Examenul de bacalaureat național 2020 Proba E. d) Fizică BAREM DE EVALUARE ȘI DE NOTARE

Test 1

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte)

Subjecturi			
Nr.Item	Soluţie, rezolvare	Punctaj	
I.1.	a	3р	
2.	C	3р	
3.	b	3р	
4.	d	3р	
5.	b	3р	
TOTAL Subject I		15p	

Subject	ıl al II-lea		
II.a.	Pentru:		4p
	reprezentarea corectă a tuturor forțelor	4p	
b.	Pentru:		4p
	$F_{1x} = F_1 \cos \alpha \text{ si } F_{1y} = F_1 \sin \alpha$	1p	
	$F_1 \sin \alpha = mg + \mu N_1$	1p	
	$N_1 = F_1 \cos \alpha$	1p	
	rezultat final: $F_1 = 3 \text{ N}$	1p	
C.	Pentru:		3р
	$F_1'\sin\alpha - mg - \mu F_1'\cos\alpha = ma$	2p	
	rezultat final $a = 10 \text{ m/s}^2$	1p	
d.	Pentru:		4p
	$F_2 \sin \alpha + mg = \mu F_2 \cos \alpha$	3p	
	rezultat final: $F_1 = 1,5 \text{ N}$	1 p	
TOTAL	pentru Subjectul al II-lea		15p

IOIAL	pentru Subjecturar in-lea	l 13p		
Subjectul al III-lea				
III.a.	Pentru:	4p		
	$a_1 = \frac{\Delta v}{\Delta t}$			
	rezultat final $a_1 = 1 \text{ m/s}^2$			
b.	Pentru:	3р		
	$L = \Delta E_c$			
	$L = \Delta E_c$ $L = \frac{mv^2}{2}$ 1p			
	rezultat final $L=32,4 \text{ MJ}$			
C.	Pentru:	4p		
	$a_3 = \frac{\Delta v'}{\Delta t'}$			
	$-\frac{mv^2}{2} = ma_3d_3 \Rightarrow d_3 = \frac{v\Delta t_3}{2}$			
	$L_{Fr} = -f \cdot Mg \cdot d_3$			
	rezultat final $L_{Fr} = -64.8 \text{ MJ}$			

d.	Pentru:	4p
	$v_m = \frac{d_1 + d_2 + d_3}{\Delta t}$	
	$\frac{mv^2}{2} = ma_1d_1 \Rightarrow d_1 = \frac{v^2}{2a_1}$	
	$d_2 = v\Delta t_2$	
	rezultat final $v_m = 12,6 \text{ m/s}$	
TOTAL pentru Subiectul al III-lea		

B. ELEMENTE DE TERMODINAMICĂ

(45 de puncte)

Subjectul I

Nr.ltem	Soluţie, rezolvare	Punctaj
I . 1.	C.	3p
2.	a.	3p
3.	b.	3p
4.	C.	3p
5.	d.	3p
TOTAL	Subject I	15p

B. Subiectul al II-lea

II .a.	Pentru:		3p
		<u>2</u> p	•
	···	р	
b.	Pentru: $p_1 = \frac{mRT_1}{\mu V}$	Вр	4р
	rezultat final: $p_1 = 14,5 \cdot 10^5$ Pa	p	
C.	Pentru: $ \frac{p_1}{T_1} = \frac{p_2}{T_2} $ $ T_2 = t_2 + 273 $ 1	?p	4p
	$T_2 = t_2 + 273$	p	
		p	
d.	$v_{am} = \frac{m - \Delta m}{\mu_{O_2}} + \frac{\Delta m}{\mu_{He}}$ $T_3 = \frac{T_2}{1,5}$	р р р	4p
TOTAL	pentru Subiectul al II-lea		15p

B. Subiectul al III-lea

III.a.	Pentru:	4p
	Reprezentare corectă	
b.	Pentru:	4p
	$\Delta U_{13} = \nu C_{V} (T_3 - T_1)$ 1p	
	$T_3 = 4T_1$ $C_V = C_p - R$ 1p	
	$C_{V} = C_{p} - R $ 1p	
	rezultat final: $\Delta U_{13} \cong 18,7 \text{ kJ}$	
C.	Pentru:	4p
	$T_2 = 2T_1 1p$	
	$L_{total} = vR(T_2 - T_1) + 0 + vRT_3 \ln \frac{V_4}{V_3} + 0$ 2p	
	rezultat final: $L_{total} \cong -4,5 \text{ kJ}$	
d.	Pentru:	3р
	$Q_{\text{cedat}} = \nu R T_3 \ln \frac{V_4}{V_3} + \nu C_V (T_1 - T_4)$ 2p	
	rezultat final: $Q_{cedat} \cong -25,7 \text{ kJ}$ 1p	
TOTAL	pentru Subiectul al III-lea	15p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 de puncte)

