

Dipartimento di Elettronica e Informazione

POLITECNICO DI MILANO

Automazione industriale dispense del corso (a.a. 2008/2009) 5. Automi a stati finiti

Luigi Piroddi piroddi@elet.polimi.it

Definizione e tipologie

Un automa è definito da una quadrupla di entità matematiche $(E, X, f(\cdot, \cdot), x_0)$, dove:

- $ightharpoonup E = \{e_1, e_2, e_3, ...\}$ è l'insieme degli *eventi*
- $ightharpoonup X = \{x_0, x_1, x_2, x_3, ...\}$ è l'insieme degli *stati*
- ▶ $f(\cdot,\cdot)$: $X \times E \rightarrow X$ è la *funzione di transizione* (o funzione dello stato prossimo) che ad ogni coppia (stato, evento) associa il prossimo stato dell'automa
- $ightharpoonup x_0$ è lo stato iniziale

In pratica, l'evoluzione dell'automa è determinata dalla funzione di transizione:

Se l'automa si trova nello stato corrente x_i e l'evento e_k è accettabile da x_i (ovvero la coppia (x_i, e_k) appartiene al dominio di f), allora l'occorrenza di un evento e_k fa cambiare stato all'automa e il nuovo stato è $f(x_i, e_k)$; altrimenti, non succede nulla.

NB. Il rifiuto di un evento può essere indice di qualche problema modellistico!

Nella definizione di automa autonomo non si distingue tra variabili di ingresso e variabili di uscita (l'evoluzione non dipende da variabili esogene): gli eventi sono indistinguibili da questo punto di vista. Un automa a stati finiti con ingressi e uscite è definito dalla sestupla $(U, X, Y, f(\cdot, \cdot), h(\cdot, \cdot), x_0)$, dove:

- $ightharpoonup U = \{u_1, u_2, u_3, ...\}$ è l'insieme degli *eventi in ingresso*
- $ightharpoonup X = \{x_0, x_1, x_2, x_3, ...\}$ è l'insieme (finito) degli *stati*
- $ightharpoonup Y = \{y_1, y_2, y_3, ...\}$ è l'insieme degli *eventi in uscita*
- \blacktriangleright $f(\cdot,\cdot)$: $X\times U\rightarrow X$ è la funzione di transizione dello stato
- \blacktriangleright $h(\cdot,\cdot): X\times U \rightarrow Y$ è la funzione di aggiornamento dell'uscita
- $ightharpoonup x_0$ è lo stato iniziale

A una generica transizione dallo stato x_l allo stato x_k è associata una coppia (u_i, y_j) di eventi. L'interpretazione corrispondente è la seguente:

Se, quando l'automa si trova nello stato x_l , viene ricevuto l'evento di ingresso u_i , allora l'automa compirà la transizione allo stato x_k , e nel corso della transizione emetterà l'evento di uscita y_i .

Tipi di automi:

- ▶ se l'insieme degli stati *X* è finito, l'automa si dice *a stati finiti* (*finite state machine*), altrimenti *a stati infiniti*.
- se la funzione $f(\cdot,\cdot)$ è a più valori, allora l'automa si dice *non deterministico*, altrimenti *deterministico*.

Ai fini del progetto del controllo logico, gli automi più usati sono *deterministici a stati finiti* (non avrebbe senso progettare un controllore non deterministico).

Gli automi non deterministici si utilizzano nella valutazione delle prestazioni.

Automi di Mealy e di Moore:

- ➤ Se la funzione di aggiornamento dell'uscita dipende sia dallo stato che dall'ingresso (sistema dinamico improprio) si parla di *automi di Mealy*.
- ▶ Se invece la funzione di aggiornamento dell'uscita dipende solo dallo stato e non dall'ingresso (sistema dinamico strettamente proprio), si parla di *automi di Moore*.
- La trasformazione di un automa di Moore in uno di Mealy (e viceversa) è sempre possibile, ma può comportare una complicazione della rappresentazione dell'automa.

