Cálculo II: Unidad 0. Parte 1

Funciones Trascendentes

R. M.

UASD

2025

<ロ > < 回 > < 回 > < 巨 > < 巨 > 巨 かへで

1) Introducción I

Funciones Elementales y su Clasificación

Las funciones elementales son aquellas que se pueden obtener a partir de un número finito de operaciones aritméticas (+, -, *, /) y composiciones de funciones constantes, la función identidad, funciones potenciales, exponenciales, logarítmicas, trigonométricas y sus inversas, hiperbólicas y sus inversas.

Cálculo II: Unidad 0. Parte 1

R M

1) Introducción II

Clasificación

- Funciones Algebraicas: Son aquellas que pueden formarse usando operaciones algebraicas. Se clasifican en:
 - Polinómicas
 - Racionales
 - Irracionales
- Funciones Trascendentes: Son aquellas que no son algebraicas. Entre ellas se encuentran:
 - Exponenciales
 - Logarítmicas
 - Trigonométricas
 - Trigonométricas inversas
 - Hiperbólicas y sus inversas

R. M

2) Definición Formal de Logaritmo Natural y su Gráfica I

Definition (Logaritmo Natural)

Se define la función logaritmo natural, denotada por ln(x), como:

$$\ln(x) = \int_1^x \frac{1}{t} dt, \quad x > 0$$

El dominio es $(0, \infty)$ y el rango es $(-\infty, \infty)$.

2) Definición Formal de Logaritmo Natural y su Gráfica II

3) Derivada de la Función Logaritmo Natural

Derivada

La derivada de la función logaritmo natural es:

$$\frac{d}{dx}[\ln(x)] = \frac{1}{x}$$

Demostración.

Aplicando la primera parte del Teorema Fundamental del Cálculo a la definición de In(x):

$$\frac{d}{dx} \left[\int_{1}^{x} \frac{1}{t} dt \right] = \frac{1}{x}$$

Dado que la función f(t) = 1/t es continua para t > 0.

4) Derivada de una Función Logaritmo Natural Compuesta

Regla de la Cadena para el Logaritmo Natural

Si $y = \ln(u)$ y u = g(x) es una función diferenciable tal que u > 0, entonces:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u} \cdot \frac{du}{dx}$$

Ejemplo

1 Sea
$$f(x) = \ln(x^2 + 1)$$
. Entonces $f'(x) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$.

Ejemplo

- **1** Sea $f(x) = \ln(x^2 + 1)$. Entonces $f'(x) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$.
- 2 Sea $g(x) = \ln(\sin(x))$. Entonces $g'(x) = \frac{1}{\sin(x)} \cdot \cos(x) = \cot(x)$. [6]

Ejemplo

- **1** Sea $f(x) = \ln(x^2 + 1)$. Entonces $f'(x) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$.
- 2 Sea $g(x) = \ln(\sin(x))$. Entonces $g'(x) = \frac{1}{\sin(x)} \cdot \cos(x) = \cot(x)$. [6]
- 3 Sea $h(x) = x \ln(x)$. Aplicando la regla del producto, $h'(x) = 1 \cdot \ln(x) + x \cdot \frac{1}{x} = \ln(x) + 1$.

Ejemplo

- **1** Sea $f(x) = \ln(x^2 + 1)$. Entonces $f'(x) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$.
- 2 Sea $g(x) = \ln(\sin(x))$. Entonces $g'(x) = \frac{1}{\sin(x)} \cdot \cos(x) = \cot(x)$. [6]
- 3 Sea $h(x) = x \ln(x)$. Aplicando la regla del producto, $h'(x) = 1 \cdot \ln(x) + x \cdot \frac{1}{x} = \ln(x) + 1$.

