BT3040 - Bioinformatics

Practical 6

1

The given IDs in Set 1 were mapped using UniProt and the sequences were downloaded in FASTA format.

The FASTA file was fed into Clustal Omega to obtain the MSA. The result was downloaded in CLUSTAL format.

The file in CLUSTAL format was used as input for the AL2CO server along with the necessary scoring parameters.

The results are shown below:

			Set 1			
Position	Alignment	Score 1	Score 2	Score 3	Score 4	Score 5
1	:	0.000	1.021	5.000	1.019	0.943
2	S	-0.305	0.865	3.008	0.729	0.253
3	L	0.000	0.909	4.000	0.916	0.943
4	S	0.000	0.953	4.000	0.951	0.943
5	D	-1.121	0.527	1.149	0.492	-1.597
6	K	-1.160	0.561	1.157	0.439	-1.685
7	D	0.000	0.973	6.000	0.972	0.943
8	K	0.000	0.956	5.000	0.950	0.943
9	A	-1.169	0.541	1.868	0.465	-1.705
10	A	-0.305	0.917	4.661	0.770	0.253
11	V	-0.586	0.744	3.603	0.763	-0.385
12	R	-0.305	0.871	4.504	0.744	0.253
13	A	-1.034	0.567	1.909	0.566	-1.399
14	L	-1.160	0.559	1.521	0.415	-1.685
15	W	-0.305	0.943	9.306	0.888	0.253
16	S	-0.916	0.612	2.264	0.604	-1.134
17	K	0.000	0.956	5.000	0.950	0.943
18	I	-0.689	0.691	3.504	0.719	-0.618
19	G	-0.305	0.886	4.992	0.831	0.253
20	K	-1.034	0.613	2.405	0.502	-1.399
21	S	-0.886	0.713	4.372	0.627	-1.064
22	Α	-0.474	0.740	2.876	0.767	-0.131
23	D	-1.034	0.624	2.240	0.517	-1.399
24	А	-0.908	0.665	2.455	0.593	-1.114
25	I	-0.886	0.757	4.314	0.679	-1.064
26	G	0.000	0.977	6.000	0.977	0.943
27	N	-0.886	0.650	1.826	0.561	-1.064
28	D	-0.305	0.922	4.512	0.784	0.253
29	А	-0.305	0.817	3.347	0.768	0.253
30	L	0.000	0.909	4.000	0.916	0.943
31	S	-0.886	0.749	3.298	0.628	-1.064
32	R	0.000	1.015	5.000	1.011	0.943
33	М	-0.305	0.933	4.008	0.944	0.253
34	l	-0.305	0.904	4.992	0.780	0.253
35	V	-1.295	0.470	0.959	0.373	-1.991
36	V	-1.367	0.472	1.132	0.386	-2.154
37	Υ	-0.474	0.830	5.140	0.718	-0.131

38	Р	0.000	0.993	7.000	0.993	0.943
39	Q	-0.474	0.821	3.215	0.715	-0.131
40	Т	0.000	0.977	5.000	0.979	0.943
41	К	0.000	0.956	5.000	0.950	0.943
42	Т	0.000	0.977	5.000	0.979	0.943
43	Υ	0.000	1.016	7.000	1.012	0.943
44	F	0.000	0.988	6.000	0.989	0.943
45	S	-0.474	0.822	4.521	0.712	-0.131
46	Н	0.000	0.969	8.000	0.972	0.943
47	W	-0.600	0.823	4.240	0.711	-0.417
48	Р	-0.857	0.657	2.295	0.582	-1
49	D	-0.305	0.888	5.174	0.901	0.253
50	V	-0.586	0.674	2.810	0.621	-0.385
51	Т	-0.600	0.776	2.752	0.605	-0.417
52	Р	-0.586	0.745	3.959	0.689	-0.385
53	G	0.000	0.977	6.000	0.977	0.943
54	S	0.000	0.953	4.000	0.951	0.943
55	Р	-0.600	0.730	2.322	0.628	-0.417
56	н	-0.305	0.936	4.198	0.800	0.253
57	I	-0.305	0.872	3.835	0.748	0.253
58	K	0.000	0.956	5.000	0.950	0.943
59	Α	-0.860	0.596	1.835	0.687	-1.006
60	Н	0.000	0.969	8.000	0.972	0.943
61	G	0.000	0.977	6.000	0.977	0.943
62	K	-0.600	0.777	3.405	0.812	-0.417
63	K	0.000	0.956	5.000	0.950	0.943
64	V	0.000	0.956	4.000	0.956	0.943
65	М	-0.760	0.660	2.124	0.612	-0.778
66	G	-0.760	0.704	2.694	0.561	-0.778
67	G	-0.305	0.817	3.355	0.692	0.253
68	I	-0.305	0.825	3.669	0.710	0.253
69	А	-0.860	0.643	2.190	0.545	-1.006
70	L	-1.673	0.360	0.124	0.382	-2.848
71	А	0.000	0.906	4.000	0.909	0.943
72	V	-0.586	0.701	2.413	0.682	-0.385
73	S	-1.594	0.406	0.934	0.359	-2.670
74	K	-0.305	0.879	6.488	0.745	0.253
75	I	-0.995	0.543	2.612	0.534	-1.312
76	D	-0.305	0.888	5.331	0.888	0.253

