Linear Regression

Shusen Wang

Warm-up: Vector and Matrix

Vector and Matrix

Vector (
$$n$$
-dim) $\mathbf{a} = egin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$

Matrix (
$$n imes d$$
)
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1d} \\ a_{21} & a_{22} & \cdots & a_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix}$$

矩阵的向量化表示

Row and columns $\mathbf{A} = \begin{bmatrix} \mathbf{a}_{:1} & \mathbf{a}_{:2} & \cdots & \mathbf{a}_{:d} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{2:} \\ \vdots \\ \mathbf{a}_{n:} \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{:1} & \mathbf{a} \end{bmatrix}$$

Vector Norms

- The ℓ_p norm: $\|\mathbf{x}\|_p := \left(\sum_i |x_i|^p\right)^{1/p}$.
- The ℓ_2 norm: $\|\mathbf{x}\|_2 = \left(\sum_i x_i^2\right)^{1/2}$ (the Euclidean norm).
- The ℓ_1 norm $\|\mathbf{x}\|_1 = \sum_i |x_i|$.
- The ℓ_{∞} norm is defined by $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$.

Vector Norms

• The ℓ_2 -distance (Euclidean distance): $||\mathbf{a} - \mathbf{b}||_2$ (green line)

• The ℓ_1 -distance (Manhattan distance): $||\mathbf{a} - \mathbf{b}||_1$ (red, blue, yellow lines)

Transpose and Rank

转置

Transpose:

$$\begin{bmatrix} 6 & 4 & 24 \\ 1 & -9 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 4 & -9 \\ 24 & 8 \end{bmatrix}$$

Square matrix: a matrix with the same number of rows and columns.

Symmetric: a square matrix **A** is symmetric if $\mathbf{A}^T = \mathbf{A}$.

Rank: the number of linearly independent rows (or columns).

方阵 才有秩 Full rank: a square matrix is full rank if the rank equals to #columns.

Eigenvalue Decomposition

特征值分解

- Let **A** be any $n \times n$ symmetric matrix.
- Eigenvalue decomposition: $\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$.
- Eigenvalues satisfy $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$.
- Eigenvectors satisfy $\mathbf{v}_i^T \mathbf{v}_j = 0$ for all $i \neq j$.

• A is full rank \longleftrightarrow all the eigenvalues are nonzero.

A 是满秩的话

所有特征值都是非零的

Warm-up: Optimization

Optimization: Basics

Optimization problem: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

- $\mathbf{w} = [w_1, \dots, w_d]$: optimization variables
- $f: \mathbb{R}^d \mapsto \mathbb{R}$: objective function
- \mathcal{C} (a subset of \mathbb{R}^d): feasible set

Optimization: Basics

Optimization problem: $\min f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

- $\mathbf{w} = [w_1, \cdots, w_d]$: optimization variables
- $f: \mathbb{R}^d \mapsto \mathbb{R}$: objective function
- \mathcal{C} (a subset of \mathbb{R}^d): feasible set

Optimization: Basics

- Optimization problem: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.
- Optimal solution: $\mathbf{w}^* = \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}} f(\mathbf{w})$.
- $f(\mathbf{w}^*) \le f(\mathbf{w})$ for all the vectors \mathbf{w} in the set \mathcal{C} .
- \mathbf{w}^{\star} may not exist, e.g., \mathcal{C} is the empty set.
- If w^{*} exists, it may not be unique.

最小二乘回归

Linear Regression

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

1-dim (d = 1) example:

Solution:

 $y_i \approx 0.15 x_i + 5.0$

Linear Regression

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

Question (regard training): how to compute \mathbf{w} and \mathbf{b} ?

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

Method: least squares regression.

