Deep Learning

Loo Tiang Kuan, Leonard

A0098795B

supervised by

Associate Professor Ji Hui

co-supervised by

Assistant Professor Alvina Goh Siew Wee

May 5, 2017

Today's Agenda

- Initialization
- Other Gradient Descents
- Other Regulariser

Overview

Session 1

Activations

Cost

Stochastic Gradient Descent

Backpropagation

Overfitting

Regularization

Session 3

Popular ConvNet Architectures

AlexNet

ZFNet

VGG

GoogLeNet

ResNet

Denoising

Session 2

Initialisation

Hyper-parameters

Variants of SGD

More Regularisers

Intro to ConvNets

Session 4/5

Autoencoders

Transposed Convolution

Generative Network

Generative Adversarial Network

Recap: Stochastic Gradient Descent

Randomly sample into m mini-batches of size k:

$$\mathbf{x} = \left\{ \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(k)}\}, \{\mathbf{x}^{(k+1)}, \mathbf{x}^{(k+2)}, ..., \mathbf{x}^{(2k)}\}, ..., \{\mathbf{x}^{(n-k+1)}, ..., \mathbf{x}^{(n)}\} \right\}$$
$$= \{M_1, M_2, ..., M_m\}$$

$$\left. \frac{\partial C}{\partial w} \right|_{\mathbf{x}} \approx \left. \frac{\partial C}{\partial w} \right|_{\mathbf{x}_{M_j}}, j = 1, ...m$$

In one Epoch, we perform the following with j = 1, ..., m times:

$$w_{k+1} \leftarrow w_k - \eta \left. \frac{\partial C}{\partial w_k} \right|_{\mathbf{x}_{M_j}}$$

$$b_{k+1} \leftarrow b_k - \eta \left. \frac{\partial C}{\partial b_k} \right|_{\mathbf{x}_{M_i}}$$

$$(1)$$

- Initialization
 - Weights Initialisation
 - Hyperparameters
- Other Gradient Descents
- Other Regulariser

Weights Initialisation

Initially, we use

$$w \sim \mathcal{N}(0,1)$$

But with large number of w, we have for $z = w^T x + b$

$$z \sim \mathcal{N}\left(0, \sqrt{N}\right)$$

where z have higher chance of taking on large values in the first iteration.

Therefore we let

$$w \sim \mathcal{N}\left(0, \frac{1}{\sqrt{N}}\right)$$

so that

$$z \sim \mathcal{N}\left(0,1\right)$$

Weights Initialisation

Glorot, X., & Bengio, Y. (2010, May). "Understanding the difficulty of training deep feedforward neural networks." In Aistats (Vol. 9, pp. 249-256).

- Initialization
 - Weights Initialisation
 - Hyperparameters
 - Architecture
 - Learning Rate & Regularizer
 - Mini-batch Size
- Other Gradient Descents
- Other Regulariser

- Initialization
 - Weights Initialisation
 - Hyperparameters
 - Architecture
 - Learning Rate & Regularizer
 - Mini-batch Size
- Other Gradient Descents
- Other Regulariser

Setting Up architecture

- Reduce problem to speed up learning
 - Classify from $\{0,1\}$ instead of classifying $\{0,..,9\}$
- Start with low number of hidden layers
- Monitor validation accuracy (start with 20% of training data)
- Overfit.

Eldan, R. and Shamir, O., 2015. "The Power of Depth for Feedforward Neural Networks." arXiv preprint arXiv:1512.03965.

Hyperparameters

 $w_{i,j}^{l}$: Weights $b_{i,j}^{l}$: Biases

m: Mini-Batch Size

 η : Learning Rate

 λ : Regularizer

- Initialization
 - Weights Initialisation
 - Hyperparameters
 - Architecture
 - Learning Rate & Regularizer
 - Mini-batch Size
- Other Gradient Descents
- Other Regulariser

Learning Rate & Regularizer

- Start with setting $\lambda = 0$
- \bullet Increase/Decrease η by a factor of 10 to find out a good order of magnitude
- ullet Fine-tune both λ & η once a good order has been established

- Initialization
 - Weights Initialisation
 - Hyperparameters
 - Architecture
 - Learning Rate & Regularizer
 - Mini-batch Size
- Other Gradient Descents
- Other Regulariser

Mini-batch Size

- If too small, GPU not sufficiently used
- If too large, weights not updated often enough

- Initialization
- Other Gradient Descents
 - SGD
 - Momentum
 - Nesterov Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Other Regulariser

