

৯ম - ১০ম শ্রেণি পদার্থবিজ্ঞান

আলোচ্য বিষয়

অধ্যায় ০৩ - বল

অনলাইন ব্যাচ সম্পর্কিত যেকোনো জিজ্ঞাসায়,

কল করো 🔌 16910

ব্যবহারবিধি

দেখে নাও এই অধ্যায় থেকে কোথায় কোথায় প্রশ্ন এসেছে এবং সৃজনশীল ও বহুনির্বাচনীর গুরুত্ব।

🆈 কুইক টিপস

সহজে মনে রাখার এবং দ্রুত ক্যালকুলেশন করতে সহায়ক হবে।

? বহুনির্বাচনী (MCQ)

বিগত বছর গুলোতে বোর্ড, স্কুল, কলেজ এবং বিশ্ববিদ্যালয়ে আসা বহুনির্বাচনী দেখে নাও উত্তরসহ।

🡼 সৃজনশীল (CQ)

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সৃজনশীল দেখে নাও উত্তরসহ।

厚 প্র্যাকটিস

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সমস্যাগুলো প্র্যাকটিস করে নিজেকে যাচাই করে নাও।

😕 উত্তরমালা

প্র্যাকটিস সমস্যাগুলোর উত্তরগুলো মিলিয়ে নাও।

🛨 উদাহরণ

টপিক সংক্রান্ত উদাহরণসমূহ।

🛛 🔈 সূত্রের আলোচনা

সূত্রের ব্যাপারে বিস্তারিত জেনে নাও।

🦰 টাইপ ভিত্তিক সমস্যাবলী

সম্পূর্ণ অধ্যায়ের সুসজ্জিত আলোচনা।

জড়তা ও বলের গুণগত ধারণা

জডতা

জড়্তা বিষয়টি পদার্থবিজ্ঞান এর দৃষ্টিকোণ থেকে খুব গুরুত্বপূর্ণ একটি বিষয়। জড়তা বিষয়টিকে শুধু একটি সংজ্ঞা দিয়ে বোঝানো যাবে না। কোনো কিছুর গতি সম্পর্কে জানতে হলে আমাদের সেটির ভর সম্পর্কে জানতে হয়। সাধারণত আমরা ভর বলতে বুঝি কতটা বস্তু আছে তার একটা পরিমাপ। কিন্তু বিজ্ঞানসম্মত উত্তর হচ্ছে, **"ভর হচ্ছে জড়তার পরিমাপ।"** তাহলে জড়তা বলতে কী বুঝ?

জড়তা: বস্তু যে অবস্থায় আছে চিরকাল সে অবস্থায় থাকতে চাওয়ার যে প্রবণতা বা সে অবস্থা বজায় রাখতে চাওয়ার যে ধর্ম তাকে জড়তা বলে।

Note: যে বস্তুর ভর বেশি তার জড়তা বেশি।

বল

কোনো একটি বস্তুকে ধাক্কা না দেয়া পর্যন্ত বস্তুটি নিজে থেকে নড়বে না। বস্তুটির উপর ধাক্কা দেওয়ার পর বস্তুটির ত্বরণ সৃষ্টি হবে এবং বস্তুটি সামনে গতশীল হবে। আবার একটা গতিশীল বস্তুকে যদি কোনো বল প্রয়োগ না করা হতো তাহলে বস্তুটি সমবেগে চলতে থাকবে।

বাহ্যিক কোনো বল প্রয়োগ না করলে স্থির বস্তু স্থির-ই থাকবে এবং গতিশীল বস্তু সমম দ্রুতিতে সরল পথে চলতে থাকবে।

বলের বৈশিষ্ট্য

- 1. বলের দিক আছে
- 2. বল জোড়ায় জোড়ায় ক্রিয়া করে
- 3. কোনো বল একটি বস্তুতে ত্বরণ সৃষ্টি করতে পারে
- **4.** বল কোনো বস্তুকে বিকৃত করতে পারে

মৌলিক বল

যে সকল বল মূল বা অকৃত্রিম অর্থাৎ অন্য কোনো বল থেকে উৎপন্ন হয় না বরং অন্য বল এ সকল বল এর প্রকাশে ঘটে তাকে মৌলিক বল বলে।

মৌলিক বল 4 প্রকার-

- 1. মহাকর্ষ বল (Gravitational Force)
- 2. তাড়িতচৌম্বক বল (Electromagnetic Force)
- 3. সবল নিউক্লিয় বল (Strong Nuclear Force)
- 4. দুর্বল নিউক্লিয় বল (Weak Nuclear Force)

মহাকর্ষ বল: মহাবিশ্বের যে কোনো দুটি বস্তুর মধ্যে একধরনের আকর্ষণ বল ক্রিয়াশীল রয়েছে। এই আকর্ষণ বলকে মহাকর্ষ বল বলে।

তাড়িতচৌম্বক বল: দুটি আহিত কণা তাদের আধানের কারণে একে অপরের ওপর যে আকর্ষণ বা বিকর্ষণ বল প্রয়োগ

করে তাকে তাড়িতচৌম্বক বল বলে। **সবল নিউক্লিয় বল**: পরমাণুর নিউক্লিয়াসে নিউক্লিয় উপাদানসমূহকে একত্রে আবদ্ব রাখে যে শক্তিশালী বল তাকে সবল নিউক্লিয় বল বলে।

দুর্বল নিউক্লিয় বল: যে স্বল্প পাল্লার ও স্বল্পমানের বল নিউক্লিয়াসের মধ্যে মৌলিক কণাগুলোর মধ্যে ক্রিয়া করে অনেক নিউক্লিয়াসে অস্থিতিশীলতার উদ্ভব ঘটায় তাকে দুর্বল নিউক্লিয় বল বলে।

স্পর্শ বল ও অস্পর্শ বল

স্পর্শ বল: যে বল সৃষ্টির জন্য দুটি বস্তুর প্রত্যক্ষ সংস্পর্শের প্রয়োজন তাকে স্পর্শ বল বলে। উদাহরণ: ঘর্ষণ বল, টান বল, সংঘর্ষের সময় সৃষ্ট বল।

অস্পর্শ বল: দুটি বস্তুর প্রত্যক্ষ সংস্পর্শ ছাড়াই যে বল ক্রিয়া করে তকে অস্পর্শ বল বলে। উদাহরণ: মহাকর্ষ বল, তাড়িতচৌম্বক বল।

সাম্য বল ও অসাম্য বল

সাম্য বল: কোনো বস্তুর উপর একাধিক বল ক্রিয়া করলে যদি বলের লব্ধি শূন্য হয়; তখন এই বলগুলোকে সাম্য বল বলে।

কোনো বস্তুকে একটি সুতার সাহায্যে ঝুলিয়ে দেয়া হলে বস্তুর উপর পৃথিবীর আকর্ষণ বল তথা বস্তুর ওজন w খাড়া নিচের দিকে ক্রিয়া করছে। এবং সুতার টান T খাড়া উপরের দিকে ক্রিয়া করে।

এখানে বল দুটি সমান ও বিপরীতমুখী হওয়ায় একে অপরের ক্রিয়াকে নিষ্ক্রিয় করে দিয়ে সাম্যবস্থার সৃষ্টি করে। **অসাম্য বল:** কোনো বস্তুর উপর একাধিক বল ক্রিয়া করলে যদি বলের লব্ধির মান ও দিক থাকে তখন ওই ধরনের বলকে অসাম্য বল বলে।

বস্তুটিকে যদি একপাশে একটু টেনে নেওয়া হয় তাহলে সুতার টান (T) এবং বস্তুর ওজন (w) একই সরল রেখায় থাকবে না। ফলে সাম্যবস্থার সৃষ্টি না হয়ে বস্তুটির উপর লব্ধি বল কাজ করবে এবং এর ফলে বস্তুটি দুলতে থাকবে এবং অসাম্যবস্থার সৃষ্টি হবে।

অসাম্য বল ও সাম্য বলের মধ্যে পার্থক্য

সাম্য বল	অসাম্য বল
১। কোনো বস্তুর উপর একাধিক বল ক্রিয়া করলে যদি বলের লব্ধি শূন্য হয় ; তখন বলগুলোকে সাম্য বল বলে।	১। কোনো বস্তুর উপর একাধিক বল ক্রিয়া করলে যদি বলের লব্ধির মান ও দিক থাকে তখন এই ধরনের বলকে অসাম্য বল বলে।
২। দুটি বল ক্রিয়া করলে একে অপরের সমান ও বিপরীত দিকে ক্রিয়া করবে।	২। দুটি বল ক্রিয়া করলে একে অপরের অসমান ও বল দুটি একই দিকে বা বিপরীত দিকে ক্রিয়া করবে।
৩। স্থির বস্তু স্থির থাকবে এবং চলন্ত বস্তু আগের বেগে একই ভাবে চলতে থাকবে।	৩। স্থির বস্তু বড় বলের দিকে চলা শুরু করবে এবং চলন্ত বস্তুর দ্রুতি ও দিক পরিবর্তন হবে।
৪। লব্ধি বল শূন্য।	৪। লব্ধি বল অশূন্য।
৫। কোনো ত্বরণ থাকে না ।	৫। বস্তুর ত্বরণ থাকে।

🗵 সূত্রের আলোচনা

নিউটনের গতিসূত্র

1686 সালে স্যার "আইজ্যাক নিউটন " তাঁর অমর গ্রন্থ "Philosopiae Naturalis Principia Mathmatica" তে তিনটি সূত্র প্রকাশ করেন। এই ৩ টি সূত্র **"নিউটনের গতিসূত্র**" নামে পরিচিত।

প্রথম সূত্র: বাহ্যিক কোনো বল প্রয়োগ না করলে স্থির বস্তু স্থির-ই থাকবে এবং গতিশীল বস্তু সুষম দ্রুতিতে সরল পথে চলতে থাকে।

[If
$$F = 0$$
 then $u = v$]

দ্বিতীয় সূত্র: বস্তুর ভরবেগের পরিবর্তনের হার এর উপর প্রযুক্ত বলের সমানুপাতিক এবং বল যেদিকে ক্রিয়া করে বস্তুর ভরবেগের পরিবর্তনও সেদিকে ঘটে।

$$[F = ma]$$

তৃতীয় সূত্র: প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীত প্রতিক্রিয়া আছে।

$$[F = -F]$$

সূত্র	চলকের পরিচয়	একক	মাত্রা
	F = বল		
If F = 0 then u = v	u = আদিবেগ	×	×
	v = শেষবেগ		
	F = বল		
F = ma	m = ভর (kg)	N	$[MLT^{-2}]$
	$a = \overline{\gamma}$ রণ (ms^{-2})		
F = -F	F = বল	×	×

F=ma সম্পর্ক প্রতিপাদন

ধরি, m ভরবিশিষ্ট কোনো বস্তু u আদিবেগ নিয়ে চলছে। এখন F সমবল বস্তুর উপর t সময় ধরে বেগের অভিমুখে ক্রিয়া করলে, যতক্ষন বল ক্রিয়াশীল থাকবে ততক্ষন বস্তুর বেগ একই হারে বৃদ্ধি পেতে থাকবে। ধরি t সময় পরে বস্তুর বেগ হলো v

বস্তুটির আদি ভরবেগ = mu বস্তুটির শেষ ভরবেগ = mv

t সময়ে বস্তুর ভরবেগের পরিবর্তন = mv - mu

 \therefore ভরবেগের পরিবর্তনের হার $= \frac{m(v-u)}{v}$

$$\frac{m(v-u)}{t} \propto F$$

 $\Rightarrow ma \propto F$

$$[\because \frac{(v-u)}{t} = a]$$

 $\Rightarrow ma = kF$

 $\Rightarrow F = ma$

∴ বল = ভর × ত্বরণ

$$m = 1 kg, a = 1ms^{-2}$$
 হলে
 $F = 1N$ ধরা হবে।
∴ $ma = kF$
⇒ $1 \times 1 = k \times 1$

1 নিউটন: যে পরিমাণ বল $1\,kg$ ভরের কোনো বস্তুর উপরে প্রযুক্ত হয়ে $1ms^{-2}$ ত্বরণ সৃষ্টি করে তাকে 1N বলে।

উদাহরণ

01: 80kg ভরের একটি বস্তুর উপর কত বল প্রযুক্ত হলে এর ত্বরণ হবে $0.\,2ms^{-2}$? সমাধানঃ আমরা জানি,

$$F = ma$$

$$\Rightarrow F = 80 \ kg \times 0.2 \ ms^{-2}$$

$$\therefore F = 16N$$

এখানে,
বস্তুর ভর,
$$m=80~kg$$

ত্বরণ, $a=0.2~ms^{-2}$
বল $F=$?

02: $9\cdot 1 imes 10^{-31}kg$ ভরের একটু স্থির ইলেক্টরনের উপর $1\cdot 82 imes 10^{-16}N$ বল $10^{-9}s$ ধরে কাজ করে। এ সময় শেষে ইলেকট্রনের বেগ কত হবে নির্ণয় করো।

এখানে.

সমাধানঃ আমরা জানি,

$$F=ma$$
 ভর, $m=9\cdot 1\times 10^{-31}kg$ আদিবেগ, $u=0ms^{-1}$ বল, $F=1\cdot 82\times 10^{-16}N$ অাদিবেগ, $u=0ms^{-1}$ বল, $F=1\cdot 82\times 10^{-16}N$ এখানে, $v=u+at$ ভর, $m=9\cdot 1\times 10^{-31}kg$ আদিবেগ, $u=0ms^{-1}$ বল, $r=1\cdot 82\times 10^{-16}N$ ভর, $r=1\cdot 82\times 10^{-16}N$ ভর, $r=1\cdot 82\times 10^{-16}N$ ভর, $r=1\cdot 82\times 10^{-16}N$ ভর, $r=1\cdot 82\times 10^{-16}N$ আদিবেগ, $r=1\cdot 82\times 10^{-16}N$

বল, $F = 1 \cdot 82 \times 10^{-16} N$

03: একটি বালক 50N বল দ্বারা 16kg ভরের একটি বাক্সকে ধাক্কা দেয়, বাক্সটির ত্বরণ কত হবে?

সমাধানঃ আমরা জানি,

$$F = ma$$

$$\Rightarrow a = \frac{F}{m}$$

$$\therefore a = \frac{50N}{16kg} = 3.12 \text{ ms}^{-2}$$

এখানে, বল, F = 50 Nভর, m = 16 kgত্বরণ, a = ?

04: $5ms^{-1}$ বেগে চলন্ত 20kg ভরের একটি বস্তুর উপর বল প্রয়োগ করলে এটি 5s –এ $30ms^{-1}$ বেগ প্রাপ্ত হয়। বস্তুর উপর প্রযুক্ত বলের মান কত? [যশোর বোর্ড – 15]

সমাধানঃ আমরা জানি,

$$a = \frac{v - u}{t}$$

$$\Rightarrow a = \frac{(30 - 5)ms^{-1}}{5s}$$

$$\Rightarrow a = \frac{25}{5}ms^{-2}$$

$$\therefore a = 5ms^{-2}$$

$$F = ma$$

$$\Rightarrow F = 20kg \times 5ms^{-2}$$

$$\therefore F = 100N$$

এখানে, বস্তুর ভর, m=20kgসময়, t=5 sec শেযবেগ, v=30 ms^{-1} আদিবেগ, $u=5ms^{-1}$ ত্বরণ, a=?বল, F=?

