Table of Contents

		Page
Chapter		
I.	INTRODUCTION AND OVERVIEW	1 1/A7
II.	EXPERIMENTAL METHODOLOGY AND PROCEDURES	3 1/A9
	II.A. Heat Transfer with Full-Coverage Film Cooling II.B. Stanford Experimental Program	3 1/A9 5 1/A11 6 1/A12 7 1/A13 7 1/A13 8 1/A14
III.	HEAT TRANSFER FOR THREE INJECTION GEOMETRIES	11 1/B4
	III.A. Temperature Parameter	11 1/B4 11 1/B4 13 1/B6 14 1/B7 15 1/B8 16 1/B9
· IV.	LOCAL HEAT FLUX DATA	20 1/B13
	IV.A. Experimental Test Conditions	20 1/B13 20 1/B13 22 1/C3
	IV.A.3. Comparison of third and fifth blowing row data	22 1/C3 24 1/C5 25 1/C6 26 1/C7 27 1/C8
v.	NUMERICAL PREDICTION PROGRAM	34 1/D7
	V.A. Introduction	34 1/D7 34 1/D7 36 1/D9 36 1/D9 37 1/D10 40 1/D13
	V.D.1. Model development	40 1/D13 41 1/D14 43 1/E2 44 1/E3
Reference		69 1/G1

Appendix			Page	
A MODIFY	ING STAN	5 TO OBTAIN STANCOOL	. 71	1/G3
B PREVIO	USLY UNR	EPORTED SLANT-INJECTION DATA	. 87	2/A7
в.1.		th 11 rows blowing, heated starting length	89	2/A9
	B.1.a.	Initial profiles of temperature and		
		velocity		2/A9
	B.1.b.	$M = 0.20$; $\theta = 1 \dots$. 90	2/A11
		$M = 0.20; \theta = 0 \dots$		2/A13
		$M = 0.20$; $\theta = 1$, $\theta = 0$ by superposition		2/B1
	B.1.c.			2/B3
	D.1.C.	$M = 0.6$; $\theta = 0$		2/B5
		M = 0.6; 0 = 0		
		$M = 0.6$; $\theta = 1$, $\theta = 0$ by superposition	. 95	2/B7
	B.1.d.			2/B9
		$M = 0.75$; $\theta = 0 \dots$		2/B11
		$M = 0.75$; $\theta = 1$, $\theta = 0$ by superposition	. 98	2/B13
	B.1.e.	$M = 0.90; \theta = 1 \dots \dots \dots$. 99	2/C1
		$M = 0.90; \theta \stackrel{\sim}{=} 0 \dots \dots \dots \dots$.100	2/C3
		$M = 0.90$; $\theta = 1$, $\theta = 0$ by superposition	.101	2/C5
	B.1.f.	$M = 1.33; \theta = 1 \dots$	102	2/C7
		$M = 1.33; \theta = 0 \dots$		2/C9
		$M = 1.33$; $\theta = 1$, $\theta = 0$ by superposition	104	2/C11
		n = 1.55, 0 = 1, 0 = 0 by superposition	104	2/011
в.2.	Data wi	th 6 rows blowing, heated starting length .	105	2/C13
	B.2.a.	Initial profiles of temperature and		
		velocity	105	2/C13
	в.2.ь.		106	2/D1
		$M = 0.4$; $\theta \approx 0$	107	2/D3
		$M = 0.4$; $\theta = 1$, $\theta = 0$ by superposition	108	2/D5
	B.2.c.	$M = 0.9$; $\theta = 1 \dots$	109	2/D7
		$M = 0.9; \theta = 0 \dots$	110	2/D9
		$M = 0.9$; $\theta = 1$, $\theta = 0$ by superposition	111	2/D11

clem 830-H-4

NAS1.26:3219

JAN 31 1

NASA Contractor Report 3219

COMPLETED

ORIGINAL

Full-Coverage Film Cooling on Flat, Isothermal Surfaces: A Summary Report on Data and Predictions

M. E. Crawford, W. M. Kays, and R. J. Moffat

CONTRACT NAS3-14336 JANUARY 1980

NASA

NASA Contractor Report 3219

Full-Coverage Film Cooling on Flat, Isothermal Surfaces: A Summary Report on Data and Predictions

M. E. Crawford, W. M. Kays, and R. J. Moffat Stanford University Stanford, California

Prepared for Lewis Research Center under Contract NAS3-14336

Scientific and Technical Information Office

1980

Table of Contents

			Page
Chapter			
I.	INTRODU	UCTION AND OVERVIEW	1
II.	EXPERIM	MENTAL METHODOLOGY AND PROCEDURES	3
	II.A.	Heat Transfer with Full-Coverage Film Cooling	3
	II.B.	Stanford Experimental Program	5
	II.C.	Experimental Facility	6
	II.D.	Heat-Flux Data Acquisition	7
		II.D.1. Spanwise-averaged data	7
		II.D.2. Local heat flux data	8
III.	HEAT TE	RANSFER FOR THREE INJECTION GEOMETRIES	11
		Temperature Parameter	11
		Mass Flux Ratio	11
		Initial Conditions	13
		Number of Rows of Holes	14
		Hole Spacing	15
	III.F.	Concluding Remarks	16
IV.	LOCAL H	HEAT FLUX DATA	20
	IV.A.	Experimental Test Conditions	20
		IV.A.1. Presentation of the data	20
		IV.A.2. Symmetry of the data	22
		IV.A.3. Comparison of third and fifth blowing	
		row data	22
		IV.A.4. Low-M data	24
		IV.A.5. High-M data	25
	*** -	IV.A.6. Comparison to spanwise-averaged data	26
	IV.C.	Concluding Remarks	27
v.	NUMERIO	CAL PREDICTION PROGRAM	34
	V.A.	Introduction	34
	V.B.	The STANCOOL Program	34
	v.c.	Injection Model	36
		V.C.1. Model development	36
		V.C.2. STANCOOL injection model	37
	V.D.	Turbulence-Augmentation Model	40
		V.D.1. Model development	40
		V.D.2. STANCOOL turbulence model	41
	V.E.	Summary and Constants for the Model	43
	V.F.	Prediction of the Data Bases	44
Reference	ces		69

Append	lix		Pa	age
A	MODIFY	ING STAN	5 TO OBTAIN STANCOOL	71
В	PREVIO	OUSLY UNR	EPORTED SLANT-INJECTION DATA	37
	в.1.		0,	39
		B.1.a.		
			velocity	
		E.1.b.	$M = 0.20; \ \theta \stackrel{\approx}{=} 1 \dots \dots \dots \dots$	90
			$M = 0.20; \ \theta \stackrel{\sim}{=} 0 \dots \qquad \dots \qquad \dots$	11
		n 1 -	$M = 0.20$; $\theta \approx 1$, $\theta = 0$ by superposition . 9	12
		в.1.с.	$M = 0.6; \theta \stackrel{\sim}{=} 1 \dots \dots \dots \dots \dots$	13
			$M = 0.6$; $\theta = 0$	14
		B.1.d.		15
		D.1.d.	$M = 0.75$; $\theta = 0$	70
			$M = 0.75$; $\theta = 1$, $\theta = 0$ by superposition . 9	10
		B.1.e.		10
		D.1.C.	$M = 0.90; \theta \stackrel{\sim}{=} 0 \dots $	
			$M = 0.90$; $\theta = 1$, $\theta = 0$ by superposition .10	
		B.1.f.	$M = 1.33; \theta = 1 \dots \dots$	
			$M = 1.33; \theta = 0 \dots 10$	
			$M = 1.33$; $\theta = 1$, $\theta = 0$ by superposition 10	
	в.2.	Data wi	th 6 rows blowing, heated starting length . 10)5
		B.2.a.	Initial profiles of temperature and	
			velocity)5
		В.2.ь.	,	16
			$M = 0.4$; $\theta \approx 0 \dots 10$)7
			$M = 0.4$; $\theta = 1$, $\theta = 0$ by superposition 10	8(
		B.2.c.	$M = 0.9; \ \theta = 1 \dots 10$	19
			$M = 0.9$; $\theta = 0 \dots 11$	
			$M = 0.9$: $\theta = 1$. $\theta = 0$ by superposition 11	1

INTRODUCTION AND OVERVIEW

The study of full-coverage film cooling using flat surfaces was carried out between July, 1971, and December, 1977, under Contract NAS3-14336. The study was divided into two principal phases: experimental studies of the heat transfer and hydrodynamics and analysis of the data using integral and differential means.

To date, five comprehensive data reports in the form of NASA Contractor Reports have been issued [1,2,3,4,5], which document all of the experimental data except that contained in the present report. Also during this program, the Stanford boundary layer program was revised into a program called STAN5 and documented as a NASA Contractor Report [6].

The experimental methodology and procedures are described in Chapter II. Heat transfer with full-coverage film cooling is defined in a manner analogous to transpiration cooling, and the superposition approach to film cooling is described. The objectives of the experimental data program and experimental facility are then outlined, and the methods for acquisition of spanwise-averaged and local heat-flux data are described.

A summary of the heat transfer data is contained in Chapter III, covering normal-, 30° slant-, and $30^{\circ} \times 45^{\circ}$ compound-angled injection geometries and hole-spacing-to-hole-diameter ratios of 5 and 10. Included are the effects of injection temperature (θ , temperature parameter), mass flux ratio (M), boundary-layer upstream initial conditions, number of rows of holes, and hole spacing.

Chapter IV documents an investigation of the local heat flux distribution carried out on the 30° slant-angled injection test section. Data were acquired for two mass flux ratios at ten locations around an injection site. Full-coverage and recovery region heat transfer data for six rows of holes were also acquired as a part of the local heat flux study (see Chapter III).

A differential prediction program, STANCOOL, is described in Chapter V, and a user's guide on how to modify STAN5 to obtain STANCOOL is given in Appendix A. The chapter includes a description of the background

development work and the final versions of the injection model and turbulence-augmentation model. The chapter also contains recommended model constants and sample predictions. STANCOOL was the outgrowth of the analytical work described in NASA Contractor Reports [1,3,4].

Appendix B contains heat transfer data for six and eleven rows of film cooling and slant-angled injection. The data were acquired with an initial momentum thickness Reynolds number of about 3000 and a heated starting length. Mass flux parameter values for the six-row data were nominally 0.4 and 0.9, and for the eleven-row data they were 0.2, 0.6, 0.75, 0.9, and 1.25. The eleven-row data complement the flat plate and 0.4 data in Reference 3 to form a complete data set.

Chapter II

EXPERIMENTAL METHODOLOGY AND PROCEDURES

A. Heat Transfer with Full-Coverage Film Cooling

A conventional means for describing convective heat transfer from a surface (on a flux basis) is via the rate equation

$$\dot{q}'' = h(T_{\infty} - T_{\omega}) \tag{1}$$

where T_{∞} is the mainstream temperature, T_{w} is the wall temperature, and h is the local heat transfer coefficient.

The bulk of two- and three-dimensional film-cooling research to date has used a modified form of Eqn. (1) with T_{∞} being replaced by T_{aw} , the temperature an adiabatic wall would attain downstream of the last coolant injection location. The heat transfer coefficient is replaced by h_{o} , the coefficient that would exist for the same Reynolds number but without injection. Much of the early experimental research involved obtaining distributions of T_{aw} for various geometries and injection conditions. When T_{aw} is properly non-dimensionalized, an expression called "effectiveness" obtains. It ranges numerically from 0 to 1 and reflects the degree to which the downstream surface is protected by the upstream coolant injection (i.e., it will be 0 for no protection, and it will be 1 if the coolant causes the downstream surface heat flux to be reduced to zero). The development of the theory leading to this approach to film-cooling heat transfer is summarized by Eckert [7].

The conventional meaning of effectiveness as the sole indicator of surface protection from high heat flux is not valid in the region where the actual heat transfer coefficient, h, differs appreciably from $h_{_{\rm O}}$. This variation occurs in the region near a hole or a row of holes and is due to the effects of the coolant injection on the hydrodynamic boundary layer. Surface heat flux with film cooling is a two-parameter problem requiring information on both h and effectiveness.

For a flow Mach number greater than about 0.25, a mainstream recovery temperature or adiabatic wall temperature should be used.

The Stanford film-cooling research program has adopted Eqn. (1) to describe heat transfer with full-coverage film cooling, without reference to "effectiveness." All effects of film cooling are carried in h. This approach was first described by Choe et al. [8]. Its focal point is the linearity of the constant-property thermal energy equation, which would govern the Stanford film-cooling experiments. A non-dimensional temperature parameter is defined

$$\theta = \frac{T_{\infty} - T_{j}}{T_{\infty} - T_{w}} \tag{2}$$

where T_j is the coolant injection temperature. Using superposition theory on the linear thermal energy equation yields a calculation equation for h,

$$h(\theta) = h(\theta_0) - \theta \cdot [h(\theta_1) - h(\theta_0)]$$
 (3)

Calculation of h for a given injection temperature requires information on h for two values of the temperature parameter, for the same value of M.

Use of Eqn. (1) for film cooling permits an easy comparison of heat transfer coefficients with and without film cooling, because both coefficients have the same temperature-driving potential. Eqn. (1) can also be used to describe transpiration cooling heat transfer; hence it is simple to compare full-coverage film cooling with transpiration cooling (transpiration is a θ = 1 condition, since the transpired coolant leaves the surface at the same temperature as the surface). The comparison of h with film cooling to the h of an uncooled surface or transpiration-cooled surface can be made on a Stanton number basis. Correlations for St_O (without film cooling) and St with transpiration cooling can be found in Ref. 9.

With a given full-coverage film-cooling geometry, the film-cooling Stanton number depends on both the hydrodynamic and the thermal characteristics of the coolant and mainstream flow, and on the surface thermal boundary condition. Hydrodynamic characteristics are described by the coolant-to-mainstream mass flux ratio (blowing ratio), based on the flow area of one hole,

$$M = \frac{(\rho U)_{j}}{(\rho U)_{\infty}}$$
 (4)

where (ρU) is the mass density-velocity product and the subscripts ∞ and j denote mainstream and coolant conditions. The thermal characteristics of the coolant, mainstream, and surface are defined by θ , the temperature parameter given in Eqn. (2). The initial condition of the boundary layer, at the start of the film-cooling region, can be represented by its momentum thickness Reynolds number, $\operatorname{Re}_{\delta_2} = U_\infty \delta_2/\nu$ and its enthalpy thickness Reynolds number, $\operatorname{Re}_{\delta_2} = U_\infty \delta_2/\nu$.

B. Stanford Experimental Program

The objective of the Stanford studies has been to amass sufficient data to support development of analytical methods for predicting heat and momentum transfer with full-coverage film cooling. The boundary layer on a full-coverage surface is periodic across the span and is three-dimensional. For a given full-coverage geometry, the Stanton number should depend on the following parameters: θ , M, and initial $\operatorname{Re}_{\delta_2}$ and $\operatorname{Re}_{\delta_2}$; Prandtl number, Mach number, and Eckert number for the coolant and mainstream; mainstream turbulence, surface rotation and curvature, and mainstream pressure gradients.

The Stanford experimental program focused upon three parameters for each geometry tested: θ , M, and upstream boundary layer conditions. Three geometries were investigated, all using flat surfaces with eleven rows of holes in each surface. The hole angles corresponded to normal-angled injection (90 degrees to the surface), slant-angled injection (30 degrees to the surface in the downstream direction), and compound-angled injection (30 degree slant injection that was skewed 45 degrees from the sum direction). The holes were spaced five diameters apart in the spanwise and streamwise directions.

The θ parameter was controlled by using one constant temperature for the surface and another for the mainstream, while varying the secondary injection temperature. Values chosen were: $T_j = T_\infty$, θ_0 ($\theta = 0$), and $T_j = T_\omega$ defining θ_1 ($\theta = 1$). The M parameter was controlled by varying the injection velocity, using a constant mainstream velocity. The injection temperature was kept within 15 K of the surface temperature to eliminate density effects, and M varied from 0 (a baseline data points without blowing) to about 1.5. The upstream initial conditions were set

by controlling the hydrodynamic and thermal boundary layer development over the preplate. The momentum thickness Reynolds number, Re_{δ_2} , varied from 500 to 3000, and Re_{Δ_2} varied from 500 to 2000. The ratio of hole diameter to momentum thickness varied from 10 at the low initial momentum Reynolds number down to 2 at the high values.

C. Experimental Facility

The experimental program was carried out in a closed-loop wind-tunnel facility. The tunnel floor consisted of a preplate, a test section, and an instrumented afterplate, with all plates capable of being heated to a temperature 15 K above that of the mainstream. A secondary air loop of the wind tunnel delivered air, heated or cooled, to the discrete-hole test section. Fig. 1 shows a schematic of the wind tunnel.

The main air loop of the wind tunnel was driven by a blower which delivered air through a delivery duct, oblique header, heat exchanger, screen pack, and contraction nozzle, and into the tunnel duct. The duct was 51 cm wide, 20 cm high, and 2.5 m long. Flow left the tunnel duct through a plenum box that supplied both the secondary blower and the primary blower. Velocity could be varied in steps from 7 m/s to 35 m/s, and the velocity was held constant along the test section and afterplate by adjustment of the flexible top wall of the tunnel.

The secondary air loop of the wind tunnel provided heated, measured air to the injection hole. The flow was delivered via eleven individual ducts, one for each row of holes, each containing a hot-wire anemometer type of flow measurement device.

Copper plates, 0.5 cm deep by 45 cm wide by 6 cm long in the flow direction, formed the test surface, with the first plate blank (the upstream guard plate) and the eleven downstream plates containing alternate rows of nine holes and eight holes, each 1.03 cm in diameter. The holes were spaced on 5 diameter centers, in both the spanwise and flow directions, and formed a staggered array. Heater wires were glued into two grooves machined into the back side of each plate. The plates were supported by an aluminum frame across their ends, and phenolic standoff along their spans (to minimize conduction heat loss from the plates and to isolate the plates from each other). Four iron-constantan thermocouples were installed

from the back side of each plate, with each thermocouple located midway between two adjacent holes. Low-conductivity air-delivery tubes extended back from the plate surface, and one tube in each row contained an iron-constantan thermocouple. The cavity was loosely packed with insulating material and closed with bottom plates. Both the frame and bottom plates were heated to minimize conduction loss from the plates. The test-plate power system delivered stabilized AC power to each plate, metered by inserting a wattmeter into the circuit. The reading was corrected for calibration and circuit-insertion losses. Uncertainty in plate power measurement was felt to be 0.3 w.

The preplate and afterplate of the test surface were identical in design, and each was formed of 48 copper plates, each 2.6 cm long in the flow direction. Twenty-four plates were supported by rectangular copper tubes which passed hot water for plate-temperature control. The plates were arranged such that the downstream half of the preplate and the upstream half of the afterplate were heated. Calibrated heat flux meters were located in the afterplate and were used to obtain Stanton number data for the flow as it recovers from the blowing region effect. Uncertainty in afterplate heat flux measurements was estimated at 3 percent.

D. Heat-Flux Data Acquisition

Spanwise-averaged data

Heat-flux measurements were obtained in the film-cooling region using a steady-state energy-balance technique. The electrical power delivered to a plate containing a row of holes was measured, and all energy losses from the plate other than by convection from the working surface were accounted for as accurately as possible. Energy-loss modes were modeled in the data-reduction program as radiation from the plate top surface, conduction between the plate and frame, conduction between adjacent plates, and convection between the plate hole area and the injectant. The resulting average heat flux for the plate was then defined as $q_{s-a}^{ir} = (E-L)/A_{tot}$, where E is the energy supplied to the plate, L is the sum of the energy-loss modes other than by forced convection, and A_{tot} is the total plate area. Since the plate had holes spaced P apart across the span and the injectant boundary condition was spanwise periodic, the area for heat flux

can be interpreted as that associated with one hole. This is depicted in Fig. 2. Accuracy for the Stanton number data is estimated using a root-sum square uncertainty analysis to be \pm 2.5 percent for the θ = 1 data and \pm 5 percent for the θ = 0 data. The larger uncertainty for the latter data reflects the uncertainty tied to the plate-injectant convective loss constant.

2. Local heat flux data

Measurements of local heat flux were made in the full-coverage region with a ten-junction RdF Microfoil Heat Flow Sensor. The sensor was fabricated for three laminated sections with its sensing element in the middle laminate. The outer laminates served as protective covers. The sensing element was a thermopile made of 0.51 µm thermoelectric alloy foil materials, butt-welded to form the junctions. In the middle laminate was a chromel-alumel thermocouple to measure the sensor temperature. Dimensions of the laminated sensor were 0.025 cm thick by 0.5 cm wide by 1.9 cm long. Local heat flux data for each test were obtained at ten locations within an area around a hole, as indicated on the data figures in the next section. The sensor was attached to the heat transfer surface using a 3-M Scotch Brand Tape No. 415, with the leads trailing in the downstream direction. After installation of the sensor on the plate (for a particular location), the plate was allowed to return to steady-state conditions before a measurement was recorded. Uncertainty for the heat-flux measurements was estimated to be \pm 4 percent.

Fig. 1. Schematic of the full-coverage test apparatus

Fig. 2. The test-plate geometry.

Chapter III

HEAT TRANSFER FOR THREE INJECTION GEOMETRIES

A. Temperature Parameter

For a given mass flux ratio and upstream initial conditions, the heat transfer coefficient is a linear function of the temperature parameter, θ . Eqn. (3) describes this dependence. Eqn. (3) will apply for all conditions in which the thermal energy equation remains linear. The reader is referred to References 1 and 3, which experimentally confirm the superposition approach for obtaining heat transfer coefficients with θ greater than unity. Superposition with film cooling and large temperature differences has been confirmed by Ville and Richards [10]. Metzger and his coworkers [11] use superposition to obtain their film-cooling effectiveness data.

For the Stanford film-cooling studies, data were taken for $\theta \approx 0$ and $\theta \approx 1$. The data were then superpositioned-adjusted to $\theta = 0$ and $\theta = 1$ for presentation of the data. The $\theta = 0$ heat-transfer coefficient is the appropriate value for use with the effectiveness approach to film cooling [8,11], and the $\theta = 1$ data can be compared with transpiration data. For advanced gas-turbine application, the θ range for a given M is 1.25 to 1.75 [10].

The actual effect of θ on the Stanton number is described in the following sections. The important point is that, with superposition, only two data bases are required, and the heat transfer coefficient for a given θ follows from Eqn. (3). This is experimentally very convenient and simple, and it allows other data bases to be analytically produced for testing computer programs that model full-coverage film cooling.

B. Mass Flux Ratio

The effect of mass flux ratio on Stanton number for the three injection geometries can best be seen by plotting St versus M for different streamwise locations in the full-coverage region. Fig. 3 presents these data for the third, sixth, and tenth film-cooling rows. In the figure the

plotted data are θ = 0 (open symbols) and θ = 1 (shaded symbols), while the θ = 1.5 line is obtained using Eqn. (3). Initial momentum and enthalpy thickness Reynolds numbers were about 3000 and 2000, respectively.

From the figure four major points are evident: (a) normal-angled injection results in a higher St than either slant- or compound-angle injection geometries; (b) both angled data sets show a minimum in St around M = 0.4 to 0.5; (c) in the initial cooling region (row 3), high blowing can cause the St to exceed the unblown value even at θ = 1.0; and (d) past the initial cooling region, compound-angled injection provides the lowest heat transfer coefficient. By row 10 the surface heat flux with compound-angled injection is essentially zero in the M range from 0.4 to 0.6.

In assessing the relative merits of injection geometries, the spanwise-averaged heat transfer performance should not be the only consideration. From an aerodynamic point of view it is advantageous to have the injectant enter the boundary layer with as much streamwise momentum as possible. Slant- and compound-angled injection has an advantage over normal-angled injection in this respect. A second point for consideration is the possibility of lateral and streamwise variations in local heat flux. The local heat flux data for slant-angled injection presented in Chapter IV and the flow visualization data of Colladay and Russell [12] indicate that compound-angled injection might result in more uniform heat flux.

The full-coverage film-cooling data indicate a minimum in Stanton number around M = 0.4 to 0.5. This minimum is observable in both of the oblique data sets at high initial Reynolds numbers. (No high-M data were obtained with normal-angled injection. The minimum occurs with all three geometries at low initial Reynolds number -- to be discussed in the next section.) Above M = 0.5 (for these constant-property experiments) the jets of coolant apparently cause a region of disturbed flow with high heat transfer coefficient behind the jets, and the average Stanton number increases. Note that the θ = 0 St could easily be approximated as a power-law function of M.

A point to be raised concerns which injection parameter is appropriate to describe high-velocity, variable-property turbine blade flows.

The present full-coverage film-cooling data show that a minimum Stanton number occurs but does not allow one to choose between associating with a mass ratio of 0.40 or a momentum ratio of 0.16. Some slot-film-cooling studies [13] use correlations based on M, and most transpiration cooling studies [9] use an area-averaged M value to reflect the percentage of coolant added to the sublayer of the boundary layer. On the other hand, variable property studies for effectiveness downstream of film-cooling injection [14] indicate that a momentum ratio should be considered. That ratio is also used to correlate jet-in-crossflow trajectory data.

C. Initial Conditions

Full-coverage data sets have been taken for three injection geometries with heated starting lengths and with momentum thickness Reynolds numbers of about 550 and 3000 (also at 1800 for compound-angled injection). In addition, a number of unheated starting-length data runs were made. Only the heated starting-length data will be discussed here. The step-wall temperature data will probably be useful for numerical modeling of the data and can be found in References 1, 3, and 5.

Figure 4 contains Stanton number data from the third, sixth, and tenth film-cooling rows for the 550 momentum and enthalpy thickness Re. These plots are similar to those in Fig. 3 for high initial Re. The tenth row low Re data are seen to lie between the third and sixth high Re data (closer to the sixth). In the initial film-cooling region (row 3), the heat transfer coefficients for the low initial Re are larger than for the high initial Re data, and, in the initial region, slant-angle injection provides better cooling than compound-angled injection.

The higher Stanton number for a lower initial Re is also a characteristic of two-dimensional boundary layer flows [9]. This suggests that the ratio of the film-cooled Stanton number for $\theta=1$ to the unblown Stanton number, St_o, might be independent of the initial conditions. The data in Figs. 3 and 4 were normalized by St_o obtained at M = 0, and the ratios for both initial conditions were plotted in Fig. 5. Note the additional data for compound-angled injection. These were obtained at an initial momentum Re of 1800 and are added from Ref. 5 for completeness.

In Fig. 5 most of the data ratios for a given geometry, for both initial conditions, are within 10 percent of each other at every value of M.

The scatter is even less by the tenth row data. This suggests that for a hole spacing of five diameters, the full-coverage film cooling retains a boundary-layer-like character, and the major effect of the initial conditions is similar to that found in unblown boundary layers.

Where the St ratio data for a given M exhibits scatter, the higher St ratio comes from the lower initial Re data. This suggests that a higher turbulence level may be associated with the jets of coolant emerging into the thinner boundary layer. This increased turbulence effect is counteracted to some degree by the emerging jets remaining closer to the wall in a low Re boundary layer, thus providing better cooling for the near-wall region. For the low initial Re, the ratio of initial boundary layer thickness to jet diameter is about one, while for the high Re it is about five. The Stanton number ratio at a given M may be affected by the local boundary layer (or momentum) thickness. For these experiments the effect appears to be second order.

D. Number of Rows of Holes

The effect due to changing the number of rows of holes was studied for the slant-angled injection geometry. The data were taken for P/D = 5 and 6 and 11 rows of injection. The 11-row initial conditions are those described in Section B of this chapter. The six-row geometry was obtained by shutting off the first five rows of injection. The six-row initial conditions for the plate upstream of the first blowing row (plate 5) are given in Section A of Chapter IV. The two geometries had about the same initial $\text{Re}_{\hat{\Delta}_2}$ but different $\text{Re}_{\hat{\Delta}_2}$. Note the six-row data also served as the spanwise-averaged heat flux data for Chapter IV.

Two blowing ratios were used in the study: M = 0.4 and M = 0.9. Stanton number data were acquired using two injectant temperatures, $\theta \approx 0$ and $\theta \approx 1$, at each blowing ratio. Eqn. 3 was used to adjust the data to $\theta = 0$ and $\theta = 1$ for plotting. The data for M = 0.4 are shown plotted in Fig. 6 versus enthalpy thickness Reynolds number. Arrows on the figures indicate the first and last blowing rows. The six-row data are seen to be about 5 to 10 percent above the corresponding eleven-row data, but the trend is similar. Once blowing begins, the St data for $\theta = 1$ drop below the St reference line, achieving a reduction in St of about

30 percent by the sixth row of holes. The downstream area past the last row of holes is called the recovery region. For the six-row geometry the recovery region St jumps up to within 10 percent of $\rm St_o$, indicating minimal downstream protection. The last data point is about 60 hole diameters downstream. The eleven-row recovery region data show the benefit of additional rows of cooling, since the Stanton number remains low in the recovery region.

For θ = 0 the Stanton number lies above St_o , but in the recovery region it quickly drops to within 4 or 10 percent of St_o .

The thermal boundary layer growth is a strong function of the temperature parameter, θ , of the injection. For $\theta=1$ the thermal boundary layer grows about as rapidly as the momentum boundary layer. For $\theta=0$ the periodic injection of fluid having the same enthalpy as the mainstream retards the thermal boundary layer growth. The momentum boundary layer is the same for the two cases. Past the last row of holes the increased turbulence production cases (see Yavuzkurt et al. [4]). Thus the mechanism for diffusing out the thick $\theta=1$ thermal boundary layer for return to St is reduced. The $\theta=0$ thermal boundary layer has an ehtnalpy thickness much nearer the equilibrium value. Once the turbulent diffusivity drops, the boundary layer rapidly returns to near-equilibrium conditions.

Data for M=0.9 are shown in Fig. 7. The effect of increased M on turbulent diffusivity in the near-wall region is very evident. The $\theta=1$ data lie about 30 percent above the St_0 value for the same enthalpy thickness Reynolds number. Again, the six- and eleven-row data show similar trends. The six-row, $\theta=1$ data were acquired with an M of 1.05, which may account for the slightly higher St. The effect of reduced turbulence production in the recovery region is seen in the rapid drop of the $\theta=1$ data. The much thicker thermal boundary layer for eleven rows of holes causes the St to drop below St_0 .

E. Hole Spacing

Some data for each of the three injection geometries were taken at a pitch-to-diameter of 10, to provide additional data bases for modeling purposes. The P/D = 5 test sections were used, and P/D = 10 was obtained by plugging alternate holes and rows in the arrays with modeling

clay. The normal- and slant-angled data were acquired with low initial Re, and the compound-angled data were acquired with high initial Re. The data will not be presented here, but may be obtained from Refs. 1, 3, and 5. Comparison of P/D = 5 with P/D = 10 data for a given injection angle showed the following: (1) the St decrease below St for $\theta = 1$ was much less for the wider hole spacing; (2) the data indicated a minimum in St for $\theta = 1$ and M about 0.4, with higher St for higher M; and (3) in the recovery region downstream of the last row of holes, the St rapidly returned to St, indicating much less recovery-region protection than with the same M and smaller P/D.

F. Concluding Remarks

Experimental heat transfer studies have been carried out for three injection geometries. Injection of wall-emperature fluid into the boundary layer causes the Stanton number to drop in a manner analogous to transpiration cooling. Unlike the latter situation, however, full-coverage film cooling displays a minimum in Stanton number for a mass flux ratio, M, of about 0.4 to 0.5. Increasing M above 0.4 results in an increasing Stanton number. Past the initial cooling region the compound-angled injection geometry provides the lowest Stanton number for a given N. Variaiton in initial conditions upstream of the blowing section has a second-order effect on the Stanton number distribution. Studies of six and eleven rows of holes for slant-angled inj ection show that the latter gives much better surface protection downstream of the last row of holes. With six rows, the Stanton number rapidly returns to the unblown value in the recovery region, whereas with eleven rows, it remains low longer. Studies of 5and 10-diameter hols-spacing geometries showed the latter to provide much less surface protection. Of the three injection geometries, compoundangled injection seems to be preferable to slant- and normal-angled injection.

Fig. 3. Effect of mass flux ratio on Stanton number after 3, 6, and 10 rows of holes. Thick initial boundary layers. Data points are for $\theta=0$ and $\theta=1.0$, while lines are predictions for $\theta=1.5$.

Fig. 4. Effect of mass flux ratio on Stanton number after 3, 6, and 10 rows of holes. Thin initial boundary layers. Data points are for $\theta \approx 0$ and $\theta \approx 1.0$, while lines are predictions for $\theta = 1.5$.

Fig. 5. Ratio of film-cooled to unblown Stanton numbers at 9 = 1 for various initial conditions. Symbols: \Box , normal; \bigcirc , slant; \triangle , compound angle.

Chapter IV

LOCAL HEAT FLUX DATA

A. Experimental Test Conditions

Local heat-flux data were acquired using the slant-angled test surface. Two blowing ratios were used in the study: M = 0.4 (a low-M data set) and M = 0.9 (a high-M data set). These blowing ratios were chosen based upon the initial findings of Crawford et al. [3], who reported that the full-coverage Stanton number for $\theta = 1$ reached a minimum around M = 0.4 to 0.6 and that the Stanton number increased for higher M. Based on these findings, M = 0.4 and 0.9 were also identified for the hydrodynamic study of the slant-angled injection flow field by Yavuzkurt et al. [4].

For the local heat flux tests, the first five blowing rows of the eleven-row test section were shut off, leaving six rows of cooling holes before the recovery region (afterplate). For both M data sets, spanwise averaged heat flux data, $q_{s-a}^{"}$, were acquired first and then the local heat flux data, $q_{1-a}^{"}$, were acquired in the third and the fifth blowing row.

Initial momentum and enthalpy thickness Reynolds numbers for the tests were about 3300 and 1400 (measured at the midpoint of the plate upstream of the first blowing row). The momentum profile had a displacement-to-momentum thickness ratio of 1.37 and a mainstream velocity of 16.3 m/s. The 99 percent momentum and thermal boundary layer thicknesses were about 2.8 cm and 1.7 cm. The wall and mainstream temperatures were about 34°C and 19°C. Air was used as the working fluid.

B. Results and Discussion

1. Presentation of the data

The local heat flux data are presented in tabular form (Table 1) and in graphical form (Figs. 8 through 11). For convenience of presentation, the data have been normalized using $q_{s-a}^{"}$ for the plate where the $q_{1-a}^{"}$ were obtained. The figures show the hole locations and heat flux locations

BLANK PAGE

Table 1 Local-to-Spanwise-Averaged Heat Flux Ratios, $\dot{q}_{\ell-a}'''/\dot{q}_{s-a}''$ for 3rd and 5th Blowing Rows

HFM Position	M = .4 0 = 1.0 (5th)	M = .4 0 = 0.15 (5th)	M = .4 $\theta = 0.15$ (3rd)	M = .9 0 = 1 (5th)	M = .9 0 = 1 (3rd)	M = .9 0 = .15 (5th)	M = 9 0 = .15 (3rd)
1	,815	,804	,811	.838	.834	.897	.908
2	1.29	.907	.881	1.12	1.02	1.00	.838
3	.620	1.10	1.01	1.31	1.34	1.57	1.46
4	1.37	.937	.895	1.12	1.01	1.00	.838
5	.835	.804	.811	.810	.783	0.909	.862
6	1.24	1.01	1.01	1.17	1.06	0.991	1.01
7	1.26	.951	.853	1.09	1.06	0.921	.884
8	.710	.893	.853	.852	.809	1.17	1.06
9	1.35	.981	.866	1.10	1.02	0.932	.931
10	1.26	1.03	1.02	1.17	1.14	0.980	.990
s-a (w/m ²)	480	700	734	736	813	882	883

(dashed lines) relative to the holes, drawn to scale. The spanwise and streamwise pitch is five hole diameters. Fig. 8 identifies the heat flux meter numbers. To avoid confusion, the data for meters 6 through 10 are shown shifted over one pitch distance on the figures. Data from row 5 are depicted as circles, and data from row 3 are depicted as diamonds. The connecting solid lines are for visual aid only.

