

EXHIBIT B

65. (Amended) An isolated DNA molecule coding for a polypeptide having the ability to bind TNF, wherein said polypeptide is selected from the group consisting of:

A) a polypeptide comprising the amino acid sequence:

asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln
asn	asn	ser	ile	cys	cys	thr	lys	cys	his	lys	gly	thr
tyr	leu	tyr	asn	asp	cys	pro	gly	pro	gly	gln	asp	thr
asp	cys	arg	glu	cys	glu	ser	gly	ser	phe	thr	ala	ser
glu	asn	his	leu	arg	his	cys	leu	ser	cys	ser	lys	cys
arg	lys	glu	met	gly	gln	val	glu	ile	ser	ser	cys	thr
val	asp	arg	asp	thr	val	cys	gly	cys	arg	lys	asn	gln
tyr	arg	his	tyr	trp	ser	glu	asn	leu	phe	gln	cys	phe
asn	cys	ser	leu	cys	leu	asn	gly	thr	val	his	leu	ser
cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys	his	ala
gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys	ser
asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn;								

B) a polypeptide comprising the amino acid sequence:

leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser	val
cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser	ile
cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn	asp
cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys	glu
ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his	cys
leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val	glu
ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly	cys
arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu	phe
gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val	his
leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys	his
ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys	ser
asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu	pro
gln	ile	glu	asn;										

C) a polypeptide comprising the amino acid sequence:

asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn
asn	ser	ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu

tyr	asn	asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg
glu	cys	glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu
arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly
gln	val	glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val
cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu
asn	leu	phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly
thr	val	his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys
thr	cys	his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val
ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu
cys	leu	pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp	ser
gly	thr	thr;	[and]										

D) a polypeptide comprising the amino acid sequence:

leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser	val
cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser	ile
cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn	asp
cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys	glu
ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his	cys
leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val	glu
ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly	cys
arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu	phe
gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val	his
leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys	his
ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys	ser
asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu	pro
gln	ile	glu	asn	val	lys	gly	thr	glu	asp	ser	gly	thr	thr;

E) a polypeptide comprising the amino acid sequence of A, B, C or D with at least one conservative amino acid substitution;

F) a polypeptide comprising the amino acid sequence of A, B, C or D with at least one amino acid substitution at a glycosylation site;

G) a polypeptide comprising the amino acid sequence of A, B, C or D with at least one amino acid substitution at a proteolytic cleavage site; and

H) a polypeptide comprising the amino acid sequence of A, B, C or D with at least one amino acid substitution at a cysteine residue.

71. (Amended) An isolated DNA molecule coding for a polypeptide having the ability to bind TNF selected from the group consisting of:

A) a polypeptide comprising the amino acid sequence:

met	asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln
asn	asn	ser	ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr
leu	tyr	asn	asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys
arg	glu	cys	glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his
leu	arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met
gly	gln	val	glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr
val	cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser
glu	asn	leu	phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn
gly	thr	val	his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val
cys	thr	cys	his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys
val	ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys
leu	cys	leu	pro	gln	ile	glu	asn;						

B) a polypeptide comprising the amino acid sequence:

met	leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser
val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser
ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn
asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his
cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly
cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu
phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val
his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys
ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn;									

C) a polypeptide comprising the amino acid sequence:

met	asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln
asn	asn	ser	ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr
leu	tyr	asn	asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys
arg	glu	cys	glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his
leu	arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met
gly	gln	val	glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr

val	cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser
glu	asn	leu	phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn
gly	thr	val	his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val
cys	thr	cys	his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys
val	ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys
leu	cys	leu	pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp
ser	gly	thr	thr;										

D) a polypeptide comprising the amino acid sequence:

met	leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser
val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser
ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn
asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his
cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly
cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu
phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val
his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys
ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp	ser	gly	thr
thr;													

E) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro	leu	val
leu	leu	glu	leu	leu	val	gly	ile	tyr	pro	ser	gly	val	ile
gly	leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser
val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser
ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn
asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his
cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly
cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu
phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val
his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys
ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn;									

F) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro	leu	val
leu	leu	glu	leu	leu	val	gly	ile	tyr	pro	ser	gly	val	ile
gly	leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser
val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser
ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn
asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his
cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly
cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu
phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val
his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys
ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp	ser	gly	thr
thr;													

G) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro	
leu	val	leu	leu	glu	leu	leu	val	gly	ile	tyr	pro	
ser	gly	val	ile	gly	asp	ser	val	cys	pro	gln	gly	
lys	tyr	ile	his	pro	gln	asn	asn	ser	ile	cys	cys	
thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn	asp	
cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	
cys	glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	
leu	arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	
glu	met	gly	gln	val	glu	ile	ser	ser	cys	thr	val	
asp	arg	asp	thr	val	cys	gly	cys	arg	lys	asn	gln	
tyr	arg	his	tyr	trp	ser	glu	asn	leu	phe	gln	cys	
phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val	his	
leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	
cys	his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	
val	ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	
thr	lys	leu	cys	leu	pro	gln	ile	glu	asn;			

H) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro	leu	val
leu	leu	glu	leu	leu	val	gly	ile	tyr	pro	ser	gly	val	ile
gly	asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln
asn	asn	ser	ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr

leu	tyr	asn	asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys
arg	glu	cys	glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his
leu	arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met
gly	gln	val	glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr
val	cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser
glu	asn	leu	phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn
gly	thr	val	his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val
cys	thr	cys	his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys
val	ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys
leu	cys	leu	pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp
ser	gly	thr	thr;	[and]									

I) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro	leu	val
leu	leu	glu	leu	leu	val	gly	ile	tyr	pro	ser	gly	val	ile
gly	leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser
val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser
ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn
asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his
cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly
cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu
phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val
his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys
ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp	ser	gly	thr
thr	val	leu	leu	pro	leu	val	ile	phe	phe	gly	leu	cys	leu
leu	ser	leu	leu	phe	ile	gly	leu	met	tyr	arg	tyr	gln	arg
trp	lys	ser	lys	leu	tyr	ser	ile	val	cys	gly	lys	ser	thr
pro	glu	lys	glu	gly	glu	leu	glu	gly	thr	thr	lys	pro	
leu	ala	pro	asn	pro	ser	phe	ser	pro	thr	pro	gly	phe	thr
pro	thr	leu	gly	phe	ser	pro	val	pro	ser	ser	thr	phe	thr
ser	ser	ser	thr	tyr	thr	pro	gly	asp	cys	pro	asn	phe	ala
ala	pro	arg	arg	glu	val	ala	pro	pro	tyr	gln	gly	ala	asp
pro	ile	leu	ala	thr	ala	leu	ala	ser	asp	pro	ile	pro	asn
pro	leu	gln	lys	trp	glu	asp	ser	ala	his	lys	pro	gln	ser
leu	asp	thr	asp	asp	pro	ala	thr	leu	tyr	ala	val	val	glu
asn	val	pro	pro	leu	arg	trp	lys	glu	phe	val	arg	arg	leu
gly	leu	ser	asp	his	glu	ile	asp	arg	leu	glu	leu	gln	asn
gly	arg	cys	leu	arg	glu	ala	gln	tyr	ser	met	leu	ala	thr
trp	arg	arg	arg	thr	pro	arg	arg	glu	ala	thr	leu	glu	leu
leu	gly	arg	val	leu	arg	asp	met	asp	leu	leu	gly	cys	leu

glu asp ile glu glu ala leu cys gly pro ala ala leu pro
pro ala pro ser leu leu arg;

[I)]J) a polypeptide comprising the amino acid sequence of A, B, C, D, E, F, G, H or I with at least one conservative amino acid substitution;

[J)]K) a polypeptide comprising the amino acid sequence of A, B, C, D, E, F, G, H or I with at least one amino acid substitution at a glycosylation site;

[K)]L) a polypeptide comprising the amino acid sequence of A, B, C, D, E, F, G, H or I with at least one amino acid substitution at a proteolytic cleavage site; and

[L)]M) a polypeptide comprising the amino acid sequence of A, B, C, D, E, F, G, H or I with at least one amino acid substitution at a cysteine residue.

74. (Amended) An isolated DNA molecule, wherein said DNA is selected from the group consisting of:

A) [DNA] a DNA molecule comprising the sequence:

CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA GAT AGT
GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA AAT AAT
TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA ACC TAC TTG
TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG GAC TGC
AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA AAC
CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC CGA AAG
GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG GAC
CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC CGG
CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC TTC AAT TGC
AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC TGC CAG
GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA GGT TTC
TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT AGT AAC TGT
AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA CCC CAG
ATT GAG AAT;

B) [DNA] a DNA molecule comprising the sequence:

CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA GAT AGT
GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA AAT AAT
TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA ACC TAC TTG
TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG GAC TGC
AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA AAC
CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC CGA AAG
GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG GAC
CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC CGG
CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC TTC AAT TGC
AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC TGC CAG
GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA GGT TTC
TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT AGT AAC TGT
AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA CCC CAG
ATT GAG AAT GTT AAG GGC ACT GAG GAC TCA GGC ACC ACA;

C) [DNA] a DNA molecule comprising the sequence:

GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA
AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA ACC
TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG
GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA
GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC
CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA
GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG
TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC TTC
AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC
TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA
GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT AGT
AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA
CCC CAG ATT GAG AAT; [and]

