

LÖSUNGSVORSCHLAG

Name der Prüfung: Rechnerarchitektur PROBEKLAUSUR (Prüfungsnummer: 17053)

Datum: Uhrzeit:	11. Oktober 2023 13:00 Uhr	Bearbeitungszeit	: 90 Minuten	
Institut:	Institut für Eingebettete Sys Echtzeitsysteme	teme/ Prüfer:	Prof. DrIng.	Frank Slomka
Von der P	rüfungsteilnehmerin/den	n Prüfungsteilnehmer auszu	ıfüllen:	
Nachnam	e:	Vorname:		Matrikelnummer:
Studienga	ang:	Abschluss:		
Datum Unto	rschrift des Prüfungsteilnehmers	v/der Prüfungsteilnehmerin		
Mit meiner Hinweise ge	Unterschrift bestätige ich, das elesen und verstanden habe. en Studierenden aufgeführt s	ss ich prüfungsfähig bin und die s Sollte ich aufgrund fehlender Ar sein, dann nehme ich hiermit zur	nmeldung nicht au	uf der Liste der
	Viel Erfolg!	Bitte dieses F	eld für den Barco	ode freilassen!
Aufga Punkt Erreic	e 20 20 ht	3 20 4 20	5 20	Σ 100
Korrig	iert			

Gesamtnote: _____

Name: Matrikelnummer:

Hinweise zur Klausur:

- Auf dem Titelblatt sind Vorname, Nachname, Matrikelnummer, Studiengang und angestrebter Abschluss anzugeben. Bitte geben Sie auf jedem Blatt oben Ihren Namen und Ihre Matrikelnummer an.
- Erlaubte Hilfsmittel sind ausschließlich dokumentenechte Stifte in schwarz oder blau. Insbesondere keine Bleistifte, da mit Bleistift verfasste Lösungen nicht gewertet werden können. Rot und grün sind nicht zu verwenden und den Korrigierenden vorbehalten. Außerdem dürfen Sie ein Wörterbuch Fremdsprache-Deutsch/Deutsch-Fremdsprache verwenden. Die Wörterbücher dürfen keine Unterstreichungen, Markierungen einschließlich farbiger Klebe-Lesezeichen, zusätzliche Bemerkungen, Eintragungen oder Verweise enthalten. Das Mitführen von Texten mit derartigen Zusätzen wird als Täuschungsversuch gewertet.
- Halten Sie bitte Ihren Studierendenausweis zur Identitätskontrolle bereit.
- Die Klausur besteht aus 5 Aufgaben mit insgesamt 17 bedruckten Seiten. Bitte überprüfen Sie die Unterlagen auf Vollständigkeit.
- Bei Täuschung und Täuschungsversuchen sowie Ordnungsverstößen wird die Klausur als "nicht ausreichend" (5,0) gewertet. In besonders schweren Fällen, wie z. B. bei wiederholtem Täuschungsversuch oder dem unzulässigen Zusammenwirken mehrerer Personen oder dem Einsatz unzulässiger Hilfsmittel, kann der Prüfungsausschuss den/die Studierende(n) von der Erbringung weiterer Prüfungsleistungen ausschließen.
- Lösungen zu den Aufgaben dürfen auf Deutsch oder Englisch gegeben werden.
- Verwenden Sie keine eigenen Blätter. Benötigen Sie zusätzliche Blätter, so sind diese bei der Klausuraufsicht erhältlich.

Aufgabe 1 (Konzepte)

20 Punkte

a) Welches Konzept Turings realisieren moderne Computer?

(1 Pkt)

Lösungsvorschlag:

Universelle Turing-Maschine

b) Skizzieren Sie die von Neumann Architektur.

(7 Pkt)

c) Skizzieren Sie eine 3-Adressmaschine und beschriften Sie alle Teile.

(7 Pkt)

d) Schreiben und beschriften Sie den Befehlszyklus des Befehls mul a, b, c einer 3-Adressmaschine auf. (5 Pkt)

Lösungsvorschlag:

IF Hole Befehl mul (Adressen a, b, c)

ID Befehldekodieren

OF Hole Operand aus b, Hole Operand aus c

EX Operation Ausführen

OS Speichere Ergebnis in a

Aufgabe 2 (Speicherarchitektur)

20 Punkte

Wofür steht die Abkürzung MMU? Welche Funktion hat diese Komponente? a)

(2 Pkt)

Lösungsvorschlag:

Die Memory Management Unit ist für die Verwaltung des Speicher zuständig.

b) Nennen Sie die drei Arten Cache Adressformate die in der Vorlesung vorgestellt wurden. (4 Pkt)

Lösungsvorschlag:

