UNIVERSIDAD NACIONAL DE LA MATANZA INTELIGENCIA DE NEGOCIOS

Tecnologías Inteligentes para Explotación de Información

Docentes: Ing. LORENA R. MATTEO
Autores ppt orig.: Lic. Hugo M. Castro / Mg. Diego Basso

TÉCNICAS DE MINERÍA DE DATOS

Las técnicas de minería de datos son herramientas que facilitan el descubrimiento de conocimiento.

<u>Esta foto</u> de Autor desconocido está bajo licencia <u>CC</u> <u>BY-SA-NC</u>

Uso de las Tecnologías

- o ¿Cómo se usan las tecnologías para resolver un problema?
 - Tecnologías
 ⇒ Explotación de Información
 - Problema ⇒ Inteligencia de Negocio
- Construcción de modelos para descubrir conocimiento y soporte a la toma de decisiones:
 - Predictivos o Descriptivos
 - Entrenamiento + Prueba
 - Evaluación del modelo construido

CONSTRUCCIÓN DE MODELOS DE MINERÍA DE DATOS

- Entrenamiento (Aprendizaje o Inducción)
 - Supervisado
 - No supervisado

Prueba

- De los casos históricos disponibles se destina una cantidad para entrenar el modelo y se reserva una porción para probar el modelo
- Se presentan los casos como si fueran nuevos y se coteja la respuesta del modelo con los valores reales
- Evaluación
- Despliegue (Producción): se dispone del modelo apto para su explotación, casos nuevos.

TECNOLOGÍAS DE EXPLOTACIÓN DE INFORMACIÓN

Basadas en Análisis Estadístico

- Análisis de varianza
- Regresión
- Prueba Chi-cuadrado
- Análisis de agrupamiento
- Análisis de determinantes
- Series de tiempo

Basadas en Sistemas Inteligentes

- Algoritmos de inducción TDIDT
- Redes Neuronales SOM
- Redes Bayesianas
- Redes Neuronales Back-Propagation

MODELOS PREDICTIVOS

- Son modelos de aprendizaje supervisado que permiten predecir el resultado de variables de interés a partir de los valores de otras variables.
 - Variables de entrada ⇒ Atributos predictores
 - Variable a predecir ⇒ Atributo clase
- o Se tiene un conjunto de *casos de entrenamiento* donde cada caso contiene un conjunto de atributos y uno de ellos es la clase a clasificar.
- Se separa un conjunto de casos de prueba para predecir nuevos casos y probar el modelo.
- Los nuevos casos deben ser asignados a su clase con la máxima exactitud y precisión posible.

MODELOS PREDICTIVOS

- El entrenamiento busca descubrir las relaciones entre las variables de entrada (X y X') y la variable objetivo (clase) (Y e Y').
- En "producción" se usa ese conocimiento para predecir el valor de la variable objetivo (Y=?) de un nuevo caso no incluido en los datos de entrenamiento ni de prueba.

TAREA DE CLASIFICACIÓN

IN2025

TECNOLOGÍAS PARA CLASIFICACIÓN

- Árboles de Decisión
 - Algoritmos de inducción TDIDT
 - Métodos basados en reglas
- Redes Bayesianas
 - Naïve-Bayes (Bayes Ingenuo)
- Vecinos más cercanos
 - K-vecinos (CBR)

ALGORITMOS DE INDUCCIÓN TDIDT

- La familia TDIDT (*Top Down Induction Trees*) pertenece a los métodos inductivos del Aprendizaje Automático que aprenden a partir de ejemplos preclasificados.
 - Atributos predictores

 Se particionan en diferentes ramas de acuerdo a los valores que el atributo puede tomar.
 - □ Pueden ser discretos o continuos.
 - Atributo clase ⇒ Decide la clase asignada (variable objetivo)
 - Debe ser discretizado.
- Generan árboles y reglas de decisión a partir de ejemplos preclasificados.

