Teste de hipóteses, Teste Z

Fabio Cop

Instituto de Ciências do Mar - UNIFESP

13 março, 2022

Conteúdo da Aula

- 1. Introdução ao teste de hipóteses, teste z
 - 1.1. Hipótese nula e alternativa
 - 1.2. Nível de significância
 - 1.3. Método do valor crítico: área de rejeição
 - 1.4. Método do valor de p
- 2. Testes bilaterais e unilaterais
- 3. Modificando o nível de significância: Erros de decisão

1. Introdução ao teste de hipóteses

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

 $H_0: \mu=65$ batimentos por minuto

 $H_a: \mu
eq 65$ batimentos por minuto (Teste bilateral)

lpha=0,05 nível de significância

A hipótese nula estabelece que:

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

 $H_0: \mu=65$ batimentos por minuto

 $H_a: \mu
eq 65$ batimentos por minuto (Teste bilateral)

lpha=0,05 nível de significância

Determinar \overline{X} para que:

$$P(|E| \ge |\overline{X} - \mu|) = 0,05$$

A hipótese nula estabelece que:

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

$$P(|E| \geq |\overline{X} - \mu|) = 0,05$$

$$P(|Z| \geq |rac{\overline{X} - \mu}{\sigma_{\mu}}|) = 0,05$$

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

$$Z_{critico} = 1.96$$

Aceitamos H_0 se

$$|Z_{calculado}| < |Z_{crítico}|$$

e rejeitamos H_0 se

$$|Z_{calculado}| \geq |Z_{critico}|$$

sendo:

$$Z_{calculado} = rac{\overline{X} - \mu}{\sigma_{\mu}}$$

Obtém-se a seguinda amostra aleatória:

Amostra: 65, 73, 56, 71, 69, 69, 68, 59, 73, 68, 69, 64, 67, 64, 66

que nos dá uma média amostral de:

$$\overline{X} = \frac{\sum X_i}{n} = \frac{65 + 73 + 56 + 71 + 69 + 69 + 68 + 59 + 73 + 68 + 69 + 64 + 67 + 64 + 66}{15} = 66.73$$

batimentos por minuto;

e um erro padrão de:

$$\sigma_{\mu}=rac{\sigma}{\sqrt{n}}=rac{9}{3.87}=2.32$$

Com estes resultados, encontramos o valor correspondente de:

$$z_{calculado}=rac{\overline{X}-\mu}{\sigma_{\mu}}=rac{66.73-65}{2.32}=0.75$$

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

$$z_{calculado}=rac{\overline{X}-\mu}{\sigma_{\mu}}=rac{66.73-65}{2.32}=0.75$$

Como:

$$|Z_{calculado}| < |Z_{crítico}|$$

Aceitamos H_0 e dizemos que:

não há evidências na amostra de que o batimento cardíaco de adultos sedentários seja diferente de 65.

$$P(|Z| \geq |rac{\overline{X} - \mu}{\sigma_{\mu}}|) = 0,05$$

1. Método do valor de p

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

O objetivo é encontrar o $Z_{calculado}$ e a probabilidade de termos um valor tão ou mais extremo.

Aceitamos H_0 se

$$P(Z \ge |Z_{calculado}|) > 0.05$$

e rejeitamos H_0 se

$$P(Z \ge |Z_{calculado}|) \le 0.05$$

sendo:

$$Z_{calculado} = rac{\overline{X} - \mu}{\sigma_{\mu}}$$

Obtém-se a seguinda amostra aleatória:

Amostra: 65, 73, 56, 71, 69, 69, 68, 59, 73, 68, 69, 64, 67, 64, 66

que nos dá uma média amostral de:

$$\overline{X} = \frac{\sum X_i}{n} = \frac{65 + 73 + 56 + 71 + 69 + 69 + 68 + 59 + 73 + 68 + 69 + 64 + 67 + 64 + 66}{15} = 66.73$$

batimentos por minuto;

e um erro padrão de:

$$\sigma_{\mu}=rac{\sigma}{\sqrt{n}}=rac{9}{3.87}=2.32$$

Com estes resultados, encontramos o valor correspondente de:

$$z_{calculado}=rac{\overline{X}-\mu}{\sigma_{\mu}}=rac{66.73-65}{2.32}=0.75$$

1. Método do valor de p

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. Você imagina que o sedentarismo altera o batimento médio de um adulto.

Como:

$$z_{calculado}=rac{\overline{X}-\mu}{\sigma_{\mu}}=rac{66.73-65}{2.32}=0.75$$

0

$$P(Z \ge |Z_{calculado}|) = 0.228 + 0.228 = 0.456$$

Portanto:

Valor de p = 0.456 que é > 0,05.

Consequentemente, aceitamos H_0 e dizemos que:

não há evidências na amostra de que o batimento cardíaco de adultos sedentários seja diferente de 65.

2. Exemplo de um teste unilateral

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. A literatura sugere que o sedentarismo **aumenta** o batimento médio de um adulto.

As hipótese estatísticas ficam:

 $H_0: \mu=65$ batimentos por minuto

 $H_a: \mu > 65$ batimentos por minuto (Teste UNILATERAL)

lpha=0,05 nível de significância

2. Exemplo de um teste unilateral

Digamos que o número de batimentos cardíacos por minuto de um adulto em repouso tenha distribuição normal com média $\mu=65$ e desvio padrão $\sigma=9$. A literatura sugere que o sedentarismo **aumenta** o batimento médio de um adulto.

Nos testes unilaterais, toda a área de rejeição deve estar à direita ou à esquerda, a depender da hipótese alternativa.

No caso de um lpha=0,05 o nível crítico de Z=1,64.

Da mesma forma, quando utilizamos o valor de p, consideramos **somente** um dos lados da curva. Neste exemplo, o valor de p seria p=0.228, que é metade do que obtivemos no teste bilateral, porém **ainda** $\geq 0,05$.

3. Modificando o nível de significância: Erros de decisão

A interpretação da probabilidade final esta associada à situação em que H_0 seja verdadeira. Neste caso, **o que esperar caso** H_0 seja falsa?

	H_0 Verdadeira	H_0 Falsa
H_0 é rejeitada	lpha (Erro Tipo I)	1-eta (Decisão correta)
H_0 é aceita	1-lpha (Decisão correta)	eta (Erro Tipo II)

