NVIDIOSO

1.0

Generated by Doxygen 1.8.7

Wed Jul 16 2014 13:08:01

Contents

1	Main	Page			1
2	NVIE	DIOSO			3
3	Todo	List			5
4	Hiera	archica	l Index		7
	4.1	Class I	Hierarchy		. 7
_	Olas				9
5	5.1	s Index			_
	5.1	Olass I	LISt		. 9
6	Clas	s Docu	mentation	ı	11
	6.1	BoolDo	omain Clas	ss Reference	. 11
		6.1.1	Member	Function Documentation	. 12
			6.1.1.1	get_event	. 12
	6.2	Concre	eteDomain	< T > Class Template Reference	. 12
		6.2.1	Member	Function Documentation	. 12
			6.2.1.1	add	. 12
			6.2.1.2	add	. 12
			6.2.1.3	contains	. 13
			6.2.1.4	get_representation	. 13
			6.2.1.5	get_singleton	. 13
			6.2.1.6	in_max	. 13
			6.2.1.7	in_min	. 13
			6.2.1.8	is_empty	. 14
			6.2.1.9	is_singleton	. 14
			6.2.1.10	print	. 14
			6.2.1.11	shrink	. 14
	6.3	Constr	aint Class	Reference	. 14
	6.4	Constr	aintStore (Class Reference	. 15
	6.5	CPMod	del Class F	Reference	. 15
		6.5.1	Member	Function Documentation	. 15

iv CONTENTS

		6.5.1.1	add_constraint	15
		6.5.1.2	add_search_engine	15
		6.5.1.3	add_variable	15
6.6	CPSolv	er Class R	Reference	16
6.7	CPStor	e Class Re	eference	16
	6.7.1	Member F	Function Documentation	17
		6.7.1.1	init_model	17
6.8	CudaC	oncreteDo	main Class Reference	17
	6.8.1	Construct	or & Destructor Documentation	18
		6.8.1.1	CudaConcreteDomain	18
	6.8.2	Member F	Function Documentation	18
		6.8.2.1	flush_domain	18
		6.8.2.2	get_alloc_bytes	18
		6.8.2.3	get_num_chunks	18
		6.8.2.4	is_empty	18
		6.8.2.5	set_empty	18
6.9	CudaC	oncreteDoi	mainBitmap Class Reference	19
	6.9.1	Construct	or & Destructor Documentation	19
		6.9.1.1	CudaConcreteDomainBitmap	19
		6.9.1.2	CudaConcreteDomainBitmap	20
	6.9.2	Member F	Function Documentation	20
		6.9.2.1	add	20
		6.9.2.2	add	20
		6.9.2.3	contains	20
		6.9.2.4	get_representation	21
		6.9.2.5	get_singleton	21
		6.9.2.6	IDX_BIT	21
		6.9.2.7	IDX_CHUNK	21
		6.9.2.8	in_max	22
			in_min	22
		6.9.2.10	is_singleton	22
		6.9.2.11	print	22
		6.9.2.12	shrink	22
	6.9.3		Data Documentation	23
			BITS_IN_BYTE	23
			BITS_IN_CHUNK	23
6.10			mainList Class Reference	23
	6.10.1		or & Destructor Documentation	24
			CudaConcreteDomainList	24
	6.10.2	Member F	Function Documentation	24

CONTENTS

		6.10.2.1 ac	dd	. 24
		6.10.2.2 ac	bld	. 24
		6.10.2.3 cc	ontains	. 24
		6.10.2.4 fir	nd_next_pair	. 25
		6.10.2.5 fir	nd_pair	. 26
		6.10.2.6 fir	nd_prev_pair	. 26
		6.10.2.7 ge	et_representation	. 26
		6.10.2.8 ge	et_singleton	. 26
		6.10.2.9 in	_max	. 26
		6.10.2.10 in	_min	. 27
		6.10.2.11 is	_singleton	. 27
		6.10.2.12 pr	int	. 27
		6.10.2.13 sh	nrink	. 27
	6.10.3	Member Dat	ta Documentation	. 27
		6.10.3.1 _0	domain_size	. 27
6.11	CudaD	omain Class	Reference	. 28
	6.11.1	Member Fur	nction Documentation	. 30
		6.11.1.1 ad	dd_element	. 30
		6.11.1.2 ad	dd_element_bitmap	. 30
		6.11.1.3 ac	dd_element_bitmaplist	. 30
		6.11.1.4 ac	dd_element_list	. 30
		6.11.1.5 E	VT_IDX	. 31
		6.11.1.6 ge	et_allocated_bytes	. 31
		6.11.1.7 ge	et_size	. 31
		6.11.1.8 ID	X_BIT	. 31
		6.11.1.9 ID	X_CHUNK	. 31
		6.11.1.10 in	it_domain	. 31
		6.11.1.11 nu	um_chunks	. 32
		6.11.1.12 pr	repare_bit_list	. 32
		6.11.1.13 se	et_bounds	. 32
		6.11.1.14 sv	vitch_list_to_bitmaplist	. 32
		6.11.1.15 up	odate_bitmap	. 33
		6.11.1.16 up	odate_bitmap_list	. 34
		6.11.1.17 up	odate_domain	. 34
		6.11.1.18 up	odate_list	. 34
	6.11.2	Member Dat	ta Documentation	. 34
		6.11.2.1 _0	domain	. 34
		6.11.2.2 <u>r</u>	num_allocated_bytes	. 34
		6.11.2.3 <u>r</u>	num_int_chunks	. 34
		6.11.2.4 B	ITS_IN_BYTE	. 35

vi CONTENTS

		6.11.2.5 MAX_BYTES_SIZE	35
		6.11.2.6 MAX_DOMAIN_VALUES	35
		6.11.2.7 MAX_STATUS_SIZE	35
		6.11.2.8 SHARED_MEM_KB	35
6.12	CudaG	enerator Class Reference	35
6.13	CudaV	ariable Class Reference	36
	6.13.1	Constructor & Destructor Documentation	36
		6.13.1.1 Cuda Variable	36
		6.13.1.2 Cuda Variable	36
	6.13.2	Member Function Documentation	37
		6.13.2.1 set_domain	37
		6.13.2.2 set_domain	37
		6.13.2.3 set_domain	37
6.14	DataSt	ore Class Reference	37
	6.14.1	Constructor & Destructor Documentation	38
		6.14.1.1 DataStore	38
	6.14.2	Member Function Documentation	38
		6.14.2.1 load_model	38
6.15	Domair	n Class Reference	38
	6.15.1	Member Function Documentation	39
		6.15.1.1 set_type	39
6.16	Factory	ModelGenerator Class Reference	40
6.17	Factory	Parser Class Reference	40
6.18	FZNPa	rser Class Reference	40
	6.18.1	Member Function Documentation	41
		6.18.1.1 get_constraint	41
		6.18.1.2 get_next_content	41
		6.18.1.3 get_search_engine	41
		6.18.1.4 get_variable	41
6.19	FZNTol	kenization Class Reference	41
	6.19.1	Member Function Documentation	42
		6.19.1.1 get_token	42
6.20	IdGene	erator Class Reference	42
	6.20.1	Constructor & Destructor Documentation	43
		6.20.1.1 IdGenerator	43
6.21	InputDa	ata Class Reference	43
	6.21.1	Constructor & Destructor Documentation	43
		6.21.1.1 InputData	43
6.22	IntDom	aain Class Reference	43
	6.22.1	Member Function Documentation	44

CONTENTS vii

		6.22.1.1	add_element	44
		6.22.1.2	get_size	45
		6.22.1.3	in_max	45
		6.22.1.4	in_min	45
		6.22.1.5	init_domain	45
		6.22.1.6	set_bounds	45
		6.22.1.7	set_singleton	46
		6.22.1.8	subtract	46
6.23	Logger	Class Ref	ference	46
6.24	ModelC	Generator	Class Reference	47
	6.24.1	Member	Function Documentation	47
		6.24.1.1	get_constraint	47
		6.24.1.2	get_search_engine	47
		6.24.1.3	get_variable	48
6.25	Parser	Class Ref	erence	48
	6.25.1	Member	Function Documentation	49
		6.25.1.1	close	49
		6.25.1.2	get_next_content	49
		6.25.1.3	get_next_token	49
		6.25.1.4	get_variable	50
		6.25.1.5	more_tokens	50
		6.25.1.6	more_variables	50
		6.25.1.7	open	50
6.26	Search	Engine Cla	ass Reference	50
6.27	SetDor	nain Class	Reference	50
	6.27.1	Member	Function Documentation	51
		6.27.1.1	get_event	51
		6.27.1.2	get_values	51
		6.27.1.3	set_values	51
6.28	Solver	Class Refe	erence	52
6.29	Token (Class Refe	erence	52
6.30	TokenA	rr Class R	Reference	53
	6.30.1	Member	Function Documentation	53
		6.30.1.1	get_lower_var	53
		6.30.1.2	get_upper_var	53
			is_var_in	54
		6.30.1.4	set_array_bounds	54
6.31			Reference	54
	6.31.1	Member	Function Documentation	55
		6.31.1.1	add_expr	55

