ ID NO: 237

MKKVVKIEQKAVATGCGTISQUTAFSSEIWTAAETPETS PAIGKVVIKETGE GGALLGDAV FELKNNT DGT TSV QRT
EAQTGEAIFSNIKPGTYTLTEAOPPVGYKPSTKOWTVEVKNGRTTVQGEQEVNREEALSDQYPQTGTYPDVQTP
YQTIKVDGSEKNGQHKALNPNPYERVIPEGTLSKRIYQVNLLDDNOYGIETVSGTTVETKEASTPLDVILLD
NSNSMSNIRHNHAHRAEKA GEATRALVDKITSNPDNRVALVTYGSTIFDGSEATVEKGVADANGKILNDSALWTF
5 DR TTFTAKTNYSFNLNTSDPTDIQTIKDRI P SDAEELNKDKL M YQFGATFTQKALMTADDILTKQARPNSKKVI
FHTDGVPMTMSYPINFKYTGTTSYRTQLNNFKAKTPNNSGILLED FVTWSADGEHKIVRGDGE SYQMFTKKPV
DQYGVHQI LSITSM EQR A KLV SAGYRFYGDLYLWRD SILAYPFNSSTDWITNHGDPTWYYNGNMAQDGYDVF
TVGVGVNGDPGTDEATATR FM QSISSSPDN YTNVADPSQ I LQELNRYFYTIVNEKKSIE NTITDPMGELIDFQL
GADGRFDPADYTLTANDGSSLVNNVPTGGPQNDGGLKNAKVFYDTTEKRIRVTGLY LGTGEKVTLYNVRLNDQ
10 FVSNKFYDTNGRTTLHPKEVEKNTVRDFPIPKIRDVRKYPEITIPKEKKLG EIEFIKINKNDKKPLRDAVFSI LQK
QHPDYPDIYGAIDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKP IVA FQIVNGEV RDVTSIV
PQDIPAGYEFTNDKH YITNEPIPPKREYPRTGGIGMLPFYLIBCMMMGVLLYTRKNP

ORF4_23FP is a cell wall surface protein. An example of an amino acid sequence of
ORF4_23FP is set forth in SEQ ID NO: 238.

SEQ ID NO: 238

MKSINKFLTMLA ALLTASSL FS AATVFAADNV STAPD AVT KTLT IHKL LSE DDLK TW DT NGPK GYD GT QSSLK
DLTGVVAAEIPNVYFELQKYNLT DGKEKENL KKDSK WTTV HGLL TD GLK IETSTL KVY RIRE DRT KTT VGP
20 NGQVL TGSKA VP ALV TLPLV NNG TVI DAH VFP KNS YNKP VVD KRI ADT LYNDQ NGL SIGT KIP YV VNT TIPS N
ATFAT SFWS DEMTEG LTYN EDV TITL NN VAM DQAD YEV TK GING FNL KLT EAGL AKING K DAD QK I QITY SAT LN
SLAVADIPESNDITYHGNHQDHGNTPKPTKPNNGQITVTKTWD SQPAPEGV KATV QLV NAKT GEKV G A P V E L S E
25 NNW TYTWSGLDN SIE YKVEEE YNGSAE YT VES KGK ILGV KNW KDN NPA PIN LEE PRV KTYG KKFV KV DQ K DTR L E
NAQFVVKKADSNKYIAFKSTAQQAA DEKA AATAK QK LDA AAV AAY TNAAD KQAA QALV DQ AQQ EY NVAY KEAK FG Y
VEVAGKDEAMV L TSNTDGF QF QIS GLAAGT YKLEE IKA PEGFAK I DD VEFV VAG SWN QGE F NYL KDV QK N DAT KV
VNKKITI PQTGGIGTII FAVAGAVIMGIAVYAYVKN NK DED QLA

ORF5_23FP is a cell wall surface protein. An example of an amino acid sequence of
ORF5_23FP is set forth in SEQ ID NO: 239.

SEQ ID NO: 239

MTMQKM QKM IS RIFF VMAL CFS LVW GAHA VQA QED H T L V L Q L E N Y Q E V V S Q L P S R D G H R L Q V W K L D D S Y S Y D N R V
30 QIVR DLHSW DENK LSS FKK TTS FEMT FLEN QIEV SHI P N G L Y Y V R S I I Q T D A V S Y P A E F L F E M T D Q T V E P L V I V A K
KADTVTTKVKLIKVDQDHNRLEGVGFKLV S A R D G S E K E V P L I G E Y R Y S S G Q V G R T L Y T D K N G E I V V T N L P L G T
YRF KEVEPLAGYAVTTMDTDVQLVDHQLV T I T V V N Q K L P R G N V D F M K V D G R T N T S L Q G A M F K V M K E E N G H Y T P V L
QNGKEV V V V A S G K D G R F R V E G L E Y G T Y Y L W E L Q A P T G Y V Q L T S P V S F T I G K D T R K E L V T V K N N K R P R I D V P D T G E
ETLYI LMLV A I L L F G S G Y Y L T K K T N N

ORF6_23FP is a putative sortase. An example of an amino acid sequence of **ORF6_23FP** is
set forth in SEQ ID NO: 240.

SEQ ID NO: 240

MLIKMAKTKQKRNNNLLG VVFFIGIAVMAYPLVSRLY YR VESN Q Q IADFDKEKATLDEADI DERM KLAQAFNDS
40 LNNV VSGDPWSEEMKKKG RA EYARMLEI HERMGH VEIPAI DVLPV YAGTAEEV LQ QGAGHLEG TSLPIGGN STH
AVITAHTGLPTAKMFTDLT KLV G DKFY VHNIKEV MAYQVDQVKVIEPTNF D L L I V P G H D Y V T L L C T P Y M I N T
H R L L V R G H R I P Y V A E V E E E F I A A N K L S H L Y R Y L F Y V A V G L I V I L L W I I R R L R K K R Q S E R A L K A L K E A T K E V K V E
DE

ORF7_23FP is a putative sortase. An example of an amino acid sequence of **ORF7_23FP** is
set forth in SEQ ID NO: 241.

SEQ ID NO: 241

MSKS RYSRKKS VKKKNP FILLI F L V G L A V A M Y P L V S R Y Y R I E S N E V I K E F D E T V S Q M D K A E L E E R W R L A Q A F
NATLK PSE I LD PFT E Q E K K K G V S E Y A N M L K V H E R I G Y V E I P A I D Q E I P M Y V G T S E E I L Q K G A G L L E G A S L P V G G E
50 NTH T V V T A H R G L P T A E L F S Q L D K M K K G D I F Y L H V L D Q V L A Y Q V D Q I V T V E P N D F E P V L I Q H G E D Y A T L L T C T P Y M
INSH RLL V R G K R I P Y T A P I A E R N R A V R E R G Q F W L W L L G A M A V I L L L Y R V Y R N R R I V K G L E K Q L E G R H V K D

ORF8_23FP is a putative sortase. An example of an amino acid sequence of **ORF8_23FP** is
set forth in SEQ ID NO: 242.

SEQ ID NO: 2423 O5 / E7E239

MSRTKLRALLGYLLMLVACLIPIYCFGQMVQLQSLGQVKGHATFVKSMTTEMYQEQQNHSLAYNQRLASQNRIVDP
 FLAEGYEVNYQVSDDPPDAVYGYLSIPSLEIMEPVYLGADYHHLGMGLAHVDGTPPLPLDGTGIRSVIAGHRAEP SH
 VFFRHLDQLKVGDALYYDNGQEIVEYQMMDEIIILPSEWEKLESVSSKNIMTLITCDPIPTFNKRLLVNFERVAV
 5 YQKSDPQTAARVARAFTKEGQSVSRVATSQWLYRGLVVLAFLGILFVLWKLARLLRGK

Immunogenic compositions of the invention comprising AI antigens may further comprise one or more antigenic agents. Preferred antigens include those listed below. Additionally, the compositions of the present invention may be used to treat or prevent infections caused by any of the below-listed microbes. Antigens for use in the immunogenic compositions include, but are not limited to, one or more of the following set forth below, or antigens derived from one or more of the following set forth below:

Bacterial Antigens

N. meningitidis: a protein antigen from *N. meningitidis* serogroup A, C, W135, Y, and/or B (1-7); an outer-membrane vesicle (OMV) preparation from *N. meningitidis* serogroup B. (8, 9, 10, 11); a saccharide antigen, including LPS, from *N. meningitidis* serogroup A, B, C W135 and/or Y, such as the oligosaccharide from serogroup C (see PCT/US99/09346; PCT IB98/01665; and PCT 10 IB99/00103);

Streptococcus pneumoniae: a saccharide or protein antigen, particularly a saccharide from *Streptococcus pneumoniae*;

Streptococcus agalactiae: particularly, Group B streptococcus antigens;

Streptococcus pyogenes: particularly, Group A streptococcus antigens;

Enterococcus faecalis or *Enterococcus faecium*: Particularly a trisaccharide repeat or other *Enterococcus* derived antigens provided in US Patent No. 6,756,361;

Helicobacter pylori: including: Cag, Vac, Nap, HopX, HopY and/or urease antigen;

Bordetella pertussis: such as pertussis holotoxin (PT) and filamentous haemagglutinin (FHA) from *B. pertussis*, optionally also combination with pertactin and/or agglutinogens 2 and 3 antigen;

Staphylococcus aureus: including *S. aureus* type 5 and 8 capsular polysaccharides optionally conjugated to nontoxic recombinant *Pseudomonas aeruginosa* exotoxin A, such as StaphVAX™, or antigens derived from surface proteins, invasins (leukocidin, kinases, hyaluronidase), surface factors that inhibit phagocytic engulfment (capsule, Protein A), carotenoids, catalase production, Protein A, coagulase, clotting factor, and/or membrane-damaging toxins (optionally detoxified) that lyse 25 eukaryotic cell membranes (hemolysins, leukotoxin, leukocidin);

Staphylococcus epidermidis: particularly, *S. epidermidis* slime-associated antigen (SAA);

Staphylococcus saprophyticus: (causing urinary tract infections) particularly the 160 kDa hemagglutinin of *S. saprophyticus* antigen;

Pseudomonas aeruginosa: particularly, endotoxin A, Wzz protein, *P. aeruginosa* LPS, more particularly LPS isolated from PAO1 (O5 serotype), and/or Outer Membrane Proteins, including Outer Membrane Proteins F (OprF) (*Infect Immun.* 2001 May; 69(5): 3510-3515);

¶ C *Bacillus anthracis* (anthrax) such as *B. anthracis* antigens (optionally detoxified) from A-components (lethal factor (LF) and edema factor (EF)), both of which can share a common B-component known as protective antigen (PA);

5 *Moraxella catarrhalis*: (respiratory) including outer membrane protein antigens (HMW-OMP), C-antigen, and/or LPS;

383, LPS (*Infect Immun.* 1999 Oct; 67(10): 5395), *Yersinia pestis* V antigen (*Infect Immun.* 1997 Nov; 65(11): 4476-4482);

10 *Yersinia enterocolitica* (gastrointestinal pathogen): particularly LPS (*Infect Immun.* 2002 August; 70(8): 4414);

Yersinia pseudotuberculosis: gastrointestinal pathogen antigens;

15 *Mycobacterium tuberculosis*: such as lipoproteins, LPS, BCG antigens, a fusion protein of antigen 85B (Ag85B) and/or ESAT-6 optionally formulated in cationic lipid vesicles (*Infect Immun.* 2004 October; 72(10): 6148), *Mycobacterium tuberculosis* (Mtb) isocitrate dehydrogenase associated antigens (*Proc Natl Acad Sci U S A.* 2004 Aug 24; 101(34): 12652), and/or **MPT51 antigens** (*Infect Immun.* 2004 July; 72(7): 3829);

Legionella pneumophila (Legionnaires' Disease): *L. pneumophila* antigens -- optionally derived from cell lines with disrupted *asd* genes (*Infect Immun.* 1998 May; 66(5): 1898);

20 *Rickettsia*: including outer membrane proteins, including the outer membrane protein A and/or B (OmpB) (*Biochim Biophys Acta.* 2004 Nov 1;1702(2):145), LPS, and surface protein antigen (SPA) (*J Autoimmun.* 1989 Jun;2 Suppl:81);

E. coli: including antigens from enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli* (EAggEC), diffusely adhering *E. coli* (DAEC), enteropathogenic *E. coli* (EPEC), and/or enterohemorrhagic *E. coli* (EHEC);

25 *Vibrio cholerae*: including proteinase antigens, LPS, particularly lipopolysaccharides of *Vibrio cholerae* II, O1 Inaba O-specific polysaccharides, *V. cholera* O139, antigens of IEM108 vaccine (*Infect Immun.* 2003 Oct;71(10):5498-504), and/or *Zonula occludens toxin* (Zot);

Salmonella typhi (typhoid fever): including capsular polysaccharides preferably conjugates (Vi, i.e. vax-TyVi);

30 *Salmonella typhimurium* (gastroenteritis): antigens derived therefrom are contemplated for microbial and cancer therapies, including angiogenesis inhibition and modulation of flk;

Listeria monocytogenes (systemic infections in immunocompromised or elderly people, infections of fetus): antigens derived from *L. monocytogenes* are preferably used as carriers/vectors for intracytoplasmic delivery of conjugates/associated compositions of the present invention;

35 *Porphyromonas gingivalis*: particularly, *P. gingivalis* outer membrane protein (OMP);

Tetanus: such as tetanus toxoid (TT) antigens, preferably used as a carrier protein in conjunction/conjugated with the compositions of the present invention;

P.C. *Diphtheria*, such as diphtheria Toxoid, preferably CRM₁₉₇, additionally antigens capable of modulating, inhibiting or associated with ADP ribosylation are contemplated for combination/co-administration/conjugation with the compositions of the present invention, the diphtheria toxoids are preferably used as carrier proteins;

5 *Borrelia burgdorferi* (Lyme disease): such as antigens associated with P39 and P13 (an integral membrane protein, *Infect Immun.* 2001 May; 69(5): 3323-3334), VlsE Antigenic Variation Protein (*J Clin Microbiol.* 1999 Dec; 37(12): 3997);

Haemophilus influenzae B: such as a saccharide antigen therefrom;

10 *Klebsiella*: such as an OMP, including OMP A, or a polysaccharide optionally conjugated to tetanus toxoid;

15 *Neisseria gonorrhoeae*: including, a Por (or porin) protein, such as PorB (see Zhu *et al.*, Vaccine (2004) 22:660 – 669), a transferring binding protein, such as TbpA and TbpB (See Price *et al.*, *Infection and Immunity* (2004) 71(1):277 – 283), a opacity protein (such as Opa), a reduction-modifiable protein (Rmp), and outer membrane vesicle (OMV) preparations (see Plante *et al.*, *J Infectious Disease* (2000) 182:848 – 855), also see e.g. WO99/24578, WO99/36544, WO99/57280, WO02/079243);

Chlamydia pneumoniae: particularly *C. pneumoniae* protein antigens;

20 *Chlamydia trachomatis*: including antigens derived from serotypes A, B, Ba and C are (agents of trachoma, a cause of blindness), serotypes L₁, L₂ & L₃ (associated with Lymphogranuloma venereum), and serotypes, D-K;

Treponema pallidum (Syphilis): particularly a TmpA antigen; and

Haemophilus ducreyi (causing chancroid): including outer membrane protein (DsrA).

25 Where not specifically referenced, further bacterial antigens of the invention may be capsular antigens, polysaccharide antigens or protein antigens of any of the above. Further bacterial antigens may also include an outer membrane vesicle (OMV) preparation. Additionally, antigens include live, attenuated, split, and/or purified versions of any of the aforementioned bacteria. The bacterial or microbial derived antigens of the present invention may be gram-negative or gram-positive and aerobic or anaerobic.

30 Additionally, any of the above bacterial-derived saccharides (polysaccharides, LPS, LOS or oligosaccharides) can be conjugated to another agent or antigen, such as a carrier protein (for example CRM₁₉₇). Such conjugation may be direct conjugation effected by reductive amination of carbonyl moieties on the saccharide to amino groups on the protein, as provided in US Patent No. 5,360,897 and *Can J Biochem Cell Biol.* 1984 May;62(5):270-5. Alternatively, the saccharides can be conjugated through a linker, such as, with succinamide or other linkages provided in *Bioconjugate Techniques*, 1996 and *CRC, Chemistry of Protein Conjugation and Cross-Linking*, 1993.

P₅ Viral Antigens

Influenza: including whole viral particles (attenuated), split, or subunit comprising hemagglutinin (HA) and/or neuraminidase (NA) surface proteins, the influenza antigens may be derived from chicken embryos or propagated on cell culture, and/or the influenza antigens are derived from influenza type A, B, and/or C, among others;

Respiratory syncytial virus (RSV): including the F protein of the A2 strain of RSV (*J Gen Virol.* 2004 Nov; 85(Pt 11):3229) and/or G glycoprotein;

Parainfluenza virus (PIV): including PIV type 1, 2, and 3, preferably containing hemagglutinin, neuraminidase and/or fusion glycoproteins;

10 Poliovirus: including antigens from a family of picornaviridae, preferably poliovirus antigens such as OPV or, preferably IPV;

Measles: including split measles virus (MV) antigen optionally combined with the Protollin and/or antigens present in MMR vaccine;

Mumps: including antigens present in MMR vaccine;

15 Rubella: including antigens present in MMR vaccine as well as other antigens from Togaviridae, including dengue virus;

Rabies: such as lyophilized inactivated virus (RabAvertTM);

20 Flaviviridae viruses: such as (and antigens derived therefrom) yellow fever virus, Japanese encephalitis virus, dengue virus (types 1, 2, 3, or 4), tick borne encephalitis virus, and West Nile virus;

Caliciviridae: antigens therefrom;

25 HIV: including HIV-1 or HIV-2 strain antigens, such as gag (p24gag and p55gag), env (gp160 and gp41), pol, tat, nef, rev vpu, miniproteins, (preferably p55 gag and gp140v delete) and antigens from the isolates HIV_{IIIb}, HIV_{SF2}, HIV_{LAV}, HIV_{LAI}, HIV_{MN}, HIV-1_{CM235}, HIV-1_{US4}, HIV-2; simian immunodeficiency virus (SIV) among others;

Rotavirus: including VP4, VP5, VP6, VP7, VP8 proteins (*Protein Expr Purif.* 2004 Dec;38(2):205) and/or NSP4;

Pestivirus: such as antigens from classical porcine fever virus, bovine viral diarrhoea virus, and/or border disease virus;

30 Parvovirus: such as parvovirus B19;

Coronavirus: including SARS virus antigens, particularly spike protein or proteases therefrom, as well as antigens included in WO 04/92360;

Hepatitis A virus: such as inactivated virus;

35 Hepatitis B virus: such as the surface and/or core antigens (sAg), as well as the presurface sequences, pre-S1 and pre-S2 (formerly called pre-S), as well as combinations of the above, such as sAg/pre-S1, sAg/pre-S2, sAg/pre-S1/pre-S2, and pre-S1/pre-S2, (see, e.g., AHBV Vaccines - *Human Vaccines and Vaccination*, pp. 159-176; and U.S. Patent Nos. 4,722,840, 5,098,704, 5,324,513;

Beeches et al., *J. Virol.* (1995) 69:6833-6838; Birnbaum et al., *J. Virol.* (1990) 64:3319-3330; and Zhou et al., *J. Virol.* (1991) 65:5457-5464);

5 *Hepatitis C virus*: such as E1, E2, E1/E2 (see, Houghton et al., *Hepatology* (1991) 14:381), NS345 polyprotein, NS 345-core polyprotein, core, and/or peptides from the nonstructural regions (International Publication Nos. WO 89/04669; WO 90/11089; and WO 90/14436);

Delta hepatitis virus (HDV): antigens derived therefrom, particularly δ-antigen from HDV (see, e.g., U.S. Patent No. 5,378,814);

Hepatitis E virus (HEV); antigens derived therefrom;

Hepatitis G virus (HGV); antigens derived therefrom;

10 *Varicella zoster virus*: antigens derived from varicella zoster virus (VZV) (*J. Gen. Virol.* (1986) 67:1759);

Epstein-Barr virus: antigens derived from EBV (Baer et al., *Nature* (1984) 310:207);

Cytomegalovirus: CMV antigens, including gB and gH (*Cytomegaloviruses* (J.K. McDougall, ed., Springer-Verlag 1990) pp. 125-169);

15 *Herpes simplex virus*: including antigens from HSV-1 or HSV-2 strains and glycoproteins gB, gD and gH (McGeoch et al., *J. Gen. Virol.* (1988) 69:1531 and U.S. Patent No. 5,171,568);

Human Herpes Virus: antigens derived from other human herpesviruses such as HHV6 and HHV7; and

20 *HPV*: including antigens associated with or derived from human papillomavirus (HPV), for example, one or more of E1 – E7, L1, L2, and fusions thereof, particularly the compositions of the invention may include a virus-like particle (VLP) comprising the L1 major capsid protein, more particular still, the HPV antigens are protective against one or more of HPV serotypes 6, 11, 16 and/or 18.

25 Further provided are antigens, compositions, methods, and microbes included in *Vaccines*, 4th Edition (Plotkin and Orenstein ed. 2004); *Medical Microbiology* 4th Edition (Murray et al. ed. 2002); *Virology*, 3rd Edition (W.K. Joklik ed. 1988); *Fundamental Virology*, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991), which are contemplated in conjunction with the compositions of the present invention.

30 Additionally, antigens include live, attenuated, split, and/or purified versions of any of the aforementioned viruses.

Fungal Antigens

 Fungal antigens for use herein, associated with vaccines include those described in: U.S. Pat. Nos. 4,229,434 and 4,368,191 for prophylaxis and treatment of trichophytosis caused by Trichophyton mentagrophytes; U.S. Pat. Nos. 5,277,904 and 5,284,652 for a broad spectrum dermatophyte vaccine for the prophylaxis of dermatophyte infection in animals, such as guinea pigs, cats, rabbits, horses and lambs, these antigens comprises a suspension of killed *T. equinum*, *T. mentagrophytes* (var. granulare), *M. canis* and/or *M. gypseum* in an effective amount optionally combined with an adjuvant;

U.S. Pat'l Nos. 5,453,273 and 6,132,735 for a ringworm vaccine comprising an effective amount of a homogenized, formaldehyde-killed fungi, i.e., *Microsporum canis* culture in a carrier; U.S. Pat. No. 5,948,413 involving extracellular and intracellular proteins for pythiosis. Additional antigens identified within antifungal vaccines include Ringvac bovis LTF-130 and Bioveta.

5 Further, fungal antigens for use herein may be derived from Dermatophytes, including: *Epidermophyton floccosum*, *Microsporum audouini*, *Microsporum canis*, *Microsporum distortum*, *Microsporum equinum*, *Microsporum gypseum*, *Microsporum nanum*, *Trichophyton concentricum*, *Trichophyton equinum*, *Trichophyton gallinae*, *Trichophyton gypseum*, *Trichophyton megnini*, *Trichophyton mentagrophytes*, *Trichophyton quinckeanum*, *Trichophyton rubrum*, *Trichophyton schoenleinii*, *Trichophyton tonsurans*, *Trichophyton verrucosum*, *T. verrucosum* var. *album*, var. *discoides*, var. *ochraceum*, *Trichophyton violaceum*, and/or *Trichophyton faviforme*.

10 Fungal pathogens for use as antigens or in derivation of antigens in conjunction with the compositions of the present invention comprise *Aspergillus fumigatus*, *Aspergillus flavus*, *Aspergillus niger*, *Aspergillus nidulans*, *Aspergillus terreus*, *Aspergillus sydowi*, *Aspergillus flavatus*, *Aspergillus 15 glaucus*, *Blastoschizomyces capitatus*, *Candida albicans*, *Candida enolase*, *Candida tropicalis*, *Candida glabrata*, *Candida krusei*, *Candida parapsilosis*, *Candida stellatoidea*, *Candida kusei*, *Candida parakwsei*, *Candida lusitaniae*, *Candida pseudotropicalis*, *Candida guilliermondi*, *Cladosporium carrionii*, *Coccidioides immitis*, *Blastomyces dermatidis*, *Cryptococcus neoformans*, *Geotrichum clavatum*, *Histoplasma capsulatum*, *Klebsiella pneumoniae*, *Paracoccidioides 20 brasiliensis*, *Pneumocystis carinii*, *Pythium insidiosum*, *Pityrosporum ovale*, *Sacharomyces cerevisiae*, *Saccharomyces boulardii*, *Saccharomyces pombe*, *Scedosporium apiospermum*, *Sporothrix schenckii*, *Trichosporon beigelii*, *Toxoplasma gondii*, *Penicillium marneffei*, *Malassezia spp.*, *Fonsecaea spp.*, *Wangiella spp.*, *Sporothrix spp.*, *Basidiobolus spp.*, *Conidiobolus spp.*, *Rhizopus spp.*, *Mucor spp.*, *Absidia spp.*, *Mortierella spp.*, *Cunninghamella spp.*, and *Saksenaea spp.*

25 Other fungi from which antigens are derived include *Alternaria spp.*, *Curvularia spp.*, *Helminthosporium spp.*, *Fusarium spp.*, *Aspergillus spp.*, *Penicillium spp.*, *Monolinia spp.*, *Rhizoctonia spp.*, *Paecilomyces spp.*, *Pithomyces spp.*, and *Cladosporium spp.*

30 Processes for producing a fungal antigens are well known in the art (see US Patent No. 6,333,164). In a preferred method a solubilized fraction extracted and separated from an insoluble fraction obtainable from fungal cells of which cell wall has been substantially removed or at least partially removed, characterized in that the process comprises the steps of: obtaining living fungal cells; obtaining fungal cells of which cell wall has been substantially removed or at least partially removed; bursting the fungal cells of which cell wall has been substantially removed or at least partially removed; obtaining an insoluble fraction; and extracting and separating a solubilized fraction 35 from the insoluble fraction.

~~P: STD Antigens D 5 / E 7 E 3 S~~

In particular embodiments, microbes (bacteria, viruses and/or fungi) against which the present compositions and methods can be implemented include those that cause sexually transmitted diseases (STDs) and/or those that display on their surface an antigen that can be the target or antigen composition of the invention. In a preferred embodiment of the invention, compositions are combined with antigens derived from a viral or bacterial STD. Antigens derived from bacteria or viruses can be administered in conjunction with the compositions of the present invention to provide protection against at least one of the following STDs, among others: chlamydia, genital herpes, hepatitis (particularly HCV), genital warts, gonorrhoea, syphilis and/or chancroid (See, WO00/15255).

10 In another embodiment the compositions of the present invention are co-administered with an antigen for the prevention or treatment of an STD.

Antigens derived from the following viruses associated with STDs, which are described in greater detail above, are preferred for co-administration with the compositions of the present invention: hepatitis (particularly HCV), HPV, HIV, or HSV.

15 Additionally, antigens derived from the following bacteria associated with STDs, which are described in greater detail above, are preferred for co-administration with the compositions of the present invention: *Neisseria gonorrhoeae*, *Chlamydia pneumoniae*, *Chlamydia trachomatis*, *Treponema pallidum*, or *Haemophilus ducreyi*.

Respiratory Antigens

20 The antigen may be a respiratory antigen and could further be used in an immunogenic composition for methods of preventing and/or treating infection by a respiratory pathogen, including a virus, bacteria, or fungi such as respiratory syncytial virus (RSV), PIV, SARS virus, influenza, *Bacillus anthracis*, particularly by reducing or preventing infection and/or one or more symptoms of respiratory virus infection. A composition comprising an antigen described herein, such as one

25 derived from a respiratory virus, bacteria or fungus is administered in conjunction with the compositions of the present invention to an individual which is at risk of being exposed to that particular respiratory microbe, has been exposed to a respiratory microbe or is infected with a respiratory virus, bacteria or fungus. The composition(s) of the present invention is/are preferably co-administered at the same time or in the same formulation with an antigen of the respiratory pathogen.

30 Administration of the composition results in reduced incidence and/or severity of one or more symptoms of respiratory infection.

Pediatric/Geriatric Antigens

In one embodiment the compositions of the present invention are used in conjunction with an antigen for treatment of a pediatric population, as in a pediatric antigen. In a more particular 35 embodiment the pediatric population is less than about 3 years old, or less than about 2 years, or less than about 1 years old. In another embodiment the pediatric antigen (in conjunction with the composition of the present invention) is administered multiple times over at least 1, 2, or 3 years.

PCT In another embodiment the compositions of the present invention are used in conjunction with an antigen for treatment of a geriatric population, as in a geriatric antigen.

Other Antigens

Other antigens for use in conjunction with the compositions of the present include hospital acquired (nosocomial) associated antigens.

In another embodiment, parasitic antigens are contemplated in conjunction with the compositions of the present invention. Examples of parasitic antigens include those derived from organisms causing malaria and/or Lyme disease.

In another embodiment, the antigens in conjunction with the compositions of the present invention are associated with or effective against a mosquito born illness. In another embodiment, the antigens in conjunction with the compositions of the present invention are associated with or effective against encephalitis. In another embodiment the antigens in conjunction with the compositions of the present invention are associated with or effective against an infection of the nervous system.

In another embodiment, the antigens in conjunction with the compositions of the present invention are antigens transmissible through blood or body fluids.

Antigen Formulations

In other aspects of the invention, methods of producing microparticles having adsorbed antigens are provided. The methods comprise: (a) providing an emulsion by dispersing a mixture comprising (i) water, (ii) a detergent, (iii) an organic solvent, and (iv) a biodegradable polymer selected from the group consisting of a poly(α -hydroxy acid), a polyhydroxy butyric acid, a polycaprolactone, a polyorthoester, a polyanhydride, and a polycyanoacrylate. The polymer is typically present in the mixture at a concentration of about 1% to about 30% relative to the organic solvent, while the detergent is typically present in the mixture at a weight-to-weight detergent-to-polymer ratio of from about 0.00001:1 to about 0.1:1 (more typically about 0.0001:1 to about 0.1:1, about 0.001:1 to about 0.1:1, or about 0.005:1 to about 0.1:1); (b) removing the organic solvent from the emulsion; and (c) adsorbing an antigen on the surface of the microparticles. In certain embodiments, the biodegradable polymer is present at a concentration of about 3% to about 10% relative to the organic solvent.

Microparticles for use herein will be formed from materials that are sterilizable, non-toxic and biodegradable. Such materials include, without limitation, poly(α -hydroxy acid), polyhydroxybutyric acid, polycaprolactone, polyorthoester, polyanhydride, PACA, and polycyanoacrylate. Preferably, microparticles for use with the present invention are derived from a poly(α -hydroxy acid), in particular, from a poly(lactide) ("PLA") or a copolymer of D,L-lactide and glycolide or glycolic acid, such as a poly(D,L-lactide-co-glycolide) ("PLG" or "PLGA"), or a copolymer of D,L-lactide and caprolactone. The microparticles may be derived from any of various polymeric starting materials which have a variety of molecular weights and, in the case of the copolymers such as PLG, a variety of lactide:glycolide ratios, the selection of which will be largely a

matter of choice, depending in part on the coadministered macromolecule. These parameters are discussed more fully below.

Further antigens may also include an outer membrane vesicle (OMV) preparation.

Additional formulation methods and antigens (especially tumor antigens) are provided in U.S.

5 Patent Serial No. 09/581,772.

Antigen References

The following references include antigens useful in conjunction with the compositions of the present invention:

- 10 1 International patent application WO99/24578
- 2 International patent application WO99/36544.
- 3 International patent application WO99/57280.
- 4 International patent application WO00/22430.
- 5 Tettelin et al. (2000) Science 287:1809-1815.
- 15 6 International patent application WO96/29412.
- 7 Pizza et al. (2000) Science 287:1816-1820.
- 8 PCT WO 01/52885.
- 9 Bjune et al. (1991) Lancet 338(8775).
- 10 Fuskaasawa et al. (1999) Vaccine 17:2951-2958.
- 20 11 Rosenqist et al. (1998) Dev. Biol. Strand 92:323-333.
- 12 Constantino et al. (1992) Vaccine 10:691-698.
- 13 Constantino et al. (1999) Vaccine 17:1251-1263.
- 14 Watson (2000) Pediatr Infect Dis J 19:331-332.
- 15 Rubin (2000) Pediatr Clin North Am 47:269-285,v.
- 25 16 Jedrzejas (2001) Microbiol Mol Biol Rev 65:187-207.
- 17 International patent application filed on 3rd July 2001 claiming priority from GB-0016363.4; WO 02/02606; PCT IB/01/00166.
- 18 Kalman et al. (1999) Nature Genetics 21:385-389.
- 19 Read et al. (2000) Nucleic Acids Res 28:1397-406.
- 30 20 Shirai et al. (2000) J. Infect. Dis 181(Suppl 3):S524-S527.
- 21 International patent application WO99/27105.
- 22 International patent application WO00/27994.
- 23 International patent application WO00/37494.
- 24 International patent application WO99/28475.
- 35 25 Bell (2000) Pediatr Infect Dis J 19:1187-1188.
- 26 Iwarson (1995) APMIS 103:321-326.
- 27 Gerlich et al. (1990) Vaccine 8 Suppl:S63-68 & 79-80.
- 28 Hsu et al. (1999) Clin Liver Dis 3:901-915.
- 29 Gastofsson et al. (1996) N. Engl. J. Med. 334-:349-355.
- 40 30 Rappuoli et al. (1991) TIBTECH 9:232-238.
- 31 Vaccines (1988) eds. Plotkin & Mortimer. ISBN 0-7216-1946-0.
- 32 Del Guidice et al. (1998) Molecular Aspects of Medicine 19:1-70.
- 33 International patent application WO93/018150.
- 34 International patent application WO99/53310.
- 45 35 International patent application WO98/04702.
- 36 Ross et al. (2001) Vaccine 19:135-142.
- 37 Sutter et al. (2000) Pediatr Clin North Am 47:287-308.
- 38 Zimmerman & Spann (1999) Am Fam Physician 59:113-118, 125-126.
- 39 Dreensen (1997) Vaccine 15 Suppl"S2-6.
- 50 40 MMWR Morb Mortal Wkly rep 1998 Jan 16:47(1):12, 9.
- 41 McMichael (2000) Vaccine 19 Suppl 1:S101-107.

- 42 Schuchat (1999) Lancet 353(9146):51-6.
43 GB patent applications 0026333.5, 0028727.6 & 0105640.7.
44 Dale (1999) Infect Disclin North Am 13:227-43, viii.
45 Ferretti et al. (2001) PNAS USA 98: 4658-4663.
5 46 Kuroda et al. (2001) Lancet 357(9264):1225-1240; see also pages 1218-1219.
47 Ramsay et al. (2001) Lancet 357(9251):195-196.
48 Lindberg (1999) Vaccine 17 Suppl.2:S28-36.
49 Buttery & Moxon (2000) J R Coll Physicians Long 34:163-168.
10 50 Ahmad & Chapnick (1999) Infect Dis Clin North Am 13:113-133, vii.
51 Goldblatt (1998) J. Med. Microbiol. 47:663-567.
52 European patent 0 477 508.
53 U.S. Patent No. 5,306,492.
15 54 International patent application WO98/42721.
55 Conjugate Vaccines (eds. Cruse et al.) ISBN 3805549326, particularly vol. 10:48-114.
56 Hermanson (1996) Bioconjugate Techniques ISBN: 012323368 & 012342335X.
57 European patent application 0372501.
58 European patent application 0378881.
59 European patent application 0427347.
20 60 International patent application WO93/17712.
61 International patent application WO98/58668.
62 European patent application 0471177.
63 International patent application WO00/56360.
64 International patent application WO00/67161.

25 The contents of all of the above cited patents, patent applications and journal articles are incorporated by reference as if set forth fully herein.

There may be an upper limit to the number of Gram positive bacterial proteins which will be in the compositions of the invention. Preferably, the number of Gram positive bacterial proteins in a composition of the invention is less than 20, less than 19, less than 18, less than 17, less than 16, less than 15, less than 14, less than 13, less than 12, less than 11, less than 10, less than 9, less than 8, less than 7, less than 6, less than 5, less than 4, or less than 3. Still more preferably, the number of Gram positive bacterial proteins in a composition of the invention is less than 6, less than 5, or less than 4. Still more preferably, the number of Gram positive bacterial proteins in a composition of the invention is 3.

35 The Gram positive bacterial proteins and polynucleotides used in the invention are preferably isolated, *i.e.*, separate and discrete, from the whole organism with which the molecule is found in nature or, when the polynucleotide or polypeptide is not found in nature, is sufficiently free of other biological macromolecules so that the polynucleotide or polypeptide can be used for its intended purpose.

40 Fusion Proteins: GBS AI sequences

The GBS AI proteins used in the invention may be present in the composition as individual separate polypeptides, but it is preferred that at least two (*i.e.* 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18) of the antigens are expressed as a single polypeptide chain (a "hybrid" or "fusion" polypeptide). Such fusion polypeptides offer two principal advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable fusion partner that

overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful.

The fusion polypeptide may comprise one or more AI polypeptide sequences. Preferably, the fusion comprises an AI surface protein sequence. Preferably, the fusion polypeptide includes one or more of GBS 80, GBS 104, and GBS 67. Most preferably, the fusion peptide includes a polypeptide sequence from GBS 80. Accordingly, the invention includes a fusion peptide comprising a first amino acid sequence and a second amino acid sequence, wherein said first and second amino acid sequences are selected from a GBS AI surface protein or a fragment thereof. Preferably, the first and second amino acid sequences in the fusion polypeptide comprise different epitopes.

Hybrids (or fusions) consisting of amino acid sequences from two, three, four, five, six, seven, eight, nine, or ten GBS antigens are preferred. In particular, hybrids consisting of amino acid sequences from two, three, four, or five GBS antigens are preferred.

Different hybrid polypeptides may be mixed together in a single formulation. Within such combinations, a GBS antigen may be present in more than one hybrid polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.

Hybrid polypeptides can be represented by the formula $\text{NH}_2\text{-A}\text{-}\{\text{-X-L-}\}_n\text{-B-COOH}$, wherein: X is an amino acid sequence of a GBS AI protein or a fragment thereof; L is an optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; and n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

If a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein. In some embodiments, the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein *i.e.* the leader peptide of X₁ will be retained, but the leader peptides of X₂ ... X_n will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X₁ as moiety -A-.

For each n instances of {-X-L-}, linker amino acid sequence -L- may be present or absent. For instance, when n=2 the hybrid may be NH₂-X₁-L₁-X₂-L₂-COOH, NH₂-X₁-X₂-COOH, NH₂-X₁-L₁-X₂-COOH, NH₂-X₁-X₂-L₂-COOH, etc. Linker amino acid sequence(s) -L- will typically be short (*e.g.* 20 or fewer amino acids *i.e.* 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples comprise short peptide sequences which facilitate cloning, poly-glycine linkers (*i.e.* comprising Gly_n where n = 2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (*i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG, with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the (Gly)₄ tetrapeptide being a typical poly-glycine linker.

-A- is an optional N-terminal amino acid sequence. This will typically be short (*e.g.* 40 or fewer amino acids *i.e.* 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,

18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (e.g. histidine tags *i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art. If X₁ lacks its own N-terminus methionine, -A- 5 is preferably an oligopeptide (e.g. with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides a N-terminus methionine.

-B- is an optional C-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids *i.e.* 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct 10 protein trafficking, short peptide sequences which facilitate cloning or purification (e.g. comprising histidine tags *i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more), or sequences which enhance protein stability. Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art.

Most preferably, n is 2 or 3.

Fusion Proteins: Gram positive bacteria AI sequences

15 The Gram positive bacteria AI proteins used in the invention may be present in the composition as individual separate polypeptides, but it is preferred that at least two (*i.e.* 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18) of the antigens are expressed as a single polypeptide chain (a "hybrid" or "fusion" polypeptide). Such fusion polypeptides offer two principal advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable 20 fusion partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful.

The fusion polypeptide may comprise one or more AI polypeptide sequences. Preferably, the fusion comprises an AI surface protein sequence. Accordingly, the invention includes a fusion 25 peptide comprising a first amino acid sequence and a second amino acid sequence, wherein said first and second amino acid sequences are selected from a Gram positive bacteria AI protein or a fragment thereof. Preferably, the first and second amino acid sequences in the fusion polypeptide comprise different epitopes.

Hybrids (or fusions) consisting of amino acid sequences from two, three, four, five, six, 30 seven, eight, nine, or ten Gram positive bacteria antigens are preferred. In particular, hybrids consisting of amino acid sequences from two, three, four, or five Gram positive bacteria antigens are preferred.

Different hybrid polypeptides may be mixed together in a single formulation. Within such combinations, a Gram positive bacteria AI sequence may be present in more than one hybrid 35 polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.

Hybrid polypeptides can be represented by the formula NH₂-A-{X-L-}_n-B-COOH, wherein: X is an amino acid sequence of a Gram positive bacteria AI sequence or a fragment thereof; L is an

optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; and n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

If a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein. In some embodiments, the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein *i.e.* the leader peptide of X₁ will be retained, but the leader peptides of X₂ ... X_n will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X₁ as moiety -A-.

For each n instances of {-X-L-}, linker amino acid sequence -L- may be present or absent.

For instance, when n=2 the hybrid may be NH₂-X₁-L₁-X₂-L₂-COOH, NH₂-X₁-X₂-COOH,

10 NH₂-X₁-L₁-X₂-COOH, NH₂-X₁-X₂-L₂-COOH, *etc.* Linker amino acid sequence(s) -L- will typically be short (*e.g.* 20 or fewer amino acids *i.e.* 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples comprise short peptide sequences which facilitate cloning, poly-glycine linkers (*i.e.* comprising Gly_n where n = 2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (*i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG, with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the (Gly)₄ tetrapeptide being a typical poly-glycine linker.

15 -A- is an optional N-terminal amino acid sequence. This will typically be short (*e.g.* 40 or fewer amino acids *i.e.* 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (*e.g.* histidine tags *i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art. If X₁ lacks its own N-terminus methionine, -A- is preferably an oligopeptide (*e.g.* with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides a 25 N-terminus methionine.

20 -B- is an optional C-terminal amino acid sequence. This will typically be short (*e.g.* 40 or fewer amino acids *i.e.* 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct protein trafficking, short peptide sequences which facilitate cloning or purification (*e.g.* comprising 30 histidine tags *i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more), or sequences which enhance protein stability. Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art.

Most preferably, n is 2 or 3.

Antibodies: GBS AI sequences

The GBS AI proteins of the invention may also be used to prepare antibodies specific to the 35 GBS AI proteins. The antibodies are preferably specific to the an oligomeric or hyper-oligomeric form of an AI protein. The invention also includes combinations of antibodies specific to GBS AI proteins selected to provide protection against an increased range of GBS serotypes and strain isolates. For example, a combination may comprise a first and second antibody, wherein said first

antibody is specific to a first GBS AI protein and said second antibody is specific to a second GBS AI protein. Preferably, the nucleic acid sequence encoding said first GBS AI protein is not present in a GBS genome comprising a polynucleotide sequence encoding for said second GBS AI protein. Preferably, the nucleic acid sequence encoding said first and second GBS AI proteins are present in the genomes of multiple GBS serotypes and strain isolates.

5 The GBS specific antibodies of the invention include one or more biological moieties that, through chemical or physical means, can bind to or associate with an epitope of a GBS polypeptide. The antibodies of the invention include antibodies which specifically bind to a GBS AI protein. The invention includes antibodies obtained from both polyclonal and monoclonal preparations, as well as 10 the following: hybrid (chimeric) antibody molecules (see, for example, Winter *et al.* (1991) *Nature* 349: 293-299; and US Patent No. 4,816,567; F(ab')₂ and F(ab) fragments; F_v molecules (non-covalent heterodimers, see, for example, Inbar *et al.* (1972) *Proc Natl Acad Sci USA* 69:2659-2662; and Ehrlich *et al.* (1980) *Biochem* 19:4091-4096); single-chain Fv molecules (sFv) (see, for example, Huston *et al.* (1988) *Proc Natl Acad Sci USA* 85:5897-5883); dimeric and trimeric antibody fragment 15 constructs; minibodies (see, e.g., Pack *et al.* (1992) *Biochem* 31:1579-1584; Cumber *et al.* (1992) *J Immunology* 149B: 120-126); humanized antibody molecules (see, for example, Riechmann *et al.* (1988) *Nature* 332:323-327; Verhoeyan *et al.* (1988) *Science* 239:1534-1536; and U.K. Patent Publication No. GB 2,276,169, published 21 September 1994); and, any functional fragments 20 obtained from such molecules, wherein such fragments retain immunological binding properties of the parent antibody molecule. The invention further includes antibodies obtained through non-conventional processes, such as phage display.

Preferably, the GBS specific antibodies of the invention are monoclonal antibodies.

Monoclonal antibodies of the invention include an antibody composition having a homogeneous antibody population. Monoclonal antibodies of the invention may be obtained from murine 25 hybridomas, as well as human monoclonal antibodies obtained using human rather than murine hybridomas. See, e.g., Cote, *et al.* *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, 1985, p 77.

The antibodies of the invention may be used in diagnostic applications, for example, to detect the presence or absence of GBS in a biological sample. The antibodies of the invention may also be 30 used in the prophylactic or therapeutic treatment of GBS infection.

Antibodies: Gram positive bacteria AI sequences

The Gram positive bacteria AI proteins of the invention may also be used to prepare antibodies specific to the Gram positive bacteria AI proteins. The antibodies are preferably specific to the an oligomeric or hyper-oligomeric form of an AI protein. The invention also includes 35 combinations of antibodies specific to Gram positive bacteria AI proteins selected to provide protection against an increased range of Gram positive bacteria genus, species, serotypes and strain isolates.

For example, a combination may comprise a first and second antibody, wherein said first antibody is specific to a first Gram positive bacteria AI protein and said second antibody is specific to a second Gram positive bacteria AI protein. Preferably, the nucleic acid sequence encoding said first Gram positive bacteria AI protein is not present in a Gram positive bacterial genome comprising a

- 5 polynucleotide sequence encoding for said second Gram positive bacteria AI protein. Preferably, the nucleic acid sequence encoding said first and second Gram positive bacteria AI proteins are present in the genomes of multiple Gram positive bacteria genus, species, serotypes or strain isolates.

As an example of an instance where the combination of antibodies provides protection against an increased range of bacteria serotypes, the first antibody may be specific to a first GAS AI protein
10 and the second antibody may be specific to a second GAS AI protein. The first GAS AI protein may comprise a GAS AI-1 surface protein, while the second GAS AI protein may comprise a GAS AI-2 or AI-3 surface protein.

As an example of an instance where the combination of antibodies provides protection against an increased range of bacterial species, the first antibody may be specific to a GBS AI protein and the
15 second antibody may be specific to a GAS AI protein. Alternatively, the first antibody may be specific to a GAS AI protein and the second antibody may be specific to a *S. pneumoniae* AI protein.

The Gram positive specific antibodies of the invention include one or more biological moieties that, through chemical or physical means, can bind to or associate with an epitope of a Gram positive bacteria AI polypeptide. The antibodies of the invention include antibodies which
20 specifically bind to a Gram positive bacteria AI protein. The invention includes antibodies obtained from both polyclonal and monoclonal preparations, as well as the following: hybrid (chimeric) antibody molecules (see, for example, Winter *et al.* (1991) *Nature* 349: 293-299; and US Patent No. 4,816,567; F(ab')₂ and F(ab) fragments; F_v molecules (non-covalent heterodimers, see, for example, Inbar *et al.* (1972) *Proc Natl Acad Sci USA* 69:2659-2662; and Ehrlich *et al.* (1980) *Biochem*
25 19:4091-4096); single-chain Fv molecules (sFv) (see, for example, Huston *et al.* (1988) *Proc Natl Acad Sci USA* 85:5897-5883); dimeric and trimeric antibody fragment constructs; minibodies (see, e.g., Pack *et al.* (1992) *Biochem* 31:1579-1584; Cumber *et al.* (1992) *J Immunology* 149B: 120-126); humanized antibody molecules (see, for example, Riechmann *et al.* (1988) *Nature* 332:323-327; Verhoeyan *et al.* (1988) *Science* 239:1534-1536; and U.K. Patent Publication No. GB 2,276,169,
30 published 21 September 1994); and, any functional fragments obtained from such molecules, wherein such fragments retain immunological binding properties of the parent antibody molecule. The invention further includes antibodies obtained through non-conventional processes, such as phage display.

Preferably, the Gram positive specific antibodies of the invention are monoclonal antibodies.
35 Monoclonal antibodies of the invention include an antibody composition having a homogeneous antibody population. Monoclonal antibodies of the invention may be obtained from murine hybridomas, as well as human monoclonal antibodies obtained using human rather than murine

hybridomas. See, e.g., Cote, et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, 1985, p 77.

The antibodies of the invention may be used in diagnostic applications, for example, to detect the presence or absence of Gram positive bacteria in a biological sample. The antibodies of the 5 invention may also be used in the prophylactic or therapeutic treatment of Gram positive bacteria infection.

Nucleic Acids

The invention provides nucleic acids encoding the Gram positive bacteria sequences and/or the hybrid fusion polypeptides of the invention. The invention also provides nucleic acid encoding 10 the GBS antigens and/or the hybrid fusion polypeptides of the invention. Furthermore, the invention provides nucleic acid which can hybridise to these nucleic acids, preferably under "high stringency" conditions (e.g. 65°C in a 0.1xSSC, 0.5% SDS solution).

Polypeptides of the invention can be prepared by various means (e.g. recombinant expression, purification from cell culture, chemical synthesis, etc.) and in various forms (e.g. native, fusions, 15 non-glycosylated, lipidated, etc.). They are preferably prepared in substantially pure form (i.e. substantially free from other GAS or host cell proteins).

Nucleic acid according to the invention can be prepared in many ways (e.g. by chemical synthesis, from genomic or cDNA libraries, from the organism itself, etc.) and can take various forms 20 (e.g. single stranded, double stranded, vectors, probes, etc.). They are preferably prepared in substantially pure form (i.e. substantially free from other GBS or host cell nucleic acids).

The term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones (e.g. phosphorothioates, etc.), and also peptide nucleic acids (PNA), etc. The invention includes nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing purposes).

25 The invention also provides a process for producing a polypeptide of the invention, comprising the step of culturing a host cell transformed with nucleic acid of the invention under conditions which induce polypeptide expression.

The invention provides a process for producing a polypeptide of the invention, comprising the 30 step of synthesising at least part of the polypeptide by chemical means.

The invention provides a process for producing nucleic acid of the invention, comprising the step of amplifying nucleic acid using a primer-based amplification method (e.g. PCR).

The invention provides a process for producing nucleic acid of the invention, comprising the step of synthesising at least part of the nucleic acid by chemical means.

Purification and Recombinant Expression

35 The Gram positive bacteria AI proteins of the invention may be isolated from the native Gram positive bacteria, or they may be recombinantly produced, for instance in a heterologous host. For example, the GAS, GBS, and *S. pneumoniae* antigens of the invention may be isolated from

~~GBS~~ *Streptococcus agalactiae*, *S. pyogenes*, *S. pneumoniae*, or they may be recombinantly produced, for instance, in a heterologous host. Preferably, the GBS antigens are prepared using a heterologous host.

The heterologous host may be prokaryotic (e.g. a bacterium) or eukaryotic. It is preferably *E.coli*, but other suitable hosts include *Bacillus subtilis*, *Vibrio cholerae*, *Salmonella typhi*, *Salmonella typhimurium*, *Neisseria lactamica*, *Neisseria cinerea*, *Mycobacteria* (e.g. *M.tuberculosis*), *S. gordonii*, *L. lactis*, yeasts, etc.

Recombinant production of polypeptides is facilitated by adding a tag protein to the Gram positive bacteria AI sequence to be expressed as a fusion protein comprising the tag protein and the Gram positive bacteria antigen. For example, recombinant production of polypeptides is facilitated by

10 adding a tag protein to the GBS antigen to be expressed as a fusion protein comprising the tag protein and the GBS antigen. Such tag proteins can facilitate purification, detection and stability of the expressed protein. Tag proteins suitable for use in the invention include a polyarginine tag (Arg-tag),

polyhistidine tag (His-tag), FLAG-tag, Strep-tag, c-myc-tag, S-tag, calmodulin-binding peptide, cellulose-binding domain, SBP-tag,, chitin-binding domain, glutathione S-transferase-tag (GST),

15 maltose-binding protein, transcription termination anti-terminant factor (NusA), *E. coli* thioredoxin (TrxA) and protein disulfide isomerase I (DsbA). Preferred tag proteins include His-tag and GST. A full discussion on the use of tag proteins can be found at Terpe et al., "Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems", Appl Microbiol Biotechnol (2003) 60:523 – 533.

20 After purification, the tag proteins may optionally be removed from the expressed fusion protein, i.e., by specifically tailored enzymatic treatments known in the art. Commonly used proteases include enterokinase, tobacco etch virus (TEV), thrombin, and factor X_a.

GBS polysaccharides

25 The compositions of the invention may be further improved by including GBS polysaccharides. Preferably, the GBS antigen and the saccharide each contribute to the immunological response in a recipient. The combination is particularly advantageous where the saccharide and polypeptide provide protection from different GBS serotypes.

30 The combined antigens may be present as a simple combination where separate saccharide and polypeptide antigens are administered together, or they may be present as a conjugated combination, where the saccharide and polypeptide antigens are covalently linked to each other.

Thus the invention provides an immunogenic composition comprising (i) one or more GBS AI proteins and (ii) one or more GBS saccharide antigens. The polypeptide and the polysaccharide may advantageously be covalently linked to each other to form a conjugate.

35 Between them, the combined polypeptide and saccharide antigens preferably cover (or provide protection from) two or more GBS serotypes (e.g. 2, 3, 4, 5, 6, 7, 8 or more serotypes). The serotypes of the polypeptide and saccharide antigens may or may not overlap. For example, the polypeptide might protect against serogroup II or V, while the saccharide protects against either serogroups Ia, Ib, or III. Preferred combinations protect against the following groups of serotypes:

(1) serotypes Ia and Ib, (2) serotypes Ia and II, (3) serotypes Ia and III, (4) serotypes Ia and IV, (5) serotypes Ia and V, (6) serotypes Ia and VI, (7) serotypes Ia and VII, (8) serotypes Ia and VIII, (9) serotypes Ib and II, (10) serotypes Ib and III, (11) serotypes Ib and IV, (12) serotypes Ib and V, (13) serotypes Ib and VI, (14) serotypes Ib and VII, (15) serotypes Ib and VIII, (16) serotypes II and III, (17) serotypes II and IV, (18) serotypes II and V, (19) serotypes II and VI, (20) serotypes II and VII, (21) serotypes II and VIII, (22) serotypes III and IV, (23) serotypes III and V, (24) serotypes III and VI, (25) serotypes III and VII, (26) serotypes III and VIII, (27) serotypes IV and V, (28) serotypes IV and VI, (29) serotypes IV and VII, (30) serotypes IV and VIII, (31) serotypes V and VI, (32) serotypes V and VII, (33) serotypes V and VIII, (34) serotypes VI and VII, (35) serotypes VI and VIII, and (36) serotypes VII and VIII.

Still more preferably, the combinations protect against the following groups of serotypes: (1) serotypes Ia and II, (2) serotypes Ia and V, (3) serotypes Ib and II, (4) serotypes Ib and V, (5) serotypes III and II, and (6) serotypes III and V. Most preferably, the combinations protect against serotypes III and V.

Protection against serotypes II and V is preferably provided by polypeptide antigens.

Protection against serotypes Ia, Ib and/or III may be polypeptide or saccharide antigens.

Immunogenic compositions and medicaments

Compositions of the invention are preferably immunogenic compositions, and are more preferably vaccine compositions. The pH of the composition is preferably between 6 and 8, preferably about 7. The pH may be maintained by the use of a buffer. The composition may be sterile and/or pyrogen-free. The composition may be isotonic with respect to humans.

Vaccines according to the invention may either be prophylactic (*i.e.* to prevent infection) or therapeutic (*i.e.* to treat infection), but will typically be prophylactic. Accordingly, the invention includes a method for the therapeutic or prophylactic treatment of a Gram positive bacteria infection in an animal susceptible to such gram positive bacterial infection comprising administering to said animal a therapeutic or prophylactic amount of the immunogenic composition of the invention. For example, the invention includes a method for the therapeutic or prophylactic treatment of a *Streptococcus agalactiae*, *S. pyogenes*, or *S. pneumoniae* infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the immunogenic compositions of the invention.

The invention also provides a composition of the invention for use of the compositions described herein as a medicament. The medicament is preferably able to raise an immune response in a mammal (*i.e.* it is an immunogenic composition) and is more preferably a vaccine.

The invention also provides the use of the compositions of the invention in the manufacture of a medicament for raising an immune response in a mammal. The medicament is preferably a vaccine.

The invention also provides kits comprising one or more containers of compositions of the invention. Compositions can be in liquid form or can be lyophilized, as can individual antigens. Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes.

Containers can be formed from a variety of materials, including glass or plastic. A container may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The composition may comprise a first component comprising one or more Gram positive bacteria AI proteins. Preferably, the AI proteins are surface AI proteins. Preferably, the AI surface proteins are in an oligomeric or hyperoligomeric form. For example, the first component comprises a combination of GBS antigens or GAS antigens, or *S. pneumoniae* antigens. Preferably said combination includes GBS 80. Preferably GBS 80 is present in an oligomeric or hyperoligomeric form.

5 The kit can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution, or dextrose solution. It can also contain other materials useful to the end-user, including other buffers, diluents, filters, needles, and syringes. The kit can also comprise a second or third container with another active agent, for example an antibiotic.

10 The kit can also comprise a package insert containing written instructions for methods of inducing immunity against *S. agalactiae* and/or *S. pyogenes* and/or *S. pneumoniae* or for treating *S. agalactiae* and/or *S. pyogenes* and/or *S. pneumoniae* infections. The package insert can be an unapproved draft package insert or can be a package insert approved by the Food and Drug Administration (FDA) or other regulatory body.

15 The invention also provides a delivery device pre-filled with the immunogenic compositions of the invention.

20 The invention also provides a method for raising an immune response in a mammal comprising the step of administering an effective amount of a composition of the invention. The immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity. This immune response will preferably induce long lasting (e.g., neutralising) antibodies and a cell mediated immunity that can quickly respond upon exposure to one or more GBS and/or GAS and/or *S. pneumoniae* antigens. The method may raise a booster response.

25 The invention provides a method of neutralizing GBS, GAS, or *S. pneumoniae* infection in a mammal comprising the step of administering to the mammal an effective amount of the immunogenic compositions of the invention, a vaccine of the invention, or antibodies which recognize an immunogenic composition of the invention.

30 The mammal is preferably a human. Where the vaccine is for prophylactic use, the human is preferably a female (either of child bearing age or a teenager). Alternatively, the human may be elderly (e.g., over the age of 50, 55, 60, 65, 70 or 75) and may have an underlying disease such as diabetes or cancer. Where the vaccine is for therapeutic use, the human is preferably a pregnant female or an elderly adult.

35 These uses and methods are preferably for the prevention and/or treatment of a disease caused by *Streptococcus agalactiae*, or *S. pyogenes*, or *S. pneumoniae*. The compositions may also be

effective against other streptococcal bacteria. The compositions may also be effective against other Gram positive bacteria.

One way of checking efficacy of therapeutic treatment involves monitoring Gram positive bacterial infection after administration of the composition of the invention. One way of checking - 5 efficacy of prophylactic treatment involves monitoring immune responses against the Gram positive bacterial antigens in the compositions of the invention after administration of the composition.

One way of checking efficacy of therapeutic treatment involves monitoring GBS infection after administration of the composition of the invention. One way of checking efficacy of prophylactic treatment involves monitoring immune responses against the GBS antigens in the 10 compositions of the invention after administration of the composition.

A way of assessing the immunogenicity of the component proteins of the immunogenic compositions of the present invention is to express the proteins recombinantly and to screen patient sera or mucosal secretions by immunoblot. A positive reaction between the protein and the patient serum indicates that the patient has previously mounted an immune response to the protein in 15 question- that is, the protein is an immunogen. This method may also be used to identify immunodominant proteins and/or epitopes.

Another way of checking efficacy of therapeutic treatment involves monitoring GBS or GAS or *S pneumoniae* infection after administration of the compositions of the invention. One way of checking efficacy of prophylactic treatment involves monitoring immune responses both systemically 20 (such as monitoring the level of IgG1 and IgG2a production) and mucosally (such as monitoring the level of IgA production) against the GBS and/or GAS and/or *S pneumoniae* antigens in the compositions of the invention after administration of the composition. Typically, GBS and/or GAS and/or *S pneumoniae* serum specific antibody responses are determined post-immunization but pre-challenge whereas mucosal GBS and/or GAS and/or *S pneumoniae* specific antibody body responses 25 are determined post-immunization and post-challenge.

The vaccine compositions of the present invention can be evaluated in *in vitro* and *in vivo* animal models prior to host, e.g., human, administration.

The efficacy of immunogenic compositions of the invention can also be determined *in vivo* by challenging animal models of GBS and/or GAS and/or *S pneumoniae* infection, e.g., guinea pigs or 30 mice, with the immunogenic compositions. The immunogenic compositions may or may not be derived from the same serotypes as the challenge serotypes. Preferably the immunogenic compositions are derivable from the same serotypes as the challenge serotypes. More preferably, the immunogenic composition and/or the challenge serotypes are derivable from the group of GBS and/or GAS and/or *S pneumoniae* serotypes.

35 *In vivo* efficacy models include but are not limited to: (i) A murine infection model using human GBS and/or GAS and/or *S pneumoniae* serotypes; (ii) a murine disease model which is a murine model using a mouse-adapted GBS and/or GAS and/or *S pneumoniae* strain, such as those

strains outlined above which is particularly virulent in mice and (iii) a primate model using human GBS or GAS or S pneumoniae isolates.

The immune response may be one or both of a TH1 immune response and a TH2 response.

The immune response may be an improved or an enhanced or an altered immune response.

5 The immune response may be one or both of a systemic and a mucosal immune response.

Preferably the immune response is an enhanced system and/or mucosal response.

An enhanced systemic and/or mucosal immunity is reflected in an enhanced TH1 and/or TH2 immune response. Preferably, the enhanced immune response includes an increase in the production of IgG1 and/or IgG2a and/or IgA

10 Preferably the mucosal immune response is a TH2 immune response. Preferably, the mucosal immune response includes an increase in the production of IgA.

Activated TH2 cells enhance antibody production and are therefore of value in responding to extracellular infections. Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10.

A TH2 immune response may result in the production of IgG1, IgE, IgA and memory B cells for 15 future protection.

A TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response (such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgG1, IgE, IgA and memory B cells. Preferably, the enhanced TH2 immune response will include an increase in IgG1 production.

20 A TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFN γ , and TNF β), an increase in activated macrophages, an increase in NK activity, or an increase in the production of IgG2a. Preferably, the enhanced TH1 immune response will include an increase in IgG2a production.

25 Immunogenic compositions of the invention, in particular, immunogenic composition comprising one or more GAS antigens of the present invention may be used either alone or in combination with other GAS antigens optionally with an immunoregulatory agent capable of eliciting a Th1 and/or Th2 response.

30 Compositions of the invention will generally be administered directly to a patient. Certain routes may be favored for certain compositions, as resulting in the generation of a more effective immune response, preferably a CMI response, or as being less likely to induce side effects, or as being easier for administration. Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intradermally, intravenously, intramuscularly, or to the interstitial space of a tissue), or by rectal, oral (e.g. tablet, spray), vaginal, topical, transdermal (e.g. see WO 99/27961) or transcutaneous (e.g. see WO 02/074244 and WO 02/064162), intranasal (e.g. see 35 WO03/028760), ocular, aural, pulmonary or other mucosal administration.

The invention may be used to elicit systemic and/or mucosal immunity.

In one particularly preferred embodiment, the immunogenic composition comprises one or more GBS or GAS or S pneumoniae antigen(s) which elicits a neutralising antibody response and one or more GBS or GAS or S pneumoniae antigen(s) which elicit a cell mediated immune response. In this way, the neutralising antibody response prevents or inhibits an initial GBS or GAS or S

5 pneumoniae infection while the cell-mediated immune response capable of eliciting an enhanced Th1 cellular response prevents further spreading of the GBS or GAS or S pneumoniae infection.

Preferably, the immunogenic composition comprises one or more GBS or GAS or S pneumoniae surface antigens and one or more GBS or GAS or S pneumoniae cytoplasmic antigens. Preferably the immunogenic composition comprises one or more GBS or GAS or S pneumoniae surface antigens or 10 the like and one or other antigens, such as a cytoplasmic antigen capable of eliciting a Th1 cellular response.

Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes *e.g.* a 15 parenteral prime and mucosal boost, a mucosal prime and parenteral boost, *etc.*

The compositions of the invention may be prepared in various forms. For example, the compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared (*e.g.* a lyophilised composition). The composition may be prepared for topical administration *e.g.* as an

20 ointment, cream or powder. The composition may be prepared for oral administration *e.g.* as a tablet or capsule, as a spray, or as a syrup (optionally flavoured). The composition may be prepared for pulmonary administration *e.g.* as an inhaler, using a fine powder or a spray. The composition may be prepared as a suppository or pessary. The composition may be prepared for nasal, aural or ocular administration *e.g.* as drops. The composition may be in kit form, designed such that a combined 25 composition is reconstituted just prior to administration to a patient. Such kits may comprise one or more antigens in liquid form and one or more lyophilised antigens.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen(s), as well as any other components, such as antibiotics, as needed. By 'immunologically effective amount', it is meant that the administration of that amount to an individual, either in a single 30 dose or as part of a series, is effective for treatment or prevention, or increases a measurable immune response or prevents or reduces a clinical symptom. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (*e.g.* non-human primate, primate, *etc.*), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating 35 doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

Further Components of the Composition

The composition of the invention will typically, in addition to the components mentioned above, comprise one or more 'pharmaceutically acceptable carriers', which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the 5 composition. Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes). Such carriers are well known to those of ordinary skill in the art. The vaccines may also contain diluents, such as water, saline, glycerol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering 10 substances, and the like, may be present. A thorough discussion of pharmaceutically acceptable excipients is available in Gennaro (2000) *Remington: The Science and Practice of Pharmacy*. 20th ed., ISBN: 0683306472.

Adjuvants

Vaccines of the invention may be administered in conjunction with other immunoregulatory 15 agents. In particular, compositions will usually include an adjuvant. Adjuvants for use with the invention include, but are not limited to, one or more of the following set forth below:

A. Mineral Containing Compositions

Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminum salts and calcium salts. The invention includes mineral salts such as 20 hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), sulfates, etc. (e.g. see chapters 8 & 9 of *Vaccine Design...* (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum.), or mixtures of different mineral compounds (e.g. a mixture of a phosphate and a hydroxide adjuvant, optionally with an excess of the phosphate), with the compounds taking any suitable form (e.g. gel, crystalline, amorphous, etc.), and with adsorption to the salt(s) being preferred. The mineral 25 containing compositions may also be formulated as a particle of metal salt (WO 00/23105).

Aluminum salts may be included in vaccines of the invention such that the dose of Al³⁺ is between 0.2 and 1.0 mg per dose.

B. Oil-Emulsions

Oil-emulsion compositions suitable for use as adjuvants in the invention include squalene-water 30 emulsions, such as MF59 (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). See WO90/14837. See also, Podda, "The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine", Vaccine (2001) 19: 2673-2680; Frey et al., "Comparison of the safety, tolerability, and immunogenicity of a 35 MF59-adjuvanted influenza vaccine and a non-adjuvanted influenza vaccine in non-elderly adults", Vaccine (2003) 21:4234-4237. MF59 is used as the adjuvant in the FLUAD™ influenza virus trivalent subunit vaccine.

Particularly preferred adjuvants for use in the compositions are submicron oil-in-water emulsions. Preferred submicron oil-in-water emulsions for use herein are squalene/water emulsions optionally containing varying amounts of MTP-PE, such as a submicron oil-in-water emulsion containing 4-5% w/v squalene, 0.25-1.0% w/v Tween 80™ (polyoxyethylenglycosenonanoate), and/or 0.25-1.0% Span 85™ (sorbitan trioleate), and, optionally, N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), for example, the submicron oil-in-water emulsion known as "MF59" (International Publication No. WO 90/14837; US Patent Nos. 6,299,884 and 6,451,325, incorporated herein by reference in their entireties; and Ott et al., "MF59 -- Design and Evaluation of a Safe and Potent Adjuvant for Human Vaccines" in *Vaccine Design: The Subunit and Adjuvant Approach* (Powell, M.F. and Newman, M.J. eds.) Plenum Press, New York, 1995, pp. 277-296). MF59 contains 4-5% w/v Squalene (e.g. 4.3%), 0.25-0.5% w/v Tween 80™, and 0.5% w/v Span 85™ and optionally contains various amounts of MTP-PE, formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA). For example, MTP-PE may be present in an amount of about 0-500 µg/dose, more preferably 0-250 µg/dose and most preferably, 0-100 µg/dose. As used herein, the term "MF59-0" refers to the above submicron oil-in-water emulsion lacking MTP-PE, while the term MF59-MTP denotes a formulation that contains MTP-PE. For instance, "MF59-100" contains 100 µg MTP-PE per dose, and so on. MF69, another submicron oil-in-water emulsion for use herein, contains 4.3% w/v squalene, 0.25% w/v Tween 80™, and 0.75% w/v Span 85™ and optionally MTP-PE. Yet another submicron oil-in-water emulsion is MF75, also known as SAF, containing 10% squalene, 0.4% Tween 80™, 5% pluronics-blocked polymer L121, and thr-MDP, also microfluidized into a submicron emulsion. MF75-MTP denotes an MF75 formulation that includes MTP, such as from 100-400 µg MTP-PE per dose.

Submicron oil-in-water emulsions, methods of making the same and immunostimulating agents, such as muramyl peptides, for use in the compositions, are described in detail in International Publication No. WO 90/14837 and US Patent Nos. 6,299,884 and 6,451,325, incorporated herein by reference in their entireties.

Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used as adjuvants in the invention.

30 C. Saponin Formulations

Saponin formulations, may also be used as adjuvants in the invention. Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the *Quillaia saponaria* Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from *Smilax ornata* (sarsaparilla), *Gypsophilla paniculata* (brides veil), and *Saponaria officianalis* (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs.

Saponin compositions have been purified using High Performance Thin Layer Chromatography (HP-LC) and Reversed Phase High Performance Liquid Chromatography (RP-HPLC). Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C. Preferably, the saponin is QS21. A method of production of 5 QS21 is disclosed in US Patent No. 5,057,540. Saponin formulations may also comprise a sterol, such as cholesterol (see WO96/33739).

Combinations of saponins and cholesterols can be used to form unique particles called Immunostimulating Complexes (ISCOMs). ISCOMs typically also include a phospholipid such as phosphatidylethanolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs.

10 Preferably, the ISCOM includes one or more of Quil A, QHA and QHC. ISCOMs are further described in EP0109942, WO 96/11711 and WO 96/33739. Optionally, the ISCOMS may be devoid of additional detergent. See WO 00/07621.

A review of the development of saponin based adjuvants can be found at Barr, et al., "ISCOMs and other saponin based adjuvants", Advanced Drug Delivery Reviews (1998) 32:247-271.

15 See also Sjolander, et al., "Uptake and adjuvant activity of orally delivered saponin and ISCOM vaccines", Advanced Drug Delivery Reviews (1998) 32:321-338.

D. Virosomes and Virus Like Particles (VLPs)

Virosomes and Virus Like Particles (VLPs) can also be used as adjuvants in the invention.

These structures generally contain one or more proteins from a virus optionally combined or

20 formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome. The viral proteins may be recombinantly produced or isolated from whole viruses. These viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, 25 Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Q β -phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein p1). VLPs are discussed further in WO 03/024480, WO 03/024481, and Niikura et al., "Chimeric Recombinant Hepatitis E Virus-Like Particles as an Oral Vaccine Vehicle Presenting Foreign Epitopes", Virology (2002) 293:273-280; Lenz et al., "Papillomavirus-Like Particles Induce Acute Activation of

30 Dendritic Cells", Journal of Immunology (2001) 5246-5355; Pinto, et al., "Cellular Immune Responses to Human Papillomavirus (HPV)-16 L1 Healthy Volunteers Immunized with Recombinant HPV-16 L1 Virus-Like Particles", Journal of Infectious Diseases (2003) 188:327-338; and Gerber et al., "Human Papillomavirus Virus-Like Particles Are Efficient Oral Immunogens when Coadministered with Escherichia coli Heat-Labile Enterotoxin Mutant R192G or CpG", Journal of 35 Virology (2001) 75(10):4752-4760. Virosomes are discussed further in, for example, Gluck et al., "New Technology Platforms in the Development of Vaccines for the Future", Vaccine (2002) 20:B10-B16. Immunopotentiating reconstituted influenza virosomes (IRIV) are used as the subunit antigen

delivery system in the intranasal trivalent INFLEXAL™ product {Mischler & Metcalfe (2002) *Vaccine* 20 Suppl 5:B17-23} and the INFLUVAC PLUS™ product.

E. *Bacterial or Microbial Derivatives*

Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as:

5 (1) *Non-toxic derivatives of enterobacterial lipopolysaccharide (LPS)*

Such derivatives include Monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL). 3dMPL is a mixture of 3 De-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains. A preferred “small particle” form of 3 De-O-acylated monophosphoryl lipid A is disclosed in EP 0 689 454. Such “small particles” of 3dMPL are small enough to be sterile filtered through a 0.22 micron membrane (see EP 0 689 454). Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g. RC-529. See Johnson *et al.* (1999) *Bioorg Med Chem Lett* 9:2273-2278.

(2) *Lipid A Derivatives*

Lipid A derivatives include derivatives of lipid A from *Escherichia coli* such as OM-174.

15 OM-174 is described for example in Meraldi *et al.*, “OM-174, a New Adjuvant with a Potential for Human Use, Induces a Protective Response with Administered with the Synthetic C-Terminal Fragment 242-310 from the circumsporozoite protein of Plasmodium berghei”, *Vaccine* (2003) 21:2485-2491; and Pajak, *et al.*, “The Adjuvant OM-174 induces both the migration and maturation of murine dendritic cells *in vivo*”, *Vaccine* (2003) 21:836-842.

20 (3) *Immunostimulatory oligonucleotides*

Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a sequence containing an unmethylated cytosine followed by guanosine and linked by a phosphate bond). Bacterial double stranded RNA or oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.

25 The CpG's can include nucleotide modifications/analog such as phosphorothioate modifications and can be double-stranded or single-stranded. Optionally, the guanosine may be replaced with an analog such as 2'-deoxy-7-deazaguanosine. See Kandimalla, *et al.*, “Divergent synthetic nucleotide motif recognition pattern: design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles”, *Nucleic Acids Research* (2003) 31(9): 2393-2400; WO02/26757 and WO99/62923 for examples of possible analog substitutions. The adjuvant effect of CpG oligonucleotides is further discussed in Krieg, “CpG motifs: the active ingredient in bacterial extracts?”, *Nature Medicine* (2003) 9(7): 831-835; McCluskie, *et al.*, “Parenteral and mucosal prime-boost immunization strategies in mice with hepatitis B surface antigen and CpG DNA”, *FEMS Immunology and Medical Microbiology* (2002) 32:179-185; WO98/40100; US Patent No. 6,207,646; US Patent No. 6,239,116 and US Patent No. 6,429,199.

30 The CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTTCGTT. See Kandimalla, *et al.*, “Toll-like receptor 9: modulation of recognition and cytokine induction by novel

synthetic CpG DNAs”, Biochemical Society Transactions (2003) 31 (part 3): 654-658. The CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN. CpG-A and CpG-B ODNs are discussed in Blackwell, et al., “CpG-A-Induced Monocyte IFN-gamma-Inducible Protein-10 Production is Regulated by Plasmacytoid Dendritic Cell Derived IFN-alpha”, J. Immunol. (2003) 170(8):4061-4068; Krieg, “From A to Z on CpG”, TRENDS in Immunology (2002) 23(2): 64-65 and WO01/95935. Preferably, the CpG is a CpG-A ODN.

Preferably, the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition. Optionally, two CpG oligonucleotide sequences may be attached at their 3' ends to form “immunomers”. See, for example, Kandimalla, et al., “Secondary structures in CpG oligonucleotides affect immunostimulatory activity”, BBRC (2003) 306:948-953; Kandimalla, et al., “Toll-like receptor 9: modulation of recognition and cytokine induction by novel synthetic GpG DNAs”, Biochemical Society Transactions (2003) 31(part 3):664-658; Bhagat et al., “CpG penta- and hexadeoxyribonucleotides as potent immunomodulatory agents” BBRC (2003) 300:853-861 and WO 15 03/035836.

(4) ADP-ribosylating toxins and detoxified derivatives thereof.

Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention. Preferably, the protein is derived from *E. coli* (i.e., *E. coli* heat labile enterotoxin (“LT”), cholera (“CT”), or pertussis (“PT”). The use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in WO95/17211 and as parenteral adjuvants in WO98/42375. Preferably, the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LTR192G. The use of ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in the following references, each of which is specifically incorporated by reference herein in their entirety: Beignon, et al., “The LTR72 Mutant of Heat-Labile Enterotoxin of Escherichia coli Enhances the Ability of Peptide Antigens to Elicit CD4+ T Cells and Secrete Gamma Interferon after Coapplication onto Bare Skin”, Infection and Immunity (2002) 70(6):3012-3019; Pizza, et al., “Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants”, Vaccine (2001) 19:2534-2541; Pizza, et al., “LTK63 and LTR72, two mucosal adjuvants ready for clinical trials” Int. J. Med. Microbiol (2000) 290(4-5):455-461; Scharton-Kersten et al., “Transcutaneous Immunization with Bacterial ADP-Ribosylating Exotoxins, Subunits and Unrelated Adjuvants”, Infection and Immunity (2000) 68(9):5306-5313; Ryan et al., “Mutants of Escherichia coli Heat-Labile Toxin Act as Effective Mucosal Adjuvants for Nasal Delivery of an Acellular Pertussis Vaccine: Differential Effects of the Nontoxic AB Complex and Enzyme Activity on Th1 and Th2 Cells” Infection and Immunity (1999) 67(12):6270-6280; Partidos et al., “Heat-labile enterotoxin of Escherichia coli and its site-directed mutant LTK63 enhance the proliferative and cytotoxic T-cell responses to intranasally co-immunized synthetic peptides”, Immunol. Lett. (1999) 67(3):209-216; Peppoloni et al., “Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines”, Vaccines (2003) 2(2):285-293; and Pine et al., (2002) “Intranasal

immunization with influenza vaccine and a detoxified mutant of heat labile enterotoxin from Escherichia coli (LTK63)" J. Control Release (2002) 85(1-3):263-270. Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in Domenighini et al., Mol. Microbiol (1995) 15(6):1165-1167, specifically incorporated herein by reference in its entirety.

5 *F. Bioadhesives and Mucoadhesives*

Bioadhesives and mucoadhesives may also be used as adjuvants in the invention. Suitable bioadhesives include esterified hyaluronic acid microspheres (Singh et al. (2001) *J. Cont. Rele.* 70:267-276) or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrrolidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention. E.g. WO99/27960.

10 *G. Microparticles*

Microparticles may also be used as adjuvants in the invention. Microparticles (*i.e.* a particle of ~100nm to ~150μm in diameter, more preferably ~200nm to ~30μm in diameter, and most preferably ~500nm to ~10μm in diameter) formed from materials that are biodegradable and non-toxic (*e.g.* a poly(α-hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, *etc.*), with poly(lactide-co-glycolide) are preferred, optionally treated to have a negatively-charged surface (*e.g.* with SDS) or a positively-charged surface (*e.g.* with a cationic detergent, such as CTAB).

20 *H. Liposomes*

Examples of liposome formulations suitable for use as adjuvants are described in US Patent No. 6,090,406, US Patent No. 5,916,588, and EP 0 626 169.

25 *I. Polyoxyethylene ether and Polyoxyethylene Ester Formulations*

Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters. WO99/52549. Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol (WO01/21207) as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol (WO 01/21152).

Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-stearyl ether, polyoxyethylene-8-stearyl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.

J. Polyphosphazene (PCPP)

PCPP formulations are described, for example, in Andrianov et al., "Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions", Biomaterials (1998) 19(1-3):109-115 and Payne et al., "Protein Release from Polyphosphazene Matrices", Adv. Drug. Delivery Review (1998) 31(3):185-196.

P. K. Muramyl peptides

Examples of muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-l-alanyl-d-isoglutamine (nor-MDP), and N-acetylmuramyl-l-alanyl-d-isoglutaminyl-l-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).

L. Imidazoquinolone Compounds.

Examples of imidazoquinolone compounds suitable for use adjuvants in the invention include Imiquamod and its homologues, described further in Stanley, "Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential" Clin Exp Dermatol (2002) 27(7):571-577 and Jones, "Resiquimod 3M", Curr Opin Investig Drugs (2003) 4(2):214-218.

The invention may also comprise combinations of aspects of one or more of the adjuvants identified above. For example, the following adjuvant compositions may be used in the invention:

- (1) a saponin and an oil-in-water emulsion (WO 99/11241);
- (2) a saponin (e.g., QS21) + a non-toxic LPS derivative (e.g. 3dMPL) (see WO 94/00153);
- (3) a saponin (e.g., QS21) + a non-toxic LPS derivative (e.g. 3dMPL) + a cholesterol;
- (4) a saponin (e.g. QS21) + 3dMPL + IL-12 (optionally + a sterol) (WO 98/57659);
- (5) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions (See European patent applications 0835318, 0735898 and 0761231);
- (6) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-block polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion.
- (7) RibiTM adjuvant system (RAS), (Ribi Immunochem) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM);
- (8) one or more mineral salts (such as an aluminum salt) + a non-toxic derivative of LPS (such as 3dPML).
- (9) one or more mineral salts (such as an aluminum salt) + an immunostimulatory oligonucleotide (such as a nucleotide sequence including a CpG motif). Combination No. (9) is a preferred adjuvant combination.

M. Human Immunomodulators

Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g. interferon- γ), macrophage colony stimulating factor, and tumor necrosis factor.

Aluminum salts and MF59 are preferred adjuvants for use with injectable influenza vaccines. Bacterial toxins and bioadhesives are preferred adjuvants for use with mucosally-delivered vaccines, such as nasal vaccines.

~~PCT~~ The immunogenic compositions of the present invention may be administered in combination with an antibiotic treatment regime. In one embodiment, the antibiotic is administered prior to administration of the antigen of the invention or the composition comprising the one or more of the antigens of the invention.

5 In another embodiment, the antibiotic is administered subsequent to the administration of the one or more antigens of the invention or the composition comprising the one or more antigens of the invention. Examples of antibiotics suitable for use in the treatment of the Streptococcal infections of the invention include but are not limited to penicillin or a derivative thereof or clindamycin or the like.

10 Further antigens

The compositions of the invention may further comprise one or more additional Gram positive bacterial antigens which are not associated with an AI. Preferably, the Gram positive bacterial antigens that are not associated with an AI can provide protection across more than one serotype or strain isolate. For example, a first non-AI antigen, in which the first non-AI antigen is at 15 least 90% (*i.e.*, at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%) homologous to the amino acid sequence of a second non-AI antigen, wherein the first and the second non-AI antigen are derived from the genomes of different serotypes of a Gram positive bacteria, may be further included in the compositions. The first non-AI antigen may also be homologous to the amino acid sequence of a third non-AI antigen, such that the first non-AI antigen, the second non-AI antigen, and the third non- 20 AI antigen are derived from the genomes of different serotypes of a Gram positive bacteria. The first non-AI antigen may also be homologous to the amino acid sequence of a fourth non-AI antigen, such that the first non-AI antigen, the second non-AI antigen, the third non-AI antigen, and the fourth non-AI antigen are derived from the genomes of different serotypes of a Gram positive bacteria.

The first non-AI antigen may be GBS 322. The amino acid sequence of GBS 322 across GBS 25 strains from serotypes Ia, Ib, II, III, V, and VIII is greater than 90%. Alternatively, the first non-AI antigen may be GBS 276. The amino acid sequence of GBS 276 across GBS strain from serotypes Ia, Ib, II, III, V, and VIII is greater than 90%. Table 13 provides the percent amino acid sequence identity of GBS 322 and GBS 276 across different GBS strains and serotypes.

Table 13: Conservation of GBS 322 and GBS 276 amino acid sequences

Serotype	Strains	GBS 322		GBS 276	
		cGH	%AA identity	cGH	%AA identity
Ia	090	+	98.60	+	97.90
	A909	+	98.30	+	97.90
	515	+	98.80	+	97.50
	DK1	+		+	
	DK8	+		+	
	Davis	+		+	
Ib	7357b	+		+	
	H36B	+	98.30	+	97.80
II	18RS21	+	100.00	+	99.90
	DK21	+		+	

Serotype	Strains	GBS 322		GBS 276	
		cGH	%AA identity	cGH	%AA identity
III	NEM316	+	100.00	+	97.00
	COH31	+		+	
	D136	+		+	
	M732	+	98.00	+	100.00
	COH1	+	98.30	+	100.00
	M781	+	98.30	+	99.60
No type	CJB110	+	98.60	+	97.90
	1169NT	+	97.40	+	97.90
V	CJB111	+	100.00	+	
	2603	+	100.00	+	100.00
VIII	JM130013	+	100.00	+	97.90
	SMU014	+		+	
total		22/22	98.28+/-0.4	22/22	98.44 +/-1.094

As an example, inclusion of a non-AI protein, GBS 322, in combination with AI antigens GBS 67, GBS 80, and GBS 104 provided protection to newborn mice in an active maternal immunization assay.

5

Table 14: Active maternal immunization assay for a combination of fragments from GBS 322, GBS 80, GBS 104, and GBS 67

GBS strains	Type	FACS (% Mean)			MIX=322+80+104+67		PBS	
		GBS 80	GBS 67	GBS 322	alive/treated	% protection	alive/treated	% protection
515	Ia	0	409	227	39/40	97	6/40	15
7357b-	Ib	91	316	102	19/30	63	1/30	3
DK21	II	0	331	416	25/34	73	17/48	35
5401	II	170	618	135	35/40	87	3/37	8
3050	II	43	460	188	48/48	100	1/30	3
COH1	III	305	0	130	36/36	100	7/40	17
M781	III	65	0	224	30/40	75	4/39	10
2603	V	125	105	313	27/33	82	10/35	28
CJB111	V	370	481	63	25/28	89	4/46	9
JM9130013	VIII	597	83	143	37/39	95	5/40	12
JMU071	VIII	556	79	170	44/50	88	18/50	36
NT1169	NT	0	443	213	12/32	37	11/35	31

In fact, the non-AI GBS 322 antigen may itself provide protection to newborn mice in an active maternal immunization assay.

PCT/US2005/027239

Table 16: Active maternal immunization assay for each of GBS 80 and GBS 322 antigens

		GBS 80			GBS 322				
		GBS strains	Type	FACS	Protection (% survival)	FACS	Protection (% survival)		
				Δ Mean	antigen	ctrl-	antigen		
5	CJB111	V	V	370	72 %	40%	63	57%	40%
	COH1	III	III	305	76 %	10%	130	3%	10%
	2603	V	V	82	22 %	34%	313	83 %	34%
	7357b-	Ib	Ib	91	36%	34%	102	43%	34%
10	18RS21	II	II	0	15%	24%	268	84 %	24%
	DK21	II	II	0	10%	21%	416	67 %	25%
	A909	Ia	Ia	0	0%	14%			
	090	Ia	Ia	0	0%	0%			
	H36B	Ib	Ib				105	34%	32%

Thus, inclusion of a non-AI protein in an immunogenic composition of the invention may provide increased protection a mammal.

The immunogenic compositions comprising *S. pneumoniae* AI polypeptides may further 15 secondary SP protein antigens which include (a) any of the SP protein antigens disclosed in WO 02/077021 or U.S. provisional application _____, filed April 20, 2005 (Attorney Docket Number 002441.00154), (2) immunogenic portions of the antigens comprising at least 7 contiguous amino acids, (3) proteins comprising amino acid sequences which retain immunogenicity and which are at least 95% identical to these SP protein antigens (e.g., 95%, 20 96%, 97%, 98%, 99%, or 99.5% identical), and (4) fusion proteins, including hybrid SP protein antigens, comprising (1)-(3).

Alternatively, the invention may include an immunogenic composition comprising a first and a second Gram positive bacteria non-AI protein, wherein the polynucleotide sequence encoding the sequence of the first non-AI protein is less than 90% (i.e., less than 90, 88, 86, 84, 82, 81, 78, 76, 74, 25 72, 70, 65, 60, 55, 50, 45, 40, 35, or 30 percent) homologous than the corresponding sequence in the genome of the second non-AI protein.

The compositions of the invention may further comprise one or more additional non-Gram 30 positive bacterial antigens, including additional bacterial, viral or parasitic antigens. The compositions of the invention may further comprise one or more additional non-GBS antigens, including additional bacterial, viral or parasitic antigens.

In another embodiment, the GBS antigen combinations of the invention are combined with one or more additional, non-GBS antigens suitable for use in a vaccine designed to protect elderly or immunocomprised individuals. For example, the GBS antigen combinations may be combined with an antigen derived from the group consisting of *Enterococcus faecalis*, *Staphylococcus aureus*, 35 *Staphylococcus epidermidis*, *Pseudomonas aeruginosa*, *Legionella pneumophila*, *Listeria monocytogenes*, *Neisseria meningitidis*, influenza, and Parainfluenza virus ('PIV').

Where a saccharide or carbohydrate antigen is used, it is preferably conjugated to a carrier protein in order to enhance immunogenicity {e.g. Ramsay *et al.* (2001) *Lancet* 357(9251):195-196; Lindberg (1999) *Vaccine* 17 Suppl 2:S28-36; Buttery & Moxon (2000) *J R Coll Physicians Lond* 34:163-168; Ahmad & Chapnick (1999) *Infect Dis Clin North Am* 13:113-133, vii.; Goldblatt (1998) *J. Med. Microbiol.* 47:563-567; European patent 0 477 508; US Patent No. 5,306,492; International patent application WO98/42721; *Conjugate Vaccines* (eds. Cruse *et al.*) ISBN 3805549326, particularly vol. 10:48-114; and Hermanson (1996) *Bioconjugate Techniques* ISBN: 0123423368 or 012342335X}. Preferred carrier proteins are bacterial toxins or toxoids, such as diphtheria or tetanus toxoids. The CRM₁₉₇ diphtheria toxoid is particularly preferred {*Research Disclosure*, 453077 (Jan 2002)}. Other carrier polypeptides include the *N.meningitidis* outer membrane protein (EP-A-0372501), synthetic peptides (EP-A-0378881; EP-A-0427347), heat shock proteins (WO 93/17712; WO 94/03208), pertussis proteins (WO 98/58668; EP A 0471177), protein D from *H.influenzae* (WO 00/56360), cytokines (WO 91/01146), lymphokines, hormones, growth factors, toxin A or B from *C.difficile* (WO00/61761), iron-uptake proteins (WO01/72337), etc. Where a mixture comprises capsular saccharides from both serogroups A and C, it may be preferred that the ratio (w/w) of MenA saccharide:MenC saccharide is greater than 1 (e.g. 2:1, 3:1, 4:1, 5:1, 10:1 or higher). Different saccharides can be conjugated to the same or different type of carrier protein. Any suitable conjugation reaction can be used, with any suitable linker where necessary.

Toxic protein antigens may be detoxified where necessary e.g. detoxification of pertussis toxin by chemical and/or genetic means.

Where a diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens.

Antigens in the composition will typically be present at a concentration of at least 1µg/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.

As an alternative to using protein antigens in the composition of the invention, nucleic acid encoding the antigen may be used {e.g. refs. Robinson & Torres (1997) *Seminars in Immunology* 9:271-283; Donnelly *et al.* (1997) *Annu Rev Immunol* 15:617-648; Scott-Taylor & Dalgleish (2000) *Expert Opin Investig Drugs* 9:471-480; Apostolopoulos & Plebanski (2000) *Curr Opin Mol Ther* 2:441-447; Ilan (1999) *Curr Opin Mol Ther* 1:116-120; Dubensky *et al.* (2000) *Mol Med* 6:723-732; Robinson & Pertmer (2000) *Adv Virus Res* 55:1-74; Donnelly *et al.* (2000) *Am J Respir Crit Care Med* 162(4 Pt 2):S190-193; and Davis (1999) *Mt. Sinai J. Med.* 66:84-90}. Protein components of the compositions of the invention may thus be replaced by nucleic acid (preferably DNA e.g. in the form of a plasmid) that encodes the protein.

Definitions

PCT/US05/27239

The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X + Y.

The term "about" in relation to a numerical value x means, for example, $x \pm 10\%$.

5 References to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of *Current Protocols in Molecular Biology* (F.M. Ausubel *et al.*, eds., 1987) Supplement 30. A preferred alignment is determined by the
10 Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-Waterman homology search algorithm is disclosed in Smith & Waterman (1981) *Adv. Appl. Math.* 2: 482-489.

The invention is further illustrated, without limitation, by the following examples.

EXAMPLE 1: Binding of an Adhesin Island surface protein, GBS 80, to Fibrinogen and
15 Fibronectin.

This example demonstrates that an Adhesin Island surface protein, GBS 80 can bind to fibrinogen and fibronectin.

An enzyme-linked immunosorbent assay (ELISA) was used to analyse the *in vitro* binding ability of recombinant GBS 80 to immobilized extra-cellular matrix (ECM) proteins but not to bovine
20 serum albumin (BSA). Microtiter plates were coated with ECM proteins (fibrinogen, fibronectin, laminin, collagen type IV) and binding assessed by adding varying concentrations of a recombinant form of GBS 80, over-expressed and purified from *E. coli* (FIGURE 5A). Plates were then incubated sequentially with a) mouse anti-GBS 80 primary antibody; b) rabbit anti-mouse AP-conjugated secondary antibody; c) pNPP colorimetric substrate. Relative binding was measured by monitoring
25 absorbance at 405 nm, using 595 nm as a reference wavelength. Figure 5b shows binding of recombinant GBS 80 to immobilized ECM proteins (1 µg) as a function of concentration of GBS 80. BSA was used as a negative control. Data points represent the means of OD₄₀₅ values ± standard deviation for 3 wells.

Binding of GBS 80 to the tested ECM proteins was found to be concentration dependent and
30 exhibited saturation kinetics. As is also evident from FIGURE 5, binding of GBS 80 to fibronectin and fibrinogen was greater than binding to laminin and collagen type IV at all the concentrations tested.

EXAMPLE 2: GBS 80 is required for surface localization of GBS 104.

This example demonstrates that co-expression of GBS 80 is required for surface localization
35 of GBS 104.

The polycistronic nature of the Adhesin Island I mRNA was investigated through reverse transcriptase-PCR (RT-PCR) analysis employing primers designed to detect transcripts arising from contiguous genes. Total RNA was isolated from GBS cultures grown to an optical density at 600 nm

(OD₆₀₀) of 0.3 in THB (Todd-Hewitt broth) by the RNeasy Total RNA isolation method (Qiagen) according to the manufacturer's instructions. The absence of contaminating chromosomal DNA was confirmed by failure of the gene amplification reactions to generate a product detectable by agarose gel electrophoresis, in the absence of reverse transcriptase. RT-PCR analysis was performed with the Access RT-PCR system (Promega) according to the manufacturer's instructions, employing PCR cycling temperatures of 60°C for annealing and 70°C for extension. Amplification products were visualized alongside 100-bp DNA markers in 2% agarose gels after ethidium bromide staining.

FIGURE 5 shows that all the genes are co-transcribed as an operon. A schematic of the AI-1 operon is shown above the agarose gel analysis of the RT-PCR products. Large rectangular arrows indicate the predicted transcript direction. Primer pairs were selected such as "1-4" cross the 3' finish-5' start of successive genes and overlap each gene by at least 200 bp. Additionally, "1" crosses a putative rho-independent transcriptional terminator. "5" is an internal GBS 80 control and "6" is an unrelated control from a highly expressed gene. Lanes: "a": RNA plus RTase enzyme; "b" RNA without RTase; "c": genomic DNA control.

In the effort to elucidate the functions of the AI-1 proteins, in frame deletions of all of the genes within the operon have been constructed and the resulting mutants characterized with respect to surface exposure of the encoded antigens (see FIGURE 8).

Each in-frame deletion mutation was constructed by splice overlap extension PCR (SOE-PCR) essentially as described by Horton et al. [Horton R. M., Z. L. Cai, S. N. Ho, L. R. Pease (1990) Biotechniques 8:528-35] using suitable primers and cloned into the temperature sensitive shuttle vector pJRS233 to replace the wild type copy by allelic exchange [Perez-Casal, J., J. A. Price, et al. (1993) Mol Microbiol 8(5): 809-19]. All plasmid constructions utilized standard molecular biology techniques, and the identities of DNA fragments generated by PCR were verified by sequencing. Following SOE-PCR, the resulting mutant DNA fragments were digested with XhoI and EcoRI, and ligated into a similarly digested pJRS233. The resulting vectors were introduced by electroporation into the chromosome of 2603 and COH1 GBS strains in a three-step process, essentially as described in Framson et al. [Framson, P. E., A. Nittayajarn, J. Merry, P. Youngman, and C. E. Rubens. (1997) Appl. Environ. Microbiol. 63(9):3539-47]. Briefly, the vector pJRS233 contains an *erm* gene encoding erythromycin resistance and a temperature-sensitive gram-positive replicon that is active at 30°C but not at 37°C. Initially, the constructs are electroporated into GBS electro-competent cells prepared as described by Frameson et al., and transformants containing free plasmid are selected by their ability to grow at 30°C on Todd-Hewitt Broth (THB) agar plates containing 1 µg/ml erythromycin. The second step includes a selection step for strains in which the plasmid has integrated into the chromosome via a single recombination event over the homologous plasmid insert and chromosome sequence by their ability to grow at 37°C on THB agar medium containing 1 mg/ml erythromycin. In the third step, GBS cells containing the plasmid integrated within the chromosome (integrants) are serially passed in broth culture in the absence of antibiotics at 30°C. Plasmid excision

from the chromosome via a second recombination event over the duplicated target gene sequence either completed the allelic exchange or reconstituted the wild-type genotype. Subsequent loss of the plasmid in the absence of antibiotic selection pressure resulted in an erythromycin-sensitive phenotype. In order to assess gene replacement a screening of erythromycin-sensitive colonies was

5 performed by analysis of the target gene PCR amplicons.

FIGURE 7 reports a schematic of the IS-1 operon for each knock-out strain generated, along with the deletion position within the amino acidic sequence. Most data presented here concern the COH1 deletion strains, in which the expression of each of the antigens is higher by DNA microarray analysis (data not shown) as well as detectable by FACS analysis (see FIGURE 8). The double mutant
10 in 2603 Δ80, Δ104 double mutant was constructed by sequential allelic exchanges of the shown alleles.

Immunization protocol

Immune sera for FACS experiments were obtained as follows.

Groups of 4 CD-1 outbred female mice 6-7 weeks old (Charles River Laboratories, Calco
15 Italy) were immunized with the selected GBS antigens, (20 µg of each recombinant GBS antigen), suspended in 100 µl of PBS. Each group received 3 doses at days 0, 21 and 35. Immunization was performed through intra-peritoneal injection of the protein with an equal volume of Complete Freund's Adjuvant (CFA) for the first dose and Incomplete Freund's Adjuvant (IFA) for the following two doses. In each immunization scheme negative and positive control groups are used. Immune
20 response was monitored by using serum samples taken on day 0 and 49.

FACS analysis

Preparation of paraformaldehyde treated GBS cells and their FACS analysis were carried out as follows.

GBS serotype COH1 strain cells were grown in Todd Hewitt Broth (THB; Difco
25 Laboratories, Detroit, Mich.) to OD_{600nm} = 0.5. The culture was centrifuged for 20 minutes at 5000 rpm and bacteria were washed once with PBS, resuspended in PBS containing 0.05% paraformaldehyde, and incubated for 1 hours at 37 °C and then overnight at 4°C. 50µl of fixed bacteria (OD₆₀₀ 0.1) were washed once with PBS, resuspended in 20µl of Newborn Calf Serum, (Sigma) and incubated for 20 min. at room temperature. The cells were then incubated for 1 hour at
30 4°C in 100µl of preimmune or immune sera, diluted 1:200 in dilution buffer (PBS, 20% Newborn Calf Serum, 0.1% BSA). After centrifugation and washing with 200µl of washing buffer (0.1% BSA in PBS), samples were incubated for 1 hour at 4°C with 50µl of R-Phicoerytrin conjugated F(ab)2 goat anti-mouse IgG (Jackson ImmunoResearch Laboratories; Inc.), diluted 1:100 in dilution buffer.
Cells were washed with 200µl of washing buffer and resuspended in 200µl of PBS. Samples were
35 analysed using a FACS Calibur apparatus (Becton Dickinson, Mountain View, Calif.) and data were analyzed using the Cell Quest Software (Becton Dickinson). A shift in mean fluorescence intensity of > 75 channels compared to preimmune sera from the same mice was considered positive. This cutoff

WO 2006/078318 PCT/US2005/027239
was determined from the mean plus two standard deviations of shifts obtained with control sera raised against mock purified recombinant proteins from cultures of *E. coli* carrying the empty expression vector and included in every experiment. Artifacts due to bacterial lysis were excluded using antisera raised against 6 different known cytoplasmic proteins all of which were negative

5 FACS data on COH1 single KO mutants for GBS 104 and GBS 80 indicated that GBS 80 is required for surface localization of GBS 104.

As shown in FIGURE 8, GBS 104 is not surface exposed in the Δ 80 strain (second column, bottom), but is present in the whole protein extracts (see FIGURE 10). Mean shift values suggest that GBS 104 is partially responsible for GBS 80 surface exposure (Mean shift of GBS 80 is reduced to 10 ~60% wild-type levels in Δ 104), and that GBS 80 is over-expressed in the complemented strain (mean shift value ~200% wild-type level). The Δ 80/pGBS 80 strain contains the GBS 80 orf cloned in the shuttle-vector pAM401 (Wirth, R., F. Y. An, et al. (1986). J Bacteriol 165(3): 831-6). The vector alone does not alter the secretion pattern of GBS 104 (right column). FACS was performed on mid-log fixed bacteria with mouse polyclonal antibodies as indicated at left. Black peak is pre-immune 15 sera, colored peaks are sera from immunized animals.

EXAMPLE 3: Deletion of GBS 80 causes attenuation *in vivo*.

This example demonstrates that deletion of GBS 80 causes attenuation *in vivo*, suggesting that this protein contributes to bacterial virulence.

20 By using a mouse animal model, we studied the role of GBS 80 and GBS 104 in the virulence of *S. agalactiae*.

Groups of ten outbred female mice 5-6 weeks old (Charles River Laboratories, Calco Italy) were inoculated intraperitoneally with different dilutions of the mutant strains and LD50 (lethal dose 50) were calculated according to the method of Reed and Muench [Reed, L. J. and H. Muench 25 (1938). The American Journal of Hygiene 27(3): 493-7]. As presented in the table below the number of colony forming units (cfu) counted for both the Δ 80 and the Δ 80, Δ 104 double mutants is about 10 fold higher when compared to the wild type strain suggesting that inactivation of GBS 80 but not GBS 104 is responsible for an attenuation in virulence. This finding indicates that GBS 80 gene in the AI-1 might contribute to virulence.

30 Table Lethal dose 50% analysis of AI-1 mutants in the 2603 strain background. LD50s were performed by IP injection of female CD1 mice at an age of 5-6 weeks. LD50s were calculated by the method of Reed and Muench (8).

GBS strain	LD ₅₀ , cfu	Number of Experiments
Wild Type 2603	2×10^8	4
Δ 104 mutant	$\sim 2 \times 10^8$	1
Δ 80 mutant	2.6×10^9	3
Δ 80, Δ 104 double mutant	$\sim 2 \times 10^9$	1

EXAMPLE 4: Effect of Adhesin Island Sortase Deletions on Surface Antigen Presentation

This example demonstrates the effect of adhesin island sortase deletions on surface antigen presentation.

FACS analysis results set forth in FIGURE 9 show that a deletion in sortase SAG0648 prevented GBS 104 from reaching the surface and slightly reduced the surface exposure of GBS 80 (fourth panel; mean shift value ~60% wild-type COH1). In the double sortase knock-out strain, neither antigen was surface exposed (far right panel). Either sortase alone was sufficient for GBS 80 to arrive at the bacterial surface (third and fourth columns, top). No effect was seen on surface exposure of antigens GBS 80 or GBS 104 in the ΔGBS 52 strain. Antibodies derived from purified GBS 52 were either non-specific or were FACS negative for GBS 52 (data not shown). FACS analysis was performed as described above (see EXAMPLE 2).

As shown in FIGURE 10, inactivation of GBS 80 has no effect on GBS 104 expression as much as GBS 104 knock out doesn't change the total amount GBS 80 expressed. The Western blot of whole protein extracts (strains noted above lanes) probed with anti-GBS 80 antisera is shown in panel A. Arrow indicates expected size of GBS 80 (60 kDa). GBS 80 antibodies recognize a doublet, the lower band is not present in ΔGBS 80 strains. Panel B shows a Western blot of whole protein extracts probed with anti-GBS 104 antisera. Arrow indicates expected size of GBS 104 (99.4 kDa). Protein extracts were prepared from the same bacterial cultures used for FACS (FIGURES 8 and 9). In conclusion, although GBS 104 does not arrive at the surface in the Δ80 strain by FACS (FIGURE 8, second column), it is present at approximately wild-type levels in the whole protein preps (B, second lane). Approximately 20 µg of each protein extract was loaded per lane.

Western-blot analysis

Aliquots of total protein extract mixed with SDS loading buffer (1x: 60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% Bromophenol Blue, 100 mM DTT) and boiled 5 minutes at 95° C, were loaded on a 12.5% SDS-PAGE precast gel (Biorad). The gel is run using a SDS-PAGE running buffer containing 250 mM TRIS, 2.5 mM Glycine and 0.1 %SDS. The gel is electroblotted onto nitrocellulose membrane at 200 mA for 60 minutes. The membrane is blocked for 60 minutes with PBS/0.05 % Tween-20 (Sigma), 10% skimmed milk powder and incubated O/N at 4° C with PBS/0.05 % Tween 20, 1% skimmed milk powder, with the appropriate dilution of the sera. After washing twice with PBS/0.05 % Tween, the membrane is incubated for 2 hours with peroxidase-conjugated secondary anti-mouse antibody (Amersham) diluted 1:4000. The nitrocellulose is washed three times for 10 minutes with PBS/0.05 % Tween and once with PBS and thereafter developed by Opti-4CN Substrate Kit (Biorad).

Example 5: Binding of Adhesin Island proteins to epithelial cells and effect of Adhesin Island proteins on capacity of GBS to adhere to epithelial cells.

This example illustrates the binding of AI proteins to epithelial cells and the effect of AI proteins on the capacity of GBS to adhere to epithelial cells.

Applicants analysed whether recombinant AI surface proteins GBS 80 or GBS 104 would demonstrate binding to various epithelial cells in a FACS analysis. Applicants also analysed whether

deletion of AI surface proteins GBS 80 or GBS 104 would effect the capacity of GBS to adhere to and invade ME180 cervical epithelial cells.

