Package 'nlexperiment'

October 3, 2015

Type Package
Title Exploration of NetLogo Agent Based Models
Version 0.1.5
Date 2015-09-14
Author Darko Bergant
Maintainer Darko Bergant <darko.bergant@gmail.com></darko.bergant@gmail.com>
<pre>BugReports https://github.com/bergant/nlexperiment/issues</pre>
<pre>URL http://bergant.github.io/nlexperiment/</pre>
Description A tool for NetLogo experiment definition, exploring simulation results and model optimization. Makes it easy to turn the cycle of experiment definition, data analysis, visualisations and parameter fitting into readable and reproducible documents.
Depends R (>= 3.1)
License GPL-2
Imports RNetLogo, digest
Suggests knitr, dplyr, png, ggplot2, testthat, lhs, fast
LazyData TRUE
R topics documented:
nlexperiment-package 2 nl_default_mapping 3 nl_eval_run 4 nl_eval_tracer 6 nl_experiment 7 nl_export_path 8 nl_get_fast_sensitivity 9

nl_get_param_range	10
nl_get_result	11
nl_map_parameter	11
nl_netlogo_path	12
nl_param_fast	12
nl_param_oat	13
nl_param_random	14
nl_parse_model	16
nl_run	16
nl_set_agent_reports	18
nl_set_measures	18
nl_set_param_values	19
nl_set_run_options	20
nl_show_params	21
nl_show_patches	21
nl_show_step	22
nl_show_views_grid	22
print.nl_experiment	23
	24

nlexperiment-package *nlexperiment: NetLogo experiments*

Description

Index

Exploration of NetLogo (Wilensky 1999) agent based models.

Details

A tool for NetLogo experiment definition, exploring simulation results and model optimization. Makes it easy to turn the cycle of experiment definition, data analysis, visualisations and parameter fitting into readable and reproducible documents.

RNetLogo package (Thiele 2014) is used as an interface to NetLogo environment.

Functions in **nlexperiment** assume the following steps:

- Define NetLogo experiment object with parameter sets, measures and simulation options (see nl_experiment function).
- Run experiment (see nl_run). The result of running an experiment keeps original experiment definition along with the simulation results and makes the process of model analysis more concise and reproducible. To run the simulation in parallel working processes use the parallel attribute in nl_run function.
- Analyse and present results of simulation(s). See nl_get_result for getting different data from the result and nl_show_step, nl_show_patches for pre-defined plots.
- When additional questions pop out, changes to experiment will be needed. Refine the original definition of the experiment by changing only parameter sets (nl_set_param_values), set different measures (nl_set_measures) or set other simulation options (nl_set_run_options).

nl_default_mapping 3

References

Wilensky, U. (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.

Thiele, J. (2014) R Marries NetLogo: Introduction to the RNetLogo Package. Journal of Statistical Software 58(2) 1-41. http://www.jstatsoft.org/v58/i02/

The ideas and principles of NetLogo experiment definition is taken from the NetLogo's Behavior Space tool http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html and BehaviorSearch tool http://www.behaviorsearch.org/

Examples

```
## Not run:
# Set the path to your NetLogo installation
nl_netlogo_path("c:/Program Files (x86)/NetLogo 5.1.0/")
# Create NetLogo experiment of Net Logo Fire model
experiment <- nl_experiment(</pre>
  model_file = "models/Sample Models/Earth Science/Fire.nlogo",
  while_condition = "any? turtles",
  repetitions = 10,
  run_measures = measures(
    percent_burned = "(burned-trees / initial-trees) * 100",
    progress = "max [pxcor] of patches with [pcolor > 0 and pcolor < 55]"</pre>
  ),
  param_values = list(
    density = seq(from = 55, to = 62, by = 1)
)
# Run the experiment using multi-core processing
result <- nl_run(experiment, parallel = TRUE)</pre>
# Get observations data frame
dat <- nl_get_run_result(result)</pre>
# plot percent burned by density
library(ggplot2)
ggplot(dat, mapping = aes(x = factor(density), y = percent_burned) ) +
  geom_violin()
## End(Not run)
```

 $nl_default_mapping$

Default mapping from R names to NetLogo variables

Description

Creates mapping with simple rule: changes every character _. to ? and _ to -.

```
nl_default_mapping(param_values)
```

4 nl_eval_run

Arguments

param_values Parameter values in list or data frame

Value

Named vector with default mapping. Use as function argument in nl_experiment mapping.

