

IIT JEE - 2021

Solutions to Home Assignment - 1 | Function | Mathematics

1.(B) For
$$f(x)$$
 to be defined, $\Rightarrow x^{\log_{10} x} \neq 0$ and $x > 0 \Rightarrow x > 0 \Rightarrow x \in (0, \infty)$

2.(C) For domain of
$$g(x)$$

$$0 < e^X < 1$$
 \Rightarrow $x \in (-\infty, 0)$ (i)

$$0 < \log_e |x| < 1 \implies |x| \in (1, e) \implies x \in (-e, -1) \cup (1, e) \dots$$
 (ii)

From (i) and (ii), $x \in (-e, -1)$

3.(C)
$$\tan x$$
 is defined, if $x \neq n\pi + \frac{\pi}{2}$...(i)

If
$$\tan x > 0$$
, then $|\tan x| + \tan x > 0$...(ii)

If
$$\tan x \le 0$$
, then $|\tan x| + \tan x = 0$...(iii)

... Numerator is defined for both equations (ii) and (iii) and non-zero
$$\sqrt{3x}$$
 is defined, $\forall x > 0$

On combining equations (i), (ii), (iii) and (iv), we get :
$$D_f = R^+ - \left\{ n\pi + \frac{\pi}{2} \middle| n \in I^+ \right\}$$

4.(B) We get,
$$f(x) = \begin{cases} 6-3x, & x < 1 \\ 4-x, & 1 \le x < 2 \\ x, & 2 \le x < 3 \\ 3x-6, & x \ge 3 \end{cases}$$
. Draw the graph of $f(x)$ and get the minimum value of $f(x) = 2$

5.(C)
$$f(x)$$
 defined, if $-(\log_3 x)^2 + 5\log_3 x - 6 > 0$ and $x > 0$

$$\Rightarrow \qquad \left(\log_3 x - 3\right)\left(2 - \log_3 x\right) > 0 \text{ and } x > 0 \qquad \Rightarrow \qquad \left(\log_3 x - 2\right)\left(\log_3 x - 3\right) < 0 \text{ and } x > 0$$

$$\Rightarrow$$
 2 < log₃ x < 3 and x > 0 \Rightarrow 3² < x < 3³ \Rightarrow 9 < x < 27

Domain of f(x) is $x \in (9, 27)$

6.(D) (A)
$$\log_{1.5} \log_4 \log_{\sqrt{3}} 81 = \log_{1.5} \log_4 8 = \log_{1.5} 1.5 = 1$$
 (B) $\log_2 \sqrt{6} + \log_2 \sqrt{\frac{2}{3}} = \log_2 2 = 1$ (C)

$$-\frac{1}{6}\log_{\frac{\sqrt{3}}{2}}\left(\frac{64}{27}\right) = \frac{1}{6}\log_{\frac{\sqrt{3}}{2}}\left(\frac{27}{64}\right) = \frac{1}{6} \cdot 6 = 1$$
 (D) $\log_{3.5}\left(1 + 2 + 3 \div 6\right) = \log_{3.5}3.5 = 1$

7.(C)
$$\log_6 \log_2 \left[\sqrt{4x + 2} + 2\sqrt{x} \right] = 0 \; ; \; x \ge 0$$

$$\Rightarrow \log_2\left(\sqrt{4x+2}+2\sqrt{x}\right)=1 \Rightarrow \sqrt{4x+2}+2\sqrt{x}=2 \Rightarrow \sqrt{4x+2}=2\left(1-\sqrt{x}\right)$$

Squaring both sides $4x + 2 = 4(1 + x - 2\sqrt{x})$

$$8\sqrt{x} = 2$$
 \Rightarrow $\sqrt{x} = \frac{1}{4}$ \Rightarrow $x = \frac{1}{16}$

Vidyamandir Classes

8.(A)
$$\log_{10}\left(\frac{5x-x^2}{4}\right) \ge 0$$
 \Rightarrow $\frac{5x-x^2}{4} \ge 10^0$ \Rightarrow $5x-x^2 \ge 4$ \Rightarrow $x^2-5x+4 \le 0$ \Rightarrow $(x-1)(x-4) \le 0$ \Rightarrow $x \in [1,4]$ Also, we need $\frac{5x-x^2}{4} > 0$ \Rightarrow $x^2-5x < 0$ \Rightarrow $x \in (0,5)$ (i) Combining (i) and (ii), we get: $x \in [1,4]$

9.(C)
$$f(x)$$
 is defined $\Rightarrow \log_{0.3}(x-1) \le 0 - x^2 + 2x + 8 > 0 \Rightarrow x - 1 \ge 1, x^2 - 2x - 8 < 0$
 $\Rightarrow x \ge 2, (x+2)(x-4) < 0 \Rightarrow x \ge 2, -2 < x < 4 \Rightarrow 2 \le x < 4$

10.(C)
$$f(x)$$
 is defined $\Rightarrow tan 2x$ is defined, $6 \cos x + 2 \sin 2x \neq 0$
 $tan 2x$ is defined $\Rightarrow 2x \neq (2n+1)\frac{\pi}{2} \Rightarrow x \neq (2n+1)\frac{\pi}{4}$
 $6 \cos x + 2 \sin 2x \neq 0 \Rightarrow 6 \cos x + 4 \sin x \cos x \neq 0 \Rightarrow 2 \cos x (3 + 2 \sin x) \neq 0$
 $\Rightarrow \cos x \neq 0 \Rightarrow x \neq (2n+1)\frac{\pi}{2}$