What does $O(\langle expr \rangle)$ mean?	What does $\Theta()$ mean?
What does $\Omega()$ mean?	What are the best, average and worst case complexities of $m{Bubble\ Sort}$?
What are the best, average and worst case complexities of Merge Sort?	Give pseudo code for merging 2 sorted lists, as part of merge sort.
$Give \ pseudo \ code \ for \ Merge Sort(L).$	What are the best, average and worst case complexities of Quick Sort?

The complexity (i.e. space/running time) has the complexity The complexity (i.e. running time/space) is bounded by the proportional to < expr >.

2

1

7

Best: O(n), Average: $O(n^2)$, Worst: $O(n^2)$ The complexity (i.e. running time/space) is at least by the < expr >.

4

```
\begin{array}{lll} \textit{Merge}(L_1,\,L_2) & & & & \\ \textit{if $L_1=[]$ return $L_2$} & & & \\ \textit{if $L_2=[]$ return $L_1$} & & & \\ x_1=L_1[0] & & & & \\ x_2=L_2[0] & & & & \\ \textit{Est: O(nlog}\log_2 n), & & \\ \textit{L'}_1=L_1[1:|L_1|-1] & & & & \\ \textit{L'}_2=L_2[1:|L_2|-1] & & & & \\ \textit{If $x_1\leq x_2$} & & & \\ \textit{return $[x_1]$+Merge}(L'_1\;,L_2) & & \\ \textit{return $[x_2]$+Merge}(L_1\;,L'_2) & & \\ \end{array}
```

Merge two sorted lists

6 5

 $\begin{array}{c} \textit{MergeSort}(L) \\ \textit{Best: } O(nlog \log_2 n), \\ \textit{Average: } O(nlog \log_2 n), \\ \textit{Worst: } O(n^2) \end{array} \qquad \begin{array}{c} \textit{if } |L| \leq 1 \\ \textit{return } L \\ \textit{Split } L \textit{ into roughly equal halves, } L_l \textit{ and } L_r \\ \textit{return Merge}(\textit{MergeSort}(L_l), \textit{MergeSort}(L_r)) \end{array}$

MergeSort(L)

8

What would the pseudo code be for Quick Sort?	Say that the input represents a positive integer, x , what is the size of n ?
What does it mean by $O(1)$?	What is the minimum time for any sorting algorithm that uses only number comparisons?
What would the pseudo code be for Euclid's algorithm?	What would the pseudo code be for Fast Modular Exponentiation?
Consider the equation $a^x = y mod p$. If a is a primitive root modulo p , then for every $y(1 \le y < p)$, such an $x(1 \le x < p)$ exists. What is x ?	The is the inverse of exponentiation.

```
if length of L \leq 1
                                                                               return\ L
                                                                           remove\ the\ first\ element,\ x,\ from\ L
 |\log_b x| + 1 Where b is the number representation, usually
                                                                           L_{\leq} := elements \ of \ L \ less \ than \ or \ equal \ to \ x
                                                                           L_{>}^{-} := elements \ of \ L \ greater \ than \ x
                           binary (so 2).
                                                                           L_l := quicksort(L_<)
                                                                           L_r := quicksort(\overline{L}_>)
                                                                           return L_l + [x] + L_r
                                                                                                    Quick\ Sort
                                                                   10
                                                                                                                                            9
                                                                        It takes a constant time, no matter the amount of data, to
                              n \log_2 n
                                                                                             perform the operation.
                                                                   12
                                                                                                                                           11
fme(a,b,k)
   d = a
                                                                       // Assume a >= b
   e = b
   s = 1
                                                                       hcf(a,b)
    While e > 0
                                                                           if b = 0
       if\ e\ is\ odd
                                                                               return a
           s = (s.d) mod k
                                                                           r = amodb
       d = d^2 mod k
                                                                           return \ hcf(b,r)
       e = \lfloor e/2 \rfloor
                                                                                                Euclid's algorithm
   return\ s
                  Fast\ Modular\ Exponentiation
                                                                   14
                                                                                                                                           13
```

The discrete logarithm is the inverse of exponentiation.

quicksort(L)

16 15

X is the **discrete logarithm** of y with base a, modulo p.

Why can the private key not, in practice, be recovered from the public key when p is large?	What is one way you can argue correctness of Euclid's algorithm?
What would half the correctness proof be for Euclid's algorithm?	(a.b)modk =
Let p be a prime number. What is meant by a primitive root modulo p ?	What does saying that algorithm A runs in time g mean?
What is a permutation of a set?	What do we mean by a composition of two permutations?

Let r = amodb. hcf(a,b) = hcf(b,r) because all factors of a and b are also factors of b and r and vice versa. If they have the same factors, they have the same highest common factor.

To calculate a public key, y, a private key, x is needed. The equation for modular exponentiation can be used:

$$y = g^x mod p$$

It is considered a one-way function - easy to compute, hard to invert. For a large p, the only way to figure out the private key would be to use brute force, which would take a large amount of time.

18 17

(a.b)modk = (amodk.bmodk)modk

As r = amodb, $\exists q \text{ such that } a = bq + r$, $\therefore r = a - bq$. Suppose x is a factor of a and b, then $\exists yandz \text{ such that } a = xy$, b = xz.

> Hence: r = xy - xzq, r = x(y - zq). $\therefore x$ is a factor of r (and also of b and r).

20 19

Given an input of size n, the number of operations executed by A is bounded above by g(n).

The numbers r_x between 1 and p-1 that, when raised by the numbers between 1 and p-1 compute all the numbers between 1 and p-1 in some order with no repetitions.

22

The composition is the product of two permutations, α and β , on a set n, given by $\alpha \cdot \beta(n)$ or $\beta(\alpha(n))$

A 1-to-1 map of the set onto itself. In basic terms, it is a set mapped to another order of itself. i.e $[0,1,2,3,4] \mapsto [2,4,1,0,3]$

24

23

What is the number of possible permutations on an n-element set?	In the context of a permutation, what do we mean by a transposition?
25	26
Convert this pair of simultaneous equations into matrix form $a_{1,1}x_1+a_{1,2}x_2=b_1\\a_{2,1}x_2+a_{2,2}x_2=b_2$	What is the determinant of the matrix: $\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$
What is an upper triangular matrix and how do you calculate its determinant?	Which 4 operations have no effect on a matrix's determinant?

A transposition is a special kind of permutation where only 2 elements in a set are affected (they are swapped). On a set X a transposition $\sigma = (i, j)$ is given by

$$\sigma(k) = \begin{cases} j & \text{if } k = i \\ i & \text{if } k = j \\ k & \text{ow.} \end{cases}$$

n!

26

 $a_1a_4 - a_2a_3$ Often denoted as:

$$\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix}$$

The original system of equations to which the matrix corresponds only has a unique solution if the determinant is non-zero.

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

28 27

It is a matrix where all of its entries below the diagonal are zero.

Transposing two rows

Transposing two columns

Adding a multiple of one row to another

Adding a multiple of one column to another

Also note that if all entries in any row or column are 0 then

the determinant is 0

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{pmatrix}$$

Its determinant is calculated by taking the product of the entries on the diagonal. i.e $a_{1,1} \cdot a_{2,2} \cdot ... \cdot a_{n,n}$

25