Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition

Peg Howland and Haesun Park

Abhishek Kalokhe, Rajeshwari Devaramani

Georgia Institute of Technology

Background

- Discriminant Analysis has always been the widely used method for extracting the features from the data while preserving the cluster separability.
- It is commonly defined as an optimization problem involving covariance matrices that represent the scatter within and between clusters.

Background

Limitations Classical Discriminant Analysis methods had a requirement of one of the covariance matrices being nonsingular.

This limited it's application to datasets with certain relative dimensions.

Objectives The objectives of the paper address this problem and propose a general method eliminating the classical limitations.

- The goal of the paper is to combine the features of the original data in a way that maintains the cluster structure of the data.
- Assumption: The data is clustered.
- · What we want to achieve?

$$G^T: a \in \mathbb{R}^{m \times 1} \to y \in \mathbb{R}^{l \times 1}$$

- Dataset Used: Department of Justice 2009-2018 Press Releases
- Used the Tfldf Vectorizer which converts a collection of raw documents to a matrix of TF-IDF features.
- We have 300 documents (samples) with:
 - · 1000 features for undersampled case
 - 50 features for oversampled case

Clusters:

```
Cluster 0 natural,emissions,oil,environment,clean,water,settlement,environmental,air,epa

Cluster 1 elections,bailout,voters,activities,observers,monitor,county,election,rights,voting

Cluster 2 taxes,refunds,trial,indictment,prison,false,income,returns,irs,tax
```

• We represent the vectorized dataset as matrix A: $A = (A_1, A_2, ..., A_k)$ where $A_i \in \mathbb{R}^{m \times n_i}$ and $\sum_{i=1}^k n_i = n$

Here, the data vectors $a_1, a_2, ..., a_n$ are the columns of matrix A.

Let N_i denote the set of column indices that belong to cluster i.
 The centroid c⁽ⁱ⁾ is computed by taking the average of the columns in cluster.

$$c^{(i)} = \frac{1}{n_i} \sum_{j \in N_i} a_j$$

and the global centroid is defined as,

$$c = \frac{1}{n} \sum_{j=1}^{n} a_j$$

5

• We define scatter matrix S_W , S_B and S_M as:

$$S_{W} = \sum_{i=1}^{R} \sum_{j \in N_{i}} (a_{j} - c^{(i)}) (a_{j} - c^{(i)})^{T}$$

$$S_{B} = \sum_{i=1}^{k} \sum_{j \in N_{i}} (c^{(i)} - c) (c^{(i)} - c)^{T}$$

$$= \sum_{i=1}^{k} n_{i} (c^{(i)} - c) (c^{(i)} - c)^{T}$$

$$S_{W} = \sum_{i=1}^{k} \sum_{j \in N_{i}} (a_{j} - c^{(i)}) (a_{j} - c^{(i)})^{T}$$

The relation between them is defined as $S_M = S_B + S_W$. As we apply G^T to the matrix A, it transforms the scatter matrices to $l \times l$ matrices,

$$S_W^Y = G^T S_W G, S_B^Y = G^T S_B G, S_M^Y = G^T S_M G,$$

Cluster Quality

 When cluster quality is high, each cluster is tightly grouped, but well separated from the other clusters.

$$\operatorname{trace}(S_W) = \sum_{i=1}^k \sum_{j \in N_i} (a_j - c(i))^T (a_j - c(i)) = \sum_{i=1}^k \sum_{j \in N_i} \|a_j - c(i)\|^2$$

measures the closeness of the columns within the clusters

$$\operatorname{trace}(S_B) = \sum_{i=1}^k \sum_{j \in N_i} (c(i) - c)^{\mathsf{T}} (c(i) - c) = \sum_{i=1}^k \sum_{j \in N_i} \|c(i) - c\|^2$$

measures the separation between clusters

• Optimal transformation: maximize $\operatorname{trace}(S_Y^B)$ and minimize $\operatorname{trace}(S_Y^W)$.

$$\max_{G} \operatorname{trace}((G^{T}S_{2}G)^{-1}(G^{T}S_{1}G))$$

7

Generalized Singular Value

Decomposition

Generalized Singular Value Decomposition

· Van-Loan

Suppose two matrices $K_A \in \mathbb{R}^{p \times m}$ with $p \geq m$ and $K_B \in \mathbb{R}^{n \times m}$ are given. Then, there exist orthogonal matrices $U \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{R}^{m \times n}$ and a nonsingular matrix $X \in \mathbb{R}^{m \times m}$ such that

$$U^{\mathsf{T}}K_{\mathsf{A}}X=\mathsf{diag}(\alpha_1,\ldots,\alpha_m)$$

$$V^T K_B X = \operatorname{diag}(\beta_1, \ldots, \beta_q)$$

where $q = \min(n, m)$, $\alpha_i \ge 0$ for $1 \le i \le m$, and $\beta_i \ge 0$ for $1 \le i \le q$.

Generalized Singular Value Decomposition

· Paige and Saunders

Given $K_A \in \mathbb{R}^{p \times m}$ and $K_B \in \mathbb{R}^{n \times m}$, there exist orthogonal matrices $U \in \mathbb{R}^{p \times p}$, $V \in \mathbb{R}^{n \times n}$, $W \in \mathbb{R}^{t \times t}$, and $Q \in \mathbb{R}^{m \times m}$ such that

$$U^T K_A Q = \mathbf{\Sigma}_A (W^T R, 0)$$

$$V^T H^T w Q = \Sigma_B (W^T R, 0)$$

where $K = \begin{pmatrix} K_A \\ K_B \end{pmatrix}$ and t = rank(K), $R \in \mathbb{R}^{t \times t}$ is nonsingular with singular values equal to the nonzero singular values of K.

9

Generalized Singular Value Decomposition

· Relating to Van Loan's:

$$U^T K_A X = (\Sigma_A, 0)$$
 and $V^T K_B X = (\Sigma_B, 0)$, where $X_{m \times m} = Q \begin{pmatrix} R^{-1} W & 0 \\ 0 & I \end{pmatrix}$. Therefore, $K_A^T K_A = X^{-T} \begin{pmatrix} \Sigma_A^T \Sigma_A & 0 \end{pmatrix} X^{-1}$

$$K_A^T K_A = X^{-T} \begin{pmatrix} \Sigma_A^T \Sigma_A & 0 \\ 0 & 0 \end{pmatrix} X^{-1}$$

and

$$K_B^T K_B = X^{-T} \begin{pmatrix} \mathbf{\Sigma}_B^T \mathbf{\Sigma}_B & 0 \\ 0 & 0 \end{pmatrix} X^{-1},$$

and

$$\beta_i^2 K_A^T K_A x_i = \alpha_i^2 K_B^T K_B x_i$$
 for $1 \le i \le t$.

Generalization of Linear

Discriminant Analysis

Optimize
$$J_1(G) = \operatorname{trace}((G^T S_2 G)^{-1}(G^T S_1 G))$$

over G, where S_1 and S_2 are chosen from S_W , S_B and S_M . Assume S_2 to be nonsingular, it is symmetric positive definite. There exists a nonsingular matrix $X \in \mathbb{R}^{m \times m}$

$$X^{T}S_{1}X = \Lambda = \operatorname{diag}(\lambda_{1}...\lambda_{m}) \text{ and } X^{T}S_{2}X = I_{m}$$

(Symmetric Definite Generalized Eigenvalue Problem)Letting x_i denote the ith column of X, we have

$$S_1x_i = \lambda_i S_2x_i$$

which means λ_i and x_i are an eigenvalue-eigenvector pair of $S_2^{-1}S_1.\lambda_i \geq 0$ for $1 \leq i \leq m$ (S_1 is positive semidefinite)Largest $q = \operatorname{rank}(S_1) \lambda_i$ s are non-zero.

$$J_1(G) = \operatorname{trace}(\tilde{G}^T \tilde{G})^{-1} \tilde{G}^T \Lambda \tilde{G})$$

where $\tilde{G} = X^{-1}G$. \tilde{G} has full rank provided G does, so we can write $\tilde{G} = QR$, where $Q \in \mathbb{R}^{m \times l}$ has orthonormal columns and R is nonsingular. We get,

$$J_1(G) = \operatorname{trace}(Q^T \Lambda Q)$$

Once we have simultaneously diagonalized S_1 and S_2 , the maximization of $J_1(G)$ depends only on an orthonormal basis for range($X^{-1}G$), i.e,

$$\begin{aligned} \max_{G} J_{1}(G) &= \max_{Q^{T}Q = l_{l}} \operatorname{trace}(Q^{T}\Lambda Q) \\ &\leq \lambda_{1} + ... + \lambda_{q} \\ &= \operatorname{trace}(S_{2}^{-1}S_{1}) \end{aligned}$$

• For any l satisfying $l \ge q$, this upper bound on $J_1(G)$ is achieved for

$$Q = \begin{pmatrix} I_l \\ 0 \end{pmatrix} \text{ or } G = X \begin{pmatrix} I_l \\ 0 \end{pmatrix} R$$

- Tranformation G is not unique as J_1 satisfies invariance property $J_1(G) = J_1(GW)$ for any nonsingular matrix $W \in \mathbb{R}^{l \times l}$.
- Hence, maximum $J_1(G)$ is also achieved for

$$G = X \begin{pmatrix} I_l \\ 0 \end{pmatrix}$$

This means that, for $l \ge \operatorname{rank}(S_1)$,

$$trace((G^{T}S_{2}G)^{-1}G^{T}S_{1}G) = trace(S_{2}^{-1}S_{1})$$

whenever $G \in \mathbb{R}^{m \times l}$ consists of l eigenvectors of $S_2^{-1}S_1$ corresponding to the l largest eigenvalues.

 According to our partitioning of A into k clusters, we define m × n matrices,

$$H_{W} = (A_{1} - c^{(1)}e^{(1)^{T}}, A_{2} - c^{(2)}e^{(2)^{T}}, ..., A_{k} - c^{(k)}e^{(k)^{T}})$$

$$H_{B} = ((c^{(1)} - c)e^{(1)^{T}}, (c^{(2)} - c)e^{(2)^{T}}, ..., (c^{(k)} - c)e^{(k)^{T}})$$

$$H_{M} = (a_{1} - c, ..., a_{n} - c) = A - ce^{T} = H_{W} + H_{B}$$
where $e^{(i)} = (1, ..., 1)^{T} \in \mathbb{R}^{n_{i} \times 1}$ and $e = (1, ..., 1)^{T} \in \mathbb{R}^{n \times 1}$

· Scatter matrices are expressed as

$$S_W = H_W H_W^T$$
, $S_B = H_B H_B^T$, $S_M = H_M H_M^T$

- *J*₁ cannot be applied when the number of available data vectors *n* is smaller than the dimension *m* of the data.
- We generalize by expressing λ_i as α_i^2/β_i^2 in

$$S_1x_i = \lambda_i S_2x_i$$

to,

$$\beta^2 S_i x_i = \alpha_i^2 S_2 x_i$$

Generalization of J_1 = trace($S_2^{-1}S_1$) Criteria for Singular S_2

· Case 1:

$$(S_1, S_2) = (S_B, S_W).$$

To approximate G that satisfies both

$$\max_{G} trace(G^{T}S_{B}G)$$
 and $\min_{G} trace(G^{T}S_{W}G)$,

- For nonsingular S_W , the generalized singular vectors are eigenvectors of $S_W^{-1}S_B$, so we choose the x_is which correspond to the k 1 largest λ_is , where $\lambda_i = \alpha_i^2/\beta_i^2$
- When m > n, the scatter matrix S_W is singular. Hence, the eigenvectors of $S_W^{-1}S_B$ are undefined, and classical discriminant analysis fails
- If a generalized singular vector x_i lies in the null space of S_W From equation, we see that either x_i also lies in the null space of S_B , or the corresponding β_i equals zero.

Equivalence of J_1 = trace($S_2^{-1}S_1$) Criteria for various S_2 and S_1

• Case when $(S_1, S_2) = (S_M, S_W)$ according to our previous analysis we would have to include rank (S_M) columns of X in G, which is not less than or equal to k-1. However,

$$S_M x_i = \lambda_i S_W x_i$$

can be written as

$$S_B x_i = (\lambda_i - 1) S_W x_i$$
, where $\lambda_i \ge 1$ for $1 \le i \le m$

- In this case, the eigenvector matrix is the same as for the case of $(S_1, S_2) = (S_B, S_W)$, but the eigenvalue matrix is ΛI .
- Same permutation will put the ΛI in nonincreasing order as was used for Λ , and x_i corresponds to the ith largest eigenvalue of $S_W^{-1}S_B$, therefore, for nonsingular S_W , the solution is same as for $(S_1, S_2) = (S_B, S_W)$.

