Obliczenia Naukowe Karol Janic 3 listopada 2023

Spis treści

1			2
		Cel	
	1.2	Rozwiązanie	
	1.3	Wyniki i wnioski	2
2	Zad	anie 2	3
	2.1	Cel	3
	2.2	Rozwiązanie	
	2.3	Wyniki i wnioski	
3	Zad	anie 3	4
J		Cel	4
	3.2	Rozwiązanie	
	3.3	Wyniki i wnioski	
	0.0	wyniki i winoski	٠
4		······································	6
	4.1	Cel	6
	4.2	Rozwiązanie	6
	4.3	Wyniki i wnioski	6
5	Zad	anie 5	7
	5.1	Cel	7
	5.2	Rozwiązanie	
	5.3	Wyniki i wnioski	
6	Zad	anie 6	9
Ü		Cel	~
	6.2	Rozwiązanie	
	6.3	Wyniki i wnioski	
		c=-2	
		c = -1	
	(1.1)	1. = - 1	

1.1 Cel

Celem zadania jest zbadanie wpływu niewielkich zmian w danych na wyniki obliczania iloczynu skalarnego czterami metodami:

- "w przód"
- "w tył"
- "od największego do najmniejszego"
- "od najmniejszego do największego"

1.2 Rozwiązanie

Zaimplementowano cztery algorytmy (opisane na poprzedniej liście) oraz porównano ich działanie dla różnych arytmetyk zmienno pozycyjnych: Float32, Float64 i dwóch par wektorów: $\langle X,Y\rangle,\ \langle X',Y\rangle,$ gdzie:

- X = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]
- X' = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]
- $\bullet \ Y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]$

1.3 Wyniki i wnioski

	typ				
metoda	Float32		Float64		
	$\langle X, Y \rangle$	$\langle X', Y \rangle$	$\langle X, Y \rangle$	$\langle X', Y \rangle$	
"w przód"	-0.4999443	-0.4999443	1.0251881368296672e-10	-0.004296342739891585	
"w tył"	-0.454345	-0.454345	-1.5643308870494366e-10	-0.004296342998713953	
"od największego"	-0.5	-0.5	0.0	-0.004296342842280865	
"od najmniejszego"	-0.5	-0.5	0.0	-0.004296342842280865	

Tabela 1: Porównanie wartości obliczonego iloczynu skalarnego.

Modyfikacje danych nie wpłynęły na wynik obliczeń w pojedynczej precyzji, ponieważ zaszły one na miejscach poza precyją arytmetyki. Cyfry zostały usunięte na 10-tym miejscu po przecinku zaś precyzja arytmetyki w przybliżeniu wynosi 10^{-7} .

W podwójnej precyzji wyniki po modyfikacji znacząco różnią się od wyników uzyskanych początkowo. Powodem dużej zmiany wartości wyniku przy małej zmianie wartości argumentów jest to, że zadanie jest źle uwarunkowane. Wskaźnikiem uwarunkowania tego zadanie jest:

$$cond(X, Y) = \frac{\sum_{i=1}^{n} |X_i Y_i|}{|\sum_{i=1}^{n} X_i Y_i|}$$

Łatwo zauważyć, że osiąga on dużą wartość, gdy wektory są prawie prostopadłe tak jak w przypadku wektorów danych w zadaniu.

2.1 Cel

Celem zadania jest sprawdzenia jak programy do wizualizacji radzą sobie z funkcją $f(x) = e^x \ln(1 + e^{-x})$.

2.2 Rozwiązanie

W celu oceny poprawności wizualizacji obliczono granice funkcji w $+\infty$:

$$\lim_{x \to +\infty} e^x \cdot \ln(1 + e^{-x}) = \lim_{x \to +\infty} \frac{\ln(1 + e^{-x})}{e^{-x}} \stackrel{H}{=} \lim_{x \to +\infty} \frac{-\frac{e^{-x}}{1 + e^{-x}}}{-e^{-x}} = \lim_{x \to +\infty} \frac{1}{1 + e^{-x}} = 1$$

Następnie użyto Pyplot, Plots. jl oraz Gnuplot. jl do wizualizacji funkcji.

