Deciding the Security of Protocols with Commuting Public Key Encryption

Yannick Chevalier¹
Ralf Küsters²
Michaël Rusinowitch¹
Mathieu Turuani¹

ARSPA 2004 Workshop

¹ Cassis Project, Loria

Automated Validation of Internet Security Protocols and Applications Shared cost RTD (FET open) project IST-2001-39252

Overview

- The general context of Protocol Security with the commuting public key encryption
 - ⇒ Definitions, Goals, and Hypothesis
- The Ground Case
 - ⇒ Bounds and Decidability (P-Complete)
- The General Case
 - ⇒ Bounds and Decidability (NP-Complete)

Motivation: Secured Electronic Transactions

Secured Transactions

- authentication
- exchange of confidential data

Motivation: Secured Electronic Transactions

Secured Transactions

- authentication
- exchange of confidential data

Hostile Environment

Internet, mobile phone networks:

- anonymous communications
- easy listening and/or interception of communications

Motivation: Secured Electronic Transactions

Secured Transactions

- authentication
- exchange of confidential data

Hostile Environment

Internet, mobile phone networks:

- anonymous communications
- easy listening and/or interception of communications

Cryptographic Protocols

Goal: Provide secured transactions over an insecure network

Cryptographic Protocols

- 1. $A \rightarrow B$: $\{Na, A\}_{Kb}$
- **2.** $B \rightarrow A$: $\{Na, Nb\}_{Ka}$
- 3. $A \rightarrow B$: $\{Nb\}_{Kb}$

Unbounded message size but bounded number of sessions.

Commuting Public Key Encryption

Aim: Build asymmetric keys for a group

- One couple of keys for a group of agents
- Trusted user to build single public/private keys for all agents in the group

Permits to sign a message by several persons

Mean: RSA with same modulus

A wants to sign a contract M with B and C

1.
$$A \to B$$
: $\{M\}_{Ka^{-1}}^p$
2. $B \to C$: $\{\{M\}_{Ka^{-1}}^p\}_{Kb^{-1}}^p$
3. $C \to A$: $\{\{M\}_{Ka^{-1}}^p\}_{Kb^{-1}}^p\}_{Kc^{-1}}^p$

Relies on the hardness of factorisation

The Goal

To check insecurity with an extended Dolev-Yao model of intruder

Standard rules:

	Composition	Decomposition
Pair	$a,b o \langle a,b \rangle$	$\langle a,b \rangle o a,b$
Cipher	$a, K \to \{a\}_K$	$\{a\}_K, K^{-1} \to a$

Add an Commuting Encryption rule:

RSA
$$a, b, c, \dots \rightarrow a^{b^{n_b} \times c^{n_c} \times \dots}$$

Theory for public key commuting encryption

Based on Meadows-Narendran article

Basics

RSA theory: • associative ciphering

- × group operator
- public and private key invert one of each other for ×

Theory for public key commuting encryption

Based on Meadows-Narendran article

Basics

RSA theory: • associative ciphering

- × group operator
- ullet public and private key invert one of each other for imes

Restrictions

never × operator outside encryption

Theory for public key commuting encryption

Based on Meadows-Narendran article

Basics

RSA theory: • associative ciphering

- × group operator
- public and private key invert one of each other for ×

Restrictions

- never × operator outside encryption
- no handling of multiplicative properties of exponential

Ground Reachability Problem

Deductions

• Deduce *t* from *E* in one step:

$$E \to E, t$$

If: $F \rightarrow t$ rule and $F \subseteq E$

Decision problem

Derive: Given t and E, does there exist F such that:

$$\begin{cases}
E \to^* F \\
t \in F
\end{cases}$$

Notation: If the answer is positive, $t \in \text{Forge}(E)$

Definition of Attacks

Setting

A Protocol is a set of steps $(A, n) : R_n \Rightarrow S_n$

An Attack is a substitution σ such that :

$$egin{array}{lll} orall i, & R_i\sigma & \in & \mathsf{Forge}\left(S_0\sigma,\ldots,S_{i-1}\sigma
ight) \ \mathsf{and} & Secret & \in & \mathsf{Forge}\left(S_0\sigma,\ldots,S_n\sigma
ight) \ \mathsf{modulo} \ RSA \end{array}$$

Hypothesis on protocol rules:

If $(t_1)^{t_2 \times ... \times t_n}$ subterm of R_i , then there exists at most one $k \in [2..n]$ with $Var(t_k) \not\subset Var(\{R_j \mid j < i\})$.

Example : $\{a^{x \times y}\}_K$ forbidden if x and y unknown, use $\{a^z\}_K$ instead

Deterministic protocols transformable to meet this restriction

Subterms

Formalism

- Deduction modulo
- Theory confluent modulo AC

Representation of classes by terms + normalisation function 「⋅¬

Subterms

- $|E|_{dag}$ number of distinct subterms in E
- products are not subterms

The Ground Case

Derivation starting from E of goal t

$$D: E \to E, t_1 \to ... \to E, t_1, .., t_{n-1}, t$$

with t and E ground and normalized modulo RSA.

Lemma. If $t \in Forge(E)$, then there exists a derivation with all intermediate terms t_i subterms of E or t.

The Ground Case (2)

Complexity

- $U \rightarrow_{RSA} v$ can be checked in polynomial time in $|U,v|_{dag}$.
- By closure, we can compute $Forge(E) \cap Sub(E,t)$ in polynomial time.

 $\Rightarrow t \in Forge(E)$ can be checked in polynomial time w.r.t. $|E,t|_{dag}$

Theorem 1. DERIVE $\in PTIME$.

Complexity of the General Case (1)

Decision problem

INSECURE: Given a protocol instance P presented by a set of rules, find an attack σ on \mathcal{P}

Idea: bounding the size of the representation of σ

- $|\sigma|_{dag}$: number of different substerms in σ
- $|\sigma|_{rsa}$: total size of representation of coefficients in σ

Main result

Theorem 2. Insecure $\in NPTIME$

Complexity of the General Case (2)

Results on subterms of a minimal attack

Lemma 1. Every insecure Protocol admits an attack σ , such that $\forall x \in Var \text{ with }$

$$\sigma(x) = (v_1)^{v_2^{n_2} \times \dots \times v_n^{n_n}}$$

 $n \geq 1$, for all i there exists a subterm t_i of the protocol such that $\lceil t_i \sigma \rceil = v_i$

Lemma 2. Any insecure Protocol P admits an attack σ with

$$\forall x \in Var, \ |\sigma(x)|_{dag} \le 4 \cdot |P|_{dag}$$

More recently:
$$|Var\sigma|_{dag} \leq |P|_{dag}$$

Complexity of the General Case (3)

Notation: $t \equiv_{coef} t'$ if t = t' up to multiplicity of factors in products Bounding the coefficient

- Let σ be an attack with $|\sigma|_{dag}$ minimal
- Abstract coefficients in σ by integer variables: σ^*
- ${\cal S}$ affine system on variables of σ^*
- Any solution β of S such that:

$$\forall t \in \operatorname{Sub}(P), \lceil \beta(t\sigma^*) \rceil \equiv_{rsa} \lceil t\sigma \rceil$$

and such that $\beta(\sigma^*)$ is also an attack

Theorem (Folklore). Polynomial bound on the size of a minimal solution of S

Conclusion

Main result : Insecurity with commuting public key encryption is in NP

- *NP*-hard
- PTIME in the groud case.

A practical version of these rules is being implemented for the European Project AVISPA.