

Kourosh Davoudi heidar.davoudi@ontariotechu.ca

Lecture 9: Graph Foundations



**CSCI 3070U: Design and Analysis of Algorithms** 

### **Learning Outcomes**

- Basic Graph Concepts/Definition
- Graph Representation
- Graph Search
  - Breadth First Search (BFS)
  - Depth First Search (DFS)



## What is graph?

 A graph is a collection of nodes (vertices) and links (edges) between them.





## Why Graphs?

Graphs are used to solve many real-world problems:



Social Graph



Transportation Graph



### **Graph Definitions**

- Directed Graph:
  - A directed graph (or digraph) G is a pair (V, E), where V is a finite set of vertices and set of edges E is a binary relation on V
  - The edges are directional:  $(v_1, v_2) \neq (v_2, v_1)$
  - Example: a directed graph G = (V, E), where

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{ (1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3) \}$$





### **Graph Definitions**

- Undirected Graph
  - An undirected graph is G = (V, E), where V is a finite set vertices and the edge set E consisting of unordered pairs of vertices, rather than ordered pairs.
  - The edges are not directional:  $\{v_1, v_2\} = \{v_2, v_1\}$
  - Example: a (undirected) graph G = (V, E), where

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{ \{1,2\}, \{1,5\}, \{2,5\}, \{3,6\} \}$$





Adjacency Matrix



|   | 1 | 2 | 3 | 4                | 5 |
|---|---|---|---|------------------|---|
| 1 | 0 | 1 | 0 | 0                | 1 |
| 2 | 1 | 0 | 1 | 1                | 1 |
| 3 | 0 | 1 | 0 | 1                | 0 |
| 4 | 0 | 1 | 1 | 0                | 1 |
| 5 | 1 | 1 | 0 | 0<br>1<br>1<br>0 | 0 |

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$



Adjacency List







## <u>Time</u>

• If  $(u,v) \in E$ 

• To list all adjacent vertices adjacent to  $\boldsymbol{u}$ 

## **Space**

Space complexity

Adjacency Matrix

 $\Theta(1)$ 

 $\Theta(V)$ 

 $\Theta(V^2)$ 

Adjacency List

O(deg(u))

 $\Theta(deg(u))$ 

 $\Theta(V+E)$ 



Adjacency Matrix

Adjacency List

Appropriate for Dense Graph

Appropriate for Sparse Graph

$$E \approx V^2$$









- Path
  - The path form  $v_i$  to  $v_j$  contains the vertices :  $v_i$ ,  $v_{i+1}$ , ...,  $v_{j-1}$ ,  $v_j$  such that  $(v_i, v_{i+1}), ..., (v_{j-1}, v_j) \in E$

Path: 
$$v_i \rightarrow v_{i+1} \rightarrow \dots \rightarrow v_{j-1} \rightarrow v_j$$

- Cycle
  - A cycle is a (non-zero) sequence of vertices, each connected by an edge, ending at the same vertex

Cycle: 
$$v_i \rightarrow v_{i+1} \rightarrow \dots \rightarrow v_{j-1} \rightarrow v_i$$

A graph is acyclic if it has no cycles



- Hamiltonian cycle:
  - A cycle which visits every vertex exactly once, ending at the same vertex





 The travelling salesperson problem (TSP) is really the problem of finding a Hamiltonian cycle with minimum total cost in an arbitrary graph



• Euler tour:

• A cycle which traverses every edge exactly once, but can visit the same vertex

multiple times





- Trees
  - are a special case of graphs
    - Connected and acyclic
    - Only a single path between any two nodes



An acyclic graph that is not connected is called a forest



- Connected Components
  - A maximal set of vertices  $C \subseteq V$  in a undirected graph such that every vertex is reachable from others.



An undirected graph is connected if it has only one connected component.



- Strongly Connected Components :
  - A maximal set of vertices  $C \subseteq V$  in a directed graph such that every pair of vertices u and v in C, both are reachable from each other.



 A directed graph is strongly connected if it has only one strongly connected component.



