Constructive Convex Analysis and Disciplined Convex Programming

Stephen Boyd Steven Diamond Akshay Agrawal Junzi Zhang EE & CS Departments Stanford University

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Convex optimization problem — standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

▶ objective and inequality constraints f_0, \ldots, f_m are convex for all $x, y, \theta \in [0, 1]$,

$$f_i(\theta x + (1-\theta)y) \le \theta f_i(x) + (1-\theta)f_i(y)$$

i.e., graphs of f_i curve upward

equality constraints are linear

Convex optimization problem — conic form

cone program:

minimize
$$c^T x$$

subject to $Ax = b$, $x \in \mathcal{K}$

with variable $x \in \mathbf{R}^n$

- ightharpoonup linear objective, equality constraints; $\mathcal K$ is convex cone
- special cases:
 - ► linear program (LP)
 - semidefinite program (SDP)
- the modern canonical form
- there are well developed solvers for cone programs

Other canonical forms

quadratic program (QP):

minimize
$$\frac{1}{2}x^TPx + q^Tx$$

subject to $I \le Ax \le u$

smooth optimization:

minimize
$$f(x)$$

where $f: \mathbf{R}^n \to \mathbf{R}$ is smooth

▶ linearly constrained least squares:

minimize
$$||Ax - b||_2^2$$
 subject to $Fx = g$

prox-affine:

minimize
$$\sum_{i=1}^{N} f_i(H_i x_i)$$

subject to $\sum_{i=1}^{N} A_i x_i = b$.

Why convex optimization?

- beautiful, fairly complete, and useful theory
- solution algorithms that work well in theory and practice
 - convex optimization is actionable
- many applications in
 - control
 - combinatorial optimization
 - signal and image processing
 - communications, networks
 - circuit design
 - machine learning, statistics
 - finance
 - ...and many more

How do you solve a convex problem?

- use an existing custom solver for your specific problem
- develop a new solver for your problem using a currently fashionable method
 - requires work
 - but (with luck) will scale to large problems
- transform your problem into a cone program, and use a standard cone program solver
 - ► can be automated using domain specific languages

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Curvature: Convex, concave, and affine functions

▶ f is concave if -f is convex, *i.e.*, for any x, y, $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

f is affine if it is convex and concave, i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

for any x, y, $\theta \in [0, 1]$

• f is affine \iff it has form $f(x) = a^T x + b$

Verifying a function is convex or concave

(verifying affine is easy)

approaches:

- via basic definition (inequality)
- ▶ via first or second order conditions, e.g., $\nabla^2 f(x) \succeq 0$
- via convex calculus: construct f using
 - ▶ library of basic functions that are convex or concave
 - calculus rules or transformations that preserve convexity

Convex functions: Basic examples

- $x^p \ (p \ge 1 \text{ or } p \le 0), \text{ e.g., } x^2, 1/x \ (x > 0)$
- ▶ e^x
- $\triangleright x \log x$
- $\triangleright a^T x + b$
- $\triangleright x^T P x (P \succeq 0)$
- ightharpoonup ||x|| (any norm)
- $ightharpoonup \max(x_1,\ldots,x_n)$

Concave functions: Basic examples

- ► x^p (0 ≤ p ≤ 1), e.g., \sqrt{x}
- $ightharpoonup \log x$
- $ightharpoonup \sqrt{xy}$
- $\triangleright x^T P x (P \leq 0)$
- $ightharpoonup \min(x_1,\ldots,x_n)$

Convex functions: Less basic examples

- $> x^2/y \ (y > 0), \ x^T x/y \ (y > 0), \ x^T Y^{-1} x \ (Y > 0)$
- $f(x) = x_{[1]} + \cdots + x_{[k]}$ (sum of largest k entries)
- $f(x,y) = x \log(x/y) (x,y > 0)$

Concave functions: Less basic examples

- log det X, $(\det X)^{1/n}$ $(X \succ 0)$
- ▶ $\log \Phi(x)$ (Φ is Gaussian CDF)
- $\blacktriangleright \ \lambda_{\min}(X) \ (X = X^T)$

Calculus rules

- ▶ nonnegative scaling: f convex, $\alpha \ge 0 \implies \alpha f$ convex
- **sum**: f, g convex $\implies f + g$ convex
- ▶ affine composition: f convex $\implies f(Ax + b)$ convex
- **pointwise maximum**: f_1, \ldots, f_m convex \implies max_i $f_i(x)$ convex
- **composition**: h convex increasing, f convex $\Longrightarrow h(f(x))$ convex

... and similar rules for concave functions

(there are other more advanced rules)

from basic functions and calculus rules, we can show convexity of ...

