Math 426.2SY Calculus II

University of New Hampshire

June 1, 2017

Outline

• 6.1 - Method of Disks/Washers

Introduction

• Solid of revolution: a 3D solid generated by rotating (or revolving) a 2D region about an axis.

- We will study two methods for computing the volume of such a solid:
 - Method of Disks/Washers (section 6.1)
 - Method of Cylindrical Shells (section 6.2)

Example

The region between the curve $y = \sqrt{x}, 0 \le x \le 4$ and the x-axis is revolved about the x-axis to generate a solid. Find its volume.

Example

Find the volume of the solid generated by revolving the region above the x-axis and below the curve $x^2 + y^2 = a^2$ about the x-axis.

Example

Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.

Example

Find the volume of the solid generated by revolving the region between the y-axis and the curve $x = 2/y, 1 \le y \le 4$ around the y-axis.

(UNH) Lecture 5 June 1, 2017 7 / 12

Example

Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.

8 / 12

Method of Washers

• What if the 2D region we are revolving does not border on or cross the axis of revolution?

Method of Washers

Example

The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

Method of Washers

Example

The region bounded by the parabola $y=x^2$ and the line y=2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

Procedure

Finding the volume using the Method of Disks/Washers

- Look at a slice of the 2D region **perpendicular** to the axis of revolution.
- Find the volume of this slice after rotation. (Call it ΔV_k)
- Approximate the total volume by $V \approx \sum_{k=1}^{\infty} \Delta V_k$
- Replace the \sum by \int
- Find the limits of integration by looking at the region.
- Evaluate the definite integral.

June 1, 2017