NAME:
Exam 1. Physics 342/442, Fall 2020
There is information attached at the end of the exam that you may find useful. No books or notes allowed. Good Luck!
1.) Answer the following in a clear and concise way. Usually more words means less points.
(a) (5 points) Briefly describe how adaptive time-step Runge-Kutta methods work to solve ODEs. Please note the emphasis on briefly.
(b) (5 points) Briefly describe why a very small determinant, say $\sim 10^{-12}$, when using LU might cause one to doubt the results. Please note the emphasis on briefly.
(c) (5 points) Briefly describe two methods for fitting a functions whose normal equations are

non-linear. Please note the emphasis on briefly.

2. (10 points) Use the figure below to estimate the integral of the function. The dots have been randomly generated, and the height of the rectangle is 6.5

3.) (10 points) The figures below show the same experimentally obtained data. On the left panel, sketch a cubic spline appropriate for this data, and on the right panel sketch your estimate of a best fit line for this data. Below each figure describe the conditions that that must be met to obtain a cubic spline and a least-squares best fit line.

4.)(15 points) By explicitly computing the appropriate partial derivatives, determine if the functions require linear or non-linear fits.

(a)
$$f(t) = a_o + a_1 \sin(2\pi t) + a_2 \sin(4\pi t); \quad a_o, a_1, a_2 \text{ parameters}$$

(b)
$$f(x) = a_1 \exp(-a_2 x) + a_3 x; \quad a_1, a_2, a_3 \text{ parameters}$$

(c)
$$f(x) = \exp(-a_1 x) + a_2 x; \quad a_1, a_2 \text{ parameters}$$

5.a) (5 points) Convert the following 2nd order ODE to a system of first order ODEs. This requires that a new variable be introduced, call that variable, v.

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 1 = 0.$$

5.b) (15 points) Use Euler's and Runge-Kutta fourth order methods on the first order system of ODEs found in part (a) to fill in the following table. The initial conditions are that at t=0, y=0, v=2. Use a time step of $\Delta t=h=1$.

	Euler		Runge-Kutta	
t	У	V	У	V
0	0	1	0	1
1				
2				
3				

Useful and Useless Information

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - f(x_i)$$

$$S = \sum (y_i - Y(x_i, a_1, \dots, a_m))^2$$

$$A = LU$$

$$y_{i+1} = y_i + hf(t_o, y_o)$$

$$f_o = f(t_o, y_o)$$

$$f_1 = f(t_o + \frac{h}{2}, y_o + \frac{h}{2}f_o)$$

$$f_2 = f(t_o + \frac{h}{2}, y_o + \frac{h}{2}f_1)$$

$$f_3 = f(t_o + h, y_o + f_2)$$

$$y_{i+1} = y_i + \frac{h}{6}(f_o + 2f_1 + 2f_2 + f_3)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_i)}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i$$