Домашняя работа 6

December 16, 2020

Задача 1 (5 баллов) Пусть ξ_0, ξ_1, \ldots – норсв U[0,1]. Найти плотность распределения

$$\eta_n = \prod_{k=0}^n \xi_k$$

Решение

Так как величины независимые, $f(\xi_0,\xi_1\dots)=f(\xi_0)f(\xi_1)\dots=1$ (т.к. f=1). Рассмотрим величину $\eta=\xi_0\xi_1$. (Для $\eta=\xi_0\xi_1$... аналогично) Функция распределения величины η (A) будет следующей: $A=\iint\limits_G f(\xi_0,\xi_1)d\xi_0d\xi_1$, где G - множество, в общем случае n -мерное, в котором лежит величина $\eta=\xi_0\xi_1\dots\xi_n$. И тогда $A=\iint\limits_G f(\xi_0,\xi_1)d\xi_0d\xi_1$, если $\eta\in[0;1]$ и A=0, если $\eta\in[0;1]$

Задача 2 (5 баллов) Пусть функции $f_1(x), f_2(x), f_3(x)$ удовлетворяют соотношению:

$$f_3(x) = \int_{-\infty}^{\infty} f_1(x - u) f_2(u) du$$

. Найти $f_1(x),$ если $f_2(x)=e^{-x^2}, f_3(x)=e^{\frac{-x^2}{2}}$

Задача 3 (5 баллов)

Каждая целочисленная точка k на числовой оси покрашена в белый цвет с вероятностью p и черный с вероятнстью q=1-p (независимо от остальных). Пусть B – множество всех черных точек, а S – множество всех таких целочисленных точек x, что расстояние от x до B не меньше расстояния от x до начала координат. Найти математическое ожидание числа элементов множества S.

Задача 4 (5 баллов) Докажите, что для любых целых положительных k и n ($k \le n$) справедливо неравенство:

$$C_n^k \le 2^n \sqrt{\frac{2}{\pi n}}$$

Задача 5 (5 баллов) Пусть ξ и η – независимые случайные величины с распределениями $\mathrm{Beta}(2,1)$ и $\mathrm{Exp}(1)$ соответственно. Найдите $\mathbb{P}(\xi < \eta)$.