Task №3

Щербаков Алексей Б01-908

1 October 2019

1

 $(A \to B) \lor (B \to A) = (\bar{A} \lor B) \lor (\bar{B} \lor A) = (\bar{A} \lor A) \lor (\bar{B} \lor B)$ — всегда истинно "Если ветви параболы направлены вверх, то парабола пересекает 0 - очевидно ложно"не означает, что $A \to B = 0$.

 $A \to B = 0$, тогда и только тогда, когда парабола целиком выше 0 Если парабола выше 0, очевидно, что B = 0, тогда $B \to A = 1$ В таком случае нет противоречий с данной в условии дизъюнкцией

2

- 1) $A \rightarrow B = 1$
- 2) $D \lor E = 1$
- 3) $B \oplus C = 1$
- 4) $C \oplus D = 0$
- 5) $E \rightarrow (A \land D) = 1 \mid \bar{E} \lor (A \land D) = 1 \mid (\bar{E} \lor A) \land (\bar{E} \lor D) = 1$

Из 2) и 5): $(\bar{E} \lor D) \land (E \lor D) = 1$. Значит D = 1

C = 1 из 4)

B = 0 из 3)

A = 1 из 1)

E может как смотреть, так и не смотреть

Ответ: A, C, D - смотрят, B - не смотрит, E - нельзя точно определить

3

Доказать: x^2-6x+5 чётно $\to x$ нечётно x чётно $\to x^2$ чётно $\to x^2$ чётно $\to x^2-6x$ чётно $\to x^2-6x$ чётно $\to x^2-6x+5$ нечётно $\to x^2-6x+5$

4

Пусть $a\cdot b=c,\ a\in\mathbb{Q},b\in\mathbb{I}$ Доказать $c\in\mathbb{I}$ $c\in\mathbb{Q}\to c=\frac{m}{n},m\in\mathbb{Z},n\in\mathbb{N}$ $a\in\mathbb{Q}\to a=\frac{m_1}{n_1},m_1\in\mathbb{Z},n_1\in\mathbb{N}$ $a\cdot b=c\to b=\frac{c}{a}=\frac{m\cdot n_1}{n\cdot m_1}$ Пусть если $n\cdot m_1>0,$ то $p=m\cdot n_1,$ а если $n\cdot m_1<0,$ то $p=-m\cdot n_1$ Пусть $k=|n\cdot m_1|$ Заметим, что $k\in\mathbb{N},p\in\mathbb{Z}$ $b=\frac{p}{k}\to b\in\mathbb{Q}$

5

 $\begin{array}{l} C\backslash A\subseteq B\text{ if }C\backslash B\subseteq A\\ B=A\cap C\to (B\subseteq A)\wedge (B\subseteq C)\\ C\backslash A\subseteq A\cap C\to C\cap \bar A\subseteq C\cap A\\ C\cap \bar A\subseteq C\cap A\to C\subset A\\ (B=C\cap A)\to (C\backslash B=C\backslash C\cap C\backslash A=0)\ (B=C\cap A)\to (C=B)\ C\not=B, (B=C\cap A)\to (C=B)\\ 0\text{ Твет: Невозможно} \end{array}$

6

а)
$$(n=1) \to 1 \cdot (n-1) + 2 \cdot (n-2) + \dots + (n-1) \cdot 1 = \frac{(n-1)n(n+1)}{6} = 0$$
 $(n=k) \to (k-1) + 2 \cdot (k-2) + \dots + (k-1) = \frac{(k-1)k(k+1)}{6} = 0$ Для $n=k+1:k+2\cdot (k-1) + \dots + k = f(k) + k+1+k+k-1+k-2+k-3+\dots + k-3+k-2+k-1+k+k+1 = f(k) + \sum_{i=1}^k f(k) + \frac{k(k+1)}{2} = \frac{(k-1)k(k+1)}{6} + \frac{3k(k+1)}{6} = \frac{k(k+1)(k+2)}{6}$ ((верно для $n=k$ \to верно для $n=k+1$) \land верно для $n=1$ \to верно для $n=1$

((верно для $n=k \to$ верно для n=k+1) \land верно для n=1) \to верно для любого $n \in \mathbb{N} \ge 1$

 $\begin{array}{l} 6)\;(n=1)\to\cos x+\cos 2x+...+\cos nx=\frac{\sin nx+0.5x}{2\sin 0.5x}-0.5=\frac{\sin 1.5x-\sin 0.5x}{2\sin 0.5x}=\\ \frac{2\sin 0.5x\cdot\cos x}{2\sin 0.5x}=\cos x\;(n=k)\to\cos x+\cos 2x+...+\cos kx=\frac{\sin kx+0.5x}{2\sin 0.5x}-0.5\\ \text{Для}\;n=k+1:\cos x+\cos 2x+...+\cos kx+\cos (kx+x)=f(k)+\cos (kx+x)=\\ f(k)+\cos (kx+x)=\\ =\frac{\sin (nx+0.5x)+2\sin 0.5x\cos (kx+x)}{2\sin 0.5x}-0.5=\frac{\sin (kx+1.5x)}{2\sin 0.5x}-0.5=\frac{\sin (k+1)x+0.5x}{2\sin 0.5x}-0.5\\ ((\text{верно}\;\text{для}\;n=k\to\text{верно}\;\text{для}\;n=k+1)\;\wedge\;\text{верно}\;\text{для}\;n=1)\to\text{верно}\;\text{для}\;n=1)\to\text{верно}\;\text{для}\;n=0.5$

7

Рассмотрим момент, когда последний студент приходит на зачет. (ни один студент не покинул зачёт) \rightarrow (условие выполнено)

(часть студентов покинула зачёт) \to ((все преподаватели поговорили со всеми покинувшеми зачёт) \land (все преподаватели должны будут поговорить с последним студентом))

((все преподаватели поговорили с частью студентов) \land (все преподователи ещё должны поговорить с последним студентом) \land (преподаватели не могут выходить и возвращаться)) \rightarrow (все преподаватели в данный момент находятся в аудитории) чтд

8

Ошибка в базе, так как словосочетание "одного цвета" следует понимать как "одинакового цвета а для одной лошади нельзя определить понятие "одинакового цвета". Поэтому база должна быть не A(1), а A(2).

9

База: n=1 o очевидно верно

Пусть $k = n \rightarrow$ верно

Рассмотрим для n = k + 1

Рассотрим последний столбец

- 1) Если этот столбец состоит из одного цвета, то поменяем любую фишку на другой цвет, такая всегда найдётся, так как каждого цвета n фишек. Переходим к шагу 2)
- 2) Если в столбце две одинаковых фишки, то поменяем одну из этих двух фишек на 3й цвет, такой всегда найдётся, так как по п фишек каждого цвета. Мы создали правильный последний столбец для n=k+1, остался прямоугольник $3\times n$, который мы умеем преобразовывать. ((верно для $n=k\to$ верно для n=k+1) \wedge верно для n=1) \to верно для любого $n\in\mathbb{N}\geq 1$ чтд