Adatbázis kezelés I.

Adatbázis tervezés normalizációval - 1. rész

Rostagni Csaba

2024. január 15.

Ezen az órán... I

- Anomáliák
- 2 Kulcsok
- 3 Normalizáció
- 4 Kapcsolatok típusai

Tartalom I

- Anomáliák
 - Beszúrási anomália
 - Módosítási anomália
 - Törlési anomália

Fogalmalmi különbségek

Adatbázis tervezés során

- a tábla helyett reláció
- a mező helyett attribútum

került alkalmazásra

Anomáliák

Definition (Anomália fogalma)

Az anomália az adatbázisban olyan rendellenesség, mely valamely karbantartási műveletnél plusz műveletek beiktatását igényli.

- Beszúrási anomália
- Módosítási anomália
- Törlési anomália

Redundancia

Definition (Redundancia)

Redundanciáról akkor beszélünk, ha valamely tényt vagy a többi adatból levezethető mennyiséget ismételten (többszörösen) tároljuk az adatbázisban.

- Lehet hasznos adatbiztonság szempontjából, például biztonsági mentés
- A fölösleges ismétlődést célszerű elkerülni
- Az idegen kulcs bár redundánsan jelenik meg a hozzá kapcsolódó adatokat takarja együttesen, így végeredményben csökkenti a redundanciát

Tartalom

- Anomáliák
 - Beszúrási anomália
 - Módosítási anomália
 - Törlési anomália

Beszúrási anomália

Definition (Beszúrási anomália)

Beszúrási anomáliáról beszélünk abban az esetben, amikor egy adatrekord beszúrása egy másik, hozzá logikailag nem kapcsolódó adatcsoport beszúrását kívánja meg.

Rostagni Csaba Adatbázis kezelés 2024. január 15. 8 / 51

Beszúrási anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
1	47	lakás	86 0000	Péter	1600
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4300

- Az ingatlanokhoz logikailag nem kapcsolódik az ingatlanos fizetése
- Az, hogy ki árulja az ingatlant egy hasznos információ
- Mariann fizetése redundánsan szerepel a táblában

Rostagni Csaba Adatbázis kezelés 2024. január 15. 9

Beszúrási anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
1	47	lakás	86 0000	Péter	1600
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4300
5	68	lakás	1 050 000	Mariann	4300

- Az ingatlanokhoz logikailag nem kapcsolódik az ingatlanos fizetése
- Az, hogy ki árulja az ingatlant egy hasznos információ
- Mariann fizetése redundánsan szerepel a táblában
- Mariann fizetését is meg kell adni egy ingatlan új felviteléhez

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Tartalom

- Anomáliák
 - Beszúrási anomália
 - Módosítási anomália
 - Törlési anomália

Módosítási anomália

Definition (Módosítási anomália)

Abban az esetben, ha egy relációban egy adat módosítása több helyen történő módosítást igényel, akkor módosítási anomáliáról beszélünk.

Rostagni Csaba Adatbázis kezelés 2024. január 15. 12 / 51

Módosítási anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
1	47	lakás	86 0000	Péter	1600
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4300
5	68	lakás	1 050 000	Mariann	4300

 A 4-es azonosítójú ingatlan eladása miatt jár 200 euró fizetésemelés az ingatlanosának

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Módosítási anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
1	47	lakás	86 0000	Péter	1600
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4500
5	68	lakás	1 050 000	Mariann	4300

 A 4-es azonosítójú ingatlan eladása miatt jár 200 euró fizetésemelés az ingatlanosának

Rostagni Csaba Adatbázis kezelés 2024. január 15. 14/51

Módosítási anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
1	47	lakás	86 0000	Péter	1600
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4500
5	68	lakás	1 050 000	Mariann	4300

- Mivel az ingatlanos fizetése redundánsan van eltárolva, így plusz műveleteket kell elvégezni, a többi érték módosításához
- Ha minden "Mariann" nevű ingatlanos fizetését emeljük, akkor előfordulhatna, hogy egy másik személy kap emelést

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Tartalom

- Anomáliák
 - Beszúrási anomália
 - Módosítási anomália
 - Törlési anomália

Törlési anomália

Definition (Törlési anomália)

Amennyiben egy adat törlésével másik, hozzá logikailag nem kapcsolódó adatcsoportot is elveszítünk, törlési anomáliáról beszélünk.

