

## Diabetes Analysis

In this file we'll be analyzing Diabetes information for female.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

+ Code — + Text

#### ▼ Reading data:

pd.read\_excel

<function pandas.io.excel.\_base.read\_excel(io, sheet\_name: 'str | int | list[IntStrT] | None' = 0, \*, header: 'int | Sequence[int] |
None' = 0, names: 'list[str] | None' = None, index\_col: 'int | Sequence[int] | None' = None, usecols: 'int | str | Sequence[int] |
Sequence[str] | Callable[[str], bool] | None' = None, dtype: 'DtypeArg | None' = None, engine: "Literal['xlrd', 'openpyxl', 'odf',
'pyxlsb'] | None" = None, converters: 'dict[str, Callable] | dict[int, Callable] | None' = None, true\_values: 'Iterable[Hashable] |
None' = None, false\_values: 'Iterable[Hashable] | None' = None, skiprows: 'Sequence[int] | int | Callable[[int], object] | None' =
None, nrows: 'int | None' = None, na\_values=None, keep\_default\_na: 'bool' = True, na\_filter: 'bool' = True, verbose: 'bool' = False,
parse\_dates: 'list | dict | bool' = False, date\_parser: 'Callable | lib.NoDefault' = <no\_default>, date\_format: 'dict[Hashable, str] |
str | None' = None, thousands: 'str | None' = None, decimal: 'str' = '.', comment: 'str | None' = None, skipfooter: 'int' = 0,
storage\_options: 'StorageOptions' = None, dtype\_backend: 'DtypeBackend | lib.NoDefault' = <no\_default>) -> 'DataFrame | dict[IntStrT,
DataFrame]'>

df = pd.read\_excel('E:\MeriSkillInternship\Project 2 - Diabetes Data\diabetes\_python.xlsx')

df.head()

| Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age | AgeCategories | Exist<br>Cases | Cases_Num | Preg |
|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------------|----------------|-----------|------|
| 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | old           | Yes            | 1         |      |
| 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | Middle Age    | No             | 0         |      |
| 2 8         | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | Middle Age    | Yes            | 1         |      |
| 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | Adolescent    | No             | 0         |      |
| 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | Middle Age    | Yes            | 1         |      |

df.shape

(768, 11)

df.tail(3)

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age | AgeCategories | Exist Cases | Cases_N |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------------|-------------|---------|
| 765 | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 30  | Adolescent    | No          |         |
| 766 | 1           | 126     | 60            | 0             | 0       | 30.1 | 0.349                    | 47  | Middle Age    | Yes         |         |
| 767 | 1           | 93      | 70            | 31            | 0       | 30.4 | 0.315                    | 23  | Adolescent    | No          |         |

df.head()

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | ${\tt DiabetesPedigreeFunction}$ | Age | AgeCategories | Exist Cases | Cases_Num |
|---|-------------|---------|---------------|---------------|---------|------|----------------------------------|-----|---------------|-------------|-----------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                            | 50  | old           | Yes         | 1         |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                            | 31  | Middle Age    | No          | C         |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                            | 32  | Middle Age    | Yes         | 1         |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                            | 21  | Adolescent    | No          | О         |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                            | 33  | Middle Age    | Yes         | 1         |

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 11 columns):

| #   | Column                   | Non-Null Count | Dtype   |
|-----|--------------------------|----------------|---------|
|     |                          |                |         |
| 0   | Pregnancies              | 768 non-null   | int64   |
| 1   | Glucose                  | 768 non-null   | int64   |
| 2   | BloodPressure            | 768 non-null   | int64   |
| 3   | SkinThickness            | 768 non-null   | int64   |
| 4   | Insulin                  | 768 non-null   | int64   |
| 5   | BMI                      | 768 non-null   | float64 |
| 6   | DiabetesPedigreeFunction | 768 non-null   | float64 |
| 7   | Age                      | 768 non-null   | int64   |
| 8   | AgeCategories            | 768 non-null   | object  |
| 9   | Exist Cases              | 768 non-null   | object  |
| 10  | Cases_Num                | 768 non-null   | int64   |
| 4.4 | (7) (64(0) (1)(64(7)     | 1.1. (0)       |         |

dtypes: float64(2), int64(7), object(2)

memory usage: 66.1+ KB

df.describe()

