Facts about Rings of Fractions

Rafal Michalski

1 Introduction

Fact 1.1. If $0 \in S$, then $S^{-1}A$ is a trivial ring.

Proof. Any (a, s), (a', s') are related because $(as' - a's) \cdot 0 = 0$ with $0 \in S$.

Fact 1.2. A a PID, the equivalence relation in $A \times S$ is: $(a, s) \equiv (a', s')$ iff as' = a's.

Fact 1.3. For A a field, and $S = \{-1, 1\}, S^{-1}A \cong A$.

Proof. It is easily verified that the standard isomorphism from A to $S^{-1}A$ is 1-1 and onto. \Box

Fact 1.4. For A a field, and S a multiplicatively closed subset of A not containing zero, $S^{-1}A \cong A$.

Proof. The standard homomorphism $f: a \mapsto a/1$ of A into $S^{-1}A$ is injective: if a/1 = a'/1 then $a \cdot 1 = a1 \cdot 1$, then a = a'. It is surjective: $f(as^{-1}) = f(a)f(s^{-1}) = (a/1)(s^{-1}/1) = \ldots$, but $s^{-1}/1 = 1/s$ as $s^{-1}s = 1 \cdot 1$; continuing, $\ldots = (a/1)(1/s) = a/s$.

Fact 1.5. For A a field, the ring of fractions and the field of fractions are isomorphic.

Proof. For isomorphism of A with its field of fractions, see Math Exchange 79188. About the isomorphism with its ring of fractions, is the fact above.

Example 1.6. Some example.

Fact 1.7. The quotient ring A/I can be viewed as an A-module, and then the ring of fractions $T^{-1}(A/I)$, where T is the image of S in A/I, equals the module of fractions $S^{-1}(A/I)$.

Proof. On the left, the relation is in $(A/I) \times T$: $([a], [s]) \equiv ([a'], [s'])$ iff (ring notation) ([a][s']-[a'][s])[s''] = [0] iff [as's''-a'ss''] = [0]. On the right, the relation works in $(A/I) \times S$: $([a],s) \equiv ([a'],s')$ iff (module notation) s''(s'[a]-s[a']) = [0] iff [as's''-a'ss''] = [0]. The conditions are identical so the classes must be in bijective correspondence. However, they are not identical as sets, so saying *equals* is too much.

Fact 1.8. What are pA_p and aA_p ?

In the Solutions by Y. P. Gaillard, the residue field is $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$, so the single maximal ideal of $A_{\mathfrak{p}}$ from the Example 1, p. 38 of ItCA must be just $\mathfrak{p}A_{\mathfrak{p}}$

$$\mathfrak{p}A_{\mathfrak{p}} = \{a/s : a \in \mathfrak{p}, s \notin \mathfrak{p}\}$$

Then $\mathfrak{a}A_{\mathfrak{p}}$ must be the generalization

$$\mathfrak{a}A_{\mathbf{n}} = \{a/s : a \in \mathfrak{a}, s \notin \mathfrak{p}\}$$

Fact 1.9. What is $S^{-1}\mathfrak{s}$?

It can be either an $S^{-1}A$ -module $S^{-1}\mathfrak{a}$, because \mathfrak{a} is an A-module, or the extension $S^{-1}\mathfrak{a} = \mathfrak{a} S^{-1}A$ in $S^{-1}A$ of the ideal \mathfrak{a} in A. In both cases elements of $S^{-1}\mathfrak{a}$ are written as a/s with $a \in \mathfrak{a}$, $s \in S$, but they come from different sets. In the first, module case, a/s is in the quotient of $\mathfrak{a} \times S$, in the second, extension ideal case, a/s is in the quotient of $A \times S$. We are talking of $S^{-1}A$ -modules, not rings, so there can only be A-module and $S^{-1}A$ -module isomorphism:

$$\mathbf{a} \times S / \sim_{\mathbf{A}} \ \ni \ a/s \mapsto a/s \ \in \ A \times S / \sim_A$$

Fact 1.10. What is $\mathfrak{s}_{\mathfrak{p}}$?