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Törlési anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
1	47	lakás	86 0000	Péter	1600
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4300
5	68	lakás	1 050 000	Mariann	4300

 A 1-es azonosítójú ingatlan tulajdonosával szerződést bontott az ügynökség, kerüljön törlésre

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Törlési anomália példa

`id`	`meret`	`tipus`	`ar`	`ingatlanos`	`fizetes`
2	47	ház	1 495 000	Mariann	4300
3	55	lakás	990 000	Zoli	6500
4	214	ház	1 250 000	Mariann	4300
5	68	lakás	1 050 000	Mariann	4300

- A 1-es azonosítójú ingatlan tulajdonosával szerződést bontott az ügynökség, kerüljön törlésre
- Mennyi Péter fizetése?
- Az ingatlan törlésével egy hozzá logikailag nem kapcsolódó adat (Péter fizetése) is törlésre került

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Tartalom I

- 2 Kulcsok
 - Szuperkulcs
 - Kulcs(jelölt)
 - Elsődleges kulcs

Tartalom

- 2 Kulcsok
 - Szuperkulcs
 - Kulcs(jelölt)
 - Elsődleges kulcs

Szuperkulcs

Definition (Szuperkulcs)

Szuperkulcsnak nevezzük azt az attribútumhalmazt, (melyek attribútumait együtt véve) egyértelműen meghatároz egy rekordot a relációban.

• Tartalmazhat olyan ("fölösleges") attribútumot, amit elhagyva is teljesíti a feltételeket

Example (Személy {személyi_szám, név, kor})

- Szuperkulcsok a Személy relációban
 - {személyi_szám} Önmagában elég a személyi_szám
 - {személyi_szám, név}
 - {személyi_szám, név, kor}
- Az alábbi attribútumhalmazok nem teljesítik a feltételt
 - {név}
 - {kor}
 - {név, kor}

Tartalom

- Kulcsok
 - Szuperkulcs
 - Kulcs(jelölt)
 - Elsődleges kulcs

Kulcs vagy Kulcsjelölt

Definition (Kulcs(jelölt))

Egy olyan (minimális) szuperkulcs, melynek bármely attribútumának eltávolítása után már nem szuperkulcs.

Example (Autó (rendszám, alvázszám, gyártó, típus, üzemanyag))

A rendszám és az alvázszám önmagában is beazonosít egy autót

	Attribútumhalmaz	Szuperkulcs	Kulcs(jelölt)
1	{rendszám}	igen	igen
2	{alvázszám}	igen	igen
3	{rendszám, alvázszám}	igen	nem
4	{gyártó, üzemanyag}	nem	nem
5	{rendszám, típus, gyártó}	igen	nem
6	{alvázszám, gyártó, üzemanyag}	igen	nem

Rostagni Csaba Adatbázis kezelés 2024. január 15. 23 / 51

Tartalom

- 2 Kulcsok
 - Szuperkulcs
 - Kulcs(jelölt)
 - Elsődleges kulcs

Elsődleges kulcs

- Az elsődleges kulcs
 - a kulcsjelöltek egyike lesz
 - az adatbázis tervezés során tetszőlegesen megválasztható
 - a relációban aláhúzással jelölendő
 - nem tartalmazhat ismétlődést
 - nem tartalmazhat NULL értéket
 - lehetőség szerint ne változzon meg, ha mégis akkor ez ne legyen gyakori
 - összetett kulcs helyett legyen egyszerű

Tartalom I

- Normalizáció
 - Funkcionális függőség
 - 0NF
 - 1NF

Normalizáció

Definition (Normalizáció)

A normalizáció egy olyan adatbázis tervezési technika, ami csökkenti a redundanciát, elősegíti az anomáliák kiküszöbölését. A nagy táblákat több kicsire bontja és kapcsolatokat határoz meg.

Definition (Normálforma)

Adatbázis tervezés folyamatában többnyire egymásra épülő szabályok rendszerének egy eleme.

Tartalom

- Normalizáció
 - Funkcionális függőség
 - ONF
 - 1NF

Funkcionális függőség

$$R(A_1, A_2, A_3, \ldots, B_1, B_2, \ldots, B_n)$$

Definition (Funkcionális függség)

Egy adott R relációban, egy B tartomány funkcionálisan függ az A tartománytól, ha bármely időpontban, minden egyes A értékhez egyetlen B érték tartozik az adott reláción belül.

