泛函分析笔记

崔嘉祺 华东师范大学 20 级数学强基拔尖班 2023 年 6 月 16 日

摘要

教材:《泛函分析讲义》; 许全华, 马涛, 尹智编著; 高等教育出版社

第一周: 见 PDF 第二周: 习题一 3.6.9 第三周: 习题二 2.13.14 第四周: 见 PDF 第五周: 习题三 3.6.9 第六周: 习题三 11.17 习题四 2.3.11 第七周: 习题四 13.15.18.19 第八周: 习题五 4.5.7 第十周: 习题五 16 第十一周: 习题六 5.6 第十二周: 图片 + 习题六 13.14.15 第十四周: 见 PDF 第十五周: 习题九 1.2.12.13

目录

1	拓扑	空间简介	4
	1.1	基本概念	4
		1.1.1 开集, 闭集和邻域系	4
		1.1.2 粘着集,闭包和内部	4
		1.1.3 拓扑空间的比较与拓扑子空间	4
		1.1.4 Hausdorff 空间	4
	1.2	收敛序列与连续映射	5
	1.3	紧性	5
	1.4	乘积空间	9
2	完备	度量空间	12
	2.1	度量空间	12
	2.2	Cauchy 序列	12
	2.3	一致连续映射与不动点定理	15
	2.4	度量空间的完备化	19
	2.5	度量空间的紧性	22
3	赋范	空间与连续线性映射	26
	3.1	Banach 空间	26
	3.2	连续线性映射	32
	3.3	L ^p 空间	38
4	Hilk	pert 空间	44
	4.1	内积空间	44
	4.2	投影算子	44

目录		c
日氷		2

	4.3	对偶与共轭	
	4.4	Hilbert 空间的结构	50
5	连续	函数空间	5 5
	5.1	等度连续与 Arzelà-Ascoli 定理	55
	5.2	Stone-Weierstrass 定理	60
		5.2.1 Stone-Weierstrass 定理在 Fourier 分析中的应用	63
	5.3	广义函数	64
6	Bai	re 定理及其应用	68
	6.1	Baire 空间	68
	6.2	Banach-Steinhaus 定理	71
		6.2.1 Banach-Steinhaus 定理在 Fourier 分析中的应用	73
	6.3	开映射定理与闭图像定理	74
		6.3.1 开映射定理在 Fourier 级数中的应用	77
		6.3.2 开映射定理在补空间问题中的应用	78
7	拓扑	向量空间	81
	7.1	定义	81
	7.2	半范数空间	82
8	Hal	nn-Banach 定理	84
	8.1	Hahn-Banach 定理:分析形式	84
	8.2	Hahn-Banach 定理: 几何形式	86
	8.3	弱拓扑与弱* 拓扑	92
9	Ban	ach 空间的对偶理论	96

	9.1	共轭算子	96
	9.2	子空间和商空间的对偶	97
	9.3	自反性	102
	9.4	弱 * 紧性	103
10	紧算	子	107
		子 有限秩算子与紧算子	10.
	10.1		107

1.1 基本概念

1.1.1 开集, 闭集和邻域系

定义 1.1.1. • 拓扑: 任意并, 有限交

- 开集, 闭集
- 邻域, 邻域系: $\mathcal{N}(x) = \{x \text{ 的所有邻域}\}$, 基础邻域系: $\mathcal{B}(x)$: $\forall V \in \mathcal{N}(x), \exists U \in \mathcal{B}(x)$, 使得 $U \subset V$

1.1.2 粘着集,闭包和内部

定义 1.1.2. • 凝聚点

- 粘着集: A∪{A 的凝聚点}
- 闭包: $\overline{A} = A \cup \{A \text{ 的凝聚点}\} = \{A \text{ 的粘着点}\}$, 是包含 A 的最小闭集, $A \in A \in A = \overline{A}$
- 内点: $A^{\circ} = \{A \text{ 的内点}\}, \ \mathcal{A} \text{ 中的最大开集}, \ A \mathcal{B}$ 开集 $\iff A = A^{\circ}$
- 边界: $\partial A = \overline{A} A^{\circ}$

1.1.3 拓扑空间的比较与拓扑子空间

定义 1.1.3. (E,τ) , $F \subset E$, 则 F 上有自然的拓扑 $\tau|_F$: $V \subset F$, $V \in \tau|_F$, 若 $\exists O \in \tau$, 使得 $V = F \cap O$ 。 **例 1.1.4.** $E = \mathbb{R}$, F = (0,1], $A = \left(\frac{1}{2},1\right] = (0,1] \cap \left(\frac{1}{2},2\right)$ 是 F 中的开集。

1.1.4 Hausdorff 空间

定义 1.1.5. 设 E 是拓扑空间, $\forall x, y \in E$, $\exists V \in \mathcal{N}(x), U \in \mathcal{N}(y)$, 使得 $V \cap U = \emptyset$, 则称 E 是一个 Hausdorff 空间或可分离空间。

1.2 收敛序列与连续映射

定义 1.2.1. 称 $\{x_n\}_{n\geq 1}\subset E,\ x_n\overset{(n\to\infty)}{\longrightarrow}x$ 是指 $\forall\ V\in\mathcal{N}(x),\ \exists\ n_0\in\mathbb{N},\$ 使得 $\forall\ n\geq n_0,\$ 都有 $x_n\in V$ 。

注记 1.2.2. 当 E 不是度量空间时,以下命题不等价:

- $x \in \overline{A}$;
- $\forall \{x_n\} \subset A$, $\notin \{x_n \to x, \ \mathbb{N} \ x \in A$.

更详细的论述需要"网 (filter)"的概念。

定义 1.2.3. 设 $f: E \longrightarrow F$ 是映射,称 f 在 $x \in E$ 处连续,是指 $\forall V \in \mathcal{N}(f(x)), \exists U \in \mathcal{N}(x),$ 使得 $f(U) \subset V$ 。

注记 1.2.4. • "连续" 是局部概念;

- 称 *f* 在 *E* 上连续是指他在 *E* 的每一个点连续;
- 称 E 与 F 同胚是指存在连续的一一对应: $f: E \longrightarrow F$ 与 $g = f^{-1}: F \longrightarrow E$ 。

性质 1.2.5 (连续映射的基本性质). 设 $f:(E,\tau_E) \longrightarrow (F,\tau_F)$ 是连续的,当且仅当 $\forall O \in \tau_F$,都有 $f^{-1}(O) \in \tau_E$,同时 $\forall A \in F$ 中的闭集,都有 $f^{-1}(A)$ 是 E 中的闭集。

例 1.2.6. 给 E 赋予两个拓扑 τ_1, τ_2 ,称 τ_1 比 τ_2 强,是指 $\forall O \in \tau_2$,都有 $O \in \tau_1$,从而恒等映射 $i: (E, \tau_1) \longrightarrow (E, \tau_2)$ 是连续映射。

例 1.2.7. 设 (E,d) 是度量空间, $A \subset E$, $\forall x \in E$, 可以定义 x 到 A 的距离: $d(x,A) = \inf_{y \in A} d(x,y)$ 。再令 $d_A(x) = d(x,A)$ 是 E 上的连续函数,事实上,它是 1-Lipschitz 的。

1.3 紧性

定义 1.3.1. 称 (E,τ) 是紧的拓扑空间,是指 $\forall E$ 的开覆盖,即 $E = \bigcup_{i \in I} O_i$, $O_i \in \tau$,都存在有限集 $J \subset I$,使得 $E = \bigcup_{j \in J} O_j$ 。 类比地可以定义 $A \subset E$ 的紧性。

6

定义 1.3.2. 称 (E,τ) 是局部紧的拓扑空间,是指 $\forall x \in E, \exists K \in \mathcal{N}(x), K$ 是紧集。

注记 1.3.3. 紧(子)集的连续像是紧的。但注意,开集的连续像不一定是开集,闭集的连续像也不一定是闭集(即开映射与闭映射)。

引理 1.3.4 (Urysohn). 设 E 是局部紧的 Hausdorff 空间。设 A, B 是 E 中互不相交的闭集,其中之一是紧的,则存在 E 上的连续 函数 f,使得 $f|_A \equiv 0$, $f|_B \equiv 1$ 。

注记 1.3.5. 若 (E,d) 是度量空间,则不需要紧性,考虑

$$f(x) = \frac{d_A(x)}{d_A(x) + d_B(x)}$$

即得。

Urvsohn 引理的证明需要用到以下的引理:

引理 1.3.6. 设 K,O 是 E 中的紧集和开集, $K \subset O$, 则存在开集 U, 使得 $K \subset U \subset \overline{U} \subset O$, 且 \overline{U} 是紧集。

证明. 先证明: 局部紧的 Hausdorff 空间中的任意一点存在一个开邻域, 其闭包是紧的。

由于 E 是局部紧的,对 \forall $x \in E$, \exists 紧邻域 $G \in \mathcal{N}(x)$,由邻域的定义, \exists x 的开邻域 V,使得 $V \subset G$ 。由于紧集 G 是 E 的闭集(Hausdorff 空间的紧子集是闭集,书 P11 定理 1.3.6),从而 $\overline{V} \subset G$ 。从而 \overline{V} 也是 G 中的闭集,故也是紧集(G 是紧的 Hausdorff 空间,紧子集等价于闭子集,书 P11 定理 1.3.6)。

设 $K \subseteq \bigcup_{x \in K} V_x$,其中 V_x 是 x 的一个开邻域。且 $\overline{V_x}$ 是紧集(存在性由上面的结论保证)。由于 K 是紧的,故存在有限开覆 盖记为 $K \subseteq \bigcup_{i=1}^n V_i$ 。记 $V = \bigcup_{i=1}^n V_i$,是开集的有限并,仍然是开集,且 $\overline{V} = \bigcup_{i=1}^n \overline{V_i}$ 是紧集的有限并,仍然是紧集。如果 O = E,取 U = V 即得。

否则,任取 $y \in O^c$,由 K 是紧的,可知存在开集 W_y ,使得 $K \subset W_y$ 且 $y \notin \overline{W_y}$. 这是因为 $\forall x \in K$,由 Hausdorff 性质, $\exists x, y$ 的无交的开邻域 O_x, O'_x ,且 $K \subseteq \bigcup_{x \in K} O_x$. 由于 K 是紧的,有有限子覆盖 $K \subseteq \bigcup_{i=1}^n O_{x_i}$,且 $(\bigcup_{i=1}^n O_{x_i}) \cap (\bigcap_{i=1}^n O'_{x_i}) = \emptyset$,从而 $y \notin \bigcup_{i=1}^n O_{x_i}$. 又 $\bigcup_{i=1}^n O_{x_i}$ 是开集的有限并,仍是开集,即为所求。

7

于是得到

从而

$$\bigcap_{y \in O^c} (O^c \cap \overline{V} \cap \overline{W_y}) = \varnothing.$$

因为 \overline{V} 是紧的, O^c 与每一个 $\overline{W_y}$ 都是闭集, 从而每个 $O^c \cap \overline{V} \cap \overline{W_y}$ 都是紧的。从而存在有限个 $y_1, \dots, y_k \in O^c$, 使得

$$\bigcap_{i=1}^{k} (O^c \cap \overline{V} \cap \overline{W}_{y_i}) = \varnothing.$$

这是因为若 $\bigcap_{i\in I} K_i = \emptyset$ 是紧集的交,取一个 K_0 , $K_0 \cap (\bigcap_{i\in I} K_i) = \emptyset$,从而 $K_0 \subseteq (\bigcap_{i\in I} K_i)^c = \bigcup_{i\in I} K_i^c$,而 Hausdorff 空间中的紧子集是闭子集,从而 $\bigcup_{i\in I} K_i^c$ 是 K_0 的开覆盖,从而有有限子覆盖 $K_0 \subseteq \bigcup_{i=1}^n K_i^c$,从而 $K_0 \cap (\bigcap_{i=1}^n K_i) = \emptyset$.

$$\bigcap_{i=1}^{k} (\overline{V} \cap \overline{W_{y_i}}) \subset O.$$

并且 $\bigcap_{i=1}^k (\overline{V} \cap \overline{W_{y_i}})$ 是紧集,取 $U = V \cap (\bigcap_{i=1}^k W_{y_i})$ 是开集的有限交,仍是开集,则有

$$\overline{U} \subset \overline{V} \cap (\bigcap_{i=1}^k \overline{W_{y_i}}).$$

因而 \overline{U} 是紧集,且有 $\overline{U} \subset O$.即为所求。

Urysohn 引理的证明. 不妨设 A 是紧集,而 B 是闭集,由 $A \cap B = \emptyset$ 知, $A \subset B^c$ 。 令 $A_0 = A, A_1 = B^c$,由 $A_1 = B^c$ 是开集,由引理 1.3.6,存在开集 $A_{\frac{1}{2}}$,使得 $\overline{A_{\frac{1}{2}}}$ 是紧集,且

$$A_0 \subset A_{\frac{1}{2}} \subset \overline{A_{\frac{1}{2}}} \subset A_1.$$

再由引理 1.3.6,存在开集 $A_{\frac{1}{4}},A_{\frac{3}{4}}$,使得 $\overline{A_{\frac{1}{4}}},\overline{A_{\frac{3}{4}}}$ 是紧集,且

$$A_0 \subset A_{\frac{1}{4}} \subset \overline{A_{\frac{1}{4}}} \subset A_{\frac{1}{2}} \subset \overline{A_{\frac{1}{2}}} \subset A_{\frac{3}{4}} \subset \overline{A_{\frac{3}{4}}} \subset A_1.$$

如此进行下去。

8

记

$$D = \{ \frac{k}{2^n} | n \in \mathbb{N}, 0 \le k \le 2^n \} \subset [0, 1],$$

由以上步骤,得到一族 $\{A_t\}_{t\in D}$,满足

- 1. $A_0 = A, A_1 = B^c$;
- 2. $\forall t \in D \{0,1\}, A_t$ 是开集, $\overline{A_t}$ 是紧集;
- 3. $\forall s, t \in D, s < t$,都有 $\overline{A_s} \subset A_t$.

从而 $\forall x \in E$, 定义

$$\alpha(x) = \begin{cases} \sup\{s \in D | x \notin \overline{A_s}\}, & x \notin A; \\ 0, & x \in A. \end{cases}$$
$$\beta(x) = \begin{cases} \inf\{t \in D | x \in A_t\}, & x \notin B; \\ 1, & x \in B. \end{cases}$$

下面验证:

- 1. $\alpha(x) \leq \beta(x)$;
- 2. $\alpha(x) = \beta(x), \forall x \in E$.

反证法: 假设 $\exists x \in E$, 使得 $\alpha(x) < \beta(x)$, 从而 $\exists s, t \in D$, 使得 $\alpha(x) < s < t < \beta(x)$, 从而由定义, $x \in \overline{A_s}$ 且 $x \notin \overline{A_t}$, 但这与

$$A_s \subset \overline{A_s} \subset A_t \subset \overline{A_t}$$

矛盾。于是可以定义

$$f(x) = \alpha(x) = \beta(x),$$

9

且显然有

$$f|_A \equiv 0, f|_B \equiv 1.$$

只需要验证 f 是 E 上的连续函数。

由 \mathbb{R} 上开集的构造定理,只需要验证 $\forall \lambda \in [0,1], (\lambda, +\infty)$ 与 $(-\infty, \lambda)$ 的原像是开集:

$$f^{-1}((\lambda, +\infty)) = \{x \in E \mid f(x) = \alpha(x) > \lambda\} = \bigcup_{\substack{\mu > \lambda \\ \mu \in D}} \bigcup_{t > \mu} (\overline{A_t})^c$$

开集的任意并是开集,从而 $f^{-1}((\lambda, +\infty))$ 是开集。 $f^{-1}((-\infty, \lambda))$ 是开集同理。

1.4 乘积空间

定义 1.4.1. 设 $\{(E_i, \tau_i)\}_{i \in I}$ 是一族拓扑空间,记

$$E = \prod_{i \in I} E_i = \{ x \mid x = (x_i)_{i \in I}, x_i \in E_i \}.$$

在 E 上定义一个拓扑 (乘积拓扑):

在 E 上定义基础开集:

$$O = \prod_{i \in J} U_i \times \prod_{i \in I - J} E_i,$$

其中 $J \subset I$ 是有限集, U_i 是 E_i 中的开集。由这些基础开集生成的拓扑 τ 就是 E 上的乘积拓扑。记

$$p_i: E \longrightarrow E_i$$

$$x = (x_i)_{i \in I} \mapsto x_i$$

称为正规投影。

定理 1.4.2. τ 是使得每一个 p_i 都连续的最弱的拓扑, 且每一个 p_i 都是开映射。

10

证明. <u>先证 p_i 连续</u>:

 $\forall O_i$ 是 E_i 的开集,

$$p_i^{-1}(O_i) = O_i \times \prod_{\substack{j \in I\\j \neq i}} E_j$$

是 E 中的开集, 即 p_i 是连续映射。

再证 τ 最弱:

设 τ' 是 E 上的另一个拓扑, 使得任意 p_i 是连续的。任意开集 $U_i \subset E_i$, 由于 p_i 连续,

$$p_i^{-1}(U_i) \in \tau',$$

又

$$p_i^{-1}(U_i) = U_i \times \prod_{\substack{j \neq i \\ i \in I}} E_j$$

是 τ 中的基础开集,从而任意 τ 中的开集都是 τ' 的开集。

最后证 pi 是开映射:

设 $O \subset E$ 是开集, $\forall x \in O$, $O \in E$ 中基础开集的并, 从而x 属于某个基础开集, 设

$$x \in U = \prod_{i \in J} U_i \times \prod_{i \in I - J} E_i,$$

其中 U_i 是 E_i 中的开集。由于 $U \subset O$,从而

$$x_i = p_i(x) \in p_i(U) \subset p_i(O),$$

即 $p_i(O)$ 是 O 的每一个点的邻域, 从而是 E 中的开集。

性质 1.4.3. 乘积空间的一些重要结论:

• 任意多个 Hausdorff 空间的乘积空间也是 Hausdorff 空间;

- 有限个紧拓扑空间的乘积空间也是紧拓扑空间;
- Tychonoff 定理: 任意多个紧拓扑空间的乘积空间也是紧拓扑空间;
- 可数个可度量化拓扑空间的乘积空间也是可度量化拓扑空间。

注记 1.4.4. 在度量空间 (可度量化空间) 中,以下命题等价:

- $A = \overline{A}$;
- $\forall \{x_n\} \subset A, x_n \to x \Longrightarrow x \in A.$

在一般的拓扑空间中则不一定成立。

2.1 度量空间

定义 2.1.1. 度量空间 (E,d), 度量空间 (E,d_1) 与 (E,d_2) 拓扑等价, 度量 d_1 与 d_2 距离等价, 开球。

注记 2.1.2. 距离等价 ⇒ 拓扑等价.

注记 2.1.3. 开集 $U = \bigcup_{x \in U} B(x,r)$, 其中 $B(x,r) \subset U$.

2.2 Cauchy 序列

定义 2.2.1. 度量空间中的 Cauchy 序列。

定义 2.2.2. 度量空间 (E,d) 中的任意 Cauchy 序列都收敛于 E, 则称 (E,d) 是完备度量空间。

性质 2.2.3. Cauchy 序列的性质:

- 收敛的序列是 Cauchy 序列;
- 有收敛子列的 Cauchy 序列是收敛序列。

定义 2.2.4. 设 A 是度量空间 (E,d) 的子集,则称 $\operatorname{diam} A = \sup_{x,y \in A} d(x,y)$ 为 A 的直径。

定理 2.2.5. 度量空间 (E,d) 是完备的 \iff 任意单调下降的 E 的非空闭子集列 $\{A_n\}_{n=1}^{\infty}$, 满足 $\lim_{n\to\infty} \operatorname{diam} A_n = 0$,则 $\bigcap_{n=1}^{\infty} A_n$ 是单点集。

证明. 必要性:

取 $x_n \in A_n$, 由于 $\{A_n\}_{n=1}^{\infty}$ 单调递减,则 $\forall n < m$, 有 $x_m \in A_m \subset A_n$, 且由 $\lim_{n \to \infty} \operatorname{diam} A_n = 0$ 知,

$$\lim_{n \to \infty} \sup_{m \to \infty} d(x_n, x_m) \le \lim_{n \to \infty} \operatorname{diam} A_n = 0,$$

13

从而 $\{x_n\}_{n=1}^{\infty}$ 是 (E,d) 中的 Cauchy 序列,由 (E,d) 的完备性,有

$$\lim_{n \to \infty} x_n = x \in E.$$

又 $\{A_n\}_{n=1}^{\infty}$ 是闭集列,从而 $x \in A_n$,从而 $x \in \bigcap_{n=1}^{\infty} A_n$.若有 $x \neq y \in \bigcap_{n=1}^{\infty} A_n$,则有 d(x,y) > 0,这与 $\lim_{n \to \infty} \operatorname{diam} A_n = 0$ 矛盾,从而 $\bigcap_{n=1}^{\infty} A_n = \{x\}$ 是单点集。

充分性:

先证:

$$diam(\overline{A}) = diam(A).$$

由定义, 只要证:

$$diam(\overline{A}) \leq diam(A)$$
.

对 $\forall \varepsilon > 0$, 任意 $x, y \in \overline{A}$, 存在 $x', y' \in A$, 使得 $d(x, x') < \varepsilon$, $d(y, y') < \varepsilon$, 从而

$$d(x, y) \le d(x, x') + d(x', y') + d(y, y') < d(x', y') + 2\varepsilon.$$

由 ε 的任意性, $d(x,y) \leq \text{diam}(A)$, 从而

$$diam(\overline{A}) \leq diam(A)$$
.

对任意 E 中的 Cauchy 序列 $\{x_n\}$, 令 $A_n = \{x_m \mid m \ge n\}$. 由于 $\{x_n\}$ 是 Cauchy 序列, 故 $\forall \varepsilon > 0$, $\exists n_0$, 使得 $\forall m, n > n_0$, 都有

$$d(x_n, x_m) < \varepsilon$$
.

这说明

$$\lim_{n\to\infty} \operatorname{diam}(A_n) = 0.$$

从而

$$\lim_{n\to\infty} \operatorname{diam}(\overline{A_n}) = \lim_{n\to\infty} \operatorname{diam}(A_n) = 0.$$

且 $\overline{A_n}$ 都是闭集,由条件, $\bigcap_{n=1}^{\infty} \overline{A_n}$ 是单点集,记为 $\{x\}$. 故

$$\lim_{n\to\infty} d(x_n, x) \le \lim_{n\to\infty} diam(\overline{A_n}) = 0.$$

14

即

$$\lim_{n \to \infty} x_n = x \in \bigcap_{n=1}^{\infty} \overline{A_n} \subset E.$$

即 (E,d) 是完备的。

性质 2.2.6. 设 (E,d) 是度量空间,

- $\ddot{A}(A,d) \neq (E,d)$ 的完备子空间,则 $A \neq (E,d)$ 的闭集;
- 若 (E,d) 完备且 A 是闭集,则若 (A,d) 是完备子空间。

定理 2.2.7. 可数个完备度量空间的乘积空间是完备的。

证明. 先证两个的情形:

设 (E_1,d_1) 与 (E_2,d_2) 是两个完备的度量空间, $(E,d)=(E_1,d_1)\times(E_2,d_2)$ 是乘积度量空间, 其中

$$d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}.$$

设 $x^{(n)} = (x_1^{(n)}, x_2^{(n)}) \in E$,容易验证 $\{x^{(n)}\}_{n=1}^{\infty}$ 是 Cauchy 序列当且仅当 $\{x_1^{(n)}\}_{n=1}^{\infty}$ 与 $\{x_2^{(n)}\}_{n=1}^{\infty}$ 分别是 E_1 与 E_2 中的 Cauchy 序列。由于 (E_1, d_1) 与 (E_2, d_2) 完备,从而存在 $x_1 \in E_1, x_2 \in E_2$,使得

$$x_1^{(n)} \xrightarrow{d_1} x_1 \coprod x_2^{(n)} \xrightarrow{d_2} x_2.$$

并且这等价于

$$x^{(n)} = (x_1^{(n)}, x_2^{(n)}) \xrightarrow{d} (x_1, x_2).$$

从而 (E,d) 是完备的。

对可数个完备度量空间 $\{(E_n, d_n)\}_{n=1}^{\infty}$, 记

$$(E,d) = \prod_{n=1}^{\infty} (E_n, d_n),$$

15

其中

$$d(x,y) = \sup_{n \ge 1} \frac{1}{n} \min\{1, d_n(x_n, y_n)\}.$$

则 (E,d) 中的序列

$$x^{(k)} = (x_n^{(k)})_{n \in \mathbb{N}^*} \xrightarrow{d} (x_n)_{n \in \mathbb{N}^*}$$

等价于

$$x_n^{(k)} \xrightarrow{d_n} x_n, \forall n \in \mathbb{N}^*,$$

从而 (E,d) 是完备度量空间。

2.3 一致连续映射与不动点定理

定义 2.3.1. 一致连续映射

定理 2.3.2. 紧度量空间 (E,d) 上的连续函数 $f: E \to F$ 是一致连续的。

证明. 由于 f 连续, $\forall \varepsilon > 0, x \in E, \exists \eta_x > 0$, 使得 $\forall y \in B(x, \eta_x)$,

$$\delta(f(x), f(y)) < \varepsilon.$$

则

$$\{B(x,\frac{\eta_x}{2})\mid x\in E\}$$

是 E 的一个开覆盖, 由 E 的紧性, 有有限子覆盖

$$E \subset \bigcup_{k=1}^{n} B(x_k, \frac{\eta_{x_k}}{2}).$$

令

$$\eta = \min_{1 \le k \le n} \{ \frac{\eta_{x_k}}{2} \},$$

16

则当 $\forall x, y \in E, d(x, y) < \eta$ 时, $\exists 1 \le j \le n$,使得

$$x \in B(x_j, \frac{\eta_{x_j}}{2}),$$

此时

$$d(y, x_j) \le d(y, x) + d(x, x_j) < \eta + \frac{\eta_{x_j}}{2} \le \frac{\eta_{x_j}}{2} + \frac{\eta_{x_j}}{2} = \eta_{x_j},$$

从而

$$\delta(f(x), f(y)) \le \delta(f(x), f(x_i)) + \delta(f(y), f(x_i)) < 2\varepsilon,$$

即 f 一致连续。

性质 2.3.3. 一致连续映射把 Cauchy 序列映到 Cauchy 序列。

证明. 设 (E,d) 与 (F,δ) 是两个度量空间, $f:E\to F$ 是一致连续映射, $\{x_n\}_{n=1}^{\infty}$ 是 E 中的 Cauchy 序列。由于 f 一致连续, $\forall \ \varepsilon>0$, $\exists \ \eta>0$,使得 $\forall \ d(x_n,x_m)<\eta$,就有 $\delta(f(x_n),f(x_m))<\varepsilon$. 又 $\{x_n\}_{n=1}^{\infty}$ 是 Cauchy 序列, $\exists \ N>0$,使得 $\forall \ m,n>N$,都有 $d(x_n,x_m)<\eta$.

综上, $\forall \varepsilon > 0, \exists N > 0$, 使得 $\forall m, n > N$, 都有 $\delta(f(x_n), f(x_m)) < \varepsilon$, 即 $\{f(x_n)\}_{n=1}^{\infty}$ 是 Cauchy 序列。

定理 2.3.4 (一致连续映射的扩展). 设 (E,d) 与 (F,δ) 是两个度量空间,其中 (F,δ) 是完备的且 E_0 是 E 的稠密子集,即 $\overline{E_0}=E$,若有一致连续映射 $f:E_0\to F$,则 f 可唯一地扩展成 (E,d) 到 (F,δ) 的一致连续映射 $\widetilde{f}:E\to F$.

证明. 先构造出 \widetilde{f} :

由 E_0 的稠密性, $\forall x \in E$,存在 E_0 中的收敛于 x 的 Cauchy 序列 $\{x_n\}_{n=1}^{\infty}$,由性质 2.3.3, $\{f(x_n)\}_{n=1}^{\infty}$ 是 F 中的 Cauchy 序列。又 (F,δ) 是完备的,从而设 $\{f(x_n)\}_{n=1}^{\infty}$ 收敛于 $y \in F$. 令

$$\widetilde{f}(x) = y.$$

由于 E_0 有不止一个 Cauchy 序列收敛于 x, 还需要验证 \widetilde{f} 是良定义的。设两个 E_0 中的 Cauchy 序列 $\{x_n\}_{n=1}^{\infty}$ 与 $\{x'_n\}_{n=1}^{\infty}$ 都收敛于 x, 记

$$y' = \lim_{n \to \infty} f(x_n').$$

17

需要验证 $y = y'. \forall \varepsilon > 0, \exists N > 0$, 使得 $\forall n > N$,

$$d(x_n, x) < \varepsilon, d(x'_n, x) < \varepsilon.$$

 $\exists \exists \forall m, n > N,$

$$d(x_n, x_m) < \varepsilon, d(x'_n, x'_m) < \varepsilon.$$

从而 $\forall m, n > N$,

$$d(x_n, x'_m) \le d(x_n, x_m) + d(x_m, x) + d(x, x'_m) < 3\varepsilon,$$

即 $\{x_n, x_n'\}_{n=1}^{\infty}$ 也是 Cauchy 序列,由性质 2.3.3, $\{f(x_n), f(x_n')\}_{n=1}^{\infty}$ 也是 Cauchy 序列,从而

$$\lim_{n \to \infty} \delta(f(x_n), f(x_n')) = 0.$$

由度量的连续性,

$$\delta(y, y') = \lim_{n \to \infty} \delta(f(x_n), f(x'_n)) = 0,$$

即 y = y'. 且显然有 $f|_{E_0} = f$.

再证 $\widetilde{f}: E \to F$ 一致连续:

 $\forall \ \varepsilon > 0$, 由于 f 一致连续,从而 $\exists \ \eta > 0$, 对 $\forall \ a,b \in E_0, d(a,b) < \eta$, 有 $\delta(f(a),f(b)) < \varepsilon$. 则对 $\forall \ a',b' \in E$, 由 E_0 在 E 中稠密,存在 E_0 中的序列 $\{a_n\}_{n=1}^{\infty}$ 和 $\{b_n\}_{n=1}^{\infty}$ 分别收敛于 a',b', 从而 $\exists \ N > 0$, 使得 $\forall \ n > N$, 有

$$d(a', a_n) < \frac{\eta}{3}, d(b', b_n) < \frac{\eta}{3},$$

从而当 $d(a',b') < \eta/3$ 时,有

$$d(a_n, b_n) \le d(a_n, a') + d(a', b') + d(b_n, b') < \frac{\eta}{3} + \frac{\eta}{3} + \frac{\eta}{3} < \eta,$$

此时,

$$\delta(f(a_n), f(b_n)) < \varepsilon.$$

由 \tilde{f} 的定义可知,

$$\widetilde{f}(a') = \lim_{n \to \infty} f(a_n), \widetilde{f}(b') = \lim_{n \to \infty} f(b_n),$$

18

由度量的连续性,

$$\delta(\widetilde{f}(a'), \widetilde{f}(b')) = \lim_{n \to \infty} \delta(f(a_n), f(b_n)) \le \varepsilon,$$

即 \widetilde{f} 是一致连续的。

最后证明唯一性:

设 f' 是另一个扩展映射, $\forall x \in E$, 存在 E_0 中的序列 $\{x_n\}_{n=1}^{\infty}$ 收敛于 x, 由 f' 的连续性,

$$f'(x) = \lim_{n \to \infty} f(x_n).$$

但由 \tilde{f} 的定义,

$$\widetilde{f}(x) = \lim_{n \to \infty} f(x_n),$$

从而

$$\widetilde{f}(x) = f'(x),$$

例 2.3.5. 几个特殊的一致连续映射:

• Hölder 映射:存在 $\lambda > 0$ 与 $0 < \alpha \le 1$, 使得

$$\delta(f(x), f(y)) \le \lambda d(x, y)^{\alpha};$$

- Lipschitz 映射: $\alpha = 1$ 的 Hölder 映射, 最小的 λ 称为 f 的 Lipschitz 常数;
- 压缩映射: $\lambda < 1$ 的 Lipschitz 映射。

定理 2.3.6 (压缩映射不动点定理). 设 (E,d) 是完备的度量空间, $f: E \to E$ 是压缩映射,则 f 有唯一的不动点。证明. 任取 $x_1 \in E$, 令 $x_{n+1} = f(x_n)$, 得到序列 $\{x_n\}_{n=1}^{\infty}$, 设 f 是以 λ 为系数的压缩映射,对 \forall n,

$$d(x_n, x_{n-1}) = d(f(x_{n-1}), f(x_{n-2})) \le \lambda d(x_{n-1}, x_{n-2}) \le \lambda^2 d(x_{n-2}, x_{n-3}) \le \dots \le \lambda^{n-2} d(x_2, x_1),$$

19

从而对任意正整数 p,

$$\lim_{n \to \infty} d(x_{n+p}, x_n) \le (\lambda^{n+p-2} + \dots + \lambda^{n-1}) d(x_2, x_1) = 0,$$

从而 $\{x_n\}_{n=1}^{\infty}$ 是 Cauchy 序列。由于 (E,d) 是完备的,可设 $\{x_n\}_{n=1}^{\infty}$ 收敛于 $x \in E$,且 f 是压缩映射,从而必定连续,从而极限与函数可交换,则

$$f(x) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$

即 x 就是 f 的不动点。

若有另一不动点 y, 则

$$d(x,y) = d(f(x), f(y)) \le \lambda d(x,y),$$

由于 λ 严格小于 1, 从而必有 d(x,y) = 0, 即 x = y.

