

Report Project 2

Data Analysis and Statistical Modeling Prof Isabel Rodrigues

Grupo 1

João Matos n°98949 Ana Pinto n°102949 Marina Nóbrega n°103880 Manuel Mota Dias n°96056 Maria Freitas n°96757

Introduction

For this project a datagram is given for us to analyse:

Data frame: Auto

Subset: observation 1 to 50 **Variables**: all except name:

- mpg miles per gallon
- cylinders number of cylinders between 4 and 8
- displacement engine displacement (cu. Inches)
- horsepower engine horsepower
- weight vehicle weight (lbs.)
- acceleration time to accelerate from 0 to 60 mph (sec.)
- year model year (modulo 100)
- origin (origin of the car (1. American, 2. European, 3. Japanese)

<u>1</u>

Summary statistics

> # Summary statistics

> summary(auto_subset)

mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
Min. : 9.00	Min. :4.00	Min. : 97.0	Min. : 46.00	Min. :1835	Min. : 8.00	Min. :70.00	Min. :1.00
1st Qu.:14.00	1st Qu.:4.50	1st Qu.:154.5	1st Qu.: 91.25	1st Qu.:2599	1st Qu.:11.50	1st Qu.:70.00	1st Qu.:1.00
Median :17.50	Median :7.00	Median :280.0	Median :121.50	Median :3381	Median :13.75	Median :70.00	Median :1.00
Mean :18.08	Mean :6.48	Mean :268.8	Mean :135.34	Mean :3366	Mean :13.40	Mean :70.42	Mean :1.28
3rd Qu.:22.00	3rd Qu.:8.00	3rd Qu.:357.8	3rd Qu.:173.75	3rd Qu.:4195	3rd Qu.:15.38	3rd Qu.:71.00	3rd Qu.:1.00
Max. :28.00	Max. :8.00	Max. :455.0	Max. :225.00	Max. :5140	Max. :20.50	Max. :71.00	Max. :3.00

	vars	n	sd	trimmed	mad	min	max	range	skew	kurtosis	se	Winsorized_Mean	Variance
mpg	1 5	0 5.209	2539	17.9000	5.18910	9	28.0	19.0	0.37391779	-0.9913305	0.73669976	18.06	27.1363
cylinders	2 5	0 1.693	2037	6.6000	1.48260	4	8.0	4.0	-0.46070716	-1.4771470	0.23945516	6.48	2.8669
displacement	3 5	0 115.753	3839	267.5750	137.14050	97	455.0	358.0	-0.07343823	-1.3197659	16.37007125	263.80	13398.9616
horsepower	4 5	0 49.194	783	132.2750	49.66710	46	225.0	179.0	0.34493617	-1.2440568	6.95716398	131.16	2420.1065
weight	5 5	0 899.005	9865	3342.4250	1202.38860	1835	5140.0	3305.0	0.13682281	-1.2067456	127.13864587	3354.26	808211.7637
acceleration	6 5	0 2.819	3935	13.3375	2.59455	8	20.5	12.5	0.12596323	-0.3767769	0.39872245	13.40	7.9490
year	7 5	0 0.498	694	70.4000	0.00000	70	71.0	1.0	0.31449986	-1.9386713	0.07050836	6.48	0.2486
origin	8 5	0 0.607	1369	1.1250	0.00000	1	3.0	2.0	1.93771682	2.4157790	0.08590455	1.00	0.3690

> #Covariance#

- > auto_cov = round(cov(auto_subset), digits = 4)
- > auto cov

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
mpg	27.1363	-8.1208	-527.3273	-211.8033	-4312.4865	6.8857	0.2310	2.1812
cylinders	-8.1208	2.8669	184.3216	69.9967	1341.4890	-3.1347	-0.1649	-0.7086
displacement	-527.3273	184.3216	13398.9616	5050.3078	90877.8065	-241.3816	-7.4890	-46.2784
horsepower	-211.8033	69.9967	5050.3078	2420.1065	37211.8200	-94.7204	-7.3906	-13.0971
weight	-4312.4865	1341.4890	90877.8065	37211.8200	808211.7637	-1253.5347	-3.7482	-321.2539
acceleration	6.8857	-3.1347	-241.3816	-94.7204	-1253.5347	7.9490	0.2673	0.5082
year	0.2310	-0.1649	-7.4890	-7.3906	-3.7482	0.2673	0.2486	-0.0180
origin	2.1812	-0.7086	-46.2784	-13.0971	-321.2539	0.5082	-0.0180	0.3690

Total Variance

Summary Plots

2.A)

