Table 5.1 Confidence Limits for the Normal Distribution

Z
3.00
2.58
2.33
1.65
1.28
0.84
0.25

 $Pr(p1 \le p \le p2)$ is given by the above table, where

$$p1 = (f + z^2/(2N) - z \; sqrt(f/N \; - f^2/N \; + \; z^2/(4N^2)) \; / \; (1 \; + \; z^2/N)$$

$$p2 = (f + z^2/(2N) \ + \ z \ sqrt(f/N \ - f^2/N \ + \ z^2/(4N^2)) \ / \ (1 \ + \ z^2/N)$$

Suppose the J48 model for the iris dataset (150 instances) has 90% accuracy, when testing with 10-fold cross-validation. Assuming you want a 99% confidence interval on the accuracy obtained with one of the ten folds, write the equation for p1 without any variables.

First,
f = _____
z = ____
N = ____