- **>** # Задание 1
- = # Упростить алгеброическое выражение
 > simplify $\left(\frac{x^5 + 5 x^4 16 x 80}{x^3 + 2 x^2 + 4 x + 8}\right)$; # Упрощаем первую часть

$$x^2 + 3x - 10$$
 (1)

$$\frac{3x^{4} + 10x^{3} - 16x - 80}{x^{2} + 2x + 4}$$
 (2)

 \Rightarrow simplify $\left(\frac{\%\%}{\%}\right)$ # Упрощаем при деление первой части на вторую

$$\frac{(x^2+3x-10)(x^2+2x+4)}{3x^4+10x^3-16x-80}$$
 (3)

- - # Привести к многочлену
- > $expand((4x-3)\cdot(3x^2+2)\cdot(2x+1))$ # Раскрывает скобки выражения $24x^4-6x^3+7x^2-4x-6$ **(4)**
- _ **_>** > #Задание 3
 - # Разложение на множетели
- > $factor(16x^4 + 76x^3 + 68x^2 76x 84)$ # Разложение многочлена на множетели 4(x-1)(4x+7)(x+3)(x+1)**(5)**
- **>** > # Задание 4
 - # Построить График и Найти корни
- > $plot(3 x^5 50 x^4 299 x^3 760 x^2 + 748 x 240, x = -30..30, y = -10000..10000)$ # Строит график функции на графике на промежутках $x \in [-30;30]$ и $y \in [-10000..1000]$.100007

 \Rightarrow fsolve(3 $x^5 - 50 x^4 - 299 x^3 - 760 x^2 + 748 x - 240, x = 20 ...30)$ # Поиск решения на промежутке от $x \in [20; 30]$. Точки выбраны, смотря на график выше.

> # Задание 5

Забание 3
Разложить на простые дроби
convert
$$\left(\frac{3x^4 + 2x^3 + 4x - 3}{(x^2 + 2) \cdot (x - 3)^2 \cdot (x^2 - 1)}, parfrac\right)$$

convert(f, parfrac) расскладывает функцию на простейши
$$\frac{153}{44 (x-3)^2} + \frac{1}{16 (x+1)} - \frac{317}{1936 (x-3)} + \frac{1}{4 (x-1)} + \frac{1}{121} \frac{-18 x - 21}{x^2 + 2}$$
(7)

Решите графически уравнение и найдите его приближенные корни с точностью до 5 $\cdot 10^{5}$.

>
$$plot([\ln^2(x-2), 2\sin(3x) - 1.5], x = \frac{3 \cdot Pi}{4} ..Pi, y = 0..0.5, scaling = constrained)$$

Построение графика функций левой и правой части уравнения

> Digits := 6 :
$$fsolve \left(\ln^2(x-2) = 2 \sin(3 x) - 1.5, x = \frac{25 \cdot Pi}{32} ... \frac{27 \cdot Pi}{32} \right)$$
Решение уравнения на промежутке $x = \frac{25 \cdot Pi}{32} ... \frac{27 \cdot Pi}{32},$
точки выбраны исходя из точек пересеченя на графике выше 2.52319

> Digits := 6 :
$$fsolve\Big(\ln^2(x-2) = 2\sin(3x) - 1.5, x = \frac{29 \cdot Pi}{32} ... \frac{31 \cdot Pi}{32}\Big)$$
Решение уравнения на промежутке $x = \frac{29 \cdot Pi}{32} ... \frac{31 \cdot Pi}{32},$
точки выбраны исходя из точек пересеченя на графике выше 2.85241 (9)

-> # Задание 7

Доказать предел и определить a_n , начиная с которого все членын последовательности попадают в окрестность ε точки a

$$> s := \frac{3 n - 2}{2 n + 1}$$
:

$$ightharpoonup \epsilon \coloneqq \frac{1}{10}$$
:

$$A := \frac{3}{2}$$

$$\{17 < n\} \tag{10}$$

 $s1 := plot(\{seq([n, s], n = 10..24)\}, color = gray) # Устанавливаем серый цвет$

>
$$s2 := plot([A - \varepsilon, A, A + \varepsilon], x = 10..24)$$

 $\rightarrow plots[display](s1, s2)$

> # Задание 8

Вычислите пределы числовых последовательностей

>
$$limit(sqrt((n+2) \cdot (n+1)) - sqrt((n-1) \cdot (n+3)), n = infinity)$$

$$\frac{1}{2}$$
(11)

$$limit\left(\left(\frac{n^2-3\ n+6}{n^2+5\ n+1}\right)^{\frac{n}{2}}, n=infinity\right)$$

$$e^{-4}$$
(12)

