

WITH RESPECT TO THE CHOMSKY-SCHÜTZENBERGER-HIERARCHY

Eric Kunze

CONTENTS

1 Introduction

2 Formal Grammar

- **3** Chomsky-Schützenberger Hierarchy
- 4 Applications

CONTENTS

1 Introduction

2 Formal Grammar

- 3 Chomsky-Schützenberger Hierarchy
- 4 Applications

SYNTAX VS. SEMANTIC

"Colorless green ideas sleep furiously."

SYNTAX VS. SEMANTIC

"Colorless green ideas sleep furiously."

Figure 1: Tree representation of the sentence structure [4]

SYNTAX VS. SEMANTIC

"Colorless green ideas sleep furiously."

Figure 1: Tree representation of the sentence structure [4]

NOAM CHOMSKY (* December 7, 1928) "father of modern linguistics"

isomorphism

is o m orphism

▶ **alphabet** Σ — set of symbols

isomorphism

- ▶ **alphabet** Σ set of symbols
- ▶ **word** w over Σ finite sequence of symbols

|isomorphism| = 11

- ▶ **alphabet** Σ set of symbols
- ▶ word w over Σ finite sequence of symbols
- ▶ **length** |w| number of symbols of w

isomorphism

$$\in \Sigma_{lat}^*$$

- ▶ **alphabet** Σ set of symbols
- ▶ word w over Σ finite sequence of symbols
- ▶ **length** |w| number of symbols of w
- ▶ **Kleene-Star** Σ^* set of all words over Σ

is o m o r p h is m $\in \mathcal{L}_{eng} \subset \Sigma_{lat}^*$

- ▶ **alphabet** Σ set of symbols
- ▶ **word** w over Σ finite sequence of symbols
- ▶ **length** |w| number of symbols of w
- ▶ **Kleene-Star** Σ^* set of all words over Σ
- ▶ (formal) language $L \subseteq \Sigma^*$ set of (selected) words over Σ

$$\blacktriangleright \ \mathbb{N}_0 = \{\varepsilon, 1, 11, 111, \ldots\} \text{ over } \Sigma = \{1\}$$

- ▶ $\mathbb{N}_0 = \{\varepsilon, 1, 11, 111, \ldots\}$ over $\Sigma = \{1\}$
- ▶ $count_2 = \{a^nb^n : n \in \mathbb{N}\} \text{ over } \Sigma = \{a,b\}$

- $\blacktriangleright \ \mathbb{N}_0 = \{\varepsilon, 1, 11, 111, \ldots\} \text{ over } \Sigma = \{1\}$
- ▶ $count_2 = \{a^nb^n : n \in \mathbb{N}\} \text{ over } \Sigma = \{a, b\}$
- ▶ $count_3 = \{a^nb^nc^n : n \in \mathbb{N}\} \text{ over } \Sigma = \{a, b, c\}$

- ▶ $\mathbb{N}_0 = \{\varepsilon, 1, 11, 111, \ldots\}$ over $\Sigma = \{1\}$
- ▶ count₂ = { $a^nb^n : n \in \mathbb{N}$ } over $\Sigma = \{a, b\}$
- ▶ count₃ = $\{a^nb^nc^n : n \in \mathbb{N}\}$ over $\Sigma = \{a, b, c\}$
- ► programming language *C*
 - > alphabet: valid keywords and symbols

CONTENTS

- 1 Introduction
- **2** Formal Grammar

- **3 Chomsky-Schützenberger Hierarchy**
- 4 Applications

FORMAL GRAMMAR

How to form strings over a given alphabet Σ ?

FORMAL GRAMMAR

How to form strings over a given alphabet Σ ?

- ▶ accept words automata theory
- ► generate words theory of grammar

FORMAL GRAMMAR

How to form strings over a given alphabet Σ ?

- accept words automata theory
- ▶ generate words theory of grammar

Definition: Grammar

A (formal) grammar G is a 4-tuple (N, Σ, P, S) where

- ▶ *N* and Σ are finite, disjoint sets of symbols (alphabets)
- ▶ elements of N are called non-terminal symbols, elements of Σ are called terminal symbols
- ▶ *P* is a set of productions $(N \cup \Sigma)^* N(N \cup \Sigma)^* \rightarrow (N \cup \Sigma)^*$
- ► $S \in N$ is the start symbol

EXAMPLE

Example

$$G = (N, \Sigma, P, S)$$
 where $N = \{S\}$, $\Sigma = \{a, b\}$ and $P = \{S \rightarrow aSb, S \rightarrow ab\}$.

EXAMPLE

Example

$$G = (N, \Sigma, P, S)$$
 where $N = \{S\}$, $\Sigma = \{a, b\}$ and $P = \{S \rightarrow aSb, S \rightarrow ab\}$.

Produced words over Σ :

 $\{ab, aabb, aaabbb, \ldots\} = count_2$

CONTENTS

1 Introduction

- **2** Formal Grammar
- **3** Chomsky-Schützenberger Hierarchy
- 4 Applications

Let $G = (N, \Sigma, P, S)$ be a formal grammar. Then G is a **type-0-grammar**.

Let $G = (N, \Sigma, P, S)$ be a formal grammar. Then G is a **type-0-grammar**. G is called a

► **type-1-grammar** (*context-sensitive*) if every production has the form

$$\triangleright u_1 A u_2 \rightarrow u_1 w u_2$$
 where $A \in N$, $u_1, u_2, w \in (N \cup \Sigma)^*$ and $|w| \ge 1$ or

$$\triangleright$$
 S $\rightarrow \varepsilon$

Is $(S \to \varepsilon) \in P$, so S never appears on a production's right side.

Let $G = (N, \Sigma, P, S)$ be a formal grammar. Then G is a **type-0-grammar**. G is called a

► **type-1-grammar** (*context-sensitive*) if every production has the form

$$\triangleright u_1 A u_2 \rightarrow u_1 w u_2$$
 where $A \in N$, $u_1, u_2, w \in (N \cup \Sigma)^*$ and $|w| \ge 1$ or

$$\triangleright$$
 S $\rightarrow \varepsilon$

Is $(S \to \varepsilon) \in P$, so S never appears on a production's right side.

Example: $L(G) = \overline{\text{count}_3}$

Let $N = \{S, A, B\}$, $\Sigma = \{a, b, c\}$ and P consist of the following rules:

▶ (1)
$$S \rightarrow abc$$
 ▶ (3) $cB \rightarrow Bc$

▶ (2)
$$S \rightarrow aSBc$$
 ▶ (4) $bB \rightarrow bb$

Let $G = (N, \Sigma, P, S)$ be a formal grammar. G is called a

▶ **type-2-grammar** (*context-free*) if every production has the form $A \to w$ where $A \in N$ and $w \in (N \cup \Sigma)^*$

Let $G = (N, \Sigma, P, S)$ be a formal grammar. G is called a

▶ **type-2-grammar** (*context-free*) if every production has the form $A \to w$ where $A \in N$ and $w \in (N \cup \Sigma)^*$

Example:
$$L(G) = \operatorname{count}_2$$

Let $N = \{S\}$, $\Sigma = \{a, b\}$ and $P = \{S \to aSb, S \to ab\}$

Let $G = (N, \Sigma, P, S)$ be a formal grammar. G is called a

▶ **type-3-grammar** (*regular*) if every production has the form $A \rightarrow uB$ oder $A \rightarrow u$ where $A, B \in N$ and $u \in \Sigma^*$

