Logarithm

Contents

1.	Why learn Logarithm?	2
2.	Introduction	2
3.	Definitions	2
4.	Change of Base (exercise)	2
5.	Rule	4
1	Logarithm Base	4
2	Logarithm 1	4
3	Logarithm Product Rule	4
4	Logarithm Quotient Rule	4
5	Logarithm Power Rule	5
6	common Logarithm	5
7	Natural Logarithm	5
6.	Exercise – Evaluate the following	5
7.	Exercise – Solve	6
8.	Exercise – Exponential Equations	7
9.	Exercise – Solving Unknown	8
10.	Exercise – Logarithm Equations	8
11	Evercise — Logarithm Change of hase	10

1. Why learn Logarithm?

a. ?

Real-life example:

- pH scale (acidic to alkaline)
- Richter scale (measure earthquake magnitude)

2. Introduction

- a. Expressing a number in index form with base 10
 - i. Example $100 = 10^2$
 - ii. Example $1000 = 10^3$
- b. How about 40 with base 10? What is x?

i.
$$40 = 10^{x}$$

3. Definitions

Index Form	$a^x = y$
Logarithmic Form	$a^{x} = y \rightarrow x = \log_{a} y$ $base \ a \rightarrow \log_{a}$ $power \rightarrow x$ $value \rightarrow y$
	$base \ 10 = lg$ $where, a > 0, a \neq 1, y > 0$

4. Change of Base (exercise)

$10^x = 40$	$x = lg40 \approx 1.6 $ (using calculator)
$3^2 = 9$	$2 = \log_3 9$
	$2 = \frac{lg9}{lg3} \ (using \ calculator)$

a. Index form to Logarithmic Form

$4^2 = 16$	$2 = \log_4 16$
$2^5 = 32$	$5 = \log_2 32$
$10^3 = 1000$	3 = lg1000
$2^{-1} = \frac{1}{2}$	$-1 = \log_2 \frac{1}{2}$
	$1 = -\log_2 2$

$9^{\frac{1}{2}} = 3$	1
92 = 3	$\frac{1}{2} = \log_9 3$

b. Logarithmic Form to Index form

$\log_2 8 = 3$	$8 = 3^2$
$\log_5 25 = 2$	$25 = 5^2$
$\log_2 \sqrt{2} = \frac{1}{2}$	$\sqrt{2} = 2^{\frac{1}{2}}$
$\log_2 \frac{1}{4} = -2$	$\frac{1}{4} = 2^{-2}$
$\log_{16} \frac{1}{2} = -\frac{1}{4}$	$\frac{1}{2} = 16^{-\frac{1}{4}}$
$\log_3 x = 2$	$x = 3^2$

5. Rule

$\frac{\text{1 Logarithm Base}}{\log_a a} = 1$	Example: $\begin{aligned} log_2 & 2 = 1 \\ log_{\frac{1}{3}} & \frac{1}{3} = 1 \\ log_{0.5} & 0.5 = 1 \end{aligned}$
$\frac{2 \operatorname{Logarithm} 1}{\log_a 1 = 0}$	Example: $ \log_2 2 = 1 \\ \log_{\frac{1}{3}} \frac{1}{3} = 1 \\ \log_{0.5} 0.5 = 1 $
$\frac{3 \operatorname{Logarithm}\operatorname{Product}\operatorname{Rule}}{\log_b xy = \log_b x + \log_b y}$ $\operatorname{Note:} \\ \log_b (x+y) \neq \log_b x + \log_b y$	Example 1: $\log_2(3)(5) = \log_2 3 + \log_2 5$ Example 1 Solve: $\log_2 3 + \log_2 5 = \log_2 15$ $\log_2 3 + \log_2 5$ $= \log_2 15$ $= 3.9068905956085185293240583734372$ $Check \rightarrow 2^{3.9068905956085185293240583734372} = 15$ Example 2: $\log_2 7x = \log_2 7 + \log_2 x$ Example 3: $\log_2 x(x+3) = \log_2 x + \log_2(x+3)$ Example 4: $\log_6 3 + \log_6 2 = \log_6 6 = 1$ Example 5: $\log_2 40 + \log_2 0.1 + \log_2 25$ $\log_2 (40*0.1*25) = \log_2 1 = 0$
A Logarithm Quotient Rule $\log_b x - \log_b y = \log_b \frac{x}{y}$ Note: $\frac{\log_b x}{\log_b y} \neq \log_b \frac{x}{y}$	Example 1: $\log_2 \frac{7}{2} = \log_2 7 - \log_2 2$ Example 2: $\log_2 \frac{x}{5} = \log_2 x - \log_2 5$ Example 3: $\log_2 \frac{x}{(x+3)} = \log_2 x - \log_2 (x+3)$ Example 4: $\log_4 8 - \log_4 2 = \log_4 4 = 1$

