BACHELOR THESIS PROJECT - 2 Presentation

Vineet Amol Pippal 20CS30058

April 10th, 2024 Dept. of CSE, IIT KGP

OVERVIEW

Recent advances in DL-based Biometric Identification have made real-time identification possible by surveillance equipment and this trend is beneficial for public safety and customer convenience. However, vendors store and process plaintext data on server and people cannot opt-out of these systems which may open doors to illegitimacy and human right abuse.

How can "persons of interest" be identified without compromising everyone else?

Secure Multi-party Computation

Working together while keeping our data confidential

Privacy Preserving Data Mining Hospitals want to compute statistics without revealing their data

A cryptographic protocol with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private.

Secure Online Dating
Are Alice and Bob mutually
interested in each other?

Database MembershipDoes the sample belong to the DB?

Private Set Intersection

PSI is a cryptographic protocol that facilitates the secure and confidential determination of common elements between two or more sets without disclosing the individual elements.

Abstraction that tackles many applications like **Online** advertising, private contact discovery and botnet detection and has been studied in the **two-party**, the **multi-party**, and the **server-aided** setting with both **passive** and **active** security.

Some applications require modifications to PSI. Scenarios like **Biometric Search** require privately computing the size of the set intersection rather than the intersection itself (Private Intersection Cardinality Testing or **PICT**).

Others like **Online Dating** require finding out whether the set intersection size is above a certain threshold (Threshold PSI or **TPSI**).

Private querying of a real-life biometric scan against a private biometric database.

Issue: Privacy risk! Server learns the query and the result

Solution: Fuzzy Labeled PSI (Erkam Uzun, Simon P. Chung et.al)

Fuzzy

Biometric data is noisy. Matches are approximate. Two embeddings for the same person are not same. Comparison by similarity.

Labeled

There are distinct identifiers or labels associated with each data point in the database. Client is interested in labels.

FLPSI acts as a privacy layer between client and server w/o extra hardware requirement

GOAL

Client learns the result and learns nothing about the database.

Server learns nothing about the query.

BENEFITS

- Noise associated with biometric data is incorporated
- Communication sublinear in database size
- Protocol satisfies the given goal

STATE OF THE ART

CHLR 2018: LPSI from FHE with malicious security

Hao Chen, Peter Rindal et. al.

- + Exact private matching
- + Sublinear communication
- + Efficient computation
- + Not directly applicable to fuzzy matching

SAANS 2020: Secure Approximate k-NN Search

Hao Chen, Illaria Chillotti et. al.

- + Accommodates fuzzy matching
- + High-bandwidth requirement; 1.7-5.4GB communication for 1M row database (500MB/s with 0.5ms latency)

Response Time

For a 10K-row database, over WAN (resp. fast LAN) is 146 ms (resp. 47ms), transferring 12.1MB

Scaling

For a 1M-row database, online time is 1.66s (WAN) and 1.46s (fast LAN) with 40.8MB of data transfer in online phase and 37.5s in offline precomputation. improving SAANS by 9-25x (on WAN) and 1:2-4x (on fast LAN)

Offline precomputation

Offline precomputation (with no communication) time is 0.94s

False Rate

0.75% for at most 10 false matches over 1M-row DB

PERFORMANCE

Binary Encoding

+ LSH: Probabilistic dimensionality reduction aiming to hash similar data samples to the same hash code.

(in Euclidean space)

$$h_{v}(x) = sign(v^{T}. x)$$

 $v \leftarrow \mathcal{N}(0, I_{d})$

+ SBLSH (NIPS 2012, Jianqiu Ji, Jianmin Li et. al)
Orthogonalization via Gram-Schmidt process, which
projects the current vector orthogonally onto the
orthogonal complement of the subspace spanned by the
previous vectors.

