2.4 Existência e convergência da TFTD

Seja x(n) uma sequência absolutamente somável cuja TFTD é $X(e^{j\omega})$. Aplicando o módulo em ambos os membros da igualdade que define a TFTD, temos

$$|X(e^{j\omega})| = \left| \sum_{n = -\infty}^{+\infty} x(n)e^{-j\omega n} \right|$$

$$\leq \sum_{n = -\infty}^{+\infty} |x(n)||e^{-j\omega n}| = \sum_{n = -\infty}^{+\infty} |x(n)| < +\infty.$$

Se x(n) for absolutamente somável, então $X(e^{j\omega})$ existe. Cabe notar que essa é uma condição suficiente, mas não necessária para a existência da TFTD. Em outras palavras, podem existir sequências que não obedecem a essa condição mas que possuem TFTD. Porém, para esse tipo de sequências, a obtenção da TFTD nem sempre é trivial a partir de sua definição.

A definição da TFTD consiste em uma série infinita e a sua convergência vai depender da sequência particular que está sendo considerada. Se a sequência de tempo discreto é absolutamente somável, isto é,

Condição (i):
$$\sum_{n=-\infty}^{+\infty} |x(n)| < \infty$$

ou se é somável em média quadrática, isto é,

Condição (ii):
$$\sum_{n=-\infty}^{+\infty} |x(n)|^2 < \infty,$$

então a TFTD de x(n) ou a sua TFTD inversa pode ser obtida diretamente da definição. Caso contrário, poderá ser necessário o uso de manipulações adicionais.

• As condições (i) e (ii) podem ser colocadas como

$$Condição\ (i): \sum_{n=-\infty}^{+\infty} |x(n)| < \infty \quad \therefore \quad \lim_{M \to \infty} |X(e^{j\omega}) - X_M(e^{j\omega})| = 0$$

$$Condição\ (ii): \sum_{n=-\infty}^{+\infty} |x(n)|^2 < \infty \quad \therefore \quad \lim_{M \to \infty} \int_{-\pi}^{\pi} |X(e^{j\omega}) - X_M(e^{j\omega})|^2 d\omega = 0$$
sendo $X_M(e^{j\omega}) = \sum_{n=-M}^{M} x(n)e^{-j\omega n}$.

Quando a condição (i) é satisfeita, a TFTD existe e a convergência é uniforme com o aumento de M. Algumas sequências não satisfazem a condição (i) mas satisfazem a condição (ii), ou seja, não convergem uniformemente mas têm energia finita. Em outras palavras, o somatório dos valores absolutos não é finito, mas o somatório dos quadrados dos valores absolutos é finito. Essas sequências podem ser representadas por uma TFTD que converge em média quadrática.

- Exemplo 3: Considere o caso do par transformado do filtro passa-baixas ideal:

$$H_d(e^{j\omega}) = \begin{cases} 1, & \text{se } |\omega| \le \omega_c \\ 0, & \text{se } \omega_c \le |\omega| \le \pi \end{cases} \longleftrightarrow h_d(n) = \begin{cases} \frac{\omega_c}{\pi}, & \text{se } n = 0 \\ \frac{\omega_c}{\pi} \frac{\sin(\omega_c n)}{\omega_c n}, & \text{se } n \ne 0 \end{cases}$$

¹ Partes do texto e figuras contaram com a colaboração do doutorando Flávio Renê M. Pavan

A sequência $h_d(n)$ não é absolutamente somável, ou seja,

$$\sum_{n=-\infty}^{+\infty} |h_d(n)| = +\infty.$$

Isso ocorre pois a função sinc decai com 1/n quando $|n| \to +\infty$. Esta queda é consideravelmente lenta, implicando na divergência da soma absoluta. Logo, $h_d(n)$ não obedece (i).

Por outro lado, a sequência $h_d(n)$ é somável em média quadrática. Pela Igualdade de Parseval, temos

$$\sum_{n=-\infty}^{+\infty} |h_d(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_d(e^{j\omega})|^2 d\omega.$$

$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} 1 d\omega.$$

$$= \frac{\omega_c}{\pi} < +\infty.$$

Logo, $h_d(n)$ obedece (ii).

• As condições (i) e (ii) são suficientes, mas não necessárias. Em outras palavras, toda sequência que obedece a essas condições possui TFTD, porém, é possível encontrar a TFTD de algumas sequências que não obedecem a essas condições. Assim, quando a sequência de tempo discreto não converge nem em média e nem em média quadrática, a sua TFTD pode ser obtida a partir de funções generalizadas ou de distribuições. A seguir, serão analisados alguns casos de interesse.

