Set Theory HW #2

Ozaner Hansha

September 19, 2019

Problem 1

Exercises 5,7,10 from page 26 in the textbook.

Exercise 5: Assume that every member of A is a subset of B. Show that $\bigcup A \subseteq B$.

Solution: Consider an arbitrary set a, by the axiom of union we have:

$$a \in \bigcup A \implies \exists b \in A (a \in b)$$

And by the question's assumption, b is a subset of B. Putting these two together we have:

$$((a \in b) \& (b \subseteq B)) \implies a \in B$$
 (def. of subset)

And thus we have shown that for any $a \in \bigcup A$, the set a must also be an element of B. By the definition of subset, we have $\bigcup A \subseteq B$.

Exercise 7: Show that for any two sets A and B the following holds:

- a) $\mathfrak{P}A \cap \mathfrak{P}B = \mathfrak{P}(A \cap B)$
- b) $\mathfrak{P}A \cup \mathfrak{P}B \subseteq \mathfrak{P}(A \cup B)$. Under what conditions does equality hold?

Solution: a) Consider an arbitrary set x and note the following chain of logical equivalences:

$$x \in \mathfrak{P}A \cup \mathfrak{P}B \iff x \in \mathfrak{P}A \& x \in \mathfrak{P}B$$
 (def. of intersection)
 $\iff x \subseteq A \& x \subseteq B$ (def. power set)
 $\iff x \subseteq A \cap B$ (def. of intersection)
 $\iff x \in \mathfrak{P}(A \cap B)$ (def. power set)

And so, by extensionality, we have $\mathfrak{P}A \cap \mathfrak{P}B = \mathfrak{P}(A \cap B)$.

b) Consider an arbitrary set x and note the following chain of implications:

$$x \in \mathfrak{P}A \cup \mathfrak{P}B \iff x \in \mathfrak{P}A \text{ or } x \in \mathfrak{P}B$$
 (def. of union)
 $\iff x \subseteq A \text{ or } x \subseteq B$ (def. power set)
 $\implies x \subseteq A \cup B$ (def. of union)
 $\iff x \in \mathfrak{P}(A \cap B)$ (def. power set)

And so, by the definition of subset, we have $\mathfrak{P}A \cup \mathfrak{P}B \subseteq \mathfrak{P}(A \cup B)$. You'll notice that on line 3 we have an implication rather than an iff. We can only make this an iff, and thus establish equality of the two sets, if we assume that $A \subseteq B$ or $B \subseteq A$.

Exercise 10: Prove that if $a \in B$, then $\mathfrak{P}a \in \mathfrak{PP} \cup B$.

Solution: Consider an arbitrary set a and note the following:

$$a \in B \implies \forall t(t \in a \implies t \in \bigcup B)$$
 (axiom of union)
$$\implies a \subseteq \bigcup B$$
 (def. of subset)
$$\implies (a \subseteq \bigcup B) \& \forall t(t \in \mathfrak{P}a \implies t \subseteq a)$$
 (def. of powerset)
$$\implies \forall t(t \in \mathfrak{P}a \implies t \subseteq \bigcup B)$$
 (transitivity of subset)
$$\implies \forall t(t \in \mathfrak{P}a \implies t \in \mathfrak{P} \bigcup B)$$
 (def. of power set)
$$\implies \mathfrak{P}a \subseteq \mathfrak{P} \bigcup B$$
 (def. of subset)
$$\implies \mathfrak{P}a \in \mathfrak{PP} \bigcup B$$
 (def. of power set)

Problem 2

Exercises 12,20,22,35 from pages 32-33 in the textbook.

Exercise 12: Verify the following identity:

$$C - (A \cup B) = (C - A) \cup (C - B)$$

Solution: For the following set of equalities, the complement is taken with respect to the universe $A \cup B \cup C$:

$$C - (A \cap B) = C \cap (A \cap B)^{\complement}$$
 (relative complement)

$$= C \cap (B^{\complement} \cup A^{\complement})$$
 (DeMorgan's Law)

$$= (C \cap B^{\complement}) \cup (C \cap A^{\complement})$$
 (distributivity of intersction)

$$= (C - B) \cup (C - A)$$
 (relative complement)

Exercise 20: Let A, B and C be sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that B = C.

Solution: Consider an $x \in B$. There are two cases which exhaust all possibilities:

$$x \in A \implies x \in A \cap B$$

$$\iff x \in A \cap C$$
 (assumption)
$$\implies x \in C$$

and the other case:

$$x \not\in A \implies x \in A \cup B$$

$$\iff x \in A \cup C$$
 (assumption)
$$\implies x \in C$$

This gives us $x \in B \implies x \in C$, and by replacing all occurrences of B with C we have an argument for the reverse direction. Putting these together we have B = C.

Exercise 22: Show that if A and B are nonempty sets, then $\bigcap (A \cup B) = \bigcap A \cap \bigcap B$.