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} (\mathbf{x}_i^T \mathbf{w} + b - y_i)^2$$

• The optimization model:

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

Intercept (or bias)

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

$$ar{\mathbf{x}}_i = egin{bmatrix} \mathbf{x}_i \ 1 \end{bmatrix}$$

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

$$ar{\mathbf{x}}_i = egin{bmatrix} \mathbf{x}_i \ \mathbf{1} \end{bmatrix}$$
 $ar{\mathbf{w}} = egin{bmatrix} \mathbf{w} \ \mathbf{b} \end{bmatrix}$

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

$$ar{\mathbf{x}}_i = egin{bmatrix} \mathbf{x}_i \ \mathbf{1} \end{bmatrix}$$

$$\bar{\mathbf{x}}_i^T \bar{\mathbf{w}} = \mathbf{x}_i^T \mathbf{w} + \mathbf{b}$$

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \mathbf{w} + b - y_{i} \right)^{2}$$

$$= \bar{\mathbf{x}}_{i}^{T} \bar{\mathbf{w}}$$

$$ar{\mathbf{x}}_i = egin{bmatrix} \mathbf{x}_i \ 1 \end{bmatrix} \qquad ar{\mathbf{w}} = egin{bmatrix} \mathbf{w} \ b \end{bmatrix}$$

$$\bar{\mathbf{x}}_i^T \bar{\mathbf{w}} = \mathbf{x}_i^T \mathbf{w} + \mathbf{b}$$

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \mathbf{w} + b - y_{i} \right)^{2}$$

$$= \bar{\mathbf{x}}_{i}^{T} \bar{\mathbf{w}}$$

$$\min_{\bar{\mathbf{w}} \in \mathbb{R}^{d+1}} \sum_{i=1}^{n} \left(\bar{\mathbf{x}}_{i}^{T} \bar{\mathbf{w}} - y_{i} \right)^{2}$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_i^T \overline{\mathbf{w}} - y_i)^2$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_i^T \overline{\mathbf{w}} - y_i)^2$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_i^T \overline{\mathbf{w}} - y_i)^2$$

$$\bar{\mathbf{X}}_{1}^{T}\bar{\mathbf{w}} \\
\bar{\mathbf{X}}_{2}^{T}\bar{\mathbf{w}} \\
\bar{\mathbf{x}}_{3}^{T}\bar{\mathbf{w}} \\
\vdots \\
\bar{\mathbf{x}}_{n}^{T}\bar{\mathbf{w}}$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_i^T \overline{\mathbf{w}} - y_i)^2$$

$$\bar{\mathbf{X}}\bar{\mathbf{w}} = \begin{bmatrix}
\bar{\mathbf{x}}_{1}^{T}\bar{\mathbf{w}} \\
\bar{\mathbf{x}}_{2}^{T}\bar{\mathbf{w}} \\
\bar{\mathbf{x}}_{3}^{T}\bar{\mathbf{w}}
\end{bmatrix}$$

$$\bar{\mathbf{X}}\bar{\mathbf{w}} - \mathbf{y} = \begin{bmatrix}
\bar{\mathbf{x}}_{1}^{T}\bar{\mathbf{w}} - y_{1} \\
\bar{\mathbf{x}}_{2}^{T}\bar{\mathbf{w}} - y_{2} \\
\bar{\mathbf{x}}_{3}^{T}\bar{\mathbf{w}} - y_{3} \\
\vdots \\
\bar{\mathbf{x}}_{n}^{T}\bar{\mathbf{w}} - y_{n}
\end{bmatrix}$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_i^T \overline{\mathbf{w}} - y_i)^2$$

$$\left|\left|\left|\mathbf{\bar{X}}\mathbf{\bar{w}}-\mathbf{y}\right|\right|_{2}^{2} = \left|\left|\begin{bmatrix}\mathbf{\bar{x}}_{1}^{T}\mathbf{\bar{w}}-y_{1}\\\mathbf{\bar{x}}_{2}^{T}\mathbf{\bar{w}}-y_{2}\\\mathbf{\bar{x}}_{3}^{T}\mathbf{\bar{w}}-y_{3}\\\vdots\\\mathbf{\bar{x}}_{n}^{T}\mathbf{\bar{w}}-y_{n}\end{bmatrix}\right|^{2}$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_i^T \overline{\mathbf{w}} - y_i)^2$$

$$\left|\left|\bar{\mathbf{X}}\bar{\mathbf{w}}-\mathbf{y}\right|\right|_{\frac{2}{2}}^{2} = \left|\left|\begin{bmatrix}\bar{\mathbf{x}}_{1}^{T}\bar{\mathbf{w}}-y_{1}\\\bar{\mathbf{x}}_{2}^{T}\bar{\mathbf{w}}-y_{2}\\\bar{\mathbf{x}}_{3}^{T}\bar{\mathbf{w}}-y_{3}\\\vdots\\\bar{\mathbf{x}}_{n}^{T}\bar{\mathbf{w}}-y_{n}\end{bmatrix}\right|^{2} = \sum_{i=1}^{n} (\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{w}}-y_{i})^{2}.$$

