Přednáška 2, 10. října 2014

Číselné obory. Dobře známe číselné obory

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$
 .

Zde $\mathbb{N} = \{1, 2, ...\}$ jsou *přirozená čísla*, $\mathbb{Z} = \mathbb{N} \cup \{0, -1, -2, ...\}$ celá čísla (symbol pro ně pochází z německého die Zahlen), $\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$ jsou racionální čísla čili zlomky, \mathbb{R} reálná čísla a $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ s $i^2 = -1$ jsou čísla komplexní, jimiž se dále podrobně zabývat nebudeme.

Co je $\mathbb R$ řeknu za chvíli. Prvky množiny $\mathbb Q$ jsou přesně řečeno třídy vzájemně ekvivalentních zlomků, přičemž $\frac{a}{b}$ a $\frac{c}{d}$ jsou ekvivalentní, právě když ad-bc=0. Každá taková třída má jako reprezentanta zlomek $\frac{a}{b}$ v základním tvaru, v němž b>0 a čitatel a a jmenovatel b jsou nesoudělná čísla. Rozšíření číselného oboru do většího je vždy motivováno řešitelností rovnic. Rovnice 5+x=3 nemá řešení v $\mathbb N$, ale v $\mathbb Z$ již ano (x=-2), 5x=3 ho nemá v $\mathbb Z$, ale má ho ve $\mathbb Q$ $(x=\frac{3}{5})$, $x^2=3$ je neřešitelná ve $\mathbb Q$, ale řešitelná v $\mathbb R$ $(x=\sqrt{3})$ a $x^2=-3$ v $\mathbb R$ nemá řešení, ale v $\mathbb C$ ho má $(x=i\sqrt{3})$.

Ze čtyř hořejších inkluzí je zcela přesná jen první, $\mathbb{N} \subset \mathbb{Z}$, zbylým třem rozumíme jako vnořením, kdy skutečnou inkluzi dostaneme změnou formátu prvku: číslo $z \in \mathbb{Z}$ je prvek \mathbb{Q} , když ho napíšeme jako $\frac{z}{1}$, zlomek $\alpha \in \mathbb{Q}$ je prvkem \mathbb{R} po napsání v desetinném zápisu (při pojetí \mathbb{R} jako desetinných rozvojů), např. $\frac{1}{9} = 0.11111...$, a číslo $a \in \mathbb{R}$ je prvek \mathbb{C} , když ho napíšeme jako a + 0i.

Na všech uvedených číselných oborech máme aritmetické operace sčítání + a násobení \cdot , spolu s binární relací < uspořádání (na $\mathbb C$ relace < není). Vzhledem k oběma operacím ($\mathbb Z,+,\cdot$) tvoří to, čemu algebraici říkají okruh: obě operace jsou asociativní a komutativní, platí distributivita, obě mají neutrální prvky a sice 0 a 1, a při sčítání má každý prvek inverz. ($\mathbb Q,+,\cdot,<$) je uspořádané těleso: je to okruh a navíc každý nenulový prvek má při násobení inverz a relace < splňuje: (i) $a < b, b < c \Rightarrow a < c$, (ii) ze tří možností a < b, a = b, a > b vždy nastává právě jedna, (iii) $a < b \Rightarrow a + c < b + c$ a (iv) $a < b, c > 0 \Rightarrow ac < bc$. Rovněž ($\mathbb R,+,\cdot,<$) je uspořádané těleso. Co má $\mathbb R$ navíc proti $\mathbb Q$ je (1) úplnost (má ucpány díry, které jsou ve $\mathbb Q$) a (2) nespočetnost (je mnohem početnější než $\mathbb Q$). Obé bude vysvětleno dále. Je třeba říci, že přechod od oboru $\mathbb Q$ k oboru $\mathbb R$ je ve srovnání s ostatními třemi přechody skok na naprosto odlišnou úroveň.

Reálná čísla jako nekonečné desetinné rozvoje. Jedno z možných pojetí množiny \mathbb{R} je to, že reálná čísla jsou nekonečné desetinné rozvoje, jako

třeba

$$0 = -0.000...$$
, $-5089.33506...$, $+40.125000...$ či $-\pi = -3.141592...$

(Později se zmíním o dvou dalších — a známějších — zavedeních reálných čísel, o Cantorových fundamentálních posloupnostech a Dedekindových řezech.) Reálné číslo a je tedy oznaménkovaná nekonečná posloupnost $cifer\ a_n$ s $n=0,1,2,\ldots$,

$$a = \pm a_0.a_1a_2a_3...$$

kde $a_0 \in \mathbb{N}_0 = \{0,1,2,\dots\}$ a pro $n>0, \ a_n \in \{0,1,2,3,4,5,6,7,8,9\}$. Např. třetí z čísel nahoře má znaménko + a cifry $a_0=40, \ a_1=1, \ a_2=2, \ a_3=5$ a $a_n=0$ pro $n\geq 4$ (je to vlastně $\frac{321}{8}$). Konvence zápisu je, že znaménko + se nepíše a nekonečný úsek nul vynechává, takže píšeme jen 40.125. Číslo nula, jehož všechny cifry jsou 0, může mít obě znaménka, $-0.000\ldots$ a $+0.000\ldots$ ztotožňujeme.

