Question ID 371cbf6b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 371cbf6b

$$(ax+3)(5x^2-bx+4)=20x^3-9x^2-2x+12$$

The equation above is true for all *x*, where *a* and *b* are constants. What is the value of *ab*?

- A. 18
- B. 20
- C. 24
- D. 40

ID: 371cbf6b Answer

Correct Answer: C

Rationale

Choice C is correct. If the equation is true for all x, then the expressions on both sides of the equation will be equivalent. Multiplying the polynomials on the left-hand side of the equation gives $5ax^3 - abx^2 + 4ax + 15x^2 - 3bx + 12$. On the right-hand side of the equation, the only x^2 -term is $-9x^2$. Since the expressions on both sides of the equation are equivalent, it follows that $-abx^2 + 15x^2 = -9x^2$, which can be rewritten as $(-ab+15)x^2 = -9x^2$. Therefore, -ab+15 = -9, which gives ab = 24.

Choice A is incorrect. If ab = 18, then the coefficient of x^2 on the left-hand side of the equation would be -18+15=-3, which doesn't equal the coefficient of x^2 , -9, on the right-hand side. Choice B is incorrect. If ab = 20, then the coefficient of x^2 on the left-hand side of the equation would be -20+15=-5, which doesn't equal the coefficient of x^2 , -9, on the right-hand side. Choice D is incorrect. If ab = 40, then the coefficient of x^2 on the left-hand side of the equation would be -40+15=-25, which doesn't equal the coefficient of x^2 , -9, on the right-hand side.

Question ID 40c09d66

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 40c09d66

$$\frac{\sqrt{x^5}}{\sqrt[3]{x^4}} = x^{\frac{a}{b}}$$
 for all positive values of x, what is the value of $\frac{a}{b}$?

ID: 40c09d66 Answer

Rationale

The correct answer is $\frac{7}{6}$. The value of $\frac{a}{b}$ can be found by first rewriting the left-hand side of the given equation as $\frac{x^{\frac{2}{2}}}{x^{\frac{4}{3}}}$.

 $\chi^{\left(\frac{5}{2}-\frac{4}{3}\right)}$

Using the properties of exponents, this expression can be rewritten as . This expression can be rewritten by

subtracting the fractions in the exponent, which yields $x^{\frac{6}{6}}$. Thus, $\frac{a}{b}$ is $\frac{7}{6}$. Note that 7/6, 1.166, and 1.167 are examples of ways to enter a correct answer.

Question ID 34847f8a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 34847f8a
$$\frac{2}{x-2} + \frac{3}{x+5} = \frac{rx+t}{(x-2)(x+5)}$$

The equation above is true for all x > 2, where r and t are positive constants. What is the value of rt?

- A. -20
- B. 15
- C. 20
- D. 60

ID: 34847f8a Answer

Correct Answer: C

Rationale

Choice C is correct. To express the sum of the two rational expressions on the left-hand side of the equation as the single rational expression on the right-hand side of the equation, the expressions on the left-hand side must have the same

denominator. Multiplying the first expression by $\frac{x+5}{x-5}$ results in $\frac{2(x+5)}{(x-2)(x+5)}$, and multiplying the second expression by

$$\frac{x-2}{x-2}$$
 results in $\frac{3(x-2)}{(x-2)(x+5)}$, so the given equation can be rewritten as

$$\frac{2(x+5)}{(x-2)(x+5)} + \frac{3(x-2)}{(x-2)(x+5)} = \frac{rx+t}{(x-2)(x+5)}, \text{ or } \frac{2x+10}{(x-2)(x+5)} + \frac{3x-6}{(x-2)(x+5)} = \frac{rx+t}{(x-2)(x+5)}. \text{ Since the two}$$

rational expressions on the left-hand side of the equation have the same denominator as the rational expression on the righthand side of the equation, it follows that (2x+10)+(3x-6)=rx+t. Combining like terms on the left-hand side yields 5x + 4 = rx + t, so it follows that r = 5 and t = 4. Therefore, the value of rt is (5)(4) = 20.

