

本课件仅用于教学使用。未经许可,任何单位、组织和个人不得将课件用于该课程教学之外的用途(包括但不限于盈利等),也不得上传至可公开访问的网络环境

Ш

数据科学导论 Introduction to Data Science

第二章 数据分析基础

黄振亚, 陈恩红

Email: huangzhy@ustc.edu.cn, cheneh@ustc.edu.cn

课程主页:

http://staff.ustc.edu.cn/~huangzhy/Course/DS2024.html

10/12/2024

回顾:数据分析基础

9

□数据采集

□数据存储

□数据预处理

□特征工程

Data Collection

Data Storage

Data Preprocessing

Feature Engineering

数据预处理

- □大数据环境下的数据特点
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清洗
 - □数据集成
 - □数据变换
 - □数据规约

大数据环境下的数据特点-4V

4

数据来源多样:传感器, IT系统,应用软件等

数据类型多样:结构化,

半结构,非结构

多样 Variety 数据分析与结果需要及时处理, 实时的结果才有价值—1秒定律

> 高速 Velocity

> > "沙里淘金":价值密度低 ,价值深度深,带来巨大的 科学和商业价值

> > > 价值 Value

计量单位一般是TB, 甚至到了PB,EB或ZB

TB (2³⁰KB)

PB (2⁴⁰KB)

EB (2⁵⁰KB)

ZB (2^60KB)

Big Data

10/12/2024

大数据环境下的数据特点

5

□ 收集来的数据,是否可以直接使用?

*ratings.csv - 记事本

文件(E) 编辑(E) 格式(Q) 查看(V) 帮助(H) userld,movield,rating,timestamp

1,1,4.0,964982703

1,3,4.0,964981247 1,6,4.0,964982224

1,47,5.0,964983815

1,50,5.0,964982931

1,70,3.0,964982400

1,101,5.0,964980868

Context:

Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm.

Question:

By what main attribute are computational problems classified using computational complexity theory?

Answer:

inherent difficulty

通常情况下,直接收集的数据难以直接使用,需要对数据进行预处理

数据预处理

- □大数据环境下的数据特点
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

7

- □ 直接收集的数据通常是"脏的"—数据来源不同
 - □应用需求
 - ■微博
 - ■淘宝
 - **.....**
 - □收集手段
 - 传感器,扫描仪
 - 摄像,照相
 - App收集
 - ■爬虫写错了
 - **.....**
 - □数据格式
 - ■结构化
 - 半结构化
 - ■非结构化
 - **.....**

高高飞起来啊 前方高能预警 可以做成游戏的 高能来了 高高的飞起来啊! 前方高能(ノ°

ID	时间	内容
陈赫	08-18	天霸
邓超	08-18	我们都很好
邓超	08-18	我也不知道

8

- □ 直接收集的数据通常是"脏的"
 - □不完整
 - ■有些数据属性的值丢失或不确定
 - 缺失必要的数据,例:缺失学生成绩

	•	•	•	•	•	•	

Cno	Grade
1	92
2	85
3	88
2	90
3	80
	2 3 2

□不准确

- 数据错误,属性值错误,例:成绩 = -10
- 噪声数据:包含孤立(偏离期望)的离群
- •••••

□不一致

- 数据结构有较大差异,例,编码或者命名上存在差异
- ■数据需求改动,例,评价等级:"百分制"与"A,B,C"
- 存在数据重复和信息冗余现象
- •••••

- □ 现实世界的数据是"脏的"——举例
 - □滥用缩写词 例:中科大,科大,中国科大,USTC
 - □ 数据中的内嵌控制信息 例: E3=F3*C3
 - □ 不同的惯用语 例: 南七技校
 - □重复记录
 - □缺失值
 - □拼写变化与时态,例: propose, proposed, proposing
 - □不同的计量单位
 - □噪声
 - □ UGC数据,例: 弹幕,颜文字(*^▽^*)

- □数据错误的不可避免性
 - □数据输入和获得过程数据错误的不可避免性
 - □数据集成所表现出来的错误
 - □数据传输过程所引入的错误
 - □ 据统计,有错误的数据占总数据的5%左右

