Assignment 4: Concurrency and OLAP

Dennis Thinh Tan Nguyen, Nicklas Johansen, Pernille Lous, Thor Valentin Aakjr Olesen, William Diedrichsen Marstrand

25. november 2015

Indhold

1	Dea	adlock Detection	3
	1.1	Determine which lock request will be granted, blocked by the lock	
		manager (LM)	3
	1.2	wait-for graph for the lock requests in the table showed in Figur: 1	3
	1.3	Determine whether there exists a deadlock in the lock requests	
		in the table above and briefly explain why	5
2	Dea	adlock prevention	6
		Determine which lock request will be granted, blocked or aborted	_
		by the lock manager 1 (LM1)	6
	2.2	Give te wait-for graph for the lock request in the table (Figur 4).	
		Give one reason why LM1 Results in a deadlock	6
	2.3	Deadlock prevention with LM2	6
	2.4	Deadlock prevention with LM3	7

Time	T1	T2	Т3	LM
1	S(D)			G
2	S(A)			G
3		S(A)		G
4		X(B)		G
5	X(C)			G
6			S(C)	В
7	S(B)			В

Figur 1: Table showing how LM is handling lock requests.

1 Deadlock Detection

- 1.1 Determine which lock request will be granted, blocked by the lock manager (LM)
- 1.2 wait-for graph for the lock requests in the table showed in Figur: 1

Figur 2:

Figur 3: Wait-for graph of LM $\,$

1.3 Determine whether there exists a deadlock in the lock requests in the table above and briefly explain why

There are no deadlock since the wait-for graph (Figur 3) is acyclic.

Time	T1	T2	T3	LM1	LM2	LM3
1	S(D)			G		
2			X(B)	G		
3	S(A)			G		
4		S(C)		G		
5	X(C)			В		
6		X(B)		В		
7			X(A)	В		

Figur 4: Table showing how LM1 is handling lock requests.

2 Deadlock prevention

- 2.1 Determine which lock request will be granted, blocked or aborted by the lock manager 1 (LM1)
- 2.2 Give te wait-for graph for the lock request in the table (Figur 4). Give one reason why LM1 Results in a deadlock

Since the graph (Figur 6) contains a cycle in such a way that T1, T2, T3 is waiting for each other, this results in a deadlock

2.3 Deadlock prevention with LM2

Please note that we have created a table (Figur 8) that illustrates the task of section 2.3 and section 2.4.

- LM2 with Wait-Die policy.
- S(D) on T1 is granted.
- X(B) on T3 is granted
- S(A) on T1 is granted
- S(C) on T2 is granted
- X(C) on T1 is blocked
- X(B) on T2 is blocked
- X(A) on T3 is aborted

Figur 5:

Figur 6:

2.4 Deadlock prevention with LM3

- LM2 with Wound-wait policy.
- \bullet S(D) on T1 is granted.
- X(B) on T3 is granted
- S(A) on T1 is granted
- S(C) on T2 is granted
- Abort S(C) on T2
- Abort X(B) on T3
- X(A) on T3 is blocked

Time	T1	T2	T3	LM1	LM2	LM3
1	S(D)			G	G	G
2			X(B)	G	G	G
3	S(A)			G	G	G
4		S(C)		G	G	G
5	X(C)			В	В	A T2
6		X(B)		В	В	A T3
7			X(A)	В	Α	В

H[]

Figur 7:

Figur 8: