VIETNAM GENERAL CONFEDERATION OF LABOUR TON DUC THANG UNIVERSITY ELECTRICAL – ELECTRONIC DEPARTMENT

PROJECT 1

TECHNICAL DESIGN OF 110KV ELECTRICAL NETWORK - DA1_KTD-M13

Instructor: Dr. BACH HOANG DINH

Student: NINH THE VINH CUONG

Student ID : 418H0363

Class : 18H40101

Course : 22

HO CHI MINH CITY, 2021

TRƯỜNG ĐH TÔN ĐỰC THẮNG KHOA ĐIỆN – ĐIỆN TỬ

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc

NHIỆM VỤ ĐỒ ÁN 1

(Ghi chủ: Bàng nhiệm vụ này đóng vào trang thứ nhất của đồ án)

HQ VÀ TÊN: Ninh Thế Vĩnh Cường

MSSV: 418H0363

NGÀNH

: Kỹ Thuật Điện

LÓP :

A. Đề tài:

- THIẾT KẾ MẠNG ĐIỆN: 110 KV - DA1 KTD-M13

B. Nhiệm vu đề tài:

- 1) Cân bằng công suất trong mạng điện. Xác định dung lượng bù công suất kháng.
- 2) Để ra phương án nối dây của mạng điện và chọn các phương án thoà mãn kỹ thuật.

3) So sánh kinh tế chọn phương án hợp lý.

- 4) Xác định số lượng công suất máy biến áp của trạm phân phối. Sơ đồ nối dây của trạm. Sơ đồ nối dây của mạng điện.
- 5) Xác định dung lượng bù kinh tế và giảm tồn thất điện năng.
- 6) Tính toán cân bằng công suất trong mạng điện. Xác định và phân phối thiết bị bù cưỡng bức.
- 7) Tính toán các tình trạng làm việc của mạng điện lúc phụ tài cực đại, cực tiểu và sự cố.
- 8) Điều chính điện áp: chọn đầu phân áp của máy biến áp.
- 9) Các chỉ tiêu kinh tế kỹ thuật của mạng điện thiết kế.
- 10) Các bản về A1: sơ đổ nối dây các phương án, sơ đổ nguyên lý của mạng điện thiết kế, các chỉ tiêu kinh tế kỹ thuật.

C. Ngày giao đồ án: /01/2021

D. Ngày nóp đổ án:

/04/2021

E. Ngày bảo vệ trước hôi đồng:

/04/2021

F. Họ và tên giảng viên hưởng dẫn: TS. Đinh Hoàng Bách

TP HCM, ngày 06 tháng 01 năm 2021 Giảng viên hướng dẫn

Trưởng BM. Kỹ Thuật Điện

TS. Đinh Hoàng Bách

TS. Đinh Hoàng Bách

mael

Phụ lục: Số liệu ban đầu:

Nguồn điện	 Đủ cung cấp cho phụ tải với cosφ = 0.9 Điện áp thanh cái cao áp: 1,1 U_{dm} lúc phụ tải cực đại 1,05 U_{dm} lúc phụ tải cực tiểu U_{dm} lúc sự cố 					
Phụ tải	1	2	3	4	5	6
$P_{max}(MW)$	31.5	27.5	22.5	27.5	35	22.5
Cosp	0,94	0,35	0.82	0,9	0,78	0,78
Pmin(% Pmax)	40 %	40 %	40 %	40 ^t %	40 %	40%
T _{max} (giờ/năm)	5000	5000	5000	5000	5000	5000
Yêu cầu cung cấp điện			LT	LT	LT	LT
Điện áp định mức phía thứ cấp trạm phân phối (kV)	22	22	22	22	22	22
Yêu cầu điều chính điện áp phía thứ cấp	±5%	±5%	±5%	±5%	±5%	±5%

- Giá tiền 1 KWh điện năng tổn thất <u>0,065</u> \$
 Giá tiền 1 KVAr thiết bị bù <u>5</u> \$

VỊ TRÍ NGUỒN VÀ PHỤ TẢI

ACKNOWLEDGEMENT

I sincerely thank Dr. Bach H. Dinh and Dr. Van V. Huynh - Lecturer of Ton Duc Thang University. Dr.Bach directly instructed and helped me to implement and complete Project 1 on Technical design of 110kv electrical network. In the process of learning and implementing the project, although many efforts have been made, it is still impossible to avoid shortcomings, large or small. However, in return I have received the dedicated guidance of Dr.Bach helped me overcome the mistakes I often make and encounter in my studies. Dr.Van was the one who directly taught me the subject of "Transmission and Distribution Grid". This project is the result of my study and practice during nearly 6 semesters at Ton Duc Thang University. Therefore, I also sincerely thank all the teachers and faculty of Electrical - Electronic Engineering of Ton Duc Thang University - who participated in teaching and equipped me with the knowledge to help me complete. This project.

Next, I also sincerely thank my family and friends who have always been by my side and encouraged me during this project as well as throughout the study process.

Sincerely

Ho Chi Minh City, 17th April 2021

Author

Ninh The Vinh Cuong

PROJECT 1 Page 1/169

CONTENTS

LIST	OF FIGURES	4
LIST	OF TABLES	6
СНА	PTER 1.BALANCING POWER IN THE NETWORK, DETERMINI	NG
RES	ISTANT CAPACITY COMPENSATION	10
1.1	Data	10
1.2	ANALYZE POWER SWUPPLIES	11
1.3	BALANCING POWER	11
1.4	BALANCING ACTIVE POWER	11
1.5	BALANCING REACTIVE POWER	13
СНА	PTER 2.PROPOSING WIRING METHODS OF ELECTRIC NETW	ORK AND
SELI	ECTING TECHNICAL, ECONOMICAL CODING METHODS	17
2.1	LOAD VOLTAGE SELECTION	17
2.1	.1 Find the transmission distance	17
2.1	2 Determine the voltage for each electrical load	17
2.2	CHOOSE WIRING PLAN FOR THE ELECTRIC NETWORK	19
2.2	.1 Area 1	20
2.2	2 Area 2	23
2.2	.3 Area 3	27
2.2	4 Select the optimal option	31
2.3	CALCULATE TECHNICAL INDICATORS	32
2.3	.1 Wire selection	32
2.3	2 Electrical capacity selection and line parameter calculation	46
2.3	.3 Total power losses and voltage drops caculation	55
2.3	4 Ceramic insulators	71
2.3	.5 Indicators on resistant capacity by line electricity	72
2.3	.6 Corona effect	74
2.4	CALCULATE ECONOMICAL INDICATORS	76
2.4	.1 Calculation of the annual total consumer charge for each method	76
2.4	.2 Probability of electrical supply network 's disturbance	90

Page 2/169

2.4	9.3 Summary and provide optimization	94
CHA	APTER 3.DETERMINATION OF RATED POWER TRANSFORMERS I	[N
DIST	TRIBUTION STATION. STATION WIRING, AND NETWORK WIRING	G
DIA	GRAMS 97	
3.1	REQUIREMENTS	97
3.2	SELECTING THE NUMBER AND RATED POWER OF TRANSFORMERS	97
3.3	RATED POWER OF TRANSFORMERS	98
3.4	SELECTING TRANSFORMERS	98
3.5	CALCULATION FORMULAS AND TRANSFORMER PARAMETERS	98
CHA	APTER 4.DETERMINATION OF ECONOMIC COMPENSATION AND	
TOT	CAL POWER LOSS	100
4.1	CALCULATION CONTENTS	100
4.2	CALCULATIONS REQUIREMENTS	100
4.3	ECONOMIC COMPENSATION	101
4.3	8.1 Area 1	102
4.3	3.2 Area 3 and Area 2	104
4.4	SUMMARIZE	107
СНА	APTER 5.ACCURACY BALANCE CALCULATION AND DISTRIBUTION	ON OF
FOR	MULAR COMPENSATION	108
5.1	CALCULATION PURPOSE	108
5.2	CALCULATE POWER AT THE END OF LINE TO THE BAR	108
5.2	2.1 Sending power of $N-1$, $N-2$	108
5.2	2.2 Sending power of $N - 5 - 6$, $N - 3 - 4$	110
СНА	APTER 6.POWER DISTRIBUTION CALCULATION IN ELECTRIC	
NET	WORK 115	
6.1	Purpose	115
6.2	CALCULATION OF WORKING STATUS OF EXTREMELY ACCESSORIES NETWORK	115
6.2	2.1 Replacement diagrams of the electric network	115
6.2	2.2 Loads, lines and voltage transformers summary	117
6.3	CALCULATION OF VOLTAGE AND TOTAL POWER LOSS AT MAXIMUM LOAD	119

Page 3/169

6.3	3.1	The reverse process calculating from the end to the start of lines, use rated	
voi	ltage	119	
6.3	3.2	The process calculating from the start to the end of lines to find voltage at not	des
		122	
6.4	CAI	CULATION OF VOLTAGE AND TOTAL POWER LOSS AT MINIMUM LOAD	29
6.4	4.1	Data	29
6.4	1.2	Calculation of voltage and total power loss at minimum load	29
6.4	1.3	The process calculating from the start to the end of lines to find voltage at not	des
		133	
6.5	CAI	CULATE STATUS AT FAULT OPERATIONS	39
6.5	5.1	A transformer broken down fault station	39
6.5	5.2	Breakage of transmission wire	<i>16</i>
6.5	5.3	Summarize	53
CHA	APTE	CR 7.VOLTAGE ADJUSTMENT, TAP-CHANGER SELECTING15	57
7.1	Con	NTENT	57
7.2	TAP	CHANGER SELECTING	57
7.2	2.1	Select tap-changer at maximum load	59
7.2	2.2	Select tap-changer at minimum load	50
7.2	2.3	Select tap-changer at fault operation	51
7.3	SUM	MMARIZE16	53
CHA	APTE	CR 8.ECONOMIC AND TECHNICAL INDICATORS OF THE DESIGN	ED
ELE	CTR	IC NETWORK10	54
8.1	Con	NTENTS16	54
8.2	Тот	TAL POWER LOSS CALCULATION AT MAXIMUM LOAD16	54
8.3	Тот	TAL ANNUAL LOSS OF INCOME IN THE DESIGNED ELECTRIC NETWORK16	55
8.4	CAI	CULATE COST OF ELECTRICAL PARTS16	55
REF	ERE	NCES10	59

Page 4/169

LIST OF FIGURES

Figure 2.1 Area 1 case 1	20
Figure 2.2 Area 1 case 2	21
Figure 2.3 Area 1 case 3	22
Figure 2.4 Area 2 case 1	23
Figure 2.5 Area 2 case 2	24
Figure 2.6 Area 2 case 3	25
Figure 2.7 Area 2 case 4	26
Figure 2.8 Area 3 case 1	27
Figure 2.9 Area 3 case 2	28
Figure 2.10 Area 3 case 3	29
Figure 2.11 Area 3 case 4	30
Figure 2.12 Area 3 case 2 flattened	39
Figure 2.13 Area 3 case 2 when N-5 break	41
Figure 2.14 Area 3 case 2 when N-6 break	41
Figure 2.15 Reinforced concrete pillar DT20	46
Figure 2.16 Steel pillar Y110-2 + 9	49
Figure 2.17	55
Figure 2.18	56
Figure 2.19	58
Figure 2.20	63
Figure 2.21	64
Figure 2.22 Optimal choice	96
Figure 4.1	102
Figure 4.2	102
Figure 4.3	104
Figure 4.4	105
Figure 5.1	108

Page 5/169

Figure 5.2	110
Figure 5.3	111
Figure 6.1	115
Figure 6.2	116
Figure 6.3	116
Figure 6.4	117

Page 6/169

LIST OF TABLES

Table 2.1 Selection of load voltage levels	18
Table 2.2 Area 1 case 1	20
Table 2.3 Area 1 case 2	21
Table 2.4 Area 1 case 3	22
Table 2.5 Area 2 case 1	23
Table 2.6 Area 2 case 2	24
Table 2.7 Area 2 case 3	25
Table 2.8 Area 2 case 4	26
Table 2.9 Area 3 case 1	27
Table 2.10 Area 3 case 2	28
Table 2.11 Area 3 case 3	29
Table 2.12 Area 3 case 3	30
Table 2.13 Permissible current	33
Table 2.14 Permissble current after correction	33
Table 2.15 Permissible current on Line N1 and N2	34
Table 2.16 Conductors' data of line N – 1 và N – 2	34
Table 2.17 Permissble current on $N-2-1$	35
Table 2.18 Conductors' data of line N – 1 – 2	36
Table 2.19 Permissble current on N – 5, N – 6	37
Table 2.20 Conductors' data of line N-5, N-6	38
Table 2.21 Permiisble current on $N-5-6-N$	40
Table 2.22 Conductors' data of line N-5-6	42
Table 2.23 Permissble current on N – 3, N – 4	43
Table 2.24 Conductors' data of line N – 3, N – 4	43
Table 2.25 Permissble current on N-3-4	44
Table 2.26 Conductors' data of line N-3-4	44

Page 7/169

Table 2.27 Wires selections	45
Table 2.28 Single conductor lines parameter	48
Table 2.29 Line parameters at normal operation	53
Table 2.30 Line parameters at fault operation	54
Table 2.31 Power losses of all lines in start circuits	57
Table 2.32 Power losses of all lines in interconnection circuit	60
Table 2.33 Power losses of all lines in interconnection circuit at fault	62
Table 2.34 Power losses and voltage drop on N-5-6, N-3-4 at normal operation .	66
Table 2.35 Power losses of area 3 ring at fault	68
Table 2.36 Power losses of all lines in ring circuits at fault	69
Table 2.37 Power losses of all lines in ring circuits at normal operation	70
Table 2.38 Power losses of all lines in ring circuits at fault operation	70
Table 2.39 Resistant capacity of single conductor lines	72
Table 2.40 Resistant capacity of dual conductors lines	73
Table 2.41 Resistant capacity of every cases	73
Table 2.42 Critical voltage of all lines to create corona effect	75
Table 2.43 Cost per length and mass of each line	77
Table 2.44 Investment cost of Area 1 case 1	78
Table 2.45 Non-ferrous metal used of Area 1 case 1	78
Table 2.46 Summary of economic indicators of Area 1 case 1	79
Table 2.47 Investment cost of Area 1 case 2	80
Table 2.48 Non-ferrous metal used of Area 1 case 2	80
Table 2.49 Summary of economic indicators of Area 1 case 2	81
Table 2.50 Investment cost of Area 2 case 1	82
Table 2.51 Non-ferrous metal used on Area 2 case 1	82
Table 2.52 Summary of economic indicators of Area 2 case 1	83
Table 2.53 Investment cost of Area 2 case 2	84
Table 2.54 Non-ferrous metal used of Area 2 case 2	85
Table 2.55 Summary of economic indicators of Area 2 case 2	85
Table 2.56 Investment cost of Area 3 case 1	86

Page 8/169

Table 2.57 Non-ferrous metal used of Area 3 case 1	86
Table 2.58 Summary of economic indicators of Area 3 case 1	87
Table 2.59 Investment cost of Area 3 case 2	88
Table 2.60 Non-ferrous metal used of Area 3 case 2	88
Table 2.61 Summary of economic indicators of Area 3 case 2	89
Table 2.62 Times for maintain, fixing parameters of network	90
Table 2.63 Probability of power supply disturbance of single conductor lines	92
Table 2.64 Probability of power supply disturbance of dual conductors lines	94
Table 2.65 Summary of economy indicators of Area 1	94
Table 2.66 Summary of economy indicators of Area 2	94
Table 2.67 Summary of economy indicators of Area 2	95
Table 2.68 Summary of economy indicators of optimal options	96
Table 3.1 Transformers selection	98
Table 3.2 Transformers' parameters	99
Table 4.1 Economic compensation for Load 1 and 2	103
Table 4.2 Economic compensation for Load 3, 4, 5 and 6	107
Table 4.3 Summary of economic compensation	107
Table 5.1 Sending power for every load	113
Table 6.1 Summary loads parameters	117
Table 6.2 Summary line parameters	118
Table 6.3 Summary transformers parameters	118
Table 6.4 Lines losses at maximum load	127
Table 6.5 Transformers losses at maximum load	127
Table 6.6 Voltage at loads at maximum load	128
Table 6.7 Sending power at maximum load	128
Table 6.8 Loads at minimum	129
Table 6.9 Power losses at minimum load	137
Table 6.10 Transformer losses at minimum load	137
Table 6.11 Voltage at loads at minimum load	138
Table 6.12 Sending power at minimum load	138

Page 9/169

Table 6.13 Transformer parameters when a transformer brokedown	139
Table 6.14 Line parameters when a transformer brokedown	139
Table 6.15 Power losses at fault operation	145
Table 6.16 Transformer losses at fault operation	145
Table 6.17 Voltage at fault operation	146
Table 6.18 Sending power at fault operation	146
Table 6.19 Transformer parameters when a line broke	147
Table 6.20 Line parameters when a line broke	147
Table 6.21 Power losses on line when a line broke	151
Table 6.22 Power losses in transformer when a line broke	151
Table 6.23 Voltage at nodes when a line broke	152
Table 6.24 Sending power when a line broke	152
Table 6.25 Power losses on line in incidents	153
Table 6.26 Power losses in transformer in incidents	154
Table 6.27 Voltage at nodes in incidents	155
Table 6.28 Sending power in incidents	156
Table 7.1 Tap changer parameters	158
Table 7.2 Tap-changers selection at maximum load	160
Table 7.3 Tap-changers selection at minimum load	161
Table 7.4 Tap-changers selection at fault operation	162
Table 7.5 Tap-changers selections	163
Table 8.1 Stations investment	167
Table 8.2 Economic and technical indicators of project	168

CHAPTER 1. BALANCING POWER IN THE NETWORK, DETERMINING RESISTANT CAPACITY COMPENSATION

1.1 Data

Load data is primarily collected to understand the status and needs of large users, forecast consumption demand, and forecast the growth of additional loads in the future. We have the following summary data table:

	- Capable of power loads has $\cos \varphi = 0.90$						
	Voltage at busbar:						
Source		+ 1.	.1 U _{đm} at	maxim	ım load		
		+ 1.	.05 U _{đm} a	at minim	um load		
		+ 1.	.1 U _{đm} w	hen has	s probler	n	
Load	1	2	3	4	5	6	
P _{max} (MW)	31.5	27.5	22.5	27.5	35	22.5	
$\cos \varphi$	0.84	0.85	0.72	0.90	0.85	0.75	
P _{min} (%P _{max})	40%	40%	40%	40%	40%	40%	
T _{max} (hours/year)	5000	5000	5000	5000	5000	5000	
Demand			Cont	Cont	Cont	Cont	
Secondary rated voltage in	22	22	22	22	22	22	
distribution station (kV)							
Request variable in secondary	±5%	±5%	±5%	±5%	±5%	±5%	
voltage							

Table 1.1: Loads' parameters

- Cont : Continuous

- Price for 1 KWh electric wasted: 0.065 \$

- Price for 1 KVAr compensation equipment 5\$

1.2 Analyze power supplies

The power source is accepted to give adequate dynamic power as per the necessities of the heap with a power factor of 0.9. This proposes that the source may not give the necessary receptive power, and accordingly guaranteeing the responsive power request can be acknowledged during the plan cycle by repaying the responsive power at loads without going from the source.

1.3 Balancing power

There ought to be an equilibrium of dynamic and receptive power in the electrical framework. The complete dynamic and receptive power of the power source should be equivalent to the all out dynamic and responsive power of all heaps in addition to the dynamic and responsive power misfortunes of all components in the electrical organization.

Balance capacity in the power system to consider the supply capacity of the sources for the load through the grid.

1.4 Balancing active power

Balance the power needed to keep the frequency in the electrical system. The active power balance in the system is represented by the following expression:

$$\sum P_F = m \sum P_{pt} + \sum \Delta P_{md} + \sum P_{td} + \sum P_{dt}$$

With:

 $\sum P_F$: Total active power generated by the generators of the plants in the system

 $\sum P_{dt}$: Total maximum active load of consumers

m: simultaneous coefficients (assuming 0.8)

 $\sum P_{md}$: Total active power losses on lines and transformers

 $\sum P_{td}$: Total self-consumed capacity of power plants

 $\sum P_{dt}$: Total reserve capacity

Page 12/169

Deciding the coefficients simultaneously of space should be founded on the genuine circumstance of the heaps.

According to the statistics, the active power loss of the line and transformer in high voltage network is $8 \div 10\% m \sum P_{pt}$. Thus:

$$\sum \Delta P_{md} = 10\% m \sum P_{pt}$$

Self-used capacity of power plants:

Calculated as a percentage of $(m\sum P_{pt} + \sum \Delta P_{md})$

- Thermal power plant 3÷7%
- Hydropower plant 1÷2%

Reserve capacity of the system

- Failure reserve is usually equal to the capacity of the largest unit in the power system.
- Load reserve is estimated for unexpected increase in load: total load.
- Reserve development to meet additional load development 5 15 years later.
- Save advancement to meet extra burden improvement 5 after 15 years.

When all is said in done, hold the framework by 10 - 15% of the all out framework load. In the plan of the subject, it is expected that the power source is adequate to completely supply the dynamic power interest and just adjusted from the high-voltage busbar of the promoter transformer station of the power plant, so the dynamic power equilibrium ought to be determined as follows:

$$\sum P_F = m \sum P_{pt} + \sum \Delta P_{md}$$

From the data of the maximum active power of the loads we can calculate the active power of the emitted source as:

$$\sum P_F = m \sum P_{pt} + \sum \Delta P_{md} = m \sum P_{pt} + 10\% m \sum P_{pt}$$

$$= m \sum P_{pt} (1+10\%)$$

$$= 0.8*(31.5+27.5+22.5+27.5+35+22.5)(1+0.1)$$

$$= 146.52(MW)$$

So we need a source with active power: $\sum P_F = 146.52(MW)$

1.5 Balancing reactive power

In power plants, there is regularly save of dynamic power, so there is likewise save of responsive power. Be that as it may, in the electrical organization the responsive power misfortune is more prominent than the dynamic power misfortune, so while picking the generator limit as per the state of dynamic power balance, the receptive power might be deficient in the electrical organization. To address the short receptive power, it is more sensible to remunerate responsive power at the devouring burden.

Reactive power balance is identified with voltage. Harming the reactive power equilibrium will prompt voltage changes in the electrical organization. On the off chance that the produced reactive power is more prominent than the reactive power burned-through, the voltage in the electrical organization will increment, in any case, if there is an absence of reactive power, the voltage in the organization will diminish. In this way, to guarantee the nature of the voltage in the buyers in the electrical organization and in the framework, it is important to do a fundamental equilibrium of reactive power.

We have the connection between active power and reactive power as follows:

Load 1:

$$P = 31.5MW$$
; $\cos \varphi = 0.84 \rightarrow Q = 31.5 \times \tan(\cos^{-1}(0.84)) = 20.35MVAr$
 $\rightarrow S = \sqrt{31.5^2 + 20.35^2} = 37.5MVA$

Using similar method for other loads.

	Source	Load 1	Load 2	Load 3	Load 4	Load 5	Load 6
$\sum P(MW)$	166.5	31.5	27.5	22.5	27.5	35	22.5
$\cos \varphi$		0.84	0.85	0.72	0.9	0.85	0.78
$\sum Q(MVAr)$	112.13	20.35	17.04	21.69	13.32	21.69	18.05
$\sum S(MVA)$	201.66	37.5	32.35	31.25	30.55	41.17	28.84

Table 1.2

Balance reactive power to keep normal voltage in the system. Reactive power balance is represented by the following expression:

$$\sum Q_F + Q_{bu\Sigma} = m \sum Q_{pt} + \sum \Delta Q_B + \sum \Delta Q_L - \sum Q_C + \sum Q_{td} + \sum Q_{dt}$$

With:

+ $\sum Q_F$: total generating capacity of generators. In course design, only design from high-voltage busbar of the plant's booster substation, so only need to balance from the high-voltage busbar.

$$\sum Q_F = \sum P_{pt} \times tg \, \varphi_F = 146.52 \times tg \, (\cos^{-1}(0,9)) = 70.33 (MVAr)$$

- + $m\sum Q_{pt}$: total reactive load of the electrical network taking into account the concurrent coefficient.
- + $\sum \Delta Q_B$: The total reactive power loss in the transformer can be estimated:

$$\sum \Delta Q_B = (8 \div 12\%) \sum S_{pt} ;$$

with
$$\sum S_{pt} = \sqrt{\sum P_{pt}^2 + \sum Q_{pt}^2} = \sqrt{166.5^2 + 112.14^2} = 201.66(MVA)$$

We choose:
$$\sum \Delta Q_B = 12\% \sum S_{pt} = 0.12 \times 201.66 = 24.2 (MVAr)$$

- + $\sum \Delta Q_L$: all out reactive limit misfortunes on the line sections of the power organization. With the 110kV power network in the primer computation, it tends to be seen that the reactive power misfortune on the line inductance is equivalent to the reactive power created by the high voltage line capacitance.
- + $\sum Q_{td}$: total self-consumed capacity of the power plant in the system

$$\sum Q_{td} = \sum P_{td} \times tg\varphi_{td}$$

+ $\sum Q_{dt}$: reserve reactive power of the system

$$\sum Q_{dt} = (5 \div 10\%) \sum Q_{pt}$$

In course plan, it is simply important to adjust from the high-voltage busbar of the power plant without the need to figure out Q_{td} and Q_{dt} . From the above power, it is feasible to find the measure of reactive power to be redressed $Q_{bu\Sigma}$. If $Q_{bu\Sigma}$ positive, the system needs to install additional equipment to compensate to can with

resistance capacity. The calculation of the exact distribution of the compensation device will be calculated in the exact power balance in the system.

In this segment we just consider giving compensatory ability to loads that are far away from the source and have a low power factor $(\cos \varphi)$ or loads with large power consumption. V à for easy calculation, we can temporarily give an amount of $Q_{b,i}$ by $Q_b \Sigma$. Then, we recalculate apparent power and power factor after compensating with the formula:

$$S_{i}' = \sqrt{P_{i}^{2} + (Q - Q_{bui})^{2}}$$
; $\cos \varphi_{i}' = \frac{P_{i}}{S_{i}'}$

From the expression and the data in the table above we have $Q_{bu\Sigma}$:

$$Q_{bu\Sigma} = m \sum Q_{pt} + \sum \Delta Q_B - \sum Q_F = 0.8 \times 112.14 + 24.2 - 70.33 = 43.582 (MVAr)$$

$$\Rightarrow \text{ Choose } Q_{bu\Sigma} = 44 (MVAr)$$

Load 1

$$Q_b = 8MVAr \rightarrow Q_{pt} - Q_{bu} = 20.35 - 8 = 12.35MVAr$$

$$\rightarrow S' = \sqrt{31.5^2 + 12.35^2} = 33.83MVA \rightarrow \cos \varphi' = \frac{31.5}{33.83} = 0.93$$

Load 2

$$Q_b = 7MVAr \rightarrow Q_{pt} - Q_{bu} = 17.04 - 7 = 10.04MVAr$$

$$\rightarrow S' = \sqrt{27.5^2 + 10.04^2} = 29.27MVA \rightarrow \cos \varphi' = \frac{27.5}{29.27} = 0,94$$

Load 3

$$Q_b = 11MVAr \rightarrow Q_{pt} - Q_{bu} = 21.69 - 11 = 10.69MVAr$$

$$\rightarrow S' = \sqrt{22.5^2 + 10.69^2} = 24.91MVA \rightarrow \cos \varphi' = \frac{22.5}{24.91} = 0,90$$

Load 4

Load 4 has the PF of 0.9 then it do not need to be compensated.

Load 5

$$Q_b = 8MVAr \rightarrow Q_{pt} - Q_{bu} = 21.69 - 8 = 13.69MVAr$$

$$\rightarrow S' = \sqrt{35^2 + 13.69^2} = 37.58MVA \rightarrow \cos \varphi' = \frac{35}{37.58} = 0.93$$

Load 6

$$Q_b = 9MVAr \rightarrow Q_{pt} - Q_{bu} = 18.05 - 9 = 9.05MVAr$$

 $\rightarrow S' = \sqrt{22.5^2 + 9.05^2} = 24.25MVA \rightarrow \cos \varphi' = \frac{22.5}{24.25} = 0.93$

Load	P _{pt} (MW	$\cos \varphi$	Q _{pt} (MVAr)	Q _b (MVAr)	$\begin{array}{c} Q_{pt} - Q_b \\ (MVAr) \end{array}$	S (MVA)	S' (MVA)	$\cos \varphi$
1	31.5	0.84	20.35	8	12.35	37.5	33.93	0.93
2	27.5	0.85	17.04	7	10.04	32.35	29.27	0.94
3	22.5	0.72	21.69	11	10.69	31.25	24.91	0.9
4	27.5	0.9	13.32	0	13.32	30.55	30.55	0.9
5	35	0.85	21.69	8	13.69	41.17	37.58	0.93
6	22.5	0.78	18.05	9	9.05	28.84	24.25	0.93
Total	166.5			44				

Table 1.3: Load data after preliminary reactive power compensation

The heap information after fundamental pay is utilized in contrasting the choice of the line and transformer limit determination. In the event that, later on, when reascertaining the pay gadget dissemination, an uncompensated burden is at first made up for, the wire cross-area and the chose transformer limit should be reverified.

