Regressão Linear

Fernando Náufel

03/05/2024 18:22

Índice

Αį	Apresentação		
1	Reg	ressão linear simples	4
	1.1	Exemplo: vendas e publicidade	4
		1.1.1 Leitura e limpeza	4
		1.1.2 Divisão em dados de treino e teste	9
		1.1.3 Vendas por verba gasta em TV	10
	1.2	Teoria	12
		1.2.1 Estimativas $\hat{\beta}_0 \in \hat{\beta}_1$	12
		1.2.2 Erros-padrão das estimativas	
	1.3	Visão geométrica	17
		1.3.1 Um pequeno exemplo	
2	Reg	ressão linear múltipla	25
	2.1	Simulação	25
		2.1.1 Multicolinearidade	25
Re	eferêr	ncias	32

Apresentação

???

1 Regressão linear simples

1.1 Exemplo: vendas e publicidade

Exemplo baseado no livro James et al. (2021), com dados obtidos de https://www.kaggle.com/datasets/ashydv/advertising-dataset/data.

Este conjunto de dados contém 4 colunas:

- tv: verba (em milhares de dólares) gasta em publicidade na TV;
- radio: verba (em milhares de dólares) gasta em publicidade no rádio;
- jornal: verba (em milhares de dólares) gasta em publicidade em jornais;
- vendas: receita das vendas (em milhares de dólares).

Cada observação — isto é, cada linha — corresponde a um produto.

1.1.1 Leitura e limpeza

```
publicidade <- read_csv(
   'dados/advertising.csv',
   show_col_types = FALSE
) %>%
   janitor::clean_names() %>%
   rename(
    jornal = newspaper,
    vendas = sales
)

publicidade %>% gt()
```

tv	radio	jornal	vendas
230,1	37,8	69,2	22,1
44,5	39,3	45,1	10,4
17,2	45,9	69,3	12,0

151,5	41,3	58,5	16,5
180,8	10,8	58,4	17,9
8,7	48,9	75,0	7,2
$57,\!5$	32,8	23,5	11,8
120,2	19,6	11,6	13,2
8,6	2,1	1,0	4,8
199,8	2,6	21,2	15,6
66,1	5,8	$24,\!2$	12,6
214,7	24,0	4,0	17,4
23,8	35,1	65,9	9,2
97,5	7,6	7,2	13,7
204,1	32,9	46,0	19,0
195,4	47,7	52,9	22,4
67,8	36,6	114,0	12,5
281,4	39,6	55,8	24,4
69,2	20,5	18,3	11,3
147,3	23,9	19,1	14,6
218,4	27,7	53,4	18,0
237,4	5,1	23,5	17,5
13,2	15,9	49,6	5,6
228,3	16,9	26,2	20,5
62,3	12,6	18,3	9,7
262,9	3,5	19,5	17,0
142,9	29,3	12,6	15,0
240,1	16,7	22,9	20,9
248,8	27,1	22,9	18,9
70,6	16,0	40,8	10,5
292,9	28,3	43,2	21,4
112,9	17,4	38,6	11,9
97,2	1,5	30,0	13,2
265,6	20,0	0,3	17,4
95,7	1,4	7,4	11,9
290,7	4,1	8,5	17,8
266,9	43,8	5,0	25,4
74,7	49,4	45,7	14,7
43,1	26,7	35,1	10,1
228,0	37,7	32,0	21,5
202,5	22,3	31,6	16,6
177,0	33,4	38,7	17,1
293,6	27,7	1,8	20,7
206,9	8,4	26,4	17,9
25,1	25,7	43,3	8,5
175,1	$22,\!5$	31,5	16,1