As shown in Figure 28, deletion of GBS 80 sequence from GBS strain isolate 2603 (serotype V) did not affect the capacity of the mutated GBS to adhere to and invade ME180 cervical epithelial cells. Here ME180 cervical carcinoma epithelial cells were infected with wild type GBS 2603 or GBS 2603 Δ80 isogenic mutant. After two hours of infection, non-adherent bacteria were washed off and infection prolonged for a further two hours and four hours. In invasion experiments, after each time point, was followed by a two hour antibiotic treatment. Cells were then lysed with 1% saponin and lysates plated on TSA plates. As shown in Figure 28, there was little difference between the percent invasion or percent adhesion of wild type and mutant strains up to the four hour time point.

Figure 30 repeats this experiment with both Δ104 and Δ80 mutants from a different strain isolate. Here, ME180 cervical carcinoma epithelial cells were infected with GBS strain isolate COH (serotype III) wild type or COH1 ΔGBS 104 or COH1 Δ80 isogenic mutant. After one hour of infection, non-adherent bacteria were washed off and the cells were lysed with 1% saponin. The lysates were plated on TSA plates. As shown in Figure 30, while there was little difference in the percent invasion, there was a significant decrease in the percent association of the Δ104 mutant compared to both the wild type and Δ80 mutant.

The effect of AI surface proteins on the ability of GBS to translocate through an epithelial monolayer was also analysed. As shown in Figure 31, a GBS 80 knockout mutant strain partially loses the ability to translocate through an epithelial monolayer. Here epithelial monolayers were inoculated with wildtype or knockout mutant in the apical chamber of a transwell system for two hours and then non-adherent bacteria were washed off. Infection was prolonged for a further two and four hours. Samples were taken from the media of the basolateral side and the number of colony forming units measured. Transepithelial electrical resistance measured prior to and after infection gave comparable values, indicating the maintenance of the integrity of the monolayer. By the six hour time point, the Δ80 mutants demonstrated a reduced percent transcytosis.

A similar experiment was conducted with GBS 104 knock out mutants. Here, as shown in Figure 22, the Δ104 mutants also demonstrated a reduced percent transcytosis, indicating that the mutant strains translocate through an epithelial monolayer less efficiently than their isogenic wild type counterparts.

Applicants also studied the effect of AI proteins on the capacity of a GBS strain to invade J774 macrophage-like cells. Here, J774 cells were infected with GBS COH1 wild type or COH1 ΔGBS104 or COH1 ΔGBS80 isogenic mutants. After one hour of infection, non-adherent bacteria were washed off and intracellular bacteria were recovered at two, four and six hours post antibiotic treatment. At each time point, cells were lysed with 0.25% Triton X-100 and lysates plated on TSA plates. As shown in Figure 32, the Δ104 mutant demonstrated a significantly reduced percent invasion compared to both the wild type and Δ80 mutant.

Example 6: Hyperoligomeric structures comprising AI surface proteins GBS 80 and GBS 104.

This example illustrates hyperoligomeric structures comprising AI surface proteins GBS 80 and GBS 104. A GBS isolate COH1 (serotype III) was adapted to increase expression of GBS 80. Figure 34 presents a regular negative stain electron micrograph of this mutant; no pilus or

5 hyperoligomeric structures are distinguishable on the surface of the bacteria. When the EM stain is based on anti-GBS 80 antibodies labelled with 10 or 20 nm gold particles, the presence of GBS 80 throughout the hyperoligomeric structure is clearly indicated (Figures 36, 37 and 38). EM staining against GBS 104 (anti-GBS 104 antibodies labelled with 10 nm gold particles) also reveals the presence of GBS 104 primarily on or near the surface of the bacteria or potentially associated with
10 bacterial peptidoglycans (Figure 39). Analysis of this same strain (over-expressing GBS 80) with a combination of both anti-GBS 80 (using 20 nm gold particles) and anti-GBS 104 (using 10 nm gold particles) reveals the presence of GBS 104 on the surface and within the hyperoligomeric structures (see Figures 40 and 41).

15 **Example 7: GBS 80 is necessary for polymer formation and GBS 104 and sortase SAG0648 are necessary for efficient pili assembly**

This example demonstrates that GBS 80 is necessary for formation of polymers and that GBS 104 and sortase SAG0648 are necessary for efficient pili assembly. GBS 80 and GBS 104 polymeric assembly was systematically analyzed in Coh1 strain single knock out mutants of each of the relevant
20 coding genes in AI-1 (GBS 80, GBS 104, GBS 52, sag0647, and sag0648). Figure 41 provides Western blots of total protein extracts (strains noted above lanes) probed with either anti-GBS 80 (left panel) sera or anti-GBS 104 sera (right panel) for each of these Coh1 and Coh1 knock out strains. (Coh1, wild type Coh1; Δ80, Coh1 with GBS 80 knocked out; Δ104, Coh1 with GBS 104 knocked out; Δ52, Coh1 with GBS 52 knocked out; Δ647, Coh1 with SAG0647 knocked out; Δ648, Coh1 with
25 SAG0648 knocked out, Δ647-8, Coh1 with SAG0647 and SAG0648 knocked out; Δ80/pGBS80, Coh1 with GBS 80 knocked out but complemented with a high copy number plasmid expressing GBS 80. Asterisks identify the monomer of GBS 80 and GBS 104.)

The smear of immunoreactive material observed in the wild type strain, along with its disappearance in Δ80 and Δ104 mutants, is consistent with the notion that such high molecular weight
30 structures are composed of covalently linked (SDS-resistant) GBS 80 and GBS 104 subunits. The immunoblotting with both anti-GBS 80 (α -GBS 80) and anti-GBS 104 (α -GBS 104) revealed that deletion of sortase SAG0648 also interferes with the assembly of high molecular weight species, whereas the knock out mutant of the second sortase (SAG0647), even if somehow reduced, still maintains the ability to form polymeric structures.

35 Total extracts from GBS were prepared as follows. Bacteria were grown in 50 ml of Todd-Hewitt broth (Difco) to an OD_{600nm} of 0.5-0.6 and successively pelleted. After two washes in PBS the pellet was resuspended and incubated 3 hours at 37°C with mutanolisin. Cells were then lysed with at

least three freezing-thawing cycles in dry ice and a 37°C bath. The lysate was then centrifuged to eliminate the cellular debris and the supernatant was quantified. Approximately 40 µg of each protein extract was separated on SDS-PAGE. The gel was then subjected to immunoblotting with mice antisera and detected with chemiluminescence.

5

Example 8: GBS 80 is polymerized by an AI-2 sortase

This example illustrates that GBS 80 can be polymerized not only by AI-1 sortases, but also by AI-2 sortases. Figure 42 shows total cell extract immunoblots of GBS 515 strain, which lacks AI-1. The left panel, where an anti-GBS 67 sera was used, shows that GBS 67 from AI-2 is assembled 10 into high-molecular weight-complexes, suggesting the formation of a second type of pilus. The same high molecular structure is observed when GBS 80 is highly expressed by reintroducing the gene within a plasmid (pGBS 80). By using anti-GBS 80 (right panel) sera on the same extracts, again it is observed that, with GBS 80 over expression (515/pGBS 80), a high-molecular weight structure is 15 assembled. This implies that, in the absence of AI-1 sortases, AI-2 sortases (SAG1405 and SAG1406) can complement the lacking function, still being able to assemble GBS 80 in a pilus structure.

Example 9: Coh1 produces a high molecular weight molecule, the GBS 80 pilin

This example illustrates that Coh1 produces a high molecular weight molecule, greater than 1000 kDa, which is the GBS 80 pilin. Figure 43 provides silver-stained electrophoretic gels that show 20 that Coh1 produces two macromolecules. One of these macromolecules disappears in the Coh1 GBS 80 knock out cells, but does not disappear in the Coh1 GBS 52 knock out mutant cells. The last two lanes on the right were loaded with 15 times the amount loaded in the other lanes. This was done in order to be able to count the bands. By doing this, a conservative size estimate of the top bands was calculated by starting at 240 kDa and considering each of 14 higher bands as the result of consecutive 25 additions of a GBS 80 monomer.

Coh1, wild type Coh1; Δ80, Coh1 cells with GBS 80 knocked out; Δ52, Coh1 cells with GBS 52 knocked out; Δ80/pGBS 80, Coh1 cells with GBS 80 knocked out and complemented with a high copy number construct expressing GBS 80.

30 Example 10. GBS 52 is a minor component of the GBS pilus

This example illustrates that GBS 52 is present in the GBS pilus and is a minor component of the pilus. Figure 45 shows an immunoblot of total cell extracts from a GBS Coh1 strain and a GBS Coh1 strain knocked out for GBS 52 (Δ52). The total cell extracts were immunoblotted anti-GBS 80 antisera (left) and anti-GBS 52 antisera (right). Immunoblotting was performed using a 3-8% Tris-acetate polyacrylamide gel (Invitrogen) which provided excellent separation of large molecular weight proteins (see figure 41). When the gel was incubated with anti-GBS 80 sera, the bands from the Coh1 wild-type strain appeared shifted when compared to the Δ52 mutant. This observation 35

indicated a different size of the pilus polymeric components in the two strains. When the same gel was stripped and incubated with anti-GBS 52 sera the high-molecular subunits in the Coh1 wild-type strain showed similar molecular size of those in the correspondent lane in the left panel. These findings confirmed that GBS 52 is indeed associated with GBS 80 macro-molecular structures but represents a minor component of the GBS pilus.

Example 11: Pilus structures are present in the supernatant of GBS bacterial cultures

This example illustrates that the pilus structure assembled in Coh1 GBS is present in the supernatant of a bacterial cell culture. Figure 46 shows an immunoblot where the protein extract of the supernatant from cultures of different GBS mutant strains (117 = Coh1 GBS 80 knockout; 159= Coh1 GBS 104 knockout; 202= Coh1 GBS 52 knockout; 206= Coh1 GBS sag0647 knockout; 208= Coh1 GBS sag0648 knockout; 197= Coh1 GBS sag0647/sag0648 knockout; 179= Coh1 GBS 80 knockout complemented with a high copy plasmid expressing GBS 80). GBS 80 antisera detects the presence of pilus structures in the appropriate Coh1 strains.

The protein extract was prepared as follows. Bacteria were grown in THB to an OD_{600nm} of 0.5-0.6 and the supernatant was separated from the cells by centrifugation. The supernatant was then filtered (\varnothing 0.2 μ m) and 1 ml was added with 60% TCA for protein precipitation.

GBS pili were also extracted from the fraction of surface-exposed proteins in Coh1 strain and its GBS 80 knock out mutant as described hereafter. Bacteria were grown to an OD_{600nm} of 0.6 in 50 ml of THB at 37°C. Cells were washed once with PBS and the pellet was then resuspended in 0.1 M KPO4 pH 6.2, 40% sucrose, 10 mM MgCl₂, 400U/ml mutanolysin and incubated 3 hours at 37°C. Protoplasts were separated by centrifugation and the supernatant was recovered and its protein content measured.

In order to study the dynamics of pilus production during different growth phases, 1 ml supernatant of a culture at different OD_{600nm} was TCA precipitated and loaded onto a 3-8% SDS-PAGE as described before. Figure 47 shows the corresponding Western blot with GBS 80 anti-sera. The first group of lanes (left five sample lanes) refer to a Coh1 strain growth (OD_{600nm} are noted above the lanes) whereas the second group of lanes (right five samples) are from a GBS 80 knock out strain over expressing GBS 80. The experiment shows that pilus macromolecular structures can be found in the supernatant in all of the growth phases tested.

Example 12: In GBS strain Coh1, only GBS 80 and a sortase (sag0647 or sag0648) is required for polymerization

This example describes requirements for pilus formation in Coh1. Figure 48 shows a Western blot of total protein extracts (prepared as described before) using anti-GBS 80 sera on Coh1 clones. (Coh1, wild type Coh1; Δ 104, Coh1 knocked out for GBS 104, Δ 647, Coh1 knocked out for sag0647, Δ 648, Coh1 knocked for sag0648, Δ 647-8, Coh1 knocked out for sag0647 and sag0648; 515, wild

type bacterial strain S15 which lacks an AI-1; p80 a high copy number plasmid which expresses GBS 80.) The data show that only the double sortase mutant is unable to polymerize GBS 80 indicating that the ‘*conditio sine qua non*’ for pilus polymerization is the co-existence of GBS 80 with at least one sortase. This result leads to a reasonable assumption that SAG1405 and SAG1406 are responsible for polymerization in this strain.

5

Example 13: GBS 80 can be expressed in *L. lactis* under its own promoter and terminator sequences

This example demonstrates that *L. lactis*, a non-pathogenic bacterium, can express GBS AI polypeptides such as GBS 80. *L. lactis* M1363 (*J. Bacteriol.* 154 (1983):1-9) was transformed with a construct encoding GBS 80. Briefly, the construct was prepared by cloning a DNA fragment containing the gene coding for GBS 80 under its own promoter and terminator sequences into plasmid pAM401 (a shuttle vector for *E. coli* and other Gram positive bacteria; *J. Bacteriol.* 163 (1986):831-836). Total extracts of the transformed bacteria in log phase were separated on SDS-PAGE, transferred to membranes, and incubated with antiserum against GBS 80. A polypeptide corresponding to the molecular weight of GBS 80 was detected in the lanes containing total extracts of *L. lactis* transformed with the GBS 80 construct. See Figures 133A and 133B, lanes 6 and 7. This same polypeptide was not detected in the lane containing total extracts of *L. lactis* not transformed with the GBS 80 construct, lane 9. This example shows that *L. lactis* can express GBS 80 under its own promoter and terminator.

20

Example 14: *L. lactis* modified to express GBS AI-1 under the GBS 80 promoter and terminator sequences expresses GBS 80 in polymeric structures

This example demonstrates the ability of *L. lactis* to express GBS AI-1 polypeptides and to incorporate at least some of the polypeptides into oligomers. *L. lactis* was transformed with a construct containing the genes encoding GBS AI-1 polypeptides. Briefly, the construct was prepared by cloning a DNA fragment containing the genes for GBS 80, GBS 52, SAG0647, SAG0648, and GBS 104 under the GBS 80 promoter and terminator sequences into construct pAM401. The construct was transformed into *L. lactis* M1363. Total extracts of log phase transformed bacteria were separated on reducing SDS-PAGE, transferred to membranes, and incubated with antiserum against GBS 80. A polypeptide with a molecular weight corresponding to the molecular weight of GBS 80 was detected in the lanes containing *L. lactis* transformed with the GBS AI-1 encoding construct. See Figure 134, lane 2. In addition, the same lane also showed immunoreactivity of polypeptides having higher molecular weights than the polypeptide having the molecular weight of GBS 80. These higher molecular weight polypeptides are likely oligomers of GBS 80. Oligomers of similar molecular

weights were also observed on a Western blot of the culture supernatant of the transformed *L. lactis*.

See lane 4 of Figure 135. Thus, this example shows that *L. lactis* transformed to express GBS AI-1 can efficiently polymerize GBS 80 in the form of a pilus. This pilus structure can likely be purified from either the cell culture supernatant or cell extracts.

5

Example 15: Cloning and Expression of *S. pneumoniae* Sp0462

This example describes the production of a clone encoding a Sp0462 polypeptide and expression of the clone. To produce a clone encoding Sp0462, the open reading frame encoding Sp0462 was amplified using primers that annealed within the full-length Sp0462 open reading frame sequence. Figure 150A provides a 893 amino acid sequence of Sp0462. The primers used to produce a clone encoding the Sp0462 polypeptide are shown in Figure 150B. These primers annealed to the nucleotide sequences encoding the amino acid residues indicated by underlining in Figure 150A. Amplification of the open reading frame encoding Sp0462 using these primers produced the amplicon shown at lane 2 of the agarose gel provided in Figure 160. The Sp0462 clone encodes amino acid residues 38-862 of the 893 amino acid residue Sp0462 protein; the italicized residues in Figure 150A were eliminated. Figure 151A provides a schematic depiction of the recombinant Sp0462 polypeptide. Figure 151B shows a schematic depiction of the full-length Sp0462 polypeptide. Both the recombinant Sp0462 encoded by the clone and the full-length Sp0462 protein have two collagen binding protein type B (Cna B) domains and a von Hillebrand factor A (vWA) domain. The cloned recombinant Sp0462 lacks the LPXTG motif present in the full-length Sp0462 protein. Western blot analysis for expression of the Sp0462 clone did not result in detection of polypeptides with serum obtained from *S. pneumoniae*-infected patients (Figure 152A) or GBS 80 antiserum (Figure 152B).

Example 16: Cloning and Expression of *S. pneumoniae* Sp0463

This example describes the production of a clone encoding a Sp0463 polypeptide and detection of recombinant Sp0463 polypeptide expressed from the clone. To produce a clone encoding Sp0463, the open reading frame encoding Sp0463 was amplified using primers that annealed within the full-length Sp0463 open reading frame sequence. Figure 153A provides a 665 amino acid sequence of Sp0463. The primers used to produce the clone encoding Sp0463 polypeptide are shown in Figure 153B. These primers annealed to the nucleotide sequences encoding the amino acid residues indicated by underlining in Figure 153A. Amplification of the open reading frame encoding Sp0463 using these primers produced the amplicon shown at lane 3 of the agarose gel provided in Figure 160. The Sp0463 clone encodes amino acid residues 23-627 of the 665 amino acid residue Sp0463 protein; the italicized residues in Figure 153A were eliminated. Figure 154A provides a schematic depiction of the recombinant Sp0463 polypeptide. Figure 154B shows a schematic depiction of the full-length Sp0463 polypeptide. Both the recombinant Sp0463 encoded by the clone and the full-length Sp0463 protein have a Cna B domain and an E box motif. The cloned recombinant

Sp0463 lacks the LPXTG motif present in the full-length Sp0463 protein. Expression of the Sp0463 clone resulted in the detection of a 60 kD polypeptide, the expected molecular weight of the recombinant Sp0463 polypeptide, by Western blot analysis. See Figure 155.

5 **Example 17: Cloning and Expression of *S. pneumoniae* Sp0464**

This example describes the production of a clone encoding a Sp0464 polypeptide and detection of recombinant Sp0464 polypeptide expressed from the clone. To produce a clone encoding Sp0464, the open reading frame encoding Sp0464 was amplified using primers that annealed either within the full-length Sp0464 open reading frame sequence. Figure 157A provides a 393 amino acid 10 sequence of Sp0464. The primers used to produce a clone encoding the Sp0464 polypeptide are shown in Figure 157B. These primers annealed to the nucleotide sequences encoding the amino acid residues indicated by underlining in Figure 157A. Amplification of the open reading frame encoding Sp0464 using these primers produced the amplicon shown at lane 4 of the agarose gel provided in Figure 160. The Sp0464 clone encodes amino acid residues 19-356 of the 393 amino acid residue 15 Sp0464 protein; the italicized residues in Figure 157A were eliminated. Figure 158A provides a schematic depiction of the recombinant Sp0464 polypeptide. Figure 158B shows a schematic depiction of the full-length Sp0464 polypeptide. Both the recombinant Sp0464 encoded by the clone and the full-length Sp0464 protein have two Cna B domains. The cloned recombinant Sp0464 lacks the LPXTG motif present in the full-length Sp0464 protein. Expression of the Sp0464 clone resulted 20 in the detection of a 38 kD polypeptide, the expected molecular weight of the recombinant Sp0464 polypeptide, by Western blot analysis. See Figure 159.

Example 18: Intranasal Immunization of Mice with Recombinant *L. lactis* Expressing GBS 80 and Subsequent Challenge

25 This example describes a method of intranasally immunizing mice using *L. lactis* that express GBS 80. Intranasal immunization consisted of 3 doses at days 0, 14 and 28, each dose administered in three consecutive days. Each day, groups of 3 CD-1 outbred female mice 6-7 weeks old (Charles River Laboratories, Calco Italy) were immunized intranasally with 10^9 or 10^{10} CFU of the recombinant *Lactococcus lactis* suspended in 20 μ l of PBS. In each immunization scheme negative 30 (wild-type *L. lactis*) and positive (recombinant GBS80) control groups were used. The immune response of the dams was monitored by using serum samples taken on day 0 and 49. The female mice were bred 2-7 days after the last immunization (at approximately t= 36 – 37), and typically had a gestation period of 21 days. Within 48 hours of birth, the pups were challenged via I.P. with GBS in a dose approximately equal to an amount which would be sufficient to kill 90 % of immunized pups (as 35 determined by empirical data gathered from PBS control groups). The GBS challenge dose is preferably administered in 50ml of THB medium. Preferably, the pup challenge takes place at 56 to 61 days after the first immunization. The challenge inocula were prepared starting from frozen

Example 19: Subcutaneous Immunization of Mice with Recombinant *L. lactis* Expressing GBS

5 **80 and Subsequent Challenge**

This example describes a method of subcutaneous immunization mice using *L. lactis* that express GBS 80. Subcutaneous immunization consists of 3 doses at days 0, 14 and 28. Groups of 3 CD-1 outbred female mice 6-7 weeks old (Charles River Laboratories, Calco Italy) were injected subcutaneously with 10^9 or 10^{10} CFU of the recombinant *Lactococcus lactis* suspended in 100 μ l of PBS. In each immunization scheme, negative (wild-type *L. lactis*) and positive (recombinant GBS80) control groups were used. The immune response of the dams was monitored by using serum samples taken on day 0 and 49. The female mice were bred 2-7 days after the last immunization (at approximately t= 36 – 37), and typically had a gestation period of 21 days. Within 48 hours of birth, the pups were challenged via I.P. with GBS in a dose approximately equal to an amount which would be sufficient to kill 90 % of immunized pups (as determined by empirical data gathered from PBS control groups). The GBS challenge dose is preferably administered in 50ml of THB medium. Preferably, the pup challenge takes place at 56 to 61 days after the first immunization. The challenge inocula were prepared starting from frozen cultures diluted to the appropriate concentration with THB prior to use. Survival of pups was monitored for 5 days after challenge.

20

Example 20: Immunization of Mice with GAS AI polypeptides and Subsequent Intranasal Challenge

This example describes a method of immunizing mice with GAS AI polypeptides and subsequently intranasally challenging the mice with GAS bacteria. Groups of 10 CD1 female mice aged between 6 and 7 weeks are immunized with a combination of GAS antigens of the invention GAS 15, GAS 16, and GAS 18, (15 μ g of each recombinant antigen, derived from M1 strain SF370) or *L. lactis* expressing the M1 strain SF370 adhesin island, suspended in 100 μ l of suitable solution. Each group receives 3 doses at days 0, 21 and 45. Immunization is performed through subcutaneous or intraperitoneal injection for the GAS 15, GAS 16, GAS 18 protein combination. The protein combination is administered with an equal volume of Complete Freund's Adjuvant (CFA) for the first dose and Incomplete Freund's Adjuvant (IFA) for the following two doses. Immunization is performed intranasally for the *L. lactis* expressing the M1 strain SF370 adhesin island. In each immunization scheme negative and positive control groups are used.

The negative control group for the mice immunized with the GAS 15, GAS 16, GAS 18 protein combination included mice immunized with PBS. The negative control group for the mice immunized with *L. lactis* expressing the M1 strain SF370 adhesin island, included mice immunized

with either wildtype *L. Vactic* or *L. Inert* transformed with the pAM401 expression vector lacking any cloned adhesin island sequence.

The positive control groups included mice immunized with purified M1 strain SF370 M protein.

5 Immunized mice are then anaesthetized with Zoletil and challenged intranasally with a 25 µL suspension containing 1.2×10^6 or 1.2×10^8 CFU of ISS 3348 in THB. Animals are observed daily and checked for survival.

Example 21: Active Maternal Immunization Assay

10 As used herein, an Active Maternal Immunization assay refers to an *in vivo* protection assay where female mice are immunized with the test antigen composition. The female mice are then bred and their pups are challenged with a lethal dose of GBS. Serum titers of the female mice during the immunization schedule are measured as well as the survival time of the pups after challenge.

15 Mouse immunization

Specifically, groups of 4 CD-1 outbred female mice 6-8 weeks old (Charles River Laboratories, Calco Italy) are immunized with one or more GBS antigens, (20 µg of each recombinant GBS antigen), suspended in 100 µl of PBS. Each group receives 3 doses at days 0, 21 and 35. Immunization is performed through intra-peritoneal injection of the protein with an equal volume of Complete Freund's Adjuvant (CFA) for the first dose and Incomplete Freund's Adjuvant (IFA) for the following two doses. In each immunization scheme negative and positive control groups are used.

Immune response is monitored by using serum samples taken on day 0 and 49. The sera are analyzed as pools from each group of mice.

25 Active maternal immunization

A maternal immunization/neonatal pup challenge model of GBS infection was used to verify the protective efficacy of the antigens in mice. The mouse protection study was adapted from Rodewald et al. (Rodewald et al. J. Infect. Diseases 166, 635 (1992)). In brief, CD-1 female mice (6-8 weeks old) were immunized before breeding, as described above. The mice received 20 µg of protein per dose when immunized with a single antigen and 60 µg of protein per dose (15 µg of each antigen) when immunized with the combination of antigens. Mice were bred 2-7 days after the last immunization. Within 48 h of birth, pups were injected intraperitoneally with 50 µl of GBS culture. Challenge inocula were prepared starting from frozen cultures diluted to the appropriate concentration with THB before use. In preliminary experiments (not shown), the challenge doses per pup for each strain tested were determined to cause 90% lethality. Survival of pups was monitored for 2 days after challenge. Protection was calculated as (percentage

deadControl minus percentage deadVaccine) divided by percentage deadControl multiplied by 100. Data were evaluated for statistical significance by Fisher's exact test.

Embodiments of the Invention

The invention encompasses, but is not limited to, the embodiments enumerated below.

1. An immunogenic composition comprising a purified Group B Streptococcus (GBS) adhesin island (AI) polypeptide in oligomeric form.

5 2. The immunogenic composition of embodiment 1 wherein the GBS AI polypeptide is selected from a GBS AI-1.

3. The immunogenic composition of embodiment 1 wherein the GBS AI polypeptide is selected from a GBS AI-2.

10 1. An immunogenic composition comprising a purified Group B Streptococcus (GBS) adhesin island (AI) polypeptide in oligomeric form.

2. The immunogenic composition of embodiment 1 wherein the GBS AI polypeptide is selected from a GBS AI-1.

3. The immunogenic composition of embodiment 1 wherein the GBS AI polypeptide is selected from a GBS AI-2.

15 4. The immunogenic composition of any of embodiments 1-3 wherein the GBS AI polypeptide comprises a sortase substrate motif.

5. The immunogenic composition of embodiment 4 wherein the sortase substrate motif is an LPXTG motif.

20 6. The immunogenic composition of embodiment 5 wherein the LPXTG motif is represented by the amino acid sequence XPXTG, wherein the X at amino acid position 1 is an L, an I, or an F and the X at amino acid position 3 is any amino acid residue.

7. The immunogenic composition of any one of embodiments 1-3 wherein the GBS AI polypeptide affects the ability of GBS bacteria to adhere to epithelial cells.

25 8. The immunogenic composition of any one of embodiments 1-3 wherein the GBS AI polypeptide affects the ability of GBS bacteria to invade epithelial cells.

9. The immunogenic composition of any one of embodiments 1-3 wherein the GBS AI polypeptide affects the ability of GBS bacteria to translocate through an epithelial cell layer.

10. The immunogenic composition of any one of embodiments 1-3 wherein the GBS AI polypeptide is capable of associating with an epithelial cell surface.

30 11. The immunogenic composition of embodiment 10 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

12. The immunogenic composition of any of embodiments 1-3 wherein the GBS AI polypeptide is a full-length GBS AI protein.

35 13. The immunogenic composition of any of embodiments 1-3 wherein the GBS AI polypeptide is a fragment of a full-length GBS AI protein.

14. The immunogenic composition of embodiment 13 wherein the fragment comprises at least 7 contiguous amino acid residues of the GBS AI protein.

¶ C 15. The immunogenic composition of embodiment 2 wherein the GBS AI polypeptide is selected from the group consisting of GBS 80, GBS 104, GBS 52, and fragments thereof.

16. The immunogenic composition of embodiment 3 wherein the GBS AI polypeptide is selected from the group consisting of GBS 59, GBS 67, GBS 150, 01521, 01523, 01524, and 5 fragments thereof.

17. The immunogenic composition of embodiment 15 wherein the GBS AI polypeptide is GBS 80.

18. The immunogenic composition of any of embodiments 1-3 or 15-17 wherein the oligomeric form is a hyperoligomer.

10 19. The immunogenic composition of any of embodiments 1-3, or 15-17 further comprising a Gram positive bacterium antigen not associated with an AI.

20. The immunogenic composition of embodiment 19 wherein the antigen is selected from the group consisting of GBS 322 and GBS 276.

21. The immunogenic composition of embodiment 20 wherein the antigen is GBS 322.

15 22. An immunogenic composition comprising a purified Gram positive bacteria adhesin island (AI) polypeptide in an oligomeric form.

23. The immunogenic composition of embodiment 22 wherein the Gram positive bacteria is of a genus selected from the group consisting of *Streptococcus*, *Enterococcus*, *Staphylococcus*, or *Listeria*.

20 24. The immunogenic composition of embodiment 23 wherein the Gram positive bacteria is of the genus *Streptococcus*.

25 25. The immunogenic composition of any of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide comprises a sortase substrate motif.

26. The immunogenic composition of embodiment 25 wherein the sortase substrate motif is an LPXTG motif.

27. The immunogenic composition of any one of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide affects the ability of Gram positive bacteria to adhere to epithelial cells.

30 28. The immunogenic composition of any one of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide affects the ability of Gram positive bacteria to invade epithelial cells.

29. The immunogenic composition of any one of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide affects the ability of Gram positive bacteria to translocate through an epithelial cell layer.

35 30. The immunogenic composition of any one of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide is capable of associating with an epithelial cell surface.

31. The immunogenic composition of embodiment 30 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

PC 32. The immunogenic composition of any of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide is a full-length Gram positive bacteria AI protein.

33. The immunogenic composition of any of embodiments 22-24 wherein the Gram positive bacteria AI polypeptide is a fragment of a full-length Gram positive bacteria AI protein.

5 34. The immunogenic composition of embodiment 33 wherein the fragment comprises at least 7 contiguous amino acid residues of the Gram positive bacteria AI protein.

35. The immunogenic composition of embodiment 24 wherein the genus *Streptococcus* bacteria is Group A Streptococcus (GAS) bacteria and the Gram positive bacteria AI polypeptide is a GAS AI polypeptide.

10 36. The immunogenic composition of embodiment 35 wherein the GAS AI polypeptide is selected from a GAS AI-1.

37. The immunogenic composition of embodiment 35 wherein the GAS AI polypeptide is selected from a GAS AI-2.

15 38. The immunogenic composition of embodiment 35 wherein the GAS AI polypeptide is selected from a GAS AI-3.

39. The immunogenic composition of embodiment 35 wherein the GAS AI polypeptide is selected from a GAS AI-4.

40. The immunogenic composition of any of embodiments 35-39 wherein the GAS AI polypeptide comprises a sortase substrate motif.

20 41. The immunogenic composition of embodiment 40 wherein the sortase substrate motif is an LPXTG motif.

25 42. The immunogenic composition of embodiment 41 wherein the LPXTG motif is represented by XXXXG, wherein the X at the first amino acid position is an L, a V, an E, or a Q, wherein the X at the second amino acid position is P if the X at the first amino acid position is an L, the X at the second amino acid position is a V if the X at the first amino acid position is an E or a Q, or the X at the second amino acid position is a V or a P if the X at the first amino acid position is a V, wherein the X at the third amino acid position is any amino acid residue, and wherein the X at the fourth amino acid position is a T if the X at the first amino acid position is a V, an E, or a Q, or the X at the fourth amino acid position is a T, an S, or an A if the X at the first amino acid position is an L.

30 43. The immunogenic composition of any one of embodiments 35-39 wherein the GAS AI polypeptide affects the ability of GAS bacteria to adhere to epithelial cells.

44. The immunogenic composition of any one of embodiments 35-39 wherein the GAS AI polypeptide affects the ability of GAS bacteria to invade epithelial cells.

35 45. The immunogenic composition of any one of embodiments 35-39 wherein the GAS AI polypeptide affects the ability of GAS bacteria to translocate through an epithelial cell layer.

46. The immunogenic composition of any one of embodiments 35-39 wherein the GAS AI polypeptide is capable of associating with an epithelial cell surface.

PCT 47. The immunogenic composition of embodiment 46 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

48. The immunogenic composition of any of embodiments 35-39 wherein the GAS AI polypeptide is a full-length GAS AI protein.

5 49. The immunogenic composition of any of embodiments 35-39 wherein the GAS AI polypeptide is a fragment of a full-length GAS AI protein.

50. The immunogenic composition of embodiment 49 wherein the fragment comprises at least 7 contiguous amino acid residues of the GAS AI protein.

10 51. The immunogenic composition of embodiment 36 wherein the GAS AI-1 polypeptide is selected from the group consisting of M6_Spy0157, M6_Spy0159, M6_Spy0160, CDC SS 410_fimbrial, ISS3650_fimbrial, DSM2071_fimbrial, and fragments thereof.

52. The immunogenic composition of embodiment 37 wherein the GAS AI-2 polypeptide is selected from the group consisting of GAS15, GAS16, GAS18, and fragments thereof.

15 53. The immunogenic composition of embodiment 38 wherein the GAS AI-3 polypeptide is selected from the group consisting of SpyM3_0098, SpyM3_0100, SpyM3_0102, SpyM3_0104, SPs0100, SPs0102, SPs0104, SPs0106, orf78, orf80, orf82, orf84, spyM18_0126, spyM18_0128, spyM18_0130, spyM18_0132, SpyoM01000156, SpyoM01000155, SpyoM01000154, SpyoM01000153, SpyoM01000152, SpyoM01000151, SpyoM01000150, SpyoM01000149, ISS3040_fimbrial, ISS3776_fimbrial, ISS4959_fimbrial, and fragments thereof.

20 53. The immunogenic composition of embodiment 39 wherein the GAS AI-4 polypeptide is selected from the group consisting of 19224134, 19224135, 19224137, 19224139, 19224141, 20010296_fimbrial, 20020069_fimbrial, CDC SS 635_fimbrial, ISS4883_fimbrial, ISS4538_fimbrial, and fragments thereof.

25 54. The immunogenic composition of embodiment 24 wherein the *Streptococcus* bacteria is *Streptococcus pneumoniae* and the Gram positive bacteria AI polypeptide is a *S. pneumoniae* AI polypeptide.

55. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide comprises a sortase substrate motif.

30 56. The immunogenic composition of embodiment 55 wherein the sortase substrate motif is an LPXTG motif.

57. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide affects the ability of *S. pneumoniae* to adhere to epithelial cells.

58. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide affects the ability of *S. pneumoniae* to invade epithelial cells.

35 59. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide affects the ability of *S. pneumoniae* to translocate through an epithelial cell layer.

60. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide is capable of associating with an epithelial cell surface.

¶ C '61. The immunogenic composition of embodiment 60 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

62. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide is a full-length *S. pneumoniae* AI protein.

5 63. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide is a fragment of a full-length *S. pneumoniae* AI protein.

64. The immunogenic composition of embodiment 63 wherein the fragment comprises at least 7 contiguous amino acid residues of the *S. pneumoniae* AI protein.

10 65. The immunogenic composition of embodiment 54 wherein the *S. pneumoniae* AI polypeptide is selected from the group consisting of SP0462, SP0463, SP0464, orf3_670, orf4_670, orf5_670, ORF3_14CSR, ORF4_14CSR, ORF5_14CSR, ORF3_19AH, ORF4_19AH, ORF5_19AH, ORF3_19FTW, ORF4_19FTW, ORF5_19FTW, ORF3_23FP, ORF4_23FP, ORF5_23FP, ORF3_23FTW, ORF4_23FTW, ORF5_23FTW, ORF3_6BF, ORF4_6BF, ORF5_6BF, ORF3_6BSP, ORF4_6BSP, ORF5_6BSP, ORF3_9VSP, ORF4_9VSP, ORF5_9VSP, and fragments thereof.

15 66. The immunogenic composition of any one of embodiments 22-24, 35-39, 51-54, or 65 wherein the oligomeric form is a hyperoligomer.

67. The immunogenic composition of any one of embodiments 22-24, 35-39, 51-54, or 65 further comprising a Gram positive bacteria antigen not associated with an AI.

20 68. The immunogenic composition of embodiment 67 wherein the antigen is selected from the group consisting of GBS 322 and GBS 276.

69. An immunogenic composition comprising a first and a second Group B Streptococcus (GBS) adhesin island (AI) polypeptide.

25 70. The immunogenic composition of embodiment 69 wherein a full-length polynucleotide sequence encoding for the first GBS AI polypeptide is not present in a GBS bacteria genome comprising a polynucleotide sequence encoding for the second GBS AI polypeptide.

71. The immunogenic composition of embodiment 69 wherein polynucleotides encoding the first and the second GBS AI polypeptide are each present in genomes of more than one GBS serotype and strain isolate.

30 72. The immunogenic composition of embodiment 69 wherein the first GBS AI polypeptide is encoded by a GBS AI-1.

73. The immunogenic composition of embodiment 69 wherein the first GBS AI polypeptide is encoded by a GBS AI-2.

74. The immunogenic composition of embodiment 72 wherein the second GBS AI polypeptide is encoded by a GBS AI-2.

35 75. The immunogenic composition of embodiment 73 wherein the second GBS AI polypeptide is encoded by a GBS AI-2.

76. The immunogenic composition of embodiment 72 wherein the second GBS AI polypeptide is encoded by a GBS AI-1.

PC 77. The immunogenic composition of embodiment 73 wherein the second GBS AI polypeptide is encoded by a GBS AI-1.

78. The immunogenic composition of embodiment 72 wherein the first GBS AI polypeptide is selected from the group consisting of GBS 80, GBS 104, GBS 52, and fragments thereof.

5 79. The immunogenic composition of embodiment 73 wherein the first GBS AI polypeptide is selected from the group consisting of GBS 59, GBS 67, GBS 150, 01521, 01523, 01524, and fragments thereof.

10 80. The immunogenic composition of embodiment 74 or 75 wherein the second GBS AI polypeptide is selected from the group consisting of GBS 59, GBS 67, GBS 150, 01521, 01523, 01524, and fragments thereof, and wherein the first and the second GBS AI polypeptide are not the same polypeptide.

15 81. The immunogenic composition of embodiment 76 or 77 wherein the second GBS AI polypeptide is selected from the group consisting of GBS 80, GBS 104, GBS 52, and fragments thereof, and wherein the first and the second GBS AI polypeptide are not the same polypeptide.

82. The immunogenic composition of any one of embodiments 69-77 wherein the first GBS AI polypeptide comprises a sortase substrate motif.

83. The immunogenic composition of embodiment 82 wherein the sortase substrate motif is an LPXTG motif.

20 84. The immunogenic composition of embodiment 83 wherein the LPXTG motif is represented by the sequence XPXTG, wherein the X at amino acid position 1 is an L, an I, or an F and the X at amino acid position 3 is any amino acid residue.

85. The immunogenic composition of any one of embodiments 69-77 wherein the first GBS AI polypeptide affects the ability of GBS bacteria to adhere to epithelial cells.

25 86. The immunogenic composition of any one of embodiments 69-77 wherein the first GBS AI polypeptide affects the ability of GBS bacteria to invade epithelial cells.

87. The immunogenic composition of any one of embodiments 69-77 wherein the first GBS AI polypeptide affects the ability of GBS bacteria to translocate through an epithelial cell layer.

88. The immunogenic composition of any one of embodiments 69-77 wherein the first GBS AI polypeptide is capable of associating with an epithelial cell surface.

30 89. The immunogenic composition of embodiment 88 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

90. The immunogenic composition of any of embodiments 69-77 wherein the first GBS AI polypeptide is a full-length GBS AI protein.

35 91. The immunogenic composition of any of embodiments 69-77 wherein the first GBS AI polypeptide is a fragment of a full-length GBS AI protein.

92. The immunogenic composition of embodiment 91 wherein the fragment comprises at least 7 contiguous amino acid residues of the first GBS AI protein.

P C 93. The immunogenic composition of any one of embodiments 69-79 wherein the first GBS AI polypeptide is in oligomeric form.

94. The immunogenic composition of any one of embodiments 69-77 wherein the second GBS AI polypeptide is in oligomeric form.

5 95. The immunogenic composition of any one of embodiments 69-79 wherein the first and the second GBS AI polypeptide are associated in a single oligomeric form.

96. The immunogenic composition of embodiment 95 wherein the first and the second GBS AI polypeptides are chemically associated.

97. The immunogenic composition of embodiment 95 wherein the first and the second GBS 10 AI polypeptides are physically associated.

98. The immunogenic composition of embodiment 93 wherein the oligomeric form is a hyperoligomer.

99. The immunogenic composition of embodiment 94 wherein the oligomeric form is a hyperoligomer.

15 100. The immunogenic composition of embodiment 76 wherein the first GBS AI polypeptide is GBS 80 and the second GBS AI polypeptide is GBS 104.

101. The immunogenic composition of embodiment 74 wherein the first GBS AI polypeptide is GBS 80 and the second GBS AI polypeptide is GBS 67.

102. The immunogenic composition of any one of embodiments 69-79, 100, or 101 further 20 comprising a GBS polypeptide not associated with an AI.

103. The immunogenic composition of embodiment 102 wherein the GBS polypeptide not associated with an AI is selected from the group consisting of GBS 322 and GBS 276.

104. The immunogenic composition of embodiment 103 wherein the GBS polypeptide not associated with an AI is GBS 322.

25 105. An immunogenic composition comprising a first and a second Gram positive bacteria adhesin island (AI) polypeptide.

106. The immunogenic composition of embodiment 105 wherein a full length polynucleotide sequence encoding for the first Gram positive bacteria AI polypeptide is not present in a genome of a Gram positive bacteria comprising a full length polynucleotide sequence encoding for the second 30 Gram positive bacteria AI polypeptide.

107. The immunogenic composition of embodiment 105 wherein polynucleotides encoding the first and the second Gram positive bacteria AI polypeptide are each present in genomes of more than one Gram positive bacteria serotype and strain isolate.

108. The immunogenic composition of embodiment 105 wherein the first and the second 35 Gram positive bacteria AI polypeptides are of different Gram positive bacteria species.

109. The immunogenic composition of embodiment 105 wherein the first and the second Gram positive bacteria AI polypeptides are of the same Gram positive bacteria species.

PCT ¶110. The immunogenic composition of embodiment 105 wherein the first and the second Gram positive bacteria AI polypeptides are from different AI subtypes.

111. The immunogenic composition of embodiment 105 wherein the first and the second Gram positive bacteria AI polypeptides are from the same AI subtype.

5 112. The immunogenic composition of embodiment 105 wherein the first Gram positive bacteria AI polypeptide has detectable surface exposure on a first Gram positive bacteria strain or serotype but not a second Gram positive bacteria strain or subtype and the second Gram positive bacteria AI polypeptide has detectable surface exposure on the second Gram positive bacteria strain or serotype but not the first Gram positive bacteria strain or serotype.

10 113. The immunogenic composition of embodiment 105 wherein the Gram positive bacteria is *S. pneumoniae*, *S. mutans*, *E. faecalis*, *E. faecium*, *C. difficile*, *L. monocytogenes*, or *C. diphtheriae*.

114. The immunogenic composition of any of embodiments 105-113 wherein the first and the second Gram positive bacteria AI polypeptides comprise a sortase substrate motif.

15 115. The immunogenic composition of embodiment 114 wherein the sortase substrate motif is an LPXTG motif.

20 116. The immunogenic composition of embodiment 115 wherein the LPXTG motif is represented by XXXXG, wherein the X at amino acid position 1 is an L, a V, an E, an I, an F, or a Q, wherein X at amino acid position 2 is a P if X at amino acid position 1 is an L, an I, or an F, wherein X at amino acid position 2 is a V if X at amino acid position 1 is a E or a Q, wherein X at amino acid position 2 is a V or a P if X at amino acid position 1 is a V, wherein X at amino acid position 3 is any amino acid residue, wherein X at amino acid position 4 is a T if X at amino acid position 1 is a V, E, I, F, or Q, and wherein X at amino acid position 4 is a T, S, or A if X at amino acid position 1 is an L.

25 117. The immunogenic composition of embodiment 105 wherein the first Gram positive bacteria AI polypeptide is a first Group A Streptococcus (GAS) AI polypeptide.

118. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide comprises a sortase substrate motif.

119. The immunogenic composition of embodiment 118 wherein the sortase substrate motif is an LPXTG motif.

30 120. The immunogenic composition of embodiment 119 wherein the LPXTG motif is represented by XXXXG, wherein the X at the first amino acid position is an L, a V, an E, or a Q, wherein the X at the second amino acid position is P if the X at the first amino acid position is an L, the X at the second amino acid position is a V if the X at the first amino acid position is an E or a Q, or the X at the second amino acid position is a V or a P if the X at the first amino acid position is a V, wherein the X at the third amino acid position is any amino acid residue, and wherein the X at the fourth amino acid position is a T if the X at the first amino acid position is a V, an E, or a Q, or the X at the fourth amino acid position is a T, an S, or an A if the X at the first amino acid position is an L.

35 121. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide affects the ability of GAS bacteria to adhere to epithelial cells.

P C 122. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide affects the ability of GAS bacteria to invade epithelial cells.

123. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide affects the ability of GAS bacteria to translocate through an epithelial cell layer.

5 124. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is capable of associating with an epithelial cell surface.

125. The immunogenic composition of embodiment 117 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

10 126. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is a full-length GAS AI protein.

127. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is a fragment of a full-length GAS AI protein.

128. The immunogenic composition of embodiment 127 wherein the fragment comprises at least 7 contiguous amino acid residues of the GAS AI protein.

15 129. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is a first GAS AI-1 polypeptide.

130. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is a first GAS AI-2 polypeptide.

20 131. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is a first GAS AI-3 polypeptide.

132. The immunogenic composition of embodiment 117 wherein the first GAS AI polypeptide is a first GAS AI-4 polypeptide.

133. The immunogenic composition of any one of embodiments 117 or 129-132 wherein the second Gram positive bacteria AI polypeptide is a second GAS AI polypeptide.

25 134. The immunogenic composition of embodiment 133 wherein the second GAS AI polypeptide is a second GAS AI-1 polypeptide.

135. The immunogenic composition of embodiment 133 wherein the second GAS AI polypeptide is a second GAS AI-2 polypeptide.

30 136. The immunogenic composition of embodiment 133 wherein the second GAS AI polypeptide is a second GAS AI-3 polypeptide.

137. The immunogenic composition of embodiment 133 wherein the second GAS AI polypeptide is a second GAS AI-4 polypeptide.

35 138. The immunogenic composition of embodiment 129 wherein the first GAS AI-1 polypeptide is selected from the group consisting of M6_Spy0157, M6_Spy0159, M6_Spy0160, CDC SS 410_fimbrial, ISS3650_fimbrial, DSM2071_fimbrial, and fragments thereof.

139. The immunogenic composition of embodiment 130 wherein the first GAS AI-2 polypeptide is selected from the group consisting of GAS15, GAS16, GAS18, and fragments thereof.

PC 40. The immunogenic composition of embodiment 131 wherein the first GAS AI-3 polypeptide is selected from the group consisting of SpyM3_0098, SpyM3_0100, SpyM3_0102, SpyM3_0104, SPs0100, SPs0102, SPs0104, SPs0106, orf78, orf80, orf82, orf84, spyM18_0126, spyM18_0128, spyM18_0130, spyM18_0132, SpyoM01000156, SpyoM01000155, SpyoM01000154, 5 SpyoM01000153, SpyoM01000152, SpyoM01000151, SpyoM01000150, SpyoM01000149, ISS3040_fimbrial, ISS3776_fimbrial, ISS4959_fimbrial, and fragments thereof.

141. The immunogenic composition of embodiment 132 wherein the first GAS AI-4 polypeptide is selected from the group consisting of 19224134, 19224135, 19224137, 19224139, 19224141, 20010296_fimbrial, 20020069_fimbrial, CDC SS 635_fimbrial, ISS4883_fimbrial, 10 ISS4538_fimbrial, and fragments thereof.

142. The immunogenic composition of embodiment 134 wherein the second GAS AI-1 polypeptide is selected from the group consisting of M6_Spy0157, M6_Spy0159, M6_Spy0160, CDC SS 410_fimbrial, ISS3650_fimbrial, DSM2071_fimbrial, and fragments thereof.

143. The immunogenic composition of embodiment 135 wherein the second GAS AI-2 polypeptide is selected from the group consisting of GAS15, GAS16, GAS18, and fragments thereof.

144. The immunogenic composition of embodiment 136 wherein the second GAS AI-3 polypeptide is selected from the group consisting of SpyM3_0098, SpyM3_0100, SpyM3_0102, SpyM3_0104, SPs0100, SPs0102, SPs0104, SPs0106, orf78, orf80, orf82, orf84, spyM18_0126, spyM18_0128, spyM18_0130, spyM18_0132, SpyoM01000156, SpyoM01000155, SpyoM01000154, 20 SpyoM01000153, SpyoM01000152, SpyoM01000151, SpyoM01000150, SpyoM01000149, ISS3040_fimbrial, ISS3776_fimbrial, ISS4959_fimbrial, and fragments thereof.

145. The immunogenic composition of embodiment 137 wherein the second GAS AI-4 polypeptide is selected from the group consisting of 19224134, 19224135, 19224137, 19224139, 19224141, 20010296_fimbrial, 20020069_fimbrial, CDC SS 635_fimbrial, ISS4883_fimbrial, 25 ISS4538_fimbrial, and fragments thereof.

146. The immunogenic composition of any one of embodiments 117-132 or 138-141 wherein the second Gram positive bacteria AI polypeptide is a Group B Streptococcus (GBS) AI polypeptide.

147. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide comprises a sortase substrate motif.

148. The immunogenic composition of embodiment 147 wherein the sortase substrate motif is an LPXTG motif.

149. The immunogenic composition of embodiment 148 wherein the LPXTG motif is represented by the amino acid sequence XPXTG, wherein the X at amino acid position 1 is an L, an I, or an F and the X at amino acid position 3 is any amino acid residue.

150. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide affects the ability of GBS bacteria to adhere to epithelial cells.

151. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide affects the ability of GBS bacteria to invade epithelial cells.

PC 152. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide affects the ability of GBS bacteria to translocate through an epithelial cell layer.

153. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide is capable of associating with an epithelial cell surface.

5 154. The immunogenic composition of embodiment 146 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

155. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide is a full-length GBS AI protein.

10 156. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide is a fragment of a full-length GBS AI protein.

157. The immunogenic composition of embodiment 156 wherein the fragment comprises at least 7 contiguous amino acid residues of the GBS AI protein.

158. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide is a GBS AI-1 polypeptide.

15 159. The immunogenic composition of embodiment 146 wherein the GBS AI polypeptide is a GBS AI-2 polypeptide.

160. The immunogenic composition of embodiment 158 wherein the GBS AI-1 polypeptide is selected from the group consisting of GBS 80, GBS 104, GBS 52, and fragments thereof.

20 161. The immunogenic composition of embodiment 159 wherein the GBS AI-2 polypeptide is selected from the group consisting of GBS 59, GBS 67, GBS 150, 01521, 01523, 01524, and fragments thereof.

162. The immunogenic composition of any one of embodiments 117-132 or 138-141 wherein the second Gram positive bacteria AI polypeptide is a *Streptococcus pneumoniae* AI polypeptide.

25 163. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide comprises a sortase substrate motif.

164. The immunogenic composition of embodiment 163 wherein the sortase substrate motif is an LPXTG motif.

165. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide affects the ability of *S. pneumoniae* to adhere to epithelial cells.

30 166. The immunogenic composition of embodiment 162 *S. pneumoniae* AI polypeptide affects the ability of *S. pneumoniae* to invade epithelial cells.

167. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide affects the ability of *S. pneumoniae* to translocate through an epithelial cell layer.

35 168. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide is capable of associating with an epithelial cell surface.

169. The immunogenic composition of embodiment 168 wherein the associating with an epithelial cell surface is binding to the epithelial cell surface.

PC 170. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide is a full-length *S. pneumoniae* AI protein.

171. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide is a fragment of a full-length *S. pneumoniae* AI protein.

5 172. The immunogenic composition of embodiment 162 wherein the fragment comprises at least 7 contiguous amino acid residues of the *S. pneumoniae* AI protein.

173. The immunogenic composition of embodiment 162 wherein the *S. pneumoniae* AI polypeptide is selected from the group consisting of SP0462, SP0463, SP0464, orf3_670, orf4_670, orf5_670, ORF3_14CSR, ORF4_14CSR, ORF5_14CSR, ORF3_19AH, ORF4_19AH, ORF5_19AH, 10 ORF3_19FTW, ORF4_19FTW, ORF5_19FTW, ORF3_23FP, ORF4_23FP, ORF5_23FP, ORF3_23FTW, ORF4_23FTW, ORF5_23FTW, ORF3_6BF, ORF4_6BF, ORF5_6BF, ORF3_6BSP, ORF4_6BSP, ORF5_6BSP, ORF3_9VSP, ORF4_9VSP, ORF5_9VSP, and fragments thereof.

174. The immunogenic composition of any one of embodiments 105-117 wherein the first Gram positive bacteria AI polypeptide is in oligomeric form.

15 175. The immunogenic composition of embodiment 174 wherein the oligomeric form is a hyperoligomer.

176. The immunogenic composition of embodiment 174 wherein the second Gram positive bacteria AI polypeptide is in oligomeric form.

20 177. The immunogenic composition of embodiment 176 wherein the oligomeric form is a hyperoligomer.

178. The immunogenic composition of embodiment 176 wherein the first and the second Gram positive bacteria AI polypeptide are associated in a single oligomeric form.

179. The immunogenic composition of embodiment 178 wherein the first and the second Gram positive bacteria AI polypeptide are chemically associated.

25 180. The immunogenic composition of embodiment 178 wherein the first and the second Gram positive bacteria AI polypeptide are physically associated.

181. The immunogenic composition of any one of embodiments 105-117 further comprising a Gram positive bacteria polypeptide not associated with an AI.

182. The immunogenic composition of embodiment 181 wherein the Gram positive bacteria polypeptide not associated with an AI is selected from the group consisting of GBS 322 and GBS 276.

183. The immunogenic composition of embodiment 182 wherein the Gram positive bacteria polypeptide not associated with an AI is GBS 322.

184. A modified Gram positive bacterium adapted to produce increased levels of AI surface protein.

35 185. The modified Gram positive bacterium of embodiment 184 wherein the AI surface protein is in oligomeric form.

186. The modified Gram positive bacterium of embodiment 185 wherein the oligomeric form is a hyperoligomer.

187. The modified Gram positive bacterium of any one of embodiments 184-186 which is a Group B Streptococcus bacterium.

188. The modified Gram positive bacterium of any one of embodiments 184-186 which is a Group A Streptococcus bacterium.

5 189. The modified Gram positive bacterium of any one of embodiments 184-186 which is a non-pathogenic Gram positive bacterium.

190. The modified Gram positive bacterium of embodiment 189 wherein the non-pathogenic Gram positive bacterium is *Streptococcus gordonii*.

10 191. The modified Gram positive bacterium of embodiment 189 wherein the non-pathogenic Gram positive bacterium is *Lactococcus lactis*.

192. The modified Gram positive bacterium of any one of embodiments 184-186 which has been inactivated and wherein the AI surface protein is exposed on the surface of the Gram positive bacterium.

15 193. The modified Gram positive bacterium of any one of embodiments 184-186 which has been attenuated and wherein the AI surface protein is exposed on the surface of the Gram positive bacterium.

194. The modified GBS bacterium of embodiment 187 which has been inactivated and wherein the AI surface protein is exposed on the surface of the GBS bacterium.

20 195. The modified GBS bacterium of embodiment 187 which has been attenuated and wherein the AI surface protein is exposed on the surface of the GBS bacterium.

196. The modified GAS bacterium of embodiment 188 which has been inactivated and wherein the AI surface protein is exposed on the surface of the GAS bacterium.

197. The modified GAS bacterium of embodiment 188 which has been attenuated and wherein the AI surface protein is exposed on the surface of the GAS bacterium.

25 198. The modified non-pathogenic bacterium of embodiment 189 which has been inactivated and wherein the AI surface protein is exposed on the surface of the non-pathogenic Gram positive bacterium.

199. The modified non-pathogenic bacterium of embodiment 189 which has been attenuated and wherein the AI surface protein is exposed on the surface of the non-pathogenic Gram positive bacterium.

30 200. A method for manufacturing an oligomeric adhesin island (AI) surface antigen comprising:

culturing a Gram positive bacterium that expresses an oligomeric AI surface antigen and isolating the expressed oligomeric AI surface antigen.

35 201. The method of embodiment 200 wherein the step of isolating is performed by collecting said oligomeric AI surface antigen from Gram positive bacterium secretions in the Gram positive bacterium culture.

202. The method of embodiment 200 further comprising a step of purifying.

203. The method of embodiment 202 wherein the oligomeric AI surface antigen is purified from the Gram positive bacterium cell surface.

204. The method of embodiment 200 wherein the Gram positive bacterium is adapted for increased AI protein expression.

5 205. The method of any one of embodiments 200-204 wherein the Gram positive bacterium is a Group A Streptococcus bacterium.

206. The method of any one of embodiments 200-204 wherein the Gram positive bacterium is a Group B Streptococcus bacterium.

10 207. The method of any one of embodiments 200-204 wherein the oligomeric AI surface antigen is in hyperoligomeric form.

208. The method of embodiment 200 wherein the Gram positive bacterium expresses the oligomeric AI surface antigen recombinantly.

209. The method of embodiment 208 wherein the Gram positive bacterium further manipulated expresses at least 1 AI sortase.

15 210. The modified Gram positive bacterium of any one of embodiments 184-186 which is a *S. pneumoniae* bacterium.

211. The method of any one of embodiments 200-204 wherein the Gram positive bacterium is *S. pneumoniae*.

1. An immunogenic composition comprising a purified Group B Streptococcus (GBS) adhesin island (AI) polypeptide in oligomeric form.
2. The immunogenic composition of claim 1 wherein the GBS AI polypeptide is selected from a GBS AI-1.
- 5 3. The immunogenic composition of claim 1 wherein the GBS AI polypeptide is selected from a GBS AI-2.
- 10 4. The immunogenic composition of claim 2 wherein the GBS AI polypeptide is selected from the group consisting of GBS 80, GBS 104, GBS 52, and fragments thereof.
- 15 5. The immunogenic composition of claim 3 wherein the GBS AI polypeptide is selected from the group consisting of GBS 59, GBS 67, GBS 150, 01521, 01523, 01524, and fragments thereof.
- 15 6. The immunogenic composition of claim 4 wherein the GBS AI polypeptide is GBS 80.
- 15 7. The immunogenic composition of any of claims 1-6 wherein the oligomeric form is a hyperoligomer.
- 15 8 (22). An immunogenic composition comprising a purified Gram positive bacteria adhesin island (AI) polypeptide in an oligomeric form.
- 20 9 (23). The immunogenic composition of claim 8 wherein the Gram positive bacteria is of a genus selected from the group consisting of *Streptococcus*, *Enterococcus*, *Staphylococcus*, *Clostridium*, *Corynebacterium*, or *Listeria*.
- 20 10 (24). The immunogenic composition of claim 9 wherein the Gram positive bacteria is of the genus *Streptococcus*.
- 25 11 (35). The immunogenic composition of claim 10 wherein the genus *Streptococcus* bacteria is Group A Streptococcus (GAS) bacteria and the Gram positive bacteria AI polypeptide is a GAS AI polypeptide.
- 25 12 (36). The immunogenic composition of claim 11 wherein the GAS AI polypeptide is selected from a GAS AI-1.
- 25 13 (37). The immunogenic composition of claim 11 wherein the GAS AI polypeptide is selected from a GAS AI-2.
- 30 14 (38). The immunogenic composition of claim 11 wherein the GAS AI polypeptide is selected from a GAS AI-3.
- 30 15 (39). The immunogenic composition of claim 11 wherein the GAS AI polypeptide is selected from a GAS AI-4.
- 35 16 (66). The immunogenic composition of any one of claims 8-15 wherein the oligomeric form is a hyperoligomer.
- 35 17. An immunogenic composition comprising a first and a second Group B Streptococcus (GBS) adhesin island (AI) polypeptide.

PC 18. The immunogenic composition of claim 17 wherein the first GBS AI polypeptide is encoded by a GBS AI-1.

19. The immunogenic composition of claim 18 wherein the second GBS AI polypeptide is encoded by a GBS AI-2.

5 20. The immunogenic composition of claim 18 wherein the first GBS AI polypeptide is selected from the group consisting of GBS 80, GBS 104, GBS 52, and fragments thereof.

10 21. The immunogenic composition of claim 19 wherein the second GBS AI polypeptide is selected from the group consisting of GBS 59, GBS 67, GBS 150, 01521, 01523, 01524, and fragments thereof, and wherein the first and the second GBS AI polypeptide are not the same polypeptide.

22. The immunogenic composition of claim 19 wherein the first GBS AI polypeptide is GBS 80 and the second GBS AI polypeptide is GBS 67.

23. An immunogenic composition comprising a first and a second Gram positive bacteria adhesin island (AI) polypeptide.

15 24. The immunogenic composition of claim 23 wherein the Gram positive bacteria is *Streptococcus, Enterococcus, Staphylococcus, Clostridium, Corynebacterium, or Listeria*.

25. The immunogenic composition of claim 23 wherein the first Gram positive bacteria AI polypeptide is a first Group A Streptococcus (GAS) AI polypeptide.

20 26. The immunogenic composition of claim 25 wherein the first GAS AI polypeptide is a first GAS AI-1 polypeptide.

27. The immunogenic composition of claim 25 wherein the first GAS AI polypeptide is a first GAS AI-2 polypeptide.

28. The immunogenic composition of claim 25 wherein the first GAS AI polypeptide is a first GAS AI-3 polypeptide.

25 29. The immunogenic composition of claim 25 wherein the first GAS AI polypeptide is a first GAS AI-4 polypeptide.

30. The immunogenic composition of any one of claims 25-29 wherein the second Gram positive bacteria AI polypeptide is a second GAS AI polypeptide.

31. The immunogenic composition of claim 30 wherein the second GAS AI polypeptide is a second GAS AI-1 polypeptide.

32. The immunogenic composition of claim 30 wherein the second GAS AI polypeptide is a second GAS AI-2 polypeptide.

33. The immunogenic composition of claim 30 wherein the second GAS AI polypeptide is a second GAS AI-3 polypeptide.

35 34. The immunogenic composition of claim 30 wherein the second GAS AI polypeptide is a second GAS AI-4 polypeptide.

35. A modified Gram positive bacterium adapted to produce increased levels of AI surface protein.

36. The modified Gram positive bacterium of claim 35 wherein the AI surface protein is in oligomeric form.

37. The modified Gram positive bacterium of claim 36 wherein the oligomeric form is a hyperoligomer.

5 38. The modified Gram positive bacterium of any one of claims 35-37 which is a non-pathogenic Gram positive bacterium.

39. The modified Gram positive bacterium of claim 38 wherein the non-pathogenic Gram positive bacterium is *Lactococcus lactis*.

10 40. A method for manufacturing an oligomeric adhesin island (AI) surface antigen comprising:

culturing a Gram positive bacterium that expresses an oligomeric AI surface antigen and isolating the expressed oligomeric AI surface antigen.

PCT/US05/27239

FIGURE 1: Adhesion Island 1

Figure 2: Conservation of AI-1 in GBS serotypes and strain isolates

PCT/US05/27239

FIGURE 3: Correlation of AI-1 and AI-2 within GBS serotype V, strain isolate 2603 genome

Figure 4: Identification and Variance of AI-2 in Several GBS Serotypes and Strain Isolates

Figure 5: Purified gbs80 protein binds fibronectin and fibrinogen in an ELISA

Figure 6: Adhesion Island I is an operon by RT-PCR

7/4/87

Figure 7: In frame deletions of AI-1 genes

Figure 8: $\text{gbs}80$ is required for surface localization of $\text{gbs}104$

Figure 9: sortases 647 & 648 play a semi-redundant role in surface exposure of gbs80 and gbs104

Figure 10. Western blot of mutant strains

FIGURE 11: Pre-embedding IEM staining of GBS 80

PCT/U505/2723 12/487

FIGURE 12: Predicted Secondary Structure for GBS 067

PHD SECONDARY STRUCTURE PREDICTION for EBS 067

זט

Alpha helix	(Hh)	:	148	is	16.43%	310	helix	(Gg)	:	0	is	0.00%
Pi helix	(Ii)	:	0	is	0.00%	Beta	bridge	(Bb)	:	0	is	0.00%
Extended strand	(Ee)	:	243	is	26.97%	Beta	turn	(Tt)	:	0	is	0.00%
Bend region	(Ss)	:	0	is	0.00%	Random	coil	(Cc)	:	510	is	56.60%
Ambiguous states	(?)	:	0	is	0.00%	Other	states		:	0	is	0.00%

WO 2006/078318

PCT/US2005/027239

PCT/US05/27239 13/487

Figure 13

Figure 14

Figure 15

WO 2006/078318

PCT/US2005/027239

PCT/US05/27239 16/487

Figure 16

WO 2006/078318

PCT/US2005/27239

PCT/US2005/027239

17/487

Figure 17

	T A A C A C C G A T T G G A A A T A C A T C A A T C A A T G A A A T T G C G C G T G C T A T C A A C C A A	Majority			
10	10	20	30	40	50
1	T A A C A C C G A T T G G A A A T A A C A T C A A T C A A A T T G C G C G T G C T A T C A A C C A A	2603_all.seq			
1	T A A C A C C G A T T G G A A A T A A C A T C A A T C A A A T T G C G C G T G C T A T C A A C C A A	18rs21_all.seq			
1	T A A C A C C G A T T G G A A A T A A C A T C A A T C A A A T T G C G C G T G C T A T C A A C C A A	coh1_all.seq			
1	T A A C A C C G A T T G G A A A T A A C A T C A A T C A A A T T G C G C G T G C T A T C A A C C A A	cjb111_all.seq			
1	T A A C A C C G A T T G G A A A T A A C A T C A A T C A A A T T G C G C G T G C T A T C A A C C A A	nem316_all.seq			
1	T A A C A C C G A T T G G A A A T A A C A T C A A T C A A A T T G C G C G T G C T A T C A A C C A A	a909_all.seq			
	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	Majority			
60	60	70	80	90	100
51	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	2603_all.seq			
51	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	18rs21_all.seq			
51	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	coh1_all.seq			
51	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	cjb111_all.seq			
51	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	nem316_all.seq			
51	A G C C A T C T A A T T T C T C A G G C T C A G T A T C A C T T T C A T C G A G A A G C A C G T T A	a909_all.seq			
	A G C C C A A C A G C A G G G G G G G T T C T C T G A T T C G G T T A A G T A A T A A G C A A A A	Majority			
110	110	120	130	140	150
101	A G C C C A A C A G C A G G G G G G T T G C T C T G A T T C G G T T A A G T A A T A A G C A A A A	2603_all.seq			
101	A G C C C A A C A G C A G G G G G G T T G C T C T G A T T C G G T T A A G T A A T A A G C A A A A	18rs21_all.seq			
101	A G C C C A A C A G C A G G G G G G T T G C T C T G A T T C G G T T A A G T A A T A A G C A A A A	coh1_all.seq			
101	A G C C C A A C A G C A G G G G G G T T G C T C T G A T T C G G T T A A G T A A T A A G C A A A A	cjb111_all.seq			
101	A G C C C A A C A G C A G G G G G G T T G C T C T G A T T C G G T T A A G T A A T A A G C A A A A	nem316_all.seq			
101	A G C C C A A C A G C A G G G G G G T T G C T C T G A T T C G G T T A A G T A A T A A G C A A A A	a909_all.seq			
	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	Majority			
160	160	170	180	190	200
150	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	2603_all.seq			
151	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	18rs21_all.seq			
150	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	coh1_all.seq			
151	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	cjb111_all.seq			
151	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	nem316_all.seq			
151	T C C T C A C C A A T T T T C C C A G T A A T A A G A G G G C G T T G T T G A G G T A T A G G G A T T	a909_all.seq			
	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A C	Majority			
210	210	220	230	240	250
200	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A G	2603_all.seq			
201	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A G	18rs21_all.seq			
201	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A G	coh1_all.seq			
201	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A G	cjb111_all.seq			
201	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A G	nem316_all.seq			
201	A C C T G T G C C A T A G T C C G A T G A T G G T C A C A A A A T G A C C A T T C C C C A T A A A A G	a909_all.seq			
	G G C C A A C C A A A A A C T T C A C C T G T G G G C G T T T T T G A T G T C A A C A C C A G T A T	Majority			
260	260	270	280	290	300
50	G G C C A A C C A A A A A C T T C A C C T G T G A C C G T T T T T G A T G T C A A C A C C A G T A T	2603_all.seq			
9	G G C C A A C C A A A A A C T T C A C C T G T G A C C G T T T T T G A T G T C A A C A C C A G T A T	18rs21_all.seq			
51	G G C C A A C C A A A A A C T T C A C C T G T G A C C G T T T T T G A T G T C A A C A C C A G T A T	coh1_all.seq			
50	G G C C A A C C A A A A A C T T C A C C T G T G A C C G T T T T T G A T G T C A A C A C C A G T A T	cjb111_all.seq			
51	G G C C A A C C A A A A A C T T C A C C T G T G A C C G T T T T T G A T G T C A A C A C C A G T A T	nem316_all.seq			
51	G G C C A A C C A A A A A C T T C A C C T G T G A C C G T T T T T G A T G T C A A C A C C A G T A T	a909_all.seq			
	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	Majority			
310	310	320	330	340	350
200	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	2603_all.seq			
9	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	18rs21_all.seq			
201	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	coh1_all.seq			
200	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	cjb111_all.seq			
201	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	nem316_all.seq			
201	T T T G G A T G T A C C C C T T A A C A T G C C C C T T T G G T A T C T G C A A C A G A G A T A A T A	a909_all.seq			

Figure 18

T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C Majority				
360	370	380	390	400
150	T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C 2603_all.seq			
119	T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C 18rs21_all.seq			
151	T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C coh1_all.seq			
150	T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C cjb111_all.seq			
151	T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C nem316_all.seq			
151	T G A C C A A A G G A A G A A T C A C C G A T G A C T T A A C C G T A A T C T T G C T A T C G C C a909_all.seq			
T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G Majority				
410	420	430	440	450
100	T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G 2603_all.seq			
69	T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G 18rs21_all.seq			
101	T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G coh1_all.seq			
100	T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G cjb111_all.seq			
101	T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G nem316_all.seq			
101	T T T T T G A T T A G C C C G C T A A T A T T G A T T A G C A A T C A G G G T G C G A C C A A G A G a909_all.seq			
C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A Majority				
460	470	480	490	500
50	C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A 2603_all.seq			
19	C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A 18rs21_all.seq			
51	C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A coh1_all.seq			
50	C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A cjb111_all.seq			
51	C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A nem316_all.seq			
51	C A A C T G T T G A A G A C G A C A A G G T A T G A T G T T T T C C T G A G G C C A A T T T A A C A a909_all.seq			
G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T Majority				
510	520	530	540	550
00	G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T 2603_all.seq			
69	G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T 18rs21_all.seq			
01	G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T coh1_all.seq			
00	G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T cjb111_all.seq			
01	G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T nem316_all.seq			
01	G T C T C G G G T G C T A T C G A G G A C A T A A G A C C T G A A G G C A C C A G A G G C A G A A A T a909_all.seq			
T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T Majority				
560	570	580	590	600
50	T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T 2603_all.seq			
19	T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T 18rs21_all.seq			
51	T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T coh1_all.seq			
50	T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T cjb111_all.seq			
51	T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T nem316_all.seq			
51	T G A T T A A T A A T T T A T C C A T A A C C T A T G T T A T A G C A C A A A G A G A G A G T T a909_all.seq			
T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G Majority				
610	620	630	640	650
10	T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G 2603_all.seq			
39	T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G 18rs21_all.seq			
11	T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G coh1_all.seq			
10	T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G cjb111_all.seq			
11	T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G nem316_all.seq			
11	T G T A T G G A C T G G A T T A G C T G A A A A T T T T A G A C T A A A A A G T A G T G C C A G T G a909_all.seq			
G A T T T G A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T Majority				
660	670	680	690	700
10	G A T T T G A A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T 2603_all.seq			
19	G A T T T G A A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T 18rs21_all.seq			
11	G A T T T G A A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T coh1_all.seq			
10	G A T T T G A A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T cjb111_all.seq			
11	G A T T T G A A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T nem316_all.seq			
11	G A T T T G A A A A G G T A A C A A A A G A G T C T T C C G T T T A A C G A G A A C G G T G T T T a909_all.seq			

FIGURE 18 A

Alignment Report of Al-1 alignment, using J. Hein method with Weighted residue weight table.
 Thursday, July 29, 2004 5:48PM

TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT Majority					
	710	720	730	740	750
00	TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT				2603_all.seq
69	TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT				18rs21_all.seq
01	TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT				coh1_all.seq
00	TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT				cjb111_all.seq
01	TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT				nem316_all.seq
01	TTAGTCGTTTCAAGATGAAGGCAAAAGGACGATGAAATAATTCCGTACCTT				a909_all.seq
CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA Majority					
	760	770	780	790	800
50	CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA				2603_all.seq
19	CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA				18rs21_all.seq
51	CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA				coh1_all.seq
50	CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA				cjb111_all.seq
51	CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA				nem316_all.seq
51	CATGGATTGCTATGTTACTGGCATGAGGTCTCACGATATTTAGTAACATA				a909_all.seq
TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG Majority					
	810	820	830	840	850
00	TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG				2603_all.seq
69	TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG				18rs21_all.seq
01	TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG				coh1_all.seq
00	TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG				cjb111_all.seq
01	TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG				nem316_all.seq
01	TTCGTTGAAGATATTCCCACGTATTTTAAAGGTTTTAACAAAAATGTTG				a909_all.seq
TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT Majority					
	860	870	880	890	900
50	TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT				2603_all.seq
19	TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT				18rs21_all.seq
51	TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT				coh1_all.seq
50	TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT				cjb111_all.seq
51	TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT				nem316_all.seq
51	TGGTGTCTGTAAAAATGTAATAATTTCGCTACTTCCCCAATCGGTACCCCT				a909_all.seq
CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT Majority					
	910	920	930	940	950
00	CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT				2603_all.seq
39	CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT				18rs21_all.seq
01	CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT				coh1_all.seq
00	CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT				cjb111_all.seq
01	CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT				nem316_all.seq
01	CTTGCAGTAGTAATTGTCCTCTCTTAATTTTGCCCTTAAAGAATATAACT				a909_all.seq
TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT Majority					
	960	970	980	990	1000
00	TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT				2603_all.seq
9	TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT				18rs21_all.seq
11	TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT				coh1_all.seq
00	TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT				cjb111_all.seq
11	TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT				nem316_all.seq
01	TGGCAAGGAAATGTCAGACTATTTTAAAGACTGAGCGTAAGTGGCAAT				a909_all.seq
CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG Majority					
	1010	1020	1030	1040	1050
00	CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG				2603_all.seq
19	CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG				18rs21_all.seq
01	CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG				coh1_all.seq
00	CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG				cjb111_all.seq
01	CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG				nem316_all.seq
01	CTGAGATATATAAGTAGTTGGCAATATCAGATACACTTGTAGTTGGAGTAG				a909_all.seq

FIGURE 18.B

WO 2006/078318
Alignment Report of Al1 alignment, using J. Hein method with Weighted residue weight table.
Thursday, July 29, 2004 5:46 PM.

					Majority
	1060	1070	1080	1090	1100
i050	A G G T G G T T G T C C A C A T A A T G G A G A A T A C T A T T G T A C A T T G C T G C T T G T C	2603_all.seq			
819	A G G T G G T T G T C C A C A T A A T G G A G A A T A C T A T T G T A C A T T G C T G C T T G T C	18rs21_all.seq			
i051	A G G T G G T T G T C C A C A T A A T G G A G A A T A C T A T T G T A C A T T G C T G C T T G T C	coh1_all.seq			
1050	A G G T G G T T G T C C A C A T A A T G G A G A A T A C T A T T G T A C A T T G C T G C T T G T C	cjb111_all.seq			
1051	A G G T G G T T G T C C A C A T A A T G G A G A A T A C T A T T G T A C A T T G C T G C T T G T C	nem316_all.seq			
1051	A G G T G G T T G T C C A C A T A A T G G A G A A T A C T A T T G T A C A T T G C T G C T T G T C	a909_all.seq			
<u>A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C</u> Majority					
	1110	1120	1130	1140	1150
1100	A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C	2603_all.seq			
869	A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C	18rs21_all.seq			
i101	A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C	coh1_all.seq			
1100	A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C	cjb111_all.seq			
i101	A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C	nem316_all.seq			
i101	A G A G A T G C T C T T A T T G G T T A A G G A T T C T G A A A A A T C A A T A A G A G C T G C A C	a909_all.seq			
<u>A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C</u> Majority					
	1160	1170	1180	1190	1200
i150	A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C	2603_all.seq			
919	A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C	18rs21_all.seq			
i151	A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C	coh1_all.seq			
i150	A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C	cjb111_all.seq			
i151	A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C	nem316_all.seq			
i151	A G C G A A T T C T T G A A A C A T C A A T A A G A T C A G G A G C C T C T T C G T T T A A A G C C	a909_all.seq			
<u>A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C</u> Majority					
	1210	1220	1230	1240	1250
1200	A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C	2603_all.seq			
169	A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C	18rs21_all.seq			
i201	A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C	coh1_all.seq			
1200	A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C	cjb111_all.seq			
i201	A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C	nem316_all.seq			
i201	A T A T A G T G C T T T A C C A G C G C A T A A C T T T A G C C A C A T C A G T A T T T C C T C	a909_all.seq			
<u>G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T</u> Majority					
	1260	1270	1280	1290	1300
250	G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T	2603_all.seq			
019	G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T	18rs21_all.seq			
251	G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T	coh1_all.seq			
250	G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T	cjb111_all.seq			
251	G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T	nem316_all.seq			
251	G A A A C T T A A T T C T A G T A A T T T G G T T A A G T T A A A C A A C A G T T A A G T T C T T T	a909_all.seq			
<u>C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G</u> Majority					
	1310	1320	1330	1340	1350
300	C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G	2603_all.seq			
069	C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G	18rs21_all.seq			
301	C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G	coh1_all.seq			
300	C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G	cjb111_all.seq			
301	C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G	nem316_all.seq			
301	C A G C T C T T A G G G C A G G G A T T G A A G A T G A G G T A A C A C T G G A T G A T G G G A G G	a909_all.seq			
<u>C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C</u> Majority					
	1360	1370	1380	1390	1400
350	C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C	2603_all.seq			
119	C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C	18rs21_all.seq			
351	C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C	coh1_all.seq			
350	C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C	cjb111_all.seq			
351	C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C	nem316_all.seq			
351	C G A T T A A T T T C T T G C T T T A A C A G T T G A G T G T T A C C C A G C T T A A C G A G A T C	a909_all.seq			

FIGURE 18 C

A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T Majority				
1410	1420	1430	1440	1450
400 A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T 2603_all.seq				
169 A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T 18rs21_all.seq				
401 A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T coh1_all.seq				
400 A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T cjb111_all.seq				
401 A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T nem316_all.seq				
401 A A T A A T G T G A T T G A G A T T G G F T T A A A A C A G T G G G T A A C T G A A A A G A G T T T T a909_all.seq				
T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T Majority				
1460	1470	1480	1490	1500
450 T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T 2603_all.seq				
219 T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T 18rs21_all.seq				
451 T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T coh1_all.seq				
450 T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T cjb111_all.seq				
451 T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T nem316_all.seq				
451 T C T T A G T A T G T T T A C G G T G A A G A A C A A T A T C A G G A T C C C G C A A C A A T C T G T a909_all.seq				
T C T G A C T C T T C T A A T A A A T G A T T G A T G G C T T G T T G G C A A C T A G C C T C A A A Majority				
1510	1520	1530	1540	1550
500 T C T G A C T C T T C T A A T A A A T G A T T G A T G G C A C T A G C C T C A A A 2603_all.seq				
269 T C T G A C T C T T C T A A T A A A T G A T T G A T G G C A C T A G C C T C A A A 18rs21_all.seq				
501 T C T G A C T C T T C T A A T A A A T G A T T G A T G G C A C T A G C C T C A A A coh1_all.seq				
500 T C T G A C T C T T C T A A T A A A T G A T T G A T G G C A C T A G C C T C A A A cjb111_all.seq				
501 T C T G A C T C T T C T A A T A A A T G A T T G A T G G C A C T A G C C T C A A A nem316_all.seq				
501 T C T G A C T C T T C T A A T A A A T G A T T G A T G G C A C T A G C C T C A A A a909_all.seq				
C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G Majority				
1560	1570	1580	1590	1600
550 C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G 2603_all.seq				
319 C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G 18rs21_all.seq				
551 C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G coh1_all.seq				
550 C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G cjb111_all.seq				
551 C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G nem316_all.seq				
551 C T G T G T T T G G A A A A A G G C A T C G A T A G C A C A C A A G A A G A C T A C G T A T A C T G G a909_all.seq				
T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A Majority				
1610	1620	1630	1640	1650
500 T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A 2603_all.seq				
169 T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A 18rs21_all.seq				
501 T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A coh1_all.seq				
500 T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A cjb111_all.seq				
501 T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A nem316_all.seq				
501 T A G T A G G A A A A C A A G G G A C A A G C T T T A T A T A G G A T A A G A T T T C T T T T T A a909_all.seq				
C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T Majority				
1660	1670	1680	1690	1700
550 C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T 2603_all.seq				
119 C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T 18rs21_all.seq				
551 C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T coh1_all.seq				
550 C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T cjb111_all.seq				
551 C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T nem316_all.seq				
551 C T A C G A T G A C A A A A T T G T T C T A G A A A G G C A C T G G G A T A A C T G T T C T T G C C T a909_all.seq				
A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T Majority				
1710	1720	1730	1740	1750
500 A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T 2603_all.seq				
69 A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T 18rs21_all.seq				
501 A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T coh1_all.seq				
500 A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T cjb111_all.seq				
501 A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T nem316_all.seq				
501 A T T G A T A T C A G G G C T A T A G G G A T A A A A T G G C T C C A A T A G G A A T A A G A T A T T a909_all.seq				

FIGURE 18 D

C A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A Majority

1760	1770	1780	1790	1800
750 G A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A 2603_all.seq	519 G A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A 18rs21_all.seq	751 G A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A coh1_all.seq	750 G A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A cjb111_all.seq	751 G A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A nem316_all.seq
751 G A C A G A C A G G A A A A A T T A G A T G A T T C T T C A A A A G A C C C T C A T A A A C A a909_all.seq				

G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A Majority

1810	1820	1830	1840	1850
800 G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A 2603_all.seq	569 G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A 18rs21_all.seq	801 G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A coh1_all.seq	800 G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A cjb111_all.seq	801 G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A nem316_all.seq
801 G T G A T A T C T T G G T T A T A A G G G A T A G C T A A A T G T T T T A A A A A C T G A T A G T A a909_all.seq				

A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C Majority

1860	1870	1880	1890	1900
850 A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C 2603_all.seq	619 A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C 18rs21_all.seq	851 A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C coh1_all.seq	850 A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C cjb111_all.seq	851 A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C nem316_all.seq
851 A G G C A A C A G A T A G T C T T C G T T A C C A T A T A A C T G A A C C G A G T T C C T T G T C T C a909_all.seq				

G T G A C A T G A C T G A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A Majority

1910	1920	1930	1940	1950
900 G T G A C A T G A C T G A A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A 2603_all.seq	669 G T G A C A T G A C T G A A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A 18rs21_all.seq	901 G T G A C A T G A C T G A A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A coh1_all.seq	900 G T G A C A T G A C T G A A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A cjb111_all.seq	901 G T G A C A T G A C T G A A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A nem316_all.seq
901 G T G A C A T G A C T G A A A A T A G G T A G T T G A G A T A T G G T A T G C C A T G T T G A A C A a909_all.seq				

T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C Majority

1960	1970	1980	1990	2000
950 T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C 2603_all.seq	719 T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C 18rs21_all.seq	951 T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C coh1_all.seq	950 T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C cjb111_all.seq	951 T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C nem316_all.seq
951 T G T T T A A A A T C G A A T G T A A C C A T T T G A T A G A C C G G C T T C A T T A T C A T T T C a909_all.seq				

T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C Majority

2010	2020	2030	2040	2050
100 T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C 2603_all.seq	769 T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C 18rs21_all.seq	101 T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C coh1_all.seq	100 T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C cjb111_all.seq	101 T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C nem316_all.seq
101 T A G A A T T T T C T T T A G G T T T G T A A A G A C T A C A A A A T A A A A T G A T G A A A A C a909_all.seq				

A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C Majority

2060	2070	2080	2090	2100
150 A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C 2603_all.seq	319 A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C 18rs21_all.seq	151 A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C coh1_all.seq	150 A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C cjb111_all.seq	151 A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C nem316_all.seq
151 A A C T A T C T T G G A T A C A C T A A A A G A C A C G C T A A T T A G C A A A C T C T C T C a909_all.seq				

FIGURE 18 E

24/487

T T C A T C A G C T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G Majority				
2110	2120	2130	2140	2150
2100 T T C A T C A T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G 2603_all.seq				
1869 T T C A T C A T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G 18rs21_all.seq				
2101 T T C A T C A T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G coh1_all.seq				
2100 T T C A T C A T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G cjb111_all.seq				
2101 T T C A T C A T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G nem316_all.seq				
2101 T T C A T C A T C T C A C C A T T A T A C T A C T A T T A T A T G A C A A A T A A A G G a909_all.seq				
T G A T T T G T T A A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T Majority				
2160	2170	2180	2190	2200
2150 T C A T T T G T T A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T 2603_all.seq				
1919 T C A T T T G T T A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T 18rs21_all.seq				
2151 T T A T T T G T T A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T coh1_all.seq				
2150 T G A T T T G T T A A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T cjb111_all.seq				
2151 T G A T T T G T T A A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T nem316_all.seq				
2151 T G A T T T G T T A A A A A T A T A C T T G A A A A T C C A C A T A T A T T T T A A T C T T a909_all.seq				
C C G T C T G A A A A A - T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A Majority				
2210	2220	2230	2240	2250
1999 C C G T C T G A A A A A - T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A 2603_all.seq				
1968 C C G T C T G A A A A A - T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A 18rs21_all.seq				
1200 C C G T C T G A A A A A - T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A coh1_all.seq				
200 C C G T C T G A A A A A - T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A cjb111_all.seq				
201 C C G T C T G A A A A A A T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A nem316_all.seq				
201 C C G T C T G A A A A A A T A A A T A A A A A T A G T A A A A A T A A A C A C G A A T T T A A A A a909_all.seq				
T A A G C A A A T T T T T A A G A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T Majority				
2260	2270	2280	2290	2300
248 T A A G C A A A T T T T T A A G A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T 2603_all.seq				
017 T A A G C A A A T T T T T A A G A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T 18rs21_all.seq				
249 T A A G C A A A T T T T T T A A G A A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T coh1_all.seq				
249 T A A G C A A A T T T T T T A A G A A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T cjb111_all.seq				
251 T A A G C A A A T T T T T T A A G A A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T nem316_all.seq				
250 T A A G C A A A T T T T T T A A G A A A A A T C T G T G C T A A A C T T T A A T A G T T T G T G C T a909_all.seq				
T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C Majority				
2310	2320	2330	2340	2350
298 T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C 2603_all.seq				
067 T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C 18rs21_all.seq				
299 T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C coh1_all.seq				
299 T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C cjb111_all.seq				
301 T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C nem316_all.seq				
300 T A A T A A T C A G C A C T T A C A A A G A A C A A A G G G A A A A G C G G A G G A G A A C a909_all.seq				
T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A Majority				
2360	2370	2380	2390	2400
348 T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A 2603_all.seq				
117 T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A 18rs21_all.seq				
349 T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A coh1_all.seq				
349 T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A cjb111_all.seq				
351 T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A nem316_all.seq				
350 T T T T A A T G A A A T T A T C G A A G A A G T T A T T G T T T C G G C T G C T G T T T A A C A a909_all.seq				
A T G G T G G C G G G G T C A A C T G T T G A A C C A C T A G C T C A G T T T G C G A C T G G A A T Majority				
2410	2420	2430	2440	2450
398 A T G G T G G C G G G G T C A A C T G T T G A A C C A G T A G C T C A G T T T G C G A C T G G A A T 2603_all.seq				
167 A T G G T G G C G G G G T C A A C T G T T G A A C C A G T A G C T C A G T T T G C G A C T G G A A T 18rs21_all.seq				
399 A T G G T G G C G G G G T C A A C T G T T G A A C C A G T A G C T C A G T T T G C G A C T G G A A T coh1_all.seq				
399 A T A G T G G C G G G G T C A A C T G T T G A A C C A G T A G C T C A G T T T G C G A C T G G A A T cjb111_all.seq				
401 A T G G T G G C G G G G T C A A C T G T T G A A C C A G T A G C T C A G T T T G C G A C T G G A A T nem316_all.seq				
400 A T A G T G G C G G G G T C A A C T G T T G A A C C A G T A G C T C A G T T T G C G A C T G G A A T a909_all.seq				

FIGURE 18 F

C A G T A T T G T A A C A G G C T C A G A C T G C A C A A A G A A C C C C C A G C G A A A A C C A A Majority

2460 2470 2480 2490 2500

2448 C A G T A T T G T A A C A G G C T G C A C A A G A A C G C C C A G C G A A A A C C A A 2603_all.seq
 2217 C A G T A T T G T A A G A G G C T G C A C A A G A A C G C C C A G C G A A A A C C A A 18rs21_all.seq
 2449 C A G T A T T G T A A G A G G C T G C A C A A G A A C G C C C A G C G A A A A C C A A coh1_all.seq
 2449 C A G T A T T G T A A G A G G C T G C A C A A G A A C G C C C A G C G A A A A C C A A cjb111_all.seq
 2451 C A G T A T T G T A A G A G G C T G C A C A A G A A C G C C C A G C G A A A A C C A A nem316_all.seq
 2450 C A G T A T T G T A A G A G G C T G C A C A A G A A C G C C C A G C G A A A A C C A A a909_all.seq

C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T Majority

2510 2520 2530 2540 2550

2498 C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T 2603_all.seq
 2267 C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T 18rs21_all.seq
 2499 C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T coh1_all.seq
 2499 C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T cjb111_all.seq
 2501 C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T nem316_all.seq
 2500 C A G T A A A T A T C T A T A A A T T A C A A G C T G A T A G T T A T A A A T C G G A A A T T A C T a909_all.seq

T C T A A T G G T G G T A T C G A G A A T A A A G A C C C C A G T A A T A T C T A A C T A T G C Majority

2560 2570 2580 2590 2600

548 T C T A A T G G T G G T A T C G A G A A T A A A G A C C G G C A A G T A A T A T C T A A C T A T G C 2603_all.seq
 317 T C T A A T G G T G G T A T C G A G A A T A A A G A C C G G C A A G T A A T A T C T A A C T A T G C 18rs21_all.seq
 549 T C T A A T G G T G G T A T C G A G A A T A A A G A C C G G C A A G T A A T A T C T A A C T A T G C coh1_all.seq
 551 T C T A A T G G T G G T A T C G A G A A T A A A G A C C G G C A A G T A A T A T C T A A C T A T G C cjb111_all.seq
 550 T C T A A T G G T G G T A T C G A G A A T A A A G A C C G G C A A G T A A T A T C T A A C T A T G C nem316_all.seq
 550 T C T A A T G G T G G T A T C G A G A A T A A A G A C C G G C A A G T A A T A T C T A A C T A T G C a909_all.seq

T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T Majority

2610 2620 2630 2640 2650

598 T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T 2603_all.seq
 367 T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T 18rs21_all.seq
 599 T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T coh1_all.seq
 601 T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T cjb111_all.seq
 600 T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T nem316_all.seq
 600 T A A A C T T G G T G A C A A T G T A A A A G G T T T G C A A G G T G T A C A G T T T A A A C G T T a909_all.seq

A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A Majority

2660 2670 2680 2690 2700

648 A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A 2603_all.seq
 417 A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A 18rs21_all.seq
 649 A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A coh1_all.seq
 551 A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A cjb111_all.seq
 550 A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A nem316_all.seq
 550 A T A A A G T C A A G A C G G A T A T T C T G T T G A T G A A T T G A A C A A C A a909_all.seq

C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G Majority

2710 2720 2730 2740 2750

398 C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G 2603_all.seq
 167 C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G 18rs21_all.seq
 399 C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G coh1_all.seq
 399 C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G cjb111_all.seq
 101 C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G nem316_all.seq
 100 C T T G A A G C A G C A G A T G C C A A A A G T T G G A A C C A T T C T T G A A G A A G G T G T C A G a909_all.seq

T C T A C C T C A A A A A C T A A T G C T C A A G G T T T G G T C G T C G A T T C G C T C T G G A T T Majority

2760 2770 2780 2790 2800

48 T C T A C C T C A A A A A C T A A T G C T C A A G G T T T G G T C G T C G A T T C G C T C T G G A T T 2603_all.seq
 317 T C T A C C T C A A A A A C T A A T G C T C A A G G T T T G G T C G T C G A T T C G C T C T G G A T T 18rs21_all.seq
 49 T C T A C C T C A A A A A C T A A T G C T C A A G G T T T G G T C G T C G A T T C G C T C T G G A T T coh1_all.seq
 51 T C T A C C T C A A A A A C T A A T G C T C A A G G T T T G G T C G T C G A T T C G C T C T G G A T T nem316_all.seq
 50 T C T A C C T C A A A A A C T A A T G C T C A A G G T T T G G T C G T C G A T T C G C T C T G G A T T a909_all.seq

FIGURE 18 G

<u>C A A A A G D P A T E G T G A G A T C T T G T A G C A A G A T T T A A G A A T T C A C C T</u> Majority				
2810	2820	2830	2840	2850
2798 C A A A A G T A A T G T G A G A T A C T T G T A T G T A G A A G A T T T A A G A A T T C A C C T 2603_all.seq				
2567 C A A A A G T A A T G T G A G A T A C T T G T A T G T A G A A G A T T T A A G A A T T C A C C T 18rs21_all.seq				
2799 C A A A A G T A A T G T G A G A T A C T T G T A T G T A G A A G A T T T A A G A A T T C A C C T coh1_all.seq				
2799 C A A A A G T A A T G T G A G A T A C T T G T A T G T A G A A G A T T T A A G A A T T C A C C T cjb111_all.seq				
2801 C A A A A G T A A T G T G A G A T A C T T G T A T G T A G A A G A T T T A A G A A T T C A C C T nem316_all.seq				
2800 C A A A A G T A A T G T G A G A T A C T T G T A T G T A G A A G A T T T A A G A A T T C A C C T a909_all.seq				
<u>T C A A A C A T T A C C A A A G C T T A T G C T G A C C G T T T G T G T T G G A A T T A C C A G T</u> Majority				
2860	2870	2880	2890	2900
2848 T C A A A C A T T A C C A A A G C T T A T G C T G T A C C G T T T G T G T T G G A A T T A C C A G T 2603_all.seq				
2617 T C A A A C A T T A C C A A A G C T T A T G C T G T A C C G T T T G T G T T G G A A T T A C C A G T 18rs21_all.seq				
2849 T C A A A C A T T A C C A A A G C T T A T G C T G T A C C G T T T G T G T T G G A A T T A C C A G T coh1_all.seq				
2851 T C A A A C A T T A C C A A A G C T T A T G C T G T A C C G T T T G T G T T G G A A T T A C C A G T cjb111_all.seq				
2850 T C A A A C A T T A C C A A A G C T T A T G C T G T A C C G T T T G T G T T G G A A T T A C C A G T nem316_all.seq				
T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A Majority				
2910	2920	2930	2940	2950
2898 T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A 2603_all.seq				
2667 T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A 18rs21_all.seq				
2899 T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A coh1_all.seq				
2899 T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A cjb111_all.seq				
2901 T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A nem316_all.seq				
2900 T G C T A A C T C T A C A G G T A C A G G T T T C C T T T C T G A A A T T A A T A T T A C C C T A a909_all.seq				
<u>A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A</u> Majority				
2960	2970	2980	2990	3000
948 A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A 2603_all.seq				
717 A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A 18rs21_all.seq				
949 A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A coh1_all.seq				
949 A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A cjb111_all.seq				
951 A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A nem316_all.seq				
950 A A A A C G T T G T A A C T G A T G A A C C A A A A C A G A T A A A G A T G T T A A A A A A T T A a909_all.seq				
<u>G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T</u> Majority				
3010	3020	3030	3040	3050
998 G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T 2603_all.seq				
767 G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T 18rs21_all.seq				
999 G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T coh1_all.seq				
999 G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T cjb111_all.seq				
001 G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T nem316_all.seq				
000 G G T C A G G A C C A T G C A G G T T A T A C G A T T G G T G A A G A A T T C A A A T G G T T C T T a909_all.seq				
<u>G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A</u> Majority				
3060	3070	3080	3090	3100
048 G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A 2603_all.seq				
817 G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A 18rs21_all.seq				
049 G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A coh1_all.seq				
049 G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A cjb111_all.seq				
051 G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A nem316_all.seq				
050 G A A A T C T A C A A T T C C C T G C C A A T T T A G G T G A C T A T G A A A A A T T T G A A A T T A a909_all.seq				
<u>C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G</u> Majority				
3110	3120	3130	3140	3150
398 C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G 2603_all.seq				
367 C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G 18rs21_all.seq				
399 C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G coh1_all.seq				
399 C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G cjb111_all.seq				
101 C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G nem316_all.seq				
100 C T G A T A A A T T T G C A G A T G G C T T G A C T T A T A A A T C T G T T G G A A A A A T C A A G a909_all.seq				

FIGURE 18 H

Majority					
	3160	3170	3180	3190	3200
148	A T T G G T T C G A A A A C A C T G A A T A C G A T C G G C A C T A C A C T A T T G A T G A A C C				2603_all.seq
917	A T T G G T T C G A A A A C A C T G A A T A C G A T G A G C A C T A C A C T A T T G A T G A A C C				18rs21_all.seq
149	A T T G G T T C G A A A A C A C T G A A T A C G A T G A G C A C T A C A C T A T T G A T G A A C C				coh1_all.seq
149	A T T G G T T C G A A A A C A C T G A A T A C G A T G A G C A C T A C A C T A T T G A T G A A C C				cjb111_all.seq
151	A T T G G T T C G A A A A C A C T G A A T A C G A T G A G C A C T A C A C T A T T G A T G A A C C				nem316_all.seq
150	A T T G G T T C G A A A A C A C T G A A T A C G A T G A G C A C T A C A C T A T T G A T G A A C C				a909_all.seq
Majority					
	3210	3220	3230	3240	3250
198	A A C A G T T G A T A A C C A A A A T A C A T T A A A A A T T A C G T T T A A A C C A G A G A A A T				2603_all.seq
967	A A C A G T T G A T A A C C A A A A T A C A T T A A A A A T T A C G T T T A A A C C A G A G A A A T				18rs21_all.seq
199	A A C A G T T G A T A A C C A A A A T A C A T T A A A A A T T A C G T T T A A A C C A G A G A A A T				coh1_all.seq
199	A A C A G T T G A T A A C C A A A A T A C A T T A A A A A T T A C G T T T A A A C C A G A G A A A T				cjb111_all.seq
201	A A C A G T T G A T A A C C A A A A T A C A T T A A A A A T T A C G T T T A A A C C A G A G A A A T				nem316_all.seq
200	A A C A G T T G A T A A C C A A A A T A C A T T A A A A A T T A C G T T T A A A C C A G A G A A A T				a909_all.seq
Majority					
	3260	3270	3280	3290	3300
248	T T A A A G A A A A T T G C T G A G C T A C T T A A A G G A A T G A C C C T T G T T A A A A A T C A A				2603_all.seq
317	T T A A A G A A A A T T G C T G A G C T A C T T A A A G G A A T G A C C C T T G T T A A A A A T C A A				18rs21_all.seq
249	T T A A A G A A A A T T G C T G A G C T A C T T A A A G G A A T G A C C C T T G T T A A A A A T C A A				coh1_all.seq
249	T T A A A G A A A A T T G C T G A G C T A C T T A A A G G A A T G A C C C T T G T T A A A A A T C A A				cjb111_all.seq
251	T T A A A G A A A A T T G C T G A G C T A C T T A A A G G A A T G A C C C T T G T T A A A A A T C A A				nem316_all.seq
250	T T A A A G A A A A T T G C T G A G C T A C T T A A A G G A A T G A C C C T T G T T A A A A A T C A A				a909_all.seq
Majority					
	3310	3320	3330	3340	3350
98	G A T G C T C T T G A T A A A G C T A C T G C C A A A T A C A G A T G A T G C G G C A T T T T T G G A				2603_all.seq
67	G A T G C T C T T G A T A A A G C T A C T G C C A A A T A C A G A T G A T G C G G C A T T T T T G G A				18rs21_all.seq
99	G A T G C T C T T G A T A A A G C T A C T G C C A A A T A C A G A T G A T G C G G C A T T T T T G G A				coh1_all.seq
99	G A T G C T C T T G A T A A A G C T A C T G C C A A A T A C A G A T G A T G C G G C A T T T T T G G A				cjb111_all.seq
101	G A T G C T C T T G A T A A A G C T A C T G C C A A A T A C A G A T G A T G C G G C A T T T T T G G A				nem316_all.seq
100	G A T G C T C T T G A T A A A G C T A C T G C C A A A T A C A G A T G A T G C G G C A T T T T T G G A				a909_all.seq
Majority					
	3360	3370	3380	3390	3400
48	A A T T C C A G T T G C A T C A A C T A T T A A T G A A A A A G C A G T T T A G G A A A A G C A A				2603_all.seq
17	A A T T C C A G T T G C A T C A A C T A T T A A T G A A A A A G C A G T T T A G G A A A A A G C A A				18rs21_all.seq
49	A A T T C C A G T T G C A T C A A C T A T T A A T G A A A A A G C A G T T T A G G A A A A A G C A A				coh1_all.seq
49	A A T T C C A G T T G C A T C A A C T A T T A A T G A A A A A G C A G T T T A G G A A A A A G C A A				cjb111_all.seq
51	A A T T C C A G T T G C A T C A A C T A T T A A T G A A A A A G C A G T T T A G G A A A A A G C A A				nem316_all.seq
50	A A T T C C A G T T G C A T C A A C T A T T A A T G A A A A A G C A G T T T A G G A A A A A G C A A				a909_all.seq
Majority					
	3410	3420	3430	3440	3450
98	T T G A A A A T A C T T T G A A C T T C A A T A T G A C C A T A C T C C T G A T A A A G C T G A C				2603_all.seq
67	T T G A A A A T A C T T T G A A G T T C A A T A T G A C C A T A C T C C T G A T A A A G C T G A C				18rs21_all.seq
99	T T G A A A A T A C T T T G A A C T T C A A T A T G A C C A T A C T C C T G A T A A A G C T G A C				coh1_all.seq
99	T T G A A A A T A C T T T G A A C T T C A A T A T G A C C A T A C T C C T G A T A A A G C T G A C				cjb111_all.seq
01	T T G A A A A T A C T T T G A A C T T C A A T A T G A C C A T A C T C C T G A T A A A G C T G A C				nem316_all.seq
00	T T G A A A A T A C T T T G A A C T T C A A T A T G A C C A T A C T C C T G A T A A A G C T G A C				a909_all.seq
Majority					
	3460	3470	3480	3490	3500
48	A A T C C A A A A C C A T C T A A T C C T C C A A G G A A A A C C A G A A G T T C A T A C T G G T G G				2603_all.seq
17	A A T C C A A A A C C A T C T A A T C C T C C A A G G A A A A C C A G A A G T T C A T A C T G G T G G				18rs21_all.seq
49	A A T C C A A A A C C A T C T A A T C C T C C A A G G A A A A C C A G A A G T T C A T A C T G G T G G				coh1_all.seq
49	A A T C C A A A A C C A T C T A A T C C T C C A A G G A A A A C C A G A A G T T C A T A C T G G T G G				cjb111_all.seq
51	A A T C C A A A A C C A T C T A A T C C T C C A A G G A A A A C C A G A A G T T C A T A C T G G T G G				nem316_all.seq
50	A A T C C A A A A C C A T C T A A T C C T C C A A G G A A A A C C A G A A G T T C A T A C T G G T G G				a909_all.seq

