We now show that Algorithm PTAS_ISP is an $1+\epsilon$ -approximation algorithm. Let O be a set of maximum independent set obtained by an oprimal algorithm. We can observe that V_i for $i=0,\cdots,k$ is a partition of V. Then by peigion hole principle, there exists some $jin\{0,1,\cdots,k \text{ such that } V_j \text{ contains at most } \frac{|O|}{k+1} \text{ vertices in } O$. Then the following relation holds.

$$|O| \le |S_i| + |O \cap V_i|$$

Since $|S_m| \ge |S_j|$ and $|O \cap V_j| \le \frac{|O|}{k+1}$,

$$\begin{aligned} |O| &\leq |S_j| + |O \cap V_i| \\ &\leq |S_m| + \frac{|O|}{k+1} \\ (k+1)|O| - |O| &\leq (k+1)|S_m| \\ \frac{|O|}{S_m} &\leq \frac{k+1}{k} \\ &= 1 + \frac{1}{k} \\ &\leq 1 + \epsilon \\ \frac{OPT}{ALG} &\leq 1 + \epsilon \end{aligned}$$

4.4 The Traveling Salesman Problem (TSP)

4.4.1 Approximibility of TSP

We first present the inapproximability of Traveling Salesman Problem (TSP) as in the following theorem.

Theorem 4.1 There is no constant factor approximation algorithm for Traveling Salesman Problem (TSP), unless P=NP.

Proof Assume for a contradiction that there is an approximation algorithm with a constant approximation ratio ρ . We will show that we can design a polynomial time algorithm for solving Hamiltonian Cycle problem using the approximation algorithm for TSP. Let G = (V, E) be a graph with n vertices. We construct an instance G' of TSP problem from G as follows. Let V corresponds to the set of cities and let d(u, v) be the distance between two cities u and v in V. We define d(u, v) as follows.

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ n\rho & \text{if } (u, v) \notin E \end{cases}$$

Page: 30 job: book_Saidur_Algorithm_Engineering macro: svmono.cls date/time: 14-Sep-2020/22:14

Fig. 4.5 (a) An instance of Hamiltonian cycle problem and (b) an instance of Traveling Salesman problem where each solid edge has weight 1 and each dotted edge has weight $n\rho$.

Then G' is a weighted complete graph on which we run the approximation algorithm for TSP. One can observe that if G has a Hamiltonian cycle, then the optimal solution for the TSP problem in G' is n, otherwise the optimal solution is larger than $n\rho$. Then G has a hamiltonian cycle if and only if the approximation algorith gives a solution of $n\rho$ or less. Thus we have solved the Hamiltonian cycle in polynomial time. But this is impossible since Hamiltonian cycle is NP-complete. \Box

Fig. 4.6 Relationship among NP-hard, APX-hard, APX, PTAS and FPTAS

APX-Hard: TSP

However a constant factor approximation can be achieved for a special case of TSP problem where every pair of vertices are connected and the distances between pair of cities satisfy the triangle inequality. That is, for any three cities c_u , c_v and c_w , we have

APX-Complete: TSP with Triangle Ineqality

Page: 31 job: book_Saidur_Algorithm_Engineering macro: svmono.cls date/time: 14-Sep-2020/22:14

 $d((c_u, c_v)) + d((c_v, c_w)) \ge d((c_u, c_w))$

4.4.2 2-Approximation Algorithm

The 2-approximation algorithm works in three steps. In the first step a minimum spanning tree T is constructed. In the second step, In the second step an Eulerian Circuit E, that is a traversal of T that starts and ends at the same city and traverses each edge exactly once in each direction, is constructed. In the third step a tour \mathcal{T} from E is constructed by bypassing some vertices which have already been visited. Let C(H) denote the total weight of the edges in a subgraph H of G. Let \mathcal{T}^* be the optimal tour in G.

Fig. 4.7 Illustration for 2-approximation algorithm for TSP.

If we delete an edge from \mathcal{T}^* we get a spannig tree of G. Thus

$$C(T) < C(T^*).$$

Clearly C(E) = 2C(T) since Eulerian circuit visits each edge of T exactly once in each direction. Triangule inequality ensures that weight does not increase by bypassing the edges. Hence

$$\begin{split} C(\mathcal{T}) &\leq C(E) \\ &= 2C(T) \\ &< 2C(\mathcal{T}^*) \\ \frac{C(\mathcal{T})}{C(\mathcal{T}^*)} &< 2. \end{split}$$

Time complexity O(nlog m)

4.4.3 $\frac{3}{2}$ -Approximation Algorithm

Christofides modified the Minimum Spanning Tree based algorithm to improve the approximation ratio from 2 to $\frac{3}{2}$ as follows. In the first step a minimum spanning tree T is constructed. To make an Eulerian circuit, Christofides did not double the edges of T. Instead a minimum weight perfect matching M of odd degree vertices in T is found. Then $T \cup M$ is a Eulerian circuit E. In the third step a tour T from E is constructed by bypassing some vertices which have already been visited.

Let \mathcal{T}^* be the optimal tour in G.

If we delete an edge from \mathcal{T}^* we get a spanning tree of G. Thus

$$C(T) < C(T^*)$$
.

Let S be the set of odd degree vertices in T. Clearly |S| is an even number.

$$C(E) = C(T) + C(M)$$

Again

$$C(\mathcal{T}) \leq C(E)$$

$$C(\mathcal{T}) \leq C(E)$$

$$= C(T) + C(M)$$

$$< C(\mathcal{T}^*) + C(\mathcal{M})$$

Let $\mathcal{T}_{\mathcal{S}}^*$ be an optimal TSP tour among the vertices in S. Then clearly $\mathcal{T}_{\mathcal{S}}^* \leq \mathcal{T}^*$. Since |S| is even, $\mathcal{T}_{\mathcal{S}}^*$ can be partitioned into two perfect matichings M_1 and M_2 of S. Then $C(\mathcal{T}_{\mathcal{S}}^*) = C(M_1) + C(M_2)$.

Since M is a minimum weight perfect matching, $C(M) \le C(M_1)$ and $C(M) \le C(M_2)$. Hence

$$C(M) \le \frac{1}{2}(C(M_1) + C(M_2))$$
$$= \frac{1}{2}C(\mathcal{T}_{\mathcal{S}}^*)$$
$$\le \frac{1}{2}C(\mathcal{T}^*)$$

Page: 33 job: book_Saidur_Algorithm_Engineering macro: svmono.cls date/time: 14-Sep-2020/22:14

Fig. 4.8 Illustration for $\frac{3}{2}$ -approximation algorithm for TSP.

$$C(\mathcal{T}) < C(\mathcal{T}^*) + C(\mathcal{M})$$

$$\leq C(\mathcal{T}^*) + \frac{1}{2}C(\mathcal{T}^*)$$

$$= \frac{3}{2}C(\mathcal{T}^*)$$

$$\frac{C(\mathcal{T})}{C(\mathcal{T}^*)} < \frac{3}{2}.$$

Time complexity $O(n^3)$ due to matching.

Page: 34 job: book_Saidur_Algorithm_Engineering macro: svmono.cls date/time: 14-Sep-2020/22:14