NSI 1ère - Algorithmique - Tris 4

QK

Quatrième partie : complexité

Rappel: tri par insertion

```
i = 1
Tant que i < longueur(A)</pre>
    j = i
    Tant que j > 0 et A[j-1] > A[j]
        echanger A[j] et A[j-1]
        j = j - 1
    fin tant que
    i = i + 1
fin tant que
```

Tri par insertion: meilleur cas, pire cas

- meilleur cas : liste déjà triée
- pire des cas : liste triée à l'envers.

petit TP : Mesurer la complexité du tri par insertion.

- Pour des listes de plus en plus grandes, on mesure les temps d'exécution
- On trace une courbre présentant les résultats
- Conjecture sur la complexité du tri par sélection

Correction du TP: tri par sélection

- Le tri par insertion est en $O(n^2)$
- Pire des cas : la liste est triée par ordre contraire

Quelques exemples de vitesses en fonction de la taille de la liste d'entrée pour le tri par insertion

Meilleur cas

Cas random

Pire des cas

insertion : preuve de la complexité

Complexité : calcul à la main

- Pour simpliflier, on ne compte que les échanges.
- Dans ce cas, à chaque itération de la boucle intérieure, on parcourt toute la liste triée et on échange tous les couples d'éléments avant d'insérer.
- Celle-ci contenant i éléments, le nombre d'échanges est :

$$C = 1 + 2 + 3 + \cdots + n$$

• . . .

Complexité : calcul à la main

Remarquons qu'on peut écrire C à l'envers :

$$C = 1 + 2 + \cdots + (n-1) + n$$

 $C = n + (n-1) + \cdots + 2 + 1$

On ajoute en colonne :

2C =
$$(n+1) + (n+1) + \cdots + (n+1) + (n+1)$$

2C = $n(n+1)$
C = $n(n+1)/2$

C est toujours plus petit qu'un polynôme en n^2 .

On note : $C = O(n^2)$

Le tri par insertion est de complexité quadratique

$O(n^2)$

- Comme le tri par insertion, le tri par sélection est quadratique.
- Le nombre "d'opérations" réalisées dans un tri par sélection ou par insertion est de l'ordre du carré de la taille.
- On dit que ce sont des algorithmes en $O(n^2)$

Comparaison à un autre tri

Tri par insertion vs Tri natif en Python

Tri natif en Python seul

