### BỘ GIÁO DỰC VÀ ĐÀO TẠO ĐẠI HỌC KINH TẾ THÀNH PHỐ HỒ CHÍ MINH

### BÁO CÁO TỔNG KẾT

ĐỀ TÀI NGHIÊN CỨU KHOA HỌC THAM GIA XÉT GIẢI THƯỞNG ''NHÀ NGHIÊN CỨU TRỂ UEH" NĂM 2024

# Exploring the role of Green Innovation in Green Development around the world: Implications for Economic Growth

Thuộc nhóm chuyên ngành: 1

TP. Hồ Chí Minh, tháng 02/2024

### **ABSTRACT**

The aim of this research was to conduct an in-depth analysis of green innovation's influence on green development by examining how these effects may change based on factors like a country's gross capital formation, digital transformation, and education levels. Subsequently, green innovation was tested for its role in strengthening the previously established positive relationship between green development and economic growth, according to past studies. Country-level data from 161 nations, including 20 developed countries and 141 developing countries, spanning 1975 to 2022 was collected from sources namely the World Bank National Accounts Data and OECD Data, resulting in over 3,089 unique data observations. Results from multiple linear regression models showed that advances in green innovation correlate with increased green development. Further analysis indicates these impacts are more pronounced for countries with higher gross capital formation, greater digital transformation, or higher education levels. Finally, the study found that the positive link between green development and economic growth appears to be strengthened by high levels of green innovation.

**Keywords:** Green Innovation, Eco-innovation, Green Development, Economic Growth.

### TABLE OF CONTENTS

| 1. | IN'            | TRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  |
|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | 1.1.           | Research problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  |
|    | 1.2.           | Research aims and questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  |
|    | 1.3.           | Research Contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  |
| 2. | Lľ             | TERATURE REVIEW AND HYPOTHESIS DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  |
|    | 2.1.           | Green Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  |
|    | 2.2.           | Green Innovation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6  |
|    | 2.3.           | The relationship between green innovation and green development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7  |
|    | 2.4.<br>Deve   | The impact of gross capital formation on the relationship between Green Innovation and Green Innovation Inn |    |
|    | 2.5.<br>Devel  | The impact of education on the relationship between Green Innovation and Green lopment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 |
|    | 2.6.<br>Devel  | The impact of digital transformation on the relationship between Green Innovation and Gree lopment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|    | 2.7.<br>streng | Implication for GDP: The relationship between green innovation and economic growth is green development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14 |
| 3. | Ml             | ETHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 |
|    | 3.1.           | Data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 |
|    | 3.2.           | Dependent variable: GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 |
|    | 3.3.           | Independent variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 |
|    | 3.4.           | Control variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 |
|    | 3.5.           | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 |
| 4. | EN             | MPIRICAL RESULTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23 |
|    | 4.1.           | Descriptive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23 |
|    | 4.2.           | Correlation Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 |
|    | 4.3.           | Baseline results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33 |
|    | 4.4.           | Endogeneity concerns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 |
|    | 4.5.           | The interaction term role of Gross Capital Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 |
|    | 4.6.           | The interaction term role of Education.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 |
|    | 4.7.           | The interaction term role of Digital Transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 |
|    | 4.8.           | Implications for GDP Growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46 |
| 5. | CC             | ONCLUSION, LIMITATIONS, AND POLICY IMPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 |
|    | 5.1. C         | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48 |
|    | 5.2. L         | imitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49 |
|    | 5.3. P         | olicy implications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49 |
|    | 5.4. F         | urther research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51 |
| 6  | RE             | FERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53 |

### LIST OF TABLES AND FIGURES

| Figure 1: Conceptual Framework                                                       | 16    |
|--------------------------------------------------------------------------------------|-------|
| Figure 2: Scatter plot on Green Innovation and Green Development as country-level av | erage |
| values                                                                               | 35    |
|                                                                                      |       |
| Table 1: Variables definition                                                        | 20    |
| <b>Table 2:</b> Descriptive statistics of variables for the full sample              | 23    |
| Table 3: Descriptive statistics by country                                           | 31    |
| Table 4: Correlation coefficient matrix.                                             | 32    |
| Table 5: Green Innovation and Green Development                                      | 34    |
| Table 6: Endogeneity addressing. GMM approach.                                       | 37    |
| <b>Table 7:</b> Interaction of green innovation and Gross capital formation.         | 39    |
| Table 8: Interaction of Green innovation and Education.                              | 41    |
| <b>Table 9:</b> Interaction of Green innovation and Digital transformation.          | 44    |
| <b>Table 10:</b> The impact of green development and green innovation on GDP Growth  | 47    |

### **List of Abbreviations**

| AGR              | Agriculture, forestry and fishing rate                        |
|------------------|---------------------------------------------------------------|
| AI               | Artificial Intelligence                                       |
| AR(2)            | Arellano-Bond test order 2                                    |
| BRICS            | BRICS countries (Brazil, Russia, India, China, South Africa,) |
| CO2              | Carbon Dioxide                                                |
| CPC              | Consumer Price Inflation                                      |
| DI               | Digital Inclusion                                             |
| DTF              | Digital Transformation                                        |
| Eco-friendly     | Environmentally friendly                                      |
| EcoII            | Eco-innovation Index                                          |
| EDSII            | European Digital Social Innovation Index                      |
| EII              | European Innovation Index                                     |
| EU               | European Union                                                |
| GCF              | Gross Capital Formation                                       |
| GD               | Green Development                                             |
| GDP              | Gross Domestic Product                                        |
| GI               | Green Innovation                                              |
| GLS              | Generalized Least Squares                                     |
| GMM              | Generalized Method of Moments                                 |
| HRM              | Human Resource Management                                     |
| ICT              | Information and Communication Technology                      |
| IDU              | Industrialization rate                                        |
| IMF              | International Monetary Fund                                   |
| INF              | Inflation rate                                                |
| IoT              | Internet of Things                                            |
| IPCC             | Intergovernmental Panel on Climate Change                     |
| ln(POP) or l_POP | The natural logarithm of Population                           |
| max              | maximum                                                       |
| min              | minimum                                                       |
| MLR              | Multiple Linear Regression                                    |
| OECD             | Organization of Economic Co-operation and Development         |
| OER              | Official exchange rate                                        |
| R&D              | Research and Development                                      |
| SDGs             | Sustainable Development Goals                                 |
| SMEs             | Small and Medium-sized Enterprises                            |
| UN               | United Nations                                                |
| UNCTAD           | United Nations Conference on Trade and Development            |
| UNEP             | United Nations Environment Program                            |
| UPOP             | Urbanization rate                                             |

| VIF | Variance Inflation Factor |
|-----|---------------------------|
| WTO | World Trade Organization  |
| β   | Beta (the coefficient)    |

### 1. INTRODUCTION

### 1.1. Research problem

Environmental sustainability has become essential to reaching the Sustainable Development Goals (SDGs) due to the growing environmental difficulties brought about by economic growth (Janowski, 2016; Ufua et al., 2021). In order to satisfy the demands of social and economic growth while protecting natural surroundings, this emphasis entails finding a balance between the economy, society, and environment (Ma and Zhu, 2022; Ni et al., 2022). Recent years have seen a number of environmental and climate change-related issues throughout the world due to industrial expansion and technology developments. Globally speaking, a large portion of innovation falls well short of environmental care. Green innovation was created to adopt questions for minimizing the detrimental effects of renewal on the environment in order to ensure the best possible answer to these challenges. There is a dearth of thorough knowledge on how green innovation and green development interact and support environmental sustainability on a global scale, despite the rising interest in these ideas.

As green innovation may create goods, processes, services, and technology to achieve both economic and environmental advantages, it has been acknowledged as the key to reaching the objective of environmental sustainability (J. Zhang et al., 2020; S. Yin and Yu, 2022; Luo et al., 2023). Scholars now disagree on how well governments could implement governance measures to support green innovation in local communities for environmental sustainability. Government policies, particularly in developing nations, are a major factor in motivating SMEs to switch to ecologically friendly industrial practices (Wasiq et al., 2023). The SMEs in South Korea and Malaysia changed from conventional to contemporary technology in their manufacturing processes as a result of the government's engagement in policy formulation (Arfi et al., 2018). Therefore, in order to convince SMEs to embrace GI practices and technology, government intervention policies are now required. Furthermore, and this is a critical component, encouraging green innovation in SMEs calls for outside collaboration and engagement. Firm capabilities are considered

important market resources, and inter-firm cooperation has become more significant as a way to arrange and use marketing resources for improved competitive advantage and information exchange between internal and external parties (Wang et al., 2021; Alraja et al., 2022). Furthermore, there are currently more green customers, and there is a growing awareness of the creation of green products (Alfonso et al., 2018). One strategy to incentivize SMEs to invest in green infrastructure (GI) is to leverage consumer demand for eco-friendly, innovative products (Arsawan et al., 2021). Clients are also the ultimate users of the merchandise. As a result, their desires could influence manufacturers to adopt GI more than other considerations. According to a number of studies, businesses that depend on green infrastructure (GI) are more successful and thriving than their rivals because they employ their pool of green resources to quickly meet client needs (Del Giudice et a.l, 2018). A company's adoption of green purchasing is influenced by a number of internal variables, such as management pledges, supplier partnerships, and pressure from customers and regulations. As a result, managerial commitment and the implementation of green technology are directly correlated (Yin et al., 2021). Adoption of green technologies and management philosophy have a strong correlation. Conversely, human resource management (HRM) has a good impact on GI and products, and HRM practices that promote a commitment culture have a favorable and substantial impact on businesses' creative orientation (Jun et al., 2019; Wang et al., 2020). Moreover, this study discovers that in companies with progressive cultures and flat organizational structures, strategic HRM has a beneficial influence on product innovation. The fundamental distinction between developing and developed nations lies at the core of the GI problem; certain research indicates that poorer nations may find it more challenging to seize chances presented by green innovation. To be more precise, these nations might not have the technological, financial, or human resources required to create and implement green technology. Developed nations may have greater resources than less developed nations, making it easier for them to get and use green technology. However, in order to encourage green innovation and sustainable growth, both sets of nations must put in place the necessary legislative measures (Wasiq et al., 2023).

China, as the world's largest developing nation, stands to gain from investigating a workable model of green development, as well as from offering China's answer to other nations looking to reduce their green emissions (Tang & Zhang, 2023). As a result, China is aggressively implementing a number of initiatives to assume its share of the necessary carbon emission reduction responsibilities. China's 2015 Opinions on Accelerating the Construction of Ecological Civilization made it apparent that it will pursue "green development" for the first time. The idea of "people-oriented, resource conservation, and environmental protection" was presented as the cornerstone of green growth in the same year by the Third Plenary Session of the 18th CPC Central Committee. Since then, low-carbon and green development have become the dominant trends in China's economic development. China's 20th National Congress report from 2022 reiterated that "promoting green development and promoting harmonious coexistence between man and nature" is the development aim. Thus, it is especially crucial to investigate workable avenues for achieving green growth.

The purpose of this study is to examine the relationship between green innovation and green development at the global scale. The empirical findings of this study, which show how shifts in green innovation affect green development, corroborate the fundamental conclusion. We used the GMM approach to investigate the connection between green innovation and development in order to gain more insight. Additionally, we investigate whether these connections vary among nations by employing factors of differentiation that separate country groupings, such as digital transformation (DTF), education (EDU), and gross capital formation (GCF). Lastly, we look at how green innovation affects the connection between green development and economic growth—a topic that has been the subject of several previous studies (Tawiah et al., 2021).

### 1.2. Research aims and questions

This study's objective is to determine the impact of green innovation on green development. In addition, we also study the relationship between green innovation and economic growth. This research aims at answering the below questions:

Question 1: How does green innovation affect green development?

**Question 2:** Do green innovation's influences on green development differ when considering a country's GCF, EDU and DTF?

**Question 3:** How do green innovation affect the relationship between green development and economic growth?

Our research sources information and statistical data from OECD Data as well as the World Bank Data Indicator. Through sorting and compiling, our database of 3,089 observations from 161 countries from 1975 to 2022 is used to calculate the baseline results and interaction terms, which we then compare to our hypotheses.

### 1.3. Research Contribution

Regression analysis with the GMM approach applied to correct for any endogeneity yielded the following results: a positive correlation between rising green innovation and rising green development. Additionally, it is discovered that the aforementioned associations are more prominent for established and emerging nations with high GCF, EDU, and DTF. Finally, we can validate the premise that a high level of green innovation strengthens the positive impact of green development on economic growth. We provide policymakers with implications from these findings as well as suggestions for further research on related subjects.

Our research makes two contributions to the body of literature. First, we contribute to the body of knowledge already available on the effects of green innovation on different factors. This allows future researchers, particularly those focusing on the topic of green development (such as the IPCC, 2014; Irandoust, 2016; Geissdoerfer et al., 2017; Lin & Zhu, 2019; Yu & Du, 2019; Ulucak, 2020) to compare our findings with those of earlier studies. The second contribution is that, although the relationship between green development and economic growth is frequently examined, there is little to no literature that highlights the importance of green innovation, gross capital formation, or even the effects of education or digital transformation when those factors are taken into consideration as well.

#### 2. LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT

### 2.1. Green Development

Green development, otherwise referred to as sustainable development, is a concept attracting global attention. It encompasses a comprehensive strategy aiming to harmonize economic progress with environmental conservation and social welfare (OECD, 2011; Indrawati, 2015).

A landmark report issued by the Brundtland Commission, previously known as the World Commission on Environment and Development, has wielded considerable influence on green development research. The commission's "Our Common Future" report established the notion of sustainable development and underscored that present generations must meet their needs while ensuring future generations can fulfill their own (Brundtland, 1987). The paper helped establish the foundation for worldwide discussions emphasizing the interrelations between economy, environment, and social issues.

Moreover, the United Nations Sustainable Development Goals (SDGs) formulated in 2015 have developed into a pivotal framework guiding cross-national green development initiatives. The UN General Assembly established these 17 goals and 169 objectives to assist nations in accomplishing the SDGs, which address an array of concerns such as poverty reduction, renewable resources, sustainable cities, climate action, and biodiversity protection. The SDGs have sparked extensive empirical and policy investigations at national and international scales surrounding approaches for attaining said targets (UN, 2015). Both the Brundtland report and SDGs have noticeably influenced inquiries into balanced socioeconomic progress benefiting present and future populations.

The literature on green development of Fay (2012), Volz (2018), Taghizadeh-Hesary & Yoshino (2019), Dogaru (2021) showcase the positive impacts of green development on various aspects. Green development is a long-term plan for diminishing the effects of climate change, protecting the environment, and increasing the efficient use of natural resources. It entails the use of green technology, green finance, and green policy frameworks to help countries achieve the SDGs.

#### 2.2. Green Innovation

Green innovation, known also as eco-innovation involves developing and applying new technologies aiming to lower environmental effects while strengthening sustainability. It involves systematically integrating environmentally practices and approaches throughout all organizational operations and societal endeavors. Green innovation spans various industries such as energy, transportation, agriculture, waste management, and construction (Schiederig, Tietze & Herstatt, 2012). It plays a pivotal part in transitioning sectors and societies toward a more sustainable future state.

The UN Environment Programme (UNEP) has promoted green innovation via studies and works. UNEP's "Green Economy Report" highlighted green innovation's potential to drive sustained financial development. The report underscores the necessity of green technologies and clean energy sources in fostering the transition toward a green economic model (UNEP, 2011). It underscores investing in green innovation as paramount for accomplishing the UN's SDGs. Both documents highlight how nurturing green innovation can smooth pathways to integrated socioeconomic advancement and environmental protection.

