武汉大学 2015-2016 学年第一学期期末考试

高等数学 B1(A卷答题卡)

									考	生	. 当	<u> </u>	号				
	1.	姓名		班级		-			-				-				
		XI-1-1			[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
L				C ()	[[]]	[1]	.[1]	[1]	[1]	[13	[1]	E,1,3	[1]	CIJ	T13	[1]	[1]
				1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
				考号信息点。	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
	· '	正确填涂	注	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]
	余		意	作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]
		错误填涂	事	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]
1	列	[•][•]	项	写的答题无效:在草稿纸、试题卷上答题无效。	[7]	[7]	[7]	[-7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]
				4.保持卡面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
L					[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]
1																	-

一、(7分) 若
$$f(x)$$
 在点 $x = 1$ 可导,且 $f'(1) = 1$,计算 $\lim_{x \to 1} \frac{f(x) - f(1)}{x^{2015} - 1}$.

二、(7分)设
$$a_1, a_2, ..., a_m$$
为正数 $(m \ge 2)$,求 $\lim_{n \to \infty} (a_1^n + a_2^n + \cdots + a_m^n)^{\frac{1}{n}}$.

$$=$$
、(7分) 求不定积分 $\int \frac{\arctan x}{x^2} dx$.

四、 $(7 \, f)$ 设函数 y = y(x) 是由方程 $x^2 + y^2 - ye^{xy} = 2$ 所确定的隐函数, 求曲线 y = y(x) 在点(0,2) 处的切线方程.

五、(7分)设
$$a > 0$$
,计算定积分 $\int_{-a}^{a} \sqrt{a^2 - x^2} \ln \frac{x + \sqrt{x^2 + 1}}{3} dx$.

六、(7分) 设
$$f(x) = \begin{cases} x^2, & 0 \le x < 1 \\ x, & 1 \le x < 2, \quad \bar{x} \Phi(x) = \int_0^x f(t) dt \, \bar{x} (-\infty, +\infty) \, \bar{y} \, \bar{y}$$

七、(8分) 设函数
$$y = y(x)$$
 由方程 $xe^{f(y)} = Ce^y$ 确定,其中 C 是非零常数, f 具有二阶导数,且 $f'(y) \neq 1$,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

八、(7分) 设
$$f(x) = \begin{cases} 6, & x \le 0 \\ \frac{e^{ax^3} - 1}{x - \arcsin x}, & x > 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a 的值。

九、(9分) 求初值问题 。	$\int y'' + y = x^2 + \sin x$	的解。
	y(0) = 1, y'(0) = -1	H 3 /01 6

十二、(11 分) 求函数 $f(x) = \frac{(x-3)^2}{4(x-1)}$ 的单调区间,极值与凹凸区间。

十、(95) 求抛物线 $y^2 = 4x$ 与 $y^2 = 8x - 4$ 所围图形的面积以及该图形绕 x 轴旋转一周所得旋转体体积。

十三、(6 分) 设 f(x) 在区间[-1,1] 上连续,且 $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} f(x) dx = 0$,证明:在区间(-1,1) 内至少存在互异的两点 ξ_1 , ξ_2 ,使 $f(\xi_1) = f(\xi_2) = 0$.

武汉大学 2015-2016 第一学期高等数学 B1 期末试题 A 卷解答

一、(7分) 若
$$f(x)$$
 在点 $x = 1$ 可导,且 $f'(1) = 1$,计算 $\lim_{x \to 1} \frac{f(x) - f(1)}{x^{2015} - 1}$

解
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x^{2015} - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{(x - 1)(x^{2014} + x^{2013} + \dots + x + 1)} = \frac{1}{2015}$$
 7分

二、(7分)设
$$a_1, a_2, ..., a_m$$
为正数 $(m \ge 2)$,求 $\lim_{n \to \infty} (a_1^n + a_2^n + \cdots + a_m^n)^{\frac{1}{n}}$ 。

解: 不妨设 $a_1 = \max\{a_1, ..., a_m\}$,则

$$\lim_{n\to\infty} (a_1^n + a_2^n + \cdots + a_m^n)^{\frac{1}{n}} = a_1 \lim_{n\to\infty} (1 + \frac{a_2^n}{a_1^n} + \cdots + \frac{a_m^n}{a_1^n})^{\frac{1}{n}} = a_1 = \max\{a_1, \dots, a_m\}$$
 7 分

或者用夹逼原理 $a_1 \leq (a_1^n + a_2^n + \cdots + a_m^n)^{\frac{1}{n}} \leq a_1 m^{\frac{1}{n}}$,两边令 $n \to \infty$ 即得极限为 $\max\{a_1, \ldots, a_m\}$

三、(7分) 求不定积分
$$\int \frac{\arctan x}{x^2} dx$$
.

