CS270-B Advanced Digital Image Processing

Lecture 6 Image Super Resolution (Conventional Methods)

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building-3 420

Outline

- Interpolation methods
- Reconstruction based methods
- Deep learning based methods

Resource: https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art

What is Super Resolution?

Super Resolution

- Restore High-Resolution (HR) image (or video) from Low-Resolution (LR) image (or video).
- According to number of input LR images, SR can be classified as single image super resolution (SISR) and multi-image super resolution (MISR).

Interpolation methods

Interpolation based Image Super Resolution

• Well-known interpolation methods include:

Lanczos Interpolation

$$L(x) = \begin{cases} 1 & if \ x = 0 \\ \frac{a\sin(\pi x)\sin(\pi x/a)}{\pi^2 x^2} & if -a \le x \le a \\ 0 & otherwise \end{cases}$$

$$if x = 0$$

$$if - a \le x \le a$$

Where a is a positive integer. Typically between 2 and 3. Defined a function window as on the right figure.

$$f(x) = \sum_{i=|x|-a+1}^{|x|+a} S_i L(x-i)$$

$$x = 0,1,2,3; S(x) = (2,0,1.5,1)$$

What happened when HR image is down-sampled to LR?

$$x_{\delta}(t) = x(t) \cdot \sum_{-\infty}^{\infty} \delta(t - nT_{s})$$

$$=\sum_{-\infty}^{\infty}x(nT_{\rm s})\delta(t-nT_{\rm s})$$

$$x_{\rm r}(t) = ?$$

What happened when HR image is down-sampled to LR?

 So to restore the HR image from down-sampled LR image, the filter below that will remove the aliasing artifact has a frequency response of

Figure: Frequency Response of Ideal Reconstruction Filter

Recover original spectrum:

$$X_{r}(\omega) = H_{r}(\omega) \cdot X_{\delta}(\omega)$$

$$\Rightarrow x_{r}(t) = h_{r}(t) * x_{\delta}(t)$$

$$\Rightarrow h_{r}(t) = T_{s} \frac{\omega_{s}}{2\pi} sinc(\frac{\omega_{s}}{2})$$

um:
$$x_{\delta}(t) = \mathbf{x}(t) \cdot \sum_{-\infty} \delta(t - nT_{\mathbf{s}})$$

$$X_{r}(\omega) = H_{r}(\omega) \cdot \mathbf{X}_{\delta}(\omega)$$

$$\Rightarrow x_{r}(t) = h_{r}(t) * x_{\delta}(t)$$

$$\Rightarrow h_{r}(t) = T_{\mathbf{s}} \frac{\omega_{\mathbf{s}}}{2\pi} \operatorname{sinc}(\frac{\omega_{\mathbf{s}}t}{2})$$

$$\Rightarrow h_{r}(t) = T_{\mathbf{s}} \frac{\omega_{\mathbf{s}}}{2\pi} \operatorname{sinc}(\frac{\omega_{\mathbf{s}}t}{2})$$
F.T. table: $\operatorname{rect}(\frac{\omega}{2a}) \Leftrightarrow \frac{a}{\pi} \operatorname{sinc}(at)$

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$

Reconstruction based methods

Super-Resolution Through Neighbor Embedding

Hong Chang, Dit-Yan Yeung and Yimin Xiong

Presented By:
Ashish Parulekar, Ritendra Datta, Shiva Kasiviswanathan and Siddharth Pal

Problem Formulation

Intuition

• Patches of the image lie on a manifold

Algorithm

- 1. Get feature vectors for each low resolution training patch.
- For each test patch feature vector find K nearest neighboring feature vectors of training patches.
- Find optimum weights to express each test patch vector as a weighted sum of its K nearest neighbor vectors.
- 4. Use these weights for reconstruction of that test patch in high resolution.

Manifold Definition Revisited

- •A manifold is a topological space which is locally Euclidean.
- •Represents a very useful and challenging unsupervised learning problem.
- •In general, any object which is nearly "flat" on small scales is a manifold.

Manifold Learning

- Discover low dimensional structures (smooth manifold) for data in high dimension.
- Linear Approaches
 - Principal component analysis.
 - Multi dimensional scaling.
- Non Linear Approaches
 - Local Linear Embedding
 - ISOMAP
 - Laplacian Eigenmap.

