Aufgabe 1 (4 Punkte). Seien Y und Y_n für alle $n \in \mathbb{N}$ Zufallsvariablen mit Werten in \mathbb{Z} . Zeigen Sie

$$Y_n \Rightarrow Y \iff \forall j \in \mathbb{Z} \colon P(Y_n = j) \xrightarrow{n \to \infty} P(Y = j).$$

Wir verwenden die Rücktransformation der charakteristischen Funktionen φ_n und φ von Y_n und Y. Für φ gilt

$$P(X=j) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi(t) dt.$$

In der Tat gilt mit der Definition der charakteristischen Funktion

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ijt} E_k \left[e^{ikt} \right] dt.$$

Da E_k nur Masse bei X = k hat erhalten wir

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ijt} \sum_{k \in \mathbb{Z}} e^{ikt} P(X = k) dt$$

Zusammenfassen liefert das

$$= \sum_{k\in\mathbb{Z}} P(X=k) \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(k-j)t} \mathrm{d}t \,,$$

wobei man sich eventuell überlegen sollte, ob man die Summe und das Integral vertauschen darf. Wenn k-j=0, so ist der Integrand 1. Wenn $k-j=\ell\neq 0$, gilt

$$\int_{-\pi}^{\pi} e^{i\ell t} dt = \frac{1}{i\ell} \left(e^{i\ell\pi} - e^{-i\ell\pi} \right) = \frac{1}{i\ell} \left((\pm 1) - (\pm 1) \right) = 0.$$

Eingesetzt in die obige Rechnung verschwinden somit alle Summanden mit $k \neq j$ und wir erhalten die Darstellung für die Rücktransformation der charakteristischen Funktion. Entsprechendes gilt dann auch für Y_n und φ_n . Mithilfe dieser Rücktransformationen erhalten wir die gesuchte Konvergenz. Für den Abstand von $P(Y_n = j)$ und P(Y = j) gilt mithilfe

Rücktransformation

$$|P(Y_n = j) - P(Y = j)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi_n dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi dt \right|.$$

Mit Zusammenfassen und der "Dreiecksungleichung" des Integrals können wir abschätzen

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |e^{itj} (\varphi_n(t) - \varphi(t))| dt.$$

Das vereinfacht sich, weil $\left| \mathrm{e}^{\mathrm{i}tj} \right| = 1$. Weiterhin konvergiert $\varphi_n(t)$ gegen $\varphi(t)$ nach dem Portmanteau-Theorem, denn $\mathrm{e}^{\mathrm{i}tj}$ ist Lipschitz-stetig. Da $|\varphi_n(t)| \leq 1$ können wir schließlich den Satz über majorisierte Konvergenz verwenden und erhalten

$$\xrightarrow{n\to\infty} 0.$$

Wenn andererseits für alle $j \in \mathbb{Z}$ gilt, dass $P(Y_n = j) \xrightarrow{n \to \infty} P(Y = j)$, dann gilt auch $\sum_{j \in \mathbb{Z}} f(j) P(Y_n = j) \xrightarrow{n \to \infty} \sum_{j \in \mathbb{Z}} f(j) P(Y = j)$ für alle $f \in \mathcal{C}_b$ und somit $Y_n \Rightarrow Y$.

Aufgabe 3 (4 Punkte). Sei $(\alpha_n)_{n\in\mathbb{N}}$ eine Folge mit $\alpha_n \in (0,\infty)$. Weiter sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, sodass X_n exponentialverteilt mit Parameter α_n ist, das heißt, X_n besitzt die Dichte

$$f_n(x) = \mathbb{1}_{\{x \ge 0\}} \alpha_n e^{-\alpha_n x}.$$

Zeigen Sie die schwache Konvergenz von $(X_n)_{n\in\mathbb{N}}$ für $n\to\infty$, falls $\alpha_n\to\infty$ für $n\to\infty$.

Wir wollen den Satz von Lévy verwenden. Demnach konvergiert X_n in Verteilung gegen eine Zufallsvariable X, wenn $\varphi_n \xrightarrow{n \to \infty} \varphi$. Es gilt $\varphi_n(t) = \frac{\alpha_n}{\alpha_n - \mathrm{i}t}$ und mit dem Satz von de L'Hospital $\lim_{n \to \infty} \frac{\alpha_n}{\alpha_n - \mathrm{i}t} = 1$. Da 1 stetig in 0 ist, konvergiert also auch (X_n) .

Aufgabe 4 (4 Punkte). Zeigen Sie, dass es einen Homöomorphismus zwischen \mathbb{R} und den Dirac Maßen auf \mathbb{R} mit der schwachen Konvergenz gibt.

Wir nehmen an, dass der Homöomorphismus $x \mapsto \delta_x$ ist. Da x der einzige Parameter von δ_x ist, ist dieser schon mal bijektiv.

Wir zeigen noch, dass $x \mapsto \delta_x$ und $\delta_x \mapsto x$ stetig sind, also, dass Bilder und Urbilder offener Mengen offen sind. In Bemerkung 13.14.iii in [Kle20] steht, dass die Prohorov-Metrik d_P eine Topologie auf dem Raum der endlichen Maße induziert. Wir zeigen Stetigkeit bezüglich dieser Topologie. Sei $d'_P(\mu,\nu) := \inf\{\varepsilon > 0 : \mu(B) \le \nu(B_\varepsilon) + \varepsilon$ für jedes $B \in \mathcal{B}(\mathbb{R})\}$, wobei B_ε die offene ε -Umgebung um B ist. Dann ist $d_P(\mu,\nu) := \max\{d'_P(\mu,\nu), d'_P(\nu,\mu)\}$. In unserem Fall haben wir $\mu = \delta_x$ und $\nu = \delta_y$ für $x, y \in \mathbb{R}$. Da die Situation symmetrisch in x und y ist, ist $d'_P(\delta_x, \delta_y) = d'_P(\delta_y, \delta_x)$ und es reicht $d_P(\delta_x, \delta_y) = d'_P(\delta_x, \delta_y)$ anzuschauen. Seien $x, y \in \mathbb{R}$ also gegeben. Es gilt

$$\delta_x(B) = \begin{cases} 1, & x \in B, \\ 0, & x \notin B \end{cases} \quad \text{und entsprechend } \delta_y(B_{\varepsilon}) + \varepsilon = \begin{cases} 1 + \varepsilon, & y \in B_{\varepsilon}, \\ 0, & y \notin B_{\varepsilon}. \end{cases}$$

Nach der Definition der Prohorov-Metrik suchen wir das Infimum von den $\varepsilon > 0$, sodass für jedes $B \in \mathcal{B}(\mathbb{R})$ gilt $\delta_x(B) \leq \delta_y(B_{\varepsilon}) + \varepsilon$. Falls $x \notin B$, ist diese Bedingung für alle ε erfüllt, da $\delta_y > 0$ und $\varepsilon > 0$. Falls $x \in B$ und $y \in B_{\varepsilon}$, ist die Bedingung ebenfalls trivial erfüllt, denn $\varepsilon > 0$. Falls $x \in B$ und $y \notin B_{\varepsilon}$, haben wir einen Fall, wie unten dargestellt

$$\begin{array}{cccc}
& \vdash \varepsilon \rightarrow \\
& \longleftarrow & B_{\varepsilon} \longrightarrow \\
& \vdash \longrightarrow & B \longrightarrow \\
& \downarrow & & \downarrow \\
& \downarrow & & \downarrow & & \downarrow
\end{array}$$

Wie ersichtlich ist ε dann am größten, wenn $B=\{x\}$, es reicht uns also das Infimum der ε für den Fall $B=\{x\}$ zu finden. Dieses ε wird die Ungleichung auch für alle anderen B erfüllen. Im Falle $B=\{x\}$ ist $B_{\epsilon}=B_{\epsilon}(x)$ und $y\notin B_{\epsilon}$ entspricht $|x-y|\geq \varepsilon$. Somit ist die Ungleichung $\delta_x(B)\leq \delta_y(B_{\varepsilon})+\varepsilon$ genau dann erfüllt, wenn entweder $\varepsilon\leq |x-y|$ oder $\varepsilon\geq 1$. Damit ist $d_{\mathrm{P}}(\delta_x,\delta_y)=|x-y|\wedge 1$.

Sei $U \subset \mathbb{R}$ offen. Sei δ_x in δ_U gegeben. Sei $\varepsilon > 0$ so, dass $B_{\varepsilon}(x) \subset U$. Dann gilt für ein $\delta_y \in \delta_U$, dass $|x-y| < \varepsilon$, also auch $d_P(\delta_x, \delta_y) = |x-y| \wedge 1 < \varepsilon$. Somit ist δ_U offen. Sei nun andererseits δ_U offen. Sei $x \in U$ gegeben. Sei $0 < \varepsilon < 1$ so, dass $B_{\varepsilon}(\delta(x)) \subset \delta_U$. Dann gilt für ein $y \in U$, dass $d_P(x,y) = |x-y| \wedge 1 < \varepsilon$, also auch, dass $|x-y| < \varepsilon$, denn, $\varepsilon < 1$. Das heißt, $B_{\varepsilon}(x) \subset U$, also ist U offen.

Damit ist $x\mapsto \delta_x$ stetig bezüglich der durch die Prohorov-Metrik induzierten Topologie. Insgesamt ist $x\mapsto \delta_x$ ein Homöomorphismus.

In Bemerkung 13.14.ii in [Kle20] steht allerdings auch, dass man auf den endlichen Maßen die gröbste Topologie, bezüglich welcher $\mu \mapsto \int f d\mu$ stetig ist wählen kann. Eventuell kann man das auch benutzen, um die Stetigkeit einfacher zu sehen.

Literatur

[Kle20] Klenke, Achim: Wahrscheinlichkeitstheorie. Springer Spektrum, 2020 (Masterclass)