

Übung 12: Optimierung

Einführung in die Rechnerarchitektur

Michael Morandell

School of Computation, Information and Technology Technische Universität München

20. - 26. Januar 2025

Mitschriften & Infos

Montags:

https://zulip.in.tum.de/#narrow/stream/2668-ERA-Tutorium---Mo-1000-4

Donnerstags:

https://zulip.in.tum.de/#narrow/stream/2657-ERA-Tutorium—Do-1200-2

Website: https://home.in.tum.de/ momi/era/

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Inhaltsübersicht

- Quiz
- Wiederholung
- Tutorblatt
 - ☐ Sieben-Segment-Anzeige (KV-Maps)
 - Logik-Hazards
 - BDD Reduktion
 - Konstruktion von BDDs

Logiksynthese

- Realisierung: boolsche Funktion → Schaltung
- naive Synthese (direkte Übertragung der Wahrheitstabelle) nicht skalierbar
- verschiedene Verfahren zur Optimierung und Reduktion von Funktionen auf ihr Minimalpolynom

Minimalpolynom

Ein Polynom p ist Minimalpolynom einer booleschen Funktion f, falls $\psi(p) \equiv f$ (d.h. p eine Formel für f ist) und es keine weitere Vereinfachungen gibt.

Karnaugh-Veitch-Diagramme¹

- rechteckiges Schema, in dem alle Literalkombinationen (positiv und negativ) vorkommen
- nebeneinander liegende Zeilen/Spalten dürfen sich immer nur in 1 Bit unterscheiden (Gray-Code)!
- Zusammenfassen von Einsen in 2^n -Blöcken. Don't Care können als 0 oder 1 gewählt werden.
- Jedes maximal große Päckchen steht für einen Primimplikanten der Funktion → alle Päckchen zusammen ergeben ein Minimalpolynom

$$f = \bar{a}\bar{c} + \bar{b}\bar{d} + ac + \bar{a}bd$$

¹Oft auch als K-Maps bezeichnet

Logik-Hazads

- Änderung eines Eingangs ändert kurzzeitig Ausgang, obwohl nach den Regeln der Booleschen Algebra keine Änderung auftritt
- Kann bei sequenziellen Schaltungen problematisch werden (z.B. Oszillation)
- Beispiel
 - □ A=0, B=1, C=1 \rightarrow Y = 1
 - □ A=0, B=0, C=1 \rightarrow Y = 1

Binary Decision Diagrams (BDDs)

- Darstellung einer boolschen Funktion als gerichteter azyklischer Graph (DAG)
- Knoten repräsentieren Teilfunktionen, 2 ausgehende Kanten: 0, 1
- Aufbau bspw. mittels Shannon-Zerlegung: $f(x_0, x_1) \rightarrow f_{x_0=0}(x_1), f_{x_0=1}(x_1)$
- ROBDDs sind kanonisch (eindeutig)!

BDDs: Reduktionen

I-ReduktionZusammenführung isomorpher Knoten

S-Reduktion Überflüssige Knoten entfernen

BDDs: Variablenordnungen

- Vertauschen nur durch Ändern der Knotenanzahl und Umordnen der Kanten möglich
- Neue Reduktionsmöglichkeiten durch Vertauschen
- Finden einer guten Variablenordnung NP vollständig → Heuritische Lösungen

Feedback

https://tinyurl.com/era-tut

Ein Teil der Folien stammt aus dem Foliensatz von Niklas Ladurner. Vielen Dank dafür!