ii) Una forma cuadrática en dos variables es una expresión de la forma

$$F(x, y) = ax^2 + bxy + cy^2$$
 (8.5.2)

donde $|a| + |b| + |c| \neq 0$.

Es evidente que las ecuaciones y las formas cuadráticas tienen una fuerte relación. Se comenzará el análisis de las formas cuadráticas con un ejemplo sencillo.

Considere la forma cuadrática $F(x, y) = x^2 - 4xy + 3y^2$. Sean $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ y $A = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$. Entonces

$$A\mathbf{v} \cdot \mathbf{v} = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - 2y \\ -2x + 3y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= (x^2 - 2xy) + (-2xy + 3y^2) = x^2 - 4xy + 3y^2 = F(x, y)$$

De esta manera se ha "representado" la forma cuadrática F(x, y) mediante la matriz simétrica A en el sentido de que

$$F(x, y) = A\mathbf{v} \cdot \mathbf{v} \tag{8.5.3}$$

De forma inversa, si A es una matriz simétrica, entonces la ecuación (8.5.3) define una forma cuadrática $F(x, y) = A\mathbf{v} \cdot \mathbf{v}$.

Se puede representar F(x, y) por muchas matrices pero sólo por una matriz simétrica. Para ver esto, sea $A = \begin{pmatrix} 1 & a \\ b & 3 \end{pmatrix}$, donde a + b = -4. Entonces, $A\mathbf{v} \cdot \mathbf{v} = F(x, y)$. Si, por ejemplo, $A = \begin{pmatrix} 1 & 3 \\ -7 & 3 \end{pmatrix}$,

entonces $A\mathbf{v} = \begin{pmatrix} x + 3y \\ -7x + 3y \end{pmatrix}$ y $A\mathbf{v} \cdot \mathbf{v} = x^2 - 4xy + 3y^2$. Sin embargo, si insistimos en que A sea

simétrica, entonces debe tenerse a+b=-4 y a=b. Este par de ecuaciones tiene una solución única a=b=-2.

Si $F(x, y) = ax^2 + bxy + cy^2$ es una forma cuadrática, sea

$$A = \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \tag{8.5.4}$$

Entonces

$$A\mathbf{v} \cdot \mathbf{v} = \begin{bmatrix} \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + \frac{b}{2y} \\ \frac{b}{2x} + cy \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= ax^2 + bxy + cy^2 = F(x, y)$$

Se regresa ahora a la ecuación cuadrática (8.5.1). Usando (8.5.3) se puede escribir (8.5.1) como

$$A\mathbf{v} \cdot \mathbf{v} = d \tag{8.5.5}$$