数据可视化

基础篇

本章内容

- 基本图形:条形图、饼图、直方图、核密 度图、箱线图、点图
- 中级绘图: 散点图、气泡图、折线图、相 关图、马赛克图

基本图形

- 条形图
- 饼图
- 直方图
- 核密度图
- 箱线图
- 点图

条形图 (Bar plots)

· 条形图通过垂直的或水平的条形展示了类别型变量的分布(频数)。函数barplot()的最简单用法是:

barplot(height)

- 其中的height是一个向量或一个矩阵。
- 数据源:探索类风湿性关节炎新疗法研究的结果。数据已包含在随vcd包分发的Arthritis数据框中。

install.packages("vcd")

简单的条形图(1/2)

```
table(): 使用 N 个类别型变量(因子)创建一个 N
library(vcd)
               维列联表(即频数表)。(注:第5章重点内容)
counts <- table(Arthritis$Improved) #准备数据
counts
                                       类风湿性关节炎
                                       部分改善 改善
# vertical barplot
                                  None Some Marked
barplot(counts,
                                          14
                                                28
    main="Simple Bar Plot",
    xlab="Improvement", ylab="Frequency")
# horizontal bar plot
barplot(counts,
    main="Horizontal Bar Plot",
    xlab="Frequency", ylab="Improvement",
    horiz=TRUE)
```

简单的条形图 (2/2)

None	Some	Marked
42	14	28

堆砌条形图和分组条形图(1/2)

```
library(vcd)
counts <- table(Arthritis$Improved, Arthritis$Treatment)
# stacked barplot
barplot(counts,
    main="Stacked Bar Plot",
    xlab="Treatment", ylab="Frequency",
    col=c("red", "yellow", "green"),
    legend=rownames(counts))
# grouped barplot
barplot(counts,
    main="Grouped Bar Plot",
    xlab="Treatment", ylab="Frequency",
    col=c("red", "yellow", "green"),
    legend=rownames(counts), beside=TRUE)
```

```
治疗效果 安慰剂 用本方法治疗
Improved Placebo Treated
None 29 13
Some 7 7
Marked 7 21
```

堆砌条形图和分组条形图 (2/2)

Improved	Placebo	Treated
None	29	13
Some	7	7
Marked	7	21

Stacked Bar Plot

Treatment

Flacebo Treated

Grouped Bar Plot

Treatment

均值条形图

- · 除了基于计数数据或频率数据,还可以使用数据整合函数结合barplot()函数,来创建表示均值、中位数、标准差等的条形图。
- 例,美国各地区平均文盲率排序的条形图 states <- data.frame(state.region, state.x77)#R自带数据 means <- aggregate(states\$Illiteracy, aggregate: 分类汇总 by=list(state.region), FUN=mean) #求均值(见第三章) means <- means[order(means\$x),] #排序 barplot(means\$x, names.arg=means\$Group.1) title("Mean Illiteracy Rate")

饼图 (Pie charts)

- 饼图在商业世界中无所不在,然而多数统 计学家却对它持否定态度。他们更推荐使 用条形图或点图。相对于面积,人们对长 度的判断更精确。R中饼图的选项十分有限。
- 饼图可由以下函数创建:
 pie(x, labels)
- 其中x是一个非负数值向量,表示每个扇形的面积,而labels则是表示各扇形标签的字符型向量。

饼图例1

slices <- c(10, 12, 4, 16, 8)

Ibls <- c("US", "UK", "Australia", "Germany",
"France")

pie(slices, labels = lbls, main="Simple Pie Chart")

饼图例2

install.packages("plotrix") 各个 "块" 之间的间隔, 默认值为0

pie3D(slices, labels=lbls,explode=0.1,

main="3D Pie Chart")

扇形图(Fan plot)

• 饼图很难比较各扇形的值,**扇形图**提供了一种同时展示相对数量和相互差异的方法。library(plotrix)

fan.plot(slices, labels = lbls, main="Fan Plot")

直方图(Histograms)