Propiedades Fundamentales

Si x e y son números positivos y n es un número racional, entonces

•
$$ln(1) = 0$$

Propiedades Fundamentales

Si x e y son números positivos y n es un número racional, entonces

- ln(1) = 0
- ln(ab) = ln(a) + ln(b)

Propiedades Fundamentales

Si x e y son números positivos y n es un número racional, entonces

- ln(1) = 0
- ln(ab) = ln(a) + ln(b)
- $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$

Propiedades Fundamentales

Si x e y son números positivos y n es un número racional, entonces

- ln(1) = 0
- ln(ab) = ln(a) + ln(b)
- $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$
- $\ln(a^n) = n \ln(a)$

Propiedades Fundamentales

Si x e y son números positivos y n es un número racional, entonces

- ln(1) = 0
- ln(ab) = ln(a) + ln(b)
- $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$
- $\ln(a^n) = n \ln(a)$

7) Ejemplos de Derivación Logarítmica

La derivación logarítmica es una técnica que simplifica la derivación de funciones complejas, especialmente aquellas que involucran productos, cocientes y potencias. [12, 18, 26]

Ejemplo

1 Sea
$$y = \frac{(x-2)^2}{\sqrt{x^2+1}}$$
. Tomando logaritmo natural en ambos lados:

R M

7) Ejemplos de Derivación Logarítmica

La derivación logarítmica es una técnica que simplifica la derivación de funciones complejas. especialmente aquellas que involucran productos, cocientes y potencias. [12, 18, 26]

Ejemplo

• Sea $y = \frac{(x-2)^2}{\sqrt{x^2+1}}$. Tomando logaritmo natural en ambos lados:

$$\ln(y) = 2 \ln(x-2) - \frac{1}{2} \ln(x^2+1)$$
. Derivando implícitamente: $\frac{y'}{y} = \frac{2}{x-2} - \frac{x}{x^2+1}$.

R M

7) Ejemplos de Derivación Logarítmica

La derivación logarítmica es una técnica que simplifica la derivación de funciones complejas, especialmente aquellas que involucran productos, cocientes y potencias. [12, 18, 26]

Ejemplo

1 Sea $y = \frac{(x-2)^2}{\sqrt{x^2+1}}$. Tomando logaritmo natural en ambos lados:

$$\ln(y) = 2 \ln(x-2) - \frac{1}{2} \ln(x^2+1)$$
. Derivando implícitamente: $\frac{y'}{y} = \frac{2}{x-2} - \frac{x}{x^2+1}$.

Despejando y': y' = y
$$\left(\frac{2}{x-2} - \frac{x}{x^2+1}\right) = \frac{(x-2)^2}{\sqrt{x^2+1}} \left(\frac{2}{x-2} - \frac{x}{x^2+1}\right)$$
.

<ロ > < 回 > < 回 > < 直 > < 直 >) 注 り < ⊙ <

R. M. UASD
Cálculo II: Unidad 0. Parte 1 10 / 29

8) Fórmula de Integral

Integral

La fórmula general de integración que resulta en la función logaritmo natural es:

$$\int \frac{1}{u} du = \ln|u| + C$$

Nota

El valor absoluto se utiliza para asegurar que el argumento del logaritmo sea siempre positivo.

R. M.

Ejemplo

$$\int \frac{2x}{x^2+1} dx$$
. Sea $u = x^2 + 1$, $du = 2xdx$.

Ejemplo

1
$$\int \frac{2x}{x^2+1} dx$$
. Sea $u = x^2 + 1$, $du = 2x dx$. $\int \frac{1}{u} du = \ln|u| + C = \ln(x^2 + 1) + C$.

Ejemplo

1
$$\int \frac{2x}{x^2+1} dx$$
. Sea $u = x^2+1$, $du = 2xdx$. $\int \frac{1}{u} du = \ln |u| + C = \ln(x^2+1) + C$.

2
$$\int \frac{1}{2x-1} dx$$
. Sea $u = 2x - 1$, $du = 2dx$.

Ejemplo

1
$$\int \frac{2x}{x^2+1} dx$$
. Sea $u = x^2+1$, $du = 2xdx$. $\int \frac{1}{u} du = \ln |u| + C = \ln(x^2+1) + C$.

2
$$\int \frac{1}{2x-1} dx$$
. Sea $u = 2x-1$, $du = 2dx$. $\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2x-1| + C$.

Cálculo II: Unidad 0. Parte 1

Ejemplo

- $\int \frac{2x}{x^2+1} dx$. Sea $u = x^2+1$, du = 2xdx. $\int \frac{1}{u} du = \ln |u| + C = \ln(x^2+1) + C$.
- 2 $\int \frac{1}{2x-1} dx$. Sea u = 2x-1, du = 2dx. $\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2x-1| + C$.
- 3 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$. Sea $u = \cos(x)$, $du = -\sin(x) dx$.

HASD

R. M

Ejemplo

- $\int \frac{2x}{x^2+1} dx$. Sea $u = x^2+1$, du = 2xdx. $\int \frac{1}{u} du = \ln |u| + C = \ln(x^2+1) + C$.
- 2 $\int \frac{1}{2x-1} dx$. Sea u = 2x-1, du = 2dx. $\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2x-1| + C$.
- 3 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$. Sea $u = \cos(x)$, $du = -\sin(x) dx$. $-\int \frac{1}{u}du = -\ln|u| + C = -\ln|\cos(x)| + C = \ln|\sec(x)| + C.$

R. M Cálculo II: Unidad 0. Parte 1 12 / 29

Ejemplo

- 1 $\int \frac{2x}{x^2+1} dx$. Sea $u = x^2 + 1$, du = 2x dx. $\int \frac{1}{u} du = \ln |u| + C = \ln(x^2 + 1) + C$.
- 2 $\int \frac{1}{2x-1} dx$. Sea u = 2x-1, du = 2dx. $\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2x-1| + C$.
- 3 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$. Sea $u = \cos(x)$, $du = -\sin(x) dx$. $-\int \frac{1}{u} du = -\ln|u| + C = -\ln|\cos(x)| + C = \ln|\sec(x)| + C$.
- $\int \frac{x^2 + x + 1}{x^2 + 1} dx = \int \left(1 + \frac{x}{x^2 + 1} \right) dx$

Ejemplo

- 1 $\int \frac{2x}{x^2+1} dx$. Sea $u = x^2 + 1$, du = 2x dx. $\int \frac{1}{u} du = \ln |u| + C = \ln(x^2 + 1) + C$.
- 2 $\int \frac{1}{2x-1} dx$. Sea u = 2x-1, du = 2dx. $\frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2x-1| + C$.
- 3 $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$. Sea $u = \cos(x)$, $du = -\sin(x) dx$. $-\int \frac{1}{u} du = -\ln|u| + C = -\ln|\cos(x)| + C = \ln|\sec(x)| + C$.

10) Función Inversa y su Derivada

Definición (Función)

Una función f es una correspondencia entre dos conjuntos, el dominio y el codominio, de modo que a cada elemento del dominio le corresponde un único elemento del codominio.

10) Función Inversa y su Derivada

Definición (Función)

Una función f es una correspondencia entre dos conjuntos, el dominio y el codominio, de modo que a cada elemento del dominio le corresponde un único elemento del codominio.

Definición (Función Inversa)

Suponga que f es una función inyectiva en un dominio D y con rango R. La función inversa $^{-1}$ se define como $^{-1}(b) = asi (a) = b$. El dominio de f -1 es R y su rango es D.

R. M. UASD
Cálculo II: Unidad 0. Parte 1 13 / 29

Teorema

Theorem (Derivada de una Función Inversa)

Sea f una función diferenciable con una inversa $g = f^{-1}$. Si $f'(g(x)) \neq 0$, entonces g es diferenciable y su derivada es:

$$g'(x) = \frac{1}{f'(g(x))}$$

11) Definición Formal de la Función Exponencial Natural y su Gráfica

Definición (Función Exponencial Natural)

La función exponencial natural, denotada por e^x o $\exp(x)$, es la inversa de la función logaritmo natural. Es decir, $y = e^x$ si y solo si $x = \ln(y)$. El dominio es $(-\infty, \infty)$ y el rango es $(0, \infty)$.

R. M. UASD
Cálculo II: Unidad 0. Parte 1 15 / 29

11) Definición Formal de la Función Exponencial Natural y su Gráfica

Definición (Función Exponencial Natural)

R. M

La función exponencial natural, denotada por e^x o $\exp(x)$, es la inversa de la función logaritmo natural. Es decir, $y = e^x$ si y solo si $x = \ln(y)$. El dominio es $(-\infty, \infty)$ y el rango es $(0, \infty)$.