	Example 5: $\log_4 x^4 - \log_4 x^3 = \log_4 x$
$\frac{\text{5 Logarithm Power Rule}}{\log_b x^r = \text{rlog}_b x}$	Prove: $\log_b x * x = \log_b x + \log_b x = 2\log_b x$ Example 1: $\log_2 x^{-3} = -3\log_2 x$ Example 2: $\log_2 \sqrt{x} = \frac{1}{2}\log_2 x$
Logarithm Base Switch Rule	$\log_2 \sqrt{x} = \frac{1}{2} \log_2 x$ $\log_b a = \frac{1}{\log_a b}$
Logarithm Base Change Rule	$\log_b a = \frac{\log_c a}{\log_c b}$
Logarithm 0	$\log_b 0 = undefined$
Logarithm Negative	$\log_b x = undefined, x \le 0$
6 common Logarithm	$ lg y = x y = 10^x $
	lg10 = 1
7 Natural Logarithm	$\log to \ the \ base \ e, \qquad e = 2.718 \dots$ $\log_e = \ln$ $\rightarrow \ln y = e^x, \qquad \ln e = 1$

6. Exercise – Evaluate the following

1	$\log_2 2\sqrt{2} = \log_2 2^{\frac{3}{2}} = \frac{3}{2}$
2	$\log_a\left(\frac{1}{a^2}\right) = -2\log_a a = -2$
3	$\log_6 54 - 2\log_6 3 = \log_6 \frac{54}{9} = \log_6 6 = 1$
4	$\log_5 4 + 2\log_5 3 - 2\log_5 6 = \log_5 \frac{4*9}{36} = \log_5 1 = 0$