• 直方图通过在X轴上将值域分割为一定数量的组,在Y轴上显示相应值的频数,展示了连续型变量的分布。可以使用如下函数创建直方图:

hist(x)

• 其中的x是一个由数据值组成的数值向量。 参数freq=FALSE表示根据概率密度而不是 频数绘制图形。参数breaks用于控制组的 数量。在定义直方图中的单元时,默认将 生成等距切分。

直方图例1:简单直方图

hist(mtcars\$mpg)

Histogram of mtcars\$mpg

直方图例2: 指定组数和颜色

```
hist(mtcars$mpg,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Colored
histogram with 12 bins")
```

Colored histogram with 12 bins

核密度图(Kernel density plots)

- 核密度估计是用于估计随机变量概率密度函数的一种非参数方法。核密度估计不利用数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法。
- 绘制密度图的方法为: plot(density(x))
- · 其中的x是一个数值型向量。
- plot()函数会创建一幅新的图形,所以要向一幅已经存在的图形上叠加一条密度曲线,可以使用lines()函数。

核密度图例1

d <- density(mtcars\$mpg) #returns the
density data</pre>

plot(d) #plots the results

density.default(x = mtcars\$mpg)

核密度图例2 使用lines()叠加到直方图上

```
hist(mtcars$mpg,
freq=FALSE,
breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Histogram, density curve")
```

lines(density(mtcars\$mpg), col="blue", lwd=2)

箱线图/盒状图(Box plots)

- 箱线图通过绘制连续型变量的五数总括,即最小值、下四分位数、中位数、上四分位数以及最大值,描述了连续型变量的分布。箱线图能够显示出可能为离群点的观测。
- 例,

boxplot(mtcars\$mpg, main="Box plot",
ylab="Miles per Gallon")

Box plot

使用并列箱线图进行跨组比较

箱线图可以展示单个变量或分组变量。使用格式为:

boxplot(formula, data=dataframe)

• 其中的formula是一个公式,dataframe代表提供数据的数据框(或列表)。一个示例公式为y~A,这将为类别型变量A的每个值并列地生成数值型变量y的箱线图。公式y~A*B则将为类别型变量A和B所有水平的两两组合生成数值型变量y的箱线图。

使用并列箱线图进行跨组比较: 例子

boxplot(mpg~cyl,data=mtcars, main="Car Milage Data", xlab="Number of Cylinders", ylab="Miles Per Gallon")

- cyl: 汽缸数
- mpg: 每加仑行驶距离
- 公式mpg~cyl表示:针对不同的 cyl数值,分别生成mpg的箱线 图。
- 通过该图可以得出什么结论?

点图 (Dot plots)

· 点图提供了一种在简单水平刻度上绘制大量有标签值的方法。你可以使用dotchart() 函数创建点图,格式为:

dotchart(x,labels=)

• 其中的x是一个数值向量,而labels则是由 每个点的标签组成的向量。

点图例1

dotchart(mtcars\$mpg, labels=row.names(mtcars), cex=.7,
main="Gas Mileage for Car Models", xlab="Miles Per

Gallon")

#cex指定字符大小

点图例2(1/2)

```
x <- mtcars[order(mtcars$mpg),]
x$cyl <- factor(x$cyl)
x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"
dotchart(x$mpg,
     labels = row.names(x),
     cex=.7
     pch=19,
     groups = x$cyl,
     gcolor = "black",
     color = x$color.
     main = "Gas Mileage for Car Models\ngrouped by cylinder",
     xlab = "Miles Per Gallon")
```

点图例2(2/2)

Gas Milage for Car Models grouped by cylinder

中级绘图

- 散点图
- 气泡图
- 折线图
- 相关图
- 马赛克图

散点图(Scatter plots)

- 散点图可用来描述两个连续型变量间的关系。
- R中创建散点图的基础函数是plot(x, y), 其中, x和y是数值型向量, 代表着图形中的(x, y)点。
- 通过添加额外信息来增强图形表达功能。

