Video of Interaction

• Gold Medal Match in the 2018 PyeongChang Olympics

Curling Info:

Assumptions

Geometry of Curling Stones – simple cylindrical disc Frictional Force on Ice – constant and very small (neglect for most!) Neglect of Air Drag Center of Mass – center of disc Coefficient of Restitution – material constant

Tracker Analysis: Axis

- Camera moves and zooms out
- Relative frame, changing position and scale
- Track 3 points:
 - Circle center, top edge, right edge
- Affix origin to circle center
- Affix calibration sticks to origin + circle edges

Tracker Analysis: Motion!

- Track all 3 stones at CoM
- Tracker takes care of our relative frame!
- Collision 1 (A+B) @ 1.120s
- Collision 2 (B+C) @ 2.320s

Note Stone C is out of frame until about 0.5s, and leaves frame at about 4s.

Tracker Analysis: Motion (cont.)

Tracker Analysis: Angular Motion!

- Set new axes, origin at CoM of each stone
 - Origin moves with stone!
- Track edge of stones, plot angle wrt. origin
- Neglect friction for rotation \rightarrow find average ω for **select** periods of time (before/after collision)
 - Use Python!

Tracker Analysis: Angular Motion (cont.)

Tracker Analysis: Coefficient of Restitution

- Isolate 1st interaction (A+B)
- Set new axis
- Origin at combined COM
- Y-axis (Normal) runs through the two COM
- Neglect X-component (Tangential)
- Calculated COR: e = 0.8345!!!!
- Actual COR*: $e = 0.83 \pm 0.06$

 $COR = (vyB_f_obj - vyA_f_obj) / (vyA_i_obj - vyB_i_obj)$

☐ Columns ▼	Stone A 😊		٠
<u>t (s)</u>	v (m/s)	frame	
5.320	0.210		158
5.360	0.242		159
5.400	0.143		160
5.440	4.270E-2		161
5.480	0.241		162
5.520	4.908E-3		163
5.560	5.091E-2		164
5.600	4.519E-2		165
5.640	9.375E-4		166

Tracker Analysis: Friction

- Because Stone A moves for so long, the effects of the small friction force can be seen!
 - Isolate t=5.520s for full stop.
 - Collision at t=1.120s
 - $\Delta t = 4.40$ s
- "Initial" speed (after collision):

$$v_{i} = \sqrt{(-0.3945)^{2} + (-0.2592)^{2}} = 0.4720 \, m/s$$

$$v_{f} = v_{i} + a\Delta t$$

$$0 = 0.472 \, m/s + a(4.40s)$$

$$a = -0.1073 \, m/s^{2}$$

$$F_{f} = \mu N = ma$$

$$\mu mg = ma$$

$$\mu = \frac{a}{a} = \frac{-0.1073 \, m/s^{2}}{-9.81 \, m/s^{2}}$$

- Calculated: $\mu_k = 0.0109$
- Actual*: $\mu_k \in [0.006, 0.016]$

^{*} https://www.mdpi.com/2075-4442/10/10/265#:~:text=lt%20can%20be%20seen%20that.film%20on%20the%20ice%20surface

Python Modeling: Our turn! ©

- Scrape necessary data from Tracker
 - Initial positions of all stones
 - Initial velocity (trans. and ang.) of stone A
- Write equations of motion
- Use Python script

Python Modeling: Equations of Collision

Let Stone B start from rest (like in the video model)

Note that all velocities shown act on the **point of contact**.

Ignore impulsive force if we use momentum of system! It is internal ©

Knowns (from Tracker): v_{AT} , v_{AN} , $v_{BT} = v_{BN} = 0$

No change in velocity along tangential (no impulse!):

$$v_{AT} = v_{AT}' \qquad \qquad v_{BT} = v_{BT}' = 0$$

Conserve momentum along normal:

$$m_A v_{AN} + m_B v_{BN} = m_A v_{AN}' + m_A v_{BN}'$$
 Recall $m_A = m_B$ $v_{AN} = v_{AN}' + v_{BN}'$ $v_{BN} = 0$

Use COR along normal:

$$v_{BN}' - v_{AN}' = e(v_{AN} - v_{BN})$$

 $v_{BN}' - v_{AN}' = e(v_{AN})$

4 equations, 4 unknowns!