Tento zápis je skoro vždy jednoznačný, ale, jak známo, některá reálná čísla mají zápisy dva: kromě $-0.000\cdots = +0.000\ldots$ též

$$-40.125000... = -40.124999..., 1.000... = 0.999...$$

a podobně. Nastává to přesně pro nenulové končící desetinné rozvoje $a=\pm a_0.a_1a_2...$, v nichž pro nějaké $k\in\mathbb{N}_0$ je $a_k>0$, ale $a_{k+1}=a_{k+2}=\cdots=0$. Pak $b=\pm b_0.b_1b_2...$ (totéž znaménko jako v a), kde $b_n=a_n$ pro n< k, $b_k=a_k-1$ a $b_n=9$ pro n>k, je totéž reálné číslo jako a. Jak tedy rozumět rovnostem jako 1=0.999...? Samozřejmě, že napravo a nalevo od = máme dosti různé věci, nekonečné slovo a jednopísmenné slovo. Z hlediska operací + $a\cdot v \mathbb{R}$ i porovnávání < to ale pro nás je totéž reálné číslo. Stejný "paradox" se objevuje už v \mathbb{Q} , kde vesele píšeme $\frac{12}{4}=\frac{-6}{-2}$ a podobně, i když napravo a nalevo od = jsou dost odlišné dvojice celých čísel, a myslíme tím, že z hlediska aritmetických operací a porovnávání $v \mathbb{Q}$ hrají roli téhož racionálního čísla.

Připomenu, jak reálná čísla porovnáváme relací <, což jistě každý ví. Nechť $\alpha, \beta \in \mathbb{R}$ jsou různá čísla (speciálně nemáme zápisy jako $\alpha = 1.000\ldots$ a $\beta = 0.999\ldots$). Pro jednoduchost buďte obě čísla kladná, se znaménkem +, obecný případ se na tento snadno převede (rozmyslete si jak). Pak

$$\alpha < \beta \iff \exists k \in \mathbb{N}_0 : \ \alpha_j = \beta_j \text{ pro } 0 \leq j < k, \text{ ale } \alpha_k < \beta_k .$$

Nejde o nic jiného než o lexikografické (slovníkové) uspořádání podle cifer.

Úloha: dokažte, že když $\alpha, \beta \in \mathbb{R}$ jsou různá čísla, která mohou mít dva zápisy, pak výsledek jejich porovnání — buď $\alpha < \beta$ anebo $\alpha > \beta$ — je týž bez ohledu na volbu zápisu (tedy nikdy se nestane něco jako, že v jednom zápisu $\alpha = 1.000... > 0.9997589 \cdots = \beta$ a ve druhém $\alpha = 0.999... < 0.9997589 \cdots = \beta$, což v tomto příkladu skutečně pravda není).

Jak se taková reálná čísla sčítají a násobí? Stručně řečeno, máme-li spočítat $\alpha \circ \beta$, kde $\alpha = \pm \alpha_0.\alpha_1\alpha_2...$ a $\beta = \pm \beta_0.\beta_1\beta_2...$ jsou dvě reálná čísla a \circ je sčítání nebo násobení, usekáváme jejich zápisy po n-té cifře (tj. další cifry nahradíme nulami, znaménka samozřejmě neměníme), n = 0, 1, 2, ..., a počítáme posloupnost částečných součtů či součinů (rozmyslete si, že tyto částečné součty či součiny počítáme vlastně v rámci \mathbb{Q})

$$\pm \alpha_0 \circ \pm \beta_0$$
, $\pm \alpha_0 \cdot \alpha_1 \circ \pm \beta_0 \cdot \beta_1$, $\pm \alpha_0 \cdot \alpha_1 \alpha_2 \circ \pm \beta_0 \cdot \beta_1 \beta_2$, ...

