Constructing symmetric representations of $SL(2,\mathbb{Z})$.

1.0

30 December 2021

Siu-Hung Ng

Yilong Wang

Samuel Wilson

Siu-Hung Ng

Email: rng@math.lsu.edu

Homepage: https://www.math.lsu.edu/~rng/

Address: Louisiana State University, Baton Rouge, LA, 70803,

USA

Yilong Wang

Email: wyl@bimsa.cn

Homepage: https://yilongwang11.github.io

Address: Louisiana State University, Baton Rouge, LA, 70803,

USA

Current: Beijing Institute of Mathematical Sciences and

Applications (BIMSA), Huairou, Beijing, China

Samuel Wilson

Email: swil311@lsu.edu

Homepage: https://snw-0.github.io

Address: Louisiana State University, Baton Rouge, LA, 70803,

USA

Copyright

 $\ensuremath{\mathbb{C}}$ 2021 by Siu-Hung Ng, Yilong Wang, and Samuel Wilson

This package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

This project is partially supported by NSF grant DMS 1664418.

Contents

1	Introduction								
	1.1	Installation	4						
	1.2	Usage	4						
2	Description								
	2.1	Construction	5						
	2.2	Weil representation types	7						
3	Irreducible representations of prime-power level								
	3.1	Representations of type D	11						
	3.2	Representations of type N	12						
	3.3	Representations of type R	13						
4	Lists of representations								
	4.1	Lists by degree	15						
	4.2	Lists by level	15						
	4.3	Lists of exceptional representations	15						
5	Methods for testing								
	5.1	Testing	16						
Re	eferen	ces	17						
In	dex		18						

Introduction

This package, SL2Reps, provides methods for constructing and testing matrix presentations of the representations of $SL_2(\mathbb{Z})$ whose kernels are congruence subgroups of $SL_2(\mathbb{Z})$.

Irreducible representations of prime-power level are constructed individually by using the Weil representations of quadratic modules, and from these a list of all representations of a given degree or level can be produced. Each representation is represented by a pair (S,T), where S is a symmetric, unitary matrix and T is a diagonal matrix of finite order; this format is designed for the study of modular tensor categories in particular.

1.1 Installation

To install SL2Reps, first download it from https://github.com/snw-0/sl2-reps, then place it in the pkg subdirectory of your GAP installation (or in the pkg subdirectory of any other GAP root directory, for example one added with the -1 argument).

```
SL2Reps is then loaded with the GAP command gap> LoadPackage( "SL2Reps" );
```

1.2 Usage

Specific irreducible representations may be constructed via the methods in Chapter 3, while lists of irreducible representations with a given degree or level may be constructed with those in Chapter 4.

This package uses an InfoClass, InfoSL2Reps. It may be set to 0 (silent), 1 (info), or 2 (verbose). To change it, use

```
gap> SetInfoLevel( InfoSL2Reps, k );
```

Description

The group $SL_2(\mathbb{Z})$ is generated by $\mathfrak{s} = \llbracket [0,1], \llbracket -1,0 \rrbracket \rrbracket$ and $\mathfrak{t} = \llbracket [1,1], \llbracket 0,1 \rrbracket \rrbracket$ (which satisfy the relations $\mathfrak{s}^4 = (\mathfrak{s}\mathfrak{t})^3 = \mathrm{id}$). Thus, any complex representation ρ of $SL_2(\mathbb{Z})$ on \mathbb{C}^n (where $n \in \mathbb{Z}^+$ is called the *degree* or *dimension* of ρ) is determined by the $n \times n$ matrices $S = \rho(\mathfrak{s})$ and $T = \rho(\mathfrak{t})$.

This package constructs irreducible representations of $SL_2(\mathbb{Z})$ which factor through $SL_2(\mathbb{Z}/\ell\mathbb{Z})$ for some $\ell \in \mathbb{Z}^+$; the smallest such ℓ is called the *level* of the representation, and is equal to the order of T. One may equivalently say that the kernel of the representation is a congruence subgroup. Such representations are called *congruent* representations. A congruent representation ρ is called *symmetric* if $S = \rho(\mathfrak{s})$ is a symmetric, unitary matrix and $T = \rho(\mathfrak{t})$ is a diagonal matrix; it was proved by the authors that every congruent representation is equivalent to a symmetric one (see 2.1.4). Any representation of $SL_2(\mathbb{Z})$ arising from a modular tensor category is symmetric [DLN15].

