Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 8 zur Algebra II

Abgabe bis 10. Dezember 2013, 17:00 Uhr

Aufgabe 1. (2+2) Lokale Gleichheit und lokale Invertierbarkeit

Sei s_1, \ldots, s_n eine Zerlegung der Eins eines kommutativen Rings R.

- a) Zeige, dass Elemente $f, g \in R$ genau dann gleich sind, wenn sie lokal gleich sind, das heißt, wenn f = g in $R[s_i^{-1}]$ für alle $i \in \{1, ..., n\}$ gilt.
- b) Zeige, dass ein Element $f \in R$ genau dann invertierbar ist, wenn es lokal invertierbar ist, das heißt, wenn für jedes $i \in \{1, ..., n\}$ das Bild von f in $R[s_i^{-1}]$ invertierbar ist.

Aufgabe 2. (2+2) Spiel und Spaß mit dem gerichteten Limes

- a) Sei $(R_i)_{i\in I}$ ein gerichtetes System von Ringen mit Limes $R = \varinjlim_{i\in I} R_i$. Zeige, dass ein Element $x \in R_i$ genau dann in R invertierbar ist, wenn ein $j \succeq i$ existiert, sodass x in R_j invertierbar ist.
- b) Zeige, dass jeder Ring kanonisch isomorph zu einem gerichteten Limes endlich erzeugter \mathbb{Z} -Algebren ist.

Aufgabe 3. (1+1+2) Beispiele für Primfaktorzerlegungen

- S a) Zeige, dass $3 + 2i \in \mathbb{Z}[i]$ irreduzibel ist.
- S b) Zeige, dass $X^2 + Y \in \mathbb{Z}[X, Y]$ irreduzibel ist.
- S c) Bestimme die Primfaktorzerlegung von $X^4 + 4Y^4 \in \mathbb{Z}[X, Y]$.

Aufgabe 4. (2+2) Allgemeine Irreduzibilitätskriterien

- a) Sei $f(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ ein Polynom über einem Integritätsbereich R. Sei Eins ein größter gemeinsamer Teiler der Koeffizienten von f(X). Sei $p \in R$ ein Primelement, welches a_0, \ldots, a_{n-1} teilt, a_n nicht teilt und a_0 nicht im Quadrat teilt. Zeige, dass f(X) in R[X] irreduzibel ist.
- b) Sei I ein Ideal eines Integritätsbereichs R, sodass R/I ein Integritätsbereich ist. Sei $f(X) \in R[X]$ ein normiertes Polynom, das über R/I irreduzibel ist. Zeige, dass f(X) dann auch als Element von R[X] irreduzibel ist.

Aufgabe 5. (2+2) Lokalisierung weg von einem Element

Sei f ein reguläres Element eines Integritätsbereichs R.

- a) Sei R sogar ein Ring mit eindeutiger Primfaktorzerlegung. Zeige, dass $R[f^{-1}]$ dann ebenfalls ein Ring mit eindeutiger Primfaktorzerlegung ist.
- b) Sei R faktoriell. Zeige, dass dann $R[f^{-1}]$ ebenfalls faktoriell ist.

Aufgabe 6. (1+2+1+2) Lokale Gauß-Jordansche Normalform

Eine $(n \times m)$ -Matrix über einem beliebigen kommutativen Ring R heißt genau dann vom $Rang\ r$, wenn das von den r-Minoren von A erzeugte Ideal das Einsideal und das von den (r+1)-Minoren erzeugte Ideal das Nullideal ist.

a) Finde ein Beispiel für eine Matrix über einem Ring, die in diesem Sinn keinen Rang besitzt.

Ein kommutativer Ring R heißt lokaler Ring, falls

 $\forall x, y \in R: x + y \text{ invertierbar } \implies x \text{ invertierbar oder } y \text{ invertierbar.}$

- b) Sei A eine $(n \times m)$ -Matrix vom Rang r über einem lokalen Ring R. Zeige, dass A eine $Gau\beta$ -Jordansche Normalform besitzt, also ähnlich zu einer rechteckigen Diagonalmatrix mit genau r Einsern und sonst nur Nullern auf der Hauptdiagonale ist.
- c) Sei nun R wieder ein beliebiger kommutativer Ring. Seien $x,y\in R$ derart, dass die Summe x+y in R invertierbar ist. Zeige, dass es eine Zerlegung der Eins von R gibt, sodass in den lokalisierten Ringen jeweils x oder y invertierbar ist. Die Lokalitätsbedingung kann also stets lokal erfüllt werden.
- d) Sei A eine $(n \times m)$ -Matrix vom Rang r über einem beliebigen kommutativen Ring R. Zeige, dass A lokal eine Gauß-Jordansche Normalform besitzt, dass es also eine Zerlegung s_1, \ldots, s_n der Eins von R gibt, sodass A für jedes i über $R[s_i^{-1}]$ ähnlich zu einer solchen Diagonalmatrix ist.