

BIOL334 Conservation & Ecological Genetics

PROBLEM SET #5

Problem Set #5

OVERVIEW:

- 1. N_e and Heterozygosity (H)
- 2. N_e , H and Inbreeding (F)
- 3. Example of intervention

Heterzoygosity (H) decays over time as the inverse of N_e :

N_e and Heterozygosity

- 1. Larger (effective) populations retain more genetic diversity...
- 2. H decays as the inverse of N_e

$$\frac{H_t}{H_0} = \left(1 - \frac{1}{2N_e}\right)^t$$

Where: t = number of generations

Question 5.1 Predicting loss of *H*:

For the population of Florida panthers that existed in 1995, estimate *H* in 2007 if they hadn't introduced TX individuals (12 years ~6 Generations)

H: 1995 – 2007

(without introduction)

1995

$$H_0 = 0.184$$

$$N_e = 16.4$$

$$\frac{H_t}{H_0} = \left(1 - \frac{1}{2N_e}\right)^t$$

What is *H* in 2007?

H: 1995 - 2007

(without introduction)

$\frac{H_t}{H_0} = \left(1 - \frac{1}{2N_e}\right)^t$

1995

$$H_0 = 0.184$$

$$N_e = 16.4$$

$$\frac{H_{t=6}}{0.184} = \left(1 - \frac{1}{2(16.4)}\right)^6$$

$$\frac{H_{t=6}}{0.184} = 0.830$$

$$H_{t=6} = 0.830 \times 0.184$$

= **0.153**

Predicting loss of *H*:

In 2007, if they hadn't introduced tx panthers

(12 years ~6 gens)

 $H_{\rm est} \sim 0.153$

[Incidentally, after 24 years $^{\sim}$ 12 gen, $H_{\text{est}} = 0.127$]

N_e and H_t/H_0 and inbreeding (F)

They're all related, aren't they?

N_e and H_t/H_0 and inbreeding

They're all related:

$$\frac{H_t}{H_0} = \left(1 - \frac{1}{2N_e}\right)^t = 1 - F$$

Re-arranged:
$$F = 1 - \frac{H_t}{H_0}$$

Question 5.2 Inbreeding without-

versus-with intervention:

Estimate *F* in 2007:

- (a) If they hadn't introduced TX panthers...
- (b) Given that they were introduced...

Interpret & discuss these values

Inbreeding without intervention:

From 1995 to 2007:

$$H_0 = 0.184$$
, $H_6 = 0.153$

$$F = 1 - \frac{H_t}{H_0}$$

$$F = ?$$

Inbreeding without intervention:

From 1995 to 2007:

$$H_0 = 0.184$$
, $H_6 = 0.153$

$$F = 1 - \frac{H_t}{H_0}$$

$$F = 1 - \frac{0.153}{0.184}$$

$$F = 1 - 0.831$$

$$F = 0.168$$

Inbreeding with intervention:

From 1995 to 2007:

$$H_0 = 0.184$$
, $H_6 = 0.250$

$$F = 1 - \frac{H_t}{H_0}$$

$$F = 1 - \frac{0.250}{0.184}$$

$$F = 1 - 1.359$$

$$F = -0.359$$
 ???