CHEM 22100 (Organic Chemistry II) Notes

Steven Labalme

January 12, 2022

Weeks

1	\mathbf{Rev}	riew and Intro to NMR	1
	1.1	Introduction and Review	1
	1.2	Office Hours (Snyder)	3
	1.3	Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy	3
\mathbf{R}	efere	nces	8

List of Figures

1.1	Mirror plane in hexane.																																									
-----	-------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

List of Tables

1.1	Approximate proton chemical shifts	4
1.2	Approximate carbon-13 chemical shifts	7

Week 1

Review and Intro to NMR

1.1 Introduction and Review

- 1/11: We're skipping alcohols and ethers and coming back later because that's what third quarter really focuses on.
 - What you need to worry about is class content if he doesn't mention it, even if it's in the book, we won't be responsible for it on exams.
 - Natural products inspire new drugs.
 - Salicylic acid mediates pain, but it will erode the lining of your stomach.
 - Hoffmann functionalizes the alcohol to an ester, removing the negative effects and creating aspirin.
 - Sucrose (table sugar) is glucose plus fructose. Glucose tastes slightly less sweet, and fructose tastes a whole lot sweeter.
 - We now consume 120 pounds of sugar per person per year, different from 20 pounds per person per year in 1976 and 1 pound per person per year in older times.
 - So we have developed artificial sweeteners that cut calories, such as saccharin, aspartame, and sucralose.
 - Sucralose is thermally stable (you can bake with it), has no chloric content, and is made from sugar by protecting some alcohols and replacing others with chlorines.
 - Capsaicin (spiciness) evolved to prevent bugs from biting their host plants.
 - Both capsaicin and resiniferatoxin have the same vanillin group; thus, this group is probably important for reacting with pain receptors.
 - Compactin from mushrooms lowers cholesterol.
 - Zocor and lipitol are derived from it!
 - Taxol (breast cancer treatment) accumulates slowly in rare trees.
 - We can derive from the needles (a renewable resource), however, a compound that is easily functionalized to taxol.
 - It is essential to understand the mechanisms in this course!
 - We won't have to worry much about competing reactivity, but we do need to know how reactivity can change in different situations.
 - Quinine treats malaria.

- Quinine is what makes fizzy water taste bitter.
- In trying to fabricate Quinine, Perkin discovers a compound that dyes fabric purple. Never gets his PhD but makes millions off of this invention. Before, only royals could wear purple (the sole source was mediterranean sea slugs).
- \bullet Identify S_N1 by the fact that all chiral information in the reactant will be lost.
- Identify $S_N 2$ by the inversion of stereochemistry.
- We won't worry much about E1 this quarter.
- We'll see a lot of E2 this quarter.
- We'll look into radical and pericyclic (Diels-Alder) reactions this quarter.
- Molecules that may look similar can actually be quite different.
- Color is related to the number of double bonds in a molecule.
- Blue lobsters are blue because they have enough of an enzyme to sequester all of the colorant in the shells of the lobsters.
 - Would you pay more for it because of its rare color? Probably shouldn't because cooking it will still make it red. It won't taste any better.
- Fleming and penicillin.
 - Initially we have no idea what its structure is.
 - It's hard to synthesize something if we have no idea what it is.
 - During WWII, American and Britain embark on a campaign to synthesize penicillin equal in scope to the Manhatten project, but it wasn't successful.
 - Eventually, Dorthy Crowfoot Hodgkin gets its structure with x-ray crystallography, after wrong attempts from R. B. Woodward and Sir Robert Robinson (future Nobel laureates who hated each other).
 - The moldy cantaloupe.
 - In 1955, John Sheehan at MIT comes up with the first chemical reagent capable of synthesizing penicillin's 4-membered ring.
 - But we made too many antibiotics and antibiotic resistance developed.
 - MRSA is only killed by vancomycin, but they're even developing resistance to that.
 - Thinking chemically to get off the pesticide treadmill.
 - We need the sophistication of nature to build molecules more complex than we can build en masse pharmaceutically.
 - As species go extinct, though, we are losing potential weapons.
- X-ray crystallography pinpoints the location of all atoms other than hydrogen in a molecule.
- Line-angle is gonna be big this quarter.
- We will not be tested on IUPAC nomenclature, but we should know it just to be able to communicate.
- Talks about resonance and induction.
- The IR spectroscopic signal of a carbonyl is 1700 cm⁻¹.
- Resonance affects acidity and IR spectroscopy bonds that resonate (have less double bond character) will have lower IR frequencies.
- A lot of reactions are quenched by an H₃O⁺ workup just enough to quench, not enough to react.

1.2 Office Hours (Snyder)

- Reviews degrees of unsaturation.
- Talks about resonance, too.
- Make sure you know your functional groups!
- Alkene-based reactions are the most important to review.
- Glucose and mannose are diastereomers.
- Global vs. local symmetry.
 - Helps you determine how many signals you will see in a ¹³C NMR spectrum.
 - Acetone only has 2 ¹³C NMR signals (the methyl and the carbonyl one).
 - The ability to draw a mirror plane tells you that certain signals are equivalent.
 - You can rotate hexane into a conformation in which it will have a mirror plane.

Figure 1.1: Mirror plane in hexane.

- No symmetry, such as in 1-bromo-2,5-dichloro-3,4,6-trimethylbenzene, means all (nine) distinct signals.
- Local symmetry (think an isopropyl group).
 - Look for branch points.
 - You must have consistency of structure for the entirety of branches.
- para-dibromobenzene has only 2 signals since it has two mirror planes.

1.3 Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy

From Solomons et al. (2016).

- Nuclear magnetic resonance spectrum: A graph that shows the characteristic energy absorption frequencies and intensities for a sample in a magnetic field. Also known as NMR spectrum.
- The chemical shift of a signal gives important clues about molecular structure (see Table 1.1).
- "In ¹³C NMR spectroscopy, signal area is not relevant in routine analyses" (Solomons et al., 2016, p. 396).
- Coupling: The magnetic effect of nonequivalent hydrogen atoms that are within 2 or 3 bonds of the hydrogens producing the signal that splits individual signals into multiple peaks. Also known as signal splitting, signal multiplicity.
- Vicinal (hydrogens): Hydrogens on adjacent carbons.
- Geminal (hydrogens): Hydrogens bonded to the same carbon.

Type of Proton	Chemical Shift (δ, ppm)	Type of Proton	Chemical Shift $(\delta, \text{ ppm})$
1° Alkyl, RCH₃	0.8 - 1.2	Alkyl bromide, RCH ₂ Br	3.4-3.6
2° Alkyl, RCH₂R	1.2 - 1.5	Alkyl chloride, RCH ₂ Cl	3.6-3.8
3° Alkyl, R₃CH	1.4-1.8	Vinylic, $R_2C = CH_2$	4.6-5.0
Allylic, $R_2C = CR - CH_3$	1.6-1.9	Vinylic, R ₂ C=CRH	5.2-5.7
Ketone, RCOCH ₃	2.1-2.6	Aromatic, ArH	6.0 - 8.5
Benzylic, ArCH ₃	2.2 - 2.5	Aldehyde, RCOH	9.5-10.5
Acetylenic, RC≡CH	2.5 - 3.1	Alcohol hydroxyl, ROH	$0.5 \text{-} 6.0^*$
Alkyl iodide, RCH ₂ I	3.1-3.3	Amino, R-NH ₂	$1.0 \text{-} 5.0^*$
Ether, ROCH ₂ R	3.3-3.9	Phenolic, ArOH	$4.5 \text{-} 7.7^*$
Alcohol, HOCH ₂ R	3.3-4.0	Carboxylic, RCOOH	10-13*

^{*}The chemical shifts of these protons vary in different solvents and with temperature and concentration.

Table 1.1: Approximate proton chemical shifts.

Coupling occurs between geminal hydrogens in chiral/conformationally restricted molecules, specifically diastereotopic hydrogens.

• Interpreting NMR spectra:

- 1. Count the number of signals in the spectrum to determine how many distinct proton environments there are in the molecule.
- 2. Use chemical shift tables (such as Table 1.1) to correlate the chemical shifts of the signals with possible structural environments.
- 3. Determine the relative area of each signal, as compared with the area of other signals, as an indication of the relative number of protons producing the signal.
- 4. Interpret the splitting pattern for each signal to determine how many hydrogen atoms are present on carbon atoms adjacent to those producing the signal and sketch possible molecular fragments.
- 5. Join the fragments to make a molecule in a fashion that is consistent with the data.
- The external magnetic field causes the σ (and π , if applicable) electrons in the viscinity of each proton to circulate, producing a small local magnetic field that can serve to either increase or decrease the external magnetic field experienced by the proton.
 - Increasing the effective field causes a larger chemical shift (it takes a higher energy photon/less magnetic field to induce a spin flip).
 - Decreasing the effective field causes a smaller chemical shift (it takes less energy/more magnetic field to induce a spin flip).
- Shielded (proton): A proton for which the induced local magnetic field opposes the external magnetic field to a relatively large degree.
- **Deshielded** (proton): A proton for which the induced local magnetic field opposes the external magnetic field to a relatively small degree (or even reinforces the external magnetic field).
 - For example, the π electrons of benzene circulate in such a way that the external magnetic field at the aromatic hydrogens is *augmented*.
- "Chemically equivalent protons are chemical shift equivalent in ¹H NMR spectra" (Solomons et al., 2016, p. 403).

