## Scaling of the higher-order flow harmonics: implications for initial-eccentricity models and the "viscous horizon"

Roy A. Lacey, <sup>1,\*</sup> A. Taranenko, <sup>1</sup> J. Jia, <sup>1,2</sup> N. N. Ajitanand, <sup>1</sup> and J. M. Alexander <sup>1</sup> <sup>1</sup>Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA <sup>2</sup>Physics Department, Bookhaven National Laboratory, Upton, New York 11973-5000, USA (Dated: July 30, 2018)

The scaling properties of the flow harmonics for charged hadrons  $v_n$  and their ratios  $[v_n/(v_2)^{n/2}]_{n\geq 3}$ , are studied for a broad range of transverse momenta  $(p_T)$  and centrality selections in Au+Au and Pb+Pb collisions at  $\sqrt{s_{NN}} = 0.2$  and 2.76 TeV respectively. At relatively low  $p_T$ , these scaling properties are found to be compatible with the expected growth of viscous damping for sound propagation in the plasma produced in these collisions. They also provide important constraints for distinguishing between the two leading models of collision eccentricities, as well as a route to constrain the relaxation time and make estimates for the ratio of viscosity to entropy density  $\eta/s$ , and the "viscous horizon" or length-scale which characterizes the highest harmonic which survives viscous damping.

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.Ld

12 strongly interacting matter produced in heavy ion colli- 34 coefficients obtained with Eqs. 1 and 2 are equivalent. 13 sions, is a central goal of the experimental heavy ion pro- 35 16 manifested by the anisotropic emission of particles in the <sub>17</sub> plane transverse to the beam direction [1], continues to <sub>18</sub> play an important role in these ongoing efforts [2–15]. 19 This anisotropy can be characterized, as a function of <sub>20</sub> particle transverse momentum  $p_T$  and collision central-<sub>21</sub> ity (cent) or the number of participant nucleons  $N_{\text{part}}$ , 22 by the Fourier coefficients  $v_n$ ;

$$\frac{dN}{d\phi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n\phi - n\Psi_n)\right),\tag{1}$$

23 and by the pair-wise distribution in the azimuthal angle difference ( $\Delta \phi = \phi_a - \phi_b$ ) between particle pairs with <sub>25</sub> transverse momenta  $p_T^a$  and  $p_T^b$  (respectively) [1, 16];

$$\frac{dN^{\text{pairs}}}{d\Delta\phi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n^a v_n^b \cos(n\Delta\phi)\right),\tag{2}$$

where  $\phi$  is the azimuthal angle of an emitted particle, and  $\Psi_n$  are the azimuths of the estimated participant event 28 planes [17, 18];

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$
  
$$v_n^* = \langle \cos n(\phi - \Psi_m) \rangle, \ n \neq m,$$
 (3)

<sup>29</sup> where the brackets denote averaging over particles and 30 events. Here, the the starred notation is used to distin- $_{31}$  guish the n-th order moments obtained relative to the m-<sub>32</sub> th order event plane  $\Psi_m$  (eg.  $v_4^*$  relative to  $\Psi_2$ ). For flow <sub>63</sub> where viscous damping reflects the dispersion relation

Full characterization of the transport properties of the 33 driven anisotropy devoid of non flow effects, the Fourier

Flow coefficients stem from an eccentricity-driven hy-14 grams at both the Relativistic Heavy Ion Collider (RHIC) 36 drodynamic expansion of the matter in the collision zone <sub>15</sub> and the Large Hadron Collider (LHC). Collective flow, as <sub>37</sub> [6, 11, 19–23], i.e., a finite eccentricity  $\varepsilon_n$  drives uneven 38 pressure gradients in- and out of the event plane, and the 39 resulting expansion leads to the anisotropic emission of 40 particles about this plane. The coefficients  $v_n(p_T, \text{cent})$ 41 (for odd and even n) are sensitive to both the initial ec-42 centricity and the specific shear viscosity  $\eta/s$  (i.e. the 43 ratio of shear viscosity  $\eta$  to entropy density s) of the ex-44 panding hot plasma [6-8, 20, 24-26]. Here, it is notewor-45 thy that, for symmetric systems, the symmetry transfor-46 mation  $\Psi_{RP} \to \Psi_{RP} + \pi$ , dictates that the odd harmonics 47 are zero for smooth ideal eccentricity profiles. However, 48 the "lumpy" transverse density distributions generated 49 in individual collisions, can result in eccentricity profiles 50 which have no particular symmetry, so the odd harmonics 51 are not required to be zero from event to event. Fortu-52 itously, the pervasive assumption of a smooth eccentricity 53 profile has hindered full exploitation of the odd harmon-54 ics until recently [27].

