Содержание

1	Me	грические пространства	2
	1.1	Определения	2
	1.2	Несложные утверждения	3
2	Полные метрические пространства		
	2.1	Теорема о вложенных шарах, теорема Бэра	5
	2.2	Принцип сжимающих отображений	6
3	Компактные метрические пространства		
	3.1	Компактность и центрированные системы замкнутых множеств	7
	3.2	Критерий компактности	7
	3.3	Теорема Арцела-Асколи	9
4	Линейные нормированные пространства		
	4.1	Теорема Рисса	11
	4.2	Характеристическое свойство евклидовых пространств	
	4.3	Эквивалентность норм в конечномерном пространстве	
	4.4	Теорема Рисса о проекции	
	4.5	Сепарабельные гильбертовы пространства	
5	Лиі	нейные ограниченные операторы в линейных нормированных про-	
	стр	анствах	17
	$5.\overline{1}$	Связь непрерывности и ограниченности линейного оператора	17
	5.2	Топологии и сходимости в пространстве операторов	
	5.3	Задача о продолжении непрерывного отображения	
	5.4	Теорема Банаха-Штейнгауза	
	5.5	Полнота пространства	21

1 Метрические пространства

1.1 Определения

Определение 1.1. Метрическим пространством называется множества X с функцией $\rho: X^2 \to \mathbb{R}$, обладающей следующими свойствами:

- 1. $\forall x,y \in X: \ \rho(x,y) \geqslant 0$, причём $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in X : \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X : \rho(x, z) = \rho(x, y) + \rho(y, z)$ (неравенство треугольника).

Функция ρ называется метрикой на множестве X.

Определение 1.2. Топологическим пространством называется множество X с системой $\tau \subseteq 2^X$, обладающей следующими свойствами:

- 1. $\varnothing, X \in \tau$
- 2. $\forall G_1, G_2 \in \tau : G_1 \cap G_2 \in \tau$
- 3. $\forall \{G_{\alpha}\}_{{\alpha}\in\mathcal{A}}\subset \tau: \bigcup_{{\alpha}\in\mathcal{A}}G_{\alpha}\in \tau$

Система au называется топологией на множестве X, а элементы системы au – открытыми множествами.

Определение 1.3. Пусть X – метрическое пространство, $Y \subset X$. Подстранством пространства X называется метрическое пространство Y с метрикой, являющейся сужением метрики на X.

Определение 1.4. Пусть X – метрическое пространство. Множество $Y \subset X$ называется ограниченным, если выполнено условие $\sup_{x,y \in Y} \rho(x,y) < +\infty$

Определение 1.5. Пусть X – метрическое пространство, $x \in X, r > 0$:

• Открытым шаром называется множество

$$B(x,r) := \{ y \in X \mid \rho(y,x) < r \}$$

• Замкнутым шаром называется множество

$$\overline{B}(x,r) := \{ y \in X \mid \rho(y,x) \leqslant r \}$$

Определение 1.6. Пусть X – метрическое пространство, $M\subset X$. Точка $x\in X$ называется внутренней точкой множества M , если

$$\exists r > 0 : B(x,r) \subset M$$

Внутренностью множества M называется множество int M всех его внутренних точек. Множество M называется открытым, если int M=M.

Определение 1.7. Пусть (X, ρ) — метрическое пространство, $M \subset X$. Точка $x \in X$ называется точкой прикосновения множества M, если

$$\forall r > 0: B(x,r) \cap M \neq \emptyset$$

Замыканием множества M называется множество \overline{M} всех его точек прикосновения. Множество M называется замкнутым, если $\overline{M}=M$.

Определение 1.8. Пусть X – метрическое пространство. Множество $A \subset X$ называется:

- Плотным в множестве $B \subset X$, если $B \subset \overline{A}$
- ullet Всюду плотным, если $X=\overline{A}$

Определение 1.9. Метрическое пространство X называется сепарабельным, если в X существует не более чем счётное всюду плотное множество.

Определение 1.10. Пусть X – метрическое пространство. Последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ сходится к точке $x \in X$, если $\rho(x_n, x) \to 0$ при $n \to +\infty$. Обозначение:

$$x_n \to_X x$$

Определение 1.11. Пусть X, Y – метрические пространства. $f: X \to Y$. Отображение f называется непрерывным в точке $x \in X$, если выполнено одно из следующих условий:

- 1. Для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что $f(B(x,\delta)) \subset B(f(x),\varepsilon)$
- 2. Для любой $\{x_n\}_{n=1}^{\infty} \subset X$ такой, что $x_n \to_X x$, выполнено $f(x_n) \to_Y f(x)$

1.2 Несложные утверждения

Лемма 1.1. Неравенство Гёльдера.

Пусть E измеримое множество, на котором задана мера μ . Тогда для любых $p,q\geqslant 1, \frac{1}{p}+\frac{1}{q}=1,$ если $f\in L^p(E), g\in L^q(E),$ то $f\cdot g\in L^1,$ причём выполнено следующее:

$$\int_{E} |f(x)g(x)| d\mu \leqslant \left(\int_{E} |f(x)| d\mu\right)^{\frac{1}{p}} \cdot \left(\int_{E} |g(x)| d\mu\right)^{\frac{1}{q}}$$

Доказательство. Для доказательства воспользуемся неравенством Юнга:

$$a, b \geqslant 0, 1$$

Положим

$$A := \left(\int_E f^p d\mu \right)^{\frac{1}{p}}; \quad B := \left(\int_E g^q d\mu \right)^{\frac{1}{q}}$$

Если $A=0 \Rightarrow f \stackrel{\text{\tiny II.B.}}{=} 0 \Rightarrow f \cdot g \stackrel{\text{\tiny II.B.}}{=} 0 \Rightarrow \int_E f \cdot g d\mu = 0.$

Если же $A=\infty, B>0$, то $AB=\infty$ и аналогично остальные случаи с бесконечностями. Если $0< A, B<\infty$ \Rightarrow по неравенству Юнга имеем:

$$\frac{1}{AB}\int_E f \cdot g d\mu = \int_E \frac{f}{A} \frac{g}{B} d\mu \leqslant \int_E \left(\frac{1}{p} \left(\frac{f}{A}\right)^p + \frac{1}{q} \left(\frac{g}{B}\right)^q\right) d\mu = \frac{1}{p} \frac{\int_E f^p d\mu}{A^p} + \frac{1}{q} \frac{\int_E g^q d\mu}{B^q} = \frac{1}{p} + \frac{1}{q} = 1$$

Лемма 1.2. Неравенство Минсковского.

Пусть E – измеримое множество, на котором задана мера μ , и пусть $f,g:E\to\mathbb{R}$ – измеримые функции. Тогда выполнено следующее:

$$\left(\int_{E} |f(x) + g(x)|^{p} d\mu\right)^{\frac{1}{p}} \leqslant \left(\int_{E} |f(x)|^{p} d\mu\right)^{\frac{1}{p}} + \left(\int_{E} |g(x)|^{p} d\mu\right)^{\frac{1}{p}}$$

Доказательство. Положим

$$A:=\left(\int_E f^p d\mu\right)^{\frac{1}{p}}; \quad B:=\left(\int_E g^p d\mu\right)^{\frac{1}{p}}; \quad C:=\left(\int_E (f+g)^p d\mu\right)^{\frac{1}{p}}$$

Будем полагать, что $A, B < \infty$. (Иначе неравенство тривиально). Тогда

$$(f+g)^p \leqslant (2 \max f, g)^p \leqslant 2^p (f^p + g^p) \Rightarrow C < \infty$$

Тогда введём $q:=\frac{p}{p-1}$ и использум неравенство Гёльдера в следующем виде:

$$C^{P} = \int_{E} f(f+g)^{p-1} d\mu + \int_{E} g(f+g)^{p-1} d\mu \overset{\text{Гёльдер}}{\leqslant}$$

$$\left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{E} (f+g)^{(p-1)q} d\mu \right)^{\frac{1}{q}} + \left(\int_{E} g^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{E} (f+g)^{(p-1)q} d\mu \right)^{\frac{1}{q}} =$$

$$(A+B) \left(\int_{E} (f+g)^{p} d\mu \right)^{\frac{1}{q}} = (A+B)C^{p-1}$$

Лемма 1.3. Пусть X – метрическое пространство, $M \subset X$. Тогда множество M открыто \Leftrightarrow множество $X \setminus M$ замкнуто.

