קווים כלליים לפתרון תרגיל בית 7

22: 00 עד שעה 10/6/2014, עד שעה יום שלישי,

:1 שאלה

תהי f(x+y)=f(x)f(y) , $x,y\in\mathbb{R}$ הראו כי $f:\mathbb{R}\to\mathbb{R}$ הראו כי $f:\mathbb{R}\to\mathbb{R}$ הראו כי $a\in\mathbb{R}$ פרים $a\in\mathbb{R}$ כך שלכל

ת מכן הסיקו את כל תחילה את עבור $n\in\mathbb{N}$ אבור $n\in\mathbb{N}$ הסיקו את החילה כי הטענה מתקיימת לכל $n\in\mathbb{N}$ ולכל $n\in\mathbb{N}$ ממשי.

:נסמן x_1, x_2, \cdots, x_n לכל כי באינדוקציה להראות ניתן ניתן מהנתון מהנתון מחלים. a=f(1)

: מתקיים $n \in \mathbb{N}$ לכן, לכל $f(x_1 + x_2 + \cdots x_n) = f(x_1)f(x_2) \cdots f(x_n)$

: מתקיים
$$m \in \mathbb{N}$$
 בנוסף, לכל $f(n) = f(1+1+\cdots 1) = f(1) \cdot f(1) \cdot \cdots \cdot f(1) = \left(f(1)\right)^n = a^n$

$$q=rac{1}{m}$$
נרשום, $q=rac{1}{m}$ נרשום, $q=rac{1}{m}$ נרשום, $q=f\left(rac{1}{m}
ight)$ נרשום, $q=f\left(1
ight)=f\left(rac{1}{m}+rac{1}{m}+rac{1}{m}
ight)=\left(f\left(rac{1}{m}
ight)
ight)^m$

יהי רציונלי. לסיום, יהי , כלומר הטענה מתקיימת לכל מסי רציונלי. לסיום, יהי , $f(q)=f\left(\frac{1}{n}+\frac{1}{n}+\cdots\frac{1}{n}\right)=\left(f\left(\frac{1}{n}\right)\right)^m=\left(a^{\frac{1}{n}}\right)^m=a^{\frac{m}{n}}=a^q$

נבחר סדרה עבור רציונלים נקבל: $q_n o r$, אז מרציפות חסענה עבור רציונלים נקבל: $r \in \mathbb{R}$

 $f(r) = f(\lim q_n) = \lim f(q_n) = \lim a^{q_n} = a^r$

<u>: 2 שאלה</u>

. תהי f ביפה ומקיימת $f:\mathbb{R} o \mathbb{R}$ לכל ולק איל. איז ומקיימת ביפה ומקיימת לביפה ומקיימת לכל ומקיימת היא אל.

f(x)=0 פירוק אי-השוויון בצורה מפורשת נותן בצורה מחסתכלות על אגף שמאל נקבל $-x^3-x^2\leq f(x)\leq x^2-x^3$ נראה כי $f(x)=\infty$ מפיצה $f(x)=\infty$ באופן דומה מהסתכלות על אגף שמאל נקבל $f(x)=\infty$ ולכן מפיצה $f(x)=\infty$ באופן דומה מהסתכלות על אגף שמאל נקבל $f(x)=\infty$ כך שלכל $f(x)=\infty$ באופן דומה מהגבולות שמצאנו, קיים f(x)=x כך שלכל f(x)=x וקיים f(x)=x כך שלכל f(x)=x בקטע זה מתקיימים תנאי משפט ערה"ב, וגם f(x)=x (גם בקבל כי קיים f(x)=x בי f(x)=x כך שf(x)=x בי f(x)=x כך שר f(x)=x ממשפט ערה"ב נקבל כי קיים f(x)=x בי f(x)=x כך שר f(x)=x בי f(x)=x מתשפט ערה"ב נקבל כי קיים f(x)=x בי f(

<u>: 3 שאלה</u>

תהי f:[a,b] o [a,b] נקודת שבת, כלומר: קיים f:[a,b] o [a,b]

 $f(x_0) = x_0$ כך ש- $x_0 \in [a, b]$

הדרכה: השתמשו בטכניקה המשמשת להוכחת משפט ערך הביניים. שימו לב כי f אינה בהכרח רציפה!