Másképp megfogalmazva: Az A attribútumhalmaz értékei egyértelműen meghatározzák a B attribútumhalmaz értékeit.

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség: Személyi szám és név kapcsolata

Vegyük a *Személy* (személyi_szám, név) relációt A funkcionális függőség jelölése:

$$\{személyi_szam\} \rightarrow \{név\}$$

- Az attribútumhalmazokat kapcsoszárójelekkel jelöljük
- A nyíl határozza meg a függés irányát, azaz a baloldali attribútum(ok) halmazától függ a jobb oldali attribútum(ok) halmaza

A funkcionális függőség vizualizálása:

- A személyi szám egyértelműen meghatározza a személy nevét
- Fordítva nem igaz, hiszen több embernek is lehet ugyanaz a neve, de a személyi számuk eltérő lesz

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség: Személyi szám és név kapcsolata

A funkcionális függéségnek azért ez a neve, mert elméletben készíthetnénk olyan függvényt, ami tetszőleges, típusának megfelelő bemeneti adat esetén egyértelmű kimenetet eredményez.

```
def szemszambol_nev(szemszam):
 if szemszam == "472278ZC":
     return "Szentessy Péter"
 elif szemszam == "258352DT":
     return "Vasvári Mónika"
 elif szemszam == "162633CX":
     return "Vasvári Mónika"
 ...
```

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség példa: Autó

Vegyük az Autó (rendszám, gyártó, típus) relációt

rendszám	gyártó	típus
ABC-123	Opel	Astra
DEF-444	Vauxhal	Astra
PHP-404	VW	Jetta
ASD-365	VW	Polo

- $\{rendszám\} \rightarrow \{típus\}$
 - A rendszám meghatározza a típust
 - A típusból nem lehet a rendszámot meghatározni (pl Astra)
- $\{rendszám\} \rightarrow \{gyártó\}$
 - A rendszám egyértelműen meghatározza a gyártót
 - A gyártóból nem határozható meg egyértelműen a rendszám (pl.: VW)
- $\{rendszám\} \rightarrow \{típus, gyártó\}$
 - A rendszám meghatározza a típust és a gyártót is. A fentieket magába foglalja, ez kell nekünk, ez látható az ábrán

Funkcionális függőség példa: Napi hőmérséklet

Magyarország egy nap alatt végrehajtott méréseit szeretnénk tárolni. Vegyük a napi_hőmérséklet (hely, időpont, hőmérséklet) relációt

hely	idő	hőfok
Győr	08:00	10
Győr	08:05	10
Pécs	08:00	10
Pécs	09:00	18

- A $\{\text{hely}, \text{időpont}\} \rightarrow \{\text{hőmérséklet}\}\ \text{függőség teljesül}$
 - A hely önmagában nem határozza meg a hőfokot, mert ugyanazon a helyen, de másik időpontban lehet más a hőmérséklet
 - Az idő önmagában nem határozza meg a hőfokot, mert ugyanabban az időben lehet máshol más hőmérséklet
 - A hely és az idő együttesen határozzák meg a hőfokot

Triviális funkcionális függőség

Vegyük az Autó (rendszám, gyártó, típus) relációt

- $\{tipus\} \rightarrow \{tipus\}$
 - Saját magából megállapítható önmaga. Ez triviális
- $\{tipus, szin\} \rightarrow \{tipus\}$
 - Triviális egy funkcionális függőség, amennyiben a "bal oldali" halmaznak részhalmaza a "jobb oldali" attribútumhalmaz

Ezek a triviális függőségek a kivételektől eltekintve nem lesznek hasznunkra adatbázis tervezésnél, így a legtöbb esetben elhagyhatóak.

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség: Személy

Vegyük a Személy (név, szül_idő, szül_hely, anyja_neve, cim, tel) relációt

név	szül_idő	szül_hely	anyja_neve	cim	tel
T. Péter	1986-01-05	Вр	K. Mária	Вр.	1234569
T. Péter	1986-01-05	Вр	M. Emese	Győr.	5525359
T. Péter	1999-10-12	Győr	K. Mária	Вр.	1122339

Függőségek

- {név, szül_idő, szül_hely, anyja_neve, cim, tel} → {cim, tel}
- $\{\text{n\'ev}, \text{sz\"ul_id\'o}, \text{sz\"ul_hely}, \text{anyja_neve}, \textbf{cim}\} \rightarrow \{\text{cim}, \textbf{tel}\}$
- $\{n\acute{e}v, sz\"{u}l_id\H{o}, sz\"{u}l_hely, anyja_neve, \textbf{tel}\} \rightarrow \{cim, \textbf{tel}\}$
- {név, szül_idő, szül_hely, anyja_neve} → {cim, tel}

