Theory of Linear Programming

- Convex Polyhedra
- Equational Form
- Basic Feasible Solutions

Linear programming

maximize
$$x_1+x_2$$
 for $x_1,x_2\in\mathbb{R}$ satisfying $x_1\geq 0$ $x_2\geq 0$ $-x_1+x_2\leq 1$ $x_1+6x_2\leq 15$ $4x_1-x_2\leq 10$

Linear programming is like linear algebra over $\mathbb{R}^n_{>0}$.

	Basic problem
Linear algebra	Linear equations: $Ax = b$
Linear programming	Linear equations: $Ax \leq b$

Linear programming is like linear algebra over $\mathbb{R}^n_{\geq 0}$.

	Basic problem	Algorithm	Solution set
Linear	Linear equations: $Ax = b$	Gaussian	Affine
algebra		elimination	subspace
Linear	Linear equations: $Ax \leq b$	Simplex	Convex
programming		method	polyhedra

Linear programming is like linear algebra over $\mathbb{R}^n_{>0}$.

	Basic problem	Algorithm	Solution set
Linear	Linear equations: $Ax = b$	Gaussian	Affine
algebra		elimination	subspace
Linear	Linear equations: $Ax \leq b$	Simplex	Convex
programming		method	polyhedra

Important differences:

- 1.) convex polyhedra can be very complex
- 2.) objective function: LP only needs to compute one (optimal) solution, not the whole solution set

maximize
$$x_1+x_2$$
 for $x_1,x_2\in\mathbb{R}$ satisfying $x_1\geq 0$ $x_2\geq 0$ $-x_1+x_2\leq 1$ $x_1+6x_2\leq 15$ $4x_1-x_2\leq 10$

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: A convex polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^n .

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: A convex polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^n .

Def.: The convex hull of $X \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing X.

• X

What is the convex hull of X?

•

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: A convex polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^n .

Def.: The convex hull of $X \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing X.

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: A convex polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^n .

Def.: The convex hull of $X \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing X.

Def. 1: A convex polytope is a bounded convex polyhedron.

Def. 2: A convex polytope is the convex hull of a finite set of points.

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: A convex polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^n .

Def.: The convex hull of $X \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing X.

Def. 1: A convex polytope is a bounded convex polyhedron.

Def. 2: A convex polytope is the convex hull of a finite set of points.

Minkowski-Weyl Theorem: Def 1. and Def 2. agree.

Def.: $X \subseteq \mathbb{R}^n$ is convex if for every two $x, y \in X$: X also contains the line segment xy.

Why is the solution space convex?

- halfspaces are convex
- intersection of convex sets is convex

Def.: A convex polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^n .

Def.: The convex hull of $X \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing X.

Def. 1: A convex polytope is a bounded convex polyhedron.

Def. 2: A convex polytope is the convex hull of a finite set of points.

Minkowski-Weyl Theorem: Def 1. and Def 2. agree.

How can we write the cube $[0,1]^n$ as intersection of halfspaces?

How many halfspaces?

How many vertices does it have?

	n=1	n=2	n=3	n=4	n
Cube					
vertices $(n-1)$ -faces	$egin{array}{c} 2 \ 2 \end{array}$	4	8	16 8	$\frac{2^n}{2n}$

n-dimensional cube: $\{x \in \mathbb{R}^d: \max\{|x_1|,|x_2|,\ldots,|x_n|\} \leq 1\}$

	n = 1	n=2	n=3	n=4	n
Cube					
vertices	2	4	8	16	2^n
(n-1)-faces	2	4	6	8	2n
Cross-polytope					

n-dimensional cross-polytope: $\{x \in \mathbb{R}^d: |x_1| + |x_2| + \ldots + |x_n| \leq 1\}$

	n=1	n=2	n=3	n=4	n
Cube					
vertices	2	4	8	16	2^n
(n-1)-faces	2	4	6	8	2n
Cross-polytope					
vertices	2	ig	6	8	2n
(n-1)-faces	2	4	8	16	2^n

n-dimensional cross-polytope: $\{x \in \mathbb{R}^d: |x_1| + |x_2| + \ldots + |x_n| \leq 1\}$

	n=1	n=2	n=3	n=4	n
Cube					
vertices	2	4	8	16	2^n
(n-1)-faces	2	4	6	8	2n
Cross-polytope					
vertices	2	$\dot{4}$	6	8	2n
(n-1)-faces	2	4	8	16	2^n

n-dimensional cross-polytope: $\{x \in \mathbb{R}^d: |x_1| + |x_2| + \ldots + |x_n| \leq 1\}$

The cube has exponentially many vertices compared to faces.