Stochastic Gradient Descent

Randomly sample into m mini-batches of size k:

$$\mathbf{x} = \left\{ \{x^{(1)}, x^{(2)}, ..., x^{(k)}\}, \{x^{(k+1)}, x^{(k+2)}, ..., x^{(2k)}\}, ..., \{x^{(n-k+1)}, ..., x^{(n)}\} \right\}$$
$$= \{M_1, M_2, ..., M_m\}$$

$$\left. \frac{\partial C}{\partial w} \right|_{\mathbf{x}} \approx \left. \frac{\partial C}{\partial w} \right|_{\mathbf{x}_{M_j}}, j = 1, ...m$$

In one Epoch, we perform the following with j = 1, ..., m times:

$$w_{k+1} \leftarrow w_k - \eta \left. \frac{\partial C}{\partial w_k} \right|_{\mathbf{x}_{M_j}}$$

$$b_{k+1} \leftarrow b_k - \eta \left. \frac{\partial C}{\partial b_k} \right|_{\mathbf{x}_{M_i}}$$
(2)

- Initialization
- Other Gradient Descents
 - SGD
 - Momentum
 - Nesterov Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Other Regulariser

Momentum

Idea: Introduce friction/velocity component.

$$v_{k+1} = \mu v_k - \eta \frac{\partial C}{\partial w}$$

$$w_{k+1} = w_k + v_{k+1}$$

$$= (w_k + \mu v_k) - \eta \frac{\partial C}{\partial w}$$

where $0 < \mu < 1$ correspond to friction/velocity magnitude.

- Initialization
- Other Gradient Descents
 - SGD
 - Momentum
 - Nesterov Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Other Regulariser

Nesterov Momentum

Idea: Use gradient ONLY after travelling along μv_k ,

$$\begin{aligned} v_{k+1} &= \mu v_k - \eta \left. \frac{\partial C}{\partial w} \right|_{w = w_k + \mu v_k} \\ w_{k+1} &= w_k + v_{k+1} \\ &= (w_k + \mu v_k) - \eta \left. \frac{\partial C}{\partial w} \right|_{w = w_k + \mu v_k} \end{aligned}$$

Let
$$\widehat{w_k} = w_k + \mu v_k$$
,

$$\widehat{w_{k+1}} = \widehat{w_k} - \mu v_k + (1+\mu)v_{k+1}$$

- Initialization
- Other Gradient Descents
 - SGD
 - Momentum
 - Nesterov Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Other Regulariser

AdaGrad

Idea: Store all past gradients,

$$c_{k+1} = c_k + \left(\frac{\partial C}{\partial w_k}\right)^2 = \sum_{i=0}^k \left(\frac{\partial C}{\partial w_k}\right)^2 \text{ (sum of squares: second moment)}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{c_{k+1}}} \frac{\partial C}{\partial w_k}, \text{ Learning rate decay}$$

$$= w_k - \eta \frac{\partial C}{\partial w_k} \cdot \frac{1}{\sqrt{c_{k+1}}}, \text{ Entry-wise division}$$

- (+) Helps in learning rate decay.
- (+) Control amplitude of descent (not direction!).
- (-) Effective gradient converges to 0 too early.

→□▶→□▶→□▶→□ → ○ ○ ○

- Initialization
- 2 Other Gradient Descents
 - SGD
 - Momentum
 - Nesterov Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Other Regulariser

RMSProp

Idea: Introduce decaying rate α in storing of past gradients,

$$c_{k+1} = \alpha c_k + (1 - \alpha) \left(\frac{\partial C}{\partial w_k}\right)^2$$
$$= (1 - \alpha) \sum_{i=0}^k \alpha^{k-i} \left(\frac{\partial C}{\partial w_k}\right)^2$$
$$w_{k+1} = w_k - \eta \frac{\partial C}{\partial w_k} \cdot \frac{1}{\sqrt{c_{k+1}}}$$

- Does not lead to zero gradient update in the long run.
- Default value: $\alpha = 0.9$.

- Initialization
- Other Gradient Descents
 - SGD
 - Momentum
 - Nesterov Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Other Regulariser

Adam

Idea: Incoporate first moments v_{k+1} and second moments c_{k+1} ,

$$\begin{aligned} v_{k+1} &= \beta_1 v_k + (1 - \beta_1) \frac{\partial C}{\partial w_k} = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} \frac{\partial C}{\partial w_k}, \\ c_{k+1} &= \beta_2 c_k + (1 - \beta_2) \left(\frac{\partial C}{\partial w_k} \right)^2 = (1 - \beta_2) \sum_{i=0}^k \beta_2^{k-i} \left(\frac{\partial C}{\partial w_k} \right)^2, \\ w_{k+1} &= w_k - \eta \frac{v_{k+1}}{\sqrt{c_{k+1}}} \\ &= w_k - \eta \frac{\beta_1 v_k + (1 - \beta_1) \frac{\partial C}{\partial w_k}}{\sqrt{\beta_2 c_k + (1 - \beta_2) \left(\frac{\partial C}{\partial w_k} \right)^2}}. \end{aligned}$$

Typically, $\beta_1 \approx 0.9$, $\beta_2 \approx 0.999$.

