Approximating Text-to-Pattern Hamming Distances

Yonggang Jiang

July 13, 2022

Problem

Inputs:

■ Pattern string P and text string T with |P| = m, |T| = n.

Outputs:

■ An $1 + \epsilon$ approximation of hamming distance between P and any size m substring of T.

Problem

Inputs:

■ Pattern string P and text string T with |P| = m, |T| = n.

Outputs:

■ An $1 + \epsilon$ approximation of hamming distance between P and any size m substring of T.

Assumption:

- $n = \Theta(m)$.
- \blacksquare Assume ϵ is a small constant.

Problem

Inputs:

■ Pattern string P and text string T with |P| = m, |T| = n.

Outputs:

■ An $1 + \epsilon$ approximation of hamming distance between P and any size m substring of T.

Assumption:

- \blacksquare $n = \Theta(m)$.
- **A**ssume ϵ is a small constant.

Goal: Running time $O(n \log^{1.5} n)$.

Approximate Hamming Distance HD(X, Y)

Assumption: We already know a rough approximation $k = \Theta(HD(X, Y))$. (can be removed by guessing $k = 2^i$ for $i = 1, 2, ..., \log n$)

Approximate Hamming Distance HD(X, Y)

Assumption: We already know a rough approximation $k = \Theta(HD(X, Y))$. (can be removed by guessing $k = 2^i$ for $i = 1, 2, ..., \log n$)

Recall $\tilde{O}(m/k)$ **algorithm:** Sample $i \in [m]$ for $\Theta\left(\frac{m}{k}\right)$ times, and count how many times we have $X[i] \neq Y[i]$.

Approximate Hamming Distance HD(X, Y)

Assumption: We already know a rough approximation $k = \Theta(HD(X, Y))$. (can be removed by guessing $k = 2^i$ for $i = 1, 2, ..., \log n$)

Recall $\tilde{O}(m/k)$ algorithm: Sample $i \in [m]$ for $\Theta\left(\frac{m}{k}\right)$ times, and count how many times we have $X[i] \neq Y[i]$.

Too slow since we have $\Theta(n)$ instances! Idea: sample many positions at one time.

New algorithm for Approx HD(X, Y)

Let c be a sufficiently large constant. Let p be a uniform random prime in $[ck \log m, 2ck \log m]$.

New algorithm for Approx HD(X, Y)

- 1 Let c be a sufficiently large constant. Let p be a uniform random prime in $[ck \log m, 2ck \log m]$.
- 2 Independently uniformly sample $B_1, B_2, ..., B_c \subseteq [p]$ with $|B_i| = \log m$. Compute

$$x_j := h(\bigcup_{j \mod p \in B_i} X[j])$$

$$y_i = h(\underbrace{\bigcirc}_{j \mod p \in B_i} Y[j])$$

for each *i*. (Here h(S) is the polynomial rolling hashing $\sum S[i] \cdot rand^i \mod m^c$.)

New algorithm for Approx HD(X, Y)

- 1 Let c be a sufficiently large constant. Let p be a uniform random prime in $[ck \log m, 2ck \log m]$.
- 2 Independently uniformly sample $B_1, B_2, ..., B_c \subseteq [p]$ with $|B_i| = \log m$. Compute

$$x_i := h(\underbrace{\quad \bigcirc}_{j \mod p \in B_i} X[j])$$

$$y_i = h(\underbrace{\bigcirc}_{j \mod p \in B_i} Y[j])$$

for each *i*. (Here h(S) is the polynomial rolling hashing $\sum S[i] \cdot rand^i \mod m^c$.)

3 Let *d* as the number of *i* that $x_i \neq y_i$. Return

$$f(d) = p \cdot \left(1 - \left(1 - \frac{d}{c}\right)^{\frac{1}{\log m}}\right)$$

What to approximate

$$M := \{i \in [m] \mid X[i] \neq Y[i]\}$$

Instead we pick an appropriate parameter p and approximate

$$M' := \{b \in [p] \mid \bigcup_{i \mod p = b} X[i] \neq \bigcup_{i \mod p = b} Y[i]\}$$

What to approximate

$$M := \{i \in [m] \mid X[i] \neq Y[i]\}$$

Instead we pick an appropriate parameter p and approximate

$$M' := \{b \in [p] \mid \bigcup_{i \mod p = b} X[i] \neq \bigcup_{i \mod p = b} Y[i]\}$$

The following happens with large constant probability.