2.4 度量空间的完备化

定义 2.4.1. 称两个度量空间 (E,d) 与 (F,δ) 间的映射 T 是等距映射, 若对 $\forall x,y \in E$,

$$\delta(T(x), T(y)) = d(x, y).$$

若 T 还是一一映射,则称其为等距同构映射。此时称这两个度量空间等距同构。

定理 2.4.2. 设 (E,d) 是一个度量空间,在等距同构的意义下,存在唯一完备的度量空间 (\hat{E},\hat{d}) ,使得

- 1. $E \subset \hat{E}$;
- $2. \ \hat{d}|_E = d;$
- $3. E 在 \hat{E}$ 中稠密。

证明. 先定义出 (\hat{E}, \hat{d}) :

令 $\tilde{E} = \{E \text{ pho Cauchy } \bar{F} \mathcal{A}\},$ 再在 \tilde{E} 上定义一个等价关系:

$$\{x_n\}_{n=1}^{\infty} \sim \{y_n\}_{n=1}^{\infty} \Longleftrightarrow \lim_{n \to \infty} d(x_n, y_n) = 0.$$

 $\Leftrightarrow \hat{E} = \widetilde{E} / \sim \forall \hat{x} = [\{x_n\}_{n=1}^{\infty}], \hat{y} = [\{y_n\}_{n=1}^{\infty}] \in \hat{E}, \Leftrightarrow$

$$\hat{d}(\hat{x}, \hat{y}) = \lim_{n \to \infty} d(x_n, y_n).$$

要先验证 \hat{d} 是良定义的,即不依赖于代表元 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$ 的选取:设 $\forall \hat{x} = [\{x_n\}_{n=1}^{\infty}] = [\{x_n'\}_{n=1}^{\infty}], \hat{y} = [\{y_n\}_{n=1}^{\infty}] = [\{y_n'\}_{n=1}^{\infty}] \in \hat{E}$

$$\lim_{n \to \infty} d(x_n, y_n) \le \lim_{n \to \infty} [d(x_n, x'_n) + d(x'_n, x'_n) + d(y'_n, y_n)] = \lim_{n \to \infty} d(x'_n, y'_n),$$

同理有

$$\lim_{n \to \infty} d(x'_n, y'_n) \le \lim_{n \to \infty} d(x_n, y_n),$$

即

$$\lim_{n \to \infty} d(x_n, y_n) = \hat{d}(\hat{x}, \hat{y}) = \lim_{n \to \infty} d(x'_n, y'_n).$$

还要验证极限是存在的: 由于 $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ 是 Cauchy 序列,

$$\lim_{\substack{n \to \infty \\ m \to \infty}} |d(x_n, y_n) - d(x_m, y_m)| \le \lim_{\substack{n \to \infty \\ m \to \infty}} |[d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n)] - d(x_m, y_m)| \le \lim_{n \to \infty} d(x_n, y_n) + \lim_{m \to \infty} d(x_m, y_m) = 0,$$

从而 $\{d(x_n, y_n\}_{n=1}^{\infty}$ 是 Cauchy 实数列,必收敛,从而 \hat{d} 的定义中的极限存在。

可以验证 â 是一个度量。

最后验证 $\hat{d}|_E = d$: 记 \hat{x} 是常序列 $\{x\}_{n=1}^{\infty}$,则 $\forall x, y \in E$,自然的可以选取常序列 \hat{x} 与 \hat{y} 作为 \hat{x} 与 \hat{y} 在 \hat{E} 中的代表元,于是 E 可以有一个到 \hat{E} 的单射嵌入,因此可以把 \hat{x} 与 \hat{x} 看作同一个元素,于是可以看作 $E \subset \hat{E}$,此时

$$\hat{d}(\hat{x}, \hat{y}) = \hat{d}([\dot{x}], [\dot{y}]) = \lim_{n \to \infty} d(x, y) = d(x, y),$$

即

$$\hat{d}|_E = d.$$

再验证 E 在 \hat{E} 中稠密: $\forall \hat{x} \in \hat{E}$, 设 $\{x_n\}_{n=1}^{\infty}$ 是它的一个代表元, 常序列 x_n 可看作与 $x_n \in E$ 是同一个元素, 从而

$$\lim_{n \to \infty} \hat{d}(\hat{x}, \dot{x_n}) = \lim_{n \to \infty} \lim_{m \to \infty} d(x_m, x_n) = 0,$$

即 $E \propto \hat{E}$ 中稠密。

再证 (\hat{E},\hat{d}) 是完备的: 设 $\{\hat{x}^{(n)}\}_{n=1}^{\infty}$ 是 \hat{E} 中的 Cauchy 序列,由于 E 在 \hat{E} 中稠密,故对 \forall n, 存在 $x_n \in E$, 使得

$$\hat{d}(\hat{x}^{(n)}, \dot{x}_n) < \frac{1}{n},$$

从而

$$d(x_n, x_m) = \hat{d}(\dot{x}_n, \dot{x}_m) \le \hat{d}(\dot{x}_n, \hat{x}^{(n)}) + \hat{d}(\hat{x}^{(n)}, \hat{x}^{(m)}) + \hat{d}(\dot{x}_m, \hat{x}^{(m)}) < \frac{1}{n} + \hat{d}(\hat{x}^{(n)}, \hat{x}^{(m)}) + \frac{1}{m},$$

又 $\{\hat{x}^{(n)}\}_{n=1}^{\infty}$ 是 Cauchy 序列,从而

$$\lim_{\substack{n \to \infty \\ m \to \infty}} d(x_n, x_m) \le \lim_{\substack{n \to \infty \\ m \to \infty}} (\frac{1}{n} + \hat{d}(\hat{x}^{(n)}, \hat{x}^{(m)}) + \frac{1}{m}) = 0,$$

即 $\{x_n\}_{n=1}^{\infty}$ 是 E 中的 Cauchy 序列,记它在 \hat{E} 中代表的等价类是 \hat{x} , 从而

$$\lim_{n \to \infty} \hat{d}(\hat{x}^{(n)}, \hat{x}) \le \lim_{n \to \infty} (\hat{d}(\hat{x}^{(n)}, \dot{x}_n) + \hat{d}(\dot{x}_n, \hat{x})) \le \lim_{n \to \infty} (\frac{1}{n} + \hat{d}(\dot{x}_n, \hat{x})) = 0,$$

即

$$\lim_{n \to \infty} \hat{x}^{(n)} = \hat{x},$$

从而 (\hat{E}, \hat{d}) 是完备的度量空间。

最后证明 (\hat{E}, \hat{d}) 在等距同构的意义下是唯一的:设 (E', d') 是另一个满足条件的度量空间,设

$$\iota: E \to \hat{E}$$
,

$$\iota': E \to E'$$

是各自的等距嵌入单射, 定义映射

$$f:\iota(E)\to E'$$

$$\hat{a} \mapsto \iota'(a).$$

由 ι,ι' 都是等距,从而 f 是等距,故一致连续,且由 $\iota(E)$ 在 \hat{E} 中稠密以及 (E',d') 完备,由定理 2.3.4可知,f 可以唯一扩展成 \hat{E} 到 E' 的一致连续映射 \tilde{f} .

$$(E,d) \xrightarrow{\iota} (\iota(E), \hat{d}) \xrightarrow{i} (\hat{E}, \hat{d})$$

$$\downarrow^{\iota'} \qquad \downarrow^{f} \qquad \qquad \tilde{f}$$

$$(E', d')$$

任意 $\hat{x}, \hat{y} \in \hat{E}$,

$$d'(\widetilde{f}(\hat{x}), \widetilde{f}(\hat{y})) = d'(\lim_{n \to \infty} f(\hat{x}_n), \lim_{n \to \infty} f(\hat{y}_n)) = \lim_{n \to \infty} d'(f(\hat{x}_n), f(\hat{y}_n)) = \lim_{n \to \infty} d'(\hat{x}_n, \hat{y}_n) = d(\hat{x}, \hat{y}),$$

即 \widetilde{f} 也是等距映射,从而是单射。又因为 $\iota'(E)$ 也在 E' 中稠密,从而 \widetilde{f} 也是满射,即 \widetilde{f} 是等距同构。

2.5 度量空间的紧性

定理 2.5.1. 设 (E,d) 是一个度量空间,则以下命题等价:

- 1. (E,d) 是紧的 (任意开覆盖有有限子覆盖);
- 2. E 中的任意无限子集必有凝聚点 (此时称 E 是列紧的);
- 3. E 中的任意序列都有收敛子列 (此时称 E 是序列紧的);
- 4. (E,d) 是完备的且是预紧的 $(∀ \varepsilon > 0, E$ 可以被有限个半径为 ε 的开球覆盖)。

证明. 用如下顺序: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 3 \Rightarrow 1$.

 $1 \Rightarrow 2$:

反证法。若否,即存在 E 的无限子集 F, 它没有凝聚点。从而 $\forall x \in E, \exists \varepsilon_x > 0$, 使得

$$B(x, \varepsilon_x) \cap (F - \{x\}) = \varnothing.$$

且 $E = \bigcup_{x \in E} B(x, \varepsilon_x)$ 是 E 的开覆盖,从而有有限子覆盖 $E = \bigcup_{i=1}^n B(x_i, \varepsilon_{x_i})$. 但 $\bigcup_{i=1}^n B(x_i, \varepsilon_{x_i})$ 中最多含有 F 中的有限个元素 x_1, x_2, \dots, x_n , 这与 $F \subset E = \bigcup_{i=1}^n B(x_i, \varepsilon_{x_i})$ 是无限集矛盾。

23

 $2 \Rightarrow 3$:

设 $\{x_n\}_{n=1}^{\infty}$ 是 E 中的无穷序列。若 $\{x_n\}_{n=1}^{\infty}$ 中仅含有限个不同的值,则必有一个值出现无限次,即得收敛子列。若否,由 2 知, $\{x_n\}_{n=1}^{\infty}$ 有凝聚点,记为 x. 从而对任意 $k \geq 1$,可以从 $B(x, \frac{1}{k})$ 中选 $\{x_n\}_{n=1}^{\infty}$ 中的一个点作为 x_{n_k} ,从而

$$\lim_{k \to \infty} d(x_{n_k}, x) < \lim_{k \to \infty} \frac{1}{k} = 0,$$

即 $\{x_{n_k}\}_{k=1}^{\infty}$ 是 $\{x_n\}_{n=1}^{\infty}$ 的收敛于 x 的子列。

 $3 \Rightarrow 4$:

任取 E 中的 Cauchy 序列 $\{x_n\}_{n=1}^{\infty}$,由 3 知,它有收敛子列 $\{x_{n_k}\}_{k=1}^{\infty}$,设它收敛于 $x \in E$. 从而对任意 $n \leq n_k$,都有

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x),$$

从而

$$\lim_{n\to\infty}d(x_n,x)\leq \lim_{n\to\infty}\lim_{k\to\infty}(d(x_n,x_{n_k})+d(x_{n_k},x))=\lim_{\substack{n\to\infty\\k\to\infty}}d(x_n,x_{n_k})+\lim_{k\to\infty}d(x_{n_k},x)=0,$$

即 $\{x_n\}_{n=1}^{\infty}$ 收敛于 x, 即 E 是完备的。

若 (E,d) 不是预紧的,则存在 $\varepsilon_0>0$,使得 E 的开覆盖 $\bigcup_{x\in E} B(x,\varepsilon_0)$ 没有有限子覆盖,于是可以按以下方式构造出 $\{x_n\}_{n=1}^\infty$:

- (1) 任取 $x_1 \in E$;
- (2) 任取 $x_2 \in E B(x_1, \varepsilon_0)$;

. . .

(n) 任取 $x_n \in E - \bigcup_{i=1}^{n-1} B(x_i, \varepsilon_0)$;

. . .

从而 $\forall m, n \geq 1$, 不妨设 n < m, 由 $\{x_n\}_{n=1}^{\infty}$ 的构造可知, $x_m \notin B(x_n, \varepsilon_0)$, 从而

$$d(x_m, x_n) \geq \varepsilon_0$$

从而 $\{x_n\}_{n=1}^{\infty}$ 无收敛子列,与 3 矛盾,从而 E 是预紧的。

 $4 \Rightarrow 3$:

由于 (E,d) 是完备的,从而只需要证任意序列 $\{x_n\}_{n=1}^{\infty}$ 有 Cauchy 子序列。按如下方式构造:

- (1) 取 $\varepsilon_1 = \frac{1}{2}$,由于 (E, d) 预紧,从而存在有限子集 $F \subset E$,使得 $E = \bigcup_{x \in F} B(x, \varepsilon_1)$,从而 $\{x_n\}_{n=1}^{\infty}$ 必有一个无穷子列包含于某个 开球 $B(x, \varepsilon_1)$ 中,记这个子列为 $\{x_{1_i}\}_{i=1}^{\infty}$;
- (2) 再取 $\varepsilon_2 = \frac{1}{2^2}$,同理, $\{x_{1_i}\}_{i=1}^{\infty}$ 必有一个无穷子列包含于某个开球 $B(x, \varepsilon_2)$ 中,记这个子列为 $\{x_{2_i}\}_{i=1}^{\infty}$;

. . .

(n) 取 $\varepsilon_n = \frac{1}{2^n}$, $\{x_{(n-1)_i}\}_{i=1}^\infty$ 必有一个无穷子列包含于某个开球 $B(x,\varepsilon_n)$ 中,记这个子列为 $\{x_{n_i}\}_{i=1}^\infty$;

. . .

从而对 $\forall n \geq 1, \forall i, j \geq 1,$

$$d(x_{n_i}, x_{n_j}) \le \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^{n-1}}.$$

接下来用"对角线法则",选择子列 $\{x_{i_i}\}_{i=1}^{\infty}$,从而对 $\forall n, \forall i, j \geq n$,不妨设 $i \leq j$,由 $\{x_{n_i}\}_{i=1}^{\infty}$ 的构造可知, x_{j_i} 处于序列 $\{x_{i_k}\}_{k=1}^{\infty}$ 中,设 $x_{j_i} = x_{i_k}$,从而

$$d(x_{i_i}, x_{j_j}) = d(x_{i_i}, x_{i_h}) < \frac{1}{2^{i-1}} \le \frac{1}{2^{n-1}},$$

即 $\{x_{i_i}\}_{i=1}^{\infty}$ 是 $\{x_n\}_{n=1}^{\infty}$ 的 Cauchy 子序列。

 $3 \Rightarrow 1$:

设 $\bigcup_{i \in I} O_i$ 是 E 的一个开覆盖,首先证明存在一个正常数 λ ,使得任意 $0 < r < \lambda$,对任意 $x \in E$,开球 B(x,r) 必包含于开覆盖的某一个开集 O_i 中(λ 称为开覆盖 $\bigcup_{i \in I} O_i$ 的 Lebesgue 数)。

若否, $\forall n \geq 1$,存在 $x_n \in E$,以及常数 $0 < r_{x_n} < \frac{1}{n}$,使得开球 $B(x_n, r_{x_n})$ 不包含于开覆盖 $\bigcup_{i \in I} O_i$ 的任意一个开集中,由此构造出序列 $\{x_n\}_{n=1}^{\infty}$.

由 3 可知, $\{x_n\}_{n=1}^{\infty}$ 存在收敛子列 $\{x_{n_k}\}_{k=1}^{\infty}$, 设 $\{x_{n_k}\}_{k=1}^{\infty}$ 收敛于 x_0 . 而 x_0 必定属于开覆盖 $\bigcup_{i\in I} O_i$ 的某一个开集 $O_{i_0}, i_0 \in I$ 中从而

存在正数 r_0 , 使得 $B(x_0, r_0) \subset O_{i_0}$. 由于 $\{x_{n_k}\}_{k=1}^{\infty}$ 收敛于 x_0 , 故 $\exists k_0 > 0$, 使得 $\forall k > k_0$, 有 $d(x_{n_k}, x_0) < \frac{r_0}{2}$. 再取正整数 $N > k_0$, 使 得 $n_N > \frac{2}{r_0}$, 此时 $\forall y \in B(x_{n_N}, r_{x_{n_N}})$, 有

$$d(y, x_0) \le d(y, x_{n_N}) + d(x_{n_N}, x_0) < r_{x_{n_N}} + \frac{r_0}{2} < \frac{1}{n_N} + \frac{r_0}{2} < r_0,$$

从而有

$$B(x_{n_N}, r_{x_{n_N}}) \subset B(x_0, r_0) \subset O_{i_0},$$

这与 $B(x_{n_N}, r_{x_{n_N}})$ 的选取矛盾。

从而可设开覆盖 $\bigcup_{i\in I} O_i$ 有 Lebesgue 数 λ . 而 $\bigcup_{x\in E} B(x,\frac{\lambda}{2})$ 是 E 的一个开覆盖,又由 $3\Rightarrow 4$ 知,(E,d) 是预紧的,从而 $\bigcup_{x\in E} B(x,\frac{\lambda}{2})$ 有有限子覆盖,记为 $\bigcup_{k=1}^n B(x_k,\frac{\lambda}{2})$. 而由 Lebesgue 数的定义可知,对 $\forall \ 1\leq k\leq n,\ B(x_k,\frac{\lambda}{2})$ 都包含于某个 $O_{i_k},i_k\in I$ 中,从而 $\bigcup_{k=1}^n O_{i_k}$ 也是 E 的覆盖,从而 $\bigcup_{i\in I} O_i$ 有有限子覆盖 $\bigcup_{k=1}^n O_{i_k}$ 从而 (E,d) 是紧的。

性质 2.5.2. 紧性的性质:

- 1. $A \subset (E,d)$ 是紧集, $F \subset A$, 则 F 是紧集 \iff F 是闭集;
- 2. 定义域是紧的的连续映射是一致连续的;
- 3. 紧集上的连续函数能达到最大最小值。

证明. 1: 由于度量空间是 Hausdorff 的, 由书 P11 定理 1.3.6 即得。

- 2: 这是定理 2.3.2.
- $\underline{3}$: 紧集的连续像是紧的,从而 f(E) 是 $\mathbb R$ 上的紧集,从而是有界闭集,从而 f(E) 能达到上下确界。

定义 2.5.3 (相对紧). 设 (E,d) 是度量空间, 称 $A \subset E$ 是相对紧的, 若 \overline{A} 是紧的。

推论 2.5.4. 设 (E,d) 是度量空间,则 $A \subset E$ 是相对紧的,当且仅当 A 中的无穷序列有在 E 中收敛的子列。

推论 2.5.5. 设 (E,d) 是完备度量空间,则 $A \subset E$ 是相对紧的,当且仅当 A 是预紧的。

3 赋范空间与连续线性映射

3.1 Banach 空间

定义 3.1.1. 度量空间 (E,d) 称为一个赋范空间,若 E 是一个线性空间,且 $\forall x,y \in E, d(x,y) = ||x-y||$,其中 $||\cdot||$ 是一个函数,满足

- 1. 正定性: $||x|| = 0 \iff x = 0$;
- 2. 齐次性: $\forall \lambda \in K$,

$$\|\lambda x\| = |\lambda| \cdot \|x\|,$$

其中 账 是一个数域;

3. 三角不等式: $\forall x, y \in E$,

$$||x + y|| \le ||x|| + ||y||,$$

此时称其为一个范数。

注记 3.1.2. 此时 $\forall x,y \in E, d(x,y) = ||x-y||$ 称为范数诱导的度量,空间中度量的语言可转化为范数的语言。

例 3.1.3. 欧氏空间 \mathbb{K}^n 是赋范空间: $\forall x = (x_1, x_2, \dots, x_n)$,

- $||x||_{\infty} = \max_{1 \leq i \leq n} |x_i|;$
- $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}};$
- $||x||_1 = \sum_{i=1}^n |x_i|$.

定义 3.1.4 (Banach 空间). 完备的赋范空间称为 Banach 空间。

例 3.1.5. 令 E = C([a,b]) 是 [a,b] 上的连续函数的集合,则

• $\|\cdot\|_{\infty}$: $\forall f \in E$, \diamondsuit

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} |f(x)|,$$

是一个范数,且 $(E, \|\cdot\|_{\infty})$ 是完备的:

设 $\{f_n\}_{n=1}^{\infty}$ 是 $(E, \|\cdot\|_{\infty})$ 中的 Cauchy 序列, $\forall \varepsilon > 0, \exists N > 0$, 使得 $\forall n, m > N$, 都有

$$||f_n - f_m||_{\infty} < \varepsilon,$$

从而 $\forall x \in E$,

$$|f_n(x) - f_m(x)| \le \max_{x \in [a,b]} |f_n(x) - f_m(x)| = ||f_n - f_m||_{\infty} < \varepsilon,$$

即 $\{f_n(x)\}_{n=1}^{\infty}$ 是 Cauchy 数列,必收敛,记它收敛于 f(x). 重新整理以上论述, $\forall \varepsilon > 0$, $\exists N > 0$,使得 $\forall n, m > N$, $\forall x \in E$, 都有

$$|f_n(x) - f_m(x)| < \varepsilon,$$

令 $m \to \infty$, 由范数的连续性,

$$\lim_{m \to \infty} |f_n(x) - f_m(x)| = |f_n(x) - f(x)| \le \varepsilon,$$

这对 $\forall x \in E$ 都成立, 综上, $\forall \varepsilon > 0$, $\exists N > 0$, 使得 $\forall n > N$, $\forall x \in E$, 都有

$$|f_n(x) - f(x)| \le \varepsilon,$$

即

$$f_n \Longrightarrow f$$
.

而一致收敛的连续函数列的极限仍是连续函数,从而 $f \in E$,从而 $||f_n - f||_{\infty}$ 是良定义的。而由定义, $f_n \Rightarrow f$ 等价于 $f_n \stackrel{\|\cdot\|_{\infty}}{\longrightarrow} f$. 综上, $f_n \stackrel{\|\cdot\|_{\infty}}{\longrightarrow} f$ 且 $f \in E$,从而 $(E, \|\cdot\|_{\infty})$ 是 Banach 空间。但 $P([a,b]) = \{[a,b] \bot$ 的多项式函数 $\} \subset C([a,b])$ 在 $\|\cdot\|_{\infty}$ 下不完备;

• $\|\cdot\|_1: \forall f \in E, \diamondsuit$

$$||f||_1 = \int_a^b |f(x)| \, dx,$$

是一个范数,但 $(E, ||\cdot||_1)$ 不完备: 考虑函数列

$$f_n(x) = \begin{cases} 0, & x \in [0, \frac{1}{2}]; \\ n(x - \frac{1}{2}), & x \in (\frac{1}{2}, \frac{1}{2} + \frac{1}{n}); \\ 1, & x \in [\frac{1}{2} + \frac{1}{n}, 1]. \end{cases}$$

记

$$f(x) = \begin{cases} 0, & x \in [0, \frac{1}{2}]; \\ 1, & x \in (\frac{1}{2}, 1]. \end{cases}$$

此时,

$$\lim_{n \to \infty} ||f_n - f||_1 = \lim_{n \to \infty} \int_0^1 |f_n - f| = \lim_{n \to \infty} \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} n(x - \frac{1}{2}) = \lim_{n \to \infty} \frac{1}{2n} = 0,$$

即

$$f_n \xrightarrow{\|\cdot\|_1} f,$$

但 $f \notin C([a,b])$, 从而 $(E, \|\cdot\|_1)$ 不是 Banach 空间。

这说明同一个向量空间可以有不同的范数,且在不同的范数下向量空间的完备性不一定相同,从而我们在谈论 Banach 空间时要同时指定空间和范数。

例 3.1.6. 设 $(E, \|\cdot\|)$ 是赋范空间, $\sum_{i=1}^{\infty} x_i$ 是 E 中的无穷级数,若部分和

$$S_n = \sum_{i=1}^n x_i$$

的序列 $\{S_n\}_{n=1}^{\infty}$ 在 $(E, \|\cdot\|)$ 中依范数收敛,则称无穷级数 $\sum_{i=1}^{\infty} x_i$ 在 $(E, \|\cdot\|)$ 中收敛。同样可以推广 *Cauchy* 级数,绝对收敛等概念。

定理 3.1.7. 赋范空间 $(E, \|\cdot\|)$ 是完备的当且仅当绝对收敛的级数都收敛。

证明. 必要性: 设 $\sum_{n=1}^{\infty} x_n$ 绝对收敛,由三角不等式,

$$\lim_{\substack{n \to \infty \\ p \to \infty}} ||S_{n+p} - S_n|| = \lim_{\substack{n \to \infty \\ p \to \infty}} \left\| \sum_{k=n+1}^{n+p} x_k \right\| \le \lim_{\substack{n \to \infty \\ p \to \infty}} \sum_{k=n+1}^{n+p} ||x_k|| = 0,$$

从而 $\{S_n\}_{n=1}^{\infty}$ 是 E 中的 Cauchy 序列,由于 E 是完备的,从而 $\{S_n\}_{n=1}^{\infty}$ 收敛,即 $\sum_{n=1}^{\infty} x_n$ 收敛。

<u>充分性</u>: 任意 E 中的 Cauchy 序列 $\{x_n\}_{n=1}^{\infty}$, 可以选择子列 $\{x_{n_k}\}_{k=1}^{\infty}$ 使得 $\forall k$,

$$||x_{n_{k+1}} - x_{n_k}|| \le \frac{1}{2^k},$$

从而级数 $\sum_{k=1}^{\infty} ||x_{n_{k+1}} - x_{n_k}||$ 收敛,从而 $\sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}) = \lim_{k \to \infty} x_{n_k} - x_{n_1}$ 收敛,即 $\{x_{n_k}\}_{k=1}^{\infty}$ 收敛。而有收敛子列的 Cauchy 序列收敛,即 $\{x_n\}_{n=1}^{\infty}$ 收敛,从而 $(E, \|\cdot\|)$ 是完备的。

定义 3.1.8 (范数的等价). 设 p,q 是向量空间 E 上的两个范数, 称它们等价, 若 $\exists C > 0$, 使得 $\forall x \in E$, 都有

$$\frac{1}{C} \cdot p(x) \le q(x) \le C \cdot p(x).$$

定理 3.1.9. 欧氏空间的任意范数都等价。

证明. 只要证任意范数 ||·|| 都与无穷范数 ||·||_∞ 等价。

设 $\{e_1, e_2, \dots, e_n\}$ 是 E 的一组基,从而任意 $x \in E$, 有唯一的表示

$$x = \sum_{i=1}^{n} x_i e_i.$$

且 $(E, \|\cdot\|_{\infty})$ 中的单位球

$$S = \left\{ x \in E \mid ||x||_{\infty} = \max_{1 \le i \le n} |x_i| = 1 \right\}$$

是紧集,由于范数 $\|\cdot\|$ 是 E 上的连续函数,从而在紧集 S 上能取到正的最大最小值 C_1, C_2 ,即 $\forall x \in S$,

$$0 < C_2 \le ||x|| \le C_1.$$

而 $\forall 0 \neq x \in E$, 都有

$$\left\| \frac{x}{\|x\|_{\infty}} \right\|_{\infty} = \frac{\|x\|_{\infty}}{\|x\|_{\infty}} = 1,$$

即

$$\frac{x}{\|x\|_{\infty}} \in S,$$

从而

$$C_2 \le \frac{x}{\|x\|_{\infty}} \le C_1,$$

取

$$C = \max\{C_1, \frac{1}{C_2}\} > 0,$$

有

$$\frac{1}{C} \le C_2 \le \frac{x}{\|x\|_{\infty}} \le C_1 \le C,$$

由范数的齐次性,

$$\frac{1}{C} \cdot \|x\|_{\infty} \leq \|x\| \leq C \cdot \|x\|_{\infty} \,,$$

即范数 ||·|| 与无穷范数 ||·||_∞ 等价。

注记 3.1.10. 同理可知, 事实上, 有限维赋范线性空间上的所有范数都等价。

推论 3.1.11. 有限维赋范线性空间是 Banach 空间,它的任意范数诱导同样的拓扑,它之中的有界闭集是紧集。

定理 3.1.12 (Riesz). 设 $(E, \|\cdot\|)$ 是赋范空间,则 E 是有限维的当且仅当 $\overline{B_1} = \{x \in E \mid \|x\| \le 1\}$ 是紧集。

先证明一个引理:

引理 3.1.13. 设 $(E, \|\cdot\|)$ 是赋范空间, $F \subseteq E$ 是闭线性子空间,则 $\forall \varepsilon > 0, \exists e \in E$, 使得 $\|e\| = 1$ 且 $d(e, F) \ge 1 - \varepsilon$.

证明. 由于 $F \subseteq E$, 故 $\exists x \in E - F$, 记 d = d(x, F). 又 F 是闭集, 从而 d > 0. 取 $y \in F$, 使得

$$d \le ||x - y|| \le \frac{d}{1 - \varepsilon}.$$

令 $e=\frac{x-y}{\|x-y\|}$,则 $\|e\|=1$ 且 $e\notin F$,从而 $\forall~z\in F$,由 $x-y=\|x-y\|\cdot e\notin F$ 且 $\|x-y\|\cdot z\in F$,从而

$$\|e-z\| = \left\|\frac{x-y}{\|x-y\|} - z\right\| = \frac{1}{\|x-y\|} \|x-y-\|x-y\| \cdot z\| \ge \frac{1-\varepsilon}{d} \cdot d = 1-\varepsilon,$$

即

$$d(e, F) \ge 1 - \varepsilon$$
.