2.5 A TFTD com funções generalizadas

A TFTD de um pente infinto de uns

Seja a função

$$P(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - 2\pi k). \tag{1}$$

Note que $P(e^{j\omega})$ é uma função periódica, de período 2π , cujo domínio é contínuo. Nesse caso, portanto, o $\delta(.)$ é o impulso unitário (Dirac), ou seja,

$$\delta(\omega - 2\pi k) = \begin{cases} 0, & \text{se } \omega \neq 2\pi k \\ +\infty, & \text{se } \omega = 2\pi k \end{cases}$$

para $|k|=0,\,1,\,2,\,\ldots$ e $\int_{-\infty}^{\infty}\delta(\omega)d\omega=1$. Deseja-se obter o sinal de tempo discreto p(n) tal que TFTD $\{p(n)\}=P(e^{j\omega})$. Com esse objetivo, vamos aplicar a definição da TFTD inversa em $P(e^{j\omega})$, ou seja,

$$p(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - 2\pi k) e^{j\omega n} d\omega.$$

No caso, a integral da soma é a soma das integrais, resultando em

$$p(n) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \int_{-\pi}^{\pi} 2\pi \delta(\omega - 2\pi k) e^{j\omega n} d\omega.$$

Observe que no intervalo em que a integral é calculada, $-\pi \le \omega < \pi$, o único valor de ω que faz a integral ser não nula é $\omega = 0$. Portanto, temos apenas um termo no somatório que é não nulo e acontece para k = 0. Assim

$$p(n) = \int_{-\pi}^{\pi} \delta(\omega) e^{j\omega n} d\omega = 1$$
 para todo n .

Na Figura 1 é ilustrado o par transformado $p(n) \stackrel{\text{TFTD}}{\longleftrightarrow} P(e^{j\omega})$. A função (1) fornece a representação em frequência para qualquer valor de ω . Como $P(e^{j\omega})$ é periódico com período 2π , pode-se representar a TFTD de p(n) no intervalo $-\pi \leq \omega < \pi$ por $2\pi\delta(\omega)$.

Figura 1: TFTD de um trem de pulsos unitários.

Por conveniência, vamos considerar o sinal p(n) expresso como

$$p(n) = \sum_{\ell = -\infty}^{\infty} \delta(n - \ell).$$

Aplicando a definição da TFTD, obtemos

$$P(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} \delta(n-\ell)e^{-j\omega n} = \sum_{\ell=-\infty}^{\infty} e^{-j\omega\ell}.$$
 (2)

Essa série geométrica não converge. Porém, comparando (2) com (1), obtemos a igualdade

$$\sum_{\ell=-\infty}^{\infty} e^{-j\omega\ell} = \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - 2\pi k).$$
 (3)

A representação de (1) é apenas uma outra forma de representar a série geométrica (2). A igualdade (3) será muito útil para obter pares transformados que são representados com pentes de Diracs no domínio ω , como, por exemplo, a TFTD da exponencial complexa e consequentemente de sinais senoidais de tempo discreto.

A TFTD do degrau unitário

O degrau unitário de tempo discreto, mostrado na Figura 2, é definido como

$$u(n) = \begin{cases} 1, & \text{se } n \ge 0 \\ 0, & \text{se } n < 0 \end{cases}$$
 (4)

Se aplicarmos a definição da TFTD diretamente em u(n), resulta

$$U(e^{j\omega}) \triangleq \text{TFTD}\{u(n)\} = \sum_{n=0}^{\infty} e^{-j\omega n},$$
 (5)

Figura 2: Gráfico do degrau unitário u(n).

que é uma série geométrica não convergente. Nota-se que o valor médio de u(n) é

$$\bar{u} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} u(n) = \lim_{N \to \infty} \frac{1}{2N+1} \left(\sum_{k=-N}^{-1} u(n) + \sum_{k=0}^{N} u(n) \right) = \lim_{N \to \infty} \frac{N+1}{2N+1} = \frac{1}{2}.$$

Além disso, a sua potência média é finita e a sua energia é infinita. Portanto, o degrau unitário é um sinal potência. Para esta classe de sinais de tempo discreto, a obtenção da TFTD não pode ser feita diretamente a partir da definição.

Precisamos encontrar uma outra forma de obter $U(e^{j\omega})$. A seguir são apresentadas duas formas distintas de obter o mesmo resultado.