D) [DNA] a DNA molecule comprising the sequence:

GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT
CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA
ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT
ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT
TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA
TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC
ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC
CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC
TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT

GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT
AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC
CTA CCC CAG ATT GAG AAT GTT AAG GGC ACT GAG GAC TCA
GGC ACC ACA;

E) a DNA molecule comprising the sequence of A, B, C or D encoding at least one conservative amino acid substitution;

F) a DNA molecule comprising the sequence of A, B, C or D encoding at least one amino acid substitution at a glycosylation site;

G) a DNA molecule comprising the sequence of A, B, C or D encoding at least one amino acid substitution at a proteolytic cleavage site; and

H) a DNA molecule comprising the sequence of A, B, C or D encoding at least one amino acid substitution at a cysteine residue.

75. (Amended) [DNA] An isolated DNA molecule coding for a polypeptide having the ability to bind to TNF, wherein said DNA coding said polypeptide is selected from the group consisting of:

A) [DNA] a DNA molecule comprising the sequence:

ATG CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA GAT
AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA AAT
AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA ACC TAC
TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG GAC
TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA
AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC CGA
AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG
GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC
CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC TTC AAT
TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC TGC
CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA GGT
TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT AGT AAC
TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA CCC
CAG ATT GAG AAT;

B) [DNA] a DNA molecule comprising the sequence:

ATG CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA GAT
AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT CAA AAT
AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA ACC TAC
TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT ACG GAC
TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA
AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC CGA
AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG
GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC
CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC TTC AAT
TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC TCC TGC
CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT GCA GGT
TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT AGT AAC
TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC CTA CCC
CAG ATT GAG AAT GTT AAG GGC ACT GAG GAC TCA GGC ACC
ACA;

C) [DNA] a DNA molecule comprising the sequence:

ATG GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT
CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA
ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT
ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT
TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA
TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC
ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC
CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC
TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT
GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT
AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC
CTA CCC CAG ATT GAG AAT;

D) [DNA] a DNA molecule comprising the sequence:

ATG GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT
CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA
ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT
ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT
TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA
TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC

ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC
CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC
TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT
GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT
AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC
CTA CCC CAG ATT GAG AAT GTT AAG GGC ACT GAG GAC TCA
GGC ACC ACA;

E) [DNA] a DNA molecule comprising the sequence:

ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA
CTG GTG CTC CTG GAG CTG TTG GTG GGA ATA TAC CCC
TCA GGG GTT ATT GGA CTG GTC CCT CAC CTA GGG GAC
AGG GAG AAG AGA GAT AGT GTG TGT CCC CAA GGA AAA
TAT ATC CAC CCT CAA AAT AAT TCG ATT TGC TGT ACC
AAG TGC CAC AAA GGA ACC TAC TTG TAC AAT GAC TGT
CCA GGC CCG GGG CAG GAT ACG GAC TGC AGG GAG TGT
GAG AGC GGC TCC TTC ACC GCT TCA GAA AAC CAC CTC
AGA CAC TGC CTC AGC TGC TCC AAA TGC CGA AAG GAA
ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG GAC
CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG TAC
CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC TTC
AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC
TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC
CAT GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC
TCC TGT AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG
AAG TTG TGC CTA CCC CAG ATT GAG AAT;

F) [DNA] a DNA molecule comprising the sequence:

ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA CTG
GTG CTC CTG GAG CTG TTG GTG GGA ATA TAC CCC TCA GGG
GTT ATT GGA CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG
AGA GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT
CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA
ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT
ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT
TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA
TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC
ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC
CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC

TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT
GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT
AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC
CTA CCC CAG ATT GAG AAT GTT AAG GGC ACT GAG GAC TCA
GGC ACC ACA;

G) [DNA] a DNA molecule comprising the sequence:

ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA
CTG GTG CTC CTG GAG CTG TTG GTG GGA ATA TAC CCC
TCA GGG GTT ATT GGA GAT AGT GTG TGT CCC CAA GGA
AAA TAT ATC CAC CCT CAA AAT AAT TCG ATT TGC TGT
ACC AAG TGC CAC AAA GGA ACC TAC TTG TAC AAT GAC
TGT CCA GGC CCG GGG CAG GAT ACG GAC TGC AGG GAG
TGT GAG AGC GGC TCC TTC ACC GCT TCA GAA AAC CAC
CTC AGA CAC TGC CTC AGC TGC TCC AAA TGC CGA AAG
GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC ACA GTG
GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC CAG
TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC
CTC TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC
TGC CAT GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT
GTC TCC TGT AGT AAC TGT AAG AAA AGC CTG GAG TGC
ACG AAG TTG TGC CTA CCC CAG ATT GAG AAT;

H) [DNA] a DNA molecule comprising the sequence:

ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA CTG
GTG CTC CTG GAG CTG TTG GTG GGA ATA TAC CCC TCA GGG
GTT ATT GGA GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC
CAC CCT CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC
AAA GGA ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG
CAG GAT ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC
ACC GCT TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC
TCC AAA TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT
TCT TGC ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG
AAG AAC CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC
CAG TGC TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG
CAC CTC TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC
TGC CAT GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC
TCC TGT AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG
TTG TGC CTA CCC CAG ATT GAG AAT GTT AAG GGC ACT GAG
GAC TCA GGC ACC ACA; [and]

I) [DNA] a DNA molecule comprising the sequence:

ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA CTG
GTG CTC CTG GAG CTG TTG GTG GGA ATA TAC CCC TCA GGG
GTT ATT GGA CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG
AGA GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT
CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA
ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT
ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT
TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA
TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC
ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC
CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC
TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT
GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT
AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC
CTA CCC CAG ATT GAG AAT GTT AAG GGC ACT GAG GAC TCA
GGC ACC ACA GTG CTG TTG CCC CTG GTC ATT TTC TTT GGT
CTT TGC CTT TTA TCC CTC CTC TTC ATT GGT TTA ATG TAT
CGC TAC CAA CGG TGG AAG TCC AAG CTC TAC TCC ATT GTT
TGT GGG AAA TCG ACA CCT GAA AAA GAG GGG GAG CTT GAA
GGA ACT ACT ACT AAG CCC CTG GCC CCA AAC CCA AGC TTC
AGT CCC ACT CCA GGC TTC ACC CCC ACC CTG GGC TTC AGT
CCC GTG CCC AGT TCC ACC TTC ACC TCC AGC TCC ACC TAT
ACC CCC GGT GAC TGT CCC AAC TTT GCG GCT CCC CGC AGA
GAG GTG GCA CCA CCC TAT CAG GGG GCT GAC CCC ATC CTT
GCG ACA GCC CTC GCC TCC GAC CCC ATC CCC AAC CCC CTT
CAG AAG TGG GAG GAC AGC GCC CAC AAG CCA CAG AGC CTA
GAC ACT GAT GAC CCC GCG ACG CTG TAC GCC GTG GTG GAG
AAC GTG CCC CCG TTG CGC TGG AAG GAA TTC GTG CGG CGC
CTA GGG CTG AGC GAC CAC GAG ATC GAT CGG CTG GAG CTG
CAG AAC GGG CGC TGC CTG CGC GAG GCG CAA TAC AGC ATG
CTG GCG ACC TGG AGG CGG CGC ACG CCG CGG CGC GAG GCC
ACG CTG GAG CTG CTG GGA CGC GTG CTC CGC GAC ATG GAC
CTG CTG GGC TGC CTG GAG GAC ATC GAG GAG GCG CTT TGC
GGC CCC GCC GCC CTC CCG CCC GCG CCC AGT CTT CTC AGA;

J) a DNA molecule comprising the sequence of A, B, C, D, E, F, G, H or I encoding at least one conservative amino acid substitution;

K) a DNA molecule comprising the sequence of A, B, C, D, E, F, G, H or I encoding at least one amino acid substitution at a glycosylation site;

L) a DNA molecule comprising the sequence of A, B, C, D, E, F, G, H or I encoding at least one amino acid substitution at a proteolytic cleavage site; and

M) a DNA molecule comprising the sequence of A, B, C, D, E, F, G, H or I encoding at least one amino acid substitution at a cysteine residue.

76. (Amended) A recombinant host cell containing a recombinant DNA molecule comprising a DNA coding for a polypeptide having the ability to bind TNF selected from the group consisting of:

A) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro	leu	val
leu	leu	glu	leu	leu	val	gly	ile	tyr	pro	ser	gly	val	ile
gly	leu	val	pro	his	leu	gly	asp	arg	glu	lys	arg	asp	ser
val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn	asn	ser
ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn
asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his
cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val	cys	gly
cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu	asn	leu
phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly	thr	val
his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys
ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn	val	lys	gly	thr	glu	asp	ser	gly	thr
thr	val	leu	leu	pro	leu	val	ile	phe	phe	gly	leu	cys	leu
leu	ser	leu	leu	phe	ile	gly	leu	met	tyr	arg	tyr	gln	arg
trp	lys	ser	lys	leu	tyr	ser	ile	val	cys	gly	lys	ser	thr
pro	glu	lys	glu	gly	glu	leu	glu	gly	thr	thr	thr	lys	pro
leu	ala	pro	asn	pro	ser	phe	ser	pro	thr	pro	gly	phe	thr
pro	thr	leu	gly	phe	ser	pro	val	pro	ser	ser	thr	phe	thr
ser	ser	ser	thr	tyr	thr	pro	gly	asp	cys	pro	asn	phe	ala
ala	pro	arg	arg	glu	val	ala	pro	pro	tyr	gln	gly	ala	asp
pro	ile	leu	ala	thr	ala	leu	ala	ser	asp	pro	ile	pro	asn
pro	leu	gln	lys	trp	glu	asp	ser	ala	his	lys	pro	gln	ser

