EKS 관리

• 1. Bitbucket 정보 • 1) Bitbucket • 2) Bitbucket Repository 2-1) Application 소스용 Repository
 2-2) 쿠버네티스 배포 리소스 yaml Repository
 2-3) 배포용 Repository Branch 목록 • 2. EKS (Elastic Kubernetes Service) • 1) AWS console EKS • 2) 배포관리 서버 접속 • 2-1) dev 배포관리서버 (mle-dpm-d01) • 2-2) stg 배포관리서버 (mle-dpm-s01) • 2-3) prd 배포관리서버 (mle-dpm-o01) 3) EKS 클러스터 config
 3-1) 환경별 EKS 클러스터 이름
 3-2) 클러스터 변경 방법
 4) 쿠버네티스 리소스 확인 방법 • 4-1) Deployment 목록 • 4-2) Pod 목록 • 4-3) Service 목록 4-5) Selvice 국숙
 4-4) Configmap 목록
 4-5) HPA (Horizontal Pod Autoscaler)
 5) 쿠버네티스 Pod 장애 발생시 확인 및 로그 출력 방법 • 3. ECR 운영 • 1) AWS console ECR 2) 배포관리서버에서 AWS 계정 및 ECR 로그인 하는 방법
 2-1) AWS 계정 로그인
 2-2) ECR 로그인 • 4. EFS 운영 • 1) AWS console EFS • 5. ElastiCache-Redis 운영 • 1) AWS console Redis • 1-1) redis 기본 Endpoint • 2) Redis CLI 접속 • 6. EFK 운영 • 1) EFK Architecture • 2) 배포관리 서버 FR/AP 클러스터 배포 확인 • 3) AWS console EFK 3-1) Opensearch3-2) Cloudwatch • 3-3) Lambda • 4) AWS Elasticsearch Kibana • 4-1) 초반 환경 설정 • 4-2) Filtering 및 Dashboard • 4-3) ISM Policy

1. Bitbucket 정보

1) Bitbucket

주소: http://bitbucket.kbonecloud.com/projects/PBFMLND001

2) Bitbucket Repository

2-1) Application 소스용 Repository

- bfm-databub-서비스명
- ex) bfm-datahub-adm

2-2) 쿠버네티스 배포 리소스 yaml Repository

- bfm-datahub-서비스명-cd
- ex) bfm-datahub-adm-cd

2-3) 배포용 Repository Branch 목록

환경별로 각각의 branch가 존재하며 배포시 확인하여 이미지를 변경해야 한다.

- 개발 : devmaster

- 스테이징 : stgmaster

- 운영: prdmaster

2. EKS (Elastic Kubernetes Service)

1) AWS console EKS

- 1) AWS Console 검색창에 EKS를 검색한다.
- 2) 검색 결과 중 Elastic Kubernetes Service를 클릭한다.

- 3) 좌측 상단의 클러스터 메뉴를 선택한다.
- 4) 확인하고자 하는 클러스터 이름을 선택한다.

5) 클러스터 개요: 클러스터에 포함되어 있는 노드의 정보를 보여준다.

6) 클러스터 워크로드: 클러스터에 생성된 쿠버네티스 리소스 정보를 보여준다.

7) 클러스터 구성: 클러스터에 대한 세부 정보, 컴퓨팅, 네트워킹 등에 대한 전반적인 사항을 확인할 수 있다.

7-1) 컴퓨팅: 클러스터에 포함된 노드 그룹의 정보를 확인할 수 있다.

7-2) 확인하고자 하는 노드 그룹을 클릭한다. (쿠버네티스 노드의 장애 발생시 노드 그룹 확인 필요)

7-3) EKS의 노드에서 장애가 발생하는 경우 상태 문제 탭을 클릭하여 확인이 가능하다.

2) 배포관리 서버 접속

2-1) dev 배포관리서버 (mle-dpm-d01)

- IP: 10.141.67.40 / Port: 22
- Username: ec2-user
- Authentication -〉 PublicKey 선택 -〉 kbland-mle-dev-ec2-keys.pem 파일 선택 및 적용

2-2) stg 배포관리서버 (mle-dpm-s01)

- IP: 10.141.58.40 / Port: 22
- Username : ec2-user
- Authentication -> PublicKey 선택 -> mle-sch-s01.pem 파일 선택 및 적용

2-3) prd 배포관리서버 (mle-dpm-o01)

- IP: 10.140.58.40 / Port: 22
- Username : ec2-user
- Authentication -> PublicKey 선택 -> mle-sch-o01.pem 파일 선택 및 적용

3) EKS 클러스터 config

3-1) 환경별 EKS 클러스터 이름

- * 환경별로 fr, ap 두 개의 클러스터가 존재한다.
- dev: bfmadm@mle-ekcl-dev-fr.ap-northeast-2.eksctl.io / bfmadm@mle-ekcl-dev-ap.ap-northeast-2.eksctl.io
- $\verb|-stg:bfmadm@mle-ekcl-stg-fr.ap-northeast-2.eksctl.io|| bfmadm@mle-ekcl-stg-ap.ap-northeast-2.eksctl.io||$
- prd: bfmadm@mle-ekcl-prd-fr.ap-northeast-2.eksctl.io / bfmadm@mle-ekcl-prd-ap.ap-northeast-2.eksctl.io
- * 하나의 배포관리 서버에서 2개의 클러스터를 관리하므로 배포관리서버에 접속하여 kubectl 명령어를 사용할 경우 클러스터 변경이 필요하다.

3-2) 클러스터 변경 방법

- 클러스터 정보 확인 명령어
- \$ kubectl config get-contexts

[ec2-user@mle-dpm-o01 ~]\$ kubectl config current-context bfmadm@mle-ekcl-prd-fr.ap-northeast-2.eksctl.io

- 현재 사용 중인 클러스터 확인 명령어
- \$ kubectl config current-context

[ec2-user@mle-dpm-o01 ~]\$ kubectl config use-context bfmadm@mle-ekcl-prd-ap.ap-northeast-2.eksctl.io Switched to context "bfmadm@mle-ekcl-prd-ap.ap-northeast-2.eksctl.io".

- 클러스터 변경 명령어
- \$ kubectl config use-context [클러스터명]
- ex) \$ kubectl config use-context bfmadm@mle-ekcl-dev-fr.ap-northeast-2.eksctl.io
- 〉〉 위의 과정으로 클러스터를 변경하면 해당 클러스터에서 kubectl 명령어를 통한 작업이 가능하다.

4) 쿠버네티스 리소스 확인 방법

- * 쿠버네티스에서 서비스는 Pod 단위로 실행되며 Pod는 Depolyment에 종속적이다.
- 즉, Deployment를 통해 Pod를 관리한다. Pod의 생성, 수정, 삭제 및 scale-out, scale-in 등의 동작은 모두 Deployment를 통해 이루어진다.

4-1) Deployment 목록

- \$ kubectl get deployment -n bfm-ns-fr (fr 클러스터의 경우)
- \$ kubectl get deployment -n bfm-ns-ap (ap 클러스터의 경우)

세부 정보

- \$ kubectl describe deployment -n bfm-ns-fr [Deployment 이름] (fr 클러스터의 경우)
- ex) \$ kubectl describe deployment -n bfm-ns-fr web-deploy
- \$ kubectl describe deployment -n bfm-ns-ap [Deployment 이름] (ap 클러스터의 경우)
- ex) \$ kubectl describe deployment -n bfm-ns-ap avm-deploy

4-2) Pod 목록

[ec2-user@mle-dpm-o01 ~]\$ kubectl get	pod -n k	ofm-ns-fr		
NAME	READY	STATUS	RESTARTS	AGE
inboundproxy-deploy-84c756f748-n5wvr	1/1	Running	0	8d
inboundproxy-deploy-84c756f748-p8bhb	1/1	Running	0	7d
ob-deploy-6579b75b4f-v5qwl	1/1	Running	0	7d
ob-deploy-6579b75b4f-x2v9z	1/1	Running	0	8d
web-deploy-7756cb88f8-j77pb	1/1	Runniná	0	37h

- \$ kubectl get pod n bfm-ns-fr (fr 클러스터의 경우)
- \$ kubectl get pod -n bfm-ns-ap (ap 클러스터의 경우)

세부 정보

- \$ kubectl describe pod -n bfm-ns-fr [Pod 이름] (fr 클러스터의 경우)
- ex) \$ kubectl describe pod -n bfm-ns-fr web-deploy-iddsa
- \$ kubectl describe pod-n bfm-ns-ap [pod이름] (ap 클러스터의 경우)
- ex) \$ kubectl describe pod -n bfm-ns-ap avm-deploy-dsadaw

4-3) Service 목록

```
        [ec2-user@mle-dpm-o01 ~]$ kubectl
        get svc -n bfm-ns-ap

        NAME
        TYPE
        CLUSTER-IP
        EXTERNAL-IP
        80/TCP,443/TCP
        36d

        adm-gateway-svc
        ClusterIP
        172.20.161.81
        <none>
        80/TCP,443/TCP
        36d

        avm-svc
        ClusterIP
        172.20.39.49
        <none>
        80/TCP,443/TCP
        36d

        databatch-svc
        ClusterIP
        172.20.44.23
        <none>
        80/TCP,443/TCP
        36d

        kbstatistics-svc
        ClusterIP
        172.20.213.184
        <none>
        80/TCP,443/TCP
        36d

        mle-ldb-svc
        ExternalName
        rone>
        80/TCP,443/TCP
        36d

        mublicdata-svc
        ClusterIP
        172.20.13.138
        <none>
        80/TCP,443/TCP
        36d

        80/TCP,443/TCP
        36d
        80/TCP,443/TCP
        36d
        80/TCP,443/TCP
        36d
```

- \$ kubectl get svc -n bfm-ns-fr (fr 클러스터의 경우)
- \$ kubectl get svc -n bfm-ns-ap (ap 클러스터의 경우)

세부 정보

- \$ kubectl describe svc -n bfm-ns-fr [Service 이름] (fr 클러스터의 경우)
- ex) \$ kubectl describe svc -n bfm-ns-fr web-svc
- \$ kubectl describe svc -n bfm-ns-ap [Service 이름] (ap 클러스터의 경우)
- ex) \$ kubectl describe svc -n bfm-ns-ap avm-svc

4-4) Configmap 목록

[ec2-user@mle-dpm-o01	~]\$	kubect1	get	configmap	-n	bfm-ns-ap
NAME	DATA	AGE	_			
adm-bfm-cm	6	36d				
adm-gateway-bfm-cm	6	36d				
avm-bfm-cm	6	36d				
databatch-bfm-cm	6	36d				
gateway-bfm-cm	6	36d				
kbstatistics-bfm-cm	6	36d				
kube-root-ca.crt	1	37d				
publicdata-bfm-cm	6	36d				

- \$ kubectl get configmap -n bfm-ns-fr (fr 클러스터의 경우)
- \$ kubectl get configmap -n bfm-ns-ap (ap 클러스터의 경우)

세부 정보

- \$ kubectl describe configmap -n bfm-ns-fr [Configmap 이름] (fr 클러스터의 경우)
- ex) \$ kubectl describe configmap -n bfm-ns-fr web-bfm-cm
- \$ kubectl describe configmap -n bfm-ns-ap [Configmap 이름] (ap 클러스터의 경우)
- ex) \$ kubectl describe configmap -n bfm-ns-ap avm-bfm-cm

4-5) HPA (Horizontal Pod Autoscaler)

[ec2-user@mle-dpm-o01	~]\$ kubect1 get hpa -n bfm-ns-ap					
NAME	REFERENCE	TARGETS	MINPODS	MAXPODS 5	REPLICAS	AGE
bfm-hpa-adm	Deployment/adm-deploy	24%/80%, 0%/80%	3	6	3	36d
bfm-hpa-adm-gateway	Deployment/adm-gateway-deploy	25%/80%, 0%/80%	3	6	3	36d
bfm-hpa-avm	Deployment/avm-deploy	22%/80%, 1%/80%	3	6	3	36d
bfm-hpa-databatch	Deployment/databatch-deploy	22%/80%, 70%/80%	3	6	3	36d
bfm-hpa-gateway	Deployment/gateway-deploy	33%/80%, 1%/80%	6	6	6	36d
bfm-hpa-kbstatistics	Deployment/kbstatistics-deploy	33%/80%, 1%/80%	3	6	3	36d
bfm-hpa-publicdata	Deployment/publicdata-deploy	30%/80%, 0%/80%	3	6	3	36d

- \$ kubectl get hpa -n bfm-ns-fr (fr 클러스터의 경우)
- \$ kubectl get hpa -n bfm-ns-ap (ap 클러스터의 경우)

세부 정보

- \$ kubectl describe hpa -n bfm-ns-fr [HPA 이름] (fr 클러스터의 경우)
- ex) \$ kubectl describe hpa -n bfm-ns-fr bfm-hpa-web
- \$ kubectl describe hpa -n bfm-ns-ap [HPA 이름] (ap 클러스터의 경우)
- ex) \$ kubectl describe hpa -n bfm-ns-ap bfm-hpa-avm

5) 쿠버네티스 Pod 장애 발생시 확인 및 로그 출력 방법

5-1) Pod 상태 장애 유무 파악

- \$ kubectl get pod -n bfm-ns-fr
- 〉〉 Pod 상태별 의미
- Running: 정상
- Pending: Pod가 스케줄링 되지 못하고 대기 중인 상태
- 〉 대부분 노드의 자원이 부족하여 Pod가 스케줄링 될 자리가 없을 경우이다.

이런 경우에는 Autoscaler가 자동으로 새로운 노드를 생성한다. 노드가 생성 되기 전까지 약 5분 정도의 시간이 소요되며,

그동안에는 Pending 상태로 머물러 있다가 노드가 생성된 이후 Pod가 정상적으로 스케줄링 되면 Running 상태로 변경된다.

- Error: 에러 발생으로 서비스 중단
- › Pod 상태 및 로그 확인이 필요하다.
- CrashLoopBackOff: 장애 상황 발생으로 인한 Pod 재시작
- 〉 Pod 상태 및 로그 확인이 필요하다.
- ErrImagePull: 이미지를 pull 해올 수 없어서 발생하는 에러
- 〉 Pod 상태 및 로그 확인이 필요하다. 주로 해당 이미지 태그가 없는 경우 발생한다.

[ec2-user@mle-dpm-o01 bfm-ns-ap]\$ kub	ectl get	nods -n bfm-ns-ap		
NAME	READY	STATUS	RESTARTS	AGE
adm-deploy-6ddb4654c5-hp5sk	1/1	Running	0	5h51m
adm-deploy-6ddb4654c5-mp82c	1/1	Running	0	5h51m
adm-deploy-6ddb4654c5-nwm55	1/1	Running	0	20h
adm-gateway-deploy-6988bb5bb4-7nfsb	1/1	Running	0	5h51m
adm-gateway-deploy-6988bb5bb4-qljsm	1/1	Running	0	20h
adm-gateway-deploy-6988bb5bb4-tdb69	1/1	Running	0	5h51m
avm-deploy-7d9f5f6877-jffcs	1/1	Running	0	5h43m
avm-deploy-7d9f5f6877-qq2c8	1/1	Running	0	5h43m
avm-deploy-7d9f5f6877-vrsrw	1/1	Running	0	20h
databatch-deploy-6dccdbfbb7-d4twd	0/1	CrashLoopBackOff	67	5h43m
databatch-deploy-6dccdbfbb7-hgnfk	0/1	CrashLoopBackOff	227	20h
databatch-deploy-6dccdbfbb7-jgc9p	0/1	CrashLoopBackOff	67	5h43m
gateway-deploy-9f44fc899-44lq2	1/1	Running	0	43m
gateway-deploy-9f44fc899-4txmr	1/1	Running	0	43m
gateway-deploy-9f44fc899-9x9bm	1/1	Running	0	43m
gateway-deploy-9f44fc899-qxw4q	1/1	Running	0	43m
gateway-deploy-9f44fc899-tq8cr	1/1	Running	0	43m
gateway-deploy-9f44fc899-wgvwz	1/1	Running	0	43m
kbstatistics-deploy-6bfc4998f5-8fbkv	1/1	Running	0	20h
kbstatistics-deploy-6bfc4998f5-g7cbr	1/1	Running	0	5h39m
kbstatistics-deploy-6bfc4998f5-zgklh	1/1	Running	0	5h39m
publicdata-deploy-85f9675fcc-g96m4	1/1	Running	0	15m
publicdata-deploy-85f9675fcc-p2c8d	1/1	Running	0	15m
publicdata-deploy-85f9675fcc-wgkdv	1/1	Running	0	15m

〉〉 Pod의 상태가 Running이 아닌 나머지인 경우,

해당 Pod를 kubectl describe 명령어를 통해 문제 상황 발생 원인을 파악해야 한다.