CHAPTER 2. PROPOSING WIRING METHODS OF ELECTRIC NETWORK AND SELECTING TECHNICAL, ECONOMICAL CODING METHODS

2.1 Load voltage selection

The rated voltage of the electrical network depends on many factors: capacity of each load, distance between loads and the supply, distance between loads, electrical network diagram.

2.1.1 Find the transmission distance

Based on the Pythagorean's theorem we can determine the distance from the source to the loads as follows:

Load 1 (N-1):
$$\sqrt{40^2 + 20^2} = 44.72(km)$$

Load 2 (N-2):
$$\sqrt{40^2 + 10^2} = 41.23(km)$$

Load 3 (N-3):
$$\sqrt{40^2 + 10^2} = 41.23(km)$$

Load 4 (N-4):
$$\sqrt{40^2 + 20^2} = 44.72(km)$$

Load 5 (N-5):
$$\sqrt{40^2 + 20^2} = 44.72(km)$$

Load 6 (N-6):
$$\sqrt{40^2 + 20^2} = 44.72(km)$$

2.1.2 Determine the voltage for each electrical load

The evaluated voltage of the electrical organization is chosen at the same time with the power supply conspire. The fundamental appraised voltage of the electrical organization can be dictated by the estimation of limit per section of the electrical organization. We rely on Still's formula to find the load voltage U (kV):

$$U = 4.34 \times \sqrt{l + 0.016 \times P}$$

Which: P: transmission power (KW)

L: transmission distance (Km)

Load 1:
$$U = 4.34 \times \sqrt{L + 0.016 \times P} = 4.34 \times \sqrt{44.72 + 0.016 \times 31500} = 101.66(kV)$$

Load 2:
$$U = 4.34 \times \sqrt{L + 0.016 \times P} = 4,34 \times \sqrt{41.23 + 0.016 \times 27500} = 95.2(kV)$$

Load 3:
$$U = 4.34 \times \sqrt{L + 0.016 \times P} = 4.34 \times \sqrt{41.23 + 0.016 \times 22500} = 86.9(kV)$$

Load 4:
$$U = 4.34 \times \sqrt{L + 0.016 \times P} = 4.34 \times \sqrt{44.72 + 0.016 \times 27500} = 95.55(kV)$$

Load 5:
$$U = 4.34 \times \sqrt{L + 0.016 \times P} = 4.34 \times \sqrt{44.72 + 0.016 \times 35000} = 106.72(kV)$$

Load 6:
$$U = 4.34 \times \sqrt{L + 0.016 \times P} = 4.34 \times \sqrt{44.72 + 0.016 \times 22500} = 87.3(kV)$$

From the above calculations we have the following statistics table:

Load	1	2	3	4	5	6
L(Km)	44.72	41.23	41.23	44.72	44.72	44.72
P(MW)	31.5	27.5	22.5	27.5	35	22.5
U(kV)	101.66	95.2	86.9	95.55	106.72	87.3

Table 2.1 Selection of load voltage levels

Compared with the results we have, the voltage level in Vietnam is only 110kV, the closest star with load 5 with the voltage level is 106.72kV. Thus, we will choose 110kV voltage to transmit to this system.

Page 19/169

2.2 Choose wiring plan for the electric network

The wiring graph of the electrical network relies upon numerous elements: the number and area of the load, the requirement for a nonstop power supply of each load, the advancement of obtuse loads like the operability of the network.

Inside the plan of the course, we can isolate into numerous districts to supply power to the load hubs dependent on the requirement for continuous power supply. For loads that don't give nonstop power, we just need single wiring, yet the other way around, for loads with persistent power supply, we need to offer double circuit or shut circle wiring alternatives.

According to the power supply requirement of the problem, we will divide it into 2 types of load:

- ❖ Load class 1 includes load 3, load 4, load 5, and load 6 requires continuous power supply. In which we will divide into 2 areas. Area 3 will include load 5 and load 6; area 2 will include load 3 and load 4.
- ❖ Load class 3 includes load 1 and load 2, which are not required for continuous power supply and these loads will be in the area 1.

Separating the loads into three areas limits computation choices and configuration time.

2.2.1 Area 1

Figure 2.1 Area 1 case 1

Area 1 (case 1)				
Line	N – 1	N-2		
Power (MW)	31.5	27.5		
Length (km)	44.72	41.23		
$\sum L(km)$	85.95			

Table 2.2 Area 1 case 1

Figure 2.2 Area 1 case 2

Area 1 (case 2)				
Line	N – 1	1 - 2		
Power (MW)	59	27.5		
Length (km)	44.72	36.05		
$\sum L(km)$	80.77			

Table 2.3 Area 1 case 2

Figure 2.3 Area 1 case 3

Area 1 (case 3)				
Line	N-2	2 - 1		
Power (MW)	59	31.5		
Length (km)	41.23 36.05			
$\sum L(km)$	77.28			

Table 2.4 Area 1 case 3

2.2.2 Area 2

Figure 2.4 Area 2 case 1

Area 2 (case 1)				
Line	N-3	N-4		
Power (MW)	22.5	27.5		
Length (km)	41.23	44.72		
$\sum L(\text{km})$	85.95			

Table 2.5 Area 2 case 1

Figure 2.5 Area 2 case 2

Area 2 (case 2)				
Line	N – 3	3 – 4	N-4	
Power (MW)	22.5		27.5	
Length (km)	41.23	36.05	44.72	
$\sum L_{\text{(km)}}$		122		

Table 2.6 Area 2 case 2

Figure 2.6 Area 2 case 3

Area 2 (case 3)				
Line	N – 4	4 – 3		
Power (MW)	50	22.5		
Length (km)	44.72	36.05		
$\sum L(\text{km})$	80.77			

Table 2.7 Area 2 case 3

Figure 2.7 Area 2 case 4

Area 2 (case 4)				
Line	N – 3	3 – 4		
Power (MW)	50	27.5		
Length (km)	44.72	36.05		
$\sum L(km)$	(km) 80.77			

Table 2.8 Area 2 case 4

2.2.3 Area 3

Figure 2.8 Area 3 case 1

Area 3 (case 1)				
Line	N – 5	N – 6		
Power (MW)	35	22.5		
Length (km)	44.72	44.72		
$\sum L(\text{km})$	89.44			

Table 2.9 Area 3 case 1

Figure 2.9 Area 3 case 2

Area 3 (case 2)				
Line	N – 5	5 – 6	N – 6	
Power (MW)	35		22.5	
Length (km)	44.72	40	44.72	
$\sum L(\text{km})$		129.44		

Table 2.10 Area 3 case 2

Figure 2.10 Area 3 case 3

Area 3 (case 3)				
Line	N – 5	5 – 6		
Power (MW)	57.5	22.5		
Length (km)	44.72	40		
$\sum L(km)$	84.	.72		

Table 2.11 Area 3 case 3

Figure 2.11 Area 3 case 4

Area 3 (case 4)		
Line	N – 6	6 - 5
Power (MW)	57.5	35
Length (km)	44.72	40
$\sum L(km)$	84.72	

Table 2.12 Area 3 case 3

Page 31/169

2.2.4 Select the optimal options

In area 1, I choose case 1 as one option because each line transmit power equal the

load attach to. Even problems occur in one line, the other is not affected. In case 2

and case 3, both are interconnecting, the first line always deliver 59MW of power.

However, in case 2, the second line only transmits 27.5MW, which is less than

other case (31.5MW). Thus, case 2 is a better option, so I choose it as the second

one to calculate.

In area 2 and area 3, both area only have one case using single conductor line (case

2), so we choose case 2. In double conductors line cases, only case 1 (in both area),

each line take responsibility for each load, thus problems occur in one line will not

Student : Ninh Thế Vĩnh Cường

affact other. So I choose case 1.

Conclusion:

• Area 1 : case 1 and case 2.

Area 2 : case 1 and case 2.

Area 3 : case 1 and case 2.

2.3 Calculate technical indicators

2.3.1 Wire selection

2.3.1.1 Area 1 case 1

Choose wire cross-section N-1

Current flows on the conductor N-1:

$$I_{N-1} = \frac{S_{N-1}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{33.83}{\sqrt{3} \times 110} \times 10^3 = 177.56(A)$$

With T_{max} =5000 hours, aluminum conductor with steel core, so we have j_{kt} =1,1A/mm²

$$\rightarrow F_{N-1,KT} = \frac{I_{N-1}}{j_{kt}} = \frac{177.56}{1.1} = 161.42 (mm^2) \rightarrow \text{Select cable AC} - 185$$

Choose wire cross-section N-2

Current flows on the conductor N-2:

$$I_{N-2} = \frac{S_{N-2}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{29.27}{\sqrt{3} \times 110} \times 10^3 = 153.62(A)$$

$$\rightarrow F_{N-2,KT} = \frac{I_{N-2}}{j_{kt}} = \frac{153.62}{1.1} = 139.66 (mm^2) \rightarrow \text{Select cable AC} - 150$$

From the book "THIÉT KÉ MẠNG ĐIỆN" by Hồ Văn Hiến, in page 120, we have the permissible current of conductors.

Aluminum conductor with steel core						
Wire code	Permissible current					
AC – 70	275					
AC – 95	335					
AC – 120	360					
AC – 150	445					
AC – 185	515					
AC – 240	610					

Table 2.13 Permissible current

Aluminum conductor with steel core after temperature correction									
(assume that the ambient temperature is $40 \circ C \ k=0.81$)									
Wire code	Permissible current (A)	Permissible current after correction (A)							
AC – 70	275	222.75							
AC – 95	335	271.35							
AC – 120	360	291.6							
AC – 150	445	360.45							
AC – 185	515	417.15							
AC – 240	610	494.1							

Table 2.14 Permissble current after correction

Line	Wire	Permissible current
N – 1	AC – 185	417.15
N – 2	AC – 150	360.45

Table 2.15 Permissible current on Line N1 and N2

From the calculated and selected data as above, we have a summary table of section selection for the plan as follows:

Line	High way	Smax (MVA)	I _{max} (A)	J _{kt} (mm ²)	F _{KT} (mm ²)	Ftc (mm ²)	I _{hc} =k*I _{cp} (t=40°C) (A)	Choose Ftc (mm²)	Wire code
N-1	1	33.83	177.56	1.1	161.43	185	417.15	185	AC- 185
N-2	1	29.27	153.62	1.1	139.66	150	291.6	150	AC- 150

Table 2.16 Conductors' data of line N - 1 và N - 2

2.3.1.2 Area 1 case 2

Choose wire cross-section N-1

Current flows on the conductor line N-1:

$$I_{N-1} = \frac{S_{N-1}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{33.83 + 29.27}{\sqrt{3} \times 110} \times 10^3 = 331.2(A)$$

With T_{max}=5000 hours, aluminum conductor with steel core, thus j_{kt}=1,1A/mm²

$$\rightarrow F_{N-1,KT} = \frac{I_{N-2}}{j_{kt}} = \frac{331.2}{1.1} = 301.1 (mm^2) \rightarrow \text{Choose } 2 \times AC - 185$$

Choose wire cross-section 1 - 2

Current flows on the conductor line 1 - 2:

$$I_{1-2} = \frac{S_{1-2}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{29.27}{\sqrt{3} \times 110} \times 10^3 = 153.64(A)$$

$$\rightarrow F_{1-2,KT} = \frac{I_{1-2}}{j_{kt}} = \frac{153.63}{1.1} = 139.66 (mm^2) \rightarrow \text{Select AC} - 150$$

Line	Conductor	Permissible current
N – 1	2 × AC – 185	$2 \times 417.15 = 834.3$
1 – 2	AC – 150	360.45

Table 2.17 Permissible current on N - 2 - 1

From the calculated and selected data as above, we have a summary table of section selection for the plan as follows:

PROJECT 1 Page 36/169

Line	High way	S _{max} (MVA)	I _{max} (A)	J _{kt} (mm ²)	F _{KT} (mm ²)	F _{tc} (mm ²)	I _{hc} =k*I _{cp} (t=40°C) (A)	Choosing Ftc (mm²)	Code
N-1	2	63.3	331.2	1.1	301.1	2×185	834.3	2×185	AC- 185
1-2	1	29.27	153.63	1.1	139.66	150	360.45	150	AC- 150

Table 2.18 Conductors' data of line N - 1 - 2

2.3.1.3 Area 3 case 1

Choose wire cross-section N-5

Current flows on the conductor N-5:

$$I_{N-1} = \frac{S_{N-5}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{37.58}{\sqrt{3} \times 110} \times 10^3 = 197.25(A)$$

With T_{max} =5000 hours, aluminum conductor with steel core, so we have j_{kt} =1,1A/mm²

$$\rightarrow F_{N-5,KT} = \frac{I_{N-1}}{2 \times j_{kt}} = \frac{197.25}{2 \times 1.1} = 89.66 (mm^2) \rightarrow \text{Select cable AC} - 95$$

Choose wire cross-section N - 6

Current flows on the conductor N-6:

$$I_{N-6} = \frac{S_{N-6}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{24.25}{\sqrt{3} \times 110} \times 10^3 = 127.3(A)$$

$$\rightarrow F_{N-6,KT} = \frac{I_{N-2}}{2 \times j_{kt}} = \frac{127.3}{2 \times 1.1} = 57.85 (mm^2) \rightarrow \text{Select cable AC} - 70$$

Line	Conductor	Permissible current
N – 5	AC - 95	271.35
N - 6	AC - 70	222.75

Table 2.19 Permissible current on N - 5, N - 6

PROJECT 1 Page 38/169

Line	High way	S _{max} (MVA)	I _{max} (A)	J _{kt} (mm ²)	F _{KT} (mm ²)	F _{tc} (mm ²)	I _{hc} =k*I _{cp} (t=40°C) (A)	Choose Ftc (mm²)	Code
N-5	2	37.58	197.25	1.1	89.66	95	271.35	95	AC-95
N-6	2	24.25	127.3	1.1	57.85	70	222.75	70	AC-70

Table 2.20 Conductors' data of line N-5, N-6

Table 2.3.6: Conductors' data of line $N-5,\,N-6$

2.3.1.4 Area 3 case 2

Figure 2.12 Area 3 case 2 flattened

I assume using same conductors for all the line in this area, thus power flow on line N-5 are:

$$P_{N-5} = \frac{P_5(l_{5-6} + l_{N-6}) + P_6l_{N-6}}{l_{N-5} + l_{5-6} + l_{N-6}} = \frac{35 \times (40 + 44.72) + 22.5 \times (44.72)}{40 + 44.72 + 44.72} = 30.68(MW)$$

$$Q_{N-5} = \frac{Q_5(l_{5-6} + l_{N-6}) + Q_6l_{N-6}}{l_{N-5} + l_{5-6} + l_{N-6}} = \frac{13.69 \times (40 + 44,72) + 9.05 \times (44,72)}{40 + 44,72 + 44,72} = 12.09(MVAr)$$

Power being delivered in line 5-6

$$P_{5-6} = P_{N-5} - P_5 = 35 - 30.68 = 4.32MW$$

 $Q_{5-6} = Q_{N-5} - Q_5 = 13.69 - 12.09 = 1.6MVAr$

Power being transmitted in line N-6

$$P_{N-6} = P_6 + P_{5-6} = 22.5 + 4.32 = 26.82MW$$

 $Q_{N-6} = Q_6 + Q_{5-6} = 9.05 + 1, 6 = 10.65MVAr$

Current flow on line N-5:

$$I_{N-5} = \frac{S_{N-5}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{\sqrt{30.68^2 + 12.09^2}}{\sqrt{3} \times 110} \times 10^3 = 173.1(A)$$

Current flow on line 5 - 6:

$$I_{5-6} = \frac{S_{5-6}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{\sqrt{4.32^2 + 1.6^2}}{\sqrt{3} \times 110} \times 10^3 = 24.18(A)$$

Current flow on line N-6:

$$I_{N-6} = \frac{S_{N-6}}{\sqrt{3}U_{dm}} \times 10^3 = \frac{\sqrt{26.82^2 + 10.65^2}}{\sqrt{3} \times 110} \times 10^3 = 151.46(A)$$

With T_{max}=5000 hours, aluminum conductor with steel core, we have j_{kt}=1,1A/mm²

Line	Conductor	Permissible current (A)
N – 5	AC - 185	417.15
5 – 6	AC – 70	222.75
N - 6	AC - 150	360.45

Table 2.21 Permissible current on N – 5 – 6 – N

- * Consider when one line breakdown:
- \triangleright When line N 5 broke down:

Figure 2.13 Area 3 case 2 when N-5 break

 \triangleright When line N – 6 broke down:

Figure 2.14 Area 3 case 2 when N-6 break

→ In both scenarios, the first line always transmits 57.5MW of power. However, when N-5 broke down, the trouble current is larger than the other case because power transmit on 5-6 at the moment is 35MW. Thus, we only consider the N-5 breakdown situation.

Forced current on line N-6 when N-5 broke down:

$$I_{N-5,cb} = \frac{S_5 + S_6}{\sqrt{3}U_{dm}} \times 10^3 = \frac{\sqrt{P_5^2 + Q_5^2} + \sqrt{P_6^2 + Q_6^2}}{\sqrt{3} \times 110} \times 10^3$$
$$= \frac{\sqrt{35^2 + 13.69^2} + \sqrt{22.5^2 + 9.05^2}}{\sqrt{3} \times 110} = 324.5(A)$$

Page 42/169

 \triangleright Forced current on line 5 – 6:

$$I_{5-6,cb} = \frac{S_5}{\sqrt{3}U_{dm}} \times 10^3 = \frac{\sqrt{P_5^2 + Q_5^2}}{\sqrt{3} \times 110} \times 10^3 = \frac{\sqrt{35^2 + 13.69^2}}{\sqrt{3} \times 110} = 197.25(A)$$

- ➤ Consider line N 6: $I_{N-6,cb}=324.5(A) < I_{N-6,hc}=417.15(A) \rightarrow in line N <math>-$ 6, choosing conductor AC 150 will ensure operating conditions at fault.
- ➤ Consider line 5 6: $I_{5-6,cb}=197.25(A) < I_{5-6,hc}=222,75(A) \rightarrow in line 5 6,$ choosing conductor AC 70 will ensure operating conditions at fault.

From the calculated and selected data as above, we have a summary table of section selection for the plan as follows:

Line	High way	S _{max} (MVA)	I _{max} (A)	J _{kt} (mm ²)	F _{KT} (mm ²)	F _{tc} (mm ²)	I _{hc} =k*I _{cp} (t=40°C) (A)	Choose Ftc (mm²)	Code
N-5	1	32.97	173.1	1.1	157.3	185	417.15	185	AC- 185
5-6	1	4.6	24.18	1.1	22	70	222.75	70	AC- 70
N-6	1	28.86	151.46	1.1	137.7	150	360.45	150	AC- 150

Table 2.22 Conductors' data of line N-5-6

2.3.1.5 Area 2 case 1

Because Area 2 and Area 3 are similar, I using same method of calculation for this area.

Line	Conductor	Permissible current
N – 3	AC – 70	222.75
N - 4	AC - 95	271.35

Table 2.23 Permissible current on N – 3, N – 4

Line	High way	Smax (MVA)	I _{max} (A)	J _{kt} (mm ²)	F _{KT} (mm ²)	Ftc (mm ²)	I _{hc} =k*I _{cp} (t=40°C) (A)	Choose Ftc (mm²)	Code
N-3	2	24.9	130.74	1.1	59.43	70	222.75	70	AC- 70
N-4	2	30.55	160.38	1.1	72.9	95	271.35	95	AC- 95

Table 2.24 Conductors' data of line N - 3, N - 4

2.3.1.6 Area 2 case 2

Because Area 2 and Area 3 are similar, I using same method of caculation for this area.

Line	Conductor	Permissible current
N – 3	AC – 150	360,45
3 – 4	AC – 70	222,75
N – 4	AC – 150	360,45

Table 2.25 Permissble current on N-3-4

Line	High way	S _{max} (MVA)	I _{max} (A)	J_{kt} (mm ²)	F _{KT} (mm ²)	F _{tc} (mm ²)	I _{hc} =k*I _{cp} (t=40°C) (A)	Choose F _{tc} (mm ²)	Code
N-3	1	27.7	145.31	1.1	132.1	150	360.45	150	AC- 150
2.4	1	2.7	14 57	1 1	12.25	70	222.75	70	
3-4	1	2.7	1457	1.1	13.25	70	222.75	70	AC-
	_								70
N-4	1	27.7	145.8	1.1	131.8	150	360.45	150	AC-
									150

Table 2.26 Conductors' data of line N-3-4

PROJECT 1

Page 45/169

2.3.1.7 Summarize wire selections

Case	Line	Highway	S _{max} (MVA)	I _{max} (A)	F _{kt} (mm2)	Wire code	Note
1-1	N – 1	1	33.93	177.56	161.43	AC-185	Star
1-1	N-2	1	29.27	153.62	139.66	AC-150	Star
1-2	N – 1	2	63.2	331.2	301.1	AC-185	Inter-
1-2	1 - 2	1	33.93	12161	139.66	AC-150	connection
2-1	N-3	2	24.9	130.74	59.43	AC-70	Star
∠-1	N – 4	2	30.55	160.388	72.9	AC-95	Stai
	N-3	1	27.7	145.3	132.1	AC-150	
2-2	3 – 4	1	2.77	14.57	13.25	AC-70	Ring
	N – 4	1	27.78	145.8	131.8	AC-150	
3-1	N – 5	2	37.58	197.25	89.66	AC-95	Star
3-1	N – 6	2	24.25	127.3	57.85	AC-70	Stai
	N -5	1	32.97	173.1	157.3	AC-185	
3-2	5 – 6	1	4.6	24.18	22	AC-70	Ring
	N - 6	1	28.86	151.46	137.7	AC-150	

Table 2.27 Wires selections

2.3.2 Electrical capacity selection and line parameter calculation

2.3.2.1 Selection of pillars for single circuit lines

Because the sections N - 1, N - 2 we use a single highway, we choose reinforced concrete pillars with code DT20 (refer to the book of electrical network design by Ho Van Hien at PL5.5, page 154)

Figure 2.15 Reinforced concrete pillar DT20

2.3.2.2 Calculation of parameters of resistance, inductance, capacitance for single-circuit lines:

Based on the reinforced concrete pillar code DT20 we can calculate the following distances:

$$D_{ab} = 2, 6+2, 6=5, 2(m)$$

$$D_{ac} = \sqrt{3, 3^2 + 0, 6^2} = 3,35(m)$$

$$D_{bc} = \sqrt{3, 3^2 + 4, 6^2} = 5,66(m)$$

 \Rightarrow The geometric mean distance D_m is:

$$D_m = \sqrt[3]{D_{ab} \times D_{ac} \times D_{bc}} = \sqrt[3]{5, 2 \times 3, 35 \times 5, 66} = 4,62(m)$$

\triangleright Line N – 1 uses wire AC – 185:

Look up the annexes in the electrical network design book of Mr. Ho Van Hien, we have the following parameters:

- + AC wire 1 85 has 28 aluminum fibers and 7 steel fibers (PL2.5 / 119)
- + The wire has outer diameter d = 19 (mm), so the outer radius of the wire is r = 8.5 mm (PL2.1 / 116)
- + Equivalent resistance at 20°C is: $r_0 = 0.17 \Omega / km (PL2.1/116)$
- + The average radius of the cable : r' = 0.768 (mm) (Table 2.5/25). Thus the average self-radius is : $r' = 0.768 \times r = 0.768 \times 8.5 = 6.528 (mm)$
- + Line reactance:

$$X_0 = 2\pi f \times 2 \times 10^{-4} \times \ln \frac{D_m}{r'} = 2\pi \times 50 \times 2 \times 10^{-4} \times \ln \frac{4.62}{6.528 \times 10^{-3}} = 0.405(\Omega / km)$$

+ Line capacity:

$$b_0 = \frac{2\pi f}{18 \times 10^6 \times \ln \frac{D_m}{r}} = \frac{2\pi \times 50}{18 \times 10^6 \times \ln \frac{4.62}{8.5 \times 10^{-3}}} = 2,82 \times 10^{-6} (1/\Omega.km)$$

Other single conductor lines use the same method.

PROJECT 1 Page 48/169

Case	Line	High	Code	Length	R_0	X_0	B_0	R=	X=	Y=
		way					*10 ⁻⁶	R ₀ .1	X_0*1	B ₀ .1
										*10-6
1-1	N – 1	1	AC-185	44.72	0.17	0.405	2.82	7.6	18.1	126.1
	N – 2	1	AC-150	41.23	0.21	0.41	2.77	8.66	16.9	114.2
1-2	1 - 2	1	AC-150	36.05	0.21	0.41	2.77	7.57	14.8	99.85
	N – 3	1	AC-150	41.23	0.21	0.41	2.77	8.66	16.9	114.2
2-2	3 – 4	1	AC-70	36.05	0.46	0.441	2.6	16.58	15.9	93.73
	N – 4	1	AC-150	44.72	0.21	0.41	2.77	9.4	18.33	123.87
	N – 5	1	AC-185	44.72	0.17	0.405	2.82	7.6	18.1	126.1
3-2	5-6	1	AC-70	40	0.46	0.441	2.6	18.4	17.64	104
	N – 6	1	AC-150	44.72	0.21	0.41	2.77	9.4	18.33	123.87

Table 2.28 Single conductor lines parameter

2.3.2.3 Selection of pillars for double circuit lines

In this alternative, for sections N - 3 and N - 4, we use dual highways according to the problem, so we choose the steel pillar code Y110-2 + 9 (refer to the electrical network design book by Ho Van Hien at PL5.12, page 161).

