

Representação de Conjuntos de Dados utilizando Redes Neurais Artificiais

Victor De Cia Costa

Orientador: Prof. Dr. Marcos Gonçalves Quiles

Introdução

• O problema:

• Dados reais;

• Alta dimensionalidade;

$Introdução_{(continuação)}$

- O problema:
 - Geração de uma rede que represente fielmente dados de uma base;
- Objetivos;

Revisão Bibliográfica

- Redes Neurais Artificiais;
 - Perceptron;

- Redes Neurais Artificiais;
 - MLP;

- Redes Neurais Artificiais;
 - Autoencoders;

- Representação de dados através de grafos;
 - *K*-nn;

- Representação de dados através de grafos;
 - Corte epsilon;

- Representação de dados através de grafos;
 - Técnicas Híbridas:

- Corte epsilon + K-nn: pode-se utilizar o corte epsilon para gerar uma rede inicial e o K-nn como uma ferramenta de pós-processamento.
- Essa abordagem pode reduzir a quantidade de exemplos isolados facilmente observados ao utilizar a técnica corte epsilon isoladamente.

Metodologia

• Uso de autoencoders para geração de novas representações;

O autoencoder foi utilizado como uma ferramenta de préprocessamento dos dados.

Tabela 1 – Exemplo de tabela atributo-valor com amostras do conjunto de dados Iris da UCI.

sepal lenght	sepal width	petal lenght	petal width	Class
5,1	3,5	1,4	0,2	Iris-setosa
7,0	3,2	4,7	1,4	Iris-versicolor
6,3	3,3	6,0	2,5	Iris-virginica

Atributo 1	Atributo 2	
0,67	0,28	
0,03	0,21	
0,42	0,27	

- Conjunto de características;
- Vantagens: correlação reduzida entre os novos atributos, valor normalizados entre 0 e 1 (ou -1 e 1, conforme a função de ativação utilizada) e número reduzido de características;

Geração da rede com as novas representações;

- 1. Um vértice é gerado para cada exemplo do conjunto de dados;
- 2. Uma função de similaridade é definida;
- 3. Os parâmetros de similaridade são ajustados;
- 4. Se a similaridade entre um par de exemplos é superior a um determinado limiar (épsilon) ou se eles estão entre os k vizinhos mais próximos, uma aresta é criada entre seus respectivos vértices representantes;
- 5. As arestas podem ou não ser ponderadas;

• Experimentos computacionais e avaliação dos resultados;

- Comparações:
 - Funções Harmônicas (ZHU et al., 2003);
 - Consistência Local e Global (ZHOU et al., 2004);
 - Técnica de classificação baseada em Competição de Partículas (BREVE; ZHAO; QUILES, 2015);

- Experimentos computacionais e avaliação dos resultados;
- Bases de dados:
 - Testes foram realizados com dados selecionados da UCI;

Experimentos computacionais e avaliação dos resultados;

Para os testes e comparações foram comparadas as redes geradas com os novos atributos obtidos pelo autoencoder com as redes geradas a partir dos dados originais sem pré-processamento.

Experimentos e Resultados

Bases de dados utilizadas nos experimentos e as quantidades de objetos, atributos e classes em cada uma delas.

Nome	Objetos	Atributos	Classes
glass	214	9	7
iris	150	4	3
wine	178	13	3
seeds	210	7	3
parkinsons	195	22	2

Experimentos e Resultados (continuação)

Valores utilizados para os parâmetros.

Parâmetro	Valor
\overline{k}	110
Γ	100000
μ	2(Quantidade de atributos do conjunto de dados) - 1
δ	10

 Γ : utilizado no autoencoder para definir o máximo de épocas que a rede poderia alcançar em sua fase de treinamento;

μ: o número de neurônios da camada oculta do autoencoder;

δ: a quantidade de folds utilizados na validação cruzada;

k: utilizados nos métodos de geração da rede kNN;

Experimentos e Resultados (continuação)

Resumo dos experimentos realizados:

Estatísticas dos valores obtidos da execução do algoritmo LGC 100 vezes com k variando de 1...10, para cada representação do conjunto de dados *glass*.