Furthermore, research has investigated the influence of green innovation on many sustainability outcomes. The introduction of electric vehicles and alternative fuel technologies has the capacity to minimize air pollution and reduce reliance on traditional gasoline-powered vehicles (Zeng, Xie & Tam, 2010). Furthermore, green innovation can help to promote sustainable agricultural practices, waste management, and construction. Precision agriculture techniques, sustainable farming methods, and organic farming practices can improve resource efficiency while using fewer pesticides and fertilizers (Hockerts & Wüstenhagen, 2010). Innovative recycling and waste-to-energy technologies can lower waste disposal's environmental impacts while boosting circular economy (Bocken et al., 2014). Green innovation in construction involves developing eco-friendly building materials, energy-efficient designs, and smart technologies that optimize resource utilization and diminish CO2 emissions. The effects of green innovation extend beyond solely environmental

benefits. It can also boost economic growth and open new commercial opportunities. Studies have demonstrated organizations investing in green innovation tend to experience higher market competitiveness, operational efficiency and financial performance (Schiederig et al., 2012). Furthermore, green innovation is able to help generate jobs and stimulate local economies, particularly in renewable energy and energy-efficient technology sectors (Zeng et al., 2010). Green innovation possesses the potential to mitigate environmental challenges, advance sustainability and drive economic expansion simultaneously. By addressing ecological issues through innovative solutions, opportunities arise to strengthen business performance, foster broader economic employment and stimulate activity—thereby merging environmental protection and socioeconomic development objectives.

### 2.3. The relationship between green innovation and green development

The correlation between green innovation and green development is a significant topic of research that investigates how innovative practices and technology contribute to SDGs. Innovation has an important role in the realm of green development. It includes both scientific and non-technological breakthroughs that lead to significant changes in the environment through the creation and use of novel devices. The objective of green innovation and expansion is to increase productivity via the efficient utilization of natural resources, reduction of wasted resources and energy consumption, identification of novel opportunities for value creation, and optimization of the distribution of resources (OECD, n.d.).

Several studies have been conducted in the past few decades to investigate how renewable energy technology affects green development throughout the globe. The significance of green innovation in tackling environmental concerns and propelling sustainability is broadly recognized. The Intergovernmental Panel on Climate Change (IPCC, 2014) stresses green innovation's role in battling global warming and accelerating the change to a carbon-neutral economy.

A study by Ulucak (2020) investigates the significance of environmental technology in green development for BRICS nations. The findings show that environmentally friendly technologies have a statistically significant influence on

diminishing both overall CO2 emissions and production-based CO2 emissions, hence contributing to green development. Overall, green innovations help decrease greenhouse gas emissions and promote environmental sustainability.

A study by Geissdoerfer et al. (2017) examined the idea of the circular economy and its importance for how green innovation relates to green development. The scholars explored how fostering innovative green solutions can help transition to an economic system focused on reducing resource use, waste production, and negative environmental effects. The work underscores the necessity of new solutions and corporate practices for achieving the circular economy' goal to promote both environmental protection and advancement through prudent resource management. By highlighting the importance of new approaches and strategic business decisions, the study emphasizes that achieving the circular economy's goals as well as encouraging green development will rely on fresh thinking from all relevant actors.

Many studies also have shown that green innovation plays an important role in promoting green development by reducing CO2 emissions, increasing labor productivity, creating new economic opportunities, and improving the quality of life, which all contribute to green development (Irandoust, 2016; Lin & Zhu, 2019; Yu & Du, 2019).

Overall, these research papers showcase various fields in which green innovation influences green development. They demonstrate the advantageous relationship between green innovation and green development in a wide range of areas at various levels: firm, regional, national, etc. Green innovation is critical to promoting green development and reaching a more sustainable future given that it encourages the development and implementation of sustainable technologies, processes, and practices. In our study, we extend this scope to a global scale and develop hypothesis:

# → Hypothesis 1: Green innovation has a positive and significant impact on Green development.

Due to variations in socioeconomic situations, technical capabilities, and legislative frameworks, the effects of green innovation on green development might differ across developed and developing countries.

Green innovation can have a big impact on sustainable development in nations that are developing. These nations frequently deal with serious environmental issues including pollution, dwindling resources, and the effects of climate change. By developing environmentally friendly behaviors, encouraging resource efficiency, and introducing sustainable technology, green innovation may aid in addressing these issues. Green innovation has the potential to improve environmental outcomes, lower greenhouse gas emissions, improve energy availability, and boost climate change resilience in poor nations, according to research (UNEP, 2016). By encouraging the growth of green businesses and sectors, these technologies may also aid in the eradication of poverty, the creation of jobs, and economic expansion (World Bank, 2017). The scope and speed of green innovation as well as its subsequent influence on green development may be impacted by poor countries' inadequate institutional frameworks, technological capabilities, and financial resources (Anholon et al., 2020).

Rich nations, on the other hand, frequently have more financial resources, more sophisticated technology, and well-established legislative frameworks to encourage green innovation and green growth. In industrialized nations, green innovation can result in less ecological footprint, increased resource efficiency, and better environmental performance. Studies have indicated that green innovation in industrialized nations has led to the adoption of energy-efficient practices, sustainable transportation systems, renewable energy technology, and circular economy concepts (Popp, 2019). These developments have helped to separate economic expansion from environmental deterioration, which has produced favorable results including lower carbon emissions and better air and water quality. Furthermore, green innovation has boosted economic diversification and competitiveness in developed nations, as well as job creation and export potential in the green sector (OECD, 2011).

Moreover, wealthy nations frequently contribute significantly to green innovation and growth in underdeveloped countries employing technology transfer, funding, and capacity-building programs. By facilitating the adoption and spread of environmentally friendly practices and technology, these partnerships help hasten the transition of poor nations to sustainable development (UNEP, 2011).

In conclusion, while developing and developed countries may have different effects of green innovation on green development, both provide possibilities and difficulties. Green innovation may help developing countries with environmental issues, spur economic expansion, and lower poverty rates. They could, however, be constrained by capacity and resource limitations. On the other hand, green innovation may lead to increased competitiveness, economic diversification, and environmental gains in industrialized nations with strong technology capabilities and appropriate governmental frameworks. They also play a significant role in promoting technology transfer and capacity-building programs that promote green development in underdeveloped countries.

→ Hypothesis 1.a: The impacts of green innovation on green development can vary between developing nations and developed countries due to differences in socio-economic conditions, technological capabilities, and policy frameworks.

# 2.4. The impact of gross capital formation on the relationship between Green Innovation and Green Development

Adequate allocation of resources towards tangible assets is vital to maintain the advancement and integration of environmentally-friendly technology and infrastructure, in addition to fostering sustainable practices and economic expansion. Studies have indicated that green innovation and development are positively impacted by gross capital creation. For instance, a study by Rahman & Ahmad (2019) looked at the connection between carbon emissions and gross capital creation in emerging nations. The results showed a correlation between reduced carbon emissions and higher levels of investment in physical assets, indicating that capital expenditure might support the uptake and use of green practices and technology.

Studies have further indicated the contribution of gross capital creation to the development of sustainable infrastructure. Song et al. (2020) carried out an analysis of the effect of expenditure on infrastructure on long-term development in emerging countries. Reducing resource consumption, raising living standards, and improving the environment may all result from increased investment in green infrastructure, which includes energy-efficiency initiatives, public transit networks, and landfills.

Additionally, efforts to conduct research and produce green innovation can also be aided by gross capital formation. The association between environmental innovation in businesses and gross capital creation was investigated by Yin & Wang (2018). According to the study, companies' investments in environmental R&D, which promotes the creation and uptake of green technologies and practices, were positively connected with greater levels of investment in physical assets.

On top of that, the development of jobs and economic expansion in the green sector can be facilitated by gross capital formation. The impact of green investments on employment and economic growth was examined by Lilliestam, Patt & Bersalli (2022). The paper suggests that investing in green sectors, such as clean energy and energy-efficient gadgets, might promote economic growth, assist in environmentally friendly growth, and result in the creation of employment.

The relationship between innovative thinking and ecological growth depends heavily on gross capital production in both developed and developing countries. Properly allocating resources to physical assets, such as green infrastructure and research and development projects, encourages the adoption and implementation of green technologies, speeds up economic growth, reduces adverse ecological consequences, and fosters ethical conduct. Hence, we put up the following hypothesis:

→ Hypothesis 2: Gross capital formation has a significant impact on the relationship between Green Innovation and Green Development.

## 2.5. The impact of education on the relationship between Green Innovation and Green Development

Education is a key factor in the link between green innovation and development in both developing and wealthy nations. It gives people the understanding, abilities, and information needed to promote and put into practice sustainable behaviors and technology. Analysis indicates that education has a beneficial impact on promoting green innovation and green development. For example, an article published in 2019 by Leal Filho et al. emphasized the importance of education in both conventional and informal methods for advancing green innovation, which is a component of equitable growth. The study found that education can raise the public's comprehension of environmental challenges and sense of obligation towards the ecosystem, as well as provide them with the information and skills necessary to develop and execute environmentally friendly alternatives.

More studies has proved the substantial role that education plays in encouraging innovative green and ethical procedures in a variety of businesses. Koster (2017), for instance, carried out an investigation of the impact educational institutions have on entrepreneurial sustainability. The study found that a higher probability of utilizing sustainable business strategies and environmentally friendly technologies in business ventures was associated with a greater degree of education.

Education may also stimulate the demand for environmentally friendly goods and services and impact consumer behavior. Education and pro-environmental behavior were investigated in a study conducted in 2012 by Videras et al. According to the survey, those with greater levels of education had a larger propensity to support green projects and buy ecologically friendly goods. As a result, it appears that education could contribute to generating consumer demand for sustainable development and green innovation.

Education likewise possesses the power to influence governmental decisions and foster the conditions necessary for green development and innovation. Lang et al. (2012) emphasized the value of education in creating governance frameworks and policies with a focus on sustainability. The research highlighted the potential for knowledge to empower individuals to advocate for ethical behavior and participate in deciding across all domains, ranging from neighborhood organizations to global and national platforms. By equipping individuals with the necessary information, competencies, and consciousness, educational institutions may impact purchasing habits, promote green innovation, sustainably managed activities, and advance the

development of policies toward a more ecologically conscious and equitable future. Thus, we proposed a hypothesis:

→ Hypothesis 3: Education has a positive impact on the relationship between Green Innovation and Green Development.

## 2.6. The impact of digital transformation on the relationship between Green Innovation and Green Development

Digital transformation entails a significant alteration impacting all aspects of society, organizations and industries through the implementation of advanced digital technologies (Hsu, Tsaih & Yen, 2018). It encompasses advanced information and communication technologies such as artificial intelligence (AI), big data analytics, the Internet of Things (IoT), blockchain, and other technologies (Truong, 2022). This transformation is not only applying digital technologies but also includes envisioning totally new approaches of arranging and interacting using digital technologies as an enabler (Cunningham, 2022).

The digital transformation plays a major role in the efficient use and production of energy, thus, it has many good effects on environmental sustainability. Digital transformations are sparking hopes of enhancing our environment. It increases the availability of environmental information and permits innovative solutions (Truong, 2022). For example, digital technologies protect the environment in three key aspects: waste management, pollution prevention and sustainable resource management. With regards to pollution prevention, digitalization and networking contribute to decreasing greenhouse gases (Truong, 2022).

Information and communications technology (ICT) services, one of the assessment indicators for digital transformation, play a crucial role in digital transformation (Rath & Hermawan, 2019; Kristyanto & Jamil, 2023). ICT services are classified as a subset of the ICT sector that includes software publication, telecommunications, computer programming, web portals, data processing, consulting and related activities, hosting and related activities, and computer and communication equipment maintenance (UNCTAD, 2015a). The rapid advancements of ICT have led to the emergence of various new services which can

be exported globally without physical transportation. These services include big data and software as well as cloud computing services (UNCTAD, 2015b; WTO, 2023). A major factor in promoting green innovation is these services.

ICT services are critical to promoting green development through green innovation. ICT services can improve energy efficiency, reduce greenhouse gas emissions, and develop innovative environmental solutions. Simultaneously, it encourages green innovation by creating new services that help businesses and society shift to a green economy. ICT services improve the environment through substitution and optimization. Substitution refers to the replacement of physical items with digital services, which reduces the environmental impact. Research shows that ICT services have the ability to substitute conventional activities that have a greater negative environmental impact. Virtual meetings, for example, can be used instead of actual travel, resulting in lower carbon emissions (Hischier & Hilty, 2002; Coroamă, Hilty & Birtel, 2012, Coroamă et al., 2020, Lange, Pohl & Santarius, 2020).). Optimization is the use of ICT services to optimize current procedures to make them more efficient, lowering their environmental effect, such as different management services (Malmodin et al., 2014, Coroamă et al., 2020).

These studies demonstrate the moderating role of digital transformation, particularly ICT services in green innovation and green development, acting as a catalyst for environmental sustainability. Hence, we propose the following hypothesis:

→ Hypothesis 4: The positive impact of Green Innovation on Green Development is more pronounced for high digital transformation levels countries.

# 2.7. Implication for GDP: The relationship between green innovation and economic growth is strengthened by green development.

As per (Tawiah et al, 2021), the aforementioned study delves into the complex interplay between green development programs and economic growth in 123 countries, comprising both emerging and established nations. The study examines this important junction using data from the OECD database, covering the years 2000–

2017. The study's primary finding is that there is a positive and statistically significant correlation between green development and economic growth as measured by GDP per capita. Basically, nations with more financial resources at their disposal have a tendency to prioritize ecologically friendly policies more strongly. The results also lend credence to the idea that green development programs might act as accelerators for long-term economic expansion. Investing proactively in eco-friendly practices can help nations boost GDP growth by encouraging more economic activity and innovation. This two-way link points to a mutually reinforcing dynamic in which ongoing economic growth is made possible by increased investment in green development, which is made possible by economic success.

The long-term correlation between economic development and innovation was confirmed by several scholars. Numerous research studies have found a strong and positive relationship between economic growth and eco-innovation (Wang et al., 2020). Furthermore, a further study finds that exceptional financial success is frequently linked to more wise investments, which encourages eco-innovation (Temesgen Hordofa et al., 2023). Tu et al. (2023) report that a recent study in Saudi Arabia revealed a strong correlation between eco-innovation centered on sustainability and economic growth. Therefore, eco-innovation has the potential to be the cornerstone of success for African countries; nevertheless, its capacity to boost competitiveness, create jobs, and usher in long-term prosperity will determine how successful it remains. Eco-innovation is therefore a crucial force behind economic expansion.

Moreover, according to Baneliene & Strazdas (2023),three indicators were selected for the model: the European Innovation Index (EII), the Eco-innovation Index (EcoII), and the recently developed European digital social innovation Index (EDSII), as well as its sub indicators, digital inclusion (DI), access to employees with software engineering/development skills, and individual giving. The main idea of this paper is to evaluate and find a relationship among innovativeness, the green economy, and digitalization. Through investigation on the EU area specifically on 25 countries, they found that green innovation has a positive impact on GDP growth. Specifically, an increase in the EcoII point can create 146 € GDP per capita per year. In addition,

the proposed hypotheses were supported by supplementary estimation including GDP growth indicators for 2020 and 2021 as independent variables. And as a result, green innovation growth not only increased by  $146 \in GDP$  per capita but also increased by  $194 \in GDP$  per capita. Furthermore, Ha et al (2023) also confirmed their argument through their paper that green innovation has a strongly positive relationship with financial performance especially in GDP growth. This study investigated the relationship between green innovation and external environmental conditions as well as how green innovation affected the financial and environmental performance of 400 manufacturing SMEs in Vietnam's key industrial units.

The study's findings highlight how crucial it is to understand how closely related environmental sustainability and economic growth are. They offer actual data to back up the claim that encouraging green development may be a tactic for boosting resilience and long-term economic growth in addition to improving environmental well-being. Therefore in this analysis, we proposed the following hypothesis:

# → Hypothesis 5: The relationship between green innovation and economic growth is strengthened by green development.



Figure 1: Conceptual Framework

### 3. METHODOLOGY

### 3.1. Data collection

This study examines the relationships between Green Innovation and Green Development using data between 1975 and 2022 across 161 countries. We first collect our country-level data including Official Exchange Rate, Industrialization rate, Inflation rate, Gross capital rate, Population growth, Urbanization rate, Agriculture, forestry, and fishing rate, from the World Bank Data, and then combine and store them as panel data. The Green Innovation is retrieved from OECD Data. The data for Green Development is collected from the World Bank.

In conclusion, it should be highlighted that all the data variables utilized in this study have been sourced from a variety of reliable references, which will be systematically organized in **Table 1**.