Figure 2.16 Steel pillar Y110-2 + 9

2.3.2.4 Calculation of resistance, inductance, and capacitance parameters of dual circuit lines

Based on the steel pillar code Y110-2+9 we can calculate the distances behind:

$$D_{ab} = D_{bc} = D_{a'b'} = D_{b'c'} = \sqrt{(5-3,5)^2 + 4^2} = 4,27(m)$$

$$D_{ac} = D_{a'c'} = 4 + 4 = 8(m)$$

$$D_{ab'} = D_{a'b} = D_{bc'} = \sqrt{(3,5+5)^2 + 4^2} = 9,39(m)$$

$$D_{ac'} = D_{a'c} = 3,5 + 3,5 = 7(m)$$

$$D_{aa'} = D_{cc'} = \sqrt{(4+4)^2 + (3,5+3,5)^2} = 10,63(m)$$

$$D_{bb'} = 5 + 5 = 10(m)$$

Geometric average distances

+ Between phase A and B:

$$D_{AB} = \sqrt[4]{D_{ab} \times D_{a'b} \times D_{a'b} \times D_{a'b'}} = \sqrt[4]{4,27 \times 9,39 \times 9,39 \times 4,27} = 6,33(m)$$

+ Between phase C and B:

$$D_{BC} = \sqrt[4]{D_{bc} \times D_{bc} \times D_{bc} \times D_{bc} \times D_{bc}} = \sqrt[4]{4,27 \times 9,39 \times 9,39 \times 4,27} = 6,33(m)$$

+ Between phase A and C:

$$D_{CA} = \sqrt[4]{D_{ac} \times D_{a'c} \times D_{ac'} \times D_{a'c'}} = \sqrt[4]{8 \times 7 \times 7 \times 8} = 7,48(m)$$

→ The Geometric average distances between phase of the permutation double highway:

$$D_m = \sqrt[3]{D_{AB} \times D_{BC} \times D_{AC}} = \sqrt[3]{6,33 \times 6,33 \times 7,48} = 6,69(m)$$

 \rightarrow Line N – 4 use conductor AC – 95:

Look up the annexes in the electrical network design book of Mr. Ho Van Hien, we have the following parameters:

+ AC - 95 wire has 6 aluminum fibers and 1 steel thread (PL2.5 / 119)

Page 51/169

- + Wire has outer diameter d = 13.5 (mm), so the outer radius of the wire is r = 6.75mm (PL2.1 / 116)
- + Equivalent resistance at 20°C is: $r_0 = 0.33 \Omega / km (PL2.1/116)$, because N 4 là is a double highway, thus $r_0 = \frac{0.33}{2} = 0.165 (\Omega / km)$
- + The average radius of the cable is r' = 0.726(mm) (Table 2.5/25). So the self-radius is: $r' = 0.726 \times r = 0.726 \times 6.75 = 4.9(mm)$

Calculate the geometric mean radius:

+ Between conductors of phase A

$$D_{SA} = \sqrt{r' \times D_{aa'}} = \sqrt{4,9 \times 10^{-3} \times 10,63} = 0,23(m)$$

+ Between conductors of phase B

$$D_{SB} = \sqrt{r' \times D_{bb'}} = \sqrt{4.9 \times 10^{-3} \times 10} = 0.22(m)$$

+ Between conductors of phase C

$$D_{SC} = \sqrt{r' \times D_{cc'}} = \sqrt{4.9 \times 10^{-3} \times 10.63} = 0.23(m)$$

→ The geometric mean radius of a double highway with permutation:

$$D_S = \sqrt[3]{D_{SA} \times D_{SB} \times D_{SC}} = \sqrt[3]{0,23 \times 0,22 \times 0,23} = 0,23(m)$$

+ Reactance of line N-4:

$$X_0 = 2\pi f \times 2 \times 10^{-4} \times \ln \frac{D_m}{D_S} = 2\pi \times 50 \times 2 \times 10^{-4} \times \ln \frac{6,69}{0,23} = 0,21(\Omega/km)$$

Recalculate the geometric mean radius:

+ Between conductors of phase A:

$$D'_{SA} = \sqrt{r \times D_{aa'}} = \sqrt{6,75 \times 10^{-3} \times 10,63} = 0,27(m)$$

+ Between conductors of phase B:

$$D'_{SB} = \sqrt{r \times D_{bb'}} = \sqrt{6,75 \times 10^{-3} \times 10} = 0,26(m)$$

+ Between conductors of phase C:

$$D'_{SC} = \sqrt{r \times D_{cc'}} = \sqrt{6,75 \times 10^{-3} \times 10,63} = 0,27(m)$$

→ The geometric mean radius of a double highway with permutation:

$$D'_{S} = \sqrt[3]{D'_{SA} \times D'_{SB} \times D'_{SC}} = \sqrt[3]{0,27 \times 0,26 \times 0,27} = 0,27(m)$$

+ Line's capacitance N-4:

$$b_0 = \frac{2\pi f}{18 \times 10^6 \times \ln \frac{D_m}{D_s'}} = \frac{2\pi \times 50}{18 \times 10^6 \times \ln \frac{6,69}{0,27}} = 5,44 \times 10^{-6} (1/\Omega.km)$$

> Section N - 4 uses conductor AC - 95 at fault:

Look up the annexes in the electrical network design book of Mr. Ho Van Hien, we have the following parameters:

- + AC 95 wire has 6 aluminum fibers and 1 steel thread (PL2.5 / 119)
- + Wire has outer diameter d = 13.5 (mm), so the outer radius of the wire is r = 6.75mm (PL2.1 / 116)
- + Equivalent resistance at 20°C is $r_0 = 0.33 \Omega / km (PL2.1/116)$
- + Geometric mean radius r' = 0,726(mm) (Bång 2.5/25). Mean self-radius: $r' = 0,726 \times r = 0,726 \times 6,75 = 4,9(mm)$
- + Reactance:

$$X_0 = 2\pi f \times 2 \times 10^{-4} \times \ln \frac{D_m}{r'} = 2\pi \times 50 \times 2 \times 10^{-4} \times \ln \frac{6.69}{4.9 \times 10^{-3}} = 0.45(\Omega / km)$$

+ Line's capacitance:

$$b_0 = \frac{2\pi f}{18 \times 10^6 \times \ln \frac{D_m}{r}} = \frac{2\pi \times 50}{18 \times 10^6 \times \ln \frac{6.69}{6.75 \times 10^{-3}}} = 2.52 \times 10^{-6} (1/\Omega.km)$$

Other double conductors lines use the same method

→ Summarize to a table of the calculation results of resistance, inductance, and capacitance of the lines (for dual-line, we will set up a table showing the calculation results of resistance, inductance. Resistance, capacitance at calculation break down).

Line	High	Wire	Length	R_0	X_0	B_0	$R=R_0.1$	$X=X_0*1$	$Y=B_0.1$
	way	code		(Ω/km)	(Ω/km)	*10 ⁻⁶	(Ω)	(Ω)	*10 ⁻⁶
						$(1/\Omega km)$			(1/Ω)
N-1	2	AC-	41.23	0.085	0.204	5.6	3.5	8.41	230.89
		185							
N-3	2	AC-	41.23	0.23	0.218	5.27	9.48	9	217.28
		70							
N-4	2	AC-	44.72	0.165	0.213	5.4	7.388	9.53	241.5
		95							
N-5	2	AC-	44.72	0.165	0.213	5.4	7.388	9.53	241.5
		95							
N-6	2	AC-	44.72	0.23	0.218	5.27	10.28	9.75	235.67
		70							

Table 2.29 Line parameters at normal operation

PROJECT 1 Page 54/169

Line	High	Wire	Length	R_0	X_0	B_0	R=	X=	Y=B ₀ .1
	way	code				*10 ⁻⁶	R ₀ .1	X ₀ *1	*10 ⁻⁶
N-1	2	AC-185	41.23	0.17	0.42	2.71	7	17.32	111.73
N-3	2	AC-70	41.23	0.46	0.464	2.47	18.96	19.13	101.84
N-4	2	AC-95	44.72	0.33	0.453	2.53	14.75	20.26	113.14
N-5	2	AC-95	44.72	0.33	0.453	2.53	14.75	20.26	113.14
N-6	2	AC-70	44.72	0.46	0.464	2.47	20.57	20.75	110.46

Table 2.30 Line parameters at fault operation

2.3.3 Total power losses and voltage drops calcuation

2.3.3.1 Star circuit

\triangleright Line N – 1:

Figure 2.17

$$\Delta Q''_{C1} = \Delta Q'_{C1} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{126.1 \times 10^{-6}}{2} = 0,763 (MVAr)$$

+ Power at the end of impedance R_1+jX_1 of line N-1:

$$S''_{1} = -j\Delta Q''_{C1} + S_{1} = -j0.763 + (31.5 + j12.35) = 31.5 + j11.6(MVA)$$

+ Power losses on N-1:

$$\Delta S_1 = \frac{(P_1^{"})^2 + (Q_1^{"})^2}{U_{dm}^2} \times (R_1 + jX_1) = \frac{31.5^2 + 11.6^2}{110^2} \times (7.6 + j18.1) = 0.707 + j1.685(MVA)$$

+ Power at the start of line impedance N-1:

$$S'_1 = S''_1 + \Delta S_1 = 31.5 + j11.6 + 0.707 + j1.685 = 32.207 + j13.285(MVA)$$

+ Sending power N-1:

$$S_N = S'_1 - j\Delta Q'_{C1} = 32.207 + j13.285 - j0.763 = 32.207 + j12.522(MVA)$$

+ Voltage drop on N-1:

$$\Delta U_1 = \frac{P_1 \times R_1 + Q_1 \times X_1}{U_{dm}} = \frac{31.5 \times 7.6 + 11.6 \times 18.1}{110} = 4.085(kV)$$

+ Percent voltage drop on N-1:

$$\Delta U_1\% = \frac{\Delta U_1}{U_{dm}} \times 100 = \frac{4,085}{110} \times 100 = 3.73\%$$

 \rightarrow $\Delta U_{N-1}^{bt}\% = 3.73\% \le 10\% \rightarrow$ Satisfied technical requirements.

\rightarrow Line N – 2:

Figure 2.18

The line N-2 has the similar calculations with line N-1.

Other area with similar circuit use the same method.

From the results calculated above, we have a summary table of voltage losses and power losses of all the lines as:

No.	Line	Highway	Wire code	$\Delta P(MW)$	$\Delta P_{SC}(MW)$	$\Delta U\%$	ΔU_{SC} %
·							
1	N – 1	1	AC – 185	0.707		3.73	
2	N-2	1	AC – 150	0.604		3.27	
3	N – 3	2	AC – 70	0.465	0.952	2.46	5.12
4	N – 4	2	AC – 95	0.547	1.116	2.61	5.46
5	N – 5	2	AC – 95	0.841	1.71	3.11	6.48
6	N – 6	2	AC - 70	0.479	0.98	2.52	5.26

Table 2.31 Power losses of all lines in start circuits

 $[\]Rightarrow$ The calculation results of $\Delta U\%$ all satisfy the following requirements

 $[\]Rightarrow$ Normal operation $\Delta U_{\rm max}\% \leq 10\%$.

2.3.3.2 Interconnection circuit

Figure 2.19

- **❖** At normal operation
- \rightarrow Line N 1 2:

$$\Delta Q''_{C1} = \Delta Q'_{C1} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{230.89 \times 10^{-6}}{2} = 1.39 (MVAr)$$

$$\Delta Q''_{C2} = \Delta Q'_{C2} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{99.85 \times 10^{-6}}{2} = 0.6 (MVAr)$$

+ Power at the end of the impedance R_2+iX_2 of line 1-2:

$$S''_2 = -j\Delta Q''_{C2} + S_2 = -j0.6 + (27.5 + j10.04) = 27.5 + j9.44(MVA)$$

+ Voltage drop of line 2-1:

$$\Delta U_{1-2} = \frac{P"_2 \times R_2 + Q"_2 \times X_2}{U_{dm}} = \frac{27.5 \times 7.57 + 9.44 \times 14.8}{110} = 3.18(kV)$$

+ Percent voltage drop of 2-1:

$$\Delta U_{1-2}\% = \frac{\Delta U_{1-2}}{U_{dm}} \times 100 = \frac{3.18}{110} \times 100 = 2.89\%$$

- $\rightarrow \Delta U_{\mbox{\tiny 1-2}}^{\mbox{\tiny bt}}\,\% = 2.89\% \leq \! 10\% \rightarrow \mbox{Technical requirements are satisfied.}$
 - + Power losses on line 1-2:

$$\Delta S_2 = \frac{(P_2)^2 + (Q_2)^2}{U_{dm}^2} \times (R_2 + jX_2) = \frac{27.5^2 + 9.44^2}{110^2} \times (7.67 + j14.8) = 0.535 + j1.03(MVA)$$

+ Power at start end of line 1-2:

$$S'_{2} = S''_{2} + \Delta S_{2} = 27.5 + j9.44 + 0.535 + j1.03 = 28.035 + j10.47(MVA)$$

+ Power at the end of impedance R_1+jX_1 of line N - 1:

$$S''_1 = -j\Delta Q''_{C1} + S_1 + (-j\Delta Q'_{C2}) + S'_2 = 28.035 + j10.47 + 31.5 + j12.35 - j1.39 - j0.6$$

= 59.535 + j20.93(MVA)

+ Voltage drop of line N-1:

$$\Delta U_{N-1} = \frac{P_1 \times R_1 + Q_1 \times X_1}{U_{div}} = \frac{59.535 \times 3.5 + 20.93 \times 8.41}{110} = 3.49(kV)$$

+ Percent voltage drop of line N-1:

$$\Delta U_{N-2}\% = \frac{\Delta U_{N-2}}{U_{dm}} \times 100 = \frac{3.49}{110} \times 100 = 3.17\%$$

- $\rightarrow \Delta U_{N-1}^{bt}\% = 3.17\% \le 10\% \rightarrow$ Satisfied all technical requirements.
 - + Power losses on line N-1:

$$\Delta S_1 = \frac{(P_1^*)^2 + (Q_1^*)^2}{U_{dm}^2} \times (R_1 + jX_1) = \frac{59.535^2 + 20.93^2}{110^2} \times (3.5 + j8.41)$$
$$= 1.15 + j2.76(MVA)$$

+ Power before the impedance of line N-1:

$$S'_{1} = S''_{1} + \Delta S_{2-1} = 59.535 + j20.93 + 1.15 + j2.76 = 60.685 + j23.69(MVA)$$

+ Sending power of N-1:

$$S_N = S'_1 - j\Delta Q'_{C1} = 60.685 + j23.69 - j1.39 = 60.685 + j22.3(MVA)$$

+ Total Voltage drop:

 $ightarrow \Delta U_{N-1-2}^{\it bt}\% = 6.06\% \le 10\%
ightarrow {f Satisfied all technical requirements.}$

⇒ From the results calculated above, we have a summary table of voltage loss and power loss of all lines as follows:

No.	Line	Highway	Wire code	$\Delta P(MW)$	$\Delta U\%$
1	N – 1	2	AC-185	1.15	6.06
2	1 - 2	1	AC-150	0.535	2.89

Table 2.32 Power losses of all lines in interconnection circuit

At fault operation

$$\Delta Q''_{C1} = \Delta Q'_{C1} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{111.73 \times 10^{-6}}{2} = 0.67 (MVAr)$$

$$\Delta Q''_{C2} = \Delta Q'_{C2} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{99.85 \times 10^{-6}}{2} = 0.6 (MVAr)$$

+ Power at the end of the impedance R_2+jX_2 of line 1–2:

$$S''_2 = -j\Delta Q''_{C2} + S_2 = -j0.6 + (27.5 + j10.04) = 27.5 + j9.44(MVA)$$

+ Voltage drop of line 2-1:

$$\Delta U_{1-2} = \frac{P"_2 \times R_2 + Q"_2 \times X_2}{U_{dm}} = \frac{27.5 \times 7.57 + 9.44 \times 14.8}{110} = 3.18(kV)$$

+ Percent voltage drop of 2-1:

$$\Delta U_{1-2}\% = \frac{\Delta U_{1-2}}{U_{div}} \times 100 = \frac{3.18}{110} \times 100 = 2.89\%$$

+ Power losses on line 1-2:

$$\Delta S_2 = \frac{(P''_2)^2 + (Q''_2)^2}{U^2_{dm}} \times (R_2 + jX_2) = \frac{27.5^2 + 9.44^2}{110^2} \times (7.67 + j14.8) = 0.535 + j1.03(MVA)$$

+ Power at start end of line 1-2:

$$S'_2 = S''_2 + \Delta S_2 = 27.5 + j9.44 + 0.535 + j1.03 = 28.035 + j10.47(MVA)$$

Page 61/169

+ Power at the end of impedance R_1+iX_1 of line N - 1:

$$S"_{1} = -j\Delta Q"_{C1} + S_{1} + (-j\Delta Q'_{C2}) + S'_{2} = 28.035 + j10.47 + 31.5 + j12.35 - j0.67 - j0.6$$

= 59.535 + j21.55(MVA)

+ Voltage drop of line N-1:

$$\Delta U_{N-1} = \frac{P_{1} \times R_{1} + Q_{1} \times X_{1}}{U_{dm}} = \frac{59.535 \times 7 + 21.55 \times 17.32}{110} = 7.18(kV)$$

+ Percent voltage drop of line N-1:

$$\Delta U_{N-2}\% = \frac{\Delta U_{N-2}}{U_{dm}} \times 100 = \frac{7.18}{110} \times 100 = 6.53\%$$

+ Power losses on line N-1:

$$\Delta S_1 = \frac{(P_1^*)^2 + (Q_1^*)^2}{U_{dm}^2} \times (R_1 + jX_1) = \frac{59.535^2 + 21.55^2}{110^2} \times (7 + j17.32)$$
$$= 2.32 + j5.74(MVA)$$

+ Power before the impedance of line N-1:

$$S'_{1} = S''_{1} + \Delta S_{2-1} = 59.535 + j21.55 + 2.32 + j5.74 = 61.855 + j27.29(MVA)$$

+ Sending power of N-1:

$$S_N = S'_1 - j\Delta Q'_{C1} = 61.855 + j27.29 - j0.67 = 61.855 + j26.62(MVA)$$

+ Total Voltage drop:

$$\rightarrow \Delta U_{N-1-2}^{bt}\% = 9.72\% \le 20\% \rightarrow$$
 Satisfied all technical requirements.

PROJECT 1 Page 62/169

No.	Line	Highway	Wire code	$\Delta P(MW)$	$\Delta U_{\scriptscriptstyle SC}\%$
1	N-1	1	AC-185	0.535	6.53
2	1 - 2	1	AC-150	2.32	2.89

Table 2.33 Power losses of all lines in interconnection circuit at fault

2.3.3.3 Ring circuit

 \triangleright Consider N – 5 – 6 – N at normal operation

Figure 2.20

+ Power is generated by half of the line capacitance:

$$\begin{split} j\Delta Q_{\text{CN-5}} &= j\frac{b_0\times l}{2}\times {U_{\text{dm}}}^2 = j\frac{126.1\times 10^{-6}}{2}\times 110^2 = j0.763(\text{MVAr})\\ j\Delta Q_{\text{CN-6}} &= j\frac{b_0\times l}{2}\times {U_{\text{dm}}}^2 = j\frac{104\times 10^{-6}}{2}\times 110^2 = j0.75(\text{MVAr})\\ j\Delta Q_{\text{C5-6}} &= j\frac{b_0\times l}{2}\times {U_{\text{dm}}}^2 = j\frac{123.87\times 10^{-6}}{2}\times 110^2 = j0.63(\text{MVAr}) \end{split}$$

+ Power at node 5 and 6

$$\begin{split} S_5 &= P_5 + jQ_5 = 35 + j13.69(MVA) \\ S_6 &= P_6 + jQ_6 = 22.5 + j9.05(MVA) \\ S'_5 &= S_5 - j\Delta Q_{CN-5} - j\Delta Q_{C5-6} = 35 + j13.69 - j0,763 - j0,63 = 35 + j12.297(MVA) \\ S'_6 &= S_6 - j\Delta Q_{CN-6} - j\Delta Q_{C5-6} = 22.5 + j9.05 - j0,75 - j0,63 = 22.5 + j7.67(MVA) \end{split}$$

Figure 2.21

Page 65/169

Apply the approximate power distribution in terms of impedance to calculate the power current on the lines connected to the source:

$$\begin{split} Z_{N-5} &= R_{N-5} + jX_{N-5} = 7.6 + j18.1(\Omega) \\ Z_{N-6} &= R_{N-6} + jX_{N-6} = 9.4 + j18.42(\Omega) \\ Z_{5-6} &= R_{5-6} + jX_{5-6} = 18.4 + 17.64(\Omega) \end{split}$$

+ Power being delivered on line N-5:

$$\overset{*}{S}_{N-5} = \frac{\overset{*}{S'_5} \times (Z_{56} + Z_{N6}) + \overset{*}{S'_6} \times (Z_{N6})}{Z_{N5} + Z_{56} + Z_{N6}}
= \frac{(35 - j12.297) \times (27.8 + j36.06) + (22.5 - j7.67) \times (9.4 + j18.42)}{35.4 + j64.16}
= 31.294 - j12.212(MVA)
\rightarrow S_{N-5} = 31.294 + j12.212MVA)$$

+ Power being delivered on line 6-5:

$$S_{6-4} = S_{N-5} - S'_{5} = (35 + j12.297) - (31.294 + j12.212) = 3.706 + j0.085(MVA)$$

+ Power being delivered on line N-6:

$$S_{N-6} = S'_{6} + S_{6-5} = (22.5 + j7.67) + (3.706 + j0.085) = 26.2 + j7.755$$

+ Power losses on N-5:

$$\Delta S_{N-5} = \frac{(P_{N-5})^2 + (Q_{N-5})^2}{U_{dm}^2} \times (R_{N-5} + jX_{N-5}) = \frac{31.294^2 + 12.212^2}{110^2} \times (7.6 + j18.1)$$

= 0,708 + j1.688(MVA)

Similar calculations for N-6 and 6-5.

+ Voltage drop on N-5:

$$\Delta U_{N-5} = \frac{P_{N-5} \times R_{N-5} + Q_{N-5} \times X_{N-5}}{U_{dm}} = \frac{31.294 \times 7.6 + 12.212 \times 18.1}{110} = 4.17(kV)$$

+ Percent voltage drop on N-5:

$$\Delta U_{N-5}\% = \frac{\Delta U_{N-5}}{U_{dm}} \times 100 = \frac{4.17}{110} \times 100 = 3.8\%$$

 $\rightarrow \Delta U_{N-5}^{bt}\% = 3,87\% \le 10\% \rightarrow$ Satisfied Technical requirement.

Similar calculations for N-6 and 6-5, and also the area 2 case 2.

No.	Line	Power losses	Voltage drop	Voltage drop
	Line	(MW)	(kV)	(%)
	N-5	0.708	4.17	3.8
1	6-5	0.021	0.633	5.75*10 ⁻³
	N-6	0.58	3.52	3.2
	N-3	0.512	3.595	3.27
2	3-4	6.04*10 ⁻³	0.322	2.93*10 ⁻³
	N-4	0.495	3.723	3.38

Table 2.34 Power losses and voltage drop on N-5-6, N-3-4 at normal operation

- \triangleright Consider N 5 6 N at fault operation when N-6 breakdown:
- \rightarrow Line N 5 6:

$$\Delta Q''_{C6} = \Delta Q'_{C6} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{123.87 \times 10^{-6}}{2} = 0.75 (MVAr)$$

$$\Delta Q''_{C5} = \Delta Q'_{C5} = U^2 \times \frac{b_0 \times l}{2} = 110^2 \times \frac{126.1 \times 10^{-6}}{2} = 0.763 (MVAr)$$

+ Power at the end of R_6+iX_6 of line 5-6:

$$S"_6 = -j\Delta Q"_{C6} + S_6 = 22.5 + j9.05 - 0.j75 = 22.5 + j8.3(MVA)$$

+ Voltage drop on line 5 - 6:

$$\Delta U_{5-6} = \frac{P''_{6} \times R_{6} + Q''_{6} \times X_{6}}{U_{dm}} = \frac{22.5 \times 9.4 + 8.3 \times 18.42}{110} = 5.1(kV)$$

+ Percent voltage drop on line 5-6:

$$\Delta U_{5-6}\% = \frac{\Delta U_{5-6}}{U_{dm}} \times 100 = \frac{5.1}{110} \times 100 = 4.63\%$$

+ Power losses on line 5 - 6:

$$\Delta S_{5-6} = \frac{(P''_{6})^{2} + (Q''_{6})^{2}}{U^{2}_{dm}} \times (R_{6} + jX_{6}) = \frac{22.5^{2} + 8.3^{2}}{110^{2}} \times (9.4 + j18.42)$$
$$= 0.875 + j0.0838(MVA)$$

+ Power at the end of R_5+jX_5 of line N-5:

$$S"_{5} = +S_{5} + S_{6} + \Delta S_{6} - j\Delta Q"_{C6} - j\Delta Q"_{C5}$$

$$S"_{5} = 22.5 + j8.3 + 35 + 13.69 + 0.875 + 0.838 - j0.763 - j0.75$$

$$S"_{5} = 58.375 + j21.315$$

+ Voltage drop on N-5:

$$\Delta U_{N-5} = \frac{P\text{"}_5 \times R_5 + Q\text{"}_5 \times X_5}{U_{dm}} = \frac{58.375 \times 7.6 + 21.315 \times 18.1}{110} = 7.54(kV)$$

+ Voltage drop on N-5:

$$\Delta U_{N-5}\% = \frac{\Delta U_{N-5}}{U_{dm}} \times 100 = \frac{7.54}{110} \times 100 = 6.85\%$$

+ Power losses on N-5:

$$\Delta S_{N-5} = \frac{(P_5)^2 + (Q_5)^2}{U_{dm}^2} \times (R_5 + jX_5) = \frac{58.375^2 + 21.315^2}{110^2} \times (7.6 + j18.1)$$

$$= 2.426 + j5.77 (MVA)$$

+ Power before resistance of line N-5:

$$S'_{5} = S''_{5} + \Delta S_{N-5} = 58.372 + j21.315 + 2.426 + j5.77 = 60.8 + j27.085(MVA)$$

+ Sending power on line N-5:

$$S_N = S'_5 - j\Delta Q'_{C5} = 60.8 + j27.085 - 0.763 = 60.8 + j26.322(MVA)$$

+ Voltage drop at fault:

$$\Delta U_{N-5-6}\% = \Delta U_{N-5}\% + \Delta U_{5-6}\% = 6.85\% + 4.63\% = 11.48\%$$

 $ightarrow \Delta U_{N-5-6}^{sc}\% = 15,39\% \le 20\%
ightarrow \mathbf{Satisfied}$ technical requirement at fault.

Similar calculations at fault when N-5 breakdown.

No.	Line	High way	Wire code	$\Delta P(MW)$	ΔU_{SC} %	Ghi chú
1	N-5	1	AC-185	2.426	6.85	N-6 breakdown
	5-6	1	AC-70	0.875	4.63	
2	N-6	1	AC-150	3.13	7.2	N-5 breakdown
	5-6	1	AC-70	2.117	7.96	

Table 2.35 Power losses of area 3 ring at fault

Other ring circuits use similar method of calculating.

⇒ From the results calculated ,we have a summary table of voltage loss and power loss of all lines as follows:

No.	Line	High way	Wire code	$\Delta P(MW)$	ΔU_{sc} %	Note
1	N-3	1	AC-150	2.267	6.93	N-4 breakdown
	3-4	1	AC-70	1.25	5.43	
2	N-4	1	AC-150	2.416	6.93	N-3 breakdown
	3-4	1	AC-70	0.834	4.41	
3	N-5	1	AC-185	2.426	6.85	N-6 breakdown
	5-6	1	AC-70	0.875	4.63	
4	N-6	1	AC-150	3.13	7.2	N-5 breakdown
	5-6	1	AC-70	2.117	7.96	

Table 2.36 Power losses of all lines in ring circuits at fault

⇒ **Conclusion:** The calculation results all satisfy the following requirements.

At normal operation

$$\Delta U_{\text{max}} \% \leq 10\%$$

And at fault operation

$$\Delta U_{\rm max}\,\% \le 20\%$$

Student : Ninh Thế Vĩnh Cường

2.3.3.4 Summarize total power losses

No.	Line	Power loss (MW)	Voltage drop (kV)	Voltage drop (%)	
	N-3	0.512	3.595	3.27	
1	3-4	6.04*10 ⁻³	0.322	2.93*10 ⁻³	
	N-4	0.495	3.723	3.38	
	N-5	0.708	4.17	3.8	
2	6-5	0.021	0.633	5.75*10 ⁻³	
	N-6	0.58	3.52	3.2	

Table 2.37 Power losses of all lines in ring circuits at normal operation

No.	Line	High	Wire	$\Delta P(MW)$	$\Delta U_{SC}\%$	Note
110.	Line	way	code	<u> </u>	ZO SC 70	Note
	27.0	4	10150	225	< 0.0	
	N-3	1	AC-150	2.267	6.93	27.44
1						N-4 breakdown
	3-4	1	AC-70	1.25	5.43	
	N-4	1	AC-150	2.416	6.93	
2						N-3 breakdown
	3-4	1	AC-70	0.834	4.41	
	N-5	1	AC-185	2.426	6.85	
3						N-6 breakdown
	5-6	1	AC-70	0.875	4.63	
	N-6	1	AC-150	3.13	7.2	
4					-	N-5 breakdown
	5-6	1	AC-70	2.117	7.96	
		•	110 ,0	,	7.50	
	T-1.1- 6	00 D	-1	all lings in ring		

Table 2.38 Power losses of all lines in ring circuits at fault operation

2.3.4 Ceramic insulators

Ceramic insulators (also known as Porcelain bushing) are an indispensable part in high-voltage electrical networks, especially overhead high-voltage lines often use ceramic chains hanging at intermediate piers and tensioned porcelain chains at middle piers. The number of ceramic bowls depends on the voltage level.

In the scope of this project design, because the voltage of the electrical network is 110kV, we choose a ceramic insulator with the number of bowls of 8.

The structure of the beam and the electric pillar, the capacitance distributed between the ceramic insulators makes the voltage distribution across the ceramic chains uneven. So the maximum voltage distributed across the ceramic bowl closest to the wire is about 21%.

The voltage E between wire and ground is: $\frac{e_l}{E} = 0.21$.

Performance of ceramic insulators chain:

$$\eta = \frac{E}{n \times e_l} = \frac{1}{n(e_l / E)} = \frac{1}{8 \times 0.21} = 0.595 = 59.5\%$$

In this project, we choose ceramic insulators $\Pi\Phi-6A$ with a wet test voltage of 32kV at 50Hz. So chain of 8 ceramic insulators will withstand the voltage is:

$$E_{fa} = \frac{32}{0,21} = 152,38(kV) \rightarrow \text{E}_{\text{line}} = 152,38\sqrt{3} = 263,92(kV)$$

We have the wire voltage of the electrical network is:

$$U = 110\sqrt{2} = 155,56(kV)$$

After comparing the two results calculated above, we can see that the number of selected ceramic insulators satisfies the insulation requirements of the 110kV grid..

