时间敏感网络硬件控制逻辑(HCP)设计方案(版本 1.0)

OpenTSN 开源项目组 2021 年 4 月

当前版本

文件标识	OpenTSN3.0 工程使用
当前版本	1.0
完成日期	

版本历史

版本	修订时间	修订人	修订内容
1.0	2021.4	(内部使用)	初版编制
)		

目录

1、概过	Š	. 4
2、总体	运设计	. 4
2. 1	. 总体架构	. 4
2. 2	帧的处理流程	. 7
	2.2.1 帧的解封装	. 7
	2. 2. 2 帧的封装	. 8
附录 1:	数据格式定义	. 8
	TSMP 消息协议格式	
	内部寄存器定义	
附录 4:	command/command_ack 命令格式	18

1、概述

OpenTSN2.0开源逻辑既可作为TSN网卡又可作为TSN交换机使用,为了简化其作为TSN交换机使用时的逻辑复杂度以及增强其作为TSN网卡使用时的功能可扩展性,并且考虑到逻辑模块的复用,计划将TSN2.0开源逻辑拆分为时间敏感网络硬件控制逻辑(HCP)、时间敏感网络端处理逻辑(TSE)、时间敏感网络交换处理逻辑(TSS)三个模块进行拆分设计。本文主要详细介绍时间敏感网络硬件控制逻辑的设计。

2、总体设计

2.1. 总体架构

时间敏感网络硬件控制逻辑的总体架构框图如图 2-1。

图 2-1 总体架构框图

总体架构图中的信号格式定义如下表 2-1。

表 2-1 HCP 总体架构顶层信号定义

信号	位宽	含义
pkt(非报文集中缓存模块的信	9	报文体数据,具体格式参考附录 A

信号	位宽	含义
号)		
state_pkt	8	上报状态报文数据
command	204	读、写命令
command_ack	204	读命令响应
time_slot	10	时间槽
time_offset	49	1588 同步从时钟架构需要补偿的值

下面将整个架构的逻辑模块进行一一介绍。

CRX(Contorl RX)控制接收模块:主要功能是接收网络接口发送的报文,完成报文从外部时钟域到架构内部时钟域的切换,以及完成架构接收时间同步报文的时间信息记录,并在TSNTag中进行记录。模块内部维护一个寄存器,根据此寄存器的值判断是否接收并处理报文。

HFP (Hcp Frame Parse)帧解析模块:主要功能是提取帧的 DMAC (TSNTag) 中的信息,并构造报文描述符。还需根据报文的以太网类型字段进行选择。

DMUX 数据分配器模块:主要功能是将不同类型的报文数据进行分派。将 ARP 请求帧、PTP 帧、NMAC 状态上报帧,分派给帧封装模块进行封装处理;将芯片配置帧、ptp 封装帧、ARP 封装帧分派给帧解封装模块进行解封装处理。

DDM(Decapsulation_Dispatch_Module)解封装与分派模块:将接收到的芯片配置帧、PTP 封装帧、ARP 封装帧分别解封装成 NMAC配置帧、PTP 帧、ARP 响应帧,将 NMAC 配置帧分派至配置与状态

管理模块,其余帧(PTP帧、ARP响应帧)分派至数据选择器模块。

FEM(Frame_Encapsulation_Module)帧封装模块:主要功能是将接收到的 ARP 请求帧、PTP 帧、NMAC 状态上报帧封装成 TSMP 协议。

MUX 数据选择器模块:主要功能是对封装后的帧和解封装后的帧进行选择,并将选择输出的帧输出到输出模块。

CTX(Contorl TX)控制发送模块:主要功能是从报文缓存区中读取报文并释放 pkt_bufid、计算时间同步报文的透明时钟、完成报文从内部处理时钟域到外部 PHY 架构的时钟域的切换、将数据报文构造帧前导符和帧开始符后由网络接口传输。读取报文时,需要先将pkt_bufid 映射成地址,并根据此地址往报文集中缓存模块进行报文数据的提取,同时需要将此 pkt_bufid 归还给报文集中缓存模块以便后续进入架构的报文使用。

