Time Series Analysis

Basics of Time Series Analysis:

Data Example

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Trend and Seasonality Estimation of ED Volume Time Series

About This Lesson

Trend Estimation

```
## Equally spaced time points
time.pts = c(1:length(Volume))
time.pts = c(time.pts - min(time.pts))/max(time.pts)
## Local Polynomial Trend Estimation
loc.fit = loess(Volume.tr~time.pts)
vol.fit.loc = fitted(loc.fit)
## Splines Trend Estimation
library(mgcv)
gam.fit = gam(Volume.tr \sim s(time.pts))
vol.fit.gam = fitted(gam.fit)
## Is there a trend?
plot(dates, Volume.tr, ylab="ED Volume")
lines(dates,vol.fit.loc,lwd=2,col="brown")
lines(dates,vol.fit.gam,lwd=2,col="red")
```


Trend Estimation

Trend Estimation (cont'd)

Smooth trend is statistically significant

29.6% of variability explained

Trend and Seasonality Estimation

```
## Model Trend + Monthly Seasonality

month = as.factor(format(dates, "%b"))

gam.fit.seastr.1 = gam(Volume.tr~s(time.pts)+month-1)

summary(gam.fit.seastr)

vol.fit.gam.seastr.1 = fitted(gam.fit.seastr.1)

ggplot(edvoldata, aes(dates, sqrt(Volume+3/8))) + geom_line() + xlab("Time") + ylab("Transformed Daily ED Volume")

lines(dates, vol.fit.gam.seastr.1, lwd=2, col="red")
```


Trend and Seasonality Estimation


```
## Add day-of-the-week seasonality

week = as.factor(weekdays(dates))

gam.fit.seastr.2 = gam(Volume.tr~s(time.pts)+month+week)

summary(gam.fit.seastr.2)

vol.fit.gam.seastr.2 = fitted(gam.fit.seastr.2)

## Compare the two fits

ggplot(edvoldata, aes(dates, vol.fit.gam.seastr.2)) + geom_line() + xlab("Time") + ylab("Seasonality and Trend: Daily ED Volume")

lines(dates,vol.fit.gam.seastr.1,lwd=2,col="red")
```


	T - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	C 1 D		TS 75 LL LX
_		Std. Error		THE RES MANY MARKS THE
(Intercept)	12.77772	0.07383	173.063	< 2e-16
monthAug	-0.50061	0.08852	- 5.655	1.79e-08
monthDec	0.93273	0.08791	10.611	< 2e-16
monthFeb	0.33589	0.08509	3.948	8.17e-05
monthJan	-0.59767	0.08365	-7.145	1.26e-12
monthJul	-1.53530	0.08831	-17.385	< 2e-16
monthJun	-1.00553	0.08880	-11.324	< 2e-16
monthMar	0.61815	0.08272	7.472	1.18e-13
monthMay	0.05271	0.08272	0.637	0.52403
monthNov	0.94163	0.08900	10.580	< 2e-16
monthOct	0.41557	0.08849	4.696	2.84e-06
monthSep	0.22391	0.08935	2.506	0.01229
weekMonday	0.57169	0.06647	8.601	< 2e-16
weekSaturday	0.04589	0.06641	0.691	0.48967
weekSunday	0.17538	0.06641	2.641	0.00834
weekThursday	-0.16031	0.06647	-2.412	0.01597
weekTuesday	0.08099	0.06647	1.218	0.22323
weekWednesday	-0.11050	0.06647	-1. 662	0.09662

Most regression coefficients are statistically significant

Some regression coefficients are statistically significant

R-sq.(adj) = 0.627 Deviance explained = 63.2% GCV = 0.63263 Scale est. = 0.62405 n = 1977

Smooth trend is statistically significant

62.7% of variability explained

Does the addition of seasonality of day of the week adds predictive power?

```
Im.fit.seastr.1 = Im(Volume.tr~month)
Im.fit.seastr.2 = Im(Volume.tr~month+week)
anova(Im.fit.seastr.1,Im.fit.seastr.2)
```

```
Analysis of Variance Table

Model 1: Volume.tr ~ month

Model 2: Volume.tr ~ month + week

Res.Df RSS Df Sum of Sq F Pr(>F)

1 1965 2169.9
2 1959 2071.1 6 98.826 15.58 2.2e-16
```

The seasonality due to day of the week improves the prediction power of the model

Seasonality vs Trend

```
## Compare with & without trend
ggplot(edvoldata, aes(dates, vol.fit.gam.seastr.2)) + geom_line() + xlab("Time") +
ylab("Seasonality and Trend: Daily ED Volume")
lines(dates,vol.fit.lm.seastr.2,lwd=2,col="blue")
lines(dates,vol.fit.gam,lwd=2,col="red")
```


Seasonality vs Trend

Summary