2.3.5 Indicators on resistant capacity by line electricity

We have the formula to calculate the characteristic resistance or pulse resistance of the line is:

$$R_C = \sqrt{\frac{x_0}{b_0}}(\Omega)$$

- + For single line resistance, it is approximate 400Ω
- + For dual line resistance, it is approximate 200Ω

Natural capacity or SIL resistance is:

$$SIL = \frac{U_{dm}^2}{R_C} (MW)$$

Reactive capacity is generated by line capacitance per 100km line length:

$$Q_{C(100)} = U_{dm}^2 (100 \times b_0) (MVAr)$$

Design criteria is

$$Q_{C(100)} \le 0.125 \times SIL$$

Because it only require x_0 and b_0 , thus only wire code is needed

Wire code	X_0	b ₀ (*10 ⁻⁶)	$R_C = \sqrt{\frac{x_0}{b_0}}(\Omega)$	$SIL = \frac{U_{dm}^{2}}{R_{C}}$ (MW)	$Q_{C(100)}$ $= U_{dm}^{2}(100 \times b_{0})$ $(MVAr)$	0,125× <i>SIL</i>
AC-70	0.441	2.6	411.84	29.38	3.146	3.6725
AC-95	0.453	2.53	423.14	28.595	3.0613	3.5744
AC-150	0.412	2.53	403.54	29.985	3.0613	3.7481
AC-185	0.405	2.82	378.97	31.929	3.4122	3.9911

Table 2.39 Resistant capacity of single conductor lines

PROJECT 1 Page 73/169

Wire code	X_0	b_0	$R_C = \sqrt{\frac{x_0}{b_0}}(\Omega)$	$SIL = \frac{U_{dm}^{2}}{R_{C}}$ (MW)	$Q_{C(100)}$ $= U_{dm}^{2}(100 \times b_{0})$ $(MVAr)$	0,125× <i>SIL</i>
AC-70	0.218	5.27	203.39	59.493	6.3767	7.4366
AC-95	0.213	5.4	198.61	60.925	6.534	7.6156
AC-185	0.204	5.6	190.86	63.39	6.776	7.92

Table 2.40 Resistant capacity of dual conductors lines

Case	Line	High way	Wire code	$R_C = \sqrt{\frac{x_0}{b_0}}(\Omega)$	$SIL = \frac{U_{dm}^2}{R_C}$ (MW)	$Q_{C(100)}$ $= U_{dm}^{2}(100 \times b_{0})$ $(MVAr)$	0,125 ×SIL
1-1	N-1	1	AC-185	378.97	31.929	3.4122	3.9911
1-1	N-2	1	AC-150	403.54	29.985	3.0613	3.7481
1-2	N-1	2	AC-185	190.86	63.39	6.776	7.92
1-2	1-2	1	AC-150	403.54	29.985	3.0613	3.7481
2-1	N-3	2	AC-70	203.39	59.493	6.3767	7.4366
2-1	N-4	2	AC-95	198.61	60.925	6.534	7.6156
	N-3	1	AC-150	403.54	29.985	3.0613	3.7481
2-2	3-4	1	AC-70	411.84	29.38	3.146	3.6725
	N-4	1	AC-150	403.54	29.985	3.0613	3.7481
3-1	N-5	2	AC-95	198.61	60.925	6.534	7.6156
3-1	N-6	2	AC-70	203.39	59.493	6.3767	7.4366
	N-5	1	AC-185	378.97	31.929	3.4122	3.9911
3-2	5-6	1	AC-70	411.84	29.38	3.146	3.6725
	N-6	1	AC-150	403.54	29.985	3.0613	3.7481

Table 2.41 Resistant capacity of every cases

 \Rightarrow From the data summary table 2.34 we can see that all the lines meet the design criteria $Q_{C(100)} \le 0.125 \times SIL$.

2.3.6 Corona effect

The phenomenon of ionisation of surrounding air around the conductor due to which luminous glow with hissing noise is rise is known as the corona effect.

When the electric field around the surface of the wire exceeds the electrical strength, a corona effect will occur, at this time the electricity of the air is about 21kV / cm. In this electric field, the air is strongly ionized and its electrical strength in the area around the wire is considered to be eliminated, at that time the air is considered to be conducting. This causes the line loss to be increased.

Critical voltage for corona effect:

$$U_0 = 21, 1.m_0.\delta.r.2, 303.\log\frac{D}{r}(kV)$$

With

 m_0 : form factor of the wire surface ($m_0 = 1$ for round conductors)

 δ : air density factor with $\delta = \frac{3.92 \times b}{273 + t}$

which b: air pressure, b = 76 cmHg

t: celsius degree, $t = 40^{\circ}$ C

$$\Rightarrow \delta = \frac{3.92 \times 76}{273 + 40} = 0.952$$

D: Geometric mean distance between phase (cm)

r: conductor's radius (cm)

Grid's phase voltage: $U_{fa} = \frac{110}{\sqrt{3}} = 63.51(kV)$

Arr Line N – 5: Conductor AC – 150, r = 8.5mm=0.85cm

$$U_0 = 21.1 \times 1 \times 0.952 \times 0.85 \times 2.303 \times \log \frac{462}{0.85} = 107.55(kV)$$

Case	Line	High way	Wire code	Radius	Geometric mean distance between phase	Critical voltage
1-1	N-1	1	AC-185	0.95	462	118.08
	N-2	1	AC-150	0.85	462	107.55
1-2	N-1	2	AC-185	0.95	669	125.99
	1-2	1	AC-150	0.85	462	107.55
2-1	N-3	2	AC-70	0.57	669	81.442
	N-4	2	AC-95	0.675	669	94.152
	N-3	1	AC-150	0.85	462	107.55
2-2	3-4	1	AC-70	0.57	462	76.7
	N-4	1	AC-150	0.85	462	107.55
3-1	N-5	2	AC-95	0.675	669	94.152
	N-6	2	AC-70	0.57	669	81.442
	N-5	1	AC-185	0.95	462	118.08
3-2	5-6	1	AC-70	0.57	462	76.7
	N-6	1	AC-150	0.85	462	107.55

Table 2.42 Critical voltage of all lines to create corona effect

Page 76/169

Based on data summary 2.42 we can see the minimum critical voltage. So there is no corona effect loss due to

$$U_{fa} = \frac{110}{\sqrt{3}} = 63.51(kV) < U_{0 \min} = 76.7(kV)$$
.

2.4 Calculate economical indicators

2.4.1 Calculation of the annual total consumer charge for each method

The economic indicator used to compare options is the annual calculated costs, determined by the formula:

$$Z = (a_{vh} + a_{tc}) \times K + c \times \Delta A$$

Where:

- ➤ K: Investment for electric network
- > a_{vh}: Power network operation and repair coefficient.

For the transmission lines on steel poles a_{vh}=7%

For the transmission lines on reinforced concrete poles a_{vh}=4%

- \blacktriangleright a_{tc}: Coefficient of return of sub-investment (difference between options). With atc = 1/Ttc and Ttc = 5÷8 years is the standard time to recover sub-investment depending on the state's use policy. Normally atc = 0.125 0.2, select atc = 0,125.
- \triangleright c: The cost of 1 kWh of lost power is c = 0.065 (\$/kWh) = 65(\$/MWh)
- $ightharpoonup \Delta A$: Electrical power loss, $\Delta A = \Delta P_{\Sigma} \times \tau$

where ΔP_{Σ} : The total power losses for each area were calculated before

τ: time of maximum power loss. Can be approximate by formula:

$$\tau = (0.124 + \frac{T_{\text{max}}}{10^4})^2 \times 8760 = (0.124 + \frac{5000}{10^4})^2 \times 8760 = 3410,93 \text{ (hours/year)}$$

PROJECT 1 Page 77/169

Conductor	Highway	Cost per 1 km length (10 ³ \$)	Mass (kg/km/phase)
AC – 70	1	15.4	275
AC – 95	1	16	286
AC – 150	1	17.3	617
AC - 185	1	18	771
AC – 70	2	32.1	275
AC – 95	2	33.2	286
AC – 150	2	35.7	617
AC - 185	2	37.3	771

Table 2.43 Cost per length and mass of each line

2.4.1.1 Area 1 case 1

Line	Highway	Conductor	Length (km)	Cost of 1 km length (10 ³ \$)	Total cost (\$)
N – 1	1	AC – 185	44.72	18	804 960
N - 2	1	AC - 150	41.23	17.3	713 279
	1 518 239				

Table 2.44 Investment cost of Area 1 case 1

Power loss

$$\Delta P_{\Sigma} = 1.311(MW)$$

$$\tau = 3410.93$$

$$\Rightarrow \Delta A = \Delta P_{\Sigma} \times \tau = 1.311 \times 3410.93 = 4471.73 \text{ (MWh/year)}$$

⇔ Cost annually:

$$Z = (a_{vh_betong} + a_{tc}) \times K + c \times \Delta A = (4\% + 0.125) \times 1518239 + 65 \times 4471.73$$
$$= 541171.885$$

No.	Line	Highway	Wire code	Length (km)	Mass (kg/km/phase)	Mass of 3 phase (ton)
1	N – 1	1	AC – 185	44.72	771	103.437
2	N - 2	1	AC - 150	41.23	617	76.31
			Total amount	of non-fer	rous metal used	179.747

Table 2.45 Non-ferrous metal used of Area 1 case 1

⇒ From the calculation results, we make the table of economic indicators for Area 1 as follows:

PROJECT 1 Page 79/169

indicators	Unit	Value
Investment K	\$	1 518 239
Power loss ΔA	MWh	4471.73
$\Delta U\%$ max	%	3.73
Non-ferrous metal used	Ton	179.747
Cost annually Z	\$	541 171.885

Table 2.46 Summary of economic indicators of Area 1 case 1

2.4.1.2 Area 1 case 2

Line	Highway	Conductor	Length (km)	Cost of 1 km length (10 ³ \$)	Total cost (\$)
N – 1	2	AC – 185	44.72	37.3	1 668 056
1 – 2	1	AC - 150	36.05	17.3	713 279
	2 381 335				

Table 2.47 Investment cost of Area 1 case 2

Power loss

$$\Delta P_{\Sigma} = 1.685(MW)$$

$$\tau = 3410.93$$

$$\Rightarrow \Delta A = \Delta P_{\Sigma} \times \tau = 1.685 \times 3410.93 = 5747.42 \text{ (MWh/year)}$$

⇔ Cost annually:

$$Z = (a_{vh_betong} + a_{tc}) \times K_{betong} + (a_{vh_thep} + a_{tc}) \times K_{thep} + c \times \Delta A$$

$$\Rightarrow = (4\% + 0.125) \times 713279 + (7\% + 0.125) \times 1668056 + 65 \times 5747.42$$

$$= 816544.255$$

No.	Line	Highway	Wire code	Length (km)	Mass (kg/km/phase)	Mass of 3 phase (ton)
1	N – 1	2	AC – 185	44.72	771	206.87
2	1 - 2	1	AC - 150	36.05	617	66.73
	Total amount of non-ferrous metal used					

Table 2.48 Non-ferrous metal used of Area 1 case 2

⇒ From the calculation results, we make the table of economic indicators for Area 1 as follows:

PROJECT 1 Page 81/169

indicators	Unit	Value
Investment K	\$	2 381 335
Power loss ΔA	MWh	5747.42
$\Delta U\%$ max	%	8.95
Non-ferrous metal used	Ton	273.6
Cost annually Z	\$	816 544.255

Table 2.49 Summary of economic indicators of Area 1 case 2

2.4.1.3 Area 2 case 1

Line	Highway	Conductor	Length (km)	Cost of 1 km length (10 ³ \$)	Total cost (\$)
N – 3	2	AC – 70	41.23	32.1	1 323 483
N – 4	2	AC - 95	44.72	33.2	1 484 704
	2 808 187				

Table 2.50 Investment cost of Area 2 case 1

Power loss

$$\Delta P_{\Sigma} = 1.012(MW)$$

$$\tau = 3410.93$$

$$\Rightarrow \Delta A = \Delta P_{\Sigma} \times \tau = 1.012 \times 3410.93 = 3451.86 \text{ (MWh/year)}$$

\Rightarrow Cost annually:

$$Z = (a_{vh_thep} + a_{tc}) \times K_{thep} + c \times \Delta A$$

$$\Rightarrow = (7\% + 0.125) \times 2808187 + 65 \times 3451.86$$

$$= 771967.365$$

No.	Line	Highway	Wire code	Length (km)	Mass (kg/km/phase)	Mass of 3 phase (ton)
1	N – 3	2	AC – 70	41.23	275	68
2	N – 4	2	AC - 95	44.72	386	103.57
Total amount of non-ferrous metal used						171.57

Table 2.51 Non-ferrous metal used on Area 2 case 1

PROJECT 1 Page 83/169

⇒ From the calculation results, we make the table of economic indicators for Area 2 as follows:

indicators	Unit	Value
Investment K	\$	2 808 187
Power loss ΔA	MWh	3451.86
$\Delta U\%$ max	%	2.61
Non-ferrous metal used	Ton	171.57
Cost annually Z	\$	771 967.365

Table 2.52 Summary of economic indicators of Area 2 case 1

2.4.1.4 Area 2 case 2

Line	Higway	Conductor	Length (km)	Cost of 1 km length (10 ³ \$)	Total cost (\$)
N – 3	1	AC – 150	41.23	17.3	713 279
3 – 4	1	AC – 70	36.05	12.6	454 230
N - 4	1	AC - 150	44.72	17.3	773 656
	1 941 165				

Table 2.53 Investment cost of Area 2 case 2

Power loss

$$\Delta P_{\Sigma} = 1.013(MW)$$

$$\tau = 3410.93$$

$$\Rightarrow \Delta A = \Delta P_{\Sigma} \times \tau = 1.013 \times 3410.93 = 3455.27 \text{ (MWh/year)}$$

\Rightarrow Cost annually:

$$Z = (a_{vh_betong} + a_{tc}) \times K_{betong} + c \times \Delta A$$

$$\Rightarrow = (4\% + 0.125) \times 1941165 + 65 \times 3455.27$$

$$= 544884.775$$

No.	Line	Highway	Wire code	Length (km)	Mass (kg/km/phase)	Mass of 3 phase (ton)
1	N – 3	1	AC – 150	41.23	617	76.316
2	3 – 4	1	AC – 70	36.05	275	29.741

PROJECT 1 Page 85/169

3	N-4	1	AC - 150	44.72	617	82.776
	Total amount of non-ferrous metal used					

Table 2.54 Non-ferrous metal used of Area 2 case 2

⇒ From the calculation results, we make the table of economic indicators for Area 2 as follows:

indicators	Unit	Value
Investment K	\$	1 941 165
Power loss ΔA	MWh	3455.27
ΔU% max	%	3.38
Non-ferrous metal used	Ton	188 .834
Cost annually Z	\$	544 884.775

Table 2.55 Summary of economic indicators of Area 2 case 2

2.4.1.5 Area 3 case 1

Line	Highway	Conductor	Length (km)	Cost of 1 km length (10 ³ \$)	Total cost (\$)
N – 5	2	AC – 95	44.72	33.2	1 484 704
N – 6	2	AC - 70	44.72	32.1	1 435 512
	2 920 216				

Table 2.56 Investment cost of Area 3 case 1

Power loss

$$\Delta P_{\Sigma} = 1.32(MW)$$

$$\tau = 3410.93$$

$$\Rightarrow \Delta A = \Delta P_{\Sigma} \times \tau = 1.32 \times 3410.93 = 4502.432 \text{ (MWh/year)}$$

⇔ Cost annually:

$$Z = (a_{vh_thep} + a_{tc}) \times K_{thep} + c \times \Delta A$$

$$\Rightarrow = (7\% + 0.125) \times 2920216 + 65 \times 34502.432$$

$$= 862100.2$$

No.	Line	Highway	Wire code	Length (km)	Mass (kg/km/phase)	Mass of 3 phase (ton)
1	N – 5	2	AC – 95	4.72	386	103.303
2	N – 6	2	AC - 70	44.72	275	73.788
Total amount of non-ferrous metal used						177.09

Table 2.57 Non-ferrous metal used of Area 3 case 1

PROJECT 1 Page 87/169

⇒ From the calculation results, we make the table of economic indicators for Area 3 as follows:

indicators	Unit	Value
Investment K	\$	2 920 216
Power loss ΔA	MWh	4502.432
$\Delta U\%$ max	%	3.11
Non-ferrous metal used	Ton	177.09
Cost annually Z	\$	862 100.2

Table 2.58 Summary of economic indicators of Area 3 case 1

2.4.1.6 Area 3 case 2

Line	Highway	Conductor	Length (km)	Cost of 1 km length (10 ³ \$)	Total cost (\$)
N – 5	1	AC – 185	44.72	18	804 960
5 – 6	1	AC – 70	40	16.4	616 000
N - 6	1	AC - 150	44.72	17.3	773 656
	2 194 616				

Table 2.59 Investment cost of Area 3 case 2

Power loss

$$\Delta P_{\Sigma} = 1.309 (MW)$$

$$\tau = 3410.93$$

$$\Rightarrow \Delta A = \Delta P_{\Sigma} \times \tau = 1.309 \times 3410.93 = 4464.912 \text{ (MWh/year)}$$

\Rightarrow Cost annually:

$$Z = (a_{vh_betong} + a_{tc}) \times K_{betong} + c \times \Delta A$$

$$\Rightarrow = (4\% + 0.125) \times 2194616 + 65 \times 4464.912$$

$$= 652330.92$$

No.	Line	Highway	Wire code	Length (km)	Mass (kg/km/phase)	Mass of 3 phase (ton)	
1	N-6	1	AC – 185	44.72	771	103.437	
2	5 – 6	1	AC – 70	40	275	33	
3	N-6	1	AC - 150	44.72	617	82.776	
Total amount of non-ferrous metal used							

Table 2.60 Non-ferrous metal used of Area 3 case 2

PROJECT 1 Page 89/169

⇒ From the calculation results, we make the table of economic indicators for Area 2 as follows:

Indicators	Unit	Value		
Investment K	\$	2 194 616		
Power loss ΔA	MWh	4464.912		
$\Delta U\%$ max	%	3.8		
Non-ferrous metal used	Ton	219.214		
Cost annually Z	\$	652 330.92		

Table 2.61 Summary of economic indicators of Area 3 case 2

2.4.2 Probability of electrical supply network 's disturbance

Parameter	Probability of fault in a year λ (times/year)	Incident recovery time (fix) r _{sc} (hours/times)	Periodic repair time r _{ts} (hours/year)	
Transformer 110kV	0,01	90	25	
Line 110kV	0,6	8 to 10	20	
Cutting machine	0,0012	15		
Isolation knife	0,006	15		

Table 2.62 Times for maintain, fixing parameters of network

2.4.2.1 PROBABILITY OF SINGLE CONDUCTOR ELECTRICAL SUPPLY NETWORK'S DISTURBANCE

Area 3 case 2 is a single conductor line network, thus:

Probability to stop power supply due to line repair:

Line N - 5:
$$f_d = \frac{r_{tsd}}{8760} \times \frac{l}{100} = \frac{20}{8760} \times \frac{44,72}{100} = 1,021 \times 10^{-3}$$

Line 5 – 6:
$$f_d = \frac{r_{tsd}}{8760} \times \frac{l}{100} = \frac{20}{8760} \times \frac{40}{100} = 0,913 \times 10^{-3}$$

Line N - 6:
$$f_d = \frac{r_{tsd}}{8760} \times \frac{l}{100} = \frac{20}{8760} \times \frac{44,72}{100} = 1,021 \times 10^{-3}$$

***** The probability of one line failure:

Line N - 5:
$$q_d = \frac{r_{scd} \times \lambda_d}{8760} \times \frac{l}{100} = \frac{0.6 \times 8}{8760} \times \frac{44.72}{100} = 0.245 \times 10^{-3}$$

Line 5 – 6:
$$q_d = \frac{r_{scd} \times \lambda_d}{8760} \times \frac{l}{100} = \frac{0.6 \times 8}{8760} \times \frac{40}{100} = 0.219 \times 10^{-3}$$

Page 91/169

Line N - 6:
$$q_d = \frac{r_{scd} \times \lambda_d}{8760} \times \frac{l}{100} = \frac{0.6 \times 8}{8760} \times \frac{44.72}{100} = 0.245 \times 10^{-3}$$

Solution knife failure probability of the whole area:

$$q_{dcl} = \frac{\lambda_{cl} \times r_{sc.cl}}{8760} = \frac{0,006 \times 15}{8760} = 0,0103 \times 10^{-3}$$

+ The probability of cutting machine failure in the whole area

$$q_{mc} = \frac{\lambda_{mc} \times r_{sc.mc}}{8760} = \frac{0,0012 \times 15}{8760} = 0,002 \times 10^{-3}$$

***** Transformer failure probability:

$$q_{ba} = \frac{\lambda_{ba} \times r_{sc.ba}}{8760} = \frac{0.01 \times 90}{8760} = 0.103 \times 10^{-3}$$

Probability of power outage in the whole area:

Line N – 5:

$$h = q_{dcl} + q_{mc} + q_{dcl} + q_d + f_d + q_{dcl} + q_{mc} + q_{dcl} + (q_{dcl} + q_{ba} + q_{mc})^2$$

$$= 0,0103 + 0,002 + 0,0103 + 0,245 + 1,021 + 0,0103 + 0,002 + 0,0103 + (0,0103 + 0,103 + 0,002)^2$$

$$= 1,311 \times 10^{-3}$$

Line 5-6:

$$h = q_{dcl} + q_{mc} + q_{dcl} + q_d + f_d + q_{dcl} + q_{mc} + q_{dcl} + (q_{dcl} + q_{ba} + q_{mc})^2$$

$$= 0,0103 + 0,002 + 0,0103 + 0,219 + 0,913 + 0,0103 + 0,002 + 0,0103 + (0,0103 + 0,103 + 0,002)^2$$

$$= 1.177 \times 10^{-3}$$

Line N – 6:

$$h = q_{dcl} + q_{mc} + q_{dcl} + q_d + f_d + q_{dcl} + q_{mc} + q_{dcl} + (q_{dcl} + q_{ba} + q_{mc})^2$$

$$= 0,0103 + 0,002 + 0,0103 + 0,245 + 1,021 + 0,0103 + 0,002 + 0,0103 + (0,0103 + 0,103 + 0,002)^2$$

$$= 1,311 \times 10^{-3}$$

⇒ Probability of stopping power supply in area 3 case 2:

$$1,311\times10^{-3}+1,177\times10^{-3}+1,311\times10^{-3}=3,799\times10^{-3}$$

Similar calculations apply for other single conductor line network.

No.	Case	Line	Fault probability
1	Area 1 case 1	N-1, N-2	2.554*10 ⁻³
2	Area 2 case 2	N - 3 - 4	3.625*10 ⁻³
3	Area 3 case 2	N-3-5	3.845*10 ⁻³
4	Area 1 case 2	1-2	1.065*10 ⁻³

Table 2.63 Probability of power supply disturbance of single conductor lines

2.4.2.2 Probability of dual conductor electrical supply network's disturbance

Area 2 case 1 is a dual conductors line network, thus

***** The probability of repairing each circuit:

Line N - 3:
$$fd = \frac{r_{tsd}}{8760} \times \frac{l}{100} = \frac{20}{8760} \times \frac{41,23}{100} = 0,941 \times 10^{-3}$$

Line N - 4:
$$fd = \frac{r_{tsd}}{8760} \times \frac{l}{100} = \frac{20}{8760} \times \frac{44,72}{100} = 1,021 \times 10^{-3}$$

❖ Probability of a separate line failure (assuming 10% of the failure is a breakdown of both lines)

Line N - 3:
$$q_d = \frac{(1-0.1) \times \lambda_d \times r_{sc.d}}{8760} \times \frac{l}{100} = \frac{(1-0.1) \times 0.6 \times 8}{8760} \times \frac{41.23}{100} = 0.203 \times 10^{-3}$$

Line N - 4:
$$q_d^{'} = \frac{(1-0,1) \times \lambda_d \times r_{sc.d}}{8760} \times \frac{l}{100} = \frac{(1-0,1) \times 0,6 \times 8}{8760} \times \frac{44,72}{100} = 0,22 \times 10^{-3}$$

The probability of failure on both lines at the same time:

Line N - 3:
$$q_d'' = \frac{0.1 \times \lambda_d \times r_{sc.d}}{8760} \times \frac{l}{100} = \frac{0.1 \times 0.6 \times 8}{8760} \times \frac{41.23}{100} = 0.022 \times 10^{-3}$$

Page 93/169

Line N - 4:
$$q_d^{"} = \frac{0.1 \times \lambda_d \times r_{sc.d}}{8760} \times \frac{l}{100} = \frac{0.1 \times 0.6 \times 8}{8760} \times \frac{44.72}{100} = 0.024 \times 10^{-3}$$

\$ Isolation knife failure probability of the whole area:

$$q_{dcl} = \frac{\lambda_{cl} \times r_{sc.cl}}{8760} = \frac{0,006 \times 15}{8760} = 0,0103 \times 10^{-3}$$

The probability of cutting machine failure in the whole area

$$q_{mc} = \frac{\lambda_{mc} \times r_{sc.mc}}{8760} = \frac{0,0012 \times 15}{8760} = 0,002 \times 10^{-3}$$

***** Transformer failure probability:

$$q_{ba} = \frac{\lambda_{ba} \times r_{sc.ba}}{8760} = \frac{0.01 \times 90}{8760} = 0.103 \times 10^{-3}$$

Probability of power outage in the whole area:

Line N-3:

$$h = q_d^{"} + 2 \times k (f_d + 4 \times q_{dcl} + 2 \times q_{mc}) \times q_d^{'} + (q_{dcl} + q_{ba} + q_{mc})^2$$

$$= 0.022 \times 10^{-3} + 2 \times 0.3[(0.941 + 4 \times 0.0103 + 2 \times 0.002) \times 10^{-3}] \times 0.203 \times 10^{-3} + [(0.0103 + 0.002 + 0.103) \times 10^{-3}]^2$$

$$= 0.022 \times 10^{-3}$$

Line N – 4:

$$h = q_d^{"} + 2 \times k (f_d + 4 \times q_{dcl} + 2 \times q_{mc}) \times q_d^{'} + (q_{dcl} + q_{ba} + q_{mc})^2$$

$$= 0.024 \times 10^{-3} + 2 \times 0.3 [(1.021 + 4 \times 0.0103 + 2 \times 0.002) \times 10^{-3}] \times 0.22 \times 10^{-3} + [(0.0103 + 0.002 + 0.103) \times 10^{-3}]^2$$

$$= 0.024 \times 10^{-3}$$

⇒ Probability of stopping power supply of area 2 (case 1):

$$0.022 \times 10^{-3} + 0.024 \times 10^{-3} = 0.046 \times 10^{-3}$$

Similar calculations apply for other dual conductors line network.

PROJECT 1 Page 94/169

No.	Case	Line	Fault probability
1	Area 2 case 1	N - 3, N - 4	8.44*10 ⁻⁵
2	Area 3 case 1	N - 5, N - 6	6.2*10 ⁻⁵
3	Area 1 case 2	N – 1	2.4*10 ⁻⁵

Table 2.64 Probability of power supply disturbance of dual conductors lines

2.4.3 Summary and provide optimization

Area	Indicators	Indicators Unit C		Case 2 value	
	Investment K	\$	1 518 239	2 381 335	
	investment ix	Ψ	1 310 239	2 301 333	
	Power loss △A	MWh	4471.73	5747.42	
1	$\Delta U\%$ max	%	3.73	8.95	
	Non-ferrous metal used	Ton	179.747	273.6	
	Cost annually Z	\$	541 171.885	816 544.255	
	Failure probability	%	2.554*10 ⁻³	1.074*10 ⁻³	

Table 2.65 Summary of economy indicators of Area 1

Area	Indicators	Unit	Case 1 value	Case 2 value	
	Investment K	\$	2 808 187	1 941 165	
	Power loss ΔA	MWh	3451.86	3455.27	
2	$\Delta U\%$ max	%	2.61	3.38	
	Non-ferrous metal used	Ton	171.57	188.834	
	Cost annually Z	\$	771 967.365	544 884.775	
	Failure probability	%	8.44*10 ⁻⁵	3.625*10 ⁻³	

Table 2.66 Summary of economy indicators of Area 2

PROJECT 1 Page 95/169

Area	Indicators	Unit	Case 1 value	Case 2 value	
	Investment K	\$	2 920 216	2 194 616	
	Power loss ΔA	MWh	4502.432	4464.912	
3	$\Delta U\%$ max	%	3.11	3.8	
	Non-ferrous metal used	Ton	177.09	219.214	
	Cost annually Z	\$	862 100.2	652 330.92	
	Failure probability	%	6.2*10 ⁻⁵	3.845*10 ⁻³	

Table 2.67 Summary of economy indicators of Area 2

After considering all indicators of technical and economic, i have come to the final conclusion. The most optimal case of every area is :

- Area 1 case 1 : Star circuit

- Area 2 case 2 : Ring circuit

- Area 3 case 2 : Ring circuit

PROJECT 1 Page 96/169

Indicators	Unit	Value
Investment K	\$	5654020
Power loss ΔA	MWh	12391.912
$\Delta U\%$ max	%	10.91
Non-ferrous metal used	Ton	587.795
Cost annually Z	\$	1738387.58
Failure probability	%	10.024

Table 2.68 Summary of economy indicators of optimal options

Figure 2.22 Optimal choice

Student : Ninh Thế Vĩnh Cường

CHAPTER 3. DETERMINATION OF RATED POWER TRANSFORMERS IN DISTRIBUTION STATION. STATION WIRING, AND NETWORK WIRING DIAGRAMS

3.1 Requirements

- he wiring outline should work as indicated by the accompanying necessities:
 Ensuring dependability and effortlessness, however the activity cycle should be adaptable, conservative or more all, guarantee wellbeing for individuals and hardware.
- In the design scope of this project, the power plant side only needs to start from the plant's high-voltage busbar.
- Select the limit and number of transformers dependent on the power supply necessities of each kind of load (note: a load with a pre-remunerated reactive limit should be utilized).
- In the scope of this project, no short-circuit calculation is required, but the diagram must show the proper placement of the circuit breaker.