散点图例(1/2)

```
#探究车重和单位油量行驶公里数的关系
attach(mtcars)
plot(wt, mpg,
  main="Basic Scatterplot of MPG vs. Weight",
  xlab="Car Weight (lbs/1000)",
  ylab="Miles Per Gallon", pch=19)
abline(lm(mpg ~ wt), col="red", lwd=2, lty=1)
#abline()函数用来添加最佳拟合的线性直线
detach(mtcars)
```

散点图例(2/2)

Basic Scatterplot of MPG vs. Weight

散点图矩阵 (1/2)

- R中有多种函数可以创建散点图矩阵。
- pairs()函数可以创建基础的散点图矩阵。
- 例,

```
pairs(~ mpg + disp + drat + wt, data=mtcars,
main="Basic Scatterplot Matrix")
```

Basic Scatterplot Matrix

散点图矩阵 (2/2)

install.packages("car")
library(car)
scatterplotMatrix(~ mpg + disp + drat + wt,
data=mtcars, spread=FALSE,
smoother.args=list(lty=2), main="Scatter Plot
Matrix via car Package")

• 线性和平滑拟合曲线被默认添加,主对角线处添加了核密度曲线和轴须图。spread = FALSE选项表示不添加展示分散度和对称信息的直线,lty.smooth = 2设定平滑(loess)拟合曲线使用虚线而不是实线。

Scatterplot Matrix via car package

高密度散点图

- 当数据点重叠很严重时,用散点图来观察 变量关系就显得"力不从心"了。
- 例(人为设计的例子,10000个观测点):
 set.seed(1234)
 n <- 10000
 c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2)
 c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2)
 mydata <- rbind(c1, c2)
 mydata <- as.data.frame(mydata)
 names(mydata) <- c("x", "y")
 with(mydata,

plot(x, y, pch=19, main="Scatter Plot with 10000 Observations"))

Scatter Plot with 10,000 Observations

高密度散点图: smoothScatter()

- smoothScatter()函数可利用核密度估计生成用颜色密度来表示点分布的散点图。
- 前例可写为:

with(mydata, smoothScatter(x, y, main="Scatter Plot colored by Smoothed Densities"))

Scatterplot Colored by Smoothed Densities

高密度散点图: hexbin()

• hexbin包中的hexbin()函数将二元变量的封 箱放到六边形单元格中。例, install.packages("hexbin") library(hexbin) with(mydata, { bin <- hexbin(x, y, xbins=50) plot(bin, main="Hexagonal Binning with 10,000 Observations")

Hexagonal Binning with 10,000 Observations

高密度散点图: iplot()

- IDPmisc包中的iplot()函数可通过颜色来展示点的密度(在某特定点上数据点的数目)。
- 何,
 install.packages("IDPmisc")
 library(IDPmisc)
 with(mydata, iplot(x, y, main="Image Scatter Plot with Color Indicating Density"))

Image Scatter Plot with Color Indicating Density

三维散点图

• scatterplot3d中的scatterplot3d()函数可绘制三维散点图。格式: scatterplot3d(x, y, z)

 x被绘制在水平轴上,y被绘制在竖直轴上, z被绘制在透视轴上。例, install.packages("scatterplot3d") library(scatterplot3d) attach(mtcars) scatterplot3d(wt, disp, mpg,

main="Basic 3D Scatter Plot")

Basic 3D Scatterplot

wt代表车重, mpg代表每加仑英里数, disp代表发动机排量。

气泡图(Bubble plots)

除了通过三维散点图可以展示三个定量变量间的关系,还可以使用二维散点图,加上用点的大小来代表第三个变量的值。即气泡图。

symbols(x, y, circle=radius)