Choice A is incorrect and may result from an error when determining the sign of either r or t. Choice B is incorrect and may

result from not distributing the 2 and 3 to their respective terms in $\frac{2(x+5)}{(x-2)(x+5)} + \frac{3(x-2)}{(x-2)(x+5)} = \frac{x+t}{(x-2)(x+5)}$

Choice D is incorrect and may result from a calculation error.

Question ID 137cc6fd

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 137cc6fd

$$\sqrt[5]{70n} \left(\sqrt[6]{70n}\right)^2$$

For what value of x is the given expression equivalent to $(70n)^{30x}$, where n>1?

ID: 137cc6fd Answer

Correct Answer: .0177, .0178, 4/225

Rationale

The correct answer is $\frac{4}{225}$. An expression of the form $\sqrt[k]{a}$, where k is an integer greater than 1 and $a \ge 0$, is equivalent to $a^{\frac{1}{k}}$. Therefore, the given expression, where n > 1, is equivalent to $70n^{\frac{1}{5}}70n^{\frac{1}{6}}$. Applying properties of exponents, this expression can be rewritten as $70n^{\frac{1}{5}}70n^{\frac{1}{6}}$. Or $70n^{\frac{1}{5}}70n^{\frac{1}{3}}$, which can be rewritten as $70n^{\frac{1}{5}} + \frac{1}{3}$, or $70n^{\frac{8}{15}}$. It's given that the expression $\sqrt[5]{70n}\sqrt[6]{70n}$ is equivalent to $70n^{30x}$, where n > 1. It follows that $70n^{\frac{8}{15}}$ is equivalent to $70n^{30x}$. Therefore, $\frac{8}{15} = 30x$. Dividing both sides of this equation by 30 yields $\frac{8}{450} = x$, or $\frac{4}{225} = x$. Thus, the value of x for which the given expression is equivalent to $70n^{30x}$, where n > 1, is $\frac{4}{225}$. Note that 4/225, .0177, .0178, 0.017, and 0.018 are examples of ways to enter a correct answer.

Question ID ea6d05bb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: ea6d05bb

The expression (3x-23)(19x+6) is equivalent to the expression $ax^2 + bx + c$, where a, b, and c are constants. What is the value of b?

ID: ea6d05bb Answer

Correct Answer: -419

Rationale

The correct answer is -419. It's given that the expression 3x - 2319x + 6 is equivalent to the expression $ax^2 + bx + c$, where a, b, and c are constants. Applying the distributive property to the given expression, 3x - 2319x + 6, yields 3x19x + 3x6 - 2319x - 236, which can be rewritten as $57x^2 + 18x - 437x - 138$. Combining like terms yields $57x^2 - 419x - 138$. Since this expression is equivalent to $ax^2 + bx + c$, it follows that the value of b is -419.

Question ID d8789a4c

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: d8789a4c

$$\frac{x^2-c}{x-b}$$

In the expression above, b and c are positive integers. If the expression is equivalent to x + b and $x \ne b$, which of the following could be the value of c?

- A. 4
- B. 6
- C. 8
- D. 10

ID: d8789a4c Answer

Correct Answer: A

Rationale

$$\frac{x^2-c}{}=x+b$$

Choice A is correct. If the given expression is equivalent to x+b, then $\frac{x^2-c}{x-b}=x+b$, where x isn't equal to b. Multiplying both sides of this equation by x-b yields $x^2-c=(x+b)(x-b)$. Since the right-hand side of this equation is in factored form for the difference of squares, the value of c must be a perfect square. Only choice A gives a perfect square for the value of c.

Choices B, C, and D are incorrect. None of these values of c produces a difference of squares. For example, when 6 is

substituted for c in the given expression, the result is x-b. The expression x^2-6 can't be factored with integer values,

$$x^2 - 6$$

and therefore x-b isn't equivalent to x+b.

Question ID 5355c0ef

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 5355c0ef

$$0.36x^2 + 0.63x + 1.17$$

The given expression can be rewritten as $a(4x^2 + 7x + 13)$, where a is a constant. What is the value of a?

