Development and evaluation of a Kubernetes cluster simulator based on Batsim

Presented by: Théo Larue

Supervised by: Olivier Richard & Michael Mercier

Université Grenoble Alpes

August 31, 2020

Table of contents

- 1 Introduction
- 2 Literature review
- 3 Integrating Kubernetes schedulers to Batsim
- 4 Study of the simulator
- 5 Discussion and future work

Introduction

Resource and Jobs Management System

The RJMS is at the core of the cluster.

Examples of RJMS

- OAR
- SLURM
- HadoopYARN
- Apache Mesos

Kubernetes

Kubernetes in a nutshell

- Open source resource manager for containerized applications
- About 2M lines of code
- 2.8k contributors

source: https://kubernetes.io/docs/

A component of the RJMS: the scheduler

Scheduling is the act of allocating tasks to resources.

Numerous factors

- Workloads
- Applications
- System size
- Network topology
- Energy consumption
- Scheduling policies

Complex implementations: Kubernetes default scheduler weighs **47k lines of code**.

Studying RJMS

Different approaches

- Analytical study
- Real experiments
- Emulation
- Simulation

Batsim, an infrastructure simulator aimed at studying RJMS.

Contribution

- Event based
- Own protocol
- Dilated time

- Constant API requests
- Own protocol
- (Real) machine time

Batkube supports

- Any Go scheduler
- Any cluster size
- Resource requests
- Non parallel tasks

Literature review

Infrastructure simulators

	Grid	HPC	Cloud	P2P	Volunteer
SimGrid	✓				
GridSim	✓				
LogGOPSim		✓			
BigSim		\checkmark			
CloudSim			✓		
GroudSim	\checkmark		\checkmark		
PeerSim				✓	
OverSim				\checkmark	
SimBA					✓
SimBOINC					\checkmark
Domain specific simulators					

SimGrid

- Framework for building simulators
- Versatile, accurate and scalable
- 20 years of experience
- Simple analytical models

Simulators for the study of RJMS

Often ad hoc simulators

"Publish and perish" - Milian Poquet

Some active projects

- YARNSim
- SLURM simulator

	Scheduler	Platform	Job model	
Accasim	Internal	Ad hoc	Static duration	
Alea	Internal	GridSim	Static duration	
Batsim	Custom Protocol	SimGrid	SimGrid models	
Simulation of RJMS				

Kubernetes cluster simulation

Kubernetes simulation projects

rtanzarrazza arriantarian projecto					
joySim	k8s-cluster-simulator				
private (JD.com)	student project				
closed source	open source				
service	batch processing				
any	user implementation				
mock nodes	static job durations				
fully fledged simulator	time dilation				
monitoring tools	raw metrics				
	private (JD.com) closed source service any mock nodes fully fledged simulator				

Notable Kubernetes schedulers

kube-batch

- Poseidon (Firmament)
- kube-scheduler

Integrating Kubernetes schedulers to Batsim

Different communication paradigms

source: https://batsim.readthedocs.io

- Event based
- Simulation time

source: https://kubernetes.io/docs/concepts/overview/components/

- Central API
- Real time

Time synchronization

Scenario 1: correct synchronization

Scenario 2: delayed decision

Technical challenges

Challenges to tackle

- Integration with Kubernetes
- Scheduler time interception
- Time synchronization

Architeture of Batkube

Global architecture of Batkube.

Time interception

Redirection of time calls

- Specific functions are redirected
- Automatic source code manipulation using AST
- Ensured compatibility with the rest of the code

Schedulers are patched to redirect their time.

Time synchronization

Time synchronization between Batsim and the scheduler

Parameters of the synchronization I

Timeout value

Parameters of the synchronization II

Simulation time step \in [base-simulation-timestep, max-simulation-timestep]

Multiplying factor: backoff-multiplier (default = 2)

Study of the simulator

Study of the simulator parameters

Scheduler kube-scheduler Workloads

- burst: 200x170s, 1 cpu, at time zero
- *spaced*: 200x170s, 1 cpu, every ten seconds
- realistic: 49 jobs, between 0 and 6 cpu, between 0 and 1 hour duration, extracted from the KIT ForHLR II system.

Platforms

- burst and spaced: 16 nodes x 1 cpu
- realistic: 1 node x 6 cpu

Metrics

- Makespan = simulated length of the simulation
- Simulation duration = real execution time

Timeout

max-simulation-timestep = 20s
base-simulation-timestep = 100ms
backoff-multiplier = 2

- \rightarrow Critical value in the **accuracy / scalability** tradeoff
- \rightarrow An optimal value can be measured

Maximum simulation timestep

timeout-value = 50ms
base-simulation-timestep = 100ms
backoff-multiplier = 2

 \rightarrow Experiments too simple to draw any conclusion (only decision = schedule a job)

Experimentation on a real cluster

Workloads are run 10 times each (except *realistic*)

	makespan				
workload	emulated		simulated		
	μ	σ	μ	σ	
burst	2467	28.3	2215 (-252)	0.508	
spaced	2468	5.14	2257 (-211)	16.9	
realistic	32556	-	32555 (-1)	1.30	

	mean waiting time				
workload	emulated		simulated		
	μ	σ	μ	σ	
burst	1077	10.6	970 (-107)	12.6	
spaced	146	1.67	48.1 (-97.9)	9.44	
realistic	2884	-	2020 (-864)	950	

Causes to this deviation

- Scheduler over allocating when simulated
- Incomplete simulation models

Discussion and future work

Capabilities and limitations of Batkube

Capabilities

- Can patch any kubernetes scheduler written in Go without any modification
- Static duration model for jobs
- Cpu and memory requests
- Supports the default scheduler

Limitations

- Incomplete models
- Some misbehavior of the scheduler
- Not scalable

Perspectives for future work

- More complete models for Kubernetes resources
- Support for IO intensive jobs
- Support for parallel jobs
- Support for other schedulers
- More extensive experiments to work on scalability

References I

Any questions?

Thank you for your attention! I am open to any questions.

Batkube integration with Kubernetes

Reimplementation of a custom API.

Time interception

Schedulers are patched to redirect their time.

batsky-go

Exchanges between the scheduler, batsky-go ("time") and Batsim

Similar resources

source: https://kubernetes.io/docs/tutorials/
kubernetes-basics/explore/explore-intro/

Translation between Kubernetes and Batsim

- \blacksquare A Pod = a job.
- A Node = a compute resource.

TODO: results for realistic workload