This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS

5

- 1. A reflection-type liquid crystal display
 device, comprising:
 - a first substrate;
- a second substrate disposed so as to face said first substrate, said second substrate carrying projections and depressions thereon;
 - a reflective electrode provided on said second substrate so as to cover said projections and depressions in electrical contact with a switching device provided on said second substrate via a contact hole; and
 - a liquid crystal layer provided between said first and second substrates, said liquid crystal layer having a negative dielectric anisotropy,
- wherein said contact hole is disposed centrally to said reflection electrode, and wherein a structure controlling alignment of liquid crystal molecules in said liquid crystal layer is disposed so as to overlap said contact hole when said second substrate is viewed in a direction perpendicular thereto.

30

2. A reflection-type liquid crystal display device as claimed in claim 1, wherein said structure is provided on said reflection electrode.

3. A reflection-type liquid crystal display device as claimed in claim 1, wherein said structure is provided on a surface of said first substrate facing said second substrate.

5

4. A reflection-type liquid crystal display
10 device as claimed in claim 1, wherein said structure
has a size generally equal to a size of said contact
hole when viewed in a direction perpendicular to saud
second substrate.

15

5. A reflection-type liquid crystal display device as claimed in claim 1, wherein said structure has a height corresponding to a step height formed in said reflection electrode by said contact hole.

25

30

35

6. A method of fabricating a reflection-type liquid crystal display device comprising a first substrate, a second substrate provided so as to face said first substrate, said second substrate carrying thereon projections and depressions having a reflectivity, a liquid crystal layer having a negative dielectric anisotropy provided between said first and second substrates, and an optically polymerized polymer structure provided between said first and second substrates, said method comprising the steps of:

causing optical polymerization of a compound

constituting said polymer structure by irradiating light perpendicularly to said second substrate and causing reflection of said light by said projections and depressions in an in-plane direction of said second substrate;

said step of causing optical polymerization is conducted by providing an in-plane directivity to the light reflected by said projections and depressions by a optimizing a shape of said projections and depressions, such that said optical polymerization is conducted in a direction corresponding to said in-plane directivity.

15

10

- 7. A reflection-type liquid crystal display device, comprising:
 - a first substrate;
- a second substrate disposed so as to face said first substrate;
 - a liquid crystal layer having a negative dielectric anisotropy disposed between said first and second substrates; and
- a vertical alignment film formed on a surface of said first substrate and a surface of said second substrate.

wherein said alignment film contains a vertical alignment component with a proportion of 25% or more with regard to total diamine components.

- 8. A reflection-type liquid crystal display device, comprising:
 - a first substrate;

a second substrate disposed so as to face said second substrate, said second substrate carrying thereon projections and depressions having a reflectivity;

a liquid crystal layer having a negative dielectric anisotropy disposed between said first and second substrates; and

a polarizer disposed at an outer side of said first substrate such that an absorption axis of said polarizer extends generally parallel to a direction in which a reflection intensity caused by said projections and depressions becomes maximum.

15

25

35

10

- 9. A reflection-type liquid crystal display device, comprising:
 - a first substrate;
- a second substrate disposed so as to face said first substrate, said second substrate carrying projections and depressions having a reflectivity;
 - a liquid crystal layer having any of positive or negative dielectric anisotropy provided between said first and second substrates; and
 - a polarizer disposed at an outer side of said first substrate,

an optical phase compensation film disposed between said first substrate and said polarizer, said optical phase compensation film having a negative dielectric anisotropy in a direction perpendicular to a plane of said first substrate,

said optical phase compensation film having a retardation df{ $(n_x+n_y)/2-n_z$ } so as to satisfy the relationship

 $0.4 \le [df\{(n_x+n_y)/2-n_z\}]/(dlc\Delta_n) \le 0.7,$ wherein n_x , n_y and n_z are refractive indices of said

optical phase compensation film respectively in an x-direction, a y-direction and a z-direction, dlc is the thickness of said liquid crystal layer, and Δn is a refractive index difference between an extraordinary ray and an ordinary ray in the liquid crystal layer.

10. A reflection-type liquid crystal display device as claimed in claim 9, wherein said optical phase compensation film has a retardation axis in a direction parallel to said first substrate.

15

11. A reflection-type liquid crystal display device as claimed in claim 9, further comprising,

20 between said polarizer and said optical phase compensation film, another optical phase compensation film having a positive dielectric anisotropy in the direction parallel to a plane of said first substrate, said another optical phase compensation film having a retardation of about 1/4 of the wavelength of visible light.

30

12. A reflection-type liquid crystal display device as claimed in claim 11, wherein said optical phase compensation film and said another optical phase compensation film have a retardation axis in a direction parallel to said first substrate.

13. A reflection-type liquid crystal display

device as claimed in claim 12, wherein said optical phase compensation film and said another optical phase compensation film have respective retardations such that a sum of said retardation of said optical phase compensation film and said retardation of said another optical phase compensation film is equal to about 1/4 of the wavelength of visible light.

10

- 14. A reflection-transmission-type liquid crystal display device, comprising:
 - a first substrate;
- a second substrate provided so as to face said first substrate:
 - a transparent electrode provided on a surface of said first substrate facing said second substrate;
- a reflection electrode provided on a surface of said second substrate facing said first substrate, said reflection electrode having an opening;
 - a scattering layer provided between said first and second substrates, said scattering layer including therein a liquid crystal layer and changing an optical state thereof between a scattering state and a non-scattering state; and
 - a pair of polarizers disposed at outer sides of a liquid crystal panel formed by said first substrate, said second substrate and said scattering
- 30 substrate, said second substrate and said scattering layer,
 - at least one of said polarizers is formed of a circular polarizer.

15. A reflection-transmission-type liquid crystal display device as claimed in claim 14, wherein each of said pair of polarizers is formed of a circular polarizer.

5

16. A reflection-transmission-type liquid 10 crystal display device as claimed in claim 14, wherein one of said pair of polarizers is a linear polarizer.

15

20

17. A reflection-transmission-type liquid crystal display device as claimed in claim 14, wherein said scattering layer has a retardation of (0.5n + 1/4) λ , where λ is the wavelength of visible light and n is a natural number in said non-scattering state thereof

25

30

18. A reflection-transmission-type liquid crystal display device as claimed in claim 14, wherein said scattering layer has an in-plane retardation in said non-scattering state thereof such that said in-plane retardation is smaller than a product $\Delta n \cdot d$, where Δn is the birefringence of a liquid crystal layer constituting said scattering layer and d is the thickness of said liquid crystal layer.

19. A reflection-transmission-type liquid crystal display device as claimed in claim 14, wherein said reflection electrode has a slit shape.

5

20. A reflection-transmission-type liquid crystal display device as claimed in claim 14, wherein any of said first and second substrates carries a color filter, said color filter having a reflection region corresponding to said reflection electrode and a transmission region corresponding to said transmission region, said color filter having different color purities in said reflection region and in said transmission region.

20

21. A reflection-transmission-type liquid crystal display device as claimed in claim 20, wherein said color filter is provided on said reflection electrode.