

10u15 - 10u45 : Voorstelling bedrijfsspecifieke cases 10u45 - 11u30 : Stand van zaken + onderzoeksresultaten

11u30 - 11u45 : Pauze (koffie)

11u45 - 12u15 : Voorstelling doctoraatsonderzoek 12u15 - 12u25 : RaPiDo : IWT - TETRA in aanvraag

12u25 - 12u30 : Administratie 12u30 - ... : Broodjeslunch

AGENDA - OVERZICHT

10u15 - 10u45 : Voorstelling bedrijfsspecifieke cases

10u45 - 11u30 : Stand van zaken + onderzoeksresultaten

11u30 - 11u45 : Pauze (koffie)

11u45 - 12u15 : Voorstelling doctoraatsonderzoek 12u15 - 12u25 : RaPiDo : IWT - TETRA in aanvraag

12u25 - 12u30 : Administratie 12u30 - ... : Broodjeslunch

CASES - DOMEINEN

- Geselecteerde domeinen EAVISE Lessius
 - Remote sensing
 - Landbouw/bio
 - Automatisatie
 - Verkeersmonitoring (vanuit thesisopdracht)
- Geselecteerd domein Mobilab KHK
 - Ouderenmonitoring
- Geselecteerd domein IMOB UHasselt
 - Verkeersmonitoring

CASE 1: EUROSENSE

- Detectie objecten in luchtfoto's
- Doel: segmentatie van belangrijke informatie in deze beelden
- Enkele focuspunten
- Detectie verkeerssignalisatie
- Detectie spoorwegen
- Detectie zonnepanelen Detectie dakramen
- Orthofoto's
 - Stuk Nederland
 - · 16000x16000
 - resolutie 25 cm Stad Oostende

Lessius

CASE 2: VANSTEELANDT

- Detectie personen en nummerplaten
- Doel: wegwerken (blurring) van gezichten personen en nummerplaten privacy
- 360° panoramische opnames.
- Dataset : 4650 beelden Nederland / 4800 x 2400 pixels / 2,6MB

CASE 3: CASE NEW HOLLAND

- Detectie van onzuiverheden bij het dorsen van gewassen met GrainCam
- Doel: zorgen voor optimaal rendement in de graantank afstellen van machine

CASE 3: CASE NEW HOLLAND

CASE 4: INDUCT

- Telling van rijpe aardbeien in een serre in het kader van *precision farming*
- Doel: detectie en segmentatie van aardbeien onderscheid rijp <-> onrijp voor correcte telling

Voorstelling bedrijfsspecifieke cases

CASE 5: BIOBEST

- Detectie van mijten in een petrischaal
- Doel: hoeveelheidsbepaling mijten in referentiestalen
- Moeilijkheid in zichtbaarheid voor mens

Voorstelling bedrijfsspecifieke cases

CASE 5: BIOBEST

· Moeilijkere gevallen, oplossing?

Voorstelling bedrijfsspecifieke cases

CASE 6: TRAFICON

- Detectie & telling personen bij een zebrapad
- Doel: aansturen verkeerslichten, tijd voetgangers, ...
- Personen die stilstaan kunnen niet gedetecteerd worden op bewegingsinformatie

Voorstelling bedrijfsspecifieke cases

CASE 7: ??? ??? ???

- Er ontbreekt nog een expliciete testcase in het domein automatisatie
- Mogelijkheden die onderzocht worden
 - Picking van paprika's (Creative Computing)
 - Kwaliteitsmeting Orchideeën (Aris)
 - Pepers/baxternaalden/... (RoboVision)
 - Chocoladetruffels (VHA)
- Voorstellen nog steeds welkom
- FOCUS: objecten in een "lopende band" omgeving

CASE 8: DETECTIE HOUDING PERSONEN - OUDERENMONITORING

- 2 modellen: zitten en staan
 - Tracking
 - Timed Get Up and Go test (valrisico bepalen)

Voorstelling bedrijfsspecifieke cases

CASE 8: DETECTIE HOUDING PERSONEN - OUDERENMONITORING

- Mogelijke uitbereiding : detectie van hulpmiddelen
 - Interferentie

CASE 9: VERKEERS-MONITORING / GEVALSTUDIE

- Doel: automatische detectie en analyse van gevaarlijke situaties uit videobeelden
 - Op basis van objectieve meting van conflicternst
 - Meestal o.b.v. snelheid en afstand
- Tussenstappen:
 - Detecteren en traceren van verschillende types weggebruikers op camerabeelden
 - Meten van snelheden, afstanden,... door geometrische informatie toe te voegen in algoritme
 - Implementatie conflictmaatstaven (bv. TTC, PET, Time Advantage,...)