3.2 Selecting the number and rated power of transformers

Transformer type:

- Use 3-phase 2-coil isolation transformers.
- Transformer has voltage change under load or ordinary voltage change as indicated by prerequisites.
- Number of transformers: Depends on the power supply requirement of the load.
- We choose 2 transformers for the load requiring uninterrupted power supply.
- We choose 1 transformer for the load requiring intermittent power supply.

3.3 Rated power of transformers

• For a station with 1 transformer, choose the capacity of the transformer according to the condition

$$S_{dmB} \geq S_{pt \max}$$

• For a station with 2 transformers, we should choose based on the following condition

$$S_{dmB} \ge \frac{S_{SC}}{1.4}$$

With:

S_{SC}: It is the capacity to be provided when a transformer failure occurs, in case the load is not cut off.

1.4: It is the passable factor for a transformer to overload 40% when a transformer disappointment happens with an overloaded season of 6 hours in 1 day and night and keeps going close to 5 days and evenings.

3.4 Selecting transformers

Load	P	Q-Q _b	S	Transformer quantity	Continuous required	Rated power
1	31.5	12.35	33.83	1	No	40
2	27.5	10.04	29.27	1	No	30
3	22.5	10.69	24.91	2	Yes	20
4	27.5	13.32	30.55	2	Yes	25
5	35	13.69	37.58	2	Yes	30
6	22.5	9.05	24.25	2	Yes	20

Table 3.1 Transformers selection

3.5 Calculation formulas and transformer parameters

- **Resistance:**
$$R_B = \frac{\Delta P_N \times U_{dm}^2}{S_{dm}^2} \times 10^3 (\Omega)$$

Page 99/169

- **Impedance:** $Z_B = \frac{U_N \% \times U_{dm}^2}{S_{dm}} \times 10(\Omega)$

- **Reactance:** $X_B = \sqrt{Z_B^2 - R_B^2}(\Omega)$

- Resistance power loss in iron of a machine::

$$\Delta Q_{Fe} = \frac{i_0 \% \times S_{dm}}{100} (kVAr)$$

Active power loss in steel core::

$$\Delta P_{F_{e}} = \Delta P_{0}$$

Where:

 $\Delta P_N(kW)$; $U_{dm}(kV)$; $S_{dm}(KVA)$

 R_B in station with 2 transformers = R_B of 1 transformer/2

 X_B in station with 2 transformers = X_B of 1 transformer /2

 ΔP_{Fe} in station with 2 transformers = ΔP_{Fe} of 1 transformer $\times 2$

 ΔQ_{Fe} in station with 2 transformers = ΔQ_{Fe} of 1 transformer $\times 2$

Station	Transformer	Rated Power (MW)	Rated Voltage (kV)	ΔP_N (kW)	ΔP_{Fe} (kW)	%U	%i	R	X	ΔQ_{Fe} (kVar)
1	1	40	110	175	42	10.5	0.7	1.32	31.78	280
2	1	30	110	132	17	13	0.15	1.775	52.4	45
3	2	20	110	163	120	10.5	3	2.45	31.67	1200
4	2	25	110	120	58	10.5	0.8	1.16	25.38	400
5	2	30	110	132	34	13	0.15	0.885	26.2	90
6	2	20	110	163	120	10.5	3	2.45	31.67	1200

Table 3.2 Transformers' parameters

CHAPTER 4. DETERMINATION OF ECONOMIC COMPENSATION AND TOTAL POWER LOSS

4.1 Calculation contents

- Economic remuneration as well as expanding line Cosφ it is additionally a technique to help decrease power misfortune and limit misfortune.
- In the extent of this undertaking, we need to focus on the financial remuneration to build the Cosφ of the line and decrease the power misfortune by putting static pay in the electrical network as opposed to utilizing a coordinated compensator on the grounds that in the plan of the capacitor network. compensators are all the more regularly utilized in light of the fact that capacitors devour almost no P (active power) power. Furthermore, the utilization of pay capacitors additionally has advantages, for example, financial capacitors that are modest, don't have similar working expenses as the remuneration machine because of less misfortunes than compensators, actually, the capacitor is not difficult to fix and upkeep.

4.2 Calculations requirements

- Calculate using reactive power of the load before preliminary compensation.
- The iron loss of the transformer and the reactive capacity due to line capacitance is not considered.
- Power loss P (active power) is not considered.
- Consider only the resistance of the line and of the transformer.
- Set the offset capacity Q at each load as an unknown number and then write the equation for the computational loss cost Z of the electrical network due to the economical compensation equipment.
- Calculate the partial derivative $\frac{\delta_Z}{\delta Q_{\text{but}}}$ and let it be zero.

PROJECT 1

Page 101/169

- Proceed to solve the system of linear first-order equations the unknown number Q_b.
- If solving the power $Q_{b,i}=0$, the ith load does not need to be compensated, we subtract one partial derivative equation I and for the remaining equations $Q_{b,i}=0$ and solve the system of equations n-1 hidden number Q_b
- Attention: If $Q_{b,i}$ have smaller than zero result, we have to solve it again and we should only compensate $Cos\phi$ to 0.95 to be economically effective.

4.3 Economic compensation

Cost calculation: $Z=Z_1+Z_2+Z_3$

- Annual cost due to investment in equipment is compensated:

$$Z_1 = (a_{vh} + a_{tc}) \times K_0 \times Q_{bu}$$

Where:

 K_0 : cost of 1 unit capacity compensation equipment, with

$$K_0 = 5$$
\$ $/ kVAr = 5 \times 10^3$ \$ $/ MVAr$

 a_{vh} : the operating coefficient of the compensation device, with $a_{vh} = 0.1$

 a_{tc} : return coefficient of additional investment, with $a_{tc} = 0.125$

Costs due to power loss:

$$Z_2 = c \times T \times \Delta P^* \times Q_b$$

Which:

c: Cost 1 MWh of power loss, with c = 0.05 / kWh = 50 / MWh

 ΔP^* : Loss of capacity of compensation equipment, with static capacitors equal to: $\Delta P^* = 0{,}005$

T: capacitor operating time, if the operation is 1 year, then T=8760 (h)

 Cost of power loss due to capacity components of the transmission line and transformer after installation of compensation equipment:

$$Z_3 = c \times \Delta P \times \tau$$

Where:

c: Cost 1 MWh of power loss, with c = 0.05 / kWh = 50 / MWh

$$\Delta P$$
: Line and transformer losses, with $\Delta P = \frac{(Q - Q_{bu})^2}{U^2} \times R$

 τ : Time maximum power loss, with $\tau = 3410,9(h)$

4.3.1 Area 1

Figure 4.1

The transformer winding resistance is directed toward 110kV:

$$R_{B1} = \frac{\Delta P_N \times U_{dm}^2}{S_{dm}^2} \times 10^3 = \frac{175 \times 110^2}{40000^2} \times 10^3 = 1.32(\Omega)$$

Line resistance:

$$R_{N-1} = 0.17 \times 44.72 = 7.6024(\Omega)$$
N
7.6024
RN-1
RB1
1.32

Figure 4.2

Cost calculation: $Z=Z_1+Z_2+Z_3$

$$\begin{split} Z_1 &= (a_{vh} + a_{tc}) \times K_0 \times Q_{bu} = (0.1 + 0.125) \times 5000 \times Q_{bu1} = 1125 \times Q_{bu1} \\ Z_2 &= c \times T \times \Delta P^* \times Q_b = 65 \times 0.005 \times 8760 \times Q_{bu1} = 2847 \times Q_{bu1} \\ Z_3 &= c \times \Delta P \times \tau = \frac{c \times \tau}{U^2} \times (Q_1 - Q_{bu1})^2 \times (R_{N-1} + R_{B1}) \\ &= \frac{65 \times 3410.9}{110^2} \times (20.35 - Q_{bu1})^2 \times (7.062 + 1.32) \\ &= 163.48 \times (20.35 - Q_{bu1})^2 \\ Z &= Z_1 + Z_2 + Z_3 = 1125 \times Q_{bu1} + 2847 \times Q_{bu1} + 163.48 \times (20.35 - Q_{bu1})^2 \\ &= 163.48 Q_{bu1}^2 + 2681.6 Q_{bu1} + 67700 \end{split}$$

Calculate its Partial derivative

$$\frac{d_Z}{dQ_{bu1}} = 326.96Q_{bu1} - 2681.6 = 0$$
$$Q_{bu1} = 8.2(MVAr)$$

Power factor at load after compensation

$$\tan \varphi_1' = \frac{Q_1 - Q_{bu1}}{P_1} = \frac{20.35 - 8.2}{19} = 0,37 \rightarrow \cos \varphi_1' = 0,933$$

 \Rightarrow Thus Q_{bu1} = 8.2 (MVAr)

Similar calculations used for Load 2. Thus

$$O2 = 6.65(MVAr)$$

$$\cos \varphi_{1} = 0.935$$

Load	P _{pt} (MW)	$\cos \varphi$	Qpt (MVAr)	Q _b (MVAr)	Q _{pt} – Q _b (MVAr)	S (MVA)	S' (MVA)	$\cos \varphi$
1	31.5	0.84	20.35	8.2	12.15	37.5	33.76	0.933
2	27.5	0.85	17.04	6.65	10.39	32.35	29.4	0.935

Table 4.1 Economic compensation for Load 1 and 2

Figure 4.3

The transformer winding resistance is directed toward 110kV:

$$R_{B5} = \frac{\Delta P_N \times U_{dm}^2}{2 \times S_{dm}^2} \times 10^3 = \frac{132 \times 110^2}{2 \times 30000^2} \times 10^3 = 0.885(\Omega)$$

$$R_{B6} = \frac{\Delta P_N \times U_{dm}^2}{2 \times S_{dm}^2} \times 10^3 = \frac{163 \times 110^2}{2 \times 20000^2} \times 10^3 = 2.45(\Omega)$$

Line resistance:

$$R_{N-6} = 0.21 \times 44.72 = 9.4(\Omega)$$

$$R_{5-6} = 0.46 \times 40 = 18.4(\Omega)$$

$$R_{N-5} = 0.17 \times 44.72 = 7.6(\Omega)$$

Figure 4.4

Set
$$x = 21.69 - Q_{bu5}$$
; $y = 18.05 - Q_{bu6}$

Distribution of reactive power in resistance diagram

$$Q_{N5} = \frac{x \times 27.8 + y \times 9.4}{35.4} = 0.785x + 0.265y$$

$$Q_{N6} = \frac{x \times 7.6 + y \times 26}{35.4} = 0.215x + 0.734y$$

$$Q_{56} = Q_{N5} - x = -0.215x + 0.265y$$

=157847.28-3972x-3972y

$$\begin{split} Z_1 + Z_2 &= 1125 \times (Q_{bu5} + Q_{bu6}) + 2847 \times (Q_{bu5} + Q_{bu6}) \\ &= 3972 \times (Q_{bu5} + Q_{bu6}) \\ &= -3972 \times (-Q_{bu5} - Q_{bu6}) \\ &= -3972 \times [-39.74 + (21.69 - Q_{bu5}) + (18.05 - Q_{bu6}) \\ &= -3972 \times [-39.74 + x + y] \end{split}$$

$$\begin{split} Z_3 &= c \times \Delta P \times \tau = \frac{c \times \tau}{U^2} \times (Q_5 - Q_{bu5})^2 \times (R_{N-5} + R_{B5}) \\ &= \frac{65 \times 3410,9}{110^2} \times [x^2 \times 0.885 + 2.45 \times y^2 \\ &+ (0.785x + 0.265y)^2 \times 7.6 \\ &+ (0.215x + 0.734y)^2 \times 9.4 \\ &+ (-0.215x + 0.265y)^2 \times 18.4] \\ &= 18.323 \times (6.849x^2 + 4.032xy + 9.334y^2) \end{split}$$

$$Z = Z_1 + Z_2 + Z_3 = 157847.28 - 3972x - 3972y + 18.323 \times (6.849x^2 + 4.032xy + 9.334y^2)$$

Calculate its Partial derivative

$$\frac{dz}{dx} = -3972 + 250.988x + 73.88y = 0$$

$$\frac{dz}{dy} = -3972 + 73.88x + 342.05y = 0$$

From two equations above, thus

$$x = 13.24$$

 $y = 8.75$

These equations equivalent to

$$21.69 - Q_{bu5} = x = 13.24$$
$$18.05 - Q_{bu6} = y = 8.75$$

Thus

PROJECT 1

Page 107/169

$$Q_{bu5} = 8.45(MVAr)$$
$$Q_{bu6} = 9.3(MVAr)$$

Power factors of these two loads are

$$\cos \varphi_{5} = 0.935$$

$$Cos \varphi_6$$
 = 0.932

Similar calculations apply for area 2

Load	Ppt	$\cos \varphi$	Qpt	Qb	$Q_{pt} - Q_b$	S	S'	cos a
Loau	(MW)	$\cos \varphi$	(MVAr)	(MVAr)	(MVAr)	(MVA)	(MVA)	$\cos \varphi$
3	22.5	0.72	21.69	12.42	9.27	31.25	24.33	0.925
4	27.5	0.9	13.32	2.49	10.85	30.55	29.56	0.93
5	35	0.85	21.69	8.45	13.24	41.17	37.42	0.935
6	22.5	0.78	18.05	9.3	8.75	28.84	24.14	0.932

Table 4.2 Economic compensation for Load 3, 4, 5 and 6

4.4 Summarize

Load	\mathbf{P}_{pt}	$\cos \varphi$	Qpt	Qb	$Q_{pt} - Q_b$	S	S'	$\cos \varphi$
Loau	(MW)	του φ	(MVAr)	(MVAr)	(MVAr)	(MVA)	(MVA)	$\cos \varphi$
1	31.5	0.84	20.35	8.2	12.15	37.5	33.76	0.933
2	27.5	0.85	17.04	6.65	10.39	32.35	29.4	0.935
3	22.5	0.72	21.69	12.42	9.27	31.25	24.33	0.925
4	27.5	0.9	13.32	2.49	10.85	30.55	29.56	0.93
5	35	0.85	21.69	8.45	13.24	41.17	37.42	0.935
6	22.5	0.78	18.05	9.3	8.75	28.84	24.14	0.932
Total	166.5		112.14	47.51	64.65	201.66	178.61	

Table 4.3 Summary of economic compensation

CHAPTER 5. ACCURACY BALANCE CALCULATION AND DISTRIBUTION OF FORMULAR COMPENSATION

5.1 Calculation purpose

- In the extent of this section, we need to figure the reactive power balance in the electrical network, however in the computation interaction, we need to note: If the power supply needs more reactive ability to supply the load, we need to repay persuasively. Notwithstanding, this requires a sensible dissemination of remuneration gadgets (capacitors).
- According to the issue, the source has the power factor $Cos\phi = 0.9$ on the grounds that the power supply is adequate active power P. Subsequently, the reactive limit produced by the source will be equivalent to: $Q_F = P_F \times \tan \varphi_F$

5.2 Calculate power at the end of line to the bar

5.2.1 Sending power of N-1, N-2

Figure 5.1

Page 109/169

Power loss in transformer B1:

$$\Delta P_{B1} = \frac{P_1^2 + (Q_1 - Q_{bu1})^2}{U_{dm}^2} \times R_{B1} = \frac{31.5^2 + (12.15)^2}{110^2} \times 1.32 = 0.124 (MW)$$

$$\Delta Q_{B1} = \frac{P_1^2 + (Q_1 - Q_{bu1})^2}{U_{dm}^2} \times X_{B1} = \frac{31.5^2 + 12.15^2}{110^2} \times 31.78 = 2.99(MVAr)$$

\Leftrightarrow Reactive power due to capacitance of line end N – 1:

$$\Delta Q_{C1} = \frac{Y_1}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.7623 (MVAr)$$

Power at the end of line impedance of line N – 1: \bullet

$$S_{T1} = (P_1 + j(Q_1 - Q_{b1})) + (\Delta P_{B1} + j\Delta Q_{B1}) + (\Delta P_{Fe1} + j\Delta Q_{Fe1}) - j\Delta Q_{C1}$$

= (31.5 + j12.15) + (0.124 + j2.99) + (42 + j280)×10⁻³ - j0.7623
= 31.666 + j14.66(MVA)

Power loss on line impedance N - **1:**

$$\Delta S_1 = \frac{(P_1^{"})^2 + (Q_1^{"})^2}{U_{\text{tot}}^2} \times (R_1 + jX_1) = \frac{31.666^2 + 14.66^2}{110^2} \times (7.6 + 18.1) = 0.765 + j1.82(MVA)$$

\Leftrightarrow Sending power of line N – 1:

$$S_{N-1} = S_1^{"} + \Delta S_1 - j\Delta Q_{C1} = (31.666 + j14.66) + (0.765 + j1.82) - j0.7623$$

= 32.431 + j15.72(MVA)

Similar calculations apply for line N-2, thus

$$S_{N-2} = 28.316 + j14.112(MVA)$$

5.2.2 Sending power of N - 5 - 6, N - 3 - 4

Figure 5.2

- > Calculate power at node 5
- **Power loss in transformer B5:**

$$\Delta S_{B5} = \frac{P_5^2 + (Q_5 - Q_{bu5})^2}{U_{dm}^2} \times (R_{B5} + jX_{B5}) = \frac{35^2 + 13.24^2}{110^2} \times (0.885 + j26.2) = 0.102 + j3.03(MVA)$$

Power in station B5:

$$S_{T5} = (P_5 + j(Q_5 - Q_{b5})) + (\Delta P_{B5} + j\Delta Q_{B5}) + (\Delta P_{Fe5} + j\Delta Q_{Fe5})$$

= $(35 + j13.24) + (0.102 + j3.03) + (34 + j90) \times 10^{-3}$
= $35.136 + j16.36(MVA)$

❖ Reactive power is generated by 1/2 of the capacitance of the line N - 5

$$\Delta Q_{C5} = \frac{Y_5}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.763 (MVAr)$$

 \Leftrightarrow Reactive power is generated by 1/2 of the capacitance of the line 5 – 6

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104 \times 10^{-6}}{2} \times 110^2 = 0.63 (MVAr)$$

❖ Power at node 5 :

$$S_{5}^{'} = P_{T5} + j(Q_{T5} - \Delta Q_{CN-5} - \Delta Q_{C5-6}) = 35.136 + j(16.36 - 0.763 - 0.63) = 35.136 + j14.97(MVA)$$

Similar calculations for node 6, node 3 and node 4, thus

$$S_6' = 22.738 + j10.09$$

$$S_3' = 22.74 + j10.763$$

$$S_{4}^{'} = 27.642 + j11.763$$

Approximate power distribution according to the total impedance

$$Z_{N-5} = R_{N-5} + jX_{N-5} = 7.6 + j18.1(\Omega)$$

$$Z_{5-6} = R_{5-6} + jX_{5-6} = 18.4 + j17.64(\Omega)$$

$$Z_{N-6} = R_{N-6} + jX_{N-6} = 9.4 + j18.33(\Omega)$$

Figure 5.3

Power delivered on line N-5

$$S_{N-5}^{*} = \frac{S_{5}^{*'}(Z_{5-6} + Z_{N-6}) + S_{6}^{*'}(Z_{N-6})}{Z_{5-6} + Z_{N-6} + Z_{N-5}}$$

$$= \frac{(35.136 - j14.97) \times (27.8 + j35.97) + (22.738 - j10.09) \times (9.4 + j18.33)}{35.4 + j54.07}$$

$$= 31.38 - j14.65(MVA)$$

$$\Rightarrow S_{N-5} = 31.38 + j14.65(MVA)$$

$$S_{N-6}^{*} = \frac{S_{6}^{*'}(Z_{5-6} + Z_{N-5}) + S_{5}^{*'}(Z_{N-5})}{Z_{5-6} + Z_{N-6} + Z_{N-5}}$$

$$= \frac{(22.738 - j10.09) \times (26 + j35.74) + (35.136 - j14.967) \times (7.6 + j18.1)}{35.4 + j54.07}$$

$$= 26.51 - j10.19(MVA)$$

$$\Rightarrow S_{N-6} = 26.51 + j10.19(MVA)$$

Re-check

$$S_{N-5} + S_{N-6} \approx S_5^{'} + S_6^{'}$$

 $\rightarrow S_5^{'} + S_6^{'} = 35.136 + j14.967 + 22.738 + j10.09 = 57.874 + j25.054(MVA)$
 $\rightarrow S_{N-5} + S_{N-6} = 31.38 + j14.65 + 26.51 + j10.19 = 57.89 + j24.84(MVA)$

Similar calculations apply for area 2, so

$$S_{N-3} = 24.03 + j11.23(MVA)$$

 $S_{N-4} = 25.36 + j11.42(MVA)$

Arr Power delivered on line 5 – 6

$$S_{5-6} = S_{N-5} - S_5^{'} = (31.38 + j14.65) - (35.136 + j14.97) = -3.756 - j0.32(MVA)$$

\Rightarrow Power loss on 5 – 6

$$\Delta P_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times R_{5-6} = \frac{(-3.756)^2 + (-0.32)^2}{110^2} \times 18.3 = 0.021(MW)$$

$$\Delta Q_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{5-6}^2} \times X_{5-6} = \frac{(-3.756)^2 + (-0.32)^2}{110^2} \times 17.64 = 0.021(MVAr)$$

\Rightarrow Power loss on N – 5

$$\Delta P_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{dm}^2} \times R_{N-5} = \frac{31.38^2 + 14.65^2}{110^2} \times 7.6 = 0.753 (MW)$$

$$\Delta Q_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{dm}^2} \times X_{N-5} = \frac{31.38^2 + 14.65^2}{110^2} \times 18.1 = 1.794 (MVAr)$$

ightharpoonup Power loss on N – 6

PROJECT 1

Page 113/169

$$\Delta P_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{dm}^2} \times R_{N-6} = \frac{26.51^2 + 10.19^2}{110^2} \times 9.4 = 0.63(MW)$$

$$\Delta Q_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{dm}^2} \times X_{5-6} = \frac{26.51^2 + 10.19^2}{110^2} \times 18.33 = 1.22(MVAr)$$

\Rightarrow Sending power of line N – 5 – 6

$$\begin{split} S_{N-5-6} &= S_{5-6} + (\Delta P_{5-6} + j\Delta Q_{5-6}) - j\Delta Q_{5C-6} + S_{T5} - j\Delta Q_{CN-5} + (\Delta P_{N-5} + j\Delta Q_{N-5}) - j\Delta Q_{CN-5} \\ &= (3.756 + j0.32) + (0.021 + j0.021) - j0.63 + (35.136 + j14.97) - j0.763 + (0.753 + j1.794) - j0.763 \\ &= 39.67 + j14.95 \end{split}$$

\Rightarrow Sending power of line N – 6

$$S_{N-6} = S_{N-6} + (\Delta P_{N-6} + j\Delta Q_{N-6}) - j\Delta Q_{CN-6}$$

= (26.51 + j10.19) + (0.63 + j1.22) - j0.75
= 24.13 + j10.57(MVA)

Similar calculations apply for area 2

$$S_{N-3-4} = 24.536 + j10.266(MVA)$$

 $S_{N-4} = 25.96 + j12.19(MVA)$

Line	P (MW)	Q (MVAr)
N – 1	32.431	15.72
N – 2	28.316	14.112
N – 3	24.536	10.266
N – 4	25.96	12.19
N – 5	39.67	14.95
N – 6	24.13	10.57
$\sum S_i$	175.043	77.808

Table 5.1 Sending power for every load

❖ Total apparent power is generated on high voltage bus bar

$$S_{yc\Sigma} = P_{yc\Sigma} + jQ_{yc\Sigma} = 168.027 + j77.322(MVA)$$

***** Active power is generated

$$P_F = P_{yc\Sigma} = 168.027(MW)$$

PROJECT 1

Page 114/169

- **\$** Generating source is sufficient to provide active power for the load and capable of adjusting reactive power according to power factor $\cos \varphi = 0.9$
- ***** Reactive power is generated

$$\cos \varphi_F = 0.9 \Rightarrow \operatorname{Tan} \varphi_F = 0.484$$

$$Q_F = P_F \times \operatorname{Tan} \varphi_F = 168.027 \times 0.484 = 81.325 (MVAr)$$

- ♣ Because $Q_F = 81.325(MVAr) > Q_{yc\Sigma} = 77.322MVAr)$ so we do not need to force-compensate reactive capacity for the electrical network
- ***** Then the source only needs to provide reactive power

$$Q_F = Q_{VC\Sigma} = 77.322(MVAr)$$

$$\Rightarrow \text{ Thus } \operatorname{Tan} \varphi_F = \frac{Q_{yc\Sigma}}{P_F} = \frac{77.322}{168.027} = 0,46 \Rightarrow \operatorname{Cos} \varphi_F = 0,908$$

Page 115/169

CHAPTER 6. POWER DISTRIBUTION CALCULATION IN ELECTRIC NETWORK

6.1 Purpose

- In the extent of this section, we need to precisely characterize the power appropriation boundaries at greatest load, at least load and issue in the electrical network.
- The estimation consequences of this part will incorporate the voltage and stage removal point at the load hubs, the active power misfortune and reactive power of the lines and transformers.