- With random prime p in $[ck \log m, 2ck \log m]$, we have $|M'| \approx |M|$.
- $f(d) \approx |M'|$.

|M| pprox |M'|

$$M' := \{ b \in [p] \mid \bigcup_{i \mod p = b} X[i] \neq \bigcup_{i \mod p = b} Y[i] \}$$
$$= \{ i \mod p \mid i \in M \}$$

p is a random prime from $[\hat{p}, 2\hat{p}]$ where $\hat{p} = ck \log m$.

Trivial fact: $|M'| \leq |M|$.

$|M| \approx |M'|$

$$M' := \{ b \in [p] \mid \bigcup_{i \mod p = b} X[i] \neq \bigcup_{i \mod p = b} Y[i] \}$$
$$= \{ i \mod p \mid i \in M \}$$

p is a random prime from $[\hat{p}, 2\hat{p}]$ where $\hat{p} = ck \log m$.

Trivial fact: $|M'| \leq |M|$.

Want to prove $|M|-|M'|<\epsilon|M'|$ (ϵ is a small constant).

$$M' := \{ b \in [p] \mid \bigcup_{i \mod p = b} X[i] \neq \bigcup_{i \mod p = b} Y[i] \}$$
$$= \{ i \mod p \mid i \in M \}$$

p is a random prime from $[\hat{p}, 2\hat{p}]$ where $\hat{p} = ck \log m$.

Trivial fact: $|M'| \leq |M|$.

Want to prove $|M| - |M'| < \epsilon |M'|$ (ϵ is a small constant).

Proof.

$$|M| - |M'| \le \#\{i, j \in M \mid |i - j| \mod p = 0\}$$

 $\mathbb{E}\left[|M'| - |M|\right] \le |M|^2 \cdot \frac{\log_{\hat{p}} m}{\hat{p}/\log \hat{p}} = O(|M|/c)$

Markov's inequality: $\Pr[|M'| - |M| \ge \epsilon |M|] \le O(1/\epsilon c)$

$f(d) \approx |M'|$

$$E[d] = c \cdot \left(1 - \left(1 - \frac{|M'|}{p}\right)^{\log m}\right) = f^{-1}(|M'|)$$

$$f(d) \approx |M'|$$

$$E[d] = c \cdot \left(1 - \left(1 - \frac{|M'|}{p}\right)^{\log m}\right) = f^{-1}(|M'|)$$

■ Use Chernoff bound to get $d \approx E[d] = f^{-1}(|M'|)$.

 $f(d) \approx |M'|$

$$E[d] = c \cdot \left(1 - \left(1 - \frac{|M'|}{p}\right)^{\log m}\right) = f^{-1}(|M'|)$$

- Use Chernoff bound to get $d \approx E[d] = f^{-1}(|M'|)$.
- Use the following lemma

Lemma

If the absolute derivative of $\log f(2^x)$ is bounded by c, and $(1-\epsilon)y < x < (1+\epsilon)y$, then $(1-2c\epsilon')f(y) < f(x) < (1+c\epsilon')f(y)$.

$$E[d] = c \cdot \left(1 - \left(1 - \frac{|M'|}{p}\right)^{\log m}\right) = f^{-1}(|M'|)$$

- Use Chernoff bound to get $d \approx E[d] = f^{-1}(|M'|)$.
- Use the following lemma

Lemma

If the absolute derivative of $\log f(2^x)$ is bounded by c, and $(1-\epsilon)y < x < (1+\epsilon)y$, then $(1-2c\epsilon')f(y) < f(x) < (1+c\epsilon')f(y)$.

Further facts: If k is too large, E[d]/c will be too close to 0; if k is too small, E[d]/c will be too close to 1: we can distinguish the cases where k >> |M| or k << |M|.