Examples

```
param_values = list(
  world_size = 50,
  population = 80,
  max_align_turn = c(1, 5, 20),
 max\_cohere\_turn = c(1, 3, 20),
 max_separate_turn = c(1, 1.5, 20),
  vision = c(1, 3, 10),
 minimum\_separation = c(1, 3, 10),
  .dummy = c(1:0)
nl_default_mapping(param_values)
# Define experiment mapping with a function instead of named vector:
experiment <- nl_experiment(</pre>
  model_file = "models/Sample Models/Biology/Flocking.nlogo",
  param_values = list(
    world_size = 50,
    population = 80,
    max_align_turn = c(1, 5, 20),
    max\_cohere\_turn = c(1, 3, 20),
    max_separate_turn = c(1, 1.5, 20),
    vision = c(1, 3, 10),
    minimum\_separation = c(1, 3, 10),
    .dummy = c(1:0)
  ),
  mapping = nl_default_mapping
)
# check experiment parameter names mapping
cbind(experiment$mapping)
```

nl eval run

Evaluate experiment with specific parameters

Description

Function nl_eval_run runs experiment as with nl_run but requires started NetLogo instance with loaded model.

Function nl_eval_init starts NetLogo instance and loads the NetLogo model. When using parallel version it initializes several processes and returns cluster objects

Function nl_eval_close stops NetLogo instance

Function nl_get_eval_fun returns a function wich calls nl_eval_run but does not need additional parameters.

nl_eval_run 5

Usage

```
nl_eval_run(param_set, experiment, criteria = NULL, print_progress = FALSE,
    call_back = NULL, parallel = FALSE, cluster = NULL,
    param_names = NULL)

nl_eval_init(experiment, parallel = FALSE, max_cores = NULL)

nl_eval_close(parallel = FALSE, cluster = NULL)

nl_get_eval_fun(experiment, param_names, parallel = FALSE, cluster = NULL,
    criteria, call_back = NULL)
```

Arguments

param_set	parameter set (a list of parameters with values)
experiment	NetLogo experiment object (see nl_experiment)
criteria	Which experiment evaluation criteria to be returned
<pre>print_progress</pre>	print evaluation progress
call_back	A call-back function for tracing result in optimization processes
parallel	If TRUE nl_eval_init returns cluster object which should be passed to nl_eval_run and nl_eval_close.
cluster	Required for parallel execution (nl_eval_init returns cluster object)
param_names	parameter names for parameter set
max_cores	If not defined all available cores are used.

Details

Use nl_eval_run when parameter set depend on previous evaluation (parameter fitting / callibration / optimization methods). It can use the same experiment object as nl_run function. Evaluation criteria should be defined. (see nl_experiment or nl_set_measures).

```
## Not run:

experiment <- nl_experiment(
    model_file = "models/Sample Models/Biology/Flocking.nlogo",

setup_commands = c("setup", "repeat 100 [go]"),
    iterations = 5,

param_values = list(
    world_size = 50,
    population = 80,
    vision = 6,
    min_separation = seq(from = 0, to = 4, by = 0.5),
    max_align_turn = seq(from = 0, to = 20, by = 2.5)
),
mapping = c(
    min_separation = "minimum-separation",
    max_align_turn = "max-align-turn"),</pre>
```

