

INSIEMI E OPERAZIONI

(parte 3)

Stefania Bandini

INSIEMI ORDINATI

Quanto finora studiato a proposito del concetto di **insieme** non fa riferimento all'ordine con cui gli elementi di un insieme sono elencati.

E' però utile, in determinati casi, specificare un particolare **ORDINAMENTO** all'interno di un dato insieme

Coppia ordinata

Una coppia ordinata è una collezione di due oggetti tale che uno può distinguersi come il primo elemento e l'altro come il secondo elemento. Una coppia ordinata con primo elemento x e secondo elemento y si scrive $\langle x,y\rangle$.

Proprietà 1. $\langle x,y\rangle=\langle z,t\rangle$ sse x=z e y=t.

Notare che $\langle x,y\rangle \neq \langle y,x\rangle$ e che $\langle x,x\rangle$ denota la coppia in cui il primo e il secondo elemento sono uguali tra di loro.

Una rappresentazione insiemistica di $\langle x, y \rangle$ è $\{\{x\}, \{x, y\}\}$.

Coppia ordinata cont.

L'enunciato che x è il primo elemento di una coppia ordinata $\{\{x\}, \{x,y\}\}$ è formulato come segue:

per ogni
$$Y \in \{\{x\}, \{x, y\}\}: x \in Y$$
 (3)

L'enunciato che y è il secondo elemento di una coppia ordinata $\{\{x\}, \{x,y\}\}$ è formulato come segue:

(esiste un
$$Y$$
, $Y \in \{\{x\}, \{x,y\}\}$, tale che $y \in Y$) e (per ogni Y_1 , $Y_1 \in \{\{x\}, \{x,y\}\}$, e per ogni Y_2 , $Y_2 \in \{\{x\}, \{x,y\}\}$, se $Y_1 \neq Y_2$ allora $(y \not\in Y_1$ oppure $y \not\in Y_2$)).

 $\langle x, x \rangle$ è rappresentata come $\{\{x\}, \{x, x\}\} = \{\{x\}\}.$

Esempio

Vogliamo verificare che $\{\{x\}, \{x,y\}\}$ è una buona definizione di coppia ordinata, mentre $\{x,y\}$ non lo è.

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\} \quad \equiv \\ (\quad (\{a\} = \{c,d\} \text{ e } \{a,b\} = \{c\}) \text{ oppure} \\ (\{a\} = \{c\} \text{ e } \{a,b\} = \{c,d\}) \\).$$

Se $\{a\} = \{c,d\}$, sostituendo otteniamo $\{\{c,d\},b\} = \{c\}$, quindi c sarebbe uguale ad un insieme di cui è elemento, contraddizione.

Esempio cont.

Quindi $(\{a\} = \{c\} \ e \ \{a,b\} = \{c,d\})$. Quindi a = c, e b = c oppure b = d. Se $a \neq b$ ne segue che b = d, altrimenti a = b = c = d.

Abbiamo mostrato che la definizione $\{\{x\}, \{x,y\}\}$ verifica la proprietà 1.

La definizione $\{x,y\}$ non verifica la proprietà 1, perché non vi è alcun ordinamento sugli elementi di un insieme, $\{x,y\}=\{y,x\}$.

n-upla ordinata

Una n-upla ordinata di oggetti x_1, \ldots, x_n è definita come

$$\langle x_1, \dots, x_n \rangle = \langle \langle x_1, \dots, x_{n-1} \rangle, x_n \rangle$$

dove $\langle x_1, \ldots, x_{n-1} \rangle$ è una (n-1)-upla ordinata.

PRODOTTO CARTESIANO

Dati due insiemi non vuoti S e T si definisce prodotto cartesiano

$$S \times T = \{ \langle x, y \rangle \mid x \in S, y \in T \}$$

dove il simbolo <x, y> denota una coppia ordinata, cioè un insieme di due elementi nel quale specifichiamo chi è il primo elemento e chi è il secondo.