5-2) Pod 세부 장애 원인 파악

- \$ kubectl describe pod -n bfm-ns-ap [Pod 이름]
- ex) kubectl describe pod -n bfm-ns-ap databatch-deploy-sdadwadw

```
0
10
10=10-140-58-244.ap-northeast-2.compute.internal/10.140.58.244
Wed, 20 Apr 2022 01:59:53 +0000
app-databatch
Node:
Start Time:
abels:
                                p-databaten
m.env-prd
d-template-hash=6dccdbfbb7
betil:kubernetes.io/restartedAt: 2022-04-08T07:08:01Z
bernetes.io/psp: eks.privileged
                           Running
10.140.58.247
tatus:
 Ps:
IP: 10.140.58.247
ontrolled By: ReplicaSet/databatch-deploy-6dccdbfbb7
ontainers:
databatch:
Container ID: docker://dce24a1ee4bb5779998bfc43e
143261427769.dkr.ecr.ap-northeast-
                                        docker://dce24alee4bb5779998bfc43e4f8b90c8e10e0ac38fed7f35d07cee5cf9bc2as
143261427769.dkr.ecr.ap-northeast-2.amazonaws.com/bfm-ecr-databatch:0.1.7
docker-pullable://143261427769.dkr.ecr.ap-northeast-2.amazonaws.com/bfm-ecr-databatch@sha256:69ab526e418c8f9a2e68391fae8c336bb540863762dba2a783df328c329da2c5
80/TCP
0/TCP
      Image:
Image ID:
Port:
Host Port:
State:
Reason:
Last State:
                                        O/TCP
Waiting
CrashLoopBackOff
Terminated
Error
                                        Med, 20 Apr 2022 07:28:28 +0000
Wed, 20 Apr 2022 07:28:48 +0000
False
65
                               su
Variables from:
-bfm-cm ConfigMap Optional: false
: <none>
                   .
data from bfm-efs-ap (rw)
/run/secrets/kubernetes.io/serviceaccount from kube-api-access-9hnfg (ro)
       pe
itialized
             ns-ap:
e: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
donly: false
apri-access-Jhnfg:
                                                          Projected (a volume that contains injected data from multiple sources) 8607 kube-root-ca.crt 4115 curve frue Guaranteed Guaranteed roones node kubernetes.io/not-ready:NoExecute op=Exists for 300s node.kubernetes.io/unreachable:NoExecute op=Exists for 300s test=test:NoExecute
            figMapName:
figMapOptional:
nwardAPI:
                                                                                                                 Message
                                        2m50s (x1418 over 5h32m) kubelet Back-off restarting failed contai
```

〉〉 제일 하단의 Events 부분 확인하기

5-3) Pod log 확인 방법

\$ kubectl logs -n bfm-ns-ap [Pod 이름]

ex) kubectl logs -n bfm-ns-ap databatch-deploy-sdadwadw

6) 쿠버네티스 리소스 수정 방법

Deployment, Service, Configmap, HPA 등 리소스 수정이 필요한 경우,

Bitbucket에서 yaml 파일을 변경한 후 Jenkins에서 ArgoCD용 빌드를 실행하여 수정한다.

- 이미지를 빌드하는 경우가 아닌 다른 이유로

7) 쿠버네티스 Pod 재시작 방법 (=서비스 재시작 방법)

\$ kubectl rollout restart -n bfm-ns-ap deployment [Deployment 이름]

ex) \$ kubectl rollout restart -n bfm-ns-ap deployment avm-deploy

3. ECR 운영

1) AWS console ECR

- 1) AWS Console 검색창에 ECR을 검색한다.
- 2) 검색 결과 중 리포지토리를 클릭한다.

3) 리포지토리명은 bfm-ecr-서비스명이며, 확인하고자 하는 리포지토리를 선택한다.

- 4) 확인하고자 하는 이미지태그를 선택한다.
- 5) 이미지 세부 정보 확인이 가능하다.

2) 배포관리서버에서 AWS 계정 및 ECR 로그인 하는 방법

2-1) AWS 계정 로그인

- aws 계정 로그인

\$aws configure 입력 후 아래의 정보를 입력한다.

AWS Access Key ID: AWS 계정 Credential 파일의 Access Key ID 입력 후 엔터

AWS Secret Access Key: AWS 계정 Credential 파일의 Secret Access Key 입력 후 엔터

Default region name : ap-northeast-2 입력 후 엔터

Default output format : 엔터 입력 후 완료

- 등록된 aws 계정 정보 확인하기
- \$ aws sts get-caller-identity

2-2) ECR 로그인

- * ECR 로그인은 2-1)의 AWS 로그인 후 실행해야 한다.
- DEV: aws ecr get-login-password --region ap-northeast-2 | docker login --username AWS --password-stdin 666763412262.dkr.ecr.region.
- STG: aws ecr get-login-password --region ap-northeast-2 | docker login --username AWS --password-stdin 420335378386.dkr.ecr.region. amazonaws.com
- PRD: aws ecr get-login-password --region ap-northeast-2 | docker login --username AWS --password-stdin 143261427769.dkr.ecr.region. amazonaws.com

4. EFS 운영

1) AWS console EFS

- 1) AWS Console 검색창에 EFS를 검색한다.
- 2) 검색 결과 중 EFS를 클릭한다.