ID: 5355c0ef Answer

Correct Answer: .09, 9/100

Rationale

The correct answer is .09. It's given that the expression $0.36x^2 + 0.63x + 1.17$ can be rewritten as $a4x^2 + 7x + 13$. Applying the distributive property to the expression $a4x^2 + 7x + 13$ yields $4ax^2 + 7ax + 13a$. Therefore, $0.36x^2 + 0.63x + 1.17$ can be rewritten as $4ax^2 + 7ax + 13a$. It follows that in the expressions $0.36x^2 + 0.63x + 1.17$ and $4ax^2 + 7ax + 13a$, the coefficients of x^2 are equivalent, the coefficients of x^2 are equivalent, and the constant terms are equivalent. Therefore, 0.36 = 4a, 0.63 = 7a, and 1.17 = 13a. Solving any of these equations for a yields the value of a. Dividing both sides of the equation 0.36 = 4a by 4 yields 0.09 = a. Therefore, the value of a is 0.09. Note that 0.09 and 0.09 are examples of ways to enter a correct answer.

Question ID c81b6c57

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: c81b6c57

In the expression $3(2x^2+px+8)-16x(p+4)$, p is a constant. This expression is equivalent to the expression $6x^2-155x+24$. What is the value of p?

- A. _3
- B. **7**
- C. 13
- D. 155

ID: c81b6c57 Answer

Correct Answer: B

Rationale

Choice B is correct. Using the distributive property, the first given expression can be rewritten as $6x^2 + 3px + 24 - 16px - 64x + 24$, and then rewritten as $6x^2 + (3p - 16p - 64)x + 24$. Since the expression $6x^2 + (3p - 16p - 64)x + 24$ is equivalent to $6x^2 - 155x + 24$, the coefficients of the x terms from each expression are equivalent to each other; thus 3p - 16p - 64 = -155. Combining like terms gives -13p - 64 = -155. Adding 64 to both sides of the equation gives -13p = -71. Dividing both sides of the equation by -13 yields p = 7.

Choice A is incorrect. If p = -3, then the first expression would be equivalent to $6x^2 - 25x + 24$. Choice C is incorrect. If p = 13, then the first expression would be equivalent to $6x^2 - 233x + 24$. Choice D is incorrect. If p = 155, then the first expression would be equivalent to $6x^2 - 2,079x + 24$.

Question ID 2c88af4d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 2c88af4d

$$\frac{x^{-2}y^{\frac{1}{2}}}{1}$$

The expression $x^{\frac{1}{3}}y^{-1}$, where x > 1 and y > 1, is

equivalent to which of the following?

A.
$$\frac{\sqrt{y}}{\sqrt[3]{x^2}}$$

B.
$$\frac{y\sqrt{y}}{\sqrt[3]{x^2}}$$

C.
$$\frac{y\sqrt{y}}{x\sqrt{x}}$$

D.
$$\frac{y\sqrt{y}}{x^2\sqrt[3]{x}}$$

ID: 2c88af4d Answer

Correct Answer: D

Rationale

Choice D is correct. For x > 1 and y > 1, and are equivalent to $\sqrt[3]{x}$ and $\sqrt[y]{y}$, respectively. Also, x^{-2} and y^{-1} are equivalent to $\frac{1}{x^2}$ and $\frac{1}{y}$, respectively. Therefore, the given expression can be rewritten as $\frac{y\sqrt{y}}{x^2\sqrt[3]{x}}$.

Choices A, B, and C are incorrect because these choices are not equivalent to the given expression for x > 1 and y > 1.

Question ID 22fd3e1f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 22fd3e1f

$$f(x) = x^3 - 9x$$
$$g(x) = x^2 - 2x - 3$$

Which of the following expressions is

equivalent to $\frac{f(x)}{g(x)}$, for $_{x>3}$?