- ▶ piecewise-linear function: $\max_{i=1,...,k} (a_i^T x + b_i)$
- ▶ ℓ_1 -regularized least-squares cost: $\|Ax b\|_2^2 + \lambda \|x\|_1$, with $\lambda \ge 0$
- ▶ sum of largest k elements of x: $x_{[1]} + \cdots + x_{[k]}$
- ▶ log-barrier: $-\sum_{i=1}^{m} \log(-f_i(x))$ (on $\{x \mid f_i(x) < 0\}$, f_i convex)
- ► KL divergence: $D(u, v) = \sum_i (u_i \log(u_i/v_i) u_i + v_i)$ (u, v > 0)

A general composition rule

 $h(f_1(x), \dots, f_k(x))$ is convex when h is convex and for each i

- \blacktriangleright h is increasing in argument i, and f_i is convex, or
- \blacktriangleright h is decreasing in argument i, and f_i is concave, or
- $ightharpoonup f_i$ is affine

- there's a similar rule for concave compositions (just swap convex and concave above)
- this one rule subsumes all of the others
- this is pretty much the only rule you need to know

let's show that

$$f(u, v) = (u + 1) \log((u + 1) / \min(u, v))$$

is convex

- \blacktriangleright u, v are variables with u, v > 0
- ightharpoonup u+1 is affine; min(u,v) is concave
- ▶ since $x \log(x/y)$ is convex in (x, y), decreasing in y,

$$f(u, v) = (u + 1) \log((u + 1) / \min(u, v))$$

is convex

- $ightharpoonup \log(e^{u_1} + \cdots + e^{u_k})$ is convex, increasing
- so if $f(x,\omega)$ is convex in x for each ω and $\gamma > 0$,

$$\log\left(\left(e^{\gamma f(x,\omega_1)}+\cdots+e^{\gamma f(x,\omega_k)}\right)/k\right)$$

is convex

- ▶ this is log **E** $e^{\gamma f(x,\omega)}$, where $\omega \sim \mathcal{U}(\{\omega_1,\ldots,\omega_k\})$
- arises in stochastic optimization via bound

$$\log \operatorname{Prob}(f(x,\omega) \ge 0) \le \log \operatorname{\mathsf{E}} e^{\gamma f(x,\omega)}$$

Constructive convexity verification

- start with function given as expression
- build parse tree for expression
 - ► leaves are variables or constants/parameters
 - nodes are functions of children, following general rule
- tag each subexpression as convex, concave, affine, constant
 - variation: tag subexpression signs, use for monotonicity e.g., $(\cdot)^2$ is increasing if its argument is nonnegative
- sufficient (but not necessary) for convexity

for
$$x < 1$$
, $y < 1$
$$\frac{(x-y)^2}{1-\max(x,y)}$$

is convex

- \blacktriangleright (leaves) x, y, and 1 are affine expressions
- $ightharpoonup \max(x,y)$ is convex; x-y is affine
- ▶ $1 \max(x, y)$ is concave
- function u^2/v is convex, monotone decreasing in v for v>0 hence, convex with u=x-y, $v=1-\max(x,y)$

analyzed by dcp.stanford.edu (Diamond 2014)

•
$$f(x) = \sqrt{1+x^2}$$
 is convex

- but cannot show this using constructive convex analysis
 - ▶ (leaves) 1 is constant, x is affine
 - \rightarrow x^2 is convex
 - ▶ $1 + x^2$ is convex
 - **b** but $\sqrt{1+x^2}$ doesn't match general rule
- writing $f(x) = ||(1, x)||_2$, however, works
 - \blacktriangleright (1, x) is affine
 - $ightharpoonup ||(1,x)||_2$ is convex

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Disciplined convex programming (DCP)

(Grant, Boyd, Ye, 2006)

- framework for describing convex optimization problems
- based on constructive convex analysis
- sufficient but not necessary for convexity
- basis for several domain specific languages and tools for convex optimization

Disciplined convex program: Structure

- a DCP has
 - zero or one objective, with form
 - minimize {scalar convex expression} or
 - maximize {scalar concave expression}
 - zero or more constraints, with form
 - ► {convex expression} <= {concave expression} or
 - ► {concave expression} >= {convex expression} or
 - ► {affine expression} == {affine expression}

Disciplined convex program: Expressions

- expressions formed from
 - variables.
 - constants/parameters,
 - and functions from a library
- library functions have known convexity, monotonicity, and sign properties
- ▶ all subexpressions match general composition rule

Disciplined convex program

- a valid DCP is
 - convex-by-construction (cf. posterior convexity analysis)
 - 'syntactically' convex (can be checked 'locally')
- convexity depends only on attributes of library functions, and not their meanings
 - ▶ e.g., could swap $\sqrt{\cdot}$ and $\sqrt[4]{\cdot}$, or exp· and $(\cdot)_+$, since their attributes match

Canonicalization

- easy to build a DCP parser/analyzer
- ▶ not much harder to implement a canonicalizer, which transforms DCP to equivalent cone program
- then solve the cone program using a generic solver
- ▶ yields a *modeling framework* for convex optimization

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Optimization modeling languages