89,7	9,9	35,7	10,6	
239,9	41,5	18,5	23,2	
227,2	15,8	49,9	19,8	
66,9	11,7	36,8	9,7	
199,8	3,1	34,6	16,4	
100,4	9,6	3,6	10,7	
216,4	41,7	39,6	22,6	
182,6	46,2	58,7	21,2	
262,7	28,8	15,9	20,2	
198,9	49,4	60,0	23,7	
7,3	28,1	$41,\!4$	5,5	
136,2	19,2	16,6	13,2	
210,8	49,6	37,7	23,8	
210,7	29,5	9,3	18,4	
$53,\!5$	2,0	21,4	8,1	
261,3	42,7	54,7	24,2	
239,3	15,5	27,3	20,7	
102,7	29,6	8,4	14,0	
131,1	42,8	28,9	16,0	
69,0	9,3	0,9	11,3	
$31,\!5$	24,6	2,2	11,0	
139,3	14,5	10,2	13,4	
237,4	27,5	11,0	18,9	
216,8	43,9	27,2	22,3	
199,1	30,6	38,7	18,3	
109,8	14,3	31,7	12,4	
26,8	33,0	19,3	8,8	
129,4	5,7	31,3	11,0	
213,4	24,6	13,1	17,0	
16,9	43,7	89,4	8,7	
27,5	1,6	20,7	6,9	
120,5	28,5	14,2	14,2	
5,4	29,9	9,4	5,3	
116,0	7,7	23,1	11,0	
76,4	26,7	22,3	11,8	
239,8	4,1	36,9	17,3	
75,3	20,3	32,5	11,3	
68,4	44,5	35,6	13,6	
213,5	43,0	33,8	21,7	
193,2	18,4	65,7	20,2	
76,3	27,5	16,0	12,0	
110,7	40,6	63,2	16,0	
88,3	25,5	73,4	12,9	

109,8	47,8	51,4	16,7
134,3	4,9	9,3	14,0
28,6	1,5	33,0	7,3
217,7	$33,\!5$	59,0	19,4
250,9	36,5	72,3	22,2
107,4	14,0	10,9	11,5
163,3	31,6	52,9	16,9
197,6	$3,\!5$	5,9	16,7
184,9	21,0	22,0	20,5
289,7	42,3	51,2	25,4
135,2	41,7	45,9	17,2
222,4	4,3	49,8	16,7
296,4	36,3	100,9	23,8
280,2	10,1	21,4	19,8
187,9	17,2	17,9	19,7
238,2	34,3	5,3	20,7
137,9	46,4	59,0	15,0
25,0	11,0	29,7	7,2
90,4	0,3	23,2	12,0
13,1	0,4	25,6	5,3
$255,\!4$	26,9	$5,\!5$	19,8
$225,\!8$	8,2	$56,\!5$	18,4
241,7	38,0	23,2	21,8
175,7	15,4	2,4	17,1
209,6	20,6	10,7	20,9
78,2	46,8	34,5	14,6
75,1	35,0	52,7	12,6
139,2	14,3	25,6	12,2
76,4	0,8	14,8	9,4
125,7	36,9	79,2	15,9
19,4	16,0	22,3	6,6
141,3	26,8	46,2	15,5
18,8	21,7	50,4	7,0
224,0	2,4	15,6	16,6
123,1	34,6	12,4	15,2
229,5	32,3	74,2	19,7
87,2	11,8	25,9	10,6
7,8	38,9	50,6	6,6
80,2	0,0	9,2	11,9
220,3	49,0	3,2	24,7
59,6	12,0	43,1	9,7
0,7	39,6	8,7	1,6
265,2	2,9	43,0	17,7

8,4	27,2	2,1	5,7
219,8	33,5	45,1	19,6
36,9	38,6	$65,\!6$	10,8
48,3	47,0	8,5	11,6
25,6	39,0	9,3	9,5
273,7	28,9	59,7	20,8
43,0	25,9	20,5	9,6
184,9	43,9	1,7	20,7
73,4	17,0	12,9	10,9
193,7	35,4	75,6	19,2
220,5	33,2	37,9	20,1
104,6	5,7	34,4	10,4
96,2	14,8	38,9	12,3
140,3	1,9	9,0	10,3
240,1	7,3	8,7	18,2
243,2	49,0	44,3	25,4
38,0	40,3	11,9	10,9
44,7	25,8	20,6	10,1
280,7	13,9	37,0	16,1
121,0	8,4	48,7	11,6
197,6	23,3	14,2	16,6
171,3	39,7	37,7	16,0
187,8	21,1	9,5	20,6
4,1	11,6	5,7	3,2
93,9	43,5	50,5	15,3
149,8	1,3	24,3	10,1
11,7	36,9	$45,\!2$	7,3
131,7	18,4	34,6	12,9
172,5	18,1	30,7	16,4
85,7	$35,\!8$	49,3	13,3
188,4	18,1	25,6	19,9
163,5	$36,\!8$	7,4	18,0
117,2	14,7	5,4	11,9
234,5	3,4	84,8	16,9
17,9	37,6	21,6	8,0
206,8	5,2	19,4	17,2
215,4	23,6	57,6	17,1
284,3	10,6	6,4	20,0
50,0	11,6	18,4	8,4
164,5	20,9	$47,\!4$	17,5
19,6	20,1	17,0	7,6
168,4	7,1	12,8	16,7
$222,\!4$	3,4	13,1	16,5

```
276,9
         48,9
                 41,8
                           27,0
248,4
         30,2
                 20,3
                           20,2
170,2
          7,8
                 35,2
                           16,7
276,7
          2,3
                 23,7
                           16,8
165,6
         10,0
                 17,6
                           17,6
156,6
          2,6
                           15,5
                  8,3
                           17,2
218,5
                 27,4
          5,4
          5,7
                            8,7
 56,2
                 29,7
287,6
         43,0
                 71,8
                           26,2
253,8
         21,3
                 30,0
                           17,6
205,0
                           22,6
         45,1
                 19,6
139,5
          ^{2,1}
                 26,6
                           10,3
191,1
         28,7
                 18,2
                           17,3
286,0
                           20,9
         13,9
                   3,7
 18,7
         12,1
                 23,4
                            6,7
 39,5
         41,1
                   5,8
                           10,8
 75,5
         10,8
                   6,0
                           11,9
 17,2
          4,1
                 31,6
                            5,9
166,8
         42,0
                   3,6
                           19,6
149,7
                           17,3
         35,6
                   6,0
 38,2
          3,7
                            7,6
                 13,8
 94,2
          4,9
                   8,1
                           14,0
177,0
          9,3
                   6,4
                           14,8
283,6
                           25,5
         42,0
                 66,2
232,1
          8,6
                   8,7
                           18,4
```

1.1.2 Divisão em dados de treino e teste

```
split <- initial_split(publicidade)
treino <- training(split)
teste <- testing(split)
split</pre>
```

```
<Training/Testing/Total>
<150/50/200>
```

1.1.3 Vendas por verba gasta em TV

1.1.3.1 Análise exploratória

Começamos visualizando os dados:

```
grafico <- treino %>%
    ggplot(aes(tv, vendas)) +
        geom_point()
grafico
```


A correlação linear entre vendas e tv é

```
cor(treino$vendas, treino$tv)
```

[1] 0,8919795

1.1.3.2 Modelo linear

```
modelo <- lm(vendas ~ tv, data = treino)</pre>
summary(modelo)
Call:
lm(formula = vendas ~ tv, data = treino)
Residuals:
   Min
           1Q Median
                          3Q
                                 Max
-6,0968 -1,5960 -0,0152 1,6301 5,2086
Coefficients:
           Estimate Std. Error t value
                                              Pr(>|t|)
(Intercept) 7,185427 0,373754 19,23 <0,00000000000000000 ***
          0,053478   0,002228   24,00 < 0,000000000000000 ***
tv
Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
Residual standard error: 2,289 on 148 degrees of freedom
Multiple R-squared: 0,7956, Adjusted R-squared: 0,7942
modelo_tidy <- tidy(modelo)</pre>
modelo_tidy
# A tibble: 2 x 5
 term
           estimate std.error statistic p.value
              <dbl> <dbl> <dbl> <dbl>
  <chr>
1 (Intercept)
              7.19
                       0.374
                                  19.2 4.49e-42
                                  24.0 6.86e-53
2 tv
              0.0535 0.00223
b0 <- modelo_tidy$estimate[1]</pre>
b1 <- modelo_tidy$estimate[2]</pre>
grafico +
 geom_abline(
   intercept = b0,
   slope = b1,
   color = 'blue'
```


A equação da reta é

$$\begin{split} \widehat{\text{vendas}} &= \hat{\beta}_0 + \hat{\beta}_1 \cdot \text{tv} \\ &= 7.19 + 0.05 \cdot \text{tv} \end{split}$$

1.2 Teoria

1.2.1 Estimativas $\hat{\beta_0}$ e $\hat{\beta_1}$

Os valores achados são estimativas para β_0 e $\beta_1,$ baseadas nos dados do conjunto de treino.

Por isso, os valores de vendas obtidos com esta equação também são estimativas.

Vamos escrever estimativas com o acento circunflexo (chapéu) sobre os símbolos.

