Alle Lösungen

Lösung: Avengers * (B_608)

c1)

3 bzw. 4,5 Sterne: 15,7°

3,5 Sterne: 93,9° 4 Sterne: 234,8°

(Werte gerundet)

c2)
$$E(X) = \frac{1}{23} \cdot 3 + \frac{6}{23} \cdot 3,5 + \frac{15}{23} \cdot 4 + \frac{1}{23} \cdot 4,5 = 3,847...$$

c3)
$$\frac{16}{23} \cdot \frac{15}{22} = \frac{120}{253} = 0.4743...$$

Die Wahrscheinlichkeit beträgt rund 47,4 %.

Lösung: Flughafen * (B_506)

Der Punkt ist auch zu vergeben, wenn im Baumdiagramm für p = 0,15 und für 1 - p = 0,85 angegeben wird (vgl. Lösung zu a2).

a2)
$$0.9775 = 1 - p^2$$

 $p = \sqrt{0.0225} = 0.15$

А	$(1-p)^5$
В	p^5
С	$1 - p^5$
D	$1 - (1 - p)^5$

Lösung: Gewinnspiele * (B_599)

a1)	Anzahl der möglichen Würfelergebnisse, bei denen							
	die Augenzahl beim 2. Wurf	die Augenzahl beim 2. Wurf beide Augenzahlen gleich die Augenzahl beim 2. Wurf						
	kleiner als beim 1. Wurf ist	sind	größer als beim 1. Wurf ist					
	15	6	15					

- a2) $P(\text{"die Augenzahl ist beim 2. Wurf kleiner als beim 1. Wurf"}) = \frac{15}{36} = 0,4166...$
- a3) X ... Gewinn in Euro $E(X) = 5 \cdot \frac{15}{36} 10 \cdot \frac{6}{36} + 3 \cdot \frac{15}{36} = 1,66...$

Der Erwartungswert für den Gewinn bei diesem Spiel beträgt rund 1,7 Euro.

b1) Bei einer arithmetischen Folge ist die Differenz aufeinanderfolgender Folgenglieder konstant.

Es gilt:

$$P(X = 2) - P(X = 1) = P(X = 3) - P(X = 2) = \frac{2}{36}$$

Es handelt sich hier also um eine arithmetische Folge.

b2)
$$a_{n+1} = a_n + \frac{2}{36}$$
 mit $a_1 = \frac{1}{36}$

b3)

Lösung: Gummibärchen ziehen * (B_354)

andersfärbig $\frac{27}{132}$ andersfärbig $\frac{27}{132}$ $\frac{105}{131}$ $\frac{26}{131}$ andersfärbig orange andersfärbig orange

$$P(\text{",2 orangefärbige Gummibärchen"}) = \frac{27}{132} \cdot \frac{26}{131} = 0,04059... \approx 4,06 \%$$

c)	X_i	1	2	3	4
	$P(X=X_i)$	5 8	$\frac{3}{8} \cdot \frac{5}{7} = \frac{15}{56}$	$\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{5}{6} = \frac{5}{56}$	$\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6} \cdot \frac{5}{5} = \frac{1}{56}$

$$E(X) = 1 \cdot \frac{5}{8} + 2 \cdot \frac{15}{56} + 3 \cdot \frac{5}{56} + 4 \cdot \frac{1}{56} = 1,5$$

Der Erwartungswert gibt an, wie viele Züge man im Mittel benötigt, bis ein rotes Gummibärchen gezogen wird.

Lösung: Kartenhaus * (B_520)

c1)

X _i	- 5	20
$P(X=X_i)$	<u>7</u> 8	<u>1</u> 8

c2)
$$E(X) = -5 \cdot \frac{7}{8} + 20 \cdot \frac{1}{8} = -\frac{15}{8} = -1,875$$

Lösung: Kinderlieder * (B_511)

a1)
$$\frac{7}{26} \cdot \frac{6}{25} = 0.06461...$$

Die Wahrscheinlichkeit, dass beide Kinder sowohl das Kinderlied *Aramsamsam* als auch das Kinderlied *Backe, backe Kuchen* kennen, beträgt rund 6,46 %.

a2) Beide Kinder kennen keines der beiden Kinderlieder.

Lösung: Lego * (B_409)

c) E ist das Ereignis, dass 2 Steine mit 4 Noppen gezogen werden.

X_{i}	7	8	10
$P(X=X_i)$	$\frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{1}{2} = \frac{6}{10}$	$\frac{3}{5}\cdot\frac{1}{2}=\frac{3}{10}$	$\frac{2}{5} \cdot \frac{1}{4} \cdot 1 = \frac{1}{10}$

$$y_i$$
 2 3 $P(Y = y_i)$ 0,9 0,1

$$E(Y) = 2 \cdot 0.9 + 3 \cdot 0.1 = 2.1$$

Lösung: Lärm * (B_549)

a1)

- a2) Insgesamt fühlen sich 16 Personen sowohl durch Lärm von Baustellen als auch durch Lärm von Straßenverkehr gestört, weil auch die 15 Personen der Menge $S \cap B \cap N$ durch diese Beschreibung erfasst sind.
- **a3)** $\frac{6}{61} = 0.098...$

Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person nur durch Lärm aus Nachbarwohnungen gestört wird, beträgt rund 10 %.