Rappresentazioni

Gli automi sono facilmente rappresentabili con un grafo in cui:

- nodo
- ightharpoonup arco dal nodo x_i al nodo x_i
- ightharpoonup etichetta dell'arco dal nodo x_i al nodo x_j
- \leftrightarrow stato
- $\leftrightarrow x_j = f(x_i, e_k)$
- $\leftrightarrow e_k$

stato iniziale x_0

$$x_1 = f(x_0, e_1)$$

$$x_2 = f(x_0, e_2)$$

Gli automi sono anche facilmente rappresentabili in forma tabellare nelle seguenti due forme tipiche:

	evento						
stato	e_1	e_2	•••	e_m			
x_1	$f(x_1, e_1)$	$f(x_1, e_2)$	•••	$f(x_1, e_m)$			
x_2	$f(x_2, e_1)$	$f(x_2, e_2)$	•••	$f(x_2, e_m)$			
•••	•••	•••	•••	•••			
x_n	$f(x_n, e_1)$	$f(x_n, e_2)$	•••	$f(x_n, e_m)$			

	st	stato prossimo		
stato corrente	x_1	x_2	•••	x_n
x_1	_	e_2	•••	e_k
x_2	e_4	e_4	•••	_
•••	•••	•••	•••	•••
X_n	e_m	e_4	•••	$ e_i $

Rappresentazioni grafica e tabellare nel caso di automi con ingressi e uscite:

stato iniziale x_0

$$x_1 = f(x_0, u_1)$$

$$x_2 = f(x_0, u_2)$$

$$y_1 = h(x_0, u_2)$$

$$y_2 = h(x_0, u_1)$$

	evento						
stato	u_1	u_2	•••	u_m			
x_1	$f(x_1, u_1), h(x_1, u_1)$	$f(x_1, u_2), h(x_1, u_2)$	•••	$f(x_1, u_m), h(x_1, u_m)$			
x_2	$f(x_2, u_1), h(x_2, u_1)$	$f(x_2, u_2), h(x_2, u_2)$	•••	$f(x_2, u_m), h(x_2, u_m)$			
•••	•••	•••	•••	•••			
\mathcal{X}_n	$f(x_n, u_1), h(x_n, u_1)$	$f(x_n, u_2), h(x_n, u_2)$	•••	$f(x_n, u_m), h(x_n, u_m)$			

Modellizzazione con automi

Procedimento di modellizzazione diretta:

- Elencare i componenti principali del sistema (macchine, manipolatori, nastri, ecc.).
- 2 Definire gli stati principali di questi componenti.
- 3 Definire l'alfabeto di eventi ingresso/uscita associati all'evoluzione dello stato dei componenti.
- **5** Definire gli stati del sistema complessivo, combinando gli stati dei componenti (non tutti i possibili stati ottenibili in questo modo sono poi effettivamente raggiunti: v. punto successivo).
- 6 Costruire il modello completo aggiungendo le transizioni opportune tra questi stati.
- Associare alle transizioni opportune funzioni degli ingressi e delle uscite.

Questo metodo risulta impraticabile anche per sistemi di piccole/medie dimensioni (v. esempio seguente). In alternativa, si possono modellizzare separatamente i vari componenti, per poi costruire il modello completo mediante il procedimento di *composizione sincrona*.

Procedimento di modellizzazione modulare con composizione sincrona:

- Elencare i componenti principali del sistema (macchine, manipolatori, nastri, ecc.).
- 2 Definire gli stati principali di questi componenti.
- 3 Definire **per ogni componente** l'alfabeto di eventi ingresso/uscita associati all'evoluzione dello stato.
- 4 Costruire gli automi relativi ai singoli componenti, aggiungendo le transizioni opportune tra gli stati definiti per ogni componente.
- **5** Costruire l'automa complessivo per composizione sincrona:
 - a) l'alfabeto dell'automa complessivo è l'unione dei singoli alfabeti,
 - b) lo stato iniziale è la combinazione degli stati iniziali dei singoli automi,
 - c) un evento (di ingresso) può scattare nell'automa complessivo se può scattare in tutti gli automi nel cui alfabeto compare.

