Time and Space Complexity

Assignment Solutions

Q1. What is the time, and space complexity of the following code snippet?

```
int a = 0, b = 0;
for (i = 0; i < N; i++) {
    a = a + i;
}
for (j = 0; j < M; j++) {
    b = b + j;
}</pre>
```

Answer: O(N + M) time, O(1) space

Explanation: The first loop is O(N) and the second loop is O(M). Since N and M are independent variables, so we can't say which one is the leading term. Therefore Time complexity of the given problem will be O(N+M). Since variables size does not depend on the size of the input, therefore Space Complexity will be constant or O(1)

Q2. What is the time complexity of the following code snippet?

```
int a = 0;
for (i = 0; i < N; i++) {
    for (j = N; j > i; j--) {
        a = a + i + j;
    }
}
```

Answer: O(N*N)

Explanation:

The above code runs total no of times = N + (N - 1) + (N - 2) + ... 1 + 0= N * (N + 1) / 2= $1/2 * N^2 + 1/2 * N$ O(N^2) times.

Q3. What is the time complexity of the following code snippet?

```
int i, j, k = 0;
for (i = n / 2; i <= n; i++) {
    for (j = 2; j <= n; j = j*2) {
        k = k + n / 2;
    }
}</pre>
```

Answer: O(nLogn)

Assignment Solutions

Explanation: j keeps doubling till it is less than or equal to n. Several times, we can double a number till it is less than n would be log(n).

```
Let's take the examples here.
```

```
for n = 16, j = 2, 4, 8, 16
for n = 32, j = 2, 4, 8, 16, 32
So, j would run for O(\log n) steps.
i runs for n/2 steps.
So, total steps = O(n/2 * \log (n)) = O(n*\log n)
```

Q4. What is the time complexity of the following code snippet?

```
int a = 0, i = N;
while (i > 0) {
    a += i;
    i /= 2;
}
```

Answer: O(log N)

Explanation: We have to find the smallest x such that $(N / 2^x) < 1 \text{ OR } 2^x > N'$ x = log(N)

Q5. What will be the time complexity of the following code snippet?

```
for(int i=0;i<n;i++){
    i*=k
}</pre>
```

Answer: O(log_kn)

Explanation: Because loops for the k^{n-1} times, so after taking log, it becomes $log_k n$.