- Node degree:
  - The degree of a vertex in an undirected graph is the number of edges

incident on it.

degree(5) = 2 degree(4) = 0  $\frac{1}{4}$   $\frac{2}{5}$   $\frac{3}{6}$ 

- Node In-degree/Out-degree:
  - out-degree of a vertex: the number of edges leaving it
  - in-degree of a vertex is the number of edges entering it.
  - degree = in-degree + out-degree

in-degree (2) = 2 out-degree(2) = 3





### **Graph Search**

- What is graph search?
  - It is a general technique for traversing through graphs. Namely, we visit each vertex of the graph without repetition.
  - Example :
    - Sliding puzzle
      - Vertices: state in the puzzle
      - Edge: connect to adjacent state

| 4 | 3 | 1 | 4 | 3 | 1 |
|---|---|---|---|---|---|
| 2 | 8 | 6 | 2 | 8 | 6 |
|   | 7 | 5 | 7 |   | 5 |





## **Breadth First Search (BFS)**

#### Input:

• Graph G=(V, E), either directed or undirected, and source vertex  $s \in V$ 

#### Output:

- v.d = distance (smallest # of edges) from s to v, for all  $v \in V$
- $v.\pi$  = predecessor of vertex v along the shortest path from source s.

Breadth-First Search





## **Breadth First Search (BFS)**

- To keep track of progress, breadth first search colors each vertex white, gray, or black.
  - White vertices have not been discovered
    - All vertices start out white
  - Grey vertices are discovered but not fully explored
    - They are visited but waiting for neighborhood visits
  - Black vertices are discovered and fully explored
    - They are adjacent only to black and gray vertices







































































Set of edges  $\{ (\pi.v, v) : v \neq s \}$  forms a tree.



### **BFS Algorithm**

```
BFS(G,s)
    for each vertex u \in G. V - \{s\}
        u.color = WHITE
       u.d = \infty
        u.\pi = NIL
 5 \quad s.color = GRAY
 6 \quad s.d = 0
   s.\pi = NIL
 8 Q = \emptyset
    ENQUEUE(Q,s)
    while Q \neq \emptyset
10
11
        u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
                 ENQUEUE(Q, v)
17
    u.color = BLACK
18
```

v.d: distance from vertex v to the source s

 $v.\pi$ : predecessor of vertex v along the shortest path from source s.

Adj[u]: list of neighbours of vertex u.

$$\Theta(V+E)$$



## **BFS Algorithm**

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

6 print v

v

v

v

v
```



s w x y



### Depth First Search (DFS)

- Input:
  - Graph G=(V, E), either directed or undirected
- **Output:** Two *timestamps* on each vertex:
  - v.d = discovery time
  - v.f = finishing time
  - $v.\pi$  = predecessor of vertex v in the DFS.



These will be useful for other algorithms later on !



## Depth First Search (DFS)

- To keep track of progress, depth first search colors each vertex white, gray, or black.
  - White vertices have not been discovered
    - All vertices start out white
  - Grey vertices are discovered but not fully explored
    - They are visited but waiting for neighborhood visit
  - Black vertices are discovered and fully explored
    - Every edge leaving the vertex has been explored



















Tree Edge: visiting new vertex (gray → white)













**Back Edge:** from descendent to ancestor (gray  $\rightarrow$  gray)























































#### **DFS Algorithm**

```
DFS(G)

1 for each vertex u \in G.V

2 u.color = \text{WHITE}

3 u.\pi = \text{NIL}

4 time = 0

5 for each vertex u \in G.V

6 if u.color = \text{WHITE}

7 DFS-VISIT(G, u)
```



#### **DFS Algorithm**

```
DFS-VISIT(G, u)
                                  // white vertex u has just been discovered
    time = time + 1
 2 \quad u.d = time
 3 u.color = GRAY
 4 for each v \in G.Adj[u]
                                 // explore edge (u, v)
        if v.color == WHITE
            \nu.\pi = u
            DFS-VISIT(G, \nu)
                                  /\!\!/ blacken u; it is finished
   u.color = BLACK
 9 time = time + 1
10 u.f = time
```







#### Wrap-up

- We learned:
  - Fundamental some concepts in graph theory
  - Search in graph
    - BFS
    - DFS

