

位运算

最低位置1代表的数值

Least Significant Bit


```
int LSB(int a){
   return a&(-a);
}
```

表示a的二进制表示中最低位的1代表是十进制的几

十进制	二进制				
0	0000000				
a	10110100				
0- a	01001 <mark>1</mark> 00				
a &(- a)	00000100				

数据结构

树状数组

BIT(Binary Indexed Tree)

二进制索引树

Fenwick Tree

经典问题

Range Sum Query

连续和查询

前缀和查询

Prefix Sum Query

动态

LESTE

快快编程698

读题后请同学简述题意

点更新

段查询

动态问题

整段总和查询

Range Sum Query 简称RSQ

动态RSQ连续和查询

方法	别名	预计算/ 初始化	单次查 询	点更新	代码长 度	常数
在线枚举	暴力	-	O(N)	O(1)	短	小能
前缀和 数组	Prefix sums	O(N)	O(1)	O(N)	短	小几
分块	根号 算法	O(N)	$O(\sqrt{N})$	O(1)	中	小
线段树	ST树	O(N)	O(logN)	O(logN)	长	大
树状数组	BIT	O(N)	O(logN)	O(logN)	短	小人

1 1 1

平衡各种操作的复杂度

为什么

记录图中区间总和

前缀和数组

前缀和s[i]	0	5	2	6	8	7	6	8	14
数值x[i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

记录图中区间总和

线段树

前缀和s[i]	0	5	2	6	8	7	6	8	14
数值x[i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

查询O(logN)

点更新O(logN)

查询[1,7]时 哪些区间贡献 点更新1号时 哪些区间更新

所有前缀区间都可 用左儿子们拼接 查询前缀和时 右儿子们都多余

记录图中区间总和

树状数组(BIT)

前缀和s[i]	0	5	2	6	8	7	6	8	14
数值 x [i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

查询O(logN)

点更新O(logN)

查询[1,7]时 哪些区间贡献

点更新1号时 哪些区间更新

> 恰好剩n个区间 该如何编号

思考:查询后缀和 该如何处理

树状数组(BIT)编号

bit[i]	0	5	2	4	8	-1	-2	2	14
数值x[i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

恰好剩n个区间	区四十洲上	
[h 好來][l [] [] [] [] [] [] [] [] []	区间右端点	区间长度为二进制
该如何编号	作为编号	木尾1对应的数
	II / J 7 11 J	/ \ /\ \L_\ \] / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

树状数组(BIT) 区间长度和端点

bit[i]	0	5	2	4	8	-1	-2	2	14
数值x[i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

bit[i]对应区间 长度为二进制 末尾1对应的数 记作LSB(i)

bit[8]=x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]+x[8]

Least
Significant
Bit

bit[i]对应区间左端点 i-LSB(i)+1

bit[i]对应区间右端点 i

树状数组(BIT) 区间长度和端点

bit[i]	0	5	2	4	8	-1	-2	2	14
数值x[i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

bit[i]对应区间 长度为二进制 末尾1对应的数 记作LSB(i)

bit[8]=x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]+x[8]

Least
Significant
Bit

记笔记

bit[i] 记录 x数组的[i-LSB(i)+1,i] 编号区间内数值总和

LSB(i)

i号区间长度为LSB(i)	别称 lowbit(i)
---------------	--------------

二进制 ???1 区间长度 1

二进制 ??**1**0 区间长度 2

二进制 ?**1**00 区间长度 4

二进制 **1**000 区间长度 8

十进制	二进制			
0	0000000			
X	10110100			
0 - x	01001100			
x&(-x)	00000100			

11 LSB(11 i){return i&(-i);}

查询[1,7]前缀和

前缀和s[i]	0	5	2	6	8	7	6	8	14
数值x[i]	空	5	-3	4	2	-1	-1	2	6
下标i	0	1	2	3	4	5	6	7	8

查询[1,7]前缀和 [1,7]拆成[1,4]+[5,6]+[7,7] $7_{10} = 0111_2 \text{ 对应 } 0100_2 \text{ } 0110_2 \text{ } 0111_2$

前缀和查询代码

点更新5号

右端点的二进制数 0101,0110,1000,

点更新代码

树状数组(BIT) - 核心代码

```
11 LSB(11 i){return
 8 void add(ll i,ll z) {
        while(
 9
            bit[i]+=z
10
11
12 | 11 psq(11 i) {
13
        int sum=0;
        while(
14
15
            sum=(sum+bit[i])%MOD,
16
        return sum;
```

计数器数组连续和/前缀和

BIT应用

WWW.etiger.vip

如何处理 多个问询

有几个数小于等于3?

有几个数小于等于4?