אם $f\left(\frac{a+b}{2}\right)=\frac{a+b}{2}$ אם $f\left(\frac{a+b}{2}\right)$ אם f(a)>a , f(a)>a , f(b)

<math>f(a)>a , f(a)=a אם f(a)=a אם f(a)=a אם f(a)=a , f(a)=a אם f(a)=a , f(a)=a

<u>: 4 שאלה</u>

הוכיחו כי לכל $x^2+\cos x+\alpha=0$ קיים פתרון למשוואה $x^2+\cos x+\alpha=0$ הסיקו כי הפונקציה $x^2+\cos x+\alpha=0$ היא על $x^2+\cos x+\alpha=0$ היא על $x^2+\cos x+\alpha=0$ היא על $x^2+\cos x+\alpha=0$ המקיים: $x^2+\alpha=0$ המקיים: $x^2+\alpha=0$ המקיים: $x^2+\alpha=0$ המקיים: $x^2+\alpha=0$ פונים: $x^2+\alpha=0$ המקיימת $x^2+\alpha=0$ המקיים פתרון $x^2+\alpha=0$ המקיימת $x^2+\alpha=0$ המקיים פתרון $x^2+\alpha=0$ המקיים במחרון $x^2+\alpha=0$ המקיים במחרון $x^2+\alpha=0$ המקיים במחרון $x^2+\alpha=0$ המקיים במחרון $x^2+\alpha=0$ המחרון $x^2+\alpha=0$ המח

: 5 שאלה

א. יהיו $f:(a,b)\to\mathbb{R}$ ותהי g< b , ותהי g< b רציפה במייש ב- g , וווווg< b , וווווg< b , ווווווg> a , וווווווg> a , וווווווg> a , וווווווg> a , וווווווg> a , ווווווg> a , וווווווg> a , ווווווg> a , וווווווg> a , ווווווg> a , וווווווg> a , וווווווg> a , וווווווg> a , ווווווווg> a , ווווווווווווווווו

בכיוון ההפוך, נניח כי f רציפה במייש. ראינו כי במקרה כזה ניתן להרחיב את f בצורה יחידה לפונקציה רציפה על בכיוון ההפוך, נניח כי $g:[a,b] \to \mathbb{R}$ בפרט, כלומר על $g:[a,b] \to \mathbb{R}$. בפרט,

ובפרט האבול החד"צ מימין ב- $\lim_{(x\to a^+)} f(x) = g(a)$, ולכן ולכן , $\lim_{(x\to a^+)} g(x) = g(a)$, ובפרט הגבול החד"צ משמאל ב- b.

ניתן גם להראות את קיום הגבול בצורה ישירה עייי שנסתכל על סדרה $\{x_n\}$. $a < x_n \to a$ מתכנסת, בפרט קושי, ולכן $\{f(x_n)\}$ גם היא סדרת קושי (כי רציפה במייש מעבירה סדרות קושי לסדרות קושי), ולכן קיים הגבול $\{f(x_n)\}$ גם היא סדרת קושי (כי רציפה במייש מעבירה סדרות קושי לסדרות קושי), ולכן קיים הבא יש להראות כי לכל סדרה $a < x_n \to a$ כנייל, הסדרה $\{f(x_n)\}$ מתכנסת לאותו הגבול, ולכן קיים הגבול החדייצ עייי קריטריון היינה.

ב. תהי $\lim_{x \to \infty} f(x)$, $\lim_{x \to -\infty} f(x)$ - רציפה כך ש $f: \mathbb{R} \to \mathbb{R}$ קיימים וסופיים. הראו כי f רציפה במיש.

 $x,y>x_2$ כך שלכל $x_2>0$ מתנאי קושי, קיים $\lim_{x\to\infty}f(x)=L_+$, $\lim_{x\to-\infty}f(x)=L_-$ נסמן $\varepsilon>0$ יהי $\varepsilon>0$ נסמן $\varepsilon>0$ מחלכל $\varepsilon>0$ בקטע . $\varepsilon>0$ כך שלכל $\varepsilon>0$, ובאופן דומה קיים $\varepsilon>0$, בקטע $\varepsilon>0$ בקטע . בקטע . $\varepsilon>0$, ובאופן דומה קיים $\varepsilon>0$, ובסמן $\varepsilon=0$ המתאים לרציפות במייש בקטע עבור $\varepsilon=0$, ונסמן $\varepsilon=0$ ונסמן $\varepsilon=0$, יהיו $\varepsilon=0$ יהיו $\varepsilon=0$, בהכרח $\varepsilon=0$, בהכרח $\varepsilon=0$, אייכים לפחות לאחד . $\varepsilon=0$, ולכן $\varepsilon=0$, יהיים $\varepsilon=0$

