

F	ÍSI	CA	. 1	00)				C	EΙ	RT	Ά	MI	ΕN	l #	‡ 3	}			1	8	de	jι	ıni	i o	de 2005
																										1

AP. PATERNO
AP. MATERNO
NOMBRE
ROL USM
-

EL CERTAMEN CONSTA DE 6 PÁGINAS CON 20 PREGUNTAS EN TOTAL. TIEMPO: 105 MINUTOS NO SE RESPONDEN CONSULTAS SOBRE EL CERTAMEN

- **1.** Se tiene una barra de sección transversal cuadrada, de *lado a*, cuya densidad lineal de masa es l. Esa barra se transforma en un cilindro de sección transversal circular de *diámetro a*, sin perder masa. Entonces, la densidad lineal del cilindro es:
 - A) (p/4) 1
 - B) (p/2) 1
 - C) p 1
 - D) (2p) 1
 - E) (4p) l
- **2.** El sistema de tres bloques unidos por cuerdas ideales es arrastrado sobre una superficie horizontal sin roce por la fuerza \vec{F} , como se muestra en la figura. Para las tensiones T_1 y T_2 en las respectivas cuer-

A)
$$T_1 = T_2$$

das se cumple que :

B)
$$2T_1 = 3T_2$$

C)
$$3T_1 = 2T_2$$

D)
$$5T_1 = 3T_2$$

E)
$$3T_1 = 5T_2$$

3. Los móviles \mathbf{Q} y \mathbf{N} recorren circunferencias concéntricas con rapideces angulares $w_{\mathbf{N}}$ y $w_{\mathbf{Q}}=2w_{\mathbf{N}}$, constantes. En cierto instante ellos se encuentran alineados con el centro C, como se muestra en la figura. Entonces, la próxima vez que ellos se encuentren alineados y a distancia R entre sí, el móvil \mathbf{N} habrá descrito un ángulo de :

- B) 360°
- C) 540°
- D) 720°
- E) 900°

4. Un bloque es empujado por una persona sobre un suelo rugoso. Respecto al diagrama de cuerpo libre mostrado, indique cual de las siguientes afirmaciones es *falsa*:

- A) La reacción a la fuerza \overrightarrow{W} es ejercida por el bloque sobre el planeta Tierra.
- B) La reacción a la fuerza \vec{N} actúa sobre el suelo y está dirigida hacia abajo.
- C) La reacción a la fuerza \vec{F} actúa sobre la persona hacia ella.
- D) La reacción a la fuerza \vec{f} actúa sobre el suelo y está dirigida hacia adelante.
- E) La reacción a la fuerza \vec{W} es la fuerza \vec{N} .

- **5.** Los planetas Pix y Fel giran en torno a una misma estrella central, siendo los radios de sus órbitas $r_P = 3[\text{UA}]$ y $r_F = 27[\text{UA}]$, respectivamente. Entonces, la razón entre las magnitudes de las velocidades de Pix y Fel , V_P/V_F , es igual a:
 - A) 1/3
 - B) 3
 - C) 1/9
 - D) 9
 - E) ninguna de las anteriores.
- **6.** Una baldosa cuadrada está confeccionada con materiales diferentes de densidades superficiales de masa s_1 y $s_2=2s_1$, dispuestos como se muestra en la figura. Si la densidad superficial media de la baldosa completa es igual a $\bar{s}=3s_1/2$, entonces, la razón b/a es igual a :

- A) 2
- B) 4
- C) 3/2
- D) 3
- E) $\sqrt{2}$
- **7.** Considere que una estrella esférica se contrae hasta que su densidad sea 1000 veces su densidad inicial. Entonces, la magnitud de la aceleración de gravedad en su superficie :
 - A) aumenta 10 veces
 - B) aumenta 100 veces
 - C) aumenta 1000 veces
 - D) disminuye a la centésima parte
 - E) disminuye a la milésima parte

8. Los tres discos I, II y III, de radios R, 2R y 3R mostrados en la figura, giran conectados por una correa que no resbala. Entonces, la razón $V_{\rm P}/V_{\rm S}$ entre los módulos de las velocidades de los pernos P y S ubicados en los discos II y III en puntos situados a R/2 de cada centro de giro es :

- A) 2/3
- B) 3/2
- C) 4/9
- D) 9/4
- E) ninguno de los anteriores
- **9.** Un disco gira en torno a un eje vertical con una rapidez angular constante de 0,30[rad/s]. Un pequeño bloque de masa m=2,0[kg] está colocado sobre el disco a 1,5[m] del eje de rotación y no resbala sobre él. Entonces, para un *observador inercial*, la fuerza neta sobre el bloque es :

- B) 0,27[N], tangencial en "sentido del reloj".
- C) cero
- D) 0,27[N], radial hacia el centro de la circunferencia.
- E) 0,27[N], radial hacia fuera del centro de la circunferencia.

10. Dos bloques están en contacto y se mueven por la acción de una fuerza horizontal de magnitud F=12[N], como se muestra en la figura. La magnitud de la fuerza que el bloque ② ejerce sobre el bloque ① es 8[N]. Entonces, la razón M_1/M_2 entre sus masas es igual a :

- A) 2/3
- B) 3/2
- C) 2
- D) 1/2
- E) ninguna de las anteriores

11. Un auto se mueve rectilíneamente. La rapidez con que avanza el auto desde el momento que comienza a frenar ante un obstáculo, está representada en el gráfico adjunto. Entonces, de las siguientes afirmaciones :

- II. En t=3.0 [s] la aceleración del auto es -10 [km/(h \cdot s)].
- III. La distancia recorrida por el auto desde que comienza a frenar hasta que se detiene es 800 [m].