We therefore present representations in the form of a record rec(S, T, degree, level, name), where the name follows the conventions of [NW76].

Note that our definition of \mathfrak{s} follows that of [Nob76]; other authors prefer the inverse, i.e. $\mathfrak{s} = [[0,-1],[1,0]]$ (under which convention the relations are $\mathfrak{s}^4 = \mathrm{id},(\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2$). When working with that convention, one must invert the *S* matrices output by this package.

Throughout, we denote by **e** the map $k \mapsto e^{2\pi i \overline{k}}$ (an isomorphism from \mathbb{Q}/\mathbb{Z} to the group of finite roots of unity in \mathbb{C}). For a group G, we denote by \widehat{G} the character group $\operatorname{Hom}(G,\mathbb{C}^{\times})$.

2.1 Construction

Any representation ρ of $SL_2(\mathbb{Z})$ can be decomposed into a direct sum of irreducible representations (irreps). Further, if ρ has finite level, each irrep can be factorized into a tensor product of irreps whose levels are powers of distinct primes (using the Chinese remainder theorem). Therefore, to characterize all finite-dimensional representations of $SL_2(\mathbb{Z})$ of finite level, it suffices to consider irreps of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ for primes p and positive integers λ .

2.1.1 Weil representations

Such representations may be constructed using Weil representations as described in [Nob76, Section 1]. We give a brief summary of the process here. First, if M is any additive abelian group, a *quadratic* form on M is a map $Q: M \to \mathbb{Q}/\mathbb{Z}$ such that

•
$$Q(-x) = Q(x)$$
 for all $x \in M$, and

•
$$B(x,y) = Q(x+y) - Q(x) - Q(y)$$
 defines a \mathbb{Z} -bilinear map $M \times M \to \mathbb{Q}/\mathbb{Z}$.

Now let p be a prime number and $\lambda \in \mathbb{Z}^+$. Choose a $\mathbb{Z}/p^\lambda\mathbb{Z}$ -module M and a quadratic form Q on M such that the pair (M,Q) is of one of the three types described in Section 2.2. Each such M is a ring, and has at most 2 cyclic factors as an additive group. Those with 2 cyclic factors may be identified with a quotient of the quadratic integers, giving a norm on M. Then the *quadratic module* (M,Q) gives rise to a representation of $\mathrm{SL}_2(\mathbb{Z}/p^\lambda\mathbb{Z})$ on the vector space $V=\mathbb{C}^M$ of complex-valued functions on M. This representation is denoted W(M,Q). Note that the *central charge* of (M,Q) is given by $S_Q(-1)=\frac{1}{\sqrt{|M|}}\sum_{x\in M}\mathbf{e}(Q(x))$.

2.1.2 Character subspaces and primitive characters

A family of subrepresentations $W(M,Q,\chi)$ of W(M,Q) may be constructed as follows. Denote

$$\operatorname{Aut}(M,Q) = \{ \varepsilon \in \operatorname{Aut}(M) \mid Q(\varepsilon x) = Q(x) \text{ for all } x \in M \}.$$

We then associate to (M,Q) an abelian subgroup $\mathfrak{A} \leq \operatorname{Aut}(M,Q)$; the structure of this group depends on (M,Q) and is described in Section 2.2. Note that \mathfrak{A} has at most two cyclic factors, whose generators we denote by α and β . Now, let $\chi \in \widehat{\mathfrak{A}}$ be a 1-dimensional representation (*character*) of \mathfrak{A} , and define

$$V_{\chi} = \{ f \in V \mid f(\varepsilon x) = \chi(\varepsilon) f(x) \text{ for all } x \in M \text{ and } \varepsilon \in \mathfrak{A} \},$$

which is a $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace of V. We then denote by $W(M,Q,\chi)$ the subrepresentation of W(M,Q) on V_{χ} . Note that $W(M,Q,\chi) \cong W(M,Q,\overline{\chi})$.

For the abelian groups $\mathfrak{A} \leq \operatorname{Aut}(M,Q)$, we will frequently refer to a character $\chi \in \widehat{\mathfrak{A}}$ as being *primitive*. With the exception of a single family of modules of type R (the *extremal* case, for which see Section 2.2.4), primitivity amounts to the following: there exists some $\varepsilon \in \mathfrak{A}$ such that $\chi(\varepsilon) \neq 1$ and ε fixes the submodule $pM \subset M$ pointwise. There exists a subgroup $\mathfrak{A}_0 \leq \mathfrak{A}$ such that a non-trivial $\chi \in \widehat{\mathfrak{A}}$ is primitive if and only if χ is injective on \mathfrak{A}_0 (or, equivalently, if $\mathfrak{A}_0 \cap \ker \chi$ is trivial).