		Conjunto de dados				
			GLASS			
k		Original	Autoencoder Menor Erro	Autoencoder Menor Topologia		
	Média	0.995259	0.992984	0.994842		
1	Des. Pad.	1.000274	0.998007	0.999854		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.995205	0.945255	0.969951		
2	Des. Pad.	1.000219	0.963155	0.979096		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.980913	0.967444	0.953305		
3	Des. Pad.	0.986862	0.974927	0.967270		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.979859	0.994843	0.968613		
4	Des. Pad.	0.985568	0.999855	0.979070		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.975427	0.984143	0.955600		
5	Des. Pad.	0.982306	0.989628	0.968569		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.975136	0.991657	0.972010		
6	Des. Pad.	0.981850	0.996721	0.980485		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.988391	0.940674	0.968572		
7	Des. Pad.	0.993614	0.956846	0.977562		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.993759	0.995152	0.994637		
8	Des. Pad.	0.998770	1.000166	0.999648		
	Mediana	0.994845	0.994845	0.994845		
	Média	0.985238	0.993396	0.994843		
9	Des. Pad.	0.990679	0.998406	0.999854		
	Mediana	0.994845	0.994819	0.994845		
	Média	0.994274	0.995616	0.993605		
10	Des. Pad.	0.999283	1.000633	0.998616		
	Mediana	0.994819	0.994845	0.994845		

			Conjunto de	dados		
			IRIS			
k		Original	Autoencoder Menor Erro	Autoencoder Menor Topologia		
	Média	0.989593	0.984785	0.992699		
1	Des. Pad.	0.994628	0.990066	0.997701		
	Mediana	0.992593	0.992593	0.992593		
	Média	0.934571	0.963581	0.935606		
2	Des. Pad.	0.957434	0.973491	0.957819		
	Mediana	0.992593	0.992647	0.992593		
	Média	0.941609	0.965203	0.944042		
3	Des. Pad.	0.962205	0.974566	0.963148		
	Mediana	0.992647	0.992647	0.992647		
	Média	0.942199	0.939709	0.907034		
4	Des. Pad.	0.962427	0.952901	0.934339		
	Mediana	0.992647	0.992593	0.992593		
	Média	0.898054	0.974878	0.856759		
5	Des. Pad.	0.930518	0.982874	0.920393		
	Mediana	0.992593	0.992647	0.992593		
	Média	0.961267	0.975248	0.946327		
6	Des. Pad.	0.975833	0.983117	0.972486		
	Mediana	0.992647	0.992647	0.992647		
	Média	0.961267	0.963445	0.910672		
7	Des. Pad.	0.975833	0.972795	0.952009		
	Mediana	0.992647	0.992647	0.992647		
	Média	0.963670	0.981695	0.949371		
8	Des. Pad.	0.972943	0.987094	0.964132		
	Mediana	0.992647	0.992593	0.992647		
	Média	0.947723	0.986420	0.924166		
9	Des. Pad.	0.960309	0.991538	0.947334		
	Mediana	0.992593	0.992593	0.992593		
	Média	0.956851	0.988493	0.970646		
10	Des. Pad.	0.966594	0.993538	0.977371		
	Mediana	0.992593	0.992593	0.992593		

Estatísticas dos valores obtidos da execução do algoritmo LGC 100 vezes com k variando de 1...10, para cada representação do conjunto de dados *iris*.

Estatísticas dos valores obtidos da execução do algoritmo LGC 100 vezes com k variando de 1...10, para cada representação do conjunto de dados parkinsons.

		Conjunto de dados			
			PARKINSONS		
k		Original	Autoencoder Menor Erro	Autoencoder Menor Topologia	
	Média	0.994856	0.861414	0.922460	
1	Des. Pad.	0.999870	0.865993	0.927828	
	Mediana	0.994350	0.864407	0.943662	
	Média	0.980687	0.653287	0.735222	
2	Des. Pad.	0.986333	0.681652	0.769491	
	Mediana	0.994350	0.723164	0.627119	
	Média	0.968116	0.594160	0.729614	
3	Des. Pad.	0.978575	0.630512	0.776687	
	Mediana	0.994350	0.677966	0.795455	
	Média	0.969187	0.603274	0.766037	
4	Des. Pad.	0.977843	0.643237	0.801116	
	Mediana	0.994350	0.681818	0.954545	
	Média	0.988148	0.603341	0.766099	
5	Des. Pad.	0.994082	0.641872	0.806275	
	Mediana	0.994334	0.681818	0.954545	
	Média	0.969812	0.572492	0.687376	
6	Des. Pad.	0.977851	0.624064	0.731573	
	Mediana	0.994350	0.680797	0.619318	
	Média	0.955838	0.573430	0.733096	
7	Des. Pad.	0.966363	0.621965	0.778736	
	Mediana	0.994350	0.684505	0.801136	
	Média	0.979642	0.570112	0.717579	
8	Des. Pad.	0.986318	0.609790	0.757468	
	Mediana	0.994350	0.677966	0.627119	
	Média	0.972793	0.614630	0.745882	
9	Des. Pad.	0.980452	0.641346	0.786133	
	Mediana	0.994318	0.681564	0.803346	
	Média	0.964249	0.614250	0.779955	
10	Des. Pad.	0.972568	0.642903	0.809717	
	Mediana	0.994350	0.680669	0.954545	

Conjur	ıto de	dados
--------	--------	-------

		SEEDS		
k		Original	Autoencoder Menor Erro	Autoencoder Menor Topologia
	Média	0.991266	0.987995	0.993527
1	Des. Pad.	0.996324	0.992979	0.998541
	Mediana	0.994737	0.989446	0.994737
	Média	0.951833	0.866398	0.967237
2	Des. Pad.	0.974918	0.901388	0.979548
	Mediana	0.994737	0.989418	0.994737
	Média	0.956318	0.933308	0.943812
3	Des. Pad.	0.979573	0.953179	0.962431
	Mediana	0.994737	0.989474	0.994737
	Média	0.920261	0.918500	0.944051
4	Des. Pad.	0.955031	0.941396	0.962539
	Mediana	0.994737	0.989474	0.994737
	Média	0.943412	0.856063	0.961657
5	Des. Pad.	0.969897	0.889735	0.975420
	Mediana	0.994737	0.989418	0.994737
	Média	0.888065	0.938336	0.962628
6	Des. Pad.	0.938572	0.951039	0.975879
	Mediana	0.994737	0.989474	0.994737
	Média	0.870638	0.921865	0.949512
7	Des. Pad.	0.928027	0.940325	0.960929
	Mediana	0.994737	0.989474	0.994737
	Média	0.898272	0.926578	0.956644
8	Des. Pad.	0.943981	0.944103	0.968302
	Mediana	0.994737	0.989418	0.994723
	Média	0.898065	0.927151	0.994262
9	Des. Pad.	0.943955	0.946061	0.999273
	Mediana	0.994737	0.989474	0.994737
	Média	0.877321	0.938839	0.993467
10	Des. Pad.	0.933093	0.955015	0.998478
	Mediana	0.994723	0.989418	0.994723

Estatísticas dos valores obtidos da execução do algoritmo LGC 100 vezes com k variando de 1...10, para cada representação do conjunto de dados seeds.

Estatísticas dos valores obtidos da execução do algoritmo LGC 100 vezes com k variando de 1...10, para cada representação do conjunto de dados wine.

		Conjunto de dados			
			WINE		
k		Original	Autoencoder Menor Erro	Autoencoder Menor Topologia	
	Média	0.992823	0.992017	0.992017	
1	Des. Pad.	0.997830	0.997034	0.997034	
	Mediana	0.993827	0.993827	0.993827	
	Média	0.918900	0.918771	0.925339	
2	Des. Pad.	0.958177	0.958167	0.958841	
	Mediana	0.993827	0.993789	0.993789	
	Média	0.924163	0.894448	0.889502	
3	Des. Pad.	0.958676	0.942770	0.942408	
	Mediana	0.993789	0.993789	0.993789	
	Média	0.900879	0.936550	0.936861	
4	Des. Pad.	0.943595	0.968446	0.968461	
	Mediana	0.993789	0.993827	0.993827	
	Média	0.935991	0.902551	0.896801	
5	Des. Pad.	0.968426	0.943881	0.943028	
	Mediana	0.993827	0.993789	0.993789	
	Média	0.887711	0.938662	0.906632	
6	Des. Pad.	0.942338	0.964791	0.944678	
	Mediana	0.993789	0.993827	0.993789	
	Média	0.926780	0.956164	0.941556	
7	Des. Pad.	0.963285	0.975041	0.965477	
	Mediana	0.993827	0.993827	0.993827	
	Média	0.948450	0.954988	0.956597	
8	Des. Pad.	0.973729	0.974762	0.975150	
	Mediana	0.993827	0.993827	0.993827	
	Média	0.947978	0.962019	0.953623	
9	Des. Pad.	0.973692	0.979467	0.974475	
	Mediana	0.993827	0.993827	0.993827	
	Média	0.955560	0.913781	0.960901	
10	Des. Pad.	0.978676	0.949562	0.979252	
	Mediana	0.993827	0.993789	0.993827	

Conjunto de dados

Experimentos e Resultados (continuação)

Quantidade de atributos obtidos pelas representações geradas pelo autoencoder por conjunto de dados.