It is the A-module \mathfrak{a} localized at \mathfrak{p} . It is an $A_{\mathfrak{p}}$ -module. We also use this notation for the ideal $S^{-1}\mathfrak{a}$ of $S^{-1}A$, where $S = A \setminus \mathfrak{p}$. How are they isomorphic? $a/s \mapsto a/s$ with $a \in \mathfrak{a}, s \notin A$. Of what it is an isomorphism? Of A-modules, of $A_{\mathfrak{p}}$ -modules. They are not rings.

Fact 1.11. What is $S^{-1}\mathfrak{s}$ in case $S = A \setminus \mathfrak{p}$?

It can be either an $A_{\mathfrak{p}}$ -module $\mathfrak{a}_{\mathfrak{p}}$, because \mathfrak{a} is an A-module, or the extension $S^{-1}\mathfrak{a}=\mathfrak{a}\,A_{\mathfrak{p}}$ in $A_{\mathfrak{p}}$ of the ideal \mathfrak{a} in A. In both cases elements of $S^{-1}\mathfrak{a}$ are written as a/s with $a\in\mathfrak{a}, s\notin\mathfrak{p}$, but they come from different sets. In the first, module case, a/s is in the quotient of $\mathfrak{a}\times(A\setminus\mathfrak{p})$, in the second, extension ideal case, a/s is in the quotient of $A\times(A\setminus\mathfrak{p})$. We are talking of $A_{\mathfrak{p}}$ -modules, not rings, so there can only be an A-module and $A_{\mathfrak{p}}$ -module isomorphism:

$$\mathfrak{a}\times (A\setminus \mathfrak{p})/\sim_{\mathfrak{A}}\ \ni\ a/s\mapsto a/s\ \in\ A\times (A\setminus \mathfrak{p})/\sim_A$$

Fact 1.12. What is p_p?

It is the A-module \mathfrak{p} localized at \mathfrak{p} . We also use this notation for the ideal $S^{-1}\mathfrak{p}$ of $S^{-1}A$, where $S = A \setminus \mathfrak{p}$, that is, the ideal $\mathfrak{p}A\mathfrak{p}$.

Fact 1.13. Case $\mathfrak{s} = \mathfrak{p}$, a prime ideal. What is $S^{-1}\mathfrak{p}$?

It can be either the $A_{\mathfrak{p}}$ -module $\mathfrak{p}_{\mathfrak{p}}$, because \mathfrak{p} is an A-module, or the extension $\mathfrak{p}A_{\mathfrak{p}}$ in $A_{\mathfrak{p}}$ of the ideal \mathfrak{p} in A, via the canonical $A \to A_{\mathfrak{p}} : a \mapsto a/s$. Looks like we don't have the \mathfrak{p} -instead-of- S^{-1} · notation in the ideal extension case, but then, the quotient notation $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ is used, which makes sense only if $\mathfrak{p}_{\mathfrak{p}}$ is an ideal in $A_{\mathfrak{p}}$

$$\mathfrak{p}_{\mathfrak{p}} = \mathfrak{p} A_{\mathfrak{p}}$$

Fact 1.14. When $S = A \setminus \mathfrak{p}$, as $A_{\mathfrak{p}}$ -modules

$$S^{-1}\mathfrak{a} = \mathfrak{a}A_{\mathfrak{p}} = \mathfrak{a}_{\mathfrak{p}}$$

 $S^{-1}\mathfrak{p} = \mathfrak{p}A_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}}$

Fact 1.15. How is $B_{\mathfrak{q}}$ an $A_{\mathfrak{p}}$ -module?

Let $g = \psi \circ f$ be the composition $A \to B \to T^{-1}B : a \to f(a) \to f(a)/1$. This composition sends $s \in S$ to a unit in $T^{-1}B$, as (f(s)/1)(1/f(s)) = 1/1, where $f(s) \in f(S) = f(A \setminus \mathfrak{p}) \subseteq B \setminus \mathfrak{q} = T$. Why the inclusion? If $a \notin \mathfrak{p} = f^{-1}(\mathfrak{q})$ then $f(a) \notin \mathfrak{q}$. By the universal property of the ring of fractions, g factorizes

$$\begin{array}{ccc}
A & \xrightarrow{\phi} S^{-1}A \\
\downarrow^f & \downarrow^h \\
B & \xrightarrow{\psi} T^{-1}B
\end{array}$$

where the recipe for h is given in **Proposition 3.1** of ItCA as $a/s \mapsto g(a)g(s)^{-1} = (f(a)/1)(1/f(s)) = f(a)/f(s)$.

