Zusammenfassung Abbildungen

31 May 2024 11:09

Abbildungen in Ebene

Streckung um λ_1 in x und λ_2 in y	orthogonale Projektion auf die Gerade g: ax + by = 0 mit $a^2 + b^2 \stackrel{!}{=} 1$	Spiegelung an der Geraden g: ax + by = 0 mit $a^2 + b^2 = 1$	$\begin{array}{c} \textbf{Rotation} \\ \textbf{-} \text{ um den Ursprung} \\ \text{ um Winkel } \varphi \end{array}$	Scherung in x-Richtung mit Faktor m
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

Abbildungen im Raum

Orthogonale Projektion auf die x/y-Ebene	Spiegelung an der x/y -Ebene	Orthogonale Projektion auf die x-Achse	Spiegelung an der x-Achse	
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	
Orthogonale Projektion auf die x/z-Ebene	Spiegelung an der x/z -Ebene	Orthogonale Projektion auf die y-Achse	Spiegelung an der y-Achse	
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix}0&0&0\\0&1&0\\0&0&0\end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	
Orthogonale Projektion auf die y/z-Ebene	Spiegelung an der y/z-Ebene	Orthogonale Projektion auf die z-Achse	Spiegelung an der z-Achse	
$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	

Ursprung:

· normierter. Richtungs vektor 121 = 1

$$\vec{\alpha} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 1/47 \\ 1/47 \\ 1/47 \end{pmatrix}$$

$$|\vec{\alpha}| = \sqrt{1^2 + 1^2} = -\sqrt{2}$$

 $\begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) & a_1a_2(1 - \cos(\varphi)) - a_3\sin(\varphi) & a_1a_3(1 - \cos(\varphi)) + a_2\sin(\varphi) \\ a_1a_2(1 - \cos(\varphi)) + a_3\sin(\varphi) & \cos(\varphi) + a_2^2(1 - \cos(\varphi)) & a_2a_3(1 - \cos(\varphi)) - a_1\sin(\varphi) \\ a_1a_3(1 - \cos(\varphi)) - a_2\sin(\varphi) & a_2a_3(1 - \cos(\varphi)) + a_1\sin(\varphi) & \cos(\varphi) + a_3^2(1 - \cos(\varphi)) \end{pmatrix}$

BSP Ortogonale Projection

Ortogonale Projektion, auf Ebene

E:
$$ax + by + cz = 0$$
 mit $a^2 + b^2 + c \neq 1$

$$P = \begin{pmatrix} 1 - a^{2} & -ab & -ac \\ -ab & 1 - b^{2} & -bc \\ -ac & -bc & 1 - c^{2} \end{pmatrix}$$

Spiegelung auf Ebene E: ax + by + cz = 0 Sinz (-y) = -Sin (y) $S = \begin{pmatrix} 1 - 2a^{2} & -2a & -2ac \\ -2ab & 1-2b^{2} & -2bc \\ -2ac & -2bc & 1-2c^{2} \end{pmatrix}$

$$S = \begin{pmatrix} 1 - 2a^{2} - 2a & -2ac \\ -2ab & 1 - 2b^{2} & -2bc \\ -2ac & -2bc & 1 - 2c^{2} \end{pmatrix}$$

Rotationen

Z-Achse

X - Achse

$$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

$$\begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$$

sin cos tan Chart

RAD								
θ	0° (or) 0	30° (or) $\frac{\pi}{6}$	45° (or) $\frac{\pi}{4}$	60° (or) $\frac{\pi}{3}$	90° (or) $\frac{\pi}{2}$			
sin θ	0	1/2	√ <u>2</u> 2	$\frac{\sqrt{3}}{2}$	1			
cos θ	1	$\sqrt{\frac{3}{2}}$	$\frac{\sqrt{2}}{2}$	1/2	0			
tan θ	0	√ <u>3</u> 3	1	√3	Not Defined			