Dá se ukázat, že pro každé $k \in \mathbb{N}_0$ se k-tá cifra výsledků pro dostatečně velké n přestane měnit, stabilizuje se, a totéž nastane pro znaménko. Tím je výsledek operace $\alpha \circ \beta$ dobře a jednoznačně definován. Například pro $\alpha = +1.000\ldots$ a $\beta = -0.999\ldots$ (tj. $\alpha = -\beta$) částečné součty pro $\alpha + \beta$ vycházejí

$$+1, +0.1, +0.01, +0.001$$

a tak dál, takže vskutku $\alpha + \beta = +0.000 \cdots = 0$. Vlastnosti aritmetických operací a uspořádání na \mathbb{R} podrobně dokazovat a odvozovat nebudu, není to tak lehké, jak se člověku na začátku zdá. Dá se ale dokázat následující věta.

Věta (aritmetika \mathbb{R}). $(\mathbb{R}, +, \cdot, <)$, $kde \mathbb{R}$ je množina oznaménkovaných nekonečných desetinných rozvojů, tvoří uspořádané těleso (po aplikaci ztotožnění $-0.000\cdots = +0.000\ldots$ a všech ztotožnění typu $1.000\ldots = 0.999\ldots$).

Jako příklad asociativity sčítání v \mathbb{R} máme třeba (vypočteno výše popsaným postupem):

$$(-0.999\cdots+1)+0.999\cdots=+0.000\cdots+0.999\cdots=0.999\cdots$$

což je totéž jako

$$-0.999\cdots + (1+0.999\cdots) = -0.999\cdots + 1.999\cdots = 1.000\cdots$$

Suprema a infima, úplnost \mathbb{R} . Když $X \subset \mathbb{R}$ a $c \in X$, pak $c = \min(X)$, c je minimum nebo též nejmenší prvek X, pokud $c \leq a$ pro každé $a \in X$.

Podobně se definuje $\max(X)$, maximum nebo největší prvek X. Číslo $c \in \mathbb{R}$ je horní mez množiny $X \subset \mathbb{R}$, když $c \geq a$ pro každé $a \in X$. Podobně se definuje dolní mez. Když $X \subset \mathbb{R}$ a $c \in \mathbb{R}$, pak c je supremum množiny X, $c = \sup(X)$, když

$$c = \min(\{\text{horní meze množiny } X\})$$
,

tedy c je nejmenší horní mez X. Supremum X nemusí v X ležet a když existuje, je určeno jednoznačně. Ještě jednou řečeno, $c = \sup(X)$, právě když

- 1. pro každé $a \in X$ je $a \le c$ (tj. c je horní mez X) a
- 2. pro každé $d \in \mathbb{R}$, d < c, existuje $a \in X$, že a > d (tj. c nelze nijak zmenšit na d, aby zůstalo horní mezí, c je nejmenší horní mez X).

Podobně se definuje *infimum* množiny $X \subset \mathbb{R}$:

$$\inf(X) = \max(\{\text{doln\'i meze mno\'ziny }X\})$$
,

je to největší dolní mez množiny X. Úplně stejně definujeme supremum a infimum pro podmnožiny $\mathbb Q$ v uspořádání ($\mathbb Q$, <) (a obecně v každé lineárně nebo i částečně uspořádané množině). Množina $X \subset \mathbb R$ je shora omezená, máli alespoň jednu horní mez. Podobně se definuje omezenost zdola. Následující výsledek je základní vlastnost reálných čísel, kterou racionální čísla nemají.

Věta (úplnost \mathbb{R}). Každá neprázdná a shora omezená množina reálných čísel má supremum.

Podobně má každá neprázdná a zdola omezená množina reálných čísel infimum. Před důkazem věty uvedu pár příkladů. Když $X=\emptyset$, rovná se množina horních mezí X celému $\mathbb R$ (pro každé $c\in\mathbb R$ platí implikace $a\in X\Rightarrow a\leq c$). Nejmenší horní mez tedy neexistuje a $\sup(\emptyset)$ též neexistuje. Když $X=\mathbb N$, množina horních mezí X je prázdná, protože X není shora mezená, a $\sup(\mathbb N)$ neexistuje. Věta říká, že prázdnost X a neomezenost X shora jsou jediné dvě překážky pro existenci suprema. V rámci $\mathbb R$,

$$\sup([0,1]) = \sup([0,1)) = \sup([0,1) \cap \mathbb{Q}) = 1 \; .$$

V rámci číselného oboru Q věta o supremu neplatí:

Tvrzení (neúplnost \mathbb{Q}). Množina $X = \{\alpha \in \mathbb{Q} \mid \alpha > 0, \alpha^2 < 2\} \subset \mathbb{Q}$ je neprázdná a shora omezená, ale nemá v \mathbb{Q} supremum.