Test 1

Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	a.	3p
2.	b.	3p
3.	a.	3p
4.	C.	3p
5.	C.	3p
TOTAL Subject I		15p

C. Subiectul al II-lea

II.a.	Pentru:		4p
····a·			Τ.Ρ
	$R = \frac{U_1}{I}$	3p	
	I ₁		
	rezultat final: $R = 24 \Omega$	1p	
b.	Pentru:		4p
	$R_{\rm e} = R + R_{\rm A}$	1p	
	$E_1 = 3E_0$; $r_1 = 3r_0$	1p	
	$I_1 = \frac{E_1}{R_e + r_1}$	1р	
	rezultat final: $R_A = 1,5 \Omega$	1p	
C.	Pentru:		3p
	$U_0 = E_0 - I_1 \cdot r_0$	2p	
	rezultat final: $U_0 = 4,25 \text{ V}$	1p	
d.	Pentru:		4p
	$E_2 = E_0$	1p	
	$r_2 = 3r_0$	1p	
	$I_2 = \frac{E_2}{R_e + r_2}$	1р	
	rezultat final: $I_2 \cong 0,17 \text{ A}$	1 p	
TOTAL	pentru Subiectul al III-lea		15p

C. Subjectul al III-lea

III.a.	Pentru:	4p
	$R_b = \frac{U_n^2}{P_n}$	
	rezultat final: $R_b = 6.25 \Omega$	
b.	Pentru:	4p
	$U = k \cdot U_n$ 3p	
	rezultat final: k = 88 beculete 1p	
C.	Pentru:	4p
	$W = P_n \cdot \Delta t$ 3p	
	rezultat final: $W = 3.6 \text{ kJ}$	
d.	Pentru:	3p
	$I_n = \frac{P_n}{U_n}$	
	$n = \left[\frac{I_{\text{maxim}}}{I_n}\right]$	
	rezultat final: n = 12 ghirlande 1p	
TOTAL pentru Subiectul al III-lea		

Centrul Naţional de Evaluare şi Examinare			
D. OPTICĂ Subiectul I (45 de punc			
	Soluție, rezolvare		Punctaj
I.1.	d		3p
2.	<u>b</u>		3p
3. 4.	d c		3p 3p
5.	c		3p
	Subiect I		15p
Subjectu			0
II.a.	Pentru:		3р
	$C_1 = \frac{1}{f_c}$	2p	
	1	1n	
b.	rezultat final $C_1 \cong 4,76 \mathrm{m}^{-1}$ Pentru:	1p	40
D.			4p
	$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$	3р	
	rezultat final $f_2 = -70 \mathrm{cm}$	1p	
C.	Pentru:	יף	4p
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	3р	
	rezultat final $-x_1 = 90$ cm	1p	
d.	Pentru:		4p
	$\beta = \frac{x_2}{x_1}$	2n	
	x_1	3p	
	rezultat final $\beta = -0.5$	1p	
	Subject al II-lea		15p
Subjectu III.a.	I al III-lea Pentru:		3р
III.a.			3p
	$i = \frac{\lambda D}{2I}$	2p	
	rezultat final $i = 5 \cdot 10^{-4}$ m	1p	
b.	Pentru:		4p
	$\int_{\mathbf{Y}} -\frac{k\lambda D}{k}$		
	^maxk - 2I	2p	
	$X_{\text{max}_{t}} = \frac{k\lambda D}{t} + \frac{d(n-1)D}{t}$	- P	
	() 2		
	$\begin{cases} x_{\text{max}k} = \frac{k\lambda D}{2I} \\ x_{\text{max}k}' = \frac{k\lambda D}{2I} + \frac{d(n-1)D}{2I} \end{cases}$ $\Delta x = \frac{d(n-1)D}{2I}$	1p	
		1n	
C.	rezultat final $\Delta x = 10^{-2}$ m Pentru:	1p	4p
0.	$\Delta X_{\text{max}} = X_{\text{max}_{l}} - X_{\text{max}_{l}}$	1p	44
		יף	
	$\Delta x_{\text{max}} = \frac{k(\lambda_r - \lambda_v)D}{2I}$	2p	
	rezultat final $\Delta x_{max} = 0.7 \text{mm}$	1p	
d.	Pentru:		4p
	$\frac{k\lambda D}{2I} = X$	1p	
		٠,٣	
	$k \ge \frac{2lx}{\lambda_r D} = 1,6$ $k \le \frac{2lx}{\lambda_r D} = 3$	1p	
	$\Lambda_r D$	•	
	$k \leq \frac{2lx}{l} = 3$	1p	
		·	
TOTAL	rezultat final $k=2$ şi $k=3$, formează maxime două radiaţii	1p	45:-
	pentru Subiectul al III-lea		15p