6.2 Calculation of working status of extremely accessories network

6.2.1 Replacement diagrams of the electric network

• Line N-1

Figure 6.1

• Line N-2

Figure 6.2

• Line N-3-4

Figure 6.3

• Line N - 5 - 6

Figure 6.4

6.2.2 Loads, lines and voltage transformers summary

Load	P	Qpt	Cosφ (before)	$\mathbf{Q}_{\mathbf{b}}$	$Q_{pt} - Q_{bu}$	Cosφ (after)
Load	(MVA)	(MVAr)	σουφ (μετοιε)	(MVAr)	€pt €bu	σουφ (απτεπ)
1	31.5	20.35	0.84	8.2	12.15	0.933
2	27.5	17.04	0.85	6.65	10.39	0.935
3	22.5	21.69	0.72	12.42	9.27	0.925
4	27.5	13.32	0.9	2.49	10.85	0.93
5	35	21.69	0.85	8.45	13.24	0.935
6	22.5	18.05	0.78	9.3	8.75	0.932
Total	166.5	112.14		47.51	64.65	

Table 6.1 Summary loads parameters

PROJECT 1 Page 118/169

Area	Line	R=r ₀ *l	$X=x_0*l$	$\mathbf{Y}(1/\Omega).10^{-6}$
Alta	Line	(Ω)	(Ω)	1 (1/ 52)•10
1	N – 1	7.6	18.1	126.1
	N – 2	8.66	16.9	114.2
	N-3	8.66	16.9	114.2
2	3 – 4	16.58	15.9	93.73
	N – 4	9.4	18.33	123.87
	N – 5	7.6	18.1	126.1
3	5 – 6	18.4	17.64	104
	N - 6	9.4	18.33	123.87

Table 6.2 Summary line parameters

Load	Quantity	$S_{ m dm}$	$\mathbf{R}_{\mathbf{B}}(\Omega)$	$\mathbf{X}_{\mathbf{B}}(\Omega)$	ΔP_{Fe} (MW)	ΔQ_{Fe} (MVAr)
1	1	40	1.32	31.78	42	280
2	1	30	1.775	52.4	17	45
3	2	20	2.45	31.67	120	1200
4	2	25	1.16	25.38	58	400
5	2	30	0.885	26.2	34	90
6	2	20	2.45	31.67	120	1200

Table 6.3 Summary transformers parameters

Student : Ninh Thế Vĩnh Cường

6.3 Calculation of voltage and total power loss at maximum load.

When load at maximum : $U_N = 1.1 \times U_{dm} = 1.1 \times 110 = 121(kV)$

6.3.1 The reverse process calculating from the end to the start of lines, use rated voltage

Power loss in transformer B1:

$$\Delta P_{B1} = \frac{P_1^2 + (Q_1 - Q_{bu1})^2}{U_{dm}^2} \times R_{B1} = \frac{31.5^2 + (12.15)^2}{110^2} \times 1.32 = 0.124(MW)$$

$$\Delta Q_{B1} = \frac{P_1^2 + (Q_1 - Q_{bu1})^2}{U_{dm}^2} \times X_{B1} = \frac{31.5^2 + 12.15^2}{110^2} \times 31.78 = 2.99(MVAr)$$

\Leftrightarrow Reactive power due to capacitance of line end N – 1:

$$\Delta Q_{C1} = \frac{Y_1}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.7623 (MVAr)$$

Power at the end of line impedance of line N – 1: \bullet

$$S_{T1} = (P_1 + j(Q_1 - Q_{b1})) + (\Delta P_{B1} + j\Delta Q_{B1}) + (\Delta P_{Fe1} + j\Delta Q_{Fe1}) - j\Delta Q_{C1}$$

= (31.5 + j12.15) + (0.124 + j2.99) + (42 + j280) × 10⁻³ - j0.7623
= 31.666 + j14.66(MVA)

Power loss on line impedance N - 1:

$$\Delta S_1 = \frac{(P_1^{"})^2 + (Q_1^{"})^2}{U_{dm}^2} \times (R_1 + jX_1) = \frac{31.666^2 + 14.66^2}{110^2} \times (7.6 + 18.1) = 0.765 + j1.82(MVA)$$

\Rightarrow Sending power of line N – 1:

$$S_{N-1} = S_1^{"} + \Delta S_1 - j\Delta Q_{C1} = (31.666 + j14.66) + (0.765 + j1.82) - j0.7623$$

= 32.431 + j15.72(MVA)

Similar calculations apply for line N-2, thus

$$S_{N-2} = 28.32 + j14.112(MVA)$$

- > Calculate power at node 5
- **Power loss in transformer B5:**

PROJECT 1

Page 120/169

$$\Delta S_{B5} = \frac{P_5^2 + (Q_5 - Q_{bu5})^2}{U_{dm}^2} \times (R_{B5} + jX_{B5}) = \frac{35^2 + 13.24^2}{110^2} \times (0.885 + j26.2)$$

= 0.102 + j3.03(MVA)

❖ Power in station B5:

$$S_{T5} = (P_5 + j(Q_5 - Q_{b5})) + (\Delta P_{B5} + j\Delta Q_{B5}) + (\Delta P_{Fe5} + j\Delta Q_{Fe5})$$

= $(35 + j13.24) + (0.102 + j3.03) + (34 + j90) \times 10^{-3}$
= $35.136 + j16.36(MVA)$

❖ Reactive power is generated by 1/2 of the capacitance of the line N - 5

$$\Delta Q_{C5} = \frac{Y_5}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.763 (MVAr)$$

Reactive power is generated by 1/2 of the capacitance of the line 5-6

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104 \times 10^{-6}}{2} \times 110^2 = 0.63 (MVAr)$$

❖ Power at node 5 :

$$S_{5}^{'} = P_{T5} + j(Q_{T5} - \Delta Q_{CN-5} - \Delta Q_{C5-6}) = 35.136 + j(16.36 - 0.763 - 0.63) = 35.136 + j14.967(MVA)$$

Similar calculations for node 6, node 3 and node 4, thus

$$S_6^{'} = 22.738 + j10.09$$

 $S_3^{'} = 22.74 + j10.763$
 $S_4^{'} = 27.642 + j11.763$

Approximate power distribution according to the total impedance

$$\begin{split} Z_{N-5} &= R_{N-5} + jX_{N-5} = 7.6 + j18.1(\Omega) \\ Z_{5-6} &= R_{5-6} + jX_{5-6} = 18.4 + j17.64(\Omega) \\ Z_{N-6} &= R_{N-6} + jX_{N-6} = 9.4 + j18.33(\Omega) \end{split}$$

Power delivered on line N-5

$$\begin{split} S_{N-5}^* &= \frac{S_5^{*'}(Z_{5-6} + Z_{N-6}) + S_6^{*'}(Z_{N-6})}{Z_{5-6} + Z_{N-6} + Z_{N-5}} \\ &= \frac{(35.136 - j14.967) \times (27.8 + j35.97) + (22.738 - j10.09) \times (9.4 + j18.33)}{35.4 + j54.07} \\ &= 31.38 - j14.65(MVA) \\ \Rightarrow S_{N-5} &= 31.38 + j14.65(MVA) \end{split}$$

Page 121/169

$$\begin{split} S_{N-6}^* &= \frac{S_6^{*'}(Z_{5-6} + Z_{N-5}) + S_5^{*'}(Z_{N-5})}{Z_{5-6} + Z_{N-6} + Z_{N-5}} \\ &= \frac{(22.738 - j10.09) \times (26 + j35.74) + (35.136 - j14.967) \times (7.6 + j18.1)}{35.4 + j54.07} \\ &= 26.51 - j10.19(MVA) \\ \Rightarrow S_{N-6} &= 26.51 + j10.19(MVA) \end{split}$$

Similar calculations apply for area 2, so

$$S_{N-3} = 24.03 + j11.23(MVA)$$

 $S_{N-4} = 25.36 + j11.42(MVA)$

❖ Power delivered on line 5 − 6

$$S_{5-6} = S_{N-5} - S_5^{'} = (31.38 + j14.65) - (35.136 + j14.97) = -3.756 - j0.32(MVA)$$

\Rightarrow Power loss on 5 – 6

$$\Delta P_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times R_{5-6} = \frac{(-3.756)^2 + (-0.32)^2}{110^2} \times 18.3 = 0.021(MW)$$

$$\Delta Q_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times X_{5-6} = \frac{(-3.756)^2 + (-0.32)^2}{110^2} \times 17.64 = 0.021(MVAr)$$

\Rightarrow Power loss on N – 5

$$\Delta P_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{dm}^2} \times R_{N-5} = \frac{31.38^2 + 14.65^2}{110^2} \times 7.6 = 0.753 (MW)$$

$$\Delta Q_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{d}^2} \times X_{N-5} = \frac{31.38^2 + 14.65^2}{110^2} \times 18.1 = 1.794 (MVAr)$$

\Rightarrow Power loss on N – 6

$$\Delta P_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{dm}^2} \times R_{N-6} = \frac{26.51^2 + 10.19^2}{110^2} \times 9.4 = 0.63(MW)$$

$$\Delta Q_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{L}^2} \times X_{5-6} = \frac{26.51^2 + 10.19^2}{110^2} \times 18.33 = 1.22(MVAr)$$

\Rightarrow Sending power of line N – 5 – 6

$$\begin{split} S_{N-5-6} &= S_{5-6} + (\Delta P_{5-6} + j\Delta Q_{5-6}) - j\Delta Q_{5C-6} + S_{T5} \\ &- j\Delta Q_{CN-5} + (\Delta P_{N-5} + j\Delta Q_{N-5}) - j\Delta Q_{CN-5} \\ &= (3.756 + j0.32) + (0.021 + j0.021) - j0.63 \\ &+ (35.136 + j14.97) - j0.763 + (0.753 + j1.794) - j0.763 \\ &= 39.67 + j14.95 \end{split}$$

\Rightarrow Sending power of line N – 6

$$S_{N-6} = S_{N-6}^{\dagger} + (\Delta P_{N-6} + j\Delta Q_{N-6}) - j\Delta Q_{CN-6}$$

= (26.51 + j10.19) + (0.63 + j1.22) - j0.75
= 24.13 + j10.57(MVA)

Similar calculations apply for area 2

$$S_{N-3-4} = 24.536 + j10.266(MVA)$$

 $S_{N-4} = 25.96 + j12.19(MVA)$

6.3.2 The process calculating from the start to the end of lines to find voltage at nodes

- **❖** Line N − 1
- **❖** Calculate voltage at node 1
- Sending power on line N-1 (from previous calculations)

$$S_1' = 32.431 + j15.72(MVA)$$

- Voltage drop on N-1:

$$\Delta U_1 = \frac{P_1^{'} \times R_1 + Q_1^{'} \times X_1}{U_N} = \frac{32.431 \times 7.6 + 15.72 \times 18.1}{121} = 4.388(kV)$$

- Voltage at the end of line N-1:

$$U_1 = U_N - \Delta U_1 = 121 - 4.388 = 116.612(kV)$$

Power before station B1:

$$S_{B1} = (P_1 + j(Q_1 - Q_{b1})) + (\Delta P_{B1} + j\Delta Q_{B1})$$

= (31.5 + j12.15) + (0.124 + j2.99)
= 31.624 + j15.14(MVA)

Voltage drop on station B1:

$$\Delta U_{B1} = \frac{P_{B1} \times R_{B1} + Q_{B1} \times X_{B1}}{U_{1}} = \frac{31.624 \times 1.32 + 15.14 \times 31.78}{116.612} = 4.484(kV)$$

Load 1's voltage convert to primary side:

$$U_1' = U_1 - \Delta U_{B1} = 116.612 - 4.484 = 112.128(kV)$$

- Secondary side voltage of station B1:

$$U_{haB1} = \frac{U_{1}^{'}}{k} = \frac{U_{1}^{'}}{\frac{U_{dmcao}}{U_{ktha}}} = \frac{112.128}{\frac{110}{22 \times 1,1}} = 24.67(kV)$$

Voltage difference:

%
$$\Delta U = \frac{U_{haB1} - U_{dmha}}{U_{dmha}} \times 100 = \frac{24.67 - 22}{22} \times 100 = 12.13\%$$

- **❖** Line N − 2:
- **Calculate voltage at node 2:**
- Sending power on line N-2 (from previous calculations)

$$S_2' = 28.316 + j14.112(MVA)$$

- Voltage drop on N-2:

$$\Delta U_2 = \frac{P_2^{'} \times R_2 + Q_2^{'} \times X_2}{U_N} = \frac{28.316 \times 1.775 + 14.112 \times 52.4}{121} = 6.52(kV)$$

- Voltage at the end of line N-2:

$$U_2 = U_N - \Delta U_2 = 121 - 6.52 = 114.48(kV)$$

Power before station B2:

$$S_{B2} = (P_2 + j(Q_2 - Q_{b2})) + (\Delta P_{B2} + j\Delta Q_{B2})$$

= (27.5 + j10.39) + (0.102 + j3.03)
= 27.602 + j13.69(MVA)

Voltage drop on station B2:

$$\Delta U_{B2} = \frac{P_{B2} \times R_{B2} + Q_{B2} \times X_{B2}}{U_{2}} = \frac{27.602 \times 1.775 + 13.69 \times 52.4}{114.48} = 6.69kV$$

Load 2's voltage convert to primary side:

$$U_2' = U_2 - \Delta U_{B2} = 114.48 - 6.69 = 107.79(kV)$$

Secondary side voltage of station B2:

$$U_{haB2} = \frac{U_{2}^{'}}{k} = \frac{U_{2}^{'}}{U_{dmcao}} = \frac{117.79}{110} = 23.7138(kV)$$

$$U_{haB2} = \frac{U_{2}^{'}}{k} = \frac{U_{2}^{'}}{U_{dmcao}} = \frac{117.79}{22 \times 1,1} = 23.7138(kV)$$

Page 124/169

Voltage difference:

%
$$\Delta U = \frac{U_{haB2} - U_{dmha}}{U_{dmha}} \times 100 = \frac{23.7138 - 22}{22} \times 100 = 7.79\%$$

- **❖** Line N − 5:
- **Calculate voltage at node 5:**
- Sending power on line N-5 (from previous calculations) sai số

$$S_5' = S_{N-5} + j\Delta Q_{CN-5} = 39.66 + j14.95 + j0.763 = 39.66 + j15.712(MVA)$$

- Voltage drop on line N-5:

$$\Delta U_5 = \frac{P_5 \times R_5 + Q_5 \times X_5}{U_{N}} = \frac{39.66 \times 7.6 + 15.72 \times 18.1}{121} = 4.84(kV)$$

- Voltage at the end of line N-5:

$$U_5 = U_N - \Delta U_5 = 121 - 4.84 = 116.16(kV)$$

Power before station B5:

$$S_{B5} = (P_5 + j(Q_5 - Q_{b5})) + (\Delta P_{B5} + j\Delta Q_{B5})$$

= (35 + j13.24) + (0.102 + j3.03)
= 35.102 + j16.27(MVA)

Voltage drop on station B5:

$$\Delta U_{B5} = \frac{P_{B5} \times R_{B5} + Q_{B5} \times X_{B5}}{U_{\epsilon}} = \frac{35.102 \times 0.885 + 16.27 \times 26.2}{116.16} = 3.93(kV)$$

Load 5's voltage convert to primary side:

$$U_5' = U_5 - \Delta U_{B5} = 116.16 - 3.93 = 112.23(kV)$$

Secondary side voltage of station B5:

$$U_{haB5} = \frac{U_{5}^{'}}{k} = \frac{U_{5}^{'}}{\frac{U_{dmcao}}{U_{ktha}}} = \frac{112.23}{\frac{110}{22 \times 1,1}} = 24.7(kV)$$

Voltage difference:

%
$$\Delta U = \frac{U_{haB5} - U_{dmha}}{U_{dmha}} \times 100 = \frac{24.7 - 22}{22} \times 100 = 12.2\%$$

- **❖** Line 5 − 6:
- Sending power on line 5 6

$$S_{5-6}' = -3.756 - j0.32$$

- Voltage drop on 5-6:

$$\Delta U_{5-6} = \frac{P_{5-6}^{'} \times R_{5-6} + Q_{5-6}^{'} \times X_{5-6}}{U_{N}} = \frac{-3.756 \times 18.4 - 0.32 \times 17.64}{121} = -0.72(kV)$$

Voltage at the end of line 5-6 (also known as voltage on the left of node
6):

$$U_{6t} = U_5 - \Delta U_{5-6} = 116.16 - (-0.72) = 116.87(kV)$$

- **❖** Line N − 6:
- **Calculate voltage at node 6:**
- Sending power on line N 6 (from previous calculations)

$$S_{6}^{'} = S_{N-6} + j\Delta Q_{CN-6} = 27.136 + j10.57 + j0.75 = 27.136 + j11.32(MVA)$$

- Voltage drop on line N-6:

$$\Delta U_6 = \frac{P_6 \times R_6 + Q_6 \times X_6}{U_{N}} = \frac{27.136 \times 9.4 + 11.32 \times 18.33}{121} = 3.82(kV)$$

 Voltage at the end of line N – 6 (also known as voltage on the right of node 6):

$$U_{6p} = U_N - \Delta U_6 = 121 - 3.82 = 117.18(kV)$$

- Voltage at node 6:

$$U_6 = \frac{U_{6t} + U_{6p}}{2} = \frac{116.87 + 117.18}{2} = 117.02(kV)$$

Power before station B6:

$$\begin{split} S_{B6} &= (P_6 + j(Q_6 - Q_{b6})) + (\Delta P_{B6} + j\Delta Q_{B6}) \\ &= (22.5 + j8.75) + (0.118 + j1.52) \\ &= 22.618 + j10.27(MVA) \end{split}$$

Voltage drop on station B6:

$$\Delta U_{B6} = \frac{P_{B6} \times R_{B6} + Q_{B6} \times X_{B6}}{U_{6}} = \frac{22.618 \times 2.45 + 10.27 \times 31.67}{117.19} = 3.25(kV)$$

- Load 6's voltage convert to primary side:

$$U_6' = U_6 - \Delta U_{B6} = 117.02 - 3.25 = 113.77(kV)$$

Secondary side voltage of B6:

$$U_{haB6} = \frac{U_{6}^{'}}{k} = \frac{U_{6}^{'}}{\frac{U_{dmcao}}{U_{ktha}}} = \frac{115.94}{\frac{110}{22 \times 1,1}} = 25.03(kV)$$

Voltage difference:

%
$$\Delta U = \frac{U_{haB6} - U_{dmha}}{U_{dmha}} \times 100 = \frac{25.03 - 22}{22} \times 100 = 13.77\%$$

❖ Similar calculation apply for area 2, thus

$$U_{N-3} = 117.71(kV)$$

 $U_{c3} = 114.33(kV)$
 $U_{h3} = 25.15(kV)$

%
$$\Delta U$$
 at node 3 = 14.33%

$$U_{N-4} = 117.02(kV)$$

$$U_{c4} = 114.18(kV)$$

$$U_{h4} = 25.12(kV)$$

%
$$\Delta U$$
 at node 4 = 14.18%

PROJECT 1 Page 127/169

Line	Active power loss ΔP_L (MW)	Reactive power loss ΔQ_L (MVAr)	The reactive power is generated by the line capacitance ΔQ_C on both heads (MVAr)
N-1	0.765	1.82	1.525
N – 2	0.677	1.32	1.38
N – 3	0.503	0.982	1.38
3 – 4	1.29	0.468	1.134
N – 4	0.6	1.17	1.499
N – 5	0.753	1.794	1.525
5 – 6	3.756	0.32	1.2584
N – 6	0.626	1.22	1.499
Σ	8.97	9.094	11.2

Table 6.4 Lines losses at maximum load

Station	ΔP_{Fe}	ΔQ_{Fe}	$\Delta P_{CU} = \Delta P_B$	$\Delta Q_{CU} = \Delta Q_B$
Station	(MW)	(MVAr)	(MW)	(MVAr)
1	0.042	0.28	0.124	2.99
2	0.017	0.045	0.127	3.74
3	0.12	1.2	0.12	1.55
4	0.058	0.4	0.084	1.83
5	0.034	0.09	0.102	3.03
6	0.12	1.2	0.118	1.52
Σ	0.349	3.215	0.675	14.66

Table 6.5 Transformers losses at maximum load

PROJECT 1 Page 128/169

Line	Primary voltage(kV)	Secondary converted to primary voltage(kV)	Secondary voltage(kV)	% ∆U
1	116.612	112.128	24.67	12.13
2	114.48	107.79	23.7138	7.79
3	117.71	114.33	25.15	14.33
4	117.21	114.18	25.12	14.18
5	116.16	112.22	24.68	12.22
6	117.02	113.77	25.03	13.77

Table 6.6 Voltage at loads at maximum load

Line	P (MW)	Q (MVAr)
N – 1	32.431	15.72
N – 2	28.316	14.112
N – 3	24.03	11.23
N – 4	25.36	11.42
N – 5	31.38	14.65
N – 6	26.51	10.19
$\sum S_i$	168.027	77.322

Table 6.7 Sending power at maximum load

6.4 Calculation of voltage and total power loss at minimum Load

6.4.1 Data

Load	P _{ptmax} (MW)	P _{ptmin} (%P _{max}) (MW)		$\cos \varphi$	Q _{ptmin} (MVAr)
1	31.5	40%	12.6	0.84	8.14
2	27.5	40%	11	0.85	6.81
3	22.5	40%	9	0.72	8.67
4	27.5	40%	11	0.9	5.32
5	35	40%	14	0.85	8.67
6	22.5	40%	9	0.78	7.22

Table 6.8 Loads at minimum

When the load at minimum : $U_N = 1,05 \times U_{dm} = 1,05 \times 110 = 115,5(kV)$

6.4.2 Calculation of voltage and total power loss at minimum load

- \triangleright Sending power on line N 1:
- **Power loss in transformer B1:**

$$\Delta P_{B1} = \frac{P_1^2 + Q_1^2}{U_{dm}^2} \times R_{B1} = \frac{12.6^2 + 8.14^2}{110^2} \times 1.32 = 0.024 (MW)$$

$$\Delta Q_{B1} = \frac{P_1^2 + Q_1^2}{U_{dm}^2} \times X_{B1} = \frac{12.6^2 + 8.14^2}{110^2} \times 31.78 = 0.59 (MVAr)$$

\Leftrightarrow Reactive power due to capacitance of line end N – 1:

$$\Delta Q_{C1} = \frac{Y_1}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.763 (MVAr)$$

Power at the end of line N – 1:

$$S_{1}^{"} = (P_{1} + jQ_{1}) + (\Delta P_{B1} + j\Delta Q_{B1}) + (\Delta P_{Fe1} + j\Delta Q_{Fe1}) - j\Delta Q_{C1}$$

$$= (12.6 + j8.14) + (0.024 + j0.59) + (42 + j280) \times 10^{-3} - 0.763$$

$$= 12.66 + j8.25(MVA)$$

Power loss on line impedance of N – 1:

$$\Delta S_1 = \frac{(P_1^{"})^2 + (Q_1^{"})^2}{U_{dm}^2} \times (R_1 + jX_1) = \frac{12.66^2 + 8.25^2}{110^2} \times (7.6 + j18.1) = 0.143 + j0.341(MVA)$$

\Leftrightarrow Power before line impedance N – 1:

$$S_{N-1} = S_1^{"} + \Delta S_1 - j\Delta Q_{C1} = 12.66 + j8.25 + 0.143 + j0.34 - j0.763 = 12.8 + j7.82 (MVA)$$

Similar calculation for N-2

$$S_2^{"} = 11.04 + j6.89(MVA)$$

$$\Delta S_2 = 0.121 + j0.23(MVA)$$

$$S_{N-2} = 11.16 + j6.44(MVA)$$

> Sending power of line N-5-6-N:

- > Calculate power at node 5
- **❖** Power loss on transformer B5:

$$\Delta P_{B5} = \frac{P_5^2 + Q_5^2}{U_{dm}^2} \times R_{B5} = \frac{14^2 + 8.67^2}{110^2} \times 0.885 = 0.02(MW)$$

$$\Delta Q_{B5} = \frac{P_5^2 + Q_5^2}{U_{\text{dist}}^2} \times X_{B5} = \frac{14^2 + 8.67^2}{110^2} \times 26.2 = 0.587 (MVAr)$$

Reactive power due to capacitance of line end N - **5** :

$$\Delta Q_{C5} = \frac{Y_5}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.763 (MVAr)$$

Reactive power due to capacitance of line end 5 – 6:

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104 \times 10^{-6}}{2} \times 110^2 = 0.63 (MVAr)$$

Computing power of node 5 (high voltage):

$$S_{5}^{'} = (P_{5} + jQ_{5}) + (\Delta P_{B5} + j\Delta Q_{B5}) + (\Delta P_{Fe5} + j\Delta Q_{Fe5}) - \Delta Q_{CN-5} - \Delta Q_{C5-6}$$

$$= 14 + j8.67 + 0.02 + j0.587 + (34 + j90) \times 10^{-3} - j0.763 - j0.63$$

$$= 14.05 + j7.96(MVA)$$

> Calculate power at node 6

Power loss in transformer B6:

$$\Delta P_{B6} = \frac{P_6^2 + Q_6^2}{U_{dm}^2} \times R_{B6} = \frac{9^2 + 7.22^2}{110^2} \times 9.4 = 0.027 (MW)$$

$$\Delta Q_{B6} = \frac{P_6^2 + Q_6^2}{U_{dm}^2} \times X_{B6} = \frac{9^2 + 7.22^2}{110^2} \times 18.33 = 0.35 (MVAr)$$

Array Reactive power due to capacitance of line end N-6:

$$\Delta Q_{C6} = \frac{Y_6}{2} \times U_{dm}^2 = \frac{123.87 \times 10^{-6}}{2} \times 110^2 = 0.75 (MVAr)$$

Array Reactive power due to capacitance of line end 5-6:

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104 \times 10^{-6}}{2} \times 110^2 = 0.63 (MVAr)$$

Computing power of node 6 (high voltage):

$$S_{6}^{'} = (P_{6} + jQ_{6}) + (\Delta P_{B6} + j\Delta Q_{B6}) + (\Delta P_{Fe6} + j\Delta Q_{Fe6}) - \Delta Q_{CN-6} - \Delta Q_{C5-6}$$

$$= 9 + j7.22 + 0.027 + j0.35 + (120 + j1200) \times 10^{-3} - j0.75 - 0.63$$

$$= 9.14 + j7.4(MVA)$$

> Power distribution according to impedance

$$\begin{split} Z_{N-5} &= R_{N-5} + jX_{N-5} = 7.6 + j18.1(\Omega) \\ Z_{5-6} &= R_{5-6} + jX_{5-6} = 18.4 + j17.64(\Omega) \\ Z_{N-6} &= R_{N-6} + jX_{N-6} = 9.4 + j18.33(\Omega) \end{split}$$

❖ Power on line N – 5

$$\begin{split} S_{N-5}^* &= \frac{S_5^{*'}(Z_{5-6} + Z_{N-6}) + S_6^{*'}(Z_{N-6})}{Z_{5-6} + Z_{N-6} + Z_{N-5}} \\ &= \frac{(14.05 - j7.96) \times (27.8 + j35.97) + (9.14 - j7.4) \times (9.4 + j18.33)}{35.4 + j54.07} \\ &= 12.56 - j8.4(MVA) \\ \Rightarrow S_{N-5} &= 12.56 + j8.4(MVA) \end{split}$$

\Rightarrow Power on line N – 6

$$\begin{split} S_{N-6}^* &= \frac{S_6^{*'}(Z_{5-6} + Z_{N-5}) + S_5^{*'}(Z_{N-5})}{Z_{5-6} + Z_{N-6} + Z_{N-5}} \\ &= \frac{(9.14 - j7.4) \times \left(26 + j35.74\right) + (14.05 - j7.96) \times (7.6 + j18.1)}{35.4 + j54.07} \\ &= 10.62 - j6.96(MVA) \\ \Rightarrow S_{N-6} &= 10.62 + j6.96(MVA) \end{split}$$

• Check the results

$$S_{N-5} + S_{N-6} = S_5' + S_6'$$

 $\rightarrow S_{N-5} + S_{N-6} = 12.56 + j8.4 + 10.62 + j6.96 = 23.18 + j15.36(MVA)$
 $\rightarrow S_5' + S_6' = 14.05 + j7.96 + 9.14 + j7.4 = 23.19 + j15.36(MVA)$

ightharpoonup Power on line 5-6

$$S_{5-6} = S_{N-5} - S_5^{'} = (12.56 + j8.j) - (14.05 + j7.96) = -1.49 - j0.438(MVA)$$

ightharpoonup Power loss on line 5-6

$$\Delta P_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times R_{5-6} = \frac{(-1.49)^2 + (-0.438)^2}{110^2} \times 18.4 = 3.68 \times 10^{-3} (MW)$$

$$\Delta Q_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times X_{5-6} = \frac{(-1.49)^2 + (-0.438)^2}{110^2} \times 17.64 = 3.53 \times 10^{-3} (MVAr)$$

\diamond Power loss on line N – 5

$$\Delta P_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{dm}^2} \times R_{N-5} = \frac{12.56^2 + 8.4^2}{110^2} \times 7.6 = 0.143 (MW)$$

$$\Delta Q_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{dm}^2} \times X_{N-5} = \frac{12.56^2 + 8.4^2}{110^2} \times 18.1 = 0.341 (MVAr)$$

\Rightarrow Power loss on line N – 6

$$\Delta P_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{dm}^2} \times R_{N-6} = \frac{10.62^2 + 6.96^2}{110^2} \times 9.4 = 0.125 (MW)$$

$$\Delta Q_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{d}^2} \times X_{5-6} = \frac{10.62^2 + 6.96^2}{110^2} \times 18.33 = 0.244 (MVAr)$$

\Rightarrow Sending power of line N – 5 – 6

$$\begin{split} S_{N-5-6} &= S_{5-6} + (\Delta P_{5-6} + j\Delta Q_{5-6}) - j\Delta Q_{5C-6} + S_{T5} - j\Delta Q_{CN-5} + (\Delta P_{N-5} + j\Delta Q_{N-5}) - j\Delta Q_{CN-5} \\ &= 1.49 + j0.438 + (3.68 + j3.53) \times 10^{-3} - j0.63 + 14.05 + j7.96 - j0.763 + 0.143 + j0.341 - j0.763 \\ &= 15.69 + j6.59 (MVA) \end{split}$$

\Rightarrow Sending power of line N – 6

$$S_{N-6} = S_{N-6} + (\Delta P_{N-6} + j\Delta Q_{N-6}) - j\Delta Q_{CN-6}$$

= (10.62 + j6.96) + (0.125 + j0.244) - j0.75
= 10.41 + j6.88(MVA)

Similar calculations for area 2.

$$S_{N-3}^{"} = 9.876 + j7.724(MVA)$$

$$S_{N-4}^{"} = 10.34 + j6.01(MVA)$$

$$\Delta S_{N-3} = 0.1125 + j0.2195(MVA)$$

$$\Delta S_{N-4} = 0.11 + j0.216(MVA)$$

$$S_{N-3} = 10 + j8.6(MVA)$$

$$S_{N-4} = 12.7 + j7.54(MVA)$$

6.4.3 The process calculating from the start to the end of lines to find voltage at nodes

- **❖** Line N − 1:
- **A** Calculate voltage at node 1:
- Power before line impedance of N-1 (from previous calculations)

$$S_1' = 12.8 + j7.82(MVA)$$

- Voltage drop on line N-1:

$$\Delta U_1 = \frac{P_1^{'} \times R_1 + Q_1^{'} \times X_1}{U_N} = \frac{12.8 \times 7.6 + 7.82 \times 18.1}{115.5} = 2.069(kV)$$

- Voltage at the end of line N-1:

$$U_1 = U_N - \Delta U_1 = 115.5 - 2.069 = 113.43(kV)$$

Power before transformer impedance B1:

$$S_{B1} = (P_1 + jQ_1) + (\Delta P_{B1} + j\Delta Q_{B1})$$

= (12.6 + j8.14) + (0.024 + j0.59)
= 12.62 + j8.73(MVA)

Voltage drop on transformer B1:

$$\Delta U_{B1} = \frac{P_{B1} \times R_{B1} + Q_{B1} \times X_{B1}}{U_{1}} = \frac{12.62 \times 1.32 + 8.73 \times 31.78}{113.43} = 2.59(kV)$$

Load 1 voltage is converted to high voltage side:

$$U_1 = U_1 - \Delta U_{R1} = 113.43 - 2.59 = 110.84(kV)$$

Voltage at secondary side of transformerT1:

$$U_{haB1} = \frac{U_{1}^{'}}{k} = \frac{U_{1}^{'}}{\frac{U_{dmcao}}{U_{labor}}} = \frac{110.84}{\frac{110}{22 \times 1,1}} = 24.38(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB1} - U_{dmha}}{U_{dmha}} \times 100 = \frac{24.38 - 22}{22} \times 100 = 10.84\%$$