> Because of the acoustic nature of anisotropic flow (i.e. it is driven by pressure gradients), a transparent way to evaluate the strength of dissipative effects is to consider 58 the attenuation of sound waves. In the presence of vis-59 cosity, sound intensity is exponentially damped  $e^{(-r/\Gamma_s)}$ 60 relative to the sound attenuation length  $\Gamma_s$ . This can 61 be expressed in terms of a perturbation to the energy-62 momentum tensor  $T_{\mu\nu}$  [28]:

$$\delta T_{\mu\nu}(t) = \exp\left(-\frac{2}{3}\frac{\eta}{s}k^2\frac{t}{T}\right)\delta T_{\mu\nu}(0),\tag{4}$$

64 for sound propagation, and the spectrum of initial (t  $_{65} = 0$ ) perturbations can be associated with the harmon-66 ics of the shape deformations and density fluctuations. <sub>67</sub> Here, k is the wave number for these harmonics, and t $_{68}$  and T are the expansion time and the temperature of 69 the plasma respectively. For a collision zone of transverse size  $\bar{R}$ , Eq. 4 indicates that viscous corrections for the eccentricity-driven flow harmonics with wavelengths  $72 \ 2\pi \bar{R}/n$  for  $n \geq 1$  (i.e.  $k \sim n/\bar{R}$ ), dampen exponentially as  $n^2$ . The "viscous horizon" or length scale  $r_v = 2\pi \bar{R}/n_v$ <sub>74</sub> is also linked to the order of the highest harmonic  $n_v$ 75 which effectively survives viscous damping. That is, it 76 separates the high frequency sound modes which are fully 77 damped from those which are not [28]. The sound hori-78 zon  $r_s = \int_{\tau_0}^{\tau_f} d\tau c_s(\tau)$ , or the distance sound travels at 79 speed  $c_s(\tau)$  until flow freeze-out  $\tau_f$ , sets the length scale 80 for suppression of low frequency superhorizon modes with wavelengths  $2\pi R_f/n > 2r_s$ , where  $R_f$  is the transverse 82 size at sound freeze-out. Thus, the relative magnitudes of the flow harmonics  $v_n$  can provide important constraints 84 for pinning down the magnitude of the transport coef-85 ficients  $\eta/s$  and  $c_s$ , as well as the "correct" model for eccentricity determinations [28–30].

Viscous damping for sound propagation in the plasma does not indicate an explicit  $p_T$  dependence for the rel-89 ative magnitudes of  $v_n$  (cf. Eq. 4). However, for a finite viscosity in the plasma, the resulting asymmetry in the 91 energy-momentum tensor manifests as a correction to the  $_{92}$  local particle distribution (f) after freeze-out [31];

$$f = f_0 + \delta f(p_T), \tag{5}$$

where  $f_0$  is the equilibrium distribution and  $\delta f(p_T)$  is its 95 rection and is known to reduce the magnitude of  $v_2(p_T)$ , <sub>96</sub> especially for  $p_T \gtrsim 0.7 \text{ GeV/c}$  [31]. The relative magni-