viii CONTENTS

		6.31.1.2	get_expr		 	 	 	 . 55
		6.31.1.3	get_expr_array .		 	 	 	 . 55
6.32	Tokeniz	zation Clas	s Reference		 	 	 	 . 55
	6.32.1	Member F	unction Documer	ntation	 	 	 	 . 56
		6.32.1.1	analyze_token .		 	 	 	 . 56
		6.32.1.2	clear_line		 	 	 	 . 56
		6.32.1.3	set_new_line		 	 	 	 . 57
		6.32.1.4	set_new_tokeniz	er	 	 	 	 . 57
6.33	TokenS	Sol Class R	eference		 	 	 	 . 57
	6.33.1	Member F	unction Documer	ntation	 	 	 	 . 58
		6.33.1.1	get_var_to_label		 	 	 	 . 58
		6.33.1.2	get_var_to_label		 	 	 	 . 58
		6.33.1.3	num_var_to_labe	al	 	 	 	 . 58
	6.33.2	Member [Data Documentati	on	 	 	 	 . 58
		6.33.2.1	_var_to_label		 	 	 	 . 58
6.34	TokenV	ar Class R	eference		 	 	 	 . 59
	6.34.1	Member F	unction Documer	ntation	 	 	 	 . 60
		6.34.1.1	get_range		 	 	 	 . 60
		6.34.1.2	get_subset		 	 	 	 . 60
		6.34.1.3	get_subset_dom	ain	 	 	 	 . 60
		6.34.1.4	set_range_doma	in	 	 	 	 . 60
		6.34.1.5	set_range_doma	in	 	 	 	 . 60
		6.34.1.6	set_subset_doma	ain	 	 	 	 . 61
		6.34.1.7	set_subset_dom	ain	 	 	 	 . 61
		6.34.1.8	set_subset_doma	ain	 	 	 	 . 61
		6.34.1.9	set_subset_doma	ain	 	 	 	 . 61
		6.34.1.10	set_subset_dom	ain	 	 	 	 . 61
		6.34.1.11	set_var_dom_typ	e	 	 	 	 . 61
		6.34.1.12	set_var_id		 	 	 	 . 62
6.35	Variable	e Class Re	ference		 	 	 	 . 62
	6.35.1	Member F	unction Documer	ntation	 	 	 	 . 62
		6.35.1.1	set_domain		 	 	 	 . 62
		6.35.1.2	set_str_id		 	 	 	 . 63
	6.35.2	Member [Data Documentati	on	 	 	 	 . 63
		6.35.2.1	_domain_ptr		 	 	 	 . 63
Index								64

Chapter 1

Main Page

NVIDIOSO NVIDIa-based cOnstraint SOlver v. 1.0

```
__CSP/COP REPRESENTATION__
```

VARIABLES:

Variable has variable types.

· bool: true, false

• int: -42, 0, 69

• set of int: {}, {2, 3, 4}, 1..10

We distinguish between four different types of variables, namely:

- FD Variables: standard Finite Domain variables
- SUP Variables: SUPport variable introduced to compute the objective function. These variables have unbounded int domains.
- OBJ Variables: OBJective variables. These variables store the objective value as calculated by the objective function through standard propagation. These variables have unbounded int domains.

DOMAINS:

Domain representation may vary depending on the type of model that is instantiated. In particular, for a CPU model the domains can be represented by lists of sets of domain value. For CUDA models domains are represented as follows. There are two internal representations for an finite domain D depending on whether $|D| \le \max_{x \in \mathbb{R}} |D| \le \max_{x \in \mathbb{R}} |D|$ not:

- Bitmap: if |D| <= max_vector;
- · List of bounds: otherwise.

By default, max_vector is equal to 256. This value can be redefined via and environment variable VECTOR_MAX.

```
Domains have the following structure:
```

```
| EVT | REP | LB | UB | DSZ || ... BIT ... |
```

where

- EVT: represents the EVenT happened on the domain;
- REP: is the REPresentation currently used; This value can be one of the following:

2 Main Page

- -1, -2, -3, ...: BIT represents a set of 1, 2, 3, ... bitmaps respectively. Each bitmap represents a domain subset of values {LB, UB};
- 0 : BIT represents a Bitmap of contiguous values starting from LB: LB..VECTOR MAX.
- 1, 2, 3, ...: in BIT there are respectively 1, 2, 3, ... pairs of bound. If there are 0 pairs, then there is a unique pair of bounds {LB, UB} in the LB/UB field respectively.
- · LB: Lower Bound of the current domain;
- · UB: Upper Bound of the current domain;
- DSZ: Domain SiZe where DSZ <= max vector -> REP = 0. Moreover,

```
- {LB, UB}' = {LB, k} {k', UB} -> DSZ' = DSZ - ( k' - k + 1 );
- LB' = LB + k -> DSZ' = DSZ - ( k - LB + 1 );
- UB' = UB - k -> DSZ' = DSZ - ( UB - k + 1 );
```

- · BIT: bit vector where
 - REP < 0: there is a total of (<=) VECTOR_MAX bits representing REP pairs of bounds. The first part of BIT is used to store REP pairs <LB, UB>. The second part of BIT stores the actual bitmaps. Using UB LB + 1 it is possible to calculate the size of the bitmap and hence the position in BIT of the next pair <LB, UB>. When REP < 0 the BIT field does not change anymore. The system will use the LB/UB fields to check for the right bitmap in the BIT field.
 - REP = 0: there are UB LB + 1 <= VECTOR MAX bits of contiguous domain values starting from 0;
 - REP > 0: each pair of bound is identified as LB, UB (LB = UB if singlet). If REP = 1, then there is only 1 pair of bounds represented by {LB, UB}. If REP > 1, then there are at least 2 pairs in BIT and the LB/UB fields represent respectively the min/max values among all the pairs.

OBSERVATIONS (CUDA implementation):

Shared Memory: 49152 = 48 kB per block -> keep 47 kB available.

- REP < 0 there are 47 * 1024 = 48128 -> (48128 5 * 32)/32 = 1499 possible storable values. Worst case: REP = -256 -> 3 * 256 triples = 3 * 256 = 768 < 1499 (-8=256/32).
- REP = 0 and VECTOR_MAX = 4096 the worst case is when there are 4096 sing.: ((4096 + 4096 * 2 * 32) / 8) / 1024 = 32.5 kB < 45 kB ((tot_bits + tot_bits * 2 int * bit_per_int) / B) / kB.
- REP > 0: 45 kB = 11520 int -> 11520 5 = 11515 -> 11515/2 (used two int to represent a pair of bounds) = 5757 pairs separated by at least one "hole" from each other -> 5757 * 2 = 11514 such as $\{0, 1\}, \{3, 4\}, \dots$.

Note

The above observation means that when the domains are greater than 11514 then a check must be performed in order to apply multiple copies from global to share memory if needed.

A domain such as $\{300, 450\}$ has 150 values < VECTOR_MAX but it still represented as REP < 0. This is done for efficiency reasons, avoiding to store a further base-offset for contiguous domains of size < VECT \leftarrow OR MAX.

When a domain (or subsets of it) is (are) represented using a bitmap, the values are stored from left to right in chunks of 32 bits (considering a 32bit representation for an unsigned int), where the most significan bit is in the leftmost position of the chuck, i.e., it is the 31th bit. For example, the domain $\{0, 63\}$ is store as |31...0|63...32|. The chunk is easily retrieved computing num / 32, while the position within each chunk can be retrieved by num % 32.

Chapter 2

NVIDIOSO

NVIDIOSO - NVIDIa-based cOnstraint SOlver v. 1.0

4 NVIDIOSO

Chapter 3

Todo List

Member BoolDomain::get_event () const

implement this function

Member CudaConcreteDomainBitmap::add (int min, int max)

implement using checks on chunks of bits (i.e. sublinear cost).

Member SetDomain::get_event () const

implement this function

6 **Todo List**

Chapter 4

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$Concrete Domain < T > \dots \qquad ??$
ConcreteDomain< int >
CudaConcreteDomain
CudaConcreteDomainBitmap
CudaConcreteDomainList
Constraint
ConstraintStore
CPModel
DataStore
CPStore
Domain
BoolDomain
IntDomain
CudaDomain
SetDomain
FactoryModelGenerator
FactoryParser
IdGenerator
InputData
Logger
CudaGenerator
Parser
FZNParser
SearchEngine
Solver
CPSolver
Token
TokenCon
TokenSol
TokenVar
TokenArr
Tokenization
FZNTokenization
Variable
Cuda Variable

8 **Hierarchical Index**

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

	??
$Concrete Domain < T > \dots \dots$??
Constraint	??
ConstraintStore	??
	??
CPSolver	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
· · · · · · · · · · · · · · · · · · ·	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
	??
Variable	22

10 Class Index

Chapter 6

Class Documentation

6.1 BoolDomain Class Reference

Inheritance diagram for BoolDomain:

Public Member Functions

• DomainPtr clone () const

Clone the current domain and returns a pointer to it.

- EventType get_event () const
- size_t get_size () const

Returns the size of the domain.

• bool is_empty () const

Returns true if the domain is empty.

• bool is_singleton () const

Returns true if the domain has only one element.

· void print () const

Print info about the domain.

Protected Member Functions

• DomainPtr clone_impl () const

Clone the current domain.

Protected Attributes

• BoolValue bool value

Current domain value.

Additional Inherited Members

6.1.1 Member Function Documentation

6.1.1.1 EventType BoolDomain::get_event() const [virtual]

Get event on this domain

Todo implement this function

Implements Domain.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/bool_domain.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/bool domain.cpp

6.2 ConcreteDomain < T > Class Template Reference

Public Member Functions

- virtual void shrink (T min, T max)=0
- virtual void in min (T min)=0
- virtual void in max (T max)=0
- virtual void add (T value)=0
- virtual void add (T min, T max)=0
- virtual bool contains (T value) const =0
- virtual bool is_empty () const =0
- virtual bool is_singleton () const =0
- virtual T get_singleton () const =0
- virtual const void * get representation ()=0
- virtual void print () const =0

6.2.1 Member Function Documentation

6.2.1.1 template < class T > virtual void ConcreteDomain < T >::add (T value) [pure virtual]

It computes union of this domain and {value}.