🗵 সূত্রের আলোচনা

নিউটনের দ্বিতীয় সূত্র থেকে প্রথম সূত্রের প্রতিপাদন

নিউটনের ২য় সূত্র থেকে আমরা জানি,

$$F = ma$$

$$\Rightarrow F = m \frac{v - u}{t}$$

$$\Rightarrow m(v - u) = Ft \dots \dots (i)$$

এখন যদি বাইরে থেকে বল প্রযুক্ত না হয়, অর্থাৎ F=0 হয়, তাহলে (i) নং সমীকরণ থেকে

$$m(v-u)=0$$

যেহেতু বস্তুর ভর m শূন্য হতে পারেনা,

$$v-\mathbf{u}=0$$
 [iনং হতে] $\Rightarrow v=u$

নিউটনের তৃতীয় সূত্রের ব্যাখ্যা

নিউটনের তৃতীয় সূূ্ত্রানুসারে, প্রত্যেক ক্রিয়ারই একটি সমান ও বিপরীত প্রতিক্রিয়া রয়েছে অর্থাৎ, ক্রিয়া ও প্রতিক্রিয়া সমান বিপরীতমুখী। চিত্রানুসারে P বস্তুটি যদি Q বস্তুটির উপর F_1 বল প্রয়োগ করে, তা হলে সূত্রানুযায়ী Q বস্তুটিও Pবস্তুর সমান ও বিপরীত F_2 বল প্রয়োগ করবে।

 $pprox F_2 = -F_1$ নিউটনের তৃতীয় সূত্রের উদাহরণ-

ভূমির উপর দাঁড়ানো, টেবিলের ওপর বই এর অবস্থান।

ভরবেগ (Momentum)

মনে করি একটি ট্রাক ও একটি বাইসাইকেল একই বেগে একটি ছোট গাড়িকে আঘাত করেছে। এই সংঘর্ষে সাইকেল এবং ট্রাক, দুটোর বেগ একই হলেও ট্রাকটির বেশি ক্ষতি হয়েছে। কারণ ট্রাক এর ভর বাইসাইকেল এর তুলনায় অনেক বেশি। সেই জন্য ট্রাকের ভরবেগ ও বেশি। অর্থাৎ ভর ও বেগ এর গুনফলকে ভরবেগ বলে।

সূত্র	চলকের পরিচয়	একক	মাত্রা
P = mv	ভর $= m (kg)$	$ Kgms^{-1}$ $[MLT^{-1}]$	
	বেগ = $v (ms^{-1})$	Nyms	[MLI]

$oldsymbol{05}$: একটা গাড়ির ভর 850~kg এবং গাড়িটি $45ms^{-1}$ সমবেগে চললে ~10s পরে গাড়ির ভরবেগ কত? সমাধানঃ

```
\Rightarrow 10~sec পরে গাড়িটির ভরবেগ, P=mv এখানে, p=850kg\times45ms^{-1} বেগ, v=45~ms^{-1}
```

06: একটি বস্তুর ভর 100kg এবং এটি $3ms^{-1}$ বেগে গতিশীল হলে, বস্তুর ভরবেগ কত ? সমাধানঃ আমরা জানি,

```
P=mv
\Rightarrow P=100kg\times 3\ ms^{-1} এখানে, বস্তুর ভরবেগ 300\ kgms^{-1} তরবেগ, P=7
```

07: 200kg ভরের একটি গাড়ি স্থিরাবস্থা থেকে যাত্রা শুরু করে $2ms^{-2}$ ত্বরণে চলছে, যাত্রা শুরু করার $6\,s$ পরে বেগ কত?

সমাধানঃ আমরা জানি,

$$v = u + at$$
 $= 0ms^{-1} + 2ms^{-2} \times 6s$
 $v = 12 ms^{-1}$
আবার,
 $P = mv$
 $= (200 \times 12)kgms^{-1}$
 $= 2400kgms^{-1}$
নির্ণেয় ভরবেগ $2400 kgms^{-1}$
 $u = 0ms^{-1}$
 $u = 0ms^{-1}$
 $u = 2ms^{-2}$
 $u = 6 s$
 $v = 7$
 $v = 7$

08: একটা বস্তুর যাত্রাকালের ২য় সেকেন্ডে বেগ $4ms^{-1}$ এবং চতুর্থ সেকেন্ডে বেগ $6ms^{-1}$ । এই সময়কালের মধ্যে ভরবেগের পরিবর্তন $20kgms^{-1}$, বস্তুটির ভর কত? সমাধানঃ আমরা জানি,

```
\Delta P = m \Delta v
\Rightarrow m = \frac{\Delta P}{\Delta v}
\Rightarrow m = \frac{20 k g m s^{-1}}{2 m s^{-1}}
\Rightarrow m = 10 \ k g
নির্ণেয় ভর 10 \ k g
\frac{\Delta P}{\Delta v} = \frac{20 k g m s^{-1}}{2 m s^{-1}}
\Rightarrow m = 10 \ k g
\frac{\Delta P}{\Delta v} = \frac{20 k g m s^{-1}}{2 m s^{-1}}
\frac{\Delta V}{\Delta v} = \frac{20 k g m s^{-1}}{2 m s^{-1}}
\frac{\Delta P}{\Delta v} = \frac{20 k g m s^{-1}}{2 m s^{-1}}
\frac{\Delta P}{\Delta v} = \frac{20 k g m s^{-1}}{2 m s^{-1}}
\frac{\Delta P}{\Delta v} = \frac{20 k g m s^{-1}}{2 m s^{-1}}
```

গতির উপর বলের প্রভাব

1. প্রযুক্ত বল কোনো স্তির বস্তুকে গতিশীল করতে পারে

মনে কর, Argentina এবং Brazil এর ফুটবল খেলার পেনাল্টিতে মেসি স্থির ফুটবলকে কিক করে। তখন বলটি স্থির অবস্থা থেকে যে দিকে বলটিকে কিক করা হয়েছে সে দিকে গতিশীল হয়। অর্থাৎ এক্ষেত্রে বলটি স্থির অবস্থা থেকে ত্বরণ লাভ করে। এক্ষেত্রে সৃষ্ট ত্বরণের মান ধনাত্বক এবং ত্বরনের দিক হলো কিকের মাধ্যমে যে দিকে বল প্রয়োগ করা হয় সে দিকে।

2. প্রযুক্ত বল গতিশীল বস্তুর বেগ বৃদ্ধি করতে পারে।

মনে কর, BPL খেলায় Cumilla Victorians ও Dhaka Dynamites এর ম্যাচে তামিম ব্যাটিং এ আছে। বোলিং এ রুবেল $147ms^{-1}$ বেগে তামিমের দিকে বল ছুঁড়ে দেয়। বলটি যে দিকে গতিশীল তামিম যদি সেইদিক বরাবর আঘাত করেন বলটি পূর্বের চেয়ে বেশি বেগে গতিশীল হবে। এক্ষেত্রে বলটির ত্বরণ ধনাত্বক এবং এর বেগ বৃদ্ধি পাবে**।**

3. বল প্রয়োগের ফলে গতিশীল বস্তুর বেগ হ্রাস পায়।

ধরো তুমি গ্রামের রাস্তায় সাইকেল চালাচ্ছো। কিছুক্ষণ চলার পর তুমি দেখতে পেলে যে সামনের রাস্তাটি অনেকটা ঢাল। এখন তুমি কি করবে? নিরাপদে এই ঢালু পথ অতিক্রম করার জন্য তুমি আগের মতো সাইকেলের প্যাডেল দেবে না বরং সাইকেলের ব্রেক চাপবে। এর ফলে সাইকেলের গতি মন্থর হবে।

4. প্রযুক্ত বল কোনো গতিশীল বলের বেগের তথা গতির দিক পরিবর্তন করতে পারে।

ক্রিকেট খেলায় একজন খেলোয়াড় বিপরীত দিক থেকে আগত ক্রিকেট বলকে ব্যাট দ্বারা আঘাত করেন। ব্যাট দ্বারা আঘাতের ফলে বলটির বেগের মান ও দিক উভয়েই পরিবর্তিত হয়। যে দিক থেকে বলটি এসেছিল ব্যাট দ্বারা আঘাতের ফলে এটি অন্য কোনো দিকে গতিশীল হয়। এক্ষেত্রেও বলটির ত্বরণ রয়েছে।

5. বস্তুর আকারের ওপর বলের প্রভাব।

আমাদের চারপাশে এমন অনেক উদাহরণ রয়েছে যেখানে বলের ক্রিয়ায় বস্তুর আকারের পরিবর্তন হয়। একটা খালি প্লাস্টিকের পানির বোতল চেপে ধরলে বোতলের আকার পরিবর্তন হয়, আবার যখন কোনো রাবার ব্যান্ডকে টেনে প্রসারিত করি, তখন এটি সরু হয়ে যায়, অর্থাৎ এর আকারে পরিবর্তন হয়।

কখনো কখোনো বলের ক্রিয়ায় বস্তুর এই আকার পরিবর্তন ক্ষণস্থায়ী হয়। আবার কখোনো বল প্রয়োগের ফলে স্থায়ীভাবে বস্তুর আকারের পরিবর্তন সংঘটিত হয়। উদাহরণ হিসেবে দুমড়ে মুচড়ে যাওয়া ধাতব ক্যান অথবা দুর্ঘটনার পরে কোনো গাড়ির ক্ষেত্রে এ ধরণের পরিবর্তন ঘটে।

🗵 সূত্রের আলোচনা

ভরবেগের সংরক্ষণ সূত্র

একটি ব্যবস্থার মোট ভরবেগের কোনো পরিবর্তন হয় না। ভরবেগের এ সংরক্ষন সূত্রকে কাজে লাগিয়ে রকেটের উড্ডয়ন থেকে শুরু করে উচ্চশক্তি ত্বরক যন্ত্রে উৎপাদিত অনেক নতুন মৌলিক কণার আবিষ্কারও সম্ভব হয়েছে।

" একাধিক বস্তুর মধ্যে শুধু ক্রিয়া প্রতিক্রিয়া ছাড়াঁ অন্য কোনো বল কাজ না করলে কোনো নির্দিষ্ট দিকে তাদের মোট ভরবেগের কোনো পরিবর্তন হয় না।"

ধরি, P ও Q দুটি বস্তু যথাক্রমে u_1 ও u_2 বেগ নিয়ে একই সরলরেখায় একই দিকে চলছে, বস্তুটির ভর m_1 ও m_2 । Q এর বেগ Pএর বেগের চেয়ে বেশি হলে $u_2>u_1$ হলে চলতে চলতে কোনো এক সময় Q বস্তুটি P বস্তুটিকে ধাক্কা দিবে।

P বস্তুর উপর Qবস্তুর এ প্রযুক্ত বল হলো F_1 , এখন P বস্তুটিও Qবস্তুকে F_2 বলে ধাক্কা দিবে। Q বস্তুর ওপর P বস্তুর এই বল হচ্ছে F_2

 $[P ext{ ଓ } Q ext{ এর পরিবর্তিত বেগ } v_1 ext{ ও } v_2]$

$$: F_1 = -F_2$$

$$m_1 a_1 = -m_2 a_2$$

$$\Rightarrow m_1 \frac{v_1 - u_1}{t} = m_2 \frac{v_2 - u_2}{t}$$

$$\Rightarrow m_1 v_1 - m_1 u_1 = m_2 v_2 - m_2 u_2$$

$$\Rightarrow m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

 \therefore P ও Q বস্তুদ্বরের ক্রিয়া প্রতিক্রিয়া সংগঠনের পূর্বের ও পরের ভরবেগের সমষ্টি সুর্বদাই সমান থাকে।

এখন, মনে কর, P ও Q বস্তু দুটি সংঘর্ষের পর মিলিত হয়ে গেল অর্থাৎ বস্তু দুটি সংঘর্ষের পর বেগ একই হয়ে গেলো। তখন,

$$m_1u_1 + m_2u_2 = (m_1+m_2)v$$

সূত্রটি খাটবে।

আবার, সংঘর্ষের সময় দুটি বস্তুর মধ্যে ক্রিয়া ও প্রতিক্রিয়া বল ব্যাতীত কোনো বল কাজ করে না। নিউটনের দ্বিতীয় সূত্র থেকে আমরা পাই,

$$F = \frac{mv - mu}{t}$$

অর্থাৎ ভরবেগের পরিবর্তন = বল × সময়

কিন্তু বল ও সময়ের গুণফলকে বলা হয় বলের ঘাত।

: বলের ঘাত = ভরবেগের পরিবর্তন

🛨 উদাহরণ

09: $80\ kg$ ভরের একটি বস্তুর উপর 1050N বল 0.1s সময় ব্যাপী কাজ করে। বস্তুর ভরবেগের পরিবর্তন কত হবে?

সমাধানঃ আমরা জানি, ভরবেগের পরিবর্তন = বল \times সময় = $1050 \text{ N} \times 0.1 \text{ s}$ = 105 kgms^{-1}

এখানে, প্রযুক্ত বল, F=1050 N বলের ক্রিয়াকাল =0.1 sভরবেগের পরিবর্তন, mv-mu=?

10: একটি বন্দুক থেকে 10g ভরের একটি গুলি $600ms^{-1}$ বেগে নির্গত হওয়ার সময় $2ms^{-1}$ বেগে পিছনে ধাক্কা দেয়, বন্দুকটির ভর নির্ণয় কর। [ব. বো.-১৬]

সমাধানঃ আমরা জানি,

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$
 $\Rightarrow m_1 \times 0 + m_2 \times 0 = 0.01 \times 600 + m_2 \times -2$
 $\Rightarrow 6 - 2m_2 = 0$
 $\Rightarrow 2m_2 = 6$
 $\Rightarrow m_2 = \frac{6}{2}kg$
 $\therefore m_2 = 3kg$
 \therefore বন্দুকের ভর $3kg$

এখানে, গুলির ভর, $m_1=10\mathrm{g}$ $=\frac{10}{1000}\mathrm{kg}$ $=10\mathrm{kg}$ গুলির আদিবেগ, $u_1=0$ গুলির শেষবেগ, $v_1=600ms^{-1}$ বন্দুকের আদিবেগ, $u_2=0$ বন্দুকের শেষবেগ, $v_2=-2ms^{-1}$ [বেগ পশ্চাৎ দিকে বলে ঋনাত্বক] বন্দুকের ভর, $m_2=?$

11: $700\,kg$ ভরের একটি গতিশীল ট্রাক $20ms^{-1}$ বেগে $1300\,kg$ ভরের একটি স্থিতিশীল ট্রাককে ধাক্কা দেয়। এবং ট্রাক দুটি মিলিত হয়ে সামনের দিকে চলতে থাকে। ট্রাক দুতির মিলিত বেগ নির্ণয় কর। [কুমিল্লা বোর্ড - ১৫] সমাধানঃ

 \Rightarrow এখানে, ১ম গাড়ির ভর, $m_1=700 {
m kg}$ আদিবেগ, $u_1=20 m s^{-1}$ ২য় গাড়ির ভর, $m_2=1300 k g$ আদিবেগ, $u_2=0 m s^{-1}$ মিলিত গাড়ির ভর, M=(700+1300) k g =2000 k g মিলিত গাড়ির বেগ, v=? আমরা জানি, $m_1 u_1+m_2 u_2=M V$ $\Rightarrow v=\frac{m_1 u_1+m_2 u_2}{M}$ $\Rightarrow v=\frac{700 k g \times 20 m s^{-1}+1300 k g \times 0 m s^{-1}}{2000 k g}$ $\therefore v=7 m s^{-1}$ \therefore মিলিত গাড়ির বেগ 7 $m s^{-1}$

ভরবেগের সংরক্ষণের উদাহরণ

নৌকা থেকে লাফ দেওয়া: নৌকা থেকে এক আরোহী যখন লাফিয়ে তীরে নামে তখন নৌকা দূরে যেতে দেখা যায়। আরোহী নৌকার উপর বল প্রয়োগ করে ফলেই নৌকা পিছনে ছুটে যায়; কারণ নৌকার ও আরোহীর ভরবেগের পরিবর্তন পরস্পরের সমান ও বিপরীতমুখী।

বন্দুকের পশ্চাৎ গতি: গুলি ছোঁড়ার পর বন্দুককে পিছনের দিকে সরে আসতে দেখা যায়। গুলি ছোঁড়ার পূর্বে বন্দুক ও গুলি উভয়ের বেগ শূন্য থাকে, কাজেই তখন তাদের ভরবেগের সমষ্টি শূন্য। গুলি ছোড়ার পর সামনের দিকে গুলির কিছু ভরবেগ উৎপন্ন হয়। ভরবেগের সংরক্ষণ সূত্রানুযায়ী গুলি ছোঁড়ার আগের ভরবেগের সমষ্টির সমান হতে হবে, সুতরাং গুলি ছোঁড়ার পরের ভরবেগের সমষ্টির সমান হতে হলে অর্থাৎ, শুন্য হতে হলে বন্দুকেরও গুলির সমান ও বিপরীতমুখী একটা ভরবেগের সৃষ্টি হতে হবে, ফলে বন্দুককেও পেছনের দিকে আসতে দেখা যায়।

মহাকর্ষ বল

এ মহাবিশ্বে যে কোনো দুটি বস্তু কণা পরস্পরকে আকর্ষণ করে। এ আকর্ষণ বলের মান শুধু বস্তুদ্বয়ের ভর এবং তাদের মধ্যকার দুরত্বের ওপর নির্ভর করে- এদের আকৃতি, প্রকৃতি কিংবা মধ্যবর্তী মাধ্যমের প্রকৃতির ওপর নির্ভর করে না। এ আকর্ষণকে মহাকর্ষ বলে।

