Федеральное агентство по образованию РФ Новгородский государственный университет им. Ярослава Мудрого

Кафедра	ИТИС

Реализация алгоритмов поиска корней уравнений методом половинного деления и методом хорд

Выполнил студент группы 9311 Лопатин А.С.

Великий Новгород, 2009

1. Цель работы

Цель работы — реализовать алгоритм поиска корней уравнения методом половинного деления и методом хорд на языке программирования Pascal.

2. Математическая модель решения

Даны границы a,b и точность ϵ . Необходимо найти корень уравнения (например квадратичного $y=10x-2x^2$ или линейного y=2x-20 уравнения) между границами, который соответствует заданной точности, т. е. значение переменной x при $|y| \le \epsilon$ или при $|b-a| \le \epsilon$.

Проверить наличие корней уравнения можно по формуле $F(a) \times F(b)$. Если значение отрицательное — корни есть.

Вычислять же корень можно с помощью разделения суммы границ пополам $(x=\frac{a+b}{2})$ или выразив x из уравнения прямой $(x=\frac{F(b)\times a-F(a)\times b}{F(b)-F(a)})$. После этого надо установить значение новой границы a или b равным найденному x в зависимости от $F(a)\times F(x)$ (для отрицательных — b, для остальных — a) и проверить результат на соответствие точности ϵ (определяется либо по формуле $|F(x)| \leq \epsilon$ либо через $|b-a| \leq \epsilon$). Также, для метода хорд был найден оптимальный способ проверить точность с помощью y, выраженного из уравнения прямой: $|\frac{F(b)\times a-F(a)\times b}{F(b)-F(a)}-x|\leq \epsilon$.

3. Спецификация

Таблица переменных:

	Исходное	Идентификатор	Тип	Вид	Размерность	Назначение
	значение					
	a	a	Вещественный	Простой	_	Левая граница
ĺ	b	b	Вещественный	Простой	_	Правая граница

ϵ	eps	Вещественный	Простой	_	Точность
x	X	Вещественный	Простой	_	Корень уравнения
y	у	Вещественный	Простой	_	Значение функции $F(x)$
y_1	y1	Вещественный	Простой	_	Значение функции $F(a)$
y_2	y2	Вещественный	Простой		Значение функции $F(b)$
i	i	Целый	Простой	_	Номер итерации
function	func_number	Целый	Простой	_	Номер функции
number					
calculation	calc_method	Целый	Простой	_	Метод решения
method					
exactness	excat_type	Целый	Простой	_	Тип точности
type					

4. Алгоритм

4.1. Главный модуль

4.2. Процедура «input_data»

4.3. Функция «F(x)»

4.4. Функция «exact_reached»

4.5. Процедура «calculate_root»

4.6. Процедура «print_result»

5. Программа

```
a, b, eps, x, y, y1, y2 : real;
i : integer;
func_number, calc_method, exact_type : byte;

procedure input_data;
begin
   write('Input a = '); readln(a);
   write('Input b = '); readln(b);
   write('Input eps = '); readln(eps);

writeln;
writeln('1) f(x) = 10*x - 2*x*x');
writeln('2) f(x) = 2*x - 20');
write('Select the function: '); readln(func_number);
writeln;
```

```
writeln('1) Half-division method');
    writeln('2) Chords method');
    write('Select the calculation method: '); readln(calc_method);
    writeln;
    writeln('1) |y| <= eps');</pre>
    writeln('2) |b - a| <= eps');</pre>
    writeln('3) |(y2*a - y1*b) / (y2 - y1) - x| \le eps';
    write('Select the exactness type: '); readln(exact_type);
end;
function f(x : real) : real;
begin
    case func_number of
        1: f := 10*x - 2*x*x; { x = 5 }
        2: f := 2*x - 20; \{ x = 10 \}
    end;
end;
function exact_reached : boolean;
begin
    case exact_type of
        1: exact_reached := abs(y) <= eps;
        2: exact_reached := abs(b - a) <= eps;
        3: exact_reached := abs((y2*a - y1*b)/(y2 - y1) - x) \le eps;
    end;
end;
```

```
procedure calculate_root;
begin
    y1 := f(a); y2 := f(b);
    if y1*y2 >= 0 then
    begin
        writeln('There are no roots');
        halt(1);
    end;
    i := 0;
    repeat
        case calc_method of
            1: x := (a + b) / 2;
            2: x := (y2*a - y1*b) / (y2 - y1);
        end;
        y := f(x);
        if y1*y < 0 then
            b := x
        else
            a := x;
        inc(i);
    until exact_reached;
end;
```

```
procedure print_result;
begin
    writeln('x = ', x:15:15,
           ', y = ', y:15:15,
            ', eps = ', eps:15:15,
            ', i = ', i);
end;
begin
    writeln;
    writeln('Calculate the root of the function');
    writeln;
    input_data;
    calculate_root;
   print_result;
end.
6. Шаблон ввода исходных данных
```

1

7. Шаблон вывода результата

```
x = 5.000122070312500, y = -0.001220732927322, eps = 0.01000000000000, i = 13
```

8. Вывод

После экспериментов с входными данными было выяснено следующее:

- 1. Наилучшую сходимость даёт метод хорд, но только если функция линейная
- 2. Проверять точность для метода хорд при поиске корня линейного уравнения лучше всего по формуле $F(x) \leq \epsilon$, а при поиске корня квадратичного через y выраженный из уравнения прямой
- 3. Сходимость метода половинного деления примерно одинаковая на обеих функциях и всех способах проверки точности, за исключением проверки точности через y выраженный из уравнения прямой этот способ совершенно неприменим для метода половинного деления, т. к. настоящий y, полученный с помощью вычисления функции F(x) сильно отличается от этого y (однако количество итераций при этом меньше по сравнению с остальными способами проверки точности)