Feuille d'exercices n. 1 :

Séries entières.

Exercice 1 Montrer qu'une série complexe $\sum z_n$ converge si et seulement si les deux séries réelles $\sum Re(z_n)$ et $\sum Im(z_n)$ convergent.

Exercice 2 Déterminer le rayon de convergence R des séries entières ci-dessous :

(i)
$$\sum_{n=1}^{+\infty} \frac{2^n}{n} z^n$$
; (ii) $\sum_{n=1}^{+\infty} \frac{z^n}{n!}$;; (iii) $\sum_{n=1}^{+\infty} n! z^n$;; (iv) $\sum_{n=1}^{+\infty} \frac{n!}{(2n)!} z^n$; (v) $\sum \ln(n) z^n$; (v) $\sum \frac{1}{\sqrt{n}} z^n$.

Exercice 3 1) Donner un exemple de série entière de rayon de convergence π .

- 2) Est-il possible de trouver des suites (a_n) et (b_n) telles que $a_n = o(b_n)$ et telles que $\sum a_n z^n$ et $\sum b_n z^n$ aient le même rayon de convergence?
- 3) Quel est le lien entre le rayon de convergence des séries entières $\sum a_n z^n$ et $\sum (-1)^n a_n z^n$?

Exercice 4 Montrer que le rayon de convergence R des séries entières ci-dessous est 1 et prouver que :

- (i) $\sum_{n=1}^{+\infty} nz^n$ ne converge en aucun point du cercle |z|=1;
- (ii) $\sum_{n=1}^{+\infty} z^n/n^2$ converge en tout point du cercle |z|=1;
- (iii) $\sum_{n=1}^{+\infty} z^n/n$ converge en tout point du cercle |z|=1 sauf en z=1.

Exercice 5 Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectivement égaux à R_1 et R_2 . Soit $R:=\min\{R_1,R_2\}$. Considérons $\sum c_n z^n$ et $\sum d_n z^n$ avec

$$c_n := a_n + b_n, \quad d_n := a_n b_0 + a_{n-1} b_1 + \ldots + a_0 b_n.$$

Montrer que $\sum c_n z^n$ et $\sum d_n z^n$ ont rayon de convergence au moins égal à R et que l'on a

$$\left(\sum a_n z^n\right) + \left(\sum b_n z^n\right) = \sum c_n z^n, \quad \left(\sum a_n z^n\right) \cdot \left(\sum b_n z^n\right) = \sum d_n z^n.$$

Exercice 6 (i) Calculer le rayon de convergence R_1 et la somme de la série

$$\sum_{n=0}^{+\infty} a_n z^n = 1 + \sum_{n=1}^{+\infty} 2^{n-1} z^n.$$

(ii) Calculer le rayon de convergence R_2 et la somme de la série

$$\sum_{n=0}^{+\infty} b_n z^n = 1 - \sum_{n=1}^{+\infty} z^n.$$

(iii) Déduire de ce qui précède que le rayon de convergence de la série produit $\sum d_n z^n$ avec

$$d_n := a_n b_0 + a_{n-1} b_1 + \ldots + a_0 b_n$$

est strictement supérieur au $min\{R_1, R_2\}$.

Exercice 7 En utilisant l'exercice 5 montrer que l'on a $\sum_{n=1}^{+\infty} nz^{n-1} = \frac{1}{(1-z)^2}$, pour tout |z| < 1.

Exercice 8 Montrer que si la suite $|a_{n+1}/a_n|$ admet une limite ℓ , alors le rayon de convergence de la série entière $\sum a_n z^n$ est égal à $1/\ell$ (idem avec la suite $|a_n|^{1/n}$).

Exercice 9 Montrer que le rayon de convergence R de la série entière $\sum a_n z^n$ est donné par la formule suivante (due à Hadamard) : $1/R = \limsup_{n \to +\infty} |a_n|^{1/n}$.

Exercice 10 On note A l'ensemble des séries entières (à coefficients complexes) de rayon de convergence supérieur ou égal à 1. L'addition et le produit de Cauchy de deux séries entières munissent A d'une structure d'anneau. Montrer que A est intègre.

Exercice 11 Déterminer les séries de Taylor à l'origine de $\frac{1}{(1-z)}$, $\frac{1}{(1-z)^2}$, $\frac{1}{(1-z)^3}$ et $\frac{1}{(1-z)^4}$.

Exercice 12 Déterminer en tout $z_0 \neq 0$ la série de Taylor et son rayon de convergence pour la fonction analytique $\frac{1}{(z-1)}$.

Exercice 13 Déterminer en tout $z_0 \neq 1, 2$ la série de Taylor et son rayon de convergence pour la fonction analytique $\frac{1}{(z-1)(z-2)}$.