TD 1

Exercice 1 Soient E et F deux ensembles. Montrer que l'existence d'une injection de E dans F équivaut à l'existence d'une surjection de F dans E. Remarque : la preuve d'une des implications utilise l'axiome du choix.

Exercice 2 Soit X est un ensemble quelconque, et $\mathcal{P}(X)$ l'ensemble de ses parties.

- 1. Trouver une application de $X \to \mathcal{P}(X)$.
- 2. Est-ce que pour tout X, il existe une application injective de X dans $\mathcal{P}(X)$?
- 3. Montrer qu'il n'existe pas de surjection $f: X \to \mathcal{P}(X)$.

Exercice 3 Montrer que l'ensemble $\{0,1\}^X$ des applications de X dans $\{0,1\}$ est équipotent à $\mathcal{P}(X)$.

Exercice 4 * Démontrer le théorème de Cantor-Bernstein :

Soit A et B deux ensembles. S'il existe une injection de A vers B et une injection de B vers A, alors A et B sont équipotent.

Exercice 5 *

- 1. Montrer que $\{0,1\}^{\mathbb{N}}$, \mathbb{R} et les intervalles [0,1] et]0,1[sont équipotents. On admettra le théorème de Cantor-Bernstein.
- 2. Montrer que $\mathbb{R}^{\mathbb{N}}$ et \mathbb{R} sont équipotents.²
- 3. Soit $n \geq 1$ un entier. En déduire que $\mathcal{C}([0,1];\mathbb{R})$, \mathbb{R}^n et \mathbb{R} sont équipotents.

Exercice 6 Montrer que l'application $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ définie par $f(n,m) = 2^n(2m+1) - 1$ est une bijection. En déduire que \mathbb{Q} est dénombrable.

Exercice 7 * Montrer que si A n'est pas dénombrable et $B \subset A$ est dénombrable, alors A et $A \setminus B$ sont équipotents. En déduire que les nombres réels et les irrationnels sont en bijection.

Exercice 8 Donner un exemple de fonction $f: \mathbb{R} \to \mathbb{R}$, bornée, continue sauf en 0, sans limite à gauche ni à droite en 0.

Exercice 9 (points de discontinuité des fonction monotones) Soit f une fonction croissante de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que pour tout $x \in \mathbb{R}$, f admet une limite à gauche, notée f(x-), et une limite à droite, notée f(x+).
- 2. En déduire que si $f(\mathbb{R})$ est un intervalle, f est continue. Soit [a, b] un intervalle borné de \mathbb{R} et soit $a = x_0 < x_1 < \cdots < x_n = b$ une subdivision de [a, b].
- 1. Indice : $\{(x) \not\ni x : X \ni x\} = \mathcal{A}$ əldərərələ sons-ensemble $\mathcal{A} : X \not\ni \mathcal{A}$ is indiced by the solution of the solutio
- 5. Indice: $\mathbb{M}\{1,0\}$ & transportant and \mathbb{M} and \mathbb{M} and \mathbb{M} bright and \mathbb{M} bright \mathbb{M} and \mathbb{M} and \mathbb{M} bright \mathbb{M} and \mathbb{M} and \mathbb{M} bright \mathbb{M} and \mathbb{M} and \mathbb{M} and \mathbb{M} are \mathbb{M} are \mathbb{M} and \mathbb{M} are \mathbb{M} are \mathbb{M} are \mathbb{M} and \mathbb{M} are \mathbb{M} and \mathbb{M} are \mathbb{M}
- 3. Indice : slantointe rationnels : $\mathfrak{L}([0,1];\mathbb{R})$ est déterminée par sa valeur aux points rationnels : $\mathfrak{L}([0,1];\mathbb{R})$

3. Montrer que

$$\sum_{i=1}^{n-1} f(x_i+) - f(x_i-) \le f(b) - f(a).$$

- 4. Montrer que l'ensemble des points de [a, b] où f est discontinue est au plus dénombrable. 4
- 5. En déduire que l'ensemble des points de discontinuité de f sur \mathbb{R} est dénombrable.

Exercice 10 Opérations ensemblistes

1. Soit I, J des ensembles et $(A_{i,j})_{i,j\in I\times J}$ des parties d'un ensemble X. Montrer que :

$$\bigcup_{i \in I} \bigcap_{j \in J} A_{i,j} \subset \bigcap_{j \in J} \bigcup_{i \in I} A_{i,j} = \bigcup_{f: J \to I} \bigcap_{j \in J} A_{f(j),j}.$$

Donner un exemple ou l'inclusion est stricte.