ALGORITMOS DE INDUCCIÓN TDIDT

- Se trata de identificar y ubicar en la parte superior del árbol a los atributos que mejor separan los ejemplos o muestras.
- Para encontrar los mejores atributos utiliza la teoría de la información, determinando qué atributo aporta la mayor ganancia de información (o menor pérdida de información) al tomar un determinado valor.
- Algoritmos utilizados ID3, C4.5 y C5

ALGORITMO TDIDT - EJEMPLO 1

- o Presentación intuitiva del proceso de inducción.
- Evaluación de otorgamiento de préstamos a clientes
 - Atributo clase: Otorgar Préstamo

Cliente	Moroso	Antigüedad	Ingresos	Trabajo Fijo	Otorgar Préstamo
1	Si	>5	12K – 20K	Si	No
2	No	< 1	12K – 20K	Si	Si
3	Si	1-5	> 20K	Si	No
4	No	>5	> 20K	No	Si
5	No	< 1	> 20K	Si	Si
6	Si	1-5	12K – 20K	Si	No
7	No	1-5	> 20K	Si	Si
8	No	<1	< 12K	Si	No
9	No	>5	12K – 20K	No	No
10	Si	1-5	< 12K	No	No

ALGORITMO TDIDT - APLICACIÓN

o Caso de Prueba

Cliente	Moroso	Antigüedad	Ingresos		Otorgar Préstamo
11	No	1-5	12K – 20K	Si	?

ALGORITMO TDIDT - EJEMPLO 2

Predicción de resultados de exámenes

Atributo clase: Resultado Parcial

Trabajos Prácticos	Actividad Virtual	Actividad Presencial	Resultado Parcial
Bien	Alta	Alta	Aprobó
Bien	Baja	Alta	No Aprobó
Muy Bien	Alta	Alta	Aprobó
Regular	Alta	Alta	Aprobó
Regular	Alta	Baja	No Aprobó
Regular	Baja	Baja	No Aprobó
Muy Bien	Baja	Baja	Aprobó
Bien	Baja	Baja	No Aprobó
Bien	Alta	Baja	Aprobó
Regular	Baja	Baja	No Aprobó
Bien	Alta	Baja	Aprobó
Muy Bien	Alta	Alta	Aprobó
Regular	Baja	Baja	Aprobó
Regular	Alta	Alta	Aprobó

ALGORITMO TDIDT - APRENDIZAJE

Construcción de reglas del tipo IF-THEN

R₁: IF Trabajos Prácticos = 'Muy Bien' THEN Resultado Parcial = 'Aprobó'

R₂: IF (Trabajos Prácticos = 'Bien') AND (Actividad Virtual = 'Baja')
THEN Resultado Parcial = 'No Aprobó'

R₃: IF (Trabajos Prácticos = 'Bien') AND (Actividad Virtual = 'Alta')
THEN Resultado Parcial = 'Aprobó'

R₄: IF (Trabajos Prácticos = 'Regular') AND (Actividad Presencial = 'Baja')
THEN Resultado Parcial = 'No Aprobó'

R₅: IF (Trabajos Prácticos = 'Regular') AND (Actividad Presencial = 'Alta')
THEN Resultado Parcial = 'Aprobó'

REDES BAYESIANAS

- Una red bayesiana es un grafo acíclico dirigido compuesto de nodos y arcos.
- Los nodos representan las variables aleatorias (o atributos).
- Los arcos representan dependencias probabilísticas de cada variable.
 - El arco entre dos variables significa una influencia directa de una variable sobre otra.
 - Probabilidad condicional (Teorema de Bayes).
- Representan la relación causa-efecto entre atributos.
- Dan a una medida cuantitativa y probabilística de la importancia de los atributos en un problema de clasificación de clases.

- Las variables Ladrón y Terremoto son causas para que se dispare una Alarma.
 - Existe una probabilidad a priori para Ladrón y Terremoto.
 - ¿Cuál es la probabilidad de que suene o no la alarma?
- Ladrón y Terremoto son condicionalmente independientes entre sí dada la variable Alarma.

CLASIFICADOR BAYESIANO NAÏVE-BAYES

- Considera que cada atributo predictor A_i y el atributo clase C son variables aleatorias.
- Las relaciones de dependencia entre los atributos A_i son condicionalmente independientes entre sí dado el atributo clase C.

- Dado un registro con atributos A₁, A₂,..., A_n el objetivo es predecir la clase C.
- Se busca encontrar el valor de C que maximice la probabilidad $p(C/A_1, A_2, ..., A_n)$.

