Ayudantía 1 Finanzas 1

Intereses

Gabriel Haensgen

¹Universidad Diego Portales. Facultad de Economía y Empresa. Escuela Ingeniería Comercial

Abril 2020

Usted con sus bastos conocimientos en finanzas y su poca posibilidad de generar ingresos durante esta crisis producto del Corona Virus, tiene dos opciones para aumentar los últimos \$10.000 pesos que le quedan:

Opción 1: Ahorrar a una tasa nominal anual del 10 % pagadera mensualmente por un año con interés simple.

Opción 2: Ahorrar a una tasa nominal anual del 6 % pagadera anual por 2 años con interés compuesto.

¿Cuál es estas opciones tomaría usted?

Solution Opción 1:

Solution

Opción 1:

datos:

n = 1

m = 12

 $r_{apr}=0,1$

 $P_0 = $10,000$

Solution

Opción 1:

datos:

n = 1

m = 12

 $r_{apr}=0,1$

 $P_0 = $10,000$

Sabemos que para obtener el valor futuro de interés simple es:

$$P_n = P_0(1 + n * m * r)$$

Solution

Opción 1:

datos:

$$n = 1$$

$$m = 12$$

$$r_{apr}=0,1$$

$$P_0 = $10,000$$

Sabemos que para obtener el valor futuro de interés simple es:

$$P_n = P_0(1 + n * m * r)$$

Para resolver esta ecuación debemos primero trabajar la tasa APR porque nos dicen que esta opción paga mensualmente, es decir,

$$\frac{r_{apr}}{12} = \frac{0,1}{12} = 0,0083$$

Solution

Opción 1:

datos:

$$n = 1$$

$$m = 12$$

$$r_{apr}=0,1$$

$$P_0 = $10,000$$

Sabemos que para obtener el valor futuro de interés simple es:

$$P_n = P_0(1 + n * m * r)$$

Para resolver esta ecuación debemos primero trabajar la tasa APR porque nos dicen que esta opción paga mensualmente, es decir,

$$\frac{r_{apr}}{12} = \frac{0,1}{12} = 0,0083$$

Ahora podemos resolver:

$$P_n = 10,000(1 + 1 * 12 * 0,0083)$$

Solution

Opción 1:

datos:

$$n = 1$$

$$m = 12$$

$$r_{apr}=0,1$$

$$P_0 = $10,000$$

Sabemos que para obtener el valor futuro de interés simple es:

$$P_n = P_0(1 + n * m * r)$$

Para resolver esta ecuación debemos primero trabajar la tasa APR porque nos dicen que esta opción paga mensualmente, es decir,

$$\frac{r_{apr}}{12} = \frac{0,1}{12} = 0,0083$$

Ahora podemos resolver:

$$P_n = 10,000(1 + 1 * 12 * 0,0083)$$

$$P_n = 11,000$$

Solution

Opción 2: Datos

$$n=2$$

$$m = 1$$

$$r_{apr} = 0,06$$

$$P_0 = $10,000$$

Solution

Opción 2: Datos

$$n = 2$$

$$m = 1$$

$$r_{apr} = 0.06$$

$$P_0 = $10,000$$

En este caso, como estamos comparando tasas debemos encontrar la r_{ear} a través de:

$$\left(1+rac{r_{apr}}{m}
ight)^m-1$$
 para obtener la r : $\left(1+rac{0,06}{1}
ight)^1-1=0,06$

Solution

Opción 2: Datos

$$n=2$$

$$m = 1$$

$$r_{apr} = 0.06$$

$$P_0 = $10,000$$

En este caso, como estamos comparando tasas debemos encontrar la r_{ear} a través de:

$$\left(1+rac{r_{apr}}{m}
ight)^m-1$$
 para obtener la r : $\left(1+rac{0,06}{1}
ight)^1-1=0,06$

Entonces resolvemos sabiendo que la formula del interés compuesto es:

$$P_n = P_0(1+r)^{n*m}$$

Solution

Opción 2: Datos

$$n=2$$

$$m = 1$$

$$r_{apr} = 0.06$$

$$P_0 = $10,000$$

En este caso, como estamos comparando tasas debemos encontrar la r_{ear} a través de:

$$\left(1+rac{r_{apr}}{m}
ight)^m-1$$
 para obtener la r : $\left(1+rac{0,06}{1}
ight)^1-1=0,06$

