

planetmath.org

Math for the people, by the people.

inverse function theorem

Canonical name InverseFunctionTheorem

Date of creation 2013-03-22 12:58:30 Last modified on 2013-03-22 12:58:30 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 9

Author azdbacks4234 (14155)

Entry type Theorem Classification msc 03E20

Related topic DerivativeOfInverseFunction

Related topic Legendre Transform

Related topic DerivativeAsParameterForSolvingDifferentialEquations

Related topic TheoryForSeparationOfVariables

Let **f** be a continuously differentiable, vector-valued function mapping the open set $E \subset \mathbb{R}^n$ to \mathbb{R}^n and let $S = \mathbf{f}(E)$. If, for some point $\mathbf{a} \in E$, the Jacobian, $|J_{\mathbf{f}}(\mathbf{a})|$, is non-zero, then there is a uniquely defined function **g** and two open sets $X \subset E$ and $Y \subset S$ such that

```
1. a \in X, f(a) \in Y;
```

- 2. $Y = \mathbf{f}(X)$;
- 3. $\mathbf{f}: X \to Y$ is one-one;
- 4. **g** is continuously differentiable on Y and $\mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in X$.

0.0.1 Simplest case

When n=1, this theorem becomes: Let f be a continuously differentiable, real-valued function defined on the open interval I. If for some point $a \in I$, $f'(a) \neq 0$, then there is a neighbourhood $[\alpha, \beta]$ of a in which f is strictly monotonic. Then $y \to f^{-1}(y)$ is a continuously differentiable, strictly monotonic function from $[f(\alpha), f(\beta)]$ to $[\alpha, \beta]$. If f is increasing (or decreasing) on $[\alpha, \beta]$, then so is f^{-1} on $[f(\alpha), f(\beta)]$.

0.0.2 Note

The inverse function theorem is a special case of the implicit function theorem where the dimension of each variable is the same.