

Thema/Subject visTABLE®touch - Labor

visTABLE®touch

LABOR - Aufgabe Selbststudium

DHBW Ravensburg – Campus Friedrichshafen Wahlmodul Fabrik- und Anlagenplanung

Inhalt

Ablauf	2
Grundinformationen	2
Vorstellung der Software	
Einführung in das Programm	7
Aufgabenstellung Selbststudjum	

Thema/Subject visTABLE®touch - Labor

Ablauf

Montag, 02.05.2021 - 12:00 Uhr - 14:30 Uhr

Theorieeinheit, Einführung in das Programm, Besprechung der Projektarbeit

02.05.2021 - 09.05.2021

Selbststudium - Ausarbeitung der Projektarbeit

Montag, 09.05.2020 - 12:00 Uhr - 14:30 Uhr

Durchsprache der erstellten Modelle – pro Team ca. 15min

Grundinformationen

- visTABLE®touch intuitive Fabrikplanung
- Optimierung, Bewertung und Visualisierung einer Fabrik
- effizientes und zielorientiertes Anpassungsmanagement
- keine CAD-Kenntnisse notwendig
- 3D-Bibliothek mit über 1500 skalierbaren Modelle oder Import eigener .step-Modelle

Grundlegende Bereiche

- Montageplanung
 - o Spaghetti-Diagramm
 - o Variantenbewertung
- Materialflussanalyse und Prozessoptimierung
 - o Materialflussoptimierung durch Visualisierungs- und Bewertungsfunktionen
 - o Verbesserungsempfehlungen
 - o Sankey-Diagramm
 - o Transportkosten und -distanzen bewerten und gegenüberstellen
 - o Transportwegbelastungen verdeutlichen (Bottleneck)
- Layoutplanung
 - o Vom Groben zum Feinen
 - o CAD-Import
 - o Blocklayouts
 - o Effizienzsteigerung gemäß Wertstrom

Thema/Subject visTABLE®touch - Labor

- o Auswertung und Verbesserung des Flächennutzungsgrades
- o Erhöhung der Flexibilität
- o Reduzierung von Durchlaufzeiten
- o Steigerung von Qualität, Produktivität und Liefertreue
- o Darstellung in 2D- und 3D
- Fabrikplanung
 - o beherrschbare Komplexität durch Blocklayouts und anschließend Schrittweise Verfeinerung
 - o Kommunikations-/ Diskussionsgrundlage schaffen
 - o Szenarien-Gegenüberstellung
- Digitale Fabrik
 - o Digitaler Zwilling
 - o VR
 - Lebendiges Abbild
- Wertstromanalyse
 - o Visualisieren und Bewerten
 - o Wertstromperspektive über die gesamte Fabrik
 - o Digitaler Prozess-Graph
 - o Zuordnung von Arbeitsschritten und Ressourcen
 - o Zuordnung von Materialbewegungen und Kosten

4 Komponenten von visTABLE

Modellbibliothek

- Enthält die Blöcke zur Layouterstellung
- Enthält vorgefertigte Modelle
- Kann jederzeit individuell erweitert werden → Objektmanager
 - o Objektmanager zur Verwaltung aller Modelle
 - o Jedes Modell besteht aus 2D und 3D-Darstellung

Layouterstellung

- Hauptkomponente der Modellierung
- Aufbau des 2D-Modells

3D-Viewer

- 3D Modell
- Erzeugung im Hintergrund über 2D-Layout
- 3D-Daten können ausgeleitet werden

Thema/Subject visTABLE®touch - Labor

Materialfluss - Logix

- Prozessdarstellung sehr einfach
- Transportdaten und Durchlaufzeiten werden hier hinterlegt
- Ausgehend hiervon werden die Transportintensitäten berechnet
- Grundlage zur Optimierung der Modelle
- Import/ Export möglich

Vorgehen

- 1. Erstellung des Grundrisses (falls vorhanden per .dwg o.ä.)
- 2. Prozess-Graph inkl. Hintergrundinformationen erstellen
- 3. Blocklayout definieren (Farbliche Trennung, Platzbedarf aus Vorabdimensionierung)
- 4. Transportnetz im Blocklayout definieren
- 5. Blocklayout optimiert anordnen (Anordnungsoptimierung durch visTABLE beachten)
- 6. Maschinen und weitere Details in das Blocklayout einfügen
- 7. Optimierungen ausleiten (Einsparungen gegenüber Ersterstellung)