当时计数器数组对应的前缀和

瞬时排名

今年的宇宙编程大赛共n位选手入围决赛,全是Lester徒弟。只有一次网络提交机会,n位选手依次提交,第i个提交的选手显示出得分为x[i],即刻他的分数就会记录到得分排行榜上,对于每个选手请你求出他提交的时刻是当时第几名?名次可并列。

输入一行为正整数n, 2<=n<=200000。接着一行为n个非负整数, 第i个数为x[i], 均不超过10000。 ← ── 输出一行共n个整数, 由空格隔开。

输入样例

4

0 2 4 3

输出样例

1 1 1 2

得分a的排名=比a分数高的人数+1

=总人数-不超过a分数的人数+1

输入样例

5

59 59 61 60 59

输出样例

1 1 1 2 3

计数问题

动态

模拟: 依次分析每个选手i 询问当时有几个分数比x[i]大

计数器前缀和数组

计数器数组也有对应的前缀和数组, 下标对应值域

计数器	计数	0	0	0	3	1	1	0	0
数组c	下标	c[0]	c[1]	c[2]	c[3]	c[4]	c[5]	c[6]	c[7]
计数器	计数	0	0	0	3	4	5	5	5
前缀和数组sc	下标	sc[0]	sc[1]	sc[2]	sc[3]	sc[4]	sc[5]	sc[6]	sc[7]

若原数组新增一个 数值为**0**的数

计数器	计数	1	0	0	3	1	1	0	0
数组c	下标	c[0]	c[1]	c[2]	c[3]	c[4]	c[5]	c[6]	c[7]
计数器	计数	1	1	1	4	5	6	6	6
前缀和数组sc	下标	sc[0]	sc[1]	sc[2]	sc[3]	sc[4]	sc[5]	sc[6]	sc[7]

计数器前缀和数组

前缀和数组编号必须从1号开始不可以从0号开始

为了让计数器数组对应的 前缀和数组编号从1号开始 数值值域要平移到最小值为1

值域为-100到100的整数时如何处理?

每个数加101,值域平移到1到201

计数器树状数组(cBIT)

计数器数组有对应的前缀和数组 计数器数组也有对应的BIT 计数 计数器 000 3 1 1 00数组c 下标 c[1] c[2] c[3] c[7] c[0]c[4] c[5] c[6] 值域映射到1开头 计数 新计数 3 000 01 1 0器数组c' 下标 c[0] c[1] c[2] c[3] c[5] c[6] c[7] c[4] 计数器 树状数 组cbit

cbit[i] 记录 c数组的[i-LSB(i)+1,i]编号范围里数值总和

计数器树状数组(cBIT)

计数器数组有对应的前缀和数组 计数器数组也有对应的BIT 计数 计数器 000 3 1 1 00数组c 下标 c[1] c[2] c[3] c[7] c[0]c[4] c[5] c[6] 值域映射到1开头 计数 新计数 3 000 01 1 0器数组c' 下标 c[0] c[1] c[2] c[3] c[5] c[6] c[7] c[4] 计数器 树状数 组cbit

cbit[i] 记录 x数组数值为[i-LSB(i)+1,i]范围内的有几个

瞬时排名

n位选手依次提交,第i个提交的选手显示出得分为x[i],求出他提交的时刻是当时第几名? 名次可并列。

输 4	i入	.样	例
2	0	4	3
输	i出	样	例
1	2	1	2

动态
维护
cbit[

提交2分	变成3	分	修改cbit[3],cbit[4]						
cbit[k]	空	0	0	1	1	0			
下标k	0	1	2	3	4	5			

此时有几人分数小于等于3分? 共cbit[3]+cbit[2]=1人 此时已提交总人数1人 所以此人排名1-1+1=1

为了控制 最低分为**1**分 所有人加**1**分

	提交❷分	变成1分 cbit[1],cbit[2],cbit[4]						
	cbit[k]	空	1	1	1	2	0	
J	下标k	0	1	2	3	4	5	

瞬时排名

n位选手依次提交,第i个提交的选手显示出得分为x[i],求出他提交的时刻是当时第几名?名次可并列。

```
输入样例
            20
                     cin>>n;
                     for (ll i=1;i<=n;i++) {
            21 \Rightarrow
2 0 4 3
输出样例
            22
                          cin>>x;
1 2 1 2
            23
                          X++;
 动态
                          add(x,1);
            24
 维护
                          cout << i-psq(x)+1 << " ";
            25
cbit[]
            26
```

为了控制 最低分为**1**分 所有人加**1**分 WWW.etiger.vip

大义编样 etiger.vip

太戈编程

698

843

拓展题 844,122

作业要求

需要用BIT表完成