2 Méthode de la réaction prépondérante

Pour déterminer l'état d'équilibre (état final) d'une solution aqueuse en partant des conditions initiales, nous avons accès à différentes équations :

- Chaque réaction est caractérisée par une constante d'équilibre.
- La solution électriquement neutre initialement reste électriquement neutre à l'équilibre : c'est la conservation de la charge.
- La matière introduite initialement se retrouve à l'équilibre sous une ou plusieurs forme acido-basiques : c'est la conservation de la matière.

Résoudre mathématiquement ce système d'équations est très difficile et nécessite des logiciels à forte capacité de calcul. Néanmoins, on peut déterminer l'équilibre de façon satisfaisante, en ne tenant pas compte des phénomènes négligeables : c'est la **méthode de la réaction prépondérante** (RP).

2.1 Réaction prépondérante, solution équivalente et équilibre de contrôle

Réaction prépondérante : c'est la réaction qui modifie le plus significativement le système, c'est à dire celle qui possède le plus grand avancement. En pratique, c'est la réaction qui a lieu entre l'acide le plus fort et la base la plus forte.

Réaction prépondérante et équilibre de contrôle : on distingue deux types de réactions prépondérante : les réactions prépondérantes quantitatives (RPQ) dont la constante d'équilibre K^0 est supérieure à 1, et les réactions prépondérantes dont la constante d'équilibre K^0 est inférieure à 1 et que l'on appelle équilibres de contrôle (EC). En effet, une RPQ est généralement favorable à la formation des produits, tandis que l'EC est généralement favorable à la formation des réactifs.

Solution équivalente : le but de la méthode de la réaction prépondérante est, partant d'un système initial complexe, de se ramener à un système plus simple de même état final. Toute solution conduisant au même état d'équilibre que la solution initiale réelle est qualifiée de solution équivalente au système initial.

2.2 Mise en œuvre de la méthode

Pour déterminer l'état d'équilibre d'une solution aqueuse, on procède par étapes, de la manière suivantes :

- 1. Déterminer l'état initial : réaliser le bilan des espèces introduites, en supposant chaque espèce initialement non dissociée. Placer chaque couple acido-basique sur une échelle d'acidité et mettre en évidence les espèces initialement introduites. Attention à ne pas oublier les couples de l'eau $\rm H_2O$.
- 2. Proposer une première réaction prépondérante : réaction entre l'acide le plus fort et la base la plus forte. Imaginons qu'il s'agit d'une réaction prépondérante quantitative $(K^0 > 1)$, cette réaction est considérée comme totale, aboutissant à la disparition complète du réactif limitant. Un nouveau système chimique apparaît : il s'agit d'une solution équivalente.
- 3. Cette solution équivalente est le nouvel état initial du système, et on recherche à nouveau une **réaction prépondérante quantitative** aboutissant à une nouvelle **solution équivalente**. On répète ces étapes jusqu'à ce qu'il n'y ait plus de réaction prépondérante quantitative.
- 4. Lorsqu'il n'y a plus de réactions prépondérantes quantitatives, on détermine l'équilibre de contrôle $(K^0 < 1)$. Cette réaction détermine l'état d'équilibre du système. Il suffit de réaliser un tableau d'avancement et de calculer l'avancement volumique x de cette réaction en utilisant sa constante d'équilibre pour déterminer l'état final.

Exemple : Un mélange d'acide éthanoïque CH_3COOH ($c_{0,1}=0.2 \text{ mol} \cdot L^{-1}$) et d'ammoniac NH_3 ($c_{0,2}=0.1 \text{ mol} \cdot L^{-1}$) est réalisé. On donne : $pK_A(CH_3COOH/CH_3COO^-)=4.8$ et $pK_A(NH_{3/}NH_4^+)=9.2$.

— On réalise le bilan des espèces dans l'état initial :

 On détermine la première réaction prépondérante quantitative entre la base la plus forte et l'acide le plus fort :

$$\mathrm{NH_3} + \mathrm{CH_3COOH} = \mathrm{CH_3COO}^- + \mathrm{NH_4}^+ \ K^0 = 10^{(9,2-4,8)} = 10^{4,4} > 1$$

La réaction est **totale**, on détermine la solution équivalente en consommant totalement le réactif limitant (NH $_3$ ici) : on obtient une **solution équivalente** contenant de l'acide éthanoïque CH $_3$ COOH (0,1 mol · L $^{-1}$), l'ion éthanoate CH $_3$ COO $^-$ (0,1 mol · L $^{-1}$) et l'ion ammonium NH $_4$ $^+$ (0,1 mol · L $^{-1}$).

— On réalise le bilan des espèces dans cette première solution équivalente :

— Il n'y a plus de réaction prépondérante quantitative. On détermine l'équilibre de contrôle en faisant réagir la base la plus forte avec l'acide le plus fort :

$$CH_3COO^- + CH_3COOH = CH_3COOH + CH_3COO^- K^0 = 1$$

Cet équilibre de contrôle ne modifie pas l'état de la solution équivalente précédente. L'état d'équilibre de la solution aqueuse est donc : $[CH_3COOH] = [CH_3COO^-] = [NH_4^+] = 0,1 \text{ mol} \cdot L^{-1}$.