4 D > 4 B > 4 B > 4 B > 9 Q P

HASD

12) Derivada de la Función Exponencial

Theorem

La derivada de la función exponencial natural es ella misma: [11]

$$\frac{d}{dx}[e^x] = e^x$$

Demostración.

Sea $y = e^x$. Entonces ln(y) = x. Derivando implícitamente con respecto a x:

$$\frac{1}{y}\frac{dy}{dx}=1$$

Despejando $\frac{dy}{dx}$:

$$\frac{dy}{dx} = y = e^x$$

13) Derivada de la Función Exponencial Compuesta

Theorem (Regla de la Cadena para la Función Exponencial)

Si
$$y = e^u y u = g(x)$$
 es una función diferenciable, entonces: [9]

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u \cdot \frac{du}{dx}$$

R. M. UASD
Cálculo II: Unidad 0. Parte 1 17 / 29

14) Ejemplos de Derivadas de Funciones Exponenciales

Example

1 Sea
$$f(x) = e^{x^3}$$
.

1 Sea
$$f(x) = e^{x^3}$$
. Entonces $f'(x) = e^{x^3} \cdot 3x^2 = 3x^2e^{x^3}$.

- **1** Sea $f(x) = e^{x^3}$. Entonces $f'(x) = e^{x^3} \cdot 3x^2 = 3x^2e^{x^3}$.
- **2** Sea $g(x) = e^{\tan(x)}$.

- **1** Sea $f(x) = e^{x^3}$. Entonces $f'(x) = e^{x^3} \cdot 3x^2 = 3x^2e^{x^3}$.
- 2 Sea $g(x) = e^{\tan(x)}$. Entonces $g'(x) = e^{\tan(x)} \cdot \sec^2(x)$.

Example

- **1** Sea $f(x) = e^{x^3}$. Entonces $f'(x) = e^{x^3} \cdot 3x^2 = 3x^2e^{x^3}$.
- 2 Sea $g(x) = e^{\tan(x)}$. Entonces $g'(x) = e^{\tan(x)} \cdot \sec^2(x)$.
- 3 Sea $h(x) = \sin(e^x)$.

R. M.

Example

- **1** Sea $f(x) = e^{x^3}$. Entonces $f'(x) = e^{x^3} \cdot 3x^2 = 3x^2e^{x^3}$.
- 2 Sea $g(x) = e^{\tan(x)}$. Entonces $g'(x) = e^{\tan(x)} \cdot \sec^2(x)$.
- 3 Sea $h(x) = \sin(e^x)$. Entonces $h'(x) = \cos(e^x) \cdot e^x = e^x \cos(e^x)$.

Cálculo II: Unidad 0. Parte 1

R. M

15) Propiedades de los Exponentes

Propiedades Fundamentales

Si a y b son números positivos y x e y son números reales, entonces: [21]

- $e^{x}e^{y} = e^{x+y}$
- $\frac{e^{x}}{e^{y}} = e^{x-y}$ $(e^{x})^{y} = e^{xy}$

R. M.

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

1
$$\int e^{3x+1} dx$$
. Sea $u = 3x + 1$, $du = 3dx$. $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x+1} + C$.

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

- 1 $\int e^{3x+1} dx$. Sea u = 3x + 1, du = 3dx. $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x+1} + C$.
- \bigcirc $\int 5xe^{-x^2}dx$.

R. M.

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

- 1 $\int e^{3x+1} dx$. Sea u = 3x + 1, du = 3dx. $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x+1} + C$.
- 2 $\int 5xe^{-x^2}dx$. Sea $u = -x^2$, du = -2xdx.

R M

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

- 1 $\int e^{3x+1} dx$. Sea u = 3x + 1, du = 3dx. $\frac{1}{2} \int e^u du = \frac{1}{2} e^u + C = \frac{1}{2} e^{3x+1} + C$.
- 2 $\int 5xe^{-x^2}dx$. Sea $u = -x^2$, du = -2xdx. $-\frac{5}{2}\int e^udu = -\frac{5}{2}e^u + C = -\frac{5}{2}e^{-x^2} + C$.