Compute

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} P[j]\right)$$

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} P[j]\right)$$

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{\substack{j \mod p \in B, j \in [m]}} P[j]\right)$$

$$h\left(\bigcup_{\substack{j \mod p \in B, j \in [m]}} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{\substack{j \mod p \in B, j \in [m]}} P[j]\right)$$

$$h\left(\bigcup_{\substack{j \mod p \in B, j \in [m]}} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{\substack{j \mod p \in B, j \in [m]}} P[j]\right)$$

$$h\left(\bigcup_{\substack{j \mod p \in B, j \in [m]}} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} P[j]\right)$$

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} P[j]\right)$$

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} T[i+j]\right)$$

Compute

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} P[j]\right)$$

$$h\left(\bigcup_{j \mod p \in B, j \in [m]} T[i+j]\right)$$

For each color in T, we have

Lemma

Given a string S with |S| = n/p, computing h(S') for any fix length substring S' of S cost O(|S|) = O(n/p) running time.

For each color in T, we have

Lemma

Given a string S with |S| = n/p, computing h(S') for any fix length substring S' of S cost O(|S|) = O(n/p) running time.

$$O\left(\frac{n}{p} \cdot p \cdot |B|\right) = O(n \log n) \text{ for } T.$$

$$O\left(\frac{m}{p} \cdot |B|\right) = O(n/k) \text{ for } P.$$

 \sqrt{p} colors in T and \sqrt{p} colors in P.

\sqrt{p} colors in T and \sqrt{p} colors in P.									
B									
T [
P									

$$\sqrt{p}$$
 colors in T and \sqrt{p} colors in P .
$$T$$

Colors
$$B + (1...\sqrt{p})$$
 in T and colors $B + (1...\sqrt{p}) \cdot \sqrt{p}$ in P .

$$\sqrt{p}$$
 colors in T and \sqrt{p} colors in P .
$$T$$

Colors $B + (1...\sqrt{p})$ in T and colors $B + (1...\sqrt{p}) \cdot \sqrt{p}$ in P.

Colors $B + (1...\sqrt{p})$ in T and colors $B + (1...\sqrt{p}) \cdot \sqrt{p}$ in P.

 \sqrt{p} colors in T and \sqrt{p} colors in P.

Colors
$$B + (1...\sqrt{p})$$
 in T and colors $B + (1...\sqrt{p}) \cdot \sqrt{p}$ in P .

$$O\left(\frac{n}{p} \cdot \sqrt{p} \cdot |B|\right) = O(n\sqrt{\log n}/\sqrt{k}) \text{ for } T.$$

$$O\left(\frac{m}{p} \cdot \sqrt{p} \cdot |B|\right) = O(n\sqrt{\log n}/\sqrt{k}) \text{ for } P.$$

 \sqrt{p} colors in T and \sqrt{p} colors in P.

Colors
$$B + (1...\sqrt{p})$$
 in T and colors $B + (1...\sqrt{p}) \cdot \sqrt{p}$ in P .

$$O\left(\frac{n}{p} \cdot \sqrt{p} \cdot |B|\right) = O(n\sqrt{\log n}/\sqrt{k}) \text{ for } T.$$

$$O\left(\frac{m}{p} \cdot \sqrt{p} \cdot |B|\right) = O(n\sqrt{\log n}/\sqrt{k}) \text{ for } P.$$

Correctness: uniform random B (blue line) \Rightarrow for any position of P, uniform random allignment.

For each $k = 2^i$ where $i \in [\log m]$ do:

Let p be a random prime from \hat{p} , $2\hat{p}$ where $\hat{p} = \Theta(k \log m)$. $O(k \log m)$

For each $k = 2^i$ where $i \in [\log m]$ do:

- Let p be a random prime from \hat{p} , $2\hat{p}$ where $\hat{p} = \Theta(k \log m)$. $O(k \log m)$
- 2 Uniformly sample $B \in [p], |B| = \log m$ for c times. $O(\log m)$

For each $k = 2^i$ where $i \in [\log m]$ do:

- Let p be a random prime from \hat{p} , $2\hat{p}$ where $\hat{p} = \Theta(k \log m)$. $O(k \log m)$
- 2 Uniformly sample $B \in [p], |B| = \log m$ for c times. $O(\log m)$
- 3 Compute $h\left(\bigodot_{k+v\sqrt{p}\mod p\in B, k\in [m]}P[k]\right)$ for any sampled B and any $v\in [\sqrt{p}]$

$$O\left(\frac{m}{p}\cdot\frac{p}{k}\cdot\sqrt{p}\right)=O\left(\frac{m\sqrt{p}}{k}\right)=O\left(m\sqrt{\log m}/\sqrt{k}\right);$$

