Sparse Linear Algebra: LU Factorization

Kristin Davies

Peter He

Feng Xie

Hamid Ghaffari

April 4, 2007

Outline

- Introduction to LU Factorization (Kristin)
- LU Transformation Algorithms (Kristin)
- LU and Sparsity (Peter)
- Simplex Method (Feng)
- LU Update (Hamid)

Introduction — What is LU Factorization?

 Matrix decomposition into the product of a lower and upper triangular matrix:

$$A = LU$$

• Example for a 3x3 matrix:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Introduction – LU Existence

- LU factorization can be completed on an invertible matrix if and only if all its principle minors are non-zero

A is invertible if B exists s.t.

$$AB = BA = I$$

Recall: invertible Recall: principle minors

$$\det(a_{11}) \qquad \det(a_{22}) \qquad \det(a_{33})$$

$$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} \det\begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix}$$

$$\det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Introduction - LU Unique Existence

 Imposing the requirement that the diagonal of either L or U must consist of ones results in unique LU factorization

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 & 0 \\ l_{11} & 0 & 0 & l_{12} & l_{13} \\ l_{21} & l_{22} & 0 & 1 & l_{23} \\ l_{31} & l_{32} & l_{33} & 0 & 0 & 1 \end{bmatrix}$$

Introduction — Why LU Factorization?

- LU factorization is useful in numerical analysis for:
 - Solving systems of linear equations (AX=B)
 - Computing the inverse of a matrix
- LU factorization is advantageous when there is a need to solve a set of equations for many different values of B

Transformation Algorithms

- Modified form of Gaussian elimination
- Doolittle factorization L has 1's on its diagonal
- Crout factorization U has 1's on its diagonal
- Cholesky factorization U=L^T or L=U^T
- Solution to AX=B is found as follows:
 - Construct the matrices L and U (if possible)
 - Solve LY=B for Y using forward substitution
 - Solve UX=Y for X using back substitution

Transformations – Doolittle

- Doolittle factorization L has 1's on its diagonal
- General algorithm determine rows of U from top to bottom; determine columns of L from left to right

Transformations – Doolittle example

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$
 for j=i:n
 $L_{ik}U_{kj} = A_{ij}$ gives row i of U end

$$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ 0 \\ 0 \end{pmatrix} = 2 \quad \Rightarrow \quad u_{11} = 2$$

Similarly
$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_{13} \\ u_{23} \\ u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

$$\Rightarrow u_{12} = -1, u_{13} = -2$$

Transformations – Doolittle example

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$
 for j=i+1:n L_{jk}U_{ki}=A_{ji} gives column i of L end

$$\begin{pmatrix} l_{21} & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = -4 \implies 2l_{21} = -4 \implies l_{21} = -2$$

Similarly
$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

$$\Rightarrow l_{31} = -2$$

Transformations – Doolittle example

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 & -1 & -2 \\ l_{21} & 1 & 0 & 0 & u_{22} & u_{23} \\ l_{31} & l_{32} & 1 & 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

1st coln of L

$$\begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & 4 & -1 \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

2nd row of U

2nd coln of L

Transformations – Doolittle example

Execute algorithm for our example (n=3)

```
\label{eq:for_in} \begin{split} &\text{for } \text{j=i:n} \\ & \quad L_{ik} \textbf{U}_{kj} \text{=} \textbf{A}_{ij} \text{ gives row i of } \textbf{U} \\ &\text{end} \\ &\text{for } \text{j=i+1:n} \\ & \quad L_{jk} \textbf{U}_{ki} \text{=} \textbf{A}_{ji} \text{ gives column i of } \textbf{L} \\ &\text{end} \\ \end{split}
```

```
i=1

j=1 → L_{1k}U_{k1}=A_{11} gives row 1 of U

j=2 → L_{1k}U_{k2}=A_{12} gives row 1 of U

j=3 → L_{1k}U_{k3}=A_{13} gives row 1 of U

j=1+1=2 → L_{2k}U_{k1}=A_{21} gives column 1 of L

j=3 → L_{3k}U_{k1}=A_{31} gives column 1 of L

i=2

j=2 → L_{2k}U_{k2}=A_{22} gives row 2 of U

j=3 → L_{2k}U_{k3}=A_{23} gives row 2 of U

j=3 → L_{2k}U_{k3}=A_{23} gives row 2 of U

j=2+1=3 → L_{3k}U_{k2}=A_{32} gives column 2 of L

i=3

j=3 → L_{3k}U_{k3}=A_{33} gives row 3 of U
```

Transformations – Crout

- Crout factorization U has 1's on its diagonal
- General algorithm determine columns of L from left to right; determine rows of U from top to bottom (same!?)

Transformations – Crout example

$$\begin{pmatrix} l_{11} & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \implies l_{11} = 2$$

Similarly

$$\begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} u_{12} \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} u_{13} \\ u_{23} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -4 & 6 & 3 \\ -4 & -2 & 8 \end{bmatrix}$$

$$\Rightarrow l_{21} = -4, l_{21} = -4$$

Transformations – Solution

 Once the L and U matrices have been found, we can easily solve our system

AX=B → AUX=B

$$\begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Forward Substitution

$$y_{1} = \frac{b_{1}}{l_{11}}$$

$$b_{i} - \sum_{j=1}^{i-1} l_{ij} x_{j}$$

$$y_{i} = \frac{a_{ii}}{a_{ii}} \quad for i = 2,...n$$

UX=Y

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Backward Substitution

$$x_{n} = \frac{y_{n}}{u_{nn}}$$

$$y_{i} - \sum_{j=i+1}^{n} u_{ij} y_{j}$$

$$x_{i} = \frac{y_{i} - \sum_{j=i+1}^{n} u_{ij} y_{j}}{u_{ii}} \quad for i = (n-1),...1$$