Voll Assoziativ **Directed Mapped Cache** Mengen Assoziativ

c) Skizzieren Sie einen Directed Mapped Cache und beschriften Sie alle Teile. (4 Pkt)

d) Fertigen Sie die Skizze eines zweifach vollassoziativen Cache-Speichers an. (10 Pkt)

Nam	e: Matrikelnummer:
Auf	gabe 3 (Mikroarchitektur und Fließbandverarbeitung in RISC) 20 Punkte
a)	Was ist ein Pipeline Stall? (5 Pkt)
	Lösungsvorschlag:
	Versucht, bei überlappender Befehlsausführung, eine Instruction Decode Phase, das selbe Register zu lesen, welches in einer vorangegangenen Execution Phase geschrieben wird. So muss die Pipeline in der ID Phase und auch alle weiteren verzögert werden, da es sosnt zu Informationsverlust kommen kann.
b)	Skizzieren Sie den Ablauf der Übersetzung eines beliebeigen Hochsprachenprogrammes (z.B. C) bis hin zum Objektcode. (5 Pkt)
	Lösungsvorschlag:

c) Skizzieren Sie den Ablauf eines RAW-Hazards und wie dieser aufgelöst werden kann. Verwenden Sie dabei die Befehlsphasen als Blöcke. (8 Pkt)

d) Nennen Sie zwei Schaltungen, welche eingefügt werden um Interlocking zu verhindern. (2 Pkt)

Lösungsvorschlag:

Interlocking-Schaltung
Bypass-Schaltung

Aufgabe 4 (Skalare, Superskalare Architektur und Vektorrechner) 20 Punkte

a) Warum können Befehle in der Execution Phase nicht parallel ausgeführt werden?

(2 Pkt)

Lösungsvorschlag:

Da pro Prozessoreinheit immer nur ein Befehl gleichzeitig abgearbeitet werden kann, können nicht mehrere Execution Phasen gleichzeitig ausgeführt werden.

b) Skizzieren Sie einen Vektorrechner mit zwei Lanes und markieren Sie diese.

(9 Pkt)

c) Im Rahmen der Vorlesung wurden Schaltungen zur effizienten Addition skalierter Vektoren vorgestellt. Zeichen Sie ein Blockschaltbild eines SAXPY, der einen skalierten drei dimensionalen Vekotor mit einem zweiten dreidimensionalen Vektor addiert.

$$a \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}$$

(9 Pkt)

Name: Ma	latrikelnummer:
----------	-----------------

Aufgabe 5 (VHDL)

20 Punkte

a) Was ist eine Komponente in VHDL?

(2 Pkt)

Lösungsvorschlag:

Eine Komponente in VHDL inst eine bereit implementierte VHDL-Entity, welche in eigenen Implementierungen importiert, instanziert und genutzt werden kann.

b) Was ist VHDL? (2 Pkt)

Lösungsvorschlag:

VHDL ist eine Hardwarebeschreibungssprache.

c) Erklären Sie den Begriff Sensitivitätsliste. Wie wird sie in der ereignisbasierten Simulation genutzt? (4 Pkt)

Lösungsvorschlag:

In der Sensitivitätsliste stehen die Signale auf die ein Prozess sensibel ist, das bedeutet dass der Prozess immer aktiviert wird, wenn sich eines der Signale in der Sensitivitätsliste ändert. Weiterhin verlängert sich jeder VHDL-DeltaZyklius bis keines der Signale einer beliebigen Sensitivitätsliste sich mehr ändert.

d) Schreiben Sie die Implementierung einer VHDL Entity, welche einen 1 zu 4 Demultiplexer für 8 Bit breite Eingangssignale realisiert. (12 Pkt)

```
library ieee;
use ieee.std_logic_1164.all;

entity DeMux is
  port(
    input0: in std_logic_vector(7 downto 0);
    ctr: in std_logic_vector(1 downto 0);
    output0, output1, output2, output3: out std_logic_vector(7 downto 0)
  );
```

Name: _____ Matrikelnummer: ____

```
end DeMux;

architecture arc of DeMux is
  begin
  process(ctr)
  begin
    case ctr is
     when "00" => output0 <= input0;
    when "01" => output1 <= input0;
    when "10" => output2 <= input0;
    when "11" => output3 <= input0;
    when others =>
  end case;
  end process;
end arc;
```

2

1) 7) 7)

7)

7)

2,7)

2,7)

7)

7)

2,7)

2,7)

(1)

RISC-V Reference Data Card ("Green Card") 1. Pull along perforation to separate card

