Reinforcement Learning

Sebastian JaimungalUniversity of Toronto

June, 2022

▶ Reinforcement Learning aims, generally, to solve stochastic control problems of the form

$$\min_{a\in\mathcal{A}}\mathbb{E}\left[\int_0^T f(s,X_s^a,a_s)\,ds\right]$$

- In financial mathematics, prototypical examples include
 - Portfolio Optimisation
 - Option Hedging
 - Statistical Arbitrage
 - Optimal switching
 - and so on...

- ► RL aims to optimise in a "model-free" (more precisely model-agnostic) manner
- With the aim of learning only from observations of
 - state
 - action
 - rewards
- ▶ The term "models" in RL refers to how optimal actions are approximated

- ► Two important aspects are:
 - Learning exploring an unknown environment and learning from it
 - ▶ Planning using what is known to model and then optimise

- ► There are two main flavors of optimisation
 - ► Value iteration approximate the value function, and infer the policy
 - Policy iteration approximate the policy directly, and estimate the value function

- ► Actions may be randomised/stochastic or deterministic
 - ▶ deterministic action: $a: \mathbb{R}^d \mapsto \mathbb{R}^m$, i.e. maps states to a unique action
 - ▶ random action: $a: \mathbb{R}^d \mapsto \mathcal{P}(\mathbb{R}^m)$, i.e. maps states to a distribution over actions

► Reinforcement learning(RL) ingredients include

- Reinforcement learning(RL) ingredients include
 - agent observes states s, e.g., bitcoin prices

- ► Reinforcement learning(RL) ingredients include
 - agent observes states s, e.g., bitcoin prices
 - agent makes actions a, e.g., make a trade

- ► Reinforcement learning(RL) ingredients include
 - agent observes states s, e.g., bitcoin prices
 - agent makes actions a, e.g., make a trade
 - agent receives reward r, e.g., more bitcoin

- Reinforcement learning(RL) ingredients include
 - agent observes states s, e.g., bitcoin prices
 - agent makes actions a, e.g., make a trade
 - agent receives reward r, e.g., more bitcoin
 - environment evolves to new state

- RL is unsupervised based only on the rewards from actions & how the system reacts
- Can be model-free or model-based
- Prediction / Control
 - Prediction means to determine the value of a given policy $V[\pi]$
 - Control means to optimise over policies $\pi \in \mathcal{A}$
 - They are closely related as

$$\pi^* = \sup_{\pi \in \mathcal{A}} V[\pi]$$

Goal is to maximize performance criterion

$$V^{\pi}(s) = \mathbb{E}\left[\left. \sum_{t=0}^{\infty} \gamma^k \; R(a_t; S^{a_t}_t, S^{a_t}_{t+1}) \, \right| \; S_0 = s \;
ight]$$

- $ightharpoonup oldsymbol{S}_t \in \mathcal{S}$ is system state at time t
- $lackbox{\textbf{a}}_t \in \mathcal{A}$ admissible set of actions drawn from π
- ▶ System evolves as $S_t \stackrel{a}{\mapsto} S_{t+1}^a \sim F(S_t; a_t)$
- ▶ $R(a; S_t; S_{t+1})$ is **reward** when $S_t \stackrel{a}{\mapsto} S_{t+1}$

Criterion may be risk-aware

$$V^{\pi}(s) = \rho(Y|S_0 = s)$$

where

$$Y = \sum_{t=0}^{\infty} \gamma^k R(a_t; S_t^{a_t}, S_{t+1}^{a_t})$$

and ρ is a risk-measure

- ► e.g.,
 - a distortion risk-measure

$$\rho(Y) := \int_{-\infty}^{0} \left\{ 1 - g(\mathbb{P}(U(Y) > y)) \right\} dy - \int_{0}^{+\infty} \left(\mathbb{P}(U(Y) > y) \right) dy$$

standard deviation subtract mean

$$\rho(Y) := \sqrt{\mathbb{V}[Y]} - \mathbb{E}[Y]$$

Simulate a Black-Scholes model with S satisfying the SDE

$$d(\log S_t) = -\frac{1}{2}\sigma^2 dt + \sqrt{\sigma} dW_t^X$$

- Run self-financing hedging strategy α , at hedge times $0 = \tau_0 < \tau_1 < \cdots < \tau_{N-1} < T$ (e.g., daily), with transaction costs
- Wealth process X starts with price of option minus initial hedge $X_0 = V_0 \alpha_0 S_0 \kappa |\alpha_0| S_0$

$$X_{\tau_k} = X_{\tau_{k-1}} - (\alpha_{\tau_k} - \alpha_{\tau_{k-1}}) S_{\tau_{k-1}} - \kappa |\alpha_{\tau_k} - \alpha_{\tau_{k-1}}| S_{\tau_{k-1}}$$

and liquidate assets and pay option

$$X_{\tau_N} = X_{\tau_{N-1}} + \alpha_{\tau_{N-1}} S_T - \kappa |\alpha_{\tau_{N-1}}| S_T - (S_T - K)_+.$$

Figure: Optimised for minimising $\sqrt{\mathbb{V}[Y]} - \mathbb{E}[Y]$ no transaction costs.

Figure: Optimised for minimising $\sqrt{\mathbb{V}[Y]} - \mathbb{E}[Y]$ with transaction costs.

Figure: Optimised for minimise CVaR₁₀.

Figure: Optimised for minimise CVaR₂₀.

Figure: Optimised for minimise CVaR₃₀.

Figure: Optimised for minimise CVaR₄₀.

17 / 34

(c) Jaimungal, 2022 RL June, 2022

Figure: Optimised for minimise CVaR₅₀.

(c) Jaimungal, 2022 RL June, 2022 18 / 34

Figure: Optimised for minimise CVaR₆₀.

Figure: Optimised for minimise CVaR₇₀.

20 / 34

(c) Jaimungal, 2022 RL June, 2022

Figure: Optimised for minimise CVaR₈₀.

Figure: Optimised for minimise CVaR₉₀.

Simulate a Heston model with S satisfying the SDE

$$d(\log S_t) = -\frac{1}{2}v_t dt + \sqrt{v_t} dW_t^X$$

$$dv_t = \kappa(\theta - v_t) dt + \eta \sqrt{v_t} dW_t^V$$

- \triangleright Run self-financing hedging strategy α , at hedge times $0 = \tau_0 < \tau_1 < \cdots < \tau_{N-1} < T$ (e.g., daily), with transaction costs
- Wealth process X starts with price of option minus initial hedge $X_0 = V_0 - \alpha_0 S_0 - \kappa |\alpha_0| S_0$

$$X_{\tau_k} = X_{\tau_{k-1}} - (\alpha_{\tau_k} - \alpha_{\tau_{k-1}}) S_{\tau_{k-1}} - \kappa |\alpha_{\tau_k} - \alpha_{\tau_{k-1}}| S_{\tau_{k-1}}$$

and liquidate assets and pay option

$$X_{\tau_N} = X_{\tau_{N-1}} + \alpha_{\tau_{N-1}} S_T - \kappa |\alpha_{\tau_{N-1}}| S_T - (S_T - K)_+.$$

Figure: Optimised for minimising $\sqrt{\mathbb{V}[Y]} - \mathbb{E}[Y]$ no transaction costs.

Figure: Optimised for minimising $\sqrt{\mathbb{V}[Y]} - \mathbb{E}[Y]$ with transaction costs.

Figure: Optimised for minimise CVaR₁₀.

Figure: Optimised for minimise CVaR₂₀.

27 / 34

(c) Jaimungal, 2022 RL June, 2022

Figure: Optimised for minimise CVaR₃₀.

(c) Jaimungal, 2022 RL June, 2022 28 / 34

Figure: Optimised for minimise CVaR₄₀.

Figure: Optimised for minimise CVaR₅₀.

(c) Jaimungal, 2022

Figure: Optimised for minimise CVaR₆₀.

(c) Jaimungal, 2022 RL June, 2022 31 / 34

Figure: Optimised for minimise CVaR₇₀.

(c) Jaimungal, 2022 RL June, 2022 32 / 34

Figure: Optimised for minimise CVaR₈₀.

(c) Jaimungal, 2022 RL June, 2022 33 / 34

Figure: Optimised for minimise CVaR₉₀.

(c) Jaimungal, 2022