2.3 Wyniki i wnioski

Wizualizacje pokrywają się właściwymi wartościami funkcji dla wartości mniejszych niż 30. Dla wartości pomiędzy 30 a 36 widoczne są oscylacje. Dla argumentów większych niż 37 wizualizacja prezentuje niezmiennie 0. Wszystkie 3 narzędzia do wizualizacji wprowadzają użytkownika w błąd.

Wartości 0 dla argumentów większych od 37 biorą się stąd, że w tym przypadku e^x przyjmuje wartości mniejsze niż epsilon maszynowy dla arytmetyki z podwójną prezycją. Wówczas logarytm obliczany jest dla argumentu 1, przyjmuje wartość 0 i całe wyrażenia także ma wartość 0.

Powodem oscylacji jest mnożenie bardzo dużej liczby e^x i bardzo małej liczby $\ln(1+e^{-x})$. Skutkuje to utratą precyzji.

Rysunek 1: Wizualizacji za pomocą Pyplot

Rysunek 2: Wizualizacji za pomocą Plots.jl

Rysunek 3: Wizualizacji za pomocą Gnuplot.jl

3.1 Cel

Celem zadania jest porównanie metod służących rozwiązywaniu układów równań liniowych Ax = b:

- metoda eliminacji Gaussa
- metoda korzystająca z odwrotności macierzy

na macierzach:

- Hilberta $A = H_n$ dla n > 1
- \bullet losowych $A=R_n$ dla n=5,10,20z rosnącym wskaźnikiem uwarunkowania $c=1,10,10^3,10^7,10^{12},10^{16}$

3.2 Rozwiązanie

Przy użyciu dostarczonych funkcji wygenerowano odpowiednie macierze A. Następnie przy użyciu zaimplementowanych metod rozwiązano te układy równań, obliczono błędy względne i je porównano.

3.3 Wyniki i wnioski

W poniższych tabelach przedstawiono otrzymane wyniki. δ_{GAUSS} , δ_{INV} oznaczają błędy względne wektora wyznaczonego metodą Gaussa oraz metodą bazującą na macierzy odwrotnej względem wektora oczekiwanego. Wartości wskaźników uwarunkowania dla macierzy Hilberta szybko rosną. Gdy n osiąga wartość 13 błąd obu metod przekracza 100% dokładnej wartości. Metoda eliminacji Gaussa zwraca wektory bliższe dokładnemu, jednak nie jest to znacząca różnica.

W przypadku macierzy losowych ich wielkość nie wpływa na błąd względny. Zależy on jedynie od wskaźnika uwarunkowania macierzy. W tym przypadku metoda Gaussa także zwraca trochę dokładniejsze wyniki. Błąd względny przekracza 100% dla wskaźnikiem uwarunkowania macierzy rzędu 10^{16} .

Problem rozwiązania układu równań Ax = b, gdzie A jest macierzą Hilberta lub losową macierzą o dużej wartości wskaźnika uwarunkowania jest problemem źle uwarunkowanym. Błędy względne zależą od wartości wskaźnika uwarunkowania zadania. Z powyższych obserwacji można wysnuć wniosek, że błąd względny jest równy w przybliżeniu iloczynowy epsilona maszynowego dla danej arytmetyki z wartością wskaźnika uwarunkowania macierzy.

