Faster Geometric Algorithms via Dynamic Determinant Computation

Vissarion Fisikopoulos

joint work with L. Peñaranda (now IMPA, Rio de Janeiro)

Department of Informatics, University of Athens, Greece

ESA, Ljubljana, 14.Sep.2012

Geometric algorithms and predicates

Setting

- ightharpoonup geometric algorithms ightarrow sequence of geometric predicates
- ▶ many geometric predicates → determinants
- ▶ Hi-dim: as dimension grows predicates become more expensive

Geometric algorithms and predicates

Setting

- ightharpoonup geometric algorithms ightarrow sequence of geometric predicates
- ▶ many geometric predicates → determinants
- ▶ Hi-dim: as dimension grows predicates become more expensive

Examples

Orientation: Does c lie on, left or right of ab?

$$\begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} \gtrsim 0$$

Geometric algorithms and predicates

Setting

- ▶ geometric algorithms → sequence of geometric predicates
- ▶ many geometric predicates → determinants
- ▶ Hi-dim: as dimension grows predicates become more expensive

Examples

▶ inCircle: Does d lie on, inside or outside of abc?

$$\left|\begin{array}{cccc} a_x & a_y & a_x^2 + a_y^2 & 1 \\ b_x & b_y & b_x^2 + b_y^2 & 1 \\ c_x & c_y & c_x^2 + c_y^2 & 1 \\ d_x & d_y & d_x^2 + d_y^2 & 1 \end{array}\right| \gtrsim 0$$

Outline

1 Motivation and existing work

2 Dynamic determinant computation

3 Geometric algorithms: convex hull

4 Implementation - experiments

Outline

- 1 Motivation and existing work
- 2 Dynamic determinant computation
- 3 Geometric algorithms: convex hull
- 4 Implementation experiments

Motivation

► Algorithms for resultant polytopes [Emiris,F,Konaxis,Peñaranda SoCG'12] [YuJensen'12] (discriminant polytopes [Emiris, F, Dickenstein])
Respo1: compute resultant, discriminant polytopes up to dim. 6

4-d resultant polytope

Motivation

- ► Algorithms for resultant polytopes [Emiris,F,Konaxis,Peñaranda SoCG'12] [YuJensen'12] (discriminant polytopes [Emiris, F, Dickenstein])
 Respo1: compute resultant, discriminant polytopes up to dim. 6
- Counting lattice points in polyhedra [Barvinock'99] [DeLoera et.al'04],
 Integer convex optimization [Grötschel,Lovász,Schrijver'88]

4-d resultant polytope

Motivation

- ► Algorithms for resultant polytopes [Emiris,F,Konaxis,Peñaranda SoCG'12] [YuJensen'12] (discriminant polytopes [Emiris, F, Dickenstein]) Respo1: compute resultant, discriminant polytopes up to dim. 6
- Counting lattice points in polyhedra [Barvinock'99] [DeLoera et.al'04],
 Integer convex optimization [Grötschel,Lovász,Schrijver'88]

4-d resultant polytope

Focusing on ...

- ► Hi-dim CompGeom (3 < d < 10)
- Computation over the integers

Existing work

Determinant: exact computation

Given matrix $A \subseteq \mathbb{R}^{d \times d}$

- ► Theory: State-of-the-art $O(d^{\omega})$, $\omega \sim 2.37$ [CoppersmithWinograd90]
- ► Practice: Gaussian elimination, O(d³)

Existing work

Determinant: exact computation

Given matrix $A \subseteq \mathbb{R}^{d \times d}$

- ► Theory: State-of-the-art $O(d^{\omega})$, $\omega \sim 2.37$ [CoppersmithWinograd90]
- ► Practice: Gaussian elimination, O(d³)

Division-free determinant algorithms

- ► Laplace (cofactor) expansion, O(d!)
- ► [Rote01], O(d⁴)
- ▶ [Bird11], $O(d^{\omega+1})$

Existing work

Determinant: exact computation

Given matrix $A \subseteq \mathbb{R}^{d \times d}$

- ► Theory: State-of-the-art $O(d^{\omega})$, $\omega \sim 2.37$ [CoppersmithWinograd90]
- ► Practice: Gaussian elimination, O(d³)

Division-free determinant algorithms

- ► Laplace (cofactor) expansion, O(d!)
- ► [Rote01], O(d⁴)
- ▶ [Bird11], $O(d^{\omega+1})$

Dynamic determinant computation

Dynamic transitive closure in graphs [Sankowski FOCS'04]

Outline

Dynamic determinant computation

One-column update problem

Given matrix $A\subseteq \mathbb{R}^{d\times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u}\subseteq \mathbb{R}^d$.