References - Intro & Transformations

- Module for Forward and Backward Substitution.
 http://math.fullerton.edu/mathews/n2003/BackSubstitutionMod.hml
- Forward and Backward Substitution.
 www.ac3.edu/papers/Khoury-thesis/node13.html
- LU Decomposition.
 http://en.wikipedia.org/wiki/LU decomposition
- Crout Matrix Decomposition.
 http://en.wikipedia.org/wiki/Crout matrix decomposition
- Doolittle Decomposition of a Matrix. <u>www.engr.colostate.edu/~thompson/hPage/CourseMat/Tutorials/CompMethods/doolittle.pdf</u>

Definition and Storage of Sparse Matrix

- sparse ... many elements are zero for example: diag(d1,...,dn), as n>>0.
- dense ... few elements are zero
- In order to reduce memory burden, introduce some kinds of matrix storage format

Definition and Storage of Sparse Matrix

Regular storage structure.

```
row 1 1 2 2 4 4

list = column 3 5 3 4 2 3

value 3 4 5 7 2 6
```

Definition and Storage of Sparse Matrix

A standard sparse matrix format

Subscripts:1 2 3 4 5 6 7 8 9 10 11

Colptr: 1 4 6 8 10 12

Rowind: 1 3 5 1 4 2 5 1 4 2 5

Value: 1 2 5 -3 4 -2 -5-1 -4 3 6

1 -3 0 -1 0 0 0 -2 0 3 2 0 0 0 0 0 4 0 -4 0

5 0 - 5 0 6

 $\bullet \quad A \longleftrightarrow G(A) \longleftrightarrow Adj(G)$

$$Adj(G)\binom{i}{j} \in \{0,1\}$$

Matrix P is of permutation and G(A) = G(P^TAP)

opt
$$\{P^TAP | P : G(P^TAP) = G(A)\} \Leftrightarrow$$
opt $\{P^Tadj(G)P | P : G(P^Tadj(G)P) = G(A)\}$

1. There is no loop in G(A)

Step 1. No loop and t = 1

Step 2.∃ output vertices

$$\boldsymbol{S}_t = \left\{ \boldsymbol{i}_1^t \quad \boldsymbol{i}_2^t \quad . \quad . \quad . \quad \boldsymbol{i}_{n_t}^t \right\} \subset \boldsymbol{V}(\boldsymbol{G})$$

Step 3.

$$adj(G) = adj(G) \setminus adj(G) \begin{bmatrix} i_1^t & i_2^t & \cdot & \cdot & i_{n_t}^t \\ i_1^t & i_2^t & \cdot & \cdot & i_{n_t}^t \end{bmatrix}$$

t=t+1, returning to step 2.

• After p times, $\{1,2,...,n\} = S_1 \cup S_2 \cup ... \cup S_p$

(separation of set).
$$\exists P = \left(P_{s_1}^T, P_{s_2}^T, \dots, P_{s_p}^T\right)^T$$

such that P^Tadj(G)P is a lower triangular

block matrix. Therefore PTAP is a lower

triangular block matrix.

2.There is a loop in G(A).

If the graph is not strongly connected, in the reachable matrix of adj(A), there are naught entries.

Step 1. Choose the j-th column, t = 1, and

$$S_{t}(j) = \left\{ i \middle| (R \cap R^{T}) \left(i \atop j \right) = 1, 1 \le i \le n \right\} =$$

$$\begin{split} &= \left\{ \begin{aligned} &i_1^t & i_2^t & \ldots & i_{n_t}^t \right\} \\ &(j \in S_t \subset \left\{ 1 \ 2 \ \ldots \ n \right\}, \\ &S_t & \text{is closed on strong connection.} \end{aligned} \\ &S_t & \text{step 2: Choose the } j_1\text{-th column (} j_1 \neq j \), \\ &j = j_1, \ t = t+1, \ \text{returning step 1.} \end{split}$$

After p times,

$$\{1,2,...,n\} = S_1 \cup S_2 \cup ... \cup S_p$$

 $\exists P = (P_{s_1}^T \ P_{s_2}^T \ \dots \ P_{s_p}^T)^T, \ni P^T adj(G)P$ is a lower triangular block matrix. Therefore $P^T AP$ is a lower triangular block matrix.

Note of case 2 mentioned above.

$$\hat{A} = P^{\mathsf{T}} adj(G) P = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} & . & . & . & \hat{A}_{1p} \\ \hat{A}_{21} & \hat{A}_{22} & . & . & . & \hat{A}_{2p} \\ . & . & . & . & . & . \\ \hat{A}_{p1} & . & . & . & . & \hat{A}_{pp} \end{bmatrix}.$$

$$B = (b_{ij}) \in \mathbb{R}^{p \times p},$$

$$b_{ij} = \begin{cases} = 0 & i = j \\ = 1 & \hat{A}_{ij} \neq 0. \Rightarrow \\ = 0 & \hat{A}_{ij} = 0 \end{cases}$$

There is no loop of G(B). According to similar analysis to case 1,

$$P(j_1 \quad j_2 \quad . \quad . \quad j_p)^T B P(j_1 \quad j_2 \quad . \quad . \quad j_p) = \begin{pmatrix} \times \\ \cdot & \times \\ \times & \cdot & \times \\ \times & \cdot & \times \end{pmatrix} \in \mathbb{R}^{p \times p}$$

. Therefore, P^TAP is a lower triangular block matrix.