- domain specific language (DSL) for optimization
- express optimization problem in high level language
 - declare variables
 - form constraints and objective
 - solve
- ▶ long history: AMPL, GAMS, ...
 - no special support for convex problems
 - very limited syntax
 - callable from, but not embedded in other languages

Modeling languages for convex optimization

all based on DCP

YALMIP	Matlab	Löfberg	2004
CVX	Matlab	Grant, Boyd	2005
CVXPY	Python	Diamond, Boyd; Agrawal et al.	2013; 2018
Convex.jl	Julia	Udell et al.	2014
CVXR	R	Fu, Narasimhan, Boyd	2017

some precursors

- ► SDPSOL (Wu, Boyd, 2000)
- ► LMITOOL (El Ghaoui et al., 1995)

CVX

- ► A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist inside problem
- after cvx_end
 - problem is canonicalized to cone program
 - then solved

Some functions in the CVX library

function	meaning	attributes
norm(x, p)	$ x _p$, $p \geq 1$	cvx
square(x)	x^2	cvx
pos(x)	x_{+}	cvx, nondecr
<pre>sum_largest(x,k)</pre>	$x_{[1]} + \cdots + x_{[k]}$	cvx, nondecr
sqrt(x)	$\sqrt{x}, x \geq 0$	ccv, nondecr
inv_pos(x)	1/x, x > 0	cvx, nonincr
max(x)	$\max\{x_1,\ldots,x_n\}$	cvx, nondecr
<pre>quad_over_lin(x,y)</pre>	$x^2/y, y > 0$	cvx, nonincr in y
<pre>lambda_max(X)</pre>	$\lambda_{\max}(X), X = X^T$	cvx

DCP analysis in CVX

```
cvx_begin
   variables x y
   square(x+1) <= sqrt(y) % accepted
   max(x,y) == 1 % not DCP
   ...

Disciplined convex programming error:
   Invalid constraint: {convex} == {real constant}</pre>
```

CVXPY

- ► A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist outside of problem
- solve method canonicalizes, solves, assigns value attributes

Signed DCP in CVXPY

function	meaning	attributes
abs(x)		cvx, nondecr for $x \ge 0$,
abs(x)		nonincr for $x \leq 0$
huber(x)	$\left \begin{array}{ll} \left\{ \begin{array}{ll} x^2, & x \le 1 \\ 2 x - 1, & x > 1 \end{array} \right. \right.$	cvx, nondecr for $x \ge 0$,
nuber (x)		nonincr for $x \leq 0$
norm(x, p)	•	cvx, nondecr for $x \ge 0$,
norm(x, p)	$ A p, P \leq 1$	nonincr for $x \leq 0$
square(x)	2	cvx, nondecr for $x \ge 0$,
square(x)	^	nonincr for $x \leq 0$

DCP analysis in CVXPY

$$expr = \frac{(x-y)^2}{1-\max(x,y)}$$

```
x = cp.Variable()
y = cp.Variable()
expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x,y))
expr.curvature # CONVEX
expr.sign # POSITIVE
expr.is_dcp() # True
```

Parameters in CVXPY

- symbolic representations of constants
- can specify sign
- ▶ change value of constant without re-parsing problem

for-loop style trade-off curve:

```
x_values = []
for val in numpy.logspace(-4, 2, 100):
    gamma.value = val
    prob.solve()
    x_values.append(x.value)
```

Parallel style trade-off curve

```
# Use tools for parallelism in standard library.
from multiprocessing import Pool
# Function maps gamma value to optimal x.
def get_x(gamma_value):
    gamma.value = gamma_value
    result = prob.solve()
    return x.value
# Parallel computation with N processes.
pool = Pool(processes = N)
x values = pool.map(get x, numpy.logspace(-4, 2, 100))
```

Convex.jl

```
using Convex
x = Variable(n);
cost = sum_squares(A*x-b) + gamma*norm(x,1);
prob = minimize(cost, [norm(x,Inf) <= 1]);
opt_val = solve!(prob);
solution = x.value;</pre>
```

- A, b, gamma are constants (gamma nonnegative)
- similar structure to CVXPY
- solve! method canonicalizes, solves, assigns value attributes

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

Conclusions

Conclusions

- ▶ DCP is a formalization of constructive convex analysis
 - simple method to certify problem as convex (sufficient, but not necessary)
 - basis of several DSLs/modeling frameworks for convex optimization

 modeling frameworks make rapid prototyping of convex optimization based methods easy

References

- Disciplined Convex Programming (Grant, Boyd, Ye)
- Graph Implementations for Nonsmooth Convex Programs (Grant, Boyd)
- Matrix-Free Convex Optimization Modeling (Diamond, Boyd)
- ► A Rewriting System for Convex Optimization Problems (Agrawal, Verschueren, Diamond, Boyd)
- CVX: http://cvxr.com/
- ► CVXPY: https://www.cvxpy.org/
- Convex.jl: http://convexjl.readthedocs.org/
- CVXR: https://cvxr.rbind.io/
- DCP tools: https://dcp.stanford.edu/