20104169 - SUMESH R

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2002.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PXY	SO_2	ТСН	
0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990002	NaN	21.320000	NaN	
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000	2.53	11.660000	1.82	10.98
2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440001	NaN	13.670000	NaN	
3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180000	NaN	16.990000	NaN	
4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330002	NaN	15.260000	NaN	
217291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750000	NaN	13.210000	NaN	
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389999	NaN	15.640000	1.78	15.69
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000	0.94	5.620000	1.43	4.30
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	NaN	5.52	24.219999	NaN	22.12
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000	3.35	12.910000	1.54	15.51

217296 rows × 16 columns

Data Cleaning and Data Preprocessing

```
df=df.dropna()
In [4]:
df.columns
Out[4]:
Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O 3',
       'PM10', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
      dtype='object')
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 32381 entries, 1 to 217295
Data columns (total 16 columns):
    Column
            Non-Null Count Dtype
              32381 non-null object
 0
    date
   BEN
              32381 non-null float64
 1
 2 CO
              32381 non-null float64
 3 EBE
              32381 non-null float64
 4 MXY
              32381 non-null float64
 5 NMHC
              32381 non-null float64
 6 NO 2
              32381 non-null float64
 7 NOx
              32381 non-null float64
              32381 non-null float64
 8 OXY
 9 0 3
              32381 non-null float64
              32381 non-null float64
 10 PM10
              32381 non-null float64
 11 PXY
              32381 non-null float64
 12 SO 2
              32381 non-null float64
 13
    TCH
              32381 non-null float64
 14
    TOL
 15 station 32381 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.2+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
    1 0.71 28079035
    5 0.72 28079006
   22 0.80 28079024
   24 1.04 28079099
   26 0.53 28079035
217269 0.28 28079024
217271 1.30 28079099
217273 0.97 28079035
217293 0.58 28079024
217295 1.17 28079099
32381 rows × 2 columns
```

I inc short

LIIIC GIIAI L

```
In [7]:
data.plot.line(subplots=True)
```

```
Out[7]:
```

array([<Axes: >, <Axes: >], dtype=object)

Line chart

In [8]:

```
data.plot.line()
```

Out[8]:

<Axes: >

Bar chart

```
In [9]:
b=data[0:50]
In [10]:
b.plot.bar()
Out[10]:
<Axes: >
     1e7
                                                               CO
                                                               station
 2.5
 2.0
 1.5
 1.0
 0.5
```

10000

```
Histogram
In [11]:
data.plot.hist()
Out[11]:
<Axes: ylabel='Frequency'>
   30000
   25000
 Frequency
15000
```


Area chart

```
In [12]:
```

data.plot.area()

Out[12]:

<Axes: >

Box chart

```
In [13]:
```

```
data.plot.box()
```

Out[13]:

<Axes: >

Pie chart

```
In [14]:
```

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

In [15]:

```
data.plot.scatter(x='CO' ,y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 32381 entries, 1 to 217295
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	32381 non-null	object
1	BEN	32381 non-null	float64
2	CO	32381 non-null	float64
3	EBE	32381 non-null	float64
4	MXY	32381 non-null	float64
5	NMHC	32381 non-null	float64
	370 0	20201	C1 . C 4

```
32381 non-null Iloat64
    NU Z
 7
             32381 non-null float64
    NOx
    OXY
             32381 non-null float64
    0 3
             32381 non-null float64
10 PM10
             32381 non-null float64
             32381 non-null float64
11 PXY
12 SO 2
             32381 non-null float64
13 TCH
             32381 non-null float64
             32381 non-null float64
14 TOL
15 station 32381 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.2+ MB
```

In [17]:

df.describe()

Out[17]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
count	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	323
mean	2.479155	0.787323	2.914004	7.013636	0.155827	58.936796	126.009340	3.169093	
std	2.280959	0.610810	2.667881	6.774365	0.135731	31.472733	114.035078	2.950771	
min	0.180000	0.000000	0.180000	0.190000	0.000000	0.890000	1.710000	0.180000	
25%	0.970000	0.420000	1.140000	2.420000	0.080000	35.660000	48.720001	1.190000	
50%	1.840000	0.620000	2.130000	5.140000	0.130000	57.160000	96.830002	2.340000	
75%	3.250000	0.980000	3.830000	9.420000	0.200000	78.769997	167.500000	4.130000	
max	32.660000	8.460000	41.740002	99.879997	2.700000	263.600006	1336.000000	76.339996	1
4					-				⊗ ►