AGENDA - OVERZICHT

10u15 - 10u45 : Voorstelling bedrijfsspecifieke cases

10u45 - 11u30 : Stand van zaken + onderzoeksresultaten

11u30 - 11u45 : Pauze (koffie)

11u45 - 12u15 : Voorstelling doctoraatsonderzoek 12u15 - 12u25 : RaPiDo : IWT - TETRA in aanvraag

12u25 - 12u30 : Administratie 12u30 - ... : Broodjeslunch

TOPICS

Implementatie:

- Ontwikkeling annotatiesoftware
- Implementatie detectie-algoritmes
- Testen met beschikbare modellen

Uitbreidingen:

- Oriëntatienormalisatie
- Schaalnormalisatie
- Kleur en Multispectraal (Dollàr)

ANNOTATIESOFTWARE

- Algoritmes kunnen niet getrained worden zonder de nodige trainingsbeelden
- Trainingsbeeld = gecentreerd beeld van het object in kwestie
- Deze trainingsbeelden zijn in veel cases niet beschikbaar.
- Daarom eigen tool ontwikkelen om vlot data te annoteren (regio's met objecten selecteren)
- Gebruiksvriendelijkheid maximaliseren
- Fusie met detector voor nog efficiëntere annotatie (future work)

ANNOTATIESOFTWARE

- 3 delen: annotatie visualisatie conversie
 - 1. Effectieve annotatie van een set beelden
 - INPUT = set van beelden
 - OUTPUT = annotatiefile met bounding box + center
 - 2. Visualisatie van een set beelden
 - INPUT = annotatiefile
 - OUTPUT = set van beelden met visuele annotatie
 - 3. Video conversie tool
 - INPUT = set van beelden / videobestand
 - OUTPUT = videobestand / set van beelden

ANNOTATIESOFTWARE

- Een kleine demo
- Annoteren van een beeld met enkele paprika's
- 3 stappen
 - Beeld annoteren
 - Annotatiegegevens doorlopen
 - Annotaties visualiseren

TOPICS

Implementatie:

- Ontwikkeling annotatiesoftware
- Implementatie detectie-algoritmes
- Testen met beschikbare modellen

→ Samen uitgewerkt

Uitbreidingen:

- Oriëntatienormalisatie
- Schaalnormalisatie
- Kleur en Multispectraal (Dollàr)

MOGELIJKHEDEN IN OPENCV

- In OpenCV 2.4.3 zijn volgende zaken aanwezig:
 - 1. Viola&Jones detector
 - 2. Dallal&Triggs HOG model detector
 - 3. Felzenswalb LatentSVM detector
- Hiervan bestaan zowel CPU als GPU versies

MOGELIJKHEDEN IN OPENCV

1. Viola & Jones detector

MOGELIJKHEDEN IN OPENCV

- 1. Viola & Jones detector enkele video's
 - Viola & Jones face HAAR
 - Viola & Jones face LBP
 - Viola & Jones person partial blur
 - Viola & Jones GPU speed increase

MOGELIJKHEDEN IN OPENCV

2. Dallal&Triggs - HOG model detector

- Te hoog model rekent zeer lang Ook niet alle oriëntaties in beeld -> zie oriëntatienormalisatie

MOGELIJKHEDEN IN OPENCV

- 2. Dallal&Triggs HOG model detector
 - HOG model pedestrians
 - parameters ingebakken in de code
 - moeten berekend worden voor een ander model
 - Toegepast op pedestrian video

Originele code / Part based maar parts worden niet terug gegeven / Niet geoptimaliseerd Toch getest op enkele testbeelden