Explicit descriptions of the group \mathfrak{A}_0 for each type are given in Section 2.2 and may be used to determine the primitive characters.

2.1.3 Irrep Types

All irreps of prime-power level and finite degree may then be constructed in one of three ways ([NW76, Hauptsatz 2]):

- The overwhelming majority are of the form $W(M,Q,\chi)$ for χ primitive and $\chi^2 \neq 1$; we call these *standard*. This includes the primitive characters from the extremal case.
- A finite number, and a single infinite family arising from the extremal case (Section 2.2.4), are instead constructed by using non-primitive characters or primitive characters χ with $\chi^2 = 1$. We call these *non-standard*.
- Finally, 18 *exceptional* irreps are constructed as tensor products of two irreps from the other two cases. A full list of these may be constructed by SL2IrrepsExceptional (4.3.1).

2.1.4 S and T matrices

The images $W(M,Q)(\mathfrak{s})(f)$ and $W(M,Q)(\mathfrak{t})(f)$ may be calculated for any $f \in V$ (see [Nob76, Satz 2]). Thus, to construct S and T matrices for the irreducible subrepresentations of W(M,Q), it suffices to find bases for the W(M,Q)-invariant subspaces of V. Choices for such bases are given by [NW76]; however, these often result in non-symmetric S matrices. It has been proven by the authors of this package that, for all standard and non-standard irreps, there exists a basis for the corresponding subspace of V such that S is symmetric and unitary and T is diagonal ([NWW21], in preparation). In particular, S is always either a real matrix or i times a real matrix. It follows that these properties hold for the exceptional irreps as well. This package therefore produces matrices with these properties.

All the finite-dimensional irreducible representations of $SL_2(\mathbb{Z})$ of finite level can now be constructed by taking tensor products of these prime-power irreps. Note that, if two representations are determined by pairs [S1,T1] and [S2,T2], then the pair for their tensor product may be calculated via the GAP command KroneckerProduct, namely as [KroneckerProduct(S1,S2),KroneckerProduct(T1,T2)].

2.2 Weil representation types

2.2.1 Type D

Let p be prime. If p = 2 or p = 3, let $\lambda \ge 2$; otherwise, let $\lambda \ge 1$. Then the Weil representation arising from the quadratic module with

$$M = \mathbb{Z}/p^{\lambda}\mathbb{Z} \oplus \mathbb{Z}/p^{\lambda}\mathbb{Z}$$
 and $Q(x,y) = \frac{xy}{p^{\lambda}}$

is said to be of type D and denoted $D(p,\lambda)$. Information on type D quadratic modules may be obtained via SL2ModuleD (3.1.1), and subrepresentations of $D(p,\lambda)$ with level p^{λ} may be constructed via SL2IrrepD (3.1.2).

The group

$$\mathfrak{A} \cong (\mathbb{Z}/p^{\lambda}\mathbb{Z})^{\times}$$

acts on M by $a(x,y)=(a^{-1}x,ay)$ and is thus identified with a subgroup of $\operatorname{Aut}(M,Q)$; see [NW76, Section 2.1]. The group $\mathfrak A$ has order $p^{\lambda-1}(p-1)$ and $\mathfrak A=\langle\alpha\rangle\times\langle\beta\rangle$. The relevant information for type D quadratic modules is as follows:

When \mathfrak{A}_0 is trivial, every non-trivial character $\chi \in \widehat{\mathfrak{A}}$ is primitive.

2.2.2 Type N

Let p be prime and $\lambda \ge 1$. If $p \ne 2$, let u be a positive integer so that $u \equiv 3 \mod 4$ with -u a quadratic non-residue mod p; if p = 2, let u = 3. Then the Weil representation arising from the quadratic module with

$$M = \mathbb{Z}/p^{\lambda}\mathbb{Z} \oplus \mathbb{Z}/p^{\lambda}\mathbb{Z}$$
 and $Q(x,y) = \frac{x^2 + xy + \frac{1+u}{4}y^2}{p^{\lambda}}$

is said to be of type N and denoted $N(p,\lambda)$. Information on type N quadratic modules may be obtained via SL2ModuleN (3.2.1), and subrepresentations of $N(p,\lambda)$ with level p^{λ} may be constructed via SL2IrrepN (3.2.2).