```
In [18]:
```

```
dfl=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

```
In [19]:
```

```
sns.pairplot(df1[0:50])
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x7f7c7914fc10>

In [20]:

```
sns.distplot(df1['station'])
```

<ipython-input-20-4bc330f7257f>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df1['station'])

Out[20]:

<Axes: xlabel='station', ylabel='Density'>


```
In [21]:
sns.heatmap(df1.corr())
Out[21]:
<Axes: >
                                                                        - 1.0
    BEN -
     CO -
                                                                        - 0.8
    EBE -
   MXY -
                                                                        - 0.6
  NMHC -
  NO 2 -
                                                                        - 0.4
   NOx -
    OXY -
                                                                        - 0.2
    O_3 ·
  PM10
                                                                        - 0.0
    PXY
   SO_2 ·
                                                                        - -0.2
   TCH -
    TOL ·
                                                                         -0.4
 station
             CO
EBE
NMXY
NO_2
NOX
OXY
OXY
PM10
PXY
SO_2
TCH
```

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [24]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[24]:
```

```
▼ LinearRegression
LinearRegression()
```

```
In [25]:
lr.intercept_
```

Out[25]: 28078990.232478637

In [26]:

```
coeff=pd.DataFrame(lr.coef_, x.columns, columns=['Co-efficient'])
coeff
```

Out[26]:

	Co-efficient
BEN	1.809828
СО	-14.733289
EBE	-11.672195
MXY	4.279424
NMHC	92.418335
NO_2	0.257456
NOx	-0.100192
OXY	-5.274840
0_3	-0.035001
PM10	-0.126043
PXY	7.538213
SO_2	0.633011
TCH	41.784911
TOL	-1.467695

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

 ${\tt <matplotlib.collections.PathCollection}$ at ${\tt 0x7f7c6070bdf0>}$


```
ACCURACY
In [28]:
lr.score(x_test,y_test)
Out[28]:
0.18255900377828316
In [29]:
lr.score(x train,y train)
Out[29]:
0.2055390283677454
Ridge and Lasso
In [30]:
from sklearn.linear model import Ridge,Lasso
In [31]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[31]:
▼ Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [32]:
rr.score(x test,y test)
Out[32]:
0.18366223136467708
In [33]:
rr.score(x_train,y_train)
Out[33]:
```

```
Out[33]:

0.20526531163757678

In [34]:

la=Lasso(alpha=10)
la.fit(x_train, y_train)

Out[34]:

V Lasso
Lasso(alpha=10)
```

In [35]:

la.score(x train,y train)

```
Out[35]:
0.06014145811842009
Accuracy(Lasso)
In [36]:
la.score(x test, y test)
Out[36]:
0.054957863738079316
In [37]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[37]:
▼ ElasticNet
ElasticNet()
In [38]:
en.coef
Out[38]:
array([ 0.90764863, 0.
                          , -3.01272993, 1.62945896, 0.19807839,
        0.23285916, -0.03001406, -2.51883221, -0.02637025, 0.0042756 \;,
        2.22628373, 0.4138471 , 1.02558249, -1.16834097])
In [39]:
en.intercept
Out[39]:
28079038.733090658
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x test, y test)
Out[41]:
0.09188933991869308
Evaluation Metrics
In [42]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

28.73836839998537 1134.0308585375371 33.67537466068547

Logistic Regression