Parameters

value it specifies the value which is being added.

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.2 template < class T > virtual void ConcreteDomain < T >::add (T min, T max) [pure virtual]

It computes union of this domain and {min, max}.

Parameters

min lower bound of the new domain which is being added.

max upper bound of the new domain which is being added.

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.3 template < class T > virtual bool ConcreteDomain < T >::contains (T value) const [pure virtual]

It checks whether the value belongs to the domain or not.

Parameters

value to check whether it is in the current domain.

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.4 template < class T > virtual const void* ConcreteDomain < T >::get_representation() [pure virtual]

It returns a void pointer to an object representing the current representation of the domain (e.g., bitmap).

Returns

void pointer to the concrete domain representation.

6.2.1.5 template < class T > virtual T ConcreteDomain < T >::get_singleton() const [pure virtual]

It returns the value of type T of the domain if it is a singleton.

Returns

the value of the singleton element.

Note

Classes that specialize this method should handle the case of an invokation of the method and a non-singleton domain. For example, throw an exception or returning the lower bound.

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.6 template < class T > virtual void ConcreteDomain < T >::in_max (T max) [pure virtual]

It updates the domain according to the maximum value.

Parameters

max domain value.

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.7 template < class T > virtual void ConcreteDomain < T >::in_min(T min) [pure virtual]

It updates the domain according to the minimum value.

Parameters

min domain value.

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.8 template < class T > virtual bool ConcreteDomain < T >::is_empty() const [pure virtual]

It checks whether the current domain is empty.

Returns

true if the current domain is empty, false otherwise.

Implemented in CudaConcreteDomain.

6.2.1.9 template < class T > virtual bool ConcreteDomain < T >::is_singleton() const [pure virtual]

It checks whether the current domain contains only an element (i.e., it is a singleton).

Returns

true if the current domain is singleton, false otherwise.

 $Implemented \ in \ Cuda Concrete Domain Bitmap, \ and \ Cuda Concrete Domain List.$

6.2.1.10 template < class T > virtual void ConcreteDomain < T >::print() const [pure virtual]

It prints the current domain representation (its state).

Note

it prints the content of the object given by "get_representation ()" .

Implemented in CudaConcreteDomainBitmap, and CudaConcreteDomainList.

6.2.1.11 template < class T > virtual void ConcreteDomain < T >::shrink (T min, T max) [pure virtual]

It updates the domain to have values only within min/max.

Parameters

min	new lower bound to set for the current domain.
max	new upper bound to set for the current domain.

 $Implemented\ in\ Cuda Concrete Domain Bitmap,\ and\ Cuda Concrete Domain List.$

The documentation for this class was generated from the following file:

 $\bullet \ / Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/concrete_domain.h \\$

6.3 Constraint Class Reference

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/constraint.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/constraint.cpp

6.4 ConstraintStore Class Reference

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/constraint store.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/constraint_store.cpp

6.5 CPModel Class Reference

Public Member Functions

- virtual void add_variable (VariablePtr ptr)
- · virtual void add constraint (ConstraintPtr ptr)
- virtual void add_search_engine (SearchEnginePtr ptr)

Protected Attributes

std::list< VariablePtr > _variables

Variables.

ConstraintPtr _constraint_store

Constraint Store.

SearchEnginePtr _search_engine

Search engine.

6.5.1 Member Function Documentation

```
6.5.1.1 void CPModel::add_constraint(ConstraintPtr ptr) [virtual]
```

Add a constraint to the model. It linkes constraints to variables, actually defining the constraint graph.

Parameters

ptr	pointer to the constraint to add to the model

6.5.1.2 void CPModel::add_search_engine (SearchEnginePtr ptr) [virtual]

Add a search engine to the model.

Parameters

ptr	pointer to the search engine to use to explore the search space.

```
6.5.1.3 void CPModel::add_variable ( VariablePtr ptr ) [virtual]
```

Add a variable to the model. It linkes variables to constraints, actually defining the constraint graph.

Parameters

ptr	pointer to the variable to add to the model

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cp_model.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cp_model.cpp

6.6 CPSolver Class Reference

Inheritance diagram for CPSolver:

Public Member Functions

• void run ()

The documentation for this class was generated from the following file:

• /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cp_solver.h

6.7 CPStore Class Reference

Inheritance diagram for CPStore:

Public Member Functions

- virtual bool load_model (std::string="")
 - Load model from input file (FlatZinc model)
- virtual void init_model ()
- virtual void print_model_info ()

Print info about the model.

- virtual void print model variable info ()
- virtual void print_model_domain_info ()
- virtual void print_model_constraint_info ()

Static Public Member Functions

static CPStore * get_store (std::string in_file)
 Constructor get (static) instance.

Protected Member Functions

• CPStore (std::string)

Protected constructor for singleton pattern.

Additional Inherited Members

6.7.1 Member Function Documentation

```
6.7.1.1 void CPStore::init_model( ) [virtual]
```

Init store with the loaded model. This method works on the internal state of the store. It uses a generator to generate the right instances of the objects (e.g. CUDA-FD variabes) and add them to the model. A generator takes tokens as input and returns the corresponding pointer to the instantiated objects.

Implements DataStore.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cp store.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cp_store.cpp

6.8 CudaConcreteDomain Class Reference

Inheritance diagram for CudaConcreteDomain:

Public Member Functions

- CudaConcreteDomain (size t size)
- int get_num_chunks () const
- size_t get_alloc_bytes () const
- bool is_empty () const

Protected Member Functions

- void flush_domain ()
- void set_empty ()

Protected Attributes

- std::string _dbg
- int _num_chunks

Number of "int" chunks allocated.

• int _lower_bound

Lower bound.

• int _upper_bound

Upper bound.

int * _concrete_domain

Concrete domain is represented by an array of (32 bit) integers.

6.8.1 Constructor & Destructor Documentation

6.8.1.1 CudaConcreteDomain::CudaConcreteDomain (size_t size)

Constructor for CudaConcreteDomain. It instantiates a new object and allocate size bytes for the array of integers Parameters

size the number of bytes to allocate.

Note

the client should check whether integers are represented by 32 bit values.

6.8.2 Member Function Documentation

```
6.8.2.1 void CudaConcreteDomain::flush_domain() [protected]
```

Flush domain: reduces its domain size to zero by flushing all values in the internal domain's representation. It sets the current domain's state as empty.

Note

it sets upper bound < lower bound.

```
6.8.2.2 size_t CudaConcreteDomain::get_alloc_bytes ( ) const
```

Get the number of allocated bytes, i.e., the size of the internal domain's representation.

```
6.8.2.3 int CudaConcreteDomain::get_num_chunks ( ) const
```

Get the number of allocated chunks (in terms of 32 bit integers).

```
6.8.2.4 bool CudaConcreteDomain::is_empty() const [virtual]
```

It checks whether the current domain is empty.

Returns

true if the current domain is empty, false otherwise.

Implements ConcreteDomain< int >.

```
6.8.2.5 void CudaConcreteDomain::set_empty() [protected]
```

Empty domain: reduces its domain size to zero by setting the current domain's state as empty.

Note

it does not flush the current internal domain's representation.

The documentation for this class was generated from the following files:

- · /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda concrete domain.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_concrete_domain.cpp

6.9 CudaConcreteDomainBitmap Class Reference

Inheritance diagram for CudaConcreteDomainBitmap:

Public Member Functions

- CudaConcreteDomainBitmap (size_t size)
- CudaConcreteDomainBitmap (size_t size, int min, int max)
- void shrink (int min, int max)
- void in_min (int min)
- void in_max (int max)
- void add (int value)
- void add (int min, int max)
- · bool contains (int value) const
- bool is_singleton () const
- int get_singleton () const
- · const void * get representation () const
- void print () const

Static Protected Member Functions

- static constexpr int IDX CHUNK (int val)
- static constexpr int IDX_BIT (int val)

Protected Attributes

• int _num_valid_bits

Number of bits set to 1.

Static Protected Attributes

- static constexpr int BITS_IN_BYTE = INT8_C(8)
- static constexpr int BITS IN CHUNK = sizeof(int) * BITS IN BYTE

Additional Inherited Members

6.9.1 Constructor & Destructor Documentation

6.9.1.1 CudaConcreteDomainBitmap::CudaConcreteDomainBitmap (size_t size)

Constructor for CudaConcreteDomainBitmap.

Parameters

size	the size in bytes to allocate for the bitmap.
------	---

Note

the bitmap is represented considering lower bound = 0 and upper bound given by the parameter size. initially all bits are set to 1 (i.e. valid bits).

6.9.1.2 CudaConcreteDomainBitmap::CudaConcreteDomainBitmap (size t size, int min, int max)

Constructor for CudaConcreteDomainBitmap.

Parameters

size	the size in bytes to allocate for the bitmap.
min	lower bound for {min, max} set initilization. min must be greater than or equal to 0 and less
	than or equal to the max number of bits storable using size bytes.
max	upper bound for {min, max} set initilization. max must be less than or equal to max number
	of bits storable using size bytes and greater than or equal to 0.

Note

the bitmap is represented considering lower bound = 0 and upper bound given by the parameter size. initially all bits in {min, max} are set to 1 (i.e. valid bits).

6.9.2 Member Function Documentation

6.9.2.1 void CudaConcreteDomainBitmap::add (int value) [virtual]

It computes union of this domain and {value}.

Parameters

value	it specifies the value which is being added.

Note

value is given w.r.t. a lower bound of 0.

Implements ConcreteDomain < int >.

6.9.2.2 void CudaConcreteDomainBitmap::add (int min, int max) [virtual]

It computes union of this domain and {min, max}.

Parameters

min	lower bound of the new domain which is being added.
max	upper bound of the new domain which is being added.