- 3) 좌측 상단의 파일시스템 메뉴를 클릭한다.
- 4) 확인하고자 하는 파일시스템을 클릭한다.

5) 세부 정보를 확인할 수 있다.

- 6) 영구 볼륨인 쿠버네티스 PVC(Persistent Volume Claim)와 파일시스템 연동 시 Access Point가 생성되므로 PVC의 확인을 위해서는 Access Point 메뉴를 클릭한다.
- 7) 확인하고자 하는 Access Point를 클릭한다.

8) 클릭한 Access Point의 세부 정보를 확인할 수 있다.

5. ElastiCache-Redis 운영

1) AWS console Redis

- 1) AWS Console 검색창에 ElastiCache ElastiCach를 검색 후 대시보드 화면.
- 2) Redis를 클릭해 클러스터를 확인한다.

Redis 의 ARN, Endpoint 및 AUTH 여부 확인이 가능하다.

1-1) redis 기본 Endpoint

dev master.kbland-mle-dev-redis.xas5np.apn2.cache.amazonaws.com:6379 kblanddevredis00!

stg master.mle-redis-stg.6ytibn.apn2.cache.amazonaws.com:6379 kblandstgredis00!

prd master.mle-redis-prd.gr9ov0.apn2.cache.amazonaws.com:6379 kblandprdredis00!

각 Redis의 Endpoint와 password는 위와 같으며 AWS Consoled 내 변경 가능하다.

2) Redis CLI 접속

\$openssl_client -connect master.mle-redis-prd.gr9ov0.apn2.cache.amazonaws.com:6379 (각 Endpoint 참고)

이후 CONNECTED 메세지를 출력한다,

Auth kblandprdredis00! 입력

+OK 출력으로 접속이 가능하다.

```
[ec2-user@mle-dpm-o01 ~]$ openss] s_client -connect master.mle-redis-prd.gr9ov0.apn2.cache.amazonaws.com:6379

CONNECTED(00000003)

depth=2 C = US, 0 = Amazon, CN = Amazon Root CA 1

verify return:1

depth=1 C = US, 0 = Amazon, OU = Server CA 1B, CN = Amazon

verify return:1

depth=0 CN = *.mle-redis-prd.gr9ov0.apn2.cache.amazonaws.com

verify return:1

---

Certificate chain

0 s:/CN=*.mle-redis-prd.gr9ov0.apn2.cache.amazonaws.com

i:/C=US/O=Amazon/OU=Server CA 1B/CN=Amazon

1 s:/C=US/O=Amazon/OU=Server CA 1B/CN=Amazon

1 s:/C=US/O=Amazon/OU=Server CA 1B/CN=Amazon

1 s:/C=US/O=Amazon/CN=Amazon Root CA 1

i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./CN=Starfield Services Root Certificate Authority - G2

3 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./CN=Starfield Services Root Certificate Authority - G2

3 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./CN=Starfield Services Root Certificate Authority - G2

---

Server certificate

----BEGIN CERTIFICATE----

MIIEIDCCA3ygAwIBAgIQBSXWk4QvkbueLAaSpaMnxjANBgkqhkiG9w0BAQsFADBG
MQSwCQYDVQQGEWJVIZEPMAQGAIJechMGQwIhem9uMRUwEwYDVQQLEwxTZXJZZXIG
QOEgMUIXDZANBBNVBAMTBKFTYXpvbjAeFw0yMjAzMzewMDAMNDBaFw0yMzA0Mjky
```

```
SSL-Session:
    Protocol : TLSv1.2
    Cipher : ECDHE-RSA-AES128-GCM-SHA256
    Session-ID: 6108999868F2E22A7B8FFCAAD7C1A01D2050BCBC3D269B5C76DCBFEA3B44FCAF
    Session-ID-ctx:
    Master-Key: 3C1C4CE70F8A1ED0B39A1611A6AEAF4D0AA3255475191030F811510A42E409C7904323118586A89
    Key-Arg : None
    Krb5 Principal: None
    PSK identity: None
    PSK identity int: None
    Start Time: 1650592922
    Timeout : 300 (sec)
    Verify return code: 0 (ok)
---
Auth kblandprdredis00!
+0K
```

6. EFK 운영

1) EFK Architecture

EFK


```
    deamonset fluent-bit Log .
    Cloudwatch Log group Lambda Log stream.
    AWS Elasticsearch Log .
```

