

تمرین درس کنترل دیجیتال

نيمسال دوم : ۱۴۰۲–۱۴۰۳

استاد درس : دکتر طالبی

۱ بخش اجباری

سوال اول

(برنامه ریزی) جدول زیر سه پروسه را به همراه پریود تکرار، deadline نسبی و بدترین حالت زمان اجرا آنها نشان میدهد.

Task	T_{i}	D_{i}	C_{i}
A	40	40	1
В	4	4	1
С	50	2	1

الف) مجموع ضرایب استفاده ${\rm CPU}$ را محاسبه کنید. ب) آیا مجموعه ${\rm Task}$ فوق با الگوریتم زمان بندی ${\rm EDF}$ برنامه پذیر هستند؟ ج) سوال (ب) را با الگوریتم زمان بندی ${\rm DM}$ و ${\rm RM}$ تکرار کنید.

سوال دوم

(برنامه ریزی) مجموعه ${
m Task}$ زیر داده شده است:

Task	T_{i}	D_{i}	C_{i}
A	3	3	1
В	8	8	2
С	20	20	5

الف)نشان دهید که محموعه Task فوق تحت الگوریتم RM قابل برنامه ریزی است. Task وق تحت الگوریتم Task قابل برنامه ریزی است را پیدا کنید. Task B این پریود Task B وقت تحت الگوریتم Task B ایندا کنید.

استاد درس : دكتر طالبي

۲ بخش امتیازی

سوال سوم

۲

(طراحی رویتگر)سیستم زیر را در نظر بگیرید.

$$x(k+1) = \begin{pmatrix} 0.5 & 0 \\ -1 & 0 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(k)$$
$$y(k) = \begin{pmatrix} 0 & 1 \end{pmatrix} x(k)$$

یک رویتگر برای تخمین حالت های سیستم طراحی کنید. قطب های رویتگر را به گونه ای انتخاب کنید که برای یک سیستم کنترل حلقه بسته با قطب های معادل پیوسته در ۱- کارایی لازم را داشته باشد

سوال چهارم

(طراحی رویتگر) یکی از روش های طراحی رویتگر و کنترلگر کامل روش بس و گیورا میباشد. این روش به صورت فرمول زیر نوشته میشود

$$L^T = (\alpha - a)\Psi^{-1}\Phi_c^{-1}$$

که در آن $oldsymbol{\mathrm{L}}$ رویتگر میباشد و Ψ ماتریس افزوده و Φ_c ماتریس کنترل پذیری میباشد.

اگر بدانیم lpha معادله مشخصه مطلوب است و a معادله مشخصه اولیه میباشد. با اطلاعات زیر در مورد سیستم و پارامتر ها ماتریس L بیابید.

$$A = \begin{pmatrix} 0 & 1\\ 20.6 & 0 \end{pmatrix}$$

اگر بدانیم :

$$\Phi_c = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Psi = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $s=-1.8\pm j2.4$ قطب های مطلوب عبارتند از