DEVOIR MAISON 2

Exercice 1 -

1. (a) On a

$$g'(x) = 6x^2 - \frac{6}{x} = \frac{6x^3 - 6}{x} = \frac{6(x^3 - 1)}{x}.$$

(b) On a $x^3 - 1 \ge 0 \iff x \ge 1$. On en déduit le tableau suivant.

X	0		1		+∞
$6(x^3-1)$		_	0	+	
x		+		+	
g'(x)		-	0	+	
g			g(1)		*

(c) On a $g(1) = 2 \times 1^3 - 6\ln(1) + 3 = 5$. Or g(1) est le minimum de g donc pour tout $x \in \mathbb{R}_+^*$

$$g(x) \ge g(1) = 5 > 0.$$

Ainsi pour tout $x \in \mathbb{R}_+^*$, on a g(x) > 0.

2. (a) On a $\lim_{x \to 0^+} 2x = 0$ et $\lim_{x \to 0^+} \frac{3\ln(x)}{x^2} = -\infty$. Donc par somme, $\lim_{x \to 0^+} f(x) = -\infty$.

De plus $\lim_{x \to +\infty} 2x = +\infty$ et par croissance comparée, $\lim_{x \to +\infty} \frac{3\ln(x)}{x^2} = 0$. Donc par somme, $\lim_{x \to 0^+} f(x) = -\infty$.

(b) On a

$$f(x) - y = 2x + \frac{3\ln(x)}{x^2} - 2x = \frac{3\ln(x)}{x^2}.$$

Et on a vu que $\lim_{x \to +\infty} \frac{3\ln(x)}{x^2} = 0$.

Donc la droite (D) d'équation y = 2x est bien asymptote oblique de \mathcal{C}_f quand $x \to +\infty$.

3. (a) On a

$$f'(x) = 2 + \frac{\frac{3}{x} \times x^2 - 3\ln(x) \times 2x}{x^4}$$

$$= 2 + \frac{3x - 6x\ln(x)}{x^4}$$

$$= 2 + \frac{3 - 6\ln(x)}{x^3}$$

$$= \frac{2x^3 - 6\ln(x) + 3}{x^3}$$

$$= \frac{g(x)}{x^3}.$$

(b) On a vu que g(x) > 0 sur \mathbf{R}_{+}^{*} donc f'(x) > 0 sur \mathbf{R}_{+}^{*} . On en déduit le tableau suivant.

x	0 +∞
f'(x)	+
g	+∞

(c) On obtient la courbe suivante.

Exercice 2 -

1. (a) Notons U_k l'évènement "le premier tirage s'effectue dans l'urne \mathcal{U}_k ", pour $k \in \{1; 2\}$. Alors d'après la formule des probabilités totales,

$$\begin{split} P(X_1 = 1) &= P(U_1 \cap [X_1 = 1]) + P(U_2 \cap [X_1 = 1]) \\ &= P(U_1) \times P_{U_1}(X_1 = 1) + P(U_2) \times P_{U_2}(X_1 = 1) \\ &= \frac{1}{2} \times \frac{3}{5} + \frac{1}{2} \times \frac{1}{5} \\ &= \frac{4}{10} = \frac{2}{5}. \end{split}$$

La variable aléatoire X_1 suit une loi de Bernoulli de paramètre $p = \frac{2}{5}$.

(b) On a
$$E(X_1) = p = \frac{2}{5}$$
 et $V(X_1) = p(1-p) = \frac{2}{5} \times \frac{3}{5} = \frac{6}{25}$.