Difficult in general to go from faces to vertices.

The cross-polytope has exponentially many faces compared to vertices.

Difficult in general to go from vertices to faces.

Equational Form

Any linear program can be rewritten as

with $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Here n = #variables and m = #constraints.

Example:

minimize
$$3x_1 + 4x_2 \leftarrow$$
 subject to $2x_1 - x_2 \ge 2$ $x_1 + x_2 = 3$

becomes

maximize ???? subject to

Example:

minimize
$$3x_1 + 4x_2$$
 subject to $2x_1 - x_2 \ge 2 \leftarrow x_1 + x_2 = 3$

maximize
$$-3x_1 - 4x_2$$
 subject to ???

Example:

minimize
$$3x_1 + 4x_2$$
 subject to $2x_1 - x_2 \ge 2$
$$x_1 + x_2 = 3 \leftarrow$$

$$\begin{array}{ll} \text{maximize} & -3x_1 - 4x_2 \\ \text{subject to} & -2x_1 + x_2 \leq -2 \\ & ??? \end{array}$$

Example:

minimize
$$3x_1 + 4x_2$$
 subject to $2x_1 - x_2 \ge 2$ $x_1 + x_2 = 3$

maximize
$$-3x_1-4x_2$$
 subject to $-2x_1+x_2\leq -2$ $x_1+x_2\leq 3$ $-x_1-x_2\leq -3$

Example:

minimize
$$3x_1 + 4x_2$$
 subject to $2x_1 - x_2 \ge 2$ $x_1 + x_2 = 3$

maximize
$$-3x_1-4x_2$$
 subject to $-2x_1+x_2\leq -2$ $x_1+x_2\leq 3$ $-x_1-x_2\leq -3$

with
$$c=\begin{bmatrix} -3\\ -4 \end{bmatrix}$$
 , $x=\begin{bmatrix} x_1\\ x_2 \end{bmatrix}$, $A=\begin{bmatrix} -2&1\\1&1\\-1&-1 \end{bmatrix}$, $b=\begin{bmatrix} -2\\3\\-3 \end{bmatrix}$,

$$n = 2, m = 3.$$

The simplex method requires a different form, called standard or equational form:

Example: maximize $3x_1+4x_2$ subject to $2x_1-x_2 \leq 4$ $x_1+3x_2 \geq 5$ $x_2 \geq 0$

Example: maximize
$$3x_1+4x_2$$
 subject to $2x_1-x_2\leq 4$
$$x_1+3x_2\geq 5$$

$$x_2\geq 0$$
 (1) $2x_1-x_2\leq 4$ becomes $2x_1-x_2+x_3=4$ slack variable $x_3\geq 0$

Example: maximize $3x_1+4x_2$ subject to $2x_1-x_2\leq 4$ $x_1+3x_2\geq 5$ $x_2\geq 0$ (1) $2x_1-x_2\leq 4$ becomes $2x_1-x_2+x_3=4$ slack variable $x_3\geq 0$

(2) $x_1 + 3x_2 > 5$ becomes ????

$$x_1 + 3x_2 \ge 5$$

$$x_2 \ge 0$$

- (1) $2x_1 x_2 \le 4$ becomes $2x_1 x_2 + x_3 = 4$ slack variable $\longrightarrow x_3 > 0$
- (2) $x_1 + 3x_2 \ge 5$ becomes $-x_1 3x_2 \le -5$ and then $-x_1 3x_2 + x_4 = -5$ slack variable $\longrightarrow x_4 \ge 0$

Example maximize $3x_1+4x_2$ (updated): subject to $2x_1-x_2+x_3=4$ $-x_1-3x_2+x_4=-5$ $x_2,x_3,x_4\geq 0$

Example maximize $3x_1+4x_2$ (updated): subject to $2x_1-x_2+x_3=4$ $-x_1-3x_2+x_4=-5$ $x_2,x_3,x_4\geq 0$ missing: $x_1\geq 0$

How can we add it?

Example maximize $3x_1+4x_2$ (updated): subject to $2x_1-x_2+x_3=4$ $-x_1-3x_2+x_4=-5$ $x_2,x_3,x_4\geq 0 \quad \text{missing: } x_1\geq 0$ How can we add it?