Riesz 定理的证明. 必要性: 这是推论 3.1.11的简单推论。

充分性: 按以下步骤构造 $\overline{B_1}$ 中的序列 $\{x_n\}_{n=1}^{\infty}$:

3 赋范空间与连续线性映射

32

- (1) 任取 $x_1 \in \overline{B_1}$, 记 $F_1 = \mathbb{K}x_1$, 是 E 的有限维(一维)线性子空间,从而完备,从而是闭子空间,且是真子空间,从而由引理 3.1.13, $\exists x_2 \in \overline{B_1}$, 使得 $d(x_2, F_1) \geq \frac{1}{2}$, 更有 $d(x_1, x_2) \geq \frac{1}{2}$;
- (2) $\[\Box F_2 = \mathrm{Span}\{x_1, x_2\}, \[\Box \Pi \Pi \Pi \Pi x_3 \in \overline{B_1}, \[\Box H d(x_3, F_2) \ge \frac{1}{2}, \[\Box H d(x_1, x_3) \ge \frac{1}{2}, \] d(x_2, x_3) \ge \frac{1}{2}; \]$
- (n) $\[\exists F_k = \mathrm{Span}\{x_1, x_2, \cdots, x_k\}, \ \exists \exists x_{k+1} \in \overline{B_1}, \ \text{total} \ d(x_{k+1}, F_k) \ge \frac{1}{2}, \ \exists f \ \forall \ 1 \le i \le k, d(x_i, x_{k+1}) \ge \frac{1}{2}; \]$

由此得到一列 $\{x_n\}_{n=1}^{\infty} \subset \overline{B_1}$, 满足 $\forall j \neq k$,

$$d(x_j, x_k) \ge \frac{1}{2},$$

从而 $\{x_n\}_{n=1}^{\infty}$ 没有收敛子列,这与 $\overline{B_1}$ 是紧的矛盾,故 E 是有限维的。

3.2 连续线性映射

定义 3.2.1. 线性映射, 记 $\mathcal{L}(E,F)$ 是向量空间 E 到向量空间 F 的线性映射的全体。

定理 3.2.2. 设 E 和 F 是两个赋范空间, $T \in \mathcal{L}(E,F)$, 则以下命题等价:

- 1. T 在 E 上连续;
- 2. T 在 E 中的某一点连续;
- 3. T 在原点连续;
- 4. 存在非负数 C, 使得 $\forall x \in E$, 有 $||Tx||_F \leq C ||x||_E$.

证明. 用如下顺序: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$.

 $1 \Rightarrow 2$: 这是显然的。

 $2 \Rightarrow 3$: 设 T 在 x_0 处连续, $\forall \varepsilon > 0$, $\exists r > 0$, 使得 $\forall x \in B(x_0, r)$, 都有

$$||Tx - Tx_0||_F < \varepsilon,$$

从而 $\forall y \in B(0,r)$, 有

$$\|(x_0 + y) - x_0\|_E = \|y\|_E = \|y - 0\|_E < r,$$

即 $x_0 + y \in B(x_0, r)$, 从而由线性,

$$||Ty - T0||_F = ||Ty||_F = ||T(x_0 + y) - Tx_0||_F < \varepsilon,$$

即T在原点处连续。

 $\underline{3\Rightarrow 4}$: 若 T 在原点处连续,则存在 $r_0>0$,使得 $\forall\;y\in\overline{B(0,r_0)}$,有 $\|Ty\|_F\leq 1$. 对 $\forall\;0\neq x\in E$,记 $y=r_0\frac{x}{\|x\|_E}\in\overline{B(0,r_0)}$,从而

$$||Ty||_F = ||T(r_0 \frac{x}{||x||_E})||_F \le 1,$$

由线性,即得

$$||Tx||_F \le \frac{||x||_E}{r_0}.$$

取 $C = \frac{1}{r_0}$ 即得。

 $4 \Rightarrow 1$: 由线性, $\forall x, y \in E$, 有

$$||Tx - Ty||_F = ||T(x - y)||_F \le C ||x - y||_E$$

即 T 是 Lipschitz 映射, 从而在 E 上连续。

定义 3.2.3. 设 E 和 F 是两个赋范空间, $T \in \mathcal{L}(E,F)$, 若存在非负数 C, 使得 $\forall x \in E$, 有

$$||Tx||_F \le C \, ||x||_E \,,$$

3 赋范空间与连续线性映射

34

则称 T 是有界的。令

$$||T|| = \sup_{0 \neq x \in E} \frac{||Tx||_F}{||x||_E} = \sup_{x \in E, ||x||_E = 1} ||Tx||_F,$$

称为 T 的范数。从 E 到 F 的有界线性映射全体记为 $\mathcal{B}(E,F)$.

注记 3.2.4. 1. 线性算子是有界的,当且仅当它是连续的;

2. $\forall x \in E, ||Tx||_F \leq ||T|| \cdot ||x||_E$.

证明. 1. 这是定理 3.2.2的直接推论。

 $2. \ \forall \ x \in E,$

$$||T|| = \sup_{x \in E, ||x||_E = 1} ||Tx||_F \ge ||T(\frac{x}{||x||_E})||_F = \frac{||Tx||_F}{||x||_E},$$

即

$$||Tx||_F \le ||T|| \cdot ||x||_E$$
.

定理 3.2.5. 设 $(E, \|\cdot\|_E)$ 是赋范空间, $(F, \|\cdot\|_E)$ 是 Banach 空间, 则 $\mathcal{B}(E, F)$ 也是 Banach 空间。

证明. 设 $\{T_n\}_{n=1}^{\infty}$ 是 $\mathcal{B}(E,F)$ 中的 Cauchy 序列, $\forall x \in E, \forall n, m > 0$, 由注记 3.2.4,

$$||T_n x - T_m x||_F = ||(T_n - T_m)x||_F \le ||(T_n - T_m)|| \cdot ||x||_F$$

从而 $\{T_n x\}_{n=1}^{\infty}$ 是 F 中的 Cauchy 序列,且由于 F 是 Banach 空间,从而 $\{T_n x\}_{n=1}^{\infty}$ 收敛,记它收敛于 Tx. 这样我们定义了映射 $T: E \to F$. 只要证 $T \in \mathcal{B}(E, F)$ 且 $\{T_n\}_{n=1}^{\infty}$ 收敛于 T.

由定义可直接验证 T 是线性的。由注记 $3.2.4, \forall x \in E, \forall n, m > 0$

$$||T_n x - T_m x||_F = ||(T_n - T_m)x||_F \le ||(T_n - T_m)|| \cdot ||x||_F$$

3 赋范空间与连续线性映射

35

固定 m, 令 $n \to \infty$, 有

$$\|(T - T_m)x\|_F = \|Tx - T_mx\|_F = \lim_{n \to \infty} \|T_nx - T_mx\|_F \le \limsup_{n \to \infty} \|(T_n - T_m)\| \cdot \|x\|_E$$

由于 $\{T_n\}_{n=1}^{\infty}$ 是 Cauchy 序列,故 $\limsup_{n\to\infty} \|(T_n-T_m)\|\cdot\|x\|_E < \infty$,从而 $T-T_m \in \mathcal{B}(E,F)$,从而 $T=(T-T_m)+T_m \in \mathcal{B}(E,F)$. 且还知道 $\|T-T_m\| \leq \limsup_{n\to\infty} \|(T_n-T_m)\|$,令 $m\to\infty$,由于 $\{T_n\}_{n=1}^{\infty}$ 是 Cauchy 序列,

$$\lim_{m \to \infty} ||T - T_m|| \le \lim_{m \to \infty} \limsup_{n \to \infty} ||(T_n - T_m)|| = 0,$$

即 $\{T_n\}_{n=1}^{\infty}$ 收敛于 T.

定义 3.2.6 (对偶空间). $\mathcal{B}(E,\mathbb{R})$ 称为 E 的对偶空间,记为 $E^*,T\in E^*$ 称为线性泛函。

定理 3.2.7. 设 $f \in \mathcal{L}(E,\mathbb{R})$, 则 f 连续当且仅当 $N(f) = \{x \in E \mid f(x) = 0\}$ 是闭集。

证明. 必要性: 由于 $\{0\}$ 是闭集,f 连续,闭集的原像是闭集,从而 $N(f) = f^{-1}(\{0\})$ 是闭集。

<u>充分性</u>: 反证法,由定理 3.2.2, 设 f 在 0 处不连续,则存在 $\{x_n\}_{n=1}^{\infty} \subset E$, $\lim_{n\to\infty} x_n = 0$ 但 $\lim_{n\to\infty} f(x_n) \neq 0$. 不妨设 $\forall n$, $|f(x_n)| \geq \delta > 0$, 否则就取满足该条件的 $\{x_n\}_{n=1}^{\infty}$ 的子列。取 $x \in E$ 使得 $x \notin \{x_n\}_{n=1}^{\infty}$ 且 $f(x) \neq 0$, 令

$$y_n = \frac{x_n}{f(x_n)} - \frac{x}{f(x)},$$

则 $\forall n$,

$$f(y_n) = f(\frac{x_n}{f(x_n)} - \frac{x}{f(x)}) = \frac{f(x_n)}{f(x_n)} - \frac{f(x)}{f(x)} = 1 - 1 = 0,$$

且

$$\lim_{n \to \infty} y_n = -\frac{x}{f(x)},$$

由于 N(f) 是闭集且 $\{y_n\}_{n=1}^{\infty} \subset N(f)$, 从而 $-\frac{x}{f(x)} \in N(f)$, 即

$$f(-\frac{x}{f(x)}) = 0,$$

从而 f(x) = 0, 矛盾。

3 赋范空间与连续线性映射

36

定理 3.2.8. 设 $(E, ||| = \cdot ||_E)$ 有限维赋范空间, $(F, ||\cdot||_F)$ 是任意赋范空间,则任意 E 到 F 的线性映射都是有界的,从而也是连续的,即 $\mathcal{L}(E, F) = \mathcal{B}(E, F)$.

证明. 设 $\{e_1, e_2, \dots, e_n\}$ 是 E 的一组基, $\forall x = \sum_{i=1}^n x_i e_i \in E$, 考虑 E 上的无穷范数

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

由注记 3.1.10, E 的所有范数等价, 从而存在 C > 0, 使得 $\forall x \in E$,

$$||x||_{\infty} \le C ||x||_E,$$

从而 $\forall x = \sum_{i=1}^{n} x_i e_i \in E, \forall T \in \mathcal{L}(E, F),$

$$||Tx||_F \le \sum_{i=1}^n |x_i| \cdot ||Te_i||_F \le \left(\sum_{i=1}^n ||Te_i||_F\right) ||x||_\infty \le C \left(\sum_{i=1}^n ||Te_i||_F\right) ||x||_E,$$

即 T 是有界线性映射,从而也是连续线性映射。

定理 3.2.9. 设 $(E, \|\cdot\|_E), (F, \|\cdot\|_F)$ 是两个 Banach 空间,G 是 E 的稠密子空间,则任意有界线性算子 $T: G \to F$ 都可以唯一扩展 为有界线性算子 $\widetilde{T}: E \to F$,使得 $\left\|\widetilde{T}\right\| = \|T\|$.

证明. 对 $\forall x \in E$, 由于 G 在 E 中稠密,从而存在序列 $\{x_n\}_{n=1}^{\infty} \subset G$, 使得

$$\lim_{n \to \infty} x_n = x,$$

并且 $\forall n, m$, 由注记 3.2.4,

$$||Tx_n - Tx_m||_F \le ||T|| \cdot ||x_n - x_m||_E$$

从而 $\{Tx_n\}_{n=1}^{\infty}$ 是 F 中的 Cauchy 序列。由 F 是 Banach 空间,完备,从而存在 $f \in F$, 使得

$$y = \lim_{n \to \infty} Tx_n,$$

由此定义

$$\widetilde{T}x = y = \lim_{n \to \infty} Tx_n.$$

由定义,容易验证 \widetilde{T} 是线性的。又对 $\forall x \in E$, 取 $\{x_n\}_{n=1}^{\infty} \subset E$ 使得

$$\lim_{n \to \infty} x_n = x,$$

则

$$\|\widetilde{T}x\|_F = \lim_{n \to \infty} \|Tx_n\|_F \le \lim_{n \to \infty} \|T\| \cdot \|x_n\|_E = \|T\| \cdot \|x\|_E,$$

即 \tilde{T} 有界且 $\|\tilde{T}\| \le \|T\|$. 又

$$||T|| = \sup_{x \in G, ||x||_F = 1} ||Tx||_F \le \sup_{x \in E, ||x||_F = 1} ||\widetilde{T}x||_F = ||\widetilde{T}||,$$

这是因为 $G \subset E$, 从而上界不会减小。综上即有 $\left\| \widetilde{T} \right\| = \|T\|$.

定理 3.2.10. 设 $(E, \|\cdot\|_E), (F, \|\cdot\|_F), (G, \|\cdot\|_G)$ 是赋范空间, $T \in \mathcal{B}(E, F), S \in \mathcal{B}(F, G),$ 则 $S \circ T \in \mathcal{B}(E, G),$ 且

$$||S \circ T|| \le ||S|| \cdot ||T||.$$

证明. 容易验证 $S \circ T$ 是线性的, 且 $\forall x \in E$,

$$||(S \circ T)x||_G \le ||S|| \cdot ||Tx||_F \le ||S|| \cdot ||T|| \cdot ||x||_E$$

由于 T, S 有界,从而 $||S|| \cdot ||T|| < \infty$,即 $S \circ T$ 有界,从而 $S \circ T \in \mathcal{B}(E,G)$,并且

$$||S \circ T|| \le ||S|| \cdot ||T||.$$

定理 3.2.11. 设 $E \in Banach$ 空间, $T \in \mathcal{B}(E)$ 且 ||T|| < 1, 则存在 $S \in \mathcal{B}(E)$, 使得

$$(I_E - T)S = S(I_E - T) = I_E,$$

即 $I_E - T$ 是同构, 在代数 $\mathcal{B}(E)$ 中可逆。

证明. 考虑级数 $\sum_{n=0}^{\infty} T^n$, 由定理 3.2.10,

$$||T^n|| = ||T \circ T \circ \cdots \circ T|| \le ||T||^n.$$

由于 ||T|| < 1, 从而 $\sum_{n=0}^{\infty} T^n$ 绝对收敛,由定理 3.1.7, $\sum_{n=0}^{\infty} T^n$ 收敛,记它的极限是 S, 从而

$$(I_E - T)S = \lim_{n \to \infty} (I_E - T) \sum_{i=0}^n T^i = \lim_{n \to \infty} \sum_{i=0}^n T^i - \lim_{n \to \infty} \sum_{i=i}^{n+1} T^i = \lim_{n \to \infty} (I_E - T^{n+1}) = I_E.$$

同理可证 $S(I_E - T) = I_E$, 即 $S \in I_E - T$ 的逆映射。

例 3.2.12. 设 $(E, \|\cdot\|) = (C([0,1]), \|\cdot\|_{\infty})$, 设 $K \in [0,1] \times [0,1]$ 上的连续函数,定义 $T: E \to E$ 如下: $\forall x \in E$,

$$Tf(x) = \int_0^1 K(x, y)f(y)dy.$$

显然 T 是线性算子,且

$$||Tf||_{\infty} = \sup_{x \in [0,1]} \left| \int_0^1 K(x,y) f(y) dy \right| \le \left(\sup_{x \in [0,1]} \int_0^1 |K(x,y)| dy \right) ||f||_{\infty},$$

即 $||T|| \le \sup_{x \in [0,1]} \int_0^1 |K(x,y)| \, dy$, 故 T 是有界线性算子。

3.3 L^p 空间

定义 3.3.1. 设 $\Omega \subset \mathbb{R}$ 是开集,则定义

1 ≤ p < ∞ 时:

$$L^p(\Omega) = \left\{ f : \Omega \to \mathbb{R} \mid f$$
可测且 $\int_{\Omega} |f|^p < \infty \right\}$

在范数

$$||f||_p = (\int_{\Omega} |f|^p)^{\frac{1}{p}}$$

下是 Banach 空间;

3 赋范空间与连续线性映射

39

• *p* = ∞ 时:

$$||f||_{\infty} = \operatorname{essup}_{x \in \Omega} |f(x)| = M < \infty,$$

称为 f 的本性上确界,即在 Ω 上, $|f| \leq M$,

$$L^{\infty}(\Omega) = \{ f : \Omega \to \mathbb{R} \mid f$$
可测且 $||f||_{\infty} < \infty \}$

且 $(L^{\infty}(\Omega), \|\cdot\|_{\infty})$ 也是 Banach 空间。

定理 3.3.2. 几个不等式:

1. Hölder 不等式: 设 $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}, \ 0 < p, q \leq \infty, \ f \in L^p(\Omega), g \in L^q(\Omega), \ 则 \ fg \in L^r(\Omega), \ 且$

$$||fg||_r \le ||f||_p ||g||_q;$$

2. Young 不等式: 设 $0 < \alpha, \beta < 1$, 且 $\alpha + \beta = 1$, 则 $\forall x, y \in [0, \infty)$,

$$xy \le \alpha x^{\frac{1}{\alpha}} + \beta y^{\frac{1}{\beta}};$$

- 3. Minkowski 不等式: 设 $0 . 则 <math>\forall f, g \in L^p(\Omega)$,
 - (a) 若 1 , 则

$$||f+g||_p \le ||f||_p + ||g||_p;$$

(b) 若 0 , 则

$$||f + g||_p^p \le ||f||_p^p + ||g||_p^p.$$

定理 3.3.3. 几个重要的收敛定理:

1. Levi 单调收敛定理: $\{f_n\}_{n=1}^{\infty}$ 可测,关于 n 单调递增且 $\sup_{n\geq 1}\int_{\Omega}f_n<\infty$,则在 Ω 上, $\{f_n\}_{n=1}^{\infty}$ 几乎处处收敛于一个可测函数 f,且 $f\in L^1(\Omega)$,即 $f_n\stackrel{L^1}{\longrightarrow}f$;

3 赋范空间与连续线性映射

40

- 2. Lebesgue 控制定理: $\{f_n\}_{n=1}^{\infty} \subset L^1(\Omega)$ 可测,且在 Ω 中,
 - (a) $f_n \xrightarrow{a.e.} f$;
 - (b) $\exists g \in L^1(\Omega)$, 使得对任意 n, $|f_n| \stackrel{a.e.}{\leq} g$,

 $3.\ Fatou$ 引理: $\{f_n\}_{n=1}^\infty\subset L^1(\Omega)$ 可测,且在 Ω 中, \forall $n,\,f_n\stackrel{a.e.}{\geq}0$,且 $\sup_{n\geq 1}\int_\Omega f_n<\infty$. 对 \forall $x\in\Omega$,令

$$f(x) = \liminf_{n \to \infty} f_n(x),$$

则 $f \in L^1(\Omega)$ 且

$$\int_{\Omega} f \le \liminf_{n \to \infty} \int_{\Omega} f_n.$$

定理 3.3.4 (稠密性). 设 $\Omega \subset \mathbb{R}$ 是开集,令 $\operatorname{Supp} f = \overline{\{x \in \Omega \mid f(x) \neq 0\}}$ 称为 f 的支集,令

$$C_c(\Omega) = \{ f \in C(\Omega) \mid \text{Supp } f \in \Omega \} \subset L^1(\Omega),$$

其中 \in 表示 Supp f 是紧集且真包含于 Ω , 即 $dist(\operatorname{Supp} f, \partial\Omega) > 0$, 则 $C_c(\Omega)$ 在 $L^1(\Omega)$ 中是稠密的,即 $\overline{C_c(\Omega)} = L^1(\Omega)$, 也即 $\forall f \in L^1(\Omega)$, $\exists \{f_n\}_{n=1}^{\infty} \subset C_c(\Omega)$, 使得 $f_n \xrightarrow{L^1} f$.

例 3.3.5. 令 $E = C_c((0,1))$ 是一个向量空间, $\|f\|_{\infty} = \sup_{x \in (0,1)} |f| = \max_{x \in (0,1)} |f|$,则 $(E, \|\cdot\|_{\infty})$ 是赋范向量空间,但不完备,即不是 Banach 空间。定义线性泛函 $\varphi: (C_c(\mathbb{R}), \|\cdot\|_{\infty}) \to \mathbb{R}$ 如下: $\forall f \in C_c(\mathbb{R}),$

$$\varphi(f) = \int_{\mathbb{R}} f,$$

它不连续。取 $f_0 \in C_c(\mathbb{R}), f_0 \geq 0$ 且 $f_0 \neq 0$, 令 $f_n(x) = f_0(\frac{x}{n})$, 又变量替换可知,

$$\varphi(f_n) = \int_{\mathbb{R}} f_n = n \int_{\mathbb{R}} f_0 \xrightarrow{n \to \infty} \infty,$$

但 $||f_n||_{\infty} = ||f_0||_{\infty} < \infty$, 从而 φ 不是有界的, 从而不是连续的。

例 3.3.6. 令 $1 \le p < \infty$, 定义

$$l^{p} = \left\{ x = \{x_{n}\}_{n=1}^{\infty} \mid \sum_{n=1}^{\infty} |x_{n}|^{p} < \infty \right\},$$
$$||x||_{p} = \left(\sum_{n=1}^{\infty} |x_{n}|^{p} \right)^{\frac{1}{p}}.$$

令 $p = \infty$, 定义

$$l^{\infty} = \left\{ x = \{x_n\}_{n=1}^{\infty} \mid ||x||_{\infty} = \sup_{1 \le n} |x_n| < \infty \right\}.$$

则对 $1 \le p \le \infty$, l^p 都是 Banach 空间。

例 3.3.7. 令 $E = l^1$, 则 $E^* = (l^1)^* = l^\infty$.

• $l^{\infty}\subset (l^1)^*$: 任取 $\xi=\{\xi_n\}_{n=1}^{\infty}\in l^{\infty},\ \|\xi\|_{\infty}<\infty,\$ 定义泛函 $\varphi\in (l^1)^*$: 对 $\forall\ x=\{x_n\}_{n=1}^{\infty}\in l^1,\$ 令

$$\varphi(x) = \sum_{n=1}^{\infty} x_n \xi_n,$$

显然有 φ 是线性的,且对 $\forall x = \{x_n\}_{n=1}^{\infty} \in l^1, \sum_{n=1}^{\infty} |x_n| < \infty$,

$$|\varphi(x)| = \left| \sum_{n=1}^{\infty} x_n \xi_n \right| \le \|\xi\|_{\infty} \left(\sum_{n=1}^{\infty} |x_n| \right) = \|\xi\|_{\infty} \cdot \|x\|_1 < \infty,$$

从而 φ 是有界的, 从而连续, 即 $\varphi \in (l^1)^*$;

• $(l^1)^* \subset l^\infty$: $\forall \varphi \in (l^1)^*, \forall i \geq 1$, if $\eta_i = \varphi(e_i)$, $\mathbb{N} \ \forall \ x = \{x_n\}_{n=1}^\infty \in l^1$,

$$\varphi(x) = \varphi\left(\sum_{n=1}^{\infty} x_i e_i\right) = \sum_{n=1}^{\infty} x_i \varphi(e_i) = \sum_{n=1}^{\infty} x_i \eta_i.$$

令

$$y_n = \sum_{i=1}^n x_i e_i = (x_1, x_2, \dots, x_n, 0, \dots, 0, \dots) \in l^1,$$

3 赋范空间与连续线性映射

有 $y_n \stackrel{l^1}{\longrightarrow} x$:

$$||y_n - x||_{l^1} = \sum_{i=n+1}^{\infty} |x_i| \stackrel{n \to \infty}{\longrightarrow} 0.$$

对 $\forall i > 1$,

$$|\eta_i| = |\varphi(e_i)| \le ||\varphi||_{(l^1)^*} \cdot ||e_i||_{l^1} = ||\varphi||_{(l^1)^*},$$

从而

$$\sup_{i>1} |\eta_i| \le \|\varphi\|_{(l^1)^*},$$

即 $\eta = \{\eta_i\}_{i=1}^{\infty} \in l^{\infty}$. 且由此定义的映射 $T:(l^1)^* \to l^{\infty}$ 是单射,且 $\forall \varphi \in (l^1)^*$,

$$||T\varphi||_{l^{\infty}} = \sup_{i \ge 1} |\eta_i| = ||\varphi||_{(l^1)^*},$$

从而 T 是同构映射, 从而 $(l^1)^* \simeq l^{\infty}$.

例 3.3.8. 设 $1 , 则 <math>(l^p)^* = l^q$, 其中 $\frac{1}{p} + \frac{1}{q} = 1$ 称为共轭指数。 对 $\forall \varphi \in (l^1)^*$, $\forall i \geq 1$, 记 $\eta_i = \varphi(e_i)$, 则 $\forall x = \{x_n\}_{n=1}^{\infty} \in l^1$,

$$\varphi(x) = \varphi\left(\sum_{n=1}^{\infty} x_i e_i\right) = \sum_{n=1}^{\infty} x_i \varphi(e_i) = \sum_{n=1}^{\infty} x_i \eta_i.$$

不妨设 $\varphi \neq 0$, 从而存在 $k \geq 1$, 使得 $\eta_k \neq 0$. 令 $x_n = \{\xi_k^{(n)}\}_{k=1}^\infty$, 其中

$$\xi_k^{(n)} = \begin{cases} \frac{|\eta_k|^q}{\eta_k}, & k \le n, \eta_k \ne 0; \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

则 $\left|\xi_k^{(n)}\right|^p = \left|\eta_k\right|^q$, 从而 $x_n \in l^p$. 此时,

$$\varphi(x_n) = \sum_{k=1}^{\infty} \xi_k^{(n)} \eta_k = \sum_{k=1}^{n} |\eta_k|^q,$$

还有

$$|\varphi(x_n)| \le \|\varphi\| \cdot \|x_n\|_{l^p} = \|\varphi\| \left(\sum_{k=1}^n \left|\xi_k^{(n)}\right|^p\right)^{\frac{1}{p}} = \|\varphi\| \left(\sum_{k=1}^n |\eta_k|^q\right)^{\frac{1}{p}},$$

从而

$$\left(\sum_{k=1}^{n} |\eta_k|^q\right)^{1-\frac{1}{p}} \le \|\varphi\|.$$

从而由此定义的映射 $T:(l^p)^* \to l^q$ 是单射。

满射

4 Hilbert 空间

4.1 内积空间

定义 4.1.1. 内积空间:线性,对称,非负

定理 4.1.2 (Cauchy-Schwarz 不等式).

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||,$$

从而

$$\|\cdot\| = \langle \cdot, \cdot \rangle^{\frac{1}{2}}$$

是范数。

定理 4.1.3 (平行四边形公式).

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2),$$

由此, 可定义内积

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

例 4.1.4. 定义 $L^2(\Omega)$ 上的内积: $\forall f, g \in L^2(\Omega)$,

$$\langle f, g \rangle = \int_{\Omega} f \overline{g}.$$

定理 4.1.5 (勾股定理). 若 $\langle x, y \rangle = 0$, 则

$$||x + y||^2 = ||x||^2 + ||y||^2$$
.

4.2 投影算子

定义 4.2.1 (投影算子). 设 C 是 Hilbert 空间 H 的闭凸子集,由空间的完备性, $\forall x \in H$,存在唯一 $y \in C$,使得

$$d(x,y) = d(x,C) = \inf_{y \in C} d(x,y),$$

此时 y 称为 x 在 C 的投影, 投影算子记为 P_C .

定理 4.2.2. 1. 投影算子 P_C 是良定义的;

2. $y = P_C(x) \iff \forall z \in C, Re \langle x - y, z - y \rangle \leq 0;$

 $3. P_C$ 是 1-Lipschitz 映射。

证明. 1. 设 d = d(x, C), 取 $\{y_n\} \subset C$, 使得

$$d \le ||x - y_n|| \le d + \frac{1}{n},$$

由平行四边形公式,

$$\left(d + \frac{1}{n}\right)^{2} + \left(d + \frac{1}{m}\right)^{2} \ge \left\|x - y_{n}\right\|^{2} + \left\|x - y_{m}\right\|^{2} = \frac{1}{2}\left(\left\|2x - y_{n} - y_{m}\right\|^{2} + \left\|y_{n} - y_{m}\right\|^{2}\right) = \frac{1}{2}\left(\left\|y_{n} - y_{m}\right\|^{2} + 4\left\|x - \frac{y_{n} + y_{m}}{2}\right\|^{2}\right).$$

由于 C 凸, 从而 $\frac{y_n+y_m}{2} \in C$, 从而 $||x-\frac{y_n+y_m}{2}|| \ge d$, 从而

$$\left(d + \frac{1}{n}\right)^{2} + \left(d + \frac{1}{m}\right)^{2} - 2\left\|x - \frac{y_{n} + y_{m}}{2}\right\|^{2} \ge \left(d + \frac{1}{n}\right)^{2} + \left(d + \frac{1}{m}\right)^{2} - 2d^{2} \ge \frac{1}{2}\left\|y_{n} - y_{m}\right\|^{2},$$

从而 $\{y_n\}_{n=1}^{\infty}$ 是 Cauchy 序列,又 H 完备且 C 闭,从而存在 $y \in C$, 使得

$$\lim_{n\to\infty} y_n = y,$$

从而

$$||y - x|| = d.$$

若存在另一 $y' \in C$, 使得 ||y' - x|| = d, 则由平行四边形公式,

$$2d^{2} = \|x - y\|^{2} + \|x - y'\|^{2} = \frac{1}{2} \left(\|y - y'\|^{2} + \|2x - y - y'\|^{2} \right) = \frac{1}{2} \left(\|y - y'\|^{2} + 4 \left\| x - \frac{y + y'}{2} \right\|^{2} \right) \ge \frac{1}{2} \|y - y'\|^{2} + 2d^{2},$$

从而

$$||y - y'|| = 0,$$

即

$$y = y'$$
.

$$||x - y||^2 \le ||x - z'||^2 = ||x - y - (z' - y)||^2 = ||x - y||^2 + ||y - z'||^2 - 2Re\langle x - y, z' - y \rangle,$$

从而

$$2Re \langle x - y, z' - y \rangle \le \|y - z'\|^2 = \|y - (\lambda y + (1 - \lambda)z)\|^2 = (1 - \lambda)^2 \|z - y\|^2,$$

$$Re \langle x - y, z - y \rangle \le 0.$$

 \leq : 对 $\forall z \in C$, 由于 $Re \langle x - y, z - y \rangle \leq 0$, 有

$$||x-z||^2 = ||x-y-(z-y)||^2 = ||x-y||^2 + ||y-z||^2 - 2Re\langle x-y, z-y\rangle \ge ||x-y||^2$$

由 z 的任意性与投影算子的定义即知, $y = P_C(x)$.

3. 任取 $x, x' \in H$, 记 $y = P_C(x), y' = P_C(x')$, 则

$$\|y - y'\|^2 = \langle y - y', y - y' \rangle = \langle y - x, y - y' \rangle + \langle x - x', y - y' \rangle + \langle x' - y', y - y' \rangle,$$

两边同时取实部得,

$$||y - y'||^2 = Re \langle y - x, y - y' \rangle + Re \langle x - x', y - y' \rangle + Re \langle x' - y', y - y' \rangle.$$

由 2 可知, $Re\langle y-x,y-y'\rangle \leq 0$, $Re\langle x'-y',y-y'\rangle \leq 0$, 再由 Cauchy-Schwarz 不等式可知,

$$||y - y'||^2 \le Re \langle x - x', y - y' \rangle \le |\langle x - x', y - y' \rangle| \le ||x - x'|| \cdot ||y - y'||,$$

即

$$||P_C(x) - P_C(x')|| = ||y - y'|| \le ||x - x'||.$$

47

注记 4.2.4. 容易验证, P_C 是幂等算子, 即 $P_C^2 = P_C$, 并且 $P_C(H) = C$.

定理 4.2.5. 设 $E \subset H$ 是 Hilbert 空间的子空间,则 $y = P_E(x)$ 当且仅当对 $\forall z \in E, \langle x - y, z \rangle = 0$. 证明. 对 $\forall z \in E, -1 < t < 1$,

$$||x - y||^2 \le ||x - y - tz||^2$$
,

令 $f(t) = \|x-y-tz\|^2$, 它在 (-1,1) 可导,不等式说明 $f(0) \leq f(t)$, 从而 f'(0) = 0, 即

$$f'(0) = 2\left(\langle x - y, z \rangle + \langle z, x - y \rangle\right) = 0,$$

即

$$\langle x - y, z \rangle = 0.$$

定义 4.2.6 (正交补空间). ∀ A ⊂ H, 定义

$$A^{\perp} = \{ y \in H \mid \langle x, y \rangle = 0, \forall \ x \in A \}$$

称为 A 的正交补空间,且

$$A^{\perp} = \bigcap_{x \in A} (\langle x, \cdot \rangle)^{-1} (0),$$

由内积的连续性,这说明 A^{\perp} 是闭集。

注记 4.2.7. 对更一般的 Banach 空间 $H, E \subset H$, 我们也能定义 E^{\perp} :

$$E^{\perp} = \{ f \in H^* \mid f(x) = 0, \forall \ x \in E \} \subset E^*,$$

这是因为 $E^* \simeq E$, f(x) 也记为 $\langle f, x \rangle_{E^* \times E}$ 称为对偶积。

48

定理 4.2.8. $\forall E \subset H, H = \overline{E} \oplus E^{\perp}$.

