ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет безопасности информационных технологий

Дисциплина: «Операционные системы»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

Планировщик

Выполнила:

Студентка гр. №N3253

Пастухова А.А.

Проверил:

Ханов А.Р.

Задачи:

Провести тестирование и найти лучший планировщик ввода-вывода среди других.

Усложнение

Модифицировать существующий планировщик на уровне ядра.

Ход работы:

Узнаю планировщик моей системы по умолчанию – mq-deadline

```
anastasya@ubuntu:/sys/block/sda/queue$ cat scheduler
[mq-deadline] kyber bfq none
```

Скрипт для тестирования 4х планировщиков

```
DISC="sda"; \
cat /sys/block/$DISC/queue/scheduler; \
for T in kyber bfq none mq-deadline; do \
echo $T > /sys/block/$DISC/queue/scheduler; \
cat /sys/block/$DISC/queue/scheduler; \
sync && /sbin/hdparm -tT /dev/$DISC && echo "----"; \
sleep 15; \
done
```

Получаю подробный результат:

```
anastasya@ubuntu:~/Documents/lab4$ sudo sh ./prog.sh
[mq-deadline] kyber bfq none
mq-deadline [kyber] bfq none
/dev/sda:
 Timing cached reads: 6100 MB in 2.00 seconds = 3052.28 MB/sec
Timing buffered disk reads: 1550 MB in 3.00 seconds = 516.60 MB/sec
mg-deadline kyber [bfg] none
/dev/sda:
 Timing cached reads: 6732 MB in 2.00 seconds = 3371.79 MB/sec
Timing buffered disk reads: 1644 MB in 3.00 seconds = 547.56 MB/sec
[none] mq-deadline kyber bfq
/dev/sda:
 Timing cached reads: 6478 MB in 2.00 seconds = 3242.02 MB/sec
Timing buffered disk reads: 1738 MB in 3.00 seconds = 578.92 MB/sec
[mq-deadline] kyber bfq none
/dev/sda:
Timing cached reads: 5928 MB in 2.00 seconds = 2966.64 MB/sec
 Timing buffered disk reads: 1628 MB in 3.00 seconds = 542.27 MB/sec
```

Описание используемых планировщиков:

Deadline использует алгоритм предельного срока для минимизации ввода/вывода задержек ДЛЯ данного запроса. Этот планировщик предоставляет поведение близкое к реальному времени и использует (round robin), пытаясь быть справедливым политику перебора отношению к нескольким запросам, для предотвращения "голодания" процессов. Используя пять очередей ввода/вывода, планировщик активно переупорядочивает запросы для улучшения производительности.

deadline) deadline mq-deadline (multi-queue ЭТО реализация использованием blk-mq. Описание архитектуры решения blk-mq в общих чертах: запрос сначала попадает в программную очередь, количество этих количеству процессора. После очередей равно ядер прохождения программной очереди запрос попадает в очередь отправки. Количество очередей отправки уже зависит от драйвера устройства, который может поддерживать от 1 до 2048 очередей. Так как работа планировщика осуществляется на уровне программных очередей, то запрос из любой очереди любую программной может попасть очередь отправки, предоставляемую драйвером.

NOOP (сокращение от no operation) представляет собой простую очередь "Первый вошел - Первый вышел" (FIFO) и использует минимальное количество команд СРИ на одну операцию ввода/вывода, выполняя простые операций объединения сортировки. Подразумевается, И что производительность системы ввода/вывода оптимизируется на уровне устройства (память-диск) или при помощи интеллектуального НВА или внешнего контроллера. Что снимает нагрузку с процессора и обеспечивает адекватную производительность ввода/вывода для систем с интеллектуальным контроллером ввода/вывода, обладающим собственными возможностями по упорядочиванию запросов.

BFQ (Budget Fair Queueing) — относительно новый планировщик. Базируется на CFQ. Если не вдаваться в технические подробности, каждой очереди (которая, как и в CFQ, назначается попроцессно) выделяется свой «бюджет», и, если процесс интенсивно работает с диском, данный «бюджет» увеличивается.

Kyber был написан для работы с быстрыми устройствами. Используя две очереди — запросы на запись и на чтение, kyber отдает приоритет запросам на чтение, перед запросами на запись. Алгоритм измеряет время завершения

каждого запроса и корректирует фактический размер очереди для достижения установленных в настройках задержек.

По результатам 5 тестов составлены графики скорости чтения (мегабайт в секунду) для cached reads и buffered disk reads.

Одним из лучшим по скорости кэшировния являлся планировщик Kyber, но в скорости буферизации он оказался худшим, поэтому оканчательный выбор будет сделан в пользу mq-deadline, так как соотношение кэш/диск является оптимальным.

