Resultados Train (KNN)

SIFT 2 imágenes

SURF 2 imágenes

SIFT 10 imágenes

SURF 10 imágenes

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Resultados Train (SVM)

SIFT 2 imágenes

SURF 2 imágenes

SIFT 10 imágenes

SURF 10 imágenes

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

KNN

ESTADÍSTICAS FINALES	Media %Reconocimento	Desviación estándar
SIFT 2 Imágenes	70	3.82099
SURF 2 Imágenes	92.4	4.71592
SIFT 10 Imágenes	43.1809	3.13972
SURF 10 Imágenes	46.1095	2.54213

SVM

ESTADÍSTICAS FINALES	Media %Reconocimento	Desviación estándar
SIFT 2 Imágenes	72.5	6.36003
SURF 2 Imágenes	89.4	7.97747
SIFT 10 Imágenes	35.0044	4.36468
SURF 10 Imágenes	46.1729	2.06534

Conclusiones

Podemos observar que el método SURF ofrece mejores resultados en cuanto al reconocimiento que SIFT independientemente del número de imágenes. A mayor número de imágenes de dataset utilizado para el entrenamiento, menor % de reconocimiento obtendremos y el tiempo de ejecución del programa train_bovw se dispara.