```
# Import all modules needed.
In [ ]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        import plotly.express as px
        # load data set from csv file
In [ ]:
        df_shi = pd.read_csv('schizo_cleaned.csv')
        #print fist 5 rows of data
        df_shi.head(5)
Out[]:
                           age-
            Name gender
                                edu_lvl Q1 Q2 Q3 Q4 Q5 Q6 ... Q10 Q11 Q12 Q13 Q14 Q1
                          group
```

ltba 0 female 16-20 College 0 0 2 ... 2 2 1 2 1 1 Zahid Ayesha 2 female 16-20 College 0 0 1 0 0 0 0 Iftikhar Faiqa 2 female 16-20 College 1 0 0 1 0 0 ... 0 1 1 0 1 Niyamat Ishal 3 female 16-20 College 0 0 0 0 1 2 Fatima Aqsa 0 0 0 0 0 2 1 female 16-20 College 0 **Imran**

5 rows × 23 columns

```
In []: # Get some info. on the dataset
df_shi.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 601 entries, 0 to 600
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Name	601 non-null	object
1	gender	601 non-null	object
2	age-group	601 non-null	object
3	edu_lvl	601 non-null	object
4	Q1	601 non-null	int64
5	Q2	601 non-null	int64
6	Q3	601 non-null	int64
7	Q4	601 non-null	int64
8	Q5	601 non-null	int64
9	Q6	601 non-null	int64
10	Q7	601 non-null	int64
11	Q8	601 non-null	int64
12	Q9	601 non-null	int64
13	Q10	601 non-null	int64
14	Q11	601 non-null	int64
15	Q12	601 non-null	int64
16	Q13	601 non-null	int64
17	Q14	601 non-null	int64
18	Q15	601 non-null	int64
19	Q16	601 non-null	int64
20	Q17	601 non-null	int64
21	Q18	601 non-null	int64
22	Q19	601 non-null	int64
dtypes: int64(19) object(4)			

dtypes: int64(19), object(4)
memory usage: 108.1+ KB

In []: # Get some descrition of the data.
 df_shi.describe()

Out[]: Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q 601.000000 601.000000 601.000000 count 601.000000 601.000000 601.000000 601.000000 601.000000 0.648918 0.760399 mean 0.818636 0.843594 0.850250 0.738769 0.737105 0.78369 std 0.735892 0.697014 0.778136 0.79149 0.561592 0.759959 0.776731 0.777241 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 min 25% 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 50% 1.000000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 75% 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.00000 max

In []: # shape of the Dataset

Out[]: (601, 23)

n []: df_shi['gender'].value_counts()

df_shi.shape

```
male
                   303
Out[]:
        female
                   298
        Name: gender, dtype: int64
        df_shi['Q1'].value_counts()
             392
Out[]:
             159
        2
              50
        Name: Q1, dtype: int64
        df_shi['Q2'].value_counts()
In [ ]:
              305
Out[]:
              202
              94
        Name: Q2, dtype: int64
In [ ]: a= df_shi['Q3'].value_counts()
         print(a)
        1
              275
        0
              235
              91
        2
        Name: Q3, dtype: int64
        df_shi['Q3'].value_counts()
             275
        1
Out[]:
              235
        2
              91
        Name: Q3, dtype: int64
        plt.figure(figsize=(5,5))
In [ ]:
         figure 1 = df shi["gender"].value counts(ascending = True).plot.barh(color=["salmon",
         plt.title("Male/Female Frequencies")
         plt.ylabel("Sex")
         plt.xlabel("Candidates")
         plt.show()
```

Male/Female Frequencies


```
In []: # Death event per each sex
figure_3 = plt.bar(df_shi["Q1"].value_counts().index, df_shi["Q1"].value_counts(), col
# plt.title("Death Number per Gender")
plt.xlabel("Q1")
plt.ylabel("Count")
plt.show()
```



```
In [ ]: # Death event per each sex
figure_3 = plt.bar(df_shi["Q2"].value_counts().index, df_shi["Q2"].value_counts(), col
# plt.title("Death Number per Gender")
plt.xlabel("Q2")
plt.ylabel("Count")
plt.show()
```


Out[]: <seaborn.axisgrid.FacetGrid at 0x207944b2440>

In []: sns.catplot(x="gender", y="Q1", hue="edu_lvl", kind="point", data=df_shi)

Out[]: <seaborn.axisgrid.FacetGrid at 0x20796e96c80>

In []: sns.catplot(data=df_shi, orient="h", kind="box")

Out[]: <seaborn.axisgrid.FacetGrid at 0x2079810f850>


```
In [ ]: sns.violinplot(x=df_shi.gender, y=df_shi.Q1)
```

Out[]: <AxesSubplot:xlabel='gender', ylabel='Q1'>


```
In [ ]: plt.subplots(figsize=(7, 7))
sns.countplot(x="Q19", data=df_shi, color="c")
```

Out[]: <AxesSubplot:xlabel='Q19', ylabel='count'>

c:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\seab
orn\categorical.py:1296: UserWarning: 72.8% of the points cannot be placed; you may w
ant to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

c:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\seab
orn\categorical.py:1296: UserWarning: 72.6% of the points cannot be placed; you may w
ant to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[]: <seaborn.axisgrid.FacetGrid at 0x2079efdf550>


```
In [ ]: sns.catplot(x="age-group", kind="count", palette="ch:.25", data=df_shi)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x2079f01d2d0>


```
In [ ]: sns.barplot(x='age-group',y='Q2',data=df_shi)
```

Out[]: <AxesSubplot:xlabel='age-group', ylabel='Q2'>


```
In [ ]: sns.violinplot(x='age-group', y='Q1',data=df_shi)
```

Out[]: <AxesSubplot:xlabel='age-group', ylabel='Q1'>


```
In [ ]: sns.stripplot(x='age-group',y='Q1',data=df_shi)
```

Out[]: <AxesSubplot:xlabel='age-group', ylabel='Q1'>

