# a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Hash tables

Hash functions
Open addressing
Chaining

### **Dictionary ADT**

#### Data structures for ADT implementation

- (Un)ordered arrays/linked lists, BSTs
  - Complexity of insert/remove/lookup operations range from O(1) to O(n)
- The quickest access can be achieved by arrays, *if* the index of the desired item is known
  - and if there is no need to shuffle elements to open or fill gaps

### Hash tables

#### Arrays with gaps and "known" indices

- A hash table consists of an *array* to store data
  - Data often consists of complex types, or pointers to such objects
  - One attribute of the object is designated as the table entry's key
- A hash function maps a key to an array index in 2 steps
  - The key should be converted to an integer
  - And then that integer mapped to an array index using some function (often the modulo function)



### Hash function properties

Hash functions should be:





- If the hash function is slow to compute, O(1) performance cannot be achieved
- Deterministic
  - If the hash function maps the same key to different indices at different times, search may not be successful
- Produce an uniform, random distribution over expected and all possible key values
  - Performance decreases if the array usage is concentrated around certain indices

### **Collisions**

#### Key space vs array space

- Array has a limited capacity
- Keys may span a very wide range of values
  - Only a portion of these may be chosen to store into the array
- Hash function must map every possible key to some array index
  - Due to pigeonhole principle, any uniform hash function must map several keys to the same index a collision!
- A good hash function reduces the number and effect of collisions
  - general principle: scatter data across the entire array, and "similar" keys should not map to "similar" indices
  - this should apply to all keys in the key space, as well as the subset of keys chosen for insertion

### iClicker 12.1

#### All keys vs inserted keys

Consider a hash table whose array has capacity = 676, where the keys will be people's names (strings in lower-case). The hash function is h(str) = $26 \times str[0] + str[1]$ , where str[0] is the first character of the string, and str[1] is the second character, and characters have values a=0,b=1, "charlie" 26×2 + 8 = 60 etc.

Is this a good hash function to use for this hash table?



- A. This is great! This is uniformly distributed across all possible combinations of two starting letters. brian"
- This is bad! For... reasons.
- C. It's OK. Not great, but not that bad either.
- D. Can't answer now. Japan vs Croatia.



deferministic V

### Collision resolution

- Collisions inevitably occur (e.g. attempting to insert two keys into the hash table which both map to the same index)
  - so the hash table must include a mechanism to resolve collisions
- Open addressing
  - each array index stores the data type of the data value to be inserted
  - When attempting to insert into an array index which is already occupied, insert at some other index (following some prescribed method for locating a free space, called probing)

### Chaining

see sample open addressing hash table code on course website

- each array index stores a collection structure of the data value's data type (e.g. a linked list)
- When inserting into an array index, add the data value to the linked list residing at that index

### Open addressing

#### First version: linear probing

- The hash table is searched sequentially
  - Starting with the original hash location
  - For each time the table is probed (for a free location) add one to the index (modulo array capacity)
    - Search  $h(search \ key) + 1$ , then  $h(search \ key) + 2$ , and so on until an available location is found
    - If the sequence of probes reaches the last element of the array, wrap around to arr[0]
- Linear probing leads to *primary clustering* 
  - The table contains groups of consecutively occupied locations
  - These clusters tend to get larger as time goes on
    - Reducing the efficiency of the hash table

- Hash table is size 23 it's good to make array capacity a prime number
- The hash function,  $h(x) = x \mod 23$ , where x is the search key value
- Some existing search key values are shown in the array

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 81,  $h = 81 \mod 23 = 12$
- Which collides with 58 so use linear probing to find a free space
- First look at 12 + 1, which is free so insert the item at index 13

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 35,  $h = 35 \mod 23 = 12$
- Which collides with 58 so use linear probing to find a free space
- First look at 12 + 1, which is occupied so look at 12 + 2 and insert the item at index 14

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 |    |    |    |    |    |    |    | 21 |    |

- Insert 60,  $h = 60 \mod 23 = 14$
- Note that even though the key doesn't hash to 12 it still collides with an item that did
- First look at 14 + 1, which is free

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 | 35 |    |    |    |    |    |    | 21 |    |

- Insert 12,  $h = 12 \mod 23 = 12$
- The item will be inserted at index 16
- Notice that primary clustering is beginning to develop, making insertions less efficient

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 | 35 | 60 |    |    |    |    |    | 21 |    |

- Insert the items into a hash table of 29 elements using linear probing:
  - **6**1, 19, 32, 72, 3, 76, 5, 34
- Using a hash function:  $h(x) = x \mod 29$
- Using a hash function:  $h(x) = (x * 17) \mod 29$

mm & kum

### Searching

#### Example, linear probing

- Searching for an item is similar to insertion
- Find 59,  $h = 59 \mod 23 = 13$ , index 13 does not contain 59, but is occupied
- Use prescribed probe method to find 59 or an empty space
- Conclude that 59 is not in the table



