DATA 100: Vitamin 11 Solutions

November 1, 2019

1 Mean Squared Error

Suppose we have data $(x_i, y_i)_{i=1}^n$, where \vec{x} is the independent variable, and \vec{y} is the dependent variable. We fit a model to the data, and obtain predicted values of the dependent variable, denoted \vec{y} . We've seen the mean squared error (MSE) in many forms. Which of the following equations correspond to the MSE of the dependent variable and its predicted values?

$$\mathbf{Z} \frac{1}{n} \|\vec{\hat{y}} - \vec{y}\|_2^2$$

$$\mathbf{Z} \frac{1}{n} \| \vec{y} - \vec{\hat{y}} \|_2^2$$

$$\Box \ \ \frac{1}{n} \|\vec{y} - \vec{\hat{y}}\|_2$$

$$|\vec{z}| \frac{1}{n} ||\vec{y} - \vec{\hat{y}}||^2$$

$$\Box (y - \hat{y})^2$$

$$\mathbf{Z} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Explanation: These answers follow directly from the definition of norms: $\|\vec{z}\|_p = (\sum_{i=1}^n |z_i|)^{\frac{1}{p}}, \ \vec{z} = (z_1, \dots, z_n)^{\top}.$

2 Penalized Linear Regressions

Fill in the blanks:

We fit a penalized linear regression model without an intercept to some data by minimizing the MSE. Since our regularization term is the ____, we are fitting a LASSO regression. For extremely large penalty hyperparameters, we expect the coefficients of our model to be ____.

	c			1		_
sum	ot	squares,	verv	close	to	()

- \square sum of absolute values, very close to 0
- \square sum of squares, exactly 0

✓ sum of absolute values, exactly 0

Explanation: Since we are fitting a LASSO regression, the penalization term is the sum of absolute values. As the hyperparameter dictating the regularization increases to infinity, the coefficients of our model go to zero.

3 Global Minimums

For which of the following functions is gradient descent guaranteed to find a global minimum? (Hint: plot these functions)

$$f(x) = x^2 + 100$$

$$\Box f(x) = x^3 - 10x^2 - 4x + 10$$

$$\Box f(x) = -2x^5 + 8x^4$$

$$f(x) = x^6 - \sqrt{x}$$

$$f(x) = log(x) + x^4 + \frac{1}{x^2}$$

Explanation: Gradient descent will find the global minimum of convex functions. Plot these functions to determine which ones are convex.

4 Gradient Descent

Which of the following statements about gradient descent (GD) are true?

✓ GD is a numerical method

☐ GD provides analytic solutions to risk minimization problems

☐ GD permits the risk minimization of any combination of risk function and model.

✓ If the gradient of the risk of a model exists, then we can minimize the risk using GD.

Explanation: GD allows us to minimize the risk of a model numerically, but only if the gradient of the model's risk exists.

5 Logistic Regression

_	e blanks: egression models can be used for variables.	, meaning	they are	used to
□ clas	sification, quantitative			
d clas	sification, categorical			
\Box regr	ression, categorical			
□ clus	tering discrete			

Explanation: Logistic regression is a model that is used in classification settings, meaning they are used to predict categorical variables.