leu	asp	thr	asp	asp	pro	ala	thr	leu	tyr	ala	val	val	glu
asn	val	pro	pro	leu	arg	trp	lys	glu	phe	val	arg	arg	leu
gly	leu	ser	asp	his	glu	ile	asp	arg	leu	glu	leu	gln	asn
gly	arg	cys	leu	arg	glu	ala	gln	tyr	ser	met	leu	ala	thr
trp	arg	arg	arg	thr	pro	arg	arg	glu	ala	thr	leu	glu	leu
leu	gly	arg	val	leu	arg	asp	met	asp	leu	leu	gly	cys	leu
glu	asp	ile	glu	glu	ala	leu	cys	gly	pro	ala	ala	leu	pro
pro	ala	pro	ser	leu	leu	arg;							

B) a polypeptide comprising the amino acid sequence:

asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro	gln	asn
asn	ser	ile	cys	cys	thr	lys	cys	his	lys	gly	thr	tyr	leu
tyr	asn	asp	cys	pro	gly	pro	gly	gln	asp	thr	asp	cys	arg
glu	cys	glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu
arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly
gln	val	glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val
cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp	ser	glu
asn	leu	phe	gln	cys	phe	asn	cys	ser	leu	cys	leu	asn	gly
thr	val	his	leu	ser	cys	gln	glu	lys	gln	asn	thr	val	cys
thr	cys	his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val
ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu
cys	leu	pro	gln	ile	glu	asn[.]							

C) a polypeptide comprising the amino acid sequence of [A, B, C or D] A or B with at least one conservative amino acid substitution;

D) a polypeptide comprising the amino acid sequence of [A, B, C or D] A or B with at least one amino acid substitution at a glycosylation site;

E) a polypeptide comprising the amino acid sequence of [A, B, C or D] A or B with at least one amino acid substitution at a proteolytic cleavage site; and

F) a polypeptide comprising the amino acid sequence of [A, B, C or D] A or B with at least one amino acid substitution at a cysteine residue.

77. A recombinant host cell according to claim 76, which is a mammalian cell.

78. A process for preparing a recombinant host cell containing a polypeptide having TNF inhibitory activity comprising producing the polypeptide in a recombinant host cell according to claim 76, under suitable conditions to express the DNA molecule contained therein to produce the polypeptide.

79. A process according to claim 78, wherein said host cell is a prokaryotic cell.

80. (Amended) A process according to claim 79, wherein said host cell is *E. coli*.

81. A process according to claim 78, wherein said host cell is a eukaryotic cell.

82. A process according to claim 81, wherein said host cell is a mammalian cell.

83. A process according to claim 82, wherein said host cell is a Chinese Hamster Ovary cell.

84. A process according to claim 82, wherein said host cell is a COS cell.

85. (Amended) A process according to claim 78, wherein the DNA molecule comprises promoter DNA, other than the promoter DNA for the native polypeptide having TNF inhibitory activity, operatively linked to [the nucleic acid encoding the native] a DNA molecule coding for a polypeptide having the ability to bind TNF [inhibitory activity].

86. (Amended) A process according to claim 78, wherein the host cell is grown under suitable nutrient conditions to amplify the [nucleic acid sequence] DNA molecule.

87. (Amended) An isolated DNA molecule wherein said DNA comprises a sequence selected from the group consisting of:

A)

R² GAT AGT GTG TGT CCC CAA GGA AAA TAT ATC CAC CCT
CAA AAT AAT TCG ATT TGC TGT ACC AAG TGC CAC AAA GGA
ACC TAC TTG TAC AAT GAC TGT CCA GGC CCG GGG CAG GAT
ACG GAC TGC AGG GAG TGT GAG AGC GGC TCC TTC ACC GCT
TCA GAA AAC CAC CTC AGA CAC TGC CTC AGC TGC TCC AAA
TGC CGA AAG GAA ATG GGT CAG GTG GAG ATC TCT TCT TGC
ACA GTG GAC CGG GAC ACC GTG TGT GGC TGC AGG AAG AAC
CAG TAC CGG CAT TAT TGG AGT GAA AAC CTT TTC CAG TGC
TTC AAT TGC AGC CTC TGC CTC AAT GGG ACC GTG CAC CTC
TCC TGC CAG GAG AAA CAG AAC ACC GTG TGC ACC TGC CAT
GCA GGT TTC TTT CTA AGA GAA AAC GAG TGT GTC TCC TGT
AGT AAC TGT AAG AAA AGC CTG GAG TGC ACG AAG TTG TGC
CTA CCC CAG ATT GAG AAT,

wherein R² is absent or is a DNA comprising a sequence coding for a polypeptide which can be cleaved *in vivo*;

