SCIE2100 | BINF6000 Bioinformatics

Genome Analysis I

Atefeh Taherian Fard, PhD

Australian Institute for Bioengineering and Nanotechnology a.taherianfard@uq.edu.au

Outline

Lecture 1:

- Overview genome sequencing and sequencing technologies
- Genome re-sequencing
- De-novo genome assembly

Lecture 2:

- Gene features in prokaryotes
- Gene features in eukaryotes
- Computational approaches for gene prediction
- Functional genome annotation

Why Do We Sequence Genomes?

Why Do We Sequence Genomes?

Genome resequencing:

- Characterise genotype-phenotype associations
- Understand genetics of complex diseases
- Genome-based diagnosis; non-invasive prenatal testing
- Personalised medicine, genome-based prediction of optimal treatment (e.g. targetable mutations in cancer) and side-effects. Future: optimal diet, metabolic deficiencies, disease risk, ...

De-novo sequencing

 Understand molecular biology of organisms, identify genes, gene functions, encoded pathways, metabolic capabilities, gene regulation and genome evolution

A Brief History of DNA Sequencing

- 1953 Watson and Crick publish structure of DNA double helix
- 1971 First DNA sequence determined (all 12 bp!)
- 1977 Sanger et al establish "Sanger" sequencing and sequence first ever genome (virus 5 Kb genome); state of the art until early 2000s
- **1990** The Human Genome Project (HGP) begins large scale project to sequence human genome
- **1995** First genome of free living organism (bacteria *H. influenza*) by Craig Venter and Hamilton Smith
- 1997 First complete eukaryotic genome (yeast, 12 Mb)
- 1998 Sequencing of HGP begins; Fist animal genome (roundworm *C. elegans* 100 Mb); ~22 bacterial genomes

A Brief History of DNA Sequencing Continued

- **1999** First human chromosome sequenced (chr22)
- **2001** Draft human genome by HGP; Fruit fly (*Drosophila*)
- **2003** Completion of Human Genome Project
- **2006** Sequencing shake up! Massively parallel (next-generation) sequencing by 454 Life Sciences and Illumina
- **2008** First personal genome of James Watson
- 2009 Era of bioinformatics analysis and personalized medicine
- 2015 > 200,000 human genomes sequenced
- **Now**: High-throughput genome sequencing has initiated a new area in biomedicine and will (soon) transform clinical practice

Cost of DNA Sequencing

The problem:

- First human genome took 15 years and \$2.7 billion
- Current costs: ~\$1,000, soon ~\$100?
- Moore's law: describes a long-term trend in the computer hardware industry
- 'Compute power' doubles every two years
- DNA sequencing outpaces Moore's law posing major challenges to bioinformatics

Overview Genome Sizes

Virus, Plasmid, Phage

- •1 kbp to 100 kbp ... HIV 9181 bp Bacteria, Archaea
- •1 Mbp to 14 Mbp ... *E. coli* 4.6 Mbp

Simple Eukaryotes

•10 Mbp to 100 Mbp ... Malaria 23 Mbp

Animals, Plants

- •100 Mbp to >100 Gbp!
- •Human 3.2 G

What Eukaryotic Genomes are Being Sequenced Now?

How do we sequence a genome?

Whole Genome Shotgun ("WGS")

- Shear DNA to appropriate size
- Do some library preparation
- Put in sequencing machine
- Get some big text files with your reads
- Panic when NOTEPAD.EXE won't load them

Isolate genomic DNA

Genome (multiple copies)

Isolate genomic DNA

Isolate genomic DNA

This approach is called 'Shot Gun' sequencing

CCTGCATAGATA
GCATAGATAATTG
TAGATAATTGCAT
AATTGCATGAC

TAATTGCATGA
CATGACAAT
ACAATTGCCT

TGACAATTGCCTT
TGCCTTGTCCCT
TGTCCCTGCTGA

CTTGTCCCTGC TCCCTGCTGAA TGCTGAATGTGC

TGCTGAATGTGCTCT
ATGTGCTCTGGGG
GCTCTGGGGTCT

Genome $\verb|AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCATAGATGGTCTCTGGGGTCT...|$ (multiple copies) Genome fragment AAGCTTCTCACCCTGTTCCTGCATAGAT Sequencing reads AAGCTT single end paired end (separate reads, created from same fragment) - ATAGAT AAGCTT → Distance between pairs is known (approximately) mate pair AAGCTT - GGGTCT Distance between pairs is known (approximately) Genome ${\tt AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCTGAATGTGATAGATGGTCTCTGGGGTCT...}$ (multiple copies) Genome fragment AAGCTTCTCACCCTGTTCCTGCATAGAT Sequencing reads ATAGAT AAGCTT -

