第二章 随机变量的分布

- 1. 随机变量的分布函数
- 2. 离散型随机变量
- 3. 连续型随机变量

一、概率密度函数

回想例子

射击试验

仪器寿命问题

设随机变量X的分布函数为F(x),若存在非负函数f(x),对于任意实数x,均有

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

则称随机变量X是连续型随机变量,称函数 f(x)为X的概率密度函数,简称概率密度。

概率密度函数

(1) 连续型随机变量X的分布函数是连续函数

证明:由分布函数的性质可知,F(x)在x处右连续。 又,对于 $\Delta x > 0$,

$$0 \le F(x) - F(x - \Delta x) = \int_{-\infty}^{x} f(t)dt - \int_{-\infty}^{x - \Delta x} f(t)dt$$
$$= \int_{x - \Delta x}^{x} f(t)dt \to 0, \quad \text{if } \Delta x \to 0 +$$

即F(x)在x处左连续,故F(x)在x处连续。

概率密度函数

(2) X 是连续型随机变量,则对任意实数 $x_0 \in R$,有 $P\{X = x_0\} = 0$

证明: 当 $\Delta x > 0$, 有 $\{X = x_0\} \subset \{x_0 - \Delta x < X \le x_0\}$

$$\therefore 0 \le P\{X = x_0\} \le P\{x_0 - \Delta x < X \le x_0\}$$
$$= F(x_0) - F(x_0 - \Delta x)$$

 $\phi \Delta x \to 0$, 由F(x)的连续性可知有

$$0 \le P\{X = x_0\} = F(x_0) - F(x_0 - \Delta x) \to 0$$

$$\therefore P\{X=x_0\}=0$$

概率密度函数

(3) $P(\phi) = 0$, 但是其逆不真

证明:由第一章和上述性质(2)的知识可得该结果。

概率密度函数的性质:

性质(1) $f(x) \geq 0$

性质(2) $\int_{-\infty}^{+\infty} f(x)dx = 1$ (概率曲线下面积为1)

若有函数f(x)满足上述(1)和(2),则它必是某个随 机变量的概率密度。

概率密度函数性质

性质(3)
$$P\{x_1 \le X < x_2\} = P\{x_1 < X \le x_2\}$$

$$= P\{x_1 < X < x_2\}$$

$$= P\{x_1 \le X \le x_2\}$$

$$= \int_{x_1}^{x_2} f(x) dx$$
证明: $P\{x_1 < X \le x_2\} = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$

$$\{x_1 \le X \le x_2\} = \{x_1 < X \le x_2\} \cup \{X = x_1\}$$

其余类似。

 $P\{X=x_1\}=0$

概率密度函数性质

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

性质(4) 若f(x)在点x处连续,则有 F'(x) = f(x)

证明:
$$F'(x) = \left[\int_{-\infty}^{x} f(t)dt\right]_{x}^{y} = f(x)$$

性质的应用

概率密度判定

函数参数确定

概率的计算

二、几种常见连续型分布

- 1. 均匀分布 (Uniform Distribution)
- 2. 指数分布 (Exponential Distribution)
- 3. 正态分布 (Normal Distribution)

1、均匀分布 (Uniform Distribution)

设随机变量X的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & else \end{cases}$$

则称随机变量X在区间 (a, b)上服从均匀分布,记为 $X \sim U(a, b)$ 。

其分布函数为:
$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & b \le x \end{cases}$$

均匀分布 (Uniform Distribution)

概率密度函 (2)

应用: (1) 大量试验服从均匀分布;

(2) 其它随机变量的计算机摸拟的基础.

均匀分布特点: 随机变量X落在(a,b)的子区间的概 率与位置无关,仅与测度(即长度)成正比.

反之、具备这种特性的就是均匀分布.

$$\forall (c, c+d) \subset (a, b)$$
 $\forall, any,$ 任意

$$P\{c < X \le c + d\} = \int_{c}^{c+d} \frac{1}{b-a} dx = \frac{d}{b-a}$$

方程有实根的概率

2、指数分布 (Exponential Distribution)

设随机变量X的概率密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases} \qquad (\lambda > 0)$$

则称随机变量X 服从参数为 λ 的<mark>指数分布</mark>, 记 为 $X \sim E(\lambda)$.

其分布函数为:
$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

2、指数分布 (Exponential Distribution)

指数分布 (Exponential Distribution)

概率密度函数图

回忆:参数 2的含义?对应图形分析

槐

(2)

特点:指数分布具有无后效性(无记忆性)

$$P\{X > t + s | X > t\} = P\{X > s\}$$
 "永远年青"

应用: (1)常用于描述稳定状态的寿命分布;

特点:指数分布具有无后效性(无记忆性)

$$P\{X > t + s | X > t\} = P\{X > s\}$$
 "永远年青"

应用: (1)常用于描述稳定状态的寿命分布;

(2)可以用来表示独立随机事件发生的时间间隔, 比如汽车经过路口的时间间隔.

灯管寿命

3、正态分布 (Normal Distribution)

设随机变量X的概率密度函数为

$$\varphi(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

其中 μ , σ (σ > 0) 是常数

则称随机变量X 服从参数为 μ , σ^2 的正态分布(或高斯分布),记为 $X \sim N(\mu$, σ^2).

