Experimentos - Algoritmo Genético

Estrutura do Repositório

O repositório está organizado da seguinte forma:

- MainOptimizationScript.py: Contém a implementação principal do algoritmo genético, incluindo as funções de otimização, avaliação de fitness, manutenção de diversidade, e geração de gráficos.
- Library: Diretório que contém módulos auxiliares, como métodos de seleção, cruzamento e mutação.
- Experiments_1A: Diretório onde os resultados dos experimentos são armazenados, incluindo gráficos e tabelas gerados.

Como Iniciar o Script

Para executar o script principal e realizar as otimizações, siga o exemplo abaixo, você pode usar o script Playground.py:

```
from MainOptimizationScript import MainOptimizationScript

# Inicializa objeto do algoritimo genético
OptimizationObject = MainOptimizationScript(
    FITNESS_FUNCTION_SELECTION='Levi',
    IDENTIFIER="Levi_POP100"
)
```

Uma vez que o objeto está inicializado você pode configurar o script com base nos parâmetros de configuração a seguir.

Parâmetros de Configuração do Script MainOptimizationScript

Abaixo está a lista de parâmetros de configuração disponíveis no script MainOptimizationScript, juntamente com suas descrições, valores padrão e possíveis valores:

Parâmetro	Descrição	Valor Padrão	Possíveis Valores
POPULATION_SIZE	Tamanho da população inicial.	100	Inteiros positivos (e.g., 50, 100, 200).
GENERATION_COUNT	Número máximo de gerações para a execução do algoritmo.	10	Inteiros positivos (e.g., 10, 50, 100).
CHROMOSOME_LENGTH	Comprimento do cromossomo (número de genes).	2	Inteiros positivos (e.g., 1, 2, 10).
LOWER_BOUND	Limite inferior para os valores dos genes.	-100	Float ou inteiro representando o limite inferior.
UPPER_BOUND	Limite superior para os valores dos genes.	100	Float ou inteiro representando o limite superior.
FITNESS_FUNCTION_SELECTION	Define a função de fitness a ser utilizada no algoritmo.	'Levi'	'Base', 'Akley', 'Drop-Wave', 'Levi', etc.

Parâmetro	Descrição	Valor Padrão	Possíveis Valores
SELECTION_METHOD	Método de seleção utilizado para escolher os pais.	'Random'	'Random', 'TournamentSelection', 'InvertedRouletteWheelSelection', 'RandomSelection', 'DeterministicSamplingSelection'.
SELECTION_TOURNAMENT_SIZE	Tamanho do torneio (aplicável ao método de seleção por torneio).	10	Inteiros positivos (e.g., 2, 5, 10).
CROSSOVER_METHOD	Método de cruzamento utilizado para gerar descendentes.	'Random'	'Random', 'SinglePointCrossover', 'ArithmeticCrossover'.
CROSSOVER_RATE	Taxa de cruzamento entre os indivíduos.	0.8	Float entre 0.0 e 1.0.
MUTATION_METHOD	Método de mutação aplicado aos indivíduos.	'RandomMutationOnIndividualGenes'	'RandomMutationOnIndividualGenes'.
MUTATION_RATE	Taxa de mutação aplicada aos indivíduos.	0.5	Float entre 0.0 e 1.0.
APPLY_DIVERSITY_MAINTENANCE	Define se estratégias de manutenção de diversidade serão aplicadas.	True	True, False.
OPTIMIZATION_METHOD	Método de otimização utilizado no algoritmo.	'Elitism'	'Elitism'.
OPTIMIZATION_METHOD_NUMBER_ELITES	Número de indivíduos mantidos diretamente na próxima geração (elitismo).	10	Inteiros positivos menores que o tamanho da população.
IDENTIFIER	Identificador único para os experimentos, usado para salvar os resultados.	None	Qualquer string representando o identificador.
STOPPING_METHOD	Critério de parada para o algoritmo.	'GenerationCount'	'GenerationCount', 'TargetFitness', 'NoImprovement'.

Parâmetro	Descrição	Valor Padrão	Possíveis Valores
TARGET_FITNESS	Valor de fitness para interromper a execução (aplicável ao critério de parada por fitness).	None	Float representando o valor de fitness desejado.
NO_IMPROVEMENT_LIMIT	Número máximo de gerações sem melhoria para interromper a execução.	None	Inteiros positivos (e.g., 10, 20, 50).

Certifique-se de ajustar os valores desses parâmetros de acordo com os requisitos do seu experimento para obter os melhores resultados.

