Creating Machine Learning Models

UNDERSTANDING APPROACHES TO MACHINE LEARNING

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Machine learning vs. rule-based learning Choosing the right model based on data Supervised and unsupervised learning Regression and classification Clustering and dimensionality reduction Transfer learning - cold-start vs. warmstart learning

Popular ML frameworks and their niches

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Built and trained simple machine learning models

Basic understanding of the machine learning workflow

Prerequisites

Python Fundamentals

Understanding Machine Learning

Building Your First scikit-learn Solution

Course Outline

Approaches to machine learning

Regression models

Classification models

Clustering models

Rule-based vs. ML-based Learning

A machine learning algorithm is an algorithm that is able to learn from data

Machine Learning

Find patterns

Make intelligent decisions

Broad Problem Categories

Classification

Regression

Clustering

Dimensionality reduction

Broad Problem Categories

Classification

Regression

Clustering

Dimensionality reduction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Rule-based Binary Classifier

Human Experts Formulate Rules

Rules Specific to Problem and Data

Corpus

Classification Algorithm

ML-based Classifier

Rule-based Analysis

Problem statement is fairly simple

Rules are straightforward and can be easily codified

Rules change infrequently

Few problem instances to train ML models

ML-based Analysis

Problem statement is reasonably complex

Hard to find patterns using visualizations and other exploratory tools

Decision variables sensitive to data, need to change as new information is received

Large corpus available to train models

ML-based and Rule-based Models

ML-based

Dynamic - alter output based on patterns in data

Expert skill not needed, need an intuition for how models work

To update model, update corpus

Rule-based

Static - rules are applied independent of data

Experts vital for formulating rules, experts based on problem

To update model, need to update rules i.e. recode model

ML-based and Rule-based Models

ML-based

Large, high-quality data corpus

Can not operate on a single problem instance

Explicit training step

Rule-based

No corpus required

Can operate on isolated problem instances

No training step required

Traditional ML vs. Representation ML

Garbage In, Garbage Out
If data fed into an ML model is of
poor quality, the model will be of
poor quality

Traditional ML models require experts to specify the right features

Representation ML models extract the right features by themselves

Traditional ML Models

Regression models: Linear, Lasso, Ridge, SVR

Classification models: Naive Bayes, SVMs, Decision trees, Random forests

Dimensionality Reduction: Manifold learning, factor analysis

Clustering: K-means, DBSCAN, Spectral clustering

Representation ML Models

Deep learning models such as neural networks

Also used to solve classification, regression, clustering, dimensionality reduction

However internal workings rely on neural network architectures

The Machine Learning Workflow

Basic Machine Learning Workflow

What Data Do You Have to Work With?

Load and Store Data

Data Preprocessing

Selecting and Extracting Features

Critical and Time-consuming Steps

Decision Trees, Support Vector Machines?

Training to Find Model Parameters

Evaluate the Model

Score the Model

Different Algorithm, More Data, More Training?

Iterate Till Model Finalized

Model Used for Predictions

Retrained Using New Data

Basic Machine Learning Workflow

Choosing the Right Problem Based on Data

Classification

Regression

Clustering

Dimensionality reduction

Classify input data into categories

Regression

Clustering

Dimensionality reduction

Classification Use Cases

Predict categories

Email: spam or ham?

Stocks: Buy, sell or hold?

Images: Cat, dog or mouse?

Text: Positive, negative or neutral

sentiment?

Classification

Regression

Clustering

Dimensionality reduction

Classification

Predict continuous numeric values

Clustering

Dimensionality reduction

Regression Use Cases

Given past stock data predict price tomorrow

Given characteristics of a car predict mileage

Given location and attributes of a home predict price

Classification

Regression

Clustering

Dimensionality reduction

Classification

Regression

Discover patterns and groupings in data

Dimensionality reduction

Clustering Use Cases

Document discovery - find all documents related to homicide cases

Social media ad targeting - find all users who are interested in sports

Classification

Regression

Clustering

Dimensionality reduction

Classification

Regression

Clustering

Find latent or significant features in data

Dimensionality Reduction Use Cases

Find latent drivers of stock movements

Pre-process data to build more robust machine learning models

Improve performance of models in training

Supervised Learning

Classification

Regression

Clustering

Dimensionality reduction

Unsupervised Learning

Classification

Regression

Clustering

Dimensionality reduction

Specialized Problem Categories

Recommendation Systems

Recommend products to users

Association Rules Detection

Detect transactions that occur together

Reinforcement Learning

Train agent to navigate an uncertain environment

Broad Solution Categories

Use-case

Image data

Complex textual data

Sequential or time series data

Linear x-variables

Twisted data (S-curves, Swiss Rolls)

Large numbers of x-variables

Problem

Convolutional Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Linear and logistic regression, PCA

Manifold learning

Decision trees

Supervised and Unsupervised Learning

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specifies, up-front, that the function f is linear

```
def doSomethingReallyComplicated(x1,x2...):
    ...
    ...
    return complicatedResult
```

f(x) = doSomethingReallyComplicated(x)

ML algorithms such as neural network can "learn" (reverse-engineer) pretty much anything given the right training data

Unsupervised Learning learns patterns in data without a labeled corpus

Types of ML Algorithms

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Supervised Learning

Input variable x and output variable y

Learn the mapping function y = f(x)

Approximate the mapping function so for new values of x we can predict y

Use existing dataset to correct our mapping function approximation

Unsupervised Learning

Only have input data x - no output data

Model the underlying structure to learn more about data

Algorithms self discover the patterns and structure in the data

Unsupervised Learning Use-cases

ML Technique

To make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomaly detection

Quantization

Pre-training for supervised learning problems (classification, regression)

Use-case

Identify photos of a specific individual
Find common drivers of 200 stocks
Find relevant document in a corpus
Flag fraudulent credit card transactions
Compress true color (24 bit) to 8 bit
All of the above!

