TD1-Études de suites

Exercice 1.

1. (a) La fonction f est polynomiale donc dérivable sur son ensemble de définition. De plus,

$$\forall x \in \mathbb{R}, \ f'(x) = -3(1-x)^2 + 1.$$

Étudions le signe de la dérivée : soit $x \in \mathbb{R}$.

$$f'(x) \ge 0 \Longleftrightarrow \frac{1}{3} \ge (1-x)^2 \Longleftrightarrow -\sqrt{\frac{1}{3}} \le 1 - x \le \sqrt{\frac{1}{3}}$$
$$\iff x \in \left[1 - \sqrt{\frac{1}{3}}, 1 + \sqrt{\frac{1}{3}}\right]$$

avec égalité si et seulement si $x=1-\sqrt{\frac{1}{3}}$ ou $x=1+\sqrt{\frac{1}{3}}$. On en déduit :

Enfin, en remarquant que

$$f\left(1-\sqrt{\frac{1}{3}}\right) = \frac{1}{3}\sqrt{\frac{1}{3}} + 1 - \sqrt{\frac{1}{3}} > 0,$$

le tableau de variation de f permet de conclure que :

$$\forall x \in]0,1[, f(x) \in]0,1[. (*)$$

- (b) Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition $\langle u_n \in]0,1[$ \rangle et montrons par récurrence que : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_0 = 0.4$, $\mathcal{P}(0)$ est vraie.

• *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que $u_n \in]0,1[$. D'après (*), on a donc :

$$u_{n+1} = f(u_n) \in]0,1[.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, u_n \in]0,1[.$$

(c) Soit $n \in \mathbb{N}$. Comme $u_n < 1$, on a :

$$u_{n+1} - u_n = f(u_n) - u_n = (1 - u_n)^3 > 0.$$

Donc $u_{n+1} > u_n$.

Ainsi : $\forall n \in \mathbb{N}, u_{n+1} > u_n$.

La suite est donc croissante.

2. D'après la question 1, $(u_n)_{n\in\mathbb{N}}$ est majorée et d'après la question 2, $(u_n)_{n\in\mathbb{N}}$ est croissante. Ainsi, d'après le théorème de convergence monotone, la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. On note ℓ sa limite.

On sait par ailleurs que f est continue sur $\mathbb R$ donc ℓ est un point fixe de f. Déterminons les points fixes de f. Soit $x \in \mathbb R$.

$$f(x) = x \Longleftrightarrow (1 - x)^3 = 0 \Longleftrightarrow x = 1.$$

L'unique point fixe de f est donc 1.

Par conséquent, $\ell=1$.

Exercice 2.

- 1. La fonction *f* est strictement croissante car la fonction exponentielle l'est.
- 2. On va étudier la fonction $g:x\in\mathbb{R}\mapsto f(x)-x$ et montrer qu'elle s'annule une unique fois. La fonction g est dérivable sur \mathbb{R} en tant que somme de fonctions dérivables sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \quad g'(x) = e^x - 1.$$

On en déduit :

x	$-\infty$	0		+∞
Signe de $g'(x)$	_	0	+	
Variations de g				<i></i>

D'après le tableau de variations, on peut conclure que :

$$\forall x \in \mathbb{R}$$
, $g(x) = f(x) - x \ge 0$ avec égalité si et seulement si $x = 0$.

L'équation f(x) = x possède donc comme unique solution 0.

3. Par définition, la suite $(u_n)_{n\in\mathbb{N}}$ vérifie la relation de récurrence suivante :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n).$$

Soit $n \in \mathbb{N}$. On a

$$u_{n+1} - u_n = f(u_n) - u_n = g(u_n) \ge 0$$

d'après la question précédente. Donc $u_{n+1} \ge u_n$.

Ainsi : $\forall n \in \mathbb{N}$, $u_{n+1} \ge u_n$. La suite $(u_n)_{n \in \mathbb{N}}$ est donc croissante.

