Live Coding - Module 11

Rachel Holman

```
In [1]:
        import numpy as np
         import pandas as pd
         import prince
         from scipy import stats
         import os
         from ydata_profiling import ProfileReport
         from matplotlib import pyplot as plt
         import seaborn as sns
         %matplotlib inline
        ahs = pd.read_csv('ahs_cleaned-1.csv', na_values=[-6, "'-9'"])
In [2]:
         profile = ProfileReport(ahs, title = 'American Housing Survey EDA', html = {'style':
         {'full_width': True}}, minimal = False) profile.to_notebook_iframe()
        ahs['HINCP']
In [3]:
                  257000.0
Out[3]:
                  201000.0
                       NaN
                   66900.0
         3
                   35000.0
         63180
                  74000.0
         63181
                  207000.0
         63182 158100.0
         63183
                130200.0
         63184
                  120000.0
        Name: HINCP, Length: 63185, dtype: float64
In [4]: ahs['RODENT'].value_counts()
Out[4]: No signs in the last 12 months
                                                     48821
        Seen a few times in the last 12 months
                                                      4212
         Seen monthly in the last 12 months
                                                       522
         Seen daily in the last 12 months
                                                       474
         Seen weekly in the last 12 months
                                                       426
         Name: RODENT, dtype: int64
        ahs.groupby("RODENT").agg({'HINCP':'mean'})
In [5]:
```

HINCP Out[5]:

```
RODENT
```

No signs in the last 12 months 87738.246779

Seen a few times in the last 12 months 86156.387464

```
Seen daily in the last 12 months
                                           51274.924051
           Seen monthly in the last 12 months 82798.544061
            Seen weekly in the last 12 months 64086.826291
         stats.f oneway(ahs.query("RODENT=='No signs in the last 12 months'").HINCP.drop
In [6]:
                        ahs.query("RODENT == 'Seen a few times in the last 12 months'").HIN
                        ahs.query("RODENT=='Seen daily in the last 12 months'").HINCP.drc
                        ahs.query("RODENT=='Seen monthly in the last 12 months'").HINCP.c
                        ahs.query("RODENT == 'Seen weekly in the last 12 months'").HINCP.dr
         F_onewayResult(statistic=21.68467615110672, pvalue=6.703833330074091e-18)
Out[6]:
In [7]:
         ahs['YRBUILT'].value counts()
         1970
                 9313
Out[7]:
         1980
                 9072
         2000
                 8883
         1990
                 7863
         1960
                 6860
         1950
                 6330
         1919
                 3594
         1940
                 3001
         1920
                 2494
         1930
                 1699
         2010
                  846
         2017
                  503
         2016
                  489
         2015
                  486
         2014
                  444
         2013
                  340
         2012
                  320
         2018
                  269
         2011
                  251
         2019
                  128
         Name: YRBUILT, dtype: int64
In [8]:
         ahs['MARKETVAL'].describe()
                  3.839000e+04
         count
Out[8]:
         mean
                  3.762769e+05
         std
                  5.537866e+05
         min
                  1.000000e+03
                  1.404465e+05
         25%
         50%
                  2.552730e+05
         75%
                  4.359682e+05
                  9.999998e+06
         Name: MARKETVAL, dtype: float64
         ahs[['MARKETVAL', 'YRBUILT']].corr()
In [9]:
```

```
MARKETVAL YRBUILT
Out [9]:
         MARKETVAL
                        1.00000 -0.00403
            YRBUILT
                        -0.00403
                                 1.00000
In [10]:
         ahs2 = ahs[['MARKETVAL', 'YRBUILT']].dropna()
         stats.pearsonr(ahs2['MARKETVAL'], ahs2['YRBUILT'])
         PearsonRResult(statistic=-0.004029500232993559, pvalue=0.4298243664117904)
Out[10]:
In [11]:
         ahs.columns
         Index(['Unnamed: 0', 'DIVISION', 'TENURE', 'YRBUILT', 'UNITSIZE', 'HSHLDTYPE',
Out[11]:
                 'HHRACE', 'HHSEX', 'HINCP', 'TOTHCAMT', 'MARKETVAL', 'MAINTAMT',
                 'FUSEBLOW', 'SEWBREAK', 'ROACH', 'RODENT', 'NOWIRE', 'PLUGS', 'COLD',
                 'NOTOIL', 'NOWAT', 'FLOORHOLE', 'FNDCRUMB', 'PAINTPEEL', 'ROOFHOLE',
                'ROOFSAG', 'ROOFSHIN', 'WALLCRACK', 'WALLSIDE', 'WALLSLOPE', 'WINBOAR
         D',
                'WINBROKE', 'LEAKI', 'MOLDBATH'],
               dtype='object')
         broken = ahs[['FUSEBLOW', 'SEWBREAK', 'ROACH', 'RODENT', 'NOWIRE', 'PLUGS', 'CO
In [12]:
                 'NOTOIL', 'NOWAT', 'FLOORHOLE', 'FNDCRUMB', 'PAINTPEEL', 'ROOFHOLE',
                 'ROOFSAG', 'ROOFSHIN', 'WALLCRACK', 'WALLSIDE', 'WALLSLOPE', 'WINBOARD',
                 'WINBROKE', 'LEAKI', 'MOLDBATH']].dropna()
In [13]:
         MCA = prince.MCA(n components=2)
         MCA = MCA.fit(broken)
         pd.set option('display.max rows', 100)
In [14]:
         MCA.column coordinates(broken).sort values(1)
```