নিউটনের মহাকর্ষ সূত্র: মহাবিশ্বের প্রতিটি বস্তুকণা একে অপরকে নিজ দিকে আকর্ষণ করে এবং এ আকর্ষণ বলের মান বস্তু কণাদ্বয়ের ভরের গুনফলের সমানুপাতিক এবং এদের দুরত্বের বর্গের ব্যাস্তানুপাতিক এবং এ বল বস্তুকণাদ্বয়ের সংযোগ সরলরেখা বরাবর ক্রিয়া করে।

 m_1 এবং m_2 ভরের দুটি বস্তু পরস্পর থেকে r দুরত্বে অবস্থিত।

সূত্র	চলকের পরিচয়	একক	মাত্রা
	বল = <i>F</i>		
$F \propto \frac{m_1 m_2}{d^2}$	১ম বস্তুর ভর $=m_1$		- 0-
	২য় বস্তুর ভর $=m_2$	N	$[MLT^{-2}]$
$\Rightarrow F = G \frac{m_1 m_2}{r^2}$	মধ্যবর্তী দূরত্ব $= r$		
	G = মহাকর্ষীয় ধ্রুবক		

নিউটনের ৩য় সূত্রের ক্রিয়া-প্রতিক্রিয়া শব্দ দুটি নিয়ে তোমাদের সবার মনে প্রশ্ন জাগতে পারে ; যদি সকল ক্রিয়ার (কোনো একটি বল) একটি বিপরীত প্রতিক্রিয়া (আরেকটি বল) থাকে তাহলে ক্রিয়া প্রতিক্রিয়া একে অপরকে কাটাকাটি করে করে শূন্য হয়ে যায় না কেন? বিষয়টি একটু স্পষ্ট করে নেই। নিউটনের তৃতীয় সূত্রে বলেছে যদি দুটি বস্তু A এবং B থাকে তাহলে A যখন B বলের ওপর বল প্রয়োঁগ করে তখন B বল প্রয়োগ করে A এর ওপর। বিপরীত দুটি বল ভিন্ন ভিন্ন বস্তুতে কাজ করে, কখনোই এক বস্তুতে নয়। যদি একই বস্তুতে দৃটি বস্তুতে দৃটি বল, প্রয়োগ করা হতো ভ্রু তাহলেই একে অন্যকে কাটাকাটি করতে পারত।

একটা উদাহরণ দেই, মনে কর,m ভরের একটা বস্তুর উপর থেকে ছেড়ে দিলাম। আমরা জানি, পৃথিবীর মাধ্যাকর্ষণ বলের জন্য m ভর পৃথিবীর দিকে একটা F বল অনভব করবে।

সূত্র	চলকের পরিচয়	একক	মাত্রা
	$G=$ মহাকর্ষীয় ধ্রুবক $=6.673 imes 10^{-11} Nm^2 Kg^{-2}$		
$F = G \frac{m_1 m_2}{r^2}$	$M=$ পৃথিবীর ভর $=5.98 imes 10^{24} kg$	N	$[MLT^{-2}]$
	R= পৃথিবীর ব্যাসার্ধ		
	m = বস্তুর ভর		

নিউটনের ৩য় সূত্রটি শেখার পর আমরা জানি, m ভরটি বিশাল পুরো পৃথিবীটাকে নিজের দিকে আকর্ষণ করছে। সে বলটি ও F শুধু বিপরীত দিকে। আমরা এই বলটিকে নিয়ে তেমন মাঁথা ঘামাই না তার কারণ এই বলটার কারণে পৃথিবীর কতটুকু ত্বরণ a হচ্ছে সেটা বের করতে পারি।

$$F = ma$$

$$\Rightarrow a = \frac{F}{m}$$
 বা, $a = \frac{m}{2}$

বা,
$$a = \frac{mg}{m}$$
 বা, $a = \frac{1 kg \times 9.8 \ ms^{-2}}{5.98 \times 10^{24} kg}$

 $\therefore a=1.6\times 10^{-24}~ms^{-2}$ অর্থাৎ 1 kg ভরের একটা বস্তু উপর থেকে ছেড়ে দিলে পৃথিবীর ত্বরণ হবে $1.6\times 10^{-24}~ms^{-2}$

🛨 উদাহরণ

12: দুটি গোলকের ভর যথাক্রমে 35~kg ও 20kg । তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 0.2m হলে পারস্পরিক আকর্ষণ বল কত? [$G=6.673\times 10^{-11}Nm^2Kg^{-2}$] সমাধানঃ আমরা জানি,

 $\Rightarrow F = G \frac{m_1 m_2}{r^2}$

$$= \frac{6.673 \times 10^{-11} \times 35 \, kg \times 20 kg}{(0.02)^2}$$
$$= 1.16725 \times 10^{-6} N$$

এখানে,
$$m_1 = 35 \ kg \ ,$$

$$m_2 = 20 kg$$

$$r = 0.2m$$

$$G = 6.673 \times 10^{-11} Nm^2 Kg^{-2}$$

$$F = ?$$

অভিকর্ষজ ত্বরণ সংক্রান্ত

13: পৃথিবীর ভর $5.98 \times 10^{24} kg$ এবং ব্যাসার্ধ $6.4 \times 10^6 m$ হলে অভিকর্ষজ ত্বরণ কত? [$G=6.67 \times 10^{-11} Nm^2 Kg^{-2}$]

সমাধানঃ আমরা জানি,

$$g = \frac{GM}{R^2}$$

$$\Rightarrow g = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{(6.4 \times 10^6 \text{m})^2}$$

$$= 9.73 \text{ ms}^{-2}$$

এখানে, পৃথিবীর ভর
$$5.98 \times 10^{24} kg$$
 পৃথিবীর ব্যাসার্ধ $6.4 \times 10^6 m$ $G = 6.673 \times 10^{-11} Nm^2 Kg^{-2}$ $g = ?$

🖈 কুইক টিপস

- 1. দুটি বস্তুর ভরের গুণফল দ্বিগুন হলে বল দ্বিগুন। ভরের গুণফল তিনগুণ হলে বল তিনগূণ হবে [শর্ত- নির্দিষ্ট দুরত্ব হতে হবে]
- দুটি বস্তুর দুরত্ব তিনগুণ করলৈ বল এক-চতুর্থাংশ হবে।
 দূরত্ব তিনগুণ হলে বল নয় ভাগের একভাগ হবে।
 [শর্ত- বস্তুর দুটির ভর নির্দিষ্ট হতে হবে]

মহাকর্ষীয় ধ্রুবক

 $1\ kg$ ভরের দুটি বস্তু 1m দুরত্বে থেকে যে বলে পরস্পরকে আকর্ষণ করে তার সংখ্যামান মহাকর্ষীয় ধ্রুবকের সংখ্যামানের সমান।

সূত্র	চলকের পরিচয়	একক	মাত্রা
$G = \frac{F \ r^2}{m_1 m_2}$	$G=$ মহাকর্ষীয় ধ্রুবক $=6.673 imes 10^{-11} Nm^2 Kg^{-2}$ $r=$ দূরত্ব $m_1=$ ১ম বস্তুর ভর $m_2=$ ২য় বস্তুর ভর $F=$ বল	Nm^2kg^{-2}	$[L^3M^{-1}T^{-2}]$

1~kg ভরের দুটি বস্তু 1m দুরত্বে স্থাপন করলে এরা পরস্পরকে $6.673 imes 10^{-11} N$ বলে আকর্ষণ করে ।

14: সমান ভরের দুটি বস্তুর পরস্পর থেকে 0.2~m দূরত্বে থেকে $6.67 \times 10^{-7}~N$ বলে মহাকর্ষ করে, বস্তুদ্বয়ের ভর নির্ণয় কর। [$G=6.67 \times 10^{-11} Nm^2 Kg^{-2}$]

সমাধানঃ আমরা জানি,

$$F = G \frac{m_1 m_2}{r^2}$$
 $F = G \frac{m \times m}{r^2}$
 $F = G \frac{m^2}{r^2}$
 $m^2 = \frac{Fr^2}{G}$
 $m^2 = \frac{6.67 \times 10^{-7} N \times (0.2m)^2}{6.67 \times 10^{-11} Nm^2 kg^{-2}}$
 $m^2 = 400 kg^2$
 $m = 20 kg$
∴বস্তাব্যের ভর $20 kg$

এখানে, দূরত্ব ,r=0.2m বল, $F=6.67\times 10^{-7}N$ মহাকর্ষীয় ধ্রুবক, $G=6.67\times 10^{-11}\ Nm^2\ kg^{-2}$ বস্তুদ্বয়ের ভর, m=?

ঘর্ষণ বল

আমরা আমাদের দৈনন্দিন জীবনে ঘর্ষণের সাথে নানাভাবে পরিচিত। পূর্বে নিউটনের গতিসূত্র সম্পর্কে ধারণা পেয়েছি, সেখানে আমরা নিউটনের প্রথম সূত্র থেকে জেনেছি, কোনো বস্তুর উপর বল ক্রিয়া না করলে বস্তুটি স্থির থাকবে, না হয় বস্তুটি সমবেগে সরলপথে চলতে থাকবে। [If F=0 than u=v]

কিন্তু বাস্তবে এমনটি ঘটে না, একটা উদাহরণ দেওয়া যাক, একটি গাড়ি রাস্তার কিছুটা দুরত্ব অতিক্রম করার পর থেমে যায়। রাস্তার ঘর্ষণের জন্যই এমনটি ঘটে। গাড়িটি যখন রাস্তার উপর গতিশীল থাকে তখন গাড়ি ও রাস্তার পারস্পরিক ঘর্ষণের ফলে একটি ঘর্ষণ বলের উৎপত্তি হয়। এ বল গতির বিপরীত দিকে ক্রিয়া করে এবং গতিকে বাধাগ্রস্থ কর। যদি রাস্তার ঘর্ষণ না থাকত তাহলে গাড়িটি একই বেগ নিয়ে সরল পথে চলতে থাকত।

"একটি বস্তু যখন অন্য একটি বস্তুর সংস্পর্শে থেকে একের উপর দিয়ে অপরটি চলতে চেষ্টা করে বা চলতে থাকে তখন বস্তুদ্বয়ের স্পর্শতলে গতির বিরুদ্ধে একটি বাধার উৎপত্তি হয়, এ বাধাকে ঘর্ষণ বলে, আর এই বাধাদানকারী বলকে ঘর্ষণ বলে।"

Note: ঘর্ষণ বল সর্বদা গতির বিপরীত দিকে ক্রিয়া করে, ঘর্ষণ সবসময় গতিকে বাধা দেয়।

ঘর্ষণ কেন হয়?

⇒ ঘর্ষণ হলো যে কোনো দুটি তলের অনিয়মিত প্রকৃতির ফল। প্রত্যেক বস্তুরই তল আছে। আবার তল মসৃণ অথবা অমসৃণ দুই হতে পারে। আপাত দৃষ্টিতে কোনো বস্তুর তলকে মসৃণ মনে হলেও অনুবীক্ষণ যন্ত্রের সাহায্যে দেখলে এর উপর অনেক উঁচু নিচু খাঁজ লক্ষ করা যায়। যখন একটি বস্তু অন্য একটি বস্তুর উপর দিয়ে গতিশীল হয়, তখন উভয় বস্তুর স্পর্শ তলের এ খাঁজগুলো একটির ভিতর আরেকটি ঢুকে যায় অর্থাৎ খাঁজগুলো পরস্পর আঁটকে যায়। যার ফলে একটি তলের ওপর দিয়ে অপর তলের গতি বাধাপ্রাপ্ত হয়।এভাবে ঘর্ষণ বলের সৃষ্টি হয়। এছাড়াও, যদি তলদ্বয়কে আরো চাপ দেওয়া হয় তাহলে এবড়ো থেবড়ো অংশ আরো বেশি একে অন্যকে স্পর্শ করবে, একটির খাঁজ অন্যটির আরো গভীর খাজে ঢুকে যাবে এবংঘর্ষণ বল আরো বেড়ে যাবে।

ঘর্ষণের প্রকারভেদ

ঘর্ষণকে **চারভাগে** ভাগ করা যায়। যথা:

- 1. স্থিতি ঘর্ষণ (Static Friction)
- 2. গতি ঘর্ষণ (Sliding Friction)
- 3. আবর্ত ঘর্ষণ (Rolling Friction)
- 4. প্রবাহী ঘর্ষণ (Fluid Friction)

স্থিতি ঘর্ষণ: দুটি তলের একটি অুপারটির সাপেক্ষে গতিশীল না হলে এদের মধ্যে যে ঘর্ষণ সৃষ্টি হয় তা হলো স্থিতি ঘর্ষণ।

উদাহরণ:- আমরা যে হাটতে পারি তা স্থিতি ঘর্ষণের জন্য।

গতি ঘর্ষণ:- একটি বস্তুর সাপেক্ষে অন্য বস্তু যখন চলমান হয় তখন যে ঘর্ষণ বল তৈরি হয় সেটি হচ্ছে গতি ঘর্ষণ যদি কোনো কিছুর ভর হয় তাহলে তার ওজন একটি বল যার পরিমাণ W=mq

গতি ঘর্ষণ $f = \mu w$ [$\mu =$ গতি ঘর্ষণ সহগ]

আবর্ত ঘর্ষণ:- যখন একটি বস্তু অপর একটি তলের উপর দিয়ে গড়িয়ে চলে তখন গতির বিরুদ্ধে যে ঘর্ষণ ক্রিয়া করে তাকে আবর্ত ঘর্ষণ বলে।

উদাহরণ:- সাইকেলের চাকার গতি, মার্বেলের গতি।

প্রবাহী ঘর্ষণ:- যখন কোনো বস্তু যে কোনো প্রবাহী পদার্থ যেমন- তরল বা বায়বীয় পদার্থের মধ্যে গতিশীল থাকে তখন যে ঘর্ষণ ক্রিয়া করে তাকে প্রবাহী ঘর্ষণ বলে।

উদাহরণ:- প্যারাস্যুট নিয়ে যখন কেউ বাতাসের প্রবাহী ঘর্ষণের কারণে ধীরে ধীরে নিচে নেমে আসতে পারে।

গতির উপর ঘর্ষণের প্রভাব

কোনো বস্তুর গতির উপর ঘর্ষণের ব্যপক প্রভাব রয়েছে। ঘর্ষণ হলো এক ধরণের বাধাদানকারী বল, যা বস্তুর গতিকে মন্থর করে। ঘর্ষণ আমাদের দৈনন্দিন জীবনে অনেক সমস্যা সৃষ্টি করলেও চলাচল ও যানবাহন চালনার জন্য ঘর্ষণ গুরুত্বপূর্ণ ভমিকা পালন করে।

টায়ারের পৃষ্ঠ: গাড়ির টায়ার এবং রাস্তার মধ্যবর্তী ঘর্ষণ আছে বলেই গাড়ি চালনা সম্ভব হয়েছে। টায়ার এবং রাস্তার মধ্যবর্তী এ ঘর্ষণ বলের মান নির্ভর করে টায়ারের পৃষ্ঠ এবং রাস্তার তলের বাহ্যিক অবস্থার উপর। এটি গাড়ির ওজনের উপরেও নির্ভর করে। গাড়ির টায়ারে রাবারের উপর বিভিন্ন নকশার দাঁত বা খাঁজ কাটা থাকে ।এ খাঁজ গুলোর ফলের টায়ারের পৃষ্ঠ উঁচু-নিচু হয়। টায়ার যখন নতুন থাকে তখন এগুলো সুস্পষ্ট থাকে বিধায় রাস্তা ও টায়ার এর মধ্যবর্তী ঘর্ষণ বল সর্বোচ্চ হয় অন্যদিকে টায়ার যখন পুরনো হয়ে যায় তখন এর খাজগুলো মিলিয়ে যায় এবং টায়ারের পৃষ্ঠ সমতল হয়ে পড়ে। এর ফলে রাস্তা ও টায়ারের ঘর্ষণ বল অনেকটা কমে যায়।

রাস্তার মসৃণতা: বস্তুর গতির উপর রাস্তার মসৃণতার প্রভাব অনেক বেশি । রাস্তা মসৃণ হলে রাস্তায় যানবাহন চলাচল সহজতর হয় এবং ভ্রমন আরামদায়ক হয়। রাস্তা যত মসৃণ হবে বাধাদানকারী ঘর্ষণ বলের মানও তত কম হবে। গাড়ির টায়ার এবং রাস্তার মধ্যবর্তী ঘর্ষণ বলের মান টায়ারের এবং একই সাথে রাস্তার মসৃণতার উপর নির্ভর করবে। ঘর্ষণ বলের পরিমাণ কমে গেলে নানা ধরনের সমস্যার সৃষ্টি হয়। তাই রাস্তাকে খুব বেশি মসৃণ করাও ঠিক নয়। রাস্তা বেশি মসৃণ হলে ব্রেক প্রয়োগ করা সত্ত্বেও গাড়ি সুনির্দিষ্ট স্থানে থামানো সম্ভব হয়ে ওঠেনা।