- Reducing computation burden on solution to large scale linear system
- Generally speaking, for large scale system, system stability can easily be judged.
- The method is used in hierarchical optimization of Large Scale Dynamic System

Structure Decomposition of Sparse Matrix (General)

Dulmage-Mendelsohn Decomposition

∃P,Q such that

$$\mathsf{P}^\mathsf{T}\mathsf{A}\mathsf{Q} = \begin{pmatrix} \mathsf{A}_\mathsf{h} & \mathsf{X} & \mathsf{X} \\ & \mathsf{A}_\mathsf{S} & \mathsf{X} \\ & & \mathsf{A}_\mathsf{V} \end{pmatrix}$$

Structure Decomposition of Sparse Matrix (General)

Further, fine decomposition is needed.

 $A_h \rightarrow$ the block diagonal form

 $A_v \rightarrow$ the block diagonal form

 $A_s \rightarrow$ the block upper triangular form.

- D-M decomposition can be seen in reference
 [3].
- Computation and storage: Minimum of filling in The detail can be see in reference [2].

LU Factorization Method : Gilbert/Peierls

- left-looking. kth stage computes kth column of L and U
- L = I
- 2. U = I
- 3. for k = 1:n
- 4. $s = L \setminus A(:,k)$
- 5. (partial pivoting on s)
- 6. U(1:k,k) = s(1:k)
- 7. L(k:n,k) = s(k:n) / U(k,k)
- 8. end

kth column of L and U computed

columns 1 to k-1 accessed

LU Factorization Method : Gilbert/Peierls

• THEOREM(Gilbert/Peierls). The entire algorithm for LU factorization of A with partial pivoting can be implemented to run in O(flops (LU) + m) time on a RAM where m is number of the nonzero entries of A.

• Note: The theorem expresses that the LU factorization will run in the time within a constant factor of the best

Sparse lower triangular solve, x=L\b

Sparse lower triangular solve, x=L\b

- $X_{i} \neq 0 \land I_{ij} \neq 0 \Rightarrow X_{i} \neq 0$
- $b_i \neq 0 \Rightarrow x_i \neq 0$
- Let G(L) havi \Rightarrow in d_i \Rightarrow $\beta = \{i | b_i \neq 0\}$ $\chi = \{i | x_i \neq 0\}$
- Let $\chi = \text{Reach}_{G(L)}(\beta)$ and
- Then
 - ---Total time: O(flops)

Sparse lower triangular solve, x=L\b

Sparse lower triangular solve, x=L\b

Sparse lower triangular solve, x=L\b

If
$$\mathcal{B} = \{4\}$$

then $\mathcal{X} = \{4, 9, 12, 13, 14\}$

Sparse lower triangular solve, x=L\b

If $\mathcal{B} = \{4, 6\}$ then $\mathcal{X} = \{6, 10, 11, 4, 9, 12, 13, 14\}$

Sparse lower triangular solve, x=L\b

```
function x = lsolve(L,b)
      \mathcal{X} = \mathsf{Reach}(L, \mathcal{B})
     x = b
     for each j in \mathcal{X}
           x(j+1:n) = x(j+1:n) - L(j+1:n,j) * x(j)
function \mathcal{X} = \mathsf{Reach}(\mathtt{L}, \mathcal{B})
     for each i in \mathcal{B} do
           if (node i is unmarked) dfs(i)
function dfs(j)
                                          Total time: O(flops)
      mark node j
     for each i in \mathcal{L}_i do
           if (node i is unmarked) dfs(i)
      push j onto stack for X
```

References

- J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874
- Mihalis Yannakakis' website:
 http://www1.cs.columbia.edu/~mihalis
- A. Pothen and C. Fan, Computing the block triangular form of a sparse matrix, ACM Trans. On Math. Soft. Vol. 18, No.4, Dec. 1990, pp. 303-324

Simplex Method - Problem size

$$\min\left\{c^T x \middle| Ax = b, x \ge 0, A \in R^{m \times n}\right\}$$

- Problem size determined by A
- On the average, 5~10 nonzeros per column

greenbea.mps of NETLIB

Simplex Method - Computational Form, Basis

$$\min\left\{c^T x \middle| Ax = b, x \ge 0, A \in R^{m \times n}\right\}$$

Note: A is of full row rank and m<n

Basis (of R^m): m linearly independent columns of A

Basic variables

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

Simplex Method

Notations

index set of basic variables

index set of non-basic variables

 $B:=A_{\beta}$ basis $R:=A_{\gamma}$ non-basis (columns)

$$A = [B \mid R], x = \begin{bmatrix} x_{\beta} \\ x_{\gamma} \end{bmatrix}, c = \begin{bmatrix} c_{\beta} \\ c_{\gamma} \end{bmatrix}$$

Simplex Method

Basic Feasible Solution

$$Ax = b \longrightarrow Bx_{\beta} + Rx_{\gamma} = b$$

$$\downarrow$$

$$x_{\beta} = B^{-1}(b - Rx_{\gamma})$$

Basic feasible solution

$$x_{\gamma} = 0$$
, $x \ge 0$, $Ax = b$

If a problem has an optimal solution, then there is a basic solution which is also optimal.

Simplex Method

Checking Optimality

Objective value :
$$c^T x = c_{\beta}^T x_{\beta} + c_{\gamma}^T x_{\gamma}$$

$$= c_{\beta}^T B^{-1} b + (c_{\gamma}^T - c_{\beta}^T B^{-1} R) x_{\gamma}$$

$$= c_0 + d^T x_{\gamma}$$

Optimality condition : $d_j \ge 0$ for all $j \in \gamma$

Simplex Method

- Improving Basic Feasible Solution
- Choose x_q (incoming variable) s.t. $d_q < 0$
- increase x_a as much as possible

Objective value $c_0 + d^T x_{\gamma}$

```
non-basic variables
x_{m+1} = 0
\vdots
x_{q} \uparrow
\vdots
x_{n} = 0
```


basic variables remain feasible (≥ 0) even if $x_q \to \infty$ objective value is unbounded

Simplex Method

- Improving Basic Feasible Solution
- Choose x_q (incoming variable) s.t. $d_q < 0$
- increase x_a as much as possible

Objective value $c_0 + d^T x_{\gamma}$

non-basic variables
$$x_{m+1} = 0$$

$$\vdots$$

$$x_{q} \uparrow$$

$$\vdots$$

$$x_{n} = 0$$

basic variables
$$x_{1} \uparrow$$

$$\vdots$$

$$x_{p} \rightarrow$$

$$\vdots$$

$$x_{n} \uparrow$$

basic variables
$$x_{1} \uparrow$$

$$\vdots$$

$$x_{p} \downarrow \text{goes to } 0 \text{ first}$$

$$\vdots \quad (\text{outgoing variable})$$

$$\vdots$$

$$x_{n} \uparrow$$

Unbounded solution

neighboring improving basis

Simplex Method

Basis Updating

Neighboring bases :
$$B = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix}$$
$$\overline{B} = \begin{bmatrix} b_1, ..., a, ..., b_m \end{bmatrix}$$

Simplex Method

- Basis Updating

Write
$$a = \sum_{i=1}^{m} v^i b_i = Bv$$
 $(v = B^{-1}a)$

 $\mathbf{B} = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix} \\
\downarrow \\
\overline{B} = \begin{bmatrix} b_1, ..., a, ..., b_m \end{bmatrix}$

(as the linear combination of the bases)

Simplex Method

Basis Updating

$$B = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix}$$

$$\overline{B} = \begin{bmatrix} b_1, ..., a, ..., b_m \end{bmatrix}$$

Simplex Method

Basis Updating

- Basis Updating
$$B = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix}$$
Write $a = \sum_{i=1}^{m} v^i b_i = Bv$ $(v = B^{-1}a)$

$$b_p = \frac{1}{v^p} a - \sum_{i \neq p} \frac{v^i}{v^p} b_i$$

$$B = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix}$$

$$\boldsymbol{b}_{p} = \overline{B}\boldsymbol{\eta}, \text{ where } \boldsymbol{\eta} = \left[-\frac{v^{1}}{v^{p}}, \dots, -\frac{v^{p-1}}{v^{p}}, \frac{1}{v^{p}}, -\frac{v^{p+1}}{v^{p}}, \dots, -\frac{v^{m}}{v^{p}} \right]^{T}$$

vp: pivot element

Simplex Method

Basis Updating

- Basis Updating
$$B = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix}$$
Write $a = \sum_{i=1}^{m} v^i b_i = Bv$ $(v = B^{-1}a)$
$$b_p = \frac{1}{v^p} a - \sum_{i \neq p} \frac{v^i}{v^p} b_i$$

$$\boldsymbol{b}_{p} = \overline{B}\boldsymbol{\eta}, \text{ where } \boldsymbol{\eta} = \left[-\frac{v^{1}}{v^{p}}, \dots, -\frac{v^{p-1}}{v^{p}}, \frac{1}{v^{p}}, -\frac{v^{p+1}}{v^{p}}, \dots, -\frac{v^{m}}{v^{p}} \right]^{T}$$

$$B = \overline{B}E$$
, where $E = [e_1, ..., e_{p-1}, \eta, e_{p+1}, ..., e_m]$

(elementary transformation matrix)

Simplex Method

Basis Updating

■ Basis Updating

$$B = \begin{bmatrix} b_1, ..., b_p, ..., b_m \end{bmatrix}$$
Write $a = \sum_{i=1}^m v^i b_i = Bv$ $(v = B^{-1}a)$

$$b_p = \frac{1}{v^p} a - \sum_{i \neq p} \frac{v^i}{v^p} b_i$$

$$b_p = \overline{B}\eta, \text{ where } \eta = \begin{bmatrix} -\frac{v^1}{v^p}, ..., -\frac{v^{p-1}}{v^p}, \frac{1}{v^p}, -\frac{v^{p+1}}{v^p}, ..., -\frac{v^m}{v^p} \end{bmatrix}^T$$

$$B = \overline{B}E, \text{ where } E = \begin{bmatrix} e_1, ..., e_{p-1}, \eta, e_{p+1}, ..., e_m \end{bmatrix}$$

$$\overline{B}^{-1} = EB^{-1}$$

Simplex Method

- Basis Updating

$$E = \begin{bmatrix} e_1, \dots, e_{p-1}, \eta, e_{p+1}, \dots, e_m \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \eta^1 & & & \\ & \ddots & & & \\ & \eta^p & & & \\ & & \ddots & & \\ & & \eta^m & & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & & \\ & \ddots & \vdots & & \\ & & \eta^p & & \\ & & \vdots & \ddots & \\ & & & 1 & & \\ & & \vdots & \ddots & \\ & & 0 & & 1 \end{bmatrix} \begin{bmatrix} 1 & \eta^1 & & \\ & \ddots & \vdots & & \\ & & 1 & & \\ & & \vdots & \ddots & \\ & & 0 & & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & 0 & & \\ & \ddots & \vdots & & \\ & & 1 & & \\ & & \vdots & \ddots & \\ & & & \eta^m & & 1 \end{bmatrix}$$