6 nl_eval_tracer

```
step_measures = measures(
      converged = "1 -
      (standard-deviation [dx] of turtles +
      standard-deviation [dy] of turtles) / 2",
      mean_crowding =
        "mean [count flockmates + 1] of turtles"
   ),
   eval_criteria = criteria(
      c_converged = mean(step$converged),
      c_mcrowding = mean(step$mean_crowding)
   ),
   repetitions = 10,
                                       # repeat simulations 10 times
   eval_aggregate_fun = mean,
                                       # aggregate over repetitions
   eval_mutate = criteria(
                                       # evaluation criterium
      eval_value =
        sqrt((c_mcrowding - 8)^2 + 400*(c_converged - 1)^2)
 )
 library(dfoptim)
 cl <- nl_eval_init(experiment, parallel = TRUE)</pre>
 trace <- nl_eval_tracer(verbose = FALSE)</pre>
 param_range <- nl_get_param_range(experiment)</pre>
 set.seed(1)
o_result <- nmkb(
  par = (param_range$upper + param_range$lower)/2,
   fn = nl_eval_run,
     experiment = experiment,
     criteria = "eval_value",
    call_back = trace$add,
    parallel = TRUE, cluster = cl,
    param_names = names(param_range$lower),
   lower = param_range$lower,
  upper = param_range$upper,
  control = list(maxfeval = 200)
nl_eval_close(parallel = TRUE, cl)
## End(Not run)
```

nl_eval_tracer

Iterations call-back factory

Description

Iterations call-back factory

```
nl_eval_tracer(verbose = TRUE)
```

nl_experiment 7

Arguments

verbose When TRUE adding new data will print the line

nl_experiment	Create NetLogo experiment object	
---------------	----------------------------------	--

Description

Use this function to create NetLogo experiment object.

Usage

```
nl_experiment(model_file, iterations = NULL, while_condition = NULL,
  repetitions = 1, random_seed = NULL, step_measures = NULL,
  run_measures = NULL, mapping = NULL, param_values = NULL,
  agents_after = NULL, agents_step = NULL, patches_after = NULL,
  export_view = FALSE, export_world = FALSE, setup_commands = "setup",
  go_command = "go", eval_criteria = NULL, eval_aggregate_fun = NULL,
  eval_mutate = NULL, data_handler = NULL)
```

Arguments

model_file	An absolute path to your NetLogo model file (.nlogo)
iterations	Number of iterations to run. Alternatively define while_condition to stop simulation.
while_condition	
	A string with a NetLogo conditional reporter. (for example: "ticks < 100")
repetitions	How many times to run the model with the same parameters. It is set to 1 by default. Result data sets will include run_id as additional variable to identify the specific runs. To change repetitions of existing experiment object use $nl_set_run_options$
random_seed	If defined, random seed will be set for each run. Note: using random seed and repetitions > 1 does not make sense.
step_measures	Measures per each simulation step in a named character vector. Use measures() function to construct measures in right format. To change step measures of existing experiment object use nl_set_measures
run_measures	Measures per each simulation run in a named character vector. Use measures() function to construct measures in right format. To change run measures of existing experiment object use $nl_set_measures$
mapping	Mapping between R and NetLogo parameters in named character vector. For example: $c(diffusion_rate = "diffusion-rate", population = "population")$
param_values	A data.frame with parameter values or a list of values to be expanded to all combinations of values
agents_after	Agents reporters see nl_set_agent_reports
agents_step	Agents reporters see nl_set_agent_reports
patches_after	Patches reporters see nl_set_agent_reports

8 nl_export_path

export_view If set to TRUE, the views will be exported to a png image files for each run (when running the experiment) If set to TRUE, the world will be exported to a csv file for each run export_world setup_commands NetLogo command strings to execute to setup the model go_command NetLogo command string to execute the step in the model A criteria calculation expressions. May use step or run data frames to calculate eval_criteria criteria. Elements from step should be aggregated. Must return named numeric vector. eval_aggregate_fun Aggregation function (used to aggregate criteria values when repetitions > 1) eval_mutate Add criteria based on aggregated values data_handler Function to handle observations. If handler is defined the observations will not be stored in result elements when running the experiment with 'nl run' function.

Value

NetLogo experiment object

See Also

To run experiment use nl_run. To change existing experiment object see nl_set_measures, nl_set_run_options and nl_set_param_values.