REDES BAYESIANAS

- Obtener una red bayesiana a partir de datos, es un proceso de aprendizaje.
 - Aprendizaje Estructural
 - Aprendizaje Paramétrico
- Proceso de inferencia
 - Predicciones a partir de observaciones

Se tienen los siguientes datos:

	Ambiente	Temperatura	Humedad	Viento	Juega Tenis
1	Soleado	Alta	Alta	Leve	No
2	Soleado	Alta	Alta	Fuerte	No
3	Nublado	Alta	Alta	Leve	Si
4	Lluvioso	Media	Alta	Leve	No
5	Lluvioso	Baja	Normal	Fuerte	No
6	Lluvioso	Baja	Normal	Fuerte	No
7	Nublado	Baja	Normal	Leve	Si
8	Soleado	Media	Alta	Leve	Si
9	Soleado	Baja	Normal	Leve	Si
10	Lluvioso	Media	Normal	Leve	No
11	Soleado	Media	Normal	Fuerte	Si
12	Nublado	Media	Alta	Fuerte	Si
13	Nublado	Alta	Normal	Leve	Si
14	Lluvioso	Media	Alta	Fuerte	No

 Queremos saber si se jugará al tenis bajo las siguientes condiciones:

Ambiente	Temperatura	Humedad	Viento	Juega Tenis
Soleado	Baja	Alta	Fuerte	?

- El atributo clase a predecir es Juega Tenis cuyos valores serán
 Si o No.
- o El nuevo caso será clasificado como clase C_j si $P(C_j) \prod_{i=1}^n P(A_i \, | \, C_j) \text{ es máximo.}$

Redes Bayesianas – Ejemplo

Aprendizaje Estructural

o Relaciones de dependencia e independencia

Aprendizaje Paramétrico

- Determinar probabilidades a priori de cada clase y las probabilidades condicionales.
- Analizando los 14 casos tenemos:

	Valores que toma	Cantidad de Casos	% casos totales
_	Soleado	5	35,7%
Ambiente	Nublado	4	28,6%
	Lluvioso	5	35,7%
	Alta	4	28,6%
Temperatura	Media	6	42,8%
	Baja	4	28,6%
	Alta	7	50%
Humedad	Normal	7	50%
	Leve	8	57,2%
Viento	Fuerte	6	42,8%

Casos
$$_{\text{Juega Tenis}} = 5i = 7$$

Casos
$$_{\text{Juega Tenis}} = N_0 = 7$$

$$P(Juega_{Si}) = 0.5 = 50\%$$

$$P(Juega_{No}) = 0.5 = 50\%$$

Redes Bayesianas – Ejemplo

Desglosando los casos según si juegan o no al tenis:

Cantidad Casos

	Valores que toma	Clase = Juega Teni Si No		
	Soleado	3	2	
Ambiente	Nublado	4	0	
	Lluvioso	0	5	
	Alta	2	2	
Temperatura	Media	3	3	
	Baja	2	2	
	Alta	3	4	
Humedad	Normal	4	3	
	Leve	5	3	
Viento	Fuerte	2	4	

Casos totales = 14

Casos $_{\text{Juega Tenis}} = 7$

Casos $_{\text{Juega Tenis}} = 7$

Obtenemos las probabilidades condicionales:

Probabilidades

	Valores que toma	Clase = Juega Tenis Si No		
_	Soleado	3/7 = 42,8%	2/7 = 28,6%	
Ambiente	Nublado	4/7 = 57,2%	0	
	Lluvioso	0	5/7 = 71,4%	
	Alta	2/7 = 28,6%	2/7 = 28,6%	
Temperatura	Media	3/7 = 42,8%	3/7 = 42,8%	
	Baja	2/7 = 28,6%	2/7 = 28,6%	
	Alta	3/7 = 42,8%	4/7 = 57,2%	
Humedad	Normal	4/7 = 57,2%	3/7 = 42,8%	
	Leve	5/7 = 71,4%	3/7 = 42,8%	
Viento	Fuerte	2/7 = 28,6%	4/7 = 57,2%	

Casos totales = 14

Proceso de Inferencia

Proceso de Inferencia

Juega Tenis = Si

Proceso de Inferencia

Juega Tenis = No

Predicción a realizar:

Ambiente	Temperatura	Humedad	Viento	Juega Tenis
Soleado	Baja	Alta	Fuerte	?