Fact 1.16. What is $B_{\mathfrak{p}}$?

(For $f: A \mapsto B$ and \mathfrak{p} a prime ideal of A).

The ring B is an A-module by the restriction of scalars. We can localize it in the prime ideal \mathfrak{p} of A. The cartesian product is $B \times (A \setminus \mathfrak{p})$, the relation is

$$(b,s) \sim (b',s') \iff \exists t \notin \mathfrak{p} \ t(sb'-s'b) = 0$$

The condition reads

$$f(t)(f(s)b' - f(s')b) = 0$$

The obvious addition

$$\frac{b}{s} + \frac{b'}{s'} = \frac{s'b + sb'}{ss'} = \frac{f(s')b + f(s)b'}{ss'}$$

The obvious scalar multiplication

$$\frac{a}{s'} \cdot \frac{b}{s} = \frac{ab}{s's} = \frac{f(a)b}{s's}$$

Fact 1.17. How is $B_{\mathfrak{p}}$ an $A_{\mathfrak{p}}$ -module?

And f is an A-module homomorphism:

$$f(a'a) = f(a')f(a) = a' \cdot f(a)$$

It gives rise to an $A_{\mathfrak{p}}$ -module homomorphism $S^{-1}f:A_{\mathfrak{p}}\to B_{\mathfrak{p}}$

$$a/s \mapsto f(a)/s$$

See how it is different from the map $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$

$$a/s \mapsto f(a)/f(s)$$

By the restriction of scalars, $B_{\mathfrak{p}}$ is an $A_{\mathfrak{p}}$ -module.

Fact 1.18. $B_{\mathfrak{p}}$ is a ring.

The multiplication

$$\frac{b}{s} \cdot \frac{b'}{s'} = \frac{bb'}{ss'}$$

is distributive over the addition.

$$\begin{split} \frac{b''}{s''} \left(\frac{b'}{s'} + \frac{b}{s} \right) &= \frac{b''}{s''} \frac{sb' + s'b}{s's} \\ &= \frac{b''(sb' + s'b)}{s''s's'} \\ &= \frac{sb''b' + s'b''b}{s''s's} \\ &= \frac{b''b'}{s''s'} + \frac{b''b}{s''s} \end{split}$$

$$\frac{b''}{s''}\frac{b'}{s'} + \frac{b''}{s''}\frac{b}{s} = \frac{s''sb''b' + s''s'b''b}{s''s's''s}$$

$$= \frac{f(s'')f(s)b''b' + f(s'')f(s')b''b}{s''s's''s}$$

$$= \frac{f(s'')f(s)b''b'}{s''s's''s} + \frac{f(s'')f(s')b''b}{s''s's''s}$$

How can we cancel here? In a general $S^{-1}A$ -module $S^{-1}M$

$$\frac{f(s)m}{s} = \frac{s \cdot m}{s} = \frac{s}{s} \cdot \frac{m}{1} = \frac{1}{1} \cdot \frac{m}{1} = \frac{m}{1}$$

With this cancellation rule, both sides of the distributivity become equal.

Fact 1.19. $S^{-1}B$ (an $S^{-1}A$ -module) is a ring.

By argument identical to that for the $B_{\mathfrak{p}}$ ring.

Fact 1.20. The ring $f(S)^{-1}B$.

The subset f(S) of the ring B is multiplicatively closed, and we can take the ring of fractions. The construction starts from $B \times f(S)$,

$$(b, f(s)) \sim (b', f(s')) \iff \exists u \in S \ f(u)(f(s')b - f(s)b') = 0$$

Fact 1.21. The rings $S^{-1}B$ and $f(S)^{-1}B$ are isomorphic via $b/s \mapsto b/f(s)$

The well-definition and injectivity are easily verified and the surjectivity is obvious. \Box

Fact 1.22. The homomorphisms $B \to S^{-1}B : b \mapsto b/s$ and $B \to f(S)^{-1}B : b \mapsto b/f(s)$.

The second is natural as f(S) is a multiplicatively closed subset of B. The first can arise from the isomorphism of both rings, making the diagram

commutative, or can be verified directly, and the diagram after it. The top homomorphism $\hfill\Box$

Fact 1.23. What are general ideals of $f(S)^{-1}B$ and $S^{-1}B$?

Every ideal of $f(S)^{-1}B$ is an extended ideal $f(S)^{-1}\mathfrak{b} = \{b/f(s) : b \in \mathfrak{b}, s \in S\}$. The isomorphic set in $S^{-1}B$ is $\{b/s : b \in \mathfrak{b}, s \in S\}$.

Fact 1.24. How does $(S^{-1}f)^*$: Spec $(S^{-1}B) \rightarrow Spec(S^{-1}B)$ work?

We show that $(S^{-1}f)^*(S^{-1}\mathfrak{q}) = \mathfrak{p}$ where $\mathfrak{p} = f^{-1}(\mathfrak{q})$.

$$\begin{split} (S^{-1}f)^*(S^{-1}\mathfrak{q}) &= (S^{-1}f)^*(\{b/s:b\in\mathfrak{q},s\in S\}) \\ &= \{a/s:(S^{-1}f)(a/s)\in S^{-1}\mathfrak{b}\} \\ &= \{a/s:f(a)/s\in\mathfrak{b}\} \end{split}$$

We can show that this is $S^{-1}\mathfrak{p}$.

The \subseteq : f(a)/s = b/s' for some $b \in \mathfrak{q}, s \in S$; we move to $f(S)^{-1}B$; f(a)/f(s) = b/f(s'); (f(a)f(s') - bf(s))f(u) = 0 for some $u \in S$; $f(a)f(s')f(u) = bf(s)f(u) \in \mathfrak{b}$; $f(a) \in \mathfrak{q}$; $a \in f^{-1}(\mathfrak{q}) = \mathfrak{p}$; $a/s \in S^{-1}\mathfrak{p}$.

What if we did not move to $f(S)^{-1}B$? u(s'f(a) - sb) = 0 in the $S^{-1}A$ -module $S^{-1}B$; us'f(a) = usb. But what is the multiplication by scalar from A? It is multiplication by f of it. $f(u)f(s')f(a) = f(u)f(s)b \in \mathfrak{q}$... We proceed the same way.

The \supseteq : $a/s \in S^{-1}\mathfrak{p}$; $a \in \mathfrak{p}$; $f(a) \in \mathfrak{q}$; $f(a)/s \in S^{-1}\mathfrak{q}$.

Now we know that $(S^{-1}f)^*oll$ is the restriction of f^* to $\psi^*(\operatorname{Spec}(S^{-1}B)) = S^{-1}Y$

Fact 1.25. The contraction of $S^{-1}\mathfrak{p}$ is \mathfrak{p} .

$$\begin{aligned} \{a: a/1 \in S^{-1}\mathfrak{p}\} &= \{a: a/1 = a'/s' \text{ for some } a' \in \mathfrak{p}, s' \notin \mathfrak{p}\} \\ &= \{a: \exists u \in S \ (as' - a')u = 0\} \\ &= \{a: \exists u \in S, s' \in S, a' \in \mathfrak{p} \quad as'u = a'u\} \end{aligned}$$

The set finally is \mathfrak{p} :

 \implies : $as'u \in \mathfrak{p}$, so $a \in \mathfrak{p}$ or $s'u \in \mathfrak{p}$ but $\mathfrak{p} \cap S = \emptyset$; must be $a \in \mathfrak{p}$.

 $\Leftarrow=: a \in \mathfrak{p}; (a \cdot 1 - a) \cdot 1 = 0, \text{ so } a \text{ is in the set.}$

Fact 1.26. How is $B_{\mathfrak{q}}/\mathfrak{q}_{\mathfrak{q}} = B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ an $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ -module?