En particulier ¹:

$$\forall n \in \mathbb{N}, \quad 1 = u_0 \le u_n \le u_{n+1}.$$

4. La suite $(u_n)_{n\in\mathbb{N}}$ étant croissante d'après le théorème de la limite monotone soit $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie ℓ soit $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie ℓ . Comme la fonction f est continue sur \mathbb{R} , ℓ est un point fixe de f. Or, d'après la question 2, 0 est l'unique point fixe de f. Par conséquent $\ell=0$.

D'autre part, on sait que

$$\forall n \in \mathbb{N}, \quad 1 < u_n.$$

Donc, en passant à la limite dans cette inégalité on obtient :

$$1 < \ell = 0$$
.

Ceci est une contradiction. Ainsi, $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers une limite finie. Finalement, $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Exercice 3.

1. La fonction f est dérivable sur $]0, +\infty[$ en tant que somme de fonctions dérivables sur $]0, +\infty[$. De plus :

$$\forall x \in]0, +\infty[, f'(x) = 1 - \frac{1}{x^2}.$$

On en déduit :

x	0	1	+∞
Signe de $f'(x)$		- 0	+
Variations de <i>f</i>		2	

- 2. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « u_n est bien défini et $u_n > 0$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_0 = 1$, $\mathcal{P}(0)$ est vraie.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que u_n est bien défini et strictement positif. En particulier u_n appartient à l'ensemble de définition de f. Par conséquent, $u_{n+1} = f(u_n)$ est bien défini. De plus, d'après le tableau de variations, on a :

$$u_{n+1} = f(u_n) \ge 2 > 0.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

 $\forall n \in \mathbb{N}, \quad u_n \text{ est bien défini et } u_n > 0.$

3. Soit $n \in \mathbb{N}$. Comme $u_n > 0$, on a :

$$u_{n+1} - u_n = f(u_n) - u_n = \frac{1}{u_n} > 0.$$

Donc $u_{n+1} > u_n$.

Ainsi : $\forall n \in \mathbb{N}, u_{n+1} > u_n$.

La suite est donc croissante.

^{1.} On peut aussi répondre à cette question en procédant par récurrence.

4. Soit $x \in]0, +\infty[$.

$$f(x) = x \Longleftrightarrow \frac{1}{x} = 0.$$

Par conséquent, f ne possède pas de point fixe.

La suite $(u_n)_{n\in\mathbb{N}}$ étant croissante, d'après le théorème de la limite monotone soit $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie ℓ soit $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie ℓ . Pour tout entier naturel n on a :

$$1 \leq u_n$$
.

Donc, par passage à la limite on obtient :

$$1 < \ell$$
.

En particulier, $\ell \in]0, +\infty[$ et, f étant continue sur $]0, +\infty[$, ℓ est un point fixe de f. Cela contredit le fait que f ne possède pas de point fixe.

Par conséquent, $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

```
n = input("Entrer la valeur de n :")
u = 1
for k in range(n):
u = u+1/u
print(u)
```

Exercice 4.

1. D'après les théorèmes sur les opérations sur les fonctions dérivables, la fonctions φ est dérivable sur \mathbb{R}_+^* . De plus,

$$\forall x \in \mathbb{R}_{+}^{*}, \quad \varphi'(x) = \frac{\left(x \times \frac{1}{x} + \ln\left(x\right)\right) \times x - \left(x\ln\left(x\right) - 1\right)}{x^{2}} = \frac{x + 1}{x^{2}} > 0.$$

Ainsi, φ est strictement croissante sur \mathbb{R}_+^* .

