KOLEJ MATRIKULASI KEDAH

<u>SKEMA JAWAPAN DAN PEMARKAHAN PRA PSPM PHYSICS 1 (SET 1)</u> <u>SEMESTER 1, SESI 2023/2024</u>

No	Suggested Answer	Marks
1(a)	$S_x = 4.5 \cos 75^\circ = 1.17 \text{ m}$	GJU1
1(b)	$S_y = 4.5 \sin 75^o = 4.35 \text{ m}$	GJU1
	TOTAL	2
2(a)(i)	$a_{ave} = Gradient \ of \ v - t \ graph$	
	$a_{ave} = \frac{8 - (-8)}{15 - 5}$	
	$a_{ave} = 1.6 \text{ m s}^{-2}$	GJU1
2(a)(ii)	Displacement = Area under v - t graph	K1
	$s = \frac{1}{2} (-8)(5) + \frac{1}{2}(8)(5) = 0 \text{ m}$	GJU1
	Distance travelled = $\frac{1}{2}$ (8)(5) + $\frac{1}{2}$ (8)(5)	G1
	d = 40 m	JU1
2(b)	v = u + at ; $15 = u + 6.7a$	
	$a = \frac{15 - u}{6.7} \qquad \to \qquad (1)$	
	$s = ut + \frac{1}{2}at^2$; $90 = 6.7u + \frac{1}{2}a(6.7)^2 \rightarrow (2)$	GJ1
	Substitute equation (1) into (2)	
	6.7 u + 22.445 = 90	
	$u = 11.87 \text{ m s}^{-1}$	JU1
	OR	
	$s = \frac{1}{2}(v+u)t$; $90 = \frac{1}{2}(u+15)(6.70)$	
	$u = 11.87 \text{ m s}^{-1}$	

2(-)(:)	1	
2(c)(i)	$s_y = u_y t - \frac{1}{2}gt^2$	
	$-90 = (-u\sin 40)(3.5) - \frac{1}{2}(9.81)(3.52)^2$	G1
	$u = 13.30 \text{ m s}^{-1}$	JU1
2(c)(ii)	$S_x = u_x t$	
	$S_x = (13.30\cos 40)(3.5) = 35.66 \text{ m}$	GJU1
	TOTAL	10
3(a)	$\Sigma P_{ix} = \Sigma P_{fx}$	K 1
	$m_A u_{Ax} + m_B u_{Bx} = m_A v_{Ax} + m_B v_{Bx}$	
	$m(40) + 0 = m(v_A \cos 60) + m(v_B \cos 20)$	G1
	$40 = 0.5 \ v_A + 0.94 \ v_B \to (1)$	
	A B	
	$\sum P_{iy} = \sum P_{fy}$	
	$m_A u_{Ay} + m_B u_{By} = m_A v_{Ay} + m_B v_{BY}$	
	$0 + 0 = m (v_A \sin 60) + m (-v_B \sin 20)$	G.
	$0.866 v_A - 0.342 v_B$	G1
	$v_B = 2.53 v_A \rightarrow (2)$	
	(2) into (1) $v_A = 13.89 \text{ m s}^{-1}$	JU1
	$v_B = 35.17 \text{ m s}^{-1}$	JU1
3(b)(i)	DOY A	
	BOX A	D1
	\tilde{N}	(All forces
	← F	with arrow and
	$ec{r} = ec{f}$	labelled
	↓ W	correctly)
	W	

