

f1 – Sphere function, 2-D

- minimal requirement test (= 'ONEMAX' in cont. domain)
- simple Monte Carlo sampling fails

f1 – Sphere function, 2-D

- minimal requirement test (= 'ONEMAX' in cont. domain)
- simple Monte Carlo sampling fails

f1 – Sphere function, 5-D

f1 – Sphere function, 20-D

only memPSODE shows linear convergence

f1 – Sphere function, 5-D

f2 – Ellipsoid, 5-D

- unsymmetric version of f1 with high condition number
- for some algorithms, a high condition number seem problematic

f10 - Ellipsoid, 5-D

- rotated version of f2
- besides memPSODE, all algorithms (heavily) exploit separability

f5 – Linear, 20-D

- can algorithms go outside the convex hull of initial solutions?
- yes for some but not for U-zero, U-DCN, and PRCGA

f19 - Compos. Griewank-Rosenbrock F8F2, 20-D

- PRCGA surprisingly good for this highly multimodal problem
- keeping in mind that the 'best 2009' is an artificial algorithm

f20 – Schwefel, 20-D

Cellular GA 'ring100' exceptionally good (also for smaller dim.)

All Functions

except memPSODE, all algorithms rather weak

BBOB-2012 Submissions

Separable Functions

only function class with reasonable performances

Highly Conditioned Functions

Enjoy the lunch time!