 $P(Juega_{Si}) = 0.5$ $P(Juega_{No}) = 0.5$

• P(Juega $_{Si}$) = 0,428 x 0,286 x 0,428 x 0,286 x 0,5 = 0,0075

• P(Juega $_{No}$) = 0,286 x 0,286 x 0,572 x 0,572 x 0,5 = 0,0133

- Normalizando:
 - $P(Juega_{Si}) = 0.0075 / (0.0075 + 0.0133) = 36\%$
 - $P(Juega_{No}) = 0.0133 / (0.0075 + 0.0133) = 64\%$

Ambiente	Temperatura	Humedad	Viento	Juega Tenis
Soleado	Baja	Alta	Fuerte	?

• El clasificador va a predecir que no se juega al tenis con una probabilidad del 64%.

Pautas para la evaluación

- Exactitud
 - No hay un algoritmo que sea siempre mejor que otro u otros
- Precisión, Recall (Exhaustividad/Sensibilidad/TPR y Especificidad/TNR) + F1-Score, Kappa (Cohen)
 - Útiles cuando el dataset no está balanceado, dan una mejor idea de la calidad del modelo.
- Interpretabilidad
 - Facilidad para interpretar los resultados
- Velocidad
 - Entrenamiento
 - Producción

Métricas de Evaluación

- Se focalizan en analizar la capacidad de predicción y clasificación de clases del modelo construido.
- Matriz de Confusión: Permite comparar el resultado obtenido a partir del modelo predictivo construido con los resultados de los datos de prueba del modelo.
- Métricas utilizadas (en entrenamiento y prueba)
 - Exactitud del modelo
 - Precisión del modelo
 - Recall (Exhaustividad/Sensibilidad/TPR y Especificidad/TNR)
 - F1-Score + Coeficiente Kappa
- Otras métricas utilizadas
 - Cobertura de una regla
 - Precisión de una regla

34

Modelos de Clasificación

Dataset desbalanceado

- Es aquel que tiene muchas instancias de una clase y muy pocas de la otra, dificultando así el entrenamiento.
- Algo de desbalance de clases es de esperar y no afecta a nuestro análisis; pero bajo ciertas problemáticas, suelen haber datasets muy desbalanceados:
 - Detección de fraudes.
 - Diagnóstico médico.
 - Falla en cadena de producción.

Atención en:

- Cómo se entrenan los modelos.
- Qué métricas se usan para evaluarlos: las siguientes son útiles cuando el dataset no está balanceado, dan una mejor idea de la calidad del modelo,
 - Precisión / Recall (Exhaustividad/Sensibilidad/TPR y Especificidad/TNR) / F1-Score / Kappa (Cohen)
 - o Por el contrario, la Exactitud no es buena cuando el dataset está desbalanceado.

Estructura de una matriz de confusión de 2 clases.

		Clase Clasificada					
		Clase A	Clase B	Total			
Real	Clase A	N° casos clasificados como A y son de clase A (NCVA)	N° casos clasificados como B pero son de clase A (NCFB)	Total de casos de la clase A			
Clase R		Nº casos clasificados como A pero son de clase B (NCFA)	N° casos clasificados como B y son de clase B (NCVB)	Total de casos de la clase B			
CIs	Total	Total de casos clasificados como clase A	Total de casos clasificados como clase B	Número total de casos (NTC)			

- Las métricas NCVA y NCVB representan los valores clasificados correctamente por el modelo (V: Verdadero)
- Las métricas NCFA y NCFB representan los errores confusión) entre las clases (F: Falso)

o Forma más usual de encontrar un Matriz de Confusión, incluyendo métricas para evaluar data sets desbalanceados