77	D	0.000	0.973	6.000	0.972	0.943
78	L	-0.760	0.675	3.140	0.683	-0.778
79	K	-0.600	0.807	4.446	0.618	-0.417
80	Т	-0.760	0.733	3.149	0.664	-0.778
81	G	-0.305	0.817	3.355	0.692	0.253
82	L	0.000	0.909	4.000	0.916	0.943
83	М	-0.305	0.869	3.182	0.749	0.253
84	E	-1.414	0.451	0.678	0.428	-2.262
85	L	0.000	0.909	4.000	0.916	0.943
86	S	0.000	0.953	4.000	0.951	0.943
87	E	-0.305	0.888	5.331	0.763	0.253
88	Q	-0.305	0.826	3.017	0.715	0.253
89	Н	0.000	0.969	8.000	0.972	0.943
90	А	0.000	0.906	4.000	0.909	0.943
91	Υ	-0.760	0.731	4.967	0.618	-0.778
92	K	0.000	0.956	5.000	0.950	0.943
93	L	0.000	0.909	4.000	0.916	0.943
94	R	0.000	1.015	5.000	1.011	0.943
95	V	0.000	0.956	4.000	0.956	0.943
96	D	0.000	0.973	6.000	0.972	0.943
97	Р	0.000	0.993	7.000	0.993	0.943
98	A	-0.305	0.860	3.339	0.715	0.253
99	N	0.000	1.012	6.000	1.011	0.943
100	F	0.000	0.988	6.000	0.989	0.943
101	K	0.000	0.956	5.000	0.950	0.943
102	I	-0.600	0.739	3.058	0.632	-0.417
103	L	0.000	0.909	4.000	0.916	0.943
104	N	-0.600	0.781	2.926	0.619	-0.417
105	Н	-0.305	0.886	6.653	0.839	0.253
106	С	-0.305	0.937	7.306	0.962	0.253
107	I	-0.600	0.739	3.058	0.588	-0.417
108	L	-0.305	0.825	3.678	0.783	0.253
109	V	-0.474	0.784	2.215	0.844	-0.131
110	V	-0.474	0.806	3.479	0.677	-0.131
111	I	-0.600	0.735	3.240	0.580	-0.417
112	S	-0.305	0.814	3.504	0.683	0.253
113	Т	-1.720	0.345	0.702	0.355	-2.955
114	М	-0.305	0.885	6.322	0.769	0.253
115	F	-0.935	0.559	1.207	0.529	-1.175

