1 Section 7.A Exercises

Exercises with solutions from Section 7.A of [LADR].

Exercise 7.A.1. Suppose n is a positive integer. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by

$$T(z_1,\ldots,z_n)=(0,z_1,\ldots,z_{n-1}).$$

Find a formula for $T^*(z_1, \ldots, z_n)$.

Solution. Observe that

$$\langle (w_1, \dots, w_n), T^*(z_1, \dots, z_n) \rangle = \langle T(w_1, \dots, w_n), (z_1, \dots, z_n) \rangle$$

$$= \langle (0, w_1, \dots, w_{n-1}), (z_1, \dots, z_n) \rangle$$

$$= w_1 z_2 + \dots + w_{n-1} z_n$$

$$= \langle (w_1, \dots, w_n), (z_2, \dots, z_n, 0) \rangle.$$

Thus $T^*(z_1, \ldots, z_n) = (z_2, \ldots, z_n, 0)$.

Exercise 7.A.2. Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbf{F}$. Prove that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .

Solution. Observe that

$$\lambda$$
 is an eigenvalue of $T \iff T - \lambda I$ is not surjective \Leftrightarrow range $(T - \lambda I) \neq V$

$$\Leftrightarrow (\operatorname{range}(T - \lambda I))^{\perp} \neq \{0\} \qquad (\text{Exercise 6.C.2})$$

$$\Leftrightarrow \operatorname{null}(T - \lambda I)^{*} \neq \{0\} \qquad (7.7 \text{ (a)})$$

$$\Leftrightarrow \operatorname{null}(T^{*} - \overline{\lambda}I) \neq \{0\} \qquad (7.6 \text{ (a)}, \text{ (b)}, \text{ (d)})$$

$$\Leftrightarrow T^{*} - \overline{\lambda}I \text{ is not injective}$$

$$\Leftrightarrow \overline{\lambda} \text{ is an eigenvalue of } T^{*}. \qquad (5.6 \text{ (b)})$$

Exercise 7.A.3. Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Solution. Suppose that U is invariant under T and let $v \in U^{\perp}$ be given. Observe that

$$\langle u, T^*v \rangle = \langle Tu, v \rangle = 0$$

for any $u \in U$, where the last equality follows since $Tu \in U$ and $v \in U^{\perp}$. Thus $T^*v \in U^{\perp}$ and we see that U^{\perp} is invariant under T^* .

Now suppose that U^{\perp} is invariant under T^* . The previous paragraph shows that $(U^{\perp})^{\perp}$ is invariant under $(T^*)^*$, which by 6.51 and 7.6 (c) is exactly the statement that U is invariant under T.

Exercise 7.A.4. Suppose $T \in \mathcal{L}(V, W)$. Prove that

- (a) T is injective if and only if T^* is surjective;
- (b) T is surjective if and only if T^* is injective.

Solution. (a) Observe that

$$T$$
 is injective \iff null $T = \{0\}$

$$\iff (\operatorname{range} T^*)^{\perp} = \{0\} \qquad (7.7 \text{ (c)})$$

$$\iff \operatorname{range} T^* = V \qquad (\text{Exercise 6.C.2})$$

$$\iff T^* \text{ is surjective.}$$

(b) Part (a) shows that T^* is injective if and only if $(T^*)^*$ is surjective, which by 7.6 (c) is equivalent to T^* being injective if and only if T is surjective.

Exercise 7.A.5. Prove that

$$\dim \operatorname{null} T^* = \dim \operatorname{null} T + \dim W - \dim V$$

and

$$\dim \operatorname{range} T^* = \dim \operatorname{range} T$$

for every $T \in \mathcal{L}(V, W)$.