2. (a) Puisque $Z = X_1 + X_2$, on a $[X_2 = 0] \cap [Z = 0] = [X_1 = 0] \cap [X_2 = 0]$. Alors, d'après la formule des probabilités composées,

$$P([X_2 = 0] \cap [Z = 0]) = P([X_1 = 0] \cap [X_2 = 0]) = P(X_1 = 0) \times P_{X_1 = 0}(X_2 = 0) = \frac{3}{5} \times \frac{4}{5} = \frac{12}{25}$$

(b) Les évènements $[X_2 = 1] \cap [Z = 0]$ et $[X_2 = 0] \cap [Z = 2]$ sont impossibles donc

$$P([X_2 = 1] \cap [Z = 0]) = P([X_2 = 0] \cap [Z = 2]) = 0.$$

Par ailleurs, de la même manière que dans la question précédente, on a

$$P([X_{2}=0] \cap [Z=1]) = P([X_{1}=1] \cap [X_{2}=0]) = P(X_{1}=1) \times P_{X_{1}=1}(X_{2}=0) = \frac{2}{5} \times \frac{2}{5} = \frac{4}{25},$$

$$P([X_{2}=1] \cap [Z=1]) = P([X_{1}=0] \cap [X_{2}=1]) = P(X_{1}=0) \times P_{X_{1}=0}(X_{2}=1) = \frac{3}{5} \times \frac{1}{5} = \frac{3}{25},$$

$$P([X_{2}=1] \cap [Z=2]) = P([X_{1}=1] \cap [X_{2}=1]) = P(X_{1}=1) \times P_{X_{1}=1}(X_{2}=1) = \frac{2}{5} \times \frac{3}{5} = \frac{6}{25}.$$

Ce que l'on peut résumer par le tableau ci-dessous.

	Z = 0	Z = 1	Z = 2
$X_2 = 0$	$\frac{12}{25}$	$\frac{4}{25}$	0
$X_2 = 1$	0	$\frac{3}{25}$	$\frac{6}{25}$

3. (a) On détermine la loi de X_2 en faisant la somme des valeurs de chaque ligne dans le tableau précédent. On obtient

x_i	0	1
$P(X_2 = x_i)$	16	9
	$\overline{25}$	$\frac{\overline{25}}{25}$

 X_2 suit donc une loi de Bernoulli de paramètre $p = \frac{9}{25}$. On a donc $E(X_2) = p = \frac{9}{25}$ et $V(X_2) = p(1-p) = \frac{9}{25} \times \frac{16}{25} = \frac{144}{625}$.

- (b) On a $P(X_1 = 1) = \frac{2}{5}$, $P(X_2 = 1) = \frac{9}{25}$ et $P(X_1 = 1, X_2 = 1) = \frac{6}{25}$, dont on déduit que $P(X_1 = 1) \times P(X_2 = 1) \neq P(X_1 = 1, X_2 = 1)$. Donc les variables X_1 et X_2 ne sont pas indépendantes.
- (c) On détermine la loi de Z en faisant la somme des valeurs de chaque colonne dans le tableau de la loi du couple (X_2, Z) . On obtient

x_i	0	1	2
$P(Z=x_i)$	12	7	6
	$\overline{25}$	${25}$	$\overline{25}$

(d) On a $E(Z) = \frac{7}{25} + \frac{12}{25} = \frac{19}{25}$. Par ailleurs,

$$E(Z^2) = \frac{7}{25} + \frac{24}{25} = \frac{31}{25}.$$

Donc d'après la formule de König-Huygens,

$$V(Z) = E(Z^2) - E(Z)^2 = \frac{31}{25} - \left(\frac{19}{25}\right)^2 = \frac{31}{25} - \frac{361}{625} = \frac{775}{625} - \frac{361}{625} = \frac{414}{625}.$$

4. D'après la formule des probabilités conditionnelles, on a

$$P_{X_1=0}(U_1) = \frac{P([X_1=0] \cap U_1)}{P(X_1=0)} = \frac{\frac{1}{2} \times \frac{2}{5}}{\frac{3}{5}} = \frac{1}{3}.$$