Commenti:

- ► Gli stati dell'automa sono stati *globali* del sistema da rappresentare.
- ► Le transizioni rappresentano variazioni dello stato globale.
- ▶ Il modello ad automi non è *modulare*: poichè lo stato è globale, una qualunque modifica del modello, relativa anche ad un solo componente (p.es. aggiunta di un componente o modellizzazione di dettaglio di un componente) implica il cambiamento di tutti gli stati dell'automa!
- Siamo costretti a vedere sempre il modello nel suo insieme.

Esempio: modellizzazione logica di una macchina

Immaginiamo che una macchina M venga caricata con un pezzo grezzo da lavorare mediante un robot manipolatore R_1 , che effettui una lavorazione specifica, al termine della quale un altro robot (R_2) prelevi il prodotto finito.

Vogliamo modellizzare con un automa (di Mealy) il gestore logico del ciclo di lavorazione della macchina. Il modello più semplice che possiamo pensare prevede due stati per ogni componente del sistema (manipolatori robotici e macchina): quella in cui il componente è *occupato* in una lavorazione o in un trasporto, e quella in cui il componente è *disponibile*, in attesa di nuove lavorazioni.

componente del sistema	stati
macchina M	Mdisp, Mocc
robot R ₁	R1disp, R1occ
robot R ₂	R2disp, R2occ

Gli eventi (di ingresso) sono:

	simbolo	significato
ingressi	u_1	inizio ciclo (fine attesa)
	u_2	fine carico
	u_3	fine lavorazione
	u_4	fine scarico

L'automa che descrive il comportamento complessivo del gestore logico ha quattro stati, che corrispondono alle seguenti condizioni di funzionamento dei componenti:

stato	stato di M	stato di R_1	stato di R ₂	codifica	descrizione
x_1	Mdisp	R1disp	R2disp	ddd	M in attesa di lavorazione
x_2	Mocc	R1occ	R2disp	ood	R_1 carica M
x_3	Mocc	R1disp	R2disp	odd	M lavora
x_4	Mocc	R1disp	R2occ	odo	R_2 scarica M

Evoluzione:

- Nello stato iniziale x_1 ({Mdisp, R1disp, R2disp}) l'unico evento che può scattare è u_1 (può scattare in A_1 e A_2 e non compare nell'alfabeto di A_3): M passa nello stato occupato così come R_1 , mentre R_2 rimane disponibile (stato x_2). Non può invece scattare u_3 che non è abilitato in A_1 .
- Nello stato x_2 ({Mocc, R1occ, R2disp}) l'unico evento accettabile da tutti e 3 gli automi è u_2 : cambia stato solo R_1 , che torna disponibile.
- Nello stato x_3 ({Mocc, R1disp, R2disp}) l'unico evento accettabile da tutti e 3 gli automi è u_3 : cambia stato solo R_2 , che diventa occupato.
- ▶ Infine, nello stato x_4 ({Mocc, R1disp, R2occ}) l'unico evento accettabile da tutti e 3 gli automi associati al sistema è u_4 : M e R_2 tornano disponibili (stato x_1).

NB. Affinchè la composizione sincrona funzioni è essenziale che A_2 abbia l'evento u_3 nel suo alfabeto (altrimenti u_3 potrebbe scattare prima di u_2), che in realtà riguarda una parte diversa del processo! In alternativa bisognerebbe scomporre lo stato Mocc in modo da evitare gli autoanelli.

La rappresentazione grafica dell'automa è la seguente:

Nell'automa sono stati aggiunti anche i seguenti comandi (eventi di uscita), cosicché esso risulta un automa di Mealy:

	simbolo	significato
uscite	y_1	inizio carico
	<i>y</i> ₂	inizio lavorazione
	<i>y</i> ₃	inizio scarico
	<i>y</i> ₄	fine ciclo (inizio attesa)

Le operazioni di trasporto dei robot manipolatori sono rappresentate in forma troppo compatta: non si distingue tra effettivo trasporto e operazioni di carico/scarico \Rightarrow ad esempio, nello stato x_2 la macchina M è occupata inutilmente per gran parte dell'operazione corrispondente (*uso inefficiente delle risorse*)!

Questo non consente nessuna forma di parallelismo tra i vari dispositivi che compongono il sistema, che potrebbe essere invece desiderabile nel caso in cui si volessero gestire più prodotti contemporaneamente.