Thema/Subject visTABLE®touch - Labor

Vorstellung der Software

Modellübersicht - Startbildschirm

Einstieg – neues Modell

• Aufgaben- und Werkzeugbereich aufgeteilt nach Entwurf und Bewertung

Thema/Subject visTABLE®touch - Labor

Modellbibliothek

- Blaue Buttons Kataloge
- Katalogübersicht zeigt alle Kataloge
- Individuelle Kataloge werden mit Personen gekennzeichnet
- Suchfunktion f

 ür Modelle und ganze Kataloge

Modell erstellen

- Drag and Drop aus der Modellbibliothek
- Modelle können angewählt werden dynamisches Menü öffnet sich
- Anzeige der Auswahl in der Statusleiste
- Gruppierung durch Gruppenauswahl oder "strg"
- Auswahlbox ist größer als Objekt einfachere Auswahl
- Drehen durch Auswahl kleine Winkel durch Verlängerung der Drehachse
- Verschieben durch Ziehen oder durch die Pfeiltasten (1cm), "shift+pfeil" (10cm), "shift+pfeil+strg" (1m)
- Fangen Objekte werden vereinfacht zusammengeführt
- Eigenschaften der Objekte/ Blöcke über dynamisches Menü

Blocklayout erstellen

- Blocklayoutobjekte in der Modellbibliothek
- Gruppierung von Blöcken und Maschinen (Maschinen auf dem Blocklayout verankern)

Layer

- Logische Layer um Bearbeitung zu vereinfachen
- Definition über die Eigenschaften
- Default-Einstellung Objekt
- Layer ein-/ausblenden oder sperren
- Layer-Übersicht im Aufgabenbereich

3D Modell

- 3D-Ansicht
- Bewegung "linksklick vorne hinten"
- E nach oben, Q nach unten
- "linksklick" + Leertaste schwenken nach oben und unten
- Bewegung über den Ansichtenwürfel zentrale Ansicht bei angeklickten Objekten
- Mausrad drehen
- Kamera im 2D-Modell zeigt die Position der Kamera im 3D-Modell

Thema/Subject visTABLE®touch - Labor

Einführung in das Programm Einstieg in das Programm

Benutzeroberfläche

Thema/Subject visTABLE®touch - Labor

Menüband

Logix Übersicht

Thema/Subject visTABLE®touch - Labor

Logix Produktfamilie

Thema/Subject visTABLE®touch - Labor

Aufgabenstellung Selbststudium

Finden Sie sich in Teams von 3 Personen zusammen.

Erarbeiten Sie gemeinsam im Team einen Produktionsprozess inkl. der notwendigen Daten (Transportmengen, Kosten etc. über visTABLE logix). Gerne darf dies in Anlehnung an einen realen Prozess erfolgen. Versuchen Sie, wie in der Vorlesung besprochen, vom Groben zum Feinen vorzugehen.

Ihr erstelltes Modell stellen Sie vor dem Kurs in 15 min vor. Die notwendigen Schritte sind unten nochmals kurz angeführt.

Ihr Prozess muss mindestens aus einem WE- und einem WA-Lager bestehen. Zudem müssen mindestens ein Fertigungs- und ein Montagebereich vorhanden sein. Gerne dürfen Sie eine komplexere Fabrik modellieren. Ihr Produkt muss aus vier oder mehr Einzelteilen bestehen. Zahlen können fiktiv sein, jedoch sollten Sie sich Gedanken darüber machen, wie Sie diese Zahlen ermitteln. Legen Sie für die Unterscheidung der Materialflüsse zwei unterschiedliche Produktfamilien, also zwei Produktionsabläufe, an.

Bedenken Sie, dass es im ersten Schritt nicht auf eine millimetergenau Anordnung ankommt, sondern dass eine Diskussionsgrundlage zur weiteren Planung ihrer Fabrik erschaffen wird. Befassen Sie sich vor allem mit den möglichen Auswertungen der Software. Legen Sie hierauf in der Ausarbeitung den Fokus.