Доказательство. Достаточно заметить, что

$$x \in \overline{X \setminus M} \Leftrightarrow \forall r > 0: \ B(x,r) \cap (X \setminus M) \neq \emptyset \Leftrightarrow x \notin \text{int } M$$

Значит, int $M = M \Leftrightarrow \overline{X \setminus M} = X \setminus M$.

Лемма 1.4. Пусть X – метрическое пространство. Тогда:

- 1. Для любого $x \in X$ и r > 0 множество B(x,r) открытое.
- 2. Для любого $x \in X$ u r > 0 множество $\overline{B}(x,r)$ замкнутое.
- 3. Для любого множества $M \subset X$ множество int M открытое, причём наибольшее по включение открытое множество, содержащееся в M.
- 4. Для любого множества $M \subset X$ множество \overline{M} замкнутое, причём наименьшее по включению замкнутое множество, содержащее M.

Доказательство. 1. Пусть $y \in B(x,r)$, тогда, по неравенству треугольника, $B(y,r-\rho(x,y)) \subset B(x,r)$, то есть $y \in \text{int } B(x,r)$.

- 2. Пусть $y \in \overline{\overline{B}(x,r)}$, тогда для любого $\varepsilon > 0$ выполнено $B(y,\varepsilon) \cap \overline{B}(x,r) \neq \emptyset$, откуда, по неравенству треугольника, $\rho(x,y) < r + \varepsilon$. В силу произвольности числа ε , получаем, что $\rho(x,y) \leqslant r$, то есть $y \in \overline{B}(x,r)$.
- 3. Для любого открытого множества $G \subset M$ выполнено $G = \text{int } G \subset \text{int } M$, поэтому, в частности, множество int M открыто, как объединение всех содержащихся в M открытых множеств.
- 4. Для любого замкнутого множества $F\supset M$ выполнено $F=\overline{F}\supset \overline{M}$, поэтому, в частности, множество \overline{M} замкнуто, как пересечение всех содержащих M замкнутых множеств.

Лемма 1.5. Пусть X, Y – метрические пространства, $f: X \to Y$. Тогда следующие условия эквивалентны:

- Отображение f непрерывно.
- Для любого открытого множества $G \subset Y$ множество $f^{-1}(G)$ тоже является открытм

Доказательство. • $(1 \Rightarrow 2)$ Зафиксируем произвольное открытое множество $G \subset Y$. Тогда, поскольку выполнено равенство $f^{-1}(G) = \bigcup_{y \in G} f^{-1}(y)$ и каждое множество $f^{-1}(y)$ является открытым (из определения непрерывности), множество $f^{-1}(G)$ тоже является открытым.

• $(2 \Rightarrow 1)$ Зафиксируем произвольные $x \in X, \varepsilon > 0$. Множество $B(f(x), \varepsilon)$ является открытым, поэтому его прообраз тоже открыт, то есть существует $\delta > 0$ такое, что $f(B(x,\delta)) \subset B(f(x),\varepsilon)$, что и даёт требуемое в силу произвольности выбора точки x и числа ε .

2 Полные метрические пространства

2.1 Теорема о вложенных шарах, теорема Бэра

Определение 2.1. Пусть X – метрическое пространство. Последовательность $\{x_n\} \subset X$ называется фундаментальной, если выполнено следующее условие:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \geqslant N : \ \rho(x_n, x_m) < \varepsilon$$

Определение 2.2. Метрическое пространство называется полным, если любая фундаментальная последовательность в нём сходится.

Теорема 2.1. О вложенных шарах.

Пусть X – полное метрическое пространство. $\{\overline{B}(x_n,r_n)\}_{n=1}^{\infty}$ – последовательность вложенных замкнутых шаров такая, что $r_n \to 0$. Тогда $\bigcap_{n=1}^{\infty} \overline{B}(x_n,r_n) = \{x^*\}$ для некоторой точки $x^* \in X$.

Доказательство. В силу вложенности шаров и условия $r_n \to 0$, последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна. Тогда, поскольку пространство X полно, для некоторого $x^* \in X$ выполнено $x_n \to x^*$. Но каждый шар $\overline{B}(x_N, r_N)$ содержит все точки из последовательности $\{x_n\}_{n=1}^{\infty}$, начиная с номера N, тогда, в силу его замкнутости, он также содержит точку x^* .

Значит, $\{x^*\}\subset \bigcap_{n=1}^\infty \overline{B}(x_n,r_n)$. Наконец, в силу условия $r_n\to +0$, других точек в пересечении быть не может.

Теорема 2.2. Теорема Бэра.

Пусть X – полное метрическое пространство. Тогда X нельзя представить в виде $X = \bigcup_{n=1}^{\infty} M_n$, где множества $M_n \subset X$ – не плотные ни в одном шаре в X (нигде не плотные).

Доказательство. Предположим противное, то есть X имеет такой вид, как в условии. Положим $r_0 := 1$ и выберем произвольный шар $\overline{B}(x_0, r_0) \subset X$. Поскольку M_1 неплотно в $\overline{B}(x_0, r_0)$, то

$$(X \setminus \overline{M}_1) \cap \overline{B}(x_0, r_0) \neq \emptyset$$

, поэтому можно выбрать шар

$$\overline{B}(x_1, r_1) \subset \overline{B}(x_0, r_0) : \overline{B}(x_1, r_1) \cap \overline{M}_1 = \emptyset$$

Можно считать, что $r_1 \leqslant \frac{1}{2}$. Повторим данное упражнение счётное количество раз...

Рассмотрим полученную последовательность вложенных шаров $\{\overline{B}(x_n,r_n)\}_{n=1}^{\infty}$. Поскольку $r_n\leqslant \frac{1}{2^n}\to 0$, то, по предыдущей теореме, для некоторой точки $x^*\in X$ выполнено равенство

$$\{x^*\} = \bigcap_{n=0}^{\infty} \overline{B}(x_n, r_n)$$

По предположению, $X = \bigcup M_n$, поэтому $\exists n : x^* \in M_n$, но по построению

$$\overline{B}(x^*, r_n) \cap \overline{M}_n = \emptyset$$

противоречие.

2.2 Принцип сжимающих отображений.

Теорема 2.3. Теорема Банаха. Принцип сжимающих отображений.

Пусть X – полное метрическое пространство, $f: X \to X$ – отображение такое, что выполнено следующее условие:

$$\exists \alpha \in (0,1) \, \forall x, y \in X : \, \rho(f(x), f(y)) \leqslant \alpha \rho(x, y)$$

Тогда

$$\exists ! x^* : f(x^*) = x^*$$

Доказательство. Существование. Зафиксируем $x_0 \in X$ и рассмотрим последовательность $\{x_n\}_{n=1}^{\infty}$, где $x_{n+1} = f(x_n)$. Поскольку для $k \in \mathbb{N}$ выполнено:

$$\rho(x_{k+1}, x_k) = \rho(f(x_k), f(x_{k-1})) \leqslant \alpha \rho(x_k, x_{k-1}) = \alpha \rho(f(x_{k-1}, f(x_{k-2}))) \leqslant \dots \leqslant \alpha^k \rho(x_1, x_0)$$

то по неравенству треугольника получаем

$$\rho(x_{n+p}, x_n) \leqslant \rho(x_{n+p}, x_{n+p-1}) + \dots + \rho(x_{n+1}, x_n) \leqslant (\alpha^{n+p-1} + \dots + \alpha^n) \rho(x_1, x_0) \leqslant \frac{\alpha^n}{1 - \alpha} \rho(x_1, x_0)$$

Так как $\alpha^n \stackrel{n \to +\infty}{\to} 0$, то $\{x_n\}_{n=1}^{\infty}$ фундаментальна. Значит, из полноты пространства,

$$\exists \lim_{n \to +\infty} x_n = x^*$$

Переходя к пределу в равенстве $x_{n+1} = f(x_n)$ и пользуясь непрерывностью f, получаем $f(x^*) = x^*$.

Единственность. Предположим, что

$$\exists y^* \neq x^*: \ f(y^*) = y^* \Rightarrow \rho(x^*, y^*) = \rho(f(x^*), f(y^*)) \overset{f \text{ сжим}}{\leqslant} \alpha \rho(x^*, y^*)$$

Это возможно лишь когда $\rho(x^*, y^*) = 0 \Rightarrow x^* = y^*$.

3 Компактные метрические пространства

3.1 Компактность и центрированные системы замкнутых множеств

Определение 3.1. Метрическое пространство X называется компактным, если

$$\forall \{G_{\alpha}\}_{\alpha \in \mathcal{A}} \subset 2^{X}, G_{\alpha}$$
 - открытые : $\bigcup_{\alpha \in \mathcal{A}} G_{\alpha} = X : \exists \{\alpha_{i}\}_{i=1}^{n} \subset \mathcal{A} : \bigcup_{i=1}^{n} G_{\alpha_{i}} = X$

Определение 3.2. Пусть X – метрическое пространство. Система $\{B_{\alpha}\}_{{\alpha}\in\mathcal{A}}\subset 2^X$ называется центрированной, если

$$\forall \{\alpha_i\}_{i=1}^n \subset \mathcal{A} : \bigcap_{i=1}^n B_{\alpha_i} \neq \emptyset$$

Теорема 3.1. Метрическое пространство X компактно \Leftrightarrow любая центрированная система замкнутых множеств в X имеет непустое пересечение.

Доказательство. Каждой системе открытых множеств $\{G_{\alpha}\}_{\alpha\in\mathcal{A}}\subset 2^{X}$ можно поставить в соответствие систему замкнутых множеств $\{F_{\alpha}\}_{\alpha\in\mathcal{A}}:=\{X\setminus G_{\alpha}\}_{\alpha\in\mathcal{A}}$ и наоборот.

Тогда любая система открытых множеств $\{G_{\alpha}\}_{\alpha\in\mathcal{A}}$, не содержащая конечного подпокрытия, не является покрытием \Leftrightarrow любая центрированная система замкнутых множеств $\{F_{\alpha}\}_{\alpha\in\mathcal{A}}$ имеет непустое пересечение (накиньте на одну из частей утверждения дополнения и поймите, что это одно и то же).

3.2 Критерий компактности

Определение 3.3. Пусть M – некоторое множество в метрические пространстве R. Тогда множества A из R называется ε -сетью для M, если

$$\forall x \in M \ \exists a \in A : \ \rho(x,a) \leqslant \varepsilon$$

Определение 3.4. Множество M в метрическом пространстве R называется ограниченным, если

$$\exists B(x_0,\varepsilon)\supset M$$

Определение 3.5. Множество M в метрическом пространстве R называется вполне ограниченным, если для него при любом $\varepsilon > 0$ существует конечная ε -сеть.

Пемма 3.1. Из вполне ограниченности следует ограниченность.

Доказательство. Из вполне ограниченности ограниченность следует получается, как объединение конечного числа ограниченных множеств. □

Теорема 3.2. Критерий компактности.

 Π усть X – метрическое пространство. Тогда следующие условия эквивалентны:

- 1. X компактно.
- 2. X полно и вполне ограниченно.
- 3. Из любой последовательности $\{x_n\}_{n=1}^{\infty} \subset X$ можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$, ещё говорят, что X секвенциально компактно.
- 4. Любое бесконечное множество $M \subset X$ имеет предельную точку.

Доказательство. • $(1 \Rightarrow 2)$ X вполне ограниченно, поскольку для любого $\varepsilon > 0$ из открытого покрытия $\{B(x,\varepsilon)\}_{x\in X}$ по определению можно выделить конечное подпокрытие. Центры шаров этого подпокрытия и будут давать требуемую ε -сеть.

Пусть последовательность $\{x_n\} \subset X$ фундаментальна. Для каждого $n \in \mathbb{N}$ положим $A_n := \{x_n, x_{n+1}, \cdots\}$, тогда система $\{\overline{A}_n\}$ является центрированной системой замкнутых множеств. Система центрирована, потому что у любого конечного набора пересечением будет являться хвост, начинающийся с максимального из взятых индексов.

Поэтому можно выбрать точку $x_0 \in \cap_{n \in \mathbb{N}_+} \overline{A}_n$, причём $x_0 \in X$ по рассмотренному выше критерию компактности. В силу фундаментальности

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : \ \overline{A}_n \subset \overline{B}(x_N, \varepsilon)$$

откуда и $\rho(x_n, x_0) < \varepsilon \Rightarrow x_n \to_X x_0$.

• $(2 \Rightarrow 3)$ Зафиксируем произвольную последовательность $\{x_n\}_{n=1}^{\infty} \subset X$. Поскольку X вполне ограниченно, то

$$\forall \varepsilon > 0 \ \exists y \in X : \ |\{x_n\}_{n=1}^{\infty} \cap B(y,\varepsilon)| = +\infty$$

Будем применять это рассуждение сначала для всего пространства X, потом для шаров в X, содержащих бесконечно много точек из $\{x_n\}_{n=1}^{\infty}$:

- Для $\varepsilon:=1$ выберем $\{x_k^1\}\subset \{x_n\}$ так, что $\{x_k^1\}\subset B(y_1,1)$
- Для $\varepsilon:=\frac12$ выберем $\{x_k^2\}\subset\{x_n^1\}\subset B(y_1,1)$ так, что $\{x_k^2\}\subset B(y_2,\frac12)$

- . . .

Рассмотрим диагональную последовательность $\{x_k^k\} \subset \{x_n\}$. По построению, она является фундаментальной, и в силу полноты пространства X, она сходится.

• $(3\Rightarrow 1)$ Проверим сначала, что X вполне ограниченно. Предположим противное, то есть

$$\exists \varepsilon_0 > 0 \ \forall \{\overline{B}(y_n, \varepsilon_0)\}_{n=1}^N : \bigcup_{n=1}^N \overline{B}(y_n, \varepsilon_0) \not\supset X$$

Тогда можно выбрать точку $x_1 \in X$, затем точку $x_2 \in (X \setminus B(x_1, \varepsilon_0))$. По предположению, остаток, из которого берём элементы последовательности, никогда не будет пуст, поэтому получим последовательности с попарными расстояниями между точками не меньше ε_0 , из которой, очевидно, нельзя выделить сходящуюся подпоследовательность – противоречие.

Теперь проверим, что X компактно. Предположим противное, то есть

$$\exists \{G_{\alpha}\}_{\alpha \in \mathcal{A}}, G_{\alpha}$$
 - открытое $\forall \{G_{\alpha_i}\}_{i=1}^N: \bigcup_{i=1}^N G_{\alpha_i} \not\supset X$

Значит,

$$\forall \varepsilon > 0 \; \exists x \in X \; \forall \{G_{\alpha_i}\}_{i=1}^N : \bigcup_{i=1}^N G_{\alpha_i} \not\supset B(x, \varepsilon)$$

(если такого шара нет, то из вполне ограниченности, складывая конечные покрытия конечного числа шаров, получим конечное покрытие всего множества).

Выбирая такую точку x_n для $\varepsilon := \frac{1}{n}$ при каждом $n \in \mathbb{N}$, получим последовательность $\{x_n\}_{n=1}^{\infty}$, из которой можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$. Пусть $x_{n_k} \to_X x_0 \in X$. Тогда существует $\alpha_0 \in \mathcal{A}$ такое, что $x_0 \in G_{\alpha_0}$. Но множество G_{α_0} открыто, поэтому оно покрывает некоторую окрестность точки x_0 , а значит и все шары $B(x_{n_k}, \frac{1}{n_k})$, начиная с некоторого номера – противоречие.

- (3 \Rightarrow 4) Зафиксируем бесконечное множество $M \subset X$, тогда, выбирая произвольным образом последовательность $\{x_n\} \subset M$ и выделяя из неё сходящуюся подпоследовательность, получим требуемое.
- $(4 \Rightarrow 3)$ Зафиксируем последовательность $\{x_n\}_{n=1}^{\infty}$. Если множество её значений конечно, то в ней можно выделить стационарную подпоследовательность. Если же множество её значений бесконечно, то оно имеет предельную точку $x_0 \in X$, поэтому можно выбрать подпоследовательность $\{x_{n_k}\}$ такую, что $x_{n_k} \to_X x_0$

3.3 Теорема Арцела-Асколи

Определение 3.6. Обозначим за C(X,Y) множество непрерывных функций $f:X\to Y$.