Todo implement using checks on chunks of bits (i.e. sublinear cost).

Implements ConcreteDomain< int >.

6.9.2.3 bool CudaConcreteDomainBitmap::contains (int value) const [virtual]

It checks whether the value belongs to the domain or not.

Parameters

value to check whether it is in the current domain.

Note

value is given w.r.t. the lower bound of 0.

Implements ConcreteDomain< int >.

6.9.2.4 const void * CudaConcreteDomainBitmap::get_representation () const

It returns a void pointer to an object representing the current representation of the domain (e.g., bitmap).

Returns

void pointer to the concrete domain representation.

6.9.2.5 int CudaConcreteDomainBitmap::get_singleton() const [virtual]

It returns the value of type T of the domain if it is a singleton.

Returns

the value of the singleton element.

Note

it throws an exception if domain is not singleton.

Implements ConcreteDomain< int >.

6.9.2.6 static constexpr int CudaConcreteDomainBitmap::IDX_BIT (int val) [inline], [static], [protected]

Get index of the bit that represents the value val module the size of a chuck, i.e., the position of the corresponding bit within a chunk.

Parameters

val the value w.r.t. the function calculates its position within a chunk of bits

Returns

position (starting from 0) of the bit corresponding to val.

6.9.2.7 static constexpr int CudaConcreteDomainBitmap::IDX_CHUNK (int *val* **)** [inline], [static], [protected]

Get index of the chunk of bits containing the bit representing the value given in input.

Parameters

max lower bound used to calculated the index of the bitmap

Returns

number of int used as bitmaps to represent max

6.9.2.8 void CudaConcreteDomainBitmap::in_max (int max) [virtual]

It updates the domain according to max value.

Parameters

max domain value.

Implements ConcreteDomain< int >.

6.9.2.9 void CudaConcreteDomainBitmap::in_min(int min) [virtual]

It updates the domain according to min value.

Parameters

min domain value.

Implements ConcreteDomain< int >.

6.9.2.10 bool CudaConcreteDomainBitmap::is_singleton() const [virtual]

It checks whether the current domain contains only an element (i.e., it is a singleton).

Returns

true if the current domain is singleton, false otherwise.

 $Implements \ Concrete Domain < int >.$

6.9.2.11 void CudaConcreteDomainBitmap::print() const [virtual]

It prints the current domain representation (its state).

Note

it prints the content of the object given by "get_representation ()" .

Implements ConcreteDomain < int >.

6.9.2.12 void CudaConcreteDomainBitmap::shrink(int min, int max) [virtual]

It updates the domain to have values only within min/max.

Parameters

min new lower bound to set for the current domain.

max | new upper bound to set for the current domain.

Implements ConcreteDomain< int >.

6.9.3 Member Data Documentation

6.9.3.1 constexpr int CudaConcreteDomainBitmap::BITS_IN_BYTE = INT8_C(8) [static], [protected]

Macro for the size of a byte in terms of bits.

 $\textbf{6.9.3.2} \quad \textbf{constexpr int CudaConcreteDomainBitmap::BITS_IN_CHUNK = sizeof(int)*BITS_IN_BYTE \quad \texttt{[static],} \\ \quad \texttt{[protected]}$

Macro for the size of a chunk in terms of bits.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_concrete_bitmap.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda concrete bitmap.cpp

6.10 CudaConcreteDomainList Class Reference

Inheritance diagram for CudaConcreteDomainList:

Public Member Functions

- CudaConcreteDomainList (size_t size, int min, int max)
- void shrink (int min, int max)
- void in_min (int min)
- void in_max (int max)
- void add (int value)
- void add (int min, int max)
- bool contains (int val) const
- bool is_singleton () const
- int get_singleton () const
- const void * get_representation () const
- void print () const

Protected Member Functions

- int find pair (int val) const
- int find_prev_pair (int val) const
- int find_next_pair (int val) const

Protected Attributes

• int _num_pairs

Number of pairs in the list (list size)

• int _max_allowed_pairs

Max number of storable pairs in the concrete domain.

· int domain size

6.10.1 Constructor & Destructor Documentation

6.10.1.1 CudaConcreteDomainList::CudaConcreteDomainList (size_t size, int min, int max)

Constructor for CudaConcreteDomainList.

Parameters

size	the size in bytes to allocate for the bitmap.
min	lower bound in {min, max}
max	upper bound in {min, max}

6.10.2 Member Function Documentation

6.10.2.1 void CudaConcreteDomainList::add (int value) [virtual]

It computes union of this domain and {value}.

Parameters

value	it specifies the value which is being added.

Implements ConcreteDomain < int >.

6.10.2.2 void CudaConcreteDomainList::add (int min, int max) [virtual]

It computes union of this domain and {min, max}.

Parameters

min	lower bound of the new domain which is being added.
max	upper bound of the new domain which is being added.

 $Implements \ Concrete Domain < int >.$

6.10.2.3 bool CudaConcreteDomainList::contains (int val) const [virtual]

It checks whether the value belongs to the domain or not.

Parameters

val	to check whether it is in the current domain.

Note

val is given w.r.t. the lower bound of 0.

Implements ConcreteDomain< int >.

6.10.2.4 int CudaConcreteDomainList::find_next_pair(int val) const [protected]

Find the index of the first pair with values greater than val.

Parameters

val	to be compared in the list of pairs.

Returns

the index of the pair with val greater than val, -1 if no such pair exists.

6.10.2.5 int CudaConcreteDomainList::find_pair (int val) const [protected]

Find the index of the pair containing val.

Parameters

val	to be searched in the list of pairs.

Returns

the index of the pair containing val, -1 otherwise.

6.10.2.6 int CudaConcreteDomainList::find_prev_pair (int *val*) const [protected]

Find the index of the last pair with values smaller than val.

Parameters

val	to be compared in the list of pairs.

Returns

the index of the pair with val lower than val, -1 if no such pair exists.

6.10.2.7 const void* CudaConcreteDomainList::get_representation () const

It returns a void pointer to an object representing the current representation of the domain (e.g., bitmap).

Returns

void pointer to the concrete domain representation.

6.10.2.8 int CudaConcreteDomainList::get_singleton() const [virtual]

It returns the value of type T of the domain if it is a singleton.

Returns

the value of the singleton element.

Note

it throws an exception if domain is not singleton.

Implements ConcreteDomain< int >.

6.10.2.9 void CudaConcreteDomainList::in_max (int max) [virtual]

It updates the domain according to max value.

Parameters

max domain value.

Implements ConcreteDomain < int >.

6.10.2.10 void CudaConcreteDomainList::in_min(int min) [virtual]

It updates the domain according to min value.

Parameters

min	domain value.

Implements ConcreteDomain< int >.

6.10.2.11 bool CudaConcreteDomainList::is_singleton() const [virtual]

It checks whether the current domain contains only an element (i.e., it is a singleton).

Returns

true if the current domain is singleton, false otherwise.

Implements ConcreteDomain< int >.

6.10.2.12 void CudaConcreteDomainList::print() const [virtual]

It prints the current domain representation (its state).

Note

it prints the content of the object given by "get_representation ()" .

Implements ConcreteDomain< int >.

6.10.2.13 void CudaConcreteDomainList::shrink(int min, int max) [virtual]

It updates the domain to have values only within min/max.

Parameters

min	new lower bound to set for the current domain.
max	new upper bound to set for the current domain.

Implements ConcreteDomain< int >.

6.10.3 Member Data Documentation

6.10.3.1 int CudaConcreteDomainList::_domain_size [protected]

Current domain size, i.e., sum of the elements on each pair of bounds in the list.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda concrete list.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_concrete_list.cpp

6.11 CudaDomain Class Reference

Inheritance diagram for CudaDomain:

Public Member Functions

• DomainPtr clone () const

Clone the current domain and returns a pointer to it.

- void init domain (int min, int max)
- · size t get allocated bytes () const
- EventType get_event () const

Get event on the current domain.

- size_t get_size () const
- void set bounds (int min, int max)
- bool set_singleton (int)

Set domain as singleton.

• bool subtract (int n)

Subtract the element from the domain (see int_domain.h)

- void add element (int n)
- void in_min (int min)

Increase the lower_bound to min (see int_domain.h)

void in_max (int max)

Decrease the upper_bound to max (see int_domain.h)

• void print () const

Print info about domain.

• void print_domain () const

Print internal domain representation.

Protected Member Functions

• DomainPtr clone_impl () const

Clone method to clone the current object.

• EventType int_to_event () const

Convert the current event int to a domain event.

void event_to_int (EventType evt) const

Convert a domain event to the current integer.

• void set_bit_representation ()

Switch to bitmap representation of domain.

void set_bitlist_representation (int num_list=INT_BITLIST)

Switch to list representation of domain.

void set list representation (int num list=INT LIST)

Switch to list representation of domain.