5. (a) On a

$$E(X_2Z) = \frac{3}{25} + \frac{12}{25} = \frac{15}{25}.$$

(b) D'après la formule de Huygens, on a

$$Cov(X_2, Z) = E(X_2Z) - E(X_2)E(Z) = \frac{15}{25} - \frac{9}{25} \times \frac{19}{25} = \frac{15}{25} - \frac{171}{625} = \frac{375}{625} - \frac{171}{625} = \frac{204}{625}$$

(c) On a $Z = X_1 + X_2$ donc $X_1 = Z - X_2$. Ainsi

$$Cov(X_1, X_2) = Cov(Z - X_2, X_2) = Cov(Z, X_2) - V(X_2) = \frac{204}{625} - \frac{144}{625} = \frac{60}{125}.$$

(d) On a $Z = X_1 + X_2$ donc

$$V(Z) = V(X_1) + V(X_2) + 2\operatorname{Cov}(X_1, X_2) = \frac{6}{25} + \frac{144}{625} + 2 \times \frac{60}{625} = \frac{150 + 144 + 120}{625} = \frac{414}{625}.$$

Exercice 3 -

1. Notons \mathcal{P}_n la proposition " $A^n = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}$ ".

Initialisation : Pour n = 0,

$$A^0 = I_3$$
 et $\begin{pmatrix} 2^0 & 0 & 3^0 - 2^0 \\ 0 & 3^0 & 0 \times 3^{0-1} \\ 0 & 0 & 3^0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$

Donc \mathcal{P}_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons \mathscr{P}_n vraie et montrons que \mathscr{P}_{n+1} est vraie. On a

$$A^{n+1} = A \times A^{n}$$

$$= \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 2^{n} & 0 & 3^{n} - 2^{n} \\ 0 & 3^{n} & n3^{n-1} \\ 0 & 0 & 3^{n} \end{pmatrix}$$

$$= \begin{pmatrix} 2 \times 2^{n} & 0 & 2(3^{n} - 2^{n}) + 3^{n} \\ 0 & 3 \times 3^{n} & 3 \times n3^{n-1} + 3^{n} \\ 0 & 0 & 3 \times 3^{n} \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n+1} & 0 & 2 \times 3^{n} - 2^{n+1} + 3^{n} \\ 0 & 0 & 3^{n+1} & n3^{n} + 3^{n} \\ 0 & 0 & 3^{n+1} \end{pmatrix}$$

$$= \begin{pmatrix} 2^{n+1} & 0 & 3^{n+1} - 2^{n+1} \\ 0 & 3^{n+1} & (n+1) \times 3^{n} \\ 0 & 0 & 3^{n+1} \end{pmatrix}$$

donc \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout n dans \mathbf{N} *i.e.*,

$$\forall n \in \mathbf{N}, \quad A^n = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}.$$

2. (a) On a

$$AX_{n} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} a_{n} \\ b_{n} \\ 3^{n} \end{pmatrix}$$
$$= \begin{pmatrix} 2a_{n} + 3^{n} \\ 3b_{n} + 3^{n} \\ 3^{n+1} \end{pmatrix}$$
$$= \begin{pmatrix} a_{n+1} \\ b_{n+1} \\ 3^{n+1} \end{pmatrix} = X_{n+1}.$$

(b) Notons \mathscr{P}_n la proposition " $X_n = A^n X_0$ ".

Initialisation : Pour n = 0,

$$A^0 = I_3 X_0 = X_0$$

donc \mathcal{P}_0 est vraie.

Hérédité : Soit n un entier quelconque dans \mathbf{N} . Supposons \mathscr{P}_n vraie et montrons que \mathscr{P}_{n+1} est vraie.

On a

$$X_{n+1} = AX_n = A \times A^n X_0 = A^{n+1} X_0$$

donc \mathcal{P}_{n+1} est vraie.

Conclusion : Par principe de récurrence, la proposition \mathcal{P}_n est vraie pour tout n dans \mathbf{N} *i.e.*,

$$X_n = A^n X_0$$
.