n	$rank(H_n)$	$cond(H_n)$	δ_{GAUSS}	δ_{INV}
2	2	$1.93 e{+01}$	5.66e-16	1.12e-15
3	3	5.24 e + 02	8.35e-15	9.83e-15
4	4	$1.55 e{+04}$	4.23e-13	3.96e-13
5	5	4.77e + 05	1.26e-12	8.13e-12
6	6	$1.50 \mathrm{e}{+07}$	1.54e-10	1.04e-10
7	7	$4.75 e{+08}$	6.52e-09	4.33e-09
8	8	$1.53 e{+10}$	3.60e-07	4.02e-07
9	9	$4.93e{+}11$	1.32e-05	1.46e-05
10	10	$1.60\mathrm{e}{+13}$	4.19e-04	4.07e-04
11	10	$5.22e{+14}$	1.00e-02	1.06e-02
12	11	$1.64\mathrm{e}{+16}$	5.50e-01	6.70e-01
13	11	$4.49e{+}18$	7.02e+01	8.27e + 01
14	11	$3.22e{+17}$	$9.65\mathrm{e}{+00}$	$1.01\mathrm{e}{+01}$
15	12	$3.37\mathrm{e}{+17}$	$6.92 e{+02}$	$7.16\mathrm{e}{+02}$

Tabela 2: Porównanie błędów względnych rozwiązań układów równań, gdy $A=H_n$.

	n = 5		n = 10		n = 15				
c	$rank(R_n)$	δ_{GAUSS}	δ_{INV}	$rank(R_n)$	δ_{GAUSS}	δ_{INV}	$rank(R_n)$	δ_{GAUSS}	δ_{INV}
1	5	1.72e-16	2.28e-16	10	2.28e-16	2.25e-16	20	3.99e-16	3.58e-16
10	5	1.99e-16	1.40e-16	10	3.22e-16	2.65e-16	20	4.45e-16	3.86e-16
10^{3}	5	3.06e-14	2.89e-14	10	1.40e-14	1.27e-14	20	6.82e-14	6.75e-14
10^{7}	5	2.50e-10	3.09e-10	10	7.24e-12	1.78e-11	20	1.35e-10	7.81e-11
10^{12}	5	2.08e-05	8.73e-06	10	4.45e-06	5.46e-06	20	4.20e-05	4.13e-05
10^{16}	4	1.59e-01	1.51e-01	9	2.68e-01	2.69e-01	19	7.00e-02	1.08e-01

Tabela 3: Porównanie błędów względnych rozwiązań układów równań, gdy $A=R_n$ oraz c jest wskaźnikiem uwarunkowania macierzy A.

4.1 Cel

Celem zadania jest zbadanie pierwiastków "złośliwego wielomianu" Wilkinsona dla wersji z niezaburzonymi współczynnikami oraz wersji z zaburzonym jednym ze współczynników. Wersja z niezaburzonymi współczynnikami:

$$p(x) = (x-20)(x-19)(x-18)(x-17)(x-16)(x-15)(x-14)(x-13)(x-12)(x-11)(x-10)$$
$$(x-9)(x-8)(x-7)(x-6)(x-5)(x-4)(x-3)(x-2)(x-1)$$

4.2 Rozwiązanie

Przy użyciu funkcji roots pakietu Polynomials obliczono pierwiastki wielomianu p(x) w postaci naturalnej P(x). Następnię zaburzono współczynnik przy x^{19} z 210 na 210 – 2^{-23} i raz jeszcze obliczono pierwiastki wielomianu p'(x). Następnie porównano je z wartościami dokładnymi.

4.3 Wyniki i wnioski

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k-k $
1	1.000000	35696.509648	36626.425482	0.000000
2	2.000000	176252.600267	181303.933673	0.000000
3	3.000000	279157.696882	290172.285889	0.000000
4	4.000000	3027109.298899	2041537.290275	0.000000
5	5.000001	22917473.756567	20894625.006962	0.000001
6	5.999989	129024172.842051	112504845.775630	0.000011
7	7.000102	480511275.460206	457290864.273095	0.000102
8	7.999356	1637952021.896114	1555645937.735738	0.000644
9	9.002915	4877071372.550003	4687816175.648389	0.002915
10	9.990413	13638638195.458128	12634601896.949205	0.009587
11	11.025023	35856312951.308647	33001284744.984150	0.025023
12	11.953283	75333323603.581970	73885256654.049881	0.046717
13	13.074314	196059881243.308167	184762150931.441925	0.074314
14	13.914756	357513478231.043152	355142775284.208435	0.085244
15	15.075494	821627123645.597046	842320155896.425415	0.075494
16	15.946287	1551497888049.406738	1570728736625.802002	0.053713
17	17.025427	3694735918486.229004	3316978223889.236328	0.025427
18	17.990921	7650109016515.867188	6344853141791.280273	0.009079
19	19.001910	11435273749721.195312	12285717366719.660156	0.001910
20	19.999809	27924106393680.726562	23183095352716.378906	0.000191