2. Symmetry of the data

The data location pairs (1,5), (2,4), (6,10), and (7,9) on each figure are symmetric because of the staggered hole array, and their data should be similar. There are 28 pairs of data for various M and θ in Table 1. Of these, 22 pairs agree with 4 percent (e.g., comparing meter 1 with meter 5). The remaining pairs agree within 6 percent. This implies that the flow field is indeed symmetric about lines passing through the hole centers. To aid in the discussion that follows, the data from each pair have been averaged and are presented in Table 2. The values for the third blowing row are in parentheses

3. Comparison of third and fifth blowing row data

It appears that the major differences between the third row data and the fifth row data occur in the regions between holes. There are lanes about 1.5 hole-diameters wide which seem to run the length of the array. The lanes may be caused by the grid stagger, with a hole spacing greater than two. Meters 2, 4, 7, and 9, and to some extent 6 and 10, are in these lanes. The hydrodynamic boundary layer over the lanes for a given row of holes is influenced, in part, by the following events: (1) diversion of jets injected two rows upstream by the local jets; (2) lateral diffusion of the jets injected one row upstream; and (3) downwash of mainstream fluid that is being entrained due to the streamwise vorticity associated with the emerging jets.

The first event is the one most apt to change as the boundary layer develops over the initial rows of holes. This was observed in the flow visualization study by Colladay and Russell [12] and can be seen in the θ = 0 Stanton number data of Crawford et al. [3]. The third blowing row is the first to have in-line jets upstream. From Table 2 the heat flux ratio increases between the third row lanes (2,4 and 7,9) and fifth blowing

Table 2
Averaged heat flux ratios,
5th row and (3rd row)

Location	1,5	2,4	3	6,10	7,9	8
$M = 0.4, \theta = 1$.83	1.33	.62	1.25	1.31	.71
$M = 0.9, \theta = 1$.82	1.12	1.31	1.17	1.09	.85
	(.81)	(1.02)	(1.34)	(1.10)	(1.04)	(.81)
$M = 0.4, \theta = 0$.80	.92	1.10	1.02	.97	.89
	(.81)	(.89)	(1.01)	(1.01)	(.86)	(.85)
$M = 0.9, \theta = 0$.90	1.00	1.57	.99	.93	1.17
	(.89)	(.84)	(1.46)	(1.00)	(.91)	(1.06)

Table 3
Normalized 5th row data

Location	1,5	2,4	3	6,10	7,9	8
$M = 0.4, \theta = 1$.63	1.00	.47	.95	1.00	.54
$M = 0.9, \theta = 1$.74	1.00	1.18	1.05	1.00	.77
$M = 0.4, \theta = 0$.84	1.00	1.16	1.07	1.00	.94
$M = 0.9, \theta = 0$.94	1.00	1.64	1.03	1.00	1.22

row lanes. It is not clear whether this is an initial effect or whether the increase will continue with streamwise distance as a function of coolant addition. The Stanton number of Crawford suggest this is an initial region effect.

The data for lanes (2,4) and (7,9) in Table 2 are nominally the same. These data can be compared to the other local heat flux data for a given M and θ by averaging these two pairs and using their average to normalize the remaining local data. This procedure has been carried out and is given in Table 3 for the data on the fifth blowing row. The discussion which follows is based on this table.

4. Low-M data

The most significant feature of this data set is the 40 to 50 percent spanwise difference in heat flux for θ = 1. The region downstream of the holes is well protected (i.e., low surface/heat flux) compared to the lanes between holes. The large difference in heat flux suggests potential thermal stress problems for low blowing ratios, especially with wide hole spacings.

Comparison of (1,5) data immediately upstream of a hole with (6,10) data laterally adjacent to the hole indicates that not much of the upstream injectant is diverting around the emerging jet. The (6,10) data are nearly the same as the lane value (7,9). On the other hand, it is also possible that the upstream jet is diverting but that the potential cooling effect of the diverted injectant is being masked by the local acceleration of the boundary layer as it diverts around and over the blockage caused by the emerging jet.

From Table 2 the three data locations 3, 8, and (1.5) have heat flux ratios for θ = 1 of 0.62, 0.71, and 0.83. These data locations are in line with injection holes and about 2.5, 5.0, and 7.5 hole diameters downstream of an injection site. This sequence of data reflects the local recovery of the thermal and momentum boundary layers from injection as the jets of coolant spread and mix with the surrounding fluid. The monotonic sequence suggests that the jets are attached to the surface by 2.5 diameters downstream.

It is difficult to interpret the θ = 0 (mainstream temperature injectant) data. The data share the same hydrodynamics as the θ = 1 data, but the effects on the thermal profile of the boundary layer are markedly different. The θ = 1 condition continues to "pump up" the thermal boundary layer to reduce the heat flux, whereas the θ = 0 condition periodically "deflates" the thermal profile. The θ = 0 data at the data location 3, 8, and (1,5) are 1.10, 0.89, and 0.80, with all the other locations having nominally unity ratios. This monotonic heat flux decrease suggests possibly a deceleration of the boundary layer as it approaches an emerging jet.

5. High-M data

One important feature of the high blowing-ratio data is the reduced spanwise variation in heat flux compared to the $\,\mathrm{M}=0.4\,$ data. For the high-M data and $\,\theta=1$, the largest difference is about 25 percent, half the value of the low-M data. This indicates more lateral spreading and surface protection for high $\,\mathrm{M}.\,$ However, the spanwise-averaged heat flux for $\,\mathrm{M}=0.9\,$ is much higher than for $\,\mathrm{M}=0.4\,$. This implies there is a trade-off between increased $\,\mathrm{St}\,$ and reduced spanwise variation.

One factor affecting the trade-off is related to a second significant feature of the high-M data. For $\theta=1$, the locations 3, 8, and (1,5) show values of 1.31, 0.85, and 0.82. This trend is different from the M = 0.4 data and indicates that the jet separates and then reattaches at about five diameters downstream. Presumably the separation region will be larger for higher M values. This suggests that, while the spanwise variations are, on the whole, reduced due to increased turbulent mixing, local heat flux variations will become more severe in the region behind the emerging jets as M increases. Strictly speaking, this conclusion applies only to 30-degree slant-angled injection.

Separation produces a low-pressure region which tends to entrain fluid. The very large heat flux for location 3 suggests the entrained fluid does not come from the adjacent wall layers. Presumably the interaction of the jet with the shear layer gives rise to streamwise vortices. These would aid entrainment by causing a downwash of outer-region fluid into the region around and under the separating jet. The data from locations (6,10) and (7,9) for $\theta=1$ support this idea.

Comparison to spanwise-averaged data

Local heat flux data were acquired over an area of $P \times P$, where P = 5D. The data were found to vary as much as 50 percent over that area. With such a wide variation in local flux, it is worthwhile to compare the area-integral of the local heat fluxes, $q_{1-a}^{"}$, with that of the spanwise-averaged heat flux, $q_{s-a}^{"}$, obtained from the steady-state energy-balance technique. To obtain the area integral, the following area weights were assigned, based on the approximate area covered by the heat flux meter laminate.

$$\dot{q}_{avg}^{"} = \frac{1}{p^{2}} \left[\left(\frac{D}{2} \right) \left(\frac{\Gamma}{2} \right) \left(\dot{q}_{1}^{"} + \dot{q}_{5}^{"} \right) + (D) \left(\frac{P}{2} \right) \left(\dot{q}_{3}^{"} + \dot{q}_{8}^{"} \right) + \left(\frac{3D}{2} \right) \left(\frac{P}{2} \right) \left(\dot{q}_{2}^{"} + \dot{q}_{4}^{"} \right) + \left(\frac{3D}{2} \right) \left(\frac{P}{2} \right) \left(\frac{\dot{q}_{2}^{"} + \dot{q}_{4}^{"}}{2} + \frac{\dot{q}_{9}^{"} + \dot{q}_{10}^{"}}{2} \right) \right]$$
(5)

In Eqn. (5) the heat flux information for the area occupied by the holes (identical to the area occupied by meters 1 and 5) are omitted since no data were available. For θ = 1 this is harmless, since the heat flux should be nearly zero for that area. For θ = 0 this assumption is unfortunate, but there is no means of determining the heat flux for this area.

Local heat flux data in Table 1 were area-averaged using Eqn. (5), and the results are shown in Table 4. Several observations can be made. The θ = 1 area-averaged heat flux, q''_{avg} , and the plate-energy-balance heat flux, q''_{s-a} , agree extremely well for both blowing ratios. There appears to be less agreement for row 3 data compared to row 5 data for both temperature ratios. For θ = 0, the M = 0.4 locally averaged data are about 15 percent lower, and the M = 0.9 data are about 10 percent lower than their respective spanwise-averaged values. The discrepancy for θ = 0 apparently reflects the lack of accounting of the high surface heat flux in the area immediately surrounding the hole. The larger discrepancy for low M appears to agree with the observation that the injected fluid is immediately turned in the downstream direction after leaving the cooling hole, causing a locally high heat flux behind the hole, while the high M fluid leaves the surface and reattaches farther downstream.

C. Concluding Remarks

The major conclusion from the local heat flux data is that there exist regions on a full-coverage array that have local heat fluxes 20 to 50 percent higher than the average. The high-flux region tends to be located in the lanes between the staggered holes, at least when the hole spacing is greater than 2, and is especially evident for low blowing ratios. Apparently, the coolant does not spread laterally to protect the lanes. For the higher blowing ratios, spreading of the jet is more evident, but the region immediately behind the holes is insufficiently cooled (for 30° slant-angled injection). This suggests that a pitch-to-diameter ratio of 5 is too large for low blowing ratios, but that low-to-moderate blowing ratios would have less behind-hole cooling problems. Compound-angled injection may not have as great a behind-hole cooling problem for higher blowing ratios, but no data are available as yet. The compound-angle injection would also permit more lane coverage for the area between holes.

Table 4

Comparison of Area-Average Local Heat
Flux Data with Spanwise-Averaged Data

	q"avg	q"s-a	q" /q" s-a
$M = 0.4$, $\theta = 1$ (5th row	2	480(w/m ²)	1.00
$M = 0.9, \theta = 1 \text{ (5th row}$	717	736	0.97
(3rd row	750	813	0.92
$M = 0.4$, $\theta = 0$ (5th row	600	700	0.86
(3rd row) 599	734	0.82
$M = 0.9, \theta = 0$ (5th row	821	882	0.93
(3rd row	775	883	0.88

Fig. 6. Spanwise-averaged Stanton numbers for 6 and 11 rows of cooling with M = 0.4. Open symbols are θ = 0, closed symbols are θ = 1. Initial momentum thickness Reynolds number z 3000.

Fig. 7. Spanwise-averaged Stanton numbers for 6 and 11 rows of cooling with M $\stackrel{?}{\sim}$ 0.9. Open symbols are $\stackrel{?}{\circ}$ = 0, closed symbols are $\stackrel{?}{\circ}$ = 1.0. Initial momentum thickness Reynolds number $\stackrel{?}{\sim}$ 3000.

Fig. 8. Local heat flux ratios for M = 0.4 and θ = 1.0.

Fig. 9. Local heat flux ratios for M = 0.4 and θ = 0.15.

Fig. 10. Local heat flux ratios for M=0.9 and $\theta=1.0$.

Fig. 11. Local heat flux ratios for M = 0.9 and θ = 0.15.

Chapter V

NUMERICAL PREDICTION PROGRAM

A. Introduction

The intent of the analysis part of the Stanford film-cooling research was to incorporate the Stanford experimental data base into a program that could predict heat transfer. Both integral and two-dimensional (2-D) methods were studied in detail. The integral method showed promise for normal-angled injection at low to moderate M [1], but for slant-angled injection [3] the θ = 0 data had a trend completely different from the normal injection data, and it was not amenable to simple correlation. Thus, the integral method was abandoned.

Choice of a 2-D finite-difference boundary layer method in preference to a 3-D method was based upon several factors. First, the general flow field is boundary layer in nature, and the departures from 2-D behavior are spanwise periodic. This permits defining spanwise-averaged velocity and temperature quantities which are continuous in the flow direction. This approach has been developed in detail by Choe [1] and Herring [15]. Second, the primary data used in development of the method was intended to be the data acquired in the experimental phase of this program. The construction of the apparatus is such that the data are inherently spanwiseaveraged Stanton numbers representing the area-averaged effects of injection from a row of holes. The third criterion relates to the program's utility as a design tool, which requires short execution times and small computer-core requirements. Recently, Launder and his colleagues [16,17] have had success with a 3-D elliptic/parabolic boundary layer program coupled to a two-equation model of turbulence, but their success has been limited to low to moderate M.

B. The STANCOOL Program

The differential method that has been developed consists of a 2-D boundary layer program. STAN5, with added routines to model coolant injection and turbulence augmentation. The resulting program is called STANCOOL.

The program solves the boundary layer equations by a marching process in the streamwise direction. Fluid is injected into the calculational boundary layer by stopping the program when a row of holes is encountered and inserting the injectant into the stream tubes between the wall and a carefully chosen "jet penetration point" within the boundary layer. The jet-boundary layer interaction is modeled by augmenting the Prandtl mixing length. Two constants are required, in addition to the accepted constants for predicting flow over a flat, slightly rough plate.

The boundary layer equations being solved are those described in the STAN5 documentation report [6] for flow over a flat surface.

$$\frac{\partial}{\partial \mathbf{x}} (\rho \mathbf{U}) + \frac{\partial}{\partial \mathbf{y}} (\rho \mathbf{V}) = 0$$
 (6)

$$\rho U \frac{\partial U}{\partial x} + \rho V \frac{\partial U}{\partial y} = -g_c \frac{dP}{dx} + \frac{\partial}{\partial y} \left(\mu_{eff} \frac{\partial U}{\partial y} \right) \tag{7}$$

$$\rho U \frac{\partial I^*}{\partial x} + \rho V \frac{\partial I^*}{\partial y} = \frac{\partial}{\partial y} \left[\mu_{\text{eff}} \frac{\partial I^*}{\partial y} + \frac{\mu_{\text{eff}}}{g_c J} \left(1 - \frac{1}{Pr_{\text{eff}}} \right) \frac{\partial}{\partial y} \left(\frac{U^2}{2} \right) \right]$$
(8)

where $I^* = I + U^2/2g_CJ$. The effective viscosity and effective Prandtl number are defined in terms of an eddy viscosity, ϵ_m , and the turbulent Prandtl number, Pr_r .

$$\mu_{\text{eff}} = \rho(\nu + \varepsilon_{\text{M}}) \tag{9}$$

$$Pr_{eff} = \frac{1 + (\epsilon_{M}/v)}{\frac{1}{Pr} + \frac{\epsilon_{M}}{v} \cdot \frac{1}{Pr}}$$
(10)

Eddy diffusivity for momentum is modeled by the Prandtl mixing length.

$$\varepsilon_{\rm M} = \ell^2 \left| \frac{\partial U}{\partial y} \right| \tag{11}$$

The mixing-length distribution used in the program is described in the section on turbulence augmentation. The turbulent Prandtl number is presumed to follow the flat-plate variation described in Ref. 6: for air, it is 1.72 at the wall and drops to 0.86 in the outer region.

Boundary conditions for the 2-D flow equations are

$$U(x,0) = 0$$

$$V(x,0) = 0$$

$$\lim_{y\to\infty} U(x,y) = U \text{ (constant)}$$

$$I^{*}(x,0) = I^{*}_{0} \text{ (constant)}$$

$$\text{Lim } I^{*}(x,y) = I^{*}_{\infty} \text{ (constant)}$$

C. Injection Model

1. Model development

The injection model is a calculational technique for inserting coolant into the boundary layer each time the marching process encounters a row of holes. Three candidate injection models were examined: transpiration at the wall, slot-type injection parallel to the wall, and distributed injection.

Testing of these models was carried out using the same turbulence model. The procedure was to find the injection and turbulence model constants that allowed prediction of the θ = 1 Stanton number data for a given set of initial conditions, and test the θ = 0 case. The predictions were deemed successful when the same injection and turbulence model constants predicted the θ = 0 and θ = 1 Stanton number data.

The first injection model to be tested was the transpiration model developed by Choe [1]. This model uniformly distributes the injectant over the area around the injection holes. It was found to be a successful model for low M but failed for M = 0.4.

A slot-type model was then developed to more accurately simulate the way the coolant is injected into the boundary layer. This model extended the range of successful predictions to M=0.6, but failed for still higher M. The empirical constant for this model was the slot height, or jet-penetration point, and the injectant was distributed equally between the wall and the slot height. Physically, as M increases, the slot height should increased to model the fact that the jets of coolant penetrate

farther into the boundary layer. However, as the height was increased, the momentum effects that should have been associated with large M diminished due to the model requirement for uniform injectant distribution. An attempt was made to allow the slot of injectant to reside above the wall for high M, but this resulted in even poorer heat transfer predictions. Evidently, for moderate to high M, turbulent mixing and jetboundary layer interaction combine to distribute some of the injectant in the near-wall region, even though the bulk of the coolant does arrive at or near the penetration point. These facts suggested examining a distributed injection model.

STANCOOL injection model

In constructing the distributed injection model, consideration was taken of the physical process occurring when the jets enter the boundary layer. The jet-in-crossflow discussion by Abramovich [18] and the film-cooling flow-visualization study of Colladay and Russell [12] were used as guides.

For low M the jets do not penetrate but are immediately "knocked over" by pressure and drag forces on the emerging jets, as a consequence of the boundary layer flow. For higher M, the jets leave the surface entirely and are turned in the downstream direction by pressure and shear forces which overcome the jet's resistance to change of direction. In either case, as a jet emerges into the boundary layer the shear layer at the injectant-boundary layer interface promotes entrainment of boundary layer fluid into the jet, and eventually the injectant becomes diffused into the existing boundary layer.

The injection process and entrainment diffusion process are modeled together. As a jet passes through the stream tubes that comprise the boundary layer, drag forces are presumed to "tear off" some of the injectant. The injectant that is shed into a given stream tube is then accelerated by drag forces. Shedding commences at the wall and continues until the total amount shed equals the injectant mass flowrate per unit width of film-cooled surface. The point where shedding is complete is named the penetration distance.

Equations that describe the rodel are obtained from one-dimensional mass, momentum, and thermal energy balances on the element of injectant bounded between two stream surfaces. This element is shown in Fig. 12. For flow between these surfaces,

$$m_{\text{new}} = m_{\text{old}} + \delta m$$
 (12)

where $m_{\rm old}$ is the flow rate upstream and δm is the injectant that is shed into the stream tube (on a rate basis). From a momentum balance consideration,

$$(\dot{m}_{old} + \dot{om})\dot{\overline{U}}_{new} = \dot{m}_{old}\dot{\overline{U}}_{old} + \dot{om}\dot{U}_{i} \cos \alpha$$
 (13)

where \overline{U}_{old} is the mass-averaged velocity of the upstream fluid and U_j is the velocity of the injectant. The U_j velocity is assumed not to vary with u. This is the simplest way to preserve overall momentum within the boundary layer (i.e., $\Sigma \delta \hat{\mathbf{m}} U_j \cos \alpha = \hat{\mathbf{m}}_j U_j \cos \alpha$, where $U_j = M \rho_\infty U_\infty / \rho_j$).

The drag forces that "tear off" the injectant are assumed to accelerate $\acute{e}m$ from its initial velocity up to the new stream-tube velocity,

$$F_D = \delta m(\overline{U}_{new} - U_j \cos \alpha)$$
 (14)

The drag forces can be defined in terms of a drag coefficient for convenience,

$$F_{D} = C_{D} \frac{1}{2} \rho A_{j} (\overline{U}_{old})^{2}$$
 (15)

where A_j is the cross-sectional area of the jet, $(D \cdot \delta y)/\sin \alpha$ for a stream tube that is δy in width (proportional to $\delta \psi$).

By introducing the definition $m_{\rm old} = \rho \overline{U}_{\rm old}(\delta y \cdot P)$, where P is the distance between adjacent jets, and combining with the above equations, the ratio of the mass shed from the coolant jet to the existing mass between the stream tubes (on a rate basis) can be written as

$$\frac{\delta \dot{m}}{\dot{m}_{old}} = \left[\frac{2(P/D)}{C_D} \left(1 - \frac{V_j \cos \alpha}{\overline{V}_{old}} \right) - 1 \right]^{-1}$$
 (16)

A mass-averaged velocity ratio can be formed by rearranging Eqn. (16):

$$\frac{\overline{U}_{\text{new}}}{\overline{U}_{\text{old}}} = \left[1 + \left(\frac{\delta \dot{m}}{\dot{m}_{\text{old}}}\right) \frac{U_{j} \cos \alpha}{\overline{U}_{\text{old}}}\right] \left(1 + \frac{\delta \dot{m}}{\dot{m}_{\text{old}}}\right)^{-1}$$
(17)

From energy balance considerations

$$\overline{I}_{\text{new}}^{\star}(\underline{m}_{\text{old}} + \delta \underline{m}) = \underline{m}_{\text{old}} \overline{I}_{\text{old}}^{\star} + \delta \underline{m} \underline{I}_{\underline{i}}^{\star}$$
(18)

where I_{old}^* is the mass-averaged stagnation enthalpy of the upstream fluid and I_j^* is that of the injectant (assumed not to vary with y to satisfy overall energy conservation). A mass-averaged enthalpy ratio can be formed by rearranging Eqn. (18):

$$\frac{\vec{I}_{\text{new}}^{*}}{\vec{I}_{\text{old}}^{*}} = \left[1 + \left(\frac{\delta_{\text{m}}^{*}}{\delta_{\text{old}}^{*}}\right) - \frac{\vec{I}_{j}^{*}}{\vec{I}_{\text{old}}^{*}}\right] \left(1 + \frac{\delta_{\text{m}}^{*}}{\delta_{\text{old}}^{*}}\right)^{-1}$$
(19)

In the prediction program, the injection model, based on the analysis given above, is contained in a subroutine, and it is invoked whenever a row of holes is encountered. The empirical input is the mass shed ratio, defined as

$$\frac{\delta m}{m} = DELMR = f(M, P/D, \alpha)$$
 (20)

The DELMR expression is used in lieu of Eqn. (17), for simplicity. With this as input, the routine processes each flow tube from the wall outward. The velocities are adjusted according to Eqn. (17) to conserve momentum. The stagnation enthalpies are adjusted according to Eqn. (19). The injection process is terminated at the stream tube, where

$$\dot{\mathbf{m}}_{\mathbf{j}} = \rho_{\mathbf{j}} \mathbf{U}_{\mathbf{j}} \frac{\pi \mathbf{D}^2}{4\mathbf{P}} = \sum_{\mathbf{i}} \mathbf{DELMR} \cdot \delta \psi_{\mathbf{i}}$$
 (21)

Note the introduction of P to put the flow rate on a per-unit depth basis (consistent with the dimensions of ψ). The y location where flow injection is terminated is PD, the penetration distance.

D. Turbulence-Augmentation Model

Model development

The turbulence model accounts for the effects of coolant injection on the turbulent transport terms by altering the eddy viscosity. Three turbulence models were studied: mixing-length augmentation tied to the transpiration injection model, to the distributed injection model, and to a turbulence kinetic energy (TKE) model.

Development and testing of the augmented mixing-length model for use with transpiration was carried out by Choe [1] for normal-angled injection. He made detailed pitot tube surveys of the spanwise distribution of the velocity field within the full-coverage region. From a set of ten profiles between - P/2 and + P/2 he constructed a spanwise-averaged profile. He then integrated the momentum equation, using an analogy between wall friction and heat transfer, and obtained an average shear-stress distribution through the boundary layer. A mixing-length distribution was determined using the velocity profile derivatives and the shear stress distribution. The mixing-length distribution was found to be nearly identical to that of a 2-D boundary layer in the near-wall region and near the free stream, but in the central part of the boundary layer it was higher. The augmented mixing length was modeled by a one-parameter curve fit to the experimental distribution.

Crawford [3] carried out the same velocity profile study for the slantangled injection and found the same augmented mixing-length profile as did Choe. The Crawford model is similar to Choe's, but the model parameter describing the peak in augmentation is directly tied to the distributed injection model.

A turbulence kinetic energy model was investigated in hopes of circumventing some of the recovery region problems encountered with the Crawford model [3]. Yavuzkurt et al. [4] carried out a detailed velocity and Reynolds stress study of the flow field over the slant-angled injection test section and in its recovery region. He developed a very successful TKE model for recovery region predictions, solving the TKE equation with a length-scale model developed from experimental data. Efforts were then ade to develop a similar length-scale model for the full-coverage region,

but with only marginal success. Rather than use different schemes in the full-coverage and recovery regions, the Choe-type model, as modified by Crawford, was adopted.

2. STANCOOL turbulence model

The eddy diffusivity for momentum is modeled by algebraically augmenting the Prandtl mixing length using

$$\frac{\hat{\ell}}{\hat{\delta}} = \left(\frac{\hat{\ell}}{\hat{\delta}}\right)_{2-D} + \left(\frac{\hat{\ell}}{\hat{\delta}}\right)_{a}$$
 (22)

where the "2-D" subscript refers to the 2-D mixing length and the "a" denotes the departure due to the jet-boundary layer interaction. The 2-D mixing-length distribution is that used in STAN5:

$$\ell_{2-D} = \begin{cases} \kappa yD , & \kappa y < \lambda \delta \\ \lambda \delta , & \kappa y > \lambda \delta \end{cases}$$
 (23)

where D is the Van Driest damping function,

$$D = 1 - \exp(-y^{+}/A^{+}) \tag{24}$$

In the above equation, κ is the von Karman constant; λ is the outer layer length-scale constant; δ is the 99 percent boundary layer thickness, $y^+ = y\sqrt{\tau_w/\rho}/\nu$; and A^+ is the Van Driest damping constant. A^+ was about 22 to 23 in the full-coverage region, and it was 25 in the recovery region. The smaller A^+ in the film-cooling region reflected the effect of surface roughness due to the holes. The A^+ transition was handled according to the first-order lag equation described by Crawford and Kays [6].

Augmentation of the 2-D mixing length is depicted in Fig. 13. The curve represents a departure from the 2-D distribution, with a maximum located at PD/δ . The augmented mixing-length distribution is a curve fit to Fig. 13, and it is superimposed on the 2-D distribution according to Eqn. (22).

$$\ell_{\text{max,a}} = \lambda_{\text{max,a}} \cdot \delta \cdot F \tag{25}$$

where F is an exponential function that decays the λ max,a on either side of PD/ δ .

$$F = 2.718 \left(\frac{y}{PD}\right)^2 \exp[-(y/PD)^2]$$

The mixing-length augmentation is a maximum in the vicinity of the injection site, and it decreases in the downstream direction. A model for this decay was developed by Yavuzkurt [4], based on his hydrodynamic studies of the recovery region, downstream of the last row of holes. He found that the augmented turbulence decayed with a time constant proportional to the boundary layer thickness. To model this decay the $(\ell/\delta)_{\text{max,a}}$ in Eqn. (25) is replaced by an effective value, $(\ell/\delta)_{\text{a}}$; and ℓ/ϵ is replaced with

$$\lambda_{\text{eff}} = \lambda_{\text{max,a}} \cdot \exp[-(x'/\delta)/2] \tag{27}$$

where x' is the streamwise distance, measured from the point of injection, and the time constant for decay is two boundary-layer thicknesses.

In the prediction program, the mixing length is computed using

$$\ell = \begin{cases} \kappa y \\ \lambda \delta \end{cases} + \lambda_{eff} \cdot F \cdot \delta \tag{28}$$

and in the near-wall region the mixing length is damped by multiplying it by Eqn. (24). The empirical input to the turbulence-augmentation model is

$$\lambda_{\text{max,a}} = ALAM = f(M,P/D,\alpha)$$
 (29)

and $\lambda_{\mbox{eff}}$ is computed using this input variable and Eqn. (27). The x' is zero at each injection location and increases linearly in the downstream direction.

The success of this turbulence-augmentation model is due partly to its being directly tied to the injection model through PD, the penetration distance. In the turbulence model, PD was arbitrarily assigned to coincide with the mixing-length maximum; in retrospect, perhaps it should have been the outermost edge of the mixing-length perturbation, because

for large M, where PD/ δ approaches unity, half the augmentation is located in the potential core. This problem was discovered only after the model had been used for most of the low-to-moderate M predictions. To overcome this problem for high M or for thin initial boundary layers, PD/ δ was never allowed to exceed 0.8 (arbitrarily fixed).

E. Summary and Constants for the Model

The STANCOOL program is basically the STAN5 boundary layer program with an appended subroutine COOL that contains the injection model. The turbulence-augmentation model resides within the existing subroutine AUX. Boundary conditions for the program consist of specifying the wall temperature and free-stream velocity at various x locations (usually constants, independent of x). The initial conditions are experimentally obtained velocity and temperature profiles upstream of the first row of cooling holes. A three-by-eleven array contains x locations and the M and θ parameter values for the eleven rows of film-cooling holes.

Program STANCOOL commences integration upstream of the first row of holes. When the program encounters a row of holes, it stops and the velocity and temperature profiles are augmented according to Eqns. (17) and (19), with $(\delta m/m_{\rm old})$ being replaced by DELMR, the input injection constant. Injection commences at the surface and proceeds outward, stream tube by stream tube, until $\Sigma \delta m = m_{\rm j}/P$. The final stream tube y location is PD, the penetration distance. With PD determined, the exponential function F (Eqn. (26)) is determined for the augmented mixing length. Integration is restarted, and at each integration point downstream, $\lambda_{\rm eff}$ is computed according to Eqn. (27), with $\lambda_{\rm max,a}$ being replaced by ALAM, the input turbulence constant. The total mixing length is determined using Eqn. (28). For each row of holes this series of steps is repeated.

The input injection and turbulence augmentation constants were determined for each heated starting length, P/D = 5 data set contained in Refs. 1, 3, and 5, and in Appendix B (with the exception of M = 1.5 at momentum Reynolds number = 1800, compound-angled injection). Figs. 14 and

For low-velocity, constant-property flows the stagnation enthalpy and temperature variable are interchangeable.

must provide DELMR and ALAM as input values to STANCOOL. Multiple points for a given M indicate different initial conditions. In Fig. 14 the DELMR constant is seen to be almost independent of initial conditions except for compound-angled injection at M = 0.4. For this case the DELMR constants were 0.45, 0.27, and 0.11 for initial momentum Reynolds numbers of 2700, 1800, and 500. The DELMR constant was shown to be completely independent of the thermal initial condition in Ref. 3. In Fig. 15 the important point is the 20 to 25 percent increase in ALAM for a low initial Reynolds number and normal—and slant-angled injection. The criterion for when the constants successfully predicted the data is discussed in the next section.

F. Prediction of the Data Bases

It is difficult to identify the physical criteria which should be used to assess the merits of a numerical prediction program. Candidates include: heat transfer and friction coefficients, temperature and velocity profiles, and profiles related to the turbulence within the flow field. Ideally one would like a numerical program capable of reproducing all attributes of the flow field for any prescribed geometry and initial and boundary conditions. For simple shear flows we are approaching this realization. When even the best programs are applied to complex flows (of which film-cooled boundary layers are a class), the predictions often deviate from the experimental data in one way or another and the programs must be specialized to yield satisfactory predictions. One should probably not use the word prediction, but instead call the process interpolation. One should not use a specialized program beyond the limits of the geometry and initial and boundary conditions of the data bases used to develop it.

The program reported here is a specialized program made by modifying a well-tested boundary layer program to include an injection model for introducing coolant, and by introducing a turbulence-augmentation model for simulating the shear layer interaction within the boundary layer. There is no claim that this program will predict the detailed attributes of the flow field. It was intended only to develop a program to replicate

the spanwise-averaged Stanton number data bases available at Stanford. We would expect, however, that success in predicting these spanwise-averaged data would imply the possibility of at least limited success in modeling the gross aspects of the flow.

In Section II.B it was indicated that, for a given full-coverage geometry, the Stanton number should depend on θ , M, and upstream boundary conditions; Prandtl number, Mach number, and Eckert number effects for the coolant and mainstream; turbulence and pressure gradient conditions of the mainstream; and surface rotation and curvature. Based on experience with simple flows, including transpired turbulent boundary layers, one would expect the STANCOOL program to have at least limited success in extrapolating the predictions to the compressible, high-velocity, pressure-gradient conditions of a gas turbine engine. The effects of mainstream turbulence, rotation and curvature have not been included in STANCOOL. One point not yet answered is which should be used: the ratio of coolant-to-mainstream velocity, the mass flux ratio, or the momentum ratio. One of these is required in describing the DELMR and ALAM prediction constant correlations for compressible, high-velocity flows.

Initial success in development of the STANCOOL program was described in [3]. The results are summarized as follows. The injection model was tested at M = 0.4 and five initial conditions: unheated starting lengths with momentum Reynolds numbers of 1900, 2700, and 4800, and heated starting lengths with momentum/enthalpy Reynolds numbers of 2700, 1800 and 500, 500. The same value of DELMR successfully predicted all five data sets. In addition, all but the low Reynolds number case used the same ALAM. For low Re the value had to be increased about 20 percent. The prediction program was used to simulate film cooling with 24 rows of holes and slantangled injection at P/D = 5. The predicted Stanton number trend was identical to that for 11 rows (i.e., constant St for $\theta = 0$ and a continued decreasing St for $\theta = 1$). Predicted velocity and temperature profiles with M = 0.4 were compared to pitot-tube and thermocouple experimental spanwise-averaged profiles. The predicted velocity profile was in qualitative agreement, and the $\theta = 0$ and $\theta = 1$ predicted temperature profiles were almost identical to the experimental profiles.

Three sets of predictions have been carried out for normal-angled injection with P/D = 5. The results are shown in Figs. 16 and 17. The initial and boundary conditions, as well as the superposition-adjusted $\theta = 0$ and $\theta = 1$ data are contained in [1]. The agreement between data and STANCOOL is excellent except for the initial film-cooling region for $\theta = 0$ with low initial Reynolds number (see Fig. 17).

Ten sets of predictions have been carried out for slant-angled injection. The experimental data are contained in Appendix B and in [3]. Several predictions of the unheated starting length data sets are also contained in [3]. Figs. 18 through 23 show predictions for similar initial conditions, with P/D = 5 and M as a parameter. The predictions for low M are excellent. By M = 0.6, the θ = 1 recovery region predictions begin to deviate substantially from the experimental values. Again there is a slight underprediction for θ = 0 in the initial film-cooling region.

Figures 24 and 25 are for low initial momentum Reynolds number and P/D = 5 and P/D = 10. Except for the high-M recovery region at $\theta = 1$, the agreement between prediction and data is excellent. The effect of Eqn. (26) on damping ALAM can be seen by comparing the two figures.

