Zadanie 2.

2. (1pkt) Udowodnij, że algorytm Kruskala znajduje minimalne drzewa spinające poprzez przyrównanie tych drzew do drzew optymalnych.

Weźmy dowolny spójny graf G. Niech T będzie wynikiem algorytmu Kruskala na G. Jak pierwszy raz napotkamy na krawędź łączącą dwie spójne składowe to na pewno ją weźmiemy, więc T jest spójne.

Minimalność:

Założenie indukcyjne: Niech F będzie zbiorem wybranych krawędzi w danym kroku. Istnieje drzewo optymalne, którego podzbiorem jest F i które nie zawiera żadnej krawędzi, którą algorytm odrzucił.

- 1. F jest puste :)
- 2. jeśli następna krawędź nie należy do MST to możemy ją do niego domontować. Powstał cykl, w którym jest jakaś krawędź f, której waga jest większa od e. Wywalamy f do kosza i mamy prawdziwe MST.

Zadanie 3.

Danych jest n odcinków $I_j = \langle p_j, k_j \rangle$, leżących na osi OX, $j=1,\ldots,n$. Ułóż algorytm znajdujący zbiór $S \subseteq \{I_1,\ldots,I_n\}$, nieprzecinających się odcinków, o największej mocy.

```
\begin{aligned} & \text{GreedySelect}(\mathsf{I}[1,...,\mathsf{n}]) \\ & \text{sort}(\mathsf{I}) \ // \ \text{sortuj rosnąco względem} \ k_i \\ & S = \{I[1]\} \ // \ \text{optymalny zbiór} \\ & \text{index} = 1 \ // \ \text{indeks ostatniego odcinka dodanego do S} \\ & \text{for i in 2 to n} \\ & & \text{if } (p[i] \geq k[index]) \ // \ \text{jeśli akt. odcinek nie przecina się z ostatnim z S} \\ & & \text{S.push}(\mathsf{I}[i]) \\ & & \text{index} = i \end{aligned}
```

Wyjaśnienie działania:

Na początku algorytmu sortujemy tablicę odcinków względem ich końca. Potem w każdym kroku dodajemy do S najwcześniej zaczynający się odcinek, który nie przecina się z żadnym z S.

Dowód nie wprost:

Niech rozwiązanie zwrócone przez GreedySelect nazywa się S, natomiast bardziej optymalne rozwiązanie to A. Niech i będzie indeksem pierwszej pozycji, na której te rozwiązania się różnią. Wtedy rozpatrzmy przypadki: 1. $(S)k_i > (A)k_i$ czyli i-ty odcinek A kończy się wcześniej niż S. Ale nasz algorytm zawsze wybiera odcinki najwcześniej kończące się,

a to by oznaczało, że $(A)k_i$ musiałby zostać wybrany przed $(S)k_i$, co jest sprzeczne z założeniem.

- 2. $(S)k_i = (A)k_i$ wtedy oba algorytmy mają ten sam wybór, więc sprzeczność z założeniem, że A jest lepsze od S.
- 3. $(S)k_i < (A)k_i$ czyli i-ty odcinek A kończy się później niż S. Wtedy rozwiązanie A jest co najwyżej tak samo dobre co S, czyli sprzeczność.

Zadanie 4.

Rozważ następującą wersję problemu wydawania reszty: dla danych liczb naturalnych a, b (a \leq b) chcemy przedstawić ułamek $\frac{a}{b}$ jako sumę różnych ułamków o licznikach równych 1.

Udowodnij, że algorytm zachłanny zawsze daje rozwiązanie. Czy zawsze jest to rozwiązanie optymalne (tj. o najmniejszej liczbie składników)?

Algorytm zachłanny jest postaci:

$$\frac{a}{b} = \frac{1}{\left[\frac{b}{a}\right]} + alg\left(\frac{a}{b} - \frac{1}{\left[\frac{b}{a}\right]}\right)$$

Dowód poprawności:

Zacznijmy od tego, że algorytm zawsze się kończy, bo:

$$\frac{a}{b} - \frac{1}{\left|\frac{b}{a}\right|} < \frac{1}{\left|\frac{b}{a}\right|}$$

$$\frac{a}{b} < \frac{2}{\left|\frac{b}{a}\right|}$$

$$\frac{a}{b} \left|\frac{b}{a}\right| < 2$$

Zatem skoro w każdym kolejnym kroku wykonujemy działania na coraz mniejszych liczbach, to w pewnym momencie otrzymamy wynik.