- **Homotopic** (atoms): A set of atoms on some molecule such that replacing different ones with the same group gives the same compound.
 - For example, the six hydrogens of ethane are homotopic since replacing any of them with chlorine (for instance) gives the same compound: chloroethane.
 - Homotopic hydrogens are chemical shift equivalent.
- **Heterotopic** (atoms): A set of atoms on some molecule such that replacing different ones with the same group gives different compounds.
 - For example, in chloroethane, the CH₂ hydrogens are heterotopic to the CH₃ hydrogens since replacing the former yields 1,1-dichloroethane and replacing the latter yields 1,2-dichloroethane.
 - Heterotopic atoms are *not* chemical shift equivalent.
- Enantiotopic (atoms): Two atoms on some molecule such that replacing different atoms with the same group gives enantiomers.
 - Example: The CH₂ hydrogens of bromoethane.
 - Enantiotopic atoms are chemical shift equivalent, except possibly when the compound in question is dissolved in a chiral solvent.
- **Diastereotopic** (atoms): Two atoms on some molecule such that replacing different atoms with the same group gives diastereomers.
 - Example: The CH₂ hydrogens of 2-butanol.
 - Diastereotopic atoms are *not* chemical shift equivalent (the asymmetry of the chirality center ensures this), except possibly by coincidence.
- \bullet Coupling constant: The separation in hertz between each peak of a signal. Denoted by J.
 - On the order of 6 8 Hz.
- The reciprocity of coupling constants: The coupling constants of coupled atoms are the same.
 - In more complicated molecules, noting that two signals have the same coupling constant means the protons to which they correspond are likely coupled.
- **Dihedral angle** (between vicinal groups): The angle between viscinal groups as seen on the Newman projection through the bond connecting their parent atoms. *Denoted by* ϕ .
- Karplus correlation: The dependence of the coupling constant on dihedral angles.
 - Discovered by Martin Karplus of Harvard.
 - Useful for identifying cyclohexane conformations, and thus for determining which conformation is lower energy.
- An NMR spectrometer is a camera with a relatively slow shutter speed, in that it blurs pictures of rapidly occurring molecular processes.
- Examples of rapid processes that occur in organic molecules.
 - Chemical exchanges cause spin decoupling.
 - Consider ethanol.
 - Based on its structure, we'd predict that the signal corresponding to the hydroxyl proton would be a triplet.
 - However, it only appears as a triplet in very pure ethanol, where **chemical exchange** is slower due to the reduction in impurity-assisted chemical exchange catalysis common in normal ethanol.

- Rapid chemical exchange means that neighboring protons don't have enough time to couple; thus, the hydroxyl proton appears as a singlet in relatively impure ethanol.
- Occurs in the ¹H NMR spectra of alcohols, amines, and carboxylic acids; the signals of OH and NH protons are normally unsplit and broad.
- "Protons that undergo rapid chemical exchange...can be easily detected by placing the compound in D₂O. The protons are rapidly replaced by deuterons, and the proton signal disappears from the spectrum" (Solomons et al., 2016, p. 413).
- Conformational changes.
 - If, for example, we could isolate staggered bromoethane, the CH₃ hydrogens would be split into two signals, as the one anti-periplanar hydrogen is in a different chemical environment from its two geminal neighbors.
 - But we can't, so all three CH₃ hydrogens contribute to one peak.
- Chemical exchange: The swapping of identical atoms between molecules.
- Exchangeable proton: A proton that can engage in rapid chemical exchange.
- We now switch gears to ¹³C NMR spectroscopy.
- Although ¹³C does not occur naturally with nearly the same frequency as ¹²C, it is important for its application to NMR spectroscopy.
- Simplifications from ¹H NMR spectroscopy.
 - Each distinct carbon produces one signal in a ¹³C NMR spectrum.
 - Splitting of ¹³C signals into multiple peaks is not observed in routine ¹³C NMR spectra.
- No (technically just very little) carbon-carbon coupling since coupling only occurs for adjacent carbons and only 1 in 100 carbon atoms is 13 C (1.1% natural abundance).
- Carbon-proton coupling can occur, however, splitting ¹³C signals into multiplets.
- Broadband proton decoupled (spectrum): A ¹³C NMR spectrum in which ¹H-¹³C coupling is eliminated by choosing instrumental parameters to decouple the proton-carbon interactions. *Also known as* BB proton decoupled.
- Shielding and deshielding works the same way (see Table 1.2).
- In addition to the TMS peak, 13 C spectra have a CDCl₃ solvent peak at δ 77.
- **DEPT** ¹³C **NMR spectrum**: A ¹³C NMR spectrum that indicates how many hydrogen atoms are bonded to each carbon, while also providing the chemical shift information contained in a broadband proton-decoupled ¹³C NMR spectrum. *Also known as* **distortionless enhancement by polarization transfer**.

Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH ₃	0-40
2° Alkyl, RCH₂R	10-50
3° Alkyl, RCHR₂	15-50
Alkyl halide or amine, R_3CX (X = Cl, Br, NR'_2)	10-65
Alcohol or ether, R ₃ COR'	50-90
Alkyne, RC≡R′	60-90
Alkene, $R_2C=R'$	100-170
Aryl, $C-R$	100-170
Nitrile, RC≡N	120-130
Amide, RCONR' ₂	150-180
Carboxylic acid or ester, RCOOR'	160-185
Aldehyde or ketone, RCOR'	182-215

Table 1.2: Approximate carbon-13 chemical shifts.

References

Solomons, T. W. G., Fryhle, C. B., & Snyder, S. A. (2016). Organic chemistry (12th). John Wiley & Sons.