Unten angeführt finden Sie Angaben für eine Beispielaufgabe.

Führen Sie folgende Arbeitsschritte durch:

- 1. Anordnungsraum festlegen (Bspw. Grundriss)
- 2. Dimensionierungsergebnisse einbringen (Abschätzung der Ressourcenflächen)
- 3. Materialfluss analysieren (Logix)
- 4. Anordnung optimieren (Anordnungsoptimierung)
- 5. Transportrouten entwerfen (Transportnetz)
- 6. Logistikbewertung vornehmen (Analyse inkl. Flächennutzung etc.)

Folgende Aspekte fließen in die Bewertung der Abgabe ein:

- 1. Modell (Detailierungsgrad, Komplexität, Vollständigkeit)
- 2. Analyse (Anwendung der Optimierungstools, Vergleich von Optionen)
- 3. Präsentation
- 4. Dokumentation (Begründung gewählter Produktionszahlen, Dokumentation der Arbeitsschritte, Form)

Thema/Subject visTABLE®touch - Labor

Beispielaufgabe:

Für die Herstellung von Tischen werden Drehteile, Frästeile und Holzzuschnitte benötigt. Stücklisten und Fertigungsunterlagen sind gegeben. Die Aufgabe besteht darin anhand der gegebenen Informationen eine Fertigung gemäß einer möglichst optimalen Planung auf einer Fläche von 50mx40m zu erstellen. Sozial- und Sanitärräume sind hierbei außer Acht zu lassen, da diese bereits anderweitig vorhanden sind. Wichtig zu wissen ist, dass der Nettobedarf von Tisch "premium" 8000 Stk. und Tisch "standard" 15000 Stk. beträgt.

Ein Tisch "standard" besteht aus einer Tischplatte und zwei Tischbeinen. Beim Tisch "premium" ist eine Quertraverse zwischen den Tischbeinen eingesetzt.

Die Stücklisten gestalten sich wie folgt:

Tisch "standard"

Lfd. Nr.	Benennung	Werkstoff	Halbzeug	Rohteilgewicht	Produktionsmenge [Stk.]
1	Tischplatte	Holz	Sägeteil	20kg	15426
2	Füße	Edelstahl	Dreh-/Frästeil	10kg	30852
3	Schrauben M8x30	Edelstahl	Zukauf	0,005kg	246816

Tisch "premium"

Lfd.	Benennung	Werkstoff	Halbzeug	Rohteilgewicht	Produktionsmenge
Nr.					[Stk.]
1	Tischplatte	Holz	Sägeteil	20kg	8228
2	Füße	Edelstahl	Dreh-/Frästeil	10kg	16455
3	Schrauben M8x30	Edelstahl	Zukauf	0,005kg	131640
6	Quertraverse	Edelstahl	Dreh-/Frästeil	5kg	8228

Die Stückzahlen beruhen auf der Nettobedarfsmenge, zuzüglich 2% Mehrbedarf und 0,84% Ausschuss.

Zur Produktion der Teile stehen folgende Materialien zur Verfügung:

Material	Endprodukt	Anzahl Material/	Material/Transport
		Endprodukt [Stk.]	[Stk.]
Holzplatte	Tischplatte	1	2
Flacheisen	Tischbein	2	8
Flacheisen	Quertraverse	1	16
6kt. M8x30	6kt. M8x30	1	200

Datum Thema/Subject

25.04.2022 visTABLE®touch - Labor

Pro Transport wird generell ein Behälter transportiert. Jegliche Anzahl bezieht sich auf die Menge in einem Behälter. Zukaufteile werden in Gesamtpaketen bezogen.

Bedarfsflächen für die einzelnen Bereiche

Bereich	Fläche	Bereich	Fläche	
WE-Lager (10%)	200 m²	Fräsen (10%)	200 m²	
WA-Lager (10%)	200 m²	Sägen (10%)	200 m²	
Montage (25%)	500 m ²			

Transportkosten

Werkerkosten/m 0,01€ Service-Kosten Stapler/m 0,01€