2. Fold bottom side (columns 3 and 4) together

①

	マ	ISC-V	Reference I	Data
RV64I BASE	INTE	GER INSTRUCTIONS, in al	phabetical order	
MNEMONIC	FMT	NAME	DESCRIPTION (in Verilog)	NOTE
add,addw	R	ADD (Word)	R[rd] = R[rs1] + R[rs2]	1)
addi,addiw	I	ADD Immediate (Word)	R[rd] = R[rs1] + imm	1)
and	R	AND	R[rd] = R[rs1] & R[rs2]	
andi	I	AND Immediate	R[rd] = R[rs1] & imm	
auipc	U	Add Upper Immediate to PC	$R[rd] = PC + \{imm, 12'b0\}$	
beq	SB	Branch EQual	if(R[rs1]==R[rs2) PC=PC+{imm,1b'0}	
bge	SB	Branch Greater than or Equal		
bgeu	SB	$Branch \geq Unsigned$	if(R[rs1]>=R[rs2) PC=PC+{imm,1b'0}	2)
blt	SB	Branch Less Than	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td></td></r[rs2)>	
bltu	SB	Branch Less Than Unsigned	if(R[rs1] <r[rs2) pc="PC+{imm,1b'0}</td"><td>2)</td></r[rs2)>	2)
bne	SB	Branch Not Equal	if(R[rs1]!=R[rs2) PC=PC+{imm,1b'0}	
csrrc	I	Cont./Stat.RegRead&Clear	$R[rd] = CSR;CSR = CSR & \sim R[rs1]$	
csrrci	I	Cont./Stat.RegRead&Clear Imm	$R[rd] = CSR;CSR = CSR \& \sim imm$	
csrrs	I	Cont./Stat.RegRead&Set	R[rd] = CSR; CSR = CSR R[rs1]	
csrrsi	I	Cont./Stat.RegRead&Set Imm	$R[rd] = CSR; CSR = CSR \mid imm$	
csrrw	I	Cont./Stat.RegRead&Write	R[rd] = CSR; CSR = R[rs1]	
csrrwi	Ī	Cont./Stat.Reg Read&Write Imm	R[rd] = CSR; CSR = imm	
ebreak	I	Environment BREAK	Transfer control to debugger	
ecall	Î	Environment CALL	Transfer control to operating system	
fence	Î	Synch thread	Synchronizes threads	
fence.i	Ī	Synch Instr & Data	Synchronizes writes to instruction	
jal	UJ	Jump & Link	stream R[rd] = PC+4; PC = PC + {imm,1b'0}	
jalr	I	Jump & Link Register	R[rd] = PC+4; $PC = R[rs1]+imm$	3)
lb	Î	Load Byte	R[rd] =	4)
	•	Edda Byte	{56'bM[](7),M[R[rs1]+imm](7:0)}	7)
lbu	I	Load Byte Unsigned	$R[rd] = \{56'b0, M[R[rs1] + imm](7:0)\}$	
ld	I	Load Doubleword	R[rd] = M[R[rs1] + imm](63:0)	
lh	I	Load Halfword	R[rd] =	4)
			{48'bM[](15),M[R[rs1]+imm](15:0)}	
lhu	I	Load Halfword Unsigned	$R[rd] = \{48'b0, M[R[rs1] + imm](15:0)\}$	
lui	U	Load Upper Immediate	$R[rd] = {32b'imm < 31>, imm, 12'b0}$	
lw	I	Load Word	$R[rd] = $ {32'bM[](31),M[R[rs1]+imm](31:0)}	4)
lwu	I	Load Word Unsigned	$R[rd] = \{32'b0,M[R[rs1]+imm](31:0)\}$	
or	R	OR	$R[rd] = R[rs1] \mid R[rs2]$	
ori	I	OR Immediate	$R[rd] = R[rs1] \mid imm$	
sb	S	Store Byte	M[R[rs1]+imm](7:0) = R[rs2](7:0)	
sd	S	Store Doubleword	M[R[rs1]+imm](63:0) = R[rs2](63:0)	
sh	S	Store Halfword	M[R[rs1]+imm](15:0) = R[rs2](15:0)	
sll,sllw	R	Shift Left (Word)	R[rd] = R[rs1] << R[rs2]	1)
slli,slliw	I	Shift Left Immediate (Word)	R[rd] = R[rs1] << imm	1)
slt	R	Set Less Than	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0	
slti	I	Set Less Than Immediate	R[rd] = (R[rs1] < imm) ? 1 : 0	
sltiu	I	Set < Immediate Unsigned	R[rd] = (R[rs1] < imm) ? 1 : 0	2)
sltu	R	Set Less Than Unsigned	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0	2)
sra, sraw	R	Shift Right Arithmetic (Word)		1,5)
srai,sraiw	I	Shift Right Arith Imm (Word)		1,5)
srl,srlw	R	Shift Right (Word)	R[rd] = R[rs1] >> R[rs2]	1)
srli,srliw	I	Shift Right Immediate (Word)	R[rd] = R[rs1] >> imm	1)
sub, subw	R	SUBtract (Word)	R[rd] = R[rs1] - R[rs2]	1)
SW	S	Store Word	M[R[rs1]+imm](31:0) = R[rs2](31:0)	
xor	R	XOR	$R[rd] = R[rs1] \wedge R[rs2]$	
Xori	I Wand	XOR Immediate	$R[rd] = R[rs1] \land imm$	