Out[14]:

	0	1
WALLSLOPE_Broken	4.859631	-3.112322
ROOFSAG_Broken	3.902633	-2.395702
ROOFHOLE_Broken	4.146965	-2.057354
ROOFSHIN_Broken	2.383521	-1.497986
WALLSIDE_Broken	3.081901	-1.304344
WINBOARD_Broken	3.453411	-0.900215
FNDCRUMB_Broken	1.821282	-0.490842
FLOORHOLE_Broken	4.284035	-0.411352
WINBROKE_Broken	2.177871	-0.299583
LEAKI_Not broken	-0.080362	-0.090882
FUSEBLOW_No fuses / breakers blown in the last 3 months	-0.071363	-0.073826
RODENT_No signs in the last 12 months	-0.115874	-0.066227
COLD_Not broken	-0.083472	-0.065144
NOTOIL_Not broken	-0.024595	-0.052225
NOWAT_Not broken	-0.022932	-0.046835
SEWBREAK_No breakdowns in the last 3 months	-0.024639	-0.045126
PAINTPEEL_Broken	3.404749	-0.039555
ROACH_No signs in the last 12 months	-0.080402	-0.025697
MOLDBATH_Not broken	-0.032766	-0.015399
WALLCRACK_Not broken	-0.109388	-0.008917
PLUGS_Not broken	-0.018019	-0.004301
NOWIRE_Not broken	-0.017618	-0.004205
PAINTPEEL_Not broken	-0.059399	0.000690
FLOORHOLE_Not broken	-0.042145	0.004047
WINBOARD_Not broken	-0.031694	0.008262
WINBROKE_Not broken	-0.076222	0.010485
FNDCRUMB_Not broken	-0.092293	0.024873
ROOFHOLE_Not broken	-0.054295	0.026936
WALLSLOPE_Not broken	-0.046273	0.029635
WALLSIDE_Not broken	-0.072108	0.030518
ROOFSAG_Not broken	-0.060365	0.037056
ROOFSHIN_Not broken	-0.076180	0.047877
ROACH_Seen a few times in the last 12 months	0.343749	0.069489
NOWIRE_Broken	0.685447	0.163621
WALLCRACK_Broken	2.236701	0.182337