Таблица результатов тестирования:

cached						
kyber	bfq	none	mq-c	mq-deadline		
3052,28	3371,79	3242.02	2966,64			
4319,57	2884,28	3047,07	3523,78			
2993,11	3433,35	3450,51	3733,89			
3036,99	3430,81	3355,02	3127,14			
3350,488	3280,058	3284,2	3337,863	среднее		
				процентная		
100,0%	97,9%	98,0%	99,6%	доля		
	_					
buffered	I					
buffered kyber	bfq	none	mq-c	deadline		
		none 578,92	mq-0 542,27	deadline		
kyber	bfq		•	deadline		
kyber 516,69	bfq 547,56	578,92	542,27	deadline		
kyber 516,69 532,88	bfq 547,56 562,55	578,92 554,1	542,27 573,96	deadline		
kyber 516,69 532,88 545,28	bfq 547,56 562,55 556,65 559,29	578,92 554,1 572,88	542,27 573,96 559,4	deadline cpeднee		
kyber 516,69 532,88 545,28 553,42	bfq 547,56 562,55 556,65 559,29	578,92 554,1 572,88 511,93	542,27 573,96 559,4 578,66			

Выбранный плнировщик я также протестировала, изменив параметр **io_timeout** (время ожидания запроса в миллисекундах) на уровне ядра. Он означает, что если запрос не выполняется за это время, вызывается обработчик тайм-аута блочного драйвера. Этот обработчик тайм-аута может решить повторить запрос, отклонить его или запустить стратегию восстановления устройства. По умолчанию он был равен 180000 мс, изменен на 2000/500/91000 мс.

```
anastasya@ubuntu:/sys/block/sda/queue$ cat io_timeout
180000
anastasya@ubuntu:/sys/block/sda/queue$ sudo sh -c 'echo '2000' > ./io_timeout'
anastasya@ubuntu:/sys/block/sda/queue$ cat io_timeout
2000
anastasya@ubuntu:/sys/block/sda/queue$
```

Снова были проведены тесты для измерения скорости с помощью команды /sbin/hdparm и ключами -t (вывод скорости чтения с диска напрямую из буфера кэша) и -T (показывает скорость чтения напрямую из буфера кэша Linux без учёта доступа к диску).

```
anastasya@ubuntu:~/Documents/lab4$ sudo /sbin/hdparm -tT /dev/sda
/dev/sda:
Timing cached reads: 7450 MB in 1.99 seconds = 3735.37 MB/sec
Timing buffered disk reads: 1582 MB in 3.00 seconds = 527.13 MB/sec
anastasya@ubuntu:~/Documents/lab4$ sudo /sbin/hdparm -tT /dev/sda
/dev/sda:
Timing cached reads:
                       6890 MB in 2.00 seconds = 3448.37 MB/sec
Timing buffered disk reads: 1794 MB in 3.00 seconds = 597.91 MB/sec
anastasya@ubuntu:~/Documents/lab4$ sudo /sbin/hdparm -tT /dev/sda
/dev/sda:
Timing cached reads:
                       7892 MB in 2.00 seconds = 3950.35 MB/sec
Timing buffered disk reads: 1736 MB in 3.00 seconds = 578.12 MB/sec
anastasya@ubuntu:~/Documents/lab4$ sudo /sbin/hdparm -tT /dev/sda
/dev/sda:
Timing cached reads:
                       7220 MB in 2.00 seconds = 3613.10 MB/sec
Timing buffered disk reads: 1652 MB in 3.01 seconds = 548.53 MB/sec
```

На основе полученных данных были построены графики, на основе которых можно сделать вывод о том, что увеличение результативности происходит при измененном параметре **io_timeout** = 2000.

	_					
timeout 500					среднее	
cached	3412,42	3867,67	3321,39	3442,38	3510,965	95,23%
buffered	361,58	549,31	564,41	588,67	515,9925	91,56%
timeout 2000						
cached	3735,37	3448,37	3950,35	3613,1	3686,798	100,00%
buffered	527,13	597,91	578,12	548,53	562,9225	99,88%
timeout 91000						
cached	3506,36	3769,24	3737,1	3712,63	3681,333	99,85%
buffered	558,19	574,66	423,72	528,18	521,1875	92,48%
timeout 180000						
cached	2966,64	3523,78	3733,89	3127,14	3337,863	90,54%
buffered	542,27	573,96	559,4	578,66	563,5725	100,00%

Помощь и консультации в выполнении работы оказывал Шарифуллин И.А.