Example: $L(G) = \mathbb{N}_0$

Let
$$N = \{S\}, \Sigma = \{1\},$$

$$P = \{S \to \varepsilon, \ S \to 1S\}$$

CONTENTS

1 Introduction

2 Formal Grammar

- 3 Chomsky-Schützenberger Hierarchy
- 4 Applications

APPLICATIONS

syntax of programming languages

```
e.g. if-condition in {\it C}
```

```
\textit{ifStat} 
ightarrow \mathtt{if} ( \textit{BoolExp} ) \textit{Stat} \textit{ifStat} 
ightarrow \mathtt{if} ( \textit{BoolExp} ) \textit{Stat} else \textit{Stat}
```

APPLICATIONS

syntax of programming languages

e.g. if-condition in C

$$\textit{ifStat}
ightarrow \mathtt{if}$$
 ($\textit{BoolExp}$) \textit{Stat} $\textit{ifStat}
ightarrow \mathtt{if}$ ($\textit{BoolExp}$) \textit{Stat} else \textit{Stat}

mathematical logic

- \triangleright (propositional) logic as formal language L_{log} over alphabet $\Sigma = \{p_1, p_2, ...\} \cup \{\neg, \land, \lor, (,)\}$
- \triangleright words: valid formulae e.g. $(\neg(p_1 \lor p_2) \land p_3) \in L_{log}$

APPLICATIONS

syntax of programming languages

e.g. if-condition in C

```
\textit{ifStat} 
ightarrow \mathtt{if} ( \textit{BoolExp} ) \textit{Stat} \textit{ifStat} 
ightarrow \mathtt{if} ( \textit{BoolExp} ) \textit{Stat} else \textit{Stat}
```

mathematical logic

- \triangleright (propositional) logic as formal language L_{log} over alphabet $\Sigma = \{p_1, p_2, ...\} \cup \{\neg, \land, \lor, (,)\}$
- \triangleright words: valid formulae e.g. $(\neg(p_1 \lor p_2) \land p_3) \in L_{log}$

► Computability Theory

Which problem is computable with which machine?

REFERENCES

F. Baader.

Formale Systeme - Automatentheorie und Formale Sprachen.

Lecture notes, TU Dresden, Institut für theoretische Informatik, Dresden, Germany, 2016.

🔋 E. Börger.

Computability, complexity, logic.

North Holland, Amsterdam, 1989.

N. Chomsky.

Three models for the description of language.

IRE Transactions on Information Theory, 2(3):113–124, Sep. 1956.

N. Chomsky.

Syntactic structures.

Mouton, The Hague [u.a.], 11. pr. edition, 1975.

- J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2006.
- H. Rogers.

Theory of recursive functions and effective computability.

MIT Press, Cambridge, Mass. [u.a.], 3. print. edition, 1992.

- ▶ **alphabet** Σ set of symbols

 - $\, \rhd \, \, \text{binary alphabet} \, \Sigma_{bin} = \{0,1\}$

- ▶ **alphabet** Σ set of symbols
 - ightharpoonup latin alphabet $\Sigma_{\mathsf{lat}} = \{a, b, \dots, z\}$
 - ightharpoonup binary alphabet $\Sigma_{bin} = \{0, 1\}$
- ▶ word w over Σ finite sequence of symbols
 - \triangleright english and sdlfkhui are words over Σ_{lat}
 - $\, \vartriangleright \, \,$ 01101 is a word over Σ_{bin} , but not over Σ_{lat}

- ▶ **alphabet** Σ set of symbols
 - ightharpoonup latin alphabet $\Sigma_{\mathsf{lat}} = \{a, b, \dots, z\}$
 - \triangleright binary alphabet $\Sigma_{bin} = \{0, 1\}$
- ▶ **word** w over Σ finite sequence of symbols
 - \triangleright english and sdlfkhui are words over Σ_{lat}
- ▶ **length** |w| number of symbols of w
 - \triangleright word with length zero: ε
 - $\triangleright |english| = 7$

