L2 Foundation of Physics 2B Optics 2019-20

Workshop O.W.3 Interference

February 27, 2020

1. Lloyd's mirror: The sum of two monochromatic waves with amplitude, \bar{E}_0 , and wavelength, λ , is given by

$$E = \bar{E}_0(e^{i2\pi r_1/\lambda} + e^{i2\pi r_2/\lambda}), \qquad (1)$$

where r_1 are r_2 are the distances from point positions $(0, y_1, 0)$ and $(0, y_2, 0)$ to an observation point at (0, y, z).

- (a) Are the wave fronts planar or curved? [1 mark]
- (b) Write an expression for r_1 in terms of the coordinates of the y_1 , y, and z. [1 mark]
- (c) Re-write this expression using the **Fresnel** and **Fraunhofer** approximations (neglecting terms of higher order than y_1^2 and y_1 , respectively). [4 marks]
- (d) A point source at (0, d, 0) is a distance d above a flat mirror lying in the xz plane at y = 0. Use eqn (1) to derive an expression for the intensity along the y-axis at a horizontal distance z from the source, assuming that $z \gg d$. Assume that the mirror is perfectly reflecting and produces a π phase shift on reflection. [6 marks]
- 2. Four holes: An aperture containing 4 small holes located at points $(x' = \{-3d/2, -d/2, d/2, 3d/2\}, y' = 0)$ is placed in the z = 0 plane and illuminated using uniform monochromatic light with wavelength λ .
 - (a) Derive an expression for the field at a point (x, z) in the far-field, $z \gg d$. State any approximations you make. [5 marks]

[Hint: Follow the same derivation as we used for three slits.]

- (b) The intensity of light is proportional to the modulus-squared of the field amplitude. Write an expression for the intensity in terms of cosines. What is the maximum value? [3 marks]
- (c) How many positions of zero intensity are there between x = 0 and $x = [\lambda/(2d)]z$? Sketch the phasor diagrams or specify the phasor angles in each case. [4 marks]
- 3. Double slit experiment with a green laser pointer: justification of paraxial approximations: A spherical wave is written as $\mathcal{E} = \mathcal{E}_s e^{ikr'}/(ikr')$, where r' is the distance from the wave centre to an observer. Explain, why there is a factor of k in the denominator. [1 mark]

In the Fraunhofer approximation, the distance r' between a point (x',0) in the input plane and a point (x,z) in the observation plane is given by $r' = \bar{r} - x'x/z$, where \bar{r} is the distance between (0,0) and (x,z). Use this expression to substitute for r' and rewrite the spherical wave in terms of \bar{r} , x', x and z. [1 mark]

Show that for $z \gg x'$ this can be written in the form

$$\mathcal{E} = \mathcal{E}_{s} \frac{e^{ik\bar{r}}}{ik\bar{r}} (1 + \epsilon) e^{i\phi} .$$

Give expressions for ϵ and ϕ .

In a Young's double-slit experiment using a green laser pointer; the slit positions are at $x'=\pm 0.5$ mm and the distance to the screen is z=1.0 m. Estimate the size of the phase term ϕ and the correction to the amplitude ϵ for a laser wavelength $\lambda=0.5$ μ m. As $\bar{r}=z+x^2/z$, we can write that $1/\bar{r}=1/z$ to first order in x/z.

Use your answers to justify a further approximation in order to re-write the spherical wave in terms of x', x, and z only.