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség: Személy

```
\{\mathsf{n\'ev}, \mathsf{sz\"ul\_id\~o}, \mathsf{sz\"ul\_hely}, \mathsf{anyja\_neve}\} \rightarrow \{\mathsf{cim}, \mathsf{tel}\}
```

- A fenti függőség az összes mezőt tartalmazza
- A függőség bal oldala minimális kulcs, más nincs
- Könnyű egy egy elemű halmazból elsődleges kulcsot kinevezni
- Mivel több attribútumból tevődik össze, így összetett kulcs lesz

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség: Személy

Vegyük az alábi relációt

 $\textit{Szem\'ely} \ (\mathsf{szem\'elyi_sz\'am}, \mathsf{n\'ev}, \mathsf{sz\"ul_id\~o}, \mathsf{sz\"ul_hely}, \mathsf{anyja_neve}, \mathsf{cim}, \mathsf{tel})$

személyi_szám	név	szül_idő	szül_hely	anyja_neve	cim	tel
1-860105-7825	T. P.	1986-01-05	Вр	K. Mária	Вр.	1234569
1-860105-2353	T. P.	1986-01-05	Вр	M. Emese	Győr.	5525359
1-901012-4581	T. P.	1999-10-12	Győr	K. Mária	Вр.	1122339

- Nem triviális funkcionális függőségek:
 - $\{szemelyi_szám\} \rightarrow \{szül_idő\}$
 - {szemelyi_szám} → {név, szül_idő, szül_hely, anyja_neve, cim, tel}
 - {név, szül_idő, szül_hely, anyja_neve} → {cim, tel}

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség: Személy

- Vizsgáljuk meg az alábbi függőségeket
 - $\bullet \ \, \{\mathsf{n\'ev}, \mathsf{sz\"ul_id\~o}, \mathsf{sz\"ul_hely}, \mathsf{anyja_neve}\} \rightarrow \{\mathsf{szemelyi_sz\'am}, \mathsf{cim}, \mathsf{tel}\}$
 - $\bullet \ \, \{\mathsf{szemelyi_sz\'am}\} \rightarrow \{\mathsf{n\'ev}, \mathsf{sz\"ul_id\~o}, \mathsf{sz\"ul_hely}, \mathsf{anyja_neve}, \mathsf{cim}, \mathsf{tel}\}$
- Mind a két függőségre igaz, hogy a reláció összes attribútuma szerepel valamelyik oldalán
- A {név, szül_idő, szül_hely, anyja_neve} attribútumhalmaz egy olyan szuperkulcs, ami minimális, így kulcs(jelölt) is egyben
- A {szemelyi_szám} attribútumhalmaz egy olyan szuperkulcs, ami minimális, így kulcs(jelölt) is egyben
- Válasszuk azt a kulcsjelöltet, amelyik
 - nem, vagy csak ritkán változik
 - egyszerű
- Mivel a {szemelyi_szám} egy attribútumból áll, így az lesz az egyszerű kulcs lesz

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Funkcionális függőség példa: Irányítószám és település

Vegyük az Cim (irsz, telepules) relációt

irsz	település		
1015	Budapest		
1033	Budapest		
1213	Budapest		
6710	Szeged		
6726	Szeged		
9400	Sopron		
9444	Fertőszentmiklós		
irsz	település		
8984	Gombosszeg		
0004	Detellance (4)		

8984	Gombosszeg
8984	Petrikeresztúr
8984	Iborfia

- Megállapítható -e a település nevéből az irányítószám? Nem
- Megállapítható -e az irányítószámból a település neve? Nem
- $\{irsz\} \rightarrow \{település\}$
 - Klasszikus példa, DE Magyarországra nem érvényes
- Melyik település irányítószáma 1015?
 Bécs
 - Európai adatbázisban sem állja meg a helyét

Tartalom

- 3 Normalizáció
 - Funkcionális függőség
 - 0NF
 - 1NF

0NF

0. normálforma (0NF)

- Tartalmaz többértékű mezőt.
- Így jelöljük, hogy semelyiknek sem felel meg.
- Alternatív jelölés: UNF (Unnormalized Form)

