Lista 11

Curso de Ciências Atuariais Disciplina Probabilidade 1- Professora Cristina 26/09/2022 - Exercícios distribuição bidimensional

1) Um aluno faz um teste de múltipla escolha com 4 questões do tipo Verdadeiro-Falso. Suponha que o aluno esteja "chutando" todas as questões, uma vez que ele não estudou a matéria da prova. Defina as seguintes variáveis aleatórias:

 $X_1 = n$ úmero de acertos entre as duas primeiras questões da prova

 $Y_1 =$ número de acertos entre as duas últimas questões da prova

 $X_2 =$ número de acertos entre as três primeiras questões da prova

 $Y_2 =$ número de acertos entre as três últimas questões da prova

a) Construa uma tabela com o espaço amostral associado a este experimento, listando todas as possibilidades de acerto e os valores de $X_1,\,Y_1,\,X_2,\,Y_2$ e suas probabilidades.

	X_1	X_1	X_2	X_2
(D D D D)				
$\frac{(E, E, E, E)}{}$	0	0	0	0
(E, E, E, C)	0	1	0	1
(E, E, C, E)	0	1	1	1
(E, C, E, E)	1	0	1	1
(C, E, E, E)	1	0	1	0
(E, E, C, C)	0	2	1	2
(E, C, E, C)	1	1	1	1
(C, E, E, C)	1	1	1	1
(C, E, C, E)	1	1	2	1
(C, C, E, E)	2	0	2	1
(E, C, C, E)	1	1	2	2
(E, C, C, C)	1	2	2	3
(C, E, C, C)	1	2	2	2
(C, C, E, C)	2	1	2	2
(C, C, C, E)	2	1	3	2
(C, C, C, C)	2	2	3	3

$$S_{X_1} = \begin{cases} (E, E, _, _) = 0 \\ (E, C, _, _); (C, E, _, _) = 1 \\ (C, C, _, _) = 2 \end{cases}$$

$$S_{Y_1} = \begin{cases} (_, _, E, E) = 0 \\ (_, _, E, C); (_, _, C, E) = 1 \\ (_, _, C, C) = 2 \end{cases}$$

$$S_{X_2} = \begin{cases} (E, E, E, _) = 0\\ (E, E, C, _); (E, C, E, _); (C, E, E, _) = 1\\ (E, C, C, _); (C, E, C, _); (C, C, E, _) = 2\\ (C, C, C, _) = 3 \end{cases}$$

$$S_{Y_2} = \begin{cases} (_, E, E, E) = 0\\ (_, E, E, C); (_, E, C, E); (_, C, E, E) = 1\\ (_, E, C, C); (_, C, E, C); (_, C, C, E) = 2\\ (_, C, C, C) = 3 \end{cases}$$

Variável Probabilidade

$$X_{1} = \begin{bmatrix} \mathbb{P}(X_{1}=0) = \binom{2}{0} * \left(\frac{1}{2}\right)^{0} * \left(\frac{1}{2}\right)^{2} = \frac{1}{4} \\ \mathbb{P}(X_{1}=1) = \binom{2}{1} * \left(\frac{1}{2}\right)^{1} * \left(\frac{1}{2}\right)^{1} = \frac{2}{4} \\ \mathbb{P}(X_{1}=2) = \binom{2}{2} * \left(\frac{1}{2}\right)^{2} * \left(\frac{1}{2}\right)^{0} = \frac{1}{4} \\ \mathbb{P}(Y_{1}=0) = \binom{2}{0} * \left(\frac{1}{2}\right)^{0} * \left(\frac{1}{2}\right)^{2} = \frac{1}{4} \\ \mathbb{P}(Y_{1}=1) = \binom{2}{1} * \left(\frac{1}{2}\right)^{1} * \left(\frac{1}{2}\right)^{1} = \frac{2}{4} \\ \mathbb{P}(Y_{1}=2) = \binom{2}{2} * \left(\frac{1}{2}\right)^{2} * \left(\frac{1}{2}\right)^{0} = \frac{1}{4} \end{bmatrix}$$