গতি নিয়ন্ত্রণ এবং ব্রেকিং বল: যানবাহন চলাচলের সময় প্রয়োজন অনুযায়ী যানবাহনের গতিকে বৃদ্ধি বা হ্রাস করতে পায়। অর্থাৎ যানবাহনের গতিকে নিয়ন্ত্রণের প্রয়োজন পড়ে।

ব্রেক হচ্ছে এমন এক ব্যবস্থা যা ঘর্ষণের পরিমাণ বৃদ্ধি করে গাড়ির গতি তথা চাকার ঘূর্ণণকে প্রয়োজন অনুযায়ী নিয়ন্ত্রণ করে। এর মাধ্যমে যানবাহনকে নির্দিষ্ট স্থানে থামানো সম্ভবপর হয়। যখন গাড়ির চালক ব্রেক প্রয়োগ করেন, তখন এসবেস্টসের তৈরি সু বা প্যাড চাকায় অবস্থিত ধাতব চাকতিকে ধাক্কা দেয়। প্যাড ও চাকতির মধ্যবর্তী ঘর্ষণ চাকার গতিকে কমিয়ে দেয়। ফলে গাড়ির বেগ হ্রাস পায়।

ঘর্ষণ বাড়ানো কমানো

ঘর্ষণ কমানো

ঘর্ষণ কমানোর জন্য আমরা যেসব কাজ করি সেগুলো হচ্ছেঃ-

- 1. যে পৃষ্ঠটিতে ঘর্ষণ হয় সেই পৃষ্ঠটিকে যত সম্ভব মসৃণ করা। মসৃণ পৃষ্ঠে গতি ঘর্ষণ কমে।
- 2. তেল বা মবিল বা গ্রিজ জাতীয় পদার্থ হচ্ছে পিচ্ছিলকারী পদার্থ বা লুব্রিকেন্ট। দুটি তলের মাঝখানে এই লুব্রিকেন্ট থাকলে ঘর্ষণ অনেকখানী কমে যায়।
- 3. চাকা ব্যাবহার করে ঘর্ষণ কমানো যায়।
- 4. গাড়ি, বিমান এ ধরণের দ্রুতগামী যানবাহনের ডিজাইন এমনভাবে করা হয় যেন বাতাস ঘর্ষণ তৈরি না করে স্ট্রিম লাইন করা পৃষ্ঠদেশের উপর দিয়ে যেতে পারে।

- 5. যে দুটি পৃষ্ঠদেশে ঘর্ষণ হয় তারা যদি খুব অল্প জায়গায় একে অন্যকে স্পর্শ করে তাহলে ঘর্ষণ কমানো যায়।
- 6. ঘর্ষণরত দুটো পৃষ্ঠে বল প্রয়োগ করা হলৈ ঘর্ষণ বেড়ে যায়। কাজেই আরোপিত বল কমানো হলে ঘর্ষণ কমানো যায়।

ঘর্ষণ বাড়ানো -

- 1. যে দুটো তলে ঘর্ষণ হচ্ছে সেগুলো অমসৃণ বা খসখসে করে তোলা।
- 2. যে দুটো তলে ঘর্ষণ হয় সেগুলো আরো জোরে চেপে ধরার ব্যাবস্থা করা।
- 3. ঘর্ষণরত তল দুটোর মাঝে গতিকে ত্থামিয়ে স্থির করে ফেলা, কারণ স্থির ঘর্ষণ গতি ঘর্ষণ থেকে বেশি।
- 4. ঘর্ষণরত তলের মাঝে খাঁজ কাটা, বা ঢেউ খেলানো করা।
- 5. বাতাস বা তরলের ঘনত্ব বাড়ানো।
- 6. বাতাস বা তরলের ঘর্ষণরত পৃষ্ঠদেশ বাড়িয়ে দেওয়া।
- 7. চাকা বা বল বিয়ারিং সরিয়ে দেওয়া।

ঘর্ষণ- একটি প্রয়োজনীয় উপদ্রব

ঘর্ষণের অনেক অসুবিধা থাকা সত্ত্বেও ঘর্ষণ ছাড়া আমরা কোন কিছুই করতে পারিনা। ঘর্ষণ না থাকলে কোনো গতিশীল বস্তুর গতি শেষ না হয় বিরামহীন ভাবে চলতে থাকত। ঘর্ষণ আছে বলেই দেয়ালে পেরেক আটকানো সম্ভব হয়েছে। ঘর্ষণের ফলে শুধু যে শক্তি তাপে পরিণত হয় তাই নয়। এর ফলে ইঞ্জিনের যন্ত্রাংশ অত্যধিক উত্তপ্ত হয়ে ওঠে। যার কারণে ইঞ্জিন নষ্ট হয়ে যেতে পারে। ঘর্ষণের ফলে জুতার সোল ক্ষয়প্রাপ্ত হয় এবং ছিড়ে যায়। তাই আমাদের কাজকর্ম ও জীবনযাপন সহজ করার জন্য ঘর্ষণ যেমন প্রয়োজন, তেমনি অতিরিক্ত ঘর্ষণ অনেক ক্ষয়ক্ষতির কারণ। তাই প্রয়োজনীয় ঘর্ষণ সৃষ্টির জন্য ঘর্ষণ কে নিয়ন্ত্রন করতে হবে, অর্থাৎ ঘর্ষণকে যেমন পুরোপুরি বাদ দেওয়া যায় না, তেমনি ভাবে ঘর্ষণ আমাদের অনেক উপকারে আসে, এজন্য ঘর্ষণ কে একটি প্রয়োজনীয় উপদ্রব বলে।

ᢧ সূত্রের আলোচনা

সূত্ৰ	চলকের পরিচয়	একক
	P = ভরবেগ	$kgms^{-1}$
P = mv	<i>m</i> = ভর	Kg
	v = বেগ	ms^{-1}
	$m_1=$ ১ম বস্তুর ভর	kg
1. $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$	m ₂ = ২য় বস্তুর ভর	kg
2. $m_1u_1 + m_2u_2 = (m_1 + m_2)V$ [যখন $v_1 = v_2$]	$u_1=$ ১ম বস্তুর আদিবেগ	ms^{-1}
$3. \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2} m_1 v_1^2 +$	$u_2=$ ২য় বস্তুর আদিবেগ	ms^{-1}
$rac{1}{2}m_2v_2^2$	$v_1=$ ১ম বস্তুর শেষবেগ	ms^{-1}
	$v_2=$ ২য় বস্তুর শেষবেগ	ms^{-1}
	v= বস্তু দুটির মিলিত বেগ	ms^{-1}
	<i>F</i> = বল	N
	m= ভর	kg
$F = ma \ F = rac{mv - mu}{t}$	a= ত্বরণ	ms ⁻²
	u = আদিবেগ	ms^{-1}
	<i>v</i> = শেষবেগ	ms^{-1}
	t = সময়	S

সূত্র	চলকের পরিচয়	একক
	F = মহাকর্ষ বল	N
$F = G \frac{m_1 m_2}{r^2}$	$G=$ মহাকর্ষীয় ধ্রুবক $=6.673 imes 10^{-11} Nm^2 Kg^{-2}$	Nm^2Kg^{-2}
	r= দুরত্ব	m
	g= অভিকর্ষজ ত্বরণ	ms^{-2}
	$g^\prime = h$ উচ্চতায় অভিকর্ষজ ত্বরণ	ms ⁻²
$g=rac{GM}{R^2} \ g'=rac{GM}{(R+r)^2}$	G = মহাকর্ষীয় ধ্রুবক	Nm^2Kg^{-2}
	$M=$ পৃথিবীর ভর $=5.98 imes 10^{24}\ Kg$	Kg
	r=ভূ-পৃষ্ঠ হতে উচ্চতা	m
	R = পৃথিবীর ব্যাসার্ধ	m
F = ma	f= গতি ঘৰ্ষণ	N
$F = \frac{mv - mu}{t}$	μ = গতি ঘৰ্ষণ সহগ	একক নেই
	w = বস্তুর ওজন	N

প্রশ্ন ১। $\mathrm{m_1}$ বস্তুর কার্যকরী বল $0.078\,N$ এবং m_2 বস্তুর কার্যকরী বলা 0.039N. বস্তু দুটি একই সময়ে ছেড়ে দেয়া হল।

- (ক) সাম্য কল কাকে বলে?
- (খ) বস্তুর ভর ধ্রুব হলেও ওজন ধ্রুব নয়—ব্যাখ্যা কর।
- (গ) m₁ বস্তুর উপর বায়ুর ঘর্ষণ বল নির্ণয় কর।
- (ঘ) কোন বস্তুটি আগে ভূমিতে পৌছাবে? যুক্তিসহ বিশ্লেষণ কর।

সমাধান:

(ক) সাম্য কল কাকে বলে?

সাম্য বল: কোনো বস্তুর উপর একাধিক বল ক্রিয়া, করলে যদি বলের লব্ধি শূন্য হয় তখন বস্তুটি স্থির থাকে বা সাম্যাবস্থায় থাকে। যে বলগুলো এই সাম্যাবস্থা সৃষ্টি করে তাদেরকে সাম্য বল বলে।

(খ) বস্তুর ভর ধ্রুব হলেও ওজন ধ্রুব নয়—ব্যাখ্যা কর।

বস্তুর ভর ধ্রুব হলেও ওজন ধ্রুব নয় কারণ ওজন অভিকর্ষজ ত্বরণের উপর নির্ভর করে। বস্তুর ভর একটি স্কেলার রাশি অর্থাৎ কোনো নির্দিষ্ট বস্তুর ভরের মান নির্দিষ্ট। কিন্তু ওজন ভেক্টর রাশি, এটি অভিকর্ষজ ত্বরণের উপর নির্ভর করে যার দিক আছে। বস্তুর ওজন যদি F এবং ভর যদি m হয় তাহলে, X=mg। ওজন সবসময় পৃথিবীর centre of attraction এর দিকে অর্থাৎ পৃথিবীর কেন্দ্রের দিকে কাজ করে। g এর মান কখনোও ধ্রুব নয়। পৃথিবীর অভিকর্ষজ ত্বরণ ও চাঁদের অভিকর্ষজ ত্বরণ এক হয় না। আবার পৃথিবীর বিভিন্ন জায়গায় g এর মান বিভিন্ন। তাই কস্তুর ভর m, ধ্রুব হলেও বস্তুর ওজন F, অভিকর্ষজ ত্বরণ g এর মানের কারণে পরিবর্তিত হয়।

(গ) ${ m m_1}$ বস্তুর উপর বায়ুর ঘর্ষণ বল নির্ণয় কর।

আমরা জানি,

প্রযুক্ত বল = ঘর্ষণ বল + কার্যকর বল ঘর্ষণ বল = প্রযুক্ত বল – কার্যকর বল

$$f_k = F - F^{\land}'$$

= mg - 0.078
= 0.01 × 9.8 - 0.078

দেওয়া আছে, বস্তুর ভর, m=10~gm=0.01kg অভিকর্ষজ ত্বরণ, $g=9.8ms^{-2}$ বস্তুর কার্যকর উপর বল, F=0.078~N আবার প্রযুক্ত বল = বস্তুর ওজন

$$\therefore f_k = 0.02N$$

অর্থাৎ m_1 বস্তুর উপর বায়ুর ঘর্ষণ বল $0.02 \mathrm{N}$

(ঘ) কোন বস্তুটি আগে ভূমিতে পৌছাবে? যুক্তিসহ বিশ্লেষণ কর।

উদ্দীপক হতে লম্ব ডাটা-অনুযায়ী,কোন বস্তুটি আগে ভূমিতে পৌঁছাবে তা বের করার জন্য কোন বস্তুটির ভূমিতে পৌঁছাতে কম সময় লাগবে সেটা বের করা লাগবে।

এখানে, ১ম বস্তুর বস্তুর ক্ষেত্রে:

আমরা জানি,

$$F_1 = m_1 a_1$$

$$a_1 = \frac{F_1}{m_1} = \frac{0.078}{0.01}$$

$$= 7.8 \text{ms}^{-2}$$

অর্থাৎ, ১ম বস্তুর ত্বরণ $a_1 = 7.8 \ ms^{-1}$

আবার, নিউটনের গতিসূত্র হতে,

আমরা জানি,
$$h = ut_1 + \frac{1}{2}a_1t_1^2$$

বা,
$$50 = 0 + \frac{1}{2} \times 7.8 \times t_1^2$$

বা,
$$3.9t_1^2 = 50$$

বা,
$$3.9t_1^2 = 50$$

বা,
$$t_1^2 = 12.82$$

$$\therefore t_1 = 3.58 \text{sec}$$

এখানে,

২য় বস্তুর বস্তুর ক্ষেত্রে:

$$F_2 = m_2 a_2$$

$$\Rightarrow a_2 = \frac{F_2}{m_2} = \frac{0.039}{0.02} \,\text{ms}^{-2}$$

$$= 1.95 \text{ms}^{-2}$$

আমরা জানি,

$$h = ut_2 + \frac{1}{2}a_2t_2^2$$

বা,
$$50 = 0 + \frac{1}{2} \times 1.95 \times t_2^2$$

বা,
$$50 = 0.975t_2^2$$

বা,
$$t_2^2 = 51.28$$

$$\therefore t_2 = 7.16 sec$$

যেহেতু,3.58 < 7.16 অর্থাৎ $t_1 < t_2$

তাই m_1 বস্তুটি m_2 বস্তুর আগে ভূমিতে পৌঁছাবে।

প্রশ্ন ২। দিনাজপুর বোর্ড ২০১৬

3.92N ওজনের একটি খেলনা গাড়ির উপর বল প্রয়োগ করায় এটি ঘর্ষণযুক্ত মেঝেতে $0.5\ ms^{-2}$ ত্বরণে চলতে শুরু করে। ঘর্ষণ বল 0.5N ।

- (ক) অভিকর্ষজ ত্বরণ কাকে বলে?
- (খ) পৃথিবীর কেন্দ্রে বস্তুর ওজন শূন্য কেন?
- (গ) গাড়ীর উপর প্রযুক্ত বলের মান কত?
- (ঘ) ঘর্ষণযুক্ত ও ঘর্ষণহীন অবস্থায় মেঝেতে ত্বরণের কি পরিবর্তন হবে? গাণিতিকভাবে মূল্যায়ন কর।

সমাধান:

(ক) অভিকর্ষজ ত্বরণ কাকে বলে?

অভিকর্ষজ ত্বরণ: অভিকর্ষ বলের প্রভাবে ভূ-পৃষ্ঠে মুক্তভাবে পড়ন্ত কোনো বস্তুর বেগ বৃদ্ধির হারকে অভিকর্ষজ ত্বরণ বলে। একে g দ্বারা প্রকাশ করা হয়।

(খ) পৃথিবীর কেন্দ্রে বস্তুর ওজন শূন্য কেন?

পৃথিবীর কেন্দ্রে বস্তুর ওজন শূন্য হওয়ার কারণ: বস্তুর ওজন অভিকর্ষজ ত্বরণ g এর উপর নির্ভর করে। যেসব কারণে অভিকর্ষজ ত্বরণের পরিবর্তন ঘটে সেসব কারণে বস্তুর ওজন পরিবর্তিত হয়।

বস্তুর ওজন, W=mgআবার, আমরা জানি,

 $g=GM/R^2$; এখানে R পৃথিবীর ব্যাসার্ধ অভিকর্ষজ ত্বরণ g-এর মান এর উপর নির্ভর করে। পৃথিবীর কেন্দ্রে পৃথিবীর ব্যাসার্ধ (R=0) শূন্য বলে অভিকর্ষজ ত্বরণ g-এর মান শূন্য হবে। তাই পৃথিবীর কেন্দ্রে বস্তুর ওজনও শূন্য।

$$W = mg = m \times 0 = 0$$

(গ) গাড়ীর উপর প্রযুক্ত বলের মান কত?

আমরা জানি,

বস্তুর ওজন,
$$W=mg$$
 বা, $3.92=m\times 9.81$ বা, $m\times 9.81=3.92$ বা, $m\times 9.81=3.92$ বা, $m=\frac{3.92}{9.81}$ $\therefore m=0.4\ kg$ সুতরাং, বস্তুর ভর, $m=0.4\ kg$ আবার, প্রযুক্ত বল $=$ ঘর্ষণ বল $+$ কার্যকর বল $F=f_k+ma$ $=0.5+(0.4\times 0.5)$ $=0.7N$

দেওয়া আছে, ঘর্ষণ বল, $f_k = 0.5N$ ভর, m = 0.4kg ? ত্বরণ, $a = 0.5 ms^{-2}$ আবার, ঘর্ষণ বল, $f_k = 0.5N$ ভর, m = 0.4kg ? ত্বরণ, $a = 0.5 ms^{-2}$

দেওয়া আছে ঘৰ্ষণহীন অবস্থায়,

গাড়ির ভর, m=0.4kg

প্রযুক্ত বল, F = 0.7N

ঘর্ষণ বল, $f_k = 0$

[(গ) অংশ হতে] ত্বরণ,a'=?

