Lab Assignment MA 322

Name – Anubhav Bajaj

Roll no. - 190123007

Lab no. - 02

Q1

n	x1	x2	f1(x1,x2)	f2(x1,x2)
1	1.000000	2.000000	-0.090703	0.167706
2	1.079665	1.945385	-0.002695	0.017268
3	1.086138	1.943714	-0.000045	0.000091
4	1.086187	1.943685	-0.000045	0.000091

Q2

Using Newton method

n	x	f(x)	p
1	2.000000	2.430000	1.065711
2	1.608696	0.675055	1.051845
3	1.376944	0.182306	1.035299
4	1.246095	0.047940	1.021342
5	1.175348	0.012350	1.011889
6	1.138315	0.003139	1.006301
7	1.119328	0.000792	1.003247
8	1.109708	0.000199	1.001649
9	1.104865	0.000050	1.000831
10	1.102435	0.000012	1.000417
11	1.101218	0.000003	1.000209
12	1.100609	0.000001	1.000105
13	1.100305	0.000000	1.000052
14	1.100152	0.000000	1.000026
15	1.100076	0.000000	0.000000
16	1.100038	0.000000	0.000000

Using Modified Newton method

n	x	f(x)	p
1	2.000000	2.430000	1.795807
2	1.217391	0.030557	1.978577
3	1.103027	0.000019	0.000000
4	1.100002	0.000000	0.000000

Code

end

Q1

```
clear all;
f1 = @(x1,x2) \sin(x1*x2) + x1 - x2;
f2 = @(x1,x2) x2*cos(x1*x2) + 1;
a = [1;2];
Newton(a,f1,f2);
function Newton(a,f1,f2)
    syms x y;
    F = jacobian([f1(x,y),f2(x,y)],[x y]);
    fprintf('%2s %15s %15s %15s %15s \n', 'n', 'x1', 'x2', 'f1(x1,x2)',
'f2(x1,x2)');
    i = 1;
    a old = [0;0];
    f = zeros(2,1);
    while(norm(a-a_old,Inf)>10^(-3))
        a_old=a;
        f(1) = f1(a(1),a(2));
        f(2) = f2(a(1),a(2));
        fprintf('%2d %15f %15f %15f %15f \n', i, a(1), a(2), f(1), f(2));
        A = subs(inv(F), \{x,y\}, \{a(1), a(2)\});
        a = a - A*f;
        i=i+1;
    end
    fprintf('%2d %15f %15f %15f %15f \n', i, a(1), a(2), f(1), f(2));
end
Q2
clear all;
clc;
clf;
close all;
f = @(x) (x-1.1)^2 * (x+1);
syms x
F = (x-1.1)^2 * (x+1);
X1 = Newton(f,F,2);
Y1 = modifNewton(f,F,2,2);
convert(X1);
convert(Y1);
function convert(X)
    fprintf('%s %20s %20s %20s\n','n','x','f(x)','p');
    for i = 1:height(X)
        if i<= (height(X) -2)</pre>
            X(i,4) = log10( (abs(1.1 - X(i+2,2))/abs(1.1 - X(i+1,2))) ) /
log10( abs(1.1 - X(i+1,2))/abs(1.1 - X(i,2)) ) ;
        else
            X(i,4) = 0;
```

```
fprintf('%2d %20f %20f %20f\n', X(i,1)+1, X(i,2), X(i,3), X(i,4));
    end
    fprintf('\n');
end
function X = Newton(f,F,x)
    F = diff(F);
    i = 0;
    df = matlabFunction(F);
    %fprintf('%s %20s %20s\n','n','x','f(x)');
    while(abs(f(x))>1e-8)
        X(i+1,1)=i;
        X(i+1,2)=x;
        X(i+1,3)=f(x);
        %fprintf('%2d %20f %20f\n',i,x,f(x));
        x = x-(f(x)/df(x));
        i = i+1;
    end
    X(i+1,1)=i;
    X(i+1,2)=x;
    X(i+1,3)=f(x);
    %fprintf('%2d %20f %20f\n',i,x,f(x));
end
function X = modifNewton(f,F,x,p)
    F = diff(F);
    i = 0;
    df = matlabFunction(F);
    %fprintf('%s %20s %20s\n','n','x','f(x)');
    while(abs(f(x))>1e-6)
        X(i+1,1)=i;
        X(i+1,2)=x;
        X(i+1,3)=f(x);
        %fprintf('%2d %20f %20f\n',i,x,f(x));
        x = x-p*(f(x)/df(x));
        i = i+1;
    end
    X(i+1,1)=i;
    X(i+1,2)=x;
    X(i+1,3)=f(x);
    %fprintf('%2d %20f %20f\n',i,x,f(x));
end
```