- 2. En déduire qu'une intersection finie d'unions peut aussi s'écrire comme une union d'intersections finies.
- 3. Soient $(A_i)_{i\in I}$ des parties d'un ensemble X, montrer les égalités :

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c, \quad \left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c.$$

- 4. Montrer qu'une union finie d'intersections s'écrit aussi comme une intersection d'unions finies.
- 5. Soit X, Y des ensembles, $f: X \to Y$ une application, $(A_i)_{i \in I}$ des parties de X et $(B_j)_{j \in J}$ des parties de Y. Montrer:

$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f(A_i), \quad f\left(\bigcap_{i\in I} A_i\right) \subset \bigcap_{i\in I} f(A_i),$$
$$f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j), \quad f^{-1}\left(\bigcap_{j\in J} B_j\right) = \bigcap_{j\in J} f^{-1}(B_j).$$

Donner un exemple où l'inclusion ci-dess sus est stricte. Donner une condition nécessaire et suffisante sur f pour que cette inclusion soit toujours une égalité.

Exercice 11 Déterminer toutes les topologies sur un ensemble à 3 éléments. Donner une base d'ouverts pour chacune et dire si elle sont séparées.

Exercice 12 $\mathcal{O} = \{\emptyset, \{1, 2\}, \{1, 2, 3\}, \{2, 3, -4\}, \{1, 2, 3, -4\}, \mathbb{Z}\}$ est elle une topologie sur \mathbb{Z} ?

Exercice 13 Soit E un ensemble et $A, B \in \mathcal{P}(E)$. Quelles conditions doivent vérifier A et B pour que $\mathcal{O} = \{\emptyset, A, B, E\}$ soit une topologie sur E?

^{4.} Indice: $u/1 \le (-x) - (+xf)$ and self a solution of indice is indiced by indiced in u in

Exercice 14 (Topologie codénombrable) Soit X un ensemble et soit

$$\mathcal{O} = \{\emptyset\} \cup \{A \subset X \mid A^c \text{ est dénombrable}\}\$$

- 1) Montrer que \mathcal{O} est une topologie sur X.
- 2) Montrer que toute intersection denombrable d'ouverts est un ouvert.
- 3) Montrer que toute suite convergente de (X, \mathcal{O}) est stationnaire.

On suppose maintenant que X n'est pas dénombrable.

- 4) Montrer que, si X n'est pas dénombrable, l'intersection de deux ouverts non vides est non vide.
 - 5) Est-ce que l'espace topologique (X, \mathcal{O}) est séparé?
 - 6) Est-ce que l'espace topologique (X, \mathcal{O}) est séparable?

Exercice 15 Dans \mathbb{R}^2 , on note \mathcal{B} l'ensemble des disques ouverts dont le centre appartient à \mathbb{Z}^2 et dont le rayon appartient à \mathbb{N} . Soit \mathcal{O} l'ensemble des réunions d'éléments de \mathcal{B} . \mathcal{O} est-elle une topologie sur \mathbb{R}^2 ?

Exercice 16 Soit X un ensemble, $\mathcal{B} \subset \mathcal{P}(X)$. Montrer que \mathcal{B} est une base de topologie sur X si et seulement si les propriétés suivantes sont satisfaites :

- (i) $\bigcup_{B \in \mathcal{B}} B = X$.
- (ii) $\forall (B, B') \in \mathcal{B}^2, \forall x \in B \cap B', \exists B'' \in \mathcal{B}, x \in B'' \subset B \cap B'.$

Exercice 17 1) Montrer qu'un espace topologique qui possède une base dénombrable d'ouverts est séparable.

2) Montrer que tout espace métrique séparable possède une base dénombrable d'ouverts.

Exercice 18 1) Soit (E, d) un espace metrique séparable. Montrer que toute partie de E muni de la topologie induite est séparable.

Soit $\mathcal B$ la famille des rectangles semi-ouverts de $\mathbb R^2$ de la forme

$$[a, b] \times [c, d]$$

- 2) Montrer que \mathcal{B} est la base d'une topologie τ sur \mathbb{R}^2 .
- 3) Montrer que la topologie induite τ_D sur la droite

$$D = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$$

est la topologie discrète.

