Chapter 1

Monodromy

1.1 Monodromy and realizability

1.2 Non-positive Euler characteristic

Lemma 1.1. Let $\alpha \in \mathfrak{S}_d$ be a permutation. Set $r = d - v(\alpha)$, and let $t \geq 0$ be an integer such that $2t \leq v(\alpha)$. Then α can be written as the product of a (r + 2t)-cycle and a d-cycle.

Corollary 1.2. Let $\alpha \in \mathfrak{A}_d$ be an even permutation. Then α can be written as:

- (i) a commutator $[\beta, \gamma]$, where γ is a d-cycle;
- (ii) a product of two squares $\beta^2 \gamma^2$, where $\beta \gamma$ is a d-cycle.

Theorem 1.3. Let $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ be a candidate datum with Σ and $\widetilde{\Sigma}$ both orientable or both non-orientable. If $\chi(\Sigma) \leq 0$, then \mathcal{D} is realizable.

Proposition 1.4. Let $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ be a candidate datum with Σ non-orientable and $\widetilde{\Sigma}$ orientable. If $\chi(\Sigma) \leq 0$, then \mathcal{D} is realizable.

1.3 Products in symmetric groups

Lemma 1.5. Let X, Y be finite sets; denote by h the cardinality of Y, and by k the cardinality of $X \cap Y$. Let $\alpha \in \mathfrak{S}(X)$, $\beta \in \mathfrak{S}(Y)$, $\gamma \in \mathfrak{S}(X \cap Y)$. Assume that $\beta = (b_1, \ldots, b_h)$ is a h-cycle, and that γ is a k-cycle of the form $\gamma = (b_{i_1}, \ldots, b_{i_k})$ with $1 \leq i_1 \leq \ldots \leq i_k \leq h$. Then $\alpha \in \mathfrak{S}(X)$ and $\alpha \gamma^{-1} \beta \in \mathfrak{S}(X \cup Y)$ have the same number of cycles.

Proof. Let $\gamma = (u_1, \dots, u_k)$, where $u_j = b_{i_j}$. Without loss of generality, assume that $i_1 = 1$. Then we can write

$$\beta = (u_1, \dots, w_1, u_2, \dots, w_2, u_3, \dots, w_{k-1}, u_k, \dots, w_k),$$

possibly with $u_j = w_j$ for some values of j. We immediately get that

$$\gamma^{-1}\beta = (u_1, \dots, w_1)(u_2, \dots, w_2) \cdots (u_k, \dots, w_k).$$

If we denote by $A_1, \ldots, A_r \subseteq X$ the orbits of α , it is then easy to see that the orbits of $\alpha \gamma^{-1} \beta$ are $A'_1, \ldots, A'_r \subseteq X \cup Y$, where

$$A'_j = A_j \cup \bigcup_{u_l \in A_j} \{u_l, \dots, w_l\}.$$

Proposition 1.6. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) < d$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $v(\alpha\beta) = v(\alpha) + v(\beta)$.

Proof. First of all, note that the conclusion is trivial whenever $v(\pi) = 0$ or $v(\rho) = 0$. This already solves the cases d = 1 and d = 2. We now proceed by induction on $d \ge 3$, assuming that $v(\pi) > 0$ and $v(\rho) > 0$. Write $\pi = [a_1, \ldots, a_r]$, $\rho = [b_1, \ldots, b_s]$; without loss of generality, assume that $b_1 > 1$. Fix

$$\beta = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s),$$

where $b_1 = d_1 \ge 2$, $b_i = d_i - d_{i-1}$ for $2 \le i \le s$ (in particular, $d_s = d$). Note that

$$d-1 \ge v(\pi) + v(\rho) = (a_1-1) + \ldots + (a_r-1) + d - s \ge a_1 - 1 + d - s$$

hence $a_1 \leq s$. Fix $\alpha_1 = (1, d_1 + 1, \dots, d_{a_1-1} + 1)$, and let $A = \{1, d_1 + 1, \dots, d_{a_1-1} + 1\}$ be the support of α_1 . Define $Q = \{1, \dots, d_{a_1}\} \setminus A$; note that Q_1 is non-empty, since $d_1 + 1 \geq 3$ implies that $2 \in Q_1$. Consider the partitions

$$\pi' = [a_2, a_3, \dots, a_r],$$
 $\rho' = [|Q|, b_{a_1+1}, \dots, b_s].$

We have that

$$\sum \pi' = \sum \rho' = d - a_1, \qquad v(\pi') = v(\pi) - a_1 + 1, \qquad v(\rho') = v(\rho) - 1.$$

