Package 'htpp.pl'

February 6, 2024

version 0.2
Description This package provides code for rapid and robust processing of in vitro high-throughput phenotypic profiling (HTPP) assay data. This involves processing across multiple levels of analysis including raw data normalization, cell viability estimation, and concentration-response modeling of several analysis methods defined in Nyffeler et al. 2023 (PMID: 32862757) using the tc-plfit2 R package. Results across all levels of the analysis are stored using MongoDB.
Imports data.table (>= 1.14.8), plyr (>= 1.8.8), devtools (>= 2.4.3), dplyr (>= 1.1.3), tidyr (>= 1.3.0), readr (>= 2.1.4), jsonlite (>= 1.8.7), foreach (>= 1.5.2), mongolite (>= 2.7.2), stringr (>= 1.5.0), tictoc (>= 1.2), ggplot2 (>= 3.4.3), tcplfit2 (>= 0.1.5), rlist (>= 0.4.6.2), parallel (>= 3.6.0), doParallel (>= 1.0.17), tibble (>= 3.2.1)
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

R topics documented:

License MIT + file LICENSE

Suggests knitr,

rmarkdown **VignetteBuilder** knitr

Title High-Throughput Phenotypic Profiling Pipeline

2
3
4
5
5
6
7
7
8
8
9
9
C

2 axis.breakJN

	CVanalysis	10
	Euclidean_norm_vec	11
	findDataCols	11
	generate_cvBMC	12
	generate_cvTcpl	12
	generate_cvWell	13
	generate_htppBmc_catMah	13
	generate_htppBmc_globalMah	14
		14
	generate_htppFeature_htppCategory	15
	generate_htppGlobalMah	
	generate_htppNullChems	17
	generate_htppPac_catMah	18
	generate_htppPac_globalMah	18
	generate_htppProfile	
	generate_htppWell	19
	_ 11	20
	generate_htppWellTrt_htppChem	21
	globalMahalanobisDistances	
	GOLetter	
	Level5	23
	maxJN	23
	minJN	24
	mongoQuery	24
	mongoURL	25
	nullProbs_catMah	
	outerFences	
	pacPlots_htppCatMah	27
	pacPlots_htppGlobalMah	
	•	28
	plotCurves	28
	pseudoBmcPlots_htppCatMah	
	Raw2Level4	
	validate_htpp_sampleKey	31
		32
		32
		33
	č	
Index		34
		_
axis	.breakJN places a break marker at the position "breakpos" in user coordinates	
	on the axis nominated	

Description

places a break marker at the position "breakpos" in user coordinates on the axis nominated

Usage

```
axis.breakJN(
  axis = 1,
  breakpos,
  bgcol = "white",
  breakcol = "black",
  style = c("slash"),
  brw = 0.02,
  Lwd = 1
)
```

Arguments

numeric: which axis the break will be on
breakpos numeric: where the break will be
bgcol character string: the background color; white by default
breakcol character string: the color of the axis break; black by default
style list of strings: whether the break is a slash or a zigzag
brw numeric: the break width; 0.02 by default
Lwd numeric: line width for the plot; 1 by default

Value

The current plot with zigzag axis breaks at the desired place, to better fit data in a visualization

```
categoryMahalanobisDistances
```

Calculate category mahalanobis distances for pipeline data

Description

Calculate category mahalanobis distances for pipeline data

```
categoryMahalanobisDistances(
   Level5,
   FeatureList,
   CategoryName,
   coverVariance,
   minObjects,
   SType = "vehicle control",
   mongoUrl
)
```

4 cellViability_plots

Arguments

Level 5 table: A table of well data at "level 5" in the pipeline

FeatureList matrix: The features for each category

CategoryName character string: The category whose variances are being compared

coverVariance

numeric: The known variance of the well data

minObjects numeric: The minimum number of expected objects

SType character string: Defines which sample type will be used for data normalization;

"vehicle control" by default

mongoUrl character string: the database where the collections are be stored and the re-

quired credentials, generated by the mongoURL function

Value

VarianceExplainedList a list of variances with category Mahalanobis distances calculated

cellViability_plots

This function will generate a plot for each chem_id in the HTPP dataset (for each cell type if applicable). Creates a plot of cell viability data for each chemical id in the dataset in the location specified

by filepath.

Description

This function will generate a plot for each chem_id in the HTPP dataset (for each cell type if applicable). Creates a plot of cell viability data for each chemical id in the dataset in the location specified by filepath.