Uma vez que o objeto está configurado você tem duas opções de execução do algorítimo. Você pode executá-lo uma unica vez através de single_optimization ou diversas vezes e ter uma análise estática através da função multiple_optimization

Execução única

```
OptimizationObject.single_optimization
```

Execução da otimização múltiplas vezes

Dois argumentos são utilizados na chamada dessa função, são eles:

num_executions: Indica a quantidade de vezes que o algorítimo genético será executado.

optimal_solution: Indica a solução ótima do problema da função de fitness que deseja-se encontrar. Esse termo é opcional mas os dados de taxa de sucesso se baseiam nele.

OptimizationObject.multiple optimization(num_executions=num_executions, optimal_solution=optimal_solution)

Fluxograma das Funções

multiple_optimization

O fluxograma abaixo descreve o funcionamento da função multiple_optimization, que realiza múltiplas execuções do algoritmo genético e avalia estatisticamente os resultados:

```
flowchart TD
    A[Início] --> B[Visualizar função de fitness]
    B --> C[Resetar resultados e métricas]
    C --> D[Iniciar temporizador e loop de execuções]
    D --> E[Executar otimização com elitismo]
    E --> F[Armazenar resultados da execução]
    F --> G[Atualizar melhor resultado geral]
    G --> H{Solução ótima encontrada?}
    H -->|Sim| I[Incrementar contador de sucesso]
    H -->|Não| J[Continuar]
    I --> J
    J --> K[Atualizar métricas agregadas]
    K --> L{Todas execuções concluídas?}
    L -->|Não| E
    L -->|Sim| M[Calcular métricas finais]
    M --> N[Gerar gráficos e salvar resultados]
    N --> O[Fim]
```

elitism_optimization

O fluxograma abaixo descreve o funcionamento da função elitism_optimization, que realiza a otimização utilizando o operador de elitismo:

```
flowchart TD
    A[Início] --> B[Gerar população inicial aleatoriamente]
    B --> C[Avaliar fitness da população inicial]
    C --> D[Resetar métricas de diversidade]
    D --> E[Iterar por gerações]
    E --> F[Selecionar pais para cruzamento]
    F --> G[Gerar descendentes com cruzamento e mutação]
    G --> H[Aplicar elitismo]
    H --> I[Atualizar população]
    I --> J[Avaliar fitness da nova população]
    J --> K[Calcular diversidade da população]
    K --> L{Diversidade abaixo do threshold e função de manutenção ativa?}
    L -->|Sim| M[Aplicar métodos de manutenção de diversidade]
    L -->|Não| N[Continuar]
    M --> N
    N --> O{Critério de parada atingido?}
    O -->|Sim| P[Retornar melhor solução]
    0 --> |Não | F
    P --> Q[Fim]
```

Métodos de Seleção

Os métodos de seleção determinam como os pais são escolhidos para gerar descendentes. Os métodos disponíveis são:

- TournamentSelection: Seleciona um grupo de indivíduos aleatórios (tamanho definido por SELECTION_TOURNAMENT_SIZE) e escolhe o
 melhor entre eles.
- InvertedRouletteWheelSelection: A probabilidade de seleção de um indivíduo é inversamente proporcional ao seu fitness. Indivíduos
 com menor fitness têm maior chance de serem escolhidos.
- RandomSelection: Seleciona indivíduos aleatoriamente, sem considerar o fitness.
- DeterministicSamplingSelection: Seleciona indivíduos com base em uma proporção fixa de fitness, garantindo que cada indivíduo seja representado de acordo com sua aptidão.
- Random: Alterna aleatoriamente entre os métodos TournamentSelection, InvertedRouletteWheelSelection, RandomSelection, e
 DeterministicSamplingSelection.

A escolha do método de seleção pode impactar diretamente a exploração e a exploração do espaço de busca.

Métodos de Mutação

A mutação introduz variação nos descendentes, alterando os genes de forma aleatória. O método disponível é:

RandomMutationOnIndividualGenes: Altera os genes de um indivíduo com uma probabilidade definida por MUTATION_RATE. Cada gene
tem uma chance independente de ser modificado.

A mutação é essencial para evitar a convergência prematura e explorar novas regiões do espaço de busca.

Métodos de Cruzamento

O cruzamento combina os genes de dois pais para gerar descendentes. Os métodos disponíveis são:

- SinglePointCrossover: Divide os cromossomos dos pais em um ponto aleatório e troca as partes para formar os descendentes.
- ArithmeticCrossover: Combina os genes dos pais usando uma média ponderada para gerar os descendentes.
- Random: Alterna aleatoriamente entre os métodos SinglePointCrossover e ArithmeticCrossover.

O cruzamento é responsável por explorar combinações promissoras de genes.