Simplex Method

Basis Updating

Basis tends to get denser after each update $(\overline{B}^{-1} = EB^{-1})$

$$Ew = \begin{bmatrix} 1 & \eta^{1} & \\ & \ddots & \\ & \eta^{p} & \\ & & \ddots & \\ & & \eta^{m} & 1 \end{bmatrix} \begin{bmatrix} w^{1} \\ \vdots \\ w^{p} \\ \vdots \\ w^{m} \end{bmatrix} = \begin{bmatrix} w^{1} + w^{p} \eta^{1} \\ \vdots \\ w^{p} \eta^{p} \\ \vdots \\ w^{m} + w^{p} \eta^{m} \end{bmatrix}$$

$$Ew = w \text{ if } w^p = 0$$

Simplex Method

- Algorithm

	Steps	Major ops
1.	Find an initial feasible basis B	
2.	Initialization	$B^{-1}b$
3.	Check optimality	$egin{aligned} c_{eta}^TB^{-1}\ B^{-1}a_q \end{aligned}$
4.	Choose incoming variable x_q	$B^{-1}a_q$
5.	Choose outgoing variable x_p	
6.	Update basis	EB^{-1}

Simplex Method

- Algorithm

	Steps	Major ops
1.	Find an initial feasible basis B	
2.	Initialization	$B^{-1}b$
3.	Check optimality	$c_{eta}^T B^{-1}$
4.	Choose incoming variable x_q	$B^{-1}a_q$
5.	Choose outgoing variable x_p (pivot st	ep)
6.	Update basis	EB^{-1}

Simplex Method

Algorithm

Choice of pivot (numerical considerations)

- resulting less fill-ins
- large pivot element

Conflicting goals sometimes

In practice, compromise.

Simplex Method

Typical Operations in Simplex Method

Typical operations: $B^{-1}w, w^TB^{-1}$

Challenge: sparsity of B-1 could be destroyed by basis update

Need a proper way to represent B-1

Two ways:

- Product form of the inverse $(B^{-1} = E_k E_{k-1} \cdots E_1)$ (obsolete)
- LU factorization

Simplex Method

LU Factorization

• Reduce complexity using LU update $(B = \overline{B}E, \overline{B}^{-1} = EB^{-1})$

Side effect: more LU factors

Refactorization
 (reinstate efficiency and numerical accuracy)

Sparse LU Updates in Simplex Method

Hamid R. Ghaffari

April 10, 2007

Outline

LU Update Methods

Preliminaries
Bartels-Golub LU UPDATE
Sparse Bartels-Golub Method
Reid's Method
The Forrest-Tomlin Method
Suhl-Suhl Method
More Details on the Topic

Revised Simplex Algorithm

Simplex Method Revised Simplex Method

Determine the current basis, d	$d = B^{-1}b$
Choose x_q to enter the basis based on	$\bar{c} = c_N' - c_B' B^{-1} N,$
the greatest cost contribution	$\{q ar{c}_q=\min_t(ar{c}_t)\}$
If x_q cannot decrease the cost,	$ar{c}_q \geq 0, \ d$ is optimal solution
d is optimal solution	
Determine x_p that leaves the basis	$w = B^{-1}A_q,$
(become zero) as x_q increases.	$\left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\}$
If x_q can increase without causing	If $w_p \leq 0$ for all i , the solution is
another variable to leave the basis,	unbounded.
the solution is unbounded	
Update dictionary.	Update B^{-1}

Note: In general we do not compute the inverse.

Revised Simplex Algorithm

Simplex Method	Revised Simplex Method
Determine the current basis, d	$d = B^{-1}b$
Choose x_q to enter the basis based on	$\bar{c} = c_N' - c_B' B^{-1} N,$
the greatest cost contribution	$\{q \bar{c}_q = \min_t \{\bar{c}_t\}\}$ BTRAN (backward
If x_q cannot decrease the cost,	$\bar{c}_q \geq 0, d$ is optimetransformation)
d is optimal solution	
Determine x_p that leaves the basis	$w = B^{-1}A_q,$
(become zero) as x_q increases.	$\left \left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\} \right $
If x_q can increase without causing	If $w_p \leq 0$ for all i , the solution is
another variable to leave the basis,	unbounded.
the solution is unbounded	
Update dictionary.	Update B ⁻¹

Note: In general we do not compute the inverse.

Revised Simplex Algorithm

Simplex Method	Revised Simplex Method
Determine the current basis, d	$d = B^{-1}b$
Choose x_q to enter the basis based on	$\bar{c} = c_N' - c_B' B^{-1} N,$
the greatest cost contribution	$\{q \bar{c}_q = \min_t(\bar{c}_t)\}$ BTRAN (backward
If x_q cannot decrease the cost,	$\bar{c}_q \geq 0, d$ is optimetransformation)
d is optimal solution	
Determine x_p that leaves the basis	$w = B^{-1}A_q,$
(become zero) as x_q increases.	$\left \left\{ p \left \frac{d_i}{w_i} \right. \right. \right. \left. \left. \left. \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\} \right $
If x_q can increase without causing	If $w_p \leq 0$ for all i , the solution is
another variable to leave the basis,	unbounded.
the solution is unbounded	ETDAN (forward
Update dictionary.	Update B- FTRAN (forward transformation)

Note: In general we do not compute the inverse.

