

Highly Efficient Neuromorphic Computing Systems with Emerging Nonvolatile Memories

Bonan Yan

Dept. Electrical & Computer Engineering

Duke University

Slides available at: https://bonanyan.github.io/bn/

Al Needs Lots of Computation

Run on 1920 CPUs & 280 GPUs

human brain ~20Watts

Compute Demand is Exponentially Increasing

Efficiency Is The Key to Ubiquitous Al

Limited Power/Energy

Better Accuracy Comes From Larger Models

3

Overhead Dominated by Memories

- Memory is the Bottleneck; Data Movement Is Expensive
- Build Specialized Hardware for Efficient Execution

Float ADD Register File	0.9 1	GPIO GPIO
Int Multiply Float Multiply	3.1 3.7	: Function Unit
SRAM Cache DRAM Memory	5 640	: On-chip Memory : Control Module

En

Source: AMD, Intel, [Whatmough, ISSCC 2017]

Uniqueness of Neural Network Execution

Multiply-Accumulate (MAC):

Execution:

Inference:
Inputs change;
weights stay.
How to fix weights
to where MAC Units
without moving?

Make Memory Access Less Expensive

Key Idea of In-Memory Computing

$$\begin{bmatrix} V_1 & V_2 & V_3 \end{bmatrix} \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{bmatrix} = \begin{bmatrix} I_1 & I_2 & I_3 \end{bmatrix}$$

- Weight Matrix Stored as Conductance G
- Rely on Analog Computation (Kirchhoff's Current Law) for "almost free"
 - Multiplication: $I = V \cdot G$
 - Addition: $I^{column} = I_1^{row} + I_2^{row} + I_2^{row}$
- Ideal Nanoscale Devices for G:
 - Programmable Conductance
 - Multi-Level Cell
 - Small Footprint/High Density
 - Compatible with Existing CMOS Process

Memristors for In-Memory Computing

Also Called Resistive Random Access Memory, RRAM or ReRAM

Programmable resistor w/ analog states

ISSCC: Intel adds embedded ReRAM to 22nm portfolio

January 03, 2019

TSMC to start embedded RRAM production in 2019

According to reports, Taiwan Semiconductor Manufacturing Company (TSMC) is aiming to start producing embedded RRAM chips in 2019 using a 22 nm process. This will be initial "risk production" to gauge market reception.

	Multi- Level Cell	Cell Area	R/W Speed	
SRAM	×	large	Fast	
DRAM	×	medium	Medium	
1T1R	٧	medium	Medium Fast	
Flash	٧	small	Slow	

My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
 - Spike-based Interface [DAC'15, DAC'18, DAC'20]
 - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
 - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
 - Read Disturbance [ICCAD'17]

My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
 - Spike-based Interface [DAC'15, DAC'18, DAC'20]
 - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
 - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
 - Read Disturbance [ICCAD'17]

Conventional ADC is Too Large

The Level-based Design

- Compatible to existing signal processing
- High speed computation

Actual Layout:

Based on 1.66MF² 8bit ADC by K. Ohhata (JSSC 2019)

My Approach: Spiking Interface Circuit

What Better Designs Look Like

- Compute Parallelly (Massive)
- Need Light-Weight Interface Circuitry

The Spike-based Design

- Closer to biological system
- Extremely high power efficiency

Spike Conversion

Spike Conversion Circuit & Controller 3152x3152 μm²

Duke

Tradeoff between large input current range and response speed

Enlarge phase margin tolerating capacitor positive feedback

How to Use Spiking-Based Design to Execute Neural Networks?

In Situ Nonlinear Activation (ISNA) Function

Single-layer Inference Operation:

- Step 1: Load data from buffer
- Step 2: Vector-matrix multiplication
- Step 3: Nonlinear activation function
- Step 4: Pooling
- Step 5: Store results to buffer
 - : digital domain (A): analog domain

In Situ Nonlinear Activation (ISNA) Function

Single-layer Inference Operation:

- Step 1: Load data from buffer
 - Step 2: Vector-matrix multiplication
 - Step 3: Nonlinear activation function
- Step 4: Pooling
- Step 5: Store results to buffer
 - : digital domain () : analog domain

Combine Step 2 & Step 3 to simplify PE operation: Use linear + nonlinear regions

Adjust Activation Function

Measured ISNA behavior

- Vth ↓, Charging/discharging ↑
- Distorted tuning

charging/discharging

Function

Chip Architecture

Chip Summary

Technology	150nm CMOS +HfO _x RRAM		
Macro Capacity	64K (256×256)		
Clock Frequency	50MHz		
Energy Efficiency	0.257pJ/Mac		
Average Power	1.52 mW		
Layer-wise Latency	200ns		
Real-time Benchmarks	3-layer perceptrons, LeNet-4, LetNet-5		