Теорема 3.3. Теорема Кантора.

Пусть X – компактное метрическое пространство, и функция $f \in C(X, \mathbb{R})$. Тогда f равномерно непрерывна на X.

Доказательство. Предположим противное, то есть выполнено следующее:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x, y \in X, \rho(x, y) < \delta : |f(x) - f(y)| \geqslant \varepsilon_0$$

Выбирая $\delta := \frac{1}{n}$ для каждого $n \in \mathbb{N}$, получим последовательности $\{x_n\}, \{y_n\}$. Поскольку X компактно, можно выделить из них сходящиеся подпоследовательности $\{x_{n_k}\}, \{y_{n_k}\},$ причём сходятся они к одной и той же точке $x_0 \in X$ по построению. Однако для любого $k \in \mathbb{N}$ выполнено $|f(x_{n_k}) - f(y_{n_k})| \geqslant \varepsilon_0$ – противоречие.

Теорема 3.4. Арцела-Асколи.

 Π усть X – компактное метрическое пространство, $M \subset C(X,\mathbb{R})$. Тогда множество M вполне ограниченно \Leftrightarrow множество M ограниченно и выполнено условие равностепенной непрерывности:

$$\forall \varepsilon > 0: \exists \delta > 0: \forall x, y \in X, \rho(x, y) < \delta: \forall f \in M: |f(x) - f(y)| < \varepsilon$$

Доказательство. (\Rightarrow) Мы уже доказывали, что из вполне ограниченности следует обычная ограниченность, проверим условие равностепенной непрерывности. Зафиксируем произвольное $\varepsilon > 0$ и выберем конечным набор функций $\varphi_1, \cdots, \varphi_n \in C(X, \mathbb{R})$, образующий ε -сеть.

По теореме Кантора, каждая из этих функций равномерно непрерывна. Пусть $\delta_1, \cdots, \delta_n > 0$ — числа, соответствующие выбранному ε в определении равномерной непрерывности:

$$\forall \varepsilon > 0 \ \exists \delta_k > 0 \ \forall x, y \ \rho(x, y) < \delta_k : \ |\varphi_k(x) - \varphi_k(y)| < \varepsilon$$

Тогда для $\delta := \min\{\delta_1, \cdots, \delta_n\}$ выполнено требуемое:

$$|f(x) - f(y)| \le |f(x) - \varphi_k(x)| + |\varphi_k(x) - \varphi_k(y)| + |\varphi_k(y) - f(y)| < 3\varepsilon$$

 (\Leftarrow) Поскольку множество M ограниченно, то существует C>0 такое, что

$$\forall f \in M: \|f\| = \sup_{x \in [a, b]} |f(x)| \leqslant C$$

Зафиксируем произвольное $\varepsilon>0$ и выберем по нему $\delta>0$ из условия равностепенной непрерывности.

Разобьём отрезок [a,b] на части длины меньше δ точками

$$a = x_0 < x_1 < \dots < x_n = b$$

, а отрезок [-C,C] – на части длины меньше ε точками

$$-C = y_0 < y_1 < \dots < y_m = C$$

и рассмотрим конечное множество L кусочно линейных функций, построенных по всевозможным наборам точек вида

$$\{(x_j, y_{i_k})\}_{j=0}^n, i_k \in \overline{0, m}$$

Из такого построению становится очевидно, что

$$\forall f \in M \ \exists \varphi \in L \ \forall i \in \{0, \dots, n\} : |f(x_i) - \varphi(x_i)| < \varepsilon$$

Рассмотрим произвольную точку $x \in [a,b]$ и выберем $i \in \{0,\cdots,n-1\}$ такое, что $x \in [x_i,x_{i+1}]$, тогда:

$$|f(x) - \varphi(x)| \le |f(x) - f(x_i)| + |f(x_i) - \varphi(x_i)| + |\varphi(x) - \varphi(x_i)| < 2\varepsilon + |\varphi(x_{i+1}) - \varphi(x_i)|$$

Первое слагаемое меньше ε из равностепенной непрерывности, а второе по построению φ . Оценим слагаемое $|\varphi(x_{i+1}) - \varphi(x_i)|$ отдельно:

$$|\varphi(x_{i+1}) - \varphi(x_i)| \le |f(x_{i+1}) - \varphi(x_{i+1})| + |f(x_{i+1}) - f(x_i)| + |f(x_i) - \varphi(x_i)| < 3\varepsilon$$

Таким образом, $\sup_{x\in[a,b]}|f(x)-\varphi(x)|<5\varepsilon$. Значит, построенное множество L образует конечную 5ε -сеть для множества M, тогда, в силу произвольности выбора числа ε , множество M вполне ограниченно.

4 Линейные нормированные пространства

4.1 Теорема Рисса

Определение 4.1. Линейным нормированным пространством над полем \mathbb{K} , где $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$, называется линейное пространство E над \mathbb{K} с функцией $\|\cdot\|: E \to \mathbb{R}$, обладающей следующими свойствами:

- 1. $\forall x \in E : ||x|| \geqslant 0$, причём $||x|| = 0 \Leftrightarrow x = 0$
- 2. $\forall x \in E \ \forall \alpha \in \mathbb{K} : \|\alpha x\| = |\alpha| \|x\|$
- 3. $\forall x, y \in E : ||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)

Функция $\|\cdot\|$ называется нормой на пространстве E.

Лемма 4.1. Норма непрерывна, как функция $E \to \mathbb{R}_+$

Доказательство.

$$\forall \{x_n\}_{n=1}^{\infty}: x_n \stackrel{n \to +\infty}{\to} \Rightarrow \rho(x_n, x) = ||x_n - x|| \to 0$$

Дважды воспользуемся неравенством треугольника:

- $||x_n|| \le ||x_n x|| + ||x||$
- $||x|| \le ||x_n x|| + ||x_n||$

Таким образом, $|||x_n|| - ||x||| \to 0$, то есть $||x_n|| \to ||x||$, что и требовалось.

Определение 4.2. Пусть E — линейное нормированное пространство. Множество $L \subset E$ называется:

- Линейным многообразием в E, если L замкнуто относительно сложения и умножения на скаляры из \mathbb{K} .
- Подпространством в E, если L является линейным многообразием в E и при этом замкнуто.

Лемма 4.2. О почти перпендикуляре.

Пусть E – линейное нормированное пространство, $L \subsetneq E$ – подпространство. Тогда

$$\forall \varepsilon > 0 \ \exists y \in E \ \|y\| = 1 : \ \rho(y, L) := \inf_{z \in L} \|y - z\| \geqslant 1 - \varepsilon$$

Доказательство. Зафиксируем $y_0 \in E \setminus L$ и положим $d := \rho(y_0, L) > 0$. Выберем вектор $z_0 \in L$ такой, что $d \leqslant \|y_0 - z_0\| \leqslant d(1+\varepsilon)$ и покажем, что подходит вектор $y := \frac{y_0 - z_0}{\|y_0 - z_0\|} := \alpha(y_0 - z_0)$. Действительно, $\|y\| = 1$, и для любого $z \in L$ выполнены неравенства:

$$||y - z|| = ||\alpha(y_0 - z_0) - z|| = |\alpha|||y_0 - (z_0 + \frac{1}{\alpha}z)|| \ge |\alpha|d \ge \frac{d}{d(1+\varepsilon)} \ge 1 - \varepsilon$$

Для осмысления последних переходов вникните в следующее утверждение:

$$||y_0 - z_0|| \le d(1 + \varepsilon) \Rightarrow \alpha = \frac{1}{||y_0 - z_0||} \ge \frac{1}{d(1 + \varepsilon)}$$

А также не забывайте про разложение Тейлора:

$$\frac{1}{1+x} \geqslant 1-x$$

Определение 4.3. Пусть E — линейное нормированное пространство, $M \subset E$. Линейной оболочкой множества M называется множество следующего вида:

$$\langle M \rangle := \left\{ \sum_{k=1}^{n} \alpha_i m_i \mid \{\alpha_i\}_{i=1}^n \subset \mathbb{K}, \{m_i\}_{i=1}^n \subset M \right\}$$

Теорема 4.1. Рисса.

