Transfer Learning with Pretrained Models

Suvarna Kadam

PhD Scholar, Department of Technology SPPU

Asst. Professor at DYPCOE Akurdi

Outline

- Motivation (Why to transfer knowledge?)
- Existing Approaches of transfer learning
- Transfer Learning in Deep Models
 - 1. Train a (source) deep network or find a pretrained model
 - 2. Repurpose the pretrained model for your needs
 - 3. Predict with new target model
- Case study for image classification with pretrained model

Traditional Machine Learning

Learning is hard!

Lot of data and compute!

Catastrophic Forgetting

Why learning is hard for machines?

Learning from observations

✓ Apples

✓ Oranges

Learning from observations

Apple/Orange?

Training

Testing

Traditional Machine Learning

Learning is hard!

Lot of data and compute!

Catastrophic Forgetting

Finding Pattern

Purpose of Machine Learning - Find Patterns in Data!

But the problem is ML need <u>lots of data &</u> <u>Compute</u> to learn patterns effectively.

Traditional Machine Learning

Learning is hard!

Lot of data and compute!

Catastrophic Forgetting

Machines have amnesia!

Machines can learn one task at a time.

Banana?
Straberry?

But the problem is catashropic forgetting where ML models forget knowledge learned from first task while learning new task!

Traditional Machine Learning

Learning is hard!

Lot of data and compute!

Catastrophic Forgetting

Deep Learning has additional challenges...

Need lot of labelled data and compute to train

Need to experiment with architecture

Need to experiment with hyper parameters(learning rate, batch size, momentum, and weight decay)

Deep models are trained for specific task

Traditional deep models can't multi-task

To learn new task, we need to re-train
them from scratch!

Traditional Vs. Transfer Learning

Transfer Learning

- Utilize the knowledge learned with source dataset(s) to perform a task with target dataset.
- Store Knowledge
 - Knowledge is present in the form of weights of trained model.
 - Weights represent features learned about the (source) tasks
- Transfer Knowledge
 - The learned features are <u>reused</u> when performing a (target) new task.
 - The model need not be trained from scratch

Two Approaches for Deep Transfer Learning

Train-Source-Models-from-scratch

- 1. Select Source Task. Select Source task with an abundance of data
- **2.** Train Source Model(s). Train model rigorously to ensure that features are learned
- Reuse Model. The trained model on the source task is used as the starting point for a model on the target task.
- **4. Tune Model**. Optionally, the source model may need to be adapted or refined for target task.

Pre-trained Model Approach

- **1. Select Source Model**. A pre-trained source model is chosen from available models.
- 2. Reuse Model. The model pre-trained model can then be used as the starting point for a model on the second task of interest. This may involve using all or parts of the model, depending on the modeling technique used.
- **3. Tune Model**. Optionally, the model may need to be adapted or refined on the input-output pair data available for the task of interest.

Assumption: We have a repository of several source models.

Public Repositories of Pretrained Models

Image Credit: https://www.freecodecamp.org/news/asl-recognition-using-transfer-learning-918ba054c004/

Repurposing Deep Model for target task

Image classification with pretrained model

Target Task: Image Classification

Deep Models : Convolutional Neural Networks

Source Datasets : ImageNet, Open Images,The Street View House Numbers (SVHN)

Frozen Layers

Finetuning with target dataset

Image Classification

Source Dataset: ImageNet

Target Dataset: Flowers

Task: Classification

https://colab.research.google.com/drive/1fbz7RSho0OjSVysFk 0Qu1m8Bpe6MbzZk

ImageNet predictions

cardoon bee fountain bee daisy honeycomb ladybug daisy daisy daisy buckeye daisy hay stingray vase candle daisy daisy pot daisy daisy ice lolly daisy quill picket fence greenhouse pinwheel vase

Model predictions (green: correct, red: incorrect)

Text Classification

Source Dataset: Google News

Target Dataset: imdb

Task: Text Classification (Sentiment Analysis)

https://colab.research.google.com/drive/14lzmGkNTTwCpzf9 UNyaVDXK6tE3jcWqQ

Summary

Transfer Learning with pretrained models *democratises* Deep Learning to some extent

Anyone with small dataset and low compute can benefit the heavy duty Deep learning machinery

Applications range across modalities – Image, Text and Speech

Thank You!