NAME

CUTEST_csgr - CUTEst tool to evaluate constraints gradients and gradient of objective/Lagrangian function.

SYNOPSIS

CALL CUTEST_csgr(data, status, n, m, X, Y, grlagf, nnzj, lj, J_val, J_var, J_fun)

DESCRIPTION

The CUTEST_csgr subroutine evaluates the gradients of the general constraints and of either the objective function or the Lagrangian function $l(x, y) = f(x) + y^T c(x)$ corresponding to the problem decoded from a SIF file by the script *sifdecode* at the point (x, y) = (X, Y). It also evaluates the Hessian matrix of the Lagrangian function at (x, y). The gradients are stored in a sparse format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_csgr are as follows

data [inout] - CUTEST_data_type derived type problem-specific private data,

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

m [in] - integer

the total number of general constraints,

X [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

Y [in] - real/double precision

an array which should give the Lagrange multipliers whenever grlagf is set .TRUE. but need not otherwise be set,

grlagf [in] - logical

a logical variable which should be set .TRUE. if the gradient of the Lagrangian function is required and .FALSE. if the gradient of the objective function is sought,

nnzj [out] - integer

the number of nonzeros in J_val,

lj [in] - integer

the actual declared dimensions of J_val, J_var and J_fun,

J_val [out] - real/double precision

an array which gives the values of the nonzeros of the gradients of the objective, or Lagrangian, and general constraint functions evaluated at X and Y. The i-th entry of J_val gives the value of the derivative with respect to variable J_var(i) of function J_fun(i),

J_var [out] - integer

an array whose i-th component is the index of the variable with respect to which J_val(i) is the derivative,

J_fun [out] - integer

an array whose i-th component is the index of the problem function whose value $J_val(i)$ is the derivative. $J_val(i) = 0$ indicates the objective function whenever grlagf is .FALSE. or the Lagrangian

function when grlagf is .TRUE., while $J_fun(i) = j > 0$ indicates the j-th general constraint function.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

 $cutest_ugr(3M)$, $cutest_cgr(3M)$, sifdecode(1).

NAME

CUTEST_csgr - CUTEst tool to evaluate constraints gradients and gradient of objective/Lagrangian function.

SYNOPSIS

CALL CUTEST_csgr(data, status, n, m, X, Y, grlagf, nnzj, lj, J_val, J_var, J_fun)

DESCRIPTION

The CUTEST_csgr subroutine evaluates the gradients of the general constraints and of either the objective function or the Lagrangian function $l(x, y) = f(x) + y^T c(x)$ corresponding to the problem decoded from a SIF file by the script *sifdecode* at the point (x, y) = (X, Y). It also evaluates the Hessian matrix of the Lagrangian function at (x, y). The gradients are stored in a sparse format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_csgr are as follows

data [inout] - CUTEST_data_type derived type problem-specific private data,

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

m [in] - integer

the total number of general constraints,

X [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

Y [in] - real/double precision

an array which should give the Lagrange multipliers whenever grlagf is set .TRUE. but need not otherwise be set,

grlagf [in] - logical

a logical variable which should be set .TRUE. if the gradient of the Lagrangian function is required and .FALSE. if the gradient of the objective function is sought,

nnzj [out] - integer

the number of nonzeros in J_val,

lj [in] - integer

the actual declared dimensions of J_val, J_var and J_fun,

J_val [out] - real/double precision

an array which gives the values of the nonzeros of the gradients of the objective, or Lagrangian, and general constraint functions evaluated at X and Y. The i-th entry of J_val gives the value of the derivative with respect to variable J_var(i) of function J_fun(i),

J_var [out] - integer

an array whose i-th component is the index of the variable with respect to which J_val(i) is the derivative,

J_fun [out] - integer

an array whose i-th component is the index of the problem function whose value $J_val(i)$ is the derivative. $J_val(i) = 0$ indicates the objective function whenever grlagf is .FALSE. or the Lagrangian

function when grlagf is .TRUE., while $J_fun(i) = j > 0$ indicates the j-th general constraint function.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

 $cutest_ugr(3M)$, $cutest_cgr(3M)$, sifdecode(1).