- □ 没有高质量的数据,就没有高质量的结果
 - □高质量的决策必须依赖高质量的数据
 - 例. 数据重复或者缺失将会产生不正确的分析结果, 误导决策
- □数据质量的含义
 - 正确性 (Correctness)
 - 一致性 (Consistency)
 - 完整性 (Completeness)
 - 可靠性 (Reliability)
- □ 数据预处理是进行大数据的分析和挖掘的工作中占工 作量最大的一个步骤 (80%)

数据预处理

- □大数据环境下的数据特征
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

数据预处理:数据清理:

- 数据清理的目标
 - □解决数据质量问题
 - □让数据更适合分析、建模
- □数据清理基本任务
 - □处理缺失值
 - □清洗噪声数据
 - □纠正不一致数据
 - □根据需求进行清理

ID	住址	学历	单位	专业	收入
01	$A\boxtimes$	本科	A	CS	С
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	С
04	$A\boxtimes$	硕士	С	CS	В
05	$A\boxtimes$	博士	A	DS	A
•••	•••	•••	•••	•••	•••

ID	住址	学历	单位	专业	收入
01	$A \overline{\mathbb{X}}$	本科	A	CS	C
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
	•••		•••	•••	•••

- □造成数据缺失的原因
 - □ 信息无法获取,或获取代价大。
 - 反爬虫,加密
 - □信息遗漏
 - ■需求不明确
 - 采集故障,存储故障,传输故障
 - ■人为因素
 - □ 数据的某些属性不可用,或不存在(与设计有关)
 - 如: 学生的收入,老师的成绩等

- 数据缺失的类型
 - □ 完全随机缺失: 不依赖其他属性/变量, 不影响样本的无偏性
 - □ 随机缺失: 缺失与其他完全属性/变量有关系
 - "期末成绩"的依赖于"平时表现"
 - "工资"与"人群背景"的关系
 - □ 非随机缺失: 数据缺失与属性/变量自身的取值有关
 - ■工资问卷

ID	住址	学历	単位	专业	收入
01	$A\boxtimes$	本科	A	CS	C
02	$B\boxtimes$	本科	В	EE	C
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
•••					

16

- □ 处理缺失数据的方法: 首先确认缺失数据的影响
 - □ 数据删除(可能丢失信息,或改变分布)
 - ■删除数据
 - ■删除属性
 - ■改变权重
 - □数据填充
 - ■特殊值填充
 - 空值填充,不同于任何属性值。例,NLP词表补0,DL补mask
 - 样本/属性的均值、中位数、众数填充
 - 预测: 使用最可能的数据填充
 - 热卡填充 (就近补齐)
 - K最近距离法(KNN)
 - 利用回归等估计方法
 - 大模型等

模型预测:建立模型预测缺失值

- □ 热卡填充
 - □ 完整数据中找到**1个**与它最相似的样例, 然后用该样本的值来进行填充
- □ K最近距离法
 - □ 根据相关分析(距离)来确定距离缺失数据样本的最近**K个**样本
 - □将这K个值加权平均估计样本缺失数据
- □ 模型法: 回归法
 - □ 基于数据集,建立回归模型
 - □ 将已知属性值代入模型来估计未知属性 值,以此预测值填充

ID	住址	学历	单位	長 学	收入
01	A X	本科	A	CS	С
02	B X	本科	В	EE	С
03	A X	本科	A	CS	0
04	A X		С	CS	В
	A X	博士	A	DS	

数据清理-清洗噪声

- □噪声是测量误差的随机部分
 - □ 包括错误值,或偏离期望的孤立点值
 - □需要对数据进行平滑
- □常用的处理方法
 - □ 分箱(binning)
 - ■利用近邻数据对数据进行平滑
 - □ 回归(Regression)
 - 让数据适应回归函数来平滑数据
 - □ 识别离群点,常用聚类方法
 - ■监测并且去除孤立点

ID	住址	学历	单位	专业	收入
01	$A \boxtimes$	本科	A	CS	С
02	B区	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
	•••	•••	•••	•••	•••