Tabela 4: Rzeczywiste pierwiastki dla niezaburzonego wielomianu

k	z_k	$ P'(z_k) $	$ p'(z_k) $	$ z_k - k $
1	1.000000	20259.872313	19987.872313	0.000000
2	2.000000	346541.413759	352369.413809	0.000000
3	3.000000	2258059.700120	2416241.558252	0.000000
4	4.000000	10542631.790395	11263702.300292	0.000000
5	4.999999	37578309.165852	44757444.238069	0.000001
6	6.000020	131409433.255694	214210316.580393	0.000020
7	6.999602	393935587.464762	1784617342.786064	0.000398
8	8.007772	1184986961.371896	18686972170.009857	0.007772
9	8.915816	2225522123.307771	137463097751.429932	0.084184
10	-	-	-	-
11	-	-	-	-
:	:	:	:	:
18	-	-	-	-
19	-	-	-	-
20	20.846910	8756386551865.696289	1374374355999759872.000000	0.846910

Tabela 5: Rzeczywiste pierwiastki dla zaburzonego wielomianu

Dokładność wartości wyznaczanych pierwiastków niezaburzonego wielomianu spada wraz z ich rosnącym indeksem. Pierwsze pierwiastki wyznaczane są z zadowalającą dokładnością, zaś blędy względne ponad połowy pierwiastków są rzędu kilku procent. Wartości wielomianu w jego pierwiastkach okazują się całkowicie niezgodne z przewidywaniami niezależnie od użytej reprezentacji wielomianu. Powodem takich niedokładności jest niewystarczająca liczba cyfr znaczących reprezentacji w arytmetyce podwójnej precyzji $(15-17~{\rm cyfr}~{\rm znaczących})$ -wyznaczanie wartości wielomianu Wilkinsona w punkcie wymaga mnożeń liczb, które mają więcej cyfr znaczących. Nawet jeżeli jeden z czynników jest bliski wartości 0 to kolejne niedokładne mnożenia powodują otrzymanie dużej liczby.

W przypadku wielomianu zaburzonego dokładność wyznaczonych pierwiastków rzeczywistych jest mniejsza niż w przypadku wielomianu niezaburzonego. Dodatkowo tylko połowa pierwiastków została znaleziona. Metoda roots zwróciła 10 pierwiastków będących liczbami zepolonymi. Przyczyną takich wyników jest złe uwarunkowanie zadania. Zaburzenie jednego ze współczynników wielomianu Wilkinsona o ϵ na 19 pozycji powoduje zaburzenia pierwiastka $x_{19}=19$ o $-\epsilon \frac{19^{19}}{18!}\approx -\epsilon 10^8$ co dla $\epsilon=2^{-23}$ daje około 30.

5 Zadanie 5

5.1 Cel

Celem zadania jest przeprowadzenie symulacji modelu logistycznego, który jest opisany poprzez zależność:

$$p_{n+1} = p_n + r \cdot p_n (1 - p_n), \qquad n = 0, 1, 2, \dots$$

5.2 Rozwiązanie

Przeprowadzono 40 iteracji eksperymentu dla $p_0 = 0.01$ oraz r = 3 w dwóch wariantach w arytmetyce Float32. W pierwszym wyniki pośrednie nie były modyfikowane, zaś w drugim wynik pośredni p_{10} został zaokrąglony do 3 miejsc po przecinku. Dodatkowo powtórzono pierwszy wariant w arytmetyce Float64.

