Universidad de Guadalajara

Departamento de electrónica

Apuntes

Redes de circuitos eléctricos

Eduardo Vazquez Diaz lalohao@gmail.com

Contenido

1.	Met	codología	3				
	1.1.	Evaluacion	3				
	1.2.	Libro	3				
2.	Circ	cuitos polifásicos	4				
	2.1.	Sistemas monofásicos de 3 hilos balanceado	4				
	2.2.	Comparación de cargas trifásicas conectadas en Y y Δ	5				
	2.3.	Análisis del desplazamiento del neutro en conexión estrella					
		balanceada	6				
		2.3.1. Ejemplo	7				
3.	Inductancia mutua 7						
	3.1.	Ejemplo 1	8				
	3.2.	Ejemplo 2	8				
4.	Frecuencia compleja						
		Caso CD	9				
		Caso seno amortiguado exponencialmente	9				
		4.2.1. Ejemplo	9				
5.	Transformada de Laplace						
	5.1.	Bilateral	10				
	5.2.	Unilateral	10				
	5.3.	Ejemplo	11				
	5.4.	Impulso unitario	11				
	5.5.	Teorema de la linealidad	11				
	5.6.	Anti-transformada de Laplace	11				
		5.6.1. Ejemplo	12				
	5.7.	Transformada inversa de funciones racionales	12				
		5.7.1. Ejemplo	12				
		5.7.2. Polos distintos	13				

1. Metodología

1.1. Evaluacion

- 60 % examen
 - 30% examen
 - 30% examen
- $\blacksquare \ 40\,\% \ tareas/actividades$

1.2. Libro

Analisis de circuitos en ingenieria William Hayt

2. Circuitos polifásicos

2.1. Sistemas monofásicos de 3 hilos balanceado

Son aquellos sistemas en el cual la fuente tiene 3 hilos y las mediciones del voltimetro muestran la presencia de tensiones senoidales de igual amplitud entre dos terminales cualesquiera.

$$V_{an} = V_{nb}$$

por lo que:

$$V_{ab} = V_{an} + V_{nb} = 2V_{an} = 2V_{nb}$$

Figura 1: Diagrama de un sistema monofasico de 3 hilos

Figura 2: Sistema con cargas balanceadas

Cuando se conectan dos cargas (impedancias) idénticas las corrientes también son idénticas:

$$I_{aA} = \frac{V_{an}}{Z_p} = I_{Bb} = \frac{V_{ab}}{Z_p}$$

Aplicando L.C.K en el neutro (nodo nN) se obtiene una característica fundamental de los circuitos polifásicos balanceados:

$$I_{nN} = I_{Bb} + I_{Aa} = I_{Bb} - I_{aA} = 0$$

Lo que significa que no fluye corriente por el neutro.

2.2. Comparación de cargas trifásicas conectadas en Y y Δ

Cuadro 1: Comparación de voltaje y corriente

Carga	Tension de fase	Tension de linea	Corriente de fase	Corriente de linea
Y	$V_{AN} = V_p \angle \theta$	$V_{AB} = \sqrt{3}V_p \angle \theta + 30$	$I_{aA} = I_{AN} = \frac{V_{AN}}{Z_p}$	"
	$V_{BN} = V_p \angle \theta - 120$	$V_{BC} = \sqrt{3}V_p \angle \theta - 90$	$I_{bB} = I_{BN} = \frac{V_{BN}}{Z_p}$	"
	$V_{CN} = V_p \angle \theta - 240$	$V_{CA} = \sqrt{3}V_p \angle \theta - 210$	$I_{cC} = I_{CN} = \frac{V_{CN}^r}{Z_p}$	"
Δ	$V_{AB} = \sqrt{3}V_p \angle \theta$	"	$I_{AB} = \frac{V_{AB}}{Z_p}$	$I_{aA} = (\sqrt{3}\angle\theta)\frac{V_{AB}}{Z_p}$
	$V_{BC} = \sqrt{3}V_p \angle \theta - 120$	"	$I_{BC} = \frac{V_{BC}^{T}}{Z_{p}}$	$I_{bB} = (\sqrt{3}\angle\theta) \frac{V_{BC}}{Z_p}$
	$V_{CA} = \sqrt{3}V_p \angle \theta - 240$	"	$I_{CA} = rac{V_{CA}^r}{Z_p}$	$I_{cC} = (\sqrt{3} \angle \theta) \frac{V_{CA}}{Z_p}$