- Search must use the same probe method as insertion
- Terminates when item found, empty space, or entire table searched

### Hash table efficiency

- When analyzing the efficiency of hashing it is necessary to consider *load* factor,  $\lambda$ 
  - $\lambda = number\ of\ items / table\ size$
  - As the table fills,  $\lambda$  increases, and the chance of a collision occurring also increases
    - Performance decreases as  $\lambda$  increases
  - Unsuccessful searches make more comparisons
    - An unsuccessful search only ends when a free element is found
- It is important to base the table size on the largest possible number of items
  - The table size should be selected/adjusted so that  $\lambda$  does not exceed 1/2

### iClicker 12.2, 12.3

Suppose we have a hash table containing n elements, using linear probing for collision resolution, and the load factor is  $\lambda = 1/2$ 

What is the "best" worst-case complexity of a single insertion at this time?

O(1)

B.  $O(\log n)$ 

C. O(n)

D.  $O(n^2)$ 

 $\frac{1}{4} \cdot \frac{7}{2} \quad \frac{1}{4} \sim 00) \quad \frac{1}{2} \cdot 0 (1)$ 

What is the "worst" worst-case complexity of a single insertion?

### Clusters and load factor

- Primary clusters lead to performance degradation towards O(n) as the load factor increases beyond  $^{1}/_{2}$ 
  - As clusters get larger, new insertions are probabilistically more likely to land in a cluster
  - If a new insertion lands in a cluster, it is added to the end of the cluster, increasing its size and leading to a snowball effect
  - Clusters may even join together into large clusters
- Array can be resized, but existing elements must be re-inserted using updated hash function with new array capacity

### Removals and open addressing

- Removals add complexity to hash tables
  - It is easy to find and remove a particular item
  - But what happens when you want to search for some other item?
  - The recently empty space may make a probe sequence terminate prematurely
- One solution is to mark a table location as either empty, occupied or removed (tombstone)
  - Locations in the removed state can be re-used as items are inserted
    - After confirming non-existence

### Tombstones and performance

- After many removals, the table may become clogged with tombstones which must still be scanned as part of a cluster
  - it may be beneficial to periodically re-hash all valid items
- Example with linear probing and  $h(x) = x \mod 23$



$$\lambda = \frac{5}{23} \sim 0.217$$

search(75)

requires 15 probes!

#### After rehashing:



$$\lambda = \frac{5}{23} \sim 0.217$$

search(75)

requires 2 probes 🙂



### Open addressing

#### Other collision resolution schemes

- Assume:
  - *capacity*: array capacity
  - **■** *x*: key
  - h(x): initial hashed index of x
  - p: probe number, increments with each unsuccessful probe
- Item is inserted at index:
  - linear probing:  $(h(x) + p) \mod capacity$
  - quadratic probing:  $(h(x) + p^2) \mod capacity$
  - double hashing:  $(h(x) + p \cdot h_2(x)) \mod capacity$ 
    - where  $h_2(x)$  is an auxiliary hash function producing a small offset value

### Quadratic probing

- Quadratic probing is a refinement of linear probing that prevents primary clustering
  - For each probe, p, add  $p^2$  to the original location index
    - 1st probe:  $h(x) + 1^2$ , 2nd:  $h(x) + 2^2$ , 3rd:  $h(x) + 3^2$ , etc.
- Results in secondary clustering
  - The same sequence of probes is used when two different values hash to the same location
  - This delays the collision resolution for those values
- Analysis suggests that secondary clustering is not a significant problem

- Hash table is size 23
- The hash function,  $h = x \mod 23$ , where x is the search key value
- The search key values are shown in the table

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 81,  $h = 81 \mod 23 = 12$
- Which collides with 58 so use quadratic probing to find a free space
- First look at  $12 + 1^2$ , which is free so insert the item at index 13

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 35,  $h = 35 \mod 23 = 12$
- Which collides with 58
- First look at  $12 + 1^2$ , which is occupied, then look at  $12 + 2^2 = 16$  and insert the item there

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 |    |    |    |    |    |    |    | 21 |    |

- Insert 60,  $h = 60 \mod 23 = 14$
- The location is free, so insert the item

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 | 81 |    |    | 35 |    |    |    |    | 21 |    |

- Insert 12,  $h = 12 \mod 23 = 12$ , which is occupied
- First check index  $12 + 1^2$ ,
- Then  $12 + 2^2 = 16$ ,
- Then  $12 + 3^2 = 21$  (which is also occupied),
- Then  $12 + 4^2 = 28$ , wraps to index 5 which is free