Examples

```
experiment <- nl_experiment(
  model_file = "models/Sample Models/Earth Science/Fire.nlogo",
  while_condition = "any? turtles",
  repetitions = 20,
  run_measures = measures(
    percent_burned = "(burned-trees / initial-trees) * 100",
    progress = "max [pxcor] of patches with [pcolor > 0 and pcolor < 55]"
  ),
  param_values = list(
    density = seq(from = 55, to = 62, by = 1)
  )
)</pre>
```

nl_export_path

Get and set export path

Description

Get and set export path

```
nl_export_path(export_path = NULL)
```

nl_get_fast_sensitivity 9

Arguments

```
export_path target folder to export files
```

Details

Setting export path is optional. If not set, running experiments with export options (view images and worlds) will create "export" folder in working directory. Option is defined per session.

```
nl_get_fast_sensitivity

Calculate sensitivity according to the FAST algorithm
```

Description

Uses sensitivity from **fast** package to calculate a series of model outputs according to the FAST alogrithm

Usage

```
nl_get_fast_sensitivity(result, criteria)
```

Arguments

result A nlexperiment result object criteria Name of evaluation criteria

Details

Only works when parameter value sets are defined with nl_param_fast function. Criteria must be defined in experiment (see nl_experiment, eval_criteria argument). Sensitivity is callculated for every simulation iteration (run_id).

Value

A data frame with sensitivity from simulation results for every simulation repetition (run_id)

```
## Not run:

experiment <- nl_experiment(
   model_file = "models/Sample Models/Biology/Flocking.nlogo",
   setup_commands = c("setup", "repeat 100 [go]"),
   iterations = 5,

param_values = nl_param_fast(
   world_size = 50,
   population = 80,
   max_align_turn = c(1, 5, 20),
   max_cohere_turn = c(1, 3, 20),
   max_separate_turn = c(1, 1.5, 20),
   vision = c(1, 3, 10),</pre>
```

10 nl_get_param_range

```
minimum\_separation = c(1, 3, 10)
  ),
  mapping = c(
    max_align_turn = "max-align-turn",
    max_cohere_turn = "max-cohere-turn",
   max_separate_turn = "max-separate-turn",
   minimum_separation = "minimum-separation",
   world_size = "world-size",
  ),
  step_measures = measures(
    converged = "1 -
      (standard-deviation [dx] of turtles +
       standard-deviation [dy] of turtles) / 2",
    mean_crowding =
      "mean [count flockmates + 1] of turtles"
  ),
  eval_criteria = criteria(
                                            # aggregate over iterations
   c_converged = mean(step$converged),
    c_mcrowding = mean(step$mean_crowding)
  ),
  repetitions = 10,
                                            # repeat simulations 10 times
  random\_seed = 1:10
#run experiment
result <- nl_run(experiment, parallel = TRUE)</pre>
#get sensitivity data
sensitivity_data <- nl_get_fast_sensitivity(result, "c_converged")</pre>
## End(Not run)
```

nl_get_param_range

Get ranges of experiment parameter sets

Description

Upper and lower value for each parameter in experiment parameter sets

Usage

```
nl_get_param_range(experiment, diff_only = TRUE, as.data.frame = FALSE)
```

Arguments

```
experiment NetLogo experiment object
diff_only Uses only non-constant parameters
as.data.frame Return in a data frame
```

Value

A list with lower and upper values for all parameters in experiment parameter set. When as data frame is specified a data frame with lower and upper columns.

nl_get_result 11

nl_get_result Get observations joined with parameter values

Description

Observations are stored in result object only with references to parameter sets (param_set_id). nl_get_result joins the data with actual parameters used for each observation.