	BOX B	
	\vec{f} \vec{T}	D1 (All forces with arrow and labelled correctly)
3(b)(ii)	$\Sigma F_{y} = 0$	
	$N_A + F \sin \theta - W = 0$	
	$N_A + 70\sin 25 - (30)(9.81) = 0$	G1
	$N_A = 264.72 \text{ N}$	JU1
	$F\cos\theta - T_A - f_A = 0$	
	$T_A = F \cos \theta - \mu N_A$	
	$T_A = 70 \cos 25 - (0.05) (264.72) = 50.21 \text{ N}$	GJU1
3(b)(iii)	$\Sigma F_{x} = 0$	
	$T_A - f_B = 0$	
	$T_A = f_B$	
	$f_B = 50.21 \text{ N}$	J1
	$f_B = \mu N_B$	01
	$(50.21) = (0.05)N_B$	
	$N_B = 1004.2 N$	J1
	$\Sigma F_Y = 0$	JI
	$N_B - W = 0$ (1004.2) = m (9.81)	
	m = 102.37 kg	
	TOTAL	GJU1
4(a)(i)	TOTAL The principle of conservation of energy	13
	$\Sigma E_i = \Sigma E_f$	K1

	$\frac{1}{2}mu_{A}^{2} + mgh_{A} = \frac{1}{2}kx_{max}^{2}$	
	$\frac{1}{2}(0.10)(3.0)^2 + (0.10)(9.81)(3.0) = \frac{1}{2}500(x_{max})^2$	
	$x_{max} = 0.116 \text{ m}$	GJU1
4(a)(ii)	When stiffer spring is used , $k' > 500 \text{ N m}^{-1}$	
	$\frac{1}{2} k' x_{max}^2 = \frac{1}{2} m u_A^2 + mg h_A$	
	$x_{max}^2 = \frac{1}{2}mu_A^2 + mgh_A$	
	$x_{max}^{2} = \frac{2\left(\frac{1}{2}mu_{A}^{2} + mgh_{A}\right)}{k'}$	
	$x_{max} = \sqrt{\frac{2\left(\frac{1}{2}mu_A^2 + mgh_A\right)}{k'}}$	
	$x_{max} \alpha \frac{1}{\sqrt{k'}}$	
	If k' is greater, x _{max} becomes smaller.	J1
4(b)	$W = area \ under \ F - s \ graph$	
	$W = \frac{1}{2} (6+4)(10) + \frac{1}{2} (3+4)(-5)$	K1
	W = 32.50 J	
	$W = K_f - K_i = K_f - \frac{1}{2}mu^2$	
	$32.50 = K_f - \frac{1}{2} (2) (10)^2$	
	L	JU1
4(c)(i)	$K_f = 132.50 \text{ J}$ $P = \frac{W}{t} = \frac{K_f - K_i}{t}$	
	$P = \frac{\frac{1}{2}(2500)(12.0)^2 - 0}{8.0} = 22500 \text{ W}$	GJU1

4(c)(ii)	At t = 5.0 s	
	v = u + at	
	v = 0 + (1.50)(5.0)	
	$v = 7.50 \mathrm{m s^{-1}}$	Ј1
	P = Fv and F = ma, hence P = mav	
	P = (2500)(1.50)(7.50)	
	P = 28 125 W	JU1
	TOTAL	8
5(a)	$\Sigma F_{y} = 0$	0
	N-mg=0 , $N=mg$	K1
	$\Sigma F_{x} = F_{c}$	
	$F_c = \mu N$	
	$F_C = \mu mg$	
	$F_c = (0.72)(1500)(9.81)$	G1
	$F_c = 1.06 \times 10^4 \text{ N}$	JU1
5(b)	$F_c = \frac{mv^2}{r}$	
	$v = \sqrt{\frac{(1.06 \times 10^4)(70)}{1500}}$	G1
	$v = 22.24 \text{ m s}^{-1}$	JU1
	TOTAL	5
6(a)(i)	From the graph $U_{max} = 3 \text{ J}$	K1
	$U_{max} = \frac{1}{2}ky_{max}^{2}$	
	$3 = \frac{1}{2} (200) y_{max}^2$	
	$y_{max} = 0.173 \text{ m}$	GJU1