A.
$$\frac{1}{x+1}$$

B.
$$\frac{x+3}{x+1}$$

B.
$$\frac{}{x+1}$$

$$\begin{array}{c}
x(x-3) \\
x+1
\end{array}$$

$$\frac{x(x+3)}{x+1}$$

ID: 22fd3e1f Answer

Correct Answer: D

Rationale

Choice D is correct. Since $x^3 - 9x = x(x+3)(x-3)$ and $x^2 - 2x - 3 = (x+1)(x-3)$, the fraction $\frac{f(x)}{g(x)}$ can be written as $\frac{x(x+3)(x-3)}{(x+1)(x-3)}$. It is given that x > 3, so the common factor x = 3 is not equal to 0. Therefore, the fraction can be further simplified to $\frac{x(x+3)}{x+1}$.

Choice A is incorrect. The expression $\frac{1}{x+1}$ is not equivalent to $\frac{f(x)}{g(x)}$ because at x=0, $\frac{1}{x+1}$ as a value of 1 and $\frac{f(x)}{g(x)}$ has a value of 0.

Choice B is incorrect and results from omitting the factor x in the factorization of f(x). Choice C is incorrect and may result from incorrectly factoring g(x) as (x+1)(x+3) instead of (x+1)(x-3).

Question ID a0b4103e

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: a0b4103e

The expression $\frac{1}{3}x^2-2$ can be rewritten as $\frac{1}{3}(x-k)(x+k)$, where k is a positive constant. What is the value of k?

- A. 2
- B. 6
- C. √2
- D. $\sqrt{6}$

ID: a0b4103e Answer

Correct Answer: D

Rationale

Choice D is correct. Factoring out the coefficient $\frac{1}{3}$, the given expression can be rewritten as $\frac{1}{3}(x^2-6)$. The expression x^2-6 can be approached as a difference of squares and rewritten as $(x-\sqrt{6})(x+\sqrt{6})$. Therefore, k must be $\sqrt{6}$.

Choice A is incorrect. If k were 2, then the expression given would be rewritten as $\frac{1}{3}(x-2)(x+2)$, which is equivalent to $\frac{1}{3}x^2 - \frac{4}{3}$, not $\frac{1}{3}x^2 - 2$.

Choice B is incorrect. This may result from incorrectly factoring the expression and finding (x-6)(x+6) as the factored form of the expression. Choice C is incorrect. This may result from incorrectly distributing the $\frac{1}{3}$ and rewriting the expression as $\frac{1}{3}(x^2-2)$.

Question ID ad038c19

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: ad038c19

Which of the following is

equivalent to
$$\left(a + \frac{b}{2}\right)^2$$
?

A.
$$a^2 + \frac{b^2}{2}$$

B.
$$a^2 + \frac{b^2}{4}$$

$$a^2 + \frac{ab}{2} + \frac{b^2}{2}$$

$$a^2 + ab + \frac{b^2}{4}$$

ID: ad038c19 Answer

Correct Answer: D

Rationale

Choice D is correct. The expression $\left(a+\frac{b}{2}\right)^2$ can be rewritten as $\left(a+\frac{b}{2}\right)\left(a+\frac{b}{2}\right)$. Using the distributive property, the expression yields $\left(a+\frac{b}{2}\right)\left(a+\frac{b}{2}\right) = a^2 + \frac{ab}{2} + \frac{ab}{2} + \frac{b^2}{4}$. Combining like terms gives $a^2 + ab + \frac{b^2}{4}$.

Choices A, B, and C are incorrect and may result from errors using the distributive property on the given expression or combining like terms.

Question ID 20291f47

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 20291f47

Which expression is equivalent to $\frac{y+12}{x-8} + \frac{y(x-8)}{x^2y-8xy}$?