De onde vêm os valores de $\hat{\beta}_0$ e $\hat{\beta}_1$?

Resposta: são os valores que fazem com que a soma dos quadrados das distâncias verticais dos pontos à reta seja a menor possível.

(Estas distâncias são chamadas de resíduos.)

Consulte este material para ver os detalhes sobre o cálculo de $\hat{\beta}_0$ e $\hat{\beta}_1$.

1.2.2 Erros-padrão das estimativas

Vamos pensar nas incertezas associadas aos valores de $\hat{\beta}_0$ e $\hat{\beta}_1$, com base na excelente discussão em (De Veaux, Velleman e Bock 2016, cap. 25).

Quais são os fatores que afetam a nossa confiança na reta de regressão?

Mais especificamente, quais os fatores que afetam nossa confiança no valor estimado $\hat{\beta}_1$ (a inclinação da reta)?

1.2.2.1 Espalhamento dos pontos em volta da reta

Quanto mais afastados da reta estiverem os dados, menor a nossa confiança de que a reta captura a variação de uma variável em função da outra.

Observe a Figura 1.1. O gráfico da esquerda nos dá mais certeza de que uma reta de regressão terá uma inclinação bem próxima da taxa de variação de y em função de x na população.

Figura 1.1: Espalhamento dos pontos

Este espalhamento é medido pelo desvio-padrão dos resíduos.

No exemplo das vendas, este desvio-padrão dos resíduos é calculado como

$$\sqrt{\frac{\sum_i (\mathrm{vendas}_i - \widehat{\mathrm{vendas}}_i)^2}{n-2}}$$

No numerador, o valor vendas $_i$ – vendas $_i$ é o resíduo da observação i.

As vendas estimadas para cada valor de tv e os valores dos resíduos podem ser acessados assim:

```
modelo_augment <- augment(modelo)
modelo_augment %>%
select(vendas, tv, .fitted, .resid)
```

```
# A tibble: 150 x 4
 vendas
           tv .fitted .resid
   <dbl> <dbl>
                <dbl> <dbl>
   20.9 240.
                20.0
                       0.874
1
2
   11
        116
                13.4 - 2.39
3
   10.1 44.7
                 9.58 0.524
   16.7 222.
                19.1 -2.38
5
   18.4 226.
                19.3 -0.861
    9.5 25.6
                 8.55 0.946
# i 144 more rows
```

Calculando o desvio-padrão dos resíduos:

```
n <- nrow(modelo_augment)
dp_residuos <- sqrt(sum(modelo_augment$.resid^2) / (n - 2))
dp_residuos</pre>
```

[1] 2,28897

Este valor pode ser obtido na coluna sigma do data frame retornado pela função glance:

```
modelo_glance <- glance(modelo)
modelo_glance$sigma</pre>
```

[1] 2,28897

Desvio-padrão dos resíduos

No geral, então, em uma regressão da variável y sobre a variável x com n observações, o desvio-padrão dos resíduos é

$$s_{\rm residuos} = \sqrt{\frac{\sum_i (y_i - \hat{y}_i)^2}{n-2}}$$

Pela Figura 1.1 e pelos comentários acima, quanto maior o valor de $s_{\rm residuos},$ maior a

1.2.2.2 Espalhamento de x

Quanto maior o espalhamento dos valores de x, maior nossa confiança na reta de regressão, pois ela estará baseada em uma diversidade maior de valores.

Observe a Figura 1.2. O gráfico da direita tem um espalhamento maior dos valores de x. Uma reta de regressão, ali, parece estar mais bem "ancorada".

Figura 1.2: Espalhamento de x

O espalhamento de x é medido pelo desvio-padrão, que é calculado da maneira usual.

No exemplo das vendas, $s_x,$ o desvio-padrão de t
v é

```
dp_x <- modelo_augment %>%
  pull(tv) %>%
  sd()

dp_x
```

[1] 84,16717

l Desvio-padrão dos resíduos

Pela Figura 1.2 e pelos comentários acima, quanto maior o valor de s_x , menor a nossa incerteza.

1.2.2.3 Quantidade de dados

Uma reta baseada em mais pontos é mais confiável. Observe a Figura 1.3.

Figura 1.3: Quantidade de dados

! Quantidade de dados

Pela Figura 1.3 e pelos comentários acima, quanto $\frac{1}{2}$ o valor de n, $\frac{1}{2}$ a nossa incerteza.

1.2.2.4 Juntando tudo

Vimos que

- Quanto maior o desvio-padrão dos resíduos ($s_{\rm residuos}$), maior a incerteza.
- Quanto maior o desvio-padrão da variável x (s_x) , menor a incerteza.
- Quanto maior a quantidade de dados (n), menor a incerteza.

Concluímos que a incerteza sobre nossa estimativa para β_1 (a inclinação da reta) é proporcional aos valores acima da seguinte maneira:

$$EP(\beta_1) \propto \frac{s_{\rm residuos}}{n \cdot s_x}$$

onde estamos escrevendo a incerteza como $EP(\beta_1)$, o erro-padrão de β_1 .

\blacksquare Erro-padrão de β_1

A fórmula exata para a incerteza sobre β_1 é

$$EP(\beta_1) = \frac{s_{\text{residuos}}}{\sqrt{n-1} \cdot s_x}$$

No exemplo das vendas, usando as variáveis que já calculamos antes, este erro-padrão é

$$dp_residuos / (sqrt(n - 1) * dp_x)$$

[1] 0,002227943

Este valor aparece nos resultados de 1m como std.error:

modelo_tidy

A tibble: 2 x 5 term estimate std.error statistic p.value <chr> <dbl> <dbl> <dbl> <dbl> 0.374 19.2 4.49e-42 1 (Intercept) 7.19 0.0535 0.00223 24.0 6.86e-53 2 tv

1.2.2.5 Erro-padrão do intercepto

\blacksquare Erro-padrão de β_0

Para o intercepto β_0 , o raciocínio é análogo. A fórmula exata para a incerteza sobre β_0 é

$$EP(\beta_0) =$$

??? ISLR p. 76

1.3 Visão geométrica

Faraway (2016)

1.3.1 Um pequeno exemplo

Para podermos visualizar a geometria, vamos considerar um conjunto de dados com apenas 3 observações.

A variável \mathtt{x} é o único preditor, e a variável \mathtt{y} é a resposta.

```
df <- tibble(
  x = 1:3,
  y = c(4, 3, 8)
)</pre>
```

x	у
1	4
2	3
3	8

Graficamente:

X

Com um único preditor, este é um exemplo de regressão simples. Queremos achar uma equação da forma

$$\hat{y} = \beta_0 + \beta_1 x$$

com valores de β_0 e β_1 que garantam a menor soma dos quadrados dos resíduos.

Usamos o R para achar os coeficientes e outras informações sobre este modelo:

```
modelo <- lm(y ~ x, df)
summary(modelo)</pre>
```

Call:

 $lm(formula = y \sim x, data = df)$

Residuals:

1 2 3

1 -2 1

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1,000 3,742 0,267 0,834
x 2,000 1,732 1,155 0,454

Residual standard error: 2,449 on 1 degrees of freedom Multiple R-squared: 0,5714, Adjusted R-squared: 0,1429 F-statistic: 1,333 on 1 and 1 DF, p-value: 0,4544

A equação da reta que procuramos é

$$\hat{y} = 1,00 + 2,00x$$

No gráfico, os valores de \hat{y} , para cada valor de x, são mostrados em vermelho. A reta de regressão é mostrada em azul:

X

Os valores de y, os valores previstos e os resíduos são

х	у	previsto	resíduo
1	4	3	1
2	3	5	-2
3	8	7	1

Usando Álgebra Linear, vamos encarar este modelo de outra forma.

A coluna y dos dados é representada pelo vetor

$$\mathbf{Y} = \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix}$$

Vamos definir a seguinte matriz:

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

Nesta matriz, a segunda coluna corresponde à coluna x dos dados. A primeira coluna, com valores 1, está ali para podermos escrever o modelo como a equação matricial

$$\mathbf{\hat{Y}} = \mathbf{X} \cdot \begin{bmatrix} eta_0 \\ eta_1 \end{bmatrix}$$

que, de forma mais detalhada, é

$$\begin{bmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \widehat{y_3} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

ou, ainda,

$$\begin{bmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \widehat{y_3} \end{bmatrix} = \begin{bmatrix} \beta_0 + & \beta_1 \\ \beta_0 + 2 \cdot \beta_1 \\ \beta_0 + 3 \cdot \beta_1 \end{bmatrix}$$

ou, explicitando os vetores que correspondem às colunas da matriz X:

Agora, as considerações geométricas:

- 1. As colunas x e y do conjunto de dados são vetores com 3 componentes, que vivem em \mathbb{R}^3 .
- 2. O vetor $\mathbf{\hat{Y}}$ também tem 3 componentes, mas a Equação 1.1 está dizendo que $\mathbf{\hat{Y}}$ é uma combinação linear dos dois vetores (linearmente independentes) $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ e $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$.
- 3. Os dois vetores $[1\ 1\ 1]^T$ e $[1\ 2\ 3]^T$ não são capazes de gerar todo o espaço \mathbb{R}^3 ; o espaço gerado por eles é um plano.
- 4. O vetor **Y** (com os valores verdadeiros da variável de resposta y) não está no plano gerado pelos vetores $[1\ 1\ 1]^T$ e $[1\ 2\ 3]^T$ (verifique).
- 5. A relação verdadeira entre \mathbf{Y} e \mathbf{X} é

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \beta_0 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \beta_1 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{bmatrix}$$

onde os valores ε_i são os erros que o modelo não consegue capturar.

6. Estes erros ε_i são estimados pelos resíduos $\widehat{\varepsilon_i}$, de maneira que podemos escrever

$$\begin{bmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \widehat{y_3} \end{bmatrix} = \beta_0 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \beta_1 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} \widehat{\varepsilon_1} \\ \widehat{\varepsilon_2} \\ \widehat{\varepsilon_3} \end{bmatrix}$$

O vetor de resíduos é

$$\hat{} = \begin{bmatrix} \widehat{\varepsilon}_1 \\ \widehat{\varepsilon}_2 \\ \widehat{\varepsilon}_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

A situação é mostrada na figura:

O plano cinza é o espaço gerado pelos vetores $[1\ 1\ 1]^T$ e $[1\ 2\ 3]^T$. Na equação paramétrica deste plano, r e s correspondem aos valores possíveis de β_0 e β_1 , respectivamente.

O vetor $\hat{\mathbf{Y}}$ (dos valores previstos pelo modelo) é a projeção ortogonal do vetor \mathbf{Y} (dos valores verdadeiros da variável de resposta) sobre o plano gerado pelas colunas da matriz \mathbf{X} . Mais abaixo, vamos ver os detalhes desta projeção. O importante é entender que, quaisquer que sejam os valores de β_0 e β_1 , o vetor $\hat{\mathbf{Y}}$ de valores previstos vai estar sempre limitado ao plano gerado pelas colunas da matriz \mathbf{X} .

Isto corresponde à intuição de que estamos perdendo informação ao tentar representar objetos de dimensão 3 (o número de observações do conjunto de dados) em um espaço de dimensão 2 (o número de parâmetros do modelo: β_0 e β_1).

???

2 Regressão linear múltipla

2.1 Simulação

2.1.1 Multicolinearidade

Vamos criar três preditores x1, x2 e x3, com os dois primeiros correlacionados:

```
n <- 100
a <- 2
x1 <- runif(n)
x2 <- a * x1 + rnorm(n, 0, .1)
x3 <- runif(n)

df <- tibble(x1, x2, x3)</pre>
```

Gráficos:

```
plot_cor <- function(df, v1, v2) {

x = df[[v1]]
y = df[[v2]]
valor_cor <- cor(x, y) %>% round(4)

df %>% ggplot(aes(x, y)) +
    geom_point(alpha = 0.5) +
    labs(
        title = paste0('cor(', v1, ', ', v2, ') = ', valor_cor),
        x = v1,
        y = v2
    )
}
```

```
v <- c('x1', 'x2', 'x3')

pares <- expand_grid(x = v, y = v) %>%
    filter(x < y) %>%
    arrange(x, y)

v1 <- pares %>% pull(x)
v2 <- pares %>% pull(y)

plots <- map2(
    v1, v2, ~ plot_cor(df, .x, .y)
)

plots %>%
    wrap_plots(
    ncol = 1,
    byrow = TRUE
)
```


A variável de resposta é y:

```
b0 <- 1
b1 <- 2
b2 <- 3
b3 <- 4
var_epsilon <- .5

y <- b0 + b1 * x1 + b2 * x2 + b3 * x3 + rnorm(n, sd = sqrt(var_epsilon))
df_y <- df %>%
  mutate(y = y)
```

