# Agendamiento de pabellones



### Contexto

En Chile, el promedio de espera por una cirugía es de **492** días<sup>1</sup>.

Distintos tipos de **cirugía** tienen distintos tiempos de atención.

#### Problemática a abordar

Pabellones son limitados.

Hospitales deben satisfacer la mayor **demanda** posible.

Existen **costos** asociados a tener pacientes en cola esperando ser atendidos

El largo de las colas es directamente proporcional al tiempo de espera



# Modelo

Proceso de Decisión Markoviana

# Etapas, estados y variables de decisión

$$t \in \{1, 2, \dots\}$$

$$s = (u, w) = (\{u_i\}, \{w_i\}) \quad i \in \{1, \dots, I\}$$

$$x = (x_i) \quad i \in \{1, \dots, I\}$$

# Probabilidades de transición

$$P_1(u_i') = P(q_i = u_i - x_i - u_i')$$

$$a_i = w_i + x_i$$

$$P_2(w_i') = P(r_i = a_i - w_i'|a_i)$$

$$\mathbb{P}(r_i = g|a_i) = \binom{a_i}{g} (1 - e^{-\lambda_i \cdot T})^g (e^{-\lambda_i \cdot T})^{a_i - g}$$

#### Probabilidades de transición

P<sub>1</sub> y P<sub>2</sub> representan la probabilidad de que cierta cantidad de pacientes quede en cola, y sea atendida, respectivamente.

$$\mathbb{P}(s' = (u'_i, w'_i) | s, x) = \begin{cases} \prod_{i=1}^{I} P_1(u'_i) \cdot P_2(w'_i) & \sum_{i=1}^{I} w'_i < E \\ 0 & \text{e.o.c} \end{cases}$$

## Costo inmediato y cost-to-go

$$c(s,x) = \sum_{i} h \cdot (u_i - x_i)$$

$$V_t(s_t) = \min_{x_t \in X(s)} \left\{ c(s_t, x_t) + \lambda \sum_{s \in S} \mathbb{P}(s_{t+1} = s' | s_t, x_t) \cdot V_{t+1}(s') \right\}$$

# Diseño del algoritmo de solución

MDP con horizonte infinito

Resuelto mediante iteración de valor

Algoritmo recursivo para generar los estados posibles

Hashing de probabilidades para acelerar algoritmo

#### Obtención de datos

Estadísticas atención de urgencias MINSAL

Simulación - Simpy (Python)

Cirugías semanales últimos 3 años en hospitales de la región metropolitana.

#### Obtención de datos

Pacientes de 2 tipos, extensible a *n* 

Se necesitan tasas de llegada para cada tipo: se asumió exponencial pero de diferentes tasas, utilizando los datos mencionados anteriormente.

Se simulan 50 días siguiendo la política encontrada

Se comparan los resultados con posibles heurísticas usadas en el día a día por los administradores de hospitales

Horizonte de 50 días, 200 simulaciones por comparación

Política obtenida Política base

Una misma simulación

Horizonte de 50 días, 200 simulaciones por comparación

| Política base   | Variación en costo |
|-----------------|--------------------|
| FIFO            | +21%               |
| Preferir tipo 1 | +10%               |
| Preferir tipo 2 | +8%                |



#### Variaciones en tasas de llegada:

lambda << capacidad</p>

| Política base | Variación en costo |
|---------------|--------------------|
| FIFO          | 0%                 |

lambda >> capacidad

| Política base | Variación en costo |
|---------------|--------------------|
| FIFO          | +1,7%              |

#### Lecciones

Granularidad del problema

La política FIFO funciona bien para tasas pequeñas: intuitivo

Espacio de estados crece de manera explosiva

#### Lecciones

Problemas son sensibles a las tasas de llegada.

Costo oportunidad de utilizar simulaciones costosas.

# ¿Preguntas?