The additive group M is a ring with multiplication given by

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - \frac{1+u}{4} y_1 y_2, x_1 y_2 + x_2 y_1 + y_1 y_2)$$

and identity element (1,0). We define a norm $Nm(x,y) = x^2 + xy + \frac{1+u}{4}y^2$ on M; then the multiplicative subgroup

$$\mathfrak{A} = \{ \varepsilon \in M^{\times} \mid \operatorname{Nm}(\varepsilon) = 1 \}$$

of M^{\times} acts on M by multiplication and is identified with a subgroup of Aut(M,Q); see [NW76, Section 2.2].

The group $\mathfrak A$ has order $p^{\lambda-1}(p+1)$ and $\mathfrak A=\langle \alpha\rangle \times \langle \beta\rangle$. The relevant information for type N quadratic modules is as follows:

When \mathfrak{A}_0 is trivial, every non-trivial character $\chi \in \widehat{\mathfrak{A}}$ is primitive.

2.2.3 Type R, generic cases

The structure of the quadratic module (M,Q) of type R depends upon three additional parameters: σ , r, and t. Details are as follows:

• If p is odd, let $\lambda \geq 2$, $\sigma \in \{1, ..., \lambda\}$, and $r, t \in \{1, u\}$ with u a quadratic non-residue mod p. Then define

$$M = \mathbb{Z}/p^{\lambda}\mathbb{Z} \oplus \mathbb{Z}/p^{\lambda-\sigma}\mathbb{Z}$$
 and $Q(x,y) = \frac{r(x^2 + p^{\sigma}ty^2)}{p^{\lambda}}$.

When $\sigma = \lambda$, the second factor of M is trivial, and (M,Q) is said to be in the *unary* family; otherwise, it is called *generic*.

• If p=2, let $\lambda \geq 2$, $\sigma \in \{0,\ldots,\lambda-2\}$ and $r,t \in \{1,3,5,7\}$. Then define

$$M = \mathbb{Z}/2^{\lambda-1}\mathbb{Z} \oplus \mathbb{Z}/2^{\lambda-\sigma-1}\mathbb{Z}$$
 and $Q(x,y) = \frac{r(x^2 + 2^{\sigma}ty^2)}{2^{\lambda}}$.

When $\sigma = \lambda - 2$, the second factor of M is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and (M,Q) is said to be in the *extremal* family; otherwise, it is called *generic*.

In all cases, the resulting representation is said to be of type R and denoted $R(p, \lambda, \sigma, r, t)$. The additive group M admits a ring structure with multiplication

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - p^{\sigma} t y_1 y_2, x_1 y_2 + x_2 y_1)$$

and identity element (1,0). We define a norm $Nm(x,y) = x^2 + xy + p^{\sigma}ty^2$ on M.

In this section, we detail generic type *R* quadratic modules. Information on the unary and extremal cases is covered in Section 2.2.4.

Let (M,Q) be a generic type R quadratic module. Information on (M,Q) can be obtained via SL2ModuleR (3.3.1), and subrepresentations of $R(p,\lambda,\sigma,r,t)$ with level p^{λ} may be constructed via SL2IrrepR (3.3.2).

The multiplicative subgroup

$$\mathfrak{A} = \{ \varepsilon \in M^{\times} \mid \operatorname{Nm}(\varepsilon) = 1 \}$$

of M^{\times} acts on M by multiplication and is identified with a subgroup of Aut(M,Q); see [NW76, Section 2.3 - 2.4]. The relevant information is as follows:

• If p is odd, $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$ with order $2p^{\lambda - \sigma}$. In this case, for fixed p, λ , σ , each pair (r,t) gives rise to a distinct quadratic module [Nob76, Satz 4]. The following table covers a complete list of representatives of equivalence classes of such modules.