To find the best subset of regressors, we applied the regression model, removing the predictor with the highest Pr(>|t|) until we got the ones that we considered useful:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	88.1914525	40.9568090	2.153	0.037085	*
cylinders	-1.8554467	0.4601097	-4.033	0.000228	***
displacement	0.0036874	0.0079945	0.461	0.647005	
horsepower	-0.0313082	0.0127249	-2.460	0.018074	*
weight	-0.0014804	0.0007306	-2.026	0.049118	*
acceleration	-0.3973985	0.1403159	-2.832	0.007070	**
year	-0.6492297	0.5674529	-1.144	0.259056	
origin	0.9263427	0.5777388	1.603	0.116343	

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	84.6660928	39.8672768	2.124	0.03949	*
cylinders	-1.7606663	0.4078873	-4.317	9.14e-05	***
horsepower	-0.0287331	0.0113296	-2.536	0.01492	*
weight	-0.0014294	0.0007155	-1.998	0.05211	
acceleration	-0.4288316	0.1215273	-3.529	0.00101	**
year	-0.5934321	0.5493096	-1.080	0.28602	
origin	0.8277284	0.5317864	1.557	0.12692	

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	41.7214469	3.0398687	13.725	< 2e-16	***
cylinders	-1.5852955	0.3749030	-4.229	0.000117	***
horsepower	-0.0229062	0.0099822	-2.295	0.026579	*
weight	-0.0018702	0.0005889	-3.176	0.002729	**
acceleration	-0.3882040	0.1157813	-3.353	0.001652	**
origin	0.9604299	0.5183869	1.853	0.070636	

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.3408068 2.3911834 18.962 < 2e-16 ***
cylinders -1.9702777 0.3203725 -6.150 1.87e-07 ***
horsepower -0.0179892 0.0098797 -1.821 0.075285 .
weight -0.0018947 0.0006044 -3.135 0.003026 **
acceleration -0.4238977 0.1172125 -3.616 0.000752 ***
```


Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	43.9154963	2.3155947	18.965	< 2e-16	***
cylinders	-2.0388707	0.3260589	-6.253	1.21e-07	***
weight	-0.0024559	0.0005329	-4.609	3.23e-05	***
acceleration	-0.3250775	0.1064735	-3.053	0.00376	**

In the end, cylinders, weight, and acceleration are the selected ones. We chose these because it would allow us to work with less predictors. The adjusted \mathbf{r}^2 value of the last two iterations is similar and lower in the last iteration.

After fitting a regression model to explain the mpg variable using the predictors we just selected we get the values:

```
\mathbf{r}^2 = 0.891092607413735
\mathbf{r}^2 \mathbf{adj} = 0.8839899513755
```

Given that our \mathbf{r}^2 and \mathbf{r}^2 adj values are relatively high (>0.8), it suggests that the current model explains a significant portion of the variability in the response variable.

2.B)

For this regression we are using p = 3 predictors for n = 50 observations Searching for possible influential/leverage observations we get this:

influenceIndexPlot(reg_mpg)

influencePlot(reg_mpg)

```
StudRes Hat CookD
14 -2.3937542 0.1436755 0.2179395
20 -0.7317671 0.1796745 0.0296206
29 -2.6115400 0.2060838 0.3928817
```


For mpg, the possible leverage observations are 29, 20 and 14. The two observations with highest cook's distance are 14 and 29, so the more possible influential observations are 29 and 14.

2.C)

Calculating the 97.5% Confidence Interval and Prediction Interval for the expected values of the responses for observations 14 and 31 we get:

```
      Obs_14
      Obs_31

      CI ] 2.77279693700092 , 2.92437757683037 [ ] 3.19053386221619 , 3.29633578732302 [ PI ] 2.63475473062577 , 3.06241978320552 [ ] 3.03660472892808 , 3.45026492061112 [
```

The prediction interval (PI) for Obs_14 is noticeably wider than the confidence interval (CI). This wider width in the prediction interval reflects the additional uncertainty associated with predicting individual observations, considering both the uncertainty in estimating the mean and the variability of individual observations.

Similar to Obs_14, the prediction interval (PI) for Obs_31 is wider than the confidence interval (CI). This wider width suggests a higher level of uncertainty when predicting individual observations, considering both the variability in estimating the mean and the variability of individual data points.

In both cases, the prediction intervals are wider than the corresponding confidence intervals. This is a common characteristic, as prediction intervals need to account for the variability in individual observations, making them more conservative and wider. The confidence intervals, on the other hand, primarily focus on the uncertainty around estimating the mean.

In summary, the widths of the prediction intervals highlight the increased uncertainty when making predictions for individual observations compared to estimating the mean.

Conclusion

To finish, this analysis provided a comprehensive understanding of the relationships within the Auto dataset and helped us learn more about regression models and their uses.