(c) On a

$$\begin{pmatrix} a_n \\ b_n \\ 3^n \end{pmatrix} = X_n = A^n X_0 = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{n+1} + 3^n - 2^n \\ n3^{n-1} \\ 3^n \end{pmatrix} = \begin{pmatrix} 2^n + 3^n \\ n3^{n-1} \\ 3^n \end{pmatrix}.$$

Donc on a bien

$$a_n = 2^n + 3^n$$
 et $b_n = n3^{n-1}$.

3. (a) On utilise la méthode de Gauss-Jordan.

$$\begin{pmatrix}
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{L_3 \leftarrow L_1}
\begin{pmatrix}
-1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{L_1 \leftarrow L_3 + L_1}
\begin{pmatrix}
-1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{L_1 \leftarrow -L_1}
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{L_3 \leftarrow -L_3}
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 0
\end{pmatrix}.$$

Donc la matrice *P* est inversible et $P^{-1} = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.

(b) On a

$$PMP^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 & -1 \\ -1 & 3 & 1 \\ -3 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} = A.$$

On a $PMP^{-1} = A$ donc en multipliant à gauche par P^{-1} , on obtient $MP^{-1} = P^{-1}A$. Puis en multipliant à droite par P, on a bien $M = P^{-1}AP$.

(c) Notons \mathcal{P}_n la proposition " $M^n = P^{-1}A^nP$ ".

Initialisation: Pour n = 0,

$$M^0 = I_3$$
 et $P^{-1}A^0P = P^{-1}I_3P = P^{-1}P = I_3$

donc \mathcal{P}_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons \mathscr{P}_n vraie et montrons que \mathscr{P}_{n+1} est vraie.

On a

$$M^{n+1} = M^n \times M = P^{-1}A^nP \times P^{-1}AP = P^{-1}A^n \times AP = P^{-1}A^{n+1}P$$

Donc \mathcal{P}_{n+1} est vraie.

Conclusion : Par principe de récurrence, la proposition \mathscr{P}_n est vraie pour tout $n \in \mathbb{N}$ *i.e.*

$$\forall n \in \mathbb{N}, \quad M^n = P^{-1}A^nP.$$

(d) On a

$$\begin{split} M^n &= P^{-1}A^nP \\ &= \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2^n & 0 & 2^n - 3^n - 3^n \\ 0 & 3^n & n3^{n-1} \\ -2^n & 0 & 2^n - 3^n \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2^n & 0 & 2^n - 2 \times 3^n \\ 0 & 3^n & n3^{n-1} \\ -2^n & 0 & 2^n - 3^n \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 2 \times 3^n - 2^n & 0 & 2^n + 2^n - 2 \times 3^n \\ -n3^{n-1} & 3^n & n3^{n-1} \\ 3^n - 2^n & 0 & 2^n + 2^n - 3^n \end{pmatrix} \\ &= \begin{pmatrix} 2 \times 3^n - 2^n & 0 & 2(2^n - 3^n) \\ -n3^{n-1} & 3^n & n3^{n-1} \\ 3^n - 2^n & 0 & 2^{n+1} - 3^n \end{pmatrix}. \end{split}$$

Exercice 4 -

1. (a) On sait d'après le tableau des primitives du cours qu'une primitive de x^n est donnée par $\frac{x^{n+1}}{n+1}$. Donc une primitive de f_1 est donnée par

$$F_1(x) = 4\frac{x^4}{4} - 2\frac{x^3}{3} + 4\frac{x^2}{2} - x$$
$$= x^4 - \frac{2x^3}{3} + 2x^2 - x.$$

(b) De la même manière que pour la question précédente, une primitive de f_2 est donnée par

