In [26]:

import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [29]:

table_iris = pd.read_csv("D:\DataScience\DataElement\Iris.csv")

In [30]:

table_iris

Out[30]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [31]:

table_iris.head()

Out[31]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [32]:

```
table_iris = table_iris.drop("Id", axis=1)
```

In [33]:

```
table_iris.head()
```

Out[33]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [34]:

```
sns.kdeplot(table_iris["SepalWidthCm"]) #
```

Out[34]:

<Axes: xlabel='SepalWidthCm', ylabel='Density'>

In [35]:

```
sns.distplot(table_iris["PetalLengthCm"],kde=True)
```

 $\label{local_temp_ipykernel_3680_2845302684.py:1: UserWarning:} UserWarn_3680 \end{substitute}$

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(table_iris["PetalLengthCm"],kde=True)

Out[35]:

<Axes: xlabel='PetalLengthCm', ylabel='Density'>

In [36]:

regression plot is used to visualize the effect of one variable to another such that th
y axis shows the dependent variable and x axis shows the independent variable
sns.regplot(x=table_iris["SepalLengthCm"], y = table_iris["PetalWidthCm"],fit_reg=True)

Out[36]:

<Axes: xlabel='SepalLengthCm', ylabel='PetalWidthCm'>

In [37]:

```
sns.countplot(x=table_iris["Species"])
```

Out[37]:

<Axes: xlabel='Species', ylabel='count'>

In [42]:

```
df1 = pd.read_csv("D:\DataScience\DataElement\Insurance.csv")
```

In [43]:

df1.head()

Out[43]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [46]:

```
sns.countplot(x=df1["region"])
```

Out[46]:

<Axes: xlabel='region', ylabel='count'>

In [49]:

```
sns.regplot(x=df1["bmi"], y = df1["charges"],fit_reg=True)
```

Out[49]:

<Axes: xlabel='bmi', ylabel='charges'>

In [50]:

```
# to show the outlier present in the data we create the box
sns.boxplot(y = df1["bmi"])
```

Out[50]:

<Axes: ylabel='bmi'>

In [51]:

```
# coparing the categorial to numerical variable
sns.boxplot(x="sex", y="age", data=df1)
```

Out[51]:

<Axes: xlabel='sex', ylabel='age'>

In []:

#heeatmap: core relation - is the selection between every variable exist in dataset .

In []:

```
cor=df1.corr()
```

In [54]:

cor

Out[54]:

	age	bmi	children	charges
age	1.000000	0.109272	0.042469	0.299008
bmi	0.109272	1.000000	0.012759	0.198341
children	0.042469	0.012759	1.000000	0.067998
charges	0.299008	0.198341	0.067998	1.000000

In [55]:

sns.heatmap(cor,annot=True)

Out[55]:

<Axes: >

In []: