

ELG 5255: Applied Machine Learning Assignment 4

BY: Group 5

Anas Elbattra

Ahmed Badawy

Esraa Fayad

Gini (Gol) = 1 - (1)2=0

(b) Entropy (t) =
$$\begin{cases} 2 + (\frac{1}{2}) * \log P(\frac{1}{2}) \end{cases}$$

Goin = Entropy (P) - $\left[-\frac{1}{2} + \frac{1}{2} + \frac{1}{$

Coin (temperature) =

0.971 -
$$\frac{1}{10}$$
 [- $\frac{3}{10}$ log₂ $\frac{3}{4}$ - $\frac{1}{4}$ log₂ $\frac{1}{4}$]

- $\frac{4}{10}$ [- $\frac{2}{4}$ log₂ $\frac{2}{4}$ - $\frac{2}{4}$ log₂ $\frac{2}{4}$]

- $\frac{1}{10}$ [- $\frac{1}{10}$ log₂ $\frac{1}{10}$] - $\frac{1}{10}$ [- $\frac{1}{10}$ log₂ $\frac{1}{10}$]

= 0.247

Coin (thurnidity) =

0.971 - $\frac{6}{10}$ [- $\frac{5}{6}$ log₂ $\frac{5}{0}$ - $\frac{1}{6}$ log₂ $\frac{1}{4}$]

 ~ 0.257

Cain (wind) =

0.971 -
$$\frac{1}{10} \left[-\frac{5}{7} \log_2 \frac{5}{7} - \frac{2}{7} \log_2 \frac{2}{7} \right]$$
 $-\frac{3}{10} \left[-\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3} \right]$
 ≈ 0.092

Highest Gain - Gain (weather)

So, we will divide based on it.

L'

Root Node for decision tree

Mofts
Entropy (Hiking) =
$$-\frac{2}{6}\log_{2}\frac{2}{6} - \frac{1}{6}\log_{2}\frac{1}{6} \approx 0.918$$
Gain (Temperature) =
$$0.918 - \frac{2}{6}\left[-\frac{1}{2}\log_{2}\frac{1}{2} - \frac{1}{2}\log_{2}\frac{1}{2}\right]$$

$$-\frac{1}{6}\left[-\frac{1}{1}\log_{1}\frac{1}{1} - \frac{2}{6}\left[-\frac{2}{2}\log_{2}\frac{2}{2}\right]$$

$$-\frac{1}{6}\left[-\frac{1}{1}\log_{2}\frac{1}{1}\right] \approx 0.585$$

Cain (Humidity) =

0.918 -
$$\frac{2}{6}$$
 [- $\frac{1}{2}$ log $\frac{1}{2}$ - $\frac{1}{2}$ log $\frac{1}{2}$]

- $\frac{1}{6}$ [- $\frac{3}{4}$ log $\frac{3}{4}$ - $\frac{1}{4}$ log $\frac{1}{4}$]

 ≈ 0.043

Cain (wind) =

0.918 - $\frac{1}{6}$ [- $\frac{2}{4}$ log $\frac{2}{4}$ - $\frac{2}{4}$ log $\frac{2}{4}$]

- $\frac{2}{6}$ [- $\frac{2}{2}$ log $\frac{2}{2}$] ≈ 0.251

Advantages and disadvantages of the Gini Index.

Advantage	Disadvantage
Efficient in terms of computation.	May not perform well with imbalanced class distribution.
Handles continuous variables well	Ignores the magnitude of information gain.
Robust to outliers	

Advantages and disadvantages of the Information Gain.

Advantage	Disadvantage
Considers the magnitude of information gain	Susceptible to overfitting
Effective with the imbalanced class distribution.	Computationally more expensive
Can handle both continuous and categorical variables	

Part 2: Programming

✓ Importing important libraries

```
import pandas as pd
 import numpy as np
  from sklearn.exceptions import UndefinedMetricWarning
  from sklearn.tree import DecisionTreeClassifier
import plotly.express as px
from sklearn.feature_selection import SequentialFeatureSelector
 from sklearn.feature_selection import RFECV
from sklearn.pipeline import Pipeline
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,classification_report
from sklearn.preprocessing import MinMaxScaler from yellowbrick.text import TSNEVisualizer from sklearn.manifold import TSNE
 from sklearn.utils.multiclass import unique_labels
from \ \ sklearn. feature\_selection \ \ import \ \ Select KBest, \ f\_classif, \ Variance Threshold, \ \ mutual\_info\_classif, r\_regression \ \ the selection \ \ for \ \ for \ \ for \ \ \ f\_classif, \ 
from \ sklearn.feature\_selection \ import \ f\_regression
from sklearn.tree import DecisionTreeClassifier, plot_tree
warnings.filterwarnings("ignore", category=UndefinedMetricWarning) warnings.simplefilter(action='ignore', category=FutureWarning)
```

✓ Reading data and preprocessing

✓ Normalize the input feature variables using MinMaxScaler

```
[69] x = KDD_data.drop("target", axis=1)
    y = KDD_data["target"]

* Normalize X using MinMaxScaler from sklearn library

[70] scaler = MinMaxScaler()
    normalized_x = scaler.fit_transform(x)
    normalized_x = pd.DataFrame(normalized_x, columns=x.columns)
```

 ✓ Compute filter-based feature selection algorithm on the dataset by reducing the number of feature variables to 10 (9 input feature variables + 1 target variable)

```
selector = SelectKBest(score_func=f_classif, k=9)
X_new = selector.fit_transform(normalized_x, y)
selected_features = normalized_x.columns[selector.get_support()]
my_data = pd.concat([normalized_x[selected_features], y], axis=1)
```

✓ Evaluate the performance of the Decision Tree classifier for each subset and generate a classification report

```
def evaluate_subset(X, y, test_size):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)

    dt = DecisionTreeClassifier()
    dt.fit(X_train, y_train)
    y_pred = dt.predict(X_test)
    report = classification_report(y_test, y_pred)
    print("Classification report:")
    print(report)
    print("------")
    return X_train, X_test, y_train, y_test
```

✓ Split my data with 70% train & 30% test data and print the classification report

✓ Split my data with 60% train & 40% test data and print the classification report

✓ Visualize the best split of the Decision tree by considering Entropy as a measure of node impurity.

```
header_names = my_data.columns.tolist()

def visualize_decision_tree(max_depth, x_train, y_train,x_test,y_test,index):
    dt = DecisionTreeClassifier(criterion='entropy', max_depth-max_depth,max_leaf_nodes=int((2**max_depth)*0.5 +1), random_state=42)
    dt.fit(x_train, y_train)
    y_pred_entropy = dt.predict(x_test)

fn = header_names[:-1]
    cn = y.unique().astype(str)
    fig = plt.figure(figsize=(10, 6), dpi=300)
    tree.plot_tree(dt, feature_names=fn, class_names=cn, filled=True, rounded=True)

plt.text(0.0, 0.9, f"MY Data {index}", horizontalalignment='left', verticalalignment='top', transform=plt.gca().transAxes, fontsize=12, fontweight='bold')
    plt.text(0.0, 0.85, f"Depth {max_depth}", horizontalalignment='left', verticalalignment='top', transform=plt.gca().transAxes, fontsize=8, fontweight='bold')

plt.show()

accuracy = accuracy_score(y_test, y_pred_entropy)
    print("Accuracy:', accuracy * 100)
    return y_pred_entropy
```

✓ Compute and compare the classification performance of the tuned Decision Tree for each test size my data1: 30% test data, my data2: 40% test data, my data3: 50% test data and display the accuracy scores, classification report, and confusion matrix respectively

```
max_depths = [4, 6, 8]
x_trains = [X_train1, X_train2, X_train3]
y_trains = [y_train1, y_train2, y_train3]
x_tests = [X_test1, X_test2, X_test3]
y_tests = [y_test1, y_test2, y_test3]
for i in range(3):
    for depth in max_depths:
        y_pred = visualize_decision_tree(depth, x_trains[i], y_trains[i],x_tests[i],y_tests[i],i+1)
        report = classification_report(y_tests[i], y_pred)
       print("Classification Report:")
        print("
        print(report)
        cm = confusion_matrix(y_tests[i], y_pred)
        print("\n"
        plt.figure(figsize=(8, 6))
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
        plt.xlabel("Predicted Labels")
        plt.ylabel("True Labels")
        plt.show()
        print("\n")
```


Calculate the F1 score for the training and testing data before applying mitigation strategies

```
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)
clf.fit(X_train1, y_train1)
train_pred_before = clf.predict(X_train1)
test_pred_before = clf.predict(X_test1)

train_f1_before = f1_score(y_train1, train_pred_before)
test_f1_before = f1_score(y_test1, test_pred_before)

print (train_f1_before)
print (test_f1_before)

0.9955735177429821
0.9940742552751781
```

✓ Apply pre-pruning to mitigate overfitting by adjusting the depth parameter in the range of 1 to 8 and display the F1 scores for the training and testing data

```
depth = range(1, 8)
train_scores_pre = []
 for dep in depth:
      # Create a decision tree classifier with pre-pruning
      clf = DecisionTreeClassifier(criterion='entropy', max_depth=dep, random_state=42)
     # Fit the classifier on the training data
     clf.fit(X_train1, y_train1)
train_pred = clf.predict(X_train1)
test_pred = clf.predict(X_test1)
      train_f1 = f1_score(y_train1, train_pred)
      test_f1 = f1_score(y_test1, test_pred)
      train_scores_pre.append(train_f1)
      test_scores_pre.append(test_f1)
plt.figure(figsize=(10, 6))
plt.plot(depth, train_scores_pre, label='Train')
plt.plot(depth, test_scores_pre, label='Test')
plt.xlabel('Tree Depth')
plt.ylabel('F1 Score')
plt.title('pre-prunning')
plt.legend()
plt.show()
```


✓ Apply post-pruning to mitigate overfitting and display the F1 scores for the training and testing data

```
clf = DecisionTreeClassifier(random_state=42)
# Fit the classifier on the training data
clf.fit(X_train1, y_train1)
# Apply cost complexity pruning
path = clf.cost_complexity_pruning_path(X_train1, y_train1)
ccp_alphas = path.ccp_alphas[:-1] # Exclude the maximum alpha
train_scores_post = []
test_scores_post = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(criterion='entropy',ccp_alpha=ccp_alpha, random_state=42)
    clf.fit(X_train1, y_train1)
    clfs.append(clf)
    train_pred = clf.predict(X_train1)
    test_pred = clf.predict(X_test1)
    train_f1 = f1_score(y_train1, train_pred)
    test_f1 = f1_score(y_test1, test_pred)
    train_scores_post.append(train_f1)
    test_scores_post.append(test_f1)
plt.figure(figsize=(10, 6))
plt.plot(ccp_alphas, train_scores_post, marker='o', label='Train')
plt.plot(ccp_alphas, test_scores_post, marker='o', label='Test')
plt.xlabel("Alpha")
plt.ylabel("F1 Score")
plt.title("Post-pruning: F1 Score vs Alpha")
plt.legend()
plt.show()
```


✓ Apply k-fold cross-validation to mitigate overfitting and display the F1 scores for the training and testing data

```
clf = DecisionTreeClassifier(random_state=42)
k_values = range(2, 11)
mean_train_scores = []
mean_test_scores = []
for k in k_values:
    train_scores = cross_val_score(clf, X_train1, y_train1, cv=k, scoring='f1')
    test_scores = cross_val_score(clf, X_test1, y_test1, cv=k, scoring='f1')
    mean_train_scores.append(np.mean(train_scores))
    mean_test_scores.append(np.mean(test_scores))
plt.figure(figsize=(10, 6))
plt.plot(k_values, mean_train_scores, marker='o', label='Train')
plt.plot(k_values, mean_test_scores, marker='o', label='Test')
plt.xlabel("k")
plt.ylabel("F1 Score")
plt.title("K-fold Cross-validation: F1 Score vs k")
plt.legend()
plt.show()
```


✓ Display the F1 scores for the training and testing data, showing improvement

```
f1_scores_before = [train_f1_before, test_f1_before]
f1_scores_after_pre = [np.mean(train_scores_pre), np.mean(test_scores_pre)]
f1_scores_after_post = [np.mean(train_scores_post), np.mean(test_scores_post)]
mcvf = [np.mean(mean_train_scores), np.mean(mean_test_scores)]
labels = ['Train Data', 'Test Data']
x = range(len(labels))
width = 0.20
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(x, f1_scores_before, width, label='Before Mitigating')
ax.bar([val + width for val in x], f1_scores_after_pre, width, label='F1 Score - Pre-Pruning')
ax.bar([val + width * 2 for val in x], f1_scores_after_post, width, label='F1 Score - Post-Pruning')
ax.bar([val + width * 3 for val in x], mcvf, width, label='Mean F1 Score (Cross-Validation)')
ax.set_ylim(0.97, 1)
ax.set_ylabel('F1 Score')
ax.set_xlabel('Data')
ax.set_title('F1 Score Before and After Mitigating')
ax.set_xticks([val + width for val in x])
ax.set_xticklabels(labels)
ax.legend(bbox_to_anchor=(1.02, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