Solution. We have

$$\dim \operatorname{null} T^* = \dim(\operatorname{range} T)^{\perp} \tag{7.7 (a)}$$

$$= \dim W - \dim \operatorname{range} T \tag{6.50}$$

$$= \dim \operatorname{null} T + \dim W - \dim V. \tag{3.22}$$

Similarly,

$$\dim \operatorname{range} T^* = \dim(\operatorname{null} T)^{\perp} \tag{7.7 (b)}$$

$$= \dim V - \dim \operatorname{null} T \tag{6.50}$$

$$= \dim \operatorname{range} T. \tag{3.22}$$

Exercise 7.A.6. Make $\mathcal{P}_2(\mathbf{R})$ into an inner product space by defining

$$\langle p, q \rangle = \int_0^1 p(x)q(x) \, \mathrm{d}x.$$

Define $T \in \mathcal{L}(\mathcal{P}_2(\mathbf{R}))$ by $T(a_0 + a_1x + a_2x^2) = a_1x$.

- (a) Show that T is not self-adjoint.
- (b) The matrix of T with respect to the basis $(1, x, x^2)$ is

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Solution. (a) Let $p, q \in \mathcal{P}_2(\mathbf{R})$ be given by p(x) = 2x and q(x) = 1, so that Tp = p and Tq = 0. Then

$$\langle Tp, q \rangle = \int_0^1 2x \, \mathrm{d}x = 1 \neq 0 = \langle p, Tq \rangle.$$

Thus T is not self-adjoint.

(b) The result in 7.10 requires that the basis of $\mathcal{P}_2(\mathbf{R})$ is orthonormal, but $(1, x, x^2)$ is not an orthonormal basis:

$$\langle 1, x \rangle = \int_0^1 x \, \mathrm{d}x = \frac{1}{2} \neq 0.$$

Exercise 7.A.7. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Solution. Observe that

$$(ST)^* = T^*S^* = TS,$$

where the first equality is 7.6 (e). It follows that $(ST)^* = ST$ if and only if TS = ST.

Exercise 7.A.8. Suppose V is a real inner product space. Show that the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.

Solution. Clearly the zero operator is self-adjoint. Closure under additivity and scalar multiplication follows from 7.6 (a) and (b).

Exercise 7.A.9. Suppose V is a complex inner product space with $V \neq \{0\}$. Show that the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

Solution. 7.6 (d) shows that the identity operator I is self-adjoint. Since $V \neq \{0\}$, there is some non-zero $v \in V$. Observe that

$$(iI)(v) = iv \neq -iv = (\bar{i}I)(v) = (iI)^*(v),$$

where we have used 7.6 (b) and (d). It follows that iI is not self-adjoint and hence that the set of self-adjoint operators on V is not closed under scalar multiplication.

Exercise 7.A.10. Suppose dim $V \geq 2$. Show that the set of normal operators on V is not a subspace of $\mathcal{L}(V)$.

Solution. Let e_1, e_2, \ldots, e_n be an orthonormal basis of V and let $S, T \in \mathcal{L}(V)$ be the operators whose matrices with respect to this basis are

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix},$$

respectively. Note that S is self-adjoint and hence normal. Note further that T satisfies $T^* = -T$, so that $TT^* = T^*T = -T^2$; it follows that T is also normal. However, some calculations reveal that

$$(A+B)(A+B)^* = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \quad \text{and} \quad (A+B)^*(A+B) = \begin{pmatrix} 2 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Thus S + T is not normal.

Exercise 7.A.11. Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that there is a subspace U of V such that $P = P_U$ if and only if P is self-adjoint.

Solution. Suppose that $P = P_U$ for some subspace U of V. Let v = u + x and w = u' + x' be given, where $u, u' \in U$ and $x, x' \in U^{\perp}$. Then

$$\langle P_U v, w \rangle = \langle u, u' + x' \rangle = \langle u, u' \rangle$$
 and $\langle v, P_U w \rangle = \langle u + x, u' \rangle = \langle u, u' \rangle$.

It follows that P_U is self-adjoint.