- 其中x、y和radius是需要设定的向量,分别表示x、y坐标和圆圈半径。
- 和饼图一样, 统计人员倾向避免使用气泡图。但气泡图在商业中非常受欢迎。

气泡图例

• mtcars数据集: x轴代表车重, y轴代表每加仑英 里数, 气泡大小代表发动机排量。

attach(mtcars)

r <- sqrt(disp/pi) #根据气泡大小算半径

symbols(wt, mpg, circle=r, inches=0.30,

fg="white", bg="lightblue", main="Bubble Plot with point size proportional to displacement", ylab="Miles Per Gallon", xlab="Weight of Car (lbs/1000)")

text(wt, mpg, rownames(mtcars), cex=0.6)

#text可选,用来添加各个汽车的名称

detach(mtcars)

Bubble Plot with point size proportional to displacement

折线图(Line charts)

- 如果将散点图上的点从左往右连接起来, 那么就会得到一个折线图。折线图是一个 刻画变动的优秀工具。
- 折线图一般可用下列两个函数之一来创建:
 - plot(x, y, type=)
 - lines(x, y, type=)
- type参数见下页。
- plot()和lines()的区别见大后页。

plot()和lines()的区别

- plot()和lines()函数工作原理并不相同。
 - -plot()函数是被调用时即创建一幅新图,
 - lines()函数则是在已存在的图形上添加信息, 并不能自己生成图形。
- 因此,lines()函数通常是在plot()函数生成一幅图形后再被调用。如果对图形有要求,可以先通过plot()函数中的type = n来创建坐标轴、标题和其他图形特征,然后再使用lines()函数添加各种需要绘制的曲线。

折线图例1

• R自带Orange数据集(包括五种橘树树龄和年轮的数据)。本例考察第一种橘树。

折线图例2:展示5种橘树

```
Orange$Tree <- as.numeric(Orange$Tree)
ntrees <- max(Orange$Tree)
xrange <- range(Orange$age)</pre>
yrange <- range(Orange$circumference)
plot(xrange, yrange,
   type="n",
  xlab="Age (days)",
   ylab="Circumference (mm)"
colors <- rainbow(ntrees)
linetype <- c(1:ntrees)
plotchar <- seq(18, 18+ntrees, 1)
for (i in 1:ntrees) {
 tree <- subset(Orange, Tree==i)
 lines(tree$age, tree$circumference,
    type="b",
     lwd=2,
    Ity=linetype[i],
    col=colors[i],
    pch=plotchar[i]
title("Tree Growth", "example of line plot")
legend(xrange[1], yrange[2],
    1:ntrees.
    cex=0.8,
    col=colors,
    pch=plotchar,
    Ity=linetype,
    title="Tree"
```

为方便起见,将因子转化为 数值型

创建图形

添加线条

添加图例

Tree Growth

相关图(Correlograms)

- 相关系数矩阵是多元统计分析的一个基本方式。哪些被考察的变量与其他变量相关性很强,而哪些并不强?相关变量是否以某种特定的方式聚集在一起?随着变量数的增加,这类问题将变得更难回答。
- 相关图作为一种相对现代的方法,可通过对相关系数矩阵的可视化来回答这些问题。
- 相关图是检验定量变量中众多二元关系的一种有效方式。

相关系数矩阵

• 例:
options(digits=2)
cor(mtcars)