- The Word version only operates on the rightmost 32 bits of a 64-bit registers Operation assumes unsigned integers (instead of 2's complement)
 The least significant bit of the branch address in jair is set to 0 (signed). Load instructions extend the sign bit of data to fill the 64-bit register Replicates the sign bit to fill in the leftmost bits of the result during right shift

- Multiply with one operand signed and one unsigned
 The Single version does a single-precision operation using the rightmost 32 bits of a 64bit F register
- Classify writes a 10-bit mask to show which properties are true (e.g., $-\inf$, -0, +0, $+\inf$, denorm, ...) 9) Atomic memory operation; nothing else can interpose itself between the read and the
- write of the memory location
 The immediate field is sign-extended in RISC-V

ARITHMETIC	CORE INSTRUCTION SET
RV64M Multiply	Extension

MNEMONIC	FMT	NAME	DESCRIPTION (in Verilog)	NOTE
mul, mulw	R	MULtiply (Word)	R[rd] = (R[rs1] * R[rs2])(63:0)	1)
mulh	R	MULtiply High	R[rd] = (R[rs1] * R[rs2])(127:64)	
mulhu	R	MULtiply High Unsigned	R[rd] = (R[rs1] * R[rs2])(127:64)	2)
mulhsu	R	MULtiply upper Half Sign/Uns	R[rd] = (R[rs1] * R[rs2])(127:64)	6)
div, divw	R	DIVide (Word)	R[rd] = (R[rs1] / R[rs2])	1)
divu	R	DIVide Unsigned	R[rd] = (R[rs1] / R[rs2])	2)
rem, remw	R	REMainder (Word)	R[rd] = (R[rs1] % R[rs2])	1)
remu, remuw	R	REMainder Unsigned (Word)	R[rd] = (R[rs1] % R[rs2])	1,2)
DV64E and DV64D Flor	tina	Point Extensions		

F[rd] = M[R[rs1] + imm]

F[rd] = single(F[rs1])

F[rd] = double(F[rs1])

F[rd] = float(R[rs1](31:0))

F[rd] = float(R[rs1](63:0))

F[rd] = float(R[rs1](31:0))

fld,flw fsd,fsw I Load (Word)

fsd, fsw	S	Store (Word)	M[R[rs1]+imm] = F[rd]	1)
fadd.s,fadd.d	R	ADD	F[rd] = F[rs1] + F[rs2]	7)
fsub.s,fsub.d	R	SUBtract	F[rd] = F[rs1] - F[rs2]	7)
fmul.s,fmul.d	R	MULtiply	F[rd] = F[rs1] * F[rs2]	7)
fdiv.s,fdiv.d	R	DIVide	F[rd] = F[rs1] / F[rs2]	7)
fsqrt.s,fsqrt.d	R	SQuare RooT	F[rd] = sqrt(F[rs1])	7)
fmadd.s,fmadd.d	R	Multiply-ADD	F[rd] = F[rs1] * F[rs2] + F[rs3]	7)
fmsub.s,fmsub.d	R	Multiply-SUBtract	F[rd] = F[rs1] * F[rs2] - F[rs3]	7)
fnmadd.s,fnmadd.d	R	Negative Multiply-ADD	F[rd] = -(F[rs1] * F[rs2] + F[rs3])	7)
fnmsub.s,fnmsub.d	R	Negative Multiply-SUBtract	F[rd] = -(F[rs1] * F[rs2] - F[rs3])	7)
fsgnj.s,fsgnj.d	R	SiGN source	F[rd] = { F[rs2]<63>,F[rs1]<62:0>}	7)
fsgnjn.s,fsgnjn.d	R	Negative SiGN source	F[rd] = { (~F[rs2]<63>), F[rs1]<62:0>}	7)
fsgnjx.s,fsgnjx.d	R	Xor SiGN source	F[rd] = {F[rs2]<63>^F[rs1]<63>, F[rs1]<62:0>}	7)
fmin.s,fmin.d	R	MINimum	F[rd] = (F[rs1] < F[rs2]) ? F[rs1] : F[rs2]	7)
fmax.s,fmax.d	R	MAXimum	F[rd] = (F[rs1] > F[rs2]) ? F[rs1] : F[rs2]	7)
feq.s,feq.d	R	Compare Float EQual	R[rd] = (F[rs1] == F[rs2]) ? 1 : 0	7)
flt.s,flt.d	R	Compare Float Less Than	R[rd] = (F[rs1] < F[rs2]) ? 1 : 0	7)
fle.s,fle.d	R	Compare Float Less than or $=$	$R[rd] = (F[rs1] \le F[rs2]) ? 1 : 0$	7)
fclass.s,fclass.d	R	Classify Type	R[rd] = class(F[rs1])	7,8)
fmv.s.x,fmv.d.x	R	Move from Integer	F[rd] = R[rs1]	7)
fmv.x.s,fmv.x.d	R	Move to Integer	R[rd] = F[rs1]	7)