Variável	Probabilidade
	$\mathbb{P}(X_2=0) = \binom{3}{0} * \left(\frac{1}{2}\right)^0 * \left(\frac{1}{2}\right)^3 = \frac{1}{8}$
X_2	$\boxed{\mathbb{P}(X_2=1) = \binom{3}{1} * \left(\frac{1}{2}\right)^1 * \left(\frac{1}{2}\right)^2 = \frac{3}{8}}$
	$\mathbb{P}(X_2=3) = \binom{3}{3} * \left(\frac{1}{2}\right)^3 * \left(\frac{1}{2}\right)^0 = \frac{1}{8}$
	$\mathbb{P}(Y_2 = 0) = \binom{3}{0} * \left(\frac{1}{2}\right)^0 * \left(\frac{1}{2}\right)^3 = \frac{1}{8}$
Y_2	$\mathbb{P}(Y_2=1) = \binom{3}{1} * \left(\frac{1}{2}\right)^1 * \left(\frac{1}{2}\right)^2 = \frac{3}{8}$
	$\mathbb{P}(Y_2=2) = \binom{3}{2} * \left(\frac{1}{2}\right)^2 * \left(\frac{1}{2}\right)^1 = \frac{3}{8}$
	$\mathbb{P}(Y_2 = 3) = \binom{3}{3} * \left(\frac{1}{2}\right)^3 * \left(\frac{1}{2}\right)^0 = \frac{1}{8}$

b) Construa a função de distribuição conjunta de $(X_1,\,Y_1)$ com as respectivas marginais.

X_1		Y_1	$\mathbb{P}(\mathrm{X}_1=\mathrm{x})$	
1	0	1	2	- (1)
0	1	2	1	1
	16	16	16	$\overline{4}$
1	2	4	2	2
1	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{4}$
0	1	2	1	1
2	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{4}$
$\boxed{\mathbb{P}(Y_1 = y)}$	1	2	1	1
	$\overline{4}$	$\overline{4}$	$\overline{4}$	1

c) Construa a função de distribuição conjunta de $(X_2,\,Y_2)$ com as respectivas marginais.

X_1	Y_1				$\mathbb{P}(\mathrm{X}_1=\mathrm{x})$
1	0	1	2	3	- (1)
0	$\frac{1}{16}$	$\frac{1}{16}$	0	0	$\frac{1}{8}$
1	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	0	$\frac{3}{8}$
2	0	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{3}{8}$
3	0	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$
$\mathbb{P}(Y_1 = y)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

- 2) Uma moeda honesta é lançada 4 vezes. Seja X o número de caras nos 2 primeiros lançamentos e seja Y o número de caras nos 3 últimos lançamentos.
- a) Liste todos os elementos do espaço amostral deste experimento, especificando os valores de X e Y.

	X	Y
(c, c, c, c)	0	0
(c, c, c, k)	0	0
(c, c, k, c)	0	1
(c, k, c, c)	1	1
(k, c, c, c)	1	1
(c, c, k, k)	0	1
(c, k, c, k)	1	1
(k, c, c, k)	1	1
(c, k, k, c)	1	2
(k, k, c, c)	2	2
(k, c, k, c)	1	2
(c, k, k, k)	1	2
(k, c, k, k)	1	2
(k, k, c, k)	2	2
(k, k, k, c)	2	3
(k, k, k, k)	2	3

$$S_X = \begin{cases} (c, c, _, _) = 0\\ (k, c, _, _); (c, k, _, _) = 1\\ (k, k, _, _) = 2 \end{cases}$$

$$S_Y = \begin{cases} (c, c, c, _) = 0\\ (k, c, c, _); (c, k, c, _)(c, c, k, _) = 1\\ (k, k, c, _); (k, c, k, _); (c, k, k, _) = 2\\ (k, k, k, _) = 3 \end{cases}$$

b) Construa a função de distribuição conjunta de X e Y.