常见正态分布如: 身高、体重、成绩、计量 误差等

3、正态分布 (Normal Distribution)

$$\varphi(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

特别地, 当 $\mu = 0$, $\sigma = 1$ 时, 其概率密度函数为

$$\varphi(x) = \varphi(x; 0, 1) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{x}{2}}, x \in R$$

则称随机变量X 服从标准正态分布, 即 $X \sim N(0,1)$

正态分布 (Normal Distribution)

绿色线代表标准正态分布

① 概率曲线下总面积为1,即

$$\int_{-\infty}^{+\infty} \varphi(x; \mu, \sigma^2) dx = 1$$

② 曲线值关于直线 x= μ 对称, 即对任意实数 x 有

$$\varphi(\mu-x;\mu,\sigma^2) = \varphi(\mu+x;\mu,\sigma^2)$$

曲线下直线 $x=\mu$ 两侧的面积各为1/2,并且

$$P(\mu - x < X \le \mu) = P(\mu < X \le \mu + x)$$

正态分布概率密度曲线的特征

③ 30原理 (3倍标准差原理)

$$P\{\mu - \sigma < X < \mu + \sigma\} = 0.6826$$

$$P\{\mu - 2\sigma < X < \mu + 2\sigma\} = 0.9544$$

$$P\{\mu - 3\sigma < X < \mu + 3\sigma\} = 0.9972$$

- 征兵问题
- 服装设计

凯特勒(Lambert Adolphe Jacques Quetelet, 1796~1874),比利时统 计学家、数学家和天文学家。被统计 学界称为"近代统计学之父"。

从1831年开始,凯特勒搜集了大量关于人体生理测量的数据,如体重、身高与胸围等。经分析研究后,认为这些生理特征都围绕着一个平均值而上下波动,呈现出概率论中所述的正态分布。

运用这个规律,检查出苏格兰新兵身高频率曲线与理论 正态分布曲线不相吻合的不正常情况,推测这可能是<u>征兵工</u> 作中出了问题。调查结果发现,果真有几个征兵机关从中作 弊。

正态分布概率密度曲线的特征

④ 曲线在 $x = \mu$ 处取得最大值 $\frac{1}{\sigma\sqrt{2\pi}}$ 固定 μ , σ^2 越大, 曲线越趋于平坦。

$$\varphi(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$$

II. 正态分布概率的计算

若随机变量 $X \sim N(\mu, \sigma^2)$, 其分布函数为

$$\Phi(x;\mu,\sigma^2) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt, \quad x \in \mathbb{R}$$

若随机变量 $X \sim N(0,1)$, 其分布函数为

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt, \quad x \in \mathbb{R}$$

Ⅱ. 正态分布概率的计算

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt, \quad x \in \mathbb{R}$$

由于 $\Phi(x)$ 不能解析求出,为方便计算,人们编制了《标准正态分布表》(见附表2). 由 $\Phi(x)$ 的对称性有 $\Phi(-x) = 1 - \Phi(x)$,故仅给出 $x \ge 0$ 的值.

$$\Phi(-x) = P(X \le -x) = P(X \ge x)$$

$$= 1 - P(X < x) = 1 - P(X \le x)$$

$$= 1 - \Phi(x)$$

II. 正态分布概率的¹

《标准正态分布表》 查表方法

$$\Phi(x) = p$$

- 右下方为概率p
- 第1列为x的个位
 与小数点后第1位
- 第1行为x的小数点后第2位
- 例如

$$\Phi(1.96) = 0.975$$

附表 2 标准正态分布表

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = P(X \leq x)$$

x	0	1	2	3	.4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9013
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9220	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.970
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.976

II. 正态分布概率的计算

① 若随机变量 $X \sim N(0,1)$,则

$$P\{a < X \le b\} = \Phi(b) - \Phi(a)$$

② 若随机变量 $X \sim N(\mu, \sigma^2)$,则

$$P\{x_1 < X \le x_2\} = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$$

② 证明:

$$P\{x_{1} < X \leq x_{2}\} = F(x_{2}) - F(x_{1})$$

$$= \Phi(x_{2}; \mu, \sigma^{2}) - \Phi(x_{1}; \mu, \sigma^{2})$$

II. 正态分布概率的计算

$$\Phi(x;\mu,\sigma^2) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

$$y = \frac{t - \mu}{\sigma} \int_{-\infty}^{\frac{x - \mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

$$P\{x_1 < X \le x_2\} = \Phi(x_2; \mu, \sigma^2) - \Phi(x_1; \mu, \sigma^2)$$
$$= \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$$

正态分布事件概率

车门设计

上侧分位数

有时,我们需要求随机变量以给定概率落在某个区 间上的分界点,称之为 $分位数。如设 X \sim N(0,1)$, 若存在某个实数 u_a 使 $P\{X>u_a\}=\alpha$,则称 u_a 为标准正 态分布对应于α的上侧分位数。

例

分位数

电池可靠性估计

随机变量并不是只有离散型和连续型两类.

随机变量并不是只有离散型和连续型两类.

- 1. 判断随机变量不是离散型
 - ① 若分布函数不是阶梯型
 - ② 若分布函数在某区域严格单增
 - ——对应有效取值无穷多(不是有限个或可列个)
- 2. 判断随机变量不是连续型
 - ① 分布函数不是连续函数
 - ② 存在某个概率不为0的点