We know the map $A_{\mathfrak{p}} \to B_{\mathfrak{q}}: a/s \mapsto f(a)/f(s)$ from 1.15. The kernel of the composition $A_{\mathfrak{p}} \to B_{\mathfrak{q}} \to B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}: a/s \mapsto f(a)/f(s) + \mathfrak{q}B_{\mathfrak{q}}$ contains $\mathfrak{p}A_{\mathfrak{p}}$: element of $\mathfrak{p}A_{\mathfrak{p}}$ is a/s where $a \in \mathfrak{p}, s \notin \mathfrak{p}$; it follow that $f(s) \notin \mathfrak{q}$ (otherwise $s \in f^{-1}(\mathfrak{q}) = \mathfrak{p}$); so the image in the first map of a/s is in $\mathfrak{q}B_{\mathfrak{q}}$, the kernel of the second map, then a/s is in the kernel of the composition. The composition then factors through $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \to B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$: $a/s + \mathfrak{p}A_{\mathfrak{p}} \mapsto f(a)/f(s) + \mathfrak{q}B_{\mathfrak{q}}$. This is a ring homomorphism that makes $B_{\mathfrak{q}}/\mathfrak{q}_{\mathfrak{q}}$ an $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ -module.

Fact 1.27. What is $\mathfrak{p}M_{\mathfrak{p}}$?

When $M_{\mathfrak{p}}$ is seen as an A-module, $\mathfrak{p}M_{\mathfrak{p}} = \{am/s : a \in \mathfrak{p}, m \in M, s \notin \mathfrak{p}\}$. When $M_{\mathfrak{p}}$ is seen as an $A_{\mathfrak{p}}$ -module, \mathfrak{p} is not even an ideal in $A_{\mathfrak{p}}$, but its extension, $\mathfrak{p}A_{\mathfrak{p}}$ is, and $(\mathfrak{p}A_{\mathfrak{p}})M_{\mathfrak{p}} = \{(a/s')(m/s) : a \in \mathfrak{p}, m \in M, s, s' \notin \mathfrak{p}\} = \{am/s : a \in \mathfrak{p}, m \in M, s \notin \mathfrak{p}\}$, the same set, which we write $\mathfrak{p}M_{\mathfrak{p}}$ for:

$$\mathfrak{p}M_{\mathfrak{p}}=(\mathfrak{p}A_{\mathfrak{p}})M_{\mathfrak{p}}$$

Fact 1.28. How

$$\frac{(B \otimes_A M)_{\mathfrak{q}}}{\mathfrak{q}(B \otimes_A M)_{\mathfrak{q}}} \cong \frac{B_{\mathfrak{q}}}{\mathfrak{q}_{\mathfrak{q}}} \otimes_B B \otimes_A M$$

?

Proposition 3.5 states, in the language of subscript- \mathfrak{p} , that $M_{\mathfrak{p}} \cong A_{\mathfrak{p}} \otimes_A M$ over $A_{\mathfrak{p}}$. Here $(B \otimes_A M)_{\mathfrak{q}} \cong B_{\mathfrak{q}} \otimes_B (B \otimes_A M)$ over $B_{\mathfrak{p}}$. Then

$$\begin{split} \frac{B_{\mathbf{q}} \otimes_B (B \otimes_A M)}{(\mathbf{q} B_{\mathbf{q}})(B_{\mathbf{q}} \otimes_B (B \otimes_A M))} &\cong \frac{B_{\mathbf{q}}}{\mathbf{q} B_{\mathbf{q}}} \otimes_{B_{\mathbf{q}}} (B_{\mathbf{q}} \otimes_B (B \otimes_A M)) \\ &\cong \frac{B_{\mathbf{q}}}{\mathbf{q}_{\mathbf{q}}} \otimes_B B \otimes_A M \end{split}$$

The first equality is from Exercise 2.2: $M/\mathfrak{a}M \cong A/\mathfrak{a} \otimes_A M$. In P. Y. Gaillard solution to ItCA Exercise 3.19 (viii).

Fact 1.29. *How*

$$\frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathbf{n}}} \otimes_{A} M \cong \frac{M_{\mathfrak{p}}}{\mathfrak{p}M_{\mathbf{n}}}$$

?

$$\frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}}\otimes_{A}M\cong\frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}}\otimes_{A_{\mathfrak{p}}}A=_{\mathfrak{p}}\otimes_{A}M\cong\frac{A_{\mathfrak{p}}}{\mathfrak{p}A_{\mathfrak{p}}}\otimes_{A_{\mathfrak{p}}}M_{\mathfrak{p}}\cong\frac{M_{\mathfrak{p}}}{\mathfrak{p}M_{\mathfrak{p}}}$$

The second by Proposition 3.5, the third by Exercise 2.2.

In Y. P. Gaillard solution of ItCA Exercise 3.19 (viii).

Fact 1.30. How $(B \otimes_A M)_{\mathfrak{q}} = B_{\mathfrak{q}} \otimes_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$?

$$\begin{split} (B \otimes_A M)_{\mathbf{q}} &= B_{\mathbf{q}} \otimes_B (B \otimes_A M) \\ &= B_{\mathbf{q}} \otimes_A M \\ &= (B_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} A_{\mathbf{p}}) \otimes_A M \\ &= B_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} (A_{\mathbf{p}} \otimes_A M) \\ &= B_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} M_{\mathbf{p}} \end{split}$$

The first and the last equalities are applications of Proposition 3.5:

$$S^{-1}A \otimes_A M \cong S^{-1}M$$
$$A_{\mathfrak{p}} \otimes_A M \cong M_{\mathfrak{p}}$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

In Y. P. Gaillard solution to ItCA Exercise 3.19 (iii).

Fact 1.31. The diagram

$$A\mathfrak{p} \xrightarrow{\phi} A\mathfrak{p}/\mathfrak{p}A\mathfrak{p}$$

$$\downarrow^f \qquad \downarrow^h$$

$$B\mathfrak{q} \xrightarrow{\psi} B\mathfrak{q}/\mathfrak{q}B\mathfrak{q}$$

$$a/s \longmapsto^{\phi} a/s + \mathfrak{p}A\mathfrak{p}$$

$$\downarrow^f \qquad \downarrow^h$$

$$f(a)/f(s) \longmapsto^{\psi} f(a)/f(s) + \mathfrak{q}B\mathfrak{q}$$

is commutative.

All calculated on the diagram.

Now $\kappa_{\mathbf{q}} = B_{\mathbf{q}}/\mathfrak{g}B_{\mathbf{q}}$ is an $A_{\mathbf{p}}$ -module by $A_{\mathbf{p}} \to A_{\mathbf{p}}/\mathfrak{p}A_{\mathbf{p}} \to B_{\mathbf{q}}/\mathfrak{g}B_{\mathbf{q}}$ (with the formula as on the bottom diagram) and we may tensor over $A_{\mathbf{p}}$.

If a field K is an A-module for some ring A, can it be a zero A-module?

$$1_A 1_K = 1_k \neq 0_K$$

It cannot.

Now that $\kappa_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} M_{\mathbf{p}}/\mathfrak{p} M_{\mathbf{p}} = 0$, both tensorands finitely generated, and $\kappa_{\mathbf{q}} \neq 0$, it must be $M_{\mathbf{p}}/\mathfrak{p} M_{\mathbf{p}} = 0$ by ItCA Exercise 2.3.

In solution of ItCA 3.19 (viii) by J. D. Taylor.

Fact 1.32. What is pB?

For $f: A \to B$, we can think in two ways. As we identify ab = f(a)b, $\mathfrak{p}B = \{ab = f(a)b : a \in \mathfrak{p}, b \in B\}$ is the extension $f(\mathfrak{p})B$ of the ideal \mathfrak{p} . The second way is that B is an A-module, and \mathfrak{p} a prime ideal in A, so we can form $\mathfrak{p}B = \{\sum a_ib_i = \sum f(a_i)b_i\}$ with $a_i \in \mathfrak{p}$, $b_i \in B$, getting the same set.

Fact 1.33. What is $\mathfrak{p}B_{\mathfrak{p}}$?

 $B_{\mathfrak{p}}$ is an A - module, \mathfrak{p} is a prime ideal of A, so $\mathfrak{p}B_{\mathfrak{p}}$ makes sense and consists of finite sums $\sum a_i(b_i/s)$ where $a_i \in \mathfrak{p}, \ b_i \in B$, and $s_i \in A \setminus \mathfrak{p}$. After bringing to common denominator, the sum becomes ab/s where $a \in \mathfrak{p}, \ b \in B$ and $s_i \in A \setminus \mathfrak{p}$ that is, b/s where $b \in \mathfrak{p}B$ and $s_i \in A \setminus \mathfrak{p}$.

Fact 1.34. How is $A_{\mathfrak{p}}$ an A-module ?

The canonical map $\phi: A \to A_{\mathfrak{p}}: a \mapsto \frac{a}{1}$ gives the multiplication by scalars from A

$$a'\frac{a}{s} = \phi(a')\frac{a}{s} = \frac{a'}{1}\frac{a}{s} = \frac{a'a}{s}$$

Fact 1.35. What is $\mathfrak{p}A_{\mathfrak{p}}$?

As $A_{\mathfrak{p}}$ is an A-module, we can multiply it by a prime ideal in A in a standard way

$$\sum a_i' \frac{a_i}{s_i} = \sum \frac{a'a_i}{s_i}$$

After bringing to a common denominator, this is

 $\frac{a}{s}$

with $a \in \mathfrak{p}$, so $\mathfrak{p}A_{\mathfrak{p}}$ is the single maximal ideal of the local ring $A_{\mathfrak{p}}$.

Fact 1.36. What is $(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}}$?

As $B_{\mathfrak{p}}$ is an $A_{\mathfrak{p}}$ -module, and $\mathfrak{p}A_{\mathfrak{p}}$ is the single maximal ideal of the local ring $A_{\mathfrak{p}}$, Any element is, from the definition of the ideal-by-module and from the general element of $\mathfrak{p}A_{\mathfrak{p}}$ $(a \in \mathfrak{p})$

$$\sum_{i} \frac{a_i}{s_i'} \frac{b_i}{s_i} = \sum_{i} \frac{ab}{s's}$$

After bringing to a common denominator, this becomes

$$ab/s = f(a)b/s$$

where $a \in \mathfrak{p}$. Notice we got the general element of $\mathfrak{p}B_{\mathfrak{p}}$, so

$$(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}} = \mathfrak{p}B_{\mathfrak{p}}$$

Fact 1.37. $How B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{p}}$?

Apply Exercise 2.2

$$A/\mathfrak{a} \otimes_A M \cong M/\mathfrak{a}M$$

to $M := B_{\mathfrak{p}}, A := A_{\mathfrak{p}}, \mathfrak{s} := \mathfrak{p}A_{\mathfrak{p}}$

$$A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}\otimes_{A_{\mathfrak{p}}}B_{\mathfrak{p}}=B_{\mathfrak{p}}/(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}}$$

now apply $(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}} = \mathfrak{p}B_{\mathfrak{p}}$.

Fact 1.38. How $A_{\mathfrak{p}} \otimes_A B \cong B_{\mathfrak{p}}$?

Apply Proposition 3.5: $S^{-1}A \otimes_A M \cong S^{-1}M$.

We now understand the isomorphisms in the solution of ItCA's 3.21(iv) by J D. Taylor.

$$\begin{split} B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} &= A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{p}} \\ &= K_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}} \otimes_{A} B \\ &= K_{\mathfrak{p}} \otimes_{A} B \end{split}$$

7

Fact 1.39. $\mathfrak{p}\supseteq\mathfrak{a}\iff S^{-1}\mathfrak{p}\supseteq S^{-1}\mathfrak{a}$

The \Longrightarrow direction is universal for ideal extensions. For the \iff direction, $(S^{-1}\mathfrak{p})^c\supseteq (S^{-1}\mathfrak{a})^c$ meaning $\mathfrak{p}\supseteq \mathfrak{a}^{ec}\supseteq \mathfrak{a}$

Fact 1.40. If $\mathfrak{p}\supseteq\mathfrak{a}$ then $\mathfrak{p}\supseteq\mathfrak{a}^{ec}\supseteq\bigcup_{s\in S}(\mathfrak{a}:s)$

If $x \in (\mathfrak{a}:s)$ then $xs \in \mathfrak{a} \subseteq \mathfrak{p}$ then $xs \in \mathfrak{p}$ then $x \in \mathfrak{p}$ or $s \in \mathfrak{p}$ but $\mathfrak{p} \cap S = \emptyset$ so $x \in \mathfrak{p}$.

2 Saturated

Fact 2.1. For saturated S, if f(a) is a unit in $S^{-1}A$, then $a \in S$.

Proof.

$$\frac{a}{1} \cdot \frac{b}{t} = \frac{1}{1}$$

$$\frac{ab}{t} = \frac{1}{1}$$

$$(ab,t) \equiv (1,1)$$

$$(ab - t)u = 0$$

$$abu = tu$$

$$abu \in S$$

As S is saturated, $a \in S$.