A.
$$\frac{xy+y+4}{x^3y-16x^2y+64xy}$$

B.
$$\frac{xy+9y+12}{x^2y-8xy+x-8}$$

C.
$$\frac{xy^2 + 13xy - 8y}{x^2y - 8xy}$$

D.
$$\frac{xy^2+13xy-8y}{x^3y-16x^2y+64xy}$$

ID: 20291f47 Answer

Correct Answer: C

Rationale

Choice C is correct. Factoring the denominator in the second term of the given expression gives $\frac{y+12}{x-8} + \frac{yx-8}{xyx-8}$. This expression can be rewritten with common denominators by multiplying the first term by $\frac{xy}{xy}$, giving $\frac{xyy+12}{xyx-8} + \frac{yx-8}{xyx-8}$. Adding these two terms yields $\frac{xyy+12+yx-8}{xyx-8}$. Using the distributive property to rewrite this expression gives $\frac{xy^2+12xy+xy-8y}{x^2y-8xy}$. Combining the like terms in the numerator of this expression gives $\frac{xy^2+13xy-8y}{x^2y-8xy}$.

Choice A is incorrect and may result from conceptual or calculation errors.

Choice B is incorrect and may result from conceptual or calculation errors.

Choice D is incorrect and may result from conceptual or calculation errors.

Question ID 12e7faf8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 12e7faf8

The equation
$$\frac{x^2 + 6x - 7}{x + 7} = ax + d$$
is true for all $x \neq -7$, where a and d

are integers. What is the value of a+d?

- A. -6
- B. -1
- C. 0
- D. 1

ID: 12e7faf8 Answer

Correct Answer: C

Rationale

Choice C is correct. Since the expression $x^2 + 6x - 7$ can be factored as (x + 7)(x - 1), the given equation can be rewritten $\frac{(x+7)(x-1)}{x+7} = ax+d$. Since $x \neq -7$, x+7 is also not equal to 0, so both the numerator and denominator of $\frac{(x+7)(x-1)}{x+7}$ can be divided by x+7. This gives x-1=ax+d. Equating the coefficient of x on each side of the equation

gives q = 1. Equating the constant terms gives q = -1. The sum is 1 + (-1) = 0.

Choice A is incorrect and may result from incorrectly simplifying the equation. Choices B and D are incorrect. They are the values of d and a, respectively, not a+d.

Question ID 89fc23af

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 89fc23af

Which of the following expressions is

equivalent to
$$\frac{x^2 - 2x - 5}{x - 3}$$
?

A.
$$x - 5 - \frac{20}{x - 3}$$

B.
$$x - 5 - \frac{10}{x - 3}$$

C.
$$x + 1 - \frac{8}{x-3}$$

D.
$$x + 1 - \frac{2}{x-3}$$

ID: 89fc23af Answer

Correct Answer: D

Rationale

Choice D is correct. The numerator of the given expression can be rewritten in terms of the denominator, x = 3, as follows:

 $x^2-2x-5=x^2-3x+x-3-2$, which is equivalent to x(x-3)+(x-3)-2. So the given expression is equivalent to

$$\frac{x(x-3)+(x-3)-2}{x-3} = \frac{x(x-3)}{x-3} + \frac{x-3}{x-3} - \frac{2}{x-3}$$
. Since the given expression is defined for $x \ne 3$, the expression can

be rewritten as $x+1-\frac{2}{x-3}$.

Long division can also be used as an alternate approach. Choices A, B, and C are incorrect and may result from errors made when dividing the two polynomials or making use of structure.

Question ID 911c415b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: 911c415b

$$(7532 + 100y^2) + 10(10y^2 - 110)$$

The expression above can be written in the form $ay^2 + b$, where a and b are constants. What is the value of a + b?

ID: 911c415b Answer

Rationale

The correct answer is 6632. Applying the distributive property to the expression yields $(7532 + 100y^2) + (100y^2 - 1100)$. Then adding together $7532 + 100y^2$ and $100y^2 - 1100$ and collecting like terms results in $200y^2 + 6432$. This is written in the form $ay^2 + b$, where a = 200 and b = 6432. Therefore a + b = 200 + 6432 = 6632.

Question ID b74f2feb

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	

ID: b74f2feb

The expression $6\sqrt[5]{3^5x^{45}} \cdot \sqrt[8]{2^8x}$ is equivalent to ax^b , where a and b are positive constants and x > 1. What is the value of a + b?

