Introduction to Computer 2022

Introduction to Computer 2022

Introduction to Computer 2022

Algorithms

Introduction to Computer

Yu-Ting Wu

(with most slides borrowed from Prof. Tian-Li Yu)

1

Outline

- The concept of an algorithm
- Algorithm representation
- Algorithm discovery and structures
- Efficiency and correctness

Outline

- The concept of an algorithm
- Algorithm representation
- Algorithm discovery and structures
- Efficiency and correctness

2

Formal Definition of Algorithm

 An algorithm is an ordered set of unambiguous, executable steps that define a terminating process

• Example: an algorithm for folding a bird

erminated

1

5

Outline

- · The concept of an algorithm
- · Algorithm representation
- · Algorithm discovery and structures
- · Efficiency and correctness

Introduction to Computer 2022

Introduction to Computer 2022

Formal Definition of Algorithm (cont.)

- There is a difference between an algorithm and its representation.
 - Analogy: the difference between a story and a book
- A program is a representation of an algorithm
- A process is the activity of executing an algorithm
 - · Terminating process
 - · Finish with a result
 - Non-terminating process
 - · Do not produce an answer
 - · Chapter 12: "Non-deterministic Algorithms"

6

- · For programs, a collection of primitives constitutes a programming language
 - · Value assignment, conditional selection, repeated execution, ... etc.

Designing a Pseudocode Language

- Informally with flowchart or pseudocode
- Flowchart
 - Popular in the 50s and 60s
 - · Overwhelming for complex algorithms
- Pseudocode: a loose version of formal programming languages
 - Choose a common programming language
 - · Loosen some of the syntax rules
 - · Allow for some natural language
 - · Use consistent, concise notation

Algorithm Representation (cont.)

• A very complex flowchart

NIGHT CYCLE

THE COMPT AND THE CONTROL OF THE CON

10

Pseudocode Primitives

Assignment

Name ← expression

Conditional selection

if (condition) then (activity)

Repeated execution

 while (condition) do (activity)

Procedure

Procedure name

Algorithm Grade

Input: the numeric score of each student

Introduction to Computer 2022

Output: a letter grade for each student

For (the score S of each student)

If $S \ge 90$ then

his/her letterGrade ← grade A

Endif

If $S \ge 80$ and S < 90 then

his/her letterGrade ← grade B

Else

his/her letterGrade **←** grade C

Endif

1

12

Outline

- The concept of an algorithm
- Algorithm representation
- · Algorithm discovery and structures
- Efficiency and correctness

13

13

Introduction to Computer 2022

Problem Solving

Iterative v.s. Recursive

• Top-down v.s. Bottom-up

Introduction to Computer 2022

Polya's Problem Solving Steps

- 1. Understand the problem
- 2. Devise a plan for solving the problem
- 3. Carry out the plan
- 4. Evaluate the solution for accuracy and its potential as a tool for solving other problems

14

Introduction to Computer 2022

14

Iterative Structures

Loop control

- Initializer
 - Establish an initial state that will be modified toward the termination condition
- Test
 - Compare the current state to the termination condition and terminate the repetition if equal
- Modify
 - Change the state in such a way that if moves toward the termination condition

16

16

Introduction to Computer 2022 Example: Insertion Sort (cont.) Procedure InsertionSort (List) $N \leftarrow 2$ while (the value of N does not exceed the length of List) do Select the *N-th* entry in *List* as the pivot entry while (there is a name above the hole and that name is greater than the pivot) do Move the name above the hole down into the hole, leaving a hole above the name Move the pivot entry into the hole in *List* $N \leftarrow N + 1$

21

```
Introduction to Computer 2022
Binary Search Pseudo Code
Procedure BinarySearch (List, TargetValue)
if (List empty) then
    Report that the search failed
else
    Select the middle in List to be the TestEntry
    Execute the instructions below based on different cases
            case 1: TargetValue == TestEntry
                                                              BinarySearch(
                    Report that the search succeeded
                                                               FirstHalfList,
                                                               TargetValue
            case 2: TargetValue < TestEntry
                    Search the portion of List preceding TestEntry
            case 3: TargetValue > TestEntry
                    Search the portion of List succeeding TestEntry \
endif
                                          BinarySearch(SecondHalfList, TargetValue)
```

Introduction to Computer 2022 Recursive Structures • Repeating the set of instructions as a subtask of itself • A classic example: the binary search algorithm **Original list** First sublist Second sublist Carol Elaine Fred George Is John in the array? Harry Irene John Kelly Larry Mary Nancy

22

```
Introduction to Computer 2022
Recursive Problem Solving

    Do not abuse recursion!

    · Calling functions takes a long time
        · Memory allocation, parameters passing ... etc.

    Example: Factorial

 int factorial (int x) {
                                      int factorial (int x) {
      if (x == 0) return 1;
                                           int product = 1;
      return x * factorial(x - 1);
                                           for (int i = 1; i \le x; ++i)
                                               product *= i;
            recursive
                                           return product;
  factorial(3) =
 3 * factorial(2) =
                                                  iterative
  3 * 2 * factorial(1) =
  3 * 2 * 1 * factorial(0) =
```

23

Introduction to Computer 2022 Problem Solving (cont.) • Iterative v.s. Recursive • Top-down v.s. Bottom-up

25

Top-down Approach

- Stepwise refinement
- Divide and conquer (problem decomposition)
- Examples
 - Binary search
 - Merge sort

Introduction to Computer 2022

26

27

Bottom-up Approach

- Solve pieces of the problem first
- Relax some of the problem constraints
- Dynamic programming (DP)
- Example
 - · Shortest path

29

Introduction to Computer 2022

Shortest Path (cont.)