- ▶ **alphabet** Σ set of symbols
 - ightharpoonup latin alphabet $\Sigma_{\mathsf{lat}} = \{a, b, \dots, z\}$
 - ightharpoonup binary alphabet $\Sigma_{bin} = \{0, 1\}$
- ▶ **word** w over Σ finite sequence of symbols
 - ightarrow english and sdlfkhui are words over Σ_{lat}
 - $\,\rhd\,$ 01101 is a word over $\Sigma_{\text{bin}},$ but not over Σ_{lat}
- ▶ **length** |w| number of symbols of w
 - \triangleright word with length zero: ε
 - $\triangleright |english| = 7$
- ▶ **Kleene-Star** Σ^* set of all words over Σ

- ▶ **alphabet** Σ set of symbols
 - ightharpoonup latin alphabet $\Sigma_{\mathsf{lat}} = \{a, b, \dots, z\}$
 - ightharpoonup binary alphabet $\Sigma_{bin} = \{0, 1\}$
- ▶ word w over Σ finite sequence of symbols
 - \triangleright english and sdlfkhui are words over Σ_{lat}
- ▶ **length** |w| number of symbols of w
 - \triangleright word with length zero: ε
 - \triangleright |english| = 7
- ▶ **Kleene-Star** Σ^* set of all words over Σ
- ▶ (formal) language $L \subseteq \Sigma^*$ set of (selected) words over Σ

EXAMPLE — count₂

Theorem

Let
$$G = (N, \Sigma, P, S)$$
 where $N = \{S\}$, $\Sigma = \{a, b\}$ and

$$P = \left\{\underbrace{S \rightarrow aSb}_{(1)}, \underbrace{S \rightarrow ab}_{(2)}\right\}$$

Then
$$L(G) = \{a^n b^n : n \in \mathbb{N}\} = \text{count}_2$$
.

Proof. We just prove that $count_2 \subseteq L(G)$, i.e. $a^n b^n \in L(G)$ for all $n \in \mathbb{N}$.

consideration:

$$ho$$
 S $\vdash_{(1)}$ aSb $\vdash_{(2)}$ $aabb$ $= a^2b^2
 ho S $\vdash_{(1)}^2$ a^2Sb^2 $\vdash_{(2)}$ a^2abb^2 $= a^3b^3$...$

▶ in general:

$$S \vdash_{(1)}^{n-1} a^{n-1} Sb^{n-1} \vdash_{(2)} a^{n-1} abb^{n-1} = a^n b^n$$

EXAMPLE — count₃

Is there a grammer G with $L(G) = \text{count}_3 = \{a^n b^n c^n : n \in \mathbb{N}\}$?

Theorem

Let $G = (N, \Sigma, P, S)$ be a formal grammar with $N = \{S, A, B\}$, $\Sigma = \{a, b, c\}$ and P consists of the following rules:

$$\blacktriangleright (2) \quad S \rightarrow aSBc \qquad \blacktriangleright (4) \quad bB \rightarrow bb$$

Then $L(G) = \text{count}_3$.

Example:
$$a^3b^3c^3 \in L(G)$$
?

$$S \vdash_{(2)}^{2} aaSBcBc \vdash_{(1)} aaabcBcBc$$

 $\vdash_{(3)}^{2} aaabBcBcc \vdash_{(3)}^{1} aaabBBccc$
 $\vdash_{(4)}^{2} aaabbbccc$

MATHEMATICAL LOGIC

- ightharpoonup (propositional) Logic as formal language L_{\log}
- ▶ alphabet: $\Sigma = \{p_1, p_2, ...\} \cup \{\neg, \land, \lor, (,)\}$
- ▶ words:

examples:

$$(p_1 \land p_2) \in L_{log}$$

$$((\neg(p_1 \lor p_2) \land p_3) \lor \neg p_1) \in L_{log}$$

COMPUTABILITY THEORY

Question: Which problem is computable with which machine?

CHURCH-TURING thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine.

Halting Problem: Decide whether a given (arbitrary) program will finish running or continue to run forever