Since $d - a_1 < d$ and $v(\pi') + v(\rho') = v(\pi) + v(\rho) - a_1 < d - a_1$, by induction we find $\alpha', \beta' \in \mathfrak{S}(\{1, \ldots, d\} \setminus A)$ with $[\alpha'] = \pi'$ and $[\beta'] = \rho'$ such that $v(\alpha'\beta') = v(\alpha') + v(\beta')$. Up to conjugation, we may assume that

$$\beta' = \beta_1(d_{a_1} + 1, \dots, d_{a_1+1})(d_{a_1+1} + 1, \dots, d_{a_1+2}) \cdots (d_{s-1} + 1, \dots, d_s),$$

where β_1 is the |Q|-cycle whose entries are the elements of Q in increasing order. An easy computation shows that

$$\alpha_1 \beta = (1, \dots, d_{a_1})(d_{a_1} + 1, \dots, d_{a_1+1}) \cdots (d_{s-1} + 1, \dots, d_s).$$

Therefore, setting $\alpha = \alpha' \alpha_1$, we have that

$$\alpha\beta = \alpha_1 \alpha' \beta$$

= $\alpha'(1, ..., d_{a_1})(d_{a_1} + 1, ..., d_{a_1+1}) \cdots (d_{s-1} + 1, ..., d_s)$
= $\alpha' \beta' \beta_1^{-1}(1, ..., d_{a_1})$

By lemma 1.5, this implies that $\alpha\beta$ has the same number of cycles as $\alpha'\beta'$, so that

$$v(\alpha\beta) = a_1 + v(\alpha'\beta')$$

= $a_1 + v(\alpha') + v(\beta')$
= $a_1 + (v(\pi) - a_1 + 1) + (v(\rho) - 1)$
= $v(\pi) + v(\rho)$.

Since $[\alpha] = \pi$ and $[\beta] = \rho$, the conclusion follows.

Proposition 1.7. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \geq d$, and let $t = v(\pi) + v(\rho) - d + 1$. Fix an integer $0 \leq k \leq t$ such that $k \equiv t \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $v(\alpha\beta) = d - 1 - k$ and the action of $\langle \alpha, \beta \rangle$ on $\{1, \ldots, d\}$ is transitive.

aybe only k = 0 eded (in this case, ansitivity is trivial)?

Proof. Write $\pi = [a_1, \dots, a_r]$. Since $v(\rho) \leq d - 1$ and $v(\pi) + v(\rho) \geq d$, there exists a largest integer $0 \leq i \leq r$ such that $(a_1 - 1) + \dots + (a_i - 1) + v(\rho) \leq d - 1$. Define

$$z = d - v(\rho) - (a_1 - 1) - \dots - (a_i - 1).$$

Consider the partition $\pi' = [a_1, \ldots, a_i, z, 1, \ldots, 1] \in \Pi(d)$. Since by construction $v(\pi') + v(\rho) = d-1$, thanks to proposition 1.6 we can find permutations $\alpha', \beta \in \mathfrak{S}_d$ with $[\alpha'] = \pi'$ and $[\beta] = \rho$ such that $v(\alpha'\beta) = d-1$; in other words, $\alpha'\beta$ is a d-cycle. Consider now the partition $\pi'' = [a_{i+1} - z + 1, a_{i+2}, \ldots, a_r]$, whose branching number is $v(\pi'') = t$. Let $n = \sum \pi''$; fix an element u_1 of the z-cycle of α' , and let u_2, \ldots, u_n be the fixed points of α' corresponding to the last ones of π' (it is easy to see that there are exactly n-1 such ones). Since $k \leq t = v(\rho'')$ and $k \equiv t \pmod{2}$, lemma 1.1 gives permutations $\alpha'', \gamma \in \mathfrak{S}(\{u_1, \ldots, u_n\})$ such that $[\alpha''] = \rho'', \gamma$ is a n-cycle and $\alpha''\gamma$ is a (n-k)-cycle. Up to conjugation, we can assume that $\gamma = (u_1, \ldots, u_n)$. Moreover, it is not restrictive to assume that u_1, \ldots, u_n appear in this order in the d-cycle $\alpha'\beta$. Therefore, setting $\alpha = \alpha''\alpha'$, we have that

$$\alpha\beta = (\alpha''\gamma)\gamma^{-1}(\alpha'\beta);$$

by lemma 1.5, this implies that $\alpha\beta$ has the same number of cycles as $\alpha''\gamma \in \mathfrak{S}(\{u_1,\ldots,u_n\})$, that is $v(\alpha\beta) = d - (k+1)$. Since $[\alpha] = \pi$ and $[\beta] = \rho$, the only thing left to show is that the action of $\langle \alpha, \beta \rangle$ on $\{1,\ldots,d\}$ is transitive. Write