· Orthogonal Centroid

- · Simpler criteria for preserving the cluster structure.
- Involve only one of the scatter matrices, min trace(G^TS_WG) or max trace (G^TS_BG).
- min trace(G^TS_WG) is meaningless as the optimum always reduces the dimension to one, even with the restriction of G having orthomormal columns.
- With same restriction, maximization of trace (G^TS_BG) produces solution equivalent to orthogonal centroid method.
- Let $J_2(G) = \operatorname{trace} \left(G^T S_B G \right)$ and $G \in \mathbb{R}^{m \times l}$ has orthonormal columns, then there exists $\hat{G} \in \mathbb{R}^{m \times (m-l)}$ such that $\left[G, \hat{G} \right]$ is an orthogonal matrix.

- Orthogonal Centroid
- Since S_B is positive semidefinite,

$$\mathsf{trace}\left(G^TS_BG\right) \leq \mathsf{trace}\left(G^TS_BG\right) + \mathsf{trace}\left(\hat{G}^TS_B\hat{G}\right) = \mathsf{trace}\left(S_B\right).$$

- If SVD of H_B is given by $H_B = U\Sigma V^T$, then $S_B U = U\Sigma \Sigma^T$.
- Columns of U form an orthonormal set of eigenvectors of S_B corresponding to the nonincreasing eigenvalues σ_i on the diagonal of $\Lambda = \Sigma \Sigma^T$
- For $q = \text{rank}(S_B)$, if we let U_q denote the first q columns of U and $\Lambda_q = \text{diag}(\sigma_1, \ldots, \sigma_q)$, we have

$$J_2\left(U_q\right) = \operatorname{trace}\left(U_q^\mathsf{T} \mathsf{S}_B U_q\right) = \operatorname{trace}\left(U_q^\mathsf{T} U_q \Sigma_q\right) = \lambda_1 + \dots + \lambda_q = \operatorname{trace}\left(\mathsf{S}_B\right)$$

• We can see that trace(S_B) is preserved when we take U_q as G.

- · Orthogonal Centroid
- We define a centroid matrix $C = (c^{(1)}, c^{(2)}, \dots, c^{(k)})$
- C has reduced QR decomposition $C = Q_k R$, where $Q_k \in \mathbb{R}^{m \times k}$ has orthonormal columns and $R \in \mathbb{R}^{k \times k}$.
- Let x be an eigenvector corresponding to nonzero eigenvalue λ , then

$$S_B x = \sum_{i=1}^k n_i (c^{(i)} - c) (c^{(i)} - c)^T x = \lambda x$$

- which means $x \in \text{span}\{c^{(i)}|1 \le i \le k\}$
- Hence, we have $\operatorname{range}(U_q) \subseteq \operatorname{range}(C) \subseteq \operatorname{range}(Q_k)$, which implies that $U_q = Q_k W$ for some matrix $W \in \mathbb{R}^{k \times q}$ with orthonormal columns.

- · Orthogonal Centroid
- · We get,

$$J_2(U_q) = \operatorname{trace}(W^T Q_k^T S_B Q_k W) \leq \operatorname{trace}(Q_k^T S_B Q_k) = J_2(Q_k)$$

Hence, $J_2(Q_k) = \operatorname{trace}(S_B)$ and therefore by computing reduced QR of the centroid matrix, we obtain a solution that maximizes the $\operatorname{trace}(G^TS_BG)$ over all G with orthonormal columns.

- Two-Stage Approach
- Another approach for dealing with the singularity of S_W when m > n.
- · As the name suggests, this approach works in two stages.
 - First Using LSI/SVD, reduce the dimension of the data enough so that the new S_W is nonsingular.

Second Perform classical LDA.

- Truncated SVD is used to find rank-l approximation of A.
- If $l \leq rank(A)$, then

$$A \approx U_l \Sigma_l V_l^T$$

• LSI/SVD uses $\Sigma_l V_l^T$ as the reduced dimensional representation of A or equivalently computes the l-dimensional representation of $a \in \mathbb{R}^{m \times 1}$ as $y = U_l^T a$.

Algorithms

Algorithm 1: LDA/GSVD

Algorithm 1 LDA/GSVD

Given a data matrix $A \in \mathbb{R}^{m \times n}$ with k clusters and an input vector $a \in \mathbb{R}^{m \times 1}$, compute the matrix $G \in \mathbb{R}^{m \times (k-1)}$ which preserves the cluster structure in the reduced dimensional space, using

$$J_1(G) = \operatorname{trace}((G^T S_W G)^{-1} G^T S_B G).$$

Also compute the k-1 dimensional representation y of a.