fcvt.s.wu, fcvt.d.wu R Convert from 32b Int Unsigned fcvt.s.lu, fcvt.d.lu R Convert from 64b Int Unsigned F[rd] = float(R[rs1](63:0))fcvt.w.s,fcvt.w.d R Convert to 32b Integer R[rd](31:0) = integer(F[rs1])fcvt.l.s,fcvt.l.d R Convert to 64b Integer R[rd](63:0) = integer(F[rs1]) $\texttt{fcvt.wu.s,fcvt.wu.d} \quad R \quad \texttt{Convert to 32b Int Unsigned } R[rd] \\ (31:0) = integer(F[rs1])$ $\texttt{fcvt.lu.s,fcvt.lu.d} \quad R \quad Convert \ to \ 64b \ Int \ Unsigned \ R[rd](63:0) = integer(F[rs1])$

R Convert to SP from DP

R Convert to DP from SP

R Convert from 32b Integer

R Convert from 64b Integer

RV64A Atomtic Extension amoadd.w,amoadd.d

fcvt.s.d fcvt.d.s

fcvt.s.w.fcvt.d.w

fcvt.s.l,fcvt.d.l

KV04A Atomuc Extensio	ш			
amoadd.w,amoadd.d	R	ADD	R[rd] = M[R[rs1]],	9)
			M[R[rs1]] = M[R[rs1]] + R[rs2]	
amoand.w,amoand.d	R	AND	R[rd] = M[R[rs1]],	9)
			M[R[rs1]] = M[R[rs1]] & R[rs2]	
amomax.w,amomax.d	R	MAXimum	R[rd] = M[R[rs1]],	9)
			if(R[rs2] > M[R[rs1]]) M[R[rs1]] = R[rs2]	
amomaxu.w,amomaxu.d	R	MAXimum Unsigned	R[rd] = M[R[rs1]],	2,9)
			if(R[rs2] > M[R[rs1]]) M[R[rs1]] = R[rs2]	
amomin.w,amomin.d	R	MINimum	R[rd] = M[R[rs1]],	9)
			if(R[rs2] < M[R[rs1]]) M[R[rs1]] = R[rs2]	
amominu.w,amominu.d	R	MINimum Unsigned	R[rd] = M[R[rs1]],	2,9)
			$if(R[rs2] \le M[R[rs1]])M[R[rs1]] = R[rs2]$	
amoor.w,amoor.d	R	OR	R[rd] = M[R[rs1]],	9)
			M[R[rs1]] = M[R[rs1]] R[rs2]	
amoswap.w,amoswap.d	R	SWAP	R[rd] = M[R[rs1]], M[R[rs1]] = R[rs2]	9)
amoxor.w,amoxor.d	R	XOR	R[rd] = M[R[rs1]],	9)
			$M[R[rs1]] = M[R[rs1]] ^ R[rs2]$	
lr.w,lr.d	R	Load Reserved	R[rd] = M[R[rs1]],	
			reservation on M[R[rs1]]	
sc.w,sc.d	R	Store Conditional	if reserved, M[R[rs1]] = R[rs2],	
			R[rd] = 0; else $R[rd] = 1$	

CORE INSTRUCTION FORMATS

	ORE INSTRUCTION FORMATS											
	31 27	26 25	24	20	19	15	14	12	11	7	6	0
R	funct7		rs2		rs1		fun	ct3	rd	l	Opco	ode
I	imm			rs1 funct3			ct3	rd		Opcode		
S	imm[11:5]	rs.	2	rs1 funct		ct3	imm[4:0]		opco	ode		
SB	imm[12 10:5] rs2				m[12 10:5] rs2 rs1 funct3			ct3	imm[4:	1 11]	opco	ode
U						rd	l	opco	ode			
UJ		1 19:	12]				rd	l	opco	ode		