数据清理-清洗噪声

- □ 分箱: 利用近邻数据进行数据平滑
 - □ 1. 排序数据,并将他们分到等深的箱中
 - □ 2. 按箱平均值平滑、按箱中值平滑、按箱边界平滑等(离散化)
- □ 例: 排序后数据: 4, 8, 15, 21, 21, 24, 25, 28, 34
 - □ 1. 划分为(等深的)箱
 - 箱1: 4, 8, 15
 - 箱2: 21, 21, 24
 - 箱3: 25, 28, 34
 - □ 2-1. 用箱平均值平滑
 - 箱1: 9, 9, 9
 - 箱2: 22, 22, 22
 - 箱3: 29, 29, 29
 - □ 2-2. 用箱边界平滑
 - 箱1: 4, 4, 15
 - 箱2: 21, 21, 24
 - 箱3: 25, 25, 34

□回归: 让数据适应回归函数来平滑数据

- □ 通过线性回归模型,对不符合回归的数据进行平滑处理
- □用某些属性预测其他属性

ID	住址	学历	单位	专业	收入
01	$A\boxtimes$	本科	A	CS	C
02	$B\boxtimes$	本科	В	EE	С
03	$A\boxtimes$	本科	A	CS	0
04	$A\boxtimes$		С	CS	В
	$A\boxtimes$	博士	A	DS	
•••					

数据清理-清洗噪声

□ 识别离群点:聚类分析检测离群点,消除噪声

- □聚类将类似的值聚成簇
- □落在簇集合之外的值被视为离群点

数据清理-根据需求清理数据

- □ 在特定的应用任务中,根据目标不同,需要特殊的数 据清理方法
 - □推荐系统
 - ■通用推荐问题
 - ■冷启动问题
 - □教育大数据
 - □社交网络
 - □ POI仟务: Point of interest

		1 micros
	The Lo	ong Tail Module
		recharted by Jamo www.jamowoo.com
Body	The Long Tail	こと、自集 Vianie を紹介

Dataset	Douban Book	Yelp
# Users	6,576	25,783
# Items	20,547	33,105
# Ratings	326,419	727,259
Rating Sparsity	99.76%	99.91%
Avg. friends of each user	6.0	3.8
# Users without friends	1,314	10,867

Table 1: The statistics of two datasets.

Li Wang, Zhenya Huang, Qi Liu, Enhong Chen, Preference-Adaptive Meta-Learning for Cold-Start Recommendation, IJCAI'2021.

数据预处理

- □大数据环境下的数据特征
- □为什么需要进行预处理
- □ 预处理的基本方法
 - □数据清理
 - □数据集成
 - □数据变换
 - □数据规约

- □数据集成
 - 口将多个数据源的数据整合到一个一致的数据存储中
- □数据集成的目标
 - □获得更多的数据
 - □获得更完整的数据
 - □ 获得更全面的数据画像,如用户画像
- □ 例: 电商推荐-需求
 - □用户的购物记录:淘宝,美团,拼多多等
 - □用户的社交网络:微博,facebook等
 - □ 用户的视频记录: 爱奇艺, 抖音等

□数据集成

- □将多个数据源的数据整合到一个一致的数据存储中
- □集成数据(库)时,经常出现冗余数据
 - 冗余数据带来的问题: 浪费存储、重复计算
 - ■冗余的属性
 - ■冗余的样本
- □ 例如:
 - ■用户的电商记录出现在很多app中
 - ■用户的个人信息在多个app中
 - 0 0 0

数据预处理:

- 检测冗余属性
 - □ 分析属性之间的相关性
 - □相关性分析检测冗余

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B}$$

字段	说明	示例
ID_LAT_LON_YE AR_WEEK	地点、时间	ID0.510_29.290_2019_00
year	年份	2019
latitude	维度	-0.51

Pearson积矩相关系数,取值范围为 [-1; 1]

 \triangleright 值大于 0,则属性 A 和 B 是正相关的,值越大相 关性越强

因此,表明两个属性中有一个可以作为冗余删除

- ▶值为 0,则 A 和 B 是独立的,它们不存在相关性
- ▶值小于 0,则 A和 B是负相关的。
- □ 卡方检验: 值越大, 两个变量相关的可能性越大

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})}{e_{ij}}$$

卡方检验: oij 是联合事件 (Ai; Bj) 的观测频度 (即 实际计数),而 eij 是 (Ai; Bj)的期望频度。 卡方检 验的原假设是A和B两个属性相互独立,如果可以 拒绝该原假设,则我们说 A 和 B 是显著相关的。

