IT-Security (ITS) B1

DIKU, E2023

Today's agenda

Key Exchange

Key Management

Certificates

Lecture plan

	Week		Date	Τi	.me	Lect	ure	Topic	
	36		04 Sep	10	-12	TL		Security concepts and principles	
			08 Sep	10	-12	TL		Cryptographic building blocks	
	37	Ī	11 Sep	10	1-12	TL		Key establishment and certificate management	
			15 Sep	10	-12	CJ		User authentication, IAM	
	38		18 Sep	10	-12	CJ		Operating systems security, web, browser and mail security	
			22 Sep	10	-12	CJ		IT security management and risk assessment	
	39		25 Sep	10	-12	TL		Software security - exploits and privilege escalation	
			29 Sep	10	-12	TL		Malicious software	
	40		02 Oct	10	-12	CJ		Firewalls and tunnels, security architecture	
			06 Oct	10	-12	CJ		Cloud and IoT security	
	41		09 Oct	10	-12	TL		Intrusion detection and network attacks	
			13 Oct	10	1-12	TL		Forensics	
	42							Fall Vacation - No lectures	
	43		23 Oct	10	1-12	CJ		Privacy and GDPR	
			27 Oct	10	-12	CJ		Privacy engineering	
-	44	ı	30 Oct	10)-12	CJ,T	L	Final guest lecture and Exam Q/A	

Recap: Security goals and crypto primitives

In this class, we don't worry about the intricate details of RSA, AES, or SHA1, but focus on the bigger picture of what we achieve with using symmetric and asymmetric ciphers, cryptographic hash functions, message authentication codes, and digital signatures.

Recap: Cryptosystems

Key management

Many keys to protect

Master key

Session key

Signature key

Data encryption key

Key encryption key

...

Protect during entire lifecycle

Generation

Exchange

Storage/backup

Use

Expiration

Revocation

Destruction

Key exchange options include

Pre-distribution

Generated and distributed "ahead of time" e.g. physically

Distribution

Generated by a trusted third party (TTP) and sent to all parties

Agreement

Generated by all parties working together

Asymmetric

Is e really yours?

Basic authenticated key exchange

Alice (claimant)

shared secret: $W_{\mbox{\scriptsize AB}}$

I am Alice, here is some evidence that I know our shared Alice-Bob secret

Yes, but that looks old. Here's a random number

Okay, here is fresh evidence combining our secret and the random number you just sent

Bob (verifier)

shared secret: W_{AB}

Developing a key distribution scheme

Situation:

A and B want to exchange keys remotely

Both A and B share a key (K_AS, K_BS) with a trusted third party, S

At the end, we want to achieve:

A and B know a new key K_AB

No one but A, B, and possibly S knows K_AB

A and B know that K_AB is newly generated

Key agreement

Basic idea

If you wanted to exchange secret paints

Basic idea

Choose a function f such that

$$f(a,f(b)) = f(b,f(a))$$

And

 $f^{-1}(x)$ is hard

Solution by Diffie-Hellman, 1976

Computational Diffie-Hellman assumption

Is e really yours?

Public-key infrastructure (PKI)

A system for the creation, storage, and distribution of **digital certificates** which are used to verify that a particular public key belongs to a certain entity

X.509 format for certificates include:

Serial number – unique identification of certificate

Valid-From/To – lifespan of the certificate

Subject - the entity/person/machine/etc. identified

Public key – the entity's public key

Signature – the actual signature of the issuer

Issuance and verification

A private key is created by you — the certificate owner — when you request your certificate with a Certificate Signing Request (CSR).

Types of PKI: CA model

Trust in browsers

Browsers come pre-configured with a set of root CAs. Do you trust all these CAs (to authenticate properly, to avoid/inform of breaches)?

Chain of trust

CA providers

Types of PKI: Web of trust

Revocation of certificates

Certificate revocation list (CRL):

A list of (serial numbers for) certificates that have been revoked, and therefore, entities presenting those (revoked) certificates should no longer be trusted

Online Certificate Status Protocol (OCSP):

Protocol used for obtaining the revocation status of an X.509 digital certificate

Lecture plan

Week		Date	1	Time		Lecture		Topic	
			-						
36		04 Sep	1	10-12		TL		Security concepts and principles	
		08 Sep	1	10-12		TL		Cryptographic building blocks	
37		11 Sep	1	10-12		TL		Key establishment and certificate management	
	Ī	15 Sep	1	10-12		CJ		User authentication, IAM	ı
38		18 Sep	1	10-12		CJ		Operating systems security, web, browser and mail security	
		22 Sep	1	10-12		CJ		IT security management and risk assessment	
39		25 Sep	1	10-12		TL		Software security - exploits and privilege escalation	
		29 Sep	1	10-12		TL		Malicious software	
40		02 Oct	1	10-12		CJ		Firewalls and tunnels, security architecture	
		06 Oct	1	10-12		CJ		Cloud and IoT security	
41	1	09 Oct	1	10-12		TL		Intrusion detection and network attacks	
	1	13 Oct	1	10-12		TL		Forensics	
42	1							Fall Vacation - No lectures	
43	1	23 Oct	1	10-12		CJ		Privacy and GDPR	
	1	27 Oct	1	10-12		CJ		Privacy engineering	
44	I	30 Oct	1	10-12	I	CJ,TL	1	Final quest lecture and Exam Q/A	