解、
$$\int \frac{\arctan x}{x^2} dx = \int \arctan x d(-\frac{1}{x}) = -\frac{1}{x} \arctan x + \int \frac{dx}{x(1+x^2)}$$
 (4分)

$$= -\frac{1}{x}\arctan x + \int \frac{dx}{x} - \int \frac{xdx}{1+x^2} = -\frac{1}{x}\arctan x + \ln|x| - \frac{1}{2}\ln(1+x^2) + C$$
 (3 分)

四、 $(7 \, f)$ 设函数 y = y(x) 是由方程 $x^2 + y^2 - ye^{xy} = 2$ 所确定的隐函数, 求曲线 y = y(x) 在点 (0,2) 处的切线方程.

解
$$2x + 2yy' - y'e^{xy} - ye^{xy}(y + xy') = 0$$
 将点 $(0, 2)$ 代入得 $y'(0) = \frac{4}{3}$ $y = \frac{4}{3}x + 2$ (或 $4x - 3y + 6 = 0$) 名分

五、(7分)设
$$a > 0$$
,计算定积分 $\int_{-a}^{a} \sqrt{a^2 - x^2} \ln \frac{x + \sqrt{x^2 + 1}}{3} dx$

解: 原式=
$$\int_{-a}^{a} \sqrt{a^2 - x^2} \ln(x + \sqrt{x^2 + 1}) dx - \int_{-a}^{a} \sqrt{a^2 - x^2} \ln 3 dx$$
,由于 $\ln(x + \sqrt{x^2 + 1})$ 是奇

函数,
$$\int_{-a}^{a} \sqrt{a^2 - x^2} dx = \frac{\pi}{2} a^2$$
 (定积分的几何意义),4 分

所以原式=
$$-\int_{-a}^{a} \sqrt{a^2 - x^2} \ln 3 dx = -\frac{\pi}{2} a^2 \ln 3$$
 3分

六、(7分)设
$$f(x) = \begin{cases} x^2, & 0 \le x < 1 \\ x, & 1 \le x < 2, \quad \ \ \, x \oplus (x) = \int_0^x f(t)dt \, \text{在}(-\infty, +\infty) \, \text{内的表达式}. \\ 0, & \text{other} \end{cases}$$

解
$$\Phi(x) = \int_0^x f(t)dt = \begin{cases} 0, & x < 0 \\ \frac{1}{3}x^3, & 0 \le x < 1 \end{cases}$$
 $f(x) = \int_0^x f(t)dt = \begin{cases} \frac{1}{2}x^2 + \frac{1}{3}, & 1 \le x < 2 \\ \frac{11}{6} & x \ge 2 \end{cases}$ 七、(7分) 设函数 $y = y(x)$ 由方程 $xe^{f(y)} = Ce^y$ 确定,其中 C 是非零常数, f 具有二层

七、(7分) 设函数 y = y(x) 由方程 $xe^{f(y)} = Ce^y$ 确定,其中 C 是非零常数, f 具有二阶导 数,且 $f'(y) \neq 1$,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ 。

解
$$y-f(y) = \ln \frac{x}{C}$$
, $y'-f'(y)y' = \frac{1}{x}$, $y' = \frac{1}{x[1-f'(y)]}$, $y''-f''(y)y'^2-f'(y)y'' = -\frac{1}{x^2}$, 4%

$$y'' = \frac{1}{1-f'(y)}[f''(y)y'^2-\frac{1}{x^2}] = \frac{f''(y)-[1-f'(y)]^2}{x^2[1-f'(y)]^3}$$
 3 分

八、(7分) 设 $f(x) = \begin{cases} 6, & x \le 0 \\ \frac{e^{ax^3} - 1}{x^3}, & x > 0 \end{cases}$ 在 x = 0 处连续,求 a 的值。

$$= \lim_{t \to 0^+} \frac{at^3}{\sin t - t} = -6a = \lim_{x \to 0^-} f(x) = 6 \qquad \text{figure a} = -1. \qquad 3 \text{ figure } f(x) = 6$$

$$= \lim_{t \to 0^{+}} \frac{at^{3}}{\sin t - t} = -6a = \lim_{x \to 0^{-}} f(x) = 6 \qquad \text{所以} \ a = -1.$$
九、(9分) 求初值问题
$$\begin{cases} y'' + y = x^{2} + \sin x \\ y(0) = 1, \ y'(0) = -1 \end{cases}$$
 的解。