Compound-angled injection data from [5] have been predicted, and they are given in Figs. 26 through 32. On the whole, these predictions are much less satisfactory. Surprisingly, the M = 0.4 data were the most difficult to predict, and no single value of DELMR could be found for the three different initial conditions (Figs. 25, 29, and 32). Recovery region predictions for θ = 1 were inadequate at high M, and the initial blowing region predictions deviated by about 10 percent at high M. It is interesting to note, though, that the DELMR and ALAM values correlated reasonably well, as shown in Figs. 14 and 15.

The STANCOOL program has been successful in replicating most of the normal- and slant-angled injection data bases and has shown limited success for compound-angled injection. Recovery-region predictions at high M are also, at most, a limited success. Careful examination of the prediction graphs indicates prediction discrepancies in the initial film-cooling region for moderate to high M (and low M at low initial Reynolds number).

There are four distinct flow fields on the film-cooled surface:

(1) the initial film-cooling region; (2) the "asymptotic" film-cooling region (past the first few rows of holes); (3) the recovery region for low M; and (4) the recovery region for moderate to high M. It is not surprising that STANCOOL adequately models regions (2) and (3) and not (1) and (4). Region (2), the asymptotic film-cooling region, is represented by the injection and turbulence-augmentation model. Region (3), the recovery region for low M, is indirectly modeled by the relatively fast decay of the augmented turbulence to its 2-D value and the fact that the recovery region profiles are not too different from the 2-D value.

For moderate to high M in the recovery region, the turbulence also quickly decays, but the velocity profiles are very flat and far from the 2-D value (Yavuzkurt, Ref. 4). This causes turbulence production that is less than the 2-D value and seems to be the primary cause for the continual drop in Stanton number in the recovery region. The depression of the mixing-length below its 2-D value for moderate to high M is not modeled in STANCOOL.

The initial film-cooling region represents the transition from 2-D flow to 3-D spanwise-periodic flow. This region is not modeled in STAN-COOL. The transition region is fairly short (several rows) for normal-and slant-angled injection and high initial Reynolds number. The region is longer (five to six rows) for low initial Reynolds number (a thin boundary layer compared to the jet diameter). For compound-angled injection the transition region occupies at least six rows of film cooling, and the flow field is distinctly different from normal- and slant-angled injection because of its strong streamwise vorticity.

Fig. 12. Idealized representation of the injection process.

Fig. 13. Idealized representation of the distribution of mixing length in a full-coverge region.

Fig. 14. The injection and parameter DELMR as a function of M for normal-, slant-, and compound-angle injection.

Fig. 15. The turbulence augmentation parameter ALAM (λ) as a function of M for normal-, slant-, and compound-angle injection.

Fig. 16. Comparison of measured and predicted Stanton numbers for normal injection: M=0.2, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 2800 and 1800, respectively.

Fig. 17. Comparison of measured and predicted Stanton numbers for normal injection: M=0.2 and 0.55, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 550 and 600, respectively.

Fig. 18. Comparison of measured and predicted Stanton numbers for slant-angle injection: M=0.2, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 3000 and 2100, respectively.

Fig. 19. Comparison of measured and predicted Stanton numbers for slant-angle injection; M=0.4, P/D=5, with initial momentum and enthalpy thickness Reynolds numbers of 3000 and 2100, respectively.

Fig. 20. Comparison of measured and predicted Stanton numbers for slant-angle injection: M=0.60, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 3000 and 2100, respectively.

Fig. 21. Comparison of measured and predicted Stanton numbers for slant-angle injection: $M \approx 0.75$, $P/D \approx 5.0$, with initial momentum and enthalpy thickness Reynolds numbers of 3000 and 2100, respectively.

Fig. 22. Comparison of measured and predicted Stanton numbers for slant-angle injection: $M \approx 0.90$, P/D = 5.0, with initial momentum and enthalpy thickness Reynolds numbers of 3000 and 2100, respectively.

Fig. 23. Comparison of measured and predicted Stanton numbers for slant-angle injection: $M=1.35,\ P/D=5.0$, with initial momentum and enthalpy thickness Reynolds numbers of 3000 and 2100, respectively.

Fig. 24. Comparison of measured and predicted Stanton numbers for slant-angle injection: M=0.4 and M=0.8, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 500 and 500, respectively.

Fig. 25. Comparison of measured and predicted Stanton numbers for slant-angle injection: M=0.4 and M=0.8, P/D=10.0, with initial momentum and enthalpy thickness Reynolds numbers of 500 and 500, respectively.

Fig. 26. Comparison of measured and predicted Stanton numbers for compoundangle injection: M=0.4, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 2500 and 1800, respectively.

Fig. 27. Comparison of measured and predicted Stanton numbers for compoundangle injection: M = 0.9, P/D = 5.0, with initial momentum and enthalpy thickness Reynolds numbers of 2500 and 1800, respectively.

Fig. 28. Comparison of measured and predicted Stanton numbers for compoundangle injection: $M=1.25,\ P/D=5.0,\ with initial momentum and enthalpy thickness Reynolds numbers of 2500 and 1800, respectively.$

Fig. 29. Comparison of measured and predicted Stanton numbers for compoundangle injection: M=0.4, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 1800 and 1400, respectively.

Fig. 30. Comparison of measured and predicted Stanton numbers for compoundangle injection: M = 0.9, P/D = 5.0, with initial momentum and enthalpy thickness Reynolds numbers of 1800 and 1400, respectively.

Fig. 31. Comparison of measured and predicted Stanton numbers for compoundangle injection: M = 1.25, P/D = 5.0, with initial momentum and enthalpy thickness Reynolds numbers of 1800 and 1400, respectively.

Fig. 32. Comparison of measured and predicted Stanton numbers for compoundangle injection: M=0.4 and 0.9, P/D=5.0, with initial momentum and enthalpy thickness Reynolds numbers of 500 and 650, respectively.

References

- Choe, M., Kays, W. M., and Moffat, R. J., "Turbulent Boundary Layer on a Full-Coverage, Film-Cooled Surface -- An Experimental Heat Transfer Study with Normal Injection," NASA Rep. CR-2642, 1976. (Also Stanford Univ., Dept. of Mech. Engrg., Report HMT-22).
- Crawford, M. E. et. al., "Full-Coverage Film Cooling Heat Transfer Study--Summary of Data for Normal-Hole Injection and 30° Slant-Hole Injection", NASA Rep. CR-2648, 1976.
- Crawford, M. E., Kays, W. M., and Moffat, R. J., "Heat Transfer to a Full-Coverage, Film-Cooled Surface with 30° Slant-Hole Injection", NASA Rep. CR-2786, 1976. (Also Stanford Univ., Dept. of Mech. Engrg., Report HMT-25).
- Yavuzkurt, S. et al., "Full-Coverage Film Cooling: 3-Dimens Monal Measurements of Turbulence Structure and Prediction of Recovery Region Hydrodynamics", NASA Rep. CR-3104, 1979. (Also Stanford Univ., Dept. of Mech. Engrg., Report HMT-27).
- Kim, H. K., et. al., "Heat Transfer to a Full-Coverage, Film-Cooled Surface with Compound-Angle (30° and 45°) Hole Injection", NASA Rep. CR-3103, 1979. (Also Stanford Univ., Dept. of Mech. Engrg., Report HMT-28).
- Crawford, M. E., and W. M. Kays, "STAN5 A Program for Numerical Computation of Two-Dimensional Internal/External Boundary Layer Flows", NASA Rep. CR-2742, 1976. (Also Stanford Univ., Dept. of Mech. Engrg., Report HMT-23).
- Eckert, E. R. G., "Film Cooling with Injection Through Holes", AGARD Conf. Proc. High Temperature Turbines, AGARD CP-73-71, 1971.
- Choe, H., Kays, W. M., and R. J. Moffat, "The Superposition Approach to Film Cooling", ASME Paper 74-WA/HT-27, New York, 1974.
- Kays, W. M., and R. J. Moffat, "The Behavior of Transpired Turbulent Boundary Layers", in <u>Studies in Convection</u>, Vol. 1, Academic Press, London, 1975.
- Ville, J. P., and B. E. Richards, "The Measurement of Film Cooling Effectiveness on Turbine Components in Short Duration Wind Tunnels", AGARD Symposium on High Temperature Problems in Gas Turbine Engines, Ankara, Turkey, September 1977.
- Metzger, E. E., Carper, H. J., and L. R. Swank, "Heat Transfer with Film Cooling Near Nontangential Injection Slots", J. Eng. Power, Vol. 90, p. 157, 1968.
- Colladay, R. S., and L. M. Russell, "Streakline Flow Visualization of Discrete Hole Film Cooling for Gas Turbine Applications", J. Heat Transfer, Vol. 98, p. 245, 1976.

- Goldstein, R. J., "Film Cooling", in <u>Advances in Heat Transfer</u>, Vol. 7, p. 321, 1971.
- 14. Pederson, D. R., Eckert, E. R. G., and R. J. Goldstein, "Film Cooling with Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy", J. Heat Transfer, Vol. 99, p. 620, 1977.
- Herring, H. J., "A Method of Predicting the Behavior of a Turbulent Boundary Layer with Discrete Transpiration Jets", J. Eng. Power, Vol. 97, p. 214, 1975.
- Bergeles, G., Gosman, A. D., and B. E. Launder, "The Prediction of Three-Dimensional Discrete-Hole Cooling Processes. Part 1 - Laminar Flow", J. Heat Transfer, Vol. 98, p. 379, 1966.
- Bergeles, G., Gosman, A. D., and B. E. Launder, 'The Turbulent Jet in a Cross Stream at Low Injection Rates: A Three-Dimensional Numerical Treatment", Numerical Heat Transfer, Vol. 1, p. 217, 1978.
- Abramovich, G. N., The Theory of Turbulent Jets, MIT Press, Cambridge, MA, 1963.

Appendix A

Modifying STAN5 to Obtain STANCOOL

Program STAN5 is the two-dimensional boundary layer program described in the documentation report by Crawford and Kays [6]. Conversion of that program to STANCOOL involves appending several lines of FORTRAN coding to the main and supporting subroutines, and appending subroutine COOL. In this appendix we will present listings of the main and subrouting modifications. a listing of COOL, and a listing of a sample input deck and part of the resulting output.

In describing the conversion of STAN5, the identifying line numbers to the right of the FORTRAN coding correspond to those given in [6]. With one or two exceptions, all coding lines with line numbers remain unchanged, and they are supplied to mark the starting location for appending new lines.

Modifications to MAIN are given in Listing A. The added common lines will also be found in STEP, WALL, OUT, AUX, INPUT, and COOL. The call to Subrouting COOL is located in MAIN, and the XLOC (I) and STX (I) arrays are filled here. These arrays will be used in COOL to integrate St(x) from $-P/2 \le x \le +P/2$; i.e. one-half pitch distance before and after the injection location, to obtain the average Stanton number associated with the area around a row of holes. In the output a table of the average values are printed after the last film cooling hole is passed. This table facilitates comparison to the spanwise-averaged experimental data for the full-coverage region.

When the program encounters a row of holes, the program stops, and COOL injects the coolant by altering the velocity and stagnation enthalpy (temperature) profiles. When the program restarts, a start-up stability problem exists. This problem is solved by iterating the finite-difference solution 4 times for the first few integration steps after re-start. The mechanics of this form the rest of the modifications to MAIN, and the modifications to STEP (Listing B), WALL (Listing C), and OUT (Listing D).

Augmentation of the mixing length occurs in AUX, and these modifications are given in Listing E. Equation (26) is programmed as the program variable DAMP. Equation (27) is the variable ALAME, and it is computed in COOL and transferred to AUX via the common. Equation (28) is the variable AL.

Subroutine INPUT is where the film-cooling variables are read. The AUX1(M) and AUX2(M) arrays are auxiliary arrays that already exist in STANS, and they are used by STANCOOL to specify the M and 0 parameter as a function of x for those X(M) that locate film-cooling rows. (Recall that X(M) is tied to UG(M) and FJ(J,M) for specifying U and I, as a function of x; therefore for those X(M) that are not film-cooling locations. AUX1 and AUX2 entries must be zeros). The block of appended lines in the INPUT routine consists of two read statements, several write statements, and comment lines. These are given in Listing F. ALAM is Eqn. (29); DELMR is Eqn. (20); and APIMOD is the modified A for the blowing region (see Section V.D.). The film-cooling geometry variables include FNROW, the total number of rows of film cooling; PITCH, the lateral spacing between the holes (to calculate the injected mass per unit span, Eqn. (21); DIAM, the hole dismeter; ANGLE, the angle between the hole axis and the surface; and SKEW, the angle the hole axis is turned from the downstream direction (e.g., for normal injection, ANGLE = 90, SKEW = 0; for in-line slant-hole injection ANGLE = 30, SKEW = 0; for compound-angled injection ANGLE = 30, SKEW = 45). Note that the dimensions on PITCH and DIAM must be consistent with GC (e.g., feet).

Subrouting COOL contains three major calculation blocks pertaining to the injection model, the augmented mixing-length constants, and the averaging algorithm for the Stanton numbers. If the input variable Kl equals 55, this routine is called at each integration step, and it is bypassed for Kl = 0 (STAN5 configuration).

The injection model is contained in the major block of the routine, and it is bypassed except when XU corresponds to the location of a row of holes. For a given DELMR, the velocity profile is modified according to Eqn. (17) and the stagnation enthalpy (temperature) profile is modified according to Eqn. (19). Injection ceases when Eqn. (21) is satisfied, and the resulting y-location is YPEN. It is never allowed to be greater than 80 percent of the boundary layer thickness.

The second block of COOL sets the effective mixing-length augmentation constant ALAME, according to Eqn. (26). The effective A^{\dagger} , APLO, is also calculated in this block using the lag equation described in [6], i.e., $A^{\dagger}=26$ upstream, and it is exponentially decreased to about 23 at the srart of the full-coverage region using the same PPLAG dam, ing constant that is recommended in [6].

The third block of COOL implements the algorithm to compute stream-averaged Stanton numbers from the STX(I) and XLOC(I) arrays. The algorithm attempts to simulate the experimental conditions of the full-coverage surface where the average heat transfer for a plate is due to the effects of upstream injectants as well as those from the plate in question. For example with 11 rows of film cooling, 11 stream-averaged Stanton numbers would result for a given M, Θ , geometry, and experimental initial conditions. These would then be compared to the experimental Stanton numbers for ease in determining the proper set of DELMR and ALAM.

Listing H contains a sample data set in the format described in [6]. The data set is that used to predict the θ = 0 case in Fig. 20. Included also in the listing is the output from STANCOOL of the eleven stream-averaged Stanton numbers for the eleven rows of film cooling.

Listing A

MAIN Driver Program

CTURBULENT BOUNDARY LAYER PREDICTIONPATANKAR/SPALDING METHOD, CKAYS/STANFORD VERSION, DESIGNATION STANS, DECEMBER, 1975 C PROGRAM STANCOOL UTILIZES THE STANS PROGRAM WITH MODIFICATIONS C AND AN APPENDED SUBROUTINE TO MODEL THE INJECTION PROCESS AND C TURBULENCE AUGMENTATION. THE PROGRAM MARCHES IN THE STREAMWISE C DIRECTION AND, WHEN A ROW OF HOLES IS ENCOUNTERED, IT STOPS AND C INJECTS COOLANT INTO THE BOUNDARY LAYER. THE TURBULENCE LENGTH C SCALE IS MODELED BY ALGEBRAICALLY AUGMENTING THE MIXING LENGTH. C THE TURBULENCE VELOCITY SCALE IS THE DU/DY PRANDTL FORMULATION	MAIN0000 MAIN0010 COOL COOL COOL COOL COOL COOL COOL
3/ADD/RBOM(54),OMD(54),ROMD(54),ITKE 4/FC1/ALAM,DELMR,APLMOD,FNROWS,PITCH,DIAM,ANGLE,SKEW 5/FC2/XLOC(600),STX(600),KTX,KADJ,APLO,YPEN,ALAME	MAIN0290 COOL COOL
CBY LINEAR INTERPOLATION OF INPUT DATA 205 IF (LSUB.GT.O.OR.KADJ.GT.O) GO TO 35	MAIN0840 COOL
CALL STEP(3) IF (KADJ.GT.0) GO TO 58	MAIN1230 COOL
INTG=INTG+1 IF (K1.EQ.55) CALL COOL(M) IF (LVAR.EQ.6) GO TO 1000	MAIN1960 COOL COCL
IF(LVAR.GT.1)GO TO 1000 IF (KTX.LE.2.AND.KADJ.LE.3) GO TO 70 NINTG=INTG-1 XLOC(INTG)=XU STX(INTG)=ST(1)	MAIN4130 COOL COOL COOL COOL
70 CALL STEP(4) IF (KTX.LE.2) KADJ=KADJ+1 IF (KADJ.GT.4) KADJ=0 IF (KADJ.GT.0) GO TO 15	MAIN4560 COOL COOL COOL

Listing B

Subroutine STEP

	SUBROUTINE STEP(KSTEP) 3/ADD/RBOM(54),OMD(54),ROMD(54),ITKE 4/FC1/ALAM,DELMR,APLMOD,FNROWS,PITCH,DIAM,ANGLE,SKEW 5/FC2/XLOC(600),STX(600),KTX,KADJ,APLO,YPEN,ALAME DIMENSION CUTEMP(54),CTEMP(5,64)	STEP0000 STEP0150 COOL COOL COOL
C C	$CU(1)=-P^{1}U(1+1)-P2U(1)-P3U(1-1)$ G^{1},G^{2},G^{3} Contain entrainment terms and should not be re-calc unless entrainment or pressure gradient is being iterated. $G^{4}-CU(1)-IS$ upstream convection and must not be iterated. IF (kadj.GT.0) $CU(1)=CUTEMP(1)$	STEP2670 COOL COOL COOL COOL
С	C(J,I)=-C(J,I)+SU(J,I)-F(J,I)SD $G^4-C(J,I)-IS$ UPSTREAM CONVECTION AND MUST NOT BE ITERATED. IF (KADJ.EQ.0) CTEMP(J,I)=C(J,I) IF (KADJ.GT.0) C(J,I)=CTEMP(J,I)	STEP2710 COOL COOL COOL
c	.SOURCE TERM FOR VELOCITY EQUATION IF (KADJ.GT.O) GO TO 414	STEP2760 COOL
С	CU(I)=-CU(I)-2.*(S1+S2+S3) S4 - G4 - CU(I) TERM CUTEMP(I)=CU(I)	STEP2810 COOL COOL
414	S3=S3/U(I-1) CONTINUE	STEP2840 COOL
	.SETTING UP VELOCITIES AT A FREE BOUNDARY IF(KEX.EQ.2.AND.KADJ.EQ.0)U(NP3)=SQRT(U(NP3)*U(NP3) 1-2.*DX*(DPDX-GC*BF(NP3))/RHO(NP3))	STEP4030 COOL COOL
560	CONTINUE KTX=1000 KADJ=0	STEP5220 COOL COOL

Listing C

Subroutine WALL

SUBROUTINE WALL 2/CN/AXX,BXX,CXX,DXX,EXX,K1,K2,K3,SP(54),AUX1(100),AUX2(100),YPMAX 4/FC1/ALAM,DELMR,APLMOD,FNROWS,PITCH,DIAM,ANGLE,SKEW 5/FC2/XLOC(600),STX(600),KTX,KADJ,APLO,YPEN,ALAME	WALLOODO WALLO150 COOL COOL
IF(MARKER.EQ.1)GO TO 170	WALL 1580
1F (KADJ.GT.0) GO TO 170	COOL
MARKER=0	WALL3420
IF (LSUB.GT.O.AND.KTX.L7.5) LSUB=0	COOL

Listing D

Subroutine AUX

SUBROUTINE AUX 3/ADD/RBOM(54),OMD(54),ROMD(54),ITKE 4/FC1/ALAM,DELMR,APLMOD,FNROWS,PITCH,DIAM,ANGLE,SKEW 5/FC2/XLOC(600),STX(600),KTX,KADJ,APLO,YPEN,ALAME	AUX00000 AUX00150 COOL COOL
IF (KEX.EQ.1)YTKE=(Y(NP3)-Y(I+1))*YPUT IF (K1.NE.55)GO TO 34 AD=1.0E-5 YMSQ=(YM*YM)/(YPEN*YPEN) IF (YMSQ.LT.18.) AD=EXP(-YMSQ) DAMP=2.71828*YMSQ*AD AL=AL+ALAME*YL*DAMP 34 CONTINUE	AUX01054 COOL COOL COOL COOL COOL COOL COOL

Listing E

Subroutine OUT

SUBROUTINE OUT	OUT00000
2/CN/AXX,BXX,CXX,DXX,EXX,K1,K2,K3,SF(54),AUX1(100),AUX2(100),YPMAX	OUT 00 140
4/FC1/ALAM, DELMR, APLMOD, FNROWS, PITCH, DIAM, ANGLE, SKEW	COOL
5/FC2/XLOC(600),STX(600),KTX,KADJ,APLO,YPEN,ALAME	COOL

IF(SOURCE(1).EQ.2.AND.NPH.GT.1)STA=ST(2)

OUT00410

INPU0000

SUBROUTINE INPUT(KERROR)

WRITE(6,284)NINTG,XU,UGU,CAY,FAM,REM,CF2,H,REH,STA,F(1,1),CPL,AME OUT00540 IF (KADJ.GT.0) GO TO 278 COOL

Listing F

Subroutine INPUT

	4/FC1/ALAM, DELI 5/FC2/XLOC(600)	KX,DXX,EX AR,APLMOD),STX(600	XX,K1,K2,K3,SP(54),AUX1(100),AUX2(100),YPMAX D,FNROWS,PITCH,DIAM,ANGLE,SKEW D),KTX,KADJ,APLO,YPEN,ALAME	COOL
C	(DECIMAL NUMBERS,	IN THE	FORM OF A TABLE.)	INPU2140 COOL
C	FOR FILM COOL	ING AUX1	(M) IS THE BLOWING RATIO. THE AUX2(M)	COOL
C			URE PARAMETER (STAG. ENTHALPY IF VARIABLE	COOL
C			ANT TEMPERATURE (STAG. ENTHALPY) IF THE WALL	
C				COOL
C	SPECIFY THE CO	RRESPONI	DING AUX1(M) AS ZERO. NOTE THAT X(1)	COOL
C	MUST NOT BE AN	INJECT	DSE X(M) THAT ARE NOT INJECTION LOCATIONS DING AUX1(M) AS ZERO. NOTE THAT X(1) ION LOCATION.	COOL
	WRITE(6,740) NI	UMRUN, SPA	ACE, OUTPUT, K1, K2, K3	INPU4370
	IF (K1.NE.55)	GO TO 29	99	COOL
C				COOL
C	•••••		CALL COOL FOR FULL-COVERAGE FILM COOLING	COOL
C		K3=55	PRINT FILM COOLING INJECTION PROCESS	COOL
C		A 1179 A / MAX	DIOLITHO DARAMOROD (DIAGONIO) (BUOTHPELITER)	COOL
C	•••••	AUX1(M)	BLOWING PARAMETER, (RH02*U2)/(RH01NF*U1NF)	
C		AUX2(M)	TEMPERATURE PARAMETER, (T2-TINF)/(TWALL-TINF	COOL
C			OR, INJ TEMP, IZ, IF WALL IS ADIABATIC	COOL
C		BRAD ETI	M COOLING PREDICTION CONSTANTS	COOL
C		NEWS LT	an cooling PREDICTION CONSTRAIS	COOL
C		AL.AM	BLOWING PARAMETER, (RHG2*U2)/(RHOINF*U1NF) TEMPERATURE PARAMETER, (T2-TINF)/(TWALL-TINF OR, INJ TEMP, T2, IF WALL IS ADIABATIC M COOLING PREDICTION CONSTANTS LAMBDA AUGMENTED, TURBULENCE MODEL MASS FLOW RATIO, INJECTION MODEL APLUS FOR BLOWING REGION	COOL
C		DELMR	MASS FLOW RATIO, INJECTION MODEL	COOL
C		APLMOD	APLUS FOR BLOWING REGION	COOL
C			neade ton beautiful industri	COOL
	READ (5.580) A	LAM DELM	AR, APLMOD	COOL
C				COOL
C	*******************	READ FIL	M COOLING GEOMETRY	COOL
C				COOL
C		FNROWS	NUMBER OF INJECTION LOCATIONS	COOL
C		PITCH	LATERAL CENTER-TO-CENTER HOLE SPACING	COOL
C		MAIG	JET DIAMETER	COOL
C			HOLE AXIS ANGLE	COOL
C		SKEW	HOLE AXIS SKEW ANGLE	COOL

С		COOL
READ (5.5)	BO) FWROWS, PITCH, DIAM, ANGLE, SKEW	
WRITE (6,	405)	COOL
405 FORMAT (/	/5x, FILM COOLING USING DISCRETE HOLE INJECTION (/)	COOL
WRITE (6.	406)	COOL
406 FORMAT (5)	(,'TURBULENCE MODEL IS AUGMENTED MIXING LENGTH'/)	COOL
WRITE (6,	N10) ALAM, DELMR, APLMOD	COOL
410 FORMAT (5)	(,'ALAM=',F6.3,5X,'DELMR=',F6.3,5X,'APLMOD=',F4.0/)	COOL
	5) FNROWS, PITCH, DIAM, ANGLE, SKEW	
415 FORMAT(5X	'NROWS:',F4.0,5X,'PITCH:',F7.5,5X,'DIAM:',F7.5,	COOL
1 5X, ANGL	E=',F4.0,5X,'SKEW =',F4.0/)	COOL
299 CONTINUE		COOL

Listing G

Subrostine COOL

SUBROUTINE COOL(M)

CC

C

C

CC

C

C

C

C

C

C

CC

C

C

C

C

CC

C

C

C

C

C

C

C

SUBROUTINE COOL CONTAINS THE INJECTION MODEL FOR SIMULATION OF FULL-COVERAGE FILM COOLING. AUGMENTED MIXING-LENGTH PARAMETERS ARE ALSO COMPUTED HERE, BUT THE MODEL ITSELF RESIDES IN SUB AUX.

SUBROUTINE COOL IS CALLED CONTINUOUSLY IF K1=55. UNTIL THE FIRST INJECTION ROW IS ENCOUNTERED, CONTROL IS RETURNED TO THE DRIVER (MAIN). RECALL THAT X(1) MUST NOT BE A FILM COOLING LOCATION. WHEN XU=X(ROW OF HOLES), COOLANT IS INJECTED INTO THE B.L. FOR ALL OTHER VALUES OF XU, AND AFTER THE LAST FILM COOLING LOCATION IS ENCOUNTERED, THE INJECTION MODEL SECTION IS BYPASSED AND ONLY THE AUGMENTED MIXING-LENGTH PARAMETERS ARE COMPUTED.

K1=55 CALL COOL FOR FULL-COVERAGE FILM COOLING K3=55 PRINT FILM COOLING INJECTION PROCESS

AUX1(M) BLOWING PARAMETER, (RHO2"U2)/(RHOINF"U1NF)
AUX2(M) TEMPERATURE PARAMETER, (T2-TINF)/(TWALL-T1NF)
OR, INJ TEMP, T2, IF WALL IS ADIABATIC

ALAM LAMBDA AUGMENTED, TURBULENCE MODEL
DELMR MASS FLOW RATIO, INJECTION MODEL
APLMOD APLUS FOR BLOWING REGION

FNROWS NUMBER OF INJECTION LOCATIONS
PITCH LATERAL CENTER-TO-CENTER HOLE SPACING
DIAM JET DIAMETER
ANGLE HOLE AXIS ANGLE
ANGLE HOLE AXIS ANGLE

INTEGER GEOM,FLUID,SOURCE(5),SPACE,BODFGR,OUTPUT,TYPBC
COMMON/GEN/PEI,AMI,AME,DPDX,XU,XD,XL,DX,INTG,CSALFA,TYPBC(5),

```
"HODE.PRT(5).PRE.NXBC.X(100).RW(100).FJ(5.100).GC.CJ.AM(100).PRO.
      2UG(100), PO, SOURCE, RETRAN, NUMRUN, SPACE, RWO, PPLAG, OUTPUT, DELTAX, GV
      3/E/N.NP1.NP2.NP3.NEO.NPH.KEX.KIN.KASE.KRAD.GEOM.FLUID.BODFOR.YPMIN
     5/V/U(54),F(5,64),R(54),OM(54),Y(54),UGU,UGD,UI,FI(5),FMEAN,TAUW
      7/L/AK.ALMG.ALMGG.FRA.APL.BPL.AO.BO.ENU(54).PREF(5.64).AUXM1
      8/L1/YL, UMAX, UMIN, FR, YIP, YEM, ENFRA, KENT, AUXM2
      9/P/RHO(54), VISCO(54), PR(5,64), RHOC, VISCOC, PRC(5), T(54), RHOM, BF(54)
      1/O/H.REM.CF2.ST(5), LSUB, LVAR, CAY, REH, PPL, GPL, QV(5), KD
     2/CN/AXX,BXX,CXX,DXX,EXX,K1,K2,K3,SP(54),AUX1(100),AUX2(100),YPMAX
      3/ADD/RBOH(54),OHD(54),ROHD(54),ITKE
     4/FC1/ALAM, DELMR, APLMOD, FNROWS, PITCH, DIAM, ANGLE, SKEW
     5/FC2/XLOC(600),STX(600),KTX,KADJ,APLO,YPEN,ALAME
C
      IF(INTG.GT.1)GO TO 5
C
      INITIALIZE VARIABLES
      NROWS@IFIX(FNROWS+0.01)
      KCOUNT±0
      KTERM=0
      XPRINT=X(NROWS+1) + 0.75 PITCH
      IF(NROWS.EQ.6.AND.PITCH/DIAM.GT.6.)XPRINT=X(12)+0.75*PITCH/2.
      ANGLE=ANGLE=3.14159/180.
      SKEN=SKEW*3.14159/180.
      APLINL=APL
      APLE=APL
      UGU=1.
      DXMAX=0.25 DIAM
      YPEN=1.E-5
      YPENI = YPEN
      ALAME=0.
      XHOLE=X(1)
C
    5 IF (KTERM.EQ.1) GO TO 900
      MH=H-1
      HLOC=X(MM)
      IF (XU.NE.HLOC) GO TO 105
C
      A FILM COOLING OR BC LOCATION X(M) HAS BEEN ENCOUNTERED
      AUXM=AUX1(MM)
      AUXTH=AUX2(PM)
C
C
      X-BOUNDARY CONDITION BUT NOT AN INJECTION LOCATION
      REPORT THE TALL
      IF(AUXM.E. ).O.AND.DELMR.NE.O.O) WRITE(6,121) HM, XU
  121 FORMAT (/10X, SUBROUTINE COOL CALLED AT LOCATION X(',12,
     1 ') AND XU=',F7.4,'; HOWEVER M=O AT THIS LOCATION'/)
      IF(AUXM.EQ.O.O.AND.DELMR.NE.O.O) GO TO 105
C
      KCOUNT=KCOUNT+1
      IF(KCOUNT.EO.NROWS) KTERM= 1
      REPORT THE CALL FOR FILM COOLING
      WRITE (6,120) MM, XU, KCOUNT, AUXM, AUXTH
  120 FORMAT (///10X, 'SUBROUTINE COOL HAS BEEN CALLED', /10X,
     ' 'INJECTION MODEL WITH AUGMENTED MIXING LENGTH' ./ 10X.
```

```
2 'X(',12,') =',F7.4,3X,'ROW =',I3,3X,'M =',F5.2,3X,
     3 'THETA =' .F5.2///)
C
      SPECIAL PROVISION FOR ST AVG WITH NO FILM COOLING
      IF(HLOC.EQ.X(1))KCOUNT=0
      IF (AUXM.EQ.0.0.AND.ALAM.EQ.0.0) GO TO 105
      KTX=0
C
      INJECTION TEMPERATURE (STAGNATION ENTHALPY IF VAR PROP)
      FCOOLT=AUXTH^{\bullet}(F(1,1)-F(1,NP3))+F(1,NP3)
C
C
      MODIFICATION FOR ADIABATIC WALL CONDITION
C
      IF ADIABATIC WALL. AUXTH IS INJ TEMP (STAG ENTHALPY IF WAR PROP)
      IF (TYPBC(1).EQ.2) FCOOLT = AUXTH
      FCOOL=FCOOLT
C
      OBTAIN DENSITY OF INJECTANT
C
      IF(FLUID.NE.2) GO TO 125
C
      FIRST ITERATION, FCOOL=FCOOLT
      CALL PROP2(1,FCOOL,TCOOL,VISC2,PR2,RH02)
C
      SECOND ITERATION
      U2=AUXM*U(NP3)*RHO(NP3)/RHO2
      FCOOL=FCOOLT-(U2*U2)/(2.*GC*CJ)
      CALL PROP2(1,FCOOL,TCOOL,VISC2,PR2,RH02)
C
      THIRD ITERATION
      FCOOL=FCOOLT-(U2*U2)/(2.*GC*CJ)
      CALL PROP2(1,FCOOL,TCOOL,VISC2,PR2,RH02)
C
  125 IF (FLUID.NE.2) RHO2=RHO(NP3)
C
    *********** INJECTION MODEL ***********
C
C
C
      INITIALIZE
      COOLR=3.14159 DIAM AUXM U(NP3) RHO(NP3)/(4. PITCH)
      COOLR 1=COOLR R(1)
      PEIO=PEI
      PEI=PEI+COOLR 1
      VJET=AUXM*U(NP3)*RHO(NP3)/RHO2
      VCOST=VJET COS(ANGLE) COS(SKEW)
      XHO, E=HLOC
      ILL=3
C
      IF (NPH.EQ.0) GO TO 99
      Jal
      FOLD=F(J, ILL-1)
   99 UOLD=U(ILL-1)
      ILLM'sILL-1
      OMA=OM(ILL-1)
      COMMENCE INJECTING COOLANT
      DO 70 I=ILL.NP1
      IF (I.EQ.NP1) 00 TO 109
      UBAR=(U(I)+UOLD)*0.5
      OMB = OMA
```

```
OLDM=(OM(1)-OHB)*PEIO
      DELM=DELMR*OLDM
      IF(DELM.LT.COOLR1) GO TO 10
C
      FLUID INJECTED NOW EQUALS COOLR, EXIT DO LOOP
      DELM=COOLR1
      II=I-1
      GO TO 80
C
      SET NEW AVERAGE VELOCITY, ENTHALPY, AND TKE
   10 UBN=(OLDM*UBAR+DELM*VCOST)/(OLDM+DELM)
      IF(NPH.EQ.0) GO TO 30
      J=1
      FBAR=(F(J.I)+FOLD)*0.5
      FBN=(OLDM*FBAR+DELM*FCOOL)/(OLDM+DELM)
   30 IF(I.EQ.ILL) GO TO 40
      IF(I.EQ.ILL+1) GO TO 50
      MODIFY VELOCITY ENTHALPY TO CONSERVE MOMENTUM & STAG. ENTHALPY
C
      STAGNATION ENTHALPY, AND MECHANICAL ENERGY
      UOLD=U(1)
      U(I)=2. UBN-U(I-1)
      OMA=OM(I)
      OM(I)=OM(I-1)+(DELM+OLDM)/PEI
      IF(NPH.EQ.O) GO TO 60
      J=1
      FOLD=F(J,I)
      F(J,I)=2. FBN-F(J,I-1)
   59 IF(K3.GE.55)WRITE (6,44) I,UOLD,U(I),FOLD,F(1,1),DELM,OLDM
      GO TO 60
C
      SPECIAL HANDLING FOR NODES ILL AND ILL+1
   40 OMA=OM(ILL)
      OL DM3 = OLDM
      DELM3=DELM
      UBN3=UBN
      UOLD=U(ILL)
      IF (NPH.EQ.0) GO TO 60
      Jai
      FBN3=FBN
      FOLD=F(J,ILL)
     GO TO 60
   50 UBN4=UBN
      U02=U(ILL-1)
      UO3=U(ILL)
      DELY=(Y(ILL)-Y(ILL-1))/(Y(ILL+1)-Y(ILL-1))
      U(ILL-1)=UBN3-(UBN4-UBN3)*DELY
      U(ILL)=2. UBN3-U(ILL-1)
      UOLD=U(ILL+1)
      U(ILL+1)=2. UBN4-U(ILL)
      OM(ILL)=OM(ILL-1)+DELM3/PEI+(OM(ILL)-OM(ILL-1))*PEIO/PEI
      OMA=OM(ILL+1)
     OM(ILL+1)=OM(ILL)+(DELM+OLDM)/PEI
      IF (NPH.EQ.O) GO TO 60
      J = 1
     FBN4=FBN
     F02=F(J, ILL-1)
     FO3=F(J,ILL)
```

```
F(J, ILL-1)=FBN3-(FBN4-FBN3)*DELY
      F(J, ILL)=2.*FBN3-F(J, ILL-1)
      POLD=F(J, ILL+1)
      F(J, ILL+1)=2.*FBN4-F(J, ILL)
   42 IF(K3.GE.55)WRITE(6,43)
   43 FORMAT (6X,'I',4X,'UOLD',4X,'UNEN',6X,'FOLD',4X,'FNEN'.
     1 8x. 'DELM', 10x, 'OLDM',/)
      ITWO:ILL-1
      ITHREE=ILL
      IF(K3.GE.55)WRITE (6,44) ITWO, UO2, U(ILL-1), FO2, F(1, ILL-1)
      IF(K3.GE.55)WRITE (6.44)ITHREE.U03.U(ILL).F03.F(1.1LL).DELM3.OLDM3
      IF(K3.GE.55)WRITE (6,44) I,UOLD,U(I),FOLD,F(1,I),DELM,OLDM
   44 FORMAT (5x.12,2F8.2,2x,2F8.2,2x,2E14.5)
C
   60 COOLR1=COOLR1-D∑LM
   70 CONTINUE
   80 FLOW1=(OM(II+1)-OMA)*PEIO
      FLON2=(OH(II+2)-OH(II+1))*PEIO
      AMOMIN=0.5*(FLOW2*(U(II+2)+U(II+1))+FLOW1*(U(II+1)+UOLD))

    DELM*VCOST

      EIN=FLOW2@((U(II+2)+U(II+1))/2.)@@2/2.+FLOW1@((U(II+1)+UOLD)/2.)@@
     12/2. *DELM*VJET*VJET/2.
      UOLDII:UOLD
      UOLDeU(II+1)
     U(II+1)=(2.*AMOMIN-FLOW2*U(II+2)-(FLOW1+DELM)*U(II))/
     1 (FLOW2+FLOW1+DELM)
      ECUT=FLOW2*((U(II+2)+U(II+1))/2.)**2/2.+(FLOW1+DELM)*((U(II+1)+
     1 U(II))/2.)**2/2.
     OMB=OM(II+1)
      OM(II+1)=OM(II)+(FLOW1+DELM)/PEI
      IIP2=II+2
      DO 300 K=IIP2.NP1
      OMA=OM(K)
     OM(K)=OM(K-1)+(OMA-OMB)*PEIO/PEI
  300 OMB=OMA
      DO 330 I=2.NP1
      RBOM(I)=1./(OM(I+1)-OM(I-1))
     OMD(I) = OM(I+1) - OM(I)
  330 ROMD(I)=1./OMD(I)
     IF(NPH.EQ.0)30 TO 350
     ENIN=FLOW2®0.5®(F(J,II+2)+F(J,II+1))+FLOW1®0.5®(F(J,II+1)
     1+FOLD)+DELM*FCGOL
     FOLD=F(J, II+1)
     F(J, II+1) = (2. *ENIN-FLOW2*F(J, II+2) - (FLOW1+DELM)*F(J, II))/
     1(FLOW2+FLOW1+DELM)
 349 I=II+1
     IF(K3.GE.55)WRITE (6.44) I.UOLD.U(1).FOLD.F(1,1).DELM.CLDM
  350 IF (FLUID.NE.2) GO TO 360
     DO 355 K=2.I
 355 CALL PROP2(K,F(1,K),T(K),VISCO(K),PR(1.K),RHO(K))
 360 CALL STEP(3)
     IF(K3.GE.55) WRITE (6,909) YL
```