Cálculo II: Unidad 0. Parte 1

R M

HASD 20 / 29

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

- 1 $\int e^{3x+1} dx$. Sea u = 3x + 1, du = 3dx. $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x+1} + C$.
- 2 $\int 5xe^{-x^2}dx$. Sea $u = -x^2$, du = -2xdx. $-\frac{5}{2}\int e^udu = -\frac{5}{2}e^u + C = -\frac{5}{2}e^{-x^2} + C$.

◆□▶◆□▶◆■▶◆■▶ ■ 990

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

- 1 $\int e^{3x+1} dx$. Sea u = 3x + 1, du = 3dx. $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x+1} + C$.
- 2 $\int 5xe^{-x^2}dx$. Sea $u=-x^2$, du=-2xdx. $-\frac{5}{2}\int e^udu=-\frac{5}{2}e^u+C=-\frac{5}{2}e^{-x^2}+C$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 めな○

R. M.
Cálculo II: Unidad 0. Parte 1

Integral exponencial

La fórmula de integración para la función exponencial natural es:

$$\int e^u du = e^u + C$$

Ejemplo

- 1 $\int e^{3x+1} dx$. Sea u = 3x + 1, du = 3dx. $\frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{3x+1} + C$.
- 2 $\int 5xe^{-x^2}dx$. Sea $u=-x^2$, du=-2xdx. $-\frac{5}{2}\int e^udu=-\frac{5}{2}e^u+C=-\frac{5}{2}e^{-x^2}+C$.
- 3 $\int e^x \cos(e^x) dx$. Sea $u = e^x$, $du = e^x dx$. $\int \cos(u) du = \sin(u) + C = \sin(e^x) + C$.

R. M.
Cálculo II: Unidad 0. Parte 1

17) Definición de Exponencial General de Base a y su Gráfica

Definition (Función Exponencial General)

Si a es un número positivo ($a \neq 1$) y x es cualquier número real, la función exponencial general de base a se define como:

$$a^{x}=e^{x\ln(a)}$$

R. M.

17) Definición de Exponencial General de Base a y su Gráfica

Definition (Función Exponencial General)

Si a es un número positivo ($a \neq 1$) y x es cualquier número real, la función exponencial general de base a se define como:

$$a^{x}=e^{x\ln(a)}$$

18) Derivada de la Función Exponencial $y = a^x$

Derivada

La derivada de la función exponencial general de base a es:

$$\frac{d}{dx}[a^x] = a^x \ln(a)$$

18) Derivada de la Función Exponencial $y = a^x$

Derivada

La derivada de la función exponencial general de base a es:

$$\frac{d}{dx}[a^x] = a^x \ln(a)$$

Demostración.

Utilizando la definición $a^x = e^{x \ln(a)}$ y la regla de la cadena:

$$\frac{d}{dx}[a^x] = \frac{d}{dx}[e^{x \ln(a)}] = e^{x \ln(a)} \cdot \frac{d}{dx}[x \ln(a)] = e^{x \ln(a)} \cdot \ln(a) = a^x \ln(a)$$

Derivada de au

Si $y = a^u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = a^u \ln(a) \frac{du}{dx}$$

1 Sea
$$f(x) = 2^{\sin(x)}$$
.

Derivada de *a*^u

Si $y = a^u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = a^u \ln(a) \frac{du}{dx}$$

- Sea $f(x) = 2^{\sin(x)}$. Entonces $f'(x) = 2^{\sin(x)} \ln(2) \cos(x)$.
- ② Sea $g(x) = 10^{x^2}$.

Derivada de a^u

Si $y = a^u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = a^u \ln(a) \frac{du}{dx}$$

Example

- Sea $f(x) = 2^{\sin(x)}$. Entonces $f'(x) = 2^{\sin(x)} \ln(2) \cos(x)$.
- ② Sea $g(x) = 10^{x^2}$. Entonces $g'(x) = 10^{x^2} \ln(10) \cdot 2x = 2x \ln(10) 10^{x^2}$.
- **3** Sea $h(x) = (x^2 + 1)^{\pi}$.

