$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x}} \left(f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{L}{2} \| \mathbf{x} - \mathbf{x}_k \|_2^2 + \psi(\mathbf{x}) \right)$$

which is the same as

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x}} \left(\frac{L}{2} \left\| \mathbf{x} - \left(\mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k) \right) \right\|_2^2 + \psi(\mathbf{x}) \right)$$

or

$$\boldsymbol{x}_{k+1} = \arg\min_{\boldsymbol{x}} \left(\frac{L}{2} \| \boldsymbol{x} - \boldsymbol{b}_k \|_2^2 + \psi(\boldsymbol{x}) \right)$$
 (4.64a)

where

$$\boldsymbol{b}_{k} = \boldsymbol{x}_{k} - \frac{1}{L} \nabla f(\boldsymbol{x}_{k}) \tag{4.64b}$$

Algorithm 4.6 Proximal-point algorithm for the problem in Eq. (4.56)

Step 1 Input initial point x_0 , Lipschitz constant L for $\nabla f(x)$, and tolerance ε . Set k = 0.

Step 2 Compute x_{k+1} solving the convex problem in Eq. (4.64).

Step 3 If $\|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2 / \sqrt{n} < \varepsilon$, output solution $\mathbf{x}^* = \mathbf{x}_{k+1}$ and stop; otherwise set k = k+1 and repeat from Step 2.

A problem of particular interest arising from several statistics and signal processing applications that fits well into the formulation in Eq. (4.56) is the l_1 - l_2 minimization problem

minimize
$$F(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu \|\mathbf{x}\|_{1}$$
 (4.65)

where data $A \in R^{m \times n}$, $b \in R^{m \times 1}$ and regularization parameter $\mu > 0$ are given. The two component functions in this case are $f(x) = \frac{1}{2} \|Ax - b\|_2^2$ which is convex with Lipschitz continuous gradient and $L = \lambda_{\max}(A^T A)$ (see Example 4.2), and $\Psi(x) = \mu \|x\|_1$ which is convex but non-differentiable. Therefore, the l_1 - l_2 minimization problem fits nicely into the formulation in Eq. (4.56). Applying Algorithm 4.6, the iteration step in Eq. (14.64) becomes

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x}} \left(\frac{1}{2} \| \mathbf{x} - \mathbf{b}_k \|_2^2 + \frac{\mu}{L} \| \mathbf{x} \|_1 \right)$$
 (4.66a)

where

$$\boldsymbol{b}_{k} = \frac{1}{L} \boldsymbol{A}^{T} \left(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}_{k} \right) + \boldsymbol{x}_{k}$$
 (4.66b)

It is well known [7] that the minimizer of the problem in (4.66) can be obtained by applying the soft-shrinkage by μ/L to b_k , i.e.,

$$\boldsymbol{x}_{k+1} = S_{\mu/L} \left\{ \frac{1}{L} \boldsymbol{A}^{T} \left(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}_{k} \right) + \boldsymbol{x}_{k} \right\}$$
(4.67)

where operator S_{δ} is defined by

$$S_{\delta}(z) \triangleq \operatorname{sign}(z) \cdot \max\{|z| - \delta, \mathbf{0}\}$$
 (4.68)

where the operations "sign", "max" and " $|z| - \delta$ " are performed componentwisely.

Algorithm 4.7 Proximal-point algorithm for the problem in Eq. (4.65)

- **Step 1** Input data $\{A, b\}$, regularization parameter μ , initial point x_0 , Lipschitz constant L, and number of iterations K. Set k = 0.
- **Step 2** Compute x_{k+1} using Eq. (4.67).
- **Step 3** If k = K, output solution $x^* = x_{k+1}$ and stop; otherwise set k = k + 1 and repeat from Step 2.

4.4.2 A Fast Algorithm for Solving (4.56) [6] [7]

Nesterov [6] presents an algorithm for the problem in Eq. (4.56) with $O(k^{-2})$ rate of convergence in the sense that

$$F(\mathbf{x}_k) - F(\mathbf{x}_{\text{optimal}}) \le \frac{2L \|\mathbf{x}_0 - \mathbf{x}_{\text{optimal}}\|_2^2}{(k+1)^2}$$
 (4.69)

An algorithm, known as *fast iterative shrinkage-thresholding algorithm* (FISTA), is developed in [7], which is essentially a modified version of Nesterov's algorithm, in that soft-thresholding is not directly applied to the preceding iterate but to a subtly modified previous iterate. As such,

FISTA is a fast algorithm with $O(k^{-2})$ rate of convergence in the sense of Eq. (4.69). The algorithmic steps of FISTA are outlined as follows.

Algorithm 4.8 FISTA for the problem in Eq. (4.56)

Step 1 Input initial point x_0 , Lipschitz constant L for $\nabla f(x)$, and number of iterations K.

Set
$$z_1 = x_0$$
, $t_1 = 1$, and $k = 1$.

Step 2 Compute
$$\mathbf{x}_k = \arg\min_{\mathbf{x}} \left(\frac{L}{2} \| \mathbf{x} - (\mathbf{z}_k - \frac{1}{L} \nabla f(\mathbf{z}_k)) \|_2^2 + \psi(\mathbf{x}) \right)$$

Step 3 Compute
$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$