Algorytm nie zawsze zwraca rozwiązanie optymalne, kontrprzykład:

 $\frac{a}{b} = \frac{9}{20}$ ma rozwiązanie optymalne $\frac{1}{4} + \frac{1}{5}$, jednak algorytm zwróci rozwiązanie nieoptymalne:

$$\frac{9}{20} = \frac{1}{\left\lceil \frac{20}{9} \right\rceil} + alg\left(\frac{9}{20} - \frac{1}{\left\lceil \frac{20}{9} \right\rceil}\right) = \frac{1}{3} + alg\left(\frac{9}{20} - \frac{1}{3}\right) = \frac{1}{3} + alg\left(\frac{7}{60}\right) = \frac{1}{3} + \frac{1}{\left\lceil \frac{60}{7} \right\rceil} + alg\left(\frac{7}{60} - \frac{1}{\left\lceil \frac{60}{7} \right\rceil}\right) = \frac{1}{3} + \frac{1}{9} + alg\left(\frac{7}{60} - \frac{1}{9}\right) = \frac{1}{3} + \frac{1}{9} + alg\left(\frac{1}{180}\right) = \frac{1}{3} + \frac{1}{9} + \frac{1}{180}$$

Zadanie 5. (1,5pkt)

Ułóż algorytm, który dla danego n-wierzchołkowego drzewa i liczby k, pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce prostej było nie więcej niż k pokolorowanych wierzchołków.

Obserwacja 1:

Jeśli k = 1, to można pomalować tylko 1 wierzchołek.

Gdybyśmy pomalowali 2 wierzchołki, to ze spójności drzewa istniałaby ścieżka między nimi z 2 pomalowanymi wierzchołkami, co jest sprzecznością z k = 1.

Obserwacja 2:

Najbardziej opłaca nam się kolorować liście.

Przykładowo, jeśli rozważymy drzewo pełne głębokości 3 (7 wierzchołków) oraz k=2, to możemy pokolorować 4 liście. Jeśli zamiast któregoś z liści pokolorowalibyśmy inny wierzchołek, to istniałaby ścieżka z 3 wierzchołkami pokolorowanymi, sprzeczność z k=2, czyli kolorowanie liści jest optymalne.

Obserwacja 3:

Jeśli k > 2, to możemy pokolorować wszystkie liście, a następnie powtórzyć proces dla $k = \left|\frac{k}{2}\right|$ oraz drzewa bez liści.

Łącząc tą obserwację z obserwacją pierwszą okazuje się, że dla k=3 możemy pokolorować maksymalnie L+1 wierzchołków, gdzie L to ilość liści.

Stąd algorytm kolorowania wierzchołków wygląda następująco: ColorTree(T, k)

```
T' = T

for-each vertice v in T:

    colored = false

while (k > 1)

    for-each leaf in T':

        colored = true //własność T a nie T'

    k = k div 2

    remove all leafs from T'

if (k = 1)

    for 1 random leaf t of T':

    colored = true

return T
```

Zadanie 6. (2 pkt)

6. (2pkt) Ułóż algorytm, który dla danego spójnego grafu G oraz krawędzi e sprawdza w czasie O(n+m), czy krawędź e należy do jakiegoś minimalnego drzewa spinającego grafu G. Możesz założyć, że wszystkie wagi krawędzi są różne.

Krawędź e nie jest maksymalną krawędzią żadnego cyklu ⇔ należy do MST

=> Nie wprost

Jeżeli nie leży na żadnym cyklu to jest mostem i należy do MST. Jeżeli leży na jakimś cyklu, to możemy ją zamontować do MST i wywalić tą najcięższą krawędź, teraz mamy prawdziwe MST, z e.

<= Nie wprost

Wywalmy e do kosza. MST nam się rozspójniło na dwie spójne składowe, które w oryginalnym grafie łączyły przynajmniej dwie krawędzie na cyklu, którego e było maksymalną krawędzią. Weźmy tą lżejszą i mamy prawdziwe MST.

Ale zarówno Prim jak i Kruskal działają w czasie gorszym niż O(n + m), zatem zamiast budować MST i sprawdzać czy e do niego należy wykonamy DFS z jednego z wierzchołków e (nieważne którego).

