

D Q = 
$$\frac{l+2}{2}$$
 nRAT =  $\frac{l+2}{2}$  nR (Tg-Ta)  $\approx 3.93$  10 J  
b  $\Delta U = \frac{l}{2}$  nRAT =  $\frac{l}{2}$  nR (Tg-Ta)  $\approx 2.81 \cdot 10^4$  J  
D W1 Us il I principio  $\Delta U = Q - W \sim W = Q - \Delta U = 1.12 \cdot 10^4$  J  
n 164 i.  
 $l = 3 \sim V = \frac{l+2}{l} = \frac{5}{3}$   
 $V_1 = 3 l = 3.10^{-3}$  m<sup>3</sup>  
Adiobatica com Q = 0

The 3.40K  $V_2 = ?$  n = ?

Uso formula adiobatica (con le pressioni)

 $P_2 = \left(\frac{V_1}{V_2}\right)^8 P_1 \sim \frac{R}{P_1} = \left(\frac{V_1}{V_2}\right)^4 \sim \frac{R}{V_2} = \frac{V_1}{V_2}$ 

Per il numero di moli 
$$f_{\overline{t}} V_{\overline{t}} = V_{\overline{t}} \left( \frac{P_{i}}{\overline{t}} P_{i} \right)^{\frac{1}{k}} = V_{\overline{t}} \left( \frac{P_{i}}{\overline{t}} P_{i} \right)^{\frac{1}{k}} = V_{\overline{t}} \left( \frac{P_{i}}{\overline{t}} \right)^{\frac{1}{k}} \approx 3 \cdot 1 \cdot 10^{-3} \, \text{m}^{3}$$