Cuadro 2: Comparación de potencia

Carga	Potencia por fase
Y	$\sqrt{3}V_LI_Lcos\theta$
Δ	$\sqrt{3}V_LI_Lcos\theta$

donde $\cos\theta$ es el factor de potencia de la carga

2.3. Análisis del desplazamiento del neutro en conexión estrella balanceada

Figura 3: Diagrama de fuentes en estrella conectado a cargas en estrella. Tambien conocido como Y-Y.

$$V_{AN} = \frac{V_{LinA}}{\sqrt{3}}; I_{LinA} = \frac{V_{LinA}}{Z_A}$$

$$V_{AO} = V_{AN} + V_{NO} = V_{AN} - V_{ON}$$

$$\therefore V_{BO} = V_{BN} - V_{ON}$$

$$\therefore V_{CO} = V_{CN} - V_{ON}$$
(1)

Aplicando L.C.K. al nodo N.

$$I_{AO} + I_{BO} + I_{CO} = 0$$

$$\frac{V_{AO}}{Z_A} + \frac{V_{BO}}{Z_B} + \frac{V_{CO}}{Z_C} = 0$$

$$V_{AO}Y_A + V_{BO}Y_B + V_{CO}Y_C = 0$$
(2)

Cuando la tierra fisica no esta conectada, y Z_A , Z_B , Z_C son cargas diferentes se crea un voltaje V_{ON} , si este voltaje es mayor a la norma entonces el circuito se desbalancea.

Sustituyendo las ecuaciones (1) en la ecuación (2):

$$(V_{AN} - V_{ON})Y_A + (V_{BN} - V_{ON})Y_B + (V_{CN} - V_{ON})Y_C = 0$$

$$V_{AN}Y_A + V_{BN}Y_B + V_{CN}Y_C = V_{ON}(Y_A + Y_B + Y_C)$$

$$V_{ON} = \frac{V_{AN}Y_A + V_{BN}Y_B + V_{CN}Y_C}{Y_A + Y_B + Y_C}$$
(3)

La ecuación (3) describe el voltaje en el neutro a causa de un desbalance.

2.3.1. Ejemplo

Una conexion estrella desbalanceada cuyas impedancias son: $Z_A=12\angle 0$, $Z_B=8\angle 45,~Z_C=10\angle 30$ (en grados) se alimenta con un sistema trifasico de 4 hilos cuyo voltaje de linea es 220v secuencia ABC.

- 1. Calcule el valor de cada corriente de linea.
- 2. La corriente que circula del neutro a tierra.
- 3. La potencia aparente que consume cada fase y la potencia aparente total.

$$(1)$$

$$I_{LinA} = 13,018046815794099 \angle -6,686239852427747$$

$$I_{LinB} = 16,622401736597524 \angle -150,4259528457764$$

$$I_{LinC} = 9,838937778497865 \angle 81,06982369527327$$

$$(2)$$

$$I_{N} = 8,358438485664404e - 15 < 39,61068824002659$$

3. Inductancia mutua

Figura 4: Convención del punto

El voltaje en un inductor esta dado por:

$$v(t) = L\frac{di}{dt}$$

Cuando el voltaje esta siendo inducido por otro inductor como en el caso de los transformadores el voltaje se vuelve:

$$v(t) = \pm M \frac{di_2}{dt}$$

Donde M es el coeficiente de inductancia, y el signo de la corriente se determina por medio de la convención del punto.