证明. 任意 $x \in H$, 记 $y = P_{\overline{E}}(x) \in \overline{E}$, 由定理 4.2.5, $x - y \perp \overline{E}$, 即 $x - y \in E^{\perp}$, 从而由 x = y + (x - y), 其中 $y \in \overline{E}$, $x - y \in E^{\perp}$, 即 $H = \overline{E} + E^{\perp}$. 又由定义,显然有 $\overline{E} \cap E^{\perp} = \{0\}$, 从而 $H = \overline{E} \oplus E^{\perp}$.

定义 4.2.9. 规范正交基

4.3 对偶与共轭

定理 4.3.1 (Riesz 表示定理). 设 H 是 Hilbert 空间, $\varphi: H \to \mathbb{K}$ 是连续线性泛函, 当且仅当存在唯一 $y \in H$, 使得对 $\forall x \in H$,

$$\varphi(x) = \langle x, y \rangle \,,$$

此时, $\|\varphi\| = \|y\|$.

证明. 充分性: 若存在唯一 $y \in H$, 使得对 $\forall x \in H$,

$$\varphi(x) = \langle x, y \rangle$$
,

由内积的线性与连续性即知, φ 是连续线性泛函。由 Cauchy-Schwarz 不等式,

$$|\varphi(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y||,$$

从而

$$\|\varphi\| = \sup_{x \in H} \frac{|\varphi(x)|}{\|x\|} \le \|y\|.$$

再令 x = y,

$$\|\varphi\| = \sup_{\|x\|=1} |\varphi(x)| \ge \left| \varphi(\frac{y}{\|y\|}) \right| = \left| \frac{\varphi(y)}{\|y\|} \right| = \frac{\|y\|^2}{\|y\|} = \|y\|.$$

综上有 $\|\varphi\| = \|y\|$.

49

<u>必要性</u>: 设 $\varphi \in E^*$, 记 $E = \operatorname{Ker} \varphi$, 由定理 3.2.7, $E = \operatorname{Ker} \varphi$ 是闭集,由定理 4.2.8, $H = E \oplus E^{\perp}$. 不妨设 $\varphi \neq 0$, 从而 $E \neq H$, 可取 $0 \neq e \in E^{\perp}$, 且不妨设 $\varphi(e) = 1$. 则 $\forall x \in H$,

$$x = [x - \varphi(x)e] + \varphi(x)e.$$

记 $x' = x - \varphi(x)e$, 则 $\varphi(x') = 0$, 即 $x' \in E$, 从而

$$\langle x, e \rangle = \langle x' + \varphi(x)e, e \rangle = \varphi(x) \langle e, e \rangle$$

即

$$\varphi(x) = \left\langle x, \frac{e}{\|e\|^2} \right\rangle.$$

此时,取 $y=\frac{e}{\|e\|^2}$,即得,对 $\forall \ x \in H$,

$$\varphi(x) = \langle x, y \rangle$$
.

而 $\|\varphi\| = \|y\|$ 的证明与证明充分性时的证明一致。再证唯一性:若还有 $y' \in H$, 使得对 $\forall x \in H$,

$$\varphi(x) = \langle x, y' \rangle$$
,

则对 $\forall x \in H$,

$$\langle x, y - y' \rangle = \langle x, y \rangle - \langle x, y' \rangle = \varphi(x) - \varphi(x) = 0,$$

从而 y = y'.

注记 4.3.2. Riesz 表示定理告诉我们,

$$H^* \simeq H$$
.

定义 4.3.3 (共轭算子). 设 H, K 是两个 Hilbert 空间, $A \in \mathcal{B}(H, K)$, $\|A\| = \sup_{x \in H} \frac{\|Ax\|_K}{\|x\|_H}$,定义 A 的共轭算子 $A^* : K \to H$: 对 $\forall x \in K, A^*x$ 是满足对 $\forall y \in H$,

$$\langle A^*x, y \rangle_H = \langle x, Ay \rangle_K$$

的元素。

定理 4.3.4. 共轭算子是良定义的,且是唯一的,且 $\|A^*\|_{\mathcal{B}(K,H)} = \|A\|_{\mathcal{B}(H,K)}$.

证明. 任意 $x \in K$, 由于 $A \in \mathcal{B}(H,K)$, 且由内积的连续性,

$$y \mapsto \langle Ay, x \rangle_K$$

是 H 上的连续线性泛函,由 Riesz 表示定理(定理 4.3.1),存在唯一 $z \in H$,使得 $\forall y \in H$,

$$\langle y, z \rangle_H = \langle Ay, x \rangle_K$$
.

 $A^*x = z,$ 则对 $\forall x \in K, y \in H,$

$$\langle y, A^*x \rangle_H = \langle Ay, x \rangle_K$$

由内积的对称性,

$$\langle A^*x, y \rangle_H = \langle x, Ay \rangle_K$$

且显然 $A^*: K \to H$ 是线性映射, 再由 Riesz 表示定理 (定理 4.3.1),

$$\|A^*\|_{\mathcal{B}(K,H)} = \sup_{x \in K, \|x\| \le 1} \|A^*x\| = \sup_{x \in K, \|x\| \le 1} \sup_{y \in H, \|y\| \le 1} |\langle y, A^*x \rangle_H| = \sup_{y \in H, \|y\| \le 1} \sup_{x \in K, \|x\| \le 1} |\langle Ay, x \rangle_K| = \sup_{y \in H, \|y\| \le 1} \|Ay\| = \|A\|_{\mathcal{B}(H,K)}.$$

且容易看出 A* 是唯一的。

4.4 Hilbert 空间的结构

定义 4.4.1. 称 Hilbert 空间 H 是可分的,若存在可数序列 $\{e_n\}_{n=1}^{\infty}$,使得 $E = \operatorname{Span}\{e_n \mid n \geq 1\}$ 在 H 中稠密,即 $\overline{E} = H$.

定理 4.4.2. 设 Hilbert 空间 H, $\{e_n\}_{n=1}^{\infty}$ 是它的规范正交集,则以下命题等价:

- 1. $\{e_n\}_{n=1}^{\infty}$ 是完全的;
- $2. \forall x \in H$, 存在唯一 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{K}$, 使得

$$x = \sum_{n=1}^{\infty} x_n e_n.$$

51

证明. $\underline{1} \Rightarrow \underline{2}$: 由于 $\{e_n\}_{n=1}^{\infty}$ 是完全的, $\forall x \in H, \forall \varepsilon > 0, \exists n, \exists y \in E_n = \operatorname{Span}\{e_1, e_2, \cdots, e_n\}$, 使得

$$||x - y|| \le \varepsilon.$$

由定理 4.2.2.3,

$$||P_{E_n}(x) - P_{E_n}(y)|| \le ||x - y|| < \varepsilon,$$

而

$$P_{E_n}(x) = \sum_{j=1}^{n} \langle x, e_j \rangle e_j = \sum_{j=1}^{n} x_j e_j = S_n,$$

且 $P_{E_n}(y) = y$,从而

$$||x - S_n|| \le ||x - y|| + ||y - S_n|| = ||x - y|| + ||P_{E_n}(x) - P_{E_n}(y)|| \le 2\varepsilon,$$

即

$$x = \sum_{n=1}^{\infty} x_n e_n = \lim_{N \to \infty} \sum_{n=1}^{N} x_n e_n = \lim_{N \to \infty} S_N = x.$$

若有另一表示 $x = \sum_{n=1}^{\infty} x'_n e_n$, 则 $\forall n$,

$$x'_n = \left\langle \sum_{n=1}^{\infty} x'_n e_n, e_n \right\rangle = \left\langle x, e_n \right\rangle = x_n,$$

即得唯一性。

 $2 \Rightarrow 1$: 由定义即得,这是显然的。

推论 4.4.3 (Bassel 不等式). 设 Hilbert 空间 H, $\{e_n\}_{n=1}^{\infty}$ 是它的规范正交集,则 $\forall x \in H$,

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2.$$

推论 4.4.4 (Parseval 恒等式). 设 Hilbert 空间 H, $\{e_n\}_{n=1}^{\infty}$ 是它的规范正交基,则 $\forall x \in H$,

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2.$$

52

更一般地, $\forall x, y \in H$,

$$\langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, e_n \rangle \langle e_n, y \rangle.$$

定理 4.4.5 (Gram-Schmidt 正交化). 设 Hilbert 空间 H, $\{f_n\}_{n=1}^{\infty}$ 是它的一个线性无关组,则存在规范正交集 $\{e_n\}_{n=1}^{\infty}$,使得 \forall n,

$$Span\{f_1, f_2, \dots, f_n\} = Span\{e_1, e_2, \dots, e_n\}.$$

证明. 对 $\forall n$,

$$g_n = f_n - \frac{\langle f_n, g_1 \rangle}{\langle g_1, g_1 \rangle} g_1 - \frac{\langle f_n, g_2 \rangle}{\langle g_2, g_2 \rangle} g_2 - \dots - \frac{\langle f_n, g_{n-1} \rangle}{\langle g_{n-1}, g_{n-1} \rangle} g_{n-1},$$

且基变换矩阵为主对角线元素为1的下三角阵,从而可逆,从而

$$Span\{f_1, f_2, \dots, f_n\} = Span\{g_1, g_2, \dots, g_n\}.$$

再对 $\{g_n\}_{n=1}^{\infty}$ 规范化即得 $\{e_n\}_{n=1}^{\infty}$.

定理 4.4.6. 设 Hilbert 空间 H 可分,则它有规范正交集。

证明. 设 $\{a_n\}_{n=1}^{\infty}$ 是 H 的可数稠密子集,去除掉能被它前面的元素线性表示的元素,仍记为 $\{a_n\}_{n=1}^{\infty}$,此时,它是一个线性无关组,且 $E = \operatorname{Span}\{a_n \mid n \geq 1\}$ 在 H 中稠密,再对 $\{a_n\}_{n=1}^{\infty}$ 用 Gram-Schmidt 正交化(定理 4.4.5),即得规范正交序列 $\{e_n\}_{n=1}^{\infty}$,且

$$\operatorname{Span}\{a_1, a_2, \cdots, a_n\} = \operatorname{Span}\{e_1, e_2, \cdots, e_n\},\$$

这说明 $\{e_n\}_{n=1}^{\infty}$ 是完全的,由定理 4.4.2, $\{e_n\}_{n=1}^{\infty}$ 就是 H 的规范正交基。

推论 4.4.7. 设 *Hilbert* 空间 *H* 可分,则

$$H \cong \begin{cases} \mathbb{K}^n, & \dim H = n < \infty; \\ l^2, & \dim H = \infty. \end{cases}$$

且在 $(\mathbb{K}^n, \|\cdot\|_2)$ 下,等距同构还保持内积。

53

事实上,对一般的 Hilbert 空间,也有如下定理成立:

定理 4.4.8. 任意非零 Hilbert 空间必有规范正交基。

证明. 证明需要用到 Zorn 引理, 略。(见教材 P82)

例 4.4.9. 构造一般 Hilbert 空间的内积: 设 I 是指标集, 令

$$l^{2}(I) = \{ x = (x_{i})_{i \in I} \subset \mathbb{K} \mid ||x|| < \infty \},$$

其中

$$||x|| = \sup_{J \subset I, J \notin \mathbb{R}} \left(\sum_{i \in J} |x_i|^2 \right)^{\frac{1}{2}}.$$

定义 4.4.10 (可和族). 设 $\alpha \in \mathbb{K}$ 且 $(\alpha_i)_{i \in I} \subset \mathbb{K}$. 若 $\forall \varepsilon > 0$, 存在有限集 $J_0 \subset I$, 使得任意有限集 $J \subset I$ 且 $J_0 \subset J$, 都有

$$\left| \alpha - \sum_{i \in J} \alpha_i \right| < \varepsilon,$$

则称 $(\alpha_i)_{i \in I}$ 是可和族,并称 α 是 $\sum_{i \in I} \alpha_i$ 的和,记为

$$\alpha = \sum_{i \in I} \alpha_i.$$

可和族有如下性质:

- $\sum_{i \in I} \alpha_i$ 可和当且仅当 $\sum_{i \in I} |\alpha_i|$;
- 设 $\alpha_i \geq 0$, $\forall i \in I$, 则 $\sum_{i \in I} \alpha_i$ 可和当且仅当 $\sup_{J \subset I, J \neq \mathbb{R}} \sum_{i \in J} \alpha_i < \infty$, 此时,

$$\sum_{i \in I} \alpha_i = \sup_{J \subset I, J \notin \mathbb{R}} \sum_{i \in J} \alpha_i < \infty;$$

• 若 $\sum_{i \in I} \alpha_i$ 可和,则 $(\alpha_i)_{i \in I}$ 至多有可数个非零元。

于是在可和的意义下, 定义 $l^2(I)$ 上的内积: $\forall x = (x_i)i \in I, y = (y_i)i \in I \in l^2(I),$

$$\langle x, y \rangle = \sum_{i \in I} \langle x_i, y_i \rangle.$$

且它诱导的范数就是

$$||x|| = \sup_{J \subset I, J \neq \mathbb{R}} \left(\sum_{i \in J} |x_i|^2 \right)^{\frac{1}{2}}.$$

从而 $l^2(I)$ 在该内积下成为 Hilbert 空间。对 $\forall i \in I$,令 e_i 是在 i 处取 1,其他地方都取 0 的元素,则 $\{e_i\}_{i \in I}$ 就是 $l^2(I)$ 的规范正交基。

综上,本节我们得到了如下定理:

定理 4.4.11 (Hilbert 空间的结构). 设 H 是 Hilbert 空间,则有等距同构:

$$H \cong l^2(I),$$

其中 $I = \{1, 2, \dots, n\}$, 若 $\dim H = n$; $I = \mathbb{N}^+$, 若 $\dim H = \infty$ 且 H 可分; I 不可数, 若 H 不可分。

55

5 连续函数空间

定理 5.0.1. 本章主要定理:

• Ascoli 定理: 解决 C(K, E) 的子集的紧性问题, 存在性问题;

• Stone-Weierstrass 定理: 解决逼近问题。

5.1 等度连续与 Arzelà-Ascoli 定理

定义 5.1.1. 设 K 是紧的 Hausdorff 空间, (E,d) 是度量空间, 记 C(K,E) 是从 K 到 E 的连续函数的全体。

定义 5.1.2 (等度连续). 设 $H \subset C(K, E)$, 称 H 在点 $x_0 \in K$ 等度连续, 若对 $\forall \varepsilon > 0$, $\exists U \in \mathcal{N}(x_0)$, 使得 $\forall f \in H$, $\forall y \in U$, 都有

$$d(f(y), f(x_0)) < \varepsilon$$
.

若 H 在 K 的每一点处都等度连续,则称 H 在 K 上等度连续。

若 (K,δ) 也是度量空间,则可定义一致等度连续:若对 $\forall \varepsilon > 0$, $\exists \eta > 0$,使得 $\forall f \in H, \forall x, y \in K, \delta(x,y) < \eta$,都有

$$d(f(y), f(x)) < \varepsilon,$$

则称 H 在 K 上一致等度连续。

定理 5.1.3. 设 (K,δ) 是紧的度量空间, (E,d) 是度量空间, $H \subset C(K,E)$, 则 H 一致等度连续当且仅达 H 等度连续。

定理 5.1.4. 设 K 是紧的 Hausdorff 空间, (E,d) 是度量空间, $\{f_n\}_{n=1}^{\infty} \subset C(K,E)$ 等度连续, 且 $\forall x \in K$,

$$f_n(x) \to f(x),$$

则 $f \in C(K, E)$, 且

定义 5.1.5. 设 (E,d) 是 Banach 空间, 在 C(K,E) 上定义距离:

$$\Delta(f,g) = \sup_{x \in K} d(f(x) \ g(x)),$$

此时 C(K, E) 也是 Banach 空间。

定理 5.1.6 (Arzelà-Ascoli). 设 K 是紧 Hausdorff 空间,(E,d) 是度量空间, $H \subset C(K,E)$ 是相对紧的,即 $\overline{H} \subset C(K,E)$ 是紧的,当且仅当

- 1. H 等度连续;
- 2. $\forall x \in K, H(x) = \{f(x) \mid f \in H\}$ 在 E 中是相对紧的。

证明. 必要性: $\forall \varepsilon > 0$, 由于 H 相对紧, 即 \overline{H} 是紧集, 且注意到

$$\bigcup_{f \in H} B(f, \varepsilon)$$

是 H 的开覆盖, 有有限子覆盖

$$H\subset\bigcup_{k=1}^n B(f_k,\varepsilon),$$

即存在 $f_1, f_2, \dots, f_n \in H$, 使得 $\forall f \in H$, $\exists 1 \le k \le n$, 使得 $\Delta(f_k, f) < \varepsilon$. 由于 $f_1, f_2, \dots, f_n \in H$ 连续,从而 $\forall x \in K$, $\exists V \in \mathcal{N}(x)$, 使得 $\forall y \in V$, $\forall k$,

$$d(f_k(x), f_k(y)) < \varepsilon,$$

此时

$$d(f(x), f(y)) \le d(f(x), f_k(x)) + d(f_k(x), f_k(y)) + d(f_k(y), f(y)) < 3\varepsilon,$$

即 H 等度连续。

 $\forall x \in K$, 注意到映射 $\Phi: C(K, E) \to E$

$$f \mapsto f(x)$$

57

对 \forall $f,g \in C(K,E)$ 满足不等式

$$d(f(x), g(x)) \le \sup_{x \in K} d(f(x), g(x)) = \Delta(f, g),$$

从而是 1-Lipschitz 映射, 连续。由注记 1.3.3, $\Phi(\overline{H})$ 是紧集, 从而 H(x) 在 E 中是相对紧的。

充分性: 先证 \overline{H} 在 C(K,E) 中完备。任取 Cauchy 列 $\{f_n\}_{n=1}^{\infty} \subset \overline{H}, \forall x \in K,$

$$d(f_n(x), f_m(x)) \le \sup_{x \in K} d(f_n(x), f_m(x)) = \Delta(f_n, f_m),$$

从而 $\{f_n(x)\}_{n=1}^{\infty}$ 是 E 中的 Cauchy 列。由于 H(x) 相对紧,从而 $\{f_n(x)\}_{n=1}^{\infty}$ 有收敛子列。有收敛子列的 Cauchy 列收敛,即 $\{f_n(x)\}_{n=1}^{\infty}$ 收敛。由定理 5.1.4, $\{f_n\}_{n=1}^{\infty}$ 一致收敛,一致收敛的连续函数列的极限也连续,从而 \overline{H} 在 C(K, E) 中完备。

由推论 2.5.5, 只要证 H 是预紧的。由于 H 等度连续, $\forall x \in K, \forall \varepsilon > 0$, 开集 $O_x \in \mathcal{N}(x)$,使得 $\forall y \in O_x, \forall f \in H$,

$$d(f(y), f(x)) < \varepsilon$$
.

注意到

$$\bigcup_{x \in K} O_x$$

是 K 的开覆盖,由于 K 是紧的,有有限子覆盖,记为

$$K \subset \bigcup_{i=1}^{n} O_{x_i}.$$

又 H(x) 是度量空间中的相对紧集,即 $\overline{H(x)}$ 是紧集,由定理 2.5, $\overline{H(x)}$ 预紧,自然有 H(x) 预紧,从而它有 ε -网的有限覆盖,从而存在有限集 $Z \subset E$,使得

$$\bigcup_{i=1}^{n} H(x_i) \subset \bigcup_{z \in Z} B(z, \varepsilon).$$

考虑有限集 Z^n , $\forall \underline{z} = (z_1, z_2, \dots, z_n) \in Z^n$, 令

$$B_{\underline{z}} = \left\{ f \in C(K, E) \mid \sup_{1 \le i \le n} \sup_{z \in O_{x_i}} d(f(x), z_i) < 2\varepsilon \right\}.$$

58

由此得到 C(K, E) 的有限个子集 $\{B_{\underline{z}}\}_{\underline{z}\in Z^n}$. $\forall f, g\in B_{\underline{z}}$,

$$\Delta(f,g) \leq \sup_{1 \leq i \leq n} \sup_{z \in O_{x_i}} d(f(x),g(x)) \leq \sup_{1 \leq i \leq n} \sup_{z \in O_{x_i}} (d(f(x),z_i) + d(g(x),z_i)) < 4\varepsilon,$$

从而 diam $B_z < 4\varepsilon$. 只需要证

$$H \subset \bigcup_{\underline{z} \in Z^n} B_{\underline{z}}.$$

 $\forall f \in H, \forall 1 \leq i \leq n, f(x_i)$ 属于某个 $B(z_i, \varepsilon)$, 其中 $z_i \in Z$, 从而 $\forall x \in O_{x_i}$,

$$d(f(x), z_i) \le d(f(x), f(x_i)) + d(f(x_i), z_i) < 2\varepsilon.$$

令 $z = (z_1, z_2, \cdots, z_n), 则有$

$$\sup_{1 \le i \le n} \sup_{z \in O_{x_i}} d(f(x), z_i) < 2\varepsilon,$$

 $\mathbb{P} f \in B_z, \mathbb{P}$

$$H \subset \bigcup_{z \in Z^n} B_{\underline{z}}.$$

注记 5.1.7. C(K, E) 中的拓扑是度量 $\forall f, g \in C(K, E)$,

$$d(f,g) = \sup_{x \in K} d(f(x), g(x))$$

诱导的拓扑、称为一致收敛的拓扑。

定理 5.1.8 (Arzelà-Ascoli 定理的原始版本). 设 $\{f_n\}_{n=1}^{\infty} \subset C([0,1],\mathbb{R}), \, \mathbb{N}$

- $\ddot{\pi} \{f_n\}_{n=1}^{\infty}$ $\tilde{\pi}$ \tilde
- 若 $\{f_n\}_{n=1}^{\infty}$ 的任意子列都有一致收敛的子列,则它有一致有界且等度连续。

推论 5.1.9. 设 K 是局部紧 Hausdorff 空间, $H \subset C(K,\mathbb{K}^n)$,那么 H 在 $C(K,\mathbb{K}^n)$ 中相对紧,当且仅当 H 等度连续且 $\forall x \in K$,轨 道 H(x) 有界。

59

证明. 这是因为在 \mathbb{K}^n 中,相对紧等价于有界。

推论 5.1.10. 设 Ω 是 \mathbb{K}^n 中的开子集, $\{f_n\}_{n=1}^{\infty} \subset C(\Omega,\mathbb{K}^n)$,若

- 1. $\{f_n\}_{n=1}^{\infty}$ 在 Ω 的任意紧子集 K 上等度连续;
- $2. \forall x \in \Omega, \{f_k(x) \mid k \geq 1\}$ 有界,

则 $\{f_n\}_{n=1}^{\infty}$ 有一子列,它在 Ω 的任意紧子集 K 上一致收敛。

证明. $\forall n \geq 1$, 令

$$K_n = \left\{ x \in \Omega \mid d(x, \mathbb{K}^n - \Omega) \ge \frac{1}{n} \right\} \cap \overline{B(0, n)},$$

它是紧集,且

$$\Omega = \bigcup_{n=1}^{\infty} K_n.$$

注意到在 \mathbb{K}^n 中,相对紧等价于有界,由 Arzelà-Ascoli 定理(5.1.8), $\{f_n\}_{n=1}^{\infty}$ 在 K_1 上有一致收敛的子列;该子列在 K_2 上有一致收敛的子列··· 由对角线法则,可以得到 $\{f_n\}_{n=1}^{\infty}$ 的一个在 K_n , $\forall n \geq 1$ 上一致收敛的子列。又注意到 $\{K_n\}_{n=1}^{\infty}$ 单调递增,从而 Ω 的任意紧子集必包含于某个 K_n 中,结论成立。

定理 5.1.11 (Montel). 设 Ω 是 \mathbb{C} 中的开子集, $\{f_n\}_{n=1}^{\infty}$ 是一族 Ω 上的全纯函数。若对 Ω 的任意紧子集 K, $\{f_n\}_{n=1}^{\infty}$ 在 K 上一致 有界,则 $\{f_n\}_{n=1}^{\infty}$ 有一个子列,在 Ω 的任意紧子集 K 上都收敛于一个 Ω 上的全纯函数 f.

证明. 设 $z_0 \in \Omega$, r > 0, 使得

$$\overline{D(z_0,r)} = \{ r \in \mathbb{C} \mid |z - z_0| \le r \} \subset \Omega.$$

由 Cauchy 积分公式, $\forall n, \forall z \in D(z_0, r)$,

$$f_n(z) = \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f_n(u)}{u - z},$$

60

对z求导,

$$f'_n(z) = \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f_n(u)}{(u - z)^2} du,$$

从而

$$|f'_n(z)| \le \sup_{z \in \overline{D(z_0,r)}} |f_n(z)| \int_{\partial D(z_0,r)} \frac{1}{|u-z|^2} du,$$

从而

$$\sup_{n\geq 1} \sup_{z\in \overline{D(z_0,\frac{r}{2})}} |f'_n(z)| \leq \frac{4}{r} \sup_{n\geq 1} \sup_{z\in \overline{D(z_0,r)}} |f_n(z)| = C_r < \infty.$$

这说明, $\{f_n|_{\overline{D(z_0,\frac{r}{2})}}\}_{n=1}^{\infty}$ 是 C_r -Lipschitz 函数列,等度连续。

对任意紧子集 $K \subset \Omega$, K 可以被有限个 $D(z_0, \frac{r}{2})$ 所覆盖,从而 $\{f_n|_K\}_{n=1}^{\infty}$ 等度连续,由推论 5.1.10, $\{f_n\}_{n=1}^{\infty}$ 有在 Ω 的任意紧子集上一致收敛的子列,而一致收敛的全纯函数列的极限也是全纯函数,即证。

5.2 Stone-Weierstrass 定理

定义 5.2.1. 设 $A \subset C(K, \mathbb{K})$,

- 1. 若 $A \in C(K,\mathbb{K})$ 的向量子空间且关于乘法封闭,则称 $A \in C(K,\mathbb{K})$ 的子代数;
- 2. 若 $\forall x \neq y \in K$, 有函数 $f \in A$, 使得 $f(x) \neq f(y)$, 则称 A 在 K 上是可分点的;
- 3. 设 $\mathbb{K} = \mathbb{R}$, 若 $\forall f, g \in \mathcal{A}$, $\max \{f, g\} \in \mathcal{A}$ 且 $\min \{f, g\} \in \mathcal{A}$, 则称 \mathcal{A} 是格。

定理 5.2.2 (实的情形的 Stone-Weierstrass 定理). 设 K 是紧 Hausdorff 空间, A 是 $C(K,\mathbb{R})$ 的子代数, 若

- 1. A 在 K 上是可分点的;
- $2. \ \forall \ x \in K, \exists \ f \in \mathcal{A},$ 使得 $f(x) \neq 0$,

则 A 在 $C(K,\mathbb{R})$ 中稠密。

61

定理的证明需要两个引理:

引理 5.2.3. 设 $A \in C(K,\mathbb{R})$ 的闭子代数,则 $A \in \mathbb{R}$

引理 5.2.4. 设 $A \in C(K,\mathbb{R})$ 的子代数,满足定理 5.2.2中的条件 (称为 Stone-Weierstrass 条件),则

- 1. $\forall x \in K, \forall \alpha \in \mathbb{R}, \exists h \in \mathcal{A},$ 使得 $h(x) = \alpha$;
- 2. $\forall x \neq y \in K$, $\forall \alpha, \beta \in \mathbb{R}$, $\exists h \in A$, 使得 $h(x) = \alpha$, $h(y) = \beta$.

实的情形的 Stone-Weierstrass 定理的证明. 可以用 $\overline{\mathcal{A}}$ 代替 \mathcal{A} , 从而可设 \mathcal{A} 是闭集。只要证 $\mathcal{A} = \overline{\mathcal{A}} = C(K,\mathbb{R})$. $\forall f \in C(K,\mathbb{R})$, $\varepsilon > 0$, 由引理 5.2.4, $\forall x, y \in K$, $\exists h_{x,y} \in \mathcal{A}$, 使得 $h_{x,y}(x) = f(x)$, $h_{x,y}(y) = f(y)$. 令

$$U_{x,y} = \{ z \in K \mid h_{x,y}(z) + \varepsilon > f(z) \},$$

它是连续函数 $h_{x,y}(\cdot) - f(\cdot)$ 关于开集 $(-\varepsilon, +\infty)$ 的原像,是开集。又 $\forall x, y \in K$,固定 x,集族 $\{U_{x,y}\}_{y \in K}$ 是 K 的开覆盖,有有限子覆盖,记为

$$K = U_{x,y_1} \cup U_{x,y_2} \cup \cdots \cup U_{x,y_{n(x)}}.$$

令 $h_x = \max\{h_{x,y_1}, h_{x,y_2}, \cdots, h_{x,y_{n(x)}}\}$, 由引理 5.2.3, $h_x \in \mathcal{A}$. 由 $y_1, y_2, \cdots, y_{n(x)}$ 的选取,在 K 上, $h_x + \varepsilon > f$,且 $f(x) = h_x(x)$. 再令

$$V_x = \{ z \in K \mid f(z) > h_x(z) - \varepsilon \},\$$

同理,它也是开集,且 $x \in V_x$,从而集族 $\{V_x\}_{x \in K}$ 是 K 的开覆盖,有有限子覆盖,记为

$$K = V_{x_1} \cup V_{x_2} \cup \cdots \cup V_{x_m}.$$

令 $h = \min\{h_{x_1}, h_{x_2}, \dots, h_{x_m}\}$, 由引理 5.2.3, $h \in \mathcal{A}$. 由 x_1, x_2, \dots, x_m 的选取,在 $K \perp$, $f > h - \varepsilon$. 又由之前论证, $\forall \ 1 \leq i \leq m$, $h_{x_i} + \varepsilon > f$,从而 $h + \varepsilon > f$. 综上, $\|f - h\|_{\infty} < \varepsilon$. 这说明 $f \in \overline{\mathcal{A}} = \mathcal{A}$,即得 $C(K, \mathbb{R}) \subset \mathcal{A}$,从而 $\mathcal{A} = C(K, \mathbb{R})$.

推论 5.2.5. 设 $K \in \mathbb{R}^n$ 的紧子集,则限制在 K 上的关于变量 x_1, x_2, \dots, x_n 的实系数多项式的全体在 $C(K, \mathbb{R})$ 中稠密。特别地,若 a < b,则 $\forall f \in C([a, b], \mathbb{R})$ 可由 [a, b] 上的多项式一致逼近。

62

证明. 记 \mathcal{A} 是限制在 K 上的关于变量 x_1, x_2, \dots, x_n 的实系数多项式的全体,则它是 $C(K, \mathbb{R})$ 的子代数. 由 $\forall y = (y_1, y_2, \dots, y_n) \neq z = (z_1, z_2, \dots, z_n) \in K$, $\exists 1 \leq i \leq n$,使得 $y_i \neq z_i$,令 $f(x) = x_i$,从而 $f \in \mathcal{A}$,且有 $f(y) \neq f(z)$,即 \mathcal{A} 是可分点的。又 $1 \in \mathcal{A}$,故 \mathcal{A} 满足 Stone-Weierstrass 条件,由定理 5.2.2, \mathcal{A} 在 $C([a, b], \mathbb{R})$ 中稠密。

注记 5.2.6. 可以构造出具体的逼近:例如,设 $f \in C([0,1],\mathbb{R})$,定义 n 次 Bernstein 多项式: $\forall x \in [0,1]$,

$$B_n(f)(x) = \sum_{k=0}^n C_n^k f\left(\frac{k}{n}\right) x^k (1-x)^{n-k},$$

则 $B_n(f)$ 一致收敛到 f.

