普遍性が魅せる美しき世界

ゐぶ

目次

流れ

- ●巻
- 関手
- 自然変換
- 始対象,終対象
- 積, 余積
- イコライザ, コイコライザ
- 引き戻し, 押し出し

定義

- 対象の集まり ob(ダ)
- 各 $A, B \in ob(\mathscr{A})$ について, A から B への射の集まり $\mathscr{A}(A, B)$
- 各 A, B, C ∈ ob(𝒜) について, 合成とよばれる関数

ullet 各 $A\in ob(\mathscr{A})$ について,A 上の恒等射とよばれる $\mathscr{A}(A,A)$ の元 1_A

からなり,以下の公理を満たすものである.

結合法則:任意の $f \in \mathscr{A}(A,B)$, $g \in \mathscr{A}(B,C)$, $h \in \mathscr{A}(C,D)$ について $(h \circ g) \circ f = h \circ (g \circ f)$ が成立する.

単位法則:任意の $f \in \mathcal{A}(A,B)$ について, $f \circ 1_A = f = 1_B \circ f$ が成立する.

例

- 圏 Set は集合を対象とし、写像を射とした圏である.
- 圏 Grp は群を対象とし、群準同型写像を射とした圏である.
- 圏 **Ab** はアーベル群を対象とし、アーベル群の間の群準同型写像を射とした圏である。
- 圏 Mon はモノイドを対象とし、モノイド準同型写像を射とした圏である。
- 圏 Ring は環を対象とし、環準同型写像を射とした圏である。
- 圏 CRing は可換環を対象とし、可換環の間の環準同型写像を射とした圏である。
- **Vect_k** は体 **k** 上の線形空間を対象とし、線形写像を射とした圏である。
- 圏 **Top** は位相空間を対象とし、連続写像を射とした圏である.
- 圏 Man は可微分多様体を対象とし, 可微分写像を射とした圏である.
- 圏 Meas は可測空間を対象とし、可測関数を射とした圏であ 4./26

同型射

定義

圏 \mathscr{A} の射 $f: A \to B$ が同型射であるとは,

射 $g:B \to A$ が存在して, $g \circ f = id_A$ かつ $f \circ g = id_B$ が成立する. A から B に同型射が存在するとき, A と B は同型といい, $A \cong B$ と書く.

例

- 圏 Set の同型射は全単射である.
- 圏 **Grp** の同型射は群同型写像である.
- 圏 Ring の同型射は環同型写像である.
- 圏 **Top** の同型射は同相写像である.
- 圏 Man の同型射は微分同相写像である.

関手

定義

 \mathcal{A}, \mathcal{B} を圏とする. 関手 $F: \mathcal{A} \to \mathcal{B}$ とは,

- $A \mapsto F(A)$ と書かれる関数 $ob(\mathscr{A}) \to ob(\mathscr{B})$
- $A, A' \in ob(\mathscr{A})$ について, $f \mapsto F(f)$ と書かれる関数 $\mathscr{A}(A, A') \to \mathscr{B}(F(A), F(A'))$ からなり, 以下の公理を満たすものである.

 \mathscr{A} で $f:A\to A',\ f':A'\to A''$ となるものについて, $F(f'\circ f)=F(f')\circ F(f)$ $A\in ob(\mathscr{A})$ について, $F(1_A)=1_{F(A)}$

関手の例

冪集合関手

 $\mathfrak{P}: \mathbf{Set} \to \mathbf{Set}$

対象は各集合 A に対して, A の全ての部分集合 $S \subset A$ から成る冪集合 $\mathfrak{P}(A)$ を対応させる.

射は、 $f:A \to B$ に対して、各 $S \subset A$ をその像 $f(S) \subset B$ に写す写像 $\mathfrak{P}(A) \to \mathfrak{P}(B)$ を対応させる

 $\mathfrak{P}(A) o \mathfrak{P}(B)$ を対応させる.

 $\mathfrak{P}(1_A) = 1_{\mathfrak{P}(A)}$ と $\mathfrak{P}(g \circ f) = \mathfrak{P}(g) \circ \mathfrak{P}(f)$ を満たすため実際に関手になっていることが分かる.