### 3.2. Dependent variable: GD

In our study, we primarily measure Green Development through the consumption of renewable energy. The underlying premise is that an increase in renewable energy consumption is indicative of enhanced green development (Nawaz et al., 2021; Mngumi et al., 2022; Lee, Wang & Thinh, 2023). The metric for renewable energy consumption is determined by the percentage of renewable energy sources to the total energy consumed within a given year.

This study will employ data on international renewable energy consumption, spanning globally and scaled from 0 to 100, as a measure of renewable energy consumption. We infer that a nation's energy consumption serves as a proxy for the decrease in CO2 emissions from production, achieved through the implementation of green technologies and other initiatives (Lee, Wang & Thinh, 2023).

### 3.3. Independent variable

Green innovation is quantified through the number of patents granted for environmental technologies, which are viewed as crucial and positive elements of environmental quality (Yu et al., 2021; Ali et al., 2022). These green patents are awarded to technologies that pose no harm to the environment. This index reflects the

profound understanding and concerns of various nations and their governments regarding the drawbacks of technological progress that does not adhere to green development principles. It implies a commitment to enhancing environmental standards (Wen et al., 2021).

Following (Ali et al., 2022), the approach to quantifying green innovation involves considering the total count of green patents, which are patents related to environmental technologies. The OECD website (www.oecd.org) provides data on patent applications from 161 countries from 1975 to 2022. This patent data encompasses information and fluctuations in new patents across these countries. Green innovation is represented by patents aimed at addressing global environmental concerns.

#### 3.4. Control variable

In our study, we gather a comprehensive set of factors at the country level that could potentially influence Green Development. We consider variables such as the Official Exchange Rate (OER) and Consumer Price Inflation (INF), which could affect the funding and investment from governmengts and other entities in these countries towards environmental initiatives. The percentage of industry to total GDP (IDU) is also taken into account as it signifies the level of industrialization, which could potentially impact green development and pose environmental risks as countries expand their factories and manufacturing units. The Gross Capital Formation as a percentage of total GDP (GCF) provides insights into the financial landscape of these countries, indicating how resources are allocated between environmental and manufacturing activities. The Urban Population as a percentage of the total population (UPOP) is considered as a measure of urbanization, which could have implications for green development and the environment. Additionally, we take into account the total population (l\_POP) and the proportion of the population engaged in agriculture, forestry, and fishing (AGR) in these countries. Those variables are gathered and compiled in **Table 1**.

|                                     | Acronym  | Definition                                                                                                                                                | Source          |
|-------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Green Development                   | GD       | The percentage of renewable energy sources to the total energy                                                                                            | World Bank Data |
| Green Innovation                    | GI       | The number of patents granted for environmental technologies                                                                                              | OECD website    |
| Official exchange rate              | OER      | The exchange rate determined by national authorities or to the rate determined in the legally sanctioned exchange market                                  | World Bank Data |
| Industrialization rate              | IDU      | The percentage of industry to total GDP                                                                                                                   | World Bank Data |
| Inflation rate                      | INF      | The rate of increase in prices over a given year.                                                                                                         | World Bank Data |
| Gross capital rate                  | GCF      | Annual growth rate of gross capital formation based on constant local currency.                                                                           | World Bank Data |
| Population growth                   | 1_POP    | The logarithm of the population of the country in a given year.                                                                                           | World Bank Data |
| Urbanization rate                   | UPOP     | The percentage of people living in urban areas to total population.                                                                                       | World Bank Data |
| Agriculture, forestry, fishing rate | AGR      | The percentage of agriculture, forestry, fishing to total GDP                                                                                             | World Bank Data |
| High gross capital rate             | high_gcf | Dummy variable that equals 1 if the level of gross capital rate is higher than median and 0 otherwise.                                                    | World Bank Data |
| High education                      | high_edu | Dummy variable that equals 1 if the annual growth rate of gross capital formation based on constant local currency is higher than median and 0 otherwise. | World Bank Data |

| High digital transformation | high_dtf | Dummy variable that equals 1 if the level of digital transformation is higher than median and 0 otherwise. | World Bank Data |
|-----------------------------|----------|------------------------------------------------------------------------------------------------------------|-----------------|
| Economic growth             | 1_GDP    | The logarithm of GDP of a country in a given year.                                                         | World Bank Data |

Table 1: Variables definition

#### **3.5. Model**

The influence of Green Innovation on Green Development is thoroughly examined using the Multiple Linear Regression (MLR) for model estimation:

$$GD_{i,j} = \beta_0 + \beta_1 GI_{i,j} + \alpha' Control \ variables_{i,j} + \delta_i + \delta_j + \mu_{i,j}$$
 (1)

In this study, we denote the country and the year by sub-indexes i and j, respectively. We define the ratio of renewable energy sources to the total energy of a country in a given year (j) as Green Development (GD), which serves as the dependent variable in **Equation (1)**.

The independent variable, Green Innovation (GI), is quantified by the number of patents granted for environmental technologies in country i during year j. In this context,  $\beta_0$  represents the intercept, and  $\beta_1$  signifies the slope parameter of the explanatory variables.

Our model incorporates a broad spectrum of control variables for country i in year j, which could potentially influence the relationship between Green Innovation (GI) and Green Development (GD). These control variables include Official Exchange Rate, Industry rate, Inflation rate, Gross capital rate, Population growth, Urbanization rate, and Agriculture, forestry, and fishing rate. Detailed definitions and sources of these variables are provided in **Table 1**.

To account for country and time-invariant unobservable factors that may affect the relationship between Green Development and Green Innovation, we include year and country fixed effects in our model. Our primary hypothesis (**Hypothesis 1**) posits that Green Innovation exerts a positive and significant impact on Green Development. We test this hypothesis using a Fixed-effects Generalized Least Square (GLS) Regression Approach, anticipating a positive and statistically significant  $\beta_1$ .

In order to examine the influence of Gross Capital Formation, Education Level, and Digital Transformation Level on the Green Development in these countries, we formulated and estimated the subsequent model:

The equation for the impact of the Gross Capital Formation high-level on the relationship between Green Innovation and Green Development:

$$GD_{i,j} = \beta_0 + \beta_1 GI_{i,j} + \beta_2 high\_gcf_{i,j} + \beta_3 GI_{i,j} \times high\_gcf_{i,j}$$
$$+ \alpha_1 Control \ variables_{i,j} + \delta_i + \delta_j + \mu_{i,j} \ (2)$$

The equation for the impact of the Education high-level on the relationship between Green Innovation and Green Development:

$$GD_{i,j} = \beta_{0}, + \beta_{1}, GI_{i,j} + \beta_{2}, high\_edu_{i,j} + \beta_{3}, GI_{i,j} \times high\_edu_{i,j}$$
$$+\alpha_{2}Control\ variables_{i,j} + \delta_{i} + \delta_{j} + \mu_{i,j}\ (3)$$

The equation for the impact of the Digital Transformation high-level on the relationship between Green Innovation and Green Development:

$$GD_{i,j} = \beta_{0,i} + \beta_{1,i}GI_{i,j} + \beta_{2,i}high\_dtf_{i,j} + \beta_{3,i}GI_{i,j} \times high\_dtf_{i,j}$$
$$+\alpha_{3}Control\ variables_{i,i} + \delta_{i} + \delta_{i} + \mu_{i,i}\ (4)$$

In this study, we denote the country and year as i and j, respectively. The variables are clearly defined in **Equation** (1). We introduce three indicator variables:  $high\_gcf_{i,j}$  equals 1 for countries with an annual growth rate of gross capital formation (based on constant local currency) above the yearly sample median, and 0 otherwise. Similarly,  $high\_edu_{i,j}$  equals 1 for countries where the education level of individuals aged 25 or over, who have attained a Master's level, exceeds the yearly sample median, and 0 otherwise. Finally,  $high\_dtf_{i,j}$  equals 1 for countries where

the percentage of Information and Communication Technology (ICT) service exports surpasses the yearly sample median, and 0 otherwise.

The coefficients of the interaction terms  $GI_{i,j} \times high\_gcf_{i,j}$  ( $\beta_3$ ),  $GI_{i,j} \times high\_edu_{i,j}(\beta_3)$ , and  $GI_{i,j} \times high\_dtf_{i,j}(\beta_3)$ , will elucidate the relationship between Green Innovation and the levels of Gross Capital Formation, Education, and Digital Transformation. Hypotheses (2), (3), and (4) provide a detailed review of the positive effects of  $\beta_3$ ,  $\beta_3$ , and  $\beta_3$ , on the relationship between Green Innovation and Green Development. In essence, enhancing the levels of Gross Capital Formation, Education, and Digital Transformation in these countries amplifies the impact of Green Innovation on Green Development. Consequently, we anticipate the coefficients of the interaction terms  $\beta_3$ ,  $\beta_3$ , and  $\beta_3$ , to be significant and positive.

To determine the moderating effect of Green Development on the correlation between Green Innovation and Economic Growth, we introduce high\_gdi,j as a binary variable. This variable is set to 1 if the proportion of renewable energy sources to total energy surpasses the annual sample median, and 0 otherwise. We then interact this variable with Green Innovation (GI) to create the interaction term  $GI_{i,j} \times high\_gd_{i,j}(\beta_3)$ . Subsequently, we estimate the ensuing model:

$$log (GDP) = \beta_0 + \beta_1 GI_{i,j} + \beta_2 high\_g d_{i,j} + \beta_3 GI_{i,j} \times high\_g d_{i,j}$$
$$+ \alpha' Control \ variables_{i,j} + \delta_i + \delta_j + \mu_{i,j} (5)$$

In which, the sub-indices i and t denote the country and year, respectively. The interaction term  $GI_{i,j} \times high\_gd_{i,j}$  is designed to uncover the influence of Green Innovation in conjunction with rapidly advancing Green Development in these countries. Our attention is particularly drawn to the coefficient  $\beta_3$ , which is central to **Hypothesis 5**. This hypothesis posits that Green Development strengthens the relationship between Green Innovation and Economic Growth. Consequently, we anticipate that the coefficient of this interaction term will be both positive and statistically significant.

### 4. EMPIRICAL RESULTS:

### 4.1. Descriptive

|         | N    | Mean   | Std. Dev. | Min     | Median | p75    | Max      |
|---------|------|--------|-----------|---------|--------|--------|----------|
| GD      | 6676 | 30.788 | 30.556    | 0       | 19.57  | 53.28  | 98.34    |
| GI      | 4324 | 23.69  | 24.895    | .42     | 13.585 | 28.5   | 349.65   |
| OER     | 5439 | 52.488 | 49.128    | 2.857   | 40.215 | 64.918 | 647.638  |
| IDU     | 5718 | 27.554 | 11.933    | 3.15    | 26.177 | 33.382 | 86.67    |
| INF     | 5515 | 24.986 | 369.731   | -16.86  | 3.835  | 8.332  | 23773.13 |
| GCF     | 6667 | 21.975 | 12.655    | -15.917 | 21.651 | 26.64  | 324.168  |
| UPOP    | 6676 | 56.962 | 24.291    | 5.416   | 56.508 | 76.718 | 100      |
| 1 POP   | 6676 | 15.124 | 2.391     | 9.125   | 15.513 | 16.798 | 21.067   |
| AGR     | 5908 | 12.892 | 12.565    | .013    | 8.503  | 19.993 | 79.042   |
| 1 GDP13 | 3742 | 1.401  | 0.432     | -2.062  | 1.446  | 1.684  | 3.792    |

**Table 2:** Descriptive statistics of variables for the full sample

Notes: This table provides variable descriptive statistics as well as a summary of all variables. It contains 3,089 observations from 161 countries spanning the years 1975 to 2022. The definitions of the variables are provided in Table 1.

**Table 2** depicts the descriptive statistics for all variables in our model over the period from 1975 to 2022. Based on data collected from a sample of 3,089 observations from 20 developed and 141 developing countries, we are able to calculate the mean, standard deviation, and extreme values for each variable. The main independent variable GI has a mean of 23.69 and a standard deviation of 24.895, with the minimum, median, and maximum values being 0.42, 13.585, and 349.65, respectively. The potential-interaction-terms Gross Capital Formation variable (GCF) shows a mean of 21.975 with a standard deviation of 12.655, its 75<sup>th</sup> percentile value is 26.64 while the max value is 324.168.

**Panel A - Developed Countries** 

|                 | GD     | GI     | OER     | IDU    | INF    | GCF    | UPOP   | 1 POP  | AGR   |
|-----------------|--------|--------|---------|--------|--------|--------|--------|--------|-------|
| Australia       | 8.467  | 10.379 | 86.913  | 12.246 | 2.549  | 25.637 | 85.128 | 16.847 | 2.790 |
| Belgium         | 4.671  | 8.462  | 16.100  | 7.204  | 2.000  | 23.289 | 97.367 | 16.182 | 0.924 |
| Canada          | 22.015 | 10.444 | 86.278  | 27.749 | 2.166  | 21.992 | 79.850 | 17.303 | 1.982 |
| Czechia         | 9.484  | 11.969 | 67.903  | 31.607 | 4.429  | 28.806 | 73.950 | 16.156 | 2.599 |
| Denmark         | 18.909 | 14.942 | 58.273  | 33.345 | 1.771  | 21.146 | 86.194 | 15.513 | 1.759 |
| France          | 11.408 | 9.998  | 37.514  | 23.973 | 1.540  | 22.331 | 77.369 | 17.960 | 1.913 |
| Greece          | 10.858 | 12.013 | 19.791  | 40.471 | 4.781  | 20.581 | 74.888 | 16.194 | 4.318 |
| Iceland         | 67.441 | 6.184  | 61.089  | 62.277 | 4.482  | 21.471 | 92.805 | 12.618 | 5.931 |
| Italy           | 9.855  | 8.349  | 83.237  | 19.473 | 2.429  | 19.916 | 68.211 | 17.881 | 2.344 |
| Japan           | 7.366  | 10.138 | 216.009 | 42.114 | 0.436  | 27.354 | 85.149 | 18.657 | 1.243 |
| Netherlands     | 3.689  | 8.626  | 15.156  | 29.984 | 2.052  | 21.477 | 82.003 | 16.605 | 2.232 |
| New Zealand     | 27.740 | 8.842  | 84.546  | 14.069 | 2.167  | 22.518 | 86.045 | 15.238 | 6.025 |
| Norway          | 58.801 | 10.981 | 58.024  | 11.347 | 2.224  | 24.797 | 77.692 | 15.371 | 1.801 |
| Portugal        | 24.753 | 12.118 | 20.920  | 45.934 | 3.146  | 22.199 | 57.659 | 16.148 | 2.561 |
| Slovak Republic | 8.096  | 11.824 | 25.568  | 41.071 | 5.363  | 25.982 | 55.301 | 15.500 | 2.013 |
| Slovenia        | 17.212 | 6.592  | 33.391  | 32.885 | 32.455 | 23.035 | 52.131 | 14.521 | 2.438 |
| Spain           | 11.886 | 9.718  | 25.883  | 34.943 | 2.717  | 23.484 | 77.702 | 17.585 | 3.030 |
| Sweden          | 41.334 | 9.799  | 54.507  | 35.321 | 1.916  | 23.131 | 84.903 | 16.037 | 1.972 |
| Switzerland     | 20.115 | 7.483  | 129.627 | 34.447 | 1.033  | 27.293 | 73.642 | 15.842 | 0.988 |
| United States   | 6.828  | 8.888  | 78.882  | 23.688 | 2.481  | 21.295 | 79.698 | 19.500 | 1.082 |