6(a)(ii)	K = U	
	$\frac{1}{2} k (A^2 - y^2) = \frac{1}{2} k y^2$	
	$A^2 - y^2 = y^2$	
	$2y^{2} = A^{2}$ $y = \frac{A}{\sqrt{2}} = \frac{y_{max}}{\sqrt{2}} = \frac{0.713}{\sqrt{2}} = 0.122 \text{ m}$	GJU1
6(a)(iii)	$E = \frac{1}{2} k A^2$	
	If A' = 2 A	
	$E' = \frac{1}{2}k (2A)^2$	
	$E' = 4\left(\frac{1}{2}kA^2\right)$	
	E'=4E	
	The total energy of the system will become 4 times greater than initial total energy.	GJ1
6(b)(i)	$v = f\lambda$ $30 = f(1.6)$	a
	$f = 18.75 \mathrm{Hz}$	GJU1
	$\omega = 2\pi f = 2\pi (18.75) = 37.5\pi \text{ rad s}^{-1} = 117.81 \text{ rad s}^{-1}$	GJU1
	$k = \frac{2\pi}{\lambda} = \frac{2\pi}{1.6} = 1.25\pi \text{ m}^{-1} = 3.93 \text{ m}^{-1}$	GJU1
6(b)(ii)	$y(x,t) = 3.5x10^{-3}sin (37.5\pi t - 1.25\pi x)$ where x and y in meters and t in seconds.	JU1
6(b)(iii)	x = 0 m $y(t) = 3.5x10^{-3} \sin (37.5\pi t)$ where x and y in meters and t in seconds	JU1
6(b)(iv)		
	Particle at $x = 1.4 \text{ m}$, $y(x,t) = 3.5 \times 10^{-3} \sin (37.5\pi t - 1.25\pi (1.4))$ $y(x,t) = 3.5 \times 10^{-3} \sin (37.5\pi t - 1.75\pi)$	11.11
	where x and y in meters and t in seconds	JU1

6(b)(v)		
0(0)(1)	$V_{max} = \omega A = (37.5\pi)(3.5 \times 10^{-3}) = 0.41 \text{ m s}^{-1}$	GJU1
6(b)(vi)	$t = 0.05 \mathrm{s}$ and $x = 1.4 \mathrm{m}$	
	$y = 3.5 \times 10^{-3} \sin(37.5\pi(0.05) - 1.25\pi (1.40))$ $y = 1.34 \times 10^{-3} \text{ m}$	G1 JU1
	$v_y = 0.412\cos(37.5\pi t - 1.25\pi x)$ = 0.412 cos (37.5\pi(0.05) - 1.25\pi(1.40)) $v_y = 0.381 \text{ m s}^{-1}$	G1 JU1
6(c)(i)		
	$f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$ $f_1 = \frac{1}{2(0.50)} \sqrt{\frac{40}{1 \times 10^{-3}}} = 200 \text{ Hz}$	
	$f_1 = \frac{1}{2(0.50)} \sqrt{\frac{40}{1 \times 10^{-3}}} = 200 \text{ Hz}$	GJU1
6(c)(ii)	For open ends tube, $f_1 = \frac{v}{2L}$	
	$300 = \frac{343}{2L}$	
	L=0.572 m	GJU1
	$f_2 = f_3$	
	$\frac{2v}{2L} = \frac{3v}{4L'}$	K1
	$L' = \frac{3}{4}L$ $L' = \frac{3}{4}(0.572) = 0.429 m$	
	$L' = \frac{3}{4}(0.572) = 0.429 m$	GJU1
6(d)(i)	$f_a = \left(\frac{v}{v - v_s}\right) f_s$	