3.1. Ejemplo 1

La ecuación (4) describe el voltaje en el inductor 2 producido por el inductor 1 suponiendo que la convención del punto sea determinada por la figura (a).

$$V_2 = M_{21} \frac{di_1(t)}{dt} \tag{4}$$

Cuando se aplica un voltaje también en V_2 la ecuación se vuelve:

$$V_2 = L\frac{di_2}{dt} + M\frac{di_1}{dt}$$

3.2. Ejemplo 2

En el siguiente circuito determina (a) v_1 si $i_2=5\sin 45tA$ e $i_1=0$; (b) v_2 si $i_1=-8e^{-t}A$ e $i_2=0$

$$(a)v_1 = -(2)(45)(5\cos 45t) = -450\cos 45t$$
$$(b)v_2 = -(2)(-1)(-8e^{-t}) = -16e^{-t}$$

4. Frecuencia compleja

En el dominio de s es posible analizar algunos aspectos de los circuitos de una forma mas sencilla comparado al uso de ecuaciones diferenciales.

$$s = \alpha + j\omega$$

Partiendo de una función de voltaje real $v(t) = V_m e^{\sigma t} \cos(\omega t + \theta)$, utilizando la idendidad de euler se obtiene

$$v(t) = f(t) = Ke^{st}$$

De la cual se pueden deducir los siguientes casos:

- Corriente Directa (CD)
- Exponencial
- Senoidal
- Senoidal amortiguado exponencialmente

4.1. Caso CD

4.2. Caso seno amortiguado exponencialmente

$$v(t) = Re \left\{ V_m e^{\sigma t} e^{j(\omega t + \theta)} \right\}$$
$$v(t) = Re \left\{ V_m e^{j\theta} e^{st} \right\}$$
$$\frac{1}{2} V_m e^{j\theta} e^{(\sigma + j\omega)t} + \frac{1}{2} V_m e^{-j\theta} e^{(\sigma - j\omega)t}$$

4.2.1. Ejemplo

Convertir a forma general

- (a) s=7+j0
- (b) s=0+j10

$$(1)Ke^{7t}$$

$$(2)Ke^{j10t} = K [cos(10t) - jsen(10t)]$$

Identifique las frecuencias complejas de la siguiente ecuacion:

$$(2e^{-100t} + e^{200t})\sin 2000t$$

$$2e^{-100t}\sin 2000t + e^{200t}\sin 2000t$$

$$\therefore s_1 = -100 \pm 2000; s_2 = 200 \pm 2000$$

Aplicar la funcion forzada $v(t)=60e^{-2t}\cos 4t+10$ al circuito RLC de la figura y especificar la respuesta forzada determinando I_m y ϕ en la expresion $i(t)=I_me^{-2t}\cos 4t+\phi$

$$v(t) = 60e^{-2t}\cos 4t + 10 = Re\left\{60e^{-2t}e^{j(4t+10)}\right\} = Re\left\{60e^{j10}e^{(-2+j4)t}\right\}$$
$$V = 60\angle 10; s = -2 + j4$$

5. Transformada de Laplace

$$\mathcal{L}\left\{te^{-\alpha t}u(t)\right\} = \frac{1}{(s+\alpha)^2}$$

5.1. Bilateral

$$F(s) = \int_{-\infty}^{\infty} e^{-st} f(t) dt$$

5.2. Unilateral

$$F(s) = \int_{0}^{\infty} e^{-st} f(t)dt$$

5.3. Ejemplo

Obtener la transformada de Laplace unilateral para f(t)

$$f(t) = 2u(t-3)$$

$$F(s) = \int_{0^{-}}^{\infty} e^{-st} 2u(t-3) dt = 2 \int_{3}^{\infty} e^{-st} dt = -\frac{2}{s} e^{-st} \Big|_{t=3}^{t=\infty}$$

$$F(s) = -\frac{2}{s} (e^{-\infty s} - e^{-3s}) = -\frac{2}{s} (-e^{-3s}) = \frac{2e^{-3s}}{s}$$