(3) To handle the "missing" nonnegativity constraint, let $x_1 = x_1' - x_1''$ with $x_1' \ge 0, x_1'' \ge 0$.

Example maximize $3x_1+4x_2$ (updated): subject to $2x_1-x_2+x_3=4$ $-x_1-3x_2+x_4=-5$ $x_2,x_3,x_4>0$ missing: $x_1>0$

How can we add it?

(3) To handle the "missing" nonnegativity constraint, let $x_1 = x_1' - x_1''$ with $x_1' \ge 0, x_1'' \ge 0$.

Result: maximize $3x_1' - 3x_1'' + 4x_2$ subject to $2x_1' - 2x_1'' - x_2 + x_3 = 4$ $-x_1' + x_1'' - 3x_2 + x_4 = -5$ $x_1' \geq 0, x_1'' \geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0$

Example maximize $3x_1+4x_2$ (updated): subject to $2x_1-x_2+x_3=4$ $-x_1-3x_2+x_4=-5$ $x_2,x_3,x_4\geq 0 \quad \text{missing: } x_1\geq 0$ How can we add it?

- (3) To handle the "missing" nonnegativity constraint, let $x_1 = x_1' x_1''$ with $x_1' \ge 0, x_1'' \ge 0$.
- (4) Then relabel $x_1', x_1'', x_2, x_3, x_4$ as x_1, x_2, x_3, x_4, x_5

Result: maximize
$$3x_1-3x_2+4x_3$$
 subject to $2x_1-2x_2-x_3+x_4=4$
$$-x_1+x_2-3x_3+x_5=-5$$

$$x_1 \geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0, x_5 \geq 0$$

Equational Form of a Linear Program

Remark

This translation takes us from n variables and m constraints (\leq , \geq , or =) to:

- at most m+2n variables
- *m* equations
- all nonnegativity constraints

We consider only linear programs in equational form

such that

- Ax = b has at least one solution
- the rows of A are linearly independent

What if this does not hold?

We consider only linear programs in equational form

such that

- Ax = b has at least one solution
- ullet the rows of A are linearly independent

else it is easy to determine the program is infeasible

We consider only linear programs in equational form

such that

- Ax = b has at least one solution
- ullet the rows of A are linearly independent

else we can find and delete rows from A

else it is easy to determine the program is infeasible

We consider only linear programs in equational form

such that

- Ax = b has at least one solution
- the rows of A are linearly independent

else it is easy to determine the program is infeasible

else we can find and delete rows from ${\cal A}$

How can we determine whether the conditions hold?

We consider only linear programs in equational form

such that

- Ax = b has at least one solution
- ullet the rows of A are linearly independent

else it is easy to determine the program is infeasible

else we can find and delete rows from ${\cal A}$

How can we determine whether the conditions hold?

Gaussian elimination

Basic Feasible Solutions

Intuition:

As optimal solutions of an LP only corners are possible.

Intuition:

As optimal solutions of an LP only corners are possible.

Intuition:

As optimal solutions of an LP only corners are possible.

corner:

- affine space is (n-m)-dimensional
- cutting with n-m sides of positive octant gives a corner
- at least n-m coordinates 0
- ightarrow all coordinates 0 except for m many

```
m = # constraints, n = # variables
```


Intuition:

As optimal solutions of an LP only corners are possible.

corner:

- affine space is (n-m)-dimensional
- cutting with n-m sides of positive octant gives a corner
- at least n-m coordinates 0
- ightarrow all coordinates 0 except for m many

$$m$$
 = # constraints, n = # variables

basic feasible solutions formalize this.

Definition

A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1,2,...,n\}$ such that

- the square matrix ${\cal A}_B$ is nonsingular, i.e., the columns indexed by ${\cal B}$ are independent
- $x_j = 0$ for all $j \notin B$

Definition

A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1,2,...,n\}$ such that

- the square matrix A_B is nonsingular, i.e., the columns indexed by B are independent
- $x_j = 0$ for all $j \notin B$

Definition

A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1,2,...,n\}$ such that

- the square matrix ${\cal A}_B$ is nonsingular, i.e., the columns indexed by ${\cal B}$ are independent
- $x_j = 0$ for all $j \not\in B$

Example:

If
$$A = \begin{bmatrix} 1 & 5 & 3 & 4 & 6 \\ 0 & 1 & 3 & 5 & 6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 14 \\ 7 \end{bmatrix}$, then $x = [0, 2, 0, 1, 0]$

is a basic feasible solution with basis $B=\{2,4\}$

Example:

If
$$A=\begin{bmatrix}1&5&3&4&6\\0&1&3&5&6\end{bmatrix}$$
 and $b=\begin{bmatrix}10\\2\end{bmatrix}$, then $x=[0,2,0,0,0]$

is a basic feasible solution with four different choices for B:

$$B = \{1, 2\}, \{2, 3\}, \{2, 4\}, \text{ or } \{2, 5\}.$$

Example:

If
$$A=\begin{bmatrix}1&5&3&4&6\\0&1&3&5&6\end{bmatrix}$$
 and $b=\begin{bmatrix}10\\2\end{bmatrix}$, then $x=[0,2,0,0,0]$

is a basic feasible solution with four different choices for B:

$$B = \{1, 2\}, \{2, 3\}, \{2, 4\}, \text{ or } \{2, 5\}.$$

Moral: A basic feasible solution (bfs) x does not determine the basis B.

By contrast

Proposition 4.2.2

A basis B determines at most one bfs x.

By contrast

Proposition 4.2.2

A basis B determines at most one bfs x.

Why? In the above example, if we set $B = \{1, 4\}$, then the bfs x must satisfy $x = [x_1, 0, 0, x_4, 0]$.

$$\begin{bmatrix} 10 \\ 2 \end{bmatrix} = b = Ax = A_B \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 4x_4 \\ 5x_4 \end{bmatrix}$$

By contrast

Proposition 4.2.2

A basis B determines at most one bfs x.

Why? In the above example, if we set $B = \{1, 4\}$, then the bfs x must satisfy $x = [x_1, 0, 0, x_4, 0]$.

$$\begin{bmatrix} 10 \\ 2 \end{bmatrix} = b = Ax = A_B \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 4x_4 \\ 5x_4 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} x_1 \\ x_4 \end{vmatrix} = \begin{vmatrix} 42/5 \\ 2/5 \end{vmatrix}$$
, using the fact that A_B is invertible.

So
$$x = [42/5, 0, 0, 2/5, 0]$$
.

Example:

If
$$A=\begin{bmatrix}1&5&3&4&6\\0&1&3&5&6\end{bmatrix}$$
 and $b=\begin{bmatrix}10\\2\end{bmatrix}$, then does $B=\{3,4\}$ yield a bfs x ?

Example:

If
$$A=\begin{bmatrix}1&5&3&4&6\\0&1&3&5&6\end{bmatrix}$$
 and $b=\begin{bmatrix}10\\2\end{bmatrix}$, then does $B=\{3,4\}$ yield a bfs x ?

Answer: Consider $x = [0, 0, x_3, x_4, 0]$

$$\begin{bmatrix} 10 \\ 2 \end{bmatrix} = b = Ax = A_B \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_3 + 4x_4 \\ 3x_3 + 5x_4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42/3 \\ -8 \end{bmatrix}.$$

No, $B=\{3,4\}$ does not yield a bfs since the corresponding x=[0,0,42/3,-8,0] is not nonnegative, i.e., it is not feasible.

Example:

If
$$A=\begin{bmatrix}1&5&3&4&6\\0&1&3&5&6\end{bmatrix}$$
 and $b=\begin{bmatrix}10\\2\end{bmatrix}$, then does $B=\{3,4\}$ yield a bfs x ?

Answer: Consider $x = [0, 0, x_3, x_4, 0]$

$$\begin{bmatrix} 10 \\ 2 \end{bmatrix} = b = Ax = A_B \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_3 + 4x_4 \\ 3x_3 + 5x_4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42/3 \\ -8 \end{bmatrix}.$$

No, $B=\{3,4\}$ does not yield a bfs since the corresponding x=[0,0,42/3,-8,0] is not nonnegative, i.e., it is not feasible.

Example: Does $B = \{3, 5\}$ yield a bfs x?

Example:

If
$$A=\begin{bmatrix}1&5&3&4&6\\0&1&3&5&6\end{bmatrix}$$
 and $b=\begin{bmatrix}10\\2\end{bmatrix}$, then does $B=\{3,4\}$ yield a bfs x ?

Answer: Consider $x = [0, 0, x_3, x_4, 0]$

$$\begin{bmatrix} 10 \\ 2 \end{bmatrix} = b = Ax = A_B \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_3 + 4x_4 \\ 3x_3 + 5x_4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42/3 \\ -8 \end{bmatrix}.$$

No, $B=\{3,4\}$ does not yield a bfs since the corresponding x=[0,0,42/3,-8,0] is not nonnegative, i.e., it is not feasible.