Usage

```
nl_get_result(result, add_parameters = TRUE, type = "run",
    sub_type = NULL, ...)

nl_get_run_result(result, add_parameters = TRUE, ...)

nl_get_step_result(result, add_parameters = TRUE, ...)

nl_get_criteria_result(result, add_parameters = TRUE, ...)
```

Arguments

Description

Internal: maps parameter

Usage

```
nl_map_parameter(experiment, parameter_name)
```

Arguments

```
experiment Experiment object
parameter_name Parameter name to map
```

Value

NetLogo variable name

12 nl_param_fast

nl_netlogo_path

Get and set netlogo path

Description

Get and set netlogo path

Usage

```
nl_netlogo_path(nl_path = NULL)
```

Arguments

nl_path

An absolute path to your NetLogo installation On Windows, for example, something like "C:/Program Files/NetLogo 5.1.0".

nl_param_fast

Generate a parameter value sets for the FAST method

Description

Uses fast_parameters from **fast** package to create parameter sets for Fourier Amplitute Sensitivity Test (FAST).

Usage

```
nl_param_fast(...)
```

Arguments

... Named list of parameter ranges (numeric vectors)

Details

Uses only parameters with min != max values to create parameter sets. Adds dummy variable.

Value

A data frame with parameter value sets.

See Also

Use nl_get_fast_sensitivity to get sensitivity data. See fast package documentation for FAST algorithm details. from the simulation results. See nl_param_lhs for latin hypercube sampling.

nl_param_oat

Examples

```
param_values <- nl_param_fast(
  world_size = 50,
  population = 80,
  max_align_turn = c(1, 5, 20),
  max_cohere_turn = c(1, 3, 20),
  max_separate_turn = c(1, 1.5, 20),
  vision = c(1, 3, 10),
  minimum_separation = c(1, 3, 10)
)</pre>
```

nl_param_oat

Create parameter sets with "one-at-a-time" (OAT) approach

Description

Create parameter sets with "one-at-a-time" (OAT) approach

Usage

```
nl_param_oat(n, ...)
```

Arguments

n Number of parameter sets per parameter

.. Named list of parameter ranges (numeric vectors) Minimum and maximum values are used as a range and median as the default value. Parameters with only 1 value are treated as constants.

Value

A data frame with parameter value sets

See Also

See also nl_param_lhs for latin cube and nl_param_fast for FAST parameter sampling.

```
# create 5 values for every parameter:
nl_param_oat(n = 5, P1 = c(1, 4, 10), P2 = c(4, 11, 20))
# using constant parameters:
nl_param_oat(n = 5, P1 = c(1, 4, 10), P2 = c(4, 11, 20), P3 = 6)
# define NetLogo experiment with OAT design:
experiment <- nl_experiment(
    model_file = "models/Sample Models/Biology/Flocking.nlogo",
    setup_commands = c("setup", "repeat 100 [go]"),
    iterations = 5,

    param_values = nl_param_oat(
        n = 25,  # create 25 value sets per parameter</pre>
```

14 nl_param_random

```
max_align_turn = c(0, 5, 20),
   max\_cohere\_turn = c(0, 3, 20),
   max_separate_turn = c(0, 1.5, 20),
   vision = c(1, 3, 10),
   minimum\_separation = c(0, 3, 10),
    .dummy = c(0, 0.5, 1),
   world_size = 50,
   population = 80
  ),
  mapping = nl_default_mapping,
  step_measures = measures(
   converged = "1 -
    (standard-deviation [dx] of turtles +
   standard-deviation [dy] of turtles) / 2",
   mean_crowding =
      "mean [count flockmates + 1] of turtles"
  ),
  eval_criteria = criteria(
   c_converged = mean(step$converged),
   c_mcrowding = mean(step$mean_crowding)
  ),
  repetitions = 10,
                                            # repeat simulations 10 times
  random\_seed = 1:10
)
```

nl_param_random

Create random parameter sets within parameter ranges

Description

Create parameter sets with Latin Hypercube sampling or monte carlo

Usage

```
nl_param_random(n, ..., FUN)
nl_param_mc(n, ...)
nl_param_lhs(n, ...)
```

Arguments

FUN

n Number of parameter sets

Parameters with ranges (numeric vectors) or a data frame with parameters as columns or a list of parameter values

A function with parameters n and k, returns a matrix with k columns and numeric double values in range from 0 to 1

nl_param_random 15

Details

nl_param_lhs returns n parameter value sets with LHC sampling. It uses lhs::randomLHS function and requires **lhs** package.

nl_param_mc returns n parameter value sets with random parameters.

nl_param_random returns n parameter value sets with custom defined method.