Shortest_{AD} = min $_{i \in \{A, B, C, D, E, F\}}$ (Shortest_{Ai} + Shortest_{iD})

A

B

5

C $_{A}$ $_{B}$ $_{C}$ $_{C$

Shortest Path

Shortest_{AD} = min $_{i \in \{A, B, C, D, E, F\}}$ (Shortest_{Ai} + Shortest_{iD})

A

B

C

D

3

B

5

C

D

30

31

Shortest Path (cont.)

Shortest_{AD} = min $_{i \in \{A, B, C, D, E, F\}}$ (Shortest_{Ai} + Shortest_{iD})

A 3 5 C

B:8 E:7

A 4 E:10

35

Introduction to Computer 2022

Introduction to Computer 2022

Bottom-up Approach

• Solve pieces of the problem first

• Relax some of the problem constraints

• Dynamic programming (DP)

• Example

• Shortest path

Outline

• The concept of an algorithm

- Algorithm representation
- Algorithm discovery and structures
- Efficiency and correctness

Efficiency

- The choice between efficient and inefficient algorithms can make the difference between a practical solution and an impractical one
- Measured as the number of instructions executed
 - · Why not use the execution time
 - What about on different machines?

40

40

Asymptotic Analysis

- · Exact analysis is often difficult and tedious
- **Asymptotic analysis** emphasizes the behavior of the algorithm when **n** tends to **infinity**
- Asymptotic
 - Upper bound (0)
 - Lower bound (♠)
 - Tight bound (*θ*)

Introduction to Computer 2022

Introduction to Computer 2022

41

Big-Ω

$$\Omega(g(n)) = \{ f(n) \mid \underline{\exists}c > 0, n_0 > 0 \text{ s.t. } \underline{\forall}n \geq n_0, 0 \leq cg(n) \leq f(n) \}$$
exist such that for each

- Asymptotic lower bound
- Examples
 - $0.001n^2 = \Omega(n)$
 - $2^n = \Omega(n^{10})$
 - $5n + 10000 = \Omega(n)$

43

Big-O

$$O(g(n)) = \{f(n) \mid \exists c > 0, n_0 > 0 \text{ s.t.} \quad \forall n \geq n_0, 0 \leq f(n) \leq cg(n)\}$$

- Asymptotic upper bound
- Examples
 - $500n = O(n^2)$
 - $n^{10} = O(2^n)$
 - 5n + 10000 = O(n)

Introduction to Computer 2022

42

Introduction to Computer 2022

42

Big-O

 $\Theta(g(n)) = \{f(n) \mid \underline{\exists}c_1, c_2, n_0 > 0 \text{ s.t. } \underline{\forall}n \geq n_0, 0 \leq c_1g(n) \leq f(n) \leq c_2g(n)\}$ exist such that for each

- Asymptotic tight bound
- Examples
 - $0.001n^2 = \Theta(n^2)$
 - $n + \log n = \Theta(n)$
 - $5n + 10000 = \Theta(n)$

Correctness The correctness of an algorithm is determined by reasoning formally about the algorithm, not by testing its implementation

Introduction to Computer 2022

Recap: Insertion Sort

Procedure InsertionSort (List) $N \leftarrow 2$ while (the value of N does not exceed the length of List) do
Select the N-th entry in List as the pivot entry
while (there is a name above the hole and that name is
greater than the pivot) do
Move the name above the hole down into the hole,
leaving a hole above the name
Move the pivot entry into the hole in List $N \leftarrow N+1$

46

Introduction to Computer 2022 **Software Verification** · Proof of correctness A Precondition (with formal logic) · Assertions for while assertions for while loop loop Loop invariant Preconditions Loop invariants Termination condition C Loop invariant Body

Verification of Insertion Sort

Outer loop

Loop invariant

• Each time the test for termination is performed, the name preceding the N-th entry forms a sorted list

· Termination condition

• The value of N is greater than the length of the list

· If the loop terminates, the list is sorted

• What about the inner loop?

Introduction to Computer 2022

52

50

Summary of Software Verification

- Software verification is not easy
- Can be easier with a formal programming language with better properties
- In practice, testing is more commonly used to verify software
 - However, testing only proves that the program is correct for the test cases used

Introduction to Computer 2022 Recap: Insertion Sort (cont.) Alex Diana Alex Diana Byron Byron Sorted -Byron Fred Fred Diana Diana Byron Fred Fred Carol Alex Byron Diana Carol Byron Diana Byron Sorted -Carol Fred Fred Diana Diana Fred Sorted list: Alex
Byron
Carol

54

Introduction to Computer 2022