- B) a fragment or degenerate variant of the polypeptide of A;
- C) a [polypeptide comprising the amino acid sequence] DNA molecule comprising the sequence of A or B [with] encoding at least one conservative amino acid substitution;
- D) a [polypeptide comprising the amino acid sequence] DNA molecule comprising the sequence of A or B [with] encoding at least one amino acid substitution at a glycosylation site;
- E) a [polypeptide comprising the amino acid sequence] DNA molecule comprising the sequence of A or B [with] encoding at least one amino acid substitution at a proteolytic cleavage site; and
- F) a [polypeptide comprising the amino acid sequence] DNA molecule comprising the sequence of A or B [with] encoding at least one amino acid substitution at a cysteine residue.

88. (Amended) An isolated DNA molecule according to claim 87, wherein R² is a DNA molecule comprising a sequence which codes entirely or partly for a signal sequence.

89. (Amended) An isolated DNA molecule according to claim 87, wherein R² is a DNA molecule comprising the sequence CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA or a fragment thereof.

90. (Amended) An isolated DNA molecule according to claim 88, wherein R² is a DNA molecule comprising the sequence R³ CTG GTC CCT CAC CTA GGG GAC AGG GAG AAG AGA, wherein R³ is a DNA molecule coding for a signal peptide, or a fragment thereof.

91. (Amended) An isolated DNA molecule according to claim 90, wherein R³ is a DNA molecule comprising the sequence:

ATG GGC CTC TCC ACC GTG CCT GAC CTG CTG CTG CCA CTG
GTG CTC CTG GAG CTG TTG GTG GGA ATA TAC CCC TCA GGG
GTT ATT GGA, or a fragment thereof.

92. A nucleic acid which hybridizes with DNA complementary to the DNA defined in claim 87 under conditions of low stringency such that the nucleic acid is useful as a hybridization probe to detect DNA encoding the polypeptide of A or B.

93. (Amended) [A recombinant] An isolated DNA molecule, which is replicable in prokaryotic or eukaryotic host organisms, wherein said DNA molecule contains expression control sequences functionally linked to the DNA [sequence] molecule defined in claim 87, or a degenerate variant or a fragment thereof.

94. (Amended) A process for preparing a recombinant TNF receptor protein, comprising cultivating the host cell of claim [114] 113 and isolating the expressed protein.

95. An isolated DNA molecule coding for a polypeptide selected from the group consisting of:

A) a polypeptide comprising the amino acid sequence:

met	gly	leu	ser	thr	val	pro	asp	leu	leu	leu	pro
leu	val	leu	leu	glu	leu	leu	val	gly	ile	tyr	pro
ser	gly	val	ile	gly	leu	val	pro	his	leu	gly	asp
arg	glu	lys	arg	asp	ser	val	cys	pro	gln	gly	lys
tyr	ile	his	pro	gln	asn	asn	ser	ile	cys	cys	thr
lys	cys	his	lys	gly	thr	tyr	leu	tyr	asn	asp	cys
pro	gly	pro	gly	gln	asp	thr	asp	cys	arg	glu	cys
glu	ser	gly	ser	phe	thr	ala	ser	glu	asn	his	leu
arg	his	cys	leu	ser	cys	ser	lys	cys	arg	lys	glu
met	gly	gln	val	glu	ile	ser	ser	cys	thr	val	asp
arg	asp	thr	val	cys	gly	cys	arg	lys	asn	gln	tyr
arg	his	tyr	trp	ser	glu	asn	leu	phe	gln	cys	phe
asn	cys	ser	leu	cys	leu	asn	gly	thr	val	his	leu
ser	cys	gln	glu	lys	gln	asn	thr	val	cys	thr	cys
his	ala	gly	phe	phe	leu	arg	glu	asn	glu	cys	val
ser	cys	ser	asn	cys	lys	lys	ser	leu	glu	cys	thr
lys	leu	cys	leu	pro	gln	ile	glu	asn	val	lys	gly
thr	glu	asp	ser	gly	thr	thr	val	leu	leu	pro	leu
val	ile	phe	phe	gly	leu	cys	leu	leu	ser	leu	leu
phe	ile	gly	leu	met	tyr	arg	tyr	gln	arg	trp	lys
ser	lys	leu	tyr	ser	ile	val	cys	gly	lys	ser	thr
pro	glu	lys	glu	gly	glu	leu	glu	gly	thr	thr	thr
lys	pro	leu	ala	pro	asn	pro	ser	phe	ser	pro	thr
pro	gly	phe	thr	pro	thr	leu	gly	phe	ser	pro	val
pro	ser	ser	thr	phe	thr	ser	ser	ser	thr	tyr	thr
pro	gly	asp	cys	pro	asn	phe	ala	ala	pro	arg	arg
glu	val	ala	pro	pro	tyr	gln	gly	ala	asp	pro	ile
leu	ala	thr	ala	leu	ala	ser	asp	pro	ile	pro	asn
pro	leu	gln	lys	trp	glu	asp	ser	ala	his	lys	pro
gln	ser	leu	asp	thr	asp	asp	pro	ala	thr	leu	tyr
ala	val	val	glu	asn	val	pro	pro	leu	arg	trp	lys
glu	phe	val	arg	arg	leu	gly	leu	ser	asp	his	glu
ile	asp	arg	leu	glu	leu	gln	asn	gly	arg	cys	leu
arg	glu	ala	gln	tyr	ser	met	leu	ala	thr	trp	arg
arg	arg	thr	pro	arg	arg	glu	ala	thr	leu	glu	leu
leu	gly	arg	val	leu	arg	asp	met	asp	leu	leu	gly
cys	leu	glu	asp	ile	glu	glu	ala	leu	cys	gly	pro
ala	ala	leu	pro	ala	pro	ser	leu	leu	arg;		

