- (1) Dado $\alpha > 0$, se considera la ecuación en diferencias: $\times n+1 = \alpha \cdot |\times n|-1$ (1)
 - · al para $\alpha = 0.4$, estudia gráficamente el comportamiento de las soluciones en función de su dato inicial $Xo \in \mathbb{R}$.
 - equilibrio de la ecoación (1).
 - equilibrio para $\alpha = 1.3$.
 - y estudia ou estabilidad.

a) $x = 0.4 \Rightarrow x_{n_{1}} = 0.4 \cdot |x_{n}| - 1.$; Si estudicamos los puntos de equilibro: $x' = 0.4 \cdot |x'| - 1 \Rightarrow x' = 0.4 \cdot |x'| - 1 \oplus x'' = 0.4 \cdot |x'| - 1 \oplus x$

(-0'714., -0714)

-> S(x) = 0'4. 1x1-1

- y = x.

Observando el diagrama, vemos que la sonición asuciada a nuestra ecuación en distenencias conta en un único ponto a la recta y=x, por lo que ese ponto de corte es el único púnto de equilibrio posible $(\alpha=-5_{7})$.

Ademis, in de pendientemente del Xo que cojumos, la solución converge a dicho pento de equilibrio, por la que $0 = -\frac{5}{4}$ es un atractor global:

lim $xn = \alpha$ $\forall xo \in R$. (on cluimos pues que els nose soluciones no de penden del xo (dato inticias) que tomenos y que todas convergencin al punto de equilibrio $\alpha = -\frac{\pi}{4} = -0.171428...$

 $|x_{1+1}| = \alpha |x_{1-1}| \longrightarrow x^{*} = \alpha |x^{*}| - 1 \int_{x^{*}} x^{*} = -\alpha |x^{*}| - 1 \int_{x^{*}} x^{*} = -$

Stempre es solution. $\frac{1}{1+\alpha} < 0$ siempre y por fanto

Vecmos que owne según los valores de a:

• Si $\alpha < 1 \Rightarrow x_1^2 = \frac{-1}{1-\alpha} < 0$ para $x_1^* \ge 0$ || To punto de équilibrio. • Si $\alpha = 1 \Rightarrow x_2^2 = \frac{-1}{1-\alpha}$ No es solvion $A = \frac{-1}{1+\alpha}$.

= Si $\alpha > 1 \Rightarrow \chi_1^* = \frac{-1}{1-\alpha} > 0$ para $\chi_1^* > 0 \Rightarrow$ | Hay 2 purtos de equilibrio: $1 + \alpha = \frac{-1}{1-\alpha}$ $1 + \alpha = \frac{-1}{1-\alpha}$ $1 + \alpha = \frac{-1}{1-\alpha}$ $1 + \alpha = \frac{-1}{1-\alpha}$

(3) (3)

Definings $f: \mathbb{R} \to \mathbb{R}$ to e que $g(x) = 1/3 \cdot |x| - 1 y$ entonces nos que du que $f(x_1) = f(x_1)$.

Como $\alpha > 1$, por b) subernos que hey 2 pontos de equilibrio que son: $\begin{cases} \beta_1 := \frac{-1}{4-1/3} = \frac{10}{3} = 3/3 \\ \beta_2 := -1 \end{cases}$

 $|\beta_2| = \frac{-4}{1+1/3} = \frac{-10}{23} = -0.43478...$ Para estudiar so estabilidad aplicamor el Teorena

de la Edubilidad asintótica local (derivada).

Como f no es derivable en x=0, redesinimos j.

 $g(x) = \begin{cases} 1/3.x - 1 & \text{Si } x > 0 \\ -1/3.x - 1 & \text{Si } x < 0 \end{cases} \Rightarrow g: I = (-\omega, 0) \cup (0, +\omega) \longrightarrow R$

Contemplumos entonces el SDD 4 I, 84 y los pantos de equilibrio pa y pz. Tenemos que f er C¹ en su dominio.

(3) y ningmo de les pontes de equilibrio es igual a cero.

$$g(x) = \begin{cases} 1/3 & 8i \times > 0 \\ -1/3 & 8i \times > 0 \end{cases} \Rightarrow |g(x)| = 1/3 > 1 \forall x \in I \Rightarrow$$

=> 18'(B1) = 18'(B2) > 1 => B1 y B2 Son mestables

JULIAN GARRIDO ARANA.

d) $\alpha = 2 \Rightarrow x_{n+1} = 21x_{n}1 - 1$. Tomando f del apartado c) % tenemos que $x_{n+1} = f(x_{n})$. % combiando el coeficiente $f(x_{n}) = -0.6$. $f(x_{n}) = 0.6$ es un $f(x_{n}) = 0.6$ $f(x_{n}) = 0.6$ es un $f(x_{n}) = 0.6$ $f(x_{n}) = 0.6$ es un $f(x_{n}) = 0.6$ $f(x_{n}$

Para estudion la estabilidad de este cilo aplica mos el criterio del valor absoluto del producto de las derivadas.

 $\begin{cases} 2.x - 1 & \text{Si } x > 0. \\ -2x - 1 & \text{Si } x < 0. \end{cases} \implies \begin{cases} 2 & \text{Si } x > 0 \\ -z & \text{Si } x > 0 \end{cases} \implies$

=> (31(x))= Z HXE (-P(0))(0/14).;

| S'(0'z). S'(0'6)|= | 2.(-z)|= | -4|= 4 >1 =>.

-> el ciclo es inestable.