MATH 302 HW3

Hubert King

February 2025

Proof 1 Let $n \in \mathbb{N}$ be fixed. We need to prove that the set

$$S_n = \{ m \in \mathbb{N} : n + m \text{ is defined} \}$$

is an inductive set. By the axiom of induction (Peano's fifth axiom), this will show that $S_n = \mathbb{N}$, meaning n + m is defined for all $m \in \mathbb{N}$.

We need to prove two conditions:

- 1. $0 \in S_n$ (base case)
- 2. For all $k \in S_n$, $s(k) \in S_n$ (inductive step)

Base Case: We need to show that n + 0 is defined. By the recursive definition of addition, we have:

$$n + 0 = n$$

This is well-defined since $n \in \mathbb{N}$. Therefore, $0 \in S_n$.

Inductive Step: Let $k \in S_n$, meaning n + k is defined. We need to show that n + s(k) is defined. By the recursive definition of addition:

$$n + s(k) = s(n+k)$$

Since n+k is defined (by our inductive hypothesis), and s is a function defined for all natural numbers (by the Peano axioms), s(n+k) is defined. Therefore, n+s(k) is defined, so $s(k) \in S_n$.

By the axiom of induction, $S_n = \mathbb{N}$. Since n was arbitrary, this proves that n + m is defined for all $n, m \in \mathbb{N}$.

Proof 2 We proceed by induction on n.

Base Case: Show that 0 + 1 = 1 + 0

$$0+1=s(0)$$
 (by definition of addition)
 $1+0=1$ (by definition of addition)
 $=s(0)$

Therefore, 0 + 1 = 1 + 0.

Inductive Step: Assume k + 1 = 1 + k for some $k \in \mathbb{N}$. We need to prove that s(k) + 1 = 1 + s(k).

$$s(k) + 1 = s(s(k))$$
 (by definition of addition)
 $1 + s(k) = s(1 + k)$ (by definition of addition)
 $= s(k + 1)$ (by inductive hypothesis)
 $= s(s(k))$

Therefore, s(k) + 1 = 1 + s(k).

By the principle of induction, n+1=1+n for all $n \in \mathbb{N}$.

Proof 3 Let $m \in \mathbb{N}$ be arbitrary.

$$(m+1)+1=s(m+1)$$
 (by definition of addition)
= $s(s(m))$ (by definition of addition)
 $m+(1+1)=m+s(1)$ (by definition of addition)
= $s(m+1)$ (by definition of addition)
= $s(s(m))$

Therefore, (m+1)+1=m+(1+1) for all $m \in \mathbb{N}$.

Proof 4 We proceed by induction on l, using Problem 3 as our base case.

Base Case: When l = 1, we have already proven in Problem 3 that (m + 1) + 1 = m + (1 + 1) for all $m \in \mathbb{N}$.

Inductive Step: Assume that for some $k \in \mathbb{N}$, (m+1)+k=m+(1+k) for all $m \in \mathbb{N}$. We need to prove (m+1)+s(k)=m+(1+s(k)).

$$(m+1) + s(k) = s((m+1) + k)$$
 (by definition of addition)
= $s(m+(1+k))$ (by inductive hypothesis)
= $m + s(1+k)$ (by definition of addition)
= $m + (1+s(k))$ (by definition of addition)

By the principle of induction, (m+1) + l = m + (1+l) for all $l \in \mathbb{N}$.

Proof 5 We proceed by induction on n, using Problem 4 as our base case.

Base Case: When n = 1, we have proven in Problem 4 that (m + 1) + l = m + (1 + l) for all $m, l \in \mathbb{N}$.

Inductive Step: Assume that for some $k \in \mathbb{N}$, (m+k)+l=m+(k+l) for all $m,l \in \mathbb{N}$. We need to prove (m+s(k))+l=m+(s(k)+l).

$$(m+s(k)) + l = s(m+k) + l$$
 (by definition of addition)
= $s((m+k) + l)$ (by definition of addition)
= $s(m+(k+l))$ (by inductive hypothesis)
= $m+s(k+l)$ (by definition of addition)
= $m+(s(k)+l)$ (by definition of addition)

By the principle of induction, (m+n)+l=m+(n+l) for all $m,n,l\in\mathbb{N}$.

Proof 6 Let $m, n \in \mathbb{N}$ such that $m \neq n$. By the well-ordering principle of natural numbers, we can let m be the smaller of $\{m, n\}$. Then there exists $l \in \mathbb{N}$ such that either:

1)
$$m + l = n$$
, or 2) $n + l = m$

Since m is the smaller number, case (2) is impossible. Therefore, m+l=n for some $l \in \mathbb{N}$.

Now, let $A = \{i \in \mathbb{N} : m + i \in [m, n]\}$. We claim A is an inductive set:

1)
$$0 \in A \text{ since } m + 0 = m \in [m, n]$$
 2) If $k \in A \text{ and } m + k < n$, then $m + s(k) = s(m + k) \le n$, so $s(k) \in A$

Therefore, by induction, $l \in A$ and is the least number such that m + l = n.

Proof 7 We proceed by induction on n.

Base Case: When n = 0, for any $m \in \mathbb{N}$:

$$0 + m = m$$
 (by definition of addition)
 $m + 0 = m$ (by definition of addition)

Therefore, 0 + m = m + 0.

Inductive Step: Assume that for some $k \in \mathbb{N}$, k+m=m+k for all $m \in \mathbb{N}$. We need to prove s(k)+m=m+s(k).

$$s(k) + m = s(k + m)$$
 (by definition of addition)
= $s(m + k)$ (by inductive hypothesis)
= $m + s(k)$ (by definition of addition)

By the principle of induction, n + m = m + n for all $n, m \in \mathbb{N}$.