A TFTD do degrau unitário: versão 1

Sabemos que o degrau unitário obedece a relação

$$u(n) - u(n-1) = \delta(n). \tag{6}$$

Aplicando a TFTD em ambos os lados dessa equação, e lançando mão da propriedade de deslocamento no tempo, temos

$$U(e^{j\omega}) - U(e^{j\omega})e^{-j\omega} = 1.$$

Isolando $U(e^{j\omega})$ resulta

$$U(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}}. (7)$$

Observe que $U(e^{j\omega})$ assume um valor finito sempre que $\omega \neq 2\pi k$ para $|k| = 0, 1, 2, \ldots$ Porém, para $\omega = 2\pi k$, ocorre divisão por zero. Em especial, se $-\pi \leq \omega < \pi$, a divisão por zero ocorre apenas para $\omega = 0$. Precisamos encontrar uma forma de representar a TFTD do degrau unitário em $\omega = 0$. Para isso, vamos recorrer às seguintes observações:

(i) A Transformada de Fourier (TF) de uma função de tempo contínuo x(t) é

$$X(j\Omega) \triangleq \text{TF}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t}dt.$$

No caso em que $\Omega=0,$ a TF é $X(j0)=\int_{-\infty}^{+\infty}x(t)dt.$ Portanto, X(j0) é a área sob a função x(t).

Particularmente, no caso do degrau unitário u(t), a sua TF é

$$U(j\Omega) \triangleq \text{TF}\{u(t)\} = \frac{1}{j\Omega} + \pi\delta(\Omega).$$

O termo $\pi\delta(\Omega)$ representa a TF em $\Omega=0$. Note que o valor médio de u(t) é 1/2 e $\pi\delta(\Omega)$ corresponde à TF dessa constante.

(ii) Sabemos que $\Omega=2\pi f$ é a frequência angular e $\omega=2\pi f/f_a$ é a frequência angular normalizada sendo $f_a=1/T$ a frequência de amostragem. Assim,

$$\Omega = \omega/T$$
.

(iii) Se x(n) resulta da amostragem de x(t) a intervalos de T unidades de tempo, então, no período $-\pi \le \omega < \pi$,

$$X(e^{j\omega}) = X(j\Omega)/T.$$

Portanto, a TFTD em $\omega = 0$ tem a mesma interpretação da TF em $\Omega = 0$, porém com um fator de escala 1/T. Cabe notar que para sinais potência, como sinais periódicos e o degrau unitário, o valor da TF em $\Omega = 0$ está relacionado com o valor médio de x(t).

(iv) Como o delta de Dirac possui área unitária, é possível mostrar que

$$\delta(\Omega) = \delta(\omega/T) = T\delta(\omega).$$

Voltamos agora à representação da TFTD de u(n) em $\omega=0$. Sejam $U(j\Omega)=\mathrm{TF}\{u(t)\}$, $U(e^{j\omega})=\mathrm{TFTD}\{u(n)\}$ e u(n) o degrau unitário resultante da amostragem de u(t) a intervalos T. Com a Observação (iii) aplicada ao degrau unitário para $\Omega=0$, temos

$$U(e^{j0}) = U(j0)/T.$$

Pela Observação (i), U(j0) é a área sob a função u(t). Portanto,

$$U(e^{j0}) = U(j0)/T = \pi \delta(\Omega)/T.$$

Com a Observação (iv), resulta finalmente

$$U(e^{j0}) = \pi \delta(\Omega)/T = \pi \delta(\omega). \tag{8}$$

Trata-se, portanto, da representação da TFTD de u(n) em $\omega = 0$.

As Equações (7) e (8) podem ser expressas conjuntamente como

$$U(e^{j\omega}) = \begin{cases} \pi \delta(\omega), & \text{se } \omega = 0\\ \frac{1}{1 - e^{-j\omega}}, & \text{se } -\pi \le \omega < 0 \text{ ou } 0 < \omega < \pi. \end{cases}$$
(9)

e representam TFTD do degrau unitário para $-\pi \le \omega < \pi$. Como a TFTD é periódica com período 2π , a representação em frequência do degrau unitário para todo valor de ω é

$$U(e^{j\omega}) = \begin{cases} \sum_{k=-\infty}^{\infty} \pi \delta(\omega - 2\pi k), & \text{se } \omega = 2\pi k \\ \frac{1}{1 - e^{-j\omega}}, & \text{para os demais valores de } \omega. \end{cases}$$
(10)

Usualmente na literatura, a TFTD do degrau unitário é representada como

$$U(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega - 2\pi k)$$
(11)

para todo ω , sendo o segundo membro, do lado direito da equação, considerado para representar o valor da TFTD apenas quando ω for um múltiplo inteiro de $2\pi^2$. O módulo da TFTD $U(e^{j\omega})$ é ilustrado na Figura 3.