Nel caso in cui almeno uno dei due insiemi *S* o *T* sia vuoto, il loro prodotto Cartesiano è **l'insieme vuoto**.

In generale $S \times T \neq T \times S$. Nel caso in cui S = T il prodotto $S \times T$ si denota anche con S^2 .

PRODOTTO CARTESIANO

Una rappresentazione grafica del prodotto Cartesiano di due insiemi.

Prodotto Cartesiano e sequenze

Dati due insiemi S e T, possiamo formare l'insieme $S \times T$ di tutte le coppie $\langle x,y \rangle$ per le quali $x \in S$ e $y \in T$. L'insieme $S \times T$ è chiamato *il prodotto cartesiano* di S e T.

 S^n è l'insieme di tutte le n-uple di elementi di S, per esempio, per n=4, $S^4=(((S\times S)\times S)\times S)$.

Dato un insieme S, σ è una sequenza finita di elementi di S se $\sigma = \langle s_1, \ldots, s_n \rangle$ per qualche intero positivo n e ciascun $s_i \in S$.

Un segmento di una sequenza finita $\sigma = \langle s_1, \ldots, s_n \rangle$ è una sequenza finita $\sigma' = \langle s_k, s_{k+1}, \ldots, s_{m-1}, s_m \rangle$, dove $1 \le k \le m \le n$. Se k = 1 il segmento è detto iniziale.

DAL PRODOTTO CARTESIANO ALLE RELAZIONI

Se a $S \times T$ appartengono tutte le coppie ordinate costituite da un primo elemento tra S e da un secondo elemento tratto da T, ogni sottoinsieme di $S \times T$ potrà essere considerato come una **RELAZIONE** tra gli elementi di S e quelli di T, esplicitata da specifiche proprietà

ESEMPIO

Consideriamo gli insiemi:

S = {Arno, Po, Tevere} e T = {Firenze, Pisa, Torino}

Consideriamo il loro prodotto cartesiano

 $S \times T = \{ < Arno, Firenze >, < Arno, Pisa >, < Arno, Torino >, < Po, Firenze >, < Po, Pisa >, < Po, Torino >, < Tevere, Firenze >, < Tevere, Pisa >, < Tevere, Torino > \}$

Tra tutte le coppie aventi per primo elemento un elemento di S (un fiume) e per secondo un elemento di T (una città), individuiamo quelle costituite dal nome di un fiume e da quello di una città bagnata da quel fiume

R = {<Arno, Firenze>, <Arno, Pisa>, <Po, Torino>}

DAL PRODOTTO CARTESIANO ALLE RELAZIONI

Il sottoinsieme R di $S \times T$ è caratterizzato esattamente dalla proprietà che tutte (e soltanto) le coppie ad esso appartenenti sono costituite da un fiume e da una città bagnata da esso.

Il sottoinsieme R è uno dei possibili sottoinsiemi di S × T

Altri sottoinsiemi possono essere individuati mediante la definiziene di altre relazioni denotate da specifiche proprietà

BICOCCA

FONDAMENTI DELL'INFORMATICA

DAL PRODOTTO CARTESIANO ALLE RELAZIONI

Se si considera la coppia $\langle x, y \rangle$ appartenente a un dato sottoinsieme R di $S \times T$, si dice che l'elemento $x \in S$ ha come corrispondente $y \in T$ nella relazione R, oppure, più semplicemente, che

x è in relazione con y

Una relazione, come ogni sottoinsieme del prodotto cartesiano fra insiemi, può essere rappresentata graficamente con una tabella

	Arno	Ро	Tevere
Torino		•	
Pisa	•		
Firenze	•		

RELAZIONI BINARIE

Una relazione binaria R tra due insiemi S e T è un insieme di coppie ordinate $\langle x,y \rangle$ con $x \in S$ e $y \in T$: $R \subseteq S \times T$).