CudaDomainRepresentation get_representation () const

Get domain representation (i.e., bitmap, bitmaplist, or list)

- void update_domain ()
- int update_bitmap (int min, int max, int offset_bitmap=BIT_IDX())
- void update_bitmap_list ()
- · void switch list to bitmaplist ()
- void prepare_bit_list (int min, int max, int idx)
- · void update_list ()
- void add element bitmap (int n)
- void add_element_list (int n)
- void add_element_bitmaplist (int n)

Static Protected Member Functions

- static constexpr int EVT_IDX ()
- static constexpr int REP_IDX ()
- static constexpr int LB_IDX ()
- static constexpr int UB_IDX ()
- static constexpr int DSZ_IDX ()
- static constexpr int BIT_IDX ()
- static constexpr int IDX CHUNK (int val)
- static constexpr int IDX_BIT (int val)
- static int num_chunks (int n)

Protected Attributes

- int * _domain
- · size_t _num_allocated_bytes
- size_t _num_int_chunks

Static Protected Attributes

- static constexpr int INT_NO_EVT = 0
- static constexpr int INT SINGLETON EVT = 1
- static constexpr int INT_BOUNDS_EVT = 2
- static constexpr int INT_CHANGE_EVT = 3
- static constexpr int INT FAIL EVT = 4
- static constexpr int INT_OTHER_EVT = 5
- static constexpr int INT_BITMAP = 0
- static constexpr int INT_BITLIST = -1
- static constexpr int INT_LIST = 1
- static constexpr int BITS IN BYTE = INT8 C(8)
- static constexpr int SHARED_MEM_KB = 47
- static constexpr size_t MAX_BYTES_SIZE = SHARED_MEM_KB * 1024
- static constexpr size t MAX STATUS SIZE = 5 * sizeof(int)
- static constexpr size_t MAX_DOMAIN_VALUES = ((MAX_BYTES_SIZE MAX_STATUS_SIZE) / sizeof(int))

Additional Inherited Members

6.11.1 Member Function Documentation

6.11.1.1 void CudaDomain::add_element(int *n* **)** [virtual]

Add an element val to the current domain (see int_domain.h).

Note

if the element is out of the current bounds, no element will be added, i.e., the domain mantains the current size.

Implements IntDomain.

6.11.1.2 void CudaDomain::add_element_bitmap(int *n***)** [protected]

Add element to a bitmap representation. It sets the corresponding bit to 1.

Parameters

n the value to add.

Note

it the value is out of the current bounds the function does not add the element.

it effectively increases the size of the domain by one.

6.11.1.3 void CudaDomain::add_element_bitmaplist(int n) [protected]

Add element to a list representation. If the element is within a bitmap -> switch the corresponding bit to 1 (if 0) and increase size. Otherwise, add {n, n} int (i.e., 00..01) to the list of bitmaps. The new bitmap is inserted in the right positon w.r.t. the elements on the right.

Parameters

n	the value to add.

Note

it the value is out of the current bounds the function does not add the element.

it effectively increases the size of the domain by one.

it moves all the elements greater than n to the right.

6.11.1.4 void CudaDomain::add_element_list(int n) [protected]

Add element to a list representation. It creates a new singleton $\{n, n\}$ in the right position.

Parameters

n the value to add.	
---------------------	--

Note

it the value is out of the current bounds the function does not add the element.

it effectively increases the size of the domain by one.

it moves all the elements greater than n to the right.

```
6.11.1.5 static constexpr int CudaDomain::EVT_IDX() [inline], [static], [protected]
```

Constants used to retrieve the current domain description. Domain represented as: | EVT | REP | LB | UB | DSZ || ... BIT ... |. See system_description.h.

```
6.11.1.6 size_t CudaDomain::get_allocated_bytes ( ) const
```

Get the number of allocated bytes needed for representing the current domain w.r.t. its lower and upper bounds.

Returns

the number of allocated bytes.

```
6.11.1.7 size_t CudaDomain::get_size( )const [virtual]
```

Get domain size. It returns the currenst size of the domain, checking whether there are "holes" according to the current representation of the domain (i.e., bitmap or list):

Returns

the current domain's size.

Implements IntDomain.

```
6.11.1.8 static constexpr int CudaDomain::IDX_BIT (int val) [inline], [static], [protected]
```

Get index of the last int used as bitmap to represent [min, max].

Parameters

max lowe	ver bound used to calculated the index of the bitmap
----------	--

Returns

number of int used as bitmaps to represent max

```
6.11.1.9 static constexpr int CudaDomain::IDX_CHUNK (int val) [inline], [static], [protected]
```

Get index of the chunk of bits containing the bit representing the value given in input.

Parameters

max	lower bound used to calculated the index of the bitmap

Returns

number of int used as bitmaps to represent max

```
6.11.1.10 void CudaDomain::init_domain(int min, int max) [virtual]
```

Initializes domain with default values:

- · Event: no event;
- Representation: list or bitmap according to [min, max];

- · Lower bound: min;
- · Upper bound: max;
- Size: |max min + 1| or MAX_INT if max = MAN_INT()/2 and min = MIN_INT() / 2, etc..

Note

It instantiate an array of ints of at most MAX_BYTES_SIZE.

Parameters

min	lower bound of the domain
max	upper bound of the domain

Returns

it fails whenever consistency check on min/max fails (i.e., max < min).

Implements IntDomain.

```
6.11.1.11 static int CudaDomain::num_chunks(int n) [inline], [static], [protected]
```

Return the number of 32-bit integers needed to represent a set of n domain's values.

Parameters

n	number of values to represent as bits
	l '

Returns

number of 32-bit integer chunks needed to represent n values.

6.11.1.12 void CudaDomain::prepare_bit_list(int min, int max, int idx) [protected]

It sets up a pair <LB, UB> and the corresponding bitmap representation (all bits set to one).

Parameters

min	lower bound to store in idx
max	upper bound to store in idx + 1
idx	index position in BIT where to store LB

6.11.1.13 void CudaDomain::set_bounds (int min, int max) [virtual]

It specializes the parent method in order to set up the array of (int) values. It istantiates a domain [min, max]. This actually updates the bounds and it performs consistency checking and updating of the domain size.

Parameters

min	lower bound
max	upper bound

Implements IntDomain.

6.11.1.14 void CudaDomain::switch_list_to_bitmaplist() [protected]

Take the current list representation and switch it to a bitmap list representation.

6.11.1.15 int CudaDomain::update_bitmap (int min, int max, int offset_bitmap = BIT_IDX ()) [protected]

Update domain's bounds according to min, max and considering a bitmap representation.

Parameters

min	lower bound
max	upper bound
offset_bitmap	offset in BIT field where the bitmap begins. Default: BIT_IDX (). An offset of n will give a
	position of BIT_IDX () + n.

Returns

the number of bits set to one from min to max

6.11.1.16 void CudaDomain::update_bitmap_list() [protected]

Update domain considering bitmap list representation.

Note

Bitmap list does not change its "structure" in the BIT field. Instead, it clears the bits and states whether there is an empty domain.

6.11.1.17 void CudaDomain::update_domain() [protected]

Updates the size of the domain and the domain itself. It checks whether the domain contains "holes", e.g., {1, 2, _, 6, 7, 8} -> size = 5; Moreover, it switches from list to bitmap representation if size < VECTOR_MAX and representation is not already bitmap.

Note

this method could switch between different domain representations.

6.11.1.18 void CudaDomain::update_list() [protected]

Update domain considering a list of bounds representation. It converts into a bitmap representation if after updating size < VECTOR_MAX.

6.11.2 Member Data Documentation

6.11.2.1 int* CudaDomain::_domain [protected]

Array of int used to represent the actual domain. Operations are performed on this representation. See, system_ description.h

6.11.2.2 size_t CudaDomain::_num_allocated_bytes [protected]

Total allocated bytes for representing the current domain.

6.11.2.3 size_t CudaDomain::_num_int_chunks [protected]

Total number of bitchunks.

Note

it does not consider the first part related to information about domain.

6.11.2.4 constexpr int CudaDomain::BITS_IN_BYTE = INT8_C(8) [static], [protected]

Macro to use for declaring the size of a byte in terms of bits.

6.11.2.5 constexpr size_t CudaDomain::MAX_BYTES_SIZE = SHARED_MEM_KB * 1024 [static], [protected]

Maximum domain size in terms of bytes.

Note

see CUDA specifications. Usually, (48 - 1) kB = 47 * 1024 = 48128 Byte.

6.11.2.6 constexpr size_t CudaDomain::MAX_DOMAIN_VALUES = ((MAX_BYTES_SIZE - MAX_STATUS_SIZE) / sizeof(int)) [static], [protected]

Maximum size in terms of storable values. Worst case: list of type $\{1, 1\}$, $\{3, 3\}$, $\{5, 5\}$, ... Number of integers = $((MAX_BYTES_SIZE - 5 * sizeof(int)) / sizeof(int))$

Note

see CUDA specifications.

6.11.2.7 constexpr size_t CudaDomain::MAX_STATUS_SIZE = 5 * sizeof(int) [static], [protected]

Number of Bytes needed for representing the current domain status.

6.11.2.8 constexpr int CudaDomain::SHARED_MEM_KB = 47 [static], [protected]

Shared memory available.

Note

keep 1 kB less than the actual memory available.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_domain.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_domain.cpp

6.12 CudaGenerator Class Reference

Inheritance diagram for CudaGenerator:

Public Member Functions

VariablePtr get_variable (TokenPtr)

See "model_generator.h".

ConstraintPtr get constraint (TokenPtr)

See "model_generator.h".

• SearchEnginePtr get_search_engine (TokenPtr)

See "model generator.h".

Protected Attributes

· std::string _dbg

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_model_generator.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_model_generator.cpp

6.13 CudaVariable Class Reference

Inheritance diagram for CudaVariable:

Public Member Functions

- CudaVariable ()
- CudaVariable (int idv)
- void set_domain ()
- void set_domain (int lw, int ub)
- void set_domain (std::vector< std::vector< int > > elems)
- · void print () const

print info about the current domain

Additional Inherited Members

6.13.1 Constructor & Destructor Documentation

6.13.1.1 CudaVariable::CudaVariable ()

Base constructor: create a variable with new id. The id is given by a global id generator.

6.13.1.2 CudaVariable::CudaVariable (int idv)

One parameter constructor: create a variable with a given id.