 $^{^2}$ Uma alternativa para se convencer do resultado encontrado é calcular a TFTD inversa de (11) e verificar que ela resulta em u(n). Para o segundo termo da soma os cálculos são idênticos aos mostrados no início deste capítulo. Já para o primeiro termo, é preciso integrar a expressão $\frac{1}{1-e^{-j\omega}}$ no plano complexo, utilizando a substituição de variáveis $z=e^{j\omega}$. Ao variar ω de $-\pi$ a π , integração é feita sobre a circunferência unitária. Como existem múltiplos polos na curva de integração, para $z=e^{j2k\pi}$, é preciso lançar mão do teorema do valor principal de Cauchy, para remover a singularidade do caminho de integração, e do teorema dos resíduos, que permite avaliar a integral na curva fechada. Mais detalhes podem ser encontrados no livro $Signal\ Processing\ for\ Communications\ de\ P.\ Prandoni\ e\ M.\ Vetterli\ (2008).$

Figura 3: Módulo da TFTD do degrau unitário.

A TFTD do degrau unitário: versão 2

Considere a função

$$v(n) = \begin{cases} 1/2, & \text{se } n \ge 0\\ -1/2, & \text{se } n < 0 \end{cases}$$
 (12)

Se aplicarmos a definição da TFTD diretamente em v(n), resulta

$$V(e^{j\omega}) = -\frac{1}{2} \sum_{n=-\infty}^{-1} e^{-j\omega n} + \frac{1}{2} \sum_{n=0}^{\infty} e^{-j\omega n},$$
(13)

ou seja, uma soma de duas séries geométricas não convergentes. Nota-se que o valor médio de v(n) é

$$\bar{v} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} v(n) = \lim_{N \to \infty} \frac{1/2}{2N+1} \left(-\sum_{k=-N}^{-1} 1 + \sum_{k=0}^{N} 1 \right) = \lim_{N \to \infty} \frac{1/2}{2N+1} = 0,$$

ou seja, nulo. Portanto, a sua representação em $\omega=0$ será também zero.

Nota-se também que v(n) obedece a relação

$$v(n) - v(n-1) = \delta(n). \tag{14}$$

Aplicando a TFTD em ambos os lados dessa equação, e lançando mão da propriedade de deslocamento no tempo, temos

$$V(e^{j\omega}) - V(e^{j\omega})e^{-j\omega} = 1.$$

Isolando $V(e^{j\omega})$, resulta

$$V(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}}. (15)$$

Observe que $V(e^{j\omega})$ assume um valor finito sempre que $\omega \neq 2\pi k$ para $|k| = 0, 1, 2, \ldots$ Porém, para $\omega = 2\pi k$, sabemos que $V(e^{j\omega}) = 0$.

O degrau unitário u(n) pode ser expresso em função de p(n) e de v(n) como

$$u(n) = v(n) + \frac{1}{2}p(n).$$

Aplicando a TFTD em ambos os lados dessa equação, e utilizando a propriedade da linearidade da TFTD, temos exatamente (11).

Figura 4: Gráficos da exponencial complexa amostrada, com $\omega_o = \pi/4$: em azul, as amostras. (a) Partes real e imaginária em função de n. (b) Parte real. (c) Parte imaginária.

A TFTD da exponencial complexa

Considere a exponencial complexa $x(n) = e^{j\omega_o n}$, com $-\pi \le \omega_o < \pi$. O gráfico desta função, para $\omega_o = \pi/4$, é mostrado na Figura 4. A sua TFTD é

$$TFTD\{e^{j\omega_o n}\} = \sum_{n=-\infty}^{\infty} e^{j\omega_o n} e^{-j\omega n} = \sum_{n=-\infty}^{\infty} e^{-j(\omega-\omega_o)n}.$$

Usando a relação (3), temos

TFTD
$$\{e^{j\omega_o n}\} = \sum_{n=-\infty}^{\infty} e^{-j(\omega-\omega_o)n} = \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_o-2\pi k).$$

A TFTD da exponencial complexa, para $\omega_o = \pi/4$, é ilustrada na Figura 5. Como a função $e^{j\pi n/4}$ é complexa, a sua TFTD não possui simetria par em relação à origem. Note que a TFTD da exponencial complexa no período $-\pi \leq \omega < \pi$ é apenas um impulso de Dirac de área 2π na frequência $\omega = \omega_o$, isto é, $2\pi\delta(\omega - \omega_o)$.