 $F(x) = \frac{x^3}{3} + \frac{x^2}{2} - 3x.$

(c) f_3 semble être de la forme $u'u^n$ avec u(x) = 2x - 1 et n = 2. On a u'(x) = 2 donc

$$u'(x)u(x)^n = 2(2x-1)^2 = 2f_3(x).$$

Donc une primitive de f_3 est donc donnée par

$$F(x) = \frac{1}{2} \times \frac{u^{n+1}}{n+1} = \frac{1}{2} \times \frac{(2x-1)^3}{3} = \frac{(2x-1)^3}{6}.$$

(d) f_4 semble être de la forme $\frac{u'}{\sqrt{u}}$, avec u(x) = 3x + 1. On a u'(x) = 3 donc

$$\frac{u'}{\sqrt{u}} = \frac{3}{\sqrt{3x+1}} = 3f_4(x).$$

Donc une primitive de f_4 est donnée par

$$F(x) = \frac{1}{3} \times 2\sqrt{u} = \frac{1}{3} \times 2\sqrt{3x+1} = \frac{2\sqrt{3x+1}}{3}.$$

(e) f_5 semble être de la forme $\frac{u'}{u^2}$ avec $u(x) = x^2 + 1$. On a u'(x) = 2x donc

$$\frac{u'}{u^2} = \frac{2x}{(x^2+1)^2} = 2f_5(x).$$

Donc une primitive de f₅ est donnée par

$$F(x) = \frac{1}{2} \times \frac{-1}{u} = \frac{-1}{2x^2 + 2}.$$

(f) f_6 semble être de la forme $u'u^n$ avec $u(x) = 2x^2 - 2x + 1$ et n = 3. On a u'(x) = 4x - 2 donc

$$u'u^n = (4x-2)(2x^2-2x+1)^3 = f_6(x).$$

Donc une primitive de f_6 est donnée par

$$F(x) = \frac{u^{n+1}}{n+1} = \frac{(2x^2 - 2x + 1)^4}{4}.$$

(g) f_7 semble être de la forme $\frac{u'}{u^2}$ avec u(x) = 2x - 1. On a u'(x) = 2 donc

$$\frac{u'}{u^2} = \frac{2}{(2x-1)^2} = f_7(x).$$

Donc une primitive de f_7 est donnée par

$$F(x) = \frac{-1}{u} = \frac{-1}{2x - 1}.$$

(h) f_8 n'est pas une fonction composée. On peut donc utiliser directement le tableau des primitives du cours. On a

$$f_8(x) = 2 \times \frac{1}{x^2}.$$

Donc une primitive de f₈ est donnée par

$$F(x) = 2 \times \frac{-1}{x} = \frac{-2}{x}.$$

(i) Une primitive de f_9 est donnée par

$$F(x) = 4\frac{x^2}{2} - x - \frac{1}{x}$$
$$= 2x^2 - x - \frac{1}{x}$$

(j) On réécrit f_{10} sous une autre forme pour faire apparaître des fonctions dont on sait calculer une primitive. On a

$$f_{10}(x) = \frac{x^2 + 1}{x^2} = \frac{x^2}{x^2} + \frac{1}{x^2} = 1 + \frac{1}{x^2}.$$

Donc une primitive de f_{10} est donnée par

$$F(x) = x - \frac{1}{x}.$$

2. On a

$$\int_0^1 (2x^2 - 5x + 3) dx = \left[2\frac{x^3}{3} - 5\frac{x^2}{2} + 3x \right]_0^1$$
$$= \frac{2}{3} - \frac{5}{2} + 3$$
$$= \frac{4}{6} - \frac{15}{6} + \frac{18}{6}$$
$$= \frac{7}{6}$$

On a

$$\int_0^1 (4x^3 - 3x^2 + 2x + 1) dx = \left[4\frac{x^4}{4} - 3\frac{x^3}{3} + 2\frac{x^2}{2} + x \right]_0^1$$
$$= 1 - 1 + 1 + 1$$