Similar to N-2

$$U_2 = 113.72(kV)$$

$$U_{2} = 110.07(kV)$$

$$U_{haB2} = 24.21(kV)$$

%
$$\Delta U \ U2 = 10.07\%$$

- **❖** Line N − 5:
- **❖** Voltage at node 5:
- Power before impedance of line N 5 (from previous calculations)

$$S_5' = S_{N-5} + j\Delta Q_{CN-5} = 15.69 + j6.59 + j0.763 = 15.69 + j7.35(MVA)$$

- Voltage drop on N-5:

$$\Delta U_5 = \frac{P_5 \times R_5 + Q_5 \times X_5}{U_N} = \frac{15.69 \times 7.6 + 7.35 \times 18.1}{115.5} = 2.18(kV)$$

- Voltage at the end of line N-5:

$$U_5 = U_N - \Delta U_5 = 115.5 - 2.185 = 113.315(kV)$$

Power before transformer impedance B5:

$$S_{B5} = (P_5 + jQ_5) + (\Delta P_{B5} + j\Delta Q_{B5})$$
$$= (14 + j8.67) + (0.02 + j0.587)$$
$$= 14.02 + j9.264(MVA)$$

Voltage drop on transformer B5:

$$\Delta U_{B5} = \frac{P_{B5} \times R_{B5} + Q_{B5} \times X_{B5}}{U_{5}} = \frac{14.02 \times 0.885 + 9.264 \times 26.2}{113.315} = 2.25(kV)$$

Load 5 voltage is converted to high voltage side:

$$U_5' = U_5 - \Delta U_{B5} = 113.315 - 2.25 = 111.06(kV)$$

Voltage at secondary side of transformerT5:

$$U_{haB5} = \frac{U_{5}^{'}}{k} = \frac{U_{5}^{'}}{\frac{U_{dmcao}}{U_{haba}}} = \frac{111.06}{110} = 24.43(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB5} - U_{dmha}}{U_{dmha}} \times 100 = \frac{24.43 - 22}{22} \times 100 = 11,.063\%$$

- **❖** Line 5 − 6:
- Power before line impedance of 5 6 (from previous calculations)

$$S_{5-6}^{'} = -1.49 - j0.438(MVA)$$

- Voltage drop on line 5-6:

$$\Delta U_{5-6} = \frac{P_{5-6}^{'} \times R_{5-6} + Q_{5-6}^{'} \times X_{5-6}}{U_{N}} = \frac{-1.49 \times 18.4 - 0.438 \times 17.64}{113.315} = -0.31(kV)$$

- Voltage at the end of line 5-6 on the left:

$$U_{6t} = U_5 - \Delta U_{5-6} = 113.315 - (-0.31) = 113.625(kV)$$

- **❖** Line N − 6:
- **Voltage calculation at node 6:**
- Power before line impedance of N-6 (from previous calculations)

$$S_{6}^{'} = S_{N-6} + j\Delta Q_{CN-6} = 10.74 + j6.88 + j0.75 = 10.74 + j7.63(MVA)$$

- Voltage drop on line N-6:

$$\Delta U_6 = \frac{P_6' \times R_6 + Q_6' \times X_6}{U_N} = \frac{10.745 \times 9.4 + 7.63 \times 18.33}{115.5} = 2.086(kV)$$

- Voltage at the end of line N - 6 bên phải:

$$U_{6p} = U_N - \Delta U_6 = 115.5 - 2.086 = 113.41(kV)$$

- Voltage at node 6:

$$U_6 = \frac{U_{6t} + U_{6p}}{2} = \frac{113.62 + 113.41}{2} = 113.5(kV)$$

Power before transformer impedance B6:

$$S_{B6} = (P_6 + jQ_6) + (\Delta P_{B6} + j\Delta Q_{B6})$$

= (9 + j7.22) + (0.027 + j0.348)
= 9.026 + j7.57(MVA)

Voltage drop on transformer B6:

$$\Delta U_{B6} = \frac{P_{B6} \times R_{B6} + Q_{B6} \times X_{B6}}{U_{6}} = \frac{9.026 \times 2.45 + 7.57 \times 31.67}{113.5} = 2.3(kV)$$

- Load 6 voltage is converted to high voltage side:

$$U_{6}^{'} = U_{6} - \Delta U_{R6} = 113.5 - 2.3 = 111.2(kV)$$

Voltage at secondary side of transformerT6:

$$U_{haB6} = \frac{U_{6}^{'}}{k} = \frac{U_{6}^{'}}{\frac{U_{dmcao}}{U_{ktha}}} = \frac{111.2}{\frac{110}{22 \times 1,1}} = 24.46(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB6} - U_{dmha}}{U_{dmha}} \times 100 = \frac{24.46 - 22}{22} \times 100 = 11.21\%$$

Similar calculations apply for area 2.

$$U_3 = 113.39(kV)$$

$$U_{3}^{'} = 110.66(kV)$$

$$U_{haB3} = 24.345(kV)$$

%
$$\Delta U \ 3 = 10.66\%$$

$$U_4 = 113.86(kV)$$

$$U_{4}^{'} = 112.11(kV)$$

$$U_{haB4}=24.66(kV)$$

$$\Delta U 4 = 12.11\%$$

Student: Ninh Thế Vĩnh Cường

PROJECT 1 Page 137/169

Line	Active power loss ΔP_L (MW)	Reactive power loss ΔQ_L (MVAr)	The reactive power is generated by the line capacitance ΔQ_C on both heads (MVAr)
N-1	0.143	0.341	1.525
N-2	0.121	0.236	1.38
N – 3	0.112	0.22	1.38
3 – 4	0.003	0.003	1.6
N – 4	0.111	0.216	1.6
N – 5	0.143	0.341	1.525
5-6	0.0036	0.0035	1.26
N – 6	0.125	0.244	1.5
Σ	0.7616	1.6045	11.77

Table 6.9 Power losses at minimum load

Station	ΔP_{Fe}	ΔQ_{Fe}	$\Delta P_{CU} = \Delta P_B$	$\Delta Q_{CU} = \Delta Q_B$
	(MW)	(MVAr)	(MW)	(MVAr)
1	0.042	0.28	0.0245	0.5909
2	0.017	0.045	0.0245	0.7252
3	0.12	1.2	0.0316	0.4089
4	0.058	0.4	0.0143	0.3133
5	0.034	0.09	0.0198	0.5874
6	0.12	1.2	0.0269	0.3484
Σ	0.391	3.215	0.1416	2.9741

Table 6.10 Transformer losses at minimum load

PROJECT 1 Page 138/169

Load	Primary voltage(kV)	Secondary converted to primary voltage(kV)	Secondary voltage(kV)	% ∆ <i>U</i>
1	113.43	110.83	24.38	10.83
2	113.72	110.07	24.21	10.07
3	113.39	110.66	24.345	10.66
4	113.86	112.11	24.66	12.11
5	113.31	111.063	24.434	11.06
6	113.41	111.21	24.466	11.21

Table 6.11 Voltage at loads at minimum load

Line	P (MW)	Q (MVAr)
N – 1	12.81	7.82
N – 2	11.16	6.44
N – 3	10	8.6
N – 4	10.45	4.19
N – 5	15.7	6.59
N – 6	10.74	6.88
$\sum S_i$	70.86	40.52

Table 6.12 Sending power at minimum load

6.5 Calculate status at fault operations

- Requirements:
 - When faults happen, voltage is $U_N=1,1\times110=121$ (kV)
 - Maximum loads which were compensation.
 - Calculate the fault of a line of double-line, a broken line of a ring or a transformer failure
 - When calculating one-wire breakage of double-line, note that it is necessary to use resistances, inductance, and capacitance of the line at the time of the failure calculated in Chapter 2.

6.5.1 A transformer broken down fault station

When a transformer in Station 5 breakdown, we have data

Load	Transformer	R_B (Ω)	X _B (Ω)	ΔP _{Fe} (KW)	ΔQ _{Fe} (KVAr)
5	1	1.77	52.4	17	45
6	2	2.45	31.67	120	1200

Table 6.13 Transformer parameters when a transformer brokedown

Line	R (Ω)	Χ (Ω)	$Y(1/Ω).10^{-6}$
N – 5	7.6	18.1	126.1
5 – 6	18.4	17.64	104
N – 6	9.4	18.33	123.87

Table 6.14 Line parameters when a transformer brokedown

> Computing power at node 5

Power loss in B5:

$$\Delta P_{B5} = \frac{P_5^2 + (Q_5 - Q_{bu5})^2}{U_{dm}^2} \times R_{B5} = \frac{35^2 + 13.24^2}{110^2} \times 1.77 = 0.205(MW)$$

Page 140/169

$$\Delta Q_{B5} = \frac{P_5^2 + (Q_5 - Q_{bu5})^2}{U_{dm}^2} \times X_{B5} = \frac{35^2 + 13.24^2}{110^2} \times 52.4 = 6.065(MVAr)$$

Reactive power due to capacitance of line end N - **5** :

$$\Delta Q_{C5} = \frac{Y_5}{2} \times U_{dm}^2 = \frac{126.1 \times 10^{-6}}{2} \times 110^2 = 0.763 (MVAr)$$

\Leftrightarrow Reactive power due to capacitance of line end 5 – 6:

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104 \times 10^{-6}}{2} \times 110^2 = 0.63 (MVAr)$$

Computing power at node 5 (high voltage):

$$S_{5}^{'} = (P_{5} + j(Q_{5} - Q_{b5})) + (\Delta P_{B5} + j\Delta Q_{B5}) + (\Delta P_{Fe5} + j\Delta Q_{Fe5}) - \Delta Q_{CN-5} - \Delta Q_{C5-6})$$

$$= 35 + j13.24 + 0.205 + j6.064 + (17 + j45) \times 10^{-3} - j0.763 - j0.63$$

$$= 35.22 + 17.95(MVA)$$

- > Calculate power at node 6
- **Power loss in transformer B6:**

$$\Delta P_{B6} = \frac{P_6^2 + (Q_6 - Q_{bu6})^2}{U_{dm}^2} \times R_{B6} = \frac{22.5^2 + 8.75^2}{110^2} \times 2.45 = 0.118(MW)$$

$$\Delta Q_{B6} = \frac{P_6^2 + (Q_6 - Q_{bu6})^2}{U_{dm}^2} \times X_{B6} = \frac{22.5^2 + 8.75^2}{110^2} \times 31.67 = 1.525 (MVAr)$$

\Leftrightarrow Reactive power due to capacitance of line end N – 6:

$$\Delta Q_{C6} = \frac{Y_6}{2} \times U_{dm}^2 = \frac{123.87 \times 10^{-6}}{2} \times 110^2 = 0.75 (MVAr)$$

Reactive power due to capacitance of line end 5 – 6:

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104 \times 10^{-6}}{2} \times 110^2 = 0.63 (MVAr)$$

Computing power 6 (high voltage):

$$S_{6}^{'} = (P_{6} + j(Q_{6} - Q_{b6})) + (\Delta P_{B6} + j\Delta Q_{B6}) + (\Delta P_{Fe6} + j\Delta Q_{Fe6}) - \Delta Q_{CN-6} - \Delta Q_{C5-6}$$

$$= 22.5 + j8.75 + 0.118 + j1.525 + (120 + j1200) \times 10^{-3} - j0.63 - j0.75$$

$$= 22.738 + 10.09(MVA)$$

Power distribution according to impedance

$$Z_{N-5} = R_{N-5} + jX_{N-5} = 7.6 + j18.1(\Omega)$$

$$Z_{5-6} = R_{5-6} + jX_{5-6} = 18.4 + j17.64(\Omega)$$

$$Z_{N-6} = R_{N-6} + jX_{N-6} = 9.4 + j18.33(\Omega)$$

\Leftrightarrow Sending power on line N – 5

$$\begin{split} S_{N-5}^* &= \frac{S_5^{*'}(Z_{5-6} + Z_{N-6}) + S_6^{*'}(Z_{N-6})}{Z_{5-6} + Z_{N-6} + Z_{N-5}} \\ &= \frac{(35.22 - j17.95) \times (27.8 + j35.97) + (22.738 - j10.09) \times (9.4 + j18.33)}{35.4 + j54.07} \\ &= 31.25 - j16.96(MVA) \\ &\Rightarrow S_{N-5} = 31.25 + j16.96(MVA) \end{split}$$

\Rightarrow Sending power on line N – 6

$$\begin{split} S_{N-6}^* &= \frac{S_6^{*'}(Z_{5-6} + Z_{N-5}) + S_6^{*'}(Z_{N-5})}{Z_{5-6} + Z_{N-6} + Z_{N-5}} \\ &= \frac{(22.738 - j10.09) \times \left(26 + j35.74\right) + (35.22 - j17.95) \times (7.6 + j18.1)}{35.4 + j54.07} \\ &= 26.7 - j11.08(MVA) \\ \Rightarrow S_{N-6} &= 26.7 + j11.08(MVA) \end{split}$$

• Check the results

$$S_{N-5} + S_{N-6} = S_5' + S_6'$$

 $\rightarrow S_{N-5} + S_{N-6} = 31.25 + j16.96 + 26.7 + j11.08 = 57.95 + j28.04(MVA)$
 $\rightarrow S_5' + S_6' = 35.22 + j17.95 + 22.738 + j10.09 = 57.95 + j28.04(MVA)$

\Leftrightarrow Sending power on line 5 – 6

$$S_{5-6} = S_{N-5} - S_5' = (31.25 + j16.96) - (35.22 + j17.95) = -3.972 - j0.99(MVA)$$

\Leftrightarrow Power loss on line 5-6

$$\Delta P_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times R_{5-6} = \frac{(-3.97)^2 + (-0.99)^2}{110^2} \times 18.4 = 0.0255(MW)$$

$$\Delta Q_{5-6} = \frac{P_{5-6}^2 + Q_{5-6}^2}{U_{dm}^2} \times X_{5-6} = \frac{(-3.97)^2 + (-0.99)^2}{110^2} \times 17.64 = 0.0244(MVAr)$$

Page 142/169

\diamond Power loss on line N – 5

$$\Delta P_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{dm}^2} \times R_{N-5} = \frac{31.25^2 + 16.96^2}{110^2} \times 7.6 = 0.794(MW)$$

$$\Delta Q_{N-5} = \frac{P_{N-5}^2 + Q_{N-5}^2}{U_{L}^2} \times X_{N-5} = \frac{31.25^2 + 16.96^2}{110^2} \times 18.1 = 1.89(MVAr)$$

Arr Power loss on line N – 6

$$\Delta P_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{dm}^2} \times R_{N-6} = \frac{26.7^2 + 11.08^2}{110^2} \times 9.4 = 0.65(MW)$$

$$\Delta Q_{N-6} = \frac{P_{N-6}^2 + Q_{N-6}^2}{U_{dm}^2} \times X_{5-6} = \frac{26.7^2 + 11.08^2}{110^2} \times 18.33 = 1.266(MVAr)$$

Sending power of line N-5-6

$$\begin{split} S_{N-5-6} &= S_{5-6} + (\Delta P_{5-6} + j\Delta Q_{5-6}) - j\Delta Q_{5C-6} + S_{T5} - j\Delta Q_{CN-5} + (\Delta P_{N-5} + j\Delta Q_{N-5}) - j\Delta Q_{CN-5} \\ &= 3.97 + j0.99 + 0.0255 + j0.0244 - j0.63 + 35.22 + j17.95 - j0.763 + 0.795 + j1.89 - 0.j763 \\ &= 40 + j18.71 (MVA) \end{split}$$

❖ Sending power of line N − 6

$$S_{N-6} = S_{N-6} + (\Delta P_{N-6} + j\Delta Q_{N-6}) - j\Delta Q_{CN-6}$$

= 26.7 + j11.08 + +0.65 + j1.266 - j0.75
= 27.34 + j10.61(MVA)

- **❖** Line N − 5:
- **Calculate voltage at node 5:**
- Power before line impedance of N-5 (from previous calculations)

$$S_5' = S_{N-5} + j\Delta Q_{CN-5} = 40.01 + j18.7 + j0.763 = 40.01 + j19.47(MVA)$$

- Voltage drop on line N-5:

$$\Delta U_5 = \frac{P_5 \times R_5 + Q_5 \times X_5}{U_N} = \frac{40.01 \times 7.6 + 19.47 \times 18.1}{110} = 5.97(kV)$$

- Voltage at the end of line N-5:

$$U_5 = U_N - \Delta U_5 = 110 - 5.97 = 104.03(kV)$$

Power before transformer impedance B5:

$$S_{B5} = (P_5 + jQ_5) + (\Delta P_{B5} + j\Delta Q_{B5})$$

= (35 + j13.24) + (0.205 + j6.064)
= 35.205 + j19.304(MVA)

Page 143/169

Voltage drop on transformer B5:

$$\Delta U_{B5} = \frac{P_{B5} \times R_{B5} + Q_{B5} \times X_{B5}}{U_5} = \frac{35.205 \times 1.77 + 19.304 \times 52.4}{114.03} = 10.32(kV)$$

Load 5 voltage is converted to primary side:

$$U_5' = U_5 - \Delta U_{B5} = 104.03 - 10.32 = 93.7(kV)$$

Voltage at secondary side of transformer T5:

$$U_{haB5} = \frac{U_{5}}{k} = \frac{U_{5}}{\frac{U_{dmcao}}{U_{ktha}}} = \frac{20.61}{\frac{110}{22 \times 1,1}} = 24.43(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB5} - U_{dmha}}{U_{dmha}} \times 100 = \frac{20.61 - 22}{22} \times 100 = -6.3\%$$

- **❖** Line 5 − 6:
- Power before line impedance of 5-6 (from previous calculations)

$$S_{5,6}^{'} = -3.97 - j0.99(MVA)$$

- Voltage drop on line 5-6:

$$\Delta U_{5-6} = \frac{P_{5-6}^{'} \times R_{5-6} + Q_{5-6}^{'} \times X_{5-6}}{U_{N}} = \frac{-3.97 \times 18.4 - 0.99 \times 17.64}{113.315} = 0.824(kV)$$

Voltage at the end of line 5 – 6 on the left:

$$U_{6t} = U_5 - \Delta U_{5-6} = 104.03 - 0.824 = 103.2(kV)$$

- **❖** Line N − 6:
- **Calculate voltage at node 6:**
- Power before line impedance of N 6 (from previous calculations)

$$S_{6}^{'} = S_{N-6} + j\Delta Q_{CN-6} = 21.35 + j10.61 + j0.75 = 27.35 + j11.36(MVA)$$

- Voltage drop on line N-6:

$$\Delta U_6 = \frac{P_6 \times R_6 + Q_6 \times X_6}{U_{VV}} = \frac{27.35 \times 9.4 + 11.36 \times 18.33}{110} = 4.23(kV)$$

Page 144/169

- Voltage at the end of line N-6 on the right side:

$$U_{6p} = U_N - \Delta U_6 = 110 - 4.23 = 105.77(kV)$$

Voltage at node 6:

$$U_6 = \frac{U_{6t} + U_{6p}}{2} = \frac{1105.77 + 103.2}{2} = 104.485(kV)$$

Power before transformer impedance B6:

$$S_{B6} = (P_6 + jQ_6) + (\Delta P_{B6} + j\Delta Q_{B6})$$

= (22.5 + j8.75) + (0.118 + j1.525)
= 22.618 + j10.275(MVA)

Voltage drop on transformer B6:

$$\Delta U_{B6} = \frac{P_{B6} \times R_{B6} + Q_{B6} \times X_{B6}}{U_{6}} = \frac{22.618 \times 2.45 + 10.275 \times 31.67}{104.485} = 3.644(kV)$$

Load 6 voltage converted to primary side:

$$U_6' = U_6 - \Delta U_{B6} = 104.485 - 3.644 = 100.84(kV)$$

Voltage at secondary side of transformerT6:

$$U_{haB6} = \frac{U_{6}^{'}}{k} = \frac{U_{6}^{'}}{U_{dmcao}} = \frac{100.84}{110} = 22.185(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB6} - U_{dmha}}{U_{dmha}} \times 100 = \frac{22.185 - 22}{22} \times 100 = 0.843\%$$

Similar calculations use for other ring circuit.

PROJECT 1 Page 145/169

Type of incident	Line	Active Power loss ΔP_L (MW)	Reactive power loss ΔQ_L (MVAr)	The reactive capacity is generated by the line capacitance on both side ΔQ_C (MVAr)
Transformer breakdown B3	N-3	0.547	1.068	1.38
(Ring N - 3 - 4 - N)	3 – 4	0.0068	0.0065	1.134
	N – 4	0.6	1.185	1.5
Transformer breakdown B4	N-3	0.547	1.068	1.38
(Ring $N - 3 - 4 - N$)	3–4	0.0086	0.0082	1.134
	N – 4	0.607	1.185	1.5
Transformer breakdown B5	N – 5	0.794	1.891	1.525
(Ring N - 5 - 6 - N)	5 – 6	0.0255	0.0244	1.26
	N – 6	0.65	1.266	1.5
Transformer breakdown B6	N – 5	0.764	1.82	1.525
(Ring N - 5 - 6 - N)	5 – 6	0.021	0.02	1.26
	N – 6	0.637	1.243	1.5

Table 6.15 Power losses at fault operation

Type of incident	Station	ΔP_{Fe} (kW)	ΔQ_{Fe} (kVAr)	$\Delta P_{CU} = \Delta P_B$ (MW)	$\Delta Q_{CU} = \Delta Q_B$ (MVAr)
Transformer breakdown	3	60	600	0.239	3.099
B3 (Ring $N - 3 - 4 - N$)	4	58	400	0.0837	1.833
Transformer breakdown	3	120	1200	0.12	1.55
B4 (Ring N –3 – 4 – N)	4	29	200	0.1675	3.66
Transformer breakdown	5	17`	45	0.204	6.064
B5 (Ring $N - 5 - 6 - N$)	6	120	1200	0.118	1.525
Transformer breakdown	5	34	90	0.102	3.032
B6 (Ring $N - 5 - 6 - N$)	6	60	600	0.236	3.05

Table 6.16 Transformer losses at fault operation

PROJECT 1 Page 146/169

Type of incident	Load	Primary voltage(kV)	Secondary converted to primary voltage(kV)	Secondary voltage(kV)	% Δ <i>U</i>
Transformer breakdown	N-3	106.55	98.15	21.59	-1.85
B3 (Ring $N - 3 - 4 - N$)	N – 4	105.62	102.57	22.56	2.57
Transformer breakdown	N – 3	106.55	102.81	22.62	2.82
B4 (Ring N –3 – 4 – N)	N – 4	105.34	98.125	21.587	-1.874
Transformer breakdown	N – 5	104.03	93.7	20.615	-6.29
B5 (Ring $N - 5 - 6 - N$)	N – 6	105.78	100.84	22.185	0.843
Transformer breakdown	N – 5	104.7	100.32	22.07	0.324
B6 (Ring N – 5 – 6 – N)	N – 6	105.635	96.64	21.26	-3.35

Table 6.17 Voltage at fault operation

Type of incident	Line	P (MW)	Q (MVAr)
Transformer	N – 3	25.58	10.89
breakdown B3 (Ring	N-4	26	12.2
N - 3 - 4 - N			
Transformer	N – 3	25.586	10.897
breakdown B4 (Ring	N – 4	26	13.83
N - 3 - 4 - N			
Transformer	N – 5	40.01	18.714
breakdown B5 (Ring	N – 6	27.35	10.61
N - 5 - 6 - N			
Transformer	N – 5	39.65	14.84
breakdown B6 (Ring	N – 6	27.15	11.52
N - 5 - 6 - N			

Table 6.18 Sending power at fault operation

6.5.2 Breakage of transmission wire

When line N-6 break, we have data

Page 147/169

Load	Transformer	R_B (Ω)	X _B (Ω)	ΔP _{Fe} (KW)	ΔQ _{Fe} (KVAr)
5	2	0.885	26.2	120	1200
6	2	2.45	31.67	120	1200

Table 6.19 Transformer parameters when a line broke

Line	R (Ω)	Χ (Ω)	$Y(1/Ω).10^{-6}$
N – 5	7.6	18.1	126.1
5 – 6	18.4	17.64	104

Table 6.20 Line parameters when a line broke

- > Calculate power at node 6
- **Power loss in transformer B6:**

$$\Delta P_{B6} = \frac{P_6^2 + (Q_6 - Q_{bu6})^2}{U_{dm}^2} \times R_{B6} = \frac{28^2 + (17,35 - 5,69)^2}{110^2} \times 1,16 = 0,08(MW)$$

$$\Delta Q_{B6} = \frac{P_6^2 + (Q_6 - Q_{bu6})^2}{U_{dw}^2} \times X_{B6} = \frac{28^2 + (17,35 - 5,69)^2}{110^2} \times 25,38 = 1,92(MVAr)$$

Reactive power due to capacitance of line end 5 – 6:

$$\Delta Q_{C5-6} = \frac{Y_{5-6}}{2} \times U_{dm}^2 = \frac{104, 2 \times 10^{-6}}{2} \times 110^2 = 0,63 (MVAr)$$

Power at the end of impedance of line 5 – 6:

$$\begin{split} S_{6}^{"} &= (P_{6} + j(Q_{6} - Q_{b6})) + (\Delta P_{B6} + j\Delta Q_{B6}) + (\Delta P_{Fe6} + j\Delta Q_{Fe6}) - j\Delta Q_{C5-6} \\ &= 28,138 + j13,98 - j0,63 \\ &= 28,138 + j13,35(MVA) \end{split}$$

Power loss on line impedance 5 – 6:

Page 148/169

$$\Delta S_{5-6} = \frac{(P_6^{"})^2 + (Q_6^{"})^2}{U_{dm}^2} \times (R_{5-6} + jX_{5-6}) = \frac{28,138^2 + 13,35^2}{110^2} \times (18,4+j17,6)$$

= 1,47 + j1,41(MVA)

Sending power of line 5 – 6:

$$S_{5-6} = S_6^{"} + \Delta S_{5-6} - j\Delta Q_{C5-6} = 29,608 + j14,76 - j0,63 = 29,608 + j14,13(MVA)$$

- Calculate power at node 5
- **Power loss in transformer B5:**

$$\Delta P_{B5} = \frac{P_5^2 + (Q_5 - Q_{bu5})^2}{U_{dm}^2} \times R_{B5} = \frac{22^2 + (14, 21 - 4, 68)^2}{110^2} \times 2,46 = 0,11(MW)$$

$$\Delta Q_{B5} = \frac{P_5^2 + (Q_5 - Q_{bus})^2}{U_{dm}^2} \times X_{B5} = \frac{22^2 + (14, 21 - 4, 68)^2}{110^2} \times 31,66 = 1,5(MVAr)$$

Power go in transformer B5:

$$S_{T5} = (P_5 + j(Q_5 - Q_{b5})) + (\Delta P_{B5} + j\Delta Q_{B5}) + (\Delta P_{Fe5} + j\Delta Q_{Fe5})$$

= $(22 + j(14, 21 - 4, 68)) + (0, 11 + j1, 5) + (120 + j1200) \times 10^{-3}$
= $22, 23 + j12, 23(MVA)$

Reactive power due to capacitance of line end N – 5:

$$\Delta Q_{C5} = \frac{Y_5}{2} \times U_{dm}^2 = \frac{123,87 \times 10^{-6}}{2} \times 110^2 = 0,74 (MVAr)$$

Power at the of line impedance N - **5:**

$$S_{5}^{''} = S_{5-6} + S_{T5} - j\Delta Q_{C5} = 29,608 + j14,13 + 22,23 + j12,23 - j0,74 = 51,838 + j25,62 (MVA)$$

Power loss on line impedance N – 5:

$$\Delta S_{N-5} = \frac{(P_5^{"})^2 + (Q_5^{"})^2}{U_{dm}^2} \times (R_{N-5} + jX_{N-5}) = \frac{51,838^2 + 25,62^2}{110^2} \times (9,39 + j18,33) = 2,59 + j5,06 (MVA)$$

Power before line impedance of N – 5:

$$S_5^{'} = S_5^{''} + \Delta S_{N-5} = 51,838 + j25,62 + 2,59 + j5,06 = 54,428 + j30,68 (MVA)$$

Sending power of line N - **5**:

Page 149/169

$$S_{N-5} = S_5^{'} - j\Delta Q_{C5} = 54,428 + j30,68 - j0,74 = 54,428 + j29,94(MVA)$$

- > Calculate voltage at node 5:
- Power before line impedance of N-5 (from previous calculations)

$$S_5' = 54,428 + j30,68(MVA)$$

- Voltage drop on line N-5:

$$\Delta U_5 = \frac{P_5' \times R_5 + Q_5' \times X_5}{U_N} = \frac{54,428 \times 9,39 + 30,68 \times 18,33}{121} = 8,871(kV)$$

- Voltage at the end of line N-5:

$$U_5 = U_N - \Delta U_5 = 121 - 8,871 = 112,129(kV)$$

Power before transformer impedance B5:

$$S_{B5} = (P_5 + j(Q_5 - Q_{b5})) + (\Delta P_{B5} + j\Delta Q_{B5})$$

= (22 + j(14, 21 - 4, 68)) + (0,11 + j1,5)
= 22,11 + j11,03(MVA)

Voltage drop on transformer B5:

$$\Delta U_{B5} = \frac{P_{B5} \times R_{B5} + Q_{B5} \times X_{B5}}{U_5} = \frac{22,11 \times 2,46 + 11,03 \times 31,66}{112,129} = 3,599(kV)$$

Load 5 voltage is converted to primary side:

$$U_5' = U_5 - \Delta U_{R5} = 112,129 - 3,599 = 108,53(kV)$$

Voltage at secondary side of transformerT5:

$$U_{haB5} = \frac{U_{5}^{'}}{k} = \frac{U_{5}^{'}}{U_{dmcao}} = \frac{108,53}{110} = 23,876(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB5} - U_{dmha}}{U_{dmha}} \times 100 = \frac{23,876 - 22}{22} \times 100 = 8,52\%$$

- > Calculate voltage at node 6:
- Power before line impedance of 5 6 (from previous calculations)

$$S_{6} = 29,608 + j14,76(MVA)$$

- Voltage drop on line N-6:

Page 150/169

$$\Delta U_{5-6} = \frac{P_6^{'} \times R_{5-6} + Q_6^{'} \times X_{5-6}}{U_5} = \frac{29,608 \times 18,4 + 14,76 \times 17,6}{112,129} = 7,175(kV)$$

- Voltage at the end of line 5-6:

$$U_6 = U_5 - \Delta U_{5-6} = 112,129 - 7,175 = 104,954(kV)$$

Power before transformer impedance B6:

$$S_{B6} = (P_6 + j(Q_6 - Q_{b6})) + (\Delta P_{B6} + j\Delta Q_{B6})$$

= (28 + j(17,35 - 5,69)) + (0,08 + j1,92)
= 28,08 + j13,58(MVA)

Voltage drop on transformer B6:

$$\Delta U_{B6} = \frac{P_{B6} \times R_{B6} + Q_{B6} \times X_{B6}}{U_{6}} = \frac{28,08 \times 1,16 + 13,58 \times 25,38}{104,954} = 3,594(kV)$$

Load 6 voltage is converted to primary side:

$$U_6' = U_6 - \Delta U_{R6} = 104,954 - 3,594 = 101,36(kV)$$

Voltage at secondary side of transformerT6:

$$U_{haB6} = \frac{U_{6}^{'}}{k} = \frac{U_{6}^{'}}{\underbrace{U_{dmcao}}}_{U_{ktha}} = \frac{101,36}{110} = 22,299(kV)$$

Voltage difference :

%
$$\Delta U = \frac{U_{haB6} - U_{dmha}}{U_{dmha}} \times 100 = \frac{22,299 - 22}{22} \times 100 = 1,35\%$$

Similar calculations apply for the other ring.

