Sottospazi vettoriali #GAL

Definizione: dato uno spazio vettoriale V, un sottospazio vettoriale di V è un sottoinsieme V V t.c. che V è uno spazio vettoriale rispetto alle stesse due operazioni di V

- 1. $0 \in W$
- 2. $\forall \underline{v}, \underline{w} \in W \Rightarrow \underline{v} + \underline{w} \in W$ "chiuso rispetto alla somma"
- 3. $\underline{v} \in W$, $c \in R \Rightarrow c\underline{v} \in W$ "chiuso rispetto al prodotto scalare"

Infatti, se valgono 1,2,3 allora le rimanenti proprietà valgono in W perché valgono in V

Importante: "sottospazio" è un concetto più forte di "sottoinsieme" (tutti i sottospazi sono sottoinsiemi, ma non tutti i sottoinsiemi sono sottospazi)
Intuitivamente: il concetto di sottospazio vettoriale è una generalizzazione di rette, piani, etc. passanti per l'origine

Sottospazi banali: dato un qualsiasi spazio vettoriale V i sottoinsiemi: {0} ⊆V, V ⊆V sono sottospazi vettoriali (rispettivamente il più piccolo e il più grande)

Definizione: dati $\underline{v_1}$, $\underline{v_2}$, ..., $\underline{v_n} \in V$, il loro span lineare è l'insieme di tutte le loro combinazioni lineari:

$$Span(\underline{v_1}, ..., \underline{v_n}) = \{\underline{u} \in V : \underline{u} = c_1 \underline{v_1}, c_2 \underline{v_2}, ..., c_n \underline{v_n}, \text{ per qualche } c_i \in R\} = \{^n \Sigma_{i=1}(c_i v_i) : c_i \in R\}$$

Proposizione: dati $\underline{v_1}$, ..., $\underline{v_n} \in V$, il sottoinsieme Span $(\underline{v_1}, ..., \underline{v_n}) \subseteq V$ è un sottospazio vettoriale

Dimostrazione:

1.
$$\underline{0} = 0\underline{v_1}, ..., 0\underline{v_n} = \text{Span}(\underline{v_1}, ..., \underline{v_n})$$

2. Dati
$$\underline{w} = {}^{n}\Sigma_{i=1}(c_{i}\underline{v_{i}}) \in Span(\underline{v_{1}}, ..., \underline{v_{n}}), \ \underline{u} = {}^{n}\Sigma_{i=1}(d_{i}\underline{v_{i}}) \in Span(\underline{v_{1}}, ..., \underline{v_{n}}) \text{ allora}$$

$$\underline{w} + \underline{u} = {}^{n}\Sigma_{i=1}(c_{i} + d_{i}) \ \underline{v_{i}} \in Span(\underline{v_{1}}, ..., \underline{v_{n}})$$

3. Dati
$$\underline{w} = {}^{n}\Sigma_{i=1}(c_{i}\underline{v_{i}}) \in Span(\underline{v_{1}}, ..., \underline{v_{n}}), d \in R \text{ allora}$$

$$d\underline{w} = {}^{n}\Sigma_{i=1}(d^{*}c_{i}) \underline{v_{i}} \in Span(\underline{v_{1}}, ..., \underline{v_{n}})$$

Definizione: se un sottospazio $H \subseteq V \ e \ H = \operatorname{Span}(\underline{v_1}, ..., \underline{v_n})$ per qualche $\underline{v_1}, ..., \underline{v_n}$ diciamo che $H \ e$ generato da $\underline{v_1}, ..., \underline{v_n}$ o che i vettori $\underline{v_1}, ..., \underline{v_n}$ generano il sottospazio H

Osservazione: uno spazio/sottospazio vettoriale ammette diversi insiemi di generatori

Definizione: sia $A = (R_1 R_2 ... R_m)$ (vettore colonna) = $(C_1 C_2 ... C_n)$ (vettore riga) \in Mat(m,n)

Lo spazio delle righe di A è row(A) = $Span(R_1, ..., R_m) \subseteq Mat(1,n)$ Lo spazio delle colonne di A è $col(A) = Span(C_1, ..., C_n) \subseteq Mat(m,1)$ nota: entrambi sono sottospazi vettoriali

Proposizione: le operazioni elementari (mosse di Gauss) sulle righe preservano lo spazio delle righe

Osservazione: le operazioni elementari (mosse di Gauss) sulle righe non preservano lo spazio delle colonne

Proposizione: sia $A \in Mat(m,n)$, $\underline{b} \in \mathbb{R}^{n}$ sia

$$S = \{\underline{x} \in \mathbb{R}^n : A\underline{x} = \underline{b}\} \subseteq \mathbb{R}^n$$
 allora

S è un sottospazio vettoriale <=> \underline{b} = $\underline{0}$ (in questo caso, il sistema è omogeneo, S = ker(A))

Dimostrazione: => S sottospazio => $0 \in S$ => A0 = b = 0

 \leq supponiamo $\underline{b} = \underline{0}$

- 1. $A0 = 0 \Rightarrow 0 \in S$
- 2. Se $\underline{x},\underline{y} \in S \Rightarrow A\underline{x} = A\underline{y} = \underline{0} \Rightarrow A(\underline{x} + \underline{y}) = A\underline{x} + A\underline{y} = \underline{0} + \underline{0} = \underline{0}$
- 3. Se $x \in S$, $c \in R \Rightarrow A\underline{x} = \underline{0} \Rightarrow cA\underline{x} = \underline{0} \Rightarrow A(c\underline{x}) = 0 \Rightarrow c\underline{x} \in S$