自然変換

定義

 \varnothing を圏とし、F 、G : \varnothing → \mathscr{B} を関手とする. 自然変換 α : F → G とは \varnothing の対象で添字づけられた \mathscr{B} の射の族 $(F(A) \xrightarrow{\alpha_A} G(A))_{A \in \varnothing}$ であり、 \varnothing の各射 $A \xrightarrow{f} A'$ について図式

$$F(A) \xrightarrow{F(f)} F(A')$$

$$\alpha_{A} \downarrow \qquad \qquad \downarrow \alpha_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

が可換になるものをいう. 射 α_A は α の成分とよばれる.

自然変換の例

行列式

2 種類の関手 M_n : CRing \rightarrow Mon と U: CRing \rightarrow Mon を考える. M_n は対象である可換環 R に対して, R 成分の $n \times n$ 行列 $M_n(R)$ を対応させる.

 $M_n(R)$ は実際乗法においてモノイドになっていることが分かる. 射である環準同型写像 $R \to S$ に対して, モノイド準同型写像 $M_n(R) \to M_n(S)$ に対応させる.

U は忘却関手である.

 $X \in M_n(R)$ は行列式 $\det_R(X) \in R$ を持ち, 行列式の性質

$$\det_R(XY) = \det_R(X)\det_R(Y)$$
 , $\det_R(I) = 1$

から各 R について $\det_R: M_n(R) \to U(R)$ がモノイド準同型写像である事が分かる.

自然変換の例

行列式

行列式は全ての環について同じ式で定義されるため, 図式

$$M_n(R) \xrightarrow{M_n(f)} M_n(S)$$
 $\det_R \downarrow \qquad \qquad \det_S$
 $U(R) \xrightarrow{U(f)} U(S)$

は可換である. したがって, 行列式は自然変換であることが分かる.

始対象,終対象

定義

 $I \in ob(\mathscr{A})$ が始対象であるとは、次の性質を満たすときをいう. 任意の対象 $A \in ob(\mathscr{A})$ に対し、I から A への射がただ一つ存在する.

 $T \in ob(\mathscr{A})$ が終対象であるとは、次の性質を満たすときをいう. 任意の対象 $A \in ob(\mathscr{A})$ に対し、A から T への射がただ一つ存在する.

例

Set の始対象は空集合であり、終対象は一点集合である.

定義

 $\mathscr A$ を圏とし, $X,Y\in ob(\mathscr A)$ をとる. X と Y の積とは, 対象 P と射

$$X \stackrel{p_1}{\longleftarrow} P \stackrel{p_2}{\longrightarrow} Y$$

からなる三つ組 (P, p_1, p_2) であり、 $\mathscr A$ の任意の対象と射

$$X \stackrel{f_1}{\longleftarrow} A \stackrel{f_2}{\longrightarrow} Y$$

について.

が可換になるような射 $\overline{f}:A\to P$ がただ一つ存在するという性質をもつもののことである. 12 / 26

余積

定義

 \mathscr{A} を圏とし, $X,Y \in ob(\mathscr{A})$ をとる. X と Y の余積とは, 対象 P と射

$$X \stackrel{p_1}{\longrightarrow} P \stackrel{p_2}{\longleftarrow} Y$$

からなる三つ組 (P, p_1, p_2) であり、 $\mathscr A$ の任意の対象と射

$$X \xrightarrow{f_1} A \xleftarrow{f_2} Y$$

について,

が可換になるような射 $\bar{f}: P \to A$ がただ一つ存在するという性質をもつもののことである.

Set の積

Set における積は直積集合である.

実際, S_1 , S_2 を集合とし, 直積集合

$$S_1 \times S_2 = \{(s_1, s_2) | s_1 \in S_1, s_2 \in S_2\}$$

をとる. $S_1 \times S_2$ から S_1 , S_2 に, 自然な射影が,

$$p_1: S_1 \times S_2 \to S_1 ; p_1((s_1, s_2)) = s_1,$$

$$p_2: S_1 \times S_2 \to S_2 ; p_2((s_1, s_2)) = s_2$$

により得られる.

Set の積

ここで集合 X と写像 $f_1: X \rightarrow S_1$, $f_2: X \rightarrow S_2$ が任意に与えられたとする.

このとき, 写像 (f_1, f_2) を

$$(f_1, f_2): X \to S_1 \times S_2 ; x \mapsto (f_1(x), f_2(x))$$

により定めると, これは

を可換にする唯一の写像である. したがって, 積の普遍性を満たす.