Usage

```
cellViability_plots(file_path, study_name, mongoUrl, refChems = TRUE)
```

Arguments

file_path character string: path to directory where HTPP plots will be populated

study_name character string: name of study to be used for plot titles

mongoUrl character string: the database where the collections are be stored and the re-

quired credentials, generated by the mongoURL function

refChems boolean: only make viability plots for reference chemicals instead of all chemi-

cals; default in TRUE

Cluster.by.Channel 5

Cluster.by.Channel *Orders the columns to be a heatmap axis*

Description

Orders the columns to be a heatmap axis

Usage

```
Cluster.by.Channel(Data)
```

Arguments

Data

table to be reordered

Value

newOrder

ColumnColors

Assigns a color to each column of data by name

Description

Assigns a color to each column of data by name

Usage

```
ColumnColors(Data, dataform = "matrix")
```

Arguments

Data dataframe: the data being assigned color

dataform character string: whether the data is a "matrix" or a "vector"

Value

array of colors matching each of the columns in the data, to distinguish them in plots

6 concRespPlot_JN

```
concRespPlot_JN Concentration Response Plot
```

Description

Concentration Response Plot

Usage

```
concRespPlot_JN(row, ymin = NULL, ymax = NULL)
```

Arguments

row vector: Row containing response data to be plotted
ymin numeric: y axis minimum
ymax numeric: y axis maximum

Value

a log concentration-response plot

```
conc <- list(.03, .1, .3, 1, 3, 10, 30, 100)
resp <- list(0, .2, .1, .4, .7, .9, .6, 1.2)
row <- list(conc = conc,</pre>
            resp = resp,
            bmed = 0,
             cutoff = 0.25,
             onesd = 0.125,
            name = "some chemical",
            assay = "some assay")
res <- tcplfit2::concRespCore(row, conthits = TRUE)
res <- dplyr::mutate(.data = res,</pre>
                      la = NA,
                      q = NA,
                      stype = "test sample",
                      endpoint = "test")
Subset <- dplyr::mutate(.data = res,</pre>
                         acc = ifelse(is.na(acc), bmd, acc))
Subset2 <- dplyr::filter(.data = Subset,</pre>
                          stype %in% c("test sample") & bmd < 100 & hitcall > 0.90)
concRespPlot_JN(Subset2,ymin=-0.5,ymax=2)
```

correctChemName 7

correctChemName	Replaces colons in chemical names with '-' so they will be read in
	correctly

Description

Replaces colons in chemical names with '-' so they will be read in correctly

Usage

```
correctChemName(String)
```

Arguments

String character string: chem names to correct

Value

chem_names that fit the correct pattern

Examples

```
correctChemName("test:chemical")
```

```
curveFit_htppCatMah
```

Category Mahalanobis curve fitting, adds category Mahalanobis fit data to htpp_tcpl collection

Description

Category Mahalanobis curve fitting, adds category Mahalanobis fit data to htpp_tcpl collection

Usage

```
curveFit_htppCatMah(minObjects, mongoUrl, rerun = FALSE, nThreads = 1)
```

Arguments

minObjects	numeric: The minimum number of objects used to filter the dataset for analysis
mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl
rerun	boolean: rerun = TRUE will drop existing htpp_tcpl collection for global mah values (htpp_tcpl\$remove(query=mongoQuery(approach="category")) and reinsert; FALSE by default
nThreads	numeric: the number of threads to use for processing; default is 1

curveFit_htppFeature

Feature-level curve fitting, adds feature-level fit data to htpp_tcpl collection

Description

Feature-level curve fitting, adds feature-level fit data to htpp_tcpl collection

Usage

```
curveFit htppFeature(minObjects, mongoUrl, rerun = FALSE, nThreads = 1)
```

Arguments

rerun

minObjects numeric: The minimum number of objects used to filter the dataset for analysis character string: URL to connect to MongoDB for HTPP dataset; can be created mongoUrl using the mongoURL function in htpp.pl boolean: rerun = TRUE will drop existing htpp_tcpl collection for feature (htpp_tcpl\$remove(query=r

and reinsert; FALSE by default

nThreads • numeric: the number of threads to use for processing; default is 1

curveFit_htppGlobalMah

Global Mahalanobis curve fitting, adds global Mahalanobis fit data to htpp_tcpl collection

Description

Global Mahalanobis curve fitting, adds global Mahalanobis fit data to htpp_tcpl collection

Usage

```
curveFit_htppGlobalMah(minObjects, mongoUrl, rerun = FALSE)
```

Arguments

numeric: The minimum number of objects used to filter the dataset for analysis minObjects character string: URL to connect to MongoDB for HTPP dataset; can be created mongoUrl using the mongoURL function in htpp.pl

boolean: rerun = TRUE will drop existing htpp_tcpl collection for global mah rerun $values\ (htpp_tcpl\$remove(query=mongoQuery(approach="global", endpoint="global"))$

and reinsert; FALSE by default

```
curvePlots_htppCatMah
```

plot category Mahalanobis distances and save the plots to the location specified by file_path.

