STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

February 27, 2018

Using Logistic Regression for Classification

Using Logistic Regression for Classification

Want: predict outcome as

$$y^*|(x_1^*,x_2^*,\ldots,x_p^*)=\begin{cases}1\\0\end{cases}$$

▶ Do: calculate $\widehat{\pi}_{M}^*$ - the estimated probability that $y^* = 1$ based on the fitted model given $X_1 = x_1^*, X_2 = x_2^*, \dots, X_p = x_p^*$. From this we want to predict that

$$y^* = \begin{cases} 1 & \text{if } \widehat{\pi}_M^* \text{ is large} \\ 0 & \text{if } \widehat{\pi}_M^* \text{ is small} \end{cases}$$

Need: choose a cut-off probability to distinguish between large and small.

Classification: Approaches to choosing a threshold

Approach 1 - Set cut-off probability as 0.5

- If $\widehat{\pi}_{M}^{*} > 0.5$, classify y^{*} as 1
- Useful if there are equal numbers of 1's and 0's
- Useful if false negatives and false positives are equally bad.

Classification: Approaches to choosing a threshold

Approach 2- Find "best" cut-off probability from data.

- ► Try different cut-offs and see which gives fewest incorrect classifications
- ▶ Useful if proportions of 1's and 0's in data reflect their relative proportions in the population
- Likely to overestimate the proportions of correct predictions that model makes. Then, one should assess model correct classification rates on different data than was used to fit the model.

Confusion Matrix

Truth						
Prediction	Positive $(Y = 1)$	Negative $(Y = 0)$	Prop (row)			
Positive	TP	FP	$PPV = \frac{TP}{TP + FP}$			
Negative	FN	TN	$PPV = \frac{TP}{TP + FP}$ $NPV = \frac{TN}{TN + FN}$			
Prop (column)	Sensitivity=	Specificity=				
	$TPR = \frac{TP}{TP + FN}$	$TNR = \frac{TN}{TN + FP}$				

- ► TP: true positive; TN: true negative
- ► FP: false positive (type I error); FN: false negative (type II error)
- ▶ PPV: precision or positive predictive value; false discovery rate=1-PPV
- ► NPV: negative predictive value; false omission rate=1-NPV
- 1. Sensitivity (True Positive Rate, TPR)- hit rate
- Specificity (True Negative Rate, TNR)- prop. of correctly classified negatives
- 3. False Positive Rate, FPR=1-TNR, fall-out rate
- 4. False Negative Rate, FNR=1-TPR, miss rate
- 5. Classification rate=(TN+TP)/(TP+FN+FP+TN); accuracy

Diagnostic Accuracy

- ► Choose a cut-off probability based on one of the 5 criteria for success of classification that is most important to you.
- ► High Sensitivity (TPR) makes good screening test.
- ▶ High Specificity (TNR) makes a good confirmatory test.
- A screening test followed by a confirmatory test is a good (but expensive) diagnostic procedure.

Confusion Matrix

► From Wikipedia

		True condition				
	Total population	Condition positive	Condition negative	$\frac{\Gamma}{\Sigma} \frac{\Gamma}{\Gamma} \frac{\Gamma}$	Σ True positive	cy (ACC) = + Σ True negative population
Predicted condition	Predicted condition positive	True positive, Power	False positive,	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds F ₁ score = ratio (DOR) 2	
		False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Condition positive	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	1 1 Recall + Precision

https://en.wikipedia.org/wiki/Confusion_matrix

Least Squares Regression vs Logistic Regression

	(Ordinary) Least Squares	(Binomial) Logistic		
Response, Y	Normal	# of successes in <i>m</i> trials		
Variance	Equal for each level of X	mp(1-p) for each level of X		
Model	$\mu_{y} = \beta_{0} + \beta_{1} X$	$\log(\frac{\mu}{1-\mu}) = \beta_0 + \beta_1 X$		
Model fitting	Least Squares	MLE		
Exploratory plot	X vs Y (add line)	logit vs X		
Comparing	Partial F-test	LRT/Deviance tests		
models	AIC/BIC	AIC/ BIC		
	Residuals	(Pearson, Deviance) Residuals		
Interpreting	β_1 : change in μ_y	e^{eta_1} : % change in odds		
	for unit change in X	for unit change in X		