10.10029781118342978.app2, Downloaded from https://onlinelibrary.wiely.com/doi/10.10029781118342978.app2, Wiley Online Library on [18/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiely.com/emrs-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensen

TABLE B.7: CRITICAL VALUES FOR PEARSON'S CORRELATION COEFFICIENT

Using Table B.7

For any given df, this table shows the values of r corresponding to various levels of probability. The $r_{\rm observed}$ is statistically significant at a given level when it is equal to or greater than the value shown in the table.

Examples:

Nondirectional Hypothesis		
$H_0: \rho = 0$	$H_1: \rho \neq 0$ $\alpha = 0.0$	05, df = 30
$r_{\text{critical}} = \pm 0.3494$	If $ r_{\text{observed}} \ge r_{\text{critical}} $ then r	reject H_0
Directional Hypothesis		
$H_0: \rho \leq 0$	H_1 : $\rho > 0$ $\alpha = 0.0$	05, df = 30
$r_{\text{critical}} = +0.2960$	If $r_{\text{observed}} \ge r_{\text{critical}}$ then rejectively.	$\operatorname{ct} H_0$
$H_0: \rho \geq 0$	$H_1: \rho < 0$ $\alpha = 0.0$	05, df = 30
$r_{\text{critical}} = -0.2960$	If $r_{\text{observed}} \leq r_{\text{critical}}$ then rejective	$\operatorname{ct} H_0$

Note that the relation between the correlation coefficient and the t-ratio is

$$r_{\rm c} = \frac{t_{\rm c}}{\sqrt{(n-2) + t_{\rm c}^2}}$$

TABLE B.7. Critical Values for Pearson's Correlation Coefficient

	Level of	Significance	of a	One-Tailed	or Directiona	1 Test
--	----------	--------------	------	------------	---------------	--------

 $\begin{array}{ccc} H_0\colon \rho \leq 0 \text{ or } H_0\colon \rho \geq 0 \\ \alpha = 0.1 & \alpha = 0.05 & \alpha = 0.025 & \alpha = 0.01 & \alpha = 0.005 & \alpha = 0.0005 \end{array}$

Level of Significance of a Two-Tailed or Nondirectional Test

	Level of Significance of a Two-Tailed or Nondirectional Test								
	$H_0: \rho = 0$								
df	$\alpha = 0.2$	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.02$	$\alpha = 0.01$	$\alpha = 0.001$			
1	0.9511	0.9877	0.9969	0.9995	0.9999	0.9999			
2	0.8000	0.9000	0.9500	0.9800	0.9900	0.9990			
3	0.6870	0.8054	0.8783	0.9343	0.9587	0.9911			
4	0.6084	0.7293	0.8114	0.8822	0.9172	0.9741			
5	0.5509	0.6694	0.7545	0.8329	0.8745	0.9509			
6	0.5067	0.6215	0.7067	0.7887	0.8343	0.9249			
7	0.4716	0.5822	0.6664	0.7498	0.7977	0.8983			
8	0.4428	0.5494	0.6319	0.7155	0.7646	0.8721			
9	0.4187	0.5214	0.6021	0.6851	0.7348	0.8470			
10	0.3981	0.4973	0.5760	0.6581	0.7079	0.8233			
11	0.3802	0.4762	0.5529	0.6339	0.6835	0.8010			
12	0.3646	0.4575	0.5324	0.6120	0.6614	0.7800			
13	0.3507	0.4409	0.5140	0.5923	0.6411	0.7604			
14	0.3383	0.4259	0.4973	0.5742	0.6226	0.7419			
15	0.3271	0.4124	0.4821	0.5577	0.6055	0.7247			
16	0.3170	0.4000	0.4683	0.5425	0.5897	0.7084			
17	0.3077	0.3887	0.4555	0.5285	0.5751	0.6932			
18	0.2992	0.3783	0.4438	0.5155	0.5614	0.6788			
19	0.2914	0.3687	0.4329	0.5034	0.5487	0.6652			
20	0.2841	0.3598	0.4227	0.4921	0.5368	0.6524			
21	0.2774	0.3515	0.4132	0.4815	0.5256	0.6402			
22	0.2711	0.3438	0.4044	0.4716	0.5151	0.6287			
23	0.2653	0.3365	0.3961	0.4622	0.5052	0.6178			
24	0.2598	0.3297	0.3882	0.4534	0.4958	0.6074			
25	0.2546	0.3233	0.3809	0.4451	0.4869	0.5974			
30	0.2327	0.2960	0.3494	0.4093	0.4487	0.5541			
35	0.2156	0.2746	0.3246	0.3810	0.4182	0.5189			
40	0.2018	0.2573	0.3044	0.3578	0.3932	0.4896			
50	0.1806	0.2306	0.2732	0.3218	0.3542	0.4432			
60	0.1650	0.2108	0.2500	0.2948	0.3248	0.4079			
70	0.1528	0.1954	0.2319	0.2737	0.3017	0.3798			
80	0.1430	0.1829	0.2172	0.2565	0.2830	0.3568			
90	0.1348	0.1726	0.2050	0.2422	0.2673	0.3375			
100	0.1279	0.1638	0.1946	0.2301	0.2540	0.3211			
150	0.1045	0.1339	0.1593	0.1886	0.2084	0.2643			
300	0.0740	0.0948	0.1129	0.1338	0.1480	0.1884			
500	0.0573	0.0735	0.0875	0.1038	0.1149	0.1464			
1000	0.0405	0.0520	0.0619	0.0735	0.0813	0.1038			