

캡스톤디자인1계획발표

항공영상 기반의 제로샷 객체 탐지 연구 (Zero-shot Object Detection Research Based on Aerial Imagery)

지도 교수: 장한얼 교수님

팀 명: AerD(Aero Detector)

팀 원 : 컴퓨터공학과 20201735 박우진 컴퓨터공학과 20222019 김다빈

CONTENTS

01

팀원 소개

02

연구 배경 및 필요성

03

기존 연구

04

연구 목표 및 계획

05

연구 활용성

06

참고문헌

팀원 소개

팀원 소개

박우진 논문 및 자료조사, 모델 코드 작성 및 실험, 데이터셋 구축

김다빈 논문 및 자료조사, 모델 코드 작성 및 실험, 데이터셋 구축

연구 배경 및 필요성

Object Detection이란?

- 이미지나 영상에서 특정 객체의 위치(Bounding box)와 종류(Class)를 탐지하는 컴퓨터 비전 기술
 - 객체의 위치와 클래스 식별
 - 바운딩 박스 출력

Open-Vocabulary Object Detection(OVD)란?

● 모델이 학습하지 않은 새로운 객체(Novel category)도 탐지할 수 있는 객체 탐지 기법

: Base categories

- 사전 정의된 클래스에 의존하지 않음
- 텍스트 기반 객체 탐지
- 제로샷 탐지

the brown animal

the tallest person

person with a white shirt

the jumping person

person holding a baseball bat

person holding a toy

the standing person

moon

Open-Vocabulary Object Detection의 필요성

- Object Detection 모델은 학습한 객체만 탐지 가능
 → 추가 학습 필요
- Open-Vocabulary Object Detection 모델은 학습하지 않은 객체도 탐지 가능

 → 자연어 설명

Open-Vocabulary Object Detection의 필요성

- **자연어를 기반으로 새로운 객체를 탐지할 수 있음** → 다양한 도메인에 적응 가능
- 기존 탐지 모델보다 유연성이 뛰어나고, 빠른 도입이 가능

기존 연구

03 기존 연구

YOLO-World

• YOLO backbone과 CLIP 임베딩을 활용하여 범용적인 객체 인식을 수행하는 것이 목표

Figure 3. **Overall Architecture of YOLO-World.** Compared to traditional YOLO detectors, YOLO-World as an open-vocabulary detector adopts text as input. The *Text Encoder* first encodes the input text input text embeddings. Then the *Image Encoder* encodes the input image into multi-scale image features and the proposed *RepVL-PAN* exploits the multi-level cross-modality fusion for both image and text features. Finally, YOLO-World predicts the regressed bounding boxes and the object embeddings for matching the categories or nouns that appeared in the input text.

03 기존 연구

ObjectStitch

● Image guidance를 사용하여 생성된 합성 이미지에서 원래 객체의 정체성과 외형을 보존하는 것이 목표

Figure 2. System pipeline. Our framework consists of a content adaptor and a generator (a pretrained text-to-image diffusion model). The input image I_o is fed into a ViT and the adaptor which produces a descriptive embedding. At the same time the background image I_{bg} is taken as input by the diffusion model. At each iteration during the denoising stage, we apply the mask M on the generated image I_{out} , so that the generator only denoises the masked area $I_{out} \bigotimes M$.

Figure 3. Structure of the Content Adaptor. In the first stage, it is trained on a large dataset of image-caption pairs to learn multimodal sequential embeddings containing high-level semantics. In the second stage, it is fine-tuned under the diffusion framework to learn to encode identity features in *adaptive embedding*.

연구 목표 및 계획

연구 목표 및 계획

연구 목표

• 군용 차량 탐지에 OVD 기술 적용

전차 이미지

- **OVD는 자연어 설명 활용, 새로운 객체 탐지 가능** → 군사 작전에서 제로샷 탐지를 활용한 정찰 및 상황 인식 강화
- 현재 OVD 기술이 군용 객체 탐지에 최적화되어 연구된 사례는 부족
 - → 데이터셋 부족, 일반적 OVD 모델의 학습 도메인 문제

연구 목표 및 계획

연구 목표

- 이미지 합성 기법 사용
 - 군사 데이터는 보안 문제로 대규모 수집 어려움
 - 이미지 합성 기법을 활용하여 현실적인 합성 데이터를 생성 및 적용

연구 목표 및 계획

연구 계획

데이터 수집 및 전처리	 드론 영상 데이터셋 구축 및 분석 데이터 부족 문제 해결을 위해 image composition 기법 활용 현실적 데이터 생성을 위해 image harmonization 기법 활용
OVD 모델 선정 및 최적화	 최신 OVD 모델 비교 분석을 통해 최적 모델 선정 군용 객체 탐지에 적합하도록 모델을 최적화 및 성능 개선 K2, K200, T80, BMP3, 수송차 등의 세부 객체 탐지 기능 개선
모델 학습 및 검증	● 다양한 드론 영상 데이터셋을 활용하여 모델 학습 진행 ● 탐지 정확도(mAP_50, mAP_75, mAP_s, mAP_m, mAP_l) 등의 정량적 지표를 활용하여 모델 평가
실전 적용 가능성 검토	 군사 작전뿐만 아니라 재난 대응, 국경 감시 등의 분야에서 활용 가능성 평가 연구 결과를 국제 학술지 및 컨퍼런스에 발표하여 학술적 기여

연구 활용성

연구 활용성

• OVD의 장점

○ 자연어 설명을 활용하여 학습하지 않은 객체도 탐지 가능

• OVD의 활용 가능성

- \circ 군사 분야 \rightarrow 새로운 군용 차량을 신속하게 탐지하여 적군의 변화 감시 가능
- 자율주행 분야 → 새로운 장애물이나 위험 요소 탐지 가능

연구 기대효과

성능

- 기존 모델 대비 탐지 정확도를 높인 모델을 개발
- OVD 모델을 활용하여 항공영상 기반 학습하지 않은 전차, 장갑차, 수송차 등의 군용 객체 탐지 수행

결과

- OVD 모델을 이용해 제로샷 방식의 군용 객체 탐지 모델 개발
- 연구 결과를 토대로 논문 작성
- 새로운 군용 차량을 제로샷 탐지 기법으로 탐지하여 군사 전략적으로 중요한 기술 발전에 기여

06 참고 문헌

Open-Vocabulary Object Detection

- Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xing-gang Wang, and Ying Shan. Yolo-world: Real-time open-vocabulary object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16901–16911, 2024
- Amir Zareian, Shih-Fu Chang, Dongdong Yu, and Xiu Shen Wei. Learning open-vocabulary object detection via vision and language knowledge distillation. *In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 5186–5195, 2021.
- Rohit Girdhar, Alireza Fathi, Zeynep Akata, and Ian Misra. Open-vocabulary object detection using captions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14393–14403, 2023.

Image Composition

 Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim, and Daniel Aliaga. Objectstitch: Generative object compositing, In CVPR, 2023.

• Image Harmonization

Linfeng Tan, Jiangtong Li, Li Niu, Liqing Zhang. Deep Image Harmonization in Dual Color Spaces. MM '23: Proceedings of the 31st ACM International Conference on Multimedia, pp. 2159 - 2167

THANK YOU

컴퓨터공학과 20201735 박우진 컴퓨터공학과 20222019 김다빈