© 2018 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition

PSEUDO INSTRUCTIONS

PSEUDO INSTRUCTIONS 3						
MNEMONIC	NAME	DESCRIPTION	USES			
beqz	Branch = zero	if(R[rs1]==0) PC=PC+{imm,1b'0}	beq			
bnez	Branch ≠ zero	if(R[rs1]!=0) PC=PC+{imm,1b'0}	bne			
fabs.s,fabs.d	Absolute Value	F[rd] = (F[rs1] < 0) ? -F[rs1] : F[rs1]	fsgnx			
fmv.s,fmv.d	FP Move	F[rd] = F[rs1]	fsgnj			
fneg.s,fneg.d	FP negate	F[rd] = -F[rs1]	fsgnjn			
j	Jump	$PC = \{imm, 1b'0\}$	jal			
jr	Jump register	PC = R[rs1]	jalr			
la	Load address	R[rd] = address	auipc			
li	Load imm	R[rd] = imm	addi			
mv	Move	R[rd] = R[rs1]	addi			
neg	Negate	R[rd] = -R[rs1]	sub			
nop	No operation	R[0] = R[0]	addi			
not	Not	$R[rd] = \sim R[rs1]$	xori			
ret	Return	PC = R[1]	jalr			
seqz	Set = zero	R[rd] = (R[rs1] == 0) ? 1 : 0	sltiu			
snez	Set ≠ zero	R[rd] = (R[rs1]! = 0) ? 1 : 0	sltu			

OPCODES IN	NUMEI	RICAL ORDE	R BY OPCO	DDE	
MNEMONIC	FMT	OPCODE	FUNCT3		A HEXADECIMA
1b	I	0000011	000		03/0
1h	Î	0000011	001		03/1
lw	Î	0000011	010		03/2
ld.	Î	0000011	011		03/3
lbu	Î	0000011	100		03/4
lhu	Î	0000011	101		03/5
lwu	Î	0000011	110		03/6
fence	Î	0001111	000		0F/0
fence.i	Î	0001111	001		0F/1
addi	Î	0010011	000		13/0
slli	Î	0010011	001	0000000	13/1/00
slti	Î	0010011	010		13/2
sltiu	Î	0010011	011		13/3
xori	Î	0010011	100		13/4
srli	Î	0010011	101	0000000	13/5/00
srai	Í	0010011	101	0100000	13/5/20
ori	I	0010011	110	0100000	13/6
andi	Ï	0010011	111		13/7
auipc	Û	0010011	***		17
addiw	I	0010111	000		1B/0
slliw		0011011	001	0000000	1B/1/00
srliw	I	0011011	101	0000000	1B/5/00
	I	0011011	101	0100000	1B/5/20
sraiw	I	0100011	000	0100000	23/0
sb sh	S	0100011	000		23/1
SII	S	0100011	010		23/1
sw	S	0100011	010		23/2
	S	0110011	000	0000000	
add sub	R	0110011	000	0100000	33/0/00 33/0/20
sub	R	0110011	000	0000000	33/1/00
slt	R	0110011	010	0000000	
	R	0110011	010	0000000	33/2/00 33/3/00
sltu	R	0110011	100	0000000	
xor srl	R	0110011	101	0000000	33/4/00 33/5/00
sra	R	0110011	101	0100000	33/5/20
	R	0110011	110	0000000	
or	R			0000000	33/6/00
and	R	0110011	111	0000000	33/7/00 37
lui	U	0110111 0111011	000	0000000	3B/0/00
addw	R				
subw sllw	R	0111011 0111011	000 001	0100000 0000000	3B/0/20 3B/1/00
	R				
srlw	R	0111011 0111011	101 101	0000000	3B/5/00 3B/5/20
sraw	R			0100000	
beq	SB	1100011	000		63/0
bne	SB	1100011 1100011	001 100		63/1
blt	SB				63/4
bge	SB	1100011	101 110		63/5 63/6
bltu	SB				
bgeu	SB	1100011	111		63/7
jalr	I	1100111	000		67/0
jal	UJ	1101111	000	000000000000	6F
ecall	I	1110011	000	0000000000000	73/0/000
ebreak	I	1110011	000	0000000000001	73/0/001
CSRRW	I	1110011	001		73/1
CSRRS	I	1110011	010		73/2
CSRRC	I	1110011	011		73/3
CSRRWI	I	1110011	101		73/5
CSRRSI	I	1110011	110		73/6
CSRRCI	I	1110011	111		73/7

