Table of Contents of

The Axiom of Determinacy

by

W. Hugh WOODIN, A. R. D. MATHIAS and Kai HAUSER

Chapter	Se	ection	Paragraph	Page	Page	Page
I	Pre	requis	I.1			
	1 The ordinal Θ			I.1		
			The ordinal Θ in $L(R)$			I.2
	2	Stabl	le ordinals		I.5	
			H-safe ordinals			I.5
	3	Vopě	nka algebras		I.8	
			Crude and fine definitions			I.8
			Genericity over HOD			I.9
			Definability relative to a given set of ordinals			I.10
			The two-dimensional case			I.11
			Higher finite dimensions			I.12
			Chain conditions			I.13
			Proof that inside $L(R) \exists S :\subseteq \Theta \ HOD = L[S]$			I.14
			The argument repeated			I.16
	4	A dia	amond like object in $L(R)$			
			H-gaps			I.18
II	Prerequisites from Recursion Theory					
	1	The	effective theory		II.1	
			Universal sets			II.3
	2	The :	recursion theorem for functions		II.7	
	3	$pos \Sigma$	$\Sigma_1^1(<_X)$ classes		II.8	
	4	Spec	tor classes		II.9	
	5	Sous	lin sets: properties of projections of trees		II.14	
	6	∞ -B	orel sets		II.16	
			Differences between Souslin and ∞ -Borel sets			II.18
			The Borel version of Vopěnka's analysis: the 1-dimensional case)		II.18
			The 2-dimensional case			II.19
III	Fun	dame	III.1			
	1	Gam	ing trees		III.1	
			Open determinacy			III.4
			Comparison of plays in different models of the same open game			III.6
			The equivalence of three definitions of ∞ -Borel set			III.6
	2	Solov	ray's countably complete filters		III.9	
	3	The :	measurability of ω_1		III.11	
			A second proof			III.11
			Solovay's first proof re-examined			III.12
			A third proof			III.13
	4	The	coding lemma		III.14	
			A theorem of Kunen			III.16

	5	The uniform coding lemma		III.17		
	6	Admissible coding and a digression on the strong partition property		III.18		
		Coding functions			III.18	
		Admissible codings			III.19	
		Strong partition cardinals			III.19	
	7	The existence of definable strategies		III.21		
		Diagram			III.23	
		Diagram			III.24	
		Points			III.25	
		Diagram			III.26	
	8	Proof of the principle Slide		III.27		
		Action			III.28	
		Higher dimensional Borel algebras			III.29	
		The diagram returns			III.30	
IVa	Woo	odin cardinals; statement of the principal results of the book	IV.1			
	1	Woodin cardinals and strong embeddings		IV.1		
	2	Extenders		IV.2		
	3	Results of the book		IV.4		
	4	Self-improvement of the definition of Woodin		IV.5		
	5	Proof that if E is an extender, $E \notin \text{Ult}(V, E)$		IV.6		
	6	Application of an extender to another model		IV.7		
		Some exercises on extenders			IV.8	
\mathbf{V}	\mathbf{Get}	Getting one Woodin cardinal from AD V.1				
	1	The filter $\mathfrak F$		V.2		
	2	The ultrafilter $\mathfrak U$		V.4		
	3	How normality leads to strength		V.6		
	4	A non-monotonic Coding Lemma		V.7		
	5	The normality of \mathfrak{F}		V.9		
	6	The normality of \mathfrak{U}		V.13		
VI	\mathbf{Get}	Getting one Woodin cardinal from Δ_2^1 determinacy VI.1				
	1	Schemes of games and pre-strategies		VI.1		
		The game $\mathcal{G}(\mathcal{I},\mathcal{S})$			VI.2	
		The I-S-p game			VI.3	
		Residual truth			VI.4	
	2	The S -game		VI.6		
	_	Definition of the S-game			VI.6	
	3	Bootstrapping Determinacy		VI.7		
	4	Reduction of OD games to Σ_2^1 ones		VI.8		
	5	Good pre-strategies		VI.9		
	6	Interlude: stability of theories		VI.11		
	7	The grand plan and the settings		VI.12	T 7 T - 4 12	
		Some general remarks			VI.12	
		The setting for Case I			VI.12	
		The setting for Case IV			VI.13	
	_	Some terminology		T.T. 4 .	VI.13	
	8	The Simple Basis Theorem and the Coding Lemmata		VI.14	T7T 4 F	
		An application			VI.15	
		A review of the coding lemmata			VI.16	

		The Uniform Coding Lemma revisited			V1.17
		Admissible coding revisited			VI.17
		The non-monotonic coding lemma			VI.17
	9	The filter \mathfrak{F}		VI.18	
		Case I			VI.18
		Case IV			VI.18
		The normality of F			VI.19
		Reduction to a quasi-disjoint sequence			VI.20
		A non-monotonic coding theorem			VI.21
		The pointclass Γ			VI.22
		Normality of $F_{\Lambda,H}$			VI.23
	10	The definition of $\mathfrak U$ and of the extenders		VI.26	
		Details, Case I			VI.26
		An alternative approach			VI.27
	11	Elementary properties of the extender		VI.28	
		Verification that we have an extender			VI.28
	12	Derivation of the normality of the extender from the normality of ${\mathfrak F}$		VI.30	
	13	Reduction of Case III to Case IV		VI.33	
		An enumeration of OD_S sets of reals in type Θ			VI.33
		Reduction of a class to a subset of Θ			VI.34
VII	Get	ting ω Woodin cardinals from AD	VII.1		
	1	Ultraproducts using the Martin measure		VII.1	
		Freezing on a cone			VII.2
	2	An inner model of HOD containing ω Woodin cardinals		VII.5	
	3	A variant of Prikry forcing		VII.8	
		A generic sequence of Woodins			VII.9
		Proof that no definable bounded sets are added			VII.11
		Treating the reals as those of a symmetric collapse			VII.12
	4	The symmetric collapse		VII.12	
	5	A commuting diagram		VII.14	
	6	A chain of submodels		VII.19	
		The Woodin cardinals			VII.22
	7	A characterisation of certain inner models		VII.22	

 ${\bf Acknowledgments}$

Bibliography