Value

A data frame with parameter value sets

```
experiment <- nl_experiment(</pre>
  model_file = "models/Sample Models/Biology/Flocking.nlogo",
  setup_commands = c("setup", "repeat 100 [go]"),
  iterations = 5,
  param_values = nl_param_lhs(
    n = 100,
                                       # create 100 parameter value sets
    world_size = 50,
    population = 80,
   vision = 6,
   min_separation = c(0, 4),
   max_align_turn = c(0, 20)
  ),
  mapping = c(
   min_separation = "minimum-separation",
    max_align_turn = "max-align-turn"),
  step_measures = measures(
    converged = "1 -
    (standard-deviation [dx] of turtles +
    standard-deviation [dy] of turtles) / 2",
    mean_crowding =
      "mean [count flockmates + 1] of turtles"
  eval_criteria = criteria(
    c_converged = mean(step$converged),
    c_mcrowding = mean(step$mean_crowding)
  ),
  repetitions = 10,
                                           # repeat simulations 10 times
  random\_seed = 1:10,
                                           # aggregate over repetitions
  eval_aggregate_fun = mean
# custom sampling method must return a n x k matrix:
nl_param_random(
n = 5,
foo = c(1, 2),
bar = c(100, 200),
baz = 4,
FUN = function(n, k) matrix(runif(n*k), ncol = k)
```

nl_run

nl_parse_model	Parse NetLogo model file	

Description

Gets information about widgets (e.g. sliders, monitors, plots) from from NetLogo model file

Usage

```
nl_parse_model(model_file)
```

Arguments

Details

Imports attributes from sliders defined in NetLogo model file. Based on information from https://github.com/NetLogo/wiki/Model-file-format and https://github.com/NetLogo/NetLogo/wiki/Widget-Format

Value

Returns an object of class nl_model. It is a list containing at most the following components:

view	a data frame with NetLogo model view attributes
sliders	a data frame with NetLogo model sliders attributes
switches	a data frame with NetLogo model switches attributes
monitors	a data frame with NetLogo model monitors attributes
plots	a data frame with NetLogo model plots attributes

HI_I ull Kun IveiLogo experimen	nl_run	Run NetLogo experiment
---------------------------------	--------	------------------------

Description

Runs NetLogo model for defined every parameter and repetitions. Returns a list of data frames for each measure defined in experiment.

```
nl_run(experiment, print_progress = FALSE, gui = FALSE, parallel = FALSE,
    max_cores = NULL)
```

nl_run 17

Arguments

experiment NetLogo experiment object

print_progress Set to TRUE if you want to follow the progress in the console

gui Start NetLogo with GUI (by default NetLogo is run in headless mode)
parallel Runs experiment in parallel worker processes (requires parallel package)

max_cores (optional) only relevant if parallel = TRUE. If not defined all available proces-

sors will be used

Details

Model is run for each parameter combination defined in parameter sets If repetition (defined in experiment) is greater than 1 then each run for a parameter set is repeated accordingly. Before each run the parameters are set and setup procedure(s) are called. After each run criteria function(s) are calculated (if defined)

Use parallel option if there are more than a few runs per processor core.

