Análise Exploratória de Dados

- > Resumo de cinco números
- Box-plot (gráfico de caixa)

Análise exploratória de dados

- ⇒ A média aritmética e o desvio padrão são medidas muito utilizadas.
- ⇒ Porém, essas medidas descrevem de forma ótima distribuições de frequências simétricas.
- ⇒ Numa distribuição assimétrica seus valores são bastante afetados pelos valores discrepantes (não são medidas resistentes).

John Wilder Tukey (1915 - 2000)

1970 → John Tukey propôs técnicas que contornavam esses problemas. O conjunto dessas técnicas recebeu a denominação de Análise Exploratória de Dados.

Principais técnicas exploratórias:

- Resumo de cinco números
- Box-plot

Resumo de cinco números

Descreve o conjunto de dados através de cinco valores:

- mediana (Md)
- primeiro (Q₁) e terceiro (Q₃) quartis
- extremos inferior (EI) e superior (ES)

O resumo de cinco números fornece uma ideia da simetria (formato) da distribuição porque o percentual de valores dentro de cada intervalo é conhecido (25%).

Simetria

A distribuição é considerada simétrica se:

1. A diferença entre o primeiro quartil e extremo inferior é aproximadamente igual à diferença entre o extremo superior e o terceiro quartil $(Q_1 - EI \cong ES - Q_3)$

2. A diferença entre a mediana e o primeiro quartil é aproximadamente igual à diferença entre o terceiro quartil e a mediana (Md – $Q_1 \cong Q_3$ – Md)

Condições para a simetria $\begin{cases} Q1 - EI \cong ES - Q3 \\ Md - Q1 \cong Q3 - Md \end{cases}$

Distribuição Uniforme

Condições para a simetria $\begin{cases} Q1 - EI \cong ES - Q3 \\ Md - Q1 \cong Q3 - Md \end{cases}$

Curva da Banheira

Condições para a simetria $\begin{cases} Q1 - EI \cong ES - Q3 \\ Md - Q1 \cong Q3 - Md \end{cases}$

Casos assimétricos

Assimetria Negativa

Assimetria Positiva

Exercício proposto: Os dados abaixo se referem aos pesos ao nascer (em kg) de 61 bovinos machos da raça Ibagé. Encontre o resumo de cinco números e classifique quanto à simetria da distribuição.

$$p_{1} = \frac{n+1}{4} = \frac{61+1}{4} = 15,5$$

$$p_{2} = \frac{2(n+1)}{4} = \frac{2(61+1)}{4} = 31$$

$$p_{3} = \frac{3(n+1)}{4} = \frac{3(61+1)}{4} = 46,5$$

$$Q_{1} = 22$$

$$Md = Q_{2} = 25$$

$$Q_{3} = 30$$

Resumo de cinco números -

Assimétrica positiva

Identificação de valores discrepantes (atípicos)

O critério usado para identificar valores discrepantes num conjunto de dados é baseado em duas medidas:

Cerca inferior
$$\rightarrow$$
 CI = Q₁ - 1,5a_q

Cerca superior
$$\rightarrow$$
 CS = Q₃ + 1,5a_q

Profa Lisiane Selau

10

No exemplo referente aos pesos ao nascer de bovinos, serão considerados discrepantes os valores que estiverem fora dos limites da cerca superior e da cerca inferior:

CI = Q₁ - 1,5 a_q = 22 - 1,5 × 8 = 10
$$Q_1 \qquad Q_2 \qquad Q_3 \qquad Q_4 \qquad Q_5 \qquad Q_6 \qquad$$

Verificamos que o valor 45 ultrapassa a cerca superior, portanto, é classificado como discrepante superior.

O que fazer quando identificamos valores discrepantes?

Investigar a sua origem.

- Eventualmente, esses valores podem ser oriundos de erros na aferição ou no registro dos dados.
- Entretanto, valores discrepantes podem, de fato, fazer
 parte do conjunto de dados, reforçando a característica
 assimétrica da distribuição.

Uma inspeção cuidadosa nos dados e nas eventuais causas da ocorrência de valores discrepantes é sempre uma providência necessária antes que qualquer atitude seja tomada em relação a esses dados.

Box-plot

A informação dada pelo resumo de cinco números pode ser apresentada na forma de um box-plot que agrega uma série de informações sobre a distribuição:

- posição
- dispersão
- assimetria
- caudas
- dados discrepantes

- A posição central dos valores é dada pela mediana e a dispersão pela amplitude interquartílica.
- As posições relativas da mediana e dos quartis e o formato dos bigodes dão uma noção da simetria e do tamanho das caudas da distribuição.

Exemplos:

Consideremos o conjunto de dados referentes ao peso ao nascer (kg) de bovinos machos da raça Ibagé:

$$CI = Q1 - 1,5 a_q = 22 - 1,5 \times 8 = 10$$

$$CS = Q3 + 1,5 a_q = 30 + 1,5 \times 8 = 42$$

Verificamos que o valor 45 ultrapassa a cerca superior, portanto, é classificado como discrepante superior.

Exercício: Fazer o resumo de cinco números e o box-plot.

Os dados abaixo se referem aos valores gastos (em reais) pelas primeiras 50 pessoas que entraram em um determinado Supermercado, no dia 01/03/2013.

9,26	10,81	3,11	85,76	70,32	82,70	18,43	19,54	23,04	24,47
26,24	26,26	24,58	28,38	28,06	28,08	25,13	27,65	32,03	36,37
19,27	19,50	18,36	52,75	61,22	86,37	93,34	22,22	20,16	20,59
54,80	59,07	50,39	45,40	44,08	44,67	38,64	42,97	46,69	48,65
39,16	41,02	38,98	15,62	13,78	15,23	8,88	12,69	17,00	17,39
3,11	8,88	9,26	10,81	12,69	13,78	15,23	15,62	17,00	17,39
18,36	18,43	19,27	19,50	19,54	20,16	20,59	22,22	23,04	24,47
24,58	25,13	26,24	26,26	27,65	28,06	28,08	28,38	32,03	36,37
38,98	38,64	39,16	41,02	42,97	44,08	44,67	45,40	46,69	48,65
50,39	52,75	54,80	59,07	61,22	70,32	82,70	85,76	86,37	93,34

Profa Lisiane Selau

Solução:

Os valores 85,76 ; 86,37 e 93,34 são considerados discrepantes

Assimetria positiva