Python Modeling: What about rotation!?

- All our Tracker velocities are based on COM!
- To get velocity of point of contact:

$$\overrightarrow{v_A} = \overrightarrow{v_G} + (\overrightarrow{\omega} \times \overrightarrow{r})$$

$$\overrightarrow{v_{An}} = \overrightarrow{v_{Gn}}$$

$$\overrightarrow{v_{At}} = \overrightarrow{v_{Gt}} + r\omega \hat{t}$$

After the collision, it is necessary to work backwards:

$$\overrightarrow{v_{Gt}'} = \overrightarrow{v_{At}'} - r\omega'\hat{t}$$

• How do we get ω' ?

$$I\omega_A + I\omega_B = I\omega_A' + I\omega_B'$$

$$\omega_A = \omega_A' + \omega_B'$$

- Here we ran into an issue...
 - We can get total angular momentum of system
 - But we found no good way to split it per stone:

$$I\omega_A + M\Delta t = I\omega_A',$$

 $M = F_f * r$

But friction depends on the Normal force (impulse), which changes per collision, and means we introduce MORE unknowns!

What we decided:

- Realized our system has too many unknowns to solve.
- Need to give ourselves more info from Tracker!
- We gave ourselves:
 - ω'_A after Col. 1
 - ω'_C after Col. 2

Python Modeling: How do we get our x-y Tracker data to n-t?

- Calculate unit normal vector
 - Position vectors of CoM
 - Due to the geometry of circle
 - Magnitude of normal vector

```
14 # Define the known values (Insert Values)
15 P1x, P1y = -0.320, 0.894
                                             # Position of COM of Stone A
16 \text{ P2x}, P2y = -0.189, 0.629
                                             # Position of COM of Stone B
17 V1x, V1y, w1 = 0.0457, -1.3599, 0.6586
                                                    # Velocities of Stone A
18 \text{ V2x, V2y, w2} = 0, 0, 0
                                            # Velocities of Stone B
23 # Define the normal and tangential vectors
24 n_vector = (P2x - P1x, P2y - P1y) #normal vector
25 mag_n = sqrt(n_vector[0]**2 + n_vector[1]**2) # Calculate the magnitude of the normal vector
27 print("Actual distance between the two COM:", mag_n)
28 print("Theoretical distance between the two COM:", 2*r)
31 unit_n = ((n_vector[0] / mag_n) , (n_vector[1] / mag_n)) # Unit normal vector
32 print("unit n:", unit_n)
34 V1 = (V1x, V1y) # velocity of stone 1 in vector form
37 # Calculate normal and tangential components
38 \text{ mag_V1n} = ((V1[0] * unit_n[0]) + (V1[1] * unit_n[1]))
39 V1n = ((mag_V1n * unit_n[0]), (mag_V1n * unit_n[1])) # Dot product of unit_n and V1 is Vn1
```

- Calculate normal component
 - Dot product
 - Projection on n-axis

Python Modeling: x-y to n-t (cont.)

 $\overrightarrow{v_t} = \overrightarrow{v} \cdot \hat{t}$

Tangential Component

$$\overrightarrow{v_1} = \overrightarrow{v_{1n}} + \overrightarrow{v_{1t}}$$

$$\overrightarrow{v_{1t}} = \overrightarrow{v_1} - \overrightarrow{v_{1n}}$$

- Unit Tangent Vector
 - Calculate from $\overrightarrow{v_{1t}}$
 - Important for later when converting n-t coordinates back

to x-y

```
40 V1t = ((V1[0] - V1n[0]) , (V1[1] - V1n[1] + r * w1))
41 mag_V1t = sqrt(V1t[0]**2 + V1t[1]**2)
42 unit_t = ((V1t[0] / mag_V1t) , (V1t[1] / mag_V1t))
43 print("unit t:", unit_t)
44 print("")
45
46 print("V1n:", mag_V1n)
47 print("V1t:", mag_V1t)
48 print(sqrt(V1[0]**2 + V1[1]**2), " = ", sqrt(mag_V1n**2 + mag_V1t**2) , "?")
49 print("")
50
51
52 mag_V2n = 0
53 mag_V2t = 0
```