- □检测冗余样本
 - □ 思想: 数据样本之间的相关性,数据融合、去除冗余
 - □ 方法: 距离度量
 - ■欧几里得距离
 - ■汉明距离
 - ■明氏距离
 - ■马氏距离
 - **.....**
 - □ 方法: 相似度计算
 - 余弦相似度
 - Jaccard相似度
 - **.....**

- 数据的距离度量
 - □ 欧几里得距离(Euclidean Distance)

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

n表示数据p和q维度数 p_k 和 q_k 表示数据p和q的第k个属性

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Euclidean

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

对数据标准化非常重要

- □数据的距离度量
 - □ 汉明距离(Hamming Distance)
 - □ 定义: 两个向量之间不同值的个数
 - ■字符串比较:比较两个相同长度的二进制字符串
 - □ 要求: 向量长度相同
 - □常用: HASH场景

Defu Lian, Haoyu Wang, **Enhong Chen,** Xing Xie. LightRec: a Memory and Search-Efficient Recommender System. **WWW 2020**.

- □数据的距离度量
 - □明氏距离(Minkowski Distance)
 - ■距离度量:通用表达形式

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

r是参数

n 表示数据p和q维度数, p_k 和 q_k 表示数据p和q的第k个属性

□ r=1: 曼哈顿距离

□ r=2: 欧氏距离

□ r=∞: 切比雪夫距离

- □数据的距离度量
 - □ 马氏距离: 数据的协方差距离
 - 欧氏距离的扩展,考虑到各种特性之间的联系(协方差)

$$s(p-q)=(p-q)\Sigma^{-1}(p-q)^{T}$$

 Σ 是总体样本 X的协方差矩阵

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

- ▶ 确定未知样本集与己知样本集的相似度
- ▶ 它考虑了数据集的相关性,并 且是比例不变的

红色的数据点, 欧氏距离为14.7, 马氏距离为6

□ 马氏距离 vs 欧氏距离

- □ 假设: 以厘米为单位测量人的身高,以克(g)为单位测量人的体重。每个人被表示为一个两维向量。如:一个人身高173cm,体重50000g,表示为(173,50000),根据身高体重来判断人的体型的相似程度
- □ **己知:** 小明(160,60000); 小王(160,59000); 小李(170,60000) 。小明与谁的体型更相似?

分析:根据常识可以知道小明和小王体型相似。但是如果根据**欧氏距离**来判断,小明和小王的距离要远大于小明和小李之间的距离,即小明和小李体型相似

原因:不同特征的度量标准之间存在差异而导致判断出错

- ▶以克(g)为单位测量人的体重,数据分布比较分散,即方差大,
- ▶以厘米为单位来测量人的身高,数据分布就相对集中,方差小

马氏距离把方差归一化,使得特征之间的关系更加符合实际情况

- □数据的相似度计算
 - □ 简单匹配 Simple Matching VS Jaccard相关系数
 - □ 离散数据,属性的取值表示为0或1
 - □ 例:数据p和q,定义如下4个变量
 - F01: p为0、q为1的属性数量
 - F10: p为1、q为0的属性数量
 - F00: p为0、q为0的属性数量
 - F11: p为1、q为1的属性数量

SMC = number of matches / number of attributes

$$= (F11 + F00) / (F01 + F10 + F11 + F00)$$

p = (10000000000)q = (0000001001)

Jaccard = number of F11 matches / number of non-zero attributes

$$= (F11) / (F01 + F10 + F11)$$

□数据的相似度计算

□ 简单匹配 Simple Matching VS Jaccard相关系数

假设:存在该属性为1,不存在该属性为0

$$p = (1000000000)$$

q = (000001001)

p和q是否相关?

```
F01 = 2 (p为0, q为1的属性数量)
```

F10=1 (p为1, q为0的属性数量)

F00=7 (p为0, q为0的属性数量)

F11 = 0 (p为1, q为1的属性数量)

SMC =
$$(F11 + F00) / (F01 + F10 + F11 + F00)$$

= $(0+7) / (2+1+0+7) = 0.7$
Jaccard = $(F_{11}) / (F_{01} + F_{10} + F_{11}) = 0 / (2+1+0) = 0$

- □数据的相似度计算
 - □ 余弦相似性 (Cosine Similarity)

$$\cos(heta) = rac{A \cdot B}{\|A\| \|B\|} = rac{\sum\limits_{i=1}^{n} A_i imes B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} imes \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}.$$

□ 例:

$$A = 3205000200$$
 $B = 1000000102$

$$A \bullet B = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$| |A| | = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$| |B| | = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(A, B) = 0.3150$$

思考: 余弦相似度是不是一种距离?