অতএব, গাড়ির উপর প্রযুক্ত বল F=0.7N

(ঘ) ঘর্ষণযুক্ত ও ঘর্ষণহীন অবস্থায় মেঝেতে ত্বরণের কি পরিবর্তন হবে? গাণিতিকভাবে মূল্যায়ন কর।

এখন, ঘর্ষণহীন অবস্থার ক্ষেত্রে:

আমরা জানি, প্রযুক্ত বল = ঘর্ষণ বল + কার্যকর বল

বা,
$$F = f_k + ma'$$

বা, $0.7 = 0 + 0.4 \times a'$
বা, $0.7 = 0.4 \times a'$
বা, $0.4a' = 0.7$

বা, $a'=\frac{0.7}{0.4}=1.75ms^{-2}$ অর্থাৎ, ঘর্ষণহীন অবস্থায় ত্বরণ, $1.75ms^{-2}$

উদ্দীপক অনুযায়ী, ঘর্ষণযুক্ত অবস্থায় ত্বরণ $0.5 ms^{-2}$

অর্থাৎ, ঘর্ষণহীন অবস্থায় ত্বরণ বৃদ্ধি পেয়েছে = $(1.75-0.5) \, ms^{-2}$

 $= 1.25 ms^{-2}$

অতএব,ঘর্ষণহীন অবস্থায় ত্বরণ ঘর্ষণযুক্ত মেঝের চেয়ে $1.25ms^{-2}$ বৃদ্ধি পাবে।

প্রশ্ন ৩। কুমিল্লা বোর্ড ২০১৫

700kg ভরের একটি গতিশীল ট্রাক $20ms^{-1}$ বেগে 1300kg ভরের একটি স্থিতিশীল ট্রাককে ধাক্কা দেয়, এবং ট্রাক দুইটি মিলিত হয়ে সামনের দিকে চলতে থাকে।

- (ক) জড়তা কী?
- (খ) গতির উপর ঘর্ষণের প্রভাব ব্যাখ্যা কর।
- (গ) ট্রাক দুইটির মিলিত বেগ নির্ণয় কর।
- (ঘ) ভরবেগের সংরক্ষণ সূত্র কীভাবে নিউটনের তৃতীয় সূত্রকে সমর্থন করে, গাণিতিক যুক্তিসহ মতামত দাও।

সমাধান:

(ক) জড়তা কী?

জড়তা: একটা বস্তুর উপর কোনো বাহ্যিক বল প্রয়োগ করা না হলে স্থির বস্তু স্থির থাকতে চায় কিংবা গতিশীল বস্তু যে গতিশীল থাকতে চায়, বস্তুর এই বৈশিষ্ট্যই হচ্ছে জড়তা। অর্থাৎ, বস্তু যে অবস্থায় আছে, সে অবস্থায় থাকতে চাওয়ার যে প্রবণতা তাই জডতা।

(খ) গতির উপর ঘর্ষণের প্রভাব ব্যাখ্যা কর।

গতির উপর ঘর্ষণের প্রভাব: গতির উপর ঘর্ষণের ব্যাপক প্রভাব রয়েছে। ঘর্ষণ হলো বাধাদানকারী বল যা বস্তুর গতির বিরুদ্ধে ক্রিয়া করে এবং বস্তুর গতিকে মন্থর করে। ঘর্ষণ আমাদের দৈনন্দিন জীবনে বাধা সৃষ্টি করলেও চলাচল ও যানবাহন চালনার জন্য গতির উপর ঘর্ষণ গুরুত্বপূর্ণ ভূমিকা রাখে। রাস্তা ও টায়ারের পৃষ্ঠ প্রয়োজনমতো অমসৃণ করা হয়

যাতে গাড়ি সামনের দিকে এগিয়ে যেতে পারে। গতি নিয়ন্ত্রণে যে ব্রেক ব্যবহার করা হয় তা ঘর্ষণের নীতির উপর কাজ করে।

(গ) ট্রাক দুইটির মিলিত বেগ নির্ণয় কর।

ভরবেগের সংরক্ষণশীলতার সূত্র থেকে আমরা জানি,

$$m_1u_1+m_2u_2=(m_1+m_2)v$$
 বা, $700\times 20+1300\times 0=(700+1300)v$ বা, $v=\frac{14000}{2000}=7ms^{-1}$ বা, $v=\frac{14000}{2000}=7ms^{-1}$ গাড়ি দুটির মিলিত বেগ $7ms^{-1}$ ।

(ঘ) ভরবেগের সংরক্ষণ সূত্র কীভাবে নিউটনের তৃতীয় সূত্রকে সমর্থন করে, গাণিতিক যুক্তিসহ মতামত দাও।

মনে করি, m_1 ও m_2 ভর বিশিষ্ট দুটি বস্তুর বেগ u_1 ও u_2 এবং $u_1>u_2$ । t সময় পর m_1 ও m_2 বস্তু দুটির মধ্যে সংঘর্ষ হয় এবং যথাক্রমে v_1 ও v_2 বেগ প্রাপ্ত হয়। সংঘর্ষের সময় m_1 ভরের বস্তু m_2 ভরের বস্তুর উপর F_1 বল প্রয়োগ করে এবং m_2 ভরের বস্তু m_1 এর উপর F_2 বল প্রয়োগ করে।

নিউটনের ২য় সূত্র হতে আমরা জানি

$$\vdots$$
 $F_1=m_1$ a_1 এবং $F_2=m_2$ a_2 বস্তু দুটি ভরবেগের সংরক্ষণ সূত্র মেনে চললে , $m_1u_1+m_2u_2=m_1v_1+m_2v_2$ বা, $m_1u_1-m_1v_1=m_2v_2-m_2u_2$ বা, $-m_1(v_1-u_1)=m_2(v_2-u_2)$ বা, $m_1\frac{v_1-u_1}{t}=-m_2\frac{v_2-u_2}{t}$ বা, m_1 $a_1=-m_2$ a_2 বা, $F_1=-F_2$; যা নিউটনের তৃতীয় সূত্রের গাণিতিক রূপ।

২য় গাড়ির ভর, $m_2=1300 kg$ ২য় গাড়ির গতিবেগ, $u_2=0 m s^{-1}$ মিলিতবেগ, v=?

১ম গাড়ির ভর, $m_1 = 700 kg$

১ম গাড়ির গতিবেগ, $u_1 = 20 ms^{-1}$

প্রশ্ন ৪। ভিকারুননিসা নূন স্কুল এন্ড কলেজ

সুতরাং, ভরবেগের সংরক্ষণ সূত্র নিউটনের তৃতীয় সূত্রকে সমর্থন করে।

15kg ভরের একটি বাক্স তলের উপর দিয়ে টেনে নিচ্ছে। বাক্স এবং তলের মধ্যবর্তী ঘর্ষণ 2N এবং বাক্সের ত্বরণ 0.8। পরবর্তীতে ঘর্ষণবিহীন তলের উপর দিয়ে বস্তুটিকে টানা হলো।

- (ক) বল কাকে বলে?
- (খ) 50/ কাজ বলতে কী বুঝ?
- (গ) প্রথম ক্ষেত্রে বাক্সের উপর প্রযুক্ত বল নির্ণয় কর।
- (ঘ) ঘর্ষণযুক্ত ও ঘর্ষণবিহীন তলে বাক্সের ত্বরণের কী ধরনের পরিবর্তন হবে? গাণিতিকভাবে বিশ্লেষণ এর সাহায্যে মতামত দাও।

সমাধান:

(ক) বল কাকে বলে?

যার প্রয়োগের কারণে স্থির বস্তু গতিশীল হয়, আর গতিশীল বস্তুর বেগের পরিবর্তন হয় সেটাই হচ্ছে বল।

(খ) 50/ কাজ বলতে কী বুঝ?

 ${f 50J}$ কাজ বলতে বুঝায়: ${f 50N}$ বল প্রয়োগের ফলে যদি কোনো বস্তুর বলের দিকে ${f 1m}$ সরণ হয়, তবে সম্পাদিত কাজের পরিমাণ ${f 50J}$ অথবা ${f 1N}$ বল প্রয়োগের ফলে যদি কোনো বস্তুর বলের দিকে ${f 50m}$ সরণ হয়, তবে সম্পাদিত কাজের পরিমাণ ${f 50J}$ । এছাড়াও ${f 25N}$ বল প্রয়োগের ফলে যদি ${f 2m}$ সরণ বা ${f 2N}$ বল প্রয়োগের ফলে বলের দিকে ${f 25m}$ সরণ হলেও ${f 50J}$ কাজ হবে। মোটকথা, বল ও বলের দিকের গুণফল ${f 50}$ হলেই বলা হবে ${f 50J}$ কাজ হয়েছে।

(গ) প্রথম ক্ষেত্রে বাক্সের উপর প্রযুক্ত বল নির্ণয় কর।

আমরা জানি, নীট বল = প্রযুক্ত বল–ঘর্ষণ বল

$$ma = F - F'$$

 $F - F' = ma$
 $\exists i, F = ma + F' = 15 \times 0.8 + 2 = 12 + 2 = 14$

এখানে,
ঘর্ষণ বল,
$$F'=2N$$

বস্তুর ভর, $m=15kg$
ত্বরণ, $a=0.8ms^{-2}$
প্রযুক্ত বল, $F=?$

: প্রথম ক্ষেত্রে বাক্সের উপর প্রযুক্ত বল 14N।

(ঘ) ঘর্ষণযুক্ত ও ঘর্ষণবিহীন তলে বাক্সের ত্বরণের কী ধরনের পরিবর্তন হবে? গাণিতিকভাবে বিশ্লেষণ এর সাহায্যে মতামত দাও।

দেওয়া আছে, ঘর্ষণযুক্ত মেঝেতে বাক্সের ত্বরণ $0.8ms^{-2}$ 'গ' গতে পাই, প্রযুক্ত বল F=14N এখন, F=ma' বা $a'=\frac{14}{3}$

এখানে, প্রযুক্ত বল, F=14Nবস্তুর ভর, m=15kgঘর্ষণবিহীন তলে ত্বরণ, a'=?

অতএব, ঘর্ষণবিহীন তলে ত্বরণ ঘর্ষণযুক্ত তল অপেক্ষা $(0.933-0.8)ms^{-2}=0.133ms^{-2}$ বেশি।

প্রশ্ন ৫ বাকা রেসিডেন্সিয়াল মডেল কলেজ ঢাকা

 $1000\ kg$ এবং $1200\ kg$ ভরের দুটি গাড়ি $7ms^{-1}$ এবং $5ms^{-1}$ বেগে $0.5ms^{-2}$ এবং $1ms^{-2}$ সুষম ত্বরণে একই সাথে প্রতিযোগিতা শুরু করে। গাড়ি দুটি একই সময়ে শেষ প্রান্তে পৌছল।

- (ক) স্পর্শ বল কাকে বলে?
- (খ) ঘর্ষণ একটি প্রয়োজনীয় উপদ্রব ব্যাখ্যা কর।
- (গ) কখন গাড়ি দুটি শেষ প্রান্তে পৌঁছাবে?
- (ঘ) যদি গাড়ি দুটি বিপরীত দিক থেকে গতিশীল হয় এবং 3s পর সংঘর্ষে লিপ্ত হয় তবে মিলিত অবস্থায় কত বেগে কোন দিকে যেতে পারে, গাণিতিক যুক্তি সহকারে দেখাও।

সমাধান:

(ক) স্পর্শ বল কাকে বলে?

দুটি বস্তুর প্রত্যক্ষ সংস্পর্শের কারণে যে বল উৎপন্ন হয় তাকে স্পর্শ বল বলে।

(খ) ঘর্ষণ একটি প্রয়োজনীয় উপদ্রব ব্যাখ্যা কর।

দৈনন্দিন জীবনে ঘর্ষণকে কাজে লাগিয়ে আমরা হাঁটাচলা করি, বাড়িঘর নির্মাণ করি,প্রয়োজন অনুযায়ী গাড়ির দিক পরিবর্তন করি। কিন্তু ঘর্ষণের কারণে আবার শক্তির অপচয় হয়, যন্ত্রপাতির গতিশীল অংশ উত্তপ্ত হয়ে উঠে, যন্ত্রপাতির দক্ষতা নষ্ট হয়। দৈনন্দিন কাজে ঘর্ষণ যেমন বাধা সৃষ্টি করে শক্তির অপচয় করে তেমনি অনেক ক্ষেত্রে ঘর্ষণ আমাদের উপকারে আসে। এজন্যই ঘর্ষণকে একটি প্রয়োজনীয় উপদ্রব বলা হয়।

(গ) কখন গাড়ি দুটি শেষ প্রান্তে পৌঁছাবে?

ধরি, গাড়ি দুইটি t সময় প্রতিযোগিতায় অংশগ্রহন করে s দূরত্ব অতিক্রম করে।

এখন, ১ম গাড়ির ক্ষেত্রে,
$$s_1=u_1t+\frac{1}{2}a_1\,t^2$$
 ২য় গাড়ির ক্ষেত্রে, $s_2=u_2t+\frac{1}{2}a_2\,t^2$ প্রশ্নমতে, $u_1t+\frac{1}{2}a_1\,t^2=s_2=u_2t+\frac{1}{2}a_2\,t^2$ বা, $(u_1-u_2)t=\frac{1}{2}(a_2-a_1)t^2$ বা, $(7-5)ms^{-1}=\frac{1}{2}\times(1-0.5)t$ বা, $t=\frac{4}{0.5}s$ $\therefore t=8s$ অর্থাৎ, গাড়ি দুটি 8s পরে শেষ প্রান্তে পৌঁছাবে।

এখানে, ১ম গাড়ির, ভর, $m_1=1000kg$ আদিবেগ, $u_1=7ms^{-1}$ ত্বরণ, $a_1=0.5ms^{-2}$ ২য় গাড়ির, ভর, $m_2=1200kg$ আদিবেগ, $u_2=5ms^{-1}$ ত্বরণ, $a_2=1ms^{-2}$ সময়, t=?

(ঘ) যদি গাড়ি দুটি বিপরীত দিক থেকে গতিশীল হয় এবং 3s পর সংঘর্ষে লিপ্ত হয় তবে মিলিত অবস্থায় কত বেগে কোন দিকে যেতে পারে, গাণিতিক যুক্তি সহকারে দেখাও।

এখানে, 3s পর ১ম গাড়ির বেগ,

$$v_1 = u_1 + a_1 t$$

= 7 + (0.5 × 3) ms^{-1} = 8.5 ms^{-1}

3s পর ২য় গাড়ির বেগ,

$$v_2 = u_2 + a_2 t$$

= 5 + (1 × 3)ms⁻¹
= 8ms⁻¹

ধরি.

২য় গাড়িটি যেদিকে চলছে সেদিক ঋণাত্মক। আবার, আমরা জানি,

ভরবেগের সংরক্ষণশীলতা নীতি অনুযায়ী,

$$m_1v_1 + m_2v_2 = (m_{1+}m_2)v$$

বা, $1000 \times 8.5 + 1200 \times (-8) = (1000 + 1200)kg \times v$
 $\therefore v = \frac{-1100kgms^{-1}}{2200kg}$
 $= -0.5ms^{-1}$

অর্থাৎ, গাড়ি দুটির মিলিত বেগ $-0.5ms^{-1}$ । অতএব, গাড়িদ্বয় $0.5ms^{-1}$ বেগে ২য় গাড়ির দিকে গতিশীল থাকবে। দেওয়া আছে, ১ম গাড়ির ক্ষেত্রে, আদিবেগ, $u_1 = 7ms^{-1}$ ত্বরণ, $a_1 = 0.5ms^{-2}$ সময়, t = 3s

আবার, ২য় গাড়ির ক্ষেত্রে, আদিবেগ, $u_2=5ms^{-1}$ ত্বরণ, $a_2=1ms^{-2}$ সময়, t=3s

দেওয়া আছে, ১ম গাড়ির ভর, $m_1=1000kg$ সংঘর্ষকালীন বেগ, $v_1=8.5ms^{-1}$ ২য় গাড়ির, ভর, $m_2=1200kg$ সংঘর্ষকালীন বেগ, $v_2=-8ms^{-1}$ মিলিত অবস্থায় বেগ, v=?

