Optimizing Write-Heavy Database Operations Using B^{ε} -Trees

Christoph Rotte

September 1, 2022

Bachelor's Thesis - Final Presentation

Chair for Database Systems | Technical University of Munich

B/B⁺-Trees in Databases

B/B+-Trees in Databases

Log-Structured Merge-Trees (LSM-Trees)

B^{ε} -Trees | Structure

B^{ε} -Trees | Lookups

Asymptotic Comparison | I/O Operations

	B/B ⁺ -Tree	$B^{arepsilon} ext{-Tree}$	LSM-Tree
Upserts	_	+	+
Lookups	+	+	_

Implementation | Preemptive Splitting

Implementation | Separate Root Node

Implementation | Design Layers

Evaluation | Benchmark Setup

- Benchmark Tool: Unum Cloud Benchmark (UCSB)
 → rewrite of YCSB in C++
- Intel i9-7900X (20 threads) | Samsung SSD 970 EVO
- · Sizes: 16KiB pages | 8B keys | 100B values
- **Distribution**: Zipfian (constant: 0.99)

"Optimal" Buffer | 200M Operations w/ 200M Preloaded Values

"Optimal" Buffer | 200M Operations w/ 200M Preloaded Values

"Optimal" Buffer | 200M Operations w/ 200M Preloaded Values

2Q Buffer (10GB) | 200M Operations w/ 200M Preloaded Values

2Q Buffer (10GB) | 200M Operations w/ 200M Preloaded Values

$\mathsf{B}^arepsilon$ -Trees | Conclusion

- Asymptotically between
 B/B+-Trees and LSM-Trees
- Textbook B $^{\varepsilon}$ -Trees require adaption for practical use
- · Future work:
 - · Advanced page buffer
 - Optimistic Lock Coupling (OLC)
 - ...

Christoph Rotte 17