**Panel B - Developing Countries** 

|                     | GD     | GI     | OER    | IDU    | INF     | GCF    | UPOP   | 1 POP  | AGR    |
|---------------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| Afghanistan         | 27.042 | 44.597 | 25.608 | 20.375 | 6.125   | 6.675  | 23.194 | 16.967 | 26.960 |
| Algeria             | 40.698 | 20.852 | 62.041 | 13.145 | 8.559   | 35.602 | 63.839 | 17.330 | 8.619  |
| Angola              | 62.641 | 15.510 | 28.062 | 26.646 | 369.464 | 22.377 | 54.196 | 16.795 | 7.249  |
| Antigua and Barbuda | 6.026  | 53.000 | 81.093 | 25.981 | 1.757   | 14.690 | 29.279 | 11.281 | 1.674  |
| Armenia             | 8.870  | 10.407 | 29.671 | 27.098 | 131.067 | 26.644 | 64.398 | 14.941 | 10.173 |
| Azerbaijan          | 2.248  | 28.195 | 26.282 | 25.143 | 111.325 | 25.111 | 53.317 | 15.965 | 13.111 |
| Bahamas, The        | 0.958  | 13.600 | 54.151 | 14.641 | 2.205   | 27.908 | 82.011 | 12.752 | 1.389  |
| Bahrain             | 0.000  | 33.899 | 69.793 | 35.440 | 1.312   | 24.588 | 88.620 | 13.719 | 0.464  |
| Bangladesh          | 48.774 | 8.027  | 44.433 | 21.966 | 6.095   | 25.044 | 28.025 | 18.745 | 19.664 |
| Barbados            | 6.648  | 15.412 | 88.506 | 18.897 | 3.406   | 15.996 | 33.223 | 12.507 | 2.019  |
| Belarus             | 5.556  | 12.108 | 26.736 | 16.660 | 185.006 | 30.319 | 72.479 | 16.094 | 10.980 |
| Belize              | 34.904 | 7.420  | 50.201 | 36.797 | 1.701   | 18.592 | 45.786 | 12.534 | 9.903  |
| Benin               | 64.511 | 57.188 | 23.971 | 27.458 | 4.056   | 17.993 | 41.261 | 15.925 | 28.634 |
| Bhutan              | 90.528 | 43.900 | 55.354 | 41.742 | 6.823   | 48.269 | 30.325 | 13.380 | 20.572 |
| Botswana            | 35.123 | 88.347 | 38.646 | 63.022 | 7.900   | 29.238 | 57.948 | 14.460 | 2.717  |
| Brazil              | 45.702 | 9.583  | 66.648 | 25.567 | 267.848 | 18.603 | 82.170 | 19.035 | 5.200  |
| Brunei Darussalam   | 0.046  | 31.100 | 72.284 | 15.237 | 0.914   | 26.047 | 72.797 | 12.786 | 1.000  |
| Bulgaria            | 10.257 | 13.510 | 63.721 | 19.854 | 63.593  | 21.156 | 70.780 | 15.862 | 8.170  |
| Burkina Faso        | 82.048 | 39.600 | 26.080 | 23.741 | 2.768   | 19.890 | 21.785 | 16.462 | 25.823 |
| Burundi             | 92.304 | 94.299 | 24.723 | 26.892 | 10.362  | 11.369 | 9.732  | 15.877 | 39.454 |
| Cambodia            | 70.460 | 38.418 | 46.212 | 7.769  | 4.364   | 19.724 | 20.386 | 16.438 | 32.105 |
| Cameroon            | 81.940 | 21.172 | 16.172 | 22.656 | 3.278   | 18.078 | 48.867 | 16.684 | 18.149 |

| Central African<br>Republic | 91.952 | 91.428  | 20.207  | 44.131 | 3.896   | 14.390 | 38.738 | 15.226 | 33.435 |
|-----------------------------|--------|---------|---------|--------|---------|--------|--------|--------|--------|
| Chad                        | 82.089 | 99.205  | 13.066  | 11.445 | 3.593   | 23.786 | 21.998 | 16.126 | 30.492 |
| Chile                       | 30.400 | 16.962  | 66.856  | 53.585 | 5.888   | 25.094 | 86.253 | 16.601 | 4.841  |
| China                       | 20.890 | 8.946   | 151.944 | 23.658 | 3.924   | 40.682 | 43.633 | 20.981 | 13.080 |
| Colombia                    | 30.822 | 12.184  | 36.899  | 18.397 | 10.237  | 21.082 | 76.006 | 17.548 | 9.334  |
| Comoros                     | 66.159 | 45.124  | 18.436  | 22.536 | 3.192   | 16.729 | 28.298 | 13.304 | 30.437 |
| Congo, Dem. Rep.            | 96.468 | 65.180  | 9.906   | 22.379 | 1285.30 | 13.470 | 37.725 | 17.864 | 28.197 |
| Congo, Rep.                 | 66.881 | 65.180  | 19.329  | 15.343 | 4.135   | 36.180 | 60.996 | 15.126 | 7.259  |
| Costa Rica                  | 36.614 | 18.083  | 42.171  | 16.964 | 9.735   | 19.924 | 66.082 | 15.259 | 8.321  |
| Cote d'Ivoire               | 70.692 | 57.671  | 22.699  | 33.489 | 3.396   | 16.466 | 45.531 | 16.747 | 19.308 |
| Croatia                     | 28.837 | 9.719   | 441.638 | 21.571 | 94.188  | 19.871 | 54.270 | 15.288 | 4.017  |
| Djibouti                    | 31.237 | 40.298  | 71.167  | 25.465 | 2.779   | 23.276 | 76.886 | 13.620 | 1.057  |
| Dominica                    | 11.525 | 18.232  | 77.612  | 66.911 | 1.648   | 22.586 | 67.126 | 11.146 | 12.887 |
| Dominican Republic          | 19.235 | 23.063  | 31.458  | 18.557 | 10.324  | 24.100 | 68.425 | 16.026 | 7.406  |
| Ecuador                     | 17.035 | 14.297  | 28.757  | 18.358 | 19.159  | 23.645 | 60.903 | 16.433 | 13.303 |
| Egypt, Arab Rep.            | 7.078  | 9.145   | 83.520  | 27.308 | 10.018  | 18.776 | 42.920 | 18.185 | 13.934 |
| El Salvador                 | 37.719 | 29.499  | 51.891  | 19.812 | 4.897   | 17.692 | 62.189 | 15.606 | 7.937  |
| Equatorial Guinea           | 31.488 | 81.025  | 10.628  | 10.854 | 4.926   | 23.165 | 56.829 | 13.692 | 2.152  |
| Eswatini                    | 65.275 | 25.148  | 23.412  | 21.621 | 7.729   | 16.100 | 22.565 | 13.869 | 10.076 |
| Ethiopia                    | 93.978 | 22.893  | 30.490  | 27.804 | 10.774  | 11.559 | 16.366 | 18.156 | 44.088 |
| Fiji                        | 41.672 | 44.750  | 58.614  | 23.512 | 3.292   | 20.244 | 50.177 | 13.668 | 13.108 |
| French Polynesia            | 7.588  | 38.640  | 22.157  | 25.953 | 3.695   | 87.758 | 58.788 | 12.483 | 2.951  |
| Gabon                       | 80.170 | 34.273  | 18.195  | 27.756 | 2.591   | 25.257 | 81.577 | 14.214 | 5.837  |
| Gambia, The                 | 56.975 | 100.000 | 26.400  | 7.790  | 6.108   | 14.553 | 51.810 | 14.339 | 23.798 |

| Georgia            | 35.220 | 16.353  | 26.242  | 26.009 | 12.695 | 23.894 | 55.220 | 15.214 | 15.852 |
|--------------------|--------|---------|---------|--------|--------|--------|--------|--------|--------|
| Ghana              | 60.964 | 22.045  | 25.845  | 27.936 | 19.396 | 20.749 | 47.508 | 16.938 | 30.530 |
| Grenada            | 9.913  | 24.836  | 81.322  | 30.822 | 2.024  | 33.037 | 35.500 | 11.619 | 5.621  |
| Guatemala          | 65.860 | 28.191  | 38.516  | 20.878 | 8.304  | 16.397 | 47.030 | 16.368 | 15.696 |
| Guinea             | 80.504 | 109.036 | 17.289  | 23.617 | 15.292 | 22.485 | 32.466 | 16.051 | 19.879 |
| Guinea-Bissau      | 88.254 | 65.115  | 29.219  | 21.428 | 13.251 | 15.739 | 38.360 | 14.162 | 45.331 |
| Guyana             | 29.926 | 42.572  | 61.572  | 29.978 | 4.504  | 31.183 | 27.794 | 13.539 | 29.860 |
| Haiti              | 81.431 | 40.844  | 28.518  | 24.146 | 14.163 | 17.291 | 42.887 | 16.021 | 20.941 |
| Honduras           | 54.608 | 53.873  | 46.000  | 10.559 | 10.444 | 26.305 | 49.229 | 15.827 | 14.818 |
| Hungary            | 9.372  | 9.382   | 53.708  | 34.389 | 9.905  | 24.203 | 67.599 | 16.125 | 4.283  |
| India              | 42.100 | 8.425   | 64.347  | 32.395 | 7.201  | 31.625 | 29.766 | 20.856 | 20.141 |
| Indonesia          | 39.693 | 10.676  | 44.516  | 10.926 | 8.781  | 29.616 | 45.464 | 19.246 | 15.336 |
| Iran, Islamic Rep. | 0.978  | 13.605  | 47.792  | 60.471 | 20.042 | 36.401 | 66.961 | 18.069 | 9.278  |
| Iraq               | 0.909  | 29.231  | 32.192  | 40.978 | 50.680 | 24.302 | 69.290 | 17.156 | 8.062  |
| Jamaica            | 10.080 | 26.342  | 49.212  | 20.217 | 14.437 | 24.018 | 52.899 | 14.793 | 6.430  |
| Jordan             | 3.397  | 17.402  | 116.607 | 10.549 | 3.674  | 28.129 | 82.786 | 15.644 | 3.734  |
| Kazakhstan         | 1.735  | 18.960  | 27.753  | 19.964 | 82.359 | 25.858 | 56.614 | 16.606 | 7.785  |
| Kenya              | 77.221 | 15.433  | 37.545  | 23.461 | 11.426 | 19.277 | 22.113 | 17.398 | 23.198 |
| Kiribati           | 52.003 | 31.186  | 28.780  | 12.680 | 1.896  | 31.173 | 44.913 | 11.499 | 24.421 |
| Korea, Rep.        | 1.502  | 9.878   | 98.692  | 23.490 | 3.399  | 33.380 | 80.071 | 17.689 | 3.364  |
| Kuwait             | 0.039  | 31.926  | 84.898  | 6.377  | 3.095  | 18.707 | 99.401 | 14.717 | 0.398  |
| Kyrgyz Republic    | 25.411 | 53.573  | 25.263  | 21.326 | 9.991  | 23.250 | 35.897 | 15.468 | 26.723 |
| Lao PDR            | 71.014 | 39.466  | 17.797  | 13.972 | 15.320 | 20.621 | 26.247 | 15.580 | 29.121 |
| Lesotho            | 49.306 | 103.226 | 33.242  | 16.311 | 6.689  | 20.008 | 22.215 | 14.518 | 6.360  |

| Liberia               | 89.878 | 52.756 | 15.723  | 21.072 | 10.554  | 12.297 | 48.415 | 15.017 | 52.530 |
|-----------------------|--------|--------|---------|--------|---------|--------|--------|--------|--------|
| Libya                 | 2.738  | 39.602 | 70.529  | 22.754 | 5.348   | 15.652 | 77.614 | 15.534 | 3.013  |
| Madagascar            | 84.593 | 46.537 | 20.294  | 54.986 | 11.316  | 20.903 | 30.308 | 16.754 | 28.973 |
| Malaysia              | 4.416  | 7.770  | 123.181 | 11.117 | 2.539   | 27.662 | 65.400 | 17.043 | 10.300 |
| Maldives              | 2.109  | 10.509 | 40.933  | 22.257 | 4.546   | 15.537 | 32.851 | 12.712 | 5.673  |
| Mali                  | 80.060 | 75.876 | 23.895  | 34.064 | 2.561   | 20.243 | 32.971 | 16.424 | 35.189 |
| Mauritania            | 37.362 | 43.449 | 21.079  | 33.235 | 5.289   | 27.540 | 44.451 | 14.939 | 22.235 |
| Mauritius             | 21.348 | 39.343 | 91.374  | 29.514 | 5.415   | 24.100 | 42.157 | 13.998 | 5.587  |
| Mexico                | 10.965 | 10.073 | 28.571  | 21.406 | 9.528   | 22.462 | 76.410 | 18.467 | 3.703  |
| Micronesia, Fed. Sts. | 1.263  | 7.870  | 49.527  | 47.241 | 2.464   | 18.946 | 23.186 | 11.601 | 24.349 |
| Moldova               | 11.306 | 15.419 | 38.564  | 22.170 | 114.273 | 23.752 | 43.925 | 14.869 | 16.026 |
| Mongolia              | 3.889  | 19.624 | 38.097  | 12.056 | 22.169  | 32.860 | 62.708 | 14.782 | 19.318 |
| Montenegro            | 43.186 | 20.494 | 51.763  | 54.107 | 2.377   | 26.129 | 65.142 | 13.337 | 7.575  |
| Morocco               | 15.124 | 17.674 | 83.307  | 23.484 | 2.441   | 28.609 | 55.846 | 17.228 | 12.555 |
| Mozambique            | 88.266 | 23.424 | 30.245  | 28.549 | 7.774   | 9.355  | 30.871 | 16.840 | 25.993 |
| Myanmar               | 78.808 | 17.436 | 32.552  | 24.810 | 18.070  | 17.956 | 28.111 | 17.673 | 36.417 |
| Namibia               | 32.851 | 24.375 | 47.007  | 16.379 | 5.330   | 21.071 | 38.693 | 14.489 | 8.649  |
| Nepal                 | 87.245 | 21.167 | 63.312  | 8.246  | 7.333   | 27.583 | 15.089 | 17.049 | 33.181 |
| New Caledonia         | 6.269  | 15.000 | 25.063  | 29.163 | 1.131   | 30.496 | 64.941 | 12.341 | 2.257  |
| Niger                 | 85.983 | 29.216 | 12.926  | 27.177 | 2.732   | 20.451 | 16.125 | 16.474 | 35.351 |
| Nigeria               | 84.823 | 16.270 | 17.946  | 49.250 | 18.061  | 10.552 | 40.150 | 18.775 | 24.301 |
| North Macedonia       | 17.287 | 16.947 | 40.607  | 28.509 | 6.886   | 23.715 | 58.087 | 14.528 | 9.895  |
| Oman                  | 0.003  | 24.166 | 34.847  | 18.376 | 2.104   | 24.535 | 74.884 | 14.842 | 2.007  |
| Pakistan              | 49.223 | 18.317 | 44.411  | 26.249 | 8.485   | 16.823 | 34.056 | 18.957 | 22.741 |

