Типовой расчёт №2 по функциональному анализу, 6 семестр

Задачи 1-3

В задачах 1-3 под $M,\,w,$ и φ понимаются следующие множества и функции:

1.
$$M = (-1, 1), w(t) = |t|, \varphi(t) = \sqrt{1 - t^2}$$

2.
$$M = (0, +\infty), w(t) = e^{-t}, \varphi(t) = \sin t$$

3.
$$M = (-1, 1), w(t) = \sqrt{1 - t^2}, \varphi(t) = t^3$$

4.
$$M = (0, \pi), w(t) = t(\pi - t), \varphi(t) = \cos t$$

5.
$$M = (-\infty, 0), w(t) = e^t, \varphi(t) = \cos t$$

6.
$$M = (-1, 1), w(t) = \sqrt{\frac{1-t}{1+t}}, \varphi(t) = \sqrt{1+t}$$

7.
$$M = (0,1), w(t) = t^3, \varphi(t) = \frac{1}{\sqrt{t}}$$

8.
$$M = (0, +\infty), w(t) = te^{-3t}, \varphi(t) = e^t$$

9.
$$M = (0,1), w(t) = t^2(1-t), \varphi(t) = \sqrt{t}$$

10.
$$M = (-1, 1), w(t) = 1, \varphi(t) = e^t$$

11.
$$M = (-\infty, +\infty), w(t) = e^{-t^2}, \varphi(t) = e^{-2t}$$

12.
$$M = (0, 2), w(t) = t, \varphi(t) = \sqrt{2-t}$$

13.
$$M = (-1, 1), w(t) = \frac{1}{\sqrt{1-t^2}}, \varphi(t) = \sqrt{1+t}$$

14.
$$M = (0, +\infty), w(t) = \sqrt{t}e^{-t}, \varphi(t) = \sqrt{t}$$

15.
$$M = (0,1), w(t) = \frac{1-t}{\sqrt{t}}, \varphi(t) = \sqrt{1-t}$$

16.
$$M = (-1, 1), w(t) = 1 - t^2, \varphi(t) = \sqrt{1 - t}$$

17.
$$M = (-\infty, 0), w(t) = e^{2t}, \varphi(t) = e^{t}$$

18.
$$M = (0,1), w(t) = t^2, \varphi(t) = \sqrt{1-t}$$

19.
$$M = (-\pi, \pi], w(t) = \pi - t, \varphi(t) = \sin t$$

20.
$$M = (0, +\infty), w(t) = t^2 e^{-t}, \varphi(t) = \frac{1}{t}$$

21.
$$M=(0,1), w(t)=t, \varphi(t)=\frac{1}{\sqrt{t}}$$

22.
$$M = (0,1), w(t) = \frac{1}{\sqrt{t}}, \varphi(t) = \sqrt{t}$$

23.
$$M = (0, +\infty), w(t) = \frac{e^{-t}}{\sqrt{t}}, \varphi(t) = t\sqrt{t}$$

24.
$$M = (0,1), w(t) = 1 - t^2, \varphi(t) = \frac{1}{\sqrt{1-t}}$$

Под $C_{L_2}(M;w)$ будем понимать пространство непрерывных вещественных функций f, заданных на множестве M, для которых сходится интеграл $I(f)=\int_M |f(t)|^2 w(t)\,dt$, под $P_2(M;w)$ — его подпространство, содержащее многочлены степени не выше 2.

Задача 1

- 1. Убедитесь, что $P_2(M; w) \subset C_{L_2}(M; w)$.
- 2. Докажите, что функционал $\|f\| = \sqrt{I(f)}$ обладает свойствами нормы в пространстве $C_{L_2(M;w)}$.
- 3. Докажите, что на $C_{L_2}(M;w)$ можно задать скалярное произведение с помощью формулы $(f,g)=\int_M f(t)g(t)w(t)\,dt,$ и это скалярное произведение согласовано с описанной выше нормой.
- 4. Убедитесь, что $\varphi \in C_{L_2(M;w)}$, найдите $\|\varphi\|$

Задача 2

Используя процесс ортогонализации Грама-Шмидта, постройте w-ортонормированный (в смысле описанного выше скалярного произведения) базис подпространства $P_2(M;w)$.

Задача 3

Найдите ортогональную проекцию элемента φ на $P_2(M;w)$, представив её в виде линейной комбинации найденных базисных элементов и в виде линейной комбинации степеней t. Найдите расстояние от φ до $P_2(M;w)$ и относительную погрешность аппроксимации.

Задачи 4-5

В задачах 4-5 M – множество, C(M) – пространство непрерывных ограниченных вещественных функций, заданных на $M, x \in C(M), f \in C(M)$ – функции, $A: C(M) \to C(M)$ – оператор.

Задача 4

Описать образ и ядро оператора A, найти его собственные числа и соответствующие собственные функции.

Задача 5

Решить уравнение x = Ax + f.

Варианты:

1.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} \sin(t+s)x(s) ds, f(t) = t$$

2.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\sin t + s \cos t) x(s) ds, f(t) = 1$$

3.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\sin s + t \cos s) x(s) ds, f(t) = \sin t$$

4.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\sin s + \cos t \cos s) x(s) ds, f(t) = \sin t$$

5.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (s \sin t - \cos s) x(s) ds, f(t) = \cos t$$

6.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\sin t - s \cos s) x(s) ds, f(t) = \cos t$$

7.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\cos s \sin t + \sin s) x(s) ds, f(t) = t$$

8.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\cos s + \sin t) x(s) ds, f(t) = \cos t$$

9.
$$M = [0, \pi/2], (Ax)(t) = \int_0^{\pi/2} \sin(t+s)x(s) ds, f(t) = 1$$

10.
$$M = [0, \pi/2], (Ax)(t) = \int_0^{\pi/2} \cos(t-s)x(s) ds, f(t) = \sin 2t$$

11.
$$M = [0, \pi/2], (Ax)(t) = \int_0^{\pi/2} (s \sin t + \cos s) x(s) ds, f(t) = t$$

12.
$$M = [0, \pi/2], (Ax)(t) = \int_0^{\pi/2} (t \sin s + \cos t) x(s) ds, f(t) = \sin t$$

13.
$$M = [-\pi/2, \pi/2], (Ax)(t) = \int_{-\pi/2}^{\pi/2} (\cos t - s) x(s) ds, f(t) = \sin t$$

14.
$$M = [-\pi/2, \pi/2], (Ax)(t) = \int_{-\pi/2}^{\pi/2} (\cos t \sin s - ts) x(s) ds, f(t) = \sin 2t$$

15.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\sin t \sin s - t \cos s) x(s) ds, f(t) = \cos t$$

16.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\sin t \sin s - s \cos t) x(s) ds, f(t) = t$$

17.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (t \cos s - s \sin t) x(s) ds, f(t) = \cos t$$

18.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (t \cos s + s)x(s) ds, f(t) = \sin t$$

19.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (t \cos s + \sin s)x(s) ds, f(t) = \cos t$$

20.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (s \cos t + \sin s)x(s) ds, f(t) = t$$

21.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (s \cos t + \sin t)x(s) ds, f(t) = 1$$

22.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (s \cos t + t \sin t)x(s) ds, f(t) = \sin t$$

23.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (s \cos t + t \sin s)x(s) ds, f(t) = \sin t$$

24.
$$M = [0, \pi], (Ax)(t) = \int_0^{\pi} (\cos s - s \sin t) x(s) ds, f(t) = \cos t$$