• The optimization model:

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \quad \sum_{i=1}^{n} (\overline{\mathbf{x}}_{i}^{T} \overline{\mathbf{w}} - y_{i})^{2}$$

Matrix form:

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

• The optimization model:

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Tasks

Methods

Algorithms

Linear Regression **Least Squares Regression**

LASSO

Least Absolute Deviations

• The optimization model:

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Tasks

Linear Regression Methods

Least Squares Regression

LASSO

Least Absolute Deviations

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\overline{\mathbf{W}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{W}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\overline{\mathbf{X}} \overline{\mathbf{w}} - \mathbf{y}||_{2}^{2}}{\partial \overline{\mathbf{w}}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y})$$

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\overline{\mathbf{X}} \overline{\mathbf{w}} - \mathbf{y}||_{2}^{2}}{\partial \overline{\mathbf{w}}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y}) = \mathbf{0}$$

Algorithms

Analytical Solution

1st-order optimality condition

Gradient Descent (GD)

Solve the optimization model:

$$\min_{\overline{\mathbf{W}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{W}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y}||_{2}^{2}}{\partial \overline{\mathbf{w}}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y}) = \mathbf{0}$$

Normal equation: $\overline{\mathbf{X}}^T \overline{\mathbf{X}} \overline{\mathbf{w}}^{\star} = \overline{\mathbf{X}}^T \mathbf{y}$

Assume $\overline{\mathbf{X}}^T\overline{\mathbf{X}}$ is full rank.

Analytical solution: $\overline{\mathbf{w}}^{\star} = (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{X}}^T \mathbf{y}$

Algorithms

Analytical Solution

Gradient Descent (GD)

Solve the optimization model:

$$\min_{\overline{\mathbf{W}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{W}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\overline{\mathbf{X}} \overline{\mathbf{w}} - \mathbf{y}||_{2}^{2}}{\partial \overline{\mathbf{w}}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y}) = \mathbf{0}$$

Gradient descent repeats:

- 1. Compute gradient: $\mathbf{g}_t = \overline{\mathbf{X}}^T \overline{\mathbf{X}} \, \overline{\mathbf{w}}_t \overline{\mathbf{X}}^T \mathbf{y}$
- 2. Update: $\overline{\mathbf{w}}_{t+1} = \overline{\mathbf{w}}_t \alpha_t \mathbf{g}_t$

Algorithms

Analytical Solution

Gradient Descent (GD)

Solve the optimization model:

$$\min_{\overline{\mathbf{W}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{W}} - \mathbf{y} \right| \right|_2^2$$

Convergence: after $O\left(\kappa\log\frac{1}{\epsilon}\right)$ iterations,

$$\left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{t}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2} \leq \epsilon \left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{0}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2}.$$

$$\kappa = \frac{\lambda_{\max}(\overline{\mathbf{X}}^T\overline{\mathbf{X}})}{\lambda_{\min}(\overline{\mathbf{X}}^T\overline{\mathbf{X}})}$$
 is the condition number.

Algorithms

Analytical Solution

Gradient Descent (GD)

Least Squares Regression

Solve the optimization model:

$$\min_{\overline{\mathbf{W}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{W}} - \mathbf{y} \right| \right|_2^2$$

Convergence: after $O\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$ iterations,

$$\left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{t}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2} \leq \epsilon \left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{0}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2}.$$

$$\kappa = \frac{\lambda_{\max}(\overline{\mathbf{X}}^T\overline{\mathbf{X}})}{\lambda_{\min}(\overline{\mathbf{X}}^T\overline{\mathbf{X}})}$$
 is the condition number.

The pseudo-code of CG is available at the Wikipedia.

