WELTORGANISATION FOR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07D 401/12, A61K 31/33, C07D 235/16, 235/12, 235/14, 405/12, 215/40, 215/38, 417/12, 471/041, 235/28, 307/81, 405/14, 401/14, 471/04

(11) Internationale Veröffentlichungsnummer: WO 00/08014

(43) Internationales

Veröffentlichungsdatum:

17. Februar 2000 (17.02.00)

(21) Internationales Aktenzeichen:

PCT/EP99/05371

(22) Internationales Anmeldedatum:

27. Juli 1999 (27.07.99)

(30) Prioritätsdaten:

198 34 751.0

1. August 1998 (01.08.98)

DE

(71) Anmelder: BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; D-55216 Ingelheim/Rhein (DE).

(72) Erfinder: HAUEL, Norbert; Marderweg 12, D-88433 Schemmerhofen (DE). RIES, Uwe; Tannenstrasse 31, D-88400 Biberach (DE). PRIEPKE, Henning; Birkenharder Strasse 11, D-88447 Warthausen (DE). MIHM, Gerhard; Scherrichweg 8, D-88400 Biberach (DE). WIENEN, Wolfgang; Kirschenweg 27, D-88400 Biberach (DE). STASSEN, Jean, Marie; Berggrubenweg 11, D-88447 Warthausen (DE). BINDER, Klaus; Biebricher Allee 15, D-65187 Wiesbaden (DE). ZIMMERMANN, Rainer, Laurenbühlstrasse 17, D-88441 Mittelbiberach (DE).

(74) Anwalt: LAUDIEN, Dieter, Boehringer Ingelheim GmbH, B Patente, D-55216 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB. GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: DISUBSTITUTED BICYCLIC HETEROCYCLES HAVING, IN PARTICULAR, A THROMBIN INHIBITIVE EFFECT
- (54) Bezeichnung: DISUBSTITUIERTE BICYCLISCHE HETEROCYCLEN MIT INSBESONDERE EINER THROMBINHEM-MENDEN WIRKUNG

(57) Abstract

The invention relates to disubstituted bicyclic heterocycles of general formula (I) Ra - Het - B - Ar - E, in which Ra, Ar, B, Het and E are defined as in Claim No. 1, to their tautomers, their stereoisomers, their mixtures, their salts, and to the production thereof. The invention also relates to the medicaments containing the pharmacologically active compounds and to their application. The compounds of the general formula (I), in which E represents a cyano group, depict valuable intermediate products for producing the remaining compounds of general formula (I), and the compounds of said general formula (I), in which E represents an RoNH-C(=NH) group, comprise valuable pharmacological properties, in particular, a thrombin inhibitive and thrombin time prolonging effect.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft disubstituierte bicyclische Heterocyclen der allgemeinen Formel (I): $R_a - \text{Het} - B - \text{Ar} - E$, in der Ra, Ar, B, Het und E wie im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische, deren Salze und deren Herstellung sowie die die pharmakologisch wirksamen Verbindungen enthaltenden Arzneimittel und deren Verwendung. Die Verbindungen der allgemeinen Formel (I), in denen E eine Cyanogruppe darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel (I) dar, und die Verbindungen der allgemeinen Formel (I), in denen E eine R₀NH-C(=NH)-Gruppe darstellt, weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine thrombinhemmende und die Thrombinzeit verlängernde Wirkung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑÜ	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Мопасо	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	ÜA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	ľΤ	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ.	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	u	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 00/08014 PCT/EP99/05371

DISUBSTITUIERTE BICYCLISCHE HETEROCYCLEN MIT INSBESONDERE EINER THROMBINHEM-MENDEN WIRKUNG

Gegenstand der vorliegenden Erfindung sind neue disubstituierte bicyclische Heterocyclen der allgemeinen Formel

$$R_a$$
 - Het - B - Ar - E ,(I)

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle Eigenschaften aufweisen.

Die Verbindungen der obigen allgemeinen Formel I, in denen E eine Cyanogruppe darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar, und die Verbindungen der obigen allgemeinen Formel I, in denen E eine $R_bNH-C(=NH)$ -Gruppe darstellt, sowie deren Tautomere und deren Stereoisomere weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine Thrombinhemmende und die Thrombinzeit verlängernde Wirkung.

Gegenstand der vorliegenden Anmeldung sind somit die neuen Verbindungen der obigen allgemeinen Formel I sowie deren Herstellung, die die pharmakologisch wirksamen Verbindungen enthaltende Arzneimittel und deren Verwendung.

In der obigen allgemeinen Formel bedeutet

B eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Ethylengruppe, wobei eine Methylengruppen der Ethylengruppe, die entweder mit dem Rest Het oder Ar verknüpft ist, durch ein Sauerstoff- oder Schwefelatom, durch eine Sul-

finyl-, Sulfonyl-, Carbonyl- oder -NR₁-Gruppe ersetzt sein kann, wobei

 R_1 ein Wasserstoffatom oder eine C_{1-6} -Alkylgruppe darstellt,

oder B auch eine geradkettige C_{3-5} -Alkylengruppe, in der eine Methylengruppe, die weder mit dem Rest Het noch mit dem Rest Ar verknüpft ist, durch eine -NR₁-Gruppe ersetzt ist, in der R₁ wie vorstehend erwähnt definiert ist,

E eine Cyano- oder RbNH-C(=NH)-Gruppe, in der

 $R_{\rm b}$ ein Wasserstoffatom, eine Hydroxygruppe, eine C_{1-3} -Alkylgruppe oder einen in vivo abspaltbaren Rest darstellt,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylen- oder Naphthylengruppe,

eine gegebenenfalls im Kohlenstoffgerüst durch eine C_{1-3} -Al-kylgruppe substituierte Thienylen-, Thiazolylen-, Pyridinylen-, Pyrimidinylen-, Pyrazinylen- oder Pyridazinylengruppe,

Het einen bicyclischen Heterocyclus der Formel

X ein Stickstoffatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Methingruppe und

Y eine gegebenenfalls durch eine C_{1-5} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

X ein Stickstoffatom und

Y eine durch eine C_{1-5} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte Iminogruppe, wobei der Alkyl- und Cycloalkyl-substituent jeweils durch eine Carboxygruppe oder eine invivo in eine Carboxygruppe überführbare Gruppe substituiert ist, wobei in einem der vorstehend erwähnten Heterocyclen zusätzlich eine nicht angulare Methingruppe durch ein Stickstoffatom ersetzt sein kann,

oder Het eine Gruppe der Formeln

$$R_1$$
 R_1
oder

 N
 N
 N
 N
 N

R₁ wie vorstehend erwähnt definiert ist,

und Ra eine Phenyl-C1-3-alkoxygruppe,

eine Aminogruppe,

eine C_{1-3} -Alkylaminogruppe, die am Stickstoffatom zusätzlich durch eine Phenyl- C_{1-3} -alkylgruppe substituiert ist,

eine R₃-CO-R₄N- oder R₃-SO₂-R₄N-Gruppe, in denen

- 4 -

 R_3 eine C_{1-5} -Alkyl-, Phenyl- C_{1-3} -alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, Naphthyl-, Pyridyl-, Chinolyl-, Isochinolyl-, Tetrahydrochinolyl- oder Tetrahydroisochinolylgruppe und

 R_4 ein Wasserstoffatom, C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkyl-gruppe, die jeweils im Alkylteil durch eine in vivo in eine Carboxygruppe überführbare Gruppe, durch eine Carboxy- oder Tetrazolylgruppe, durch eine Aminocarbonyl- oder C_{1-3} -Alkyl-aminocarbonylgruppe, die jeweils am Stickstoffatom zusätzlich durch eine in vivo in eine Carboxy- C_{1-3} -alkylgruppe überführbare Gruppe oder durch eine Carboxygruppe substituiert sind, eine endständig durch eine $Di-(C_{1-3}$ -Alkyl)-aminogruppe substituierte C_{2-5} -Alkylgruppe oder eine C_{3-7} -Cyclo-alkylgruppe darstellen.

Unter einer in-vivo in eine Carboxygruppe überführbare Gruppe ist beispielsweise eine Hydroxymethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C_{1-6} -Alkanol, ein Phenyl- C_{1-3} -alkanol, ein C_{3-9} -Cycloalkanol, wobei ein C_{5-8} -Cycloalkanol zusätzlich durch ein oder zwei C_{1-3} -Alkylgruppen substituiert sein kann, ein C5-8-Cycloalkanol, in dem eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, Phenyl- C_{1-3} -alkoxycarbonyl- oder C_{2-6} -Alkanoylgruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C1-3-Alkylgruppen substituiert sein kann, ein C₄₋₇-Cycloalkenol, ein C₃₋₅-Alkenol, ein Phenyl-C₃₋₅-alkenol, ein C_{3-5} -Alkinol oder Phenyl- C_{3-5} -alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trāgt, ein C_{3-8} -Cycloalkyl- C_{1-3} -alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoffatomen, das im Bicycloalkylteil zusätzlich durch ein oder zwei C_{1-3} -Alkylgruppen substituiert ist, ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

WO 00/08014

- 5 -

R_5 -CO-O-(R_6 CR₇)-OH,

in dem

 R_5 eine C_{1-8} -Alkyl-, C_{5-7} -Cycloalkyl-, Phenyl- oder Phenyl- C_{1-3} -alkylgruppe.

 R_6 ein Wasserstoffatom, eine C_{1-3} -Alkyl-, C_{5-7} -Cycloalkyl- oder Phenylgruppe und

 R_7 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe darstellen,

oder unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acylgruppe wie die Benzoyl- oder Pyridinoylgruppe oder eine C1-16-Alkanoylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine Allyloxycarbonylgruppe, eine C_{1-16} -Alkoxycarbonylgruppe wie die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert.Butoxycarbonyl-, Pentoxycarbonyl-, Hexoxycarbonyl-, Octyloxycarbonyl-, Nonyloxycarbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyloder Hexadecyloxycarbonylgruppe, eine Phenyl-C1-16-alkoxycarbonylgruppe wie die Benzyloxycarbonyl-, Phenylethoxycarbonyloder Phenylpropoxycarbonylgruppe, eine C_{1-3} -Alkylsulfonyl-C2_4-alkoxycarbonyl-, C1_3-Alkoxy-C2_4-alkoxy-C2_4-alkoxycarbonyl- oder R5CO-O-(R6CR7)-O-CO-Gruppe, in der R5 bis R7 wie vorstehend erwähnt definiert sind,

zu verstehen.

