Résumé 06 : Analyse de MPS1

 \mathbb{K} sera le corps \mathbb{R} ou \mathbb{C} .

I LA DÉRIVATION

Par défaut, les fonctions considérées seront définies sur un intervalle I à valeurs dans \mathbb{K} .

- Définition de la dérivée, de la dérivée à droite et à gauche. Lien avec les développements limités d'ordre 1. Les sous-espaces vectoriels $\mathscr{D}^1(I,E),\mathscr{C}^1(I,E)$. Exemple de la fonction $x\mapsto x^2\sin\frac{1}{x}$.
- Fonction dérivée d'une combinaison linéaire, d'une composée, d'un produit ou d'un rapport de fonctions dérivables.
- Dérivées n-ièmes. Formule de Leibnitz.
- Classe des fonctions \mathscr{C}^p par morceaux sur I.
- ullet Difféomorphismes : définition. CNS pour que f soit un difféomorphisme.

II Intégrale sur un segment d'une fonction \mathscr{C}_m^0

- Propriétés de l'intégrale : linéarité, inégalité de la moyenne, relation de Chasles, positivité.
- Sommes de Riemann.
- Théorème fondamental d'analyse (i.e intégrale fonction de sa borne supérieure).
- Intégration par parties.
- Théorème de changement de variables.
- Accroissements finis : égalité dans le cas où $\mathbb{K}=\mathbb{R}$ et inégalité dans le cas général.
- Théorème de la limite de la dérivée, et des limites des dérivées.
- Formules de Taylor-Young, de Taylor avec reste intégral, et de Taylor-Lagrange.

ANNEXE

A EXERCICES IMPOSÉS

EXERCICES:

Banque CCP analyse 56

On considère la fonction H définie sur $]1;+\infty[$ par $H(x)=\int_x^{x^2}\frac{dt}{\ln t}.$

- 1. Montrer que H est C^1 sur $]1; +\infty[$ et calculer sa dérivée.
- 2. Montrer que la fonction u définie par $u(x)=\frac{1}{\ln x}-\frac{1}{x-1}$ admet une limite finie en x=1.
- 3. En utilisant la fonction u de la question 2., calculer la limite en 1^+ de la fonction H.

EXERCICES:

Banque CCP - Analyse 3

1. On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$.

Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définitions respectifs.

2. On pose $f(x) = \frac{e^{2x}}{1+x}$.

En utilisant la formule de Leibniz, concernant la dérivée $n^{\text{ème}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et pour $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

EXERCICES:

Banque CCP Analyse 43 Soit $x_0 \in \mathbb{R}$.

On définit la suite (u_n) par $u_0=x_0$ et, $\forall n\in\mathbb{N}$, $u_{n+1}=\operatorname{Arctan}(u_n)$.

- 1. (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
 - (b) Montrer que (u_n) converge et déterminer sa limite.
- 2. Déterminer l'ensemble des fonctions h continues sur $\mathbb R$ telles que : $\forall x \in \mathbb R$, $h(x) = h(\operatorname{Arctan} x)$.

EXERCICES:

Banque CCP Analyse 47

- 1. Soit f une fonction continue sur [0, 1].
 - (a) Soit $n\in\mathbb{N}^*$. Quel est le sens géométrique de la somme de Riemann $R_n\left(f\right)=\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right)?$

Illustrer par un dessin soigné.

(b) Démontrer, lorsque f est de classe \mathcal{C}^{1} sur [0,1], que $\lim_{n\to +\infty}R_{n}\left(f\right) =$

$$\int_0^1 f(x) \, dx.$$

2. Déterminer la limite de la suite (x_n) définie par $x_n = \sum_{k=1}^n \frac{n}{3n^2 + k^2}$.

Exercices:

Banque CCP Analyse 4

- 1. Énoncer le théorème des accroissements finis.
- 2. Soit $f:[a;b] \longrightarrow \mathbb{R}$ et soit $x_0 \in]a,b[$. On suppose que f est continue sur [a;b] et que f est dérivable sur $]a;x_0[$ et sur $]x_0;b[$
 - Démontrer que, si f' admet une limite en x_0 , alors f est dérivable en x_0 et $f'(x_0) = \lim_{x \to x_0} f'(x)$.
- 3. Prouver que l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse.
 - **Indication**: on pourra considérer la fonction g définie par : $g(x) = x^2 \sin \frac{1}{x}$ si $x \neq 0$ et g(0) = 0.