REGISTER NAME, USE, CALLING CONVENTION

GISTER NAMI	E, USE, CALLIN	NG CONVENTION	4
REGISTER	NAME	USE	SAVE
x0	zero	The constant value 0	N.A.
x1	ra	Return address	Caller
x2	sp	Stack pointer	Calle
x3	gp	Global pointer	
x4	tp	Thread pointer	
x5-x7	t0-t2	Temporaries	Calle
×8	s0/fp	Saved register/Frame pointer	Calle
x9	sl	Saved register	Calle
x10-x11	a0-a1	Function arguments/Return values	Calle
x12-x17	a2-a7	Function arguments	Calle
x18-x27	s2-s11	Saved registers	Calle
x28-x31	t3-t6	Temporaries	Calle
f0-f7	ft0-ft7	FP Temporaries	Calle
f8-f9	fs0-fs1	FP Saved registers	Calle
f10-f11	fa0-fa1	FP Function arguments/Return values	Calle
f12-f17	fa2-fa7	FP Function arguments	Calle
f18-f27	fs2-fs11	FP Saved registers	Calle
f28-f31	ft8-ft11	R[rd] = R[rs1] + R[rs2]	Caller

 $\label{eq:lemma:equation:equ$

S	Ex	ponent	Frac	ction				
15	14	10	9	0		_		
S		Exponent	Exponent F		Fraction			
31	30		23	22	0			
S		Expone	ent		Fraction			
63	62			52 51			0	
S		Exponent			Fraction			
127	126	112 111					_	

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	210	Kibi-	Ki
10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
10°	Giga-	G	230	Gibi-	Gi
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	P	250	Pebi-	Pi
10 ¹⁸	Exa-	E	2 ⁶⁰	Exbi-	Ei
10^{21}	Zetta-	Z	270	Zebi-	Zi
10^{24}	Yotta-	Y	2 ⁸⁰	Yobi-	Yi
10 ⁻³	milli-	m	10 ⁻¹⁵	femto-	f
10-6	micro-	μ	10-18	atto-	a
10 ⁻⁹	nano-	n	10*21	zepto-	z
10 ⁻¹²	pico-	р	10-24	yocto-	у

© 2018 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition

2. Fold bottom side (columns 3 and 4) together

MIPS Reference Data

|--|

1

CORE INSTRUCTION SET OPCODE										
NAME ADJEMO	NIC	FOR-			/ FUNCT					
NAME, MNEMO Add	add	MAT R	OPERATION (in Verilog) R[rd] = R[rs] + R[rt]	(1)	(Hex) 0 / 20 _{hex}					
Add Immediate	addi	I	R[rt] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm	(1,2)						
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm	(2)						
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]	(2)	0 / 21 _{hex}					
And	and	R	R[rd] = R[rs] & R[rt] $R[rd] = R[rs] & R[rt]$		0 / 24 _{hex}					
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm							
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(3)	4 _{hex}					
Branch On Not Equa	lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}					
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}					
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)						
Jump Register	jr	R	PC=R[rs]	(-)	0 / 08 _{hex}					
Load Byte Unsigned	_	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}					
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}					
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}					
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}					
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]		23_{hex}					
Nor	nor	R	$R R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}					
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}					
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}					
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}					
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}					
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}					
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$					
Shift Left Logical	sll	R	$R[rd] = R[rt] \le shamt$		0 / 00 _{hex}					
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}					
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}					
Store Conditional	sc	I	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	38 _{hex}					
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}					
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$					
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}					
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}					
	(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) IumpAddr = { PC+4f31:281 address 2'b0 }									

(4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 (5) JumpAddr = { PC+4[31:28], address, 2'b0 }

(6) Operands considered unsigned numbers (vs. 2's comp.)
(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

31	26 25	5 21	20 16			
			20 10	15 11	10 6	5 0
I o	pcode	rs	rt		immediate	;
31	26 25	5 21	20 16	15		0
J o	pcode			address		
31	26 2	5				0

ARITHMETIC CO	RE INS	TRU	ICTION SET (2)	OPCODE
			O	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT		(Hex)
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	auu.u	TIX	$\{F[ft],F[ft+1]\}$	11/11//0
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = ({F[fs],F[fs+1]}) op$	11/11//v
Double			$\{F[ft],F[ft+1]\})?1:0$	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double			{F[ft],F[ft+1]}	
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double		ED	{F[ft],F[ft+1]}	44/40/ /4
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double			{F[ft],F[ft+1]}	21/ / /
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	ldc1	I	$F[rt]=M[R[rs]+SignExtImm]; \qquad (2)$	35//
Double Move From Hi		D	F[rt+1]=M[R[rs]+SignExtImm+4]	0 / / /10
	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control		R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ $\{Hi,Lo\} = R[rt] * R$	
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP Double	sdc1	I	M[R[rs]+SignExtImm] = F[rt]; (2) $M[R[rs]+SignExtImm] = F[rt+1]$	3d//
Double			M[R[rs]+SignExtImm+4] = F[rt+1]	