- (ロ) (団) (量) (量) (量) (型) (の)

R. M.
Cálculo II: Unidad 0. Parte 1

Derivada de *a*^u

Si $y = a^u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = a^u \ln(a) \frac{du}{dx}$$

Example

- **1** Sea $f(x) = 2^{\sin(x)}$. Entonces $f'(x) = 2^{\sin(x)} \ln(2) \cos(x)$.
- ② Sea $g(x) = 10^{x^2}$. Entonces $g'(x) = 10^{x^2} \ln(10) \cdot 2x = 2x \ln(10) 10^{x^2}$.
- 3 Sea $h(x) = (x^2 + 1)^{\pi}$. $h'(x) = \pi(x^2 + 1)^{\pi 1} \cdot 2x$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 釣Q@

R. M. Cálculo II: Unidad 0. Parte 1

Integral de a^u

La fórmula de integración para la función exponencial general es:

$$\int a^u du = \frac{a^u}{\ln(a)} + C$$

Integral de a^u

La fórmula de integración para la función exponencial general es:

$$\int a^u du = \frac{a^u}{\ln(a)} + C$$

Integral de a^u

La fórmula de integración para la función exponencial general es:

$$\int a^u du = \frac{a^u}{\ln(a)} + C$$

- **2** $\int x3^{x^2} dx$. Sea $u = x^2$, du = 2xdx.

Integral de a^u

La fórmula de integración para la función exponencial general es:

$$\int a^u du = \frac{a^u}{\ln(a)} + C$$

Example

- ② $\int x3^{x^2}dx$. Sea $u=x^2$, du=2xdx. $\frac{1}{2}\int 3^udu=\frac{1}{2}\frac{3^u}{\ln(3)}+C=\frac{3^{x^2}}{2\ln(3)}+C$.

R. M.

UASD

21) Definición de Función Logaritmo General de Base a y su Gráfica I

Definición (Función Logaritmo General)

Si a es un número positivo (a \neq 1) y x es un número positivo, la función logaritmo general de base a, denotada por $\log_a(x)$, es la inversa de la función exponencial de base a.

$$y = \log_a(x) \iff a^y = x$$

Se puede expresar en términos del logaritmo natural mediante la fórmula del cambio de base:

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

|ロ > 《御 > 《意 > 《意 > 』 意 の Q (や

R. M. UASD
Cálculo II: Unidad 0. Parte 1 25 / 29

21) Definición de Función Logaritmo General de Base a y su Gráfica II

R. M. UASD Cálculo II: Unidad 0. Parte 1 26 / 29

22) Derivada de $y = \log_a x$ y Demostración

Derivada

La derivada de la función logaritmo general de base a es:

$$\frac{d}{dx}[\log_a(x)] = \frac{1}{x \ln(a)}$$

Demostración.

Utilizando la fórmula del cambio de base:

$$\frac{d}{dx}[\log_a(x)] = \frac{d}{dx} \left[\frac{\ln(x)}{\ln(a)} \right] = \frac{1}{\ln(a)} \frac{d}{dx} [\ln(x)] = \frac{1}{\ln(a)} \cdot \frac{1}{x} = \frac{1}{x \ln(a)}$$

R. M.

UASD

23) Derivada de $y = \log_2 u$ y Ejemplos

Derivada

Si $y = \log_2 u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u \ln(a)} \frac{du}{dx}$$

1 Sea
$$f(x) = \log_3(x^2 + 1)$$
.

23) Derivada de $y = \log_a u$ y Ejemplos

Derivada

Si $y = \log_a u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u \ln(a)} \frac{du}{dx}$$

1 Sea
$$f(x) = \log_3(x^2 + 1)$$
. Entonces $f'(x) = \frac{1}{(x^2+1)\ln(3)} \cdot 2x = \frac{2x}{(x^2+1)\ln(3)}$.

23) Derivada de $y = \log_a u$ y Ejemplos

Derivada

Si $y = \log_a u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u \ln(a)} \frac{du}{dx}$$

- 1 Sea $f(x) = \log_3(x^2 + 1)$. Entonces $f'(x) = \frac{1}{(x^2+1)\ln(3)} \cdot 2x = \frac{2x}{(x^2+1)\ln(3)}$.
- **2** Sea $g(x) = \log_5(\sqrt{x})$.

