Příjmení a jméno:

Úloha	1	2	3	4	5	Celkem
Maximum	10	10	10	10	10	50
Počet bodů						

- 1. Máme n naměřených dat $(x_i, y_i) \in \mathbb{R}^2$ a chceme jimi proložit přímku danou vzorcem p(x) = ax + b tak, aby součet čtverců hodnot $p(x_i) y_i$ byl minimální.
 - (a) (2 b) Zformulujte tuto optimalizační úlohu maticově a specifikujte dané matice.
 - (b) (3 b) V případě n=3 máme data (0,0), (1,2), (2,2). Najděte vzorec pro p.
 - (c) (2 b) Jaká je optimální hodnota úlohy z části (b)?
 - (d) (3 b) Místo kritéria nejmenších čtverců použijeme minimální součet absolutních odchylek $|p(x_i) y_i|$. Napište úlohu pro data z části (b) jako lineární program.

Řešení:

- (a) Lineární regrese s funkcí p. Matice $\mathbf{A} \in \mathbb{R}^{n \times 2}$ obsahuje v prvním sloupci x_i , ve druhém sloupci jedničky, optimalizační úloha zní: $\min\{\|\mathbf{A}\mathbf{u} \mathbf{y}\|^2\}$ kde hledáme neznámý vektor parametrů $\mathbf{u} = (a, b) \in \mathbb{R}^2$.
- (b) Pro konkrétní případ je $\mathbf{A}=\begin{bmatrix}0&1\\1&1\\2&1\end{bmatrix}$ a $\mathbf{y}=(0,2,2),$ normální rovnice jsou
- $\begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ a jejich řešení je $\mathbf{u} = (a, b) = (1, 1/3)$, takže p(x) = x + 1/3.
- (c) Pro optimum platí $\|\mathbf{A}\mathbf{u}-\mathbf{y}\|^2=\|(\frac{1}{3},-\frac{2}{3},\frac{1}{3})\|^2=\frac{2}{3}.$
- (d) Minimalizujeme $z_1 + z_2 + z_3$ za podmínek $-z_1 \le b \le z_1, -z_2 \le a + b 2 \le z_2, -z_3 \le 2a + b 2 \le z_3$, kde $z_i \ge 0$ a $(a,b) \in \mathbb{R}^2$.
- 2. Rozhodněte, zda uvedené funkce $f\colon \mathbb{R}^n \to \mathbb{R}$ jsou konvexní a odpověď zdůvodněte.
 - (a) (2 b) $f(\mathbf{x}) = \text{vzdálenost bodu } \mathbf{x} \text{ od zadané nadroviny } \{\mathbf{y} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{y} = b\}.$
 - (b) (2 b) Kvadratická forma f splňující $f(\mathbf{a}) > 0$ a $f(\mathbf{b}) < 0$ pro nějaká $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
 - (c) (2 b) $f(\mathbf{x}) = \max{\{\|\mathbf{x}\|_2^2, 10, \mathbf{a}^T\mathbf{x} b\}}$, pro zadaný vektor $\mathbf{a} \in \mathbb{R}^n$ a konstantu $b \in \mathbb{R}$.
 - (d) (2 b) Pro n = 1 funkce $f(x) = x^3$.
 - (e) (2 b) Pro n = 2 funkce $f(x_1, x_2) = e^{x_1} x_2^2$.

Řešení:

- (a) Víme, že $f(\mathbf{x}) = \frac{|\mathbf{a}^T \mathbf{x} \mathbf{b}|}{\|\mathbf{a}\|}$. Protože f vznikne složením afinní a konvexní funkce (absolutní hodnota), je f konvexní.
- (b) Jelikož platí $\mathbf{a}^T \mathbf{A} \mathbf{a} > 0$ a $\mathbf{b}^T \mathbf{A} \mathbf{b} < 0$, je matice \mathbf{A} té formy f indefinitní dle definice. Ovšem Hessián funkce f je právě $2\mathbf{A}$. Tedy f není konvexní.
- (c) Funkce f je maximem ze tří funkcí (norma, konstanta, afinní funkce), z nichž je každá konvexní. Tedy f je také konvexní.
- (d) Platí $f'(x) = 3x^2$ a f''(x) = 6x. Jelikož neplatí $f''(x) \ge 0$ pro všechna $x \in \mathbb{R}$, funkce f není konvexní.
- (e) $f'(\mathbf{x}) = (e^{x_1}, -2x_2)$, Hessián je matice $\begin{bmatrix} e^{x_1} & 0 \\ 0 & -2 \end{bmatrix}$. Ovšem hlavní minor [-2] té matice je záporný, proto $f''(\mathbf{x})$ není pozitivně semidefinitní a f není konvexní.
- 3. Uvažujte funkci $f(x) = x^2 \frac{1}{2}x^4$ na \mathbb{R} .
 - (a) (3 b) Napište, kde má funkce f lokální minima a lokální maxima.
 - (b) (2 b) Pro hledání minima funkce f napište obecnou iteraci gradientní metody a Newtonovy metody.
 - (c) (3 b) Uvažujme gradientní metodu s krokem $\alpha = \frac{1}{2}$. Pro jaké počáteční body je metoda divergentní a pro jaké konvergentní? K jakému bodu bude konvergovat či jakým způsobem bude divergovat?
 - (d) (2 b) Napište počáteční bod, z něhož selže Newtonova metoda v první iteraci. Ze kterých bodů zkonverguje tato metoda po první iteraci do nějakého minima?