Due modi di rappresentare un sottospazio vettoriale $H \subseteq \mathbb{R}^2$:

- Forma cartesiana: tramite equazioni H = ker(A) per qualche $A \in Mat(m,n)$
- Forma parametrica: tramite parametri liberi H = Span($\underline{v_1}$, ..., $\underline{v_p}$) = {t₁ $\underline{v_1}$, t₂ v_2 , ..., t_p v_p : t_i ∈R}

Forma cartesiana -> Forma parametrica

risolviamo il sistema lineare $A\underline{x} = \underline{0} \rightarrow H = \mathrm{Span}(\underline{v_1}, ..., \underline{v_p})$ (mediante la procedura con i parametri liberi)

[Rouché-Capelli => ci sono n-rk(A) (= p) parametri liberi]

Forma parametrica -> Forma cartesiana

$$H = Span(\underline{v_1}, ..., \underline{v_p}) \subseteq R^n = Mat(n,1)$$
 [vettori colonna]

Obbiettivo: trovare A t.c. ker(A) = H

Osservazione: $S = H = \ker(A) = \{\underline{x} \in R^n : A\underline{x} = \underline{0}\}$ allora $A \in Mat(m,n)$ scriviamo $A = (-a_1-; -a_n-) * \underline{x} = \underline{0}$

$$\underline{0} = A \ \underline{v_j} = [\underline{a_1}^* \underline{v_j} \ \underline{a_n}^* \underline{v_j}] \implies \underline{a_i}^* \underline{v_j} = \underline{0} \quad \forall i,j$$

Obbiettivo: trovare delle righe $a = (a_1, ..., a_n) \in Mat(1,n)$ t.c. $a_i * v_j = \underline{0} \forall i,j$

Per concludere che $H = \ker(A) = \{\underline{x} \in R^n : A\underline{x} = \underline{0}\}$ ci serve un modo di dire

Dipendenza e Indipendenza lineare

Osservazione: a volte un insieme di generatori è ridondante

Esempio: H = Span((1 2 1), (-1 0 1), (0 1 1)) = $\{c_1v_1 + c_2v_2 + c_3v_3 : c_i \in R\}$

Osservazione: $\underline{v}_1 + \underline{v}_2 = (0\ 2\ 2) = 2\underline{v}_3 = 2\underline{v}_1 + \underline{v}_2 = 2\underline{v}_3 = 2\underline{v}_3 = 2\underline{v}_1 + 2\underline{v}_2 = 2\underline{v}_3 = 2\underline{v}_3 = 2\underline{v}_1 + 2\underline{v}_3 = 2$

Dato $\underline{u} \in \text{Span}(\underline{v_1}, \underline{v_2}, \underline{v_3})$ si ha che $\underline{u} = c_1\underline{v_1} + c_2\underline{v_2} + c_3\underline{v_3}$ per qualche $c_i \in \mathbb{R}$ e quindi $\underline{u} = c_1\underline{v_1} + c_2(-\underline{v_1} + 2\underline{v_3}) + c_3\underline{v_3}$

ovvero $\underline{\mathbf{u}} = (\mathbf{c}_1 - \mathbf{c}_2)\underline{\mathbf{v}_1} + (2\mathbf{c}_2 + \mathbf{c}_3)\underline{\mathbf{v}_3}$, da cui $\underline{\mathbf{u}} \in \mathsf{Span}(\underline{\mathbf{v}_1}, \underline{\mathbf{v}_3})$

Definizione (indipendenza lineare): dei vettori $\underline{v_1}$, $\underline{v_2}$, ..., $\underline{v_n} \in V$ si dicono

Linearmente Dipendenti (LI) se

$$c_{1}\underline{v_{1}} + c_{2}\underline{v_{2}} + ... + c_{3}\underline{v_{3}} = 0 <=> c_{1} = c_{2} = ... = c_{n} = 0$$

Verificare che $\underline{v_1}$, ..., $\underline{v_n}$ sono LI: risolviamo il sistema lineare $\underline{v_1}$, ..., $\underline{v_n} = \underline{0}$ e troviamo che i vettori sono LI se nessuno di essi è esprimibile come combinazione di altri vettori

Proposizione (ridondanza dei vettori linearmente dipendenti):

siano $\underline{v_1}$, ..., $\underline{v_n} \in V$ $\underline{v_1}$, ..., $\underline{v_n}$ sono LD <=> uno di essi è combinazione lineare degli altri

Dimostrazione: => v_1 , ..., v_n LD -> esistono c_1 , c_2 , ..., $c_n \in R$ non tutti nulli t.c.

$$c_1\underline{v_1} + c_2\underline{v_2} + ... + c_n\underline{v_n} = \underline{0}$$
 allora $\exists j \in \{1, 2, ..., n\}$ t.c. $c_j \neq 0$

$$c_{j}v_{j} = -c_{1}v_{1} - ... - c_{n}v_{n} =$$
 dividendo per $c_{j} \neq 0$ $v_{j} = -c_{1}/c_{j} * v_{1} - ... - c_{n}/c_{j} *$

^vn

<= supponiamo che $\underline{v_i}$ sia combinazione lineare degli altri vettori $\underline{v_i} = d_1 \underline{v_1}$

$$+ ... + d_{n} \underline{v_{n}} => 0 = d_{1} \underline{v_{1}} + ... + d_{n} \underline{v_{n}} - 1 \underline{v_{i}}$$

Caso particolare: $\underline{v_1}$ e $\underline{v_2}$ sono LD se e solo se sono proporzionali, ossia $\underline{v_1}$ = $\underline{cv_2}$ oppure $\underline{v_2}$ = $\underline{cv_1}$