### Quadratic probe sequences

- Note that after some time a sequence of probes repeats itself
  - In the preceding example h(key) = key % 23 = 12, resulting in this sequence of probes (table size of 23)
    - 12, 13, 16, 21, 28(**5**), 37(**14**), 48(**2**), 61(**15**), 76(**7**), 93(**1**), 112(**20**), 133(**18**), 156(**18**), 181(**20**), 208(**1**), 237(**7**), ...
- This generally does not cause problems if
  - The data is not significantly skewed,
  - The hash table is large enough (around 2 \* the number of items), and
  - The hash function scatters the data evenly across the table
- Quadratic probing may potentially fail at  $\lambda > \frac{1}{2}$ 
  - proof is outside the scope of this course

### Double hashing

- In linear probing the probe sequence is independent of the key
- Double hashing produces *key dependent* probe sequences
  - In this scheme a second hash function,  $h_2$ , determines the probe sequence
- The second hash function must follow these guidelines
  - $h_2(\text{key}) \neq 0$
  - $h_2 \neq h_1$
  - A typical  $h_2$  is p (key mod p) where p is a prime number

- Hash table is size 23
- The hash function,  $h = x \mod 23$ , where x is the search key value
- The second hash function,  $h_2 = 5 (\text{key mod } 5)$

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 81,  $h = 81 \mod 23 = 12$
- Which collides with 58 so use  $h_2$  to find the probe sequence value
- $h_2 = 5 (81 \mod 5) = 4$ , so insert at 12 + 4 = 16

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    |    |    |    |    |    | 21 |    |

- Insert 35,  $h = 35 \mod 23 = 12$
- Which collides with 58 so use  $h_2$  to find a free space
- $h_2 = 5 (35 \mod 5) = 5$ , so insert at 12 + 5 = 17

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    | 81 |    |    |    |    | 21 |    |

• Insert 60,  $h = 60 \mod 23 = 14$ 

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    |    |    | 81 | 35 |    |    |    | 21 |    |

- Insert 83,  $h = 83 \mod 23 = 14$
- $h_2 = 5 (83 \mod 5) = 2$ , so insert at 14 + 2 = 16, which is occupied
- The second probe increments the insertion point by 2 again, so insert at 16 + 2 = 18

| ( | ) | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|---|---|---|---|---|---|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   | 29 |   |   | 32 |    |    | 58 |    | 60 |    | 81 | 35 |    |    |    | 21 |    |

### iClicker 12.4

Consider a hash table with array capacity = 24, using double hashing with

$$h_2(key) = 7 - (key \bmod 7)$$

Will this be an effective hash table?



- A. Yes, it's basically the same thing as the previous example with the numbers changed
- No, because... reasons...again
- C. Can't wait for the course to be over!

### Separate chaining

- Separate chaining takes a different approach to collisions
- Each entry in the hash table is a pointer to a linked list (or other dictionary-compatible data structure)
  - If a collision occurs the new item is added to the end of the list at the appropriate location
- Performance degrades less rapidly using separate chaining
  - with uniform random distribution, separate chaining maintains good performance even at high load factors  $\lambda > 1$

# Separate chaining example

- $h(x) = x \mod 23$
- Insert 81, h(x) = 12, add to back (or front) of list
- Insert 35, h(x) = 12
- Insert 60, h(x) = 14



### Hash table discussion

- If  $\lambda$  is less than  $\frac{1}{2}$ , open addressing and separate chaining give similar performance
  - As  $\lambda$  increases, separate chaining performs better than open addressing
  - However, separate chaining increases storage overhead for the linked list pointers
- It is important to note that in the worst case hash table performance can be poor
  - That is, if the hash function does not evenly distribute data across the table

### Chaining performance









But what if the next key that we search for lands in any one of the other indices?

Then, what is the average length of each list?

 $\lambda$ , and thus this will also be the *expected* number of probes to make for a (failed) search or insertion that checks for duplicates

This is how chaining achieves such performance, e.g. even at  $\lambda = 2$ , it means we expect to make at most 2 probes for any search, whereas a load factor this high is impossible to achieve with open addressing

### Removals and chaining

- With open addressing, we had to handle removals by setting flags in the array
- Removals are much simpler with chaining, assuming the work of implementing the chaining structure is already done
  - just call a removal method on the list at the hashed index!

### Readings for this lesson

- Thareja
  - Chapter 15.5.1 (Linear probing, quadratic probing, double hashing)
  - Chapter 15.5.2 (Chaining)
  - Have a look at the open addressing code sample on the course webpage
  - See if you can implement a hash table with singly-linked list chaining



- Congratulations, we're done!
  - Geoff's office hours during exam period:
    - Usual hours on Monday