•oo Exercice 123.

On considère la suite de matrices colonnes (U_n) définie par $U_0 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et pour tout entier naturel $n, U_{n+1} = AU_n$ avec $A = \begin{pmatrix} -1 & 2 \\ 1 & 0, 5 \end{pmatrix}$.

- 1. Calculer à la main U_1 et U_2 .
- 2. Exprimer U_n en fonction de n et donner la matrice U_5 à l'aide de la calculatrice.

••o Exercice 124.

On considère la suite de matrices colonnes (U_n) définie par $U_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et pour tout entier naturel $n, U_{n+1} = AU_n$ avec $A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$. La suite (U_n) a-t-elle un état stable?

••o Exercice 125.

On considère deux suites de nombres réels (x_n) et (y_n) vérifiant pour tout entier naturel : $x_{n+1} = 5x_n + 3y_n$ et $y_{n+1} = -2x_n + 6y_n$.

- 1. On donne $x_3 = 284$ et $y_3 = -56$. Déterminer x_0 et y_0 grâce au calcul matriciel.
- 2. Déterminer x_6 et y_6 grâce au calcul matriciel.

•• Exercice 126.

On considère la suite de matrices colonnes (U_n) définie par $U_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et pour tout entier naturel $n, U_{n+1} = AU_n$ avec $A = \begin{pmatrix} 2 & 3 & 1 \\ 5 & 2 & 4 \\ 8 & 2 & 1 \end{pmatrix}$.

Déterminer si cette suite possède un état stable.

••o Exercice 127.

On considère les matrices $A = \begin{pmatrix} 0, 2 & 0, 1 \\ 0 & 0, 1 \end{pmatrix}$, $B = \begin{pmatrix} 0, 4 \\ 0, 4 \end{pmatrix}$ et $U_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et on considère la suite de matrices (U_n) telles que pour tout entier naturel n,

$$U_{n+1} = AU_n + B.$$

- 1. Déterminer une matrice colonne U telle que U = AU + B.
- 2. On pose $V = U_n U$.
 - (a) Montrer que pour tout entier naturel n, $V_{n+1} = AV_n$ et en déduire l'expression de V_n en fonction de n.
 - (b) En déduire l'expression de U_n en fonction de n.
- 3. Étudier la convergence de la suite (U_n) .

•• Exercice 128.

On considère les matrices $A = \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$,

$$C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $U_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

On considère la suite (U_n) de matrices colonnes par :

$$U_{n+1} = AU_n + C.$$

Montrer que la suite (U_n) converge vers une matrice limite L à déterminer.

• $\circ \circ$ Exercice 129.

Dans chacun des cas suivants, justifier que la matrice P est une matrice de transition, puis représenter le graphe pondéré associé à P.

1.
$$P = \begin{pmatrix} 0.25 & 0.75 \\ 0.5 & 0.5 \end{pmatrix}$$
.

2.
$$P = \begin{pmatrix} 0, 9 & 0, 1 & 0 \\ 0, 3 & 0, 2 & 0, 5 \\ 0, 2 & 0 & 0, 8 \end{pmatrix}.$$

3.
$$P = \begin{pmatrix} \frac{1}{4} & \frac{5}{8} & \frac{1}{8} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}.$$

∞ Exercice 130.

1. Compléter le graphe suivant puis donner la matrice de transition associée :

 Mêmes questions qu'au 1. avec le graphe suivant :

••o Exercice 131.

Pour déterminer la distribution après n transitions d'une chaîne de Markov, Lorea a écrit le script de la fonction distribution d'argument n suivant :

 $\begin{array}{lll} \text{def distribution (n):} \\ & x\,,y \!=\! 0.5\,, \! 0.5 \\ & \text{for i in range(n):} \\ & x\,,y \!=\! 0.25 \!*\! x \!+\! 0.5 \!*\! y\,, \! 0.75 \!*\! x \!+\! 0.5 \!*\! y\, \\ & \text{return } x\,,y \end{array}$

- Donner la matrice de transition et la distribution initiale de cette chaîne de Markov.
- 2. À l'aide de cette fonction, conjecturer le comportement asymptotique de cette chaîne.
- 3. Vérifier le résultat précédent par le calcul.

••• Exercice 132.

La matrice $P = \begin{pmatrix} 0, 3 & 0, 7 \\ 0, 8 & 0, 2 \end{pmatrix}$ est la matrice de transition associée à une chaîne de Markov.

- 1. Représenter le graphe associé.
- 2. Déterminer la distribution invariante de cette chaîne. En déduire le comportement asymptotique de cette chaîne.

••• Exercice 133.

Un atome d'hydrogène peut se trouver dans deux états différents, l'état stable et l'état excité. À chaque nanoseconde, l'atome peut changer d'état.

Partie A - Étude d'un premier milieu

Dans cette partie, on se place dans un premier milieu (milieu 1) où, à chaque nanoseconde, la probabilité qu'un atome passe de l'état stable à l'état excité est 0,005, et la probabilité qu'il passe de l'état excité à l'état stable est 0,6.

On observe un atome d'hydrogène initialement à l'état stable.

On note a_n la probabilité que l'atome soit dans un état stable et b_n la probabilité qu'il se trouve dans un état excité, n nanosecondes après le début de l'observation.

On a donc $a_0 = 1$ et $b_0 = 0$.

On appelle X_n la matrice ligne $X_n = \begin{pmatrix} a_n & b_n \end{pmatrix}$. L'objectif est de savoir dans quel état se trouvera l'atome d'hydrogène à long terme.

- 1. Vérifier que $a_2 = 0,993025$ et $b_2 = 0,006975$.
- 2. Déterminer la matrice A telle que, pour tout entier naturel $n, X_{n+1} = X_n A$.

A est appelée matrice de transition dans le milieu 1.

On rappelle alors que, pour tout entier naturel n,

$$X_n = X_0 A^n.$$

3. On définit la matrice P par $P = \begin{pmatrix} 1 & -1 \\ 1 & 120 \end{pmatrix}$.

On admet que P est inversible et que

$$P^{-1} = \frac{1}{121} \begin{pmatrix} 120 & 1 \\ -1 & 1 \end{pmatrix}.$$

Déterminer la matrice D définie par :

$$D = P^{-1}AP.$$

- 4. Démontrer que, pour tout entier naturel n, $A^n = PD^nP^{-1}$.
- 5. On admet par la suite que, pour tout entier naturel n,

$$A^n = \frac{1}{121} \begin{pmatrix} 120+0,395^n & 1-0,395^n \\ 120\left(1-0,395^n\right) & 1+120\times0,395^n \end{pmatrix}.$$

En déduire une expression de a_n en fonction de n.

6. Déterminer la limite de la suite (a_n) . Conclure.

Partie B - Étude d'un second milieu

Dans cette partie, on se place dans un second milieu (milieu 2), dans lequel on ne connaît pas la probabilité que l'atome passe de l'état excité à l'état stable. On note a cette probabilité supposée constante. On sait, en revanche, qu'à chaque nanoseconde, la probabilité qu'un atome passe de l'état stable à l'état excité est 0,01.

- 1. Donner, en fonction de a, la matrice de transition M dans le milieu 2.
- 2. Après un temps très long, dans le milieu 2, la proportion d'atomes excités se stabilise autour de 2%.

On admet qu'il existe un unique vecteur X, appelé état stationnaire, tel que XM=X, et

que
$$X = (0, 98 \quad 0, 02)$$
.

Déterminer la valeur de a.