Highpoint RocketRAID 3xxx/4xxx Adapter Driver (hptiop)

Controller Register Map

For RR44xx Intel IOP based adapters, the controller IOP is accessed via PCI BAR0 and BAR2

BAR0 offset	Register		
0x11C5C	Link Interface IRQ Set		
0x11C60	Link Interface IRQ Clear		
BAR2 offset	Register		
0x10	Inbound Message Register 0		
0x14	Inbound Message Register 1		
0x18	Outbound Message Register 0		
0x1C	Outbound Message Register 1		
0x20	Inbound Doorbell Register		
0x24	Inbound Interrupt Status Register		
0x28	Inbound Interrupt Mask Register		
0x30	Outbound Interrupt Status Register		
0x34	Outbound Interrupt Mask Register		
0x40	Inbound Queue Port		
0x44	Outbound Queue Port		

For Intel IOP based adapters, the controller IOP is accessed via PCI BAR0:

BAR0 offset	Register		
0x10	Inbound Message Register 0		
0x14	Inbound Message Register 1		
0x18	Outbound Message Register 0		
0x1C	Outbound Message Register 1		
0x20	Inbound Doorbell Register		
0x24	Inbound Interrupt Status Register		
0x28	Inbound Interrupt Mask Register		
0x30	Outbound Interrupt Status Register		
0x34	Outbound Interrupt Mask Register		
0x40	Inbound Queue Port		
0x44	Outbound Queue Port		

For Marvell not Frey IOP based adapters, the IOP is accessed via PCI BAR0 and BAR1:

BARU offset	Register		
0x20400	Inbound Doorbell Register		
0x20404	Inbound Interrupt Mask Register		
0x20408	Outbound Doorbell Register		
0x2040C	Outbound Interrupt Mask Register		

BAR1 offset	Register		
0x0	Inbound Queue Head Pointer		
0x4	Inbound Queue Tail Pointer		
0x8	Outbound Queue Head Pointer		
0xC	Outbound Queue Tail Pointer		
0x10	Inbound Message Register		
0x14	Outbound Message Register		
0x40-0x1040	Inbound Queue		
0x1040-0x2040	Outbound Queue		

For Marvell Frey IOP based adapters, the IOP is accessed via PCI BAR0 and BAR1:

BAR0 offset	Register	
0x0	IOP configuration information.	

BAR1 offset	Register		
0x4000	Inbound List Base Address Low		
0x4004	Inbound List Base Address High		
0x4018	Inbound List Write Pointer		
0x402C	Inbound List Configuration and Control		
0x4050	Outbound List Base Address Low		
0x4054	Outbound List Base Address High		
0x4058	Outbound List Copy Pointer Shadow Base Address		
	Low		
0x405C	Outbound List Copy Pointer Shadow Base Address		
UAHUJC	High		
0x4088	Outbound List Interrupt Cause		
0x408C	Outbound List Interrupt Enable		
0x1020C	PCIe Function 0 Interrupt Enable		
0x10400	PCIe Function 0 to CPU Message A		
0x10420	CPU to PCIe Function 0 Message A		
0x10480	CPU to PCIe Function 0 Doorbell		
0x10484	CPU to PCIe Function 0 Doorbell Enable		

I/O Request Workflow of Not Marvell Frey

All queued requests are handled via inbound/outbound queue port. A request packet can be allocated in either IOP or host memory. To send a request to the controller:

 Get a free request packet by reading the inbound queue port or allocate a free request in host DMA coherent memory.

The value returned from the inbound queue port is an offset relative to the IOP BARO.

Requests allocated in host memory must be aligned on 32-bytes boundary.

- Fill the packet.
- Post the packet to IOP by writing it to inbound queue. For requests allocated in IOP memory, write the offset to
 inbound queue port. For requests allocated in host memory, write (0x80000000|(bus_addr>>>5)) to the inbound
 queue port.
- The IOP process the request. When the request is completed, it will be put into outbound queue. An outbound interrupt will be generated.

For requests allocated in IOP memory, the request offset is posted to outbound queue.

For requests allocated in host memory, (0x80000000|(bus_addr>>5)) is posted to the outbound queue. If IOP_REQUEST_FLAG_OUTPUT_CONTEXT flag is set in the request, the low 32-bit context value will be posted instead.

• The host read the outbound queue and complete the request.

For requests allocated in IOP memory, the host driver free the request by writing it to the outbound queue.

Non-queued requests (reset/flush etc) can be sent via inbound message register 0. An outbound message with the same value indicates the completion of an inbound message.

I/O Request Workflow of Marvell Frey

All queued requests are handled via inbound/outbound list.

To send a request to the controller:

- Allocate a free request in host DMA coherent memory.
 - Requests allocated in host memory must be aligned on 32-bytes boundary.
- Fill the request with index of the request in the flag.
 - Fill a free inbound list unit with the physical address and the size of the request.
 - Set up the inbound list write pointer with the index of previous unit, round to 0 if the index reaches the supported count of requests.
- Post the inbound list writer pointer to IOP.
- The IOP process the request. When the request is completed, the flag of the request with or-ed

IOPMU_QUEUE_MASK_HOST_BITS will be put into a free outbound list unit and the index of the outbound list unit will be put into the copy pointer shadow register. An outbound interrupt will be generated.

• The host read the outbound list copy pointer shadow register and compare with previous saved read pointer N. If they are different, the host will read the (N+1)th outbound list unit.

The host get the index of the request from the (N+1)th outbound list unit and complete the request.

Non-queued requests (reset communication/reset/flush etc) can be sent via PCIe Function 0 to CPU Message A register. The CPU to PCIe Function 0 Message register with the same value indicates the completion of message.

User-level Interface

The driver exposes following sysfs attributes:

NAME	R/W	Description
driver-version	R	driver version string
firmware-version	R	firmware version string

Copyright © 2006-2012 HighPoint Technologies, Inc. All Rights Reserved.

This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

linux@highpoint-tech.com

http://www.highpoint-tech.com