vendredi 23 janvier 2015 Durée : 2 heures

PROGRAMMATION FONCTIONNELLE

Etant donné un ensemble E, on appelle permutation de E toute bijection de E dans E. On considère dans ce problème les permutations d'ensembles finis et ordonnés, c'est-à-dire pour lesquels les éléments peuvent être énoncés dans un ordre donné. De tels ensembles, de type $E = \{x_1, x_2, ..., x_n\}$ seront représentés par une liste $(x_1 \ x_2 \ ... \ x_n)$.

Toute permutation s de $E = \{x_1, x_2, ..., x_n\}$ peut être déduite d'une permutation σ de l'ensemble [1, n], en appliquant σ aux indices des éléments de E. Par exemple si σ est une permutation de [1, 6], telle que $\sigma(1) = 2$, $\sigma(2) = 6$, $\sigma(3) = 1$, $\sigma(4) = 5$, $\sigma(5) = 4$ et $\sigma(6) = 3$, on peut déduire de $\sigma(6) = 3$ la permutation $\sigma(6) = 3$ de $\sigma($

Toute permutation de l'ensemble [1, n] peut être représentée conventionnellement par la liste $(\sigma(1) \ \sigma(2) \ \dots \ \sigma(n))$. Par exemple, la permutation σ donnée en exemple ci-dessus peut être représentée par la liste $(2\ 6\ 1\ 5\ 4\ 3)$. De même, par généralisation, toute permutation s d'un ensemble $E = \{x_1, x_2, \ldots, x_n\}$ peut être représentée par une liste représentant la permutation σ de [1, n] dont elle découle. Attention, cette convention de représentation suppose que les éléments de E sont énoncés dans un ordre bien déterminé. Dans ce problème, cet ordre sera naturellement l'ordre dans lequel les éléments sont écrits dans la liste représentant l'ensemble. Par exemple, si $E = \{a, b, c\} = \{c, a, b\} = \text{etc.}$ (on a le droit d'énoncer les éléments d'un ensemble dans n'importe quel ordre) est représenté par la liste $(a\ b\ c)$, alors la liste $(3\ 1\ 2)$ représente une permutation s telle que s (a) = c, s (b) = a et s (c) = b.

- 1°) a) Ecrire une fonction rang ayant comme argument un élément x et une liste L et telle que l'évaluation de l'expression (rang x L) retourne 0 si x n'appartient pas à L et sinon retourne le rang de x dans L.
- b) Ecrire une fonction nieme ayant comme argument un entier positif n et une liste L et telle que l'évaluation de l'expression (nieme n L) retourne le n^{ème} élément de L si n est inférieur ou égal à la longueur de L et retourne #f sinon.
- c) Ecrire une fonction <u>récursive terminale</u> listln ayant comme argument un entier positif n et telle que l'évaluation de l'expression (listln n) retourne la liste des entiers de 1 à n, dans l'ordre croissant.
- 2°) a) Ecrire une fonction sigma ayant comme argument une liste LP représentant une permutation et telle que l'évaluation de l'expression (sigma LP) retourne la permutation de l'ensemble $[\![1,n]\!]$ représentée par LP.

Par exemple l'évaluation de (sigma ' (2 6 1 5 4 3)) doit retourner la permutation σ donnée en exemple ci-dessus, c'est-à-dire la fonction qui à 1 associe 2, à 2 associe 6, etc. Donc, l'évaluation de l'expression ((sigma ' (2 6 1 5 4 3)) 2) doit par exemple retourner 6.

b) Ecrire une fonction permut ayant comme arguments une liste $\mathbb E$ représentant un ensemble E, et une liste LP représentant une permutation de E, et telle que l'évaluation de l'expression (permut $\mathbb E$ LP) retourne la permutation de l'ensemble E représentée par LP .

