

Introduction to Uncertainty Quantification

II.

III.

Theory of NIPCE

Case study: Lid-Driven

Cavity Problem

p. 3

p. 4

p. 5

IV.

V.

Case study: NACA0012 Conclusion and Outlook Airfoil

p. 6

p. 7

I. Introduction to Uncertainty Quantification (UQ)

Importance of CFD & Deterministic Approach Challenges

- CFD: a critical piece of every engineering projects.
 - Cost & Time efficient.
 - Extensive conditions & designs testing.
 - Pre-experimental decision support.

- Deterministic approach limits.
 - 1 solution for 1 given set of input.
 - Lot of uncertainties in dynamic systems.

Image Credit : NASA

Uncertainty Quantification

- UQ Goals :
 - Assess reliability of predictions.
 - Manage variability.
 - Assist in decision-making.
- Uncertainty Types :
 - **Aleatoric**: Inherent randomness.
 - o Epistemic : Knowledge gaps.
- Key Methods :
 - Deterministic : Error propagation using sensitivity derivatives,...
 - Probabilistic ones : Monte Carlo, PCE,...

Fixed parameter 1 Original uncertain Choose one Model parameters Fixed parameter 2 parameter Uncertain parameter 1 Fixed parameter 3 Uncertain parameter 2 B Uncertainty quantification of the model Uncertain parameter 3 Uncertain parameter 1 Use the Uncertainty complete quantification distribution Uncertain parameter 2 Uncertain parameter 3

Traditional deterministic model

Monte Carlo Method and the Push for Alternatives

Monte Carlo Basics :

- Intuitive and easy implementation.
- Statistical analysis : calculate mean, variance, determines confidence intervals.

• Limitations:

- High sample requirement.
- Prohibitive computation cost.

Image Credit: Scott Shambaugh

Need for alternatives: PCE and NIPCE as promising and efficient UQ solutions.

II. Theory of NIPCE

Fundamentals

• Polynomial Chaos Expansion (PCE) is a polynomial surrogate model

$$\Theta(\vec{x}, \vec{\xi}) \approx \sum_{i=0}^{P} \theta_i(\vec{x}) \psi_i(\vec{\xi})$$

• It is also a linear combination in an orthogonal polynomial basis, weighted by deterministic coefficients

 Θ : Stochastic output

 $\vec{\xi} = \left(\vec{\xi}_1, \vec{\xi}_2, \cdots, \vec{\xi}_n\right)$: n-dimensional random variable vector

 \vec{x} : Position vector

 θ_i : deterministic components

 ψ_i : polynomial basis functions

Fundamentals

• Total number of elements of approximation:

$$N_t = P + 1 = \frac{(n+p)!}{n!p!}$$

• Optimal polynomial basis depends on Probability Density Function (PDF) of ξ components, because orthogonality depends on the weight function

For two functions $f(\vec{\xi})$ and $g(\vec{\xi})$ the inner product is defined as:

$$\left\langle f(\vec{\xi}), g(\vec{\xi}) \right\rangle = \int_{\Omega} f(\vec{\xi}) g(\vec{\xi}) w(\vec{\xi}) d\vec{\xi}$$

Distribution	PDF	Polynomial family	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$	Hermite $H_n(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, +\infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]
Beta	$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1, 1]
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,+\infty]$
Gamma	$\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{\alpha}(x)$	$x^{\alpha}e^{-x}$	$[0, +\infty]$

Fundamentals

• With the inner product defined, we can project the PCE on the k-th basis

$$\left\langle \Theta(\vec{x}, \vec{\xi}), \psi_k(\vec{\xi}) \right\rangle = \sum_{i=0}^{\infty} \left\langle \theta_i(\vec{x}) \psi_i(\vec{\xi}), \psi_k(\vec{\xi}) \right\rangle$$

• Due to orthogonality of the basis:

$$\theta_k(\vec{x}) = \frac{\left\langle \Theta(\vec{x}, \vec{\xi}), \psi_k(\vec{\xi}) \right\rangle}{\left\langle \psi_k(\vec{\xi}), \psi_k(\vec{\xi}) \right\rangle}$$

Point-collocation method

- NIPCE: Non-Intrusive Polynomial Chaos Expansion
- Many methods are available for a non-intrusive approach, but the selected one is point-collocation
- Take N+1 different input scenarios.

$$\begin{bmatrix} \psi_{0}(\vec{\xi_{0}}) & \psi_{1}(\vec{\xi_{0}}) & \psi_{2}(\vec{\xi_{0}}) & \cdots & \psi_{P}(\vec{\xi_{0}}) \\ \psi_{0}(\vec{\xi_{1}}) & \psi_{1}(\vec{\xi_{1}}) & \psi_{2}(\vec{\xi_{1}}) & \cdots & \psi_{P}(\vec{\xi_{1}}) \\ \psi_{0}(\vec{\xi_{2}}) & \psi_{1}(\vec{\xi_{2}}) & \psi_{2}(\vec{\xi_{2}}) & \cdots & \psi_{P}(\vec{\xi_{2}}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \psi_{0}(\vec{\xi_{N}}) & \psi_{1}(\vec{\xi_{N}}) & \psi_{2}(\vec{\xi_{N}}) & \cdots & \psi_{P}(\vec{\xi_{N}}) \end{bmatrix} \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{N} \end{bmatrix} = \begin{bmatrix} \Theta_{0} \\ \Theta_{1} \\ \Theta_{2} \\ \vdots \\ \Theta_{N} \end{bmatrix}$$