定理 5.2.7 (复的情形的 Stone-Weierstrass 定理). 设 K 是紧 Hausdorff 空间, A 是 $C(K,\mathbb{C})$ 的子代数, 若

- 1. A 在 K 上是可分点的;
- $2. \ \forall \ x \in K, \ \exists \ f \in \mathcal{A}, \$ 使得 $f(x) \neq 0$;
- 3. 若 $f \in A$, 则 $\overline{f} \in A$ (即 A 是自伴的),

则 A 在 $C(K,\mathbb{C})$ 中稠密。

证明. 令 $ReA = \{Ref \mid f \in A\}$. $\forall f \in A$, 由于 $A \neq C(K,\mathbb{C})$ 的自伴的子代数, 故有 $Ref = \frac{1}{2}(f+\overline{f}) \in A$ 且 $Imf = Re(-if) \in ReA$. 从而 $ReA \subset A$ 且还是子代数, 并且 A = ReA + iReA. ReA 还满足实的情形的 Stone-Weierstrass 条件:

- 1. ReA 在 K 上是可分点的: $\forall x, y \in K$, 由于 A 在 K 上可分点,从而 $\exists f \in A$, 使得 $f(x) \neq f(y)$, 此时有 $Ref(x) \neq Ref(y)$ 或 $Imf(x) \neq Imf(y)$, 又 $Imf \in ReA$, 故满足条件;
- 2. $\forall x \in K, \exists \varphi \in \mathcal{A}$, 使得 $\varphi(x) \neq 0$: $\forall x \in K, \exists f \in \mathcal{A}$, 使得 $f(x) \neq 0$, 此时有 $Ref(x) \neq 0$ 或 $Imf(x) \neq 0$, 又 $Imf \in Re\mathcal{A}$, 故满 足条件。

于是, ReA 在 $C(K,\mathbb{R})$ 中稠密, 则 A = ReA + iReA 就是 $C(K,\mathbb{C})$ 的稠密子集。

63

推论 5.2.8 (多项式逼近定理). 由复的情形的 Stone-Weierstrass 定理,

- 1. 设 K 是 \mathbb{R}^n 的紧子集,则限制在 K 上关于变量 x_1, x_2, \cdots, x_n 的复系数多项式的全体在 $C(K, \mathbb{C})$ 中稠密;
- 2. 设 $K \in \mathbb{C}^n$ 的紧子集,则限制在 K 上关于变量 $z_1, z_2, \cdots, z_n, \overline{z_1}, \overline{z_2}, \cdots, \overline{z_n}$ 的复系数多项式的全体在 $C(K, \mathbb{C})$ 中稠密。

5.2.1 Stone-Weierstrass 定理在 Fourier 分析中的应用

定义 5.2.9. 几个函数空间:

1. $L_{2\pi}^p = L^p([0, 2\pi), \frac{d\theta}{2\pi})$, 当 0 时, 它的范数为

$$||f||_{L^{p}_{2\pi}}^{p} = \left(\int_{0}^{2\pi} |f(\theta)|^{p} \frac{d\theta}{2\pi}\right)^{\frac{1}{p}},$$

当 $p = \infty$ 时,它的范数就是 $L^{\infty}([0,2\pi),dx)$ 的范数,且 $\forall \ 0 且 <math>\|\cdot\|_{L^p_{2\pi}} \leq \|\cdot\|_{L^q_{2\pi}}$;

2. $C_{2\pi}$ 是 \mathbb{R} 上以 2π 为周期的连续函数构成的空间,它的范数为

$$||f||_{\infty} = \sup_{0 \le \theta \le 2\pi} |f(\theta)|;$$

3. \mathcal{P} 是三角多项式构成的向量空间,它是 $C_{2\pi}$ 和 $L^p_{2\pi}$ 的向量子空间, \mathcal{P} 中的任意元素 f 可以表示为

$$f(\theta) = \sum_{k=m}^{n} \alpha_k e^{ik\theta},$$

其中 $\alpha_k \in \mathbb{C}$.

引理 5.2.10. \mathcal{P} 在 $C_{2\pi}$ 中稠密。

定义 5.2.11. 设 $f \in L^1_{2\pi}$, $\forall n \in \mathbb{Z}$, 称

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) e^{-in\theta} d\theta$$

为 f 的 n 阶 Fourier 系数, 并记 f 的所有 Fourier 系数构成的序列为

$$\mathcal{F}(f) = \{\widehat{f}(n)\}_{n \in \mathbb{Z}},$$

称其为 f 的 Fourier 变换, 也记为 $\hat{f} = \mathcal{F}(f)$.

定理 5.2.12. 设 0 ,

- 1. P 在 $C_{2\pi}$ 与 $L_{2\pi}^p$ 中都稠密;
- 2. \mathcal{F} 是从 $L^1_{2\pi}$ 到 $c_0(\mathbb{Z})$ 的范数为 1 的单射, 其中

$$c_0(\mathbb{Z}) = \left\{ \alpha = \{\alpha_n\}_{n \in \mathbb{Z}} \subset \mathbb{C} \mid \lim_{n \to +\infty} \alpha_n = \lim_{n \to -\infty} \alpha_n = 0 \right\},\,$$

其范数为 $\|\alpha\|_{\infty} = \sup_{n \in \mathbb{Z}} |\alpha_n|$;

3. 记 $e_n(\theta) = e^{in\theta}, n \in \mathbb{Z}, 则 \{e_n\}_{n \in \mathbb{Z}}$ 是 Hilbert 空间 $L^2_{2\pi}$ 中的规范正交基。

5.3 广义函数

定义 5.3.1. 设 Ω 是 \mathbb{R}^n 中的开集,记

$$C_c^{\infty}(\Omega) = \{ f \in C^{\infty}(\Omega) \mid \text{Supp } f \neq \S \},$$

有

$$C_c^{\infty}(\Omega) \subsetneq C_0^{\infty}(\mathbb{R}^n) = \left\{ f \in C^{\infty}(\mathbb{R}^n) \mid \lim_{|x| \to \infty} f(x) = 0 \right\},$$

在它上面定义范数: $\forall f \in C_c^{\infty}(\Omega)$,

$$||f||_{\infty} = \sup_{x \in \Omega} |f(x)| = \max_{x \in \Omega} |f(x)| < \infty,$$

但不完备, 即 $C_c^{\infty}(\Omega)$ 不是 Banach 空间。

65

定义 5.3.2. 可以在 $C_c^{\infty}(\Omega)$ 上定义拓扑(在紧子集上一致收敛的拓扑):设 $\{f_n\}_{n=1}^{\infty} \subset C_c^{\infty}(\Omega)$,则称 $f_n \overset{C_c^{\infty}(\Omega)}{\longrightarrow} f$,若存在 $K \in \Omega$,使

- 1. $\forall n \geq 1$, Supp $f_n \subset K$, \mathbb{L} Supp $f \subset K$;
- $2. \ \forall \ \alpha \in \mathbb{N}^n$, 在 K 上,

$$\partial^{\alpha} f_n \rightrightarrows \partial^{\alpha} f$$
.

定义 5.3.3. 记 $C_c^{\infty}(\Omega) = \mathcal{D}(\Omega)$, 令

$$\mathcal{D}'(\Omega) = \{ T : \mathcal{D}(\Omega) \to \mathbb{R} \mid T \in \mathcal{L}(\mathcal{L}) \in \mathcal{L}(\Omega) \},$$

即 $f \in \mathcal{D}'(\Omega)$, 当且仅当

- 1. T 是线性算子;
- 2. $\forall \{f_n\}_{n=1}^{\infty} \subset \mathcal{D}(\Omega), f_n \xrightarrow{C_c^{\infty}(\Omega)} f, \mathbb{N} T(f_n) \to T(f),$

称为广义函数空间。

例 5.3.4. *Dirac* 测度 $\delta_0 \in \mathcal{D}'(\Omega)$, 它的定义为 $\forall f \in \mathcal{D}(\Omega)$,

$$\delta_0(f) = f(0).$$

例 5.3.5. 设 Ω 是有界区域,有

$$C_c^{\infty}(\Omega) \subset C(\overline{\Omega}) \subset L^{\infty}(\Omega) \subset L^p(\Omega) \subset L^1(\Omega) \subset L^1_{loc}(\Omega) \subset \mathcal{D}'(\Omega),$$

其中, $1 ,<math>L^1_{loc}(\Omega) = \{f : \Omega \to \mathbb{R} \mid f$ 可测,且 $\forall K \in \Omega, f \in L^1(K)\}$.最后的包含事实上是一个嵌入,设 $u \in L^1_{loc}(\Omega)$,定义对偶积: $\forall f \in C^\infty_c(\Omega)$,

$$u(f) = \langle u, f \rangle = \int_{\Omega} uf,$$

有

$$u(f) = \langle u, f \rangle = \int_{\Omega} uf = \int_{\text{Supp } f} uf < \infty,$$

是良定义的,可以验证,这样定义了 $u \in \mathcal{D}'(\Omega)$.

例 5.3.6. 设 $T \in \mathcal{D}'(\Omega)$, 定义 $\frac{\partial T}{\partial x_1}$: $\forall f \in C_c^{\infty}(\Omega)$,

$$\left\langle \frac{\partial T}{\partial x_1}, f \right\rangle = -\left\langle T, \frac{\partial f}{\partial x_1} \right\rangle,$$

可以验证, $\frac{\partial T}{\partial x_1} \in \mathcal{D}'(\Omega)$. 其中的负号是因为,若 $u \in C^1(\Omega)$,在广义函数的意义下, $\frac{\partial u}{\partial x_1} \in \mathcal{D}'(\Omega)$;在函数意义下,由分部积分, $\forall f \in C_c^\infty(\Omega)$,

$$\int_{\Omega} \frac{\partial u}{\partial x_1} f = -\int_{\Omega} u \frac{\partial f}{\partial x_1} + u f|_{\partial \Omega} = -\int_{\Omega} u \frac{\partial f}{\partial x_1},$$

与广义函数嵌入的定义相容。

可以推广定义,

$$\langle \partial^{\alpha} T, f \rangle = (-1)^{|\alpha|} \langle T, \partial^{\alpha} f \rangle,$$

其中 f 称为检验函数。

例 5.3.7 (Heaviside 函数).

$$\theta(x) = \begin{cases} 0, & x < 0; \\ 1, & x \ge 0. \end{cases}$$

容易验证 $\theta \in L^1_{loc}(\mathbb{R})$, 从而 $\theta \in \mathcal{D}'(\mathbb{R})$. 直接计算, $\forall f \in C_c^{\infty}(\mathbb{R})$,

$$\langle \theta', f \rangle = -\langle \theta, f' \rangle = -\int_{\mathbb{R}} \theta f' = -\int_{0}^{\infty} f' = f(0),$$

 $\mathbb{P} \theta' = \delta_0$.

例 5.3.8. Gamma 函数 $\Gamma(x) = \frac{1}{2\pi} \ln \frac{1}{|x|}$, 满足 $\Delta \Gamma = 0$. 可以计算得,

$$\langle \Delta \Gamma, f \rangle = \langle \Gamma, \Delta f \rangle = -f(0) = -\langle \delta_0, f \rangle,$$

 $\mathbb{P} - \Delta \Gamma = \delta_0.$

注记 5.3.9. 由此,引出了偏微分方程中弱解的概念。

6 Baire 定理及其应用

6.1 Baire 空间

定义 6.1.1. 设 E 是一个拓扑空间,若任意一列在 E 中稠密的开子集 $\{O_n\}_{n=1}^{\infty}$,使得

$$O = \bigcap_{n=1}^{\infty} O_n$$

在E中稠密,则称E是Baire空间。

定理 6.1.2 (Baire). 设 (E,d) 是完备度量空间, $\{O_n\}_{n=1}^{\infty}$ 是一列在 E 中稠密的开子集,则

$$O = \bigcap_{n=1}^{\infty} O_n$$

在 E 中稠密。

证明. 任意非空开集 $U \subset E$, 由于 O_1 在 E 中稠密, $O_1 \cap U$ 是非空开集,

- (1) 存在闭球 F_1 , 使得 $F_1 \subset U \cap O_1$, 记 $r_1 = \text{diam } F_1$;
- (2) 同理, $O_2 \cap F_1^{\circ}$ 是非空开集,存在闭球 F_2 ,使得 $F_2 \subset O_2 \cap F_1^{\circ}$,且 $r_2 = \text{diam } F_2 \leq \frac{r_1}{2}$;

. . .

(n) 同理, $O_n \cap F_{n-1}^{\circ}$ 是非空开集, 存在闭球 F_n , 使得 $F_n \subset O_n \cap F_{n-1}^{\circ}$, 且 $r_n = \operatorname{diam} F_n \leq \frac{r_{n-1}}{2} \leq \frac{r_1}{2^{n-1}}$;

. . .

从而得到非空闭球序列 $\{F_i\}_{i=1}^{\infty}$,使得 $F_{n+1} \subset O_{n+1} \cap F_n^{\circ}$,且 diam $F_n \leq \frac{r_1}{2^{n-1}}$,由于 E 是完备的,由定理 2.2.5,存在唯一 $x \in E$,使得

$$\{x\} = \bigcap_{n=1}^{\infty} F_n,$$

从而 $x \in O = \bigcap_{n=1}^{\infty} O_n$, 且 $x \in F_1 \subset U$, 从而 $x \in O \cap U$, 即 O 在 E 中稠密。

6 BAIRE 定理及其应用

69

推论 6.1.3. 完备度量空间是 Baire 空间。

定理 6.1.4. 设 E 是 Baire 空间,则

- 1. E 的任何开子集也是 Baire 空间;
- 2. 设 $\{F_n\}_{n=1}^{\infty}$ 是 E 中一列闭子集,且 $E = \bigcup_{n=1}^{\infty} F_n$,则 $\bigcup_{n=1}^{\infty} F_n^{\circ}$ 在 E 中稠密。

证明. $\underline{1}$: 设 Ω 是 E 中的开集, $\{O_n\}_{n=1}^{\infty}$ 是一列在 Ω 中稠密的开子集,由于 Ω 是 E 中的开集, $\{O_n\}_{n=1}^{\infty}$ 也是 E 中的开子集列,令

$$U_n = O_n \cup \overline{\Omega}^c$$
,

是 E 中的开集,且 $\overline{U_n}=E$,从而 $\{U_n\}_{n=1}^\infty$ 是 E 中稠密的开子集列。由于 E 是 Baire 空间, $\bigcap_{n=1}^\infty U_n$ 在 E 中稠密,而

$$\bigcap_{n=1}^{\infty} U_n = \left(\bigcap_{n=1}^{\infty} O_n\right) \cup \overline{\Omega}^c,$$

故 $\bigcap_{n=1}^{\infty} O_n$ 在 Ω 中稠密。

2: 设 Ω 是 E 中的非空开集,则

$$\Omega = \Omega \cap E = \bigcup_{n=1}^{\infty} (\Omega \cap F_n).$$

由于 F_n 是闭集, $\Omega \cap F_n$ 是 Ω 中的闭集。由 (1), 开集 Ω 也是 Baire 空间,从而存在 n, 使得 $(\Omega \cap F_n)^\circ \neq \emptyset$. 此时,注意到 $\Omega \cap F_n$ 在 E 中的内部也非空,即有 $\Omega \cap F_n^\circ \neq \emptyset$. 故 $\bigcup_{n=1}^\infty F_n^\circ$ 在 E 中稠密。

定理 6.1.5. 设 E 是 Baire 空间, (F,δ) 是度量空间, $\{f_n\}_{n=1}^{\infty} \subset C(E,F)$,且 $f_n \xrightarrow{p.w.} f$,则 f 的连续点构成的集合 Cont(f) 是 E 中 稠密的 G_δ 集。

证明. 定义振幅函数:

$$\omega(f)(x) = \inf_{V \in \mathcal{N}(x)} \sup_{y,z \in V} \delta(f(y), f(z)),$$

显然有,

$$\omega(f)(x) = 0 \Leftrightarrow x \in \text{Cont}(f).$$

注意到,

$$\operatorname{Cont}(f) = \bigcap_{n=1}^{\infty} \left\{ x \in E \mid \omega(f)(x) < \frac{1}{n} \right\},\,$$

且 $\forall \varepsilon > 0$, $\{x \in E \mid \omega(f)(x) < \varepsilon\}$ 是开集,从而 $\mathrm{Cont}(f)$ 是 \mathcal{G}_{δ} 集。

对任意正整数 N, k, 记

$$F_{N,k} = \left\{ x \in E \mid \delta(f_n(x), f_m(x)) \le \frac{1}{k}, \forall m, n \ge N \right\} = \bigcap_{m,n > N} \left\{ x \in E \mid \delta(f_n(x), f_m(x)) \le \frac{1}{k} \right\}.$$

由于 $\forall n, f_n$ 连续, 故 $\{x \in E \mid \delta(f_n(x), f_m(x)) \leq \frac{1}{k}\}$ 是闭集, 故 $F_{N,k}$ 是可数个闭集的交, 是 E 中的闭集。由于 $\{f_n\}_{n=1}^{\infty}$ 逐点收敛, 故 $\forall k \geq 1$,

$$E = \bigcup_{N=1}^{\infty} F_{N,k}.$$

由于 E 是 Baire 空间, 由定理 6.1.4,

$$O_k = \bigcup_{N=1}^{\infty} F_{N,k}^{\circ}$$

在 E 中稠密。仍然由于 E 是 Baire 空间,

$$O = \bigcap_{k=1}^{\infty} O_k$$

在 E 中稠密。任取 $x \in O$,则对任意 $k \ge 1$,有 $x \in O_k$. 由 O_k 的定义,存在 $N \ge 1$,使得 $x \in F_{N,k}^{\circ}$. 从而对任意 $m, n \ge N$ 与任意 $y \in F_{N,k}^{\circ}$,有

$$\delta(f_n(y), f_m(y)) \le \frac{1}{k}.$$

令 $n \to \infty$, 即得 $\delta(f(y), f_m(y)) \le \frac{1}{k}$. 又 f_N 连续,存在 $V \in \mathcal{N}(x)$, 使得 $\forall y \in V$, 有

$$\delta(f_N(y), f_N(x)) \le \frac{1}{k}.$$

令 $U = V \cap F_{N,k}^{\circ}$, 则 $U \in \mathcal{N}(x)$, 且当 $y \in U$ 时,

$$\delta(f(y), f(x)) \le \delta(f(y), f_N(y)) + \delta(f_N(y), f_N(x)) + \delta(f_N(x), f(x)) \le \frac{3}{k},$$

6 BAIRE 定理及其应用 71

即 f 在 x 处连续,从而 $O \subset Cont(f) \subset E$,又 O 在 E 中稠密,自然有 Cont(f) 也在 E 中稠密。

6.2 Banach-Steinhaus 定理

定理 6.2.1 (Banach-Steinhaus). 设 $E \neq Banach$ 空间, $F \neq E$ 赋范空间, $\{T_i\}_{i\in I} \subset \mathcal{B}(E,F)$ 是一族有界线性算子,若 $\forall x \in E$,有 $\sup_{i\in I} ||T_i x|| < \infty$,则

$$\sup_{i\in I}||T_i||<\infty,$$

即算子族 $\{T_i\}_{i\in I}$ 在 $\mathcal{B}(E,F)$ 中有界。

证明.记

$$M(x) = \sup_{i \in I} ||T_i x||,$$

$$F_n = \{x \in E \mid M(x) \le n\}.$$

由 T_i 的连续性知, $\{x \in E \mid ||T_i x|| \le n\}$ 是 E 中的闭集,则

$$F_n = \bigcap_{i \in I} \{ x \in E \mid ||T_i x|| \le n \}$$

也是 E 中的闭集。由条件, $\forall x \in E, M(x) < \infty$, 因此,

$$E = \bigcup_{n=1}^{\infty} F_n.$$

由 Baire 定理(定理 6.1.2),E 是 Baire 空间,又由定理 6.1.4, $\bigcup_{n=1}^{\infty} F_n^{\circ}$ 在 E 中稠密,从而存在 $n \geq 1$,使得 $F_n^{\circ} \neq \varnothing$,从而存在开球 $B(x_0,r) \subset F_n^{\circ}$,对任意 $x \in B(x_0,r)$,有

$$M(x) \le n$$
,

即 $\forall i \in I$,

$$||T_ix|| \leq n.$$

等价地, 若令 $x \in B(0,r)$, 则有 $||T_i(x+x_0)|| \le n$, 由线性,

$$||T_i x|| = ||T_i (x + x_0) - T_i x_0|| \le ||T_i (x + x_0)|| + ||T_i x_0|| \le n + M(x_0).$$

同样由线性, $\forall x \in B(0,1)$,

$$||T_i x|| = \frac{1}{r} ||T_i r x|| \le \frac{n + M(x_0)}{r} = C,$$

故 $\sup_{i\in I} ||T_i|| < \infty$.

注记 6.2.2. Banach-Steinhaus 定理也称为一致有界原理。

定理 6.2.3. 设 E 是 Banach 空间, F 是赋范空间, $\{T_i\}_{i\in I} \subset \mathcal{B}(E,F)$ 满足

$$\sup_{i\in I}||T_i||=\infty,$$

则 $G = \{x \in E \mid M(x) = +\infty\}$ 是 E 中稠密的 \mathcal{G}_{δ} 集。

证明. 令 $\Omega_n = \{x \in E \mid M(x) > n\}$, 注意到

$$G = \bigcap_{n=1}^{\infty} \Omega_n.$$

设 $F_n = \{x \in E \mid M(x) \leq n\}$, 则 $\Omega_n = E - F_n$, 故 Ω_n 是开集,从而 G 是 \mathcal{G}_δ 集。

若某个 Ω_n 在 E 中不稠密,则相应的 $F_n^{\circ} \neq \emptyset$. 由 Bnanch-Steinhaus 定理(定理 6.2.1), $\{T_i\}_{i\in I}$ 一致有界,矛盾。从而 $\forall n \geq 1$, Ω_n 在 E 中稠密,由 Baire 定理(定理 6.1.2),G 在 E 中稠密。

推论 6.2.4. 设 E 是 Banach 空间,F 是赋范空间, $\{T_n\}_{n=1}^{\infty} \subset \mathcal{B}(E,F)$,若 $T_n \stackrel{p.w.}{\longrightarrow} T$,则 $T \in \mathcal{B}(E,F)$,且

$$||T|| \leq \liminf_{n \to \infty} ||T_n||$$
.

证明. $\forall x \in E$, 因 $\{T_n x\}_{n=1}^{\infty}$ 在 F 中收敛,从而有界。由 Bnanch-Steinhaus 定理(定理 6.2.1), $\sup_n \|T_n\| < \infty$. $\forall x \in E$, 记

$$Tx = \lim_{n \to \infty} T_n x,$$

73

易知 T 是线性的,且由范数的连续性, $\forall x \in E$,

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| \le \liminf_{n \to \infty} ||T_n|| ||x||.$$

故 $T \in \mathcal{B}(E,F)$, 且

$$||T|| \le \liminf_{n \to \infty} ||T_n||.$$

注记 6.2.6. 这只对双线性映射成立,对一般的函数不成立。

6.2.1 Banach-Steinhaus 定理在 Fourier 分析中的应用

定理 6.2.7. 设 $f \in 2\pi$ 周期的连续函数, 它的 Fourier 级数为

$$f \sim \sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{int},$$

其中

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx \in \mathbb{C}.$$

令

$$S_n(f)(t) = \sum_{k=-n}^{n} \widehat{f}(k) e^{ikt}$$

是部分和函数序列。记

$$D_n(x) = \sum_{k=-n}^n e^{ikx} = \frac{\sin(n+\frac{1}{2})x}{\sin\frac{x}{2}},$$

74

称为 Dirichlet 核,则

$$S_n(f)(t) = \int_{-\pi}^{\pi} f(x)D_n(t-x)\frac{dx}{2\pi}.$$

则有

$$G = \left\{ f \in C_{2\pi} \mid \sup_{n} |S_n(f)(0)| = \infty \right\}$$

是 $C_{2\pi}$ 中的稠密的 G_{δ} 集。

6.3 开映射定理与闭图像定理

定义 6.3.1. 称集合 A 是贫集或第一纲集,若 A 包含于某个 \mathcal{F}_{σ} 集 $\bigcup_{n=1}^{\infty} F_n$,其中 $\forall n$, F_n 是闭集,且 $F_n^{\circ} = \varnothing$.

定理 6.3.2 (开映射定理). 设 E, F 是 Banach 空间, $u \in \mathcal{B}(E, F)$, 若 u(E) 不是 F 中的贫集,则

- 1. ∃ r > 0, 使得 $rB_F \subset u(B_E)$, 其中 B_E , B_F 分别是 E, F 中的单位开球,且 u 是满射;
- 2. u 是开映射。

证明. 1: 有

$$E = \bigcup_{n=1}^{\infty} nB_E,$$

从而

$$u(E) = \bigcup_{n=1}^{\infty} u(nB_E) \subset \bigcup_{n=1}^{\infty} \overline{u(nB_E)}.$$

由于 u(E) 不是 F 中的贫集, 故

$$\left(\bigcup_{n=1}^{\infty} \overline{u(nB_E)}\right)^{\circ} \neq \varnothing.$$

由于 F 是 Banach 空间,由推论 6.1.3,它是 Baire 空间,从而存在某个 n,使得

$$\left(\overline{u(nB_E)}\right)^{\circ} \neq \emptyset,$$

于是存在 $y_0 \in F$ 与 $\eta > 0$, 使得

$$B(y_0,\eta)\subset \overline{u(nB_E)},$$

由线性,

$$y_0 + \eta B_F \subset \overline{u(nB_E)},$$

从而

$$\eta B_F \subset \overline{u(nB_E)} - y_0 \subset \overline{u(nB_E)} - \overline{u(nB_E)} \subset \overline{u(2nB_E)},$$

再由线性,

$$B_F \subset \overline{u(cB_E)},$$

其中, $c = \frac{2n}{\eta}$. 从而 $\forall y \in B_F$, 必存在 $x_0 \in cB_E$, 使得

$$||y - u(x_0)||_F < \frac{1}{2}.$$

(1) 令 $y_1 = 2(y - u(x_0))$, 则 $\|y_1\|_F < 1$, 即 $y_1 \in B_F$, 从而存在 $x_1 \in cB_E$, 使得

$$||y_1 - u(x_1)||_F < \frac{1}{2};$$

(2) 同理, 令 $y_2 = 2(y_1 - u(x_1))$, 则 $\|y_2\|_F < 1$, 即 $y_2 \in B_F$, 从而存在 $x_2 \in cB_E$, 使得

$$||y_2 - u(x_2)||_F < \frac{1}{2};$$

. . .

(n) 同理,令 $y_n = 2(y_{n-1} - u(x_{n-1}))$,则 $\|y_n\|_F < 1$,即 $y_n \in B_F$,从而存在 $x_n \in cB_E$,使得

$$||y_n - u(x_n)||_F < \frac{1}{2};$$

. . .

由此得到序列 $\{y_n\}_{n=1}^{\infty} \subset B_F$ 与对应的序列 $\{x_n\}_{n=1}^{\infty} \subset cB_E$, 满足 $\forall n$,

$$||y_n - u(x_n)||_F < \frac{1}{2}.$$

从而

$$y = u(x_0) + \frac{1}{2}y_1 = u(x_0) + \frac{1}{2}\left[u(x_1) + \frac{1}{2}y_2\right] = \dots = u(x_0) + \frac{1}{2u(x_1)} + \dots + \frac{1}{2^n}n(x_n) + \frac{1}{2^{n+1}}y_{n+1} = u\left(\sum_{k=0}^n \frac{x_k}{2^k}\right) + \frac{1}{2^{n+1}}y_{n+1},$$

其中, 注意到

$$\left\| \sum_{k=0}^{\infty} \frac{x_k}{2^k} \right\|_E \le \sum_{k=0}^{\infty} \left\| \frac{x_k}{2^k} \right\|_E \le \sum_{k=0}^{\infty} \frac{1}{2^k} \left\| x_k \right\|_E \le \sum_{k=0}^{\infty} \frac{c}{2^k} = 2c$$

绝对收敛,由于 E 完备,故可设 $\sum_{k=0}^{\infty} \frac{x_k}{2^k}$ 收敛于 $x \in E$,且

$$||x||_E \le \sum_{k=0}^{\infty} \frac{1}{2^k} ||x_k||_E \le 2c,$$

即 $x \in 2cB_E$. 对

$$y = u \left(\sum_{k=0}^{n} \frac{x_k}{2^k} \right) + \frac{1}{2^{n+1}} y_{n+1}$$

$$y = u(x)$$
.

故 $B_F \subset u(2cB_E)$, 取 $r = \frac{1}{2c}$, 即有 $rB_F \subset u(B_E)$. 且综上,

$$F = \bigcup_{n=1}^{\infty} nB_F = \bigcup_{n=1}^{\infty} \frac{n}{r} rB_F \subset \bigcup_{n=1}^{\infty} \frac{n}{r} u(B_E) = u\left(\bigcup_{n=1}^{\infty} \frac{n}{r} B_E\right) = u(E),$$

即 u 是满射。

推论 6.3.3 (开映射定理). 设 E, F 是 Banach 空间, $u \in \mathcal{B}(E, F)$ 是满射,则

77

- 1. $\exists r > 0$, 使得 $rB_F \subset u(B_E)$;
- 2. u 是开映射。

定义 6.3.4. 设映射 $u: E \to F$, 称

$$G(u) = \{(x, u(x)) \mid x \in E\}$$

是u的图像。

定理 6.3.5 (闭图像定理). 设 E, F 是 Banach 空间, $u: E \to F$ 是线性映射, 则 u 连续, 当且仅当 G(u) 是闭集。

证明. <u>充分性</u>: 由于 E,F 都是 Banach 空间,从而乘积空间 $E\times F$ 也是 Banach 空间。容易验证 G(u) 是 $E\times F$ 的向量子空间,又 G(u) 是闭的,从而 G(u) 也是 Banach 空间。考虑线性映射 $\Phi:G(u)\to E$

$$(x, u(x)) \mapsto x,$$

容易验证 Φ 是连续线性映射。取 $E \times F$ 上的范数为 $\|(\cdot,*)\| = \|\cdot\|_E + \|*\|_F$, 则 $\forall (x,u(x)) \in G(u)$,

$$\|\Phi(x, u(x))\|_E = \|x\|_E \le \|x\|_E + \|u(x)\|_E = \|(x, u(x))\|_E$$

即 $\|\Phi\| \le 1$. 且容易验证 Φ 是双射。由开映射定理(推论 6.3.3), Φ 是开映射,从而 Φ^{-1} 是连续映射,从而有界,即 $\|\Phi^{-1}\| < \infty$. 则 $\forall x \in E$,

$$||u(x)||_F \le ||x||_E + ||u(x)||_F = ||(x, u(x))|| = ||\Phi^{-1}(x)|| \le ||\Phi^{-1}|| \cdot ||x||_E$$

即 u 有界,从而连续。

<u>必要性</u>: $\forall \{(x_n, u(x_n))\}_{n=1}^{\infty} \subset G(u)$, 设 $(x_n, u(x_n)) \to (x, y) \in E \times F$, 则 $x_n \to x$ 且 $u(x_n) \to y$. 又 u 连续,有 $u(x_n) \to u(x)$, 从 而 y = u(x), 从 而 $(x, y) = (x, u(x)) \in G(u)$, 即 G(u) 是闭集。

6.3.1 开映射定理在 Fourier 级数中的应用

定理 6.3.6. Fourier 变换 $\mathcal{F}: L^1_{2\pi} \to c_0(\mathbb{Z})$ 不是满射。

证明. 若 \mathcal{F} 是满射,由于 $c_0(\mathbb{Z})$ 是 Banach 空间,由开映射定理(推论 6.3.3), \mathcal{F} 是同构,从而有相同的拓扑,从而存在常数 c>0,使得 $\forall f \in L^1_{2\pi}$,

78

$$||f||_{L^{1}_{2\pi}} \le c \, ||\mathcal{F}(f)||_{\infty} = c \sup_{k \in \mathbb{Z}} |\widehat{f}(k)|,$$

特别地, 取 f 是 Dirichlet 核 D_n , 有

$$||D_n||_{L^1_{2\pi}} \le c \sup_{k \in \mathbb{Z}} \left| \widehat{D_n}(k) \right| = c,$$

但是事实上, $\lim_{n\to\infty} \|D_n\|_{L^1_{2\pi}} = +\infty$,矛盾。

6.3.2 开映射定理在补空间问题中的应用

定义 6.3.7. 设 $E \in \mathbb{K}$ 上的向量空间, $X,Y \in E$ 的向量子空间,若 X+Y=E 且 $X \cap Y = \{0\}$,则称 X,Y 在 E 中是代数互补的。

注记 6.3.8. 若 X,Y 在 E 中是代数互补的, P_X,P_Y 是对应的投影映射,则

- P_X, P_Y 都是线性的;
- $P_X^2 = P_X, P_Y^2 = P_Y;$
- $\bullet \quad P_X + P_Y = I_E.$

定义 6.3.9. 设 E 是赋范空间,X,Y 是 E 中的代数互补子空间,若 P_X 是连续的(此时 $P_Y = I_E - P_X$ 也是连续的),则称 X,Y 在 E 中是拓扑互补的。

定理 6.3.10. 设 $(E, \|\cdot\|)$ 是赋范空间, $X, Y \in E$ 中的代数互补子空间, 则以下命题等价:

- 1. X,Y 在 E 中拓扑互补;
- 2. 映射 $\Phi: X \times Y \to E$

$$(x,y) \mapsto x + y$$

是同构, 其中 $X \times Y$ 上的范数是 $\|(\cdot,*)\| = \|\cdot\| + \|*\|$.