FIGURE 18 I

G A A A C G A T T T G T A A L A G I A K G A C T C A A C A G A A A C A C A A A C A C T A C G C T G G T G Majority				
3510	3520	3530	3540	3550
1498 G A A A C G A T T T G T A A A G A A A G A C T C A A C A G A A A C A C A A A C A C T A C G G T G G T G 2603_all.seq				
1267 G A A A C G A T T T G T A A A G A A A G A C T C A A C A G A A A C A C A A A C A C T A C G G T G G T G 18rs21_all.seq				
1499 G A A A C G A T T T G T A A A G A A A G A C T C A A C A G A A A C A C A A A C A C T A C G G T G G T G coh1_all.seq				
1499 G A A A C G A T T T G T A A A G A A A G A C T C A A C A G A A A C A C A A A C A C T A C G G T G G T G cjb111_all.seq				
1501 G A A A C G A T T T G T A A A G A A A G A C T C A A C A G A A A C A C A A A C A C T A C G G T G G T G nem316_all.seq				
1500 G A A A C G A T T T G T A A A G A A A G A C T C A A C A G A A A C A C A A A C A C T A C G G T G G T G a909_all.seq				
C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T Majority				
3560	3570	3580	3590	3600
1548 C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T 2603_all.seq				
1317 C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T 18rs21_all.seq				
1549 C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T coh1_all.seq				
1549 C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T cjb111_all.seq				
1551 C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T nem316_all.seq				
1550 C T G A G T T G A T T T G T T G G C T T C T G A T G G G A C A G C A G T A A A A T G G A C A G A T a909_all.seq				
G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T Majority				
3610	3620	3630	3640	3650
598 G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T 2603_all.seq				
367 G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T 18rs21_all.seq				
599 G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T coh1_all.seq				
599 G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T cjb111_all.seq				
601 G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T nem316_all.seq				
600 G C T C T T A T T A A A G C G A A T A C T A A T A A A A C T A T A T T G C T G G G A G A G C T G T a909_all.seq				
T A C T G G G C A A C C A A T C A A A T T G A A A T C A C A T A C A G A C G G T A C G T T T G A G A Majority				
3660	3670	3680	3690	3700
648 T A C T G G G C A A C C A A T C A A A T T G A A A T C A C A T A C A G A C G G T A C G T T T G A G A 2603_all.seq				
417 T A C T G G G C A A C C A A T C A A A T T G A A A T C A C A T A C A G A C G G T A C G T T T G A G A 18rs21_all.seq				
649 T A C T G G G C A A C C A A T C A A A T T G A A A T C A C A T A C A G A C G G T A C G T T T G A G A coh1_all.seq				
651 T A C T G G G C A A C C A A T C A A A T T G A A A T C A C A T A C A G A C G G T A C G T T T G A G A cjb111_all.seq				
650 T A C T G G G C A A C C A A T C A A A T T G A A A T C A C A T A C A G A C G G T A C G T T T G A G A nem316_all.seq				
T T A A A G G T T T G G C T T A T G C A G T G A T G G G A A T G C A G A G G G T A C A G G C A G T A Majority				
3710	3720	3730	3740	3750
598 T T A A A G G T T T G G C T T A T G C A G T G A T G C G G A A T G C A G A G G G T A C A G G C A G T A 2603_all.seq				
467 T T A A A G G T T T G G C T T A T G C A G T G A T G C G G A A T G C A G A G G G T A C A G G C A G T A 18rs21_all.seq				
599 T T A A A G G T T T G G C T T A T G C A G T G A T G C G G A A T G C A G A G G G T A C A G G C A G T A coh1_all.seq				
599 T T A A A G G T T T G G C T T A T G C A G T G A T G C G G A A T G C A G A G G G T A C A G G C A G T A cjb111_all.seq				
701 T T A A A G G T T T G G C T T A T G C A G T G A T G C G G A A T G C A G A G G G T A C A G G C A G T A nem316_all.seq				
700 T T A A A G G T T T G G C T T A T G C A G T G A T G C G G A A T G C A G A G G G T A C A G G C A G T A a909_all.seq				
A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A Majority				
3760	3770	3780	3790	3800
748 A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A 2603_all.seq				
517 A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A 18rs21_all.seq				
749 A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A coh1_all.seq				
749 A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A cjb111_all.seq				
151 A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A nem316_all.seq				
150 A C T T A C A A A T T A A A A G A A A C A A A A G C A C C C A G A A G G T T A T G T A A T C C C T G A a909_all.seq				
T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A Majority				
3810	3820	3830	3840	3850
798 T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A 2603_all.seq				
167 T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A 18rs21_all.seq				
799 T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A coh1_all.seq				
799 T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A cjb111_all.seq				
101 T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A nem316_all.seq				
100 T A A A G A A A T C G A G T T T A C A G T A T C A C A A A C A T C T T A T A A T A C A A A A C C A A a909_all.seq				

FIGURE 18 J

<u>C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C</u> Majority					
	3860	3870	3880	3890	3900
3848	C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C				
3617	C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C	2603_all.seq			
3849	C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C	18rs21_all.seq			
3849	C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C	coh1_all.seq			
3851	C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C	cjb111_all.seq			
3850	C T G A C A T C A C G G T T G A T A G T G C G A C A C C T G A T A C A A T T A A A A C	nem316_all.seq			
	A A C A A A C G T C C C T T C A A T C C C T A A T A C T G G T G G G T A T T C G T A C G G C T A T C T T	Majority			
	3910	3920	3930	3940	3950
3898	A A C A A A C G T C C C T T C A A T C C C T A A T A C T G G T G G G T A T T C G T A C G G C T A T C T T	2603_all.seq			
3667	A A C A A A C G T C C C T T C A A T C C C T A A T A C T G G T G G G T A T T C G T A C G G C T A T C T T	18rs21_all.seq			
3899	A A C A A A C G T C C C T T C A A T C C C T A A T A C T G G T G G G T A T T C G T A C G G C T A T C T T	coh1_all.seq			
3901	A A C A A A C G T C C C T T C A A T C C C T A A T A C T G G T G G G T A T T C G T A C G G C T A T C T T	cjb111_all.seq			
3900	A A C A A A C G T C C C T T C A A T C C C T A A T A C T G G T G G G T A T T C G T A C G G C T A T C T T	nem316_all.seq			
	T G T C G G C T A T C G G T G C T G C G G G T G A T G G C T T T G C T G T T A A G G G G A T G A A G C	Majority			
	3960	3970	3980	3990	4000
3948	T G T C G G C T A T C G G T G C T G C G G G T G A T G G C T T T G C T G T T A A G G G G A T G A A G C	2603_all.seq			
3717	T G T C G G C T A T C G G T G C T G C G G G T G A T G G C T T T G C T G T T A A G G G G A T G A A G C	18rs21_all.seq			
3949	T G T C G G C T A T C G G T G C T G C G G G T G A T G G C T T T G C T G T T A A G G G G A T G A A G C	coh1_all.seq			
3951	T G T C G G C T A T C G G T G C T G C G G G T G A T G G C T T T G C T G T T A A G G G G A T G A A G C	cjb111_all.seq			
3950	T G T C G G C T A T C G G T G C T G C G G G T G A T G G C T T T G C T G T T A A G G G G A T G A A G C	nem316_all.seq			
	G T C G G T A C A A A A G A T A A C T A A A T A A A A G G C T A C T T C T T A A G T A A C C A T G T T	Majority			
	4010	4020	4030	4040	4050
1998	G T C G G T A C A A A A G A T A A C T A A A T A A A A G G C T A C T T C T T A A G T A A C C A T G T T	2603_all.seq			
1767	G T C G G T A C A A A A G A T A A C T A A A T A A A A G G C T A C T T C T T A A G T A A C C A T G T T	18rs21_all.seq			
1999	G T C G G T A C A A A A G A T A A C T A A A T A A A A G G C T A C T T C T T A A G T A A C C A T G T T	coh1_all.seq			
1001	G T C G G T A C A A A A G A T A A C T A A A T A A A A G G C T A C T T C T T A A G T A A C C A T G T T	cjb111_all.seq			
1000	G T C G G T A C A A A A G A T A A C T A A A T A A A A G G C T A C T T C T T A A G T A A C C A T G T T	nem316_all.seq			
	T A A G A A A A G A G A A A T A G C C T T A T T T C T C T T T G C G T T T T A A A A T A A A	Majority			
	4060	4070	4080	4090	4100
048	T A A G A A A A G A G A A A T A G C C T T A T T T C T C T T T G C G T T T T A A A A T A A A	2603_all.seq			
317	T A A G A A A A G A G A A A T A G C C T T A T T T C T C T T T G C G T T T T A A A A T A A A	18rs21_all.seq			
049	T A A G A A A A G A G A A A T A G C C T T A T T T C T C T T T G C G T T T T A A A A T A A A	coh1_all.seq			
051	T A A G A A A A G A G A A A T A G C C T T A T T T C T C T T T G C G T T T T A A A A T A A A	cjb111_all.seq			
050	T A A G A A A A G A G A A A T A G C C T T A T T T C T C T T T G C G T T T T A A A A T A A A	nem316_all.seq			
	G C A A C A T C A T G A A A C A A A C A T T A A A A C T T A T G T T T C T T T C T G T T G A T G	Majority			
	4110	4120	4130	4140	4150
098	G C A A C A T C A T G A A A C A A A C A T T A A A A C T T A T G T T T C T T T C T G T T G A T G	2603_all.seq			
867	G C A A C A T C A T G A A A C A A A C A T T A A A A C T T A T G T T T C T T T C T G T T G A T G	18rs21_all.seq			
099	G C A A C A T C A T G A A A C A A A C A T T A A A A C T T A T G T T T C T T T C T G T T G A T G	coh1_all.seq			
101	G C A A C A T C A T G A A A C A A A C A T T A A A A C T T A T G T T T C T T T C T G T T G A T G	cjb111_all.seq			
100	G C A A C A T C A T G A A A C A A A C A T T A A A A C T T A T G T T T C T T T C T G T T G A T G	nem316_all.seq			
	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A C T C A	Majority			
	4160	4170	4180	4190	4200
148	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A C T C A	2603_all.seq			
917	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A A C T C A	18rs21_all.seq			
149	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A A C T C A	coh1_all.seq			
151	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A A C T C A	cjb111_all.seq			
150	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A A C T C A	nem316_all.seq			
	T T A G G G A C T A T G T T T G G A A T T A G C C A A A C T G T T T A G C C G A A G A A A C T C A	a909_all.seq			

FIGURE 18 K

<u>T C A G T T G A C G A T T C E T T G A C T G A E G G A G G C A T A T T G A T C G T C C C A A A T C</u> Majority					
	4210	4220	4230	4240	4250
4198	T C A G T T G A C G A T T G T T C A T C T T G A A G C A A G G G A T A T T G A T C G T C C C A A A T C				2603_all.seq
3967	T C A G T T G A C G A T T G T T C A T C T T G A A G C A A G G G A T A T T G A T C G T C C C A A A T C				18rs21_all.seq
4199	T C A G T T G A C G A T T G T T C A T C T T G A A G C A A G G G A T A T T G A T C G T C C C A A A T C				coh1_all.seq
4199	T C A G T T G A C G A T T G T T C A T C T T G A A G C A A G G G A T A T T G A T C G T C C C A A A T C				cjb111_all.seq
4201	T C A G T T G A C G A T T G T T C A T C T T G A A G C A A G G G A T A T T G A T C G T C C C A A A T C				nem316_all.seq
4200	T C A G T T G A C G A T T G T T C A T C T T G A A G C A A G G G A T A T T G A T C G T C C C A A A T C				a909_all.seq
<u>C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C</u> Majority					
	4260	4270	4280	4290	4300
4248	C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C				2603_all.seq
4017	C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C				18rs21_all.seq
4249	C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C				coh1_all.seq
4249	C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C				cjb111_all.seq
4251	C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C				nem316_all.seq
4250	C A C A G T T G G A G A T T G C C C C T A A A G A A G G G A C T C C C A A T T G A A G G A G T A C T C				a909_all.seq
<u>T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A</u> Majority					
	4310	4320	4330	4340	4350
4298	T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A				2603_all.seq
1067	T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A				18rs21_all.seq
1299	T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A				coh1_all.seq
1299	T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A				cjb111_all.seq
1301	T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A				nem316_all.seq
1300	T A T C A G T T G T A C C A A T T A A A T C A A C T G A A G A T G G C G A T T T G T T G G C A C A				a909_all.seq
<u>T T G G A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T</u> Majority					
	4360	4370	4380	4390	4400
1348	T T G G A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T				2603_all.seq
1117	T T G G A A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T				18rs21_all.seq
1349	T T G G A A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T				coh1_all.seq
1349	T T G G A A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T				cjb111_all.seq
1351	T T G G A A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T				nem316_all.seq
1350	T T G G A A A T T C C C T A A C T A T C A C A G A A T T G A A A A A A C A G G G G C A G C A G G T T T				a909_all.seq
<u>T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A</u> Majority					
	4410	4420	4430	4440	4450
1398	T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A				2603_all.seq
1167	T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A				18rs21_all.seq
1399	T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A				coh1_all.seq
399	T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A				cjb111_all.seq
401	T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A				nem316_all.seq
400	T T G A A G G C C A C T A C T A A T C A A C A A G G A A A G G C T A C A T T T A A C C A A C T A C C A				a909_all.seq
<u>G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A</u> Majority					
	4460	4470	4480	4490	4500
448	G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A				2603_all.seq
217	G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A				18rs21_all.seq
449	G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A				coh1_all.seq
449	G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A				cjb111_all.seq
451	G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A				nem316_all.seq
450	G A T G G A A T T T A T T A T G G T C T G G G G G T T A A A G C C G G T G A A A A A A T C G T A A				a909_all.seq
<u>T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A</u> Majority					
	4510	4520	4530	4540	4550
498	T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A				2603_all.seq
267	T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A				18rs21_all.seq
499	T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A				coh1_all.seq
499	T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A				cjb111_all.seq
501	T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A				nem316_all.seq
500	T G T C T C A G C T T C T T G G T C A C T G T C T G A G G A T A A A G T G A T T T A T C C T A				a909_all.seq

FIGURE 18 L

A A A T C A T C E G G T C C O A C A G G T C A G T T C G G A C T T G C T T A A A G T T G G T G T G G A T Majority

4560 4570 4580 4590 4600

4548 A A A T C A T C T C G T C C A C A G G T G A C T T G G A C T T C C T T A A A G T T G G T G T G G A T 2603_all.seq
4317 A A A T C A T C T C G G T C C A C A G G T G A C T T G G A C T T C C T T A A A G T T G G T G T G G A T 18rs21_all.seq
4549 A A A T C A T C T C G G T C C A C A G G T G A C T T G G A C T T C C T T A A A G T T G G T G T G G A T coh1_all.seq
4549 A A A T C A T C T C G G T C C A C A G G T G A C T T G G A C T T C C T T A A A G T T G G T G T G G A T cjb111_all.seq
4551 A A A T C A T C T C G G T C C A C A G G T G A C T T G G A C T T C C T T A A A G T T G G T G T G G A T nem316_all.seq
4550 A A A T C A T C T C G G T C C A C A G G T G A C T T G G A C T T C C T T A A A G T T G G T G T G G A T a909_all.seq

G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A Majority

4610 4620 4630 4640 4650

1598 G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A 2603_all.seq
1367 G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A 18rs21_all.seq
1599 G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A coh1_all.seq
1599 G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A cjb111_all.seq
1601 G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A nem316_all.seq
1600 G G T G A T A C C A A A A A A C C A C T A G C A G G C G T T G T C T T T G A A C T T T A T G A A A A a909_all.seq

G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A Majority

4660 4670 4680 4690 4700

1648 G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A 2603_all.seq
1417 G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A 18rs21_all.seq
1649 G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A coh1_all.seq
1649 G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A cjb111_all.seq
1651 G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A nem316_all.seq
1650 G A A T G G T A G G A C T C C T A T T C G T G T G A A A A A T G G G G T C C A T T C T C A A G A T A a909_all.seq

T T G A C G G C T G C A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T Majority

4710 4720 4730 4740 4750

1698 T T G A C G G C T G C A A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T 2603_all.seq
1467 T T G A C G G C T G C A A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T 18rs21_all.seq
1699 T T G A C G G C T G C A A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T coh1_all.seq
1699 T T G A C G G C T G C A A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T cjb111_all.seq
1701 T T G A C G G C T G C A A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T nem316_all.seq
1700 T T G A C G G C T G C A A A A A C A T T T A G A A A A C A G A T T C A T C A G G G C A T A T C A G A A T T a909_all.seq

T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C Majority

4760 4770 4780 4790 4800

1748 T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C 2603_all.seq
1517 T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C 18rs21_all.seq
1749 T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C coh1_all.seq
1749 T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C cjb111_all.seq
1751 T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C nem316_all.seq
1750 T C C G G G C T C A T C C A T G G G G A C T A T G T C T T A A A A G A A A T C G G A G A C A C A G T C a909_all.seq

A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A Majority

4810 4820 4830 4840 4850

1798 A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A 2603_all.seq
1567 A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A 18rs21_all.seq
1799 A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A coh1_all.seq
1799 A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A cjb111_all.seq
1801 A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A nem316_all.seq
1800 A C G A T A T C A G A T C C G G A C A G G C A G A G A C T G C T G T G A C T A T T G A A A A A T C A A a909_all.seq

A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C Majority

4860 4870 4880 4890 4900

1848 A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C 2603_all.seq
1617 A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C 18rs21_all.seq
1849 A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C coh1_all.seq
1849 A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C cjb111_all.seq
1851 A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C nem316_all.seq
1850 A A A C A G T A A C A G T A A C C G A T T G A A A A A T A A A A A G T T C C C G A C A C C T A A A G T C a909_all.seq

FIGURE 18 M

CCATCTCGAGGAGGTCTTATTCCC					AACAGG TGAGCCAACAGGCAATGGC	Majority
4910	4920	4930	4940	4950		
4898	CCATCTCGAGGAGGTCTTATTCCC	AAACAGG TGAGCCAACAGGCAATGGC			2603_all.seq	
4667	CCATCTCGAGGAGGTCTTATTCCC	AAACAGG TGAGCCAACAGGCAATGGC			18rs21_all.seq	
4899	CCATCTCGAGGAGGTCTTATTCCC	AAACAGG TGAGCCAACAGGCAATGGC			coh1_all.seq	
4899	CCATCTCGAGGAGGTCTTATTCCC	AAACAGG TGAGCCAACAGGCAATGGC			cjb11_all.seq	
4901	CCATCTCGAGGAGGTCTTATTCCC	AAACAGG TGAGCCAACAGGCAATGGC			nem316_all.seq	
4900	CCATCTCGAGGAGGTCTTATTCCC	AAACAGG TGAGCCAACAGGCAATGGC			a909_all.seq	
ACTTGTAATTATTGGTGGTATT						
4960	4970	4980	4990	5000		Majority
4948	ACTTGTAATTATTGGTGGTATT	TTAATTGCTT	TAGCCTTACGATTACTAT		2603_all.seq	
4717	ACTTGTAATTATTGGTGGTATT	TTAATTGCTT	TAGCCTTACGATTACTAT		18rs21_all.seq	
4949	ACTTGTAATTATTGGTGGTATT	TTAATTGCTT	TAGCCTTACGATTACTAT		coh1_all.seq	
4949	ACTTGTAATTATTGGTGGTATT	TTAATTGCTT	TAGCCTTACGATTACTAT		cjb11_all.seq	
4951	ACTTGTAATTATTGGTGGTATT	TTAATTGCTT	TAGCCTTACGATTACTAT		nem316_all.seq	
4950	ACTTGTAATTATTGGTGGTATT	TTAATTGCTT	TAGCCTTACGATTACTAT		a909_all.seq	
CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA						
5010	5020	5030	5040	5050		Majority
4998	CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA				2603_all.seq	
4767	CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA				18rs21_all.seq	
4999	CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA				coh1_all.seq	
4999	CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA				cjb11_all.seq	
5001	CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA				nem316_all.seq	
5000	CAAAACATCGGAAACATCAAAATAAGGATTAGCATGGGACAAAAATCAA				a909_all.seq	
AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT						
5060	5070	5080	5090	5100		Majority
5048	AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT				2603_all.seq	
1817	AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT				18rs21_all.seq	
5049	AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT				coh1_all.seq	
5049	AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT				cjb11_all.seq	
5051	AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT				nem316_all.seq	
5050	AATATCTCTAGCTACGAATATTCTGATATGGATTTCGTTAATTTCT				a909_all.seq	
TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA						
5110	5120	5130	5140	5150		Majority
5098	TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA				2603_all.seq	
1867	TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA				18rs21_all.seq	
1099	TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA				coh1_all.seq	
1099	TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA				cjb11_all.seq	
1101	TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA				nem316_all.seq	
1100	TAGCGGGTTCTGTTGGCATTTCGCATCGTTAGTCAGGTCACTGTA				a909_all.seq	
TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA						
5160	5170	5180	5190	5200		Majority
148	TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA				2603_all.seq	
917	TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA				18rs21_all.seq	
149	TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA				coh1_all.seq	
149	TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA				cjb11_all.seq	
151	TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA				nem316_all.seq	
150	TTTCAAGCCTCTCACGCCAATATTAATGCTTTAACAGAACGCTGTTACCA				a909_all.seq	
GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT						
5210	5220	5230	5240	5250		Majority
198	GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT				2603_all.seq	
967	GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT				18rs21_all.seq	
199	GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT				coh1_all.seq	
199	GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT				cjb11_all.seq	
201	GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT				nem316_all.seq	
200	GATTGACCGGGTGGAGATTAACTCGGGTTAGAACCTTCCTTATGCTTAT				a909_all.seq	

FIGURE 18 N

<u>A C G C C A G T A T A G C A G G C T G C C A K A A C T A A T G G C G A A T A T C C A G C G C T T A A A</u> Majority				
5260	5270	5280	5290	5300
5248 A C G C C A G T A T A G C A G G T G C C A A A A C T A A T G G C G A A T A T C C A G C G C T T A A A 2603_all.seq				
5017 A C G C C A G T A T A G C A G G T G C C A A A A C T A A T G G C G A A T A T C C A G C G C T T A A A 18rs21_all.seq				
5249 A C G C C A G T A T A G C A G G T G C C A A A A C T A A T G G C G A A T A T C C A G C G C T T A A A coh1_all.seq				
5249 A C G C C A G T A T A G C A G G T G C C A A A A C T A A T G G C G A A T A T C C A G C G C T T A A A cjb111_all.seq				
5251 A C G C C A G T A T A G C A G G T G C C A A A A C T A A T G G C G A A T A T C C A G C G C T T A A A nem316_all.seq				
5250 A C G C C A G T A T A G C A G G T G C C A A A A C T A A T G G C G A A T A T C C A G C G C T T A A A a909_all.seq				
<u>G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G</u> Majority				
5310	5320	5330	5340	5350
5298 G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G 2603_all.seq				
5067 G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G 18rs21_all.seq				
5299 G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G coh1_all.seq				
5299 G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G cjb111_all.seq				
5301 G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G nem316_all.seq				
5300 G A C C C C T A C T C T G C T G A A C A A A A G C A G G C A G G G G T C G T T G A G T A C G C C C G a909_all.seq				
<u>C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A</u> Majority				
5360	5370	5380	5390	5400
5348 C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A 2603_all.seq				
5117 C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A 18rs21_all.seq				
5349 C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A coh1_all.seq				
5349 C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A cjb111_all.seq				
5351 C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A nem316_all.seq				
5350 C A T G C T T G A A G T C A A A G A A C A A A T A G G T C A T G T G A T T A T T C C A A G A A T T A a909_all.seq				
<u>A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A T C T T C A G A G G</u> Majority				
5410	5420	5430	5440	5450
398 A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A A T C T T C A G A G G 2603_all.seq				
5167 A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A A T C T T C A G A G G 18rs21_all.seq				
399 A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A A T C T T C A G A G G coh1_all.seq				
401 A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A A T C T T C A G A G G cjb111_all.seq				
400 A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A A T C T T C A G A G G nem316_all.seq				
400 A T C A G G A T A T C C C T A T T T A C G G C T G G C T C T G C T G A A G A A A A A T C T T C A G A G G a909_all.seq				
<u>G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C</u> Majority				
5460	5470	5480	5490	5500
448 G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C 2603_all.seq				
217 G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C 18rs21_all.seq				
449 G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C coh1_all.seq				
449 G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C cjb111_all.seq				
451 G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C nem316_all.seq				
450 G C C G T T G G A C A T T A G A G G G G A C C A G T C T T C C A G T C C G G T G G T G A G T C A A C a909_all.seq				
<u>T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A</u> Majority				
5510	5520	5530	5540	5550
498 T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A 2603_all.seq				
267 T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A 18rs21_all.seq				
499 T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A coh1_all.seq				
499 T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A cjb111_all.seq				
501 T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A nem316_all.seq				
500 T C A T G C C G T T C T A A C T G C C C A T C G A G G G C T A C C A A C G G C C A A G C T A T T T A a909_all.seq				
<u>C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C</u> Majority				
5560	5570	5580	5590	5600
548 C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C 2603_all.seq				
317 C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C 18rs21_all.seq				
549 C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C coh1_all.seq				
549 C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C cjb111_all.seq				
551 C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C nem316_all.seq				
550 C C A A T T T A G A C A A G G T A A C A G T A G G T G A C C G G T T T T A C A T T G A A C A C A T C a909_all.seq				

FIGURE 18 O

<u>G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A Majority</u>				
5610	5620	5630	5640	5650
598 G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A 2603_all.seq				
367 G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A 18rs21_all.seq				
599 G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A coh1_all.seq				
599 G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A cjb111_all.seq				
601 G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A nem316_all.seq				
600 G C C G G A A A G A T T G C T T A T C A G G T A G A C C A A A T C A A A G T T A T C G C C C C C T G A a909_all.seq				
<u>T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T Majority</u>				
5660	5670	5680	5690	5700
648 T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T 2603_all.seq				
417 T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T 18rs21_all.seq				
649 T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T coh1_all.seq				
649 T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T cjb111_all.seq				
651 T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T nem316_all.seq				
650 T C A G T T A G A G G A T T T G T A C G T G A T T C A A G G A G A A G A T C A C G T C A C C C T A T a909_all.seq				
<u>T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C Majority</u>				
5710	5720	5730	5740	5750
698 T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C 2603_all.seq				
467 T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C 18rs21_all.seq				
599 T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C coh1_all.seq				
599 T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C cjb111_all.seq				
701 T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C nem316_all.seq				
700 T A A C T T G C A C A C C T T A T A T G A T A A A A T A G T C A T C G C C T C C T C G T T C G A G G C a909_all.seq				
<u>A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T Majority</u>				
5760	5770	5780	5790	5800
748 A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T 2603_all.seq				
517 A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T 18rs21_all.seq				
749 A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T coh1_all.seq				
749 A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T cjb111_all.seq				
751 A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T nem316_all.seq				
750 A A G C G A A T T C C T T A T G T G G G A A A A A C A G T G C A G A A A G A T T C A A A G A C C T T a909_all.seq				
<u>C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A Majority</u>				
5810	5820	5830	5840	5850
798 C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A 2603_all.seq				
567 C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A 18rs21_all.seq				
799 C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A coh1_all.seq				
799 C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A cjb111_all.seq				
301 C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A nem316_all.seq				
300 C A G G C A A C A A C A A T A C C T A A C C T A T G C T A T G T G G G T A G T C G T T C G G A C T T A a909_all.seq				
<u>T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G Majority</u>				
5860	5870	5880	5890	5900
148 T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G 2603_all.seq				
517 T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G 18rs21_all.seq				
149 T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G coh1_all.seq				
149 T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G cjb111_all.seq				
151 T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G nem316_all.seq				
150 T C T T G C T G T C G C C T T C A T T T G G T T T A A A A A G A C G G A A A C A G A A A A A G C C G G a909_all.seq				
<u>A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A Majority</u>				
5910	5920	5930	5940	5950
198 A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A 2603_all.seq				
167 A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A 18rs21_all.seq				
199 A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A coh1_all.seq				
199 A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A cjb111_all.seq				
101 A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A nem316_all.seq				
100 A G A A A G A A T G A A A A A G C C G G C T A G T C A A A A T A G T C A C A A T A A T T C C A A A T A a909_all.seq				

FIGURE 18 P

A T A A A A T C K G A A C C C I C T C A T T T T G F G A T G G G A A G T C T G A T T C T C T T A T T T Majority					
	5960	5970	5980	5990	6000
5948	A T A A A A T C A G A A C C C T C A T T T T G T G A T G G G A A G T C T G A T T C T C T T A T T T 2603_all.seq				
5717	A T A A A A T C A G A A C C C T C A T T T T G T G A T G G G A A G T C T G A T T C T C T T A T T T 18rs21_all.seq				
5949	A T A A A A T C A G A A C C C T C A T T T T G T G A T G G G A A G T C T G A T T C T C T T A T T T coh1_all.seq				
5949	A T A A A A T C A G A A C C C T C A T T T T G T G A T G G G A A G T C T G A T T C T C T T A T T T cjb111_all.seq				
5951	A T A A A A T C A G A A C C C T C A T T T T G T G A T G G G A A G T C T G A T T C T C T T A T T T nem316_all.seq				
5950	A T A A A A T C A G A A C C C T C A T T T T G T G A T G G G A A G T C T G A T T C T C T T A T T T a909_all.seq				
C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A Majority					
	6010	6020	6030	6040	6050
5998	C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A 2603_all.seq				
5767	C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A 18rs21_all.seq				
5999	C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A coh1_all.seq				
5999	C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A cjb111_all.seq				
6001	C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A nem316_all.seq				
6000	C C G A T T G T G A G C C C A G G T A A G T T A C T A C C T T G C T T C C C A T C A A A A T A T T A A a909_all.seq				
T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C Majority					
	6060	6070	6080	6090	6100
5048	T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C 2603_all.seq				
5817	T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C 18rs21_all.seq				
5049	T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C coh1_all.seq				
5049	T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C cjb111_all.seq				
5051	T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C nem316_all.seq				
5050	T C A A T T T A A G C C G G A A G T C G C T A A G A T T G A T A C T A A T A C G G T T G A A C G A C a909_all.seq				
G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G Majority					
	6110	6120	6130	6140	6150
1098	G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G 2603_all.seq				
1067	G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G 18rs21_all.seq				
1099	G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G coh1_all.seq				
1101	G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G cjb111_all.seq				
1100	G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G nem316_all.seq				
	G C A T C G C T T T A G C T A A T G C T T A C A A T G A G A C G T T A T C A A G G A A T C C C T T G a909_all.seq				
C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C Majority					
	6160	6170	6180	6190	6200
148	C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C 2603_all.seq				
917	C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C 18rs21_all.seq				
149	C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C coh1_all.seq				
149	C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C cjb111_all.seq				
151	C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C nem316_all.seq				
150	C T T A T A G A C C C T T T A C C A G T A A G C A A A A A G A A G G T T T G A G A G A G T A T G C a909_all.seq				
T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A Majority					
	6210	6220	6230	6240	6250
198	T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A 2603_all.seq				
967	T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A 18rs21_all.seq				
199	T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A coh1_all.seq				
201	T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A cjb111_all.seq				
200	T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A nem316_all.seq				
	T C G T A T G C T T G A A G T T C A T G A G C A A A T A G G T C A T G T G C C A A T C C C A A G T A a909_all.seq				
T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C Majority					
	6260	6270	6280	6290	6300
248	T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C 2603_all.seq				
017	T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C 18rs21_all.seq				
249	T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C coh1_all.seq				
249	T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C cjb111_all.seq				
251	T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C nem316_all.seq				
250	T T C G C G G T T G A T A T T C C A A T T T A T G C T G C C A A C A T C C C A A A C T G T G C T T C A C a909_all.seq				

FIGURE 18 Q

A A A G C T A G T G G C G A T T T G G A G G G A A A C G C A G T C T T C C A G T C G G G A G G G T T T G T C Majority					
6310	6320	6330	6340	6350	
6298 A A A G C T A G T G G G C A T T T G G A G G G A A A C C A G T C T T C C A G T C G G G A G G G T T T G T C 2603_all.seq					
6067 A A A G C T A G T G G G C A T T T G G A G G G A A C C A G T C T T C C A G T C G G G A G G G T T T G T C 18rs21_all.seq					
6299 A A A G C T A G T G G G C A T T T G G A G G G A A C C A G T C T T C C A G T C G G G A G G G T T T G T C coh1_all.seq					
6299 A A A G C T A G T G G G C A T T T G G A G G G A A C C A G T C T T C C A G T C G G G A G G G T T T G T C coh1_all.seq					
6301 A A A G C T A G T G G G C A T T T G G A G G G A A C C A G T C T T C C A G T C G G G A G G G T T T G T C cjb111_all.seq					
6300 A A A G C T A G T G G G C A T T T G G A G G G A A C C A G T C T T C C A G T C G G G A G G G T T T G T C nem316_all.seq					
A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T Majority					
6360	6370	6380	6390	6400	
6348 A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T 2603_all.seq					
6117 A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T 18rs21_all.seq					
6349 A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T coh1_all.seq					
6349 A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T coh1_all.seq					
6351 A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T cjb111_all.seq					
6350 A A C C C A T T C A G T A C T A A C T G C C C A C C C G T G G C T T G C C A A C A G C T A G G C T A T nem316_all.seq					
T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C Majority					
6410	6420	6430	6440	6450	
6398 T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C 2603_all.seq					
6167 T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C 18rs21_all.seq					
6399 T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C coh1_all.seq					
6399 T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C cjb111_all.seq					
6401 T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C nem316_all.seq					
6400 T T A C C G A C T T A A A T A A A G T T A A A A A G G C C A G A T T T C T A T G T G A C G A A C a909_all.seq					
A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C Majority					
6460	6470	6480	6490	6500	
6448 A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C 2603_all.seq					
6217 A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C 18rs21_all.seq					
5449 A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C coh1_all.seq					
5449 A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C cjb111_all.seq					
6451 A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C nem316_all.seq					
6450 A T C A A G G A A A C A C T T G C C T A C A A A G T C G T G T C T A T C A A A G T T G T G G A T C C a909_all.seq					
A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A G G A T T T A T A A C C T Majority					
6510	6520	6530	6540	6550	
5498 A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A T G C T A A G G A T T T A T A A C C T 2603_all.seq					
5267 A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A T G C T A A G G A T T T A T A A C C T 18rs21_all.seq					
5499 A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A T G C T A A G G A T T T A T A A C C T coh1_all.seq					
5499 A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A T G C T A A G G A T T T A T A A C C T cjb111_all.seq					
5501 A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A T G C T A A G G A T T T A T A A C C T nem316_all.seq					
5500 A A C A G C T T A A G T G A G G T T A A G A T T G T C A A T G T C A A T G C T A A G G A T T T A T A A C C T a909_all.seq					
T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A Majority					
6560	6570	6580	6590	6600	
5548 T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A 2603_all.seq					
5317 T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A 18rs21_all.seq					
5549 T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A coh1_all.seq					
5549 T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A cjb111_all.seq					
5551 T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A nem316_all.seq					
5550 T G C T G A C T T G C A C A C C T T A C A T G A T C A A T A G T C A T C G T C T T T G T A A A A a909_all.seq					
G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A Majority					
6610	6620	6630	6640	6650	
5598 G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A 2603_all.seq					
5367 G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A 18rs21_all.seq					
5599 G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A coh1_all.seq					
5599 G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A cjb111_all.seq					
5601 G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A nem316_all.seq					
5600 G G A G A G C G T A T T C C T T A T G C A T T C T A C C G A G G C G G A A A A G C A C A A G A A C A a909_all.seq					

FIGURE 18 R

<u>A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T Majority</u>					
6660	6670	6680	6690	6700	
648 A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T 2603_all.seq					
447 A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T 18rs21_all.seq					
649 A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T coh1_all.seq					
649 A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T cjb111_all.seq					
651 A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T nem316_all.seq					
650 A A C C G T A C A A G A T T A T C G T T T G C A G C T A G T G T G A A G A T A C T A C T A G T A T a909_all.seq					
<u>T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T Majority</u>					
6710	6720	6730	6740	6750	
698 T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T 2603_all.seq					
467 T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T 18rs21_all.seq					
699 T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T coh1_all.seq					
701 T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T cjb111_all.seq					
700 T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T nem316_all.seq					
T A T T A A T T G G A C T C T T C A T C G T G A T A A T G A T G A G A A G A T G G A T G G C A A C A T a909_all.seq					
<u>C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A C T T A T C A A A T A G G T G A C T Majority</u>					
6760	6770	6780	6790	6800	
748 C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A T C A A A T A G G T G A C T 2603_all.seq					
517 C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A T C A A A T A G G T G A C T 18rs21_all.seq					
749 C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A C T T A T C A A A T A G G T G A C T coh1_all.seq					
749 C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A C T T A T C A A A T A G G T G A C T cjb111_all.seq					
751 C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A C T T A T C A A A T A G G T G A C T nem316_all.seq					
750 C G T C A A T A A C G A T G T T G T G A A T G G C T T A C T T A C T T A T C A A A T A G G T G A C T a909_all.seq					
<u>A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A Majority</u>					
6810	6820	6830	6840	6850	
794 A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A 2603_all.seq					
567 A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A 18rs21_all.seq					
799 A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A coh1_all.seq					
801 A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A cjb111_all.seq					
800 A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A nem316_all.seq					
A A T G A T G A T T G T G A A T A A T G G T T A T C T A G A A G G G A G A A A A A T G A A A A A G A a909_all.seq					
<u>G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A Majority</u>					
6860	6870	6880	6890	6900	
844 G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A 2603_all.seq					
317 G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A 18rs21_all.seq					
349 G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A coh1_all.seq					
349 G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A cjb111_all.seq					
351 G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A nem316_all.seq					
350 G A C A A A A A A T T G G A G A G G G T T A T C A G T T A C T T A C T A A T C C T G T C C C A A a909_all.seq					
<u>A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C Majority</u>					
6910	6920	6930	6940	6950	
94 A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C 2603_all.seq					
67 A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C 18rs21_all.seq					
99 A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C coh1_all.seq					
101 A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C cjb111_all.seq					
100 A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C nem316_all.seq					
A T T C C A T T T G G T A T A T T G G T A C A A G G T G A A A C C C A A G A T A C C A A T C A A G C a909_all.seq					
<u>A G T T G G A A A A G T A A T T G T T A A A A A A C C C G G A G A C A A T G C T A C A C C C A T T A C Majority</u>					
6960	6970	6980	6990	7000	
44 A C T T G G A A A A G T A A T T G T T A A A A A A C C C G G G A G A C A A T G C T A C A C C C A T T A C 2603_all.seq					
17 A C T T G G A A A A G T A A T T G T T A A A A A A C C C G G G A G A C A A T G C T A C A C C C A T T A C 18rs21_all.seq					
49 A C T T G G A A A A G T A A T T G T T A A A A A A C C C G G G A G A C A A T G C T A C A C C C A T T A C coh1_all.seq					
49 A C T T G G A A A A G T A A T T G T T A A A A A A C C C G G G A G A C A A T G C T A C A C C C A T T A C cjb111_all.seq					
51 A C T T G G A A A A G T A A T T G T T A A A A A A C C C G G G A G A C A A T G C T A C A C C C A T T A C nem316_all.seq					
50 A C T T G G A A A A G T A A T T G T T A A A A A A C C C G G G G A G A C A A T G C T A C A C C C A T T A C a909_all.seq					

FIGURE 18 S

WO 2006/078318
 Alignment Report of Al-1 alignment, using J. Hein method with Weighted residue weight table.
 Thursday, July 29, 2004 5:46 PM

G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T Majority				
7010	7020	7030	7040	7050
5994 G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T 2603_all.seq				
5767 G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T 18rs21_all.seq				
5999 G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T coh1_all.seq				
5999 G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T cjb11_all.seq				
7001 G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T nem316_all.seq				
7000 G C A A A G C G A C T T T G T C T T A A A A A A T G A C A A T G A T A A G T C A G A A A C A A A G T a909_all.seq				
C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C Majority				
7060	7070	7080	7090	7100
7044 C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C 2603_all.seq				
5817 C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C 18rs21_all.seq				
7049 C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C coh1_all.seq				
7049 C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C cjb11_all.seq				
7051 C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C nem316_all.seq				
7050 C A C G A A A A C G G T A C A G G G T T C T G G A G A A G C C A A C C T T G A A A A C A T A A A A A C C a909_all.seq				
T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A A Majority				
7110	7120	7130	7140	7150
7094 T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A A 2603_all.seq				
3867 T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A 18rs21_all.seq				
1099 T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A coh1_all.seq				
1099 T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A cjb11_all.seq				
1101 T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A nem316_all.seq				
1100 T G G A G A C T A C A C A T T A A G A G A A A C A G C A C C A A T T G G T T A T A A A A A A A a909_all.seq				
C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G A G C A A C A T A A T C Majority				
7160	7170	7180	7190	7200
1144 C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G G A C C A A C A A T A A T C 2603_all.seq				
3917 C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G G A C C A A C A A T A A T C 18rs21_all.seq				
1149 C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G G A C C A A C A A T A A T C coh1_all.seq				
1149 C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G G A C C A A C A A T A A T C cjb11_all.seq				
1151 C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G G A C C A A C A A T A A T C nem316_all.seq				
1150 C T G A T A A A A C C T G G A A A G T T A A A G T T G C A G A T A A C G G G A C C A A C A A T A A T C a909_all.seq				
C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C Majority				
7210	7220	7230	7240	7250
1194 C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C 2603_all.seq				
1967 C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C 18rs21_all.seq				
1199 C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C coh1_all.seq				
1199 C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C cjb11_all.seq				
2001 C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C nem316_all.seq				
2000 C A G G G T A T G G A T G C A G A T A A A G C A G A G A A A C G G A A A A G A A G T T T G A A T G C a909_all.seq				
C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T Majority				
7260	7270	7280	7290	7300
244 C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T 2603_all.seq				
017 C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T 18rs21_all.seq				
249 C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T coh1_all.seq				
249 C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T cjb11_all.seq				
251 C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T nem316_all.seq				
250 C C A A T A T C C A A A A T C A G C T A T T T A T G A G G A T A C A A A A G A A A A A T T A C C C A T a909_all.seq				
T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T Majority				
7310	7320	7330	7340	7350
294 T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T 2603_all.seq				
067 T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T 18rs21_all.seq				
299 T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T coh1_all.seq				
299 T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T cjb11_all.seq				
301 T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T nem316_all.seq				
300 T A G T T A A T G T A G A G G G T T C C A A A G T T G G T G A A C A A T A C A A A A C C A T T G A A T a909_all.seq				

FIGURE 18 T

CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC Majority					
7360	7370	7380	7390	7400	
7344 CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC 2603_all.seq					
7117 CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC 18rs21_all.seq					
7349 CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC coh1_all.seq					
7349 CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC cjb11_all.seq					
7351 CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC nem316_all.seq					
7350 CCAATAAAATGGAAAGATGGTCGAAGAGAGATTGCTGAAGCTTGGTTATC a909_all.seq					
AAAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG Majority					
7410	7420	7430	7440	7450	
7394 AAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG 2603_all.seq					
7167 AAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG 18rs21_all.seq					
7399 AAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG coh1_all.seq					
7399 AAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG cjb11_all.seq					
7401 AAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG nem316_all.seq					
7400 AAAAAAATTACAGGGGTCAATGATCTCGATAAGAATAATAAATTTG a909_all.seq					
AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA Majority					
7460	7470	7480	7490	7500	
7444 AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA 2603_all.seq					
7217 AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA 18rs21_all.seq					
7449 AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA coh1_all.seq					
7449 AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA cjb11_all.seq					
7451 AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA nem316_all.seq					
7450 AATTAACTGTTGAGGGTAAAAACCACTGTTGAAACCAAAGAACTTAATCAA a909_all.seq					
CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA Majority					
7510	7520	7530	7540	7550	
7494 CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA 2603_all.seq					
267 CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA 18rs21_all.seq					
499 CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA coh1_all.seq					
499 CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA cjb11_all.seq					
501 CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA nem316_all.seq					
500 CCACTAGATGTCGTTGTGCTATTAGATAATTCAAAATAGTATGAATAATGA a909_all.seq					
AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA Majority					
7560	7570	7580	7590	7600	
544 AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA 2603_all.seq					
317 AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA 18rs21_all.seq					
549 AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA coh1_all.seq					
549 AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA cjb11_all.seq					
551 AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA nem316_all.seq					
550 AAGAGCCAAATAATTCTCAAAAGAGCATTAAAGCTGGGGAGCAGTTGAAA a909_all.seq					
AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC Majority					
7610	7620	7630	7640	7650	
594 AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC 2603_all.seq					
367 AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC 18rs21_all.seq					
599 AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC coh1_all.seq					
599 AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC cjb11_all.seq					
601 AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC nem316_all.seq					
600 AGCTGATTGATAAAATTACATCAAATAAGAACATAAGACTAGCTCTTGTC a909_all.seq					
ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG Majority					
7660	7670	7680	7690	7700	
644 ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG 2603_all.seq					
417 ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG 18rs21_all.seq					
649 ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG coh1_all.seq					
651 ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG cjb11_all.seq					
650 ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG nem316_all.seq					
650 ACATATGCCCTCAACCATTGGTACTGAAAGCCGACCGTATCAAAGGG a909_all.seq					

FIGURE 18 U

Majority					
	7710	7720	7730	7740	7750
7694	A G T T G C C G A T C A A A A T G G T A A A G C G C T G A A T G A T A G T G T A T C A T G G G A T T				2603_all.seq
7467	A G T T G C C G A T C A A A A T G G T A A A G C G C T G A A T G A T A G T G T A T C A T G G G A T T				18rs21_all.seq
7699	A G T T G C C G A T C A A A A T G G T A A A G C G C T G A A T G A T A G T G T A T C A T G G G A T T				coh1_all.seq
7699	A G T T G C C G A T C A A A A T G G T A A A G C G C T G A A T G A T A G T G T A T C A T G G G A T T				cjb111_all.seq
7701	A G T T G C C G A T C A A A A T G G T A A A G C G C T G A A T G A T A G T G T A T C A T G G G A T T				nem316_all.seq
7700	A G T T G C C G A T C A A A A T G G T A A A G C G C T G A A T G A T A G T G T A T C A T G G G A T T				a909_all.seq
Majority					
	7760	7770	7780	7790	7800
744	A T C A T A A A A C T A C T T T A C A G G C A A C T A C A C A T A A T T A C A G C T T A T T T A A A T				2603_all.seq
517	A T C A T A A A A C T A C T T T A C A G G C A A C T A C A C A T A A T T A C A G C T T A T T T A A A T				18rs21_all.seq
749	A T C A T A A A A C T A C T T T A C A G G C A A C T A C A C A T A A T T A C A G C T T A T T T A A A T				coh1_all.seq
749	A T C A T A A A A C T A C T T T A C A G G C A A C T A C A C A T A A T T A C A G C T T A T T T A A A T				cjb111_all.seq
751	A T C A T A A A A C T A C T T T A C A G G C A A C T A C A C A T A A T T A C A G C T T A T T T A A A T				nem316_all.seq
750	A T C A T A A A A C T A C T T T A C A G G C A A C T A C A C A T A A T T A C A G C T T A T T T A A A T				a909_all.seq
Majority					
	7810	7820	7830	7840	7850
794	T T A A C A A A T G A T G C T A A C G A A G T T A A T A T T C T A A A G T C A A G A A T T C C A A A				2603_all.seq
567	T T A A C A A A T G A T G C T A A C G A A G T T A A T A T T C T A A A G T C A A G A A A T T C C A A A				18rs21_all.seq
799	T T A A C A A A T G A T G C T A A C G A A G T T A A T A T T C T A A A G T C A A G A A A T T C C A A A				coh1_all.seq
799	T T A A C A A A T G A T G C T A A C G A A G T T A A T A T T C T A A A G T C A A G A A A T T C C A A A				cjb111_all.seq
801	T T A A C A A A T G A T G C T A A C G A A G T T A A T A T T C T A A A G T C A A G A A A T T C C A A A				nem316_all.seq
800	T T A A C A A A T G A T G C T A A C G A A G T T A A T A T T C T A A A G T C A A G A A A T T C C A A A				a909_all.seq
Majority					
	7860	7870	7880	7890	7900
844	G G A A G C G G G A G C A T A T A A A T G G G G A T C G C A C G G C T C T A T C A A T T T G G T G C C A				2603_all.seq
617	G G A A G C G G G A G C A T A T A A A T G G G G A T C G C A C G G C T C T A T C A A T T T G G T G C C A				18rs21_all.seq
849	G G A A G C G G G A G C A T A T A A A T G G G G A T C G C A C G G C T C T A T C A A T T T G G T G C C A				coh1_all.seq
849	G G A A G C G G G A G C A T A T A A A T G G G G A T C G C A C G G C T C T A T C A A T T T G G T G C C A				cjb111_all.seq
851	G G A A G C G G G A G C A T A T A A A T G G G G A T C G C A C G G C T C T A T C A A T T T G G T G C C A				nem316_all.seq
850	G G A A G C G G G A G C A T A T A A A T G G G G A T C G C A C G G C T C T A T C A A T T T G G T G C C A				a909_all.seq
Majority					
	7910	7920	7930	7940	7950
894	C A T T T A C T C A A A A A G C T C T A A T G A A A G C A A A T G A A A T T T A G A G A C A C A A				2603_all.seq
667	C A T T T A C T C A A A A A G C T C T A A T G A A A G C A A A T G A A A T T T A G A G A C A C A A				18rs21_all.seq
899	C A T T T A C T C A A A A A G C T C T A A T G A A A G C A A A T G A A A T T T A G A G A C A C A A				coh1_all.seq
899	C A T T T A C T C A A A A A G C T C T A A T G A A A G C A A A T G A A A T T T A G A G A C A C A A				cjb111_all.seq
901	C A T T T A C T C A A A A A G C T C T A A T G A A A G C A A A T G A A A T T T A G A G A C A C A A				nem316_all.seq
900	C A T T T A C T C A A A A A G C T C T A A T G A A A G C A A A T G A A A T T T A G A G A C A C A A				a909_all.seq
Majority					
	7960	7970	7980	7990	8000
944	A G T T C T A A T G C T A G A A A A A C T T A T T T T C A C G T A A C T G A T G G T G T C C C				2603_all.seq
717	A G T T C T A A T G C T A G A A A A A C T T A T T T T C A C G T A A C T G A T G G T G T C C C				18rs21_all.seq
949	A G T T C T A A T G C T A G A A A A A C T T A T T T T C A C G T A A C T G A T G G T G T C C C				coh1_all.seq
949	A G T T C T A A T G C T A G A A A A A C T T A T T T T C A C G T A A C T G A T G G T G T C C C				cjb111_all.seq
951	A G T T C T A A T G C T A G A A A A A C T T A T T T T C A C G T A A C T G A T G G T G T C C C				nem316_all.seq
950	A G T T C T A A T G C T A G A A A A A C T T A T T T T C A C G T A A C T G A T G G T G T C C C				a909_all.seq
Majority					
	8010	8020	8030	8040	8050
994	T A C G A T G T C T T A T G C C A T A A A T T T A T C C T T A T A T C A A C A T C T T A C C				2603_all.seq
767	T A C G A T G T C T T A T G C C A T A A A T T T A T C C T T A T A T C A A C A T C T T A C C				18rs21_all.seq
999	T A C G A T G T C T T A T G C C A T A A A T T T A T C C T T A T A T C A A C A T C T T A C C				coh1_all.seq
999	T A C G A T G T C T T A T G C C A T A A A T T T A T C C T T A T A T C A A C A T C T T A C C				cjb111_all.seq
991	T A C G A T G T C T T A T G C C A T A A A T T T A T C C T T A T A T C A A C A T C T T A C C				nem316_all.seq
990	T A C G A T G T C T T A T G C C A T A A A T T T A T C C T T A T A T C A A C A T C T T A C C				a909_all.seq

FIGURE 18 V

41/487

WO 2006/078318
 Alignment Report of AI-1_alignment, using J. Hein method with Weighted residue weight table.
 Thursday, July 29, 2004 5:46 PM

PCT/US2005/027239

Page 24

AAAACCAGTTAATTCTTTTAAATAAAATACCAAGATAGAACGTGGTATT Majority					
8060	8070	8080	8090	8100	
I044 A A A A C C A G T T A A T T C T T T T T A A A A T A C C A G A T A G A A G T G G T A T T 2603_all.seq					
I817 A A A A C C A G T T A A T T C T T T T T A A A A T A C C A G A T A G A A G T G G T A T T 18rs21_all.seq					
I049 A A A A C C A G T T A A T T C T T T T T A A A A T A C C A G A T A G A A G T G G T A T T coh1_all.seq					
I049 A A A A C C A G T T A A T T C T T T T T A A A A T A C C A G A T A G A A G T G G T A T T cjb111_all.seq					
I051 A A A A C C A G T T A A T T C T T T T T A A A A T A C C A G A T A G A A G T G G T A T T nem316_all.seq					
I050 A A A A C C A G T T A A T T C T T T T T A A A A T A C C A G A T A G A A G T G G T A T T a909_all.seq					
CTCCAAGGAGGATTTATAATCAATGGTATGATTATCAAATAGTAAGG Majority					
8110	8120	8130	8140	8150	
I094 C T C C A A G A G G A T T T A A T C A A T G G T G A T G A T T A T C A A A T A G T A A A A G G 2603_all.seq					
I867 C T C C A A G A G G A T T T A A T C A A T G G T G A T G A T T A T C A A A T A G T A A A A G G 18rs21_all.seq					
I099 C T C C A A G A G G A T T T A A T C A A T G G T G A T G A T T A T C A A A T A G T A A A A G G coh1_all.seq					
I099 C T C C A A G A G G A T T T A A T C A A T G G T G A T G A T T A T C A A A T A G T A A A A G G cjb111_all.seq					
I101 C T C C A A G A G G A T T T A A T C A A T G G T G A T G A T T A T C A A A T A G T A A A A G G nem316_all.seq					
I100 C T C C A A G A G G A T T T A A T C A A T G G T G A T G A T T A T C A A A T A G T A A A A G G a909_all.seq					
AGATGGAGAGAGTTAAACTGTTTCGGATAGAAAAAGTTCCGTACTG Majority					
8160	8170	8180	8190	8200	
I144 A G A T G G A G A G A G T T T A A A C T G T T T C C G A T A G A A A A G T T C C T G T T A C T G 2603_all.seq					
I917 A G A T G G A G A G A G T T T A A A C T G T T T C C G A T A G A A A A G T T C C T G T T A C T G 18rs21_all.seq					
I149 A G A T G G A G A G A G T T T A A A C T G T T T C C G A T A G A A A A G T T C C T G T T A C T G coh1_all.seq					
I149 A G A T G G A G A G A G T T T A A A C T G T T T C C G A T A G A A A A G T T C C T G T T A C T G cjb111_all.seq					
I151 A G A T G G A G A G A G T T T A A A C T G T T T C C G A T A G A A A A G T T C C T G T T A C T G nem316_all.seq					
I150 A G A T G G A G A G A G T T T A A A C T G T T T C C G A T A G A A A A G T T C C T G T T A C T G a909_all.seq					
GAGGAACGACACAAGCAGCTTATCGAGTACCGCAAATCAACTCTCTGT Majority					
8210	8220	8230	8240	8250	
I194 G A G G A A C G A C A C A A G C A G C T T A T C G A G T A C C G C A A A A T C A A C T C T C T G T A 2603_all.seq					
I967 G A G G A A C G A C A C A A G C A G C T T A T C G A G T A C C G C A A A A T C A A C T C T C T G T A 18rs21_all.seq					
I199 G A G G A A C G A C A C A A G C A G C T T A T C G A G T A C C G C A A A A T C A A C T C T C T G T A coh1_all.seq					
I199 G A G G A A C G A C A C A A G C A G C T T A T C G A G T A C C G C A A A A T C A A C T C T C T G T A cjb111_all.seq					
I201 G A G G A A C G A C A C A A G C A G C T T A T C G A G T A C C G C A A A A T C A A C T C T C T G T A nem316_all.seq					
I200 G A G G A A C G A C A C A A G C A G C T T A T C G A G T A C C G C A A A A T C A A C T C T C T G T A a909_all.seq					
ATGAGTAATGAGGGATATGCAATTAAATAGTGGATATATTATCTCTATTG Majority					
8260	8270	8280	8290	8300	
I244 A T G A G T A A T G A G G G A T A T G C A A T T A A T A G T G G A T A T A T T T A T C T C T A T T G 2603_all.seq					
I017 A T G A G T A A T G A G G G A T A T G C A A T T A A T A G T G G A T A T A T T T A T C T C T A T T G 18rs21_all.seq					
I249 A T G A G T A A T G A G G G A T A T G C A A T T A A T A G T G G A T A T A T T T A T C T C T A T T G coh1_all.seq					
I249 A T G A G T A A T G A G G G A T A T G C A A T T A A T A G T G G A T A T A T T T A T C T C T A T T G cjb111_all.seq					
I251 A T G A G T A A T G A G G G A T A T G C A A T T A A T A G T G G A T A T A T T T A T C T C T A T T G nem316_all.seq					
I250 A T G A G T A A T G A G G G A T A T G C A A T T A A T A G T G G A T A T A T T T A T C T C T A T T G a909_all.seq					
GAGAGATTACAACCTGGGTCTATCCATTGATGCCAACAGAACAGTTT Majority					
8310	8320	8330	8340	8350	
I294 G A G A G A T T A C A A C T G G G T C T A T C C A T T T G A T C C T A A G C A A A G A A A G T T T 2603_all.seq					
I067 G A G A G A T T A C A A C T G G G T C T A T C C A T T T G A T C C T A A G C A A A G A A A G T T T 18rs21_all.seq					
I299 G A G A G A T T A C A A C T G G G T C T A T C C A T T T G A T C C T A A G C A A A G A A A G T T T coh1_all.seq					
I299 G A G A G A T T A C A A C T G G G T C T A T C C A T T T G A T C C T A A G C A A A G A A A G T T T cjb111_all.seq					
I301 G A G A G A T T A C A A C T G G G T C T A T C C A T T T G A T C C T A A G C A A A G A A A G T T T nem316_all.seq					
I300 G A G A G A T T A C A A C T G G G T C T A T C C A T T T G A T C C T A A G C A A A G A A A G T T T a909_all.seq					
CTGCAACGAAACAAATCAAAACTCATGGTCACCCAAACACATTATACTT Majority					
8360	8370	8380	8390	8400	
I344 C T G C A A C G A A A C A A A T C A A A A C T C A T G G T G A G C C A A C A A C A T T A T C T T T 2603_all.seq					
I117 C T G C A A C G A A A C A A A T C A A A A C T C A T G G T G A G C C A A C A A C A T T A T C T T T 18rs21_all.seq					
I349 C T G C A A C G A A A C A A A T C A A A A C T C A T G G T G A G C C A A C A A C A T T A T C T T T coh1_all.seq					
I349 C T G C A A C G A A A C A A A T C A A A A C T C A T G G T G A G C C A A C A A C A T T A T C T T T cjb111_all.seq					
I351 C T G C A A C G A A A C A A A T C A A A A C T C A T G G T G A G C C A A C A A C A T T A T C T T T nem316_all.seq					
I350 C T G C A A C G A A A C A A A T C A A A A C T C A T G G T G A G C C A A C A A C A T T A T C T T T a909_all.seq					

FIGURE 18 W

<u>A A T G G A A A T A T A A G A G C T A A A G G C T T A T G A C A T T T T A C T G T T G G G A T T G G Majority</u>				
8410	8420	8430	8440	8450
8394 A A T G G A A A T A T A A G A C T A A A G G T T A T G A C A T T T T A C T G T T G G G A T T G G 2603_all.seq				
8167 A A T G G A A A T A T A A G A C T A A A G G T T A T G A C A T T T T A C T G T T G G G A T T G G 18rs21_all.seq				
8399 A A T G G A A A T A T A A G A C T A A A G G T T A T G A C A T T T T A C T G T T G G G A T T G G coh1_all.seq				
8399 A A T G G A A A T A T A A G A C T A A A G G T T A T G A C A T T T T A C T G T T G G G A T T G G cjb111_all.seq				
8401 A A T G G A A A T A T A A G A C T A A A G G T T A T G A C A T T T T A C T G T T G G G A T T G G nem316_all.seq				
8400 A A T G G A A A T A T A A G A C T A A A G G T T A T G A C A T T T T A C T G T T G G G A T T G G a909_all.seq				
<u>T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C Majority</u>				
8460	8470	8480	8490	8500
8444 T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C 2603_all.seq				
8217 T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C 18rs21_all.seq				
8449 T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C coh1_all.seq				
8449 T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C cjb111_all.seq				
8451 T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C nem316_all.seq				
8450 T G T A A A C C G G A G A T C C T G G T G C A A C T C C C T C T T G A A G C T G A G A A A T T T A T G C a909_all.seq				
<u>A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T Majority</u>				
8510	8520	8530	8540	8550
8494 A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T 2603_all.seq				
8267 A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T 18rs21_all.seq				
8499 A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T coh1_all.seq				
8499 A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T cjb111_all.seq				
8501 A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T nem316_all.seq				
8500 A A T C A A T A T C A A G T A A A A C A G A A A A T T A T A C T A A T G T T G A T G A T A C A A A T a909_all.seq				
<u>A A A A T T T A T G A T G A C C T A A A T A A T C T T T A A A A C A A T T G T T G A C G G A A A A Majority</u>				
8560	8570	8580	8590	8600
8544 A A A A T T T A T G A T G A C C T A A A T A A T C T T T A A A A C A A T T G T T G A C G G A A A A 2603_all.seq				
1317 A A A A T T T A T G A T G A C C T A A A T A A T A C T T T A A A A C A A T T G T T G A C G G A A A A 18rs21_all.seq				
1549 A A A A T T T A T G A T G A C C T A A A T A A A A T A C T T T A A A A C A A T T G T T G A C G G A A A A coh1_all.seq				
1549 A A A A T T T A T G A T G A C C T A A A T A A A A T A C T T T A A A A C A A T T G T T G A C G G A A A A cjb111_all.seq				
1551 A A A A T T T A T G A T G A C C T A A A T A A A A T A C T T T A A A A C A A T T G T T G A C G G A A A A nem316_all.seq				
1550 A A A A T T T A T G A T G A C C T A A A T A A A A T A C T T T A A A A C A A T T G T T G A C G G A A A A a909_all.seq				
<u>A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G Majority</u>				
8610	8620	8630	8640	8650
1594 A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G 2603_all.seq				
1367 A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G 18rs21_all.seq				
1599 A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G coh1_all.seq				
1599 A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G cjb111_all.seq				
1601 A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G nem316_all.seq				
1600 A C A T T C T A T T G T T G A T G C A A A T G T G A C T G A T C C T A T G G G A G A G A T G A T T G a909_all.seq				
<u>A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G Majority</u>				
8660	8670	8680	8690	8700
1644 A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G 2603_all.seq				
1417 A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G 18rs21_all.seq				
1649 A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G coh1_all.seq				
1649 A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G cjb111_all.seq				
1651 A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G nem316_all.seq				
1650 A A T T C C A A T T A A A A A T G G T C A A G T T T A C A C A T G A T G A T T A C G T T T G a909_all.seq				
<u>G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C Majority</u>				
8710	8720	8730	8740	8750
694 G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C 2603_all.seq				
467 G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C 18rs21_all.seq				
699 G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C coh1_all.seq				
701 G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C cjb111_all.seq				
700 G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C nem316_all.seq				
700 G T T G G A A A T G A T G C C A G T C A A T T A A A A A T G G T C T G G G C T C T T G G T G G A C C a909_all.seq				

FIGURE 18 X

A A A C A G T G I A T I G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A Majority				
8760	8770	8780	8790	8800
8744 A A A C A G T G A T G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A 2603_all.seq				
8517 A A A C A G T G A T G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A 18rs21_all.seq				
8749 A A A C A G T G A T G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A coh1_all.seq				
8749 A A A C A G T G A T G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A cjb111_all.seq				
8751 A A A C A G T G A T G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A nem316_all.seq				
8750 A A A C A G T G A T G G G G G A A T T T T A A A A G A T G T T A C A G T G A C T T A T G A T A A G A a909_all.seq				
C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A Majority				
8810	8820	8830	8840	8850
8794 C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A 2603_all.seq				
8567 C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A 18rs21_all.seq				
8799 C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A coh1_all.seq				
8799 C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A cjb111_all.seq				
8801 C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A nem316_all.seq				
8800 C A T C T C A A A C C A T C A A A A T C A A T C A T T G A A C T T A G G A A G T G G A C A A A A A a909_all.seq				
G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A Majority				
8860	8870	8880	8890	8900
8844 G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A 2603_all.seq				
8617 G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A 18rs21_all.seq				
8849 G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A coh1_all.seq				
8849 G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A cjb111_all.seq				
8851 G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A nem316_all.seq				
8850 G T A G T T C T T A C C T A T G A T G T A C G T T T A A A A G A T A A C T A T A T A A G T A A C A A A a909_all.seq				
A T T T T A C A A T A C A A A A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G Majority				
8910	8920	8930	8940	8950
8894 A T T T T A C A A T A C A A A A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G 2603_all.seq				
8667 A T T T T A C A A T A C A A A A A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G 18rs21_all.seq				
8899 A T T T T A C A A T A C A A A A T A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G coh1_all.seq				
8899 A T T T T A C A A T A C A A A A T A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G cjb111_all.seq				
8901 A T T T T A C A A T A C A A A A T A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G nem316_all.seq				
8900 A T T T T A C A A T A C A A A A T A T C G T A C A A C G C T A A G T C C G A A G A G T G A A A A A G a909_all.seq				
A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A T T C G T G A T G T T C G T Majority				
8960	8970	8980	8990	9000
8944 A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A A T T C G T G A T G T T C G T 2603_all.seq				
8717 A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A A T T C G T G A T G T T C G T 18rs21_all.seq				
8949 A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A A T T C G T G A T G T T C G T coh1_all.seq				
8949 A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A A T T C G T G A T G T T C G T cjb111_all.seq				
8951 A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A A T T C G T G A T G T T C G T nem316_all.seq				
8950 A A C C A A A T A C T A T T C G T G A T T T C C C A A T T C C C A A A A A T T C G T G A T G T T C G T a909_all.seq				
G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A T G G G T G A C G T T G A Majority				
9010	9020	9030	9040	9050
8994 G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A A T G G G T G A C G T T G A 2603_all.seq				
8767 G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A A T G G G T G A C G G T T G A 18rs21_all.seq				
9999 G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A A T G G G T G A C G G T T G A coh1_all.seq				
9999 G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A A T G G G T G A C G G T T G A cjb111_all.seq				
1001 G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A A T G G G T G A C G G T T G A nem316_all.seq				
1000 G A G T T T C C G G T A C T A A C C A T C A G T A A T C A G A A G A A A A A T G G G T G A C G G T T G A a909_all.seq				
A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A Majority				
9060	9070	9080	9090	9100
1044 A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A 2603_all.seq				
1017 A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A 18rs21_all.seq				
1049 A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A coh1_all.seq				
1051 A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A cjb111_all.seq				
1050 A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A nem316_all.seq				
A T T T A T A A A G T T A A T A A A G A C A A A C A T T C A G A A T C G C T T T T G G G A C C T A a909_all.seq				

FIGURE 18 Y

<u>A G T T C A A C T T C A G A C T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T Majority</u>					
9110	9120	9130	9140	9150	
9094 A G T T C A A C T T C A G A T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T 2603_all.seq					
8867 A G T T C A A C T T C A G A T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T 18rs21_all.seq					
9099 A G T T C A A C T T C A G A T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T coh1_all.seq					
9099 A G T T C A A C T T C A G A T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T cjb111_all.seq					
9101 A G T T C A A C T T C A G A T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T nem316_all.seq					
9100 A G T T C A A C T T C A G A T A G A A A A A G A T T T T C G G C T A T A A G C A A T T T G T T a909_all.seq					
<u>C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A Majority</u>					
9160	9170	9180	9190	9200	
9144 C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A 2603_all.seq					
8917 C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A 18rs21_all.seq					
9149 C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A coh1_all.seq					
9149 C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A cjb111_all.seq					
9151 C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A nem316_all.seq					
9150 C C A G A G G G A A G T G A T G T T A C A A C A A A G A A T G A T G G T A A A A A T T T A T T T T A A a909_all.seq					
<u>A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G Majority</u>					
9210	9220	9230	9240	9250	
9194 A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G 2603_all.seq					
9697 A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G 18rs21_all.seq					
9199 A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G coh1_all.seq					
9199 A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G cjb111_all.seq					
9201 A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G nem316_all.seq					
9200 A G C A C T T C A A G A T G G T A A C T A T A A A T T A T A T G A A A T T T C A A G T C C A G A T G a909_all.seq					
<u>G C T A T A T A C A G G T T A A A A C C G A A A C C T G T T G T G A C A T T T A C A A T T C A A A A T Majority</u>					
9260	9270	9280	9290	9300	
1244 G C T A T A T A C A G G T T A A A A C C G A A A C C T G T T G T G A C A T T T A C A A T T C A A A A T 2603_all.seq					
1017 G C T A T A T A C A G G T T A A A A C C G A A A C C T G T T G T G A C A T T T A C A A T T C A A A A T 18rs21_all.seq					
1249 G C T A T A T A C A G G T T A A A A C C G A A A C C T G T T G T G A C A T T T A C A A T T C A A A A T coh1_all.seq					
1251 G C T A T A T A C A G G T T A A A A C C G A A A C C T G T T G T G A C A T T T A C A A T T C A A A A T cjb111_all.seq					
1250 G C T A T A T A C A G G T T A A A A C C G A A A C C T G T T G T G A C A T T T A C A A T T C A A A A T nem316_all.seq					
					a909_all.seq
<u>G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A T C A A A A T Majority</u>					
9310	9320	9330	9340	9350	
294 G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A A T C A A A A T 2603_all.seq					
067 G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A A T C A A A A T 18rs21_all.seq					
299 G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A A T C A A A A T coh1_all.seq					
299 G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A A T C A A A A T cjb111_all.seq					
301 G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A A T C A A A A T nem316_all.seq					
300 G C A G A A G T T A C C G A A C C T G A A A G C A G A T C C A A A T G C T A A T A A A A A T C A A A A T a909_all.seq					
<u>C G G G T A T C T T G A A G G A A A T G G T A A A C A T C T T A T T A C C A A C A C T C C C C A A A C Majority</u>					
9360	9370	9380	9390	9400	
344 C G G G T A T C T T G A A G G A A A T G G T A A A C A T C T T A T T A C C A A C A C T C C C C A A A C 2603_all.seq					
117 C G G G T A T C T T G A A G G A A A T G G T A A A C A T C T T A T T A C C A A C A C T C C C C A A A C 18rs21_all.seq					
349 C G G G T A T C T T G A A G G A A A T G G T A A A C A T C T T A T T A C C A A C A C T C C C C A A A C coh1_all.seq					
351 C G G G T A T C T T G A A G G A A A T G G T A A A C A T C T T A T T A C C A A C A C T C C C C A A A C cjb111_all.seq					
350 C G G G T A T C T T G A A G G A A A T G G T A A A C A T C T T A T T A C C A A C A C T C C C C A A A C a909_all.seq					
<u>G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T Majority</u>					
9410	9420	9430	9440	9450	
394 G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T 2603_all.seq					
167 G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T 18rs21_all.seq					
399 G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T coh1_all.seq					
399 G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T cjb111_all.seq					
401 G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T nem316_all.seq					
400 G C C C A C C A C C G T G T T T C C T A A A A C A G G G G G A A T T G G T A C A A T T G T C T A T a909_all.seq					

FIGURE 18 Z

<u>A T A T T A C G T T C G G T T C F A G T T T A T G A T A C T T A C C A T T T G T T C T T T C C G T C G</u>					Majority
9460	9470	9480	9490	9500	
9444	AT A T T A C T T G G T T C T A C T T T T A T G A T A C T T A C C A T T T G T T C T T T C C G T C G	2603_all.seq			
9217	AT A T T A C T T G G T T C T A C T T T T A T G A T A C T T A C C A T T T G T T C T T T C C G T C G	18rs21_all.seq			
9449	AT A T T A C T T G G T T C T A C T T T T A T G A T A C T T A C C A T T T G T T C T T T C C G T C G	coh1_all.seq			
9451	AT A T T A C T T G G T T C T A C T T T T A T G A T A C T T A C C A T T T G T T C T T T C C G T C G	cjb111_all.seq			
9450	AT A T T A C T T G G T T C T A C T T T T A T G A T A C T T A C C A T T T G T T C T T T C C G T C G	nem316_all.seq			
<u>T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A T A A T A G A A A A T G A C T A</u>					Majority
9510	9520	9530	9540	9550	
3494	T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A A T A A T A G A A A A A T G A C T A	2603_all.seq			
3267	T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A A T A A T A G A A A A A T G A C T A	18rs21_all.seq			
3499	T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A A T A A T A G A A A A A T G A C T A	coh1_all.seq			
3499	T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A A T A A T A G A A A A A T G A C T A	cjb111_all.seq			
3501	T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A A T A A T A G A A A A A T G A C T A	nem316_all.seq			
3500	T A A A C A A T T G T A A G G T G T C G T T G A A A T T A T T A A A T A A T A G A A A A A T G A C T A	a909_all.seq			
<u>G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C</u>					Majority
9560	9570	9580	9590	9600	
1544	G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C	2603_all.seq			
1317	G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C	18rs21_all.seq			
1549	G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C	coh1_all.seq			
1549	G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C	cjb111_all.seq			
1551	G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C	nem316_all.seq			
1550	G T T T T G G C C T T T C C C T A T T G T C A G T C A G A T T A G T T A T T A T C A A G C T T C T C	a909_all.seq			
<u>A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G</u>					Majority
9610	9620	9630	9640	9650	
594	A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G	2603_all.seq			
367	A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G	18rs21_all.seq			
599	A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G	coh1_all.seq			
599	A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G	cjb111_all.seq			
601	A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G	nem316_all.seq			
600	A T G C C A A T A T T A A T G C C T T T A A A A G G A A C A G T T A C A A C C A T T G A C C G T A C G	a909_all.seq			
<u>C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C</u>					Majority
9660	9670	9680	9690	9700	
644	C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C	2603_all.seq			
417	C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C	18rs21_all.seq			
649	C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C	coh1_all.seq			
649	C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C	cjb111_all.seq			
651	C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C	nem316_all.seq			
650	C A G A T T C A A C G G A C G G T T A G G T C T G G C T A A A G G C C T A C A A T G C T A G T A T T T C	a909_all.seq			
<u>T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G</u>					Majority
9710	9720	9730	9740	9750	
594	T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G	2603_all.seq			
467	T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G	18rs21_all.seq			
399	T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G	coh1_all.seq			
399	T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G	cjb111_all.seq			
701	T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G	nem316_all.seq			
700	T G G A A C A A G T A G T C A G T C G A C T C A A T C T G T G C T G A G A G A T T C T T A T T C T G	a909_all.seq			
<u>A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A</u>					Majority
9760	9770	9780	9790	9800	
144	A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A	2603_all.seq			
317	A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A	18rs21_all.seq			
149	A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A	coh1_all.seq			
149	A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A	cjb111_all.seq			
151	A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A	nem316_all.seq			
150	A G G A G C A A A A A G G C A G G G T C G A C T G A A T A C G C T A G G A T G T T A G A A G T C A	a909_all.seq			

FIGURE 18 AA

G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A T C A A T C A G G A T T A C C A Majority				
9810	9820	9830	9840	9850
I794 G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A A T C A A T C A G G A T T A C C A 2603_all.seq				
I567 G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A A T C A A T C A G G A T T A C C A 18rs21_all.seq				
I799 G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A A T C A A T C A G G A T T A C C A coh1_all.seq				
I799 G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A A T C A A T C A G G A T T A C C A cjb111_all.seq				
I801 G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A A T C A A T C A G G A T T A C C A nem316_all.seq				
I800 G A G A C C A G G T G A C C A T G T G A T G A T C C A A A A A T C A A T C A G G A T T A C C A a909_all.seq				
A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T Majority				
9860	9870	9880	9890	9900
I844 A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T 2603_all.seq				
I617 A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T 18rs21_all.seq				
I849 A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T coh1_all.seq				
I849 A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T cjb111_all.seq				
I851 A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T nem316_all.seq				
I850 A T C T A C G C T G G T T C A G A A G A G G A C A A T C T G C A A C G G G G A G T T G G T C A T C T a909_all.seq				
A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A Majority				
9910	9920	9930	9940	9950
I894 A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A 2603_all.seq				
I667 A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A 18rs21_all.seq				
I899 A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A coh1_all.seq				
I899 A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A cjb111_all.seq				
I901 A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A nem316_all.seq				
I900 A G A A G G G A T A A G T T T G C C G A T T G G G A G G G G C T T C T A C A C A T G C C G G T C T T G A a909_all.seq				
G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G Majority				
9960	9970	9980	9990	10000
I944 G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G 2603_all.seq				
I717 G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G 18rs21_all.seq				
I949 G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G coh1_all.seq				
I949 G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G cjb111_all.seq				
I951 G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G nem316_all.seq				
I950 G C G G T C A A A G A G G G T A T G C C A G C T G C T C G G T T G T T T G C C G A T T T G G A T A A G a909_all.seq				
A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A G C T T G G C Majority				
10010	10020	10030	10040	10050
I994 A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A C C T T G G C 2603_all.seq				
I767 A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A C C T T G G C 18rs21_all.seq				
I999 A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A C C T T G G C coh1_all.seq				
I999 A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A C C T T G G C cjb111_all.seq				
I0001 A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A C C T T G G C nem316_all.seq				
I0000 A T G A A A A A A G G T G A T T A T T T T A T G T T A C C A A T C T G A A A G A A A A C C T T G G C a909_all.seq				
T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C Majority				
10060	10070	10080	10090	10100
I044 T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C 2603_all.seq				
I817 T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C 18rs21_all.seq				
I049 T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C coh1_all.seq				
I049 T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C cjb111_all.seq				
I051 T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C nem316_all.seq				
I050 T T A T C A A C T G G G A T C G G T A T C A T G G T G A T T G A A C C T A G C C A A T T G G A T G C C C a909_all.seq				
T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T Majority				
10110	10120	10130	10140	10150
I094 T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T 2603_all.seq				
I867 T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T 18rs21_all.seq				
I099 T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T coh1_all.seq				
I099 T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T cjb111_all.seq				
I101 T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T nem316_all.seq				
I100 T G A G C A T T G A A G A G G A T A A A G A T T A T G T T A C C C T T C T G A C C T G T A C A C C T a909_all.seq				

FIGURE 18 AB

A G A C A A T C A G C T T G G G T T G C T C T C T G T T T T G G A T G T T C A A G C C A T G A G A A Majority

10210 **10220** **10230** **10240** **10250**

TTTTGGCTTTAAAAAATTTAAAGTTGCCAAAGGCCAAAGGCTTGTCTGGCTTG Majority

10260 **10270** **10280** **10290** **10300**

A T G T C T T T G A T A A G C T T G T T G G T C G C T T C T A A T T T G G C A T T G G A A A G G C A Majority

	10310	10320	10330	10340	10350
I0294	A T G T C T T G A T A A G C T T G T T G G T C G C T T C T A A - T T G G C A T T G G A A A G G G A				2603_all.seq
I0067	A T G T C T T G A T A A G C T T G T T G G T C G C T T C T A A - T T G G C A T T G G A A A G G G A				18rs21_all.seq
I0299	A T G T C T T G A T A A G C T T G T T G G T C G C T T C T A A - T T G G C A T T G G A A A G G G A				coh1_all.seq
I0299	A T G T C T T G A T A A G C T T G T T G G T C G C T T C T A A - T T G G C A T T G G A A A G G G A				cjb111_all.seq
I0301	A T G T C T T G A T A A G C T T G T T G G T C G C T T C T A A - T T G G C A T T G G A A A G G G A				nem316_all.seq
I0300	A T G T C T T G A T A A G C T T G T T G G T C G C T T C T A A - T T G G C A T T G G A A A G G G A				a909_all.seq

TAGCTGAGGGCGTTGTGATGTAAGTTTGTACCTCATGAAACGTGCTAAGTC

0260 50550 G T A G C T T G T A C T T C A T G A A G G T C C T A A A Ma

	10360	10370	10380	10390	10400
0344	T A G C T G A G G C C G T T T G T G A T G T A A G T T T T G T A C T T C A T G A A G G T C C T A A A				2603_all.seq
0117	T A G C T G A G G G C G T T T G T G A T G T A A G T T T T G T A C T T C A T G A A G G T C C T A A A				18rs21_all.seq
0349	T A G C T G A G G G C G T T T G T G A T G T A A G T T T T G T A C T T C A T G A A G G T C C T A A A				coh1_all.seq
0349	T A G C T G A G G G C G T T T G T G A T G T A A G T T T T G T A C T T C A T G A A G G T C C T A A A				cjb111_all.seq
0351	T A G C T G A G G G G C G T T T G T G A T G T A A G T T T T G T A C T T C A T G A A G G T C C T A A A				ncm316_all.seq
0360	T A G C T G A G G G G C G T T T G T G A T G T A A G T T T T G T A C T T C A T G A A G G T C C T A A A				0999_all.seq

G A C C A T T T A A A G G C A G A T T C C C A C T C T T A G C T T

.....AAGCAGAAATTGCCAGTGTACGTTATGATCTATGAAGC.....

	10410	10420	10430	10440	10450
0394	G ACC AT T T A A A G C A G A A T T G C C A G T T G T T A C G T T A T C A T C T A T G A A G C 2603_all.seq				
0167	G ACC AT T T A A A G C A G A A T T G C C A G T T G T T A C G T T A T C A T C T A T G A A G C 18rs21_all.seq				
0399	G ACC AT T T A A A G C A G A A T T G C C A C T T C T A C G T T A T C A T C T A T G A A G C coh1_all.seq				
0399	G ACC AT T T A A A G C A G A A T T G C C A C T T C T A C G T T A T C A T C T A T G A A G C coh1_all.seq				
0401	G A C C AT T T A A A G C A C A A T T G C C A G T T G T T A C G T T A T C A T C T A T G A A G C cjb11_all.seq				
0400	G A C C AT T T A A A G C A G A A T T G C C A G T T G T T A C G T T A T C A T C T A T G A A G C hem3IG_all.seq				

T C A G T T G T T C C G C T T T C T T A G A A A T G A A A G A C T A T G A G C T G A M

	10460	10470	10480	10490	10500	Majority
0444	T A A G A A T C A G T T G T T C G C T T T C T T A G A A A T G A A A G A C G T A T G A G C T G A 2603_all.seq					
0217	T A A G A A T C A G T T G T T C G C T T T C T T A G A A A T G A A A G A C G T A T G A C C T G A 18rs21_all.seq					
0449	T A A G A A T C A G T T G T T C G C T T T C T T A G A A A T G A A A G A C G T A T G A C C T G A coh1_all.seq					
0449	T A A G A A T C A G T T G T T C G C T T T C T T A G A A A T G A A A G A C G T A T G A C C T G A ejb111_all.seq					
0451	T A A G A A T C A G T T G T T C G C T T T C T T A G A A A T G A A A G A C G T A T G A G G C T G A nem316_all.seq					
0450	T A A G A A T C A G T T G T T C G C T T T C T T A G A A A T G A A A G A C G T A T G A G G C T G A ag901_all.seq					

FIGURE 18 AC

Alignment Report of AI-1 alignment, using J. Hein method with Weighted residue weight table.
 Thursday, July 29, 2004 5:45 PM

<u>T A A A G G C T G C T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A</u> Majority				
10510	10520	10530	10540	10550
10494 T A A A G G T C G T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A 2603_all.seq				
10267 T A A A G G T C G T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A 18rs21_all.seq				
10499 T A A A G G T C G T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A coh1_all.seq				
10499 T A A A G G T C G T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A cjb111_all.seq				
10501 T A A A G G T C G T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A nem316_all.seq				
10500 T A A A G G T C G T T A A T A C C G G A G C T C A T C T G A G A A A A C T T T A T A C C T C A a909_all.seq				
<u>A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C</u> Majority				
10560	10570	10580	10590	10600
10544 A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C 2603_all.seq				
10317 A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C 18rs21_all.seq				
10549 A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C coh1_all.seq				
10549 A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C cjb111_all.seq				
10551 A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C nem316_all.seq				
10550 A A G T C A G T C T A G C T T G A T A T C A T G A A G C C A T T A G G A G T T A T T C C T T A T C a909_all.seq				
<u>T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A</u> Majority				
10610	10620	10630	10640	10650
10594 T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A 2603_all.seq				
10367 T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A 18rs21_all.seq				
10599 T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A coh1_all.seq				
10599 T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A cjb111_all.seq				
10601 T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A nem316_all.seq				
10600 T T T T A G T G G G G G G C A T C C A T A T A C T G A T A G A T C G A G A T A T T A G A T C C A a909_all.seq				
<u>A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A</u> Majority				
10660	10670	10680	10690	10700
10644 A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A 2603_all.seq				
10417 A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A 18rs21_all.seq				
10649 A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A coh1_all.seq				
10649 A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A cjb111_all.seq				
10651 A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A nem316_all.seq				
10650 A A A G T T C T A T C A T C C T C T T T G G G G C C T T T T T C C A G C A G A T A A T A T T A A a909_all.seq				
<u>G G T A G C T T G G T C T A A C A A C T C C A G C A C T T A T T T A C A C C A C C T A T T A A T G</u> Majority				
10710	10720	10730	10740	10750
0694 G G T A G C T T G G T C T A A C A A C T C C A G C A C T T A T T T A C A C C A C C T A T T A A T G 2603_all.seq				
0467 G G T A G C T T G G T C T A A C A A C T C C A G C A C T T A T T T A C A C C A C C T A T T A A T G 18rs21_all.seq				
0699 G G T A G C T T G G T C T A A C A A C T C C A G C A C T T A T T T A C A C C A C C T A T T A A T G coh1_all.seq				
0701 G G T A G C T T G G T C T A A C A A C T C C A G C A C T T A T T T A C A C C A C C T A T T A A T G cjb111_all.seq				
0700 G G T A G C T T G G T C T A A C A A C T C C A G C A C T T A T T T A C A C C A C C T A T T A A T G nem316_all.seq				
<u>C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A</u> Majority				
10760	10770	10780	10790	10800
0744 C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A 2603_all.seq				
0517 C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A 18rs21_all.seq				
0749 C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A coh1_all.seq				
0749 C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A cjb111_all.seq				
0751 C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A nem316_all.seq				
0750 C A A A C T A C A C C A C T C A G A T T C A A G C T A T T G G G A C A A C C G A T T A A G T C A C A A a909_all.seq				
<u>A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G</u> Majority				
10810	10820	10830	10840	10850
0794 A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G 2603_all.seq				
0567 A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G 18rs21_all.seq				
0799 A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G coh1_all.seq				
0799 A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G cjb111_all.seq				
0801 A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G nem316_all.seq				
0800 A T T C C C G A A T C G A T T T G A C C G T T A C G G A T A A A A A G A G C A G G A A G T T C A G a909_all.seq				

FIGURE 18 AD

C A T T A C A A G A T T G A C T A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A Majority				
10860	10870	10880	10890	10900
10844 C A T T A C A A G A T T G A C G A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A 2603_all.seq				
10617 C A T T A C A A G A T T G A C G A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A 18rs21_all.seq				
10849 C A T T A C A A G A T T G A C G A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A coh1_all.seq				
10849 C A T T A C A A G A T T G A C G A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A cjb111_all.seq				
10851 C A T T A C A A G A T T G A C G A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A nem316_all.seq				
10850 C A T T A C A A G A T T G A C G A A G C T A A A G G C T T A G T A G G T G C C G A C C T T C A a909_all.seq				
C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T Majority				
10910	10920	10930	10940	10950
10894 C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T 2603_all.seq				
10667 C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T 18rs21_all.seq				
10899 C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T coh1_all.seq				
10901 C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T cjb111_all.seq				
10900 C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T nem316_all.seq				
10909 C C T T G T C T A A A C C G C A C A A C A G T A G C G G G A G A T C A T C A A G T A C A A G G G A G A T a909_all.seq				
T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T Majority				
10960	10970	10980	10990	11000
10944 T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T 2603_all.seq				
10717 T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T 18rs21_all.seq				
10949 T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T coh1_all.seq				
10951 T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T cjb111_all.seq				
10950 T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T nem316_all.seq				
10950 T T C A T T C C T G T C A G C A A A G A G A C G A C A G T C G G T C G G A C A A C C C T T A C C T T a909_all.seq				
T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A Majority				
11010	11020	11030	11040	11050
0994 T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A 2603_all.seq				
0767 T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A 18rs21_all.seq				
0999 T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A coh1_all.seq				
1001 T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A cjb111_all.seq				
1000 T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A nem316_all.seq				
1000 T G A C A A C C T T A A A C C T G G A T T T A T G A C C T T A A A G A A A C G A A A G C G G C C G A a909_all.seq				
A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A Majority				
11060	11070	11080	11090	11100
1044 A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A 2603_all.seq				
0817 A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A 18rs21_all.seq				
1049 A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A coh1_all.seq				
1051 A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A cjb111_all.seq				
1050 A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A nem316_all.seq				
1050 A T G C T T A C G T A C T T G A T C C T A A G A C T T A T G T T G T G G T C G T T C A A A A T T C A a909_all.seq				
G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C Majority				
11110	11120	11130	11140	11150
1094 G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C 2603_all.seq				
0867 G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C 18rs21_all.seq				
0999 G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C coh1_all.seq				
1101 G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C cjb111_all.seq				
1100 G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C nem316_all.seq				
1100 G G A A A A A C C G A C A A T T G T G G A T G A G C T A A C T T C A A A G A G G C T G A T T A C C C a909_all.seq				
A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A Majority				
11160	11170	11180	11190	11200
144 A A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A 2603_all.seq				
917 A A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A 18rs21_all.seq				
149 A A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A coh1_all.seq				
149 A A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A cjb111_all.seq				
151 A A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A nem316_all.seq				
150 A A T G G C T C A T A A T A C C A G C C A T G T G G A G T G C C G T A G C C G T G C T A C A A C G A A a909_all.seq				

FIGURE 18 AE

G C A A A G G C T A A T A A T C G T T A T T E A A C G A C T T T T C A A G C A T T T G T C T Majority				
11210	11220	11230	11240	11250
11194 G C A A A G G G T A A A A A T C C T T A T T T T A A G G C A C T T T T C A A G C A T T T G T C T 2603_all.seq				
10967 G C A A A G G G T A A A A A T C C T T A T T T T A A G G C A C T T T T C A A G C A T T T G T C T 18rs21_all.seq				
11199 G C A A A G G G T A A A A A T C C T T A T T T T A A G G C A C T T T T C A A G C A T T T G T C T coh1_all.seq				
11199 G C A A A G G G T A A A A A T C C T T A T T T T A A G G C A C T T T T C A A G C A T T T G T C T cjb111_all.seq				
11201 G C A A A G G G T A A A A A T C C T T A T T T T A A G G C A C T T T T C A A G C A T T T G T C T nem316_all.seq				
11200 G C A A A G G G T A A A A A T C C T T A T T T T A A G G C A C T T T T C A A G C A T T T G T C T a909_all.seq				
T T A T T G A A A A G A G T G A T T T T A A C A T A A A A A A C G T A T T A A A A A A C A T A T T G Majority				
11260	11270	11280	11290	11300
11244 T T A T T G A A A A G A G T G A T T T T A A C A T A A A A A A C G T A T T A A A A A A C A T A T T G 2603_all.seq				
11017 T T A T T G A A A A G A G T G A T T T T A A C A T A A A A A A G G T A T T A A A A A A C A T A T T G 18rs21_all.seq				
11249 T T A T T G A A A A A G A G T G A T T T T A A C A T A A A A A A G G T A T T A A A A A A C A T A T T G coh1_all.seq				
11249 T T A T T G A A A A A G A G T G A T T T T A A C A T A A A A A A G G T A T T A A A A A A C A T A T T G cjb111_all.seq				
11251 T T A T T G A A A A A G A G T G A T T T T A A C A T A A A A A A G G T A T T A A A A A A C A T A T T G nem316_all.seq				
11250 T T A T T G A A A A A G A G T G A T T T T A A C A T A A A A A A G G T A T T A A A A A A C A T A T T G a909_all.seq				
A C C T - G A C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G Majority				
11310	11320	11330	11340	11350
11294 A C C T G A C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G 2603_all.seq				
11067 A C C T G A C C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G 18rs21_all.seq				
11299 A C C T G A C C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G coh1_all.seq				
11299 A C C T G A C C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G cjb111_all.seq				
11301 A C C T G A C C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G nem316_all.seq				
11300 A C C T G A C C C G T T T G T T T G A A G T G G C T T G C G T A G A C A A A A A A T A G A T A C G a909_all.seq				
T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T Majority				
11360	11370	11380	11390	11400
11344 T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T 2603_all.seq				
11117 T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T 18rs21_all.seq				
11349 T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T coh1_all.seq				
11349 T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T cjb111_all.seq				
11351 T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T nem316_all.seq				
11350 T C A G A T A A A T T C T G G C A T T A C G A G A A C A T T T T A G A G T G T T C T C T T T T a909_all.seq				
T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A C T T C Majority				
11410	11420	11430	11440	11450
11394 T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A G T T C T 2603_all.seq				
11167 T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A G T T C T 18rs21_all.seq				
11399 T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A G T T C T coh1_all.seq				
1399 T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A G T T C T cjb111_all.seq				
1401 T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A G T T C T nem316_all.seq				
1400 T T A G T T T A C G G A G G A A A A A T A T A T G G A A A A A C A G G A T T C A C G A G T T C T a909_all.seq				
C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A Majority				
11460	11470	11480	11490	11500
1444 C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A 2603_all.seq				
1217 C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A 18rs21_all.seq				
1449 C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A coh1_all.seq				
1449 C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A cjb111_all.seq				
1451 C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A nem316_all.seq				
1450 C A T - C C A T T G G G A G G G G A A T T C T G G G G A C A A G C T C A T T G A A C A C C A A A C C A a909_all.seq				
G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A Majority				
11510	11520	11530	11540	11550
1494 G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A 2603_all.seq				
1267 G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A 18rs21_all.seq				
1499 G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A coh1_all.seq				
1499 G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A cjb111_all.seq				
1501 G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A nem316_all.seq				
1500 G C G C A A C G G G G T G G T A C T A C C A A G T C G A T C G T A G C T T T A G T C A A C C A A A A a909_all.seq				

FIGURE 18 AF

51/487

Alignment Report of AI-1_WO 2006/078318 method with Weighted residue weight table.
 Thursday, July 29, 2004 5:46 PM

PCT/US2005/027239

Page 34

					Majority
11560	11570	11580	11590	11600	
11544 G G G C A A C C C C C C A G A A T G A T C G A A T A C G G G A C T A G A A A G T G T C C G T A A T G A T	2603_all.seq				
11517 G G G C A A C C C C C C A G A A T G A T C C A A A G G C A C T A G A A A G T G T C C G T A A T G A T	18rs21_all.seq				
11549 G G G C A A C C C C C C A G A A T G A T C C A A A G G C A C T A G A A A G T G T C C G T A A T G A T	coh1_all.seq				
11549 G G G C A A C C C C C C A G A A T G A T C C A A A G G C A C T A G A A A G T G T C C G T A A T G A T	cjb111_all.seq				
11551 G G G C A A C C C C C C A G A A T G A T C C A A A G G C A C T A G A A A G T G T C C G T A A T G A T	nem316_all.seq				
11550 G G G C A A C C C C C C A G A A T G A T C C A A A G G C A C T A G A A A G T G T C C G T A A T G A T	a909_all.seq				
T C G A T T T C G G G C C G G T G A T G A T G T C A T G G G T T A T G C T T A T A G C C A A A T G T A C Majority					
11610	11620	11630	11640	11650	
11594 T C G A T T T C G G G C C G G T G A T G A T G T C A T G G C T T A T G C T T A T A G C C A A A T G T A C	2603_all.seq				
11367 T C G A T T T C G G G C C G G T G A T G A T G T C A T G G C T T A T G C T T A T A G C C A A A T G T A C	18rs21_all.seq				
11599 T C G A T T T C G G G C C G G T G A T G A T G T C A T G G C T T A T G C T T A T A G C C A A A T G T A C	coh1_all.seq				
11601 T C G A T T T C G G G C C G G T G A T G A T G T C A T G G C T T A T G C T T A T A G C C A A A T G T A C	cjb111_all.seq				
11600 T C G A T T T C G G G C C G G T G A T G A T G T C A T G G C T T A T G C T T A T A G C C A A A T G T A C	nem316_all.seq				
11600 T C G A T T T C G G G C C G G T G A T G A T G T C A T G G C T T A T G C T T A T A G C C A A A T G T A C	a909_all.seq				
T T G G G G A G T T G C G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G Majority					
11660	11670	11680	11690	11700	
1644 T T G G G G A G T T G C G G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G	2603_all.seq				
1417 T T G G G G A G T T G C G G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G	18rs21_all.seq				
1649 T T G G G G A G T T G C G G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G	coh1_all.seq				
1649 T T G G G G A G T T G C G G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G	cjb111_all.seq				
1651 T T G G G G A G T T G C G G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G	nem316_all.seq				
1650 T T G G G G A G T T G C G G G C A C G A A T T A A T C A G T G G G A C T G A A A C T C A A A G G T T G	a909_all.seq				
A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T Majority					
11710	11720	11730	11740	11750	
1694 A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T	2603_all.seq				
1467 A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T	18rs21_all.seq				
1699 A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T	coh1_all.seq				
1699 A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T	cjb111_all.seq				
1701 A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T	nem316_all.seq				
1700 A A A T G G T G A G A A G A T T A C C A T T A C C A G T T C A A T G G G A A A T G G T C A G G A T T	a909_all.seq				
C G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A Majority					
11760	11770	11780	11790	11800	
1744 G G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A	2603_all.seq				
1517 G G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A	18rs21_all.seq				
1749 G G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A	coh1_all.seq				
1749 G G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A	cjb111_all.seq				
1751 G G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A	nem316_all.seq				
1750 G G G T T G G A A C A G G C C G A A A G A C T A G A T G G T G A A A C T G A T A C A G T T C C A A A A	a909_all.seq				
G A A G G T A C T A T T C T C T C T T T A G G A A A G T A G T T A T G C T T C G T A T A T A G G Majority					
11810	11820	11830	11840	11850	
794 G A A G G T A C T A T T C T C T C T C T C T T T A G G A A A G T A G T T A T G G T T C G T A T A T A G G	2603_all.seq				
567 G A A G G T A C T A T T C T C T C T C T C T T T A G G A A A G T A G T T A T G G T T C G T A T A T A G G	18rs21_all.seq				
799 G A A G G T A C T A T T C T C T C T C T C T T T A G G A A A G T A G T T A T G G T T C G T A T A T A G G	coh1_all.seq				
801 G A A G G T A C T A T T C T C T C T C T C T C T T T A G G A A A G T A G T T A T G G T T C G T A T A T A G G	cjb111_all.seq				
800 G A A G G T A C T A T T C T C T C T C T C T C T C T T T A G G A A A G T A G T T A T G G T T C G T A T A T A G G	nem316_all.seq				
800 G A A G G T A C T A T T C T C T C T C T C T C T C T C T C T T T A G G A A A G T A G T T A T G G T T C G T A T A T A G G	a909_all.seq				
C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C A G T A C A T G A A Majority					
11860	11870	11880	11890	11900	
844 C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C C A T G A A	2603_all.seq				
617 C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C C A T G A A	18rs21_all.seq				
849 C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C C A T G A A	coh1_all.seq				
849 C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C C A T G A A	cjb111_all.seq				
851 C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C C A T G A A	nem316_all.seq				
850 C T A C G G A A C T A T A T C T T C G T C A C A T T A C A T C T A C A G A T A G T A C C A T G A A	a909_all.seq				

FIGURE 18 AG

WO 2006/078318

Alignment Report of Al-1_alignment, using J. Hein method with Weighted residue weight table.

Thursday, July 29, 2004 5:46 PM

<u>T T T G C T T A T A T G A C C K A G T A A K A G T G A G G G A T A T A C T A A C A A A T G A A A T A T</u> Majority				
11910	11920	11930	11940	11950
11894 T T T G C T T A T A T G A C C A A G T A A A G T G A G G G A T A T A C T A A C A A A T G A A A T A T 2603_all.seq				
11667 T T T G C T T A T A T G A C C A A G T A A A G T G A G G G A T A T A C T A A C A A A T G A A A T A T 18rs21_all.seq				
11899 T T T G C T T A T A T G A C C A A G T A A A G T G A G G G A T A T A C T A A C A A A T G A A A T A T coh1_all.seq				
11899 T T T G C T T A T A T G A C C A A G T A A A G T G A G G G A T A T A C T A A C A A A T G A A A T A T cjb111_all.seq				
11901 T T T G C T T A T A T G A C C A A G T A A A G T G A G G G A T A T A C T A A C A A A T G A A A T A T nem316_all.seq				
11900 T T T G C T T A T A T G A C C A A G T A A A G T G A G G G A T A T A C T A A C A A A T G A A A T A T a909_all.seq				
<u>T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T</u> Majority				
11960	11970	11980	11990	12000
11944 T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T 2603_all.seq				
11717 T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T 18rs21_all.seq				
11949 T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T coh1_all.seq				
11949 T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T cjb111_all.seq				
11951 T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T nem316_all.seq				
11950 T T A T T A T C G T A T T T G T C C A T T T A T C G A A A A G T T T G C A T A T T A T C A T T A T a909_all.seq				
<u>G T T T G A T A A G A T G C A A A T A T A A T G A T A G T A C G G A G C T A A A A T A T G G A T A T T T</u> Majority				
12010	12020	12030	12040	12050
11994 G T T T G A T A A G A T G C A A A T A T A A T G A T A G T A C G G A G C T A A A A T A T G C A T A T T T 2603_all.seq				
11767 G T T T G A T A A G A T G C A A A T A T A A T G A T A G T A C G G A G C T A A A A T A T G C A T A T T T 18rs21_all.seq				
11999 G T T T G A T A A G A T G C A A A T A T A A T G A T A G T A C G G A G C T A A A A T A T G C A T A T T T coh1_all.seq				
12001 G T T T G A T A A G A T G C A A A T A T A A T G A T A G T A C G G A G C T A A A A T A T G C A T A T T T cjb111_all.seq				
12000 G T T T G A T A A G A T G C A A A T A T A A T G A T A G T A C G G A G C T A A A A T A T G C A T A T T T a909_all.seq				
<u>A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A T T C A A A T A T A G</u> Majority				
12060	12070	12080	12090	12100
12044 A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A T T C A A A T A T A G 2603_all.seq				
11817 A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A A T T C A A A T A T A G 18rs21_all.seq				
12049 A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A A T T C A A A A T A T A G coh1_all.seq				
12049 A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A A T T C A A A A T A T A G cjb111_all.seq				
12051 A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A A T T C A A A A T A T A G nem316_all.seq				
12050 A A A A A A T C A A G A G T A T C C T A A G T G C T T T C C A T T T G A A A A T T C A A A A T A T A G a909_all.seq				
<u>C T A A T A G T T C T A G A A C T T C T A A T T G T T T C G T C G A C C G A T A T G A A T T T C</u> Majority				
12110	12120	12130	12140	12150
2094 C T A A T A G T T C T A G A A C T T C T A A T T G T T T C G T C G A C C G A T A T G A A T T T C 2603_all.seq				
1867 C T A A T A G T T C T A G A A C T T C T A A T T G T T T C G T C G A C C G A T A T G A A T T T C 18rs21_all.seq				
2099 C T A A T A G T T C T A G A A C T T C T A A T T G T T T C G T C G A C C G A T A T G A A T T T C coh1_all.seq				
2101 C T A A T A G T T C T A G A A C T T C T A A T T G T T T C G T C G A C C G A T A T G A A T T T C cjb111_all.seq				
2100 C T A A T A G T T C T A G A A C T T C T A A T T G T T T C G T C G A C C G A T A T G A A T T T C nem316_all.seq				
<u>A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A</u> Majority				
12160	12170	12180	12190	12200
2144 A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A 2603_all.seq				
1917 A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A 18rs21_all.seq				
2149 A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A coh1_all.seq				
2149 A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A cjb111_all.seq				
2151 A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A nem316_all.seq				
2150 A A T C T T A A C T G T T A C C G A C C T C C C T T T G G T T A A A G A A A A A A G G T C A a909_all.seq				
<u>G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T</u> Majority				
12210	12220	12230	12240	12250
2194 G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T 2603_all.seq				
1967 G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T 18rs21_all.seq				
2199 G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T coh1_all.seq				
2199 G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T cjb111_all.seq				
2201 G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T nem316_all.seq				
2200 G G T C G T T T A G A T A A C T T G T C A A A C A A G C T C A A G C T A T C T A A A A A T A G T T a909_all.seq				

FIGURE 18 AH

T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G Majority				
12260	12270	12280	12290	12300
I2244 T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G 2603_all.seq				
I2207 T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G 18rs21_all.seq				
I2249 T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G coh1_all.seq				
I2249 T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G cjb111_all.seq				
I2251 T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G nem316_all.seq				
I2250 T G A A A T G G G C A T T A C T C T A G T T T T A A T A A G C T A T C T G A T G A C C A G A A G G a909_all.seq				
A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T Majority				
12310	12320	12330	12340	12350
I2294 A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T 2603_all.seq				
I2067 A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T 18rs21_all.seq				
I2299 A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T coh1_all.seq				
I2301 A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T cjb111_all.seq				
I2300 A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T nem316_all.seq				
I2300 A G A A G T T A A T G C A T G T T G G G A A G T C T T A T T T G A C T A T C A A G A A A A T G C T a909_all.seq				
C T T A T C C C A C A A T T A G G T T T C T A T A T T C T A A A T T A A C T A A A A A A A T T G A Majority				
12360	12370	12380	12390	12400
2344 C T T A T C C C A C A A T T A G G T T T C T A T A T T C T A A A T T A A C T A A A A A A A A T T G A 2603_all.seq				
2117 C T T A T C C C A C A A T T A G G T T T C T A T A T T C T A A A T T A A C T A A A A A A A A T T G A 18rs21_all.seq				
2349 C T T A T C C C A C A A T T A G G T T T C T A T A T T C T A A A T T A A C T A A A A A A A A T T G A coh1_all.seq				
2351 C T T A T C C C A C A A T T A G G T T T C T A T A T T C T A A A T T A A C T A A A A A A A A T T G A cjb111_all.seq				
2350 C T T A T C C C A C A A T T A G G T T T C T A T A T T C T A A A T T A A C T A A A A A A A A T T G A a909_all.seq				
A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A G T T A T T G A T T A C C T T A T Majority				
12410	12420	12430	12440	12450
2394 A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A A A A A G T T A T T G A T T A C C T T A T 2603_all.seq				
2167 A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A A G T T A T T G A T T A C C T T A T 18rs21_all.seq				
2399 A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A A G T T A T T G A T T A C C T T A T coh1_all.seq				
2399 A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A A G T T A T T G A T T A C C T T A T cjb111_all.seq				
2401 A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A A G T T A T T G A T T A C C T T A T nem316_all.seq				
2400 A C T T G A T A A T C C G T T G T C T C C G A C T G A A C A A A A A G T T A T T G A T T A C C T T A T a909_all.seq				
T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A Majority				
12460	12470	12480	12490	12500
2444 T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A 2603_all.seq				
2217 T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A 18rs21_all.seq				
2449 T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A coh1_all.seq				
2449 T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A cjb111_all.seq				
2451 T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A nem316_all.seq				
2450 T A T T A C A T A C T A A A G G T T T A A T C A T T G A T A T G T A A G A A G T A A G T C A G C T A a909_all.seq				
A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G Majority				
12510	12520	12530	12540	12550
2494 A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G 2603_all.seq				
2267 A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G 18rs21_all.seq				
2499 A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G coh1_all.seq				
2499 A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G cjb111_all.seq				
2501 A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G nem316_all.seq				
2500 A C C G A T C T T T C T A T T C T A A A A C T T A T A T T G T T G C T T T A G A A A T T T T A A G a909_all.seq				
A G C G T G G A T G G C T T C A T A A T A A C A G A A A T C T T A C C A A T T T G C G A A G C C A Majority				
12560	12570	12580	12590	12600
2544 A G C G T G G A T G G C T T C A T A A T A A C A G A A A A T C T T A C C A A T T T G C G A A G C C A 2603_all.seq				
2317 A G C G T G G A T G G C T T C A T A A T A A C A G A A A A T C T T A C C A A T T T G C G A A G C C A 18rs21_all.seq				
2549 A G C G T G G A T G G C T T C A T A A T A A C A G A A A A T C T T A C C A A T T T G C G A A G C C A coh1_all.seq				
2549 A G C G T G G A T G G C T T C A T A A T A A C A G A A A A T C T T A C C A A T T T G C G A A G C C A cjb111_all.seq				
2551 A G C G T G G A T G G C T T C A T A A T A A C A G A A A A T C T T A C C A A T T T G C G A A G C C A nem316_all.seq				
2550 A G C G T G G A T G G C T T C A T A A T A A C A G A A A A T C T T A C C A A T T T G C G A A G C C A a909_all.seq				

FIGURE 18 AI

<u>A A A A A T A G C T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G Majority</u>				
12610	12620	12630	12640	12650
2594 A A A A A T A T G A T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G 2603_all.seq				
2367 A A A A A T A T G A T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G 18rs21_all.seq				
2599 A A A A A T A T G A T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G coh1_all.seq				
2599 A A A A A T A T G A T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G cjb111_all.seq				
2601 A A A A A T A T G A T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G nem316_all.seq				
2600 A A A A A T A T G A T A T T G A A G A G T C C A A A G A T C T A A T A G A T A G T C C A G T T A G a909_all.seq				
<u>A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C Majority</u>				
12660	12670	12680	12690	12700
2644 A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C 2603_all.seq				
2417 A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C 18rs21_all.seq				
2649 A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C coh1_all.seq				
2649 A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C cjb111_all.seq				
2651 A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C nem316_all.seq				
2650 A G A A G C G T T G A T T A T A A G T G A T A A G G A T T T C A A A A A T T A A A A C A A G A G C a909_all.seq				
<u>T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T Majority</u>				
12710	12720	12730	12740	12750
2694 T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T 2603_all.seq				
2467 T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T 18rs21_all.seq				
2699 T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T coh1_all.seq				
2699 T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T cjb111_all.seq				
2701 T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T nem316_all.seq				
2700 T A T T A T T T A A C C G A C T T A T T T A A A G A C T T A T C A T A T C T A G G C T T G C T T a909_all.seq				
<u>G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A Majority</u>				
12760	12770	12780	12790	12800
2744 G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A 2603_all.seq				
2517 G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A 18rs21_all.seq				
2749 G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A coh1_all.seq				
2749 G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A cjb111_all.seq				
2751 G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A nem316_all.seq				
2750 G A T G A T T C G G A A A A A T A C G G G A G A C T A T A C T A T T C A A G G A A A A G A T A C A A a909_all.seq				
<u>A A G T T T C G A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G Majority</u>				
12810	12820	12830	12840	12850
2794 A A G T T T C G A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G 2603_all.seq				
2567 A A G T T T C G A A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G 18rs21_all.seq				
2799 A A G T T T C G A A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G coh1_all.seq				
2799 A A G T T T C G A A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G cjb111_all.seq				
2801 A A G T T T C G A A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G nem316_all.seq				
2800 A A G T T T C G A A A T C A A G T C T T C A A C T A T A C A T C C T T C A A A G T C A T C G G C T A G a909_all.seq				
<u>A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C Majority</u>				
12860	12870	12880	12890	12900
2844 A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C 2603_all.seq				
2617 A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C 18rs21_all.seq				
2849 A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C coh1_all.seq				
2849 A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C cjb111_all.seq				
2851 A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C nem316_all.seq				
2850 A G A T T T C G A A T T A T G A A C C A A T C C C T T T G A T T A C T A G A A A A A T A A A T A G C a909_all.seq				
<u>T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A Majority</u>				
12910	12920	12930	12940	12950
2894 T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A 2603_all.seq				
2667 T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A 18rs21_all.seq				
2899 T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A coh1_all.seq				
2899 T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A cjb111_all.seq				
2901 T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A nem316_all.seq				
2900 T T G G A G A G G C T A A C G T G A C A C T G G T T G A T C C A A T C T C G C T T T A T T T A A C A a909_all.seq				

FIGURE 18 AJ

	CTAAGAAATGATGAAAGACCCCTCGTATTGAAAGAAGAAGTTGAGCAGCTAGAA	Majority		
12960	12970	12980	12990	13000
12944 C T A A G A A T G A T G A A G A C C C C T C G T A T T G A A G A A G A A G T T G A G C A G C T A G A A				2603_ail.seq
12717 C T A A G A A T G A T G A A G A C C C C T C G T A T T G A A G A A G A A G T T G A G C A G C T A G A A				18rs21_ail.seq
12949 C T A A G A A T G A T G A A G A C C C C T C G T A T T G A A G A A G A A G T T G A G C A G C T A G A A				coh1_ail.seq
12949 C T A A G A A T G A T G A A G A C C C C T C G T A T T G A A G A A G A A G T T G A G C A G C T A G A A				cjb111_ail.seq
12951 C T A A G A A T G A T G A A G A C C C C T C G T A T T G A A G A A G A A G T T G A G C A G C T A G A A				nem316_ail.seq
12950 C T A A G A A T G A T G A A G A C C C C T C G T A T T G A A G A A G A A G T T G A G C A G C T A G A A				a909_ail.seq

GATAAGAT

Majority

12994 G A T A A G A T	2603_ail.seq
12767 G A T A A G A T	18rs21_ail.seq
12999 G A T A A G A T	coh1_ail.seq
12999 G A	cjb111_ail.seq
13000 A	nem316_ail.seq
13000 G A T A A G A T	a909_ail.seq

Decoration 'Decoration #1': Shade (with solid black) residues that differ from the Consensus.

