We can often avoid exponential growth of states in Q_D using a technique called lazy evaluation (or deferred evaluation)

State q of DFA A is accessible if there is at least one string w such that $\hat{\delta}_A(q_0,w)=q$

We build the transition table of D only for the accessible states of D

Construction of DFA D through lazy evaluation

Base $S = \{q_0\}$ is accessible in D

Induction If state \underline{S} is accessible in \underline{D} , then state $\delta_{\underline{D}}(S,a)$ is also accessible in \underline{D} , for every $a \in \Sigma$

Theorem Let D be the DFA obtained from an NFA N using the subset construction. Then L(D) = L(N)

Proof We first prove that, for every string $w \in \Sigma^*$, we have

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Check that both sides in the above equation are sets!

We use induction on |w|

Base $w = \epsilon$. The claim follows from the definition

Induction

$$\begin{array}{lll} \hat{\delta}_D(\{q_0\},xa) & = & \delta_D(\hat{\delta}_D(\{q_0\},x),a) & \text{definition of } \hat{\delta}_D \\ & = & \delta_D(\hat{\delta}_N(q_0,x),a) & \text{induction} \\ & = & \bigcup_{p \in \hat{\delta}_N(q_0,x)} \delta_N(p,a) & \text{definition of } \delta_D \\ & = & \hat{\delta}_N(q_0,xa) & \text{definition of } \hat{\delta}_N \end{array}$$

$$L(D) = L(N)$$
 now follows from the definition of F_D

Theorem A language \underline{L} is accepted by a DFA if and only if \underline{L} is accepted by an NFA

Proof (If) Previous theorem

(Only if) Any DFA can be converted into an equivalent NFA by modifying δ_D into δ_N according to the following rule

If
$$\delta_D(q, a) = p$$
, then $\delta_N(q, a) = \{p\}$

By induction on |w| one can show that $\hat{\delta}_D(q_0, w) = p$ if and only if $\hat{\delta}_N(q_0, w) = \{p\}$

Theorem There exists an NFA N with n + 1 states that has no equivalent DFA with less than 2^n states

Proof Let N be the NFA

Start
$$q_0$$
 q_1 q_2 q_2 q_3 q_4 q_5 q_6 q_6 q_6

$$L(N) = \{x1c_2c_3\cdots c_n \mid x \in \{0,1\}^*, c_i \in \{0,1\}\}$$

Intuitively, an equivalent DFA must "remember" the last *n* symbols it has read

Those symbols might all be relevant for the final decision

Suppose there exists a DFA D equivalent to N with fewer than 2^n states

There are 2^n binary strings of length n. Since D has fewer that 2^n states, there must be

- a state q,
- binary strings $a_1 a_2 \cdots a_n \neq b_1 b_2 \cdots b_n$,

such that

$$\hat{\delta}_D(q_0,a_1a_2\cdots a_n)=\hat{\delta}_D(q_0,b_1b_2\cdots b_n)=q$$

The above reasoning uses the so-called pigeonhole principle

Since $a_1 a_2 \cdots a_n \neq b_1 b_2 \cdots b_n$, there exists i with $1 \leq i \leq n$ such that $a_i \neq b_i$; we assume $a_i = 1$ and $a_i = 0$ (the other case being symmetrical)

Case 1: i = 1; we have

$$\begin{aligned} & \hat{\delta}_D(q_0, 1a_2 \cdots a_n) \in F \\ & \hat{\delta}_D(q_0, 0b_2 \cdots b_n) \notin F \end{aligned}$$

which is a contradiction

Case 2:
$$i > 1$$
; since $\hat{\delta}_D(q_0, a_1 a_2 \cdots a_n) = \hat{\delta}_D(q_0, b_1 b_2 \cdots b_n)$ and D is deterministic, we have
$$\hat{\delta}_D(q_0, a_1 \cdots a_{i-1} 1 a_{i+1} \cdots a_n 0^{i-1}) =$$
 the u-last symbol
$$\hat{\delta}_D(q_0, b_1 \cdots b_{i-1} 0 b_{i+1} \cdots b_n 0^{i-1})$$