• Par croissance comparée on sait que : $\lim_{x\to 0^+} x \ln(x) = 0$. Donc par opérations sur les limites, on obtient :

$$\lim_{x\to 0^+}\varphi(x)=-\infty.$$

• On a

$$\lim_{x \to +\infty} \varphi(x) = \lim_{x \to +\infty} \left(\ln(x) - \frac{1}{x} \right) = +\infty.$$

Ainsi:

x	0	+∞
Signe de $\varphi'(x)$		+
Variations de φ		+∞

2. La fonction φ est continue et strictement croissante sur $]0,+\infty[$. D'après le théorème de la bijection, elle réalise donc une bijection de $]0,+\infty[$ sur $\varphi(]0,+\infty[)=\mathbb{R}$ (et sa bijection réciproque est continue et strictement croissante). En particulier, comme $0\in\varphi(]0,+\infty[)=\mathbb{R}$, il possède un unique antécédent par φ . Ainsi, l'équation $\varphi(x)=0$ possède une unique solution, notée α .

Par ailleurs,

$$\varphi(1) = -1 < 0 = \varphi(\alpha) < \varphi(e) = \frac{e-1}{e}.$$

Par croissance stricte de φ^{-1} , on a donc

$$1 < \alpha < e$$

et a fortiori $\alpha \in [1, e]$.

- 3. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « u_n est bien défini et $u_n > \alpha$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_0 = e$, $\mathcal{P}(0)$ est vraie d'après ce qui précède.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que u_n est bien défini et strictement supérieur à α . En particulier u_n appartient à l'ensemble de définition de φ . Par conséquent, $u_{n+1} = \varphi(u_n) + u_n$ est bien défini. De plus, on a, par hypothèse de récurrence et croissance stricte de φ :

$$u_{n+1} = \varphi(u_n) + u_n > \varphi(\alpha) + \alpha = \alpha.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}$$
, u_n est bien défini et $u_n > \alpha$.

4. Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie L. En passant à la limite dans l'inégalité précédente, on trouve :

$$L \ge \alpha > 0$$
.

Or, $x \mapsto \varphi(x) + x$ est continue sur $]0, +\infty[$ donc L est un point fixe de $x \mapsto \varphi(x) + x$. Soit x > 0.

$$\varphi(x) + x = x \iff \varphi(x) = 0 \iff x = \alpha.$$

Ainsi, si $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie L nécessairement $L=\alpha$.

5. Soit $n \in \mathbb{N}$. On a :

$$u_{n+1} - u_n = \varphi(u_n) + u_n - u_n = \varphi(u_n).$$

Or, $u_n > \alpha$ donc par croissance de φ on a :

$$u_{n+1} - u_n = \varphi(u_n) > \varphi(\alpha) = 0.$$

Donc $u_{n+1} > u_n$.

Ainsi : $\forall n \in \mathbb{N}, u_{n+1} > u_n$.

La suite est donc croissante.

6. La suite $(u_n)_{n\in\mathbb{N}}$ étant croissante, d'après le théorème de la limite monotone soit $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie L soit $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie L. Alors, d'après la question 4, $L=\alpha$. Or, par croissance de $(u_n)_{n\in\mathbb{N}}$, pour tout entier naturel n on a :

$$u_0 \leq u_n$$
.

Par passage à la limite on obtient :

$$u_0 \leq \alpha$$
.

Cela contredit la question 3.

Par conséquent, $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Exercice 5.

1. En tant que somme de fonctions dérivables sur $]0, +\infty[$, la fonction f est dérivable sur $]0, +\infty[$ et :

$$\forall x \in]0, +\infty[, \quad f'(x) = 1 - \frac{1}{x}.$$

De plus,

- $\lim_{x \to -\infty} f(x) = +\infty;$
- par croissance comparée : $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. Or

$$\forall x > 0 \quad f(x) = x \left(1 - \frac{\ln(x)}{x} \right).$$

Donc: $\lim_{x \to +\infty} f(x) = +\infty$.

On en déduit :

x	0		1		+∞
Signe de $f'(x)$		_	0	+	
Variations de <i>f</i>	+∞		→ 1 -		+∞

2. La fonction f est continue sur]0,1[(car dérivable) et strictement décroissante sur cet intervalle. D'après le théorème de la bijection, f réalise donc une bijection de]0,1[sur $f(]0,1[)=]1,+\infty[$. En particulier, comme $2\in f(]0,1[)$, l'équation f(x)=2 possède une unique solution dans]0,1[, notée a.