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | BMI        | ${\tt DiabetesPedigreeFunction}$ | Age        | Cases_Num  |
|-------|-------------|------------|---------------|---------------|------------|------------|----------------------------------|------------|------------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000                       | 768.000000 | 768.000000 |
| mean  | 3.845052    | 120.894531 | 69.105469     | 20.536458     | 79.799479  | 31.992578  | 0.471876                         | 33.240885  | 0.348958   |
| std   | 3.369578    | 31.972618  | 19.355807     | 15.952218     | 115.244002 | 7.884160   | 0.331329                         | 11.760232  | 0.476951   |
| min   | 0.000000    | 0.000000   | 0.000000      | 0.000000      | 0.000000   | 0.000000   | 0.078000                         | 21.000000  | 0.000000   |
| 25%   | 1.000000    | 99.000000  | 62.000000     | 0.000000      | 0.000000   | 27.300000  | 0.243750                         | 24.000000  | 0.000000   |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 30.500000  | 32.000000  | 0.372500                         | 29.000000  | 0.000000   |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                         | 41.000000  | 1.000000   |
| max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                         | 81.000000  | 1.000000   |

df.columns

#### ▼ Check Null Values

df.isna().sum()

```
Pregnancies
Glucose
BloodPressure
                             0
SkinThickness
                             0
Insulin
                             0
{\tt DiabetesPedigreeFunction}
                             0
                             0
AgeCategories
                             0
Exist Cases
                             0
Cases_Num
                             0
dtype: int64
```

### ▼ Check Duplicate Values

```
df.duplicated().sum()
0
```

## ▼ Numerical analysis and visualization

We'll analyze the Glucose column:

```
df['Glucose'].describe()
              768.000000
     count
              120.894531
     mean
               31.972618
     std
                0.000000
     25%
               99.000000
     50%
              117.000000
              140.250000
     75%
     max
              199.000000
     Name: Glucose, dtype: float64
df['Glucose'].mean()
     120.89453125
df['Glucose'].median()
     117.0
df['Glucose'].plot(kind='box', vert=False, figsize=(10,6))
     <Axes: >
```



df['Glucose'].plot(kind='density', figsize=(10,6))







```
ax = df['Glucose'].plot(kind='hist', figsize=(10,6))
ax.set_ylabel('Number of Glucose')
ax.set_xlabel('Glucose')
```



## ▼ Categorical analysis and visualization

We'll analyze the  ${\tt AgeCategories}$  column:

df.head()

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age | AgeCategories | Exist Cases | Cases_Num |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------------|-------------|-----------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | old           | Yes         | 1         |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | Middle Age    | No          | О         |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | Middle Age    | Yes         | 1         |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | Adolescent    | No          | О         |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | Middle Age    | Yes         | 1         |

df['AgeCategories'].value\_counts()

AgeCategories
Adolescent 417
Middle Age 262
old 89

Name: count, dtype: int64

df['AgeCategories'].value\_counts().plot(kind='pie', figsize=(6,6))

<Axes: ylabel='count'>



ax = df['AgeCategories'].value\_counts().plot(kind='bar', figsize=(10,6))
ax.set\_ylabel('Number of Cases')





sns.pairplot(df)
plt.show()



### ▼ Relationship between the columns?

We will find any significant relationship

|                          | Pregnancies |          | BloodPressure | SkinThickness | Insulin   | BMI      | DiabetesPedigreeFunction | Age       | Case |
|--------------------------|-------------|----------|---------------|---------------|-----------|----------|--------------------------|-----------|------|
| Pregnancies              | 1.000000    | 0.129459 | 0.141282      | -0.081672     | -0.073535 | 0.017683 | -0.033523                | 0.544341  | 0.2  |
| Glucose                  | 0.129459    | 1.000000 | 0.152590      | 0.057328      | 0.331357  | 0.221071 | 0.137337                 | 0.263514  | 0.4  |
| BloodPressure            | 0.141282    | 0.152590 | 1.000000      | 0.207371      | 0.088933  | 0.281805 | 0.041265                 | 0.239528  | 0.0  |
| SkinThickness            | -0.081672   | 0.057328 | 0.207371      | 1.000000      | 0.436783  | 0.392573 | 0.183928                 | -0.113970 | 0.0  |
| Insulin                  | -0.073535   | 0.331357 | 0.088933      | 0.436783      | 1.000000  | 0.197859 | 0.185071                 | -0.042163 | 0.1  |
| ВМІ                      | 0.017683    | 0.221071 | 0.281805      | 0.392573      | 0.197859  | 1.000000 | 0.140647                 | 0.036242  | 0.2  |
| DiabetesPedigreeFunction | -0.033523   | 0.137337 | 0.041265      | 0.183928      | 0.185071  | 0.140647 | 1.000000                 | 0.033561  | 0.1  |
| Age                      | 0.544341    | 0.263514 | 0.239528      | -0.113970     | -0.042163 | 0.036242 | 0.033561                 | 1.000000  | 0.4  |
| Cases_Num                | 0.221898    | 0.466581 | 0.065068      | 0.074752      | 0.130548  | 0.292695 | 0.173844                 | 0.238356  | 1.(  |
| 70                       |             | 1 .      | 11 •          | 100           |           | 1•       | 120                      | 1         |      |

```
fig = plt.figure(figsize=(6,6))
plt.matshow(corr, cmap='RdBu', fignum=fig.number)
plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical');
plt.yticks(range(len(corr.columns)), corr.columns);
```