p	λ	σ	(r,t)	α	β	\mathfrak{A}_0
3	2	1	$r, t \in \{1, 2\}$	$ \alpha =3$	(-1,0)	$\langle \alpha \rangle$
3	≥ 3	1	$t = 1, r \in \{1, 2\}$	$ \alpha = 3^{\lambda - \sigma - 1}$	$ \beta = 6$	$\langle lpha angle$
3	≥ 3	1	$t = 2, r \in \{1, 2\}$	$ \alpha = 3^{\lambda - \sigma}$	(-1,0)	$\langle lpha angle$
3	≥ 3	$2,\ldots,\lambda-1$	$r,t \in \{1,2\}$	$ \alpha = 3^{\lambda - \sigma}$	(-1,0)	$\langle lpha angle$
≥ 5	≥ 2	$1,\ldots,\lambda-1$	$r,t \in \{1,u\}$	$ \alpha = p^{\lambda - \sigma}$	(-1,0)	$\langle lpha angle$

• If p = 2, then the generic case occurs when $\lambda \ge 3$ and $\sigma \in \{0, \dots, \lambda - 3\}$. Again, $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$; the order is $2^{\lambda - \sigma - k}$ with $k \in \{0, 1, 2\}$ (as specified below). In this case, for fixed p, λ , σ , two pairs (r_1, t_1) and (r_2, t_2) may give rise to equivalent quadratic modules [Nob76, Satz 4]. The following table covers a complete list of representatives of equivalence classes of such modules.

λ	σ	r	t	$\alpha = (x, y)$	β	\mathfrak{A}_0
3	0	1,3	1,5	(1,0)	$(\frac{t-1}{2},1)$	$\langle (-1,0) \rangle$
3	0	1	3,7	(1,0)	(-1,0)	$\langle (-1,0) \rangle$
4	0	1,3	5	$x = 2, y \equiv 3 \mod 4, \alpha = 2^{\lambda - 2}$	(-1,0)	$\langle -lpha^2 angle$
≥ 4	0	1,3	1	$x \equiv 1 \bmod 4, y = 4, \alpha = 2^{\lambda - 3}$	(0,1)	$\langle lpha angle$
≥ 4	0	1	3,7	$x \equiv 1 \bmod 4, y = 4, \alpha = 2^{\lambda - 3}$	(-1,0)	$\langle lpha angle$
≥ 5	0	1,3	5	$x = 2, y \equiv 3 \mod 4, \alpha = 2^{\lambda - 2}$	(-1,0)	$\langle lpha angle$
≥ 3	1,2	1, 3, 5, 7	1,3,5,7	$x \equiv 1 \mod 4, y = 2, \alpha = 2^{\lambda - \sigma - 2}$	(-1,0)	$\langle lpha angle$
≥ 3	≥ 3	1,3,5,7	1,3,5,7	$x \equiv 1 \mod 4, y = 1, \alpha = 2^{\lambda - \sigma - 1}$	(-1,0)	$\langle \alpha \rangle$

2.2.4 Type R, unary and extremal cases

This section covers the unary and extremal cases of type R.

First, in the unary family, we have p odd and $\sigma = \lambda$. Then the second factor of M is trivial (and hence t is irrelevant). We then denote $R_{p^{\lambda}}(r) = R(p,\lambda,\lambda,r,t)$. In this case, we do not decompose W(M,Q) using characters: instead, if $\lambda \leq 2$, then W(M,Q) contains two distinct irreducible subrepresentations of level p^{λ} , denoted $R_{p^{\lambda}}(r)_{\pm}$; otherwise, it contains a single such subrepresentation, denoted $R_{p^{\lambda}}(r)_1$. The unary family is handled by SL2IrrepRUnary (3.3.3) (which is called by SL2IrrepR (3.3.2) when appropriate).

Second, in the extremal family, we have p=2, $\lambda \geq 2$, and $\sigma=\lambda-2$. Then the second factor of M is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and collapses in 2M. Here, $\operatorname{Aut}(M,Q)$ is itself abelian, so we let $\mathfrak{A}=\operatorname{Aut}(M,Q)$. This group has order 1, 2, or 4, with the following structure:

- For $\lambda=2$ and $t=1,\,\mathfrak{A}=\langle \tau \rangle$ where $\tau:(x,y)\mapsto (y,x)$, and $\mathfrak{A}_0=\mathfrak{A}=\langle \tau \rangle$.
- For $\lambda = 2$ and t = 3, $\mathfrak A$ is trivial; there are no primitive characters.
- For $\lambda = 3$ or 4, $\mathfrak{A} = \{\pm 1\}$ acting on M by multiplication; there are no primitive characters.
- Finally, for $\lambda \geq 5$, $\mathfrak{A} = \operatorname{Aut}(M,Q) = \langle \alpha \rangle \times \langle -1 \rangle$ with α of order 2, and $\mathfrak{A}_0 = \langle \alpha \rangle$. Note that, for this special case, the usual test for primitivity (described in Section 2.1) fails, as there are no elements of \mathfrak{A} fixing 2M pointwise.

