Continuité

Définition. Continuité en un point. Une fonction f définie sur un intervalle I est **continue en un point** a de I si et seulement si : $\lim_{x \to a} f(x) = f(a)$

Définition. Continuité sur un intervalle. Une fonction *f* définie sur un intervalle *I* est **continue sur l'intervalle** I si et seulement si f est continue en tout réel de I.

Fonction continue sur son intervalle de définition

La fonction f n'a pas de limite en 2. f est discontinue en 2 donc non continue sur son intervalle de définition

Remarque. Aux bornes d'un intervalle fermé la définition de la continuité s'adapte en prenant la limite à droite pour la borne inférieure et la limite à gauche pour la borne supérieure.

Propriétés (admises). La plupart des fonctions usuelles sont continues là où elles sont définies : Les fonctions puissance $x \mapsto x^n$ où $n \in \mathbb{N}$, sont continues sur \mathbb{R} .

La fonction inverse $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* .

La fonction racine carrée $x \mapsto \sqrt{x}$ est continue sur \mathbb{R}_+ .

La fonction valeur absolue $x \mapsto |x|$ est continue sur \mathbb{R} .

La fonction exponentielle $x \mapsto e^x$ est continue sur \mathbb{R} .

Les fonctions sinus et cosinus sont continues sur \mathbb{R} .

Propriétés (admises). Opérations et continuité

Si u et v sont deux fonctions continues sur un intervalle I alors u + v est continue sur I.

Si u et v sont deux fonctions continues sur un intervalle I alors u-v est continue sur I.

Si u et v sont deux fonctions continues sur un intervalle I alors uv est continue sur I.

Si u et v sont deux fonctions continues sur un intervalle I et si v ne s'annule pas sur I, alors $\frac{u}{v}$ est continue sur I.

Soit v une fonction continue sur un intervalle I et soit u une fonction continue sur un intervalle I et à valeurs dans I. Alors $v \circ u$ est continue sur I.

Corollaire. Les fonctions polynômes sont continues sur \mathbb{R} .

Corollaire. Les fonctions rationnelles sont continues là où elles sont définies.

Exemple. Déterminer $\lim_{x\to 2} x^2 - 3x$. $x^2 - 3x$ est défini et continu en x = 2, car c'est un polynôme. Donc $\lim_{x\to 2} x^2 - 3x = 2^2 - 3 \times 2 = 4 - 6 = -2$.

Exemple. La fonction définie sur \mathbb{R} par $x \mapsto \sin(\cos(x^2 + 1))$ est continue par somme et composition de fonctions continues sur \mathbb{R} .

Théorème. Continuité et dérivabilité

Si une fonction f est dérivable en un réel a alors f est continue en a.

Si une fonction f est dérivable sur un intervalle I alors f est continue sur I.

Remarque. La réciproque de ce théorème est fausse. Une fonction peut être continue en a mais pas dérivable en a. Cela se caractérise sur une courbe sans saut mais qui n'admet pas une tangente au point a comme la fonction valeur absolue en 0.

Théorème. Valeurs intermédiaires.

Soit f une fonction continue et monotone (strictement) sur un intervalle [a;b]. Pour tout réel k compris entre f(a) et f(b), l'équation « f(x) = k » admet une solution (unique) c dans l'intervalle [a;b].

Remarque. Pour un réel k compris entre f(a) et f(b), l'existence d'une solution est déterminée par la continuité et l'unicité par la stricte monotonie.

Remarque. Ce théorème marche aussi pour un

intervalle ouvert I =]a; b[où a et b peuvent être réels ou $\pm \infty$. k doit alors être compris entre $\lim_{x \to a} f(x)$ et $\lim_{x \to b} f(x)$.

Remarque. Lorsque k = 0, il suffit de montrer que la fonction f change de signe sur I.

Remarque. Les flèches « montantes » ou « descendantes » d'un tableau de variations indiquent la continuité et la monotonie, ce qui est utile pour utiliser le TVI.

Exemple. L'équation $x^3 = 20$ admet une unique solution sur $]-\infty; +\infty[$ car la fonction cube $x \mapsto x^3$ est strictement croissante et continue sur $\mathbb R$ et 20 est compris

entre $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$.