- □数据的相似度计算
 - □余弦相似度 (Cosine Similarity)
 - ■推荐系统中,协同过滤算法(UCF, ICF)—经典算法
 - ■用户(向量)的相似度度量,产品(向量)的相似度度量
 - ■深度学习中,训练Attention(注意力机制)的权重
 - ■基于注意力机制的学生成绩预测模型

- □数据的相关性分析
 - □ Pearson相关系数
 - 衡量两个数据对象之间的线性关系
 - ■数据标准化
 - □可以简单理解为: p和q的协方差/(p的标准差*q的标准差)

$$p_{X,Y} = rac{\sum_{i=1}^{n}(X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - ilde{X})^2\sum_{i=1}^{n}(Y_i - ilde{Y})^2}}$$

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Zhenya Huang, Qi Liu, Enhong Chen, et al, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017

- 38
- □数据的相关性
 - □ Pearson相关系数: 衡量数据对象之间的线性关系

两个数据样本x,y各有30个属性,这些属性,这些属性值随机产生,使得x和y的相关度从-1到1。图中每个小圆圈代表30个属性中的一个,其x坐标是x的一个属性的值,y坐标是y的相同属性的值

散点图显示相似度[-1, 1]

- □数据的相关性分析
 - □ Pearson相关系数: 衡量数据对象之间的线性关系
- □ 例:问: X与Y有没有关系?
 - $\square X = (-3, -2, -1, 0, 1, 2, 3)$
 - \square Y = (9, 4, 1, 0, 1, 4, 9)

 $p_{X,Y} = rac{\sum_{i=1}^{n}(X_i - ilde{X})(Y_i - ilde{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - ilde{X})^2\sum_{i=1}^{n}(Y_i - ilde{Y})^2}}$

- □ Mean(X) = 0, Mean(Y) = 4
- Correlation=?
 - = (-3)(5) + (-2)(0) + (-1)(-3) + (0)(-4) + (1)(-3) + (2)(0) + 3(5) = 0

- □数据的相关性分析
 - □ 有时,不同的属性产生的影响不同
 - □ 在计算距离,相似度时,可以赋予数据属性的权重不同(w_k)

similarity(
$$\mathbf{x}, \mathbf{y}$$
) =
$$\frac{\sum_{k=1}^{n} w_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$$

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

Le Wu, Enhong Chen, Qi Liu, Leveraging Tagging for Neighborhood-aware Probabilistic Matrix Factorization. CIKM2012

数据的相关性分析

- □无序数据:每个数据样本的不同维度是没有顺序关系的
 - □余弦相似度、相关度、欧几里得距离、Jaccard
- □有序数据:对应的不同维度(如特征)是有顺序(rank)要求的
 - □ 在信息检索中,如何判断不同检索方法返回的页面序列的优劣
 - □ 在推荐系统中,如何判断不同推荐序列的好坏
 - Spearman Rank(斯皮尔曼等级)相关系数
 - 归一化的折损累计增益(NDCG)
 - 肯德尔相关性系数
 - kendall correlation coefficient
- □课外阅读: PageRank算法

i	相关度
1	3
2	3
3	2
4	0
5	1
6	2

相
相关度
3
3
2
2
1
0 76t: III

具头结果

方法返回结果

数据的相关性分析-举例

- □已知:6个网页的相关度是3,2,3,0,1,2,所以在**信息检索**中,最好的返回结果应当如(a)所示。
- □如果我们设计了两个检索算法,返回结果分别是(b)和(c),请问哪个方法的结果与真实结果更相似?

	i	相关度		i	相关度	i	相关度	
	1	3		1	3	1	3	
_	2	3		2	3	2	3	
	3	2		3	0	3	2	
	4	2		4	2	4	0	
	5	1		5	2	5	2	
	6	0		6	1	6	1	
(2	a)真剪	以结果	(b)方法1返回结果 (c)方法2返回结身			结果		

