Previously.

This Section.

- Disjoint Cycles

- Binary Operations

- Transpositions

- Monoids

– Even vs Odd Permutations

Definition. A binary operation, * on a set S is a function that associates to each ordered pair $(a,b) \in S \times S$ an element of S which we call a*b.

Note. Since we know that $a * b \in S$ for all $a, b \in S$, we say that the binary operation is closed under *.

Note. Sometimes we write (S, *) to mean * is a binary operation on S.

Definition. A binary operation * on S is associative if

$$a * (b * c) = (a * b) * c,$$

for all $a, b, c \in S$.

Definition. A binary operation * on S is commutative if

$$a*b=b*a,$$

for all $a, b \in S$.

Definition. An element $e \in S$ is called an identity (or unity) for the binary operation * if

$$a * e = e * a = a,$$

for all $a \in S$.

Theorem 2.1.1. If a binary operation * on a set S has an identity, then it is unique.

Definition. A set S along with a binary operation * is called an monoid if * is associative and has an identity.

If (S, *) is also commutative, then we say S is a commutative monoid.

Example. Here are two monoids:

- (\mathbb{Z},\cdot)
- (S_n, \circ)

Exercise 1. Let * be the binary operation on $\mathbb N$ given by

$$a * b := a^b$$
.

- (a) Associative?
- (b) Identity?
- (c) Commutative?

Therefore, $(\mathbb{N},\hat{})$ is commutative a monoid not a monoid. (cross out those that do not apply)

Exercise 2. Let * be the binary operation on \mathbb{Z} given by

$$a * b := a - b$$
.

- (a) Associative?
- (b) Identity?
- (c) Commutative?

Therefore, $(\mathbb{Z}, -)$ is commutative a monoid not a monoid. (cross out those that do not apply)

Exercise 3. Let * be the binary operation on $GL_2(\mathbb{R})$ given by

$$A * B := AB$$
.

- (a) Associative?
- (b) Identity?
- (c) Commutative?

Therefore, $(GL_2(\mathbb{R}), \cdot)$ is is commutative a monoid not a monoid. (cross out those that do not apply)

Definition. Let (M, *) be a monoid. If $x \in M$, we call $y \in M$ an **inverse of** x if

$$xy = e = yx$$
.

An element that has an inverse is called a unit.

Exercise 4. A nice table of monoids and their units.

Monoid	Identity Element	Set of Units
$(\mathbb{Z},+)$		
$(\mathbb{R},+)$		
$(\mathbb{Z}_n,+)$		
$(M_n(\mathbb{R}),+)$		
$(M_n(\mathbb{R}),\cdot)$		
(\mathbb{R},\cdot)		
(\mathbb{Z}_4,\cdot)		
(\mathbb{Z}_n,\cdot)		
(\mathbb{Z}_p,\cdot)		
(S_3,\circ)		