Comparison

References

- T. Tieleman & G. E. Hinton. Lecture 6.5-rmsprop: "Divide the gradient by running average of its recent magnitude.", 2012
- Kingma, D., & Ba, J. (2014). "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980.
- "CS231n Winter 2016: Lecture 6: Neural Networks Part 3/Intro to ConvNets"

- Initialization
- Other Gradient Descents
- Other Regulariser
 - Dropout
 - Batch Normalization

Ensemble

Train each network with different weights an hyperparameter initialisations. Compute probability of each class for each data.

Taking their average improves accuracy by about 2% (empirically).

Dropout

Dropout

Method	Testing Error
mlpconv + Fully Connected	11.59%
mlpconv + Fully Connected + Dropout	10.88%
mlpconv + Global Average Pooling	10.41%

References

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958.

- Initialization
- Other Gradient Descents
- Other Regulariser
 - Dropout
 - Batch Normalization
 - Problem
 - Batch Normalization

- Initialization
- Other Gradient Descents
- Other Regulariser
 - Dropout
 - Batch Normalization
 - Problem
 - Batch Normalization

Problem

- Internal Covariate Shift
 - Consider layer a^l,

$$a^{l} = g\left(W^{l} \cdot a^{l-1} + b^{l}\right)$$

$$W_{k+1}^{I} = W_{k}^{I} - \eta \frac{\partial C}{\partial W_{k}^{I}}$$

- Distribution of the a^{l-1} changes every epoch, difficult to learn
- When there is fixed distribution in a^{l-1} , W^l does not have to readjust.

- Initialization
- Other Gradient Descents
- Other Regulariser
 - Dropout
 - Batch Normalization
 - Problem
 - Batch Normalization

- Batch Normalisation
 - Whitening z^{l} before committing $a^{l} = g(z^{l})$.
 - $a^{l} = g(\hat{z^{l}})$ where $\hat{z^{l}} = norm(z^{l})$.
 - $y^l = \gamma^l \hat{z^l} + \beta^l$ to prevent $\sigma\left(\hat{z^l}\right)$ or $\tanh\left(\hat{z^l}\right)$ being stuck at the linear region
 - \bullet Extra terms to learn in each batch norm layer $\gamma^I,~\beta^I.$

Backpropagation:

$$\begin{split} \frac{\partial C}{\partial z_{i}^{l}} &= \frac{\partial C}{\partial y_{i}^{l}} \gamma^{l} \\ \frac{\partial C}{\partial \sigma_{B}^{2}} &= \sum_{i=1}^{m} \frac{\partial C}{\partial \widehat{z}_{i}^{l}} \cdot (z_{i}^{l} - \mu_{B}) \cdot \frac{-1}{2} (\sigma_{B}^{2})^{-\frac{3}{2}} \\ \frac{\partial C}{\partial \mu_{B}} &= \left(\sum_{i=1}^{m} \frac{\partial C}{\partial \widehat{z}_{i}^{l}} \cdot \frac{-1}{\sqrt{\sigma_{B}^{2}}} \right) + \frac{\partial C}{\partial \sigma_{B}^{2}} \cdot \frac{\sum_{i=1}^{m} 2(\mu_{B} - z_{i}^{l})}{m} \\ \implies \frac{\partial C}{\partial y_{i}^{l}} &= \left[\frac{\partial C}{\partial \widehat{z}_{i}^{l}} \cdot \frac{-1}{\sqrt{\sigma_{B}^{2}}} \right] + \left[\frac{\partial C}{\partial \sigma_{B}^{2}} \cdot \frac{2(z_{i}^{l} - \mu_{B})}{m} \right] + \left[\frac{\partial C}{\partial \mu_{B}} \cdot \frac{1}{m} \right] \end{split}$$

Backpropagation:

$$\frac{\partial C}{\partial \gamma^{I}} = \sum_{i=1}^{m} \frac{\partial C}{\partial y_{i}^{I}} \hat{z}_{i}^{I}$$

$$\frac{\partial C}{\partial \beta^{I}} = \sum_{i=1}^{m} \frac{\partial C}{\partial y_{i}^{I}}$$

$$\frac{\partial C}{\partial w^{I}} = \frac{\partial C}{\partial z_{i}^{I}} a^{I-1}$$

loffe, S., & Szegedy, C. (2015). "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167.

- Benefits
 - Larger learning rate η can be used.
 - ullet Accelerate η decay due to greater training speed.
 - Acts as a regulariser.
 - Can reduce Dropout strength.
 - Can reduce λ in L1 or L2 weights penalty.
 - Reduces saturation.

Thank You