Complexity and Advanced Algorithms

Module 2

Parallel Computing

Why Parallel Computing?

- Save time, resources, memory, ...
- Who is using it?
 - Academia
 - Industry
 - Government
 - Individuals?
- Two practical motivations:
 - Application requirements
 - Architectural concerns.
- Why now?
 - Most computers including laptops are multi-core!
 - Need to therefore study how to use parallel computers.

1. Application Requirements

- Several applications are pushing the limits with huge compute requirements:
 - Deep learning
 - Image/Video/Text search, retrieval, and indexing
 - Digital effects/computer graphics/animation
 - Materials/Life Sciences/Drug design/...
 - Social computing/web/...

2. Architectural Advances

 Moore's Law: The number of transistors that can be inexpensively placed on an integrated circuit is increasing exponentially, doubling approximately every two years.

On the Other Hand...

- Present Difficulties
 - Memory Wall
 - Power Wall
 - ILP Wall

The Brick Wall - 1

Memory Wall

- Memory latency up to 200 cycles per load/store.
- Floating point operations take no more than 4 cycles.
- Earlier, it was thought that "multiply is slow but load and store is fast".

The Brick Wall - 2

Power Wall

- Enormous increase in power consumption.
- Power leakage.
- However, presently "Power is expensive but transistors are free".

Basic Architecture Concepts

- CPU Architecture
 - 4 stages of instruction execution
 - Too many cycles per instruction (CPI)
 - To reduce the CPI, introduce pipelined execution
 - Needs buffers to store results across stages.
 - A cache to handle slow memory access times

Basic Architecture Concepts

- 4 stages of instruction execution
 - Too many cycles per instruction (CPI)
- To reduce the CPI, introduce pipelined execution
 - Needs buffers to store results across stages.
 - A cache to handle slow memory access times
 - · Caches, out-of-order execution, branch prediction, ...

The Brick Wall - 3

ILP Wall

- ILP via branch prediction, out-of-order and speculative execution
- Diminishing returns from instruction level parallelism.

Conventional Wisdom in Computer Architecture

- Power Wall + Memory Wall + ILP Wall = Brick Wall
- Old CW: Uniprocessor performance 2X / 1.5 yrs
- New CW: Uniprocessor performance only 2X / 5 yrs?

Multicores to the Rescue

- Predicted that 100+ core computers would be a reality soon.
- Increased number of cores without significant improvement in clock rates.
 - —Due to silicon technology improvements
- Big questions
 - —How to exploit these cores in parallel?
 - —What are the killer applications that can democratize these new models?
 - Search, web, ???

The Academic Interest

- Algorithmics and compelxity
 - How to design parallel algorithms?
 - What are good theoretical models for parallel computing?
 - How to analyze parallel algorithms?
 - Can every sequential algorithm be parallelized?
 - What are some complexity classes wrt parallel computing?

The Academic Interest

- Systems and Programming
 - How to write parallel programs?
 - What are some tools and environments.
 - How to convert algorithms to efficient implementations.
 - What are the differences to sequential programming?
 - What are the performance measures?
 - Can sequential programs be automatically converted to parallel programs?

The Academic Interest

- Architectures
 - What are standard architectural designs?
 - What new issues are raised due to multiple cores?
 - Downstream concerns
 - Does a programmer have to worry about this?
 - How to support the systems software as architecture changes?

The Course Coverage

- Focus on algorithms and complexity
- Models for parallel algorithms
- Algorithm design methodologies with application
 - Semi-numerical
 - Lists
 - Trees and graphs
- Some parallel programming practice
- Complexity, characterization, and connection to sequential complexity classes.

The PRAM Model

An extension of the von Neumann model.

The PRAM Model

- A set of n identical processors
- A common access shared memory
- Synchronous time steps
- Access to the shared memory costs the same as a unit of computation.
- Different models to provide semantics for concurrent access to the shared memory
 - EREW, CREW, CRCW(Common, Aribitrary, Priority, ...)