Desweiteren schließen die bei der Definition der vorstehend erwähnten gesättigten Alkyl- und Alkoxyteile, die mehr als 2 Kohlenstoffatome enthalten, sowie die Alkanoyl- und ungesättigten Alkylteile, die mehr als 3 Kohlenstoffatomen enthalten, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tert. Butyl-, Isobutylgruppe etc. ein.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

B eine gegebenenfalls durch eine oder zwei Methylgruppen substituierte Ethylengruppe, wobei eine Methylengruppen der Ethylengruppe, die entweder mit dem Rest Het oder Ar verknüpft ist, durch ein Sauerstoff- oder Schwefelatom, durch eine Carbonyl- oder -NR1-Gruppe ersetzt sein kann, wobei

R₁ ein Wasserstoffatom oder eine Methylgruppe darstellt,

oder B auch eine n-Propylengruppe, in der die mittlere Methylengruppe durch eine $-NR_1$ -Gruppe ersetzt ist, in der R_1 wie vorstehend erwähnt definiert ist,

E eine Cyano- oder RbNH-C(=NH)-Gruppe, in der

Rb ein Wasserstoffatom, eine C₁₋₈-Alkyloxy-carbonyl-, C₅₋₇-Cycloalkyloxy-carbonyl-, Benzoyl-, Nicotinoyl- oder Isonicotinoylgruppe darstellt,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Methyl- oder Methoxygruppe substituierte Phenylengruppe, oder eine gegebenenfalls im Kohlenstoffgerüst durch eine Methylgruppe substituierte Thienylengruppe,

Het einen bicyclischen Heterocyclus der Formel

$$X$$
 , in der

X ein Stickstoffatom oder eine gegebenenfalls durch eine Methylgruppe substituierte Methingruppe und Y eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte İminogruppe, ein Sauerstoff- oder Schwefelatom oder

X ein Stickstoffatom und

Y eine durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, wobei der Alkylteil zusätzlich durch eine Carboxy- oder C_{1-3} -Alkyloxy-carbonylgruppe substituiert ist,

oder Het eine Gruppe der Formeln

- 8 -

R₁ wie vorstehend erwähnt definiert ist und

 R_2 eine durch eine Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituiert C_{1-3} -Alkylgruppe darstellt,

und Ra eine Benzyloxygruppe,

eine Aminogruppe,

eine C_{1-3} -Alkylaminogruppe, die am Stickstoffatom zusätzlich durch eine Benzylgruppe substituiert ist,

eine R₃-CO-R₄N- oder R₃-SO₂-R₄N-Gruppe, in denen

R, eine C₁₋₄-Alkyl-, Benzyl-, C₅₋₇-Cycloalkyl-, Phenyl-, Pyridyl-, Chinolyl-, Isochinolyl-, Tetrahydrochinolyl- oder Tetrahydroisochinolylgruppe und

 R_4 ein Wasserstoffatom, eine C_{1-3} -Alkylgruppe, die durch eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Tetrazolyl-, Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe substituiert ist, wobei die Aminocarbonyl- und C_{1-3} -Alkylaminocarbonylgruppe jeweils am Stickstoffatom zusätzlich durch eine eine Carboxy- C_{1-3} -alkyl- oder C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkylgruppe substituiert sind, oder eine endständig durch eine Di- $(C_{1-3}$ -alkyl)-aminogruppe substituierte C_{2-3} -Alkylgruppe darstellen,

bedeuten, deren Isomere und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

B eine gegebenenfalls durch eine oder zwei Methylgruppen substituierte Ethylengruppe, wobei eine Methylengruppen der Ethylengruppe, die entweder mit dem Rest Het oder Ar verknüpft ist, durch ein Sauerstoff- oder Schwefelatom, durch eine Carbonyl- oder $-NR_1$ -Gruppe ersetzt sein kann, wobei

 R_1 ein Wasserstoffatom oder eine Methylgruppe darstellt,

oder B auch eine n-Propylengruppe, in der die mittlere Methylengruppe durch eine $-NR_1$ -Gruppe ersetzt ist, in der R_1 wie vorstehend erwähnt definiert ist,

E eine RbNH-C(=NH)-Gruppe, in der

 $R_{\rm b}$ ein Wasserstoffatom, eine C_{1-8} -Alkyloxy-carbonyl-, C_{5-7} -Cycloalkyloxy-carbonyl- oder Benzoylgruppe darstellt,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Methyl- oder Methoxygruppe substituierte Phenylengruppe, oder eine gegebenenfalls im Kohlenstoffgerüst durch eine Methylgruppe substituierte Thienylengruppe,

Het einen bicyclischen Heterocyclus der Formel

X ein Stickstoffatom oder eine gegebenenfalls durch eine Methylgruppe substituierte Methingruppe und

Y eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

X ein Stickstoffatom und

Y eine durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, wobei der Alkylteil zusätzlich durch eine Carboxy- oder C_{1-3} -Alkyloxy-carbonylgruppe substituiert ist,

und Ra eine Benzyloxygruppe,

eine Aminogruppe,

eine C_{1-3} -Alkylaminogruppe, die am Stickstoffatom zusätzlich durch eine Benzylgruppe substituiert ist,

eine R₃-CO-R₄N- oder R₃-SO₂-R₄N-Gruppe, in denen

 R_3 eine C_{1-4} -Alkyl-, Benzyl-, C_{5-7} -Cycloalkyl-, Phenyl-, Pyridyl-, Chinolyl-, Isochinolyl-, Tetrahydrochinolyl- oder Tetrahydroisochinolylgruppe und

 R_4 ein Wasserstoffatom, eine C_{1-3} -Alkylgruppe, die durch eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Tetrazolyl-, Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe substituiert ist, wobei die Aminocarbonyl- und C_{1-3} -Alkylaminocarbonylgruppe jeweils am Stickstoffatom zusätzlich durch eine eine Carboxy- C_{1-3} -alkyl- oder C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkylgruppe substituiert sind, oder eine endständig durch eine Di- $(C_{1-3}$ -alkyl)-aminogruppe substituierte C_{2-3} -Alkylgruppe darstellen,

bedeuten, insbesondere diejenigen Verbindungen der obigen allgemeinen Formel I, in denen

 R_a in 5-Stellung eine R_3 -CO- R_4 N- oder R_3 -SO₂- R_4 N-Gruppe, in denen R_3 und R_4 wie vorstehend erwähnt definiert sind,

deren Isomere und deren Salze.

Ganz besonders bevorzugte Verbindungen sind diejenigen der allgemeinen Formel Ia, in der

$$R_a$$
 N
 $B - Ar - E$
 R_1

in der

X eine Methingruppe oder ein Stickstoffatom,

B eine Ethlengruppe, wobei die mit Ar verknüpte Methylengruppe durch ein Sauerstoffatom oder eine Iminogruppe ersetzt sein kann,

Ar eine 1,4-Phenylengruppe,

E eine Amidinogruppe,

R, eine Methylgruppe und

Ra eine R3-CO-R4N- oder R3-SO2-R4N-Gruppe, wobei

 R_4 eine durch eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Carboxymethylaminocarbonyl- oder C_{1-3} -Alkoxy-carbonylmethyl-aminocarbonylgruppe substituierte Methylgruppe und

R, eine Isochinolin-8-yl-Gruppe darstellen,

bedeuten, insbesondere diejenigen vorstehend erwähnten Verbindungen der allgemeinen Formel Ia, in denen R_a eine R_3 -SO₂- R_4 N-Gruppe darstellt,

deren Isomere und deren Salze.

Als besonders besonders bevorzugte Verbindungen der obigen allgemeinen Formel I seien beispielsweise folgende erwähnt:

- (a) 1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(hydroxycar-bonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol,
- (b) 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-(hydroxy-carbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol,
- (c) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und
- (d) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]-indol

sowie deren Salze.

Die neuen Verbindungen lassen sich nach an sich bekannten Verfahren herstellen, beispielsweise nach folgenden Verfahren:

a. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der E eine $R_bNH-C(=NH)$ -Gruppe bedeutet, in der R_b ein Wasserstoffatom, eine Hydroxy- oder C_{1-3} -Alkylgruppe darstellt:

Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

$$R_a$$
 - Het - B - Ar - $C(=NH)$ - Z_1 , (II)

in der

B, Ar, Het und R_a wie eingangs erwähnt definiert sind und Z₁ eine Alkoxy- oder Aralkoxygruppe wie die Methoxy-, Ethoxy-, n-Propoxy-, Isopropoxy- oder Benzyloxygruppe oder eine Alkylthio- oder Aralkylthiogruppe wie die Methylthio-, Ethylthio-, n-Propylthio- oder Benzylthiogruppe darstellt, mit einem Amin der allgemeinen Formel

$$H_2N - R_b'$$
 , (III)

- 13 -

in der

 R_b ein Wasserstoffatom, eine Hydroxy- oder C_{1-3} -Alkylgruppe darstellt.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol, Ethanol, n-Propanol, Wasser, Methanol/Wasser, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 20 und 120°C, mit einer Verbindung der allgemeinen Formel III oder mit einem entsprechenden Säureadditionssalz wie beispielsweise Ammoniumcarbonat durchgeführt.

Eine Verbindung der allgemeinen Formel II erhält man beispielsweise durch Umsetzung einer Verbindung der allgemeinen Formel I, in der E eine Cyanogruppe darstellt, mit einem entsprechenden Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol oder Benzylalkohol in Gegenwart einer Säure wie Salzsäure oder durch Umsetzung eines entsprechenden Amids mit einem Trialkyloxoniumsalz wie Triethyloxonium-tetrafluorborat in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei 20°C, oder eines entsprechenden Nitrils mit Schwefelwasserstoff zweckmäßigerweise in einem Lösungsmittel wie Pyridin oder Dimethylformamid und in Gegenwart einer Base wie Triethylamin und anschließender Alkylierung des gebildeten Thioamids mit einem entsprechenden Alkyl- oder Aralkylhalogenid.

b. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der die R_a -Gruppe und E mit der Maßgabe wie eingangs erwähnt definiert sind, daß die R_a -Gruppe eine Carboxygruppe enthält und E wie eingangs definiert ist oder die R_a -Gruppe wie eingangs erwähnt definiert ist und E eine NH_2 -C(=NH)-Gruppe darstellt oder die R_a -Gruppe eine Carboxygruppe enthält und E eine NH_2 -C(=NH)-Gruppe darstellt:

Überführung einer Verbindung der allgemeinen Formel

$$R_a'$$
 - Het - B - Ar - E' , (IV)

in der

A, B, Ar und Het wie eingangs definiert sind und die Ra'-Gruppe und E' die für die Ra-Gruppe und E eingangs erwähnten Bedeutungen mit der Maßgabe besitzen, daß die Ra'-Gruppe eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxylgruppe überführbare Gruppe enthält und E wie eingangs definiert ist oder E' eine durch Hydrolyse, Behandeln mit einer Saure oder Base, Thermolyse oder Hydrogenolyse in eine NH2-C(=NH)-Gruppe überführbare Gruppe darstellt und die Ra'-Gruppe die für die Ra-Gruppe eingangs erwähnten Bedeutungen aufweist oder die Ra'-Gruppe eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxylgruppe überführbare Gruppe enthält und E' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine NH2-C(=NH)-Gruppe überführbare Gruppe darstellt,

mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Verbindung der allgemeinen Formel I übergefürt wird, in der die R $_{\rm a}$ -Gruppe und E mit der Maßgabe wie eingangs erwähnt definiert sind, daß die R $_{\rm a}$ -Gruppe eine Carboxygruppe enthält und E wie eingangs definiert ist oder die R $_{\rm a}$ -Gruppe die eingangs erwähnten Bedeutungen aufweist und E eine NH $_{\rm 2}$ -C(=NH)-Gruppe darstellt oder die R $_{\rm a}$ -Gruppe eine Carboxygruppe enthält und E eine NH $_{\rm 2}$ -(C=NH)-Gruppe darstellt.

Als eine in eine Carboxygruppe überführbare Gruppe kommt beispielsweise eine durch einen Schutzrest geschützte Carboxylgruppe wie deren funktionelle Derivate, z. B. deren unsubstituierte oder substituierte Amide, Ester, Thioester, Trimethylsilylester, Orthoester oder Iminoester, welche zweckmäßigerweise mittels Hydrolyse in eine Carboxylgruppe übergeführt werden,

WO 00/08014 PCT/EP99/05371

- 15 -

deren Ester mit tertiären Alkoholen, z.B. der tert.Butylester, welche zweckmäßigerweise mittels Behandlung mit einer Säure oder Thermolyse in eine Carboxylgruppe übergeführt werden, und

deren Ester mit Aralkanolen, z.B. der Benzylester, welche zweckmäßigerweise mittels Hydrogenolyse in eine Carboxylgruppe übergeführt werden, in Betracht.

Die Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Trichloressigsäure. Trifluoressigsäure oder deren Gemischen oder in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmittel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopropanol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Enthält die Ra'-Gruppe und/oder E' in einer Verbindung der Formel IV beispielsweise die tert. Butyl- oder tert. Butyloxycarbonylygruppe, so können diese auch durch Behandlung mit einer Säure wie Trifluoressigsäure, Ameisensäure, p-Toluolsulfonsäure, Schwefelsäure, Salzsäure, Phosphorsäure oder Polyphosphorsäure gegebenenfalls in einem inerten Lösungsmittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Diethylether, Tetrahydrofuran oder Dioxan vorzugsweise bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen 0 und 60°C, oder auch thermisch gegebenenfalls in einem inerten Lösungsmittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Tetrahydrofuran oder Dioxan und vorzugsweise in Gegenwart einer katalytischen Menge einer Säure wie p-Toluolsulfonsäure, Schwefelsäure, Phosphorsäure oder Polyphosphorsäure vorzugsweise bei der Siedetemperatur des verwendeten Lösungsmittels, z.B. bei Temperaturen zwischen 40 und 120°C, abgespalten werden.

