

MLE 10 Capstone: Healthcare Claim Anomaly Detection

lain McKone, Monika Sharma

Outline

- Problem Domain
- Our Approach
- Data, Model(s)
- Demo
- MLE Stack
- Conclusions
- Future Considerations
- Q&A

Problem Domain:

- Healthcare fraud is a serious white-collar crime in US
- Est. \$70B (3% of total spend) is attributed to fraud; max \$300B
- An increasingly sophisticated crime (e.g. collusion)

https://www.nhcaa.org/tools-insights/about-health-care-fraud/the-challenge-of-health-care-fraud/https://www.bcbsm.com/health-care-fraud/fraud-statistics.html

Examples

• (\$300M) 2022 April - 11 defendants charged with kickback schemes involving collusion between medical practitioners, laboratories, and a marketing firm.

https://www.justice.gov/usao-ndtx/pr/11-defendants-plead-quilty-300-million-healthcare-fraud

 (\$143M) 2021 May - 14 defendants charged with multiple covid-related fraud schemes i.e. collusion between a medical doctor, laboratories, pharmacies, and a home health agency.

https://www.cnbc.com/2021/05/26/doi-charges-14-people-in-alleged-health-care-fraud-related-to-covid-19.html

Implications:

- Overwhelms the system with unnecessary tests and procedures
- Increases the cost of care
 - Increases insurance premiums (\$)
 - Reduces accessibility to care (\$)
 - Reduces availability of care (scheduling)
 - Reduces value, quality of care

Current State: (envisioned as-is; do-nothing)

	yoy Growth
Claim Submissions	1
Anomalies	1
Reqd Effort: Detection	1
Available Effort: Analyst Person Hours	t

Future State: (envisioned to-be)

- Q: For Claims Anomalies, can Data Science:
 - Automate; reduce the overall time and cost required for anomaly detection?
 - Accurately minimize the number of invalid, erroneous claims and reimbursements?
 - Continuously evolve in response to shifting data and behavior patterns?

Approach: Data

- Kaggle https://www.kaggle.com/code/rohitrox/medical-provider-fraud-detection/data
 - **Anonymized:** Geography, Race, Provider
 - Pre-split Train and Test Claims data (~558k vs 135k rows)
 - **Provider Labels**: 506 Yes, 4904 No
 - Beneficiary Claims, Reimbursements
 - In/Out Patient Claims, Procedures, Admit Duration

processes, analyzes, approves

insurance firm

Approach 1: Providers - Supervised – Fraud Labels

Approach 2: Claims - Unsupervised - No Fraud Labels

STAGE 1: Data Pipeline

STAGE 2: Feature Eng, Inertia Analysis

STAGE 3: Cluster Analysis, Explainability

Random Forest Classifier

STAGE 4: Model Publishing

Demo

MLE Stack

Approach 1 Findings: Supervised Provider Anomalies

	LogR	XG Boost (TPot)	SVM	Auto Encoders
F1 Score	0.591	0.586	0.491	0.802
Accuracy	0.909	0.920	0.930	0.868
Recall	0.697	0.605	0.362	0.752
Precision	0.512	0.568	0.764	0.858

Approach 1 Findings: Supervised Provider Anomalies

Explainability: Insurance Claim Reimbursements (\$) were flagged as the most influential feature

Known Limitations:

- Business Value: Predicting Anomalies at the Provider level was not compelling enough
- Models: Autoencoder Performance was very promising, however the data is misleading
- Data
 - Provider True (Fraud) labels are at best incomplete
 - Provider False (No-Fraud) labels are at best 'indeterminate'
 - Mapping Provider Fraud Labels to all child Claims is a weak extrapolation

Approach 2 Findings: Unsupervised Claim Labels

Visual representation of anomalous claims is very compelling and user friendly

Cluster0 (90%-3f): AdmittedDays, DeductibleAmtPaid, InscClaimAmtReimbursed

• Cluster1 (40%-3f): ChronicCond - KidneyDisease, Heartfailure, ObstrPulmonary

Cluster2 (40%-3f): ChronicCond - KidneyDisease, Heartfailure, ObstrPulmonary

Original Provider Labels were mapped to Cluster-Claims with even distribution, ~430 per

Known Limitations:

- Business Value:
 - Cluster Explainability: What does this tell us about coarse anomaly profiles?
 - Supplementary Details: Provide more details re contributing factors to a claim anomaly