Obtener la transformada de Laplace unilateral

$$f(t) = u(t)$$

$$F(s) = \int_{0}^{\infty} e^{-st} dt = -\frac{e^{-st}}{s} \Big|_{0}^{\infty} = -\frac{1}{s} (e^{-\infty s} - e^{-0s}) = -\frac{1}{s} (-e^{0}) = \frac{1}{s}$$

Obtener la transformada de Laplace unilateral

$$f(t) = -6e^{-2t} \left[u(t+3) - u(t-2) \right]$$

5.4. Impulso unitario

5.5. Teorema de la linealidad

$$\mathcal{L}\left\{f_1(t) + f_2(t)\right\} = \int_{0^-}^{\infty} e^{-st} \left[f_1(t) + f_2(t)\right] dt = \int_{0^-}^{\infty} e^{-st} f_1(t) dt + \int_{0^-}^{\infty} e^{-st} f_2(t) dt = F_1(s) + F_2(s)$$

5.6. Anti-transformada de Laplace

$$V(s) \to v(t)$$

$$V(s) = V_1(s) + V_2(s)$$

$$v(t) = \mathcal{L}^{-1} \{V(s)\} = \mathcal{L}^{-1} \{V_1(s) + V_2(s)\} = \mathcal{L}^{-1} \{V_1(s)\} + \mathcal{L}^{-1} \{V_2(s)\}$$

5.6.1. Ejemplo

Encontrar G(t)

$$G(s) = \frac{7}{s} - \frac{31}{s+17}$$

$$g(t) = \mathcal{L}^{-1} \left\{ \frac{7}{s} \right\} - \mathcal{L}^{-1} \left\{ \frac{31}{s+17} \right\}$$

$$g(t) = 7u(t) - 31e^{-17t}u(t)$$

$$g(t) = \left(7 - 31e^{-17t}\right)u(t)$$

Dada la funcion $H(s) = \frac{7}{s^2} + \frac{31}{(s+17)^2}$ encontrar h(t)

$$h(t) = \mathcal{L}^{-1} \left\{ \frac{7}{s^2} + \frac{31}{(s+17)^2} \right\} = (7+31e^{-17t})tu(t)$$

5.7. Transformada inversa de funciones racionales

 $P(s) = \frac{N(s)}{D(s)}$ donde N(s) y D(s) son polinomios.

Los valores de s que originan N(s) = 0 se conocen como **ceros**.

Los valores de s que originan D(s) = 0 se conocen como **polos**.

5.7.1. Ejemplo

Encontrar la transformada inversa de $F(s)=2\frac{s+2}{s}$

$$F(s) = \frac{2s+4}{s} = 2 + \frac{4}{s}$$

$$f(t) = 2\delta(t) + 4u(t)$$

Dada $Q(s) = \frac{3s^2-4}{s^2}$ encontrar q(t)

$$Q(s) = \frac{3s^2 - 4}{s^2} = 3 - \frac{4}{s^2}$$

$$q(t) = 3\delta(t) - 4tu(t)$$

5.7.2. Polos distintos

Encontrar transformada inversa de:

$$P(s) = \frac{7s+5}{s^2+s} = \frac{7s+5}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1}$$

$$A = \frac{7s+5}{s+1} \Big|_{s=0} = 5$$

$$B = \frac{7s+5}{s} \Big|_{s=-1} = 2$$

$$\therefore P(s) = \frac{5}{s} + \frac{2}{s+1}$$

$$p(t) = 5u(t) + 2e^{-t}u(t)$$

Encontrar la transformada inversa de:

$$P(s) = \frac{11s + 30}{s^2 + 3s} = \frac{11s + 30}{s(s+3)}$$
$$A = \frac{11s + 30}{s+3} \Big|_{s=0} = 10$$
$$B = \frac{11s + 30}{s} \Big|_{s=-3} = \frac{11s + 30}{s}$$