of  $v_n(p_T, \text{cent})$  and the ratios  $\left[v_n(p_T)/(v_2(p_T))^{n/2}\right]_{n\geq 3}$  mid-central Au+Au and Pb+Pb collisions respectively. They confirm the exponential decrease of  $v_n/\varepsilon_n$  with  $n^2$ , and Pb+Pb collisions. We find scaling patterns that: (i) 139 expected for sound propagation. This "acoustic scalgation in the plasma created in these collisions, (ii) provide a constraint for distinguishing between the two lead-  $^{142}$   $(Ae^{-\beta n^2})$  to the data shown. 111 ing eccentricity models, i.e. the Glauber [32] and the 143 Similar patterns were observed for a broad selection of 112 factorized Kharzeev-Levin-Nardi (KLN) [33–35] models, 144 centralities for  $p_T \lesssim 3~{
m GeV/c}$ . However, for the 0-5% and (iii) point to an independent and robust method to 145 and 5-10% most central Pb+Pb collisions,  $v_2/\varepsilon_2$  shows 114 estimate  $\eta/s$ .



FIG. 1.  $v_n/\varepsilon_n$  vs. n for charged hadrons  $(p_T \sim 1.4 \text{ GeV/c})$ produced in Au+Au collisions at  $\sqrt{s_{NN}} = 0.2 \text{ TeV}$  (a) and Pb+Pb collisions at  $\sqrt{s_{NN}} = 2.76$  TeV. The  $v_n$  data are taken from Refs. [36] and [37, 38] respectively for 20-30% centrality. The curves represent fits to the data (see text).

measurements by the PHENIX collaboration, for Au+Au 118 collisions at  $\sqrt{s_{NN}} = 0.2 \text{ TeV } [18, 36]$ , and measurements by the ATLAS collaboration for Pb+Pb collisions <sub>120</sub> at  $\sqrt{s_{NN}} = 2.76$  TeV [37, 38]. The Au+Au data set 121 exploits the event plane analysis method (c.f. Eq. 3), while the Pb+Pb data set utilizes the two-particle  $\Delta\phi$ 123 correlation technique (c.f. Eq. 2), as well as the event 124 plane method. Note as well that, due to partial error 125 cancellation, the relative systematic errors for the ratios 94 first order correction. The latter acts as a viscous cor-  $v_n/(v_2)^{n/2}$  and  $v_n^*/(v_2)^{n/2}$  can be smaller than the ones  $_{127}$  reported for the  $v_n$  values.

To perform validation tests for viscous damping com $v_n(p_T)$  are expected to be dominated by the dis-  $v_n(p_T)$  patible with sound propagation, the measured values of 98 persion relation for sound propagation, albeit with some 130  $v_n(\text{cent})$ , for each  $p_T$  selection, were first divided by <sub>99</sub> influence from  $\delta f(p_T)$ . For relatively small values of  $\eta/s$ ,  $_{131}$   $\varepsilon_n(\text{cent})$  and then plotted as a function of n. Monte this influence on the  $p_T$ -dependent viscous corrections 122 Carlo (MC) simulations were used to compute  $\varepsilon_n(\text{cent})$ would also be small. Thus, a characteristic scaling re- 133 from the two-dimensional profile of the density of sources 102 lationship between  $v_{n,n\geq 3}(p_T)$  and  $v_2(p_T)$  might be ex-134 in the transverse plane  $\rho_s(\mathbf{r}_\perp)$ , with weight  $\omega(\mathbf{r}_\perp) = \mathbf{r}_\perp^n$ 135 [29]. Figs. 1 (a) and (b) show representative examples of In this letter, we investigate the scaling properties  $v_n/\varepsilon_n$  vs. n for charged hadrons ( $p_T \sim 1.4~{\rm GeV/c}$ ) in validate the viscous damping expected for sound propa-  $v_n$  is further confirmed by the dashed and dot-

146 significant suppression relative to the empirical trend for The double differential data,  $v_n^*(p_T, \text{cent})$  and  $v_n^*(p_T, \text{cent})$  $v_n(p_T, \text{cent})$ , employed in our analysis are obtained from 148 Fig. 1. The fractional magnitude of this suppression is