Genome $\verb|AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCATAGATGGTCTCTGGGGTCT...|$ (multiple copies) Genome fragment AAGCTTCTCACCCTGTTCCTGCATAGAT Sequencing reads AAGCTT single end paired end (separate reads, created from same fragment) - ATAGAT AAGCTT → Distance between pairs is known (approximately) mate pair AAGCTT - GGGTCT Distance between pairs is known (approximately) Genome ${\tt AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCTGAATGTGATAGATGGTCTCTGGGGTCT...}$ (multiple copies) Genome fragment AAGCTTCTCACCCTGTTCCTGCATAGAT Sequencing reads ATAGAT AAGCTT -

Genome (multiple copies)	AAGCTTCTCACCCTGTTCCTGCATAGAT	AATTGCATGACAATTGCCTTGTCCCTGCTGAATGTGATAGATGGTCTCTGGGGTCT		
Genome fragment	AAGCTTCTCACCCTGTTCCTGCATAGAT			
Sequencing reads	AAGCTT	single end		
	AAGCTT — ATAGAT Distance	paired end (separate reads, created from same fragment) between pairs is known (approximately)		
	AAGCTT	Distance between pairs is known (approximately)		

Sequencing Technologies

Sequencing by synthesis (e.g. Illumina):

Nanopore (e.g. MinION):

Heather et al, Genomics 2016

DNA Sequencing Technologies

Method	Read length	Accuracy	Cost per 1 million bases	Advantages
PacBio	~15 Kb	87%	\$0.05-\$0.08	Long sequence reads
				Less expensive
Ion Torrent	100 bp	99.60%	\$1	equipment. Fast.
Sequencing by				
synthesis (Illumina)	150 bp	99.90%	\$0.05 to \$0.15	Large scale sequencing
	Varies, up to			Longest reads.
Nanopore (MinION)	500 kb	~92–97%	Varies	Portable, palm sized
Chain termination				State of the art until
(Sanger)	1200 bp	99.90%	\$2,400	early 2000s

Run time: 20 min – 11 days

Human genome: 3.2 billion bases *E. coli* genome: 4.6 million bases

Adapted from http://en.wikipedia.org/wiki/DNA sequencing

Genome Re-Sequencing

- Reference genome sequence available, representative of organisms
- Sequence genomes of individuals to characterise their individual genotype

Applications:

- Understand genome evolution (e.g. bacteria)
- Characterize genotype-phenotype associations (e.g. malaria drug response)
- Understand genetics of complex diseases
- Genome-based diagnosis; non-invasive prenatal testing
- Personalized medicine, genome-based prediction of optimal treatment (e.g. targetable mutations in cancer) and side-effects. Future: optimal diet, metabolic deficiencies, disease risk, ...

Genome Re-Sequencing

${\tt AAGCTTCTCACCCTGTTCCTGCATAGATAATTGCATGACAATTGCCTTGTCCCTGCTGAATGTGCTCTGGGGTCT...}$

Sequencing reads

TGTCCCTGCTGA

TGCCTTGTCCCT CTTGTCCCTGC

CCTGCATAGATA

TCACCCTGTTCCTGCATAGAT

GCTCTGGGGTCT

TAGATAATTGCAT

CATGACAAT

AATTGCATGAC

CCCTGTTCCTGCAT

TGCTGAATGTGCTCT

TTCTCACCCTGTTCCTGCA

TAATTGCATGA

TGCTGAATGTGC

ACAATTGCCT

GCATAGATAATTG CTGTTCCTGCATA

TGACAATTGCCTT

TCACCCTGTTCC

AAGCTTCTCACCCT

TCCCTGCTGAA

ATGTGCTCTGGGG

Reference genome aagcttctcaccctgttcctgcatagataattgcatgacaattgccttgtccttgctgaatgtgctcttggggtct...