Manutenção de Diversidade

A manutenção de diversidade é aplicada quando a diversidade da população cai abaixo de um limite (threshold). As estratégias utilizadas são:

- 1. Reinicialização Parcial: Substitui uma porcentagem da população por novos indivíduos gerados aleatoriamente.
- 2. Aumento Temporário da Taxa de Mutação: Multiplica a taxa de mutação por um fator (e.g., 1.5) para introduzir mais variação.

3. Introdução de Indivíduos Aleatórios: Adiciona novos indivíduos aleatórios à população.

Essas estratégias ajudam a evitar a estagnação e a melhorar a exploração do espaço de busca.

Critérios de Parada

Os critérios de parada determinam quando o algoritmo deve encerrar a execução. Os critérios disponíveis são:

- GenerationCount: O algoritmo para após atingir o número máximo de gerações (GENERATION_COUNT).
- TargetFitness: O algoritmo para quando o melhor fitness encontrado atinge ou supera um valor alvo (TARGET_FITNESS).
- NoImprovement: O algoritmo para quando não há melhoria no melhor fitness por um número consecutivo de gerações (NO_IMPROVEMENT_LIMIT).

A escolha do critério de parada depende dos objetivos do experimento e do tempo disponível para execução.

Experimentos

Experimento 1

Esse experimento é executado pelo script `ExperimentSimple.py', ele é utilizado apenas pra demonstrar o código genético com uma configuração fixa. Resultados são apresentados a seguir para cada função custo.

Função Levi

A configuração utilizada para o experimento com a função Levi foi a seguinte:

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	100
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Levi
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[1, 1]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Levi

Resultados do Experimento

Valor	
49.38577842712402	
100.0	
6.931186853893761e-06	

Metrica	Valor	
Best Solution Found	4.344423405276921e-16	
Chromosome for Best Solution	[1.0000000019259585, 0.99999989937808]	
Mean of Optimal Points	[0.9999762205854817, 1.0000000017900224]	
Standard Deviation of Optimal Points	[0.0002726099263058269, 0.0004528774520905827]	

Gráficos Gerados

Curva de Convergência

Diversidade da População

A diversidade é calculada através da média do desvio padrão de cada gene em cada geração. O gráfico a seguir apresenta a média de diversidade de todas as execuções e o seu desvio padrão associado.

Distribuição dos Pontos Ótimos

A imagem a seguir mostra os pontos ótimos obtidos para todas execuções bem sucedidas. Além disso, apresenta-se a média desses pontos ótimos e o desvio padrão associado a essa média.

Função Drop-Wave

A configuração utilizada para o experimento com a função Drop-wave foi a seguinte:

Parâmetro	Valor
POPULATION_SIZE	200
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave
SELECTION_METHOD	Random
SELECTION_TOURNAMENT_SIZE	10
CROSSOVER_METHOD	Random
CROSSOVER_RATE	0.8
MUTATION_METHOD	Random
MUTATION_RATE	0.1
OPTIMIZATION_METHOD	Elitism
OPTIMIZATION_METHOD_NUMBER_ELITES	20
NUM_EXECUTIONS	100
OPTIMAL_SOLUTION	[0, 0]
TOLERANCE	0.01
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False
IDENTIFIER	Drop-Wave

Resultados do Experimento

Métrica	Valor	
Total Execution Time (s)	86.25582528114319	
Success Rate (%)	92.0	
Average Best Fitness	-0.9948896050918223	
Best Solution Found	-1.0	
Chromosome for Best Solution	[1.1968360855877302e-10, -1.2295441717671068e-09]	
Mean of Optimal Points	[3.727417379878614e-05, 2.7765052998566814e-05]	
Standard Deviation of Optimal Points	[0.0005256006788410745, 0.00014802600090781904]	

Gráficos Gerados

Curva de Convergência

Diversidade da População

Distribuição dos Pontos Ótimos

Experimento 2

O segundo experimento consistiu em variar a população inicial para cada uma das funções custo utilizadas. Para fazer isso de uma forma estrutura foi implementado o script ExperimentPopulationSize.py.

Esse script vai executar os passos anteriormente explecitados enquanto varia a população inicial em: [50, 100, 200, 400]

Os resultados podem ser encontrados em 02_PopulationSizeVariation, mas as informações principais são apresentadas a seguir.

