Problem 1.

Let $V = \mathbb{R}^+ \times \mathbb{R}$ be a set. In other words, every element of V is in the form (u_1, u_2) , where u_1 is a positive real number and $u_2 \in \mathbb{R}$. For all (u_1, u_2) and $(v_1, v_2) \in V$, and for all $k \in \mathbb{R}$,

$$(u_1, u_2) \oplus (v_1, v_2) = (2u_1v_1, u_2 + v_2 - 3)$$
 and $k \odot (u_1, v_1) = (u_1^k, ku_2)$.

Verify the axioms 4, 5, and 7.

Ax4. Proof. Consider $\vec{u}, \vec{v} \in V$ such that $\vec{u} = (u_1, u_2)$ and $\vec{v} = (\frac{1}{2}, 3)$. $(u_1 \text{ is positive real number})$.

$$\vec{u} \oplus \vec{v} = (u_1, u_2) \oplus \left(\frac{1}{2}, 3\right) = \left(2u_1 \frac{1}{2}, u_2 + 3 - 3\right)$$
$$= (u_1, u_2) = \vec{u}$$
$$\vec{v} \oplus \vec{u} = \left(\frac{1}{2}, 3\right) \oplus (u_1, u_2) = \left(2\frac{1}{2}u_1, 3 + u_2 - 3\right)$$
$$= (u_1, u_2) = \vec{u}$$

Since $\vec{u} \oplus \vec{v} = \vec{u}$ and $\vec{v} \oplus \vec{u} = \vec{u}$ for all $\vec{u} \in V$, therefore $\vec{v} = (\frac{1}{2}, 3)$ is the additive identity, \mathbf{id} , for V. \Box

Ax5. Proof. Consider $\vec{u}, \vec{v} \in V$ such that $\vec{u} = (u_1, u_2)$ and $\vec{v} = (\frac{1}{4u_1}, 6 - u_2)$. Since by definition u_1 is a positive real number, $\frac{1}{4u_1}$ will always be defined and positive.

$$\vec{u} \oplus \vec{v} = (u_1, u_2) \oplus \left(\frac{1}{4u_1}, 6 - u_2\right) = \left(2u_1 \frac{1}{4u_1}, u_2 + (6 - u_2) - 3\right)$$

$$= \left(\frac{2}{4} \cdot \frac{u_1}{u_1}, u_2 - u_2 + 6 - 3\right) = \left(\frac{1}{2}, 3\right) = \mathbf{id}$$

$$\vec{v} \oplus \vec{u} = \left(\frac{1}{4u_1}, 6 - u_2\right) \oplus (u_1, u_2) = \left(2\frac{1}{4u_1}u_1, (6 - u_2) + u_2 - 3\right)$$

$$= \left(\frac{2}{4} \cdot \frac{u_1}{u_1}, u_2 - u_2 + 6 - 3\right) = \left(\frac{1}{2}, 3\right) = \mathbf{id}$$

 \therefore additive inverse exists for all $\vec{u} \in V$.

Ax7. Proof. Consider $k \in \mathbb{R}$ and $(u_1, u_2), (v_1, v_2) \in V$.

$$k \odot ((u_1, u_2) \oplus (v_1, v_2)) = k \odot (2u_1v_1, u_2 + v_2 - 3)$$
$$= ((2u_1v_1)^k, k(u_2 + v_2 - 3))$$
$$= (4u_1^k v_1^k, ku_2 + kv_2 - 3k)$$

$$k \odot (u_1, u_2) \oplus k \odot (v_1, v_2) = (u_1^k, ku_2) \oplus (v_1^k, kv_2)$$

= $(2u_1^k v_1^k, ku_2 + kv_2 - 3)$

$$(4u_1^k v_1^k, ku_2 + kv_2 - 3k) \neq (2u_1^k v_1^k, ku_2 + kv_2 - 3)$$
 when $k \neq 1$

Since $k \odot ((u_1, u_2) \oplus (v_1, v_2))$ does not always equal $k \odot (u_1, u_2) \oplus k \odot (v_1, v_2)$, Axiom 7 does not hold for V.

Problem 2.

Let V be a set with a binary operator \oplus defined, so that Axioms (1), (3), and (4) hold for V (note that other axioms may not hold). Let $\vec{v} \in V$. Prove that **if** \vec{v} has an additive inverse, then this additive inverse is unique. (*Hint*: Let \vec{w} and \vec{x} be two different additive inverses of \vec{v} . Show that this will lead to a contradiction.)

Problem 3.

Let $V=P_3$, i.e., the set of all polynomials of degree up to 3, with standard addition and scalar multiplication. Let

$$W = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in V : a_0 \cdot a_1 = 0 \right\}.$$

Verify whether W is a subspace of V.

Problem 5.

Let

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 3 & 2 \\ 5 & -4 \end{pmatrix}.$$

Express $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ as a linear combination of A, B, A and C. Use Gauss-Jordan elimination.

Problem 6.

Decide whether

$$\vec{u} = 2 + x + 4x^2$$
, $\vec{v} = 1 - x - 7x^2$, and $\vec{w} = 3 + 2x + 9x^2$.

spans P_2 . Justify your answer using Gauss-Jordan elimination.

Problem 9.

Let V be a real vector space. Prove that V cannot have exactly 3 elements.