116	Р	0.000	0.993	7.000	0.993	0.943
117	K	-1.846	0.302	0.562	0.299	-3.241
118	Е	-0.916	0.633	3.008	0.584	-1.134
119	F	-0.305	0.893	4.992	0.837	0.253
120	Т	-0.305	0.891	4.182	0.907	0.253
121	Р	0.000	0.993	7.000	0.993	0.943
122	E	-0.760	0.660	2.182	0.589	-0.778
123	А	-0.886	0.695	2.736	0.519	-1.064
124	Н	0.000	0.969	8.000	0.972	0.943
125	V	-0.305	0.814	3.339	0.685	0.253
126	s	0.000	0.953	4.000	0.951	0.943
127	L	0.000	0.909	4.000	0.916	0.943
128	D	0.000	0.973	6.000	0.972	0.943
129	K	0.000	0.956	5.000	0.950	0.943
130	F	0.000	0.988	6.000	0.989	0.943
131	L	-0.305	0.822	3.355	0.839	0.253
132	s	-0.860	0.595	2.289	0.528	-1.006
133	G	-1.414	0.459	1.496	0.400	-2.262
134	V	0.000	0.956	4.000	0.956	0.943
135	А	-0.600	0.769	2.909	0.577	-0.417
136	L	-0.600	0.796	3.231	0.615	-0.417
137	Α	-0.305	0.860	3.339	0.715	0.253
138	L	0.000	0.909	4.000	0.916	0.943
139	А	-0.305	0.881	4.165	0.738	0.253
140	E	-0.305	0.868	3.347	0.743	0.253
141	R	-0.305	0.871	4.504	0.744	0.253
142	Υ	0.000	1.016	7.000	1.012	0.943
143	R	0.000	1.015	5.000	1.011	0.943

The same steps were repeated for Set 2. The results are shown below:

			Set 2			
Position	Alignment	Score 1	Score 2	Score 3	Score 4	Score 5
1	М	-1.216	0.529	1.306	0.494	-1
2	А	-1.216	0.529	1.306	0.494	-1
3	S	-0.974	0.648	1.328	0.666	-0.56
4	K	-1.494	0.426	1.109	0.365	-1.507

5	Р	-0.377	0.882	3.5	0.827	0.529
6	Q	-0.736	0.726	2.938	0.641	-0.125
7	Р	-0.377	0.884	3.828	0.83	0.529
8	I	-0.736	0.769	3.172	0.713	-0.125
9	A	-0.377	0.801	3.125	0.739	0.529
10	А	-0.377	0.812	4.656	0.754	0.529
11	А	-0.377	0.812	4.656	0.754	0.529
12	N	0	0.995	6	0.994	1.215
13	W	-0.349	0.909	8.963	0.876	0.58
14	K	0	0.962	5	0.966	1.215
15	С	-0.937	0.679	2.395	0.639	-0.492
16	N	0	0.995	6	0.994	1.215
17	G	-0.349	0.835	4	0.81	0.58
18	S	-1.311	0.51	0.79	0.53	-1.173
19	E	-1.303	0.553	1.568	0.515	-1.159
20	S	-1.523	0.401	0.901	0.372	-1.56
21	L	-1.581	0.481	0.519	0.482	-1.666
22	L	-1.061	0.526	2.667	0.514	-0.718
23	V	-1.677	0.317	0.198	0.27	-1.841
24	Р	-1.003	0.64	2.025	0.597	-0.612
25	L	-0.687	0.664	3.012	0.656	-0.036
26	I	-0.965	0.55	2.716	0.557	-0.543
27	Е	-1.735	0.362	0.136	0.393	-1.946
28	Т	-1.003	0.663	1.815	0.595	-0.612
29	L	-0.349	0.859	3.235	0.826	0.58
30	N	-0.349	0.888	4.988	0.885	0.58
31	А	-1.003	0.591	1.951	0.549	-0.612
32	А	-0.684	0.691	2.716	0.676	-0.031
33	Т	-1.889	0.305	0.383	0.302	-2.227
34	F	-1.581	0.426	0.457	0.364	-1.666
35	D	-1.149	0.604	1.543	0.553	-0.879
36	Н	-1.677	0.372	0.383	0.348	-1.841
37	D	-1.523	0.429	1.259	0.421	-1.56
38	:	-1.216	0.529	1.306	0.494	-1
39	:	-1.216	0.529	1.306	0.494	-1
40	V	-0.687	0.645	2.222	0.684	-0.036
41	Q	-0.849	0.671	3.432	0.623	-0.331
42	С	-0.349	0.829	3.074	0.795	0.58
-			0.93	4	0.93	1.215

