

Fakultät Elektrotechnik und Informationstechnik, Institut für Regelungs- und Steuerungstheorie

Erste Verteidigung Hauptseminar AMR WS19/20

Konstantin Wrede

Modul: Control

Gruppe: HSAMR1

Dresden, den 03.12.2019

Inhalte

Erste Verteidigung

- 1 Stand Vorpräsentation
- 2 Drehzahlregelung
- **3 Geregelte Geradeausfahrt**

1 Stand Vorpräsentation

Entwurf digitaler PID-Regler, PWM-RPM Zusammenhang

- Entfruf eines digitale PID-Reglers
 - → Einsatz als PD-Regler bei der Linienverfolgung
 - → Verzicht auf I-Term, da keine stationäre Reglerabweichung und komplexere Einstellung

- Kalibrierung der Motoren mit Regression über PWM-RPM-Samples
 - → später Implementierung als Vorsteuerung der Drehzahlregelung

2 Drehzahlregelung Vergleich Steuerung / Regelung

- reine Steuerung aus PWM-RPM-Zusammenhang
 - → relativ ungenaue Geradeausfahrt
- v/ω-Regelung aus Rückkopplung gemessenen Drehzahl in PID-Regler
 - → langsam bei Anfahrt/Bremsen
 - → PWM-RPM-Zusammenhang auch als Vorsteuerung
 - → genauere Geradeausfahrt
- Querregelung mit unterlagerter Drehzahlregelung
 - → noch genauere Geradeausfahrt

Geradeausfahrt	v/ω-Steuerung	v/ω-Regelung	Querregelung
Querabweichung auf 100 cm	>>10 cm	7 cm	2 cm

Linearisierte Querregelung

— Arbeitpunktwahl:

$$\omega = 0, v = v_0 \ (Koordinaten \ x_0 = y_0 = \varphi_0 = 0)$$

— Linearisiertes Modell der Geradeausfahrt:

$$\begin{bmatrix} \sin(\varphi) \cdot v(t) \\ \cos(\varphi) \cdot v(t) \\ \omega(t) \end{bmatrix} = \tilde{f}(\begin{bmatrix} x \\ y \\ \varphi \end{bmatrix}, [v, \omega]) = \begin{bmatrix} v \cdot \varphi(t) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ v(t) - v_0 \\ \omega(t) \end{bmatrix}$$

— Linearisierte Querabweichung:

$$e = x - x_{\text{soll}} \Rightarrow \dot{e} = \dot{x} = \sin \varphi \cdot v \approx \varphi \cdot v \text{ mit } \varphi << 1$$

 $\Rightarrow \ddot{e} = \omega \cdot v + \varphi \cdot \dot{v} \approx \omega \cdot v_0 \text{ mit } v = v_0$

WOK-Betrachtung verschiedener Regelungen

Stellgroesse: ω

und $\ddot{e} = v_0 \cdot \omega$

Regelgroesse: e

$$\Rightarrow$$
 Strecke $P(s) = \frac{E(s)}{\Omega(s)} = \frac{v_0}{s^2}$

WOK-Betrachtung verschiedener Regelungen

Quelle: https://upload.wikimedia.org/wikipedia/commons/b/b3/Einfacher Regelkreis n.svg

Stellgroesse: ω

und $\ddot{e} = v_0 \cdot \omega$

Regelgroesse: e

$$\Rightarrow$$
 Strecke $P(s) = \frac{E(s)}{\Omega(s)} = \frac{v_0}{s^2}$

=> instabil!

P-Regler:

WOK-Betrachtung verschiedener Regelungen

Stellgroesse: ω

und $\ddot{e} = v_0 \cdot \omega$

Regelgroesse: e

$$\Rightarrow$$
 Strecke $P(s) = \frac{E(s)}{\Omega(s)} = \frac{v_0}{s^2}$

=> instabil!

WOK-Betrachtung verschiedener Regelungen

Stellgroesse: ω

und $\ddot{e} = v_0 \cdot \omega$

Regelgroesse: e

$$\Rightarrow$$
 Strecke $P(s) = \frac{E(s)}{\Omega(s)} = \frac{v_0}{s^2}$

=> stabil!

WOK-Betrachtung verschiedener Regelungen

PID @ Ki=0.5, Kd=1.0

Stellgroesse: ω

und $\ddot{e} = v_0 \cdot \omega$

Regelgroesse: e

$$\Rightarrow$$
 Strecke $P(s) = \frac{E(s)}{\Omega(s)} = \frac{v_0}{s^2}$

=> instabil!

WOK-Betrachtung verschiedener Regelungen

Stellgroesse: ω

und $\ddot{e} = v_0 \cdot \omega$

Regelgroesse: e

$$\Rightarrow$$
 Strecke $P(s) = \frac{E(s)}{\Omega(s)} = \frac{v_0}{s^2}$

=> stabil!