Conclusions

- Business Value
 - Automation; reduce the overall time and cost required for anomaly detection
 - Accurately minimize the number of invalid, erroneous claims and reimbursements
 - Continuously evolve in response to shifting data and behavior patterns
 - Provide Deeper Insights Explainability

Future Work

- Business Value:
 - Introduce a human feedback loop for ongoing model improvements;
 - Provide a fuzzy logic indicator of **degree of fraud risk** for a claim
 - Provide a visual breakdown of the attributes of fraud risk for a claim
- Data:
 - Acquire claim-level labels to improve supervised training
 - Acquire labels for confirmed non-fraud, as well as confirmed fraud to improve Auto Encoders
- Model:
 - Explore Variational Autoencoders, which have shown promise for credit card fraud

Questions? Feedback?

Appendices

EDA: Training Data (csv)

Kaggle: https://www.kaggle.com/code/rohitrox/medical-provider-fraud-detection/data

Data divided into four sections:

- Provider: labeled as fraud or not
- Beneficiary information
- In-patient information
- Out-patient information

Data are anonymized; provider name, Beneficiary name, state, insurance provider name are masked

- 5410 data points labelled Potential Fraud (Yes | No)
- 506 Yes, 4904 No
- Imbalanced dataset (~10% target); class imbalance needs to be managed

EDA: Training Data Feature: Age

- Dataset biased towards age > 65 years
- Is it easier indicative of prevalent fraud in one payer sector?

EDA: Fraud Label Distribution

- Individual providers dataset when merged with patient dataset renders 60:40 ratio for no fraud/fraud
- Key-take away: Providers who commit fraud victimize many patients (Note: misleading inference due to provider:claim mapping)

EDA: Beneficiary State-wise Distribution

Most
beneficiaries
are from states
5, 10, 45, and
33

EDA: Procedures Where Fraud is Prevalent

- <u>Key-take away</u>: Procedure IDs 9904, 8154, 66, and 3893 have largest number of fraud cases
- Question: Why is it easier to commit fraud for these procedures

EDA: Out-Patient Train Data Summary

 <u>Key-take away</u>: Providers who have a habit of committing fraud always commit fraud with every patient!

Approach: Supervised Model – Labelled Providers

Findings: Unsupervised Model – KMeans Claim Labels

Current State: (envisioned as-is; do-nothing)

- Increasing overall annual # and \$ claims
- Increasing associated annual #, %, and \$ of anomalies and fraud cases
- Increasing avg \$ cost per detection; i.e. evolving fraud sophistication

- (Relatively) Flat or decreasing % analyst manhours per claim
- (Relatively) Flat or increasing data, and analysis tools (receptive)

Future State: (envisioned to-be)

- Q: For Claims Anomalies, can Data Science:
 - Recommend coarse guidelines for claim anomaly filters and rule sets?
 - Provide deeper insights, i.e. supplementary details and key contributing attributes (features)?
 - Weigh the % likelihood of anomaly and/or fraud to assist with case prioritization?

Approach: Supervised Model – Labelled Providers

- Data: Kaggle Dataset
- Exploratory Data Analysis, Feature Engineering
- Model Training: Supervised Provider predictions, labels
 - Logistic Regression, Support Vector Machines, XG Boost, Auto-encoders, Auto-ML (TPOT)
- Model Selection: XG Boost

Findings: Claims EDA

- Training data
 - Age: skewed towards patients >65 yrs
 - Geo: Most beneficiaries are from states 5, 10, 33, and 45
 - Procedures: ids 66, 3893, 8154, and 9904 have the highest cases of fraud
 - Out patients: some indications of repeat offense by provider
 - Insurance claim fraud distribution of \$ reimbursed
 - 8% by provider
 - 7% by attending physician
 - 6% by operating physician
 - 4% by claim diagnosis

Future Work

Streamlit:

- Provide capabilities to dig into claim to explore the contributing features of the anomaly
- Upgrade to a HTML5 front-end
- Separate hosting for front-end from back-end

FastAPI:

- Expand api to include claims data verification, and json data request/response
- Expand api to include model updates, retraining, and published model performance

Infrastructure:

- Promote local Docker environments to hosted in Amazon EC2, or Kubernetes
- MLOps:
 - Upgrade from Level0 to Level1; introduce aspects of retraining, monitoring
 - Host the model seperately in a service such as SageMaker