Řešení:

- (a) Funkce má derivace $f'(x) = 2x 2x^3$ a $f''(x) = 2 6x^2$. Body s nulovou derivací jsou x = 0 a $x = \pm 1$. Vzhledem k tomu, že druhá derivace v prvním bodě je kladná a v druhém bodě záporná, x = 0 je lokální minimum a $x = \pm 1$ je lokální maximum.
- (b) Gradientní metoda má tvar $x_{k+1}=x_k-\alpha_k(2x_k-2x_k^3)$. Newtonova metoda má tvar $x_{k+1}=x_k-\frac{x_k-x_k^3}{1-3x_k^2}=\frac{-2x_k^3}{1-3x_k^2}$.
- (c) Pro $\alpha_k = \frac{1}{2}$ dostaneme $x_{k+1} = x_k^3$. Tedy pro $x_0 \in (-1, 1)$ konverguje k x = 0, pro $x_0 = \pm 1$ konverguje ke stejnému bodu a pro ostatní body diverguje do nekonečna.
- (d) V první iteraci Newtonova metoda selže, když je jmenovatel nulový, tedy pro $x_0 = \pm \frac{1}{\sqrt{3}}$. Do minima zkonverguje v jedné iteraci pouze z $x_0 = 0$.

- 4. Uvažujte funkci $f(x,y) = xe^y$ a množinu $M = \{(x,y) \mid x^2 + y^2 = 2\}$. Chceme maximalizovat funkci f na množině M.
 - (a) (2 b) Načrtněte problém graficky a naznačte, v jakém bodě bude řešení. Doprovod'te slovním zdůvodněním. V této části nemusíte nic počítat.
 - (b) (8 b) Problém vyřešte pomocí Lagrangeových multiplikátorů.

Řešení:

Lagrangián má tvar

$$L(x, y; \lambda) = xe^{y} + \lambda(2 - x^{2} - y^{2}).$$

Dostaneme podmínky $e^y=2\lambda x$ a $xe^y=2\lambda y$. Toto implikuje $\lambda\neq 0$ a $x(2\lambda x)=2\lambda y$, tedy $x^2=y$. Dosazením do rovnice kružnice vede k $y+y^2=2$, což má řešení y=1 a y=-2. Druhý bod ale nejde použít kvůli $x^2=y$. Dopočtením x dostaneme podezřelé body (-1,1) a (1,1). Dosazením zjistíme, že maximum je ten první.

5. Jsou dány vektory $\mathbf{c}, \mathbf{d} \in \mathbb{R}^n$, přičemž $\mathbf{d} \geq \mathbf{0}$. Uvažujte úlohu lineárního programování

$$\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{0} \le \mathbf{x} \le \mathbf{d}\}.$$

- (a) (3 b) Zformulujte duální úlohu k této úloze.
- (b) (2 b) Napište podmínky komplementarity.
- (c) (3 b) Vyřešte úvahou primární úlohu. Bez počítání určete a zdůvodněte, jaká bude optimální hodnota duální úlohy.
- (d) (2 b) Jak se změní optimální řešení primární a duální úlohy v případě, že neplatí podmínka $\mathbf{d} \geq \mathbf{0}$ a existuje $d_i < 0$? Zdůvodněte.

Řešení:

- (a) Duální úloha je $\min\{\mathbf{d}^T\mathbf{y} \mid \mathbf{y} \geq \mathbf{0}, \, \mathbf{y} \geq \mathbf{c}\}.$
- (b) Podmínky komplementarity jsou $(x_i = d_i \text{ nebo } y_i = 0)$ a dále $(x_i = 0 \text{ nebo } y_i = c_i)$.
- (c) Řešení: pro $c_i \ge 0$ je $x_i = d_i$ a jinak je $x_i = 0$, což dává hodnotu maxima $\sum c_i^+ d_i$ a je to též hodnota minima duální úlohy.
- (d) Při $d_i < 0$ je primární úloha nepřípustná, protože nelze splnit $0 \le x_i \le d_i$. Duální úloha je ovšem přípustná stačí volit $y_i = \max\{0, c_i\}$. Tedy musí být neomezená podle věty o dualitě. Alternativně: platí $d_i y_i \to -\infty$ pro $y_i \to \infty$.