7. Exercise – Solve

	Exercise – Solve
1	$5^x = 10$
	lg10
	$x = \log_5 10 = \frac{lg10}{lg5} \approx 1.43$ $2^x = 3^{x-2}$
2	$2^x = 3^{x-2}$
	$lg2^x = lg3^{x-2}$
	xlg2 = (x-2)lg3
	xlg2 = xlg3 - 2lg3
	x(lg2 - lg3) = -2lg3
	$x = \frac{-2lg3}{-2lg3} = \frac{-2lg3}{-2lg3} \approx 5.42$
	$x - \frac{1}{(lg2 - lg3)} - \frac{2}{lg2} \sim 3.42$
	$x = \frac{-2lg3}{(lg2 - lg3)} = \frac{-2lg3}{\lg \frac{2}{3}} \approx 5.42$ $e^{2x-1} = 6$
3	$e^{-n^2} = 6$ $2x - 1 = ln6$
	2x - 1 = ino $ln6 + 1$
	$x = \frac{mo+1}{2} \approx 1.40$
4	$x = \frac{\ln 6 + 1}{2} \approx 1.40$ $3^{x} \times 2^{2x} = 7(5^{x})$
-	3^x4^x 12^x
	$\frac{3^x 4^x}{5^x} = 7 \to \frac{12^x}{5} = 7$
	lg7
	$x = \log_{\frac{12}{5}} 7 = \frac{1}{12} \approx 2.22$
	$x = \log_{\frac{12}{5}} 7 = \frac{\lg 7}{\lg \frac{12}{5}} \approx 2.22$ $3^{y+1} = 0.45$
5	
	$v = \frac{ig0.45}{1.00} - 1 \approx -1.73$
	$y = \frac{lg0.45}{\lg 3} - 1 \approx -1.73$ $e^{3x-4} = 5.47$
6	
	$x = \frac{th5.47 + 4}{2} \approx 1.90$
7	$x = \frac{\ln 5.47 + 4}{3} \approx 1.90$ $3^{y+1} = 4^{y}$
'	
	$3 = (\frac{1}{3})^y \to y = \frac{180}{4} \approx 3.82$
	$lg\frac{1}{3}$
8	$3 = (\frac{4}{3})^y \to y = \frac{\lg 3}{\lg \frac{4}{3}} \approx 3.82$ $5^{x-1}3^{x+2} = 10$
	$15^x \frac{9}{5} = 10 \to 15^x = \frac{50}{9}$
	$\frac{13}{5} = \frac{10}{10} \times \frac{13}{9} = \frac{10}{9}$
	$\lg \frac{50}{\Omega}$
	$x = \frac{-9}{\log 15} \approx 1.18$
9	$x = \frac{\lg \frac{50}{9}}{\lg 15} \approx 1.18$ $2^{2x}5^{x+1} = 7$
	1. 7
	$20^x = \frac{7}{5} \to x = \frac{\lg \frac{7}{5}}{\lg 20} \approx 0.112$
	$\frac{20}{5} - \frac{1}{5} = \frac{1}{\log 20} = 0.112$

8. Exercise – Exponential Equations

	<u> </u>
1	$81^{x} + 2(9^{x+1}) = 40 \rightarrow 9^{2x} + 18(9^{x}) - 40 = 0$
	$let y = 9^x \to y^2 + 18y - 40 = 0$
	(y+20)(y-2) = 0
	y = -20 (N.A. y < 0), y = 2
	$9^x = 2$
	lg2
	$x = \frac{lg2}{lg9} \approx 0.315$
	ig9
2	$e^{2x} + 4e^{-2x} = 4 \rightarrow e^{2x} + \frac{4}{e^{2x}} - 4 = 0$
	$e^{-x} + 4e^{-x} = 4 \rightarrow e^{-x} + \frac{1}{e^{2x}} - 4 = 0$
	4
	$let y = e^{2x} \to y + \frac{4}{y} - 4 = 0 \to y^2 - 4y + 4 = 0$
	$(y-2)(y-2) = 0$ $y = 2$ $e^{2x} = 2$
	y = 2
	$e^{2x}=2$
	ln2
	$x = \frac{\ln 2}{2} \approx 0.347$
	<u> </u>
	0
3	$3^{x+1} - 2 = 8 * 3^{x-1} \to 3 * 3^x - \frac{8}{3} * 3^x - 2 = 0$ $let \ y = 3^x \to 3y - \frac{8}{3}y - 2 = 0 \to \frac{1}{3}y = 2 \to y = 6$
	3 2 = 0 * 3
	8 1
	let $y = 3^x \to 3y - \frac{1}{3}y - 2 = 0 \to \frac{1}{3}y = 2 \to y = 6$
	$3^{x} = 6$
	$x = \frac{lg6}{lg3} \approx 1.63$
	lg3
4	$9^y + 5(3^y - 10) = 0$
	$let \ x = 3^y \to x^2 + 5x - 50 = 0$
	(x+10)(y-5)=0
	$x = -10, \qquad x = 5$
	$x = \frac{10}{3^{y}} = 5$
	$y = \frac{lg5}{lg3} \approx 1.46$
	lg3
5	$10^{2x+1} - 7(10^x) = 26$
	$let \ y = 10^x \to 10y^2 + 10y - 26 = 0$
	(y-2)(10y+13)
	$y = 2$, $x = -\frac{13}{10}$
	$y = 2, \qquad x = -\frac{10}{10}$
	$10^{x} = 2$
	$y = 1a2 \approx 0.301$
6	$y = lg2 \approx 0.301$ $e^{3x} + 2e^{x} = 3e^{2x} \rightarrow e^{2x} - 3e^{x} + 2 = 0$
١	
	$let \ y = e^x \to y^2 - 3y + 2 = 0$
	(y-1)(y-2)
1	$y = 1, y = 2$ $e^x = 1, e^x = 2$
	$e^{x} = 1, \qquad e^{x} = 2$
1	$x = ln1, \qquad x = ln2$
	x = 0, x = 0.693
	$\lambda = 0, \lambda = 0.073$