Par exemple l'évaluation de (permut '(a b c) '(3 1 2)) doit retourner la permutation s telle que s (a) = c, s (b) = a et s (c) = b.

c) Ecrire une fonction liste ayant comme arguments une liste E représentant un ensemble E, et une permutation E de E, et telle que l'évaluation de l'expression (liste E s) retourne la liste représentant E. Par exemple l'évaluation de l'expression

```
(let ((s (permut '(a b c) '(3 1 2))))
(liste '(a b c) s)) -> ( 0 b)
doit retourner (3 1 2).
```

3°) Ecrire une fonction image ayant comme arguments une liste $\mathbb E$ représentant un ensemble E, et une liste $\mathbb E$ représentant une permutation de E, et telle que l'évaluation de l'expression (image $\mathbb E$ $\mathbb E$) retourne l'image de l'ensemble E par la permutation représentée par $\mathbb E$.

Par exemple l'évaluation de (image '(a b c) '(3 1 2)) doit retourner (c a b).

4°) a) Ecrire une fonction inverseListe ayant comme argument une liste LP représentant une permutation σ et telle que l'évaluation de l'expression (inverseListe LP) retourne une liste représentant la permutation inverse σ^{-1} , définie par : $\sigma(x) = y \Leftrightarrow x = \sigma^{-1}(y)$.

Par exemple l'évaluation de (inverseListe ' (2 6 1 5 4 3)) doit retourner (3 1 6 5 4 2). Remarque: $\forall i \in LP, \sigma^{-1}(i)$ est le rang de i dans LP.

- b) Ecrire une fonction inverse ayant comme arguments une liste E représentant un ensemble E et une permutation s définie sur E, et telle que l'évaluation de l'expression (inverse E s) retourne la permutation inverse e^{-1} de e.
- 5°) Soit $E = \{x_1, x_2, ..., x_n\}$ un ensemble et $k \in [2, n]$. On appelle k-cycle de E toute permutation c de E telle qu'il existe x_i , ..., $x_{ii} \in E$, deux à deux distincts, tels que $c(x_{ii}) = x_{i2}$, $c(x_{i2}) = x_{i3}$, ..., $c(x_{ik-1}) = x_{ik}$, $c(x_{ik}) = x_{i1}$ et $\forall x \in E \{x_{i1}, ..., x_{ik}\}$, c(x) = x. Un théorème mathématique démontre que toute permutation peut être décomposée en un ou plusieurs cycle(s).

Par exemple, la permutation de [[1, 6]] représentée par la liste (2 6 1 5 4 3) se décompose en deux cycles c_1 et c_2 tels que :

$$c_1(2) = 6$$
, $c_1(6) = 3$, $c_1(3) = 1$ et $c_1(1) = 2$; $c_2(4) = 5$ et $c_2(5) = 4$

Chaque cycle c_1 et c_2 pouvant être respectivement représentés par la liste $(2 \ 6 \ 3 \ 1)$ et $(5 \ 4)$, la décomposition de la permutation donnée en exemple peut être représentée par la liste de listes $((2 \ 6 \ 3 \ 1) \ (5 \ 4))$.

a) Expression cycleIteres ayant comme arguments une fonction f d'une seule variable et un élément x, et telle que l'évaluation de l'expression (cycleIteres f x) retourne une liste $(x_1 \ x_2 \dots x_n)$ telle que : $x_1 = x$, $\forall i \in [1, n-1]$, f $(x_i) = x_{i+1}$, et f $(x_n) = x_1$.

Par exemple si f est la permutation de [1,6] représentée par la liste (2 6 1 5 4 3), alors l'évaluation de l'expression (cycleIteres f 2) doit retourner (2 6 3 1), et l'évaluation de l'expression (cycleIteres f 5) doit retourner (5 4).

b) Ecrire une fonction listeCycles ayant comme argument une liste LP représentant une permutation σ et telle que l'évaluation de l'expression (listeCycles LP) retourne une liste de listes représentant la décomposition en cycles de σ . Par exemple, l'évaluation de l'expression (listeCycles ' (2 6 1 5 4 3)) doit retourner ((2 6 3 1) (5 4)) ou toute autre liste de listes équivalente.