(a) Commençons par trouver une primitive de $f(x) = \frac{x}{(1+3x^2)^2}$. f semble être de la forme $\frac{u'}{u^2}$ avec $u(x) = 1 + 3x^2$. On a u'(x) = 6x donc

$$\frac{u'(x)}{u(x)^2} = \frac{6x}{(1+x^2)^2} = 6f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{6} \times \frac{-1}{u(x)} = \frac{1}{6} \times \frac{-1}{1+3x^2} = \frac{-1}{6+18x^2}.$$

Et donc

$$\int_{1}^{2} \frac{x}{(1+x^{2})^{2}} dx = \left[\frac{-1}{6+18x^{2}} \right]_{1}^{2}$$

$$= \frac{-1}{78} - \frac{-1}{24}$$

$$= \frac{-4}{312} + \frac{13}{312} = \frac{9}{312} = \frac{3}{104}$$

(c) Commençons par trouver une primitive de $f(x) = \frac{x^3}{(1+x^4)^2}$. f semble être de la forme $\frac{u'}{u^2}$ avec $u(x) = 1 + x^4$. On a $u'(x) = 4x^3$ donc

$$\frac{u'(x)}{u(x)^2} = \frac{4x^3}{(1+x^4)^2} = 4f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{4} \times \frac{-1}{u(x)} = \frac{1}{4} \times \frac{-1}{1+x^4} = \frac{-1}{4+4x^4}.$$

Et donc

$$\int_0^1 \frac{x^3}{(1+x^4)^2} dx = \left[\frac{-1}{4+4x^4}\right]_0^1$$
$$= \frac{-1}{8} - \frac{-1}{4}$$
$$= \frac{1}{8}$$

(d) Commençons par trouver une primitive de $f(t) = \frac{t}{\sqrt{t^2 + 1}}$. f semble être de la forme $\frac{u'}{\sqrt{u}}$ avec $u(t) = t^2 + 1$. On a u'(t) = 2t donc

$$\frac{u'(t)}{\sqrt{u(t)}} = \frac{2t}{\sqrt{t^2 + 1}} = 2f(t).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{2} \times 2\sqrt{u(t)} = \sqrt{t^2 + 1}.$$

Et donc

$$\int_{-1}^{1} \frac{t}{\sqrt{t^2 + 1}} dt = \left[\sqrt{t^2 + 1} \right]_{-1}^{1}$$
$$= \sqrt{2} - \sqrt{2}$$
$$= 0$$

Remarque: La fonction $f(t) = \frac{t}{\sqrt{t^2 + 1}}$ est impaire. Il est donc normal d'obtenir $\int_{-1}^{1} \frac{t}{\sqrt{t^2 + 1}} dt = 0$.

(e) Commençons par trouver une primitive de $f(t) = \frac{4t^3}{\sqrt{t^4 + 1}}$. f semble être de la forme $\frac{u'}{\sqrt{u}}$ avec $u(t) = t^4 + 1$. On a $u'(x) = 4t^3$ donc

$$\frac{u'(t)}{\sqrt{u(t)}} = \frac{4t^3}{\sqrt{t^4 + 1}} = f(t).$$

Donc une primitive de f est donnée par

$$F(t) = 2\sqrt{u(t)} = 2\sqrt{t^4 + 1}$$
.

Et donc

$$\int_{-1}^{1} \frac{4t^3}{\sqrt{t^4 + 1}} dt = \left[2\sqrt{t^4 + 1} \right]_{-1}^{1}$$
$$= 2\sqrt{2} - 2\sqrt{2} = 0$$