Enthält die Ra'-Gruppe und/oder E' in einer Verbindung der Formel IV beispielsweise die Benzyloxy- oder Benzyloxycarbonylgruppe, so können diese auch hydrogenolytisch in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsäureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar abgespalten werden.

c. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der die R_a -Gruppe eine der bei der Definition der R_a -Gruppe eingangs erwähnten Estergruppen enthält:

Umsetzung einer Verbindung der allgemeinen Formel

$$R_a$$
" - Het - B - Ar - E , (V)

in der

B, E, Ar und Het wie eingangs definiert sind und R_a "-Gruppe die für die R_a -Gruppe eingangs erwähnten Bedeutungen mit der Maßgabe aufweist, daß die R_a "-Gruppe eine Carboxylgruppe oder eine mittels eines Alkohols in eine entsprechende Estergruppe überführbare Gruppe enthält, mit einem Alkohol der allgemeinen Formel

$$HO - R_8$$
 , (VI)

in der

 R_8 der Alkylteil einer der eingangs erwähnten in-vivo abspaltbaren Reste mit Ausnahme der R_5 -CO-O- (R_5CR_7) -Gruppe für eine Carboxylgruppe darstellt, oder mit deren Formamidacetalen

oder mit einer Verbindung der allgemeinen Formel

$$Z_2 - R_9$$
 , (VII)

WO 00/08014 PCT/EP99/05371

- 17 -

in der

 R_9 der Alkylteil einer der eingangs erwähnten in-vivo abspaltbaren Reste mit Ausnahme der R_5 -CO-O- (R_5CR_7) -Gruppe für eine Carboxylgruppe und

 \mathbf{Z}_2 eine Austrittsgruppe wie ein Halogenatom, z.B. ein Chloroder Bromatom, darstellen.

Die Umsetzung mit einem Alkohol der allgemeinen Formel VI wird zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan, vorzugsweise jedoch in einem Alkohol der allgemeinen Formel VI, gegebenenfalls in Gegenwart einer Säure wie Salzsäure oder in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N, N'-Carbonyldiimidazol- oder N, N'-Thionyldiimidazol, Triphenylphosphin/Tetrachlorkohlenstoff oder Triphenylphosphin/Azodicarbonsäurediethylester gegebenenfalls in Gegenwart einer Base wie Kaliumcarbonat, N-Ethyl-diisopropylamin oder N,N-Dimethylamino-pyridin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Mit einer Verbindung der allgemeinen Formel VII wird die Umsetzung zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylformamid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natrium- oder Kaliumiodid und vorzugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyldisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silberkarbonat oder Silberoxid bei Temperaturen

zwischen -30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

d. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der $R_{\rm b}$ einen in vivo abspaltbaren Rest darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

$$R_a$$
 - Het - B - Ar - C(=NH) - NH₂ , (VIII)

in der

 R_{a} , Het, B und Ar wie eingangs definiert sind, mit einer Verbindung der allgemeinen Formel

$$Z_3 - R_{10} \qquad , (IX)$$

in der

 R_{10} einen in vivo abspaltbaren Rest und Z_3 eine nukleofuge Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor-, Brom- oder Jodatom, bedeuten.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt.

Mit einer Verbindung der allgemeinen Formel IX, in der Z_3 eine nukleofuge Austrittsgruppe darstellt, wird die Umsetzung vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofuran, Toluol, Dimethylformamid oder Dimethylsulfoxid gegebenenfalls in Gegenwart einer Base wie Natriumhydrid, Kaliumcarbonat, Kalium-tert butylat oder N-Ethyldiisopropylamin bei Temperaturen zwischen 0 und 60°C, durchgeführt.

WO 00/08014 PCT/EP99/05371

- 19 -

e. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine Aminogruppe und E eine Cyanogruppe darstellen:

Reduktion einer Nitroverbindung der allgemeinen Formel

$$NO_2$$
 - Het - B - Ar - CN ., (X)

in der

B, Ar und Het wie eingangs erwähnt definiert sind.

Die Reduktion wird vorzugsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar, durchgeführt. Dies kann auch mit nascierendem Wasserstoff, z.B. mit Zink/Eisessig, Zink/Salzsäure oder Eisen und dessen geeigneten Salzen/Salzsäure, durchgeführt werden.

f. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R eine Aminogruppe und E eine Cyanogruppe darstellen:

Abspaltung eines Schutzrestes für eine Aminogruppe von einer Verbindung der allgemeinen Formel

$$R_a'''$$
 - Het - B - Ar - CN , (XI)

in der

B, Ar und Het wie eingangs erwähnt definiert sind und $R_a{}^{\mu}$ eine durch einen Schutzrest geschützete Aminogruppe bedeutet.

Als Schutzrest für eine Aminogruppe kommt beispielsweise die Acetyl-, Trifluoracetyl-, Benzoyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl-, 2,4-Dimethoxybenzyl- oder Phthalylgruppe in Betracht.

Die Abspaltung eines verwendeten Schutzrestes erfolgt vorzugsweise hydrolytisch in einem wäßrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dio-xan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid oder mittels Etherspaltung, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C,

die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes vorzugsweise hyrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in
einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig
gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar,
vorzugsweise jedoch von 3 bis 5 bar,

die Abspaltung einer Methoxybenzylgruppe auch in Gegenwart eines Oxidationsmittels wie Cer(IV)ammoniumnitrat in einem Lösungsmittel wie Methylenchlorid, Acetonitril oder Acetonitril/Wasser bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur,

die Abspaltung eines 2,4-Dimethoxybenzylrestes vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol,

die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan oder Ether,

die Abspaltung eines Phthalylrestes vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C,

die Abspaltung eines Allyloxycarbonylrestes auch durch Behandlung mit einer katalytischen Menge Tetrakis-(triphenylphosphin)-palladium(O) vorzugsweise in einem Lösungsmittel wie Tetrahydrofuran und vorzugsweise in Gegenwart eines Überschusses von einer Base wie Morpholin oder 1,3-Dimedon bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Raumtemperatur und unter Inertgas, oder durch Behandlung mit einer katalytischen Menge von Tris-(triphenylphosphin)-rhodium(I)-chlorid in einem Lösungsmittel wie wässrigem Ethanol und gegebenenfalls in Gegenwart einer Base wie 1,4-Diazabicyclo-[2.2.2]octan bei Temperaturen zwischen 20 und 70°C.

g. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine R_3 -CO- R_4N - oder R_3 -SO₂- R_4N -Gruppe und E eine Cyanogruppe darstellen:

Umsetzung einer Verbindung der allgemeinen Formel

$$R_4NH - Het - B - Ar - CN$$
 , (XII)

in der

 R_4 , Het, B und Ar wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$R_3 - X - Z_4$$
 (XIII)

in der

R₃ wie eingangs erwähnt definiert ist,

X eine Carbonyl- oder Sulfonylgruppe und

Z₄ eine nukleofuge Austrittsgruppe wie ein Halogenatom, z.B.
ein Chlor-, Brom- oder Jodatom, oder auch, falls X eine Carbonylgruppe darstellt, zusammen mit einem Wasserstoffatom des benachbarten Stickstoffatoms eine weitere Kohlenstoff-Stickstoffbindung bedeuten.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt.

Mit einer Verbindung der allgemeinen Formel XIII, in der Z₄ eine nukleofuge Austrittsgruppe darstellt, wird die Umsetzung vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofuran, Toluol, Dimethylformamid oder Dimethylsulfoxid gegebenenfalls in Gegenwart einer Base wie Natriumhydrid, Kaliumcarbonat, Pyridin, Kalium-tert.butylat oder N-Ethyl-diisopropylamin bei Temperaturen zwischen 0 und 60°C, durchgeführt.

h. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine R_3 -CO- R_4 N- oder R_3 -SO₂- R_4 N-Gruppe und E eine Cyanogruppe darstellen, wobei R_4 mit Ausnahme des Wasserstoffatoms wie eingangs erwähnt definiert ist:

Umsetzung einer Verbindung der allgemeinen Formel

$$R_3 - X - NH - Het - B - Ar - CN$$
 , (XIV)

in der

 R_3 , Het, B, Ar und X wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$R_4' - Z_5$$
 , (XV)

in der

 $R_4\,^\prime$ mit Ausnahme des Wasserstoffatoms die für R_4 eingangs erwähnten Bedeutungen besitzt und

 Z_{s} eine nukleofuge Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor-, Brom- oder Jodatom, bedeutet.

2.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Aceton, Tetrahydrofuran, Toluol, Dimethylformamid oder Dimethylsulfoxid zweckmäßigerweise in Gegenwart einer Base wie Natriumhydrid, Kaliumcarbonat, Pyridin, 1,8-Diazobicycl[5.4.0]undec-7-en, Kalium-tert.butylat oder N-Ethyl-diisopropylamin bei Temperaturen zwischen 0 und 60°C, durchgeführt.

i. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R, eine C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkylgruppe, die jeweils im Alkylteil durch eine in vivo in eine Carboxygruppe überführbare Gruppe, durch eine Tetrazolylgruppe, durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Stickstoffatom zusätzlich durch eine durch eine in vivo in eine Carboxy- C_{1-3} -alkylgruppe überführbare Gruppe substituiert sind und E eine Cyanogruppe darstellen:

Umsetzung einer Verbindung der allgemeinen Formel

$$R_3 - X - NR_4' - Het - B - Ar - CN$$
 , (XVI)

in der

 R_3 , Het, B, Ar und X wie eingangs erwähnt definiert sind und R_4 ' eine C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkylgruppe, die jeweils im Alkylteil durch eine in vivo in eine Carboxygruppe überführbare Gruppe, durch eine Tetrazolylgruppe, durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Stickstoffatom zusätzlich durch eine durch eine in vivo in eine Carboxy- C_{1-3} -alkylgruppe überführbare Gruppe substituiert sind, bedeutet, oder deren reaktionsfähigen Derivaten mit einer Verbindung der allgemeinen Formel

$$R_{11} - H$$
 , (XVII)

in der

 R_4 ' mit Ausnahme des Wasserstoffatoms die für R_4 eingangs erwähnten Bedeutungen besitzt und

 R_{11} ein der bei der Definition der Restes R_4 eingangs erwähnten Substituenten der C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkylgruppe darstellt, der über eine Carbonylgruppe mit der Rest R_{11} verbunden ist.

Die Umsetzung einer Carbonsäure der allgemeinen Formel XVI wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan gegebenenfalls in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N, N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat/1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Die Umsetzung einer entsprechenden reaktionsfähigen Verbindung der allgemeinen Formel XVI wie deren Ester, Imidazolide oder Halogeniden mit einem Amin der allgemeinen Formel XVII wird vorzugsweise in einem entsprechenden Amin als Lösungsmittel gegebenenfalls in Gegenwart eines weiteren Lösungsmittels wie Methylenchlorid oder Ether und vorzugsweise in Gegenwart einer tertiären organische Base wie Triethylamin, N-Ethyl-diisopropylamin oder N-Methyl-morpholin bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 50 und 100°C, durchgeführt.

j. Zur Herstellung einer Benzimidazolyl-, Benzthiazolyl- oder Benzoxazolylverbindung der allgemeinen Formel I, in der B eine Ethylengruppe darstellt:

Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

in der

 $R_{\rm a}$ und Y wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$HO-CO - B' - Ar - E$$
 , (IXX)

in der

Ar und E wie eingangs erwähnt definiert sind und B' eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Ethylengruppe bedeutet.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan gegebenenfalls in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat/1-Hydroxybenztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder

Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt

Die Umsetzung einer entsprechenden reaktionsfähigen Verbindung der allgemeinen Formel IXX wie deren Ester, Imidazolide oder Halogeniden mit einem Amin der allgemeinen Formel XVIII wird vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Ether oder Tetrahydrofuran und vorzugsweise in Gegenwart einer tertiären organische Base wie Triethylamin, N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig als Lösungsmittel dienen können, bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 50 und 100°C, durchgeführt.

k. Zur Herstellung einer Verbindung der allgemeinen Formel I, die eine der eingangs erwähnten Tetrahydro-chinolin- oder -isochinolinreste enthält:

Hydrierung einer Verbindung der allgemeinen Formel I, die eine der eingangs erwähnten Chinolin- oder -isochinolinreste enthält.

Die Hydrierung wird vorzugsweise in Gegenwart einer Säure wie Salzsäure mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle und in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar, durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, tert.Butyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxylgruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl- oder Benzylgruppe und

als Schutzrest für eine Amino-, Alkylamino- oder Iminogruppe die Acetyl-, Hydroxy-, Trifluoracetyl-, Benzoyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wäßrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid oder mittels Etherspaltung, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C.