Jeśli w wyniku DFS dojdziemy do drugiego końca e to znaczy, że e jest maksymalną krawędzią jakiegoś cyklu, czyli nie należy do MST.

W p.p. gdy sprawdzimy każdy wierzchołek (korzystając tylko z krawędzi tańszych od e) i nie dotrzemy do v, to e należy do MST.

```
CheckMST(G, e) return DFS(G, cost(e), e.start, e.end)
```

```
DFS(G, maxcost, cur, end)
if (cur == end)
    return false
for-each v - neighbour of cur:
    if cost(cur, v) < maxcost:
        result = DFS(G, maxcost, v, end)
        if !result:
        return false</pre>
```

return true

Zadanie 7. (2pkt)

System złożony z dwóch maszyn A i B wykonuje n zadań.

Każde z zadań wykonywane jest na obydwu maszynach, przy czym wykonanie zadania na maszynie B można rozpocząć dopiero po zakończeniu wykonywania go na maszynie A. Dla każdego zadania określone są dwie liczby naturalne a_i, b_i określające czas wykonania i-tego zadania na maszynie A oraz B (odpowiednio). Ułóż algorytm ustawiający zadania w kolejności minimalizującej czas zakończenia wykonania ostatniego zadania przez maszynę B.

Niech x_i oznacza czas "zmarnowany" na oczekiwanie przez maszynę B na wykonanie i-tego zadania przez maszynę A.

Łatwo zauważyć, że zawsze $x_1 = a_1$.

Następnie mamy $x_2 = \max(0, a_1 + a_2 - b_1 - x_1)$, gdyż aby wykonać drugie zadanie na B, najpierw musimy wykonać pierwsze na obu oraz drugie na A oraz odejmujemy x_1 , bo nie chcemy 2 razy liczyć tego samego oczekiwania. Jeśli A wykonało 2 zadania przed pierwszym B, to ta suma jest ujemna, zatem bierzemy czas oczekiwania równy 0 (bo po wykonaniu 1 w B od razu można

zrobić 2 w B). Indukcyjnie można wywnioskować stąd wzór:

$$x_n = \max\left(0, \sum_{k=1}^n a_k - \sum_{k=1}^{n-1} b_k - \sum_{k=1}^{n-1} x_k\right)$$

Stąd wynika, że:

$$\sum_{k=1}^{n} x_k = \max_{1 \le i \le n} (K_i)$$

Gdzie:

$$K_n = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n-1} b_k$$

Do optymalnego ułożenia stosujemy zasadę Johnsona która mówi, żeby:

- 1. Wybrać najkrótsze zadanie z nieprzydzielonych w A lub B,
- a) Jeśli dla niego A < B, to zadanie to wrzucamy na początek,
- b) Jeśli dla niego A > B, to zadanie to wrzucamy na koniec,
- c) Jeśli dla niego A = B, to nie ma znaczenia czy damy je na początek czy koniec.
- 2. Usunąć to zadanie z listy zadań zarówno A, jak i B.
- 3. Powtarzać kroki 1,2 tak długo, aż wszystkie zadania zostaną przydzielone.

```
Pseudokod:
struct Job
{
   int a, b, idx;
bool operator<(Job o) const
     return min(a, b) < min(o.a, o.b);
   }
};
// ustala kolejność zadań maszyn
vector<Job> johnsons_rule(vector<Job> jobs)
  sort(jobs.begin(), jobs.end());
  vector<Job> a, b;
  for (Job j : jobs)
    if (j.a < j.b)
       a.push_back(j);
    else
       b.push back(j);
  a.insert(a.end(), b.rbegin(), b.rend());
  return a;
}
// oblicza czas wykonania zadań na maszynie B (nie jest konieczne do zadania)
pair<int, int> finish times(vector<Job> const& jobs)
  int t1 = 0, t2 = 0;
  for (Job j : jobs)
t1 += j.a;
```

```
t2 = max(t2, t1) + j.b;
}
return make_pair(t1, t2);
}
```

Zadanie 8. (2pkt)

Niech T = (V, E) będzie drzewem a P(u, v) niech oznacza ścieżką w T (rozumianą jako zbiór krawędzi) łączącą wierzchołki u i v.

Ułóż algorytm, który dla drzewa T znajduje trzy wierzchołki a, b, c, dla których zbiór $\{e \in E: e \in P(a,b) \cup P(a,c) \cup P(b,c)\}$ jest maksymalnie duży.