		1				
44	V	-1.061	0.545	2.136	0.563	-0.718
45	A	-1.003	0.594	2.062	0.557	-0.612
46	Р	-0.349	0.893	5.049	0.894	0.58
47	Т	-0.349	0.889	5.395	0.855	0.58
48	F	-1.215	0.498	0.889	0.51	-0.998
49	L	-1.677	0.321	0.593	0.294	-1.841
50	Н	-0.684	0.808	5.247	0.771	-0.031
51	I	-0.687	0.664	3.012	0.686	-0.036
52	Р	-1.149	0.595	1.272	0.564	-0.879
53	M	-1.465	0.504	1.704	0.492	-1.454
54	Т	-1.149	0.509	1.704	0.45	-0.879
55	K	-0.937	0.625	2.37	0.582	-0.492
56	А	-1.215	0.541	1.556	0.505	-0.998
57	R	-1.427	0.462	0.889	0.399	-1.385
58	L	-0.349	0.85	3.407	0.809	0.58
59	Т	-1.216	0.529	1.306	0.494	-1
60	N	-1.523	0.455	0.877	0.44	-1.56
61	Р	-1.149	0.584	1.667	0.551	-0.879
62	К	-1.427	0.467	1.469	0.421	-1.385
63	F	-1.311	0.477	1.852	0.497	-1.173
64	Q	-1.831	0.321	-0.222	0.292	-2.121
65	I	-1.003	0.611	2.531	0.549	-0.612
66	А	-0.684	0.691	2.716	0.623	-0.031
67	А	-0.349	0.798	3.235	0.793	0.58
68	Q	0	0.994	5	0.993	1.215
69	N	0	0.995	6	0.994	1.215
70	А	-0.687	0.669	3.568	0.649	-0.036
71	I	-0.849	0.723	4	0.666	-0.331
72	:	-1.074	0.596	1.234	0.506	-0.741
73	Т	-1.149	0.532	0.827	0.465	-0.879
74	R	-1.523	0.408	0.654	0.38	-1.56
75	S	-1.369	0.453	1.358	0.446	-1.279
76	G	0	0.944	6	0.951	1.215
77	А	0	0.909	4	0.905	1.215
78	F	0	1.001	6	1.006	1.215
79	Т	0	0.983	5	0.984	1.215
80	G	0	0.944	6	0.951	1.215
81	E	0	0.962	5	0.96	1.215
		1				

		1				
83	S	-0.349	0.873	3.235	0.84	0.58
84	L	-1.149	0.562	1.568	0.469	-0.879
85	Q	-1.465	0.391	0.741	0.375	-1.454
86	I	-0.684	0.811	3.235	0.744	-0.031
87	L	-0.937	0.601	2.914	0.557	-0.492
88	K	-0.349	0.849	3.605	0.848	0.58
89	D	-0.349	0.883	5.012	0.878	0.58
90	Υ	-1.523	0.43	1.123	0.415	-1.56
91	G	0	0.944	6	0.951	1.215
92	I	-1.003	0.58	1.778	0.529	-0.612
93	S	-1.677	0.406	0.778	0.368	-1.841
94	W	0	1.013	11	1.013	1.215
95	V	0	0.93	4	0.93	1.215
96	V	-0.687	0.644	3.506	0.676	-0.036
97	L	0	0.963	4	0.959	1.215
98	G	0	0.944	6	0.951	1.215
99	Н	0	1.017	8	1.017	1.215
100	S	0	0.979	4	0.977	1.215
101	E	0	0.962	5	0.96	1.215
102	R	0	0.999	5	1	1.215
103	R	0	0.999	5	1	1.215
104	L	-1.149	0.592	1.728	0.522	-0.879
105	Υ	-1.273	0.484	1.827	0.463	-1.104
106	:	-1.216	0.529	1.306	0.494	-1
107	:	-1.216	0.529	1.306	0.494	-1
108	Υ	-0.849	0.703	3.346	0.65	-0.331
109	G	-0.684	0.735	3.074	0.682	-0.031
110	E	0	0.962	5	0.96	1.215
111	Т	-0.684	0.768	2.704	0.7	-0.031
112	N	-0.53	0.796	4.272	0.765	0.25
113	E	-1.149	0.546	1.605	0.484	-0.879
114	I	-1.149	0.577	1.642	0.508	-0.879
115	V	-0.53	0.762	3.654	0.726	0.25
116	А	-0.687	0.601	2.42	0.643	-0.036
117	Е	-1.311	0.505	1.914	0.499	-1.173
118	K	0	0.962	5	0.966	1.215
119	V	-0.995	0.535	1.679	0.492	-0.598
120	А	-1.303	0.475	1.21	0.465	-1.159
121	Q	-1.149	0.638	3.346	0.569	-0.879