Die Abspaltung eines Hydroxy-, Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar.

Die Abspaltung einer Methoxybenzylgruppe kann auch in Gegenwart eines Oxidationsmittels wie Cer(IV) ammoniumnitrat in einem Lösungsmittel wie Methylenchlorid, Acetonitril oder Acetonitril/Wasser bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, erfolgen.

Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure
wie Trifluoressigsäure oder Salzsäure gegebenenfalls unter
Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan
oder Ether.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.

Die Abspaltung eines Allyloxycarbonylrestes erfolgt durch Behandlung mit einer katalytischen Menge Tetrakis-(triphenylphosphin)-palladium(O) vorzugsweise in einem Lösungsmittel wie Tetrahydrofuran und vorzugsweise in Gegenwart eines Überschusses von einer Base wie Morpholin oder 1,3-Dimedon bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Raumtemperatur und unter Inertgas, oder durch Behandlung mit einer katalytischen Menge von Tris-(triphenylphosphin)-rhodium(I)-chlorid in einem Lösungsmittel wie wässrigem Ethanol und gegebenenfalls in Gegenwart einer Base wie 1,4-Diazabicyclo-[2.2.2]octan bei Temperaturen zwischen 20 und 70°C.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis IXX, welche teilweise literaturbekannt sind, erhält man nach literaturbekannten Verfahren, des weiteren wird ihre Herstellung in den Beispielen beschrieben. WO 00/08014 PCT/EP99/05371

- 29 -

So erhält man beispielsweise eine Verbindung der allgemeinen Formel II durch Umsetzung eines entsprechenden Nitrils, welches seinerseits zweckmäßigerweise gemäß den Verfahren f bis h erhalten wird, mit einem entsprechenden Thio- oder Alkohol in Gegenwart von Chlor- oder Bromwasserstoff.

Eine als Ausgangsstoff verwendete Verbindung der allgemeinen Formeln IV, V, VIII, X, XI und IXX erhält man zweckmäßigerweise gemäß einem Verfahren der vorliegenden Erfindung.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestes 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder

Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise der (+)- oder (-)-Menthyloxycarbonylrest in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure, Maleinsäure, Benzoesäure, Methansulfonsäure oder Toluolsulfonsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Wie bereits eingangs erwähnt, weisen die neuen Verbindungen der allgemeinen Formel I und deren Salze wertvolle Eigenschaften auf. So stellen die Verbindungen der allgemeinen Formel I, in der E eine Cyanogruppe oder Ra eine Aminogruppe und E eine Cyanogruppe darstellen, wertvolle Zwischenprodukte zur Herstellung der übrigen Verbindungen der allgemeinen Formel I dar und die Verbindungen der allgemeinen Formel I, in der E eine RbNH-C(=NH)-Gruppe darstellt, sowie deren Tautomeren, deren Stereoisomeren, deren physiologisch verträglichen Salze weisen

wertvolle pharmakologische Eigenschaften auf, insbesondere eine thrombinhemmende Wirkung, eine die Thrombinzeit verlängernde Wirkung und eine Hemmwirkung auf verwandte Serinproteasen wie z.B. Trypsin, Urokinase, Faktor VIIa, Faktor Xa, Faktor IX, Faktor XI und Faktor XII, wobei auch einige Verbindungen wie beispielsweise die Verbindung des Beispiels 16 gleichzeitig eine thrombozytenaggregationshemmende Wirkung aufweist.

Beispielsweise wurden die Verbindungen

A = 1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(hydroxycar-bonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol,

B = 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-(hydroxy-carbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol,

C = 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und

D = 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hy-droxycarbonylmethyl)-chinolin-8-sulfonylamino]-indol

auf ihre Wirkung auf die Thrombinzeit wie folgt untersucht:

Material: Plasma, aus humanem Citratblut.

Test-Thrombin (Rind), 30 U/ml, Behring Werke,

Marburg

Diethylbarbituratacetat-Puffer, ORWH 60/61, Behring

Werke, Marburg

Biomatic B10 Koagulometer, Sarstedt

Durchführung:

Die Bestimmung der Thrombinzeit erfolgte mit einem Biomatic B10-Koagulometer der Firma Sarstedt.

Die Testsubstanz wurde in die vom Hersteller vorgeschriebenen Testgefäßen mit 0,1 ml humanem Citrat-Plasma und 0,1 ml Diethylbarbiturat-Puffer (DBA-Puffer) gegeben. Der Ansatz wurde für eine Minute bei 37°C inkubiert. Durch Zugabe von 0,3 U Test-Thrombin in 0,1 ml DBA-Puffer wurde die Gerinnungsreaktion gestartet. Gerätebedingt erfolgt mit der Eingabe von Thrombin die Messung der Zeit bis zur Gerinnung des Ansatzes. Als Kontrolle dienten Ansätze bei denen 0,1 ml DBA-Puffer zugegeben wurden.

Gemäß der Definition wurde über eine Dosis-Wirkungskurve die effective Substanzkonzentration ermittelt, bei der die Thrombinzeit gegenüber der Kontrolle verdoppelt wurde.

Die nachfolgende Tabelle enthält die gefundenen Werte:

Substanz	Thrombinzeit (ED ₂₀₀ in μM)			
A	0.015			
В	0.016			
С	0.031			
D	0.054			

Beispielsweise konnte an Ratten bei der Applikation der Verbindungen in dem obigen Dosisbereich keine akuten toxischen Nebenwirkungen beobachtet werden. Diese Verbindungen sind demnach gut verträglich.

Aufgrund ihrer pharmakologischen Eigenschaften eignen sich die neuen Verbindungen und deren physiologisch verträglichen Salze zur Vorbeugung und Behandlung venöser und arterieller thrombotischer Erkrankungen, wie zum Beispiel der Behandlung. von tiefen Beinvenen-Thrombosen, der Verhinderung von Reokklusionen nach Bypass-Operationen oder Angioplastie (PT(C)A), sowie der Okklusion bei peripheren arteriellen Erkrankungen wie Lungenembolie, der disseminierten intravaskulären Gerinnung, der Prophylaxe der Koronarthrombose, der Prophylaxe des Schlaganfalls und der Verhinderung der Okklusion von Shunts oder Stents. Zusätzlich sind die erfindungsgemäßen Verbindungen zur antithrombotischen Unterstützung bei einer thrombolytischen Behandlung, wie zum Beispiel mit rt-PA oder Streptokinase, zur Verhinderung der Langzeitrestenose nach PT(C)A, zur Verhinderung der Metastasierung und des Wachstums von koagulationsabhängigen Tumoren und von fibrinabhängigen Entzündungsprozessen, z.B. bei der Behandlung der pulmonaren Fibrose, geeignet.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser Gabe 0,01 bis 10 mg/kg, vorzugsweise 0,03 bis 3 mg/kg, und bei oraler Gabe 0,1 bis 10 mg/kg, vorzugsweise 0,3 bis 5 mg/kg, jeweils 1 bis 4 x täglich. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

Vorbemerkungen

Bei der Bestimmung der R_f -Werte wurden, soweit nichts anderes angegeben wurde, immer Polygram-Kieselgelplatten der Firma E. Merck, Darmstadt, verwendet.

Die EKA-Massenspektren (Elektrospray-Massenspektren von Kationen) werden beispielsweise in Chemie unserer Zeit 6,308-316 (1991) beschrieben.

Beispiel 1

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonyl-methyl)-methansulfonylaminol-benzimidazol

a. 1-Methyl-2-[2-(4-cyanophenyl)-ethyll-5-nitro-benzimidazol
2.3 g (0.014 Mol) 2-Methylamino-5-nitro-anilin und 2.7 g
(0.0154 Mol) 4-Cyanophenylpropionsäure werden in 25 ml Phosphoroxychlorid 1 Stunde zum Rückfluß erhitzt. Nach Abkühlung wird mit Wasser zersetzt und mit Ammoniak alkalisch gestellt.

Der Niederschlag wird abgesaugt, mit Wasser gewaschen und getrocknet.

Ausbeute: 3.8 g (89 % der Theorie),

R_f-Wert: 0.28 (Kieselgel; Dichlormethan/Methanol = 50:1)

b. 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-amino-benzimidazol
3.8 g (0.0124 Mol) 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-nitro-benzimidazol werden in 100 ml Methanol und 100 ml Dichlormethan gelöst und nach Zugabe von 0.5 g 10%igem Palladium auf
Aktivkohle mit Wasserstoff hydriert. Anschließend wird vom Katalysator abfiltriert und eingedampft.

Ausbeute: 3.2 g (93 % der Theorie),

R_f-Wert: 0.38 (Kieselgel; Dichlormethan/Methanol = 9:1)

c. 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-methansulfonylaminobenzimidazol

1.6 g (5.8 mMol) 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-aminobenzimidazol und 0.66 g (5.8 mMol) Methansulfonsäurechlorid werden in 30 ml Pyridin 3 Stunden bei Raumtemperatur gerührt. Anschließend wird 1 ml Wasser zugesetzt und eingedampft. Der Rückstand wird mit Essigester und Wasser verdünnt, das kristalline Produkt abgesaugt und getrocknet.

Ausbeute: 1.4 g (68 % der Theorie),

 R_f -Wert: 0.70 (Kieselgel; Dichlormethan/Methanol = 9:1)

d. 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(ethoxycarbonyl-methyl)-methansulfonylaminol-benzimidazol

1.4 g (3.95 mMol) 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-methansulfonylamino-benzimidazol, 0.73 g (4.4 mMol) Bromessigsäureethylester und 2.8 g (20 mMol) Kaliumcarbonat werden in 200 ml Aceton gelöst und 2 Stunden zum Rückfluß erhitzt. Anschließend wird abfiltriert und die Lösung eingedampft. Ausbeute: 1.6 g (92 % der Theorie),

madded. Tro g (to a made of the control of the cont

 R_t -Wert: 0.76 (Kieselgel; Dichlormethan/Methanol = 9:1)

e. 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbo-nylmethyl)-methansulfonylaminol-benzimidazol

1.6 g (3.63 mMol) 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]5-[N-(ethoxycarbonylmethyl)-methansulfonylamino]-benzimidazol
werden in 50 ml gesättigter ethanolischer Salzsäure gelöst und
5 Stunden bei Raumtemperatur gerührt. Anschließend wird das
Solvens abdestilliert, der Rückstand in 30 ml absolutem Ethanol gelöst und mit 3.5 g (3.63 mMol) Ammoniumcarbonat versetzt. Nach 18 Stunden bei Raumtemperatur wird zur Trockene
eingedampft und der Rückstand an Kieselgel (Methylenchlorid/Methanol = 5:1) chromatographiert. Die entsprechende Fraktionen werden eingeengt, der erhaltene Rückstand mit Ether
verrieben und abgesaugt.

Ausbeute: 0.9 g (50 % der Theorie),

 R_f -Wert: 0.36 (Kieselgel; Dichlormethan/Methanol = 5:1)

 $C_{22}H_{27}N_5O_4S$ (457.55)

Massenspektrum: $(M+H)^{+} = 458$ $(M+Na)^{+} = 480$

Beispiel 2

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonyl-methyl)-benzolsulfonylaminol-benzimidazol

a. 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(ethoxycarbonyl-methyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1d aus 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-benzolsulfonylamino-benzimidazol, Bromessigsäureethylester und Kaliumcarbonat in Aceton.

Ausbeute: 54 % der Theorie,

R_t-Wert: 0.84 (Kieselgel; Dichlormethan/Methanol = 9:1)

nylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[2-(4-cyanophe-nyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-benzolsulfonylamino]-benzimidazol und Salzsäure/Ammoniumcarbonat in Ethanol.

b. 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbo-

Ausbeute: 59 % der Theorie,

 R_f -Wert: 0.38 (Kieselgel; Dichlormethan/Methanol = 5:1)

 $C_{27}H_{29}N_5O_4S$ (519.6)

Massenspektrum: $(M+H)^{+} = 520$ $(M+Na)^{+} = 542$

Beispiel 3

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(hydroxycarbonyl-methyl)-benzolsulfonylaminol-benzimidazol

0.52 g (0.93 mMol) 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]
5-[N-(ethoxycarbonylmethyl)-benzolsulfonylamino]-benzimidazol
und 0.4 g (0.01 Mol) Natriumhydroxid werden in 5 ml Wasser und
10 ml Ethanol drei Stunden bei Raumtemperatur gerührt. An-

schließend wird mit Wasser verdünnt und mit Eisessig auf pH 4

eingestellt. Der kristalline Niederschlag wird abgesaugt und getrocknet.