Description

plot category Mahalanobis distances and save the plots to the location specified by file_path.

Usage

```
curvePlots_htppCatMah(file_path, study_name, mongoUrl)
```

Arguments

file_path	character: file path to where category mah plots will be created
study_name	character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"
mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

Value

a summary table for debugging

```
curvePlots_htppFeature
```

Feature plotting function, writes plots of feature-level data to the location specified by file_path

Description

Feature plotting function, writes plots of feature-level data to the location specified by file_path

Usage

```
curvePlots_htppFeature(file_path, study_name, mongoUrl)
```

Arguments

file_path	character: file path to where global mah plots will be created
study_name	character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"
mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

10 CVanalysis

```
curvePlots_htppGlobalMah
```

Plots global mahalanobis distances from htpp_tcpl collection, writes plots of global data to the location specified by file_path

Description

Plots global mahalanobis distances from htpp_tcpl collection, writes plots of global data to the location specified by file_path

Usage

```
curvePlots_htppGlobalMah(file_path, study_name, mongoUrl)
```

Arguments

file_path	character: file path to where global mah plots will be created
study_name	character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"
mongoUrl	haracter string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

CVanalysis Reformats the data into a Mongo collection, normalizes it based on the solvent control and finds the percent responder cells. Inputs the cv_well and cv_image_metadata collections.

Description

Reformats the data into a Mongo collection, normalizes it based on the solvent control and finds the percent responder cells. Inputs the cv_well and cv_image_metadata collections.

```
CVanalysis(
   InputPath,
   PlateID,
   SType = "vehicle control",
   mongoUrl,
   minNucleiArea = 30,
   maxNucleiArea = 1000,
   minRoundness = 0.5
)
```

Euclidean_norm_vec 11

Arguments

InputPath character string: the input path to the Harmony file

PlateID character string: the plate_id value

SType character string: Defines which sample type will be used for data normalization;

"vehicle control" by default

mongoUrl character string: The MongoDB host, user, password and database

minNucleiArea

numeric: The minimum area for something flagged as nucleus for QC

maxNucleiArea

numeric: The maximum area for something flagged as nucleus for QC

minRoundness numeric: The minimum cell roundness for something to be recognized as a cell

Euclidean_norm_vec Calculate the Euclidean norm of a vector

Description

Calculate the Euclidean norm of a vector

Usage

```
Euclidean_norm_vec(vect)
```

Arguments

vect Numeric vector: the vector you will take the euclidean norm of

Value

Numeric: the Euclidean norm of the vector

Examples

```
Euclidean_norm_vec(c(1,5,3,4,12))
```

findDataCols finds columns by name, if inv is true, only finds those columns that exist

in the data

Description

finds columns by name, if inv is true, only finds those columns that exist in the data

```
findDataCols(Table, inv = F, names = F)
```

12 generate_cvTcpl

Arguments

Table A table of cell-painting data

inv A boolean, if it's TRUE, findDataCols only finds those columns that exist in the

data

names A boolean, if it's TRUE, return only the column names, if it's FALSe, return the

columns

Value

Either the column names, or the columns in Table, based on whether names is TRUE

generate_cvBMC

Creates and populates cell viability bmc (cv_bmc) collection in mongo

Description

Creates and populates cell viability bmc (cv_bmc) collection in mongo

Usage

```
generate_cvBMC(mongoUrl, rerun = FALSE)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun TRUE will drop existing collection and reinsert; FALSE by default

generate_cvTcpl

Creates cell viability collection cv_tcpl based on well and chem data

Description

Creates cell viability collection cv_tcpl based on well and chem data

Usage

```
generate_cvTcpl(cell_viability, mongoUrl, rerun = FALSE)
```

Arguments

cell_viability

boolean: if cell_viability = TRUE, the CVData_all object in line 218 should pull out data from the cv_well collection, otherwise it will pull data from the

htpp_well collection

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing cv_tcpl collection and reinsert; FALSE

by default

generate_cvWell 13

_	Create mongo collection for cell viability by well (cv_well) from well created collection
---	---

Description

Create mongo collection for cell viability by well (cv_well) from well treated collection

Usage

```
generate_cvWell(file_path, mongoUrl, rerun = FALSE)
```

Arguments

file_path	character string: file path to the top level directory of cell viability Harmony files for an HTPP dataset (i.e., the directory above plate-level directories)
mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl
rerun	boolean: rerun = TRUE will drop existing cv_well collection and reinsert; FALSE by default