4) Montrer que (\mathbb{R}^2, τ) est séparable mais que (D, τ_D) ne l'est pas.

Exercice 19 On considère la famille \mathcal{B} des intervalles semi-ouverts de la forme [a, b], a < b.

- 1) Montrer que \mathcal{B} est une base d'une topologie \mathcal{O} sur \mathbb{R} .
- 2) Le singleton $\{x\}$ est-il un voisinage de cette topologie?
- 3) Montrer que les ouverts usuels de \mathbb{R} sont des ouverts de \mathcal{O} . Le singleton $\{x\}$ est-il un ouvert? est-il un voisinage de $\{x\}$? est-il fermé?
 - 4) Les suites $(1/n)_{n\geq 1}$ et $(-1/n)_{n\geq 1}$ sont-elles convergentes dans (\mathbb{R},\mathcal{O}) ?
 - 5) L'espace topologique $(\mathbb{R}, \mathcal{O})$ est-il séparé?
 - 6) L'espace topologique $(\mathbb{R}, \mathcal{O})$ est-il séparable?
 - 7) L'espace topologique $(\mathbb{R}, \mathcal{O})$ est-il métrisable?

Exercice 20 Soit X un espace topologique séparé.

- 1) Montrer que les ensembles finis sont fermés.
- 2) Montrer que l'ensemble $D = \{(x, y) \in X^2 : x = y\}$ (diagonale de X^2) est fermé.
- 3) Montrer plus généralement que le graphe de toute application continue f de X dans X est fermé.

Exercice 21 Soit X un espace topologique. Montrer que les propositions suivantes sont équivalentes :

- 1. Tout singleton de X est fermé.
- 2. pour tout $x, y \in X$ avec $x \neq y$, il existe un voisinage de x qui ne contient pas y.
- 3. pour tout $x \in X$, le singleton $\{x\}$ est l'intersection de tous les voisinages de x.

Exercice 22 Soit X un espace topologique. On suppose que pour tous $x \neq y$ dans X, il existe une application continue f de X dans un espace topologique séparé telle que $f(x) \neq f(y)$. Montrer que X est séparé.

Exercice 23 (Topologie de la convergence simple : non métrisable) Soit E l'espace vectoriel des applications de [0,1] dans \mathbb{R} . Si $f \in E$, $N \in \mathbb{N}^*$, $x = (x_1, \ldots, x_N) \in [0,1]^N$, et $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_N) \in (\mathbb{R}^*_+)^N$, on définit

$$V_{f,x,\varepsilon} = \{ g \in E \mid \forall i \in \{1, \cdots, N\}, |f(x_i) - g(x_i)| < \varepsilon_i \}$$

On définit \mathcal{O} comme l'ensemble des réunions d'ensembles précédents.

- 1) Montrer que \mathcal{O} définit une topologie sur E.
- 2) Montrer qu'une suite de fonctions de E est convergente pour cette topologie si et seulement si elle converge simplement.
- 3) Soit \mathcal{D} l'ensemble des fonctions de E nulles sauf en un nombre fini de points. Montrer que \mathcal{D} est dense dans E.
- 4) En utilisant une fonction de E non nulle sur un ensemble non dénombrable, montrer que la topologie précédente n'est pas métrisable.

Exercice 24 (droite à deux origines) Soit $A = \{(x,1) \mid x \in \mathbb{R}\} \cup \{(x,-1) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^2$ muni de la topologie induite. On considère $X = A/\sim$ où \sim est la relation d'équivalence donnée par, pour $(x,\varepsilon), (x',\varepsilon') \in A$:

$$(x,\varepsilon) \sim (x,\varepsilon') \iff x \neq 0, \ x = x' \text{ et } \varepsilon \neq \varepsilon'.$$

Soit $p: A \to X$ la projection canonique et on munit X de la topologie quotient : $U \subset X$ est ouvert si est seulement si $p^{-1}(U)$ est un ouvert de A. On note aussi $o_- = p((0, -1))$ et $o_+ = p((0, 1))$.

- 1) Montrer que pour tout couple $(u, v) \in X^2$, il existe un ouvert contenant u mais pas v (on dit que X est accessible).
 - 2) Est-ce que X est séparé?
 - 3) Montrer qu'il n'y a pas unicité de la limite dans X.