FIG. 2.  $\beta$  vs.  $p_T$  for 20-30% central Au+Au collisions at  $\sqrt{s_{NN}} = 0.2 \text{ TeV (a)}$  and 20-30% central Pb+Pb collisions at  $\sqrt{s_{NN}} = 2.76 \text{ TeV (b)}$ . The dot-dashed and dashed curves indicate a  $1/\sqrt{(p_T)}$  dependence for  $\beta$  (see text).

essentially independent of  $p_T$  even though  $v_2/\varepsilon_2 < v_3/\varepsilon_3$ <sub>150</sub> for  $p_T \gtrsim 2 \text{ GeV/c}$ . We interpret this suppression as an 151 indication that, for the most central Pb+Pb collisions, 152 the low frequency modes n < 3 exceed the superhori-153 zon limit, i.e.  $2\pi R_f/n > 2r_s$ . That is, for these low 154 frequency modes, the requirement for the maximum mo-155 mentum anisotropy to develop is not met, so only a fracwhich make them sub-horizon. Note that  $R_f = \bar{R} + r_s$ , 186 sound propagation.  $_{\mbox{\scriptsize 159}}$  so the order n of the low frequency modes which are sup-  $_{\mbox{\scriptsize 187}}$ pressed, can serve to constrain the sound speed.

166 tively; similar data trends were observed for other cen- 194 The apparent differences between  $v_4^*/(v_2)^2$  and  $v_4/(v_2)^2$  $_{167}$  tralities. The dashed and dot-dashed curves in Fig. 2  $_{195}$  are also an indication of the important role of  $\varepsilon_4$  as a show that  $\beta$  scales as  $1/\sqrt{p_T}$  for both collision ener- 196 driver for  $v_4$ . That is, the expected contribution to  $v_4$  $_{169}$  gies, but the values for Pb+Pb collisions are about 25%  $_{197}$  from  $v_2$  [ $\sim$   $(v_2)^2$ ] does not dominate the  $v_4$  measureof the relaxation time [15, 31]. Consequently it should  $_{199}$  the initial eccentricity fluctuations cause  $\Psi_2$  to fluctuate serve as an important constraint for models.

Figure 3 shows the ratios  $v_3/(v_2)^{3/2}$  and  $v_4/(v_2)^2$  plot- 201 The flat  $p_T$  dependence for  $v_n/(v_2)^{n/2}$  (c.f Fig. 3) also 175 ted as a function of  $p_T$  [(a) and (b)] and  $N_{\rm part}$  [(c) and 202 suggests that the  $p_T$ -dependent contributions to the vis-178 characteristic increase with  $N_{\rm part}$ . The same trends are 205 tios  $\varepsilon_n/(\varepsilon_2)^{n/2}$  and consequently, an important route for exhibited by the Pb+Pb data ( $\sqrt{s_{NN}} = 2.76$  TeV) with 206 distinguishing between different eccentricity models [29]. 180 magnitudes comparable to those for Au+Au collisions 207 The solid symbols in Fig. 4 show a representative set of 181 for the same range of  $p_T$  and centrality selections. We 208 the experimental  $v_n/(v_2)^{n/2}$  ratios which take account of



FIG. 3.  $v_3/(v_2)^{3/2}$  vs.  $p_T$  (a) and  $v_4/(v_2)^2$  vs.  $p_T$  for 10-20% central Au+Au collisions. The bottom panels show  $v_3/(v_2)^{3/2}$ vs.  $N_{\text{part}}$  (c) and  $v_4/(v_2)^2$  vs.  $N_{\text{part}}$  (d) for several  $p_T$  cuts, as indicated. The  $v_{2,3,4}$  values used for these ratios are reported in Ref. [36].

cent to be an indication that the  $p_T$ -dependent viscous tion of the full anisotropy is observed. For mid-central  $_{184}$  corrections for  $v_n$  are dominated by the  $p_T$ -independent collisions, these sound modes have shorter wavelengths  $_{185}$  contributions which stem from the dispersion relation for