Пусть E – линейное нормированное пространство. Тогда единичная сфера S(0,1) компактна в $E \Leftrightarrow \dim E < +\infty$

Доказательство. (\Leftarrow) По эквивалентности норм конечномерных пространствах (теорема будет далее), все нормы на конечномерном линейном пространстве эквивалентны, а относительно евклидовой нормы сфера S(0,1) компактна.

- (\Rightarrow) От противного. Зафисиксируем $\varepsilon > 0$ и построим последовательность $\{x_n\} \subset S(0,1)$ с попарными расстояниями не меньше $1-\varepsilon$, из чего будет следовать, что сфера S(0,1) не вполне ограничена и потому не компактна:
 - Выберем $x_1 \in S(0,1)$ произвольным образом
 - По предыдущей лемме выберем $x_2 \in S(0,1) \setminus \langle x_1 \rangle$ такое, что $\rho(x_2,\langle x_1 \rangle) \geqslant 1 \varepsilon$, причём утверждение применимо, так как линейная оболочка конечномерна, а линейная оболочка конечного числа элементов к тому же замкнута, а значит это действительно подпространство.

• ...

Поскольку $\dim E = +\infty$, то процесс не закончится, и будет получена искомая последовательность $\{x_n\}$.

4.2 Характеристическое свойство евклидовых пространств...

Определение 4.4. Евклидовым пространством над полем \mathbb{K} , где $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$, называется линейное пространство E над \mathbb{K} с функцией (\cdot, \cdot) : $E^2 \to \mathbb{K}$, обладающее следующими свойствами:

- 1. $\forall x \in E : (x, x) \geqslant 0$, причём $(x, x) = 0 \Leftrightarrow x = 0$
- 2. $\forall x, y \in E : (x, y) = \overline{(y, x)}$
- 3. $\forall x, y, z \in E : \forall \alpha, \beta \in \mathbb{K} : (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$

Определение 4.5. Полное линейное нормированное пространство E называется банаховым.

Определение 4.6. Полное евклидово пространство H называется гильбертовым.

Теорема 4.2. Характеристическое свойство Евклидовых пространств.

 $\it Пусть\ E$ – линейное нормированное пространство. Тогда норма в $\it E$ порождается скалярным произведением \Leftrightarrow

$$\forall x, y \in E: \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

Доказательство. (⇒) Распишем квадраты норм, как скалярные произведения элементов самих на себя:

$$\langle x+y,x+y\rangle + \langle x-y,x-y\rangle = \langle x,x\rangle + 2\langle x,y\rangle + \langle y,y\rangle + \langle x,x\rangle - 2\langle x,y\rangle + \langle y,y\rangle = 2\|x\|^2 + 2\|y\|^2$$

(⇐) Без доказательства, очень-очень сложно

4.3 Эквивалентность норм в конечномерном пространстве...

Определение 4.7. Две нормы $p,q:V\to\mathbb{R}_+$ над пространством V называются эквивалентными, если

$$\exists C_1, C_2 > 0 \ \forall x \in V : \ C_1 p(x) \leqslant q(x) \leqslant C_2 p(x)$$

Лемма 4.3. Пусть E – линейное нормированное пространство, $u \dim E < +\infty$. Тогда любые две нормы на E эквивалентны.

Доказательство. (Доказательство для $\mathbb{K} = \mathbb{R}$)

Поскольку E конечномерно, то в нём можно выбрать максримальную по включению линейно независимую систему $e = \{e_1, \cdots, e_n\} \subset E$, тогда e будет являться базисом в E. Для произвольного элемента $x \in E$, имеющего в базисе e координатный столбец $\alpha \in \mathbb{R}^n$, зададим его евклидову норму следующим образом:

$$||x||_e = \sqrt{\sum_{k=1}^n \alpha_k^2}$$

Зафиксируем произвольную норму $\|\cdot\|$ и докажем, что она эквивалентна норме $\|\cdot\|_e$:

1. Покажем, что $\|\cdot\| < C\|\cdot\|_e$ для некоторого C > 0. Для произвольного $x \in E$, имеющего в базисе e координатный столбец $\alpha \in \mathbb{R}^n$, выполнено следующее:

$$||x|| = \left\| \sum_{k=1}^{n} \alpha_k e_k \right\| \leqslant \max_{1 \leqslant k \leqslant n} ||e_k|| \left(\sum_{k=1}^{n} |\alpha_k| \right)$$

Поскольку для любого $k \in \{1, \cdot, n\}$ выполнено $\alpha_k < \|x\|_e$, то достаточно взять число $C := n \cdot \max_{1 \le k \le n} \|e_k\|$

2. Покажем теперь, что $\|\cdot\|_e < \tilde{C} \|\cdot\|$ для некоторого $\tilde{C}>0$. Предположим противное, тогда

$$\forall n \in \mathbb{N} \ \exists x_n \in E : \ \|x_n\|_e > n \|x_n\|$$

Можно без ограничения общности считать, что $||x_n||_e = 1$ для любого $n \in \mathbb{N} \Rightarrow ||x_n|| < \frac{1}{n}$

Поскольку последовательность $\{x_n\}$ содержится в единичной сфере $S_e(0,1)$ и относительно евклидовой нормы сфера компактна, можно выделить из $\{x_n\}$ подпоследовательность $\{x_{n_k}\}$, сходящуюся относительно евклидовой нормы. Тогда

$$\exists x \in S_e(0,1): \|x_{n_k} - x\|_e \stackrel{k \to +\infty}{\to} 0$$

Тогда в силу предыдущего пункта $||x_{n_k}-x|| \to 0$. Но по построению $||x_{n_k}|| < \frac{1}{n_k} \stackrel{k \to +\infty}{\to} 0$, поэтому x = 0 – противоречие с тем, что $x \in S_e(0,1)$.

Следствие. Пусть E – линейное нормированное пространство $x_1, \dots, x_n \in E$. Тогда линейная оболочка $L := \langle x_1, \dots, x_n \rangle$ образует подпространство в E.

Доказательство. Заметим, что $\dim L < +\infty$, и по предыдущему утверждению сужение нормы из E на L эквивалентно евклидовой норме. Относительно евклидовой нормы конечномерное пространство полно, поэтому и L полно относительно нормы из E. Следовательно, L замкнуто, как подмножество в E. □

Определение 4.8. Линейным топологическим пространством называется топологическое пространство X с определёнными на нём операциями сложения и умножения на числа из поля \mathbb{K} , непрерывными на X.

Пример. Любое линейное нормированное пространство E является линейным топологическим.

4.4 Теорема Рисса о проекции

Определение 4.9. Пусть E — линейное нормированное пространство, $L \subset E$ — линейное нормированное подпространство, $h \in E$. Элементом наилучшего приближения для h называется $x \in L$ такой, что $||h - x|| = \rho(h, L) = \inf_{y \in L} ||h - y||$

Лемма 4.4. Пусть H – гильбертово пространство, $M \subset H$ – подпространство в H. Тогда для любого $h \in H$ существует единственный элемент наилучшего приближения $x \in M$.

Доказательство. Зафиксируем $h \in H$. Сначала докажем, что элемент наилучшего приближения для h существует.