CSM(Configuration and State Manage)配置与状态管理模块: CSM 模块主要功能把接收到的 NMAC 报文进行解析,并完成寄存器的配置或 RAM 的写操作;内部维护输入输出的端口收发报文的个数计数器;接收上报脉冲信号,构造 NMAC 上报报文并发送给主机发送模块。

GTS (Global_Time_Sync)模块: 主功能如下维护一个全局时钟并对全局时钟进行修复: 使用一个 48 位计数器维护一个全局时钟, 其中低 17 位表示多少拍, 高 31 位表示多少毫秒, 用于表示全局时间。维护一个清零计数器用于计算透明时钟: 隔一段时间清零计数器计到

最大值时,在清零计数器清零的同时发送清零脉冲到其他模块(需要计算透明时钟的模块,如各个端口模块,主机接收和主机发送模块), 其他模块清零计数器也同时进行清零,在计算透明时钟时使用清零计数器的值,从而实现设备内的时间同步。由于时间槽最大值为 2ms, 因此报文在架构中的传输延迟最大为 4ms,使用 125Mhz 时钟时,则需要 19 位的计数器。维护一个上报周期计数器,当内部时钟走过一个周期时给出一个上报的脉冲信号。

TSC(Time_Slot_Calculation)模块:根据全局时间和时间槽长度, 计算当前注入时刻。

2.2 帧的处理流程

硬件控制逻辑的主要处理流程包括帧的封装与解封装。

2.2.1 帧的解封装

封装帧是 TSMP 消息协议类型的帧,主要包括芯片配置帧、PTP 封装帧、ARP 封装帧。以芯片配置帧为例,芯片配置帧经控制接收 (CRX)模块进行跨时钟域处理后,在帧解析模块进行解析配置,生成报文描述符,报文分组数据传输至数据分配器模块,数据分配器模块根据分组携带 TSMP 协议的头部标识,将芯片配置帧分配至解封装与分派模块,在解封装与分派模块中将 TSMP 协议消息协议解封装成 NMAC 配置帧,然后分派到配置与状态管理模块,通过配置与状态管理模块对寄存器及表项配置,配置的寄存器及表项再通过 command

命令的形式对 TSN 硬件完成配置;而 PTP 封装帧在解封装之后,需要替换报文体中携带的时间戳,然后将解封装后的 ptp 报文分派至数据选择器模块,经控制发送模块将 PTP 报文输出;ARP 封装帧在解封装成 ARP 帧后,同样是经控制发送模块将 ARP 帧输出。

2.2.2 帧的封装

主要流程是将接收到的 ARP 请求帧、PTP 帧、NMAC 状态上报 帧封装成 TSMP 协议,以 NMAC 状态上报帧为例,NMAC 状态上报 帧经配置与状态管理(CSM)模块传输至帧解析(HFP)模块后,在 帧解析模块进行解析配置,生成报文描述符,报文分组数据传输至数 据分配器模块,数据分配器模块根据分组携带协议类型,将 NMAC 状态上报帧分配至帧封装模块,在帧封装模块中将 NMAC 状态上报 帧封装成 TSMP 协议消息协议,然后传输至数据选择器(MUX)模块,经控制发送模块将 TSMP 封装报文输出。ARP 请求帧、PTP 帧 封装处理流程与 NMAC 状态上报帧处理流程一致。

附录 1: 数据格式定义

● 内部传输的 pkt 数据格式

在模块之间传输的报文数据格式为位宽为 9bit。

pkt_data 位宽为 9 位,包含 1bit 头尾标志、8bit 报文数据。头尾标志: 1 表示报文头/尾数据; 0 标识报文体中间数据。具体如图附 1-1 所示:

图附 1-1 pkt_data 数据格式

TSNTag 格式

在流量发送端的网卡内部需要根据报文七元组(目的 mac、type、 IP 五元组)对时间敏感、带宽预约、尽力转发流量进行分类映射。将 分类映射的结果与原报文的 DMAC 字段进行替换,以此进行 TSN 网 络的交换,直到接收端的网卡内部进行 DMAC 还原。被替换的 DMAC 字段被定义成 TSNTag。

• • • • •		, , , , , , , , , , , , , , , , , , , ,	- 5
位宽	名称	描述	

表附 1-1 分类映射关键字 Kev

位 宽	名称	描述
48	DMAC	报文目的 MAC
16	ETHTYPE	报文以太网类型
8	protocol	报文协议类型
32	Sip	报文源 ip
32	Dip	报文目的 ip
16	Sport	报文源端口
16	Dport	报文目的端口

因同步报文的 TSNTag 中 "seq_id"、"frag_id"、"inject_addr "、 "submit addr" 信息是无用的,因此可以将时间同步报文的这些字段 用来存放架构的接收时间戳信息。而其他非时间同步报文的架构接收 时间戳信息是无用的,因此可以延用这些字段的信息。

表附 1-2 时间同步报文的 TSNtag

位宽	名称	位置	描述
3	Flow type	[47:45]	流类型。 100: 同步报文 (其他报文的格式如下表)
14	Flow id/IMAC	[44:31]	静态流量使用 flowID, 每条静态流分配一个唯一 flowID, 动态流使用 imac 地址, imac 地址相同的则在交换架构命中同一条表项。
12	Reserve	[30:19]	保留
19	Rx_timestamps	[18:0]	架构接收到时间同步报文的本地时间信息, 用于架构发送报文时计算透明时钟。

表附 1-3 非时间同步报文的 TSNTag

位宽	名称	位置	描述
3	Flow type	[47:45]	流类型。000:ST 分组 001:ST 分组 010: ST 分组 011: RC 分组 101: NMAC 分组 110: BE 分组 111: BE 分组
14	Flow id/IMAC	[44:31]	静态流量使用 flowID,每条静态流分配一个唯一flowID,动态流使用 imac 地址,imac 地址相同的则在交换架构命中同一条表项。
16	Seq id	[30:15]	用于标识每条流中报文的序列号
1	Frag flag	[14]	用于标识分片后的尾。0:分片后的中间报文 1:尾拍
4	Frag ID	[13:10]	用于表示当前分片报文在原报文中的分片序列号
5	inject addr	[9:5]	ST 流在源端等待发送调度时缓存地址
5	submit addr	[4:0]	ST 流在终端等待接收调度时缓存地址

附录 2: TSMP 消息协议格式

TSMP(时间敏感消息协议)是 TSN 控制器进行网络拓扑探测、对 TSN 芯片和 HCP 进行配置以及对帧进行封装的协议

- TSMP 帧设计原则
- 1) TSMP 帧长度不超过 128B;
- 2) PTP 帧是 TSMP 帧的一种子类型;
- 3) TSNtag 是帧映射后的结果,在TSN 网络中根据TSNtag 对帧进

行逻辑处理(包括查表转发,入队,调度优先级,ST 流的按时注入、按时提交、输出门控等);

- 4) 在 TSMP 帧头中设计相关字段用来标识不同类型的 TSMP 帧。
- TSMP 帧格式

TSMP 帧的格式设计如下图所示。

图附 2-1 TSMP 帧的格式

图中黄色字段为以太网帧头,蓝色字段为 TSMP 帧头,白色字段为 TSMP 帧数据域。TSMP 帧以太网头和 TSMP 帧头中各字段的含义详见下表。

字段	位宽	说明
TSNtag	48	TSMP 帧经映 2 射所得的结果。
源 mac	48	暂未使用
长度/类型	16	TSMP 帧类型为 0xff01(自定义)。
子类型	8	用来标识不同类型的 TSMP 帧,目前包含 6 种类型:ARP 封装帧、Beacon 帧、芯片配置帧、HCP 配置帧、ICMP 封装帧、Probe 帧。
输入端口号	8	主机发给 TSN 芯片的帧进入 TSN 芯片的端口号