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Tartalom

- Normalizáció
 - Funkcionális függőség
 - ONF
 - 1NF

1. normálforma (1NF)

Definition (1. normálforma)

- Minden rekord különbözik
- Rekordonként megegyezik a mezők száma és sorrendje
- Nincsenek benne többértékű mezők!
- Jellemző rá a redundancia

<u>1NF</u> példa: Ember

Vegyük az Ember (név, kor, hajszín) relációt

név	kor	hajszín	
Pap Barnabás	28	barna	
Szőke Éva	46	vörös, szőke	
Bíró Péter	55	fekete	

- A hajszín attribútum lehet többértékű
- Nem felel meg az első normálformának

Rostagni Csaba Adatbázis kezelés 2024. január 15

1NF példa: Ember

Bővítsük a relációt, újabb attribútummal, hogy elkerüljük többértékű mezőt: Ember (név, kor, hajszín1, hajszín2)

név	kor	hajszín1	hajszín2
Pap Barnabás	28	barna	NULL
Szőke Éva	46	vörös	szőke
Bíró Péter	55	fekete	NULL

- Mi van azokkal, akiknek nincs második szín megadva?
 - Rengeteg NULL értéket eredményez
- Mi van akkor, ha valakinek három színű a haja?
 - Nem tudjuk eltárolni az adatbázisba, ha 1NF-nak meg szeretnénk felelni

45 / 51

Nem túl jó megoldás

Rostagni Csaba Adatbázis kezelés 2024. január 15

1NF példa: Ember

Maradjunk az eredeti Ember (név, kor, hajszín) relációnál

név	kor	hajszín
Pap Barnabás	28	barna
Szőke Éva	46	vörös
Szőke Éva	46	szőke
Bíró Péter	55	fekete

- A többértékű mezőket tüntessük fel külön sorokban
- Szőke Éva kétszer is (azaz redundánsan) szerepel a két hajszín miatt
- Nincs fölösleges kitöltetlen (NULL) érték
- Eltárolható az adatbázisban tetszőleges számú hajszín
- Teljesült az 1NF

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Tartalom I

Mapcsolatok típusai

Kapcsolat

A relációkat a számosságuk alapján az alábbi típusokba soroljuk:

- Egy az egyhez (1:1)
- Egy a többhöz (1:N)
- Több a többhöz (N:M)

Egy az egyhez (1:1)

Egy reláció soraihoz legfeljebb egy sor tartozik a másik relációban.

- Házasság (monogám kapcsolatban)
- Elnök ← Ország
 - Egy országnak egy elnöke van, és senki se lehet több ország elnöke egyszerre

Rostagni Csaba Adatbázis kezelés 2024. január 15.

Egy a többhöz (1:N)

Egy reláció soraihoz akár több sor is tartozhat a másik relációban.

- Anyuka ←⇒ gyerek vagy Apuka ←⇒ gyerek
 - Egy anyának több gyereke is lehet.
 - Egy apának több gyereke is lehet.
 - A szülő gyerek kapcsolat már nem tartozik ide!
- Gyártó←→Autó
 - Egy gyártó több típust is gyárthat. Az is lehet, hogy csak egyet, de ez ritka
 - Amennyiben egy autót egy másik gyártó is gyárt, azt a saját nevén és minimális módosításokkal teszi, így a két autó nem ugyanaz!
- poligínia (többnejűség)
 - Egy férjnek lehet több felesége
- poliandria (többférjűség)
 - Egy feleségnek lehet több férje (poliandria, többférjűség)

Több a többhöz (N:M)

Egy reláció soraihoz akár több sor is tartozhat a másik relációban és ez visszafelé is teljesül.

- Film⇔Színész
 - Egy filmben több színész is szerepel, de egy színész általában több filmben is játszik.
 - Lehet olyan film, amiben csak egy színész szerepel
 - Lehet olyan szereplő, aki csak egy filmben szerepel
 - Lehet olyan film, ahol nincs szereplő (pl.: természetfilm)
 - Lehet olyan színész, aki (még) egyetlen filmben sem szerepelt
 - A legtágabb értelemben vizsgáljuk a kapcsolatot
- Szülő ⇐⇒Gyerek
 - Egy gyereknek több szülője is van (1 apuka, 1 anyuka). Egy szülőnek lehet egy vagy több gyereke, de az is elhet, hogy nincs neki!