> # Задание 9

Выполнить разные действия над кусочно заданной функцией

> **a9** :=
$$piecewise\left(x < -Pi, 4 \cdot \cos(2x), x \ge -Pi, 6 \cdot \exp\left(-\frac{4}{10} \cdot x\right)\right)$$
 #Задания кусочно-непрерывных функции

> plot(a9)

 \rightarrow limit(a9, x =- Pi, left) # Поиск пределов в точках разрыва

> limit(a9, x =-Pi, right)

$$6 (e^{\pi})^{2/5}$$
 (15)

= \blacktriangleright limit(a9, x = infinity, left)# Поиск предела на бесконечности

> limit(a9, x = -infinity, right)

> a9d := a9' # Производная заданной функции

(18)

$$a9d := \begin{cases} -8\sin(2x) & x < -\pi \\ undefined & x = -\pi \\ -\frac{12}{5} e^{-\frac{2}{5}x} & -\pi < x \end{cases}$$
 (18)

> plot([a9, a9d, a9p], color = [gray, black, cyan])

> $convert \left(\int_{1}^{5} a9 \, dx, double \right) \# Получаем значение площади и выводим в виде десятичной дроби$

- **>** # Задание 10

 - # Постройте кривые на плоскости # Для кривой 2-го порядка найти каноническое уравнение

> restart:
> with(plots): with(LinearAlgebra):
>
$$y1 := \frac{7}{10} \cdot \exp\left(-\frac{4}{10}x\right) \cdot \cos(5x + 4)$$

$$y1 := \frac{7}{10}$$

$$yI := \frac{7}{10} e^{-\frac{2}{5}x} \cos(5x+4)$$
 (21)

> plot(y1)

 $y2(x,y) := 11 x^2 - 20 x \cdot y - 4 y^2 - 20 x - 8 y + 1 :$ # Кривая второго порядка, для него будем искать каноническое уравнение

> plots[implicit plot](y2(x, y) = 0, x = -100..100, y = -100..100)

>
$$x3(t) := \sin(2 \cdot t)^3$$
:
> $y3(t) := \cos(3 \cdot t)^3$:
> $plot([x3(t), y3(t), t = 0 ... 2 \cdot Pi])$

$$> \rho(\varphi) := 2 + 2 \cdot \cos\left(4 \cdot \varphi - \frac{\text{Pi}}{3}\right) :$$

> $plots[polarplot](\rho(\phi), \phi = 0... 2 Pi)$

> restart : with(plots) : with(LinearAlgebra) : # Подключаем нужные библиотеки $y2 := 11 x^2 - 20 x \cdot y - 4 y^2 - 20 x - 8 y + 1$ $y2 := 11 x^2 - 20 x y - 4 y^2 - 20 x - 8 y + 1$ (22)

 $> v \coloneqq Eigenvectors(M); \# Haxoдим собственные векторы$

$$v := \begin{bmatrix} 16 \\ -9 \end{bmatrix}, \begin{bmatrix} -2 & \frac{1}{2} \\ 1 & 1 \end{bmatrix}$$
 (23)

> $subs(x = e1[1] \cdot x1 + e2[1] \cdot y1, y = e1[2] \cdot x1 + e2[2] \cdot y1, y2)$: # Подствляем значения expr := simplify(%) # U упрощаем полученное выражение

$$expr := 16 xI^2 - 9 yI^2 + \frac{32}{5} xI\sqrt{5} - \frac{36}{5} yI\sqrt{5} + 1$$
 (24)

ightharpoonup = Student[Precalculus][CompleteSquare](expr) # Выделяем полный квадрат

$$expr_p := -9\left(yI + \frac{2}{5}\sqrt{5}\right)^2 + 16\left(xI + \frac{1}{5}\sqrt{5}\right)^2 + 5$$
 (25)

>
$$expr_c := subs \left(xI = x4 - \frac{1}{5} \operatorname{sqrt}(5), yI = y4 - \frac{2}{5} \operatorname{sqrt}(5), expr_p \right)$$

#Подстановка нужных знаечний

$$expr_c := 16 x4^2 - 9 y4^2 + 5$$
 (26)

> $expr := subs(x4 = x, y4 = y, expr_c)$

$$expr := 16 x^2 - 9 y^2 + 5 (27)$$

= \rightarrow implicit plot (expr = 0, x = -5 ...5, y = -5 ...5)