(**R**,≤) の積

 (\mathbf{R}, \leq) の積は最小値である. つまり, $x, y \in \mathbf{R}$ の積は $\min\{x, y\}$ である.

(꽈(S),⊂) の積

 $(\mathfrak{P}(S), \subset)$ の積は共通部分である. つまり, $X,Y \in \mathfrak{P}(S)$ の積は $X \cap Y$ である.

イコライザ

定義

 \mathscr{A} を圏とし、 $X \xrightarrow{s} Y$ を \mathscr{A} の対象と射とする. $s \ge t$ のイコライザ とは、対象 E と射 $E \xrightarrow{i} X$ であって、 $E \xrightarrow{i} X \xrightarrow{s} Y$ につい

て, $s \circ i = t \circ i$ を満たし, 任意の対象と射 $A \xrightarrow{f} X \xrightarrow{s} Y$ で $s \circ f = t \circ f$ を満たすものについて.

が可換になる射 $A \xrightarrow{f} E$ がただ一つ存在するという性質を持つものである. 17 / 26

コイコライザ

定義

 \mathscr{A} を圏とし、 $X \xrightarrow{s} Y$ を \mathscr{A} の対象と射とする. $s \ge t$ のコイコライザとは、対象 C と射 $Y \xrightarrow{p} C$ であって、 $X \xrightarrow{s} Y \xrightarrow{p} C$ につい

て、 $p \circ s = p \circ t$ を満たし、任意の対象と射 $X \xrightarrow[t]{s} Y \xrightarrow[t]{f} A$ で $f \circ s = f \circ t$ を満たすものについて、

が可換になる射 $C \xrightarrow{f} A$ がただ一つ存在するという性質を持つものである.

Set のイコライザ

集合と関数 $X \xrightarrow{s} Y$ について,

$$E = \{x \in X \mid s(x) = t(t)\}$$

はイコライザである. $E \stackrel{i}{\longrightarrow} X$ を包含写像とすると,

を満たすことが分かる. つまり, イコライザは方程式の解集合を記述している.

引き戻し

定義

∅ を圏とし, ∅ の対象と射

について, 引き戻しとは, 図式

$$P \xrightarrow{p_1} Y$$

$$p_2 \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{c} Z$$

を可換にする三つ組 (P, p_1, p_2) であり、 $\mathscr A$ の任意の可換四角図式

引き戻し

定義

について,

を可換になる $A \xrightarrow{\bar{f}} P$ がただ一つ存在するという性質を持つものである. 21/26

押し出し

定義

∅ を圏とし, ∅ の対象と射

$$X \xrightarrow{S} Y$$

$$t \downarrow \\
Z$$

について,押し出しとは,図式

$$\begin{array}{c|c}
X \xrightarrow{s} Y \\
t \downarrow & \downarrow p_1 \\
Z \xrightarrow{p_2} P
\end{array}$$

を可換にする三つ組 (P, p_1, p_2) であり、 $\mathscr A$ の任意の可換四角図式

押し出し

定義

について,

を可換になる $P \xrightarrow{\bar{f}} A$ がただ一つ存在するという性質を持つものである.

Set の引き戻し

逆像は **Set** の引き戻しである. 実際, 関数 $X \xrightarrow{f} Y$ と部分集合 $Z \subset Y$ について, $f^{-1}(Z) = \{x \in X \mid f(x) \in Z\} \subset X$ と,

$$f': f^{-1}(Z) \longrightarrow Z$$

$$\psi \qquad \psi$$

$$x \longmapsto f(x)$$

と包含写像 $Z \xrightarrow{\jmath} Y$ と $f^{-1}(Z) \xrightarrow{i} X$ が得られ、図式

を可換にする.

Set の引き戻し

任意の可換四角図式

について,

を可換にする $A \xrightarrow{k} f^{-1}(Z)$ がただ一つ存在する.

参考文献

- Tom Leinster (著) · 「Basic Category Theory」 · Cambridge University Press · 2014
- Emily Riehl (著) ·「Category Theory in Context」· Dover Publications · 2016
- http://alg-d.com/math/
- Saunders MacLane (原著), 三好 博之 (翻訳), 高木 理 (翻訳)・ 「圏論の基礎」・丸善出版・2012
- Steve Awodey (著), 前原 和寿 (訳)・「 圏論 原著第 2 版」・共立 出版株式会社・2015
- 加藤 五郎 (著)・「コホモロジーのこころ」・岩波書店・2015