One-column update problem

Given matrix $A \subseteq \mathbb{R}^{d \times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u} \subseteq \mathbb{R}^d$.

Solution: Sherman-Morrison formula (1950)

$$\begin{split} A'^{-1} &= A^{-1} - \frac{(A^{-1}(u - (A)_{\mathfrak{i}})) \ (e_{\mathfrak{i}}^T A^{-1})}{1 + e_{\mathfrak{i}}^T A^{-1}(u - (A)_{\mathfrak{i}})} \\ det(A') &= (1 + e_{\mathfrak{i}}^T A^{-1}(u - (A)_{\mathfrak{i}}) det(A) \end{split}$$

- ▶ Only vector×vector, vector×matrix \rightarrow Complexity: $O(d^2)$
- Algorithm: dyn_inv

One-column update problem

Given matrix $A\subseteq \mathbb{R}^{d\times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u}\subseteq \mathbb{R}^d$.

Variant Sherman-Morrison formulas

Q: What happens if we work over the integers?

One-column update problem

Given matrix $A\subseteq \mathbb{R}^{d\times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u}\subseteq \mathbb{R}^d$.

Variant Sherman-Morrison formulas

- Q: What happens if we work over the integers?
- ▶ A: Use the adjoint of A $(A^{\alpha dj})$ → exact divisions

One-column update problem

Given matrix $A\subseteq \mathbb{R}^{d\times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u}\subseteq \mathbb{R}^d$.

Variant Sherman-Morrison formulas

- Q: What happens if we work over the integers?
- ▶ A: Use the adjoint of A $(A^{\alpha dj})$ → exact divisions
- ► Complexity: $O(d^2)$ Algorithm: dyn_adj

Outline

Geometric algorithms: convex hull

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- •
- •
- •

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The *convex hull* of $A \subseteq \mathbb{R}^d$ is the smallest convex set containing A.

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Definition

The convex hull of $\mathcal{A} \subseteq \mathbb{R}^d$ is the smallest convex set containing \mathcal{A} .

Incremental convex hull - Beneath-and-Beyond

- connect each outer point to the visible segments
- visibility test = orientation test

Similar problems: Delaunay, regular triangulations, point-location

- ▶ convex hull → sequence of similar orientation predicates
- ▶ take advantage of computations done in previous steps

- ightharpoonup convex hull ightharpoonup sequence of similar orientation predicates
- take advantage of computations done in previous steps

Incremental convex hull construction \rightarrow 1-column updates

$$A = \begin{array}{|c|c|c|c|} \hline p_2 & p_4 & p_5 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

ightharpoonup Orientation $(p_2, p_4, p_5) = det(A)$

- ightharpoonup convex hull ightharpoonup sequence of similar orientation predicates
- take advantage of computations done in previous steps

Incremental convex hull construction \rightarrow 1-column updates

$$A' = \begin{array}{c|c} p_6 & p_4 & p_5 \\ \hline 1 & 1 & 1 \end{array}$$

 \triangleright Orientation(p_6, p_4, p_5) = det(A') in O(d²)

- ightharpoonup convex hull ightharpoonup sequence of similar orientation predicates
- take advantage of computations done in previous steps

Incremental convex hull construction \rightarrow 1-column updates

- \triangleright Orientation(p_6, p_4, p_5) = det(A') in O(d^2)
- ▶ Store det(A), A^{-1} + update det(A'), A'^{-1} (Sherman-Morrison)

Dynamic determinants in geometric algorithms

Given $\mathcal{A}\subseteq\mathbb{R}^d$, $\mathfrak{n}=|\mathcal{A}|$ and t= the number of cells

Theorem

Orientation predicates in increm. convex hull: $O(d^2)$ (space: $O(d^2t)$) Proof: update det(A'), A'^{-1}

Corollary

Orientation predicates involved in point-location: O(d) (space: $O(d^2t)$) Proof: query point never enters data-set \to update only det(A')

Corollary

Incremental convex hull and volume comput.: $O(d^{\omega+1}nt) \rightarrow O(d^3nt)$

Outline

- 1 Motivation and existing work
- 2 Dynamic determinant computation
- 3 Geometric algorithms: convex hull
- 4 Implementation experiments

Determinant implementation

Dynamic determinant computation

- ► C++, GNU Multiple Precision arithmetic library (GMP)
- ► Implement dyn_inv & dyn_adj

Exact determinant computation software

- ► LU decomposition (CGAL)
- optimized LU decomposition (Eigen)
- asymptotically optimal algorithms (LinBox)
- Maple's default determinant algorithm (Maple 14)
- Bird's algorithm (our implementation)
- ► Laplace (cofactor) expansion (our implementation)