Occorre quindi:

- dettagliare gli stati dei dispositivi
- consentire parallelismo

A questo proposito, si osservi che, quando due componenti svolgono operazioni concorrenti (p.es. un robot si sposta mentre la macchina lavora) non si sa a priori chi finisce prima! Di conseguenza, sono necessari più stati per rappresentare tutti i possibili funzionamenti.

 \Rightarrow l'uso di operazioni concorrenti determina una moltiplicazione degli stati.

Scriviamo ora un modello più dettagliato del sistema introducendo i seguenti stati per i componenti del sistema:

componente del sistema	stati
macchina M	Mdisp, Mcar, Mlav, Msca
robot R_1	R1disp, R1pre, R1car, R1rit
robot R_2	R2disp, R2sca, R2rit

- ▶ Il robot R_1 preleva un pezzo (R1pre), lo carica su M (R1car), e infine torna nella posizione di riposo (R1rit). Solo nello stato R1car è necessario che ci sia sincronismo tra R_1 e M. Negli altri stati, il funzionamento di R_1 è indipendente da quello degli altri componenti.
- ▶ Il robot R_2 è inizialmente in attesa di un pezzo lavorato su M da prelevare. Quando ce n'è uno disponibile, R_2 scarica M (R2sca). Successivamente lo porta alla coda di uscita, dove lo rilascia, e infine torna nella posizione di riposo (R2rit). Solo nello stato R2sca è necessario che ci sia sincronismo tra R_2 e M.

Gli eventi (di ingresso) necessari a gestire questi stati aggiuntivi crescono di conseguenza:

	simbolo	significato
ingressi	u_1	pezzo disponibile per prelievo
	u_2	fine prelievo pezzo con R_1
	u_3	fine carico di $M \operatorname{con} R_1$
	u_4	fine ritorno R_1
	u_5	fine lavorazione M
	u_6	fine scarico di $M \operatorname{con} R_2$
	u_7	fine ritorno R_2

Componendo i 3 sotto-modelli dettagliati, il modello si complica notevolmente rispetto a prima: gli stati sono dell'ordine di $4\times4\times3=48$ (quelli effettivamente raggiungibili sono 17). Inoltre, non c'è alcun legame tra il modello precedente e questo: bisogna generare l'automa da zero!

Nel grafico sono stati aggiunti i comandi riportati nella tabella seguente, trasformando l'automa in un automa di Mealy.

	simbolo	significato
uscite	<i>y</i> ₁	inizio prelievo pezzo con R_1
	<i>y</i> ₂	inizio carico di $M \operatorname{con} R_1$
	у 3	inizio ritorno R_1
	<i>y</i> ₄	inizio lavorazione M
	y 5	inizio scarico di M con R_2
	<i>y</i> ₆	inizio ritorno R_2

LEGENDA: stato x_i = jkl dove j (= d, c, l, s), k (= d, p, c, r) ed l (= d, s, r) sono associati agli stati di M, R_1 , R_2 , rispettivamente.

stato	stato di M	stato di R_1	stato di R_2	codifica	descrizione
x_1	Mdisp	R1disp	R2disp	ddd	M in attesa di lavorazione
x_2	Mdisp	R1pre	R2disp	dpd	R_1 preleva un pezzo
x_3	Mcar	R1car	R2disp	ccd	R_1 carica M
x_4	Mlav	R1rit	R2disp	lrd	M lavora
					R_1 torna in posizione di riposo
x_5	Mlav	R1disp	R2disp	ldd	M lavora
x_6	Msca	R1disp	R2sca	sds	R_2 scarica M
<i>x</i> ₇	Mdisp	R1disp	R2rit	ddr	R_2 trasporta pezzo e ritorna in posizione di riposo
<i>x</i> ₈	Msca	R1rit	R2sca	srs	R_1 torna in posizione di riposo
					R_2 scarica M
<i>x</i> ₉	Mdisp	R1rit	R2rit	drr	R_1 torna in posizione di riposo
					R_2 trasporta pezzo e ritorna in posizione di riposo
<i>x</i> ₁₀	Mdisp	R1rit	R2disp	drd	R_1 torna in posizione di riposo
<i>x</i> ₁₁	Msca	R1pre	R2sca	sps	R_1 preleva un pezzo
					R_2 scarica M
<i>x</i> ₁₂	Mdisp	R1pre	R2rit	dpr	R_1 preleva un pezzo
					R_2 trasporta pezzo e ritorna in posizione di riposo