```
{\it generate\_htppBmc\_catMah} \\ {\it Add\ category\ Mahalanobis\ distance\ information\ to\ htpp\_bmc\ collection} \\
```

Description

Add category Mahalanobis distance information to htpp_bmc collection

tion

Usage

```
generate_htppBmc_catMah(
  mongoUrl,
  hitCall = 0.95,
  bmc_max = NA,
  bmc_min = 10^0.5,
  rerun = FALSE
)
```

Arguments

mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl
hitCall	numeric (between 0-1): Hitcall threshold from tcplfit2 to use for filtering good BMD values; default is 0.95
bmc_max	numeric: The maximum bmc value if bmd > highest tested conc; default is NA

bmc_min	numeric: Defines the denominator for calculating the minimum bmc value for cases where the bmc is less that the lowest tested conc (i.e., minimum tested conc/bmc $_$ min); default is $10^{\circ}0.5$
rerun	boolean: rerun = TRUE will drop existing entries in htpp_bmc for approach = "global" and endpoint = "global", and reinsert; FALSE by default

```
generate_htppBmc_globalMah
```

Create htpp_bmc collection based on htpp_tcpl and adds global mahalanobis distances into htpp_bmc

Description

Create htpp_bmc collection based on htpp_tcpl and adds global mahalanobis distances into htpp_bmc

Usage

```
generate_htppBmc_globalMah(
  mongoUrl,
  hitCall = 0,
  bmc_max = NA,
  bmc_min = 10^0.5,
  rerun = FALSE
)
```

Arguments

mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl
hitCall	numeric (between 0-1): Hitcall threshold from tcplfit2 to use for filtering good BMD values; default is 0 for no hitcall filtering
bmc_max	numeric: The maximum bmc value if bmd > highest tested conc; default is NA
bmc_min	Defines the denominator for calculating the minimum bmc value for cases where the bmc is less that the lowest tested conc (i.e., minimum tested conc/bmc_min); default is $10^{0.5}$
rerun	rerun = TRUE will drop existing entries in htpp_bmc for approach = "global" and endpoint = "global", and reinsert; FALSE by default

```
generate_htppCatMah
```

Create htpp collection htpp_cat_mah for category Mahalanobis distances

Description

Create htpp collection htpp_cat_mah for category Mahalanobis distances

Usage

```
generate_htppCatMah(
  coverVariance,
  minObjects,
  mongoUrl,
  varianceExplainedPath,
  nThreads = 1,
  rerun = FALSE
)
```

Arguments

coverVariance

numeric: The value of variance explained used to determine the number of eigen

features used in analysis

minObjects numeric: The minimum number of objects used to filter the dataset for analysis

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

varianceExplainedPath

character string: the path where the function will write variance explained meta-

data

nThreads numeric: the number of threads to use for processing; default is 1

rerun boolean: rerun = TRUE will drop existing htpp_cat_mah collection and reinsert;

have FALSE by default

generate_htppFeature_htppCategory

Inserts feature and category data into mongo collection htpp_feature and htpp_category

Description

Inserts feature and category data into mongo collection htpp_feature and htpp_category

Usage

```
generate_htppFeature_htppCategory(
  inputPath,
  PlateID,
  mongoUrl,
  file_path = "",
  rerun = FALSE
)
```

Arguments

inputPath character string: Can either be a truncated path, or a full path to a HTPP data

file. If it is truncated, the function will rebuild a full path using file_path

PlateID character string: The PlateID for the plate being analyzed

mongoUrl character string: The database where the collections will be stored

file_path character string: The path to where the input file is located

rerun boolean: Whether to delete and reinsert into both collections; false by default

```
generate_htppGlobalMah
```

Calculate, plot and record global Mahalanobis distances from mongo data

Description

Calculate, plot and record global Mahalanobis distances from mongo data

Usage

```
generate_htppGlobalMah(
  coverVariance,
  minObjects,
  plot_file_path,
  study_name,
  mongoUrl,
  rerun = FALSE
)
```

Arguments

coverVariance

numeric: The value of variance explained used to determine the number of eigen

features used in analysis

minObjects numeric: The minimum number of objects used to filter the dataset for analysis

plot_file_path

character string: file path where variance explained plots will be created

study_name character string: the name of the experiment used to title the plots

mongoUrl URL to connect to MongoDB for HTPP dataset; can be created using the mon-

goURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing cv_well collection and reinsert; FALSE

by default

```
generate_htppNullChems
```

Create plots for signal strength and add NULL chemicals to https://html.ncm

Description

Create plots for signal strength and add NULL chemicals to htpp_well_norm

Usage

