定理 2.32 二つの 2 項演算の代数系< A, \lor , \land > に対して,演算 \lor \lor がともに交換律と結合律と吸収律を満たすとき,A 上に半順序関係< があり,< A, < > は束となる。

【証明】

A上の2項関係<を、Aの要素aとbに対してa < bとなるのは、a \wedge b = a であるときかつこのときに限ると定める。

- (1) 2項関係≼はA上の半順序関係であることを証明する。
 - ①反射性 : A の任意の要素 a に対して、定理 2.31 により、 $a \wedge a = a$ である。 すなわち、 $a \leq a$ である。
 - ②反対称性: $a \le b$ かつ $b \le a$ のとき, $a \land b = a$ かつ $b \land a = b$ である。演算 \land は交換律を満たすから, a = b である。
 - ③推移性 : $a \le b$ かつ $b \le c$ のとき, $a \land b = a$ かつ $b \land c = b$ である。よって, $a \land c = (a \land b) \land c = a \land (b \land c) = a \land b = a$ である。 ゆえに, 2項関係 $\le a \land b = a$ である。
- (2) $a \wedge b$ が $a \vee b$ の下限(すなわち、最大下界)であることを証明する。 $(a \wedge b) \wedge a = (a \wedge b) \vee (a \wedge b) \wedge b = (a \wedge b)$ から、 $a \wedge b \leq a \vee a \wedge b \leq b$ である。 すなわち、 $a \wedge b$ は $a \vee b$ の下界である。 $c \wedge a \vee b \wedge b \wedge b \wedge c \wedge b \wedge b \wedge c \wedge b \wedge$
- (3) $a \lor b$ が $a \lor b$ の上限(すなわち、最小上界)であることを証明する。 吸収律と交換律により、 $a \land (a \lor b) = a \lor b \land (a \lor b) = b$ である。よって、 $a \leqslant a \lor b \lor b \leqslant a \lor b$ である。すなわち、 $a \lor b$ は $a \lor b$ の上界である。 $c \lor c \lor a$ $b \lor b$ の任意の上界とすると、 $a \leqslant c \lor b \leqslant c$ である。すなわち、 $c \land a = a \lor b$ か c = b で ある。 吸収律により、 $a \lor c = (a \land c) \lor c = c$ $b \lor c = (b \land c) \lor c = c$ である。べき等律(吸収律と定理 2.31) と交換律と結合律により、

 $c = c \lor c = (a \lor c) \lor (b \lor c) = (a \lor b) \lor c$ である。吸収律により, $(a \lor b) \land c = (a \lor b) \land ((a \lor b) \lor c) = (a \lor b)$ である。よって, $a \lor b \leqslant c$ である。 すなわち, $a \lor b$ は $a \lor b$ の最小上界である。

(1)と(2)と(3)により、<A,≪>は東となる。