Problems with Revised Simplex Algorithm

- ▶ The physical limitations of a computer can become a factor.
- Round-off error and significant digit loss are common problems in matrix manipulations (ill-conditioned matrices).
- It also becomes a task in numerical stability.
- It take $m^2(m-1)$ multiplications and m(m-1) additions, a total of m^3-m floating-point (real number) calculations.

Many variants of the Revised Simplex Method have been designed to reduce this $O(m^3)$ -time algorithm as well as improve its accuracy.

▶ If A_q is the entering column, B the original basis and \bar{B} the new basis, then we have

$$\bar{B} = B + (A_q - Be_p)e_q^T,$$

▶ If A_q is the entering column, B the original basis and \bar{B} the new basis, then we have

$$\bar{B} = B + (A_q - Be_p)e_q^T,$$

▶ Having LU decomposition B = LU we have

$$L^{-1}\bar{B} = U + (L^{-I}A_q - Ue_p)e_q^T,$$

▶ If A_q is the entering column, B the original basis and \bar{B} the new basis, then we have

$$\bar{B} = B + (A_q - Be_p)e_q^T,$$

▶ Having LU decomposition B = LU we have

$$L^{-1}\bar{B} = U + (L^{-I}A_q - Ue_p)e_q^T,$$

▶ If A_q is the entering column, B the original basis and \bar{B} the new basis, then we have

$$\bar{B} = B + (A_q - Be_p)e_q^T,$$

▶ Having LU decomposition B = LU we have

$$L^{-1}\bar{B} = U + (L^{-I}A_q - Ue_p)e_q^T,$$

▶ How to deal with this?

▶ If A_q is the entering column, B the original basis and \bar{B} the new basis, then we have

$$\bar{B} = B + (A_q - Be_p)e_q^T,$$

▶ Having LU decomposition B = LU we have

$$L^{-1}\bar{B} = U + (L^{-I}A_q - Ue_p)e_q^T,$$

How to deal with this?

The various implementations and variations of the Bartels-Golub generally diverge with the next step: reduction of the spiked upper triangular matrix back to an upper-triangular matrix. (Chvátal, p150)

Illustration

The first variant of the Revised Simplex Method was the Bartels-Golub Method.

Algorithm

Revised Simplex Method

Bartels-Golub

$d = B^{-1}b$	$d = U^{-1}L^{-1}b$
$\bar{c} = c_N' - c_B' B^{-1} N,$	$\bar{c} = c_N' - c_B' U^{-1} L^{-1} N,$
$\{q ar{c}_q=\min_t(ar{c}_t)\}$	$\{q ar{c}_q=\min_t(ar{c}_t)\}$
$\bar{c}_q \geq 0, \ d$ is optimal solution	$ar{c}_q \geq 0, \ d$ is optimal solution
$w = B^{-1}A_q$	$w = U^{-1}L^{-1}A_q,$
$\left\{p\left \frac{d_i}{w_i} = \min_t\left(\frac{d_t}{w_t}\right), \ w_t \right. > 0\right\}$	$\left\{ p \middle \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t}\right), \ w_t \ > 0 \right\}$
If $w_p \leq 0$ for all i , the solution is	If $w_p \leq 0$ for all i , the solution is
unbounded.	unbounded.
Update B^{-1}	Update U^{-1} and L^{-1}

Characteristics

▶ It significantly improved numerical accuracy.

► Can we do better?

Characteristics

▶ It significantly improved numerical accuracy.

▶ Can we do better? In sparse case, yes.

eta matrices

First take a look at the following facts:

Column-Eta factorization of triangular matrices:

$$\begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1_{3} & & \\ & & & l_{43} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & l_{32} & 1 & \\ & & l_{42} & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & \\ l_{31} & & 1 & \\ l_{41} & & & 1 \end{bmatrix}$$

First take a look at the following facts:

Column-Eta factorization of triangular matrices:

$$\begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1_{31} & & \\ & & & l_{43} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & l_{32} & 1 & \\ & & & l_{42} & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & \\ l_{31} & & 1 & \\ l_{41} & & & 1 \end{bmatrix}$$

Single-Entry-Eta Decomposition:

$$\begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & & 1 & & \\ l_{41} & & & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ & & 1 & & \\ & & & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ l_{31} & & 1 & & \\ & & & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ l_{41} & & & 1 \end{bmatrix}$$

First take a look at the following facts:

Column-Eta factorization of triangular matrices:

$$\begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1_{43} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1_{32} & 1 & & \\ & & l_{42} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1_{21} & 1 & & \\ l_{21} & 1 & & \\ l_{31} & & 1 & \\ l_{41} & & & 1 \end{bmatrix}$$

Single-Entry-Eta Decomposition:

$$\begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & & 1 & & \\ l_{41} & & & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ & & 1 & & \\ & & & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ l_{31} & & & 1 & \\ & & & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ l_{41} & & & & 1 \end{bmatrix}$$

So L can be expressed as the multiplication of single-entry eta matrices, and hence, L^{-1} is also is the product of the same matrices with off-diagonal entries negated.

Bartels-Golub Method	Sparse Bartels-Golub Method

$d = U^{-1}L^{-1}b$	$d = U^{-1} \prod_t \eta_t b$
$\bar{c} = c'_N - c'_B U^{-1} L^{-1} N,$	$\bar{c} = c_N' - c_B' U^{-1} \prod_t \eta_t N,$
$\{q \bar{c}_q = \min_t(\bar{c}_t)\}$	$\{q ar{c}_q=\min_t(ar{c}_t)\}$
$ar{c}_q \geq 0, \ d$ is optimal solution	$ar{c}_q \geq 0, \ d$ is optimal solution
$w = U^{-1}L^{-1}A_q,$	$w = U^{-1} \prod_t \eta_t A_q,$
$\left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t > 0 \right\} \right\}$	$\left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t > 0 \right\} \right.$
If $w_p \leq 0$ for all i , the solution is	If $w_p \leq 0$ for all i , the solution is
unbounded.	unbounded.
Update U^{-1} and L^{-1}	Update U^{-1} and create any
	necessary eta matrices.
	If there are too many eta matrices,
	completely refactor the basis.