Zadanie jest trudniejszą wersją zadania 1b z listy 1, zatem pomysł jest podobny – DFS i każde wywołanie rekurencyjne zwraca długość 3 najdłuższych, rozłącznych ścieżek wraz z liśćmi, w których się one kończą.

```
// edges to ilość rozłącznych krawędzi, które dany wierzchołek dodaje do rozw.
ThreeVertices(T)
[(edges1, a), (edges2, b), (edges3, c)] = DFS(T)
return (a, b, c)
DFS(T)
if T is leaf
      return [(1, T), (0, null), (0, null)]
p1 = (edges1 = 0, vertice1 = T)
p2 = (edges2 = 0, vertice2 = null)
p3 = (edges3 = 0, vertices3 = null)
ev = (p1, p2, p3)
for-each c – child of T:
      pairs = [(e1, v1), (e2, v2), (e3, v3)] = DFS(c)
      ev.push(pairs)
      sort ev by edges
      remove 3 last pairs from ev
```

edges1 += 1 // tylko edges1, bo nie chcemy liczyć kraw. wspólnych wielokrotnie return ev

Jako ciekawostka, rozwiązanie zwraca moc maksymalnego zbioru krawędzi o 1 więcej niż w rzeczywistości, bo zwiększanie edges1 zakłada, że istnieje krawędź do ojca, a wiemy, że korzeń nie posiada ojca.

Nie wpływa to jednak na poprawność algorytmu, bo dla wszystkich pozostałych wierzchołków edges1 jest poprawna.

Przykład działania programu na następującym drzewie:

Stąd wartości zwracane przez DFS wyglądają następująco:

Wierzchołek	Co zwraca
A - I	< $(1, self), (0, null), (0, null) >$
J	<(2,A),(1,B),(0,J)>
K	<(2,C),(0,K),(0,null)>
L	<(2,D),(1,E),(0,L)>
M	<(2,F),(0,M),(0,null)>
N	<(2,G),(1,H),(1,I)>
0	<(3,A),(2,C),(1,B)>
Р	<(3,D),(2,F),(2,G)>
R	<(4,A),(3,D),(2,C)>

Stąd wynikiem jest trójka A,D,C.

Zadanie 9. (2pkt)

Operacja swap(i, j) na permutacji powoduje przestawienie elementów znajdujących się na pozycjach i oraz j. Koszt takiej operacji określamy na |i-j|. Kosztem ciągu operacji swap jest suma kosztów poszczególnych operacji. Ułóż algorytm, który dla danych π oraz σ - permutacji liczb $\{1, 2, \ldots, n\}$, znajdzie ciąg operacji swap o najmniejszym koszcie, który przekształca permutację π w permutację σ .

```
FindSequence(pi, sigma)
seq = []
i = length(pi)
while (i > 0) // dopóki istnieje element który należy przesunąć w lewo
        // znajdź indeks najbardziej skrajnie prawego takiego elementu
        while (pi[i] == sigma[i])
                i--
        // znajdź element, który powinien trafić na pozycję i
        j = FindIndexOf(pi, sigma[i])
        k = j + 1, m = i
        while (m > j) // szukamy indeksu elementu do zamiany z j
                m = FindIndexOf(pi, sigma[k])
                k++
        k--
        seq.push_back(<j, k>)
        swap(pi[i], pi[k])
return seq
ZŁO, nie ruszać!
Pomysł:
Stworzymy trzecia tablice indexes, która na i-tym indeksie bedzie miała wartość
x oznaczającą, że indexes[i] = \pi[x] oraz tablicę moved, która spełnia
\sigma[i] = \pi[i + moved[i]].
Na początku tworzymy w czasie liniowym jakieś rozwiązanie, a następnie
je optymalizujemy.
Algorytm:
// tworzy nieoptymalny ciag operacii swap w czasie O(n) ?
CreateSequence(p1, p2, moved)
seq = list() // nieoptymalny ciąg operacji swap
added = [false for i in 1 to n] // określa, czy dany indeks został dodany do seg
index = 1
while len(sea) < n or index <= n:
    // element jest na dobrym miejscu lub został już odwiedzony
    if (moved[index] == 0 or added[index])
        index++
   else:
              pair = (index, index + moved[index])
               seg.push(pair) // dodaj swapa do sekwencji
               -added[index] = true // zaznacz jako odwiedzone
```

```
index += moved[index] // przejdź do nowego indeksu
return sea
// optymalizuje sekwencję zwróconą przez CreateSequence
OptimizeSequence(seq. n)
removed = 0
for index in 1 to n-1:
 i = index - removed
  if (seg[i+1].first > seg[i+1].second) // nieoptymalny fragment: AC,CB
      a = seq[i].first
             c = seg[i].second // równe seg[i+1].first
   b = seq[i+1].second
   if (a <= b)
              \frac{}{} seg[i] = (b, c) // zamiast (a,c)
                    seq[i+1] = (a, b) // zamiast (c,b)
                    if (a == b) // zamiana "sam ze sobą" nie ma sensu
                     remove seg[i+1]
                             removed += 1
       else // a > b
                 seq[i] = (b, a) // zamiast (a,c)
                   seg[i+1] = (a, c) // zamiast (c,b)
return seq
// główna funkcja wywołująca pozostałe
FindSequence(p1, p2)
indexes = [0 for i in 1 to n] // tablica pomocnicza do p1
moved = [0 for i in 1 to n] // tablica przesunięć w lewo i-tych elementów σ
for i in 1 to n:
\frac{----indexes[p1[i]] = i}{}
for i in 1 to n:
-----moved[i] = indexes[p2[i]] - i
seq = CreateSequence(p1, p2, moved)
seg = OptimizeSequence(seg, n)
return sea
lemat 1:
```