Solution: Note that by the axiom of union we have:

$$x \in \bigcap (A \cup B) \implies (\forall y \in A \cup B) \, x \in y$$
 (def. of arbitrary intersection)
$$\implies (\forall y \in A) \, x \in y$$
 (A $\subseteq A \cup B$)
$$\iff x \in \bigcap A$$
 (def. of arbitrary intersection)

Similarly we have:

$$x \in \bigcap (A \cup B) \implies (\forall y \in A \cup B) \, x \in y$$
 (def. of arbitrary intersection)
 $\implies (\forall y \in B) \, x \in y$ ($B \subseteq A \cup B$)
 $\iff x \in \bigcap B$ (def. of arbitrary intersection)

Putting these together we have:

$$x \in \bigcap (A \cup B) \implies x \in \bigcap A \& x \in \bigcap B$$

 $\implies x \in \bigcap A \cap \bigcap B$ (def. of intersection)

This proves one direction. The other direction can be proved by first recalling that:

$$x \in \bigcap A \cap \bigcap B \implies x \in \bigcap A \& x \in \bigcap B$$
$$\implies (\forall y \in A) \ x \in y \& (\forall y \in B) \ x \in y$$
$$\implies (\forall y \in A) \ x \in y \text{ or } (\forall y \in B) \ x \in y$$

This allows us to state the following:

And with both sides of the implication proved, the equality holds true.

Exercise 35: Assume that $\mathfrak{P}A = \mathfrak{P}B$. Prove that A = B.

Solution: Consider an arbitrary set x and note the following chain of implications:

$$x \in A \implies \{x\} \subseteq A$$
 (def. of subset)
 $\implies \{x\} \in \mathfrak{P}A$ (def. of powerset)
 $\iff \{x\} \in \mathfrak{P}B$ (assumption)
 $\implies \{x\} \subseteq B$ (def. of powerset)
 $\implies x \in B$ (def. of subset)

This gives us $x \in A \implies x \in B$, and by replacing all occurrences of A with B we have an argument for the reverse direction. Putting these together we have A = B.

Problem 3

Exercises 32,33,36 from pages 33-34 in the textbook.

Exercise 32: Let S be the set $\{\{a\}, \{a,b\}\}$. Evaluate and simplify:

- a) $\bigcup \bigcup S$
- b) $\bigcap S$
- c) $\bigcap \bigcup S \cup (\bigcup \bigcup S \bigcup \bigcap S)$

Solution: For a) we have:

$$\bigcup S = \bigcup \{\{a\}, \{a, b\}\}$$
$$= \bigcup \{a, b\}$$
$$= a \cup b$$

For b) we have:

$$\bigcap S = \bigcap \{\{a\}, \{a, b\}\}\$$

$$= \bigcap \{a\}\$$

$$= a$$

For c) we have:

$$\bigcap \bigcup S \cup \left(\bigcup \bigcup S - \bigcup \bigcap S\right) = \bigcap \{a, b\} \cup \left(\bigcup \{a, b\} - \bigcup \{a\}\right)$$

$$= (a \cup b) \cup ((a \cup b) - a)$$

$$= (a \cup b) \cup (b - a)$$

$$= b$$

Exercise 33: With S as in the preceding exercise, evaluate $\bigcup(\bigcup S - \bigcap S)$ when $a \neq b$ and when a = b.

Solution: Evaluating the expression we arrive at:

$$\bigcup \left(\bigcup S - \bigcap S\right) = \bigcup \left(\left\{a, b\right\} - \left\{a\right\}\right)$$

For the case that $a \neq b$ we have:

$$\bigcup (\{a,b\} - \{a\}) = \bigcup \{b\} = b$$

For the case that a = b we have:

$$\bigcup (\{a,b\} - \{a\}) = \bigcup (\{a\} - \{a\}) = \bigcup \emptyset = \emptyset$$

Exercise 36: Verify that for all sets A and B the following are correct:

a)
$$A - (A \cap B) = A - B$$

b)
$$A - (A - B) = A \cap B$$

Solution: For both a) an b) the complement is taken with respect to the universe $A \cup B$. For a) we have:

$$A - (A \cap B) = A \cap (A \cap B)^{\complement}$$
 (relative complement)
 $= A \cap (A^{\complement} \cup B^{\complement})$ (DeMorgan's Law)
 $= (A \cap A^{\complement}) \cup (A \cap B^{\complement})$ (distributivity of intersection)
 $= (A - A) \cup (A - B)$ (relative complement)
 $= \emptyset \cup (A - B)$
 $= A - B$

For b) we have:

$$A - (A \cap B) = A \cap (A - B)^{\complement}$$
 (relative complement)

$$= A \cap (A \cap B^{\complement})^{\complement}$$
 (relative complement)

$$= A \cap (A^{\complement} \cup B)$$
 (DeMorgan's Law)

$$= (A \cap A^{\complement}) \cup (A \cap B)$$
 (distributivity of intersection)

$$= \emptyset \cup (A \cap B)$$

$$= A \cap B$$