FIGURE 18 AK

Alignment Report
tein mes with Weighted residue weight table.

GGCCCTTGTTCGATGGATGATGATGGCTCATTAATAGCCCTG Majority				
10	20	30	40	50
1	GGCCCTTGTTCGATGGATGATGGCTCATTAATAGCCCTG 2603_a12.seq			
1	GGCCCTTGTTCGATGGATGATGGCTCATTAATAGCCCTG 18rs21_a12.seq			
1	GGCCCTTGTTCGATGGATGATGGCTCATTAATAGCCCTG 515_a12.seq			
1	GGCCCTTGTTCGATGGATGATGGCTCATTAATAGCCCTG cjb111_a12.seq			
1	GGCCCTTGTTCGATGGATGATGGCTCATTAATAGCCCTG h36b_a12.seq			
<u>TTCGTAACGCTCTTTAATTATCTCAACTTAGCATGGGTATTGGTAAAT</u> Majority				
60	70	80	90	100
51	TTCGTAACGCTCTTTAATTATCTCAACTTAGCATGGGTATTGGTAAAT 2603_a12.seq			
51	TTCGTAACGCTCTTTAATTATCTCAACTTAGCATGGGTATTGGTAAAT 18rs21_a12.seq			
51	TTCGTAACGCTCTTTAATTATCTCAACTTAGCATGGGTATTGGTAAAT 515_a12.seq			
51	TTCGTAACGCTCTTTAATTATCTCAACTTAGCATGGGTATTGGTAAAT cjb111_a12.seq			
51	TTCGTAACGCTCTTTAATTATCTCAACTTAGCATGGGTATTGGTAAAT h36b_a12.seq			
<u>TTTGAAATAGACTAAGTATTATAACCTCAGGCCACTTTCTATGCCATG</u> Majority				
110	120	130	140	150
101	TTTGAAATAGACTAAGTATTATAACCTCAGGCCACTTTCTATGCCATG 2603_a12.seq			
101	TTTGAAATAGACTAAGTATTATAACCTCAGGCCACTTTCTATGCCATG 18rs21_a12.seq			
101	TTTGAAATAGACTAAGTATTATAACCTCAGGCCACTTTCTATGCCATG 515_a12.seq			
101	TTTGAAATAGACTAAGTATTATAACCTCAGGCCACTTTCTATGCCATG cjb111_a12.seq			
101	TTTGAAATAGACTAAGTATTATAACCTCAGGCCACTTTCTATGCCATG h36b_a12.seq			
<u>AAATCAATTCTTATAGAATTGTTCACGAATAGGAGCTTCTGGAGCAAC</u> Majority				
160	170	180	190	200
151	AAATCAATTCTTATAGAATTGTTCACGAATAGGAGCTTCTGGAGCAAC 2603_a12.seq			
151	AAATCAATTCTTATAGAATTGTTCACGAATAGGAGCTTCTGGAGCAAC 18rs21_a12.seq			
151	AAATCAATTCTTATAGAATTGTTCACGAATAGGAGCTTCTGGAGCAAC 515_a12.seq			
151	AAATCAATTCTTATAGAATTGTTCACGAATAGGAGCTTCTGGAGCAAC cjb111_a12.seq			
151	AAATCAATTCTTATAGAATTGTTCACGAATAGGAGCTTCTGGAGCAAC h36b_a12.seq			
<u>TATACCACCCCCCTGAACCAAGAAACTGTGCAAAAGTGCACCCCTCCTCTAG</u> Majority				
210	220	230	240	250
201	TATAGCATCCCCCTGAACCAAGAAACTGTGCAAAAGTGCACCCCTCCTCTAG 2603_a12.seq			
201	TATAGCATCCCCCTGAACCAAGAAACTGTGCAAAAGTGCACCCCTCCTCTAG 18rs21_a12.seq			
201	TATAGCATCCCCCTGAACCAAGAAACTGTGCAAAAGTGCACCCCTCCTCTAG 515_a12.seq			
201	TATAGCATCCCCCTGAACCAAGAAACTGTGCAAAAGTGCACCCCTCCTCTAG cjb111_a12.seq			
201	TATAGCATCCCCCTGAACCAAGAAACTGTGCAAAAGTGCACCCCTCCTCTAG h36b_a12.seq			
<u>CAACTGTTCCGTCTGTAGGACAGTCAAAACCAGCATCTATAGGTAAT</u> Majority				
260	270	280	290	300
251	CAACTGTTCCGTCTGTAGGACAGTCAAAACCAGCATCTATAGGTAAT 2603_a12.seq			
251	CAACTGTTCCGTCTGTAGGACAGTCAAAACCAGCATCTATAGGTAAT 18rs21_a12.seq			
251	CAACTGTTCCGTCTGTAGGACAGTCAAAACCAGCATCTATAGGTAAT 515_a12.seq			
251	CAACTGTTCCGTCTGTAGGACAGTCAAAACCAGCATCTATAGGTAAT cjb111_a12.seq			
251	CAACTGTTCCGTCTGTAGGACAGTCAAAACCAGCATCTATAGGTAAT h36b_a12.seq			
<u>TTAAATATTTTCTCCAAAGAGTTCTCGATAATAATCATTAATCGCACCG</u> Majority				
310	320	330	340	350
301	TTAAATATTTTCTCCAAAGAGTTCTCGATAATAATCATTAATCGCACCG 2603_a12.seq			
301	TTAAATATTTTCTCCAAAGAGTTCTCGATAATAATCATTAATCGCACCG 18rs21_a12.seq			
301	TTAAATATTTTCTCCAAAGAGTTCTCGATAATAATCATTAATCGCACCG 515_a12.seq			
301	TTAAATATTTTCTCCAAAGAGTTCTCGATAATAATCATTAATCGCACCG cjb111_a12.seq			
301	TTAAATATTTTCTCCAAAGAGTTCTCGATAATAATCATTAATCGCACCG h36b_a12.seq			
<u>ATAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAAC</u> Majority				
360	370	380	390	400
351	ATAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAAC 2603_a12.seq			
351	ATAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAAC 18rs21_a12.seq			
351	ATAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAAC 515_a12.seq			
351	ATAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAAC cjb111_a12.seq			
351	ATAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAAC h36b_a12.seq			
<u>TCACACTACAAATAAAACTAAAAAGATTGGAACGTCAGTTAGTCCC</u> Majority				
410	420	430	440	450
401	TCACACTACAAATAAAACTAAAAAGATTGGAACGTCAGTTAGTCCC 2603_a12.seq			
401	TCACACTACAAATAAAACTAAAAAGATTGGAACGTCAGTTAGTCCC 18rs21_a12.seq			
401	TCACACTACAAATAAAACTAAAAAGATTGGAACGTCAGTTAGTCCC 515_a12.seq			
401	TCACACTACAAATAAAACTAAAAAGATTGGAACGTCAGTTAGTCCC cjb111_a12.seq			
401	TCACACTACAAATAAAACTAAAAAGATTGGAACGTCAGTTAGTCCC h36b_a12.seq			

C T T T T A T T T A C T T C A C T T C T T A A C C E A A T C C T T G G C T A A A A A G A T A T A C Majority									
	460	470	480	490	500				
451	C T T T T A T T T A C T T C A C T T C T T A A C C A A T C C T T G G C T A A A A A G A T A T A C 2603_a12.seq								
451	C T T T T A T T T A C T T C A C T T C T T A A C C A A T C C T T G G C T A A A A A G A T A T A C 18rs21_a12.seq								
451	C T T T T A T T T A C T T C A C T T C T T A A C C A A T C C T T G G C T A A A A A G A T A T A C 515_a12.seq								
451	C T T T T A T T T A C T T C A C T T C T T A A C C A A T C C T T G G C T A A A A A G A T A T A C cjb111_a12.seq								
	G C A G T T A G A T T C A A A A T A C C A T A A G C A A G T A A A A C C A G C T A A A A C A T C Majority								
	510	520	530	540	550				
501	G C A G T T A G A T T C A A A A T A C C A T A A G C A A G T A A A A C C A G C T A A A A C A T C 2603_a12.seq								
501	G C A G T T A G A T T C A A A A T A C C A T A A G C A A G T A A A A C C A G C T A A A A C A T C 18rs21_a12.seq								
501	G C A G T T A G A T T C A A A A T A C C A T A A G C A A G T A A A A C C A G C T A A A A C A T C 515_a12.seq								
501	G C A G T T A G A T T C A A A A T A C C A T A A G C A A G T A A A A C C A G C T A A A A C A T C cjb111_a12.seq								
	G C A G T T A G A T T C A A A A T A C C A T A A G C A A G T A A A A C C A G C T A A A A C A T C h36b_a12.seq								
	T G T C G G A A A A T G A A C C C C T A G G T A A A T A C C A G A T A A C C C A A T T A A A A A A Majority								
	560	570	580	590	600				
551	T G T C G G A A A A T G A A C C C C T A G G T A A A T A C C A G A T A A C C C A A T T A A A A A A 2603_a12.seq								
551	T G T C G G A A A A T G A A C C C C T A G G T A A A T A C C A G A T A A C C C A A T T A A A A A A 18rs21_a12.seq								
551	T G T C G G A A A A T G A A C C C C T A G G T A A A T A C C A G A T A A C C C A A T T A A A A A A 515_a12.seq								
551	T G T C G G A A A A T G A A C C C C T A G G T A A A T A C C A G A T A A C C C A A T T A A A A A A cjb111_a12.seq								
	T G T C G G A A A A T G A A C C C C T A G G T A A A T A C C A G A T A A C C C A A T T A A A A A A h36b_a12.seq								
	T G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T T C C A T A T A C T C T T A G G C Majority								
	610	620	630	640	650				
601	T G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T T C C A T A T A C T C T T A G G C 2603_a12.seq								
601	T G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T T C C A T A T A C T C T T A G G C 18rs21_a12.seq								
601	T G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T T C C A T A T A C T C T T A G G C 515_a12.seq								
601	T G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T T C C A T A T A C T C T T A G G C cjb111_a12.seq								
	T G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T T C C A T A T A C T C T T A G G C h36b_a12.seq								
	A T A T A G T A C T G C A A T A A A A T A A T A C T C C C A A A T A C T A T A C T A A A T G T T C C Majority								
	660	670	680	690	700				
651	A T A T A G T A C T G C A A T A A A A T A A T A C T C C C A A A T A C T A T A C T A A A T G T T C C 2603_a12.seq								
651	A T A T A G T A C T G C A A T A A A A T A A T A C T C C C A A A T A C T A T A C T A A A T G T T C C 18rs21_a12.seq								
651	A T A T A G T A C T G C A A T A A A A T A A T A C T C C C A A A T A C T A T A C T A A A T G T T C C 515_a12.seq								
651	A T A T A G T A C T G C A A T A A A A T A A T A C T C C C A A A T A C T A T A C T A A A T G T T C C cjb111_a12.seq								
	A T A T A G T A C T G C A A T A A A A T A A T A C T C C C A A A T A C T A T A C T A A A T G T T C C h36b_a12.seq								
	C A T C G A G T G C C C C A C T T G G G A A A C G A A T A G C C C A C C T T G C A A A T A C T A A A T G G G Majority								
	710	720	730	740	750				
701	C A T C G A G T G C C C C A C T T G G G A A A C G A A T A G C C C A C C T T G C A A A T A C T A A A T G G G 2603_a12.seq								
701	C A T C G A G T G C C C C A C T T G G G A A A C G A A T A G C C C A C C T T G C A A A T A C T A A A T G G G 18rs21_a12.seq								
701	C A T C G A G T G C C C C A C T T G G G A A A C G A A T A G C C C A C C T T G C A A A T A C T A A A T G G G 515_a12.seq								
701	C A T C G A G T G C C C C A C T T G G G A A A C G A A T A G C C C A C C T T G C A A A T A C T A A A T G G G cjb111_a12.seq								
	C A T C G A G T G C C C C A C T T G G G A A A C G A A T A G C C C A C C T T G C A A A T A C T A A A T G G G h36b_a12.seq								
	T T A A A G T T G G T C T T A C T C T T G A A A A T A A G T T T A A A G A A A G T A T A C A T Majority								
	760	770	780	790	800				
751	T T A A A G T T G G T C T T A C T C T T G A A A A A T A A G T T T A A A G A A A G T A T A C A T 2603_a12.seq								
751	T T A A A G T T G G T C T T A C T C T T G A A A A A T A A G T T T A A A G A A A G T A T A C A T 18rs21_a12.seq								
751	T T A A A G T T G G T C T T A C T C T T G A A A A A T A A G T T T A A A G A A A G T A T A C A T 515_a12.seq								
751	T T A A A G T T G G T C T T A C T C T T G A A A A A T A A G T T T A A A G A A A G T A T A C A T cjb111_a12.seq								
	T T A A A G T T G G T C T T A C T C T T G A A A A A T A A G T T T A A A G A A A G T A T A C A T h36b_a12.seq								
	A T A C C A G A G A T A A T A G C A T T T A C T G C G A T A A A T C T A G C T T G A G G G A T A C C A Majority								
	810	820	830	840	850				
801	A T A C C A G A G A T A A T A G C A T T T A C T G C G A T A A A T C T A G C T T G A G G G A T A C C A 2603_a12.seq								
801	A T A C C A G A G A T A A T A G C A T T T A C T G C G A T A A A T C T A G C T T G A G G G A T A C C A 18rs21_a12.seq								
801	A T A C C A G A G A T A A T A G C A T T T A C T G C G A T A A A T C T A G C T T G A G G G A T A C C A 515_a12.seq								
801	A T A C C A G A G A T A A T A G C A T T T A C T G C G A T A A A T C T A G C T T G A G G G A T A C C A cjb111_a12.seq								
	A T A C C A G A G A T A A T A G C A T T T A C T G C G A T A A A T C T A G C T T G A G G G A T A C C A h36b_a12.seq								
	C T T C T T A A G G T A A C A G A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C Majority								
	860	870	880	890	900				
851	C T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C 2603_a12.seq								
851	C T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C 18rs21_a12.seq								
851	C T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C 515_a12.seq								
851	C T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C cjb111_a12.seq								
	C T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C h36b_a12.seq								

FIGURE 19A

T T A C A G T A T T A C C A A T C A C A G T G A T T A A C T T G A A A A A T C T T G T A G A A A G A Majority

901	TTA CAG TATTACCAATCACAGTGATTAACCTTGAAATACTTGTAGAAAGA	2603_a12.seq
901	TTA CAG TATTACCAATCACAGTGATTAACCTTGAAATACTTGTAGAAAGA	18rs21_a12.seq
901	TTA CAG TATTACCAATCACAGTGATTAACCTTGAAATACTTGTAGAAAGA	515_a12.seq
901	TTA CAG TATTACCAATCACAGTGATTAACCTTGAAATACTTGTAGAAAGA	cjb111_a12.seq
901	TTA CAG TATTACCAATCACAGTGATTAACCTTGAAATACTTGTAGAAAGA	h36b_a12.seq

T T T G G C A A C T G T C C T C T A A C A C T T T C T G A A T A G T T T G G T C A A A T G A A A T Majority

951	TTT GGC AAC T GTC CCT CTAAACACTTTCTGAAATAGTTGGTCAAAATGAAAT	2603_a12.seq
951	TTT GGC AAC T GTC CCT CTAAACACTTTCTGAAATAGTTGGTCAAAATGAAAT	18rs21_a12.seq
951	TTT GGC AAC T GTC CCT CTAAACACTTTCTGAAATAGTTGGTCAAAATGAAAT	515_a12.seq
951	TTT GGC AAC T GTC CCT CTAAACACTTTCTGAAATAGTTGGTCAAAATGAAAT	cjb111_a12.seq
951	TTT GGC AAC T GTC CCT CTAAACACTTTCTGAAATAGTTGGTCAAAATGAAAT	h36b_a12.seq

T A C A G T G T C G G G C C A A T A T T G A T G A C C A A T C C T A A A C T G A A A A A T A A G A Majority

1001	TACAGTGTGGGCCAATATTTGATGACCAATCCTAAACTGAAATAAGA	2603_a12.seq
1001	TACAGTGTGGGCCAATATTTGATGACCAATCCTAAACTGAAATAAGA	18rs21_a12.seq
1001	TACAGTGTGGGCCAATATTTGATGACCAATCCTAAACTGAAATAAGA	515_a12.seq
1001	TACAGTGTGGGCCAATATTTGATGACCAATCCTAAACTGAAATAAGA	cjb111_a12.seq
1001	TACAGTGTGGGCCAATATTTGATGACCAATCCTAAACTGAAATAAGA	h36b_a12.seq

T A A T A G C A A T A A A T G C T T G A A T A A G T T A C T A T T T G A C C G A G A T A A C A T T Majority

1051	TAATAGCAATAAAATGCTTGAAATAAGTTACTATTTGACCGAGATAACATT	2603_a12.seq
1051	TAATAGCAATAAAATGCTTGAAATAAGTTACTATTTGACCGAGATAACATT	18rs21_a12.seq
1051	TAATAGCAATAAAATGCTTGAAATAAGTTACTATTTGACCGAGATAACATT	515_a12.seq
1051	TAATAGCAATAAAATGCTTGAAATAAGTTACTATTTGACCGAGATAACATT	cjb111_a12.seq
1051	TAATAGCAATAAAATGCTTGAAATAAGTTACTATTTGACCGAGATAACATT	h36b_a12.seq

A G T C T T T T A T A T C T T C A A T A T T G G C A A A C A A G C C A C G T A A G T T A G A T Majority

1101	AGTCTTTTATATCTTCTAAATATTGGCAAAACAGCCACGTAAGTTAGAT	2603_a12.seq
1101	AGTCTTTTATATCTTCTAAATATTGGCAAAACAGCCACGTAAGTTAGAT	18rs21_a12.seq
1101	AGTCTTTTATATCTTCTAAATATTGGCAAAACAGCCACGTAAGTTAGAT	515_a12.seq
1101	AGTCTTTTATATCTTCTAAATATTGGCAAAACAGCCACGTAAGTTAGAT	cjb111_a12.seq
1101	AGTCTTTTATATCTTCTAAATATTGGCAAAACAGCCACGTAAGTTAGAT	h36b_a12.seq

A G A A A A C A A T C G A A A T T A A A T T C C C T C A A C G G A T A T T A A T G G A A T A A C C Majority

1151	AGAAAACAATCGAAATTAAAAATTCCCTCAACGATATTAAATGGAAATAACC	2603_a12.seq
1151	AGAAAACAATCGAAATTAAAAATTCCCTCAACGATATTAAATGGAAATAACC	18rs21_a12.seq
1151	AGAAAACAATCGAAATTAAAAATTCCCTCAACGATATTAAATGGAAATAACC	515_a12.seq
1151	AGAAAACAATCGAAATTAAAAATTCCCTCAACGATATTAAATGGAAATAACC	cjb111_a12.seq
1151	AGAAAACAATCGAAATTAAAAATTCCCTCAACGATATTAAATGGAAATAACC	h36b_a12.seq

A T T G T T A A A A G G T A A T T G C C T A C A C C A A T A A T G T T C T G A T A T C A A A G T T Majority

1201	ATTGTTAAAAGGTAAATTGCCCTACACCAATAATGTTCTGATATATCAAAGTT	2603_a12.seq
1201	ATTGTTAAAAGGTAAATTGCCCTACACCAATAATGTTCTGATATATCAAAGTT	18rs21_a12.seq
1201	ATTGTTAAAAGGTAAATTGCCCTACACCAATAATGTTCTGATATATCAAAGTT	515_a12.seq
1201	ATTGTTAAAAGGTAAATTGCCCTACACCAATAATGTTCTGATATATCAAAGTT	cjb111_a12.seq
1201	ATTGTTAAAAGGTAAATTGCCCTACACCAATAATGTTCTGATATATCAAAGTT	h36b_a12.seq

A G C A A A T A T A G C A T A C A A A G G A A T C G C A A A G A C A T A G T T G A G A G C T A C C A Majority

1251	AGCAAAATATAGCATACAAAGGAATCGCAAAAGACATAGTTGAGAGCTACCA	2603_a12.seq
1251	AGCAAAATATAGCATACAAAGGAATCGCAAAAGACATAGTTGAGAGCTACCA	18rs21_a12.seq
1251	AGCAAAATATAGCATACAAAGGAATCGCAAAAGACATAGTTGAGAGCTACCA	515_a12.seq
1251	AGCAAAATATAGCATACAAAGGAATCGCAAAAGACATAGTTGAGAGCTACCA	cjb111_a12.seq
1251	AGCAAAATATAGCATACAAAGGAATCGCAAAAGACATAGTTGAGAGCTACCA	h36b_a12.seq

T A G A T A C G G G T C A A G C T A A C T G T A C C A A A T A G A C T A G C T T T A A T A A A A T C T Majority

1301	TAGATACGGGTCAAGCTAACACTGTACCAAAATAGACTAGCTTTAATAAAATCT	2603_a12.seq
1301	TAGATACGGGTCAAGCTAACACTGTACCAAAATAGACTAGCTTTAATAAAATCT	18rs21_a12.seq
1301	TAGATACGGGTCAAGCTAACACTGTACCAAAATAGACTAGCTTTAATAAAATCT	515_a12.seq
1301	TAGATACGGGTCAAGCTAACACTGTACCAAAATAGACTAGCTTTAATAAAATCT	cjb111_a12.seq
1301	TAGATACGGGTCAAGCTAACACTGTACCAAAATAGACTAGCTTTAATAAAATCT	h36b_a12.seq

FIGURE 19B

	TTT G C A C T C T C T C A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A	Majority
	PCT 1660 1370 1380 1390 1400	
1351	TTT G C A C T C T C T C A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A 2603_a12.seq	
1351	TTT G C A C T C T C T C A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A 18rs21_a12.seq	
1351	TTT G C A C T C T C T C A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A 515_a12.seq	
1351	TTT G C A C T C T C T C A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A cjb111_a12.seq	
	AG C T A G A G C A A C C A T A T T C A T C G G T A A A C C A A T A A A C G T T T C T G G A C C A C Majority	
	1410 1420 1430 1440 1450	
1401	AG C T A G A G C A A C C A T A T T C A T C G G T A A A C C A A T A A A C G T T T C T G G A C C A C 2603_a12.seq	
1401	AG C T A G A G C A A C C A T A T T C A T C G G T A A A C C A A T A A A C G T T T C T G G A C C A C 18rs21_a12.seq	
1401	AG C T A G A G C A A C C A T A T T C A T C G G T A A A C C A A T A A A C G T T T C T G G A C C A C 515_a12.seq	
1401	AG C T A G A G C A A C C A T A T T C A T C G G T A A A C C A A T A A A C G T T T C T G G A C C A C cjb111_a12.seq	
	G A T T A G C A A G T A T A A C T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A Majority	
	1460 1470 1480 1490 1500	
1451	G A T T A G C A A G T A T A A C T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A 2603_a12.seq	
1451	G A T T A G C A A G T A T A A C T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A 18rs21_a12.seq	
1451	G A T T A G C A A G T A T A A C T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A 515_a12.seq	
1451	G A T T A G C A A G T A T A A C T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A cjb111_a12.seq	
	C T T G A T T T C A A A T C A A A T A A A A A G C A A C T A A C A T C G G A A G G A T T G A Majority	
	1510 1520 1530 1540 1550	
1501	C T T G A T T T C A A A T C A A A T A A A A A G C A A C T A A C A T C G G A A G G A T T G A 2603_a12.seq	
1501	C T T G A T T T C A A A T C A A A T A A A A A G C A A C T A A C A T C G G A A G G A T T G A 18rs21_a12.seq	
1501	C T T G A T T T C A A A T C A A A T A A A A A G C A A C T A A C A T C G G A A G G A T T G A 515_a12.seq	
1501	C T T G A T T T C A A A T C A A A T A A A A A G C A A C T A A C A T C G G A A G G A T T G A cjb111_a12.seq	
	A A A A T C A A C C T T A A A A A T T C T G C T C C T G G T A T T A A T G G A A A T G A A A C C A Majority	
	1560 1570 1580 1590 1600	
1551	A A A A T C A A C C T T A A A A A T T C T G C T C C T G G T A T T A A T G G A A A T G A A A C C A 2603_a12.seq	
1551	A A A A T C A A C C T T A A A A A T T C T G C T C C T G G T A T T A A T G G A A A T G A A A C C A 18rs21_a12.seq	
1551	A A A A T C A A C C T T A A A A A T T C T G C T C C T G G T A T T A A T G G A A A T G A A A C C A 515_a12.seq	
1551	A A A A T C A A C C T T A A A A A T T C T G C T C C T G G T A T T A A T G G A A A T G A A A C C A cjb111_a12.seq	
	T C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T A Majority	
	1610 1620 1630 1640 1650	
1601	T C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T A 2603_a12.seq	
1601	T C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T A 18rs21_a12.seq	
1601	T C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T A 515_a12.seq	
1601	T C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T A cjb111_a12.seq	
	C G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A T A A T T G G A A A G A A G Majority	
	1660 1670 1680 1690 1700	
1651	C G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A T A A T T G G A A A G A A G 2603_a12.seq	
1651	C G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A T A A T T G G A A A G A A G 18rs21_a12.seq	
1651	C G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A T A A T T G G A A A G A A G 515_a12.seq	
1651	C G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A T A A T T G G A A A G A A G cjb111_a12.seq	
	C T C C A A A G G T A A G C G T A T G T A C C C G A A A A A - C T T T G T C T T C T C C C A T C Majority	
	1710 1720 1730 1740 1750	
1701	C T C C A A A G G T A A G C G T A T G T A C C C G A A A A A - C T T T G T C T T C T C C C A T C 2603_a12.seq	
1701	C T C C A A A G G T A A G C G T A T G T A C C C G A A A A A - C T T T G T C T T C T C C C A T C 18rs21_a12.seq	
1701	C T C C A A A G G T A A G C G T A T G T A C C C G A A A A A - C T T T G T C T T C T C C C A T C 515_a12.seq	
1701	C T C C A A A G G T A A G C G T A T G T A C C C G A A A A A - C T T T G T C T T C T C C C A T C cjb111_a12.seq	
	C A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G Majority	
	1760 1770 1780 1790 1800	
1750	C A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G 2603_a12.seq	
1750	C A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G 18rs21_a12.seq	
1750	C A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G 515_a12.seq	
1750	C A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G cjb111_a12.seq	
	C A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G h36b_a12.seq	

FIGURE 19C

G A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A C C G A T T A C C G C C G G T C Majority
P C T 1810 1820 1830 1840 1850

1800 G A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C 2603_a12.seq
 1800 G A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C 18rs21_a12.seq
 1801 G A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C 515_a12.seq
 1800 G A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C cjb111_a12.seq
 1800 G A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C h36b_a12.seq

G G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A A C T T Majority
 1860 1870 1880 1890 1900

1850 G G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A A C T T 2603_a12.seq
 1850 G G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A A C T T 18rs21_a12.seq
 1851 G G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A A C T T 515_a12.seq
 1850 G G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A A C T T cjb111_a12.seq
 1850 G G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A A C T T h36b_a12.seq

G C A A T T G C A A G T T T T A A T T A C T A A T T A G T A G T G A T T A A A A A T C A T Majority
 1910 1920 1930 1940 1950

1900 G C A A T T G C A A G T T T T A A T T A C T A A T T A G T A G T G A T T A A A A A T C A T 2603_a12.seq
 1900 G C A A T T G C A A G T T T T A A T T A C T A A T T A G T A G T G A T T A A A A A T C A T 18rs21_a12.seq
 1901 G C A A T T G C A A G T T T T A A T T A C T A A T T A G T A G T G A T T A A A A A T C A T 515_a12.seq
 1900 G C A A T T G C A A G T T T T A A T T A C T A A T T A G T A G T G A T T A A A A A T C A T cjb111_a12.seq
 1900 G C A A T T G C A A G T T T T A A T T A C T A A T T A G T A G T G A T T A A A A A T C A T h36b_a12.seq

A T T A A T A C C A A A T T A C T A A T C T G T A T C G T T T C T T C A G A T T T G C T A T T T Majority
 1960 1970 1980 1990 2000

1950 A T T A A T A C C A A A T T A C T A A T C T G T A T C G T T T C T T C A G A T T T G C T A T T T 2603_a12.seq
 1950 A T T A A T A C C A A A T T A C T A A T C T G T A T C G T T T C T T C A G A T T T G C T A T T T 18rs21_a12.seq
 1951 A T T A A T A C C A A A T T A C T A A T C T G T A T C G T T T C T T C A G A T T T G C T A T T T 515_a12.seq
 1950 A T T A A T A C C A A A T T A C T A A T C T G T A T C G T T T C T T C A G A T T T G C T A T T T cjb111_a12.seq
 1950 A T T A A T A C C A A A T T A C T A A T C T G T A T C G T T T C T T C A G A T T T G C T A T T T h36b_a12.seq

T A G T T T T C T T A A A A A G A T A A A C A A A A T T C C C A A A A T A A T A C A A C C A A G A Majority
 2010 2020 2030 2040 2050

2000 T A G T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A A T A A T A C A A C C A A G A 2603_a12.seq
 2000 T A G T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A A T A A T A C A A C C A A G A 18rs21_a12.seq
 2001 T A G T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A A T A A T A C A A C C A A G A 515_a12.seq
 2000 T A G T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A A T A A T A C A A C C A A G A cjb111_a12.seq
 2000 T A G T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A A T A A T A C A A C C A A G A h36b_a12.seq

A T T G T C A G T C C T C C A C C A A T A A T C A T T C C T G T T T T A G G A A G A A A T G A T T G Majority
 2060 2070 2080 2090 2100

2050 A T T G T C A G T C C T C C A C C A A T A A T C A T T C C T G T T T T A G G A A G A A A T G A T T G 2603_a12.seq
 2050 A T T G T C A G T C C T C C A C C A A T A A T C A T T C C T G T T T T A G G A A G A A A T G A T T G 18rs21_a12.seq
 2051 A T T G T C A G T C C T C C A C C A A T A A T C A T T C C T G T T T T A G G A A G A A A T G A T T G 515_a12.seq
 2050 A T T G T C A G T C C T C C A C C A A T A A T C A T T C C T G T T T T A G G A A G A A A T G A T T G cjb111_a12.seq
 2050 A T T G T C A G T C C T C C A C C A A T A A T C A T T C C T G T T T T A G G A A G A A A T G A T T G h36b_a12.seq

T G G A A A A A G C G G G T T G T G A T G G T T T A G G A T T T G T G G A G G G A G T T T C T T Majority
 2110 2120 2130 2140 2150

2100 T G G A A A A A G C G G G T T G T G A T G G T T T A G G A T T T G T G G A G G G A G T T T C T T 2603_a12.seq
 2100 T G G A A A A A G C G G G T T G T G A T G G T T T A G G A T T T G T G G A G G G A G T T T C T T 18rs21_a12.seq
 2101 T G G A A A A A G C G G G T T G T G A T G G T T T A G G A T T T G T G G A G G G A G T T T C T T 515_a12.seq
 2100 T G G A A A A A G C G G G T T G T G A T G G T T T A G G A T T T G T G G A G G G A G T T T C T T cjb111_a12.seq
 2100 T G G A A A A A G C G G G T T G T G A T G G T T T A G G A T T T G T G G A G G G A G T T T C T T h36b_a12.seq

T T T C G T T T C T A C C T C T A C T T C C T G T T T T A T T A G C A A C T A C A G C A A C T Majority
 2160 2170 2180 2190 2200

2150 T T T C G T T T C T A C C T C T A C T T C C T G T T T T A T T A G C A A C T A C A G C A A C T 2603_a12.seq
 2150 T T T C G T T T C T A C C T C T A C T T C C T G T T T T A T T A G C A A C T A C A G C A A C T 18rs21_a12.seq
 2151 T T T C G T T T C T A C C T C T A C T T C C T G T T T T A T T A G C A A C T A C A G C A A C T 515_a12.seq
 2150 T T T C G T T T C T A C C T C T A C T T C C T G T T T T A T T A G C A A C T A C A G C A A C T cjb111_a12.seq
 2150 T T T C G T T T C T A C C T C T A C T T C C T G T T T T A T T A G C A A C T A C A G C A A C T h36b_a12.seq

A C A G C A T C C T C T A C A G A T A T A C C G T A A C C A G T T A G T G C T T T G C T T C T C G Majority
 2210 2220 2230 2240 2250

2200 A C A G C A T C C T C T A C A G A T A T A C C G T A A C C A G T T A G T G C T T T G C T T C T C G 2603_a12.seq
 2200 A C A G C A T C C T C T A C A G A T A T A C C G T A A C C A G T T A G T G C T T T G C T T C T C G 18rs21_a12.seq
 2201 A C A G C A T C C T C T A C A G A T A T A C C G T A A C C A G T T A G T G C T T T G C T T C T C G 515_a12.seq
 2200 A C A G C A T C C T C T A C A G A T A T A C C G T A A C C A G T T A G T G C T T T G C T T C T C G cjb111_a12.seq
 2200 A C A G C A T C C T C T A C A G A T A T A C C G T A A C C A G T T A G T G C T T T G C T T C T C G h36b_a12.seq

FIGURE 19D

61/487

Alignment Report WO 2006/078318 in method with Weighted residue weight table.
Thursday, July 29, 2004

PCT/US2005/027239,6

					Majority	
					2260 2270 2280 2290 2300	
2250	A	A	A	A	T A G T A C T T A C C A G G T A A T A A A C C T T C A A C C T C A A T T T C T C C C T T A T	2603_a12.seq
2250	A	A	A	A	T A T A C T T A C C A G G T A A T A A A C C T T C A A C C T C A A T T T C T C C C T T A T	18rs21_a12.seq
2251	A	A	A	A	T A T A C T T A C C A G G T A A T A A A C C T T C A A C C T C A A T T T C T C C C T T A T	515_a12.seq
2250	A	A	A	A	T A T A C T T A C C A G G T A A T A A A C C T T C A A C C T C A A T T T C T C C C T T A T	cjb111_a12.seq
2250	A	A	A	A	T A T A C T T A C C A G G T A A T A A A C C T T C A A C C T C A A T T T C T C C C T T A T	h36b_a12.seq
					C A T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G G T C G T A A A A T C G T C C A Majority	
					2310 2320 2330 2340 2350	
2300	C	A	T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G G T C G T A A A A T C G T C C A	2603_a12.seq		
2300	C	A	T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G G T C G T A A A A T C G T C C A	18rs21_a12.seq		
2301	C	A	T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G G T C G T A A A A T C G T C C A	515_a12.seq		
2300	C	A	T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G G T C G T A A A A T C G T C C A	cjb111_a12.seq		
2300	C	A	T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G G T C G T A A A A T C G T C C A	h36b_a12.seq		
					T T T T T A A A G C C G A A C T T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A T A T T A C Majority	
					2360 2370 2380 2390 2400	
2350	T	T	T	T	T A A A G C C G A A C T T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C	2603_a12.seq
2350	T	T	T	T	T A A A G C C G A A C T T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C	18rs21_a12.seq
2351	T	T	T	T	T A A A G C C G A A C T T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C	515_a12.seq
2350	T	T	T	T	T A A A G C C G A A C T T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C	cjb111_a12.seq
2350	T	T	T	T	T A A A G C C G A A C T T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C	h36b_a12.seq
					T C C G G A T A C C C T T T C T T T A T C T T T C C T T C T T T G T A T A T T T A A T A A G T T Majority	
					2410 2420 2430 2440 2450	
2400	T	C	C	G	G A T A G G C C T T T C T T T A T C T T T C C T T C T T T G T A T A T T T A A T A A G T T	2603_a12.seq
2400	T	C	C	G	G A T A G G C C T T T C T T T A T C T T T C C T T C T T T G T A T A T T T A A T A A G T T	18rs21_a12.seq
2401	T	C	C	G	G A T A G G C C T T T C T T T A T C T T T C C T T C T T T G T A T A T T T A A T A A G T T	515_a12.seq
2400	T	C	C	G	G A T A G G C C T T T C T T T A T C T T T C C T T C T T T G T A T A T T T A A T A A G T T	cjb111_a12.seq
2400	T	C	C	G	G A T A G G C C T T T C T T T A T C T T T C C T T C T T T G T A T A T T T A A T A A G T T	h36b_a12.seq
					T T A A T C G G C C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T Majority	
					2460 2470 2480 2490 2500	
2450	T	T	A	A	T C G G C C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T	2603_a12.seq
2450	T	T	A	A	T C G G C C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T	18rs21_a12.seq
2451	T	T	A	A	T C G G C C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T	515_a12.seq
2450	T	T	A	A	T C G G C C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T	cjb111_a12.seq
2450	T	T	A	A	T C G G C C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T	h36b_a12.seq
					G A T A A C T T A T C A T C T G G T A A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C Majority	
					2510 2520 2530 2540 2550	
2500	G	A	T	A	T C A T C T G G T A A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C	2603_a12.seq
2500	G	A	T	A	T C A T C T A T C A T C T G G T A A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C	18rs21_a12.seq
2501	G	A	T	A	T C A T C T A T C A T C T G G T A A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C	515_a12.seq
2500	G	A	T	A	T C A T C T A T C A T C T G G T A A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C	cjb111_a12.seq
2500	G	A	T	A	T C A T C T A T C A T C T G G T A A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C	h36b_a12.seq
					G C T T T G A T C A G C T T T A T A A G C A C C G A C C A A A G T A C G A A C C A T T T G G G A G T G Majority	
					2560 2570 2580 2590 2600	
2550	G	C	T	T	T G A T C A G C T T T A T A A G G A C G A C C A A A G T A C G A A C C A T T T G G G A G T G	2603_a12.seq
2550	G	C	T	T	T G A T C A G C T T T A T A A G G A C G A C C A A A G T A C G A A C C A T T T G G G A G T G	18rs21_a12.seq
2551	G	C	T	T	T G A T C A G C T T T A T A A G G A C G A C C A A A G T A C G A A C C A T T T G G G A G T G	515_a12.seq
2550	G	C	T	T	T G A T C A G C T T T A T A A G G A C G A C C A A A G T A C G A A C C A T T T G G G A G T G	cjb111_a12.seq
2550	G	C	T	T	T G A T C A G C T T T A T A A G G A C G A C C A A A G T A C G A A C C A T T T G G G A G T G	h36b_a12.seq
					C T A T C T T T G T C T G A C C A T T A G T A T C A G T A G G A G A G T C A A G A T A C T C T T A Majority	
					2610 2620 2630 2640 2650	
2600	C	T	A	T	T C A T C T T T G T C T G A C C A T T A G T A T C A G T A G G A G A G T C A A G A T A C T C T T A	2603_a12.seq
2600	C	T	A	T	T C A T C T T T G T C T G A C C A T T A G T A T C A G T A G G A G A G T C A A G A T A C T C T T A	18rs21_a12.seq
2601	C	T	A	T	T C A T C T T T G T C T G A C C A T T A G T A T C A G T A G G A G A G T C A A G A T A C T C T T A	515_a12.seq
2600	C	T	A	T	T C A T C T T T G T C T G A C C A T T A G T A T C A G T A G G A G A G T C A A G A T A C T C T T A	cjb111_a12.seq
2600	C	T	A	T	T C A T C T T T G T C T G A C C A T T A G T A T C A G T A G G A G A G T C A A G A T A C T C T T A	h36b_a12.seq
					T A C T C T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A A A A T C A A C T T T Majority	
					2660 2670 2680 2690 2700	
2650	T	A	C	T	T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A A A A T C A A C T T T	2603_a12.seq
2650	T	A	C	T	T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A A A A T C A A C T T T	18rs21_a12.seq
2651	T	A	C	T	T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A A A A T C A A C T T T	515_a12.seq
2650	T	A	C	T	T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A A A A T C A A C T T T	cjb111_a12.seq
2650	T	A	C	T	T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A A A A T C A A C T T T	h36b_a12.seq

FIGURE 19E

	<u>TAAGTTGTCAGTCACAGTCCATAAACGATAAAGAAATCCCCCTCTGTAG</u>	Majority
2710	2720	2730
2740	2750	
2700	TAAGTTGTCAGTCACAGTCCATAAACGATAAAGAAATCCCCCTCTGTAG	2603_a12.seq
2700	TAAGTTGTCAGTCACAGTCCATAAACGATAAAGAAATCCCCCTCTGTAG	18rs21_a12.seq
2701	TAAGTTGTCAGTCACAGTCCATAAACGATAAAGAAATCCCCCTCTGTAG	515_a12.seq
2700	TAAGTTGTCAGTCACAGTCCATAAACGATAAAGAAATCCCCCTCTGTAG	cjb111_a12.seq
2700	TAAGTTGTCAGTCACAGTCCATAAACGATAAAGAAATCCCCCTCTGTAG	h36b_a12.seq
	<u>TATTTGGCTGAAGTCCTATCTGTGTGATTGTAGTTGATTAGGGGTATCA</u>	Majority
2760	2770	2780
2790	2800	
2750	TATTTGGCTGAAGTCCTATCTGTGTGATTGTAGTTGATTAGGGGTATCA	2603_a12.seq
2750	TATTTGGCTGAAGTCCTATCTGTGTGATTGTAGTTGATTAGGGGTATCA	18rs21_a12.seq
2751	TATTTGGCTGAAGTCCTATCTGTGTGATTGTAGTTGATTAGGGGTATCA	515_a12.seq
2750	TATTTGGCTGAAGTCCTATCTGTGTGATTGTAGTTGATTAGGGGTATCA	cjb111_a12.seq
2750	TATTTGGCTGAAGTCCTATCTGTGTGATTGTAGTTGATTAGGGGTATCA	h36b_a12.seq
	<u>GCATTTACACTGGCTACCGAAAAAAACGCTAATTGTACCAATCTAAAAA</u>	Majority
2810	2820	2830
2840	2850	
2800	GCATTTACACTGGCTACCGAAAAAAACGCTAATTGTACCAATCTAAAAA	2603_a12.seq
2800	GCATTTACACTGGCTACCGAAAAAAACGCTAATTGTACCAATCTAAAAA	18rs21_a12.seq
2801	GCATTTACACTGGCTACCGAAAAAAACGCTAATTGTACCAATCTAAAAA	515_a12.seq
2800	GCATTTACACTGGCTACCGAAAAAAACGCTAATTGTACCAATCTAAAAA	cjb111_a12.seq
2800	GCATTTACACTGGCTACCGAAAAAAACGCTAATTGTACCAATCTAAAAA	h36b_a12.seq
	<u>CCAACATAGTAGAAGTCCTAAACCTTTTCTAATCTTTTCATTTTGATT</u>	Majority
2860	2870	2880
2890	2900	
2850	GCAACATAGTAGAAGTCCTAAACCTTTTCTAATCTTTTCATTTTGATT	2603_a12.seq
2850	GCAACATAGTAGAAGTCCTAAACCTTTTCTAATCTTTTCATTTTGATT	18rs21_a12.seq
2851	GCAACATAGTAGAAGTCCTAAACCTTTTCTAATCTTTTCATTTTGATT	515_a12.seq
2850	GCAACATAGTAGAAGTCCTAAACCTTTTCTAATCTTTTCATTTTGATT	cjb111_a12.seq
2850	GCAACATAGTAGAAGTCCTAAACCTTTTCTAATCTTTTCATTTTGATT	h36b_a12.seq
	<u>TCCCCTTCTCTCTCTTTAAATTTCGTTTAAATATAATAGTAAGA</u>	Majority
2910	2920	2930
2940	2950	
2900	TCCCCTTCTCTCTCTTTAAATTTCGTTTAAATATAATAGTAAGA	2603_a12.seq
2900	TCCCCTTCTCTCTCTTTAAATTTCGTTTAAATATAATAGTAAGA	18rs21_a12.seq
2901	TCCCCTTCTCTCTCTTTAAATTTCGTTTAAATATAATAGTAAGA	515_a12.seq
2900	TCCCCTTCTCTCTCTTTAAATTTCGTTTAAATATAATAGTAAGA	cjb111_a12.seq
2900	TCCCCTTCTCTCTCTTTAAATTTCGTTTAAATATAATAGTAAGA	h36b_a12.seq
	<u>CGACTAATAAGAATAACTAGGATTGATAAGAGGAAATAAGTTATAAG</u>	Majority
2960	2970	2980
2990	3000	
2950	CGACTAATAAGAATAACTAGGATTGATAAGAGGAAATAAGTTATAAG	2603_a12.seq
2950	CGACTAATAAGAATAACTAGGATTGATAAGAGGAAATAAGTTATAAG	18rs21_a12.seq
2951	CGACTAATAAGAATAACTAGGATTGATAAGAGGAAATAAGTTATAAG	515_a12.seq
2950	CGACTAATAAGAATAACTAGGATTGATAAGAGGAAATAAGTTATAAG	cjb111_a12.seq
2950	CGACTAATAAGAATAACTAGGATTGATAAGAGGAAATAAGTTATAAG	h36b_a12.seq
	<u>TGTCTTTGCAATTCTTCATTAATAAGTTCTTTCTTTAACAGCAGGGTAC</u>	Majority
3010	3020	3030
3040	3050	
3000	TGTCTTTGCAATTCTTCATTAATAAGTTCTTTCTTTAACAGCAGGGTAC	2603_a12.seq
3000	TGTCTTTGCAATTCTTCATTAATAAGTTCTTTCTTTAACAGCAGGGTAC	18rs21_a12.seq
3001	TGTCTTTGCAATTCTTCATTAATAAGTTCTTTCTTTAACAGCAGGGTAC	515_a12.seq
3000	TGTCTTTGCAATTCTTCATTAATAAGTTCTTTCTTTAACAGCAGGGTAC	cjb111_a12.seq
3000	TGTCTTTGCAATTCTTCATTAATAAGTTCTTTCTTTAACAGCAGGGTAC	h36b_a12.seq
	<u>ATACTTGGATTGATGCCCTCTAACTAGTAAACCGATGTGAATTATCGAAAT</u>	Majority
3060	3070	3080
3090	3100	
3050	ATACTTGGATTGATGCCCTCTAACTAGTAAACCGATGTGAATTATCGAAAT	2603_a12.seq
3050	ATACTTGGATTGATGCCCTCTAACTAGTAAACCGATGTGAATTATCGAAAT	18rs21_a12.seq
3051	ATACTTGGATTGATGCCCTCTAACTAGTAAACCGATGTGAATTATCGAAAT	515_a12.seq
3050	ATACTTGGATTGATGCCCTCTAACTAGTAAACCGATGTGAATTATCGAAAT	cjb111_a12.seq
3050	ATACTTGGATTGATGCCCTCTAACTAGTAAACCGATGTGAATTATCGAAAT	h36b_a12.seq
	<u>AAGGTGTACATGTTAGCAAAGTCGGCATATAATCCCCAACCTTAAACAACCAAT</u>	Majority
3110	3120	3130
3140	3150	
3100	AAGGTGTACATGTTAGCAAAGTCGGCATATAATCCCCAACCTTAAACAACCAAT	2603_a12.seq
3100	AAGGTGTACATGTTAGCAAAGTCGGCATATAATCCCCAACCTTAAACAACCAAT	18rs21_a12.seq
3101	AAGGTGTACATGTTAGCAAAGTCGGCATATAATCCCCAACCTTAAACAACCAAT	515_a12.seq
3100	AAGGTGTACATGTTAGCAAAGTCGGCATATAATCCCCAACCTTAAACAACCAAT	cjb111_a12.seq
3100	AAGGTGTACATGTTAGCAAAGTCGGCATATAATCCCCAACCTTAAACAACCAAT	h36b_a12.seq

FIGURE 19F

in media with Weighted residue weight table.

A A T T A G A A A A A T T A T C T G G C T T A C A A C A C T T A T T G A T C A A C C T T A T A Majority

3160

3170

3180

3190

3200

3150 A A T T A G A A A A A T T A T C T G G C T T A C A A C A C T T A T T G A T C A A C C T T A T A 2603_a12.seq

3150 A A T T A G A A A A A T T A T C T G G C T T A C A A C A C T T A T T G A T C A A C C T T A T A 18rs21_a12.seq

3151 A A T T A G A A A A A T T A T C T G G C T T A C A A C A C T T A T T G A T C A A C C T T A T A 515_a12.seq

3150 A A T T A G A A A A A T T A T C T G G C T T A C A A C A C T T A T T G A T C A A C C T T A T A cjb111_a12.seq

3150 A A T T A G A A A A A T T A T C T G G C T T A C A A C A C T T A T T G A T C A A C C T T A T A h36b_a12.seq

G G C T A A A A C T T C T T G A T A T T G A A T A T A A A A A T T T T T C C T T T T T A A Majority

3210

3220

3230

3240

3250

3200 G G C T A A A A C T T C T T G A T A T T G A A T A T A A A A A A T T T T C C T T T T T A A 2603_a12.seq

3200 G G C T A A A A C T T C T T G A T A T T G A A T A T A A A A A A T T T T C C T T T T T A A 18rs21_a12.seq

3201 G G C T A A A A C T T C T T G A T A T T G A A T A T A A A A A A T T T T C C T T T T T A A 515_a12.seq

3200 G G C T A A A A C T T C T T G A T A T T G A A T A T A A A A A A T T T T C C T T T T T A A cjb111_a12.seq

3200 G G C T A A A A C T T C T T G A T A T T G A A T A T A A A A A A T T T T C C T T T T T A A h36b_a12.seq

G T T T A T C T A A A T C T G T A A A T A A C T T A G C T T A G G T A A G G C C G G A T G A G C T Majority

3260

3270

3280

3290

3300

3250 G T T T A T C T A A A T C T G T A A A T A A C T T A G C T T A G G T A A G G C C G G A T G A G C T 2603_a12.seq

3250 G T T T A T C T A A A T C T G T A A A T A A C T T A G C T T A G G T A A G G C C G G A T G A G C T 18rs21_a12.seq

3251 G T T T A T C T A A A T C T G T A A A T A A C T T A G C T T A G G T A A G G C C G G A T G A G C T 515_a12.seq

3250 G T T T A T C T A A A T C T G T A A A T A A C T T A G C T T A G G T A A G G C C G G A T G A G C T cjb111_a12.seq

3250 G T T T A T C T A A A T C T G T A A A T A A C T T A G C T T A G G T A A G G C C G G A T G A G C T h36b_a12.seq

G T G A T A A C A G T A T G T G A A C T T T T C C A C C A A T T G G C A A G G A G G G T T C C T T C Majority

3310

3320

3330

3340

3350

3300 G T G A T A A C A G T A T G T G A A C T T T T C C A C C A A T T G G C A A G G A G G G T T C C T T C 2603_a12.seq

3300 G T G A T A A C A G T A T G T G A A C T T T T C C A C C A A T T G G C A A G G A G G G T T C C T T C 18rs21_a12.seq

3301 G T G A T A A C A G T A T G T G A A C T T T T C C A C C A A T T G G C A A G G A G G G T T C C T T C 515_a12.seq

3300 G T G A T A A C A G T A T G T G A A C T T T T C C A C C A A T T G G C A A G G A G G G T T C C T T C cjb111_a12.seq

3300 G T G A T A A C A G T A T G T G A A C T T T T C C A C C A A T T G G C A A G G A G G G T T C C T T C h36b_a12.seq

A A G G T G T C C T C C C T T T C A A G A A C A C T A C T G G T A G T C C C C G C A T A G A Majority

3360

3370

3380

3390

3400

3350 A A G G T G T C C T C C C T T T C A A G A A C A C T A C T G G T A G T C C C C G C A T A G A 2603_a12.seq

3350 A A G G T G T C C T G E T C C T T T T C A A G A A C A C T A C T G G T A G T C C C C C G C A T A G A 18rs21_a12.seq

3351 A A G G T G T C C T G C A T C C T T T T C A A G A A C A C T A C T G G T A G T C C C C G C A T A G A 515_a12.seq

3350 A A G G T G T C C T G C T C C T T T T C A A G A A C A C T A C T G G T A G T C C C C G C A T A G A cjb111_a12.seq

3350 A A G G T G T C C T G C T C C T T T T C A A G A A C A C T A C T G G T A G T C C C C G C A T A G A h36b_a12.seq

T A G G T A A T T T T G C T T G A T A G A C G G T A T A T C A A T A T A T C C A A T C A T T T C A Majority

3410

3420

3430

3440

3450

3400 T A G G T A A T T T T G C T T G A T A G A C G G T A T A T C A A T A T A T C C A A T C A T T T C A 2603_a12.seq

3400 T A G G T A A T T T T G C T T G A T A G A C G G T A T A T C A A T A T A T C C A A T C A T T T C A 18rs21_a12.seq

3401 T A G G T A A T T T T G C T T G A T A G A C G G T A T A T C A A T A T A T C C A A T C A T T T C A 515_a12.seq

3400 T A G G T A A T T T T G C T T G A T A G A C G G T A T A T C A A T A T A T C C A A T C A T T T C A cjb111_a12.seq

3400 T A G G T A A T T T T G C T T G A T A G A C G G T A T A T C A A T A T A T C C A A T C A T T T C A h36b_a12.seq

G C A A T C T C A A G C A T G T G G G C G T A T T C A G C C A A T A C C T T T T T C T T T T C Majority

3460

3470

3480

3490

3500

3450 G C A A T C T C A A G C A T G T G G G C G T A T T C A G C C A A T A C C T T T T T C T T T T C 2603_a12.seq

3450 G C A A T C T C A A G C A T G T G G G C G T A T T C A G C C A A T A C C T T T T T C T T T T C 18rs21_a12.seq

3451 G C A A T C T C A A G C A T A T G G G C G T A T T C A G C C A A T A C C T T T T T C T T T T C 515_a12.seq

3450 G C A A T C T C A A G C A T G T G G G C G T A T T C A G C C A A T A C C T T T T T C T T T T C cjb111_a12.seq

3450 G C A A T C T C A A G C A T G T G G G C G T A T T C A G C C A A T A C C T T T T T C T T T T C h36b_a12.seq

A G T A T A G G G A T C T G A T A G G G G G C T T G G G T C C A G T G T C T A T T A T A G C T Majority

3510

3520

3530

3540

3550

3500 A G T A T A G G G A T C T G A T A G G G G G C T T G G G T C C A G T G T C T A T T A T A G C T 2603_a12.seq

3500 A G T A T A G G G A T C T G A T A G G G G G C T T G G G T C C A G T G T C T A T T A T A G C T 18rs21_a12.seq

3501 A G T A T A G G G A T C T G A T A G G G G G C T T G G G T C C A G T G T C T A T T A T A G C T 515_a12.seq

3500 A G T A T A G G G A T C T G A T A G G G G G C T T G G G T C C A G T G T C T A T T A T A G C T cjb111_a12.seq

3500 A G T A T A G G G A T C T G A T A G G G G G C T T G G G T C C A G T G T C T A T T A T A G C T h36b_a12.seq

T T G C T A A C T C A A A T C G T C T A T T A T C T C T T T A G T A T T A T T T T G G G T Majority

3560

3570

3580

3590

3600

3550 T T G C T A A C T C A A A T C G T C T A T T A T C T C T T T A G T A T T A T T T T G G G T 2603_a12.seq

3550 T T G C T A A C T C A A A T C G T C T A T T A T C T C T T T A G T A T T A T T T T G G G T 18rs21_a12.seq

3551 T T G C T A A C T C A A A T C G T C T A T T A T C T C T T T A G T A T T A T T T T G G G T 515_a12.seq

3550 T T G C T A A C T C A A A T C G T C T A T T A T C T C T T T A G T A T T A T T T T G G G T cjb111_a12.seq

3550 T T G C T A A C T C A A A T C G T C T A T T A T C T C T T T A G T A T T A T T T T G G G T h36b_a12.seq

FIGURE 19G

64/487

	<u>T G A T T A T C A A A G T T A G T T A C T G A T T A T T A G C T T T A A T A T T A T A G T A C C A</u>	Majority
3610	3620	3630
3640	3650	
3600	T G A T T A T C A A A G T T A G T T A C T G A T T A T T A G C T T T A A T A T T A T A G T A C C A	2603_a12.seq
3600	T G A T T A T C A A A G T T A G T T A C T G A T T A T T A G C T T T A A T A T T A T A G T A C C A	18rs21_a12.seq
3601	T G A T T A T C A A A G T T A G T T A C T G A T T A T T A G C T T T A A T A T T A T A G T A C C A	515_a12.seq
3600	T G A T T A T C A A A G T T A G T T A C T G A T T A T T A G C T T T A A T A T T A T A G T A C C A	cjb111_a12.seq
3600	T G A T T A T C A A A G T T A G T T A C T G A T T A T T A G C T T T A A T A T T A T A G T A C C A	h36b_a12.seq
	<u>A T T T G A A A T A A A A G G A T A T G A G G T T A T C A A A A G A C C A A C T A A G A A C A A T A</u>	Majority
3660	3670	3680
3690	3700	
3650	A T T T G A A A T A A A A G G A T A T G A G G T T A T C A A A A G A C C A A C T A A G A A C A A T A	2603_a12.seq
3650	A T T T G A A A T A A A A G G A T A T G A G G T T A T C A A A A G A C C A A C T A A G A A C A A T A	18rs21_a12.seq
3651	A T T T G A A A T A A A A G G A T A T G A G G T T A T C A A A A G A C C A A C T A A G A A C A A T A	515_a12.seq
3650	A T T T G A A A T A A A A G G A T A T G A G G T T A T C A A A A G A C C A A C T A A G A A C A A T A	cjb111_a12.seq
3650	A T T T G A A A T A A A A G G A T A T G A G G T T A T C A A A A G A C C A A C T A A G A A C A A T A	h36b_a12.seq
	<u>G T A T C A A G C C T A C A T C A T C C A T C G A T T T A A A A C G A C C G A T T T C T T A A G G</u>	Majority
3710	3720	3730
3740	3750	
3700	G T A T C A A G C C T A C A T C A T C C A T C G A T T T A A A A C G A C C G A T T T C T T A A G G	2603_a12.seq
3700	G T A T C A A G C C T A C A T C A T C C A T C G A T T T A A A A C G A C C G A T T T C T T A A G G	18rs21_a12.seq
3701	A T A T C A A A C C T A T T C A T C C A T C G A T T T A A A A C G A C C G A T T T C T T A A G G	515_a12.seq
3700	G T A T C A A G C C T A C A T C A T C C A T C G A T T T A A A A C G A C C G A T T T C T T A A G G	cjb111_a12.seq
3700	G T A T C A A G C C T A C A T C A T C C A T C G A T T T A A A A C G A C C G A T T T C T T A A G G	h36b_a12.seq
	<u>T T T T T C T G A A A T T T C C T C C C A T T A T G A T T C A A T T C C T T T C T A A C A C T T</u>	Majority
3760	3770	3780
3790	3800	
3750	T T T T T C T G A A A T T T C C T C C C A T T A T G A T T C A A T T C C T T T C T A A C A C T T	2603_a12.seq
3750	T T T T T C T G A A A T T T C C T C C C A T T A T G A T T C A A T T C C T T T C T A A C A C T T	18rs21_a12.seq
3751	T T T T T C T G A A A T T T C C T C C C A T T A T G A T T C A A T T C C T T T C T A A C A C T T	515_a12.seq
3750	T T T T T C T G A A A T T T C C T C C C A T T A T G A T T C A A T T C C T T T C T A A C A C T T	cjb111_a12.seq
3750	T T T T T C T G A A A T T T C C T C C C A T T A T G A T T C A A T T C C T T T C T A A C A C T T	h36b_a12.seq
	<u>G C T A A A C G A T T T T T G A C G T T G A C G T T T A T T A C C A A A G T A A C C A A G C</u>	Majority
3810	3820	3830
3840	3850	
3800	G C T A A A C G A T T T T T G A C G T T G A C G T T T A T T A C C A A A G T A A C C A A G C	2603_a12.seq
3800	G C T A A A C G A T T T T T G A C G T T G A C G T T T A T T A C C A A A G T A A C C A A G C	18rs21_a12.seq
3801	G C T A A A C G A T T T T T G A C G T T G A C G T T T A T T A C C A A A G T A A C C A A G C	515_a12.seq
3800	G C T A A A C G A T T T T T G A C G T T G A C G T T T A T T A C C A A A G T A A C C A A G C	cjb111_a12.seq
3800	G C T A A A C G A T T T T T G A C G T T G A C G T T T A T T A C C A A A G T A A C C A A G C	h36b_a12.seq
	<u>A A T A A T A A C T A A A G A T A T A T A G A A A A G A T A T C T A T A A A T C G T G T T T A A A T</u>	Majority
3860	3870	3880
3890	3900	
3850	A A T A A T A A C T A A A G A T A T A T A G A A A A G A T A T C T A T A A A A T C G T G T T T A A A T	2603_a12.seq
3850	A A T A A T A A C T A A A G A T A T A T A G A A A A G A T A T C T A T A A A A T C G T G T T T A A A T	18rs21_a12.seq
3851	A A T A A T A A C T A A A G A T A T A T A G A A A A G A T A T C T A T A A A A T C G T G T T T A A A T	515_a12.seq
3850	A A T A A T A A C T A A A G A T A T A T A G A A A A G A T A T C T A T A A A A T C G T G T T T A A A T	cjb111_a12.seq
3850	A A T A A T A A C T A A A G A T A T A T A G A A A A G A T A T C T A T A A A A T C G T G T T T A A A T	h36b_a12.seq
	<u>G A C C G T C T T T T A T T A A T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A</u>	Majority
3910	3920	3930
3940	3950	
3900	G A C C G T C T T T T A T T A A T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A	2603_a12.seq
3900	G A C C G T C T T T T A T T A A T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A	18rs21_a12.seq
3901	G A C C G T C T T T T A T T A A T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A	515_a12.seq
3900	G A C C G T C T T T T A T T A A T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A	cjb111_a12.seq
3900	G A C C G T C T T T T A T T A A T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A	h36b_a12.seq
	<u>T G T C C C C T T A C T A A A A G T C T G T G T A T T G A C C A T A A T C G G G G T G C A A G T</u>	Majority
3960	3970	3980
3990	4000	
3950	T G T C C C C T T A C T A A A A G T C T G T G T A T T G A C C A T A A T C G G G G T G C A A G T	2603_a12.seq
3950	T G T C C C C T T A C T A A A A G T C T G T G T A T T G A C C A T A A T C G G G G T G C A A G T	18rs21_a12.seq
3951	T G T C C C C T T A C T A A A A G T C T G T G T A T T G A C C A T A A T C G G G G T G C A A G T	515_a12.seq
3950	T G T C C C C T T A C T A A A A G T C T G T G T A T T G A C C A T A A T C G G G G T G C A A G T	cjb111_a12.seq
3950	T G T C C C C T T A C T A A A A G T C T G T G T A T T G A C C A T A A T C G G G G T G C A A G T	h36b_a12.seq
	<u>C A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A A C C A A C A A T C T G A A A A G T</u>	Majority
4010	4020	4030
4040	4050	
4000	C A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A A C C A A C A A A T C T G A A A A G T	2603_a12.seq
4000	C A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A A C C A A C A A A T C T G A A A A G T	18rs21_a12.seq
4001	C A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A A C C A A C A A A T C T G A A A A G T	515_a12.seq
4000	C A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A A C C A A C A A A T C T G A A A A G T	cjb111_a12.seq
4000	C A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A A C C A A C A A A T C T G A A A A G T	h36b_a12.seq

FIGURE 19H

T A T C G G G G T G T K A C G I A G T T E T A T E T G A T C T A C T T G A T A T G C T A T C G T T T C T Majority				
4060	4070	4080	4090	4100
4050 T A T C G G G G T G T K A C G I A G T T E T A T E T G A T C T A C T T G A T A T G C T A T C G T T T C T 2603_a12.seq				
4050 T A T C G G G G T G T K A C G I A G T T E T A T E T G A T C T A C T T G A T A T G C T A T C G T T T C T 18rs21_a12.seq				
4051 T A T C G G G G T G T K A C G I A G T T E T A T E T G A T C T A C T T G A T A T G C T A T C G T T T C T 515_a12.seq				
4050 T A T C G G G G T G T K A C G I A G T T E T A T E T G A T C T A C T T G A T A T G C T A T C G T T T C T cjb111_a12.seq				
4050 T A T C G G G G T G T K A C G I A G T T E T A T E T G A T C T A C T T G A T A T G C T A T C G T T T C T h36b_a12.seq				
T T T A T G T T T T G A A T A T A A A C T T A T C T C C T T T T T A A C T T T T A A G G T T Majority				
4110	4120	4130	4140	4150
4100 T T T A T G T T T T G A A T A T A A A C T T A T C T C C T T T T T A A C T T T T A A G G T T 2603_a12.seq				
4100 T T T A T G T T T T G A A T A T A A A C T T A T C T C C T T T T T A A C T T T T A A G G T T 18rs21_a12.seq				
4101 T T T A T G T T T T G A A T A T A A A C T T A T C T C C T T T T T A A C T T T T A A G G T T 515_a12.seq				
4100 T T T A T G T T T T G A A T A T A A A C T T A T C T C C T T T T T A A C T T T T A A G G T T cjb111_a12.seq				
4100 T T T A T G T T T T G A A T A T A A A C T T A T C T C C T T T T T A A C T T T T A A G G T T h36b_a12.seq				
A G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C A G T A T Majority				
4160	4170	4180	4190	4200
4150 A G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C A G T A T 2603_a12.seq				
4150 A G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C A G T A T 18rs21_a12.seq				
4151 A G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C A G T A T 515_a12.seq				
4150 A G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C A G T A T cjb111_a12.seq				
4150 A G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C A G T A T h36b_a12.seq				
G T G T A C T A T T G C C T C C A A T T G G A A G A G A G G T A C C T T C T A A A T G C C C T G C T Majority				
4210	4220	4230	4240	4250
4200 G T G T A C T A T T G C C T C C A A T T G G A A G A G A G G T A C C T T C T A A A T G C C C T G C T 2603_a12.seq				
4200 G T G T A C T A T T G C C T C C A A T T G G A A G A G A G G T A C C T T C T A A A T G C C C T G C T 18rs21_a12.seq				
4201 G T G T A C T A T T G C C T C C A A T T G G A A G A G A G G T A C C T T C T A A A T G C A C T G C T 515_a12.seq				
4200 G T G T A C T A T T G C C T C C A A T T G G A A G A G A G G T A C C T T C T A A A T G C C C T G C T cjb111_a12.seq				
4200 G T G T A C T A T T G C C T C C A A T T G G A A G A G A G G T A C C T T C T A A A T G C C C T G C T h36b_a12.seq				
C C T T A G A T A G A A C T T C T T G A C T T G A A C C T G C A A A A T A T A G G G A G T T T T G Majority				
4260	4270	4280	4290	4300
4250 C C T T A G A T A G A A C T T C T T G A C T T G A A C C T G C A A A A T A T A G G G A G T T T T G 2603_a12.seq				
4250 C C T T A G A T A G A A C T T C T T G A C T T G A A C C T G C A A A A T A T A G G G A G T T T T G 18rs21_a12.seq				
4251 C C T T A G A T A G A A C T T C T T G A C T T G A A C C T G C A A A A T A T A G G G A G T T T T G 515_a12.seq				
4250 C C T T A G A T A G A A C T T C T T G A C T T G A A C C T G C A A A A T A T A G G G A G T T T T G cjb111_a12.seq				
4250 C C T T A G A T A G A A C T T C T T G A C T T G A A C C T G C A A A A T A T A G G G A G T T T T G h36b_a12.seq				
A C C T A T C T T A G G A A C T G A A A T T G T G C C C G A T T T T T C A C T T A C C T C T A A C A Majority				
4310	4320	4330	4340	4350
4300 A C C T A T C T T A G G A A C T G A A A T T G T G C C C G A T T T T T C A C T T A C C T C T A A C A 2603_a12.seq				
4300 A C C T A T C T T A G G A A C T G A A A T T G T G C C C G A T T T T T C A C T T A C C T C T A A C A 18rs21_a12.seq				
4301 A C C T A T C T T A G G A A C T G A A A T T G T G C C C G A T T T T T C A C T T A C C T C T A A C A 515_a12.seq				
4300 A C C T A T C T T A G G A A C T G A A A T T G T G C C C G A T T T T T C A C T T A C C T C T A A C A cjb111_a12.seq				
4300 A C C T A T C T T A G G A A C T G A A A T T G T G C C C G A T T T T T C A C T T A C C T C T A A C A h36b_a12.seq				
T A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A Majority				
4360	4370	4380	4390	4400
4350 T A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A 2603_a12.seq				
4350 T A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A 18rs21_a12.seq				
4351 T A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A 515_a12.seq				
4350 T A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A cjb111_a12.seq				
4350 T A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A h36b_a12.seq				
T C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A T A A G C T T G T G C T A G A G C Majority				
4410	4420	4430	4440	4450
4400 T C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A T A A G C T T G T G C T A G A G C 2603_a12.seq				
4400 T C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A T A A G C T T G T G C T A G A G C 18rs21_a12.seq				
4401 T C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A T A A G C T T G T G C T A G A G C 515_a12.seq				
4400 T C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A T A A G C T T G T G C T A G A G C cjb111_a12.seq				
4400 T C T T C A A A A T G G A C A T T A T T A A A G A A T C A T T A T A A G C T T G T G C T A G A G C h36b_a12.seq				
C A T A C G T C G A T T G A T T C T T C T G A C T A A G T T T T T A G C A G C T C T C T C A A Majority				
4460	4470	4480	4490	4500
4450 C A T A C G T C G A T T G A T T C T T C T G A C T A A G T T T T T A G C A G C T C T C T C A A 2603_a12.seq				
4450 C A T A C G T C G A T T G A T T C T T C T G A C T A A G T T T T T A G C A G C T C T C T C A A 18rs21_a12.seq				
4451 C A T A C G T C G A T T G A T T C T T C T G A C T A A G T T T T T A G C A G C T C T C T C A A 515_a12.seq				
4450 C A T A C G T C G A T T G A T T C T T C T G A C T A A G T T T T T A G C A G C T C T C T C A A cjb111_a12.seq				
4450 C A T A C G T C G A T T G A T T C T T C T G A C T A A G T T T T T A G C A G C T C T C T C A A h36b_a12.seq				

FIGURE 19I

A A T C C E G T G T F I G T T A T A G A T I C E F A I C G T A T A G T A A A A A C G T G A T A C C Majority				
4510	4520	4530	4540	4550
4500 A A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C 2603_a12.seq				
4500 A A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C 18rs21_a12.seq				
4501 A A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C 515_a12.seq				
4500 A A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C cjb111_a12.seq				
4500 A A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C h36b_a12.seq				
A C T G G A T A C A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G Majority				
4560	4570	4580	4590	4600
4550 A C T G G A T A C A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G 2603_a12.seq				
4550 A C T G G A T A C A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G 18rs21_a12.seq				
4551 A C T G G A T A C A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G 515_a12.seq				
4550 A C T G G A T A C A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G cjb111_a12.seq				
4550 A C T G G A T A C A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G h36b_a12.seq				
A A G A T T T G A C T T C T T C T T T T - - - T G T T T T T T G A T G A T T T T T T A G T C T Majority				
4610	4620	4630	4640	4650
4600 A A G A T T T G A C T T C T T C T T T T T T T T G A T G A T T T T T T A G T C T 2603_a12.seq				
4600 A A G A T T T G A C T T C T T C T T T T T T T T G A T G A T T T T T T A G T C T 18rs21_a12.seq				
4601 A A G A T T T G A C T T C T T C T T T T T T T T G A T G A T A T T T T T T T A G T C T 515_a12.seq				
4600 A A G A T T T G A C T T C T T C T T T T - - - A G T T T T T T G A T G A T A T T T T T A G T C T cjb111_a12.seq				
4600 A A G A T T T G A C T T C T T C T T T T - - - A G T T T T T T G A T G A T A T T T T T A G T C T h36b_a12.seq				
T C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C Majority				
4660	4670	4680	4690	4700
4650 T C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C 2603_a12.seq				
4650 T C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C 18rs21_a12.seq				
4648 T C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C 515_a12.seq				
4647 T C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C cjb111_a12.seq				
4647 T C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C h36b_a12.seq				
T A C T G A A A T A C C C T T A G A T C A T A A G C A C A G C T T T A A C T G T G C T T A T A C A T Majority				
4710	4720	4730	4740	4750
4700 T A C T G A A A T A C C C T T A G A T C A T A A G C A C A G C G T T T A A C T G T G C T T A T A C A T 2603_a12.seq				
4700 T A C T G A A A T A C C C T T A G A T C A T A A G C A C A G C G T T T A A C T G T G C T T A T A C A T 18rs21_a12.seq				
4698 T A C T G A A A T A C C C T T A G A T C A T A A G C A C A G C G T T T A A C T G T G C T T A T A C A T 515_a12.seq				
4697 T A C T G A A A T A C C C T T A G A T C A T A A G C A C A G C G T T T A A C T G T G C T T A T A C A T cjb111_a12.seq				
4697 T A C T G A A A T A C C C T T A G A T C A T A A G C A C A G C G T T T A A C T G T G C T T A T A C A T h36b_a12.seq				
C A T C A A A G A C T A G C C T T A A G C T T C C T C T G A T T G A C G T C T T T C A T G A T A A Majority				
4760	4770	4780	4790	4800
4750 C A T C A A A G A C T A G C C T T A A G C T T C C T T G A T T G A C G T C T T T C A T G A T A A 2603_a12.seq				
4750 C A T C A A A G A C T A G C C T T A A G C T T C C T T G A T T G A C G T C T T T C A T G A T A A 18rs21_a12.seq				
4748 C A T C A A A G A C T A A T C T T A A A C T T C C T C T G A T T G A C G T C T T T C A T G A T A A 515_a12.seq				
4747 C A T C A A A G A C T A G C C T T A A G C T T C C T C T G A T T G A C G T C T T T C A T G A T A A cjb111_a12.seq				
4747 C A T C A A A G A C T A G C C T T A A G C T T C C T C T G A T T G A C G T C T T T C A T G A T A A h36b_a12.seq				
C T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A Majority				
4810	4820	4830	4840	4850
4800 C T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A 2603_a12.seq				
4800 C T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A 18rs21_a12.seq				
4798 C T A C T G C T C C A A G C A T A A T A C T T A A A C C A A T A A T T G T G A A A A A A T T G T A 515_a12.seq				
4797 C T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A cjb111_a12.seq				
4797 C T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A h36b_a12.seq				
C C A A T A C C A C C T G T T G T G G G A T T G T A C C T T T T A T T T C T A C T C G T T G Majority				
4860	4870	4880	4890	4900
4850 C C A A T A C C A C C T G T T G T G G G A T T G T A C C T T T T A T T T C T A C A C G T G T 2603_a12.seq				
4850 C C A A T A C C A C C T G T T G T G G G A T T G T A C C T T T T A T T T C T A C A C G T G T 18rs21_a12.seq				
4848 C C A A T A C C A C C T G T T G T G G G A T A T G T A C C T T T T A T T T C T A C A C G T G T 515_a12.seq				
4847 C C A A T A C C A C C T G T T G T G G G A T A T G T A C C T T T T A T T T C T A C A C G T G T cjb111_a12.seq				
4847 C C A A T A C C A C C T G T T G T G G G A T A T G T A C C T T T T A T T T C T A C A C G T G T h36b_a12.seq				
C C G A T C T T T T T T G C T G C T A G C A G C G T A G T C A A T G T T A C C T G - - - A A C Majority				
4910	4920	4930	4940	4950
4900 C C G A T C T T T T T G G T T G C T G T A G C C A A C G T A G T C A A T G T T A C C - - - A C 2603_a12.seq				
4900 C C G A T C T T T T T G G T T G C T G T A G C C A A C G T A G T C A A T G T T A C C - - - A C 18rs21_a12.seq				
4898 C C G A T C T T T T T G G T T G C T G T A G C C A A C G T A G T C A A T G T T A C C - - - A C 515_a12.seq				
4897 C C G A T C T T T T T G G T T G C T G T A G C C A A C G T A G T C A A T G T T A C C - - - A C cjb111_a12.seq				
4897 C C G A T C T T T T T G G T T G C T G T A G C C A A C G T A G T C A A T G T T A C C - - - A C h36b_a12.seq				

FIGURE 19J

CTTTCTGTTTGCAGACCTTGATTAAGCTCAAACTAACATCACCTGCCAAT Majority				
4960	4970	4980	4990	5000
4944 C T G T T A T G C A T G A C C U T T G A T T A A C T A C A A A C T T A A I A T I A C C T G C C A A T 2603_a12.seq				
4944 C T G T T A T G C A T G A C C U T T G A T T A A C T A C A A A C T T A A I A T I A C C T G C C A A C 18rs21_a12.seq				
4948 C T T T A C T G T A T G A A G T A G U A T T A A C T A C A A C G A A A C A T C A C C T G A A T A 515_a12.seq				
4947 C T T T G C T A T A T G A A G T G G C A G T T A C T C A A A G T T I A C A T C A C C T G A C A A T cjb111_a12.seq				
4944 C G T T T G C T T T G A G G G T G T T I C A A C T T I G A A A T C A A C A T C A C C T G C T A A T h36b_a12.seq				
TTAGCATAACCTGCTGGAGCTTGTGTTCTCAAGGTTGAAGTACCTTC Majority				
5010	5020	5030	5040	5050
4994 T T A G C A A A T C C T G C T G G G A G C A A G T G T T T C T T C A A G G T T G T A A G T A C C G T C 2603_a12.seq				
4994 T T A G C A A A I C C T G C T G G G A G C A A G T G T T T C T T C A A G G T T G T A A G T A C C G T C 18rs21_a12.seq				
4998 T T A G C A T A A C C A G I T T G G I G C T T G T T T C T C G A A I G A G T A I T G A C C T T C 515_a12.seq				
4997 T T A G C A T A A C C T G C T G G G I G C T T G A G T T T C T C G A A I G A G T A I T G A C C T T C cjb111_a12.seq				
4994 T T A G C G T A A C C A G C T G G G A G C T T G T G T T C T C A A G G I T T A A G T A C C A G T h36b_a12.seq				
TGCAAGACCTGTAACCTCAATTGACCTTGTGATCGTTGAAGTCATAATTAA Majority				
5060	5070	5080	5090	5100
5044 T G C A A G A C C T G T A A C C T T C A A A T T G A C C T T G A T C G T T T G A A G T G T A A G G T A A 2603_a12.seq				
5044 T G C A A G A C C T G T A A C C T T C A A A T T G A C C T T G A T C G T T T G A A G T G T A A G G T A A 18rs21_a12.seq				
5048 A G C U A A G C C A G T A A I T T C A A A T T G A C C T T I A T C G T T A G A A A T C A A T T T A A 515_a12.seq				
5047 A T C C A A A C C A G T A A T T C A A A T T G A C C A C C G G C G T T A G A A E T C A A T T T A A cjb111_a12.seq				
5044 T G C A A G A C C G C T A A C T T C A A A T T G A C C G T C A G C G T T G A A G T C A A T T T A A h36b_a12.seq				
CAACTTTACCAAGCTGAGC-TTTTATCTGTTACCCACTCATAAAGCTGTACGAGCT Majority				
5110	5120	5130	5140	5150
5094 T G G C T C T A G C - - C T T A T C T G T T A I C C A C T C A T A A G C T G T A C G G A C C 2603_a12.seq				
5094 T G G C T C T A G C - - C T T A T C T G T T A I C C A C T C A T A A G C T G T A C G G A C C 18rs21_a12.seq				
5098 C A A C A T T C G A C T A G C A T T T T A T C T C A A C C C A T C G T A T A G A G G A T I A G C T 515_a12.seq				
5097 C A A C A T T A C A G C C T T T T A T C G C A A C C C A T C G T A T A G A G G A T I A G C T cjb111_a12.seq				
5094 C A A C G T T A G C A I C T T A T T T A T A G T T A C C C A C T C G T A A A G C T G T A C G G A C C h36b_a12.seq				
TCAATGAAGGCTGCATTGTAAGCTTCTTGTAGTTGATAGTTGCTTT Majority				
5160	5170	5180	5190	5200
5138 T C A A T G A A G G C T G C A T U G T A A T C T G C T T G T T A G T T T G A T A A G T I C T T T 2603_a12.seq				
5138 T C A A T G A A G G C T G C A T U G T A A T C T G C T T G T T A G T T T G A T A A G T I C T T T 18rs21_a12.seq				
5148 T T A A C U A A G G C A T C A T T G T A A G C T T I T T G T T T I I C A G T T A A U G G T A G C C A A 515_a12.seq				
5147 T T A A C U A A A G G C G T C A T T G T A A G C T T I T T G T T T I I G A T C A A C G T A G G C U A A cjb111_a12.seq				
5144 A C G A T G A A G G C T G C A T T G T A A G C C I T C T T G A G G A G T T T G A T A I T G C T T T h36b_a12.seq				
TGCTGTTTACCTTTTGACCTTTTGTTCTCTGCAAGACAACTTGTTA Majority				
5210	5220	5230	5240	5250
5188 T G C A G T A A T I C C T T T T C A C C T T T T G T C T G I T G C A G A C A A C T T G T T A T 2603_a12.seq				
5188 T G C A G T A A T I C C T T T T C A C C T T T T G T C T G I T G C A G A C A A C T T G T T A T 18rs21_a12.seq				
5198 T G C T C A T T T A C C A T C T T G A C C T T I T T G T T I T T C T I A G C I C A A T I C T T G T T A T 515_a12.seq				
5197 T G C T G T T T I A C C T T C T T G G C G T T I T T G T T I T T C T I A G C I C A A G T C G T T A T cjb111_a12.seq				
5194 A G C T G T T T C A C C T T T A G I A C C T T T G A T C G T C T G C T G A A A G I T T G T T C T h36b_a12.seq				
AAGCTGCGATAGCTTACATCTAAAGCTATTAGTAGTAGCTAAAGCTGTT Majority				
5260	5270	5280	5290	5300
5238 A A G C A G C G A T A G C T T C A T C T A A A G C T A T T T C T T A G G C A G C T A A A G C T T 2603_a12.seq				
5238 A A G C A G C G A T A G C T T C A T C T A A A G C T A T T T C T T A G G C A G C T A A A G C T T 18rs21_a12.seq				
5248 A A G C T T I I A A G C A G C A T C T C A A I G C T A T T T A G T G A A I C T A A G G A G C T T 515_a12.seq				
5247 A A G C T T I I A A G C A G C A T C T C A A T G C T A T T T A G T G A I T T A G A C T G C G C T C jjb111_a12.seq				
5244 A A G C T G C G A T T I I A G C T G C A A G G C A G T T T A G C G A I T T G C G C T G A A A G I T T G T T C T h36b_a12.seq				
TTTGAGCTGCTTTGCTTACATCTGCTTTAAGTGCAGGTTATTACCTGC Majority				
5310	5320	5330	5340	5350
5285 T T T T G A U C T - - T U T G A T T G A T C T G C T T T A A G A G C A A G G T A T T T A C C T G C 2603_a12.seq				
5285 T T T T G A U C T - - T U T G A T T G A T C T G C T T T A A G A G C A A G G T A T T T A C C T G C 18rs21_a12.seq				
5298 T T T T C T G C A T C T G C T T G C A A C A U C T G A T T T A G G T G C C A A G T A C T T G C C T T C 515_a12.seq				
5297 T T T C T T C A G C A G T T G C T G C A U G T G C T T T A G G T G C C A A G T A C T T G C C T T C cjb111_a12.seq				
5294 T T T T G A G C T G C A T A T T G I C G C A G A T G A T T T C A A T G C A A G G T A T T T A C C C A G C h36b_a12.seq				
TGAGTTTTAACAAAGCAATTGTCACCTGCCAAGCGTTCAAGTTCAAGGTT Majority				
5360	5370	5380	5390	5400
5332 T G A G T T T T C A C A A C G A A T T G T G C A C C A G C C C A A A C G G C T C A T T T G T T 2603_a12.seq				
5332 T G A G T T T T C A C A A C G A A T T G T G C A C C A G C C C A A A C G G C T C A T T T G T T 18rs21_a12.seq				
5348 T T T C T T A A C A A G G A A G G T A G G C C I C T G C C A A G C G T T C A T T T C A L C T T 515_a12.seq				
5347 T T T C T T A A C G A G G A A G G G I A G G C C I C T G C C A A G C G T T C A G T G T T I A G G T T cjb111_a12.seq				
5344 T G A A T T T T T A A C A A C G A A C T G T G C A C C T T G C A A G C G T T C I G T T C A G G C h36b_a12.seq				

FIGURE 19K

C A T T G G T T T G A C A G A T E T C T A C C A T G A C T C A C A A C T T T G G T T C A G T T Majority
 5410 5420 5430 5440 5450

5379 C A T T A G T T T G A C A A A T T T C T T A C C A T G A G T T C A A C T T T G G T T C A G T T 2603_a12.seq
 5379 C A T T A G T T T G A C A A A T T T C T T A C C A T G A G T T C A A C T T T G G T T C A G T T 18rs21_a12.seq
 5395 T A T T G T T T T G A C A A A T T T A C G C C A T T A G T C A C T T T G G T T C I G A T 515_a12.seq
 5394 G A T T G T T T T G A C A A A T T T A C G C C A T T A G T C A C T T T G G T T C I G A T cjb111_a12.seq
 5394 A A C T T G T T T T G A C A A A T T T A C G C C A T T A G T C A C T T T G G T T C I G A T h36b_a12.seq

G G G T T G A T T G G T G T T G G G T T A T C T G A A T C T T T G G T A T T G G T G A T G G T T A C Majority
 5460 5470 5480 5490 5500

5429 G G G T T G A A T G G G T G T T G G G T T A T C A G A A T C T T T G G T A T T G G T A T G G T T A C 2603_a12.seq
 5429 G G G T T G A A T G G G T G T T G G G T T A T C A G A A T C T T T G G T A T T G G T A T G G T T A C 18rs21_a12.seq
 5445 G G G T T G A T T G G A G T T G G G C T C A T T G A G T C T T T G G T A T T G G T A T G G T T A C 515_a12.seq
 5444 G G G T T G A T T G G A G T T G G G C T C A T T G A G T C T T T G G T A T T G G T A T G G T T A C cjb111_a12.seq
 5444 G G A T T A G T G G G T G T T G G G T T G C T G A A T C T G G A G T A T T G G T G A T A G C T C h36b_a12.seq

A T T A C C A T T T C A A G A G T T A T T T G C A C T A C C G T A A C C A G T A A C A C G T T Majority
 5510 5520 5530 5540 5550

5479 T T T A C C A T T T C T A G A T T T A T T T G C A C T T T C C G T A A C C A G A A A C A C G T T 2603_a12.seq
 5479 T T T A C C A T T T C T A G A T T T A T T T G C A C T T T C C G T A A C C A G A A A C A C G T T 18rs21_a12.seq
 5495 A A C C C A T T T A C A A A T G G A G A G T A C I G G A G C G T A G C C G U T A A C A C G T T 515_a12.seq
 5494 A A C C C A T T T T A A A T G A T A C G T A T I C I G G A G I G T A G C C G U T A A C A C G T T cjb111_a12.seq
 5494 A C T A C C A G C A C C A G H A G T G A T T T G C A I T A C C A T A A C C A G C G A I A C G T T h36b_a12.seq

C T G A G A G A T C A T G T A T G T T T A T T A T C A T C C A G A C C A G T G A A T T A C C T G C C Majority
 5560 5570 5580 5590 5600

5526 C T G A G A G A T C A T G T A T G A T T T G T T T I T C I A G A C C A G T G A A T T A C C C G A G 2603_a12.seq
 5526 C T G A G A G A T C A T G T A T G A T T T G T T T I T C I A G A C C A G T G A A T T A C C C G A G 18rs21_a12.seq
 5545 C G A T A A C G G U G T A A G T T T T A G U T I A T C C A N G I I I C A A A A G T G I G T I I G 515_a12.seq
 5544 C G A C A A C G G U G G T A A G T T T T A G G A T T A T C C A A A C C I G T G A A A G T A G T I C A cjb111_a12.seq
 5541 C T G A G A G A T C A T G T A T G T T T A T T A T C A G I C A G A C C A T G C A A T T A C C A G C A h36b_a12.seq

A A G T T A C C A G A T A C T G T A A A T T G A T A C C A T T A C C A A T G T C G A T T G T A C C Majority
 5610 5620 5630 5640 5650

5573 A A G T T A C C A G A T A C T I U A A A T T G A T A C C A T T C C C A A G G T C G A T T G T A C C 2603_a12.seq
 5573 A A G T T A C C A G A T A C T I U A A A T T G A T A C C A T T C C C A A G G T C G A T T G T A C C 18rs21_a12.seq
 5595 A A G T T A C C A G A T A C T I U A A A T T G A T A C C A T T C C C A A G G T C G A T T G T A C C 515_a12.seq
 5594 A A G T T A C C A G A T A C T I U A A A T T G A T A C C A T T C C C A A G G T C G A T T G T A C C cjb111_a12.seq
 5591 A A G T T A C C A G A T A C T I U A A A T T G A T A C C A T T C C C A A G G T C G A T T G T A C C h36b_a12.seq

A T T - - A G G T - - G T T T T T G T C A A T G A T A C T G T G A A G C A A C A G C T G T A T C A T Majority
 5660 5670 5680 5690 5700

5623 T T - - A G A T - - G T T T T T G T C A A T G A T A C T G T G A A G C A A C A G C T I T T A T C I T 2603_a12.seq
 5623 T T - - A G A T - - G T T T T T G T C A A T G A T A C T G T G A A G C A A C A G C T I T T A T C I T 18rs21_a12.seq
 5645 A G C - - A I C T - - I T A A C T I U C A A G G I G A A G A G A P G C A I C A A C T G T I T C A T 515_a12.seq
 5644 A T C C G I I I G T - - I T T T C T I C G C A A G G I I A A G A I A G C I I I A A C T G C E A A C A T cjb111_a12.seq
 5641 A T T - - T G G T G T I G T T T T G T C A A T G A A A C T G A U G G C A A C A G C T G T I C C A C h36b_a12.seq

T A T C T T T A A A T G T G T A A A C A A C G T T T A C A T T A T C T G G T T C A C T A C C T T C T Majority
 5710 5720 5730 5740 5750

5667 T A T C T T T C A A T G T G T A A A C A A C G T T T A C A U C A T C A G G T G C C A A T T C C G T C A 2603_a12.seq
 5667 T A T C T T T C A A T G T G T A A A C A A C G T T T A C A U C A T C A G G T G C C A A T T C C G T C A 18rs21_a12.seq
 5689 C I G C T T T A T A C T I U C A A G G I I A A G A G A P G C A I C A A C T G T I T C A T 515_a12.seq
 5691 T A C C T T A T A C T I U C A A G G I I A A G A G A P G C A I C A A C T G T I T C A T cjb111_a12.seq
 5688 T A T C T T T A M G G T A T A A C A A C A T T C G A T T T C T A A A T G C I G A A C C T T I G h36b_a12.seq

G C C C A A G T T T A G T A C T G T T A T T C A C C C T T G A T G G T G T A A C T G G G T A C Majority
 5760 5770 5780 5790 5800

5717 G A C C A A G T T T A G G C A A C T G T T A C T T C A C C C T T G A A A G G T G T A A C A G G G A A G 2603_a12.seq
 5717 G A C C A A G T T T A G G C A A C T G T T A C T T C A C C C T T G A A A G G T G T A A C A G G G A A G 18rs21_a12.seq
 5718 G C C C A I G T T T G T I T A A C G T T A T T T I I I A A C T G G A A T A C T T C T I T C T I 515_a12.seq
 5717 G C C C A G T T T T A A T G A T T T C I I I G G G T T A G G G T G G A G T A C T T C T I T C T I cjb111_a12.seq
 5738 T C C C A A G T T T G C T A A C A G T G A T T T C G C C A T T T G A C G G G T G T A C T G G G A A T h36b_a12.seq

T T C T T T C A T T T C T T T A C C T G G G T T G T T A C C A T A G T C C A A T T T G A T A T C A T Majority
 5810 5820 5830 5840 5850

5767 T T C A G T C A A G T C T T T A C C T G G G T T G T T A C C A T A G G C A C A A T T T G A T A T C A T 2603_a12.seq
 5767 T T C A G T C A A G T C T T T A C C T G G G T T G T T A C C A T A G G C A C A A T T T G A T A T C A T 18rs21_a12.seq
 5768 T G G T T C A I T T T C A A T I G I T G G G T T T G G T T C C C I T A G T C C A A T T T A A C T C A T 515_a12.seq
 5767 T G G T T C A C T T T C T T C C G I T G G G T T A T T A C C A T A G T C C A A T T T A A C T C A T cjb111_a12.seq
 5788 T T C T T T C A T T T C T T C A C C T G G G T T G T T A C C A T A G G A G T T T G A T A T C A T h36b_a12.seq

FIGURE 19L

FIGURE 19M

	CTTCAGTGTCTTGATAAACGATGAGGATCTCAACAAACACCATCTTCC	Majority
6310	6320	6330
6340	6350	
6267	CTTCAGTGTCTTGATAAACGATGAGGATCTCAACAAACACCATCTTCA	2603_a12.seq
6267	CTTCAGTGTCTTGATAAACGATGAGGATCTCAACAAACACCATCTTCA	18rs21_a12.seq
6214	CTTCAGTGTCTTGATAAACGATGAGGATCTCAACAAACACCATCTTCA	515_a12.seq
6213	CTTCAGTGTCTTGATAAACGATGAGGATCTCAACAAACACCATCTTCA	cjb111_a12.seq
6279	CTTCAGTGTCTTGATAAACGATGAGGATCTCAACAAACACCATCTTCA	h36b_a12.seq
	TTTACCCAATGGAAAGAGTGATTTAACCTGGAACTCGCTTTGAATCAGCCAG	Majority
6360	6370	6380
6390	6400	
6317	TTTACCCAATGGAAAGAGTGATTTAACCTGGAACTCGCTTTGAATCAGCCAG	2603_a12.seq
6317	TTTACCCAATGGAAAGAGTGATTTAACCTGGAACTCGCTTTGAATCAGCCAG	18rs21_a12.seq
6264	TTTACCCAATGGAAAGAGTGATTTAACCTGGAACTCGCTTTGAATCAGCCAG	515_a12.seq
6263	TTTACCCAATGGAAAGAGTGATTTAACCTGGAACTCGCTTTGAATCAGCCAG	cjb111_a12.seq
6329	TTTACCCAATGGAAAGAGTGATTTAACCTGGAACTCGCTTTGAATCAGCCAG	h36b_a12.seq
	GATGGAACCATTTATGTTGTAAGTAGATTTCTTCAATTCAACGATT	Majority
6410	6420	6430
6440	6450	
6367	GAGGGAACCATTTATGTTGTAAGTAGATTTCTTCAATTCAACGATT	2603_a12.seq
6367	GAGGGAACCATTTATGTTGTAAGTAGATTTCTTCAATTCAACGATT	18rs21_a12.seq
6314	GATAGAACCATTTATGTTGTAAGTAGATTTCTTCAATTCAACGATT	515_a12.seq
6313	GATAGAACCATTTATGTTGTAAGTAGATTTCTTCAATTCAACGATT	cjb111_a12.seq
6379	GATAGAACCATTTATGTTGTAAGTAGATTTCTTCAATTCAACGATT	h36b_a12.seq
	GGTACTTTCCCTTTAATTTGAGTGTAAACAA-----TACCTTTG	Majority
6460	6470	6480
6490	6500	
6417	AAACTCGCCTTCATACTTCTGTTAACTGAGATTTACTTCACAAATT	2603_a12.seq
6417	AAACTCGCCTTCATACTTCTGTTAACTGAGATTTACTTCACAAATT	18rs21_a12.seq
6364	GCTAAGTTCCCTTTAATTTAGAGTGTAAATTTCTTCAATTCAACGATT	515_a12.seq
6363	GCTAAGTTCCCTTTAATTTAGAGTGTAAATTTCTTCAATTCAACGATT	cjb111_a12.seq
6429	GCTAAGTTCCCTTTAATTTAGAGTGTAAATTTCTTCAATTCAACGATT	h36b_a12.seq
	TCTGTTGTCATCC-----TTTAAAG	Majority
6510	6520	6530
6540	6550	
6467	TCTGTTGTCATCCAGACVGGCCTCAIUAATNIIACIGIATTTCAAG	2603_a12.seq
6467	TCTGTTGTCATCCAGACVGGCCTCAIUAATNIIACIGIATTTCAAG	18rs21_a12.seq
6408	TCTGTTGTCATCCAGACVGGCCTCAIUAATNIIACIGIATTTCAAG	515_a12.seq
6407	TCTGTTGTCATCCAGACVGGCCTCAIUAATNIIACIGIATTTCAAG	cjb111_a12.seq
6473	TCTGTTGTCATCCAGACVGGCCTCAIUAATNIIACIGIATTTCAAG	h36b_a12.seq
	AACACCACATCTCATTAATTCGTTGGTTTAATTTGTTA-CTTCCTTAC	Majority
6560	6570	6580
6590	6600	
6517	AGGACCATCTTATTAATTAAAGGCTGGTTTAATTTGTTA-CCTTCTT	2603_a12.seq
6517	AGGACCATCTTATTAATTAAAGGCTGGTTTAATTTGTTA-CCTTCTT	18rs21_a12.seq
6428	AACAGGCACAAACCGCTTGGCATECTGTGATIATCAAGTATCCTTCTTAC	515_a12.seq
6427	AACAGGCACAAACCGCTTGGCATECTGTGATIATCAAGTATCCTTCTTAC	cjb111_a12.seq
6493	AACAGGCACAAACCGCTTGGCATECTGTGATIATCAAGTATCCTTCTTAC	h36b_a12.seq
	CACTTCCCGTAATGATTTG----TTTATCTTCATTCATAAAC---AGC	Majority
6610	6620	6630
6640	6650	
6566	GCTTAACATTAATGCACTTCAACGTTTATCTTCCTTCACAAAGCIAAACG	2603_a12.seq
6566	GCTTAACATTAATGCACTTCAACGTTTATCTTCCTTCACAAAGCIAAACG	18rs21_a12.seq
6478	CAATTCTGAGTATGATTTAG-----CTGATGCTTCATTCTGAA-AAGC	515_a12.seq
6477	CAATTCTGAGTATGATTTAG-----CTGATGCTTCATTCTGAA-AAGC	cjb111_a12.seq
6528	CAATTCTGAGTATGATTTAG-----CTGATGCTTCATTCTGAA-AAGC	h36b_a12.seq
	AAAGAAAGCACCTCGATTTCTTAGAT---CCTTCGCCAAAGTAACCTG	Majority
6660	6670	6680
6690	6700	
6616	AAAGAAAGCACCTCGATTTCTTAGAT---CCTTCGCCAAAGTAACCTG	2603_a12.seq
6616	AAAGAAAGCACCTCGATTTCTTAGAT---CCTTCGCCAAAGTAACCTG	18rs21_a12.seq
6521	AAACTAAGCACCTCGATTTCTTAGAT---CCTTCGCCAAAGTAACCTG	515_a12.seq
6520	AAACAAAGCACCGCTTATTTCTTAGAT---CCTTCGCCAAAGTAACCTG	cjb111_a12.seq
6571	AAACAAAGCACCGCTTATTTCTTAGAT---CCTTCGCCAAAGTAACCTG	h36b_a12.seq
	TAAGGTCAGTAATTGTTACCTATGAGTCTTTCCATTCATAACCTTT	Majority
6710	6720	6730
6740	6750	
6663	CAAGGTCAGAAATAGCTTACCTTGTAGTCTTTCCGTTAACGACCTGTA	2603_a12.seq
6663	CAAGGTCAGAAATAGCTTACCTTGTAGTCTTTCCGTTAACGACCTGTA	18rs21_a12.seq
6571	TAAGGTCAGAAATAGCTTACCAAGTAGTCTGATTAATGCTACCTTT	515_a12.seq
6570	TAAGGTCAGAAATAGCTTACCAAGTAGTCTGATTAATGCTACCTTT	cjb111_a12.seq
6618	TAAGGTCAGAAATAGCTTACCAAGTAGTCTGATTAATGCTACCTTT	h36b_a12.seq

FIGURE 19N

71/487

Alignment Report of WO 2006/078318 in method with Weighted residue weight table.
Thursday, July 29, 2004