Evaluation: Measured Neural Network Results

MNIST:

- MLP-1: Single-layer perceptron
- MLP-2: 2-layer perceptron
- CNN-1: 4-Layer LeNet

CIFAR-10:

• CNN-2: 5-Layer LeNet

Comparison

Тур	ре	CIM Macro			CIM PE		Digital Processor	
Wo	ork	VLSI'18 Panasonic	ISSCC'18 NTHU	ISSCC'18 NTHU	ISSCC'18 MIT	This work [†]	ISSCC'18 UIUC	TrueNorth [10]
Techn	Technology		65nm	65nm	65nm	150nm	65nm	28nm
Synapse		1T1R RRAM	1T1R RRAM	6T-SRAM	10T-SRAM	1T1R RRAM	6T-SRAM	SRAM
Nonvolatility		Yes	Yes	No	No	Yes	No	No
Standby current		~zero	~zero	high	high	~zero	high	high
Spikin	ng NN	No	No	No	No	Yes	No	Yes
Capa	acity	2M	1M	4K	16K	64K	128K	256M
Cell area [F ²]		_	59	124	968	74	~256	_
Normalized die area		12×	_	_	30×	1×	11×	~17240×
Chip pow	ver [mW]	15.8	_	_	_	1.52	_	204.4
Activation	precision	1 bit	3 bit	1 bit	7 bit	1~8 bit	8 bit	1 bit
Power	MAC only	20.7	16.95	55.8	28.1	_	_	_
efficiency [TOPS/W]	MAC +Activation	_	_	_	_	16.9	3.125	0.4
On-chip A Function I		No	No	No	No	Yes (tanh)	Yes (relu)	Yes (relu)
Fol	M*	_	0.86	0.45	0.20	1.83	0.098	_

FoM = energy efficiency maximum activation precision/cell area.

My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
 - Spike-based Interface [DAC'15, DAC'18, DAC'20]
 - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
 - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
 - Read Disturbance [ICCAD'17]

Non-Ideal Memristor - I

Cell Nonlinearity: conductance varies when applied with different voltages

Solution: Current Amplifier to Clamp Cell Voltage (shown in previous circuit design part)

Non-Ideal Memristor - II

- Memristance Shift: conductance/memristance gradually deviates from original values under read voltage (read disturbance)
- Characteristic:
 - Happened very slow—hard to simulation

Characterize memristor models with a factor of 1000 times faster drifting speed

Conventional Read-Verify Does Not Work for In-Memory Computing

Accuracy Evolution

Drawbacks:

- Multilevel values
 - —hard to sense
- Time costing
- Design overhead

Closed-loop Design to Enhance Weight Stability

Feedback controller: Adjust the voltage condition to compensate the memristance drift.

"Arrogant principle": recall output is used as the label to determine the sense condition.

Summary

- The Past and Now of Al Hardware
 - In-Memory Computing Eliminates Weights Movement
- My Work:
 - Spiking-based In-Memory Computing Engine Offer Very High Energy Efficiency & Good Performance
 - Clever Design Methodologies (e.g., Closed-Loop Sensing) is Effective to Tolerate Nonideal Features of Memristors

Future Work I: Single Spike Processing Engine

Use Single Spike to Replace Multiple Spikes: ~60x Improvement of Energy Efficiency

"ReSiPE: ReRAM-based Single-Spiking Processing-In-Memory Engine" Simulation Results Coming in July at Design Automation Conference (DAC) 2020

Future Work II: In-Memory Compute & Cache

Prospect Applications:

NN Training Acceleration Self-Updatable In-Memory Computing Engine

Long-Term Research Prospects

In Situ Data Processing (Near-Sensor Computing)

Normally-Off Computing (Memory-Empowered Processor Evolution)

Duke

Many Thanks for the Support!

Advisors:

Prof. Hai "Helen" Li

Prof. **Yiran Chen**

Prof. Jianhua (Joshua) Yang

UMASS Amherst

Prof. **Qiangfei Xia**

UMASS Amherst

Prof. Meng-Fan Chang

National Tsing-Hua Univ.

Dr. Qing Wu

Air Force Research Laboratory

Prof. Krishnendu Chakrabarty

Duke University

Prof. Weisheng Zhao

Beihang University

Student Collaborators:

Ziru Li, Qilin Zheng, Brady Taylor

Thanks for Listening & Qs!

slides available at:

https://bonanyan.github.io/bn/