Ausbeute: 77 % der Theorie,

 $C_{25}H_{25}N_{5}O_{4}S$ (491.66)

Massenspektrum: $(M+H)^+$ = 492

 $(M+Na)^+ = 514$

 $(M-H+2Na)^{+} = 536$

 $(2M+H+Na)^{++} = 503$

Beispiel 4

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(hydroxycarbonyl-methyl)-methansulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-methansulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 97 % der Theorie,

 $C_{20}H_{23}N_{5}O_{4}S$ (429.5)

Massenspektrum: $(M+H)^+$ = 430

 $(M+Na)^+ = 452$

 $(2M+H+Na)^{2+} = 441$

 $(2M+3Na)^{3+} = 309$

Beispiel 5

- 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-
- 5-[N-(2-dimethylaminoethyl)-benzolsulfonylaminol-benzimidazol
- a. Gemisch aus 1-Ethoxycarbonylmethyl-2-{(4-cyanophenyl)-oxymethyl]-5-nitro-benzimidazol und
- 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-nitrobenzimidazol

Hergestellt analog Beispiel 1d aus 1H-2-[(4-Cyanophenyl)-oxymethyl]-5-nitro-benzimidazol, Bromessigsäureethylester und Kaliumcarbonat in Aceton.

Ausbeute: 3.6 g (95 % der Theorie),

 R_t -Wert: 0.56 (Kieselgel; Dichlormethan/Methanol = 19:1)

```
b. Gemisch aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-
oxymethyl]-5-amino-benzimidazol und
1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-amino-
benzimidazol
```

3.6 g (9.5 mMol) des Gemisches aus 1-Ethoxycarbonylmethyl2-[(4-cyanophenyl)-oxymethyl]-5-nitro-benzimidazol und
1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-nitrobenzimidazol werden in 200 ml Methanol gelöst und nach Zugabe
von 0.5 g 10%igem Palladium auf Aktivkohle, mit Wasserstoff
hydriert. Anschließend wird vom Katalysator abfiltriert und
eingedampft. Der Rückstand wird an Kieselgel (Methylenchlorid
+ 1 bis 5 % Ethanol) chromatographiert.

Ausbeute: 1.2 g (36 % der Theorie) 1-Ethoxycarbonylmethyl2-[(4-cyanophenyl)-oxymethyl]-5-amino-benzimidazol
R_f-Wert: 0.10 (Kieselgel; Dichlormethan/Methanol = 19:1)
Ausbeute: 1.0 g (30 % der Theorie) 1-Ethoxycarbonylmethyl2-[(4-cyanophenyl)-oxymethyl]-6-amino-benzimidazol
R_f-Wert: 0.32 (Kieselgel; Dichlormethan/Methanol = 19:1)

c. 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-5-ben-zolsulfonylamino-benzimidazol

Hergestellt analog Beispiel 1c aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-5-amino-benzimidazol und Benzolsulfonsäurechlorid in Pyridin.

Ausbeute: 100 % der Theorie,

R,-Wert: 0.43 (Kieselgel; Dichlormethan/Methanol = 9:1)

d. 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]5-[N-(2-dimethylaminoethyl)-benzolsulfonylaminol-benzimidazol
1.65 g (3.4 mMol) 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)oxymethyl]-5-benzolsulfonylamino-benzimidazol und 518.4 mg
(3.6 mMol) 2-Dimethylaminoethylchlorid-hydrochlorid werden in
100 ml Aceton gelöst und nach Zugabe von 2.0 g Kaliumcarbonat
und 737 mg (4.85 mMol) 1,8-Diazabicyclo[5.4.0]undec-7-en
11 Stunden zum Rückfluß erhitzt. Anschließend wird abfiltriert

- 39 -

und eingedampft. Der Rückstand wird an Kieselgel (Methylenchlorid/5-10 % Ethanol) chromatographiert.

Ausbeute: 750 mg (39 % der Theorie),

R_f-Wert: 0.21 (Kieselgel; Dichlormethan/Methanol = 9:1)

e. 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-benzolsulfonylamino]-benzimidazol Hergestellt analog Beispiel le aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-benzolsulfonylamino]-benzimidazol und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 85 % der Theorie,

 $C_{29}H_{34}N_{6}O_{5}S$ (578.7)

WO 00/08014

Massenspektrum: $(M+H)^{+} = 579$ $(M+2H)^{++} = 290$

Beispiel 6

- 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-benzolsulfonylaminol-benzimidazol
- a. 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-ben-zolsulfonylamino-benzimidazol

Hergestellt analog Beispiel 1c aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-amino-benzimidazol und Benzolsulfonsäurechlorid in Pyridin.

Ausbeute: 80 % der Theorie,

R.-Wert: 0.72 (Kieselgel; Dichlormethan/Methanol = 9:1)

b. 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-benzolsulfonylaminol-benzimidazol Hergestellt analog Beispiel 5d aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-benzolsulfonylamino-benzimidazol, 2-Dimethylaminoethylchlorid-hydrochlorid, Kaliumcarbonat und 1,8-Diazabicyclo[5.4.0]undec-7-en in Aceton.

Ausbeute: 24 % der Theorie,

R.-Wert: 0.34 (Kieselgel; Dichlormethan/Methanol = 9:1)

c. 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-benzolsulfonylaminol-benzimidazol Hergestellt analog Beispiel le aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-benzolsulfonylamino]-benzimidazol und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 67 % der Theorie,

 $C_{29}H_{34}N_{6}O_{5}S$ (578.7)

Massenspektrum: $(M+H)^{+} = 579$ $(M+2H)^{++} = 290$

Beispiel 7

1-Hydroxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-benzolsulfonylaminol-benzimidazol Hergestellt analog Beispiel 3 aus 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-benzolsulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 91 % der Theorie,

 $C_{27}H_{30}N_{6}O_{5}S$ (550.65)

Massenspektrum (EKA): $(M+H)^+ = 551$ $(M+2H)^{++} = 276$

Beispiel 8

1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-methansulfonylaminol-benzimidazol Hergestellt analog Beispiel 1e aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-methansulfonylamino]-benzimidazol mit ethanolischer Salzsäure und Ammoniumcarbonat.

Ausbeute: 96 % der Theorie,

 $C_{24}H_{32}N_{6}O_{5}S$ (516.6)

Massenspektrum (EKA): $(M+H)^+ = 517$ $(M+2H)^{++} = 259$

1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-methansulfonylaminol-benzimidazol Hergestellt analog Beispiel le aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-methansulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 69 % der Theorie, $C_{24}H_{32}N_{6}O_{5}S$ (516.6) Massenspektrum (EKA): $(M+H)^{++} = 517$ $(M+2H)^{++} = 259$

Beispiel 10

1-Hydroxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-methansulfonylaminol-benzimidazol Hergestellt analog Beispiel 3 aus 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-6-[N-(2-dimethylaminoethyl)-methansulfonylamino]-benzimidazol Natronlauge.

Ausbeute: 92 % der Theorie,

 $C_{22}H_{28}N_6O_5S$ (488.67) Massenspektrum (EKA): (M+H)⁺ = 489 (M+2H)⁺⁺ = 245

Beispiel 11

1-Hydroxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-methansulfonylaminol-benzimidazolHergestellt analog Beispiel 3 aus 1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-dimethylaminoethyl)-methansulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 98 % der Theorie, $C_{22}H_{28}N_6O_5S$ (488.6)

Massenspektrum (EKA): (M+H)+ = 489 $(M+2H)^{++} = 245$

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[(4-cyanophenyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 70 % der Theorie,

 $C_{29}H_{28}N_6O_5S$ (572.65)

Massenspektrum (EKA): $(M+H)^+ = 573$ $(M+2H)^{++} = 287$ $(M+H+Na)^{++} = 298$

Beispiel 13

1-Ethyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylme-thyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Ethyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 85 % der Theorie,

 $C_{31}H_{32}N_6O_4S$ (584.71)

R,-Wert: 0.32 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 585$ $(M+H+Na)^{++} = 304$ $(M+2H)^{++} = 293$

Beispiel 14

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylme-thyl)-chinolin-8-sulfonylaminol-benzimidazol
Hergestellt analog Beispiel 1e aus 1-Methyl-2-[2-(4-cyanophe-

nyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

```
Ausbeute: 71 % der Theorie, C_{30}H_{30}N_{6}O_{4}S \ (570.68) R_{f}\text{-Wert: 0.30 (Kieselgel; Dichlormethan/Methanol = 5:1)} Massenspektrum \ (EKA): \ (M+H)^{+} = 571   (M+H+Na)^{++} = 297   (M+2H)^{++} = 286
```

1-Cyclopropyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbo-nylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Cyclopropyl-2-[2-(4-cy-anophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Beispiel 16

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(hydroxycarbo-nylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[(4-amidinophe-nyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfo-nylamino]-benzimidazol und Natronlauge.

Ausbeute: 43 % der Theorie,

C27H24N6O5S (544.6)

Massenspektrum (EKA): (M+H)+ = 545

(M+Na)+ = 567

```
Massenspektrum (EKA): (M+H)^+ = 545

(M+Na)^+ = 567

(M-H)^- = 543

(2M+2Na+H)^{3+} = 378.7

^{1}H-NMR (d_s-DMSO):
```

 $\delta = 3.90 \text{ (s,3H)}; 5.05 \text{ (s,2H)}; 5.73 \text{ (s,2H)}; 7.09 \text{ (dd,1H)};$

```
7.38 (d,2H); 7.52 (d,1H); 7.57-7.74 (m,2H); 7.80 (dd,1H);
7.92 (d,2H); 8.13 (d,1H); 8.31 (d,1H); 8,61 (dd,1H); 9.12-9.30 (m,3H); 9.38 (s,2H) ppm
```

1-Ethyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Ethyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol und Natronlauge.

Ausbeute: 74 % der Theorie,

C29H28N6O4S (556.65)

Massenspektrum (EKA): (M+H)+ = 557

(M+Na)+ = 579

Beispiel 18

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(4-amidino-phenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfo-nylamino]-benzimidazol und Natronlauge.

Ausbeute: 96 % der Theorie, $C_{28}H_{26}N_{6}O_{4}S$ (542.59)

Massenspektrum (EKA): (M+H)+ = 543

(M+Na)+ = 565

(2M+3Na) $^{3+}$ = 385

Beispiel 19

1-Cyclopropyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(hydroxycar-bonylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Cyclopropyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 88 % der Theorie,

 $C_{30}H_{28}N_{6}O_{4}S$ (568.66)

Massenspektrum (EKA): $(M+H)^+$ = 569

 $(M+Na)^+ = 591$

 $(2M+3Na)^{3+} = 402$

Beispiel 20

1-Ethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1 e aus 1-Ethyl-2-[(4-cyanophe-nyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfo-nylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 81 % der Theorie,

 $C_{30}H_{30}N_{6}O_{5}S$ (586.7)

Massenspektrum (EKA): $(M+H)^+$ = 587

 $(M+H+Na)^{++} = 305$

 $(M+2H)^{++} = 294$

Beispiel 21

1-Ethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Ethyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 96 % der Theorie,

 $C_{28}H_{26}N_{6}O_{5}S$ (558.6)

Massenspektrum (EKA): $(M+H)^+ = 559$

 $(M+Na)^+ = 581$

 $(M-H)^{-} = 557$

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(ethoxycarbo-nylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(4-cyanophenyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-benzolsulfonyl-amino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 48 % der Theorie,

 $C_{26}H_{27}N_{5}O_{5}S$ (521.6)

Massenspektrum (EKA): $(M+H)^+ = 522$ $(M+H+Na)^{++} = 272.8$

Beispiel 23

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-(ethoxycarbo-nylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

- a. 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

 Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(4-cyanophe-nyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol und Natriumhydroxid in Ethanol/Wasser.

