GOVERNMENT POLYTECHNIC COLLEGE MATTANNUR-670702

(Department of Technical Education, Kerala)

PROJECT REPORT ON

IOT BASED TEMPERATURE MASK SCAN ENTRY BARRIER

SUBMITTED BY

SIDHARTH RAJESHBABU	19041680
AJEESH VK	19041636
ATHULYA C	19041652
KASYAP K	19041658
SOORAJ K	19041681
AMARNATH PADMANABHAN	19041643
SIDHARTH OM	19041679
ARUN CS	19041646

DEPARTMENT OF ELECTRONICS ENGINEERING

GOVERNMENT POLYTECHNIC COLLEGE MATTANNUR-670702

(Department of Technical Education, Kerala)

CERTIFICATE

Certified that seminar work entitled "IOT TEMPERATURE MASK SCAN ENTRY BARRIER" is a bonafide work carried out by "OUR TEAM" in partial fullfilment for the award of Diploma in Electronics Engineering from Government Polytechnic College, Mattannur during the academic year 2021-2022.

Project Co-ordinator

Head of Section

Internal Examiner

External Examiner

DECLARATION

I hereby declare that the report of the *IOT BASED TEMPERATURE MASK SCAN ENTRY BARRIER* entitled which is being submitted to the Govt. Polytechnic College, Mattannur, in partial fulfilment of the requirement for the award of *Diploma in Electronics Engineering* is a confide report of the work carried out by me. The material in this report has not been submitted to any institute for the award of any degree.

Place: Mattannur SIDHARTH RAJESHBABU

Date: AJEESH VK

ATHULYA

KASYAP K

SOORAJ K

AMARNATH PADMANABHAN

SIDHARTH OM

ARUN CS

ACKNOWLEDGMENT

I would like to take this opportunity to extend my sincere thanks to people who helped me to make this Project possible. This Project will be incomplete without mentioning all the people who helped me to make it real.

Firstly, I would like to thank GOD, almighty, our supreme guide, for bestowing his blessings upon me in my entire endeavor.

I would like to express my deepest gratitude **Mr. M C PRAKASHAN** (Principal GPTC, Mattannur), **Mr. GEORGE KUTTY P P** (Head of Department of Electronics Engineering), for the help rendered by him to prepare and present this Project in proper way. Moreover I am very much indebted to **Mr. SREEJITH A** (Lecturer, Electronics Engineering, project Co-ordinator), for their advice.

I am also indebted to all my friends and classmates who have given valuable suggestion and encouragement.

SIDHARTH RAJESHBABU

AJEESH VK

ATHULYA

KASYAP K

SOORAJ K

AMARNATH PADMANABHAN

SIDHARTH OM

ARUN CS

ABSTRACT

Mandatory face mask rules are becoming more common in public settings around the world. There are growing scientific evidence supporting the effectiveness of face mask wearing on reducing the spread of the virus. However, we have also seen some backlash on face masks, posing danger to people who are enforcing the rules.

This motivates this work to develop a deep learning model which detects whether a person is wearing a face mask and based on that workout an alerting system. The model can be deployed at local supermarkets or school buildings to control the automatic door, which only opens to people wearing face masks.

TABLE OF CONTENTS

CHAPTER NO.	TOPICS	PAGE NO.
Chapter 1	INTRODUCTION	1
Chapter 2	BLOCK DIAGRAM	2
Chapter 2.2	COMPONENTS USED	3
Chapter 2.3	SOFTWARE USED	3
Chapter 3	HARDWARE DESCRIPTION	4
Chapter 3.1	RASPBERRY PI	4
Chapter 3.2	USB CAMERA	7
Chapter 3.3	MLX 90614	8
Chapter 3.4	POWER SUPPLY	9
Chapter 3.4.1	POWER SUPPLY BLOCK DIAGRAM	9
Chapter 3.4.2	REGULATED LINEAR SUPPLY	10
Chapter 4	SOFTWARE DESCRIPTION	13
Chapter 4.1	PYTHON IDLE	13
Chapter 4.2	VNC VIEWER	14
Chapter 5	CIRCUIT DIAGRAM	15
Chapter 6	IMPLEMENTARION	16
Chapter 7	FLOW CHART	18
Chapter 8	COST ESTIMATION	19
Chapter 9	ADVANTAGES AND DISADVANTAGES	20
Chapter 10	CONCLUSION AND FUTURE SCOPE	21
Chapter 11	REFERENCE	22
Chanter 12	PROGRAM	23

LIST OF FIGURES

FIGURE NO.	NAME	PAGE NO.
Figure 2.1	BLOCK DIAGRAM	2
Figure 3.1	RASPBERRY PI 3 MODEL B BOARD	4
Figure 3.1.1	RASPBERRY PI GPIO HEADERS	6
Figure 3.2	USB CAMERA	7
Figure 3.3	MLX 90614	8
Figure 3.4.1	POWER SUPPLY BLOCK DIAGRAM	9
Figure 3.5	FULL BRIDGE RECTIFIER CIRCUIT	11
Figure 3.5.1	STEP DOWN TRANSFORMER	10
Figure 3.5.2	BRIDGE RECTIFIER	11
Figure 3.5.3	7805 IC PINOUTS	12
Figure 4.1	PYTHON IDLE	13
Figure 4.2	REAL VNC VIEWER MAIN WINDOW	14
Figure 5.1	CIRCUIT DIAGARM	15
Figure 6.1	CIRCUIT SETUP	16
Figure 6.2	TEST 1 WITHOUT MASK	17
Fiigure 6.3	TEST 2 WITH MASK	17