	0	1
RODENT_Seen monthly in the last 12 months	1.356893	0.223186
PLUGS_Broken	1.027688	0.245321
ROACH_Seen monthly in the last 12 months	0.917792	0.310836
RODENT_Seen a few times in the last 12 months	0.580349	0.388932
ROACH_Seen daily in the last 12 months	2.536539	0.468289
FUSEBLOW_2 fuses / breakers blown in the last 3 months	0.752378	0.614884
FUSEBLOW_1 fuse / breaker blown in the last 3 months	0.660546	0.632649
ROACH_Seen weekly in the last 12 months	1.212483	0.926285
COLD_Broken	1.363422	1.064051
RODENT_Seen weekly in the last 12 months	1.927000	1.175182
LEAKI_Broken	1.118381	1.264789
MOLDBATH_Broken	3.340400	1.569872
FUSEBLOW_3 fuses / breakers blown in the last 3 months	1.296569	1.682641
RODENT_Seen daily in the last 12 months	3.184849	1.834898
FUSEBLOW_4 or more fuses / breakers blown in the last 3 months	1.584176	1.930694
SEWBREAK_Sewage system broke down in the last 3 months, but never for 6 hours or more	0.679875	1.976740
SEWBREAK_Two breakdowns in the last 3 months for 6 hours or more	3.190900	2.130127
NOWAT_Broken	1.089729	2.225630
SEWBREAK_Four or more breakdowns in last three months for 6 hours or more	5.443718	2.839466
NOTOIL_Broken	2.186931	4.643638
SEWBREAK_One breakdown in the last 3 months for 6 hours or more	1.532887	5.369539
SEWBREAK_Three breakdowns in the last 3 months for 6 hours or more	4.994402	8.163568
<pre>indices = MCA.row_coordinates(broken).reset_index()</pre>		

In [15] indices

Out[15]:		index	0	1
	0	0	-0.159315	-0.052107
	1	1	-0.159315	-0.052107
	2	3	-0.073491	0.033082
	3	6	-0.072648	-0.020696
	4	8	-0.159315	-0.052107
	•••			
	35512	63180	-0.159315	-0.052107
	35513	63181	-0.107030	-0.034292
	35514	63182	-0.159315	-0.052107
	35515	63183	-0.159315	-0.052107
	35516	63184	-0.159315	-0.052107

35517 rows × 3 columns

The distributions of income, race, ownership, and housing expenses

```
In [23]: plt.figure(figsize = (12,3))
    sns.histplot(x='HINCP', data=ahs_merge)
    plt.xlabel("Household Income")
    plt.ylabel("Frequency")
    plt.title("Distribution of Household Income")
    plt.xscale("log")
```



```
In [33]: ahs_bar = ahs_merge.groupby('TENURE').agg({'HINCP':'mean'}).reset_index()
    sns.barplot(y='TENURE', x='HINCP', data=ahs_bar)
```

Out[33]: <Axes: xlabel='HINCP', ylabel='TENURE'>


```
In [34]:
         ahs_merge['TOTHCAMT'].describe()
         count
                   54455.000000
Out[34]:
         mean
                     1517.628739
         std
                     1783.335753
         min
                        0.00000
                     670.000000
         25%
         50%
                     1164.000000
         75%
                     1892.500000
         max
                   100700.000000
         Name: TOTHCAMT, dtype: float64
In [37]: plt.figure(figsize = (4,4))
         sns.kdeplot(x='TOTHCAMT', data=ahs_merge, fill=True, label='Total Housing Costs
         sns.kdeplot(x='MAINTAMT', data=ahs merge, fill=True, label='Maintenance Costs')
         plt.xscale('log')
         plt.legend()
```

Out[37]: <matplotlib.legend.Legend at 0x2be249630>


```
In [41]: plt.figure(figsize=(12,3))
    sns.violinplot(x='TOTHCAMT', data=ahs_merge)
    plt.xscale('log')
```


The relationship between these four features with each other, as well as the two indices of home disrepair that we built last week

```
In [46]: ahs_merge[['HINCP','MARKETVAL']].corr()
  plt.figure(figsize=(4,4))
  sns.scatterplot(x='HINCP', y='MARKETVAL', data=ahs_merge, alpha=.1)
  sns.regplot(x='HINCP', y='MARKETVAL', scatter=False, data=ahs_merge)
  plt.xscale('log')
  plt.yscale('log')
```


The time progression of average house price against year built

```
In [50]: ahs_line = ahs_merge.groupby('YRBUILT').agg({'MARKETVAL':'mean'}).reset_index()
ahs_line
```