 Ausbeute: 92 % der Theorie,

 R.-Wert: 0.24 (Kieselgel; Dichlormethan/Methanol = 9:1)
- b. 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]benzimidazol
- 2.1 g (0.004 Mol) 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]5-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]benzimidazol und 0.65 g (0.004 Mol) N,N'-Carbonyldiimidazol
 werden in 30 ml Dimethylformamid gelöst und 45 Minuten bei 80°C
 gerührt. Anschließend werden 0.71 g (0.0046 Mol) Glycinethylester und 0.51 g (0.005 Mol) Triethylamin hinzugefügt und weitere vier Stunden bei 80°C gerührt. Das Solvens wird einge-

```
dampft und der Rückstand an Kieselgel (Methylenchlorid/Ethanol
= 50:1) chromatographiert.
```

Ausbeute: 44 % der Theorie,

R,-Wert: 0.74 (Kieselgel; Dichlormethan/Methanol = 9:1)

c. 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-(ethoxycar-bonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Salzsäure/-Ammoniumcarbonat in Ethanol.

Ausbeute: 86 % der Theorie,

 $C_{32}H_{33}N_7O_5S$ (627.73)

Massenspektrum: $(M+H)^{++} = 628$ $(M+2H)^{++} = 314.8$ $(M+H+Na)^{++} = 325.7$

Beispiel 24

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-ethoxycar-bonylmethyl-N'-methyl-aminocarbonylmethyl)-chinolin-8-sulfo-nylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(N'-ethoxycarbonylmethyl-N'-methyl-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 63 % der Theorie,

 $C_{33}H_{35}N_{7}O_{5}S$ (641.76)

 R_t -Wert: 0.30 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 642$ $(M+H+Na)^{++} = 332.8$ $(M+2H)^{++} = 321.7$

```
1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-(hydroxycarbo-
nvlmethyl) -aminocarbonylmethyl) -chinolin-8-sulfonylamino] -
benzimidazol
Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(4-amidino-
phenyl) -ethyl] -5-[N-(N'-(ethoxycarbonylmethyl) -aminocarbonylme-
thyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.
Ausbeute: 87 % der Theorie,
C30H29N7O5S (599.68)
Massenspektrum (EKA): (M+H)+
                                     = 600
                        (M+H+Na)^{++}
                                     = 311.8
                        (M+Na)^+
                                     = 622
                        (M+2H)^{++}
                                     = 300.8
                        (2M+H+2Na)^{3+} = 415
                        (2M+3Na)^{3+}
                                     = 422.7
^{1}H-NMR (d_{6}-DMSO + DCl):
\delta = 3.29 (t, 2H); 3.51 (t, 2H); 3.80 (s, 2H); 3.87 (s, 3H);
```

Beispiel 26

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-hydroxycarbo-nylmethyl-N'-methyl-aminocarbonylmethyl)-chinolin-8-sulfonyl-aminol-benzimidazol

5.01 (s,2H); 7.10 (dd,1H); 7.56-7.90 (m,8H); 8.17 (d,1H);

8.38 (d,1H); 8,68 (dd,1H); 9.26 (dd,1H) ppm

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-ethoxycarbonylmethyl-N'-methyl-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

```
Ausbeute: 97 % der Theorie, C_{31}H_{31}N_{7}O_{5}S \ (613.71) Massenspektrum (EKA): (M+H)^{+} = 614  (M+Na)^{+} = 636   (M+2H)^{++} = 307.7
```

$$(M+H+Na)^{++} = 318.6$$

 $(M+2Na)^{++} = 329.6$

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(hydroxycarbo-nylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-benzolsulfonyl-amino]-benzimidazol und Natronlauge.

Ausbeute: 79 % der Theorie,

C24H23N5O5S (493.6)

C24H23N505S (493.8) Massenspektrum (EKA): (M+H)⁺ = 494 (M+Na)⁺ = 516 (M-H)⁻ = 492

Beispiel 28

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(methoxycar-bonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[N-(4-cyanophe-nyl)-aminomethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und methanolischer Salzsäure, Methanol und Ammoniumcarbonat.

Beispiel 29

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(methoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonyl-

```
- 50 -
amino]-benzimidazol und methanolischer Salzsäure, Methanol und
Ammoniumcarbonat.
Ausbeute: 78 % der Theorie,
C_{29}H_{28}N_{6}O_{4}S (556.65)
R_f-Wert: 0.29 (Kieselgel; Dichlormethan/Methanol = 5:1)
Massenspektrum (EKA): (M+H)+
                       (M+2H)^{++}
                                   = 579
                       (M+H+Na)^{++} = 290.3
Beispiel 30
1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycar-
bonylmethyl)-chinolin-8-sulfonylaminol-benzimidazol
Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidinophe-
nyl) -aminomethyl] -5-[N-(ethoxycarbonylmethyl) -chinolin-8-sul-
fonylamino] -benzimidazol und Natronlauge.
Ausbeute: 91 % der Theorie,
C_{27}H_{25}N_{7}O_{4}S (543.62)
Massenspektrum (EKA): (M+H) +
                                  = 544
```

 $^{1}H-NMR$ (d_c-DMSO):

 $\delta = 3.70 \text{ (s,3H)}; 4.60 \text{ (breites s,4H)}; 6.45 \text{ (dd,1H)};$

 $(M+Na)^+$

= 566

 $(M+H+Na)^{++} = 283.8$ $(M+2Na)^{++} = 294.6$

6.72 (d,2H); 7.09 (d,1H); 7.30-7.60 (m,5H); 7.73 (dd,1H);

8.08 (d,1H); 8.11-8.35 (m,3H); 8.53 (dd,1H); 9,18 (dd,1H);

11.55 (breites s,2H) ppm

Beispiel 31

1-Methyl-2-[2-(4-(N-ethoxycarbonylamidino)phenyl)-ethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]benzimidazol

0.8 g (1.34 mMol) 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol werden in 50 ml Tetrahydrofuran und 10 ml Wasser gelöst und nach Zugabe von 0.55 g (4.0 mMol) Kaliumcarbonat

10 Minuten bei Raumtemperatur gerührt. Anschließend werden 0.17 g (1.6 mMol) Chlorameisensäureethylester hinzugegeben und weitere 60 Minuten bei Raumtemperatur gerührt. Danach wird die organische Phase abgetrennt, getrocknet und eingedampft. Der Rückstand wird an Kieselgel (Methylenchlorid/Methanol = 30:1) chromatographiert. Die entsprechende Fraktionen werden eingeengt, mit Ether verrieben und abgesaugt.

Ausbeute: 0.41 g (49 % der Theorie), $R_t\text{-Wert: 0.57 (Kieselgel; Dichlormethan/Methanol = 9:1)}$ $C_{32}H_{32}N_6O_6S (628.71)$ $Massenspektrum: (M+H)^+ = 629$ $(M+Na)^+ = 651$

 $(M+2H)^{++} = 315$

Beispiel 32

1-Methyl-2-[1-(4-amidinophenoxy)-1-methyl-ethyl]-5-[N-(eth-oxycarbonylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[1-(4-cyanophenoxy)-1-methyl-ethyl]-5-[N-(ethoxycarbonylmethyl)-benzolsulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 31 % der Theorie, $C_{28}H_{31}N_{5}O_{5}S$ (549.7) Massenspektrum (EKA): $(M+H)^{+} = 550$ $(M+Na)^{+} = 572$

Beispiel 33

- 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-benzyloxy-benzimidazol
- a. 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-benzyloxy-benzimidazol

Hergestellt analog Beispiel 1a aus 2-Methylamino-5-benzyloxyanilin und 4-Cyanophenylaminoessigsäure in Phosphoroxychlorid. Ausbeute: 11 % der Theorie,

```
Schmelzpunkt: >350°C
```

R_t-Wert: 0.60 (Kieselgel; Essigester)

b. 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-benzyloxy-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophe-nyl)-aminomethyl]-5-benzyloxy-benzimidazol und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 66 % der Theorie,

 R_t -Wert: 0.23 (Kieselgel; Dichlormethan/Methanol = 4:1)

 $C_{23}H_{23}N_5O$ (385.47)

Massenspektrum: $(M+H)^+ = 386$ $(M+2H)^{++} = 193.5$

Beispiel 34

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(methoxycarbo-nylmethyl)-chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(4-cyanophe-nyl)-oxymethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino)-benzimidazol und methanolischer Salzsäure, Methanol und Ammoniumcarbonat.

Ausbeute: 68 % der Theorie,

 $C_{28}H_{26}N_{6}O_{5}S$ (558.6)

Massenspektrum (EKA): $(M+H)^+ = 559$ $(M+2H)^{++} = 280$ $(M+H+Na)^{++} = 291$

Beispiel 35

1-Ethoxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]-5-(chi-nolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Ethoxycarbonylmethyl-2-[(4-cyanophenyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 86 % der Theorie,

- 53 -

 $C_{28}H_{26}N_{6}O_{5}S$ (558.6) Massenspektrum (EKA): $(M+H)^{+} = 559$ $(M+Na)^{+} = 581$ $(M+2H)^{++} = 280$

Beispiel 36

1-Methyl-2-[(4-(N-ethoxycarbonylamidino)phenyl)-oxymethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Chlorameisensäureethylester.

Ausbeute: 25 % der Theorie,

 $C_{31}H_{30}N_{6}O_{7}S$ (630,7)

R_e-Wert: 0.34 (Kieselgel; Dichlormethan/Ethanol = 19:1)

Massenspektrum (EKA): $(M+H)^+ = 631$ $(M+Na)^+ = 653$ $(M+H+Na)^{++} = 327$

Beispiel 37

1-(3-Ethoxycarbonylpropyl)-2-[(4-amidinophenyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-(3-Ethoxycarbonylpropyl)-2-[(4-cyanophenyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 63 % der Theorie,

 $C_{30}H_{30}N_{5}O_{5}S$ (586.7)

Massenspektrum (EKA): $(M+H)^+ = 587$ $(M+Na)^+ = 609$ $(M+2H)^{++} = 294$

1-Hydroxycarbonylmethyl-2-[(4-amidinophenyl)-oxymethyl]5-(chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Ethoxycarbonylmethyl2-[(4-amidinophenyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)benzimidazol und Natronlauge.

Ausbeute: 97 % der Theorie,

C26H22N6O5S (530.6)

Massenspektrum (EKA): (M+H)+ = 531

(M+Na)+ = 553

Beispiel 39

1-(3-Hydroxycarbonylpropyl)-2-[(4-amidinophenyl)-oxymethyl]5-(chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 3 aus 1-(3-Ethoxycarbonylpropyl)2-[(4-amidinophenyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)benzimidazol und Natronlauge.

Ausbeute: 91 % der Theorie,

C28H26N6O5S (558.6)

Massenspektrum (EKA): (M+H)+ = 559

(M+Na)+ = 581

(M+2H)++ = 280

(M+H+Na)++ = 291

(M+H+K)++ = 299

Beispiel 40

1-Methyl-2-[(4-(N-cyclohexyloxycarbonylamidino)phenyl)-oxymethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonyl-amino)-benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[(4-amidino-phenyl)-oxymethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino)-benzimidazol und Chlorameisensäurecyclohexylester.

Ausbeute: 44 % der Theorie,

 $C_{35}H_{36}N_{6}O_{7}S$ (684.8) Massenspektrum (EKA): (M+H)⁺ = 685 (M+Na)⁺ = 707 (M+H+Na)⁺⁺ = 354

Beispiel 41

1-Methyl-2-[(3-amidinophenyl)-oxymethyl]-5-benzolsulfonylamino-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(3-cyanophenyl)-oxymethyl]-5-(benzolsulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 65 % der Theorie,

 $C_{22}H_{21}N_{5}O_{3}S$ (435,52)

Massenspektrum (EKA): $(M+H)^+ = 436$ $(M+Na)^+ = 458$

Beispiel 42

1-Methyl-2-[(3-amidinophenyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(3-cyanophe-nyl)-oxymethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 89 % der Theorie,

 $C_{25}H_{22}N_6O_3S$ (486,57)

R_f-Wert: 0.16 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 487$ $(M+Na)^+ = 509$

Beispiel 43

1-Methyl-2-[N-(4-amidinophenyl)-N-methyl-aminomethyl]5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[N-(4-cyanophe-nyl)-N-methyl-aminomethyl]-5-[N-(methoxycarbonylmethyl)-chino-

lin-8-sulfonylamino]-benzimidazol und methanolischer Salzsäure, Methanol und Ammoniumcarbonat.

