8. Deney No: VIII

8.1. Deneyin Adı: Bir Bobinin Manyetik Alanı

8.2. Deneyin Amacı: Sarım sayısına bağlı olarak bobinin manyetik alan şiddetinin incelenmesi

8.3. Teorik Bilgiler

Uzunluğu ihmal edilemeyecek kadar büyük ve L olan N sarımlı bir bobinin ekseni boyunca manyetik akının karakteristiği sonsuz küçük sayıda ve uzunlukta bobinlerden oluştuğu varsayılarak elde edilir (Şekil 8.1).

Şekil 8.1. Uzunluğu ihmal edilemeyecek kadar uzun ve L olan N sarımlı bobin

Orijinden belli bir uzaklıktaki bir bobinin kesiti, sonsuz küçüklükte bir manyetik alan verir;

$$dB(x) = \frac{1}{2} \frac{N}{L} \mu_0 i \frac{r^2}{\left[r^2 + (x - a)^2\right]^{3/2}} da$$
 (8.1)

olarak bulunur. Eşitlikte, Nda/L; da kalınlıklı bobin kesitindeki sarım sayısı; μ_o ise boş uzayın manyetik geçirgenliğidir ($\mu_o = 1,256.10^{-6}\,\mathrm{T.m/A}$). Toplam manyetik alan "a" üzerinden integral alınarak

$$B(x) = \frac{N\mu_0 i r^2}{2L} \int_0^L \frac{da}{\left[r^2 + (x - a)^2\right]^{3/2}}$$
 (8.2)

eşitliği ile ifade edilir. Eğer bu integral alınırsa;

$$B(x) = \frac{N\mu_0 i}{2L} \left[\int_0^L \frac{x}{\sqrt{r^2 + x^2}} - \frac{x - L}{\sqrt{r^2 + (x - L)^2}} \right]$$
 (8.3)

bağıntısı elde edilir. Uzun ve ince bobinin (r<<L) merkezine yakın bir noktada

(x = L/2) manyetik alanın büyüklüğü Denklem (8.3)'den şöyle bulunur:

$$B_{\text{merkez}} = \mu_0 i \frac{N}{I}$$
 (8.4)

Bobinin merkezindeki manyetik alanın büyüklüğü 8.4 eşitliğinde ifade edildiği gibi iken, bobinin uçlarındaki (x=L) manyetik alanın büyüklüğü bu değerin yarısı kadardır.

$$B_{uc} = \frac{1}{2}\mu_o i \frac{N}{L} \tag{8.5}$$

8.4. Deneyin Yapılışı

Şekil 8.2. Bobinin oluşturduğu manyetik alanın ölçülmesi için kurulacak devre düzeneği

Deneyi yapmak için aşağıdaki adımları izleyin:

- 1. Şekil 8.2'deki devre düzeneğini, 100 sarımlı olan bobini kullanarak kurun ve güç kaynağını açmadan, kurduğunuz devreyi deney sorumlusuna kontrol ettirin.
- 2. Ölçekli ray üzerine karşılıklı olarak yerleştirdğiniz her bir teslametre sensörünün bobinin tam merkezinde olmasını sağlayınız.
- 3. DC akım kaynağını açarak akım değerini 0.8 A olacak şekilde ayarlayınız ve bobinin merkezinde (x=0 için) oluşan manyetik alan büyüklüğünü her bir teslametreden okuyarak Tablo 8.1'de yazınız.
- **4.** Sağdaki ve soldaki teslametreleri bobin merkezinden 1 cm'lik eşit mesafelerle uzaklaştırarak teslametreden okudunuz manyetik alan büyüklüğünü Tablo 8.1'e yazınız.
- **5.** Bobin merkezindeki ve uçlarındaki manyetik alan büyüklüğünü (B_{merkez} ve $B_{u\varsigma}$) sırasıyla (8.4) ve (8.5) eşlitliklerinden hesaplayarak teslametreden okuduğunuz değerler ile karşılaştırınız.
- 6. Aynı işlemleri 200 sarımlı bobin için tekrarlayınız.

- 7. Bobinlerden biri için elde ettiğiniz değerleri kullanarak $\mathbf{B} = \mathbf{f}(\mathbf{x})$ grafiğini çiziniz ve yorumlayınız.
- 8. Sağdaki ve soldaki teslametrelerin sensörleri bobin merkezinden eşit uzaklıkta iken (örneğin x = -1cm ve x = 1cm iken), teslametrelerden okunan manyetik alan büyüklüklerinin eşit olup olmadığını gözlemlerinize ve yaptığınız ölçümlere dayanarak yorumlayınız.

Tablo 8.1. Farklı sarım sayısına sahip bobinlerin manyetik alan büyüklüğünün, bobin merkezinden olan uzaklığa bağlı olarak değişimi

	x (cm)													
N (sarım)	$B_{u\varsigma}(mT)$	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
100														
200														
	B (mT)													