Metody Numeryczne - sprawozdanie

Metoda Potęgowa z Redukcją Hotellinga

Laboratorium nr 4

Adam Młyńczak 410702, Informatyka Stosowana

1. Cel zajęć

Na czwartych zajęciach laboratoryjnych naszym zadaniem było zaimplementowanie programu do wyznaczenia wartości własnych macierzy. Dany program miał używać metody potęgowej z redukcją Hotellinga – znanej krócej jako metoda potęgowa. Prowadzący przedstawił nam zasady działania tegoż sposobu, a następnie zaczęliśmy tworzyć nasze rozwiązania.

2. Opis problemu

Dana nam jest macierz \mathbf{A} – macierz symetryczna o wymiarach 7×7 . Elementy tej macierzy wyznaczamy według wzoru:

$$A_{ij} = \sqrt{i+j}$$

gdzie i oraz j oznaczają wiersze i kolumny naszej macierzy (zatem i, j = 1, 2, ..., 7). Naszym zadaniem było wyznaczenie wartości własnych oraz wektorów własnych tejże macierzy A.

3. Teoria

Za pomocą metody potęgowej można wyznaczyć największą co do modułu wartość własną oraz przypisany do niej wektor własny. Do rozwiązanie potrzebne jest przejście po kolejnych krokach:

- 1) Definiujemy początkowy wektor własny $x_0 = [1, 1, 1, ..., 1]$.
- 2) Dla każdej iteracji obliczamy wektor k+1 iteracji według wzoru:

$$x_{k+1} = W_i x_k,$$

gdzie W_i to macierz, dla której wyznaczamy wektory oraz wartości własne. Dla pierwszej wartości przyjmujemy, że $W_0=A$.

3) Wartość własną wyliczamy za pomocą wzoru:

$$\lambda_k = \frac{x_{k+1}^T x_k}{x_k^T x_k}.$$

- 4) Normalizujemy otrzymany wektor x_{k+1} . Otrzymany wektor jest wektorem własnym macierzy W_i .
- 5) Należy wykonać tyle iteracji wyznaczenia x_{k+1} , aby $||x_{k+1} x_2|| < TOL$. TOL to wymagana własność wyznaczenia wartości własnej (prowadzący kazał przyjąć, że 8 iteracji starczy).
- 6) Następnie należy dokonać redukcji Hotellinga dla macierzy (w celu wyznaczenia szukanych wartości). Redukcji dokonujemy za pomocą wzoru:

$$W_{i+1} = W_i - \lambda x^T x.$$

 λ to usuwana wartość własna, x to przypisany do niej wektor własny macierzy W_i .

4. Opracowanie wyników

4.1. Wartości własne

Uruchamiając napisanych przeze mnie program, otrzymuje następujące wielkości dla wartości własnych (zapis do 5 miejsc znaczących):

$$\lambda_1 = 19.78617$$

$$\lambda_2 = -0.71234$$

$$\lambda_3 = -0.013317$$

$$\lambda_4 = -0.00033540$$

$$\lambda_5 = -0.0000065887$$

$$\lambda_6 = -0.000000081864$$

$$\lambda_7 = -0.00000000047124$$

4.2. Wektory własne

Uruchamiając ten sam program, oto otrzymane wektory własne (zapis wartości w wektorze do 5 miejsc znaczących):

$$x_1 = \begin{bmatrix} 0.29797 \\ 0.32721 \\ 0.35372 \\ 0.37820 \\ 0.40110 \\ 0.42269 \\ 0.44319 \end{bmatrix}, x_2 = \begin{bmatrix} 0.68867 \\ 0.40604 \\ 0.18140 \\ -0.0069977 \\ -0.17042 \\ -0.31549 \\ -0.44647 \end{bmatrix}, x_3 = \begin{bmatrix} -0.59187 \\ 0.25768 \\ 0.44993 \\ 0.36287 \\ 0.14367 \\ -0.14074 \\ -0.45688 \end{bmatrix}$$

$$x_4 = \begin{bmatrix} 0.28092 \\ -0.64784 \\ -0.078445 \\ 0.35344 \\ 0.40875 \\ 0.12049 \\ -0.43442 \end{bmatrix}, x_5 = \begin{bmatrix} 0.086033 \\ -0.45893 \\ 0.56072 \\ 0.21219 \\ -0.35872 \\ -0.40357 \\ 0.36194 \end{bmatrix}, x_6 = \begin{bmatrix} 0.017631 \\ -0.17346 \\ 0.52911 \\ -0.53964 \\ -0.14756 \\ 0.56155 \\ -0.24759 \end{bmatrix}, x_7 = \begin{bmatrix} 0.0022075 \\ -0.035651 \\ 0.19751 \\ -0.51389 \\ 0.68694 \\ -0.45744 \\ 0.12032 \end{bmatrix}$$

5. Podsumowanie

Przedstawiona nam na zajęciach metoda jest jednym z przykładów metod iteracyjnych, które pomagają w rozwiązywaniu wielu problemów numerycznie. Dzięki metodzie potęgowej z redukcją Hotellinga możemy wyznaczyć wektory własne danej macierzy z dosyć dużą dokładnością (dokładnością, którą potrzebujemy w danej sytuacji).