

Evaluating Trustworthiness of Multiple Overlapping Data Sources

Yeasmin Ara Akter 1 , Aberto Abelló 2 , Petar Jovanovic 3 , Tomer Sagi 4 , Katja Hose 5

Universitat Politècnica de Catalunya, Barcelona, Spain

4,5

Aalborg University, Denmark

¹☑ yeasmin.ara.akter@upc.edu, ²☑ aabello@essi.upc.edu, ³☑ petar@essi.upc.edu, ⁴☑ tsagi@cs.aau.dk, ⁵☑ khose@cs.aau.dk 04/07/2022

INTRODUCTION

Information Fusion

- Integrating multiple data sources to produce more consistent, accurate, and useful information than that provided by any individual data source.
- Fusing data from multiple overlapping data sources
- Discovering the true value from noisy information

Figure 1 – Sea surface temperature from different sources

Related Work

Table 1: Related Work

Systems	Туре	Uncertainty Handling	Truth Discovery Method			Evaluation Metric
			Considered Source Dependency	Truth Computation	Ground Truth Evaluation	
Apollo-social [2]	Probabilistic Graphical Model	×	×	Maximum Likelihood	×	Precision, Recall
CATD [3]	Optimization	×	×	Weighted averaging	×	MAE, RMSE
RCHDTD [4]	Optimization	×	×	Weighted Voting Weighted Median	✓	Mean Normalized Absolute Distance (MNAD)
SmartMTD [6]	Probabilistic Graphical Model	×	✓	Majority Voting	✓	Precision, Recall, F1-Score, Execution Time
EPTD [5]	Iterative	×	×	Majority Voting	✓	MAE, RMSE
SRTD [7]	Iterative	✓	×	Majority Voting	✓	Specificity (SPC), Matthews Correlation Coefficient (MCC), Cohen's Kappa (Kappa)
RPPTD [8]	Optimization	×	×	Majority Voting	✓	Execution Time
RTD [9]	Iterative	×	×	Mean Shift Clustering	✓	MAE, MSE, R-Squared

Limitations:

- Uncertainty is ignored in most of the trustworthiness evaluation system
- Different data type must be treated differently
- Use of gold standard data
- Error is not traced throughout the workflow
- No specific evaluation metric to provide overall degree of trustworthiness

Objectives

- Determining a representation method for both uncertain and missing data
- Determining an efficient attribute conflict resolution method that supports aligning data from multiple sources
- Developing an efficient tracing method of data transformations with the help of data provenance techniques to represent the propagation of trust
- Determining a metric to estimate the degree of trustworthiness of sources given multiple overlapping data sources

Proposed Architecture

Figure 2 – Trustworthiness Development Process

Challenges

- Differentiating Contradictory and missing data
- Source Dependency
- Proper Domain Subdivision
- Tracing the errors throughout the data transformation workflow
- Identifying best provenance technique
- Defining a metric to decide the overall degree of trustworthiness
- Having master data is difficult to evaluate the system

Use Case

Environmental data source has been used as the use case where four different sources provide sea surface temperatures. Table 2 shows how much data are provided by each individual source. Figure 3 & Figure 4 illustrate the data statistics (Min, Max, Average, Median) of the sources.

Table 2: Data Source Desciptions

Source Name	Values	Resolution	Number of	Number			
			Non-Null Data	of Null			
			(%)				
Copernicus	Temperature	0.05	6.3	93.7			
	(Daily)						
Climate Data	Temperature	0.05	0.74	99.25			
	(day and						
	Night)						
Modis-Aqua	Temperature	0.04	21.10	78.8			
	(Daily)						
Pathfinder	Temperature	0.04	96.5	3.4			
	(Day and						
	Night)						

320
310
300
290
280
270
260
250

1

295
290
285
280
275
270
265
260

1

Figure 4 – Data Statistics of Modis and Copernicus Source.

Figure 3 – Data Statistics of Climate and PathFinder Source.

Results

Figure 5 – Discordance among multiple sources.

Conclusion

- Discordance among the sources varies according to different cost function.
- If data sources provide non null values in same latitude and longitude, they have less errors.
- Absolute representation of uncertain data has high impact on the discordance among the sources.