Python Modeling: Solving the system of equations

```
Knowns (from Tracker): v_{AT}, v_{AN}, v_{BT} = v_{BN} = 0

No change in velocity along tangential (no impulse!): v_{AT} = v_{AT}' \qquad v_{BT} = v_{BT}' = 0

Conserve momentum along normal: m_A v_{AN} + m_B v_{BN} = m_A v_{AN}' + m_A v_{BN}' \qquad \text{Recall } m_A = m_B \\ v_{AN} = v_{AN}' + v_{BN}' \qquad v_{BN} = 0

Use COR along normal: v_{BN}' - v_{AN}' = e(v_{AN} - v_{BN}) \\ v_{BN}' - v_{AN}' = e(v_{AN})
4 equations, 4 unknowns!
```

- 4 equations, 4 unknowns
- Velocity calculated = velocity on point of collision
 - Need to consider angular velocity to determine CoM

```
56 # Da equations
57 eq1 = Eq(mag_V1t, mag_V1tf)
58 \text{ eq2} = \text{Eq(mag_V2t, mag_V2tf)}
59 \text{ eq3} = \text{Eq(m} * \text{mag_V1n} + \text{m} * \text{mag_V2n}, \text{m} * \text{mag_V1nf} + \text{m} * \text{mag_V2nf)}
60 eg4 = Eg(mag_V2nf - mag_V1nf, e * (mag_V1n - mag_V2n))
61
62 # Solve the system of equations
63 solution = solve((eq1, eq2, eq3, eq4), (mag_V1tf, mag_V2tf, mag_V1nf, mag_V2nf))
64
65 # Print the solution
66 print("Tangential and Normal Components:")
67 print("VAtf =", solution[mag_V1tf])
68 print("VBtf =", solution[mag_V2tf])
69 print("VAnf =", solution[mag_V1nf])
70 print("VBnf =", solution[mag V2nf])
71 print("")
72
73 # Calculate final velocities using the normal and tangential components
74 mag_V1tf = solution[mag_V1tf]
75 mag V2tf = solution[mag V2tf]
76 mag_V1nf = solution[mag_V1nf]
77 mag_V2nf = solution[mag_V2nf]
```

Python Modeling: Angular Velocity and x-y coordinate system

```
80 # Calculate final angular velocities using conservation of angular momentum
81 # Define the final angular velocities
82 \text{ wtotal} = 0.6586
83 \text{ w1f} = 2.0433
                  # Angular velocity of A, given
84 w2f = wtotal - w1f # Angular velocity of B
                                                                                                                                   velocity
86 # Display the final angular velocities
87 print("Total System Angular Velocity:", wtotal)
88 print("w1f:", w1f)
                                                                                                                                           momentum
89 print("w2f:", w2f)
90 print("")
92 # Define the final velocities in terms of initial velocities and final components
                                                                                                                               • Recall:
93 V1f = (mag_V1nf * unit_n[0] + (mag_V1tf - (r * w1f)) * unit_t[0], mag_V1nf * unit_n[1] + (mag_V1tf - (r * w1f)) * unit_t[1]
94 V2f = (mag_V2nf * unit_n[0] + (mag_V2tf - (r * w2f)) * unit_t[0], mag_V2nf * unit_n[1] + (mag_V2tf - (r * w2f)) * unit_t[1])
96 # Display the final velocities
97 print("Final Velocities:")
98 print("VAxf =", V1f[0])
99 print("VAyf =", V1f[1])
```

- Determine angular
 - Conservation of angular
 - Aforementioned given ω
- After the collision, it is necessary to work backwards:

$$\overrightarrow{v_{Gt}'} = \overrightarrow{v_{At}'} - r\omega'\hat{t}$$

Turn back to x-y coordinates

100 print("VBxf =", V2f[0])

- Not difficult; n-t components were written in terms of x-y
- As most calculations were done with magnitude of n-t components
- Multiply magnitude of n-t components by unit vectors
- Add everything together

Python Modeling: B travelling to C

- Utilized final velocity of B
 - Parametrized to determine trajectory:
 - x = -0.189 + t
 - y = 0.629 3.46284t
 - Purple is real, tracker final B pos.
- Go through same process/run same python code for BC interaction

Results:

Table of Tracker Values										
Y	STONE A	A		STONE I	В		STONE	С		
⊕ x	<i>r</i> (m)	<i>v</i> (m/s)	ω̈ (rad/s)	<i>r</i> (m)	<i>v</i> (m/s)	ω̈ (rad/s)	<i>r</i> (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	
Collision 1 (A+B) Frame 53 t = 1.120s	-0.320î + 0.894ĵ	0.0457î 1.3599ĵ	$0.6586\hat{k}$	-0.189î + 0.629ĵ	0	0				
Post- Collision 1 (A+B) Frame 54 t = 1.160s	-0.333î + 0.880ĵ	-0.3945î - 0.2592ĵ	2.0433k	-0.171î + 0.585ĵ	0.4284î 0.9712ĵ	1.5034k				
Collision 2 (B+C) Frame 83 t = 2.320s				0.325î 0.536ĵ	0.4284î 0.9712ĵ	$1.5034\hat{k}$	0.466î 0.791 <i>ĵ</i>	0	0	
After Collision 2 (B+C) Frame 84				0.328î 0.536 <i>ĵ</i>	-0.0213î - 0.0222ĵ	0.9996 <i>k</i>	0.484î 0.822 <i>ĵ</i>	0.3883î - 0.7038ĵ	$-0.4737\hat{k}$	

Table o	of Python-C	Calculated V	⁷ alues							
Y	STONE A			STONE 1	STONE B			STONE C		
⊕ —x	\vec{r} (m)	<i>v</i> (m/s)	ω̈ (rad/s)	<i>r</i> (m)	\vec{v} (m/s)	$\vec{\omega}$ (rad/s)	<i>r</i> (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	
Collision 1 (A+B) Frame 53 t = 1.120s	-0.320 <i>î</i> + 0.894 <i>ĵ</i>	0.0457î 1.3599ĵ	$0.6586\hat{k}$	-0.189î + 0.629ĵ	0	0				
Post- Collision 1 (A+B) Frame 54 t = 1.160s		-0.1734î - 0.1615 <i>ĵ</i>	$2.0433\hat{k}$		0.3105î 1.075ĵ	$-1.3847\hat{k}$				
Collision 2 (B+C) Frame 83 t = 2.320s				0.1929î 0.6935ĵ	0.3105 <i>î</i> 1.075 <i>ĵ</i>	$-1.3847\hat{k}$	0.466î 0.791 <i>ĵ</i>	0	0	
After Collision 2 (B+C) Frame 84 t = 2.360s				0.1929î 0.6935ĵ	-0.2074î + 0.9170ĵ	$1.132\hat{k}$	0.466î 0.791 <i>ĵ</i>	0.5444î 0.2671	$-0.4737\hat{k}$	

Limitations:

- Tracker values Do NOT obey conservation of angular momentum
 - Torque from uneven ice friction?
- Our linear values are okay to meh. Not so much for angular.
- After collision 1
 - Directions consistent

- After collision 2
 - Difference in position
 - Sign changes in expected velocity AND angular velocity!

Python Modeling: B travelling to C, no angular momentum

 Utilized final velocity of B from new python that neglects angular motion

Parametrized to determine trajectory

•
$$x = -0.189 + t$$

• y = 0.629 - 2.022t

- Purple is real final B
- Previous one \rightarrow

Results (cont.):

- Decided to try modeling as point mass, since the angular motion was so unpredictable
 - Know this will cause error, but curious!

	Table of	Tracker	Values
,		STONE	Α

lable of Tracker values											
Y	STONE A			STONE B			STONE C				
⊕ —x	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)		
Collision 1 (A+B) Frame 53 t = 1.120s	$-0.320\hat{\imath} + 0.894\hat{\jmath}$	0.0457î 1.3599ĵ	$0.6586\hat{k}$	-0.189î + 0.629ĵ	0	0					
Post- Collision 1 (A+B) Frame 54 t = 1.160s	-0.333î + 0.880ĵ	-0.3945î - 0.2592ĵ	$2.0433\hat{k}$	-0.171î + 0.585ĵ	0.4284î 0.9712ĵ	$1.5034\hat{k}$					
Collision 2 (B+C) Frame 83 t = 2.320s				0.325î 0.536ĵ	0.4284î 0.9712ĵ	$1.5034\hat{k}$	0.466î 0.791 <i>ĵ</i>	0	0		
After Collision 2 (B+C) Frame 84 t = 2.360s				0.328î 0.536 <i>ĵ</i>	-0.0213î - 0.0222ĵ	0.9996k	0.484î 0.822 <i>ĵ</i>	0.3883î - 0.7038ĵ	$-0.4737\hat{k}$		