Entonces resolvemos sabiendo que la formula del interés compuesto es:

$$P_n = P_0(1+r)^{n*m}$$

$$P_n = 10,000(1+0,06)^{2*1}$$

Solution

Opción 2: Datos

$$n=2$$

$$m=1$$

$$r_{apr} = 0.06$$

$$P_0 = $10,000$$

En este caso, como estamos comparando tasas debemos encontrar la r_{ear} a través de:

$$\left(1+rac{r_{apr}}{m}
ight)^m-1$$
 para obtener la r : $\left(1+rac{0,06}{1}
ight)^1-1=0,06$

Entonces resolvemos sabiendo que la formula del interés compuesto es:

$$P_n = P_0(1+r)^{n*m}$$

$$P_n = 10,000(1+0,06)^{2*1}$$

$$P_n = 11,236$$

Solution

Opción 2: Datos

$$n=2$$

$$m = 1$$

$$r_{apr} = 0,06$$

$$P_0 = $10,000$$

En este caso, como estamos comparando tasas debemos encontrar la r_{ear} a través de:

$$\left(1+rac{r_{apr}}{m}
ight)^m-1$$
 para obtener la r : $\left(1+rac{0,06}{1}
ight)^1-1=0,06$

Entonces resolvemos sabiendo que la formula del interés compuesto es:

$$P_n = P_0(1+r)^{n*m}$$

$$P_n = 10,000(1+0,06)^{2*1}$$

$$P_n = 11,236$$

11,000 < 11,236 Por lo tanto, la mejor opción es la 2.

Suponga el valor de la UF=\$27.000, una tasa de impuestos a la inversión del 20 % y una inflación constante en el tiempo del 3 %. Su banco ofrece dos inversiones en depósito a plazo: La primera se realiza en CLP (pesos chilenos) y entrega un rendimiento de 4 % anual, pagadero mensual. La segunda se realiza en UF y entrega un rendimiento del 1 % anual real, pagadero mensual.

Suponga el valor de la UF=\$27.000, una tasa de impuestos a la inversión del 20 % y una inflación constante en el tiempo del 3 %. Su banco ofrece dos inversiones en depósito a plazo: La primera se realiza en CLP (pesos chilenos) y entrega un rendimiento de 4 % anual, pagadero mensual. La segunda se realiza en UF y entrega un rendimiento del 1 % anual real, pagadero mensual.

Si usted piensa invertir a 10 años en una de estas opciones ¿Cuál escogería?¿Cuál sería su rendimiento nominal y real?

Suponga el valor de la UF=\$27.000, una tasa de impuestos a la inversión del 20 % y una inflación constante en el tiempo del 3 %. Su banco ofrece dos inversiones en depósito a plazo: La primera se realiza en CLP (pesos chilenos) y entrega un rendimiento de 4 % anual, pagadero mensual. La segunda se realiza en UF y entrega un rendimiento del 1 % anual real, pagadero mensual.

- Si usted piensa invertir a 10 años en una de estas opciones ¿Cuál escogería?¿Cuál sería su rendimiento nominal y real?
- ② Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Si usted piensa invertir a 10 años en una de estas opciones ¿Cuál escogería?¿Cuál sería su rendimiento nominal y real?

Si usted piensa invertir a 10 años en una de estas opciones ¿Cuál escogería?¿Cuál sería su rendimiento nominal y real?

Solution

En primer lugar, obtendremos el rendimiento de cada inversión. Luego, le descontaremos los impuestos para obtener el rendimiento neto, y finalmente, obtendremos el rendimiento real al incluir la inflación. Es importante notar que la segunda inversión se realiza en UF y en tasa real, por lo tanto, su rendimiento neto de impuestos será su rendimiento real

Inversión 1:

$$tasaAPR = 4\% \rightarrow tasaEAR = 4,0741543\%$$

Inversión 1:

$$tasaAPR = 4\% \rightarrow tasaEAR = 4,0741543\%$$

Luego, descontamos impuestos:

Inversión 1:

$$tasaAPR = 4\% \rightarrow tasaEAR = 4,0741543\%$$

Luego, descontamos impuestos:

$$4,0741543 \cdot 0,8 = 3,2593234 \%$$

Inversión 1:

$$tasaAPR = 4\% \rightarrow tasaEAR = 4,0741543\%$$

Luego, descontamos impuestos:

$$4,0741543\cdot 0,8=3,2593234\,\%$$

Finalmente, obtendremos tasa real, considerando inflación:

Inversión 1:

$$tasaAPR = 4\% \rightarrow tasaEAR = 4,0741543\%$$

Luego, descontamos impuestos:

$$4,0741543 \cdot 0,8 = 3,2593234 \%$$

Finalmente, obtendremos tasa real, considerando inflación:

$$r_{real} = (\frac{1,032593234}{1,03}) - 1 = 0,2518\%$$

Inversión 2:

$$tasaAPR=1\,\%
ightarrow\, tasaEAR=1,0046\,\%$$

Inversión 2:

$$tasaAPR = 1 \% \rightarrow tasaEAR = 1,0046 \%$$

Luego, descontamos impuestos:

Inversión 2:

$$tasaAPR = 1 \% \rightarrow tasaEAR = 1,0046 \%$$

Luego, descontamos impuestos:

$$1,0046 \cdot 0,8 \approx 0,80368 \%$$

Inversión 2:

$$tasaAPR = 1\% \rightarrow tasaEAR = 1,0046\%$$

Luego, descontamos impuestos:

$$1,0046 \cdot 0,8 \approx 0,80368 \%$$

Cómo esta inversión ya contempla inflación al ser en tasa real, vemos que su tasa es mayor a la de la otra inversión (0,2518%) y por tanto será preferida.

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

$$tasaAPR = 3,5\% \rightarrow tasaEAR = 3,557\%$$

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

$$tasaAPR = 3,5\% \rightarrow tasaEAR = 3,557\%$$

Luego, descontamos impuestos:

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

$$tasaAPR = 3,5\% \rightarrow tasaEAR = 3,557\%$$

Luego, descontamos impuestos:

$$3,557 \cdot 0,8 \approx 2,845 \%$$

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

$$tasaAPR = 3,5\% \rightarrow tasaEAR = 3,557\%$$

Luego, descontamos impuestos:

$$3,557 \cdot 0,8 \approx 2,845 \%$$

Es fácil notar que como tasa EAR neta de impuestos es menor a inflación, la inversión terminaría siendo una pérdida de valor.

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

$$tasaAPR = 3,5\% \rightarrow tasaEAR = 3,557\%$$

Luego, descontamos impuestos:

$$3,557 \cdot 0,8 \approx 2,845 \%$$

Es fácil notar que como tasa EAR neta de impuestos es menor a inflación, la inversión terminaría siendo una pérdida de valor. Demostración:

Si el segundo depósito dejara de existir, y el primer depósito a plazo disminuyera su rendimiento a un 3,5 % ¿Recomendaría invertir en él?

Solution

Haremos mismo procedimiento con nuevas tasas.

$$tasaAPR = 3,5\% \rightarrow tasaEAR = 3,557\%$$

Luego, descontamos impuestos:

$$3,557 \cdot 0,8 \approx 2,845 \%$$

Es fácil notar que como tasa EAR neta de impuestos es menor a inflación, la inversión terminaría siendo una pérdida de valor. Demostración:

$$r_{real} = (\frac{1,02845}{1.03}) - 1 = -0,15\%$$

Suponga que usted dispone de un monto \$20,000 para ahorrar anualmente y puede colocarlos en un portafolio conservador que proyecta ganancias de 7% anual. Si usted comienza hacer la primer ahorro de aquí a un año, ¿Cuanto tendrá ahorrado dentro de 20?

Suponga que usted dispone de un monto \$20,000 para ahorrar anualmente y puede colocarlos en un portafolio conservador que proyecta ganancias de 7% anual. Si usted comienza hacer la primer ahorro de aquí a un año, ¿Cuanto tendrá ahorrado dentro de 20?

Solution

Para empezar, debemos notar que esto se trata de el valor futuro de una anualidad, lo cuál debe ser manejado con la siguiente fórmula:

Suponga que usted dispone de un monto \$20,000 para ahorrar anualmente y puede colocarlos en un portafolio conservador que proyecta ganancias de 7% anual. Si usted comienza hacer la primer ahorro de aquí a un año, ¿Cuanto tendrá ahorrado dentro de 20?

Solution

Para empezar, debemos notar que esto se trata de el valor futuro de una anualidad, lo cuál debe ser manejado con la siguiente fórmula:

$$FV_N = A \cdot \left[\frac{(1+r)^n - 1}{r} \right]$$

Suponga que usted dispone de un monto \$20,000 para ahorrar anualmente y puede colocarlos en un portafolio conservador que proyecta ganancias de 7% anual. Si usted comienza hacer la primer ahorro de aquí a un año, ¿Cuanto tendrá ahorrado dentro de 20?

Solution

Para empezar, debemos notar que esto se trata de el valor futuro de una anualidad, lo cuál debe ser manejado con la siguiente fórmula:

$$FV_N = A \cdot \left[\frac{(1+r)^n - 1}{r} \right]$$

$$FV_N = 20,000 \cdot \left[\frac{(1+0,07)^{20}-1}{0.07} \right] = \$819,909,85$$