Parameters

idv	identifier to give to the variable

6.13.2 Member Function Documentation

6.13.2.1 void CudaVariable::set_domain()

Set domain's bounds. If no bounds are provided, an unbounded domain (int) is istantiated. If an array of elements A is provided, the function instantiates a domain $D = [\min A, \max A]$, deleting all the elements d in D s.t. d does not belong to A.

6.13.2.2 void CudaVariable::set_domain (int lw, int ub)

Set domain's bounds. A new domain [lw, ub] is generated.

Parameters

lw	lower bound
ub	upper bound

6.13.2.3 void CudaVariable::set_domain (std::vector< std::vector< int > > elems)

Set domain's elements. A domain {d_1, ..., d_n} is generated.

Parameters

elems	vector of vectors (subsets) of domain's elements

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_variable.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/cuda_variable.cpp

6.14 DataStore Class Reference

Inheritance diagram for DataStore:

Public Member Functions

- virtual bool load model (std::string="")=0
- virtual void init_model ()=0

Init model using the information read from files.

• virtual void print_model_info ()=0

Print info about the model.

virtual CPModel * get_model ()

Get the instantiated model.

- virtual void print_model_variable_info ()
- virtual void print_model_domain_info ()
- virtual void print_model_constraint_info ()

Protected Member Functions

DataStore (std::string in_file)

Protected Attributes

- · bool_timer
- · bool _verbose
- · std::string _dbg
- std::string _in_file = ""
- CPModel * _cp_model

CP Model.

6.14.1 Constructor & Destructor Documentation

6.14.1.1 DataStore::DataStore (std::string *in_file*) [protected]

Constructor.

Parameters

in_file | file path of the model to parse.

6.14.2 Member Function Documentation

```
6.14.2.1 virtual bool DataStore::load_model( std::string = " " ) [pure virtual]
```

Load model from input file (FlatZinc model).

Note

: the model described as a set of tokens is stored in the Tokenization class used by the parser. The parser has access to the set of tokens and it manages them in order to retrieve the correct set of tokens to initialize variables, and constraints. See Parser interface.

Implemented in CPStore.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/data_store.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/data_store.cpp

6.15 Domain Class Reference

Inheritance diagram for Domain:

Public Member Functions

- void set_type (DomainType dt)
- DomainType get type () const
- virtual DomainPtr clone () const =0

Clone the current domain and returns a pointer to it.

• virtual EventType get_event () const =0

Get the current event on the domain.

• virtual size_t get_size () const =0

Returns the size of the domain.

virtual bool is_empty () const =0

Returns true if the domain is empty.

• virtual bool is_singleton () const =0

Returns true if the domain has only one element.

• virtual void print () const =0

Print info about the current domain.

Static Public Member Functions

• static constexpr int MIN DOMAIN ()

Constants for int min/max domain bounds.

• static constexpr int MAX_DOMAIN ()

Constants for int min/max domain bounds.

Protected Attributes

- std::string _dbg
- DomainType _dom_type

6.15.1 Member Function Documentation

6.15.1.1 void Domain::set_type (DomainType dt)

Set domain's type (use get_type to get the type).

Parameters

dt	domain type of type DomainType

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/domain.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/domain.cpp

6.16 FactoryModelGenerator Class Reference

Static Public Member Functions

• static ModelGenerator * get_generator (GeneratorType gt)

Get the right instance of a generator based on the input.

The documentation for this class was generated from the following file:

• /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/factory_generator.h

6.17 FactoryParser Class Reference

Static Public Member Functions

static Parser * get_parser (ParserType pt)
 Get the right parser based on the input.

The documentation for this class was generated from the following file:

/Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/factory_parser.h

6.18 FZNParser Class Reference

Inheritance diagram for FZNParser:

Public Member Functions

- FZNParser (std::string ifile)
- bool more_variables () const

Ask whether there are more variables to get.

bool more_constraints () const

Ask whether there are more constraits to get.

bool more_search_engines () const

Ask whether there are more search engines to get.

- TokenPtr get_variable ()
- TokenPtr get constraint ()
- TokenPtr get_search_engine ()
- TokenPtr get_next_content ()

Get next (pointer to) token (i.e., FlatZinc element)

void print () const

Print info about the parser.

Additional Inherited Members

```
6.18.1 Member Function Documentation
6.18.1.1 TokenPtr FZNParser::get_constraint() [virtual]
Get a "constraint" token.
Returns
     token pointer to a "constraint" token.
Implements Parser.
6.18.1.2 TokenPtr FZNParser::get_next_content() [virtual]
Get next (pointer to) token (i.e., FlatZinc element)
Set position on file to the most recent position
Implements Parser.
6.18.1.3 TokenPtr FZNParser::get_search_engine() [virtual]
Get a "search engine" token.
Returns
     token pointer to a "search engine" token.
Implements Parser.
6.18.1.4 TokenPtr FZNParser::get_variable() [virtual]
Get a "variable" token.
```

Returns

token pointer to a "variable" token.

Implements Parser.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/fzn_parser.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/fzn_parser.cpp

FZNTokenization Class Reference 6.19

Inheritance diagram for FZNTokenization:

Public Member Functions

• TokenPtr get_token ()

Additional Inherited Members

6.19.1 Member Function Documentation

```
6.19.1.1 TokenPtr FZNTokenization::get_token() [virtual]
```

Specialized method: It actually gets the right token according to the FlatZinc format. Analysis is perfomed on " c token".

Implements Tokenization.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/fzn_tokenization.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/fzn_tokenization.cpp

6.20 IdGenerator Class Reference

Public Member Functions

```
· void reset int id ()
```

Reset id generator.

void reset_str_id ()

Reset id generator.

void set_base_offset (int)

Set (base) ids (if not already set)

void set_base_prefix (std::string)

Set (base) ids (if not already set)

- int get int id ()
- std::string get_str_id ()
- int new_int_id ()
- std::string new_str_id ()
- int curr_int_id ()
- std::string curr_str_id ()
- void print_int_id ()
- void print_str_id ()

Static Public Member Functions

```
    static IdGenerator * get_instance ()
    Constructor get (static) instance.
```

Protected Member Functions

- IdGenerator ()
- std::string n_to_str (int)

Convert numbers to string.

6.20.1 Constructor & Destructor Documentation

```
6.20.1.1 IdGenerator::IdGenerator() [protected]
```

Protected constructor: a client cannot instantiate Singleton directly.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/id generator.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/id_generator.cpp

6.21 InputData Class Reference

Public Member Functions

- · bool verbose () const
- · bool timer () const
- int max n sol () const
- std::string get_in_file () const

Get input file (path to)

· std::string get_out_file () const

Get output file (path to)

Static Public Member Functions

• static InputData * get_instance (int argc, char *argv[])

Constructor get (static) instance.

Protected Member Functions

• InputData (int argc, char *argv[])

6.21.1 Constructor & Destructor Documentation

```
6.21.1.1 InputData::InputData (int argc, char * argv[]) [protected]
```

Protected constructor: a client cannot instantiate Singleton directly. Exit if the user did not set an input file! The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/input_data.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/input_data.cc

6.22 IntDomain Class Reference

Inheritance diagram for IntDomain:

Public Member Functions

• bool is_singleton () const

Returns true if the domain has only one element.

• bool is_empty () const

Returns true if the domain is empty.

virtual int get_lower_bound () const

Get the domain's lower bound.

virtual int get_upper_bound () const

Get the domain's upper bound.

· virtual void print () const

Print base info about int domain.

- virtual void init_domain (int min, int max)=0
- virtual void set_bounds (int min, int max)=0
- virtual size_t get_size () const =0
- virtual EventType get_event () const =0

Get the current event on the domain.

- virtual bool set_singleton (int val)=0
- virtual bool subtract (int val)=0
- virtual void add_element (int val)=0
- virtual void in_min (int min)=0
- virtual void in_max (int max)=0

Protected Attributes

- int _lower_bound
- int _upper_bound

Additional Inherited Members

6.22.1 Member Function Documentation

6.22.1.1 virtual void IntDomain::add_element (int val) [pure virtual]

It computes the union of the current domain with the domain represented by the singleton element given in input to the method. If the element is out of [lower_bound, upper_bound] it enlarges the domain.

Parameters

val	element to add to the current domain.

Implemented in CudaDomain.

```
6.22.1.2 virtual size_t IntDomain::get_size() const [pure virtual]
```

Returns the size of the domain. This function should be implemented by derived classes according to their internal domain representation.

Note

upper_bound - lower_bound + 1 could not be the actual size of the domain.

Returns

the current domain's size.

Implements Domain.

Implemented in CudaDomain.

6.22.1.3 virtual void IntDomain::in_max (int *max* **)** [pure virtual]

It updates the domain according to the maximum value.

Parameters

max domain value.

Implemented in CudaDomain.

6.22.1.4 virtual void IntDomain::in_min (int *min*) [pure virtual]

It updates the domain according to the minimum value.

Parameters

min domain value.

Implemented in CudaDomain.

6.22.1.5 virtual void IntDomain::init_domain(int min, int max) [pure virtual]

Initialize domain: this function is used to set up the domain as soon it is created. Classes that derive IntDomain specilize this method according to their internal representation of domain.

Implemented in CudaDomain.

6.22.1.6 virtual void IntDomain::set_bounds (int min, int max) [pure virtual]

Set domain's bounds. It updates the domain to have values only within the interval min..max.

Note

it does not update _lower_bound and _upper_bound here for efficiency reasons.

Parameters

lower	lower bound value
upper	upper bound value

Implemented in CudaDomain.

6.22.1.7 virtual bool IntDomain::set_singleton (int *val*) [pure virtual]

Set domain to the singleton element given in input.

Parameters

val	the value to set as singleton

Returns

true if the domain has been set to singleton, false otherwise.

Implemented in CudaDomain.

