Universidade Federal de Goiás Introdução à Programação Exercícios sobre Funções Recursivas

Prof. Edmundo Sérgio Spoto Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Couto Rosa

Sumário

1	Quantas Vezes 'x' Ocorre?	2
2	Quantas Vezes "hi" Ocorre?	3
3	Quantidade de Cincos	4
4	Soma Recursiva	5
5	Soma Recursiva de Elementos de um Vetor	6
6	Coelhos Mutantes	7
7	Logaritmo na Base Dois Recursivo	8
8	Palíndromo Recursivo	9
9	Potência Recursiva	10
10	Prefixo Recursivo	11
11	Produto Recursivo	12
12	Próximo Elemento 10 Vezes o Atual	13

Quantas Vezes 'x' Ocorre? 1

Crie uma função recursiva que receba como entrada uma string e também o seu tamanho. Essa função deverá retornar quantas vezes o caractere 'x' aparece na string.

Entrada

A primeira linha na entrada contém o número n de casos de teste. Em seguida ocorrem n linhas, cada uma contendo uma string de tamanho máximo igual 5000 caracteres

Saída

A saída é formada por *n* linhas, cada uma contendo um número inteiro que indica o número de vezes que a letra 'x' ocorre na entrada. Todas as strings estão escritas em letras minúsculas.

Entrada
3
abra cadabra
taxi xadrez bacaxi taxa caixa puxa lixa
xarope xxx
Saída
0
7
4

2 Quantas Vezes "hi" Ocorre?

Crie uma função recursiva que receba como entrada uma string e também o seu tamanho. Essa função deverá retornar quantas vezes o caractere a subcadeia "hi" aparece na string.

Entrada

A primeira linha na entrada contém o número n de casos de teste. Em seguida ocorrem n linhas, cada uma contendo uma string de tamanho máximo igual 5000 caracteres

Saída

A saída é formada por *n* linhas, cada uma contendo um número inteiro que indica o número de vezes que a cadeia "hi" ocorre na string de entrada. Todas as strings estão escritas em letras minúsculas.

Entrada			
4			
hipotenusa	hipotermia	hilux	hifi
hi			
hihihi			
xavante he			
Saída			
4			
1			
3			
0			

3 Quantidade de Cincos

Crie uma função recursiva que tenha como entrada números inteiros, e verifique quantidade de dígito 5 que aparece em cada número.

Entrada

A primeira linha na entrada contém um número inteiro n que corresponde ao número de casos de teste. Em seguida, há uma linha para cada um todos n casos de teste. Cada linha contém um número inteiro positivo.

Saída

A saída é formada por *n* linhas cada uma contendo um número inteiro que corresponde ao número de vezes em que um dígito 5 ocorre no caso de teste correspondente na entrada.

Entrada
5
505505550
589559955
90000000
35
5
Saída
6
5
0
1
1

4 Soma Recursiva

(+) Crie uma função recursiva que calcule a soma de 1 à n, onde n é um número inteiro

positivo.

Entrada

A a primeira linha da entrada contém um número inteiro T que indica o número de casos de teste. Em seguida há T linhas, cada uma contendo um número inteiro positivo

Saída

A saída é formada por T linhas, cada uma contendo um número inteiro que representa a soma de 1 a n de uma linha correspondente na entrada.

Entrada
3
1
45
3
Saída
Saída 1
Saída 1 1035
1
1 1035

Soma Recursiva de Elementos de um Vetor 5

(+)

Calcule a soma de todos os elementos de um dado vetor de inteiros usando uma função recursiva.

Entrada

A primeira linha da entrada contém o número de casos de teste. Cada caso de teste é formado por duas linhas. A primeira, contém o tamanho n ($1 \le n \le 30$) de um vetor. A segunda, contém n valores inteiros, separados entre si por um espaço.

Saída

A saída para cada caso de teste é formada por n linhas, cada uma contém um número inteiro que é a soma dos elementos do vetor correspondente na entrada.

Eı	ntr	ada	a							
3										
5										
3	2	1	4	5						
5										
1	2	3	4	5						
10)									
1	2	3	4	5	6	7	8	9	100	
Sa	ıída	a								
15	5									
15	5									
14	45									

6 Coelhos Mutantes

Temos coelhos posicionados em uma linha, numerados de 1 a x. Os coelhos em posições ímpares possuem 2 orelhas, já os coelhos em posições pares possuem 3 orelhas, por terem sofrido mutações genéticas. Recursivamente retorne o número de orelhas de todos os coelhos enfileirados. (Sem estruturas de repetição ou multiplicação).