400			2 222		0.005	1 0 1 5
122	A	0	0.909	4	0.905	1.215
123	С	-0.349	0.861	3.074	0.824	0.58
124	A	-1.427	0.419	1.136	0.381	-1.385
125	:	-1.216	0.529	1.306	0.494	-1
126	A	-1.061	0.514	1.63	0.491	-0.718
127	G	-0.349	0.837	4.79	0.813	0.58
128	F	-1.003	0.642	2.444	0.566	-0.612
129	Н	-0.937	0.592	1.444	0.573	-0.492
130	V	0	0.93	4	0.93	1.215
131	I	-0.349	0.858	3.802	0.849	0.58
132	V	-1.303	0.492	0.901	0.401	-1.159
133	С	0	1.017	9	1.018	1.215
134	V	-0.53	0.762	3.654	0.726	0.25
135	G	0	0.944	6	0.951	1.215
136	E	0	0.962	5	0.96	1.215
137	Т	-0.965	0.592	1.333	0.598	-0.543
138	N	-0.349	0.859	2.642	0.819	0.58
139	Е	-0.637	0.706	3.778	0.782	0.056
140	E	-0.349	0.857	4.407	0.85	0.58
141	R	-0.349	0.89	4.407	0.856	0.58
142	E	-0.349	0.853	4.21	0.816	0.58
143	А	-0.349	0.802	3.407	0.766	0.58
144	G	0	0.944	6	0.951	1.215
145	R	-1.677	0.414	-0.222	0.387	-1.841
146	Т	0	0.983	5	0.984	1.215
147	А	-1.831	0.35	-0.062	0.283	-2.121
148	А	-1.311	0.452	0.988	0.454	-1.173
149	V	0	0.93	4	0.93	1.215
150	V	-0.684	0.726	1.84	0.692	-0.031
151	L	-1.273	0.497	0.395	0.44	-1.104
152	Т	-1.215	0.533	1.309	0.562	-0.998
153	Q	0	0.994	5	0.993	1.215
154	L	-0.965	0.604	1.543	0.623	-0.543
155	А	-1.427	0.481	0.951	0.424	-1.385
156	А	-0.637	0.629	2.222	0.712	0.056
157	V	-1.149	0.562	2.407	0.491	-0.879
158	А	-1.003	0.581	1.852	0.507	-0.612
159	Q	-0.995	0.612	3.037	0.569	-0.598
160	К	-1.215	0.519	1.593	0.511	-0.998

161		1 215	0.404	1 000	0.450	-0.998
161	L	-1.215	0.484	1.802	0.458	
162	S	-1.216	0.529	1.306	0.494	-1
163	K _	-1.216	0.529	1.306	0.494	-1
164	E	-1.003	0.635	2.136	0.568	-0.612
165	A	-0.684	0.766	3.407	0.718	-0.031
166	W	0	1.013	11	1.013	1.215
167	S	-1.003	0.658	2.086	0.617	-0.612
168	R	-1.215	0.549	2	0.558	-0.998
169	V	-0.349	0.822	3.802	0.815	0.58
170	V	0	0.93	4	0.93	1.215
171	I	-1.099	0.495	2.667	0.518	-0.787
172	А	0	0.909	4	0.905	1.215
173	Υ	0	1.013	7	1.011	1.215
174	E	0	0.962	5	0.96	1.215
175	Р	0	0.995	7	0.997	1.215
176	V	0	0.93	4	0.93	1.215
177	W	0	1.013	11	1.013	1.215
178	А	0	0.909	4	0.905	1.215
179	I	0	0.971	4	0.97	1.215
180	G	0	0.944	6	0.951	1.215
181	Т	0	0.983	5	0.984	1.215
182	G	0	0.944	6	0.951	1.215
183	K	-0.684	0.75	2.914	0.718	-0.031
184	V	-0.937	0.591	2.037	0.535	-0.492
185	А	0	0.909	4	0.905	1.215
186	Т	-0.349	0.876	4.198	0.87	0.58
187	Р	-0.349	0.884	5.21	0.88	0.58
188	Q	-1.215	0.53	2.185	0.514	-0.998
189	Q	-0.349	0.888	4.025	0.853	0.58
190	Α	0	0.909	4	0.905	1.215
191	Q	-0.349	0.885	4.407	0.852	0.58
192	E	-0.684	0.753	3.852	0.689	-0.031
193	V	-0.349	0.822	3.802	0.788	0.58
194	H	0	1.017	8	1.017	1.215
195	E	-0.637	0.669	2.222	0.641	0.056
196	L	-1.677	0.389	-0.074	0.351	-1.841
197	L	-0.849	0.656	2.914	0.592	-0.331
198	R	0.043	0.999	5	1	1.215
199	R	-1.677	0.35	0.383	0.319	-1.841
133	11	-1.077	0.33	0.303	0.519	-1.041