Out[50]:		YRBUILT	MARKETVAL
	0	1919	441787.054923
	1	1920	460242.827079
	2	1930	465825.451481
	3	1940	383461.994423
	4	1950	357163.403623
	5	1960	355834.658272
	6	1970	317178.414418
	7	1980	347564.607041
	8	1990	363917.258788
	9	2000	391545.044761
	10	2010	402451.034810
	11	2011	451071.786982
	12	2012	449889.661836
	13	2013	458420.516588
	14	2014	535170.154122
	15	2015	462851.737762
	16	2016	458754.904605
	17	2017	542170.035088
	18	2018	562692.710526
	19	2019	702470.655914

```
In [51]: sns.lineplot(x='YRBUILT', y='MARKETVAL', data=ahs_line)
Out[51]: <Axes: xlabel='YRBUILT', ylabel='MARKETVAL'>
```


Graph matrices in which each cell contains a graph that is specific to a census division or ownership status

```
In [52]: ahs_facet = ahs_merge.assign(own = (ahs_merge['TENURE']=='Owned or being bought
ahs_facet = ahs_facet.groupby(['DIVISION', 'HHRACE']).agg({'own':'mean'}).reset
ahs_facet
```

Out[52]:

	DIVISION	HHRACE	own
0	East North Central	American Indian, Alaska Native only	0.347826
1	East North Central	Asian only	0.629496
2	East North Central	Black only	0.379967
3	East North Central	Other	0.484211
4	East North Central	White / Black	0.333333
5	East North Central	White only	0.728166
6	East South Central	American Indian, Alaska Native only	0.545455
7	East South Central	Asian only	0.640000
8	East South Central	Black only	0.332123
9	East South Central	Other	0.388889
10	East South Central	White / Black	0.200000
11	East South Central	White only	0.683044
12	Middle Atlantic	American Indian, Alaska Native only	0.500000
13	Middle Atlantic	Asian only	0.490683
14	Middle Atlantic	Black only	0.309598
15	Middle Atlantic	Other	0.422222
16	Middle Atlantic	White / Black	0.315789
17	Middle Atlantic	White only	0.632123
18	Mountain	American Indian, Alaska Native only	0.418919
19	Mountain	Asian only	0.640845
20	Mountain	Black only	0.323864
21	Mountain	Other	0.576271
22	Mountain	White / Black	0.263158
23	Mountain	White only	0.665655
24	New England	American Indian, Alaska Native only	0.428571
25	New England	Asian only	0.496732
26	New England	Black only	0.313364
27	New England	Other	0.357143
28	New England	White / Black	0.187500
29	New England	White only	0.636017
30	Pacific	American Indian, Alaska Native only	0.427083
31	Pacific	Asian only	0.573589
32	Pacific	Black only	0.355975
33	Pacific	Other	0.526132
34	Pacific	White / Black	0.314286

	DIVISION	HHRACE	own
35	Pacific	White only	0.580234
36	South Atlantic	American Indian, Alaska Native only	0.524752
37	South Atlantic	Asian only	0.653571
38	South Atlantic	Black only	0.453227
39	South Atlantic	Other	0.589744
40	South Atlantic	White / Black	0.394737
41	South Atlantic	White only	0.676737
42	West North Central	American Indian, Alaska Native only	0.409091
43	West North Central	Asian only	0.612245
44	West North Central	Black only	0.224852
45	West North Central	Other	0.652174
46	West North Central	White / Black	0.600000
47	West North Central	White only	0.697686
48	West South Central	American Indian, Alaska Native only	0.550725
49	West South Central	Asian only	0.642229
50	West South Central	Black only	0.386050
51	West South Central	Other	0.481013
52	West South Central	White / Black	0.411765
53	West South Central	White only	0.655397

```
In [59]: g = sns.FacetGrid(ahs_facet, col='DIVISION', col_wrap = 3, hue='DIVISION')
g.map(sns.barplot, 'own', 'HHRACE')
g.set_titles('{col_name}')
```

/Users/rachelholman/anaconda3/lib/python3.10/site-packages/seaborn/axisgrid.p y:712: UserWarning: Using the barplot function without specifying `order` is l ikely to produce an incorrect plot. warnings.warn(warning)

Out[59]: <seaborn.axisgrid.FacetGrid at 0x2d8496b00>

In []: