TOPS TECHNOLOGY

Module 4 – Introduction to DBMS

Presented By:

Nandni Vala

SQL Syntax

- 1. What are the basic components of SQL syntax?
- The basic components of SQL syntax are the building blocks used to write and execute SQL queries for managing and interacting with relational databases.
- ➤ 1.Keywords:
- Reserved words that define specific SQL operations.
- **Examples:**
 - > SELECT, FROM, WHERE, INSERT, UPDATE, DELETE, CREATE, DROP, JOIN, etc.
- > Keywords are not case-sensitive (though typically written in uppercase for readability)
- > 2. Statements:
- Commands or instructions that perform specific tasks in SQL.
- Common Types:
 - Data Definition Language (DDL): CREATE, ALTER, DROP
 - Data Manipulation Language (DML): SELECT, INSERT, UPDATE, DELETE
 - ▶ Data Control Language (DCL): GRANT, REVOKE
 - Transaction Control Language (TCL): COMMIT, ROLLBACK, SAVEPOINT

- ► 3. Clauses :
- Components of SQL statements that specify conditions or modify behavior.
- **Examples:**
 - > WHERE: Filters rows based on conditions.
 - ➤ GROUP BY: Groups rows that have the same values in specified columns.
 - ➤ ORDER BY: Sorts results in ascending or descending order.
 - ► HAVING: Filters groups based on conditions.
 - ► 4. Expressions :
- Combinations of columns, constants, and operators that produce a single value.
- > Examples:
 - ➤ Arithmetic: salary + bonus
 - String: CONCAT(first_name, '', last_name)
 - ► Logical: age > 18 AND city = 'New York'

5.Functions:

- ➤ Built-in methods that perform operations and return results.
- > Types:
 - ➤ Aggregate Functions: SUM(), COUNT(), AVG(), MAX(), MIN()
 - > String Functions: UPPER(), LOWER(), TRIM(), SUBSTRING()
 - ➤ Date and Time Functions: NOW(), DATE(), DATEDIFF()
- 2. Write the general structure of an SQL SELECT statement.
- Explanation of Each Clause:
- > SELECT:
 - > Specifies the columns you want to retrieve.
 - Use * to select all columns.
 - Example: SELECT name, age or SELECT *.

- > FROM:
- > Specifies the table(s) from which to retrieve the data.
- Example: FROM employees.
- **WHERE** (optional):
- Filters rows based on specific conditions.
- \triangleright Example: WHERE age > 30 AND department = 'Sales'.
- ► GROUP BY (optional):
- > Groups rows that have the same values in specified columns.
- Often used with aggregate functions like SUM, COUNT, etc.
- Example: GROUP BY department.
- **HAVING** (optional):
- Filters groups based on conditions (used with GROUP BY).
- \triangleright Example: HAVING COUNT(*) > 5.

- ➤ ORDER BY (optional):
- Sorts the result set by one or more columns.
- ➤ Default sorting is ascending (ASC). Use DESC for descending.
- Example: ORDER BY age DESC.

- 3. Explain the role of clauses in SQL statements.
- Clauses in SQL statements define the structure and functionality of a query, specifying the operations to be performed on the data.
- > SELECT Clause
- ➤ **Role**: Specifies the columns or data to retrieve from a table.
- Functionality:
 - > Determines what data to include in the result set.
 - Can include expressions, functions, and aliases.
- Example:

- ➤ SELECT name, age FROM employees;
- > FROM Clause
- ➤ **Role**: Identifies the table(s) from which to retrieve data.
- > Functionality:
 - Serves as the source of data for the query.
 - Supports joins to combine data from multiple tables.
- **Example:**
- ➤ SELECT * FROM employees;
- **▶** WHERE Clause
- ➤ **Role**: Filters rows based on specified conditions.
- > Functionality:
 - ► Eliminates rows that do not meet the condition(s).
 - > Supports multiple conditions using AND, OR, and NOT.

- Example:
- ➤ SELECT * FROM employees WHERE age > 30;
- ➤ GROUP BY Clause
- ▶ **Role**: Groups rows that have the same values in specified columns.
- > Functionality:
 - ➤ Used with aggregate functions (SUM, COUNT, AVG, etc.) to calculate values for each group.
- **Example:**
- ➤ SELECT department, COUNT(*) FROM employees GROUP BY department;
- ➤ ORDER BY Clause
- > Role: Sorts the result set based on one or more columns.

- > Functionality:
- Determines the order in which rows are displayed.
- ➤ Supports ascending (ASC, default) or descending (DESC) order.
- **Example:**
- ➤ SELECT name, age FROM employees ORDER BY age DESC;
- > JOIN Clause
- > Role: Combines rows from two or more tables based on related columns.
- > Functionality:
 - Enables retrieving data from multiple tables in a single query.
 - > Types: INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN, CROSS JOIN.
- **Example:**
- > SELECT employees.name, departments.name
- > FROM employees
- ➤ JOIN departments ,ON employees.department_id = departments.id;

- DELETE: To remove records from a table.
- > SELECT: To retrieve data from one or more tables.
- Data Control Language (DCL):
- Purpose: Manages access permissions and security of the database.
- **Key Commands:**
 - GRANT: To give access rights to users.
 - REVOKE: To remove access rights from users.
 - ➤ 4. Transaction Control Language (TCL):
- Purpose: Manages database transactions to ensure data consistency.
- > Key Commands:
 - COMMIT: To save changes made during the transaction.
 - > ROLLBACK: To undo changes made during a transaction.
 - SAVEPOINT: To set a point in a transaction to which you can roll back.
 - > 5. Querying Capabilities:
- > SQL allows complex queries to retrieve data using:
 - **Joins**: Combines data from multiple tables.
 - > Subqueries: Embeds queries within queries.
 - Aggregate Functions: Performs calculations on data (SUM, COUNT, AVG, etc.).
 - Grouping and Sorting: Groups data (GROUP BY) and sorts results (ORDER BY).