Table of Contents

		Page
Chapter		
I.	INTRODUCTION AND OVERVIEW	1 1/A7
II.	EXPERIMENTAL METHODOLOGY AND PROCEDURES	3 1/A9
	II.A. Heat Transfer with Full-Coverage Film Cooling	3 1/A9
	II.B. Stanford Experimental Program	5 1/A11
	II.C. Experimental Facility	
	II.D. Heat-Flux Data Acquisition	7 1/A13
	II.D.1. Spanwise-averaged data	7 1/A13
	II.D.2. Local heat flux data	
III.	HEAT TRANSFER FOR THREE INJECTION GEOMETRIES	11 1/B4
	III.A. Temperature Parameter	11 1/B4
	III.B. Mass Flux Ratio	11 1/B4
	III.C. Initial Conditions	13 1/B6
	III.D. Number of Rows of Holes	
	III.E. Hole Spacing	-/
	III.F. Concluding Remarks	
· IV.	LOCAL HEAT FLUX DATA	20 1/B13
	IV.A. Experimental Test Conditions	20 1/B13
	IV.A.1. Presentation of the data	
	IV.A.2. Symmetry of the data	
	IV.A.3. Comparison of third and fifth blowing	-/
	row data	22 1/C3
	IV.A.4. Low-M data	24 1/C5
	IV.A.5. High-M data	
	IV.A.6. Comparison to spanwise-averaged data	
	IV.C. Concluding Remarks	
v.	NUMERICAL PREDICTION PROGRAM	34 1/D7
	V.A. Introduction	34 1/D7
	V.B. The STANCOOL Program	34 1/D7
	V.C. Injection Model	36 1/D9
	V.C.1. Model development	
	V.C.2. STANCOOL injection model	
	V.D. Turbulence-Augmentation Model	-, -,
	V.D.1. Model development	
	V.D.2. STANCOOL turbulence model	
	V.E. Summary and Constants for the Model	
	V.F. Prediction of the Data Bases	
eferen	00	40 1/61

Append	ix		4	Page	
A	MODIFY	ING STAN	5 TO OBTAIN STANCOOL	. 71	1/G3
В	PREVIO	USLY UNR	EPORTED SLANT-INJECTION DATA	. 87	2/A7
	B.1.	Data wi B.l.a.	th 11 rows blowing, heated starting length Initial profiles of temperature and	89	2/A9
		B.1.b.	velocity		2/A9 2/A11
			$M = 0.20$; $\theta = 0$. 91 . 92	2/A13 2/B1
		B.1.c.	$M = 0.6$; $\theta = 1$. 94	2/B3 2/B5 2/B7
		B.1.d.	$M = 0.75$; $\theta = 1$. 96 . 97	2/B9 2/B11
		B.1.e.	$M = 0.75$; $\theta \cong 1$, $\theta = 0$ by superposition $M = 0.90$; $\theta \cong 1$. 99	2/B13 2/C1 2/C3
		B.1.f.	$M = 0.90$; $\theta = 1$, $\theta = 0$ by superposition $M = 1.33$; $\theta = 1$.101 102	2/C5 2/C7 2/C9
			$M = 1.33$; $\theta = 1$, $\theta = 0$ by superposition		2/C11
	B.2.	Data wi	th 6 rows blowing, heated starting length .	105	2/C13
		B.2.a.	Initial profiles of temperature and velocity	105	0/010
		в.2.ь.	$M = 0.4; \ \theta = 1 \dots \dots$	105 106 107	2/C13 2/D1 2/D3
		B.2.c.	$M = 0.4$; $\theta = 1$, $\theta = 0$ by superposition $M = 0.9$; $\theta = 1$	108 109	2/D5 2/D7
			$M = 0.9$; $\theta = 0$	110 111	2/D9 2/D11

```
909 FORMAT (/10X,'YL=',F9.5/)
C
      YPEN=Y(II)+DELM*(Y(II+1)-Y(II))/(DELMR*OLDM)
      YPENI=YPEN
      IF (YPEN.GT.YL)YL=YPEN
      IF(YPEN/YL.GT.0.8)YPEN=0.8*YL
C
  105 CONTINUE
      IF (KCOUNT.EQ.O) RETURN
C
      GO TO 950
C
C
      INITIALIZE RECOVERY REGION
  900 APLO=APLINL
      IF (KTX.GT.25)DELTAX=0.2
      IF (KTX.GT.25) DXMAX=1000.
      GO TO 951
C
C
      DAMP APLMOD IN FILM COOLING REGION
  950 APLO=APLMOD
  951 KTX=KTX+1
      IF (KTX.1.2.5) DX=0.5*DX
      IF(DX.GT.DXMAX) DX=DXMAX
      IF(YL.LT.YPENI)YL=YPENI
      XPYL=(XU-XHOLE)/YL
      UTAUG=SQRT(GC*TAUW/RHO(NP3))
      IF (UTAUG.LT.O.01*UGU.OR.UTAUG.GT.O.1*UGU) UTAUG=0.05*UGU
      DAMP=EXP(-(DX*UTAUG*RHO(1))/(VISCO(1)*PPLAG))
      APLE=APLO-(APLO-APLE)*DAMP
      APLO=APLE
      IF (KD.EQ. 1. OR. KD.EQ. 3) APL=APLE
      IF (DELMR.EQ.0.0.AND.ALAM.EQ.0.0) GO TO 955
      ALAME=ALAM®EXP(-1. *XPYL/2.)
C
      IF (KTX.NE.1) GO TO 955
  952 AL2D=ALMG*YL
      IF (YPEN.LT.AL2D/AK) AL2D=AK*YPEN
      ALAUG=ALAME YL
      ALTOT=AL2D+ALAUG
      IF(K3.NE.55)WRITE (6,130)
  130 FORMAT (1H1)
      WRITE (6,954) ALAME, YPEN, AL2D, ALAUG, ALTOT, YL
  954 FORMAT(/5x,'ALAME=',F6.4,5x,'YPEN=',F6.4,3x,'L2D1=',F6.4,3x,
     1'LAUG=',F6.4,3X,'LTOT=',F6.4,3X,'YL=',F6.4,3X,
     2 'IF YPEN WAS .GT. YL, YL=YPEN'/)
      IF(K3.NE.55.AND.OUTPUT.EQ.2) WRITE (6.140)
  140 FORMAT(/, 115H INTG
                              XU
                                       UGU
                                                                   REM
     1 CF2
                 H
                         REH
                                     ST
                                            F(1, WALL) APL OR BPL
                                                                   AME)
  955 SP(1)=YPEN/YL
      SP(2)=YL
      SP(3)=ALAME
      IF (TYPBC(1).EQ.2)SP(5)=(F(1,1)-F(1,NP3))/(AUXTH-F(1,NP3))
```

```
IF (XU.LE.XPRINT) RETURN
C
      COMPUTE AVERAGE STANTON NUMBERS
      XPRINT=X(NXBC) +1.
      WRITE (6,405)
  405 FORMAT(//, 10X, 'STANTON NUMBER AVERAGE OVER DISTANCE FROM 0.5*PITCH
     1 BEFORE A HOLE LOCATION TO 0.5*PITCH AFTER THAT LOCATION'/)
      JHI=1
      DELTA=PITCH/2.
      IF(NROWS.EQ.6.AND.PITCH/DIAM.GT.6.)DELTA=PITCH/4.
      IF(NROWS.EQ.6.AND.PITCH/DIAM.GT.6.)NROWS=11
      NROWP1=NROWS+1
      DO 470 I=2.NROWP1
      XLO=X(I)-DELTA
      XHI=X(I)+DELTA
      DO 410 J=JHI, 1000
      IF(XLOC(J).GE.XLO) GO TO 420
  410 CONTINUE
  420 JL0=J
      DO 430 J=JLO, 1000
      IF (XLOC(J).GE.XHI) GO TO 440
  430 CONTINUE
  440 JHI=J-1
      TRAPEZOIDAL RULE
      LLO=JLO+1
      LHI=JHI-1
      STAVG=STX(JLO)*(XLOC(JLO+1)-XLOC(JLO))
      DO 450 J=LLO,LHI
  450 STAVG=STAVG+STX(J)*(XLOC(J+1)-XLOC(J-1))
      STAVG=0.5*(STAVG+STX(JHI)*(XLOC(JHI)-XLOC(JHI-1)))/(XLOC(JHI)-
     1 XLOC(JLO))
      WRITE (6.460) X(I).STAVG
  460 FORMAT (10X, 'XLOCATION=', F7.4, 5X, 'STANTON NUMBER AVERAGE=', E12.5/)
  470 CONTINUE
      RETURN
C
  109 WRITE (6,110)
      LVAR=6
  110 FORMAT(' PROGRAM TERMINATED BECAUSE PD WAS OUTSIDE OF THE E-SURFAC
      RETURN
  540 WRITE (6,113)
  113 FORMAT (/,10X,'DELMR CALCULATION DID NOT CONVERGE IN 15 ITER')
      LVAR=6
      RETURN
      END
```

Listing H
Sample Input Data

2700HSL40	0					
1	2 1	2 21	2 1	1		
0.0	4.5	0.10	200.	0.01	0.006	0.
0	0 2					
2117.	0.0742	0.000012	229 0.715	1.0		
14	1 1					
0.0	1.0					
0.1667	1.0	0.40	0.0			
0.3333	1.0	0.40	0.0			
0.5	1.0	0.40	0.0			
0.6667	1.0	0.40	0.0			
0.8333	1.0	0.40	0.0			
1.0	1.0	0.40	0.0			
1.1667	1.0	0.40	0.0			
1.3333	1.0	0.40	0.0			
1.5	1.0	0.40	0.0			
1.6667	1.0	0.40	0.0			
1.8333	1.0	0.40	0.0			
1.9167	1.0					
4.5	1.0					
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
55.2	0.	97.6				
0.	0.	97.6				
0.000769	22.5	88.5				
0.000954	25.	86.7				
0.001195	27.2	85.				
0.001508	29.	83.8				
0.001914	30.5	82.6				
0.0025	32.0	81.6				
0.0032	33.	80.7				
0.0040	33.9	80.				
0.0051	35.	79.4				
0.0065	36.2	78.8				
0.0083	37.3	78.3				
0.0108	38.8	77.6				
0.0135	40.1	77.				

```
76.2
         41.8
0.017
         43.5
                  75.4
0.0215
         45.8
                  74.6
0.0275
         48.1
                   73.7
0.035
0.044
         50.8
                   73.
                   72.3
0.056
         53.3
         55.0
0.071
                   71.8
0.087
         55.2
                   71.7
                                                        0.
                                              1.0
                   .01
                                      0.
0.41
         .085
                            0.
                   1.
25.
         0.
4000.
         0.86
                   0.8
32.2
         778.
       11 2
                 55 00
        0.15
                   22.
0.085
         0.166666 0.03333
                              30.
                                      0.
11.
```

STANTON NUMBER AVERAGE

VI ACAT ION-	3 46-7	STANTON		A C D A C	1 23805-12
XLOCATION=	3 . 100/	SIANION	NUMBER	AVEKAGE =	J.22895e-J2
XLOCATION=	0.3333	STANTON	NUMBER	AVERAGE =	0.25040e-J2
KLJCATION=	0.5000	STANTON	NUMBER	AVERAGE =	0.25233e-02
XLOCATION=	0.0007	STANTON	NUMBER	AVERAGE =	0.25305e-02
XLOCATION=	0.8333	STANTON	NUMBER	AVERAGE =	J.25049e-02
KLOCATION=	1.0000	STANTON	NUMBER	AVERAGE =	0.25025e-02
XLOCATION=	1.1667	STANTON	NUMBER	AVERAGE =	1.24759e-02
XLOCATION=	1.3333	STANTON	NUMBER	AVERAGE =	0.2452de-02
XLOCATION=	1.5000	STANTON	NUM3ER	AVERAGE=	0.24333e-02
XLOCATION=	1.6667	STANTON	NUMBER	AVERAGE =	0.24363e-02
XLOCATION =	1.8333	STANION	NUMBER	AVERAGE =	0.24105e-02

Appendix B

PREVIOUSLY UNREPORTED SLANT-INJECTION DATA

This appendix is a tabulation of the Stanton number data for a heated starting length and six and eleven rows of film-cooling. Initial velocity and temperature profiles precede the data. For the Stanton number data at each blowing ratio the experimental data at $\theta \approx 1$ and $\theta \approx 0$ are given first, followed by a sheet with the superposition-adjusted data to values at $\theta = 0$, 1.

Nomenclature

CF/2 $C_{\epsilon}/2$, friction coefficient.

CP c, specific heat.

DEL Velocity or thermal boundary layer thickness (see DEL99 or DELT99).

DEL1 δ_1 , displacement thickness.

DEL2 δ_2 , momentum thickness.

DEL99 Velocity boundary layer thickness.

DELT99 Thermal boundary layer thickness.

DREEN Uncertainty in Re_{Δ_2} .

DST Uncertainty in St.

DST Uncertainty in St.

DTM Uncertainty in θ . ETA $\{1 - St(\theta = 1)\}/St(\theta = 0)$.

F Blowing fraction.

F-COL F at $\theta = 0$.

F-HOT F at $\theta = 1$.

H Velocity shape factor.

LOGB ϕ function in $\theta = 1$ data correlation.

M Blowing parameter.

PORT Topwall location where profile is obtained.

PR Pr, Prandtl number.

RE DEL2

REENTH Re $_{\Delta_2}$, enthalpy thickness Reynolds number.

REM $\operatorname{Re}_{\delta_2}$, momentum thickness Reynolds number.

REX Re, x-Reynolds number.

RHO Density.

ST Stanton number.

STCR St($\theta = 0$)/St. Note: St is defined at bottom of each summary

data sheet.

STHR St($\theta = 1$)/St₀.

T Recovery temperature of temperature probe.

T2 T2, secondary air temperature.

TADB T, r, temperature to define Stanton number.

TBAR $(T_0^{-T})/(T_0^{-T_\infty})$ (or one minus that quantity in the second tabu-

lated data column).

THETA θ , temperature parameter.

TINF Mainstream static temperature.

TO TPLATE To, plate temperature.

U Velocity.

U+ U⁺, non-dimensional velocity.

UINF U, mainstream velocity.

VISC v, kinematic viscosity.

XLOC x, distance from nozzle exit to probe tip.

XVO x_{vo}, distance from nozzle exit to virtual origin, turbulent

boundary layer.

Y y, distance normal to surface.

Y+ y, non-dimensional y distance.

PUN 012877 VEL. & TEMP. PROFILE AT UPSTR. EDGE OF PLT1,M=0.75

REX :	0.137	1E 07	REP		3007.	RE	н =	207	78.
xvo :		0.03 C	M DE	2 =	0.267	CH DE	H2 =	0.1	84 CH
UINF :		16.83 H	S DEL	99=	3.152	CH DE	LT99 =	2.2	29 CH
VISC :	0.1495	1E-04 H	2/5 DEI	1 =	0.363	CH UIN	F =	16.6	2 H/S
PCPT :		1	H		1.433	VI	SC = 0.	14933E-	04 H2/S
XLCC :	. 1	21.92 0	H CF	2 = 0.1	6423E-02	TI	PAF =	20.	12 DEG C
						TP	LATE =	37.	96 DEG C
YICHI	T/DEL	UIM/SI	U/UINF	Y.	U+	Y(CH)	TIDES C)	TBAR	TBAR
0.025	0.003	7.53	0.447	11.6	11.04	0.0546		0.374	
0.009		7.60	0.451	12.7	11.14	0.0522	31.02	0.389	0.611
0.030		7.75	0.450	13.9	11.36	0.0749	30.60		0.588
0.033		7.86	0.457	15.1	11.53	0.0351		0.442	0.558
0.036	0.011	8.08	0.420	16.2	11.84	0.0978	28.34	0.539	0.461
0.041		8.38	0.478	18.5	12.29		26.49		0.357
0.043		8.78	0.522	22.0		0.1511	25.96		0.327
0.055		9.21	0.547	26.7	13.50	0.1765	25.47		0.300
0.071		9.53	0.546	32.4	13.97	0.2070	24.94		0.270
0.035	0.027	9.91	0.539	39.4	14.53	0.2426	24.76	0.743	0.257
0.104		10.06	0.575	47.5	14.74	0.2832	24.38		0.239
0.124		10.30	0.612	56.8	15.10	0.3289	24.07		0.222
0.150	0.048	10.62	0.631	68.4	15.56	0.4356	23.51	0.810	0.190
0.160		10.51	0.643	82.3	15.86	0.4991	23.22		0.174
0.216	0.068	11.00	0.653	98.5	16.12	0.5753	22.93	0.842	0.158
0.257		11.32	0.673	117.0	16.60	0.6769	22.58		0.138
0.302		11.60	0.689	137.9	17.01	0.7785	22.29		0.122
0.353		11.82	0.702	161.1	17.33	0.8801	22.02		0.106
0.411	0.131	12.15	0.722	187.7	17.82	1.0071	21.71	0.911	0.089
0.472	0.150	12.42	0.733	215.5	18.20	1.1341	21.45	0.926	0.074
0.549			0.757		18.67	1.2611	21.23	0.928	0.062
0.650		13.14	0.780	295.6	19.26	1.4135	21.00		0.049
0.752		13.52	0.803	343.0	19.83	1.5913	20.76	0.964	0.036
0.879		13.91	0.827	400.9	20.40	1.7945	20.55	0.976	0.024
1.031	0.327	14.42	0.657	470.4	21.14	2.0231	20.43	0.983	0.017
1.124		14.41	0.650		21.71	2.2771	20.25	0.993	0.007
1.351	0.432	15.27	0.907	621.1	22.39	2.7851	20.12	1.000	0.000
1.539	0.488	15.55	0.924	702.2	22.79	2.0486	20.12	1.000	0.000
1.742	0.553	16.14	0.959	794.9	23.66				
2.149	0.682	16.55	0.983	980.3	24.27				
2.403		16.54	0.993	1095.1	24.25				
2.911	0.923	16.83	1.000	1327.9	24.68				

PUT 020177 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

PHO: 1.200 DEG C UINF: 17.10 H/S TINF: 21.15 DEG C CP: 1009. J/KGK PR: 0.714

HEATED STARTING LENGTH, 11 PONS OF BLOWING M=0.20, THETA=1.0

REX		TO	PEENTH	STANTON NO	OST	DREEN	Ħ	•	12	THETA	DTH
.14468E 07		38.10	0.20005E 04	0.24369E-02	0.448E-04	29.					
.150+3E 07			0.22167E 04	0.20140E-02		30.		0.0059		1.011	0.018
.15519E 07		38.15	0.25545E 04	0.16533E-02		33.		0.0066		1.046	0.016
.16194E 07		39.11	0.31529E 04	0.15575E-02		36.		0.0051		1.027	0.016
.16770E 07		35.13	0.35405E 04	0.14950E-02		35.		0.0059		1.044	0.018
.17345E 07		33.11	0.39809E 0%	0.14750E-02		40.		0.0053		0.985	0.018
.17920E 07		35.15	9.43624E 04	0.14134E-02		42.		0.0056		1.000	0.018
.18495E 07		33.15	0.47644E 04	0.133032-02		43.		0.0046		1.018	0.018
.15771E 07		39.17	0.510645 04	0.12934E-02		45.		0.0062		1.017	0.018
.19547E 07		33.17	0.55390E 04	0.12266E-02		47.		0.0051		0.951	0.018
.20222E 07		33.15	0.58872E 04	0.11914E-02		48.		0.0055		0.962	0.018
.20797E 07		38.15	0.62597E 04	0.11558E-02		49.	0.14	0.0044	37.5	0.963	0.016
.21235E 07		36.78	0.655298 04	0.10695E-02		50.					
.21531E 07		36.27	0.650698 04	0.12237E-02		50.					
.21827E 07	7 0.218278	35.63	0.66231E 04	0.1216DE-02	0.462E-04	50.					
.22125E 07		36.65	0.66595E 04	0.124486-02	0.461E-04	50.					
.22423E 07	0 0.224235	35.67	0.66957E 04	0.12605E-02		50.					
.22719E 07	6 0.227198	35.69	0.57335E 04	0.12400E-02	0.466E-04	50.					
.23015E 07	2 0.230158	25.52	0.6770CE 04	0.12506E-02	0.454E-04	50.					
.23312E 07	6 0.233128	35.59	0.68086E 04	0.12976E-02	0.475E-04	50.					
.23502E 07	5 0.235025	35.57	0.684598 04	0.12173E-02	0.4538-04	50.					
.23904E 07	1 0.239046	36.50	0.63329E 04	0.12837E-02	0.474E-04	50.					
.24201E 07	7 0.242016	35.46	0.692045 04	0.12455E-02	0.460E-04	50.					
.244905 07	3 0.244905	35.63	0.69578E 04	0.127708-02	0.485E-04	50.					
.24796E 07	9 0.247968	36.44	0.699638 04	0.131538-02	0.489E-04	50.					
.25073E 07	6 0.250738	35.17	0.70343E 04	0.124366-02	0.4035-04	50.					
.25359E 07	2 0.25359	35.37	0.707135 04	0.12508E-02	0.437E-04	50.					
.25505E 07	0.255050	35.34	0.71092E 04	0.13106E-02	0.5136-04	50.					
.25751E 07	4 0.257516	36.31	0.71492E 04	0.13802E-02	0.4966-04	50.					
.26278E 07	0 0.262785	35.57	0.71901E 04	0.13607E-02	0.515E-04	50.					
.265748 07	6 0.265748	35.57	0.72300E 04	0.13063E-02	0.489E-04	50.					
.26972E 07	3 0.269728	35.33	0.72695E 04	0.13565E-02	0.497E-04	50.					
.271705 07				0.13159E-02		50.					
.27466E 07			0.73431E 04	0.13059E-02							
.27762E 07											
.28059E 07											
	5 0.	27466E 07 27762E 07	27466E 07 36.00 27762E 07 35.19	27466E 07 36.00 0.73431E 04 27762E 07 35.19 0.73874E 04	27446E 07 36.00 0.72451E 04 0.13089E-02 27762E 07 35.19 0.73874E 04 0.13422E-02	27466E 07 36.00 0.73451E 04 0.13059E-02 0.472E-04 27762E 07 36.19 0.73574E 04 0.13422E-02 0.517E-04	27466E 07 36.00 0.73491E 04 0.13099E-02 0.472E-04 50. 27762E 07 36.19 0.73974E 04 0.13422E-02 0.517E-04 50.	27466E 07 36.00 0.73431E 04 0.13089E-02 0.472E-04 50. 27762E 07 36.19 0.73874E 04 0.13422E-02 0.517E-04 50.	27466E 07 36.00 0.73431E 04 0.13089E-02 0.472E-04 50. 27762E 07 36.19 0.73874E 04 0.13422E-02 0.517E-04 50.	27466E 07 36.00 0.73431E 04 0.13099E-02 0.472E-04 50. 27762E 07 36.19 0.73874E 04 0.13422E-02 0.517E-04 50.	27466E 07 36.00 0.73491E 04 0.13099E-02 0.472E-04 50. 27762E 07 36.19 0.73974E 04 0.13422E-02 0.517E-04 50.

UNCERTAINTY IN REX=23648.

UNICERTAINTY IN F=0.05032 IN RATIO

PUN 013177-1 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

TADB= 18.63 DEG C UINF= 16.99 H/S TINF= 18.50 DEG C
PHO= 1.216 KG/M3 VISC= 0.14806E-04 H2/S XYO= 0.0 CH
CP= 1009. J/KGK PR= 0.714

HEATED STARTING LENSTH. 11 PONS OF BLONING. M=0.20. THETA=0.0

PLATE	×	REX	10	PEENTH	STANTON NO	DST	DREEN	H	F	TZ	THETA	DTH
1	127.8	0.14550E 07	34.15	0.21161E 04	0.23772E-02	0.476E-04	29.					
2	132.6	0.15241E 07	34.15	0.22524E 04	0.22994E-02	0.472E-04	29.	0.19	0.0061	21.4	0.168	0.019
3	137.9	0.15924E 07	34.11	0.24531E 04	0.22913E-02	0.473E-04	30.	0.23	0.0075	21.7	0.206	0.019
4	143.0	0.16497E 07	34.13	0.26770E 04	0.22977E-02	0.473E-04	31.	0.20	0.0064	21.8	0.209	0.019
5	145.1	0.16930E 07	34.13	0.28861E 04	0.22139E-02	0.468E-04	32.	0.24	0.0078	21.6	0.197	0.019
6	153.2	0.17573E 07	34.09	0.31056E 04	0.22944E-02	0.474E-04	32.	0.19	0.0061	21.8	0.209	0.019
7	158.2	0.18156E 07	34.15	0.33117E 04	0.21767E-02	0.466E-04	33.	3.24	0.0078	21.6	0.198	0.019
	163.3	0.18739E 07	34.13	0.35269E 04	0.21023E-02	0.462E-04	34.	0.19	0.0062	21.6	0.198	0.019
9	165.4	0.19321E 07	34.09	0.37213E 04	0.21144E-02	0.464E-04	34.	0.24	0.0078	21.5	0.195	0.019
10	173.5	0.199045 07	34.11	0.37314E 04	0.20656E-02	0.461E-04	35.	0.19	0.0061	21.6	0.201	0.019
11	175.6	0.20437E 07	34.13	0.41221E 04	0.200935-02	0.455E-04	35.	0.23	0.0076	21.6	0.196	0.019
12	103.6	0.21070E 07	34.15	0.43244E 04	0.1967CE-02	0.455E-04	36.	0.19	0.0060	21.7	0.202	0.019
13	187.5	0.21513E C7	32.81	0.44789E 04	0.17665E-02	0.586E-04	36.					
14	190.1	0.21814E 07	32.35	0.45337E 04	0.16333E-02	0.642E-04	36.					
15	192.7	0.22114E 07	32.87	0.45894E 04	0.18239E-02	0.652E-04	36.					
16	195.4	0.22415E 07	32.93	0.46435E 04	0.17819E-02	0.627E-04	36.					
17	175.0	0.22717E 07	32.97	0.45968E 04	0.17626E-02	0.621E-04	36.					
16	200.6	0.23317E 07	32.99	0.47495E 04	0.17507E-02	0.618E-04	36.					
19	203.2	0.23317E 07	33.00	0.48011E 04	0.16732E-02	0.589E-04	36.					
20	205.8	0.23518E 07	33.06	0.48518E 04	0.17001E-02	0.599E-04	36.					
21	223.5	0.239166 07	33.00	0.49017E 04	0.16196E-02	0.571E-04	36.					
22	211.1	0.2421EE 07	33.05	0.49505E 04	0.16293E-02	0.585E-04	36.					
23	213.7	0.2451EE 07	33.00	0.47939E 04	0.15945E-02	0.368E-04	36.					
24	216.3	0.2452GE 07	33.04	0.50477E 04	0.16480E-02	0.595E-04	37.					
25	218.9	0.25122E 07	32.87	0.50967E 04	0.16174E-02	0.501E-04	37.					
26	221.6	0.254CEE 07	32.64	0.51443E 04	0.154738-02	0.586E-04	37.					
27	224.2	0.25722E 07	31.57	0.51934E 04	0.17224E-02	0.566E-04	37.					
20	8.655	0.26022E 07	32.83	0.52437E 04	0.16207E-02	0.6198-04	37.					
29	229.4	0.26323E 07	32.61	0.52939E 04	0.17187E-02	0.595E-04	37.					
32	232.0	0.26523E 07	33.31	0.53444E 04	0.16473E-02	0.6048-04	37.					
31	234.6	0.269238 07	33.23	0.53934E 04	0.160956-02	0.576E-04	37.					
32	237.3		33.10	0.54419E 04	0.16169E-02	0.579E-04	37.					
33	239.9		33.00	0.54900E 04	0.15870E-02	0.574E-04	37.					
34	242.5	0.27027E 07	32.65	0.55375E 04	0.157156-02	0.549E-04	37.					
35	245.1	0.28127E 07	32.87	0.55351E 04	0.15986E-02	0.596E-04	37.					
36	247.8	0.28427E 07	32.49	0.56318E 04	0.15075E-02	0.619E-04	37.					

UNICERTAINTY IN REX=23959.