6.22.1.8 virtual bool IntDomain::subtract (int *val* **)** [pure virtual]

It intersects with the domain which is a complement of the value given as input, i.e., subtract a value from the current domain.

Parameters

val	the value to subtract from the current domain
-----	---

Returns

true if succeed, false otherwise.

Implemented in CudaDomain.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/int_domain.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/int_domain.cpp

6.23 Logger Class Reference

Public Member Functions

- void set_out_file (std::string)
- void set_verbose (bool)
- void message (std::string)

Print message on stdout or file (print_message force printing)

- void print_message (std::string)
- void log (std::string)

Print log on stdout or file.

- void oflog (std::string)
- void error (std::string)

Print error message on cerr (optional: FILE and LINE)

- void error (std::string, const char *)
- void error (std::string, const char *, const int)

Static Public Member Functions

static Logger * get_instance (std::string log_file="")
 Constructor get (static) instance.

Protected Member Functions

• Logger (std::string="")

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/logger.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/logger.cpp

6.24 ModelGenerator Class Reference

Inheritance diagram for ModelGenerator:

Public Member Functions

- virtual VariablePtr get_variable (TokenPtr)=0
- virtual ConstraintPtr get constraint (TokenPtr)=0
- virtual SearchEnginePtr get_search_engine (TokenPtr)=0

6.24.1 Member Function Documentation

6.24.1.1 virtual ConstraintPtr ModelGenerator::get_constraint(TokenPtr) [pure virtual]

These methods create the instances of the objects and return the correspondent (shared) pointers to them.

Parameters

TokenPtr	pointer to the token describing a constraint. If the token does not correspond to the object to
	instantiate, it returns nullptr.

Implemented in CudaGenerator.

6.24.1.2 virtual SearchEnginePtr ModelGenerator::get_search_engine(TokenPtr) [pure virtual]

These methods create the instances of the objects and return the correspondent (shared) pointers to them.

Parameters

TokenPtr	pointer to the token describing a search engine. If the token does not correspond to the object
	to instantiate, it returns nullptr.

Implemented in CudaGenerator.

6.24.1.3 virtual VariablePtr ModelGenerator::get_variable (TokenPtr) [pure virtual]

These methods create the instances of the objects and return the correspondent (shared) pointers to them.

Parameters

TokenPtr	pointer to the token describing a variable. If the token does not correspond to the object to
	instantiate, it returns nullptr.

Implemented in CudaGenerator.

The documentation for this class was generated from the following file:

• /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/model_generator.h

6.25 Parser Class Reference

Inheritance diagram for Parser:

Public Member Functions

void set_input (std::string)

Set input.

void add_delimiter (std::string)

Add delimiter to tokenizer.

• int get_current_line ()

Get current (parsed) line.

• bool is_failed () const

Check whether the parser has failed.

- virtual bool more_tokens ()
- virtual void open ()
- virtual void close ()
- virtual std::string get_next_token ()
- virtual bool more_variables () const =0
- virtual bool more_constraints () const =0
- virtual bool more_search_engines () const =0
- virtual TokenPtr get_variable ()=0
- virtual TokenPtr get_constraint ()=0
- virtual TokenPtr get_search_engine ()=0
- virtual TokenPtr get_next_content ()=0
- virtual void print () const =0

Print info.

Protected Member Functions

• Parser ()

Constructor.

Parser (std::string)

Protected Attributes

Tokenization * tokenizer

Tokenizer: it tokenizes lines read from the input file.

• std::ifstream * _if_stream

Input stream (from file)

- std::string _input_path
- · std::string _dbg
- · bool open file
- bool _open_first_time
- · bool _more_tokens
- bool _new_line
- · bool _failure
- int _current_line

Number of lines read so far.

std::string delimiters

Delimiter to use to tokenize words.

std::streampos _curr_pos

Other variables needed to move into the file.

std::map< size_t, TokenPtr > _map_tokens

Pointers to all tokens parsed so far.

6.25.1 Member Function Documentation

```
6.25.1.1 void Parser::close() [virtual]
```

Close the file.

Note

: alternating open() and close() the client can decided how much text has to be parsed.

```
6.25.1.2 virtual TokenPtr Parser::get_next_content() [pure virtual]
```

Give next Token. A Token is built from a (string) token and represents a semantic object read from the FlatZinc model given in input. It holds other useful info related to the (string) token itself, e.g., line where the token has been found. If this function is call and no other Token is available it returns nullprt.

Implemented in FZNParser.

```
6.25.1.3 std::string Parser::get_next_token() [virtual]
```

Get next token. This function returns a string corresponding to the token parsed according to the internal state of the object (i.e., pointer in the text file).

```
6.25.1.4 virtual TokenPtr Parser::get_variable() [pure virtual]
```

Get methods: get variables, constraints, and the search engine. They increment the counter of available tokens. The tokens are returned in order w.r.t. their variables.

Implemented in FZNParser.

```
6.25.1.5 bool Parser::more_tokens( ) [virtual]
```

Check if the internal status has more tokens to give back to the client.

```
6.25.1.6 virtual bool Parser::more_variables ( ) const [pure virtual]
```

Get methods: more tokens of the same related type (i.e., variables, constraints, and search engine). These methods should be used together with the "get" methods.

Implemented in FZNParser.

```
6.25.1.7 void Parser::open() [virtual]
```

Open the file. The file is open (if not already open) and the pointer is placed on the last position read. If the file is open for the first time, the pointer is placed on the first position.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/parser.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/parser.cpp

6.26 SearchEngine Class Reference

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/search_engine.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/search_engine.cpp

6.27 SetDomain Class Reference

Inheritance diagram for SetDomain:

Public Member Functions

- virtual void set_values (std::vector< int > elems)
- virtual std::vector< int > get_values () const
- DomainPtr clone () const

Clone the current domain and returns a pointer to it.

EventType get_event () const

• size_t get_size () const

Returns the size of the domain.

bool is_empty () const

Returns true if the domain is empty.

• bool is_singleton () const

Returns true if the domain has only one element.

· void print () const

Print info about the domain.

Protected Member Functions

• DomainPtr clone_impl () const

Protected Attributes

std::vector< int > _d_elements

Additional Inherited Members

6.27.1 Member Function Documentation

```
6.27.1.1 EventType SetDomain::get_event() const [virtual]
```

Get event on this domain

Todo implement this function

Implements Domain.

```
6.27.1.2 std::vector < int > SetDomain::get_values ( ) const [virtual]
```

Get a vector containing the current values contained in the domain.

Returns

the current elements in the domain

```
6.27.1.3 void SetDomain::set_values ( std::vector < int > elems ) [virtual]
```

Set bounds and perform some consistency checking. It throws "no solutions" if consistency checking fails.

Parameters

```
elems vector of domain's elements
```

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/set_domain.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/set_domain.cpp

6.28 Solver Class Reference

Inheritance diagram for Solver:

Public Member Functions

• virtual void run ()=0

The documentation for this class was generated from the following file:

• /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/solver.h

6.29 Token Class Reference

Inheritance diagram for Token:

Public Member Functions

- Token (TokenType)
- int get_id () const
- void set_type (TokenType)
- TokenType get_type () const
- virtual void print () const

Print info about the token.

Protected Attributes

- · std::string _dbg
- TokenType _tkn_type

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token.cpp

6.30 TokenArr Class Reference

Inheritance diagram for TokenArr:

Public Member Functions

- void set_size_arr (int)
- int get_size_arr () const
- void set_array_bounds (int lw, int up)
- int get_lw_bound () const
- int get_up_bound () const
- int get_lower_var () const
- int get_upper_var () const
- bool is_var_in (int var) const
- bool is_var_in (std::string) const
- void set_output_arr ()

Identifies the current variable array as a support variable array.

- bool is_output_arr () const
- · void print () const

Print info methods.

Additional Inherited Members

6.30.1 Member Function Documentation

6.30.1.1 int TokenArr::get_lower_var () const

Variables (idx) within the array. The index is given w.r.t. the global index of parsed tokens so far.

Returns

the lower idx of variable within the array

6.30.1.2 int TokenArr::get_upper_var () const

Variables (idx) within the array. The index is given w.r.t. the global index of parsed tokens so far.

Returns

the higher idx of variable within the array

6.30.1.3 bool TokenArr::is_var_in (int var) const

Check whether a given variable (idx) is indexed by the array (i.e., is whithin the array.

Note

: check is performed w.r.t. both the variable string identifier (e.g., a[i]) and its global id.

Parameters

var	the variable to check membership

Returns

true if var is in the current array, false otherwise

6.30.1.4 void TokenArr::set_array_bounds (int lw, int up)

Array set and info. For example, array [1..30] of ... $get_w_bound -> 1 get_w_bound -> 30 lt sets the bounds of the array.$

Parameters

lw	lower bound
ир	upper bound

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_arr.h
- $\bullet \ / Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_arr.cpp$

6.31 TokenCon Class Reference

Inheritance diagram for TokenCon:

Public Member Functions

void set con id (std::string)

Get/set methods.

- std::string get_con_id () const
- void add expr (std::string str)
- int get_num_expr () const

Get the number of parameters needed by the constraint.

- std::string get_expr (int) const
- const std::vector< std::string > get_expr_array ()
- virtual void print () const

Print info methods.

Protected Attributes

std::string _con_id

Info about the constraint.

std::vector< std::string > _exprs

Parameters involved in the constraint.

6.31.1 Member Function Documentation

6.31.1.1 void TokenCon::add_expr (std::string str)

Add expression (parameters) to the token that identifies the parsed constraint. For example, constraint int_\(--\) ne(magic[1], magic[2]) expression = "magic[1]" and "magic[2]"

Parameters

str	string representing the expression.

