

Machine Learning Techniques Based on ¹⁸F–FDG PET Radiomics Identifying Patients With Temporal Lobe Epilepsy

Huanhua Wu+, Kai Liao+, Zhiqiang Tan, Hailing Zhou, Hao Xu*

Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University

Introduction

In patients with drug-resistant temporal lobe ¹⁸F-fluorodeoxyglucose (TLE), epilepsy positron emission tomography (FDG-PET) is employed in the presurgical frequently evaluation to localise the seizure onset zone. Our study aims to investigate the clinical application of ¹⁸F-FDG PET radiomics features for temporal lobe epilepsy the machine learning methods to apply radiomics-based model create a for differentiating TLE patients identify and laterality seizure the onset zone accurately.

Results

Table 1: Performance comparison of eleven machine learning algorithms

ML	Accuracy	AUC	Recall	Prec.	F1-score	Kappa	MCC	APC
Lr	0.948	0.984	0.941	0.985	0.959	0.889	0.899	0.994
Nb	0.913	0.977	0.898	0.977	0.931	0.810	0.826	0.991
Lda	0.936	0.977	0.924	0.984	0.949	0.862	0.873	0.992
Rf	0.918			0.962	0.938	0.816	0.829	0.992
Et	0.936	0.977	0.924	0.984	0.949	0.862	0.873	0.993
Gbc	0.878	0.973	0.907	0.922	0.909	0.716	0.732	0.990
Lbm	0.889	0.973	0.924	0.922	0.919	0.737	0.749	0.990
Knn	0.936	0.969	0.924	0.985	0.949	0.864	0.877	0.985
Ada	0.866	0.947	0.899	0.915	0.901	0.684	0.704	0.981
Qda	0.803							0.947
Dt	0.889	0.878	0.907	0.938	0.918	0.746	0.761	0.913

Figure 2: Nomogram of optimal Logistic Regression algorithm and web application online (https://bit.ly/3tWAGPR)

Figure 1: Workflow diagram: PET imaging preprocessing, feature extraction and selection, data splitting and machine learning

TLE classification nomogram

Discussion & Conclusion

This work serves as a proof-of-concept for the prospective value of PET radiomic characteristics in TLE patients. A prospective study with a large population is still needed to quantify the PET radiomics nomogram in the future.

Bibliography

[1] Wu H, Liu Y, Tan Z, et al. A Broad Learning System for ¹⁸F-FDG PET/MRI Imaging Diagnosis in Temporal Lobe Epilepsy Patients: A Retrospective Cohort Study[J].

[2] Zhou H, Zhang W, Tan Z, et al. Localizing Epileptic Foci Before Surgery in Patients With MRI-Negative Refractory Epilepsy Using Statistical Parameter Mapping and Three-Dimensional Stereotactic Surface Projection Based on 18F-FDG PET[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9.

Acknowledgement

This work is funded by the Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (No. JNU1AF-CFTP-2022-a01214