- Neighborhood preserving embeddings.
- Mapping to global coordinate system of low dimensionality.
- Recovering global nonlinear structure from locally linear fits.
- Each data point and it's neighbors is expected to lie on or close to a locally linear patch.
- Each data point is constructed by it's neighbors:

$$\vec{\hat{X}}_i = \sum_j W_{ij} \vec{X}_j$$

 $W_{ij} = 0$ if \vec{X}_j is not a neighbor of \vec{X}_i

- Where W_{ij} summarize the contribution of j-th data point to the i-th data reconstruction and is what we will estimated by optimizing the error.
- Reconstructed from only its neighbors.

 We want to minimize the error function

$$\varepsilon(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

With the constraints:

$$W_{ij} = 0$$
 if $ec{X}_j$ is not a neighborof $ec{X}_i$ $\sum_j W_{ij} = 1$

Solution (using lagrange multipliers):

$$W_{j} = \sum_{k} C_{jk}^{-1} (\vec{X} \vec{\eta}_{k} + \lambda)$$

$$\lambda = 1 - \sum_{jk} C_{jk}^{-1} (\vec{X} \vec{\eta}_{k}) / \sum_{jk} C_{jk}^{-1}$$

Choose d-dimensional coordinates, Y, to minimize:

$$\phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

• Under:
$$\sum_{i} \vec{Y}_{i} = \vec{0}, \quad \frac{1}{N} \sum_{i} \vec{Y} \vec{Y}^{T} = I$$

Quadratic form: $\phi(Y) = \sum_{ij} M_{ij} (\vec{Y}_i \vec{Y}_j)$

 $M = (I - W)^T (I - W)$ where:

 Solution: compute bottom d+1 eigenvectors of M. (discard the last one)

Step 1

 Compute the neighbors of each data point, X_i

• Step 2

Compute the weight W_{jj} that best reconstruct each data point X_j from its neighbors, minimizing the cost in eq(1) by constrainted linear fits.

$$\mathbf{1} \qquad \varepsilon(W) = \sum_{i} \left| \vec{X}_{i} - \sum_{j} W_{ij} \vec{X}_{j} \right|^{2}$$

Step 3

Compute the vectors Y_i best reconstructed by the weights W_{iji} minimizing the quadratic form in eq(2) by its bottom nonzero eigenvectors.

$$\phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \sum_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

From left: Swiss Roll features in 3 dimensions, Swiss Roll example using PCA Source

Problem Formulation

Intuition

• Patches of the image lie on a manifold

Experimental Setup

- Target magnification : 3X
- Transform to YIQ space
- Feature Selection
 - First derivative of luminance
 - Second derivative of luminance
- Reconstruction of Y and transfer of I and Q from lower dimension.

Experiments with images from the paper.

Intuition: Authors' test set may be biased!

Testing Yt

Testing Yt

Testing Yt

ShanghaiTech University

As expected, good super-resolution images generated.

Now for the real test – our images!

Results – their method our data

Ground Truth Image

Results – their method our data

High-resolution training images : (A) Similar (B) Dissimilar images

Results – their method our data

We test the results using RMS Error using the following formula:

Error =
$$\sqrt{(1/n)} \sum || P_{ground-truth} - P_{generated} ||$$

This essentially indicates the average Luminance deviations between corresponding pixels in the Ground-truth and Generated Images. Remember, the Chrominance components I and Q were copied into the generated image without change.

Results – Similar training Image

上海科技大学 ShanghaiTech University

Results – *Different training Image*

ShanghaiTech University

Results – The Graph!

RMS Error v/s K

Comments on results

- Best results when using
 - *Different images*: K = 4 or 5 (confirming to what is stated in the paper).
 - *Same images*: K = 1 (why ?))

Comments

- Method worked well with our test data.
- Care should be taken about image patches which do NOT form a manifold.
- Limitations on magnification.
- Size/ Overlap in the patch.
- Many extensions are possible:
 - Diagonal gradients for LR (increased dimensionality)
 - Using Lumina as feature vector in LR
 - Can be extended to Video shot SR
 - Multiple training images