MOGELIJKHEDEN IN OPENCV

3. Felzenswalb - LatentSVM detector

T**⊕**B*Cat*

MOGELIJKHEDEN IN OPENCV

3. Felzenswalb - LatentSVM detector

MOGELIJKHEDEN IN OPENCV

3. Felzenswalb - LatentSVM detector

MOGELIJKHEDEN IN OPENCV

- 3. Felzenswalb LatentSVM detector
 - Binnen EAVISE ook ander onderzoek die gebruik maakt van persoonsdetectie
 - Geoptimaliseerde C versie op website van Felzenszwalb zelf beschikbaar (linux/osx)
 - Eigen GPU-geoptimaliseerde versie (500 pedestrians/sec)
 - Ook warping window approach ontwikkeld (zie volgende slides)

OVERZICHT ALGORITMES EN MODELLEN

	Detector	Models available	Trainings- software	
Viola & Jones	OpenCV / C++ CPU/GPU	face, full body	OpenCV / C++	
Leibe & Schiele	C++	cow, motorbike, sneaker	C++	
Dalal & Triggs	OpenCV CPU/GPU	pedestrian	-	
Felsenszwalb	OpenCV / C++ CPU/GPU	pedestrian, upper body, bicycle, car	OpenCV / C++	
Gall & Limpitzky	OpenCV / C++	mouth	OpenCV / C++	
Dollàr	Matlab – toolbox Channel features	/	/	

Lessius

TOPICS

Implementatie:

- Ontwikkeling annotatiesoftware
- Implementatie detectie-algoritmes
- Testen met beschikbare modellen

Uitbreidingen:

- Oriëntatienormalisatie
- Schaalnormalisatie
- Kleur en Multispectraal (Dollàr)

ORIËNTATIENORMALISATIE

- In industriële beelden, komen objecten in alle mogelijke oriëntaties voor
- Momenteel wordt dit mee getrained in het model.
 - Veel trainingsbeelden nodig Training duurt pak langer
- Werkt niet optimaal Oplossing: te detecteren regio's eerst normaliseren in oriëntatie
- Gebruikmakend van de dominante oriëntatie in het beeld

DOMINANTE ORIËNTATIE

- Idee toegepast om de case van Eurosense, namelijk het detecteren van wegmarkeringen.
 - Typisch lineaire structuren Overduidelijke dominante oriëntatie

DOMINANTE ORIËNTATIE

- Mapping van alle gradiënt componenten
- Dominantie gradiënt (blauw) oriëntatie (rood)

TOPICS

Implementatie:

- · Ontwikkeling annotatiesoftware
- Implementatie detectie-algoritmes
- Testen met beschikbare modellen

Uitbreidingen:

- Oriëntatienormalisatie
- Schaalnormalisatie
- Kleur en Multispectraal (Dollàr)

SCHAAL EN ZOEKREGIO

- Op basis van een geannoteerde set kunnen we heel wat informatie ophalen.
- Intuïtief: geen personen in de lucht
- Toegepast op de case Vansteelandt
- Set manuele annotaties
- · Bevat informatie voor detectieschaal
- Bevat informatie voor locatie van detectie

SCHAAL EN ZOEKREGIO

SCHAAL EN ZOEKREGIO

- Elke hoogte van bounding box = schaal
- T.o.v elke positie in het beeld

SCHAAL EN ZOEKREGIO

- Uitgezet op een origineel beeld
 Grenzen + selectieve schaal voor detectie
- Voordelen:

Minder rekenwerk

Minder valse detecties

TOPICS

Implementatie:

- · Ontwikkeling annotatiesoftware
- Implementatie detectie-algoritmes
- Testen met beschikbare modellen

Uitbreidingen:

- Oriëntatienormalisatie
- Schaalnormalisatie
- Kleur en Multispectraal (Dollár)

KLEUR MEENEMEN

- In objectdetectors wordt kleurinfo niet gebruikt
 - Invariantie tegen belichtingsvariatie
 - Kleur niet relevant voor object (bvb. auto)
- Kleur soms wel belangrijk bij industriële objecten
 - Gecontroleerde belichting
 - Kleur van object discriminatief
- Twee approaches:
 - Kleursegmentatie vooraf verkleint zoekgebied
 - Kleur meenemen in objectmodel