:6 שאלה

. רציפה במייש בכל קטע דים רציפה רציפה אור. רציפה בייש בכל קטע סגור הוכיחו עייפ הגדרה כי

: נחשב. $M = \max\{|a|,|b|\}$ נסמן arepsilon > 0 יהי במ"ש ב- [a,b] רציפה במ"ש ב- , $a < b \in \mathbb{R}$ יהיו

$$|f(x) - f(y)| = |x^2 + \sin x - y^2 - \sin y| = \left| (x - y)(x + y) + 2\sin\left(\frac{x - y}{2}\right)\cos\left(\frac{x + y}{2}\right) \right|$$

$$\leq |x - y||x + y| + 2\left|\sin\left(\frac{x - y}{2}\right)\right| \leq |x - y||x + y| + 2\frac{|x - y|}{2} = |x - y|(|x + y| + 1)$$

$$\leq |x - y|(|x| + |y| + 1) \leq |x - y|(2M + 1)$$

 $|f(x)-f(y)|<\varepsilon$ יתקיים, $|x-y|<\delta$ המקיימים x,y לכל לכל , $\delta=\frac{\varepsilon}{2M+1}$ לכן נבחר לכן נבחר

<u>: 7 שאלה</u>

בדקו רציפות במייש במקרים הבאים, הוכיחו טענותיכם:

$$(0,\infty)$$
 ב- $xsin\left(\frac{1}{x}\right)$.

לפונקציה קיים הגבול החד"צ מימין ב- 0, וכן קיים גבול כאשר $x o \infty$, כי

ולכן משאלה 5 נקבל כי הפונקציה רציפה במ"ש בכל ,
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = \lim_{x \to \infty} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}} = \lim_{t \to 0^+} \frac{\sin t}{t} = 1$$

שישה, אך למעשה לב כי שאלה 5 לכאורה מדברת לחוד על פונקציה המוגדרת על קטע או על כל הישר, אך למעשה $(0,\infty)$

בהוכחת שני הסעיפים טיפלנו לחוד בכל אחד מקצוות הקטע, ולכן גם פונקציה כמו זו שיש לה גבול חד"צ בקצה בהוכחת שני הסעיפים טיפלנו לחוד בכל אחד מקצוות השיקולים). $x \to \infty$ היא רציפה במ"ש מאותם השיקולים).

$$a > 0$$
 ב-, $x \sin x$ ב-, $x \sin x$

(0,a) - בפרט ב- תת קטע, ובפרט במייש, ולכן במייש, ולכן בפרט ב- [0,a], לכן רציפה הפונקציה רציפה ב

$$(0, \infty)$$
 = $x \sin x$.

נסתכל על
$$|f(x_n)-f(y_n)|=\frac{1}{n}\to 0$$
 מתקיים כי $x_n=2\pi n+\frac{1}{n}$, $y_n=2\pi n$ נסתכל על
$$|f(x_n)-f(y_n)|=\left(2\pi n+\frac{1}{n}\right)\sin\left(2\pi n+\frac{1}{n}\right)=\left(2\pi n+\frac{1}{n}\right)\sin\left(\frac{1}{n}\right)=2\pi n\sin\left(\frac{1}{n}\right)+\frac{1}{n}\sin\left(\frac{1}{n}\right)$$

$$=2\pi\cdot\frac{\sin(\frac{1}{n})}{\frac{1}{n}}+\frac{1}{n}\cdot\sin\left(\frac{1}{n}\right)\to 2\pi\cdot 1+0=2\pi$$

נניח בשלילה כי $x\sin x$ רציפה במייש. ויהי $\delta>0$ המתאים ל- $\delta>0$ המקיים תציפה במייש. קיים $x\sin x$ המקיים שלכל $|f(x_n)-f(y_n)|<\varepsilon=\pi$ אמור להתקיים במייש אמור במייש מרציפות במייש אמור $|f(x_n)-f(y_n)|<\varepsilon=\pi$ החל ממקום מסוים – סתירה. אבל $|f(x_n)-f(y_n)|>\pi$ ולכן בפרט $|f(x_n)-f(y_n)|>\pi$ החל ממקום מסוים – סתירה.

$$\mathbb{R}$$
 -ם $\frac{x}{1+e^x}$.

ניתן להראות כי הפונקציה היא ליפשיץ עם קבוע ליפשיץ 2, ולכן היא רציפה במייש.