Moduli spaces and Grassmannians

Candidato:

Relatore:

Sorce Francesco

Talpo Mattia

Prova finale per il corso di Laurea triennale in Matematica

Università di Pisa Anno accademico 2023/24

12 Luglio 2024

Grassmanniane, definizione standard

$$\operatorname{Gr}'(k,n,\mathbb{K}) = \{ \operatorname{\mathsf{sottospazi}} \ \operatorname{\mathsf{di}} \ \mathbb{K}^n \ \operatorname{\mathsf{di}} \ \operatorname{\mathsf{dimensione}} \ k \} \,.$$

Grassmanniane, definizione standard

$$Gr'(k, n, \mathbb{K}) = \{ \text{sottospazi di } \mathbb{K}^n \text{ di dimensione } k \}.$$

Esempi:

- Spazi proiettivi $\mathrm{Gr}'(1,n,\mathbb{R})=\mathbb{P}^n_\mathbb{R}$
- \bullet Sfera di Riemann $\mathrm{Gr}'(1,1,\mathbb{C})=\mathbb{P}^1_{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

Grassmanniane, definizione standard

$$\operatorname{Gr}'(k, n, \mathbb{K}) = \{ \text{sottospazi di } \mathbb{K}^n \text{ di dimensione } k \}.$$

Esempi:

- Spazi proiettivi $\mathrm{Gr}'(1,n,\mathbb{R})=\mathbb{P}^n_\mathbb{R}$
- Sfera di Riemann $\mathrm{Gr}'(1,1,\mathbb{C})=\mathbb{P}^1_\mathbb{C}=\mathbb{C}\cup\{\infty\}$
- Superficie di Plücker $\mathrm{Gr}'(2,4)$ parametrizza rette in $\mathbb{P}^3.$

Scrittura con quozienti

Nota: $Gr'(n-k, n) = \{ \ker A \mid A \in \mathcal{M}(k, n), \operatorname{rnk} A = k \}.$

Grassmanniane con quozienti

$$\operatorname{Gr}(k, n, \mathbb{K}) = \{A \in \mathcal{M}(k, n, \mathbb{K}) \mid \operatorname{rnk} A = k\}_{\nearrow \sim}$$

con $A \sim B \iff \ker A = \ker B \iff \exists P \in \operatorname{GL}_k \text{ t.c. } A = PB.$

$$\operatorname{Gr}'(k, n, \mathbb{K}) \cong \operatorname{Gr}(n - k, n, \mathbb{K})$$

Scegliendo un multiindice I di k entrate

$$\operatorname{Gr}_I(k,n) = \{ [A] \in \operatorname{Gr}(k,n) \mid \det A_I \neq 0 \}.$$

cioè, i sottospazi con proiezione su $\mathrm{Span}\,(\{e_i\mid i\in I\})^\perp$ di rango massimo.

Scegliendo un multiindice I di k entrate

$$\operatorname{Gr}_I(k,n) = \{ [A] \in \operatorname{Gr}(k,n) \mid \det A_I \neq 0 \}.$$

cioè, i sottospazi con proiezione su $\mathrm{Span}\,(\{e_i\mid i\in I\})^\perp$ di rango massimo.

$$A_I^{-1}A = \begin{pmatrix} w_{I_1^1} & \cdots & w_{I_n^1} \\ \vdots & \ddots & \vdots \\ w_{I_1^k} & \cdots & w_{I_n^k} \end{pmatrix}, \quad \text{dove } w_J = \frac{\det A_J}{\det A_I}$$

Per esempio, con $I = (1, \dots, k)$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \cdots & a_{k,k} \\ a_{k,k+1} & \cdots & a_{k,n} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & & \begin{vmatrix} a'_{1,k+1} & \cdots & a'_{1,n} \\ \vdots & \ddots & \vdots \\ & & 1 \\ a'_{k,k+1} & \cdots & a'_{k,n} \end{pmatrix}$$

