

Incorporating User-Generated Waze Data and Machine Learning into Traffic Analysis: A Case-Study in Louisville, Kentucky

Matthew D. Harris

Let's talk about...

- 1. Waze Warp Louisville, KY OPI2
 - Cloud based Waze platform
 - Waze CCP program
 - Other similar analytics platforms
- 2. Use case Louisville, KY
 - Penn MUSA Practicum
 - Congestion Prediction Model
 - Web-Application
 - Lessons Learned

Use Case: Louisville, KY

- Traffic Congestion Prediction
- Penn MUSA Team:
 - Sagari Datta
 - Dhruvi Kothari
 - Lufeng Lin
 - Andrew Renninger

https://pennmusa.github.io/MUSA 801.io/project 8/index.html

Model Features

Temporal

Local time
Hour
Peak
Day
Weekday
Weekend
Month
Year
Holiday

Built Environment

Parking Count
Off Street Parking
Incidents
Commercial Buildings
Residential Buildings
Retail Buildings
Total Buildings

<u>Weather</u>

Precip. Probability Temperature Humidity Pressure

Wind Speed

Snow

Heavy Rain

Fog

Hurricane

Roadways

Freeway

Count of Turns

Roundabouts

Stop Signs

Crossways

Tolls

Traffic Signs

Intersections

Modeling Approaches

Conditional on previous traffic, time, weather, and the build environment, what is the predicted length (meters) of a traffic jam for any given place and time?

Mixed Effect Linear Model (Ime4)

Control for space and time Linear and additive functions Partial Pooling Specify error distribution

Mixed Random Forest (MixRF)

Control for space and time
Piecewise linear functions
Lowers variance via ensemble

Bayesian Timeseries Forecasting (Prophet)

Control for time
Piecewise non-linear functions
Robust to cycles and trends

Mixed Effects Model – Partial Pooling

- Each grouping is assumed to have separate, but correlated regression parameters
- Groups with lots of information share strength to groups lacking information
- All groups regress to the global mean

$$Jam\ Length_i \sim \alpha_{grid_cell,\ freeway} + \beta_{hour,\ incidents} x_i + \epsilon$$

Predictor Variable x

Predictor Variable x

Graphic from: Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794https://doi.org/10.7717/peeri.4794

Prediction Errors – How does it generalize?

Conventional CV

Data set	Mean Absolute Error
Training	1.70 meters
Test	1.71 meters

Spatial CV

Neighborhood	Mean Absolute Error
Central Business District	4.34 meters
Clifton	2.12 meters
Southside	0.97 meters

Temporal CV

Day of the Week

Predicting Average Under New Conditions

Predicted Traffic Intensity for an Average Week November Sun, 0am - Louisville, KY

Opportunities and Challenges of this Model:

Opportunities:

- Methods to address large volume of user data
- Model Endogenous and Exogenous factors
- Address space and time correlation
- Measure errors across space and time
- New way to approach traditional problems

Challenges:

- Large data volume problematic in spatial joins and aggregation
- Need to include road network topology & spatially explicit relationships
- Dimensionality of model grows with each feature
- Need to connect to metrics for social and economic impacts of traffic

Operationalizing Model

https://msdakot.github.io/Congestion-Prediction-in-Louisville-KY/index.html#

Thank you!

Any question?

Matthew D. Harris AECOM & Penn MUSA

matthew.d.harris@aecom.com

md_harris