79

证明. $1 \Rightarrow 2$: 由于 X, Y 在 E 中的代数互补,容易验证 Φ 是线性双射,并且 $\forall (x, y) \in X \times Y$,

$$\|\Phi((x,y))\| = \|x+y\| \le \|x\| + \|y\| = \|(x,y)\|,$$

这说明 Φ 是有界映射, 从而连续。由于 X,Y 在 E 中拓扑互补,

$$||x|| = ||P_X(x+y)|| \le ||P_X|| \cdot ||x+y||,$$

$$||y|| = ||P_Y(x+y)|| \le ||P_Y|| \cdot ||x+y||,$$

从而

$$||(x,y)|| = ||x|| + ||y|| \le (||P_X|| + ||P_Y||) ||x + y||,$$

从而 Φ 是同构。

 $2 \Rightarrow 1$: $\forall e = x + y \in E$, 由于 Φ 是同构,有

$$\|(x,y)\| = \|\Phi^{-1}(e)\| \le \|\Phi^{-1}\| \cdot \|x+y\|,$$

从而

$$||P_X(e)|| = ||x|| \le ||x|| + ||y|| = ||(x,y)|| \le ||\Phi^{-1}|| \cdot ||x+y|| \le ||\Phi^{-1}|| \cdot ||e||,$$

即 P_X 有界,从而连续。

注记 6.3.11. 这说明, 若 X,Y 在 E 中拓扑互补,则有同构:

$$E \cong X \times Y \cong X \oplus Y$$
.

推论 6.3.12. 设 E 是 Banach 空间,X,Y 在 E 中代数互补,则 X,Y 在 E 中拓扑互补,当且仅当 X,Y 是 E 中的闭集。

证明. 必要性: 注意到, $X = \operatorname{Ker} P_Y, Y = \operatorname{Ker} P_X$, 即得。

<u>充分性</u>: 由于 X,Y 都是 Banach 空间 E 的闭向量子空间,从而乘积空间 $X\times Y$ 也是 Banach 空间。又 X,Y 在 E 中代数互补,映射 $\Phi: X\times Y\to E$

$$(x,y) \mapsto x + y$$

是线性双射; $\forall (x,y) \in X \times Y$,

 $\|\Phi((x,y))\| = \|x+y\| \le \|x\| + \|y\| = \|(x,y)\|,$

80

从而 Φ 有界,且 $\|\Phi\| \le 1$. 由开映射定理(推论 6.3.3), Φ^{-1} 也连续,从而 Φ 是同构,从而 X,Y 在 E 中拓扑互补。

定义 6.3.13. 设 E 是赋范空间, 称 $X \subset E$ 是 E 的可余子空间, 若存在向量子空间 $Y \subset E$, 使得 X,Y 在 E 中拓扑互补。

注记 6.3.14. 以上的讨论说明了 E 的闭向量子空间 X 是可余的, 当且仅当存在一个 E 到 X 的连续线性投影算子。

注记 6.3.15. 关于可余子空间有以下结论:

- 1. 每一个 Hilbert 空间的闭向量子空间是可余子空间 (由投影算子的定义 (定义 4.2.1) 即得);
- 2. 若赋范空间 E 的每个闭子向量空间是可余子空间,则 E 同构于一个 Hilbert 空间 (Lindenstrauss-Tzafriri 定理);
- 3. 设 $E \neq Banach$ 空间,则 E 的每个有限维或有限余维的向量子空间 $X \neq Banach$ 空间,其中,称 $X \neq Banach$ 是有限余维的,若商空间 E/X 是有限维的。

7 拓扑向量空间

7.1 定义

定义 7.1.1. 设 X 是数域 \mathbb{K} 上的向量空间, τ 是 E 上的拓扑, 若加法与数乘都连续, 则称 X 是拓扑向量空间。

例 7.1.2. $C^{\infty}(\Omega)$, $\mathcal{H}(\Omega)$, $\mathcal{L}(\mathbb{R}^n)$, $C_c^{\infty}(\Omega)$, $L^p(\Omega)(0 都是拓扑向量空间。$

定义 7.1.3. 设 X 是数域 \mathbb{K} 上的向量空间, $A \subset X$,

- 1. 若 \forall $|\lambda|$ <≤ 1, \forall $x \in A$, $\lambda x \in A$, 则称 A 是平衡集;
- 2. 若 $\forall x \in A, \exists \alpha > 0$, 使得 $\forall |\lambda| < \alpha, \lambda x \in A$, 则称 A 是吸收集;
- 3. 若 $\forall x \in A, -x \in A,$ 且 $0 \in A$, 则称 A 是对称集。

定理 7.1.4. 设 X 是拓扑向量空间, 若 $A \subset X$ 是向量子空间, 则 \overline{A} 也是向量子空间。

证明. 见教材 P130.

定理 7.1.5. 设 X 是拓扑向量空间,

- 1. $\mathcal{N}(x) = \mathcal{N}(0) + x$;
- $2. \ \forall \ V \in \mathcal{N}(0), \exists \ U \in \mathcal{N}(0),$ 使得 $U + U \subset V;$
- 3. \forall $V \in \mathcal{N}(0)$, V 是吸收集;
- 4. ∀ $V \in \mathcal{N}(0)$, ∃ $U \in \mathcal{N}(0)$ 是平衡集, $U \subset V$, 即原点 0 有平衡的开 (闭) 邻域基。

证明. 见教材 P131.

定理 7.1.6. 设 E, F 是拓扑向量空间, $u: E \to F$ 是线性映射, 则以下命题等价:

- 1. u 连续;
- 2. u 在 0 处连续。

若F是赋范空间,则u在0的某个邻域内有界。

7.2 半范数空间

定义 7.2.1. 映射 $p: E \to \mathbb{R}$ 满足

- 1. $\forall x \in E, p(x) \ge 0$;
- 2. $\forall x \in E, \forall \lambda \in \mathbb{K}, p(\lambda x) = |\lambda| p(x);$
- 3. $\forall x, y \in E, p(x+y) \leq p(x) + p(y),$

则称 p 是一个半范数。

注记 7.2.2. 半范数与范数只差正定性。

例 7.2.3. $E = C(\Omega)$, 其中 $\Omega \subset \mathbb{R}^n$ 是开集, $K \subset \Omega$ 是紧集,定义 $p_K : E \to \mathbb{R}$

$$f \mapsto \max_{x \in K} |f(x)|$$

是一个半范数。

定义 7.2.4. 设 p 是 E 上的一个半范数, 定义拓扑 τ_p : 其中的开集为若干 p 开球

$$B_p(a,r) = \{x \in E \mid p(a,x) < r\}$$

的并。

注记 7.2.5. τ_p 是 Hausdorff 的, 当且仅当 p 是范数。

83

定义 7.2.6. 设 $\{p_i\}_{i\in I}$ 是一族半范数, $J\subset I$ 是有限集, 令

$$q_J = \max_{i \in J} p_i$$

也是半范数。定义拓扑 τ: 其中的开集 Ο 是

$$O = \bigcup_{\alpha \in \Lambda} B_{q_{J_{\alpha}}}(x_{\alpha}, r_{\alpha}),$$

其中 Λ 是某个指标集, 每个 J_{α} \subset I 是有限集。验证见教材 P135.

8 Hahn-Banach 定理

8.1 Hahn-Banach 定理: 分析形式

定义 8.1.1. 设 $E \in \mathbb{R}$ 上的向量空间, 泛函 $p: E \to \mathbb{R}$ 满足:

- 1. 正齐性: $\forall t \geq 0, \forall x \in E, p(tx) = tp(x)$;
- 2. 次可加性: $\forall x, y \in E$,

$$p(x+y) \le p(x) + p(y),$$

则称 $p \in E$ 上的次线性泛函。

定理 8.1.2 (实的情形的 Hahn-Banach 定理的简单情形). 设 E 是实向量空间, F 是 E 的余维数为 1 的向量子空间, $p: E \to \mathbb{R}$ 是 次线性泛函, $f: E \to \mathbb{R}$ 是线性泛函, $\forall x \in F$,

$$f(x) \le p(x),$$

则存在线性泛函 $\widetilde{f}: E \to \mathbb{R}$, 使得

$$\widetilde{f}|_F = f,$$

即可以把 f 线性延拓到 E 上,且 $\forall x \in E$,

$$\widetilde{f}(x) \le p(x)$$
.

证明. 由于 $\operatorname{codim} F = 1$, 故存在 $x_0 \in E - F$, 使得

$$E = \text{Span}\{F, x_0\} = \{x + tx_0 \mid x \in F, t \in \mathbb{R}\}.$$

设 f 有线性延拓 \widetilde{f} , 则 $\forall x \in F, t \in \mathbb{R}$,

$$\widetilde{f}(x+tx_0) = \widetilde{f}(x) + t\widetilde{f}(x_0) = f(x) + t\widetilde{f}(x_0),$$

这说明, \widetilde{f} 由 $\widetilde{f}(x_0)$ 唯一确定, 记 $\widetilde{f}(x_0) = a$. 只要证, 存在 a, 使得 $\forall x \in F, t \in \mathbb{R}$,

$$f(x) + ta = f(x) + t\widetilde{f}(x_0) = \widetilde{f}(x + tx_0) \le p(x + tx_0).$$

85

不妨设 $t \neq 0$, 分为 t > 0 与 t < 0 两种情况,得到不等式组:

$$\begin{cases} \frac{1}{t}f(x) + a \le \frac{1}{t}p(x + tx_0), & t > 0; \\ -\frac{1}{t}f(x) - a \le -\frac{1}{t}p(x + tx_0), & t < 0, \end{cases}$$

整理得,

$$\begin{cases} a \le p\left(\frac{1}{t}x + x_0\right) - f\left(\frac{1}{t}x\right), & t > 0; \\ a \ge f\left(-\frac{1}{t}x\right) - p\left(-\frac{1}{t}x - x_0\right), & t < 0. \end{cases}$$

由于 F 是向量子空间,不等式组等价于, $\forall x, y \in F$,

$$f(y) - p(y - x_0) \le a \le p(x + x_0) - f(x),$$

从而 a 的存在性等价于, $\forall x,y \in F$, 不等式

$$f(y) - p(y - x_0) \le p(x + x_0) - f(x)$$

成立,即

$$f(x) + f(y) \le p(x + x_0) + p(y - x_0),$$

由于在 F 上, $f \leq p$, 从而

$$f(x) + f(y) \le f(x+y) \le p(x+y) \le p(x+x_0) + p(y-x_0)$$

恒成立,从而这样的a存在,从而满足条件的延拓 \tilde{f} 存在。

推论 8.1.3. 用数学归纳法,可以将定理 8.1.2推广到 codim F 有限和可数的情形:

设 E 是实向量空间, F 是 E 的余维数有限或可数的向量子空间, $p:E\to\mathbb{R}$ 是次线性泛函, $f:E\to\mathbb{R}$ 是线性泛函, $X\in F$,

$$f(x) \le p(x),$$

则存在线性泛函 $\widetilde{f}: E \to \mathbb{R}$, 使得

$$\widetilde{f}|_F = f$$

86

即可以把 f 线性延拓到 E 上,且 $\forall x \in E$,

$$\widetilde{f}(x) \le p(x)$$
.

定理 8.1.4 (实的情形的 Hahn-Banach 定理). 设 E 是实向量空间, F 是 E 的向量子空间, $p: E \to \mathbb{R}$ 是次线性泛函, $f: E \to \mathbb{R}$ 是线性泛函, 若 $\forall x \in F$,

$$f(x) \le p(x),$$

则存在线性泛函 $\widetilde{f}: E \to \mathbb{R}$, 使得

$$\widetilde{f}|_F = f,$$

即可以把 f 线性延拓到 E 上,且 $\forall x \in E$,

$$\widetilde{f}(x) \le p(x).$$

证明. codim F 不可数时的证明需要用到 Zorn 引理, 见教材 P151。

定理 8.1.5 (Hahn-Banach 延拓). 设 E 是数域 \mathbb{K} (\mathbb{R} 或 \mathbb{C}) 上的向量空间, F 是 E 的向量子空间, p 是 E 上的半范数, $f: F \to \mathbb{K}$ 是线性映射, 且 $\forall x \in F$,

$$|f(x)| \le p(x),$$

则存在线性泛函 $\widetilde{f}: E \to \mathbb{K}$, 使得

$$\widetilde{f}|_F = f,$$

即可以把 f 线性延拓到 E 上,且 $\forall x \in E$,

$$\left|\widetilde{f}(x)\right| \le p(x).$$

证明. <u>实的情形</u>: 在 F 上,有 $|f| \le p$, 故也有 $f \le p$. 由定理 8.1.4, 存在线性泛函 $\widetilde{f}: E \to \mathbb{R}$, 使得

$$\widetilde{f}|_F = f,$$

 $\exists \exists \forall x \in E,$

$$\widetilde{f}(x) \le p(x)$$
.

由于 p 是半范数,

$$-\widetilde{f}(x) = \widetilde{f}(-x) \le p(-x) = |-1| \cdot p(x) = p(x),$$

从而,

$$-p(x) \le f(x) \le p(x),$$

即

$$\left|\widetilde{f}(x)\right| \le p(x).$$

复的情形:此时, f = Re f + i Im f. 记 $\varphi = \text{Re } f$, 则 $\varphi : F \to \mathbb{R}$ 是实线性泛函,由 f 的线性性,

$$f(\mathrm{i}\,x)=\mathrm{i}\,f(x)=\mathrm{i}[\mathrm{Re}\,f(x)+\mathrm{i}\,\mathrm{Im}\,f(x)]=-\,\mathrm{Im}\,f(x)+\mathrm{i}\,\mathrm{Re}\,f(x),$$

即

$$-\operatorname{Im} f(x) = \operatorname{Re} f(\mathrm{i} x) = \varphi(\mathrm{i} x),$$

从而 f 由它的实部 φ 唯一确定,即

$$f(x) = \varphi(x) - i\,\varphi(i\,x),$$

并且在 F 上有 $|\varphi| \leq |f| \leq p$. 此时,E,F 可以看成实向量空间,由实的情形的结论,存在实线性泛函 $\widetilde{\varphi}: E \to \mathbb{R}$,使得 $|\widetilde{\varphi}| \leq p$ 且 $\widetilde{\varphi}|_F = \varphi$. 定义泛函 $\widetilde{f}: E \to \mathbb{C}$

$$\widetilde{f}(x) = \widetilde{\varphi}(x) - i\,\widetilde{\varphi}(i\,x),$$

容易验证, \widetilde{f} 是 E 上的复线性泛函,并且 $\forall x \in F$, $\mathbf{i} x \in F$, 故

$$\widetilde{f}(x) = \widetilde{\varphi}(x) - i\,\widetilde{\varphi}(i\,x) = \varphi(x) - i\,\varphi(i\,x) = f(x),$$

即 $\widetilde{f}|_F = f$. 另一方面, $\forall x \in E$,令 $\lambda = \operatorname{sgn} \widetilde{f}(x)$,则 $|\lambda| = 1$,由于 $\widetilde{\varphi}$ 是实线性泛函以及 p 是半范数,

$$\left|\widetilde{f}(x)\right| = \lambda \widetilde{f}(x) = \widetilde{f}(\lambda x) = \widetilde{\varphi}(\lambda x) - \mathrm{i}\,\widetilde{\varphi}(\mathrm{i}\,\lambda x),$$

88

其中, $\widetilde{\varphi}(\lambda x)$ 与 $\widetilde{\varphi}(i\lambda x)$ 都是实数, 而等式最左边也是实数, 从而 $\widetilde{\varphi}(i\lambda x) = 0$, 从而,

$$\left|\widetilde{f}(x)\right| = \widetilde{\varphi}(\lambda x) - \mathrm{i}\,\widetilde{\varphi}(\mathrm{i}\,\lambda x) = \widetilde{\varphi}(\lambda x) \le p(\lambda x) = |\lambda| \cdot p(x) = p(x),$$

即在 E 上, $\left|\widetilde{f}\right| \leq p$.

推论 8.1.6. 设 E 是拓扑向量空间,p 是 E 上的半范数, $\forall x_0 \in E$,存在 $f \in E^*$,使得 $f(x_0) = p(x_0)$,且在 E 上, $|f| \leq p$.

证明. 取 $F = \mathbb{K}x_0, g: F \to \mathbb{K}$

$$tx_0 \mapsto tp(x_0),$$

应用 Hahn-Banach 延拓定理(定理 8.1.5)即得。

推论 8.1.7. 设 $E \in Hausdorff$ 的局部凸空间,则 E^* 是可分点的,即 $\forall 0 \neq x_0 \in E$, 存在 $f \in E^*$, 使得 $f(x_0) \neq 0$.

证明. 取半范数 p, 使得 $p(x_0) \neq 0$, 由推论 8.1.6即得。

推论 8.1.8. 设 E 是数域 \mathbb{K} (\mathbb{R} 或 \mathbb{C}) 上的赋范空间,F 是 E 的向量子空间, $f:F\to\mathbb{K}$ 是连续线性泛函,则存在连续线性延拓 $\widetilde{f}:E\to\mathbb{K}$,使得

$$\widetilde{f}|_F = f,$$

且

$$\left\|\widetilde{f}\right\| = \left\|f\right\|,$$

称为 f 的保范延拓。

推论 8.1.9. 设 E 是赋范空间,则 $\forall x \in E$,有

$$||x|| = \sup\{|f(x)| \mid f \in E^*, ||f|| \le 1\},\$$

并且上确界是可以达到的。

89

8.2 Hahn-Banach 定理: 几何形式

定义 8.2.1 (水平集). 对映射 $\varphi: E \to \mathbb{R}, \{x \in E \mid \varphi(x) = c\}$ 称为一个水平集。

定理 8.2.2 (第一几何形式: Hahn-Banach 隔离定理). 设 E 是拓扑向量空间, A, B 是 E 的非空凸子集, $A \cap B = \varphi$. 若 A 是开集, 则存在 $f \in E^*$ 与 $\alpha \in \mathbb{R}$, 使得

$$A \subset \{\operatorname{Re} f < \alpha\}, B \subset \{\operatorname{Re} f \ge \alpha\},\$$

这等价于, $\forall a \in A, \forall b \in B$,

$$\operatorname{Re} f(a) < \alpha \leq \operatorname{Re} f(b).$$

证明. 先考虑实的情形: 设 $a \in A, b \in B$, 记 $x_0 = b - a$, 令 $C = A - B + x_0$, 则

- 1. 由于 A, B 是凸集,则 C 也是凸集;
- 2. C 是开集,这是因为,它是如下开集 A 经过平移的集合(还是开集)的并:

$$C = \bigcup_{y \in B} (A + x_0 - y);$$

- 3. $0 \in C$;
- 4. 由于 $A \cap B = \varphi$, $x_0 \notin C$.

设 p 是由 C 确定的 Minkowski 泛函, 即 $\forall x \in E$,

$$p(x) = \inf \left\{ \lambda > 0 \mid \frac{x}{\lambda} \in C \right\},$$

则

- 1. p 是次线性泛函;
- 2. $\forall x \in E, p(x) < 1$, 当且仅当 $x \in C$;

- 3. $p(x_0) \ge 1$;
- 4. p 连续。

由推论 8.1.6, 存在连续线性泛函 $f: E \to \mathbb{R}$, 使得 $f(x_0) = p(x_0)$, 且在 E 上有 $f \leq p$, 从而

$$f(a) - f(b) + f(x_0) = f(a - b + x_0) = f(0) \le p(0) < 1.$$

由于 $f(x_0) = p(x_0) \ge 1$, 必有 f(a) < f(b), 由 a, b 的任意性,

$$\sup f(A) \le \inf f(B).$$

由于 A, B 都是凸集,f 是线性泛函,则 f(A), f(B) 都是 $\mathbb R$ 中的凸集,从而是区间。另一方面,由 A 是开集以及 f 是线性,f(A) 也是开集,从而 f(A) 是一个开区间。事实上,取 $x \in A$,由于 A 是开集,存在 $\delta > 0$,使得 $|t| < \delta$ 时,有 $x + tx_0 \in A$,从而

$$f(x + tx_0) = f(x) + tf(x_0) \in f(A).$$

又注意到, $f(x_0) = p(x_0) > 0$, 则 $(f(x) - \delta f(x_0), f(x) + \delta f(x_0))$ 是非空区间, 且

$$(f(x) - \delta f(x_0), f(x) + \delta f(x_0)) \subset f(A),$$

从而 f(A) 是开集,从而是开区间。不妨设 $f(A) = (\beta, \alpha)$,则

$$\alpha = \sup f(A) < \inf f(B),$$

从而 $A \subset \{f < \alpha\}$ 且 $B \subset \{f \ge \alpha\}$.

<u>复的情形</u>: 先把 E 看成实向量空间,由实的情形的证明,存在连续实线性泛函 φ : E → \mathbb{R} 与实常数 α , 使得 A ⊂ { φ < α } 且 B ⊂ { φ ≥ α }, 令

$$f(x) = \varphi(x) - i\,\varphi(i\,x)$$

即为所求。

注记 8.2.3. 直观解释是,存在超平面 $\{x \in E \mid \varphi(x) = \alpha\}$, 将 A, B 隔离开。

定理 8.2.4 (第二几何形式: Hahn-Banach 严格隔离定理). 设 $E \neq Hausdorff$ 的局部凸空间, $A, B \neq E$ 的非空凸子集, $A \cap B = \varphi$. 若 $A \neq \mathbb{R}$ 是 $A \neq \mathbb{R$

$$\sup \operatorname{Re} f(A) < \alpha < \beta < \inf \operatorname{Re} f(B).$$

证明. 设 $x \in A$, 则 $x \notin B$. 由于 E 是 Hausdorff 的局部凸空间,且 B 是闭集,从而存在开凸集 $U_x \in \mathcal{N}(0)$, 使得

$$(x + U_x + U_x) \cap B = \varnothing.$$

由于 $A \in E$ 中的紧集,则存在 $x_1, x_2, \cdots, x_n \in A$,使得

$$A \subset \bigcup_{k=1}^{n} (x_k + U_{x_k}).$$

记 $U = \bigcap_{k=1}^{n} U_{x_k}$, 则 U 也是含有原点的开凸集。令 $\widetilde{A} = A + U$, 则

- 1. \widetilde{A} 是开凸集;
- 2. $\widetilde{A} \cap B = \emptyset$. 具体地, $\forall \widetilde{a} \in \widetilde{A}$, 可设 $\widetilde{a} = a + u$, 其中 $a \in A, u \in U$. 又由 $A \subset \bigcup_{k=1}^{n} (x_k + U_{x_k})$, 存在 $1 \le k \le n$, 使得 $a \in x_k + U_{x_k}$, 从而

$$\widetilde{a} \in x_k + U_{x_k} + U \subset x_k + U_{x_k} + U_{x_k}$$

由 $(x + U_x + U_x) \cap B = \emptyset$ 知, $\widetilde{a} \notin B$.

由定理 8.2.2, 存在 $f \in E^*$ 与实常数 r, 使得 \forall $a \in A$, \forall $b \in B$, 有 $\operatorname{Re} f(a) < r$ 且 $\operatorname{Re} f(b) \geq r$. 由于 A 是紧凸集,且 f 是连续线性 泛函,从而 $\operatorname{Re} f(A)$ 也是紧凸集,从而是闭区间,设为 $[r_1, r_2]$,有 $r_1 \leq r_2 < r$. 此时,存在实数 α, β ,使得 $r_2 < \alpha < \beta < r$,从而

$$\sup \operatorname{Re} f(A) \le r_2 < \alpha < \beta < r \le \inf \operatorname{Re} f(B),$$

即证。

92

注记 8.2.5. 直观解释是,存在超平面 $\{x \in E \mid \varphi(x) = \gamma\}$, 将 A, B 严格隔离开。

推论 8.2.6. 设 $E \neq Hausdorff$ 的局部凸空间, $B \neq Parentering$ (定义 7.1.3) 闭凸集,而 $x_0 \in E - B$,则存在 $f \in E^*$,使得 $f(x_0) > 1$ 且 $\sup_{x \in B} |f(x)| \leq 1$.

推论 8.2.7. 设 $E \neq Hausdorff$ 的局部凸空间, $F \neq E$ 的向量子空间,则 $F \neq E$ 中稠密,当且仅当 $\forall f \in E^*$,若 $f|_F = 0$,则 $f \equiv 0$.

推论 8.2.8. 设 $E \in Hausdorff$ 的局部凸空间,则 E^* 是可分点的 (定义 5.2.1)。

推论 8.2.9 (Mazur). 设 E 是向量空间, τ_1, τ_2 是 E 上的两个 Hausdorff 拓扑,使得 $(E, \tau_1), (E, \tau_2)$ 都是局部凸空间。如果对任意 线性泛函 $f: E \to \mathbb{K}$, 它的 τ_1 -连续等价于 τ_2 -连续,即

$$(E, \tau_1)^* = (E, \tau_2)^*,$$

则 E 中的任意凸集 A 是 τ_1 -闭的,当且仅当 A 是 τ_2 -闭的。因此,若 A 是 E 中凸集,则 $\overline{A}^{\tau_1} = \overline{A}^{\tau_2}$.

8.3 弱拓扑与弱*拓扑

定义 8.3.1 (弱拓扑). 设 E 是赋范空间, E 上的弱拓扑记为 $\sigma(E, E^*)$, 定义为: $\forall \{x_n\}_{n=1}^{\infty} \subset E$,

$$x_n \stackrel{\sigma(E,E^*)}{\longrightarrow} x$$

是指, $\forall f \in E^*$,

$$f(x_n) \to f(x)$$
,

称为 $\{x_n\}_{n=1}^{\infty}$ 弱收敛于 x, 记为 $x_n \to x$.

注记 8.3.2. 强收敛一定弱收敛, 这是因为,

$$|f(x_n) - f(x)| = |f(x_n - x)| \le ||f|| \cdot ||x_n - x||.$$

定义 8.3.3 (弱 * 拓扑). 设 E 是赋范空间, E^* 也是赋范空间(取极大范数),从而有 E^{**} . E^* 上的弱 * 拓扑记为 $\sigma(E^*, E)$,定义 为: $\forall \{f_n\}_{n=1}^{\infty} \subset E^*$,

$$f_n \stackrel{\sigma(E^*,E)}{\longrightarrow} f$$

是指, $\forall x \in E$,

$$x(f_n) = \langle f_n, x \rangle \to \langle f, x \rangle = x(f),$$

称为 $\{f_n\}_{n=1}^{\infty}$ 弱 * 收敛于 f, 记为 $f_n \stackrel{w^*}{\to} f$.

注记 8.3.4. 取 $\sigma(E^*, E^{**})$ 是 E^* 上的弱拓扑,事实上有 $E \subset E^{**}$: $\forall x \in E, \forall f \in E^*$,

$$x(f) = \langle f, x \rangle$$
,

有

$$|x(f)| = |\langle f, x \rangle| \le ||f|| \cdot ||x||,$$

从而弱 * 拓扑 $\sigma(E^*, E)$ 比弱拓扑 $\sigma(E^*, E^{**})$ 更弱。

定义 8.3.5. 一般情形,设 X 是一个集合, $\{Y_i\}_{i\in I}$ 是一族拓扑空间, $\varphi_i: X \to Y_i$ 是一族映射,解决以下两个问题:

- 1. 在 X 上构造一个拓扑,使得 \forall i ∈ I, φ_i 连续,并寻找 X 上满足条件的最弱的拓扑 F;
- 2. X 是一个拓扑空间, $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ 是一族子集,构造由 $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ 生成的最弱的拓扑。

対 $(E, \sigma(E, E^*))$, $\forall i \in I$, $Y_i = \mathbb{R}$, $\varphi_i \in E^*$, 则 $\forall x \in X$,

构成 x 的邻域基, 其中 V_i 是 $\varphi_i(x)$ 在 Y_i 中的邻域。

命题 8.3.6. 设 $\{x_n\}_{n=1}^{\infty}$ 是 X 中的点列,则 $x_n \stackrel{\mathcal{F}}{\to} x$,当且仅当 $\forall i \in I, \varphi_i(x_n) \to \varphi_i(x)$.

证明. 必要性: 由 \mathcal{F} 的定义, $\forall i \in I$, φ_i 连续, 即得。

<u>充分性</u>: $\forall U \in \mathcal{N}_{\mathcal{F}}(x)$, 总能设 $U = \bigcap_{\substack{i \in J \\ J \subset I \text{ } f \mathbb{R}}} \varphi_i^{-1}(V_i)$, 其其中 V_i 是 $\varphi_i(x)$ 在 Y_i 中的邻域。 $\forall i \in J$, 由 $\varphi_i(x_n) \to \varphi_i(x)$ 知,存在正整数 N_i , 使得 $\forall n \geq N_i$, 有 $\varphi_i(x_n) \in V_i$. 从而 $\forall n \geq \max_{i \in J} N_i$, 有 $x_n \in U$, 即 $x_n \stackrel{\mathcal{F}}{\to} x$.

命题 8.3.7. 设 $(E, \|\cdot\|)$ 是无穷维 Banach 空间,E 上还有弱拓扑 $\sigma(E, E^*)$,令 $S = \{x \in E \mid \|x\| = 1\}$,则

$$\overline{S}^w = \{x \in E \mid ||x|| \le 1\} = B_E.$$

证明. 需要证明

- 1. $\forall x_0 \in E, ||x_0|| \le 1, \, f x_0 \in \overline{S}^w;$
- 2. B_E 关于弱拓扑 $\sigma(E, E^*)$ 是闭的。

1: 由定义 8.3.5, \forall *V* ∈ $\mathcal{N}(x_0)$, *V* 可以写成

$$V = \{x \in E \mid |\langle f_i, x - x_0 \rangle| < \varepsilon, \forall \ 1 \le i \le n, \varepsilon > 0, f_i \in E^* \}.$$

取 $0 \neq y_0 \in E$, 使得 $\forall 1 \leq i \leq n$, $\langle f_i, y_0 \rangle = 0$. 首先, y_0 一定存在, 否则, 令 $\psi : E \to \mathbb{K}^n$

$$z \mapsto (\langle f_1, z \rangle, \langle f_2, z \rangle, \cdots, \langle f_n, z \rangle),$$

则 ψ 是单射,从而 $\psi: E \to \psi(E) \subset \mathbb{K}^n$,这说明 E 是有限维的,矛盾。令 $g(t) = \|x_0 + ty_0\|$, $t \geq 0$ 是连续函数, $g(0) = \|x_0\| \leq 1$. 若 $\|x_0\| = 1$,则 $x_0 \in S \subset B_E = \overline{S}^w$,于是不妨设 $\|x_0\| < 1$,并且由于 $\lim_{t \to \infty} g(t) = \infty$,从而存在 $t_0 > 0$,使得 $g(t_0) = \|x_0 + t_0 y_0\| = 1$,即有 $x_0 + t_0 y_0 \in S$. 又 $\forall 1 < i < n$,

$$|\langle f_i, x_0 + t_0 y_0 - x_0 \rangle| = |t_0 \langle f_i, y_0 \rangle| = 0,$$

从而 $x_0 + t_0 y_0 \in V$,从而 $S \cap V \neq \emptyset$,从而 $x_0 \in \overline{S}^w$.

