

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty

Zadanie Liczby Janka – LOGIA 22 (2021/22), etap 2

Treść zadania

Janek wybiera liczby złożone (większe od 1 niebędące liczbami pierwszymi), dla których średnia arytmetyczna wszystkich dzielników właściwych (mniejszych od liczby) nie jest większa od pierwiastka kwadratowego z tej liczby. Na przykład dzielniki właściwe liczby 45 to 1, 3, 5, 9, 15, średnia arytmetyczna wynosi 6,6, a pierwiastek kwadratowy jest większy niż 6,7.

Pomóż Jankowi i napisz program, który wczyta liczbę i wypisze 5 liczb większych od podanej liczby spełniających opisane warunki. Liczby powinny być jak najmniejsze i wypisane w kolejności rosnącej. Postaraj się, żeby na wynik nie trzeba było czekać zbyt długo.

Wejście:

Liczba naturalna z zakresu od 2 do 100 000 000.

Wyjście:

Pięć liczb naturalnych oddzielonych spacją spełniających opisane warunki.

	Przykład 1	Przykład 2	Przykład 3
Wejście	40	302	1200
Wyjście	45 49 51 55 65	319 323 341 361 377	1207 1219 1241 1247 1271

Omówienie rozwiązania

Zadanie polega na wczytaniu liczby naturalnej z podanego zakresu i wypisaniu pięciu kolejnych liczb większych od podanej spełniających warunki zadania. Będziemy sprawdzać kolejne liczby w pętli począwszy od wczytanej liczby powiększonej o 1, aż nie znajdziemy pięciu liczb Janka. Do sprawdzania będzie przydatna pomocnicza funkcja, w której będziemy badać dla danej liczby, czy średnia arytmetyczna dzielników właściwych jest większa od pierwiastka kwadratowego tej liczby. Zapiszmy podaną zależność wzorem, gdzie d₁, d₂, ..., d_n to dzielniki właściwe liczby, a n – liczba tych dzielników.

$$\frac{d_1 + d_2 + \ldots + d_n}{n} > \sqrt{liczba}$$

Ponieważ w komputerze liczby rzeczywiste są pamiętane z pewnym przybliżeniem, lepiej używać wyłącznie liczb całkowitych. Także działania na liczbach całkowitych są wykonywane przez komputer szybciej niż na liczbach rzeczywistych. Dlatego przekształcimy naszą nierówność mnożąc obie strony przez n, a następnie podnosząc obie strony do kwadratu. Warto zauważyć, że mamy do czynienia z liczbami dodatnimi, więc podnoszenie do kwadratu nie powoduje błędu.

$$d_1 + d_2 + ... + d_n > n \sqrt{liczba}$$

 $(d_1 + d_2 + ... + d_n)^2 > n^2 liczba$

W tej postaci możemy sprawdzić, czy zachodzi nierówność, używając wyłącznie działań na liczbach całkowitych. Pozostaje zaimplementować rozwiązanie.

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty

Rozwiązanie w języku Python

Właściwe rozwiązanie zadania rozpoczyna się od linii 18, wcześniej jest zdefiniowana pomocnicza funkcja. Funkcja liczba_janka(liczba) ma jeden parametr – liczbę i sprawdza, czy dla niej zachodzi opisana nierówność. Wynikiem funkcji jest prawda (True) lub fałsz (False). Zapis pom = [1] oznacza utworzenie listy złożonej z jednego elementu 1, a zapis pom = pom + [i] dodanie do listy pom elementu i. Warto jeszcze zwrócić uwagę, że w rozwiązaniu zastosowano funkcję print() z parametrem end, który przedefiniowuje standardowe zachowanie funkcji print. Domyślnie funkcja wypisuje na ekranie wartość i powoduje przejście kursora na następnej linii. Dodanie parametru end = " "powoduje, że zamiast przejścia do nowej linii będzie wypisana spacja.

```
1 def liczba janka(liczba):
 2
       pom = [1]
       i = 2
 3
 4
       while i * i < liczba:
 5
           if liczba % i == 0:
               pom = pom + [i] + [liczba // i]
 7
           i += 1
 8
       if i * i == liczba:
 9
           pom = pom + [i]
10
       suma = sum(pom)
11
      if len(pom) < 2:
12
           return False
1.3
14
           return suma * suma <= len(pom) * len(pom) * liczba
15
16 liczba = int(input())
17 ile = 0
18 while ile < 5:
19
      liczba += 1
20
      if liczba janka(liczba):
21
           ile += 1
           print(liczba, end = " ")
```

Warto zwrócić uwagę na zakres pętli while budującej listę dzielników właściwych (linia 4). Wystarczy sprawdzać potencjalne dzielniki liczby do pierwiastka z niej i dodawać do listy dzielników od razu dwa dzielniki. Ma to bardzo duży wpływ na czas działania programu. Po pętli sprawdzamy dodatkowo (linia 8), czy liczba nie jest kwadratem, wówczas dodajemy do listy jeszcze pierwiastek z liczby.

Testy

Wywołujemy program dla różnych testów tak, aby daną była zarówno liczba mała, jak i duża. Rozwiązanie warto testować dla różnych przypadków, gdyż przy implementacji z użyciem liczb rzeczywistych (zmiennoprzecinkowych) mogą wystąpić błędy zaokrągleń.

Test	Wynik
46	49 51 55 65 77
134	143 145 155 161 169
235	247 253 259 287 289

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty

77	85 91 95 115 119
456	473 481 493 517 527
567	583 589 611 629 649
787	793 799 803 817 841
9672	9701 9727 9761 9797 9799
12345	12349 12361 12367 12371 12403
1236577	1236673 1236679 1236731 1236793 1236863
4565633	4565699 4565713 4565767 4565779 4565867
98989898	98989909 98989927 98989987 98990029 98990179
10000001	10000043 10000153 10000163 10000183 10000217
10000534	10000547 10000567 10000649 10000703 10000751
10000000	100000139 100000169 100000183 100000253 100000423