UNCERTAINTY IN F=0.05032 IN RATIO

PUN 013177-1 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENSTH, 11 PONS OF BLOWING, M=0.20, THETA=0.0

RUN 020177 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENGTH, 11 PONS OF BLOWING M=0.20, THETA=1.0

LINEAR SUPERFOSITION IS APPLIED TO STANTON MUMBER DATA FROM
PUN NUMBERS 013177-1 AND 020177 TO OBTAIN STANTON MUMBER DATA AT TH-0 AND TH-1

PLATE	PEXCOL	PE DELZ	ST(TH=0)	REXHOT	RE DEL2	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LOGB
1	1465796.0	2116.1	0.002377	1445804.0	2088.	6 0.002437	UUUUU	1.000	0.0000	1.000	0.0000	1.000
2	1504090.0	2254.3	0.002354	1504342.0	2216.	0.002018	0.147	1.208	0.0061	1.028	0.0059	2.196
3	1532333.0	2394.3	0.002441	1561881.0	2661.	8 0.001681	0.312	1.256	0.0075	0.863	0.0066	2.119
4	1640677.0	2537.8	0.002483	1619419.0	3133.	7 0.001591	0.359	1.287	0.0064	0.823	0.0051	1.831
5	1693971.0	2679.8	0.002389	1676958.0	3515.	0.001526	0.361	1.247	0.0078	0.794	0.0059	1.942
6	1757265.0	2522.3	0.002500	1734496.0	3941.	9 0.001490	0.404	1.314	0.0061	0.781	0.0053	1.826
7	1815558.0	2964.4	0.002374	1792034.0	4328.	0.001406	0.408	1.256	0.0078	0.742	0.0056	1.843
8	1873252.0	3100.3	0.002291	1849573.0	4730.	0.001339	0.416	1.220	0.0062	0.711	0.0046	1.631
9	1932146.0	3234.5	0.002311	1907111.0	5058.	3 0.001311	0.433	1.238	0.0078	0.700	0.0062	1.890
10	1999449.9	3355.2	0.002277	1964650.0	5494.	9 0.001210	0.469	1.227	0.0061	0.650	0.0051	1.658
11	2049733.0	3497.4	0.002224	2022188.0	5855.	0.001145	0.485	1.205	0.0076	0.619	0.0055	1.692
12	2107027.0	3527.7	0.002178	2079727.0	6237.	0.001116	0.488	1.187	0.0060	0.607	0.0044	1.498
13	2151331.0	3720.4	0.001948	2123456.0	6538.	0.001035	0.468	1.066		0.565		
14	2181352.0	3700.5	0.002051	2153088.0	6571.	0.001192	0.419	1.126		0.652		
15	2211373.0	3841.2	0.001982	2182721.0	6506.	7 0.001187	0.401	1.091		0.652		
15	2241540.0	3599.8	0.001922	2212496.0	6642.	0.001219	0.366	1.060		0.671		
17	2271707.0	3957.2	0.001893	2242273.0	6678.	0.001236	0.347	1.048		0.682		
18	2301720.0	4913.9	0.001084	2271905.0	6715.	0.001215	0.355	1.045		0.672		
19	2331749.0	4069.0	0.001783	2301537.0	6751.	0.001230	0.310	0.992		0.682		
20	2351771.0	4123.0	0.001805	2331169.0	6788.	6 0.001278	0.292	1.006		0.711		
21	2391792.0	4175.0		2360002.0	6825.			0.964		0.668		
22	2421314.0	4227.8		2390434.0	6861.		0.265	0.964		0.706		
23	2451835.0	4273.9		2420067.0	6898.		0.271	0.947		0.688		
24	2492001.0	4330.5		2449843.0	6935.			0.982		0.707		
25	2512169.0	4332.2		2479519.0	6973.		0.233			0.732		
26	25+2199.0	4432.1		2509251.0	7011.			0.920		0.693		
27	2572211.0		0.001845	2538893.0	7047.					0.695		
28	24 922 32.0	4537.6		2568516.0	7085.			0.967		0.735		
23	2632254.0	4593.3		2575148.0	7124.			1.030		0.775		
30	2652275.0	4543.3		2627781.0	7165.					0.779		
31	2692297.0	4694.5		2657413.0	7204.		0.235			0.737		
32	2722463.0	4745.2		2687189.0	7243.		0.202	~		0.769		
33	2752630.0	4795.4		2716965.0	7282.					0.747		
34	2752652.0	4844.9		2746597.0	7321.		0.210			0.745		
35	2812673.0	4894.6		2776229.0	7360.		0.202	0.962		0.766		
36	2842694.0	4945.9	0.001745	2805862.0	7388.	0.000552	0.684	1.010		0.319		

STANTON NUMBER PATIO BASED ON STOPROD.4=0.0295*REX+*(-.2)

STANTON NUMBER RATIO FOR THE I IS CONVERTED TO COMPARABLE TRANSPIRATION VALUE USING ALOSI + BI/B EXFRESSION IN THE BLOWN SECTION

PURI 020377 *** DISCRETE HOLE RIG *** NAS-3-14336 STANTON NUMBER DATA

TADB= 20.45 DEG C UINF= 16.93 M/S TINF= 20.32 DEG C
PHO= 1.206 KG/H3 VISC= 0.14986E-04 H2/S XYO= 0.0 CH
CP= 1009, J/KGK FR= 0.714

HEATED STARTING LENGTH. 11 PCHS OF BLOWING H=0.60, THETA=1.0

PLAT	E X	PEX	TO	PEENTH	STANTON HO	DST	DREEN	H	F	TZ	THETA	DTH
1	127.8	0.14434E 07	39.51	0.20837E 04	0.24519E-02	0.423E-04	29.					
2	132.8	0.1500EE 07	38.48	0.22146E 04	0.21098E-02	0.407E-04	39.	0.55	0.0179	38.2	0.985	0.017
3	137.9	0.15582E 07	33.51	0.33455E 04	0.19979E-02	0.401E-04	55.	0.54	0.0176	38.6	1.005	0.017
4	143.0	0.16155E 07	33.48	0.44652E 04	0.17181E-02	0.359E-04	67.	0.55	0.0177	39.0	1.028	0.017
5	145.1	0.16730E 07	33.49	0.56011E 04	0.15590E-02	0.383E-04	77.	0.52	0.0170	38.7	1.012	0.017
6	153.2	0.173045 07	35.51	0.66751E 04	0.14908E-02	0.360E-04	85.	0.53	0.0171	39.5	0.990	0.017
7	150.2	0.17878E 07	33.49	0.77278E 04	0.14361E-02	0.378E-04	93.	0.54	0.0175	33.4	0.993	0.017
e	163.3	0.16-52E 07	33.49	0.05047E 04	0.13557E-02	0.377E-04	101.	0.57	0.0183	38.9	1.024	0.017
9	158.4	0.193265 07	33.51	0.99616E 04	0.13606E-02	0.375E-04	109.	0.53	0.0173	38.4	0.992	0.017
10	173.5	0.195005 07	33.51	0.11023E 05	0.13180E-02	0.374E-04	115.	0.56	0.0182	38.0	0.970	0.017
11	178.6	0.20174E 07	38.53	0.12108E 05	0.12617E-02	0.372E-04	121.	0.53	0.0173	37.7	0.953	0.017
12	183.6	0.207455 07	33.55	0.13125E 05	0.12869E-02	0.372E-04	126.	0.55	0.0177	37.7	0.952	0.017
13	187.5	0.21164E 07	35.80	0.14145E 05	0.106135-02	0.354E-04	129.					
14	190.1	0.21400E 07	35.45	0.14177E 05	0.10601E-02	0.397E-04	129.					
15	192.7	0.21775E 07	36.82	0.14203E 05	0.10567E-02	0.409E-04	129.					
16	195.4	0.22072E 07	36.84	0.14239E 05	0.10517E-02	0.399E-04	129.					
17	198.0	0.223698 07	36.86	0.14270E 05	0.10405E-02	0.396E-04	129.					
15	200.6	0.2055E 07	36.88	0.14301E 05	0.10123E-02	0.388E-04	129.					
19	203.2	0.22951E 07	35.93	0.14330E 05	0.96554E-03	0.369E-04	129.					
20	205.8	0.23256E 07	37.03	0.14359E 05	0.93050E-03	0.374E-04	129.					
21	203.5	0.235528 07	37.05	0.14337E 05	0.91638E-03	0.357E-04	129.					
22	211.1	0.2324SE 07	37.03	0.14414E 05	0.929835-03	0.365E-04	129.					
23	213.7	0.241435 07	37.03	0.14441E 05	0.89652E-03	0.354E-04	129.					
24	216.3	0.24443E 07	37.16	0.14468E 05	0.90207E-03	0.367E-04	129.					
25	218.9	0.24737E 07	37.01	0.14494E 05	0.89058E-03	0.357E-04	129.					
26	221.6	0.25033E 07	35.60	0.14520E 05	0.839596-03	0.354E-04	129.					
27	224.2	0.25329E 07	35.17	0.14544E 05	0.82296E-03	0.318E-04	129.					
28		0.25524E 07	37.01	0.14570E 05	0.88417E-03	0.373E-04	129.					
29		0.25920E 07	37.03	0.14596E 05	0.92725E-03		129.					
30		0.26215E 07	37.33	0.14523E 05	0.90064E-03		129.					
31		0.26511E 07	37.31	0.14650E 05	0.86913E-03		129.					
32		0.265CE 07	37.18	0.14676E 05	0.68151E-03		129.					
33		0.271055 07	37.14	0.14701E 05	0.86198E-03		129.					
34		0.27401E 07	35.90	0.14727E 05	0.8456E-03		129.					
35	245.1	0.27695E 07	37.01	0.14752E 05	0.86530E-03		129.					
36		0.27992E 07	36.69	0.14777E 05	0.80060E-03		129.					
20	241.0		20.07	03	000000-03	3. OL 34						

UNCERTAINTY IN REX=23592.

UNCERTAINTY IN F=0.05033 IN RATIO

PUNI 020277 *** DISCRETE HOLE PIG *** NAS-3-14336

STANTON NUMBER DATA

TACH: 20.54 DEG C UINF: 16.96 N/S TINF: 20.41 DEG C
PMD: 1.202 KS/M3 VISC: 0.15046E-04 H2/S XYO: 0.0 CH
CP: 1009. J/KSK PR: 0.714

HEATED STARTING LENGTH, 11 RONS OF BLOHING, H=0.60, THETA=0.0

PLATE	E X	REX	TO	PEENTH	STANTON NO	DST	DREEN	H	F	TZ	THETA	DTH
1	127.8	0.14401E 07	35.43	0.20789E 04	0.24648E-02	0.505E-04	29.					
2	132.8	0.14773E 07	35.41	0.22191E 04	0.243' 3E-02	0.504E-04	31.	0.61	0.0198	22.1	0.110	0.020
3	137.9	0.155465 07	35.39	0.24561E 04	0.25335E-02	0.511E-04	36.	0.62	0.0201	22.3	0.123	0.020
4	143.0	9.1611SE 07	35.41	0.27725E 04	0.25343E-02	3.510E-04	40.	0.62	0.0201	22.2	0.119	0.020
5	145.1	0.16591E 07	35.41	0.30543E 04	0.25322E-02	0.51CE-04	43.	0.60	0.0194	22.1	0.115	0.020
6	153.2	0.17254E 07	35.39	0.33277E 04	0.25652E-02	0.513E-04	46.	0.60	0.0195	22.2	0.119	0.020
7	153.2	0.178375 07	35.43	0.360455 04	0.24689E-02	0.506E-04	49.	0.61	0.0197	22.1	0.111	0.020
3	163.3	0.18403E 07	35.43	0.39708E 04	0.24655E-02	0.505E-04	52.	0.61	0.0198	22.0	0.105	0.020
9	165.4	0.18732E 07	35.39	0.41310E 04	0.24624E-02	0.506E-04	55.	0.61	0.0197		0.105	0.020
10	173.5	0.19555E 07	35.39	0.43919E 04	0.24928E-02	0.508E-04	57.	0.61	0.0196	22.0	0.106	0.020
11	175.6	0.2012SE 07	35.41	0.45528E 04	0.24548E-02	0.505E-04	60.	0.60	0.0194	22.0	0.107	0.020
12	183.6	0.207005 07	35.43	0.49124E 04	0.24728E-02	0.506E-04	62.	0.62	0.0199	22.0	0.106	0.020
13	187.5	0.21135E 07	33.31	0.51356E C4	0.20916E-02	0.669E-04	63.					
14	190.1	0.21430E 07	32.63	0.51977E 04	0.21147E-02	0.730E-04	63.					
15	192.7	0.217255 07	33.31	0.52592E 04	0.20526E-02	0.74CE-04	63.					
15	195.4	0.22022E 07	33.35	0.53176E 04	0.203616-02	0.721E-04	63.					
17	173.0	0.223125 07	33.39	0.53791E C4	0.19976E-02	0.709E-04	63.					
18	200.6	0.225135 07		0.54371E 04	0.19310E-02	0.689E-04	63.					
10	203.2	0.22908E 07	33.45	0.54931E 04	0.186C6E-02	0.651E-04	63.					
20	205.0	0.232035 07	33.60	0.55482E 04	0.18683E-02	0.657E-04	63.					
21	200.5	0.23-915 07	33.54	0.56021E 04	0.17856E-02	0.635E-04	63.					
22	211.1	0.237935 07	33.65	0.55545E 04	0.17653E-02	0.643E-04	63.					
23	213.7	0.2403SE 07	33.58	0.57050E 04	0.17187E-02	0.619E-04	63.					
24	216.3	0.2433.E 07		0.57571E 04	0.17460E-02	0.641E-04	63.					
25	218.9	0.24650E 07		0.500705 04	0.1690SE-02	0.618E-04	63.					
25	221.6	0.249758 07		0.58562E 04	0.158285-02	0.610E-04	63.					
27	224.2	0.2527CE 07	32.35	0.5904DE 04	0.16551E-02	0.564E-04	63.					
28	226.0	0.255655 07		0.59530E 04	0.16644E-02	0.647E-04	63.					
29	229.4	0.25350E 07	33.55	0.60034E 04	0.17484E-02	0.617E-04	63.					
30	232.0	0.26155E 07	34.04	0.60537E 04	0.16571E-02	0.620E-04	63.					
31	234.6	0.2645CE 07	34.00	0.61020E 04	0.16132E-02	0.590E-04	63.					
32	237.3	0.26746E 07		0.614992 04	0.15969E-02	0.588E-04	63.					
33	:39.9	0.270435 07	33.63	0.5196CE 04	0.15612E-02	0.579E-04	64.					
34	: 42.5	0.273305 07	33.52	0.62420E 04	0.15499E-02	0.556E-04	64.					
35	245.1	0.27533E 07	33.71	0.62979E 04	0.15644E-02	0.599E-04	64.					
36	247.8	0.27928E 07	33.39	0.633236 04	0.14420E-02	0.6135-04	64.					

UNCERTAINTY IN REX=23538.

UNCERTAINTY IN F=0.05033 IN RATIO

PUN 020277 --- DISCRETE HOLE PIG --- NAS-3-14336

STANTON HUMBER DATA

HEATED STARTING LENGTH, 11 POUS OF BLONDING. M=0.60. THETA=0.0

PUN 020377 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON HUMBER DATA

HEATED STARTING LENGTH, 11 POWS OF BLOWING H=0.60, THETA=1.0

LINEAR SUPERPOSITION IS APPLIED TO STANTON HAMBER DATA FROM
PUN 17.75ERS 020277 AND 020377 TO OBTAIN STANTON HAMBER DATA AT THES AND THES

PLATE	PEXCOL	RE	DELZ	ST(TH=9)	REMOT	PE	DELZ	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LOGS
,	1449051.0		2078.9	0.002465	1443365.0		2083.7	0.002452	WXXV	1.000	0.0000	1.000	0.0000	1.000
2	1497321.0		2220.3	0.002472	1500767.0		2214.4	0.002104	0.149	1.257	0.0198	1.072	0.0179	4.051
3	1554591.0		2355.6	0.002604	1558169.0		3360.8	0.001995	0.234	1.336	0.0201	1.024	0.0176	3.948
	1611861.0		2515.9	0.002644	1615570.0		4475.8	0.001733	0.345	1.366	0.0201	0.0%	0.0177	3.700
5	1559131.0		2667.8	0.002655	1672972.0		5584.7	0.001580	0.406	1.383	0.0194	0.622	0.0170	3.559
6	1726+01.0		2521.4	0.002707	1730374.0		6648.0	0.001491	0.449	1.418	0.0195	0.782	0.0171	3.546
7	1753571.0		2973.5	0.002504	1787776.0		7710.7	0.001426	0.453	1.373	0.0197	0.752	0.0175	3.567
	18-07-1.0		3122.4	0.002595	1845177.0		8795.0	0.001395	0.462	1.377	0.0198	0.741	0.0163	3.676
•	1098211.0		3270.9	0.000591	1902579.0		9927.7	0.001370	0.471	1.383	0.0197	0.732	0.0173	3.536
10	1955-31.9		3420.5	0.000635	1959931.0	1	10996.8	0.001292	0.510	1.415	0.0196	0.694	0.0182	3.599
11	2012751.0		3570.5	0.002603	2017332.0		12111.3	0.001208	0.536	1.406	0.0194	0.653	0.0173	3.419
12	2070021.0		3720.1	0.000622	2074764.0		13171.4	0.001220	0.535	1.424	0.0199	0.663	0.0177	3.510
13	2113546.0		3::3.0	0.000021	2118410.0	1	14237.8	0.001003	0.548	1.211		0.547		
14	2143040.0		3593.9	0.002247	2147971.0	1	14267.5	0.001001	0.555	1.229		0.548		
15	2172534.0			0.002178	2177533.0		14297.1	0.001001	0.541	1.194		0.549		
16	2202171.0			0.002160	2207238.0		14326.6		0.539	1.105		0.548		
17	2231805.0		4006.5	0.002118	2236944.0		14356.0	0.000987	0.534	1.168		0.544		
18	2261302.0			C.002047	2256506.0			0.000961	0.531	1.132		0.531		
19	2270795.0			0.001973	2296067.0			0.000915	0.536	1.094		0.507		
20	2320290.0			0.001930	2325529.0			0.000931	0.530	1.100		0.517		
21	2347734.0		4323.0		2355192.0		14466.5		0.542	1.056		0.483		
22	2379278.0		4378.6		2354753.0		14492.4		0.528	1.045		0.493		
23	2400772.0		4433.1		2414315.0			0.000850	0.533	1.020		0.476		
24	2433409.0		4487.3		2444020.0		14543.2		0.539	1.040		0.480		
25	2450046.0		4541.1		2473726.0		14558.4		0.528	1.008		0.476		
26	2497540.0		4592.3		2503288.0		14592.7	~ ~ ~ ~ ~ ~ ~ ~ ~	0.524	0.945		0.450		
27	2727034.0		4543.1		2530850.0		14616.0		0.559	0.995		0.439		
23	2555528.0		4695.1		2552411.0		14539.9		0.523			0.476		
29	25:4023.0		4745.4		2591974.0		14665.4		0.524	1.052		0.501		
30	2915517.0		4001.6		2621536.0		14691.1		0.510	0.997		0.489		
31	2645011.0		4852.7		2651097.0		14716.1		0.515			0.472		
32	2674648.0		4902.8		2680802.0		14740.8		0.501	0.764		0.481		
33	2704285.0		4952.1		2710508.0		14765.4		0.501	0.945		0.472		
34	2733779.0		5000.6		2740070.0		14789.5		0.508	0.941		0.463		
35	2763273.0		5049.2		2769532.0		14013.6		0.500	0.951		0.475		
36	2792767.0		5096.1	0.001523	2799193.0		14837.2	0.000764	0.498	0.878		0.441		

STANION INTER PATIO BASED ON STIPPERO.4:0.0295-PEX-01-.2)

STANTON PAPEER RATIO FOR THE 1 IS CONVERTED TO COMPARABLE TRANSPIRATION VALUE USING ALCOH + 81/8 EXPRESSION IN THE BLOWN SECTION

PUN 012877 *** DISCRETE HOLE PIG *** NAS-3-14336

STANTON HAPBER DATA

TACC: 20.91 015 C UINF: 16.64 M/S TINF: 20.76 DES C PHO: 1.207 KG/M3 VISC: 0.14993E-04 H2/S XID: 0.0 CH CP: 1010, 2/KGK FR: 0.714

HEATED STARTING LENGTH. 11 PONS OF BLOWING M:0.75. THETA:1.0

PLATE		PEK	10	PEENTH	STANTON NO	DST	DREEN		•	TZ	THETA	DTH
	127.6	0.14350E 01	38.02	0.207166 04	0.243465-02	0.445E-04	29.					
2	132.6	0.14921E 01	7 35.02	0.220265 04	0.21569E-02	0.431E-04	45.		0.0246		0.953	
3	137.9	0.15491E C	7 35.00	0.36667E 04	0.22434E-02	0.4358-04	67.		0.0219		0.745	0.015
	143.0	C. 16060E 01	37.98	0.497198 04	0.20197E-02	0.4255-04	81.		0.0218		0.962	0.018
5	145.1	0.155335 0		0.623036 04	0.10679E-02	0.417E-04	93.		0.0216		0.945	0.018
	153.2	0.17203E 0		0.755542 04	0.17961E-02	0.4152-04	102.		0.0212		0.930	0.018
	159.2	0.1777-E 0		0.877955 04	0.172778-02	0.4128-04	111.		0.0219		0.930	0.018
	163.3	0.103-55 0	7 37.95	0.10035E 05	0.166946-02	0.4105-04	129.		0.0228		0.952	0.018
9	155.4	0.15915E 0		0.1:3738 05	0.16404E-02	0.408E-04	129.		0.0215		0.925	0.018
10	173.5	0.19-55E 0	7 37.94	0.12601E 05	0.161026-02	0.4005-04	136.		0.0229		0.919	0.018
**	178.6	0.200576 0		0.132598 05	0.15566E-02	0.4065-04	143.		0.0223		0.898	0.018
12	183.6	0.20127E 0	7 37.99	0.1512CE 05	0.15789E-02		150.	0.70	0.0226	36.2	0.8%	0.016
13	167.5	0.21051E 0		0.163415 03	0.1297CE-02	0.4346-04	153.					
	190.1	0.21355E 0	7 35.00	0.16379E CS	0.131466-02	0.4735-04	153.					
15	192.7	0.216475 0	7 35.49	0.16417E 05	0.128366-02		153.					
16	195.4	0.219448 0	7 35.45	0.16455E 05	0.12731E-02		153.					
17	195.0	0.22240E D	7 35.55	0.164928 05	0.123036-02	0.457E-04	153.					
18	200.6	0.225316 0	7 35.61	0.16527E 05	0.11954E-02	0.4408-04	153.					
19	2.103	0.22227E 0	7 25.63	0.155528 05	0.114998-02	0.427E-04	153.					
20	205.0	0.23121E 0	7 35.71	0.165958 05	0.119041-02	0.440E-04	153.					
21	228.5	0.234155 0	7 35.72	0.166298 05	0.10545 -02	0.404E-04	153.					
22	1.115	0.23709E C	7 36.74	0.16661E 05	0.10759 -02	0.413E-04	153.					
23	213.7	0.240035 0	7 35.74	0.16692E 05	0.102631-92	0.3965-04	153.					
-	216.3	0.242325 0	7 35.04	0.16722E 05	0.10485E-02	0.411E-04	153.					
25	210.9	0.2459-2 0	7 35.76	0.167535 05	0.101586-02	0.398E-04	153.					
26	4.155	0.240705 0	7 35.61	0.167838 05	0.100425-02	0.40EE-04	153.					
27	234.2	0.25151E 0	7 35.92	0.16811E 05	0.93500E-03	0.351E-04	153.					
28	8.655	0.254755 0	7 35.60	0.16839E 05	0.98647E-03	0.409E-04	153.					
29	229.4	0.25767E 0	7 35.89	0.163698 05	0.10317E-02	0.390E-04	153.					
30	232.0	0.260635 0	7 37.11	0.16900E 05	0.106555-02	0.418E-04	153.					
31	234.6	0.26357E 0	7 37.12	0.16930E 05	0.951316-03	0.379E-04	153.					
30	237.3	0.266528 0	7 36.99	0.169588 05	0.95587E-03	0.3315-04	153.					
3.3	239.9	0.257422 0		0.165268 05	0.924995-03	0.373E-04	153.					
	242.5			0.17012E 05	0.905176-03	0.352E-04	153.					
-	245.1				0.922546-03	0.306E-04	153.					
		0.276296 0		0.17065E 05	0.050786-03		153.					
200												

UNCERTAINTY IN REX=23455.

UNCERTAINTY IN F=0.05034 IN RATIO

BUN 012777 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON HUMBER DATA

TACB: 18.49 DES C UDNF: 16.40 N/S TINF: 18.36 DEG C PNO: 1.211 KG/H3 VISC: 0.14861E-04 H2/S XYO: 0.0 CH CP: 1009, J/KGX PR: 0.715

HEATED STARTING LENGTH, 11 POUS OF BLOWING, H-0.75, THETA=0.0

PLAT	E *	PEX		10	PEENTH	STANTON NO	DST	DREEN		,	TZ	THETA	DTM
1	127.8	0.145305	97	33.08	0.20976E 04	0.23031E-02	0.504E-04	29.					
2	132.6	0.1512FE	07	33.10	0.22322E 04	0.235535-02	0.507E-04	33.	0.76	0.0247	21.5	0.214	0.020
3	137.9	0.15505E	67	33.14	0.26794E 04	0.25644E-02	0.516E-04	41.	0.75	0.0243	21.6	0.221	0.020
	143.0	0.162638	87	33.16	0.314038 04	0.26331E-02	0.521E-04	47.	0.75	0.0243	21.6	0.219	0.020
5	145.1	0.16541E	07	33.12	0.35976E 04	0.25318E-02	0.516E-04	52.	0.76	0.0245	21.6	0.222	0.020
	153.2	0.17419E	07	33.12	0.40592E 04	0.252795-02	0.516E-04	57.	0.74	0.0241	21.7	0.229	0.000
7	153.2	0.179975	0.7	31.16	0.45233E 04	0.250256-02	0.5136-04	62.	0.74	0.0241	21.7	0.226	0.000
	163.3	0.105755	07	33.12	0.49515E 04	0.246335-02	0.5136-04	66.	0.76	0.0247	21.6	0.220	0.020
	165.4	0.191532	07	33.12	0.543975 04	0.25071E-02	0.515E-04	70.	0.74	0.0240	21.7	0.223	0.020
10	173.5	0.1973CE	07	33.10	0.50934E 04	0.251478-02	0.516E-04	74.	0.76	0.0247	21.6	0.220	0.020
11	178.6	0.203066	07	33.16	0.635305 04	0.25091E-02	0.514E-04	77.	0.75	0.0244	21.6	0.216	0.020
12	163.6	0.20935E	07	33.14	0.68042E 04	0.24556E-02	0.511E-04	81.	0.75	0.0244	21.6	0.218	0.020
13	167.5	0.21325E	07	32.07	0.72181E 04	0.23393E-02	0.770E-04	82.					
14	190.1	0.216236	07	31.60	0.72674E 04	0.23082E-02	0.7796-04	82.					
15	192.7	0.21920E	C7	32.43	0.73544E 04	0.21904E-02	0.771E-04	82.					
16	155.4	391555.0	07	32.53	0.74190E 04	0.21470E-02	0.742E-04	82.					
17	153.0	0.22516E	87	32.62	0.74323E 64	0.21028E-G2	0.7286-04	82.					
18	200.6	301223.0	67	32.72	0.75441E 04	0.20430E-02	0.711E-04	82.					
19	203.2	0.23114E	07	32.74	0.76040E C4	0.19766E-02	0.683E-04	82.					
20	205.0	0.23411E	07	32.83	0.75631E 04	0.19930E-02	0.692E-04	62.					
21	209.5	0.237095	07	32.79	0.77205E 04	0.18576E-02	0.6462-04	82.					
22	211.1	0.24906E	27	32.05	0.77759E 04	0.10534E-02	0.657E-04	82.					
23	213.7	0.24304E	07	32.61	0.78303E 04	0.17896E-02	0.628E-04	82.					
24	216.3	0.24603E	07	32.91	0.78842E 04	0.18288E-02	0.651E-04	62.					
25	218.9	0.24902E	07	32.79	0.79353E 04	0.179736-02	0.635E-04	62.					
26	221.6	0.25200E	07	32.66	0.79914E 04	0.17716E-02	0.650E-04	82.					
27	2.455	0.25497E	07	31.53	0.00435E 04	0.17254E-02	0.565E-04	62.					
23	226.8	0.25795E	07	32.61	0.60750E 04	0.17302E-02	0.651E-04	62.					
29	229.4	0.26092E	07	32.65	0.81475E 04	0.16006E-02	0.622E-04	82.					
30	232.0	0.26390E	07	33.31	0.82001E 04	0.172546-02	0.624E-04	82.					
31	234.6	0.266638	07	33.31	0.82505E 04	0.16567E-02	0.5938-04	82.					
32	237.3	0.26937E	07	33.14	0.629995 04	0.16553E-02	0.5666-04	82.					
33	239.9	0.27285E	07	33.12	0.83484E 04	0.16005E-02	0.579E-04	62.					
34	242.5	0.27533E		32.79	0.83757E 04	0.15764E-02	0.549E-04	62.					
35	245.1	0.276316		33.06	0.84422E 04	0.15855E-02	0.591E-04	62.					
36	247.8			32.76	0.84886E 04	0.148855-02	0.6085-04	62.					
-													

UNCERTABILITY IN REX=23749.

UNCERTAINTY IN F=0.05033 IN RATIO

PUN 012777 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STAPTING LENGTH, 11 PONS OF BLONDING. M=0.75, THETA=0.0

PUN 012877 *** DISCPETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LEISTH. 11 ROWS OF BLOWING H=0.75. THETA=1.0

LINEAR SUPERPOSITION IS APPLIED TO STANTON MARBER DATA FROM
PUN NUMBERS 012777 AND 012877 TO OSTAIN STANTON MARBER DATA AT THEO AND THES