表附 2-1 TSMP 帧头各字段的含义

表附 2-1 TSMP 帧类型

	帧类型	子类型	含义
--	-----	-----	----

	的值	
ARP 封装帧	8' h0	ARP 帧封装到 TSMP 帧中在网络中进行传输,将 ARP 帧完整地存放在 TSMP 数据域
Beacon 帧	8' h1	交换机、网卡上报到控制器的状态帧,将交换机、 网卡的状态上报帧完整地存放在 TSMP 数据域
芯片配置帧	8' h2	控制器对交换机、网卡进行配置的帧,控制器将 NMAC 配置帧封装到 TSMP 帧中,其中 NMAC 配置 帧完整地存放在 TSMP 数据域
HCP 配置帧	8' h3	控制器对 HCP 进行配置的帧;配置信息存放在 TSMP 数据域。
HCP 状态上报帧	8' h4	HCP 上报的状态信息存放在 TSMP 数据域
PTP 封装帧	8' h5	将 PTP 帧(sync 帧、delay_req 帧、delay_resp 帧)封装到 TSMP 帧中,其中 PTP 帧完整地存放 在 TSMP 数据域

附录 3: 内部寄存器定义

架构内部可配置地址空间主要有两部分,包括: MDID 模块号和 真实地址空间,其中 MDID 模块号主要用来区分不同模块,而后 20 位为各个模块使用的地址空间。地址的第 19bit 位用于区别地址类型, 控制/表项寄存器可读可写,调试和版本寄存器只读,每个模块的地 址空间为 1024k,其中可读可写和只读寄存器各有 512k。具体地址含 义如下。

表附 3-1 地址格式

ADDR[26:0]					
MDID[26:20]	ADDR[19]	ADDR[18:0]			
MDID : 0-127	0	该模块的控制寄存器,表项等,可读 可写			
	1	只读			

每个处理模块的 MDID 号分配如下:、

表附 3-2 模块中的 MDID 和地址

处理 模块	CSM	TIS	TSS	QGC	GTS	FLT
MDID	0x0	0x1	0x2	0x3-0xa	0xb	0xc
地址	0x0-	0x100000-	0x200000-	0x300000-	0xb00000-	0xc00000-
1만개.	0xfffff	0x1fffff	0x2fffff	0xafffff	0xbfffff	0xcfffff

● CSM 模块

地址范围为 Addr 0x0-0xffff。

表附 3-3 CSM 模块寄存器

Addr		Data							
	[31:24]	[23:16]	[15:8]	[7:0]					
0x0		of	fset_1						
0x1		of	fset_h						
0x2		tim	e_slot						
0x3		cfg	_finish						
0x4		por	t_type						
0x5		qbv_or_ach							
0x6	report_type								
0x7		report_en							
0x8		inject_slot_period							
0x9		submit_	slot_period						
0xa		repor	t_period						
0xb		offse	t_period						
0xc	rc_regulation_value								
0xd	be_regulation_value								
0xe	unmap_regulation_value								
$\mathop{\circ}\limits_{\sim}^{0\mathrm{xf}}$		re	serve						
0xfffff		10							

