单元测验3

班级	姓名	学号		
一、判断题(正确	的请在括号里打"√",错误的	请打"×")		
1. 随机变量的数学	学期望都是存在的.		()
2. 随机变量 X 的数	数学期望和方差量纲相同.		()
3. 数学期望定义中	中的绝对收敛不能改为收敛或条	条件收敛.	()
4. 设 X 和 Y 是两	个随机变量,若 $E(XY) = E(X)$	· E(Y),则X和]	Y相互独立	
¥			()
5. 设随机变量 X~	$N(\mu,4)$,则 $D(X)=2$.		()
6. 方差是描述随机	几变量取平均值的一个数字特征	Ē.	()
7. 设 X 和 Y 是两	个随机变量,若 X 和 Y 相互独	虫立,则 D(X-Y	Y(X) = D(X)) +
D(Y).			()
8. 若随机变量 X B	服从正态分布,则 $\frac{X - E(X)}{\sqrt{D(X)}} \sim N(X)$	(0,1).	()
9. 当 Cov(X,Y) >	0时,表示随机变量 X 和 Y 变化	比的方向相反.	()
10. 随机变量 X 的	方差就是 X 的二阶中心矩.		()
二、填空题				
1. 设随机变量 X ~	$\sim B(1,p)$,且 $D(X) = \frac{2}{9}$,则 X 的	的分布律是	•	
	服从参数为 λ 的泊松分布,且 P	$\{X=1\} = P\{X=2\}$	2},则E(X) =
3. 随机变量 <i>X</i> 的	数学期望 $E(X)$,则其方差 $D(X)$)是 的数	学期望.	
4. 已知随机变量	X的数学期望 $E(X) = 1$, 方差		Y = 1 - 2X	,则
E(Y) =	$_{;D(Y) = _{.}}$			

三、单项选择题

四、解答题

1. 设甲、乙两家灯泡厂生产的灯泡寿命(单位:h) X 和 Y 的分布律分别为:

X	900	1 000	1 100
P	0. 1	0.8	a

K	950	1 000	1 050
P	0.3	0.4	b

请求出 a,b 的值,并判断哪家厂的灯泡质量更好.

2. 设离散型随机变量 X 的分布函数为:

$$F(x) = \begin{cases} 0, x < -2, \\ 0, 2, -2 \le x < 0, \\ 0, 6, 0 \le x < 2, \\ 1, x \ge 2 \end{cases}$$

求
$$E(X)$$
, $E(\frac{1}{X+1})$, $E(X^2)$, $D(X)$.

3. 假设有 10 个同样的电器元件,其中有 2 个废品. 在装配仪器时,从这批元件中任取一个,如是废品则扔掉重新取一个,如仍是废品则扔掉再取一个,试求在取到正品以前已取出的废品个数的废品率、数学期望和方差.

4. 设一物体是圆截面,测量其直径,设其直径 X 服从[0,3]上的均匀分布,则求横截面积 Y 的数学期望和方差.

5. 设随机变量 X_1, X_2, \cdots, X_n 相互独立, 均服从正态分布 N(0,1), 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. 求 $Cov(X_1, \overline{X})$ 和 $D(X_1 + \overline{X})$.

6. 设二维随机变量(X,Y)的联合概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}x(1+3y^2), & 0 < x < 2, 0 < y < 1, \\ 0, & \text{ 其他} \end{cases}$$

求
$$E(X)$$
, $E(Y)$, $E(X+Y)$, $E(XY)$, $E(\frac{Y}{X})$.