PCT/US2005/027239 16

GTT CCT GGG AAG T T C T C A K A A T A G C T T G T G T T G G A C A A T C T T Majority				
6760	6770	6780	6790	6800
6713 GTT CCT GGG AAG T T C T C A K A A T A G C T T G T G T T G G A C A A A T C T T 2603_a12.seq				
6713 GTT CCT GGG AAG T T C T C A K A A T A G C T T G T G T T G G A C A A A A T C T T 18rs21_a12.seq				
6621 GT A C C A G T A G - T A A A A C G T C A A A I G C A G T T G G G C A I G C A A A T C T T 515_a12.seq				
6620 GT A C C T C A G - T A A A G T T A T C A A A I G C A G T T G G G C A I G C A A A T C T T cjb111_a12.seq				
6668 AT T C C T G G G A A T T I G G (T T A L C T A A A T T A I C G G A T G T T G A A C A A T T T h36b_a12.seq				
G T G C C A A G G T C A C T G T A T T A G T - - - T G T - - - - T G C T T C A T C C C G C A A A C G Majority				
6810	6820	6830	6840	6850
6763 G T G C C A A A G T C A C T G T A T T A G T - - - T G T - - - - T G C T T C A T C C C G C A A A C G 2603_a12.seq				
6763 G T G C C A A A G T C A C T G T A T T A G T - - - T G T - - - - T G C T T C A T C C C G C A A A C G 18rs21_a12.seq				
6668 G T G C C A A G G T C A C T G T H T I A G T A G T T I T - - - - T G C T T C I T C C C G C A A A C A 515_a12.seq				
6667 G T G C C A A G G T C A C T G T A G T A G T T I T - - - - T G C G T C G T C C C G C A A A C G cjb111_a12.seq				
6718 G T G C C A A G G T C A C T G T H T T A G T - - - G A T A T I F U C U A I C T C A G C A G C A A A T A h36b_a12.seq				
C T G G T C C A A C T G A G A A C A A T G A C G T T A A A G T C A G T A A C A A T G C C C G A G A A C Majority				
6860	6870	6880	6890	6900
6804 C T G G T G C A A C T G A G A G C A A T G A C G T T A A A G T C A G T A A C A A T G C C C G A G A A C 2603_a12.seq				
6804 C T G G T G C A A C T G A G A G C A A T G A C G T T A A A G T C A G T A A C A A T G C C C G A G A A C 18rs21_a12.seq				
6712 C T G G T G C A A C T G A G A A C A A T G A G I G T T A C G T C A G T A C A T G C C C G A G A A C 515_a12.seq				
6708 C T G G T G C A A C T G A G A A A G T G A C G T T A A A G A T C A A T A G C A G T G I C G A G A A C cjb111_a12.seq				
6765 C (G G A G C) A C G G A T A C A A A G G A I G T T A A A A T T A A T A A C A A T G C C C G A G A A C h36b_a12.seq				
A T T G C A A A A T A T T T G T T G A T T C T T T C A T T T C T A T C T C C T T C T T A T T T A Majority				
6910	6920	6930	6940	6950
6854 A T T G C A A A A T A T T T G T T G A T T C T T T C A T T T C T A T C T C C T T C T T A T T T T A 2603_a12.seq				
6854 A T T G C A A A A T A T T T G T T G A T T C T T T C A T T T C T A T C T C C T T C T T A T T T T A 18rs21_a12.seq				
6762 A T T G C A A A A T A T T T G T T G A T T T T T C A T T T C T A T C T C C T T C T T A T T T T A 515_a12.seq				
6758 A T T G C A A A A G A T T T G T T G A T T T T T C A T T T C T A T C T C C T T C T T A T T T T A cjb111_a12.seq				
6815 A T T G C A A A A T A T T T G T T G A T T C T T T C A T T T C T A T C T C C T T C T T A T T T T A h36b_a12.seq				
G T T A A T C A A C A T G A T T A A T A T G C G G A T T T T A A T A - C - A C C G C A G C A C Majority				
6960	6970	6980	6990	7000
6904 G T T A A T C A A C A T G A T T A A T A T G C G G A T T T T A A T A - C - A C C G C A G C A C 2603_a12.seq				
6904 G T T A A T C A A C A C T G A T T A A T A T G C G G A T T T T A A T A - C - A C C G C A G C A C 18rs21_a12.seq				
6812 G T T A A T C A A C A C T G A T T A A T A T G C G G A T T T T A A T A - C - A C C G C A G C A C 515_a12.seq				
6808 G T T A A T C A A C A T A A T A A T A T A C G G A T T A A T A T A - C - A C C G C A G C A C cjb111_a12.seq				
6865 G T T A A T C A A C A T A A T A A T A T A C G G A T T A A T A - C - A C C G C A G C A C h36b_a12.seq				
C A C T C C C T T C A A G T C A T G G A A T T T T A G T T A A T T A A T T A A G A A T A C T A A A G Majority				
7010	7020	7030	7040	7050
6952 C A C T C C C T T C A A G T C A T G G A A T T T T A G T T A A T T A A T T A A G A A T A C T A A A G 2603_a12.seq				
6952 C A C T C C C T T C A A G T C A T G G A A T T T T A G T T A A T T A A T T A A G A A T A C T A A A G 18rs21_a12.seq				
6860 C A C T C C C T T C A A G T C A T G G A A T T T T A G T T A A T T A A T T A A G A A T A C T A A A G 515_a12.seq				
6857 C A C T C C C T T C A A G T C A T G G A A T T T T A G T T A A T T A A T T A A G A A T A C T A A A A cjb111_a12.seq				
6914 C A C T C C C T T C A A A A T A T A A T T A A T T A A T T A A T T A A T T A A T T C T A A A G h36b_a12.seq				
C C G A T A A T T T T A A T C T T T T G A T G G A C A T A T C A C T A G A T T T C T T A T C Majority				
7060	7070	7080	7090	7100
7002 C C G A T A A T T T T A A T C T T T T G A T G G A C A T A T C A C T A G A T T T C T T A T C 2603_a12.seq				
7002 C C G A T A A T T T T A A T C T T T T G A T G G A C A T A T C A C T A G A T T T C T T A T C 18rs21_a12.seq				
6910 C C G A T A A T T T T A A T C T T T T G A T G G A C A T A T C A C T A G A T T T C T T A T C 515_a12.seq				
6899 C C G A T A A T T T T A A T C T T T T G A T G G A C A T A T C A C T A G A T T T C T T A T C cjb111_a12.seq				
6952 C C G A T A A T T T T A A T C T T T T G A T G G A C A T A T C A C T A G A T T T C T T A T C h36b_a12.seq				
C T T T T C C A A A T A T A A A T T C C A C C T G G A A T A G A C A T C A T A G C T C C C A C C T A T Majority				
7110	7120	7130	7140	7150
7052 C T T T T C C A A A T A T A A A T T C C A C C T G G A A T A G A C A T C A T A G C T C C C A C C T A T 2603_a12.seq				
7052 C T T T T C C A A A T A T A A A T T C C A C C T G G A A T A G A C A T C A T A G C T C C C A C C T A T 18rs21_a12.seq				
6960 C T T T T C C A A A T A T A A A T T C C A C C T G G A A T A G A C A T C A T A G C T C C C A C C T A T 515_a12.seq				
6949 C T T T T C C A A A T A T A A A T T C C A C C T G G A A T A G A C A T C A T A G C T C C C A C C T A T cjb111_a12.seq				
7002 C T T T T C C A A A T A T A A A T T C C A C C T G G A A T A G A C A T C A T A G C T C C C A C C T A T h36b_a12.seq				
T A A A A T G A A A G A T A G A A T T C C T T T C C C A C C T G T C A T A G G A A T A A T T C C T Majority				
7160	7170	7180	7190	7200
7102 T A A A A T G A A A G A T A G A A T T C C T T T C C C A C C T G T C A T A G G A A T A A T T C C T 2603_a12.seq				
7102 T A A A A T G A A A G A T A G A A T T C C T T T C C C A C C T G T C A T A G G A A T A A T T C C T 18rs21_a12.seq				
7010 T A A A A T G A A A G A T A G A A T T C C T T T C C C A C C T G T C A T A G G A A T A A T T C C T 515_a12.seq				
6999 T A A A A T G A A A G A T A G A A T T C C T T T C C C A C C T G T C A T A G G A A T A A T T C C T cjb111_a12.seq				
7052 T A A A A T G A A A G A T A G A A T T C C T T T C C C A C C T G T C A T A G G A A T A A T T C C T h36b_a12.seq				

FIGURE 190

TTGGTGGAAATGCGTCGGTGTGCTAAATTAATGCTTGTCAACCTTCCCATG Majority
 7210 7220 7230 7240 7250

7152 TTGGTGGAAATGCGTCGGTGTGCTAAATTAATGCTTGTCAACCTTCCCATG A 2603_a12.seq
 7152 TTGGTGGAAATGCGTCGGTGTGCTAAATTAATGCTTGTCAACCTTCCCATG A 18rs21_a12.seq
 7060 TTGGTGGAAATGCGTCGGTGTGCTAAATTAATGCTTGTCAACCTTCCCATG A 515_a12.seq
 7049 TTGGTGGAAATGCGTCGGTGTGCTAAATTAATGCTTGTCAACCTTCCCATG A cjb111_a12.seq
 7102 TTGGTGGAAATGCGTCGGTGTGCTAAATTAATGCTTGTCAACCTTCCCATG A h36b_a12.seq

TATTCAAGAAATCTGTTATTAAACAGCTATTATAATTTTTATCGATCCTT Majority
 7260 7270 7280 7290 7300

7202 TATTCAAGAAATCTGTTATTAAACAGCTATTATAATTTTTATCGATCCTT T 2603_a12.seq
 7202 TATTCAAGAAATCTGTTATTAAACAGCTATTATAATTTTTATCGATCCTT T 18rs21_a12.seq
 7110 TATTCAAGAAATCTGTTATTAAACAGCTATTATAATTTTTATCGATCCTT T 515_a12.seq
 7099 TATTCAAGAAATCTGTTATTAAACAGCTATTATAATTTTTATCGATCCTT T cjb111_a12.seq
 7152 TATTCAAGAAATCTGTTATTAAACAGCTATTATAATTTTTATCGATCCTT T h36b_a12.seq

AACCACCTCAAAAGTTAAATTGGTTATTAGTAATTTTTGTATAATCCT Majority
 7310 7320 7330 7340 7350

7252 AACCACCTCAAAAGTTAAATTGGTTATTAGTAATTTTTGTATAATCCT T 2603_a12.seq
 7252 AACCACCTCAAAAGTTAAATTGGTTATTAGTAATTTTTGTATAATCCT T 18rs21_a12.seq
 7160 AACCACCTCAAAAGTTAAATTGGTTATTAGTAATTTTTGTATAATCCT T 515_a12.seq
 7149 AACCACCTCAAAAGTTAAATTGGTTATTAGTAATTTTTGTATAATCCT T cjb111_a12.seq
 7202 AACCACCTCAAAAGTTAAATTGGTTATTAGTAATTTTTGTATAATCCT T h36b_a12.seq

CCGGCGAAACTGCTTCTATTAACTGATATTGCCATCTTCAAATCTTG Majority
 7360 7370 7380 7390 7400

7302 CCGGCGAAACTGCTTCTATTAACTGATATTGCCATCTTCAAATCTTG T 2603_a12.seq
 7302 CCGGCGAAACTGCTTCTATTAACTGATATTGCCATCTTCAAATCTTG T 18rs21_a12.seq
 7210 CCGGCGAAACTGCTTCTATTAACTGATATTGCCATCTTCAAATCTTG T 515_a12.seq
 7199 CCGGCGAAACTGCTTCTATTAACTGATATTGCCATCTTCAAATCTTG T cjb111_a12.seq
 7252 CCGGCGAAACTGCTTCTATTAACTGATATTGCCATCTTCAAATCTTG T h36b_a12.seq

TAAGAAATTTCGCCGTTTCTCCCCGTCACTACTTTGAATTATTATTTT Majority
 7410 7420 7430 7440 7450

7352 TAAGAAATTTCGCCGTTTCTCCCCGTCACTACTTTGAATTATTATTTT T 2603_a12.seq
 7352 TAAGAAATTTCGCCGTTTCTCCCCGTCACTACTTTGAATTATTATTTT T 18rs21_a12.seq
 7260 TAAGAAATTTCGCCGTTTCTCCCCGTCACTACTTTGAATTATTATTTT T 515_a12.seq
 7249 TAAGAAATTTCGCCGTTTCTCCCCGTCACTACTTTGAATTATTATTTT T cjb111_a12.seq
 7302 TAAGAAATTTCGCCGTTTCTCCCCGTCACTACTTTGAATTATTATTTT T h36b_a12.seq

TATGGTAAATAAAGTTATAATCTTCATTAAATTCTTGAAAGTCAAAACG Majority
 7460 7470 7480 7490 7500

7402 TATGGTAAATAAAGTTATAATCTTCATTAAATTCTTGAAAGTCAAAACG T 2603_a12.seq
 7402 TATGGTAAATAAAGTTATAATCTTCATTAAATTCTTGAAAGTCAAAACG T 18rs21_a12.seq
 7310 TATGGTAAATAAAGTTATAATCTTCATTAAATTCTTGAAAGTCAAAACG T 515_a12.seq
 7299 TATGGTAAATAAAGTTATAATCTTCATTAAATTCTTGAAAGTCAAAACG T cjb111_a12.seq
 7352 TATGGTAAATAAAGTTATAATCTTCATTAAATTCTTGAAAGTCAAAACG T h36b_a12.seq

TAGCTCCCTTGAGAACGAACTTATTATCTTATCAACTTTATAAAT Majority
 7510 7520 7530 7540 7550

7452 TAGCTCCCTTGAGAACGAACTTATTATCTTATCAACTTTATAAAT T 2603_a12.seq
 7452 TAGCTCCCTTGAGAACGAACTTATTATCTTATCAACTTTATAAAT T 18rs21_a12.seq
 7360 TAGCTCCCTTGAGAACGAACTTATTATCTTATCAACTTTATAAAT T 515_a12.seq
 7349 TAGCTCCCTTGAGAACGAACTTATTATCTTATCAACTTTATAAAT T cjb111_a12.seq
 7402 TAGCTCCCTTGAGAACGAACTTATTATCTTATCAACTTTATAAAT T h36b_a12.seq

TCAATTTCACCTAACCTCTCGTTTTAACCGTTATTGTAGGATATT Majority
 7560 7570 7580 7590 7600

7502 TCAATTTCACCTAACCTCTCGTTTTAACCGTTATTGTAGGATATT C 2603_a12.seq
 7502 TCAATTTCACCTAACCTCTCGTTTTAACCGTTATTGTAGGATATT C 18rs21_a12.seq
 7410 TCAATTTCACCTAACCTCTCGTTTTAACCGTTATTGTAGGATATT C 515_a12.seq
 7399 TCAATTTCACCTAACCTCTCGTTTTAACCGTTATTGTAGGATATT C cjb111_a12.seq
 7452 TCAATTTCACCTAACCTCTCGTTTTAACCGTTATTGTAGGATATT C h36b_a12.seq

TCTCACATCACGAATTAGGGATTGGAAAAATCTCTAACGTGTATTAGGAT Majority
 7610 7620 7630 7640 7650

7552 TCTCACATCACGAATTAGGGATTGGAAAAATCTCTAACGTGTATTAGGAT T 2603_a12.seq
 7552 TCTCACATCACGAATTAGGGATTGGAAAAATCTCTAACGTGTATTAGGAT T 18rs21_a12.seq
 7460 TCTCACATCACGAATTAGGGATTGGAAAAATCTCTAACGTGTATTAGGAT T 515_a12.seq
 7449 TCTCACATCACGAATTAGGGATTGGAAAAATCTCTAACGTGTATTAGGAT T cjb111_a12.seq
 7502 TCTCACATCACGAATTAGGGATTGGAAAAATCTCTAACGTGTATTAGGAT T h36b_a12.seq

FIGURE 19P

C C T C T G A C T T A G G A T T C A T G T T G T T A C C A T T A G T G T C A T A G A A T T T G Majority				
7660	7670	7680	7690	7700
7602 C C T C T G A C T T A G G A T T C A A T G T T G T T C A C C A T T A G T G T C A T A G A A T T T G 2603_a12.seq				
7602 C C T C T G A C T T A G G A T T C A A T G T T G T T C A C C A T T A G T G T C A T A G A A T T T G 18rs21_a12.seq				
7510 C C T C T G A C T T A G G A T T C A A T G T T G T T C A C C A T T A G T G T C A T A G A A T T T G 515_a12.seq				
7499 C C T C T G A I T T A G G A T T C A A T G T T G T T C A C C A T T A G T G T C A T A G A A T T T G cjb111_a12.seq				
7552 C C T C T G A I T T A G G A T T C A A T G T T G T T C A C C A T T A G T G T C A T A G A A T T T G h36b_a12.seq				
T T A C T T A T A A A A C T G T C A T C T A G T T T C A C A T C A T A T G T G A G T G T T A C T T T Majority				
7710	7720	7730	7740	7750
7652 T T A C T T A T A A A A C T G T C A T C T A G T T T C A C A T C A T A T G T G A G T G T T A C T T T 2603_a12.seq				
7652 T T A C T T A T A A A A C T G T C A T C T A G T T T C A C A T C A T A T G T G A G T G T T A C T T T 18rs21_a12.seq				
7560 T T A C T T A T A A A A C T G T C A T C T A G T T T C A C A T C A T A T G T G A G T G T T A C T T T 515_a12.seq				
7549 T T A C T T A T A A A A C T G T C A T C T A G T T T C A C A T C A T A T G T G A G T G T T A C T T T cjb111_a12.seq				
7602 T T A C T A T A A A A A C T G T C A T C T A G T T T C A C A T C A T A T G T G A G T G T T A C T T T h36b_a12.seq				
T T G A C C T T C T C C T A A A T T C A A A C C T C T A A C A T A G A C T T T A T T T C C G A T G T Majority				
7760	7770	7780	7790	7800
7702 T T G A C C T T C T C C T A A A T T C A A A C C T C T A A C A T A G A C T T T A T T T C C G A T G T 2603_a12.seq				
7702 T T G A C C T T C T C C T A A A T T C A A A C C T C T A A C A T A G A C T T T A T T T C C G A T G T 18rs21_a12.seq				
7610 T T G A C C T T C T C C T A A A T T C A A A C C T C T A A C A T A G A C T T T A T T T C C G A T G T 515_a12.seq				
7599 T T G I C C C T C C C T A A C C T C T A A C G T A C G T T T A T T T T G A T G T 515_a12.seq				
7652 T T G I C C C T C C C T A A C C T C T A A C G T A C G T T T A T T T T G A T G T cjb111_a12.seq				
T T G I C C C T C C C T A A C C T C T A A C G T A C G T T T A T T T T G A T G T h36b_a12.seq				
A T T C T A A T T T A A C C C C C T T A A G T A T T C C A C C A T C A T T A G G C C C A C C A Majority				
7810	7820	7830	7840	7850
7752 A T T C T A A T T T A A C C C C C T T A A G T A T T C C A C C A T C A T T A G G C C C A C C A 2603_a12.seq				
7752 A T T C T A A T T T A A C C C C C T T A A G T A T T C C A C C A T C A T T A G G C C C A C C A 18rs21_a12.seq				
7660 A T T C T A A T T T A A C C C C C T T A A G T A T T C C A C C A T C A T T A G G C C C A C C A 515_a12.seq				
7649 A T T C T A A T T T A A C C C C C T T A A G T A T T C C A C C A T C A T T A G G C C C A C C A cjb111_a12.seq				
7702 A T T C T A A T T T A A C C C C C T T A A G T A T T C C A C C A T C A T T A G G C C C A C C A h36b_a12.seq				
G T T G C A A T A C C A T C C C T T C A T T A C A C T T C C A T C A T T C C C T G T A A A G T A T A Majority				
7860	7870	7880	7890	7900
7802 G T T G C A A T A C C A T C C C T T C A T T A C A C T T C C A T C A T T C C C T G T A A A G T A T A 2603_a12.seq				
7802 G T T G C A A T A C C A T C C C T T C A T T A C A C T T C C A T C A T T C C C T G T A A A G T A T A 18rs21_a12.seq				
7710 G T T G C A A T A C C A T C C C T T C A T T A C A C T T C C A T C A T T C C C T G T A A A G T A T A 515_a12.seq				
7699 G T T G C A A T G C I A T C I T T C A T T A I A C T T C C A T C A T T C C C T G T A A A G T A T A cjb111_a12.seq				
G T T G C A A T G C I A T C I T T C A T T A I A C T T C C A T C A T T C C C T G T A A A G T A T A h36b_a12.seq				
A T C A C T T G G C T G T A A T G T T T G T C C A T T A C C A A G C T G T A A A T T G A T T T T A T Majority				
7910	7920	7930	7940	7950
7852 A T C A C T T G G C T G T A A T G T T T G T C C A T T A C C A A G C T G T A A A T T G A T T T T A T 2603_a12.seq				
7852 A T C A C T T G G C T G T A A T G T T T G T C C A T T A C C A A G C T G T A A A T T G A T T T T A T 18rs21_a12.seq				
7760 A T C A C T T G G C T G T A A T G T T T G T C C A T T A C C A A G C T G T A A A T T G A T T T T A T 515_a12.seq				
7749 A T C A C T T G G C T G C A A T G T T G T C C G T G C C A A G C T G T A A A T T G A T T T T A T cjb111_a12.seq				
7802 A T C A C T T G G C T G C A A T G T T G T C C G T G C C A A G C T G T A A A T T G A T T T T A T h36b_a12.seq				
C A C C C A T A G G A T C T T C C A T G T T C C A T T A A C A A T T G A G T T T C T T T G T T Majority				
7960	7970	7980	7990	8000
7902 C A C C C A T A G G A T C T T C G A T A G T T C C A T T A A C A A T T G A G T T T C T T T G T T 2603_a12.seq				
7902 C A C C C A T A G G A T C T T C G A T A G T T C C A T T A A C A A T T G A G T T T C T T T G T T 18rs21_a12.seq				
7810 C A C C C A T A G G A T C T T C G A T A G T T C C A T T A A C A A T T G A G T T T C T T T G T T 515_a12.seq				
7799 C A C C C A T A G G A T C T T C G A A T G T T C C A T T A A C A A T T G A G T T T C T T T G T T cjb111_a12.seq				
7852 C A C C C A T A G G A T C T T C G A A T G T T C C A T T A A C A A T T G A G T T T C T T T G T T h36b_a12.seq				
A A A A T C G T T T C A A A T T G T T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A Majority				
8010	8020	8030	8040	8050
7952 A A A A T C G T T T C A A A T T G T T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A 2603_a12.seq				
7952 A A A A T C G I T T C A A A T T G T T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A 18rs21_a12.seq				
7860 A A A A T C G T T T C A A A T T G T T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A 515_a12.seq				
7849 A A A A T C G I T T C A A A T T G T T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A cjb111_a12.seq				
7902 A A A A T C G I T T C A A A T T G T T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A h36b_a12.seq				
T G T A T C G G G C T G A A G T T A C C G A T A G G G G T G T A G T A C T C A G G T T T G G A A G A G A Majority				
8060	8070	8080	8090	8100
8002 T G T A T C G G G C T G A A G T T A C C G A T A G G G G T G T A G T A C T C A G G T T T G G A A G A G A 2603_a12.seq				
8002 T G T A T C G G G C T G A A G T T A C C G A T A G G G G T G T A G T A C T C A G G T T T G G A A G A G A 18rs21_a12.seq				
7910 T G T A T C G G G C T G A A G T T A C C G A T A G G G G T G T A G T A C T C A G G T T T G G A A G A G A 515_a12.seq				
7899 T G C A T C G G G A T G A A G T T A C C G A T A G G G G T G T A A A T A C T C A G G T T T G G A A G A G A cjb111_a12.seq				
7952 T A C A T C A G C T G A A G T T A C C G A T A G G G G T G T A A A T A C T C A G G T T T G G A A G A G A h36b_a12.seq				

FIGURE 19Q

ACGACCTCATTAGTTCTGTGATTTCTCCATCTGAAAGTTAAAAGCTTCC Majority				
8110	8120	8130	8140	8150
8052 A C G A C C T C A T T A G T T C T G T G A T T T C T C C A T C T G A A G T T T A A A A G C T T C C 2603_a12.seq				
8052 A C G A C C T C A T T A G T T C T G T G A T T T C T C C A T C T G A A G T T T A A A A G C T T C C 18rs21_a12.seq				
7960 A C G A C C T C A T T A G T T C T G T G A T T T C T C C A T C T G A A G T T T A A A A G C T T C C 515_a12.seq				
7949 A C G A C T T C A T T A G T T C T G T G A T T T C C C A T C T G A A G T T T A A A A G C T T C C cjb111_a12.seq				
8002 A C G A A T T C A T T A G T T C T G T G A T T T C C C A T C T G A A G T T T A A A A G C T T C C h36b_a12.seq				
TCTTCAAATTTGAAAAAGTACCATCTTGATTTCTTCTTATACTCCCTCAT T Majority				
8160	8170	8180	8190	8200
8102 T C T T T C A A T T T T G A A A A G T A C C A T C T T G A T T T T C T T A T A C T C C C T C A T T 2603_a12.seq				
8102 T C T T T C A A T T T T G A A A A G T A C C A T C T T G A T T T T C T T A T A C T C C C T C A T T 18rs21_a12.seq				
8010 T C T T T C A A T T T T G A A A A G T A C C A T C T T G A T T T T C T T A T A C T C C C T C A T T 515_a12.seq				
7999 T C T T T C A A T T T T G A A A A G T A C C A T C T T G A T T T T C T T A T A A T C C C T C A T T cjb111_a12.seq				
8052 T C T T C A A T T T T G A A A A G T A C C A T C T T G A T T T T C T T A T A A T C C C T C A T T h36b_a12.seq				
ATAAAACTTGTCTAAACCAGATATATCGATAACCAAAATTAAAAATGTCAT Majority				
8210	8220	8230	8240	8250
8152 A T A A A C T T G T C T A A A A C C A G A T A T A T C G A T A C C A A A A A T T A A A A A T G T C A T 2603_a12.seq				
8152 A T A A A C T T G T C T A A A A C C A G A T A T A T C G A T A C C A A A A A T T A A A A A T G T C A T 18rs21_a12.seq				
8060 A T A A A C T T G T C T A A A A C C A G A T A T A T C G A T A C C A A A A A T T A A A A A T G T C A T 515_a12.seq				
8049 A T A A A C T T G T C T A A A A C C A G A T A T A T C G A T A C C A A A A A T T A A A A A T G T C A T cjb111_a12.seq				
8102 A T A A A C T T G T C T A A A A C C A G A T A T A T C G A T A C C A A A A A T T A A A A A T G T C A T h36b_a12.seq				
AATTTTCTGTTTAACATATTATATAAAAGTTGGTGTGGTCCATGT Majority				
8260	8270	8280	8290	8300
8202 A A T T T T C T G T T T A A A C T A T T A T A A A G T T T G G T T G G T G T C C C A T G T 2603_a12.seq				
8202 A A T T T T C T G T T T A A A C T A T T A T A T A A A G T T T G G T T G G T G T C C C A T G T 18rs21_a12.seq				
8110 A A T T T T C T G T T T A A A C T A T T A T A T A A A G T T T G G T T G G T G T C C C A T G T 515_a12.seq				
8099 A A T T T T C T G T T T A A A C T A T T A T A T A A A G T T T G G T T G G T G T C C C A T G T cjb111_a12.seq				
8152 A A T T T T C T G T T T A A A C T A T T A T A T A A A G T T T G G T T G G T G T C C C A T G T h36b_a12.seq				
TCTTCACGGTCCATTCTGATAAAATTGTACCTTAGGGTAATTAAAGATT Majority				
8310	8320	8330	8340	8350
8252 T C T T T C A C T C G G T C C A T T T C G A T A A A T T G T A C C C T T A G G G T A A T T A A G A T T 2603_a12.seq				
8252 T C T T T C A C T C G G T C C A T T T C G A T A A A T T G T A C C C T T A G G G T A A T T A A G A T T 18rs21_a12.seq				
8160 T C T T T C A C T C G G T C C A T T T C G A T A A A A T T G T A C C C T T A G G G T A A T T A A G A T T 515_a12.seq				
8149 T C T T T C A C T C G G T C C A T T T C G A T A A A A T T G T A C C C T T A G G G T A A T T A A G A T T cjb111_a12.seq				
8202 T C T T T C A C T C G G T C C A T T T C G A T A A A A T T G T A C C C T T A G G G T A A T T A A G A T T h36b_a12.seq				
TAAATCTAAATAATGAAGTTTGTAAAGTTCCAGAGATTATCTGTGTTT Majority				
8360	8370	8380	8390	8400
8302 T A A A T C T A A A T A A T G A A G T T T T G T A A G T T T C C A G A G A T T A T C T G T G T T T 2603_a12.seq				
8302 T A A A T C T A A A T A A T G A A G T T T T G T A A G T T T C C A G A G A T T A T C T G T G T T T 18rs21_a12.seq				
8210 T A A A T C T A A A T A A T G A A G T T T T G T A A G T T T C C A G A G A T T A T C T G T G T T T 515_a12.seq				
8199 T A A A T C T A A A T A A T G A A G T T T T G T A A G T T T C C A G A G A T T A T C T G T G T T T cjb111_a12.seq				
8252 T A A A T C T A A A T A A T G A A G T T T T G T A A G T T T C C A G A G A T T A T T A T C T G T G T T T h36b_a12.seq				
GATAACTATCTAACGGAAACAAAAAGTAACCTCCCCATTTCCTTTATAA Majority				
8410	8420	8430	8440	8450
8352 G A T A A C T A T C T A A G G G A A A C A A A A A G T A A C T C T C C C C A T T T C C T T T A T A 2603_a12.seq				
8352 G A T A A C T A T C T A A G G G A A A C A A A A A G T A A C T C T C C C C A T T T C C T T T A T A 18rs21_a12.seq				
8260 G A T A A C T A T C T A A G G G A A A A A A A A A A G T A A C T C T C C C C A T T T C C T T T A T A 515_a12.seq				
8249 G A T A A C T A T C T A A G G G A A A C A A A A A G T A A C T C T C C C C A T T T C C T T T A T A cjb111_a12.seq				
8302 G A T A A C T A T C T A A G G G A A A C A A A A A G T A A C T C T C C C C A T T T C C T T T A T A h36b_a12.seq				
TCCTCGGGCTTATCAGTAAGTAGAAAAATTACTTTATTAGATATCCCAT Majority				
8460	8470	8480	8490	8500
8402 T C C T C G G G C T T A T C A G T A A G T A G A A A A T T A C T T T A T T T A G A T A T C C C A T T 2603_a12.seq				
8402 T C C T C G G G C T T A T C A G T A A G T A G A A A A T T A C T T T A T T T A G A T A T C C C A T T 18rs21_a12.seq				
8310 T C A T C G G G C T T A T C A G T A A G T A G A A A A T T A C T T T A T T T A G A T A T C C C A T T 515_a12.seq				
8299 T C C T C G G G C T T A T C A G T A A G T A G A A A A T T A C T T T A T T T A G A T A T C C C A T T cjb111_a12.seq				
8352 T T T C T C G G G C T T A T C A G T A A G T A G A A A A T T A C T T T A T T T A G A T A T C C C A T T h36b_a12.seq				
TTTTTCTATTGTTCAAATTGGCTTCAATATGATGCCACCCAGTTAAAAA Majority				
8510	8520	8530	8540	8550
8452 T T T T T C A T T G T T C A A A A T T G G C T T T C A T A T G A T G C A C C C A G T T T A A A A T 2603_a12.seq				
8452 T T T T T C A T T G T T C A A A A T T G G C T T T C A T A T G A T G C A C C C A G T T T A A A A T 18rs21_a12.seq				
8360 T T T T T C A T T G T T C A A A A T T G G C T T T C A T A T G A T G C A C C C A G T T T A A A A T 515_a12.seq				
8349 T T T T T C A T T G T T C A A A A T T G G C T T T C A T A T G A T G C A C C C A G T T T A A A A T cjb111_a12.seq				
8402 T T T T T C A T T G T T C A A A A T T G G C T T T C A T A T G A T G C A C C C A G T T T A A A A T h36b_a12.seq				

FIGURE 19R

T A T T A A T A G C A T A T G A T C T C G T A G G A C A C C A T C A G T T A C A T G A A C A A T A Majority				
8560	8570	8580	8590	8600
8502 T A T T A A T A G C A T A T G A T C T C G T A G G A C A C C A T C A G T T A C A T G A A C A A T A 2603_a12.seq				
8502 T A T T A A T A G C A T A T G A T C T C G T A G G A C A C C A T C A G T T A C A T G A A C A A T A 18rs21_a12.seq				
8410 T A T T A A T A G C A T A T G A T C T C G T A G G A C A C C A T C A G T T A C A T G A A C A A T A 515_a12.seq				
8399 T A T T A A T A G C A T A T G A T C T C G T A G G A C A C C A T C A G T T A C A T G A A C A A T A cjb111_a12.seq				
8452 T A T T A A T A G C A T A T G A T C T C G T A G G A C A C C A T C A G T T A C A T G A A C A A T A h36b_a12.seq				
A T T T T T G A C T A T T C G A T T A C T T G A C T C A A A A T A T C A T C T G C C T C C A T Majority				
8610	8620	8630	8640	8650
8552 A T T T T T G A C T A T T C G A T T A C T T G A C T C A A A A T A T C A T C T G C C T C C A T 2603_a12.seq				
8552 A T T T T T G A C T A T T C G A T T A C T T G A C T C A A A A T A T C A T C T G C C T C C A T 18rs21_a12.seq				
8460 A T T T T T G A C T A T T C G A T T A C T T G A C T C A A A A T A T C A T C T G C C T C C A T 515_a12.seq				
8449 A T T T T T G A C T A T T C G A T T A C T T G A C T C A A A A T A T C A T C T G C C T C C A T cjb111_a12.seq				
8502 A T T T T T G A C T A T T C G A T T A C T T G A C T C A A A A T A T C A T C T G C C T C C A T h36b_a12.seq				
G A A G G C T T T C A T A G T A A A T G T T T C T C C T A C T T T A C T A A G A T A G T A C T C C T Majority				
8660	8670	8680	8690	8700
8602 G A A G G C T T T C A T A G T A A A T G T T T C T C C T A C T T T A C T A A G A T A G T A C T C C T 2603_a12.seq				
8602 G A A G G C T T T C A T A G T A A A T G T T T C T C C T A C T T T A C T A A G A T A G T A C T C C T 18rs21_a12.seq				
8510 G A A G G C T T T C A T A G T A A A T G T T T C T C C T A C T T T A C T A A G A T A G T A C T C C T 515_a12.seq				
8499 G A A G G C T T T C A T A G T A A A T G T T T C T C C T A C T T T A C T A A G A T A G T A C T C C T cjb111_a12.seq				
8552 G A A G G C T T T C A T A G T A A A T G T T T C T C C T A C T T T A C T A A G A T A G T A C T C C T h36b_a12.seq				
T T T G T T G C T C T G G A G T T A A T C C A T T G G T A G T A G A T C C C C A C T T A G C T T T A Majority				
8710	8720	8730	8740	8750
8652 T T T G T T G C T C T G G A G T T A A T C C A T T G G T A G T A G A T C C C C A C T T A G C T T T A 2603_a12.seq				
8652 T T T G T T G C T C T G G A G T T A A T C C A T T G G T A G T A G A T C C C C A C T T A G C T T T A 18rs21_a12.seq				
8560 T T T G T T G C T C T G G A G T T A A T C C A T T G G T A G T A G A T C C C C A C T T A G C T T T A 515_a12.seq				
8549 T T T G T T G C T C T G G A G T T A A T C C A T T G G T A G T A G A T C C C C A C T T A G C T T T A cjb111_a12.seq				
8602 T T T G T T G C T C T G G A G T T A A T C C A T T G G T A G T A G A T C C C C A C T T A G C T T T A h36b_a12.seq				
G G A G C T T C T G T C G G A A T C C T T T T A T A A T C T C T C A G C A T T A T T T G T T A A Majority				
8760	8770	8780	8790	8800
8702 G G A G C T T C T G T C G G A A T C C T T T T A T A A T C T C T C A G C A T T A T T T G T T A A 2603_a12.seq				
8702 G G A G C T T C T G T C G G A A T C C T T T T A T A A T C T C T C A G C A T T A T T T G T T A A 18rs21_a12.seq				
8610 G G A G C T T C T G T C G G A A T C C T T T T A T A A T C T C T C A G C A T T A T T T G T T A A 515_a12.seq				
8599 G G A G C T T C T G T C G G A A T C C T T T T A T A A T C T C T C A G C A T T A T T T G T T A A cjb111_a12.seq				
8652 G G A G C T T C T G T C G G A A T C C T T T T A T A A T C T C T C A G C A T T A T T T G T T A A h36b_a12.seq				
T T G T T T A T G A C T A T A A T T C T C T G T C T G A A T T G T G A A C T T A G T T T G A A G G C Majority				
8810	8820	8830	8840	8850
8752 T T G T T T A T G A C T A T A A T T C T C T G T C T G A A T T G T G A A C T T A G T T T G A A G G C 2603_a12.seq				
8752 T T G T T T A T G A C T A T A A T T C T C T G T C T G A A T T G T G A A C T T A G T T T G A A G G C 18rs21_a12.seq				
8660 T T G T T T A T G A C T A T A A T T C T C T G T C T G A A T T G T G A A C T T A G T T T G A A G G C 515_a12.seq				
8649 T T G T T T A T G A C T A T A A T T C T C T G T C T G A A T T G T G A A C T T A G T T T G A A G G C cjb111_a12.seq				
8702 T T G T T T A T G A C T A T A A T C A T T G T C T G A A C T T G T G A A A C T A G T T T G A A G G C h36b_a12.seq				
C A T A A T A T T T A T C A T C T C T T A A A T C C T T T T A C G A C A T C T A C A C T C C T A Majority				
8860	8870	8880	8890	8900
8802 C A T A A T A T T T A T C A T C T C T T A A A T C C T T T T A C G A C A T C T A C A C T C C T A 2603_a12.seq				
8802 C A T A A T A T T T A T C A T C T C T T A A A T C C T T T T A C G A C A T C T A C A C T C C T A 18rs21_a12.seq				
8710 C A T A A T A T T T A T C A T C T C T T A A A T C C T T T T A C G A C A T C T A C A C T C C T A 515_a12.seq				
8699 C A T A A T A T T T A T C A T C T C T T A A A T C C T T T T A C G A C A T C T A C A C T C C T A cjb111_a12.seq				
8752 C A T A A T A T T T A T C A T C T C T T A A A T C C T T T T A A C T T A C T C A C T C C T A h36b_a12.seq				
C C A T C A A A A A T A T C T G A A C C A T A G G T A A C T A A T G C A A C C C T A T T A T C A C T Majority				
8910	8920	8930	8940	8950
8852 C C A T C A A A A A T A T C T G A A C C A T A G G T A A C T A A T G C A A C C C T A T T A T C A C T 2603_a12.seq				
8852 C C A T C A A A A A T A T C T G A A C C A T A G G T A A C T A A T G C A A C C C T A T T A T C A C T 18rs21_a12.seq				
8760 C C A T C A A A A A T A T C T G A A C C A T A G G T A A C T A A T G C A A C C C T A T T A T C A C T 515_a12.seq				
8749 C C A T C A A A A A T A T C T G A A C C A T A G G T A A C T A A T G C A A C C C T A T T A T C A C T cjb111_a12.seq				
8799 C C A T C A A A A A T A T C T G A A C C A T A G G T A A C T A A T G C A A C C C T A T T A T C A C T h36b_a12.seq				
G T T T G C T C C T A A A A T A T C T T T A C T G C G G T C C C A A G A G C T T C G G G A G C T T Majority				
8960	8970	8980	8990	9000
8902 G T T T G C T C C T A A A A T A T C T T T A C T G C G G T C C C A A G A G C T T C G G G A G C T T 2603_a12.seq				
8902 G T T T G C T C C T A A A A T A T C T T T A C T G C G G T C C C A A G A G C T T C G G G A G C T T 18rs21_a12.seq				
8810 G T T T G C T C C T A A A A T A T C T T T A C T G C G G T C C C A A G A G C T T C G G G A G C T T 515_a12.seq				
8799 G T T T G C T C C T A A A A T A T C T T T A C T G C G G T C C C A A G A G C T T C G G G A G C T T cjb111_a12.seq				
8849 G T T T G C T C C T A A A A T A T C T T T A A A T G T T C I A C T G C T C A G C T G C C T h36b_a12.seq				

FIGURE 19S

<u>T C T G C G C T T A T T A T T C G C A A K A T T G G G C C A T C G T T A T T C A T T G A G Majority</u>				
9010	9020	9030	9040	9050
8952 T C T G C G C T T A T T A T T G C C T T G A A A A T T G C G G C C A T C G T T A T T C A T T G A G 2603_a12.seq				
8952 T C T G G C T T A T T A T T G C C T T G A A A A T T G G G C C A T C G T T A T T C A T T G A G 18rs21_a12.seq				
8860 T C T G G C T T A T T A T T G C C T T G A A A A T T G G G C C A T C G T T A T T C A T T G A G 515_a12.seq				
8849 T C T G G C T T A T T A T T G C C T T G A A A A T T G G G C C A T C G T T A T T C A T T G A G cjb111_a12.seq				
8899 T T T G C G T T A T T L I T T C A C C A T T G G G C C A T C G T T A T T C A T T G A G h36b_a12.seq				
<u>T T A G A A T T A T C G A G T A C G A A G A C A A C A T C T A A C G G C T T T G T T T G T C C A C Majority</u>				
9060	9070	9080	9090	9100
9002 T T A G A A T T A T C G A G T A C G A A G A C A A C A T C T A A C G G C T T T G T T T G T C C A C 2603_a12.seq				
9002 T T A G A A T T A T C G A G T A C G A A G A C A A C A T C T A A C G G C T T T G T T T G T C C A C 18rs21_a12.seq				
8910 T T A G A A T T A T C G A G T A C G A A G A C A A C A T C T A A C G G C T T T G T T T G T C C A C 515_a12.seq				
8899 T T A G A A T T A T C G A G T A C G A A G A C A A C A T C T A A C G G C T T T G T T T G T C C A C cjb111_a12.seq				
8937 T T T G A A T T A T C A A G A C A A A A C A A C A C T C A A G G G I T A T T T A T T I A A h36b_a12.seq				
<u>T G G T T T T A C T A T G G T T T T C A C T G A C A G T T A C T C A A T T T A T A T T A T Majority</u>				
9110	9120	9130	9140	9150
9052 T G G T T T T A C T A T G G T T T T C A C T G A C A G T T A C T C A A T T T A T A T T A T 2603_a12.seq				
9052 T G G T T T T A C T A T G G T T T T C A C T G A C A G T T A C T C A A T T T A T A T T A T 18rs21_a12.seq				
8860 T G G T T T T A C T A T G G T T T T C A C T G A C A G T T A C T C A A T T T A T A T T A T 515_a12.seq				
8849 T G G T T T T A C T A T G G T T T T C A C T G A C A G T T A C T C A A T T T A T A T T A T cjb111_a12.seq				
8987 A G T T T T A T A T G G A T T T A C C U C T A A C A G T T A C T C A A T T T A T A T T A T h36b_a12.seq				
<u>T A T G A G C T A A A T C A C C T A C T T C T G A A A T A C G T T A G A T A A T G T T C C C T C T Majority</u>				
9160	9170	9180	9190	9200
9102 T A T G A G C T A A A T C A C C T A C T T C T G A A A T A C G T T A G A T A A T G T T C C C T C T 2603_a12.seq				
9102 T A T G A G C T A A A T C A C C T A C T T C T G A A A T A C G T T A G A T A A T G T T C C C T C T 18rs21_a12.seq				
9010 T A T G A G C T A A A T C A C C T A C T T C T G A A A T A C G T T A G A T A A T G T T C C C T C T 515_a12.seq				
8999 T A T G A G C T A A A T C A C C T A C T T C T G A A A T A C G T T A G A T A A T G T T C C C T C T cjb111_a12.seq				
9037 T A T G A C G A A A T C A A T T A C T T C T G A A A T A C G T T A G A T A A T G T T C C C T C T h36b_a12.seq				
<u>G G A A T T T C T C T T A T A T G C T C A C C T T C A C T T G A A T A T G G G T T A A C T G C T T T Majority</u>				
9210	9220	9230	9240	9250
9152 G G A A T T T C T C T T A T A T G C T C A C C T T C A C T T G A A T A T G G G T T A A C T G C T T T 2603_a12.seq				
9152 G G A A T T T C T C T T A T A T G C T C A C C T T C A C T T G A A T A T G G G T T A A C T G C T T T 18rs21_a12.seq				
9060 G G A A T T T C T C T T A T A T G C T C A C C T T C A C T T G A A T A T G G G T T A A C T G C T T T 515_a12.seq				
9049 G G A A T T T C T C T T A T A T G C T C A C C T T C A C T T G A A T A T G G G T T A A C T G C T T T cjb111_a12.seq				
9087 T G G A A T T T C T C T T A T A T G C T C A C C T T C A C T T G A A T A T G G G T T A A C T G C T T T h36b_a12.seq				
<u>T G C C T C T G A C T T T C C A T T T G G A A C T G G A A C C T T T A A C A T G C T C A A G T T T A T Majority</u>				
9260	9270	9280	9290	9300
9202 T G C C T C T G A C T T T C C A T T T G G A A C T G G A A C C T T T A A C A T G C T C A A G T T T A T 2603_a12.seq				
9202 T G C C T C T G A C T T T C C A T T T G G A A C T G G A A C C T T T A A C A T G C T C A A G T T T A T 18rs21_a12.seq				
9110 T G C C T C T G A C T T T C C A T T T G G A A C T G G A A C C T T T A A C A T G C T C A A G T T T A T 515_a12.seq				
9099 T G C C T C T G A C T T T C C A T T T G G A A C T G G A A C C T T T A A C A T G C T C A A G T T T A T cjb111_a12.seq				
9137 T G C C T C T A A T T T C C A T T T G G A A C T G G A A C C T T T A A C A T G C T C A A G T T T A T h36b_a12.seq				
<u>A A G A T T C C T T T G T A T C T T C A T A A A T T C C T G T G G G G G A T A C T G C T T A T C T Majority</u>				
9310	9320	9330	9340	9350
9252 A A G A T T C C T T T G T A T C T T C A T A A A T T C C T G T G G G G G A T A C T G C T T A T C T 2603_a12.seq				
9252 A A G A T T C C T T T G T A T C T T C A T A A A T T C C T G T G G G G G A T A C T G C T T A T C T 18rs21_a12.seq				
9160 A A G A T T C C T T T G T A T C T T C A T A A A T T C C T G T G G G G G A T A C T G C T T A T C T 515_a12.seq				
9149 A A G A T T C C T T T G T A T C T T C A T A A A T T C C T G T G G G G G A T A C T G C T T A T C T cjb111_a12.seq				
9187 A A G A T T C C T T T G T A T C T T C A T A A C C T G T G A G G G G A T A C T G C T T A T C T h36b_a12.seq				
<u>A G T T C T T C C T G A T T T G T C C A A T T G T G G A A T T T T A T C A C C A C T A T T T G Majority</u>				
9360	9370	9380	9390	9400
9302 A G T T C T T C C T G A T T T G T C C A A T T G T G G A A T T T T A T C A C C A C T A T T T G 2603_a12.seq				
9302 A G T T C T T C C T G A T T T G T C C A A T T G T G G A A T T T T A T C A C C A C T A T T T G 18rs21_a12.seq				
9210 A G T T C T T C C T G A T T T G T C C A A T T G T G G A A T T T T A T C A C C A C T A T T T G 515_a12.seq				
9199 A G T T C T T C C T G A T T T G T C C A A T T G T G G A A T T T T A T C A C C A C T A T T T G cjb111_a12.seq				
9237 A G T T C T T C C T G A T T T G T C C A A T T G A G A T T T T A T C A C C A C T A T T T G h36b_a12.seq				
<u>T A T C G T A G T T T T C C A T T A C T C T C A A C C T T A A C T T G G C C A A G T C T G G T T A G Majority</u>				
9410	9420	9430	9440	9450
9352 T A T C G T A G T T T T C C A T T A C T C T C A A C C T T A A C T T G G C C A A G T C T G G T T A G 2603_a12.seq				
9352 T A T C G T A G T T T T C C A T T A C T C T C A A C C T T A A C T T G G C C A A G T C T G G T T A G 18rs21_a12.seq				
9260 T A T C G T A G T T T T C C A T T A C T C T C A A C C T T A A C T T G G C C A A G T C T G G T T A G 515_a12.seq				
9249 T A T C G T A G T T T T C C A T T A C T C T C A A C C T T A A C T T G G C C A A G T C T G G T T A G cjb111_a12.seq				
9287 T A T C G T A G T T T T C C A T T A C T C T C A A C C T T A A C T T G G C C A A G T C T G G T T A G h36b_a12.seq				

FIGURE 19T

T C T T T T A A C C T T C G G G C C T G T T C T T G A T A A A G T A T A A T C T C C A Majority				
9460	9470	9480	9490	9500
9402 T C T T T T A A C C T T C G G G C C T G T T C T T G A T A A A G T A T A A T C T C C A 2603_a12.seq				
9402 T C T T T T A A C C T T C G G G C C T G T T C T T G A T A A A G T A T A A T C T C C A 18rs21_a12.seq				
9310 T C T T T T T A A C C T T C G G G C C T G T T C T T G A T A A A G T A T A A T C T C C A 515_a12.seq				
9299 T C T T T T T A A C C T T C G G G C C T G T T C T T G A T A A A G T A T A A T C T C C A cjb111_a12.seq				
9337 T C T T T T T A A C C T T C G G G C C T G T T C T T G A T A A A G T A T A A T C T C C A h36b_a12.seq				
G C T A T G A G A T T A T C A A A A G T A G C T T C A C C T G T T A G C T C A G C A G T T A C T T Majority				
9510	9520	9530	9540	9550
9452 G G T A T G A G A T T A T C A A A A G T A G C T T C A C C T G T T A G C T C A G C A G T T A C T T 2603_a12.seq				
9452 G G T A T G A G A T T A T C A A A A G T A G C T T C A C C T G T T A G C T C A G C A G T T A C T T 18rs21_a12.seq				
9360 G G T A T G A G A T T A T C A A A A G T A G C T T C A C C T G T T A G C T C A G C A G T T A C T T 515_a12.seq				
9349 G G T A T G A G A T T A T C A A A A G T A G C T T C A C C T G T T A G C T C A G C A G T T A C T T cjb111_a12.seq				
9387 G G T A T G A G A T T A T C A A A A G T A G C T T C A C C T G T T A G C T C A G C A G T T A C T T h36b_a12.seq				
T T C T A T T T A C T T C T G G A T G A G C A G T A G T T T T A A A C A A A G G T A G C T T Majority				
9560	9570	9580	9590	9600
9502 T T C T A T T T A C T T C T G G A T G A G C A G T A G T T T T A A A C A A A G G T A G C T T 2603_a12.seq				
9502 T T C T A T T T A C T T C T G G A T G A G C A G T A G T T T T A A A C A A A G G T A G C T T 18rs21_a12.seq				
9410 T T C T A T T T A C T T C T G G A T G A G C A G T A G T T T T A A A C A A A G G T A G C T T 515_a12.seq				
9399 T T C T A T T T A C T T C T G G A T G A G C A G T A G T T T T A A A C A A A G G T A G C T T cjb111_a12.seq				
9437 T T C T A T T T A C T T C T G A G T G A G T A G T T T T A A A C A A A G G T A G C T T h36b_a12.seq				
T T G A A A G T G G G T T G T T C T G G T C A T C T G T C T T T T A A C A A C T A A C T T T C C T Majority				
9610	9620	9630	9640	9650
9552 T T G A A A G T G G G T T G T T C T G G T C A T C T G T C T T T T A A C A A C T A A C T T T C C T 2603_a12.seq				
9552 T T G A A A G T G G G T T G T T C T G G T C A T C T G T C T T T T A A C A A C T A A C T T T C C T 18rs21_a12.seq				
9460 T T G A A A G T G G G T T G T T C T G G T C A T C T G T C T T T T A A C A A C T A A C T T T C C T 515_a12.seq				
9449 T T G A A A G T G G G T T G T T C T G G T C A T C T G T C T T T T A A C A A C T A A C T T T C C T cjb111_a12.seq				
9487 T T G A A A G T G G G T T G T T C T G G T C A T C T G T C T T T T A A C A A C T A A C T T T C C T h36b_a12.seq				
T T A G C A C C A T T T C C G G T A C G G T A C T T C C C C T A A A A C A T T G G T A T T A A G Majority				
9660	9670	9680	9690	9700
9602 T T A G C A C C A T T T C C G G T A C G G T A C T T C C C C T A A A A C A T T G G T A T T A A G 2603_a12.seq				
9602 T T A G C A C C A T T T C C G G T A C G G T A C T T C C C C T A A A A C A T T G G T A T T A A G 18rs21_a12.seq				
9510 T T A G C A C C A T T T C C G G T A C G G T A C T T C C C C T A A A A C A T T G G T A T T A A G 515_a12.seq				
9499 T T A G C A C C A T T T C C G G T A C G G T A C T T C C C C T A A A A C A T T G G T A T T A A G cjb111_a12.seq				
9537 T T A G C A C C A T T T C C G G T A C G G T A C T T C C C C T A A A A C A T T G G T A T T A A G h36b_a12.seq				
C G G T A T T T G C C A C A A C A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T Majority				
9710	9720	9730	9740	9750
9652 C G G T A T T T G C C A C A A C A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T 2603_a12.seq				
9652 C G G T A T T T G C C A C A A C A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T 18rs21_a12.seq				
9560 C G G T A T T T G C C A C A A C A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T 515_a12.seq				
9549 C G G T A T T T G C C A C A A C A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T cjb111_a12.seq				
9587 C G G T A T T T G C C A C A A C A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T h36b_a12.seq				
T T T G G T A T T T C T C A T T T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T Majority				
9760	9770	9780	9790	9800
9702 T T T G G T A T T T C T C A T T T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T 2603_a12.seq				
9702 T T T G G T A T T T C T C A T T T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T 18rs21_a12.seq				
9610 T T T G G T A T T T C T C A T T T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T 515_a12.seq				
9599 T T T G G T A T T T C T C A T T T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T cjb111_a12.seq				
9637 T T T G G T A T T T C T C A T T T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T h36b_a12.seq				
A A A T C T A A G A T C A G A T A C A G A A T A T C C T A G A A T A T A C A A A C T A T C A C T T A Majority				
9810	9820	9830	9840	9850
9752 A A A T C T A A G A T C A G A T A C A G A A T A T C C T A G A A T A T A C A A A C T A T C A C T T A 2603_a12.seq				
9752 A A A T C T A A G A T C A G A T A C A G A A T A T C C T A G A A T A T A C A A A C T A T C A C T T A 18rs21_a12.seq				
9660 A A A T C T A A G A T C A G A T A C A G A A T A T C C T A G A A T A T A A A A C T A T C A C T T A 515_a12.seq				
9649 A A A T C T A A G A T C A G A T A C A G A A T A T C C T A G A A T A T A C A A A C T A T C A C T T A cjb111_a12.seq				
9687 A A A T C T A A G A T C A G A T A C A G A A T A T C C T A G A A T A T A C A A A C T A T C A C T T A h36b_a12.seq				
T T A T G A T A T C A A T A A T T T C T T A T T A A G G T A T G G A A T T T A A T G T T T T Majority				
9860	9870	9880	9890	9900
9802 T T A T G A T A T C A A T A A T T T C T T A T T A A G G T A T G G A A T T T A A T G T T T T 2603_a12.seq				
9802 T T A T G A T A T C A A T A A T T T C T T A T T A A G G T A T G G A A T T T A A T G T T T T 18rs21_a12.seq				
9710 T T A T G A T A T C A A T A A T T T C T T A T T A A G G T A T G G A A T T T A A G T T T T 515_a12.seq				
9699 T T A T G A T A T C A A T A A T T T C T T A T T A A G G T A T G G A A T T T A A T G T T T T cjb111_a12.seq				
9737 T T A T G A T A T C A A T A A T T T C T T A T T A A G G T A T G G A A T T T A A G T T T T h36b_a12.seq				

FIGURE 19U.

FIGURE 19v

39/487

T C A G G C D A G C T T A C I C T T T I K A C T H I F C T T T A C T G T G A A A A A T T T G G A C T A T C T T G Majority				
10360	10370	10380	10390	10400
10299 T C A G G C A G G T T A C C T T A C T T A C T T A C T T A G T G A A A A A T T T G G A C T A T C T T G 2603_a12.seq				
10299 T C A G G C A G G T T A C C T T A C C T T A C T T A C T T A G T G A A A A A T T T G G A C T A T C T T G 18rs21_a12.seq				
10196 T C A A I I T I A T T T C C T T C A I G G A A C T A T I A T A G A C A I G A T A A A I T A A C T A C 515_a12.seq				
10196 T C A G G C A G G T T A C C T T A C T T A C T T A C T T A G T G A A A A A T T T G G A C T A T C T T G cjb111_a12.seq				
10236 T C A G G C A G G T T A C C T T A C T T A C T T A C T T A G T G A A A A A T T T G G A C T A T C T T G h36b_a12.seq				
T G C A A C T G C T T A T C G C A T A C G A A A A C A T A T T A G T C C A T T A C T A G A A A A C Majority				
10410	10420	10430	10440	10450
10349 T G C A A C T G C T T A T C G C A T A C G A A A A C A T A T T A G T C C A T T A C T A G A A A A C 2603_a12.seq				
10349 T G C A A C T G C T T A T C G C A T A I G G A A A A C A T A T T A G T C C A T T A C T A G A A A A C 18rs21_a12.seq				
10246 T A T . . . I C T T C G A C K C G A I A I A C A A A T T A G T C T T A G T G A A A T T G G A G A 515_a12.seq				
10246 T G C A A C T G C T T A T C G C A T A C G A A A A C A T A T T A G T C C A T T A C T A G A A A A C cjb111_a12.seq				
10286 T G C A A C T G C T T A T C G C A T A C G A A A A C A T A T T A G T C C G T T A C T A G A A A A C h36b_a12.seq				
T T G G A T T T C A G A T T G T C A A A A A T A C T A T T A C C G G T G - A C G A G T A T C G A A T Majority				
10460	10470	10480	10490	10500
10399 T T G G A T T T C A G A T T G T C A A A A A T A C T A T T A C C G G T G - A C G A G T A T C G A A T 2603_a12.seq				
10399 T T G G A T T T C A G A T T G T C A A A A A T A C T A T T A C C G G T G - A C G A G T A T C G A A T 18rs21_a12.seq				
10291 A T A C A P G T T I A A G G A C A A C G A T T I C I C T C C I T T G T G C I C A C T A G A A A 515_a12.seq				
10296 T T G G A T T T C A G A T T G T C A A A A A T A C T A T T A C C G G T G - A C G A G T A T C G A A T cjb111_a12.seq				
10336 T T G G A T T T C A G A T T G T C A A A A A T A C T A T T A C C G G T G - A C G A G T A T C G A A T h36b_a12.seq				
T C G C T A T T T A A T C G C A T T T T A A T G C T C A A T T T G G T A T A G A A G T T T A T C Majority				
10510	10520	10530	10540	10550
10448 T C G C T A T T T A A T C G C A T T T T A A T G C T C A A T T T G G T A T A G A A G T T T A T C 2603_a12.seq				
10448 T C G C T A T T T A A T C G C A T T T T A A T G C T C A A T T T G G T A T A G A A G T T T A T C 18rs21_a12.seq				
10341 G A A T T A T C A A A A T C A T T T C I C T C G A T A C A A A T A G . . C U G T A C T A A C T A 515_a12.seq				
10345 T C G C T A T T T A A T C G C A T T T T A A T G C T C A A T T T G G T A T A G A A G T T T A T C cjb111_a12.seq				
10385 T C G C T A T T T A A T C G C A C A T T T A A T G C T C G A T T T G G T A T A G A A G T T T A T C h36b_a12.seq				
C C A T G T C T A A G A T G G A T A A A T T G C T C A T C A A A C G A T T G T T A T T A G A A C A C Majority				
10560	10570	10580	10590	10600
10498 C C A T G T C T A A G A T G G A T A A A T T G C T C A T C A A A C G A T T G T T A T T A G A A C A C 2603_a12.seq				
10498 C C A T G T C T A A G A T G G A T A A A T T G C T C A T C A A A C G A T T G T T A T T A G A A C A C 18rs21_a12.seq				
10389 C A G A T T A T A T A A C A A A A T T T A A C A G A A I G I T T A T C A C A G A G G E I T 515_a12.seq				
10395 C C A T G T C T A A G A T G G A T A A A T T G C T C A T C A A A C G A T T G T T A T T A G A A C A C cjb111_a12.seq				
10435 C C I T A T C T A A G A T G G A T A A A T T G C T T A T C A A A C G A T T G T T A T T A G A A C A C h36b_a12.seq				
T C A A C T A C T T T A C T G C T T C T C A T T A C T T C C - C A A A T A C A T T T A T T T C T Majority				
10610	10620	10630	10640	10650
10548 T C A A C T A C T T T A C T G C T T C T C A T T A C T T C C - C A A A T A C A T T T A T T T C T 2603_a12.seq				
10548 T C A A C T A C T T T A C T G C T T C T C A T T A C T T C C - C A A A T A C A T T T A T T T C T 18rs21_a12.seq				
10439 T C T T C T A A A C A G A T T A T T C C A I C T A C I A I I I A T A C T G A T G A T C T 515_a12.seq				
10445 T C A A C T A C T T T A C T G C T T C T C A T T A C T T C C - C A A A T A C A T T T A T T T C T cjb111_a12.seq				
10485 T C A A C T A C T T T A C T G C T T C T C A T T A C T T C C - C A A A T A C A T T T A T T T C T h36b_a12.seq				
T T G A T A C A T T G T T G T C T C T A T G G A A A C G T A T T A A T T A A T G T A G T Majority				
10660	10670	10680	10690	10700
10597 T T G A T A C A T T G T T G T C T C T A T G G A A A C G T A T T A A T T A A T A G T A G T 2603_a12.seq				
10597 T T G A T A C A T T G T T G T C T C T A T G G A A A C G T A T T A A T T A A T A G T A G T 18rs21_a12.seq				
10489 T T G A T A C A T T A C T A A C T T A A T C C A G A T A I T A T T A A T C C A A U C C A A A G 515_a12.seq				
10494 T T G A T A C A T T G T T G T C T C T A T G G A A A C G T A T T A A T T A A T G T A G T cjb111_a12.seq				
10534 T T G A T A C A T T A T T G T C T C T A T G G A A A C G T A T T A A T T A A T G T A G T h36b_a12.seq				
G T C C C T T A C T - - C A T C C C T T T C A C T G A A C T A C A A A A T A T T T A T C T A Majority				
10710	10720	10730	10740	10750
10647 G T C C C T T A C T - - C A T C C C T T T C A C T G A A C T A C A A A A T A T T T A T C T A 2603_a12.seq				
10647 G T C C C T T A C T - - C A T C C C T T T C A C T G A A C T A C A A A A T A T T T A T C T A 18rs21_a12.seq				
10538 T C T T C T T C T T I A T A A A C A T G A G A T T C T C A G A G A T T I T A A T T A C T A 515_a12.seq				
10544 G T C C C T T A C T - - C A T C C C T T T C A C T G A A C T A C A A A A T A T T T A T C T A cjb111_a12.seq				
10584 G T C C C T T A C T - - C A G C C C T T T C A T T G A A C T A C A A A A T A T T T A T C T A h36b_a12.seq				
T G A T A C A T T A C A A T A T T G T G T C A A A A A T G T T A T T A T A G A T T C C T T T A A A A Majority				
10760	10770	10780	10790	10800
10694 T G A T A C A T T A C A A T A T T G T G T C A A A A A T G T T A T T A T A G A T T C C T T T A A A A 2603_a12.seq				
10694 T G A T A C A T T A C A A T A T T G T G T C A A A A A T G T T A T T A T A G A T T C C T T T A A A A 18rs21_a12.seq				
10588 T A T T G G A T T G A T T G A T A C T G C A A C T A C T A C T A C T A C T A C T A C T A 515_a12.seq				
10591 T G A T A C A T T A C A A T A T T G T G T C A A A A A T G T T A T T A T A G A T T C C T T T A A A A cjb111_a12.seq				
10631 T G A T A C A T T A C A A T A T T G T G T C A A A A A T G T T A T T A T A G A T T C C T T T A A A A h36b_a12.seq				

FIGURE 19W

80/487

Alignment Report of WO 2006/078318 in method with Weighted residue weight table.

Thursday, July 29, 2004 6:32 PM

PCT/US2005/027239 Page 25

TTA AT T T A A A A A G A C G A T A T A G A C T A T A T T T T C T T G C - - - - T Majority				
10810	10820	10830	10840	10850
10744 T T A A T T A A A A A A G A C G A T A T A G A C T A T A T T T T C T T G C - - - - T 2603_a12.seq				
10744 T T A A T T A A A A A A G A C G A T A T A G A C T A T A T T T T C T T G C - - - - T 18rs21_a12.seq				
10638 T T C A T A A T A C A A G A G A A A A A T T G T A A C T T T T C T T G C A A A G A A C A A T 515_a12.seq				
10641 T T A A T T A A A A A A G A C G A T A T A G A C T A T A T T T T C T T G C - - - - T cjb111_a12.seq				
10681 T T A A T T A A A A A A G A C G A T A T A G A C T A T A T T T T C T T G C - - - - T h36b_a12.seq				
T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A A A T T G G A C - - T G A G A A G Majority				
10860	10870	10880	10890	10900
10785 T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A A A T T G G A C - - T G A G A A G 2603_a12.seq				
10785 T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A A A T T G G A C - - T G A G A A G 18rs21_a12.seq				
10688 G A A A T T A C T A C C C G T A H C T C T A T A A C I C T I A A A A T T A A C A T T A A A A G 515_a12.seq				
10682 T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A A A T T G G A C - - T G A G A A G cjb111_a12.seq				
10722 T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A A A T T G G A C - - T G A G A A G h36b_a12.seq				
C G T A T C G A T A A T G T A A T A - G C T A T T T T C G A A A A T T A T C C C A A A T T C C A A A Majority				
10910	10920	10930	10940	10950
10833 C G T A T C G A T A A T G T A A T A - G C T A T T T T C G A A A A T T A T C C C A A A T T C C A A A 2603_a12.seq				
10833 C G T A T C G A T A A T G T A A T A - G C T A T T T T C G A A A A T T A T C C C A A A T T C C A A A 18rs21_a12.seq				
10738 C T A G A G C A T T A C A C A A T G C F C T A G C T T I T A A I G T I A T T I T T G G A A T T A A I 515_a12.seq				
10730 C G T A T C G A T A A T G T A A T A - G C T A T T T T C G A A A A A T T A T C C C A A A T T C C A A A cjb111_a12.seq				
10770 C G T A T C G A T A A T G T A A T A - G C T A T T T T C G A A A A T T A T C C C A A A T T C C A A A h36b_a12.seq				
A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C - - C T T A T C T G G C T C C T A T C Majority				
10960	10970	10980	10990	11000
10882 A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C - - C T T A T C T G G C T C C T A T C 2603_a12.seq				
10882 A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C - - C T T A T C T G G C T C C T A T C 18rs21_a12.seq				
10788 A A T T A A T C C A A C E T T C A A C T I G T T I T I C C A G G G T G A A A T G T I C T T T A A I 515_a12.seq				
10779 A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C - - C T T A T C T G G C T C C T A T C cjb111_a12.seq				
10819 A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C - - C T T A T C T G G C T C C T A T C h36b_a12.seq				
A T G A T G A G T T G G T A A A A G T T G C T A T C T T T T T C C G A A C A T T I A T T T A Majority				
11010	11020	11030	11040	11050
10930 A T G A T G A G T T G G T A A A A G T T G C T A T C T T T T T C C G A A C A T T I A T T T T A 2603_a12.seq				
10930 A T G A T G A G T T G G T A A A A G T T G C T A T C T T T T T C C G A A C A T T I A T T T T A 18rs21_a12.seq				
10838 C I C I T I A G C A A A A T T C A A C T I G T T I T I C T G A T T C T G T T A A I G C C T T A T C 515_a12.seq				
10827 A T G A T G A G T T G G T A A A A G T T G C T A T C T T T T T C C G A A C A T T I A T T T T A cjb111_a12.seq				
10867 A T G A T G A G T T G G T A A A A G T T G C T A T C T T T T T C C G A A C A T T I A T T T T A h36b_a12.seq				
G G A T T A A A T C A A T T A A T C C C T G A A A C A A T T - - T C A T T T C C T T C A T G G A A C Majority				
11060	11070	11080	11090	11100
10979 G G A T T A A A T C A A T T A A T C C C T G A A A C A A T T - - T C A T T T C C T T C A T G G A A C 2603_a12.seq				
10980 G G A T T A A A T C A A T T A A T C C C T G A A A C A A T T - - T C A T T T C C T T C A T G G A A C 18rs21_a12.seq				
10888 C I A A T A A A T C A A G A G A T I C A T G C G A G G G T G A I A T T T T C T T C A I G A I G 515_a12.seq				
10877 G G A T T A A A T C A A T T A A T C C C T G A A A C A A T T - - T C A T T T C C T T C A T G G A A C cjb111_a12.seq				
10917 G G A T T A A A T C A A T T A A T C C C T G A A A C A A T T - - T C A T T T C C T T C A T G G A A C h36b_a12.seq				
T A T C A T A G A C A T G A T A A A T T A A C T A C T A T T C T C C G A C C G A T A A T T A C A A A Majority				
11110	11120	11130	11140	11150
11027 T A T C A T A G A C A T G A T A A A T T A A C T A C T A T T C T C C G A C C G A T A A T T A C A A A 2603_a12.seq				
11028 T A T C A T A G A C A T G A T A A A T T A A C T A C T A T T C T C C G A C C G A T A A T T A C A A A 18rs21_a12.seq				
10938 A I T C T A A C I C A G G G I A T C G A I A A C T T T C A N C I G I I C T A T G G A I G I I 515_a12.seq				
10925 T A T C A T A G A C A T G A T A A A T T A A C T A C T A T T C T C C G A C C G A T A A T T A C A A A cjb111_a12.seq				
10965 T A T C A T A G A C A T G A T A A A T T A A C T A C T A T T C T C C G A C C G A T A A T T A C A A A h36b_a12.seq				
T T G G T T A A G T A A A A T T G G A G A A T - - C A C G T T T A A A G A A C A A C A T T T C Majority				
11160	11170	11180	11190	11200
11077 T T G G T T A A G T A A A A T T G G A G A A T - - C A C G T T T A A A G A A C A A C A T T T C 2603_a12.seq				
11078 T T G G T T A A G T A A A A T T G G A G A A T - - C A C G T T T A A A G A A C A A C A T T T C 18rs21_a12.seq				
10987 T T G G T T A A G T A A T A G C A T T G A A A G T A G A C C A G C T C T A A A A I A G A G G T T T G G T 515_a12.seq				
10975 T T G G T T A A G T A A A A T T G G A G A A T - - C A C G T T T A A A G A A C A A C A T T T C cjb111_a12.seq				
11015 G T G G T T A A G T G A A A T T G G A G A A T - - C A C A T T T A A A G A A C A A C A T T T C h36b_a12.seq				
T T C T C C T T T G T A C T C A T C T A G A A A G A A T C A T C A A A A A T C A T A T T C C T C C G Majority				
11210	11220	11230	11240	11250
11124 T T C T C C T T T G T A C T C A T C T A G A A A G A A T C A T C A A A A A T C A T A T T C C T C C G 2603_a12.seq				
11125 T T C T C C T T T G T A C T C A T C T A G A A A G A A T C A T C A A A A A T C A T A T T C C T C C G 18rs21_a12.seq				
11037 A A - I C C T C T G G A A A C A T C G A I G G G T A A A A C A A T A C A G T C T G T G C C A 515_a12.seq				
11022 T T C T C C T T T G T A C T C A T C T A G A A A G A A T C A T C A A A A A T C A T A T T C C T C C G cjb111_a12.seq				
11062 T T C T C C T T T G T A C T C A T C T A G A A A G A A T C A T C A A A A A T C A T A T T C C T C C G h36b_a12.seq				

FIGURE 19X

Wednesday, July 29, 2004 6:52 PM

A T A C A G A - T A G C C G T A C T A A C T A C A G A C T T T A T T A A T A A C C A A A T T T T A Majority				
11260	11270	11280	11290	11300
11174 A T A C A G A - - T A G C C G T A C T A A C T A C A G A C T T T A T T A A T A A C C A A A T T T T A 2603_a12.seq				
11175 A T A C A G A - - T A G C C G T A C T A A C T A C A G A C T T T A T T A A T A A C C A A A T T T T A 18rs21_a12.seq				
11086 A T A A G A - A T A C T C I G T I C A A A G I I I A A I T T I C I T A A A A G I I A A T T G T G 515_a12.seq				
11072 A T A C A G A - - T A G C C G T A C T A A C T A C A G A C T T T A T T A A T A A C C A A A T T T T A cjb111_a12.seq				
11112 A T A C A G A - - T A G C C G T A C T A A C T A C A G A C T T T A T T A A T A A C C A A A T T T T A h36b_a12.seq				
A C A G A A T G C T T A T T A C A G A G A T T T C T T C T A A A A A G A T T C A T T C C A C C C Majority				
11310	11320	11330	11340	11350
11222 A C A G A A T G C T T A T T A C A G A G A T T T C T T C T A A A A A G A T T C A T T C C A C C C 2603_a12.seq				
11223 A C A G A A T G C T T A T T A C A G A G A T T T C T T C T A A A A A G A T T C A T T C C A C C C 18rs21_a12.seq				
11136 A T G G G A C T T G A T A T T C I T T C A A A T T G I G G C I A A T T C A G G T C C G I C T 515_a12.seq				
11120 A C A C A A T G C T T A T T A C A G A G A T T T C T T C T A A A A A G A T T C A T T C C A C C C cjb111_a12.seq				
11160 A C A G A A T G C T T A T T A C A G A G A T T T C T T C T A A A A A G A T T C A T T C C A C C C h36b_a12.seq				
T T A C T A T T T A T T A A C T G A T G A T C T T C C A A T A T T A C T A A T C T T A A T C C A G Majority				
11360	11370	11380	11390	11400
11272 T T A C T A T T T A T T A A C T G A T G A T C T T C C A A T A T T A C T A A T C T T A A T C C A G 2603_a12.seq				
11273 T T A C T A T T T A T T A A C T G A T G A T C T T C C A A T A T T A C T A A T C T T A A T C C A G 18rs21_a12.seq				
11181 C T C G C A A T C T G T A A T A A C A T T T C T A G A G T A C T G C T G A T C G A A A A 515_a12.seq				
11170 T T A C T A T T T A T T A A C T G A T G A T C T T C C A A T A T T A C T A A T C T T A A T C C A G cjb111_a12.seq				
11210 T T A C T A T T T A T T A A C T G A T G A T C T T C C A A T A T T A C T A A T C T T A A T C C A G h36b_a12.seq				
A C A T T A T T A T T A C C A A T A A A A A G C T T T C T C C C T T T A T C A A A C A T G A G A T T Majority				
11410	11420	11430	11440	11450
11322 A C A T T A T T A T T A C C A A T A A A A A G C T T T C T C C C T T T A T C A A A C A T G A G A T T 2603_a12.seq				
11323 A C A T T A T T A T T A C C A A T A A A A A G C T T T C T C C C T T T A T C A A A C A T G A G A T T 18rs21_a12.seq				
11227 A T G G T C T G A A G C A A T T G A A I G C T T T I C I T T A T - - - - A A T T C 515_a12.seq				
11220 A C A T T A T T A T T A C C A A T A A A A A G C T T T C T C C C T T T A T C A A A C A T G A G A T T cjb111_a12.seq				
11260 A C A T T A T T A T T A C C A A T A A A A A G C T T T C T C C C T T T A T C A A A C A T G A G A T T h36b_a12.seq				
T C T T C A G A G A G T T A A T T A C A T A T A T T G A T C T G A T T A A T A C T T C A G A C C A Majority				
11460	11470	11480	11490	11500
11372 T C T T C A G A G A G T T A A T T A C A T A T A T T G A T C T G A T T A A T A C T T C A G A C C A 2603_a12.seq				
11373 T C T C E C A G A G A G T T A A T T A C A T A T A T T G A T C T G A T T A A T A C T T C A G A C C A 18rs21_a12.seq				
11269 T A C C A G C A T A A G T G A I G A A A T A T K A T A G C A G A T T I T C A A G G I A G C I C 515_a12.seq				
11270 T C T T C A G A G A G T T A A T T A C A T A T A T T G A T C T G A T T A A T A C T T C A G A C C A cjb111_a12.seq				
11310 T C T T C A G A G A G T T A A T T A C A T A T A T T G A T C T G A T T A A T A C T T C A G A C C A h36b_a12.seq				
A A T C A A T C A A A T C C A A A A A A T T A T T C A T C A A T A C A G G A A G A A A A A T T Majority				
11510	11520	11530	11540	11550
11422 A A T C A A T C A A A A A A T T A T T T C A T C A A T A C A G G A A G A A A A A T T A T T 2603_a12.seq				
11423 A A T C A A T C A A A A A A T T A T T T C A T C A A T A C A G G A A G A A A A A A T T A T T 18rs21_a12.seq				
11319 G T G I C A G C A A A A T C A G A G C U T A G A T T I C A G A T A C C G A A T T A I A A A T A A C 515_a12.seq				
11320 A A T C A A T C A A A T C C A A A A A A T T A T T T C A T C A A T A C A G G A A G A A A A A A T T cjb111_a12.seq				
11360 A A T C A A T C A A A T C C A A A A A A T T A T T T C A T C A A T A C A G G A A G A A A A A A T T h36b_a12.seq				
G C A A A C T T T T T G C A A A A A C T A A T G A A A T A A C T A A T C G T A G C T C C T - - - - Majority				
11560	11570	11580	11590	11600
11472 G C A A A C T T T T T G C A A A A A C T A A T G A A A T A A C T A A T C G T A G C T C C T - - - - 2603_a12.seq				
11473 G C C A A C T T T T T G C A A A A A C T A A T G A A A A A C T A A T C G T A G C T C C T - - - - 18rs21_a12.seq				
11369 I C C I T I A G C T T C T A I A I A A A T G C I T I T A A C C G A I C T C A A C G C T I C T C I G G 515_a12.seq				
11370 G C A A A C T T T T T G C A A A A A C T A A T G A A A A A C T A A T C G T A G C T C C T - - - - cjb111_a12.seq				
11410 G C A A A C T T T T T G C A A A A A C T A A T G A A A A A C T A A T C G T A G C T C C T - - - - h36b_a12.seq				
A T A A C T C T T A A A A T T A A C A T T A A A A G C T - A G A G C A T T G T G T A A T G C T C Majority				
11610	11620	11630	11640	11650
11517 A T A A C T C T T A A A A T T A A C A T T A A A A G C T - A G A G C A T T G T G T A A T G C T C 2603_a12.seq				
11518 A T A A C T C T T A A A A T T A A C A T T A A A A A G C T - A G A G C A T T G T G T A A T G C T C 18rs21_a12.seq				
11419 A T A A C T C T T A A A A T T A A C A T T A A A A A G C T - A G A G C A T T G T G T A A T G C T C 515_a12.seq				
11415 A T A A C T C T T A A A A T T A A C A T T A A A A A G C T - A G A G C A T T G T G T A A T G C T C cjb111_a12.seq				
11455 A T A A C T C T T A A A A T T A A C A T T A A A A A G C T - A G A G C A T T G T G T A A T G C T C h36b_a12.seq				
T A G C T T T T T A A T G T T A A T T T T G A A T A A T A A T C C A A C T T T C A A C T Majority				
11660	11670	11680	11690	11700
11566 T A G C T T T T T A A T G T T A A T T T T T G A A T A A T A A T C C A A C T T T T C A A C T 2603_a12.seq				
11567 T A G C T T T T T A A T G T T A A T T T T T G A A T A A T A A T C C A A C T T T T C A A C T 18rs21_a12.seq				
11466 A C A T C T T C T A A G C A T A G C T C A A A G A A A I G T A A A A A C G A T T T A T I G A C A 515_a12.seq				
11464 T A G C T T T T T A A T G T T A A T T T T T G A A T A A T A A T C C A A C T T T C A A C T cjb111_a12.seq				
11504 T A G C T T T T T A A T G T T A A T T T T T G A A T A A T A A T C C A A C T T T C A A C T h36b_a12.seq				

FIGURE 19v

<u>G T T T T T T C G A T G T G A A A T G T G T T T A A T T T C T G T T G</u> Majority				
11710	11720	11730	11740	11750
11616 G T T T T T T C C A T G T G A A A T G T T C T T A A T T C T T T A A T T C T G C A A T A T T C T G T T G 2603_a12.seq				
11617 G T T T T T T C C A T G T G A A A T G T T C T T A A T T C T T T A A T T C T G C A A T A T T C T G T T G 18rs21_a12.seq				
11514 G A A A A A T G A C I T G A C C U A T G T C T A A A A C A A T A C T A G G I A A T E G T G C T 515_a12.seq				
11514 G T T T T T T C C A T G T G A A A T G T T C T T A A T T C T T T A A T T C T G C A A T A T T C T G T T G cjb111_a12.seq				
11554 G T T T T T T C C A T G T G A A A T G T T C T T A A T T C T T T A A T T C T G C A A T A T T C T G T T G h36b_a12.seq				
<u>T A G T T T C T C T T A A T G G C C T T A T C T T T A C T A A T A A A T C A A G A G A T T C A T</u> Majority				
11760	11770	11780	11790	11800
11666 T A G T T T C T C T C T T A A T G G C C T T A T C T T T A C T A A T A A A T C A A G A G A T T C A T 2603_a12.seq				
11667 T A G T T T C T C T C T T A A T G G C C T T A T C T T T A C T A A T A A A T C A A G A G A T T C A T 18rs21_a12.seq				
11564 C T T T G C A A A A G A T A R C C C C I T C I A A C H T G T T A A C I G A A A A G C I A T T A 515_a12.seq				
11564 T A G T T T C T C T C T T A A T G G C C T T A T C T T T A C T A A T A A A T C A A G A G A T T C A T cjb111_a12.seq				
11604 T A G T T T C T C T C T T A A T G G C C T T A T C T T T A C T A A T A A A T C A A G A G A T T C A T h36b_a12.seq				
<u>G G A G T - - - G A C T G A G T A T T T C T C C A T G A T G A T T C C T A A C T C A G G G C T A</u> Majority				
11810	11820	11830	11840	11850
11716 G G A G T - - - G A C T G A G T A T T T C T C C A T G A T G A T T C C T A A C T C A G G G C T A 2603_a12.seq				
11717 G G A G T - - - G A C T G A G T A T T T C T C C A T G A T G A T T C C T A A C T C A G G G C T A 18rs21_a12.seq				
11614 A A A I C A C A A A A T T A A T A T T T C A T C I G A A A C A A T A T I C A I C A G I G I T 515_a12.seq				
11614 G G A G T - - - G A C T G A G T A T T T C T C C A T G A T G A T T C C T A A C T C A G G G C T A cjb111_a12.seq				
11654 G G A G T - - - G A C T G A G T A T T T C T C C A T G A T G A T T C C T A A C T C A G G G C T A h36b_a12.seq				
<u>T - - - - - C A A T A A C T T C A A C T G T T C C A C C G G A T C T G T T G C A A T A A T A G C</u> Majority				
11860	11870	11880	11890	11900
11763 T - - - - - C A A T A A C T T C A A C T G T T C C A C C G G A T C T G T T G C A A T A A T A G C 2603_a12.seq				
11764 T - - - - - C A A T A A C T T C A A C T G T T C C A C C G G A T C T G T T G C A A T A A T A G C 18rs21_a12.seq				
11664 T A T T C T C G A I T T T G T I A A I A A T A G G A I A A G C G C T G G T T G A C A A T A T T T 515_a12.seq				
11661 T - - - - - C A A T A A C T T C A A C T G T T C C A C C G G A T C T G T T G C A A T A A T A G C cjb111_a12.seq				
11701 T - - - - - C A A T A A C T T C A A C T G T T C C A C C G G A T C T G T T G C A A T A A T A G C h36b_a12.seq				
<u>A C T T G A A A G T A G A C C A G C T T C T A A A - - - A T A G A G G T T G G T A A T C C C T C</u> Majority				
11910.	11920	11930	11940	11950
11807 A C T T G A A A G T A G A C C A G C T T C T A A A - - - A T A G A G G T T G G T A A T C C C T C 2603_a12.seq				
11808 A C T T G A A A G T A G A C C A G C T T C T A A A - - - A T A G A G G T T G G T A A T C C C T C 18rs21_a12.seq				
11714 G G T G G I A A A C G G I A A A T T I T C I A C C C I I G T C F C I A C T I I A T A T C G G T 515_a12.seq				
11705 A C T T G A A A G T A G A C C A G C T T C T A A A - - - A T A G A G G T T G G T A A T C C C T C cjb111_a12.seq				
11745 A C T T G A A A G T A G A C C A G C T T C T A A A - - - A T A G A G G T T G G T A A T C C C T C h36b_a12.seq				
<u>T G G A T A C A T T G A A G G G T A A A C A A G A T A T C A G T C T G T - - G C C A T T A A A G A C</u> Majority				
11960	11970	11980	11990	12000
11852 T G G A T A C A T T G A A G G G T A A A C A A G A T A T C A G T C T G T - - G C C A T T A A A G A C 2603_a12.seq				
11853 T G G A T A C A T T G A A G G G T A A A C A A G A T A T C A G T C T G T - - G C C A T T A A A G A C 18rs21_a12.seq				
11763 A A A I C A C C A T G A T I A G T I G T A G A A A C A A C A C G G T A G C C A G G C T T A A C 515_a12.seq				
11750 T G G A T A C A T T G A A G G G T A A A C A A G A T A T C A G T C T G T - - G C C A T T A A A G A C cjb111_a12.seq				
11790 T G G A T A C A T T G A A G G G T A A A C A A G A T A T C A G T C T G T - - G C C A T T A A A G A C h36b_a12.seq				
<u>A T A G T C T G T T C A A A G T T A A T T T C C C C A A A A G T T A A T C T G T T T G G A C T G</u> Majority				
12010	12020	12030	12040	12050
11901 A T A G T C T G T T C A A A G T T A A T T T C C C C A A A A G T T A A T C T G T T T G G A C T G 2603_a12.seq				
11902 A T A G T C T G T T C A A A G T T A A T T T C C C C A A A A G T T A A T C T G T T T G G A C T G 18rs21_a12.seq				
11813 I A A A T C T G T T C G I A T T A I A G T I C A I A A C T C I G A G G A A G G 515_a12.seq				
11799 A T A G T C T G T T C A A A G T T A A T T T C C C C A A A A G T T A A T C T G T T T G G A C T G cjb111_a12.seq				
11839 A T A G T C T G T T C A A A G T T A A T T T C C C C A A A A G T T A A T C T G T T T G G A C T G h36b_a12.seq				
<u>A T A T T C T C T T C A A A T G T G C C T A A T C A G G T C C C G T C T C C T G C A A T C T G T A</u> Majority				
12060	12070	12080	12090	12100
11951 A T A T T C T C T T C A A A T G T G C T A A T C A G G T C C C G T C T C C T G C A A T C T G T A 2603_a12.seq				
11952 A T A T T C T C T T C A A A T G T G C T A A T C A G G T C C C G T C T C C T G C A A T C T G T A 18rs21_a12.seq				
11863 G T A G A T A A T T C I G A G A A A A C A G G A A C T G T T I T A C C C T T A T T C E A T A 515_a12.seq				
11849 A T A T T C T C T T C A A A T G T G C T A A T C A G G T C C C G T C T C C T G C A A T C T G T A cjb111_a12.seq				
11889 A T A T T C T C T T C A A A T G T G C T A A T C A G G T C C C G T C T C C T G C A A T C T G T A h36b_a12.seq				
<u>A A T A A A C A T T T C A - G A G T A C T G T G A C A T C G A A A A T G C T T C T A A G A G C A A</u> Majority				
12110	12120	12130	12140	12150
12001 A A T A A A C A T T T C A - G A G T A C T G T G A C A T C G A A A A T G C T T C T A A G A G C A A 2603_a12.seq				
12002 A A T A A A C A T T T C A - G A G T A C T G T G A C A T C G A A A A T G C T T C T A A G A G C A A 18rs21_a12.seq				
11913 I T T A I C A C T T C A T T A A G C C I A T C T T I I A G G C C I T T A A T T A A T C G C A A 515_a12.seq				
11899 A A T A A A C A T T T C A - G A G T A C T G T G A C A T C G A A A A T G C T T C T A A G A G C A A cjb111_a12.seq				
11939 A A T A A A C A T T T C A - G A G T A C T G T G A C A T C G A A A A T G C T T C T A A G A G C A A h36b_a12.seq				

FIGURE 19Z

TTC AAT G C C T T C T T C A T T C A T C A C C A G C A T A A G T G A T G A A A A T A T Majority
 12160 12170 12180 12190 12200

12050 TTC AAT G C C T T C T T C A T T C A T C A C C A G C A T A A G T G A T G A A A A T A T 2603_a12.seq
 12051 TTC AAT G C C T T C T T C A T T C A T C A C C A G C A T A A G T G A T G A A A A A T A T 18rs21_a12.seq
 11963 C T A T T C T T C T T C A T T C A T C A C C A G C A T A A G T G A T G A A A A A T A T 515_a12.seq
 11948 TTC AAT G C C T T C T T C A T T C A T C A C C A G C A T A A G T G A T G A A A A A T A T cjb111_a12.seq
 11988 TTC AAT G C C T T C T T C A T T C A T C A C C A G C A T A A G T G A T G A A A A A T A T h36b_a12.seq

C A T C A G C A G A G A T T T C A A G G T A A G C C G T A C C A G C A A A A T C A G A G C C T A G A Majority
 12210 12220 12230 12240 12250

12100 C A T C A G C A G A G A T T T C A A G G T A A G C C G T A C C A G C A A A A A T C A G A G C C T A G A 2603_a12.seq
 12101 C A T C A G C A G A G A T T T C A A G G T A A G C C G T A C C A G C A A A A A T C A G A G C C T A G A 18rs21_a12.seq
 12012 A T T F C G C A T A A T A C I A A A . T A L F I G T A C C G C C I C I T C T A C T A T I T 515_a12.seq
 11998 C A T C A G C A G A G A T T T C A A G G T A A G C C G T A C C A G C A A A A A T C A G A G C C T A G A cjb111_a12.seq
 12038 C A T C A G C A G A G A T T T C A A G G T A A G C C G T A C T A G C A A A A A T C A G A G C C T A G A h36b_a12.seq

C T T T C A G A T A C C G A A T T T A A A T A A C T C C T T A G C T T C T A T A T T A A A A T G Majority
 12260 12270 12280 12290 12300

12150 C T T T C A G A T A C C G A A T T T A A A T A A C T C C T T A G C T T C T A T A T T A A A A T G 2603_a12.seq
 12151 C T T T C A G A T A C C G A A T T T A A A T A A C T C C T T A G C T T C T A T A T T A A A A T G 18rs21_a12.seq
 12059 I T T T I A I A I A G A T G G C A . I I G E G G I A T G A I G T A A T A T I T T C G A A A T 515_a12.seq
 12048 C T T T C A G A T A C C G A A T T T A A A T A A C T C C T T A G C T T C T A T A T T A A A A T G cjb111_a12.seq
 12088 C T T T C A G A T A C C G A A T T T A A A T A A C T C C T T A G C T T C T A T A T T A A A A T G h36b_a12.seq

T T T T A A C C A T T C A A C G C T T C T T G G A T A C C G C A T A A A A A A T C T G G G A C G A T Majority
 12310 12320 12330 12340 12350

12200 T T T T A A C C A T T C A A C G C T T C T T G G A T A C C G C A T A A A A A A T C T G G G A C G A T 2603_a12.seq
 12201 T T T T A A C C A T T C A A C G C T T C T T G G A T A C C G C A T A A A A A A T C T G G G A C G A T 18rs21_a12.seq
 12106 G G T H A A I G A T C A A T A C . A T G A A A A A C A G G C C A A T I I T I A C T C O T 515_a12.seq
 12098 T T T T A A C C A T T C A A C G C T T C T T G G A T A C C G C A T A A A A A A T C T G G G A C G A T cjb111_a12.seq
 12138 T T T T A A C C A T T C A A C G C T T C T T G G A T A C C G C A T A A A A A A T C T G G G A C G A T h36b_a12.seq

A A T G C T T A A C A C G G C T G T G A G A A G A T G T T C A T A G A T A G C T C C C A A G A A A Majority
 12360 12370 12380 12390 12400

12250 A A T G C T T A A C A C G G C T G T G A G A A G A T G T T C A T A G A T A G C T C C C A A G A A A 2603_a12.seq
 12251 A A T G C T T A A C A C G G C G C T G T G A G A A G A T G T T C A T A G A T A G C T C C C A A G A A A 18rs21_a12.seq
 12154 G A A G A T G G I C C A A I I T I G T G . I A A C G A C C A A T A A A A I T A C C I G A I A A A 515_a12.seq
 12148 A A T G C T T A A C A C G G C G C T G T G A G A A G A T G T T C A T A G A T A G C T C C C A A G A A A cjb111_a12.seq
 12188 A A T G C T T A A C A C G G C G C T G T G A G A A G A T G T T C A T A G A T A G C T C C C A A G A A A h36b_a12.seq

T C T A A A A A C G A T T A T T G A C A G A A A A A T G A C T T G A C C C A T G G T C T A A A A C Majority
 12410 12420 12430 12440 12450

12300 T C T A A A A A C G A T T A T T G A C A G A A A A A T G A C T T G A C C C A T G G T C T A A A A C 2603_a12.seq
 12301 T C T A A A A A C G A T T A T T G A C A G A A A A A T G A C T T G A C C C A T G G T C T A A A A C 18rs21_a12.seq
 12203 T C T T A A T A C G A T C C G T G A C A G A . I G A T A A I T C A T I C A G A G T G C A A A A A 515_a12.seq
 12198 T C T A A A A A C G A T T A T T G A C A G A A A A A T G A C T T G A C C C A T G G T C T A A A A C cjb111_a12.seq
 12238 T C T A A A A A C G A T T A T T G A C A G A A A A A T G A C T T G A C C C A T G G T C T A A A A C h36b_a12.seq

A A T A C T A G G T A A A T G G T G A T T C T T T G C A A A - - - A G A T A G C C C T T C T A G C G Majority
 12460 12470 12480 12490 12500

12350 A A T A C T A G G T A A A T G G T G A T T C T T T G C A A A - - - A G A T A G C C C T T C T A G C G 2603_a12.seq
 12351 A A T A C T A G G T A A A A T G G T G A T T C T T T G C A A A - - - A G A T A G C C C T T C T A G C G 18rs21_a12.seq
 12252 A I G A T A A A C A . I U T C I T T G C A A A A C G A T A G A T H I I C T T C G A A A A A 515_a12.seq
 12248 A A T A C T A G G T A A A T G G T G A T T C T T T G C A A A - - - A G A T A G C C C T T C T A G C G cjb111_a12.seq
 12288 A A T A C T A G G T A A A T G G T G C T T C T T T G C A A A - - - A G A T A G C C C T T C T A G C G h36b_a12.seq

T T G T T A A C T G A A A A C G T G T A T T C A C A A A A T C A A T A T T T C A T C T Majority
 12510 12520 12530 12540 12550

12397 T T G T T A A C T G A A A A C G T G T A T T C A C A A A A T C A A T A T T T C A T C T 2603_a12.seq
 12398 T T G T T A A C T G A A A A C G T G T A T T C A C A A A A T C A A T A T T T C A T C T 18rs21_a12.seq
 12296 F G C T C G I T T I C A T T A A A G C A G G C G A A G T A A T A G A C T C I C A A T T C I T I A 515_a12.seq
 12295 T T G T T A A C T G A A A A C G T G T A T T C A C A A A A T C A A T A T T T C A T C T cjb111_a12.seq
 12335 T T G T T A A C T G A A A A C G T G T A T T C A C A A A A T C A A T A T T T C A T C T h36b_a12.seq

G A A A C A T A T T C A T C A G G C G T G T T G T A T T C T C G A T T - - - T T T G T T A A T A Majority
 12560 12570 12580 12590 12600

12447 G A A A C A T A T T C A T C A G G C G T G T T G T A T T C T C G A T T - - - T T T G T T A A T A 2603_a12.seq
 12448 G A A A C A T A T T C A T C A G G C G T G T T G T A T T C T C G A T T - - - T T T G T T A A T A 18rs21_a12.seq
 12346 I A G I C A A T T C T G C A I C A C I A A T I T C A C G G T T C A T A I C T T G A T A C A A 515_a12.seq
 12345 G A A A C A T A T T C A T C A G G C G T G T T G T A T T C T C G A T T - - - T T T G T T A A T A cjb111_a12.seq
 12345 G A A A C A T A T T C A T C A G G C G T G T T G T A T T C T C G A T T - - - T T T G T T A A T A h36b_a12.seq

FIGURE 19AA

A T A G G A T A G C					G C T G G C T T G A C A A T A T T T T G G T C C G T A A Majority
12610	12620	12630	12640	12650	
12492 A T A G G A T A G C - - - - -		G C T G C T T G A C A A T A T T T T G G T C C G T A A	2603_a12.seq		
12493 A T A G G A T A G C - - - - -		G C T G C T T G A C A A T A T T T T G G T C C G T A A	18rs21_a12.seq		
12396 A C A G A T A A C A I A T I G A C C U I A C G T A A A T G A A G G T A A T T T T C A T A A I T A A		T G A A G G T A A T T T T C A T C T A A T T T T G G T C C G T A A	515_a12.seq		
12390 A T A G G A T A G C - - - - -		G C T G C T T G A C A A T A T T T T G G T C C G T A A	cjb111_a12.seq		
12430 A T A G G A T A G C - - - - -		G C T G C T T G A C A A T A T T T T G G T C C G T A A	h36b_a12.seq		
A C G G T A A A T T T T C - - - - -					T A C C C T T G T C T T C A T C T A T A A T C C G T A A A T C A Majority
12660	12670	12680	12690	12700	
12530 A C G G T A A A T T T T C - - - - -		T A C C C T T G T C T T C A T C T A T A A T C C G T A A A T C A	2603_a12.seq		
12531 A C G G T A A A T T T T C - - - - -		T A C C C T T G T C T T C A T C T A T A A T C C G T A A A T C A	18rs21_a12.seq		
12446 C I A F T A A A T U A C C I A G G A C A C C G A A T C T T G A T C T A A A G T C A A G G A A C C A A		T G A T C T A A A G T C A A G G A A C C A A	515_a12.seq		
12428 A C G G T A A A T T T T C - - - - -		T A C C C T T G T C T T C A T C T A T A A T C C G T A A A T C A	cjb111_a12.seq		
12468 A C G G T A A A T T T T C - - - - -		T A C C C T T G T C T T C A T C T A T A A T C C G T A A A T C A	h36b_a12.seq		
C C A T G A T T A G T T G T A C A A T A A C A C A C G G T A G C C A C G C T T A A C C C A A A T C					Majority
12710	12720	12730	12740	12750	
12576 C C A T G A T T A G T T G T A C A A T A A C A C A C G G T A G C C A C G C T T A A C C C A A A T C		2603_a12.seq			
12577 C C A T G A T T A G T T G T A C A A T A A C A C A C G G T A G C C A C G C T T A A C C C A A A T C		18rs21_a12.seq			
12496 C I C A M A I T E F I G T G T A C E G G C A A A I G A C C G A T A C G T C A A A G G C A I A T T C		515_a12.seq			
12474 C C A T G A T T A G T T G T A C A A T A A C A C A C G G T A G C C A C G C T T A A C C C A A A T C		cjb111_a12.seq			
12514 C C A T G A T T A G T T G T A C A A T A A C A C A C G G T A G C C A C G C T T A A C C C A A A T C		h36b_a12.seq			
T G C T G T C A T T T A T C T G T A T A A C G T T C A A T A C C T C C G A G G A A G G G T A G A T					Majority
12760	12770	12780	12790	12800	
12626 T G C T G T C A T T T A T C T G T A T A A C G T T C A A T A C C T C C G A G G A A G G G T A G A T		2603_a12.seq			
12627 T G C T G T C A T T T A T C T G T A T A A C G T T C A A T A C C T C C G A G G A A G G G T A G A T		18rs21_a12.seq			
12546 A A I C U C C I I T A T T T C T G T I A A A I A A T C A A C A G G T A G G G I G C C C C I C T T C A T		515_a12.seq			
12524 T G C T G T C A T T T A T C T G T A T A A C G T T C A A T A C C T C C G A G G A A G G G T A G A T		cjb111_a12.seq			
12564 T G C T G T C A T T T A T C T G T A T A A C G T T C A A T A C C T C C G A G G A A G G G T A G A T		h36b_a12.seq			
A A T A T C C T G A G A A A A C A G C C A A C T G T T T T A C C T T A T T T C C A T A T T A T C					Majority
12810	12820	12830	12840	12850	
12676 A A T A T C C T G A G A A A A C A G C C A A C T G T T T T A C C T T A T T T C C A T A T T A T C		2603_a12.seq			
12677 A A T A T C C T G A G A A A A C A G C C A A C T G T T T T A C C T T A T T T C C A T A T T A T C		18rs21_a12.seq			
12596 C I A T A I C G G C T A C T A A I I G A G A A A T T T I T I C C T T A T T T C C A T A T T A T C		515_a12.seq			
12574 A A T A T C C T G A G A A A A C A G C C A A C T G T T T T A C C T T A T T T C C A T A T T A T C		cjb111_a12.seq			
12614 A A T A T C C T G A G A A A A C A G C C A A C T G T T T T A C C T T A T T T C C A T A T T A T C		h36b_a12.seq			
C A C T T T C A T C A A T A A G G C C A T C T T T T A A G C C T T T A A T C A T A G C C A A C T A T T T					Majority
12860	12870	12880	12890	12900	
12726 C A C T T T C A T C A A T A A G G C C A T C T T T T A A G C C T T T A A T C A T A G C C A A C T A T T T		2603_a12.seq			
12727 C A C T T T C A T C A A T A A G G C C A T C T T T T A A G C C T T T A A T C A T A G C C A A C T A T T T		18rs21_a12.seq			
12641 C A T T A T C T A C G A T A T A G A T G I G G C T T A C I T G A G G G A I A A T T C		515_a12.seq			
12624 C A C T T T C A T C A A T A A G G C C A T C T T T T A A G C C T T T A A T C A T A G C C A A C T A T T T		cjb111_a12.seq			
12664 C A C T T T C A T C A A T A A G G C C A T C T T T T A A G C C T T T A A T C A T A G C C A A C T A T T T		h36b_a12.seq			
T T T T G C T C T T T G C T C T T C T G C T A C C A A C A C T C G A A C A A T T C A T T T C G C					Majority
12910	12920	12930	12940	12950	
12776 T T T T G C T C T T T G C T C T T C T G C T A C C A A C A C T C G A A C A A A T T C A T T T C G C		2603_a12.seq			
12777 T T T T G C T C T T T G C T C T T C T G C T A C C A A C A C T C G A A C A A A A T T C A T T T C G C		18rs21_a12.seq			
12683 C T C G G A A T G T T C T G A T C T A A G C C G I T C A A T A I T G G G G T T A A A G G T G A C A		515_a12.seq			
12674 T T T T G C T C T T T G C T C T T C T G C T A C C A A C A C T C G A K C A A A T T C A T T T C G C		cjb111_a12.seq			
12714 T T T T G C T C T T T G C T C T T C T G C T A C C A A C A C T C G A A C A A A T T C A T T T C G C		h36b_a12.seq			
A T A A A T A C T A A A T A T T T - G T A T C G C T T C T T C T A C C A T A T T T T T A T A A					Majority
12960	12970	12980	12990	13000	
12826 A T A A A T A C T A A A T A T T T - G T A T C G C T T C T T C T A C C A T A T T T T T T A T A A		2603_a12.seq			
12827 A T A A A T A C T A A A T A T T T - G T A T C G C T T C T T C T A C C A T A T T T T T T T A T A A		18rs21_a12.seq			
12730 A T A C C C G C T A A A T A T T T - G T A T C G C T T C T T C T A C C A T A T T T T T T T A T A A		515_a12.seq			
12724 A T A A A T A C T A A A T A T T T - G T A T C G C T T C T T C T A C C A T A T T T T T T T A T A A		cjb111_a12.seq			
12764 A T A A A T A C T A A A T A T T T - G T A T C G C T T C T T C T A C C A T A T T T T T T T A T A A		h36b_a12.seq			
T A T A G A T C G C A T T G C G T A T C A T G T A A T A T T T C G A A A T G G T G A A T G A T T C					Majority
13010	13020	13030	13040	13050	
12875 T A T A G A T C G C A T T G C G T A T C A T G T A A T A T T T C G A A A T G G T G A A T G A T T C		2603_a12.seq			
12876 T A T A G A T C G C C A T T G C G T A T C A T G T A A T A T T T C G A A A T G G T G A A T G A T T C		18rs21_a12.seq			
12780 A A C T G A A T G G C T G C G C T T G C T A G T G T I A T A A A A A C G A T A A G G G G A T A A G A T		515_a12.seq			
12773 T A T A G A T C G C A T T G C G T A T C A T G T A A T A T T T C G A A A T G G T G A A T G A T T C		cjb111_a12.seq			
12813 T A T A G A T C G C A T T G C G T A T C A T G T A A T A T T T C G A A A T G G T G A A T G A T T C		h36b_a12.seq			