x_{13}	Mcar	R1car	R2rit	ccr	R_1 carica M
					R_2 trasporta pezzo e ritorna in posizione di riposo
x_{14}	Mlav	R1rit	R2rit	lrr	M lavora
					R_1 torna in posizione di riposo
					R_2 trasporta pezzo e ritorna in posizione di riposo
<i>x</i> ₁₅	Mlav	R1disp	R2rit	ldr	M lavora
					R_2 trasporta pezzo e ritorna in posizione di riposo
<i>x</i> ₁₆	Mlav	R1pre	R2rit	lpr	M lavora
					R_1 preleva un pezzo
					R_2 trasporta pezzo e ritorna in posizione di riposo
<i>x</i> ₁₇	Mlav	R1pre	R2disp	lpd	M lavora
					R_1 preleva un pezzo

Criticità del problema dimensionale:

Modifica 1 – due linee uguali indipendenti

E' facile verificare che l'estensione del modello più semplice (l'automa a 4 stati), non richiede 8 stati (= 4+4), ma 16 (= 4x4), perchè occorre combinare insieme tutte le possibilità dei due sotto-sistemi!

$$R_1 \longrightarrow M_1 \longrightarrow R_2$$

$$R_3 \longrightarrow M_2 \longrightarrow R_4$$

Modifica 2 – due linee uguali che condividono soltanto il robot per lo scarico delle macchine In questo caso sono necessari 15 stati.

$$R_1 \longrightarrow M_1 \longrightarrow R_2$$
 $R_3 \longrightarrow M_2 \longrightarrow R_2$

Modifica 3 – una linea sola, ma con la macchina con 2 unità

$$R_1 \longrightarrow M \longrightarrow R_2$$
2 unità

Servono 8 stati invece di 4.

Vantaggi e svantaggi della modellizzazione con automi

Vantaggi:

- semplicità di definizione (descrizione grafica)
- semplicità di interpretazione (in termini di evoluzione per transizioni di stato)
- ▶ semplicità di analisi (è facile capire se ci sono stati di blocco e, in generale, se si finisce in stati desiderati oppure no)

In generale, lo stato di un automa può essere pensato come l'insieme dei valori di tutte le variabili di stato, che sono tipicamente gli stati di funzionamento di ogni dispositivo/risorsa del sistema.

Quante più variabili di stato ci sono e quanti più valori hanno, tanti più sono gli stati potenziali (poi, magari, alcuni non vengono mai raggiunti e si possono eliminare).

Ciò comporta i seguenti svantaggi:

- basso potere rappresentativo (parallelismo, condivisione di risorse, ecc.)
- assenza modularità (anche fare semplici modifiche è complicato e richiede di rifare da zero l'automa)
- dimensioni notevoli anche in casi semplici
- ▶ stato del sistema = globale (localizzato in un nodo), interpretazione (uso dei dispositivi, sequenze di operazioni) = distribuita; non c'è leggibilità locale, nel senso che non c'è corrispondenza tra le parti di un automa e quelle del sistema fisico

A noi serve uno strumento di modellizzazione con le caratteristiche opposte, che ci consenta di ottenere modelli:

- ► facilmente modificabili, con l'aggiunta di altre variabili o con la modifica dell'insieme di valori assumibili da una o più variabili, senza che sia necessario rifare tutta la modellizzazione e senza che la complessità esploda
- ▶ modulari, ovvero costruiti "assemblando" sottomodelli relativi a parti del sistema fisico (ad esempio le singole macchine di una fabbrica), eventualmente sostituibili
- ► facilmente interpretabili in termini dell'evoluzione dello stato delle singole parti del sistema fisico → stato distribuito nel modello, con interpretazione locale