الوضعية التعلمية وظيفة الذاكرة

1- مفهوم الحالة و الذاكرة:

مثال: التحكم في جرس S بواسطة ضاغطة BP BP : مخرج

S = 1 : BP =1 - S = 0 : BP = 0 -

لمعرفة حالة المخرج يكفى معرفة حالة المدخل فقط

هذه المسألة من: المنطق التوافقي (التركيبي)

مثال 2: التحكم في صعود و نزول مصعد (D, M) يتحرك بين ثلاث طوابق بواسطة ثلاثة ضواغط (P1, P2, P3). لطلب طابق نضغط على الضاغطة الموافقة.

- المداخل الرئيسيــة: P1, P2, P3 المخـــارج: M, D

سوال : ماهي حالة المخارج الموافقة لحالة المداخل 010 = P1P2P3 ?

نلاحظ أن حالة المداخل غير كافية لتحديد حالة المخارج إذن المسألة ليست من المنطق التوافقي لمعرفة حالة المخارج يجب معرفة بالإضافة إلى حالة المداخل الحالة السابقة للنظام

- إذا كان المصعد سابقا في الطابق 1 فإن : M = 1, D = 0
- إذا كان المصعد سابقا في الطابق 2 فإن : M = 0 , D = 0
- إذا كان المصعد سابقا في الطابق 3 فإن : 1 = 0, D = 1

المخارج تتعلق بتعاقب حالات النظام فالمسألة من المنطق التعاقبي

يمكن أن نقول أن النظام يجب أن يحتفظ بالحالات السابقة إذن فهو يحتاج إلى ذاكرة لتخزينها

2- تشغيل الذاكرة: تحتوي الذاكرة علي حالتين مستقرتين يمكن المرور من حالة إلي أخرى بالتأثير على المداخل

- الرمز العام للذاكرة: S: المخرج - M: التشغيل

_____ A : التوقيف

- جدول التشغيل:

- جدول التشغيال المختصر:

A	M	S _{n+1}	ملاحظات
0	0	Sn	إحتفاظ
0	1	1	وضع في الـ 1
1	0	0	وضع في الــ 0
1	1	×	عدم التعيين ن

Sn	A	M	S _{n+1}	ملاحظات
0	0	0	0	
0	0	1	1	
0	1	0	0	_
0	1	1	×	حالة ممنوعة
1	0	0	1	
1	0	1	1	
1	1	0	0	
1_1_	1	1	×	

Sn : الحالة السابقة للمخرج. Sn+1 : الحالة الناتجة للمخرج

3- أولوية مدخل و معادلات التشغيل :

3-1- أولوية للتوقيف:

- جدول التشغيل:

- المعادلــة:

AM S _n	00	01	11	10
0	0	1	0	0
1	1	1	0	0

$$S_{n+1} = S_n . \overline{A} + \overline{A} . M = (M + S_n) . \overline{A}$$

Α	M	S_{n+1}	ملاحظات
0	0	Sn	إحتفاظ
0	1	1	وضع في 1
1	0	0	وضع في ()
1	1	0	أولويـــة لــ : 0

3-1- أولوية للتشغيل :

- جدول التشغيل :

- المعادلة:

AM S _n	00	01	11	10
0	0	1	1	0
1	1	1	1	0

$$S_{n+1} = M + S_n . \overline{A}$$

Α	М	S_{n+1}	ملاحظات
0	0	S _n	إحتفاظ
0	1	1	وضع في 1
1	0	0	وضع في ()
1	1	1	أولويـــة لــ : 1

4- مبدأ الحصول على أثار الذاكرة:

نشاط عملي: التحكم في مصباح بواسطة مرحل كهرو مغناطيسي:

- باستعمال برمجية Schemaplic أحجز التركيب شكل1

- اضغط علي S1 ثم حررها ماذا تلاحظ بعد تحرير: S1 نلاحظ أن المصباح و وشيعة المرحل يحتفظان بالتغذية
- -اضغط علي S2 ثم حررها ماذا تلاحظ بعد تحرير S2:

نلاحظ أن المصباح و وشيعة المرحل يحتفظان بحالة الراحة

- بماذا تمتاز هذه الدارة تمتاز بخاصية الإحتفاظ
- من خلال تحليلك للتركيب لمن تعطي الأولوية عند الضغط علي S1 وS2 معا تعطى الأولوية ل S1 (التوقيف)
 - هل الدارة تعاقبية أم تركيبية تعاقبيــــة

5- تطبيق : القالاب RS :

- في التكنولوجيا الإلكترونية تخزن المعلومات علي شكل أرقام ثنائية (0 أو 1).
 - يستعمل مبدأ حلقة الإرتداد للحصول على أثار الذاكرة.
 - القلاب ذاكرة عنصرية بإمكانها تخزين رقم ثنائي . توجد في السوق علي شكل دارات مندمجة

5-1 الرمــز:

2-5 المعادلات و جدول التشغيل :

$$S: \underline{\hspace{1cm}}$$
 أولوية $Q_{n+1} = S + \overline{R}.Q_n$

R: اولویة ل
$$\overline{Q}_{n+1} = R + \overline{S}.\overline{Q}_n$$

S	R	Q _{n+1}	Q _{n+1}	ملاحظات
0	0	Qn	Q̄n	إحتف اظ
0	1	0	1	وضع في الـ 0
1	0	1	0	وضع في الـ 1
1	1	1	1	حالة ممنوعة

5-3 الرسم المنطقى بإستعمال بويبات "نفى و" فقط:

$$Q_{n+1} = \overline{\overline{S} + \overline{R}.Q_n} = \overline{\overline{S}.\overline{\overline{R}.Q_n}}$$

- المعادلات:

$$\overline{Q}_{n+1} = \overline{\overline{R} + \overline{S}.\overline{\overline{Q}}_n} = \overline{\overline{R}.\overline{\overline{S}.\overline{\overline{Q}}_n}}$$

4-5 مثال لاستعمال القالب: RS:

عند غلق أو فتح ملمس ميكانيكي يحدث له إرتدادات قبل إن يستقر في وضعيته النهائية ، عند إستعماله كمدخل لدارة منطقية فإن الدارة تستجيب لكل إرتداد (زمن إستجابة الدارة صغير بالنسبة لزمن الإرتداد) مما يسبب إرتياب في التشغيل من أجل تفادي هذه

- إعتمادا على تشغيل القلاب RS أكمل المخطط الزمني

- ماذا تلاحظ علي مستوي حالات مخارج Q للقلاب RS مقارنة بحالات الملمس الميكانيكي m

نلاحظ زوال ارتدادات المخرج Q للقلاب RS مقارنة مع المداخل

- إذن دور القلاب RS في هذا التركيب هو : دارة ضد الإرتداد
 - ماهو دور المقاومات في التركيب.

الحفاظ على المستوى المنطقى "1" عندما يكون الملس m في حالة إنتقالية