X	Y				$\mathbb{P}(X=x)$
	0	1	2	3	- ()
0	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	0	$\frac{1}{4}$
1	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{2}{4}$
2	0	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
$\mathbb{P}(Y{=}y)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

c) Encontre a distribuição condicional de X dado Y=3

$$\begin{array}{c|c}
X & \mathbb{P}(X=x \mid Y=3) \\
\hline
0 & \frac{0}{1} = 0 \\
\hline
1 & \frac{16}{1} = \frac{1}{2} \\
\hline
2 & \frac{16}{1} = \frac{1}{2} \\
\hline
2 & \frac{1}{8}
\end{array}$$

d) Calcule E(X), E(Y), Var(X), Var(Y)

$$E(X) = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = \frac{4}{4} = 1$$

$$E(X^2) = 0^2 * \frac{1}{4} + 1^2 * \frac{2}{4} + 2^2 * \frac{1}{4} = \frac{6}{4}$$

$$E(Y) = 0 * \frac{1}{8} + 1 * \frac{3}{8} + 2 * \frac{3}{8} + 3 * \frac{1}{8} = \frac{12}{8}$$

$$E(Y^2) = 0^2 * \frac{1}{8} + 1^2 * \frac{3}{8} + 2^2 * \frac{3}{8} + 3^2 * \frac{1}{8} = \frac{24}{8} = 3$$

$$V(X) = E(X^2) - E^2(X) = \frac{6}{4} - 1^2 = \frac{2}{4} = \frac{1}{2}$$

$$V(Y) = E(Y^2) - E^2(Y) = 3 - \left(\frac{6}{4}\right)^2 = \frac{12}{16} = \frac{3}{4}$$

3) Em uma clínica médica foram coletados dados em 150 pacientes, referentes ao último ano. Observou-se a ocorrência de infecções urinárias (U) e o número de parceiros sexuais (N). Os valores em % encontram-se a seguir:

II	Núı	Total			
	0	1	2+	Total	
Sim	10	20	45	75	
Não	10	10	5	25	
Total	20	30	50	100	

Encontre todas as distribuições condicionais.

U	$\mathbb{P}(\mathbf{U}{=}\mathbf{u}\mid\mathbf{N}{=}0)$
Sim	$\frac{\frac{10}{100}}{\frac{20}{100}} = \frac{1}{2}$
Não	$\frac{\frac{10}{100}}{\frac{20}{100}} = \frac{1}{2}$

U
$$\mathbb{P}(U=u \mid N=1)$$
Sim $\frac{20}{100} = \frac{2}{3}$ $\frac{30}{100} = \frac{2}{3}$ Não $\frac{10}{\frac{100}{30}} = \frac{1}{3}$

U	$\mathbb{P}(\text{U=u} \mid \text{N=2+})$
Sim	$\frac{\frac{45}{100}}{\frac{50}{100}} = \frac{9}{10}$
Não	$\frac{\frac{5}{100}}{\frac{50}{100}} = \frac{1}{10}$

N	$\mathbb{P}(N{=}n \mid U{=}Sim)$
0	$\frac{\frac{10}{100}}{\frac{75}{100}} = \frac{10}{75}$
1	$\frac{\frac{20}{100}}{\frac{75}{100}} = \frac{20}{75}$
2+	$\frac{\frac{45}{100}}{\frac{75}{100}} = \frac{45}{75}$

$ \frac{N \mathbb{P}(N=n \mid U=N\tilde{a}o)}{0 \frac{10}{\frac{100}{25}} = \frac{2}{5}} $ $ \frac{10}{100} $	
$ \begin{array}{c} 0 & \frac{100}{25} = \frac{2}{5} \\ \hline 100 & \\ 10 & \\ \end{array} $)
$\frac{100}{\frac{25}{100}} = \frac{2}{5}$	
$ \begin{array}{ccc} $	