Entrada

A primeira linha na entrada contém um número inteiro n que corresponde ao número de casos de teste. Cada caso de teste contém o limite superior x do intervalo fechado [1,x] que corresponde às posições onde há coelhos.

Saída

A saída é formada por n linhas cada uma contendo a soma do número de orelhas de coelhos de um caso de teste.

Entrada
4
1
3
5
7
Saída
2
7
12
17

7 Logaritmo na Base Dois Recursivo

O **piso** de um número real x é o único número inteiro i tal que $i \le x \le i+1$. O piso de x é denotado por $\lfloor x \rfloor$. Em computação usa-se muito computar o piso do logaritmo na base 2 de um número x, isto é, $\lfloor \log_2 x \rfloor$. Lembrando que $\log_2 x = y$, se $2^y = x$. Por exemplo, a tabela abaixo mostra alguns números positivos e os respectivos pisos dos seus logaritmos na base 2:

x	$\lfloor \log_2 x \rfloor$
15	3
16	4
31	4
32	5
63	5
64	6

O cálculo de $\lfloor \log_2 x \rfloor$ pode ser obtido, gerando-se uma série de números inteiros resultantes de sucessivas divisões inteiras por dois, iniciado-se com o quociente de x dividido por dois e continuando-se com as divisões por dois dos sucessivos quocientes resultantes, até que se obtenha um quociente igual a um. O número de elementos na série resultante corresponde ao $\lfloor \log_2 x \rfloor$. Veja alguns exemplos:

$$\begin{aligned} \lfloor \log_2 15 \rfloor &= |\{7,3,1\}| = 3 \\ \lfloor \log_2 16 \rfloor &= |\{8,4,2,1\}| = 4 \\ \lfloor \log_2 31 \rfloor &= |\{15,7,3,1\}| = 4 \\ \lfloor \log_2 32 \rfloor &= |\{14,8,4,2,1\}| = 5 \\ \lfloor \log_2 63 \rfloor &= |\{31,15,7,3,1\}| = 5 \\ \lfloor \log_2 64 \rfloor &= |\{32,16,8,4,2,1\}| = 6 \end{aligned}$$

Escreva uma função recursiva para computar o piso do logaritmo na base dois de um número x fornecido como entrada. Lembre-se que $\lfloor \log_2 1 \rfloor = \log_2 1 = 0$.

Entrada

A primeira linha da entrada contém o número n ($0 < n \le 100$) de casos de teste. Cada caso de teste é formado por uma linha contendo um único número inteiro positivo x para o qual deseja-se coputar $\lfloor \log_2 x \rfloor$.

<u>Saída</u>

Para cada caso de teste o seu programa deve imprimir uma linha contendo o valor do piso do logaritmo na base dois do número que corresponde ao caso de teste.

Entrada:	
6	
15	
16	
31	
32	
63	
64	

8 Palíndromo Recursivo

Um palíndromo é uma palavra ou sequência de caracteres que tem a propriedade de poder ser lida tanto da esquerda para direita como da direita para a esquerda. Por exemplo, as seguintes palavras são palíndromos: *Ana, Bob, Otto, Mussum.* Escreva um programa que leia várias sequências de letras e que para cada uma delas chame uma função RECURSIVA que indique se uma sequência forma ou não um palíndromo.

Entrada

A entrada é formada por uma linha inicial que contém um número inteiro que indica o número de casos de testes. Para cada caso de teste há duas linhas. A primeira contém um número que indica o tamanho da sequência de letras a ser lida. O tamanho máximo da sequência é 2.000 letras. A segunda linha contém a sequência de letras, sendo que entre uma letra e outra há um espaço. A última letra da sequência vem seguida do caractere de quebra de linha.

Saída

Para cada sequência da entrada o seu programa deve emitir uma das seguintes respostas: PALIN-DROMO, se a sequência for um palíndromo, ou NAO PALINDROMO, em caso contrário. Após cada palavra impressa deve haver apenas um caractere de quebra de linha.