- 1. Nechť $c^2 < 2$. Pak existuje $\beta \in \mathbb{Q}$, $\beta > 0$, že stále $(c+\beta)^2 < 2$. Pak ale $c+\beta \in X$ a $c+\beta > c$, takže c není horní mezí X. (Potřebujeme, aby číslo $\beta > 0$ splňovalo, že $2c\beta + \beta^2 < 2 c^2$. Protože pro $0 < \beta < 1$ je $\beta^2 < \beta$, číslo $\beta = (2-c^2)/(2c+2) < 1$ vyhovuje rozmyslete si proč.)
- 2. Nechť $c^2=2$. Jak jsme na minulé přednášce dokázali, tento případ nenastává.
- 3. Nechť $c^2>2$. Podobně jako v 1. případu existuje $\beta\in\mathbb{Q},\ 0<\beta< c$, že stále $(c-\beta)^2>2$. Pro každé $a\in X$ máme $a^2<2<(c-\beta)^2$, tedy $a< c-\beta$. Takže $c-\beta$ je horní mez X a vzhledem k $c-\beta< c$ není číslo c nejmenší horní mez. (Odhad, jak malé β stačí vzít, je zde přenechán čtenáři jako úloha.)

Žádné $c \in \mathbb{Q}$ tedy není supremem naší množiny X.

 $D\mathring{u}kaz$ věty o $\mathring{u}plnosti$ \mathbb{R} . Nechť $X \subset \mathbb{R}$ je libovolná neprázdná a shora omezená množina reálných čísel. Budu postupně definovat cifry jistého čísla $c \in \mathbb{R}$, které se ukáže být supremem X. Bez \mathring{u} jmy na obecnosti jsou všechna čísla v X kladná (obecný případ se na tento snadno převede). Položím $X_0 = X$ a pro $n = 0, 1, 2, \ldots$ postupně definuju cifry c_n a množiny $X_n \subset X$,

$$c_n := \max(\{\alpha_n \mid \alpha \in X_n\})$$
 a $X_{n+1} := \{\alpha \in X_n \mid \alpha_n = c_n\}$.

Tvrdím, že číslo

$$c = +c_0.c_1c_2\dots$$

je dobře definované a je supremem X. Protože je X shora omezená, je shora omezená (a tedy konečná) i množina cifer $\{\alpha_0 \mid \alpha \in X_0\} \subset \mathbb{N}_0$ a cifra c_0 je dobře definovaná. Pro n > 0 už beru maximum z nějaké podmnožiny $\{0, 1, \ldots, 9\}$ a jediným problémem by bylo, kdyby $X_n = \emptyset$. Z definice těchto množin ale snadno indukcí plyne, že jsou všechny neprázdné. Číslo c je tedy korektně definované.

Ukažme, že c je horní mez X. Nechť $\alpha \in X = X_0$. Z definice c_0 plyne, že $\alpha_0 \le c_0$. Když $\alpha_0 < c_0$, pak $\alpha < c$. Když $\alpha_0 = c_0$, pak z definice c_1 a X_1 plyne, že $\alpha \in X_1$ a $\alpha_1 \le c_1$. Když $\alpha_1 < c_1$, pak $\alpha < c$. Když $\alpha_1 = c_1$, pak z definice c_2 a X_2 plyne, že $\alpha \in X_2$ a $\alpha_2 \le c_2$. A tak dále. Když pro nějaké

 $n \in \mathbb{N}_0$ (poprvé) nastane $\alpha_n < c_n$, pak $\alpha < c$. Když pro každé $n \in \mathbb{N}_0$ stále $\alpha_n = c_n$, pak $\alpha = c$ (a v tomto případu je $c = \alpha = \max(X)$).

Ukažme, že c je nejmenší horní mez X. Nechť $d \in \mathbb{R}$ je libovolné číslo s d < c. Lze předpokládat, že d > 0. Podle definice uspořádání na \mathbb{R} existuje takové $n \in \mathbb{N}_0$, že $d_j = c_j$ pro každé $0 \le j < n$, ale $d_n < c_n$. Vezmeme $\alpha \in X_n$, že $\alpha_n = c_n$. Z definice množiny X_n plyne, že $\alpha_j = c_j$ pro každé $0 \le j \le n$. To ale znamená, že $d < \alpha \in X$. Takže c je nejmenší horní mez X.

Důsledek (existence $\sqrt{2}$ v \mathbb{R}). Rovnice $x^2 = 2$ má v oboru \mathbb{R} řešení. Důkaz. Položme, v oboru \mathbb{R} ,

$$c := \sup(\{a \in \mathbb{R} \mid a > 0, a^2 < 2\})$$
.

Supremum je korektně definované, protože daná množina je neprázdná a shora omezená (obsahuje číslo 1 a její každý prvek je menší než např. 2). Stejně jako v předešlém tvrzení se ukáže, že případy $c^2 > 2$ a $c^2 < 2$ jsou nemožné, protože při nich c není supremem dané množiny. Nutně $c^2 = 2$ a c je řešení dané rovnice.