Announcement

- Course Evaluation! (Canvas)
 - Extra 1%
- Project #3 due today
- Final Exam (<u>schedule</u>)
 - o Dec.14 8-11:30 am
 - About 9-10 Questions
- 4 Quizzes
 - Single-choice questions; about 10 questions each
 - To be release between Dec.6 and Dec.10
- Class Participation Credits (extra 5% max)
 - Baseline: 1%
 - If you want more than 1%, come to any of my office hours starting today (Dec.5)

Today's plan: Final Review

- Brief Review of Key Concepts
- Q & A

Security Principles

ITIS 6200 / 8200

What are the security principles?

Identify security examples being used

Give real life examples of security principles

Cryptography Roadmap

	Symmetric-key	Asymmetric-key
Confidentiality	 One-time pads Block ciphers with chaining modes (e.g. AES-CBC) Stream ciphers 	RSA encryption
Integrity, Authentication	MACs (e.g. HMAC)	 Digital signatures (e.g. RSA signatures)

- Hash functions
- Pseudorandom number generators
- Public key exchange (e.g. Diffie-Hellman)

- Key management (certificates)
- Password management

Symmetric-Key Encryption: Definition

- A symmetric-key encryption scheme has three algorithms:
 - KeyGen() → K: Generate a key K
 - Enc(K, M) \rightarrow C: Encrypt a **plaintext** M using the key K to produce **ciphertext** C
 - $Dec(K, C) \rightarrow M$: Decrypt a ciphertext C using the key K

One-Time Pad

- How does it work?
 - How does encryption work? Formula?
 - How does decryption work? Formula?
- Why is it called One-Time Pad?
- Security
 - What is IND-CPA secure? What is the IND-CPA game?
 - Does One-Time Pad have IND-CPA?
 - What if we reuse the same key for different messages? Do we still have IND-CPA?

Block Cipher

ITIS 6200 / 8200

- How does block ciphers work?
 - Why it is called block ciphers?
 - Why do we need operating modes?
 - Where do we use the key?
- Analyzing Modes
 - Giving a new operating mode, analyzing the formulas used for encryption and description
 - Analyze the performance implication
 - Analyze if the mode is IND-CPA secure: why some modes are secure and others are not

Security

- o What are IV and nonce?
- O Where do we use them?
- Why do we need them?
- Does block cipher provide integrity?

Hash

- What are the basic properties of hash functions?
 - What is one way function?
 - What is collision resistant?
- What can length extension attacks do?
- Security
 - Do hash provide integrity?
 - o How can we use hash for integrity?

MAC

- Why do we want MAC?
 - Why is it different from hash?
- How does HMAC work?
 - What are the inputs?
- Security
 - Do MACs provide integrity?
 - Do MACs provide confidentiality?
 - How do we get both confidentiality and integrity?
 - What is Encrypt-then-MAC?
 - What is MAC-then-encrypt?

PRNG

ITIS 6200 / 8200

Where do we need random numbers?

PRNG

- Why is it called Pseudorandom?
- What is rollback resistance?
- What can the attacker do if the PRNG is not rollback resistant?

Diffie-Hellman Key Exchange

- Why do we want it?
- How does it work?
 - What variables are public? What variables are private?
 - What is the information being sent between Alice and Bob? Formula?
 - What is the secret being shared? Formula?
- Security
 - What's the security issue with it?

Public-Key Encryption

- Why do we want Asymmetric-key encryption?
 - What are the major benefits?
 - What is the major issue?
- How does RSA encryption work?
 - What variables are the public key?
 - What variables are the private key?
 - How do we do encryption? Formula?
 - o How do we do decryption? Formula?
- Security
 - Can it defend against MITM attack?

Digital Signature

- Why do we need signature?
 - What key is used for digital signature?
 - Why do we sign the hash instead of the plaintext?
- How does RSA signature work?
 - o How do we sign a message? Formula?
 - How do we verify a signature? Formula?
- Security
 - How can we combine public-key encryption and digital signature?
 - Can we provide confidentiality and integrity together?

Access Control

- What is Discretionary Access Control?
 - What is Access Matrix?
 - ACL vs. Capabilities
 - How does Trojan Horse attack work?
- What is Mandatory Access Control?
 - Multi-level security (MLS)
 - Bell-LaPadula (BLP)
 - Biba Model
 - Chinese Wall

Web Security (Basics)

- The basics (syntax and semantics)
 - HTML
 - HTTP
 - URL
 - JavaScript (security problems)
- What is the same origin policy?
 - How to tell if two websites have the same origin?

Web Security (Cookies)

- Basics of Cookies
 - Fields of cookies
 - Cookie Policy: when to allow cookie creation? What cookies to send for a request?
- Session Authentication
 - o How do session tokens work?
- Cross-Site Request Forgery (CSRF)
 - o How does CSRF work?
- CSRF Defenses
 - How does CSRF token work? How does Referer header work?

Web Security (XSS)

- Cross-Site Scripting (XSS)
 - How to design a XSS attack?
 - What are Stored and Reflected XSS?
 - What is difference between CSRF and reflected XSS?
 - Defense
 - HTML sanitization
 - Content Security Policy (CSP)

Web Security (SQL injection)

- SQL Injection
 - SQL basics
 - Design SQL scripts to compromise a system
- SQL Defense
 - Pros and Cons of
 - Input sanitization
 - Prepared statements

Network Security (Basics)

- Network layers
 - Basics of the five layers
 - what does each layer provide?
 - e.g., MAC address versus IP address
 - e.g., how does routing work?
- Threat Models
 - What are the assumptions for
 - On-path attacker
 - Off-path attacker
 - Man-in-the-middle

Network Security (ARP and TCP)

- Basics of ARP
 - Why do we need ARP? How does ARP use?
- ARP security
 - How does ARP spoofing work?
- Basics of TCP
 - What is 3-way handshake?
 - How does TCP provide reliability?
- TCP Security
 - What can TCP data injection do?
 - O How does TCP spoofing work?
 - O What can the attackers achieve with different threat models?
 - What does the attacker need for launching attacks?

Network Security (DoS)

- What property does DoS break?
- Application-level DoS defenses
 - Identify the resources being attacked / consumed
- Network-level DoS
 - What is DDoS? How to launch DDoS?
 - What is amplified DoS?
 - How does SYN flooding work?
 - What are SYN cookies? How can they prevent SYN flooding?

Network Security (Firewall)

- Basics of Firewall
 - Benefits of using firewall
 - What are inbound/outbound policies?
- Packet filters:
 - Stateless
 - How do we implement filtering with TCP flags?
 - Stateful
 - What rules can be defined?
 - o How can the packet filters fail?
 - o How to design the packets to bypass filters?
 - Pros and Cons

Network Security (Intrusion Detection)

- Path Traversal Attacks
- Types of detectors
 - Network intrusion detection system (NIDS)
 - What are evasion attacks?
 - Why do they succeed?
 - What cause inconsistent interpretations?
 - Host-based intrusion detection system (HIDS)
 - NIDS versus HIDS
- Detection Accuracy
 - What false positives and false negatives?
 - O When do they matter?
- Four Styles of Detection

System Security

ITIS 6200 / 8200

- x86 Assembly and Call Stack
 - Memory layout
 - Assembly basics
 - How do function calls work? How do ESP EIP EBP move?

Buffer overflows

- Stack smashing
- How to design and construct an exploit?
- What do we need to execute our shellcode?

Q & A