Положим $d := \rho(h, M)$. Если d = 0, то, в силу замкнутости множества M, выполнено $h \in M$, и в качестве элемента наилучшего приближения для h подходит сам h. Иначе выберем $\{x_n\}_{n=1}^{\infty} \subset M$ такую, что $\|h - x_n\| \stackrel{n \to +\infty}{\to} d$. По равенству параллелограмма,

$$\forall n, m \in \mathbb{N}: \|x_n - x_m\|^2 = 2\|h - x_n\|^2 + 2\|h - x_m\|^2 - 4\left\|h - \frac{x_n + x_m}{2}\right\|^2$$

Поскольку $\|h-x_n\|^2 \stackrel{n\to +\infty}{\to} d^2$, $\|h-x_m\|^2 \stackrel{m\to +\infty}{\to} d^2$ и выполнено неравенство $\|h-\frac{x_n+x_m}{2}\| \geqslant d^2$, последовательность $\{x_n\}_{n=1}^\infty$ фундаментальна. Поскольку пространство H полно, а M замкнуто, то существует $x\in M$ такой, что $x_n\to_H x$, причём, в силу непрерывности нормы $(4.1), \|h-x\|=d$

Покажем теперь, что элемент наилучшего приближения для h единственен. Пусть для некоторого $y \in M$ тоже выполнено равенство ||h - y|| = d, тогда, по равенству параллелограмма, выполнено следующее:

$$4d^{2} = 2\|h - x\|^{2} + 2\|h - y\|^{2} = \|x - y\|^{2} + 4\left\|h - \frac{x + y}{2}\right\|^{2} \geqslant \|x - y\|^{2} + 4d^{2}$$

Для данной цепочки мы воспользовались следующими равенствами:

$$h-x+h-y=2h-x-y=2\left(h-\frac{x+y}{2}\right);\ h-x-h+y=-(x-y)$$

Итак, $||x - y|| = 0 \Rightarrow x = y$, что и требовалось.

Определение 4.10. Пусть E – евклидово пространство, $S \subset E$. Аннулятором множества S называется следующее множество:

$$H^{\perp} := \{ y \in E \mid \forall x \in S : (x, y) = 0 \}$$

Замечание. Легко проверить, что S^{\perp} является подпространством в E. Кроме того, выполнены равенства

$$S^{\perp} = \langle S \rangle^{\perp} = \overline{\langle S \rangle}^{\perp}$$

Теорема 4.3. Рисса, о проекции.

Пусть H – гильбертово пространство, $M\subset H$ – подпространство в H. Тогда $H=M\oplus M^\perp$.

Доказательство. Покажем сначала, что $H = M + M^{\perp}$ (разложение существует, но м.б. не единственно).

Зафиксируем $h \in H$, и по утверждению о наилучшем приближении, выберем $x \in M$. Положим y := h - x и $d := \|y\|$, тогда для произвольного $m \in M$ и произвольного $\alpha \in \mathbb{R} \setminus \{0\}$ выполнено следующее:

$$d^2 = \|h - x\|^2 \leqslant \|h - (x + \alpha m)\|^2 = d^2 - 2\alpha(h - x, m) + \alpha^2 \|m\|^2 \Rightarrow (y, m) \leqslant \frac{\alpha}{2} \|m\|^2$$

В силу произвольности α получаем, что $(y,m)=0 \Rightarrow y \in M^{\perp}$, причём h=x+y. Значит, выполнено равенство $H=M+M^{\perp}$.

Проверим теперь, что рассматриваемая сумма действительно прямая. Если $z \in M \cap M^{\perp} \Rightarrow (z,z) = 0 \Rightarrow z = 0$, что и означает требуемое.

4.5 Сепарабельные гильбертовы пространства

Определение 4.11. Пусть E – линейное нормированное пространство. Система $\{e_n\}_{n=1}^{\infty} \subset E$ называется базисом Шаудера в E, если

$$\forall x \in E \; \exists ! \{\alpha_n\}_{n=1}^{\infty} \subset \mathbb{K} : \; x = \sum_{n=1}^{\infty} \alpha_n e_n$$

Лемма 4.5. Неравенство Бесселя.

Пусть E – евклидово пространство, элементы $\{e_i\}_{i=1}^{\infty} \subset E$ образуют ортонормированную систему. Тогда для любого $x \in E$ выполнено следующее неравенство:

$$\sum_{k=1}^{\infty} |(x, e_k)|^2 \leqslant ||x||^2$$

Доказательство. Достаточно заметить, что в силу ортонормированности системы $\{e_k\}$ выполнено следующее равенство:

$$0 \leqslant \left\| x - \sum_{k=1}^{n} (x, e_k) e_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |(x, e_k)|^2$$

Поскольку левая часть равенства неотрицательна, то неотрицательна и правая часть, и верно это даже после предельного перехода $n \to +\infty$.

Лемма 4.6. Пусть E – евклидово пространство, элементы $e_1, \cdots, e_k \in E$ образуют ортонормированную систему. Тогда

$$\forall x \in E \ \forall \{\alpha_k\}_{k=1}^n \subset \mathbb{K} : \left\| x - \sum_{k=1}^n \alpha_k e_k \right\| \geqslant \left\| x - \sum_{k=1}^n (x, e_k) e_k \right\|$$

Более того, равенство в неравенстве выше достигается тогда и только тогда, когда

$$\forall k \in \overline{1,n} : \alpha_k = (x, e_k)$$

Доказательство. В силу ортонормированности системы $\{e_k\}_{k=1}^n$, выполнены следующие равенства:

$$\left\| x - \sum_{k=1}^{n} \alpha_k e_k \right\| = \left(x - \sum_{k=1}^{n} \alpha_k e_k, x - \sum_{k=1}^{n} \alpha_k e_k \right) =$$

$$= \|x\|^2 - 2 \sum_{k=1}^{n} \alpha_k (x, e_k) + \sum_{k=1}^{n} \alpha_k^2 = \left\| x - \sum_{k=1}^{n} (x, e_k) e_k \right\|^2 + \sum_{k=1}^{n} ((x, e_k) - \alpha_k)^2$$

Теорема 4.4. Пусть H – сепарабельное гильбертово пространство, $\dim H = +\infty$ u $e = \{e_n\}_{n=1}^{\infty}$ – ортонормированная система. Тогда следующие условия эквивалентны:

- 1. е ортонормированный базис в Н
- 2. $\overline{\langle e \rangle} = H$, то есть e полная система.
- 3. Для любого $h \in H$ выполнено равенство Парсеваля:

$$||h||^2 = \sum_{n=1}^{\infty} |(h, e_n)|^2$$

4.
$$e^{\perp} = \{0\}$$

Доказательство. • $(1 \Rightarrow 2)$ Очевидно из определения базиса.

- $(2 \Rightarrow 1)$ Зафиксируем произвольный $h \in H$ и произвольное $\varepsilon > 0$. По условию, существует конечный набор $\alpha_1, \dots, \alpha_n$ такой, что $\|h \sum_{k=1}^n \alpha_k e_k\| < \varepsilon$. Тогда, по предыдущей лемме, выполнено также неравенство $\|h \sum_{k=1}^n (h, e_k) e_k\| < \varepsilon$. Тогда, в силу произвольности числа ε , выполнено равенство $h = \sum_{n=1}^{\infty} (h, e_n) e_n$.
 - Проверим теперь, что разложение элемента h единственно. Пусть для некоторого набор $\{\beta_n\} \subset \mathbb{K}$ выполнено равенство $h = \sum_{n=1}^{\infty} \beta_n e_n$. Тогда для любого $k \in \mathbb{N}$, скалярно умножая частичную сумму ряда $\sum_{n=1}^{\infty} \beta_n e_n$ на e_k и переходя к пределу, получаем, что $\beta_k = (h, e_k)$, что и означает требуемое.
- $(1 \Leftrightarrow 3)$ Уже было замечено, что для любого $h \in H$ и любого $k \in \mathbb{N}$ выполнено следующее:

$$\left\| h - \sum_{k=1}^{n} (h, e_k) e_k \right\| = \|h\|^2 - \sum_{k=1}^{n} |(h, e_k)|^2$$

Значит, $h = \sum_{n=1}^{\infty} (h, e_n) e_n \Leftrightarrow ||h||^2 = \sum_{n=1}^{\infty} |(h, e_n)|^2$, и единственность разложения элемента h дказывается так же, как и в импликации выше.

• (2 \Leftrightarrow 4) Из теоремы Рисса и равенства $e^{\perp} = \overline{\langle e \rangle}^{\perp} = H^{\perp}$ получаем требуемое.

5 Линейные ограниченные операторы в линейных нормированных пространствах

5.1 Связь непрерывности и ограниченности линейного оператора

Определение 5.1. Пусть E_1, E_2 – линейные нормированные пространства над полем \mathbb{R} (\mathbb{R} или \mathbb{C}). Тогда $A: E_1 \to E_2$ будем называть оператором, а $f: E \to \mathbb{K}$ – функционалом.

