Korygowanie harmonogramów z uwzględnieniem awarii maszyn

inż. Kamil Niemczyk

Promotor: dr hab. Wojciech Bożejko prof. nadzw. PWr

Politechnika Wrocławska Automatyka i Robotyka, Wydział Elektroniki Technologie informacyjne w systemach automatyki

Plan prezentacji

- Elastyczny problem gniazdowy
 - Sformułowanie problemu
 - Cele do osiągnięcia i awarie maszyn
- Algorytmy
 - Model danych
 - Rozwiązanie początkowe
 - TSAB
- 3 Eksperymenty obliczeniowe
 - Parametryzacja i środowisko testowe
 - Wyniki
- 4 Wnioski

Zaproponowano algorytm Tabu Search z nawrotami, który przystosowano do rozwiązywania elastycznych problemów gniazdowych.

Sformułowanie problemu

- n wzajemnie niezależnych zadań gotowych do rozpoczęcia przetwarzania w chwili czasu 0.
- Każde zadanie J_i składa się z O_i nieprzerywalnych operacji, o określonej kolejności wykonania.
- m maszyn, które nigdy nie ulegają awarii, są zawsze dostępne i mogą przetwarzać jednocześnie co najwyżej jedną operację.
- Każda operacja O_{ij} ma zdefiniowany zbiór maszyn $M_{kij} \subseteq 1,...,m$, które mogą ją przetwarzać.
- Czasy przetwarzania operacji O_{ij} na maszynach M_{kij} są zdefiniowane w zbiorze P_{ij} o tym samym rozmiarze co M_{kij} .
- Czasy przezbrojenia maszyn są niezależne od kolejności operacji na nich wykonywanych i wliczone są w ich czasy przetwarzania.

Cele do osiągnięcia i awarie maszyn

Celem jest minimalizacja całkowitego czasu wykonania harmonogramu C_{max} , w literaturze anglojęzycznej częściej określanym jako *makespan*.

w rzeczywistych warunkach produkcyjnych ustalony harmonogram może zostać zakłócony, na przykład na skutek awarii maszyny. Podobny efekt można uzyskać planując momenty wystąpienia awarii – może to być na przykład zaplanowany serwis maszyny.

Model danych

Podstawowym elementem harmonogramu jest operacja.

PID	numer zadania, którego elementem jest operacja
ID	numer kolejnościowy operacji w zadaniu PID
М	numer maszyny, do której aktualnie przyporządkowano operację
S	czas rozpoczęcia wykonywania operacji w harmonogramie
Р	mapa czasów przetwarzania operacji na poszczególnych maszynach, na których można przetwarzać daną operację
С	czas zakończenia operacji na maszynie M
В	bufor czasowy (domyślnie $= 0$)

Table: Elementy opisujące pojedynczą operację harmonogramu.

Rozwiązanie początkowe

IniPopGen - metoda wstawień dostosowana do elastycznych problemów gniazdowych zaproponowana przez Al-Hinai oraz ElMekkawy w 2011.

Choć zaprojektowana do działania z algorytmem genetycznym, praktycznie bez problemu udało się go zaadoptować do wykorzystania z metodą Tabu Search z nawrotami (*TSAB*), którą pierwszy raz zaproponowali Smutnicki i Nowicki w 1996.

TSAB

Figure: Przykładowy harmonogram wraz z wyróżnioną ścieżką krytyczną zawierającą dwa bloki krytyczne, każdy składający się z trzech operacji, na maszynach 1 i 4.

Repair perm

- Złożoność obliczeniowa O(mn).
- Działa tylko dla rozwiązań dopuszczalnych.
- Dopóki nie zostaną uszeregowane wszystkie operacje wszystkich zadań.
 - Pobranie operacji z maszyny M_k
 - Jeżeli poprzednia w kolejności operacja została już uszeregowana to daną operację można uszeregować według przydziału i ustawić czas jej rozpoczęcia.

Parametryzacja i środowisko testowe

Testy zostały przeprowadzone na laptopie z procesorem Intel Core i5 1.9GHz, 4GB pamięci RAM, na systemie Windows 10. Aplikacja realizująca opisane algorytmy została napisana w C++.

Kod wytworzony przez bibliotekę generującą HTML przetestowano na przeglądarce internetowej Google Chrome.

W algorytmie *TSAB* przyjęto:

- długość listy tabu: 7,
- długość listy najlepszych rozwiązań: 5,
- *maxIter* = 10.

Częstotliwość awarii na ścieżce krytycznej

Zróżnicowanie C_{max} dla różnych rozmiarów instancji

Wnioski

populację początkową w Algorytmie Genetycznym zaproponowanym przez Al-Hinai oraz ElMekkawy w 2011 oraz bardzo efektywnego *TSAB* Nowickiego i Smutnickiego z 1996. Te połączenie dało znakomite rezultaty wydajnościowe w porównaniu z Algorytmem Genetycznym proponowanym przez Al-Hinai oraz ElMekkawy.

Zaproponowany algorytm jest hybryda metody iniciuiacei

 Aby łatwiej było prezentować wyniki eksperymentów stworzono narzędzie służące do graficznej prezentacji otrzymywanych w eksperymentach wyników.