Programa

Avisos

O conteúdo desta aula é parcialmente retirado do livro Grafos: Conceitos, Algoritmos e Aplicações. Goldbarg, M; Goldbarg, E. Campus. 2012. ISBN: 9788535257168.

Motivação

Problema Estradas Escuras URI Online Judge

http://www.urionlinejudge.com.br/judge/pt/problems/view/1152

- Como representar computacionalmente as estradas e os cruzamentos entre as mesmas?
- E para resolver o problema?

Motivação

Motivação

- Os grafos são estruturas muito importantes e recorrentes:
 - Representam arbitrárias relações entre elementos.
- O primeiro registro de uso data de 1736, por Euler
 - Muito antes dos computadores surgirem...

- Representação concisa e precisa de inúmeros problemas computacionais
- □ Grafo **G**=(**V**, **E**)
 - □ Conjunto V com n vértices, ou nós
 - Conjunto E com m arestas, ou arcos
 - \blacksquare {e₁, e₂, e₃,, e_m}

Terminologia

Adjacência

- Vértices que são os pontos finais de uma mesma aresta são ditos adjacentes ou vizinhos;
- A função Γ (i) retorna o conjunto de vértices adjacentes ao vértice i.

Laço

Uma aresta cujas duas extremidades incidem em um mesmo vértice é denominada laço ou loop.

Arestas Paralelas

Duas ou mais arestas associadas a um mesmo par de vértices são denominadas arestas paralelas.

Grafo Simples

■ Um grafo que não possui laços ou arestas paralelas é denominado grafo simples.

Grafo Não Direcionado

- Ligações expressas em arestas —
- Se o vértice a está ligado a b, a recíproca é verdadeira;
- Cada aresta é representada por um conjunto {a, b}, indicando os dois vértices envolvidos.

Grafo Direcionado

- Ligações expressas em arcos →
- Cada arco é representada por um par ordenado (a, b), indicando os dois vértices envolvidos.

Antecessores e Sucessores

- Em um grafo direcionado, os antecessores de um vértice x são todos aqueles vizinhos a partir dos quais se alcança x;
- Analogamente, os sucessores de um vértice x são todos aqueles vizinhos alcançáveis a partir de x.

Grau de um Vértice

- O grau (d(i)) de um vértice i em um grafo não direcionado é igual o número de arestas incidentes a i;
- O grau de entrada (d-(i)) de um vértice i em um grafo não direcionado é igual o número de arestas que entram em i;
- O **grau de saída** (d+(i)) de um vértice i em um grafo não direcionado é igual o número de arestas que saem de i.

Grafo Ponderado

- Grafos em que as arestas possuem pesos são denominados ponderados ou valorados
 - Os pesos denotam distância, tempo, custo, tráfego ou outros indicadores de consumo de recursos.

Caminho

- Um caminho é uma sequência de vértices e arestas que levam de um vértice a outro
 - A princípio, sem a repetição de vértices e arestas;
 - Em um grafo não ponderado, o comprimento do caminho é a quantidade de arestas;
 - Em um grafo ponderado, o comprimento do caminho é a soma dos pesos das arestas.

Ciclo

- □ Um ciclo ou circuito é um caminho que se inicia e termina em um mesmo vértice
 - Ou seja, um caminho fechado.

Grafo Completo

□ Um grafo completo com n vértices, denominado K_n é um grafo simples contendo exatamente uma aresta para cada par de vértices distintos.

Grafo Regular

- Um grafo no qual todos os vértices possuem o mesmo grau é dito regular.
 - Obs: qualquer grafo completo é regular.

Isomorfismo

- Um mesmo grafo pode ser desenhado de diferentes formas, caracterizando o isomorfismo;
- Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas.

Complemento

- Seja G=(V,E) um grafo simples dirigido ou não-dirigido, o complemento de G, C(G), é um grafo formado da seguinte maneira:
 - Os vértices de G são todos os vértices de G;
 - As arestas de G são exatamente as arestas que faltam em G para formarmos um grafo completo.

Bipartido

Um grafo é **bipartido** se o conjunto de vértices V pode ser particionado em 2 subconjuntos V_1 e V_2 tal que todas as arestas do grafo são incidentes a um vértice de V_1 e a um vértice de V_2 .

Bipartido Completo

□ Um grafo **bipartido** é **completo** $(K_{|VI|,|V2|})$ se cada vértice do subconjunto V_1 é adjacente a todos os vértices do subconjunto V_2 e vice-versa.

Conexo

■ Em um grafo conexo, para todo par de vértices i e j existe pelo menos um caminho entre i e j.

Desconexo

Um grafo desconexo ou desconectado é composto de dois ou mais grafos conexos, chamados de componentes.

Grafo Nulo, Vértices Pendente e Isolados

- Grafo Nulo
 - ☐ Grafo sem arestas.
- **□** Vértice Pendente
 - \blacksquare Vértice i com d(i) = 1.
- Vértice Isolado
 - Vértice com nenhuma aresta incidente.

Perguntas?