```
generate_htppNullChems(
   n_lowest_conc = 2,
   n_cv_active_conc = 6,
   rel_cellCount = 50,
   plot_file_path,
   study_name,
   mongoUrl,
   ConcList = c(100, 10, 1, 0.1, 0.01, 0.001, 1e-04, 1e-05),
   rerun = FALSE
)
```

Arguments

```
n_lowest_conc
                  integer: The number of the lowest concentrations in a concentration series for
                  modeling Null chemical data; Default is 2 (i.e., dose_level 1 and 2)
n_cv_active_conc
                  integer: The number of cell viability active concentrations to be excluded; de-
                  fault is 6 (i.e., exclude chemicals where dose_level >= 6 are cell viability actives)
rel_cellCount
                  integer: The relative cell count threshold for excluding well data for Null chem-
                  ical sampling; default is 50 (i.e., exclude wells with rel_cell_count < 50)
plot_file_path
                   character string: file path where signal strength plots will be created
                  character string: the name of the study
study_name
                  character string: URL to connect to MongoDB for HTPP dataset; can be created
mongoUrl
                  using the mongoURL function in htpp.pl
                  numeric vector: vector of 8 test concentrations to be used for the NULL chemi-
ConcList
                  cals. c(100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001) by default.
rerun
                  boolean: rerun = TRUE will drop existing cv_well collection and reinsert; FALSE
                  by default
```

```
generate_htppPac_catMah
```

add category mahalanobis records to htpp_pac

Description

add category mahalanobis records to htpp_pac

Usage

```
generate_htppPac_catMah(mongoUrl, hit_n_conc = 4, rerun = FALSE)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

hit_n_conc numeric: Number of test concentrations needed during curve fitting to determine

if a PAC is a hit; default is 4

rerun boolean: rerun = TRUE will drop existing entries in htpp_bmc for approach =

"category", and reinsert; FALSE by default

generate_htppPac_globalMah

generate htpp_pac from htpp_bmc and add global mahalanobis distance records to htpp_pac

Description

generate htpp_pac from htpp_bmc and add global mahalanobis distance records to htpp_pac

Usage

```
generate_htppPac_globalMah(mongoUrl, hit_n_conc = 4, rerun = FALSE)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

hit_n_conc numeric: Number of test concentrations needed during curve fitting to determine

if a PAC is a hit; default is 4

rerun Boolean: TRUE will drop existing entries in htpp_bmc for approach = "global"

and endpoint = "global", and reinsert; default is FALSE

generate_htppProfile 19

Description

create htpp_profile collection

Usage

```
generate_htppProfile(n_cells, relative_cellCount, mongoUrl, rerun = FALSE)
```

Arguments

```
n_cells numeric: Minimum threshold for the number of cells to keep for filtering

relative_cellCount

numeric: Minimum threshold of the count of relative number of cells to use for filtering

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing collection and reinsert; FALSE by default
```

Description

Creates htppWell collections (htpp_well_raw, htpp_well, htpp_image_metadata)

```
generate_htppWell(
  file_path,
  mongoUrl,
  Cell_Type,
  CellArea.Limit,
  NucleiArea.Limit,
  SType = "vehicle control",
  n_max = 2000 * 384,
  rerun = FALSE,
  replace = FALSE
)
```

Arguments

file_path character string: file path to the top level directory of Harmony files for an HTPP dataset (i.e., the directory above plate-level directories) mongoUrl character string: The URL of the mongo database holding the collection, with user credentials to access it Cell_Type character string or list of strings: the cell type or types being used CellArea.Limit dictionary: A dictionary of cells and their corresponding cell area limits, of the form c("celltype" = list(c(lower,upper)))NucleiArea.Limit dictionary: A dictionary of cells and their corresponding nuclei area limits, of the form c("celltype" = list(c(lower,upper)))SType character string: The sample type used for normalization. Set to "vehicle control" by default numeric: The maximum dimensions of the table n_max rerun boolean: Whether to drop and replace the collections in the dataframe before inserting replace boolean: Whether you want to replace existing records in the mongo database; false by default

generate_htppWellNorm

Create http_well_norm, a collection of normalized well data for all plate groups

Description

Create http_well_norm, a collection of normalized well data for all plate groups

Usage

```
generate_htppWellNorm(mongoUrl, rerun = FALSE)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing collection and reinsert; have FALSE

by default

```
generate_htppWellTrt_htppChem
```

Adding chemical id and sample data to htpp_well_trt, htpp_chem

Description

Adding chemical id and sample data to htpp_well_trt, htpp_chem

Usage

```
generate_htppWellTrt_htppChem(
   SampleKey,
   mongoUrl,
   rerun = FALSE,
   replace = TRUE
)
```