```
In [43]:
from sklearn.linear_model import LogisticRegression
In [44]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O 3',
       'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target_vector=df[ 'station']
In [45]:
feature_matrix.shape
Out[45]:
(32381, 14)
In [46]:
target vector.shape
Out[46]:
(32381,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit_transform(feature matrix)
In [49]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs,target vector)
Out[49]:
        LogisticRegression
LogisticRegression (max iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [52]:
logr.classes
Out[52]:
array([28079006, 28079024, 28079035, 28079099])
In [53]:
logr.score(fs, target vector)
```

```
Out[53]:
0.8481825762020938
In [54]:
logr.predict proba(observation)[0][0]
Out[54]:
2.548453802498866e-10
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[2.54845380e-10, 3.39752911e-71, 1.00000000e+00, 1.42865321e-13]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x train, y train)
Out [57]:
▼ RandomForestClassifier
RandomForestClassifier()
In [58]:
parameters={ 'max_depth': [1,2,3,4,5],
            'min samples leaf': [5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [59]:
from sklearn.model selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
        RandomForestClassifier
In [60]:
grid search.best score
Out[60]:
0.773493338039354
In [61]:
rfc best=grid search.best estimator
```

```
In [62]:
from sklearn.tree import plot tree
plt.figure(figsize=(80,40))
plot tree(rfc best.estimators [5], feature names=x.columns, class names=['a', 'b', 'c', 'd'], f
illed=True)
Out[62]:
[Text(0.4348958333333333, 0.91666666666666666, 'SO_2 <= 5.685 \\ ngini = 0.748 \\ nsamples = 143 \\ nsamples 
42\nvalue = [4820, 5804, 6037, 6005]\nclass = c'),
 Text(0.145833333333333334, 0.75, 'NMHC <= 0.025 \ngini = 0.125 \nsamples = 3280 \nvalue = [1]
33, 4865, 0, 209]\nclass = b'),
 Text(0.041666666666666664, 0.583333333333333334, TOL \le 2.725 = 0.132 = 93
\nvalue = [133, 4, 0, 6] \nclass = a'),
 Text(0.02083333333333332, 0.41666666666666667, 'gini = 0.566 \nsamples = 13 \nvalue = [13, 13]
4, 0, 5] \ln ass = a'),
 0, 0, 0, 1] \land a = a'),
 ss = a'),
 = a'),
 Text(0.25, 0.583333333333333334, 'MXY <= 1.115 \ngini = 0.077 \nsamples = 3187 \nvalue = [0, 1.00]
4861, 0, 203] \nclass = b'),
 55\nvalue = [0, 2316, 0, 10]\nclass = b'),
 Text(0.125, 0.25, 'SO 2 \le 3.84 = 0.131 = 0.131 = 77 = [0, 106, 0, 8] = [0, 106, 0, 8]
ss = b'),
 Text(0.1041666666666666667, 0.0833333333333333333, 'gini = 0.0 \nsamples = 67 \nvalue = [0, 97]
, 0, 0]\nclass = b'),
 Text(0.14583333333333334, 0.083333333333333333, 'gini = 0.498 \ nsamples = 10 \ nvalue = [0, 14583333333333333333333]
9, 0, 8]\nclass = b'),
 Text(0.208333333333333334, 0.25, 'TCH <= 1.245 \ngini = 0.002 \nsamples = 1378 \nvalue = [0, 0.002]
2210, 0, 2] \nclass = b'),
 class = b'),
 1949, 0, 0]\nclass = b'),
 nvalue = [0, 2545, 0, 193] \nclass = b'),
 Text(0.29166666666667, 0.25, 'NMHC <= 0.075 \cdot 10^{-1} = 0.384 \cdot 
497, 0, 174]\nclass = b'),
 70, 0, 148]\nclass = d'),
 nclass = b'),
 Text(0.375, 0.25, 'SO 2 \le 5.385 / gini = 0.018 / gini = 1322 / gini = [0, 2048, 0, 19]]
\nclass = b'),
 Text(0.354166666666667, 0.083333333333333333333, 'gini = 0.005 \nsamples = 1237 \nvalue = [0, 0.083333333333333333]
1927, 0, 5] \ln s = b',
 Text(0.3958333333333333, 0.08333333333333333, 'gini = 0.186 \nsamples = 85 \nvalue = [0, 1]
21, 0, 14]\nclass = b'),
 87, 939, 6037, 5796]\nclass = c'),
 Text(0.583333333333334, 0.58333333333333334, 'SO 2 <= 6.395 \ = 0.677 \ = 771
0\nvalue = [2129, 832, 4383, 4872]\nclass = d'),
 Text(0.5, 0.41666666666666667, 'CO <= 0.495 / ngini = 0.648 / nsamples = 495 / nvalue = [152, 2]
60, 20, 362]\nclass = d'),
 , 47, 17, 340]\nclass = d'),
 ass = a'),
 Text(0.479166666666667, 0.083333333333333333333, 'gini = 0.264 \nsamples = 249 \nvalue = [3, 1]
47, 10, 338]\nclass = d'),
 213, 3, 22]\nclass = b'),
 Text(0.520833333333334, 0.08333333333333333, 'gini = 0.099 \nsamples = 48 \nvalue = [2, 7]
4, 0, 2] \ln s = b'),
```

Text (0.666666666666666. 0.4166666666666667. 'NMHC <= 0.065\ngini = 0.666\nsamples = 721

nclass = b'),