From the definition of L, we must have

$$\frac{\hat{\delta}_D(q_0, a_1 \cdots a_{i-1} 1 a_{i+1} \cdots a_n 0^{i-1}) \in F}{\hat{\delta}_D(q_0, b_1 \cdots b_{i-1} 0 b_{i+1} \cdots b_n 0^{i-1}) \notin F}$$

which is a contradiction

٦

Partial DFA

A partial DFA has at most one outgoing transition for each state in Q and for each symbol in Σ

A partial DFA can be completed to a DFA if we add one non-accepting state having the status of a trap state, from which you cannot escape

Consider the NFA

$$N = (\{q_0, q_1\}, \{0, 1\}, \delta_N, q_0, \{q_1\}),$$

where
$$\delta_N(q_0,0)=\{q_0,q_1\}$$
, $\delta_N(q_0,1)=\{q_1\}$, $\delta_N(q_1,0)=\emptyset$, $\delta_N(q_1,1)=\{q_0,q_1\}$

- check whether strings $w_1 = 101$ and $w_2 = 0010$ are in L(N), showing all steps in the computations
- construct the transition diagram of the DFA equivalent to N
- using a set-former, define the language accepted by the automaton; suggestion: this is easier if you look at the DFA

 $w_1 = 101 \in L(A)$?

•
$$\hat{\delta}(q_0, \epsilon) = \{q_0\}$$

• $\hat{\delta}(q_0, 1) = \delta(q_0, 1) = \{q_1\}$
• $\hat{\delta}(q_0, 10) = \delta(q_1, 0) = \emptyset$, then $w_1 = 101 \notin L(A)$
 $w_2 = 0010 \in L(A)$?
• $\hat{\delta}(q_0, \epsilon) = \{q_0\}$
• $\hat{\delta}(q_0, \epsilon) = \delta(q_0, 0) = \{q_0, q_1\}$
• $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
• $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_1\} \cup \{q_0, q_1\} = \{q_0, q_1\}$
• $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

• since $\{g_0, g_1\} \cap \{g_1\} \neq \emptyset$, $w_2 = 0010 \in L(A)$

We construct the transition diagram of the equivalent DFA using the subset construction and lazy evaluation

•
$$\delta_D(\{q_0\},0) = \delta_N(q_0,0) = \{q_0,q_1\}$$

•
$$\delta_D(\{q_0\}, 1) = \delta_N(q_0, 1) = \{q_1\}$$

•
$$\delta_D(\{q_0, q_1\}, 0) = \delta_N(q_0, 0) \cup \delta_N(q_1, 0)$$

= $\{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

•
$$\delta_D(\{q_0, q_1\}, 1) = \delta_N(q_0, 1) \cup \delta_N(q_1, 1)$$

= $\{q_1\} \cup \{q_0, q_1\} = \{q_0, q_1\}$

•
$$\delta_D(\{q_1\},0) = \delta_N(q_1,0) = \emptyset$$

•
$$\delta_D(\{q_1\}, 1) = \delta_N(q_1, 1) = \{q_0, q_1\}$$

•
$$\delta_D(\varnothing,0) = \delta_D(\varnothing,1) = \varnothing$$

• $\{q_0\}$ initial state, $\{q_0, q_1\}$ e $\{q_1\}$ final states

Graphical representation of the transition diagram

Using a set-former, define the language accepted by the automaton

$$L(A) = \{ w \in \{0,1\}^+ \mid w = 1 \text{ or } w = 0x$$

or $w = 11y, x, y \in \{0,1\}^* \}$

Exercises

Specify an NFA A for each of the following languages defined on the alphabet $\{0,1\}$

- set of strings with two consecutive 0 or two consecutive 1
- ullet set of strings such that at least one of the last three symbols is 1