Определение 5.2. Оператор A называется ограниченным, если для любого ограниченного $M \subset E_1$ образ A(M) ограничен в E_2 .

Определение 5.3. Для линейных операторов можно ввести следующие определения:

• Образ оператора:

Im
$$A = \{ y \in E_2 \mid \exists x \in E_1 : Ax = y \}$$

• Ядро оператора:

$$\ker A = \{ x \in E_1 \mid Ax = 0 \}$$

Определение 5.4. Линейный оператор A называется непрерывным, если для любой последовательности $x_n \to x$ выполнено $Ax_n \to Ax$.

Теорема 5.1. Пусть E_1, E_2 – линейные нормированные пространства. $A: E_1 \to E_2$ – линейный оператор. Тогда A – ограниченный тогда и только тогда, когда A – непрерывный.

Доказательство. (\Rightarrow) Как мы знаем, $x_n \to x \Leftrightarrow ||x_n - x|| \to 0$. Тогда

$$||Ax_n - Ax||_{E_2} = ||A(x_n - x)||_{E_2} \le ||A|| \cdot ||x_n - x||_{E_1} \to 0$$

 (\Leftarrow) Предположим противное, то есть A не является ограниченным:

$$\forall K \exists x : ||Ax||_{E_2} > K||x||_{E_1}$$

Пусть K пробегает все натуральные числа, тогда образуется последовательность $\{x_n\}$ такая, что $\|Ax_n\|_{E_2} > n\|x_n\|_{E_1}$. Все x_n , очевидно, ненулевые. Рассмотрим последовательность $y_n = \frac{1}{n} \frac{x_n}{\|x_n\|_{E_1}} \to 0$.

$$\forall n \in \mathbb{N} : \|Ay_n\|_{E_2} = \frac{\|Ax_n\|_{E_2}}{n\|x_n\|_{E_1}} > 1$$

Но из-за непрерывности оператора $Ay_n \to A0 = 0$. Противоречие.

5.2 Топологии и сходимости в пространстве операторов...

Лемма 5.1. Если A – линейный оператор, то следующие условия эквивалентны:

- 1. А ограниченный
- 2. $\exists K : ||Ax||_{E_2} \leqslant K||x||_{E_1}$
- 3. Образ единичного шара под действием оператора A ограничен

Доказательство. $(1 \Rightarrow 2)$ Если A – ограниченный, то образ любого ограниченного множества ограничен. В частности, образ единичного шара B ограничен. То есть

$$\exists L \,\forall x \neq 0: \, \left\| A \left(\frac{x}{\|x\|_{E_1}} \right) \right\|_{E_2} \leqslant K$$

В силу линейности оператора:

$$\exists K \, \forall x \neq 0 : \, \|Ax\|_{E_2} \leqslant K \|x\|_{E_1}$$

 $(2 \Rightarrow 3)$ Если

$$\exists K: ||Ax||_{E_2} \leqslant K||x||_{E_1}$$

, то $\forall x: \|x\|_{E_1} = 1$ получаем, что $\|Ax\|_{E_2} \leqslant K$. То есть образ единичного шара ограничен. $(3 \Rightarrow 1)$

$$\exists K \, \forall x, \|x\|_{E_1} = 1 : \|Ax\|_{E_2} \leqslant K$$

Пусть $M \subset E_1$ ограничено, то есть лежит в шаре радиуса R. Далее считаем, что $x \neq 0$:

$$\forall x \in M: \left\| A\left(\frac{x}{\|x\|_{E_1}}\right) \right\| \leqslant K \Rightarrow \forall x \in M: \|Ax\|_{E_2} \leqslant K\|x\|_{E_1} \leqslant K \cdot R$$

Определение 5.5. Нормой линейного ограниченного оператора A называется

$$||A|| = \inf\{K \mid \forall x : ||Ax||_{E_2} \leqslant K||x||_{E_1}\}$$

Определение 5.6. $\mathcal{L}(E_1, E_2)$ – пространство линейных ограниченных операторов, действующих из E_1 в E_2 . Оно образует линейное пространство над \mathbb{K} .

Определение 5.7. Двойственное или сопряжённое пространство – это

$$E^* = \mathcal{L}(E, \mathbb{K})$$

где $\mathbb{K} = \mathbb{R}$ или \mathbb{C} , E – линейное нормированное пространство.

Теорема 5.2. Пусть E_1, E_2 – линейные нормированные пространства. Тогда

- 1. $\mathcal{L}(E_1, E_2)$ линейное нормированное пространство с нормой ||A||.
- 2. Если E_2 банахово, то $\mathcal{L}(E_1, E_2)$ банахово.

Доказательство. 1. Линейность данного пространства очевидна. Проверим неравенство треугольника для нормы:

$$||A_1 + A_2|| = \sup_{\|x\| = 1} ||(A_1 + A_2)x|| \leqslant \sup_{\|x\| = 1} \{||A_1x|| + ||A_2x||\} \leqslant \sup_{\|x\| = 1} ||A_1x|| + \sup_{\|x\| = 1} ||A_2x|| = ||A_1|| + ||A_2||$$

2. Покажем, что $\mathcal{L}(E_1, E_2)$ – полное, если E_2 – полное.

Пусть $\{A_n\}_{n=1}^{\infty} \subset \mathcal{L}(E_1, E_2)$ – фундаментальна, то есть

$$\forall \varepsilon > 0 \,\exists N \,\forall n, m \geqslant N : \, \|A_n - A_m\| < \varepsilon$$

Заметим, что

$$\forall x \in S_{E_1}(0,1) \|A_n x - A_m x\| = \|(A_n - A_m)x\| \leqslant \|A_n - A_m\| \|x\|_{E_1} < \varepsilon$$

Получается, что $\forall x \in S_{E_1}(0,1)$ последовательность $\{A_n x\}_{n=1}^{\infty}$ фундаментальна. Так как E_2 – полное, то эта последовательность сходится. Обозначим её предел через Ax. A, очевидно, линейный оператор. Покажем, что он ограничен.

Так как $\|\cdot\|$ – непрерывная функция, то $\|A_n x\|_{E_2} \to \|Ax\|_{E_2}$. Воспользуемся тем, что $\{A_n\}_{n=1}^{\infty}$ ограничена (из-за фундаментальности), то есть

$$\exists K \, \forall n : \|A_n\| \leqslant K \Rightarrow \|A_n x\|_{E_2} \leqslant \|A_n\| \|x\|_{E_1} \leqslant K \|x\|_{E_1}$$

Переходя к пределу в этом неравенстве, получаем, что $||Ax|| \leq K ||x||_{E_1}$. Таким образом, A является ограниченным линейным оператором и лежит в $\mathcal{L}(E_1, E_2)$. Осталось показать, что $A_n \to A$.

Вспомним фундаментальность:

$$\forall x \in S_{E_1}(0,1) : ||A_n x - A_m x||_{E_2} < \varepsilon$$

Зафиксируем номер n и устремим m к бесконечности. Тогда

$$\forall x \in S_{E_1}(0,1) : \|A_n x - Ax\| \leqslant \varepsilon$$

А значит

$$\sup_{\|x\|=1} \|A_n x - Ax\| \leqslant \varepsilon$$

Это и означает, что $||A_n - A|| \to 0$, то есть $A_n \to A$.

Следствие. Если E – линейное нормированное пространство, то E^* всегда полное.

5.3 Задача о продолжении непрерывного отображения

Теорема 5.3. Пусть E_1 – линейное нормированное пространство, E_2 – банохово пространство и A – линейный ограниченный оператор: $A: D(A) \to E_2$, где D(A) – линейное многообразие в $E_1 = \overline{D(A)}$. Тогда $\exists ! \tilde{A} \in \mathcal{L}(E_1, E_2)$:

1.
$$\tilde{A}|_{D(A)} = A$$

2.
$$\|\tilde{A}\| = \|A\|$$

Доказательство. Единственность.