 $h\left(\bigcirc_{k+i-u \mod p \in B, k \in [m]} T[i+k-1] \right)$ for any sampled B, any shift $u \in [\sqrt{n}]$ and for any i

any shift $u \in [\sqrt{p}]$ and for any i

$$O\left(\frac{n}{p}\cdot\frac{p}{k}\cdot\sqrt{p}\right)=O\left(n\sqrt{\log m}/\sqrt{k}\right).$$

For each $k = 2^i$ where $i \in [\log m]$ do:

- 1 Let p be a random prime from \hat{p} , $2\hat{p}$ where $\hat{p} = \Theta(k \log m)$. $O(k \log m)$
- 2 Uniformly sample $B \in [p], |B| = \log m$ for c times. $O(\log m)$
- $\begin{tabular}{l} {\bf 3} & {\bf Compute} \ h\left(\bigodot_{k+v\sqrt{p} \mod p\in B, k\in [m]} P[k]\right) \ {\bf for \ any \ sampled} \ B \\ & {\bf and \ any \ } v\in [\sqrt{p}] \ {\bf O}\left(m\sqrt{\log m}/\sqrt{k}\right); \\ & {\bf h}\left(\bigodot_{k+i-u \mod p\in B, k\in [m]} T[i+k-1]\right) \ {\bf for \ any \ sampled} \ B, \\ & {\bf any \ shift} \ u\in [\sqrt{p}] \ {\bf and \ for \ any} \ i \ {\bf O}\left(n\sqrt{\log m}/\sqrt{k}\right). \\ \end{tabular}$
- For any i, let the number of B that $h\left(\bigodot_{k+v_i\sqrt{n} \mod p\in B, k\in[m]}P[k]\right) = \\ h\left(\bigodot_{k+i-u_i\sqrt{q} \mod p\in B, k\in[m]}T[i+k-1]\right) \text{ be } d_i. \text{ Let } \\ \tilde{d}_i = f^{-1}(d_i). \text{ If } \tilde{d}_i/c \text{ is not too closer to 0 or 1, then let } f(\tilde{d}_i) \\ \text{ be the estimation for } HD(P, T[i, ..., i+m-1]). \\ O(n)$

For each $k = 2^i$ where $i \in [\log m]$ do:

- 1 Let p be a random prime from \hat{p} , $2\hat{p}$ where $\hat{p} = \Theta(k \log m)$. $O(k \log m)$
- 2 Uniformly sample $B \in [p], |B| = \log m$ for c times. $O(\log m)$

For any i:

- Binary search for *k*:
 - For any i, let the number of B that $h\left(\bigcirc_{k+v_i\sqrt{n} \mod p \in B, k \in [m]} P[k] \right) = \\ h\left(\bigcirc_{k+i-u_i\sqrt{q} \mod p \in B, k \in [m]} T[i+k-1] \right) \text{ be } d_i. \text{ Let } \\ \tilde{d}_i = f^{-1}(d_i). \text{ If } \tilde{d}_i/c \text{ is not too closer to 0 or 1, then let } f(\tilde{d}_i) \\ \text{ be the estimation for } HD(P, T[i, ..., i+m-1]). O(n)$

Lemma

For any i and any k, the algorithm returns a correct estimation of HD(P, T[i, ..., i+m-1]), or corretly determine whether k is too large or too small with large constant probability.

Lemma

For any i and any k, the algorithm returns a correct estimation of HD(P, T[i, ..., i+m-1]), or correctly determine whether k is too large or too small with large constant probability.

Boost the probability by running $O(\log n)$ times of the algorithm and take the **median** of each result for each i and k.

Lemma

For any i and any k, the algorithm returns a correct estimation of HD(P, T[i, ..., i+m-1]), or correctly determine whether k is too large or too small with large constant probability.

Boost the probability by running $O(\log n)$ times of the algorithm and take the **median** of each result for each i and k.

Total running time

$$O(\log n) \cdot \left(\sum_{k \in [log m]} O\left(\frac{m\sqrt{\log m}}{\sqrt{k}}\right) + \log\log n \cdot O(n) \right)$$
$$= O(n\log^{1.5} n)$$