Exemplos

Er	ntı	rac	da	:
5				
5				
N	r	С	q	K
4				
М	S	K	Y	
3				
L	t	V		
2				
K	K			
1				
J				

Saída:
NAO PALINDROMO
NAO PALINDROMO
NAO PALINDROMO
PALINDROMO
PALINDROMO

Observação

Cuidado ao ler a sequência de caracteres. Se você utilizar scanf("%c", &vet [j]), dentro do comando while para a leitura, o programa vai ler o espaços também e armazena-los no vetor. Sugestão: while (j<tam-1) { $scanf("\c" \&vet[j]); scanf("\c" \&vet[j]) }$ getchar()}. Repare que o scanf() dentro do while contém um espaço após %c e que o scanf() fora do coando while não tem esse espaço.

9 Potência Recursiva

Dados dois números inteiros positivos M e N, escreva uma função recursiva que calcule o valor de M^N . Lembre-se que $M^0 = 1$.

Entrada

A primeira linha da entrada contém o número $T, 1 \le T \le 300$ de casos de teste. Cada caso de teste é formado por uma linha, contendo dois números inteiros positivos separados por um espaço.

Saída

Para cada caso de teste, seu programa deve imprimir a potência cuja base é o primeiro número e o expoente o segundo número.

Entrada:	Saída:
3	32
2 5	19683
3 9	19003
1 50	1

10 Prefixo Recursivo

Um prefixo de uma cadeia de caracteres é qualquer sub-cadeia que possa ser obtida apagando zero ou mais caracteres da extremidade direita da cadeia original. Escreva uma função RECURSIVA que recebe como parâmetro o endereço de memória onde está armazenada uma cadeia de caracteres e imprima todos os prefixos válidos da cadeia, exceto a cadeia vazia.

Escreva um programa para ler várias cadeias de caracteres da entrada e imprimir para cada cadeia o conjunto de prefixos não vazios da cadeia, utilizando a função mencionada acima.

Entrada

A primeira linha da entrada contém o número $C, 1 \le C \le 300$ de casos de testes. As C linhas seguintes contêm, cada uma, um caso de teste formado por uma cadeia de caracteres.

Saída

Para cada caso de teste da entrada seu programa deve imprimir uma linha contendo a frase : *Caso de teste #*. Em seguida deve imprimir todos os prefixos não vazios da cadeia correspondente ao caso de teste. Deve ser impresso um prefixo por linha e a primeira linha deve corresponder ao maior prefixo. A segunda linha deve conter o segundo maior prefixo, e assim por diante.

Exemplo

Entrada:
3
oi ola
casa
mesa

Saida: Caso de teste1 oi ola oi ol oi o oi oi o Caso de teste 2 casa cas ca Caso de teste 3 mesa mes me

11 Produto Recursivo

Dados dois números inteiros positivos M e N, o produto de M por N é igual a zero se um dos dois é zero, caso contrário, o produto pode ser definido como N somas de M por ele mesmo. Escreva uma função recursiva que calcule o produto de um número inteiro por outro, utilizando somas.

Entrada

A primeira linha da entrada contém o número $T, 1 \le T \le 300$ de casos de teste. Cada caso de teste é formado por uma linha, contendo dois números inteiros positivos separados por um espaço.

Saída

Para cada caso de teste, seu programa deve imprimir o produto entre os dois números que formam o caso de teste.

Entrada:
3
23 11
45 50
0 900

Saída:
253
2250
0

12 Próximo Elemento 10 Vezes o Atual

Crie uma função recursiva que receba um vetor de inteiros e o seu respectivo tamanho como parâmetros. Essa função deverá verificar se há algum valor nesse vetor que, multiplicado por 10, seja igual ao próximo elemento, e então retornar 1. Caso contrário, retornar 0.

Entrada

A primeira linha da entrada contém o número de casos de teste. Cada caso de teste é formado por duas linhas. A primeira, contém o tamanho n ($1 \le n \le 30$) de um vetor. A segunda, contém n valores inteiros, separados entre si por um espaço.

Saída

A saída para cada caso de teste é formada por n linhas, cada uma contém uma das palavras: VERDA-DEIRO, se a condição é satisfeita pelo menos uma vez no vetor, ou FALSO, em caso contrário.

Entrada		
3		
6		
0 10 100 1000	10000 100000	
4		
20 30 3 30		
5		
1 20 2 30 4		
Saída		
VERDADEIRO		
VERDADEIRO		
FALSO		