 $\underline{2}$: 我们证明一个更强的结论: 对凸集 $C \subset E$, 若它是强拓扑中的闭集,则它在 $\sigma(E, E^*)$ 是弱闭的。即证 C^c 在 $\sigma(E, E^*)$ 是弱开的。取 $x_0 \notin C$, 由 Hahn-Banach 定理(定理 8.2.4),存在闭超平面严格隔离开 $\{x_0\}$ 与 C, 即存在 $f \in E^*$ 与实数 α , 使得 $\forall y \in C$,

$$\langle f, x_0 \rangle < \alpha < \langle f, y \rangle$$
.

令 $V = \{x \in E \mid \langle f, x \rangle < \alpha\}$, 则 $x_0 \in V$, 它是弱拓扑 $\sigma(E, E^*)$ 下 x_0 的邻域,且 $V \cap C = \emptyset$, 即 $V \subset C^c$, 从而 C^c 是弱开的。

95

注记 8.3.8. 若 $(E, \|\cdot\|)$ 是有限维 Banach 空间,则 $(E, \|\cdot\|) = (E, \sigma(E, E^*))$.

命题 8.3.9. 一些实用的结论: 设 $\{x_n\}_{n=1}^{\infty} \subset E$, 则

- 1. $\not\equiv x_n \rightharpoonup x$, $\not\bowtie f \in E^*$, $\langle f, x_n \rangle \rightarrow \langle f, x \rangle$;
- 2. 若 $x_n \to x$, 则 $x_n \rightharpoonup x$;
- 3. 若 $x_n \to x$, 则 $\{x_n\}_{n=1}^{\infty}$ 一致有界,且 $||x|| \le \liminf_{n \to \infty} ||x_n||$;
- 4. 若 $x_n \to x$, 且 $\{f_n\}_{n=1}^{\infty} \subset E^*$ 强收敛于 $f: f_n \to f$, 则 $\langle f_n, x_n \rangle \to \langle f, x \rangle$.

定义 8.3.10 (极集). 设 $E \in Hausdorff$ 的局部凸空间, $A \subset E$, 称 E^* 中的子集

$$A^{\circ} = \{x^* \in E^* \mid \forall \ x \in A, |x^*(x)| \le 1\}$$

为 A 的极集; $B \subset E^*$, 称 E 中的子集

$$B^{\circ} = \{ x \in E \mid \forall \ x^* \in B, |\langle x^*, x \rangle| \le 1 \}$$

为 B 的极集。

命题 8.3.11. 极集 A° 是凸的,平衡的 (定义 7.1.3),弱*闭的;极集 B° 是凸的,平衡的,弱闭的。

注记 8.3.12. 在下一章我们将知道, $A^{\circ} = A^{\perp} = \{x^* \in E^* \mid \forall \ x \in A, x^*(x) = 0\}.$

9 Banach 空间的对偶理论

9.1 共轭算子

定理 9.1.1. 设 E, F 是赋范空间, $u \in \mathcal{B}(E, F)$, 则存在唯一 $u^* \in \mathcal{B}(F^*, E^*)$, 使得对任意 $x \in E$ 与 $f^* \in F^*$, 有

$$\langle u^*(f^*), x \rangle = \langle f^*, u(x) \rangle,$$

并且 $||u^*|| = ||u||$, 称 u^* 是 u 的共轭算子。

证明. 存在性: 定义 $u^*: F^* \to E^*$

$$u^*(f^*) = f^* \circ u,$$

则 $\forall x \in E$,

$$\langle u^*(f^*), x \rangle = f^* \circ u(x) = f^*(u(x)) = \langle f^*, u(x) \rangle.$$

由于 u 与 f^* 都是连续线性的,从而 $u^*(f^*) = f^* \circ u$ 是线性的。又

$$||u^*(f^*)||_{E^*} = ||f^* \circ u||_{E^*} \le ||f^*||_{F^*} \cdot ||u||_{\mathcal{B}(E,F)},$$

即 U^* 有界,从而连续,故 $u^* \in \mathcal{B}(F^*, E^*)$; 还能得到 $||u^*|| \le ||u||$.

唯一性: 若有 $v^* \in \mathcal{B}(F^*, E^*)$, 使得对任意 $x \in E$ 与 $f^* \in E^*$, 也有

$$\langle v^*(f^*), x \rangle = \langle f^*, u(x) \rangle$$
,

就有

$$\langle v^*(f^*), x \rangle = \langle f^*, u(x) \rangle = \langle u^*(f^*), x \rangle,$$

由 x 的任意性,

$$v^*(f^*) = u^*(f^*).$$

97

再由 f^* 的任意性,

$$v^* = u^*$$
.

最后, 由范数的定义,

$$||u^*|| = \sup_{f^* \in F^*, ||f^*|| \le 1} ||u^*(f^*)|| = \sup_{f^* \in F^*, ||f^*|| \le 1} \sup_{x \in E, ||x|| \le 1} |u^*(f^*)(x)| = \sup_{x \in E, ||x|| \le 1} \sup_{f^* \in F^*, ||f^*|| \le 1} |f^*(u(x))|,$$

再由推论 8.1.9,

$$||u^*|| = \sup_{x \in E, ||x|| \le 1} \sup_{f^* \in F^*, ||f^*|| \le 1} |f^*(u(x))| = \sup_{x \in E, ||x|| \le 1} ||u(x)|| = ||u||.$$

注记 9.1.2. 注意 "共轭" 一词在 Hilbert 空间 (第四章) 与 Banach 空间中有区别: 当数域为 \mathbb{R} 时, 二者一样; 当数域为 \mathbb{C} 时, 映射 $u\mapsto u^*$ 在 Hilbert 空间中是 "共轭线性" 的, 在 Banach 空间中是 "线性" 的。

定理 9.1.3. 设 E, F 是赋范空间, $u \in \mathcal{B}(E, F)$, 则

- 1. 若 u 是同构,则 u^* 也是同构,且 $(u^*)^{-1} = (u^{-1})^*$;
- 2. 若 E 完备,则当 u^* 是同构时,u 也是同构。

9.2 子空间和商空间的对偶

定义 9.2.1 (商空间). 设 E 是数域 K 上的赋范空间, F 是 E 的闭向量子空间, 在 E 上定义等价关系 \sim :

$$x \sim y \Leftrightarrow x - y \in F$$
.

记 E/F 是在等价关系 \sim 下等价类的集合,则 E 上的线性结构可以自然继承到 E/F 上: $\forall \tilde{x}, \tilde{y} \in E/F, \forall \lambda \in \mathcal{K}, 定义$

$$\widetilde{x} + \widetilde{y} = \widetilde{x + y},$$

$$\lambda \widetilde{x} = \widetilde{\lambda x}.$$

容易验证,该定义是合理的,即不依赖于等价类的代表元的选取。此时,E/F 是一个向量空间,称为 E 关于 F 的商空间。在商空间 E/F 上定义范数: $\forall \tilde{x} \in E/F$,

$$\|\widetilde{x}\|_{E/F} = \inf\{\|y\| \mid y \sim x\} = \inf\{\|x + y\| \mid y \in F\},\$$

F 是闭的保证了定义的合理性,具体地,若 $\|\widetilde{x}\|_{E/F} = 0$,则存在 $\{y_n\}_{n=1}^{\infty} \subset F$,使得 $x + y_n \to 0$,即 $-y_n \to x$. 由于 F 是闭集,从 而 $x \in F$,即有 $\widetilde{x} = 0$. 正齐性与三角不等式是容易验证的。

定义 9.2.2 (零化子空间). 设 E 是赋范空间, F 是 E 的向量子空间, G 是 E^* 的向量子空间, 令

$$F^{\perp} = \{ x^* \in E^* \mid \forall \ x \in F, \langle x^*, x \rangle \},\$$

$$G_{\perp} = \{ x \in E \mid \forall \ x^* \in G, \langle x^*, x \rangle \},\$$

称 F^{\perp} 是 F 的零化子空间, G_{\perp} 是 G 的预零化子空间。

定义 9.2.3. 记

$$\pi: E \to E/F,$$

$$x \mapsto \widetilde{x}$$

是商映射。由商空间及其范数的定义, π 是满射, $\|\pi\| \le 1$, $\operatorname{Ker} \pi = F$. 并且, $\forall \varepsilon > 0$, $\widetilde{x} \in E/F$,有代表元 $x \in E$,使得 $\|x\| \le (1+\varepsilon)\|\widetilde{x}\|$. $\forall \varphi \in (E/F)^*$,有 $\varphi(\pi(F)) = 0$,即有 $\varphi \circ \pi \in F^{\perp}$,从而可以定义线性映射

$$\nu: (E/F)^* \to F^{\perp} \subset E^*,$$
$$\varphi \mapsto \varphi \circ \pi,$$

则 ν 是 π 的共轭算子,即有

$$E \downarrow \nu(\varphi) = \varphi \circ \pi$$

$$E/F \xrightarrow{(Q)} \mathbb{K}$$

定理 9.2.4. 映射 $\nu: (E/F)^* \to F^{\perp}$ 是等距同构,即有

$$(E/F)^* \cong F^{\perp},$$

也就是说, 商空间 E/F 的对偶空间是 E 的对偶空间的子空间。

证明. $\underline{\nu}$ 是线性等距,从而是单射: 由 $\underline{\nu}$ 的定义(定义 9.2.3),由于 $\underline{\nu}$ 是 $\underline{\pi}$ 的共轭,则 $\|\underline{\nu}\| = \|\underline{\pi}\| \le 1$,从而 $\forall \varphi \in (E/F)^*$, $\|\underline{\nu}(\varphi)\| \le \|\underline{\nu}\| \cdot \|\varphi\| \le \|\varphi\|$. 又 $\forall \widetilde{x} \in E/F$,

$$|\varphi(\widetilde{x})| = |\varphi(\pi(x))| = |\langle \varphi, \pi(x) \rangle| = |\langle \nu(\varphi), x \rangle| \le ||\nu(\varphi)|| \cdot ||x||,$$

其中, $x \in \tilde{x}$ 的代表元。对 \tilde{x} 的所有代表元取下届,则

$$|\varphi(\widetilde{x})| \leq \inf_{y \in E, \widetilde{y} = \widetilde{x}} \|\nu(\varphi)\| \cdot \|y\| = \|\nu(\varphi)\| \cdot \inf_{y \in E, \widetilde{y} = \widetilde{x}} \|\nu(\varphi)\| = \|\nu(\varphi)\| \cdot \|\widetilde{x}\|,$$

即得 $\|\varphi\| \le \|\nu(\varphi)\|$. 综上, $\|\nu(\varphi)\| = \|\varphi\|$,即 ν 是线性等距,自然是单射。

 ν 是满射: $\forall f \in F^{\perp}, \forall \tilde{x} \in E/F$, 定义 E/F 上的泛函

$$\varphi: E/F \to \mathbb{K}$$

$$\widetilde{x} \mapsto f(x),$$

其中,x 是 \widetilde{x} 的一个代表元。要验证 φ 是良定义的: 若 x' 是 \widetilde{x} 的另一个代表元,则 $x-x' \in F$; 又由于 $f \in F^{\perp}$,有 f(x-x')=0,即 f(x)=f(x'). 还容易验证 φ 是线性的,并且,

$$|\varphi(\widetilde{x})| = |f(x)| \le ||f|| \cdot ||x||,$$

对 \tilde{x} 的所有代表元取下届,即有 $|\varphi(\tilde{x})| \leq ||f|| \cdot ||\tilde{x}||$,从而 φ 是有界线性映射,从而连续,即 $\varphi \in (E/F)^*$,而且 $\forall x \in E$,

$$\varphi \circ \pi(x) = \varphi(\widetilde{x}) = f(x),$$

由 ν 的定义, $\nu(\varphi) = \varphi \circ \pi = f$, 即 ν 是满射。

100

定义 9.2.5. 定义映射 $\sigma: E^*/F^{\perp} \to F^*: \forall \widetilde{\varphi} \in E^*/F^{\perp}$, 令

$$\sigma(\widetilde{\varphi}): F \to \mathbb{K}$$
$$x \mapsto \varphi(x),$$

其中, φ 是 $\widetilde{\varphi}$ 的代表元。事实上, $\sigma(\widetilde{\varphi}) = \varphi|_F$. 容易验证,定义与 $\widetilde{\varphi}$ 的代表元的选取无关,从而 σ 是良定义的;还容易验证它是线性的,而且,

$$|\sigma(\widetilde{\varphi})(x)| = |\varphi(x)| \le ||\varphi|| \cdot ||x||,$$

对 φ 的代表元取下确界,有

$$|\sigma(\widetilde{\varphi})(x)| \le ||\widetilde{\varphi}||_{E^*/F^{\perp}} \cdot ||x||,$$

从而 $\sigma(\tilde{\varphi})$ 有界, 从而它是 F 上的连续线性泛函, 即 $\sigma(\tilde{\varphi}) \in F^*$, 并且

$$\|\sigma(\widetilde{\varphi})\|_{F^*} \le \|\widetilde{\varphi}\|_{E^*/F^{\perp}}.$$

由此, 我们得到连续线性映射

$$\sigma: E^*/F^{\perp} \to F^*,$$

$$\widetilde{\varphi} \mapsto f = \varphi|_F.$$

定理 9.2.6. 映射 $\sigma: E^*/F^{\perp} \to F^*$ 是等距同构, 从而,

$$F^* \cong E^*/F^{\perp}$$
,

也就是说, E 的子空间 F 的对偶空间是 E^* 关于 F^{\perp} 的商空间。

证明. 由 σ 的定义 (定义 9.2.5), σ 是连续线性映射。

 $\underline{\sigma}$ 是线性等距,从而是单射: $\forall \widetilde{\varphi} \in E^*/F^{\perp}$, 记 $f = \sigma(\widetilde{\varphi}) \in F^*$, 由 Hahn-Banach 延拓定理(推论 8.1.8),存在延拓 $f' \in E^*$,使 得 $f'|_F = f$,且 $\|f'\|_{E^*} = \|f\|_{F^*}$. 其中, $f'|_F = f = \sigma(\widetilde{\varphi}) = \varphi|_F$ 意味着 $f' - \varphi \in F^{\perp}$,即 f' 与 φ 在同一个等价类 $\widetilde{\varphi}$ 中,由商空间的 定义(定义 9.2.1),

$$\|\widetilde{\varphi}\|_{E^*/F^{\perp}} = \inf_{y \in E^*, \widetilde{u} = \widetilde{\varphi}} \|\widetilde{y}\|_{E^*} \le \|f'\|_{E^*} = \|f\|_{F^*} = \|\sigma(\widetilde{\varphi})\|_{F^*}.$$

101

再由 σ 的定义 (定义 9.2.5),

$$\|\sigma(\widetilde{\varphi})\|_{F^*} \le \|\widetilde{\varphi}\|_{E^*/F^{\perp}},$$

综上,

$$\|\sigma(\widetilde{\varphi})\|_{F^*} = \|\widetilde{\varphi}\|_{E^*/F^{\perp}},$$

即 σ 是线性等距,从而是单射。

 $\underline{\sigma}$ 是满射: $\forall f \in F^*$, 由 Hahn-Banach 延拓定理(推论 8.1.8), $f \in F^*$ 可以保范延拓成 $\psi \in E^*$. 令 $\widetilde{\psi} = \psi + F^{\perp}$, 则 $\widetilde{\psi}$ 是商空 间 E^*/F^{\perp} 中的一个等价类, ψ 是它的一个代表元,从而由 σ 的定义(定义 9.2.5),

$$\sigma(\widetilde{\psi}) = \psi|_F = f,$$

即 σ 是满射。

定理 9.2.7. 设 E, F 是赋范空间, $u \in \mathcal{B}(E, F)$, 则

- 1. Ker $u^* = u(E)^{\perp}$;
- 2. Ker $u = u^*(F^*)_{\perp}$;
- 3. $(\operatorname{Ker} u^*)_{\perp} = \overline{u(E)}^w = \overline{u(E)}^{\|\cdot\|};$
- 4. $(\text{Ker } u)^{\perp} = \overline{u^*(F^*)}^{w^*}$.

推论 9.2.8. 设 E, F 是赋范空间, $u \in \mathcal{B}(E, F)$, 则

- $1. u^*$ 是单射, 当且仅当 u(E) 在 F 中稠密;
- 2. u 是单射, 当且仅当 $u^*(F^*)$ 在 E^* 中弱 * 稠密。

102

9.3 自反性

定义 9.3.1. 设 E 是赋范空间, 称映射

$$\iota_E: E \to E^{**}$$
$$x \mapsto \widehat{x}$$

是自然嵌入算子,其中, $\hat{x} \in E^{**}$ 定义为: $\forall x^* \in E^*$,有

$$\langle \widehat{x}, x^* \rangle = \langle x^*, x \rangle$$
.

由定义立得,

$$\|\widehat{x}\|_{E^{**}} = \sup_{0 \neq x^* \in E^*} \frac{|\langle \widehat{x}, x^* \rangle|}{\|x^*\|} = \sup_{0 \neq x^* \in E^*} \frac{|\langle x^*, x \rangle|}{\|x^*\|} \le \sup_{0 \neq x^* \in E^*} \frac{\|x^*\| \cdot \|x\|}{\|x^*\|} = \|x\|.$$

再由 Hahn-Banach 定理 (推论 8.1.9),

$$\|\widehat{x}\|_{E^{**}} = \sup_{\|x^*\|_{E^*} \le 1} |\langle x^*, x \rangle| = \|x\|.$$

从而 ι_E 是从 E 到 E^{**} 的子空间的等距同构。此时,将 x 与 \hat{x} 可以看成同一个元素,从而把 E 看成 E^{**} 的子空间,记为 $E \hookrightarrow E^{**}$,称为 E 到 E^{**} 的自然嵌入。

定义 9.3.2 (自反空间). 若在自然嵌入的意义下有 $E = E^{**}$, 则称 E 是自反空间。

例 9.3.3. • 有限维空间, Hilbert 空间是自反空间;

• c_0 (定理 5.2.12), l^{∞} , $L^{\infty}(0,1)$, C([0,1]) 不是自反空间。

定理 9.3.4. Banach 空间是自反空间, 当且仅当它的对偶空间也是自反空间。

证明. 必要性:设 E 是自反的 Banach 空间,则 $E = E^{**}$,从而

$$E^* = (E^{**})^* = (E^*)^{**},$$

103

即 E* 是自反空间。

充分性:设 E^* 是自反空间,有

$$E^* = (E^*)^{**} = E^{***} = (E^{**})^*.$$

故 $\forall \varphi \in (E^{**})^*$, 满足 $\varphi|_E = 0$, 则在 E^{**} 上, $\varphi = 0$. 由 Hahn-Banach 延拓定理(推论 8.2.7),E 在 E^{**} 中稠密,即 $\overline{E} = E^{**}$. 而 E 是 Banach 空间,从而完备,从而 E 是 E^{**} 中的闭集,从而 $E = \overline{E} = E^{**}$,即 E 是自反空间。

定理 9.3.5. 设 E 是自反空间, F 是 E 的闭子空间, 则 F 与 E/F 都是自反空间。

9.4 弱*紧性

定理 9.4.1 (Banach-Alaoglu). 设 E 是赋范空间,则 ($\overline{B}_{E^*}, \sigma(E^*, E)$) 是紧的,即 E^* 中的闭单位球 \overline{B}_{E^*} 是弱 * 紧的。

证明. 首先,注意到,由线性, E^* 中的元素由它们在E的闭单位球 \overline{B}_E 上的取值唯一决定: $\forall f \in E^*, \forall x \in E$,

$$f(x) = f\left(\|x\| \cdot \frac{x}{\|x\|}\right) = \|x\| \cdot f\left(\frac{x}{\|x\|}\right),$$

其中, $\frac{x}{\|x\|} \in \overline{B}_E$. 由此,可以把 E^* 中的元素看成 E 的闭单位球 \overline{B}_E 上的函数,则

$$\overline{B}_{E^*} = \{x^* \in E^* \mid ||x^*||_{E^*} = \sup_{x \in E, ||x|| \le 1} |x^*(x)| \le 1\} = \{x^* \in E^* \mid \forall \ x \in \overline{B}_E, |x^*(x)| \le 1\},$$

从而作为 \overline{B}_E 上的函数, \overline{B}_{E^*} 中的元素取值于 \mathbb{K} 的闭单位球 $\overline{B}_{\mathbb{K}}$ 中,记 $K = \overline{B}_{\mathbb{K}}$,即 $\forall x^* \in \overline{B}_{E^*}$,有 $x^*|_{\overline{B}_E} : \overline{B}_E \to K$,从而, \overline{B}_{E^*} 成为 $K^{\overline{B}_E}$ 的子集。

综上, $(\overline{B}_{E^*}, \sigma(E^*, E))$ 上的拓扑由 $K^{\overline{B}_E}$ 上的乘积拓扑诱导。

由于 K 是紧集,由 Tychonoff 定理(性质 1.4.3), $K^{\overline{B}_E}$ 也是紧的。由于紧空间的闭子集是紧的(性质 2.5.2),<u>只要证 \overline{B}_{E^*} 是</u> $K^{\overline{B}_E}$ 中的闭集。

<u>断言</u>: 若 $\varphi \in \overline{B}_{E^*}$, 则 φ 是 \overline{B}_E 上的线性映射; 反过来, 若 $\psi : \overline{B}_E \to K$ 满足线性性, 则 ψ 课延拓为 E 上的连续线性泛函。事实上, $\forall x \in E$, 取 $\lambda = ||x||_E$, 即有 $\frac{x}{\lambda} \in \overline{B}_E$, 令

$$\varphi(x) = \lambda \cdot \psi\left(\frac{x}{\lambda}\right),\,$$

104

容易验证 $\varphi|_{\overline{B}_E} = \psi$ 以及 φ 是线性的。由 $\varphi|_{\overline{B}_E} = \psi \in \overline{B}_{E^*}$, 从而 $\varphi \in \overline{B}_{E^*}$.

由以上断言,设 $\psi \in K^{\overline{B}_E} - \overline{B}_{E^*}$, 这意味着, ψ 不是线性的,即存在 $x_1, x_2 \in \overline{B}_E$ 与 $\alpha, \beta \in \mathbb{K}$, 满足 $\alpha x_1 + \beta x_2 \in \overline{B}_E$, 使得

$$\psi(\alpha x_1 + \beta x_2) \neq \alpha \cdot \psi(x_1) + \beta \cdot \psi(x_2).$$

记 $x_3 = \alpha x_1 + \beta x_2$. 设 $K^{\overline{B}_E}$ 中 ψ 的一个 开邻域 为

$$V = V(\psi, x_1, x_2, x_3, \varepsilon) = \{ f \in K^{\overline{B}_E} \mid |(f - \psi)(x_i)| < \varepsilon, i = 1, 2, 3 \}.$$

取充分小的 ε , 则 $\forall f \in V$, 有

$$|f(x_{3}) - \alpha \cdot f(x_{1}) - \beta \cdot f(x_{2})| \ge |\psi(x_{3}) - \alpha \cdot \psi(x_{1}) - \beta \cdot \psi(x_{2})| - |\alpha| \cdot |(f - \psi)(x_{1})| - |\beta| \cdot |(f - \psi)(x_{2})| - |(f - \psi)(x_{3})|$$

$$> |\psi(x_{3}) - \alpha \cdot \psi(x_{1}) - \beta \cdot \psi(x_{2})| - |\alpha| \cdot \varepsilon - |\beta| \cdot \varepsilon - \varepsilon$$

$$= |\psi(x_{3}) - \alpha \cdot \psi(x_{1}) - \beta \cdot \psi(x_{2})| - (|\alpha| + |\beta| + 1)\varepsilon$$

$$> 0,$$

因此,f 不能延拓为线性泛函,即 $f \in K^{\overline{B}_E} - \overline{B}_{E^*}$,从而 $\underline{V} \subset K^{\overline{B}_E} - \overline{B}_{E^*}$,这说明 $K^{\overline{B}_E} - \overline{B}_{E^*}$ 是开集,从而 \overline{B}_{E^*} 是 $K^{\overline{B}_E}$ 中的闭集。

注记 9.4.2. 现在, 我们有 E^* 上的三种拓扑:

- 1. 范数拓扑 $(E^*, ||\cdot||)$, 它是最强的;
- 2. 弱拓扑 $(E^*, \sigma(E^*, E^{**}))$;
- 3. 弱 * 拓扑 $(E^*, \sigma(E^*, E))$, 它是最弱的。

若 E 是自反空间,即 $E = E^{**}$,则 $(E^*, \sigma(E^*, E^{**})) = (E^*, \sigma(E^*, E))$.

定理 9.4.3 (Goldstine). 设 E 是赋范空间,则 B_E 在 $\overline{B}_{E^{**}}$ 中弱 * 稠密,即

$$\overline{B_E}^{w^*} = \overline{B}_{E^{**}}.$$

证明. 首先, $\forall x \in B_E, \forall f \in E^*$,

$$x(f) = \langle f, x \rangle$$
,

有

$$|x(f)| = |\langle f, x \rangle| \le ||f|| \cdot ||x|| \le ||f||,$$

从而 $||x||_{E^{**}} \leq 1$,从而 $x \in \overline{B}_{E^{**}}$,从而 $B_E \subset \overline{B}_{E^{**}}$.又 $\forall \{x_n^{**}\}_{n=1}^{\infty} \subset \overline{B}_{E^{**}}$,若有 $x_n^{**} \stackrel{w^*}{\to} x^{**}$,则 $\forall f \in E^*$,

$$|x^{**}(f)| = |f(x)| = \lim_{n \to \infty} |f(x_n)| \le \lim_{n \to \infty} ||f|| \cdot ||x_n|| \le ||f||,$$

从而 $||x^{**}|| \le 1$,从而 $x^{**} \in \overline{B}_{E^{**}}$,即 $\overline{B}_{E^{**}}$ 在 E^{**} 中是弱 * 闭的,即 $\overline{\overline{B}_{E^{**}}}^{w^*} = \overline{B}_{E^{**}}$. 在 $B_E \subset \overline{B}_{E^{**}}$ 两端同时在弱 * 拓扑下取闭包即得,

$$\overline{B_E}^{w^*} \subset \overline{\overline{B}_{E^{**}}}^{w^*} = \overline{B}_{E^{**}}.$$

另一方面,若存在 $x^{**} \in \overline{B}_{E^{**}} - \overline{B_E}^{w^*}$,由 Hahn-Banach 定理 (推论 8.2.6),存在 $\varphi \in E^*$,使得 $\langle \varphi, x^{**} \rangle > 1$ 且 $\sup \left| \varphi \left(\overline{B_E}^{w^*} \right) \right| \leq 1$,从而,

$$\|\varphi\|_{E^*} = \sup_{x \in B_E} |\langle \varphi, x \rangle| \le \sup |\varphi(\overline{B_E}^{w^*})| \le 1,$$

于是有

$$||x^{**}|| \ge ||\varphi||_{E^*} \cdot ||x^{**}|| \ge ||\varphi(x^{**})|| = |\langle \varphi, x^{**} \rangle| > 1,$$

这说明 $x^{**} \notin \overline{B}_{E^{**}}$, 矛盾。故 $\overline{B}_{E^{**}} \subset \overline{B_E}^{w^*}$.

综上,
$$\overline{B_E}^{w^*} = \overline{B}_{E^{**}}$$
.

定理 9.4.4 (Banach). 设 E 是赋范空间,则 E 是自反的,当且仅当 \overline{B}_E 是弱紧的。

证明. <u>必要性</u>: 由 E 是自反的, $E = E^{**}$,从而 $\overline{B}_E = \overline{B}_{E^{**}}$. 由 Banach-Alaoglu 定理 (定理 9.4.1), E^* 是赋范空间,从而 $(E^*)^* = E^{**}$ 中的闭单位球 $\overline{B}_{E^{**}}$ 是弱 * 紧的,即在拓扑 $\sigma((E^*)^*, E^*)$ 中是紧的,而

$$\overline{B}_{E^{**}} = \overline{B}_E, \sigma((E^*)^*, E^*) = \sigma(E^{**}, E^*) = \sigma(E, E^*),$$

106

从而 \overline{B}_E 在拓扑 $\sigma(E, E^*)$ 中是紧的,即 \overline{B}_E 是弱紧的。

<u>充分性</u>: 由注记 8.3.4, 有 $E \subset E^{**}$, 则 $\sigma(E,E^*) = \sigma(E^{**},E^*)|_{E}$. 由于 \overline{B}_E 是弱紧的,即 \overline{B}_E 在 $(E,\sigma(E,E^*))$ 中是紧的,从而 \overline{B}_E 在 $(E^{**},\sigma(E^{**},E^*))$ 中是也紧的,从而 \overline{B}_E 在 $(E^{**},\sigma(E^{**},E^*))$ 中是闭集(P11 定理 1.3.6:Haudorff 空间中的紧集是闭集),即 \overline{B}_E 是弱 * 闭的,从而 $\overline{B}_E = \overline{B_E}^{w^*}$. 又由 Goldstine 定理(定理 9.4.3), $\overline{B_E}^{w^*} = \overline{B}_{E^{**}}$. 综上,

$$\overline{B}_E = \overline{B_E}^{w^*} = \overline{B}_{E^{**}},$$

从而 $E = E^{**}$, 即 E 是自反的。

10 紧算子

10.1 有限秩算子与紧算子

定义 10.1.1. 设 $E, F \in Banach$ 空间, $T \in E$ 到 F 的算子,

- 1. 若 T 是连续的,且 dim T(E) < ∞,则称 T 是有限秩的,记从 E 到 F 的有限秩算子的集合为 $\mathcal{F}_r(E,F)$;
- 2. 若 $T(B_E)$ 是相对紧的 (定义 2.5.3), 则称 T 是紧算子, 记从 E 到 F 的紧算子的集合为 $\mathcal{K}(E,F)$.

特别地, 若 E, F, 则记 $\mathcal{F}_r(E, F) = \mathcal{F}_r(E), \mathcal{K}(E, F) = \mathcal{K}(E)$.