		Clase Clasificada								
			Clase A (Positive)			Case B (Negative)		Total		
Real	Clase A (Positive)		TP (VP ó NCVA)			FN (NCFB)		Total de Casos Reales de la Clase A	Exahustividad (Recall, Sensibilidad o TPR) (% casos positivos detectados)	= TP / (TP+FN)
Clase	Clase B (Negative)		FP (NCFA)			TN (VN ó NCVB)		Total de Casos Reales de la Clase B	Especificidad (TNR) (% casos negativos detectados)	= TN / (TN+FP)
	Total	Total	de Casos Clasific como Clase A	ados	Total	Total de Casos Clasificados como Clase B		Nro Total de casos (NTC)	Exactitud (% predicciones positivas correctas) no es util en DS desbalanceados)	= (TN + TP) / (TN + TP + FN + FP)
		(% p	Precisión (A=P) redicciones posit correctas)	edicciones positivas (% predicciones negativas			F1-Score (A=P)	= 2*((Precisión* Recall)/ (Precisión+Recall))		
			= TP / (TP + FP)		= TN / (TN + FN)			F1-Score (B=N)	= 2*((Precisión* Especificidad)/ (Precisión + Especificidad))	
									Coeficiente Kappa	= 2*(TP * TN - FN * FP) / (TP + FP) * (FP + TN) + (TP + FN) * (FN + TN)

Fuente: Mejora del artículo: Telefónica Think Biq / Empresas - Cómo interpretar la matriz de confusión: ejemplo práctico Paloma Recuero de los Santos

 Exactitud del modelo: Proporción de casos clasificados correctamente respecto del número total de casos utilizados. Evalúa la capacidad de generalización del modelo para predecir y clasificar nuevos casos.

Exactitud (M) =
$$\frac{\sum_{i=1}^{n} NCV_{i}}{N^{\circ} \text{ casos usados}}$$

- ALTA exactitud ⇒ Clasificaciones correctas ≥ 70% casos.

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

o Precisión del modelo: proporción de casos reales de una clase respecto del total de casos clasificados por el modelo en esa misma clase. Evalúa la efectividad del modelo para clasificar casos a una clase particular.

$$Precisión (C_i) = \frac{NCV_i}{Total Casos Clasificados Positivos} \frac{NCV_i}{NCV_i + NCF_i}$$

- ALTA precisión ⇒ Modelo efectivo para predecir y clasificar nuevos casos.
- Precisión MEDIA ⇒ Modelo inestable. Posible confusión en clasificación y predicción.
- BAJA precisión ⇒ El modelo confunde las clases. Modelo poco efectivo.

$$precision = \frac{TP}{TP + FP}$$

 Exhaustividad (Recall / Sensibilidad / TPR): tasa de verdaderos positivos (True Positive Rate) ó TP; es decir la proporción entre los casos positivos bien clasificados por el modelo, respecto a todos los elementos que en realidad son positivos.

$$\frac{NCV_A}{Total \ Casos \ Reales \ Positivos} = \frac{NCV_A}{NCV_A + NCF_B}$$

 Expresa qué tan bien el modelo es capaz de detectar a la clase positiva.

$$recall = \frac{TP}{TP + FN}$$

 Especificidad (TNR): tasa de verdaderos negativos, (True Negative Rate) ó TN, es decir la proporción entre los casos negativos bien clasificados por el modelo, respecto a todos los elementos que en realidad son negativos.

Especificidad =
$$\frac{NCV_B}{Total Casos Reales Negativos}$$
 = $\frac{NCV_B}{NCF_A + NCV_B}$

 Si lo que nos interesa es identificar los verdaderos negativos, (evitar falsos positivos) debemos elegir especificidad alta.

$$Especificidad = \frac{TN}{(TN + FP)}$$

- F1-Score: se utiliza para combinar las medidas de precisión y Recall en un sólo valor. Esto es práctico porque hace más fácil el poder comparar el rendimiento combinado de la precisión y la exhaustividad entre varias soluciones.
- F1 se calcula haciendo la media armónica entre la precisión y la exhaustividad:

$$F1 - Score_{A(P)} = 2\left(\frac{(Precision_{A(P)} * Recall_{Sensibilidad})}{(Precision_{A(P)} + Recall_{Sensibilidad})}\right)$$

$$F1 - Score_{B(N)} = 2\left(\frac{(Precision_{B(N)} * Recall_{Especificidad})}{(Precision_{B(N)} + Recall_{Especificidad})}\right)$$

- Coeficiente Kappa Concordancia entre Predicciones y Realidad: Este es una métrica que mide el grado de acuerdo entre las predicciones de un modelo y la realidad, más allá del simple azar.
- Interpretación de Valores Kappa: Los valores oscilan entre -1 y 1, donde 0 indica un acuerdo únicamente por azar, y 1 representa un acuerdo perfecto entre predicciones y realidad.
- Es especialmente útil cuando las clases en una tarea de clasificación tienen diferentes prevalencias, ya que ofrece una mejor evaluación que la simple precisión.

