CS561/571 - ARTIFICIAL INTELLIGENCE LAB

ASSIGNMENT-10: Neural Networks

(Read all the instructions carefully & adhere to them.)

Date: November 6, 2023 Deadline: November 12, 2023

Total Credit: 30

Instructions:

- 1. The assignment should be completed and uploaded by November 12, 2023, 11:59 PM IST.
- **2.** Markings will be based on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism.
- **3.** Proper indentation and appropriate comments are mandatory.
- **4.** Make proper documentation of all results and observations with their analysis.
- **5.** You should zip all the required files and name the zip file as roll_no_of_all_group_members.zip, e.g., 1501cs11_1201cs03_1621cs05.zip.
- **6.** Upload your assignment (the zip file) in the following link: https://www.dropbox.com/request/KJwrOexjZ8VtpxPhIbvN
- 7. For any queries regarding this assignment, you can contact:

Aizan Zafar (aizanzafar@gmail.com) or

Gitanjali Kumari(gitanjali.singh228@gmail.com) or

Utsav Nareti (utsavkumarnareti@gmail.com) or

Jitendra Solanki (solankijitendra032@gmail.com)

------Questions------

1. Design and implement an artificial neural network to simulate a 2-input XOR gate. Assign appropriate values to weights and thresholds to edges and nodes in the neural network

Note: Do not use any DL library (Keras, PyTorch, etc.) to implement the XOR gate

2. Go through the attached IRIS and CIFAR-10 datasets and design a Multi-Layer Perceptron (MLP) classifier. Train the feedforward networks using the given datasets

and show the evaluation in terms of precision, recall, f-score, and accuracy. Experiment with the number of neurons in the hidden layer and plot an accuracy v/s number of neurons graph.

For both datasets, use ReLU and leaky ReLU activation functions and check which one is giving high performance.

Note: You can use any DL library to implement the MLP

Data Sets: IRIS: https://archive.ics.uci.edu/dataset/53/iris

CIFAR-10: https://www.cs.toronto.edu/~kriz/cifar.html

(Divide the data into train and validation sets, having 80% of each class in the train and rest for the validation). Report the validation performances.