Análisis de Regresión con R

aquí la dedicatoria o pensamiento de mauro. $\label{eq:mauro} \mbox{Mauricio Mazo Lopera}$

Gracias a Dios por todo lo que me ha dado! Freddy Hernández Barajas

Índice general

In	dice de cuadros	V
Ín	dice de figuras	VII
Pı	refacio	IX
Sc	obre los autores	ХI
1.	Introducción	1
2.	Regresión lineal simple	3
3.	Regresión lineal múltiple	5
4.	Comprobación de la adecuación del modelo 4.1. Definición de residuales	7 7 7 7
5.	Transformaciones	9
6.	Demostraciones 6.1. Demostración de los estimadores de máxima verosimilitud 6.2. Demostración de la distribución de los ja ja ja	11 11

Índice de cuadros

3.1.	Α	table	of	the	first	10	rows	of	the	mtcars	data.										1
------	---	-------	----	-----	-------	----	------	----	-----	--------	-------	--	--	--	--	--	--	--	--	--	---

Índice de figuras

2.1. Hola Mauricio, esto es una prueba
--

Prefacio

Este libro está destinado para estudiantes de ingeniería y estadística que deseen aprender la teoría sobre modelos de regresión y la forma de aplicarlos por medio de lenguage de programación R.

Estructura del libro

En el capítulo 2 se presenta el modelo de regresión lineal simple y en el Capítulo 3 se generaliza el modelo básico a múltiples variables. El Capítulo 4 muestra cómo se calculan los residuales en un modelo y la forma en que éstos permiten saber si el modelo está bien definido. En el capítulo 6 se encuentran todas las demostraciones menciondas en el libro.

Software information and conventions

Para realizar este libro usamos los paquetes **knitr** (Xie, 2015) y **bookdown** (Xie, 2018) que permiten unir la ventajas de L^AT_FXy R en un mismo archivo.

En todo el libro se presentarán códigos que el lector puede copiar y pegar en su consola de R para obtener los mismos resultados aquí presentados. Los códigos se destacan en una caja de color beis (o beige) similar a la mostrada a continuación.

```
4 + 6
a <- c(1, 5, 6)
5 * a
1:10
```

Los resultados o salidas obtenidos de cualquier código se destacan con dos símbolos de númeral (##) al inicio de cada línea o renglón, esto quiere decir

X Prefacio

que todo lo que inicie con ## son resultados obtenidos y \mathbf{NO} los debe copiar. Abajo se muestran los resultados obtenidos luego de correr el código anterior.

```
## [1] 10
## [1] 5 25 30
## [1] 1 2 3 4 5 6 7 8 9 10
```

Bloques informativos

En varias partes del libro usaremos bloques informativos para resaltar algún aspecto importante. Abajo se encuentra un ejemplo de los bloques y su significado.

Este bloque sirve para una nota aclaratoria.

Este bloque sirve para una sugerencia.

Este bloque sirve para una advertencia.

Agradecimientos

Agradecemos a nuestros estudiantes, profesores y colegas que han leído el manuscrito y se han tomado el trabajo de escribirnos dándonos sus sugerencias y comentarios para mejorar continuamente este material.

Mauricio Mazo Lopera Freddy Hernández Barajas

Sobre los autores

Mauricio Mazo Lopera es profesor xxxx de la Universidad Nacional de Colombia sede Medellín, adscrito a la Escuela de Estadística de la Facultad de Ciencias.

mail: sucorreo@unal.edu.co1

Freddy Hernández Barajas es profesor asistente de la Universidad Nacional de Colombia sede Medellín, adscrito a la Escuela de Estadística de la Facultad de Ciencias.

mail: fhernanb@unal.edu.co²

webpage: https://fhernanb.github.io/

¹mailto:sucorreo@unal.edu.co

 $^{^2 {\}tt mailto:fhernanb@unal.edu.co}$

Introducción

Aquí va la introducción del libro.

Mauro, yo le recomiendo que haga cambios pequeños y luego build el libro para que pueda ver el efecto y así detectar los errores más fácil.

Regresión lineal simple

El modelo de regresión lineal simple está dado por:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

pero también se puede escribir como en latex con \begin equation y \end equation así:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{2.1}$$

La ventaja del segundo método es que nos queda con numeración.

Podemos incluir código de R con un chunk así:

```
x <- rnorm(n=100)
mean(x)
```

[1] -0.0583

Podemos agregar figuras directamente así:

```
y <- rnorm(100)
plot(density(y), lwd=2, col='blue3')</pre>
```

Ejemplo

Aquí va el texto del ejemplo.

Figura 2.1: Hola Mauricio, esto es una prueba.

Ejemplo

Aquí va el texto del ejemplo.

Mauro, los ejemplos no se numeran mientras que las secciones si
. Si usted coloca $\{\text{-}\}$ en una sección no aparecerá número.

Regresión lineal múltiple

Se pueden incluir tablas con datos de la siguiente manera.

```
knitr::kable(
  head(mtcars[, 1:8], 10), booktabs = TRUE,
  caption = 'A table of the first 10 rows of the mtcars data.'
)
```

Ejemplo

Aquí va el texto del ejemplo.

Cuadro 3.1: A table of the first 10 rows of the mtcars data.

	mpg	cyl	disp	hp	drat	wt	qsec	vs
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1

Ejemplo

Aquí va el texto del ejemplo.

Comprobación de la adecuación del modelo

4.1. Definición de residuales

Aquí el contenido de la sección.

4.2. Métodos para escalr residuales

Aquí el contenido de la sección.

4.3. Gráficas de residuales

Aquí el contenido de la sección.

4.4. Estadística PRESS

Aquí el contenido de la sección.

Transformaciones

Bla bla bla.

Demostraciones

${\bf 6.1.} \quad {\bf Demostraci\'on\ de\ los\ estimadores\ de\ m\'axima\ verosimilitud}$

Aquí la demostración.

Mauricio, usted puede referenciar esta demostración en cualquier capítulo usando una instrucción sencilla.

6.2. Demostración de la distribución de los ja ja ja

Aquí la demostración.

Bibliografía

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2018). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.7.