```
5\nvalue = [1977, 572, 4363, 4510]\nclass = d'),
  Text(0.625, 0.25, 'MXY \le 3.905 / eq ini = 0.548 / eq ini = 2095 / eq ini = 2
29]\nclass = c'),
  1, 0, 1289, 2011\nclass = c'),
  40, 0, 540, 28]\nclass = a'),
  96, 572, 2534, 4281]\nclass = d'),
  , 3130] \nclass = d'),
  0, 248, 1315, 1151] \nclass = c'),
  Text(0.864583333333334, 0.583333333333333334, 'EBE <= 4.095 \nqini = 0.631 \nsamples = 3352
\nvalue = [2558, 107, 1654, 924] \setminus a = a'
  Text(0.8125, 0.41666666666666666, 'SO 2 <= 34.475 | mgini = 0.627 | msamples = 416 | mvalue = [
118, 0, 298, 251]\nclass = c'),
 298, 250]\nclass = c'),
  Text(0.77083333333334, 0.08333333333333333, 'gini = 0.399\nsamples = 97\nvalue = [3, 0]
, 111, 37]\nclass = c'),
  1 \cdot nclass = d'),
  Text(0.833333333333334, 0.25, 'gini = 0.077 \nsamples = 12 \nvalue = [24, 0, 0, 1] \nclass
= a'),
  Text(0.91666666666666666, 0.4166666666666667, 'O 3 <= 11.115 \ngini = 0.606 \nsamples = 293
6\nvalue = [2440, 107, 1356, 673]\nclass = a'),
 Text(0.875, 0.25, '0 3 \leq 5.275\ngini = 0.673\nsamples = 1584\nvalue = [845, 94, 970, 53]
3] \nclass = c'),
  Text(0.8541666666666666, 0.08333333333333333, 'gini = 0.669\nsamples = 292\nvalue = [195
, 63, 40, 169]\nclass = a'),
 Text(0.895833333333334, 0.083333333333333333, 'gini = 0.636 \nsamples = 1292 \nvalue = [65]
0, 31, 930, 364] \nclass = c'),
 Text(0.958333333333334, 0.25, 'TOL \le 26.49 \neq 0.404 = 1352 \neq 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 1352 = 135
5, 13, 386, 140] \nclass = a'),
 1] \setminus nclass = a'),
  , 9, 85, 9] \nclass = a')]
```


Conclusion

In [63]:

```
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.18255900377828316 Ridge Regression: 0.18366223136467708 Lasso Regression 0.054957863738079316 ElasticNet Regression: 0.09188933991869308 Logistic Regression: 0.8481825762020938

Random Forest: 0.773493338039354

Logistic Regression is suitable for this dataset