表附 3-3 寄存器的具体含义

name	bit	R/W	description	default
offset_l	31:1 7	R/W	代表时间偏移的高位值的低 15 位,表示毫秒	0

	16:0	R/W	时间偏移的低位,表示拍数	0
	31:1 7	R/W	保留位	0
offset_h	16	R/W	代表时间偏移的正负值,1代表正值,如果为0,则代表负值	0
	15:0	R/W	代表时间偏移的高位值的高 16 位,表示毫秒	0
time_slot	31:1 1	R/W	保留	
	10:0	R/W	时间槽大小	0
	31:1	R/W	保留	0
cfg_finish	0	R/W	配置完成寄存器, 0代表架构正在初始化,不接收任何报文, 1代表初始化完成,可以接收 NMAC配置报文 2代表配置完成,可以接收除 ST报文的任何报文 3代表可以接收任何报文	0
	31:8	R/W	保留	0
port_type	7:0	R/W	网络端口类型寄存器,架构共有8个网络端口,寄存器的0-7位分别代表0-7端口的类型,1代表非合作类型,处理标准以太网类型的报文,0代表合作类型,处理TSN报文	0
	31:2	R/W	保留	0
qbv_or_ach	1:0	R/W	调度模式选择信号,网络输出逻辑中的调度机制是 QBV 模式还是 QCH 模式 0 代表 QBV 模式; 1 代表 QCH模式	0
report_type	31:1 6	R/W	保留	0
	15:0	R/W	上报类型,具体参考附录 D	0
	31:1	R/W	保留	0
report_en	0	R/W	上报使能信号,配置与状态管理模块是否进行周期性上报0代表不上报;1代表上报	0
inject_slot_period	31:1 2	R/W	保留	0

	10:0	R/W	注入时间槽周期,架构内部时间槽切换的周期值 配置的值范围: 1-1024 个	0
	31:1	R/W	保留	0
submit_slot_period	10:0	R/W	提交时间槽周期,架构内部时间槽切换的周期值 配置的值范围: 1-1024 个	0
	31:1	R/W	保留	0
report_period	11:0	R/W	上报周期,配置与状态管理模块上报的周期值配置的值范围:1(ms)或1000(ms)	0
offset_period	31:2 4	R/W	保留	0
	23:0	R/W	offset 补偿的配置周期	
rc regulation valu	31:9	R/W	保留	
e	8:0	R/W	RC 流的监管阈值,当 BUFID 的剩余个数小于该值,开始丢弃 RC 报文	0
	31:9	R/W	保留	
be_regulation_value	8:0	R/W	BE 流的监管阈值,当 BUFID 的剩余个数小于该值,开始丢弃 BE 报文和 RC 报文	0
	31:9	R/W	保留	
unmap_regulation_v alue	8:0	R/W	非映射流的监管阈值,当 BUFID 的剩余个数小于该值, 开始丢弃非映射报文	0
reserve	31:9	R/W	保留	0

● TIS 模块

地址范围为 Addr 0x100000-0x1fffff。

表附 3-4 地址格式

Addr	Data				
	[31:24]	[23:16]	[15:8]	[7:0]	
send_table_N	ST 报文发送时刻表每项内容,N=0、1、···、1023				
0x100000-0x1003ff	send_table_0 表示第 0 个发送表				

0x100400-0x1fffff	保留

表附 3-5 寄存器的具体含义

name	bit	R/W	description	default
	16	R/W	保留	0
1 . 11 0	15	R/W	表项有效位,0代表无效,1代 表有效	0
send_table_0	14:5	R/W	ST 流在一个应用周期内的注入 时间槽	0
	4:0	R/W	TSNTag 中的"send addr"	0
•••••				
	16	R/W	保留	0
send_table_1023	15	R/W	表项有效位,0代表无效,1代 表有效	0
	14:5	R/W	ST 流在一个应用周期内的注入 时间槽	0
	4:0	R/W	TSNTag中的"send addr"	0
0x100400-0x1fffff			保留	

● TSS 模块

地址范围为 Addr 0x200000-0x2fffff。

表附 3-6 地址格式

Addr	Data					
Addi	[31:24]	[23:16]	[15:8]	[7:0]		
submit_table_N 0x200000-0x2003ff	ST 报文提交时刻表每项内容,N=0、1、···、1023 submit_table_0 表示第 0 个提交表					
0x200400-0x2fffff	保留					

表附 3-7 寄存器的具体含义

name	bit	R/W	description	default
	31:16	R/W	保留	0
submit_table_0	15	R/W	表项有效位,0代表无效,1代表 有效	0
	14:5	R/W	ST 流的提交时间槽	0
	4:0	R/W	TSNTag 中的"send addr"	0
••••				