FIGURE 19AB

Alignment Report WO 2006/078318 Hein method with Weighted residue weight table.					PCT/US2005
Thursday, July 29, 2004 6:32 PM					
A A T A C A T G A A A A A C A T G C C C A A T T T T A A C T C G T G A A G A G T G T C C A A T Majority					
13060	13070	13080	13090	13100	
12925 A A T A C A T G A A A A A C A T G G C C A A A T T T T A A C T C G T G A A G A G T G T C C A A T 2603_a12.seq					
12926 A A T A C A T G A A A A A C A T G G C C A A A T T T T A A C T C G T G A A G A G T G T C C A A T 18rs21_a12.seq					
12827 A G T I A C T G C T A C T G C T A A A I I I I I A A T G A T A T A I I I A C C A A I G A T A C I G A C A 515_a12.seq					
12823 A A T A C A T G A A A A A C A T G G C C A A A T T T T A A C T C G T G A A G A G T G T C C A A T cjb111_a12.seq					
12863 A A T A C A T G A A A A A C A T G G C C A A A T T T T A A C T C G T G A A G A G T G T C C A A T h36b_a12.seq					
T T C G T G T A A C A G A C C A A T A A A A T T A A - - C C T G A T A A G T C T T A T A T C C C A T Majority					
13110	13120	13130	13140	13150	
12975 T T C G T G T A A C A G A C C A A T A A A A T T A A - - C C T G A T A A G T C T T A T A T C C C A T 2603_a12.seq					
12976 T T C G T G T A A C A G A C C A A T A A A A T T A A - - C C T G A T A A G T C T T A T A T C C C A T 18rs21_a12.seq					
12877 T T C G A G T A T I G A T A I A A T A C A T A C T A C A G C C I C A G T A A G A G T G A C I A G C A A T T 515_a12.seq					
12873 T T C G T G T A A C A G A C C A A T A A A A T T A A - - C C T G A T A A G T C T T A T A T C C C A T cjb111_a12.seq					
12913 T T C G T G T A A A A G A C C A A T A A A A T T A A - - C C T G A T A A G T C T T A T A T C C C A T h36b_a12.seq					
C T C T G A C A G A C C A T A A T T C A T T C A G A G T C A A C A A A A T C A A T A A A C A T C Majority					
13160	13170	13180	13190	13200	
13023 C T C T G A C A G A C C A T A A T T C A T T C A G A G T C A A C A A A A T C A A T A A A C A T C 2603_a12.seq					
13024 C T C T G A C A G A C C A T A A T T C A T T C A G A G T C A A C A A A A T C A A T A A A C A T C 18rs21_a12.seq					
12927 A A A T A G C G C A G T A T I C C T C I T G T I A A I T C I T A A A A T C A A T A A A C A T C 515_a12.seq					
12921 C T C T G A C A G A C C A T A A T T C A T T C A G A G T C A A C A A A A T C A A T A A A C A T C cjb111_a12.seq					
12961 C T C T G A C A G A C C A T A A T T C A T T C A G A G T C A A C A A A A T C A A T A A A C A T C h36b_a12.seq					
C T T C T G C A A A G C C A G A T G T T T C T C G A A A A C G C T C G T T T C A T T A A A G C A Majority					
13210	13220	13230	13240	13250	
13073 C T T C T G C A A A G C C A G A T G T T T C T C G A A A A C G C T C G T T T C A T T A A A G C A 2603_a12.seq					
13074 C T T C T G C A A A G C C A G A T G T T T C T C G A A A A C G C T C G T T T C A T T A A A G C A 18rs21_a12.seq					
12973 C T C T G C A A A G C C A G A T G T C I C A T A T A G G G A G A C A A T A A A T T C A G T A A T A C T 515_a12.seq					
12971 C T C T G C A A A G C C A G A T G T T T C T C G A A A A C G C T C G T T T C A T T A A A G C A cjb111_a12.seq					
13011 C T T C T G C A A A G C C A G A T G T T T C T C G A A A A C G C T C G T T T C A T T A A A G C A h36b_a12.seq					
G C C G A A G T A A T A C A C T C T C A A T T T C T - - - T T A T A G T C A A A T T C T - T G Majority					
13260	13270	13280	13290	13300	
13123 G C C G A A G T A A T A C A C T C T C A A T T T C T - - - T T A T A G T C A A A T T C T - T G 2603_a12.seq					
13124 G C C G A A G T A A T A C A C T C T C A A T T T C T - - - T T A T A G T C A A A T T C T - T G 18rs21_a12.seq					
13023 G T A G A G A T A A T A C A C T C T C A A T T T C T - - - T T A T A G T C A A A T T C T - T G 515_a12.seq					
13021 G C C G A A G T A A T A C A C T C T C A A T T T C T - - - T T A T A G T C A A A A T T C T - T G cjb111_a12.seq					
13061 G C C G A A G T A A T A C A C T C T C A A T T T C T - - - T T A T A G T C A A A A T T C T - T G h36b_a12.seq					
C A T C A C T A A A T T T - T C A C G G T T C A T A T C T T G A T A C A A A C A A G A T A A C A T A Majority					
13310	13320	13330	13340	13350	
13167 C A T C A C T A A A T T T - T C A C G G T T C A T A T C T T G A T A C A A A C A A G A T A A C A T A 2603_a12.seq					
13168 C A T C A C T A A A T T T - T C A C G G T T C A T A T C T T G A T A C A A A C A A G A T A A C A T A 18rs21_a12.seq					
13073 A A H C C A C A K A T T T G C C A C A A G T C F A A T A A C T G C A G A C A I I G I G T A A G C T I 515_a12.seq					
13065 C A T C A C T A A A T T T - T C A C G G T T C A T A T C T T G A T A C A A A C A A G A T A A C A T A cjb111_a12.seq					
13105 C A T A A C T A A A T T T - T C A C G G T T C A T A T C T T G A T A C A A A C A A G A T A A C A T A h36b_a12.seq					
C - - - C G A C C T T A G G T A A A T G A A G G T A A T T T C A T A A - - - T T A T C T A T C Majority					
13360	13370	13380	13390	13400	
13216 C - - - C G A C C T T A G G T A A A T G A A G G T A A T T T C A T A A - - - T T A T C T A T C 2603_a12.seq					
13217 C - - - C G A C C T T A G G T A A A T G A A G G T A A T T T C A T A A - - - T T A T C T A T C 18rs21_a12.seq					
13123 C T T G T A C C G C I C I T G A A G C C A G T A A I A C I G T G C T A A A G G C T T A C C C A I A A 515_a12.seq					
13114 C - - - C G A C C T T A G G T A A A T G A A G G T A A T T T C A T A A - - - T T A T C T A T C cjb111_a12.seq					
13154 C - - - C G A C C T T A G G T A A A T G A A G G T A A T T T C A T A A - - - T T A T C T A T C h36b_a12.seq					
A A A T C A C C T A C C T A C C G A A C C G A A T C T T G A T C T A A A G T C A A G A A C C A A T C A A A Majority					
13410	13420	13430	13440	13450	
13258 A A A T C A C C T A C C G A A C C G A A T C T T G A T C T A A A G T C A A G A A C C A A T C A A A 2603_a12.seq					
13259 A A A T C A C C T A C C G A A C C G A A T C T T G A T C T A A A G T C A A G A A C C A A T C A A A 18rs21_a12.seq					
13173 C A A T C A C C T A C C G A A C C G A A T C T T G A T C T A A A G T C A A G A A C C A A T C A A A 515_a12.seq					
13156 A A A T C A C C T A C C G A A C C G A A T C T T G A T C T A A A G T C A A G A A C C A A T C A A A cjb111_a12.seq					
13196 A A A T C A C C T A C C G A A C C G A A T C T T G A T C T A A A G T C A A G A A C C A A T C A A A h36b_a12.seq					
T T C T T G T G C T A C T G C A A A T T G A C C G A T A C A G T T C A A A G C A T A T G C A A T T C Majority					
13460	13470	13480	13490	13500	
13308 T T C T T G T G C T A C T G C A A A T T G A C C G A T A C A G T T C A A A G C A T A T G C A A T T C 2603_a12.seq					
13309 T T C T T G T G C T A C T G C A A A T T G A C C G A T A C A G T T C A A A G C A T A T G C A A T T C 18rs21_a12.seq					
13223 T T C T T G T G C T A C T G C A A A T T G A C C G A T A C A G T T C A A A G C A T A T G C A A T T C 515_a12.seq					
13206 T T C T T G T G C T A C T G C A A A T T G A C C G A T A C A G T T C A A A G C A T A T G C A A T T C cjb111_a12.seq					
13246 T T C T T G T G C T A C T G C A A A T T G A C C G A T A C A G T T C A A A G C A T A T G C A A T T C h36b_a12.seq					

FIGURE 19AC

86/487

<u>C T T A T T C T C G T T A A T A A T C A A C A G G T A G G T G C C C C T C T T C A T T A A</u> Majority				
13510	13520	13530	13540	13550
13358 C T T A T T T C T G T T A A A T A A T C A A C A G G T A G G T G C C C C T C T T C A T T A A 2603_a12.seq				
13359 C T T A T T T C T G T T A A A T A A T C A A C A G G T A G G T G C C C C T C T T C A T T A A 18rs21_a12.seq				
13270 C T A C A T C C G C C A A T C A A C A G G T A G G T G C C C C T C T T C A T T A A 515_a12.seq				
13256 C T T A T T T C T G T T A A A T A A T C A A C A G G T A G G T G C C C C T C T T C A T T A A cjb111_a12.seq				
13296 C T T A T T T C T G T T A A A T A A T C A A C A G G T A G G T G C C C C T C T T C A T T A A h36b_a12.seq				
<u>T C G G C T A C T A A T T G A G A A A T T T C T T C C T T A T T T T C G A G C C A T T A T C T A C</u> Majority				
13560	13570	13580	13590	13600
13408 T C G G C T A C T A A T T G A G A A A T T T C T T C C T T A T T T T C G A G C C A T T A T C T A C 2603_a12.seq				
13409 T C G G C T A C T A A T T G A G A A A T T T C T T C C T T A T T T T C G A G C C A T T A T C T A C 18rs21_a12.seq				
13318 C A A G I T T C A A A A G T A A A G G C T T A G C C T G C I T T T G T T T G C I G C I G A A A A A 515_a12.seq				
13306 T C G G C T A C T A A T T G A G A A A T T T C C T C C T T A T T T T C G A G C C A T T A T C T A C cjb111_a12.seq				
13346 T C G G C T A C T A A T T G A G A A A T T T C C T C C T T A T T T T C G A G C C A T T A T C T A C h36b_a12.seq				
<u>G A T G T A G A T A T G G C T T A C T T G A G G A - - - T A A A T T G C T C G A A T G T T C T G</u> Majority				
13610	13620	13630	13640	13650
13458 G A T A T A G A T G T G G C T T A C T T G A G G A - - - T A A A T T G C T C G A A T G T T C T G 2603_a12.seq				
13459 G A T A T A G A T G T G G C T T A C T T G A G G A - - - T A A A T T G C T C G A A T G T T C T G 18rs21_a12.seq				
13368 A G A C T G G A G A G C C I T G G I A A A A U C C C C C C C A T T G C T G A A A A C A A T G G I 515_a12.seq				
13356 G A T G T A G A T A T G G C T T A C T T G A G G A - - - T A A A T T G C T C G A A T G T T C T G cjb111_a12.seq				
13396 G A T G T A G A T A T G G C T T A C T T G A G G A - - - T A A A T T G C T C G A A T G T T C T G h36b_a12.seq				
<u>A T C T A A G C G T T C A A T A T T G G G G T T A A A G G T G A C A A T A C C C C G C T A A A T A T T</u> Majority				
13660	13670	13680	13690	13700
13503 A T C T A A G C G T T C A A T A T T G G G G T T A A A G G T G A C A A T A C C C C G C T A A A T A T T 2603_a12.seq				
13504 A T C T A A G C G T T C A A T A T T G G G G T T A A A G G T G A C A A T A C C C C G C T A A A T A T T 18rs21_a12.seq				
13448 A A A T A A A A A G C G A A T A A T I I I A T C A G A I I G A I C A A A A A I A I C C A G G A C T G G A 515_a12.seq				
13401 A T C T A A G C G T T C A A T A T T G G G G T T A A A G G T G A C A A T A C C C C G C T A A A T A T T cjb111_a12.seq				
13441. A T C T A A G C G T T C A A T A T T G G G G T T A A A G G T G A C A A T A C C C C G C T A A A T A T T h36b_a12.seq				
<u>T C A T G T T C T A T G C T C T T T C T A A A A T C T C T A A A T A A C T G C A A T G A C - - -</u> Majority				
13710	13720	13730	13740	13750
13553 T C A T G T T C T A T G C T C T T T C T A A A A T C T C T A A A T A A C T G C A A T G A C - - - 2603_a12.seq				
13554 T C A T G T T C T A T G C T C T T T C T A A A A T C T C T A A A T A A C T G C A A T G A C - - - 18rs21_a12.seq				
13468 G C A C A C T A T G C A T T L C T C C C A C C G A T A C T C T I G T I A A G G A G A G G A I A A A I C 515_a12.seq				
13451 T C A T G T T C T A T G C T C T T T C T A A A A T C T C T A A A T A A C T G C A A T G A C - - - cjb111_a12.seq				
13491 T C A T G T T C T G T G C T C T T T C T A A A A T C T C T A A A T A A C T G C A A T G A C - - - h36b_a12.seq				
<u>- - - T G G T G C C T T T G G T T A T A A A A C G A T A C C G A C A T A G A T A G T T A C T G C T</u> Majority				
13760	13770	13780	13790	13800
13598 - - - T G G T G C T T T G G T T A T A A A A C G A T A C C G A C A T A G A T A G T T A C T G C T 2603_a12.seq				
13599 - - - T G G T G C T T T G G T T A T A A A A C G A T A C C G A C A T A G A T A G T T A C T G C T 18rs21_a12.seq				
13518 T G C A T T G G T G A T T T G G I G G T A A A A A I A A C A I I A A A G T T G G T C T T A G A T G C I A 515_a12.seq				
13496 - - - T G G T G C T T T G G T T A T A A A A C G A T A C C G A C A T A G A T A G T T A C T G C T cjb111_a12.seq				
13536 - - - T G G T G C T T T G G T T A T A A A A C G A T A C C G A C A T A G A T A G T T A C T G C T h36b_a12.seq				
<u>A C T A A A C T T T G A A T - - - G A C A T A A T T A C C A A T G A T A C T G A C A T T T G A G</u> Majority				
13810	13820	13830	13840	13850
13644 A C T A A A C T T T G A A T - - - G A C A T A A T T A C C A A T G A T A C T G A C A T T T G A G 2603_a12.seq				
13645 A C T A A A C T T T G A A T - - - G A C A T A A T T A C C A A T G A T A C T G A C A T T T G A G 18rs21_a12.seq				
13567 T I I A G A T A T A T A T C A C A A T A T G T A T G A T A C T G A C A T T T G A G 515_a12.seq				
13542 A C T A A A C T T T G A A T - - - G A C A T A A T T A C C A A T G A T A C T G A C A T T T G A G cjb111_a12.seq				
13582 A C T A A A C T T T G A A T - - - G A C A T A A T T A C C A A T G A T A C T G A C A T T T G A G h36b_a12.seq				
<u>T A T T G A T A T A A T A G A G T A C A G G C T C C A C T A A G A - - - G T A G C C A G C A A T T A A T A</u> Majority				
13860	13870	13880	13890	13900
13690 T A T T G A T A T A A T A G A G T A C A G G C T C C A C T A A G A - - - G T A G C C A G C A A T T A A T A 2603_a12.seq				
13691 T A T T G A T A T A A T A G A G T A C A G G C T C C A C T A A G A - - - G T A G C C A G C A A T T A A T A 18rs21_a12.seq				
13617 T G A T G C C A G C A T T C T C C A C T A A G A - - - G T A G C C A G C A A T T A A T A 515_a12.seq				
13588 T A T T G A T A T A A T A G A G T A C A G G C T C C A C T A A G A - - - G T A G C C A G C A A T T A A T A cjb111_a12.seq				
13628 T A T T G A T A T A A T A G T A C A G G C T C C A C T A A G A - - - G T A G C C A G C A A T T A A T A h36b_a12.seq				
<u>G C C C A G C A T T C C T C T T G T T A A T T C T T T A A A G T A A A T A C A T C T C T T A A A G</u> Majority				
13910	13920	13930	13940	13950
13739 G C C C A G C A G C A T T C C T C T T G T T A A T T C T T T A A A G T A A A T A C A T C T C T T A A A G 2603_a12.seq				
13740 G C C C A G C A G C A T T C C T C T T G T T A A T T C T T T A A A G T A A A T A C A T C T C T T A A A G 18rs21_a12.seq				
13665 T A C A T A A A G T G C T A G T C A T I T G G G G T C T C C A C T A A G A A H G 515_a12.seq				
13637 G C C C A G C A G C A T T C C T C T T G T T A A T T C T T T A A A G T A A A T A C A T C T C T T A A A G cjb111_a12.seq				
13677 G C C C A G C A G C A T T C C T C T T G T T A A T T C T T T A A A G T A A A T A C A T C T C T T A A A G h36b_a12.seq				

FIGURE 19AD

		Majority				
		10	20	30	40	50
1	G					
1	GTTGCTTCATAAAGTTCTCTGAAGGCCATTAAAGTCACATGCATTCT	2603_a12.seq nem316_a12.seq				
	TTCAGAAAGTTCAGCGAGATAGTATATAGTTCATCAGGTAAAGCAATCCG	Majority				
2		60	70	80	90	100
51	TTCAGAAAGTTCAGCGAGATAGTATATAGTTCATCAGGTAAAGCAATCCG	2603_a12.seq nem316_a12.seq				
	GCCTTGTTCCGATGTTGATTCGGATAACTCCCTGGCTCATTAAATAGCCTG	Majority				
2		110	120	130	140	150
101	GCCTTGTTCCGATGTTGATTCGGATAACTCCCTGGCTCATTAAATAGCCTG	2603_a12.seq nem316_a12.seq				
	TCGTAACGCTTTAATTCTCTAACCTAGCATGGGTATTGGTAAAATT	Majority				
52		160	170	180	190	200
151	TCGTAACGCTTTAATTCTCTAACCTAGCATGGGTATTGGTAAAATT	2603_a12.seq nem316_a12.seq				
	TTGAAAAATAGACTAACGTTATTAAACCTCAGGCCACCTTCTATGCATGA	Majority				
102		210	220	230	240	250
201	TTGAAAAATAGACTAACGTTATTAAACCTCAGGCCACCTTCTATGCATGA	2603_a12.seq nem316_a12.seq				
	AATCAAATTCTTTATAGAATTGTTCACGAATAGGAGCTCTGGAGCAACT	Majority				
152		260	270	280	290	300
251	AATCAAATTCTTTATAGAATTGTTCACGAATAGGAGCTCTGGAGCAACT	2603_a12.seq nem316_a12.seq				
	ATAGCATCCCCCTGAACCCAGAAACTGTGCCAAAAAGTGCATCCTCTCTAGC	Majority				
	310	320	330	340	350	
202	ATAGCATCCCCCTGAACCCAGAAACTGTGCCAAAAAGTGCATCCTCTCTAGC	2603_a12.seq				
301	ATAGCATCCCCCTGAACCCAGAAACTGTGCCAAAAAGTGCATCCTCTCTAGC	nem316_a12.seq				
	AACTGTTCCGTCTCTGGACAGTCAAAAACCGACATCTATAGTAATT	Majority				
	360	370	380	390	400	
252	AACTGTTCCGTCTCTGGACAGTCAAAAACCGACATCTATAGTAATT	2603_a12.seq				
351	AACTGTTCCGTCTCTGGACAGTCAAAAACCGACATCTATAGTAATT	nem316_a12.seq				
	TAAATATTTCTCCAAAGAGTTCTCGATAATACTATTAATCGCACGA	Majority				
	410	420	430	440	450	
302	TAAATATTTCTCCAAAGAGTTCTCGATAATACTATTAATCGCACGA	2603_a12.seq				
401	TAAATATTTCTCCAAAGAGTTCTCGATAATACTATTAATCGCACGA	nem316_a12.seq				
	TAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAACCT	Majority				
	460	470	480	490	500	
352	TAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAACCT	2603_a12.seq				
451	TAACGTTTTCATAGGATAATTGTATCACAAATTAACTAAATAACCT	nem316_a12.seq				
	CACTACTACAATAAAACTTAAAGATGGAACCGTCAGTTAGTCCCACGC	Majority				
	510	520	530	540	550	
402	CACTACTACAATAAAACTTAAAGATGGAACCGTCAGTTAGTCCCACGC	2603_a12.seq				
501	CACTACTACAATAAAACTTAAAGATGGAACCGTCAGTTAGTCCCACGC	nem316_a12.seq				
	TTTATTTACTTCACTTCTTAACCAATCCTGGCTAAAAAGATATACG	Majority				
	560	570	580	590	600	
452	TTTATTTACTTCACTTCTTAACCAATCCTGGCTAAAAAGATATACG	2603_a12.seq				
551	TTTATTTACTTCACTTCTTAACCAATCCTGGCTAAAAAGATATACG	nem316_a12.seq				
	CAGTTAGATTCAAAATACCATAGCAAGTATAAAACCAGCTAAACATCT	Majority				
	610	620	630	640	650	
502	CAGTTAGATTCAAAATACCATAGCAAGTATAAAACCAGCTAAACATCT	2603_a12.seq				
601	CAGTTAGATTCAAAATACCATAGCAAGTATAAAACCAGCTAAACATCT	nem316_a12.seq				

figure 20

89/487

G T C G G A A A A T G A A C C C C T A G G T A A A T A C G A G A T A A C C C A A T T A A A A A A A T Majority
 660 670 680 690 700
 552 G T C G G A A A A T G A A C C C C T A G G T A A A T A C G A G A T A A C C C A A T T A A A A A A A T 2603_ai2.seq
 651 G T C G G A A A A T G A A C C C C T A G G T A A A T A C G A G A T A A C C C A A T T A A A A A A A T nem316_ai2.seq
G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T C C A T A T A C T C T T A G G C A Majority
 710 720 730 740 750
 602 G A G C A A A C C C A A A G T A C C T T G G C A C A A C A G T T C C A T A T A C T C T T A G G C A 2603_ai2.seq
 701 G A G C A A A C C C A A A T A C C T T G G C A C A A C A G T T C C A T A T A C T C T T A G G C A nem316_ai2.seq
T A T A G T A C T G C A A T A A A T A A T A C T C C C A A A T A T C A T A A A T G T T C C C Majority
 760 770 780 790 800
 652 T A T A G T A C T G C A A T A A A T A A T A C T C C C A A A T A T C A T A A A T G T T C C C 2603_ai2.seq
 751 T A T A G T A C T G C A A T A A A T A A T A C T C C C A A A T A T C A T A A A T G T T C C C nem316_ai2.seq
A T C G A G T G C C C A C T G G G A A A C G A A T A G C C A C C T G C A A A T A C T A A A T G G G T Majority
 810 820 830 840 850
 702 A T C G A G T G C C C A C T G G G A A A C G A A T A G C C A C C T G C A A A T A C T A A A T G G G T 2603_ai2.seq
 801 A T C G A G T G C C C A C T G G G A A A C G A A T A G C C A C C T G C A A A T A C T A A A T G G G T nem316_ai2.seq
T A A A G T T G G T C T T A C T C T T G A A A A A T A G T T T A A A G A A A G T A T A C A T A Majority
 860 870 880 890 900
 752 T A A A G T T G G T C T T A C T C T T G A A A A A T A G T T T A A A G A A A G T A T A C A T A 2603_ai2.seq
 851 T A A A G T T G G T C T T A C T C T T G A A A A A T A G T T T A A A G A A A G T A T A C A T A nem316_ai2.seq
T A C C A G A G A T A A T A G C A T T A C T G C C A T A A A T C T A G C T T G A G G A T A C C A C Majority
 910 920 930 940 950
 802 T A C C A G A G A T A A T A G C A T T A C T G C C A T A A A T C T A G C T T G A G G A T A C C A C 2603_ai2.seq
 901 T A C C A G A G A T A A T A G C A T T A C T G C C A T A A A T C T A G C T T G A G G A T A C C A C nem316_ai2.seq
T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C T Majority
 960 970 980 990 1000
 852 T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C T 2603_ai2.seq
 951 T T C T T A A G G T A A C A G A A A G T G A C G C T C A T A A T C G C A A T A G C T A T C T G G C T nem316_ai2.seq
T A C A G T A T T A C C A A T C A C A G T G A T T A C T T G A A A A A T C T T G T A G A A A G A T Majority
 1010 1020 1030 1040 1050
 902 T A C A G T A T T A C C A A T C A C A G T G A T T A C T T G A A A A A T C T T G T A G A A A G A T 2603_ai2.seq
 1001 T A C A G T A T T A C C A A T C A C A G T G A T T A C T T G A A A A A T C T T G T A G A A A G A T nem316_ai2.seq
T T G G C A A C T G T C C T C T A A C A C T T T C T G A A T G T T T G G T C A A A T G C A A T T Majority
 1060 1070 1080 1090 1100
 952 T T G G C A A C T G T C C T C T A A C A C T T T C T G A A T A G T T T G G T C A A A T G C A A A T T 2603_ai2.seq
 1051 T T G G C A A C T G T C C T C T A A C A C T T T C T G A A T G T T T G G T C A A A T G C A A A T T nem316_ai2.seq
A C A G T G T C G G G C C A A T A T T G A T G A C C A A T C C T A A A C T G A A A A A T A A G A T Majority
 1110 1120 1130 1140 1150
 1002 A C A G T G T C G G G C C A A T A T T G A T G A C C A A T C C T A A A C T G A A A A A T A A G A T 2603_ai2.seq
 1101 A C A G T G T C G G G C C A A T A T T G A T G A C C A A T C C T A A A C T G A A A A A T A A G A T nem316_ai2.seq
A A T A G C A A T A A A T G C T T G A A T A A G T T A C T T T G A C G G A G A T A A C A T T A Majority
 1160 1170 1180 1190 1200
 1052 A A T A G C A A T A A A T G C T T G A A A T A A G T T A C T T T G A C G G A G A T A A C A T T A 2603_ai2.seq
 1151 A A T A G C A A T A A A T G C T T G A A A T A A G T T A C T T T G A C G G A G A T A A C A T T A nem316_ai2.seq
G T C T T T T T A T A T C T T C T A A T A T T G G C A A A C A A G C C A C G T A A G T T A G A T A Majority
 1210 1220 1230 1240 1250
 1102 G T C T T T T T A T A T C T T C T A A T A T T G G C A A A C A A G C C A C G T A A G T T A G A T A 2603_ai2.seq
 1201 G T C T T T T T A T A T C T T C T A A T A T T G G C A A A C A A G C C A C G T A A G T T A G A T A nem316_ai2.seq
G A A A A C A A T C G A A A T T A A A A T T C C C T C A A C G A T A T T A A A T G G A A T A A C C A Majority
 1260 1270 1280 1290 1300
 1152 G A A A A C A A T C G A A A T T A A A A T T C C C T C A A C G A T A T T A A A T G G A A T A A C C A 2603_ai2.seq
 1251 G A A A A C A A T C G A A A T T A A A A T T C C C T C A A C G A T A T T A A A T G G A A T A A C C A nem316_ai2.seq

FIGURE 20A

90/487

WO 2006/078318
Alignment Report of ~~the sequence~~ using J. Hein method with Weighted residue weight table.
Thursday, July 29, 2004 6:46 PM

PCT/US2005/027239
Page 3

<u>I T G T T A A A A G G T K A T I G C C T A C A C C A A T A A A T G T T C T G A T A T C A A A G T T A</u> Majority				
1310	1320	1330	1340	1350
1202 <u>T T G T T A A A A G G T A A T T G C C T A C A C C A A T A A A T G T T C T G A T A T C A A A G T T A</u> 2603_a12.seq				
1301 <u>T T G T T A A A A G G T A A T T G C C T A C A C C A A T A A A T G T T C T G A T A T C A A A G T T A</u> nem316_a12.seq				
<u>G C A A A T A T A G C A T A C A A A G G A A T C G C A A A G A C A T A G T T G A G A G C T A C C A T</u> Majority				
1360	1370	1380	1390	1400
1252 <u>G C A A A T A T A G C A T A C A A A G G A A T C G C A A A G A C A T A G T T G A G A G C T A C C A T</u> 2603_a12.seq				
1351 <u>G C A A A T A T A G C A T A C A A A G G A A T C G C A A A G A C A T A G T T G A G A G C T A C C A T</u> nem316_a12.seq				
<u>A G A T A C G G T C A A G C T A A C T G T A C C A A A T A G A C T A G C T T T A A T A A A A T C T T</u> Majority				
1410	1420	1430	1440	1450
1302 <u>A G A T A C G G T C A A G C T A A C T G T A C C A A A T A G A C T A G C T T T A A T A A A A T C T T</u> 2603_a12.seq				
1401 <u>A G A T A C A G T C A A G C T A A C T G T A C C A A A T A G A C T A G C T T T A A T A A A A T C T T</u> nem316_a12.seq				
<u>T T G C A C T C T C T C T A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A A</u> Majority				
1460	1470	1480	1490	1500
1352 <u>T T G C A C T C T C T C T A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A A</u> 2603_a12.seq				
1451 <u>T T G C A C T C T C T C T A T T T T C C A G A A A A T A G C G A A A C T T G C T A A A A A T A A A</u> nem316_a12.seq				
<u>G C T A G A G C A A C C A T A T T C A T C G G T A A A C C G A T A A A G G T T T C T G G A C C A C G</u> Majority				
1510	1520	1530	1540	1550
1402 <u>G C T A G A G C A A C C A T A T T C A T C G G T A A A C C A A T A A A A G T T T C T G G A C C A C G</u> 2603_a12.seq				
1501 <u>G C T A G A G C A A C C A T A T T C A T C G G T A A A C C G A T A A A G G T T T C T G G A C C A C G</u> nem316_a12.seq				
<u>A T T A G C A A G T A T A A C T T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A C</u> Majority				
1560	1570	1580	1590	1600
1452 <u>A T T A G C A A G T A T A A C T T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A C</u> 2603_a12.seq				
1551 <u>A T T A G C A A G T A T A A C T T T T A A A A G T G A T C T T A A T A A G A G T A C A C C A T A A C</u> nem316_a12.seq				
<u>T T G A T T T C A A A T C A A A T A A A A T A A A G C A A C T A A C A T C G G A A G G A T T G A A</u> Majority				
1610	1620	1630	1640	1650
1502 <u>T T G A T T T C A A A T C A A A T A A A A T A A A A G C A A C T A A C A T C G G A A G G A T T G A A</u> 2603_a12.seq				
1601 <u>T T G A T T T C A A A T C A A A T A A A A T A A A A G C A A C T A A C A T C G G A A G G A T T G A A</u> nem316_a12.seq				
<u>A A A T C A A C C T T A A A A A T T C T G C T C C T E G G T A T T A A T G G A A A T G A A A C C A T</u> Majority				
1660	1670	1680	1690	1700
1552 <u>A A A T C A A C C T T A A A A A T T C T G C T C C T E G G T A T T A A T G G A A A T G A A A C C A T</u> 2603_a12.seq				
1651 <u>A A A T C A A C C T T A A A A A T T C T G C T C C T E G G T A T T A A T G G A A A T G A A A C C A T</u> nem316_a12.seq				
<u>C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T T A C</u> Majority				
1710	1720	1730	1740	1750
1602 <u>C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T T A C</u> 2603_a12.seq				
1701 <u>C A T C A A T A C A A A A G A T A A G G C A G A A A G A A T G G C G A T T G T C A C C A T T T T A C</u> nem316_a12.seq				
<u>G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A A T A A A T T G A A A G A A G C</u> Majority				
1760	1770	1780	1790	1800
1652 <u>G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A A T A A A T T G A A A G A A G C</u> 2603_a12.seq				
1751 <u>G T G T A T T T G T C A T A A A A A A T T C C T C C A A T T T A A A T A A A T T G A A A G A A G C</u> nem316_a12.seq				
<u>T C C A A A G G T A A G C G T A T G T A C G C G A A A A A A C C T T T G T C T T C T C C C A T G C</u> Majority				
1810	1820	1830	1840	1850
1702 <u>T C C A A A G G T A A G C G T A T G T A C G C G A A A A A A C C T T T G T C T T C T C C C A T G C</u> 2603_a12.seq				
1801 <u>T C C A A A G G T A A G C G T A A G T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C G G</u> nem316_a12.seq				
<u>A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G G</u> Majority				
1860	1870	1880	1890	1900
1751 <u>A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G G</u> 2603_a12.seq				
1851 <u>A G A C T T T A C T G T C G G T T G T G G A A T C T C A C C A C A T C A G C T T T C G C T C G C G G</u> nem316_a12.seq				
<u>A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C G</u> Majority				
1910	1920	1930	1940	1950
1801 <u>A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C G</u> 2603_a12.seq				
1901 <u>A C T G A T G C T T C A C A A C T G A C A A A T A A G T T G G A A G C G A T T A C C G C C G G T C G</u> nem316_a12.seq				

FIGURE 20B

91/487

G G A A T T A A C C C T G C C C T G A A G A C A C T A T A G C A T A A C A A A A A A A C T T G Majority					
1960 1970 1980 1990 2000					
1851	G G A A T T A C A C C C T G C C C T G A A G A C A C T A T A G C A T A A C A A A A A A A C T T G 2603_a12.seq				
1951	G G A A T T A C A C C C T G C C C T G A A G A C A C C T A T A G C A T A A C A A A A A A A C T T G nem316_a12.seq				
C A A T T G C A A G T T T T A A T T A C T A A T T A C T A A T T A C T A A T T A C T A Majority					
2010 2020 2030 2040 2050					
1901	C A A T T G C A A G T T T T A A T T A C T A A T T A C T A A T T A C T A A T T A C T A 2603_a12.seq				
2001	C A A T T G C A A G T T T T A A T T A C T A A T T A C T A A T T A C T A A T T A C T A nem316_a12.seq				
T T A A T A C C A A A T T A C T A T G C T G T A T C G T T T C T T C A G A T T T G C T A T T T T Majority					
2060 2070 2080 2090 2100					
1951	T T A A T A C C A A A T T A C T A T G C T G T A T C G T T T C T T C A G A T T T G C T A T T T T 2603_a12.seq				
2051	T T A A T A C C A A A T T A C T A T G C T G T A T C G T T T C T T C A G A T T T G C T A T T T T nem316_a12.seq				
A G T T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A T A A T A C A A C C A A G A A Majority					
2110 2120 2130 2140 2150					
2001	A G T T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A T A A T A C A A C C A A G A A 2603_a12.seq				
2101	A G T T T T T C T T A A A A A G A T A A A C A A A A A T T C C C A A A A T A A T A C A A C C A A G A A nem316_a12.seq				
T T G T C A G T C C T C C A C C A A T A C T A T T C C T G T T T T A G G A A G A A A T G A T T G T Majority					
2160 2170 2180 2190 2200					
2051	T T G T C A G T C C T C C A C C A A T A C T A T T C C T G T T T T A G G A A G A A A T G A T T G T 2603_a12.seq				
2151	T T G T C A G T C C T C C A C C A A T A C T A T T C C T G T T T T A G G A A G A A A T G A T T G T nem316_a12.seq				
G G A A A A A G C G G T T G T G A T G G T T T A G G A T T T G T G G T G G G A G G A G T T T C T T T Majority					
2210 2220 2230 2240 2250					
2101	G G A A A A A G C G G T T G T G A T G G T T T A G G A T T T G T G G T G G G A G G A G T T T C T T T 2603_a12.seq				
2201	G G A A A A A G C G G T T G T G A T G G T T T A G G A T T T G T G G T G G G A G G A G T T T C T T T nem316_a12.seq				
T T C G T T T T C T A C C T C T A C T T C C T G T G T T T T A T T A G C A A C T A C A G C A A C T A Majority					
2260 2270 2280 2290 2300					
2151	T T C G T T T T C T A C C T C T A C T T C C T G T G T T T T A T T A G C A A C T A C A G C A A C T A 2603_a12.seq				
2251	T T C G T T T T C T A C C T C T A C T T C C T G T G T T T T A T T A G C A A C T A C A G C A A C T A nem316_a12.seq				
C A G C A T C C T T C A T A G A T A T A C C G G T A A C C A G T T A G T G C T T T G C T T C T C G A Majority					
2310 2320 2330 2340 2350					
2201	C A G C A T C C T T C A T A G A T A T A C C G G T A A C C A G T T A G T G C T T T G C T T C T C G A 2603_a12.seq				
2301	C A G C A T C C T T C A T A G A T A T A C C G G T A A C C A G T T A G T G C T T T G C T T C T C G A nem316_a12.seq				
A A A A T A T A C T T A C C A G G T A A T A A A C C T C A A C C T C A A T T T C T C C C T T A T C Majority					
2360 2370 2380 2390 2400					
2251	A A A A T A T A C T T A C C A G G T A A T A A A C C T C A A C C T C A A T T T C T C C C T T A T C 2603_a12.seq				
2351	A A A A T A T A C T T A C C A G G T A A T A A A C C T C A A C C T C A A T T T C T C C C T T A T C nem316_a12.seq				
A T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G T C G T A A A T C G T C C A T Majority					
2410 2420 2430 2440 2450					
2301	A T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G T C G T A A A T C G T C C A T 2603_a12.seq				
2401	A T C A G T T A C T A A T G A A G T A A T C C C A T C T T G A T C G G T C G T A A A T C G T C C A T nem316_a12.seq				
T T T T A A A G C G G A A C T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C T Majority					
2460 2470 2480 2490 2500					
2351	T T T T A A A G C G G A A C T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C T 2603_a12.seq				
2451	T T T T A A A G C G G A A C T G G C T G A T T C T G G T T A T C G T A T A A T A C A A A A T A T T A C T nem316_a12.seq				
C C T G A T A G C C T T T C T T A T C T T C C T C T T T G T A T A T T A A T A A G T T T Majority					
2510 2520 2530 2540 2550					
2401	C C T G A T A G C C T T T C T T A T C T T C C T C T T T G T A T A T T A A T A A G T T T 2603_a12.seq				
2501	C C T G A T A G C C T T T C T T A T C T T C C T C T T T G T A T A T T A A T A A G T T T nem316_a12.seq				
T A A T C G G G C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T G Majority					
2560 2570 2580 2590 2600					
2451	T A A T C G G G C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T G 2603_a12.seq				
2551	T A A T C G G G C T G T T C A A C T T T C G C T T A G G A T T T A T C T G T A A T T G A T T T G nem316_a12.seq				

FIGURE 20C

Alignment Report of Al2 alignment, using J. Hein method with Weighted residue weight table.
 Thursday, July 29, 2004 6:45 PM

ATA A C T T A T C A T C T G G T A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C G Majority					
	2610	2620	2630	2640	2650
2501	ATA A C T T A T C A T C T G G T A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C G	2603_a12.seq			
2601	ATA A C T T A T C A T C T G G T A T T C A A T A T A A A A A G G T A C T A T T G T T G A A A C G	nem316_a12.seq			
C T T T G A T C A G C T T T A T A A G G C A C G G A C C A A A G T A C G A A C C A T T T G G G A G T G C Majority					
	2660	2670	2680	2690	2700
2551	C T T T G A T C A G C T T T A T A A G G C A C G G A C C A A A G T A C G A A C C A T T T G G G A G T G C	2603_a12.seq			
2651	C T T T G A T C A G C T T T A T A A G G C A C G G A C C A A A G T A C G A A C C A T T T G G G A G T G C	nem316_a12.seq			
T A T C T T T G T C T G A C C A T T A G T A T C A G T A C G G A A G T C A A G A T A C T C T T A T Majority					
	2710	2720	2730	2740	2750
2601	T A T C T T T G T C T G A C C A T T A G T A T C A G T A C G G A A G T C A A G A T A C T C T T A T	2603_a12.seq			
2701	T A T C T T T G T C T G A C C A T T A G T A T C A G T A C G G A A G T C A A G A T A C T C T T A T	nem316_a12.seq			
A C T T C T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A T A A A T C A A C T T T Majority					
	2760	2770	2780	2790	2800
2651	A C T T C T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A T A A A T C A A C T T T	2603_a12.seq			
2751	A C T T C T G G T T C A A T T C G C T A T C T G T C A T T T G G C T C A A T A A A T C A A C T T T	nem316_a12.seq			
A A G T G T C A G T C A C A G T C C A T A A A C G A T A A G G A A A T C C C C T C C T C T G T A G T Majority					
	2810	2820	2830	2840	2850
2701	A A G T G T C A G T C A C A G T C C A T A A A C G A T A A G G A A A T C C C C T C C T C T G T A G T	2603_a12.seq			
2801	A A G T G T C A G T C A C A G T C C A T A A A C G A T A A G G A A A T C C C C T C C T C T G T A G T	nem316_a12.seq			
A T T T G G C T G A A G T C C T A T C T G T G A T T G T T A G T T G A T T A G G G G T A T C A G Majority					
	2860	2870	2880	2890	2900
2751	A T T T G G C T G A A G T C C T A T C T G T G A T T G T T A G T T G A T T A G G G G T A T C A G	2603_a12.seq			
2851	A T T T G G C T G A A G T C C T A T C T G T G A T T G T T A G T T G A T T A G G G G T A T C A G	nem316_a12.seq			
C A T T T A C A C T G G C T A C C G A A A A A A A C G C T A A T T G T A C C A A T C C T A A A A G Majority					
	2910	2920	2930	2940	2950
2801	C A T T T A C A C T G G C T A C C G A A A A A A A C G C T A A T T G T A C C A A T C C T A A A A G	2603_a12.seq			
2901	C A T T T A C A C T G G C T A C C G A A A A A A A C G C T A A T T G T A C C A A T C C T A A A A G	nem316_a12.seq			
C A A C A T A G T A G A A G T C C T A A A C T T T T C T A A T C T T T T C A T T T T G A T T Majority					
	2960	2970	2980	2990	3000
2851	C A A C A T A G T A G A A G T C C T A A A C T T T T C T A A T C T T T T C A T T T T G A T T	2603_a12.seq			
2951	C A A C A T A G T A G A A G T C C T A A A C T T T T C T A A T C T T T T C A T T T T G A T T	nem316_a12.seq			
C C C T T T C T T T T C T C T T T A A A T T T C G T T T T A A A T A T A A T A G T A A A G C Majority					
	3010	3020	3030	3040	3050
2901	C C C T T T C T T T T C T C T T T A A A T T T C G T T T T A A A T A T A A T A G T A A A G C	2603_a12.seq			
3001	C C C T T T C T T T T C T C T T T A A A T T T C G T T T T A A A T A T A A T A G T A A A G C	nem316_a12.seq			
G A C T A A T A A G A A T A A C T A G G A T T G A T A A G G G A A A T A A A G T T T A T A G T Majority					
	3060	3070	3080	3090	3100
2951	G A C T A A T A A G A A T A A C T A G G A T T G A T A A G G G A A A T A A A G T T T A T A G T	2603_a12.seq			
3051	G A C T A A T A A G A A T A A C T A G G A T T G A T A A G G G A A A T A A A G T T T A T A G T	nem316_a12.seq			
G T G T T G C A A T T C T T C A T T A A A T A G T T C T T T C T T T A A C A G G A G G T A C A Majority					
	3110	3120	3130	3140	3150
3001	G T G T T G C A A T T C T T C A T T A A A T A G T T C T T T C T T T A A C A G G A G G T A C A	2603_a12.seq			
3101	G T G T T G C A A T T C T T C A T T A A A T A G T T C T T T C T T T A A C A G G A G G T A C A	nem316_a12.seq			
T A C T G A T T C G A T G C C C T C T A A C T A G T A A A C G A T G T G A A T T A A T C G A A T A Majority					
	3160	3170	3180	3190	3200
3051	T A C T G A T T C G A T G C C C T C T A A C T A G T A A A C G A T G T G A A T T A A T C G A A T A	2603_a12.seq			
3151	T A C T G A T T C G A T G C C C T C T A A C T A G T A A A C G A T G T G A A T T A A T C G A A T A	nem316_a12.seq			
A G G T G T A C A T G T T A G C A A A G T C G C A T A A T C C T T A C C T T A A C A A C C A A T A Majority					
	3210	3220	3230	3240	3250
3101	A G G T G T A C A T G T T A G C A A A G T C G C A T A A T C C T T A C C T T A A C A A C C A A T A	2603_a12.seq			
3201	A G G T G T A C A T G T T A G C A A A G T C G C A T A A T C C T T A C C T T A A C A A C C A A T A	nem316_a12.seq			

FIGURE 20D

ATTTAGAAATATTCTGGCTTACAAACACTTATTTGATCAACCTTATAAG Majority
 3260 3270 3280 3290 3300

3151 ATTTAGAAATATTCTGGCTTACAAACACTTATTTGATCAACCTTATAAG 2603_a12.seq
 3251 ATTTAGAAATATTCTGGCTTACAAACACTTATTTGATCAACCTTATAAG nem316_a12.seq

GCTAAACACTCTTGTATATTGAATATAAAAAAATTTTCCCTTTTAAG Majority
 3310 3320 3330 3340 3350

3201 GCTAAACACTCTTGTATATTGAATATAAAAAAATTTTCCCTTTTAAG 2603_a12.seq
 3301 GCTAAACACTCTTGTATATTGAATATAAAAAAATTTTCCCTTTTAAG nem316_a12.seq

TTTATCTAAATCTGTAAATAACTTAGCTTGTAGGTAAGCCCCGATGAGCTG Majority
 3360 3370 3380 3390 3400

3251 TTTATCTAAATCTGTAAATAACTTAGCTTGTAGGTAAGCCCCGATGAGCTG 2603_a12.seq
 3351 TTTATCTAAATCTGTAAATAACTTAGCTTGTAGGTAAGCCCCGATGAGCTG nem316_a12.seq

TGATAACAGTATGTGAACCTTTCCACCAATTGGCAAGGAGGTCCCTTC A Majority
 3410 3420 3430 3440 3450

3301 TGATAACAGTATGTGAACCTTTCCACCAATTGGCAAGGAGGTCCCTTC A 2603_a12.seq
 3401 TGATAACAGTATGTGAACCTTTCCACCAATTGGCAAGGAGGTCCCTTC A nem316_a12.seq

AGGTGTCCTGCTCCTTTCAAGAACACTACTGGTAGTCCCCGCATAGAT Majority
 3460 3470 3480 3490 3500

3351 AGGTGTCCTGCTCCTTTCAAGAACACTACTGGTAGTCCCCGCATAGAT 2603_a12.seq
 3451 AGGTGTCCTGCTCCTTTCAAGAACACTACTGGTAGTCCCCGCATAGAT nem316_a12.seq

AGGTAATTTTGCTTGTAGACGGTATATCAAAATATATCCAATTCATTTCA G Majority
 3510 3520 3530 3540 3550

3401 AGGTAATTTTGCTTGTAGACGGTATATCAAAATATATCCAATTCATTTCA G 2603_a12.seq
 3501 AGGTAATTTTGCTTGTAGACGGTATATCAAAATATATCCAATTCATTTCA G nem316_a12.seq

TAATCTCAAGCATGTTGGCGTATTCAGCAATACCTTTTTTTCTTTTC A Majority
 3560 3570 3580 3590 3600

3451 TAATCTCAAGCATGTTGGCGTATTCAGCAATACCTTTTTTTCTTTTC A 2603_a12.seq
 3551 TAATCTCAAGCATGTTGGCGTATTCAGCAATACCTTTTTTTCTTTTC A nem316_a12.seq

GTATAGGGATCTGTAGGGGGCTTGGGTCCAGTGTCTATTATAAGCTTT Majority
 3610 3620 3630 3640 3650

3501 GTATAGGGATCTGTAGGGGGCTTGGGTCCAGTGTCTATTATAAGCTTT 2603_a12.seq
 3601 GTATAGGGATCTGTAGGGGGCTTGGGTCCAGTGTCTATTATAAGCTTT nem316_a12.seq

TGCTAACTCAAACTCTTAAATCTCTTGTAGTATTTAAATTTGGGTTT Majority
 3660 3670 3680 3690 3700

3551 TGCTAACTCAAACTCTTAAATCTCTTGTAGTATTTAAATTTGGGTTT 2603_a12.seq
 3651 TGCTAACTCAAACTCTTAAATCTCTTGTAGTATTTAAATTTGGGTTT nem316_a12.seq

GATTATCAAAGTTAGTTACTTGATTATAGCTTTAATATTATAGTACCA A Majority
 3710 3720 3730 3740 3750

3601 GATTATCAAAGTTAGTTACTTGATTATAGCTTTAATATTATAGTACCA A 2603_a12.seq
 3701 GATTATCAAAGTTAGTTACTTGATTATAGCTTTAATATTATAGTACCA A nem316_a12.seq

TTTGAATAAAGGATATGAGGTTATCAAAAGACCAACTAAGAACAAATAG Majority
 3760 3770 3780 3790 3800

3651 TTTGAATAAAGGATATGAGGTTATCAAAAGACCAACTAAGAACAAATAG 2603_a12.seq
 3751 TTTGAATAAAGGATATGAGGTTATCAAAAGACCAACTAAGAACAAATAG nem316_a12.seq

TATCAGGCCCTACATTCATCCATCGATTAAAACGACCGATTTCTTAAGCT Majority
 3810 3820 3830 3840 3850

3701 TATCAGGCCCTACATTCATCCATCGATTAAAACGACCGATTTCTTAAGCT 2603_a12.seq
 3801 TATCAGGCCCTACATTCATCCATCGATTAAAACGACCGATTTCTTAAGCT nem316_a12.seq

TTTCTGAAATTTCCTCCCATTATGATTCAATTCTTTCTTAACACCTTG Majority
 3860 3870 3880 3890 3900

3751 TTTCTGAAATTTCCTCCCATTATGATTCAATTCTTTCTTAACACCTTG 2603_a12.seq
 3851 TTTCTGAAATTTCCTCCCATTATGATTCAATTCTTTCTTAACACCTTG nem316_a12.seq

FIGURE 20E

94/487

Alignment Report of WO 2006/078318 n method with Weighted residue weight table.
Thursday, July 29, 2004 6:47 PMPCT/US2005/027239
Page 7

CTA A A G G A T T T T E G A C I G T E G A C G T T T T A T T A A C C A A A G T A A C C A A G C A Majority					
	3910	3920	3930	3940	3950
3801	CTA A A C G A T T T T T G A C G T T G A C G T T T T A T T A A C C A A A G T A A C C A A G C A 2603_a12.seq				
3901	CTA A A C G A T T T T T G A C G T T G A C G T T T T A T T A A C C A A A G T A A C C A A G C A nem316_a12.seq				
A T A A T A A C T A A A G A T A T A T A G A A T A G A T A T C T A T A A A T C G T G T T T A A A T G Majority					
	3960	3970	3980	3990	4000
3851	A T A A T A A C T A A A G A T A T A T A G A A T A G A T A T C T A T A A A T C G T G T T T A A A T G 2603_a12.seq				
3951	A T A A T A A C T A A A G A T A T A T A G A A A G A T A T C T A T A A A T C G T G T T T A A A T G nem316_a12.seq				
A C C T T C T T T T A T T A A T T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A T Majority					
	4010	4020	4030	4040	4050
3901	A C C T C T T T T A T T A A T T T T C A T C A A T A G G A C C T T T A T A A G G G A T A C G A T 2603_a12.seq				
4001	A C C T C T T T T A T T A A T T T T C A T C A A T A G A C C T T T A T A A G G G A T A C G A T nem316_a12.seq				
G T C C C C T T A C T A A A A G T C T G T G T G T A T T G A T C A T A A T C G G G G T G C A A G T T Majority					
	4060	4070	4080	4090	4100
3951	G T C C C C T T A C T A A A A G T C T G T G T G T A T T G A T C A T A A T C G G G G T G C A A G T T 2603_a12.seq				
4051	G T C C C C T T A C T A A A A G T C T G T G T G T A T T G A T C A T A A T C G G G G T G C A A G T T nem316_a12.seq				
A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A C C A A C A A A T C T G A A A A G T T Majority					
	4110	4120	4130	4140	4150
4001	A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A C C A A C A A A T C T G A A A A G T T 2603_a12.seq				
4101	A A T A A G G T T G C A T A A T C A T G T C C A G G A A C A C C A A C A A A T C T G A A A A G T T nem316_a12.seq				
A T C G G G T G T A A C G A C T T T T A T C T G A T C T A C T T G A T A T G C T A T C G T T T C T T Majority					
	4160	4170	4180	4190	4200
4051	A T C G G G T G T A A C G A C T T T T A T C T G A T C T A C T T G A T A T G C T A T C G T T T C T T 2603_a12.seq				
4151	A T C G G G T G T A A C G A C T T T T A T C T G A T C T A C T T G A T A T G C T A T C G T T T C T T nem316_a12.seq				
T T A T G T T T G A A T A T A A A C T T A T C T C C T T T T T T A C T T T T T A A G G T T A Majority					
	4210	4220	4230	4240	4250
4101	T T A T G T T T G A A T A T A A A C T T A T C T C C T T T T T T A C T T T T T A A G G T T A 2603_a12.seq				
4201	T T A T G T T T G A A T A T A A A C T T A T C T C C T T T T T T A C T T T T T A A G G T T A nem316_a12.seq				
G A A A A G A G T T C T T T A T C T G G A A T T C C T G A G T G C G C T G T T A T A A C G G T A T G Majority					
	4260	4270	4280	4290	4300
4151	G A A A A G A G T T C T T T A T C T G G A A T T C C T G A A T G C G C T G T T A T A A C G G T A T G 2603_a12.seq				
4251	G A A A A G A G T T C T T T A T C T G G A A T T C C T G A G T G C G C T G T T A T A A C G G T A T G nem316_a12.seq				
T G T G C T A T T T C C T C C A A T T G G A A G A G G G T A C C T T C T A A A T G C C C T G C T C Majority					
	4310	4320	4330	4340	4350
4201	T G T A C T A T T T C C T C C A A T T G G A A G A G G G T A C C T T C T A A A T G C C C T G C T C 2603_a12.seq				
4301	T G T G C T A T T T C C T C C A A T T G G A A G A G A G T A C C T T C T A A A T G C C C T G C T C nem316_a12.seq				
C T T T A G A T A G A A C T T C T G A C T T G A A C C T G C A A A T A T A G G G A G T T T T T G A Majority					
	4360	4370	4380	4390	4400
4251	C T T T A G A T A G A A C T T C T G A C T T G A A C C T G C A A A T A T A G G G A G T T T T T G A 2603_a12.seq				
4351	C T T T A G A T A G A A C T T C T G A C T T G A A C C T G C A A A T A T A G G G A G T T T T T G A nem316_a12.seq				
C C T A T C T T A G G A A C T G G A A A T T G T T C C G A T T T T T C A C T T A C C T C T A A C A T Majority					
	4410	4420	4430	4440	4450
4301	C C T A T C T T A G G A A C T G G A A A T T G T T C C G A T T T T T C A C T T A C C T C T A A C A T 2603_a12.seq				
4401	C C T A T C T T A G G A A C T G G A A A T T G T T C C G A T T T T T C A C T T A C C T C T A A C A T nem316_a12.seq				
A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A T Majority					
	4460	4470	4480	4490	4500
4351	A C G G G C G T A C T C T G C T A C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A T 2603_a12.seq				
4451	A C G G G C G T A C T C T G C T A C C C C C C T T T G A A T T C G T T T T T C T C A T A A G G A T nem316_a12.seq				
C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A A G C T T G T G C T A G A G T C Majority					
	4510	4520	4530	4540	4550
4401	C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A A G C T T G T G C T A G A G T C 2603_a12.seq				
4501	C T T C A A G A T G G A C A T T A T T A A A G A A T C A T T A A G C T T G T G C T A G A G T C nem316_a12.seq				

FIGURE 20F

Alignment Report of AWO 2006/078318, method with Weighted residue weight table.
 Thursday, July 29, 2004 6:47 PM

	<u>A T A C G T C G A T T C T T C T T C G A C T A A G T T T T T A G C A G C T C T C T C A A A</u> Majority				
	4560	4570	4580	4590	4600
4451	<u>A T A C G T C G A T T C T T C T T C G A C T A A G T T T T T A G C A G C T C T C T C A A A</u> 2603_a12.seq				
4551	<u>A T A C G A C G A T T C T T C T T C G A C T A A G T T T T T A G C A G C T C T C T C A A A</u> nem316_a12.seq				
	<u>A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C A</u> Majority				
	4610	4620	4630	4640	4650
4501	<u>A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C A</u> 2603_a12.seq				
4601	<u>A T C C T G T G T T G A T T A T T A G A T T C T A T C G T A T A G T A A A A A C G T G A T A C C A</u> nem316_a12.seq				
	<u>C T G G A T A C A A A T A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G A</u> Majority				
	4660	4670	4680	4690	4700
4551	<u>C T G G A T A C A A A T A A K A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G A</u> 2603_a12.seq				
4651	<u>C T G G A T A C A A A T A A A A T A G A T A G A C C T A T T A G A A A A A G A A T G A T A A A A G G A</u> nem316_a12.seq				
	<u>A G A T T T G A C T T C T T C T T T T T G T T T T T G T G A T T T T T A G T C T T</u> Majority				
	4710	4720	4730	4740	4750
4601	<u>A G A T T T G A C T T C T T C T T T T T G T T T T T G T G A T T T T T A G T C T T</u> 2603_a12.seq				
4701	<u>A G A T T T G A C T T C T T C T T T T A G T T T T T G T G A T A T T T T T A G T C T T</u> nem316_a12.seq				
	<u>C A C G T C A T C T C C T A G A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C T</u> Majority				
	4760	4770	4780	4790	4800
4651	<u>C A C G T C A T C T C C T A G A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C T</u> 2603_a12.seq				
4748	<u>C A C G T C A T C T C C T A A A T A A T G G C T C T T G C T T A T G A T C T A A G A G T A C T T C T</u> nem316_a12.seq				
	<u>A C T G A A A T A C C C T T A G A T C A T A A C C A C ' A G C T T T A A C T G T G C T T A T A C A T C</u> Majority				
	4810	4820	4830	4840	4850
4701	<u>A C T G A A A T A C C C T T A G A T C A T A A C C A C ' A G C T T T A A C T G T G C T T A T A C A T C</u> 2603_a12.seq				
4798	<u>A C T G A A A T A C C C T T A G A T C A T A A C C A C ' A G C T T T A A C T G T G C T T A T A C A T C</u> nem316_a12.seq				
	<u>A T C A A A G A C T A G C C T T A A G C T T C T T G A T T G G G G T T T T C A T G A T A A C</u> Majority				
	4860	4870	4880	4890	4900
4751	<u>A T C A A A G A C T A G C C T T A A G C T T C T T G A T T G G G G T T T T C A T G A T A A C</u> 2603_a12.seq				
4848	<u>A T C A A A G A C T A G C C T T A A G C T T C T T G A T T G G G G T T T T C A T G A T A A C</u> nem316_a12.seq				
	<u>T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A C</u> Majority				
	4910	4920	4930	4940	4950
4801	<u>T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A C</u> 2603_a12.seq				
4898	<u>T A C T G C T C C A A G C A T A A T G C T T A A A C C A A T A A T T G T G A A A A G A A T T G T A C</u> nem316_a12.seq				
	<u>C A A T A C C C A C C T G T T T G G G G A T T G T T A C T T T T T G T T T G T A C T T G T T T G</u> Majority				
	4960	4970	4980	4990	5000
4851	<u>C A A T A C C C A C C T G T T T G G G G A T T G T T A C C T G T T A C A C G T G T G T</u> 2603_a12.seq				
4948	<u>C A A T A C C C A C C T G T T T G G G G A T T G T T A C C T G T T A C A C G T G T G T</u> nem316_a12.seq				
	<u>G C A T C T T T T T T A C A G G T T T T T G T G C T C A G T T T T A G C C C C</u> Majority				
	5010	5020	5030	5040	5050
4901	<u>G C A T C T T T T T T A C A G G T T T T T G T G C T C A G T T T T A G C C C C</u> 2603_a12.seq				
4998	<u>G C A T C T T T T T T A C A G G T T T T T G T G C T C A G T T T T A G C C C C</u> nem316_a12.seq				
	<u>T T T T C T G T A T G A T G T T G A T T A C C T C A A A G T T T A T A T T A C C T G C C A A T T</u> Majority				
	5060	5070	5080	5090	5100
4945	<u>T T T T A T G T A T G A C C C T T G A T T A C T A C A A A G T T A A T A T T A C C T G C C A A C T</u> 2603_a12.seq				
5048	<u>T T T T G C T A T A T G A T G T G G C A G T T A C T T C A A A G T T T A G A T A C C T G A C A A T H</u> nem316_a12.seq				
	<u>T C G G C A T A T C C T G C T G G T C T T G T G T T T C C A G G T T E G T A A G T G C C T T T T</u> Majority				
	5110	5120	5130	5140	5150
4995	<u>T C G G C A A A T C C T G C T G G A C C A A G T G T T T C T C A A G G G T T G T A A G T A C C C T T T</u> 2603_a12.seq				
5098	<u>T C G G C A T A A C C T G C T G G T C T T G A G T T T C C A A G C T A T A A G T G C C T T T T</u> nem316_a12.seq				
	<u>T C C A G A C C T G T A A A T T C A A A T T G A C C T T G G T C G T T T G A G G G T G T A T T T A T</u> Majority				
	5160	5170	5180	5190	5200
5045	<u>T C C A A A C C T G T A A A T T C A A A T T G A C C T T G A T C G T T T G A A G T G T A G G T A A T</u> 2603_a12.seq				
5148	<u>T C C A A A C C A G T A A A T T C A A A T T G A C C C A C C G G C G T T A G A G A T C A A T T T A A</u> nem316_a12.seq				

FIGURE 20G

G G C T T A T C A G G C T T E A T C T G C T T A T C A T T C A T A T G C T T G T T A G C T T Majority
 5210 5220 5230 5240 5250

5095 G G C T T A G C T T T A T C T G T T A T C C A T T C A T A G C T G T A C H G C T T 2603_a12.seq
 5198 A A C A T T A T C A G C C T T T T A T C T G C A A C C A T T C A T A G C T A G T T A G C T T nem316_a12.seq

T A A T G A A G G C T T C A T T G T A A T C T T T G T T T T T G A T A G T T C T T T Majority
 5260 5270 5280 5290 5300

5139 C A A T G A A G G C T C A T C G T A A T C T G C T T A G T T T G A T A A G T T C T T T 2603_a12.seq
 5248 T A A C A A A G C C G T C A T G T A A G C T T T T G T T T G A T A A G A G T A G C C A A T nem316_a12.seq

G C T G T T T C C T T T G G C T T T T G T T T T T A G T C A A G T T G T T A T A Majority
 5310 5320 5330 5340 5350

5189 G C A C G T A A T T C C T T T C A C C T T T G C T G T T G C T G A C A A G T C T T A T A 2603_a12.seq
 5298 G C T G T T T A C C T T C T T G G C C T T C T T G T T T T C T T A G T C A A G T T G T T A T A nem316_a12.seq

A G C T T T G A T A G C T T C A T C T A A T G C T A T T T A G C A G T T T T G C A G C T G C C T Majority
 5360 5370 5380 5390 5400

5239 A G C A G C G A T A G C T T C A T C T A A A G C T A T T T T T A G C A G C T A A A G 2603_a12.seq
 5348 A G C T T T A A G A G C T T C A T C T A A T G C T A T T A G C A G T T T T A C A G C T G C C T nem316_a12.seq

T T T T T G A G C T T T G C T T G A T C T G C T T A C G T G C C A G G T A T T T C C T C T Majority
 5410 5420 5430 5440 5450

5283 T T T T T G A C C T T C G A T T G A T C T G C T T A A G A G C A A G G T A T T T A C C T C T 2603_a12.seq
 5398 T T G C T T C A G G C A G T T G C T G C A C T G C T T A C G T G C C A A G T A T T T C C T C T nem316_a12.seq

G A G T T T T C A C A A G G A A T T T G C T C C T G C C A A G C C G T T C A G T T T A G C T T G Majority
 5460 5470 5480 5490 5500

5333 G A G T T T T C A C A A C G A A T T T G C C A C C A A G C C A A A C G G T C A C T T G 2603_a12.seq
 5448 — T T G C T T A A C A A G G A A G G T A G C T C C T G C C A A G C G T T C A G T G T T A G C T T G nem316_a12.seq

A T T T G T T T G A C A A A T T T C T T C A T G A G T T T C C A C T T T T G G T T C T G T T G Majority
 5510 5520 5530 5540 5550

5380 A T T A G T T T T G A C A A A T T T C T T A C C A T G A G T T T C A A C T T T T G G T T C A G T T G 2603_a12.seq
 5495 A T T G T T T G A C A A A T T T A G T C C A T A A G T C A C C A C T T T T G G T T C T G A T G nem316_a12.seq

G G T T G A T T G G T G T G G G T T A T T T G A G T T T T G T T G T T G A T G G T T A C T Majority
 5560 5570 5580 5590 5600

5430 G G T T C A A T G G T G T G G G T T A T C A G A A A T C T T G T A T T G G C T A A T G G T T A C T 2603_a12.seq
 5545 G G T T G A T T G G A G T T G C A T G A T T G A G T T T T G T T G T T G A T A G T C A C A nem316_a12.seq

T T A C C A T T T T T A G T T T A T T T C T T T G G A G T G T A G C C C G T A A C A C G T T C Majority
 5610 5620 5630 5640 5650

5480 T T A C C A T T T T C A G A T T T A T T G C A C T T C C A G T G T A A C C A G A A A C A C G T T C 2603_a12.seq
 5595 A T A C C A T T T T A A T G A T A C A T A T T T G G G A G T G T A G C C G T A A C A C G T T C nem316_a12.seq

T G C G A T G C T G T A T G T T T G G T A T T T C T A G A C C T G T G A A T T A C C C G A G T Majority
 5660 5670 5680 5690 5700

5527 T G A G A T C A T G T A T G A T T T G T T T C T A G A C C A G T G A A T T A C C C G A G A 2603_a12.seq
 5645 G A C A A C C C C G G T A A G T T T A G T A T T A C T A A C C T G T G A A — — — A G T nem316_a12.seq

A T T T T C C A G G G T T T G G T T T G C T T T T G T G A G G T C G C T T T A C C T Majority
 5710 5720 5730 5740 5750

5574 A G T T A C C A G A T A C T T A A A T T G A T A C C A T T T C C A A G G T C G A T T G T A C C T 2603_a12.seq
 5687 A T G T T C A A A G G G T A T G G T T T G T G C T T C G T G A A G C T A A C G T T C A C C C nem316_a12.seq

T T G T A T G T T T G T T T C T T G C G C G G T A G T T T A T C T T T A T C T T T Majority
 5760 5770 5780 5790 5800

5624 T F A G A T G T T T G T C A A T G A T A C T G A A G C C A A C G A T T T A T C T T T A T C T T T 2603_a12.seq
 5737 A T G T A T C A T C C G T T T G T T T C T T G C C A A G G T A A A G A T A U C T T T A C T nem316_a12.seq

C A A T G T G T A A G C C A A C G T T T A C A T C A T T A G T T G T A C T T T C T T C T G C C C A G T Majority
 5810 5820 5830 5840 5850

5674 C A A T G T G T A A A C A A C G T T T A C A C C A T T A G G T G C A A T T C C L T C A G A C C A A G 2603_a12.seq
 5784 — — — G C A A C A T T A A C A T C A G T A T T G T A C C A T T C T A C T G C C C A G T nem316_a12.seq

FIGURE 20H

TTTTAGTGAATTTATTTCTGGCTTCGTTGGTGTACCTTGTTGTTC Majority					
5860	5870	5880	5890	5900	
5724 TTTTAGCAACTTTAATTCAACCTTTGAAAGCTGTAACAGGAAGCTTGTAGTC 2603_a12.seq					
5824 CTTTAATGACTTTATTCTTGGTACCTGCGAGTACCTTGTGGTGTCA nem316_a12.seq					
CTTTCTTTCTGGTTTGTTACCATACTCCAAATTGATATCATGGTTTC Majority					
5910	5920	5930	5940	5950	
5774 AAGCTCTTAACTGGTTTGTTACCATATGACAATTGATATCATGGATTTC 2603_a12.seq					
5874 CTTTCTTCTGGGTTATTACCATAGTCCAAATTAAAGATCATGGTTTC nem316_a12.seq					
TGGATTTCAATAGTGTGTTGGCCGTTCACCGTAGCTGTGTACAGTGATT Majority					
5960	5970	5980	5990	6000	
5824 TGGATTATCAATAATTGTTGACCAATTAAACAGTAGGACATATAAGTCATA 2603_a12.seq					
5924 TGGAACTTCAAAGACTAGTGGAGCCGTTCACCGTAGCTGAGTAAGTGATCT nem316_a12.seq					
TGATTCAAATATCTTTTTTTGCTGCTTTTCTACTTTGCCAGTCCT Majority					
6010	6020	6030	6040	6050	
5874 TAATTCAAATATCAGTTGTTTAGCTGCTTTTCCGAAATTGGCCAAATCCA 2603_a12.seq					
5974 TGATTCAAAGATCTTGTCTTTGCAGCAGITGCTACTGCTGCAAGACCT nem316_a12.seq					
TTTGCTTTGAATTTTAGTGTGAAACCTTGGTCATCTGTTCTGAGTTGTA Majority					
6060	6070	6080	6090	6100	
5924 TCAGCTGTGAATTAAATGTGAAACCACTGGGCATCAATTGCTAAAGTTGATA 2603_a12.seq					
6024 GTTGCATTAAAGGAAGACGGAAACCTTGGTCATCTGTTACGAGTTGTA nem316_a12.seq					
GTTTGTATCCCTTAGGAAAATTTTTGTATTTCTGTTGCTTTAACGTTG Majority					
6110	6120	6130	6140	6150	
5974 GTCCTGTATCCCTAGGAAAATTGTTGTTGTAATTCTGTTGAAAGCTTAAAGCTTA 2603_a12.seq					
6074 GTTTAAAC...AGGAAATTTTACATCAATGTTACCTTAAAGCTGTTG nem316_a12.seq					
TAGTTGAACCCATTGTCAAACCTTTGGTCATTCTATCTGTCCAAACCAAGT Majority					
6160	6170	6180	6190	6200	
6024 CAGTTGAACCCATTGTCAAACCAATTGACATTATATCTGTCACCAACCAAG 2603_a12.seq					
6121 TGTGAAAC...GTCAAACCTTTAGTCATGCTATCAGTCACCAACCAAGT nem316_a12.seq					
TTTTTGATTTGAGCCTTTGTAATTTTGTTAACCTTGTATTTGTT Majority					
6210	6220	6230	6240	6250	
6074 TTTTGATTTAGAACCTTTGTAATTTTGTTAACCTTGTATTTGTTAACGGAAAC 2603_a12.seq					
6165 TTCTTATAGTCGAGCCTTTAGAAGAACATTGTTGTTAACATGTTATTTT nem316_a12.seq					
TTTTTACCGATTTGGCTGGGCAGTGGCTTTGTCACGTGTCATAATTAC Majority					
6260	6270	6280	6290	6300	
6124 AAATTTACCGATTTCAGCAGTACCACTGGCTTTGTCACGTGTCATAATTAC 2603_a12.seq					
6215 TTGTCACCAACTGTCGCTGACACAAACCTTGTCA nem316_a12.seq					
CATAAATTGGCCAGCTGTCAAAAGTCATAATTGTCAGTGTGTC Majority					
6310	6320	6330	6340	6350	
6174 CATAAATTGGCCAGCTGTCAAAAGTCATAATTGTCAGTGTGTC 2603_a12.seq					
6251 TTTTCGTTGTCAGTAAATTCAGT nem316_a12.seq					
AAGTTGTTGGTTGGCAAGTTTATCTATTGTTGTTGGTTTTTCAGT Majority					
6360	6370	6380	6390	6400	
6224 AAATTCGTTGGTTAGCAAGTTTATCAATTGTTGTTTTCAGT 2603_a12.seq					
6272 AAGATGTTTATC...TGCAGGAACTTTATCTATTGTTGTTGGTTTTTCAGT nem316_a12.seq					
GTTCTTTGGATAAAATGGGGCATCTTAAACAAACACCTTGTGTTTACCA Majority					
6410	6420	6430	6440	6450	
6274 GTCCTTTGGATAAAATGGGGCATCACTAAACAAACACCATCTTCATTTACCA 2603_a12.seq					
6320 ATTCCTTTGGATAAAATGTCAGCATTCTTAAACAAACACCTTGTGTTTACCA nem316_a12.seq					
ATGGCAGAGTGATTTAACCTGGAAACTGCTTTGAAATCAGCCAGGATGGAA Majority					
6460	6470	6480	6490	6500	
6324 ATGGCAGAGTGATTTAACCTGGAAACTGCTTTGAAAGCAGCCAGGAGGGAA 2603_a12.seq					
6370 ATGGCAGAGTGATTTAACCTGGAAACTGCTTTGAAATCAGCCAAAGATAGAA nem316_a12.seq					

FIGURE 20I

CCGTTCTTGTAGTTGAACTTCCTTCACCTCAACGATTGTACTT Majority				
6510	6520	6530	6540	6550
6374 CCATATTGTAACTAGATTTATTTAATCTCAACGATTAACTT 2603_a12.seq				
6420 CGTGTATCGTAGTTGATTTCTTCATACTCAACGATTGTAACTT nem316_a12.seq				
TCCTTTAACTTTGGTGTGAAGCAAGTCCAGTGCTTTGGTG Majority				
6560 6570 6580 6590 6600				
6424 GCCTTAACTTTGGTGTGAAGCAACATCCAGTATCTTCTGGT 2603_a12.seq				
6470 TCCTTTAACTTAGCAGTGTAAAGCAAACCAAGTGCTTTGGTAACTT nem316_a12.seq				
TTGATCCAGGCACGGCCTCATCTTATTTCTTTGTTCCGGAGTATCG Majority				
6610 6620 6630 6640 6650				
6474 TCAATCCAGCACGGCCTCATCAATATTACTGTTATTCAGGAGTATCG 2603_a12.seq				
6520 CTGAAAGAACAGCACCATTCAGCATCTTAACTTCCAAAGTATCG nem316_a12.seq				
TCTTCTTAATTAAGGCTGGTGTAAATTGTTACCTTCTTTCTTAAT Majority				
6660 6670 6680 6690 6700				
6524 TCTTATTAATTAAGGCTGGTGTAAATTGTTACCTTCTTTGCTTAAT 2603_a12.seq				
6567 ACTTCTTA.....CTATTTCAATTAAT nem316_a12.seq				
GTATTGCATTTACCACTTTATTTTCAAAAGCTAAAGCAAGAACG Majority				
6710 6720 6730 6740 6750				
6574 ATATTGCACTTACCACTTTATCTTCAAAAGCTAAAGCAAGAACG 2603_a12.seq				
6590 GAATTCTTACCACTTTCAATTTC.....AAAACAAAGAAAG nem316_a12.seq				
CACCTTTGATTCCTTAGCTTGGTGAAGCTAAAGCTTAAAGTCA Majority				
6760 6770 6780 6790 6800				
6624 CACCTTGGATTTAGATCCT.....GCCAAAGTAATCAGGAAAGTCA 2603_a12.seq				
6628 CACCTTAAATTCTTAGCATCGGTTGAGCCAAAATAAGATTTAAGGTCA nem316_a12.seq				
TTAATTGTTACCTTGTAGTCTTTCTGTTACCTTTGTTCTTG Majority				
6810 6820 6830 6840 6850				
6671 GAAATAGCTCACCTTGTAAGTCTTTCTGTTAAAGACCTCTGACTTCTG 2603_a12.seq				
6678 TTAATTGTTACCAACATAATCGCTATCATTCTTACCTTTGTAACCTT nem316_a12.seq				
GGAGTTACTTTGTTAAGTTGCTTGTGTTTGACAATCTGTGCAAGG Majority				
6860 6870 6880 6890 6900				
6721 GAAAGTTACTTTGTTAAGATTTGATTCTGGTTGCAAAATCTGTGCAAGG 2603_a12.seq				
6728 AG.....TAAAGTTATCAAAATGCAAGCTTGTGGAATGACAATCTGTGCAAGG nem316_a12.seq				
TCACTGTATTAGTTGTTGCTTCTGTCGGCAAAACGGCTGGTGCAACTGAGAGT Majority				
6910 6920 6930 6940 6950				
6771 TCACTGTATTAGTTGTTGCTTCACTCCGCAAAACGGCTGGTGCAACTGAGAGT 2603_a12.seq				
6775 TCACTGTATTAGTTGTTACGTCGTCGGCAAAACGGCTGGTGCAACTGAGAGT nem316_a12.seq				
AGTGACGTTAAGGTCACTAGCAGTGTGAGAAACATTGTAAGATATTGTT Majority				
6960 6970 6980 6990 7000				
6821 ATGACGTTAAGTCAGTAACTGCCCCGAGAACATTGCAAAATATTGTT 2603_a12.seq				
6825 ATGACGTTAAGATCAATAGCAGTGTGAGAACATTGTAAGAACATTGTT nem316_a12.seq				
GATTTTTCTATCTATCTCCCTCTTATTTAGTTAATCAACATGGTTA Majority				
7010 7020 7030 7040 7050				
6871 GATTTTTCTATCTATCTCCCTCTTATTTAGTTAATCAACATGGTTA 2603_a12.seq				
6875 GATTTTTCTATCTATCTCCCTCTTATTTAGTTAATCAACATGGTTA nem316_a12.seq				
ATAATATGGGGATTTAATATTACCGCAGGACCACTCCCTTCAAGTCATG Majority				
7060 7070 7080 7090 7100				
6921 ATAATATGGGGATTTAATACCGCAGCACCACCTCCCTCAAGTCATG 2603_a12.seq				
6925 ATAATATACGGATTATAATATTACCGCAGCACCACCTCCCTTC..... nem316_a12.seq				
GAATTTTATTAATTAATTAAGAATACTAAAGCCGATGATTTAATCTT Majority				
7110 7120 7130 7140 7150				
6970 GAATTTTATTAATTAATTAAGAATACTAAAGCCGATGATTTAATCTT 2603_a12.seq				
6967 GAATTATTTAATTAATTAAGAATACTAAACACATGATTCTTAATCTT nem316_a12.seq				

FIGURE 20J

TTTTTCTGGATATACTAGATTTCTTATATCTTTCCAATATAAATT Majority

7160 7170 7180 7190 7200

7020 TTTTGATGGATATACACTAGATTTCTTATATCTTTCCAATATAAATT 2603_a12.seq
7017 TTTCGATAGATATACACTAGATTTCTTATATCTTTCCAATATAAATT nem316_a12.seq

CCACCTGCAATAGACATCATAGCTCCACCTATTAATAAGATAAGAAT Majority

7210 7220 7230 7240 7250

7070 CCACCTGCAATAGACATCATAGCTCCACCTATTAATAAGATAAGAAT 2603_a12.seq
7067 CCACCTGCAATAGACATCATAGCTCCACCTATTAATAAGATAAGAAT nem316_a12.seq

TCCCTTCCCACCTGTCAATCGGAATAATTCCCTTTGGTGGAAATATGCGTGT Majority

7260 7270 7280 7290 7300

7120 TCCTTCCCACCTGTCAATCGGAATAATTCCCTTTGGTGGAAATATGCGTGT 2603_a12.seq
7117 TCCTTCCCACCTGTCAATCGGAATAATTCCCTTTGGTGGAAATATGCGTGT nem316_a12.seq

TGGTAATTAAATGCTTGTCAACCTTCCATGATATTCAAGAAATCTGTAAA Majority

7310 7320 7330 7340 7350

7170 TGGTAATTAAATGCTTGTCAACCTTCCATGATATTCAAGAAATCTGTAAA 2603_a12.seq
7167 TGGTAATTAAATGCTTGTCAACCTTCCATGATATTCAAGAAATCTGTAAA nem316_a12.seq

TTAACAGCTATTATTTTATCGATCCTTAACCACTTCAAAAGTTAA Majority

7360 7370 7380 7390 7400

7220 TTAACAGCTATTATTTTATCGATCCTTAACCACTTCAAAAGTTAA 2603_a12.seq
7217 TTAACAGCTATTATTTTATCGATCCTTAACCACTTCAAAAGTTAA nem316_a12.seq

AATTGGTTATTAGTAATTTTTGTATAATCCTCGGGGAAACTGCTTCTA Majority

7410 7420 7430 7440 7450

7270 AATTGGTTATTAGTAATTTTTGTATAATCCTCGGGGAAACTGCTTCTA 2603_a12.seq
7267 AATTGGTTATTAGTAATTTTTGTATAATCCTCGGGGAAACTGCTTCTA nem316_a12.seq

TTAACGTGATATTGCCATCTTCAAATCTTTGTAAGAAATTGGCCGTT Majority

7460 7470 7480 7490 7500

7320 TTAACGTGATATTGCCATCTTCAAATCTTTGTAAGAAATTGGCCGTT 2603_a12.seq
7317 TTAACGTGATATTGCCATCTTCAAATCTTTGTAAGAAATTGGCCGTT nem316_a12.seq

TCTCCCGTCACACTTTGAATTATTATTTTATTGGTAATAAGTT Majority

7510 7520 7530 7540 7550

7370 TCTCCCGTCACACTTTGAATTATTATTTTATTGGTAATAAGTT 2603_a12.seq
7367 TCTCCCGTCACACTTTGAATTATTATTTTATTGGTAATAAGTT nem316_a12.seq

ATAATCTTCATTAATCTTGAACCTTCAAACGTAGCTCCTTGAGAACCA Majority

7560 7570 7580 7590 7600

7420 ATAATCTTCATTAATCTTGAACCTTCAAACGTAGCTCCTTGAGAACCA 2603_a12.seq
7417 ATAATCTTCATTAATCTTGAACCTTCAAACGTAGCTCCTTGAGAACCA nem316_a12.seq

ACTTATTATTATCTTATCAACTTTGTAAATTCAATTTCACCTAACCTC Majority

7610 7620 7630 7640 7650

7470 ACTTATTATTATCTTATCAACTTTATAAATTCAATTTCACCTAACCTC 2603_a12.seq
7467 ACTTATTATTATCTTATCAACTTTGTAAATTCAATTTCACCTAACCTC nem316_a12.seq

TTCCTCGTTTTAATCGTTATTGTAGGATAATTCTCACATCACGAATT Majority

7660 7670 7680 7690 7700

7520 TTCTCGTTTTAATCGTTATTGTAGGATAATTCTCACATCACGAATT 2603_a12.seq
7517 TTCTCGTTTTAATCGTTATTGTAGGATAATTCTCACATCACGAATT nem316_a12.seq

AGGGATTCGAAAAATCTCTAACGTGTATTAGGATCCTCTGATTAGGATTCA Majority

7710 7720 7730 7740 7750

7570 AGGGATTCGAAAAATCTCTAACGTGTATTAGGATCCTCTGATTAGGATTCA 2603_a12.seq
7567 AGGGATTCGAAAAATCTCTAACGTGTATTAGGATCCTCTGATTAGGATTCA nem316_a12.seq

ATGTTGTTCTACCATTAAGTGTCAAGAATTGTTACTTATAAAACTGTC Majority

7760 7770 7780 7790 7800

7620 ATGTTGTTCTACCATTAAGTGTCAAGAATTGTTACTTATAAAACTGTC 2603_a12.seq
7617 ATGTTGTTCTACCATTAAGTGTCAAGAATTGTTACTTATAAAACTGTC nem316_a12.seq

FIGURE 20K

T C T A G E T T A C A T C A T G T G A G T G C T F A C T T T T G T C C T T C T C C T A A G T T Majority
 7810 7820 7830 7840 7850

7670 T C T A G T T C A C A T C A T A T G T G A G T G C T A C T T T T G T C C T T C T C C T A A G T T 2603_a12.seq
 7667 T C T A G T T C A C A T C A T A T G T G A G T G C T A C T T T T G T C C T C T C C T A A G T T nem316_a12.seq

C A A A C C T C T A A C G T A G A G T T A T T T T G A T G T A T T C T A A T T A A C C C C T Majority
 7860 7870 7880 7890 7900

7720 C A A A C C T C T A A C A C T A G A G T T A T T T T G A T G T A T T C T A A T T A A C C C C T 2603_a12.seq
 7717 C A A A C C T C T A A C G T A G A G T T A T T T T G A T G T A T T C T A A T T A A C C C C T nem316_a12.seq

T A A G T A T T C C A C C A T C A T T A T T A G G C C C A C C A G T T G C A A T G C T A T C T T C Majority
 7910 7920 7930 7940 7950

7770 T A A G T A T T C C A C C A T C A T T A T T A G G C C C A C C A G T T G C A A T A C C A T C T T C 2603_a12.seq
 7767 T A A G T A T T C C A C C A T C A T T A T T A G G C C C A C C A G T T G C A A T G C T A T C T T C nem316_a12.seq

A T T A T A C T T C C A T C A T T C C C T G T A A A C T A T A A T C A C T T G G T T G T A A T G T Majority
 7960 7970 7980 7990 8000

7820 A T T A T A C T T C C A T C A T T C C C T G T A A A A G T A T A A T C A C T T G G T T G T A A T G T 2603_a12.seq
 7817 A T T A T A C T T C C A T C A T T C C C T G T A A A A G T A T A A T C A C T T G G T T G G T A A T G T nem316_a12.seq

T T G T C C G T T G C C A A G C T G T A A A A T T G A T T T T G T C A C C C A T A G G A T C T T C T A Majority
 8010 8020 8030 8040 8050

7870 T T G T C C C A T T A C C A A G C T G T A A A A T T G A T T T T G T C A C C C A T A G G A T C T T C 2603_a12.seq
 7867 T T G T C C G T T G C C A A G C T G T A A A A T T G A T T T T G T C A C C C A T A G G A T C T T C T A nem316_a12.seq

T A G T T C C A T T A A C A A T T G A G T T T C T T T G T T A A A A T C T T T C A A A T T G T Majority
 8060 8070 8080 8090 8100

7920 T A G T T C C A T T A A C A A A T T G A G T T T C T T T G T T A A A A A T C T T C A A A A T T G T 2603_a12.seq
 7917 T A G T T C C A T T A A C A A A T T G A G T T T C T T T G T T A A A A A C T T T C A A A A T T G T nem316_a12.seq

T G C T G A A T T T A G A T A A A A T T C A T T G T T A G A T G T A T C G G C T G A A G T T A C Majority
 8110 8120 8130 8140 8150

7970 T G C T G A A T T T A G A T A A A A A T T C A T T G T T A G A T G T A T C G G C T G A A G T T A C 2603_a12.seq
 7967 T G C T G A A T T T A G A T A A A A A T T C A T T G T T A G A T G T C A T C G G C T G A A G T T A C nem316_a12.seq

T A T C G G G G T G T A G T A C T C A G G T T G G A A G A G A A T G A C T T C A T T A G T T C T G Majority
 8160 8170 8180 8190 8200

8020 G A T A G G G G T G T A G T A C T C A G G T T G G A A G A G A A T G A C T T C A T T A G T T C T G 2603_a12.seq
 8017 T A T C G G G G T A A A T A C T C A G G T T A G A A G A G A A T G A C T T C A T T A G T T C T G nem316_a12.seq

T T A T T T C T C C A T C T G A A A G T T A A A A G C T T C C T C T T C A A T T T T G A A A A Majority
 8210 8220 8230 8240 8250

8070 T T A T T T C T C C A T C T G A A A G T T A A A A G C T T C C T C T T C A A T T T T G A A A A 2603_a12.seq
 8067 T T A T T T C C C A T C T G A A A G T T C A A A A G C T T C C T C T T C A A T T T T G A A A A nem316_a12.seq

G T A C C A T C T T G A T T T T C T T A A C T C C C T C A T T A A A C T T G T C T A A A A G C Majority
 8260 8270 8280 8290 8300

8120 G T A C C A T C T T G A T T T T C T T A A C T C C C T C A T T A A A C T T G T C T A A A A A G C 2603_a12.seq
 8117 G T A C C A T C T T G A T T T T C T T A A A C T C C C T C A T T A A A C T T G T C T A A A A A G C nem316_a12.seq

A G A T A T A T C T A T A C C A A A A T T A A A G A T G T C A T A A T T T C T G T T T T A A A C Majority
 8310 8320 8330 8340 8350

8170 A G A T A T A T C T A T A C C A A A A T T A A A A T G T C A T A A T T T C T G T T T T A A A C 2603_a12.seq
 8167 A G A T A T A T C T A T A C C A A A A T T A A A G A T G T C A T A A T T T C T G T T T T A A A C nem316_a12.seq

T A T T T A T A A A G T T T G G T T G T C C A T G T T C T T T A C T G G T C C A T T T Majority
 8360 8370 8380 8390 8400

8220 T A T T T A T A A A G T T T G G T T G C T C A T G T T C T T T C A C T G G T C C A T T T 2603_a12.seq
 8217 T A T T T A T A A A G T T T G G T T G C T C A T G T T C T T T C A C T G G T C C A T T T nem316_a12.seq

C G A T A A A T T G T A C C T T A G G G T A A T T A A G A T T T A A A T C T A A A T A A T G A A G Majority
 8410 8420 8430 8440 8450

8270 C G A T A A A A T T G T A C C T T A G G G T A A T T A A G A T T T A A A T C T A A A T A A T G A A G 2603_a12.seq
 8267 C G A T A A A A T T G T A C C T T A G G G T A A T T A A G A T T T A A A T C T A A A T A A T G A A G nem316_a12.seq

FIGURE 20L

101/487

Alignment Report of WO 2006/078318
 Thursday, July 29, 2004 6:47 PM
 Using J. Klein method with Weighted residue weight table.

PCT/US2005/027239
 Page 14

					Majority
	8460	8470	8480	8490	8500
8320	TTTTTGTAAGTTCCAGAGATATCTGTTGATAACTATCTAAGGGAA				2603_ai2.seq
8317	TTTTGTAAGTTCCAGAGATATCTGTTGATAACTATCTAAGGGAA				nem316_ai2.seq
	ACAAAAAAAGTAACCTCTCCCCATTTCTTTATATCCTCGGGCTTATCAGTA				Majority
	8510	8520	8530	8540	8550
8370	ACAAAAAAAGTAACCTCTCCCCATTTCTTTATATCCTCGGGCTTATCAGTA				2603_ai2.seq
8367	ACAAAAAAAGTAACCTCTCCCCATTTCTTTATATCCTCGGGCTTATCAGTA				nem316_ai2.seq
	AGTAGAGAAAATTACTTTATTTAGATATCCATTTTTCATTTGTTCAAA				Majority
	8560	8570	8580	8590	8600
8420	AGTAGAGAAAATTACTTTATTTAGATATCCATTTTTCATTTGTTCAAA				2603_ai2.seq
8417	AGTAGAGAAAATTACTTTATTTAGATATCCATTTTTCATTTGTTCAAA				nem316_ai2.seq
	TTGGCTTTCATATGATGCACCCAGTTAAATTATTAATAGCATATGATC				Majority
	8610	8620	8630	8640	8650
8470	TTGGCTTTCATATGATGCACCCAGTTAAATTATTAATAGCATATGATC				2603_ai2.seq
8467	TTGGCTTTCATATGATGCACCCAATTTAAATTATTAATAGCATATGATC				nem316_ai2.seq
	TTGTGGAACACCATCAGTTATATGAACAAATAATTTTGACTATTCGA				Majority
	8660	8670	8680	8690	8700
8520	TTGTGGAACACCATCAGTTATATGAACAAATAATTTTGACTATTCGA				2603_ai2.seq
8517	TTGTGGAACACCATCAGTTATATGAACAAATAATTTTGACTATTCGA				nem316_ai2.seq
	TTTACTTGACTCAAAATATCATCTGCCCTCCATGAAGGGCTTCAAGTAA				Majority
	8710	8720	8730	8740	8750
8570	TTTACTTGACTCAAAATATCATCTGCCCTCCATGAAGGGCTTCAAGTAA				2603_ai2.seq
8567	TTTACTTGACTCAAAATATCATCTGCCCTCCATGAAGGGCTTCAAGTAA				nem316_ai2.seq
	TGTTCTCCTACTTTACTAAGATAGTACTGCTTTGCTCTGGAGTTA				Majority
	8760	8770	8780	8790	8800
8620	TGTTCTCCTACTTTACTAAGATAGTACTCTTTGCTCTGGAGTTA				2603_ai2.seq
8617	TGTTCTCCTACTTTACTAAGATAGTACTGCTTTGCTCTGGAGTTA				nem316_ai2.seq
	GTCGGTTGTAGTTGATCCCCATTTAGCTTTAGGGAGCTCTGTCCCAGTC				Majority
	8810	8820	8830	8840	8850
8670	ATCCATTTGGTAGTAGATCCCCATTAGCTTTAGGGAGCTCTGTCCCAGTC				2603_ai2.seq
8667	GTTCGGTTGTAGTTGATCCCCATTAGCTCTAGGGAGCTCTGTAGGAATTC				nem316_ai2.seq
	CTTTTTATAATCTCTCAGCATTATTTGTTAATTGTTATGACTATAATT				Majority
	8860	8870	8880	8890	8900
8720	CTTTTTATAATCTCTCAGCATTATTTGTTAATTGTTATGACTATAATT				2603_ai2.seq
8717	CTTTTTATAATCTCTCAGCATTATTTGTTAATTGTTATGACTATAATT				nem316_ai2.seq
	CTCTGTCTGAATTGTGAACTTAGTTGAAGGCCATAATATTATCATCTT				Majority
	8910	8920	8930	8940	8950
8770	CTCTGTCTGAATTGTGAACTTAGTTGAAGGCCATAATATTATCATCTT				2603_ai2.seq
8767	CTCTGTCTGAATTGTGAACTTAGTTGAAGGCCATAATATTATCATCTT				nem316_ai2.seq
	CTTTAAATCCTTTTACGACATCTACACTCTACATCAAAATATCTGAA				Majority
	8960	8970	8980	8990	9000
8820	CTTTAAATCCTTTTACGACATCTACACTCTACATCAAAATATCTGAA				2603_ai2.seq
8817	CTTTAAATCCTTTTACGACATCTACACTCTACATCAAAATATCTGAA				nem316_ai2.seq
	CCATAGGTAACTAATGCAACCCTATTATCACTGTTGCTCCTAAATATC				Majority
	9010	9020	9030	9040	9050
8870	CCATAGGTAACTAATGCAACCCTATTATCACTGTTGCTCCTAAATATC				2603_ai2.seq
8867	CCATAGGTAACTAATGCAACCCTATTATCACTGTTGCTCCTAAATATC				nem316_ai2.seq
	TTTACTGCGGTCCTTCAAGAGCTTCGGCAGCTTCTGGCTTTATTATGCC				Majority
	9060	9070	9080	9090	9100
8920	TTTACTGCGGTCCTTCAAGAGCTTCGGCAGCTTCTGGCTTTATTATGCC				2603_ai2.seq
8917	TTTACTGCGGTCCTTCAAGAGCTTCGGCAGCTTCTGGCTTTATTATGCC				nem316_ai2.seq

FIGURE 20M

TTT GAA AAT TTGGGCATCGTTATTGACTTAGAATTATCGACTACG Majority
 9110 9120 9130 9140 9150

8970 TTT GAA AAT TTGGGCATCGTTATTGAGTTAGAATTATCGACTACG 2603_a12.seq
 8967 TTT GAA AAT TTGGGCATCGTTATTGAGTTAGAATTATCGACTACG nem316_a12.seq

AAG ACA AAC ATCTAACGGCTTTGTTGTC CACTGCTTTACTATGGTTT Majority
 9160 9170 9180 9190 9200

9020 AAG ACA AAC ATCTAACGGCTTTGTTGTC CACTGCTTTACTATGGTTT 2603_a12.seq
 9017 AAG ACA AAC ATCTAACGGCTTTGTTGTC CACTGCTTTACTATGGTTT nem316_a12.seq

TCC ACTGACAGTTAACCTCAATTATATTATGAGCTAAATCACCTA Majority
 9210 9220 9230 9240 9250

9070 TCC ACTGACAGTTAACCTCAATTATATTATGAGCTAAATCACCTA 2603_a12.seq
 9067 TCC ACTGACAGTTAACCTCAATTATATTATGAGCTAAATCACCTA nem316_a12.seq

CTT CTGAAATACGTTAGATAATGTTCCCTCTGGAAATTCTCTTATATGC Majority
 9260 9270 9280 9290 9300

9120 CTT CTGAAATACGTTAGATAATGTTCCCTCTGGAAATTCTCTTATATGC 2603_a12.seq
 9117 CTT CTGAAATACGTTAGATAATGTTCCCTCTGGAAATTCTCTTATATGC nem316_a12.seq

TCACCTTCACTTGAATATGGGTTAACCTGCTTTGCCCTCTGACTTTCCATT Majority
 9310 9320 9330 9340 9350

9170 TCACCTTCACTTGAATATGGGTTAACCTGCTTTGCCCTCTGACTTTCCATT 2603_a12.seq
 9167 TCACCTTCACTTGAATATGGGTTAACCTGCTTTGCCCTCTGACTTTCCATT nem316_a12.seq

TGGAACTGAAACCTTTAACATGCTCAAGTTATAAGATTCTTTGTATCTT Majority
 9360 9370 9380 9390 9400

9220 TGGAACTGAAACCTTTAACATGCTCAAGTTATAAGATTCTTTGTATCTT 2603_a12.seq
 9217 TGGAACTGAAACCTTTAACATGCTCAAGTTATAAGATTCTTTGTATCTT nem316_a12.seq

CATAAAATTCCCTGTGGGGGGATACTGCTTATCTAGTTCTCGTGTATTTGT Majority
 9410 9420 9430 9440 9450

9270 CATAAAATTCCCTGTGGGGGGATACTGCTTATCTAGTTCTCGTGTATTTGT 2603_a12.seq
 9267 CATAAAATTCCCTGTGGGGGGATACTGCTTATCTAGTTCTCGTGTATTTGT nem316_a12.seq

CCAATTGTGGAAATTTTATCACCCTTATTTGTATCGTAGTTTCCATT Majority
 9460 9470 9480 9490 9500

9320 CCAATTGTGGAAATTTTATCACCCTTATTTGTATCGTAGTTTCCATT 2603_a12.seq
 9317 CCAATTGTGGAAATTTTATCACCCTTATTTGTATCGTAGTTTCCATT nem316_a12.seq

ACTCTCAACCTTAACCTGCCAAGTCTGGTTAGCTCTTTATAACCTTCGG Majority
 9510 9520 9530 9540 9550

9370 ACTCTCAACCTTAACCTGCCAAGTCTGGTTAGCTCTTTATAACCTTCGG 2603_a12.seq
 9367 ACTCTCAACCTTAACCTGCCAAGTCTGGTTAGCTCTTTATAACCTTCGG nem316_a12.seq

GGCGCTGTTCTCTGATAAAAGTATAAATCTCCAGGTATGAGATTATCAAAA Majority
 9560 9570 9580 9590 9600

9420 GGCGCTGTTCTCTGATAAAAGTATAAATCTCCAGGTATGAGATTATCAAAA 2603_a12.seq
 9417 GGCGCTGTTCTCTGATAAAAGTATAAATCTCCAGGTATGAGATTATCAAAA nem316_a12.seq

GTAGCTTCACTGTGTTAGCTCAGCAGTTACTTTCTATTTTACTTTCTG.G Majority
 9510 9620 9630 9640 9650

9470 GTAGCTTCACTGTGTTAGCTCAGCAGTTACTTTCTATTTTACTTTCTG.G 2603_a12.seq
 9467 GTAGCTTCACTGTGTTAGCTCAGCAGTTACTTTCTATTTTACTTTCTG.G nem316_a12.seq

ATGAGCAGTAGTTTAAACAAAGTAGCTTTGAAAGTGGTTCT Majority
 9660 9670 9680 9690 9700

9520 ATGAGCAGTAGTTTAAACAAAGTAGCTTTGAAAGTGGTTCT 2603_a12.seq
 9517 ATGAGCAGTAGTTTAAACAAAGTAGCTTTGAAAGTGGTTCT nem316_a12.seq

GCTCATCTGCTTTAACAAACTAACCTTCCCTTAGCACCATTTCCGGT Majority
 9710 9720 9730 9740 9750

9570 GCTCATCTGCTTTAACAAACTAACCTTCCCTTAGCACCATTTCCGGT 2603_a12.seq
 9567 GCTCATCTGCTTTAACAAACTAACCTTCCCTTAGCACCATTTCCGGT nem316_a12.seq

FIGURE 20N

A C G G T A C T T C C C T A A A C A T T C G T A T T A A G C G G T A T T T G C G A C A A A C A Majority
 9760 9770 9780 9790 9800

9620 A C G G T A C T T C C C T A A A C A T T G G T A T T A A G C G G T A T T T G C G A C A A A C A 2603_a12.seq
 9617 A C G G T A C T T C C C T A A A C A T T G G T A T T A A G C G G T A T T T G C G A C A A A C A nem316_a12.seq

A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T T G G T A T T T C T C A T T T Majority
 9810 9820 9830 9840 9850

9670 A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T T G G T A T T T C T C A T T T 2603_a12.seq
 9667 A A A A A G A C T T A A C G T C A A T A T T T A G A A A A T T T G G T A T T T C T C A T T T nem316_a12.seq

T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T A A A T C T A A G A T C A G A T A C Majority
 9860 9870 9880 9890 9900

9720 T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T A A A T C T A A G A T C A G A T A C 2603_a12.seq
 9717 T A C A A C T C C T A T T G T G C C G A A A T G T C G T T T C T A A A T C T A A G A T C A G A T A C nem316_a12.seq

A G A A T A T C C T A G A A T A T A C A A A C T A C A C T T A T T A T G A T A T C A A T A A T T T Majority
 9910 9920 9930 9940 9950

9770 A G A A T A T C C T A G A A T A T A C A A A C T A C A C T T A T T A T G A T A T C A A T A A T T T 2603_a12.seq
 9767 A G A A T A T C C T A G A A T A T A C A A A C T A C A C T T A T T A T G A T A T C A A T A A T T T nem316_a12.seq

C T T A T T A T A A G G T A T G G A A T T T T A A T G T T T T C C C A A T T T T G A A T G A T Majority
 9960 9970 9980 9990 10000

9820 C T T A T T A T A A G G T A T G G A A T T T T A A T G T T T T C C C A A T T T T G A A T G A T A A T 2603_a12.seq
 9817 C T T A T T A T A A G G T A T G G A A T T T T A A T G T T T T C C C A A T T T T G A A T G A T A A T nem316_a12.seq

T T T T C T T T T A T T G A T A A T C T T A T T T T T A T T A T C T T A G A A A A T A T T C A Majority
 10010 10020 10030 10040 10050

9870 T T T T C T T T T A T T G A T A A T C T T A T T T T T A T T A T C T T A G A A A A T A T T C A 2603_a12.seq
 9867 T T T T C T T T T A T T G A T A A T C T T A T T T T T A T T A T C T T A G A A A A T A T T C A nem316_a12.seq

A T T A G C T T A A G T A G T T G A T T T T C T T T T T A T G T T T A A A A T A T T G C T T Majority
 10060 10070 10080 10090 10100

9920 A T T A G C T T A A G T A G T T G A T T T T C T T T T T T A T G T T T A A A A T A T T G C T T 2603_a12.seq
 9917 A T T A G C T T A A G T A G T T G A T T T T C T T T T T T A T G T T T A A A A T A T T G C T T nem316_a12.seq

A A A A A T A A T G T T G A G A G A G A G T T A C T G A A T T G A T T G A A A A A T T A T T T A C Majority
 10110 10120 10130 10140 10150

9970 A A A A A T A A T G T T G A G A G A G A G T T A C T G A A T T G A T T G A A A A A T T A T T T A G 2603_a12.seq
 9967 A A A A A T A A T G T T G A G A G A G A G T T A C T G A A T T G A T T G A A A A A T T A T T T A G nem316_a12.seq

A A A A A G A C A T C C T T A A T C A A A A T A A A C T T C T A A C T T T A T G C T A T G A T T A C Majority
 10160 10170 10180 10190 10200

10018 A A A A A G A C A T C C T T A A T C A A A A A C T T C T A A C T T T A T G C T A T G A T T A C 2603_a12.seq
 10017 A A A A A G A C A T C C T T A A T C A A A A A C T T C T A A C T T T A T G C T A T G A T T A C nem316_a12.seq

T A C C C T T C C A T T A C T C T A G A C A A A T C A T G T C A T C A A C T T G G T T T A T C T G A Majority
 10210 10220 10230 10240 10250

10068 T A C C C T T C C A T T A C T C T A G A C A A A T C A T G T C A T C A A C T T G G T T T A T C T G A 2603_a12.seq
 10067 T A C C C T T C C A T T A C T C T A G A C A A A T C A T G T C A T C A A C T T G G T T T A T C T G A nem316_a12.seq

A C T A C T T A T T A G G A A A T A T T G T C A T G A T T T A A C A A C T T T A T T A A C A G T C Majority
 10260 10270 10280 10290 10300

10118 A C T A C T T A T T A G G A A A T A T T G T C A T G A T T T A A C A A C T T T A T T A A C A G T C 2603_a12.seq
 10117 A C T A C T T A T T A G G A A A T A T T G T C A T G A T T T A A C A A C T T T A T T A A C A G T C nem316_a12.seq

A A C T C T C T C T G A A T A T C G A A A A G A G T A C A A T A T G T C T A C C A A T C T A A T G G T Majority
 10310 10320 10330 10340 10350

10168 A A C T C T C T C T G A A T A T C G A A A A A G A G T A C A A T A T G T C T A C C A A T C T A A T G G T 2603_a12.seq
 10167 A A C T C T C T C T G A A T A T C G A A A A A G A G T A C A A T A T G T C T A C C A A T C T A A T G G T nem316_a12.seq

G T A A C T A G A G A A C A A G C T T T C A A A T A T A T T T A T C A T C A A T C A C A C G T T T T Majority
 10360 10370 10380 10390 10400

10218 G T A A C T A G A G A A C A A G C T T T C A A A T A T A T T T A T C A T C A A T C A C A C G T T T T 2603_a12.seq
 10217 G T A A C T A G A G A A C A A G C T T T C A A A T A T A T T T A T C A T C A A T C A C A C G T T T T nem316_a12.seq

FIGURE 200

<u>A C A A C T T T T A A A T T T T G A T C A C G A A T G A T T C A G G C A G G T T A C C T T T A A</u>	Majority
10410 10420 10430 10440 10450	
10268 <u>A C A A C T T T T A A A A T T T T G A T C A C G A A T G A T T C A G G C A G G T T A C C T T T A A</u>	2603_a12.seq
10267 <u>A C A A C T T T T A A A A T T T T G A T C A C G A A T G A T T C A G G C A G G T T A C C T T T A A</u>	nem316_a12.seq
<u>C T T A C T T T A G T G A A A A A T T T G G A C T A T C T T G T G C A A C T G C T T A T C G C A T A</u>	Majority
10460 10470 10480 10490 10500	
10318 <u>C T T A C T T T A G T G A A A A A T T T G G A C T A T C T T G T G C A A C T G C T T A T C G C A T A</u>	2603_a12.seq
10317 <u>C T T A C T T T A G T G A A A A A T T T G G A C T A T C T T G T G C A A C T G C T T A T C G C A T A</u>	nem316_a12.seq
<u>C G A A A A C A C A T A T T A G T C C G T T A C T A G A R A A A C T T G G A T T T C A G A T T T T C A A</u>	Majority
10510 10520 10530 10540 10550	
10368 <u>C G A A A A C A C A T A T T A G T C C G T T A C T A G A R A A A C T T G G A T T T C A G A T T T T C A A</u>	2603_a12.seq
10367 <u>C G A A A A C A C A T A T T A G T C C G T T A C T A G A R A A A C T T G G A T T T C A G A T T T T C A A</u>	nem316_a12.seq
<u>A A A T A C T A T T A C C G G T G A C C G A G T A T C G A A T T C G C T A T T T A A T C G C A T T T</u>	Majority
10560 10570 10580 10590 10600	
10418 <u>A A A T A C T A T T A C C G G T G A C C G A G T A T C G A A T T C G C T A T T T A A T C G C A T T T</u>	2603_a12.seq
10417 <u>A A A T A C T A T T A C C G G T G A C C G A G T A T C G A A T T C G C T A T T T A A T C G C A C A T T</u>	nem316_a12.seq
<u>T A A A T G C T C G A T T T G G T A T A G A A G T T A T C C C C T T G T C T A A G A T G G G A T A A A</u>	Majority
10610 10620 10630 10640 10650	
10468 <u>T A A A T G C T C A A T T G G T A T A G A A G T T A T C C C C A T G T C T A A G A T G G G A T A A A</u>	2603_a12.seq
10467 <u>T A A A T G C T C G A T T T G G T A T A G A A G T T A T C C C C T A T C T A A G A T G G G A T A A A</u>	nem316_a12.seq
<u>T T G C T T A T C A A A C G A T T G T T A T T A G A A T A C T C A A C T A C T T T A C T G C T T C</u>	Majority
10660 10670 10680 10690 10700	
10518 <u>T T G C T C A T C A A A C G A T T G T T A T T A G A A A C T C A A C T A C T T T A C T G C T T C</u>	2603_a12.seq
10517 <u>T T G C T T A T C A A A C G A T T G T T A T T A G A A A T A C T C A A C T A C T T T A C T G C T T C</u>	nem316_a12.seq
<u>T C A T T A C T T C C C A A A T A C A T T T A T T T C T T T G A T A C A T T G T T G T C T C T A T</u>	Majority
10710 10720 10730 10740 10750	
10568 <u>T C A T T A C T T C C C A A A T A C A T T T A T T T C T T T G A T A C A T T G T T G T C T C T A T</u>	2603_a12.seq
10567 <u>T C A T T A C T T C C C A A A T A C A T T T A T T T C T T T G A T A C A T T A T T G T C T C T A T</u>	nem316_a12.seq
<u>C A T G G A A A C G T T A T T A T T A A T G T A C T T G T C C C T T A C T C A T C C C T T T C</u>	Majority
10760 10770 10780 10790 10800	
10618 <u>C A T G G A A A C G T T A T T A T T A A T G T A C T T G T C C C T T A C T C A T C C C T T T C</u>	2603_a12.seq
10617 <u>C A T G G A A A C G T T A T T A T T A A T G T A C T T G T C C C T T A C T C A C C C C T T T C</u>	nem316_a12.seq
<u>A T T G A A C T A C A A A A T A T A T T A T C T A T G A T A C A T T A C A A T A T T G T G T C A A</u>	Majority
10810 10820 10830 10840 10850	
10668 <u>A T T G A A C T A C A A A A T A T A T T A T C T A T G A T A C A T T A C A A T A T T G T G T C A A</u>	2603_a12.seq
10667 <u>A T T G A A C T A C A A A A T A T A T T A T C T A T G A T A C A T T A C A A T A T T G T G T C A A</u>	nem316_a12.seq
<u>A A A T G T T A T T A T A G A T T C C T T A A A A T T A T T A T T A A A A A G A C G A T A T A G</u>	Majority
10860 10870 10880 10890 10900	
10718 <u>A A A T G T T A T T A T A G A T T C C T T A A A A T T A T T A A A A A G A C G A T A T A G</u>	2603_a12.seq
10717 <u>A A A T G T T A T T A T A G A T T C C T T A A A A T T A T T A A A A A G A C G A T A T A G</u>	nem316_a12.seq
<u>A C T A T A T T T C T T G C T T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A</u>	Majority
10910 10920 10930 10940 10950	
10768 <u>A C T A T A T T T C T T G C T T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A</u>	2603_a12.seq
10767 <u>A C T A T A T T T C T T G C T T A C C T T A C T T C C C A T A A C T C T T T T C T A A T C C A</u>	nem316_a12.seq
<u>A A T T G G A C T G A G A A G C G T A T C G A T A A T G T A A T A G C T A T T T C G A A A A T T A</u>	Majority
10960 10970 10980 10990 11000	
10818 <u>A A T T G G A C T G A G A A G C G T A T C G A T A A T G T A A T A G C T A T T T C G A A A A T T A</u>	2603_a12.seq
10817 <u>A A T T G G A C T G A G A A G C G T A T C G A T A A T G T A A T A G C T A T T T C G A A A A T T A</u>	nem316_a12.seq
<u>T C C C C A A A T T C C A A A A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C C T T A T</u>	Majority
11010 11020 11030 11040 11050	
10868 <u>T C C C C A A A T T C C A A A A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C C T T A T</u>	2603_a12.seq
10867 <u>T C C C C A A A T T C C A A A A A T T A T T A C A G C C A C T C A A A G A T G C T C T T C C C T T A T</u>	nem316_a12.seq