Arguments

SampleKey dataframe: The sample key with chemical info and metadata

mongoUrl characters string A mongoUrl with credentials to access the database

rerun boolean: Whether you want to clear the mongo database as you go and refill it;
false by default

replace boolean: Whether you want to replace existing records in the mongo database;

globalMahalanobisDistances

Calculate global Mahalanobis distances for a table

Description

Calculate global Mahalanobis distances for a table

false by default

```
globalMahalanobisDistances(
   Table1,
   coverVariance,
   minObjects,
   SType = "vehicle control",
   url
)
```

22 GOLetter

Arguments

Table1 table: A table of well data

coverVariance

numeric: The known variance of the well data

minObjects numeric: Minimum number of cells for plate to pass QC filter

SType character string: Defines which sample type will be used for data normalization;

"vehicle control" by default

url character string: The MongoDB host, user, password and database

Value

A list of cumulative proportion, rotation matrix and inverse covariance

GOLetter

gives one letter abbreviations to attributes

Description

gives one letter abbreviations to attributes

Usage

```
GOLetter (Vector)
```

Arguments

Vector a vector of cell attributes

Value

vector of single-letter abbreviations of the attributes listed, to distinguish points on a plot

```
GOLetter(c("test"))
```

Level5 23

Level5

Level 5 analysis on plate data

Description

Level 5 analysis on plate data

Usage

```
Level5(PlateGroup, SType = "vehicle control", mongoUrl)
```

Arguments

PlateGroup character string: The plate group id

SType character string: What type of plate is used, for QC check if the stype field in

the data agrees with it

mongoUrl character string: The MongoDB url of the database with user credentials

Value

Median, nMAD and normalized well data

maxJN

calculate the maximum, but return $N\!A$ is no number is present (pmax

doesn't work with summarise)

Description

calculate the maximum, but return NA is no number is present (pmax doesn't work with summarise)

Usage

```
maxJN(x)
```

Arguments

Х

a vector one wants the maximum of

Value

The maximum, or NA if there are no nonzero numbers in X

```
maxJN(c(4,1,7,10,9))
maxJN(c(NA, NA, NA, NA, NA, NA, NA, NA, O))
```

24 mongoQuery

minJN

calculate the minimum, but return NA is no number is present (pmin doesn't work with summarise)

Description

calculate the minimum, but return NA is no number is present (pmin doesn't work with summarise)

Usage

```
minJN(x)
```

Arguments

Х

a vector one wants the minimum of

Value

The minimum, or NA if there are no nonzero numbers in X

Examples

```
minJN(c(4,1,7,10,9))
minJN(c(NA, NA, NA, NA, NA, NA, NA, NA, O))
```

mongoQuery

Build a mongo query from an arbitrary set of params or a list

Description

Build a mongo query from an arbitrary set of params or a list

Usage

```
mongoQuery(...)
```

Arguments

... (any) = Any set of named parameters OR a single named list of all arguments

Value

JSON query ready to pass to mongolite functions

```
mongoQuery(approach = "global", endpoint = "global")
```

mongoURL 25

mongoURL

Combines credentials into a MongoURL to access a database

Description

Combines credentials into a MongoURL to access a database

Usage

```
mongoURL(
  host,
  user,
  passwd,
  db,
  authSource = "admin",
  authMechanism = "SCRAM-SHA-256"
)
```

Arguments

host The database host
user The MongoDB username
passwd The password for that database
db The name of the database
authSource The authentication source
authMechanism

The authentication mechanism

Value

a MongoDB URL granting read access to the database

Examples

```
mongoURL(host="test", user="readonly", passwd="passwd", db="test_db")
```

nullProbs_catMah

Print out Category-level Null Chemical Maximum Hitcall Probabili-

Description

Print out Category-level Null Chemical Maximum Hitcall Probabilities

```
nullProbs_catMah(mongoUrl, null_max_conc = 100)
```

26 outerFences

Arguments

```
mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl
```

null_max_conc

integer: Maximum concentration of Null chemicals; default is 100 (uM)

outerFences

Tukey Outer fence function

Description

Tukey Outer fence function

Usage

```
outerFences(input_vector, iqr.factor = 3)
```

Arguments

```
input_vector vector: the data whose outer fences you want to calculate
iqr.factor numeric: the interquartile range factor. 3 by default.
```

