122. Построить пример числовой последовательности, для которой все члены данной числовой последовательности

$$a_1, a_2, \ldots, a_n, \ldots$$

являются ее частичными пределами. Какие еще частичные пределы обязательно имеет построенная последовачельность?

- 123. Построить пример последовательности:
- а) не имеющей конечных частичных пределов;
- б) имеющей единственный конечный частичный предел, но не являющейся сходящейся;
- в) имеющей бесконечное множество частичных пределов;
- г) имеющей в качестве своего частичного предела каждое вещественное число.
- 124. Доказать, что последовательности x_n и $y_n = x_n \sqrt[n]{n}$ ($n = 1, 2, \ldots$) имеют одни и те же частичные пределы.
- 125. Доказать, что из ограниченной последовательности x_n $(n=1, 2, \ldots)$ всегда можно выделить сходящуюся подпоследовательность x_{p_n} $(n=1, 2, \ldots)$.
- 126. Доказать, что если последовательность x_n ($n=1, 2, \ldots$) не ограничена, то существует подпоследовательность x_{p_n} такая, что $\lim_{n \to \infty} x_{p_n} = \infty$.
- 127. Пусть последовательность x_n $(n=1, 2, \ldots)$ сходится, а последовательность y_n $(n=1, 2, \ldots)$ расходится. Что можно утверждать о сходимости последовательностей:
 - a) $x_n + y_n$; 6) $x_n y_n$?

Привести соответствующие примеры.

128. Пусть последовательности x_n и y_n (n=1, 2, . . .) расходятся. Можно ли утверждать, что последовательности

a)
$$x_n + y_n$$
; 6) $x_n y_n$

также расходятся? Привести соответствующие примеры. 129. Пусть $\lim_{n\to\infty} x_n = 0$, и $y_n (n = 1, 2, ...)$ —
произвольная последовательность Можно ди утверь

произвольная последовательность. Можно ли утверждать, что $\lim_{n\to\infty} x_n y_n = 0$? Привести соответствующие примеры.