(f) On a

$$\int_{1}^{2} \left(x^{2} - 1 + \frac{1}{x^{3}} \right) dx = \left[\frac{x^{3}}{3} - x - \frac{1}{2x^{2}} \right]_{1}^{2}$$

$$= \frac{8}{3} - 2 - \frac{1}{8} - \left(\frac{1}{3} - 1 - \frac{1}{2} \right)$$

$$= \frac{7}{3} - 1 + \frac{3}{8}$$

$$= \frac{56}{24} - \frac{24}{24} + \frac{9}{24}$$

$$= \frac{41}{24}$$

(g) On a

$$\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + x - 2 \right) dx = \left[2\sqrt{x} + \frac{x^{2}}{2} - 2x \right]_{1}^{4}$$

$$= \left(2\sqrt{4} + \frac{16}{2} - 8 \right) - \left(2 + \frac{1}{2} - 2 \right)$$

$$= 4 + 8 - 8 - \frac{1}{2}$$

$$= \frac{7}{2}$$

(h) Commençons par trouver une primitive de $f(x) = (4x - 1)^3$. f semble être de la forme $u'u^3$ avec u(x) = 4x - 1. On a u'(x) = 4 donc

$$u'(x)u(x)^3 = 4(4x-1)^3 = 4f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{4} \times \frac{u(x)^4}{4} = \frac{(4x-1)^4}{16}.$$

Et donc

$$\int_{-2}^{-1} (4x - 1)^3 dx = \left[\frac{(4x - 1)^4}{16} \right]_{-2}^{-1}$$
$$= \frac{625}{16} - \frac{6561}{16}$$
$$= -\frac{5936}{16} = -371$$

(i) Commençons par trouver une primitive de $f(x) = x(5x^2 + 1)^2$. f semble être de la forme $u'u^2$ avec $u(x) = 5x^2 + 1$. On a u'(x) = 10x donc

$$u'(x)u(x)^2 = 10x(5x^2 + 1)^2 = 10f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{10} \times \frac{u(x)^3}{3} = \frac{(5x^2 + 1)^3}{30}.$$

Et donc

$$\int_{-1}^{0} x(5x^2 + 1)^2 dx = \left[\frac{(5x^2 + 1)^3}{30} \right]_{-1}^{0}$$
$$= \frac{1}{30} - \frac{216}{30}$$
$$= \frac{-215}{30} = -\frac{43}{6}$$

3. (a) Posons

$$u'(x) = e^{3x}$$
 $u(x) = \frac{1}{3}e^{3x}$
 $v(x) = 2x$ $v'(x) = 2$

Alors, par intégration par parties,

$$\int_0^1 2xe^{3x} dx = \int_0^1 u'(x)v(x) dx = \left[u(x)v(x) \right]_0^1 - \int_0^1 u(x)v'(x) dx$$
$$= \left[\frac{2x}{3}e^{3x} \right]_0^1 - \int_0^1 \frac{1}{3}e^{3x} \times 2 dx = \frac{2}{3}e^3 - \int_0^1 \frac{2}{3}e^{3x} dx$$
$$= \frac{2}{3}e^3 - \left[\frac{2}{3} \times \frac{1}{3}e^{3x} \right]_0^1 = \frac{2}{3}e^3 - \left(\frac{2}{9}e^3 - \frac{2}{9} \right) = \frac{4}{9}e^3 + \frac{2}{9}$$

(b) Posons

$$u'(x) = x^3 \qquad u(x) = \frac{1}{4}x^4$$

$$v(x) = \ln(x) \qquad v'(x) = \frac{1}{x}$$

Alors, par intégration par parties,

$$\int_{1}^{e} x^{3} \ln(x) dx = \int_{1}^{e} u'(x) v(x) dx = \left[u(x) v(x) \right]_{1}^{e} - \int_{1}^{e} u(x) v'(x) dx$$
$$= \left[\frac{1}{4} x^{4} \ln(x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{4} x^{4} \times \frac{1}{x} dx = \frac{e^{4}}{4} - \int_{1}^{e} \frac{1}{4} x^{3} dx$$
$$= \frac{e^{4}}{4} - \left[\frac{x^{4}}{16} \right]_{1}^{e} = \frac{e^{4}}{4} - \left(\frac{e^{4}}{16} - \frac{1}{16} \right) = \frac{3e^{3}}{16} + \frac{1}{16}$$