

TEAM MEMBERS

- KARTHIKEYA DEVARAJ
- P NAITHIK
- BINIT BALAK SEN
- SOHAM ROY

Basic idea behind our project

• Our Project is based on Post-Quantum
Cryptography (PQC). As it is quite an impossible task to penetrate the security of Lattice-Based
Cryptography, we want to integrate this Quantum
Cryptographic System in our platform that will serve as a tamper-proof password/biometric/document vault ensuring security from any advisaries. We aim to facilitate this idea in platforms such as an application.

Why use Post Quantum Cryptography?

- Traditional cryptographic algorithms like RSA and ECC are vulnerable to Shor's algorithm, which a sufficiently powerful quantum computer could use to break them in polynomial time. The goal of integrating PQC into a password manager is to ensure:
- Password encryption remains secure even against quantum attacks.
- Secure **key exchange** between devices without exposure to quantum threats.
- Strong authentication methods that are resistant to forgery by quantum adversarie

How does Encryption and Decryption works Internally?

Encryption with Kyber

Decryption with Dilithium

LATTICE-BASED CRYP OGRAPHY WITH PRIVATE & PUBLIC KEYS PRIVATE VECCC VECTOR PUBLIC KEY PRIVATE KEY SHORT KE SHORT BY NOISE S. KELT & VECTOR OFFET BY NOISE NOISE NOISE PUBLIC KEY PRIVATE KEY

Comparison between PQC and traditional security

Feature	Traditional Security (RSA/ECC + AES)	Post-Quantum Security (Kyber + Dilithium + AES)
Key Exchange Algorithm	RSA-3072 or ECDH-256 (Elliptic Curve Diffie-Hellman)	Kyber-768 or Kyber-1024 (Lattice-based KEM)
Key Generation Time	RSA-3072: ~ 5ms	Kyber-768: ~ 2.5ms (faster)
Public Key Size	RSA-3072: 384 bytes / ECDH- 256: 64 bytes	Kyber-768: 1 KB (larger but quantum-safe)
Private Key Size	RSA-3072: 2.5 KB / ECDH-256: 32 bytes	Kyber-768: 2.4 KB
Signature Size	RSA-3072: 384 bytes	Dilithium-III: 2.8 KB (larger, but quantum-resistant)
Resistance to Quantum Attacks	Not secure (RSA, ECC broken by quantum computers)	Quantum-safe (hard lattice problems)
Long-Term Security	Compromised when large quantum computers exist	Secure for the foreseeable future