Figura 5: TFTD da exponencial complexa, para $\omega_o = \pi/4$.

A TFTD da exponencial complexa truncada

Sabemos que a TFTD da exponencial complexa $x(n) = e^{j\omega_o n}$ para $-\infty < n < \infty$ é

$$X(e^{j\omega}) = \text{TFTD}\{e^{j\omega_o n}\} = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_o - 2\pi k).$$

Se o n estiver limitado a algum intervalo finito, por exemplo, $0 \le n \le N-1$, significa que N amostras da exponencial complexa foram multiplicadas por uns e as demais amostras foram multiplicadas por zero. Em outras palavras, a exponencial complexa foi multiplicada por uma janela retangular com duração N a partir da amostra zero. Representamos a exponencial complexa truncada como

$$v(n) = x(n)g(n)$$

em que g(n)=1 para $0\leq n\leq N-1$ e g(n)=0 para os demais valores de n. Lembrando que uma multiplicação no tempo é um convolução no domínio ω temos

$$V(e^{j\omega}) = \frac{1}{2\pi}X(e^{j\omega}) * G(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_o - 2\pi k) * G(e^{j\omega}) = \sum_{k=-\infty}^{\infty} G(e^{j(\omega - \omega_o - 2\pi k)}).$$

Na Figura 6 é esboçado o módulo de $V(e^{j\omega})$ usando janelas retangulares para diferentes valores de N. Na simulação, foi adotado $\omega_o = 2\pi/5$ rad. Nestes gráficos, a amplitude máxima foi normalizada em um para facilitar a comparação. Observe que quanto maior N, mais a TFTD do sinal janelado se aproxima da TFTD do sinal sem aplicação de janela.

Figura 6: Módulo da TFTD da exponencial complexa truncada com $N=8,\ N=16,\ N=32$ e N=128 amostras.

Comandos do MatLab usados para gerar os gráficos

```
omega0=2*pi/5;
N1=8; N2=16; N3=32; N4=128;
n1 = [0:N1-1]; n2 = [0:N2-1]; n3 = [0:N3-1]; n4 = [0:N4-1];
[V1,omega1]=tftd(exp(j*omega0*n1),n1);
[V2, omega2] = tftd(exp(j*omega0*n2), n2);
[V3,omega3]=tftd(exp(j*omega0*n3),n3);
[V4, omega4] = tftd(exp(j*omega0*n4),n4);
subplot(411); plot(omega1/pi,abs(V1)/N1,'LineWidth',2); grid; axis([0 2 0 1.1])
title('|V| janela com N=8','FontSize',14,'FontName','Times New Roman');
subplot(412); plot(omega2/pi,abs(V2)/N2,'LineWidth',2); grid; axis([0 2 0 1.1 ])
title('|V| janela com N=16','FontSize',14,'FontName','Times New Roman');
subplot(413); plot(omega3/pi,abs(V3)/N3,'LineWidth',2); grid; axis([0 2 0 1.1 ])
title('|V| janela com N=32','FontSize',14,'FontName','Times New Roman');
\verb|subplot(414); plot(omega4/pi,abs(V4)/N4,'LineWidth',2); grid; axis([0 2 0 1.1 ])| \\
title('|V| janela com N=128', 'FontSize', 14, 'FontName', 'Times New Roman');
xlabel('\omega / \pi','FontSize',16);
```

A TFTD de sinais periódicos

A TFTD $\{e^{j\omega_o n}\}$ é útil para determinar a TFTD de sinais periódicos. Se um sinal de tempo discreto é periódico, então ele pode ser representado como uma soma ponderada de exponenciais complexas harmonicamente relacionadas, ou seja,

$$x(n) = \sum_{\ell=-L}^{L} a(\ell) e^{j\frac{2\pi}{N}\ell n},$$

sendo N o período do sinal x(n). Aplicando a propriedade da linearidade da TFTD, temos

$$X(e^{j\omega}) = \text{TFTD}\{x(n)\} = \sum_{\ell=-L}^{L} a(\ell) \text{ TFTD}\{e^{j\frac{2\pi}{N}\ell n}\}.$$