The extremal family is handled by SL2ModuleR (3.3.1) and SL2IrrepR (3.3.2), just like the generic case.

Irreducible representations of prime-power level

Methods for generating individual irreducible representations of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ for a given level p^{λ} .

After generating a representation ρ by means of the bases in [NW76], we perform a change of basis that results in a symmetric representation equivalent to ρ .

In each case (except the unary type R, for which see SL2IrrepRUnary (3.3.3)), the underlying module M is of rank 2, so its elements have the form (x, y) and are thus represented by lists [x, y].

Characters of the abelian group $\mathfrak{A} = \langle \alpha \rangle \times \langle \beta \rangle$ have the form $\chi_{i,j}$, given by

$$\chi_{i,j}(\boldsymbol{lpha}^{\scriptscriptstyle{V}}oldsymbol{eta}^{\scriptscriptstyle{W}})\mapsto \mathbf{e}\left(rac{vi}{|oldsymbol{lpha}|}
ight)\mathbf{e}\left(rac{wj}{|oldsymbol{eta}|}
ight)\;,$$

where i and j are integers. We therefore represent each character by a list [i,j]. Note that in some cases α or β is trivial, and the corresponding index i or j is therefore irrelevant.

We write p=p, lambda= λ , sigma= σ , and chi= χ .

3.1 Representations of type D

See Section 2.2.1.

3.1.1 SL2ModuleD

▷ SL2ModuleD(p, lambda)

(function)

Returns: a record rec(Agrp, Bp, Char, IsPrim) describing (M,Q).

Constructs information about the underlying quadratic module (M,Q) of type D, for p a prime and $\lambda \geq 1$.

Agrp is a list describing the elements of $\mathfrak A$. Each element $a \in \mathfrak A$ is represented in Agrp by a list [v, a, a_inv], where v is a list defined by $a = \alpha^{v[1]}\beta^{v[2]}$. Note that β is trivial, and hence v[2] is irrelevant, when $\mathfrak A$ is cyclic.

Bp is a list of representatives for the \mathfrak{A} -orbits on M^{\times} , which correspond to a basis for the $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace associated to any primitive character $\chi \in \widehat{\mathfrak{A}}$ with $\chi^2 \not\equiv 1$. This is the basis given by [NW76], which may result in a non-symmetric representation; if this occurs, we perform a change of basis in $\mathrm{SL2IrrepD}$ (3.1.2) to obtain a symmetric representation. For non-primitive characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character $\chi_{i,j} \in \widehat{\mathfrak{A}}$. IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character.

3.1.2 SL2IrrepD

▷ SL2IrrepD(p, lambda, chi_index)

(function)

Returns: a list of lists of the form [S, T].

Constructs the modular data for the irreducible representation(s) of type D with level p^{λ} , for p a prime and $\lambda \geq 1$, corresponding to the character χ indexed by chi_index = [i,j] (see the discussion of Char(i,j) in SL2ModuleD (3.1.1)).

Here *S* is symmetric and unitary and *T* is diagonal.

Depending on the parameters, W(M,Q) will contain either 1 or 2 such irreps.

3.2 Representations of type N

See Section 2.2.2.

3.2.1 SL2ModuleN

▷ SL2ModuleN(p, lambda)

(function)

Returns: a record rec(Agrp, Bp, Char, IsPrim, Nm, Prod) describing (M,Q).

Constructs information about the underlying quadratic module (M,Q) of type N, for p a prime and $\lambda > 1$.

Agrp is a list describing the elements of $\mathfrak A$. Each element $a\in\mathfrak A$ is represented in Agrp by a list [v, a], where v is a list defined by $a=\alpha^{v[1]}\beta^{v[2]}$. Note that α is trivial, and hence v[1] is irrelevant, when $\mathfrak A$ is cyclic.

Bp is a list of representatives for the \mathfrak{A} -orbits on M^{\times} , which correspond to a basis for the $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace associated to any primitive character $\chi \in \widehat{\mathfrak{A}}$ with $\chi^2 \not\equiv 1$. This is the basis given by [NW76], which may result in a non-symmetric representation; if this occurs, we perform a change of basis in $\mathrm{SL2IrrepD}$ (3.1.2) to obtain a symmetric representation. For non-primitive characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character $\chi_{i,j} \in \widehat{\mathfrak{A}}$. IsPrim(chi) tests whether the output of Char(i,j) represents a primitive character. Nm(a) and Prod(a,b) are the norm and product functions on M, respectively.