• if N=P, then we have a square linear system, thus there is a unique solution

Point-collocation method

- Common practice: take more samples than needed
- Oversampling ratio:

$$N_p = \frac{\text{number of samples}}{P+1}$$

- Solve oversampled system by using regression: least squares minimization
- Stochastic post-processing:

$$\mu_{\Theta} = \int \left(\sum_{i=0}^{P} \theta_i \psi_i(\vec{\xi})\right) w(\vec{\xi}) \, d\vec{\xi} = \theta_0 \qquad \sigma_{\Theta}^2 = \int \left(\sum_{i=0}^{P} \theta_i \psi_i(\vec{\xi})\right)^2 w(\vec{\xi}) \, d\vec{\xi} = \sum_{i=1}^{P} \theta_i^2$$

Methodology

• Full Order Model (FOM) used: OpenFOAM

- 2 test cases studied:
 - Lid-driven cavity problem
 - Dynamical characterization of NACA0012 airfoil
- 1st test case: demonstrate the use of the NIPCE method with the chaospy
- 2nd test case: parametric study
- We will validate the PCE results by comparing with the FOM and literature

III. Case study: Lid-driven cavity problem

Formulation of the problem

- Domain: square with side length L
- Physics behind the problem:

$$\nabla \cdot \vec{u} = 0$$

$$\frac{\partial \vec{u}}{\partial t} = -(\vec{u} \cdot \nabla)\vec{u} - \nabla p + \frac{1}{R_e}\Delta \vec{u}$$

- Reynolds number is the only parameter influencing the simulation
- Literature to compare: Ghia et al.
- Boundary conditions:

Ghia, UKNG, Kirti N Ghia, and CT Shin: *High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method.* Journal of computational physics, 48(3):387–411, 1982.

OpenFOAM implementation

- First step: determine where the solver used is reliable
- OpenFOAM solver selected is icoFoam
 - solves the incompressible laminar Navier-Stokes equations using the PISO (Pressure-Implicit with Splitting of Operators) algorithm
 - Transient code
- Secondly: Determine the minimum final step and number of cells to achieve convergence
- Finally: Reynolds number will be the only parameter influencing results, thus we can use the PCE method and assess its validity

First step of analysis: Determine where the solver is reliable

First step of analysis: Determine where the solver is reliable

Second step of analysis: Convergence study

Final step of analysis: Implementing NIPCE

• Vary the Reynolds number as follows:

$$R_e \sim \mathcal{N}(R_{e,avg}, R_{e,std}) \longrightarrow R_e \sim \mathcal{N}(1000, 100)$$

- Necessity to build a PCE surrogate for each y coordinate of OpenFOAM results
- Simulations for polynomial chaos order and oversampling ratio following: $p \in [\![3,6]\!]$ and $N_p \in [\![1,3]\!]$

Final step of analysis: Implementing NIPCE

• Sampling method used: Latin Hypercube Sampling (LHS)

Final step of analysis: Implementing NIPCE

IV. Case study: NACA0012 Airfoil

Case Presentation

- NACA0012 profile : Standard aerodynamic test model.
- Focus on two critical parameters :
 - Angle of Attack.
 - Upstream Mach Number.
- Simulation Goals:
 - Compute Cl (Lift Coefficient) Compute Cd (Drag Coefficient)

$$C_L = \frac{L}{\frac{1}{2}\rho V^2 S} \qquad C_D = \frac{D}{\frac{1}{2}\rho V^2 S}$$

NACA0012 Profile

Image Credit: Adobe Stock

Numerical Implementation on OpenFOAM

• Adapted from an existing OpenFOAM case (cf. Appendices for key simulation parameters).

- Convergence issues encountered:
 - High Mach Number instabilities (~0.7)
 - Stall phenomena at high Angles of Attack (~13°)
- Streamlining with Python and validation against NASA Data.

Cl as the only output for UQ. AOA range limited to [-12°,12°] for reliable analysis.

NIPCE Implementation : AOA uncertainty analysis

• Study Parameters:

- Mach Number set at 0.3
- AOA: Normal Distribution, mean o°, STD 5°

- NIPCE Python Implementation:

 Inputs: FOM, AOA distribution,
 Expansion order, Sample size, Sampling method, Fitting Method
 Point Collocation Technique to compute
 - the PCE

• Parametric study:

- Creation of a reference database to assess the surrogate models accuracy
- L2 relative error as accuracy metric

Reference values for the Lift Coefficient

$$\epsilon = 100 \times \frac{\sqrt{\sum_{t=1}^{n} (C_{l_t}^{\text{FOM}} - C_{l_t}^{\text{PCE}})^2}}{\sqrt{\sum_{t=1}^{n} (C_{l_t}^{\text{FOM}})^2}} \%$$