FIGURE 20P

CTGGCTCCTATCATGATGAGTTGGTAAAGTGTCTATCATTTTTTCCGA Majority
 11060 11070 11080 11090 11100

10918 CTGGCTCCTATCATGATGAGTTGGTAAAGTGTCTATCATTTTTTCCGA 2603_a12.seq
 10917 CTGGCTCCTATCATGATGAGTTGGTAAAGTGTCTATCATTTTTTCCGA nem316_a12.seq

ACATTATTTAGGATTAATCAATTAATCCCTGAAACAATTTCATTTCC Majority
 11110 11120 11130 11140 11150

10967 ACATTATTTAGGATTAATCAATTAATCCCTGAAACAATTTCATTTCC 2603_a12.seq
 10967 ACATTATTTAGGATTAATCAATTAATCCCTGAAACAATTTCATTTCC nem316_a12.seq

TTCATGGAACATATCATAGACATGATAAATTAACTACTATTCCTCGACCGA Majority
 11160 11170 11180 11190 11200

11017 TTCATGGAACATATCATAGACATGATAAATTAACTACTATTCCTCGACCGA 2603_a12.seq
 11017 TTCATGGAACATATCATAGACATGATAAATTAACTACTATTCCTCGACCGA nem316_a12.seq

TAATTACAAATTGGTTAAGTGAAATTGGAGAACATACAGTTAACAGAACAA Majority
 11210 11220 11230 11240 11250

11067 TAATTACAAATTGGTTAAGTGAAATTGGAGAACATACAGTTAACAGAACAA 2603_a12.seq
 11067 TAATTACAAATTGGTTAAGTGAAATTGGAGAACATACAGTTAACAGAACAA nem316_a12.seq

CATTTCTCTCTTGTGCTCATCTAGAAAAAACATTATCAAAAATCATAT Majority
 11260 11270 11280 11290 11300

11117 CATTTCTCTCTTGTACTCATCTAGAAAGAACATCAAAAATCATAT 2603_a12.seq
 11117 CATTTCTCTCTTGTACTCATCTAGAAAGAACATCAAAAATCATAT nem316_a12.seq

TCCTCCGATAACAGATAGCCGTACTAACTACAGACTTTATTAAACACAA Majority
 11310 11320 11330 11340 11350

11167 TCCTCCGATAACAGATAGCCGTACTAACTACAGACTTTATTAAACACAA 2603_a12.seq
 11167 TCCTCCGATAACAGATAGCCGTACTAACTACAGACTTTATTAAACACAA nem316_a12.seq

TTTTAACAGAAATGTTTATTACAGAGGTTTCTCTAAACAGATTTCATTT Majority
 11360 11370 11380 11390 11400

11217 TTTTAACAGAAATGTTTATTACAGAGGTTTCTCTAAAGATTCATTT 2603_a12.seq
 11217 TTTTAACAGAAATGTTTATTACAGAGGTTTCTCTAAACAGATTTCATTT nem316_a12.seq

CACCCCTTACTATTATTAACTGATGATCTTCCAAATATTACTAACTTTAA Majority
 11410 11420 11430 11440 11450

11267 CACCCCTTACTATTATTAACTGATGATCTTCCAAATATTACTAACTTTAA 2603_a12.seq
 11267 CACCCCTTACTATTATTAACTGATGATCTTCCAAATATTACTAACTTTAA nem316_a12.seq

TCCAGATATTATTACCAAACTCCAAAGCTTTCTTCTTATCAAAACATG Majority
 11460 11470 11480 11490 11500

11317 TCCAGATATTATTACCAAACTCCAAAGCTTTCTTCTTATCAAAACATG 2603_a12.seq
 11317 TCCAGATATTATTACCAAACTCCAAAGCTTTCTTCTTATCAAAACATG nem316_a12.seq

AGATTCTCACAGAGTTAACATATATTGATTGATTCATACTTC Majority
 11510 11520 11530 11540 11550

11367 AGATTCTCACAGAGTTAACATATATTGATCTGATTAACTTC 2603_a12.seq
 11367 AGATTCTCACAGAGTTAACATATATTGATCTGATTCAACTTC nem316_a12.seq

GACCAGATCAAAATCCAAGAAATTATTCAATACAGGAAGAAAA Majority
 11560 11570 11580 11590 11600

11417 GACCAGATCAAAATCCAAGAAATTATTCAATACAGGAAGAAAA 2603_a12.seq
 11417 GACCAGATCAAAATCCAAGAAATTATTCAATACAGGAAGAAAA nem316_a12.seq

ATATTGTAACCTTTGCACAAACTAACTAACATACCTCGTAGCTCC Majority
 11610 11620 11630 11640 11650

11467 ATATTGTAACCTTTGCACAAACTAACTAACATACCTCGTAGCTCC 2603_a12.seq
 11467 ATATTGTAACCTTTGCACAAACTAACTAACATACCTCGTAGCTCC nem316_a12.seq

ATAACCTCTAAACATTAAACATTAAAGCTAGAGCATTGTGTAATGCTC Majority
 11660 11670 11680 11690 11700

11517 ATAACCTCTAAACATTAAACATTAAAGCTAGAGCATTGTGTAATGCTC 2603_a12.seq
 11517 ATAACCTCTAAACATTAAACATTAAAGCTAGAGCATTGTGTAATGCTC nem316_a12.seq

FIGURE 20Q

A G C T T T A A T G T C A A T T T T G A A T A T A A T C C A A C T T T C A A C T G Majority
 11710 11720 11730 11740 11750

11567 A G C T T T T T A A T G T T A A T T T T G A A T A A T A A T C C A A C T T T C A A C T G 2603_a12.seq
 11567 A G C T T T T T A A T G T T A A T T T T G A A T A A T A A T C C A A C T T T C A A C T G nem316_a12.seq

T T T T T C C C A T G T G A A A T G T T C T T T A A T T C T T T A G C A A T A T T C T G T T G T Majority
 11760 11770 11780 11790 11800

11617 T T T T T C C C A T G T G A A A T G T T C T T T A A T T C T T T A G C A A T A T T C T G T T G T 2603_a12.seq
 11617 T T T T T C C C A T G T G A A A T G T T C T T T A A T T C T T T A G C A A T A T T C T G T T G T nem316_a12.seq

A G T T T C T C T C T T A A T G C C T T A T C T T T A C T A A T A A T C A A G A G A T T C A T G Majority
 11810 11820 11830 11840 11850

11667 A G T T T C T C T C T T A A T G C C T T A T C T T T A C T A A T A A T C A A G A G A T T C A T G 2603_a12.seq
 11667 A G T T T C T C T C T T A A T G C C T T A T C T T T A C T A A T A A T C A A G A G A T T C A T G nem316_a12.seq

G A G T G A C T G A G T A T T T C T T C A T G A T G A T T C C T A A C T C A G G G C T A T C A A Majority
 11860 11870 11880 11890 11900

11717 G A G T G A C T G A G T A T T T C T T C A T G A T G A T T C C T A A C T C A G G G C T A T C A A 2603_a12.seq
 11717 G A G T G A C T G A G T A T T T C T T C A T G A T G A T T C C T A A C T C A G G G C T A T C A A nem316_a12.seq

T A A C T T C A A C T G T T C C A C C G G C A T C T G T T G C A A T A A T A G C A C T T G A A A G T Majority
 11910 11920 11930 11940 11950

11767 T A A C T T C A A C T G T T C C A C C G G C A T C T G T T G C A A T A A T A G C A C T T G A A A G T 2603_a12.seq
 11767 T A A C T T C A A C T G T T C C A C C G G C A T C T G T T G C A A T A A T A G C A C T T G A A A G T nem316_a12.seq

A G A C C A G C T T C T A A A A T A G A G G T T G G T A A T C C C T E T G G A T A C A T T G A A G G Majority
 11960 11970 11980 11990 12000

11817 A G A C C A G C T T C T A A A A T A G A G G T T G G T A A T C C C T E T G G A T A C A T T G A A G G 2603_a12.seq
 11817 A G A C C A G C T T C T A A A A T A G A G G T T G G T A A T C C C T E T G G A T A C A T T G A A G G nem316_a12.seq

G T A A A C A A A G A T A T C A G T C T G C C A T T A A A G A C A T A G T C T G T T C A A A G T Majority
 12010 12020 12030 12040 12050

11867 G T A A A C A A A G A T A T C A G T C T G C C A T T A A A G A C A T A G T C T G T T C A A A G T 2603_a12.seq
 11867 G T A A A C A A A G A T A T C A G T C T G C C A T T A A A G A C A T A G T C T G T T C A A A G T nem316_a12.seq

T T A A T T T C C C A A A A G T T A A T C T G T T T G G A C T G A T A T T T C T C T T T C A A A Majority
 12060 12070 12080 12090 12100

11917 T T A A T T T C C C A A A A A G T T A A T C T G T T T G G A C T G A T A T T T C T C T T T C A A A 2603_a12.seq
 11917 T T A A T T T C C C A A A A A G T T A A T C T G T T T G G A C T G A T A T T T C T C T T T C A A A nem316_a12.seq

T G T G C T A A T T C A G G T C C G T C T C C T G C A A T C T G T A A A T A A C A T T T T C A G A Majority
 12110 12120 12130 12140 12150

11967 T G T G C T A A T T C A G G T C C G T C T C C T G C A A T C T G T A A A T A A C A T T T T C A G A 2603_a12.seq
 11967 T G T G C T A A T T C A G G T C C G T C T C C T G C A A T C T G T A A A T A A C A T T T T C A G A nem316_a12.seq

G T A C T G T G A C A T C G A A A A T G C T T C T A A G G C A A T T C A A T G C C T T T T C T T Majority
 12160 12170 12180 12190 12200

12017 G T A C T G T G A C A T C G A A A A A T G C T T C T A A G G C A A T T C A A T G C C T T T T C T T 2603_a12.seq
 12017 G T A C T G T G A C A T C G A A A A A T G C T T C T A A G G C A A T T C A A T G C C T T T T C T T nem316_a12.seq

T A A T A A T T C T A C C A G C A T A A G T G A T G A A A A T A T C A T C A G G A G A T T T T C A Majority
 12210 12220 12230 12240 12250

12067 T A A T A A T T C T A C C A G C A T A A G T G A T G A A A A T A T C A T C A G G A G A T T T T C A 2603_a12.seq
 12067 T A A T A A T T C T A C C A G C A T A A G T G A T G A A A A T A T C A T C A G G A G A T T T T C A nem316_a12.seq

A G G T A A G C C G T A C C A G C A A A A T C A G A G C C T A G A C T T T C A G A T A C C G A A T T Majority
 12260 12270 12280 12290 12300

12117 A G G T A A G C C G T A C C A G C A A A A T C A G A G C C T A G A C T T T C A G A T A C C G A A T T 2603_a12.seq
 12117 A G G T A A G C C G T A C C A G C A A A A T C A G A G C C T A G A C T T T C A G A T A C C G A A T T nem316_a12.seq

A T A A A T A A C T C C T T T A G C T T C T A T A T T A A A A T G T T T T A A C C A T T C A A C G C Majority
 12310 12320 12330 12340 12350

12167 A T A A A T A A C T C C T T T A G C T T C T A T A T T A A A A T G T T T T A A C C A T T C A A C G C 2603_a12.seq
 12167 A T A A A T A A C T C C T T T A G C T T C T A T A T T A A A A T G T T T T A A C C A T T C A A C G C nem316_a12.seq

FIGURE 20R

<u>TTCTCTTGGATACCGATAAAATCTGAGACGATAATGCTTAACACGGCCT</u>	Majority
12360 12370 12380 12390 12400	
12217 TTCTCTTGGATACCGATAAAAATCTGGACGATAATGCTTAACACGGCCT	2603_a12.seq
12217 TTCTCTTGGATACCGATAAAAATCTGGACGATAATGCTTAACACGGCCT	nem316_a12.seq
<u>G TGAGAAGATGTTCATAGATAGCTCCAAAGAAATCTAAAAAACGATTATT</u>	Majority
12410 12420 12430 12440 12450	
12267 GTGAGAAGATGTTCATAGATAGCTCCAAAGAAATCTAAAAACGATTATT	2603_a12.seq
12267 GTGAGAAGATGTTCATAGATAGCTCCAAAGAAATCTAAAAACGATTATT	nem316_a12.seq
<u>GACAGAAAAATGACTTGACCCATGGCTAAACAACTAGGTAAATGGT</u>	Majority
12460 12470 12480 12490 12500	
12317 GACAGAAAAATGACTTGACCCATGGCTAAACAACTAGGTAAATGGT	2603_a12.seq
12317 GACAGAAAAATGACTTGACCCATGGCTAAACAACTAGGTAAATGGT	nem316_a12.seq
<u>GATTCTTTGCAAAAGATAGCCCCCTCTAGCGTTGTTAACTGAAACGTGTA</u>	Majority
12510 12520 12530 12540 12550	
12367 GATTCTTTGCAAAAGATAGCCCCCTCTAGCGTTGTTAACTGAAACGTGTA	2603_a12.seq
12367 GATTCTTTGCAAAAGATAGCCCCCTCTAGCGTTGTTAACTGAAACGTGTA	nem316_a12.seq
<u>TTACAAATCACAAAAATCAATATTTCATCTGAAACATATTCATCAGCGT</u>	Majority
12560 12570 12580 12590 12600	
12417 TTACAAATCACAAAAATCAATATTTCATCTGAAACATATTCATCAGCGT	2603_a12.seq
12417 TTACAAATCACAAAAATCAATATTTCATCTGAAACATATTCATCAGCGT	nem316_a12.seq
<u>GTTGTATTCTCGATTTTGTTAATAATAGGATAGCGCTGCTTGACAATAT</u>	Majority
12610 12620 12630 12640 12650	
12467 GTTGTATTCTCGATTTTGTTAATAATAGGATAGCGCTGCTTGACAATAT	2603_a12.seq
12467 GTTGTATTCTCGATTTTGTTAATAATAGGATAGCGCTGCTTGACAATAT	nem316_a12.seq
<u>TTTGGTCGGTAAACGGTAAATTTCTACCCCTTGTCTCATCTATAATC</u>	Majority
12660 12670 12680 12690 12700	
12517 TTTGGTCGGTAAACGGTAAATTTCTACCCCTTGTCTCATCTATAATC	2603_a12.seq
12517 TTTGGTCGGTAAACGGTAAATTTCTACCCCTTGTCTCATCTATAATC	nem316_a12.seq
<u>GGTAAATCACCATGATTAGTTGTTACAATAACAAACACGGTAGCCACGCTT</u>	Majority
12710 12720 12730 12740 12750	
12567 GGTAAATCACCATGATTAGTTGTTACAATAACAAACACGGTAGCCACGCTT	2603_a12.seq
12567 GGTAAATCACCATGATTAGTTGTTACAATAACAAACACGGTAGCCACGCTT	nem316_a12.seq
<u>AACCAAATCTGCTCATTTATCTGTATAACGTTCAATACCTCCGAGGA</u>	Majority
12760 12770 12780 12790 12800	
12617 AACCAAATCTGCTCATTTATCTGTATAACGTTCAATACCTCCGAGGA	2603_a12.seq
12617 AACCAAATCTGCTCATTTATCTGTATAACGTTCAATACCTCCGAGGA	nem316_a12.seq
<u>AGGGTAGATAATATCCGTAGAAAAACAGCAACTGTTTACCTTATTTTC</u>	Majority
12810 12820 12830 12840 12850	
12667 AGGGTAGATAATATCCGTAGAAAAACAGCAACTGTTTACCTTATTTTC	2603_a12.seq
12667 AGGGTAGATAATATCCGTAGAAAAACAGCAACTGTTTACCTTATTTTC	nem316_a12.seq
<u>ATATTTATCCACTTTCATCAATAAGCCATCTTTTAAGCTTTAATCATAG</u>	Majority
12860 12870 12880 12890 12900	
12717 ATATTTATCCACTTTCATCAATAAGCCATCTTTTAAGCTTTAATCATAG	2603_a12.seq
12717 ATATTTATCCACTTTCATCAATAAGCCATCTTTTAAGCTTTAATCATAG	nem316_a12.seq
<u>CAACTATTTTTGCTCTTTGCTCTCTGCTACCAACACACTCGAACAAAT</u>	Majority
12910 12920 12930 12940 12950	
12767 CAACATTTTTGCTCTTTGCTCTCTGCTACCAACACACTCGAACAAAT	2603_a12.seq
12767 CAACATTTTTGCTCTTTGCTCTCTGCTACCAACACACTCGAACAAAT	nem316_a12.seq
<u>TCATTTCGCATAAATACTAAATATTGTATCGCTTACCATATT</u>	Majority
12960 12970 12980 12990 13000	
12817 TCATTTCGCATAAATACTAAATATTGTATCGCTTACCATATT	2603_a12.seq
12817 TCATTTCGCATAAATACTAAATATTGTATCGCTTACCATATT	nem316_a12.seq

FIGURE 20S

TTTTATAATAGATCGGCATGGCTATCATGTAATATTTCGAATGGT Majority
 13010 13020 13030 13040 13050

12867 TTTTATAATAGATCGCATTGGCTATCATGTAATATTTCGAATGGT G 2603_a12.seq
 12867 TTTTATAATAGATCGCATTGGCTATCATGTAATATTTCGAATGGT nem316_a12.seq

AATGATTCAATACATGAAAAACATGGCCAAATTTAACCTCGTGAAGAG Majority
 13060 13070 13080 13090 13100

12917 AATGATTCAATACATGAAAAACATGGCCAAATTTAACCTCGTGAAGAG 2603_a12.seq
 12917 AATGATTCAATACATGAAAAACATGGCCAAATTTAACCTCGTGAAGAG nem316_a12.seq

TGTCCAATTTCGTGTAACAGACCAATAAAAATTAAACCTGATAAGTCTTATA Majority
 13110 13120 13130 13140 13150

12967 TGTCCAATTTCGTGTAACAGACCAATAAAAATTAAACCTGATAAGTCTTATA 2603_a12.seq
 12967 TGTCCAATTTCGTGTAACAGACCAATAAAAATTAAACCTGATAAGTCTTATA nem316_a12.seq

TCCCACATCTGACAGACGATAATTCAATTTCAGAGTCAAACAAAAATCAATAA Majority
 13160 13170 13180 13190 13200

13017 TCCCACATCTGACAGACGATAATTCAATTTCAGAGTCAAACAAAAATCAATAA 2603_a12.seq
 13017 TCCCACATCTGACAGACGATAATTCAATTTCAGAGTCAAACAAAAATCAATAA nem316_a12.seq

ACATCTCTTCTGCAAAGCCAGATGTTCTCGAAACCGCTCGTTTCATT Majority
 13210 13220 13230 13240 13250

13067 ACATCTCTTCTGCAAAGCCAGATGTTCTCGAAACCGCTCGTTTCATT 2603_a12.seq
 13067 ACATCTCTTCTGCAAAGCCAGATGTTCTCGAAACCGCTCGTTTCATT nem316_a12.seq

AAAGCAGCCGAAAGTAATACACTCTCAATTCTTTATACTCAAAATTCTTG Majority
 13260 13270 13280 13290 13300

13117 AAAGCAGCCGAAAGTAATACACTCTCAATTCTTTATACTCAAAATTCTTG 2603_a12.seq
 13117 AAAGCAGCCGAAAGTAATACACTCTCAATTCTTTATACTCAAAATTCTTG nem316_a12.seq

CATCACTAAATTTCACGGTTCATATCTGATACAAACAAGATAACATAAC Majority
 13310 13320 13330 13340 13350

13167 CATCACTAAATTTCACGGTTCATATCTGATACAAACAAGATAACATAAC 2603_a12.seq
 13167 CATCACTAAATTTCACGGTTCATATCTGATACAAACAAGATAACATAAC nem316_a12.seq

CGACCTTAGGTAAATGAAGGTAAATTTCATAATTATCTATCAAATCACCT Majority
 13360 13370 13380 13390 13400

13217 CGACCTTAGGTAAATGAAGGTAAATTTCATAATTATCTATCAAATCACCT 2603_a12.seq
 13217 CGACCTTAGGTAAATGAAGGTAAATTTCATAATTATCTATCAAATCACCT nem316_a12.seq

AGGACAACCGAAATCTTGATCTAAAGTCAAAGAACCAATCAAATTCTTGTC Majority
 13410 13420 13430 13440 13450

13267 AGGACAACCGAAATCTTGATCTAAAGTCAAAGAACCAATCAAATTCTTGTC 2603_a12.seq
 13267 AGGACAACCGAAATCTTGATCTAAAGTCAAAGAACCAATCAAATTCTTGTC nem316_a12.seq

TACTGCAAATTGACCGATACAGTTCAAAAGCATATGCAATTCCCTTATT Majority
 13460 13470 13480 13490 13500

13317 TACTGCAAATTGACCGATACAGTTCAAAAGCATATGCAATTCCCTTATT 2603_a12.seq
 13317 TACTGCAAATTGACCGATACAGTTCAAAAGCATATGCAATTCCCTTATT nem316_a12.seq

CTGTTAAATAATCAACAGTTAGGTGCCCTCTCATTTATAATCGGCTACT Majority
 13510 13520 13530 13540 13550

13367 CTGTTAAATAATCAACAGTTAGGTGCCCTCTCATTTATAATCGGCTACT 2603_a12.seq
 13367 CTGTTAAATAATCAACAGTTAGGTGCCCTCTCATTTATAATCGGCTACT nem316_a12.seq

AATTGAGAAATTCTTCCATTATTTTCGAGCCATTATCTACGATATAGAT Majority
 13560 13570 13580 13590 13600

13417 AATTGAGAAATTCTTCCATTATTTTCGAGCCATTATCTACGATATAGAT 2603_a12.seq
 13417 AATTGAGAAATTCTTCCATTATTTTCGAGCCATTATCTACGATATAGAT nem316_a12.seq

GTGGCTTACTTGAGGATAAAATTGCTCGAATGTTCTGATCTAACGGTTCAA Majority
 13610 13620 13630 13640 13650

13467 GTGGCTTACTTGAGGATAAAATTGCTCGAATGTTCTGATCTAACGGTTCAA 2603_a12.seq
 13467 GTGGCTTACTTGAGGATAAAATTGCTCGAATGTTCTGATCTAACGGTTCAA nem316_a12.seq

FIGURE 20T

109/487

Alignment Report of WO 2006/078318 in memory with Weighted residue weight table.

PCT/US2005/027239²

T	A	T	T	G	G	C	T	T	A	A	G	G	T	G	A	C	A	A	T	A	C	C	G	T	T	A	A	T	G	C	T	Majority			
P	C	T	T	G	G	C	T	T	A	A	G	G	T	G	A	C	A	A	T	A	C	C	G	T	T	A	A	T	G	C	T				
13660																																			
13670																																			
13680																																			
13690																																			
13700																																			
13710																																			
13720																																			
13730																																			
13740																																			
13750																																			
13567	C	T	T	T	C	T	A	A	A	A	T	C	T	C	T	A	T	G	T	T	G	T	G	T	T	G	T	T	A	A	A	2603_a12.seq			
13567	C	T	T	T	C	T	A	A	A	A	T	C	T	C	T	A	T	G	T	T	G	T	G	T	T	G	T	T	A	A	A	nem316_a12.seq			
13617	A	C	G	A	T	C	C	G	A	C	A	T	A	G	A	T	G	T	A	A	C	A	T	A	T	T	G	A	A	T	T	2603_a12.seq			
13617	A	C	G	A	T	C	C	G	A	C	A	T	A	G	A	T	G	T	A	A	C	A	T	A	T	T	G	A	A	T	T	nem316_a12.seq			
13667	T	A	C	C	A	A	T	G	A	T	T	G	A	T	T	G	A	T	G	A	T	G	C	T	C	C	A	C	Majority						
13667	T	A	C	C	A	A	T	G	A	T	T	G	A	T	T	G	A	T	G	A	T	G	C	T	C	C	A	C							
13860																																			
13870																																			
13880																																			
13890																																			
13900																																			
13910																																			
13920																																			
13930																																			
13940																																			
13950																																			
13717	T	A	A	G	A	G	A	C	A	A	T	T	G	T	T	G	T	A	A	T	T	G	T	T	G	T	T	A	2603_a12.seq						
13717	T	A	A	G	A	G	A	C	A	A	T	T	G	T	T	G	T	A	A	T	T	G	T	T	G	T	T	A	nem316_a12.seq						
13767	A	A	G	A	T	A	C	T	C	T	A	A	G	A	G	A	T	G	C	A	C	T	C	C	A	C	A	A	A	2603_a12.seq					
13767	A	A	G	A	T	A	C	T	C	T	A	A	G	A	G	A	T	G	C	A	C	T	C	C	A	C	A	A	A	nem316_a12.seq					
13960																																			
13970																																			
13980																																			
13990																																			
14000																																			
14010																																			
14020																																			
14030																																			
14040																																			
14050																																			
13867	T	T	A	A	G	A	C	A	A	C	A	T	T	G	C	C	A	C	A	G	T	C	C	A	T	G	G	A	C	2603_a12.seq					
13867	T	T	A	A	G	A	C	A	A	C	A	T	T	G	C	C	A	C	A	G	T	C	C	A	T	G	G	A	C	nem316_a12.seq					
13817	T	T	C	A	G	T	A	T	A	C	T	G	T	T	G	A	G	C	C	A	G	T	C	C	A	T	G	G	A	C	2603_a12.seq				
13817	T	T	C	A	G	T	A	T	A	C	T	G	T	T	G	A	G	C	C	A	G	T	C	C	A	T	G	G	A	C	nem316_a12.seq				
13887	T	T	A	A	G	A	C	A	A	C	A	T	T	G	C	C	A	C	A	G	T	C	C	A	T	G	G	A	C	Majority					
13887	T	T	A	A	G	A	C	A	A	C	A	T	T	G	C	C	A	C	A	G	T	C	C	A	T	G	G	A	C						
14110																																			
14120																																			
14130																																			
13967	A	G	C	G	T	A	C	C	A	T	G	C	A	A	T	G	A	T	C	A	T	C	A	A	A	A	2603_a12.seq								
13967	A	G	C	G	T	A	C	C	A	T	G	C	A	A	T	G	A	T	C	A	T	C	A	A	A	A	nem316_a12.seq								

Decoration #1: Shade (with solid black) residues that differ from the Consensus.

FIGURE 20U

110/487

Alignment Report of WO 2006/078318 in method with Weighted residue weight table.
Thursday, July 29, 2004 0:45 PM

PCT/US2005/027239 Page 1

T C C A G A T C G G T C G A T T A A C A T A T G A C G T G G G G C A T C A C C A G T A A T T C G G Majority
 10 20 30 40 50

1 T C C A C A T C G G T C C A A T T A A C A T A T G A C G T G G G G C A T C A C C A G T A A T T C G G coh1_a12.seq
 1 T C C A C A T C G G T C C A A T T A A C A T A T G A C G T G G G G C A T C A C C A G T A A T T C G G a909_a12.seq

T G A A T A A C A A T A T G T T T G G A A T A A T C T C C A G T T G G T C A C A A A T A A T C G A Majority
 60 70 80 90 100

51 T G A A T A A C A A T A T G T T T G G A A T A A T C T C C A G T T G G T C A C A A A T A A T C G A coh1_a12.seq
 51 T G A A T A A C A A T A T G T T T G G A A T A A T C T C C A G T T G G T C A C A A A T A A T C G A a909_a12.seq

A A T A T A G T C T T C T G A C T T A A C A A A C G T A A A C G A C C T C A T G G T A A T C T C Majority
 110 120 130 140 150

101 A A T A T A G T C T T C T G A C T T A A C A A A C G T A A A C G A C C T C A T G G T A A T C T C coh1_a12.seq
 101 A A T A T A G T C T T C T G A C T T A A C A A A C G T A A A C G A C C T C A T G G T A A T C T C a909_a12.seq

T C T G C A T T C T T G T A T T A G T C A T A A G A T G C A G A A G G T G T A A T T T A A C C C Majority
 160 170 180 190 200

151 T C T G C A T T C T T G T A T T A G T C A T A A G A T G C A G A A G G T G T A A T T T A A C C C coh1_a12.seq
 151 T C T G C A T T C T T G T A T T A G T C A T A A G A T G C A G A A G G T G T A A T T T A A C C C a909_a12.seq

T G A A T A T C A T T A T C C G T A A C A C A T C G A C G A A C A T T T T C C A C C A T C A T A T C Majority
 210 220 230 240 250

201 T G A A T A T C A T T A T C C G T A A C A C A C A T C G A C G A A C A T T T T C C A C C A T C A T A T C coh1_a12.seq
 201 T G A A T A T C A T T A T C C G T A A C A C A C A T C G A C G A A C A T T T T C C A C C A T C A T A T C a909_a12.seq

A T G T G T C T C C C C T G G G A G A C C A T T T A T T A G G T G A G A A A C G A T T T C T A C T T Majority
 260 270 280 290 300

251 A T G T G T C T C C C C T G G G A G A C C A T T T A T T A G G T G A G A A A C G A T T T C T A C T T coh1_a12.seq
 251 A T G T G T C T C C C C T G G G A G A C C A T T T A T T A G G T G A G A A A C G A T T T C T A C T T a909_a12.seq

T A G G A G C T A A T T C T C G T A T T C T C T T A A C A G T T T T T G T A A A G G T C A T A T Majority
 310 320 330 340 350

301 T A G G A G C T A A T T C T C G T A T T C T C T T A A C A G T T T T T G T A A A G G T C A T A T coh1_a12.seq
 301 T A G G A G C T A A T T C T C G T A T T C T C T T A A C A G T T T T T G T A A A G G T C A T A T a909_a12.seq

G A A T G T G C T C T A T T T A T T A A T G C A G A A G T T G C T T C A T A A G T T G T C T G A A G Majority
 360 370 380 390 400

351 G A A T G T G C T C T A T T T A T T A A T G C A G A A G T T G C T T C A T A A G T T G T C T G A A G coh1_a12.seq
 351 G A A T G T G C T C T A T T T A T T A A T G C A G A A G T T G C T T C A T A A G T T G T C T G A A G a909_a12.seq

G C C T A A T T C T A A A G T C A C A T G C A T T C T T C A G A A A G T T C A G C G A G A T A G T Majority
 410 420 430 440 450

401 G C C T A A T T C T A A A G T C A C A T G C A T T C T T C A G A A A A G T T C A G C G A G A T A G T coh1_a12.seq
 401 G C C T A A T T C T A A A G T C A C A T G C A T T C T T C A G A A A A G T T C A G C G A G A T A G T a909_a12.seq

A T A T A G T T C A T C A G G T A A G C A A T C C G G C T T G T C C G A T G T T G A T C C C G Majority
 460 470 480 490 500

451 A T A T A G T T C A T C A G G T A A G C A A T C C G G C T T G T C C G A T G T T G A T C C C G coh1_a12.seq
 451 A T A T A G T T C A T C A G G T A A G C A A T C C G G C T T G T C C G A T G T T G A T C C C G a909_a12.seq

A T A A C T C C T G G C T C A T T A A T A G C C T G T T C G T A A C G C T C T T A A T T A T C T C Majority
 510 520 530 540 550

501 A T A A C T C C T G G C T C A T T A A T A G C C T G T T C G T A A C G C T C T T A A T T A T C T C coh1_a12.seq
 501 A T A A C T C C T G G C T C A T T A A T A G C C T G T T C G T A A C G C T C T T A A T T A T C T C a909_a12.seq

T A A C T T A G C A T G G G T A T T G G T A A A A A T T T G A A A A T A G A C T A A G T A T T T A Majority
 560 570 580 590 600

551 T A A C T T A G C A T G G G T A T T G G T A A A A A T T T G A A A A T A G A C T A A G T A T T T A coh1_a12.seq
 551 T A A C T T A G C A T G G G T A T T G G T A A A A A T T T G A A A A T A G A C T A A G T A T T T A a909_a12.seq

T A A C C T C A G G C C A C T T T C A T G C A T G A A A T C A A T T T C T T T A T A G A A T T G T Majority
 610 620 630 640 650

601 T A A C C T C A G G C C A C T T T C A T G C A T G A A A T C A A T T T C T T T A T A G A A T T G T coh1_a12.seq
 601 T A A C C T C A G G C C A C T T T C A T G C A T G A A A T C A A T T T C T T T A T A G A A T T G T a909_a12.seq

Figure 21

111/487

Alignment Report of WO 2006/078318 method with Weighted residue weight table.
Thursday, July 29, 2004

PCT/US2005/0272392

<u>T C A C G A A T A G G A G C T T G T G C A G C E L A C T A T A G C A T C C C C T G A A C C A G A A A C</u> Majority					
	660	670	680	690	700
651	<u>T C A C G A A T A G G A G C T T G T G C A G C E L A C T A T A G C A T C C C C T G A A C C A G A A A C</u> cohl_a12.seq				
651	<u>T C A C G A A T A G G A G C T T G T G C A G C E L A C T A T A G C A T C C C C T G A A C C A G A A A C</u> a909_a12.seq				
<u>T G T G C A A A A A G T G C A C C C T C C C T C A G C A A C T G T T C A T C T C T G T T A G G A C</u> Majority					
	710	720	730	740	750
701	<u>T G T G C A A A A A G T G C A C C C T C C C T C A G C A A C T G T T C A T C T C T G T T A G G A C</u> cohl_a12.seq				
701	<u>T G T G C A A A A A G T G C A C C C T C C C T C A G C A A C T G T T C A T C T C T G T T A G G A C</u> a909_a12.seq				
<u>A G T C A A A A C C A G C A T C T A T A G G T A A T T A A A T A T T T T C T C C A A A G A G T</u> Majority					
	760	770	780	790	800
751	<u>A G T C A A A A C C A G C A T C T A T A G G T A A T T A A A T A T T T T C T C C A A A G A G T</u> cohl_a12.seq				
751	<u>A G T C A A A A C C A G C A T C T A T A G G T A A T T A A A T A T T T T C T C C A A A G A G T</u> a909_a12.seq				
<u>T C T C G A T A A T A A T C A T T A A T C G C A C G A T A A C G T T T T T C A T A G G A T A A T T</u> Majority					
	810	820	830	840	850
801	<u>T C T C G A T A A T A A T C A T T A A T C G C A C G A T A A C G T T T T T C A T A G G A T A A T T</u> cohl_a12.seq				
801	<u>T C T C G A T A A T A A T C A T T A A T C G C A C G A T A A C G T T T T T C A T A G G A T A A T T</u> a909_a12.seq				
<u>G T A T C A C A A T T T A A C T A A A A T A A C C T C A C T A C T A C A A T A A A A C T A A A A A</u> Majority					
	860	870	880	890	900
851	<u>G T A T C A C A A T T T A A C T A A A A T A A C C T C A C T A C T A C A A T A A A A C T A A A A A</u> cohl_a12.seq				
851	<u>G T A T C A C A A T T T A A C T A A A A T A A C C T C A C T A C T A C A A T A A A A C T A A A A A</u> a909_a12.seq				
<u>A G A T T G G A A C G T C A G T T A G T T C C A A T C T T T A T T T A C T T C A C T T T C T T T A</u> Majority					
	910	920	930	940	950
901	<u>A G A T T G G A A C G T C A G T T A G T T C C A A T C T T T A T T T A C T T C A C T T T C T T T A</u> cohl_a12.seq				
901	<u>A G A T T G G A A C G T C A G T T A G T T C C A A T C T T T A T T T A C T T C A C T T T C T T T A</u> a909_a12.seq				
<u>A C C A A T C C T T G G C T A A A A A G A T A T A C C G A C T T A G A T T C A A A A T A C C A T A A</u> Majority					
	960	970	980	990	1000
951	<u>A C C A A T C C T T G G C T A A A A A G A T A T A C C G A C T T A G A T T C A A A A T A C C A T A A</u> cohl_a12.seq				
951	<u>A C C A A T C C T T G G C T A A A A A G A T A T A C C G A C T T A G A T T C A A A A T A C C A T A A</u> a909_a12.seq				
<u>G C A A G T A T A A A A C C A G C T A A A A C A T C T G T C G G A A A A T G A A C C C C T A G G T A</u> Majority					
	1010	1020	1030	1040	1050
1001	<u>G C A A G T A T A A A A C C A G C T A A A A C A T C T G T C G G A A A A T G A A C C C C T A G G T A</u> cohl_a12.seq				
1001	<u>G C A A G T A T A A A A C C A G C T A A A A C A T C T G T C G G A A A A T G A A C C C C T A G G T A</u> a909_a12.seq				
<u>A A T A C C G A G A T A A C C C A A T T A A A A A A T G A G C A A A C C C A A T G T A C C T T G G C</u> Majority					
	1060	1070	1080	1090	1100
1051	<u>A A T A C C G A G A T A A C C C A A T T A A A A A A T G A G C A A A C C C A A T G T A C C T T G G C</u> cohl_a12.seq				
1051	<u>A A T A C C G A G A T A A C C C A A T T A A A A A A T G A G C A A A C C C A A A T G T A C C T T G G C</u> a909_a12.seq				
<u>A C A A C A G T T T C C A T A T A C T C T A G G C A T A T A G T A C T G C A A T A A A A T A A T A</u> Majority					
	1110	1120	1130	1140	1150
1101	<u>A C A A C A G T T T C C A T A T A C T C T A G G C A T A T A G T A C T G C A A T A A A A T A A T A</u> cohl_a12.seq				
1101	<u>A C A A C A G T T T C C A T A T A C T C T A G G C A T A T A G T A C T G C A A T A A A A T A A T A</u> a909_a12.seq				
<u>C T A C T C C C A A A T A T C A T A A A T G T T C C C A T C G A G T G C C C A C T G G G A A A C G A</u> Majority					
	1160	1170	1180	1190	1200
1151	<u>C T A C T C C C A A A T A T C A T A A A T G T T C C C A T C G A G T G C C C A C T G G G A A A C G A</u> cohl_a12.seq				
1151	<u>C T A C T C C C A A A T A T C A T A A A T G T T C C C A T C G A G T G C C C A C T G G G A A A C G A</u> a909_a12.seq				
<u>A T A G G C A C C T G C A A A T A C T A A A T G G G T T A A A G T T G G T C T C A C T C T T T G A A</u> Majority					
	1210	1220	1230	1240	1250
1201	<u>A T A G G C A C C T G C A A A T A C T A A A T G G G T T A A A G T T G G T C T C A C T C T T T G A A</u> cohl_a12.seq				
1201	<u>A T A G G C A C C T G C A A A T A C T A A A T G G G T T A A A G T T G G T C T C A C T C T T T G A A</u> a909_a12.seq				
<u>A A A T A A G T T T A A A G A A A G T A T A C A T A T A C C A G A G A T A A T A G C A T T T A C T</u> Majority					
	1260	1270	1280	1290	1300
1251	<u>A A A T A A G T T T A A A G A A A G T A T A C A T A T A C C A G A G A T A A T A G C A T T T A C T</u> cohl_a12.seq				
1251	<u>A A A T A A G T T T A A A G A A A G T A T A C A T A T A C C A G A G A T A A T A G C A T T T A C T</u> a909_a12.seq				

FIGURE 21A

112/487

Alignment Report of WO 2006/078318 in method with Weighted residue weight table.
Thursday, July 29, 2004 0:49 PM

PCT/US2005/027239 3

	<u>G C G A T A A A T C T A G C T C A G C A T A C C A G</u>	<u>T C T T A A G G T A A C A G A A A G T G A C</u>	Majority
	1310	1320	1330
1301	<u>G C G A T A A A T C T A G C T G A G G A T A C C A C</u>	<u>T C T T A A G G T A A C A G A A A G T G A C</u>	cohl_a12.seq
1301	<u>G C G A T A A A T C T A G C T G A G G A T A C C A C</u>	<u>T C T T A A G G T A A C A G A A A G T G A C</u>	a909_a12.seq
	<u>G C T C A T A A A T C G C A A T A G C T A T C T G G C</u>	<u>T T A A C T T G A A A A A T C T T G T A G A A A G A</u>	Majority
	1360	1370	1380
1351	<u>G C T C A T A A A T C G C A A T A G C T A T C T G G C</u>	<u>T T A A C T T G A A A A A T C T T G T A G A A A G A</u>	cohl_a12.seq
1351	<u>G C T C A T A A A T C G C A A T A G C T A T C T G G C</u>	<u>T T A A C T T G A A A A A T C T T G T A G A A A G A</u>	a909_a12.seq
	<u>T T A A C T T G A A A A A T C T T G T A G A A A G A</u>	<u>T T G G C A A C T G T C C T C T A A C A C T T</u>	Majority
	1410	1420	1430
1401	<u>T T A A C T T G A A A A A T C T T G T A G A A A G A</u>	<u>T T G G C A A C T G T C C T C T A A C A C T T</u>	cohl_a12.seq
1401	<u>T T A A C T T G A A A A A T C T T G T A G A A A G A</u>	<u>T T G G C A A C T G T C C T C T A A C A C T T</u>	a909_a12.seq
	<u>T C T T G A A T A G T T T G G T C A A A T G C G A</u>	<u>T C T T G A A T A G T T T G G T C A A A T G C G A</u>	Majority
	1460	1470	1480
1451	<u>T C T T G A A T A G T T T G G T C A A A T G C G A</u>	<u>T C T T G A A T A G T T T G G T C A A A T G C G A</u>	cohl_a12.seq
1451	<u>T C T T G A A T A G T T T G G T C A A A T G C G A</u>	<u>T C T T G A A T A G T T T G G T C A A A T G C G A</u>	a909_a12.seq
	<u>G A C C A A T C C T A A A C T G A A A A A T A A G</u>	<u>A G T A A T A G C C A A T A A A T G C T G A A T A A</u>	Majority
	1510	1520	1530
1501	<u>G A C C A A T C C T A A A C T G A A A A A T A A G</u>	<u>A G T A A T A G C C A A T A A A T G C T G A A T A A</u>	cohl_a12.seq
1501	<u>G A C C A A T C C T A A A C T G A A A A A T A A G</u>	<u>A G T A A T A G C C A A T A A A T G C T G A A T A A</u>	a909_a12.seq
	<u>G T T T A C T A T T T G A C G A G A T A A G A T T A</u>	<u>G T T T A C T A T T T G A C G A G A T A A G A T T A</u>	Majority
	1560	1570	1580
1551	<u>G T T T A C T A T T T G A C G A G A T A A C T T A G</u>	<u>G T T T A C T A T T T G A C G A G A T A A C T T A G</u>	cohl_a12.seq
1551	<u>G T T T A C T A T T T G A C G A G A T A A C T T A G</u>	<u>G T T T A C T A T T T G A C G A G A T A A C T T A G</u>	a909_a12.seq
	<u>T G G C A A A C A A G C C A C G T A A G T T A G A</u>	<u>A G A T A A A C A A T C G A A A T T A A A A T T C</u>	Majority
	1610	1620	1630
1601	<u>T G G C A A A C A A G C C A C G T A A G T T A G A</u>	<u>A G A T A A A C A A T C G A A A T T A A A A T T C</u>	cohl_a12.seq
1601	<u>T G G C A A A C A A G C C A C G T A A G T T A G A</u>	<u>A G A T A A A C A A T C G A A A T T A A A A T T C</u>	a909_a12.seq
	<u>C C T C A A C G A T A T T A A T G G A A T A A C C</u>	<u>A T T G T T A A A A G G T A A T T G C C T A C A</u>	Majority
	1660	1670	1680
1651	<u>C C T C A A C G A T A T T A A T G G A A T A A C C</u>	<u>A T T G T T A A A A G G T A A T T G C C T A C A</u>	cohl_a12.seq
1651	<u>C C T C A A C G A T A T T A A T G G A A T A A C C</u>	<u>A T T G T T A A A A G G T A A T T G C C T A C A</u>	a909_a12.seq
	<u>C C A A T T A A A T G T T C T G A T A T C A A A G</u>	<u>T T A G C A T A C A A G G A A T</u>	Majority
	1710	1720	1730
1701	<u>C C A A T T A A A T G T T C T G A T A T C A A A G</u>	<u>T T A G C A T A C A A A G G A A T</u>	cohl_a12.seq
1701	<u>C C A A T T A A A T G T T C T G A T A T C A A A G</u>	<u>T T A G C A T A C A A A G G A A T</u>	a909_a12.seq
	<u>C G C A A A G A C A T A G T T G A G A G C T A C</u>	<u>C T A C A G T C A A G C T A A C T G T A C</u>	Majority
	1760	1770	1780
1751	<u>C G C A A A G A C A T A G T T G A G A G C T A C</u>	<u>C T A C A G T C A A G C T A A C T G T A C</u>	cohl_a12.seq
1751	<u>C G C A A A G A C A T A G T T G A G A G C T A C</u>	<u>C T A C A G T C A A G C T A A C T G T A C</u>	a909_a12.seq
	<u>C A A A T T A A A C T A G C T T A A T T A A A T</u>	<u>T C T C T C T A T T T T C C A G</u>	Majority
	1810	1820	1830
1801	<u>C A A A T T A A A C T A G C T T A A T T A A A T</u>	<u>T C T C T C T A T T T T C C A G</u>	cohl_a12.seq
1801	<u>C A A A T T A A A C T A G C T T A A T T A A A T</u>	<u>T C T C T C T A T T T T C C A G</u>	a909_a12.seq
	<u>A A A A T A G C G A A A C T T G C T A A A A A T A</u>	<u>G A G C T A G A G C A A C C A T A T C A T C G G</u>	Majority
	1860	1870	1880
1851	<u>A A A A T A G C G A A A C T T G C T A A A A A T A</u>	<u>G A G C T A G A G C A A C C A T A T C A T C G G</u>	cohl_a12.seq
1851	<u>A A A A T A G C G A A A C T T G C T A A A A A T A</u>	<u>G A G C T A G A G C A A C C A T A T C A T C G G</u>	a909_a12.seq
	<u>T A A A C C G A T A A A G G T T T C T G G A C C</u>	<u>A C G A T T A G C A A G T A A C T T T A A A A</u>	Majority
	1910	1920	1930
1901	<u>T A A A C C G A T A A A G G T T T C T G G A C C</u>	<u>A C G A T T A G C A A G T A A C T T T A A A A</u>	cohl_a12.seq
1901	<u>T A A A C C G A T A A A G G T T T C T G G A C C</u>	<u>A C G A T T A G C A A G T A A C T T T A A A A</u>	a909_a12.seq

FIGURE 2IB

113/487

Alignment Report of
Thursday, July 29, 2006 WO 2006/078318 in methionine Weighted residue weight table.

PCT/US2005/0272394

	G T G A I C L T A A T A A G A G T A C A C C A T A A G	T G A T T C A A A T C A A A T A A A A T A	Majority	
	1960	1970	1980	1990
1951	G T G A T C T T A A T A A G A G T A C A C C A T A A C	T G A T T C A A A T C A A A T A A A A T A	coh1_a12.seq	
1951	G T G A T C T T A A T A A G A G T A C A C C A T A A C	T G A T T C A A A T C A A A T A A A A T A	a909_a12.seq	
	A A A G C A A C T A A C A T C G G A A C G A T T G A	A A C C T T T A A A A A T T C T G C	Majority	
	2010	2020	2030	2040
2001	A A A G C A A C T A A C A T C G G A A G G A T T G A	A A C C T T T A A A A A T T C T G C	coh1_a12.seq	
2001	A A A G C A A C T A A C A T C G G A A G G A T T G A	A A C C T T T A A A A A T T C T G C	a909_a12.seq	
	T C C T G G T A T T A A T G G A A A T G A A A C C A T	C A T C A A T A C A A A A G A T A A G G C A G	Majority	
	2060	2070	2080	2090
2051	T C C T G G T A T T A A T G G A A A T G A A A C C A T	C A T C A A T A C A A A A G A T A A G G C A G	coh1_a12.seq	
2051	T C C T G G T A T T A A T G G A A A T G A A A C C A T	C A T C A A T A C A A A A G A T A A G G C A G	a909_a12.seq	
	A A A G A A T G G G C A T T G T C A C C A T T T A C	G T G T A T T T G T C A T A A A A A A A T T C	Majority	
	2110	2120	2130	2140
2101	A A A G A A T G G G C A T T G T C A C C A T T T A C	G T G T A T T T G T C A T A A A A A A A T T C	coh1_a12.seq	
2101	A A A G A A T G G G C A T T G T C A C C A T T T A C	G T G T A T T T G T C A T A A A A A A A T T C	a909_a12.seq	
	C T C C A A T T T A A A A T T G A A A G A G C T C C	A A A G G T A A G C G T A G G T A C G C	Majority	
	2160	2170	2180	2190
2151	C T C C A A T T T A A A A T T G A A A G A G C T C C	A A A G G T A A G C G T A G G T A C G C	coh1_a12.seq	
2151	C T C C A A T T T A A A A T T G A A A G A G C T C C	A A A G G T A A G C G T A G G T A C G C	a909_a12.seq	
	G A A A A A A C T T T G T C T T C C C A T C C A G A	C T T A C T G T C G G G T T G T G G A A	Majority	
	2210	2220	2230	2240
2201	G A A A A A A C C T T T G T C T T C C C A T C C A G	C T T A C T G T C G G G T T G T G G A A	coh1_a12.seq	
2201	G A A A A A A C C T T T G T C T T C C C A T C C A G	C T T A C T G T C G G G T T G T G G A A	a909_a12.seq	
	T C T C A C C A C A T C A G C T T T C G C T C G C G G	A C T G A T G C T T C A C A A C T G A C A A A	Majority	
	2260	2270	2280	2290
2251	T C T C A C C A C A T C A G C T T T C G C T C G C G G	A C T G A T G C T T C A C A A C T G A C A A A	coh1_a12.seq	
2251	T C T C A C C A C A T C A G C T T T C G C T C G C G G	A C T G A T G C T T C A C A A C T G A C A A A	a909_a12.seq	
	T A A G T T G G A A G C C A T T A C C G C C G G T C	G G G A A T T A C A C C C T G C C C T G A A G A	Majority	
	2310	2320	2330	2340
2301	T A A G T T G G A A G C C A T T A C C G C C G G T C	G G G A A T T A C A C C C T G C C C T G A A G A	coh1_a12.seq	
2301	T A A G T T G G A A G C C A T T A C C G C C G G T C	G G G A A T T A C A C C C T G C C C T G A A G A	a909_a12.seq	
	C A C C T A T A G C A T A A C A A A A A C T T G C A	A T T G C A A G T T T T T A A T C A C T	Majority	
	2360	2370	2380	2390
2351	C A C C T A T A G C A T A A C A A A A A C T T G C A	A T T G C A A G T T T T T A A T C A C T	coh1_a12.seq	
2351	C A C C T A T A G C A T A A C A A A A A C T T G C A	A T T G C A A G T T T T T A A T C A C T	a909_a12.seq	
	A A T T A G T A G T A G A T T G T A T A A T T A A T	T T T A A C A T C A A T T A A T T G A C A	Majority	
	2410	2420	2430	2440
2401	A A T T A G T A G T A G A T T G T A T A A T T A A T	T T T A A C A T C A A T T A A T T G A C A	coh1_a12.seq	
2401	A A T T A G T A G T A G A T T G T A T A A T T A A T	T T T A A C A T C A A T T A A T T G A C A	a909_a12.seq	
	G G G C A C T A A T A C T C T A G C T A C T C C T G	C T T T G T A C A A G T A A A C A A G C T T A	Majority	
	2460	2470	2480	2490
2451	G G G C A C T A A T A C T C T A G C T A C T C C T G	C T T T G T A C A A G T A A A C A A G C T T A	coh1_a12.seq	
2451	G G G C A C T A A T A C T C T A G C T A C T C C T G	C T T T G T A C A A G T A A A C A A G C T T A	a909_a12.seq	
	A G T C C C A A T C A T T G T C T G A T G T G G C A	G T T T A A A C T T T T C A A T C G C T	Majority	
	2510	2520	2530	2540
2501	A G T C C C A A T C A T T G T C T G A T G T G G C A	G T T T A A A C T T T T C A A T C G C T	coh1_a12.seq	
2501	A G T C C C A A T C A T T G T C T G A T G T G G C A	G T T T A A A C T T T T C A A T C G C T	a909_a12.seq	
	G T T G G T T C A A T A A T T C T C A T T A C T G A	T T T G T A G T G A T A G A T T T G C C C	Majority	
	2560	2570	2580	2590
2551	G T T G G T T C A A T A A T T C T C A T T A C T G A	T T T G T A G T G A T A G A T T T G C C C	coh1_a12.seq	
2551	G T T G G T T C A A T A A T T C T C A T T A C T G A	T T T G T A G T G A T A G A T T T G C C C	a909_a12.seq	

FIGURE 21C

T G T T G T A G T T G T A A A A A A A G A T C C G G T T C C C A T A T C T A C A T T T T T T A A A G Majority
 2610 2620 2630 2640 2650

2601 T G T T G T A G T T G T A A A A A A A C A T C C G G T T C C C A T A T C T A C A T T T T T T A A A G coh1_a12.seq
 2601 T G T T G T A G T T G T A A A A A A A C A T C C G G T T C C C A T A T C T A C A T T T T T T A A A G a909_a12.seq

C A T C A A A A T G A T A A G G A A A A T T A T G C G C A C A A A T C A C C A T G T T A T T A G T T Majority
 2660 2670 2680 2690 2700

2651 C A T C A A A A T G A T A A G G A A A A T T A T G C G C A C A A A T C A C C A T G T T A T T A G T T coh1_a12.seq
 2651 C A T C A A A A T G A T A A G G A A A A T T A T G C G C A C A A A T C A C C A T G T T A T T A G T T a909_a12.seq

A A A T A A G A A C C A T A A T A C C T T G T A G G G G T T T A G A C A G T T G T T C A A A A C T Majority
 2710 2720 2730 2740 2750

2701 A A A T A A G A A C C A T A A T A C C T T G T A G G G G T T T A G A C A G T T G T T C A A A A C T coh1_a12.seq
 2701 A A A T A A G A A C C A T A A T A C C T T G T A G G G G T T T A G A C A G T T G T T C A A A A C T a909_a12.seq

A T A A T T A G C A G C T A C C G G T A A A T G C A G T T T A A G T T C G G A A T A T C C A G A G Majority
 2760 2770 2780 2790 2800

2751 A T A A T T A G C A G C T A C C G G T A A A T G C A G T T T A A G T T C G G A A T A T C C A G A G coh1_a12.seq
 2751 A T A A T T A G C A G C T A C C G G T A A A T G C A G T T T A A G T T C G G A A T A T C C A G A G a909_a12.seq

T T C C C A A G T A A T C T G T T T A T C C A A C T T T T A C A G G T A A T T C T C C A T T T Majority
 2810 2820 2830 2840 2850

2801 T T C C C A A G T A A T C T G T T T A T C C A A C T T T T A C A G G T A A T T C T C C A T T T coh1_a12.seq
 2801 T T C C C A A G T A A T C T G T T T A T C C A A C T T T T A C A G G T A A T T C T C C A T T T a909_a12.seq

T C T G A A C C C T T A C T T G A T G C G T A A T A G A T T T A T C A A G C G C C T T G A C A A T Majority
 2860 2870 2880 2890 2900

2851 T C T G A A C C C T T A C T T G A T G C G T A A T A G A T T T A T C A A G C G C C T T G A C A A T coh1_a12.seq
 2851 T C T G A A C C C T T A C T T G A T G C G T A A T A G A T T T A T C A A G C G C C T T G A C A A T a909_a12.seq

A T G C T G A G A A G T T A A A T C A G C T T G A T G C G C C T G A T T A A T A T T A C C A A C Majority
 2910 2920 2930 2940 2950

2901 A T G C T G A G A A G T T A A A T C A G C T T G A T G C G C C C T G A T T A A T A T T A C C A A C coh1_a12.seq
 2901 A T A C T G A G A A G T T A A A T C A G C T T G A T G C G C C C T G A T T A A T A T T A C C A A C a909_a12.seq

C C C A A T A G A T T C C A G A A C T T A C C A G A A T G A T T C C G A G T A T C G C T A A A A A Majority
 2960 2970 2980 2990 3000

2951 C C C A A T A G A T T C C A G A A C T T A C C A G A A T A T T C C G A G T A T G C T A A A A A coh1_a12.seq
 2951 C C C A A T A G A T T C C A G A A C T T A C C A G A A T G A T T C C A A G T A T C G C T A A A A A a909_a12.seq

T T T G C T G A A T A T C T T C T A A T C A C G T C T T C T C C A T T T A A G G C T A T T A Majority
 3010 3020 3030 3040 3050

3001 T T T G C T G A A T A T C T T C T A A T C A C G T C T T C T C C A T T T A A A G G C T A T T A coh1_a12.seq
 3001 T T T G C T G A A T A T C T T C T A A T C A C G T C T T C T C C A T T T A A G G C T A T T A a909_a12.seq

T T A A A C A C A G A A G T C C T G A C A T A A T T A G T A T A G G T A T T G G C C A C C C A T A C T Majority
 3060 3070 3080 3090 3100

3051 T T A A A C A C A G A A G T C C T G A C A T A A T T A G T A T A G G T A T T G G C C A C C C A T A C T coh1_a12.seq
 3051 T T A A A C A C A G A A G T C C T G A C A T A A T T A G T A T A G G T A T T G G C C A C C C A T A C T a909_a12.seq

T G T C C A G T A A A C G G G A G C T T T C C C T T T G T C T G A T G T G T A C T G T G A G G A T Majority
 3110 3120 3130 3140 3150

3101 T G T C C A G T A A A C G G G A A G C T T T C C C T T T G T C T G A F G T G T A C T G T G A G G A T coh1_a12.seq
 3101 T G T C C A G T A A A C G G G A G C T T T C C C T T T G T C T G A T G T G T A C T G T G A G G A T a909_a12.seq

A A T T G T C T C T C T C T T T T A G G T T T A G C A T T T A A A G G G C T C A T T T C T C A A Majority
 3160 3170 3180 3190 3200

3151 A A T T G T C T C T C T C T C T C T T T T A G G T T T A G C A T T T A A A G G G C T C A T T T C T C A A coh1_a12.seq
 3151 A A T A C T G T C T C T C T C T C T C T C T C T C T C T C T C A A A G G G C T C A T T T C T C A A a909_a12.seq

A T G C T G T A A T A T C G T A C T T C C C A T C C T T A G G T A T T G A T A G T A T A A A G G G A Majority
 3210 3220 3230 3240 3250

3201 A T G C T G T A A T A T C G T A C T T C C C A T C C T T A G G T A T T G A T A G T A T A A A G G G A coh1_a12.seq
 3201 A T G C T G T A A T A T C G T A C T T C C C A T C C T T A G G T A T T G A T A G T A T A A A G G G A a909_a12.seq

FIGURE 21D

G A C A T T G A T T C A T T A A C C T T G A G C T C G T T T A G T C T G A A T T A A A T A G A T A A A T Majority
 3260 3270 3280 3290 3300

3251 G A C A T T A G T T C A T A A C C T T G A G C T C G T T T A G T C T G A A T A A T A G A T A A A T cohl_a12.seq
 3251 G A C A T T A G T T C A T A A C C T T G A G C T C G T T T A G T C T G A A T A A T A G A T A A A T a909_a12.seq

C C C T T G A G G A A G A T T G T C G G A A C A A T A C C T T C A G C C G G T A A A T T A T C A A Majority
 3310 3320 3330 3340 3350

3301 C C C T T G A G G A A G A T T G T C G G A A C A A T A C C T T C A G C C G G T A A A T T A T C A A cohl_a12.seq
 3301 C C C T T G A G G A A G A T T G T C G G A A C A A T A C C T T C A G C C G G T A A A T T A T C A A a909_a12.seq

A C G T T T G T A A A G G T T G A G T T T T A T G A A C A G C T T T G T T A G T A G A T T G A C G Majority
 3360 3370 3380 3390 3400

3351 A C G T T T G T A A A G G T T G A G T T T T A T G A A C A G C T T T G T T A G T A G A T T G A C G cohl_a12.seq
 3351 A C G T T T G T A A A G G T T G A A T T T T A T G A A C A G C T T T G T T A G T A G A T T G A C G a909_a12.seq

T A T T T G G C T T G G T T A C T A T C A A G G T T T A C T T G T G T T A G A T C A T C G T C T T T Majority
 3410 3420 3430 3440 3450

3401 T A T T T G G C T T G G T T A C T A T C A A G G T T T A C T T G T G T T A G A T C A T C G T C T T T cohl_a12.seq
 3401 T A T T T G G C T T G G T T A C T A T C A A G G T T T A C T T G T G T T A A T C A T C G T C T T T a909_a12.seq

T A T T C C A A T A C C T T G A A A T G G G G T A G T T A G A G T A A A A A C T T G G T T A C C A T Majority
 3460 3470 3480 3490 3500

3451 T A T T C C A A T A C C T T G A A A T G G G G T A G T T A G A G T A A A A A C T T G C A T T A C C A T cohl_a12.seq
 3451 T A T T C C A A T A C C T T G A A A T G G G G T A G T T A G A G T A A A A A C T T G G T T A C C A T a909_a12.seq

C A A C A T C T T A G C T T G T G C T A C T T G G T A A A C A A G T A A A T T A C C G C C A G C G Majority
 3510 3520 3530 3540 3550

3501 C A A C A T C T T A G C T T G T G C T A C T T G G T A A A C A A G T A A A T T A C C G C C A G C G cohl_a12.seq
 3501 C A A C A T C T T A G C T T G T G C T A C T T G G T A A A C A A G T A A A T T A C C G C C A G C G a909_a12.seq

A T A C C T T G A T T A T T A T C T T A T T T G T A T A G T A A T A G A A C C C G T T T C A T Majority
 3560 3570 3580 3590 3600

3551 A T A C C T T G A T T A T T A T C T T A T T T G T A T A G T A A T A G A A C C C G T T T C A T cohl_a12.seq
 3551 A T A C C T T G A T T A T T A T C T T A T T T G T A T A G T A A T A G A A C C C G T T T C A T a909_a12.seq

C T G A T C A T T G G T A T C A G C A G A C A A G T T G A G T A C T T G A C T A A T A A T A Majority
 3610 3620 3630 3640 3650

3601 C T G A T C A T T G G T A T C A G C A G A C A A G T T G A G T A C T T G A C T A A T A A T A cohl_a12.seq
 3601 C T G A T C A T T G G T A T C A G C A G A C A A G T T G A G T A C T T G A C T A A T A A T A a909_a12.seq

A G A G A A G A G T T A T C T T A G G A T C T T T T A T A A A T C A T T G T T C T C T C T Majority
 3660 3670 3680 3690 3700

3651 A G A G A A G A G T T A T C T T A G G A T C T T T T A T A A A T C A T T G T T C T C T C T C T cohl_a12.seq
 3651 A G A G A A G A G T T A T T T A G G A T C T T T T A T A A A T C A T T G T T C T C T C T C T a909_a12.seq

T C T C A T T G C T T G T T T T A A A T T T C T T A C G G T T G A C G T G C T C T C T C T C T Majority
 3710 3720 3730 3740 3750

3701 T C T C A T T G C T T G T T T T A A A T T T C T T A C G G T T G A C G T G C T C T C T C T C T cohl_a12.seq
 3701 T C T C A T T G C T T G T T T T A A A T T T C T T A C G G T T G A C G T G C T C T C T C T C T cohl_a12.seq

C T T C T A A A G A G A T T A A A A G T A A A A T C A A A G T A A G G A A A A T A G G G A T A A A T Majority
 3760 3770 3780 3790 3800

3751 C T T C T A A A A G A G A T T A A A A G T A A A A T C A A A G T A A G G A A A A T A G G G A T A A A T cohl_a12.seq
 3751 C T T C T A A A A G A G A T T A A A A G T A A A A T C A A A G T A A G G A A A A T A G G G A T A A A T a909_a12.seq

G G T G C G G A T A T A A A T A G G C T C T A T T G T A T T G C C T C T G C T A C T A C C A A A G C Majority
 3810 3820 3830 3840 3850

3801 G G T G C G G A T A T A A A T A G G C T C T A T T G T A T T G C C T C T G C T A C T A C C C A A A G C cohl_a12.seq
 3801 G G T G C G G A T A T A A A T A G G C T C T A T T G T A T T G C C T C T G C T A C T A C C C A A A G C a909_a12.seq

G T T A C C A T T A T C G T T T G G T A C A C G A T G T C C T C T C A C T A G T A A C C G A T G G G Majority
 3860 3870 3880 3890 3900

3851 G T T A C C A T T A T C G T T T G G T A C A C G A T G T C C T C T C A C T A G T A A C C G A T G G G cohl_a12.seq
 3851 G T T A C C A T T A T C G T T T G G T A C A C G A T G T C C T C T C A C T A G T A A C C G A T G G G a909_a12.seq

FIGURE 21E

T A T T A A C G G C A T A T G G T G F A C A C G C T G A C C A A G T T T G G T A G T C T T T A C C T Majority
 3910 3920 3930 3940 3950

3901 T A T T A A C G G C A T A T G G T G T A C A C G T C A C C A A G T T T G G T A G T C T T T A C C T coh1_a12.seq
 3901 T A T T A A C A C C A T A T G G T G T A C A C G T C A C C A A G T T T G G T A G T C T T T A C C T a909_a12.seq

T T A A C A A T T T G T A A A T C C C T C A A A T C A T C C C G T T T A A C T G T T C T G A T T T G Majority
 3960 3970 3980 3990 4000

3951 T T A A C A A T T T G T A A A T C C C T C A A A T C A T C C C G T T T A A C T G T T C T G A T T T G coh1_a12.seq
 3951 T T A A C A A T T T G T A A A T C C C T C A A A T C A T C C C G T T T A A C T G T T C T G A T T T G a909_a12.seq

A T C C A C T T G A T A A G T A T A T G T T C A T T T A A G A T A C T G A C T G T C C A G T G G T Majority
 4010 4020 4030 4040 4050

4001 A T C C A C T T G A T A A G T A T A T G T T C A T T T A A G A T A C T G A C T G T C C A G T G G T coh1_a12.seq
 4001 A T C C A C T T G A T A A G T A T A T G T T C A T T T A A G A T A C T G A C T G T C C A G T G G T a909_a12.seq

C T C C A G C T T T A A C T T A T C C A A A T C A G A A A A A G C C T T G A A G A G G G T A A A Majority
 4060 4070 4080 4090 4100

4051 C T C C C A C T T T A A C T T A T C C A A A T C A G A A A A A A G C C T T G A A G A G G G T A A A coh1_a12.seq
 4051 C T C C A G C T T T A A C T T A T C C A A A T C A G A A A A A A G C C T T G A A G A G G G T A A A a909_a12.seq

C C T C T A T G T C C T G A T A A A A T A G A A T G A G T T G A G T C T C C T C C A A T T G G A A G Majority
 4110 4120 4130 4140 4150

4101 C C T C T A T G T C C T G A T A A A A T A G A A T G A G T T G A G T C T C C T C C A A T T G G A A G coh1_a12.seq
 4101 C C T C T A T G T C C T G A T A A A A T A G A A T G A G T T G A G T C T C C T C C A A T T G G A A G a909_a12.seq

A C T A C T T C C T T C T A A A T G A C C A A T A G A A G T T G A A G C A C T T T T C A C T T G Majority
 4160 4170 4180 4190 4200

4151 A C T A C T T C C T T C T A A A T G A C C A A T A G A A G T T G A A G C A C T T T T C A C T T G coh1_a12.seq
 4151 A C T A C T T C C T T C T A A A T G A C C A A T A G A A G T T G A A G C A C T T T T C A C T T G a909_a12.seq

T A C C A T G A T A A A G T G G T A A T T T A T G T T T A T C T T T G G A A T T G G A A A T A T A A Majority
 4210 4220 4230 4240 4250

4201 T A C C A T G A T A A A G T G G T A A T T T A T G T T T A T C T T T G G A A T T G G A A A T A T A A coh1_a12.seq
 4201 T A C C A T G A T A A A G T G G T A A T T T A T G T T T A T C T T T G G A A T T G G A A A T A T A A a909_a12.seq

C C C A T A T T A C C C G T T T T A T C G A T A G C C A G T T G G A A T T A T A A T C C A A A C G Majority
 4260 4270 4280 4290 4300

4251 C C C A T A T T A C C C G T T T T A T C G A T A G C C A G T T G G A A T T A T A A T C C A A A C G coh1_a12.seq
 4251 C C C A T A T T A C C C G T T T T A T C G A T A G C C A G T T G G A A T T A T A A T C C A A A C G a909_a12.seq

C T C T T G G T T A G T C A T G T G C C A C T T C A T T C C T G A A G T T T T A A A T T G C T T A T Majority
 4310 4320 4330 4340 4350

4301 C T C T T G G T T A G T C A T G T G C C A C T T C A T T C C T G A A G T T T T A A A T T G C T T A T coh1_a12.seq
 4301 C T C T T G G T T A G T C A T G T G C C A C T T C A T T C C T G A A G T T T T A A A T T G C T T A T a909_a12.seq

T A T A T T C T T T G G C T C G G T T A A T A A T T T T T A T G T C G T T T C A T C C A T A Majority
 4360 4370 4380 4390 4400

4351 T A T A T T C T T T G G C T C G G T T A A T A A T T T T T A T A A T C G T T T T C A T C C A T A coh1_a12.seq
 4351 T A T A T T C T T T G G C T C G G T T A A T A A T T T T T A T G T C G T T T T C A T C C A T A a909_a12.seq

T G C G T T A C G G G G T C T E G G T A A T C C A T A A T C G C T C G A G A T T G G T G A A A T G A Majority
 4410 4420 4430 4440 4450

4401 T G C G T T A C G G G G T C T E G G T A A T C C A T A A T C G C T C G A G A T T G G T G A A A T G A coh1_a12.seq
 4401 T G C G T T A C G G G G T C T E G G T A A T C C A T A A T C G C T C G A G A T T G G T G A A A T G A a909_a12.seq

A T T C C A A T A A T T A G G A A G T G A A G G A T A A G C C A T T A A G C C T A C C C C C A C T G Majority
 4460 4470 4480 4490 4500

4451 A T T C C A A T A A T T A G G A A G T G A A G G A T A A G C C A T T A A G C C T A C C C C C A C T G coh1_a12.seq
 4451 A T T C C A A T A A T T A G G A A G T G A A G G A T A A G C C A T T A A G C C T A C C C C C A C T G a909_a12.seq

C A A T T A T A G T G A C A A G C A A A A T G G A T A C T A A A T G T T G T C T T A T T T T T T C Majority
 4510 4520 4530 4540 4550

4501 C A A T T A T A G T G A C A A G C A A A A T G G A T A C T A A A T G T T G T C T T A T T T T T T C coh1_a12.seq
 4501 C A A T T A T A G T G A C A A G C A A A A T G G A T A C T A A A T G T T G T C T T A T T T T T T C a909_a12.seq

FIGURE 21F

AT AT A T T T A A A P T G C A C G T T G C T A G C C C A T C T T A T T A A G A A C G T A Majority
4560 4570 4580 4590 4600

4551 AT AT A T T T A A A T C T G T A C C A C T T G C T A G C C C A T C T T A T T A A G A A C G T A coh1_a12.seq
4551 AT AT A T T T A A A T C T G T A C C A C T T G C T A G C C C A T C T T A T T A A G A A C G T A a909_a12.seq

A A C G A C G A C G A G C A A C A A G C A C C G A T A C C T G C T C C T A T T A C T A A A A T T G C A Majority
4610 4620 4630 4640 4650

4601 A A C G A C G A C G A C A A C A A G C A C C G A T A C C T G C T C C T A T T A C T A A A A T T G C A coh1_a12.seq
4601 A A C G A C G A C G A C A A C A A G C A C C G A T A C C T G C T C C T A T T A C T A A A A T T G C A a909_a12.seq

C C T A T A A T G T A G A A A A T T G T T G T A C C A A T A C C A C C T G T G A A G G C A A C T C Majority
4660 4670 4680 4690 4700

4651 C C T A T A A T G T A G A A A A T T G T T G T A C C A A T A C C A C C T G T G A A G G C A A C T C coh1_a12.seq
4651 C C T A T A A T G T A G A A A A T T G T T G T A C C A A T A C C A C C T G T G A A G G C A A C T C a909_a12.seq

A G T A C C T T G T T A T T T C A A C A G T T G G G T T A A C T A A A A G G T T A T C T G A A T Majority
4710 4720 4730 4740 4750

4701 A G T A C C T T G T T A T T T C A A C A G T T G G G T T A A C T A A A A G G T T A T C T G A A T coh1_a12.seq
4701 A G T A C C T T G T T A T T T C A A C A G T T G G G T T A A C T A A A A G G T T A T C T G A A T a909_a12.seq

T A G T C G T A T C A G T G G G T C C A T C T C C T A A A A A C C T T C T G A G A G T T A T C T Majority
4760 4770 4780 4790 4800

4751 T A G T C G T A T C A G T G G G T C C A T C T C C T A A A A A C C T T C T G A G A G T T A T C T coh1_a12.seq
4751 T A G T C G T A T C A G T G G G T C C A T C T C C T A A A A A C C T T C T G A G A G T T A T C T a909_a12.seq

A A C A A A T T G T A A C C T A A G G G A G C C T T T T C T C A A C T A G A T A G T A T G T A C C Majority
4810 4820 4830 4840 4850

4801 A A C A A A T T G T A A C C T A A G G G A G C C T T T T C T C A A C T A G A T A G T A T G T A C C coh1_a12.seq
4801 A A C A A A T T G T A A C C T A A G G G A G C C T T T T C T C A A C T A G A T A G T A T G T A C C a909_a12.seq

T T C T T C A A G C C T G T A A T G G T A A T T A T A C C A T C T G C T C C T G T T G T A T A T Majority
4860 4870 4880 4890 4900

4851 T T C T T C A A G C C T G T A A T G G T A A T T A T A C C A T C T G C T C C T G T T G T A T A T coh1_a12.seq
4851 T T C T T C A A G C C T G T A A T G G T A A T T A T A C C A T C T G C T C C T G T T G T A T A T a909_a12.seq

C T G T T G C A T T A G C T T C T G T G C C C C A T T C A A C G T T A T T T G T A T C G T T A A A G Majority
4910 4920 4930 4940 4950

4901 C T G T T G C A T T A G C T T C T G T G C C C C A T T C A A C G T T A T T T G T A T C G T T A A A G coh1_a12.seq
4901 C T G T T G C A T T A G C T T C T G T G C C C C A T T C A A C G T T A T T T G T A T C G T T A A A G a909_a12.seq

T T T A G A A A T T G A C C C G T A G C A T T C T T T A A A C A A A T A T A C C A C C T T G T A A Majority
4960 4970 4980 4990 5000

4951 T T T A G A A A T T G A C C C G T A G C A T T C T T T A A A C A A A A T A T A G C A C C T T G T A A coh1_a12.seq
4951 T T T A G A A A T T G A C C C G T A G C A T T C T T T A A A C A A A A T A T A G C A C C T T G T A A a909_a12.seq

T G A A G C T T T T G T G G A A C C A T C A A T T T T T T A T A G T A A T T T G A C C A T C C C Majority
5010 5020 5030 5040 5050

5001 T G A A G C T T T T G T G G A A C C A T C A A T T T T T T A T A G T A A T T T G A C C A T C C C coh1_a12.seq
5001 T G A A G C T T T T G T G G A A C C A T C A A T T T T T T A T A G T A A T T T G A C C A T C C C a909_a12.seq

T C A C T G T T A C T T T T G A C C T G G G T C A T C A T T G C T A G T A T T G G G G T T G A T G Majority
5060 5070 5080 5090 5100

5051 T C A C T G T T A C T T T T G A C C T G G G T C A T C A T T G C T A G T A T T G G G G T T G A T G coh1_a12.seq
5051 T C A C T G T T A C T T T T G A C C T G G G T C A T C A T T G C T A G T A T T G G G G T T G A T G a909_a12.seq

G T C G C A A T G T T G T A T T T C T G G T A A A T C A G C T G A A C C T G G T T T A G C T C C Majority
5110 5120 5130 5140 5150

5101 G T C G C A A T G T T G T A T T T C T G G T A A A T C A G C T G A A C C T G G T T T A G C T C C coh1_a12.seq
5101 G T C G C A A T G T T G T A T T T C T G G T A A A T C A G C T G A A C C T G G T T T A G C T C C a909_a12.seq

A C T C T T T A A T A C T C C T G T A T A A G T G A C T G T G A T T G T A T T T A T T C C C T T A T Majority
5160 5170 5180 5190 5200

5151 A C T C T T T A A T A C T C C T G T A T A A G T G A C T G T G A T T G T A T T T A T T C C C T T A T coh1_a12.seq
5151 A C T C T T T A A T A C T C C T G T A T A A G T G A C T G T G A T T G T A T T T A T T C C C T T A T a909_a12.seq

FIGURE 21G

118/487

	A A A A A A A G T C A T C A T I D A G C T C G C A T T T G A C T A T T T C C G G T T G G A G T A T T G	Majority
5210	5220	5230
5240	5250	
5201	AAAAAAAGTCATCATTAGCTCCATTGGAGTATTTCCGGTTGGAGTATTG	coh1_a12.seq
5201	AAAAAAAGTCATCATTAAGCTCCATTGGAGTATTTCCGGTTGGAGTATTG	a909_a12.seq
	G T A G C T G C C C A C G G A A T A G T A A T C G T G A A A T T A T T A T T T C C T C T A A C A G	Majority
5260	5270	5280
5290	5300	
5251	GTAGCTGCCACCGAATAGTAATCGTCAAATTATTATTTCCCTCTAACAG	coh1_a12.seq
5251	GTAGCTGCCACCGAATAGTAATCGTCAAATTATTATTTCCCTCTAACAG	a909_a12.seq
	G T T A T A C T T C C C A G T T G C T T T T C C G A A C C T T G A G T T A G A G T T G T A A T A T	Majority
5310	5320	5330
5340	5350	
5301	GT T A T A C T T C C C A G T T G C T T T T C C G A A C C T T G A G T T A G A G T T G T A A T A T	coh1_a12.seq
5301	GT T A T A C T T C C C A G T T G C T T T T C C G A A C C T T G A G T T A G A G T T G T A A T A T	a909_a12.seq
	T C C C T G A T C C A T C A G T A A T A G T T A C T T C A T A A G A T C C T T C G T T C A A A T C A	Majority
5360	5370	5380
5390	5400	
5351	T C C C T G A T C C A T C A G T A A T A G T T A C T T C A T A A G A G C C C T T C G T T C A A A T C A	coh1_a12.seq
5351	T C C C T G A T C C A T C A G T A A T A G T T A C T T C A T A A G A G C C C T T C G T T C A A A T C A	a909_a12.seq
	A C T A C A G A A G C A G A T G G C A T A G T A T C C T T T A T A A C A T A T T G A T A C A C T T T	Majority
5410	5420	5430
5440	5450	
5401	ACTACAGAACGAGATGGCATAAGTATCCTTTATAACATATTGATACACTT	coh1_a12.seq
5401	ACTACAGAACGAGATGGCATAAGTATCCTTTATAACATATTGATACACTT	a909_a12.seq
	T T C T G T A C C A T G A T A A T T G A C T G C A T T C T T A T A A G T A A T A G T A T A T T G A	Majority
5460	5470	5480
5490	5500	
5451	TTCTGTACCATGATAATTGACTGCATTCCTTATAAGTAATAGTATATTG	coh1_a12.seq
5451	TTCTGTACCATGATAATTGACTGCATTCCTTATAAGTAATAGTATATTG	a909_a12.seq
	C T G T A T C A C C A A C C G A G T A C G T T T T G A T C T A C A G T T T T C C A C C A C C A	Majority
5510	5520	5530
5540	5550	
5501	CTGTATCACCAACCGAGTACGTTTGATCTACAGTTTCCACCAACC	coh1_a12.seq
5501	CTGTATCACCAACCGAGTACGTTTGATCTACAGTTTCCACCAACC	a909_a12.seq
	T C T C C C C A T G T C G C A T C A G T A T T C T T T C A T G A A T A G T A G C A T T T G G A G T	Majority
5560	5570	5580
5590	5600	
5551	T C T C C C C A T G T C G C A T C A G T A T T C T T T C A T G A A T A G T A G C A T T T G G A G T	coh1_a12.seq
5551	T C T C C C C A T G T C G C A T C A G T A T T C T T T C A T G A A T A G T A G C A T T T G G A G T	a909_a12.seq
	T A C A G A T G T A A C C A T A A T T A C A G C T C C A T T A T A A C A G T G C T A G A A A C A T	Majority
5610	5620	5630
5640	5650	
5601	TACAGATGTAACCATAATCACAGCTCCATTATTAACAGTGCTAGAAACAT	coh1_a12.seq
5601	TACAGATGTAACCATAATCACAGCTCCATTATTAACAGTGCTAGAAACAT	a909_a12.seq
	A A T A A T A T C C A T A T T G G G A A A C A T T A A T A A C C T C A G T A C C A T C A T T A T T	Majority
5660	5670	5680
5690	5700	
5651	ATAATAATCCATATGGGAAACATTAATAACCTCAGTACCATCATTATT	coh1_a12.seq
5651	ATAATAATCCATATGGGAAACATTAATAACCTCAGTACCATCATTATT	a909_a12.seq
	G A C T C A G T A A C A G T G G G A A A C T G G G T G T A G T A T T A G C A T A T A G A T T T A G C	Majority
5710	5720	5730
5740	5750	
5701	GACTCAGTAACAGTGGAAACTGGGTGTTAGCTGATATAGATTTAGC	coh1_a12.seq
5701	GACTCAGTAACAGTGGAAACTGGGTGTTAGCTGATATAGATTTAGC	a909_a12.seq
	C C A T G T C G C A A T C T C A T T T G C T G A C G C A G T A T C T T T T A G T T A C A T A T G	Majority
5760	5770	5780
5790	5800	
5751	CCATGTCGCAATCTCATTTGCTGACGGCAGTATCTTTTATGTTACATATG	coh1_a12.seq
5751	CCATGTCGCAATCTCATTTGCTGACGGCAGTATCTTTTATGTTACATATG	a909_a12.seq
	T T C T C C C C A T T A G T A G T T G C G T A A A A A G A G A A T T A A A A T C A G T T G A A	Majority
5810	5820	5830
5840	5850	
5801	TTCTCCCTCCATTAGTAGTTGCTGTAAGAGAGAATTAAATCAGTTGAA	coh1_a12.seq
5801	TTCTCCCTCCATTAGTAGTTGCTGTAAGAGAGAATTAAATCAGTTGAA	a909_a12.seq

FIGURE 21H

119/487

	G C T T T A T C A G C T T C T T A C C T T G A G G A A T T A A A T A A G A A G C T C C A T C	Majority	
5860	5870	5880	5890
5890	5900		
5851	G C T T T A T A C T C A G C T T C T T A C C T T G A G G A A T T A A A T A A G A A G C T C C A T C	coh1_a12.seq	
5851	G C T T T A T A C T C A G C T T C T T A C C T T G A G G A A T T A A A T A A G A A G C T C C A T C	a909_a12.seq	
	T T T A T T C G A A T C A G A T A C A T T G C A T T A T C T A T T T C T G C A T C A A A A A C T T	Majority	
5910	5920	5930	5940
5950			
5901	T T T A T T C G A A T C A G A T A C A T T G C A T T A T C T A T T T C T G C A T C A A A A A C T T	coh1_a12.seq	
5901	T T T A T T C G A A T C A G A T A C A T T G C A T T A T C T A T T T C T G C A T C A A A A A C T T	a909_a12.seq	
	T G T A T G C T T T A T A G G T T G C G C C T T T T G A G T A T C T T G A A C T G T A A T T G T C	Majority	
5960	5970	5980	5990
6000			
5951	T A T A T G C T T T A T A G G T T G C G C C T T T T G A G T A T C T T G A A C T G T A A T T G T C	coh1_a12.seq	
5951	T G T A T G C T T T A T A G G T T G C G C C T T T T G A G T A T C T T G A A C T G T A A T T G T C	a909_a12.seq	
	C C T G T C T C A G C G G C A A A A G C T A T C G G G C T A A C T G G T G A T A C A G G C C A T A C C	Majority	
6010	6020	6030	6040
6050			
6001	C C T G T C T C A G C G G C A A A A G C T A T C G G G C T A A C T G G T G A T A C A G G C C A T A C C	coh1_a12.seq	
6001	C C T G T C T C A G C G G C A A A A G C T A T C G G G C T A A C T G G T G A T A C A G G C C A T A C C	a909_a12.seq	
	A A A T G C T A A A C T C G C C A C T A A C A G G C G A T T G A A T C A T T T C T T T T C A T T G	Majority	
6060	6070	6080	6090
6100			
6051	A A A T G C T A A A C T C G C C A C T A A C A G G C G A T T G A A T C A T T T C T T T T C A T T G	coh1_a12.seq	
6051	A A A T G C T A A A C T C G C C A C T A A C A G G C G A T T G A A T C A T T T C T T T T C A T T G	a909_a12.seq	
	A A A T C T T T C C T A A A A T C A T T G A T G A A T G A T T A A T T C A T A T T T T T T	Majority	
6110	6120	6130	6140
6150			
6101	A A A T C T T T C C T A A A A T C A T T G A T G A A T G A T T A A T T C A T A T T T T T T	coh1_a12.seq	
6101	A A A T C T T T C C T A A A A T C A T T G A T G A A T G A T T A A T T C A T A T T T T T T	a909_a12.seq	
	T C G A T A G T A T A A T T A A T C C T G A T G T A G A G G C T A A A G C T A A A C C A A C T A	Majority	
6160	6170	6180	6190
6200			
6151	T C G A T A G T A T A A T T A A T C C T G A T G T A G A G G C T A A A G C T A A A C C A A C T A	coh1_a12.seq	
6151	T C G A T A G T A T A A T T A A T C C T G A T G T A G A G G C T A A A G C T A A A C C A A C T A	a909_a12.seq	
	G G A T A T A A A T G T G T T C C A A T A C C T C C A G T A C T A G G C A A T T C T G T T C C T	Majority	
6210	6220	6230	6240
6250			
6201	G G A T A T A A A T G T G T T C C A A T A C C T C C A G T A C T A G G C A A T T C T G T T C C T	coh1_a12.seq	
6201	G G A T A T A A A T G T G T T C C A A T A C C T C C A G T A C T A G G C A A T T C T G T T C C T	a909_a12.seq	
	T T A C T G T T A G T A A T T T A A A A G T A T A T A C T G T A C T T C C A T C T A C T A A A T T	Majority	
6260	6270	6280	6290
6300			
6251	T T A C T G T T A G T A A T T T A A A A G T A T A T A C T G T A C T T C C A T C T A C T A A A T T	coh1_a12.seq	
6251	T T A C T G T T A G T A A T T T A A A A G T A T A T A C T G T A C T T C C A T C T A C T A A A T T	a909_a12.seq	
	C T C T T T T A T T G G T G C C A T T A T T A C C A T T T T G T C A A A G G T A A C T C C C C G	Majority	
6310	6320	6330	6340
6350			
6301	C T C T T T T A T T G G T G C C A T T A T T A C C A T T T T G T C A A A G G T A A C T C C C C G	coh1_a12.seq	
6301	C T C T T T T A T T G G T G C C A T T A T T A C C A T T T T G T C A A A G G T A A C T C C C C G	a909_a12.seq	
	T A G A A A T C A C T A A T A C T G A T A T A C T A T T T T A G G T A G T A G G T A C C C T G G A	Majority	
6360	6370	6380	6390
6400			
6351	T A G A A A T C A C T A A T A C T G A T A T A C T A T T T T A G G T A G T A G G T A C C C T G G A	coh1_a12.seq	
6351	T A G A A A T C A C T A A T A C T G A T A T A C T A T T T T A G G T A G T A G G T A C C C T G G A	a909_a12.seq	
	G G G G C C T T T G T C T C T G T T A G G T A G T A T T T C C T A C T G G G C A A A C T G A G G T A	Majority	
6410	6420	6430	6440
6450			
6401	G G G G C C T T T G T C T C T G T T A G G T A G T A T T T C C T A C T G G G C A A A C T G A G G T A	coh1_a12.seq	
6401	G G G G C C T T T G T C T C T G T T A G G T A G T A T T T C C T A C T G G G C A A A C T G A G G T A	a909_a12.seq	
	G T T A T T A G C A T C C A C T A A A C A A G C C T T T A T C G T T G T C A C C A G C C C T G	Majority	
6460	6470	6480	6490
6500			
6451	G T T A T T A G C A T C C A C T A A A C A A G C C T T T A T C G T T G T C A C C A G C C C T G	coh1_a12.seq	
6451	G T T A T T A G C A T C C A C T A A A C A A G C C T T T A T C G T T G T C A C C A G C C C T G	a909_a12.seq	

FIGURE 21I

120/487

A A T A C A T A G A T G C T A A G C T T A A T T C O C C A T T A G C A T C T G A T T C A T A A A T A Majority
 6510 6520 6530 6540 6550

6501 A A T A C A T A G A T G C T A A G C T T A A T T C C C A T T A G C A T C T G A T T C A T A A A T A coh1_a12.seq
 6501 A A T A C A T A G G A T G T G A A G C T T A A T T C C C A T T A G C A T C T G A T T C A T A A A T A a909_a12.seq

T C A A A A A C T G C A C C T G C T A A A A A T T A T T A T C A T T T C G A C A T T A A C T T T Majority
 6560 6570 6580 6590 6600

6551 T C A A A A A C T G C A C C T G C T A A A A A T T A T T A T C A T T T C G A C A T T A A C T T T coh1_a12.seq
 6551 T C A A A A A C T G C A C C T G C T A A A A A T T A T T A T C A T T T C G A C A T T A A C T T T a909_a12.seq

C T G T A G T C G T A C T T T T G C T T G A T A C G T G T A T T G G T A A A G C T A A T A T C T A Majority
 6610 6620 6630 6640 6650

6601 C T G T A G T C G T A C T T T T G C T T G A T A C G T G T A T T G G T A A A G C T A A T A T C T A coh1_a12.seq
 6601 C T G T A G T C G T A C T T T T G C T T G A T A C G T G T A T T G G T A A A G C T A A T A T C T A a909_a12.seq

C G T C T C C T G A A A C T G T C A G G G A T T G T A A G C C G G T A G C A T C A T A A G T T T A Majority
 6660 6670 6680 6690 6700

6651 C G T C T C C T G A A A C T G T C A G G G A T T G T A A G C C G G T A G C A T C A T A A G T T T A coh1_a12.seq
 6651 C G T C T C C T G A A A C T G T C A G G G A T T G T A A G C C G G T A G C A T C A T A A G T T T A a909_a12.seq

T C A G C T T C A C C A G T T G C T A G A T T T T T C T G T A A T T G A C T C A G A T A C T T T Majority
 6710 6720 6730 6740 6750

6701 T C A G C T T C A C C A G T T G C T A G A T T T T T C T G T A A T T G A C T C A G A T A C T T T coh1_a12.seq
 6701 T C A G C T T C A C C A G T T G C T A G A T T T T T C T G T A A T T G A C T C A G A T A C T T T a909_a12.seq

A A A T T C A T C G T A G G C T T G T C A T C T A T T G A T A T A G A A G T T C C A T A A G G T A Majority
 6760 6770 6780 6790 6800

6751 A A A T T C A T C G T A G G C T T G T C A T C T A T T G A T A T A G A A G T T C C A T A A G G T A coh1_a12.seq
 6751 A A A T T C A T C G T A G G C T T G T C A T C T A T T G A T A T A G A A G T T C C A T A A G G T A a909_a12.seq

C T T T A A T T C T T A G T C T G A C C A T C T C T C A G C G G A A A A T T C T C T G T T G C Majority
 6810 6820 6830 6840 6850

6801 C T T T A A T T C C T T A G T C T G A C C A T C T C T C A G C G G A A A A A T T C T C T G T T G C coh1_a12.seq
 6801 C T T T A A T T C C T T A G T C T G A C C A T C T C T C A G C G G A A A A A T T C T C T G T T G C a909_a12.seq

A A C G T T T C A C T T G G A T T A A A C A A G A A G T C T T T C G T C T T A T C T C A T C T A G Majority
 6860 6870 6880 6890 6900

6851 A A C G T T T C A C T T G G A T T A A A C A A G A A G T C T T T C G T C T T A T C T C A T C T A G coh1_a12.seq
 6851 A A C G T T T C A C T T G G A T T A A A C A A G A A G T C T T T C G T C T T A T C T C A T C T A G a909_a12.seq

T C C A A C G A C A G T T T A C T T A C T C T G A C G G T G T A T T C T T A T G G T T G C C A A A Majority
 6910 6920 6930 6940 6950

6901 T C C A A C G A C A G T T T A C T T A C T C T G A C G G G T G T A T T C T T A T G G T T G C C A A A coh1_a12.seq
 6901 T C C A A C G A C A G T T T A C T T A C T C T G A C G G G T G T A T T C T T A T G G T T G C C A A A a909_a12.seq

C A G C A T A T A A G G T A T T T G T T G C A T C A G G G T T G T T A T C A A T A C C T A T T G A T Majority
 6960 6970 6980 6990 7000

6951 C A G C A T A T A A G G T A T T T G T T G C A T C A G G G G T T G T T A T C A A T A C C T A T T G A T coh1_a12.seq
 6951 C A G C A T A T A A G G T A T T T G T T G C A T C A G G G G T T G T T A T C A A T A C C T A T T G A T a909_a12.seq

T G A C C T G G T G T A A A T T C C A C A C G T C C T G T A T C A G C T A A A T C C T T A T C A T G Majority
 7010 7020 7030 7040 7050

7001 T G A C C T G G T G T A A A T T C C A C A C G T C C T G T A T C A G C T A A A T C C T T A T C A T G coh1_a12.seq
 7001 T G A C C T G G T G T A A A T T C C A C A C G T C C T G T A T C A G C T A A A T C C T T A T C A T G a909_a12.seq

A T G C C A A C C A A T A A G G T T G T A A C C T G T C C T T G T A A A G T A T T G G T T T C A G Majority
 7060 7070 7080 7090 7100

7051 A T G C C A A C C A A T A A G G T T G T A A C C T G T C C T T G T A A A G T A T T G G T T T C A G coh1_a12.seq
 7051 A T G C C A A C C A A T A A G G T T G T A A C C T G T C C T T G T A A A G T A T T G G T T T C A G a909_a12.seq

G A A T T G T A G T T G T G C T A T T C A A C T C C A T A C G C G G G T G T C T C T A C T T G T G T T Majority
 7110 7120 7130 7140 7150

7101 G A A T T G T A G T T G T G C T A T T C A A C T C C A T A C G C G G G T G T C T C T A C T T G T G T T coh1_a12.seq
 7101 G A A T T G T A G T T G T G C T A T T C A A C T C C A T A C G C G G G T G T C T C T A C T T G T G T T a909_a12.seq

FIGURE 21J

121/487

Assignment Report of WO 2006/078318

using Sanger sequencing method with Weighted residue weight table.