6.31.1.2 std::string TokenCon::get_expr (int idx) const

Get the string represeting the ith expression that defines the constraint.

Parameters

idx	index of the expression to return

Returns

return the idx^th expression

6.31.1.3 const std::vector< std::string > TokenCon::get_expr_array ()

Return an array containing all the (string) expressions that define the current constraint.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_con.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_con.cpp

6.32 Tokenization Class Reference

Inheritance diagram for Tokenization:

Public Member Functions

- void add_delimiter (std::string)
- void set_delimiter (std::string)

- void add_white_spaces (std::string)
- void set_white_spaces (std::string)
- void set_new_tokenizer (std::string line)
- bool find new line ()

Informs whether a new line has been found.

• bool is_failed () const

Check whether the tokenizer has failed.

• bool need_line ()

Asks whether the tokenizer has finished all the tokens.

void add_comment_symb (char)

Set preferences.

- void add_comment_symb (std::string)
- virtual TokenPtr get_token ()=0

Get the string correspondent to the (filtered) token.

Protected Member Functions

· virtual bool avoid_char (char)

It states whether the current char has to be skipped or not.

• virtual bool skip line ()

It states whether_c_token or the a line have to be skipped or not.

- virtual bool skip_line (std::string)
- virtual bool set new line ()
- virtual void clear_line ()
- virtual TokenPtr analyze_token ()=0

Protected Attributes

- std::string _dbg
- std::string **DELIMITERS** = "\t\r\n"
- std::string WHITESPACE = " \t"
- std::string _comment_lines
- bool _new_line
- · bool _need_line
- bool _failed
- char * _c_token

Token returned by strtok.

char * _parsed_line

Parsed line.

6.32.1 Member Function Documentation

```
6.32.1.1 virtual TokenPtr Tokenization::analyze_token( ) [protected], [pure virtual]
```

Analyze token: this function acts like a filter. It analyzes _c_token and returns a string corresponding to the token cleaned from useless chars.

```
6.32.1.2 void Tokenization::clear_line() [protected], [virtual]
```

It "clears" the text line by removing possible initial white spaces from line. Different heuristics may be used here.

6.32.1.3 bool Tokenization::set_new_line() [protected], [virtual]

It states whether a new line has been found. Different heuristics may be used here.

6.32.1.4 void Tokenization::set_new_tokenizer (std::string line)

Prepare a new tokenizer (i.e., string for strtok).

Parameters

line the string to tokenize.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/tokenization.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/tokenization.cpp

6.33 TokenSol Class Reference

Inheritance diagram for TokenSol:

Public Member Functions

- void set_var_goal (std::string)
- void set solve goal (std::string)
- void set_solve_params (std::string)
- void set_label_choice (std::string)
- void set_search_choice (std::string)
- · void set_variable_choice (std::string)
- void set_assignment_choice (std::string)
- void set_strategy_choice (std::string)
- void set_var_to_label (std::string)

Set the (string) identifier of a variable to label.

- std::string get_var_goal () const
- std::string get_solve_goal () const
- std::string get search choice () const
- std::string get_label_choice () const
- std::string get_variable_choice () const
- std::string get_assignment_choice () const
- std::string get_strategy_choice () const
- int num_var_to_label () const
- const std::vector< std::string > get_var_to_label () const
- std::string get_var_to_label (int idx) const
- virtual void print () const

Print info methods.

Protected Attributes

- · std::string _var_goal
- std::string _solve_goal
- · std::string _search_choice
- std::string _label_choice
- std::string _variable_choice
- std::string _assignment_choice
- · std::string _strategy_choice
- std::vector< std::string > _var_to_label

6.33.1 Member Function Documentation

6.33.1.1 const vector < std::string > TokenSol::get_var_to_label () const

Identifiers of the variables to label.

Returns

a vector of string identifiers of the variable to label during the search phase.

6.33.1.2 string TokenSol::get_var_to_label (int idx) const

Get the string corresponding to the ith variable to label.

Parameters

idx	the index of the variable to label.

Returns

the string identifier of the idx^th variable to label.

6.33.1.3 int TokenSol::num_var_to_label () const

Number of variables to label if specified by the model.

Returns

the number of variables to label.

6.33.2 Member Data Documentation

6.33.2.1 std::vector < std::string > TokenSol::_var_to_label [protected]

Vector of strings corresponding to the variables to label during the search phase.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_sol.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_sol.cpp

6.34 TokenVar Class Reference

Inheritance diagram for TokenVar:

Public Member Functions

- void set_var_id (std::string str)
- std::string get_var_id () const
- void set_objective_var ()

Identifies the current variable as an objective variable.

- bool is_objective_var () const
- void set_support_var ()

Identifies the current variable as a support variable.

- bool is_support_var () const
- void set_var_dom_type (VarDomainType vdt)
- VarDomainType get_var_dom_type () const
- void set_boolean_domain ()

Specifies a boolean domain for the variable.

void set_float_domain ()

Specifies a float domain for the variable.

• void set_int_domain ()

Specifies an integer domain for the variable.

- void set_range_domain (std::string str)
- void set_range_domain (int lw, int ub)
- int get_lw_bound_domain () const
- int get_up_bound_domain () const
- void set_subset_domain (std::string str)
- void set_subset_domain ()
- void set_subset_domain (const std::vector< int > &elems)
- void set subset domain (const std::vector< std::vector< int > > &elems)
- void set_subset_domain (const std::pair< int, int > &range)
- const std::vector < std::vector < int > > get_subset_domain ()
- · virtual void print () const

Print info methods.

Protected Member Functions

- std::pair< int, int > get_range (std::string str) const
- std::vector< int > get_subset (std::string str) const

Protected Attributes

- std::string _var_id
- · bool _objective_var
- bool _support_var
- VarDomainType _var_dom_type
- int _lw_bound
- int _up_bound
- $std::vector < std::vector < int > > _subset_domain$

6.34.1 Member Function Documentation

```
6.34.1.1 pair< int, int > TokenVar::get_range ( std::string str ) const [protected]
```

Get a pair <x1, x2> from a string of type "*x1..x2*".

Parameters

str	string to parse

Returns

a pair representing the range expressed with str

6.34.1.2 vector< **int** > **TokenVar::get_subset** (**std::string** *str*) **const** [protected]

Get a vector of elements from a string of type "*{x1, x2, ...xk}*".

Parameters

str	string to parse
-----	-----------------

Returns

a pair representing the range expressed with str

6.34.1.3 const vector < vector < int > > TokenVar::get_subset_domain ()

Get the set of subsets of values for a var set type.

Returns

a vector of vectors of values representing the subsets of the var set type domain.

6.34.1.4 void TokenVar::set_range_domain (std::string str)

Specifies a range domain for the variable with a given a string of type "*x1..x2*".

6.34.1.5 void TokenVar::set_range_domain (int lw, int ub)

Specifies a range domain for the variable with a given lower and upper bound.

Parameters

lw	lower bound
ub	upper bound

6.34.1.6 void TokenVar::set_subset_domain (std::string str)

Call the right subset function, parsing the string given in input.

6.34.1.7 void TokenVar::set_subset_domain ()

Specifies a set of int domain.

Note

set of int:

6.34.1.8 void TokenVar::set_subset_domain (const std::vector< int > & elems)

Specifies a subsets of set domain for the variable with the given vector of elements.

Parameters

elems	vector of elements
-------	--------------------

Note

set of {x1, x2, ...xk}

6.34.1.9 void TokenVar::set_subset_domain (const std::vector < std::vector < int > > & elems)

Specifies a subsets of set domain for the variable with the given vector of elements.

Parameters

elem	

Note

6.34.1.10 void TokenVar::set_subset_domain (const std::pair < int, int > & range)

Specifies a set of ints in range domain for the variable with the given range.

Parameters

range	pair of int elements for range

Note

set of x1..x2

6.34.1.11 void TokenVar::set_var_dom_type (VarDomainType vdt)

Set the type of the current (token) variable.

Parameters

vdt the variable domain type of type VarDomainType.

6.34.1.12 void TokenVar::set_var_id (std::string str)

Set the (string) identifier of the variable represented as a token. The id is retrieved using the get_var_id() method.

Parameters

```
str the string identifier of the variable.
```

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token_var.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/token var.cpp

6.35 Variable Class Reference

Inheritance diagram for Variable:

Public Member Functions

- Variable (int)
- int get_id () const
- void set_str_id (std::string str)
- std::string get_str_id () const
- void set_type (VariableType vt)
- VariableType get_type () const
- virtual void set domain (DomainType dt)
- virtual void print () const =0

Print info about the variable.

Protected Attributes

- std::string _dbg
- int id
- · std::string _str_id
- VariableType _var_type
- DomainPtr _domain_ptr

6.35.1 Member Function Documentation

6.35.1.1 void Variable::set_domain (DomainType dt) [virtual]

Set domain according to the specific variable implementation.

Note

: different types of variable

Parameters

dt domain type of type DomainType to set to the current variable

6.35.1.2 void Variable::set_str_id (std::string str)

Set the (string) id of the variable.

Parameters

str the string to set as variable's identifier

6.35.2 Member Data Documentation

6.35.2.1 DomainPtr Variable::_domain_ptr [protected]

Pointer to the domain of the variable.

Note

: each variable is associated with a Finite Domain.

The documentation for this class was generated from the following files:

- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/variable.h
- /Users/fedecampe/Desktop/NVIDIOSO-PRJ/NVIDIOSO/NVIDIOSO/variable.cpp

Index

```
close
Parser, 49
Constraint, 14
Domain, 38
Logger, 46
open
Parser, 50
Parser, 48
close, 49
open, 50
Solver, 52
Token, 52
Tokenization, 55
Variable, 62
```