200	W	0.50	0.000	7 000	0.700	0.05
200		-0.53	0.822	7.296	0.792	0.25
201	V	-0.349	0.85	3.407	0.808	0.58
202	R	-1.149	0.545	1.827	0.476	-0.879
203	S	-1.303	0.564	1.778	0.525	-1.159
204	K	-0.637	0.724	3.222	0.69	0.056
205	L	-1.149	0.516	2.173	0.471	-0.879
206	G	-0.849	0.673	2.296	0.656	-0.331
207	Т	-1.215	0.555	1.42	0.532	-0.998
208	D	-1.677	0.333	0.543	0.319	-1.841
209	I	-0.684	0.707	3.012	0.633	-0.031
210	А	-0.349	0.802	3.407	0.796	0.58
211	А	-1.465	0.426	1.012	0.405	-1.454
212	Q	-1.003	0.651	2.099	0.575	-0.612
213	L	-0.637	0.713	2.222	0.68	0.056
214	R	0	0.999	5	1	1.215
215	I	0	0.971	4	0.97	1.215
216	L	-0.937	0.612	1.963	0.586	-0.492
217	Υ	0	1.013	7	1.011	1.215
218	G	0	0.944	6	0.951	1.215
219	G	0	0.944	6	0.951	1.215
220	S	0	0.979	4	0.977	1.215
221	V	-0.349	0.815	3.21	0.776	0.58
222	Т	-0.684	0.773	3.346	0.711	-0.031
223	А	-0.965	0.53	1.765	0.521	-0.543
224	К	-1.003	0.592	1.642	0.518	-0.612
225	N	-0.637	0.733	3.222	0.814	0.056
226	А	-0.687	0.669	3.568	0.65	-0.036
227	R	-1.303	0.523	1.593	0.429	-1.159
228	Т	-0.849	0.666	2.272	0.596	-0.331
229	L	-0.349	0.859	3.235	0.823	0.58
230	Υ	-1.003	0.59	1.383	0.52	-0.612
231	Q	-1.465	0.444	1.111	0.427	-1.454
232	M	-0.937	0.637	2.457	0.601	-0.492
233	R	-0.684	0.777	3.802	0.707	-0.031
234	D	-0.349	0.883	5.012	0.852	0.58
235	ı	-0.687	0.637	3.506	0.638	-0.036
236	N	-0.349	0.883	5.012	0.847	0.58
237	G	0.545	0.944	6	0.951	1.215
238	F		1.001		1.006	
238	F	0	1.001	6	1.006	1.215

1.215 1.215
1.215
1.215
1.215
1.215
0.58
1.215
1.215
-0.031
1.215
-0.031
-0.331
1.215
0.58
-0.031
0.25
-1.454
-1.385
-1
-1
-1
-1
-1
-1
-1

2

The top 10 residues with the $\underline{\text{highest}}$ scores in Set 1 and Set 2 obtained by unweighted frequency and entropy-based measure are:

Set 1			Set 2		
1	• •	0.00	12	Ζ	0.00
3	L	0.00	14	K	0.00
4	S	0.00	16	Ν	0.00
7	D	0.00	43	٧	0.00

8	K	0.00	68	Q	0.00
17	K	0.00	69	Ν	0.00
26	G	0.00	76	G	0.00
30	L	0.00	77	Α	0.00
32	R	0.00	78	F	0.00
38	Р	0.00	79	Т	0.00

The top 10 residues with the <u>lowest</u> scores in Set 1 and Set 2 obtained by unweighted frequency and entropy-based measure are:

Set 1				Set 2			
117	K	-1.85	33	Т	-1.889		
113	Т	-1.72	64	Q	-1.831		
70	L	-1.67	147	Α	-1.831		
73	S	-1.59	27	Е	-1.735		
84	Е	-1.41	23	٧	-1.677		
133	G	-1.41	36	Н	-1.677		
36	٧	-1.37	49	L	-1.677		
35	٧	-1.30	93	S	-1.677		
9	Α	-1.17	145	R	-1.677		
6	K	-1.16	196	L	-1.677		

3

The Python code to compute the conservation score from MSA using unweighted frequency, and entropy, variance and sum of pairs-based measures is given below:

```
def compute conservation scores(msa):
```

```
variance scores = []
   entropy scores.append(round(entropy_score, 3))
   variance_scores.append(round(variance_score, 3))
   sum_of_pairs_scores.append(round(sum_of_pairs_score, 3))
```

```
"MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHF-
DVSHGSAQVKGHGKKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTPAVHASLDKFLASVS
TVLTSKYR",

"WVLSPADKTNVKTAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHF-
DLSHGSAQVKDHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVS
TVLTSKYR",

"MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-
DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVS
TVLTSKYR",

"MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-
DLSHGSAQVKGHGAKVAAALTKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLLVTLASHLPSDFTPAVHASLDKFLANVS
TVLTSKYR",

"MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-
DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVS
TVLTSKYR",

"MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-
DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVS
TVLTSKYR",

"MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-
DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSTVS
TVLTSKYR"]

result = compute_conservation_scores(msa)
print(result)
```

The output is shown below:

This matches the results obtained in Question 1 using AL2CO.

4

Multiple sequence alignments for Set 1 from Question 1 were obtained using Clustal Omega, MAFFT, and MUSCLE. These were used as input to the previous program to obtain the conservation score at each residue for each of these alignments.

The Python code used for this is shown below:

```
clustal = [
    "-

SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTKTYFSHWPDVTPGSPHIKAHGKKVMGGIALAVSKIDDLKTGLMELSEQ
HAYKLRVDPANFKILNHCILVVISTMFPKEFTPEAHVSLDKFLSGVALALAERYR",
    "MVLSANDKSNVKSIFSKISSHAEEYGAETLERMFTTYPQTKTYFPHF-
DLHHGSAQVKAHGKKVAAALIEAANHIDDIAGALSKLSDLHAEKLRVDPVNFKLLGQCFMVVVAIHHPSALTPEIHASLDKFLCAVG
NVLTSKYR",
```

"-VLSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF
DLSPGSAQVKAHGKKVADALTTAVAHLDDLPGALSALSDLHAYKLRVDPVNFKLLSHCLLVTLACHHPTEFTPAVHASLDKFFAAVS

TVLTSKYR",

"MVLSADDKTNIKNCWGKIGGHGGEYGEEALQRMFAAFPTTKTYFSHI
DVSPGSAQVKAHGKKVADALAKAADHVEDLPGALSTLSDLHAHKLRVDPVNFKFLSHCLLVTLACHHPGDFTPAMHASLDKFLASVS

TVLTSKYR",

"-VLSAADKANVKAAWGKVGGQAGAHGAEALERMFLGFPTTKTYFPHF
NLSHGSDQVKAHGQKVADALTKAVGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHHPDDFNPSVHASLDKFLANVS

TVLTSKYR",

"MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHF-

DVSHGSAQVKGHGKKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTPAVHASLDKFLASVS TVLTSKYR",

"MVLSPADKTNVKTAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHF-

DLSHGSAQVKDHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR".

"MVI.SPADKTNVKAAWGKVGAHAGEYGAEAI.ERMFI.SFPTTKTYFPHF-

DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVS TVLTSKYR".

"MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-

DLSHGSAQVKGHGAKVAAALTKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLLVTLASHLPSDFTPAVHASLDKFLANVS TVLTSKYR**",**

"MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-

DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR".

"MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-

DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSTVS TVLTSKYR**" 1**

mafft = [

"MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMEASEPTTKTYEPHE-

DVSHGSAQVKGHGKKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTPAVHASLDKFLASVS TVLTSKYR",

"MVLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-

DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSV: TVLTSKYR",

"MVLSAADKTNVKAAWSKVGGNAGEFGAEALERMFLGFPTTKTYFPHF-

DLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSTVSTVLTSKYR".