Now suppose that P is self-adjoint and let U = range P. We claim that $P = P_U$. Let v = Px + w be given, where $Px \in \text{range } P$ and $w \in (\text{range } P)^{\perp}$. Note that

$$(\operatorname{range} P)^{\perp} = \operatorname{null} P^* = \operatorname{null} P,$$

where the first equality follows from 7.7 (a) and the second equality follows since P is self-adjoint. Hence $w \in \text{null } P$ and we see that

$$Pv = P^2x = Px = P_{II}v.$$

Exercise 7.A.12. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

Solution. There are eigenvectors $u, w \in V$ satisfying

$$Tu = 3u$$
, $Tw = 4w$, and $\langle u, w \rangle = 0$;

this last equality follows from 7.22. Define

$$v := \frac{u}{\|u\|} + \frac{w}{\|w\|}$$

and note that

$$||v||^2 = \left\|\frac{u}{||u||}\right\|^2 + \left\|\frac{w}{||w||}\right\|^2 = 2 \implies ||v|| = \sqrt{2},$$

where we have used the Pythagorean theorem (6.13). Furthermore,

$$||Tv||^2 = \left| \left| T \frac{u}{||u||} + T \frac{w}{||w||} \right|^2 = \left| \left| \frac{3u}{||u||} + \frac{4w}{||w||} \right|^2 = \left| \left| \frac{3u}{||u||} \right| + \left| \left| \frac{4w}{||w||} \right| \right|^2 = 3^2 + 4^2,$$

where we have again used the Pythagorean theorem (6.13). It follows that ||Tv|| = 5.

Exercise 7.A.13. Give an example of an operator $T \in \mathcal{L}(\mathbf{C}^4)$ such that T is normal but not self-adjoint.

Solution. Let $T \in \mathcal{L}(\mathbf{C}^4)$ be the operator whose matrix with respect to the standard orthonormal basis is

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.$$

As we showed in Exercise 7.A.10, this operator satisfies $T^* = -T$, which implies that $TT^* = T^*T = -T^2$. It follows that T is normal but not self-adjoint.

Exercise 7.A.14. Suppose T is a normal operator on V. Suppose also that $v, w \in V$ satisfy the equations

$$||v|| = ||w|| = 2$$
, $Tv = 3v$, $Tw = 4w$.

Show that ||T(v + w)|| = 10.

Solution. Since v and w are eigenvectors of T corresponding to distinct eigenvalues, they must be orthogonal (7.22). The Pythagorean theorem (6.13) then implies that

$$||T(v+w)||^2 = ||3v+4w||^2 = ||3v||^2 + ||4w||^2 = 9||v||^2 + 16||w||^2 = 36 + 64 = 100;$$

it follows that ||T(v+w)|| = 10.

Exercise 7.A.15. Fix $u, x \in V$. Define $T \in \mathcal{L}(V)$ by

$$Tv = \langle v, u \rangle x$$

for every $v \in V$.

- (a) Suppose $\mathbf{F} = \mathbf{R}$. Prove that T is self-adjoint if and only if u, x is linearly dependent.
- (b) Prove that T is normal if and only if u, x is linearly dependent.

Solution. Note that Example 7.4 gives us the formula

$$T^*v = \langle v, x \rangle u.$$

(a) Suppose that u, x is linearly dependent, say $x = \lambda u$ for some $\lambda \in \mathbf{R}$. Then for any $v \in V$

$$Tv = \langle v, u \rangle x = \lambda \langle v, u \rangle u = \langle v, \lambda u \rangle u = \langle v, x \rangle u = T^*v.$$

Now suppose that T is self-adjoint. If u = 0 we are done, so suppose that $u \neq 0$. Since T is self-adjoint, we must have

$$Tv = \langle v, u \rangle x = \langle v, x \rangle u = T^*v$$

for every $v \in V$. In particular,

$$\langle u, u \rangle x = \langle u, x \rangle u \implies x = \frac{\langle u, x \rangle}{\langle u, u \rangle} u,$$

demonstrating that u, x is linearly dependent.