Value

upper and lower fences

```
outerFences(input_vector= c(113.86844, 108.47126, 125.22345, 115.17092, 123.61978, 112.45098, 128.88594, 100.98654, 103.95449, 109.41060, 114.59485, 107.66969, 101.75302, 100.46038, 103.86191, 110.25791, 113.22980, 101.13067, 112.93010, 105.88312, 98.46702, 92.14626, 97.33307, 117.61402, 110.81441, 106.10610, 110.93701, 115.87897, 116.07416, 104.51375, 106.85793, 117.94644, 111.48693, 122.34972, 103.06462, 127.57024, 120.70566, 98.62746, 110.22989, 150.98643), iqr.factor=3)
```

pacPlots_htppCatMah 27

```
pacPlots_htppCatMah
```

Create plots from htpp PAC collection category documents

Description

Create plots from htpp PAC collection category documents

Usage

```
pacPlots_htppCatMah(file_path, study_name, mongoUrl)
```

Arguments

character: file path to where global mah plots will be created

study_name character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

pacPlots_htppGlobalMah

Plot PACs from global mahalanobis

Description

Plot PACs from global mahalanobis

Usage

```
pacPlots_htppGlobalMah(file_path, study_name, mongoUrl)
```

Arguments

file_path	character: file path to where global mah plots will be created
study_name	haracter string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"
mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

28 plotCurves

PchShape

PchShape

Description

PchShape

Usage

```
PchShape (Parameter.Name)
```

Arguments

Parameter.Name

character string: the parameter names being assigned graph shapes

Value

vector of 2-digit base r plots codes for single-letter abbreviations of the attributes listed, to distinguish points on a plot

Examples

```
PchShape("AGP")
```

plotCurves

Plots concentration-response data to visualize Benchmark Dose (BMD)

Description

Plots concentration-response data to visualize Benchmark Dose (BMD)

```
plotCurves(
   Subset,
   xLim = NULL,
   TestedRange = NULL,
   plotDatapoints = F,
   plotBMC = F,
   plotDoserange = F,
   plotNoiseband = T,
   Lwd = 1,
   cexAxis = 1,
   yLim = c(-5.5, 100),
   yTicks = NULL,
   yAxisSteps = 25
)
```

Arguments

Subset dataframe: the subset of the data to be plotted, for instance subset by a given

chemical

numeric: x limit of the plot; null by default. xLim

the dose range tested; null by default. TestedRange

plotDatapoints

boolean: whether the individual datapoints should be visualized on the plot

boolean: whether the BMC should be highlighted on the plot; false by default plotBMC

plotDoserange

boolean: whether the doserange should be plotted; false by default

plotNoiseband

boolean: whether the noise band should be plotted; true by default

Lwd numeric: line width on the plot; 1 by default numeric: scale of the axis labels; 1 by default cexAxis numeric: y limit of the plot; c(-5.5, 100) by default yLim numeric: the placement of y axis ticks; null by default. yTicks yAxisSteps

the frequency of y axis ticks, if yTicks is undefined

Value

hill plot of the data

```
pseudoBmcPlots_htppCatMah
```

plot pseudo-biomarker concentration and write the plots to the location specified in file_path

Description

plot pseudo-biomarker concentration and write the plots to the location specified in file_path

Usage

```
pseudoBmcPlots_htppCatMah(file_path, study_name, mongoUrl, bmc_min = 10^0.5)
```

Arguments

file_path character: file path to where global mah plots will be created

study_name character string: name of study to be used for plot titles, should follow a similar

naming convention used in other functions such as "viability_controlPlot_htppWell.R"

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

bmc_min numeric: Defines the denominator for calculating the minimum bmc value for

cases where the bmc is less that the lowest tested conc (i.e., minimum tested

conc/bmc_min); default is 10\^0.5

30 Raw2Level4

D 01 14	
Raw2Level4	Summarize, clean and format the raw data, and store it as a Mongo
	collection. Run basic QC before other steps

Description

Summarize, clean and format the raw data, and store it as a Mongo collection. Run basic QC before other steps

Usage

```
Raw2Level4(
   InputPath,
   PlateID,
   mongoUrl,
   Cell_Type = NULL,
   CellArea.Limit = NULL,
   NucleiArea.Limit = NULL,
   n_max = 2000 * 384,
   SType = "vehicle control"
)
```

Arguments

```
InputPath
                  character string: Path to the Harmony file
                  character string: the plate_id for the well plate
PlateID
mongoUrl
                  character string: The URL of the mongo database holding the collection, with
                  user credentials to access it
Cell_Type
                  character string: the cell line used; null by default.
CellArea.Limit
                  list: The size range for cells examined. If the Cell_Type is "U-2 OS", "MCF7",
                  "A549", "ARPE-19", "HepG2" or "HTB-9", this will autofill with their ranges.
                  Otherwise list(c(0, 99999999)) by default.
NucleiArea.Limit
                  list: The nucleus area range for cells examined. If the Cell_Type is "U-2 OS",
                  "MCF7", "A549", "ARPE-19", "HepG2" or "HTB-9", this will autofill with their
                  ranges. Otherwise list(c(0.99999999)) by default.
n_max
                  numeric: The maximum dimensions of the table
                  character string: The type of plate used, for instance, whether it is control
SType
```

```
validate_htpp_sampleKey
```

