MODULE 3: PARTIAL DIFFERENTIATION

1. State Euler's theorem for homogeneous function of two variables.

2. If u = f(x, y) where x = x(t) and y = y(t) then write the total derivative of u with respect to t.

3. If
$$u = 3x^2y + 6xy^2 + 7$$
, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

4. If
$$u = \sin(xy)$$
, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

5. If
$$u = e^{4x+3y}$$
, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

6. If
$$f(x,y) = x^2y - 3y^2$$
, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

7. If
$$u = x^y$$
 then find $\frac{\partial^2 y}{\partial x \partial y}$.

8. If
$$f(x,y) = x^2y + 3xy^2$$
, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

9. If
$$f(x, y) = \cos(xy)$$
, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$

10. If
$$u = e^{4x+3y}$$
 then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

11. If
$$u = e^{x} cos y + 1$$
, show that $\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 0$

12. If
$$u = x^2 + y^2$$
, find $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

13. Define symmetric functions with examples.

14. If
$$z = u^2 + v^2$$
 and $v = at^2$. Find $\frac{dz}{dt}$.

15. If
$$z = x^2y + y^2x$$
, $x = at^2$, $y = 2at$, find $\frac{dz}{dt}$.

16. If
$$u = \frac{x}{y}$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

17. Write the formula for

18. Write the formula for Jacobian
$$J\left[\frac{x,y,z}{u,v,w}\right]$$
.

19. If
$$u = x + y$$
, $v = x - y$, find $J\left[\frac{u,v}{x,y}\right]$.

20. If
$$u = x + y$$
, $v = x^2 + y^2$, find $\frac{\partial(u,v)}{\partial(x,y)}$

21. If
$$x = u + v$$
 and $y = u - v$, find $J\left(\frac{x,y}{u,v}\right)$.

22. If
$$x = u^2 + v^2 \& y = uv$$
, find $J\left(\frac{x,y}{u,v}\right)$.

MODULE 4: INTEGRAL CALCULUS

1. Find $\iint (x+y) dxdy$.

2. Evaluate $\iint (x - y) dx dy$.

- 3. Find $\int_{1}^{2} \int_{1}^{3} xy^{2} dxdy$.

- 4. Evaluate $\int_{y=0}^{2} \int_{x=0}^{1} xy \, dx \, dy$. 5. Evaluate $\int_{1}^{3} \int_{2}^{4} 9x^{3}y^{2} \, dy dx$. 6. Evaluate $\int_{0}^{1} \int_{0}^{2} (x+y) \, dx \, dy$. 7. Compute $\int_{0}^{1} \int_{x}^{x^{2}} (x+y) \, dy \, dx$.
- 8. Evaluate $\int_{0}^{1} \int_{1}^{2} (x+3) \, dx \, dy$.