

Sommaire

- Contexte
- Jeu de données
- Transformation des données
- Evaluation des modèles
- Analyse métier et conclusion

Contexte

La société « Prêt à dépenser » souhaite disposer d'un outil d'aide à la décision d'octroi de prêts

Utilisé par les chargés de clientèle

Simple à interpréter

Le jeu de données

307 000 CLIENTS

7 FICHIERS
220 VARIABLES

CLIENTS, PRÊTS ACTUELS, PRÊTS ANTÉRIEURS

Analyse exploratoire de données

Transformation des données

Features engineering

- Ratios
- Statistiques

Nettoyage

- Valeurs aberrantes remplacées par nan
- Imputation des valeurs manquantes qualitatives par « _missing_ »
- Imputation des valeurs manquantes quantitatives par la moyenne
- Encodage des variables qualitatives binaires
- Encodage des variables qualitatives non binaires
- Normalisation et Centrage

On passe de 121 à 877 variables

Evaluation de modèles

& Résultats

Processus d'évaluation des modèles

Performances: Comparaison des Modèles Evalués

Modèle	Score
GradientBoostingClassifier_	0.776124
LogisticRegression_L1	0.768871
LogisticRegression_L2	0.768285
LogisticRegression_ElasticNet	0.768188
Linear\$VC_L1	0.767243
Linear\$VC_L2	0.766188
RidgeClassifier_	0.764495
RandomForestClassifier_	0.752121

Meilleur candidat technique Gradient Boosting

Performances sur jeu de test

Mesure: ROC AUC. Aire sous la courbe d'efficacité.

Score d'une decision aléatoire: 0,5.

Config_1 et 2: paramètres estimés sur jeu réduit

Config_3 et 4: paramètres confirmés sur un jeu plus large

Config_5 et 6: impact de l'ajout de variables construites

Analyse métier - Maximisation du nombre de bénéficiaires en restant à l'équilibre

Modèle	Score bénéficiaire
GradientBoostingClassifier_	0,82
LogisticRegression_L1	0,8028
LogisticRegression_ElasticNet	0,8016
LogisticRegression_L2	0,8008
Linear\$VC_L1	0,7979
Linear\$VC_L2	0,7974
RidgeClassifier_	0,7935
RandomForestClassifier_	0,778

Meilleur candidat métier Gradient Boosting

Analyse métier

Un bon client rapporte 5 Un mauvais client fait perdre 100

Coûts fixes par client: 0,3

=> Comment maximiser le nombre de bénéficiaires en restant à l'équilibre ?

Analyse métier - Maximisation du revenu

Modèle	Score revenu
GradientBoostingClassifier_	65,5277
LogisticRegression_L1	62,6343
LogisticRegression_L2	62,4049
LogisticRegression_ElasticNet	62,2272
Linear\$VC_L1	61,0036
Linear\$VC_L2	60,7896
RidgeClassifier_	60,1688
RandomForestClassifier_	50,87

Meilleur candidat métier Gradient Boosting

Analyse métier

Un bon client rapporte 5 Un mauvais client fait perdre 100

Coûts fixes par client: 0,3

=> Comment maximiser le revenu ?

Gradient Boosting Feature Importance

Exemple de prediction et interprétation

Un client est rejeté. On interprète la décision en fonction de sa position sur les distribution des variables les plus importantes.

Graphs:

- Rouge Moyenne des mauvais clients
- Bleu Moyenne des bons clients
- Cyan Client évalué

Conclusion

- Le modèle Gradient Boosting est le plus performant d'un point de vue métier pour les deux cas d'usage envisagés.
- Les variables les plus déterminantes dans la décision sont liées aux sources d'information externe.
- Une décision particulière peut-être interprétée en visualisant la position du demandeur par rapport aux distributions de ces variables les plus déterminantes.
- Dans les deux cas d'usage envisagés, le modèle permet de faire passer la société d'une position de perte à l'atteinte de son objectif de maximisation des bénéficiaires ou du revenu.

Annexe Guide d'utilisation

LogisticRegression_L2

Recherche de paramètres

Exemple sur un modèle de regression logistique avec régularisation L2.