Reformatting the sample key into a more machine-readable form for later processing and checking it for errors

Description

Reformatting the sample key into a more machine-readable form for later processing and checking it for errors

Usage

```
validate_htpp_sampleKey(
   SampleKey,
   skipped_tests = c(),
   max_dose_level = 8,
   dataFrame = FALSE
)
```

Arguments

```
SampleKey File name, path to file, of the sample key file (in csv format) being used skipped_tests
The names of QC tests you want to skip

max_dose_level
The maximum dose level used

dataFrame Boolean, if TRUE, will treat SampleTable as data.frame/data.table input and not read in file; default is FALSE
```

Value

A reformatted sample key if there were no errors, or a list of errors if there were

```
sample_key <- data.table::fread(
file = system.file("extdata", "example_sampleKey.csv", package = "htpp.pl"),
sep = ",")

validated_sample_key <- validate_htpp_sampleKey(SampleKey = sample_key,
max_dose_level = 8, skipped_tests = "QCV_0", dataFrame = TRUE)</pre>
```

```
viability_controlPlot_htppWell
```

Create plots from htpp_well and write them to the location specified in file_path

Description

Create plots from htpp_well and write them to the location specified in file_path

Usage

```
viability_controlPlot_htppWell(
  file_path,
  vehicle_control,
  viability_positive_control,
  study_name,
  mongoUrl
)
```

Arguments

```
viability_controlPlot_htppWellNorm
```

Function to plot normalized well values based on vehicle and viability controls and write the plots to the location specified in file_path

Description

Function to plot normalized well values based on vehicle and viability controls and write the plots to the location specified in file_path

```
viability_controlPlot_htppWellNorm(
  mongoUrl,
  file_path,
  vehicle_control,
  viability_positive_control,
  study_name
)
```

Well3Digit 33

Arguments

mongoUrl A string consisting of the databased url and required credentials, generated by

the mongoURL function

file_path A string consisting of the path where the plots will be stored

vehicle_control

A string containing the vehicle chemical (such as dmso) used in this experiment

viability_positive_control

A string containing the viability positive control chemical

study_name A string containing the name of the study

Well3Digit

Convert 2 digit values to 3 digit in a vector by adding a preceding 0

Description

Convert 2 digit values to 3 digit in a vector by adding a preceding 0

Usage

```
Well3Digit(Vector)
```

Arguments

Vector

The vector being modified

Value

The vector with all 3 digit values

```
Well3Digit(c("100","10","30"))
```

Index

```
axis.breakJN, 2
                                         nullProbs_catMah, 25
categoryMahalanobisDistances, 3
                                         outerFences, 26
cellViability_plots,4
                                         pacPlots_htppCatMah, 27
Cluster.by.Channel, 5
                                         pacPlots htppGlobalMah, 27
ColumnColors, 5
                                         PchShape, 28
concRespPlot_JN, 6
                                         plotCurves, 28
correctChemName, 7
                                        pseudoBmcPlots_htppCatMah, 29
curveFit_htppCatMah, 7
curveFit_htppFeature, 8
                                         Raw2Level4, 30
curveFit_htppGlobalMah, 8
curvePlots_htppCatMah, 9
                                        validate_htpp_sampleKey, 31
curvePlots_htppFeature,9
                                         viability_controlPlot_htppWell,
curvePlots_htppGlobalMah, 10
                                                32
CVanalysis, 10
                                         viability_controlPlot_htppWellNorm,
Euclidean norm vec, 11
                                         Well3Digit, 33
findDataCols, 11
generate cvBMC, 12
generate_cvTcpl, 12
generate_cvWell, 13
generate_htppBmc_catMah, 13
generate_htppBmc_globalMah, 14
generate_htppCatMah, 14
generate_htppFeature_htppCategory,
      15
generate_htppGlobalMah, 16
generate_htppNullChems, 17
generate_htppPac_catMah, 18
generate htppPac globalMah, 18
generate_htppProfile, 19
generate_htppWell, 19
generate_htppWellNorm, 20
generate_htppWellTrt_htppChem, 21
globalMahalanobisDistances, 21
GOLetter, 22
Level5, 23
maxJN, 23
minJN, 24
mongoQuery, 24
mongoURL, 25
```