Unsupervised Learning Use-cases

What

How

To make unlabelled data self-sufficient

Latent factor analysis

Autoencoder

Autoencoder

Clustering

Clustering

Anomaly detection

Autoencoder

Quantization

Clustering

Pre-training for supervised learning problems (classification, regression)

All of the above!

Unsupervised Learning

Classification

Regression

Clustering

Dimensionality reduction

"What lies behind us and what lies ahead of us are tiny matters compared to what lives within us"

Henry David Thoreau

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

No Labeled Training Data

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Avoid designing NN architecture from scratch

Transfer Learning

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Only makes sense for common, widely studied use-cases

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

In which basic problem structure stays same, but details vary

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Image recognition, language translation are classic examples

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Often the hardest part - allows us to "stand on the shoulders of giants"

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Re-train from scratch, fine-tune model weights, use entirely as-is

The practice of re-using a trained neural network that solves a problem similar to yours, usually leaving the network architecture unchanged and re-using some or all of the model weights.

Several choices based on size and similarity of datasets

Cold-start ML

Cold-start ML Dataset 1 Model 1 Model 2 Dataset 2

Cold-start ML

Cold-start ML **Dataset 1** Model 1 Model 2 Dataset 2

Cold-start ML **Transfer Learning** Dataset 1 **Dataset 1** Model 1 Model 1 Knowledge Dataset 2 Dataset 2 Model 2 Model 2

Transferred knowledge is especially useful when the new dataset is small and not sufficient to train a model from scratch

Warm-start ML

Use information gained from previous training runs to identify smarter starting points for the next training run.

Need not apply only to neural networks - other models support these as well

Warm-start ML

Use information gained from previous training runs to identify smarter starting points for the next training run.

Warm-start ML

Use information gained from previous training runs to identify smarter starting points for the next training run.

Add individual learners to an ensemble model

Warm-start ML

Use information gained from previous training runs to identify smarter starting points for the next training run.

Retain learnings from previous set of learners

Popular Machine Learning Frameworks

scikit-learn

Easy-to-use, very comprehensive and efficient Python library for traditional ML models

Attractions of scikit-learn

Easy-to-use Comprehensive Efficient

Attractions of scikit-learn

Ease of Use

Estimator API for consistent interface

Create a model object

Fit to training data

Predict for new data

Pipelines for complex operations

Attractions of scikit-learn

Completeness

All common families of ML models

Cross-validation

Feature extraction and selection

Data pre-processing

Data generation

- Swiss rolls, S-curves

Attractions of scikit-learn

$(\bigcirc) \rightarrow \bigcirc$

Efficiency

Highly optimized implementations
Built on SciPy, hence scikit prefix
Inter-operates with

- NumPy
- SciPy
- Matplotlib
- Pandas

PyTorch

A deep learning framework for fast, flexible experimentation.

https://pytorch.org/

TensorFlow

TensorFlow is an end-to-end open source platform for machine learning. A comprehensive, flexible ecosystem of tools, libraries and community resources to easily build and deploy ML powered applications.

https://tensorflow.org/

Keras

A high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. However, multi-backend Keras is superseded by tf.keras.

https://keras.io/

Other Popular ML Frameworks

Apache MXNet Microsoft CNTK

XGBoost Theano

TensorFlow vs. PyTorch

TensorFlow

Originally developed at Google by the Google Brain team

First released in November 2015

Tensors as fundamental data structures for computation

CUDA support for GPUs

PyTorch

Originally developed by Al researchers at Facebook

First released in October 2016

Tensors as fundamental data structures for computation

CUDA support for GPUs

TensorFlow vs. PyTorch

TensorFlow

Computation graph is static

Must be defined before being run

tf.Session for separation from

Python

PyTorch

Computation graph is dynamic

Can be defined and run as you go

Tightly integrated with Python

TensorFlow vs. PyTorch

TensorFlow

Debugging via tfdbg

Visualization using built-in TensorBoard

Deployment using TF Serving

tf.device and tf.DeviceSpec to use GPUs (relatively hard)

PyTorch

Debugging with PyCharm, pdb

Visualization using matplotlib, seaborn

Need to set up REST API e.g. Flask

torch.nn.DataParallel to use GPUs (relatively easy)

Learning From PyTorch

TensorFlow now has eager execution mode for dynamic graph execution

Higher level abstraction to build neural network layers using the Keras API

Demo

Exploring the environment and getting started with scikit-learn

Summary

Machine learning vs. rule-based learning Choosing the right model based on data Supervised and unsupervised learning Regression and classification Clustering and dimensionality reduction Transfer learning - cold-start vs. warmstart learning

Popular ML frameworks and their niches