Thursday, July 29, 2004 6:49 PM

PCT/US2005/027239

Page 12

ACCACATTACCACTTCTACTCTAGTACCCACCGTTACCATTTGATATTGAT Majority
 7160 7170 7180 7190 7200

7151 ACCACATTACCACTTCTACTCTAGTACCCACCGTTACCATTTGATATTGAT coh1_a12.seq
 7151 ACCACATTACCACTTCTACTCTAGTACCCACCGTTACCATTTGATATTGAT a909_a12.seq

TGAGGTATCTTCTAATTGATATCTCCTACTGGAAATAATGACAGGTTTA Majority
 7210 7220 7230 7240 7250

7201 GGAGGTATCTTCTAATTGATATCTCCTACTGGAAATAATGACAGGTTTA coh1_a12.seq
 7201 GGAGGTATCTTCTAATTGATATCTCCTACTGGAAATAATGACAGGTTTA a909_a12.seq

TGGTGATATTTTATAGCATCTGCTAAATGGGGTCAATATCAATGGAA Majority
 7260 7270 7280 7290 7300

7251 TGGTGATATTTTATAGCATCTGCTAAATGGGGTCAATATCAATGGAA coh1_a12.seq
 7251 TGGTGATATTTTATAGCATCTGCTAAATGGGGTCAATATCAATGGAA a909_a12.seq

TCATATGGGTATAAATTACCATTTGTAACCAACGCCACGGAAACGATA Majority
 7310 7320 7330 7340 7350

7301 TCATATGGGTATAAATTACCATTTGTAACCAACGCCACGGAAACGATA coh1_a12.seq
 7301 TCATATGGGTATAAATTACCATTTGTAACCAACGCCACGGAAACGATA a909_a12.seq

GCCATCTGGCATTGTCGGACGTCTCAGTAAGGCTGAATGGGAGCCATCGT Majority
 7360 7370 7380 7390 7400

7351 GCCATCTGGCATTGTCGGACGTCTCAGTAAGGCTGAATGGGAGCCATCGT coh1_a12.seq
 7351 GCCATCTGGCATTGTCGGACGTCTCAGTAAGGCTGAATGGGAGCCATCGT a909_a12.seq

CATAGGAATCAGGGTCAGTAGGCTCATTACTTGTAAATTGCTGACCA Majority
 7410 7420 7430 7440 7450

7401 CATAGGAATCAGGGTCAGTAGGCTCATTACTTGTAAATTGCTGACCA coh1_a12.seq
 7401 CATAGGAATCAGGGTCAGTAGGCTCATTACTTGTAAATTGCTGACCA a909_a12.seq

GAAGCATCCAATGCTGGCTTCCATCTGTAACCAACAGCATCATGCTGTA Majority
 7460 7470 7480 7490 7500

7451 GAAGCATCCAATGCTGGCTTCCATCTGTAACCAACAGCATCATGCTGTA coh1_a12.seq
 7451 GAAGCATCCAATGCTGGCTTCCATCTGTAACCAACAGCATCATGCTGTA a909_a12.seq

TATAATATGATAATCTCCAGCCTTCCCCAAATAGCTCTAAATTGATAAT Majority
 7510 7520 7530 7540 7550

7501 TATAATATGATAATCTCCAGCCTTCCCCAAATAGCTCTAAATTGATAAT coh1_a12.seq
 7501 TATAATATGATAATCTCCAGCCTTCCCCAAATAGCTCTAAATTGATAAT a909_a12.seq

CTTGAGTTACAGCACCTGAAAAGTTATAAGGTCTAACATACCTACCATCTGG Majority
 7560 7570 7580 7590 7600

7551 CTTGAGTTACAGCACCTGAAAAGTTATAAGGTCTAACATACCTACCATCTGG coh1_a12.seq
 7551 CTTGAGTTACAGCACCTGAAAAGTTATAAGGTCTAACATACCTACCATCTGG a909_a12.seq

TTAACATAATACCAACCGACTAATTGTAAGCGTCTTTTACGTACTTGT Majority
 7610 7620 7630 7640 7650

7601 TTAACATAATACCAACCGACTAATTGTAAGCGTCTTTTACGTACTTGT coh1_a12.seq
 7601 TTAACATAATACCAACCGACTAATTGTAAGCGTCTTTTACGTACTTGT a909_a12.seq

CTTAGTTGTTGATCAACATTGAGAGACTAGTATCTGTCGTATAATAGG Majority
 7660 7670 7680 7690 7700

7651 CTTAGTTGTTGATCAACATTGAGAGACTAGTATCTGTCGTATAATAGG coh1_a12.seq
 7651 CTTAGTTGTTGATCAACATTGAGAGACTAGTATCTGTCGTATAATAGG a909_a12.seq

CATCTTGTAGTGGAGATCTTGTAACTACCTTATAAATAC Majority
 7710 7720 7730 7740 7750

7701 CATCTTGTAGTGGAGATCTTGTAACTACCTTATAAATAC coh1_a12.seq
 7701 CATCTTGTAGTGGAGATCTTGTAACTACCTTATAAATAC a909_a12.seq

TATGTACCTGAAGGATCTTGGATATAATCCCTTGTAAATATCTGTATAATC Majority
 7760 7770 7780 7790 7800

7751 TATGTACCTGAAGGATCTTGGATATAATCCCTTGTAAATATCTGTATAATC coh1_a12.seq
 7751 TATGTACCTGAAGGATCTTGGATATAATCCCTTGTAAATATCTGTATAATC a909_a12.seq

FIGURE 21K

122/487

Alignment Report of WO 2006/078318, n method with Weighted residue weight table.
Thursday, July 29, 2004 6:49 PM

PCT/US2005/027239

Page 13

CGG AATAC GAT CAC CATA ATG CAG T C TAA ATAGGTATCATCTGTTTG Majority
 7810 7820 7830 7840 7850

7801 CGG AATAC GAT CAC CATA ATG CAA ATCTAA ATAGGTATCATCTGTTTG coh1_a12.seq
 7801 CGG AATAC GAT CAC CATA ATG CAA ATCTAA ATAGGTATCATCTGTTTG a909_a12.seq

ATA ATT GGG CCT CCC GTT GGATCAATATTGACACGATATGTTACCTTTGC Majority
 7860 7870 7880 7890 7900

7851 ATA ATT GGG CCT CCC GTT GGATCAATATTGACACGATATGTTACCTTTGC coh1_a12.seq
 7851 ATA ATT GGG CCT CCC GTT GGATCAATATTGACACGATATGTTACCTTTGC a909_a12.seq

CAAC CTG CAT AGACT TTAACATCATGAGGAGGCATAGT C C T G T T A A A G T C Majority
 7910 7920 7930 7940 7950

7901 CAAC CTG CAT AGACT TTAACATCATGAGGAGGCATAGT C G T T A A A G T C coh1_a12.seq
 7901 CAAC CTG CAT AGACT TTAACATCATGAGGAGGCATAGT C G T T A A A G T C a909_a12.seq

AAA TACT TTG TGT TGT GCT TGGTCTTTATACCATTTACCCAAACAT Majority
 7960 7970 7980 7990 8000

7951 AAA TACT TTG TGT TGT GCT TGGTCTTTATACCATTTACCCAAACAT coh1_a12.seq
 7951 AAA TACT TTG TGT TGT GCT TGGTCTTTATACCATTTACCCAAACAT a909_a12.seq

ACC CTGGT CGACTAGGTTAGGTTGAACCGTTGTCGTATCGGGGGCATAA Majority
 8010 8020 8030 8040 8050

8001 ACC CTGGT CGACTAGGTTAGGTTGAACCGTTGTCGTATCGGGGGCATAA coh1_a12.seq
 8001 ACC CTGGT CGACTAGGTTAGGTTGAACCGTTGTCGTATCGGGGGCATAA a909_a12.seq

GAGGACAAATTTGCTCATATAGAACATCCTTACTGGAAAATAGGAA Majority
 8060 8070 8080 8090 8100

8051 GAGGACAAATTTGCTCATATAGAACATCCTTACTGGAAAATAGGAA coh1_a12.seq
 8051 GAGGACAAATTTGCTCATATAGAACATCCTTACTGGAAAATAGGAA a909_a12.seq

CTCTGTATTATCAAGCGGATCTAKATATTTAACTCTTGTATGAATTACGT Majority
 8110 8120 8130 8140 8150

8101 CTCTGTATTATCAAGCGGATCTAAATATTTAACTCTTGTATGAATTACGT coh1_a12.seq
 8101 CTCTGTATTATCAAGCGGATCTAAATATTTAACTCTTGTATGAATTACGT a909_a12.seq

CATACCATACCACTAAAGTTCAAATACTTTGGTAGTCTCCATATTTA Majority
 8160 8170 8180 8190 8200

8151 CATACCATACCACTAAAGTTCAAATACTTTGGTAGTCTCCATATTTA coh1_a12.seq
 8151 CATACCATACCACTAAAGTTCAAATACTTTGGTAGTCTCCATATTTA a909_a12.seq

TCTGTAGTATTCTGCCATTGGCACTTTGGTATGCACTCGTTGTCT Majority
 8210 8220 8230 8240 8250

8201 TCTGTAGTATTCTGCCATTGGCACTTTGGTATGCACTCGTTGTCT coh1_a12.seq
 8201 TCTGTAGTATTCTGCCATTGGCACTTTGGTATGCACTAGTTGTAG a909_a12.seq

TGGGTCTGATCAAATAGGTAAATTATCTGGATATAAGCTTGTAGTATT Majority
 8260 8270 8280 8290 8300

8251 TGGGTCTGATCAAATAGGTAAATTATCTGGATATAAGCTTGTATATT coh1_a12.seq
 8251 TGGGTCTGATCAAATAGGTAAATTATCTGGATATAAGCTTGTATATT a909_a12.seq

TAACATTAATCTAGGTATTCTGTAAAGGTAAATCTGGTCTGGTCCC Majority
 8310 8320 8330 8340 8350

8301 TAACATTAATCTAGGTATTCTGTAAAGGTAAATCTGGTCTGGTCCC coh1_a12.seq
 8301 TAACATTAATCTAGGTATTCTGTAAAGGTAAATCTGGTCTGGTCCC a909_a12.seq

GCACCTCCCCCTGTCTGCTAAAGAGTATTGCCATCTAGTCCCTGTT Majority
 8360 8370 8380 8390 8400

8351 GCACCTCCCCGTATCTGCTAAAGAATAAGTGCCTCATCTGGTCTGGTCCC coh1_a12.seq
 8351 GCACCTCCCCGTATCTGCTAAAGAATAAGTGCCTCATCTGGTCTGGTCCC a909_a12.seq

GTAGAACGGATAATTGGATTCTCTTCCCTTTGGATAGAGTTTATT Majority
 8410 8420 8430 8440 8450

8401 GAAGAACGGATAATTGGATTCTCTTCCCTTTGGAAAGAGTTTGTATTA coh1_a12.seq
 8401 ATAGAACGGATAATTGGATTCTCTTCCCTTTGGAAAGAGTTTGTATTA a909_a12.seq

FIGURE 21L

C A T C T G A A T T T C T G T G A C T C C A T T G G G T A C T A T G A A C T C A C C C A A A Majority

8460	8470	8480	8490	8500
------	------	------	------	------

8451 **C A T C T G A A T C A A C G G T A T C A T T A G G T A A A A T G A A C T C A C C C A A A cohl_a12.seq**
8451 **C A T A A G G A T T T G C T T A G T G A C T C C A C T G G G A G C T A A A C T C A C C C A A A a909_a12.seq**

T A A C T C A T T C C T T A T G T T C C A G T T T G G T T A T T T C C A A C A T T G G T T A G G T A Majority

8510	8520	8530	8540	8550
------	------	------	------	------

8495 **T A A C T C A T T C C A T A G G T T C C A A C T T G G T T A T T T C C A A C A T T G C T T A A A T A cohl_a12.seq**
8501 **T A A C T C A T T C C T G A T A T T C C A G T T G A A G T T A G G T A a909_a12.seq**

A C G C C A T G C A C C T G T C T T C C A T T G A T A G C C A T T C G G G G C T A A G G T T G T A C Majority

8560	8570	8580	8590	8600
------	------	------	------	------

8545 **A C G C C A T G C A C C T G T C T T C C A T T G A T A A C C A T T A G C G G G C A A G G T T G T A C cohl_a12.seq**
8536 **A C G C C A C G C A C C T G T C T T C C A T T G A T A G C C A T T C G C A G C T A A A G T T G T A C a909_a12.seq**

C G T A T A G T C C T G T G T A G G T T C G G C A T C T G A T G C T C T A G T T C T A G G A A T C Majority

8610	8620	8630	8640	8650
------	------	------	------	------

8595 **C G T A A A G T C C T G T G T A A G T A C A G G C A T C A G A G C T C C A A T T A T A G G A A T A cohl_a12.seq**
8586 **C A T A T A G T C C A G T A T A G G T T C G G C A T A T G A T G C A C T A G T C C A A G G A A A C a909_a12.seq**

G T A G T A T T T G G T A A T G A A T C T C C G A G T A G C C C C T T T T T G C A A A T T T A T Majority

8660	8670	8680	8690	8700
------	------	------	------	------

8644 **G T A A T A T T C T G G C A A G G A A T A T C C C C C A T A T T T T G C A A A T T T A T cohl_a12.seq**
8636 **G A A G A A C T T T G A T A A T A A A C C T C A G A G T A G C C C G T T T G C A A A T C T E A T a909_a12.seq**

T G T G A T G A G T T T C T A T C A T A A T A A C A T T A A C G G A C A C T T G A A C C A T C G T Majority

8710	8720	8730	8740	8750
------	------	------	------	------

8689 **T G T G A T G A G T T T C T A T C A T A A T A A C A T T A A C A A C A C T T G A A C C A T C G T cohl_a12.seq**
8686 **A G T T A C A A G T T T C T A T C A T A A T A A C A T T A A C G G A C A C T T G A A C C A T C G T a909_a12.seq**

C T T T A T C A T G A C A G A A G T T T C T G T C T C G T A T T A A C T T T A A G C C A Majority

8760	8770	8780	8790	8800
------	------	------	------	------

8739 **C T T T A T C A T G A C A G A A G T T T C T G T C T C G T A T T A A C T T T A A G C C A cohl_a12.seq**
8736 **C T T T A T C A T G A C A G A A G T T T C T G T C T C G T A T T A A C T T T A A G C C A a909_a12.seq**

G T C G G T A G T T T C A T T A A T A C T T G T G T G T A G C G T C T G A T T A G A T A A Majority

8810	8820	8830	8840	8850
------	------	------	------	------

8789 **G T C G G T A G T T T A C T T A A T A C T T G T G T G T A G C G T C T G A T T A G A T A A cohl_a12.seq**
8786 **G T C G G C A A T T T G C A T T A A T A C T T G T G T G T A G C G T C T G A T T A G A T A A a909_a12.seq**

A G A T A G G C C T G A T C G T G T T A C T T G C C C T G C G T A C T C A T A T G T C T T T G C G Majority

8860	8870	8880	8890	8900
------	------	------	------	------

8839 **A G A T A G G C C T G A T C G T G T T A C T T G C C C T G C G T A C T C A T A T G T C T T T G C G cohl_a12.seq**
8836 **A G A T A G G C C T G A T C G T G T T A C T T G C C C T G C G T A C T C A T A T G T C T T T G C G a909_a12.seq**

C A T C A G T A G G C A T T T I A T T A F C C G T T G C T G A T T G T T G C C A G T A G T T T A T C Majority

8910	8920	8930	8940	8950
------	------	------	------	------

8889 **C A T C A G T A G G C A T T T I A T T A F C C G T T G C T G A T T G T T G C C A G T A G T T T A T C cohl_a12.seq**
8886 **C A T C A G T A G G C A T T T I A T T A F C C G T T G C T G A T T G T T G C C A G T A G T T T A T C a909_a12.seq**

G T G T A G G T T G T T G C G G G C A C C A A T G T G C A T A T A G C G T C G T A T C C T T Majority

8960	8970	8980	8990	9000
------	------	------	------	------

8939 **G T G T A G G T T G T T G C G G G C A C C A A T G T G C A T A T A G C G T C G T A T C C T T cohl_a12.seq**
8936 **G T G T A G G T T G T T G C G G G C A C C A A T G T G C A T A T A G C G T C G T A T C C T T a909_a12.seq**

G G T C A A G A C T T G A T T A A A T C A A A G G C T G T C C C A C C A C T A G C G A G C T G T G T Majority

9010	9020	9030	9040	9050
------	------	------	------	------

8989 **G G T C A A G A C T T G A T T A A A T C A A A G G C T G C C C A C C A C T A G C G A G C T G T G T cohl_a12.seq**
8986 **G G T C A A G A C T T G A T T A A A T C A A A G G C T G C C C A C C A C T A G C G A G C T G T G T a909_a12.seq**

A C C A C C C T G C A A A A G T A A C C T G G C C T T G T T G G A T C A T T A G G C T T A A T T Majority

9060	9070	9080	9090	9100
------	------	------	------	------

9039 **A C C A C C C T G C A A A A A G T A A C C T G G C C T T G T T G G A T C A T T A G G C T T A A T T cohl_a12.seq**
9036 **A C C A C C C T G C A A A A A G T A A C C T G G C C T T G T T G G A T C A T T A G G C T T A A T T a909_a12.seq**

FIGURE 21M

	G T C G A A G C A G G C T T C G T G T T A A C C A C A G G A C G G A G G T G C A A T A T A G G T A A C	Majority
9110	9120	9130
9140	9150	
9089	G T C G A A G C A G G C T T G G C T C G T G T T A A C C A C A C G A C G G A G G T G C A A T A T A G G T A A C	coh1_a12.seq
9086	G T C G A A G C A G G C T T G G C T C G T G T T A A C C A C A C G A C G G A G G T G C A A T A T A G G T A A C	a909_a12.seq
	T C C T G T T G A T A A G T C G C C C T G T G T G A A T T C A A C A C C G T A C G A T T C T T T A A	Majority
9160	9170	9180
9190	9200	
9139	T C C T G T T G A T A A G T C G C C C T G T G T G A A T T C A A C A C C G T A C G A T T C T T T A A	coh1_a12.seq
9136	T C C T G T T G A T A A G T C G C C C T G T G T G A A T T C A A C A C C G T A C G A T T C T T T A A	a909_a12.seq
	A G A C A G G A T A A A G A C T T A T G T C T G A A G A T A C A G G T A A T G C T T G A A T T T C T	Majority
9210	9220	9230
9240	9250	
9189	A G A C A G G A T A A A G A C T T A T G T C T G A A G A T A C A G G T A A T G C T T G A A T T T C T	coh1_a12.seq
9186	A G A C A G G A T A A A G A C T T A T G T C T G A A G A T A C A G G T A A T G C T T G A A T T T C T	a909_a12.seq
	G A T T C A G A A A G T G G G A G C T C C A T T T G A G T T T A G A C C A A C C T A C A A T A A	Majority
9260	9270	9280
9290	9300	
9239	G A T T C A G A A A G T G G G A G C T C C A T T T G A G T T T A G A C C A A C C T A C A A T A A	coh1_a12.seq
9236	G A T T C A G A A A G T G G G A G C T C C A T T T G A G T T T A G A C C A A C C T A C A A T A A	a909_a12.seq
	T A A T G T T G A A G T G G G G T G G T G A A A C T T T A A A T G A A C T T A G A T C C C C G G T T C	Majority
9310	9320	9330
9340	9350	
9289	T A A T G T T G A A G T G G G G T G G T G A A A C T T T A A A T G A A C T T A G A T C C C C G G T T C	coh1_a12.seq
9286	T A A T G T T G A A G T G G G G T G G T G A A A C T T T A A A T G A A C T T A G A T C C C C G G T T C	a909_a12.seq
	C G T T T C C T G A A C T A T C C A A T G G T A C T T G A T A A C G C T C C C A A A A T A C T T T A	Majority
9360	9370	9380
9390	9400	
9339	C G T T T C C T G A A C T A T C C A A T G G T A C T T G A T A A C G C T C C C A A A A T A C T T T A	coh1_a12.seq
9336	C G T T T C C T G A A C T A T C C A A T G G T A C T T G A T A A C G C T C C C A A A A T A C T T T A	a909_a12.seq
	C C A G C A G A A T C A T C A T A A A G T T A C T G T C G C C A C T T T A C T C A T A A A T G G	Majority
9410	9420	9430
9440	9450	
9389	C C A G C A G A A T C A T C A T A A A G T T A C T G T C G C C A C T T T A C T C A T A A A T G G	coh1_a12.seq
9386	C C A G C A G A A T C A T C A T A A A G T T A C T G T C G C C A C T T T A C T C A T A A A T G G	a909_a12.seq
	A C G A A C A T A A A T T T C T T T G T C A G T T A C A G T T A T T G G G T C A C C C A A A T	Majority
9460	9470	9480
9490	9500	
9439	A C G A A C A A A A T T T C T T T G T C A G T T A C A G T T A T T G G G T C A C C C A A A T	coh1_a12.seq
9436	A C G A A C A T A A A T T T C T T T G T C A G T T A C A G T T A T T G G G T C A C C C A A A T	a909_a12.seq
	T A A C A G G G T C A C C A T A C T T T C C A G T A C T G A T A C A G G T A T A C C C A A C C A	Majority
9510	9520	9530
9540	9550	
9489	T A A C A G G G T C A C C A T A C T T T C C A G T A C T G A T A C A G G T A T A C C C A A C C A	coh1_a12.seq
9486	T A A C A G G G T C A C C A T A C T T T C C A G T A C T G A T A C A G G T A T A C C C A A C C A	a909_a12.seq
	T T A A A A T G C T C T C C T G C T T T A A T C G T C G G A A T C C C C A A C T T C T C C T A G A G A	Majority
9560	9570	9580
9590	9600	
9539	T T A A A A T G C T C T C C T G C T T T A A T C G T C G G A A T C C C C A A C T T C T C C T A G A G A	coh1_a12.seq
9536	T T A A A A T G C T C T C C T G C T T T A A T C G T C G G A A T C C C C A A C T T C T C C T A G A G A	a909_a12.seq
	T T C T C C A C T T T T A A T T T G A T G A T G A A C T T G C A T A C C C T G A A G G C T G T C A	Majority
9610	9620	9630
9640	9650	
9589	T T C T C C A C T T T T A A T T T G A T G A T G A A C T T G C A T A C C C T G A A G G C T G T C A	coh1_a12.seq
9586	T T C T C C A C T T T T A A T T T G A T G A T G A A C T T G C A T A C C C T G A A G G C T G T C A	a909_a12.seq
	G G A A T T T A A A T C A G T T C C C G T C A T T A T T T G A A A A T G G T A A G T T A A C C T A	Majority
9660	9670	9680
9690	9700	
9639	G G A A T T T A A A T C A G T T C C C G T C A T T A T T T G A A A A T G G T A A G T T A A C C T A	coh1_a12.seq
9636	G G A A T T T A A A T C A G T T C C C G T C A T T A T T T G A A A A T G G T A A G T T A A C C T A	a909_a12.seq
	G G A A C T T C T G T A T T A T C C T G T G A A C A A T T G C A T A A A T G G G A G A T G A A T C	Majority
9710	9720	9730
9740	9750	
9689	G G A A C T T C T G T A T T A T C C T G T G A A C A A T T G C A T A A A T G G G A G A T G A A T C	coh1_a12.seq
9686	G G A A C T T C T G T A T T A T C C T G T G A A C A A T T G C A T A A A T G G G A G A T G A A T C	a909_a12.seq

FIGURE 2 IN

T G T T T A A A A G C A A C A T T A C I T G C T A G T G T T C T T A G T T T C T G C A G T A T C T T Majority
 9760 9770 9780 9790 9800

9739 T G T T T A A A A G C A A C A T C A C T G C T A G T G T T C T T A G T T T C T G C A G T A T C T T cohl_a12.seq
 9736 T G T T T A A A A G C A A C A T C A C T G C T A G T G T T C T T A G T T T C T G C A G T A T C T T a909_a12.seq

T A G A T T T T A A T A C T T C T G T T G A C C A T C A T C T T T A A A G T G A A C A A C T T T A Majority
 9810 9820 9830 9840 9850

9789 T A G A T T T T A A T A C T T C T G T T G A C C A T C A T C T T T A A A G T G A A C A A C T T T A cohl_a12.seq
 9786 T A G A T T T T A A T A C T T C T G T T G A C C A T C A T C T T T A A A G T G A A C A A C T T T A a909_a12.seq

A G G T T T C A T C T G A A G C T T C T A A T G G C T T A T C A T A G T T G A C C T C T A C T T T Majority
 9860 9870 9880 9890 9900

9839 A G G T T T C A T C T G A A G C T T C T A A T G G C T T A T C A T A G T T G A C C T C T A C T T T cohl_a12.seq
 9836 A G G T T T C A T C T G A A G C T T C T A A T G G C T T A T C A T A G T T G A C C T C T A C T T T a909_a12.seq

T A C T G G G G C T T G G G G T T C T G C T T C T T A C C A T T T G A C T C A A T A G T A A T G T Majority
 9910 9920 9930 9940 9950

9889 T A C T G G G G C T T G G G G T T C T G C T T C T T A C C A T T T G A C T C A A T A G T A A T G T cohl_a12.seq
 9886 T A C T G G G G C T T G G G G T T C T G C T T C T T A C C A T T T G A C T C A A T A G T A A T G T a909_a12.seq

C A T A G A G T T T G A A G T T T T G A T T T C A C T A T C T G T T T A G C A A C T T C T G T C Majority
 9960 9970 9980 9990 10000

9939 C A T A G A G T T T G A A G T T T T G A T T T C A C T A T C T G T T T A G C A A C T C T G T C cohl_a12.seq
 9936 C A T A G A G T T T G A A G T T T T G A T T T C A C T A T C T G T T T A G C A A C T T C T G T C a909_a12.seq

A A T G C T T T T T C T T A A T G T C T T T A A A A G T A G C T G A A T T G T C T T T T A A T T C Majority
 10010 10020 10030 10040 10050

9989 A A T G C T T T T T C T T A A T G T C T T T A A A A G T A G C T G A A T T G T C T T T T A A T T C cohl_a12.seq
 9986 A A T G C T T T T T C T T A A T G T C T T T A A A A G T A G C T G A A T T G T C T T T T A A T T C a909_a12.seq

C G T C A C C T T T A A T C A G C A T T T T A G G A A T C T T A G C T T C T T G G T C A A A G Majority
 10060 10070 10080 10090 10100

10039 C G T C A C C T T T A A T C A G C A T T T T A G G A A T C T T A G C T T C T T G G T C A A A G cohl_a12.seq
 10036 C G T C A C C T T T A A T C A G C A T T T T A G G A A T C T T A G C T T C T T G G T C A A A G a909_a12.seq

T C A C T G T T A C A G T A T A G T C T G C A C C T C T A A A C A T C A A T G G T T C T T C A C G G Majority
 10110 10120 10130 10140 10150

10089 T C A C T G T T A C A G T A T A G T C T G C A C C T C T A A A C A T C A A T G G T T C T T C A C G G cohl_a12.seq
 10086 T C A C T G T T A C A G T A T A G T C T G C A C C T C T A A A C A T C A A T G G T T C T T C A C G G a909_a12.seq

T A A G C A G C T T C C T C A G A A G A T G A T G T T C T G T A C A C T A G A A G C A G G A G T Majority
 10160 10170 10180 10190 10200

10139 T A A G C A G C T T C C T C A G A A G A T G A T G T T C T G T A C A C T A G A A G C A G G A G T cohl_a12.seq
 10136 T A A G C A G C T T C C T C A G A A G A T G A T G T T C T G T A C A C T A G A A G C A G G A G T a909_a12.seq

C T G T G G C T T G C T C T G C T C A A C A C T T G A T T G A G A A C T A G A T G T G A T G A A G Majority
 10210 10220 10230 10240 10250

10189 C T G G G C T T G C T C T G C T C A A C A C T T G A T T G A G A A C T A G A T G T G A T G A A G cohl_a12.seq
 10186 C T G T G G C T T G C T C T G C T C A A C A C T T G A T T G A G A A C T A G A T G T G A T G A A G a909_a12.seq

T T A C C T G G G C T A G A A T T T T A T T T C T A A A G T A A T C C C C A C A T C A T C T G T C Majority
 10260 10270 10280 10290 10300

10239 T T A C C T G G G C T A G A A T T T T A T T T C T A A A G T A A T C C C C A C A T C A T C T G T C cohl_a12.seq
 10236 T T A C C T G G G C T A G A A T T T T A T T T C T A A A G T A A T C C C C A C A T C A T C T G T C a909_a12.seq

T T A G T T T C T T C A A C T G T T A T T G C T G G T A G A A T T A A A A A A T A A G T C G T T A A Majority
 10310 10320 10330 10340 10350

10289 T T A G T T T C T T C A A C T G T T A T T G C T G G T A G A A T T A A A A A A T A A G T C G T T A A cohl_a12.seq
 10286 T T A G T T T C T T C A A C T G T T A T T G C T G G T A G A A T T A A A A A A T A A G T C G T T A A a909_a12.seq

A A A A G T T G T T A G G A T C A T C A A T G A C C A C A T G A T A A T T T C C A C T C T T T A G Majority
 10360 10370 10380 10390 10400

10339 A A A A G T T G T T A G G A T C A T C A A T G A C C A C A T G A T A A T T T C C A C T C T T T A G cohl_a12.seq
 10336 A A A A G T T G T T A G G A T C A T C A A T G A C C A C A T G A T A A T T T C C A C T C T T T A G a909_a12.seq

FIGURE 210

G G T G T T T T T C T L F T T A A T G A T T C G A T T A A A A G T T G A C A C T T C T T T Majority

10410	10420	10430	10440	10450
-------	-------	-------	-------	-------

10389 G C T G T T T T T C T T T A A T G A T T C G A T T A A A A G T T G A C A C T T C T T T coh1_a12.seq
 10386 G G T G T T T T T C T T T A A T G A T T C G A T T A A A A G T T G A C A C T T C T T T a909_a12.seq

A G C A T T T T G C A T C C T C C C T A A C C T T A A T T G A T A C T A C T A A T C T T A C C T A Majority

10460	10470	10480	10490	10500
-------	-------	-------	-------	-------

10439 A G C A T T T T G C A T C C T C C C T A A C C T T A A T T G A T A C T A C T A A T C T T A C C T A coh1_a12.seq
 10436 A G C A T T T T G C A T C C T C C C T A A C C T T A A T T G A T A C T A C T A A T C T T A C C T A a909_a12.seq

G A G G C C A T A T T C T G A A A G G A A A T T T A C C T A C A A T T T G T T C T T C T G A A A C A Majority

10510	10520	10530	10540	10550
-------	-------	-------	-------	-------

10489 G A G G C C A T A T T C T G A A A G G A A A T T T A C C T A C A A A T T T G T T C T T C T G A A A C A coh1_a12.seq
 10485 G A G G C C A T A T T C T G A A A G G A A A T T T A C C T A C A A A T T T G T T C T T C T G A A A C A a909_a12.seq

T C T C C T A C A G A A G T A T T T C G A G A A T C A A T T G A A G T T T T C G G T T G T C T C C Majority

10560	10570	10580	10590	10600
-------	-------	-------	-------	-------

10539 T C T C C T A C A G A A G T A T T T C G A G A A T C A A T T G A A G T T T T C G G T T G T C T C C coh1_a12.seq
 10535 T C T C C T A C A G A A G T A T T T C G A G A A T C A A T T G A A G T T T T C G G T T G T C T C C a909_a12.seq

T A A T A C A A A A A T T T T T A T C A G G T A C T T G A T A T G G G T A T T T T A T A T T A C Majority

10610	10620	10630	10640	10650
-------	-------	-------	-------	-------

10589 T A A T A C A A A A A T T T T T A T C A G G T A C T T G A T A T G G G T A T T T T A T A T T A C coh1_a12.seq
 10585 T A A T A C A A A A A T T T T T A T C A G G T A C T T G A T A T G G G T A T T T T A T A T T A C a909_a12.seq

T A T T A C C G A G T G C T T T A T G A A T A A C A T A T G G T T C T T C A A C T T A T G T T G A Majority

10660	10670	10680	10690	10700
-------	-------	-------	-------	-------

10639 T A T T A C C G A G T G C T T T A T G A A T A A C A T A T G G T T C T T C A A C T T A T G T T G A coh1_a12.seq
 10635 T A T T A C C G A G T G C T T T A T G A A t A A C A T A T G G T T C T T C A A C T T A T G T T G A a909_a12.seq

T T C A C G T A A A C A T C C C C T T G A G A A T C A A T A T T A A C C C A G T C T C C T G A C T C Majority

10710	10720	10730	10740	10750
-------	-------	-------	-------	-------

10689 T T C A C G T A A A C A T C C C C T T G A G A A T C A A T A T T A A C C C A G T C T C C T G A C T C coh1_a12.seq
 10685 T T C A C G T A A A C A T C C C C T T G A G A A T C A A T A T T A A C C C A G T C T C C T G A C T C a909_a12.seq

T G C A A T A A C C C C G C T T G A C T A G G A C C T T A T T A T T G T A G T A A A A C G C G A C A A Majority

10760	10770	10780	10790	10800
-------	-------	-------	-------	-------

10739 T G C A A T A A C C C C G C T T G A C T A G G A C C T T A T T A T T G T A G T A A A A C G C G A C A A coh1_a12.seq
 10735 T G C A A T A A C C C C G C T T G A C T A G G A C C T T A T T A T T G T A G T A A A A C G C G A C A A a909_a12.seq

C G T C T C C A G T T T A A A A T T T G A A C C T T T A C T G T A A A G A C T A C A T C A C C T Majority

10810	10820	10830	10840	10850
-------	-------	-------	-------	-------

10789 C G T C T C C A G T T T A A A A T T T G A A C C T T T A C T G T A A A G A C T A C A T C A C C T coh1_a12.seq
 10785 C G T C T C C A G T T T A A A A T T T G A A C C T T T A C T G T A A A G A C T A C A T C A C C T a909_a12.seq

C C A T A A A A A C C G C A A T T A A A A T G G C T G T T G A G G C A A C C C C A T C A A G A T G T Majority

10860	10870	10880	10890	10900
-------	-------	-------	-------	-------

10839 C C A C T T A A A G T C T T A T T C A T T G A A T G T C C G T A G A T T C T T A A T A C A G G C A A coh1_a12.seq
 10835 C C A C T T A A A G T C T T A T T C A T T G A A T G T C C G T A G A T T C T T A A T A C A G G C A A a909_a12.seq

C C A T A A A A A C C G C A A T T A A A A T G G C T G T T G A G G C A A C C C C A T C A A G A T G T Majority

10910	10920	10930	10940	10950
-------	-------	-------	-------	-------

10889 C C A T A A A A A C C G C A A T T A A A A T G G C T A T T G A G G C A A C C C C A T C A A G A T G T coh1_a12.seq
 10885 C C A T A A A A A C C G C A A T T A A A A T G G C T G T T G A G G C A A C C C C A T C A A G A T G T a909_a12.seq

A T A T G G T A T T T T A A T G A C A C T C C A A A A G C G T T T C T G A T A A G T T A C G C G A Majority

10960	10970	10980	10990	11000
-------	-------	-------	-------	-------

10939 A T A T G G T A T T T T A A T G A C A C T C C A A A A A G C G T T T C T G A T A A G T T A C G C G A coh1_a12.seq
 10935 A T A T G G T A T T T T A A T G A C A C T C C A A A A A G C G T T T C T G A T A A G T T A C G C G A a909_a12.seq

T C C A G T T C T G A G A T A A T T A T C T G A A C T A A T C T G T C T T T C A T T G T C T A Majority

11010	11020	11030	11040	11050
-------	-------	-------	-------	-------

10989 T C C A G T T C T G A G A T A A T T A T C T G A A C T A A T C T G T C T T T C A T T G T C T A coh1_a12.seq
 10985 T C C A G T T C T G A G A T A A T T A T C T G A A C T A A T C T G T C T T T C A T T G T C T A a909_a12.seq

FIGURE 21P

127/487

Alignment Report WO 2006/078318 in method with Weighted residue weight table.

Thursday, July 29, 2004 6:49 PM

PCT/US2005/027239 Page 18

<u>C G C C T E F C T A T C H A C T A A A T F C T T A C G T T T C T A A A T A G G T A T C T G C A</u> Majority				
11060	11070	11080	11090	11100
11039 C G C C T C T C T A T C T A C T A A A T T C T T A C G T T T C T A A A T A G G T A T C T G C A	cohl_a12.seq			
11035 C G C C T C T C T A T C T A C T A A A T T C T T A C G T T T C T A A A T A G G T A T C T G C A	a909_a12.seq			
<u>G C T A A C T G A G G C A G T C T C A A A A A T A C C A C T A A G C A T T A A G G A A G C T T C G G C</u> Majority				
11110	11120	11130	11140	11150
11089 G C T A A C T G A G G C A G T C T C A A A A A T A C C A C T A A G C A T T A A G G A A G C T T C G G C	cohl_a12.seq			
11085 G C T A A C T G A G G C A G T C T C A A A A A T A C C A C T A A G C A T T A A G G A A G C T T C G G C	a909_a12.seq			
<u>A A T A G A A C C A G C T T G C T A A T T T G A T T T T T A T C A T C T A G G G C T T C T</u> Majority				
11160	11170	11180	11190	11200
11139 A A T A G A A C C A G C T T G C T A A T T T G A T T T T T A T C A T C T A G G G C T T C T	cohl_a12.seq			
11135 A A T A G A A C C A G C T T G C T A A T T T G A T T T T T A T C A T C T A G G G C T T C T	a909_a12.seq			
<u>T A A G T T G C T G A A T C T C T T C T G T T T T C A A T A A G A A G T T G C T G T T C T</u> Majority				
111210	111220	111230	111240	111250
11189 T A A G T T G C T G A A T C T C T T C T G T T T T C A A T A A G A A G T T G C T G T T C T	cohl_a12.seq			
11185 T A A G T T G C T G A A T C T C T T C T G T T T T C A A T A A G A A G T T G C T G T T C T	a909_a12.seq			
<u>A A C A T A A T T C T A G C A A G T C T T T C T T T A A T T T T T A A T C T T C C A T</u> Majority				
111260	111270	111280	111290	111300
111239 A A C A T A A T T C T A G C A A G T C T T T C T T T A A T T T T T A A T C T T C C A T	cohl_a12.seq			
111235 A A C A T A A T T C T A G C A A G T C T T T C T T T A A T T T T T A A T C T T C C A T	a909_a12.seq			
<u>C G G G A T T A C T C C T T A A C T G A A C C T T A A A T T A T C G T T T A G A T A T T A T A C</u> Majority				
111310	111320	111330	111340	111350
111289 C G G G A T T A C T C C T T A A C T G A A C C T T A A A T T A T C G T T T A G A T A T T A T A C	cohl_a12.seq			
111285 C G G G A T T A C T C C T T A A C T G A A C C T T A A A T T A T C G T T T A G A T A T T A T A C	a909_a12.seq			
<u>A A A G T T C T A A C C T T T A A A C T C A T T T T T G T C C T G T T T T T C T C A A A A A</u> Majority				
111360	111370	111380	111390	111400
111339 A A A G T T C T A A C C T T T A A A C T C A T T T T T G T C C T G T T T T T C T C A A A A A	cohl_a12.seq			
111335 A A A G T T C T A A C C T T T A A A C T C A T T T T T G T C C T G T T T T T C T C A A A A A	a909_a12.seq			
<u>A G T C T A T G C T A A A T T A A C A T T T T G A T A A T T T T T G A A A A A T C T C A T C G A</u> Majority				
111410	111420	111430	111440	111450
111389 A G T C T A T G C T A A A T T A A C A T T T T G A T A A T T T T T G A A A A A T C T C A T C G A	cohl_a12.seq			
111385 A G T C T A T G C T A A A T T A A C A T T T T G A T A A T T T T T G A A A A A T C T C A T C G A	a909_a12.seq			
<u>A G T C A T T T T C T T T G A A A G C T C G A A T T C T A G G C A T T A A A A G C C A T A T A</u> Majority				
111460	111470	111480	111490	111500
111439 A G T C A T T T T C T T T G A A A G C T C G A A T T C T A G G C A T T A A A A G C C A T A T A	cohl_a12.seq			
111435 A G T C A T T T T C T T T G A A A G C T C G A A T T C T A G G C A T T A A A A G C C A T A T A	a909_a12.seq			
<u>T C A A A T T G A T A T G G C T T T T T A T T A A A C A A A A G A A T C A A T A G</u> Majority				
111510	111520	111530	111540	111550
111489 T C A A A T T G A T A T G G C T T T T T A T T A A A C A A A A G A A T C A A T A G	cohl_a12.seq			
111476 T C A A A T T G A T A T G G C T T T T T A T T A A A C A A A A G A A T C A A T A G	a909_a12.seq			
<u>G A C A A T A G C C G T C A A T T T A G T G A C A T A A T C T A T T A C A G A T T A A G T T C T T A T</u> Majority				
111560	111570	111580	111590	111600
111539 G A C A A T A G C C G T C A A T T T A G T G A C A T A A T C T A T T A C A G A T T A A G T T C T T T	cohl_a12.seq			
111492 G A C A A T A G C C G T C A A T T T A G T G A C A T A A T C T A T T A C A G A T T A A G T T C T T T	a909_a12.seq			
<u>T G A A T T A A T A A T C C A A C T T T C A A C T G T T T T T C C A T G T G A A A T G T T C</u> Majority				
111610	111620	111630	111640	111650
111589 T G A A T T A A T A A T C C A A C T T T C A A C T G T T T T T C C A T G T G A A A T G T T C	cohl_a12.seq			
111542 T G A A T T A A T A A T C C A A C T T T C A A C T G T T T T T C C A T G T G A A A T G T T C	a909_a12.seq			
<u>T T T A A T T C T T T T A G C A A T A T T C T G T T G T A G T T T C T C T T A A T G C C T T A T</u> Majority				
111660	111670	111680	111690	111700
111639 T T T A A T T C T T T T A G C A A T A T T C T G T T G T A G T T T C T C T T A A T G C C T T A T	cohl_a12.seq			
111592 T T T A A T T C T T T T A G C A A T A T T C T G T T G T A T T T C T C T T A A T G C C T T A T	a909_a12.seq			

FIGURE 21Q

C T T T A G T A T A A A T C A A G A G A T T C A T G G A G T G A C T G A G T A T T T C T T C C Majority

11710 11720 11730 11740 11750

11689 C T T T A C T A A T A A A T C A A G A G A T T C A T G G A G T G A C T G A G T A T T T C T T C C cohi_a12.seq

11642 C T T T A C T A A T A A A T C A A G A G A T T C A T G G A G T G A C T G A G T A T T T C T T C C a909_a12.seq

A T G A T G A T T C C T A A C T C A G G G C T A T C A A T A A C T C A A C T G T T C C A C C C C G Majority

11760 11770 11780 11790 11800

11739 A T G A T G A T T C C T A A C T C A G G G C T A T C A A T A A C T C A A C T G T T C C A C C C C G cohi_a12.seq

11692 A T G A T G A T T C C T A A C T C A G G G C T A T C A A T A A C T C A A C T G T T C C A C C C C G a909_a12.seq

A T C T G T T G C A A T A A T A G C A C T C G A A A G T A G A C C C A G C T T C T A A A A T A G A G G Majority

11810 11820 11830 11840 11850

11789 A T C T G T T G C A A T A A T A G C A C T C G A A A G T A G A C C C A G C T T C T A A A A T A G A G G cohi_a12.seq

11742 A T C T G T T G C A A T A A T A G C A C T C G A A A G T A G A C C C A G C T T C T A A A A T A G A G G a909_a12.seq

T T G G T A A T C C C T C T G G A T A C A T T G A T G G G T A A A C A A A G A T A T C T G T C T G T Majority

11860 11870 11880 11890 11900

11839 T T G G T A A T C C C T C T G G A T A C A T T G A T G G G T A A A C A A A G A T A T C T G T C T G T cohi_a12.seq

11792 T T G G T A A T C C C T C T G G A T A C A T T G A T G G G T A A A C A A A G A T A T C T G T C T G T a909_a12.seq

G C C A T T A A A G A C A T A G T C T G T C A A A G T T T A A T T C C C C A A A A G T T A A T Majority

11910 11920 11930 11940 11950

11889 G C C A T T A A A G A C A T A G T C T G T C A A A G T T T A A T T C C C C A A A A G T T A A T cohi_a12.seq

11842 G C C A T T A A A G A C A T A G T C T G T C A A A G T T T A A T T C C C C A A A A G T T A A T a909_a12.seq

C T G T T T G G A C T G A T A T T T C T C T T C A A A T G T G C T A A T C A G G T C C G T C T C Majority

11960 11970 11980 11990 12000

11839 C T G T T T G G A C T G A T A T T T C T C T T C A A A T G T G C T A A T C A G G T C C G T C T C cohi_a12.seq

11892 C T G T T T G G A C T G A T A T T T C T C T T C A A A T G T G C T A A T C A G G T C C G T C T C a909_a12.seq

C T G C A A T C T G T A A A A T A A C A T T T C A G A G T A C T G T G A C A T C G A A A A T G C T Majority

12010 12020 12030 12040 12050

11989 C T G C A A T C T G T A A A A T A A C A T T T C A G A G T A C T G T G A C A T C G A A A A T G C T cohi_a12.seq

11942 C T G C A A T C T G T A A A A T A A C A T T T C A G A G T A C T G T G A C A T C G A A A A T G C T a909_a12.seq

T C T A A G A G C A A T T C A A T G C C T T T C T T A A T A A T T C T A C C A G G C A T A A G T Majority

12060 12070 12080 12090 12100

12039 T C T A A G A G C A A T T C A A T G C C T T T C T T A A T A A T T C T A C C A G G C A T A A G T cohi_a12.seq

11992 T C T A A G A G C A A T T C A A T G C C T T T C T T A A T A A T T C T A C C A G G C A T A A G T a909_a12.seq

G A T G A A A A A T A T C A T C A G C A G A T T T T C A A G G T A A G G C G T G T C A G C A A A A T Majority

12110 12120 12130 12140 12150

12089 G A T G A A A A A T A T C A T C A G C A G A T T T T C A A G G T A A G G C G T G T C A G C A A A A T cohi_a12.seq

12042 G A T G A A A A A T A T C A T C A G C A G A T T T T C A A G G T A A G G C G T G T C A G C A A A A T a909_a12.seq

C A G A G G C C T A G A C T T C A G A T A C C G A A T T T A A A T A A C T C C T T A G C T T G C T Majority

12160 12170 12180 12190 12200

12139 C A G A G C C T A G A C T T C A G A T A C C G A A T T T A A A T A A C T C C T T T A G C T T G C T cohi_a12.seq

12092 C A G A G G C C T A G A C T T C A G A T A C C G A A T T T A A A T A A C T C C T T T A G C T T G C T a909_a12.seq

A T A T T A A A A T G T T T A A C C A T C A A C G C T T C T C T T G G A T A C C G C A T A A A A Majority

12210 12220 12230 12240 12250

12189 A T A T T A A A A T G T T T A A C C A T C A A C G C T T C T C T T G G A T A C C G C A T A A A A cohi_a12.seq

12142 A T A T T A A A A T G T T T A A C C A T C A A C G C T T C T C T T G G A T A C C G C A T A A A A a909_a12.seq

A T C T G G A C C G A T A G T G C T T A A C A C C G C G T G T G A G A A G A T G T T C A T A G A T A G Majority

12260 12270 12280 12290 12300

12239 A T C T G G A C C G A T A G T G C T T A A C A C C G C G T G T G A G A A G A T G T T C A T A G A T A G cohi_a12.seq

12192 A T C T G G A C C G A T A G T G C T T A A C A C C G C G T G T G A G A A G A T G T T C A T A G A T A G a909_a12.seq

C T C C A A A G A A A A T C T A A A A A C G A T T T G A C A G A A A A A T G A C T T G A C C C A Majority

12310 12320 12330 12340 12350

12289 C T C C A A A G A A A A T C T A A A A A C G A T T T G A C A G A A A A A T G A C T T G A C C C A cohi_a12.seq

12242 C T C C A A A G A A A A T C T A A A A A C G A T T T G A C A G A A A A A T G A C T T G A C C C A a909_a12.seq

FIGURE 21R

TGGTCTAAAAACAAATAGCTAGGCTTAACGCGTCCTCTTGC	12360	12370	12380	12390	12400	Majority
12339 TGGTCTAAAAACAAATAGCTAGGCTAACCGGTGCTCTTGC						cohl_a12.seq
12292 TGGTCTAAAAACAAATAGCTAGGCTAACCGGTGCTCTTGC						a909_a12.seq
TTCTAGCGTTGTTAACTGAAAAACGTGTATTACAAATCACAAAATCA	12410	12420	12430	12440	12450	Majority
12389 TTCTAGCGTTGTTAACTGAAAAACGTGTATTACAAATCACAAAATCA						cohl_a12.seq
12342 TTCTAGCGTTGTTAACTGAAAAACGTGTATTACAAATCACAAAATCA						a909_a12.seq
TTTCATCTGAAACATGTTCATCAGCCGTGTTGTATTCTCGATTTTGTTA	12460	12470	12480	12490	12500	Majority
12439 TTTCATCTGAAACATGTTCATCAGCCGTGTTGTATTCTCGATTTTGTTA						cohl_a12.seq
12392 TTTCATCTGAAACATGTTCATCAGCCGTGTTGTATTCTCGATTTTGTTA						a909_a12.seq
ATAATAGGATAGGCCCTGCTTGACAAATGTTTGGTCGGTAAACGGTAAT	12510	12520	12530	12540	12550	Majority
12489 ATAATAGGATAGGCCCTGCTTGACAAATGTTTGGTCGGTAAACGGTAAT						cohl_a12.seq
12442 ATAATAGGATAGGCCCTGCTTGACAAATGTTTGGTCGGTAAACGGTAAT						a909_a12.seq
TTTTCTACCCCTTGTCTTCATCTATAATCGGTAAATCATCATGATTAGTTG	12560	12570	12580	12590	12600	Majority
12539 TTTTCTACCCCTTGTCTTCATCTATAATCGGTAAATCATCATGATTAGTTG						cohl_a12.seq
12492 TTTTCTACCCCTTGTCTTCATCTATAATCGGTAAATCATCATGATTAGTTG						a909_a12.seq
TTACAATAACAAACACGGTAGCCACGCCCTTAACCAAATCTGCTGTCATTTTA	12610	12620	12630	12640	12650	Majority
12589 TTACAATAACAAACACGGTAGCCACGCCCTTAACCAAATCTGCTGTCATTTTA						cohl_a12.seq
12542 TTACAATAACAAACACGGTAGCCACGCCCTTAACCAAATCTGCTGTCATTTTA						a909_a12.seq
TCTGTATAACGTTCAATACCTTCCCAGGAAGGGTAGATAATATCCTGAGAA	12660	12670	12680	12690	12700	Majority
12639 TCTGTATAACGTTCAATACCTTCCCAGGAAGGGTAGATAATATCCTGAGAA						cohl_a12.seq
12592 TCTGTATAACGTTCAATACCTTCCCAGGAAGGGTAGATAATATCCTGAGAA						a909_a12.seq
AACAGCAACTGTTTACCTTATTTCCATATTTATCCACTTTCATCAAT	12710	12720	12730	12740	12750	Majority
12689 AACAGCAACTGTTTACCTTATTTCCATATTTATCCACTTTCATCAAT						cohl_a12.seq
12642 AACAGCAACTGTTTACCTTATTTCCATATTTATCCACTTTCATCAAT						a909_a12.seq
AAGCCATCTTTAAGCCTTAAATCATAGCAACTAATTTTGGCTCTTTG	12760	12770	12780	12790	12800	Majority
12739 AAGCCATCTTTAAGCCTTAAATCATAGCAACTAATTTTGGCTCTTTG						cohl_a12.seq
12692 AAGCCATCTTTAAGCCTTAAATCATAGCAACTAATTTTGGCTCTTTG						a909_a12.seq
CCTCTCTGCTACCAACACTCGAACAAATTCAATTTCGGATAAATACTAAAT	12810	12820	12830	12840	12850	Majority
12789 CCTCTCTGCTACCAACACTCGAACAAATTCAATTTCGGATAAATACTAAAT						cohl_a12.seq
12742 CCTCTCTGCTACCAACACTCGAACAAATTCAATTTCGGATAAATACTAAAT						a909_a12.seq
ATTGTCGCCGCTTCTTACCATATTTTATATAATACGGCATTTG	12860	12870	12880	12890	12900	Majority
12839 ATTGTCGCCGCTTCTTACCATATTTTATATAATACGGCATTTG						cohl_a12.seq
12792 ATTGTCGCCGCTTCTTACCATATTTTATATAATACGGCATTTG						a909_a12.seq
CGTATCATGTAATATTTCGAAATGGTGAATGATTCAATACATGAAAAAAC	12910	12920	12930	12940	12950	Majority
12889 CGTATCATGTAATATTTCGAAATGGTGAATGATTCAATACATGAAAAAAC						cohl_a12.seq
12842 CGTATCATGTAATATTTCGAAATGGTGAATGATTCAATACATGAAAAAAC						a909_a12.seq
ATGGCCAAATTCTTAACTCGTGAAGAGAGTGTCCAATTCTGTAAGAAC	12960	12970	12980	12990	13000	Majority
12939 ATGGCCAAATTCTTAACTCGTGAAGAGAGTGTCCAATTCTGTAAGAAC						cohl_a12.seq
12892 ATGGCCAAATTCTTAACTCGTGAAGAGAGTGTCCAATTCTGTAAGAAC						a909_a12.seq

FIGURE 21S

CAATAAAATTAACCTGATAAGTCTTATATCCCACATCTCTGACAGACGATAA Majority
 13010 13020 13030 13040 13050

12989 CAATAAAATTAACCTGATAAGTCTTATATCCCACATCTCTGACAGACGATAA coh1_a12.seq
 12942 CAATAAAATTAACCTGATAAGTCTTATATCCCACATCTCTGACAGACGATAA a909_a12.seq

TTCATTTCAGAGTCAACAAAAATCAATAAACATCTCTCTGCAAAGCCAGA Majority
 13060 13070 13080 13090 13100

13039 TTCATTTCAGAGTCAACAAAAATCAATAAACATCTCTCTGCAAAGCCAGA coh1_a12.seq
 12992 TTCATTTCAGAGTCAACAAAAATCAATAAACATCTCTCTGCAAAGCCAGA a909_a12.seq

TGTTCCTCAAAAAACGCTCGTTTCATTAAGCAGCCGAAGTAATACACT Majority
 13110 13120 13130 13140 13150

13089 TGTTCCTCAAAAAACGCTCGTTTCATTAAGCAGCCGAAGTAATACACT coh1_a12.seq
 13042 TGTTCCTCAAAAAACGCTCGTTTCATTAAGCAGCCGAAGTAATACACT a909_a12.seq

CTTCAAATTCTTATAGTCAAATTCTGCATCACTAAATCTTCACGGTTT Majority
 13160 13170 13180 13190 13200

13139 CTTCAAATTCTTATAGTCAAATTCTGCATCACTAAATCTTCACGGTTT coh1_a12.seq
 13092 CTTCAAATTCTTATAGTCAAATTCTGCATCACTAAATCTTCACGGTTT a909_a12.seq

ATATCTTGATACAAACAAAGATAACATACCGACCTTAGGTAATGAAGGT Majority
 13210 13220 13230 13240 13250

13189 ATATCTTGATACAAACAAAGATAACATACCGACCTTAGGTAATGAAGGT coh1_a12.seq
 13142 ATATCTTGATACAAACAAAGATAACATACCGACCTTAGGTAATGAAGGT a909_a12.seq

ATTTTCATAATTATCTATCAAAATCACCTAGGACAACCGAACATCTGATCTA Majority
 13260 13270 13280 13290 13300

13239 ATTTTCATAATTATCTATCAAAATCACCTAGGACAACCGAACATCTGATCTA coh1_a12.seq
 13192 ATTTTCATAATTATCTATCAAAATCACCTAGGACAACCGAACATCTGATCTA a909_a12.seq

AAGTCAAGAACCAATCAAATTCTTGCTACTGCAAATTGACCGATACAG Majority
 13310 13320 13330 13340 13350

13289 AAGTCAAGAACCAATCAAATTCTTGCTACTGCAAATTGACCGATACAG coh1_a12.seq
 13242 AAGTCAAGAACCAATCAAATTCTTGCTACTGCAAATTGACCGATACAG a909_a12.seq

TTCAAAAGCATATGCCAAATTCTTATTTCTGTTAAATAATCAACAGTTAG Majority
 13360 13370 13380 13390 13400

13339 TTCAAAAGCATATGCCAAATTCTTATTTCTGTTAAATAATCAACAGTTAG coh1_a12.seq
 13292 TTCAAAAGCATATGCCAAATTCTTATTTCTGTTAAATAATCAACAGTTAG a909_a12.seq

GTGCCCTCTCATTATAATCGGCCACTAATTGAGAAATTCTTCCTTAT Majority
 13410 13420 13430 13440 13450

13389 GTGCCCTCTCATTATAATCGGCCACTAATTGAGAAATTCTTCCTTAT coh1_a12.seq
 13342 GTGCCCTCTCATTATAATCGGCCACTAATTGAGAAATTCTTCCTTAT a909_a12.seq

TTTCGAGCCATTATCTACGATGTAGATATGGCTTACTTGAGGATAAATT Majority
 13460 13470 13480 13490 13500

13439 TTTCGAGCCATTATCTACGATGTAGATATGGCTTACTTGAGGATAAATT coh1_a12.seq
 13392 TTTCGAGCCATTATCTACGATGTAGATATGGCTTACTTGAGGATAAATT a909_a12.seq

GCTCGAATGTCGATGTAAGCGTTCAATATTGGGGTTAAAGGTGACAAAT Majority
 13510 13520 13530 13540 13550

13489 GCTCGAATGTCGATGTAAGCGTTCAATATTGGGGTTAAAGGTGACAAAT coh1_a12.seq
 13442 GCTCGAATGTCGATGTAAGCGTTCAATATTGGGGTTAAAGGTGACAAAT a909_a12.seq

ACCCGCTAAATATTTCATGTTCTATGCTCTTTCTAAATCTCTAAATAA Majority
 13560 13570 13580 13590 13600

13539 ACCCGCTAAATATTTCATGTTCTATGCTCTTTCTAAATCTCTAAATAA coh1_a12.seq
 13492 ACCCGCTAAATATTTCATGTTCTATGCTCTTTCTAAATCTCTAAATAA a909_a12.seq

CTGAATGACTGGTGCTTGGTTATAAAAACGATACCGACATAGATAGTTA Majority
 13610 13620 13630 13640 13650

13589 CTGAATGACTGGTGCTTGGTTATAAAAACGATACCGACATAGATAGTTA coh1_a12.seq
 13542 CTGAATGACTGGTGCTTGGTTATAAAAACGATACCGACATAGATAGTTA a909_a12.seq

FIGURE 21T

131/487

Alignment Report WO 2006/078318 in method with Weighted residue weight table.
Thursday, July 29, 2004 6:49 PMPCT/US2005/027239
Page 22

<u>C T G C T A G T A A A G T C G A A T T G A C A T T A A T T A C C A A T G A T A C T G A C A T T G A</u> Majority				
13660	13670	13680	13690	13700
13639 C T G C T A C T A A A C T T T G A A T G A C A T A A T T A C C A A T G A T A C T G A C A T T G A				
13692 C T G C T A C T A A A C T T T G A A T G A C A T A A T T A C C A A T G A T A C T G A C A T T G A				cohl_a12.seq a909_a12.seq
<u>G T A T T G A T A T A A T A G A G T A C A G C T C C A C T A A G A G T A G C A G G C A A T T A A A T A</u> Majority				
13710	13720	13730	13740	13750
13689 G T A T T G A T A T A A T A G A G T A C A G C T C C A C T A A G A G T A G C A G G C A A T T A A A T A				cohl_a12.seq
13642 G T A T T G A T A T A A T A G A G T A C A G C T C C A C T A A G A G T A G C A G G C A A T T A A A T A				a909_a12.seq
<u>G C C C A G C A T T C C T C T G T T A A T T C T T A A A A G T A A A T A C A T C T C T T A A A G</u> Majority				
13760	13770	13780	13790	13800
13739 G C C C A G C A T T C C T C T G T T A A T T C T T A A A A G T A A A T A C A T C T C T T A A A G				cohl_a12.seq
13692 G C C C A G C A T T C C T C T G T T A A T T C T T A A A A G T A A A T A C A T C T C T T A A A G				a909_a12.seq
<u>A G A T A G C T T G A T A T A G G G A G A C A A T A A A T T C A G T A A T A A C T G T A G A G A T A</u> Majority				
13810	13820	13830	13840	13850
13789 A G A T A G C T T G A T A T A G G G A G A C A A T A A A T T C A G T A A T A A C T G T A G A G A T A				cohl_a12.seq
13742 A G A T A G C T T G A T A T A G G G A G A C A A T A A A T T C A G T A A T A A C T G T A G A G A T A				a909_a12.seq
<u>A T A G C T C C C A T A G C A C C T A A A A T T G G T A T T A A A A G T A T A T A A G C A C A A C</u> Majority				
13860	13870	13880	13890	13900
13839 A T A G C T C C C A T A G C A C C T A A A A T T G G T A T T A A A A G T A T A T A A G C A C A A C				cohl_a12.seq
13792 A T A G C T C C C A T A G C A C C T A A A A T T G G T A T T A A A A G T A T A T A A G C A C A A C				a909_a12.seq
<u>A T T T G C C A C A A G T C C A A T A A C T G C A G A C A T T G T G T A A G C T T T T G T A C G T C</u> Majority				
13910	13920	13930	13940	13950
13889 A T T T G C C A C A A G T C C A A T A A C T G C A G A C A T T G T G T A A G C T T T T G T A C G T C				cohl_a12.seq
13842 A T T T G C C A C A A G T C C A A T A A C T G C A G A C A T T G T G T A A G C T T T T G T A C G T C				a909_a12.seq
<u>T T G A A G C C A G T A G A T A C T G T G T C C C T A A A G C G T T A C C A T A A G A A A T G C A A</u> Majority				
13960	13970	13980	13990	14000
13939 T T G A A G C C A G T A G A T A C T G T G T C C C T A A A G C G T T A C C A T A A G A A A T G C A A				cohl_a12.seq
13892 T T G A A G C C A G T A G A T A C T G T G T C C C T A A A G C G T T A C C A T A A G A A A T G C A A				a909_a12.seq
<u>A T G A T C A T C A A A</u> Majority				
14010				
13989 A T G A T C A T C A A A				cohl_a12.seq
13942 A T G A T C A T C A A A				a909_a12.seq

Decoration 'Decoration #1': Shade (with solid black) residues that differ from the consensus.

FIGURE 21U

Alignment Report of gbs: WO 2006/078318 method with PAM250 residue weight table.
 Thursday, July 29, 2004 6:57 PM

	410	420	430	440	450	Majority
101	F D L L A S D G T A V K W T D A L I K A N T N K N Y I A G E A V T G Q P I K L K S H T D G T F E I K sag645_2603.pep					
101	F D L L A S D G T A V K W T D A L I K A N T N K N Y I A G E A V T G Q P I K L K S H T D G T F E I K sag645_a909.pep					
101	F D L L A S D G T A V K W T D A L I K A N T N K N Y I A G E A V T G Q P I K L K S H T D G T F E I K sag645_cjb111.pep					
101	F D L L A S D G T A V K W T D A L I K A N T N K N Y I A G E A V T G Q P I K L K S H T D G T F E I K sag645_cohl.pep					
101	F D L L A S D G T A V K W T D A L I K A N T N K N Y I A G E A V T G Q P I K L K S H T D G T F E I K sag645_nem316.pep					
	460	470	480	490	500	Majority
151	G L A Y A V D A N A E G T A V T Y K L K E T K A P E G Y V I P D K E I E F T V S Q T S Y N T K P T D sag645_2603.pep					
151	G L A Y A V D A N A E G T A V T Y K L K E T K A P E G Y V I P D K E I E F T V S Q T S Y N T K P T D sag645_a909.pep					
151	G L A Y A V D A N A E G T A V T Y K L K E T K A P E G Y V I P D K E I E F T V S Q T S Y N T K P T D sag645_cjb111.pep					
51	G L A Y A V D A N A E G T A V T Y K L K E T K A P E G Y V I P D K E I E F T V S Q T S Y N T K P T D sag645_cohl.pep					
51	G L A Y A V D A N A E G T A V T Y K L K E T K A P E G Y V I P D K E I E F T V S Q T S Y N T K P T D sag645_nem316.pep					
	510	520	530	540	550	Majority
01	I T V D S A D A T P D T I K N N K R P S I P N T G G I C T A I F V A I G A A V M A F A V K G M K R R sag645_2603.pep					
01	I T V D S A D A T P D T I K N N K R P S I P N T G G I C T A I F V A I G A A V M A F A V K G M K R R sag645_a909.pep					
01	I T V D S A D A T P D T I K N N K R P S I P N T G G I C T A I F V A I G A A V M A F A V K G M K R R sag645_cjb111.pep					
01	I T V D S A D A T P D T I K N N K R P S I P N T G G I C T A I F V A I G A A V M A F A V K G M K R R sag645_cohl.pep					
01	I T V D S A D A T P D T I K N N K R P S I P N T G G I C T A I F V A I G A A V M A F A V K G M K R R sag645_nem316.pep					
<u>T K D N</u>						Majority
51	T K D N sag645_2603.pep					
51	T K D N sag645_a909.pep					
51	T K D N sag645_cjb111.pep					
51	T K D N sag645_cohl.pep					
51	T K D N sag645_nem316.pep					

ecoration 'Decoration #1': Shade (with solid black) residues that differ from the Consensus.

FIGURE 22A

134/487

					Majority
	10	20	30	40	50
1	M K K R Q K I W R G L S V T L L I L S Q I P F G I L V Q G E T Q D T N Q A L G K V I V K K T G D N A				sag649_2603.pep
1	M K K R Q K I W R G L S V T L L I L S Q I P F G I L V Q G E T Q D T N Q A L G K V I V K K T G D N A				sag649_coh1.pep
1	M K K R Q K I W R G L S V T L L I L S Q I P F G I L V Q G E T Q D T N Q A L G K V I V K K T G D N A				sag649_cjb111.pep
1	M K K R Q K I W R G L S V T L L I L S Q I P F G I L V Q G E T Q D T N Q A L G K V I V K K T G D N A				sag649_18rs21.pep
1	M K K R Q K I W R G L S V T L L I L S Q I P F G I L V Q G E T Q D T N Q A L G K V I V K K T G D N A				sag649_nem316.pep
1	M K K R Q K I W R G L S V T L L I L S Q I P F G I L V Q G E T Q D T N Q A L G K V I V K K T G D N A				sag649_cjb111.pep
<u>TPLGKATFVLKDNDKSETSHETVEGSGEATFENIKPGDYTLREETAPIG</u> Majority					
	60	70	80	90	100
51	T P L G K A T F V L K N D N D K S E T S H E T V E G S G E A T F E N I K P G D Y T L R E E T A P I G				sag649_2603.pep
51	T P L G K A T F V L K N D N D K S E T S H E T V E G S G E A T F E N I K P G D Y T L R E E T A P I G				sag649_coh1.pep
51	T P L G K A T F V L K N D N D K S E T S H E T V E G S G E A T F E N I K P G D Y T L R E E T A P I G				sag649_cjb111.pep
51	T P L G K A T F V L K N D N D K S E T S H E T V E G S G E A T F E N I K P G D Y T L R E E T A P I G				sag649_18rs21.pep
51	T P L G K A T F V L K N D N D K S E T S H E T V E G S G E A T F E N I K P G D Y T L R E E T A P I G				sag649_nem316.pep
51	T P L G K A T F V L K N D N D K S E T S H E T V E G S G E A T F E N I K P G D Y T L R E E T A P I G				sag649_cjb111.pep
<u>YKKTDKTKVKVADNGATIIEGMADADKAEEKRKEVLNAQYPKSAIYEDTKE</u> Majority					
	110	120	130	140	150
101	Y K K T D K T W K V K V A D N G A T I I E G M D A D K A E K R K E V L N A Q Y P K S A I Y E D T K E				sag649_2603.pep
101	Y K K T D K T W K V K V A D N G A T I I E G M D A D K A E K R K E V L N A Q Y P K S A I Y E D T K E				sag649_coh1.pep
101	Y K K T D K T W K V K V A D N G A T I I E G M D A D K A E K R K E V L N A Q Y P K S A I Y E D T K E				sag649_cjb111.pep
101	Y K K T D K T W K V K V A D N G A T I I E G M D A D K A E K R K E V L N A Q Y P K S A I Y E D T K E				sag649_18rs21.pep
101	Y K K T D K T W K V K V A D N G A T I I E G M D A D K A E K R K E V L N A Q Y P K S A I Y E D T K E				sag649_nem316.pep
101	Y K K T D K T W K V K V A D N G A T I I E G M D A D K A E K R K E V L N A Q Y P K S A I Y E D T K E				sag649_cjb111.pep
<u>NYPLVNVEGSKVGEQYKALNPINGKDGRRREIAEGWLSKKITGVNDLDKNK</u> Majority					
	160	170	180	190	200
151	N Y P L V N V E G S K V G E Q Y K A L N P I N G K D G R R E I A E G W L S K K I T G V N D L D K N K				sag649_2603.pep
151	N Y P L V N V E G S K V G E Q Y K A L N P I N G K D G R R E I A E G W L S K K I T G V N D L D K N K				sag649_coh1.pep
151	N Y P L V N V E G S K V G E Q Y K A L N P I N G K D G R R E I A E G W L S K K I T G V N D L D K N K				sag649_cjb111.pep
151	N Y P L V N V E G S K V G E Q Y K A L N P I N G K D G R R E I A E G W L S K K I T G V N D L D K N K				sag649_18rs21.pep
151	N Y P L V N V E G S K V G E Q Y K A L N P I N G K D G R R E I A E G W L S K K I T G V N D L D K N K				sag649_nem316.pep
151	N Y P L V N V E G S K V G E Q Y K A L N P I N G K D G R R E I A E G W L S K K I T G V N D L D K N K				sag649_cjb111.pep
<u>YKIELTVEGKTTVETKELNQPLDVVVLLDNSNSNNERANNSQRALKAGE</u> Majority					
	210	220	230	240	250
201	Y K I E L T V E G K T T V E T K E L N Q P L D V V V V L L D N S N S M N N E R A N N S Q R A L K A G E				sag649_2603.pep
201	Y K I E L T V E G K T T V E T K E L N Q P L D V V V V L L D N S N S M N N E R A N N S Q R A L K A G E				sag649_coh1.pep
201	Y K I E L T V E G K T T V E T K E L N Q P L D V V V V L L D N S N S M N N E R A N N S Q R A L K A G E				sag649_cjb111.pep
201	Y K I E L T V E G K T T V E T K E L N Q P L D V V V V L L D N S N S M N N E R A N N S Q R A L K A G E				sag649_18rs21.pep
201	Y K I E L T V E G K T T V E T K E L N Q P L D V V V V L L D N S N S M N N E R A N N S Q R A L K A G E				sag649_nem316.pep
201	Y K I E L T V E G K T T V E T K E L N Q P L D V V V V L L D N S N S M N N E R A N N S Q R A L K A G E				sag649_cjb111.pep
<u>AVEKLIDKITSNKDNRVALVTYASTIFDGTEATVSKGVADQNGKALND SV</u> Majority					
	260	270	280	290	300
251	A V E K L I D K I T S N K D N R V A L V T Y A S T I F D G T E A T V S K G V A D Q N G K A L N D S V				sag649_2603.pep
251	A V E K L I D K I T S N K D N R V A L V T Y A S T I F D G T E A T V S K G V A D Q N G K A L N D S V				sag649_coh1.pep
251	A V E K L I D K I T S N K D N R V A L V T Y A S T I F D G T E A T V S K G V A D Q N G K A L N D S V				sag649_cjb111.pep
251	A V E K L I D K I T S N K D N R V A L V T Y A S T I F D G T E A T V S K G V A D Q N G K A L N D S V				sag649_18rs21.pep
251	A V E K L I D K I T S N K D N R V A L V T Y A S T I F D G T E A T V S K G V A D Q N G K A L N D S V				sag649_nem316.pep
251	A V E K L I D K I T S N K D N R V A L V T Y A S T I F D G T E A T V S K G V A D Q N G K A L N D S V				sag649_cjb111.pep
<u>SWDYHKTTFTATTTHNYSYLNLTNDANEVNILKSRIPKAEAHINGDR TL YQ</u> Majority					
	310	320	330	340	350
301	S W D Y H K T T F T A T T H N Y S Y L N L T N D A N E V N I L K S R I P K A E A H I N G D R T L Y Q				sag649_2603.pep
301	S W D Y H K T T F T A T T H N Y S Y L N L T N D A N E V N I L K S R I P K A E A H I N G D R T L Y Q				sag649_coh1.pep
301	S W D Y H K T T F T A T T H N Y S Y L N L T N D A N E V N I L K S R I P K A E A H I N G D R T L Y Q				sag649_cjb111.pep
301	S W D Y H K T T F T A T T H N Y S Y L N L T N D A N E V N I L K S R I P K A E A H I N G D R T L Y Q				sag649_18rs21.pep
301	S W D Y H K T T F T A T T H N Y S Y L N L T N D A N E V N I L K S R I P K A E A H I N G D R T L Y Q				sag649_nem316.pep
301	S W D Y H K T T F T A T T H N Y S Y L N L T N D A N E V N I L K S R I P K A E A H I N G D R T L Y Q				sag649_cjb111.pep
<u>FGATFTQKALMKANEILETQSSNARKKLFHVTDGVPTHSYAINFN PYIS</u> Majority					
	360	370	380	390	400
351	F G A T F T Q K A L M K A N E I L E T Q S S N A R K K L I F H V T D G V P T H S Y A I N F N P Y I S				sag649_2603.pep
351	F G A T F T Q K A L M K A N E I L E T Q S S N A R K K L I F H V T D G V P T H S Y A I N F N P Y I S				sag649_coh1.pep
351	F G A T F T Q K A L M K A N E I L E T Q S S N A R K K L I F H V T D G V P T H S Y A I N F N P Y I S				sag649_cjb111.pep
351	F G A T F T Q K A L M K A N E I L E T Q S S N A R K K L I F H V T D G V P T H S Y A I N F N P Y I S				sag649_18rs21.pep
351	F G A T F T Q K A L M K A N E I L E T Q S S N A R K K L I F H V T D G V P T H S Y A I N F N P Y I S				sag649_nem316.pep
351	F G A T F T Q K A L M K A N E I L E T Q S S N A R K K L I F H V T D G V P T H S Y A I N F N P Y I S				sag649_cjb111.pep

Figure 23

T S Y Q N Q E N S E L U N X I R D E S G I L E L E D E F E N G D D Y Q I V K G D G E S F K L F S D R K V Majority				
410	420	430	440	450
401 T S Y Q N Q F N S F L N K I P D R S G I L Q E D F I I N G D D Y Q I V K G D G E S F K L F S D R K V sag649_2603.pep				
401 T S Y Q N Q F N S F L N K I P D R S G I L Q E D F I I N G D D Y Q I V K G D G E S F K L F S D R K V sag649_coh1.pep				
401 T S Y Q N Q F N S F L N K I P D R S G I L Q E D F I I N G D D Y Q I V K G D G E S F K L F S D R K V sag649_cjb111.pep				
401 T S Y Q N Q F N S F L N K I P D R S G I L Q E D F I I N G D D Y Q I V K G D G E S F K L F S D R K V sag649_18rs21.pep				
401 T S Y Q N Q F N S F L N K I P D R S G I L Q E D F I I N G D D Y Q I V K G D G E S F K L F S D R K V sag649_nem316.pep				
P V T G G T T Q A A Y R V P Q N Q L S V M S N E G Y A I N S G Y I Y L Y W R D Y N W V Y P F D P K T Majority				
460	470	480	490	500
451 P V T G G T T Q A A Y R V P Q N Q L S V M S N E G Y A I N S G Y I Y L Y W R D Y N W V Y P F D P K T sag649_2603.pep				
451 P V T G G T T Q A A Y R V P Q N Q L S V M S N E G Y A I N S G Y I Y L Y W R D Y N W V Y P F D P K T sag649_coh1.pep				
451 P V T G G T T Q A A Y R V P Q N Q L S V M S N E G Y A I N S G Y I Y L Y W R D Y N W V Y P F D P K T sag649_cjb111.pep				
451 P V T G G T T Q A A Y R V P Q N Q L S V M S N E G Y A I N S G Y I Y L Y W R D Y N W V Y P F D P K T sag649_18rs21.pep				
451 P V T G G T T Q A A Y R V P Q N Q L S V M S N E G Y A I N S G Y I Y L Y W R D Y N W V Y P F D P K T sag649_nem316.pep				
K K V S A T K Q I K T H G E P T T L Y F N G N I R P K G Y D I F T V G I G V N G D P G A T P L E A E Majority				
510	520	530	540	550
501 K K V S A T K Q I K T H G E P T T L Y F N G N I R P K G Y D I F T V G I G V N G D P G A T P L E A E sag649_2603.pep				
501 K K V S A T K Q I K T H G E P T T L Y F N G N I R P K G Y D I F T V G I G V N G D P G A T P L E A E sag649_coh1.pep				
501 K K V S A T K Q I K T H G E P T T L Y F N G N I R P K G Y D I F T V G I G V N G D P G A T P L E A E sag649_cjb111.pep				
501 K K V S A T K Q I K T H G E P T T L Y F N G N I R P K G Y D I F T V G I G V N G D P G A T P L E A E sag649_18rs21.pep				
501 K K V S A T K Q I K T H G E P T T L Y F N G N I R P K G Y D I F T V G I G V N G D P G A T P L E A E sag649_nem316.pep				
K F M Q S I S S K T E N Y T N V D D T N K I Y D E L N K Y F K T I V E E K H S I V D G N V T D P M G Majority				
560	570	580	590	600
551 K F M Q S I S S K T E N Y T N V D D T N K I Y D E L N K Y F K T I V E E K H S I V D G N V T D P M G sag649_2603.pep				
551 K F M Q S I S S K T E N Y T N V D D T N K I Y D E L N K Y F K T I V E E K H S I V D G N V T D P M G sag649_coh1.pep				
551 K F M Q S I S S K T E N Y T N V D D T N K I Y D E L N K Y F K T I V E E K H S I V D G N V T D P M G sag649_cjb111.pep				
551 K F M Q S I S S K T E N Y T N V D D T N K I Y D E L N K Y F K T I V E E K H S I V D G N V T D P M G sag649_18rs21.pep				
551 K F M Q S I S S K T E N Y T N V D D T N K I Y D E L N K Y F K T I V E E K H S I V D G N V T D P M G sag649_nem316.pep				
E M I E F Q L K N G Q S F T H D D Y V L V G N D G S Q L K N G V A L G G P N S D G G I L K D V T V T Majority				
610	620	630	640	650
601 E M I E F Q L K N G Q S F T H D D Y V L V G N D G S Q L K N G V A L G G P N S D G G I L K D V T V T sag649_2603.pep				
601 E M I E F Q L K N G Q S F T H D D Y V L V G N D G S Q L K N G V A L G G P N S D G G I L K D V T V T sag649_coh1.pep				
601 E M I E F Q L K N G Q S F T H D D Y V L V G N D G S Q L K N G V A L G G P N S D G G I L K D V T V T sag649_cjb111.pep				
601 E M I E F Q L K N G Q S F T H D D Y V L V G N D G S Q L K N G V A L G G P N S D G G I L K D V T V T sag649_18rs21.pep				
601 E M I E F Q L K N G Q S F T H D D Y V L V G N D G S Q L K N G V A L G G P N S D G G I L K D V T V T sag649_nem316.pep				
Y D K T S Q T I K I N H L N L G S G Q K V V L T Y D V R L K D N Y I S N K F Y N T N N R T T L S P K Majority				
660	670	680	690	700
651 Y D K T S Q T I K I N H L N L G S G Q K V V L T Y D V R L K D N Y I S N K F Y N T N N R T T L S P K sag649_2603.pep				
651 Y D K T S Q T I K I N H L N L G S G Q K V V L T Y D V R L K D N Y I S N K F Y N T N N R T T L S P K sag649_coh1.pep				
651 Y D K T S Q T I K I N H L N L G S G Q K V V L T Y D V R L K D N Y I S N K F Y N T N N R T T L S P K sag649_cjb111.pep				
651 Y D K T S Q T I K I N H L N L G S G Q K V V L T Y D V R L K D N Y I S N K F Y N T N N R T T L S P K sag649_18rs21.pep				
651 Y D K T S Q T I K I N H L N L G S G Q K V V L T Y D V R L K D N Y I S N K F Y N T N N R T T L S P K sag649_nem316.pep				
S E K E P N T I R D F P I P K I R D V R E F P V L T I S N Q K K M G E V E F I K V N K D K H S E S L Majority				
710	720	730	740	750
701 S E K E P N T I R D F P I P K I R D V R E F P V L T I S N Q K K M G E V E F I K V N K D K H S E S L sag649_2603.pep				
701 S E K E P N T I R D F P I P K I R D V R E F P V L T I S N Q K K M G E V E F I K V N K D K H S E S L sag649_coh1.pep				
701 S E K E P N T I R D F P I P K I R D V R E F P V L T I S N Q K K M G E V E F I K V N K D K H S E S L sag649_cjb111.pep				
701 S E K E P N T I R D F P I P K I R D V R E F P V L T I S N Q K K M G E V E F I K V N K D K H S E S L sag649_18rs21.pep				
701 S E K E P N T I R D F P I P K I R D V R E F P V L T I S N Q K K M G E V E F I K V N K D K H S E S L sag649_nem316.pep				
L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y E K A L Q D G N Y K L Y E I S Majority				
760	770	780	790	800
751 L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y F K A L Q D G N Y K L Y E I S sag649_2603.pep				
751 L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y F K A L Q D G N Y K L Y E I S sag649_coh1.pep				
751 L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y F K A L Q D G N Y K L Y E I S sag649_cjb111.pep				
751 L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y F K A L Q D G N Y K L Y E I S sag649_18rs21.pep				
751 L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y F K A L Q D G N Y K L Y E I S sag649_nem316.pep				
751 L G A K F Q L Q I E K D F S G Y K Q F V P E G S D V T T K N D G K I Y F K A L Q D G N Y K L Y E I S sag649_cjb111.pep				

FIGURE 23A

136/487

Alignment Report of WO 2006/078318 at method with PAM250 residue weight table.
Thursday, July 29, 2004 10:59 PM

PCT/US2005/027239 page 3

-age 3

Decoration #1: Shade (with solid black) residues that differ from the Consensus.

FIGURE 23B

137/487

Alignment Report WO 2006/078318 istl method with PAM250 residue weight table.
Thursday, July 29, 2004 7:08 PM.PCT/US2005/027239
Page 1

MR KY Q K F S P K I E T L I S I E F C L I S Q I E L N T N V L G E S T V P E N G A K G K L V V K K T D D Q Majority									
10	20	30	40	50					
1 M R K Y Q K F S K I L T L S L F C L S Q I P L N T N V L G E S T V P E N G A K G K L V V K K T D D Q sag1408_2603.pep									
1 M R K Y Q K F S K I L T L S L F C L S Q I P L N T N V L G E S T V P E N G A K G K L V V K K T D D Q sag1408_515.pep									
1 M R K Y Q K F S K I L T L S L F C L S Q I P L N T N V L G E S T V P E N G A K G K L V V K K T D D Q sag1408_18rs21.seq									
1 M R K Y Q K F S K I L T L S L F C L S Q I P L N T N V L G E S T V P E N G A K G K L V V K K T D D Q sag1408_cjb111.pep									
1 M R K Y Q K F S K I L T L S L F C L S Q I P L N T N V L G E S T V P E N G A K G K L V V K K T D D Q sag1408_h36b.pep									
1 M R K Y Q K F S K I L T L S L F C L S Q I P L N T N V L G E S T V P E N G A K G K L V V K K T D D Q sag1408_nem316.pep									
N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P Majority									
60	70	80	90	100					
51 N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P sag1408_2603.pep									
51 N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P sag1408_515.pep									
51 N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P sag1408_18rs21.seq									
51 N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P sag1408_cjb111.pep									
51 N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P sag1408_h36b.pep									
51 N K P L S K A T F V L K T T A H P E S K I E K V T A E L T G E A T F D N L I P G D Y T L S E E T A P sag1408_nem316.pep									
E G Y K E T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E Majority									
110	120	130	140	150					
101 E G Y K K T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E sag1408_2603.pep									
101 E G Y K K T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E sag1408_515.pep									
101 E G Y K K T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E sag1408_18rs21.seq									
101 E G Y K K T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E sag1408_cjb111.pep									
101 E G Y K K T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E sag1408_h36b.pep									
101 E G Y K K T N Q T W Q V K V E S N G K T T I Q N S G D K N S T I G Q N Q E E L D K Q Y P P T G I Y E sag1408_nem316.pep									
D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V Majority									
160	170	180	190	200					
151 D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V sag1408_2603.pep									
151 D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V sag1408_515.pep									
151 D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V sag1408_18rs21.seq									
151 D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V sag1408_cjb111.pep									
151 D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V sag1408_h36b.pep									
151 D T K E S Y K L E H V K G S V P N G K S E A K A V N P Y S S E G E H I R E I P E G T L S K R I S E V sag1408_nem316.pep									
G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R Majority									
210	220	230	240	250					
201 G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R sag1408_2603.pep									
201 G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R sag1408_515.pep									
201 G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R sag1408_18rs21.seq									
201 G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R sag1408_cjb111.pep									
201 G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R sag1408_h36b.pep									
201 G D L A H N K Y K I E L T V S G K T I V K P V D K Q K P L D V V F V L D N S N S M N N D G P N F Q R sag1408_nem316.pep									
H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E Majority									
260	270	280	290	300					
251 H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E sag1408_2603.pep									
251 H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E sag1408_515.pep									
251 H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E sag1408_18rs21.seq									
247 H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E sag1408_cjb111.pep									
251 H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E sag1408_h36b.pep									
251 H N K A K K A A E A L G T A V K D I L G A N S D N R V A L V T Y G S D I F D G R S V D V V K G F K E sag1408_nem316.pep									
D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L Majority									
310	320	330	340	350					
301 D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L sag1408_2603.pep									
301 D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L sag1408_515.pep									
301 D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L sag1408_18rs21.seq									
297 D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L sag1408_cjb111.pep									
301 D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L sag1408_h36b.pep									
301 D D K Y Y G L Q T K F T I Q T E N Y S H K Q L T N N A E E I I K R I P T E A P K A K W G S T T N G L sag1408_nem316.pep									
T P E Q Q K E Y Y L S K V G E T F T M K A F M E A D D I L S Q V N R N S Q K I I V H V T D G V P T R Majority									
360	370	380	390	400					
351 T P E Q Q K E Y Y L S K V G E T F T M K A F M E A D D I L S Q V N R N S Q K I I V H V T D G V P T R sag1408_2603.pep									
351 T P E Q Q K E Y Y L S K V G E T F T M K A F M E A D D I L S Q V N R N S Q K I I V H V T D G V P T R sag1408_515.pep									
351 T P E Q Q K E Y Y L S K V G E T F T M K A F M E A D D I L S Q V N R N S Q K I I V H V T D G V P T R sag1408_18rs21.seq									
351 T P E Q Q K E Y Y L S K V G E T F T M K A F M E A D D I L S Q V N R N S Q K I I V H V T D G V P T R sag1408_cjb111.pep									
346 T P E K K R E Y D L S K V G E T F T M K A F M E A D D I L S S T O R K S N K I I V H V T D G V P T R sag1408_h36b.pep									
351 T P E Q Q K E Y Y L S K V G E T F T M K A F M E A D D I L S Q V D R N S Q K I I V H V T D G V P T R sag1408_nem316.pep									

Figure 24

S Y A I N N F K L G A S Y E S Q F E Q M K K N G M E N K S N F L L T D K P E D I K G N G E S Y F L F Majority				
410	420	430	440	450
401 S Y A I N N F K L G A S Y E S Q F E Q M K K N G M E N K S N F L L T D K P E D I K G N G E S Y F L F sag1408_2603.pep				
401 S Y A I N N F K L G A S Y E S Q F E Q M K K N G M E N K S N F L L T D K P E D I K G N G E S Y F L F sag1408_515.pep				
401 S Y A I N N F K L G A S Y E S Q F E Q M K K N G M E N K S N F L L T D K P E D I K G N G E S Y F L F sag1408_18rs21.seq				
396 S Y A I N S F V K G S T Y A X Q F E R I K F E G Y L D K X N Y P I T D P E K I G N G E S Y F L F sag1408_cjb111.pep				
401 S Y A I N N F K L G A S Y E S Q F E Q M K K N G M E N K S N F L L T D K P E D I K G N G E S Y F L F sag1408_h36b.pep				
<u>P L D S Y Q T Q I I S G N L Q K L H Y L D L N L N Y P K G T I Y R N G P V K E H G T P T K L Y I N S Majority</u>				
460	470	480	490	500
451 P L D S Y Q T Q I I S G N L Q K L H Y L D L N L N Y P K G T I Y R N G P V K E H G T P T K L Y I N S sag1408_2603.pep				
451 P L D S Y Q T Q I I S G N L Q K L H Y L D L N L N Y P K G T I Y R N G P V K E H G T P T K L Y I N S sag1408_515.pep				
451 P L D S Y Q T Q I I S G N L Q K L H Y L D L N L N Y P K G T I Y R N G P V K E H G T P T K L Y I N S sag1408_18rs21.seq				
446 P L D S Y Q T Q I I S G N L Q K L H Y L D L N L N Y P K G T I Y R N G P V R E H G T P T K L Y I N S sag1408_cjb111.pep				
451 P L D S Y Q T Q I I S G N L Q K L H Y L D L N L N Y P K G T I Y R N G P V R E H G T P T K L Y I N S sag1408_h36b.pep				
<u>L K Q K N Y D I F N F G I D I S G F R Q V Y N E D Y K K N Q D G T F Q K L K E E A F E L S D G E I T Majority</u>				
510	520	530	540	550
501 L K Q K N Y D I F N F G I D I S G F R Q V Y N E D Y K K N Q D G T F Q K L K E E A F E L S D G E I T sag1408_2603.pep				
501 L K Q K N Y D I F N F G I D I S G F R Q V Y N E D Y K K N Q D G T F Q K L K E E A F E L S D G E I T sag1408_515.pep				
501 L K Q K N Y D I F N F G I D I S G F R Q V Y N E D Y K K N Q D G T F Q K L K E E A F E L S D G E I T sag1408_18rs21.seq				
496 L K Q K N Y D I F N F G I D I S G F R Q V Y N E D Y K K N Q D G T F Q K L K E E A F E L S D G E I T sag1408_cjb111.pep				
501 L K Q K N Y D I F N F G I D I S G F R Q V Y N E D Y K K N Q D G T F Q K L K E E A F E L S D G E I T sag1408_h36b.pep				
<u>E L M R S F S S K P E Y Y T P I V T S A D T S N N E I L S K I Q Q Q F E T I L T K E N S I V N G T I Majority</u>				
560	570	580	590	600
551 E L M R S F S S K P E Y Y T P I V T S A D T S N N E I L S K I Q Q Q F E T I L T K E N S I V N G T I sag1408_2603.pep				
551 E L M R S F S S K P E Y Y T P I V T S A D T S N N E I L S K I Q Q Q F E T I L T K E N S I V N G T I sag1408_515.pep				
551 E L M R S F S S K P E Y Y T P I V T S A D T S N N E I L S K I Q Q Q F E T I L T K E N S I V N G T I sag1408_18rs21.seq				
546 E L M R S F S S K P E Y Y T P I V T S A D T S N N E I L S K I Q Q Q F E T I L T K E N S I V N G T I sag1408_cjb111.pep				
551 E L M R S F S S K P E Y Y T P I V T S A D T S N N E I L S K I Q Q Q F E T I L T K E N S I V N G T I sag1408_h36b.pep				
<u>E D P M G D K I N L Q L G N G Q T L Q P S D Y T L Q G N D G S V M K D G I A T G G P N N D G G I L K Majority</u>				
610	620	630	640	650
601 E D P M G D K I N L Q L G N G Q T L Q P S D Y T L Q G N D G S V M K D G I A T G G P N N D G G I L K sag1408_2603.pep				
601 E D P M G D K I N L Q L G N G Q T L Q P S D Y T L Q G N D G S V M K D G I A T G G P N N D G G I L K sag1408_515.pep				
601 E D P M G D K I N L Q L G N G Q T L Q P S D Y T L Q G N D G S V M K D G I A T G G P N N D G G I L K sag1408_18rs21.seq				
596 E D P M G D K I N L Q L G N G Q T L Q P S D Y T L Q G N D G S V M K D G I A T G G P N N D G G I L K sag1408_cjb111.pep				
601 E D P M G D K I N L Q L G N G Q T L Q P S D Y T L Q G N D G S V M K D G I A T G G P N N D G G I L K sag1408_h36b.pep				
<u>G V K L E Y I G N K L Y V R G L N L G E G Q K V T L T Y D V K L D D S F I S N K F Y D T N G R T T L Majority</u>				
660	670	680	690	700
651 G V K L E Y I G N K L Y V R G L N L G E G Q K V T L T Y D V K L D D S F I S N K F Y D T N G R T T L sag1408_2603.pep				
651 G V K L E Y I G N K L Y V R G L N L G E G Q K V T L T Y D V K L D D S F I S N K F Y D T N G R T T L sag1408_515.pep				
651 G V K L E Y I G N K L Y V R G L N L G E G Q K V T L T Y D V K L D D S F I S N K F Y D T N G R T T L sag1408_18rs21.seq				
646 G V K L E Y I G N K L Y V R G L N L G E G Q K V T L T Y D V K L D D S F I S N K F Y D T N G R T T L sag1408_cjb111.pep				
651 G V K L E Y I G N K L Y V R G L N L G E G Q K V T L T Y D V K L D D S F I S N K F Y D T N G R T T L sag1408_h36b.pep				
<u>N P K S E D P N T L R D F P I P K I R D V R E Y P T I T I K N E K K L G E F E F I K V D K D N N K L Majority</u>				
710	720	730	740	750
701 N P K S E D P N T L R D F P I P K I R D V R E Y P T I T I K N E K K L G E I E F I K V D K D N N K L sag1408_2603.pep				
701 N P K S E D P N T L R D F P I P K I R D V R E Y P T I T I K N E K K L G E I E F I K V D K D N N K L sag1408_515.pep				
701 N P K S E D P N T L R D F P I P K I R D V R E Y P T I T I K N E K K L G E I E F I K V D K D N N K L sag1408_18rs21.seq				
696 N P K S E D P N T L R D F P I P K I R D V R E Y P T I T I K N E K K L G E I E F I K V D K D N N K L sag1408_cjb111.pep				
701 N P K S E D P N T L R D F P I P K I R D V R E Y P T I T I K N E K K L G E I E F I K V D K D N N K L sag1408_h36b.pep				
<u>L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I Majority</u>				
760	770	780	790	800
751 L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I sag1408_2603.pep				
751 L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I sag1408_515.pep				
751 L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I sag1408_18rs21.seq				
746 L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I sag1408_cjb111.pep				
751 L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I sag1408_h36b.pep				
<u>L L K G A T F E L Q E F N E D Y K L Y L P I K N N N S K V V T G E N G K I S Y K D L K D G K Y Q L I sag1408_nem316.pep</u>				

FIGURE 24A

139/487

Alignment Report WO 2006/078318 statistical method with PAM250 residue weight table.
Thursday, July 29, 2004 7:08 PM

PCT/US2005/027239
Page 3

E A V S P E D Y Q K I T N K P I L T F E V V K G S I N N I I A V N K Q I S E Y H E E G D K H L I T N Majority				
810	820	830	840	850
801 E A V S P E D Y Q K I T N K P I L T F E V V K G S I N N I I A V N K Q I S E Y H E E G D K H L I T N sag1408_2603.pep				
801 E A V S P E D Y Q K I T N K P I L T F E V V K G S I N N I I A V N K Q I S E Y H E E G D K H L I T N sag1408_515.pep				
801 E A V S P E D Y Q K I T N K P I L T F E V V K G S I N N I I A V N K Q I S E Y H E E G D K H L I T N sag1408_18rs21.seq				
801 E A V S P R D Y Q K I T N K P I L T F E V V K G S I Q N I I A V N K Q I S E Y H E E G D K H L I T N sag1408_cjb111.pep				
796 E A V S P R D Y Q K I T N K P I L T F E V V K G S I Q N I I A V N K Q I S E Y H E E G D K H L I T N sag1408_h36b.pep				
801 E A V S P R D Y Q K I T N K P I L T F E V V K G S I Q N I I A V N K Q I S E Y H E E G D K H L I T N sag1408_nem316.pep				
T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K Majority				
860	870	880	890	900
851 T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K sag1408_2603.pep				
851 T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K sag1408_515.pep				
851 T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K sag1408_18rs21.seq				
851 T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K sag1408_cjb111.pep				
846 T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K sag1408_h36b.pep				
851 T H I P P K G I I P M T G G K G I L S F I L I G G A M M S I A G G I Y I W K R Y K K S S D M S I E K sag1408_nem316.pep				
D				
				Majority
901 D				sag1408_2603.pep
901 D				sag1408_515.pep
901 D				sag1408_18rs21.seq
901 D				sag1408_cjb111.pep
896 D				sag1408_h36b.pep
901 D				sag1408_nem316.pep

Decoration 'Decoration #1': Shade (with solid black) residues that differ from the Consensus

FIGURE 24B

Figure 25. GBS closely associate with tight junctions and cross the monolayer by a paracellular route

Transmission Electron Microscopy images of GBS infection
of ME180 cervical epithelial cells.

Figure 26: GBS infection of ME180 cells

Figure 27

PCT/US05/27239 143/487

Figure 28

Figure 29

Figure 30

Figure 31

PCT/US2005/027239 147/487

Figure 32

Figure 33

COH1

2603 V/R

PCT/US05/27239 149/487

GBS STRAIN COH1 over GBS80

Figure 34

Negative staining EM

GBS STRAIN COH1 over GBS80

Figure 35

TEM anti-GBS80 (gold particles 10nm)

GBS STRAIN COH1 over GBS80

Figure 36

TEM anti-GBS80 (gold particles 10nm)

**GBS STRAIN COH1 over GBS80
TEM anti-GBS80 (gold particles 20nm)**

Figure 37

GBS STRAIN COH1 over GBS80

Figure 38

TEM anti-GBS104 (Gold particles 10nm)

WO 2006/078318 153/487 PCT/US2005/027239

GBS STRAIN COH1 over GBS80

Figure 39
TEM anti-GBS80 (gold particles 20nm) anti-GBS104 (gold particles 10nm)

WO 2006/078318

PCT/US05/27239

154/487

PCT/US2005/027239

Figure 40 **GBS STRAIN COH1 over GBS80**

TEM anti-GBS80 (gold particles 20nm) anti-GBS104 (gold particles 10nm)

156/487

Figure 41: GBS 80 is necessary for polymer formation, GBS104 and sortase SAG0648 are necessary for efficient assembly

PCT/US05/23239 157/487

**Figure 42: Gbs67 is part of a second pilus;
Gbs80 is polymerized in strain 515
(515 lacks sortase 647-8, but has AI-2 sortases)**

Figure 43: Two macro-molecules are visible in Coh1 at >10000 kDa, one is the Gbs80 pilin

Figure 45: Gbs52 is a minor component of the GBs pilus

Figure 46: The pilus is found in the supernatant of the bacterial culture

Figure 47: The pilus is found in the supernatant of cultures in all growth phases

TCA precipitation of 1 ml of THB culture supernatant run on 3-8% SDS-PAGE. OD600 nm are noted above samples, "F" indicates supernatant was filtered (0.2 μ M syringe filter).

Left five samples: Cohl.

Right five samples: 179
(Δ Gbs80/pGbs80).

Figure 48: In *Coh1*, only the *gbs80* protein and one sortase (*sag0647* or *sag0648*) is required for polymerization

Over expression of *gbs80* in various strain backgrounds (two clones each).

Total protein extract preparations.

Only the double sortase mutant does not polymerize *gbs80*.

Gbs80 is polymerized in the *DK515* strain background (lacks adhesin island 1, adhesin island 2 is 2603-like). Presumably, *sag1405*&*sag1406* are responsible for polymerization.

GBS STRAIN JM9030013

IEM anti-GBS80

WO 2006/078318

PCT/US2005/27239

164/487

PCT/US2005/027239

FIGURE 49

GBS STRAIN TM9030013

IEM anti-GBS104

WO 2006/078318
PCT/US05/272239

165/487

PCT/US2005/027239

FIGURE 50.

FIGURE 51

PC T/US605 / E7236

GI-19224135	1	MNNKK EOKKQDAPR-VSNRHP	KOITTYLVGVFLMFTLSSMRGAQSIEGEEK
ORF78	1	EOKRDNTNYGSANNKR	ROTTIGELKVFLTFVALIG----IVG----
GI-21909634	1	MOKRDNTNYGSANNKR	ROTTIGLLKVFLTFVALIGIVGFSIRAFG
GI-28810257	1	MOKRDNTNYGSANNKR	ROTTIGLLKVFLTFVALIGIVGFSIRAFG
GI-19745301	1	MOKRDNTNYGSANNKR	ROTTIGLLKVFLTFVALIGIVGFSIRAFG
GAS15	1	LRGEKMKNTRFPNKLNINTQRVL SKNSKRFWVTLVGVFLMIFALMTSMVG KTIVFG	
GI-19224135	53	R EEVSVPKIKSPDD--AYPWYGYDSYDSSHEYERFRVAHDLRVNLNGSKSYQVYCFNL	
ORF78	39	-----	
GI-21909634	46	- AEEQSVPNKQSSVQ--DYPWYGYDSYSKGYEDYSPLKTYHNLKVNLDGSKYQAYCFNL	
GI-28810257	46	- AEEQSVPNKQSSVQ--DYPWYGYDSYSKGYEDYSPLKTYHNLKVNLDGSKYQAYCFNL	
GI-19745301	46	- AEEOST-----	
GAS15	58	- LWESSTPNAINPDSSSEYRHYGYESYVRGHEYKQFRVAHDLRVNLLEGSRSYQVYCFNL	
GI-19224135	111	N SHYPNPKAVFSKQWENRVDGTGEVTNYEQTPKIRGESIANKELSIIMYNAYPKNANGYM	
ORF78	39	-----	
GI-21909634	103	T KHFFSKSDSVRSQWYKILEGTNENPIKLADKPRIEDGOLQONFLRLEYNGYPNDRNGIM	
GI-28810257	103	T KHFFSKSDSVRSQWYKILEGTNENPIKLADKPRIEDGOLQONFLRLEYNGYPNDRNGIM	
GI-19745301	52	-----	
GAS15	117	KNAFFLGSDSVVKRIVKRPDGISTKEEDYPMSPRTGDELNOKTERAVMYNHPONANGIM	
GI-19224135	171	D KIEPLNAILVTOQAWWYSDSSYGN-IKTLWASELKEGKIDFEQVLMREAYSKLIISDD	
ORF78	39	-----	
GI-21909634	163	K GIDPLNAILVTONATWYTDSSYISDTSKAFOQQETELKLDSOOLMLRNWALKRLINPK	
GI-28810257	163	K GIDPLNAILVTONATWYTDSSYISDTSKAFOQQETELKLDSOOLMLRNWALKRLINPK	
GI-19745301	52	-----	
GAS15	177	EGLEPLNAIRVTOEAWWYSDNAPISNPDESFKRESESNLVTSQSLMRQALNQLIDEN	
GI-19224135	230	L EETSKNKLIPQGSKLNIFVPQDN-----VONLLSAEYVPESPAPGQSEPEPPVQTNT	
ORF78	46	-----	
GI-21909634	223	E VEISLPNOVEANYQLSIFQSSDNT-----FQNLLSAEYVPTTPPKPG--EEPPAKTENT	
GI-28810257	223	E VEISLPNOVEANYQLSIFQSSDNT-----FQNLLSAEYVPTTPPKPG--EEPPAKTENT	
GI-19745301	52	-----	
GAS15	237	LATKMPKOVEDDEQLSIFESEDINGDKYNKGYQNLLSGGIWTKPPPGDPPMPPNQPOPOT	
GI-19224135	284	S VIIRKYAEQGDYSKLLEGATLRLTCEDILFQEKVFQSGNGTGEKIELSNGTYTLTEISSP	
ORF78	57	S VIIRKYAEQGDYSKLLEGATLRLTCEDILFQEKVFQSGNGTGEKIELSNGTYTLTEISSP	
GI-21909634	275	S VIIRKYAEQGDYSKLLEGATLNLIAQIEGSGFQEKIFDSNNGEKGVELENGTYLSELNEP	
GI-28810257	275	S VIIRKYAEQGDYSKLLEGATLNLIAQIEGSGFQEKIFDSNNGEKGVELENGTYLSELNEP	
GI-19745301	57	S VIIRKYAEQGDYSKLLEGATLNLIAQIEGSGFQEKIFDSNNGEKGVELENGTYLSELNEP	
GAS15	297	SVLIRKYAEQGDYSKLLEGATLQLTGDNVNSFOARFSENIDGERIELSDGTYTLTEISSP	
GI-19224135	344	E GYKIAEPIKFRVNKKVFIQKDGSOVENENKEAEPYSVFA-SMDQDSNYINPETFTP	
ORF78	117	E GYKIAEPIKFRVNKKVFIQKDGSOVENENKEAEPYSVFA-PYTIBAYNDFDEBGLSTON	
GI-21909634	335	Q GYGVAPITFKVAEAKVLIKKREGOFVENONKEIAEPYSVFA-FNDFEETGYLS--DFNN	
GI-28810257	335	Q GYGVAPITFKVAEAKVLIKKREGOFVENONKEIAEPYSVFA-FNDFEETGYLS--DFNN	
GI-19745301	117	Q GYDIAEPIKFRVNKKVFIQKDGSOVENENKEAEPYSVFA-PYTIBAYNDFDEBGLSTON	
GAS15	357	AGYSIAEPIKFRVNKKVFIQKDGSOVENENKEAEPYSVFA-PYTIBAYNDFDEBGLSTON	
GI-19224135	404	I GKFYYAKNKKSSQVVYCFNAIDLHSPPESEDGGTIDPDLISTMKEYKYTHTAGSDLFKY	
ORF78	174	YAKFYYAKNKKSSQVVYCFNAIDLHSPPESEDGGTIDPDLISTMKEYKYTHAGSDLFKY	
GI-21909634	393	I GKFYYAKNNTNGTNOVVYCFNAIDLHSPPDSYDHGANIDPDFVSESKIEIKYTHVSGYDLYKY	
GI-28810257	393	I GKFYYAKNNTNGTNOVVYCFNAIDLHSPPDSYDHGANIDPDFVSESKIEIKYTHVSGYDLYKY	
GI-19745301	177	I GKFYYAKNANGTSQVVYCFNAIDLHSPPDSLDNGETIDPDFNEGKEIKYTHILGADLFSY	
GAS15	413	YAKFYYAKNNGSSQVVYCFNAIDLHSPPDSEDGGKTMTPDFITG-EVKYTHAGSDLFKY	

FIGURE 52

GI-19224135	464	[REDACTED]
ORF78	233	[REDACTED]
GI-21909634	453	[REDACTED]
GI-28810257	453	[REDACTED]
GI-19745301	237	[REDACTED]
GAS15	472	[REDACTED]
GI-19224135	522	[REDACTED]
ORF78	291	[REDACTED]
GI-21909634	511	[REDACTED]
GI-28810257	511	[REDACTED]
GI-19745301	295	[REDACTED]
GAS15	531	[REDACTED]
GI-19224135	581	[REDACTED]
ORF78	348	[REDACTED]
GI-21909634	570	[REDACTED]
GI-28810257	570	[REDACTED]
GI-19745301	349	[REDACTED]
GAS15	587	[REDACTED]
GI-19224135	641	[REDACTED]
ORF78	408	[REDACTED]
GI-21909634	630	[REDACTED]
GI-28810257	630	[REDACTED]
GI-19745301	409	[REDACTED]
GAS15	646	[REDACTED]
GI-19224135	701	[REDACTED]
ORF78	468	[REDACTED]
GI-21909634	690	[REDACTED]
GI-28810257	690	[REDACTED]
GI-19745301	469	[REDACTED]
GAS15	706	[REDACTED]

FIGURE 52A

GI-1922WO 2006/078318 S_YM_FAR_EKMNNK_MI_LNKEAGFLVHTKRRKF_AVTLVGVF_FLLACAGAIGFGQVAY
 GI-50913503 S_YM_FAR_EKMNNK_MI_LNKEASFLAHTKRRKF_AVTLVGVF_FLLACAGAIGFGQVAY

GI-19224134 61 AADEKTVFNF_SPDPDYPMYGYDSY-----RGIFARYHNLKVNLKGSK_EYQAYC_FNETK
 GI-50913503 61 AADEKTVF_SHSSPENPEFPMYGYDAYGKEYPGYNIMTRYHDLRVNLNGSRSYQVYC_FNTQS

GI-19224134 115 YFPRPTYSTTNNEKKIDGSGSAEKS_AANP_RVILLENDKLEKNILN_TYNGVKS_NANGF
 GI-50913503 121 N_VPSQKN_SFIKKWFKKIEGNCKSFVDYAH_TKLEG_E-----ELEORELSSEYNEYPN_DANGY

GI-19224134 175 MNGIEEDLNAILVT_NATI_TYYSDS_API_LNDVNKM_ERPVNGEISESQV_TLMREALNKLIDP
 GI-50913503 178 MKGLEE_BLN_AITVTQYAV_THYSDNS-QYQFETL_ESPAREGKISRSQV_TLMREALNKLIDP

GI-19224134 235 NLEATAANKIPSGYRLNIFKSE_EDYQ_NLLSAEYVPDDPPKPGDTSEHNPKTP_ELDGTPI
 GI-50913503 237 NLEATAVNKIPSGYRLNIF_ESENEAYQ_NLLSAEYVPDDPPKPG_ETS_EHNPKTP_ELDGTPI

GI-19224134 295 PEDPKRPDESS_EPALPPLMP_ELDGEEVPEV_PSES_LE_PALPPLMP_ELDGEEVPEV_PSES_L
 GI-50913503 297 PEDPKHPDDN_EPT_LFEVM-----

GI-19224134 355 PALPPLMP_ELDGEEVPEV_PSES_LE_PALPPLMP_ELDGEEVPEV_PSES_LE_PALPPLMP_ELDG
 GI-50913503 316 -----LDGEEVPEV_PSES_LE_PALPPLMP_ELDG

GI-19224134 415 BEVPEKFSVDLPIEV_PRYEFNNKDQS_EPLAGESGETEYITEV_VGNQ_NQPVDIDKKLPNETG
 GI-50913503 343 QEVPEKFSIDLPIEV_PRYEFNNKDQS_EPLAGESGETEYITEV_VGNQ_NQPVDIDKKLPNETG

GI-19224134 475 FSGNNVETEDTKEPEV_LMGQ_SES_EFTKDTOTGMSGOTTPOVETEDTKEPEV_LMGQ_SSE
 GI-50913503 403 FSGNNVETEDTKEPEV_LMGQ_SES_EFTKDTOTGMSGOTTPOVETEDTKEPEV_LMGQ_SSE

GI-19224134 535 SVEFTKDTOTGMSGOTTPOVETEDTKEPEV_LMGQ_SES_EFTKDTOTGMSGOTTPOVETE
 GI-50913503 463 SVEFTKDTOTGMSGOTTPOVETEDTKEPEV_LMGQ_SES_EFTKDTOTGMSGOTTPOVETE

GI-19224134 595 DTKEE_VLNGQ_SES_EFTKDTOTGMSGFSETAT_VVEDTRPKLVFHFDNNEPKVEENREK
 GI-50913503 523 DTKEE_VLNGQ_SES_EFTKDTOTGMSGFSETAT_VVEDTRPKLVFHFDNNEPKVEENREK

GI-19224134 655 PTKNITPILPATGDIENVLAF_LGILILSVLSIFSLLNNK_RKKV-
 GI-50913503 583 PTKNITPILPATGDIENVLAF_LGILILSVLSIFSLLNNK_RSKKV

170/487

GI-19745307 1 MTQKNSY FLLSLTGFI1CLLLVTIGLSCGVSVGHAETRNGANKOGF PCT/US2005/027239
ORF84 WO 2006/078318 INSY SFLSLTGFI1CLLLVTIGLSCGVSVGHAETRNGANKOGFAF PCT/US2005/027239
GI-28810263 1 MTQKNSYKLSFLLSLTGFI1CLLLVTIGLSCGVSVGHAETRNGANKOGFAEINKN
GI-21909640 1 MTQKNSYKLSFLLSLTGFI1CLLLVTIGLSCGVSVGHAETRNGANKOGFAEINKN
GI-19224141 1 MTQKNSYKLSFLLSLTGFI1CLLLVTIGLSCGVSVGHAETRNGANKOGSFEINKVQNNKP

GI-19745307 55 ----- KSQEENYE
ORF84 55 ----- KSQEENYE
GI-28810263 55 ----- KSQEENYE
GI-21909640 1 -----
GI-19224141 61 LPGATFSLTSKDKGTSVQFTSNDKGIVDAQNLQPGTYTLKEETAPDGYDKTSRTWTVT

GI-19745307 64 VYDN ----- RNI
ORF84 64 VYDN ----- RNI
GI-28810263 64 VYDN ----- RNI
GI-21909640 1 -----
GI-19224141 121 VYENGYTKLVENPYNGEIISKAGSKDVSSQLQLENPKMSVVSKYGKTEVSSGAADFYRNH

GI-19745307 71 LQDGHEHKLEIKRVDGTGKTYQG FCFOLTKNFP TAQGVSKLYKKLSS
ORF84 71 LQDGHEHKLEIKRVDGTGKTYQG FCFOLTMIFP TAQGVSKLYKKLSS
GI-28810263 71 LQDGHEHKLEIKRVDGTGKTYQG FCFOLTKNFP TAQGVSKLYKKLSS
GI-21909640 1 ----- MSS
GI-19224141 181 AAYFKMSF EIKQEKSETINP GDTFVLQIDRLNPKGISQDEPKIIEYDSANSPLAIGKYH

GI-19745307 118 ----- SDEETLK
ORF84 118 ----- SDEETLK
GI-28810263 118 ----- SDEETLK
GI-21909640 4 ----- SDEETLK
GI-19224141 241 AENHQLIYTFTDYIAGLDKVQLSAELSLFLEMKEVLENTSISNFKSTIGGQEITYKGTVN

GI-19745307 125 ----- QYASKYTSNRRGDTSG
ORF84 125 ----- QYASKYTSNRRGDTSG
GI-28810263 125 ----- QYASKYTSNRRGDTSG
GI-21909640 11 ----- QYASKYTSNRRGDTSG
GI-19224141 301 VLYGNESTKESNYITNGLNVGGSIESTYNTGEFVWYVYVNPNRNTNPYATMNLWGFGF

GI-19745307 141 ----- NLRKQIANVLTEGYPT
ORF84 141 ----- NLRKQIANVLTEGYPT
GI-28810263 141 ----- NLRKQIANVLTEGYPT
GI-21909640 27 ----- NLRKQIANVLTEGYPT
GI-19224141 361 ARSNTSDILENDANTSSAELGEIQVYEVPEGEKLPSYGVDTVKTLPEDITAGLCNGCFOM

GI-19745307 157 NKS DMLN ----- GLTENEKIEVTQDAIWYF
ORF84 157 NKS DMLN ----- GLTENEKIEVTQDAIWYF
GI-28810263 157 NKS DMLN ----- GLTENEKIEVTQDAIWYF
GI-21909640 43 NKS DMLN ----- GLTENEKIEVTQDAIWYF
GI-19224141 421 TFRQRIDEGNNTQNKAFI1KVTGKTDQSGKPLVQSNLASFRCASEYAAFTPVGGMWFO

GI-19745307 182 TETTVPADR ----- KYEDVQFDLFVPQDTN
ORF84 182 TETTVPADR ----- KYEDVQFDLFVPQDTN
GI-28810263 182 TETTVPADR ----- KYEDVQFDLFVPQDTN
GI-21909640 68 TETTVPADR ----- KYEDVQFDLFVPQDTN
GI-19224141 481 NEIAALSPSKGSGSGKSEFTKPSITVANLFRKMKSTDNVPLPEAAFELRSINGNS

GI-19745307 233 -- LQAVISVEPVIESLPIVTS ----- LRPPIAQKDITAKN
ORF84 233 -- LQAVISVEPVIESLPIVTS ----- LRPPIAQKDITAKN
GI-28810263 233 -- LQAVISVEPVIESLPIVTS ----- LRPPIAQKDITAKN
GI-21909640 119 -- LQAVISVEPVIESLPIVTS ----- LRPPIAQKDITAKN
GI-19224141 541 QKLEASSNTQGEWHFKDLTS GTYDLYETKAPKGYQQVTEKEETVTVDTTPAEEMVTWGS

FIGURE 54