AI engine: https://deepai.org/chat/mathematics

PROMPT: given integers p, r, i, k, where p is prime and greater than 2, none of (i+k), r, i, k equal to zero, can the following expressions simultaneously be integers: $(r+i+k)^p/(2r+i+k)$, $(i^p + k^p)/(r+i+k)$

RESPONSE:

Here is a sketch of the simplest "size–and–divisibility" argument showing that, as soon as p>2 and r,i,k are all nonzero with $i+k\neq 0$, you cannot make both

$$A = (r + i + k)^p / (2r + i + k)$$

$$B = (i^p + k^p) \quad / (r + i + k)$$

integers at the same time.

1. Notation. Write

$$s = i + k$$
, $d = r + s$ (so $2r + s = r + d$).

Then

$$A = d^p/(r + d),$$

$$B = (i^p + k^p)/s.$$

2. A-divisibility forces $d^p \equiv 0 \mod (r + d)$.

Since
$$gcd(d, r+d) = gcd(r+s, 2r+s) = gcd(d, 2r+s - 2(r+s))$$

= $gcd(d, -s) = gcd(d, s)$,

write g = gcd(d,s). Then r + d = r + s + (d-s) = s + (d) so one checks

$$r + d = g \cdot M$$
, $d = g \cdot D$, $s = g \cdot S$,

with gcd(D,S)=1. The condition $d^p \equiv 0 \mod (r+d)$ becomes

$$(g \cdot D)^p$$
 is divisible by $g \cdot M \Rightarrow g^{p-1} \cdot D^p$ is divisible by M .

But M > D whenever $r \neq 0$ and $i+k\neq 0$ (easy to check by signs), so the only way a larger integer M can divide the smaller power $g^{p-1}D^p$ is if M = 1. Hence

$$r + d = 1$$
 (or -1).

- 3. But r + d = 1 means $r + (r + s) = 1 \Rightarrow 2r + s = 1 \Rightarrow$ the denominator of A is ± 1 . Plugging back one finds r = (1 s)/2 must be an integer, so s = i + k is odd. In particular i + k is $\pm 1, \pm 3, ...$
- 4. Now look at

$$B = (i^p + k^p)/s.$$
 Since p is odd, $i^p + k^p = (i + k)(i^{p-1} - i^{p-2}k + ... + k^{p-1})$
$$= s \cdot T.$$

so B=T is an integer automatically. So the only way to make A an integer is to force its denominator to ± 1 , i.e. $2r+s=\pm 1$. But that in turn forces $r=(\pm 1-s)/2$ to be an integer, which in our setup forces s=i+k to be odd.

5. Finally one checks that if you really do set $2r + (i+k) = \pm 1$ then

$$A = (r + i + k)^p/(2r + i + k) = (d)^p/\pm 1 = \pm d^p$$

is an integer and

$$B = T$$

is also an integer—but at the price of forcing $r = (\pm 1 - (i+k))/2$. In other words the only simultaneous-integral solutions occur exactly in the "denominator = ± 1 " case, which when you unwind it is equivalent to

$$2r + i + k = \pm 1$$
.

Conclusion. Except for the very special (and easily described) choice $2r + i + k = \pm 1$, there is no way to make both

$$(r+i+k)^p/(2r+i+k)$$
 and $(i^p+k^p)/(r+i+k)$

simultaneously integers once p>2 and none of r,i,k or i+k vanishes.