B) a polypeptide comprising the amino acid sequence:

asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his	pro
gln	asn	asn	ser	ile	cys	cys	thr	lys	cys	his	lys
gly	thr	tyr	leu	tyr	asn	asp	cys	pro	gly	pro	gly
gln	asp	thr	asp	cys	arg	glu	cys	glu	ser	gly	ser

phe	thr	ala	ser	glu	asn	his	leu	arg	his	cys	leu
ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln	val
glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr	val
cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr	trp
ser	glu	asn	leu	phe	gln	cys	phe	asn	cys	ser	leu
cys	leu	asn	gly	thr	val	his	leu	ser	cys	gln	glu
lys	gln	asn	thr	val	cys	thr	cys	his	ala	gly	phe
phe	leu	arg	glu	asn	glu	cys	val	ser	cys	ser	asn
cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys	leu
pro	gln	ile	glu	asn;							

- C) a fragment of A or B complementary to the DNA encoding the polypeptide of A or B and is useful as a hybridization probe to detect the DNA encoding the polypeptide of A or B;
- D) a polypeptide comprising the amino acid sequence of A, B or C with at least one conservative amino acid substitution;
- E) a polypeptide comprising the amino acid sequence of A, B or C with at least one amino acid substitution at a glycosylation site;
- F) a polypeptide comprising the amino acid sequence of A, B or C with at least one amino acid substitution at a proteolytic cleavage site; and
- G) a polypeptide comprising the amino acid sequence of A, B or C with at least one amino acid substitution at a cysteine residue.

96. (Amended) A DNA according to claim 95, wherein said polypeptide is selected from the group consisting of:

- A) a polypeptide comprising the amino acid sequence:

R ²	asp	ser	val	cys	pro	gln	gly	lys	tyr	ile	his
pro	gln	asn	asn	ser	ile	cys	cys	thr	lys	cys	his
lys	gly	thr	tyr	leu	tyr	asn	asp	cys	pro	gly	pro
gly	gln	asp	thr	asp	cys	arg	glu	cys	glu	ser	gly
ser	phe	thr	ala	ser	glu	asn	his	leu	arg	his	cys

leu	ser	cys	ser	lys	cys	arg	lys	glu	met	gly	gln
val	glu	ile	ser	ser	cys	thr	val	asp	arg	asp	thr
val	cys	gly	cys	arg	lys	asn	gln	tyr	arg	his	tyr
trp	ser	glu	asn	leu	phe	gln	cys	phe	asn	cys	ser
leu	cys	leu	asn	gly	thr	val	his	leu	ser	cys	gln
glu	lys	gln	asn	thr	val	cys	thr	cys	his	ala	gly
phe	phe	leu	arg	glu	asn	glu	cys	val	ser	cys	ser
asn	cys	lys	lys	ser	leu	glu	cys	thr	lys	leu	cys
leu	pro	gln	ile	glu	asn[;],						

wherein R² is absent or is a polypeptide which can be cleaved *in vivo*;

- B) a fragment or functional derivative of the polypeptide of A which binds TNF;
- C) a polypeptide comprising the amino acid sequence of A or B with at least one conservative amino acid substitution;
- D) a polypeptide comprising the amino acid sequence of A or B with at least one amino acid substitution at a glycosylation site;
- E) a polypeptide comprising the amino acid sequence of A or B with at least one amino acid substitution at a proteolytic cleavage site; and
- F) a polypeptide comprising the amino acid sequence of A or B with at least one amino acid substitution at a cysteine residue.

97. A DNA according to claim 96, wherein said polypeptide includes at least one additional amino acid at the amino-terminus, at the carboxyl-terminus, or at both the amino-terminus and at the carboxyl-terminus.