5.3 Wyniki i wnioski

Wyniki przeprowadzonej symulacji porównane zostały w tabeli. Łatwo zauważyć, że zarówno względnie małe zaburzenie czy zmiana prezycji arytmetyki ma bardzo duży wpływ na przebieg symulacji, ponieważ na przestrzeni kilkudziesięciu iteracji widać, że wyniki różnią się diametralnie.

Powodem takich rozbieżności jest zbyt mała liczba cyfr w rozwinięciu liczby. Produkt dwóch liczb o k_1 i k_2 bitach potrzebnych na zapisanie części ułamkowej potrzebnyc zazwyczaj $k_1 + k_2$ bitów na zapisanie części ułamkowej. Ponieważ wyznaczenie każdej kolejnej wartości p_n wymaga mnożenia to bardzo szybko dostępna liczba

bitów jest niewystarczająca. Już w 5 iteracji wartości wyznaczane w arytmetyce o podwójnej precyzji różnią sie od tych liczonych w arytmetyce o pojedynczej precyzji na 6 miejscu po przecinku. Wynika z tego, że właśnie w tym momencie obliczenia p_n we Float32 stają się niedokładne i błąd zaczyna sie kumulować.

n	niezaburzone p_n w Float32	zaburzone p_n w Float32	niezaburzone p_n w Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.722	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

Tabela 6: Wyniki symulacji modelu logistycznego

6.1 Cel

Celem zadania jest przeprowadzenie eksperymentu, który polega na wyznaczaniu kolejnych wartości ciągu zdefiniowanego równaniem rekurencyjnym:

$$x_{n+1} = x_n^2 + c, \qquad n = 0, 1, 2, \dots$$

6.2 Rozwiązanie

Punkty stałe:

- 1. dla c = -2 punktami stałymi są -1 oraz 2
- 2. dla c=-1punktami stałymi są $\frac{1+\sqrt{5}}{2}$ oraz $\frac{1-\sqrt{5}}{2}$

Wyznaczono 40 pierwszych elementów ciągu dla różnych konfiguracji x_0 oraz c. Następnie przeprowadzono iteracje graficzną podanego równania rekurencyjnego.

6.3 Wyniki i wnioski

Wartości elementów ciągu kształtują się tak samo dla x_0 jak i dla $-x_0$.

6.4 c = -2

Na podstawie wyników można zauważyć, że wartości ciągu dla $|x_0|$ będącego punktem stałym funkcji szybko zbiegają właśnie do niego. Wartości ciągu rozbiegają do nieskończoności, gdy $|x_0|$ leży poza przedziałem wyznaczonym przez punkty stałe. Gdy c=-2 to dla $|x_0|$ należącego do przedziału wyznaczonego przez punkty stałe ciąg dąży do dolnej granicy przedziału.

6.5 c = -1

Na podstawie wyników można zauważyć, że dla $x_0=-1$ i $x_0=1$ wartości ciągu przyjmują na zmianę wartości 0 i -1. Gdy $x_0=0.75$ lub $x_0=0.25$ to kilkanaście pierwszych elementów ciągu przyjmuje różne wartości jednak w pewnym momencie wartości stają się małe i nas skutek podnoszenia ich do kwadratu zostają "zgubione". Od tego momentu ciąg przyjmuje na zmianę wartości 0 i -1.

Na skutek wielokrotnego podnoszenia małych liczb do kwadratu, które do dokładnej reprezentacji wymagają coraz dłuższej mantysy tracą dokładność.