df.plot(kind='scatter', x='Age', y='Pregnancies', figsize=(6,6))





ax = df[['BloodPressure', 'AgeCategories']].boxplot(by='AgeCategories', figsize=(6,6))
ax.set\_ylabel('BloodPressure')

Text(0, 0.5, 'BloodPressure')

### Boxplot grouped by AgeCategories



boxplot\_cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness','Insulin', 'BMI']
df[boxplot\_cols].plot(kind='box', subplots=True, layout=(2,3), figsize=(14,8))



Insulin

400

200

40

30

20

10 0

# ▼ Column wrangling

60

40

20

Add and calculate a new Pregnancies per Age column

SkinThickness

вмі



df['Pregnancies\_per\_Age'].plot(kind='hist', figsize=(10,6))



### ▼ Add and calculate a new Calculated\_Insulin column

Use this formula

 $Calculated_Insulin = Insulin * DiabetesPedigreeFunction$ 

```
df['Calculated_Insulin'] = df['Insulin'] * df['DiabetesPedigreeFunction']

df['Calculated_Insulin'].head()

0     0.000
     1     0.000
     2     0.000
     3     15.698
     4     384.384
    Name: Calculated_Insulin, dtype: float64
```

We can see the relationship between  ${\tt Cost}$  and  ${\tt Profit}$  using a scatter plot:

df.plot(kind='scatter', x='Calculated\_Insulin', y='BMI', figsize=(6,6))

<Axes: xlabel='Calculated\_Insulin', ylabel='BMI'>



- ▼ Selection & Indexing:
- ▼ Get all the data which related to age category old

df.loc[df['AgeCategories'] == 'old']

|        | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age | AgeCategories | Exist<br>Cases | Cases_Num | Pr |
|--------|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------------|----------------|-----------|----|
| 0      | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | old           | Yes            | 1         |    |
| 8      | 2           | 197     | 70            | 45            | 543     | 30.5 | 0.158                    | 53  | old           | Yes            | 1         |    |
| 9      | 8           | 125     | 96            | 0             | 0       | 0.0  | 0.232                    | 54  | old           | Yes            | 1         |    |
| 12     | 10          | 139     | 80            | 0             | 0       | 27.1 | 1.441                    | 57  | old           | No             | 0         |    |
| 13     | 1           | 189     | 60            | 23            | 846     | 30.1 | 0.398                    | 59  | old           | Yes            | 1         |    |
|        |             |         |               |               |         |      |                          |     |               |                |           |    |
| 734    | 2           | 105     | 75            | 0             | 0       | 23.3 | 0.560                    | 53  | old           | No             | 0         |    |
| 749    | 6           | 162     | 62            | 0             | 0       | 24.3 | 0.178                    | 50  | old           | Yes            | 1         |    |
| 757    | 0           | 123     | 72            | 0             | 0       | 36.3 | 0.258                    | 52  | old           | Yes            | 1         |    |
| 759    | 6           | 190     | 92            | 0             | 0       | 35.5 | 0.278                    | 66  | old           | Yes            | 1         |    |
| 763    | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 63  | old           | No             | 0         |    |
| 00 === | 40!         |         |               |               |         |      |                          |     |               |                |           |    |

89 rows × 13 columns

▼ Get the mean SkinThickness of the Middle lage (31-49)

df.loc[df['AgeCategories'] == 'Middle Age', 'SkinThickness'].mean()

20.18320610687023

▼ How many records belong to Age Group Adolescent (<31) or Middle Age (31-49)?

```
df.loc[(df['AgeCategories'] == 'Adolescent') | (df['AgeCategories'] == 'Middle Age')].shape[0]
679
```

▼ Get the mean BMI for Adolescent (<31) which is injured in diabete Exist Cases = yes