- A) sólo II
- B) sólo III
- C) sólo II y III
- D) sólo I y II
- E) todas
- **12.** El sistema ilustrado en la figura (bloque suspendido por resorte y cuerdas) está en equilibrio. La constante de elasticidad del resorte es K y la masa del bloque es M.

Si el resorte está en posición horizontal, entonces, el alargamiento del resorte es igual a :

A)
$$\sqrt{2} \left(Mg/K \right)$$

B)
$$(\sqrt{2}/2)(Mg/K)$$

D)
$$Mg/(2K)$$

13. Un bloque, de masa m, se encuentra sobre la plataforma horizontal de un montacargas. Al comenzar a subir, la aceleración del montacargas es $-0.2\vec{g}$ y al acercarse a su destino la aceleración es $0.2\vec{g}$. Las magnitudes de las fuerzas ejercidas por la plataforma sobre el bloque son N_a al acelerar y N_f al frenar. Entonces, de las siguientes relaciones la *correcta* es :

B)
$$N_a > N_f > mg$$

C)
$$N_a > mg > N_f$$

D)
$$N_a < mg < N_f$$

$$\mathsf{E)} \ \ N_{\pmb{a}} = N_{\pmb{f}} > mg$$

14. Sobre un cuerpo, de masa M, actúan las fuerzas $\vec{F_1}$, $\vec{F_2}$ y $\vec{F_3}$. Las direcciones de $\vec{F_1}$ y $\vec{F_2}$ se muestran en la figura adjunta y sus módulos son $\|\vec{F_1}\| = \|\vec{F_2}\| = F$. Entonces, para que el cuerpo se desplace con velocidad constante la fuerza $\vec{F_3}$ debe ser igual a :

A) $F\hat{x} + Mg\hat{y}$

B)
$$-F\hat{x} + Mg\hat{y}$$

C)
$$F\hat{x}$$
 - $Mg\hat{y}$

D) -
$$F\hat{x}$$
 - $Mg\hat{y}$

E)
$$(Mg + \sqrt{3}F)\hat{y}$$

15. Tres bloques, de masas 2M, M y 2M/3, dispuestos como se muestran en la figura están en equilibrio. Entonces, la magnitud de la fuerza que el suelo ejerce sobre el bloque de masa 2M es igual a :

B)
$$(3/7)Mg$$

D)
$$(3/4)Mg$$

E) Diferente de las anteriores

16. Dos patinadores, P y Q, se dan un impulso mutuo con las manos. Para llegar a la pared K, el patinador P emplea 4/5 del tiempo empleado por Q para llegar a la pared L.

Entonces, la razón M_P/M_Q entre las masas de ambos patinadores es igual a :

17. La rapidez con que se propaga una onda en una cuerda es $v = \sqrt{T/m}$, donde T es la tensión en la cuerda. Entonces, la dimensión de m es :

A)
$$\mathcal{M} \cdot \mathcal{L}$$

B)
$$\mathcal{M} \cdot \mathcal{L}^{-1}$$

C)
$$\mathcal{M} \cdot \mathcal{L}^{-1} \cdot \mathcal{T}^{-1}$$

D)
$$\mathcal{M}^{1/2} \cdot \mathcal{L}$$

E)
$$\mathcal{M} \bullet \mathcal{T}^{-1}$$

$$\mathcal{T} = \dim \text{ (tiempo)}$$
 $\mathcal{L} = \dim \text{ (longitud)}$
 $\mathcal{M} = \dim \text{ (masa)}$

18. Un bloque, de masa M=30[kg], se mueve a lo largo de una pista rectilínea horizontal y en cierto instante ingresa a un tramo rugoso de ella con rapidez V=12[m/s]. Si el bloque se detiene 4,0[s] más tarde, entonces la magnitud de la fuerza de roce que actúa sobre él es igual a :

- A) 270 [N]
- B) 90 [N]
- C) 48 [N]
- D) 16 [N]
- E) 10 [N]

19. Un objeto de material homogéneo fene, en su interior, un hueco vacío de volumen $V_{\rm h}$. La densidad del objeto es igual a 4/5 de la densidad del material. Entonces, la razón $V_m/V_{\rm h}$ entre los volúmenes del material homogéneo y del hueco es igual a :

- A) 4
- B) 1/4
- C) 4/9
- D) 9/4
- E) ninguna de las anteriores

20. Un disco tiene dos agujeros, \boldsymbol{G} y \boldsymbol{J} , separados por un ángulo del centro de 60°. El disco está girando en torno a un eje vertical con rapidez angular w=p [rad/s], constante. En el instante en que \boldsymbol{G} pasa justo bajo una piedra, ésta se deja caer desde una altura H sobre el disco. Para que la piedra logre pasar por el agujero \boldsymbol{J} , el menor valor de H debe ser :

- B) 20/81[m]
- C) 5/224[m]
- D) 125/9[m]
- E) 125/36[m]

CORRECTAS C3 1S 2005 F 100

FORMAS	W	X	Υ	Z
1	Α	Α	D	Е
2	Е	A	В	В
3	В	В	C	С
4	Е	D	A	С
5	В	В	В	С
6	Е	Е	В	D
7	В	C	Е	В
8	В	В	В	D
9	D	D	С	В
10	D	E	D	Ε
11	D	С	С	Е
12	С	D	С	В
13	С	В	D	D
14	В	D	С	С
15	Α	Α	В	В
16	Е	С	Е	Α
17	В	Α	E	В
18	В	D	С	Α
19	Α	Α	С	С
20	Α	E	С	С