3 15-0550.0 2310.4 0.002640 154-0428.0 3731.7 0.002221 0.165 1.367 0.0243 1.138 0.0219 1.626335.0 2533.6 0.002318 1606194.0 5104.2 0.001981 0.297 1.456 0.0243 1.022 0.0218 1.024119.0 2697.0 0.00272 1663262.0 6458.1 0.001827 0.331 1.424 0.0245 0.950 0.0216 17/41903.0 2657.6 0.00278 1770399.0 9100.0 0.001627 0.331 1.454 0.0241 0.697 0.0212 1770399.0 9100.0 0.001602 0.401 1.454 0.0241 0.699 0.0219 1657471.0 3175.5 0.002736 1634658.0 10441.7 0.001602 0.414 1.454 0.0247 0.699 0.0228 11973263.0 3455.6 0.002675 1691537.0 11835.0 0.001566 0.450 1.460 0.0240 0.699 0.0228 11973263.0 3455.6 0.002612 2005674.0 13532.2 0.001602 0.461 1.507 0.0247 0.610 0.0229 12 200562.0 3558.0 0.002612 2005674.0 14538.2 0.001602 0.461 1.507 0.0247 0.610 0.0229 13 2132524.0 3558.0 0.002735 2166114.0 17239.5 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 1162233.0 4016.3 0.002635 2135505.0 17233.4 0.001149 0.574 1.461 0.621 14 216223.0 4016.3 0.002625 2135505.0 17233.4 0.001149 0.557 1.460 0.621 14 216223.0 4016.3 0.002625 2135505.0 17233.4 0.001149 0.530 1.335 0.627 12 2131256.0 4022.4 0.00242 21464055.0 17233.4 0.001149 0.530 1.335 0.627 12 2131256.0 4037.2 0.00223 2124605.0 17233.0 0.00146 0.538 1.364 0.620 12 2131256.0 4037.1 0.002243 2213401.0 17233.9 0.00109 0.550 1.202 0.590 12 2131256.0 4037.1 0.002243 2223401.0 17333.9 0.00109 0.553 1.150 0.550 0.550 12 21404000 0.491 1.500 0.550 0.590 12 2131256.0 4570.1 0.00225 2312132.0 17467.4 0.001069 0.553 1.179 0.552 0.590 12 2131256.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.540 1.184 0.538 0.590 0.552 0.590 12 2131256.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.550 1.140 0.530 1.500 0.552 0.550 0.5	PLATE	PEXCOL	PE DELZ	ST(TH=0)	PEXHIT	ME DELE	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LOGB
3 15-6950.0 2310.4 0.002640 1549425.0 3731.7 0.002221 0.165 1.367 0.0243 1.138 0.0219 4 1426335.0 2535.6 0.002618 1666194.0 5104.2 0.001981 0.701 1.450 0.0245 0.0218 1.022 0.0218 1663262.0 6458.1 0.001981 0.701 1.424 0.0245 0.950 0.0218 1.022 0.00218 1.022 0.00218 1.022 0.00218 1.022 0.00219 0		1452752.0	2097.	6 0.002303	1434989.0	2071.6	0.002435	UUUU	1.000	0.0000	1.000	0.0000	1.000
\$ 1626335.0 \$ 2539.6 \$.002218 \$ 1663262.0 \$ 6458.1 \$.0.001827 \$ 1.458 \$ 0.0243 \$ 1.022 \$ 0.0218 \$ 1.654119.0 \$ 2697.0 \$ 0.002732 \$ 1663262.0 \$ 6458.1 \$ 0.001827 \$ 1.458 \$ 0.0241 \$ 0.907 \$ 0.0218 \$ 1.7919657.0 \$ 3016.9 \$ 0.002754 \$ 1777399.0 \$ 9100.0 \$ 0.001650 \$ 0.401 \$ 1.454 \$ 0.0241 \$ 0.869 \$ 0.0219 \$ 1.657971.0 \$ 3175.5 \$ 0.002735 \$ 1834464.0 \$ 0.001617 \$ 0.001602 \$ 0.401 \$ 1.454 \$ 0.0241 \$ 0.869 \$ 0.0228 \$ 1.915255.9 \$ 3334.7 \$ 0.002775 \$ 1891537.0 \$ 11836.0 \$ 0.0016602 \$ 0.414 \$ 1.454 \$ 0.0241 \$ 0.869 \$ 0.0228 \$ 1.915255.0 \$ 3334.7 \$ 0.002775 \$ 1891537.0 \$ 11835.0 \$ 0.001566 \$ 0.436 \$ 1.489 \$ 0.0240 \$ 0.835 \$ 0.0215 \$ 1.915255.0 \$ 3334.7 \$ 0.002775 \$ 1891537.0 \$ 11835.2 \$ 0.001509 \$ 0.461 \$ 1.507 \$ 0.0247 \$ 0.810 \$ 0.0229 \$ 1.92504.0 \$ 3659.0 \$ 0.002281 \$ 2005674.0 \$ 14535.2 \$ 0.001430 \$ 0.491 \$ 1.521 \$ 0.0244 \$ 0.702 \$ 1.82504.0 \$ 1.915255.0 \$ 3616.3 \$ 0.002738 \$ 2052742.0 \$ 15890.7 \$ 0.001430 \$ 0.491 \$ 1.521 \$ 0.0244 \$ 0.702 \$ 0.0223 \$ 1.92504.0 \$ 3091.3 \$ 0.002235 \$ 216514.0 \$ 1729.5 \$ 0.001139 \$ 0.574 \$ 1.461 \$ 0.621 \$ 0.621 \$ 1.4250 \$ 0.0224 \$ 0.00240 \$ 0.626 \$ 1.7273.4 \$ 0.001164 \$ 0.557 \$ 1.460 \$ 0.626 \$ 1.52104.0 \$ 0.621 \$ 0.622 \$ 1.92504.0 \$ 0.00240 \$ 0.622 \$ 1.92504.0 \$ 0.00141 \$ 0.530 \$ 1.338 \$ 0.627 \$ 0.627 \$ 1.920 \$ 0.00240 \$ 0.621 \$ 0.621 \$ 0.621 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.621 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.00240 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.00240 \$ 0.00240 \$ 0.00240 \$ 0.00240 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.00240 \$ 0.00240 \$ 0.621 \$ 0.00240 \$ 0.	2	1510756.0	2233.	.6 0.002413	1492057.0	2202.2	0.002144	0.111	1.230	0.0247	1.091	0.0246	4.961
\$ 1694119.0	3	1558550.0	2319.	4 0.002660	1549125.0	3731.7	0.002221	0.165	1.367	0.0243	1.138	0.0219	4.713
6 1741903.0 2857.6 0.002760 1720331.0 7794.7 0.001733 0.372 1.448 0.0241 0.907 0.0212 7 179967.0 3175.5 0.002736 1777399.0 9100.0 0.001650 0.401 1.454 0.0241 0.869 0.0219 0.577471.0 3175.5 0.002736 1834458.0 10441.7 0.001602 0.441 1.454 0.0247 0.849 0.02219 1915255.0 3334.7 0.002275 1891537.0 11835.0 0.001566 0.436 1.464 0.0240 0.835 0.0215 1973040.0 3495.0 0.002801 1946805.0 13150.2 0.001566 0.436 1.464 0.0247 0.810 0.0229 11 2010824.0 3558.0 0.002812 2005574.0 14538.2 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 205566.0 3818.3 0.002273 206574.0 14538.2 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 205566.0 3818.3 0.002675 2105114.0 17239.5 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 205566.0 3818.3 0.002675 2105114.0 17239.5 0.001139 0.574 1.461 0.621 0.621 14 2162203.0 4016.3 0.002628 2135595.0 17273.4 0.001164 0.557 1.460 0.626 15 210202.0 4092.4 0.002482 2146405.0 17331.3 0.001164 0.557 1.460 0.626 16 2221945.0 4165.5 0.002482 2146405.0 17331.3 0.001164 0.557 1.460 0.626 16 2221945.0 4165.5 0.002482 2194428.0 17341.0 0.001164 0.557 1.460 0.626 17 2231048.0 4237.2 0.002316 2253351.0 17457.4 0.001093 0.539 1.317 0.605 15 2201607.0 4337.2 0.002316 2253351.0 17457.4 0.001093 0.539 1.317 0.605 15 2201607.0 4337.2 0.002316 2253351.0 17457.4 0.001093 0.539 1.317 0.605 0.568 12 234124.0 4422.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2350401.0 4532.0 0.00243 2282741.0 17435.6 0.001067 0.539 1.262 0.590 17233.4 0.001093 0.559 1.506 0.553 0.568 1.160 0.550 0.568 1.160 0.550 0.568 0.560 0.560 0.550 0.560 0.550 0.560 0.550 0.560 0.550 0.560 0.550 0.560 0.550 0.560 0.55		1626335.0	2533	. 0.002918	1606194.0	5104.2	0.001981	0.297	1.458	0.0243	1.022	0.0218	4.531
7 1799-67.8 3316.9 0.002754 1777399.0 9100.0 0.001650 0.401 1.454 0.0241 0.869 0.0219 6 1657471.0 3175.5 0.00275 1894537.0 16441.7 0.001605 0.446 1.454 0.0247 0.849 0.0228 1945255.0 3334.7 0.002775 1894537.0 11835.0 0.001566 0.436 1.484 0.0240 0.855 0.0215 10 1973042.0 3495.8 0.00281 1948605.0 13150.2 0.001569 0.461 1.507 0.0247 0.810 0.0229 11 2030824.0 3559.0 0.002812 2005674.0 14538.2 0.001509 0.461 1.507 0.0247 0.810 0.0229 12 2056660.0 3518.3 0.002735 2062742.0 15890.7 0.001446 0.472 1.490 0.0244 0.772 0.0223 12 2132524.0 3373.3 0.002675 2105114.0 17239.5 0.001139 0.574 1.461 0.621 142293.0 4016.3 0.002625 2105114.0 17239.5 0.001139 0.574 1.461 0.621 142293.0 4016.3 0.002482 2144895.0 17237.3 0.001144 0.535 1.564 0.628 122195.0 4092.4 0.002482 2144895.0 17237.3 0.001144 0.535 1.356 0.627 1723140.0 4052.0 4052.5 0.002482 2144428.0 17341.0 0.001144 0.535 1.358 0.627 1723140.0 4052.0 4052.5 0.002316 2253351.0 17405.8 0.001067 0.539 1.317 0.005 15 22616067.0 4357.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.317 0.005 15 2261607.0 4357.1 0.00223 2282741.0 17405.8 0.001067 0.539 1.317 0.005 0.568 1231326.0 4442.1 0.002252 2312132.0 17407.0 0.000940 0.553 1.179 0.526 1254042.8 4578.1 0.002252 2312132.0 17407.0 0.000940 0.553 1.179 0.526 1254042.8 4578.1 0.002213 234152.0 17407.0 0.000940 0.553 1.179 0.526 1254040.0 4532.0 0.002113 234152.0 17552.4 0.000911 0.552 1.141 0.510 1.500 0.500 0.500 0.500 0.500 0.500 0.553 1.169 0.552 1.441 0.510 0.500 0.500 0.500 0.553 1.169 0.552 1.441 0.510 0.500 0.500 0.553 1.169 0.552 1.441 0.510 0.500 0.500 0.552 1.544 0.550 0.500 0.500 0.553 1.169 0.552 0.500 0.500 0.553 1.169 0.552 0.500 0.500 0.553 1.169 0.552 0.500 0.500 0.555 0.500 0.500 0.555 0.500 0.500 0.550 0.500 0.	5	1454119.0	2697.	.0 0.002732	1663262.0	6458.1	0.001827	0.331	1.424	0.0245	0.950	0.0216	4.407
8 1057471.0 3175.5 0.002736 1034468.0 10441.7 0.001602 0.414 1.454 0.0247 0.0849 0.0228 9 1915255.0 3334.7 0.00275 1891537.0 11035.0 0.001506 0.436 1.404 0.0240 0.035 0.0215 10 1973042.0 3495.0 0.002801 1940005.0 13150.2 0.001509 0.461 1.507 0.0247 0.010 0.0229 11 2030024.0 3558.0 0.002801 2005674.0 14530.2 0.001509 0.461 1.507 0.0244 0.772 0.0223 12 2055676.0 3510.3 0.002735 2062742.0 15000.7 0.001406 0.472 1.400 0.0244 0.772 0.0223 13 2132524.0 3101.3 0.002675 2105114.0 17239.5 0.001139 0.577 1.401 0.021 14 2142293.0 4016.3 0.002625 2135505.0 17273.4 0.001164 0.557 1.400 0.636 15 2170042.0 4092.4 0.002402 2146405.0 17207.3 0.001164 0.530 1.338 0.027 17 2251045.0 4165.5 0.002425 2146405.0 17207.3 0.001141 0.530 1.338 0.027 17 2251045.0 4237.2 0.002304 2223961.0 17373.9 0.001090 0.539 1.317 0.605 12 2216407.0 4307.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.317 0.605 12 231136.0 4375.1 0.00225 22312132.0 17467.4 0.001069 0.525 1.254 0.593 12 2370004.0 4307.1 0.002117 2370912.0 17467.4 0.001069 0.525 1.254 0.593 12 2370004.0 4307.1 0.002117 2370912.0 17552.4 0.000917 0.552 1.141 0.510 24 240042.0 4573.1 0.002117 2370912.0 17552.4 0.000917 0.552 1.141 0.510 24 240042.0 4573.1 0.002117 2370912.0 17552.4 0.000917 0.552 1.141 0.510 24 240042.0 4573.1 0.002117 2370912.0 17552.4 0.000917 0.552 1.141 0.510 24 240042.0 4573.1 0.002117 2370912.0 17552.4 0.000917 0.552 1.141 0.510 2500 2500 2500040 0.553 1.600 0.550 1.150 0.590 0.550 0.5		1741903.0	2857.	6 0.002760	1720331.0	7794.7	0.001733	0.372	1.448	0.0241	0.907	0.0212	4.294
9 1915255.0 3334.7 0.002775 1891537.0 11836.0 0.001566 0.436 1.484 0.0240 0.835 0.0215 10 1973042.0 3455.0 0.00261 1940805.0 13150.2 0.001509 0.461 1.507 0.0247 0.810 0.0229 12 200568.0 3518.3 0.002812 2005674.0 14530.2 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 200568.0 3818.3 0.002738 2262742.0 14580.7 0.001446 0.472 1.490 0.0244 0.785 0.0226 13 2135524.0 3597.3 0.002675 2105114.0 17239.5 0.001139 0.574 1.461 0.621 14 216223.0 4016.3 0.002682 2135505.0 17237.4 0.001146 0.557 1.440 0.621 15 2172042.0 4002.4 0.002482 2164875.0 17237.3 0.001146 0.538 1.344 0.628 15 2172042.0 4002.4 0.002482 2164875.0 17237.3 0.001146 0.538 1.344 0.628 16 2221945.0 4155.5 0.002282 2194428.0 17231.0 0.001146 0.530 1.335 0.627 17 2251048.0 4237.2 0.002384 2223961.0 17237.3 0.001087 0.539 1.317 0.605 18 2261807.0 4377.2 0.002316 2223351.0 17405.6 0.001087 0.539 1.317 0.605 12 231326.0 4375.1 0.002243 2222741.0 17455.6 0.001087 0.539 1.202 0.590 12 2313126.0 4375.1 0.002243 2222741.0 17455.6 0.001087 0.533 1.245 0.568 12 2400442.0 4577.1 0.002243 2222741.0 17455.6 0.001087 0.525 1.254 0.593 12 2370004.0 4577.1 0.002213 234152.0 17407.0 0.000940 0.553 1.179 0.526 1.593 12 2370004.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.104 0.530 0.593 1.202 0.590 17525.0 0.000957 0.548 1.104 0.530 0.590 1.202 0.590 0.593 1.202 0.590 0.593 1.202 0.590 0.593 1.202 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.593 0.590 0.590 0.593 0.590 0.59	7	1799687.0	3016.	9 0.002754	1777399.0	9100.0	0.001650	0.401	1.454	0.0241	0.869	0.0219	4.338
10 1973042.0 3495.8 0.002801 1940605.0 13150.2 0.001509 0.461 1.507 0.0247 0.810 0.0229 11 230024.0 3658.0 0.002812 2005674.0 14538.2 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 2030408.0 3818.3 0.002739 2362742.0 15890.7 0.001464 0.472 1.490 0.0244 0.785 0.0226 13 2132524.0 3937.3 0.002675 2106114.0 17239.5 0.001139 0.574 1.461 0.621 14 216203.0 4016.3 0.002625 2135505.0 17273.4 0.001164 0.557 1.460 0.636 15 2172042.0 4092.4 0.002482 2164875.0 17307.3 0.001164 0.557 1.460 0.636 16 2221945.0 4165.5 0.022482 2164875.0 17307.3 0.001164 0.557 1.460 0.628 16 2221945.0 4455.5 0.002482 223961.0 17307.3 0.001164 0.557 1.300 0.627 17 2251048.0 4237.2 0.002394 2223961.0 17373.9 0.001095 0.539 1.317 0.605 12 226107.0 4377.2 0.002314 2253351.0 17407.8 0.001067 0.539 1.202 0.590 17 2311266.0 4375.1 0.002243 223741.0 17436.6 0.001067 0.539 1.202 0.590 17 2311266.0 4375.1 0.002243 223741.0 17436.6 0.001067 0.539 1.202 0.590 17 2311266.0 4375.1 0.002243 223741.0 17436.6 0.001067 0.539 1.202 0.590 17407.0 0.00044 0.553 1.179 0.526 1.254 0.593 1.202 0.590 17407.0 0.00044 0.553 1.179 0.526 0.593 1.202 0.590 17407.0 0.00044 0.553 1.179 0.526 0.593 1.102 0.593 1.202 0.590 1.7652.0 0.000977 0.548 1.104 0.551 0.505		1057471.0	3175.	5 0.002736	1834458.0	10441.7	0.001602	0.414	1.454	0.0247	0.049	0.0228	4.445
11 2030824.0 3558.0 0.002812 2005674.0 14538.2 0.001430 0.491 1.521 0.0244 0.772 0.0223 12 205068.0 3518.3 0.022738 2062742.0 15890.7 0.001445 0.472 1.490 0.0244 0.785 0.0226 13 2132524.0 3937.3 0.002675 2105114.0 17239.5 0.001139 0.574 1.461 0.621 1420283.0 4016.3 0.002682 21335505.0 17273.4 0.001146 0.557 1.440 0.636 15 210204.0 4092.4 0.002482 2164865.0 17307.3 0.001146 0.557 1.440 0.636 15 210204.0 4092.4 0.002482 2164865.0 17307.3 0.001146 0.558 1.364 0.620 1723140.0 0.00146 0.559 1.338 0.627 1723140.0 0.001141 0.530 1.338 0.627 1723140.0 0.00146 0.591	•	1915255.0	3334.	7 0.002775	1891537.0	11836.0	0.001566	0.436	1.484	0.0240	0.835	0.0215	4.262
12 2000608.0 3818.3 0.002738 2062742.0 15890.7 0.001446 0.472 1.490 0.0244 0.785 0.0226 13 2132524.0 3937.3 0.002675 2106114.0 17239.5 0.001139 0.574 1.461 0.621 0.621 14 2162283.0 4016.3 0.002628 2135505.0 17273.4 0.001164 0.557 1.440 0.626 15 219202.0 4902.4 0.002482 2164695.0 17307.3 0.001146 0.538 1.364 0.628 16 2221945.0 4165.5 0.002482 2194428.0 17341.0 0.001141 0.530 1.338 0.627 17 2251048.0 4237.2 0.002394 2223961.0 17373.9 0.001098 0.539 1.317 0.605 18 2261607.0 4307.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.202 0.590 19 2311356.0 4375.1 0.002283 2282741.0 17405.8 0.001067 0.539 1.205 0.568 20 2341124.0 4402.1 0.002282 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 237004.0 4507.1 0.002113 2341522.0 17467.4 0.001069 0.525 1.254 0.593 21 237004.0 4507.1 0.002113 2341522.0 17467.4 0.001069 0.525 1.254 0.593 24 2400402.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.546 1.104 0.534 23 240040.0 4403.3 0.002005 2429035.0 17552.4 0.000911 0.552 1.141 0.510 24 2400200.0 4754.8 0.002018 242935.0 17579.5 0.000930 0.553 1.169 0.522 25 2490200.0 4754.8 0.002049 2459368.0 17579.5 0.000930 0.553 1.169 0.522 25 2490200.0 4754.8 0.002049 245936.0 1760.4 0.000087 0.562 1.155 0.505 25 2549705.0 4815.4 0.002018 240039.0 17652.6 0.000057 0.562 1.155 0.505 25 2549705.0 4815.4 0.002018 240039.0 17652.6 0.000057 0.562 1.155 0.505 25 2549705.0 4815.4 0.002018 240039.0 17652.6 0.000057 0.562 1.155 0.505 25 2549705.0 4815.4 0.002018 240039.0 17652.6 0.000057 0.566 1.116 0.405 25490243.0 4703.8 0.001909 2547539.0 17682.6 0.000057 0.556 1.116 0.405 25490243.0 4703.6 0.001909 2547539.0 17735.6 0.000065 0.557 1.005 0.405 25490243.0 5105.9 0.001079 2547539.0 17735.6 0.000065 0.557 1.005 0.405 0.405 25747.0 0.001079 2524467.0 17735.0 0.000065 0.557 1.005 0.4	10	1973043.0	3495	.0 0.002801	1948605.0	13150.2	0.001509	0.461	1.507	0.0247	0.610	0.0229	4.409
13 2132524.0 3937.3 0.002675 2105114.0 17239.5 0.001139 0.574 1.461 0.621 14 216223.0 4016.3 0.002625 2135505.0 17273.4 0.001164 0.557 1.460 0.626 15 2192042.0 4092.4 0.002452 2164895.0 17307.3 0.001146 0.538 1.364 0.626 16 2221945.0 4165.5 0.022425 2194428.0 17341.0 0.001141 0.530 1.335 0.627 17 2251648.0 4237.2 0.002394 2223961.0 17373.9 0.001090 0.539 1.317 0.605 18 2261607.0 4337.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.282 0.590 19 2311366.0 4375.1 0.002243 2282741.0 17405.8 0.001067 0.539 1.282 0.590 2341124.0 4462.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 2341124.0 4462.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370026.0 4577.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.164 0.536 240642.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.164 0.534 2450442.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.553 1.169 0.522 2460303.0 4693.3 0.002080 2429835.0 17579.5 0.000997 0.552 1.141 0.510 24 2460304.0 4693.3 0.002080 2429835.0 17579.5 0.000997 0.552 1.141 0.510 25 25 249725.0 4874.9 0.001089 2518149.0 17657.8 0.000970 0.588 1.121 0.461 25 259940.0 4933.8 0.001099 2518149.0 17657.8 0.000874 0.558 1.160 0.505 27 2549725.0 4874.9 0.001089 2518149.0 17657.8 0.000874 0.556 1.110 0.495 25 259940.0 4933.8 0.001099 2518149.0 17657.8 0.000874 0.556 1.110 0.495 25 2500000000000000000000000000000000	11	2030824.0	3559.	0.002812	2005674.0	14538.2	0.001430	0.491	1.521	0.0244	0.772	0.0223	4.280
14 2162233.0 4016.3 0.002628 2135505.0 17273.4 0.001164 0.557 1.440 0.626 15 217.042.0 4092.4 0.002432 2164695.0 17307.3 0.001146 0.538 1.364 0.628 16 2221945.0 4165.5 0.002428 2194428.0 17341.0 0.001141 0.530 1.338 0.627 17 2251048.0 4237.2 0.002394 2223961.0 17337.9 0.001090 0.539 1.317 0.605 18 2261607.0 4307.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.202 0.590 19 2311356.0 4375.1 0.002243 2282741.0 17405.8 0.001067 0.539 1.202 0.590 23 2341124.0 4442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370004.0 4507.1 0.002113 2341522.0 17407.0 0.000940 0.553 1.179 0.526 22 2400542.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.184 0.534 23 2430401.0 4532.9 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2400304.0 4593.3 0.002080 242935.0 17579.5 0.000930 0.553 1.169 0.522 25 2490208.0 4578.8 0.002049 2459368.0 17606.4 0.000897 0.562 1.155 0.505 26 2519966.0 4615.4 0.002018 2408759.0 17632.7 0.000840 0.553 1.121 0.461 23 250943.0 4933.8 0.001989 2516149.0 17657.8 0.000815 0.588 1.121 0.461 25 259043.0 4933.8 0.001989 254759.0 17632.7 0.000845 0.555 1.116 0.590 27 2549725.0 4874.9 0.201980 2516149.0 17657.8 0.000815 0.588 1.121 0.461 28 2570404.0 4933.8 0.001989 2547539.0 17708.9 0.000815 0.558 1.116 0.495 29 240043.0 4933.8 0.001989 2547539.0 17708.9 0.000845 0.555 1.116 0.495 21 2400644.0 5165.9 0.001872 2655243.0 17738.2 0.000845 0.555 1.105 0.549 21 2400644.0 5165.9 0.001872 2655243.0 17738.3 0.000845 0.555 1.076 0.492 23 2400644.0 5165.9 0.001872 2655243.0 17738.3 0.000845 0.552 1.076 0.491 23 2400644.0 5165.9 0.001872 2655243.0 17738.3 0.000845 0.552 1.001	12	2090508.0	3518.	3 0.002738	2062742.0	15890.7	0.001445	0.472	1.490	0.0244	0.785	0.0226	4.366
15 2192042.0 4092.4 0.002482 2164895.0 17307.3 0.001146 0.538 1.364 0.628 16 2221945.0 4165.5 0.002428 2194428.0 17341.0 0.001141 0.530 1.338 0.627 17 2251648.0 4237.2 0.002354 2223961.0 17373.9 0.001067 0.539 1.317 0.605 18 2261667.0 4397.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.202 0.590 19 2311356.0 4375.1 0.00223 2282741.0 17435.6 0.001067 0.539 1.202 0.590 2341124.0 442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370604.0 4577.1 0.00213 2341522.0 17407.0 0.000944 0.553 1.179 0.526 22 240042.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.184 0.534 23 2430401.0 4532.9 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 246034.0 4693.3 0.002080 2429835.0 17506.4 0.00091 0.552 1.155 0.505 25 2490208.0 4754.8 0.002049 2459368.0 17606.4 0.000897 0.562 1.155 0.505 25 251986.0 4615.4 0.002018 2405759.0 17632.7 0.000895 0.560 1.140 0.500 27 2549725.0 4874.0 4933.8 0.001989 2547539.0 17682.6 0.000815 0.588 1.121 0.461 25 257944.0 4933.8 0.001989 2547539.0 17682.6 0.000815 0.586 1.110 0.495 25 2602643.0 4933.6 0.001989 2547539.0 17682.6 0.000897 0.555 1.165 0.519 30 263203.0 5053.0 0.001938 2606320.0 17708.9 0.000815 0.555 1.165 0.519 31 2640261.0 5109.9 0.001804 2635711.0 17708.9 0.00085 0.555 1.105 0.549 31 2640261.0 5109.9 0.001804 2635711.0 17708.2 0.00085 0.555 1.076 0.461 32 2670264.0 5105.9 0.001804 2635711.0 17708.3 0.00085 0.557 1.043 0.461 32 2750328.0 5274.7 0.001018 2694770.0 17813.1 0.00085 0.555 1.076 0.461 32 2750328.0 5274.7 0.001018 2694770.0 17813.1 0.00085 0.555 1.075 0.461	13	2132524.0	3937.	3 0.002675	2105114.0	17239.5	0.001139	0.574	1.461		0.621		
16 2221945.0 4165.5 0.002428 2194426.0 17341.0 0.001141 0.530 1.338 0.627 17 2251048.0 4237.2 0.002384 2223961.0 17373.9 0.001098 0.539 1.317 0.605 18 2261607.0 4307.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.202 0.590 19 2311366.0 4375.1 0.002243 2282741.0 17435.6 0.001067 0.539 1.205 0.568 20 2341124.0 442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370804.0 4507.1 0.002113 2341522.0 17467.4 0.001069 0.525 1.254 0.593 22 240042.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.164 0.534 23 2430401.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 240040.0 4693.3 0.002035 2400303.0 17552.4 0.000911 0.552 1.164 0.510 24 240040.0 4693.3 0.002035 2429035.0 17597.5 0.000930 0.553 1.169 0.522 25 2490208.0 4693.3 0.002049 2459386.0 17606.4 0.000897 0.562 1.155 0.505 26 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4874.9 0.001089 2547839.0 17652.7 0.000883 0.560 1.140 0.500 27 2549725.0 4874.9 0.001089 2547839.0 17652.6 0.000874 0.556 1.118 0.495 29 2400203.0 4933.6 0.001989 2547839.0 17682.6 0.000874 0.556 1.118 0.495 20 240064.0 5109.9 0.001894 26357910.0 17708.9 0.000895 0.552 1.076 0.401 32 2400644.0 5109.9 0.001894 2635711.0 17708.9 0.000865 0.552 1.076 0.401 32 2400644.0 5105.9 0.001077 2665243.0 17708.2 0.000862 0.557 1.003 0.492 33 2720567.0 5221.0 0.001017 2665243.0 17708.3 0.000862 0.557 1.003 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17833.1 0.000863 0.597 1.003 0.461	14	2162253.0	4016.	3 0.002628	2135505.0	17273.4	0.001164	0.557	1.440		0.636		
17 2251048.0 4237.2 0.002384 2223961.0 17373.9 0.001098 0.539 1.317 0.605 18 2261607.0 4307.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.282 0.590 19 231126.0 4375.1 0.002243 2282741.0 17405.8 0.001067 0.539 1.282 0.590 23 2341124.0 442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370204.0 4507.1 0.002113 2341522.0 17497.0 0.00094 0.553 1.179 0.526 22 240042.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.184 0.534 23 2430401.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 240304.0 4693.3 0.002080 2429035.0 17579.5 0.000930 0.553 1.169 0.522 25 2470208.0 4754.8 0.002049 2459386.0 17606.4 0.000897 0.562 1.155 0.505 26 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4574.9 0.001980 2516149.0 17657.8 0.000315 0.588 1.121 0.461 23 2579404.0 4933.8 0.001989 2547539.0 17662.6 0.000374 0.556 1.118 0.495 24 240203.0 4933.6 0.001989 2547539.0 17662.6 0.000374 0.556 1.118 0.495 24 240203.0 4933.6 0.001983 2408320.0 17736.6 0.000374 0.556 1.118 0.495 24 240203.0 4933.6 0.001983 2408320.0 17736.6 0.000374 0.556 1.118 0.495 24 240203.0 5033.0 0.001938 2408320.0 17736.6 0.000374 0.556 1.105 0.549 31 2460761.0 5109.9 0.001884 2635731.0 17788.2 0.000385 0.582 1.076 32 2400644.0 5169.9 0.001884 26357311.0 17783.2 0.000823 0.541 1.075 0.492 33 2728547.0 5221.0 0.001918 2694778.0 17833.1 0.000823 0.547 1.043 0.461	15	2192042.0	4992.	4 0.002482	2164895.0	17307.3	0.001146	0.538	1.364		0.628		
15 2281607.0 4307.2 0.002316 2253351.0 17405.8 0.001067 0.539 1.262 0.590 17 2311366.0 4375.1 0.002243 2282741.0 17436.6 0.001025 0.543 1.245 0.568 25 2341124.0 4442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370804.0 4307.1 0.002113 2341522.0 17497.0 0.000944 0.553 1.179 0.526 22 2400642.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.546 1.184 0.534 23 2430401.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2460304.0 4693.3 0.002080 2429835.0 17579.5 0.000957 0.562 1.155 0.505 25 2490208.0 4754.0 0.002049 2459368.0 17506.4 0.000997 0.562 1.155 0.505 26 2519966.0 4815.4 0.002018 2428759.0 17637.7 0.000897 0.562 1.155 0.505 26 251996.0 4815.4 0.002018 2428759.0 17657.8 0.000815 0.588 1.121 0.461 25 2579404.0 4933.8 0.001989 2518149.0 17657.8 0.000815 0.588 1.121 0.461 25 2579404.0 4933.8 0.001989 2547539.0 17682.6 0.000315 0.588 1.121 0.461 26 2579404.0 5933.8 0.001989 2547539.0 17682.6 0.000315 0.588 1.121 0.461 27 2697243.0 4993.6 0.002048 2576930.0 17708.9 0.000815 0.583 1.165 0.519 26 2697243.0 5033.0 0.001938 2606320.0 17708.9 0.000966 0.501 1.105 0.549 31 2667261.0 5109.9 0.001884 2635711.0 17736.6 0.000966 0.501 1.105 0.549 33 2728567.0 5221.0 0.001818 2699778.0 17833.1 0.00082 0.592 1.031 0.461	16	2221945.0	4165.	5 0.002428	2194428.0	17341.0	0.001141	0.530	1.338		0.627		
19 2311266.0 4375.1 0.002243 2282741.0 17436.6 0.001025 0.543 1.245 0.568 20 2341124.0 4442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370204.0 4507.1 0.002113 2341522.0 17497.0 0.000944 0.553 1.179 0.526 22 240042.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.184 0.510 24 240042.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2400304.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2400304.0 4593.3 0.002080 2429835.0 17579.5 0.000930 0.553 1.169 0.522 25 2470205.0 4754.6 0.002049 2459368.0 17606.4 0.000897 0.562 1.155 0.505 26 251996.0 4515.4 0.002018 2428759.0 17632.7 0.000893 0.560 1.140 0.500 27 2549725.0 4874.9 0.001980 2518149.0 17657.8 0.000515 0.588 1.121 0.461 25 2579404.0 4933.6 0.001989 2547539.0 17682.6 0.000315 0.588 1.121 0.461 26 2579404.0 4933.6 0.001989 2547539.0 17768.9 0.000515 0.588 1.165 0.519 26 260761.0 5109.9 0.001884 26535711.0 17768.9 0.000966 0.501 1.105 0.549 31 2660761.0 5109.9 0.001894 26535711.0 17768.2 0.000865 0.552 1.076 0.461 32 2690664.0 5165.9 0.001077 2665243.0 17783.1 0.00062 0.591 1.075 0.492 33 2726567.0 5221.0 0.001010 2699778.0 17783.1 0.00062 0.591 1.075 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17833.1 0.000624 0.552 1.031 0.461	17	2251048.0	4237.	2 0.002394	2223961.0	17373.9	0.001098	0.539	1.317		0.605		
29 2341124.0 442.1 0.002252 2312132.0 17467.4 0.001069 0.525 1.254 0.593 21 2370804.0 4507.1 0.002113 2341522.0 17497.0 0.000944 0.553 1.179 0.526 22 240042.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.164 0.534 23 2430401.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2460304.0 4693.3 0.002080 2429035.0 17579.5 0.000930 0.553 1.169 0.522 25 2490208.0 4754.8 0.002049 245935.0 17606.4 0.000897 0.562 1.155 0.505 26 251996.0 4815.4 0.002018 2429359.0 17606.4 0.000897 0.562 1.155 0.505 26 251996.0 4874.9 0.001080 25181449.0 17657.8 0.000315 0.588 1.121 0.461 25 2579404.0 4933.8 0.001969 2547539.0 17682.6 0.000374 0.556 1.118 0.495 29 240723.0 4973.6 0.002048 2576930.0 17708.9 0.000374 0.556 1.118 0.495 30 2437002.0 5033.0 0.001938 2606320.0 17708.9 0.000374 0.552 1.076 0.549 31 2660761.0 5109.9 0.001804 2635711.0 17708.2 0.000365 0.552 1.076 0.461 32 2790564.0 5165.9 0.001872 2665243.0 17708.2 0.000365 0.552 1.076 0.461 33 2720567.0 5221.0 0.001818 269778.0 17837.0 0.00062 0.541 1.075 0.492 33 2720567.0 5221.0 0.001818 269778.0 17837.0 0.00062 0.547 1.003 0.497	15	2261607.0	4337.	2 0.002316	2253351.0	17405.8	0.001067	0.539	1.282		0.590		
21 2370804.0 4570.1 0.002113 2341522.0 17497.0 0.000944 0.553 1.179 0.526 22 240042.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.184 0.534 23 2430401.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 240304.0 4693.3 0.002089 2429035.0 17579.5 0.00090 0.553 1.149 0.522 25 2490205.0 4754.0 0.002049 2459366.0 17606.4 0.000897 0.562 1.155 0.505 26 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4574.9 0.001889 2548149.0 17657.8 0.000815 0.588 1.121 0.461 23 2579404.0 4933.8 0.001969 2547539.0 17662.6 0.000874 0.556 1.118 0.495 29 2430203.0 4933.6 0.001969 2576930.0 17708.9 0.000916 0.553 1.165 0.519 30 2437002.8 5033.0 0.001938 2606320.0 17708.9 0.000966 0.501 1.105 0.549 31 2460761.0 5109.9 0.001884 2635711.0 17763.2 0.000865 0.552 1.076 0.401 32 2490164.0 5165.9 0.001077 2665243.0 17768.3 0.000862 0.541 1.075 0.492 33 2720567.0 5221.0 0.001017 2665243.0 177637.0 0.00082 0.547 1.043 0.4971 34 2753326.0 5274.7 0.001792 2724167.0 17637.0 0.000803 0.595 1.031 0.4661	19	2311356.0	4375.	1 0.002243	2282741.0	17436.6	0.001025	0.543	1.245		0.568		
22 2400642.0 4570.1 0.002117 2370912.0 17525.0 0.000957 0.548 1.184 0.534 23 2430401.0 4532.9 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2400304.0 4693.3 0.002080 2429035.0 17579.5 0.000930 0.553 1.169 0.522 25 2490205.0 4754.8 0.002049 2459366.0 17606.4 0.000897 0.562 1.155 0.505 26 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4574.9 0.701980 2510149.0 17657.8 0.000515 0.560 1.121 0.461 23 2579404.0 4933.8 0.001969 2547539.0 17662.6 0.000374 0.556 1.118 0.495 29 2409243.0 4993.6 0.002048 2576930.0 17708.9 0.000815 0.583 1.165 0.519 30 2437002.0 5033.0 0.001930 25406320.0 17736.6 0.000966 0.501 1.105 0.549 31 2400761.0 5109.9 0.001894 2635711.0 17763.2 0.000845 0.552 1.076 0.481 32 2490464.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.591 1.075 0.492 33 2728567.0 5221.0 0.001818 2694770.0 17813.1 0.000823 0.557 1.043 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	29	2341124.0	4442.	1 0.002252	2312132.0	17467.4	0.001069	0.525	1.254		0.593		
23 2430401.0 4532.0 0.002035 2400303.0 17552.4 0.000911 0.552 1.141 0.510 24 2460304.0 4693.3 0.002080 2429035.0 17579.5 0.000930 0.553 1.169 0.522 25 2470208.0 4754.8 0.002049 2459366.0 17606.4 0.000897 0.562 1.155 0.505 26 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000815 0.560 1.140 0.500 27 2549725.0 4874.9 0.201980 2510149.0 17657.8 0.000815 0.588 1.121 0.461 25 2579404.0 4933.8 0.001989 2547539.0 17662.6 0.000374 0.556 1.118 0.495 29 2409243.0 4933.6 0.002048 2576930.0 17708.9 0.000815 0.553 1.165 0.519 30 2439032.0 5033.0 0.001938 2604320.0 17708.9 0.000966 0.501 1.105 0.549 31 2400761.0 5109.9 0.001884 2635711.0 17763.2 0.000845 0.552 1.076 0.481 32 2490464.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.591 1.075 0.492 33 2720567.0 5221.0 0.001812 2694778.0 17813.1 0.000823 0.547 1.043 0.461	21	2370004.0	4527.	1 0.002113	2341522.0	17497.0	0.000944	0.553	1.179		0.526		
24 2+60304.0 4693.3 0.002080 2429835.0 17579.5 0.000930 0.553 1.169 0.522 25 2470208.0 4754.8 0.002049 2459368.0 17606.4 0.000897 0.562 1.155 0.505 25 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4874.9 0.201980 2518149.0 17657.8 0.000515 0.588 1.121 0.461 25 2579404.0 4933.8 0.001980 25478539.0 17682.6 0.000315 0.588 1.121 0.461 25 2409243.0 4933.8 0.001980 2576930.0 17768.9 0.000515 0.583 1.165 0.519 30 2439032.0 5033.0 0.001938 2606320.0 17736.6 0.000916 0.551 1.105 0.549 31 2400761.0 5109.9 0.001834 2606320.0 17736.6 0.000966 0.501 1.105 0.549 31 2490644.0 5165.9 0.001874 2655243.0 17788.2 0.000845 0.552 1.076 0.461 32 2490644.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.591 1.075 0.492 33 2728567.0 5221.0 0.001818 2694728.0 17883.1 0.000823 0.547 1.043 0.461 34 2753326.0 5274.7 0.001792 2724167.0 17883.1 0.000804 0.552 1.031 0.461	22	2400542.0	4570.	1 0.002117	2370912.0	17525.0	0.000957	0.548	1.184		0.534		
25 249208.0 4754.6 0.002049 2459366.0 17606.4 0.000897 0.562 1.155 0.505 25 251996.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4874.9 0.001980 2518149.0 17657.8 0.000815 0.588 1.121 0.461 28 2579404.0 4933.8 0.001969 2547539.0 17682.6 0.000874 0.556 1.118 0.495 29 240923.0 4993.6 0.002048 2576930.0 17708.9 0.000816 0.553 1.165 0.519 30 2439002.0 5033.0 0.001938 2606320.0 17708.9 0.000966 0.501 1.105 0.549 31 2460761.0 5109.9 0.001894 2635711.0 17763.2 0.000865 0.552 1.076 0.401 32 2490644.0 5165.9 0.001077 2665243.0 17708.3 0.000862 0.541 1.075 0.492 33 2720567.0 5221.0 0.001017 2665243.0 17708.3 0.000862 0.597 1.043 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17633.1 0.000804 0.552 1.031 0.461	23	2+30+01.0	4532.	0.002035	2400303.0	17552.4	0.000911	0.552	1.141		0.510		
26 2519966.0 4815.4 0.002018 2428759.0 17632.7 0.000883 0.560 1.140 0.500 27 2549725.0 4874.9 0.001980 2518149.0 17657.8 0.000815 0.588 1.121 0.461 25 2579404.0 4933.8 0.001969 2547539.0 17682.6 0.000874 0.556 1.118 0.495 25 2579404.0 4933.6 0.002048 2576930.0 17708.9 0.000915 0.553 1.165 0.519 30 2537002.8 5033.0 0.001938 2506320.0 17708.9 0.000966 0.501 1.105 0.549 31 2660761.0 5109.9 0.001894 2635711.0 17763.2 0.000865 0.552 1.076 0.481 32 2590164.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.541 1.075 0.492 33 2728557.0 5221.0 0.001818 2699776.0 17813.1 0.00083 0.547 1.043 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	24	2+60304.0	4693.	3 0.002080	2429835.0	17579.5	0.000930	0.553	1.169		0.522		
27 2549725.0 4874.9 0.201980 2518149.0 17657.8 0.000315 0.588 1.121 0.461 23 2579404.0 4933.8 0.001969 2547539.0 17682.6 0.000374 0.556 1.118 0.495 29 2409243.0 4993.6 0.002048 2576930.0 17708.9 0.000915 0.553 1.165 0.519 30 2439032.8 5533.0 0.001938 2604320.0 17736.6 0.000966 0.501 1.105 0.549 31 2440761.0 5109.9 0.001894 2633711.0 17763.2 0.000845 0.552 1.076 0.481 32 2490464.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.541 1.075 0.492 33 2728567.0 5221.0 0.001818 2694778.0 17813.1 0.000823 0.547 1.043 0.471 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	25	2490208.0	4754.	8 0.002049	2459368.0	17606.4	0.000897	0.562	1.155		0.505		
25 2579494.0 4933.8 0.001969 2547539.0 17682.6 0.000374 0.556 1.118 0.495 29 2409243.0 4993.6 0.002048 2576930.0 17708.9 0.000915 0.553 1.165 0.519 30 2439032.0 5533.0 0.001938 2604320.0 17736.6 0.000966 0.501 1.105 0.549 31 2440761.0 5109.9 0.001894 2633711.0 17763.2 0.000845 0.552 1.076 0.481 32 2490464.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.541 1.075 0.492 33 2728567.0 5221.0 0.00188 2694778.0 17813.1 0.000823 0.547 1.043 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	26	2519966.0	4815.	4 0.002018	2405759.0	17632.7	0.000898	0.560	1.140		0.500		
29 2439243.0 4933.6 0.002048 2576930.0 17708.9 0.000915 0.553 1.165 0.519 30 2439032.0 5033.0 0.001938 2604320.0 17736.6 0.000966 0.501 1.105 0.549 31 2440761.0 5109.9 0.001884 2635711.0 17763.2 0.000845 0.552 1.076 0.461 32 2490444.0 5165.9 0.001877 2665243.0 17788.3 0.000862 0.541 1.075 0.492 33 2728567.0 5221.0 0.001818 2694778.0 17883.1 0.00082 0.547 1.043 0.491 34 2753326.0 5274.7 0.001792 2724167.0 17883.1 0.000804 0.552 1.031 0.461	27	2549725.0	4874.	9 0.201780	2518149.0	17657.8	0.000315	0.588	1.121		0.451		
30 2437002.0 5053.0 0.001938 2606320.0 17736.6 0.000966 0.501 1.105 0.549 31 2460761.0 5109.9 0.001884 2635781.0 17783.2 0.000845 0.552 1.076 0.401 32 2470644.0 5165.9 0.001077 2665243.0 17788.3 0.000862 0.541 1.075 0.492 33 2720567.0 5221.0 0.001018 2694778.0 17813.1 0.00082 0.547 1.043 0.491 34 275326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	25	2579454.0	4933.	8 0.001969	\$547539.0	17682.6	0.000374	0.556	1.118		0.495		
31 2460761.0 5109.9 0.001834 2635711.0 17763.2 0.000845 0.552 1.076 0.461 32 2490444.0 5165.9 0.001877 2645243.0 17788.3 0.000862 0.541 1.075 0.492 33 2728547.0 5221.0 0.001818 2694776.0 17813.1 0.000823 0.547 1.043 0.471 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	29	2509243.0	4973.	6 0.002048	2576730.0	17708.9	0.000915	0.553	1.165		0.519		
32 2690664.0 \$165.9 0.001877 2665243.0 17788.3 0.000862 0.541 1.075 0.492 33 2728567.0 5221.0 0.001818 2694776.0 17813.1 0.000823 0.547 1.043 0.471 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000804 0.552 1.031 0.461	30	2+39002.0	5:53.	0.001938	2606320.0	17736.6	0.000966	0.501	1.105		0.549		
33 2728567.0 5221.0 0.001018 2694776.0 17813.1 0.000823 0.547 1.043 0.471 34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000004 0.552 1.031 0.461	31	2650761.0	5109.	. 0.001834	2635711.0	17763.2	0.000845	0.552	1.076		0.481		
34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000004 0.552 1.031 0.461	32	2670164.0	5165.	9 0.001877	2665243.0	17788.3	0.000062	0.541	1.075		0.492		
34 2753326.0 5274.7 0.001792 2724167.0 17837.0 0.000004 0.552 1.031 0.461	33	2728547.0	5221.	0.001016				0.547			0.471		
35 PERSON A 5374 T A ROLLAND PERSON A 17041 A A ARREST A 547 1 ATA	34	2753326.0	5274.	7 0.001792	2724167.0	17837.0	0.000004				0.461		
22 Ermanus a Compas Vivolena Ersassino 17091.0 0.000022 0.543 1.035 0.473	35	2763085.0	5300.	3 0.001800	2753557.0	17851.0	0.000822	0.543	1.035		0.473		
36 2517644.0 5389.3 0.001694 2782947.0 17884.1 0.000784 0.555 0.978 0.435	36	2317644.0	5389.	3 0.001694	2782947.0						0.435		