Lösung: Münzen (2) * (B_493)

4.5				
a1)		Agnes	Bettina	Celina
		gewinnt das Spiel	gewinnt das Spiel	gewinnt das Spiel
		in dieser Runde	in dieser Runde	in dieser Runde
	Runde 1	1/2	1/4	<u>1</u> 8
	Runde 2	<u>1</u> 16	1/32	<u>1</u> 64
	Runde 3	<u>1</u> 128	<u>1</u> 256	<u>1</u> 512

a2)
$$C_n = C_1 \cdot q^{n-1}$$

 c_n ... Wahrscheinlichkeit, dass Celina in Runde n gewinnt

$$q = \frac{1}{64} : \frac{1}{8} = \frac{1}{8}$$

$$c_n = \frac{1}{8} \cdot \left(\frac{1}{8}\right)^{n-1} \quad oder \quad c_n = \left(\frac{1}{8}\right)^n$$

c1)	X _i	2	3	4
	$P(X=X_i)$	$\frac{5}{12} \cdot \frac{4}{11} = \frac{5}{33}$	$\frac{5}{12} \cdot \frac{7}{11} \cdot 2 = \frac{35}{66}$	$\frac{7}{12} \cdot \frac{6}{11} = \frac{7}{22}$

c2)
$$E(X) = 2 \cdot \frac{5}{33} + 3 \cdot \frac{35}{66} + 4 \cdot \frac{7}{22} = \frac{19}{6} = 3,166...$$

Der Erwartungswert beträgt rund € 3,17.

Lösung: Navigationsgeräte * (B_465)

- a1) P("Stau tritt auf und wird vom Navi gemeldet") = 0,2 \cdot 0,93 = 0,186
- a2) E... das Navi meldet einen Stau auf diesem Straßenabschnitt

Lösung: Puzzles * (B_609)

c2)
$$P(E_1) = \frac{1}{4}$$

 $P(E_2) = \frac{3}{4} \cdot \frac{1}{3} = \frac{1}{4}$

Die beiden Wahrscheinlichkeiten sind gleich groß.

Lösung: Spielshow * (B_574)

a1)	Sektor	А	В	С	D	Е
	X_i	10	16	20	25	-31
	$P(X=X_i)$	$\frac{30}{360} = 0,083$	$\frac{40}{360} = 0,111$	$\frac{80}{360}$ = 0,222	$\frac{100}{360} = 0,277$	$\frac{110}{360} = 0,305$

a2)
$$E(X) = 10 \cdot \frac{30}{360} + 16 \cdot \frac{40}{360} + 20 \cdot \frac{80}{360} + 25 \cdot \frac{100}{360} - 31 \cdot \frac{110}{360} = 4,52...$$

a3) Der Erwartungswert gibt an, dass im Mittel rund 4,5 Punkte pro Spiel gewonnen werden (wenn das Spiel sehr oft durchgeführt wird).

Lösung: Strickpullover und -westen* (B_631)

c1)

X_i	3	4	5
$P(X = X_i)$	0,15	0,45	0,4

c2)
$$E(X) = 3 \cdot 0.15 + 4 \cdot 0.45 + 5 \cdot 0.4 = 4.25$$

Der Erwartungswert beträgt 4,25 Wochen.

Lösung: Weihnachtsmarkt * (B_479)

d1)

Anzahl <i>n</i> der Marmeladegläser	Wahrscheinlichkeit für den Kauf von n Marmeladegläsern pro Person
0	0,24
1	0,38
2	0,16
3	0,12
4	0,1
≥ 5	0

d2)
$$0 \cdot 0.24 + 1 \cdot 0.38 + 2 \cdot 0.16 + 3 \cdot 0.12 + 4 \cdot 0.1 = 1.46$$

Der Erwartungswert für die Anzahl der gekauften Marmeladegläser pro Person beträgt 1,46.

Lösung: Würfelspass * (B_499)

- a1) Wahrscheinlichkeit, den Auftrag "Größer" zu erfüllen: $\frac{5+4+3+2+1}{36} = \frac{15}{36}$
- a2) Wahrscheinlichkeit, den Auftrag "Sieben" zu erfüllen: $6 \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{6}{36}$

Die Wahrscheinlichkeit, den Auftrag "Sieben" zu erfüllen, ist also kleiner als die Wahrscheinlichkeit, den Auftrag "Größer" zu erfüllen.

b1 und b2)

X_i	0	1	2	3	4	5
$P(X = x_i)$ (gerundete Werte)	0,4019	0,4019	0,1607	0,0322	0,0032	0,0001
erreichte Punkte	10	8	6	4	2	0

$$P(X = 2) = 1 - 0.4019 - 0.4019 - 0.0322 - 0.0032 - 0.0001 = 0.1607$$

Die gesuchte Wahrscheinlichkeit kann auch mithilfe der Binomialverteilung ermittelt werden. Man erhält dabei: P(X = 2) = 0,16075...

b3) $0,4019 \cdot 10 + 0,4019 \cdot 8 + 0,1607 \cdot 6 + 0,0322 \cdot 4 + 0,0032 \cdot 2 = 8,33...$ Der Erwartungswert beträgt rund 8,3 Punkte.

c1)

c2) "Größer"

b1 und b2)

X _i	0	1	2	3	4	5
$P(X = x_i)$ (gerundete Werte)	0,4019	0,4019	0,1607	0,0322	0,0032	0,0001
erreichte Punkte	10	8	6	4	2	0

$$P(X = 2) = 1 - 0,4019 - 0,4019 - 0,0322 - 0,0032 - 0,0001 = 0,1607$$

Die gesuchte Wahrscheinlichkeit kann auch mithilfe der Binomialverteilung ermittelt werden. Man erhält dabei: P(X = 2) = 0,16075...

b3) $0,4019 \cdot 10 + 0,4019 \cdot 8 + 0,1607 \cdot 6 + 0,0322 \cdot 4 + 0,0032 \cdot 2 = 8,33...$ Der Erwartungswert beträgt rund 8,3 Punkte.

Lösung: Öffentlicher Verkehr in Wien * (B_515)

-10)		
d2)	$2 \cdot \frac{s}{n} \cdot \frac{n-s}{n-1}$	\times