Operacje optymalizacji par swapów w OptimizeSequence zmniejszają łączny

Rozważmy przypadki (ify z OPT SEQ), gdzie c jest zawsze największym

koszt rozwiązania.

Dowód:

indeksem:

1. a=b, wtedy zamieniamy (a,c), (c,b) na (b,c), których koszty to:

$$C_1 = c - a + c - b = 2c - 2b$$

$$C_2 = c - b$$

Gdzie C_1 to koszt przed optymalizacją, a C_2 to koszt po, czyli chcemy pokazać: $C_2 < C_1 \rightarrow c - b < 2c - 2b \rightarrow b < c$, co z założenia jest prawdą. 2. a
b, wtedy zamieniamy (a,c), (c,b) na (b,c), (a,b), których koszty to:

$$C_1 = c - a + c - b = 2c - b - a$$

 $C_2 = c - b + b - a = c - a$

Gdzie C_1 to koszt przed optymalizacją, a C_2 to koszt po, czyli chcemy pokazać: $C_2 < C_1 \rightarrow c - a < 2c - b - a \rightarrow b < c$, co z założenia jest prawdą. 3. b<a, wtedy zamieniamy (a,c), (c,b) na (b,a), (a,c), których koszty to:

$$C_1 = c - a + c - b = 2c - b - a$$

$$C_2 = a - b + c - a = c - b$$

Gdzie C_1 to koszt przed optymalizacją, a C_2 to koszt po, czyli chcemy pokazać: $C_2 < C_1 \rightarrow c - b < 2c - b - a \rightarrow a < c$, co z założenia jest prawdą. Lemat 2:

OptimizeSequence zwraca listę par typu (a, b), gdzie zawsze a<b.

Dowód:

Jak widać w lemacie 1, zawsze kiedy natrafiamy na 2 nieoptymalne pary, to zwracamy 2 pary postaci (a,b) a<b. Wystarczy zatem pokazać, że żadnej pary nie pominęliśmy. Ale to jest proste, bo jeśli dla i-tej pary mamy a=b i ją usuwamy, to następnie patrzymy nadal na i-tą parę (kolejną), bo inkrementacja removed niweluje zwiększenie index. Stąd gdy porównujemy pary i, i+1, to wszystkie poprzednie są już poprawnej postaci, bo każda niepoprawna została poprawiona zgodnie z lematem 1.

Lemat 3.

Operacje optymalizacji par z lematu 1 tworzą pary równoważne im, tzn. jeśli $\pi_1 + swap(a,c) + swap(c,b) = \pi_2$, to $\pi_1 + swap(A) + swap(B) = \pi_2$, gdzie A,B to pary wyznaczone, których wartość jest zależna od relacji a ? b.

