TRABAJO PRACTICO

SISTEMAS RAID

Alumno: Marco Antonio Cornelio Arrieta

Materia: Sistema de Procesamiento de Datos

Turno: Noche

2023

SISTEMAS RAID

VENTAJAS:

Suma las capacidades de los discos conectados creando así un solo volumen

Incrementa la velocidad de acceso rompiendo los datos en varios bloques en sus lecturas/escrituras en varios discos en paralelos.

Cuando se utiliza un RAID, la velocidad de almacenamiento incrementa cuantos más discos se añadan.

CONCEPTO:

Es un acrónimo del inglés que significa Redundant Array of Independent Disks, literalmente Matriz de discos independientes redundantes.

RAID

FUNCIONAMIENTO:

emplazando los datos en varios discos duros, y permitiendo que las operaciones de entrada y salida (I/O) funcionen de manera balanceada, mejorando el rendimiento.

FINALIDAD:

Es la de proteger los datos en caso de que un disco duro falle, o en algunos casos tiene como función principal mejorar la velocidad de lectura de varios discos que conforman un único volumen .

Cuando se debe usar Raid 5

RAID 5 se usa a menudo para servidores de archivos y aplicaciones debido a su alta eficiencia y almacenamiento optimizado. Además, es la mejor solución rentable si el acceso continuo a los datos es una prioridad y/o necesita instalar un sistema operativo en el arreglo.

RAID 5

(Rayado con paridad)

RAID 5 se considera la implementación de RAID más segura y común. Combina striping y paridad para proporcionar una configuración rápida y confiable. Tal configuración brinda al usuario la capacidad de uso del almacenamiento como con RAID 1 y la eficiencia de rendimiento de RAID 0.

Desventajas RAID 5

- Mayor tiempo de reconstrucción.
- Utiliza la mitad de la capacidad de almacenamiento (debido a la paridad).
- Si falla más de un disco, se pierden los datos.
 Más complejo de implementar.

Ventajas de RAID 5

- Alto rendimiento y capacidad.
- Velocidad de lectura rápida y confiable.
- Tolera la falla de una sola unidad.

Este nivel de RAID consta de al menos tres discos duros (máximo, 16). Los datos se dividen en tiras de datos y se distribuyen en diferentes discos de la matriz. Esto permite altas tasas de rendimiento debido a las transacciones de datos de lectura rápida que pueden realizarse simultáneamente por diferentes unidades en la matriz..

Cuando se debe usar:

Raid 6 es una buena solución para aplicaciones de misión crítica donde no se puede tolerar la pérdida de datos. Por lo tanto, a menudo se usa para la gestión de datos en los sectores de defensa, salud y banca.

RAID 6

(creación de bandas con doble paridad)

RAID 6 es una matriz similar a RAID 5 con la adición de su función de doble paridad. Por esta razón, también se le conoce como RAID de doble paridad.

Desventajas RAID 6

- El tiempo de reconstrucción puede tardar hasta 24 horas.
- Rendimiento de escritura lento.
- Complejo de implementar.
 Más caro.

Ventajas de RAID 6

- Alta tolerancia a fallos y fallos del variador.
- Eficiencia de almacenamiento (cuando se utilizan más de cuatro unidades).
- Operaciones de lectura rápida.

Esta configuración requiere un mínimo de cuatro unidades. La configuración se parece a RAID 5 pero incluye dos bloques de paridad adicionales distribuidos en el disco. Por lo tanto, utiliza fraccionamiento a nivel de bloque para distribuir los datos a través de la matriz y almacena dos bloques de paridad para cada bloque de datos.

CONCLUSION PERSONAL

En resumen, RAID es una tecnología que permite combinar varios discos duros en un solo volumen lógico para mejorar el rendimiento y/o la redundancia de los datos almacenados. Existen varios niveles de RAID, desde el 0 hasta el 10. El nivel 0 es el más simple y no ofrece redundancia de datos, sino distribución de datos. El nivel 1 es el más básico y ofrece redundancia de datos mediante la duplicación de los datos en dos discos duros. El nivel 5 ofrece una mayor redundancia de datos mediante la distribución de los datos y la paridad en varios discos duros. El nivel 10 combina las propiedades del nivel 0 y del nivel 1 para ofrecer una mayor velocidad de transmisión de datos y una elevada seguridad de datos.

BIBLIOGRAFIA

- CONSTANZO, Bruno, WAIMANN, Julián. "El Estado Actual de las Técnicas de File Carving y la Necesidad de Nuevas Tecnologías que Implementen Carving Inteligente". (2012). 1er. Congreso Argentino de Ingeniería.
- DI IORIO, Ana H., CASTELLOTE, Martín A., PODESTÁ, Ariel, GRECO, Fernando, CONSTANZO, Bruno, WAIMANN, Julian. "El framework CIRA, un aporte a las técnicas de file carving". (2013). Revista Argentina de Ingeniería.
- TANENBAUM, Andrew S. "Sistemas Operativos Modernos", Capítulo 4, Prentice Hall Hispanoamericana, 1993.
- TANENBAUM, Andrew S. "Structured Computer Organization", páginas 89 a 93, 5ta edición, Pearson Prentice Hall, 2006.
- Charlie Russel y Sharon Crawford, 'Guia completa de Windows NT Server 4.0", Traducido de la primera edición en Inglés de 'Running Windows NT Server 4.0", McGraw-Hill / Interamericana de España, S.A.U. 1997
- EMC Corporation, "Symmetrix Model 52XX Product Manual", Junio 1997 EMC Corporation, "Symmetrix Model 54XX / 34XX Maintenance Manual", Primera edición, Agosto 1997