De même, l'équation f(x) = 2 possède une unique solution dans $]1, +\infty[$, notée b. Finalement, comme $f(1) \neq 2$, les solutions de l'équation f(x) = 2 dans $]0, +\infty[$ sont a et b et on a bien :

$$0 < a < 1 < b$$
.

3. Comme f est strictement croissante et continue sur $[1, +\infty[$, d'après le théorème de la bijection, la restriction de f à $[1, +\infty[$ réalise une bijection de $[1, +\infty[$ sur $f([1, +\infty[) = [1, +\infty[$ et sa bijection réciproque g est continue et strictement croissante. Or,

$$f(2) = 2 - \ln(2) \le 2 = f(b) \le f(4) = 4 - 2\ln(2).$$

Donc, par croissance de *g* :

$$2 = g(f(2)) \le b = g(2) \le 4 = g(f(4)).$$

- 4. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « u_n est bien défini et $u_n \ge b$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_0 = 4$, $\mathcal{P}(0)$ est vraie d'après la question précédente.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que u_n est bien défini et strictement supérieur à b. En particulier, ln est défini en u_n .

Par conséquent, $u_{n+1} = \ln(u_n) + 2$ est bien défini.

De plus, par hypothèse de récurrence et croissance de ln on a :

$$\ln(u_n) \ge \ln(b)$$
.

Donc, comme $b - \ln(b) = 2$ on obtient :

$$u_{n+1} = \ln(u_n) + 2 = \ln(u_n) + b - \ln(b) \ge b.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

 $\forall n \in \mathbb{N}$, u_n est bien défini et $u_n \geq b$.

5. Soit $n \in \mathbb{N}$. On a

$$u_{n+1} - u_n = \ln(u_n) + 2 - u_n = 2 - f(u_n).$$

Or, d'après la question 4 et la croissance de f sur $[b, +\infty]$ on a

$$f(u_n) \ge f(b) = 2.$$

Par conséquent,

$$u_{n+1} - u_n = 2 - f(u_n) \le 0.$$

Donc $u_{n+1} \leq u_n$.

Ainsi : $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$.

La suite est donc décroissante.

La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par b donc, par le théorème de la limite monotone, elle converge vers une limite ℓ . De plus :

$$\forall n \in \mathbb{N}, \quad u_n \geq b.$$

Par passage à la limite, on obtient : $\ell \geq b$.

Soit *h* la fonction définie sur $[b, +\infty]$ par

$$\forall x \in [b, +\infty[, h(x) = \ln(x) + 2.$$

La fonction h étant continue sur $[b, +\infty[$, ℓ est un point fixe de h.

Étudions les points fixes de h. Soit $x \ge b$.

$$h(x) = x \iff \ln(x) + 2 = x \iff x - \ln(x) = 2 \iff f(x) = 2.$$

Ainsi, l'unique point fixe de h est b.

Donc $\ell = b$ et $(u_n)_{n \in \mathbb{N}}$ converge vers b.

6. (a) La fonction h est continue sur $[b, +\infty[$, dérivable sur $]b, +\infty[$ et pour tout $x \in$ $|b,+\infty|$ on a

$$0 \le h'(x) = \frac{1}{x} \le \frac{1}{h} \le \frac{1}{2}.$$

D'après l'inégalité des accroissements finis, on a donc :

$$\forall (x,y) \in [b,+\infty[^2, \quad x \ge y \Rightarrow 0 \le h(x) - h(y) \le \frac{1}{2}(x-y).$$

Soit $n \in \mathbb{N}$. En appliquant l'inégalité avec $x = u_n$ et y = b on obtient

$$0 \le h(u_n) - h(b) \le \frac{1}{2}(u_n - b).$$

Or, $u_{n+1} = h(u_n)$ et h(b) = b donc

$$0 \le u_{n+1} - b \le \frac{1}{2}(u_n - b).$$

Ainsi

$$\forall n \in \mathbb{N}, \quad 0 \le u_{n+1} - b \le \frac{1}{2}(u_n - b).$$

- (b) Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « $0 \le u_n b \le \frac{1}{2^{n-1}}$ » et montrons par récurrence que : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_0 = 4$ et $b \in [2,4]$, $\mathcal{P}(0)$ est vraie.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