| Palau                    | 0.479  | 2.778  | 22.392 | 25.220 | 2.671   | 7.554  | 73.763 | 9.808  | 3.621  |
|--------------------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| Panama                   | 27.509 | 16.862 | 57.747 | 30.968 | 1.852   | 32.734 | 62.973 | 15.013 | 4.971  |
| Papua New Guinea         | 61.172 | 43.320 | 32.892 | 21.426 | 7.021   | 16.317 | 13.447 | 15.680 | 25.818 |
| Paraguay                 | 66.711 | 61.734 | 30.841 | 37.012 | 9.216   | 20.947 | 56.936 | 15.502 | 13.209 |
| Peru                     | 34.136 | 18.309 | 35.022 | 16.417 | 254.363 | 21.098 | 74.522 | 17.141 | 7.407  |
| Philippines              | 34.260 | 15.933 | 57.958 | 20.107 | 5.479   | 20.751 | 46.272 | 18.267 | 14.102 |
| Poland                   | 8.629  | 11.645 | 48.834 | 16.032 | 28.179  | 19.919 | 61.043 | 17.458 | 3.123  |
| Qatar                    | 0.085  | 23.642 | 63.847 | 13.672 | 3.075   | 32.007 | 97.021 | 13.870 | 0.187  |
| Romania                  | 17.278 | 13.041 | 36.332 | 10.516 | 43.993  | 25.075 | 53.637 | 16.866 | 10.375 |
| Russian Federation       | 3.544  | 11.217 | 46.727 | 21.377 | 63.107  | 23.248 | 73.666 | 18.794 | 5.363  |
| Rwanda                   | 86.558 | 99.479 | 16.527 | 30.263 | 6.838   | 18.112 | 14.543 | 16.046 | 31.021 |
| Samoa                    | 48.378 | 51.703 | 39.682 | 49.446 | 3.911   | 23.781 | 20.436 | 12.154 | 12.205 |
| Sao Tome and<br>Principe | 47.563 | 35.686 | 34.979 | 20.109 | 14.589  | 12.539 | 59.739 | 12.008 | 11.669 |
| Saudi Arabia             | 0.016  | 19.399 | 51.408 | 24.225 | 1.932   | 24.176 | 80.892 | 17.026 | 3.944  |
| Senegal                  | 45.426 | 27.112 | 25.547 | 25.439 | 2.522   | 23.034 | 42.660 | 16.233 | 15.783 |
| Serbia                   | 19.152 | 14.311 | 34.407 | 9.617  | 21.665  | 17.158 | 53.827 | 15.811 | 9.548  |
| Seychelles               | 1.660  | 5.400  | 72.971 | 46.774 | 4.759   | 35.095 | 52.499 | 11.340 | 2.912  |
| Sierra Leone             | 85.109 | 25.578 | 17.804 | 34.295 | 10.001  | 12.403 | 37.652 | 15.559 | 51.043 |
| Solomon Islands          | 50.581 | 43.272 | 31.204 | 27.171 | 7.242   | 11.700 | 18.542 | 13.093 | 37.440 |
| South Africa             | 12.368 | 10.947 | 58.473 | 45.931 | 6.646   | 16.860 | 59.870 | 17.716 | 2.660  |
| South Sudan              | 31.157 | 36.586 | 28.155 | 32.564 | 87.870  | 6.894  | 19.278 | 16.196 | 7.057  |
| Sri Lanka                | 60.630 | 18.487 | 39.739 | 42.591 | 8.895   | 26.423 | 18.387 | 16.797 | 14.892 |
| Sudan                    | 70.733 | 42.549 | 17.680 | 22.850 | 55.014  | 15.293 | 32.892 | 17.226 | 33.181 |
| Suriname                 | 19.618 | 25.904 | 53.418 | 23.997 | 20.096  | 29.994 | 66.337 | 13.212 | 8.777  |

| Syrian Arab Republic | 1.733  | 41.791 | 63.606  | 25.106 | 7.675   | 1.677  | 52.504 | 16.686 | 27.343 |
|----------------------|--------|--------|---------|--------|---------|--------|--------|--------|--------|
| Tajikistan           | 52.522 | 26.105 | 18.040  | 24.799 | 11.187  | 25.306 | 27.497 | 15.777 | 24.070 |
| Tanzania             | 90.258 | 44.800 | 20.568  | 25.054 | 11.812  | 28.489 | 26.075 | 17.512 | 30.236 |
| Thailand             | 23.189 | 16.240 | 109.401 | 37.336 | 2.824   | 28.544 | 38.976 | 17.991 | 9.603  |
| Timor-Leste          | 17.777 | 16.961 | 32.564  | 29.509 | 4.844   | 28.294 | 26.202 | 13.810 | 22.625 |
| Togo                 | 77.591 | 48.376 | 30.806  | 27.432 | 3.809   | 19.160 | 35.608 | 15.570 | 28.033 |
| Tonga                | 1.716  | 9.916  | 42.593  | 29.363 | 4.982   | 23.296 | 23.096 | 11.551 | 19.830 |
| Trinidad and Tobago  | 0.694  | 33.167 | 50.435  | 26.756 | 5.584   | 10.380 | 54.449 | 14.136 | 1.485  |
| Tunisia              | 13.746 | 12.841 | 57.495  | 34.273 | 4.338   | 23.703 | 64.932 | 16.157 | 10.307 |
| Turkiye              | 16.842 | 8.178  | 42.177  | 25.103 | 35.830  | 25.883 | 67.820 | 18.038 | 10.091 |
| Tuvalu               | 1.570  | 27.814 | 38.876  | 37.568 | 0.501   | 10.304 | 51.585 | 9.224  | 21.442 |
| Uganda               | 94.193 | 9.148  | 16.715  | 37.696 | 6.101   | 21.460 | 17.605 | 17.159 | 31.214 |
| Ukraine              | 2.823  | 12.040 | 37.616  | 34.509 | 220.752 | 21.960 | 68.008 | 17.679 | 11.915 |
| United Arab Emirates | 0.152  | 15.980 | 55.740  | 20.741 | 2.030   | 19.267 | 82.292 | 15.367 | 1.313  |
| Uruguay              | 46.512 | 11.315 | 44.474  | 15.953 | 21.438  | 17.239 | 92.927 | 15.011 | 7.613  |
| Uzbekistan           | 1.288  | 27.075 | 28.503  | 23.165 | 12.240  | 27.211 | 47.706 | 17.102 | 27.794 |
| Vanuatu              | 41.316 | 30.728 | 93.719  | 31.865 | 2.739   | 26.731 | 22.821 | 12.301 | 20.498 |
| Venezuela, RB        | 14.554 | 16.762 | 30.615  | 41.611 | 72.740  | 18.625 | 87.360 | 17.071 | 4.757  |
| Viet Nam             | 46.510 | 14.536 | 72.375  | 26.728 | 5.873   | 29.817 | 28.136 | 18.233 | 21.321 |
| West Bank and Gaza   | 17.250 | 71.953 | 70.413  | 27.874 | 2.959   | 26.304 | 72.963 | 15.009 | 9.157  |
| Yemen, Rep.          | 1.480  | 67.471 | 37.117  | 27.874 | 17.496  | 11.103 | 29.449 | 16.889 | 18.706 |
| Zambia               | 86.240 | 85.943 | 19.537  | 35.855 | 33.127  | 22.703 | 38.970 | 16.299 | 12.030 |
| Zimbabwe             | 75.218 | 26.046 | 31.398  | 27.885 | 77.520  | 12.975 | 32.634 | 16.343 | 12.980 |

Panel C - Differences in mean between developing and developed countries

|                      | GD     | GI     | OER    | IDU    | INF     | GCF    | UPOP   | 1 POP  | AGR    |
|----------------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| Developed Countries  | 19.546 | 9.887  | 62.981 | 30.207 | 4.107   | 23.387 | 77.384 | 16.383 | 2.497  |
| Developing Countries | 37.790 | 31.603 | 46.524 | 26.334 | 32.499  | 22.487 | 49.160 | 15.557 | 15.539 |
| Difference           |        |        |        |        |         |        |        |        | -      |
|                      | -18.24 | -21.71 | 16.457 | 3.874  | -28.392 | 0.899  | 28.224 | 0.826  | 13.041 |
|                      | ***    | ***    | ***    | ***    | ***     | ***    | ***    | ***    | ***    |

**Table 3:** Descriptive statistics by country

Panel A and B show the summary statistics of the country-level performance variables including GD, GI and control variables by countries for the year 1975-2022 for developed and developing countries, respectively. Panel C demonstrates the difference in means between the two subsamples. The definitions of the variables are offered in Table 1.

Table 3 illustrates the summary statistics of the Green Development and Green Innovation overall score and the control variables of our models by the country for developing and developed countries in Panels A and B, respectively. Panel C of the table reports clearly the significant gap of all tested variables between the two samples. The Green Development and Green Innovation scores differences between our two subsamples are highly significant, where the statistics for developed countries are surpassed by the developing ones by 18.2 units for GD and by 21.7 units for GI. The Urbanization rate (i.e UPOP) shows a clearly opposite pattern, with the difference of 28.2 units greater for the developed nations as compared to the developed countries are Denmark, Greece, Portugal with the overall score being 14.942, 12.013, and 12.118, respectively. Notably, the top 3 countries with highest scores in Green Innovation for developing countries are Gambia, Guinea, Lesotho with the overall score being 100, 109, and 103.2, respectively.

#### 4.2. Correlation Matrix

| Variables        | (1)       | (2)       | (3)       | (4)      | (5)       | (6)       | (7)      | (8)   | VIF   |
|------------------|-----------|-----------|-----------|----------|-----------|-----------|----------|-------|-------|
| (1) GI           | 1.000     |           |           |          |           |           |          |       | 2.079 |
| (2) OER          | -0.217*** | 1.000     |           |          |           |           |          |       | 1.938 |
| (3) <b>ID</b> U  | 0.028***  | 0.027**   | 1.000     |          |           |           |          |       | 1.290 |
| (4) INF          | -0.022*   | -0.033**  | -0.016**  | 1.000    |           |           |          |       | 1.131 |
| (5) GCF          | -0.056*** | 0.091***  | 0.006*    | -0.030** | 1.000     |           |          |       | 1.066 |
| (6) <b>UPOP</b>  | -0.372*** | 0.279***  | -0.041*** | -0.016*  | 0.070***  | 1.000     |          |       | 1.041 |
| (7) <b>l_POP</b> | -0.125*** | 0.016**   | -0.140*** | 0.038*** | 0.053***  | -0.127*** | 1.000    |       | 1.008 |
| (8) AGR          | 0.412***  | -0.331*** | 0.004     | 0.060*** | -0.175*** | -0.665*** | 0.142*** | 1.000 | 1.006 |
| Mean VIF         |           |           |           |          |           |           |          |       | 1.320 |

**Table 4:** Correlation coefficient matrix.

This table provides the correlation coefficient matrix of the independent variables for our main model. The sample includes 3,089 observations in 161 countries, for the period from 1975 to 2022. The definitions of the variables are provided in Table 1

The pairwise correlations between the independent variables in our main regression are reported in **Table 4** using the entire sample. The main independent variable GI is apparently significantly correlated with all of the control variables since the correlations between them as shown in the table are statistically significant at 1%. The association between Green Innovation overall score and the Industrial Index is positive, while the data implies a negative relationship between the GI and UPOP variables. Such correlations suggest that industries facing stricter environmental regulations or resource scarcity might have a stronger economic incentive to invest in green technologies. Additionally, knowledge spillovers within industrial clusters could accelerate green innovation in specific sectors (Aldieri et al., 2019). On the contrary, while sprawling urbanization can strain environmental resources, compact, well-planned cities can foster innovation through knowledge networks and access to resources (Rosenzweig et al., 2018). The negative correlation might reflect the dominance of less environmentally friendly industries in some urban areas or the lack of supportive infrastructure for green technologies.

The correlations among the main independent variables and the control variables (ranging from -0.66 to 0.41). This implies that as the score on one scale changes, the corresponding change in the other variable is considered weak in magnitude.

Furthermore, an examination of the Variance Inflation Factor (VIF) reveals that the majority of utilized variables exhibit low multicollinearity. Notably, the Mean VIF stayed at 1.32, thereby indicating the absence of significant multicollinearity concerns (Lindner, Puck, & Verbeke, 2020).

## 4.3. Baseline results

|       | (1)       | (2)        | (3)        | (4)        | (5)       | (6)        |
|-------|-----------|------------|------------|------------|-----------|------------|
|       | Full      | Full       | Developing | Developing | Developed | Developed  |
| GI    | .076***   | .063***    | .059***    | .056***    | 003       | .371***    |
|       | (.007)    | (.007)     | (.006)     | (.007)     | (.034)    | (.082)     |
| OER   |           | 028***     |            | 018***     |           | .032*      |
|       |           | (.006)     |            | (.006)     |           | (.019)     |
| IDU   |           | 058***     |            | 096***     |           | 09**       |
|       |           | (.02)      |            | (.022)     |           | (.04)      |
| INF   |           | 0          |            | 0          |           | .013       |
|       |           | (.001)     |            | (.001)     |           | (.15)      |
| GCF   |           | 072***     |            | 058***     |           | .141       |
|       |           | (.016)     |            | (.015)     |           | (.09)      |
| 1_POP |           | -16.019*** |            | -10.125*** |           | -50.104*** |
|       |           | (1.123)    |            | (1.137)    |           | (7.254)    |
| UPOP  |           | 491***     |            | 443***     |           | 315***     |
|       |           | (.038)     |            | (.039)     |           | (.116)     |
| AGR   |           | .408***    |            | .322***    |           | 883        |
|       |           | (.03)      |            | (.03)      |           | (.555)     |
| _cons | 29.633*** | 318.577*** | 34.142***  | 221.501*** | 17.182*** | 866.622*** |
|       | (.181)    | (17.811)   | (.2)       | (17.984)   | (.372)    | (122.235)  |

| Observations | 4316 | 3089 | 3309 | 2593 | 1005 | 496  |
|--------------|------|------|------|------|------|------|
| R-squared    | .964 | .976 | .972 | .98  | .945 | .942 |
| Country FEs  | YES  | YES  | YES  | YES  | YES  | YES  |
| Year FEs     | YES  | YES  | YES  | YES  | YES  | YES  |

**Table 5:** Green Innovation and Green Development

This table depicts the findings of effects of green innovation on green development. Models (1) to (6) describe the regression outcomes for each subsample (i.e., full sample, developing countries, and developed countries). The dependent variable for all specifications is GD. Table 1 offers the definitions of the variables.

The estimation to test **Hypothesis 1** in **Table 5**. The findings of **Equation (1)** are shown for the entire sample in column (1) and (2), while the results for the developing countries subsample are depicted in columns (3) and (4). Then, the last two (5) and (6) columns illustrate the result for developed nations subsample. Wherein, the control variables are not included in column (1), (3), and (5)

Table 5 provides the statistical estimations for conducting the first hypothesis test. After running the regression test for the main explanatory variable which is Green Innovation, we discover that Green Innovation and Green Development is reported to have a beneficial relationship which is significant in both the entire sample, developing, and developed nations. These findings indicate that countries experience more sustainable use of renewable energy under the increase of Acquisitions in Green Innovations, which is consistent with a study conducted by Salvarli & Salvarli in 2020. Green innovation develops solutions like better solar panels, wind turbines, and energy storage, making renewable energy more affordable and efficient, thus increasing usage, as reduced costs and improved performance of renewable technologies make them commercially competitive with fossil fuels, driving market adoption. Figure 2 plots the fitted regression for the impact of Green Innovation on Green Development for the full sample. Specifically, we obtain country-level GI and GD by taking the averages over the sample period. The fitted regression line shows an upward-sloping trend with the correlation equals 0.48.

<sup>\*\*\*</sup> p<.01, \*\* p<.05, \* p<.1



**Figure 2:** Scatter plot on Green Innovation and Green Development as country-level average values

As given in Columns (1) and (2), the coefficients of Green Innovation are 0.076 and 0.063, respectively, explaining approximately from 0.076% and 0.063% of Green Development(i.e the increase in the use of renewable energy relative to total energy consumption) with a one-unit increase in Green Technology Patents when other factors are kept constant. This result support **Hypothesis 1** and bears similarity to the findings from the study by Geissdoerfer et al., 2017.

