Blach Third Semester (Computer Science & Engineering) (CB,CS+Winter 2022)

Operat	tine	System
Operat	gmu	System

-	-2 -		-	-	
	1,773		-		
\sim	was a pro-	25		Hal	

	lages e Thra	i se Houn				SPM/KW/ Max M	22/2531 larks 70
	1025	~ H ~ 4 % 0 L % 9	All questions carry solve Question 1 C Solve Question 5 C Solve Question 7 C Solve Question 9 C Due credit will be Assume suitable di Hiustrate vour ansv	OR Questions No OR Questions No OR Questions No OR Questions No OR Questions No given to neatness its whenever nec	2 4 6 8 10 and adequate d	intensions : help of neat sketches	
١.	à!	Explair	the types of operati	ng system '			7
	5.1	What is	system call. Discu	ss various types o	of system calls		7
				o	R		
2.	21	Explair	tollowing Disk Spa	ce allocation met	hods		6
	Đi	serving of pend head pe request	a request at cylinde ing request in FIFO	r 50, and the pre order is 82, 170, s stal distance that Igorithm	vious request w i3, 140, 24, 16, i the disk arm mo	o 199. The drive is current as at cylinder 10. The que 190. Starting from the curre wes to satisfy all the pendi 7-LOOK.	ue :nt
š.	21	Explain	the concept of proc	ess control block	with neat diagr	ram	6
	b)	Consid	Process 1 2 3 4 5	Arrival Time 0 2 5 6 7	Burst Time 15 3 5 8 12	Priority 2 1 5 4 3	nd 8
		i) F0	anti chart and calcul. FS ound Robin (Slice =	11) 4 ms) iv)	SJF Priority sche	duling algorithm	
				o	R		
٤.	a)	Explair	the long-term, shor	t-term and mediu	m term schedul	ers.	7

b) Draw the state transition diagram of process and explain each state in detail

5.	31	Explain segmentation as a non configuous memory allocation scheme			
	61	Explain paging. How it is implemented. What hardware is required "	-		
		OR			
6.	a)	Calculate how many page faults will occur for the following algorithms applied on given reference string with three page frames 1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9 D. FIFO in Optimal in LRU page replacement	7		
	b)	What is memory fragmentation? Explain internal and external fragmentation	7		
7.	2)	Explain any two classical problem of synchronizations	7		
	ы	What is the critical section problem. Explain the three conditions that a solution to a critical section problem must satisfy	-		
		OR			
8.	a)	Define the following any two.	7		
		n Race condition ii) Mutual Exclusion			
		iii) Semaphore iv) Busy waiting			
	b)	What is mutual exclusion ? How the semaphore used to solve the critical section problem	7		
9.	Discuss the various file Access methods				
		OR			
10.		Solve the following using Banker's Algorithm and find out whether resultant system state is safe or not	14		
		Allocation Max Available			

0 0 0

0 0 0 0

- i) Find out if system state is safe, if safe find out safe sequence
 ii) If P1 makes a request = P1 (1, 0, 2) is the resulting state safe?
- iii) If P4 makes a request P4 (3, 3, 0), can it be granted 9 Solve.

SPM/KW/22/2531 PTO SPM/KW/22/2531