98. A DNA according to claim 97, wherein said polypeptide includes at least one additional amino acid at the amino-terminus and at the carboxyl-terminus.

99. A DNA according to claim 97, wherein said polypeptide includes at least one additional amino acid at the amino-terminus.

100. A DNA according to claim 99, wherein said polypeptide includes a methionine at the amino-terminus.

101. (Amended) A DNA according to claim [100] 97, wherein said polypeptide includes at least one additional amino acid at the carboxyl-terminus.

102. A nucleic acid that hybridizes to a DNA complementary to the DNA defined in claim 96 under conditions of low stringency such that the nucleic acid is useful as a hybridization probe to detect DNA encoding the polypeptide of A or B.

103. (Amended) A vector comprising a DNA [sequence] molecule coding for a TNF binding protein which binds TNF.

104. (Amended) A vector comprising a DNA [sequence] molecule defined in claim 96.

105. (Amended) A vector according to claim 104, which is replicable in a prokaryotic [and/or] or a eukaryotic host cell.

106. A vector according to claim 105, which is replicable in a prokaryotic cell.

107. (Amended) A vector according to claim 106, wherein said DNA [sequence] molecule encodes ATG at the [amino terminus] amino-terminus of the peptide.

108. A vector according to claim 106, which is replicable in *Escherichia coli*.

109. A vector according to claim 105, which is replicable in a eukaryotic cell.

110. A vector according to claim 109, which is replicable in a mammalian cell.

111. A vector according to claim 110, which is replicable in a Chinese Hamster Ovary cell.

112. A vector according to claim 110, which is replicable in a COS cell.

113. (Amended) A recombinant host cell containing a [recombinant] DNA molecule [comprising a DNA sequence defined in] according to claim 97.

114. A host cell according to claim 113, which is a prokaryotic cell.

115. A host cell according to claim 114, which is *Escherichia coli*.

116. A host cell according to claim 113, which is a eukaryotic cell.

117. A host cell according to claim 116, which is a mammalian cell.

118. A host cell according to claim 117, which is a Chinese Hamster Ovary cell.

119. A host cell according to claim 117, which is a COS cell.

120. (Amended) A recombinant host cell according to claim 76, wherein the DNA molecule comprises promoter DNA, other than the promoter DNA for the native polypeptide having the ability to bind TNF, operatively linked to a DNA [sequence defined in claim 96 or 121] molecule coding for a polypeptide having the ability to bind TNF.

121. A process for preparing a polypeptide having the ability to bind TNF comprising producing the polypeptide in a recombinant host cell according to claim 120 under suitable conditions to express the DNA molecule contained therein to produce the polypeptide, and recovering the polypeptide.

122. (Amended) A process for preparing a polypeptide having the ability to bind TNF comprising producing the polypeptide in a recombinant host cell according to claim [120] 113 under suitable conditions to express the DNA molecule contained therein to produce the polypeptide, and recovering the polypeptide.

123. A process according to claim 122, further comprising combining the recovered recombinant polypeptide with a pharmaceutically acceptable carrier to form a pharmaceutical composition.

124. (Amended) A process according to claim [123] 122, further comprising chemically derivatizing the [harvested] recovered recombinant polypeptide.

125. (Amended) A process according to claim 124, further comprising combining the chemically derivatized [recombinant] polypeptide with a pharmaceutically acceptable carrier to form a pharmaceutical composition.

126. (Amended) A process according to claim [125] 122, wherein [said recombinant] the isolated DNA molecule is contained in an expression vector.

127. (Amended) An isolated DNA molecule according to one of claims 65, 71, 74, 75, [87, 95 or 95] 87 or 95, wherein said polypeptide includes at least one additional amino acid at the amino-terminus, at the carboxyl-terminus, or at both the amino-terminus and at the carboxyl-terminus.

128. An isolated DNA molecule according to claim 127, wherein said polypeptide includes at least one additional amino acid at the amino-terminus and at the carboxyl-terminus.

129. An isolated DNA molecule according to claim 127, wherein said polypeptide includes at least one additional amino acid at the amino-terminus.

130. An isolated DNA molecule according to claim 129, wherein said polypeptide includes a methionine at the amino-terminus.

131. An isolated DNA molecule according to claim 127, wherein said polypeptide includes at least one additional amino acid at the carboxyl-terminus.

132. An isolated DNA molecule according to claim 65, 71, 74, 75, 87, 95 or 96, wherein said polypeptide includes a methionine at the amino-terminus and said amino acid substitution is at a glycosylation site.

133. (Amended) An isolated DNA molecule according to claim 65, 71, 74, 75, 87, 95 or 96, wherein said polypeptide includes an amino acid substitution [is] at a glycosylation site.