Based on our analysis in Models (3) and (4), nations with developing economies experiencing a one-unit increment in Green Innovations could enhance their performance in the range of 0.059%–0.056% in Green Development, ceteris paribus, the results in model (3) and (4) witnessed consistency in terms of coefficient and significance level at 1%

Meanwhile, the coefficients are witnessed to be divergent for developed countries in model (5) and (6), wherein the coefficient of GI switches from insignificance in model (5) to positive significance level at 1% when other control variables are included in model (6). Also, the impact of GI on GD in developed countries appears

stronger than that of developing nations, witnessing the difference of over 0.3%. Developed nations often have well-established infrastructure (e.g., efficient grids, energy distribution networks) and financial resources that facilitate the integration and utilization of new renewable technologies driven by GI. This existing infrastructure creates a fertile ground for green innovation to translate into concrete impacts on renewable energy adoption. Technically, the inclusion of control variables in model (6) might have "controlled out" confounding factors that previously obscured the positive relationship between GI and GD in developed nations. These factors could include variations in economic development, energy mix, or institutional capacities. Addressing these factors allows the true impact of GI to emerge for developed nations. This outcome has the team confirm **Hypothesis 1.a** 

## 4.4. Endogeneity concerns

|       | (1)     | (2)     | (3)        | (4)        | (5)       | (6)       |
|-------|---------|---------|------------|------------|-----------|-----------|
|       | Full    | Full    | Developing | Developing | Developed | Developed |
| L.GD  | .994*** | .954*** | .992***    | .955***    | 1.015***  | .961***   |
|       | (.001)  | (.002)  | (0)        | (.002)     | (800.)    | (.119)    |
| GI    | 002***  | .015*** | 0***       | .015***    | .059***   | .2***     |
|       | (0)     | (.001)  | (0)        | (0)        | (.018)    | (.109)    |
| OER   |         | .008*** |            | .005***    |           | .05**     |
|       |         | (0)     |            | (0)        |           | (.024)    |
| IDU   |         | .01***  |            | 003***     |           | 021       |
|       |         | (.001)  |            | (.001)     |           | (.064)    |
| INF   |         | .001*** |            | .001***    |           | 08        |
|       |         | (0)     |            | (0)        |           | (.126)    |
| GCF   |         | .062*** |            | .034***    |           | 171       |
|       |         | (.002)  |            | (.001)     |           | (.263)    |
| UPOP  |         | .02***  |            | .008***    |           | 028       |
|       |         | (.003)  |            | (.002)     |           | (.076)    |
| 1_POP |         | .044*** |            | 026***     |           | 966       |

|                              |         | (.015)    |         | (.01)     |        | (1.122)  |
|------------------------------|---------|-----------|---------|-----------|--------|----------|
| AGR                          |         | .114***   |         | .106***   |        | 259      |
|                              |         | (.007)    |         | (.006)    |        | (.992)   |
| _cons                        | .194*** | -4.339*** | .073*** | -1.458*** | 33     | 19.284   |
|                              | (.024)  | (.29)     | (.005)  | (.222)    | (.314) | (25.379) |
| Observations                 | 3161    | 2811      | 2472    | 2372      | 689    | 407      |
| p-value for<br>Hansen J test | 0.492   | 0.534     | 0.627   | 0.912     | 0.925  | 0.931    |
| p-value for AR(2) test       | 0.473   | 0.707     | 0.506   | 0.680     | 0.440  | 0.849    |
| Country FEs                  | YES     | YES       | YES     | YES       | YES    | YES      |
| Year FEs                     | YES     | YES       | YES     | YES       | YES    | YES      |

**Table 6:** Endogeneity addressing. GMM approach.

This table depicts the findings of effects of green innovation on green development, as estimated by the country's fixed-effects model. Models (1) to (6) describe the regression outcomes for the full sample, and two subsamples (developing countries and developed countries). The dependent variable for all specifications is L.GD. Standard errors are robust and clustered at the country level. Table 1 offers the definitions of the variables.

Taking the potential of endogeneity problems into consideration, although the team has included year and country fixed effects that capture time-invariant unobservable factors, omitted important variables that may influence the coefficient of Green Innovation. In dealing with this, the study controls the lagged dependent variable in a model and employs lagged independent variables as instruments. We used the GMM - Hansen test and AR (2) test to make sure the validity of the model (Hansen & Lee, 2021). The results are reported in **Table 6**. We find consistent results that the coefficients on GI are positive and statistically significant at 1% significance level for the full sample and stronger for developed countries compared to developing ones. Overall, the results are robust and consistent with baseline results. Therefore, endogeneity caveats are not a big problem in our model.

<sup>\*\*\*</sup> p<.01, \*\* p<.05, \* p<.1

# 4.5. The interaction term role of Gross Capital Formation

|              |            | OLS        |            |           | GMM        |            |
|--------------|------------|------------|------------|-----------|------------|------------|
|              | Full       | Developing | Developed  | Full      | Developing | Developed  |
| GI           | .052***    | .046***    | .426***    | .067***   | .018***    | 1.309      |
|              | (.008)     | (.008)     | (.116)     | (.022)    | (.004)     | (1.003)    |
| GI_high_gcf  | .025***    | .024***    | 082        | .142***   | .063***    | -1.843     |
|              | (.008)     | (.008)     | (.121)     | (.021)    | (.005)     | (1.206)    |
| high_gcf     | 634*       | 678*       | .754       | -8.936*** | 053        | 19.588     |
|              | (.345)     | (.378)     | (1.472)    | (1.43)    | (.168)     | (11.649)   |
| OER          | 027***     | 018***     | .032*      | .082***   | .016***    | .18*       |
|              | (.006)     | (.006)     | (.019)     | (.028)    | (.006)     | (.096)     |
| IDU          | 056***     | 096***     | 091**      | .327***   | .3***      | .233       |
|              | (.02)      | (.022)     | (.041)     | (.074)    | (.028)     | (.198)     |
| INF          | 0          | 0          | .003       | 011**     | 018***     | -1.149     |
|              | (.001)     | (.001)     | (.152)     | (.005)    | (.001)     | (.671)     |
| GCF          | 077***     | 061***     | .151       | .422***   | 515***     | .304       |
|              | (.019)     | (.018)     | (.11)      | (.062)    | (.024)     | (.604)     |
| l_POP        | 493***     | 444***     | 316***     | -1.006*** | 921***     | .45        |
|              | (.038)     | (.039)     | (.118)     | (.098)    | (.026)     | (.321)     |
| UPOP         | -15.979*** | -10.124*** | -50.111*** | 5.891***  | 6.474***   | -18.25***  |
|              | (1.124)    | (1.137)    | (7.327)    | (1.35)    | (.608)     | (4.199)    |
| AGR          | .407***    | .321***    | 836        | 1.657***  | 2.21***    | -2.356     |
|              | (.03)      | (.03)      | (.56)      | (.146)    | (.047)     | (1.457)    |
| _cons        | 318.405*** | 221.91***  | 865.974*** | -41.728** | -48.301*** | 249.091*** |
|              | (17.831)   | (17.989)   | (123.486)  | (21.119)  | (10.801)   | (72.736)   |
| Observations | 3089       | 2593       | 496        | 3093      | 2596       | 492        |
| R-squared    | .976       | .98        | .942       |           |            |            |

| p-value for<br>Hansen J test |     |     |     | 0.985 | 0.524 | 0.917 |
|------------------------------|-----|-----|-----|-------|-------|-------|
| p-value for AR(2) test       |     |     |     | 0.201 | 0.425 | 0.143 |
| Country FEs                  | YES | YES | YES | YES   | YES   | YES   |
| Year FEs                     | YES | YES | YES | YES   | YES   | YES   |

\*\*\* p<.01, \*\* p<.05, \* p<.1

**Table 7:** Interaction of green innovation and Gross capital formation.

This table reports the effects of green innovation and green development on the degree of gross capital formation. Models (1) through (6) show the basic regression results for each of the examined samples (full sample, developing countries, and developed countries) with GD as the dependent variable. The variables definitions are as shown in Table 1.

**Table 7** illustrates the statistical significance and how the effect of Gross Capital Formation implies on the relationship between Green Innovation and Green Development for the **Hypothesis 2**. We then progress the interaction term with three samples, including the all tested countries reported in the 1<sup>st</sup> column, developing countries subsample in the 2<sup>nd</sup> column, and the 3<sup>rd</sup> model for developed countries subsamples. We define high\_gcf as a dummy variable that equals 1 for countries which experience higher-than-median Gross Capital Formation, and equals 0, otherwise. Empirically, the result provides that Gross Capital Formation has significant impacts on the relationship in full sample (1) and developing nations (2) at 0.025 and 0.024, respectively. The coefficients on the interaction terms of these two samples are reported to be statistically significant at 1% positive, with the exception for developed nations, allowing the team to conclude a confirmation towards the **Hypothesis 2** that stronger impact on the relationship between Green Innovation and Green Development in countries with high-level Gross Capital Formation.

This finding is consistent with the study conducted by Li et al in 2023. Higher GCF (i.e increased investment in physical capital) can empower countries to adopt and integrate green technologies when: First, improved infrastructure facilitates the deployment of renewable energy systems and other green solutions. Second, develop domestic green innovation capacity as increased R&D investment and infrastructure

can foster homegrown innovation in clean technologies, tailored to local needs and context. Finally, attracting foreign green investments with stable financial environments and skilled workforces incentivize foreign companies to bring their green technologies and expertise.

Moreover, the pattern also witnessed significance within the context of developing countries, implying that the impact of Gross Capital Formation on the relationship between Green Innovation and Green Development appears to be effective in developing countries in contrast to developed ones. The effects of control variables are also shown in the tables. Similarly, we found that almost all the coefficients (except for UPOP) are statistically insignificant for the developed countries group.

The team also used the GMM - Hansen test and AR (2) test to make sure the validity of the model (Hansen & Lee, 2021). The results are reported in the next 3 columns to the right of **Table 7**. We find consistent results that the coefficients of GI\_high\_gcf in are positive and statistically significant at 1% significance level for the full sample and developing countries. Overall, the results are robust and consistent with baseline results. Therefore, endogeneity caveats are not a big problem in our model.

### 4.6. The interaction term role of Education

|             |          | OLS        |           |           | GMM        |           |
|-------------|----------|------------|-----------|-----------|------------|-----------|
|             | Full     | Developing | Developed | Full      | Developing | Developed |
| GI          | .076***  | .077***    | 275*      | .116***   | .104**     | -1.005*   |
|             | (.009)   | (.009)     | (.141)    | (.02)     | (.052)     | (.515)    |
| high_edu    | 2.673*** | 3.036***   | -2.097    | 12.844*** | 21.949***  | -9.184    |
|             | (.539)   | (.578)     | (1.675)   | (1.145)   | (3.756)    | (12.404)  |
| GI_high_edu | .084***  | .078***    | 778***    | .22***    | .392***    | -1.814*** |
|             | (.012)   | (.012)     | (.141)    | (.027)    | (.059)     | (.605)    |
| OER         | 028***   | 019***     | .046***   | .001      | 06         | .316***   |
|             | (.006)   | (.006)     | (.018)    | (.017)    | (.041)     | (.101)    |

| IDU                    | 061***     | 098***     | 111***      | .295***   | 103       | 108        |
|------------------------|------------|------------|-------------|-----------|-----------|------------|
|                        | (.02)      | (.022)     | (.037)      | (.055)    | (.117)    | (.216)     |
| INF                    | 0          | 0          | .002        | 002       | 001       | .547       |
|                        | (.001)     | (.001)     | (.14)       | (.002)    | (.003)    | (.567)     |
| GCF                    | 075***     | 061***     | .228***     | .219***   | .144**    | 445        |
|                        | (.016)     | (.015)     | (.086)      | (.035)    | (.06)     | (.609)     |
| 1_POP                  | 479***     | 434***     | 208*        | -1.06***  | -1.098*** | .423       |
|                        | (.038)     | (.039)     | (.11)       | (.08)     | (.119)    | (.385)     |
| UPOP                   | -16.072*** | -10.002*** | -64.305***  | 7.255***  | 4.278***  | -19.413*** |
|                        | (1.119)    | (1.131)    | (6.989)     | (1.281)   | (1.328)   | (3.413)    |
| AGR                    | .411***    | .32***     | 587         | 1.757***  | 1.321***  | -2.666     |
|                        | (.03)      | (.03)      | (.519)      | (.101)    | (.143)    | (2.222)    |
| _cons                  | 317.43***  | 217.627*** | 1092.486*** | -51.187** | 15.472    | 310.255*** |
|                        | (17.743)   | (17.9)     | (117.393)   | (19.843)  | (23.568)  | (66.636)   |
| Observations           | 3089       | 2593       | 496         | 3093      | 2596      | 480        |
| R-squared              | .977       | .98        | .949        |           |           |            |
| p-value for Hansen J   |            |            |             | 0.663     | 0.839     | 0.902      |
| p-value for AR(2) test |            |            |             | 0.402     | 0.671     | 0.660      |
| Country FEs            | YES        | YES        | YES         | YES       | YES       | YES        |
| Year FEs               | YES        | YES        | YES         | YES       | YES       | YES        |

Table 8: Interaction of Green innovation and Education.

This table reports the effects of green innovation and green development on the degree of education. Models (1) through (6) show the basic regression results for each of the examined samples (full sample, developing countries, and developed countries) with GD as the dependent variable. The variables definitions are as shown in Table 1.

<sup>\*\*\*</sup> p<.01, \*\* p<.05, \* p<.1

**Table 8** illustrates the statistical significance and how the effect of Education implies on the relationship between Green Innovation and Green Development for the **Hypothesis 3**. We then progress the interaction term with three samples, including the all tested countries reported in the 1<sup>st</sup> column, developing countries subsample in the 2<sup>nd</sup> column, and the 3<sup>rd</sup> model for developed countries subsamples. We define high\_edu as a dummy variable that equals 1 for countries which experience higherthan-median Education, and equals 0, otherwise. Empirically, the result provides that Education has significantly positive impacts on the relationship in full sample (1) and developing nations (2) at 0.025 and 0.024, respectively. By contrast, the figure witnessed a negative coefficient for developed countries at -0.778. The coefficients on the interaction terms of the three samples are reported to be statistically significant at 1%. Thereby, the team concluded a stronger impact on the relationship between Green Innovation and Green Development in countries with high-level investment in Education as of **Hypothesis 3**. This finding is consistent with the study from Filho et al. in 2019 that Countries with high EDU levels would see a stronger impact as the larger pool of skilled individuals contributes to innovation, technology adoption, and sustainable practices. Also, robust universities and research institutions provide continuous knowledge generation and diffusion and governments in countries with high EDU levels often prioritize green development, creating a receptive environment for innovation.

Additionally, the coefficients appear to be divergent between developing and developed countries at 0.078 and minus 0.778, sequentially, indicating that the impact of investment on Education on the relationship between Green Innovation and Green Development in developing countries is on a positive trend, whereas the remarkable negative effect occurred towards developed nations. This implies that in countries where education levels are higher than the median, the positive effects of green innovation on green development are amplified. Conversely, the results for developed countries show a negative coefficient on the interaction term between education and green innovation. This suggests that in developed countries, higher levels of education may not necessarily strengthen the relationship between green innovation and green development; instead, there might be mitigating factors at play that lead to a dampening effect.

The team also used the GMM - Hansen test and AR (2) test to make sure the validity of the model (Hansen & Lee, 2021). The results are reported in the next 3 columns to the right of **Table 8**. We find consistent results that the coefficients of GI\_high\_edu in are positive and statistically significant at 1% significance level for the full sample, developing countries and negative figure for developed ones. Overall, the results are robust and consistent with baseline results. Therefore, endogeneity caveats are not a big problem in our model.

## 4.7. The interaction term role of Digital Transformation

|             |           | OLS        |            |          | GMM        |            |
|-------------|-----------|------------|------------|----------|------------|------------|
|             | Full      | Developing | Developed  | Full     | Developing | Developed  |
| GI          | .084***   | .079***    | .108       | .118***  | .071***    | -1.228**   |
|             | (.009)    | (.009)     | (.106)     | (.029)   | (.017)     | (.56)      |
| high_dtf    | 1.486***  | 1.504***   | -4.248***  | 6.587*** | 5.668***   | -8.78      |
|             | (.315)    | (.336)     | (1.248)    | (1.166)  | (1.267)    | (11.816)   |
| GI_high_dtf | .032***   | .034***    | 446***     | .238***  | .119***    | -1.681***  |
|             | (.009)    | (.008)     | (.115)     | (.032)   | (.02)      | (.837)     |
| OER         | 03***     | 02***      | .045**     | .052**   | 186***     | .659***    |
|             | (.006)    | (.006)     | (.019)     | (.021)   | (.022)     | (.107)     |
| IDU         | 054***    | 092***     | 104***     | .132**   | 002        | .421       |
|             | (.02)     | (.022)     | (.04)      | (.063)   | (.084)     | (.369)     |
| INF         | 0         | 0          | 001        | .001     | 0          | 1.098      |
|             | (.001)    | (.001)     | (.149)     | (.002)   | (.001)     | (1.229)    |
| GCF         | 071***    | 057***     | .099       | 12***    | 057        | -2.477**   |
|             | (.016)    | (.015)     | (.09)      | (.045)   | (.035)     | (.931)     |
| 1_POP       | 487***    | 442***     | 265**      | 93***    | -1.091***  | 228        |
|             | (.038)    | (.039)     | (.115)     | (.106)   | (.073)     | (.378)     |
| UPOP        | -14.99*** | -9.162***  | -48.783*** | 4.653*** | 5.435***   | -20.122*** |
|             | (1.143)   | (1.156)    | (7.16)     | (1.324)  | (1.274)    | (4.111)    |

| AGR                          | .407***    | .324***    | -1.212**   | 1.945*** | 1.581*** | -14.721**  |
|------------------------------|------------|------------|------------|----------|----------|------------|
|                              | (.03)      | (.03)      | (.558)     | (.152)   | (.126)   | (5.479)    |
| _cons                        | 300.752*** | 204.952*** | 844.611*** | -20.297  | -3.646   | 416.044*** |
|                              | (18.186)   | (18.337)   | (120.679)  | (21.073) | (21.76)  | (104.25)   |
| Observations                 | 3089       | 2593       | 496        | 3093     | 2596     | 480        |
| R-squared                    | .977       | .98        | .949       |          |          |            |
| p-value for Hansen J<br>test |            |            |            | 0.564    | 0.432    | 0.897      |
| p-value for AR(2) test       |            |            |            | 0.891    | 0.252    | 0.770      |
| Country FEs                  | YES        | YES        | YES        | YES      | YES      | YES        |
| Year FEs                     | YES        | YES        | YES        | YES      | YES      | YES        |

**Table 9:** Interaction of Green innovation and Digital transformation.

This table reports the effects of green innovation and green development on the degree of digital transformation. Models (1) through (6) show the basic regression results for each of the examined samples (full sample, developing countries, and developed countries) with GD as the dependent variable. The variables definitions are as shown in Table 1.