12 Luglio 2024

$$A_I^{-1}A = \begin{pmatrix} w_{I_1^1} & \cdots & w_{I_n^1} \\ \vdots & \ddots & \vdots \\ w_{I_1^k} & \cdots & w_{I_n^k} \end{pmatrix}, \quad \text{dove } w_J = \frac{\det A_J}{\det A_I}$$

Per esempio, con $I = (1, \dots, k)$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \cdots & a_{k,k} \end{pmatrix} \xrightarrow{a_{1,k+1}} \begin{pmatrix} a_{1,k+1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{k,n} & \cdots & a_{k,k} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & & \begin{vmatrix} a'_{1,k+1} & \cdots & a'_{1,n} \\ \vdots & \ddots & \vdots \\ a'_{k,k+1} & \cdots & a'_{k,n} \end{pmatrix}$$

Segue che $Gr_I(k, n, \mathbb{K}) \cong \mathcal{M}(k, n - k, \mathbb{K}) \cong \mathbb{K}^{k(n-k)}$.

$$A_I^{-1}A = \begin{pmatrix} w_{I_1^1} & \cdots & w_{I_n^1} \\ \vdots & \ddots & \vdots \\ w_{I_1^k} & \cdots & w_{I_n^k} \end{pmatrix}, \quad \text{dove } w_J = \frac{\det A_J}{\det A_I}$$

Per esempio, con $I = (1, \dots, k)$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \cdots & a_{k,k} \end{pmatrix} \xrightarrow{a_{1,k+1}} \begin{pmatrix} a_{1,k+1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{k,n} & \cdots & a_{k,k} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & & \begin{vmatrix} a'_{1,k+1} & \cdots & a'_{1,n} \\ \vdots & \ddots & \vdots \\ a'_{k,k+1} & \cdots & a'_{k,n} \end{pmatrix}$$

Segue che $\operatorname{Gr}_I(k,n,\mathbb{K})\cong \mathcal{M}(k,n-k,\mathbb{K})\cong \mathbb{K}^{k(n-k)}$.

Per $\mathbb{K} = \mathbb{R}$ abbiamo varietà liscia.

Per $\mathbb{K} = \mathbb{C}$ abbiamo varietà analitica complessa.

Ma stiamo facendo geometria algebrica!

Ma stiamo facendo geometria algebrica!

Vogliamo delle equazioni

Mappa di Plücker

Mappa di Plücker

$$\phi: A \longmapsto \sum_{I \in \omega(k,n)}^{k} \det A_{I} e_{I}$$

Mappa di Plücker

Mappa di Plücker

$$\phi: A \longmapsto \sum_{I \in \omega(k,n)} \bigwedge^k \mathbb{K}^n$$

Iniettività a meno di scalare

 $\operatorname{rnk} A < k$ se e solo se $\phi(A) = 0$.

Se $\operatorname{rnk} A = k$ allora $\ker A = \ker B$ se e solo se $\phi(A) = \lambda \phi(B)$ per $\lambda \neq 0$.

Embedding di Plücker

Embedding di Plücker

$$\mathrm{Pl}: \begin{array}{ccc} \mathrm{Gr}(k,n) & \longrightarrow & \mathbb{P}^{\binom{n}{k}-1} \\ [A] & \longmapsto & [\det A_I \mid I \in \omega(k,n)] \end{array}$$

Embedding di Plücker

Embedding di Plücker

$$\mathrm{Pl}: \begin{array}{ccc} \mathrm{Gr}(k,n) & \longrightarrow & \mathbb{P}^{\binom{n}{k}-1} \\ [A] & \longmapsto & [\det A_I \mid I \in \omega(k,n)] \end{array}$$

Grassmanniane sono una varietà

L'immagine di ϕ è un cono algebrico e un chiuso di Zariski di $\bigwedge^k \mathbb{K}^n$.