The Semantics

- In all cases, it is the programmer to ensure that his program meets the required semantics.
- EREW: Exclusive Read, Exclusive Write
 - No scope for memory contention.
 - Usually the weakest model, and hence algorithm design is tough.
- CREW: Concurrent Read, Exclusive Write
 - Allow processors to read simultaneously from the same memory location at the same instant.
 - Can be made practically feasible with additional hardware

The Semantics

- CRCW: Concurrent Read, Concurrent Write
 - Allow processors to read/write simultaneously from/to the same memory location at the same instant.
 - Requires further specification of semantics for concurrent write. Popular variants include
 - COMMON: Concurrent write is allowed so long as the all the values being attempted are equal. Example: Consider finding the Boolean OR of n bits.
 - ARBITRARY: In case of a concurrent write, it is guaranteed that some processor succeeds and its write takes effect.
 - PRIORITY: Assumes that processors have numbers that can be used to decide which write succeeds.

PRAM Model – Advantages and Drawbacks

Advantages

- A simple model for algorithm design
- Hides architectural details for the designer.
- A good starting point

Disadvantages

- Ignores architectural features such as:
 - memory bandwidth,
 - communication cost and latency,
 - scheduling, ...
- Hardware may be difficult to realize

Example 1 – Matrix Multiplication

- One of the fundamental parallel processing tasks.
- Applications to several important problems in linear algebra, signal processing and optimization.
- Several techniques that work in parallel also.

Example I – Matrix Multiplication

- Recall that in C = A x B, C[i,j] = Σ A[i,k].B[k,j].
- Consider the following recursive approach:
 - -Works well in practice.

Example I – Matrix Multiplication

Other approaches include Cannon's algorithm

- Can overlap computation with communication.
- Works well when the number of processors is more.

Example 2 – New Parallel Algorithm

```
Listing 1:

S(1) = A(1)

for i = 2 to n do

S(i) = S(i-1) o A(i)
```

- Prefix Computations: Given an array A of n elements and an associative operation o, compute A(1) o A(2) o ... A(i) for each i.
- A very simple sequential algorithm exists for this problem.

Parallel Prefix Computation

- The sequential algorithm in Listing 1 is not efficient in parallel.
- Need a new algorithm approach.
 - Balanced Binary Tree

Balanced Binary Tree

- An algorithm design approach for parallel algorithms
- Many problems can be solved with this design technique.
- Easily amenable to parallelization and analysis.

Balanced Binary Tree

- A complete binary tree with processors at each internal node.
- Input is at the leaf nodes
- Define operations to be executed at the internal nodes.
 - Inputs for this operation at a node are the values at the children of this node.
- Computation as a tree traversal from leaf to root.

Balanced Binary Tree – Prefix Sums

Balanced Binary Tree – Sum

Balanced Binary Tree – Sum

- The above approach called as an ``upward traversal"
 - Data flow from the children to the root.
 - Helpful in other situations also such as computing the max, expression evaluation.
- Analogously, can define a downward traversal
 - Data flows from root to leaf
 - Helps in settings such as element broadcast

Balanced Binary Tree

- Can use a combination of both upward and downward traversal.
- Prefix computation requires that.
- Illustration in the next slide.

Balanced Binary Tree – Sum

Balanced Binary Tree - Prefix Sum

Balanced Binary Tree – Prefix Sum

Balanced Binary Tree – Prefix Sum

Balanced Binary Tree – Prefix Sums

- Two traversals of a complete binary tree.
- The tree is only a visual aid.
 - Map processors to locations in the tree
 - Perform equivalent computations.
 - Algorithm designed in the PRAM model.
 - Works in logarithmic time, and optimal number of operations.

