Budget Energético

Sistema 12 V con Batería LiFePO₄, Panel Solar y Cargas (Orange Pi, Cámara USB, LoRa, Sirena y Estrobo)

Diego Giron

17 de septiembre de 2025

1. Supuestos clave

- 1. Banco 12 V LiFePO_4 nominal 12.80 V.
- 2. Conversión a 5.00 V mediante buck con $\eta \approx 90.00 \%$.
- 3. Cargas a 5 V: Orange Pi Zero 3, cámara USB, módulo USB LoRa. Cargas a 12 V: sirena y estrobo LED.

2. Inventario de cargas (resumen)

Rail 5 V (vía buck desde 12 V)

Carga	V	I (típico)	P	Notas
Orange Pi Zero 3	5		$\sim 3.00\mathrm{W}$	Conservador.
Cámara USB	5	$\sim 0.20\mathrm{A}$	$\sim 1.00\mathrm{W}$	UVC típica.
Módulo USB LoRa	5	$\sim 0.05\mathrm{A}$	$\sim 0.25\mathrm{W}$	Picos TX mayores.
Subtotal 5 V			$4.25\mathrm{W}$	

Equivalente a 12 V (entrada buck): $P_{in,12V} = \frac{4.25}{0.90} \approx 4.72 \,\mathrm{W}.$

Rail 12 V (directo a batería)

Carga	\mathbf{V}	I (típico)	P	Notas
Sirena 12 V	12	$\sim 0.15\mathrm{A}$	$\sim 1.80\mathrm{W}$	100–120 dB.
Estrobo LED	12	$\sim 0.60\mathrm{A}$	$\sim 7.20\mathrm{W}$	Nominal.
Subtotal $12\mathrm{V}$			$9.00\mathrm{W}$	

3. Cálculo Típico (único)

$$P_{\text{total}} = 4.72 \,\text{W} + 9.00 \,\text{W} \approx 13.72 \,\text{W}, \quad E_{6h} = P_{\text{total}} \cdot 6.00 \,\text{h} \approx 82.32 \,\text{Wh}.$$

$$E_d' = E_{6h} \times 1.25 \approx 102.90 \,\text{Wh (margen)}.$$

4. Dimensionamiento y selección

Batería

Capacidad requerida (con DoD $\sim 80.00\,\%$): $\approx 10.00\,\mathrm{Ah}$. Selección final (pedida): LiFePO₄ 12.8 V 20 Ah para holgura y vida útil.

Panel solar

Potencia mínima calculada: $\approx 27.44 \,\mathrm{W}$ (HSP ~ 5 , eficiencia global $\sim 75.00 \,\%$). Selección final (pedida): Panel 12 V 100 W (amplio margen).

Regulación, protección y cableado

- Controlador de carga (económico): PWM 10 A compatible con LiFePO₄.
- Buck $12\rightarrow 5$ V ≥ 5.00 A para OPI + cámara + LoRa.
- Fusibles (orientativos): principal batería 20.00–30.00 A; rama buck 5.00–10.00 A; sirena 5.00–10.00 A; estrobo 10.00–15.00 A.
- Cableado: AWG16 ($\leq 6.00 \, \text{A}$, tramos cortos) o AWG14 si hay distancia.

5. Esquema de conexión (texto)

- 1. Panel \rightarrow Controlador PWM \rightarrow Batería LiFePO₄ 12.8 V.
- 2. Desde batería (vía bloque de fusibles):
 - Ramas 12.00 V: Sirena y Estrobo (con interruptores/fusibles propios).
 - Rama $12.00\,\mathrm{V} \to \mathrm{Buck}\ 5.00\,\mathrm{V} \to \mathrm{Orange}\ \mathrm{Pi} + \mathrm{C\'amara}\ \mathrm{USB} + \mathrm{USB}\ \mathrm{LoRa}.$

Componentes seleccionados (compra)

- Batería LiFePO₄ 12 V 20.00 Ah: ExpertPower 20Ah.
- Panel solar 12 V 100.00 W: Renogy 100W.
- Controlador (económico): Renogy Wanderer 10A PWM Li; alternativa: BougeRV Li 10A PWM.
- Buck DC-DC 12 \rightarrow 5 V \geq 5.00 A: Ej. DROK / similar.