结果

```
disp
                                drat
       mpg
             cyl
                           hp
                                        wt
                                              gsec
                                                      VS
                                                              am
                                                                  gear
                                                                         carb
      1.00 -0.85 -0.85 -0.78 0.681 -0.87 0.419
                                                    0.66
                                                           0.600
                                                                  0.48 - 0.551
mpg
           1.00
                  0.90 0.83 -0.700 0.78 -0.591 -0.81 -0.523 -0.49
                                                                        0.527
cyl
     -0.85
disp -0.85
            0.90
                  1.00 0.79 -0.710 0.89 -0.434 -0.71 -0.591 -0.56
                                                                        0.395
hp
     -0.78
            0.83
                  0.79 \quad 1.00 \quad -0.449
                                      0.66 - 0.708 - 0.72 - 0.243 - 0.13
                                                                        0.750
drat
     0.68 - 0.70 - 0.71 - 0.45
                              1.000 -0.71 0.091
                                                    0.44
                                                          0.713
                                                                 0.70 - 0.091
wt
     -0.87
            0.78
                  0.89
                         0.66 - 0.712
                                     1.00 -0.175 -0.55 -0.692 -0.58
                                                                        0.428
gsec 0.42 -0.59 -0.43 -0.71 0.091 -0.17 1.000 0.74 -0.230 -0.21 -0.656
      0.66 - 0.81 - 0.71 - 0.72 \quad 0.440 - 0.55
                                             0.745 1.00
                                                          0.168 \quad 0.21 \quad -0.570
VS
      0.60 - 0.52 - 0.59 - 0.24 0.713 - 0.69 - 0.230
                                                    0.17
                                                         1.000
                                                                  0.79
                                                                       0.058
am
gear 0.48 -0.49 -0.56 -0.13 0.700 -0.58 -0.213
                                                    0.21
                                                          0.794
                                                                  1.00
                                                                        0.274
                  0.39
                         0.75 - 0.091 0.43 - 0.656 - 0.57
                                                          0.058
                                                                  0.27
                                                                        1,000
carb - 0.55
            0.53
```

corrgram()函数

- corrgram()函数的格式如下:
 corrgram(x, order=, panel=, text.panel=,
 diag.panel=)
 - 其中,x是一行一个观测的数据框。当order = TRUE时,相关矩阵将使用主成分分析法对变量重新排序,这使得二元变量的关系模式更为明显。选项panel 设定非对角线面板使用的元素类型。可通过选项lower.panel和upper.panel来分别设置主对角线下方和上方的元素类型。text.panel和diag.panel选项控制着主对角线元素类型。

corrgram()函数的panel选项

Placement	Panel Option	Description
Off diagonal	panel.pie	The filled portion of the pie indicates the magnitude of the correlation.
	panel.shade	The depth of the shading indicates the magnitude of the correlation.
	panel.ellipse	A confidence ellipse and smoothed line are plotted.
	panel.pts	A scatter plot is plotted.
Main diagonal	panel.minmax	The minimum and maximum values of the variable are printed.
	panel.txt	The variable name is printed.

相关图例1

```
install.packages("corrgram")
library(corrgram)
corrgram(mtcars, order=TRUE,
lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram of mtcars intercorrelations")
```

Correlogram of mtcars intercorrelations

相关图例2

corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse, upper.panel=panel.pts, text.panel=panel.txt, diag.panel=panel.minmax, #设置主对角线元素 main="Corrgram of mtcars data using scatter plotsand ellipses")

Correlogram of mtcars data using scatter plots and ellipses

- 下三角: 平滑拟 合曲线和置信椭 圆。
- · 主对角面板包含 变量最小和最大 值。
- 矩阵的行和列利 用主成分分析法 进行了重排序。

马赛克图(Mosaic plots)

- 马赛克图用于可视化两个以上的类别型变量(只观察单个类别型变量,可以使用柱状图或者饼图)。
- mosaic()函数调用格式

mosaic(table)

- 其中table是数组形式的列联表。
- 添加选项shade = TRUE将根据拟合模型的皮尔逊残差值对图形上色。
- 添加选项legend = TRUE将展示残差的图例。

马赛克图例

例:基础安装中的Titanic数据集
ftable(Titanic)
library(vcd)
mosaic(Titanic, shade=TRUE, legend=TRUE)

(1)从船员到头等舱, 存活率陡然提高; (2) 大部分孩子在三等舱和 二等舱; (3)头等舱大 部分女性都存活,三等 舱仅有一半女性存活; (4)船员女性很少,导 致该组的标签重叠。 (5)扩展马赛克图添加 了颜色和阴影来表示拟 合模型的残差值。蓝色 阴影表明, 在假定生存 率与船舱等级、性别和 年龄层无关的条件下, 该类别下的生存率通常 超过预期值。红色阴影 则含义相反。在模型的 独立条件下,头等舱女 性存活数和男性船员死 亡数超过模型预期值, 三等舱男性的存活数比 模型预期值低。