//upward traversal

1. for i = 1 to n/2 do in parallel $b_i = a_{2i-2}$ o a_{2i}

2. Recursively compute the prefix sums of B= $(b_1, b_2, ..., b_{n/2})$ and store them in C = $(c_1, c_2, ..., c_{n/2})$

//downward traversal

3. for i = 1 to n do in parallel i is even : $s_i = c_i$ $i = 1 : s_1 = c_1$ i is odd : $s_i = c_{(i-1)/2}$ o a_i

Analysis of Parallel Algorithms

- To analyze parallel algorithms, we rely on asymptotics and recurrences.
- Each operation costs 1 unit, only sequential time needs to be counted. We assume as many processors as can be used are available.
- In the prefix sum example, let T(n) be the time in parallel for an input of size n.
 - Step 1 can use n/2 processors in parallel each taking 1 unit of time.
 - Step 2 is a recursive call and takes T(n/2) time.
 - Step 3 uses n processors each taking 1 unit of time.

Analysis of Parallel Algorithms

- The recurrence relation is:
 - T(n) = T(n/2) + O(1)
 - Can ignore effects due to constant factors, such as the difference in the number of processors between steps 1 and 3.
- The solution to the above recurrence is T(n) = O(log n).
- Another parameter of interest in parallel algorithms is the work done.
- Can be stated as the sum of the works done by each of the processors.

Analysis of Parallel Algorithms

- The work done by the prefix algorithm can be expressed by the recurrence
 - W(n) = W(n/2) + O(n).
 - The O(n) accounts for the work in the first and the third steps.
 - Solution: W(n) = O(n).
- Work done can indicate if the algorithm is doing about the same amount of operations as the best known sequential algorithm.
- Such a parallel algorithm is called an optimal algorithm.

Other Design Paradigms

Partitioning

- Similar to divide and conquer
- But no need to combine solutions
- Can treat problems independently and solve in parallel.
- Example: Parallel merging, searching.

Merging in Parallel by Partitioning

- Two sorted arrays A and B to be merged into C.
- Claim: Rank(x, C) = Rank(x, A) + Rank(x, B)
- For x in A, Rank(x,A) is immediately available. To find Rank(x, B) can use binary search in parallel.

Quick Example

A = [8 10 12 24]

B = [15 17 27 32]

Element	8	10	12	24	15	17	27	32
Rank in A	0	1	2	3	3	3	4	4
Rank in B	0	0	0	2	0	1	2	3
Rank in C	0	1	2	5	3	4	6	7

C = [8 10 12 15 17 24 27 32]

Merging in Parallel by Partitioning

- Time for each binary search is O(log n)
- Total time for merging = O(log n), the total work is O(n log n).
 - Non optimal as compared to sequential time complexity of O(n).
- Can reduce the total work to O(n).
 - —Induce partitions in the arrays of equal size
 - —Rank one element from each partition
 - —Use these ranks to find the ranks of the other elements, sequentially.

An Improved Optimal Algorithm

- General technique
 - Solve a smaller problem in parallel
 - Extend the solution to the entire problem.
- For the first step, the problem size to be solved is guided by the factor of non-optimality factor of an existing parallel algorithm.

- Our simple parallel algorithm is away from optimality by a factor of O(log n).
- So, we should solve a problem of size O(n/log n).
- For this purpose, we pick every log nth element of A, and similarly in B.
- Use the simple parallel algorithm on these elements of A and B.
 - Binary search however in the entire A and B.

- Let A₁, A₂,...,A_{n/log n} be the elements of A ranked in B.
- These ranks induce partitions in B.
 - > Define $[B_{r(i)}...B_{r(i+1)}]$ as the portion of B so that [A(i)...A(i+1)] have ranks in.
- Can therefore merge [A(i)...A(i+1)] with $[B_{r(i)}...B_{r(i+1)}]$ sequentially.

- Such sequential merges can happen in parallel, at each index of A[i].
- Time taken for the sequential merge is O(log n + $B_{r(i+1)}$ $B_{r(i)}$).

• Time:

- Binary search: O(log n), with n/log n processors.
- Sequential merge: O(log n), subject to certain conditions. There are also n/log n such merges in parallel.

Work:

- There are n/log n binary searches in parallel. Work = O(n).
- \rightarrow For the sequential merges too, work = O(n).