Value

Returns an object of class nl_result. It is a list containing at most the following components:

step a data frame with observations based on temporal (step) measures. It includes

at least param_set_id (id of parameter set), run_id (ID of simulation repetition), step_id (ID of simulation step), and columns named after the temporal measures

run a data frame with observations based on final run measures. It includes at least

param_set_id (id of parameter set), run_id (ID of simulation repetition), and

columns named after the temporal measures

agents_after a data frame with observations based on agents after each simulation run

agents_before

a data frame with observations based on agents before each simulation run

patches_after

a data frame with observations based on patches after each simulation run

patches_before

a data frame with observations based on patches before each simulation run

criteria a data frame with values provided by criteria expressions (eval_criteria in

experiment definition possibly aggregated by eval_aggregate_fun) and addi-

tional criteria defined by eval_mutate expressions

export a filename list with reference to parameter sets and simulation repetitions

duration time spent to complete the experiment (in difftime)

experiment original NetLogo experiment object used

See Also

See nl_experiment for creating NetLogo experiment object.

nl_set_measures

Description

Set reporting of variable value(s) of one or more agent(s) as a data.frame

Usage

```
nl_set_agent_reports(experiment, agents_before = NULL, agents_after = NULL,
    agents_step = NULL, patches_before = NULL, patches_after = NULL)
```

Arguments

experiment	NetLogo experiment object
agents_before	A list of agent reports to be accessed before each run.
agents_after	A list of agent reports to be accessed after each run.
agents_step	A list of agent reports to be accessed per each iteration (step).
patches_before	A list of patches reports to be accessed before each run
patches_after	A list of patches reports to be accessed after each run

Value

NetLogo experiment object

See Also

To create an experiment object use nl_experiment

```
nl_set_measures Set or change measures of existing NetLogo experiment
```

Description

Set or change measures of existing NetLogo experiment

```
nl_set_measures(experiment, step = NULL, run = NULL, eval_criteria = NULL,
  eval_aggregate_fun = NULL, eval_mutate = NULL, as.data.frame = TRUE,
  step_transform = NULL)
```

nl_set_param_values 19

Arguments

experiment NetLogo experiment object

step NetLogo reporters for each step (reported at every tick). A list of named char-

acter vectors. Use measures function to get the correct structure.

run NetLogo reporters for each run (reported at end of run). A list of named charac-

ter vectors. Use measures function to get the correct structure.

eval_criteria A criteria calculation expressions. May use step or run data frames to calculate

criteria. Elements from step should be aggregated. Must return named numeric

vector.

eval_aggregate_fun

Aggregate criteria. It makes sense when when repetitions > 1

eval_mutate Add criteria based on aggregated values

as.data.frame Reporting in data frame format (TRUE by default)

step_transform A function to transform data frame result from step reporters. When simulation

has many steps and only summary data is needed, step_transform can reduce

memory requirements to run experiment.

Details

Values of experiment measures are NetLogo reporters. Names of measures will be used in the resulting data frames as column names.

Value

NetLogo experiment object

See Also

To create an experiment object use nl_experiment

Description

Define parameter sets for NetLogo experiment

Usage

```
nl_set_param_values(experiment, param_values = NULL, mapping = NULL)
```

Arguments

experiment NetLogo experiment object from nl_experiment() function

param_values A data.frame with parameter values or a list of values to be expanded to all

combinations of values

mapping Mapping between R and NetLogo parameters in named character vector. For

example: c(diffusion_rate = "diffusion-rate", population = "population")

20 nl_set_run_options

Value

NetLogo experiment object

Description

You can set basic run options when creating experiment object with nl_experiment. To change these or add additional options use nl_set_run_options

Usage

```
nl_set_run_options(experiment, random_seed = NULL, repetitions = 1,
    max_minutes = 10, setup_commands = "setup", go_command = "go",
    data_handler = NULL)
```

Arguments

experiment NetLogo experiment object from nl_experiment() function

random_seed Random seed

repetitions Number of repetitions (when random seed is not defined)

max_minutes If max.minutes > 0 the execution stops after the defined number of minutes (with an error and no return value) Default value is 10.

setup_commands NetLogo command strings to execute to setup the model

go_command NetLogo command string to execute the step in the model

data_handler Function to handle observations. If handler is defined the observations will not be stored in result elements when running the experiment with 'nl_run' function.