D'après la question précédente, on a

$$0 \le u_{n+1} - b \le \frac{1}{2}(u_n - b)$$

et par hypothèse de récurrence, on a

$$0 \le u_n - b \le \frac{1}{2^{n-1}}.$$

Par conséquent,

$$0 \le u_{n+1} - b \le \frac{1}{2}(u_n - b) \le \frac{1}{2} \times \frac{1}{2^{n-1}} = \frac{1}{2^n}.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad 0 \leq u_n - b \leq \frac{1}{2^{n-1}}.$$

7. (a)

(b)

```
def valeur_approchee(epsilon)
   n = 0
    while 1/2^(n-1) > epsilon:
        n = n+1
    return suite(n)
```

Exercice 6.

- 1. $u_1 = f(u_0) = \frac{7}{16}$.
- 2. La fonction f est continue sur \mathbb{R} donc si $(u_n)_{n\in\mathbb{N}}$ converge sa limite est un point fixe de f.

Soit $x \in \mathbb{R}$.

$$f(x) = x \iff x^2 - x + \frac{3}{16} = 0.$$

Le discriminant Δ de cette équation vaut :

$$\Delta = 1 - \frac{3}{4} = \frac{1}{4}.$$

L'équation possède donc deux solutions

$$x_1 = \frac{1 - \frac{1}{2}}{2} = \frac{1}{4}$$
 et $x_2 = \frac{1 + \frac{1}{2}}{2} = \frac{3}{4}$.

Ainsi, les points fixes de f sont $\frac{1}{4}$ et $\frac{3}{4}$.

Donc, si $(u_n)_{n\in\mathbb{N}}$ converge sa limite est soit $\frac{1}{4}$ soit $\frac{3}{4}$.

3. La fonction f est strictement croissante sur $\left[0, \frac{7}{16}\right]$ donc $f\left(\left[0, \frac{7}{16}\right]\right) = \left[f(0), f\left(\frac{7}{16}\right)\right]$. Comme $f(0) = \frac{3}{16} \ge 0$ et $f\left(\frac{7}{16}\right) = \frac{97}{16^2} \le \frac{7}{16}$, on a bien $f\left(\left[0, \frac{7}{16}\right]\right) \subset \left[0, \frac{7}{16}\right]$.

Comme f est défini sur \mathbb{R} , il est clair que $(u_n)_{n\in\mathbb{N}}$ est bien définie.

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « $u_n \in [0, \frac{7}{16}]$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

- *Initialisation* : comme $u_0 = \frac{1}{2}$, $\mathcal{P}(0)$ est vraie.
- *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que $u_n \in [0, \frac{7}{16}]$.donc

$$u_{n+1} = f(u_n) \in f\left(\left[0, \frac{7}{16}\right]\right) \subset \left[0, \frac{7}{16}\right].$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad u_n \in \left[0, \frac{7}{16}\right].$$

4. La fonction f est continue sur $\left[0, \frac{7}{16}\right]$, dérivable sur $\left[0, \frac{7}{16}\right]$ et pour tout $x \in \left[0, \frac{7}{16}\right]$ on a

$$|f'(x)| = |2x| \le \frac{7}{8}.$$

D'après l'inégalité des accroissements finis, on a donc :

$$\forall (x,y) \in \left[0, \frac{7}{16}\right]^2, \quad |f(x) - f(y)| \le \frac{7}{8}|x - y|.$$

Soit $n \in \mathbb{N}^*$. En appliquant l'inégalité avec $x = u_n$ et $y = \frac{1}{4}$ on obtient

$$\left| f(u_n) - f\left(\frac{1}{4}\right) \right| \le \frac{7}{8} \left| u_n - \frac{1}{4} \right|.$$

