

COMS 4030A/7047A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

So far: Intro to RL

Today: MDPs, value iteration, policy iteration

Reinforcement Learning

• Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards

RL agent components

Policy:

$$a=\pi(s)$$
 $\pi(a|s)=\mathbb{P}[A_t=a|S_t=s]$

Reward Function:

$$\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$$

Value Function:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Model:

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$

Grid World

- The agent lives in a grid
- Walls block the agent's path
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*
- The agent's actions do not always go as planned:
 - 80% of the time, the action
 North takes the agent North
 - (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

Markov Decision Processes

- Markov decision processes: (S, A, P, γ , R)
 - States $s \in S$
 - Actions a ∈ A
 - State transition function P
 - Discount factor γ
 - Reward Function R

```
RL problem :
Goal :
\max V_{\pi}(s)
by using policy \pi : s \rightarrow a
```

Solving MDPs

- In an MDP, we want an optimal policy π^* : $S \to A$
 - \blacksquare A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policy and Value function

- Define the optimal value function:
 V*(s) = expected reward starting in s and acting optimally
- Define the optimal policy: $\pi^*(s)$ = optimal action from state s

- Value function can be given as
 - Immediate reward
 - Discounted value of successor state

$$v_{\underline{\pi}}(s) = \mathbb{E}_{\pi} \left[R_{\underline{t+1}} + \gamma v_{\underline{\pi}}(S_{t+1}) \mid S_t = s \right]$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots \mid S_{t} = s \right]$$

$$= \mathbb{E} \left[R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \dots \right) \mid S_{t} = s \right]$$

$$= \mathbb{E} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_{t} = s \right]$$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

Can be rewritten as

$$v_{\pi}(s) = R(s) + \gamma \sum_{S'} P_{SS'}^{\pi(s)} v_{\pi}(s')$$

Solving for $v_{\pi}(s)$ given π , we get a linear system of equations in terms of $v_{\pi}(s)$

 Optimal value function V*(s) is the maximum value function over all policies

•
$$v^*(s) = \max_{\pi} v_{\pi}(s)$$

 $v^*(s) = R(s) + \max_{\alpha} \gamma \sum_{S'} P_{SS'}^{\pi(s)} v^*(s')$

• Optimal policy π^*

$$\pi^*(s) = \underset{\pi}{\operatorname{argmax}} v_{\pi}(s)$$

$$= \underset{a}{\operatorname{argmax}} \gamma \sum_{S'} P_{SS'}^{\pi(s)} v^*(s')$$

- Strategy for finding optimal policy
 - Find v^*
 - Use argmax to find π^*

Compute v^* (value iteration algorithm)

- Initialise v(s) := 0 for all states s
- For every state s, update

$$v_{\pi}(s) = R(s) + \gamma \sum_{S'} P_{SS'}^{\pi(s)} v_{\pi}(s')$$

- Can be done in synchronous /asynchronous
- Value iteration algorithm allows v(S) to converge to $v^*(S)$

Example: Bellman Updates

Example: γ=0.9, living reward=0,

$$= 0.9 [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0]$$

Example: Value Iteration

Information propagates outward from terminal states and eventually all states have correct value estimates

Compute π^* (policy iteration algorithm)

- Initialise π randomly
- Repeat:
 - Solve $v \coloneqq v_{\pi}$ (i.e. solve Bellman's equ)
 - Set $\pi(s) \coloneqq \underset{a}{\operatorname{argmax}} \gamma \sum_{S'} P_{SS'}^{\pi(s)} v^*(s')$

Converges to optimal policy

When state transition probability P is unknown

- Estimate P_{ss}^a
- $P_{SS'}^a = \frac{\text{no. of times agent took action a in state } s \text{ and got to } s'}{\text{no. of times agent took action a in state } s}$

Or = $1/\langle s \rangle$ if above is "0"/"0" (no such action was taken)

Putting it all together

- Repeat{
 - Take action wrt π to get experience in MDP
 - Update estimates of p_s^a
 - Solve Bellman's equation using value iteration to get v
 - Update $\pi(s)$

When Reward is unknown

- Use the previous algorithm to estimate both state transition prob. And rewards
- But the alg might end up in local optima
 - Solution: Use exploration vs exploitation

