Project Summary: Queueing Analysis of a Hospital Emergency Room

Koorosh Asil Gharehbaghi
Department of Computer Science, Faculty of Mathematics
K. N. Toosi University of Technology

Instructor: Dr. Razieh Khodsiani

June 3, 2025

Introduction

This project applies queueing theory and discrete-event simulation to analyze patient flow in a hospital Emergency Room (ER). We model arrivals as a Poisson process and service times as exponential, constructing both M/M/1 (single-server) and M/M/c (multi-server) queues. The objectives are to derive analytical performance measures, validate them via simulation, and determine an optimal staffing level.

Objectives

- Analytical Derivation:
 - For M/M/1 and M/M/c systems, compute:
 - * Utilization ρ ,
 - * Average number in system L,
 - * Average queue length L_q ,
 - * Average time in system W,
 - * Average waiting time W_q ,
 - * Probability of waiting P_{wait} .
- Discrete-Event Simulation (DES):
 - Implement a simulator that:
 - * Generates arrivals using $Exp(\lambda)$,
 - * Generates service times using $Exp(\mu)$,
 - * Maintains an event list for ARRIVAL and DEPARTURE,
 - * Tracks time-weighted counters to estimate $\hat{L}, \hat{L}_q, \hat{W}, \hat{W}_q, \hat{P}_{\text{wait}}, \hat{\rho}$.

- Compare simulation outputs to analytical results.

• Sensitivity Analysis:

- Vary arrival rate λ , service rate μ , and number of servers c.
- Observe how L, L_q, W, W_q , and P_{wait} change.

• Staffing Optimization:

- Define a target waiting time, for example $W_q \leq 0.5$ hours.
- Use the Erlang C formula to find the smallest c meeting that target.
- Introduce a cost model:

$$C_{\text{total}}(c) = 100 c + 20 \lambda W_q(c),$$

where each server costs \$100/hour and patient waiting costs \$20 per patient-hour.

- Determine the staffing level c^* that minimizes $C_{\text{total}}(c)$.

Methodology

Analytical Component

• M/M/1 Model:

$$\rho = \frac{\lambda}{\mu}, \quad \pi_n = (1 - \rho) \rho^n, \quad n \ge 0,$$

$$L = \frac{\rho}{1 - \rho}, \quad L_q = \frac{\rho^2}{1 - \rho}, \quad W = \frac{1}{\mu - \lambda}, \quad W_q = \frac{\rho}{\mu - \lambda}, \quad P_{\text{wait}} = \rho.$$

• M/M/c Model:

$$\rho = \frac{\lambda}{c\mu} < 1, \quad \pi_0 = \left[\sum_{n=0}^{c-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^c}{c! (1-\rho)} \right]^{-1}.$$

$$P_{\text{wait}} = \frac{\frac{(\lambda/\mu)^c}{c!} \frac{1}{1-\rho} \pi_0}{\sum_{n=0}^{c-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^c}{c!} \frac{1}{1-\rho}},$$

$$L_q = \frac{(\lambda/\mu)^c \rho}{c! (1-\rho)^2} \pi_0, \quad W_q = \frac{L_q}{\lambda}, \quad L = L_q + \frac{\lambda}{\mu}, \quad W = W_q + \frac{1}{\mu}.$$

Simulation Component

- Event Types: ARRIVAL and DEPARTURE.
- Data Structures:
 - Event list: Priority queue of $\langle type, time, patientID \rangle$.

- FIFO queue: Holds waiting patient IDs.
- Counters: BusyServers, QueueLength, AreaUnderQ, AreaInSystem.

• Pseudocode Outline:

- 1. Initialize time = 0, BusyServers = 0, QueueLength = 0.
- 2. Schedule first ARRIVAL at time $Exp(\lambda)$.
- 3. While time $< T_{\text{max}}$:
 - Pop next event $\langle type, t_{\rm ev}, ID \rangle$.
 - Update time-weighted counts:

$$\label{eq:areaUnderQ} AreaUnderQ \mathrel{+}= (t_{\rm ev} - t_{\rm last}) \times \\ \mbox{QueueLength}, \quad AreaInSystem \mathrel{+}= (t_{\rm ev} - t_{\rm last}) \times \\ \mbox{(BusyServer)}$$

Set $t_{\text{last}} = t_{\text{ev}}$.

- If ARRIVAL:
 - * If BusyServers < c, increment BusyServers, draw service time $\text{Exp}(\mu)$, schedule DEPARTURE.
 - * Else, enqueue this patient (increment QueueLength).
 - * Schedule next ARRIVAL at $t_{\rm ev} + {\rm Exp}(\lambda)$.
- If DEPARTURE:
 - * Decrement BusyServers. If QueueLength > 0, dequeue one patient, increment BusyServers, draw service time $\text{Exp}(\mu)$, schedule next DEPARTURE.
- 4. After T_{max} , compute:

$$\hat{L} = \frac{\text{AreaInSystem}}{T_{\text{max}}}, \quad \hat{L}_q = \frac{\text{AreaUnderQ}}{T_{\text{max}}},$$

$$\hat{W} = \frac{1}{N_{\text{served}}} \sum (\text{DepartureTime-ArrivalTime}), \quad \hat{W}_q = \frac{1}{N_{\text{served}}} \sum \text{WaitingTime}.$$

5. Run N = 30 replications to obtain mean and confidence intervals.

Expected Outcomes

- Validation that DES outputs closely match analytical formulas.
- Quantification of how L, L_q, W, W_q , and P_{wait} vary with λ, μ , and c.
- Identification of the minimum c to achieve a waiting-time target.
- Determination of cost-optimal staffing c^* via

$$C_{\text{total}}(c) = 100 c + 20 \lambda W_q(c).$$

• Presentation of comparative tables and plots (theory vs. simulation, cost vs. servers).