ID: b74f2feb Answer

Correct Answer: 361/8, 45.12, 45.13

Rationale

The correct answer is $\frac{361}{8}$. The rational exponent property is $\sqrt[n]{y^m} = y^{\frac{m}{n}}$, where y > 0, m and n are integers, and n > 0. This property can be applied to rewrite the given expression $6\sqrt[5]{3^5x^{45}} \cdot \sqrt[8]{2^8x}$ as $63^{\frac{5}{5}}x^{\frac{45}{5}}2^{\frac{8}{8}}x^{\frac{1}{8}}$, or $63x^92x^{\frac{1}{8}}$. This expression can be rewritten by multiplying the constants, which gives $36x^9x^{\frac{1}{8}}$. The multiplication exponent property is $y^n \cdot y^m = y^{n+m}$, where y > 0. This property can be applied to rewrite the expression $36x^9x^{\frac{1}{8}}$ as $36x^{9+\frac{1}{8}}$, or $36x^{\frac{73}{8}}$. Therefore, $6\sqrt[5]{3^5x^{45}} \cdot \sqrt[8]{2^8x} = 36x^{\frac{73}{8}}$. It's given that $6\sqrt[5]{3^5x^{45}} \cdot \sqrt[8]{2^8x}$ is equivalent to ax^b ; therefore, a = 36 and $b = \frac{73}{8}$. It follows that $a + b = 36 + \frac{73}{8}$. Finding a common denominator on the right-hand side of this equation gives $a + b = \frac{288}{8} + \frac{73}{8}$, or $a + b = \frac{361}{8}$. Note that 361/8, 45.12, and 45.13 are examples of ways to enter a correct answer.

Question ID f89e1d6f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: f89e1d6f

If a = c + d, which of the following is equivalent to the expression $x^2 - c^2 - 2cd - d^2$?

$$A_{1}(x+a)^{2}$$

B.
$$(x - a)^2$$

c.
$$(x + a)(x - a)$$

D.
$$x^2 - ax - a^2$$

ID: f89e1d6f Answer

Correct Answer: C

Rationale

Choice C is correct. Factoring -1 from the second, third, and fourth terms gives $x^2 - c^2 - 2cd - d^2 = x^2 - (c^2 + 2cd + d^2)$. The expression $c^2 + 2cd + d^2$ is the expanded form of a perfect square: $c^2 + 2cd + d^2 = (c + d)^2$. Therefore, $x^2 - (c^2 + 2cd + d^2) = x^2 - (c + d)^2$. Since a = c + d, $x^2 - (c + d)^2 = x^2 - a^2$. Finally, because $x^2 - a^2$ is the difference of squares, it can be expanded as $x^2 - a^2 = (x + a)(x - a)$.

Choices A and B are incorrect and may be the result of making an error in factoring the difference of squares $x^2 - a^2$. Choice D is incorrect and may be the result of incorrectly combining terms.

Question ID e117d3b8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Advanced Math	Equivalent expressions	•••

ID: e117d3b8

If a and c are positive numbers, which of the following is equivalent to $\sqrt{(a+c)^3} \cdot \sqrt{a+c}$?

- A. a+c
- $a^2 + c^2$
- c. $a^2 + 2ac + c^2$
- $D a^2c^2$

ID: e117d3b8 Answer

Correct Answer: C

Rationale

Choice C is correct. Using the property that $\sqrt{x}\sqrt{y} = \sqrt{xy}$ for positive numbers x and y, with x = $(a + c)^3$ and y = a + c, it follows that $\sqrt{(a+c)^3} \cdot \sqrt{a+c} = \sqrt{(a+c)^4}$. By rewriting $(a+c)^4$ as $((a+c)^2)^2$, it is possible to simplify the square root expression as follows: $\sqrt{((a+c)^2)^2} = (a+c)^2 = a^2 + 2ac + c^2$.

Choice A is incorrect and may be the result of $\sqrt{(a+c)^3} \div \sqrt{(a+c)}$. Choice B is incorrect and may be the result of incorrectly rewriting $(a+c)^2$ as a^2+c^2 . Choice D is incorrect and may be the result of incorrectly applying properties of exponents.