Usando o par transformado da exponencial complexa, ou seja,

$$\text{TFTD}\{e^{j\frac{2\pi}{N}\ell n}\} = \sum_{n=-\infty}^{\infty} e^{-j(\omega - \frac{2\pi}{N}\ell)n} = \sum_{k=-\infty}^{\infty} 2\pi\delta \left(\omega - \frac{2\pi}{N}\ell - 2\pi k\right),$$

temos

$$X(e^{j\omega}) = \text{TFTD}\{x(n)\} = \sum_{\ell=-L}^{L} a(\ell) \left(\sum_{k=-\infty}^{\infty} 2\pi \delta \left(\omega - \frac{2\pi}{N} \ell - 2\pi k \right) \right)$$
$$\Rightarrow X(e^{j\omega}) = 2\pi \sum_{\ell=-L}^{L} a(\ell) \left(\sum_{k=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi}{N} \ell - 2\pi k \right) \right).$$

Porém, analisando somente um período de $X(e^{j\omega})$, por exemplo, com $-\pi \leq \omega < \pi$, temos

$$X(e^{j\omega}) = 2\pi \sum_{\ell=-L}^{L} a(\ell)\delta\left(\omega - \frac{2\pi}{N}\ell\right).$$

Esta expressão permite obter facilmente a TFTD de sinais periódicos a partir dos seus coeficientes $\{a(\ell)\}$.

Exercícios com sinais periódicos

1. Confira as seguintes relações:

TFTD
$$\{\sin(\omega_o n)\} = \frac{\pi}{j} \sum_{k=-\infty}^{\infty} [\delta(\omega + \omega_o - 2\pi k) - \delta(\omega - \omega_o - 2\pi k)]$$

 \mathbf{e}

TFTD
$$\{\cos(\omega_o n)\} = \pi \sum_{k=-\infty}^{\infty} \left[\delta(\omega + \omega_o - 2\pi k) + \delta(\omega - \omega_o - 2\pi k)\right].$$

Dica: Expresse $\sin(\omega_o n)$ e $\cos(\omega_o n)$ em termos de exponenciais complexas.

2. Determine a TFTD do sinal $x(n) = \sin\left(\frac{\pi}{3}n + \frac{\pi}{4}\right)$.

A TFTD de uns intercalados com zeros

Considere a sequência de impulsos de Dirac

$$X(e^{j\omega}) = \frac{1}{M} \sum_{k=-\infty}^{\infty} 2\pi \delta \left(\omega - \frac{2\pi k}{M}\right).$$

Por conveniência, vamos obter a sua representação no tempo discreto calculando a antitransformada no intervalo de zero a 2π , ou seja,

$$x(n) = \text{TFTD}^{-1}\{X(e^{j\omega})\} = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{1}{M} \sum_{k=-\infty}^{\infty} 2\pi \delta\left(\omega - \frac{2\pi k}{M}\right)\right) e^{j\omega n} d\omega.$$

No intervalo $0 \le \omega < 2\pi$, as funções $\delta\left(\omega - \frac{2\pi k}{M}\right)$ apresentarão apenas M valores não nulos e que ocorrem quando $\omega = \frac{2\pi k}{M}$, portanto,

$$x(n) = \text{TFTD}^{-1}\{X(e^{j\omega})\} = \frac{1}{2\pi} \frac{1}{M} \sum_{k=0}^{M-1} 2\pi \ e^{j\frac{2\pi k}{M}n} = \frac{1}{M} \sum_{k=0}^{M-1} e^{j\frac{2\pi k}{M}n}.$$

Quando n é um múltiplo inteiro de M, ou seja, $n = \ell M$ temos $e^{j\frac{2\pi k}{M}n} = e^{j2\pi k\ell} = 1$. Logo,

$$\frac{1}{M} \sum_{k=0}^{M-1} e^{j\frac{2\pi k}{M}n} = \frac{M}{M} = 1.$$

Caso contrário, ou seja, para $n \neq \ell M$, temos

$$\frac{1}{M} \sum_{k=0}^{M-1} e^{j\frac{2\pi k}{M}n} = \frac{1 - e^{j2\pi n}}{1 - e^{j\frac{2\pi}{M}n}} = 0.$$

Portanto,

$$x(n) = \text{TFTD}^{-1}\{X(e^{j\omega})\} = \frac{1}{M} \sum_{k=0}^{M-1} e^{j\frac{2\pi k}{M}n} = \sum_{\ell=-\infty}^{\infty} \delta(n-\ell M).$$

Na Figura 7 é ilustrado o par transformado de uma sequência de impulsos unitários com M=3. Note que um aumento de M aumenta o número de zeros entre os impulsos unitários no tempo, mas reduz o espaçamento entre os deltas de Dirac em ω .

Figura 7: Representação no tempo e na frequência de uma sequência periódica de impulsos unitários com espaçamento M=3.