Algorithms

Analytical Solution

Gradient Descent (GD)

Conjugate Gradient (CG)

Least Squares Regression

• Solve the optimization model:

$$\min_{\overline{\mathbf{w}} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Tasks

Methods

Algorithms

Linear Regression **Least Squares Regression**

LASSO

Least Absolute Deviations

Analytical Solution

Gradient Descent (GD)

Conjugate Gradient (CG)

Solve Least Squares in Python

1. Load Data

```
from keras.datasets import boston housing
(x train, y train), (x test, y test) = boston housing.load data()
print('shape of x train: ' + str(x train.shape))
print('shape of x test: ' + str(x test.shape))
print('shape of y train: ' + str(y train.shape))
print('shape of y test: ' + str(y test.shape))
shape of x train: (404, 13)
shape of x test: (102, 13)
shape of y train: (404,)
shape of y test: (102,)
```

2. Add A Feature

```
import numpy
n, d = x train.shape
xbar train = numpy.concatenate((x train, numpy.ones((n, 1))),
                                axis=1)
print('shape of x train: ' + str(x_train.shape))
print('shape of xbar train: ' + str(xbar train.shape))
shape of x train: (404, 13)
shape of xbar train: (404, 14)
```

Analytical solution: $\overline{\mathbf{w}} = (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{X}}^T \mathbf{y}$

```
xx = numpy.dot(xbar_train.T, xbar_train)
xx_inv = numpy.linalg.pinv(xx) = 1
xy = numpy.dot(xbar_train.T, y_train) **
w = numpy.dot(xx_inv, xy)
```

Analytical solution: $\overline{\mathbf{w}} = (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{X}}^T \mathbf{y}$

```
xx = numpy.dot(xbar_train.T, xbar_train)
xx_inv = numpy.linalg.pinv(xx)
xy = numpy.dot(xbar_train.T, y_train)
w = numpy.dot(xx_inv, xy)
```

Analytical solution: $\overline{\mathbf{w}} = (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{X}}^T \mathbf{y}$

```
xx = numpy.dot(xbar_train.T, xbar_train)
xx_inv = numpy.linalg.pinv(xx)
xy = numpy.dot(xbar_train.T, y_train)
w = numpy.dot(xx_inv, xy)
```

Training Mean Squared Error (MSE): $\frac{1}{n} ||\mathbf{y} - \overline{\mathbf{X}}\overline{\mathbf{w}}||_2^2$

```
y_lsr = numpy.dot(xbar_train, w)
diff = y_lsr - y_train
mse = numpy.mean(diff * diff)
print('Train MSE: ' + str(mse))
```

Train MSE: 22.00480083834814

Linear Regression for Housing Price

Linear Regression for Housing Price

Features of a House, \mathbf{x}'

 \rightarrow Extend it to $\bar{\mathbf{x}}'$

4. Make Prediction for Test Samples

- Add a feature to the test feature matrix: $X_{\text{test}} \rightarrow \overline{X}_{\text{test}}$.
- Make prediction by: $\mathbf{y}_{\text{pred}} = \overline{\mathbf{X}}_{\text{test}}\overline{\mathbf{w}}$.

```
n_test, _ = x_test.shape
xbar_test = numpy.concatenate((x_test, numpy.ones((n_test, 1))), axis=1)
y_pred = numpy.dot(xbar_test, w)
```

4. Make Prediction for Test Samples

- Add a feature to the test feature matrix: $X_{\text{test}} \rightarrow \overline{X}_{\text{test}}$.
- Make prediction by: $\mathbf{y}_{\text{pred}} = \overline{\mathbf{X}}_{\text{test}}\overline{\mathbf{w}}$.
- MSE (test): $\frac{1}{n_{\text{test}}} \left| \left| \mathbf{y}_{\text{pred}} \mathbf{y}_{\text{test}} \right| \right|_2^2$

```
# mean squared error (testing)

diff = y_pred - y_test

mse = numpy.mean(diff * diff)
print('Test MSE: ' + str(mse))
```

Test MSE: 23.195599256409857

Training MSE is **22.0**

4. Make Prediction for Test Samples

5. Compare with Baseline

Trivial baseline:

whatever the features are, the prediction is mean(y).

```
y_mean = numpy.mean(y_train)

diff = y_pred - y_mean
mse = numpy.mean(diff * diff)
print('Test MSE: ' + str(mse))
```

Test MSE: 57.38297638530044

Test MSE of least squares is **23.19**

Summary

- Linear regression problem.
- Least squares model.
- 3 algorithms for solving the model.
- Make predictions for never-seen-before test data.
- Evaluation of the model (training MSE and test MSE).
- Compare with baselines.