2) 배포관리 서버 FR/AP 클러스터 배포 확인

```
[ec2-user@mle-dpm-o01 ~]$ kubectl config current-context
bfmadm@mle-ekcl-prd-fr.ap-northeast-2.eksctl.io
[ec2-user@mle-dpm-o01 ~]$ kubectl get pods -n bfm-ns-fr
                                                                       READY
                                                                                      STATUS
                                                                                                        RESTARTS
                                                                                                                             AGE
9d
8d
52m
52m
70m
                                                                                      Running
Running
                                                                                                        0
                                                                                                        00000
                                                                                      Running
Running
                                                                                      Running
                                                                                      Running
                                                                                                                             70m
                                                                                                                              AGE
9d
9d
                                                                                                                                         VERSION
v1.21.5-eks-9017834
v1.21.5-eks-9017834
NAME
                                                                                             STATUS
                                                                                                              ROLES
ip-10-140-57-207.ap-northeast-2.compute.internal Ready ip-10-140-57-58.ap-northeast-2.compute.internal Ready [ec2-user@mle-dpm-o01 ~]$ kubectl get pods -n mle-cloudwatch
                                                                                                              <none>
                                                                                                              <none>
                                                                                                   AGE
9d
NAME
                                                            Running
Running
cloudwatch-agent-dkm5g
                                              1/1
                                                                               0
cloudwatch-agent-phgxc
fluent-bit-226j7
fluent-bit-sngfl
                                                                               0
                                                                                                   9d
                                                             Running
                                                                               0
                                                                                                   9d
                                                            Running
                                                                                                   9d
[ec2-user@mle-dpm-o01 ~]$ kubectl config use-context bfmadm@mle-ekcl-prd-ap.ap-northeast-2.eksctl.io switched to context "bfmadm@mle-ekcl-prd-ap.ap-northeast-2.eksctl.io".
 [ec2-user@mle-dpm-o01 ~]$ kubectl get nodes
                                                                                             STATUS
                                                                                                                                         VERSION
 ip-10-140-58-244.ap-northeast-2.compute.internal Ready ip-10-140-59-102.ap-northeast-2.compute.internal Ready ip-10-140-59-73.ap-northeast-2.compute.internal Ready [ec2-user@mle-dpm-o01 ~]$ kubectl get pods -n mle-cloudwatch NAME READY STATUS RESTARTS AGE
                                                                                                                                         v1.21.5-eks-9017834
v1.21.5-eks-9017834
v1.21.5-eks-9017834
                                                                                                                               9d
                                                                                                              <none>
                                                                                                               <none>
                                                                                                                               9d
                                                                                                              <none>
                                                                                                                               8d
                                                            Running
                                                                                                   9d
cloudwatch-agent-rbp2k
                                              1/1
                                                            Running
cloudwatch-agent-s62c9
                                                                                                   8d
                                                            Running
cloudwatch-agent-tvsb8
                                              1/1
                                                                               Ō
                                                                                                   9d
                                                            Running
Running
 luent-bit-9cgd2
luent-bit-ntmpb
                                                                               0
                                              1/1
                                                                                                   8d
                                                                               ō
                                                                                                   9d
                                                /1
fluent-bit-wf4kz
                                                             Running
                                                                               0
                                                                                                   9d
```

3) AWS console EFK

3-1) Opensearch

1)Opensearch(구 Elasticsearch) Service에서 생성된 도메인 확인이 가능하다. 도메인 ARN, Endpoint 및 kibana URL을 활용하여 API 및 AWS 기타 서비스 연동 작업 을 수행한다.

클러스터 Elastic Domain URL 및 Endpoint

- -DEV: <a href="https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/_plugin/kibana/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvhh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4pgip6ho7cd7i.ap-northeast-2.es.amazonaws.com/https://search-dev-data-qo3dtqwxndvh4p
- -STG: https://search-stg-data-3bfrecfhtgmppxbfffxa6ncu3i.ap-northeast-2.es.amazonaws.com/_plugin/kibana/https://search-stg-data-3bfrecfhtgmppxbfffxa6ncu3i.ap-northeast-2.es.amazonaws.com/
- -PRD: https://search-prd-data-cdf434xchkc4l6n72dkid227qq.ap-northeast-2.es.amazonaws.com/_plugin/kibana/https://search-prd-data-cdf434xchkc4l6n72dkid227qq.ap-northeast-2.es.amazonaws.com

2) EFK 클러스터의 기본 노드 수는 AZ 마다 1개이다.