Dowód:

Załóżmy, że początkowo $\pi_a = x$, $\pi_b = y$, $\pi_c = z$, (x, y, z). Najpierw rozważmy 2 swapy przed optymalizacją – one są zawsze takie same. Operacja swap(a,c) doprowadza do sytuacji (z, y, x), na których dokonujemy swap(c,b), otrzymując (z, x, y). Teraz trzeba pokazać, że w każdym z przypadków zmiana operacji także zwróci nam (z, x, y).

Przypadki dla c będącego największym indeksem: 1. a=b, wtedy zmieniamy (a,c), (c,b) na (b,c).

Po optymalizacji mamy tylko swap(b,c), czyli mamy $(x, y, z) \rightarrow (x, z, y)$ Zatem rzeczywiście operacje te są równoważne.

2. a<b, wtedy zmieniamy (a,c), (c,b) na (b,c), (a,b). Pierwsza operacja to swap(b,c), czyli mamy $(x,y,z) \rightarrow (x,z,y)$. Druga operacja to swap(a,b), czyli mamy $(x,z,y) \rightarrow (z,x,y)$ Zatem rzeczywiście operacje te są równoważne.

3. a>b, wtedy zmieniamy (a,c), (c,b) na (b,a), (a,c). Pierwsza operacja to swap(b,a), czyli mamy $(x,y,z) \rightarrow (y,x,z)$. Druga operacja to swap(a,c), czyli mamy $(y,x,z) \rightarrow (z,x,y)$ Zatem rzeczywiście operacje te są równoważne. Dowód Poprawności:

Permutacje π , σ można zapisać w postaci rozłącznych cykli:

$$\frac{\mathcal{H}}{\sigma} = \begin{pmatrix} \frac{\mathcal{H}_{\overline{1}}}{\sigma_{\overline{1}}} & \cdots & \frac{\mathcal{H}_{\overline{i}}}{\sigma_{\overline{i}}} \end{pmatrix} \begin{pmatrix} \frac{\mathcal{H}_{\overline{i+1}}}{\sigma_{\overline{i+1}}} & \cdots & \frac{\mathcal{H}_{\overline{j}}}{\sigma_{\overline{i}}} \end{pmatrix} \cdots \begin{pmatrix} \frac{\mathcal{H}_{\overline{k}}}{\sigma_{\overline{k}}} & \cdots & \frac{\mathcal{H}_{\overline{m}}}{\sigma_{\overline{m}}} \end{pmatrix}$$

Zauważmy, że gdy $\pi=\sigma$, to mamy n rozłącznych cykli, każdy identycznościowy długości 1. Stąd faza 1 programu (CreateSequence) znajduje taką sekwencję, której zastosowanie tworzy n rozłącznych cykli, czyli przekształca π w σ . Jednakże, funkcja ta zwraca sekwencję długości n – p, gdzie p to ilość pozycji, które już na starcie się zgadzają, co nie jest optymalnym rozwiązaniem – np. dla $\pi=[3,2,1,4], \sigma=[1,3,2,4]$ CreateSequence zwraca <(1,3),(3,2),(2,1)> o łącznym koszcie 4, większym od optymalnego równego 2. Stąd konieczna jest faza 2, czyli zoptymalizowanie tego rozwiązania, co jest dokonywane w OptimizeSequence. Optymalizacja polega na tym, że zamieniamy 2 sąsiednie swapy, w tym jeden z nich "cofa się" na 2 równoważne swapy "bez cofania się" (lemat 3), co zmniejsza koszt (lemat 1). Rozwiązanie nie zawiera żadnych nieoptymalnych par (lemat 2), co kończy dowód.

Zadanie 10.

(1pkt) Na wykładzie przedstawiono zachłanny algorytm dla problemu $Pokrycia\ zbioru$, znajdujący rozwiązania, które są co najwyżej $\log n$ razy gorsze od rozwiązania optymalnego.

Pokaż, że istnieją dane, dla których rozwiązania znajdowane przez ten algorytm są blisko $\log n$ gorsze od rozwiązań optymalnych.

Niech
$$S_n = \bigcup\{i\}, S_i = i \text{ dla } i < n, U = \{1,2,\dots,n\}$$
 Niech koszty wynoszą $c_i = \frac{c_n}{n-i} - \epsilon$

Wtedy algorytm pokryje kosztem

$$c = \sum c_i = c_n \times \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - (n-1)\epsilon$$

Koszt optymalny to c_n Zatem rozwiązanie będzie $\frac{c}{c_n} \approx \sum \frac{1}{i} \approx ln(n)$ razy gorsze.