Or, $u_{n+1} = f(u_n)$ et $f(\frac{1}{4}) = \frac{1}{4}$ donc

$$\left|u_{n+1} - \frac{1}{4}\right| \le \frac{7}{8} \left|u_n - \frac{1}{4}\right|.$$

Ainsi

$$\forall n \in \mathbb{N}, \quad \left| u_{n+1} - \frac{1}{4} \right| \leq \frac{7}{8} \left| u_n - \frac{1}{4} \right|.$$

- 5. Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n)$ la proposition $|u_n \frac{1}{4}| \le \left(\frac{7}{8}\right)^{n-1} \frac{7}{16} > \text{et montrons par récurrence que}$: $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_1 = \frac{7}{16}$, $\mathcal{P}(0)$ est vraie.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

D'après la question précédente, on sait que :

$$\left|u_{n+1} - \frac{1}{4}\right| \le \frac{7}{8} \left|u_n - \frac{1}{4}\right|$$

et par hypothèse de récurrence, on a

$$\left|u_n-\frac{1}{4}\right|\leq \left(\frac{7}{8}\right)^{n-1}\frac{7}{16}.$$

Par conséquent,

$$\left|u_{n+1} - \frac{1}{4}\right| \le \frac{7}{8} \left|u_n - \frac{1}{4}\right| \le \frac{7}{8} \left(\frac{7}{8}\right)^{n-1} \frac{7}{16} = \left(\frac{7}{8}\right)^n \frac{7}{16}.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad \left| u_n - \frac{1}{4} \right| \le \left(\frac{7}{8} \right)^{n-1} \frac{7}{16}.$$

6. Comme $0 \le \frac{7}{8} < 1$, $\lim_{n \to +\infty} \left(\frac{7}{8}\right)^n = 0$ donc par encadrement,

$$\lim_{n\to+\infty}\left|u_n-\frac{1}{4}\right|=0.$$

Ainsi,

$$\lim_{n\to+\infty}u_n=\frac{1}{4}.$$

Exercice 7.

- 1. La fonction f est la composée $h \circ g$ des fonctions
 - g définie sur $]-1,+\infty[$ par g(x)=x+1, dérivable sur $]-1,+\infty[$ et telle que $g(]-1,+\infty[)=]0,+\infty[$;
 - $h = \frac{3}{2} \ln \text{ définie et dérivable sur }]0, +\infty[$.

Par le théorème de composition des fonctions dérivables, f est dérivable sur $]-1,+\infty[$ et

$$\forall x \in]-1, +\infty[, f'(x) = \frac{3}{2} \frac{1}{x+1} > 0.$$

Ainsi *f* est strictement croissante sur $]-1,+\infty[$.

2. Soit g la fonction définie sur [1,2] par

$$\forall x \in [1,2], \quad g(x) = f(x) - x.$$

En tant que somme de fonctions dérivables sur [1,2], g est dérivable sur [1,2] et

$$\forall x \in [1,2], \quad g'(x) = f'(x) - 1 = \frac{1 - 2x}{2(x+1)} < 0.$$

Ainsi g est strictement décroissante sur [1,2]. Comme g est aussi continue sur [1,2], d'après le théorème de la bijection, g réalise une bijection de [1,2] sur g([1,2]) = [g(2),g(1)].

Or,

$$g(1) = \frac{3}{2}\ln(2) - 1 = \frac{1}{2}(\ln(8) - \ln(e^2)) = \frac{1}{2}\ln\left(\frac{8}{e^2}\right) > 0$$

et

$$g(2) = \frac{3}{2}\ln(3) - 2 = \frac{1}{2}(\ln(27) - \ln(e^4)) = \frac{1}{2}\ln\left(\frac{27}{e^4}\right) < 0.$$

Ainsi, $0 \in g([1,2]) = [g(2),g(1)]$ donc l'équation g(x) = 0 possède une unique solution dans [1,2].

Finalement, comme pour tout $x \in [1,2]$, $g(x) = 0 \iff f(x) = x$, l'équation f(x) = x possède une unique solution dans [1,2] que l'on note α .

3. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « u_n est bien défini et $u_n \ge \alpha$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

- *Initialisation* : comme $u_0 = 3$, $\mathcal{P}(0)$ est vraie.
- *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que u_n est bien défini et supérieur à α . En particulier u_n appartient à l'ensemble de définition de f. Par conséquent, $u_{n+1} = f(u_n)$ est bien défini. De plus, par croissance de f et hypothèse de récurrence, on a :

$$u_{n+1} = f(u_n) \ge f(\alpha) = \alpha.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

 $\forall n \in \mathbb{N}$, u_n est bien défini et $u_n \ge \alpha$.

4. Soit x > 1. Alors x + 1 > 2 donc

$$0 \le f'(x) = \frac{3}{2} \frac{1}{x+1} \le \frac{3}{4}.$$

Ainsi

$$\forall x \in [1, +\infty[, \quad 0 \le f'(x) \le \frac{3}{4}.$$

5. La fonction f est continue sur $[1, +\infty[$, dérivable sur $]1, +\infty[$ et pour tout $x \in]1, +\infty[$ on a

$$0 \le f'(x) \le \frac{3}{4}.$$

D'après l'inégalité des accroissements finis, on a donc :

$$\forall (x,y) \in [1, +\infty[^2, x \ge y \Rightarrow 0 \le f(x) - f(y) \le \frac{3}{4}(x-y).$$

Soit $n \in \mathbb{N}$. En appliquant l'inégalité avec $x = u_n$ et $y = \alpha$ on obtient

$$0 \le f(u_n) - f(\alpha) \le \frac{3}{4}(u_n - b).$$

Or, $u_{n+1} = f(u_n)$ et $f(\alpha) = \alpha$ donc

$$0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha).$$

Ainsi

$$\forall n \in \mathbb{N}, \quad 0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha).$$

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition $\ll 0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha) \gg \text{ et montrons}$ par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

- *Initialisation* : $\mathcal{P}(0)$ est trivialement vraie.
- *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

D'après la première partie de la question, on sait que :

$$0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha)$$

et par hypothèse de récurrence, on a

$$0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha).$$

Par conséquent,

$$0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha) \le \frac{3}{4} \times \left(\frac{3}{4}\right)^n (u_0 - \alpha) = \left(\frac{3}{4}\right)^{n+1} (u_0 - \alpha).$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad 0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha).$$

6. Comme $0 \le \frac{3}{4} < 1$, $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^{n+1} (u_0 - \alpha) = 0$.

Par encadrement, on a donc

$$\lim_{n \to +\infty} u_n - \alpha = 0$$

c'est-à-dire

$$\lim_{n\to+\infty}u_n=\alpha.$$

Exercice 8.

1. D'après les théorèmes sur les opérations sur les fonctions de classe C^3 , la fonction φ est de classe C^3 sur $]0, +\infty[$. De plus, pour tout x>0 on a

$$\varphi'(x) = e^x + \left(\frac{1}{x} - 1\right)e^{\frac{1}{x}} \quad ; \quad \varphi''(x) = e^x - \frac{1}{x^3}e^{\frac{1}{x}} \quad ; \quad \varphi'''(x) = e^x + \frac{3x + 1}{x^5}e^{\frac{1}{x}}.$$

2. Comme $\varphi''' > 0$ sur $]0, +\infty[$ et $\varphi''(1) = 0$, on trouve :

x	0	1	+∞
Variations de φ''			———
Signe de $\varphi''(x)$	_	0	+
Variations de φ'		e	*

En particulier,

$$\forall x > 0, \quad \varphi'(x) \ge \varphi'(1) = e.$$

3. En effectuant le changement de variable $y = \frac{1}{x}$, on obtient, par composition des limites et croissance comparée :

$$\lim_{x\to 0^+} xe^{\frac{1}{x}} = \lim_{y\to +\infty} \frac{e^y}{y} = +\infty.$$

Donc $\lim_{x\to 0^+} \varphi(x) = -\infty$.