샤드수가 기본 노드에 1000개 이상이 넘고 스토리지 용량이 부족할 시, 장애 방지를 위해 UltraWarm 및 Cold Storage를 활성화한다.

차후 용량 부족 시 노드 인스턴스 타입, 개수 및 볼륨 크기 등을 편집한다.

3) 인덱스 탭에서 fluent-bit 에서 Cloudwatch로 보내는 Indices 확인 가능하다.

3-2) Cloudwatch

1) Cloudwatch〉 Log group 경로에서 fluent-bit.yaml 파일 설정 값과 같이 클러스터 이름을 반영한 Log group 생성을 확인한다.

추가적 정보와 다른 Log group 생성은 yaml 파일을 수정한다.

/aws/containerinsights/mle-ekcl-\${cluster_name}/* Log stream 확인한다.

2) 구독 필터 탭에서 Elasticsearch로 Log stream을 한다. AP와 FR의 Log를 각 application, host 및 dataplane으로 분류한다. 각 Log group은 다음과 같은 정보를 포함 한다.

-/aws/containerinsights/mle-ekcl-\${cluster_name}/application: /var/log/containers의 모든 Log 파일

-/aws/containerinsights/mle-ekcl-\${cluster_name}/host: /var/log/dmesg, /var/log/secure 및 /var/log/messages의 Log

-/aws/containerinsights/mle-ekcl-\${cluster_name}/dataplane: /var/log/journal, kubelet.service 및 kubeproxy.service에 대한 docker.service의 Log

3) 구독 필터 생성〉 Amazon Opensearch Service 구독 필터 생성: Log group 마다 최대 2개를 생성 할 수 있다.

4) Log stream 대상을 현재 계정의 Elasticsearch 혹은 다른 계정의 ARN을 통해 선택한다. 구독 필터 패턴은 Lambda 함수 Log 형식을 활용한다.

3-3) Lambda

1) Lambda 〉 LogToElasticsearch_prd_data 함수 개요에서 연동된 트리거 및 코드 확인이 가능하다.

복수의 Log group이 한 Elasticsearch Domain에 오류 없이 Join하도록 수정하였다.

Indice 형식을 'cwl'로 시작하지 않도록 수정할 수 있으며, 수정 후 Index pattern 값을 다르게 반영된다.

2) Lambda 함수에 Log stream 구독 필터가 트리거로 연결되어있다. 트리거 추가시 다른 리소스의 Log stream 추가 가능하다.

4) AWS Elasticsearch Kibana

- 1) 접속 정보 bfmadm/Kbland00! (모든 클러스터 도메인 동일 적용)
- 2) 모든 클러스터의 Kibana UI 작업은 private tenant에서 작업한다.

4-1) 초반 환경 설정

- 1) Kibana Security〉 Roles〉 all_access 매핑한다. Elasticsearch 액세스를 Public 설정으로 하여 master사용자를 생성하였기 때문에 아래와 같이 Backend role은 Lambda를 수행하는 role ARN을 추가한다.
- 또한, 클러스터 상태를 Elasticsearch Domain Console 환경에서 확인하도록 User에 bfmadm ARN을 추가하였다.

2) Stack management〉Index pattern 〉 Create〉 설정한 Pattern 입력〉 Next step〉 Timestamp 적용

4-2) Filtering 및 Dashboard

1) Discover 메뉴 Add filter에서 원하는 로그 검색 조건을 적용한다. Save로 조건을 저장한다.

2) Visualize에서 위와 같이 그래픽을 만든다. Save로 저장한다.

3) Dashboard에서 저장했던 그래프를 add 할 수 있으며, 원하는 조건의 filter를 적용하여 그래프를 볼 수 있다.

4) Stackmanagement〉 Saved Objects 에서 저장한 Visualize, Filter 및 Dashboard 확인 가능하다.

4-3) ISM Policy

1) Index management > State management

샤드 수 증가, 저장 공간 부족 및 비용 효율성을 목적으로 ISM policy를 사용한다.

indices를 Warm/Cold storage로 옮기거나 delete하여 저장 공간을 유지하여 Elasticsearch 서버 다운을 방지한다.

2) Hot storage (45days) \rangle Warm storage(90days) \rangle Cold storage(1095days) \rangle delete 설정하였다.

문제 발생시 기간 수정이 가능하며, 주기적으로 indices에 Dev tools에서 아래와 같이 ISM policy를 적용한다.