KLEURSEGMENTATIE VOOR ZOEKRUIMTE BIJ AARDBEIEN

Normaliseren door elk kanaal te delen

0.298*R + 0.587*G + 0.114*B

KLEURSEGMENTATIE VOOR ZOEKRUIMTE BIJ AARDBEIEN

- Ook andere kleurruimtes bekeken, zoals HSV
- Goed resultaat voor onrijpe aardbeien → geel

KLEURSEGMENTATIE VOOR ZOEKRUIMTE BIJ AARDBEIEN

- Eerste complete segmentatie
- Masker voor rijpe en onrijpe aardbeien

- Ontwijken → manuele thresholding
- Dynamisch aspect verder onderzoeken

MULTISPECTRALE KLEURSEGMENTATIE - MIJTEN

- Case Biobest : detectie en telling mijten
- Mijten zeer moeilijk zichtbaar met het menselijke oog
- Momenteel manuele telling door persoon met ervaring
- VRAAG: kan multispectrale informatie hier een oplossing bieden?
- DOEL : zoektocht naar multispectrale informatie van de mijten

MULTISPECTRALE KLEURSEGMENTATIE - MIJTEN

- · Eigen spectrograaf opstelling opgebouwd
- Calibratie van het systeem
- TOEKOMST: petriscaal opmeten met deze opstelling

MULTISPECTRALE KLEURSEGMENTATIE - MIJTEN

MULTISPECTRAAL

 Idee dat multispectrale informatie ons meer kan gaan vertellen over het voorwerp kan hergebruikt worden

- Toepassing in andere cases
 - INDUCT detectie van aardbeien rijp / onrijp

DE 'DOLLÁR' - AANPAK

- Objectdetectietechnieken zoeken objecten op basis van eigenschappen, features genaamd.
- Deze features zijn door de ontwikkelaars van algoritmes gekozen op basis van hun eis destijds.
 - Viola & Jones → Haar Wavelet like filters
 - Felzenszwalb → Histogram of oriented gradients
 - Gall&Lempitsky → Spatial information of patches

DE 'DOLLÁR' - AANPAK

- Piotr Dollár gebruikt meerdere kanalen met informatie om een object te beschrijven:
 - Kleurinformatie + kleurruimtes
 - Gradiëntinformatie
 - Edge-informatie
 - Specifieke filters

- ...

 Algoritme selecteert automatisch welke beeldkenmerken in objectmodel worden opgenomen

DE 'DOLLÁR' - AANPAK

• Een voorbeeld : detectie van personen

DE 'DOLLÀR' - AANPAK

- De methode van Dollàr et al. (BMVC 2009) nemen we op in dit project
 - Combineert features van Viola&Jones en Dalal&Triggs
 - Kan eenvoudig kleurinfo meenemen in model
 - Extreem snelle training en classificatie
 - Hoge robuustheid
- We zullen Matlab implementatie porten naar OpenCV

AGENDA - OVERZICHT

10u15 - 10u45 : Voorstelling bedrijfsspecifieke cases

10u45 - 11u30 : Stand van zaken + onderzoeksresultaten

11u30 - 11u45 : Pauze (koffie)

11u45 - 12u15 : Voorstelling doctoraatsonderzoek

12u15 - 12u25 : RaPiDo : IWT - TETRA in aanvraag

12u25 - 12u30 : Administratie 12u30 - ... : Broodjeslunch

VOORSTELLING DOCTORAAT

- Simultaan met TOBCAT opstart doctoraat
- "Exploiting scene constraints to improve object categorization algorithms for industrial applications"
- In samenwerking met ESAT/PSI-VISICS aan de KU.Leuven

 KATHOLIEKE LINWEBSITETT

 KATHOLIEKE LINWEBSITETT

 ACTUMENT OF THE PROPERTY OF THE PROPE

VOORSTELLING DOCTORAAT

- Idee ontstaan vanuit TOBCAT
- Object categorisatie technieken bestaan
- Men gaat deze echter testen op de meest irrelevantie voorbeeld datasets, naast voetgangers & auto's

VOORSTELLING DOCTORAAT

 Evolutie doorheen technieken naar een complex model, teneinde heel wat variaties tegen te gaan.