Determinant experiments

1-column updates in $A \subseteq \mathbb{Q}^{d \times d}$ (uniform distr. rational coefficients)

d	Bird	CGAL	Eigen	Laplace	Maple	dyn_inv	dyn_adj
3	.013	.021	.014	.008	.058	.046	.023
4	.046	.050	.033	.020	.105	.108	.042
5	.122	.110	.072	.056	.288	.213	.067
6	.268	.225	.137	.141	.597	.376	.102
7	.522	.412	.243	.993	.824	.613	.148
8	.930	.710	.390	_	1.176	.920	.210
9	1.520	1.140	.630	_	1.732	1.330	.310
10	2.380	1.740	.940	_	2.380	1.830	.430

spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux

Determinant experiments

1-column updates in $A \subseteq \mathbb{Q}^{d \times d}$ (uniform distr. integer coefficients)

d	Bird	CGAL	Eigen	Laplace	Linbox	Maple	dyn_inv	dyn_adj
3	.002	.021	.013	.002	.872	.045	.030	.008
4	.012	.041	.028	.005	1.010	.094	.058	.015
5	.032	.080	.048	.016	1.103	.214	.119	.023
6	.072	.155	.092	.040	1.232	.602	.197	.033
7	.138	.253	.149	.277	1.435	.716	.322	.046
8	.244	.439	.247	_	1.626	.791	.486	.068
9	.408	.689	.376	_	1.862	.906	.700	.085
10	.646	1.031	.568	_	2.160	1.014	.982	.107
11	.956	1.485	.800	_	10.127	1.113	1.291	.133
12	1.379	2.091	1.139	_	13.101	1.280	1.731	.160
13	1.957	2.779	1.485	_	_	1.399	2.078	.184

spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux

Convex hull implementation

Hashed dynamic determinants

- dyn_inv & dyn_adj + hash table (dets & matrices)
- ightharpoonup plug into geometric software ightarrow geometric predicates

Convex hull software

- randomized incremental (triang/CGAL)
- beneath-and-beyond (bb) (polymake)
- double description method (cdd)
- gift-wrapping with reverse search (Irs)

 $triang/CGAL + hashed dynamic determinants = hdch_z or hdch_q$

Convex hull experiments

6-dim points, integer coeffs uniformly distributed inside a 6-ball

V.Fisikopoulos ESA'12

Point location experiments

- lacktriang triangulation of $\mathcal{A}\subseteq\mathbb{Z}^d$ points uniformly distibuted on a d-ball surface
- ▶ 1K and 1000K query points uniformly distibuted on a d-cube

	d	$ \mathcal{A} $	preprocess	ds mem (MB)	# cells	query time (sec)	
			time (sec)		triang	ın	
$hdch_z$	8	120	45.20	6913	319438	0.41	392.55
triang	8	120	156.55	134	319438	14.42	14012.60
hdch_z	9	70	45.69	6826	265874	0.28	276.90
triang	9	70	176.62	143	265874	13.80	13520.43
hdch_z	10	50	43.45	6355	207190	0.27	217.45
triang	10	50	188.68	127	207190	14.40	14453.46
hdch_z	11	39	38.82	5964	148846	0.18	189.56
triang	11	39	181.35	122	148846	14.41	14828.67

▶ up to 78 times faster using up to 50 times more memory

spec: Intel Core i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux

V.Fisikopoulos ESA'12

Conclusions and Future work

- ▶ Orientation predicates. CH: $O(d^2)$, point location: O(d)
- ► Efficient (division free) dynamic determinant implementation
- ▶ More efficient CH implementation, $78 \times$ speed-up in point location
- ► The code: http://hdch.sourceforge.net

Conclusions and Future work

- ▶ Orientation predicates. CH: $O(d^2)$, point location: O(d)
- ► Efficient (division free) dynamic determinant implementation
- ▶ More efficient CH implementation, 78× speed-up in point location
- ► The code: http://hdch.sourceforge.net

Future work

- Delaunay triangulations (inSphere predicate)
- overcome large memory consumption (hash table: clean periodically)
- filtered computations
- CGAL submission

Conclusions and Future work

- ▶ Orientation predicates. CH: O(d²), point location: O(d)
- ► Efficient (division free) dynamic determinant implementation
- ▶ More efficient CH implementation, 78× speed-up in point location
- ► The code: http://hdch.sourceforge.net

Future work

- Delaunay triangulations (inSphere predicate)
- overcome large memory consumption (hash table: clean periodically)
- filtered computations
- CGAL submission

THANK YOU!!!