A função

$$X(e^{j\omega}) = \frac{1}{M} \sum_{k=-\infty}^{\infty} 2\pi \delta \left(\omega - \frac{2\pi k}{M}\right)$$

é útil para representar a amostragem do espectro de uma função contínua em ω . Quanto maior M, menor será o espaçamento entre as amostras do espectro.

Outro Exemplo: Considere a seguinte TFTD:

$$P(e^{j\omega}) = \frac{2\pi}{5} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi}{5}k\right).$$

Nota-se que $P(e^{j\omega})$ é periódica e em um período temos 5 impulsos de Dirac de área $2\pi/5$. Determine o sinal de tempo discreto $p(n) = \text{TFTD}^{-1}\{P(e^{j\omega})\}$.

Solução: Aplicando a definição da TFTD⁻¹, temos

$$p(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{5} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi}{5}k\right) e^{j\omega n} d\omega.$$

Em um período de ω , por exemplo, $-\pi \le \omega < \pi$, vale $\delta\left(\omega - \frac{2\pi}{5}k\right) \ne 0$ somente para $k = 0, \pm 1, \pm 2$. Assim,

$$p(n) = \frac{1}{5} \int_{-\pi}^{\pi} \sum_{k=-2}^{2} \delta\left(\omega - \frac{2\pi}{5}k\right) e^{j\omega n} d\omega = \frac{1}{5} \sum_{k=-2}^{2} \int_{-\pi}^{\pi} \delta\left(\omega - \frac{2\pi}{5}k\right) e^{j\omega n} d\omega.$$

Além disso, para um dado valor de k

$$\int_{-\pi}^{\pi} \delta\left(\omega - \frac{2\pi}{5}k\right) e^{j\omega n} d\omega = \begin{cases} e^{j\frac{2\pi}{5}kn}, & \frac{2\pi}{5}k \in [-\pi, \pi) \\ 0, & \frac{2\pi}{5}k \notin [-\pi, \pi) \end{cases}$$

Portanto,

$$p(n) = \frac{1}{5} \sum_{k=-2}^{2} e^{j\frac{2\pi}{5}kn}.$$

Nota-se que quando $n=5\ell$, para todo ℓ inteiro, temos

$$p(n) = \frac{1}{5} \sum_{k=-2}^{2} 1 = \frac{5}{5} = 1,$$

e quando $n \neq 5\ell$, temos

$$p(n) = \frac{1}{5} \frac{e^{-j\frac{4\pi}{5}n} - e^{j\frac{6\pi}{5}n}}{1 - e^{j\frac{2\pi}{5}n}} = \frac{1}{5} e^{-j\frac{4\pi}{5}n} \frac{1 - e^{j2\pi n}}{1 - e^{j\frac{2\pi}{5}n}} = 0.$$

Nota-se que quando n é um múltiplo inteiro de 5, então p(n)=1, e para os demais valores de n, o p(n) vale zero. Em outras palavras, p(n) é uma sequência de uns intercalados com quatro zeros. Em uma notação compacta temos

$$p(n) = \sum_{\ell=-\infty}^{\infty} \delta(n - 5\ell). \blacktriangleleft$$

Generalizando, temos o seguinte par transformado

$$p(n) = \sum_{\ell = -\infty}^{\infty} \delta(n - M\ell) \longleftrightarrow P(e^{j\omega}) = \frac{2\pi}{M} \sum_{k = -\infty}^{+\infty} \delta\left(\omega - \frac{2\pi}{M}k\right).$$
 (16)

Nota-se que

• p(n) é um sinal periódico representando um trem de pulsos unitários intercalados com M-1 zeros, ou seja, M-1 amostras nulas.

- $P(e^{j\omega})$ é um trem de impulsos de Dirac distanciados de $2\pi/M$. Em um período de comprimento 2π rad, temos M impulsos de Dirac.
- Um aumento de M implica em um aumento do número de zeros entre as amostras não nulas de p(n), e também em uma diminuição do espaçamento entre os impulsos de Dirac de $P(e^{j\omega})$.
- O par transformado $p(n) \longleftrightarrow P(e^{j\omega})$ é útil para representar a amostragem do espectro de uma função contínua em ω .