Bartels-Golub Method	Sparse Bartels-Golub Method
$d = U^{-1}L^{-1}b$	$d = U^{-1} \prod_{t} \eta_t b$
$\bar{c} = c_N' - c_B' U^{-1} L^{-1} N,$	$\bar{c} = c_N' - c_B' \overline{U}^{-1} \prod_t \eta_t N,$
Multipl	$ \frac{\text{Matrix-Vector }}{t} \cdot \frac{\min_{t} (\bar{c}_{t})}{t} $
$\bar{c}_q \geq 0, d$ is optimal solution	d is optimal solution
$w = U^{-1}L^{-1}A_q,$	$w = U^{-1} \prod_t \eta_t A_q,$
$\left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\}$	$\left \left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\} \right $
If $w_p \leq 0$ for all i , the solution is	If $w_p \leq 0$ for all i , the solution is
unbounded.	unbounded.
Update U^{-1} and L^{-1}	Update U^{-1} and create any
	necessary eta matrices.
	If there are too many eta matrices,
	completely refactor the basis.

Bartels-Golub Method	Sparse Bartels-Golub Method

$d = U^{-1}L^{-1}b$	$d = U^{-1} \prod_t \eta_t b$
$\bar{c} = c'_N - c'_B U^{-1} L^{-1} N,$	$\bar{c} = c_N' - c_B' U^{-1} \prod_t \eta_t N,$
$\{q \bar{c}_q = \min_t(\bar{c}_t)\}$	$\{q ar{c}_q=\min_t(ar{c}_t)\}$
$\bar{c}_q \geq 0, \ d$ is optimal solution	Sparse Matrix-Vector imal solution
$w = U^{-1}L^{-1}A_q,$	Multiplication A_q ,
$\left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\}$	$\left\{ p \middle \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t}\right), \ w_t \ > 0 \right\}$
If $w_p \leq 0$ for all i , the solution is	If $w_p \leq 0$ for all i , the solution is
unbounded.	unbounded.
Update U^{-1} and L^{-1}	Update U^{-1} and create any
	necessary eta matrices.
	If there are too many eta matrices,
	completely refactor the basis.

Bartels-Golub Method	Sparse Bartels-Golub Method
$d = U^{-1}L^{-1}b$	$d = U^{-1} \prod_t \eta_t b$
$\bar{c} = c_N' - c_B' U^{-1} L^{-1} N,$	$\bar{c} = c_N' - c_B' U^{-1} \prod_t \eta_t N,$
$\left\{q \bar{c}_q = \min_t(\bar{c}_t)\right\}$	$\{q ar{c}_q=\min_t(ar{c}_t)\}$
$ar{c}_q \geq 0, \ d$ is optimal solution	$\bar{c}_q \geq 0, \ d$ is optimal solution
$w = U^{-1}L^{-1}A_q,$	$w = U^{-1} \prod_t \eta_t A_q,$
$\left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t > 0 \right\} \right\}$	$\left\{ p \left \frac{d_i}{w} = \min_{t} \left(\frac{\overline{d_t}}{w_t} \right), \ w_t > 0 \right\}$
If $w_p \leq 0$ for all i , the solution $\frac{Spars}{Multin}$	Matrix-Vector 0 for all i , the solution is
unbounded.	ed.
Update U^{-1} and L^{-1}	Update U^{-1} and create any
	necessary eta matrices.
	If there are too many eta matrices,
	completely refactor the basis.

▶ It is no more complex than the Bartels-Golub Method.

- ▶ It is no more complex than the Bartels-Golub Method.
- ▶ Instead of just *L* and *U*, the factors become the lower-triangular eta matrices and *U*.

- ▶ It is no more complex than the Bartels-Golub Method.
- ▶ Instead of just *L* and *U*, the factors become the lower-triangular eta matrices and *U*.
- ▶ The eta matrices were reduced to single-entry eta matrices.

- ▶ It is no more complex than the Bartels-Golub Method.
- ▶ Instead of just *L* and *U*, the factors become the lower-triangular eta matrices and *U*.
- ▶ The eta matrices were reduced to single-entry eta matrices.
- Instead of having to store the entire matrix, it is only necessary to store the location and value of the off-diagonal element for each matrix.

- ▶ It is no more complex than the Bartels-Golub Method.
- ▶ Instead of just *L* and *U*, the factors become the lower-triangular eta matrices and *U*.
- ▶ The eta matrices were reduced to single-entry eta matrices.
- Instead of having to store the entire matrix, it is only necessary to store the location and value of the off-diagonal element for each matrix.
- ▶ Refactorizations occur less than once every m times, so the complexity improves significantly to $O(m^2)$.

▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.

- ▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.
- ▶ Such a refactorization may occur prematurely in an attempt to promote stability if noticeable round-off errors begin to occur.

- ▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.
- ▶ Such a refactorization may occur prematurely in an attempt to promote stability if noticeable round-off errors begin to occur.
- ▶ In practice, in solving large sparse problem, the basis is refactorized quite frequently, often after every twenty iterations of so. (Chvátal, p. 111)

- ▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.
- ▶ Such a refactorization may occur prematurely in an attempt to promote stability if noticeable round-off errors begin to occur.
- ▶ In practice, in solving large sparse problem, the basis is refactorized quite frequently, often after every twenty iterations of so. (Chvátal, p. 111)
- ▶ If the spike always occurs in the first column and extends to the bottom row, the Sparse Bartels-Golub Method becomes worse than the Bartels-Golub Method.

- ▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.
- ▶ Such a refactorization may occur prematurely in an attempt to promote stability if noticeable round-off errors begin to occur.
- ▶ In practice, in solving large sparse problem, the basis is refactorized quite frequently, often after every twenty iterations of so. (Chvátal, p. 111)
- ▶ If the spike always occurs in the first column and extends to the bottom row, the Sparse Bartels-Golub Method becomes worse than the Bartels-Golub Method.
 - The upper-triangular matrix will always be fully-decomposed resulting in huge amounts of fill-in;

- ▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.
- ▶ Such a refactorization may occur prematurely in an attempt to promote stability if noticeable round-off errors begin to occur.
- ▶ In practice, in solving large sparse problem, the basis is refactorized quite frequently, often after every twenty iterations of so. (Chvátal, p. 111)
- ▶ If the spike always occurs in the first column and extends to the bottom row, the Sparse Bartels-Golub Method becomes worse than the Bartels-Golub Method.
 - The upper-triangular matrix will always be fully-decomposed resulting in huge amounts of fill-in;
 - Large numbers of eta matrices;

- ▶ Eventually, the number of eta matrices will become so large that it becomes cheaper to decompose the basis.
- ▶ Such a refactorization may occur prematurely in an attempt to promote stability if noticeable round-off errors begin to occur.
- ▶ In practice, in solving large sparse problem, the basis is refactorized quite frequently, often after every twenty iterations of so. (Chvátal, p. 111)
- ▶ If the spike always occurs in the first column and extends to the bottom row, the Sparse Bartels-Golub Method becomes worse than the Bartels-Golub Method.
 - The upper-triangular matrix will always be fully-decomposed resulting in huge amounts of fill-in;
 - Large numbers of eta matrices;
 - \triangleright $O(n^3)$ -cost decomposition;

Ried Suggestion on Sparse Bartels-Golub Method

Rather than completely refactoring the basis, applying LU-decomposition only to the part of that remained upper-Hessenberg.

Task: The task is to find a way to reduce that bump before attempting to decompose it;

Row singleton: any row of the bump that only has one non-zero entry.

Column singleton: any column of the bump that only has one non-zero entry.

Method:

- When a column singleton is found, in a bump, it is moved to the top left corner of the bump.
- When a row singleton is found, in a bump, it is moved to the bottom right corner of the bump.

Column Rotation

Row Rotation

Characteristics

Advantages:

- ▶ It significantly reduces the growth of the number of eta matrices in the Sparse Bartels-Golub Method
- ▶ So, the basis should not need to be decomposed nearly as often.
- ➤ The use of LU-decomposition on any remaining bump still allows some attempt to maintain stability.

Disadvantages:

- ▶ The rotations make absolutely no allowance for stability whatsoever,
- So, Reid's Method remains numerically less stable than the Sparse Bartels-Golub Method.

The Forrest-Tomlin Method

The Forrest-Tomlin Method

Bartels-Golub Method	Forrest-Tomlin Method
$d = U^{-1}L^{-1}b$	$d = U^{-1} \prod_{t} R_{t} L^{-1} b$
$\bar{c} = c_N' - c_B' U^{-1} L^{-1} N,$	$\bar{c} = c_N' - c_B' U^{-1} \prod_t R_t L^{-1} N,$
$\{q ar{c}_q=\min_t(ar{c}_t)\}$	$\{q ar{c}_q=\min_t(ar{c}_t)\}$
$\overline{c}_q \geq 0, \ d$ is optimal solution	$\overline{c}_q \geq 0, \ d$ is optimal solution
$w = U^{-1}L^{-1}A_q,$	$w = U^{-1} \prod_{t} R_{t} L^{-1} A_{q},$
$\left \left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\} \right $	$\left \left\{ p \left \frac{d_i}{w_i} = \min_t \left(\frac{d_t}{w_t} \right), \ w_t \right. > 0 \right\} \right $
If $w_p \leq 0$ for all i , the solution is	If $w_p \leq 0$ for all i , the solution is
unbounded.	unbounded.
Update U^{-1} and L^{-1}	Update U^{-1} creating a row factor
	as necessary. If there are too
	many factors, completely refactor
	the basis.

The Forrest-Tomlin Method Characteristics

Advantages:

- ▶ At most one row-eta matrix factor will occur for each iteration where an unpredictable number occurred before.
- ► The code can take advantage of such knowledge for predicting necessary storage space and calculations.
- ► Fill-in should also be relatively slow, since fill-in can only occur within the spiked column.

Disadvantages:

- Sparse Bartels-Golub Method allowed LU-decomposition to pivot for numerical stability, but Forrest-Tomlin Method makes no such allowances.
- ► Therefore, severe calculation errors due to near-singular matrices are more likely to occur.

Suhl-Suhl Method

This method is a modification of Forrest-Tomlin Method.

For More Detail

- Leena M. Suhl, Uwe H. Suhl

 A fast LU update for linear programming.

 Annals of Operations Research 43(1993)33-47
- Stiven S. Morgan

 A Comparison of Simplex Method Algorithms
 University of Florida, 1997
- Vasek Chvátal

 Linear Programming

 W.H. Freeman & Company (September 1983)

Thanks