The trends for  $v_4^*/(v_2)^2$  were found to be similar to 188 those for  $v_4/(v_2)^2$ , but the ratios  $v_4^*/(v_2)^2$  vs.  $N_{\text{part}}$  are For each centrality, exponential fits  $(Ae^{-\beta n^2})$  to  $v_n/\varepsilon_n$  189 much less steep [18]. The  $N_{\rm part}$  dependence of  $v_4^*/(v_2)^2$ vs. n were also made to investigate the  $p_T$ -dependent vis- 190 and  $v_4/(v_2)^2$  contrasts with the constant value of  $\sim 0.5$ cous corrections attributable to  $\delta f(p_T)$ . Figs. 2 (a) and 191 predicted for perfect fluid hydrodynamics [39, 40], and (b) show the  $p_T$ -dependence of the  $\beta$  values extracted 192 points to the important role of the higher-order eccenfor 20-30% central Au+Au and Pb+Pb collisions respec- 193 tricity moments and their fluctuations [15, 27, 29, 41, 42]. larger. This scaling is a clear indication of the influence 198 ments. Note as well that  $v_4 > v_4^*$  is expected because about  $\Psi_4$ .

(d)] respectively, for Au+Au collisions. These ratios in- 203 cous corrections for the ratios  $(v_n/\varepsilon_n)/(v_2/\varepsilon_2)^{n/2}$  essendicate an essentially flat dependence on  $p_T$ , but show a 204 tially cancel, making them a reliable constraint for the rainterpret the flat  $p_T$  dependence of  $v_n/(v_2)^{n/2}$  [for each 200 the relatively small effects of acoustic suppression. The



FIG. 4. Data comparisons to the calculated ratios (a)  $\varepsilon_3/(\varepsilon_2)^{3/2}$  vs.  $N_{\rm part}$  and (b)  $\varepsilon_4/(\varepsilon_2)^2$  vs.  $N_{\rm part}$  for MC-Glauber and MC-KLN initial geometries for Au+Au collisions (see text).

<sup>210</sup> open symbols show the corresponding eccentricity ratios <sup>211</sup> obtained for the two eccentricity models. The  $\varepsilon_n$  values <sup>212</sup> for these ratios were evaluated as described earlier. Fig. <sup>213</sup> 4 indicates relatively good agreement between data and <sup>214</sup> the  $\varepsilon_n/(\varepsilon_2)^{n/2}$  ratios, confirming the utility of  $v_n/(v_2)^{n/2}$  <sup>215</sup> as a constraint for distinguishing between the eccentricity <sup>216</sup> models [29].

The observed scaling patterns summarized in Figs. 1 <sup>219</sup> - 3 undoubtedly provide an important set of constraints <sup>220</sup> for detailed comparisons to model calculations. In lieu <sup>221</sup> of such calculations, we demonstrate their current util-<sup>222</sup> ity for first rough estimates of the magnitude of  $\eta/s$  <sup>223</sup> and the viscous horizon. To this end, we employ fits to <sup>224</sup> both the Au+Au and Pb+Pb data, with the fit function <sup>225</sup>  $(A\sqrt(p_T)e^{-\frac{\beta n^2}{\sqrt(p_T)}})$ , where the  $\sqrt(p_T)$  factors account for <sup>226</sup> the influence of  $\delta f(p_T)$ . These fits indicate that, relative <sup>227</sup> to  $v_2/\varepsilon_2$ , the magnitude of  $v_n/\varepsilon_{n,n\geq 3}$  decreases by more <sup>228</sup> than a factor of 50 for  $n_v\sim 7$ , i.e.  $v_n/\varepsilon_n$  for  $n\gtrsim 7$  are <sup>229</sup> essentially completely damped. This gives the estimate <sup>230</sup>  $r_v=2\pi \bar{R}/n_v\simeq 1.8$  fm for the viscous horizon in central <sup>231</sup> Au+Au and Pb+Pb collisions.