Embedding di Plücker

Embedding di Plücker

$$\mathrm{Pl}: \begin{array}{ccc} \mathrm{Gr}(k,n) & \longrightarrow & \mathbb{P}^{\binom{n}{k}-1} \\ [A] & \longmapsto & [\det A_I \mid I \in \omega(k,n)] \end{array}$$

Grassmanniane sono una varietà

L'immagine di ϕ è un cono algebrico e un chiuso di Zariski di $\bigwedge^k \mathbb{K}^n$.

In particolare Gr(k, n) è anche uno schema proiettivo.

Problema di moduli

Problema di classificazione geometrico

Dati degli **oggetti** e una **equivalenza** tra questi cerchiamo uno **spazio** che parametrizza le classi "ragionevolmente".

Problema di moduli

Problema di classificazione geometrico

Dati degli **oggetti** e una **equivalenza** tra questi cerchiamo uno **spazio** che parametrizza le classi "ragionevolmente".

Sia F(T) l'insieme delle **famiglie** di oggetti parametrizzate da T a meno di isomorfismo

Problema di moduli

Problema di classificazione geometrico

Dati degli **oggetti** e una **equivalenza** tra questi cerchiamo uno **spazio** che parametrizza le classi "ragionevolmente".

Sia F(T) l'insieme delle **famiglie** di oggetti parametrizzate da T a meno di isomorfismo

Un **problema di moduli** è un funtore $F : \operatorname{Sch}/S^{op} \to \operatorname{Set}$

Esempio di problema di moduli

Una **famiglia di curve lisce di genere** g su uno schema S è un morfismo liscio, proprio e finitamente presentato $C \to S$ tale che ogni fibra C_s è una curva liscia connessa e propria di genere g.

$$F_{M_g}: \begin{array}{ccc} \operatorname{Sch}/\mathbb{C}^{op} & \longrightarrow & \operatorname{Set} \\ S & \longmapsto & \{\text{famiglia di curve lisce di genere } g \text{ su } S\}_{/\sim} \\ T \to S & \longmapsto & (C \to S) \mapsto (C \times_S T \to T) \end{array}$$

dove due famiglie $C \to S$ e $C' \to S$ sono equivalenti se esiste un isomorfismo tra C e C' compatibile con le mappe verso S.

M è uno spazio di moduli

M è uno spazio di moduli

• fine se $h_M \cong F$. La famiglia $u \in F(M)$ che corrisponde all'isomorfismo è detta famiglia universale.

13 / 21

M è uno spazio di moduli

- fine se $h_M \cong F$. La famiglia $u \in F(M)$ che corrisponde all'isomorfismo è detta famiglia universale.
- grezzo se
 - ▶ $M(\mathbb{K}) \leftrightarrow F(\operatorname{Spec} \mathbb{K})$ per ogni campo algebricamente chiuso
 - lacktriangleright ogni famiglia induce un morfismo verso M (fissiamo $F o h_M$ naturale)
 - ► *M* è universale per questa proprietà.

M è uno spazio di moduli

- fine se $h_M \cong F$. La famiglia $u \in F(M)$ che corrisponde all'isomorfismo è detta famiglia universale.
- grezzo se
 - ▶ $M(\mathbb{K}) \leftrightarrow F(\operatorname{Spec} \mathbb{K})$ per ogni campo algebricamente chiuso
 - lacktriangleright ogni famiglia induce un morfismo verso M (fissiamo $F o h_M$ naturale)
 - ► *M* è universale per questa proprietà.

Esempio: $F_{M_{\sigma}}$ ammette spazio di moduli grezzo ma non fine.