- What if [B_{r(i)}...B_{r(i+1)}] has a size of more than log n?
- The situation can be addressed
 - Pick equally spaced, no more than log n, spaced items in [B_{r(i)}...B_{r(i+1)}].
 - Rank these in [A_i...A_{i+1}].

- What if $[B_{r(i)}...B_{r(i+1)}]$ has a size of more than log n?
- The situation can be addressed
 - Pick equally spaced, no more than log n, spaced items in [B_{r(i)}...B_{r(i+1)}].
 - Rank these in [A_i...A_{i+1}].

Final Result

- Can merge two sorted arrays of size n in time O(log n) with work O(n).
 - Need CREW model, for binary searches.
- Can improve further, we will see later.
- The technique to achieve optimality is a general technique, with several applications. We will see more applications of this later.

A Further Improvement

- Where is the scope for improvement?
- Each binary search takes O(log n) time, and we also have O(n/log n) subproblems each of size O(log n).
- To get further improvements, we should look at both aspects.
- Can we search faster? Parallel?

A Further Improvement

- Parallel search first.
- Consider a sorted array A of n element and we want to search for an element x.
- Given p processors, we can always search at positions (indices) 1, n/p, 2n/p, ..., n.
- Record the result of each comparison as a 1 or 0 with 1 for position i indicating that A[i] < x and 0 indicating that A[i] >= x.
- The sequence of p results will have :
 - Either all 1's
 - Either all 0's
 - A shift from 1's to 0's

A Further Improvement

- Parallel search first.
- Consider a sorted array A of n element and we want to search for an element x.
- Given p processors, we can always search at positions (indices) 1, n/p, 2n/p, ..., n.
- Record the result of each comparison as a 1 or 0 with 1 for position i indicating that A[i] < x and 0 indicating that A[i] >= x.
- The sequence of p results will have :
 - Either all 1's: x is not in A
 - Either all 0's : x is not in A
 - A shift from 1's to 0's : x is likely in the n/p segment corresponding to the shift from 1 to 0.

Search in Parallel

- We can identify the next step depending on the three cases.
 - Either all 1's : x is not in A
 - Either all 0's : x is not in A
 - A shift from 1's to 0's : x is likely in the n/p segment corresponding to the shift from 1 to 0.
 - Therefore, search recursively in the corresponding segment of size n/p while still using p processors.
- The recurrence relation for the time taken is
 - T(n) = T(n/p) + O(1), for a solution of $T(n) = O(\log_p n)$.
- The work done has the recurrence W(n) = p. W(n/p) + O(p), for a solution of W(n) = O(n/p).

Search in Parallel

- Consider typical values of p.
- For p = O(1), no change in time taken asymptotically.
- For p = O(log n), the time taken is O(log n/loglog n).
- For p = $O(n^{1/2})$, the time taken is $O(\log n/\log n^{1/2})$ = O(1)!
 - Of course, looks like wasteful from a work point of view.
 - Let us see what it is good for!

- Recall our idea to arrive at an optimal algorithm to merge two sorted arrays A and B.
- We rank a few elements of A in B to partition B into sub-arrays.
- Let us consider ranking n^{1/2} elements of A in B.
- We have n processors, so each search can use n¹/2 processors!
- Each search now finishes in O(1) time.

- Let us consider ranking n^{1/2} elements of A in B.
- We have n processors, so each search can use n¹/2 processors!
- Each search now finishes in O(1) time.
- There is a downside however.
- The partitions of A are now much longer at n^{1/2} each.
- The partitions of B are like in the earlier case, unknown.

- There is a downside however.
- The partitions of A are now much longer at n^{1/2} each.
- The partitions of B are like in the earlier case, unknown.
- But, can use recursion to make further progress.

- The partitions of A are now much longer at n^{1/2} each.
- The partitions of B are like in the earlier case, unknown.
- But, can use recursion to make further progress.
- Recursively apply the same procedure on each partition of A into the corresponding partition of B.
- Notice that each part of A is only n^{1/2} in size.
- We want to rank n^{1/4} element of each part of A into the corresponding B.