Table 1: Comparison of robustness against degrees of freedom of existing object categorization algorithms. (Illumin. = Illumination differences / Locati. = Location of objects / Scale = Scale changes / Orient. = Orientation of objects / Occlu. = Occlusions / Clutt. = Clutter intra-class variability.

Technique Example			Degrees of freedom							
		Mumin.	Locati.	Scale	Orient	Occlu.	Cluff.	LC.V.		
NCC - based pattern matching	(Lewis, 1995)	X	X	-	-	-	-	-		
Edge - based pattern matching	(Hsieh et al., 1997)	X	X	X	X	-	-	-		
Global moment invariants for recognition	(Mindru et al., 2004)	X	X	X	Х	-	-	-		
Object recognition with local keypoints	(Bay et al., 2006)	X	X	X	X	X	X	-		
Object categorization algorithms	(Gall and Lempitsky, 2009)	X	X	X	-	X	X	X		
Industrial Applications	_	_	-	_	X	X	_	X		

VOORSTELLING DOCTORAAT

- Deze evolutie is echter niet noodzakelijk voor elke industriële toepassing.
- Gebruik van 'scene constraints', beperkingen en reducties op algoritmes op basis van de meetomgeving.
 - 1. Belichtingsverandering
 - 2. Schaal en locatie van objecten
 - 3. Oriëntatie van objecten
- Deze zouden de algoritmes een pak robuuster kunnen maken voor industriële toepassingen

VOORSTELLING DOCTORAAT

- Ook de annotatie / trainingsfase moet herbekeken worden.
- Variaties worden immers dikwijls weggewerkt met een grote trainingsdataset met veel variatie in de beelden.
- De 'scene constraints' kunnen hier dus de dataset geweldig reduceren.
- Ook het annoteren naar een meer automatische annotatie laten evolueren.

VOORSTELLING DOCTORAAT

Position paper aanvaard voor posterpresentatie.

 8th International Conference on Computer Vision Theory and Applications. - Barcelona -

AGENDA - OVERZICHT

10u15 - 10u45 : Voorstelling bedrijfsspecifieke cases

10u45 - 11u30 : Stand van zaken + onderzoeksresultaten

11u30 - 11u45 : Pauze (koffie)

11u45 - 12u15 : Voorstelling doctoraatsonderzoek

12u15 - 12u25 : RaPiDo : IWT - TETRA in aanvraag

12u25 - 12u30 : Administratie 12u30 - ... : Broodjeslunch

RAPIDO - MEERWAARDE PROJECT

- Richtlijn voor het maken van de vele keuzes qua hard- en software voor een random picking-oplossing
 - 2D/3D sensor
 - Objectdetectie-algoritme
 - Grijperkeuze
- Grenzen van de huidige mogelijkheden aftasten Bvb. zeer moeilijk te detecteren objecten (glas, ...)
- Potentieel van een aantal nieuw opkomende technologieën aftoetsen
 - Structured light 3D sensor
 - Multi Flash Camera
 - Visual servoing
 - Underactuated gripper

AGENDA - OVERZICHT

10u15 - 10u45 : Voorstelling bedrijfsspecifieke cases

10u45 - 11u30 : Stand van zaken + onderzoeksresultaten

11u30 - 11u45 : Pauze (koffie)

11u45 - 12u15 : Voorstelling doctoraatsonderzoek 12u15 - 12u25 : RaPiDo : IWT - TETRA in aanvraag

12u25 - 12u30 : Administratie

12u30 - ... : Broodjeslunch

ADMINISTRATIE

- Regelement van Orde
- IWT e-tool "gebruikerspoll"
- Cofinanciering uitsturen facturen
- Feedback & vragen altijd welkom via mail/tel/...
- Projectwebsite: www.eavise.be/tobcat

CONTACTGEGEVENS

Zit u nog met vragen, aarzel dan niet om ons te contacteren:

- Toon Goedemé projectleider
 - toon.goedeme@lessius.eu
- 015/31 69 44
- Steven Puttemans projectonderzoeker
 - steven.puttemans@lessius.eu
 - 015/31 69 44