Problema di moduli delle Grassmanniane

Sospettiamo che $\operatorname{Gr}'(n-k,n)\cong\operatorname{Gr}(k,n)$ sia uno spazio di moduli per

$$\mathfrak{Gr}'(n-k,n):\begin{array}{ccc} (\mathrm{Sch}/\mathbb{K})^{op} & \longrightarrow & \mathrm{Set} \\ & \mathcal{F} \text{sottofibrato vettoriale di } \mathcal{O}^n_T \text{ di } \\ & f: S \to T & \longmapsto & \mathcal{F} \mapsto f^*\mathcal{F} \end{array}$$

Problema di moduli delle Grassmanniane

Sospettiamo che $\operatorname{Gr}'(n-k,n)\cong\operatorname{Gr}(k,n)$ sia uno spazio di moduli per

$$\mathfrak{Gr}'(n-k,n): \begin{array}{ccc} (\operatorname{Sch}/\mathbb{K})^{op} & \longrightarrow & \operatorname{Set} \\ \mathcal{Gr}'(n-k,n): & T & \longmapsto & \left\{ \mathcal{F} \text{ sottofibrato vettoriale di } \mathcal{O}^n_T \text{ di } \right\} \\ & f: S \to T & \longmapsto & \mathcal{F} \mapsto f^*\mathcal{F} \end{array}$$

 $\begin{array}{cccc} (\mathrm{Sch}/\mathbb{K})^{op} & \longrightarrow & \mathrm{Set} \\ \mathfrak{Gr}(k,n): & T & \longmapsto & \{\alpha:\mathcal{O}_T^n \twoheadrightarrow Q\}_{\nearrow} \\ & f:S \to T & \longmapsto & (\alpha:\mathcal{O}_T^n \to Q) \mapsto (f^*\alpha:\mathcal{O}_S^n \to f^*Q) \end{array}$

dove Q fibrato vettoriale su T di rango k e $\alpha \sim \beta \iff \ker \alpha = \ker \beta$.

Problema di moduli delle Grassmanniane

Sospettiamo che $Gr'(n-k,n) \cong Gr(k,n)$ sia uno spazio di moduli per

$$\mathfrak{Gr}'(n-k,n): \begin{array}{ccc} (\mathrm{Sch}/\mathbb{K})^{op} & \longrightarrow & \mathrm{Set} \\ & & \\ \mathfrak{Gr}'(n-k,n): & T & \longmapsto & \left\{ \begin{array}{cccc} \mathcal{F} & \mathrm{sottofibrato} & \mathrm{vettoriale} & \mathrm{di} & \mathcal{O}_T^n & \mathrm{di} \\ \mathrm{rango} & n-k & \mathrm{t.c.} & \mathcal{O}_T^n/\mathcal{F} & \mathrm{loc.} & \mathrm{libero} \end{array} \right\} \\ & & f: \mathcal{S} \to T & \longmapsto & \mathcal{F} \mapsto f^*\mathcal{F} \end{array}$$

dove Q fibrato vettoriale su T di rango k e $\alpha \sim \beta \iff \ker \alpha = \ker \beta$.

$$\mathfrak{Gr}(k,n)(\operatorname{Spec} \mathbb{K}) \cong \left\{ \varphi : \mathbb{K}^n \twoheadrightarrow \mathbb{K}^k \right\} /_{\sim} = \operatorname{Gr}(k,n)(\mathbb{K}).$$

14 / 21

Sottofuntori e ricoprimenti aperti

$$\begin{array}{ccc}
U \xrightarrow{h_{\bullet}} h_{U} & \longrightarrow & G \\
& & \downarrow & & \downarrow \\
T \xrightarrow{h_{\bullet}} h_{T} & \longrightarrow & F
\end{array}$$

 $\{G_i \to F\}$ ricoprimento quando gli U_i coprono T.

Sottofuntori e ricoprimenti aperti

$$\begin{array}{ccc}
U \xrightarrow{h_{\bullet}} h_{U} & \longrightarrow & G \\
& & \downarrow & & \downarrow \\
T \xrightarrow{h_{\bullet}} h_{T} & \longrightarrow & F
\end{array}$$

 $\{G_i \to F\}$ ricoprimento quando gli U_i coprono T.

