A. ALGORITHM

A.1. CONDITIONS

- Complete knowledge of the structure of the labeled petri net
- No information about the initial marking

A.2. INPUT

• Observed sequence of labels (generated by transition activity in the net)

A.3. OUTPUT: MINIMUM INITIAL MARKING

A starting marking that allows:

- 1. Allows (at least one possible sequence) to fire the observed labels
- 2. Minimum total number of tokens

B. NOTATIONS & DEFINITIONS

Silent transitions

Transitions whose firing cannot be observed

Petri net N = (P, T, A, W)

Directed, Weighted, Bipartite Graph

Bipartite Graph

In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is, every edge connects a vertex in U to one in V. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

$$N = (P, T, A, W)$$

- $P = \{p_1, p_2, \dots, p_n\} \rightarrow \text{set of places (circles)}$
- $T = \{t_1, t_2, \dots, t_m\} \rightarrow \text{set of transitions (bars)}$
- $A \subseteq (P \times T) \cup (T \times P) \rightarrow \text{set of arcs (from places to transitions and from transitions to places)}$
- $W: A \to \{w_1, w_2, \dots, w_{\dim A}\} \to \text{weight function on the arcs (entry / exit price of a transition)}$

Marking $M: P \to \mathbb{N} \to \text{maps}$ each place to a number of tokens (black dots)

Notation of the sum total of tokens |M|:

$$\left| M
ight| = \sum_{i=1}^n M\left(p_i
ight)$$

Enabled transition t

if for all input places p, $M\left(p\right)\geqslant B^{-}\left(p,t\right)=B_{p\rightarrow t}$ enabled transition in marking M written $M\left[t\right\rangle$

Notation	Meaning	Definition
N = (P, T, A, W)	Petri net	
$p=p_i$	Place	«Buffer» in the wrokflow, contains tokens
P	Finite set of places	
$t=t_i$	Transition	
T	Finite set of transitions	
A	Set of arcs	An arc links a place to a transition or a transition to a place
$M\left(p ight)$	Marking of a place	Number of tokens in the place
M	Marking of a net	Total number of tokens in the net
$B_{p ightarrow t}$	Weight of the arc from a place to a transition	Number of tokens consumed from p to enter t
$B_{t ightarrow p}$	Weight of the arc from a transition to a place	Number of tokens given to p when exiting t
$M\ket{t}$	Enabled transition	
$M \; [t angle M'$	Reachability	Marking M' is reachable from marking M via the firing of transition t

All transitions are observable (λ -free labeled petri net)

C. PROBLEM

$$\underbrace{\min |M|}_{ ext{minimum}}, \underbrace{M\left[\sigma
ight)}_{ ext{initial marking}} \& \underbrace{L\left(\sigma
ight) = \omega}_{ ext{that produces the given label sequence}}$$

D. COMPLEXITY STUDY

Polynomial time complexity in length of the observed label sequence.

Recursive