Table 9 illustrates the statistical significance and how the effect of Digital Transformation (i.e the growth in ICT) implies on the relationship between Green Innovation and Green Development for the **Hypothesis 4**. We then progress the interaction term with three samples, including the all tested countries reported in the 1<sup>st</sup> column, developing countries subsample in the 2<sup>nd</sup> column, and the 3<sup>rd</sup> model for developed countries subsamples. We define high\_dtf as a dummy variable that equals 1 for countries which experience higher-than-median Digital Transformation, and equals 0, otherwise. Empirically, the result provides that the growth in Digital Transformation has significantly positive impacts on the relationship in full sample (1) and developing nations (2) at 0.032 and 0.034, respectively. By contrast, the figure witnessed a negative coefficient for developed countries at -0.446. The coefficients on the interaction terms of the three samples are reported to be statistically significant at 1%. This suggests that in countries experiencing higher levels of digital transformation, characterized by increased adoption and integration of Information

<sup>\*\*\*</sup> p<.01, \*\* p<.05, \* p<.1

and Communication Technologies (ICTs), the positive effects of green innovation on green development are amplified. This could be attributed to several factors, including the potential of ICTs to enhance efficiency, optimize resource utilization, and facilitate the implementation of sustainable practices in these countries (Malmodin et al., 2014, Coroamă et al., 2020). This finding enables the team to confirm **Hypothesis 4** that the positive impact of Green Innovation on Green Development is more pronounced for high digital transformation levels countries

Additionally, the coefficients appear to be divergent between developing and developed countries at 0.034 and minus 0.446, sequentially, indicating that the impact of development in ICT services on the relationship between Green Innovation and Green Development is on a positive trend for developing countries, whereas the remarkable negative effect occurred towards developed nations. In developing countries, where digital transformation may be associated with leapfrogging traditional development pathways and accelerating economic growth, the positive impact on the relationship between green innovation and green development is more pronounced. Conversely, in developed countries, where digital transformation may be more incremental and intertwined with issues such as automation, job displacement, and environmental externalities, the relationship may be more complex and potentially negative (Shen & Wang, 2023).

The team also used the GMM - Hansen test and AR (2) test to make sure the validity of the model (Hansen & Lee, 2021). The results are reported in the next 3 columns to the right of **Table 9**. We find consistent results that the coefficients of GI\_high\_dtf in are positive and statistically significant at 1% significance level for the full sample, developing countries and negative figure for developed ones. Overall, the results are robust and consistent with baseline results. Therefore, endogeneity caveats are not a big problem in our model.

# 4.8. Implications for GDP Growth

|              | (1)      | (2)     | (3)        | (4)        | (5)       | (6)       |
|--------------|----------|---------|------------|------------|-----------|-----------|
|              | Full     | Full    | Developing | Developing | Developed | Developed |
| GI           | .002***  | .002**  | .002***    | .002**     | 0         | .005**    |
|              | (.001)   | (.001)  | (.001)     | (.001)     | (.001)    | (.002)    |
| high_GD      | 125***   | 079***  | 127***     | 06         | 054*      | .021      |
|              | (.024)   | (.028)  | (.037)     | (.04)      | (.029)    | (.036)    |
| GI_high_GD   | .003***  | .002*** | .003***    | .003***    | 0         | 006**     |
|              | (.001)   | (.001)  | (.001)     | (.001)     | (.002)    | (.003)    |
| OER          |          | .002*** |            | .003***    |           | 0         |
|              |          | (0)     |            | (0)        |           | (0)       |
| IDU          |          | .001    |            | .003***    |           | 004***    |
|              |          | (.001)  |            | (.001)     |           | (.001)    |
| INF          |          | 0       |            | 0          |           | .002      |
|              |          | (0)     |            | (0)        |           | (.003)    |
| GCF          |          | .003*** |            | .003***    |           | 0         |
|              |          | (.001)  |            | (.001)     |           | (.002)    |
| UPOP         |          | .005**  |            | .005**     |           | 004       |
|              |          | (.002)  |            | (.002)     |           | (.003)    |
| 1_POP        |          | .116**  |            | .162**     |           | 195       |
|              |          | (.056)  |            | (.065)     |           | (.155)    |
| AGR          |          | .001    |            | .002       |           | 046***    |
|              |          | (.002)  |            | (.002)     |           | (.012)    |
| _cons        | 1.509*** | 917     | 1.436***   | -1.83*     | 1.647***  | 5.343**   |
|              | (.016)   | (.906)  | (.026)     | (1.05)     | (.015)    | (2.617)   |
| Observations | 3006     | 2308    | 2140       | 1851       | 866       | 457       |
| R-squared    | .814     | .823    | .798       | .809       | .818      | .891      |
| Country FEs  | YES      | YES     | YES        | YES        | YES       | YES       |

Year FEs YES YES YES YES YES YES

Standard errors are in parentheses

**Table 10:** The impact of green development and green innovation on GDP Growth.

This table reports the effects of green development and green innovation on GDP Growth. Models (1) through (6) show the basic regression results for each of the examined samples (full sample, developing countries, and developed countries) with GI as the dependent variable. The variables definitions are as shown in Table 1.

In order to determine the moderating role of Green Development in the linkage between Green Innovation and economic growth, we define high\_GD as a dummy variable that equals 1 if a country's level of Green Development is higher than the median level, and 0 otherwise. We then attach this dummy variable to Green Innovation. Specifically, we estimate the following model:

$$log (GDP) = \beta_0 + \beta_1 GI_{i,j} + \beta_2 high\_g d_{i,j} + \beta_3 GI_{i,j} \times high\_g d_{i,j}$$
$$+ \alpha' Control \ variables_{i,j} + \delta_i + \delta_j + \mu_{i,j} (5)$$

In this equation, we focus on the coefficient on  $\beta_3$ . If high Green Development can strengthen the positive impact of Green Innovation on Economic Growth, we expect that the coefficient on this interaction term will be positive and statistically significant. The results are reported in **Table 10**. Results obtained suggest that while Green Innovation solely has a positive effect on economic growth, this influence is strengthened to positive impact for instances where there is high Green Development. We can infer that conclusion through the coefficients of GI and GI\_high\_GD. This results support **Hypothesis 5** which is consistent with recent study related to the role of Green Development (Ha et al., 2023).

In comparison with countries with low Green Development, the effects of Green Innovation on economic growth appears to be positive for countries with high Green Development by 0.002. Furthermore, the positive impact appears to be stronger within the context of developing nations by 0.003. Whereas, the developed countries experienced an opposite direction at -0.006. Hence, these findings unveil a potential topic for further research on the divergence between developing and developed nations in the contributions of Green Innovation and Green Development in improving the national GDP.

## 5. CONCLUSION, LIMITATIONS, AND POLICY IMPLICATIONS

### 5.1. Conclusion

Our thorough investigation offers strong proof for the claim that green innovation is essential to achieving the goals of green development. Our analysis shows a strong and positive correlation between investments in green innovation and several measures of sustainable development across a sample of 161 nations from 1975 to 2022. The study's descriptive statistics provide an in-depth look at the distribution and patterns of important factors associated with green innovation and green development. These figures, which range from mean scores to extreme values, highlight the scope and complexity of our investigation and provide our findings a solid basis.

Moreover, the analysis we conducted on trendlines and country group comparisons reveals noteworthy variations and trends in the correlation between green innovation and green development in various settings. Whether examining the difference between developing and developed countries or the effects of particular moderating factors like Gross Capital Formation, Education, and Digital Transformation, our results consistently indicate that green innovation has a positive impact on the outcomes of sustainable development.

The regression results, which show statistically significant and positive coefficients for the association between green innovation and green development across a variety of models and nation groupings, support these conclusions even more. The addition of interaction categories, such digital transformation, education, and gross capital formation, is noteworthy because it clarifies the complex ways in which these variables enhance the benefits of green innovation on sustainable development goals. The robustness of our findings is further supported by our sensitivity analyses that address endogeneity issues, adding further weight to the claim that green innovation and green development are causally related.

As a result, our study emphasizes how revolutionary green innovation may be in creating a future that is resilient and sustainable for future generations. Through the adoption of green innovation and the implementation of focused policies and

interventions, we can create a more sustainable, just, and affluent society that benefits everyone.

#### 5.2. Limitations

There are several restrictions that need to be taken into account, even if this study offers useful information on the connections between the previously listed factors. First off, we are limited in our capacity to conclusively demonstrate causal linkages by the observational character of our data. Secondly, our study relies on aggregated country-level data, which can obscure heteroskedasticity within countries and fail to capture localized effects of green innovation initiatives. Variations in policy environments, institutional frameworks, and socio-economic conditions across different regions within countries may affect the observed relationships and limit the generalizability of the findings. Additionally, while our analysis includes a wide range of control variables and interaction terms to account for the complex interplay between green innovation and green development, there may be other unobserved factors that could confound the results. Examples of variables not included in our analysis but that could potentially impact the outcomes are cultural attitudes towards sustainability, political stability, and access to technology. Furthermore, the reliance on secondary data sources for variables like Green Innovation scores, Gross Capital Formation, Education, and Digital Transformation may introduce measurement errors that constrain the analysis. Finally, the topic discussed is still quite new. When it comes to gathering pertinent data and including significant variables that might be more thoroughly controlled to provide outcomes better suited for serious scientific inquiry, there are still numerous gaps in our understanding.

# 5.3. Policy implications

Several types of support may be offered to help countries that have not yet achieved green development in their transformation. They consist of lending money, sharing technology, developing capacity, and offering policy recommendations.

Nations that want to make investments in facilities, sustainable practices, and green technology need financial backing. Green development initiatives can be implemented with the cooperation of prosperous countries and global organizations,

which might offer loans, subsidies, financial aid, or a link to sustainable investment resources. Furthermore, technology helps countries in their endeavors toward sustainable development. Rich nations can exchange technical know-how and give access to eco-friendly technology. By facilitating information sharing, encouraging collaboration in study and development, and aiding in the integration of innovations to local settings, global initiatives and groups can help to enhance technology transmission. Besides, building capacity may be achieved at several levels through the implementation of technical instruction programs, seminars, and educational activities. Ecological legislation, clean energy systems, coping with climate change, and environmentally friendly resource management are a few areas where capacity-building initiatives might be concentrated.

Adopting and implementing successful green development programs need policy direction and cooperation from governments. Policies, best practices, and frameworks for policy that are customized for each country's unique circumstances can be obtained from global organizations, research centers, and specialists. Authorities must set up structures of laws and regulations that encourage innovative green practices and sustainable growth to foster an enabling climate. This might involve actions like grants, tax breaks, and subsidies for eco-friendly activities and technology. To pool assets and knowledge for green development projects, governments should also support collaboration between the public and private sectors. Implementing policies also depends on strong organizational capacity and efficient governance. The government must fortify its ecological governance frameworks, delineate definite duties and obligations, and augment cooperation among pertinent ministries, agencies, and interested parties. By doing this, green development initiatives may be implemented, tracked, and evaluated effectively. The efficient execution of green development strategies necessitates stakeholder participation and public knowledge. To develop a sustainable culture and motivate behavior shifts toward eco-friendly behaviors, governments, civil society groups, and educational institutions can support public involvement initiatives, educational efforts, and activities.

Our papers provide policymakers with the information they need to develop plans that are tailored to their nation and involve global collaboration, networks, and platforms. These can help in the sharing of best practices, lessons discovered, and experiences. Hence, assisting nations in adapting policies to their unique settings and learning from another's triumphs and problems.

In summary, helping countries on their path to green development may be accomplished through the provision of financial support, technological transfer, capacity training, and policy advice. It takes a mix of supporting regulations and laws, effective management and organizations, public understanding, stakeholder involvement, and global cooperation to enact the regulations that ecological innovation delivers to its research in real-life situations. Together, these components enable countries to make the shift to sustainable growth and reap the rewards of green innovation.

#### **5.4. Further research**

According to our research, developing nations hold great future potential for sustainable economic growth. They have bountiful renewable assets like solar, wind, water, and geothermal vitality, which can lessen reliance on fossil fuels and contribute positively to a greener energy mix. Developing locations can also skip outdated technologies and directly embrace modern and eco-friendly practices in areas for example energy, farming, transportation, and waste management. By encouraging invention and entrepreneurship, they can tackle local environmental challenges through reasonably priced and clean energy solutions, sustainable agriculture methods, and earth-friendly products. Expanding customer markets in these countries offer chances for sustainable businesses to thrive by meeting the increasing demand for environmentally friendly goods and services. Developing countries can also benefit from their natural resources, like diverse ecosystems and biodiversity, to develop sectors like ecotourism and sustainable agriculture. Supportive policies, access to finance and technology, skills training, and international collaboration are crucial for achieving sustainable progress in these places.

Further analyzing, studying their linkages in certain developing areas through qualitative and quantitative analysis could offer useful understanding of effective funding methods at the project level. Examining projects like renewable energy or sustainable agriculture initiatives could provide insight into how gross capital formation delivery and regulations influence results. Comparatively assessing these dynamics across regions with diverse economic profiles, governance systems, and natural resources may also provide valuable information given potential differences in gross capital formation impact. Regions such as sub-Saharan Africa, Southeast Asia, and small island developing nations could offer interesting comparisons. Additionally, analyzing policy interventions aiming to optimize gross capital formation contributions to national green progress deserves consideration. Deeper localized and cross-regional evaluations may recognize policies best suited to leverage financial resources for environmental and economic benefits.

Our findings suggest that comprehending the relationship between GD and GI is only the preliminary step. It is vital to examine differences in effects based on national characteristics to learn more about this connection. We also explore the heterogeneity in the effects due to country characteristics. Particularly developing countries may benefit much from innovation if they concentrate on important areas such as digital transformation, fundamental facilities, and literacy. Educating more people as well as being equipped to lead innovation in sustainable technology. Enhancing fundamental infrastructure, such as dependable electricity and transport, helps create a climate in which companies and sectors can embrace and disseminate environmentally friendly ideas. By facilitating efficient utilization of resources, easing the transition to energy from sustainable resources, and improving connections for faraway places, the digital revolution also promotes ecology. The governments of developing nations may optimize the advantageous effects of the GI-GD connection and steer sustainable and equitable prosperity by prioritizing certain areas.