প্রশ্ন ৬। 80~kg এবং 70~kg ভরের দুটি বস্তু যথাক্রমে $100ms^{-1}$ এবং $80ms^{-1}$ বেগে পরস্পর বিপরীত দিক থেকে এসে সংঘর্ষে লিপ্ত হলো। সংঘর্ষের পর বস্তু দুটি একত্র হয়ে চলতে শুরু করলো।

- (ক) বল কী?
- (খ) থেমে থাকা বাস হঠাৎ চলতে শুরু <mark>ক</mark>রলে যাত্রীরা কোন দিকে হেলে পড়ে এবং কেন? ব্যাখ্যা কর।
- (গ) সংঘর্ষের পর বস্তু দৃটির সম্মিলিত বেগ নির্ণয় কর।
- (ঘ) উদ্দীপকের বস্তুদুয়ের সংঘর্ষ স্থিতিস্থাপক হবে কি? গাণিতিকভাবে বিশ্লেষণ কর।

সমাধান:

(ক) বল কী?

বল:- যা স্থির বস্তুর উপর ক্রিয়া করে তাকে গতিশীল করতে চায় বা করার চেষ্টা করে এবং যা গতিশীল বস্তুর উপর ক্রিয়া করে তার গতির পরিবর্তন করে বা করার চেষ্টা করে তাকে বল বলে।

(খ) থেমে থাকা বাস হঠাৎ চলতে শুরু করলে যাত্রীরা কোন দিকে হেলে পড়ে এবং কেন? ব্যাখ্যা কর।

থেমে থাকা বাস হঠাৎ চলতে শূরু করলে স্থিতি জড়তার কারণে যাত্রী পেছনের দিকে হেলে পড়ে। বাস যখন স্থির থাকে তখন সম্পূর্ণ শরীর স্থির থাকে। কিন্তু বাস যখন হঠাৎ চলতে শুরু করে তখন শরীরের নিচের অংশ বাসের সাথে চলতে শুরু করে।

কিন্তু স্থিতি জড়তার কারণে শরীরের উপরের অংশ স্থির থাকতে চায়। ফলে শরীর পেছনে হেলে পড়ে।

(গ) সংঘর্ষের পর বস্তু দুটির সম্মিলিত বেগ নির্ণয় কর।

আমরা জানি, ভরবেগের সংরক্ষণশীলতা নীতি অনুযায়ী,

$$m_1u_1+m_2u_2=(m_{1+}m_2)v$$
 বা, $v=rac{m_1u_1+m_2u_2}{m_{1+}m_2}$ বা, $v=rac{(80 imes100)+(70 imes80)}{(80+70)}$ $\therefore v=90.67ms^{-1}$ \therefore মিলিত বেগ $90.67ms^{-1}$

(ঘ) উদ্দীপকের বস্তুদ্বয়ের সংঘর্ষ স্থিতিস্থাপক হবে কি? গাণিতিকভাবে বিশ্লেষণ কর।

দেওয়া আছে,

১ম বস্তুর ভর,
$$m_1=80kg$$

২য় বস্তুর ভর, $m_2=70kg$
১ম বস্তুর আদিবেগ, $u_1=100ms^{-1}$

২য় বস্তুর আদিবেগ, $u_2 = 80 m s^{-1}$

মিলিতবেগ, $v = 90.67ms^{-1}$

আমরা জানি, সংঘর্ষ স্থিতিস্থাপক হবে যদি ও কেবল যদি বস্তুদ্বয়ের ভরবেগ ও গতিবেগ উভয়েই সংরক্ষিত হয়।

 \therefore সংঘর্ষের পূর্বে ভরবেগ $= m_1u_1 + m_2u_2$

 $= (80 \times 100) - (70 \times 80)$

 $= 2400 kgms^{-1}$

সংঘর্ষের পরে ভরবেগ $=(m_{1+}m_2)v$

= (80 + 70)kg $\times 90.67 ms^{-1}$

 $= 13600.6 \, kgms^{-1}$

দেওয়া আছে,

১ম বস্তুর ভর, $m_1=80kg$

২য় বস্তুর ভর, $m_2 = 70kg$

১ম বস্তুর আদিবেগ, $u_1=100ms^{-1}$ ২য় বস্তুর আদিবেগ, $u_2=80ms^{-1}$

মিলিতবেগ, v=?

যেহেতু সংঘর্ষের পূর্বে ভরবেগ ≠ সংঘর্ষের পরে ভরবেগ সুতরাং বস্তুদ্বয়ের ভরবেগ সংরক্ষিত হয় নি।

অর্থাৎ উদ্দীপকের বস্তুদ্বয়ের সংঘর্ষ স্থিতিস্থাপক নয়।

প্রশ্ন ৭। 15kg ভরের একটি বাক্স তলের উপর দিয়ে টেনে নিচ্ছে। বাক্স এবং তলের মধ্যবর্তী ঘর্ষণ বল 8N এবং বাক্সের ত্বরণ 0.2। পরবর্তীতে ঘর্ষণবিহীন তলের উপর দিয়ে বস্তুটিকে টানা হলো।

- (ক) স্পর্শ বল কাকে বলে?
- (খ) 50/ কাজ বলতে কী বুঝ?
- (গ) প্রথম ক্ষেত্রে বাক্সের উপর প্রযুক্ত বল নির্ণয় কর।
- (ঘ) ঘর্ষণযুক্ত ও ঘর্ষণবিহীন তলে বাক্সের ত্বরণের কী ধরনের পরিবর্তন হবে? গাণিতিকভাবে বিশ্লেষণ কর।

সমাধান:

(ক) স্পর্শ বল কাকে বলে?

স্পর্শ বল:- দুটি বস্তুর প্রত্যক্ষ সংস্পর্শের কারণে যে বল উৎপন্ন হয় তাকে স্পর্শ বল বলে।

(খ) 50/ কাজ বলতে কী বুঝ?

50N বল বলতে যা বুঝায়: 50N বল বলতে বুঝায় সেই পরিমাণ বল যা 1kg ভরের কোনো বস্তুর উপর ক্রিয়া করে $50ms^{-2}$ ত্বরণ সৃষ্টি করতে পারে। অথবা, কোনো বল 50kg ভরের কোনো বস্তুর উপর ক্রিয়া করে $1ms^{-2}$ ত্বরণ সৃষ্টি করলেও সেই বলের পরিমাণ হবে 50N।

(গ) প্রথম ক্ষেত্রে বাক্সের উপর প্রযুক্ত বল নির্ণয় কর।

আমরা জানি, নীট বল = প্রযুক্ত বল–ঘর্ষণ বল

$$ma = F - F'$$

 $F - F' = ma$
 $\exists 1, F = ma + F'$
 $= (15 \times 0.2)kgms^{-2} + 8N$
 $= (3 + 8)N$
 $= 11N$

: প্রথম ক্ষেত্রে বাক্সের উপর প্রযুক্ত বল 11N।

দেওয়া আছে, ঘর্ষণ বল, F'=8Nবস্তুর ভর, m=15kgত্বরণ, $a=0.2ms^{-2}$ প্রযুক্ত বল, F=?

(ঘ) ঘর্ষণযুক্ত ও ঘর্ষণবিহীন তলে বাক্সের ত্বরণের কী ধরনের পরিবর্তন হবে? গাণিতিকভাবে বিশ্লেষণ কর। দেওয়া আছে,

ঘর্ষণযুক্ত মেঝেতে বাক্সের ত্বরণ $0.2ms^{-2}$; মনেকরি, ঘর্ষণহীন তলে ত্বরণ=a'

আবার, 'গ' গতে পাই, প্রযুক্ত বল F=14N এখন,

$$F = ma'$$
 $\exists 1, a' = \frac{11}{15}$
 $= 0.73 m s^{-2}$

এখানে, প্রযুক্ত বল, F=11Nবস্তুর ভর, m=15kgত্বরণ, $a=0.2ms^{-2}$ ঘর্ষণবিহীন তলে ত্বরণ, a'=?

 \therefore ঘর্ষণবিহীন তলে ত্বরণ ঘর্ষণযুক্ত তল অপেক্ষা $(0.73-0.2)ms^{-2}=0.533ms^{-2}$ বেশি।

প্রশ্ন ৮। 5g ভরের একটি বুলেট 3kg ভরের বন্দুক হতে $400ms^{-1}$ বেগে বের হয়ে একটি কাঠে 10mm প্রবেশ করে থেমে গেল।

- (ক) পিছলানো ঘর্ষণ কী?
- (খ) সাম্য ও অসাম্য বলের মধ্যে দুটি পার্থক্য লিখ।
- (গ) বন্দুকের পশ্চাতবেগ নির্ণয় কর।
- (ঘ) বাধা প্রদানকারী বলের মান এবং ঐ দূরত্ব অতিক্রম করতে বুলেটটির প্রয়োজনীয় সময় নিরূপণ কর।

সমাধান:

(ক) পিছলানো ঘর্ষণ কী?

পিছলানো ঘর্ষণ: একটি বস্তুর সাপেক্ষে অন্য বস্তু যখন চলমান হয় তখন যে ঘর্ষণ বল তৈরি হয় সেটি হচ্ছে গতিঘর্ষণ বা পিছলানো ঘর্ষণ।

(খ) সাম্য ও অসাম্য বলের মধ্যে দুটি পার্থক্য লিখ।

সাম্য ও অসাম্য বলের মধ্যে দুটি পার্থিক্য

সাম্য বল	অসাম্য বল
১. কোনো বস্তুর উপর একাধিক বল প্রয়োগ করলে	১. কোনো বস্তুর উপর একাধিক বল ক্রিয়া করলে
যদি বলের লব্ধি শূন্য হয় তখন বলগুলোকে সাম্য বল	যদি বলের লব্ধির মান ও দিক থাকে তখন এই
বলে।	ধরণের বলকে অসাম্য বল বলে।
২. দুটি বল ক্রিয়া করলে একে অপরের সমান ও	২. দুটি বল ক্রিয়া করলে একে অপরের অসমান ও
বিপরীত দিকে ক্রিয়া করবে।	বল দুটি একই দিকে বা বিপরীত দিকে ক্রিয়া করবে।

(গ) বন্দুকের পশ্চাতবেগ নির্ণয় কর।

এখন, ভরবেগের সংরক্ষণশীলতার নীতি হতে, আমরা জানি,

$$m_1u_1+m_2u_2=m_1v_1+m_2v_2$$
 বা, $0.005\times 0+3\times 0=(0.005\times 400)+3v_2$ বা, $v_2=\frac{-2}{3}ms^{-1}$ $\therefore v_2=-0.67ms^{-1}$

অতএব, বন্দুকের পশ্চাৎ বেগ $0.67\ ms^{-2}$

মনেকরি, বন্দুকের শেষবেগ, v_2 দেওয়া আছে, বুলেটের ভর, m_1 = 5g=0.005g বন্দুকের ভর, m_2 = 3kg বুলেটের আদিবেগ, $u_1=0ms^{-1}$ বন্দুকের আদিবেগ, $v_1=400ms^{-1}$ বন্দুকের শেষবেগ, $v_1=400ms^{-1}$ বন্দুকের শেষবেগ, $v_2=?$

(ঘ) বাধা প্রদানকারী বলের মান এবং ঐ দূরত্ব অতিক্রম করতে বুলেটটির প্রয়োজনীয় সময় নিরূপণ কর। নিউটনের গতিসূত্র হতে,

আমরা জানি.

$$v^2 = u^2 + 2as$$

বা
$$a = \frac{(-400ms^{-2})^2}{2 \times 0.01} ms^{-2}$$

 $a = -8 \times 10^6 ms^{-2}$

$$\therefore$$
 বুলেটের ত্বরণ $-8 \times 10^6 ms^{-2}$

মনেকরি, বাধাদানকারী বল
$$F=ma$$

$$= (0.01 \times -8 \times 10^6)$$

$$= -8 \times 10^4 N$$

 \therefore বাধাদানকারী বলের মান $-8 \times 10^4 N$

উদ্দীপক হতে, বুলেটের আদিবেগ, $u=400ms^{-1}$ বুলেটের শেষবেগ, $v=0ms^{-1}$ দূরত্ব, s=10mm=0.01m বুলেটের ত্বরণ a=?

প্রয়োজনীয় সময়:

মনেকরি, 10 mm দুরত্ব অতিক্রম করতে t সময় লাগবে।

এখন, আমরা জানি,
$$s=\left(\frac{u+v}{2}\right)$$
t বা, $t=\frac{2s}{u+v}$ বা, $t=\frac{2\times0.01m}{400ms^{-1}+0ms^{-1}}$ $t=5\times10^{-5}s$ অতএব ঐ দূরত্ব অতিক্রম করতে বুলেটটির প্রয়োজনীয় সময় $5\times10^{-5}s$.

প্রশ্ন ৯। একটি বন্দুক হতে 50gm ভরের গুলির ওপর 500N বল 0.05 সেকেন্ড ধরে ক্তিয়া করায় গুলিটি একটি কাঠের গুড়ির মধ্যে প্রবেশ করে। কাঠের পুরুত্ব 2m ও বাধাদানকারী বল $2 imes 10^3N$ ।

- (ক) নিউটনের গতির ২য় সূত্রটি লিখ।
- (খ) কাদাযুক্ত রাস্তায় আমরা পিছলে যাই কেন? ব্যাখ্যা কর।
- (গ) কাঠের গুড়িকে আআঘাত করার সময় গুলির বেগ নির্ণয় কর।
- (ঘ) গুলিটি কাঠের গুড়িকে ভেদ করবে কিনা গাণিতিকভাবে বিশ্লেষণ কর।

সমাধান:

(ক) নিউটনের গতির ২য় সূত্রটি লিখ।

নিউটনের গতির ২য় সূত্র: "কোনো বস্তুর ভরবেগের পরিবর্তনের হার বস্তুটির উপর প্রযুক্ত বলের সমানুপাতিক এবং বল যেদিকে ক্রিয়া ভরবেগের পরিবর্তনও সেদিকে ঘটে।"

(খ) কাদাযুক্ত রাস্তায় আমরা পিছলে যাই কেন? ব্যাখ্যা কর।

কাদাযুক্ত রাস্তায় আমরা পিছলে যাই, কারণ – রাস্তায় হাঁটার সময় রাস্তা ও পায়ের তলার মধ্যে যে ঘর্ষণ বল তৈরি হয় তার জন্য আমরা চলতে পারি। কিন্তু রাস্তা কাদাযুক্ত হলে রাস্তার ও পায়ের মধ্যকার ঘর্ষণবল হ্রাস পায়। এর ফলে কাদাযুক্ত রাস্তায় আমরা পিছলে যাই।

 $v = 500 ms^{-1}$

(গ) কাঠের গুড়িকে আআঘাত করার সময় গুলির বেগ নির্ণয় কর।

দেওয়া আছে,

সময়, t = 0.05s

ত্বরণ, a=?

গুলির আদিবেগ, $u = 0ms^{-1}$

কাঠের গুড়িকে আঘাত করার সময় বেগ, v=?

আমরা জানি,

F = ma

বা,
$$a = \frac{F}{m} = \frac{500}{0.05}$$
 $\therefore a = 10000 ms^{-2}$

আবার, v = u + at

বা,
$$v = 0 + 10000ms^{-2} \times 0.05s$$

 \therefore গুলির শেষ বেগ, $v = 500ms^{-1}$

প্রবানে, গুলির ভর, m=50gm=0.05kgপ্রযুক্ত বল, F=500N

a = ?

(ঘ) গুলিটি কাঠের গুডিকে ভেদ করবে কিনা – গাণিতিকভাবে বিশ্লেষণ কর।

মনেকরি,

কাঠের মধ্যে মন্দন = a'

আমরা জানি,

$$F' = ma'$$

at
$$a' - \frac{F'}{a}$$

বা.
$$a = \frac{m}{2 \times 10^3 N}$$

$$\therefore a = 4 \times 10^4 ms^{-2}$$

এখন, কাঠের গুলি ভেদ করার পর তার বেগ, v^\prime হলে,

$$v'^2 = v^2 - 2a'd$$

বা,
$$v'^2 = (500)^2 - 2 \times 4 \times 10^4 \times 2 = 90000 ms^{-1}$$

 $v' = 300 ms^{-1}$

অর্থাৎ, কাঠের গুড়ি ভেদ করার পর গুলির বেগ ধনাত্মক হয়। এই বেগ হচ্ছে $300ms^{-1}$ । সুতরাং গুলিটি কাঠের গুড়ি ভেদ করে যাবে।

দেওয়া আছে, গুলির ভর, m=50gm=0.05kgবাধাদানকারী বল, $F=2\times 10^3N$

a = ?

মনেকরি,

কাঠের গুরুত্ব, d দেওয়া আছে,

d = 2m

উত্তর: খ

🤛 বহুনির্বাচনী (MCQ)

01. বস্তুর জড়তা পরিমাপ করা হয় কোনটির সাহায্যে?