FLPSI: Offline Computation

Client

$$\frac{\text{Binary}}{\text{Encoding}} \quad y = encode(q)$$

Server

$$\begin{array}{ccc} l_i & & \xrightarrow{\text{t-out-of-T}} \left\{ ss_{i1}, \ ss_{i2}, \dots, ss_{iT} \right\} \\ \text{Label} & & \left[0^{\lambda} l_i \right] \end{array}$$

FLPSI: Subsampling

Client

$$y = encode(q)$$

Server

$$D_b = \{(d_1, l_1), ..., (d_N, l_N)\} \xrightarrow{\text{Binary}} x_i = encode(d_i)$$

Subsampling

$$\left\{ \boldsymbol{y}_{1}, \, \boldsymbol{y}_{2}, \dots, \boldsymbol{y}_{T} \right\}$$

Server chooses 128-bit AES

Blockcipher

Server samples $\{m_1, m_2, ..., m_T\}$ Server computes

$$x_{ij} = AES_{k_s}(x_i \wedge m_j)$$

Client and server run 2PC to compute $y_j = AES_{k_s}(y \wedge m_j)$

If the query matches with i'th face in database, atleast t out of T subsamples match with a high probability

FLPSI: Strawman Design (STLPSI)

If t out of T subsamples match for a data point, the client can successfully reconstruct the label by receiving more than t secret shares

- Client and server agree on an FHE scheme
- Client samples p, , s,
- Client homomorphically encrypts y_j and sends it with p_k - Server computes

$$[[Z_{ij}]] = r \times ([[y_j]] - x_{ij}) + ss_{ij}$$

- Server sends [[Z_{ij}]] to Client
 Client receives ss_{ij} if y_j = x_{ij}
 otherwise receives nothing

Observations

- The bottleneck for FLPSI is its underlying FHE computations during Strawman phase
- The fixed value of t used for implementation originally is 2!

i.e. most bits in matching bio-bit vectors are same!

Idea

Directly compute the set intersection between two bio-bit vectors in a trusted environment.

Intel SGX

- + Intel Software Guard Extensions (**SGX**) is a set of instruction codes embedded in select Intel CPUs, a CPU-based mechanism for creating a Trusted Execution Environment (**TEE**), called an **enclave**, for user-level application code.
- + Enclaves, **hardware-isolated** runtime environments, defined by user-level and OS code, designate secure regions of memory protected by SGX, safeguarding data and code within them from unauthorized access.
- + CPU encryption of enclave memory **prevents access** to enclave data and code by other software, including OS and hypervisor code, enhancing security.
- + SGX finds application in secure remote computation, web browsing, DRM, and concealing proprietary algorithms and encryption keys.

- + Client and Server compute bio-bit vectors over an offline phase
- + Client sends its bio-bit vector y to SGX
- + Server sends the bio-bit vectors \mathbf{x}_i for each data point to SGX along with a threshold parameter t
- + SGX computes the hamming distance between y and x_i and compares it with t
- + SGX returns the label to client if a match occurs

FLPSI-SGX acts as a privacy layer between client and server

GOAL

Client learns the result and learns nothing about the database.

Server learns nothing about the query.

BENEFITS

- Noise associated with biometric data is incorporated
- Constant communication (not factoring in database communication)
- Protocol satisfies the given goal

FLPSI-SGX: Offline Computation

Client

Server

$$\frac{\text{Binary}}{\text{Encoding}} \quad y = encode(q)$$

Query q

$$\frac{\text{Binary}}{\text{Encoding}} \quad x_i = encode(d_i)$$

$$D_b = \left\{ \left(d_1, l_1 \right), \dots, \left(d_N, l_N \right) \right\}$$

Query Binary
$$y = encode(q)$$
 q

Client samples AES key

$$k_S \stackrel{\$}{\longleftarrow} \{0,1\}^{128}$$
Client receives pk_{RSA}

Server

$$D_b = \{(d_1, l_1), ..., (d_N, l_N)\} \xrightarrow{\text{Binary}} x_i = encode(d_i)$$

SGX enlists pk_{RSA}

Key Server

Client

Query Binary
$$y = encode(q)$$
 q

Client samples AES key $k_{_{\rm S}}$, IV Client receives p $k_{_{\rm RSA}}$ Client encrypts and sends Y and $k_{_{\rm S}}$

Server

$$D_b = \{(d_1, l_1), ..., (d_N, l_N)\} \xrightarrow{\text{Binary}} x_i = encode(d_i)$$

Server sends t and l

SGX decrypts Y and k_s

Key Server

Query Binary
$$y = encode(q)$$
 q

Client samples AES key $k_{_{\rm S}}$, IV Client receives pk $_{_{\rm RSA}}$ Client encrypts and sends Y and $k_{_{\rm S}}$

"John Doe"

Server

$$D_b = \{(d_1, l_1), ..., (d_N, l_N)\} \quad \underline{\text{Binary}} x_i = encode(d_i)$$

Server sends t and l

SGX Enclave

Key Server

SGX sends RES

 $RES \leftarrow \begin{cases} Enc_{k_{S}, IV}(l_{i}), & if \ hd(y, x_{i}) \leq t \\ Enc_{k_{S}, IV}("nomatch"), & otherwise \end{cases}$

*here, hd(a, b) is the number of bits where a and b

Observations

- The bottleneck for FLPSI is its underlying FHE computations during Strawman phase
- The fixed value of t used for implementation originally is 2!

i.e. most bits in matching bio-bit vectors are same!

