Cauchy Sequences

Cliff Sun

May 1, 2024

Definition 0.1. A sequence (x_n) is <u>Cauchy</u> if for all $\epsilon > 0$, there exists $M \in \mathbb{N}$ such that for all $n, k \geq M$ we have that

$$|x_n - x_k| < \epsilon \tag{1}$$

Basically if all the terms become really close to x.

Intuitively, a sequence is Cauchy if all the terms in a sequence get close to each other. This is nothing but saying that at most, the distance between terms must be less than ϵ .

Theorem 0.2. For every sequence (x_n) , we have that

$$(x_n)$$
 converges \iff (x_n) is Cauchy

Proof. This is a proof of \Longrightarrow . Suppose that (x_n) is convergent. Then we claim that it is Cauchy. Let $\epsilon > 0$, and let $M \in \mathbb{N}$ with $n, k \geq M$. Because (x_n) converges, we have that there exists $M_1 \in \mathbb{N}$ such that for all $n \geq M$, we have that

$$|x_n - x| < \frac{\epsilon}{2} \tag{2}$$

Suppose we choose this M_1 . Then for all n, k we have that

$$|x_k - x| < \frac{\epsilon}{2} \tag{3}$$

as well. Then we have that $|x_n - x_k| \iff |x_n - x - x_k + x|$ which simplifies down to $|x_n - x_k|$. By the triangle inequality, we have that

$$|x_n - x_k| \le |x_n - x| + |x_k - x| < \epsilon \tag{4}$$

Before we prove the opposite direction, let's first prove a lemma.

Lemma 0.3. If (x_n) is Cauchy, then it is bounded.

Proof. Assume that (x_n) is Cauchy, then we plug in $\epsilon = 1$, then we have that

$$|x_n - x_k| < 1 \tag{5}$$

for all $n, k \in M$ for some $M \in \mathbb{N}$. Then choose k = M, we have that

$$|x_n - x_M| < 1 \tag{6}$$

for all $n \geq M$. In particular, we have that

$$|x_n| = |(x_n - x_M) + x_M| \le |x_n - x_M| + |x_M| < 1 + |x_M| \tag{7}$$

For all $n \geq M$. Then all terms x_n satisfy

$$|x_n| \le B \tag{8}$$

where

$$B = \max(1 + |x_M|, |x_1|, |x_2|, \dots, |x_{n-1}|)$$
(9)

This proves the lemma. \Box

Proof. Prove of (\iff) of the Cauchy Convergence Theorem. Let (x_n) be a Cauchy Sequence. Then by the lemma it is bounded. Then we can apply \limsup and \liminf . Let $a = \limsup x_n$ and $b = \liminf x_n$. By a fact that we proved in the previous lecture, this proof will be done by proving that a = b. To prove this, we prove that

$$|a - b| < \epsilon \tag{10}$$

for all $\epsilon > 0$. Then we prove this

Proof. Let $\epsilon > 0$, we claim that $|a - b| < \epsilon$. By another fact, there exists subsequences in (x_{n_i}) that converges to a and x_{m_i} that converges to b. Because of these two facts, there exists M_1 and M_2 in \mathbb{N} such that for all $i \geq M_1$, we have that

$$|x_{n_i} - a| < \frac{\epsilon}{3} \tag{11}$$

and for all $i \geq M_2$, we have that

$$|x_{m_i} - b| < \frac{\epsilon}{3} \tag{12}$$

Since (x_n) is Cauchy, there exists $M_3 \in \mathbb{N}$ such that

$$|x_{m_i} - x_{n_i}| < \frac{\epsilon}{3} \tag{13}$$

We first choose $i = \max(M_1, M_2, M_3)$. We perform some calculations:

$$|a-b| \iff |a-x_{n_i}-(b-x_{m_i})+x_{n_i}-x_{m_i}| \le |a-x_{n_i}|+|b-x_{m_i}|+|x_{n_i}-x_{m_i}| < \epsilon$$
 (14)

This concludes the proof.