Il dominio di R, indicato con dom(R), è l'insieme di tutti gli oggetti x tali che $\langle x,y\rangle\in R$ per qualche y.

Il codominio di R, indicato con codom(R), è l'insieme di tutti gli oggetti y tali che $\langle x,y\rangle\in R$ per qualche x.

L'unione del dominio e del codominio di una relazione R si chiama il *campo* di R oppure *estensione*.

RELAZIONI *n*-ARIE

Una relazione n-aria su un insieme S è un sottoinsieme di S^n , $n \geq 1$. Se n=1 la relazione R su S si dice *unaria*.

Se n=2 la relazione R su S si dice binaria.

Se n=3 la relazione R su S si dice ternaria.

. . .

OPERAZIONI SU RELAZIONI

 $R_1 \cup R_2$ è una relazione su $S \times T$, ed è costituita da tutte le coppie che appartengono a R_1 o a R_2 .

 $R_1 \cap R_2$ è la relazione costituita da quelle coppie che appartengono a entrambe R_1 e R_2 .

 $\overline{R} = \{\langle x,y \rangle | \ \langle x,y \rangle \not \in R\} \subseteq S \times T \ \text{è la relazione } \textit{complementare } \text{di } R.$

 $R^{-1} = \{\langle y, x \rangle | \langle x, y \rangle \in R\} \subseteq T \times S$ è la relazione *inversa* di R.

Proprietà di relazioni

Siano $R_1 \subseteq S \times T$ e $R_2 \subseteq S \times T$ due relazioni; valgono le seguenti proprietà:

- 1. se $R_1 \subseteq R_2$ allora $R_1^{-1} \subseteq R_2^{-1}$;
- 2. se $R_1 \subseteq R_2$ allora $\overline{R_2} \subseteq \overline{R_1}$;
- 3. $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$ e $(R_1 \cup R_2)^{-1} = R^{-1} \cup R_2^{-1}$;
- 4. $\overline{(R_1\cap R_2)}=\overline{R_1}\cup \overline{R_2}$ e $\overline{(R_1\cup R_2)}=\overline{R_1}\cap \overline{R_2}$.

Esempio

- 1. $\{\langle x, x \rangle \mid x \in S\}$ è una relazione binaria su S.
- 2. $\{\langle x,y\rangle\mid \langle x,y\rangle\in\mathbb{N}^2\ \text{e }x\ \text{è minore o uguale a }y\}\ \text{è }la\ relazione\ d'ordine}$ naturale su $\mathbb{N}:\ x\leq y.$
- 3. $\{\langle x,y,z\rangle\mid \langle x,y,z\rangle\in\mathbb{R}^3 \text{ e } x^2+y^2=z^2\}$ è il *luogo geometrico* dei punti in \mathbb{R}^3 che soddisfano l'equazione $x^2+y^2=z^2$.

Esempio cont.

1. Sia $D = \{a, b\}$, $R_1 = \{\langle a, b \rangle, \langle b, a \rangle\}$ ed $R_2 = \{\langle a, b \rangle, \langle a, a \rangle\}$: $R_1 \cap R_2 = \{\langle a, b \rangle\}, R_1 \cup R_2 = \{\langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle\}.$ $\overline{R_1 \cap R_2} = \overline{R_1} \cup \overline{R_2} = \{\langle a, b \rangle, \langle b, b \rangle\} \cup \{\langle b, b \rangle, \langle b, a \rangle\} = \{\langle b, a \rangle, \langle a, a \rangle, \langle b, b \rangle\}.$

$$\overline{R_1} \cap \overline{R_2} = \overline{R_1 \cup R_2} = \{\langle a, a \rangle, \langle b, b \rangle\} \cap \{\langle b, b \rangle, \langle b, a \rangle\} = \{\langle b, b \rangle\}.$$

INSIEMI E OPERAZIONI

(parte 3)

END