(ক) বল J (খ) বেগ (গ) ভর (ঘ) ভরবেগ উত্তর: গ

ব্যাখ্যা: ভর হচ্ছে পদার্থের জড়তার পরিমাপ।

নিচের অংশটুকু পড়লে উত্তর আরও স্পষ্ট হয়ে উঠবে।

Note: জড়তা: বল প্রয়োগ না করা পর্যন্ত স্থির বস্তু যে স্থির। থাকতে চায় কিংবা গতিশীল বস্তু যে গতিশীল থাকতে চায়, বস্তুর এ বৈশিষ্ট্যই হচ্ছে জড়তা। ভর হচ্ছে জড়তার পরিমাপ। কোনো কিছুর জড়তা যদি বেশি হয়। তাহলে বুঝতে হবে তার ভরও নিশ্চয়ই বেশি। জড়তা যদি কম হয় তাহলে ভরও কম। তোমরা নিশ্চয়ই এটা লক্ষ করেছ সমান পরিমাণ বল প্রয়োগ করা হলে যার ভর বেশি সেটাকে বেশি বিচ্যুত করা যায়। কিন্তু যার ভর কম সেটাকে সহজে বিচ্যুত করা যায়। কিংবা অন্যভাবে বলা যায়, ভর কম হলে জড়তার প্রভাবটা তুলনামূলকভাবে কম হয়। অতএব ভরই হলো পদার্থের জড়তার পরিমাপ। অতএব, প্রশ্নটির সঠিক উত্তর (গ)।

02. গাড়ির ব্রেক চাপলে যাত্রী সামনের দিকে ঝুঁকে পড়েন কেন?

(ক) গতি জড়তার জন্য (খ) স্থিতি জড়তার জন্য (গ) মহাকর্ষ বলের জন্য (ঘ) ঘর্ষণ বলের জন্য উত্তর: ক

ব্যাখ্যা: গাড়ির ব্রেক চাপলে যাত্রীরা গতি জড়তার কারণে সামনের দিকে ঝুঁকে পড়েন। নিচের অংশটুকু পড়লে উত্তর আরও স্পষ্ট হয়ে উঠবে।

গতি জড়তা: গতিশীল থাকার যে জড়তা তাকে বলে গতি জড়তা। চলন্ত বাসে হঠাৎ ব্রেক করলে যাত্রীরা সামনের দিকে ঝুঁকে পড়েন। বাস যখন চলন্ত অবস্থায় থাকে, তখন বাসের যাত্রীও বাসের সাথে একই গতিপ্রাপ্ত হয়। বাস হঠাৎ থেমে গেলে বাসের সাথে সাথে যাত্রীর শরীরের নিচের অংশ স্থির হয়। কিন্তু বাসযাত্রীর শরীরের উপরের অংশ গতি জড়তার জন্য সামনে দিকে এগিয়ে যায়।

অতএব, প্রশ্নটির সঠিক উত্তর (ক)।

03. গাড়ির ব্রেক চাপলে যাত্রী সামনের দিকে ঝুঁকে পড়েন কেন?

(ক) জড়তা (খ) বল (গ) ঘর্ষণ (ঘ) স্থিতিস্থাপকতা

ব্যাখ্যা: নিউটনের প্রথম সূত্র থেকে বলের সংজ্ঞা পাওয়া যায়।

বল: যার প্রয়োগের কারণে স্থির বস্তু চলতে শুরু করে আর সমবেগে চলতে থাকা বস্তুর বেগের পরিবর্তন হয় সেটাই

বিশেষ দ্রষ্টব্য: বলের সংজ্ঞা পাওয়া যায় নিউটনের গত্মিপ্রথম সূত্র হতে।

বলের পরিমাপের স্মীকরণ পাওয়া যায় নিউটনের গতির দ্বিতীয় সূত্র থেকে।

অতএব, প্রশ্নটির সঠিক উত্তর (খ)

04. বলের সংজ্ঞা নিউটনের কোন সূত্র হতে পাওয়া যায়? [নওয়াব হাবিবুল্লাহ মডেল স্কুল এন্ড কলেজ, ঢাকা]

(ক) প্রথম সূত্র

(খ) দ্বিতীয় সত্ৰ

(গ) তৃতীয় সূত্র (ঘ) ভরবেগের সং

(ঘ) ভরবেগের সংরক্ষণ সূত্র উত্তর: ক

Note: পূর্বের প্রশ্নের ব্যাখ্যায় দেখুন।

05. বলের সংজ্ঞা নিউটনের কোন সূত্র হতে পাওয়া যায়?

(ক) মহাকর্ষ বল (খ) অভিকর্ষ বল (গ) সবল নিউক্লিয় বল (ঘ) দুর্বল নিউক্লিয় বল উত্তর: ফ

ব্যাখ্যা: তেজস্ক্রিয় নিউক্লিয়াস থেকে যে বেটা রশ্মি বা ইলেকট্রন বের হয় সেটার কারণ হলো দুর্বল নিউক্লিয় বল।

06. কোন বলের লব্ধি শূন্য হয়?

(ক) অসাম্য বল (খ) অস্পর্শ বল (গ) সাম্য বল (ঘ) স্পর্শ বল উত্তর: গ

ব্যাখ্যা: সাম্য বলের লব্ধি শূন্য হয়।

সাম্য বল: দুই বা ততোধিক বল একটি বস্তুর উপর প্রয়োগ করার পর বলগুলোর সম্মিলিত লব্ধি যদি শূন্য হয় তাহলে বস্তুটি স্থির থাকে বা সাম্যবস্থায় থাকে। যে বলগুলো ক্রিয়া করার ফলে বস্তুটি এই সাম্যবস্থা অর্জন করে তাকে, তাকে সাম্য বল বলে।

জেনে রাখা ভালো: সাম্যবলের ধারণা ব্যবহার করে বলবিদ্যায় বিভিন্ন গুরুত্বপূর্ণ সমস্যার সমাধান করা হয়। কোনো বস্তু সাম্যবস্থায় থাকার অর্থ হচ্ছে X অক্ষ বরাবর বল গুলোর লব্ধি শূন্য এবং y অক্ষ বরাবর বলগুলোর লব্ধি শূন্য। গণিতের ভাষায় একে লেখা হয় $\Sigma F_x=0$ এবং $\Sigma F_y=0$

07. ভরবেগের মাত্রা কোনটি

(ক)
$$ML^2T^{-2}$$

উত্তর: গ

ব্যাখ্যা: ভরবেগের মাত্রা MLT^{-1}

ভর বেগের মাত্রা:

ভর বেগের মাত্রা = ভরের মাত্রা imes বেগের মাত্রা = ভরের মাত্রা imes সময়ের মাত্রা

$$= M \times \frac{L}{T} = MLT^{-1}$$

 $08.\ 1kg$ ভরের একটি বন্দুক থেকে $5\ gm$ ভরের একটি গুলি ছোঁড়া হলে বন্দুকটি $2{
m ms}^{-1}$ পশ্চাৎবেগ প্রাপ্ত হলো, গুলির শেষবেগ কত? [কু. বো. '১৫]

(本)
$$0.4ms^{-1}$$

(গ)
$$40ms^{-1}$$

ব্যাখ্যা: ভরবেগের সংরক্ষণ সূত্র থেকে,

আমরা জানি,

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

বা,
$$0.005 \times 0 + 1 \times 0 = 0.005 \times v_1 + 1 \times (-2)$$

বা,
$$0 = 0.005v_1 - 2$$

বা,
$$2 = 0.005v_1$$

বা,
$$0.005v_1 = 2$$

বা,
$$v_1 = \frac{2}{0.005} = 400 \text{ms}^{-1}$$

অর্থাৎ, গুলির শেষবেগ,
$$400 \text{ms}^{-1}$$

09. কোনো বস্তুর উপর প্রযুক্ত বল ধ্রুব থাকলে ভর ও ত্বরণের সম্পর্ক কি হবে?

- (ক)(ক) ভর যত বেশি হবে ত্বরণ তত বেশি হবে।
- (খ) ভর যত কম হবে ত্বরণ তত কম হবে।
- (গ) ভর যত কম হবে. ত্বরণ তত বেশি হবে।
- (ঘ) ভরের সমান ত্বরণ হবে।

উত্তর: গ

ব্যাখ্যা: নিউটনের গতির দ্বিতীয় সূত্র হতে আমরা জানি,

বা,
$$F = ma$$

বা,
$$a = \frac{F}{m}$$

বা,
$$a \propto \frac{1}{m} [F = ্রাক$$

উপরের সমীকরণ থেকে বুঝা যায়, কোন বস্তুর উপর প্রযুক্ত বল ধ্রুব থাকলে ভর যত কম হবে ত্বরণ তত বেশি হবে।

10. স্প্রিং নিক্তি দ্বারা বস্তুর কী পরিমাপ করা হয়?

[ঢা-বো. '১৭]

উত্তর: গ

ব্যাখ্যা: স্প্রিং নিক্তি দ্বারা মূলত বস্তুর ওজন মাপা হয়। আর বস্তুর ওজন বলতে বস্তুর উপর অভিকর্ষজ বলকে বুঝানো

কোনো বস্তুর ভর m হলে ঐ বস্তুর ওজন = ঐ বস্তুর উপর অভিকর্ষজ বল = mg

অতএব, স্প্রিং নিক্তি দ্বারা বস্তুর অভিকর্ষজ বল পরিমাপ করা হয়।

11. নিচের কোন সমীকরণটি সঠিক?

[য-বো. '১৭]

(ক) G =
$$\frac{gM}{R^2}$$

(খ)
$$2S = ut + vt$$

(গ)
$$h = \frac{u^2 - v^2}{2t}$$

(ঘ)
$$S = \frac{v+u}{2t}$$

উত্তর: খ

ব্যাখ্যা: 2S = ut + vt সঠিক কারণ গতির একটি সমীকরণ হলো,

$$S = \left(\frac{u+v}{2}\right)t$$

$$S = \frac{ut + vt}{2}$$

$$2S = ut + vt$$

$$G = \frac{gM}{R^2}$$
 সঠিক নয়

সঠিক সমীকরণটি হলো,

$$g = \frac{GM}{R^2}$$

$$G = \frac{gR^2}{M}$$
 সঠিক।

$$h = \frac{u^2 - v^2}{2g}$$
 সঠিক নয়, সঠিক সমীকরণ হলো,

$$v^2=u^2+2gh$$
 (পড়ন্ত বস্তুর সমীকরণ)

$$v^2 - u^2 = 2gh$$

$$2gh = v^2 - u^2$$

$$h = \frac{v^2 - u^2}{2g}$$

কিন্তু দেয়া আছে, $h=rac{{{
m{v}}^{2}}-{{
m{u}}^{2}}}{{
m{2g}}}$, অর্থাৎ এটি সঠিক নয়।

$$S = \frac{v+u}{2t}$$
 সঠিক নয়।

গতির সঠিক সমীকরণটি হলো, $S = \left(\frac{u+v}{2}\right)t$

12. নিচের কোন সম্পর্কটি সঠিক? (যেখানে প্রতীকগুলো প্রচলিত অর্থ বহন করে)

[চ. বো. '১৬]

$$(\Phi) t \propto h^2$$

(খ)
$$G = g R^2/M$$

(গ)
$$v = g + ut$$

(ঘ)
$$a = (v + u)/t$$

উত্তর: খ

ব্যাখ্যা: অভিকর্ষজ ত্বরণ, $g=rac{GM}{D^2}$

বা,
$$gR^2 = GM$$

বা,
$$GM = gR^2$$

বা,
$$G = \frac{gR^2}{M}$$

13. কোন অক্ষাংশে সমুদ্র সমতলে g —এর মানকে আদর্শ মান ধরা হয়? [কু-বো. '১৭] (ক) 30° (খ) 45° (গ) 60° (ঘ) 90 উত্তর: খ

ব্যাখ্যা: 45° অক্ষাংশে সমুদ্র সমতলে g এর মান আদর্শ ধরা হয়।

g এর আদর্শ মান: ভূপৃষ্ঠে বিভিন্ন স্থানে g —এর মান বিভিন্ন বলে 45° অক্ষাংশে সমুদ্র সমতলে g —এর মানকে আদর্শ মান ধরা হয়। এর আদর্শ মান হচ্ছে $9.80665~ms^{-2}$ । হিসেবের সুবিধার জন্য g এর আদর্শ মান ধরা হয় $9.8~ms^{-2}$ বা $9.81~ms^{-2}$ ।

জেনে রাখা ভালো: যেহেতু পৃথিবী সম্পূর্ণ গোলাকার নয়, মেরু অঞ্চলে একটুখানি চাপা, তাই পৃথিবীর ব্যাসার্ধ R ও ধ্রুবক নয়। সুতরাং ভূ-পৃষ্ঠের সর্বত্র g —এর মান সমান নয়।

- মেরু অঞ্চলে পৃথিবীর ব্যাসার্ধ সবচেয়ে কম বলে সেখানে g -এর মান সবচেয়ে বেশী $9.8321 ms^{-2}$
- মেরু থেকে বিষুব অঞ্চলের দিকে R -এর মান বাড়তে থাকায় g এর মান কমতে থাকে। বিষুব অঞ্চলে R —এর মান সবচেয়ে বেশি বলে g —এর মান সবচেয়ে কম, 9.78039 ms^{-2} ।
- ক্রান্তীয় অঞ্চলে g -এর মান $9.78918\ ms^{-2}$ ।

14. কোনো বস্তুর ওজন কোথায় সবচেয়ে বেশি হবে?

[চ. বো. '১৬]

(ক) বিষুব অঞ্চলে

(খ) মেরু অঞ্চলে

(গ) সমুদ্র সমতলে

(ঘ) ভূ-কেন্দ্রে

উত্তর: খ

ব্যাখ্যা: মেরু অঞ্চলে বস্তুর ওজন সবচেয়ে বেশি

বস্তুর ওজন, অভিকর্ষজ ত্বরণ g এর উপর নির্ভর করে।

ওজন = ভর $\times g$

মেরু অঞ্চলে g এর মান সবচেয়ে বেশি বলে মেরু অঞ্চলে বস্তুর ওজন সবচেয়ে বেশি হবে।

15. দুটি বস্তুর মধ্যে ক্রিয়া বল ${
m F_1}$ ও প্রতিক্রিয়া বল ${
m F_1}$ হলে নিচের কোন সম্পর্কটি সঠিক

[কু. বো. '১৬]

(ক) $F_1 = F_2$

(খ) $-F_1 = -F_2$

(গ) $F_1 + F_2 = 0$

(ঘ) $F_1 > F_2$

উত্তর: গ

ব্যাখ্যা: নিউটনের তৃতীয় সুত্র: যখন একটি বস্তু অন্য একটি বস্তুর ওপর বল প্রয়োগ করে তখন সেই বস্তুটিও প্রথম বস্তুটির ওপর বিপরীত দিকে সমান বল প্রয়ােগ করে। অন্যভাষায়, প্রতিটি ক্রিয়া বলের একটি সমান ও বিপরীত প্রতিক্রিয়া বিদ্যমান।

অর্থাৎ ক্রিয়া বল = - প্রতিক্রিয়া বল

দুটি বস্তুর মধ্যে ক্রিয়া, F_1 ও প্রতিক্রিয়া, F_2 হলে অর্থাৎ, $F_1=-F_2 \ \Rightarrow \ F_1+F_2$ = 0

16. কোনো গাড়ীতে হার্ড ব্রেক কষলে গাড়ি না থেমে খানিকটা অগ্রসর হয়। এতে যে ধরনের ঘর্ষণের সৃষ্টি হয় [চ.বো. '১৫]

(ক) স্থিতি ঘর্ষণ

(খ) পিছলানো ঘর্ষণ/বিসর্প ঘর্ষণ

(গ) আবর্ত ঘর্ষণ

(ঘ) প্রবাহী ঘর্ষণ

উত্তর: খ

ব্যাখ্যা: পিছলানো ঘর্ষণ/বিসর্প ঘর্ষণ: একটি বস্তুর সাপেক্ষে অন্য বস্তু যখন চলমান হয় তখন যে ঘর্ষণ বল তৈরি হয় সেটি হচ্ছে গতি ঘর্ষণ বা পিছলানো ঘর্ষণ। পিচ্ছিল রাস্তায় চলার সময় অনেক সময় আমরা পড়ে পিছলিয়ে অনেকটা দূরত্ব অতিক্রম করি। দ্রুতবেগে গতি গাড়িতে হার্ড ব্রেক কষলে গাড়িটি না থেমে পিছলিয়ে খাক অগ্রসর হয়। এ সবই পিছলানো/বিসর্প ঘর্ষণের উদাহরণ।

17. সাইকেলের চাকার গতি-কোন ধরনের ঘর্ষণের উদাহরণ?