Função Levi

Configuração:

Parâmetro	Valor	
POPULATION_SIZE	50 100 200 400	

Parâmetro	Valor	
GENERATION_COUNT	100	
CHROMOSOME_LENGTH	2	
LOWER_BOUND	-100	
UPPER_BOUND	100	
FITNESS_FUNCTION_SELECTION	Levi	
SELECTION_METHOD	Random	
SELECTION_TOURNAMENT_SIZE	10	
CROSSOVER_METHOD	Random	
CROSSOVER_RATE	0.8	
MUTATION_METHOD	Random	
MUTATION_RATE	0.225	
OPTIMIZATION_METHOD	Elitism	
OPTIMIZATION_METHOD_NUMBER_ELITES	20	
NUM_EXECUTIONS	100	
OPTIMAL_SOLUTION	[1, 1]	
TOLERANCE	0.01	
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False	
IDENTIFIER	LeviExperiment_POP50	

Resultados:

Métrica	Valor (Pop 50)	Valor (Pop 100)	Valor (Pop 200)	Valor (Pop 400)
Total Execution Time (s)	13.734084367752075	24.39724111557007	49.836204051971436	115.94279527664185
Success Rate (%)	96.0	100.0	100.0	100.0
Average Best Fitness	0.0002759522713756379	4.834148016256333e-05	1.4423788788487844e-05	5.597974456271896e-07
Best Solution Found	1.6857203051960365e-09	5.309025825887526e-13	3.7200342912541225e-17	2.888746143425376e-14
Chromosome for Best Solution	[1.0000007607647516, 0.9999595805494914]	[1.0000000064190506, 1.0000007260863275]	[0.999999993852009, 0.9999999981977981]	[1.0000000057696836, 0.9999998390739089]
Mean of Optimal Points	[1.000067980257224, 0.9999557675466907]	[1.0001405119913311, 1.0000438362952746]	[1.000035746607017, 0.9999302430277044]	[1.0000011292055253, 1.0000042500303954]
Standard Deviation of Optimal Points	[0.0017099195046880596, 0.0017906220807427506]	[0.0007007161132453017, 0.0015693413159984623]	[0.00039094460619084584, 0.0007584421942344941]	[7.544505970749895e-05, 0.00021994529289061127]

Gráficos Gerados

Sucesso vs. Tamanho da População

Tempo de Execução vs. Tamanho da População

Diversidade Média vs. Tamanho da População

Curvas de Convergência para Diferentes Tamanhos de População

Função Drop-Wave

Configuração:

Parâmetro	Valor
POPULATION_SIZE	50 100 200 400
GENERATION_COUNT	200
CHROMOSOME_LENGTH	2
LOWER_BOUND	-100
UPPER_BOUND	100
FITNESS_FUNCTION_SELECTION	Drop-Wave

Parâmetro	Valor	
SELECTION_METHOD	Random	
SELECTION_TOURNAMENT_SIZE	10	
CROSSOVER_METHOD	Random	
CROSSOVER_RATE	0.8	
MUTATION_METHOD	Random	
MUTATION_RATE	0.1 (varia com população)	
OPTIMIZATION_METHOD	Elitism	
OPTIMIZATION_METHOD_NUMBER_ELITES	20	
NUM_EXECUTIONS	100	
OPTIMAL_SOLUTION	[0, 0]	
TOLERANCE	0.01	
ENABLE_FITNESS_FUNCTION_VISUALIZATION	False	
IDENTIFIER	Drop-WaveExperiment_POP50	

Resultados:

Métrica	Valor (Pop 50)	Valor (Pop 100)	Valor (Pop 200)	Valor (Pop 400)
Total Execution Time (s)	30.41422390937805	55.762266874313354	114.32732343673706	260.98560070991516
Success Rate (%)	67.0	66.0	88.0	98.0
Average Best Fitness	-0.980204931140019	-0.9794249826693925	-0.9946680287966604	-0.9992923811056188
Best Solution Found	-0.999999999943	-1.0	-1.0	-0.99999999999998
Chromosome for Best Solution	[-2.150870537723986e-09, 1.2537300101991205e-07]	[5.110254744307705e-10, 1.401576822006087e-09]	[-5.579270544899776e- 10, 1.397761252045926e- 09]	[-2.3520112836471112e-09, -1.5440200181792199e-09]
Mean of Optimal Points	[-6.199480807987171e-05, -5.394110083363191e-05]	[-0.0001357890410971659, 0.00028054367746785337]	[5.213785344044782e-05, 8.376101174055558e-05]	[8.04094334594194e-05, -8.565309660534587e-06]
Standard Deviation of Optimal Points	[0.0015690021797839055, 0.001215205333742817]	[0.0006586359203090773, 0.0008647967860396557]	[0.000420247490047234, 0.0003959220429625053]	[0.0005975047169587559, 0.0001304449854207518]

Gráficos Gerados

Sucesso vs. Tamanho da População

Tempo de Execução vs. Tamanho da População

Diversidade Média vs. Tamanho da População

Curvas de Convergência para Diferentes Tamanhos de População