Aligned (or mapped) reads AAGCTTCTCACCCT TTCTCACCCTGTTCCTGCA TCACCCTGTTCCTGCATAGAT TCACCCTGTTCC CCCTGTTCCTGCAT CTGTTCCTGCATA

> CCTGCATAGATA **GCATAGATAATTG** TAGATAATTGCAT AATTGCATGAC TAATTGCATGA

CATGACAAT

ACAATTGCCT TGACAATTGCCTT

TGCCTTGTCCCT TGTCCCTGCTGA CTTGTCCCTGC TCCCTGCTGAA TGCTGAATGTGC

> TGCTGAATGTGCTCT ATGTGCTCTGGGG GCTCTGGGGTCT

Genome Re-Sequencing

Reference genome sequence

AAGCT C CTCACCT

AGCT C CTCACCTAC

CT C CTCACCTACT

T C CTCACCTACTGCTC

T C CTCACCTACTGCTC

T C CTCACCTACTGCTC

T C CTCACCTACTGCTC

ACTGCTCGCTAGACTCG

ACTGCTCGCTAGACTCG

ACTCGATAGCTCAGATCGCTA

Single nucleotide substitution

(SNP) in target genome

Example:

Identify point mutations in cancer genomes by comparing tumor genomes with genome sequence of normal tissue from same patient

How Can We Identify Structural Variations?

- Structural variations are structural changes in the genome sequencing, including insertions, deletions or translocations
- Can be inferred from paired-end sequencing reads

Example:

Lung cancer
Each line represents
translocation in tumor
genome compared to normal
tissue from same patient

Structural Variations

Structural Variations

Structural Variations

Duplications

Duplications

Translocations

Translocation of region B from chr1 to chr2 in target genome

Translocations

Translocation of region B from chr1 to chr2 in target genome

Genome Re-Sequencing

- Aligning to a reference genome is significantly faster and easier than generating a de novo assembled genome
- If you work with eukaryotes, you will probably spend most of your effort on aligning and comparing to a reference
- Genome assembly is more common in organisms with small genomes (single-celled organisms)

De Novo Genome Assembly

- No prior information about the genome (no reference genome)
- Only sequencing reads supplied
- Necessary for novel genomes (e.g. parasites)
- Reconstruct the genome sequences of an organism from its read sequences alone

Genome Assembly

Genome Assembly

Example:

True sequence (7bp):

AGTCTAT

Reads (3 x 4bp):

AGTC, GTCT, CTAT

Overlaps:

```
AGTC - - - GTCT - - - CTAT - - CTAT (good) (poor) (ok)
```

Overlap Graph

- Nodes represent sequencing reads
- Edge width represent overlap score
- Consensus is generated by aligning reads along consensus graph (orange)
- aGTCTCTat

Assembly Graph

Steps:

1)Overlap: All against all pair-wise comparison

2)Build assembly graph: Nodes=reads, edges=overlaps

3)Hamilton path: Path that visits each node exactly once

4) Consensus: Align reads along assembly path

Example: De Novo Genome Sequencing of Blood Flook *Schistosoma spp.*

• Infections by *Schistosoma spp.* significant health problem in Africa and Southeast Asia

Genome assembly challenging:

- Large genome size: 451 Mb
- High number of repetitive regions (>30% of genome repetitive)

Sequencing of Schistosoma spp

 100 fold coverage on Illumina HiSeq and low-coverage PacBio

Every base of genome covered by ~100 sequence reads

	Average read length	Number of reads	Bases
Illumina	90bp	623M	56.1Gbp
PacBio	3,205bp	714K	2.3Gbp

Library	Insert size (bp)	Reads	Sequenced bases (Gb)
Small	200	158M	14.3
insert/paired-end			
Small	500	174M	15.7
insert/paired-end			
Small	800	91M	8.2
insert/paired-end			
Large	2K	130M	11.8
insert/paired-end			
Large	5K	68M	6.1
insert/paired-end			

Genome Assembly