1) Compute H_B and H_W from A according to

$$H_B = (\sqrt{n_1}(c^{(1)} - c), \sqrt{n_2}(c^{(2)} - c), \dots, \sqrt{n_k}(c^{(k)} - c))$$

and (11), respectively. (Using this equivalent but $m \times k$ form of H_B reduces complexity.)

2) Compute the complete orthogonal decomposition

$$P^TKQ = \begin{pmatrix} R & 0 \\ 0 & 0 \end{pmatrix}$$
, where $K = \begin{pmatrix} H_B^T \\ H_W^T \end{pmatrix} \in \mathbb{R}^{(k+n) \times m}$

3) Let $t = \operatorname{rank}(K)$.

6) $y = G^{T}a$

4) Compute W from the SVD of P(1:k,1:t), which is

$$U^T P(1:k,1:t)W = \Sigma_A.$$

5) Compute the first k-1 columns of $X=Q\left(\begin{array}{cc} R^{-1}W & 0 \\ 0 & I \end{array}\right)$, and assign them to G.

Algorithm 2: Orthogonal Centroid

Algorithm 2 Orthogonal Centroid

Given a data matrix $A \in \mathbb{R}^{m \times n}$ with k clusters and an input vector $a \in \mathbb{R}^{m \times 1}$, compute a k-dimensional representation y of a.

- 1) Compute the centroid $c^{(i)}$ of the *i*th cluster, $1 \le i \le k$.
- 2) Set $C = (c^{(1)}, c^{(2)}, \dots, c^{(k)}).$
- 3) Compute the matrix Q_k in the reduced QR decomposition $C = Q_k R$.
- 4) $y = Q_k^T a$.

RESULTS

Method	Full	$trace(S_W^{-1}S_B)$	$trace(S_W^{-1}S_M)$	
Dim	150×2000	6 × 2000	6×2000	7×2000
$trace(S_W)$	299700	1.97	1.48	1.98
$trace(S_B)$	22925	4.03	3.04	3.04
$trace(S_M)$	322630	6.00	4.52	5.02
$\operatorname{trace}(S_W^{-1}S_B)$	12.6	12.6	12.6	12.6
$\operatorname{trace}(S_W^{-1}S_M)$	162.6	18.6	18.6	19.6
centroid	2.6 %	2.2 %	2.0 %	2.0 %
5nn	18.7 %	2.2 %	2.2 %	2.4 %
15nn	10.1 %	1.8 %	1.9 %	2.1 %

 Here, they use clustered data that are artificially generated by an algorithm. The data consist of 2,000 vectors in a space of dimension 150, with k=7 clusters.

RESULTS

- LDA/GSVD reduces the dimension from 150 to k-1=6
- Comparison of LDA/GSVD criterion, $J_1 = \text{trace}(S_W^{-1}S_B)$ and $\text{trace}(S_W^{-1}S_M)$
- The trace values confirm our theoretical findings, namely, that the generalized eigenvectors that optimize the alternative J1 also optimize LDA/GSVD's J1, and including an additional eigenvector increases $\operatorname{trace}(S_W^{-1}S_M)$ by one.
- reports misclassification rates for a centroid-based classification method and the k nearest neighbor show no advantage of using S_M over S_B
- These results bolster choice of J_1 = trace($S_W^{-1}S_B$) in the LDA/GSVD algorithm since it limits the GSVD computation to a composite matrix with k + n rows, rather than one with 2n row

Discriminatory Power of J₁

- We apply it to the same 2,000 data vectors, this time we reduce the dimension from 150 to two.
- Even though the optimal reduced dimension is six, J_1 = trace($S_W^{-1}S_B$)does surprisingly well at discriminating among seven classes. J_1 = trace($S_W^{-1}S_M$) also does equally well

Conclusions

- Experimental results verify that the J_1 criterion, when applicable, effectively optimizes classification in the reduced dimensional space, while our LDA/GSVD extends the applicability to cases that classical discriminant analysis cannot handle.
- In addition, our LDA/GSVD algorithm never explicitly forms the scatter matrices, which results in two advantages.
- we avoid the numerical problems inherent in forming cross-product matrices.
- · we reduce the storage requirements considerably.