Rysunek 4: Iteracja graficzna dla $x_{n+1}=x_n^2-2\,$

Rysunek 5: Iteracja graficzna dla $x_{n+1}=x_n^2-1\,$

n	$x_n dla x_0 = 1$	$x_n dla x_0 = 2$	$x_n \text{ dla } x_0 = 1.99999999999999999999999999999999999$
1	-1.0	2.0	1.999999999999
2	-1.0	2.0	1.999999999998401
3	-1.0	2.0	1.99999999993605
4	-1.0	2.0	1.99999999997442
5	-1.0	2.0	1.9999999999897682
6	-1.0	2.0	1.999999999590727
7	-1.0	2.0	1.99999999836291
8	-1.0	2.0	1.999999993451638
9	-1.0	2.0	1.9999999973806553
10	-1.0	2.0	1.999999989522621
11	-1.0	2.0	1.9999999580904841
12	-1.0	2.0	1.9999998323619383
13	-1.0	2.0	1.9999993294477814
14	-1.0	2.0	1.9999973177915749
15	-1.0	2.0	1.9999892711734937
16	-1.0	2.0	1.9999570848090826
17	-1.0	2.0	1.999828341078044
18	-1.0	2.0	1.9993133937789613
19	-1.0	2.0	1.9972540465439481
20	-1.0	2.0	1.9890237264361752
21	-1.0	2.0	1.9562153843260486
22	-1.0	2.0	1.82677862987391
23	-1.0	2.0	1.3371201625639997
24	-1.0	2.0	-0.21210967086482313
25	-1.0	2.0	-1.9550094875256163
26	-1.0	2.0	1.822062096315173
27	-1.0	2.0	1.319910282828443
28	-1.0	2.0	-0.2578368452837396
29	-1.0	2.0	-1.9335201612141288
30	-1.0	2.0	1.7385002138215109
31	-1.0	2.0	1.0223829934574389
32	-1.0	2.0	-0.9547330146890065
33	-1.0	2.0	-1.0884848706628412
34	-1.0	2.0	-0.8152006863380978
35	-1.0	2.0	-1.3354478409938944
36	-1.0	2.0	-0.21657906398474625
37	-1.0	2.0	-1.953093509043491
38	-1.0	2.0	1.8145742550678174
39	-1.0	2.0	1.2926797271549244
40	-1.0	2.0	-0.3289791230026702

Tabela 7: Kolejne elementy ciągu opisanego równaniem $x_{n+1} = x_n^2 - 2$

n	$x_n dla x_0 = 1$	$x_n dla x_0 = -1$	$x_n dla x_0 = 0.75$	$x_n dla x_0 = 0.25$
1	0.0	0.0	-0.4375	-0.9375
2	-1.0	-1.0	-0.80859375	-0.12109375
3	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135
5	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
7	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	0.0	0.0	-0.01948876442658909	-0.999999999670343
10	-1.0	-1.0	-0.999620188061125	-6.593148249578462e-11
11	0.0	0.0	-0.0007594796206411569	-1.0
12	-1.0	-1.0	-0.9999994231907058	0.0
13	0.0	0.0	-1.1536182557003727e-6	-1.0
14	-1.0	-1.0	-0.999999999986692	0.0
15	0.0	0.0	-2.6616486792363503e-12	-1.0
16	-1.0	-1.0	-1.0	0.0
17	0.0	0.0	0.0	-1.0
18	-1.0	-1.0	-1.0	0.0
19	0.0	0.0	0.0	-1.0
20	-1.0	-1.0	-1.0	0.0
21	0.0	0.0	0.0	-1.0
22	-1.0	-1.0	-1.0	0.0
23	0.0	0.0	0.0	-1.0
24	-1.0	-1.0	-1.0	0.0
25	0.0	0.0	0.0	-1.0
26	-1.0	-1.0	-1.0	0.0
27	0.0	0.0	0.0	-1.0
28	-1.0	-1.0	-1.0	0.0
29	0.0	0.0	0.0	-1.0
30	-1.0	-1.0	-1.0	0.0
31	0.0	0.0	0.0	-1.0
32	-1.0	-1.0	-1.0	0.0
33	0.0	0.0	0.0	-1.0
34	-1.0	-1.0	-1.0	0.0
35	0.0	0.0	0.0	-1.0
36	-1.0	-1.0	-1.0	0.0
37	0.0	0.0	0.0	-1.0
38	-1.0	-1.0	-1.0	0.0
39	0.0	0.0	0.0	-1.0
40	-1.0	-1.0	-1.0	0.0

Tabela 8: Kolejne elementy ciągu opisanego równaniem $x_{n+1} = x_n^2 - 1\,$