Topological Analysis of Image Data

Team 4 : Kirill Paramonov, Shawn Witte, Pamela Patterson, Irene Kim

November 28, 2016

Images

Images with semifixed center

Our Data

- Data is stored as an n^2 -tuple, where n is the height and width, in pixels, of the grid
- Each entry in the n^2 -tuple is a number between 0 and 1 representing the lightness of a particular pixel (0 is black, 1 is white)
- Brightness is assigned relative to distance from center of pixel to the lines
- Distance between two data points is taken as Euclidean distance between the two points in \mathbb{R}^{n^2}

Diffusion map

Diffusion: Neat nonlinear dimension reduction algorithm which

Generating 4000 images, applying diffusion map

Fixed center case

We expect our space to be that of a Möbius strip:

- There are two degrees of freedom:
 - The angle to the bisector (from 0) and the angle between the lines, in which case if the angle between the lines are 180°, there are two choices of bisectors
 - or the angle to each line from 0, where there is an equivalence when the angles are switched
- A Möbius strip has the same homology as S^1 ($\beta_0 = \beta_1 = 1$, $\beta_i = 0$ for all other i)

Persistence Diagram

Persistence diagram of 4000 points without diffusion

Persistence Diagram

Persistence diagram of 2000 points with diffusion

Dimension=1

Dimension=2

What if we include noise?

Noise:continue

Importance of fade

Persistence Diagrams

The following were generated without a fixed point.