对应的齐次方程的通解为 $\overline{y} = C_1 \cos x + C_2 \sin x$

非齐次方程 $y'' + y = x^2$ 的一个特解为 $y_1 = x^2 - 2$, 非齐次方程 $y'' + y = \sin x$ 的一个特解

为
$$y_2 = -\frac{x}{2}\cos x$$
, 6 分

原方程的通解为 $y = C_1 \cos x + C_2 \sin x + x^2 - 2 - \frac{x}{2} \cos x$, 利用初值条件可求得 $C_1 = 3$, $C_2 = -\frac{1}{2}$,

原问题的解为
$$y = 3\cos x - \frac{1}{2}\sin x + x^2 - 2 - \frac{x}{2}\cos x$$
 3 分

十、(9分) 求抛物线 $y^2 = 4x$ 与 $y^2 = 8x - 4$ 所围图形的面积以及该图形绕 x 轴旋转一周所 得旋转体体积。

解:图略

$$A = 2\int_0^2 \left(\frac{y^2 + 4}{8} - \frac{y^2}{4}\right) dy = \frac{4}{3}$$

$$V = \pi \int_0^1 4x dx - \pi \int_{\frac{1}{2}}^1 (8x - 4) dx = \pi \left[2x^2 \right]_0^1 - \pi \left[4x^2 - 4x \right]_{\frac{1}{2}}^1 = \pi \quad 5 \text{ }$$

十一、(8分) 判别反常积分 $\int_{1}^{+\infty} \frac{\cos x}{x\sqrt{x^3+1}} dx$ 的敛散性。

$$mathbb{R} \forall x \in (1, +\infty)$$
,有 $\left| \frac{\cos x}{x\sqrt{x^3 + 1}} \right| \leq \frac{1}{x\sqrt{x^3 + 1}}$, 4分

而
$$\lim_{x \to +\infty} x^{\frac{5}{2}} \cdot \frac{1}{x\sqrt{x^3 + 1}} = \lim_{x \to +\infty} \sqrt{\frac{x^3}{x^3 + 1}} = 1$$
 , $p = \frac{5}{2} > 1$, 故 $\int_{1}^{+\infty} \left| \frac{1}{x\sqrt{x^3 + 1}} \right| dx$ 收敛,从而

$$\int_{1}^{+\infty} \frac{\cos x}{x\sqrt{x^3+1}} dx 也收敛.$$

十二、(11 分) 求函数 $y = \frac{(x-3)^2}{4(x-1)}$ 的单调区间,极值,凹凸区间及拐点。

解:
$$y = \frac{(x-3)^2}{4(x-1)} = \frac{[(x-1)+(-2)]^2}{4(x-1)} = \frac{(x-1)}{4} - 1 + \frac{1}{x-1}, y' = \frac{(x-3)(x+1)}{4(x-1)^2},$$

$$y'' = \frac{2}{(x-1)^3},$$
3 分

列表如下:

x	$(-\infty, -1)$	-1	(-1,1)	1	(1,3)	3	(3,+∞)
<i>y</i> '	+	0	_	无定义		0	+
<i>y</i> "	-	_	_	,	+	+	+
У	7	-2	7		7	0	7

5 分

 $(-\infty,-1)$, $(3,+\infty)$ 单调增区间,(-1,1),(1,3) 单调减区间,f(-1)=-2 极大值,f(3)=0 极小值, $(1,+\infty)$ 凸区间, $(-\infty,1)$ 凹区间。 3 分

十三、(6 分) 设 f(x) 在区间 [-1,1] 上连续,且 $\int_{-1}^{1} f(x) dx = \int_{-1}^{1} f(x) tan x dx = 0$,证明 在区间 (-1,1) 内至少存在互异的两点 ξ_1, ξ_2 ,使 $f(\xi_1) = f(\xi_2) = 0$.

证:记 $F(x) = \int_{-1}^{x} f(t) dt$,则 F(x)在 [-1,1]上可导,且 F(-1) = F(1) = 0,若 F(x)在 [-1,1]内无零点,不妨设 F(x) > 0, $x \in (-1,1)$, $0 = \int_{-1}^{1} f(x) \tan x dx = \int_{-1}^{1} \tan x dF(x)$

 $=F(x)\tan x\Big|_{-1}^{1}-\int_{-1}^{1}F(x)\sec^{2}xdx=-\int_{-1}^{1}F(x)\sec^{2}xdx<0$,此矛盾说明 F(x)在 (-1,1)内至少存在一个零点 x_{0} ,对 F(x)在 $[-1,x_{0}]$, $[x_{0},1]$ 上分别使用 Rolle 定理知存在 $\xi_{1}\in(-1,x_{0})$, $\xi_{2}\in(x_{0},1)$,使得 $F'(\xi_{1})=F'(\xi_{2})=0$,即 $f(\xi_{1})=f(\xi_{2})=0$ 6分