Impact of Sampling Technique: LHS vs Random

Expansion order	Number of Samples	Sampling method	Cl L2 relative error (%)
3	6	Random	8.7
3	6	LHS	6.1
3	9	Random	6.2
3	9	LHS	6.1
4	8	Random	7.5
4	8	LHS	7.3
4	12	Random	7.5
4	12	LHS	5.6
5	10	Random	3.4
5	10	LHS	7.3
2	4	Random	8.9
2	4	LHS	8.1
5	15	Random	3.34
5	15	LHS	2.7

Impact of Expansion Order

Impact of Expansion Order: Anomaly Explained

Impact of Oversampling Ratio

Impact of Fitting Method: Least Squares vs LASSO Regression

Discussion

• NIPCE Efficacy:

- o Delivers accurate models with few FOM evaluations
- Versatility in handling untrained data points.

- Considerations for critical perspective:
 Use of L2 relative error and dataset construction could be seen as arbitrary
 Some models might better predict specific phenomena despite overall larger error
 - Dependency on FOM robustness

Mach & Two Parameters Uncertainty Analysis

• Mach Number as sole parameter: the same study yielded similar outcomes (cf. Appendices)

- Two uncertain parameters:
 Initial results are promising
 Higher computational costs due to additional sample evaluations

Coefficient Variation with Mach and Angle of Attack

PCE obtained for an expansion order of 3 and an oversampling ratio of 1

V. Conclusion and Outlook

Conclusion and Outlook

- Theoretical and practical exploration of the NIPCE for method for UQ in CFD simulations.
 - Effective integration using Chaospy
 - Parametric investigation
- Limitations
 - Dependent on the FOM's robustness
 - Computational capabilities
- Future directions:
 - Deeper dual-parameter uncertainty analysis
 - Robust FOM solver use
 - Transition to Object Oriented Programming
 - Potential comparison of NIPCE results with Monte Carlo simulations Investigate other libraries

 - Machine Learning integration (Gaussian Process Modeling, ...)

Appendix I: Numerical Implementation of NACA0012 Case on OpenFOAM

Parameter	Value
Pressure (p)	10^{5} Pa
Temperature (T)	293 K
Gas Model	Air at room temperature (polytropic perfect gas)
Dynamic Viscosity (μ)	1.82×10^{-5}
Prandtl Number (Pr)	0.71
Turbulence Model	k-omega SST
Solver	rhoSimpleFoam

Fixed Parameter of the CFD simulation

First cell size ~0.2mm

```
aerofoil
{
    xLead    0;
    zLead    0;
    xTrail    1;
    zTrail    0;
    xUpper    0.3;
    zUpper    0.06;

    xLower    $xUpper;
    zLower    #neg $zUpper;
}
```

```
domain
   xMax 100;
   zMax 50;
   xMin #neg $xMax;
   zMin #neg $zMax;
   // Number of cells
   zCells 60; // aerofoil to far field
   xUCells 60; // upstream
   xMCells 25; // middle
   xDCells 50; // downstream
   // Mesh grading
              30000; // aerofoil to far field
   zGrading
   xUGrading 10;
                      // towards centre upstream
   leadGrading 0.005; // towards leading edge
   xDGrading 400;
                      // downstream
```

Appendix II: LASSO Regression

Contours of the error and constraint functions for the lasso, The solid blue areas are the constraint regions, $|\beta 1| + |\beta 2| \le s$, while the red ellipses are the contours of the RSS

The sum of the squares of residuals:

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

The Lasso regression:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

Another formulation:

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

Study Parameters:

AOA set at 5°

Mach: Normal Distribution, mean 0.325, STD 0.85

• NIPCE Python Implementation:

Inputs: FOM, AOA distribution,
 Expansion order, Sample size, Sampling
 method, Fitting Method
 Point Collocation Technique to compute

the PCE

Reference values for the Lift Coefficient

$$\epsilon = 100 \times \frac{\sqrt{\sum_{t=1}^{n} (C_{l_t}^{\text{FOM}} - C_{l_t}^{\text{PCE}})^2}}{\sqrt{\sum_{t=1}^{n} (C_{l_t}^{\text{FOM}})^2}} \%$$

• Parametric study:

 Creation of a reference database to assess the surrogate models accuracy

L2 relative error as accuracy metric

EXPANSION ORDER	# SAMPLES	SAMPLING TECHNIQUE	Cd RELATIVE ERROR (%)	CI RELATIVE ERROR (%)
3	6	Random	3,9	0,71
3	6	LHS	0,27	0,06
3		Random	1,5	
3	9	LHS	0,38	0,1
4	8	Random	5,7	1
4		LHS	0,59	0,11
				0.75
4		Random	4,1	0,75
4	12	LHS	0,309	0,056
5	10	Random	0,78	0,15
5	10	LHS	1,55	0,31
2	4	Random	1,04	0,33
2		LHS	0,31	
			1	
5	15	Random	1,2	0,26
5	15	LHS	0,47	0,08

LHS vs Random Sampling

Impact of Oversampling Ratio

Expansion Order = 4
Oversampling Ratio = 2

Expansion Order = 4 Oversampling Ratio = 4