	(340)	G1
	$f_a = \left(\frac{340}{340 - 30}\right) 500$	
	$f_a = 548.39 \mathrm{Hz}$	TT 11
	$f_a = 548.39 \mathrm{Hz}$	JU1
6(d)(ii)		
	$f = \begin{pmatrix} v \\ \end{pmatrix}_{\mathcal{E}}$	
	$J_a - \left(\frac{1}{v + v_s}\right) J_s$	
	$f_a = \left(\frac{v}{v + v_s}\right) f_s$ $f_a = \left(\frac{340}{340 + 30}\right) 500$	
	$f_a = \left(\frac{340}{1000}\right)500$	G1
	$\sqrt{340 + 30}$	
	$f_a = 459.46 \mathrm{Hz}$	JU1
	74	JUI
	TOTAL	23
7(a)	$Y = \frac{FL_o}{A\Delta L}$	
	ADL	
	F = mg	K 1
	W/ D	
	Wire P:	
	(1300)(9.81)(6.6)	
	$9.4 \times 10^{10} = \frac{(1300)(9.81)(6.6)}{(2.6 \times 10^{-4})\Delta L_p}$	
	$\Delta L_p = 3.44 \times 10^{-3} \text{ m} = 3.44 \text{ mm}$	GJU1
	Wire Q :	
	$9.8 \times 10^{10} = \frac{(1300)(9.81)(6.6)}{(2.3 \times 10^{-4})\Delta L_0}$	
	$(2.3 \times 10^{\circ})\Delta L_Q$	
	$AI = 2.724 \times 10^{-3} \text{ m} = 2.724 \text{ mm}$	
	$\Delta L_Q = 3.734 \times 10^{-3} \text{ m} = 3.734 \text{ mm}$	GJU1
	Wins Disperiable to be seed to	
	Wire P is suitable to be used to support the box because its extension not exceed 3.55 mm	J1
	CACABION NOT CACCOC 5.55 IIIII	
7(b)	$O \qquad (\Delta T)$	
/(0)	$\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$	
	$\frac{Q}{5 \times 60} = -0.80 (0.95 \times 0.35) (\frac{-25}{0.5 \times 10^{-2}})$	G1
	5×60 0.5×10^{-2}	
	$Q = 399\ 000\ J = 3.99\ \times\ 10^5\ J$	JU1

7(c)	$\Delta A = \beta A_o \Delta T$	
/(0)	$-4 = (48 \times 10^{-6})A_o(25 - 155)$	G1
	$A_o = 641 \text{ cm}^2 = 0.064 \text{ m}^2$	JU1
	710 011 611 0.001 111	
	TOTAL	8
8(a)(i)	$K = \frac{3}{2}kT$	
	$K = \frac{3}{2} (1.38 \times 10^{-23})(273.15 + 25) = 6.17 \times 10^{-21} \text{ J}$	GJU1
	$U = \frac{1}{2}fNkT = \frac{1}{2}fnN_AkT$	
	$U = \frac{1}{2}(3)(1.5)(6.023 \times 10^{23})(1.38 \times 10^{-23})(273.1 + 25)$	
	$U = 5.57 \times 10^3 \mathrm{J}$	GJU1
8(b)	$v_{rms} = \sqrt{\frac{3RT}{M}}$	
	$v_{rms} = \sqrt{\frac{3(8.31)(263.15)}{0.046}}$	G1
	$v_{rms} = 377.65 \text{ m s}^{-1}$	JU1
8(c)(i)		
	P (Pa) Axis with unit and both label – D1 Shape and arrow – D1	D2
	$P_2 \xrightarrow{\qquad \qquad \downarrow \qquad \qquad } V (m^3)$ $V \qquad 4V$	

8(c)(ii)	$Q = \Delta U + W$	
	$Q = 0 + (5.6 \times 10^3)$	G1
	$Q = 5.60 \times 10^3 \mathrm{J}$	JU1
	Heat is absorbed	J1
8(c)(iii)	$W = nRT \ln \frac{V_2}{V_1}$	
	$5.6 \times 10^3 = (2)(8.31)T \ln \frac{4V}{V}$	G1
	T = 243.10 K	JU1
	TOTAL	11
	TOTAL	80