The same fits allow robust extraction of the  $\beta$  values 285 for Au+Au and Pb+Pb collisions. Here, it is noteworthy 286 that the dependence of  $v_n/\varepsilon_n$  on n can provide a partic-287 ularly tight constraint, because it is the relative magni-288 tudes of  $v_n/\varepsilon_n$  which now serve to constrain  $\beta$ . These  $\beta$  290 tudes have been used to extract a first rough estimate of 291 at  $4\pi\eta/s \sim 1.2$  for central Au+Au collisions for  $\langle T \rangle = 220$  292 MeV and t=9 fm [12]. This rough estimate is in rea-293 sonable qualitative agreement with the values from prior 294 extractions [4–8, 10, 11, 14, 31, 41]. A similarly rough es-295 timate from the Pb+Pb data  $(\sqrt{s_{NN}}=2.76 \text{ TeV})$  gives 296 at value for  $\eta/s$  which is approximately 25% larger (cf. 298 the larger value for  $\beta$ ) if we assume that the ratio T/t is 299 roughly the same for Au+Au and Pb+Pb collisions [43]. 300 That is, we assume that a possibly larger flow freeze-301

<sup>247</sup> out time is compensated for, by a higher estimated mean <sup>248</sup> temperature. More detailed model calculations are re-<sup>249</sup> quired to address the values of  $\langle T \rangle$  and t required for a <sup>250</sup> more accurate estimate of  $\eta/s$ . Nonetheless, our proce-<sup>251</sup> dure clearly demonstrates the value of the relative mag-<sup>252</sup> nitudes of  $v_n$  for extraction of  $\eta/s$ .

In summary, we have presented a detailed study of the scaling properties of the flow coefficients  $v_n$  and their ratios  $[v_n/(v_2)^{n/2}]_{n\geq 3}$ , for Au+Au and Pb+Pb collisions at  $\sqrt{s_{NN}} = 0.2$  and 2.76 TeV respectively. Within an empirically parametrized viscous hydrodynamical frame-258 work, these properties can be understood to be a con-259 sequence of the acoustic nature of anisotropic flow, i.e. the observed viscous damping is characteristic of sound propagation in the plasma produced in these collisions. This interpretation not only provides a straightforward constraint for distinguishing between the two leading ec-264 centricity models, it provides a means to constrain the 265 relaxation time and the sound speed, as well as to make 266 independent estimates for the the averaged specific shear viscosity and the viscous horizon, via studies of the relative magnitudes of  $v_n$ . The observed scaling also has important implications for accurate decomposition of flow 270 and jet contributions to two-particle  $\Delta\phi$  correlation func-271 tions. This is because the higher-order harmonics can be 272 expressed as a power of the high precision  $v_2$  harmonic. 273 It will be valuable to perform detailed viscous hydrodynamical model comparisons to  $v_n$  and  $v_n/(v_2)^{n/2}$  for both 275 identified and unidentified hadrons, as well as to establish the  $p_T$  value which signals a breakdown of these scaling patterns.

Acknowledgments This research is supported by the US DOE under contract DE-FG02-87ER40331.A008. and by the NSF under award number PHY-1019387.

\* E-mail: Roy.Lacey@Stonybrook.edu

282

283

- R. A. Lacey, Nucl. Phys. A698, 559 (2002); R. J. M. Snellings, *ibid.* A698, 193 (2002).
- [2] M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30 (2005).
- [3] D. Molnar and P. Huovinen, Phys. Rev. Lett. **94**, 012302 (2005), arXiv:nucl-th/0404065.
- [4] R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007).
- [5] A. Adare et al., Phys. Rev. Lett. 98, 172301 (2007).
- [6] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007).
- [7] Z. Xu, C. Greiner, and H. Stocker, Phys. Rev. Lett. 101, 082302 (2008).
- [8] H.-J. Drescher, A. Dumitru, C. Gombeaud, and J.-Y. Ollitrault, Phys. Rev. C76, 024905 (2007).
- [9] E. Shuryak, Prog. Part. Nucl. Phys. **62**, 48 (2009).
- [10] M. Luzum and P. Romatschke, Phys. Rev. C78, 034915 (2008).
- [11] H. Song and U. W. Heinz, J. Phys. **G36**, 064033 (2009).
- 1 [12] K. Dusling and D. Teaney,