注记 10.1.2. 设 $E, F \in Banach$ 空间,则有向量子空间的包含关系:

$$\mathcal{F}_r(E,F) \subset \mathcal{K}(E,F) \subset \mathcal{B}(E,F).$$

性质 10.1.3. 若 $T \in \mathcal{K}(E,F)$, 由线性, 对 E 中的任意有界集 A, 有 T(A) 是 F 中的相对紧集。

定理 10.1.4. 设 $E \in Banach$ 空间,则 $\mathcal{F}_r(E)$ 与 $\mathcal{K}(E)$ 都是 $\mathcal{B}(E)$ 的理想。

证明. 设 $T \in \mathcal{F}_r(E)$, $S \in \mathcal{B}(E)$. 有 $S(E) \subset E$, 从而 $T \circ S(E) = T(S(E)) \subset T(E)$, 从而 $\dim(T \circ S(E)) \leq \dim(T(E)) < \infty$, 即 $T \circ S \in \mathcal{F}_r(E)$. 另一方面,由于 $\dim(T(E)) < \infty$, 可设 $\dim(T(E)) = \operatorname{Span}\{e_1, e_2, \cdots, e_k\}$, 从而 $\forall x \in E$, 可设 $T(x) = \sum_{i=1}^k x_i e_i \in E$, 从而 $S \circ T(x) = S(T(X)) = S\left(\sum_{i=1}^k x_i e_i\right) = \sum_{i=1}^k x_i S(e_i)$, 从而 $\dim(S \circ T(E)) \leq \dim(T(E)) < \infty$, 即 $S \circ T \in \mathcal{F}_r(E)$. 综上, $\mathcal{F}_r(E)$ 是 $\mathcal{B}(E)$ 的理想。

设 $T \in \mathcal{K}(E)$, $S \in \mathcal{B}(E)$. 对任意 $\{y_n\}_{n=1}^{\infty} \subset S \circ T(B_E)$, 则存在 $\{x_n\}_{n=1}^{\infty} \subset B_E$, 使得 $\forall n \geq 1$, 有 $y_n = S \circ T(x_n)$. 由于 T 是紧算 子,即 $T(B_E)$ 是相对紧的,由推论 2.5.4,存在子列 $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$, 使得 $\{T(x_{n_k})\}_{k=1}^{\infty} \subset \{T(x_n)\}_{n=1}^{\infty} \subset T(B_E)$ 收敛。又由于 S 是有界算子,从而连续,从而 $\{S \circ T(x_{n_k})\}_{k=1}^{\infty}$ 收敛,从而 $\{y_{n_k}\}_{k=1}^{\infty} = \{S \circ T(x_{n_k})\}_{k=1}^{\infty} \subset S \circ T(B_E)$ 收敛,从而 $S \circ T(B_E)$ 相对 紧,即 $S \circ T$ 是紧算子, $S \circ T \in \mathcal{K}(E)$. 另一方面,由于 S 有界,从而连续,从而 $S(B_E)$ 是有界集,从而 $T \circ S(B_E)$ 相对紧(性质 10.1.3),即 $S \circ T$ 是紧算子, $S \circ T \in \mathcal{B}(E)$. 综上, $\mathcal{K}(E)$ 是 $\mathcal{B}(E)$ 的理想。

定理 10.1.5. 设 $E, F \in Banach$ 空间, $T \in \mathcal{B}(E, F)$, 则 $T \in \mathcal{B}(E, F)$, 当且仅当 T^* 是紧算子。

证明. <u>必要性</u>: 若 T 是紧算子, T^* 是它的共轭算子(定义 9.1.1),任意 $\{x_n^*\}_{n=1}^{\infty} \subset T^*(B_{F^*})$,存在 $\{y_n^*\}_{n=1}^{\infty} \subset B_{F^*}$,使得 $\forall n \geq 1$,有 $T^*(y_n^*) = x_n^*$. 注意到,由线性, $\{y_n^*\}_{n=1}^{\infty}$ 可以看成 $\overline{T(B_E)}$ 上的函数,从而 $\forall y, y' \in \overline{T(B_E)}$,由于 $\{y_n^*\}_{n=1}^{\infty} \subset B_{F^*}$, $\forall n \geq 1$,有

$$|\langle y_n^*, y - y' \rangle| \le ||y_n^*|| \cdot ||y - y'|| \le ||y - y'||,$$

这说明 $\{y_n^*\}_{n=1}^{\infty}$ 在 $\overline{T(B_E)}$ 上等度连续。同时, $\forall y \in \overline{T(B_E)}$, $\forall n \geq 1$, 也有 $|\langle y_n^*, y \rangle| \leq ||y_n^*|| \cdot ||y|| \leq ||y||$, 即 $\{y_n^*\}_{n=1}^{\infty}$ 一致有界。由 T 是紧算子, $\overline{T(B_E)}$ 是紧集,由 Arzelà-Ascoli 引理(定理 5.1.6与定理 5.1.8), $\{y_n^*\}_{n=1}^{\infty}$ 有在 $\overline{T(B_E)}$ 上一致收敛的子列 $\{y_{n_k}^*\}_{k=1}^{\infty}$,从 而 $\forall j,k \geq 1$,

$$\begin{aligned} \left\| x_{n_j}^* - x_{n_k}^* \right\| &= \sup_{x \in B_E} \left| x_{n_j}^*(x) - x_{n_k}^*(x) \right| = \sup_{x \in B_E} \left| \left\langle T^*(y_{n_j}^*), x \right\rangle - \left\langle T^*(y_{n_k}^*), x \right\rangle \right| \\ &= \sup_{x \in B_E} \left| \left\langle y_{n_j}^*, T(x) \right\rangle - \left\langle y_{n_k}^*, T(x) \right\rangle \right| \\ &= \sup_{T(x) \in T(B_E)} \left| \left\langle y_{n_j}^*, T(x) \right\rangle - \left\langle y_{n_k}^*, T(x) \right\rangle \right| \leq \sup_{T(x) \in \overline{T(B_E)}} \left| \left\langle y_{n_j}^*, T(x) \right\rangle - \left\langle y_{n_k}^*, T(x) \right\rangle \right|, \end{aligned}$$

由于 $\{y_n^*\}_{n=1}^\infty$ 在 $\overline{T(B_E)}$ 上一致收敛,故 $\{x_{n_k}^*\}_{k=1}^\infty$ 是 Cauchy 序列。又 E^* 是 Banach 空间,完备,故 $\{x_{n_k}^*\}_{k=1}^\infty$ 在 E^* 中收敛,从 而 $T^*(B_{F^*})$ 相对紧(推论 2.5.4),从而 T^* 是紧算子。

<u>充分性</u>: 设 T^* 是紧算子,由必要性的结论, T^{**} 是 E^{**} 到 F^{**} 的紧算子,从而 $T^{**}(B_{E^{**}})$ 是相对紧的。由于有自然嵌入 $E \hookrightarrow E^{**}$ (定义 9.3.1),有 $\overline{T^{**}(B_E)} \subset \overline{T^{**}(B_{E^{**}})}$,从而 $\overline{T^{**}(B_E)}$ 是紧的(P11 定理 1.3.6:Haudorff 空间中的紧集是闭集)。利用二次共轭关系即得, $\overline{T(B_E)}$ 也是紧的,即 $T(B_E)$ 是相对紧的,从而 T 是紧算子。

定理 10.1.6. 设 H 是 Hilbert 空间,则 $\overline{\mathcal{F}_r(H)} = \mathcal{K}(H)$.

证明. <u>当 H 可分时</u>: 由定理 4.4.8, 可设 $\{e_n\}_{n=1}^{\infty}$ 是 H 的规范正交基, $\forall n \geq 1$, 记 P_n 是 H 到 $H_n = \operatorname{Span}\{e_1, e_2, \cdots, e_n\}$ 的正交 投影算子(定义 4.2.1),则由定理 4.2.2, $\|P_n\| \leq 1$,且 $P_n(E) = H_n$,从而 $\dim(P_n(E)) = n < \infty$,从而 $P_n \in \mathcal{F}_r(H)$. $\forall T \in \mathcal{K}(H)$,令 $T_n = P_n \circ T$,则 $T_n(H) = P_n(T(H)) \subset P_n(H)$ 也是有限维,从而 $T_n \in \mathcal{F}_r(H)$.

10 紧算子

109

只要说明 $\{T_n\}_{n=1}^{\infty}$ 在 $\mathcal{B}(\mathcal{H})$ 中收敛到 T: 注意到 $\forall n \geq 1, \forall x \in H$,

$$(T - T_n)(x) = T(x) - T_n(x) = T(x) - P_n(T(x)) = (I_H - P_n)(T(x)),$$

并且 $\forall y \in H$, 有 $\|P_n(y) - y\| \to 0$. 由于 $T(B_H)$ 相对紧,从而

$$||T - T_n|| = \sup_{x \in B_H} ||(T - T_n)(x)|| = \sup_{x \in B_H} ||(I_H - P_n)(T(x))|| = \sup_{y \in T(B_H)} ||(I_H - P_n)(y)|| = \sup_{y \in T(B_H)} ||y - P_n(y)|| \to 0.$$

<u>一般情形</u>: $\forall T \in \mathcal{K}(H)$, $\overline{T(B_E)}$ 是紧集,从而 $\forall \varepsilon > 0$, $\exists x_1, x_2, \cdots, x_n \in H$, 使得 $T(B_E) \subset \bigcup_{i=1}^n B(x_i, \varepsilon)$. 记 P_n 是 H 到 $H_n = \mathrm{Span}\{x_1, x_2, \cdots, x_n\}$ 的正交投影算子,令 $T_\varepsilon = P_n \circ T \in \mathcal{F}_r(H)$, $\forall x \in B_H$, $\exists i \leq i_0 \leq n$, 使得 $\|T(X) - x_{i_0}\| < \varepsilon$. 由定理 4.2.2, $\|P_n\| \leq 1$, 且 $x_{i_0} \in H_n$, 从而 $\|P_n(T(x)) - x_{i_0}\| = \|P_n(T(x)) - P_n(x_{i_0})\| \leq \|T(X) - x_{i_0}\| < \varepsilon$, 从而

$$||T_{\varepsilon}(x) - T(x)|| = ||P_n(T(x)) - T(x)|| \le ||P_n(T(x)) - x_{i_0}|| + ||T(X) - x_{i_0}|| < 2\varepsilon,$$

 $||T_{\varepsilon} - T|| < 2\varepsilon.$

命题 10.1.7. 设 $E, F \in Banach$ 空间, $\mathcal{K}(E, F) \in \mathcal{B}(E, F)$ 的闭子空间。

证明. 任意 $\{T_n\}_{n=1}^{\infty} \subset \mathcal{K}(E,F)$, 若 $T_n \to T$, 要证 $T \in \mathcal{K}(E,F)$, 即证 $\overline{T(B_E)}$ 是紧集,即证 $\forall \varepsilon > 0$, $\exists f_1, f_2, \dots, f_n \in F$, 使得 $T(B_E) \subset \bigcup_{i=1}^n B(f_i,\varepsilon)$. 而 $\forall \varepsilon > 0$, $\exists n_0$, 使得 $\|T_{n_0} - T\| < \frac{\varepsilon}{2}$, 且 $\overline{T_{n_0}(B_E)}$ 是紧集,即得。

10.2 紧算子的谱性质

定义 10.2.1. 设 $T \in \mathcal{B}(E)$,

1. 令集合

$$\sigma(T) = \{ \lambda \in \mathbb{K} \mid \lambda - T \text{ } \vec{A} \vec{\ominus} \vec{\ominus} \vec{\ominus} \},$$

称为 T 的谱集, 并称 $\rho(T) = \mathbb{K} - \sigma(T)$ 是 T 的预解集;

10 紧算子

- 2. 若 λT 不是单射,则称 λ 是 T 的一个特征值,相应的, $Ker(\lambda T)$ 称为 T 关于特征值 λ 的特征子空间,并称非零向量 $x \in Ker(\lambda T)$ (即使得 $Tx = \lambda x$) 为 T 关于特征值 λ 的特征向量,记 $\sigma_p(T)$ 表示 T 的所有特征向量的集合,称为 T 的点谱集;
- $3. \ \forall \ \lambda \in \rho(T), \$ 记 $R(\lambda,T) = (\lambda T)^{-1}, \$ 称为 T 的预解式。

性质 10.2.2. 1. 若 $T \in \mathcal{K}(E)$ 且 dim $E = \infty$, 则 $0 \in \sigma(T)$;

- 2. 有 $\sigma_p(T)$ ⊂ $\sigma(T)$, 并且包含一般是严格的;
- 3. 有预解方程: $\forall \lambda, \mu \in \rho(T)$, 有

$$R(\lambda, T) - R(\mu, T) = (\mu - \lambda)R(\lambda, T)R(\mu, T) = (\mu - \lambda)R(\mu, T)R(\lambda, T),$$

这是因为

$$(\mu - \lambda)R(\lambda, T)R(\mu, T) = R(\lambda, T)(\mu - \lambda)R(\mu, T) = R(\lambda, T)[(\mu - T) - (\lambda - T)]R(\mu, T)$$

$$= R(\lambda, T)[(\mu - T)R(\mu, T)] - [R(\lambda, T)(\lambda - T)]R(\mu, T) = R(\lambda, T) - R(\mu, T),$$

$$(\mu - \lambda)R(\mu, T)R(\lambda, T) = R(\mu, T)(\mu - \lambda)R(\lambda, T) = R(\mu, T)[(\mu - T) - (\lambda - T)]R(\lambda, T)$$

$$= [R(\mu, T)(\mu - T)]R(\lambda, T) - R(\mu, T)[(\lambda - T)R(\lambda, T)] = R(\lambda, T) - R(\mu, T),$$

这说明 $R(\lambda,T)$ 与 $R(\mu,T)$ 可交换。

定理 10.2.3. 设 $T \in \mathcal{B}(E)$, 则

1. 极限 $\lim_{n\to\infty} ||T^n||^{\frac{1}{n}}$ 存在,并且

$$\lim_{n \to \infty} ||T^n||^{\frac{1}{n}} = \inf_{n \ge 1} ||T^n||^{\frac{1}{n}},$$

通常,记该极限值为r(T),称为T的谱半径;

2. 谱集 $\sigma(T)$ 是 \mathbb{K} 中的紧集, 并且 $\sigma(T) \subset \{\lambda \in \mathbb{K} \mid |\lambda| \leq r(T)\}$.

证明. 1: 记 $a = \inf_{n \geq 1} \|T^n\|^{\frac{1}{n}}$,首先有

$$\liminf_{n \to \infty} ||T^n||^{\frac{1}{n}} \ge \inf_{n \ge 1} ||T^n||^{\frac{1}{n}} = a.$$

 $\forall \ \varepsilon > 0, \ \exists \ n_0, \ \notin \|T^{n_0}\|^{\frac{1}{n_0}} \le a + \varepsilon. \ \forall \ n > n_0, \ 记 \ n = q(n) \cdot n_0 + r(n), \ 其中 \ q(n) \in \mathbb{N}^*, \ r(n) < n_0, \ 则$

$$||T^n||^{\frac{1}{n}} = ||T^{q(n) \cdot n_0 + r(n)}||^{\frac{1}{n}} = ||T^{q(n) \cdot n_0} \cdot T^{r(n)}||^{\frac{1}{n}} \le ||T^{q(n) \cdot n_0}||^{\frac{1}{n}} \cdot ||T^{r(n)}||^{\frac{1}{n}} \le ||T^{n_0}||^{\frac{1}{n_0} \cdot \frac{q(n) \cdot n_0}{n}} \cdot ||T||^{\frac{r(n)}{n}},$$

其中, 当 $n \to \infty$ 时, $\frac{q(n) \cdot n_0}{n} \to 1$, $\frac{r(n)}{n} \to 0$, 从而

$$\limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}} \le \limsup_{n \to \infty} \|T^{n_0}\|^{\frac{1}{n_0} \cdot \frac{q(n) \cdot n_0}{n}} \cdot \|T\|^{\frac{r(n)}{n}} = \|T^{n_0}\|^{\frac{1}{n_0}} \cdot 1 \le a + \varepsilon,$$

由 ε 的任意性, $\limsup_{n\to\infty} \|T^n\|^{\frac{1}{n}} \leq a$,从而

$$\limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}} \le a \le \liminf_{n \to \infty} \|T^n\|^{\frac{1}{n}},$$

从而

$$\lim_{n \to \infty} \|T^n\|^{\frac{1}{n}} = a = \inf_{n > 1} \|T^n\|^{\frac{1}{n}}.$$

2: 先证 $\sigma(T) \subset \{\lambda \in \mathbb{K} \mid |\lambda| \leq r(T)\}$. 设有 $|\lambda| > r(T) = \lim_{n \to \infty} \|T^n\|^{\frac{1}{n}}$, 从而存在 0 < c < 1, 与对应的 n_0 , 使得 $\forall n \geq n_0$, 有 $\|T^n\|^{\frac{1}{n}} \leq c |\lambda|$, 从而 $\left|\left(\frac{T}{\lambda}\right)^n\right| \leq c^n$, 从而级数 $S = \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n$ 有

$$||S|| = \left|\left|\sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n\right|\right| \le \sum_{n=0}^{\infty} \left|\left(\frac{T}{\lambda}\right)^n\right|\right| \le \sum_{n=0}^{\infty} c^n = \frac{1}{1-c} < \infty,$$

即级数 $S = \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n$ 在 $\mathcal{B}(E)$ 中依范数收敛,并且有

$$(\lambda - T)S = (\lambda - T)\sum_{n = 0}^{\infty} \left(\frac{T}{\lambda}\right)^n = \lambda\sum_{n = 0}^{\infty} \left(\frac{T}{\lambda}\right)^n - T\sum_{n = 0}^{\infty} \left(\frac{T}{\lambda}\right)^n = \lambda + \lambda\sum_{n = 1}^{\infty} \left(\frac{T}{\lambda}\right)^n - \lambda\frac{T}{\lambda}\sum_{n = 0}^{\infty} \left(\frac{T}{\lambda}\right)^n = \lambda + \lambda\sum_{n = 1}^{\infty} \left(\frac{T}{\lambda}\right)^n - \lambda\sum_{n = 1}^{\infty} \left(\frac{T}{\lambda}\right)^n = \lambda + \lambda\sum_{n = 1}^{\infty} \left(\frac{T}{\lambda}\right)^n - \lambda\sum_{n = 1}^{\infty} \left(\frac{T}{\lambda}\right)^n = \lambda + \lambda\sum_{n = 1}$$

10 紧算子

同样的也易得 $S(\lambda - T) = \lambda$, 故 $\lambda - T$ 可逆, 从而 $\lambda \notin \sigma(T)$. 这也说明了谱集 $\sigma(T)$ 是 \mathbb{K} 中的有界集。

再证谱集 $\sigma(T)$ 是 \mathbb{K} 中的闭集。只要证预解集 $\rho(T) = \mathbb{K} - \sigma(T)$ 是 \mathbb{K} 中的开集。定义映射

$$f: \mathbb{K} \to \mathcal{B}(E)$$

 $\lambda \mapsto \lambda - T$,

由

$$\|(\lambda_1 - T) - (\lambda_2 - T)\| = \|\lambda_1 - \lambda_2\| = |\lambda_1 - \lambda_2|,$$

故 f 连续。记 GL(E) 是 $\mathcal{B}(E)$ 中可逆算子的集合,由 P60 习题三 9, GL(E) 是 $\mathcal{B}(E)$ 中的开集,而由预解集 $\rho(T)$ 的定义, $\rho(T) = f^{-1}(GL(E))$,从而 $\rho(E)$ 是 \mathbb{K} 中的开集,从而谱集 $\sigma(T)$ 是 \mathbb{K} 中的闭集。

综上, 谱集 $\sigma(T)$ 是 \mathbb{K} 中的有界闭集, 是紧集 (有限维度量空间中紧集等价于有界闭集)。

定理 10.2.4. 设 $\mathbb{K} = \mathbb{C}, T \in \mathcal{B}(E), 则 \sigma(T)$ 非空,并且

$$r(T) = \sup_{\lambda \in \sigma(T)} |\lambda|$$
.

证明. 对 $T \in \mathcal{B}(E)$, $\forall \lambda \in \rho(T)$, 记 $R(\lambda) = R(\lambda, T) = (\lambda - T)^{-1}$. 由 P60 习题三 9,

$$GL(E) \to GL(E)$$

 $u \mapsto u^{-1}$

是同胚, 从而连续, 从而

$$R: \rho(T) \to GL(E) \to GL(E)$$

$$\lambda \mapsto \lambda - T \mapsto (\lambda - T)^{-1} = R(\lambda, T)$$

连续(定理 10.2.3的证明)。 $\forall \xi \in \mathcal{B}(E)^*$,构造函数

$$\varphi: \rho(T) \to \mathbb{C}$$

 $\lambda \mapsto \xi(R(\lambda)),$

则 φ 是 $\rho(T)$ 上的连续函数。

现证 $\underline{\varphi}$ 在 $\underline{\rho}(T)$ 中是全纯的: $\forall \lambda_0 \in \underline{\rho}(T)$, $\boldsymbol{\varphi}$ $\lambda \in \underline{\rho}(T)$, 满足 $|\lambda - \lambda_0| < \frac{1}{\|R(\lambda_0)\|}$, 则有

$$(\lambda - T)^{-1} = (\lambda - \lambda_0 + \lambda_0 - T)^{-1} = (\lambda_0 - T)^{-1} [1 + (\lambda - \lambda_0)(\lambda_0 - T)^{-1}]^{-1} = R(\lambda_0) \sum_{n=0}^{\infty} (-1)^n R(\lambda_0)^n (\lambda - \lambda_0)^n = \sum_{n=0}^{\infty} (-1)^n R(\lambda_0)^{n+1} (\lambda - \lambda_0)^n.$$

当 $|\lambda - \lambda_0| < \frac{1}{\|R(\lambda_0)\|}$ 时,有 $\|(\lambda - \lambda_0)(\lambda_0 - T)^{-1}\| < |\lambda - \lambda_0| \cdot \frac{1}{|\lambda - \lambda_0|} = 1$,从而

$$\left\| (\lambda - T)^{-1} \right\| = \left\| \sum_{n=0}^{\infty} (-1)^n R(\lambda_0)^{n+1} (\lambda - \lambda_0)^n \right\| \le \left\| R(\lambda_0) \right\| \sum_{n=0}^{\infty} \left\| R(\lambda_0) (\lambda - \lambda_0) \right\|^n = \left\| (\lambda_0 - T)^{-1} \right\| \sum_{n=0}^{\infty} \left\| (\lambda - \lambda_0) (\lambda_0 - T)^{-1} \right\|^n,$$

从而由定理 3.2.11, 级数 $(\lambda - T)^{-1} = \sum_{n=0}^{\infty} (-1)^n R(\lambda_0)^{n+1} (\lambda - \lambda_0)^n$ 在 $\mathcal{B}(E)$ 中绝对收敛,从而

$$\varphi(\lambda) = \xi(R(\lambda)) = \xi((\lambda - T)^{-1}) = \sum_{n=0}^{\infty} (-1)^n \xi(R(\lambda_0)^{n+1}) (\lambda - \lambda_0)^n$$

在 $|\lambda - \lambda_0| < \frac{1}{\|R(\lambda_0)\|}$ 时成立。由 λ_0 的任意性, φ 在 $\rho(T)$ 中是全纯的。

再证 $\sigma(T) \neq \varnothing$: 当 $|\lambda| < \frac{1}{\|T\|}$ 时,由定理 3.2.11,有级数

$$R(\lambda) = (\lambda - T)^{-1} = \frac{1}{\lambda} (I - \frac{T}{\lambda})^{-1} = \frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda} \right)^n = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$$

在 $\mathcal{B}(E)$ 上绝对收敛,则有

$$\varphi(\lambda) = \xi(R(\lambda)) = \xi\left(\sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}\right) = \sum_{n=0}^{\infty} \frac{\xi(T^n)}{\lambda^{n+1}},$$

从而

$$|\varphi(\lambda)| = \left|\sum_{n=0}^{\infty} \frac{\xi(T^n)}{\lambda^{n+1}}\right| \leq \sum_{n=0}^{\infty} \frac{|\xi(T^n)|}{\lambda^{n+1}} \leq \sum_{n=0}^{\infty} \frac{\|\xi\| \cdot \|T^n\|}{\lambda^{n+1}} \leq \sum_{n=0}^{\infty} \frac{\|\xi\| \cdot \|T\|^n}{\lambda^{n+1}} = \frac{\|\xi\|}{\lambda} \sum_{n=0}^{\infty} \left(\frac{\|T\|}{\lambda}\right)^n = \frac{\|\xi\|}{\lambda} \frac{1}{1 - \frac{\|T\|}{|\lambda|}}.$$

当 $\lambda \to \infty$ 时,有 $\varphi(\lambda) \to 0$. <u>若 $\sigma(T) = \emptyset$ </u>,即 $\rho(T) = \mathbb{C}$,由全纯函数下的 Liouville 定理, φ 在整个复平面 \mathbb{C} 上有 $\varphi = 0$. 特别地,取 $\lambda > ||T||$,由定理 10.2.3,

$$r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le \lim_{n \to \infty} ||T||^{n \cdot \frac{1}{n}} = ||T|| < \lambda,$$

10 紧算子

114

从而 $\lambda \notin \sigma(T)$, 即 $\lambda - T$ 可逆,即 $(\lambda - T)^{-1}$ 存在,此时, $\forall \xi \in \mathcal{B}(E)^*$, $\xi((\lambda - T)^{-1}) = \varphi(\lambda) = 0$. 但由 Hahn-Banach 定理(推论 8.1.7),总存在 $\xi \in \mathcal{B}(E)^*$,使得 $\xi((\lambda - T)^{-1}) \neq 0$,矛盾。故 $\sigma(T) \neq \emptyset$.

最后, $\underline{r(T)} = \sup_{\lambda \in \sigma(T)} |\lambda|$:记 $\alpha = \sup_{\lambda \in \sigma(T)} |\lambda|$. 由定理 10.2.3, $r(T) \geq \alpha$, 故只要证 $r(T) \leq \alpha$. 取 $|\lambda| > \alpha$, 则 $\lambda \notin \sigma(T)$, 即 $\lambda \in \rho(T)$. 由证明的第一部分, $\varphi(\lambda)$ 在 $\rho(T)$ 中全纯,从而在 $\{\lambda \mid |\lambda| > \alpha\} \subset \rho(T)$ 中全纯,从而级数

$$\varphi(\lambda) = \sum_{n=0}^{\infty} \frac{\xi(T^n)}{\lambda^{n+1}}$$

绝对收敛,从而 $\sup_{n\in\mathbb{N}}\left|\frac{\xi(T^n)}{\lambda^{n+1}}\right|<\infty$. 记 $B_n=\frac{T^n}{\lambda^{n+1}}\in\mathcal{B}(E)$. 运用 Banach 空间的对偶理论,把 B_n 看成 $\mathcal{B}(E)^*$ 上的连续线性泛函, $\sup_{n\in\mathbb{N}}\left|\frac{\xi(T^n)}{\lambda^{n+1}}\right|<\infty$ 意味着 B_n 作用在每个 $\xi\in\mathcal{B}(E)^*$ 上都是有界的。由 Banach-Steinhaus 定理(定理 6.2.1), $\sup_{n\in\mathbb{N}}\|B_n\|<\infty$. 记 $M=\sup_{n\in\mathbb{N}}\|B_n\|$,从而 \forall $n\in\mathbb{N}$,

$$||B_n|| = \left| \left| \frac{T^n}{\lambda^{n+1}} \right| \right| \le M,$$

于是有

$$||T^n||^{\frac{1}{n}} \le M^{\frac{1}{n}} \cdot |\lambda|^{1+\frac{1}{n}},$$

不等式两边同时取极限即得,

$$r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le \lim_{n \to \infty} M^{\frac{1}{n}} \cdot |\lambda|^{1 + \frac{1}{n}} = |\lambda|,$$

由 $|\lambda| > \alpha$ 的任意性,即得 $r(T) \le \alpha$.

性质 10.2.5. 设 $T \in \mathcal{K}(E)$, $0 \neq \lambda \in \mathbb{K}$, 则

- 1. $\forall n, \dim \operatorname{Ker}(\lambda T)^n < \infty;$
- 2. \forall n, $(\lambda T)^n(E)$ 是闭集;
- 3. $\exists n$, 使得 $\operatorname{Ker}(\lambda T)^{n+1} = \operatorname{Ker}(\lambda T)^n$;
- 4. $\exists n$. 使得 $(\lambda T)^{n+1}(E) = (\lambda T)^n(E)$:

10 紧算子 115

- 5. $\forall 0 \neq \lambda \in \sigma(T)$, 必有 $\lambda \in \sigma_p(T)$, 如果 E 是无穷维的, 必有 $0 \in \sigma_p(T)$;
- 6. T 的非零特征值至多有可数个,从而 $\sigma_p(T)$ 至多可数,特别地, $\sigma(T)$ 是紧集,并记所有的特征值构成序列 $\{\lambda_n\}_{n=1}^{\infty}$,则当 $\{\lambda_n\}_{n=1}^{\infty}$ 为无限集时,有 $\lim_{n\to\infty}\lambda_n=0$.

证明.

推论 10.2.6 (Fredholm 选择定理). 设 $T \in \mathcal{K}(E)$, $0 \neq \lambda \in \mathbb{K}$, 则 $\lambda - T$ 是单射, 当且仅当它是满射。

10.3 Hilbert 空间上的自伴紧算子

定义 10.3.1 (自伴算子, 正算子). 设 H 是 Hilbert 空间, $T \in \mathcal{B}(H)$, T^* 是 T 的伴随算子, 若 $T = T^*$, 则称 T 是自伴算子或 Hermite 算子; 若 T 是自伴的, 并且 $\forall x \in H$, 有 $\langle Tx, x \rangle \geq 0$, 则称 T 为正算子。

注记 10.3.2. 1. 若 T 是自伴的,则 $\forall x \in H$,有 $\langle Tx, x \rangle \in \mathbb{R}$;

2. 若 T 是正算子, 有 Cauchy-Schwarz 不等式: $\forall x, y \in H$,

$$\left|\left\langle Tx,y\right\rangle \right|^{2} \leq \left\langle Tx,x\right\rangle \left\langle Ty,y\right\rangle$$

从而

$$||T|| = \sup\{\langle Tx, x \rangle \mid x \in H, ||x|| = 1\}.$$

定理 10.3.3. 设 T 是 Hilbert 空间上的自伴算子,则

- 1. $r(T) = ||T|| = \sup\{\langle Tx, x \rangle \mid x \in H, ||x|| = 1\};$
- 2. 若令

$$m = \inf\{\langle Tx, x \rangle \mid x \in H, ||x|| = 1\}, M = \sup\{\langle Tx, x \rangle \mid x \in H, ||x|| = 1\},$$

则 $\sigma(T) \subset [m, M]$, 且 $m, M \in \sigma(T)$, 并且

$$r(T) = \|T\| = \max\{|m|, |M|\} = \max_{\lambda \in \sigma(T)} |\lambda|.$$

证明.

推论 10.3.4. 设 T 是 Hilbert 空间上的自伴算子,则 T 是正算子,当且仅当 $\sigma(T) \subset [0,\infty)$. 并且若 T 是正算子,则 $||T|| \in \sigma(T)$.

推论 10.3.5. 设 T 是 Hilbert 空间上的自伴紧算子,则存在 T 的特征值 λ ,使得 $|\lambda| = ||\lambda||$.

定义 10.3.6 (直和). 设 $\{H_i\}_{i\in I}$ 是一族 Hilbert 空间,令

$$\bigoplus_{i\in I} H_i$$

是 $\{H_i\}_{i\in I}$ 的笛卡尔积 $\prod_{i\in I} H_i$ 的子集, 其中的元素 $\{x_i\}_{i\in I}$ 满足

$$\sum_{i \in I} \|x_i\|^2 < \infty.$$

给 $\bigoplus_{i \in I} H_i$ 赋予范数:

$$\|\{x_i\}_{i\in I}\| = \left(\sum_{i\in I} \|x_i\|^2\right)^{\frac{1}{2}},$$

事实上,它可以被内积

$$\langle \{x_i\}_{i\in I}, \{y_i\}_{i\in I} \rangle = \sum_{i\in I} \langle x_i, y_i \rangle$$

诱导, 从而 $\bigoplus_{i \in I} H_i$ 成为一个 Hilbert 空间, 称为 $\{H_i\}_{i \in I}$ 的直和。

定理 10.3.7 (自伴紧算子的谱分解). 设 T 是 Hilbert 空间 H 上的自伴紧算子, V_{λ} 表示 T 的特征值 λ 的特征子空间,则 1.

$$H = \bigoplus_{\lambda \in \sigma_p(T)} V_{\lambda},$$

因此,H 有一组由T 的特征向量构成的正交基;

2. 空间 $\overline{T(H)}$ 有一个由特征向量 $\{e_n\}_{n=1}^{\infty}$ 构成的正交基,其中 $\{e_n\}_{n=1}^{\infty}$ 是分别对应于特征值 $\{\lambda_n\}_{n=1}^{\infty}$ 的特征向量 (特征值 $\{\lambda_n\}_{n=1}^{\infty}$ 可能是有限的),使得 $\forall x \in H$,在范数收敛的意义下,

$$Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n,$$

并且,若特征值 $\{\lambda_n\}_{n=1}^{\infty}$ 是无限的,则 $\lim_{n\to\infty}\lambda_n=0$.

积分方程