3.2.2 SL2IrrepN

▷ SL2IrrepN(p, lambda, chi_index)

(function)

Returns: a list of lists of the form [S, T].

Constructs the modular data for the irreducible representation(s) of type N with level p^{λ} , for p a prime and $\lambda \geq 1$, corresponding to the character χ indexed by chi_index = [i,j] (see the discussion of Char(i,j) in SL2ModuleN (3.2.1)).

Here S is symmetric and unitary and T is diagonal.

Depending on the parameters, W(M,Q) will contain either 1 or 2 such irreps.

3.3 Representations of type R

See Section 2.2.3.

3.3.1 SL2ModuleR

```
ightharpoonup SL2ModuleR(p, lambda, sigma, r, t) (function)

Returns: a record rec(Agrp, Bp, Char, IsPrim, Nm, Ord, Prod, c, tM) describing (M,Q).
```

Constructs information about the underlying quadratic module (M,Q) of type R, for p a prime. The additional parameters λ , σ , r, and t should be integers chosen as follows.

If p is an odd prime, let $\lambda \geq 2$, $\sigma \in \{1, ..., \lambda - 1\}$, and $r, t \in \{1, u\}$ with u a quadratic non-residue mod p. Note that $\sigma = \lambda$ is a valid choice for type R, however, this gives the unary case, and so is not handled by this function, as it is decomposed in a different way; for this case, use SL2IrrepRUnary (3.3.3) instead.

```
If p = 2, let \lambda \ge 2, \sigma \in \{0, ..., \lambda - 2\} and r, t \in \{1, 3, 5, 7\}.
```

Agrp is a list describing the elements of $\mathfrak A$. Each element a of $\mathfrak A$ is represented in Agrp by a list [v, a], where v is a list defined by $a = \alpha^{v[1]} \beta^{v[2]}$.

Bp is a list of representatives for the \mathfrak{A} -orbits on M^{\times} , which correspond to a basis for the $\mathrm{SL}_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ -invariant subspace associated to any primitive character $\chi \in \widehat{\mathfrak{A}}$ with $\chi^2 \not\equiv 1$. This is the basis given by [NW76], which may result in a non-symmetric representation; if this occurs, we perform a change of basis in $\mathrm{SL2IrrepD}$ (3.1.2) to obtain a symmetric representation. For non-primitive characters, we must use different bases which are particular to each case.

Char(i,j) converts two integers i, j to a function representing the character $\chi_{i,j} \in \widehat{\mathfrak{A}}$.

IsPrim(chi) tests whether the output of Char(i, j) represents a primitive character.

Nm(a), Ord(a), and Prod(a,b) are the norm, order, and product functions on M, respectively.

c is a scalar used in calculating the S-matrix; namely $c = \frac{1}{|M|} \sum_{x \in M} \mathbf{e}(Q(x))$. Note that this is equal to $S_Q(-1)/\sqrt{|M|}$, where $S_Q(-1)$ is the central charge (see Section 2.1.1).

tM is a list describing the elements of the group M - pM.

3.3.2 SL2IrrepR

```
\triangleright SL2IrrepR(p, lambda, sigma, r, t, chi_index) (function) Returns: a list of lists of the form [S, T].
```

Constructs the modular data for the irreducible representation(s) of type R with parameters p, λ , σ , r, and t, corresponding to the character χ indexed by chi_index = [i,j] (see the discussions of σ , r, t, and Char(i,j) in SL2ModuleR (3.3.1)).

Here S is symmetric and unitary and T is diagonal.

Depending on the parameters, W(M,Q) will contain either 1 or 2 such irreps.

If $\sigma = \lambda$ for $p \neq 2$, then the second factor of M is trivial (and hence t is irrelevant), so this falls through to SL2IrrepRUnary (3.3.3).

3.3.3 SL2IrrepRUnary

```
ightharpoonup SL2IrrepRUnary(p, lambda, r) (function) Returns: a list of lists of the form [S, T].
```

Constructs the modular data for the irreducible representation(s) of unary type R (that is, the special case where $\sigma = \lambda$) with p an odd prime, λ a positive integer, and $r \in \{1, u\}$ with u a quadratic non-residue mod p.

