بسم الله الرحمن الرحيم

فصل ششم

فرمهای نرمال گرامرهای مستقل از متن

Normal Forms for Context-Free Grammars

کاظم فولادی kazim@fouladi.ir دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران

Normal Forms for Context-free Grammars

Chomsky Normal Form

All productions have form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow (aa)$$

Not Chomsky Normal Form

Convertion to Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

$$S \to ABT_{a}$$

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V

$$S \rightarrow AV_1$$
 $V_1 \rightarrow BT_a$
 $A \rightarrow T_a T_a T_b$
 $B \rightarrow AT_c$
 $T_a \rightarrow a$
 $T_b \rightarrow b$
 $T_c \rightarrow c$

$$S \rightarrow AV_1$$
 $V_1 \rightarrow BT_a$
 $A \rightarrow T_aV_2$
 $V_2 \rightarrow T_aT_b$
 $B \rightarrow AT_c$
 $T_a \rightarrow a$
 $T_b \rightarrow b$
 $T_c \rightarrow c$

Final grammar in Chomsky Normal Form:

$$S \rightarrow AV_1$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_a V_2$$

$$V_2 \rightarrow T_a T_b$$

$$B \to AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

Initial grammar

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

In general:

From any context-free grammar not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

For every symbol a:

Add production
$$T_a \rightarrow a$$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A oup C_1 V_1$$
 $V_1 oup C_2 V_2$... $V_{n-2} oup C_{n-1} C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem: For any context-free grammar there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form of any context-free grammar

Greinbach Normal Form

All productions have form:

Examples:

$$S \rightarrow cAB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$

$$S \to abSb$$
$$S \to aa$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

$$S o abSb$$
 $S o aa$ $S o aT_bST_b$ $S o aa$ $T_a o a$ $T_b o b$ $S o after Solution Form Solution $S o abSb$ $S o aa$ $S o aa$$

Theorem:

For any context-free grammar there is an equivalent grammar in Greinbach Normal Form

Observations

 Greinbach normal forms are very good for parsing

• It is hard to find the Greinbach normal form of any context-free grammar

An Application of Chomsky Normal Forms

The CYK Membership Algorithm

Input:

 \cdot Grammar G in Chomsky Normal Form

• String W

Output:

find if $w \in L(G)$

The Algorithm

Input example:

• Grammar $G\colon S \to AB$ $A \to BB$ $A \to a$ $B \to AB$

• String w: aabbb

aabbb

a a b b

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

a a b b b A A B B B

bb

aa ab bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

	a	a	b	b	b
	A	A	В	В	В
_	aa	ab	bb	bb	
		S,B	A	A	
	aab	abb	bbb		

aabb abbb

aabbb

Therefore: $aabbb \in L(G)$

Time Complexity:
$$|w|^3$$

Observation: The CYK algorithm can be easily converted to a parser