	Número de atributos			
	Original	Representação MA	Representação MB	
glass	9	3	2	
iris	4	3	2	
parkinsons	22	19	5	
seeds	7	6	5	
wine	13	9	7	

MA: Maior Acurácia;

MB: Menor topologia de acurácia aceitável;

Experimentos e Resultados (continuação)

Valores das acurácias obtidas ao treinar a rede autoencoder para as representações MA e MB. Foi utilizada a validação cruzada com método *k-fold* utilizando 10 *folds*.

	Acurácias		
	MA	MB	
glass	0.002566	0.002859	
iris	0.003857	0.004241	
parkinsons	0.010058	0.011330	
seeds	0.008254	0.009627	
wine	0.008728	0.011347	

MA: Maior Acurácia;

MB: Menor topologia de acurácia aceitável;

Conclusões

As duas representações testadas geradas pela rede possuiam menos atributos do que a representação original e obtiveram no geral, os melhores resultados quando aplicado o algorítimo kNN e LGC. Para a base de dados parkinsons, a base de maior número de atributos, observou-se que os melhores resultados foram obtidos em maioria esmagadora através das representações geradas pela técnica. Reduzindo de 22 atributos até 5, maximizando os resultados.

Conclusões (continuação)

Os resultados obtidos mostraram que foi possível utilizar um autoencoder como ferramenta de pré-processamento do conjunto de dados, gerando melhores resultados, ou equivalentes, do que da representação sem esse processamento. Notou-se também que em todos os conjuntos de dados, foi vantajoso ter seus atributos reduzidos, como já era esperado.

Referências

BREVE, F. A.; ZHAO, L.; QUILES, M. G. Particle competition and cooperation for semi-supervised learning with label noise. Neurocomputing, Elsevier, v. 160, p. 63–72, 2015.

HAUSSLER, D.; WELZL, E. -nets and simplex range queries. Discrete & Computational Geometry, Springer, v. 2, n. 1, p. 127–151, 1987.

HEIN, M.; MAIER, M. Manifold denoising as preprocessing for finding natural representations of data. In: MENLO PARK, CA; CAMBRIDGE, MA; LONDON; AAAI PRESS; MIT PRESS; 1999. PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE. [S.l.], 2007. v. 22, n. 2, p. 1646.

JEBARA, T.; SHCHOGOLEV, V. B-matching for spectral clustering. In: Machine learning: Ecml 2006. [S.l.]: Springer Berlin Heidelberg, 2006. p. 679–686.

JEBARA, T.; WANG, J.; CHANG, S.-F. Graph construction and b-matching for semi-supervised learning. In: ACM. Proceedings of the 26th Annual International Conference on Machine Learning. [S.l.], 2009. p. 441–448.

KUBAT, M. Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. [S.l.]: Cambridge Univ Press, 1999.

LIU, W.; CHANG, S.-F. Robust multi-class transductive learning with graphs. In: IEEE. Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. [S.l.], 2009. p. 381–388.

OLSHAUSEN, B. A. et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, v. 381, n. 6583, p. 607–609, 1996.

QUILES, M. G. et al. Label propagation through neuronal synchrony. In: IEEE. Neural Networks (IJCNN), The 2010 International Joint Conference on. [S.l.], 2010. p. 1–8.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning internal representations by error propagation. [S.l.], 1985.

SOUSA, C. A. R. d. Impacto da geração de grafos na classificação semissupervisionada. Tese (Doutorado) — Universidade de São Paulo, 2013.

ZHOU, D. et al. Learning with local and global consistency. Advances in neural information processing systems, v. 16, n. 16, p. 321–328, 2004.

ZHU, X. et al. Semi-supervised learning using gaussian fields and harmonic functions. In: ICML. [S.l.: s.n.], 2003. v. 3, p. 912–919.

ZHU, X.; GOLDBERG, A. B. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, Morgan & Claypool Publishers, v. 3, n. 1, p. 1–130, 2009.

ZHU, X.; LAFFERTY, J.; ROSENFELD, R. Semi-supervised learning with graphs. [S.l.]: Carnegie Mellon University, Language Technologies Institute, School of Computer Science, 2005.