- The recurrence relation guiding this process is captured by T(n, m) = max_i T(n^{1/2}, m_i) + O(1).
 - In the above, n and m refer to the length of A and B respectively.
 - And, m_i refers to the length of the ith partition of B.
- Can show that T(n,m) = O(log log n).
- Once recursion ends, each partition of A and partitions of B will be O(loglog n) long, and we merge them sequentially.

The Power of CRCW – Minima

- Two points of interest
 - Illustrate the power of CRCW models
 - Illustrate another optimality technique.
- Find minima of n elements.
 - Input: An array A of n elements
 - Output: The minimum element in A.
- From what we already know:
 - Standard sequential algorithm not good enough
 - Can use an upward traversal, with min as the operator at each internal node. Time = O(log n), work = O(n).

The Power of CRCW – Minima

- Our solution steps:
 - Design a O(n²) work, O(1) time algorithm.
 - Gain optimality by sacrificing runtime to O(log log n).

An O(1) Time Algorithm

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.

An O(1) Time Algorithm

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.
 - How?

An O(1) Time Algorithm

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.
 - How?
- Where did we need the CRCW model?

Towards Optimality

- The earlier algorithm is heavy on work.
- To reduce the work, we proceed as follows.
- We derive an O(nlog log n) work algorithm running in O(log log n) time.
- For this, use a doubly logarithmic tree.
 - Defined in the following.

Doubly Logarithmic Tree

- Let there be $n = 2^{2^k}$ leaves, the root is level 0. The root has $\sqrt{n} = 2^{2^{k-1}}$ children.
- In general, a node at level i has $2^{2^{k-i-1}}$ children, for $0 \le i \le k-1$.
- Each node at level k has two leaf nodes as children.

Doubly Logarithmic Tree

- Some claims:
 - Number of nodes at level i is 22k 2k-i.
 - Number of nodes at the kth level is n/2.
 - Depth of a doubly logarithmic tree of n nodes is k+1 = log log n + 1.
- To compute the minimum using a doubly logarithmic tree:
 - Each internal node performs the min operation does not suffice.
 - Why?

Minima Using the Doubly Logarithmic Tree

- Intuition:
 - Should spend only O(1) time at each internal node.
 - Use the O(1) time algorithm at each internal node.
- At each internal node of level i, if there are c_i children, use c_i² processors.
 - Minima takes O(1) time at each level.
 - Also, No. of nodes at level i x No. of processors used = $2^{2^k 2^{k-i}}$. $(2^{2^{k-i-1}})^2 = 2^{2^k} = n$.

Minima Using a Doubly Logarithmic Tree

- Second, slightly improved result:
 - With n processors, can find the minima of n numbers in O(log log n) time.
 - Total work = O(n log log n).
- Still suboptimal by a factor of O(log log n).
- We now introduce a technique to achieve optimality.

Accelerated Cascading

- Our two algorithms:
 - Algorithm 1: A slow but optimal algorithm.
 - Binary tree based: O(log n) time, O(n) work.
 - Algorithm 2: A fast but non-optimal algorithm
 - Doubly Logarithmic tree based: O(log log n) time, O(nlog log n) work.
- The accelerated cascading technique suggests combining two such algorithms to arrive at an optimal algorithm
 - Start with the slow but optimal algorithm till the problem is small enough
 - Switch over to the fast but non-optimal algorithm.

Accelerated Cascading

- The binary tree based algorithm starts with an input of size n.
- Each level up the tree reduces the size of the input by a factor of 2.
- In log log log n levels, the size of the input reduces to n/2logloglog n = n/loglog n.
- Now switch over to the fast algorithm with n/loglog n processors, needing O(log log (n/log log n)) time.

Final Result

- Total time = O(log log log n) + O(log log n).
- Total work = O(n).
- Need CRCW model.
- Where did we need the CRCW model?