Microprocessor and Computer Architecture Laboratory

UE19CS256

4th Semester, Academic Year 2020-21

Date:

Name: Nihal T M	SRN: PES2UG21CS333	Section: F
		_
Week#8	Number:	_1
Consider a dire	ect mapped cache o	of size
16 bytes with	block size 4 bytes.	The size
of main memo	ry is 256 bytes.	

a) Find Number of bits in tag, index and offset.

○ Write On Allocate○ Write Around		→)	Instructi	on Breakd	own
ache Size (power of 2)	16		0000	00	01
lemory Size (power of 2)	256	L	4 bit	2 bit	2 bit
Offset Bits	2				

b)The processor generates requests as follows:

1,4,8,5,14,11,13,38,9,B,4,2B,5,6,9,11. Find hit rate and miss rate.

i) Cache Address Table showing the splitup of the address fields for the requests generated by the processor (for entry 1)

\blacksquare	⊞ Cache Table							
	Index	Valid	Tag	Data (Hex)	Dirty Bit			
	0	1	0000	BLOCK 0 WORD 0 - 3	0			
	1	0	-	0	0			
	2	0	-	0	0			
	3	0	-	0	0			

ii) Screenshot showing the Cache Table

\blacksquare	⊞ Cache Table						
	Index	Valid	Tag	Data (Hex)	Dirty Bit		
	0	1	0001	BLOCK 4 WORD 0 - 3	0		
	1	1	0000	BLOCK 1 WORD 0 - 3	0		
	2	1	0000	BLOCK 2 WORD 0 - 3	0		
	3	0	ı -	0	0		

iii) Screenshot showing hit and miss rates

Week#	8	Number:	2
••••	•		_

Consider a direct mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find Number of bits in tag. Randomly generate 10 addresses and find hit rate and miss rate.

a) Cache Address Table showing the splitup of the address fields for the requests generated by the processor

◆ Instruction Breakdown

011	100011	01011001
3 bit	6 bit	8 bit

b) Screenshot showing the Cache Table

32	0	-	0	0
33	0	-	0	0
34	0	-	0	0
35	1	011	BLOCK E3 WORD 0 - 255	0
36	0	-	0	0
37	0	-	0	0

c) Screenshot showing hit and miss rates

Statistics	
Hit Rate :	0%
Miss Rate:	100%
List of Previous I	nstructions :
• Load 1B	60D [Miss]
• Load 8D	41 [Miss]
• Load 17	6D1 [Miss]
• Load 13	AE8 [Miss]
• Load 18	1FA [Miss]
• Load 14	95 [Miss]
• Load 18	6B3 [Miss]
• Load E3	59 [Miss]
• Load 11	51D [Miss]
Load 1A	76A [Miss]

Week#	8	Number:	3

A computer system uses 16-bit memory addresses. It has a 2K-byte cache organized in a direct-mapped manner with 64 bytes per cache block. Assume that the size of each memory word is 1 byte.

a) Calculate the number of bits in each of the Tag, Block, and Word fields of the memory address.

•	Instruction Breakdown						
	TAG	INDEX	OFFSET				
	5 bit	5 bit	6 bit				
	3 010	J DIC	0 DIC				

(b) When a program is executed, the processor reads data sequentially from the following word addresses: 128, 144, 2176, 2180, 128, 2176

All the above addresses are shown in decimal values. Assume that the cache is initially empty. For each of the above addresses, indicate whether the cache access will result in a hit or a miss.

a) Cache Address Table showing the splitup of the address fields for the requests generated by the processor

→)Ir	structio	on Breal	kdown	■ Memory Block	
	00000	00100	101000	B. 4 W. 0 B. 4 W. 1 B. 4 W. 2 B. 4 W. 3 B. 4 W. 4 B. 4 W. 5 B. 4 W. 6 B. 4 W. 7 B. 4	W. 8 B.
	5 bit	5 bit	6 bit	B. 5 W. 0 B. 5 W. 1 B. 5 W. 2 B. 5 W. 3 B. 5 W. 4 B. 5 W. 5 B. 5 W. 6 B. 5 W. 7 B. 5	
				B.6W.0 B.6W.1 B.6W.2 B.6W.3 B.6W.4 B.6W.5 B.6W.6 B.6W.7 B.6' B.7W.0 B.7W.1 B.7W.2 B.7W.3 B.7W.4 B.7W.5 B.7W.6 B.7W.7 B.7' B.8W.0 B.8W.1 B.8W.2 B.8W.3 B.8W.4 B.8W.5 B.8W.6 B.8W.7 B.8' B.8W.0 R.9W.1 R.9W.2 B.9W.3 R.9W.4 B.9W.5 B.9W.6 B.8W.7 R.9'	W. 8 B. W. 8 B.
▦	Cache T	able	Tag	Data (Hex) Dirty Bit	
	0	0	-	0 0	
	1	0	1-	0 0	
	2	0	-	0 0	
	3	0	-	0 0	
	4	1	00000	BLOCK 4 WORD 0 - 63 0	
	5	0	-	0 0	

b) Screenshot showing the Cache Table

Ⅲ Cache Table

Index	Valid	Tag	Data (Hex)	Dirty Bit
0	0	-	0	0
1	0	-	0	0
2	0	-	0	0
3	0	-	0	0
4	1	00000	BLOCK 4 WORD 0 - 63	0
5	1	00100	BLOCK 85 WORD 0 - 63	0
6	1	00100	BLOCK 86 WORD 0 - 63	0
7	0	-	0	0
8	0	-	0	0
9	0	-	0	0
10	0	-	0	0
11	0	-	0	0
12	0	-	0	0
13	0	-	0	0
14	0	-	0	0
4.5	_			_

c) Screenshot showing hit and miss rates

Statistics
Hit Rate: 33%
Miss Rate: 67%

List of Previous Instructions:
• Load 128 [Miss]
• Load 144 [Miss]
• Load 2176 [Miss]
• Load 2180 [Miss]
• Load 128 [Hit]
• Load 2176 [Hit]