PROJECT 1 Page 151/169

Type of incident	Line	Active power loss ΔP_L (MW)	Reactive power loss ΔQ_L (MVAr)	The reactive capacity is generated by the line capacitance on both side ΔQ_C (MVAr)
Line N – 4 break (Ring N	N-3	2.3	4.23	1.38
-3-4-N)	3 – 4	0.732	1.427	1.134
Line N – 3 break (Ring N	N – 4	2.525	4.923	1.5
-3-4-N)	4 – 3	0.867	0.831	1.134
Line N – 6 break (Ring N	N – 5	2.597	6.18	1.525
-5-6-N)	5 – 6	0.94	0.9	1.26
Line N – 5 break (Ring N	N – 6	3.2	6.25	1.5
-5-6-N)	6-5	0.916	2.18	1.26

Table 6.21 Power losses on line when a line broke

Type of incident	Station	ΔP_{Fe}	ΔQ_{Fe}	$\Delta P_{CU} = \Delta P_B$	$\Delta Q_{CU} = \Delta Q_B$
Type of medent	Station	(kW)	(kVAr)	(MW)	(MVAr)
Line N – 4 break (Ring N	3	120	1200	0.12	1.55
-3-4-N)	4	58	400	0.0837	3.66
Line N – 3 break (Ring N	3	120	1200	0.12	1.55
-3-4-N)	4	58	400	0.0837	3.66
Line N – 6 break (Ring N	5	34	90	0.1025	3.03
-5-6-N)	6	120	1200	0.118	1.525
Line N – 5 break (Ring N	5	34	90	0.1025	3.03
-5-6-N)	6	120	1200	0.118	1.525

Table 6.22 Power losses in transformer when a line broke

PROJECT 1 Page 152/169

Type of incident	Line	Primary voltage (kV)	Secondary converted to primary voltage(kV)	Secondary voltage(kV)	% ΔU
Line N – 4 break (Ring N	N – 3	113.23	109.717	24.137	9.71
-3-4-N)	3 – 4	107.2	100.03	22	0.031
Line N – 3 break (Ring N	N – 4	112.4	105.56	23.22	5.56
-3-4-N)	4 – 3	107.35	103.65	22.8	3.645
Line N – 6 break (Ring N	N – 5	112.44	108.373	23.842	8.373
-5-6-N)	5-6	106.93	103.37	22.74	3.37
Line N – 5 break (Ring N	N – 6	111.435	108.017	23.74	8.01
-5-6-N)	6-5	103.088	98.65	21.7	-1.35

Table 6.23 Voltage at nodes when a line broke

Type of incident	Line	P (MW)	Q (MVAr)
Line N – 4 break	N – 3	53.39	28.25
(Ring $N - 3 - 4 - N$)			
Line N – 3 break	N - 4	53.744	29.2
(Ring N - 3 - 4 - N)			
Line N – 6 break	N – 5	61.41	31.43
(Ring N-5-6-N)			
Line N – 5 break	N – 6	61.99	31.35
(Ring N-5-6-N)			

Table 6.24 Sending power when a line broke

Page 153/169

6.5.3 Summarize

Type of incident	Line	Active power loss $\Delta P_L(M)$	Reactive power loss ΔQ_L (MVAr)	The reactive capacity is generated by the line capacitance on both side ΔQ_C (MVAr)
Transformer	N-3	0.547	1.068	1.38
breakdown B3	3 - 4	0.0068	0.0065	1.134
(Ring $N - 3 - 4 - N$)	N – 4	0.6	1.185	1.5
Transformer	N-3	0.547	1.068	1.38
breakdown B4	3-4	0.0086	0.0082	1.134
(Ring N –3 – 4 – N)	N – 4	0.607	1.185	1.5
Line N – 4 break	N-3	2.3	4.23	1.38
(Ring N – 3 –4 – N)	3 – 4	0.732	1.427	1.134
Line N – 3 break	N-4	2.525	4.923	1.5
(Ring N – 3 – 4 – N)	4-3	0.867	0.831	1.134
Transformer	N-5	0.794	1.891	1.525
breakdown B5	5 – 6	0.0255	0.0244	1.26
(Ring N - 5 - 6 - N)	N – 6	0.65	1.266	1.5
Transformer	N-5	0.764	1.82	1.525
breakdown B6	5 – 6	0.021	0.02	1.26
$\begin{array}{c} (Ring \ N-5-6 \\ -N) \end{array}$	N – 6	0.637	1.243	1.5
Line N – 6 break		2.597	6.18	1.525
(Ring N - 5 - 6 - N)	5 – 6	0.94	0.9	1.26
Line N – 6 break	N-6	3.2	6.25	1.5
(Ring N - 5 - 6 - N)	6-5	0.916	2.18	1.26

Table 6.25 Power losses on line in incidents

PROJECT 1 Page 154/169

Type of incident	Station	ΔP_{Fe} (kW)	ΔQ_{Fe} (kVAr)	$\Delta P_{CU} = \Delta P_B$ (MW)	$\Delta Q_{CU} = \Delta Q_B$ (MVAr)
Transformer breakdown	3	60	600	0.239	3.099
B3 (Ring $N - 3 - 4 - N$)	4	58	400	0.0837	1.833
Transformer breakdown	3	120	1200	0.12	1.55
B4 (Ring $N - 3 - 4 - N$)	4	29	200	0.1675	3.66
Line N – 4 break (Ring N	3	120	1200	0.12	1.55
-3-4-N)	4	58	400	0.0837	3.66
Line N – 3 break (Ring N	3	120	1200	0.12	1.55
-3-4-N)	4	58	400	0.0837	3.66
Transformer breakdown	5	17	45	0.204	6.064
B5 (Ring $N - 5 - 6 - N$)	6	120	1200	0.118	1.525
Transformer breakdown	5	34	90	0.102	3.032
B6 (Ring $N - 5 - 6 - N$)	6	60	600	0.236	3.05
Line N – 6 break (Ring N	5	34	90	0.1025	3.03
-5-6-N)	6	120	1200	0.118	1.525
Line N – 6 break (Ring N	5	34	90	0.1025	3.03
-5-6-N)	6	120	1200	0.118	1.525

Table 6.26 Power losses in transformer in incidents

PROJECT 1 Page 155/169

Type of incident	Load	Primary voltage(kV)	Secondary converted to primary voltage(kV)	Secondary voltage(kV)	Voltage difference(%)
Transformer breakdown	3	106.55	98.15	21.59	-1.85
B3 (Ring N – 3 – 4 – N)	4	105.62	102.57	22.56	2.57
Transformer breakdown	3	106.55	102.81	22.62	2.82
B4 (Ring N –3 – 4 – N)	4	105.34	98.125	21.587	-1.874
Line N – 4 break (Ring	3	113.23	109.717	24.137	9.71
N - 3 - 4 - N	4	107.2	100.03	22	0.031
Line N – 3 break (Ring	4	112.4	105.56	23.22	5.56
N - 3 - 4 - N	3	107.35	103.65	22.8	3.645
Transformer breakdown	5	104.03	93.7	20.615	-6.29
B5 (Ring $N - 5 - 6 - N$)	6	105.78	100.84	22.185	0.843
Transformer breakdown	5	104.7	100.32	22.07	0.324
B6 (Ring $N - 5 - 6 - N$)	6	105.635	96.64	21.26	-3.35
Line N – 6 break (Ring	5	112.44	108.373	23.842	8.373
N - 5 - 6 - N	6	106.93	103.37	22.74	3.37
Line N – 6 break (Ring	6	111.435	108.017	23.74	8.01
N - 5 - 6 - N	5	103.088	98.65	21.7	-1.35

Table 6.27 Voltage at nodes in incidents

PROJECT 1 Page 156/169

Type of incident	Line	P (MW)	Q (MVAr)
Transformer	N – 3	25.58	10.89
breakdown B3 (Ring			
N - 3 - 4 - N	N – 4	26	12.2
Transformer	N – 3	25.586	10.897
breakdown B4 (Ring N –3 – 4 – N)			
	N – 4	26	13.83
Line N – 4 break	N – 3	53.39	28.25
(Ring N - 3 - 4 - N)			
Line N – 3 break	N - 4	53.744	29.2
(Ring $N - 3 - 4 - N$)			
Transformer	N – 5	40.01	18.714
breakdown B5 (Ring			
N - 5 - 6 - N	N – 6	27.35	10.61
Transformer	N – 5	39.65	14.84
breakdown B6 (Ring			
N - 5 - 6 - N	N – 6	27.15	11.52
Line N – 6 break	N – 5	61.41	31.43
(Ring $N - 5 - 6 - N$)			
Line N – 6 break	N – 6	61.99	31.35
(Ring $N - 5 - 6 - N$)			

Table 6.28 Sending power in incidents

CHAPTER 7. VOLTAGE ADJUSTMENT, TAP-CHANGER SELECTING

7.1 Content

- ❖ To guarantee the nature of the voltage while changing the voltage at the hour of activity, introduce remuneration hardware, sanely disseminate limit in the electrical network, ... Numerous proportions of voltage guideline have been applied.
- ❖ In this chapter, I compute and select the tap changer of the transformer to ensure the voltage difference of the bus bar stay in the allowance.

7.2 Tap changer selecting

- ❖ To know the most appropriate and is board, we need to pick the voltage divider for the transformer, the transformer to be placed into activity to guarantee the busbar voltage of the superload. load, least and attempt inside the permitted range. Currently, transformers applied to 115kV (110kV) with a limit of 16MVA or more are regularly intended for under-load voltage controllers.
- ❖ In this computation, we consider a 115/23kV transformer, which has a voltage controller under load. With an evaluated recurrence of 50Hz, the machine will have a voltage change of ± 16% with ± 8 stages (counting 9=8 additions and 8 decreases each with a 1.78% distinction).

Transformer ratio: $k = \frac{U_{pa.cao}}{U_{kt.ha}}$

Page 158/169

Tap changing %	Tap changer	$ m U_{pa.cao}$
+14.24	8	131.38
+12.46	7	129.33
+10.68	6	127.28
+8.9	5	125.24
+7.12	4	123.19
+5.34	3	121.14
+3.56	2	119.09
+1.78	1	117.05
+0	0	115
-1.78	-1	112.95
-3.56	-2	110.91
-5.34	-3	108.86
-7.12	-4	106.81
-8.9	-5	104.77
-10.68	-6	102.72
-12.46	-7	100.67
-14.24	-8	98.62

Table 7.1 Tap changer parameters

Transformer ratio:
$$k = \frac{U_{pa.cao}}{U_{kt.ha}} = \frac{U_1}{U_{ha.yc}} = \frac{U_1 - \Delta U_B}{U_{ha.yc}}$$

- $\bullet \ \ U_{pa.cao}\text{:}$ voltage corresponding to the tap
- U1: voltage at Primary voltage when have load
- U₁': voltage in Secondary voltage convert to primary side.
- ΔU_B : voltage drop in transformer.
- U_{kt.ha}: no-load-voltage on secondary side usually higher than rated:

$$U_{kt.ha} = 1.1 \times U_{dm.ha} = 1.1 \times 22 = 24.2(kV)$$

Page 159/169

As per the prerequisite, we have an appraised voltage of 22 kV on the optional side and a reasonable Voltage distinction of \pm 5% from the evaluated voltage, so the necessary low voltage is:

$$U_{ha.yc} = (0.95 \rightarrow 0.5) \times 22 = 20.9 \rightarrow 23.1(kV)$$

7.2.1 Select tap-changer at maximum load

Secondary voltage converted to primary side:

$$U_{1_{\text{max}}} = 112.13(kV)$$

Computing voltage at tap:

$$U_{patt} = U_{1max} \times \frac{U_{kt,ha}}{U_{ha,vc}} = 112.13 \times \frac{24.2}{23.1} = 117.467(kV)$$

⇒ Select tap "+2" with voltage is 119.09 kV

Checking voltage at Secondary voltage after select tap:

$$U_{ha1} = U_{1max} \times \frac{U_{kt,ha}}{U_{natc}} = 112.13 \times \frac{24,2}{119,09} = 22.785(kV)$$

 \Rightarrow Satisfied the conditions of $U_{ha.yc}$

Voltage difference after select tap:

$$\%U_{ha1} = \frac{U_{ha1} - U_{dm.ha}}{U_{dm.ha}} \times 100 = \frac{22.785 - 22}{22} \times 100 = 3.57\%$$

Student: Ninh Thế Vĩnh Cường

Calculate all other nodes with similar means.

Node	Secondary voltage converted to Primary voltage(kV)	Voltage at tap (kV)	Tap select	Voltage at Secondary voltage(kV)	Voltage difference(%)
1	112.128	117.467	+2	22.785	3.571
2	107.79	112.922	-1	23.094	4.975
3	114.33	119.774	+3	22.839	3.816
4	114.18	119.617	+3	22.809	3.680
5	112.22	117.563	+2	22.803	3.654
6	113.77	119.187	+3	22.727	3.308

Table 7.2 Tap-changers selection at maximum load

7.2.2 Select tap-changer at minimum load

Secondary voltage converted to primary side:

$$U_{1min}^{'} = 110.83(kV)$$

Coputing voltage at tap:

$$U_{patt} = U_{1min}^{'} \times \frac{U_{kt.ha}}{U_{ha.vc}} = 110.83 \times \frac{24.2}{23.1} = 116.108(kV)$$

⇒ Select tap "+1" with voltage 117,05 kV

Checking voltage at Secondary voltage after select tap:

$$U_{ha1} = U_{1min}^{'} \times \frac{U_{kt.ha}}{U_{patc}} = 110.83 \times \frac{24.2}{117.05} = 22.914(kV)$$

 \Rightarrow Satisfied the conditions of $U_{ha.vc}$

 \Rightarrow

Voltage difference after select tap:

$$\%U_{ha1} = \frac{U_{ha1} - U_{dm.ha}}{U_{dm.ha}} \times 100 = \frac{22.914 - 22}{22} \times 100 = 4.155\%$$

Calculate all other nodes with similar means.

Node	Secondary voltage converted to Primary voltage(kV)	Voltage at tap (kV)	Tap select	Voltage at Secondary voltage(kV)	Voltage difference(%)
1	110.83	116.108	+1	22.914	4.155
2	110.07	115.311	+1	22.757	3.440
3	110.66	115.930	+1	22.879	3.995
4	112.11	117.449	+2	22.782	3.553
5	111.063	116.352	+1	22.962	4.374
6	111.21	116.506	+1	22.993	4.512

Table 7.3 Tap-changers selection at minimum load

7.2.3 Select tap-changer at fault operation

Only considered the situation where a line in the circuit break. To demostrate, I use ring N-5-6-N. Calculate only the situations of each station where the line connect directly to the System break, meaning compute station 5 at fault only when N-5 break.

Secondary voltage converted to primary side:

$$U_{5f1}^{'} = 98.65(kV)$$

Computing voltage at tap:

$$U_{patt} = U_{5f1}^{'} \times \frac{U_{kt,ha}}{U_{ha,vc}} = 98.65 \times \frac{24.2}{23.1} = 103.34(kV)$$

⇒ Select tap "-5" with voltage 104.77 kV

Checking voltage at Secondary voltage after select tap:

$$U_{ha5} = U_{5f1} \times \frac{U_{kt,ha}}{U_{nate}} = 98.65 \times \frac{24.2}{104.77} = 22.786(kV)$$

 \Rightarrow Satisfied the conditions of $U_{ha.yc}$

Voltage difference after select tap:

$$\%U_{ha5} = \frac{U_{ha5} - U_{dm.ha}}{U_{dm.ha}} \times 100 = \frac{22.786 - 22}{22} \times 100 = 3.57\%$$

Calculate all other nodes with similar means.

Node	Secondary voltage converted to Primary voltage(kV)	Voltage at tap (kV)	Tap select	Voltage at Secondary voltage(kV)	Voltage difference(%)
3	103.65	108.58	-3	23.04	4.73
4	100.03	107.8	-4	22.66	3.01
5	98.65	103.34	-5	22.78	3.57
6	103.37	108.29	-3	22.98	4.45

Table 7.4 Tap-changers selection at fault operation

Page 163/169

7.3 Summarize

Station	Status	Secondary voltage before selection (kV)	Тар	Secondary voltage after selection (kV)	$\Delta U \ \%$
1	Maximum load	24.67	+2×1.78%	22.785	3.571
1	Minimum load	24.38	+1×1.78%	22.914	4.155
2	Maximum load	23.7138	-1×1.78%	23.094	4.975
2	Minimum load	24.21	+1×1.78%	22.757	3.440
	Maximum load	25.15	+3×1.78%	22.839	3.816
3	Minimum load	24.345	+1×1.78%	22.879	3.995
	Fault	22.8	-3×1.78%	23.04	4.73
	Maximum load	25.12	+3×1.78%	22.809	3.680
4	Minimum load	24.66	+2×1.78%	22.782	3.553
	Fault	22	-4×1.78%	22.66	3.01
	Maximum load	24.68	+2×1.78%	22.803	3.654
5	Minimum load	24.434	+1×1.78%	22.962	4.374
	Fault	21.7	-5×1.78%	22.78	3.57
	Maximum load	25.03	+3×1.78%	22.727	3.308
6	Minimum load	24.466	+1×1.78%	22.993	4.512
	Fault	22.74	-3×1.78%	22.98	4.45

Table 7.5 Tap-changers selections

CHAPTER 8. ECONOMIC AND TECHNICAL INDICATORS OF THE DESIGNED ELECTRIC NETWORK

8.1 Contents

- In the last part of this venture, we will figure the expense forecast of the entire undertaking just as the financial and specialized pointers.
- Once an itemized outline of the undertaking is finished, development costs, for example, the development of the transformer station, PC establishment, and development of the transmission line can be set up.
- In this rundown dependent on the power misfortune estimation and insights
 of financial and specialized markers, we will ascertain the expense of power
 load.

8.2 Total power loss calculation at maximum load

❖ Active power loss on lines:

$$\sum \Delta P_L = 8.97 (MW)$$

- ❖ Power losses in transformers:
 - Copper loss (short circuit loss): $\sum \Delta P_{cu} = 0.675 (MW)$
 - Core loss (open circuit loss): $\sum \Delta P_{Fe} = 0.349 (MW)$
- Compensation instruments loss:
- Since the compensation device is a static capacitor, thus $\Delta P^* = 0.05$

$$\sum \Delta P_{bu} = \Delta P \times \sum Q_{bu} = 0.005 \times 47.51 = 0.23755 (MW)$$

Total capacity has losses:

$$\Delta P_{\Sigma} = \sum \Delta P_L + \sum \Delta P_{cu} + \sum \Delta P_{Fe} + \sum \Delta P_{bu}$$

= 8.97 + 0.675 + 0.349 + 0.23755
= 10.23155(MW)

Percentage of power loss of total load:

$$\Delta P_{\Sigma}\% = \frac{\Delta P_{\Sigma}}{P_{\Sigma}} \times 100\% = \frac{10.23155}{166.5} \times 100 = 6.145\%$$

Page 165/169

8.3 Total annual loss of income in the designed electric network

❖ Electrical loss in iron core of transformer (assume transformer all year long)
with T = 8760 hours

$$\Delta A_{Fe} = (\sum \Delta P_{Fe} \times T) = 0.349 \times 8760 = 3057.24 (MWh)$$

Electrical loss one lines and in transformer windings:

$$\Delta A_R = (\sum \Delta P_L + \sum \Delta P_{Cu}) \times \tau = (8.97 + 0.675) \times 3410.9 = 32898.13(MWh)$$

Electrical loss in compensation devices:

$$\Delta A_{bu} = \sum \Delta P_{bu} \times T_{max} = 0.23755 \times 5000 = 1187.75 (MWh)$$

❖ Toltal electrical loss in network:

$$\Delta A_{\Sigma} = \Delta A_{Fe} + \Delta A_R + \Delta A_{bu} = 3057.24 + 32898.13 + 1187.75 = 37143.12 (MWh)$$

Percentage of total electrical losses of total electrical energy supplied to the load:

$$A_{\Sigma} = P_{\Sigma} \times T_{\text{max}} = 166.5 \times 5000 = 832500$$

$$\Delta A_{\Sigma}\% = \frac{\Delta A_{\Sigma}}{A_{\Sigma}} \times 100\% = \frac{37143.12}{832500} \times 100 = 4.46\%$$

8.4 Calculate cost of electrical parts

- ➤ a_{vh(L)}: Line operation coefficient (Depreciation, repair, service)
 - The line with reinforced concrete pillars: $a_{vh(L)}=0.04$
 - Line with steel pillars: a_{vh(L)}=0,07
- \triangleright a_{vh(T)}: Operation coefficient of the transformer station, we take a_{vh(T)}=0.14
- ➤ K_L: investment in construction of lines
 - Lines of reinforced concrete pillars K_L=5 654 020 (\$)
- ➤ K_T: Total investment for transformer station construction

Page 166/169

• Station 1: S_{rated}=40 MVA, quantity: 1

Use PL1 page 200 in the book "Thiết kế nhà máy điện và trạm biến áp" by Huỳnh Nhơn, the price of the transformer is 5 379 332.7*10³ (dong).

Toltal cost of station 1 is 5 379 332.7 $*10^3$ (dong).

- Station 2 : S_{rated} = 30MVA, quantity: 1
 Use PL3 page 245 in the book "Thiết kế nhà máy điện và trạm biến áp" by Huỳnh Nhơn, the price of the transformer is 470*10³(USD)
 Total cost of station 2 is 470*10³(USD)
- Station 3 : S_{rated} = 20MVA, quantity: 2
 Use PL3 page 245 in the book "Thiết kế nhà máy điện và trạm biến áp" by Huỳnh Nhơn, the price of the transformer is 16.3*10³(RUP)
 Total cost of station 3 is 32.6*10³ (RUP)
- Station 4: S_{rated} = 25MVA, quantity: 2
 Use PL4.2 page 130 of "Thiết kế mạng điện" by Hồ Văn Hiến, the price of a transformer is 64*10³(RUP)
 Total cost of statin 4 is 128*10³(RUP)
- Station 5 : S_{rated} = 40MVA, quantity: 2
 Use PL3 page 245 in the book "Thiết kế nhà máy điện và trạm biến áp" by Huỳnh Nhơn, the price of the transformer is 470*10³(USD)
 Total cost of station 2 is 940*10³(USD)
- Station 6: S_{rated} = 20MVA, quantity: 2
 Use PL3 page 245 in the book "Thiết kế nhà máy điện và trạm biến áp" by Huỳnh Nhơn, the price of the transformer is 16.3*10³(RUP)
 Total cost of station 6 is 32.6*10³ (RUP)

Station	Voltage (kV)	Power (MVA)	Transformer quantity	Price of 1 (*10 ³ RUB)	Price of 1 (*10 ³ VND)	Price of 1 (*10 ³ USD)	Total rice (*10 ³ USD)
1	110/22	40	1		5 379 332.7		233.054
2	110/22	30	1			470	470
3	110/22	20	2	16.3			0.43
4	110/22	25	2	64			1.688
5	110/22	30	2			470	940
6	110/22	20	2	16.3			0.43
						Σ	1645.602

Table 8.1 Stations investment

⇒ Currency converter:

$$1 \text{ USD} = 75.8 \text{ RUB}$$

$$1 \text{ USD} = 23 081.87 \text{ VND}$$

Annual operational costs of the electrical network:

$$Y = a_{vh(L)} \times K_L + a_{vh(T)} \times K_T + c \times \Delta A_{\Sigma}$$

= 0.04 \times 5 654 020 + 0.14 \times 1645602 + 65 \times 37143.12
= 2870847.88\$

Solution Electricity network cost for 1 MWh of electricity to load:

$$\beta = \frac{Y}{A_{\Sigma}} = \frac{2870847.88}{832500} = 3.448(\$ / MWh)$$

Student : Ninh Thế Vĩnh Cường

Construction cost of electricity network for 1 MW of maximum load capacity:

$$K_{\Sigma} = K_L + K_T = 5654020 + 1645602 = 7299622$$
\$

$$\Rightarrow k = \frac{K_{\Sigma}}{P_{\Sigma}} = \frac{7299622}{166.5} = 43841.57(\$/MW)$$

Page 168/169

From the above calculations we have a summary table of economic and technical indicators as follows:

Indicators	Unit	Value	Note
Maximum voltage difference	%	14.33	When load 3 at max
Maximum fault voltage difference	%	9.71	Line N – 4 break
Total length	Km	337.39	
Total capacity of stations	MVA	260	
The total reactive power generated by the line capacitance	MVAr	11.2	
The total compensation amount	MVAr	47.51	
Line investment	\$	5 654 020	
Transformer investment	\$	1 645 602	
Total maximum load	MW	168.027	
Annual load power	MWh	832500	
Total capacity loss	MW	10.23155	
Total capacity loss in percentage	%	6.145	
Total power loss	MWh	37143.12	
Total power loss in percentage	%	4.46	
Cost of building electrical network for	\$/MW	43841.57	
1MW of additional charge	ψ/ 1 V1 VV		
Non-ferrous metal used	Ton	587.795	
Cost of electricity load	\$/kWh	3.448	
Annual operating costs	\$	2870847.88	

Table 8.2 Economic and technical indicators of project

Page 169/169

REFERENCES

Vietnamese:

- [1] Hồ Văn Hiến, Hướng dẫn đồ án môn học điện 1 thiết kế mạng điện, Nxb Đại Học Quốc gia, Tp. Hồ Chí Minh, năm 2017.
- [2] Huỳnh Nhơn, Thiết kế nhà máy điện và trạm biến áp, Nxb Đại Học Quốc gia, Tp. Hồ Chí Minh, năm 2015.
- [3] Hồ Văn Hiến, Hệ thống điện truyền tải và phân phối, Nxb Đại Học Quốc gia, Tp. Hồ Chí Minh, năm 2015.
- [4] 1 USD to VND, accessed 17th April 2021

 https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=VN

 D
- [5] 1 USD to RUB, accessed 17th April 2021

 https://www.xe.com/currencyconverter/convert/?Amount=1&From=USD&To=RUB

 B

Student: Ninh Thế Vĩnh Cường