$$2e^{x} = 7\sqrt{e^{x}} - 3 \rightarrow 2e^{x} - 7\sqrt{e^{x}} + 3 = 0
let y = e^{\frac{1}{2}x} \rightarrow 2y^{2} - 7y + 3 = 0 \rightarrow 2y^{2} - 7y + 3 = 0
(2y - 1)(y - 3)$$

$$y = \frac{1}{2}, \quad y = 3$$

$$e^{\frac{1}{2}x} = \frac{1}{2}, \quad e^{\frac{1}{2}x} = 3$$

$$x = 2\ln\frac{1}{2}, \quad x = 2\ln 3$$

$$x = -1.39, \quad x = 2.20$$

9. Exercise - Solving Unknown

1	The equation of a curve is $y = ax^n$,
	Given that the points (2,9) and (3,4)lie on the curve,
	calculate the value of a and of n
	$9 = a2^n$, $4 = a3^n$
	$a3^n 4 3^n 4$
	$\frac{1}{a^{2n}} = \frac{1}{9} \rightarrow \frac{1}{2} = \frac{1}{9}$
	$n = \frac{\lg\left(\frac{4}{9}\right)}{3} = -2, \qquad 9 = \frac{a}{4} \to a = 36$
	$n = \frac{1}{\lg \frac{3}{2}} = -2, \qquad 9 = \frac{1}{4} \rightarrow a = 36$