STANTON HARRER PATTO BASED ON ST-PR-+0.4=0.0295-REX++(-.2)

STANTON PAPER PATIO FOR THE 1 IS CONVERTED TO COMPARABLE TRANSPIRATION VALUE USING ALOGI + BI/B EXPRESSION IN THE BLOWN SECTION

RUN 011777-2 *** DISCPETE HOLE PIG *** NAS-3-14336 STANTON NUMBER DATA

TAD9= 18.20 DEG C UINF= 16.90 M/S TINF= 18.07 DEG C PHO: 1.219 K5/M3 VISC= 0.14754E-04 M2/S XYO= -0.4 CM CP= 1008. J/KSK FR= 0.714

*** HEATED STAPTING LENSTH, 12 RCHS OF BLOWING, H=0.9, THEATA=1.0 ***

PLATE	×	PEX	TO	PEENTH	STANTON NO	DST	DREEN	н	F	TZ	THETA	DTH
1	127.8	0.14579E 07	34.51	0.21493E 04	0.22328E-02	0.449E-04	29.					
2	132.8	0.15261E 07	34.48	0.22763E 04	0.21187E-02	0.444E-04	52.	0.82	0.0264	35.0	1.029	0.019
3	137.9	0.15342E 07	34.44	0.3990DE 04	0.23327E-02	0.456E-04	79.	0.81	0.0261	34.8	1.024	0.019
4	143.0	0.164245 07	34.48	0.557585 04	0.22129E-02	0.449E-04	99.	0.81	0.0262	35.0	1.032	0.019
5	145.1	0.17006E 07	34.46	0.73712E 04	0.20590E-02	0.442E-04	116.	0.82	0.0267	34.9	1.027	0.019
6	153.2	0.17501E 07	34.55	0.90832E 04	0.19501E-02	0.435E-04	130.	0.80	0.0258	34.4	0.993	0.019
7	158.2	0.18170E 07	34.57	0.10505E 05	0.19137E-02	0.432E-04	142.	0.81	0.0262	34.4	0.993	0.019
8	163.3	0.13751E 07	34.44	0.12310E 05	0.19027E-02	0.435E-04	153.	0.79	0.0257	34.6	1.011	0.019
9	168.4	0.19333E 07	34.48	0.13931E 05	0.18255E-02	0.430E-04	164.	0.80	0.0260	34.4	0.994	0.019
10	173.5	0.19915E 07	34.48	0.15543E 05	0.18245E-02	0.430E-04	173.	0.79	0.0256	34.0	0.973	0.019
11	178.6	0.20497E 07	34.49	0.17093E 05	0.17657E-02	0.427E-04	182.	0.80	0.0259	33.5	0.941	0.019
12	163.6	0.21079E 07	34.49	0.18612E 05	0.17695E-02	0.428E-04	190.	0.79	0.0257	33.5	0.941	0.019
13	187.5	0.215:1E 07	33.63	0.200918 05	0.15420E-02	0.522E-04	194.					
14	190.1	C.21820E 07	33.35	0.20138E 05	0.15686E-02	0.545E-04	194.					
15	192.7	0.22120E 07	33.65	0.20184E 05	0.15207E-02	0.5505-04	194.					
16	195.4	0.22421E 07	33.92	0.202295 05	0.14840E-02	0.527E-04	194.					
:7	198.0	0.22722E 07	34.00	0.202738 05	0.14334E-02	0.512E-04	194.					
18	200.6	0.23022E 07	34.07	0.203158 05	0.13815E-02	0.497E-04	194.					
19	203.2	0.23321E 07	34.13	0.20356E 05	0.13232E-02	0.473E-04	194.					
20	205.8	0.23521E 07	34.27	0.20396E 05	0.13210E-02	0.476E-04	194.					
21	208.5	0.23921E 07	34.25	0.20434E 05	0.12380E-02	0.449E-04	194.					
22	211.1	0.24220E 07	34.28	0.20471E 05	0.12352E-02	0.455E-04	194.					
23	213.7	0.24520E 07	34.28	0.20507E 05	0.11717E-02	0.432E-04	194.					
24	216.3	0.24821E 07	34.40	0.205435 05	0.11965E-02	0.449E-04	194.					
25	218.9	0.25:22E 07	34.32	0.20579E 05	0.11842E-02	0.439E-04	194.					
25	221.6	0.25422E 07	34.23	0.20513E 05	0.11379E-02	0.445E-04	194.					
27	224.2	0.25721E 07	33.35	0.20647E 05	0.112550-02	0.393E-04	194.					
28	226.8	0.26021E 07	34.28	0.20582E 05	0.11731E-02	0.459E-04	194.					
29	229.4	0.26321E 07	34.30	0.20718E 05	0.12037E-02	0.435E-04	194.					
32	232.0	0.26620E 07	34.68	0.207538 05	0.11412E-02	0.436E-04	194.					
31	234.6	0.26920E 07	34.68	0.20786E 05	0.10962E-02	0.415E-04	194.					
32	237.3	0.27221E 07	34.53	0.20319E 05	0.10936E-02	0.413E-04	194.					
33	239.9	0.27522E 07	34.51	0.20851E 05	0.10497E-02	0.404E-04	194.					
34	242.5	0.27922E 07	34.23	0.20283E 05	0.102948-02	0.378E-04	194.					
35	245.1	0.28121E 07	34.44	0.20914E 05	0.10505E-02	0.418E-04	194.					
36	247.8	0.28421E 07	34.17	0.20944E 05	0.97433E-03	0.424E-04	194.					

UNCERTAINTY IN REX=20712.

UNCERTAINTY IN F=0.05033 IN RATIO

PUN 011777-1 *** DISCRETE HOLE PIG *** NAS-3-14336

STANTON NUMBER DATA

TADB= 19.13 DEG C UINF= 16.93 M/S TINF= 19.00 DEG C PHO: 1.215 KG/H3 VISC= 0.14837E-04 H2/5 XYO= -0.4 CH CP= 1009. J/KGK PR= 0.714

*** HEATED STARTING LENGTH, 12 ROWS OF BLOWING, H=0.9, THEATA=0.0 ***

		PEX	TO	REENTH		STANTON NO	DST	DREEN	М	F	TZ	THETA	DTH
	127.8	0.14522E 07	34.15	0.21414E	04	0.229745-02	0.4895-04	29.					
2	132.8	0.15201E 07	34.11	0.22768E	04	0.23763E-02	0.494E-04	34.	0.92	0.0299	20.1	0.075	0.020
3	137.9	0.15781E 07	34.13	0.25544E	04	0.27070E-02	0.513E-04	42.	0.88	0.0283	20.3	0.084	0.020
4	143.0	0.16361E 07	34.13	0.28547E	04	0.28855E-02	0.5248-04	49.	0.90	0.0292	20.2	0.082	0.020
5	143.1	0.15940E 07	34.11	0.31602E	04	0.28782E-02	0.5255-04	55.	0.89	0.0287	20.2	0.077	0.020
6	153.2	0.17520E 07	34.13	0.34570E	04	0.29183E-02	0.527E-04	60.	0.87	0.0281	20.2	0.050	0.020
7	159.2	0.16099E 07	34.13	0.37547E	04	0.28359E-02	0.521E-04	64.	0.65	0.0284	20.2	0.078	0.020
8	163.3	0.16579E 07	34.09	0.40 .50E	04	0.28553E-02	0.524E-04	69.	0.88	0.0285	20.1	0.072	0.020
9	155.4	0.192555 07	34.13	0.433105	04	0.28159E-02	0.520E-04	73.	0.89	0.0288	20.1	0.070	0.000
10	173.5	0.19539E 07	34.15	0.46132E	04	0.20540E-02	0.522E-04	77.	0.86	0.0280	20.1	0.073	0.020
11	173.6	0.20417E 07	34.17	0.43954E	04	0.28550E-02	0.5215-04	80.	0.88	0.0284	20.1	0.074	0.020
12	103.6	0.20997E 07	34.21	0.51017E		0.23013E-02	C.517E-04	84.	0.88	0.0284	20.1	0.074	0.020
13	187.5	0.21437E 07	32.91	0.54261E		0.27640E-02	0.8965-04	86.					
14	190.1	0.217365 07	32.66	0.55075E		0.26829E-02	0.894E-04	86.					
15	192.7	0.2203+E 07	33.35	0.55E63E	04	0.25860E-02	0.896E-04	85.					
16	195.4	0.22334E 07	33.44	0.55623E		0.25067E-02	0.854E-04	86.					
17	199.0	0.22634E 07	33.52	0.57352E	04	0.24351E-02	0.831E-04	86.					
18	200.6	0.229335 07	33.53	0.58978E	04	0.23578E-02	0.807E-04	86.					
19	203.2	C.23231E 07	33.63	0.53767E	94	0.22510E-02	0.7685-04	86.					
20	225.8	0.23530E 07	33.77	0.59444E	04	0.22821E-02	0.782E-04	26.					
21	203.5	0.235255 07	33.73	0.60111E	04	0.21805E-02	0.7445-04	86.					
22	211.1	0.24126E 07	33.85	0.60758E	04	0.21529E-02	0.747E-04	86.					
23	213.7	0.24425E 07	33.77	0.61393E	04	0.20950E-02	0.716E-04	86.					
24	216.3	0.24725E 07	33.94	0.62022E	04	0.21167E-02	0.740E-04	86.					
25	218.9	0.25025E 07	33.83	0.62655E	04	0.21202E-02	0.731E-04	86.					
26	221.6	0.253235 97	33.75	0.63276E	04	0.20358E-02	0.746E-04	86.					
27	224.2	0.25622E 07	32.34	0.63894E	04	0.20970E-02	0.664E-04	85.					
28	226.8	0.25920E 07	33.77	0.64523E	04	0.21162E-02	0.7735-04	86.					
29	229.4	0.26219E 07	33.79	0.65159E	04	0.21391E-02	0.723E-04	86.					
30	232.0	0.26517E 07	34.32	0.65783E	04	0.20353E-02	0.719E-04	86.					
31	234.6	0.26816E 07	34.32	0.66380E	04	0.19613E-02	0.694E-04	86.					
32	237.3	0.27115E 07	34.15	0.669655	04	0.195268-02	0.6765-04	86.					
33	237.9	0.27415E 07	34.13	0.67540E	04	0.16971E-02	0.670E-04	86.					
34	242.5	0.27714E 07	33.71	0.681000	04	0.18529E-02	0.627E-04	86.					
35	245.1	0.28312E 07	34.06	0.68661E	04	0.18981E-02	0.685E-04	86.					
35	247.8	0.28311E 07		0.69209E		0.17755E-02	0.700E-04	86.					

UNCERTAINTY IN REX=20632. UNICERTAINTY IN F=0.05033 IN RATIO

PUN 011777-1 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON MARBER DATA

*** HEATED STARTING LENGTH, 12 ROWS OF BLOWING, H=0.9, THEATA=0.0 ***

PUN C11777-2 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

... HEATED STARTING LENGTH. 12 ROWS OF BLOWING, H=0.9, THEATA=1.0 ...

LINEAR SUPERFOSITION IS APPLIED TO STANTON NUMBER DATA FROM
PUN MATERS 011777-1 AND 011777-2 TO OBTAIN STANTON NUMBER DATA AT THEO AND THES

PLATE	REXCOL	RE DELZ	ST(TH=0)	REXHOT	RE DELZ	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LDGB
,	1462192.0	2141.4	0.002297	1467883.0	2149.8	0.002233	www	1.000	0.0000	1.000	0.0000	1.000
2	1520147.0	2277.4	0.002397	1526063.0	2276.6	0.002127	0.113	1.223	0.0209	1.087	0.0264	5.202
3	1578101.0	2426.2	0.002738	1584243.0	3945.4	0.002343	0.144	1.409	0.0283	1.206	0.0261	5.380
4	1636056.0	2590.9				0.002233	0.242	1.526	0.0292	1.158	0.0262	5.336
5	1674010.0	2761.6		1700604.0		0.002085		1.537	0.0287	1.038	0.0267	5.308
6	1751955.0	2933.9						1.575	0.0261	1.036	0.0253	5.124
7	1809920.0	3105.4		1816964.0				1.541	0.0264	1.009	0.0262	5.153
8	1057074.0			1875144.0				1.560	0.0285	1.014	0.0257	5.121
9	1925329.0			1933324.0				1.548	0.0288	0.979	0.0260	5.119
10	1993783.0			1991504.0	15390.1	0.001805	0.387	1.586	0.0280	0.973	0.0056	5.066
11	2041738.0								0.0284	0.928	0.0259	5.044
12	2099592.0			2107864.0					0.0284	0.926	0.0257	5.033
13	2143738.0	4079.0	0.000066	2152081.0	20147.2	0.001459	0.491	1.568		0.799		
14	2173584.0	4153.4	0.002778	2182044.0	20191.5	0.001493	0.463	1.523		0.819		
15	2203431.0	4244.9	0.002677	2212007.0	20235.6	0.001448	0.459	1.472		0.797		
16	2233422.0	4323.7	0.000594	2242115.0	20278.5	0.001415	0.455	1.430		0.781		
17	2253414.0	4400.1	0.002521	2272223.0	20320.2	0.001365	0.458	1.393		0.755		
18	2253260.0	4474.2	0.002441	2302186.0	20360.4	0.001315	0.461	1.353		0.730		
19	2323107.0	4545.5	0.002330	2332148.0	20399.1	0.001260	0.459	1.295		0.701		
20	2352953.0	4515.6	0.002364	2362111.0	20436.8	0.001256	0.469	1.317		0.700		
21	2352800.0	4684.7	0.002261	2392074.0	20473.3	0.001174	0.481	1.263		0.656		
22	2412647.0	4751.8	0.002231	2422037.0	20508.5	0.001174	0.474	1.249		0.658		
23	2442493.0	4817.7	0.002175	2452000.0	20542.7	0.001109	0.490	1.221		0.623		
24	2472484.0	4883.0	0.002195	2482108.0	20576.4	0.001134	0.483	1.235		0.639		
25	2502476.0	4945.6	0.002200	2512216.0	20610.2	0.001121	0.491	1.241		0.633		
26	2532323.0	5013.1	0.002112	2542179.0	20543.1	0.001077	0.490	1.194		0.609		
27	2552159.0	5277.2		2572141.0						0.601		
25	2572016.0	5142.6		2602104.0						0.630		
29	2621663.0	5209.6	0.002218	2632067.0	20741.5	0.001146	0.454	1.263		0.653		
30	2651709.0	5273.2	0.002112	2652030.0				1.205		0.617		
31	2681555.0	5335.2	0.002035	2691993.0	20806.7			1.164		0.594		
32	2711547.0	5395.9	0.002025	2722100.0				1.161		0.597		
33	2741539.0	5455.6	0.001969				0.496	1.131		0.570		
34	2771335.0	5513.7		2782171.0			0.499			0.555		
35	2801232.0	5571.9		2812134.0			0.496	1.137		0.573		
36	2831078.0		0.001844					1.066		0.532		

STANTON MARRER RATIO BASED ON ST-PR-+0.4=0.0295-REX++(-.2)

STANTON NUMBER PATIO FOR THE I IS CONVERTED TO COMPARABLE TRANSPIRATION VALUE USING ALOG(1 + B)/B EXPRESSION IN THE BLOWN SECTION

PUN 012177 *** DISCPETE HOLE RIG *** NAS-3-14336

STANTON NUPSER DATA

TADB= 22.09 DEG C UINF= 17.29 H/S TINF= 21.96 DEG C PHO= 1.191 EG/H3 VISC= 0.15232E-04 H2/S XYO= -0.4 CH CP= 1011. J/KGK FR= 0.715

HEATED STARTING LENGTH. 11 PONS OF BLONING H=1.33. THETA=1.0

PLATE		PEX	TO	PEENTH	STANTON HO	DST	DREEN	Ħ	•	TZ	THETA	DTH
•	127.0		36.06	0.21305E 04	0.232436-02	0.522E-04	29.					
2	132.0	0.15124E 07		0.22589E 04	0.21277E-02	0.512E-04	77.	1.36	0.0440	36.4	1.025	0.022
3	137.9		35.04	0.49744E 04	0.253800 02	0.536E-04	125.	1.32	0.0429	35.9	0.993	0.022
4	143.0	0.16277E 07	35.04	0.760515 04	0.28504E-02	0.555E-04	157.	1.27	0.0413	36.1	1.004	0.022
5	145.1	0.16554E 07	35.08	0.10157E 05	0.283958-02	0.553E-04	182.	1.25	0.0405	36.1	1.004	0.022
	153.2	0.17431E 07	36.06	0.126638 05	0.267642-02	0.544E-04	204.	1.27	0.0410	36.0	0.995	0.022
7	153.2	0.10C07E 07	35.06	0.15163E 05	0.250728-02	0.5336-04	223.	1.27	0.0412	35.9	0.987	0.022
		0.16584E 07	36.08	0.17646E 05	0.238476-02	0.525E-04	241.	1.25	0.0405	36.1	1.005	0.022
		0.19140E 07	35.08	0.20127E 05	0.23083E-02	0.521E-04	259.	1.30	0.0421	35.9	0.909	0.022
10	173.5	0.19737E 07	35.08	0.226598 05	0.22306E-02	0.517E-04	274.	1.26	0.0406	35.7	0.976	0.022
11	173.6	0.20314E 07	35.08	0.25070E 05	0.214626-02	0.512E-04	200.	1.23	0.0399	35.4	0.951	0.022
12	133.6	0.209705 07	35.05	0.27303E 05	0.210538-02	0.51CE-04	301.	1.25	0.0404	35.4	0.952	0.022
13	187.5	0.213268 07	35.12	0.29587E 05	0.17741E-02	0.607E-04	307.					
14	193.1	C.21625E 07	34.05	0.29740E 05	0.17734E-02	0.629E-04	307.					
15	192.7	9.21922E 07	35.35	0.29792E 05	0.17218E-02	0.6338-04	307.					
16	195.4	0.22221E 07	35.45	0.298428 05	0.16544E-02	0.600E-04	307.					
17	195.0	0.22519E 07	35.52	0.29391E 05	0.16305E-02	0.592E-04	777.					
18	200.6	0.22516E 07	35.60	0.299355 05	0.1578CE-02	0.577E-04	307.					
17	203.2	0.231136 07	35.66	0.29984E 05	0.15034E-02	0.547E-04	301.					
20	205.8	0.234105 07	35.77	0.300298 05	0.14972E-02	0.5-08-04	307.					
21	208.5	0.23707E 07	35.73	0.300728 05	0.139842-02	0.514E-04	307.					
22	211.1	0.24004E 07	35.79	0.30113E 05	0.13874E-02	0.521E-04	307.					
2.3	213.7	0.24301E 07	35.77	0.3015-8 05	0.13343E-02	0.500E-04	307.					
24	216.3	0.245998 07	35.67	0.301945 05	0.136126-02	0.5155-04	307.					
25	215.9	0.248988 07	35.77	0.302346 05	0.13357E-02	0.504E-04	307.					
25	0.155	0.251958 07	35.70	0.302738 05	0.12933E-02	0.514E-04	307.					
27	2:4.2	0.254925 07	34.89	0.303116 05	0.12591E-02	0.452E-04	307.					
28	226.8	0.25789E C7	35.77	0.30350E 05	0.13678E-02	0.539E-04	307.					
29	229.4	0.250858 07	35.79	0.303916 05	0.13775E-02	0.504E-04	307.					
30	232.0	0.26382E 07	35.15	0.30431E 05	0.13320E-02	0.513E-04	307.					
31	23 6	0.26579E 07	36.15	0.30470E 05	0.12710E-02	0.405E-04	307.					
32	237.3	0.26975E 07	36.04	0.30507E 05	0.12570E-02	0.4335-04	307.					
33	239.9	0.272768 07	35.00	0.30544E 05	0.12258E-02	0.4735-04	307.					
	242.5	0.275738 07	35.79	0.305000 05	0.11792E-02	0.445E-04	307.					
35	245.1	0.27870E 07	35.94	0.30615E 05	0.12081E-02	0.483E-04	307.					
36	247.8	0.281672 07	35.73	0.306508 05	0.11042E-02	0.483E-04	307.					

UNCERTAINTY IN REX=20527.

UNCERTAINTY IN F=0.05031 IN RATIO

PLN 012077 *** DISCRETE HOLE RIG *** HAS-3-14336

STANTON NUMBER DATA

TACB= 21.88 DEG C UINF= 17.33 M/S TINF= 21.74 DEG C
PHG= 1.193 FG/H3 VISC= 0.15205E-04 H2/S XTG= -0.4 CH
CP= 1009, J/KGK PR= 0.714

HEATED STARTING LENGTH. 11 PONS OF BLOWING. H=1.33. THETA=0.0

PLATE	×	PEX	10	PEENTH	STANTON NO	DST	DPEEN	H	•	TZ	THETA	DTH
1	127.8	0.14507E 07	35.44	0.21392E 04	0.23095E-02	0.500E-04	29.					
2	132.5	0.15165E 07	36.44	0.22757E 04	0.24037E-02	0.506E-04	40.	1.42	0.0459	22.7	0.054	0.021
3	137.9	0.15765E 07	36.48	0.25930E 04	0.271855-02	0.523E-04	56.	1.39	0.0450	22.6	0.070	0.021
4	143.0	0.1634-E 07	36.44	0.29531E 04	0.34540E-02	0.574E-04	69.	1.39	0.0450	22.8	0.071	0.021
5	145.1	0.16923E 07	36.46	0.33442E 04	0.36819E-02	0.590E-04	79.	1.35	0.0437	22.8	0.071	0.021
6	153.2	0.175005 07	36.46	0.37351E 04	0.357328-02	0.500E-04	65.	1.41	0.0458	22.8	0.075	0.021
7	155.2	0.18081E 07	35.44	0.41400E 04	0.355225-02	0.581E-04	96.	1.33	0.0448	22.9	0.077	0.021
8	163.3	0.16560E 07	35.44	0.45421E 04	0.346548-02	0.575E-04	104.	1.40	0.0454	22.8	0.074	0.021
	168.4	0.192378 07	35.42	0.49395E 04	0.35396E-02	0.531E-04	111.	1.40	0.0453	22.9	0.076	0.021
10	173.5	0.1931EE 07	36.42	0.53433E 04	0.35535E-02	0.502E-04	118.	1.37	0.0445	22.8	0.075	0.021
11	178.6	0.20397E 07	36.46	0.57432E 04	0.35840E-02	0.563E-04	124.	1.35	0.0436	22.9	0.079	0.021
12	183.6	0.20976E 07	36.42	0.61500E 04	0.35525E-02	0.502E-04	130.	1.36	0.0441	22.9	0.080	0.021
13	187.5	0.21416E 07	34.35	0.65057E 04	0.337368-02	0.10EE-03	132.					
14	190.1	0.217145 07	33.65	0.66CBCE 04	0.34139E-02	0.1145-03	132.					
15	192.7	0.22012E 07	34.59	0.670738 04	0.32442E-02	0.112E-03	132.					
16	195.4	0.22312E 07	34.70	0.600305 04	0.31613E-02	0.108E-03	132.					
17	198.0	0.22611E 07	34.62	0.689618 04	0.30800E-02	0.105E-03	132.					
18	200.6	0.22909E 07	34.93	0.69967E 04	0.29891E-92	0.102E-03	132.					
19	203.2	0.23207E 07	34.97	0.70747E 04	0.29075E-02	0.990E-04	132.					
20	205.8	0.23536E 07	35.07	0.71515F 04	0.29066E-02	0.976E-04	132.					
21	203.5	0.23204E 07	35.01	0.724575 04	0.27339E-02	0.934E-04	132.					
22	211.1	0.24102E 07	35.07	0.73279E 04	0.27735E-02	0.956E-04	133.					
23	213.7	0.2440CE 07	35.01	0.74091E 04	0.26719E-02	0.915E-04	133.					
24	215.3	0.2470CE 07	35.14	0.74376E 04	0.27185E-02	0.946E-04	133.					
25	215.9	0.249995 07	34.97	0.75705E 04	0.27041E-02	0.930E-04	133.					
26	221.6	0.252998 07	34.63	0.76506E 04	0.26577E-02	0.965E-04	133.					
27	224.2	0.25596E 07	33.37	0.773095 04	0.27254E-02	0.870E-04	133.					
28	226.8	0.25:346 07	34.64	0.70134E 04	0.200406-02	0.101E-03	133.					
29	229.4	0.26192E 07	34.89	0.789695 04	0.27838E-02	0.942E-04	133.					
30	232.0	0.264925 07	35.49	0.79785E 94	0.26831E-02	0.94CE-04	133.					
31	234.6	0.26732E 07	35.52	0.80570E 04	0.25680E-02	0.891E-04	133.					
32	237.3	0.27088E 07	35.31	0.81333E 04	0.25467E-02	0.875E-04	133.					
	239.9	0.27335E 07	35.30	0.62051E 04	0.24603E-02	0.661E-04	133.					
	242.5	0.27605E 07	34.89	0.628105 04	0.24233E-02	0.819E-04	133.					
35	245.1	0.27984E 87	35.24	0.635358 04	0.243738-02	0.870E-04	133.					
	247.8		34.91	0.842428 04	0.23014E-02		133.					

UNCENTAINTY IN REX=20611.

