Hometask #3

- 1. Write negations for each of the following statements:
 - a. John is 6 feet tall and he weighs at least 200 pounds.
 - b. The bus was late or Tom's watch was slow.
- 2. Construct truth tables for the statement forms:

a.
$$(\sim p \lor q) \rightarrow \sim q$$

b.
$$(p \land \sim q) \rightarrow r$$

- 3. Let \mathbf{p} , \mathbf{q} , and \mathbf{r} be the propositions
 - **p**: Grizzly bears have been seen in the area.
 - **q**: Hiking is safe on the trail.
 - r: Berries are ripe along the trail.

Write these propositions using **p**, **q**, and **r** and logical connectives (including negations).

- a) Berries are ripe along the trail, but grizzly bears have not been seen in the area.
- b) Grizzly bears have not been seen in the area and hiking on the trail is safe, but berries are ripe along the trail.
- c) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.
- 4. Find the bitwise OR, bitwise AND, and bitwise XOR of each of these pairs of bit strings.
 - a. 101 1110, 010 0001
 - b. 1111 0000, 1010 1010
- 5. Given any statement form, is it possible to find a logically equivalent form that uses only ~ and Λ ?

Q: Prove the following statements by completing the truth table for 6-8:

p	q
T	T
T	F
F	T
F	F

- 6. Prove the following,
 - i.
 - Disjunctions is Commutative? (p V q), is equivalent to (q V p)?
 - ii. Disjunction is Associative?
- $(p \lor q) \lor r$, is equivalent to $p \lor (q \lor r)$?

- 7. Prove that the statements given bellow are logically equivalent (or not). Justify your answers.
 - i. $\neg (p \land q)$ and $\neg p \land \neg q$? ii. $\neg (p \land q)$ and $\neg p \lor \neg q$?
- 8. Prove the statements
 - i. Is implication logically equivalent to its contrapositive? $(p \rightarrow q)$ and $(\neg p \rightarrow \neg q)$?
 - ii. Is converse logically equivalent to the inverse? $(q \rightarrow p)$ and $(\neg p \rightarrow \neg q)$?
- 9. Symbolically prove the following with explanation on each step on used law.
 - i. $(p \leftrightarrow q)$ equivalent to $(p \rightarrow q) \rightarrow (q \rightarrow p)$?
 - ii. $(p \land q)$ equivalent to $(p \lor \neg q) \land q$?