Energy Market Time Series Forecasting: Balancing Demand and Supply

Amrutha Gabbita

Alexander Scarcelli Matthew Lanham rkanca@purdue.edu reddy47@purdue.edu ascarcel@purdue.edu lanhamm@purdue.edu

BUSINESS PROBLEM FRAMING

Business Problem

Focus on pinpointing locations for grid-scale battery installations to elevate energy distribution across New York.

Importance

Identifying and filling gaps in generation or storage is critical for improving our competitive edge and optimizing battery usage.

Business Benefits

enhance to profitability through strategic decisions.

End Goal

The project seeks to improve how grid-scale batteries are managed, leading to better market positioning, cost savings, and possibly lower energy prices for consumers.

Purpose

The analysis supports our B2B product and has potential applications in national security assessing regional market and identifying

Context

Our current focus is on the commercial market, using analytics to assess regional energy fluctuations

Stakeholders

We target the commercial sector, with an eye toward future national security applications, involving both B2B and possibly B2G relationships.

Mitchell E. Daniels, Jr. School of Business

Leverage open-source algorithms like

SARIMAX, ARMA, and relevant

network architectures along with K-

Means clustering to forecast hourly

STRATEGY

neural

energy

ANALYTICS PROBLEM FRAMING

OBJECTIVES

Analyze hourly energy demand and supply

Evaluate grid infrastructure

Assess renewable energy variability and predictability

Identify regions for optimal grid-scale battery deployment,

ASSUMPTIONS

ANALYTICS

PROBLEM FRAMING

METRICS

MAPE (Target of 5% or lower deemed successful)

Correlation Matrix

DATA

Assume 2020 data at an hourly level is

representative of seasonal hourly

trends for 2024 and beyond

Average LBMP by Hour	Weather – LBMP relationship
Hourly Average LBMP (\$/MWHr) 100 - 31,52 31,33 52,28,2528,29,29,18 40 -	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 20 - Hour of Day	2019-01-01 2019-01-05 2019-01-09 2019-01-13 2019-01-17 2019-01-21 2019-01-25 Date

Column Name	Description	Type	Example
Time Stamp	This column records the date and time of a record	String	1/1/2019 0:00
Name	Street address of the place of interest.	String	59TH STREET_GT_1
PTID	This column contains unique identifiers assigned to each address.	Int	25648
LBMP (\$/MWHr)	"Locational Based Marginal Pricing". The price of electricity at a specific location on the grid, calculated per megawatt-hour	Float	25.57
Marginal Cost Losses (\$/MWHr)	least bit marginal price. The lowest price at which electricity can be sold in the wholesale market at a given time	Float	1.07
Marginal Cost Congestion (\$/MWHr)	The costs associated with congestion in the power grid.	Float	-14.97

DATA SOURCE

- Primary Data Source: NYISO
- Secondary Data Source: Energy Information Administration

Marginal Cost Losses (\$/MWHr)

PREPROCESSING

 Aggregate Timestamp column and filter and impute any null values with forward fill

METHODOLOGY SELECTION

Feature Engineering

Data Preprocessing

ARMA, ARIMAX

MODEL BUILDING

SOLUTION ARCHITECTURE

Model Building

Prediction

Model Comparison

- SARIMAX
- Exogenous Variables: Marginal Cost osses (\$/MWHr) , Marginal Cost Congestion (\$/MWHr),rolling mean 3 h, LBMP lag 2h
- Goal MAPE: Less than 5%

K-Means clustering

• MAPE of Optimal Model: 1.957%

ENGINEERED FEATURES

- Lagged Variables: The LBMP lagged for the previous 24 hours, 2 days, 1 week
- Rolling Means: Rolling mean of past 3, 12, 24, and 168 hours

FUTURE DEVELOPMENT

- Improving feature selection techniques (Wrapping, etc.)
- Neural Network training and testing
- Determine optimal model for each season

DEPLOYMENT AND LIFE CYCLE MANAGEMENT

Deployment: SARIMAX-based model to predict hourly LBMP. Includes rigorous validation against MAPE to ensure accuracy.

> Time Series Forecasting

Impact: Improve operational efficiency and cost reduction for energy providers and consumers, and reduce power

outages

Impact

Lifecycle management

Management: Involves iterative refinement, leveraging feedback and cutting-edge research to enhance model precision and adaptability to market changes.

BENEFITS:

- Reduce consumer pricing particularly for time-of-use based
- Avoid market failures and blackouts from peaking demand and surging prices

Future Direction

Future Direction: We aim to enrich our model with broader data sets and sophisticated machine learning techniques, focusing on renewable energy integration and smart grid advancements.