23) Derivada de $v = \log_2 u$ y Ejemplos

Derivada

Si $y = \log_2 u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u \ln(a)} \frac{du}{dx}$$

Ejemplo

- **1** Sea $f(x) = \log_3(x^2 + 1)$. Entonces $f'(x) = \frac{1}{(x^2 + 1) \ln(3)} \cdot 2x = \frac{2x}{(x^2 + 1) \ln(3)}$.
- 2 Sea $g(x) = \log_5(\sqrt{x})$. $g(x) = \frac{1}{2} \log_5(x)$. $g'(x) = \frac{1}{2} \cdot \frac{1}{x \ln(5)} = \frac{1}{x \ln(5$

R. M Cálculo II: Unidad 0. Parte 1

HASD 28 / 29

23) Derivada de $v = \log_2 u$ y Ejemplos

Derivada

Si $y = \log_2 u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u \ln(a)} \frac{du}{dx}$$

Ejemplo

- **1** Sea $f(x) = \log_3(x^2 + 1)$. Entonces $f'(x) = \frac{1}{(x^2 + 1) \ln(3)} \cdot 2x = \frac{2x}{(x^2 + 1) \ln(3)}$.
- 2 Sea $g(x) = \log_5(\sqrt{x})$. $g(x) = \frac{1}{2} \log_5(x)$. $g'(x) = \frac{1}{2} \cdot \frac{1}{x \ln(5)} = \frac{1}{2x \ln(5)}$.
- 3 Sea $h(x) = \log_{10}(\cos(x))$.

R. M

23) Derivada de $y = \log_a u$ y Ejemplos

Derivada

Si $y = \log_a u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u\ln(a)}\frac{du}{dx}$$

Ejemplo

- 1 Sea $f(x) = \log_3(x^2 + 1)$. Entonces $f'(x) = \frac{1}{(x^2 + 1)\ln(3)} \cdot 2x = \frac{2x}{(x^2 + 1)\ln(3)}$.
- 2 Sea $g(x) = \log_5(\sqrt{x})$. $g(x) = \frac{1}{2}\log_5(x)$. $g'(x) = \frac{1}{2} \cdot \frac{1}{x \ln(5)} = \frac{1}{2x \ln(5)}$.
- **3** Sea $h(x) = \log_{10}(\cos(x))$. Entonces h'(x) =

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○

R. M.
Cálculo II: Unidad 0. Parte 1

23) Derivada de $y = \log_2 u$ y Ejemplos

Derivada

Si $y = \log_2 u$ y u = g(x) es una función diferenciable, entonces:

$$\frac{dy}{dx} = \frac{1}{u\ln(a)}\frac{du}{dx}$$

Ejemplo

- **1** Sea $f(x) = \log_3(x^2 + 1)$. Entonces $f'(x) = \frac{1}{(x^2 + 1) \ln(3)} \cdot 2x = \frac{2x}{(x^2 + 1) \ln(3)}$.
- 2 Sea $g(x) = \log_5(\sqrt{x})$. $g(x) = \frac{1}{2}\log_5(x)$. $g'(x) = \frac{1}{2} \cdot \frac{1}{x \ln(5)} = \frac{1}{2x \ln(5)}$.
- 3 Sea $h(x) = \log_{10}(\cos(x))$. Entonces $h'(x) = \frac{1}{\cos(x)\ln(10)} \cdot (-\sin(x)) = -\frac{\tan(x)}{\ln(10)}$.

イロト イ御ト イヨト イヨト

R. M

Ejemplo de Diferenciación Logarítmica

Ejemplo

Sea $y = x^x$. Tomando logaritmo natural en ambos lados: ln(y) = x ln(x). Derivando implícitamente: $\frac{y'}{y} = ln(x) + 1$. Despejando y': $y' = y(ln(x) + 1) = x^x(ln(x) + 1)$.

R M