(b) Note that

$$(TT^* - T^*T)(v) = \langle v, x \rangle \langle u, u \rangle x - \langle v, u \rangle \langle x, x \rangle u$$

for any $v \in V$. Suppose that u, x is linearly dependent, say $x = \lambda u$ for some $\lambda \in \mathbf{F}$. Then

$$(TT^* - T^*T)(v) = \langle v, \lambda u \rangle \langle u, u \rangle \lambda u - \langle v, u \rangle \langle \lambda u, \lambda u \rangle u$$

$$= |\lambda|^2 \langle v, u \rangle \langle u, u \rangle u - |\lambda|^2 \langle v, u \rangle \langle u, u \rangle u = 0.$$

Thus T is normal. Conversely, suppose that T is normal. If u=0 we are done, so suppose that $u\neq 0$. Then

$$(TT^* - T^*T)(x) = \langle x, x \rangle \langle u, u \rangle x - \langle x, u \rangle \langle x, x \rangle u = 0 \quad \Longrightarrow \quad x = \frac{\langle x, u \rangle}{\langle u, u \rangle} u,$$

demonstrating that u, x is linearly dependent.

Exercise 7.A.16. Suppose $T \in \mathcal{L}(V)$ is normal. Prove that

range
$$T = \text{range } T^*$$
.

Solution. Observe that 7.20 implies null $T = \text{null } T^*$. It then follows from 7.7 that

range
$$T^* = (\operatorname{null} T)^{\perp} = (\operatorname{null} T^*)^{\perp} = \operatorname{range} T$$
.

Exercise 7.A.17. Suppose $T \in \mathcal{L}(V)$ is normal. Prove that

$$\operatorname{null} T^k = \operatorname{null} T$$
 and $\operatorname{range} T^k = \operatorname{range} T$

for every positive integer k.

Solution. Let us prove by induction that $\operatorname{null} T^k = \operatorname{null} T$ for every positive integer k. The base case k=1 is clear, so suppose that the result is true for some positive integer k. The containment $\operatorname{null} T^k \subseteq \operatorname{null} T^{k+1}$ is evident. Suppose that $v \in \operatorname{null} T^{k+1}$. By 7.20 we then have $T^*T^kv = 0$ and it follows that

$$\langle T^*T^kv, T^{k-1}v \rangle = 0 \iff \langle T^kv, T^kv \rangle = 0 \iff T^kv = 0.$$

Thus $\operatorname{null} T^{k+1} = \operatorname{null} T^k = \operatorname{null} T$; the last equality is our induction hypothesis. This completes the induction step and the proof.

The second half of the exercise is a quick corollary of the first half. Evidently, T normal implies T^* normal. Furthermore, 7.6 (e) implies that $(T^k)^* = (T^*)^k$ for all positive integers k. It follows that

range
$$T^k = \left(\text{null}\left(T^k\right)^*\right)^{\perp}$$
 (7.7 (d))

$$= \left(\text{null}\left(T^*\right)^k\right)^{\perp}$$

$$= \left(\text{null}\left(T^*\right)^{\perp}\right)$$
 (T^* is normal)

$$= \text{range } T.$$
 (7.7 (d))

Exercise 7.A.18. Prove or give a counterexample: If $T \in \mathcal{L}(V)$ and there exists an orthonormal basis e_1, \ldots, e_n of V such that $||Te_j|| = ||T^*e_j||$ for each j, then T is normal.

Solution. This is false. Let T be the operator on \mathbf{F}^2 whose matrix with respect to the standard orthonormal basis e_1, e_2 is

$$\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix};$$

as we showed in Exercise 7.A.10, T is not normal. However,

$$||Te_1|| = ||T^*e_1|| = \sqrt{2}$$
 and $||Te_2|| = ||T^*e_2|| = 1$.

Exercise 7.A.19. Suppose $T \in \mathcal{L}(\mathbf{C}^3)$ is normal and T(1,1,1) = (2,2,2). Suppose $(z_1, z_2, z_3) \in \text{null } T$. Prove that $z_1 + z_2 + z_3 = 0$.

Solution. If $u := (z_1, z_2, z_3) = (0, 0, 0)$ then we are done, so suppose that $u \neq 0$. It follows that u is an eigenvector of T corresponding to the eigenvalue 0. Note that v := (1, 1, 1) is an eigenvector of T corresponding to the eigenvalue 2. Since these are eigenvectors of a normal operator corresponding to distinct eigenvalues, they must be orthogonal (7.22). That is,

$$\langle u, v \rangle = z_1 + z_2 + z_3 = 0.$$

Exercise 7.A.20. Suppose $T \in \mathcal{L}(V, W)$ and $\mathbf{F} = \mathbf{R}$. Let Φ_V be the isomorphism from V onto the dual space V' given by Exercise 17 in Section 6.B, and let Φ_W be the corresponding isomorphism from W onto W'. Show that if Φ_V and Φ_W are used to identify V and W with V' and W', then T^* is identified with the dual map T'. More precisely, show that $\Phi_V \circ T^* = T' \circ \Phi_W$.

Solution. Let $w \in W$ be given. Then

$$(\Phi_V \circ T^*)(w) = \Phi_V T^* w$$

is the map $V \to \mathbf{R}$ given by

$$(\Phi_V T^* w)(v) = \langle v, T^* w \rangle.$$

On the other hand,

$$(T' \circ \Phi_W)(w) = T' \Phi_W w = \Phi_W w \circ T$$

is the map $V \to \mathbf{R}$ given by

$$(\Phi_W w \circ T)(v) = (\Phi_W w)(Tv) = \langle Tv, w \rangle.$$

Since $\langle v, T^*w \rangle = \langle Tv, w \rangle$ for all $v \in V$, we see that $(\Phi_V \circ T^*)(w) = (T' \circ \Phi_W)(w)$ for all $w \in W$.

Exercise 7.A.21. Fix a positive integer n. In the inner product space of continuous real-valued functions on $[-\pi, \pi]$ with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, \mathrm{d}x,$$

let

 $V = \operatorname{span}(1, \cos x, \cos 2x, \dots, \cos nx, \sin x, \sin 2x, \dots, \sin nx).$

- (a) Define $D \in \mathcal{L}(V)$ by Df = f'. Show that $D^* = -D$. Conclude that D is normal but not self-adjoint.
- (b) Define $T \in \mathcal{L}(V)$ by Tf = f''. Show that T is self-adjoint.

Solution. (a) Let

$$v = \frac{1}{\sqrt{2\pi}}, \quad e_j = \frac{\cos jx}{\sqrt{\pi}}, \quad \text{and} \quad f_j = \frac{\sin jx}{\sqrt{\pi}}$$

for each $1 \leq j \leq n$, and let $B := v, e_1, \ldots, e_n, f_1, \ldots, f_n$. Then B is an orthonormal basis of V (Exercise 6.B.4). Observe that $Dv = 0, De_j = -jf_j$, and $Df_j = je_j$ for each $1 \leq j \leq n$. It follows that the matrix of D with respect to B is

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & n \\ 0 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -2 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -n & 0 & 0 & \cdots & 0 \end{pmatrix},$$

from which we see that $D^* = -D$. Such operators are normal but not self-adjoint, as we showed in Exercise 7.A.10.

(b) Observe that $Tv=0, Te_j=-j^2e_j$, and $Tf_j=-j^2f_j$ for each $1\leq j\leq n$. It follows that the matrix of T with respect to B is

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & -4 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -n^2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & -4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & -n^2 \end{pmatrix},$$

from which we see that T is self-adjoint (indeed, diagonal).

[LADR] Axler, S. (2015) Linear Algebra Done Right. 3rd edition.