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	2
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

								(3)	
		CONVER	ISION, A	ASCII				–	A COLL
	(1) MIPS		ъ.	Deci-		ASCII	Deci-	Hexa-	
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)	00 0000	0	mal 0	acter NUL	64	mal 40	acter
(1)	211	add. f sub. f	00 0000	1	1	SOH	65	41	@ A
j	srl	mul.f	00 0001	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	Č
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs f	00 0101	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	neg f	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8 9	8	BS	72	48	H
addiu slti	jalr		00 1001 00 1010	10	-	HT LF	73 74	49 4a	I J
sltiu	movz movn		00 1010	11	a b	VT	75	4a 4b	K
andi	syscall	round.w.f	00 1100	12	c	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	О
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	R
<u> </u>	mtlo	movn.f	01 0011	19	13	DC3 DC4	83 84	53 54	S
			01 0100	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b]
			01 1100 01 1101	28 29	1c 1d	FS GS	92 93	5c 5d]
			01 1110	30	1e	RS	94	5e	V 1
			01 1111	31	1f	US	95	5f	
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	-
lh	addu	$\operatorname{cvt.d} f$	10 0001	33	21	1	97	61	a
lwl	sub		10 0010	34	22	"	98	62	b
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	cvt.w.f	10 0100 10 0101	36 37	24 25	\$ %	100 101	64 65	d
lhu lwr	or xor		10 0101	38	26	&	101	66	e f
TWI	nor		10 0110	39	27	,	103	67	g
sb			10 1000	40	28	(103	68	h
sh			10 1001	41	29)	105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	1
			10 1101	45 46	2d	-	109 110	6d	m
swr cache			10 1110 10 1111	46 47	2e 2f	,	110	6e 6f	n o
11	tge	c.f.f	11 0000	48	30	0	1112	70	p
lwc1	tgeu	c.un.f	11 0000	49	31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq f	11 0011	51	33	3	115	73	s
	teq	c.olt. f	11 0100	52	34	4	116	74	t
ldc1		c.ult.f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	V
		c.ule.f	11 0111	55 56	37	7 8	119	77 78	W
sc swc1		c.sf.f c.ngle.f	11 1000 11 1001	56 57	39	9	120 121	78 79	X
swc1		c.ngre.j	11 1001	58	39 3a	:	121	7a	y z
		c.ngl.f	11 1011	59	3b	;	123	7b	{
		c.lt.f	11 1100	60	3c	<	124	7c	\rightarrow
sdc1		c.nge.f	11 1101	61	3d	=	125	7d	}
sdc2		c.le.f	11 1110	62	3e	>	126	7e	~
(1)	da(31·26) =	c.ngt.f	11 1111	63	3f	?	127	7f	DEL

Name: _

(1) opcode(31:26) == 0 (2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if fmt(25:21)== 17_{ten} (11_{hex}) f = d (double)

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Comput

IEEE 754 FLOATING-POINT STANDARD

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

4 IEEE 754 Symbols Object Exponent Fraction ± 0 0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ MAX NaN ±0 S.P. MAX = 255, D.P. MAX = 2047

DATA ALIGNMENT

Double Word										
Word				Word						
Halfv	Halfword		Halfword		Halfword		word			
Byte	Byte	Byte	Byte	Byte Byte By		Byte	Byte			
0 Valu	e of thre	e least si	3 gnificant	bits of b	5 yte addres	ss (Big En	7 dian)			

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name		Number Name		Cause of Exception	
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception	
4	AdEL	Address Error Exception		RI	Reserved Instruction	
		(load or instruction fetch)			Exception	
5	AdES	Address Error Exception	11	CpU	Coprocessor	
]		(store)	11		Unimplemented	
6	IBE	Bus Error on	12	2 Ov	Arithmetic Overflow	
0	IDL	Instruction Fetch	12		Exception	
7	DBE	Bus Error on	13	Tr	Trap	
		Load or Store			1	
8	Sys	Syscall Exception	15	FPE	Floating Point Exception	

SIZE PREFIXES (10x for Disk, Communication: 2x for Memory)

SIZE FILE IXES (10 101 DISK, Communication, 2 101 Memory)						
	SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
-	10^{3}	Kilo-	K	2 ¹⁰	Kibi-	Ki
-	10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi
	10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
-	10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
	10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
	10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei
ЭИ	10^{21}	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
-	10 ²⁴	Yotta-	Y	2 ⁸⁰	Yobi-	Yi

Name:	Matrikelnummer:				
Aufgabe:					
Lösungsvorschlag:					
Aufgabe:					
Lösungsvorschlag:					