Usando todas as variáveis, temos:

```
modelo_123 \leftarrow lm(y \sim ., data = df_y)
```

A equação verdadeira é

$$y = 1 + 2x_1 + 3x_2 + 4x_3 + \varepsilon$$

O modelo deu os coeficientes

```
modelo_123 %>% summary()
```

```
Call:
```

```
lm(formula = y \sim ., data = df_y)
```

Residuals:

```
Min 1Q Median 3Q Max -2,39333 -0,42820 0,08625 0,38997 1,83332
```

Coefficients:

```
Estimate Std. Error t value
                                                 Pr(>|t|)
(Intercept) 1,2345
                       0,1747 7,068
                                           0,000000000252 ***
x1
             3,2787
                       1,4582
                               2,249
                                                  0,02683 *
x2
             2,3932
                       0,7203 3,323
                                                  0,00126 **
             3,7137
                       0,2286 16,245 < 0,0000000000000000 ***
xЗ
Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
```

Residual standard error: 0,681 on 96 degrees of freedom Multiple R-squared: 0,9334, Adjusted R-squared: 0,9313

F-statistic: 448,6 on 3 and 96 DF, p-value: < 0,00000000000000022

modelo_123

Call:

lm(formula = y ~ ., data = df_y)

Coefficients:

(Intercept) x1 x2 x3 1,235 3,279 2,393 3,714

Agora, usando apenas x1 e x3:

$$modelo_13 \leftarrow lm(y \sim x1 + x3, data = df_y)$$

A equação verdadeira é — substituindo x_2 por $(b_1+ab_2)x_1$ —

$$y = 1 + 8x_1 + 4x_3 + \varepsilon$$

O modelo deu os coeficientes

modelo_13 %>% summary()

Call:

 $lm(formula = y \sim x1 + x3, data = df_y)$

Residuals:

Min 1Q Median 3Q Max -2,2807 -0,4648 0,0890 0,4492 1,8246

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1,2489 0,1834 6,808 0,0000000000825 ***

x1 8,0547 0,2580 31,224 < 0,0000000000000000 ***

x3 3,7315 0,2401 15,543 < 0,0000000000000000 ***

```
Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
```

Residual standard error: 0,7153 on 97 degrees of freedom Multiple R-squared: 0,9258, Adjusted R-squared: 0,9242

F-statistic: 604,7 on 2 and 97 DF, p-value: < 0,000000000000000022

modelo_13

Call:

```
lm(formula = y \sim x1 + x3, data = df_y)
```

Coefficients:

(Intercept) x1 x3 1,249 8,055 3,732

Em termos do \mathbb{R}^2 ajustado:

- O modelo com os três preditores teve $R_{\rm adj}^2 = 0.9313$.
- O modelo com dois preditores teve $R_{\rm adj}^2 = 0.9242$.

Para a equação verdadeira:

```
y_eq <- b0 + b1 * x1 + b2 * x2 + b3 * x3
rsq_vec(y, y_eq)</pre>
```

[1] 0,931878

Anova diz que o segundo modelo é mais significativo que o primeiro:

```
anova(modelo_123, modelo_13)
```

```
# A tibble: 2 x 6
 Res.Df
         RSS
                 Df `Sum of Sq`
                                   F `Pr(>F)`
  <dbl> <dbl> <dbl>
                         <dbl> <dbl>
                                        <dbl>
     96 44.5
1
                 NA
                         NA
                                NA
                                     NA
                         -5.12 11.0 0.00126
2
     97 49.6
                 -1
```

modelo_123 %>% glance()

modelo_13 %>% glance()

Referências

- De Veaux, R. D., P. F. Velleman, e D. E. Bock. 2016. Stats: Data and Models. 4.ª ed. Pearson Education. https://media.pearsoncmg.com/aw/aw_deveaux_stats_4_2016/websites/statdm4d_comp_web_launch.html.
- Faraway, Julian J. 2016. Linear Models with R. 2.^a ed. Chapman; Hall/CRC. https://doi.org/10.1201/b17144.
- James, Gareth, Daniela Witten, Trevor Hastie, e Robert Tibshirani. 2021. An Introduction to Statistical Learning: With Applications in R. 2.ª ed. Springer Publishing Company, Incorporated. https://www.statlearning.com/.