Week#	8	Number: 4	
	_		

Consider a 2-way set associative cache of size 16 KB with block size 256 bytes. The size of main memory is 128 KB. Find Number of bits in tag. Randomly generate 10 addresses and find hit rate and miss rate.

a) Cache Address Table showing the splitup of the address fields for the requests generated by the processor

	2-WAY SET ASSOCIATIVE CACHE													
Instruction Breakdown					33 Me	emor	y Bloc	:k						
	0001	10001	11111011		B. 0 W. 0	B. 0 W. 1	B. 0 W. 2	B. 0 W. 3	B. 0 W. 4	B. 0 W. 5	B. 0 W. 6	B. 0 W. 7	B. 0 W. 8	B.
	4 bit	5 bit	8 bit		B. 1 W. 0	B. 1 W. 1 B. 2 W. 1	B. 1 W. 2 B. 2 W. 2				B. 1 W. 6 B. 2 W. 6		B. 1 W. 8 B. 2 W. 8	B.
				_	B. 3 W. 0 B. 4 W. 0		B. 3 W. 2 B. 4 W. 2	B. 3 W. 3	B. 3 W. 4 B. 4 W. 4	B. 3 W. 5	B. 3 W. 6	B. 3 W. 7 B. 4 W. 7	B. 3 W. 8 B. 4 W. 8	В. В.

b) Screenshot showing the Cache Table

Index	Valid	Tag	Data (Hex)	Dirty Bit]	Index	Valid	Tag	Data (Hex)	Dirty Bit
0	0	-	0	0	1	0	0	-	0	0
1	0	-	0	0	1	1	0	-	0	0
2	0	-	0	0]	2	0	-	0	0
3	1	4	B. 83 W. 0 - 255	0]	3	0	-	0	0
4	0	-	0	0]	4	0	-	0	0
5	1	8	B. 105 W. 0 - 255	0]	5	0	-	0	0
6	1	1	B. 26 W. 0 - 255	0		6	0	-	0	0
7	0	-	0	0		7	0	-	0	0
8	1	4	B. 88 W. 0 - 255	0		8	1	1	BLOCK 28 WORD 0 - 255	0
9	0	-	0	0		9	0	-	0	0
10	0	-	0	0		10	0	-	0	0
11	0	-	0	0		11	0	-	0	0
12	0	-	0	0		12	0	-	0	0
13	0	-	0	0		13	0	-	0	0
14	0	-	0	0		14	0	-	0	0
15	0	-	0	0		15	0		0	0
16	0	-	0	0		16	0	-	0	0
17	1	1	B. 31 W. 0 - 255	0		17	0	-	0	0
18	0	-	0	0		18	0	-	0	0
19	1	f	B. 1F3 W. 0 - 255	0		19	0	·	0	0
20	1	5	B. B4 W. 0 - 255	0		20	1	f	BLOCK 1F4 WORD 0 - 255	0
21	0	-	0	0		21	0	, -	0	0
22	0	-	0	0		22	0	-	0	0
23	0	-	0	0		23	0	-	0	0
24	0	-	0	0		24	0	-	0	0
25	1	9	B. 139 W. 0 - 255	0		25	0	-	0	0

c) Screenshot showing hit and miss rates

Statistics	
Hit Rate :	0%
Miss Rate :	100%
List of Previous Inst	tructions :
Load 31FB	[Miss]
Load B4EA	[Miss]
• Load 1F35	D [Miss]
 Load 881D 	[Miss]
• Load 1399	1 [Miss]
• Load 8361	[Miss]
• Load 1F4A	C [Miss]
 Load 105C 	A [Miss]
• Load 2635	[Miss]
 Load 2841 	[Miss]

Week# 8	Number:	5
---------	---------	---

Consider a main memory having 64 byte capacity and cache memory of 8 bytes initially empty .The following addresses are generated by the CPU. All values in hexadecimal. Clearly label data that is replaced in cache lines

Show the cache memory table and filled data in the cache lines of block size 1 byte. LRU Policy is used.

The cache is mapped as

a) Direct Mapped

b) Two way set Associative

c) Four Way Set associative

d) Fully Associative

a) Cache Address Table showing the splitup of the address fields for the requests generated by the processor

b) Screenshot showing the Cache Table

c) Screenshot showing hit and miss rates

Disclaimer:

The programs and output submitted is duly written, verified and executed by me.

I have not copied from any of my peers nor from the external resource such as internet.

If found plagiarized, I will abide with the disciplinary action of the University.

Signature:

Name: Nihal T M

SRN: PES2UG21CS333

Section: F

Date: 20/03/2023