Sottofuntori aperti principali di $\mathfrak{Gr}(k,n)$

$$\mathfrak{Gr}_I(k,n): egin{pmatrix} (\mathrm{Sch}/\mathbb{K})^{op} &\longrightarrow & \mathrm{Set} \\ T &\longmapsto & \left\{\mathcal{O}_T^n \overset{lpha}{ woheadrightarrow} Q \mid lpha \circ s_I \; \mathsf{surgettiva}
ight\}_{\!\!/\!\!\sim} \end{split}$$

Dato $T \in h_T \to \mathfrak{Gr}(k, n) \leftrightarrow [\alpha] \in \mathfrak{Gr}(k, n)(T)$, abbiamo

$$U_I = T \setminus (\operatorname{Supp} (\operatorname{coker} (\alpha \circ s_I))).$$

Sono anche un ricoprimento.

Fascio di Zariski

Dato
$$\{U_i \to X\}$$
, $F(X) \to \prod_k F(U_k) \rightrightarrows \prod_{i,j} F(U_i \cap U_j)$

Fascio di Zariski

Dato
$$\{U_i \to X\}$$
, $F(X) \to \prod_k F(U_k) \rightrightarrows \prod_{i,j} F(U_i \cap U_j)$

Incollamento di morfismi su ricoprimenti di fasci di Zariski

Se F e G fasci di Zariski, $\{F_i\}_{i\in I}$ e $\{G_i\}_{i\in I}$ ricoprimenti aperti e

$$f_i: F_i \to G_i, \qquad f_i|_{F_i \cap F_i} = f_j|_{F_i \cap F_i},$$

esiste $f: F \to G$. Se f_i isomorfismo per ogni i allora f isomorfismo.

Fascio di Zariski

Dato
$$\{U_i \to X\}$$
, $F(X) \to \prod_k F(U_k) \rightrightarrows \prod_{i,j} F(U_i \cap U_j)$

Incollamento di morfismi su ricoprimenti di fasci di Zariski

Se F e G fasci di Zariski, $\{F_i\}_{i\in I}$ e $\{G_i\}_{i\in I}$ ricoprimenti aperti e

$$f_i: F_i \to G_i, \qquad f_i|_{F_i \cap F_i} = f_j|_{F_i \cap F_i},$$

esiste $f: F \to G$. Se f_i isomorfismo per ogni i allora f isomorfismo.

h_X è un fascio di Zariski.

Fascio di Zariski

Dato
$$\{U_i \to X\}$$
, $F(X) \to \prod_k F(U_k) \rightrightarrows \prod_{i,j} F(U_i \cap U_j)$

Incollamento di morfismi su ricoprimenti di fasci di Zariski

Se F e G fasci di Zariski, $\{F_i\}_{i\in I}$ e $\{G_i\}_{i\in I}$ ricoprimenti aperti e

$$f_i: F_i \to G_i, \qquad f_i|_{F_i \cap F_i} = f_j|_{F_i \cap F_i},$$

esiste $f: F \to G$. Se f_i isomorfismo per ogni i allora f isomorfismo.

- h_X è un fascio di Zariski.
- $\mathfrak{Gr}(k, n)$ è un fascio di Zariski:

Rappresentabilità del funtore delle Grassmanniane

Grassmanniana è uno spazio di moduli fine

$$h_{\mathrm{Gr}(k,n)} \cong \mathfrak{Gr}(k,n).$$

Dimostrazione.

Applichiamo il risultato di prima verificando che $h_{Gr_I(k,n)} \cong \mathfrak{Gr}_I(k,n)$ con trasformazioni compatibili con l'intersezione.

Funtore dei quozienti

Fibrati vettoriali su
$$(\operatorname{Spec} \mathbb{K})_{\mathcal{T}}$$

fasci q.coerenti loc.fin.pres. su X_T , piatti e con supporto finito su T

Funtore dei quozienti

Fibrati vettoriali su $(\operatorname{Spec} \mathbb{K})_{\mathcal{T}}$

fasci q.coerenti loc.fin.pres. su X_T , piatti e con supporto finito su TSe $X \in \operatorname{Sch}/S$, $\mathcal E$ coerente su X e $\Phi \in \mathbb Q[\lambda]$, definiamo $\mathfrak{Quot}_{\mathcal E/X/S}^{\Phi,\mathcal L}$ come

dove $q \sim q'$ se ker $q = \ker q'$.