### 6. REFERENCES

- Aldieri, L., Carlucci, F., Vinci, C. P., & Yigitcanlar, T. (2019). Environmental innovation, knowledge spillovers and policy implications: A systematic review of the economic effects literature. *Journal of Cleaner Production*, 239, 118051.
- Alfonso, C., Gavilan, D., García-Madariaga, J., & Gonçalves, H. M. (2018). Green consumer segmentation: managerial and environmental implications from the perspective of business strategies and practices. Sustainability in Innovation and Entrepreneurship: Policies and Practices for a World with Finite Resources, 137-151.
- Ali, N., Phoungthong, K., Techato, K., Ali, W., Abbas, S., Dhanraj, J. A., & Khan, A. (2022). FDI, Green innovation and environmental quality nexus: New insights from BRICS economies. *Sustainability*, 14(4), 2181.
- Alraja, M. N., Imran, R., Khashab, B. M., & Shah, M. (2022). Technological innovation, sustainable green practices and SMEs sustainable performance in times of crisis (COVID-19 pandemic). *Information Systems Frontiers*, 24(4), 1081-1105.
- Anholon, R., Rampasso, I. S., Silva, D. A., Leal Filho, W., & Quelhas, O. L. G. (2020). The COVID-19 pandemic and the growing need to train engineers aligned to the sustainable development goals. *International Journal of Sustainability in Higher Education*, 21(6), 1269-1275.
- Arfi, W. B., Hikkerova, L., & Sahut, J. M. (2018). External knowledge sources, green innovation and performance. *Technological forecasting and social change*, 129, 210-220.
- Arsawan, I., Koval, V., Duginets, G., Kalinin, O., & Korostova, I. (2021). Impact of Green Innovation on Environmental Performance of SMEs in An Emerging Economy..

- Banelienė, R., & Strazdas, R. (2023). Green innovation for competitiveness: Impact on GDP growth in the European Union. *Contemporary Economics*, 17(1), 92-108. https://doi.org/10.5709/ce.1897-9254.501.
- Bocken, N. M., Short, S. W., Rana, P., & Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. *Journal of Cleaner Production*, 65, 42-56.
- Brundtland, G. H. (1987). Our common future: Report of the World Commission on Environment and Development. *Oxford: Oxford University Press*.
- Coroamă, V. C., Hilty, L. M., & Birtel, M. (2012). Effects of Internet-Based Multiple-Site Conferences on Greenhouse Gas Emissions. *Telematics & Informatics*, 29(4), 362-374. https://www.sciencedirect.com/science/article/pii/S0736585311000773?casa\_t oken=yqw-wJJOzO0AAAAA:NUq-QEGIml70tlkqkz9CGqr6SOjMnBaUd3qdvN-TNEmVxXCCh0E\_5M0K6SLKnZ4d1QXPkuS6JQw
- Cunningham, S. (2022, March 31). *How to connect ICT and digital transformation in development work.* Helvetas Mosaic. Retrieved from https://www.helvetas.org/en/eastern-europe/about-us/follow-us/helvetas-mosaic/article/March2022/Connect-ICT-Digital-Transformation-Development-Work
- Del Giudice, M., Soto-Acosta, P., Carayannis, E., & Scuotto, V. (2018). Emerging perspectives on business process management (BPM): IT-based processes and ambidextrous organizations, theory and practice. *Business process management journal*, 24(5), 1070-1076.
- Dogaru, L. (2021, January). Green economy and green growth—Opportunities for sustainable development. In *Proceedings* (Vol. 63, No. 1, p. 70). MDPI.
- Fay, M. (2012). Inclusive green growth: The pathway to sustainable development. *World Bank Publications*.

- Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm?. *Journal of cleaner production*, *143*, 757-768.
- Ha, N. M., Nguyen, P. A., Luan, N. V., & Tam, N. M. (2023). Impact of green innovation on environmental performance and financial performance. Environment, Development and Sustainability, 1-22.
- Hansen, B. E., & Lee, S. (2021). Inference for iterated GMM under misspecification. *Econometrica*, 89(3), 1419-1447.
- Hischier, R., & Hilty, L. M. (2002). Environmental Impacts of an International Conference. *Environmental Impact Assessment Review*, 22, 543-5571. https://www.sciencedirect.com/science/article/abs/pii/S0195925502000276
- Hockerts, K., & Wüstenhagen, R. (2010). Greening Goliaths versus emerging Davids—Theorizing about the role of incumbents and new entrants in sustainable entrepreneurship. *Journal of Business Venturing*, 25(5), 481-492.
- Hordofa, T. T., Vu, H. M., Maneengam, A., Mughal, N., & Liying, S. (2023). Does eco-innovation and green investment limit the CO2 emissions in China?. *Economic research-Ekonomska istraživanja*, *36*(1), 634-649.
- Hsu, C. C., Tsaih, R. H., & Yen, D. C. (2018). The evolving role of IT departments in digital transformation. *Sustainability*, *10*(10), 3706.
- Indrawati, S. M. (2015, July 28). Why green development is so important. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2015/07/why-green-development-is-so-important/
- Intergovernmental Panel on Climate Change (IPCC). (2014). *Climate change 2014: Mitigation of climate change*. Retrieved from https://www.ipcc.ch/report/ar5/wg3/

- Irandoust, M. (2016). The renewable energy-growth nexus with carbon emissions and technological innovation: Evidence from the Nordic countries. *Ecological indicators*, 69, 118-125.
- Janowski, T. (2016). Implementing sustainable development goals with digital government—aspiration-capacity gap. *Government Information Quarterly*, 33(4), 603-613.
- Jiang, J., & Zhang, M. (2020). Friends with benefits: Patronage networks and distributive politics in China. *Journal of Public Economics*, 184, 104143.
- Jun, W., Ali, W., Bhutto, M. Y., Hussain, H., & Khan, N. A. (2021). Examining the determinants of green innovation adoption in SMEs: A PLS-SEM approach. *European Journal of Innovation Management*, 24(1), 67-87.
- Koester, E. (2017). Green entrepreneur handbook: the guide to building and growing a green and clean business (p. 461). *Taylor & Francis*.
- Kristyanto, V. S., & Jamil, H. (2023). Digital transformation and its impact on inclusive growth: a four-decade experience in Indonesia. *Jurnal Ekonomi & Studi Pembangunan*, 24(2).
- Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., ... & Thomas, C. J. (2012). Transdisciplinary research in sustainability science: practice, principles, and challenges. *Sustainability science*, 7, 25-43.
- Leal Filho, W., Skanavis, C., Kounani, A., Brandli, L. L., Shiel, C., do Paco, A., ... & Shula, K. (2019). The role of planning in implementing sustainable development in a higher education context. *Journal of Cleaner Production*, 235, 678-687.
- Lee, C. C., Wang, C. W., & Thinh, B. T. (2023). Green development, climate risks, and cash flow: International evidence. *Pacific-Basin Finance Journal*, 79, 102021.
- Li, Y., Wang, X., Imran, A., Aslam, M. U., & Mehmood, U. (2023). Analyzing the contribution of renewable energy and natural resources for sustainability in G-

- 20 countries: How gross capital formation impacts ecological footprints. *Heliyon*, 9(8).
- Lilliestam, J., Patt, A., & Bersalli, G. (2022). On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021). *Environmental and resource economics*, 83(3), 733-758.
- Lin, B., & Zhu, J. (2019). The role of renewable energy technological innovation on climate change: Empirical evidence from China. *Science of the Total Environment*, 659, 1505-1512.
- Lindner, T., Puck, J., & Verbeke, A. (2020). Misconceptions about multicollinearity in international business research: Identification, consequences, and remedies. *Journal of International Business Studies*, 51, 283-298.
- Luo, S., Yimamu, N., Li, Y., Wu, H., Irfan, M., & Hao, Y. (2023). Digitalization and sustainable development: How could digital economy development improve green innovation in China?. *Business Strategy and the Environment*, 32(4), 1847-1871.
- Ma, D., & Zhu, Q. (2022). Innovation in emerging economies: Research on the digital economy driving high-quality green development. *Journal of Business Research*, 145, 801-813.
- Malmodin, J., Bergmark, P., Lövehagen, N., Ercan, M., & Bondesson, A. (2014, August). Considerations for macro-level studies of ICT´s enablement potential. In ICT for *Sustainability 2014 (ICT4S-14)* (pp. 179-188). Atlantis Press.
- Mngumi, F., Shaorong, S., Shair, F., & Waqas, M. (2022). Does green finance mitigate the effects of climate variability: role of renewable energy investment and infrastructure. *Environmental Science and Pollution Research*, 29(39), 59287-59299.
- Nawaz, M. A., Seshadri, U., Kumar, P., Aqdas, R., Patwary, A. K., & Riaz, M. (2021).

  Nexus between green finance and climate change mitigation in N-11 and BRICS

- countries: empirical estimation through difference in differences (DID) approach. *Environmental Science and Pollution Research*, 28, 6504-6519.
- Ni, Z., Yang, J., & Razzaq, A. (2022). How do natural resources, digitalization, and institutional governance contribute to ecological sustainability through load capacity factors in highly resource-consuming economies?. *Resources Policy*, 79, 103068.
- Organisation for Economic Co-operation and Development (OECD). (2011). What is green growth and how can it help deliver sustainable development? OECD.

  Retrieved from https://www.oecd.org/greengrowth/whatisgreengrowthandhowcanithelpdeliver sustainabledevelopment.htm
- Popp, D. (2019). Environmental policy and innovation: a decade of research.
- Rahman, Z. U., & Ahmad, M. (2019). Modeling the relationship between gross capital formation and CO 2 (a) symmetrically in the case of Pakistan: an empirical analysis through NARDL approach. *Environmental Science and Pollution Research*, 26, 8111-8124.
- Rath, B. N., & Hermawan, D. (2019). Do Information and Communication Technologies

  Foster Economic Growth in Indonesia? *Buletin Ekonomi Moneter Dan Perbankan*, 22(1), 103–122. https://doi.org/10.21098/bemp.v22i1.1041
- Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S., & Ibrahim, S. A. (Eds.). (2018). Climate change and cities: Second assessment report of the urban climate change research network. Cambridge University Press.
- Salvarli, M. S., & Salvarli, H. (2020). For sustainable development: Future trends in renewable energy and enabling technologies. In *Renewable energy-resources, challenges and applications*. IntechOpen.

- Schiederig, T., Tietze, F., & Herstatt, C. (2012). Green innovation in technology and innovation management—An exploratory literature review. *R&D Management*, 42(2), 180-192.
- Shen, A., & Wang, R. (2023). Digital Transformation and Green Development Research: Microscopic Evidence from China's Listed Construction Companies. *Sustainability*, 15(16), 12481.
- Song, X., Geng, Y., Li, K., Zhang, X., Wu, F., Pan, H., & Zhang, Y. (2020). Does environmental infrastructure investment contribute to emissions reduction? A case of China. *Frontiers in Energy*, *14*, 57-70.
- Taghizadeh-Hesary, F., & Yoshino, N. (2019). Handbook of green finance: Energy security and sustainable development. *Springer*.
- Tang, K., & Zhang, K. (2023). The Effects of Low-Carbon Governance on Energy-Environmental Efficiency: Evidence from China's Low-Carbon City Pilot Policy. *Emerging Markets Finance and Trade*, 1-19.
- Tawiah, V., Zakari, A., & Adedoyin, F. F. (2021). Determinants of green growth in developed and developing countries. *Environmental Science and Pollution Research*, 28, 39227-39242.
- Truong, T. C. (2022). The impact of digital transformation on environmental sustainability. *Advances in Multimedia*, 2022, 1-12.
- Tu, Y. T., Lin, C. Y., Ehsanullah, S., Anh, N. H. V., Duong, K. D., & Huy, P. Q. (2023). Role of energy consumption and sustainability-oriented eco-innovation on economic growth: evidence from Middle Eastern economy. *Environmental Science and Pollution Research*, 30(2), 3197-3212.
- Ufua, D. E., Emielu, E. T., Olujobi, O. J., Lakhani, F., Borishade, T. T., Ibidunni, A. S., & Osabuohien, E. S. (2021). Digital transformation: A conceptual framing for attaining Sustainable Development Goals 4 and 9 in Nigeria. *Journal of Management & Organization*, 27(5), 836-849.

- Ulucak, R. (2020). How do environmental technologies affect green growth? Evidence from BRICS economies. *Science of the Total Environment*, 712, 136504.
- United Nations (UN). (2015). *Transforming our world: The 2030 Agenda for Sustainable Development*. Retrieved from https://sdgs.un.org/2030agenda
- United Nations Conference on Trade and Development (UNCTAD). (2015). ICT services. In *DGFF* 2021. Retrieved from https://dgff2021.unctad.org/annexes/glossary/ict-services/#Ref\_B8SW35XV
- United Nations Conference on Trade and Development (UNCTAD). (2015).

  International Trade in ICT Services and ICT-enabled Services: Proposed Indicators from the Partnership on Measuring ICT for Development, Geneva: UNCTAD.

https://unstats.un.org/unsd/classifications/expertgroup/egm2015/ac289-Bk5.PDF

- United Nations Environment Programme (UNEP). (2016). *Green finance for developing countries: Needs, concerns and innovations*. Retrieved from https://wedocs.unep.org/bitstream/handle/20.500.11822/7673/Green\_finance\_for\_developing\_countries\_Needs,\_concerns\_and\_innovations-2016Green\_Finance\_for\_Developing\_Countries.pdf.pdf?sequence=4&%3Bis Allowed=y%2C%20Summary%7C%7Chttps%3A//wedocs.unep.org/bitstream/ha
- United Nations Environment Programme UNEP. (2011). Towards a Green Economy:

  Pathways to Sustainable Development and Poverty Eradication. United Nations

  Environment Programme. Retrieved from https://sdgs.un.org/publications/unep-2011-towards-green-economy-pathways-sustainable-development-and-poverty
- Videras, J., Owen, A. L., Conover, E., & Wu, S. (2012). The influence of social relationships on pro-environment behaviors. *Journal of Environmental Economics and Management*, 63(1), 35-50.

- Volz, U. (2018). Fostering green finance for sustainable development in Asia.
- Wang, H., Khan, M. A. S., Anwar, F., Shahzad, F., Adu, D., & Murad, M. (2021). Green innovation practices and its impacts on environmental and organizational performance. *Frontiers in Psychology*, 11, 553625.
- Wang, J., & Zhou, G. (2020). The impact of government subsidies on private R&D investment in different markets. *Mathematical Problems in Engineering*, 2020, 1-21.
- Wang, L., Chang, H. L., Rizvi, S. K. A., & Sari, A. (2020). Are eco-innovation and export diversification mutually exclusive to control carbon emissions in G-7 countries?. *Journal of Environmental Management*, 270, 110829.
- Wasiq, M., Kamal, M., & Ali, N. (2023). Factors Influencing Green Innovation Adoption and Its Impact on the Sustainability Performance of Small-and Medium-Sized Enterprises in Saudi Arabia. *Sustainability*, 15(3), 2447.
- Wen, J., Ali, W., Hussain, J., Khan, N. A., Hussain, H., Ali, N., & Akhtar, R. (2021). Dynamics between green innovation and environmental quality: new insights into South Asian economies. *Economia Politica*, 1-23.
- World Bank. (2017). South Africa economic update: More innovation could improve productivity, create jobs and reduce poverty. Retrieved from https://www.worldbank.org/en/country/southafrica/publication/south-africa-economic-update-more-innovation-could-improve-productivity-create-jobs-and-reduce-poverty
- WTO (2023). Digital trade for development. https://www.wto.org/english/res\_e/booksp\_e/dtd2023\_e.pdf
- Yin, C., Salmador, M. P., Li, D., & Lloria, M. B. (2022). Green entrepreneurship and SME performance: The moderating effect of firm age. *International Entrepreneurship and Management Journal*, 18(1), 255-275.

- Yin, J., & Wang, S. (2018). The effects of corporate environmental disclosure on environmental innovation from stakeholder perspectives. *Applied economics*, 50(8), 905-919.
- Yin, S., & Yu, Y. (2022). An adoption-implementation framework of digital green knowledge to improve the performance of digital green innovation practices for industry 5.0. *Journal of Cleaner Production*, 363, 132608.
- Yu, C. H., Wu, X., Zhang, D., Chen, S., & Zhao, J. (2021). Demand for green finance: Resolving financing constraints on green innovation in China. *Energy Policy*, 153, 112255.
- Yu, Y., & Du, Y. (2019). Impact of technological innovation on CO2 emissions and emissions trend prediction on 'New Normal'economy in China. *Atmospheric Pollution Research*, 10(1), 152-161.
- Zeng, S., Xie, X., & Tam, C. M. (2010). Relationship between cooperation networks and innovation performance of SMEs. *Technovation*, *30*(3), 181-194.