Idea

Directly compute the set intersection between two bio-bit vectors in a trusted environment.

Methodology: PICT

Ghosh, S. and Simkin, M. (2019)

Idea: Sparse polynomials are easy to interpolate

$$P(x)-Q(x) = -x^e + x^a$$

1, 3, 5, 6, 8, 9

$$P(x) = x^a + x^b + x^c$$

$$P(x) = x^{b} + x^{c} + x^{e}$$

IDEAS

Encode bio-bit vectors as sets of positions i.e. if the ith bit is ON, add i to the set

Use PICT to find out if the two input sets are similar enough to have intersection size less than threshold (t' = 2t)

Since both sets are of maximum size 256, use SGX to test invertibility of Hankel matrices

Methodology: Set Reconciliation with FHE

Ghosh, S. and Simkin, M. (2019) extension to Minsky et. al. (2003)

Idea: If the intersection is very large, it's enough to know the set difference

Alice need only know about 3, 8

IDEAS

Protocol requires client to send 2t+1 ciphertexts and Server to send t ciphertexts : $\mathcal{O}(t \log p)$ bits are communicated if elements drawn from \mathbb{F}_p

Relies on FHE and thus can only be instantiated from lattice based assumptions

Since t = 4 for sets encoded from bio-bit vectors, homomorphic rational polynomial interpolation may be practical

- + **Docker** to run the server in an isolated environment
- + Gramine Shielded Containers (GSC) to graminize the docker image. Gramine Library OS executes image in SGX
- + Python for implementation. Cryptography library for RSA and AES encryption
- + FastAPI as web framework, used for making fetch requests and queries
- + HTML/CSS/JavaScript to implement frontend

FLPSI-SGX Technology Used

- + Celebs-Faces collection of facial images: total 107,818 images of 1063 individuals of varied sizes. Additional CSV file for metadata
- + Python implementation of **FaceNet** as used by (Uzun et al., 2021)
- + **Python** for implementation of SBLSH (after comparision with Java Implementation)

FLPSI-SGX Dataset & Model

Number of queries (iterations)	Total Time Taken (in seconds)	Average time per query (in seconds)	Memory usage	Memory usage % 4.82 4.80	Block I/O 4.1 KB/ 0B	
1	0.20800304	0.210	754.6MiB			
5	0.47165036	0.094	755.3MiB		4.0 KB/ 0B	
10	0.57032108	0.057	755.5MiB	4.82	4.1 KB/ 0B	
100	7.190250158	0.072	754.7MiB	4.81	4.1 KB/ 0B	
1000	46.90907669	0.047	755MiB	4.82	4.1 KB/ 0B	
10000	483.3544154	0.048	754.9MiB	4.82	4.1 KB/ 0B	

Query Iterations over constant t

Number of queries (iterations)	CPU Usage	Total Time Taken (in seconds)	Average time per query (in seconds)	Memory Usage	Memory Usage %	Block I/O
With SGX	1231.25%	483.3544154	0.048	754.9MiB	4.82	4.1 KB/ 0B
Without SGX	102.96%	67.25915026	0.006	72.14MiB	0.46%	12.3 KB/ 4.1kB

With and without using SGX

FLPSI-SGX Results

Image uploaded. Matched labels marked successfully!

Choose a file...

cctv.png selected

FLPSI-SGX Application

- + Using models other than FaceNet for online queries. Federated learning.
- + SBLSH implementation not as efficient. Noise Removal techniques. Doesn't pose a problem for FLPSI-SGX. Improvement left for future work.
- +Optimizations beyond Strawman Design. Further work on FLPSI-PICT and Set Reconciliation
- + Implementation without hybrid encryption

Conclusions and Future Work

THANK YOU