$$\alpha'\beta = (u_1, \dots, w_1, u_2, \dots, w_2, u_3, \dots, w_{n-1}, u_n, \dots, w_n)$$

as in the proof of lemma 1.5, where an explicit description of the orbits of $\alpha\beta = \alpha''\gamma\gamma^{-1}\alpha'\beta$ is given; from that description, it is clear that for each $1 \leq j \leq n$ the elements u_j, \ldots, w_j all belong to the same orbit. Moreover, since $\beta = (\alpha')^{-1}(u_1, \ldots, w_1, u_2, \ldots, w_n)$ and α' fixes u_2, \ldots, u_n , it follows that w_j and u_{j+1} belong to the same orbit for each $1 \leq j \leq n-1$; this completes the proof.

Corollary 1.8. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \ge d - 1$ and $v(\pi) + v(\rho) \equiv d - 1 \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $\alpha\beta$ is a d-cycle.

Proof. The conclusion immediately follows from proposition 1.6 if $v(\pi) + v(\rho) = d - 1$, or from proposition 1.7 if $v(\pi) + v(\rho) \ge d$.

Remark 1.1. Write $\pi = [a_1, \ldots, a_r]$, $\rho = [b_1, \ldots, b_s]$. By directly examining the proof of proposition 1.6, we see that the proposed construction yields permutations $\alpha, \beta \in \mathfrak{S}_d$ such that 1 belongs to the a_1 -the cycle of α and to the b_1 -cycle of β . It is not hard to see, once again by inspecting the proof, that the same can be said for proposition 1.7. As a consequence, the statement of corollary 1.8 can be enhanced by adding the following line: α and β can be chosen in such a way that 1 belongs to the a_1 -the cycle of α and to the b_1 -cycle of β .

Proposition 1.9. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \ge d$ and $v(\pi) + v(\rho) \equiv d \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $\langle \alpha, \beta \rangle$ acts transitively on $\{1, \ldots, d\}$ and

$$[\alpha\beta] = \begin{cases} [d/2, d/2] & \text{if } \pi = \rho = [2, \dots, 2], \\ [1, d-1] & \text{otherwise.} \end{cases}$$

Terminology?

Maybe explain why?

Proof. Assume first that $\pi = \rho = [2, ..., d]$. We can choose

$$\alpha = (2,3)(4,5)\cdots(d,1) \qquad \beta = (1,2)(3,4)\cdots(d-1,d).$$

The action of $\langle \alpha, \beta \rangle$ is obviously transitive, and

$$\alpha\beta = (1, 3, \dots, d-1)(2, 4, \dots, 2).$$

Otherwise, since $v(\pi) + v(\rho) \ge d$, at least one of π and ρ has an entry which is greater than 2; without loss of generality, we can assume it is ρ . Write $\pi = [a_1, \ldots, a_r], \ \rho = [b_1, \ldots, b_s]$ with $a_1 \ge 2$ (since $v(\pi) \ge 1$) and $b_1 \ge 3$. Fix

$$\beta = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s),$$

where $b_1 = d_1 \ge 3$, $b_i = d_i - d_{i-1}$ for $2 \le i \le s$ (in particular, $d_s = d$). Consider the partitions

$$\pi' = [a_1 - 1, \dots, a_r],$$
 $\rho' = [b_1 - 1, \dots, b_s].$

Since $\sum \pi' = \sum \rho' = d-1$ and $v(\pi') + v(\rho') = v(\pi) + v(\rho) - 2$, by corollary 1.8 we can find permutations $\alpha', \beta' \in \mathfrak{S}(\{2, \ldots, d\})$ with $[\alpha'] = \pi'$ and $[\beta'] = \rho'$ such that $\alpha'\beta'$ is a (d-1)-cycle. Up to conjugation, we can assume that

$$\beta' = (2, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s)$$

or, in other words, $\beta = (1,2)\beta'$; moreover, as explained in remark 1.1, we can choose α' in such a way that 2 belongs to its $(a_1 - 1)$ -cycle. By setting $\alpha = \alpha'(1,2)$, we immediately get that $\alpha\beta = \alpha'\beta'$ is a (d-1)-cycle fixing 1. Finally, the action of $\langle \alpha, \beta \rangle$ is transitive since α does not fix 1.

1.4 Sphere and projective plane