Example: Does $B=\{3,5\}$ yield a bfs x?

Answer: No, B is not even a basis since $A_B=\begin{bmatrix}3&6\\3&6\end{bmatrix}$ is singular.

Optimal \rightarrow Basic feasible solution

Theorem 4.2.3

If an optimal solution exists to maximize $c^T x$ subject to $Ax = b, \ x \ge 0$ then there is also a bfs that is optimal.

Proof 1 Follows from the proof of correctness of the simplex method.

Proof 2 Follows since each vertex of the feasible region corresponds to a bfs.

Optimal \rightarrow Basic feasible solution

Theorem 4.2.3

If an optimal solution exists to maximize $c^T x$ subject to $Ax = b, \ x \ge 0$ then there is also a bfs that is optimal.

Proof 1 Follows from the proof of correctness of the simplex method.

Proof 2 Follows since each vertex of the feasible region corresponds to a bfs.

Impractical algorithm for solving linear programs

Consider all $\binom{n}{m}$ subsets $B\subseteq\{1,...,n\}$ of size m, see if B corresponds to a bfs x, take the max over all c^Tx .

Optimal solution vs Vertex of Convex Polyhedron

Definition A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1, 2, ..., n\}$ such that:

- the square matrix A_B is nonsingular
- $x_j = 0$ for all $j \not\in B$

Proposition 4.2.2 A basis B determines at most one bfs x.

Theorem 4.2.3 If an optimal solution exists, then an optimal bfs exists.

Optimal solution vs Vertex of Convex Polyhedron

Definition A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1, 2, ..., n\}$ such that:

- the square matrix A_B is nonsingular
- $x_j = 0$ for all $j \not\in B$

Proposition 4.2.2 A basis B determines at most one bfs x.

Theorem 4.2.3 If an optimal solution exists, then an optimal bfs exists.

Remark Nothing about bfs depends on c.

Optimal solution vs Vertex of Convex Polyhedron

Definition A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1,2,...,n\}$ such that:

- the square matrix A_B is nonsingular
- $x_j = 0$ for all $j \notin B$

Proposition 4.2.2 A basis B determines at most one bfs x.

Theorem 4.2.3 If an optimal solution exists, then an optimal bfs exists.

Remark Nothing about bfs depends on c.

Definition x is a vertex of a convex polyhedron $P \subseteq \mathbb{R}^n$ if there is some $c \in \mathbb{R}^n$ with $c^T x > c^T y$ for all $y \in P \setminus \{x\}$.

Basic feasible solution \leftrightarrow Vertex

Theorem 4.4.1

Given a linear program in equational form, x is a vertex of the feasible region if and only if x is a bfs.

Basic feasible solution \leftrightarrow Vertex

Theorem 4.4.1

Given a linear program in equational form, x is a vertex of the feasible region if and only if x is a bfs.

Proof:

 (\Rightarrow) Follows from Theorem 4.2.3, with c being the vector showing x is a vertex.

Basic feasible solution \leftrightarrow Vertex

Theorem 4.4.1

Given a linear program in equational form, x is a vertex of the feasible region if and only if x is a bfs.

Proof:

 (\Rightarrow) Follows from Theorem 4.2.3, with c being the vector showing x is a vertex.

 (\Leftarrow) Let x be a bfs with basis B.

Define
$$c \in \mathbb{R}^n$$
 by $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$

Note $c^Tx=\mathbf{0}$, and proposition 4.2.2 implies $c^Ty<\mathbf{0}$ for all feasible $y\neq x$.

Hence x is a vertex of the feasible region.

Summary

The set of feasible solutions of an LP is a convex polyhedron

Every LP can be written in equational form.

A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1,2,...,n\}$ such that:

- the square matrix A_B is nonsingular
- $x_j = 0$ for all $j \notin B$

For an LP in equational form, x is a vertex of the feasible region if and only if x is a basic feasible solution (bfs).

Summary

The set of feasible solutions of an LP is a convex polyhedron

Every LP can be written in equational form.

A feasible solution $x \in \mathbb{R}^n$ is basic if there is an m-element set $B \subseteq \{1,2,...,n\}$ such that:

- the square matrix A_B is nonsingular
- $x_j = 0$ for all $j \notin B$

For an LP in equational form, x is a vertex of the feasible region if and only if x is a basic feasible solution (bfs).

next:

simplex algorithm: finds an optimal bfs in a clever way.