1 Análisis Multivariado I - Práctica 0

1.1 Repaso de Álgebra Lineal

- 1. Probar que tr(A + B) = tr(A) + tr(B) y tr(AB) = tr(BA).
- 2. Mostrar que los autovalores no nulos de AB coinciden con los de BA. (Si las matrices son cuadradas, los nulos también coinciden).
- 3. Sea A una matriz simétrica de $d \times d$.
 - (a) Probar que todos sus autovalores son reales. Si llamamos $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$ a estos autovalores, mostrar que:

•
$$tr(A) = \sum_{i=1}^{d} \lambda_i$$

$$\bullet |A| = \prod_{i=1}^{d} \lambda_i$$

•
$$|I \pm A| = \prod_{i=1}^{d} (1 \pm \lambda_i)$$

- (b) $A \ge 0 \Leftrightarrow \lambda_i \ge 0 \ \forall i$.
- (c) $A > 0 \Leftrightarrow \lambda_i > 0 \ \forall i$.
- (d) $A \ge 0 \text{ y } |A| \ne 0 \Rightarrow A > 0.$
- (e) $A > 0 \Rightarrow A^{-1} > 0$.
- (f) $A > 0 \Leftrightarrow \text{ existe } R \in \mathbb{R}^{d \times d}$ no singular tal que $A = RR^{\text{\tiny T}} \Leftrightarrow \text{ existe una matriz}$ ortogonal $B \in \mathbb{R}^{d \times d}$ tal que si $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ con $\lambda_i > 0 \quad \forall i$ entonces $A = B\Lambda B^{\text{\tiny T}}$ (es lo que se denomina $descomposici\'on\ espectral\ de\ A$).
- (g) $A \geq 0$ de rango $r \Leftrightarrow$ existe $R \in \mathbb{R}^{d \times d}$ de rango r tal que $A = RR^{\mathsf{T}} \Leftrightarrow$ existe una matriz ortogonal $B \in \mathbb{R}^{d \times d}$ tal que si $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ con $\lambda_i \geq 0 \ \forall i$ entonces $A = B\Lambda B^{\mathsf{T}}$.
- 4. Una matriz P de $d \times d$ se dice de proyección si es simétrica e idempotente (es decir, $P^2 = P$). Probar que:
 - (a) $rg(P) = r \Leftrightarrow \lambda_i = 1$ para i = 1, ..., r y $\lambda_i = 0$ para i = r+1, ..., d. Entonces $P = \sum_{i=1}^{r} \mathbf{t}_i \mathbf{t}_i^{\mathrm{T}}$ para ciertos \mathbf{t}_i ortonormales. ¿Cómo queda la descomposición espectral en este caso?
 - (b) rg(P) = tr(P).
 - (c) I-P también es de proyección. ¿Qué rango tiene?¿Sobre qué espacio proyecta?
- 5. Sea X de $n \times p$ y de rango p. Mostrar que $P = X(X^{T}X)^{-1}X^{T}$ es una matriz de proyección. ¿Sobre qué espacio proyecta?

1

1.2 Esperanza, varianza y covarianza de vectores aleatorios

- 1. Si ${\bf x}$ e ${\bf y}$ son vectores aleatorios (no necesariamente de la misma dimensión) probar que:
 - (a) Cov $(\mathbf{x}, \mathbf{y}) = \mathbb{E}(\mathbf{x}\mathbf{y}^{\mathrm{T}}) \mathbb{E}(\mathbf{x}) \mathbb{E}(\mathbf{y}^{\mathrm{T}})$.
 - (b) $Cov(A\mathbf{x}, B\mathbf{y}) = ACov(\mathbf{x}, \mathbf{y}) B^{T}$.
 - (c) Si \mathbf{a} es un vector no aleatorio, $VAR(\mathbf{x} \mathbf{a}) = VAR(\mathbf{x})$.
 - (d) $VAR(A\mathbf{x}) = AVAR(\mathbf{x}) A^{T}$.
- 2. Sea $\mathbf{x}_1, \dots, \mathbf{x}_n$ una muestra de vectores aleatorios de dimensión d (m.a.) con dispersión Σ y $\{a_i\}_{1 \leq i \leq n}$, $\{b_i\}_{1 \leq i \leq n}$ escalares no aleatorios. Mostrar que:

(a) VAR
$$\left(\sum_{i=1}^{n} a_i \mathbf{x}_i\right) = \left(\sum_{i=1}^{n} a_i^2\right) \Sigma$$
.

(b) Cov
$$\left(\sum_{i=1}^n a_i \mathbf{x}_i, \sum_{j=1}^n b_j \mathbf{x}_j\right) = \mathbf{O} \Leftrightarrow \sum_{i=1}^n a_i b_i = 0.$$

- 3. Si $\mathbf{x} \sim (\mu, \Sigma)$ y A es simétrica, probar que $\mathbb{E}(\mathbf{x}^{\mathrm{T}}A\mathbf{x}) = tr(A\Sigma) + \mu^{\mathrm{T}}A\mu$.
- 4. Sea $\mathbf{x}_1, \dots, \mathbf{x}_n$ una m.a. (μ, Σ) . Mostrar que:
 - (a) $\mathbb{E}(\bar{\mathbf{x}}) = \mu \text{ y VAR}(\bar{\mathbf{x}}) = \Sigma/n.$

(b)
$$\mathbb{E}(Q) = (n-1)\Sigma$$
, con $Q = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^{\mathrm{T}}$