HNCO

Visualization of empirical autocorrelation functions of various functions defined on bit vectors

August 8, 2018

Abstract

This document proposes to visualize empirical autocorrelation functions of various functions defined on bit vectors (hypercube) of size n = 100. If f is a fitness function, a random walk $(X_t)_{t \ge 1}$ on the hypercube gives rise to a time series $(f(X_t))$ which is analyzed through its empirical autocorrelation function.

Contents

1 Introduction	2
2 All functions	2
3 one-max	3
4 lin	3
5 leading-ones	4
6 ridge	4
7 jmp-5	5
8 jmp-10	5
$9 ext{ djmp-5}$	6
$10~\mathrm{djmp}\text{-}10$	6
11 fp-5	7
12 fp-10	7
13 nk	8
14 max-sat	8
15 labs	9
16 ep	9
17 cancel	10
18 trap	10
19 hiff	11
20 plateau	11
21 walsh2	12
A Plan	12
B Default parameters	13

1 Introduction

The underlying process is a random walk $(X_t)_{t\geq 1}$ on the hypercube initialized uniformly. If f is the fitness function then its autocorrelation function ρ is defined by

$$\rho(\tau) = \frac{1}{(n-\tau)\sigma^2} \sum_{t=1}^{T-\tau} (f(X_t) - \mu)(f(X_{t+\tau}) - \mu)$$
(1)

where μ and σ are the mean and standard deviation respectively of the process $(f(X_t))$, T is the length of the Markov chain and the lag τ is such that $0 \le \tau < T$. The empirical autocorrelation function is estimated and computed in a naive way. It should be noted that the estimated function does not necessarily have properties such as positivity, monotonicity, or convexity. Normalized autocorrelation functions $\rho(\tau)/\rho(0)$ are represented in the following sections.

2 All functions

3 one-max

4 lin

5 leading-ones

6 ridge

7 jmp-5

8 jmp-10

9 djmp-5

10 djmp-10

11 fp-5

12 fp-10

13 nk

14 max-sat

15 labs

16 ep

17 cancel

18 trap

19 hiff

20 plateau

21 walsh2

A Plan

```
{
    "exec": "hnco",
    "opt": "-s 100 -i 500000 -b 0 -A 20 --rw-log-value",
    "parallel": true,
    "results": "results",
"graphics": "graphics",
    "report": "report",
    "lag_max": 200,
    "functions": [
             "id": "one-max",
             "opt": "-F 0"
        },
             "id": "lin",
             "opt": "-F 1 -p instances/lin.100"
        },
             "id": "leading-ones",
             "opt": "-F 10"
        },
        {
             "id": "ridge",
             "opt": "-F 11"
        },
             "id": "jmp-5",
             "opt": "-F 30 -t 5"
        },
             "id": "jmp-10",
```

```
"opt": "-F 30 -t 10"
},
    "id": "djmp-5",
    "opt": "-F 31 -t 5"
},
    "id": "djmp-10",
    "opt": "-F 31 -t 10"
},
    "id": "fp-5",
    "opt": "-F 40 -t 5"
},
    "id": "fp-10",
    "opt": "-F 40 -t 10"
},
    "id": "nk",
    "opt": "-F 60 -p instances/nk.100.4"
},
    "id": "max-sat",
    "opt": "-F 70 -p instances/ms.100.3.1000"
},
    "id": "labs",
    "opt": "-F 80"
},
    "id": "ep",
    "opt": "-F 90 -p instances/ep.100"
},
    "id": "cancel",
    "opt": "-F 100 -s 99"
},
    "id": "trap",
    "opt": "-F 110 --fn-num-traps 10"
},
    "id": "hiff",
    "opt": "-F 120 -s 128"
},
{
    "id": "plateau",
    "opt": "-F 130"
},
    "id": "walsh2",
    "opt": "-F 162 -p instances/walsh2.100"
}
```

B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
```

]

}

```
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
# cache_budget = 0
\# ea_lambda = 100
\# ea_mu = 10
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = nopath
# mutation_probability = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# pn_mutation_probability = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
\# version = 0.10
# Generated from hnco.json
```