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ Spearman Rank(斯皮尔曼等级)相关系数
 - 比较两组变量的相关程度
 - 当关系是非线性时,它是两个变量之间关系评价的更好指标

$$\rho_S = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

- ρ_s : 表示斯皮尔曼相关系数
- d_i^2 : 表示每一对样本之间等级的差
- *n*:表示样本容量
- ρ_s 的范围: -1 to 1 (正相关: $\rho_s > 0$,负相关: $\rho_s < 0$,不相关: $\rho_s = 0$)

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ Spearman Rank(斯皮尔曼等级)相关系数
 - ■比较两组变量的相关程度
 - 当关系是非线性时,它是两个变量之间关系评价的更好指标

$$d_i = Y_i - X_i$$

 $\rho_{s} = 1 - \frac{6 \sum d_{i}^{2}}{n(n^{2}-1)}$

 ρ_s : 表示斯皮尔曼相关系数

■ d_i²:表示每一对样本之间等级的差

■ N: 表示样本容量

 ρ_s 的范围: -1 to 1 (正相关: $\rho_s > 0$,负相关: $\rho_s < 0$,不相关: $\rho_s = 0$)

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ NDCG(Normalized Discounted cumulative gain)
 - CG(累计增益): 只考虑到了相关性的关联程度,没有考虑每个推荐结果处于不同位置对整个推荐效果的影响

$$CG_k = \sum_{i=1}^k rel_i$$

rel_i表示处于位置 ii 的推荐结果的相关性

■ **DCG(折损累计增益)**: 就是在每一个CG的结果上处以一个折损值,目的就是为了让排名越靠前的结果越能影响最后的结果

$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_{i-1}}}{\log_2(i+1)}$$

■ *i*表示推荐结果的位置, *i*越大,则推荐结果在推荐列表中排名越靠后推荐效果越差,DCG越小

Qi Liu, Yong Ge, Enhong Chen, and Hui Xiong. Personalized Travel Package Recommendation. ICDM'2011, (Best Research Paper Award)

- □ 有序数据的距离度量(信息检索、推荐系统等)
 - □ NDCG(Normalized Discounted cumulative gain)
 - NDCG: 由于搜索结果随着检索词的不同,返回的数量不一致,而 DCG是一个累加的值,没法针对两个不同的搜索结果进行比较,因 此需要标准化处理,这里是除以IDCG:

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

IDCG为理想(ideal)情况下最大的DCG值,指推荐系统为某一用户返回的最好推荐结果列表(或者,真实的数据序列)

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

51

- □ 例,假设一个推荐系统为用户推荐了3部电影,顺序为A,B,C,用户实际对这三部电影的偏好为B>A>C,假定A,B,C三部电影的相关性分数分别为2,3,1,那么对于系统返回的结果有:
 - CG@3 = 2 + 3 + 1 = 6

DCG@3 = 3 + 4.42 + 0.5 = 7.92

$$CG_k = \sum_{i=1}^k rel_i$$

- □理想情况下,系统给出的电影排序应该为B,A,C
 - \blacksquare IDCG@3 = 7 + 1.89 + 0.5 = 9.39
- □可以计算NDCG@3

■ NDCG@3 = 7.92 / 9.39 = 0.84

DCC	$= \sum_{i=1}^k$	$2^{rel}i-1$		
DCG_k	$- \angle_{i=1}$	$\overline{log_2(i+1)}$		

i	movie	rel	$2^{rel_i}-1$
			$log_2(i + 1)$
1	A	2	3
2	В	3	4.42
3	С	1	0.5

方法返回结果

i	movie	rel	$\frac{2^{rel_i}-1}{log_2(i+1)}$
1	В	3	7
2	Α	2	1.89
3	С	1	0.5

真实结果

53

课后阅读

- Defu Lian, Haoyu Wang, Enhong Chen, Xing Xie. LightRec: a Memory and Search-Efficient Recommender System. WWW 2020.
- □Qi Liu, Zhenya Huang, Enhong Chen,, EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction, TKDE
- □Zhenya Huang, Qi Liu, Enhong Chen, et al, Question Difficulty Prediction for READING Problems in Standard Tests, AAAI'2017
- □Qi Liu, Yong Ge, Enhong Chen, and Hui Xiong. Personalized Travel Package Recommendation. ICDM'2011, (Best Research Paper Award)
- □信息检索经典研究: PageRank算法