[চ. বো. '১৬]

(ক) স্থিতি ঘর্ষণ

(খ) বিসর্প ঘর্ষণ।

(গ) আবর্ত ঘর্ষণ

(ঘ) প্রবাহী ঘর্ষণ

উত্তর: গ

ব্যাখ্যা: সাইকেলের চাকার গতি আবর্ত ঘর্ষণ এর উদাহরণ।

আবর্ত ঘষর্ণ: একটি তলের উপর যখন অন্য একটি বস্তু গড়িয়ে বা ঘুরতে চলে তখন সেটাকে বলে আবর্ত ঘর্ষণ। যেমন: সাইকেলের গতি, মার্বেলের গতি ইত্যাদি।

18. প্যারাসুটের মাধ্যমে আরোহীকে নিরাপদ অবতরণে সাহায্য করে।

[য-বো. '১৫]

(ক) স্থিতি ঘর্ষণ

(খ) বিসর্প ঘর্ষণ।

(গ) আবর্ত ঘর্ষণ

(ঘ) প্রবাহী ঘর্ষণ

উত্তর: ঘ

ব্যাখ্যা: প্রবাহী ঘর্ষণ প্যারাসুটের মাধ্যমে আরোহীকে নিরাপদ অবতরণে সাহায্য করে।

প্রবাহী ঘর্ষণ: যখন কোনো বস্তু যে কোনো প্রবাহী পদার্থ যেমন- তরল বা বায়বীয় পদার্থের মধ্যে দিয়ে যায় তখন এটি যে ঘর্ষণ বল অনুভব করে তাকে প্রবাহী ঘর্ষণ বলে।

প্যারাসুট ও প্রবাহী ঘর্ষণ: প্যারাসুট বায়ুর বাধাকে কাজে লাগিয়ে কাজ করে। এখানে বায়ুর বাধা হলো প্রবাহী ঘর্ষণ বল যা পৃথিবীর অভিকর্ষ বলের বিপরীতে ক্রিয়া করে। খোলা অবস্থায় প্যারাসুটের বাহিরের তলের ক্ষেত্রফল অনেক বেশি হওয়ায় বায়ুর বাধার পরিমাণও বেশি হয়, যার ফলে আরোহীর পতনের গতি অনেক হ্রাস পায়। ফলে আরোহী ধীরে ধীরে মাটিতে নিরাপদে নেমে আসে। প্রবাহী ঘর্ষণের আরেকটি উদাহরণ হলো পুকুরে সাঁতার কাটা, যখন পুকুরে সাঁতার কাটা হয় তখন পুকুরের পানির মধ্য দিয়ে একটি বাধাকে অতিক্রম করতে হয়। আর এ বাধাই হলো প্রবাহী ঘর্ষণ। প্রবাহী ঘর্ষণকে কাজে লাগিয়ে মাছ পুকুরে সাঁতার কাটে।

19. তলের ঘর্ষণকে কি করে বাড়ানো যেতে পারে?

[সি. বো. '১৫]

(ক) মসৃণ করে।

(খ) অমসৃণ করে

(গ) লুব্রিকেন্ট ব্যবহার করে (ঘ) তেল ব্যবহার করে

উত্তর: খ

ব্যাখ্যা: তলের ঘর্ষণকে অমসৃণ করে ঘর্ষণ বাড়ানো যেতে পারে। ঘর্ষণ বৃদ্ধির উপায়:

- ১। পৃষ্টে দাগ বা খাঁজ কাটার মাধ্যমে
- ২। তলকে অমসৃণ করি মাধ্যমে।
- ৩। যে দুটো তলে ঘর্ষণ হয় সেগুলো আরো জোরে চেপে ধরার ব্যবস্থা করা।
- 20. চাকার বৃত্তাকার আকৃতি কোন বলকে ন্যূনতম পর্যায়ে নিয়ে আসে?

(ক) অস্পর্শ বল

(খ) মহাকর্ষ বল

(গ) ঘর্ষণ বল

(ঘ) নিউক্লীয় বল

উত্তর: গ

ব্যাখ্যা: চাকার বৃত্তাকার আকৃতি ঘর্ষণ বলকে ন্যূনতম পর্যায়ে নিয়ে আসে। এক্ষেত্রে আবর্ত ঘর্ষণ কাজ করে বিধায় ঘর্ষণ বলের মান খুবই অল্প হয়। বাস, ট্রাকসহ বিভিন্ন যন্ত্রপাতিতে চাকা লাগানো থাকে। চাকা হলো একটি সুকৌশল আবিষ্কার। চাকার বৃত্তাকার আকার ঘর্ষণ বলকে ন্যূনতম পর্যায়ে নামিয়ে আনে।

আমরা জানি, ঘর্ষণ বলের মান যত কম হয় তত সহজে এক বস্তুকে এক স্থান থেকে অন্য স্থানে নেওয়া যায়। বৃত্তাকার চাকার পরির্বতে যদি ত্রিভুজাকৃতি, চতুর্ভুজাকৃতি বা চাকা না থাকত তাহলে আমরা কোনো বস্তুকে একস্থান থেকে অন্য স্থানে নিতে পারতাম না অথবা নিলেও অনেক কষ্ট হত। তাই বলা চলে বৃত্তাকার চাকা ঘর্ষণ বলকে ন্যূনতম পর্যায়ে নিয়ে আসে।

21. কোনো বস্তুতে প্রযুক্ত সাম্য বলসমূহের লব্ধি শূন্য হলে-

[ঢা. বো. '১৫]

- i. বস্তুর গতির অবস্থা পরিবর্তন হয়
- ii. বস্তুতে কোনো ত্বরণ থাকে না
- iii.বলগুলো সাম্যাবস্থা সৃষ্টি করে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: খ

ব্যাখ্যা: সাম্যবলসমূহের ক্ষেত্রে,

- বলসমূহের লব্ধি শূন্য হবে।
- বস্তুতে কোনো ত্বরণ থাকে না; তথা গতির অবস্থার পরিবর্তন হবে না।
- বলগুলো সাম্যাবস্থার সৃষ্টি করে।

22. বন্দুক থেকে গুলি ছুড়লে-

[চ. বো. '১৫]

- i. গুলি ও বন্দুকের ভরবেগ সমমুখী হয় ।
- ii. গুলি ও বন্দুকের ভরবেগ সমমানের হয়।
- iii. বন্দুকের পশ্চাৎ বেগ গুলির তুলনায় কম হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: গ

ব্যাখ্যা: বন্দুকের গুলি ছোঁড়া: যখন কোনো ব্যক্তি বন্দুক হতে গুলি ছোঁড়েন, তখন তিনি পেছনের দিকে একটি ধাক্কা অনুভব করেন। কেন এমনটি হয়?

এক্ষেত্রে গুলি ও বন্দুকের ক্রিয়া ও প্রতিক্রিয়া বল সমনি সময়ব্যাপী কাজ করে। নিউটনের তৃতীয় সূত্রানুসারে, গুলি ও বন্দুক সমমানের কিন্তু বিপরীতমুখী অবেগ লাভ করে। ফলে যে ভরবেগ নিয়ে গুলি সামনের দিকে অগ্রসর হয়, বন্দুকও সমমানের কিন্তু বিপরীতমুখী ভরবেগ নিয়ে পেছনের দিকে ধাবিত হবে। যার দরুন ঐ ব্যক্তি পেছনের দিকে ধাক্কা অনুভব করেন। অবশ্য বন্দুকের ভর বেশি হওয়ায় বন্দুকের পশ্চাৎবেগ গুলির বেগের অত্যন্ত কম হবে। এছাড়াও বন্দুক ব্যবহারকারীকে বেশি ক্ষেত্রফলে বল প্রয়ােলগ করে বলে বন্দুকের পশ্চাৎ বল ব্যবহারকারীর কাছে সহনশীল হয়।

23. বন্দুকের গুলির আঘাত মারাত্মক হলেও এর পশ্চাৎ বল বন্দুক ব্যবহারকারীর জন্য সহনশীল হয়, কারণ-

i. বন্দুকটির ভর বেশি হওয়ায় পশ্চাৎ বেগ কম

ii. বন্দুক ব্যবহারকারীকে বেশি ক্ষেত্রফলে বল প্রয়োগ করে

iii. ক্রিয়া ও প্রতিক্রিয়া বল অসমান হওয়ায়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ক

ব্যাখ্যা: বন্দুকের পশ্চাৎবেগ সহনশীল হওয়ার কারণ:

- বন্দুকটির ভর বেশি হওয়ায় পশ্চাৎ বেগ কম।
- বন্দুক ব্যবহারকারীকে বেশি ক্ষেত্রফলে বল প্রয়োগ করে।
- 24. নিউটনের গতির তৃতীয় সূত্রের প্রয়োগ হয় যখন -

[চ. বো. '১৬]

- i. আমরা হাঁটাচলা করি
- ii. রাস্তায় গাড়ি চলে
- iii. দেয়ালে ধাক্কা লেগে পিছিয়ে আসি

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

ব্যাখ্যা: নিউটনের তৃতীয় সূত্র ও এর প্রয়োগ: "যখন একটি বস্তু অন্য একটি বস্তুর ওপর বল প্রয়োগ করে তখন সেই বস্তুটিও, প্রথম বস্তুটির ওজন বিপরীত দিকে সমান বল প্রয়োগ করে।"

- আমরা যখন মাটির উপর হাঁটি তখন মাটির উপর আমরা যে বল প্রয়োগ করি ঠিক তারই সমান একটি প্রতিক্রিয়া বল মাটি আমাদের উপর প্রয়োগ করে ফলে আমরা হাঁটতে পারি।
- যখন রাস্তায় গাড়ি চলে, গাড়ির চাকা রাস্তায় পিছনের দিকে বল প্রয়োগ করে, নিউটনের তৃতীয় সূত্রানুসারে রাস্তা বিপরীত দিকে প্রতিক্রিয়া বল প্রয়োগ করে, ফলে গাড়ি সামনে এগিয়ে যায়।
- আমরা যখন দেয়ালে ধাক্কা দেই তখন আমাদের শরীর দেওয়ালের

ওপর ক্রিয়া বল প্রয়োগ করে: নিউটনের তৃতীয় সূত্রানুসারে তখন দেওয়াল আমাদের শরীরের ওপর বিপরীত প্রতিক্রিয়া বল প্রয়োগ করে, ফলে আমরা পিছনে সরে আসি।

25. ঘর্ষণ সীমিত করার উপায় হলো—

[দি. বো. '১৬; য. বো. '১৬]

- i. ঘর্ষণ তলকে মসৃণ করা
- ii. লুব্রিক্যান্ট ব্যবহার করা
- iii. ঘর্ষণ স্থানাঙ্ক কম এমন যন্ত্রাংশ ব্যবহার করা

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ঘ

ব্যাখ্যা: ঘর্ষণ সীমিত করার উপায় হলো:

- → বল বেয়ারিং ব্যবহার করা।
- → ঘর্ষণ তলকে মসৃণ করা।
- → পিচ্ছিলকারী পদার্থ (তেল, গ্রিজ ইত্যাদি) বা লুব্রিকেন্ট ব্যবহার করা।
- → ঘর্ষণ গুণাঙ্ক কম এমন যন্ত্রাংশ ব্যবহার করতে হবে।

জেনে রাখা ভালো:

ঘর্ষণ গুণাঙ্ক হলো ঘর্ষণ বল ও বস্তুর ভরের অনুপাত।

ঘর্ষণ গুণাঙ্ক= ঘর্ষণ বল

ঘর্ষণ বল = ঘর্ষণ গুণাঙ্ক × ভর

সমীকরণ থেকে দেখা যায়, ঘর্ষণ গুণাঙ্ক কমালে ঘর্ষণ হ্রাস পাবে।

26. নিম্নোক্ত ভাবে ঘর্ষণ হ্রাস করা যায়-

i. তলকে মসৃণ করে

ii. তেল বা গ্রিজ ব্যবহার করে

iii. চক পাউডার ব্যবহার করে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: গ

27. স্থির বাস হঠাৎ চলতে শুরু করলে যাত্রীরা পেছনের দিকে হেলে পডে কেন?

(ক) মহাকর্ষের জন্য

(খ) অভিকর্ষের জন্য

(গ) স্থিতি জড়তার জন্য

(ঘ) গতি জড়তার জন্য

উত্তর: গ

28. সমআয়তনের নিচের কোনটির জডতা বেশি?

(ক) লোহা

(খ) সোনা

(গ) বরফ

(ঘ) কর্ক

উত্তর: খ

29. 200~gm ভরের একটি বস্তুর উপর 3N বল প্রয়োগ করা হলে ত্বরণ কত হবে?

(**本**) 15ms⁻²

(খ) 5 ms⁻²

(গ) 1.5 ms⁻²

(ঘ) 15 ms⁻²

উত্তর: ক

ব্যাখ্যা: $a = \frac{F}{m} = \frac{3N}{\frac{200 \text{gm}}{1000} \text{Kg}} = 15 \text{ms}^{-2}$

30. নিচের কোন সম্পর্কটি সঠিক?

(σ) $t \propto h^2$

(খ) $G = gR^2 / M$

(গ) v = g + ut

(ঘ) $a = \frac{v+u}{t}$

উত্তর: খ

ব্যাখ্যা: $g = \frac{GM}{R^2} \Rightarrow GR^2 = GM \Rightarrow G = g R^2/M$

31. নিচের কোন সম্পর্কটি সঠিক?

(ক) ১ম সূত্র

(খ) ২য় সূত্র

(গ) ৩য় সূত্র

(ঘ) উপরের সবগুলো

উত্তর: খ

32. 30~kg ভরের একটি বস্তুর ওপর কত বল প্রয়োগ করলে এর ত্বরণ $2ms^{-2}$ হবে?

(ক) 60N

(খ) 58N

(গ) 600N

(ঘ) 20N

উত্তর: ক

ব্যাখ্যা: $F = ma = 30kg \times 2ms^{-2} = 60 N$

33. একটি বস্তুর ভর 3kg এবং আদিবেগ 0 ms^{-1} , 3s পর বস্তুটির বেগ 5 ms^{-1} হলে বস্তুর উপর প্রযুক্ত বল কত N হবে?

(ক) 7N

(খ) 10N

(গ) 3N

(ঘ) 5N

উত্তর: ঘ

ব্যাখ্যা: $a = \frac{v-u}{t} = \frac{5-0}{3} = \frac{5}{3} m s^{-2}$

 $F = ma = 3 \text{kg} \times \frac{5}{3} m \text{s}^{-2} = 5$

 $u = 0 \text{ms}^{-1}$ $v = 5 \text{ms}^{-1}$

34. 300~kg ভরের উপর একটি উপর 3sec যাবৎ বল প্রয়োগ করালে, বেগ কী পরিমাণ বৃদ্ধি পাবে?

(**本**) 9ms²

(খ) 3ms²

(গ) 300ms²

(ঘ) 30ms²

উত্তর: খ

ব্যাখ্যা: mv - mu = Ft

$$\Rightarrow v - u = \frac{Ft}{m}$$

$$=\frac{300N\times3sec}{300kg}=3ms^2$$

m = 300 kg

t = 3 sec

F = 300N

5kg ভরের একটি বন্দুক থেকে $1000ms^{-1}$ বেগে 10~gm ভরের একটি গুলি 0.1~sec ধরে ছোঁড়া হলো।

34. 30. বন্দুকটির পশ্চাৎবেগ কত?

(本) $5 ms^{-1}$

(খ) -5 ms⁻¹

(গ) 2 ms⁻¹

(ঘ) −2 ms⁻¹

উত্তর: গ

ব্যাখ্যা: বন্দুকের পশ্চাৎবেগ

 $v=rac{গুলির ভর <math> imes$ গুলির শেষবেগ বন্দুকের ভর

35. উক্ত ঘটনায় গুলির বলের ঘাত কত?

(ক) 10Ns

(খ) 5Ns

(গ) 20Ns

(ঘ) 100Ns

উত্তর: ক

ব্যাখ্যা: $mv - mu = 0.01 \times 1000 - 0.01 \times 0 = 10Ns$

36. ভু পৃষ্ঠে দাঁড়িয়ে থাকা নিচের কোনটির উদাহরণ?

(ক) নিউটনের ৩য় সূত্র

(খ) নিউটনের ১ম সূত্র

(গ) নিউটনের ২য় সূত্র

(ঘ) ভরবেগের সংরক্ষণ সূত্র

উত্তর: ক

37. আমরা যখন মাটির উপরে হাটি তখন

i. মাটির উপর খাড়াভাবে নিচের দিকে বল প্রয়োগ করি

ii. মাটির উপর পেছনের দিকে তির্যক ভাবে একটি বল প্রয়োগ করি

iii. আমাদের প্রযুক্ত বলের বিপরীতে একটি প্রতিক্রিয়া বল সৃষ্টি হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: গ