2.6 A amostragem do espectro

Sejam v(n) uma sequência de tempo discreto com $V(e^{j\omega}) = \text{TFTD}\{v(n)\}, p(n)$ um pente de pulsos unitários intercalados com zeros com $P(e^{j\omega}) = \text{TFTD}\{p(n)\}\ e$

$$X(e^{j\omega}) = V(e^{j\omega})P(e^{j\omega})$$
(17)

a multiplicação das duas TFTDs, sendo $X(e^{j\omega})=\text{TFTD}\{x(n)\}$. Representando $P(e^{j\omega})$ em termos de impulsos de Dirac, temos

$$X(e^{j\omega}) = V(e^{j\omega}) \frac{2\pi}{M} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi}{M}k\right) = \frac{2\pi}{M} \sum_{k=-\infty}^{+\infty} V(e^{j\omega}) \delta\left(\omega - \frac{2\pi}{M}k\right).$$

Como $\delta(\omega - \frac{2\pi}{M}k) \neq 0$ apenas quando $\omega = \frac{2\pi}{M}k$, então,

$$X(e^{j\omega}) = \frac{2\pi}{M} \sum_{k=-\infty}^{+\infty} V(e^{j\frac{2\pi}{M}k}) \delta\left(\omega - \frac{2\pi}{M}k\right).$$
 (18)

Note que

- $X(e^{j\omega})$ é um espectro constituído de raias que representam amostras de $V(e^{j\omega})$ espaçadas de $2\pi/M$. Evidentemente, a envoltória desse espectro é $V(e^{j\omega})$.
- $\delta(\omega \frac{2\pi}{M}k)$ indica o valor do argumento de $V(e^{j\omega})$ para um dado ω .
- $V(e^{j\frac{2\pi}{M}k}) = \sum_{n=-\infty}^{+\infty} v(n)e^{-j\frac{2\pi}{M}kn}$ são amostras de $V(e^{j\omega})$ para $\omega = \frac{2\pi}{M}k$, sendo k um inteiro.

No domínio do tempo, temos

$$x(n) = v(n) * p(n) = v(n) * \sum_{\ell=-\infty}^{+\infty} \delta(n - M\ell) = \sum_{\ell=-\infty}^{+\infty} v(n) * \delta(n - M\ell) = \sum_{\ell=-\infty}^{+\infty} v(n - M\ell)$$
(19)

em que * denota a operação da convolução. As Equações (18) e (19) permitem concluir que a amostragem do espectro $V(e^{j\omega})$ resulta em uma repetição periódica do sinal v(n) no domínio do tempo. Além disso, a TFTD de um sinal periódico x(n) leva a um espectro $X(e^{j\omega})$ constituído de raias, ou seja, um espectro discreto.

Exemplo 2: Seja a $V(e^{j\omega}) = \text{TFTD}\{v(n)\}$ com $v(n) = \delta(n+1) + 2\delta(n) + \delta(n-1)$. Determine as sequências de tempo discreto que resultam da amostragem do espectro $V(e^{j\omega})$ com M=5 e com M=2.

Solução: Para M=5, o sinal resultante da amostragem do espectro é um sinal periódico de período $M=5,\ \tilde{v}(n)=\sum_{\ell=-\infty}^{+\infty}v(n-5\ell).$

n	$ ilde{v}(n)$
-1	$\tilde{v}(-1) = v(-1 - 0) = v(-1) = 1$
0	$\tilde{v}(0) = v(0-0) = v(0) = 2$
1	$\tilde{v}(1) = v(1-0) = v(1) = 1$
2	$\tilde{v}(2) = v(2-0) = v(2) = 0$
3	$\tilde{v}(3) = v(3-0) = v(3) = 0$
4	$\tilde{v}(4) = v(4-5) = v(-1) = 1$
5	$\tilde{v}(5) = v(5-5) = v(0) = 2$
:	:

Para M=2, o sinal resultante da amostragem do espectro é um sinal periódico de período M=2, $\tilde{v}(n)=\sum_{\ell=-\infty}^{+\infty}v(n-2\ell)$. Como M<3, devemos levar em conta a sobreposição dos períodos repetidos.

\overline{n}	$ ilde{v}(n)$
0	$\tilde{v}(0) = v(0+0) = v(0) = 2$
1	$\tilde{v}(1) = v(1-0) + v(-1+0) = v(1) + v(-1) = 2$
2	$\tilde{v}(2) = v(2-2) = v(0) = 2$
3	$\tilde{v}(3) = v(3-2) + v(-3+2) = v(1) + v(-1) = 2$
$\overline{4}$	$\tilde{v}(4) = v(4-4) = v(0) = 2$
5	$\tilde{v}(5) = v(5-4) + v(-5+4) = v(1) + v(-1) = 2$
:	:

Figura 8: Sequência de tempo discreto v(n) e sua TFTD $V(e^{j\omega})$ e sequências periódicas de tempo discreto com períodos 5, 3 e 2, resultantes da amostragem de $V(e^{j\omega})$ com 5, 3 e 2 amostras em um intervalo de 0 a 2π .