Table of Python-Calculated Values Assuming Point Masses

Y	Y STONE A				STONE B			STONE C		
⊕ x	<i>r</i> (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	<i>r</i> (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	
Collision 1 (A+B) Frame 53 t = 1.120s	-0.320 <i>î</i> + 0.894 <i>ĵ</i>	0.0457î 1.3599ĵ	0.6586k	-0.189î + 0.629ĵ	0	0				
Post- Collision 1 (A+B) Frame 54 t = 1.160s		-0.4568î - 0.2478ĵ	$2.0433\hat{k}$		0.5025 <i>î</i> 1.0166 <i>ĵ</i>	???				
Collision 2 (B+C) Frame 83 t = 2.320s				0.3768î 0.5150ĵ	0.5025 <i>î</i> 1.0166 <i>ĵ</i>	??k	0.466î 0.791 <i>ĵ</i>	0	0	
After Collision 2 (B+C) Frame 84 t = 2.360s				0.3768î 0.5150ĵ	-0.04006î + 0.09320ĵ		0.466î 0.791 <i>ĵ</i>	0.4681î 0.8466ĵ	$-0.4737\hat{k}$	

Collision 1 values are significantly better when modelling as stones as point masses By Collision 2, error has propagated, but still a lot better; errors compounded from r and v. Implies that the error from unexpected torque is greater than the error from ignoring instantaneous relative velocity

Results (cont.):

	Experimental	Actual
Coefficient of Restitution	0.8345	0.83 ± 0.06
Coefficient of Kinetic	0.0109	[0.006, 0.016]
Friction		

Table of Python-Calculated Values

Y	STONE A			STONE I	3		STONE C			
⊕ —x	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	\vec{r} (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	
Collision 1 (A+B) Frame 53 t = 1.120s	-0.320î + 0.894ĵ	0.0457î 1.3599ĵ	$0.6586\hat{k}$	$-0.189\hat{i} + 0.629\hat{j}$	0	0				
Post- Collision 1 (A+B) Frame 54 t = 1.160s		-0.1734î - 0.1615 <i>ĵ</i>	$2.0433\hat{k}$		0.3105 <i>î</i> 1.075 <i>ĵ</i>	$-1.3847\hat{k}$				
Collision 2 (B+C) Frame 83 t = 2.320s				0.1929î 0.6935j	0.3105 <i>î</i> 1.075 <i>ĵ</i>	-1.3847 <i>k</i>	0.466î 0.791 <i>ĵ</i>	0	0	
After Collision 2 (B+C) Frame 84 t = 2.360s				0.1929t 0.6935j	-0.2074î + 0.9170ĵ	$1.132\hat{k}$	0.466î 0.791 <i>ĵ</i>	0.5444î 0.2671	$-0.4737\hat{k}$	

Table of Python-Calculated Values Assuming Point Masses

Y	STONE A			STONE 1	ONE B			STONE C			
*	<i>r</i> (m)	<i>v</i> (m/s)	ω̈ (rad/s)	<i>r</i> (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)	<i>r</i> (m)	<i>v</i> (m/s)	$\vec{\omega}$ (rad/s)		
Collision 1 (A+B) Frame 53 t = 1.120s	-0.320 <i>t</i> + 0.894 <i>f</i>	0.0457î 1.3599ĵ	$0.6586\hat{k}$	-0.189î + 0.629ĵ	0	0					
Post- Collision 1 (A+B) Frame 54 t = 1.160s		-0.4568î - 0.2478ĵ	2.0433k		0.5025 <i>t</i> - 1.0166 <i>j</i>	???					
Collision 2 (B+C) Frame 83 t = 2.320s				0.3768î 0.5150ĵ	0.5025 <i>î</i> 1.0166 <i>ĵ</i>	??k	0.466î 0.791 <i>ĵ</i>	0	0		
After Collision 2 (B+C) Frame 84 t = 2.360s				0.3768î 0.5150ĵ	-0.04006î + 0.09320ĵ	??	0.466î 0.791 <i>ĵ</i>	0.4681î 0.8466ĵ	-0.4737 <i>k</i>		