4. • $\forall x > 0$, $\frac{\varphi(x)}{x} = \frac{e^x}{x} - e^{\frac{1}{x}}$.

Or par croissance comparée : $\lim_{x\to+\infty}\frac{e^x}{x}=+\infty$ et $\lim_{x\to+\infty}e^{\frac{1}{x}}=1$. Donc

$$\lim_{x \to +\infty} \frac{\varphi(x)}{x} = +\infty.$$

• $\forall x > 0, \, \varphi(x) = e^x \left(1 - xe^{-x}e^{\frac{1}{x}} \right).$

Or par croissance comparée : $\lim_{x \to +\infty} xe^{-x} = 0$ et $\lim_{x \to +\infty} e^{\frac{1}{x}} = 1$. Donc

$$\lim_{x \to +\infty} \varphi(x) = +\infty.$$

5. Soit $x \ge 3$. D'après la question 2, on a

$$\forall t \in [3, x], \quad \varphi'(t) \geq e.$$

En intégrant 2 membre à membre sur [3, x], on obtient par croissance de l'intégrale :

$$\varphi(x) - \varphi(3) = \int_3^x \varphi'(t)dt \ge \int_3^x edt = ex - 3e.$$

2. On peut aussi étudier la fonction $x \mapsto \varphi(x) - ex$.

Ainsi,

$$\varphi(x) \ge ex + \varphi(3) - 3e \ge ex.$$

Donc

$$\forall x \geq 3$$
, $\varphi(x) \geq ex$.

- 6. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « u_n existe et $u_n \geq 3e^n$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
 - *Initialisation* : $\mathcal{P}(0)$ est trivialement vraie.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, u_n existe et : $u_n \ge 3e^n$.

En particulier, u_n appartient à l'ensemble de définition de φ donc $u_{n+1} = \varphi(u_n)$ est bien défini. Par la question précédente, on obtient aussi :

$$u_{n+1} = \varphi(u_n) \ge e \times u_n \ge e \times 3e^n = 3e^{n+1}$$
.

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad u_n \text{ existe et } u_n \geq 3e^n.$$

7. Soit $n \in \mathbb{N}$. Comme $u_n \geq 3$, on a, d'après la question 5 :

$$u_{n+1} - u_n = \varphi(u_n) - u_n > eu_n - u_n = (e-1)u_n > 0.$$

Donc $u_{n+1} > u_n$.

Ainsi : $\forall n \in \mathbb{N}, u_{n+1} > u_n$.

La suite est donc strictement croissante.

D'après la question précédente, comme $\lim_{n\to+\infty} 3e^n = +\infty$, par comparaison on déduit que $\lim_{n\to+\infty} u_n = +\infty$.

8.

```
import numpy as np
u=3
n=0
while u <= 10^3:
    n = n+1
    u = np.exp(u)-u*np.exp(1/u)
print(n)</pre>
```

9. Pour tout entier naturel *n*, d'après la question 6, on a :

$$0 < \frac{1}{u_n} \le \frac{1}{3e^n} = \frac{1}{3}(e^{-1})^n.$$

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n \frac{1}{u_k}$. La suite $(S_n)_{n \in \mathbb{N}}$ est croissante car

$$\forall n \in \mathbb{N}, \quad S_{n+1} - S_n = \frac{1}{u_n} > 0.$$

De plus,

$$\forall n \in \mathbb{N}, \quad S_n = \sum_{k=0}^n \frac{1}{u_k} \le \frac{1}{3} \sum_{k=0}^n (e^{-1})^n = \frac{1}{3} \frac{1 - e^{-(n+1)}}{1 - e^{-1}} \le \frac{1}{3} \frac{1}{1 - e^{-1}}.$$

Ainsi $(S_n)_{n\in\mathbb{N}}$ est majorée.

La suite $(S_n)_{n\in\mathbb{N}}$ est croissante majorée donc, d'après le théorème de convergence monotone, elle converge. Donc la série de terme général $\frac{1}{u_n}$ converge.