Value

NetLogo experiment object

```
experiment <- nl_experiment(
  model_file = "my_model.nlogo",
  while_condition = "any? turtles"
)

experiment <- nl_set_run_options(
  experiment,
  repetitions = 3,
  setup_commands = c("setup", "change_something")
)</pre>
```

nl_show_params 21

nl_show_params Plots parameters with scatter plots
--

Description

Plots parameters with scatter plots

Usage

```
nl_show_params(experiment, cex = 0.7, col = "#000000CC",
   lower.panel = NULL, ...)
```

Arguments

experiment	Experiment object
cex	Parameter passed to pairs function
col	Parameter passed to pairs function
lower.panel	Parameter passed to pairs function
	Parameters passed to pairs function

Description

Plot patches from simualations result

Usage

```
nl_show_patches(result, x_param, y_param = NULL, fill = "pcolor",
  type = "patches_after", sub_type = NULL)
```

Arguments

result	NetLogo experiment result object
x_param	row parameter
y_param	column parameter
fill	variable to control the color (default is pcolor)
type	as type from nl_get_result (default is "patches_after)
sub_type	as sub_type from nl_get_result (optional - if not the first patches set)

22 nl_show_views_grid

nl_show_step

Description

Plot observations for each simulation step

Usage

```
nl_show_step(result, x = "step_id", y, color = "run_id", x_param = ".",
    y_param = ".", title = NULL, data_filter = NULL, alpha = 1)
```

Arguments

result	NetLogo experiment result object
X	"step_id" or measure name (as string) to choose for x axis
у	measure name as string to plot on y axis
color	by default it is based on "run_id" (simulation repetition). Change to NA to plot every repetition in black
x_param	which parameter to use for faceting horizontally
y_param	which parameter to use for faceting vertically
title	plot title
data_filter	optional subset expression (not quoted) using parameters, run_id and $step_id$
alpha	lines opacity

See Also

To get only data and create custom plots see nl_get_result

```
nl_show_views_grid Show exported views images in a grid
```

Description

Show exported views images in a grid

Usage

```
nl_show_views_grid(result, x_param = NULL, y_param = NULL, img_gap = 0.03)
```

Arguments

result	Result from nl_run function
x_param	Name of parameter on x axis
y_param	Name of parameter on y axis
img_gap	A gap between the images

print.nl_experiment 23

Description

Print NetLogo experiment object

Usage

```
## S3 method for class 'nl_experiment'
print(x, ...)
```

Arguments

x NetLogo experiment object

... further arguments passed to or from other methods.

Index

parallel, 17

```
difftime, 17
                                                  print.nl_experiment, 23
fast, 12
                                                  sensitivity, 9
fast_parameters, 12
measures, 19
nl_default_mapping, 3
nl_eval_close (nl_eval_run), 4
nl_eval_init (nl_eval_run), 4
nl_eval_run, 4, 4
nl_eval_tracer, 6
nl_experiment, 2, 4, 5, 7, 9, 17-20
nl_export_path, 8
nl_get_criteria_result (nl_get_result),
nl_get_eval_fun (nl_eval_run), 4
nl_get_fast_sensitivity, 9, 12
nl_get_param_range, 10
nl_get_result, 2, 11, 22
nl_get_run_result (nl_get_result), 11
nl_get_step_result (nl_get_result), 11
nl_map_parameter, 11
nl_netlogo_path, 12
nl_param_fast, 9, 12, 13
nl_param_lhs, 12, 13
nl_param_lhs (nl_param_random), 14
nl_param_mc (nl_param_random), 14
nl_param_oat, 13
{\tt nl\_param\_random,}\ {\tt 14}
nl_parse_model, 16
nl_run, 2, 4, 8, 11, 16
nl_set_agent_reports, 7, 18
nl_set_measures, 2, 5, 7, 8, 18
nl_{set_param_values, 2, 8, 19}
nl_set_run_options, 2, 7, 8, 20
nl_show_params, 21
nl\_show\_patches, 2, 21
nl\_show\_step, 2, 22
nl_show_views_grid, 22
nlexperiment (nlexperiment-package), 2
nlexperiment-package, 2
```