$$k = \frac{2*(TP*TN - FN*FP)}{(TP + FP)*(FP + TN) + (TP + FN)*(FN + TN)}$$

Valoración del coeficiente kappa (Landis y Koch, 1977)

Coeficiente kappa	Fuerza de la concordancia
0,00 0,01 - 0,20 0,21 - 0,40 0,41 - 0,60 0,61 - 0,80 0,81 - 1,00	Pobre (Poor) Leve (Slight) Aceptable (Fair) Moderada (Moderate) Considerable (Substantial) Casi perfecta (Almost perfect)

EVALUACIÓN - RESUMEN

Exactitud: (modelo)

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 $precisión = \frac{TN}{TN + FN}$

Tasa Error: (modelo)

Error= 1- Exactitud

Precisión: (para cada clase)

$$precisión = \frac{TN}{TN + FN}$$

$$predicción$$

$$precision = \frac{TP}{TP + FP}$$

$$realidad 0 TN FP TP$$

Exhaustividad: (para cada clase)

(Recall/Sensibilidad/TPR)

Especificidad: (para cada clase)

(TNR)

F1-Score: (para cada clase)

$$F1 - Score_{A(P)} = 2\left(\frac{(Precision_{A(P)}*Recall_{Sensibilidad})}{(Precision_{A(P)}+Recall_{Sensibilidad})}\right) F1 - Score_{B(N)} = 2\left(\frac{(Precision_{B(N)}*Recall_{Especificidad})}{(Precision_{B(N)}+Recall_{Especificidad})}\right)$$

Kappa: (modelo)

$$k = \frac{2*(TP*TN-FN*FP)}{(TP+FP)*(FP+TN)+(TP+FN)*(FN+TN)}$$

43

MODELOS DE CLASIFICACIÓN - EJEMPLO

- o Consideremos una matriz de confusión con 900 casos de clientes que pueden o no cerrar sus cuentas bancarias:
 - Clase SI Se va del banco
 - Clase No No se va del banco

Clase Clasificada

		Si		No
Clase	Si	455		29
Real	No	32		384
,		487	413	

839 predicciones correctas

61 predicciones incorrectas

- \circ Exactitud (M) = (455+384)/(455+384+29+32) = 93,2%
- \circ Precisión (C_s) = 455/(455+32) = **93,4**%
- Precisión (C_{No}) = 384/(29+384) = **92,9**%

Modelos de Clasificación - Ejemplo

		Clase Cla	asificada					
		Clase A (Positive)	Case B (Negative)	Total				
Clase Real	Clase A (Positive)	455	29	Total de Casos Reales de la Clase A	484	Exhaustividad (Recall o TPR)	= TP / (TP+FN)	94,01%
Clase	Clase B (Negative)	32	384	Total de Casos Reales de la Clase B	416	Especificidad (TNR)	= TN / (TN+FP)	92,31%
	Total	Total de Casos Clasificados como Clase A	Total de Casos Clasificados como Clase B	Nro Total de casos (NTC)		Exactitud	= (TN + TP) / (TN + TP + FN + FP)	93,22%
		487	413			F1-Score (A=P)	= 2*((Precisión* Recall)/ (Precisión+Recall))	92,64%
		Precisión (A=P)	Precisión (B=N)			F1-Score (B=N)	= 2*((Precisión* Especificidad)/ (Precisión + Especificidad))	92,64%
		= TP / (TP + FP)	= TN / (TN + FN)			Coeficiente Kappa	= 2*(TP * TN - FN * FP) / (TP + FP) * (FP + TN) + (TP + FN) * (FN + TN)	86,36%
		93,43%	92,98%					

- No todos los errores tienen el mismo costo para el banco.
 - El error en los falsos No (29 casos) es mucho más costoso para el banco ya que no se va a tomar ninguna acción y el cliente se va a ir.
 - El banco puede asignar un valor de costo a cada una de las celdas que representan un error en la clasificación para poder comparar soluciones de modelos.