Here S is symmetric and unitary and T is diagonal.

In this case, W(M,Q) always contains exactly 2 such irreps.

Lists of representations

The *degree* of a representation is also known as the *dimension*. The *level* of the congruent representation determined by the pair (S, T) is equal to the order of T.

We assign to each representation a *name* according to the conventions of [NW76].

4.1 Lists by degree

4.1.1 SL2IrrepsOfDegree

▷ SL2IrrepsOfDegree(degree)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name). Constructs a list of all irreps of $SL_2(\mathbb{Z})$ that have the given degree.

1 2()

4.1.2 SL2IrrepsOfMaxDegree

▷ SL2IrrepsOfMaxDegree(maximum_degree)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name).

Constructs a list of all irreps of $SL_2(\mathbb{Z})$ that have at most the given maximum degree.

4.2 Lists by level

4.2.1 SL2IrrepsOfLevel

▷ SL2IrrepsOfLevel(level)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name). Constructs a list of all irreps of $SL_2(\mathbb{Z})$ with the given level.

1.3 Lists of exceptional representations

4.3.1 SL2IrrepsExceptional

▷ SL2IrrepsExceptional(arg)

(function)

Returns: a list of records of the form rec(S, T, degree, level, name). Constructs a list of the 18 exceptional irreps of $SL_2(\mathbb{Z})$.

Methods for testing

By the Chinese Remainder Theorem, it suffices to test irreps of prime power level, so those are the irreps handled by the functions in this section.

5.1 Testing

5.1.1 SL2WithConjClasses

▷ SL2WithConjClasses(p, lambda)

(function)

Returns: the group $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$ with conjugacy classes set to the format we use.

5.1.2 SL2ChiST

 \triangleright SL2ChiST(S, T, p, lambda)

(function)

Returns: a list representing a character of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$.

Converts the modular data (S,T), which must have level dividing p^{λ} , into a character of $SL_2(\mathbb{Z}/p^{\lambda}\mathbb{Z})$, presented in a form matching the conjugacy classes used in SL2WithConjClasses.

5.1.3 SL2TestPositions

▷ SL2TestPositions(p, lambda)

(function)

Returns: a boolean.

Constructs and tests all non-trivial irreps of level dividing p^{λ} by checking their positions in Irr(G) (see Section 71.8-2 of the GAP Manual). Note that this function will print information on the irreps involved if InfoSL2Reps is set to level 1 or higher; see Section 1.2.

5.1.4 SL2TestSymmetry

▷ SL2TestSymmetry(p, lambda)

(function)

Returns: a boolean.

Constructs and tests all irreps of level p^{λ} , confirming that the S-matrix is symmetric and unitary and the T matrix is diagonal. Note that this function will print information on the irreps involved if InfoSL2Reps is set to level 1 or higher; see Section 1.2.

References

- [DLN15] Chongying Dong, Xingjun Lin, and Siu-Hung Ng. Congruence property in conformal field theory. *Algebra Number Theory*, 9(9):2121–2166, 2015. 5
- [Nob76] Alexandre Nobs. Die irreduziblen Darstellungen der Gruppen $SL_2(Z_p)$, insbesondere $SL_2(Z_2)$. I. Comment. Math. Helv., 51(4):465–489, 1976. 5, 7, 9
- [NW76] Alexandre Nobs and Jürgen Wolfart. Die irreduziblen Darstellungen der Gruppen $SL_2(Z_p)$, insbesondere $SL_2(Z_p)$. II. *Comment. Math. Helv.*, 51(4):491–526, 1976. 5, 6, 7, 8, 9, 11, 12, 13, 15
- [NWW21] Siu-Hung Ng, Yilong Wang, and Samuel Wilson. Symmetrization of congruent representations of sl(2,z). *In preparation*, 2021. 7

Index

```
License, 2
SL2ChiST, 16
SL2IrrepD, 12
SL2IrrepN, 12
SL2IrrepR, 13
{\tt SL2IrrepRUnary},\, {\tt 13}
SL2IrrepsExceptional, 15
SL2IrrepsOfDegree, 15
SL2IrrepsOfLevel, 15
SL2IrrepsOfMaxDegree, 15
SL2ModuleD, 11
SL2ModuleN, 12
SL2ModuleR, 13
{\tt SL2TestPositions}, 16
SL2TestSymmetry, 16
{\tt SL2WithConjClasses}, 16
```