Assignment: Movie Review

Sentiment Analysis on Movie Review

By:- Amrendra Singh Rathore

Problem Inspection

The dataset is a set of movie reviews which is similar to what data analysts at IMDB handle. The data belongs to/taken from IMDB, having 2,000 reviews and a sentiment corresponding to each review.

The main aim of this project is to identify the underlying sentiment of a movie review on the basis of its textual information. In this project, we try to classify whether a person liked the movie or not based on the review they give for the movie

Data Exploration

Data Exploration is to understand the dataset by checking the general info about the data(i.e. data types, columns, missing values, number of values)

Pre-Processing

For preprocessing the data I have done following things:

- Removed noise from the data
- Stemming
- Removed stop words
- TF-IDF Vectorization

by creating the functions.

Data Visualization

• At first I have checked for the frequency of labels, which is found that there is equal frequency of both positive and negative labels.

• After which using Wordcloud I have checked for high frequency words before and after removing the common words.

Before

After

Model

For model selection I have used 3 classification algorithm, they are

- Multinomial Naive Bayes
- Bernoulli Naive Bayes
- Logistic Regression

Accuracy of Multinomial Naive Bayes Model: 0.812					
	of Bernou	lli Naive	Bayes M	odel:	
0.768			-		
Accuracy of Logistic Regression Model:					
0.84					
Mutinomial Naive Bayes model: precision recall f1-score support					
	pre	CISION	recall	f1-score	support
	neg	0.77	0.87	0.82	246
	pos	0.86	0.75	0.80	254
accur	racy			0.81	500
macro	_	0.82	0.81	0.81	500
weighted	avg	0.82	0.81	0.81	500
Bernoulli Naive Bayes model: precision recall f1-score support					
	pre	cision	recall	f1-score	support
	neg	0.72	0.85	0.78	246
	_	0.83	0.69	0.75	254
accuracy				0.77	500
macro	_	0.78	0.77	0.77	500
weighted	avg	0.78	0.77	0.77	500
Logistic Regression model: precision recall f1-score support					
	pre	cision	recall	f1-score	support
	neg	0.84	0.83	0.84	246
	pos	0.84	0.85	0.84	254
accuracy				0.84	500
macro	avg	0.84	0.84	0.84	500
weighted	avg	0.84	0.84	0.84	500

Accuracy of Multinomial Naive Bayes Model:

Confusion Matrix

Conclusion

We can observed that all three Logistic Regression, Bernoulli Naive Bayes and Multinomial Naive Bayes models are performing well but in comparison Logistic Regression model works better among them.

Still we can improve the accuracy of the models by preprocessing data and by using lexicon models like Textblob.

THANK YOU