3/6/2025 II

MODELOS DE CLASIFICACIÓN

Actual

Oredicha

-	Positivo	Negativo
Positivo	VP	F۴
Negativo	FN	VN

De todas las clases positivas cuantas se predijo correctamente

Precisión

De todas las positivas que se han predicho correctamente cuántas son realmente positivas

De todas las clases cuantas se predijeron correctamente

VN

Permite comparar dos modelos de baja precisión y alta exhaustividad (recall) utiliza la media armónica para castigar los valores extremos

46

MODELOS DE CLASIFICACIÓN

Modelos de Clasificación – Ejemplo Multiclase

- Se cuenta con una matriz de confusión para un problema clases múltiples donde se debe predecir si una persona prefiere Facebook, Instagram o Snapchat.
- La matriz de confusión sería de 3 x 3.
- El verdadero positivo, verdadero negativo, falso positivo y falso negativo de cada clase se calcularía sumando los valores de celda de la siguiente manera:

Facebook	Instagram	Snapchat
$TP = Cell_1$	$TP = Cell_5$	$TP = Cell_9$
$FP = Cell_2 + Cell_3$	$FP = Cell_4 + Cell_6$	$FP = Cell_7 + Cell_8$
$TN = Cell_5 + Cell_6 + Cell_8 + Cell_9$	$TN = Cell_1 + Cell_3 + Cell_7 + Cell_9$	$TN = \left. \mathit{Cell}_1 + \left. \mathit{Cell}_2 + \mathit{Cell}_4 + \mathit{Cell}_5 \right. \right.$
$FN = Cell_4 + Cell_7$	$FN = Cell_2 + Cell_8$	$FN = Cell_3 + Cell_6$

Modelos de Clasificación - Conclusiones

Resumen 1:

- No hay que guiarse solamente por la matriz de confusión.
- No solamente cuenta la exactitud y precisión.
 - Proporción de aciertos en la matriz de confusión
 - No hay un algoritmo que siempre sea "mejor" que otros
- No necesariamente un nivel bajo de aciertos en la predicción invalida el uso del modelo.
- Hay que tener en cuenta otros factores dependiendo del caso de estudio.
 - Interpretabilidad
 - Velocidad
 - Entrenamiento
 - Producción

IN2025

Modelos de Clasificación - Conclusiones

Resumen 2:

- Vimos las métricas más extendidas para evaluar el rendimiento de un modelo supervisado en tareas de clasificación.
- La Matriz de Confusión indica qué tipos de errores se cometen.
- La métrica Exactitud es engañosa cuando las clases están desbalanceadas, nos hace creer que el modelo es mejor de lo que en realidad es.
- Las medidas de Precisión, Recall y F1 son más representativas y funcionan tanto si las clases están balanceadas como si no:
 - Precisión nos da la calidad de la predicción: ¿qué porcentaje de los que hemos dicho que son la clase positiva, en realidad lo son?
 - Recall nos da la cantidad: ¿qué porcentaje de la clase positiva hemos sido capaces de identificar? La sensibilidad (+) y la especificidad (-) indican la capacidad del estimador para discriminar los casos positivos, de los negativos.
 - F1 combina Precisión y Recall en una sola medida.

MATERIAL COMPLEMENTARIO

Fuentes:

- Canal Electronics and Technology
 - Lista Machine Learning: <u>Machine Learning YouTube</u>
 - Modelo Naive Bayes: <u>Modelo Naive Bayes Machine Learning | aprendizaje</u> <u>automático (youtube.com)</u>
 - Evaluación de Modelos: <u>Evaluación del Modelo Machine Learning | aprendizaje</u> <u>automático (youtube.com)</u>

RESUMEN CLASE

Trabajo Práctico de Minería de Datos

CASO: CRÉDITOS BANCARIOS

ENTREGA 18/06/2025

- Utilice la herramienta KNIMNE para desarrollar los procesos de explotación de información identificados en el Caso de Estudio; incluyendo tareas de Preprocesamiento, Modelos Predictivos, Descriptivos y Evaluación.
- Entregue un informe que contenga resultados, conclusiones obtenidas, gráficos, una tabla comparativa de métodos aplicados, y las recomendaciones que daría, de acuerdo con lo requerido en el enunciado del trabajo práctico.

