基本参数		
符 号	描述	
$N=2^n$	虚拟地址空间中的地址数量	
$M=2^m$	物理地址空间中的地址数量	
$P=2^p$	页的大小 (字节)	

虚拟地址(VA)的组成部分		
符号	描述	
VPO	虚拟页面偏移量 (字节)	
VPN	虚拟页号	
TLBI	TLB 索引	
TLBT	TLB 标记	

物理地址(PA)的组成部分		
符号	描述	
PPO	物理页面偏移量 (字节)	
PPN	物理页号	
CO	缓冲块内的字节偏移量	
CI	高速缓存索引	
CT	高速缓存标记	

图 9-11 地址翻译符号小结

形式上来说,地址翻译是一个N元素的虚拟地址空间(VAS)中的元素和一个M元素的物理地址空间(PAS)中元素之间的映射,

MAP: VAS → PAS U Ø

这里

 $\mathrm{MAP}(A) = egin{cases} A'$ 如果虚拟地址 A 处的数据在 PAS 的物理地址 A' 处 如果虚拟地址 A 处的数据不在物理内存中

图 9-12 展示了 MMU 如何利用页表来实现这种映射。CPU 中的一个控制寄存器,页表基址寄存器(Page Table Base Register,PTBR)指向当前页表。n位的虚拟地址包含两个部分:一个 p位的虚拟页面偏移(Virtual Page Offset,VPO)和一个(n-p)位的虚拟页号(Virtual

图 9-12 使用页表的地址翻译