- Phys. Rev. C77, 034905 (2008),
   arXiv:0710.5932 [nucl-th].
- 304 [13] P. Bozek and I. Wyskiel, PoS EPS-HEP-2009, 039
   305 (2009), arXiv:0909.2354 [nucl-th].
- $_{306}$  [14] G. S. Denicol, T. Kodama, and T. Koide, (2010),  $_{337}$   $_{307}$  arXiv:1002.2394 [nucl-th].  $_{338}$
- 308 [15] R. A. Lacey et al., (2010), arXiv:1005.4979 [nucl-ex].
- 309 [16] A. Mocsy and P. Sorensen, (2010), arXiv:1008.3381 [hep-ph].
- 311 [17] J.-Y. Ollitrault, Phys. Rev. **D46**, 229 (1992).
- 312 [18] A. Adare *et al.* (PHENIX),
  313 Phys. Rev. Lett. **105**, 062301 (2010),
  314 arXiv:1003.5586 [nucl-ex].
- 315 [19] U. Heinz and P. Kolb, Nucl. Phys. **A702**, 269 (2002).
- 316 [20] D. Teaney, Phys. Rev. C68, 034913 (2003).
- 21] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen, 348
   and S. A. Voloshin, Phys. Lett. **B503**, 58 (2001).
- 319 [22] T. Hirano and K. Tsuda, 350 320 Phys. Rev. **C66**, 054905 (2002), arXiv:nucl-th/0205043. 351
- 321 [23] B. Schenke, S. Jeon, and C. Gale, (2010), arXiv:1009.3244 [hep-ph].
- 323 [24] U. W. Heinz and S. M. H. Wong,
   324 Phys. Rev. C66, 014907 (2002).
- 325 [25] R. A. Lacey and A. Taranenko, PoS CFRNC2006, 021
   356 (2006).
- 327 [26] V. Greco, M. Colonna, M. Di Toro, and G. Ferini, 358 (2008), arXiv:0811.3170 [hep-ph]. 359
- 329 [27] B. Alver and G. Roland, Phys. Rev. C81, 054905 (2010), 360 [43]
   330 arXiv:1003.0194 [nucl-th].
- 331 [28] P. Staig and E. Shuryak, (2010), 332 arXiv:1008.3139 [nucl-th].

- [29] R. A. Lacey, R. Wei, N. N. Ajitanand, and A. Taranenko,
   (2010), arXiv:1009.5230 [nucl-ex].
- 335 [30] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, (2010), arXiv:1007.5469 [nucl-th].
- 337 [31] K. Dusling, G. D. Moore, and D. Teaney, (2009),
   338 arXiv:0909.0754 [nucl-th].
- 339 [32] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,
   340 Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).
- 341 [33] D. Kharzeev and M. Nardi
   342 Phys. Lett. **B507**, 121 (2001), arXiv:nucl-th/0012025.
- 343 [34] T. Lappi and R. Venugopalan,
   344 Phys. Rev. C74, 054905 (2006).
- 345 [35] H.-J. Drescher and Y. Nara,
   346 Phys. Rev. C76, 041903 (2007).
- 347 [36] A. Adare *et al.* (PHENIX), (2011), arXiv:1105.3928 [nucl-ex].
- 349 [37] J. Jiangyong (ATLAS), (2011), arXiv:1107.1468 [nucl-ex].
- 351 [38] ATLAS Note, ATLAS-CONF-2011-074, 2011.
- 352 [39] N. Borghini and J.-Y. Ollitrault,
   353 Phys. Lett. **B642**, 227 (2006).
- 354 [40] M. Csanad, T. Csorgo, and B. Lorstad,
   Nucl. Phys. A742, 80 (2004), arXiv:nucl-th/0310040.
  - [41] R. A. Lacey, A. Taranenko, and R. Wei, (2009), arXiv:0905.4368 [nucl-ex].
  - [42] R. A. Lacey et al., Phys. Rev. C81, 061901 (2010), arXiv:1002.0649 [nucl-ex].
  - [43] B. Schenke, S. Jeon, and C. Gale, Phys. Lett. **B702**, 59 (2011), arXiv:1102.0575 [hep-ph].