Пусть есть \tilde{A}^1, \tilde{A}^2 . Из замкнутости E_1 :

$$\forall x \in E_1 \ \exists \{x_n\}_{n=1}^{\infty} \subset D(A): \ x_n \to x$$

При этом, $\tilde{A}^1 x = \lim_{n \to +\infty} A x_n = \tilde{A}^2 x$. Значит, $\tilde{A}^1 = \tilde{A}^2$.

Существование.

Определим оператор \tilde{A} по формуле $\tilde{A}x=\lim_{n\to+\infty}Ax_n$. Для коректности необходимо показать:

- Предел $\lim_{n\to+\infty} Ax_n$ существует
- Предел не зависит от выбора $\{x_n\}_{n=1}^{\infty}$
- ullet Действительно $\tilde{A}|_{D(A)}=A$

Покажем:

- Так как $\{x_n\}_{n=1}^{\infty}$ сходится, она фундаментальна, значит последовательность $\{Ax_n\}_{n=1}^{\infty} \subset E_2$ фундаментальна. Пространство E_2 банахово, поэтому предел $\lim_{n\to+\infty} Ax_n$ существует.
- Пусть есть две последовательности $\{x_n'\}_{n=1}^{\infty}, \{x_n''\}_{n=1}^{\infty}$, сходящиеся к одному и тому же $x \in E_1$, но пусть пределы $\lim_{n \to +\infty} Ax_n'$, $\lim_{n \to +\infty} Ax_n''$ разные. Тогда возьмём последовательность $\{y_n\}$, полученную чередованием элементов $\{x_n'\}_{n=1}^{\infty}, \{x_n''\}_{n=1}^{\infty}$. Но получим, что $\{Ay_n\}_{n=1}^{\infty}$ расходится. Противоречие предыдущему пункту.
- Возьмём константную последовательность $\{x\}_{n=1}^{\infty}, x \in D(A)$. Очевидно, что $\lim_{n \to +\infty} Ax = Ax$. По предыдущему пункту $\lim_{n \to +\infty} Ax_n$ не зависит от выбора последовательности, значит $\tilde{A}|_{D(A)} = A$.

Осталось показать, что \tilde{A} — линейный ограниченный оператор. Линейность очевидна из линейности A и предела.

Ограниченность (а значит и непрерывность) очевидна из непрерывности нормы:

$$\tilde{A}x = \lim_{n \to +\infty} Ax_n \Leftrightarrow ||Ax_n|| \to ||\tilde{A}x||$$

5.4 Теорема Банаха-Штейнгауза

Теорема 5.4. Теорема Банаха-Штейнгауза.

Пусть X,Y – линейные нормированные пространства, причём X полно. Пусть $\mathcal{A}\subseteq\mathcal{L}(X,Y)$ – семейство линейных непрерывных операторов. Тогда

$$\forall x \in X : \sup\{\|Ax\|_Y \mid A \in \mathcal{A}\} < +\infty \Rightarrow \sup\{\|A\| \mid A \in \mathcal{A}\} < +\infty$$

То есть, из поточечной ограниченности следует равномерная ограниченность.

Доказательство. Пусть

$$X_n = \{ x \in X \mid \sup_{A \in \mathcal{A}} ||Ax||_Y \leqslant n \} = \bigcap_{A \in \mathcal{A}} \{ x \in X \mid ||Ax||_Y \leqslant n \}$$

Для любого $A \in \mathcal{A}$ множество $\{x \in X \mid ||Ax||_Y \leqslant n\}$ замкнуто, как прообраз замкнутого шара $\overline{B}(0,n) \subset Y$ под действием непрерывного отображения A, а пересечение любого количества замкнутых множеств замкнуто.

Так как $\bigcup_{n=1}^{\infty} X_n = X$, то по теореме Бэра (X полное, а значит все X_n не могут быть не плотными ни в одном шаре, а значит найдётся m и какой-то шар, в котором X_m плотно):

$$\exists m \ \exists \overline{B}(x_0, \varepsilon) : \ \overline{B}(x_0, \varepsilon) \subseteq X_m$$

Пусть $u \in X$, $||u||_X = 1$. Тогда рассмотрим $A \in \mathcal{A}$:

$$||Au||_Y = \frac{1}{\varepsilon} ||A[\varepsilon u] + Ax_0 - Ax_0||_Y = \frac{1}{\varepsilon} ||A[x_0 + \varepsilon u] - Ax_0||_Y \leqslant \frac{1}{\varepsilon} (||A[x_0 + \varepsilon u]||_Y + ||Ax_0||_Y) \leqslant \frac{1}{\varepsilon} (m + m)$$

Последнее неравенство верно из-за того, что $x_0 \in X_m, x_0 + \varepsilon u \in \overline{B}(x_0, \varepsilon) \subset X_m$. В неравенстве сверху можно перейти к супремуму по u и получить, что

$$\forall A \in \mathcal{A}: \ \|A\| \leqslant \frac{2m}{\varepsilon} < +\infty$$

5.5 Полнота пространства...

Теорема 5.5. Полнота $\mathcal{L}(E_1, E_2)$ относительно поточечной сходимости.

Пусть E_1, E_2 — банаховы пространства, $\{A_n\}_{n=1}^{\infty} \subset \mathcal{L}(E_1, E_2)$, причём $\forall x \in E_1: \{A_nx\}_{n=1}^{\infty}$ — фундаментальная в E_2 . Тогда

$$\exists A \in \mathcal{L}(E_1, E_2) \ \forall x \in E_1 : \lim_{n \to +\infty} A_n x = Ax$$

 \mathcal{A} оказательство. Так как $\{A_nx\}_{n=1}^\infty$ фундаментальна в банаховом E_2 , то $\exists \lim_{n\to+\infty} A_nx$, $Ax:=\lim_{n\to+\infty} A_nx$.

Осталось показать, что определённый таким образом оператор – линейный непрерывный. Линейность очевидна из линейности предела и каждого A_n .

Так как $\forall x \in E_1$: $\{A_n x\}_{n=1}^{\infty}$ фундаментальна, то $\{A_n\}_{n=1}^{\infty}$ поточечно ограничена и по теореме Банаха-Штейнгауза ограничена равномерна:

$$\exists M \ \forall n \in \mathbb{N} : \ \|A_n\| \leqslant M$$

Тогда

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le M||x||, ||A_n x|| \to ||Ax|| \Rightarrow ||Ax|| \le M||x||$$

То есть оператор ограничен и непрерывен, а значит $A \in \mathcal{L}(E_1, E_2)$.

Теорема 5.6. Критерий поточечной сходимости операторов из $\mathcal{L}(E_1, E_2)$.

Пусть E_1 – банахово, E_2 – линейное нормированное пространство. Верно, что $\forall \{A_n\}_{n=1}^{\infty} \subset \mathcal{L}(E_1, E_2), \ A \in \mathcal{L}(E_1, E_2)$:

$$A_n \xrightarrow{nomovevno} A \Leftrightarrow \begin{cases} \exists M \ \forall n : \ ||A_n|| \leqslant M \\ \forall s \in S, E_1 =: \overline{\langle S \rangle} : \ A_n s \to A s \end{cases}$$

Доказательство. (\Rightarrow) Пункт 2 очевиден. Из поточечной сходимости $\{A_n x\}$ следует поточечная ограниченность $\{A_n x\}_{n=1}^{\infty}$. Значит, по теорема Банаха-Штейнгауза последовательность $\{\|A_n\|\}_{n=1}^{\infty}$ ограничена.

 (\Leftarrow) Так как множество $\langle S \rangle$ всюжу плотно в E_1 :

$$\forall \varepsilon > 0 \ \forall x \in E_1 \ \exists y \in \langle S \rangle : \ \|x - y\| < \varepsilon$$

Тогда для y (благодаря п.2) верно:

$$\exists N(\varepsilon, y) \, \forall n > N : \|A_n y - Ay\| < \varepsilon$$

Перейдём к $x \in E_1$:

$$||A_nx - Ax|| \leqslant ||Ax - Ay|| + ||A_ny - Ay|| + ||A_ny - A_nx|| \leqslant \varepsilon ||A|| + \varepsilon + \varepsilon ||A_n|| \leqslant \varepsilon (||A|| + M + 1)$$

Значит A_n поточечно сходится к A на E_1 .