UNCERTAINTY IN F=0.05031 IN PATIO

PUN 012077 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENGTH, 11 ROWS OF BLONDING. H=1.33, THETA=0.0

PUN 012177 --- DISCPETE HOLE RIG --- NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENSTH. 11 POWS OF BLONING H=1.33, THETA=1.0

LINEAP SUPERPOSITION IS APPLIED TO STANTON NUMBER DATA FROM
PUN NUMBERS 012077 AND 012177 TO OBTAIN STANTON MUMBER DATA AT THEO AND THES

PLATE	PEXCOL	PE	DELE	ST(TH=0)	REXHOT	RE DELE	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LOSS
•	1450708.0		2139.2	0.002309	1454765.0	2130.5	0.002324	www	1.000	0.0000	1.000	0.0000	1.000
2	1516504.0		2276.2	0.002422	1512426.0	2259.1	0.002135	0.119	1.237	0.0459	1.089	0.0440	7.306
3	1576500.0		2425.4	0.002731	1570036.0	4931.0	0.002540	0.070	1.405	0.0450	1.306	0.0429	7.642
4	1634395.0		2605.7		1627746.0	7558.0			1.813	0.0450	1.481	0.0413	7.607
5	1690291.0		2815.5		1685406.0	10100.6			1.955	0.0437	1.478	0.0405	7.750
6	1750187.0		3027.6		1743266.0	12597.7	0.002676	0.267	1.917	0.0458	1.405	0.0410	7.704
7	10000033.0			9.003639	1800725.0	15109.5	0.002497	0.314	1.924	0.0448	1.319	0.0412	7.600
	1065978.0		3443.7		1653337.0	17623.4		0.330	1.891	0.0454	1.265	0.0405	7.447
9	19:3574.0			0.003640	1915047.0	20093.0	0.002305	0.367	1.949	0.0453	1.233	0.0421	7.609
10	1931770.0			0.003559	1973707.0	22648.5	0.002205	0.399	1.976	0.0445	1.187	0.0406	7.370
11	2037665.0		4000.1		2031367.0	25114.5	0.002037	0.437	2.009	0.0436	1.130	0.0399	7.199
12	2077561.0		4295.1		2039027.0	27525.7		0.450	2.007	0.0441	1.102	0.0404	7.227
13	2141552.0			0.003519	2132349.0	29948.0	0.001665	0.521	1.925		0.921		
14	2171373.0		4561.0	0.003563	2162544.0	29975.0	0.001682	0.508	1.755		0.922		
15	2001195.0		4664.7	0.003383	2102239.0	30047.3	0.001637	0.516	1.051		0.900		
16	2231155.0		4764.4	0.003299	2222078.0	30095.0	0.001571	0.524	1.819		0.066		
17	2251116.0		4851.6	0.003212	2251917.0	30141.4	0.001550	0.517	1.776		0.656		
18	2292933.0		4755.1	0.003117	0.5101622	30156.7	0.001500	0.519	1.728		0.831		
17	2320749.0		5047.9	0.003035	2311307.0	30230.2	0.001425	0.530	1.657		0.792		
20	2350565.0		5133.5	0.003035	2341002.0	30272.4	0.001419	0.532	1.691		0.790		
21	2100102.0		5225.4	0.000856	2370697.0	30313.2	0.001324	0.536	1.595		0.739		
22	2410178.0		5312.3	0.002900	2400392.0	30352.4	0.001310	0.545	1.624		0.733		
23	2440014.0			0.00279%	2430087.0	30390.6	0.001260	0.549	1.569		0.707		
24	2459975.0		5481.4	0.002842	2459926.0	30428.4	0.001286	0.546	1.600		0.723		
25	2423936.0		5565.1	0.000329	2489765.0	30466.2	0.001240	0.555	1.596		0.710		
20	2529752.0		5549.8	0.002782	2519460.0	30503.0	0.001217	0.562	1.573		0.688		
27	2559559.0		5734.0	0.002859	2549155.0	30538.6	0.001177	0.588	1.621		0.666		
23	2597305.0		5000.5	0.002935	2578850.0	30575.2	0.001268	0.551	1.668		0.731		
27	2917202.0			0.002917	2606546.0	30613.7	0.001299	0.555	1.061		0.739		
30	2647018.0		5773.3	0.002836	2635241.0	30651.7	0.001257	0.552	1.602		0.717		
31	2978834.0		6075.3	0.002686	2667935.0	30658.1	0.001199	0.554	1.537		0.685		
35	2708775.0		6155.1	0.002653	2697774.0	30723.7	0.001196	0.551	1.527		0.665		
33	2730756.0		6233.3	0.002573	2727614.0	30758.7	0.001157	0.550	1.478		0.664		
34	2758572.0			0.002537	2757308.0	30792.4	0.001110	0.562	1.461		0.639		
35	2795369.0			0.002549	2787003.0		0.001140		1.471		0.657		
36	2328205.0		6459.5	0.002411	2816698.0	30050.2	0.001038	0.570	1.394		0.600		

STANTON MATTER HATTO BASED ON ST-PR--0.4=0.0295-REX--(-.2)

STANTON MAPBER PATIO FOR THE 1 IS CONVERTED TO COMPARABLE TRANSPIRATION VALUE USING ALOSI 1 . BI/B EXPRESSION IN THE BLOWN SECTION

	PUN 12	3076 V	EL. E TE	m. PROF	TLE AT	UPSTR. E	oct of I	PLT7(15T B	LOWING	PLTI			
	PEX :	0.155	705 07	REN		3327.		EN 18	140	19.			
	XV9 =		12.89 C		2 =	0.305		EH2 =	-	29 CM			
	UIN .		16.31 M		.99=	2.745	-	LT99 =		115 CH			
	POPT :		56E-04 M			1.368	CH US	ISC = 0.1		01 F/S			
	MLCC .		155.70 C	1000		17451E-02		DUF II		.84 DES C			
								PLATE .		Se DEG C			
	TICHI	Y/DEL	UIN/\$1	U/UINF	**	U+	TICHI	TIDES CI	TBAR	TEAR			
	0.005	0.009		0.526	11.6		0.0546						
		0.010		0.539	12.7		0.0572						
		0.011		0.546	13.9		0.0622						
		0.013		0.562	15.2		0.0699						
	0.043	*.***											
		0.019		0.598	24.3		0.0876			0.389			
		0.024		0.609	30.1		0.1029						
			10.14	0.622	37.0		0.1232						
			10.53	0.646	54.4								
•	0.145	0.053	10.66	0.454	65.9	15.45	0.2146	22.20	0.772	0.228			
	0.175	0.054	10.05	0.666	79.8	15.94	0.2553	21.92	0.791	0.209			
•			11.09	0.683	96.0								
			11.34	0.695									
	0.323	0.117	11.58	0.710	145.7	17.00	0.4432	20.96	0.036	0.144			
			11.67	0.728			0.5445			0.119			
			12.20	0.748		0.00	0.6464						
			12.58	0.772			0.7734			0.078			
			13.35	0.819			1.0274			0.048			
	1.055	0.335	13.69	0.840	494.0	20.10	1.1544	19.40	0.942	0.038			
			14.07	0.663			1.2814			0.030			
			14.40	0.003					0.976	0.024			
			14.73	0.954						0.018			
	1.795	0.654	15.06	0.923	817.9	22.10	1.6624	17.05	0.956	0.014			
	1.974	0.719	15.34	0.941	895.9	22.52	1.7894	19.01	0.988	0.012			
			15.61	0.957		100-100-1-1				0.010			
			15.81	0.970			2.0434			0.008			
			16.00	0.981			2.1704			0.006			
	2.605	0.478	10.11	0.700	1222.0	63.99	2.27/4	10.71	0.775	4.005			
			16.23	0.995			2.4244			0.004			
			16.29	0.999			2.5514			0.002			
	3.218	1.172	16.31	1.000	1485.7	23.74	2.6764		0.999	0.002			
							2.932			0.000			
CORE USAS	SE.	08/6	CT CODE:	30872	BYTES	ARPAY AR	EAR 6	4596 BYTES	.TOTAL	AREA AVA	TLABLE: 12	6976 BYTES	
DIAGRATI	ics	MJ	TOLR OF	rences		. HAPBER	OF HAR	NINSS*	0. 1	ATHBER OF	EXTENSIONS	15	
COMPILE 1	imi:	0.5	sec.ex	ECUTION	TIMES	0.15	sec.	22.40.50	FR	IDAY	13 APR 79	HATFIV -	JAN 1976 VILS

PUN 123076 *** DISCRETE HOLE PIG *** NAS-3-14336

STANTON NUMBER DATA

TADB= 18.35 DEG C UINF= 16.39 H/S TINF= 18.23 DEG C
PHO= 1.204 KG/M3 VISC= 0.14924E-04 M2/S XYO= 12.9 CM
CP= 1010. J/KGK PR= 0.715

HEATED STARTING LENGTH, M:0.4, SIX BLONING RONS, THEAT=1.0

PLATE	×	DEX	10	PEENTH	STANTCH NO	DST 1	DREEN	н	F	TZ	THETA	DTH
1	127.8	0.12514E 07	34.51	0.10000E 01	0.34419E-02	0.545E-04	0.			-		
2	132.8	0.13172E 97	34.53	0.10000E 01	0.27337E-02	0.498E-04	0.	0.00	0.0000	34.5	1.000	0.019
3	137.9	0.13730E 07	34.49	0.10000E 01	0.26465E-02	0.494E-04	0.	0.00	0.0000	34.5	1.000	0.011
4	143.0	0.14288E 07	34.51	0.10000E 01	0.25253E-02	0.486E-04	0.	0.00	0.0000	34.5	1.000	0.014
5	143.1	0.14846E 07	34.55	0.10000E 01	0.24637E-02	0.482E-04	0.	0.00	0.0000	34.6	1.000	0.019
6	153.2	0.15404E 07	34.57	0.10000E 01	0.24036E-02	0.478E-04	0.	0.00	0.0000	34.6	1.000	0.019
7	155.2	0.15962E 07	34.63	0.14817E 04	0.22153E-02	0.466E-04	28.	0.39	0.0125	32.8	0.886	0.019
	163.3	0.16519E 07	34.53	0.22129E 04	0.18194E-02	0.449E-04	29.	0.37	0.0119	33.9	0.962	0.01
9	168.4	0.17077E 07	34.53	0.29485E 04	0.156905-02	0.439E-04	31.	0.38	0.0122	33.6	0.941	0.019
10	173.5	0.17635E 07	34.49	0.36767E 04	0.14908E-02	0.437E-04	32.	0.39	0.0127	33.4	0.934	0.019
11	175.6	0.18193E 07	34.53	0.44193E 04	0.14263E-02	0.433E-04	34.	0.38	0.0124	33.3	0.927	0.019
12	183.6	0.15751E 07	34.49	0.51409E 04	0.13767E-02	0.433E-04	35.	0.38	0.0124	33.3	0.929	0.01
13	187.5	0.19175E 07	34.42	0.58450E 04	0.15010E-02	0.534E-04	36.					
14	190.1	0.19462E 07	34.21	0.588902 04	0.15528E-02	0.545E-04	36.					
15	192.7	0.19750E 07	34.61	0.59337E 04	0.15566E-02	0.563E-04	36.					
16	195.4	0.2003SE 07	34.55	0.59788E 04	C.15802E-02	0.557E-04	36.					
17	193.0	0.20327E 07	34.55	0.60243E 04	0.15804E-02	0.559E-04	36.					
18	200.6	0.20514E 07	34.57	0.60694E 04	0.15550E-02	0.554E-04	36.					
19	203.2	0.20902E 07	34.51	0.61135E 04	0.15169E-02	0.533E-04	36.					
20	205.8	0.211895 07	34.61	0.61579E 04	0.156658-02	0.554E-04	36.					
21	208.5	0.21476E 07	34.55	0.62019E 04	0.149612-02	0.531E-04	36.					
22	211.1	0.21764E 07	34.51	0.62455E 04	0.15318E-02	0.546E-04	36.					
23	213.7	0.22051E 07	34.49	0.62871E 04	0.14980E-02	0.532E-04	36.					
24	216.3	0.22340E 07	34.63	0.6332EE 04	0.15444E-02	0.556E-04	36.					
25	218.9	0.22629E 07	34.59	0.63771E 04	0.15332E-02	0.551E-04	36.					
26	221.6	0.22916E 07	34.40	0.64210E 04	0.15200E-02	0.570E-04	36.					
27	224.2	0.23203E 07	33.27	0.64644E 04	0.14953E-02	0.493E-04	36.					
25	226.0	0.23490E 07	34.42	0.65079E 04	0.15330E-02	0.580E-04	36.					
29	229.4	0.23778E 07	34.36	0.65521E 04	0.15362E-02	0.537E-04	36.					
30	232.0	0.24065E 07	34.72	0.65966E 04	0.15549E-02	0.565E-04	36.					
31	234.6	0.24352E 07	34.70	0.66403E 04	0.15194E-02	0.547E-04	36.					
32	237.3	0.24641E 07	34.49	0.65847E 04	0.15326E-02	0.545E-04	36.					
33	239.9	0.24930E 07	34.46	0.67285E 04	0.15168E-02	0.549E-04	36.					
34	242.5	0.25217E 07	34.09	0.67722E 04	0.15151E-02		36.					
35	245.1	0.25504E 07	34.36	0.68157E 04	0.15110E-02	0.562E-04	36.					
36	247.8	0.25792E 07	34.04	0.68585E 04	0.14656E-02	0.597E-04	36.					

UNCERTAINTY IN PEX=27895.

UNCERTAINTY IN F=0.00000 IN RATIO

RUN 122976 *** DISCRETE HOLE RIG *** NAS-3-14336 STANTON NUMBER DATA

TADB= 18.72 DEG C UINF= 16.52 H/S TINF= 18.60 DEG C PHO= 1.199 KG/H3 VISC= 0.14995E-04 H2/S XYO= 12.9 CM CP= 1010. J/KGK PR= 0.715

HEATED STARTING LENGTH, H=0.4, SIX BLOWING ROWS, THEAT=0.0

PLATE		PEX	TO	PEENTH	STANTON NO	DST	DREEN	H	F	TZ	THETA	DTH
	127.8	0.12656E 07	33.48	0.10000E 01	0.34794E-02	0.589E-04	0.					
	132.8	0.13216E 07		0.10000E 01	0.27635E-02		٥.		0.0000		1.000	0.021
		0.13776E 07		0.10000E 01	0.26505E-02		0.		0.0000		1.000	0.021
4	143.0	0.14336E 07		0.10000E 01	0.25457E-02	0.525E-04	0.	0.00	0.0000	33.5	1.000	0.021
	148.1	0.14395E 07		0.10000E 01	0.25046E-02		0.		0.0000		1.000	0.021
6	153.2	0.15455E 07		0.10000E 01	0.24714E-02		0.	0.00	0.0000	33.5	1.000	0.021
	158.2	0.16015E 07		0.14942E 04	0.24870E-02	0.523E-04	28.	0.41	0.0132	20.6	0.131	0.020
8	163.3	0.16575E 07	33.48	0.17317E 04	0.25337E-02	0.526E-04	30.	0.41	0.0133	20.4	0.120	0.020
9	165.4	0.17134E 07		0.19512E 04	0.24499E-02	0.520E-04	32.	0.41	0.0132	20.4	0.121	0.020
10	173.5	0.17694E 07	33.52	0.21869E 04	0.24290E-02	0.519E-04	34.	0.41	0.0132	20.4	0.121	0.020
11	178.6	0.18254E 07	33.50	0.241235 04	0.24200E-02	0.519E-04	35.	0.41	0.0131	20.4	0.120	0.020
12	183.6	0.18314E 07	33.54	0.26331E 04	0.23257E-02	0.512E-04	37.	0.41	0.0132	20.4	0.120	0.020
13	187.5	0.19239E 07	33.02	0.28200E 04	0.22873E-02	0.768E-04	38.					
14	190.1	0.19527E 07	32.91	0.28851E 04	0.22207E-02	0.756E-04	38.					
15	192.7	0.199165 07	33.50	0.29483E 04	0.21606E-02	0.762E-04	38.					
16	195.4	0.20105E 07	33.50	0.30103E 04	0.21381E-02	0.738E-04	36.					
17	195.0	0.20395E 07	33.50	0.30719E 04	0.21265E-02	0.735E-04	38.					
18	200.6	0.206535 07	33.50	0.31327E 04	0.20893E-02	0.724E-04	38.					
19	203.2	0.20972E 07	33.52	0.31916E 04	0.19923E-02	0.688E-04	38.					
20	205.8	0.21260E 07	33.63	0.32499E 04	0.20493E-02	0.710E-04	38.					
21	203.5	0.21548E 07	33.62	0.33077E 04	0.19516E-02	0.675E-04	33.					
22	211.1	0.21836E 07	33.69	0.33641E 04	0.19581E-02	0.686E-04	38.					
23	213.7	0.22125E 07	33.67	0.34199E 04	0.19083E-02	0.664E-04	38.					
24	216.3	0.22414E 07	33.81	0.34753E 04	0.19317E-02	0.682E-04	38.					
	218.9	0.22704E 07	33.75	0.35309E 04	0.19220E-02	0.672E-04	38.					
26	221.6	0.22992E 07	33.67	0.35853E 04	0.18339E-02	0.6985-04	38.					
27	224.2	0.23281E 07	32.35	0.36403E 04	0.18912E-02	0.606E-04	38.					
28	225.8	0.23559E 07	33.73	0.36948E 04	0.18819E-02	0.703E-04	38.					
29	227.4	0.23857E 07	33.63	0.37491E 04	0.16851E-02	0.644E-04	38.					
30	232.0	0.24145E 07	34.09	0.33034E 04	0.18779E-02	0.671E-04	33.					
31	234.6	0.24434E 07	34.09	0.38570E 04	0.18308E-02	0.646E-04	38.					
32	237.3	0.24723E 07	33.94	0.39096E 04	0.18142E-02	0.638E-04	38.					
33	239.9	0.25013E 07	33.85	0.39620E 04	0.18210E-02	0.647E-04	38.					
3+	242.5	0.25301E 07	33.48	0.40145E 04	0.18185E-02	0.621E-04	38.					
35	245.1	0.25590E 07	33.77	0.40667E 04	0.17943E-02	0.655E-04	38.					
36	247.8	0.25878E 07	33.44	0.41174E 04	0.17206E-02	0.695E-04	39.					

UNCERTAINTY IN REX=27988.

UNCERTAINTY IN F=0.00000 IN RATIO

RUN 122976 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENGTH, H=0.4, SIX BLOWING ROWS, THEAT=1.0

PUN 123076 --- DISCRETE HOLE RIG --- NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENGTH, H=0.4, SIX BLOWING ROWS, THEAT=1.0

LINEAR SUPERPOSITION IS APPLIED TO STANTON NUMBER DATA FROM
PUN NUMBERS 122976 AND 123076 TO OBTAIN STANTON NUMBER DATA AT THEO AND THEI

PLATE	PEXCOL	PE DELZ	ST(TH=0)	REXHOT	RE	DELZ	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LCGB
	1265624.0	1.0	UMMMAN	1261416.0		1.0	uuuuuu	ww	www	0.0000	UUUUU	utuuuu	www
2	1321600.0	1.0	UJUJUJU	1317206.0			UUUUUUUU		UUUUU	0.0000	UUUUUU	UJUUJUU	www
3	1377576.0	1.0	UUUUUUUU	1372996.0		1.0	COCCOCCO	WWW	UUUUU	0.0000	UUUUUU	UUUUUUU	LULUU
4	1433553.0	1.0	UUUUUUUU	1428757.0		1.0	COUCUUC	LUUUJ	UUUUU	0.0000	UUUUUUU	wwww	JUJUJU
5	1497529.0	1.0	COUNTRAL	1484577.0		1.0	UUUUUUUU	UUUU	UUUUU	0.0000	UUUUUUU	UUUUUUU	www
6	1545505.0	1.0	UUUUUUU	1540367.0		1.0	UUUUUUU	UUUUU	UUUUU	0.0000	UUUUUUU	WWWWW	WWW
7	1601462.0	1494.2	0.002487	1595157.0		1481.7	0.002215	UUUUU	1.000	0.0132	1.000	0.0125	1.000
8	1557458.0	1637.7	0.002642	1651947.0		2291.6	0.001787	0.324	1.373	0.0133	0.928	0.0119	3.043
9	1713434.0	1763.6	0.002578	1707738.0		3050.4	0.001517	0.411	1.349	0.0132	0.793	0.0122	2.904
10	1769411.0	1927.8	0.002568	1763528.0		3815.6	0.001419	0.448	1.352	0.0132	0.747	0.0127	2.909
11	1625387.0	2071.6	0.002566	1619318.0		4601.3	0.001341	0.478	1.361	0.0131	9.710	0.0124	2.826
12	1001363.0	2212.5	0.002466	1875108.0		5368.2	0.001292	0.475	1.315	0.0132	0.689	0.0124	2.802
13	1923905.0	2316.2	0.002404	1917509.0		6118.1	0.001431	0.405	1.287		0.766		
14	1952733.0	2384.4	0.002320	1945241.0		6160.1	0.001493	0.356	1.246		0.802		
15	1931561.0	2450.3	0.002250	1974973.0		6203.2	0.001503	0.332	1.212		0.809		
16	20105.8.0	2514.8	0.002221	2003944.0		6246.9	0.001531	0.311	1.200		0.826		
17	2039496.0	2578.7	0.002207	2032715.0		6290.9	0.001532	0.306	1.196		0.829		
18	2069324.0	2641.9	0.002168	2061447.0		6334.6	0.001508	0.305	1.178		0.819		
19	2097152.0	2702.9	0.002063	2090179.0		6377.5	0.001475	0.285	1.124		0.603		
20	2125979.0	2763.3	0.002121	2118911.0		6420.6	0.001524	0.282	1.159		0.832		
21	2154308.0	2623.1	0.002019	2147644.0		6463.5	0.001456	0.279	1.106		0.797		
22	2163635.0	2651.4	0.002021	2176375.0		6505.9	0.001494	0.261	1.110		0.820		
23	2212463.0	2759.0	0.001969	2205107.0		6548.4	0.001462	0.258	1.084		0.804		
24	2241430.0	2995.1	0.001969	2233978.0		6591.2	0.001510	0.241	1.098		0.633		
25	2270393.0	3053.4	0.001980	2262850.0		6634.4	0.001499	0.243	1.096		0.829		
26	2299226.0	3109.9	0.001935	2291582.0		6677.4	0.001468	0.232	1.075		0.825		
27	2328054.0	3166.0	0.001950	2320314.0		6719.8	0.001460	0.251	1.005		0.812		
28	2356382.0	3222.0	0.001934	2349046.0		6762.4	0.001502	0.223	1.078		0.837		
29	23:5710.0	3277.9	0.001937	2377778.0		6805.7	0.001507	0.222	1.003		0.842		
30	2414533.0	3333.6	0.001926	2406510.0		6849.3	0.001526	0.208	1.079		0.855		
31	2443365.0	3389.5	0.001877	2435242.0		6892.7	0.001492	0.205	1.054		0.837		
32	2472333.0	3442.4	0.001856	2464113.0		6935.9	0.001508	0.188	1.045		0.843		
33	2501301.0	3496.1	0.001356	2492985.0		6979.0	0.001490	0.202	1.053		0.840		
34	2530128.0	3549.9	0.001863	2521717.0		7021.8	0.001488	0.201	1.054		0.841		
35	2553956.0	3603.3	0.001836	2550448.0		7064.6	0.001456	0.191	1.041		0.842		
36	2587784.0	3655.2	0.001756	2579180.0		7106.7	0.001443	0.179	0.999		0.619		

STANTON NUMBER RATIO BASED ON STOFFEOD. 4:0.0295-REXPO(-.2)

STANTON NUMBER RATIO FOR THE 1 IS CONVERTED TO COMPARABLE TRANSPIRATION VALUE USING ALOG(1 + B)/B EXPRESSION IN THE BLOWN SECTION

PUN 010777 *** DISCRETE HOLE RIG *** HAS-3-14336 STANTON NUMBER DATA

TACO: 19.07 DEG C UINF: 16.43 H/S TINF: 18.95 DEG C PHO: 1.208 KG/H3 VISC: 0.14916E-04 H2/S XTD: 12.9 CH CP: 1009. J/KGX PR: 0.714

HEATED STARTING LENTH, BLONING FROM 7 TO 12 ROWS, M=0.9, THETA=0.0

PLATE	×	PEX	TO	REENTH	STANTON NO	DST	DREEN	H	•	TZ	THETA	DTH
1	127.8	0.12651E 07	33.85	0.10000E 01	0.33271E-02	0.578E-04	0.					
2	132.8	0.13010E 07	33.79	0.10000E 01	0.27974E-02	0.5445-04	0.	0.00	0.0000	33.8	1.000	0.021
3	137.9	0.137705 07	33.81	0.10000E 01	0.27014E-02	0.537E-04	0.	0.00	0.0000	33.8	1.000	0.021
4	143.0	0.143295 07	33.81	9.10000E 01	0.25427E-02	0.527E-04	0.	0.00	0.0000	33.8	1.000	0.021
5	145.1	0.14589E 07	33.85	0.10000E 01	0.25401E-02	0.526E-04	0.	0.00	0.0000	33.8	1.000	0.021
6	153.2	0.154485 07	33.86	0.10000E 01	0.25006E-02	0.523E-04	0.	0.00	0.0000	33.9	1.000	0.021
7	158.2	0.1600EE C7	33.88	0.14937E 04	0.24921E-02	0.522E-04	28.	0.92	0.0297	20.0	0.069	0.021
	163.3	0.16557E 07	33.85	0.17578E 04	0.283436-02	0.544E-04	37.	0.91	0.0295	19.9	0.061	0.021
	165.4	0.17127E 07	33.85	0.2020SE 04	0.297798-02		44.	0.90	0.0292	19.9	0.061	0.021
10	173.5	0.17656E 07	33.83	0.22885E 04	0.30265E-02	0.558E-04	50.	0.91	0.0294	19.8	0.059	0.021
11	175.6	0.163465 07	33.83	0.25536E 04	0.29836E-02	0.5558-04	56.	0.90	0.0292	19.9	0.062	0.021
12	163.6	0.1880SE 07	33.86	0.28204E 04	0.292908-02	0.550E-04	61.	0.91	0.0296	19.9	0.062	0.021
13	167.5	0.1923CE 07	32.49	0.30474E 04	0.29200E-02	0.947E-04	63.					
14	190.1	0.195198 07	32.24	0.31302E 04	0.28224E-02	0.946E-05	63.					
15	192.7	0.19807E 07	32.89	0.32100E 04	0.27058E-02	0.940E-04	63.					
16	195.4	0.200%E 07	32.99	0.32858E 04	0.25187E-02	0.898E-04	63.					
17	195.0	0.20335E 07	32.99	0.33618E 04	0.25858E-02	0.886E-04	63.					
18	202.6	0.205745 07	32.99	0.34350E 04	0.25445E-02	0.670E-04	63.					
19	203.2	0.20952E 07	33.05	0.35071E 04	0.23967E-02		63.					
20	205.8	0.21250E 07	33.21	0.357738 04	0.24649E-02	0.847E-04	63.					
21	203.5	0.215355 07	33.16	0.35467E 04	0.23439E-02	0.602E-04	63.					
22	211.1	0.216** 07	33.23	0.371435 04	0.23452E-02	0.816E-04	63.					
23	213.7	0.2c115E 07	33.10	0.37824E 04	0.23774E-02	0.811E-04	63.					
24	216.3	0.22404E 07	13.29	0.38511E 04	0.23844E-02	0.829E-04	63.					
25	218.9	0.22694E 07	33.31	0.391928 04	0.233546-02	0.807E-04	63.					
26	221.6	0.22932E 07	33.31	0.39849E 04	0.22219E-02	0.017E-04	63.					
27	224.2	0.23270E 07	31.84	0.40496E 04	0.225806-02	0.716E-04	63.					
28	226.0	0.23558E 07	33.31	0.411435 04	0.22329E-02	0.8228-04	63.					
29	229.4	0.238468 07	33.25	0.41786E 04	0.222128-02	0.7535-04	63.					
30	232.0	0.24134E 07	33.75	0.424258 04	0.22110E-02	0.781E-04	64.					
31	234.6	0.24423E 07	33.75	0.43052E 04	0.21365E-02	0.746E-04	64.					
32	237.3	0.247128 07	33.60	0.43564E 04	0.21C47E-02	0.731E-04	64.					
33	239.9			0.44267E 04	0.207516-02	0.731E-04	64.					
34	242.5	0.25090E 07		0.44857E 04	0.201386-02	0.684E-04	64.					
35	245.1	0.255782 07		0.45441E 04	0.20327E-02	0.734E-04	64.					
36		0.25866E 07		0.46012E 04	0.19303E-02	0.762E-04	64.					
-			33.43									

UNCERTAINTY IN PEX=27976.

UNCERTAINTY IN F=0.00000 IN RATIO

PUNI 010777 *** DISCRETE HOLE RIG *** NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENTH, BLOWING FROM 7 TO 12 ROWS, M=0.9. THETA=0.0

RUN 010977 --- DISCRETE HOLE RIG --- NAS-3-14336

STANTON NUMBER DATA

HEATED STARTING LENTH, BLOWING FROM 7 TO 12 ROWS, M=0.9.THETA=1.0

LINEAR SUPERPOSITION IS AFFLIED TO STANTON NUMBER DATA FROM RUN NUMBERS 010777 AND 010977 TO OBTAIN STANTON NUMBER DATA AT THEO AND THES

PLATE	PEXCOL	RE DELZ	ST(TH=0)	PEXHOT	RE DELE	ST(TH=1)	ETA	STCR	F-COL	STHR	F-HOT	LOSB
•	1265052.0	1.0	ummm	1278981.0	1.0	uuuuuu	www	UUUUU	0.0000			
2	1321003.0	1.0	CARACUCC	1335548.0	1.0	UUUUUUUU	UUUUU	WWW	0.0000	mmm.	COULD	
3	1376954.0	1.0	UUUUUUUU	1392115.0	1.0	UUUUUUU	UUUUU	UUUUU	0.0000	MILLIAM	WUUUUU	
4	1432905.0	1.0	UUUUUUU	1448682.0	1.0	MANAGEMENT	UUUUU	UUUUU	0.0000	www	MANAGE	
5	1458555.0	1.0	UUUUUUUU	1505249.0	1.0	UUUUUUUU	UUUUU	UUUUU	0.0000	www		
6	1544807.0	1.0	UJUJUJUJU	1551816.0	1.0	UUUUUUUU	WWW	UUUUU	0.0000	WUUUUU	UUUUUUU	
7	1600758.0	1493.7	0.002492	1618383.0	1505.3	0.002321	UUUUU	1.000	0.0297	1.000	0.0334	1.000
	1655709.0	1643.5	0.002863	1674950.0	3529.2	0.002394	0.164	1.458	0.0295	1.247	0.0396	7.200
9	1712660.0	1803.0	0.003017	1731517.0	5904.5	0.002377	0.212	1.578	0.0292	1.246	0.0348	6.639
10	1763511.0	1978.5	0.003050	1780084.0	8004.3	0.002192	0.288	1.621	0.0294	1.157	0.0375	6.829
11	1824552.0	2149.7	0.003038	1844651.0	10246.7	0.002130	0.299	1.610	0.0292	1.131	0.0302	5.898
12	1820513.0	2318.1	0.002982	1901219.0	12076.9		0.285	1.589	0.0296	1.138	0.0349	6.534
13	1923035.0	2444.4	0.002972	1944210.0	14144.7	0.002129	0.284	1.591		1.142		
14	1951851.0	2528.7	0.002871	1973342.0	14206.2	0.002087	0.273	1.542		1.123		
15	1980666.0	2609.8	0.002751	2002474.0	14266.1		0.265	1.482		1.091		
16	2009620.0	2687.9	0.002663	2031747.0	14324.1	0.001955	0.266	1.438		1.058		
17	2039575.0	2764.2	0.002629	2061020.0	14350.8		0.265	1.424		1.045		
18	2067389.0	2839.4	0.002508	2090152.0	14436.5			1.406		1.029		
19	2076204.0	2912.0	0.002440	2119284.0	14490.0		~	1.329		0.969		
20	2125019.0	2963.3	0.002508	2146416.0	14542.2			1.370		0.989		
21	2153834.0	3053.9	0.002365	2177549.0	14593.6			1.306		0.942		
22	2182549.0	3122.6	0.002388	2206681.0	14643.5			1.311		0.939		
23	2211453.0	3192.2	0.002426	2235813.0	14692.3			1.336		0.905		
24	2240418.0	3262.3		2265086.0	14740.7			1.342		0.929		
25	2259373.0	3331.7		2294359.0	14789.4		0.302	1.317		0.921		
26	2293187.0	2399.7		2323491.0	14836.4			1.257		0.858		
27	2327002.0	3454.6		2352623.0	14883.0			1.279		0.910		
23	2355917.0	3530.4		2361755.0	14931.7			1.264		0.955		
29	23:4632.0	3595.7			14980.6					0.920		
30	2413447.0	3550.8		2440020.0	15026.2					0.911		
31	2442261.0	3724.6	0.002176	2469152.0	15074.3					0.866		
32	2471216.0	3786.9	0.002142	2498425.0	15119.2					0.867		
33	2500170.0									0.857		
34	2528985.0			2556831.0			0.288			0.628		
35	2557800.0	3967.7			15250.0					0.044		
36	2586615.0	4026.0	0.001966	2615095.0	15291.1	0.001384	0.296	1.117		0.768		

STANTON KAMER PATIO BASED ON ST.PP. .. 0.40.0295-REX. .. (-.2)

TADB= 17.64 DEG C UINF= 16.39 M/S TINF= 17.52 DEG C
PHO= 1.220 KG/M3 VISC= 0.14714E-04 H2/S XYO= 12.9 CM
CP= 1009. J/KGK FR= 0.715

HEATED STARTING LENTH, BLOWING FROM 7 TO 12 ROWS, M=0.9, THETA=1.0

PLAT	E X	PEX		10	PEENTH		STANTON NO	DST	DREEN		,	TZ	THETA	DTH
PLAT	127.8	0.12790E		34.63	0.10000E		0.34382E-02	0.518E-04	0.	п	•	12	INCIA	UIM
ż	132.0	0.13355E	-	34.63	0.10000E	-	0.27421E-02		o.		0.0000	34 4	1.000	0.018
3	137.9		-	34.63	0.1000CE		0.26411E-02	0.467E-04	o.		0.0000		1.000	0.018
-	143.0	0.14487E		34.65	0.1000DE	-	0.25143E-02	0.459E-04	0.		0.0000	~	1.000	0.018
5	143.1	0.15052E		34.65	0.10000E		0.24725E-02	0.457E-04	o.		0.0000		1.000	0.018
6	153.2	0.15518E	-	34.68	0.10000E		0.23986E-02	0.452E-04	0.		0.0000		1.000	0.018
7	159.2	0.16184E	-	34.72	0.15053E	-	0.23213E-02		28.		0.0334		0.947	0.018
		0.16750E		34.67	0.34292E		0.23528E-02		39.		0.0396		1.025	0.018
•		0.17315E	-	34.63	0.58591E		0.23707E-02		49.		0.0348		0.996	0.018
10		0.176516	-	34.67	0.79504E	-	0.22003E-02	0.442E-04	56.		0.0375		0.906	0.018
11	178.6	0.18447E		34.61	0.10164E	-	0.21477E-02	0.441E-04	61.		0.0302		0.975	0.018
12	163.6	0.19012E		34.61	0.11953E		0.21518E-02	0.441E-04	66.		0.0349		0.975	0.016
13	157.5	0.19442E		34.05	0.13973E		0.21497E-02	0.716E-04	69.					
14	190.1	0.19733E		33.86	0.14035E		0.21064E-02	0.704E-04	69.					
15	192.7	0.2000SE	-	34.51	0.14095E		0.20404E-02	0.709E-04	69.					
16	195.4	0.20317E		34.63	0.14154E	05	0.19721E-02	0.677E-04	69.					
17	195.0	0.20510E		34.63	0.142116		0.19486E-02	0.667E-04	69.					
18	203.6	0.20932E		34.63	0.14267E	05	0.19067E-02	0.651E-04	69.					
19	203.2	0.211935	07	34.76	0.14321E	05	0.17914E-02	0.616E-04	69.					
20	205.0	0.21454E	07	34.88	0.14374E	05	0.18245E-02	0.628E-04	69.					
21	208.5	0.21775E	07	34.84	0.14426E	05	0.17332E-02	0.595E-04	69.					
22	211.1	0.22067E	07	34.91	0.14476E	05	0.17224E-02	0.600E-04	69.					
23	213.7	0.22350E	07	34.89	0.14525E	05	0.16592E-02	0.573E-04	69.					
24	216.3	0.22651E	07	35.07	0.14574E	05	0.16974E-02	0.596E-04	69.					
25	218.9	0.22944E	07	35.05	0.146245	05	0.16790E-02	0.585E-04	69.					
26	6.155	0.23235E	07	34.97	0.146715	05	0.15791E-02	0.587E-04	69.					
27	2:4.2	0.23506E	07	33.62	0.147:85	05	0.16496E-02	0.524E-04	69.					
28	8.655	0.233166	07	34.89	0.14767E	05	0.17220E-02	0.630E-04	69.					
29	229.4	0.24109E	07	34.91	0.14817E	05	0.16580E-02	0.566E-04	69.					
30	232.0	0.24400E	07	35.39	0.14865E	05	0.16371E-02	0.583E-04	69.					
31	234.6	0.24692E	07	35.41	0.14911E	05	0.15550E-02	0.550E-04	69.					
32	237.3	0.24994E	07	35.22	0.14957E	05	0.15516E-02	0.543E-04	69.					
33	239.9	0.25277E		35.20	0.15002E	05	0.15099E-02	0.544E-04	69.					
34	242.5	0.255688	07	34.86	0.15045E	05	0.14753E-02	0.506E-04	69.					
35	245.1	0.250605		35.14	0.15089E	05	0.14998E-02	0.546E-04	69.					
36	247.8	0.26151E	07	34.89	0.15131E	05	0.13903E-02	0.562E-04	69.					

UNCERTAINTY IN REX=28284. UNCERTAINTY IN F=0.00000 IN RATIO

 Report No. NASA CR-3219 		2. Government Acce	ssion No.		3. Recipient's Catal	log No.	
I. Title and Subtitle FULL-	COVERA	GE FILM COOL	NG ON FLAT,		5. Report Date		
ISOTHERMAL SURFACES: A SUMMARY REPO			ORT ON DATA	. L	January 1980		
AND PREDICTIONS				- 1	6. Performing Organ	nization Gode	
7. Author(s)				1	8. Performing Organization Report No.		
M. E. Crawford, W.	M, Kays,	, and R. J. Mof	fat		HMT-23		
				- 1	D. Work Unit No.		
). Performing Organization Name a	nd Address						
Stanford University		11. Contract or Grant No.					
Stanford, California	94305				NAS 3-14336		
				11	3. Type of Report	and Period Covered	
2. Sponsoring Agency Name and Address					Contractor Report		
National Aeronautics	and Space	Administration		14	14. Sponsoring Agency Code		
Washington, D.C. 20	546						
NASA Lewis Research	n Center,	Cleveland, Ohi	0 44135.				
results for flat, isoth compound-angle) and transfer coefficient w bers of rows of holes dicted with a two-dim the injection paramete STAN5, and the neces	presents ithin the l (6 and 11 ensional l ers are in	some new data of blowing region,). The experim boundary layer of aputs. STANCO	concerning the Data are also cental results s code, STANCO OL is a modifi	spanwi presentummar OL, by cation o	se distribution sted for two distinction of sized herein of providing despite of a published	n of the heat ifferent num- an be pre- scriptors of	
. Key Words (Suggested by Autho	w/s) i		18 0	********			
Boundary layer Numeri		ical	18. Distribution Statement Unclassified - unlimited				
Heat transfer	Film cooling						
		_	STAR Category 34				
Computer program	Turbine	blade cooling					
Turbulence							
Security Classif. (of this report)		20. Security Classif. (of this page)		1	21. No. of Pages	22. Price*	
Unclassified		Unclassified			113	A06	

6-11-81