"MVLSAADKGNVKAAWGKVGGHAAEYGAEALERMFLSFPTTKTYFPHF-

DLSHGSAQVKGHGAKVAAALTKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLLVTLASHLPSDFTPAVHASLDKFLANVS TVLTSKYR".

"MVI.SPADKTNVKTAWGKVGAHAGDYGAEAI.ERMFI.SFPTTKTYFPHF-

DLSHGSAQVKDHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVS

"MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-

DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASV: TVLTSKYR",

"-VLSAADKANVKAAWGKVGGOAGAHGAEALERMFLGFPTTKTYFPHF-

NLSHGSDQVKAHGQKVADALTKAVGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHHPDDFNPSVHASLDKFLANVS TVLTSKYR".

"MVLSADDKTNIKNCWGKIGGHGGEYGEEALQRMFAAFPTTKTYFSHI-

DVSPGSAQVKAHGKKVADALAKAADHVEDLPGALSTLSDLHAHKLRVDPVNFKFLSHCLLVTLACHHPGDFTPAMHASLDKFLASVS TVLTSKYP"

"-VLSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF-

DLSPGSAQVKAHGKKVADALTTAVAHLDDLPGALSALSDLHAYKLRVDPVNFKLLSHCLLVTLACHHPTEFTPAVHASLDKFFAAVS TVLTSKYR",

"MVLSANDKSNVKSIFSKISSHAEEYGAETLERMFTTYPOTKTYFPHF-

DLHHGSAQVKAHGKKVAAALIEAANHIDDIAGALSKLSDLHAEKLRVDPVNFKLLGQCFMVVVAIHHPSALTPEIHASLDKFLCAVG NVLTSKYR".

" _

SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTKTYFSHWPDVTPGSPHIKAHGKKVMGGIALAVSKIDDLKTGLMELSEÇ HAYKLRVDPANFKILNHCILVVISTMFPKEFTPEAHVSLDKFLSGVALALAERYR"]

```
muscle =
```

SLSDKDKAAVRALWSKIGKSADAIGNDALSRMIVVYPQTKTYFSHWPDVTPGSPHIKAHGKKVMGGIALAVSKIDDLKTGLMELSEQ HAYKLRVDPANFKILNHCILVVISTMFPKEFTPEAHVSLDKFLSGVALALAERYR",

```
print(df)
```

The results obtained from this is shown below:

From this, we can say that the conservation scores obtained from the three alignment methods are identical.

The manual verification of the unweighted frequency entropy scores at the given positions is shown below:

Fos.
$$q = A, S, T, T, A, S, T, T, G, T, T$$

$$f(A) = \frac{2}{11}, f(S) = \frac{2}{11}, f(T) = \frac{6}{11}, f(G) = \frac{1}{11}$$

$$= 0.192 = 0.182 = 0.545 = 0.091$$
Entropy score = $S = f(i) \ln (f(i))$

$$= 0.182 (-1.704) + 0.182 (-1.704) + 0.545 (-0.607) + 0.091 (-2.397)$$

$$= -1.169 \implies \text{Verified}$$

$$f(N) = \frac{3}{11}, f(E) = \frac{3}{21}$$

$$= 0.727 = 0.273$$
Entropy score = $0.727 (-0.319) + 0.273 (-1.298)$

$$= -0.586 \implies \text{Verified}$$

$$f(S) = \frac{1}{11}, f(S) = \frac{1}{11}, f(G) = \frac{7}{11}, f(A) = \frac{2}{11}$$

$$= 0.091 = 0.091 = 0.636 = 0.182$$
Entropy score = $0.091 (2.397) + 0.091 (-2.397) + 0.636 (-0.453) + 0.182 (-1.704)$

$$= -1.034 \implies \text{Verified}$$

$$f(A) = \frac{q}{13}, f(G) = \frac{2}{21}$$

$$= 0.318 = 0.182$$
Entropy score = $0.818 (-0.201) + 0.182 (-1.704)$

$$= -0.474 \implies \text{Verified}$$

$$f(S) = \frac{1}{11} = 1$$
Entropy score = 1.00

$$= 0 \implies \text{Verified}$$

6

The conservation scores for 1BTM Chain A were obtained used ConSurf. The results are shown below:

