

Laboratório de Desenvolvimento Interdisciplinar de Computação Aplicada

Documento de Casos de Uso

Carcará - Simulador de Circuitos Elétricos e Eletrônicos

LaDICA

Build 1.0a

Histórico de Revisões

Data	Descrição	Autor(es)
10/08/2019	Concepção do documento	Henderson Chalegre
26/05/2020	Casos de Usos da Arquitetura	Lara Esquivel
01/06/2020	Casos de Usos da Arquitetura	Lara Esquivel
09/06/2020	Casos de Uso da Arquitetura	Lara Esquivel

SUMÁRIO

1	Introdução			3
	1	Propós	ito do Documento	3
	2	Públic	o Alvo do Documento	3
	3	Escopo		3
2	Visâ	ão Geral	l do Documento	4
		0.1	Plataforma	4
		0.2	Conteúdo	4
		0.3	Descrição da ferramenta	4
		0.4	Público-Alvo	4
		0.5	Premissas e restrições	4
3	Acr	ônimos	e Abreviações	5
4	Cas	os de Us	so	6
		0.1	[UC 001] Salvar Módulo de Cálculo	6
		0.2	[UC 002] Multiplataforma	6
		0.3	[UC 003] Armazenar Resultados da Simulação	7
		0.4	[UC 004] Realizar Simulação	7

1 Introdução

1. Propósito do Documento

Este documento especifica os casos de uso do projeto do Simulador de Circuitos Elétricos Carcará. a ser desenvolvido pelo Laboratório de Desenvolvimento Interdisciplinar de Computação Aplicada fornecendo aos desenvolvedores as informações iniciais necessárias para o projeto e implementação, assim como para a realização dos testes e homologação do sistema.

2. Público Alvo do Documento

Este documento se destina a toda a equipe de desenvolvimento.

3. Escopo

Este documento realiza a elicitação dos casos de uso do Simulador de Circuitos Elétricos Carcará

2 | Visão Geral do Documento

O presente documento é apresentado como mostrado abaixo:

0.1. Plataforma.

O simulador será desenvolvido para funcionamento em multiplataformas.

0.2. Conteúdo.

Requisitos de software.

0.3. Descrição da ferramenta

0.4. Público-Alvo

Esta ferramenta tem como publico alvo professores, estudantes e profissionais de engenharia

0.5. Premissas e restrições

- A
- a

3 | Acrônimos e Abreviações

Sigla	Descrição
UC	Casos de Uso
FR	Requisito Funcional
NFR	Requisito Não Funcional

4 | Casos de Uso

0.1. [UC 001] Salvar Módulo de Cálculo

Um módulo de cálculo é cadastrado no servidor para posteriormente ser escolhido para realizar a simulação.

Atores

Usuário

Módulo de Cálculo.

Pré-condições

- O sistema deve ser capaz de enviar dados aos módulos de cálculo por meio de uma API;
- O sistema deve ser capaz de receber dados do módulo de cálculo por meio de uma API:
- Os módulos de cálculo devem ser do tipo arquivo ou tcp;

Pós-condições

• O módulo poderá ser escolhido para realizar simulação do circuito;

Fluxo Principal de Eventos

- P1. O usuário decide cadastrar um módulo de cálculo;
- **P2.** O módulo sendo do tipo tcp deve ser fornecido ip, nome e porta;
- P3. O módulo é salvo no servidor;

0.2. [UC 002] Multiplataforma

O simulador é multiplataforma. A versão mobile deve ter as mesmas funcionalidades que a desktop.

Atores

Usuário

Pré-condições

• Deve atender a todos os Requisitos Funcionais.

Pós-condições

• Ao ser utilizado em um dispositivo móvel as funcionalidades devem ser mantidas.

Fluxo Principal de Eventos

- P1. O usuário acessa o sistema por um computador ou notebook;
- P2. O usuário faz uso do sistema:
- P3. O usuário acessa o sistema por meio de um dispositivo mobile;
- **P4.** O usuário faz uso do sistema com as mesmas funcionalidades que o sistema desktop;

0.3. [UC 003] Armazenar Resultados da Simulação

O resultado da simulação chegará a interface por meio de um JSON enviado da API. O resultado pode ser armazenado no dispositivo.

Atores

Usuário

Dispositivo

Módulo de Cálculo

Pré-condições

- O módulo de cálculo cadastrado deve receber dados do sistema para efetuar os cálculos:
- O módulo de cálculo cadastrado deve retornar o resultado para a API;

Pós-condições

- A interface deve receber um JSON da API;
- O usuário pode armazenar o resultado da simulação;

Fluxo Principal de Eventos

- P1. Módulo de cálculo é chamado pela API para efetuar os cálculos;
- P2. O módulo, devolve os resultados a API;
- P3. A API devolve um JSON para a interface;
- P4. Os resultados podem ser salvos num dispositivo;

0.4. [UC 004] Realizar Simulação

Dado o circuito desejado pelo usuário, deve ser possível realizar uma simulação do funcionamento desse.

Atores

Usuário

Módulo de Cálculo

Pré-condições

- O sistema deve enviar dados do circuito para o módulo de cálculo;
- O sistema deve receber dados do módulo de cálculo;
- O módulo de cálculo deve estar cadastrado no servidor;

Pós-condições

• A interface deve receber um JSON que corresponde ao resultado da simulação realizada nos módulos de cálculo:

Fluxo Principal de Eventos

- P1. O usuário solicita a simulação do circuito desejado;
- P2. O sistema envia os dados para os módulos de cálculo;
- P3. Os módulos de cálculo retornam o resultado da simulação para a API;
- P4. A API deve devolver um JSON para a interface;
- P5. Se o usuário desejar, é possível guardar o resultado da simulação;

Fluxo Secundário: Alternativo

[SF1] Gerando Gráficos ou Tabelas

- 1. O usuário solicita a simulação do circuito desejado;
- 2. O sistema envia os dados para os módulos de cálculo;
- 3. Os módulos de cálculo retornam o resultado da simulação para a API;
- 4. A API deve devolver um JSON para a interface;
- 5. É possível visualizar os resultados da simulação em gráficos ou em tabelas.
- 6. Se o usuário desejar, é possível guardar o resultado da simulação.