Casi particolari: Grassmanniane e funtore di Hilbert

Generalizza Grassmanniane: $\mathfrak{Gr}(k,n) = \mathfrak{Quot}_{\mathcal{O}_{\mathbb{R}}^n/\mathbb{K}/\mathbb{K}}^{k,\mathcal{O}_{\mathbb{K}}}$

Casi particolari: Grassmanniane e funtore di Hilbert

Generalizza Grassmanniane: $\mathfrak{Gr}(k,n) = \mathfrak{Quot}_{\mathcal{O}_{\mathbb{R}}^{k}/\mathbb{K}/\mathbb{K}}^{k,\mathcal{O}_{\mathbb{K}}}$.

Se $\mathfrak{Hilb}_X^{\Phi,\mathcal{L}}$ problema dei moduli di sottoschemi chiusi di X con polinomio di Hilbert Φ allora, poiché

sottoschemi chiusi di
$$X$$
 \updownarrow fasci quasi-coerenti di ideali di \mathcal{O}_X \updownarrow classi di quozienti di \mathcal{O}_X

si ha

$$\mathfrak{Hilb}_X^{\Phi,\mathcal{L}}=\mathfrak{Quot}_{\mathcal{O}_X/X/\mathbb{K}}^{\Phi,\mathcal{L}}$$

Esistenza di Quot

Esistenza degli schemi Quot

Sia X un sottoschema chiuso di $\mathbb{P}^n_{\mathbb{K}}$, $\mathcal{L} = \mathcal{O}_{\mathbb{P}^n_{\mathbb{K}}}(1)_{|_X}$, \mathcal{E} un quoziente coerente di $\mathcal{O}_X(\nu)^p$ e $\Phi \in \mathbb{Q}[\lambda]$. Allora il funtore $\mathfrak{Quot}_{\mathcal{E}/X/\mathbb{K}}^{\Phi,\mathcal{L}}$ è rappresentabile.

Esistenza di Quot

Esistenza degli schemi Quot

Sia X un sottoschema chiuso di $\mathbb{P}^n_{\mathbb{K}}$, $\mathcal{L} = \mathcal{O}_{\mathbb{P}^n_{\mathbb{K}}}(1)_{|_X}$, \mathcal{E} un quoziente coerente di $\mathcal{O}_X(\nu)^p$ e $\Phi \in \mathbb{Q}[\lambda]$. Allora il funtore $\mathfrak{Quot}_{\mathcal{E}/X/\mathbb{K}}^{\Phi,\mathcal{L}}$ è rappresentabile.

Dimostrazione.

Ci riconduciamo a $X=\mathbb{P}^n_{\mathbb{K}}$ e $\mathcal{E}=\mathcal{O}^p_{\mathbb{P}^n_{\mathbb{K}}}$ e poi mostriamo che il seguente morfismo è una immersione localmente chiusa per $r\gg 0$

$$\begin{array}{ccc} \mathfrak{Quot}^{\Phi,\mathcal{L}}_{\mathcal{O}^{p}_{\mathbb{P}^{n}}/\mathbb{K}}(T) & \longrightarrow & \mathfrak{Gr}(\Phi(r),\dim_{\mathbb{K}}\pi_{*}\mathcal{O}^{p}_{\mathbb{P}^{n}_{\mathbb{K}}}(r))(T) \\ [\mathcal{O}^{p}_{\mathbb{P}^{n}_{T}}^{\mathbb{F}^{m}} & \to & Q] & \longmapsto & [\pi_{T_{*}}\mathcal{O}_{\mathbb{P}^{n}_{T}}(r)^{p} \to \pi_{T_{*}}Q(r)] \end{array}$$

Grazie per l'attenzione!