	31:16	R/W	保留	0
submit	15	R/W	表项有效位,0代表无效,1代表 有效	0
_table_1023	14:5	R/W	当前 Slot	0
	4:0	R/W	TSNTag 中的"send addr"	0

● QGC 模块

地址范围为 Addr 0x300000-0xafffff, 其中 0x300000-0x3fffff 表示第一个端口的门控表,以此类推, 共有 8 个端口门控。 表附 3-8 地址格式

Addr	Data						
Auur	[31:24]	[23:16]	[15:8]	[7:0]			
port0_gate_table_N 0x300000-0x3003ff			l、…、1023,4 0 号端口的第一				
port1_gate_table_N 0x400000-0x4003ff	1号端口的门]控表,N=0、I	1、…、1023				
port2_gate_table_N 0x500000-0x5003ff	2号端口的门	J控表,N=0、I	1023				
port3_gate_table_N 0x600000-0x6003ff	3号端口的门	J控表,N=0、I	1、…、1023				
port4_gate_table_N 0x700000-0x7003ff	4号端口的门]控表,N=0、I	1、…、1023				
port5_gate_table_N 0x800000-0x8003ff	5号端口的门]控表,N=0、I	1、…、1023				
port6_gate_table_N 0x900000-0x9003ff	6号端口的门]控表,N=0、	1、…、1023				
port7_gate_table_N 0xa00000-0xa003ff]控表,N=0、]					

表附 3-9 寄存器的具体含义

name	bit	R/W	description	defaul t
	31:8	R/W	保留	0
port0_gate_table_0	7:0	R/W	0-7 位分别代表 0-7 共 8 个队列的门控状态,0 代表该队列的门控关闭,1 代表开启	0
•••••				
port7_gate_table_1	31:8	R/W	保留	0

023	7:0	0-7 位分别代表 0-7 共 8 个队 列的门控状态, 0 代表该队列	0
		的门控关闭,1 代表开启	

● FLT 模块

地址范围为 Addr 0xc00000-0xcfffff。

表附 3-10 地址格式

Addr	Data					
Addr	[31:24]	[23:16]	[15:8]	[7:0]		
0xc00000-0xc03fff	forward_table_N,表示转发表,N=0,1,2, …16384, forward_table_0 表示第 0 个转发表					
0xc04000-0xcfffff	保留					

表附 3-11 寄存器的具体含义

name	bit	R/W	description	defaul t
	31:1	R/W	保留	0
forward_table_0	8:0	R/W	转发表的内容,使用 bitmap 的 形式,0-8 位分别代表向 0-8 号 端口,每位的值 0 代表不向该端 口转发,1 代表向该端口转发	0
	31:1	R/W	保留	0
forward_table_16 384	8:0	R/W	转发表的内容,使用 bitmap 的 形式,0-8 位分别代表向 0-8 号 端口,每位的值为 0 代表不向该 端口转发,1 代表向该端口转发	0
0xc04000-0xcfffff			保留	

附录 4: command/command_ack 命令格式

表附 4-1 command/command_ack 命令格式

位置	位宽	名称	说明
[203:180]	8	node_id	该字段用来标识对哪个节点进行读写。每个 TSE 或 TSS 都有一个唯一的节点 ID。该字段在 TSN 网卡+TSN 交

位置	位宽	名称	说明
			换机模式下使用到。
[179:172]	8	dest_module_ id	该字段用来标识对一个节点内的哪个模块进行控制。TSE 或 TSS 内部每个子模块都有一个唯一的模块 ID
[171:168]	4	type	4'b0001:寄存器或表项的写命令; 4'b0010:寄存器或表项的读命令; 4'b0110:寄存器或表项的读响应。
[167:152]	16	addr	寄存器或表项的读/写地址
[151:0]	152	data	寄存器或表项的读/写数据;其中五 元组映射表的表项位宽最大,为 152bit