10. Exercise - Logarithm Equations

1
$$\log_{3}(2x+1) = 2 + \log_{3}(3x - 11)$$

$$\log_{3}(2x+1) - \log_{3}(3x - 11) = 2$$

$$\log_{3}\frac{(2x+1)}{(3x-11)} = 2$$

$$\frac{(2x+1)}{(3x-11)} = 9$$

$$2x + 1 = 27x - 99$$

$$-25x = -100$$

$$x = 4$$
2
$$\log_{2}(2x - 3) = \frac{1}{2} \lg(x - 3)$$

$$\log_{2}(2x - 3) = \frac{$$

3	$\log_7(17y + 15) = 2 + \log_7(2y - 3)$
	(17v + 15)
	$\frac{(17y+15)}{(2y-3)} = 49$
	17y + 15 = 98y - 147
	162 = 81y
	$y = 2$ $\log_5(8y - 6) - \log_5(y - 5) = \log_4 16$
4	$\log_5(8y - 6) - \log_5(y - 5) = \log_4 16$
	(8y-6)
	$\log_5 \frac{(8y-6)}{(y-5)} = 2$
	$\frac{(8y-6)}{(y-5)} = 25$
	· · · · · · · · · · · · · · · · · · ·
	8y - 6 = 25y - 125
	119 = 17y
	v = 7
5	$y = 7$ $lgx + \lg(5(x+1)) = 2$
	$5x^2 + 5x = 100$
	$x^2 + x - 20$
	(x-4)(x+5)
	x=4, $x=-5$
6	$2\lg(x+2) + \lg 4 = \lg x + 4\lg 3$
	$\lg 4(x+2)^2 = \lg x 3^4$
	$4x^2 + 16x + 16 = 81x$
	$4x^2 + 65x + 16 = 0$
	(x-16)(4x-1)
	$x=16, \qquad x=\frac{1}{4}$
_	1 72 2 1 2
7	$\log_x 72 = 3 - \log_x 3$
	$216 = x^3$
	$x = 6 (\log_3 y)^2 + \log_3 y^2 = 8$
8	$(\log_3 y)^2 + \log_3 y^2 = 8$
	$(\log_3 y)^2 + 2\log_3 y - 8 = 0$
	$(\log_3 y + 4)(\log_3 y - 2)$
	$y = 3^{-4}, y = 3^2$
	1
	$y = \frac{1}{0.1}, y = 9$
9	$y = \frac{1}{81}, y = 9$ $3^p = 9(27)^q$
9	$3^p = 3^2 3^{3q}$
	p = 2 + 3q
	$\log_2 7 - \log_2 (11q - 2p) = 1$
	$7 - 2 \cdot 7 - 22a $
	$\log_2 7 - \log_2 (11q - 2p) = 1$ $\frac{7}{11q - 2p} = 2 \to 7 = 22q - 4p$
	$\rightarrow 7 = 22q - 4(2+3q) \rightarrow 7 = 22q - 8 - 12q \rightarrow 15 = -2q$
	77 - 22q + 12 + 3q) 77 - 22q 0 - 12q - 132q 15
	$q = -\frac{15}{2}, \qquad p = 2 - \frac{45}{2}$
	1 2 ' 1 2

$$\ln(3x - y) = 2\ln 6 - \ln 9$$

$$3x - y = \frac{36}{9} \rightarrow 3x - 4 = y$$

$$\frac{(e^x)^2}{e^y} = e \rightarrow 2x - y = 1 \rightarrow 2x - 1 = y$$

$$\rightarrow 3x - 4 = 2x - 1 \rightarrow x = 3$$

$$y = 5$$

11. Exercise – Logarithm Change of base

	21 1 40
1	$3\log_5 y - \log_{25} y = 10$
	$3\log_5 y - \frac{\log_5 y}{\log_5 25} = 10$
	$3\log_5 y - \frac{1}{2}\log_5 y = 10$
	5, 10
	$\frac{5}{2}\log_5 y = 10$
	$\log_5 y = 4$
	y = 625
2	$u = \log_4 x$, in terms of u find:
2	$u = \log_4 x, th terms of u fina.$ $x = 4^u$
	, 16 , 2 1, 3
	$\log_4 \frac{16}{x} = \log_4 4^2 - \frac{1}{2} \log_4 4^u = 2 - u$
	$\log_2 8$ 3
	$\log_x 8 = \frac{\log_4 8}{\log_4 x} = \frac{\log_4 8}{u} = \frac{\frac{\log_2 8}{\log_2 4}}{u} = \frac{\frac{3}{2}}{u} = \frac{3}{2u}$
	$\log_4 x$ u u $2u$
3	$ (v^2)$ v
	given that $\log_p(x^2y) = 8$, $\log_p\left(\frac{y^2}{x}\right) = 6$, $\rightarrow evaluate \log_p xy$, and $\log_p\frac{y}{x}$
	$\log_p(x^2y) = 8 \to 2\log_p x + \log_p y = 8$
	$\log_p\left(\frac{y^2}{x}\right) = 6 \to 2\log_p y - \log_p x = 6$
	2x + y = 8, $2y - x = 6y = 8 - 2x,$ $2y - 6 = x$
	$y = 8 - 2x, \qquad 2y - 6 = x$
	$2(8-2x)-6=x \rightarrow 16-4x-6=x$
	$10 = 5x \to x = 2, y = 4$
	$\log_p xy = \log_p x + \log_p y = 2 + 4 = 6$
	$\log_p \frac{y}{x} = \log_p y - \log_p x = 4 - 2 = 2$
	χ

4	$\log_{16}(3x - 1) = \log_4(3x) + \log_4 0.5$
	$\frac{\log_4(3x-1)}{\log_4 16} = \log_4(3x) + \log_4 1/2$
	$\log_4 16$
	$(3x-1)^{\frac{1}{2}} = \frac{3}{2}x \to 3x - 1 = \frac{9}{4}x^2 \to 12x - 4 = 9x^2$
	$9x^2 - 12x + 4 = 0$
	(3x-2)(3x-2)
	$x = \frac{2}{3}$ $\log_2(x) - \log_4(x - 4) = 2$
5	
	$\log \left(\frac{x}{x} \right) = 2 \rightarrow \frac{x}{x} = 4$
	$\log_2\left(\frac{x}{(x-4)^{\frac{1}{2}}}\right) = 2 \to \frac{x}{(x-4)^{\frac{1}{2}}} = 4$
	$x = 4(x-4)^{\frac{1}{2}} \rightarrow x^2 = 16(x-4)$
	$x^2 - 16x + 64 = 0$
	(x-8)(x-8)
	x = 8
6	$\log_3(y) + 4\log_y 3 = 4$
	$\log_3(y) + \frac{\log_3 81}{\log_2 y} = 4$
	19837
	$\log_3(y)^2 + \log_3 81 = 4\log_3 y$
	$\log_3(y)^2 - 4\log_3 y + 4 = 0$
	$(\log_3 y - 2)(\log_3 y - 2)$ $\log_3 y = 2$
	y = 9
7	$\lg(p-q) = \lg p - \lg q \text{ , express } p \text{ in terms of } q$
	$\lg(p-q) = \lg p - \lg q$
	$\lg(p-q) = \lg\frac{p}{q}$
	7
	$p - q = \frac{p}{q} \to pq - q^2 = p$
	$pq - p = q^2$
	$p(q-1) = q^2$
	$pq - p = q^{2}$ $p(q - 1) = q^{2}$ $p = \frac{q^{2}}{q - 1}$
	q-1

8	Given that $\lg x = p$ and $\lg y \neq q$ find
	$\lg xy^2$, $\lg\left(\frac{10x}{y}\right)$, $\lg\sqrt{10x^3y}$, $\lg\left(\frac{100\sqrt{x}}{y^2}\right)$
	$\lg xy^2 = \lg x + \lg y^2 = p + 2q$
	$\lg\left(\frac{10x}{y}\right) = \lg 10 + \lg x - \lg y = 1 + p - q$
	$\lg \sqrt{10x^3y} = \frac{1}{2}(\lg 10 + 3\lg x + \lg y) = \frac{1}{2}(1 + 3p + q)$
	$\lg\left(\frac{100\sqrt{x}}{y^2}\right) = \lg 100 + \frac{1}{2}\lg x - 2\lg y = 2 + \frac{1}{2}p - 2q$
9	Given that $\log_b xy^2 = m$ and $\log_b x^3 y = n$ express
	$\log_b \frac{y}{x}$, $\log_b \sqrt{xy}$, in terms of m and n
	$\log_b xy^2 = \log_b x + 2\log_b y = m \to \log_b x = m - 2\log_b y$ $\log_b x^3 y = 3\log_b x + \log_b y = n$
	$3(m - 2\log_b y) + \log_b y = n$ $3m - 6\log_b y + \log_b y = n$
	$\frac{3m - 5\log_{\mathbf{h}} y - n}{3m - 5\log_{\mathbf{h}} y = n}$
	$\frac{3m-n}{\log_b v}$
	$\frac{3m - 5\log_{10} y = n}{3m - n}$ $\log_{10} y = \frac{3m - n}{5}$ $\log_{10} x = m - 2\frac{3m - n}{5} = m - \frac{6m - 2n}{5} = \frac{-m - 2n}{5}$
	$\log_{\frac{b}{x}} \frac{y}{x} = \frac{3m-n}{5} - \frac{-m-2n}{5} = \frac{3m-n+m+2n}{5} = \frac{4m+n}{5}$
	$\log_b \sqrt{xy} = \frac{1 - m - 2n}{2} \frac{3m - n}{5} = \frac{-m - 2n}{50}$