- 1. Why must budget constraints be binding?
 - A. We do not model savings so we would never save
 - B. We maximize utility and more goods bought = more utility
 - C. Money has no value
 - D. Money loses value so it will be worthless tomorrow
- 2. Barry's income decreases from \$10,000 to \$5,000, so he increases his weekly consumption of light beer from 5 to 6. Based on his income elasticity of demand, what type of good is light beer?
 - A. Inferior
 - B. We do not model savings so we would never save
 - C. Money has no value
 - D. Money loses value so it will be worthless tomorrow
- 3. Find the utility maximizing amount of each good for the following utility functions subject to budgets $M = P_x X + P_y Y$:

(a)
$$U(x,y) = x^{1/2}y^{1/2}$$
 s.t. $120 = 4x + y$

(b)
$$U(x,y) = \alpha ln(x) + y$$
 s.t. $M = P_x x + P_y y$

(c)
$$U(x,y) = min\{2x,y\}$$
 s.t. $16 = 2x + y$

(d)
$$U(x,y) = 4x + 5y$$
 s.t. $10 = 2x + 3y$

4. Harvey's utility is given by $U(x,y)=10x^{0.35}y^{1.3}$. Does Harvey exhibit diminishing marginal utility in x? What about y? Show your work

5. Suppose you only consume two goods: x and y. If y is an inferior good, what type of good must x be? Explain why.

- 6. Consider the demand function $x^* = M P_x^2 + P_y^{0.5}$
 - (a) Is X a normal or inferior good? Use a derivative and an inequality to show it.
 - (b) Is X a substitute or a complement for Y? Use a derivative and an inequality to show it
 - (c) Assume that M=10 and $P_y=4$. Graph the demand curve for X by plotting the points where $P_x=1,2$ and 3 and connecting them. Label this curve x^* . I recommend giving yourself lots of extra room on the horizontal axis so that you can add the next part clearly.

Add to the graph a market demand curve, assuming that there are 3 total consumers in the market. There's no need to derive the demand curve, just remember the right way to add up demand in the graph. Label this curve Q_D .