Ausbeute: 32 % der Theorie,

 $C_{29}H_{29}N_{7}O_{4}S$ (571.67)

 R_{r} -Wert: 0.28 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 572$ $(M+H+Na)^{++} = 297.7$

Beispiel 44

1-Methyl-2-[N-(4-(N-ethoxycarbonylamidino)phenyl)-aminomethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Chlorameisensäureethylester.

Ausbeute: 71 % der Theorie,

C31H31N7O6S (629.70)

R.-Wert: 0.62 (Kieselgel; Dichlormethan/Methanol = 9:1)

Massenspektrum (EKA): $(M+H)^+ = 630$ $(M+H+Na)^{++} = 326.6$ $(M+2H)^{++} = 315.6$

Beispiel 45

1-Methyl-2-[N-(4-(N-cyclohexyloxycarbonylamidino)phenyl)-aminomethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sul-fonylamino)-benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Chlorameisensäurecyclohexyl-ester

Ausbeute: 59 % der Theorie,

C35H37N7O6S (683,79)

R,-Wert: 0.66 (Kieselgel; Dichlormethan/Methanol = 9:1)

WO 00/08014 PCT/EP99/05371

- 57 -

Massenspektrum (EKA): $(M+H)^+ = 684$ $(M+H+Na)^{++} = 353.7$ $(M+2H)^{++} = 342.6$

Beispiel 46

2-[2-(4-Amidinophenyl)-ethyl]-6-[N-(methoxycarbonylmethyl)chinolin-8-sulfonylaminol-benzoxazol

a. 2-[(4-Aminocarbonylphenyl)-ethyll-6-nitro-benzoxazol
2.64 g (15 mMol) 4-Cyanophenylpropionsäure und 2.31 g
(15 mMol) 2-Amino-5-nitro-phenol werden in 50 ml Polyphosphorsäure unter Stickstoffatmosphäre drei Stunden bei 130°C gerührt. Anschließend wird auf Wasser gegossen, der Niederschlag abgesaugt, in Methylenchlorid/Methanol gelöst und über Aktivkohle filtriert. Das Filtrat wird im Vakuum eingedampft, der

Ausbeute: 3.0 g (64 % der Theorie),

R_t-Wert: 0.43 (Kieselgel; Dichlormethan/Methanol = 19:1)

b. 2-[2-(4-Cyanophenyl)-ethyll-6-nitro-benzoxazol

kristalline Rückstand abgesaugt und getrocknet.

2.0 g (6.43 mMol) 2-[(4-Aminocarbonylphenyl)-ethyl]-6-nitrobenzoxazol werden in 50 ml Phosphoroxychlorid 60 Minuten unter Rückfluß erhitzt. Anschließend wird im Vakuum abdestilliert, der Rückstand mit Eiswasser zersetzt, das kristalline Produkt abgesaugt, gewaschen und getrocknet. Der Rückstand wird an Kieselgel (Methylenchlorid/Ethanol = 99.5:0.5) chromatographiert. Die entsprechenden Fraktionen werden eingeengt, mit Ether verrieben, abgesaugt und getrocknet.

Ausbeute: 1.25 g (66.5 % der Theorie),

R.-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 50:1)

c. 2-[2-(4-Cyanophenyl)-ethyl]-6-amino-benzoxazol

Hergestellt analog Beispiel 1b aus 2-[2-(4-Cyanophenyl)ethyl]-6-nitro-benzoxazol und Palladium auf Aktivkohle in
Methanol/Methylenchlorid.

```
Ausbeute: 100 % der Theorie,
```

R_f-Wert: 0.59 (Kieselgel; Dichlormethan/Ethanol = 19:1)

d. 2-[2-(4-Cyanophenyl)-ethyl]-6-(N-chinolin-8-sulfonylamino)-

benzoxazol

Hergestellt analog Beispiel 1c aus 2-[2-(4-Cyanophenyl)-ethyl]-6-amino-benzoxazol und 8-Chinolinsulfonsäurechlorid in Pyridin.

Ausbeute: 57 % der Theorie,

R_f-Wert: 0.61 (Kieselgel; Dichlormethan/Ethanol = 19:1)

e. 2-[2-(4-Cyanophenyl)-ethyl]-6-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzoxazol

Hergestellt analog Beispiel 1d aus 2-[2-(4-Cyanophenyl)-ethyl]-6-[N-chinolin-8-sulfonylamino]-benzoxazol, Bromessigsäuremethylester und Kaliumcarbonat in Aceton.

Ausbeute: 88.5 % der Theorie,

R_f-Wert: 0.30 (Kieselgel; Petrolether/Essigester = 1:1)

f. 2-[2-(4-Amidinophenyl)-ethyl]-6-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzoxazol

Hergestellt analog Beispiel 1e aus 2-[2-(4-Cyanophenyl)-ethyl]-6-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzoxazol und Salzsäure/Ammoniumcarbonat in Methanol.

Ausbeute: 82 % der Theorie,

 R_f -Wert: 0.32 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{28}H_{25}N_5O_5S$ (543.61)

Massenspektrum: $(M+H)^+ = 544$ $(M+2H)^{++} = 272.7$ $(M+H+Na)^{++} = 283.7$

2-[2-(4-Amidinophenyl)-ethyl]-6-[N-(hydroxycarbonylmethyl)- $\frac{\text{chinolin-8-sulfonylaminol-benzoxazol}}{\text{Hergestellt analog Beispiel 3 aus 2-[2-(4-Amidinophenyl)-ethyl]-6-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzoxazol und Natronlauge.}$ Ausbeute: 64 % der Theorie, $\text{C}_{27}\text{H}_{23}\text{N}_{5}\text{O}_{5}\text{S} \text{ (529,59)}}$ $\text{R}_{\text{f}}\text{-Wert: 0.11 (Kieselgel; Dichlormethan/Methanol = 4:1)}}$ Massenspektrum (EKA): (M+H)+ = 530 (M+Na)+ = 552 (M+2H)++ = 265.7 (M+H+Na)++ = 276.7 $\text{(2M+3Na)}^{3+} = 376$

Beispiel 48

2-[(4-Amidinophenyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylaminol-1H-benzimidazol

Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)-oxymethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-1H-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 79 % der Theorie, $C_{28}H_{26}N_{6}O_{5}S$ (558,63) R_{f} -Wert: 0.26 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): (M+H)+ = 559 $(M+2H)^{++} = 280$ $(M+2H)^{++} = 291$

Beispiel 49

1-Methyl-2-[N-(4-amidinobenzyl)-aminomethyl]-5-[N-(ethoxycar-bonylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[N-(4-cyanoben-zyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sul-

fonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 82 % der Theorie, .

 $C_{30}H_{31}N_{7}O_{4}S$ (585.70)

 R_f -Wert: 0.30 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 586$ $(M+2H)^{++} = 293.7$

Beispiel 50

1-Methyl-2-[N-(4-amidinobenzyl)-aminomethyl]-5-[N-(hydroxycar-bonylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidinobenzyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 94 % der Theorie,

 $C_{28}H_{27}N_{7}O_{4}S$ (557.64)

Massenspektrum (EKA): $(M+H)^{+} = 558$ $(M+Na)^{+} = 580$

Beispiel 51

2-[2-(4-Amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzoxazol

a. 2-[2-(4-Cyanophenyl)-ethyl]-5-nitro-benzoxazol

Hergestellt analog Beispiel 46b aus 2-[(4-Aminocarbonylphenyl)-ethyl]-5-nitro-benzoxazol und Phosphoroxychlorid.

Ausbeute: 36 % der Theorie,

 R_f -Wert: 0.90 (Kieselgel; Dichlormethan/Methanol = 19:1)

b. 2-[2-(4-Cyanophenyl)-ethyl]-5-amino-benzoxazol

Hergestellt analog Beispiel 1b aus 2-[2-(4-Cyanophenyl)-ethyl]-5-nitro-benzoxazol und Palladium auf Aktivkohle in Methanol/Methylenchlorid.

Ausbeute: 100 % der Theorie,

R_f-Wert: 0.36 (Kieselgel; Dichlormethan/Methanol = 19:1)

WO 00/08014

- 61 -

```
c. 2-[2-(4-Cyanophenyl)-ethyl]-5-(N-chinolin-8-sulfonylamino)-
benzoxazol
Hergestellt analog Beispiel 1c aus 2-[2-(4-Cyanophenyl)-
ethyl]-5-amino-benzoxazol und 8-Chinolinsulfonsäurechlorid in
Pyridin.
Ausbeute: 27 % der Theorie,
R<sub>s</sub>-Wert: 0.70 (Kieselgel; Dichlormethan/Methanol = 19:1)
d. 2-[2-(4-Cyanophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-
chinolin-8-sulfonylaminol-benzoxazol
Hergestellt analog Beispiel 1d aus 2-[2-(4-Cyanophenyl)-
ethyl]-5-(N-chinolin-8-sulfonylamino)-benzoxazol, Bromessig-
säureethylester und Kaliumcarbonat in Aceton.
Ausbeute: 100 % der Theorie,
R_{r}-Wert: 0.78 (Kieselgel; Dichlormethan/Methanol = 50:1)
e. 2-[2-(4-Amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-
chinolin-8-sulfonvlaminol-benzoxazol
Hergestellt analog Beispiel le aus 2-[2-(4-Cyanophenyl)-
ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-
benzoxazol und Salzsäure/Ammoniumcarbonat in Ethanol.
Ausbeute: 98 % der Theorie,
R_t-Wert: 0.44 (Kieselgel; Dichlormethan/Methanol = 5:1)
C_{2}H_{2}N_{5}O_{5}S (557.63)
Massenspektrum: (M+H)+
                           = 558
                 (M+2H)^{++} = 279.7
                 (M+H+Na)^{++} = 290.7
Beispiel 52
2-[2-(4-Amidinophenyl)-ethyl]-5-[N-(hydroxycarbonylmethyl)-
chinolin-8-sulfonylaminol-benzoxazol
Hergestellt analog Beispiel 3 aus 2-[2-(4-Amidinophenyl)-
ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-
benzoxazol und Natronlauge.
```

Ausbeute: 77 % der Theorie,

 $C_{27}H_{23}N_{5}O_{5}S$ (529.58) Massenspektrum (EKA): $(M+H)^{+} = 530$ $(M+Na)^{+} = 552$ $(M+H+Na)^{++} = 276.6$ $(M-H+2Na)^{+} = 574$ $(M+2Na)^{++} = 287.6$

Beispiel 53

1-Methyl-2-[2-(2-amidinothiophen-5-yl)-ethyl]-5-[N-(ethoxycar-bonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[2-(2-cyanothio-phen-5-yl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Beispiel 54

1-Methyl-2-[2-(2-amidinothiophen-5-yl)-ethyl]-5-[N-(hydroxy-carbonylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(2-amidino-thiophen-5-yl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 98 % der Theorie,

 $(M+H+Na)^{++} = 300$

Ausbeute: 98 % der Theorie,

 $C_{26}H_{24}N_{6}O_{4}S_{2}$ (548.66)

Massenspektrum (EKA): $(M+H)^{+} = 549$ $(M+Na)^{+} = 571$ WO 00/08014 PCT/EP99/05371

- 63 -

Beispiel 55

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycar-bonylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-benzolsulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 50 % der Theorie,

 $C_{26}H_{28}N_{6}O_{4}S$ (520.62)

R,-Wert: 0.34 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 521$

Beispiel 56

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycar-bonylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-benzolsulfonyl-amino]-benzimidazol und Natronlauge.

Ausbeute: 97 % der Theorie,

 $C_{24}H_{24}N_6O_4S$ (492.56)

Massenspektrum (EKA): $(M+H)^+ = 493$ $(M+Na)^+ = 515$ $(M-H+2Na)^+ = 537$ $(M+2Na)^{++} = 269$

Beispiel 57

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-(N-benzyl-N-me-thylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-(N-benzyl-N-methylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 85 % der Theorie,

 $C_{24}H_{26}N_6$ (398.51)

 R_t -Wert: 0.27 (Kieselgel; Dichlormethan/Methanol = 4:1)

- 64 -

Massenspektrum (EKA): $(M+H)^{+} = 399$ $(M+2H)^{++} = 200$

Beispiel 58

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycar-bonylmethyl)-n-butansulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophe-nyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-n-butansulfonyl-amino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 71 % der Theorie,

 $C_{24}H_{32}N_{6}O_{4}S$ (500.63)

R,-Wert: 0.32 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 501$ $(M+H+Na)^{++} = 262$

Beispiel 59

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycar-bonylmethyl)-benzoylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-benzoylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 56 % der Theorie,

 $C_{27}H_{28}N_6O_3$ (484.57)

R_f-Wert: 0.34 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 485$ $(M+H+Na)^{++} = 254$

Beispiel 60

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycar-bonylmethyl)-pyridin-2-yl-carbonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-pyridin-2-yl-

```
carbonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.
```

Ausbeute: 64 % der Theorie,

 $C_{26}H_{27}N_{7}O_{3}$ (485.56)

R.-Wert: 0.31 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+$ = 486

 $(M+H+Na)^{++} = 254.7$

Beispiel 61

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycar-bonylmethyl)-n-butansulfonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-n-butansulfonyl-amino]-benzimidazol und Natronlauge.

Ausbeute: 98 % der Theorie,

 $C_{22}H_{28}N_6O_4S$ (472.57)

Massenspektrum (EKA): $(M+H)^+ = 473$

 $(M+Na)^+ = 495$

 $(M+2Na)^{++} = 259$

Beispiel 62

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycar-bonylmethyl)-benzoylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-benzoylami-no]-benzimidazol und Natronlauge.

Ausbeute: 69 % der Theorie,

 $C_{25}H_{24}N_{6}O_{3}$ (456.51)

Massenspektrum (EKA): $(M+H)^+ = 457$

 $(M+2Na)^{++} = 251$

 $(M+Na)^+ = 479$

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycar-bonylmethyl)-pyridin-2-yl-carbonylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-pyridin-2-yl-carbonylamino]-benzimidazol und Natronlauge.

Ausbeute: 96 % der Theorie,

C24H23N7O3 (457.50)

Massenspektrum (EKA): (M+H)+ = 458

(M+Na)+ = 480

(M+H+Na)++ = 240.6

(M+2Na)++ = 251.6

Beispiel 64

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-(N-cyclohexyl-methansulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(4-cyanophenyl)-oxymethyl]-5-(N-cyclohexyl-methansulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 79 % der Theorie, $C_{23}H_{29}N_5O_3S \ (455.59)$ $R_f\text{-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 4:1)}$ $\text{Massenspektrum (EKA): } (M+H)^+ = 456$ $(M+Na)^+ = 478$

Beispiel 65

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-6-[N-(ethoxycarbo-nylmethyl)-benzolsulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[(4-cyanophenyl)-oxymethyl]-6-[N-(ethoxycarbonylmethyl)-benzolsulfonyl-amino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 45 % der Theorie,

```
C_{26}H_{27}N_{5}O_{5}S (521.6)

Massenspektrum (EKA): (M+H)<sup>+</sup> = 522

(M+H+Na)<sup>++</sup> = 272.7
```

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-(N-cyclopentyl-methansulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-(N-cyclopentyl-methansulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 89 % der Theorie, $C_{22}H_{28}N_6O_2S \ (440.58)$ $R_r-Wert: 0.17 \ (Kieselgel; Dichlormethan/Ethanol = 4:1)$ Massenspektrum (EKA): $(M+H)^+ = 441$

Beispiel 67

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(N'-(ethoxy-carbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonyl-aminol-benzimidazol

 $(M+Na)^{+} = 463$

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(4-cyanophenyl)-oxymethyl]-5-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 49 % der Theorie,

 $C_{31}H_{31}N_{7}O_{6}S$ (629.7)

Massenspektrum (EKA): $(M+H)^+ = 630$ $(M+2H)^{++} = 315.7$ $(M+H+Na)^{++} = 326.7$ WO 00/08014 PCT/EP99/05371

- 68 -

Beispiel 68

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(N'-(hydroxycar-bonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 79 % der Theorie,

 $C_{29}H_{27}N_{7}O_{6}S$ (601,7)

Massenspektrum (EKA): $(M+H)^+ = 602$ $(M+Na)^+ = 624$ $(M+2H)^{++} = 301.7$ $(M+H+Na)^{++} = 312.7$

Beispiel 69

1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(2-ethoxycar-bonylethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[(4-cyanophenyl)-oxymethyl]-5-[N-(2-ethoxycarbonylethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 62 % der Theorie,

 $C_{30}H_{30}N_{6}O_{5}S$ (586,7)

Massenspektrum (EKA): $(M+H)^+ = 587$ $(M+2H)^{++} = 294$ $(M+H+Na)^{++} = 305$

Beispiel 70

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycar-bonylmethyl)-1,2,3,4-tetrahydro-chinolin-8-sulfonylamino]-benzofuran

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-1,2,3,4-tetra-

WO 00/08014

- 69.-

PCT/EP99/05371

hydro-chinolin-8-sulfonylamino]-benzofuran (hergestellt analog Beispiel 107) und ethanolischer Salzsäure, Ethanol und Ammo-niumcarbonat.

Ausbeute: 55 % der Theorie,

 $C_{30}H_{33}N_{5}O_{5}S$ (575.70)

 R_t -Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 576$ $(M+H+Na)^{++} = 299.7$

Beispiel 71

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(hydroxycar-bonylmethyl)-1,2,3,4-tetrahydro-chinolin-8-sulfonylamino]-benzofuran

Hergestellt analog Beispiel 3 aus 2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-1,2,3,4-tetra-hydro-chinolin-8-sulfonylamino]-benzofuran und Natronlauge.

Ausbeute: 94 % der Theorie,

 $C_{28}H_{29}N_{5}O_{5}S$ (547.65)

Massenspektrum (EKA): $(M+H)^+ = 548$ $(M+Na)^+ = 570$ $(M+2Na)^{++} = 296.7$

Beispiel 72

2-[2-(4-Amidinophenyl)-ethyl]-4-methyl-7-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-chinolin

Hergestellt analog Beispiel 1e aus 2-[2-(4-Cyanophenyl)-ethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-chinolin (hergestellt analog Beispiel 102) und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 50 % der Theorie,

 $C_{32}H_{31}N_{5}O_{4}S$ (581.6)

 R_r -Wert: 0.18 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 582$ $(M+2H)^{++} = 291.7$ $(M+H+Na)^{++} = 302.7$

2-[2-(4-Amidinophenyl)-ethyl]-4-methyl-7-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylaminol-chinolin

Hergestellt analog Beispiel 3 aus 2-[2-(4-Amidinophenyl)-ethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylaminol-chinolin und Natronlauge.

Ausbeute: 38 % der Theorie,

C30H27N5O4S (553.60)

Massenspektrum (EKA): (M+H)+ = 554

(M+Na)+ = 576

(M+2H)++ = 277.7

Beispiel 74

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-(N-chinolin-8-sulfo-nylamino)-indol-hydrochlorid

a. (E)-4-[2-(1-Methyl-indol-2-yl)ethenyllbenzonitril 3.25 g (ca. 67 mMol) einer 50%igen Natriumhydrid-Suspension in Mineralöl wird in 70 ml Dimethylsulfoxid 45 Minuten auf 80°C erhitzt. Nach Abkühlen auf Raumtemperatur werden weitere 140 ml Dimethylsulfoxid und portionsweise 18.2 g (44 mMol) 4-Cyanbenzyltriphenylphosphoniumbromid zugegeben und 90 Minuten bei Raumtemperatur gerührt. Anschließend tropft man 7.0 g (44 mMol) 1-Methyl-indol-2-yl-carbaldehyd (J. Org. Chem. 52, 104 (1987)) in 70 ml Dimethylsulfoxid zu und läßt 30 Minuten bei Raumtemperatur, 20 Minuten bei 40°C und 16 Stunden wiederum bei Raumtemperatur rühren. Das Rohprodukt wird mit 200 ml Essigester verdünnt, mit 400 ml 14%iger Natriumchlorid-Lösung gewaschen und die Wasserphase wird mit 2 x 300 ml Essigester extrahiert. Die vereinigten organischen Phasen werden mit Natriumsulfat getrocknet, das Lösungsmittel wird im Vakuum abdestilliert, und das Rohprodukt wird mittels Flash-Chromatographie (Kieselgel, Petrolether/Essigester = 9:1) gereinigt.

- 71 -

Ausbeute: 2.4 g (21 % der Theorie),

 R_f -Wert: 0.52 (Kieselgel; Essigester/Petrolether = 3:7)

b. 4-[2-(1-Methyl-indol-2-yl)ethyllbenzonitril

2.3 g (8.9 mMol) (E)-4-[2-(1-Methyl-indol-2-yl)ethenyl]benzonitril werden in 150 ml Methanol und 50 ml Methylenchlorid gelöst und mit 0.20 g 10%igem Palladium auf Kohle bei 3 bar Wasserstoffdruck hydriert. Das Lösungsmittel wird im Vakuum abdestilliert, der erhaltene weiße Rückstand wird mit wenig Diethylether und Aceton gewaschen.

Ausbeute: 1.8 g (78% der Theorie),

R.-Wert: 0.50 (Kieselgel; Essigester/Petrolether = 3:7)

c. 4-[2-(1-Methyl-5-nitro-indol-2-yl)ethyl]benzonitril

Innerhalb von 2 Stunden wird 1.7 g (6.53 mMol) 4-[2-(1-Methyl-indol-2-yl)ethyl]benzonitril in 20 ml konz. Schwefelsäure bei 15°C gelöst und dann auf 2°C abgekühlt. Anschließend werden 0.66 g (6.53 mMol) Kaliumnitrat portionsweise zugegeben (Temperaturanstieg auf ca. 10°C). Es wird 30 Minuten bei 2-5°C nachgerührt und dann auf Eis gegossen. Der ausgefallene gelbliche Niederschlag wird abfiltriert und mit Wasser gewaschen. Ausbeute: 2.0 g (100 % der Theorie),

R_f-Wert: 0.24 (Kieselgel; Essigester/Petrolether = 3:7)

d. 4-[2-(1-Methyl-5-amino-indol-2-yl)ethyl]benzonitril

2.0 g (6.55 mMol) 4-[2-(1-Methyl-5-nitro-indol-2-yl)ethyl]-benzonitril werden in 200 ml Methanol und 200 ml Methylenchlorid gelöst und mit 0.20 g 10%igem Palladium auf Kohle bei 3 bar Wasserstoffdruck hydriert. Anschließend wird das Lösungsmittel im Vakuum abdestilliert, und der Rückstand mit wenig Methanol gewaschen.

Ausbeute: 1.67 g (93 % der Theorie) beigegelber amorpher Feststoff,

R_f-Wert: 0.38 (Kieselgel; Methylenchlorid/Ethanól = 19:1)

e 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-(N-chinolin-8-sul-fonylamino)-indol

Eine Lösung von 1.57 g (5.7 mMol) 4-[2-(1-Methyl-5-amino-in-dol-2-yl)-ethyl]benzonitril und 1.42 g (6.2 mMol) Chinolin-8-sulfonsäurechlorid in 30 ml Pyridin wird 1 Stunden bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt, der Rückstand in 50 ml Methylenchlorid aufgenommen, mit 50 ml gesättigter Natriumhydrogencarbonat-Lösung gewaschen, mit Natriumsulfat getrocknet und mittels Flash-Chromatographie (Kieselgel, Methylenchlorid/Ethanol = 99:1) gereinigt.

Ausbeute: 0.77,g (49 % der Theorie),

R_t-Wert: 0.39 (Kieselgel; Methylenchlorid/Ethanol = 50:1)

f. 1-Methyl-2-[2-(4-amidinophenyl)ethyl]-5-(N-chinolin-8-sul-fonylamino)-indol-hydrochlorid

Hergestellt analog Beispiel le aus 1-Methyl-2-[2-(4-cyanophenyl)ethyl]-5-(N-chinolin-8-sulfonylamino)-indol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 39 % der Theorie,

 $C_{27}H_{25}N_{5}O_{2}S$ (483.6)

Rf-Wert: 0.29 (Kieselgel; Methylenchlorid/Ethanol = 4:1

+ einige Tropfen Essigsäure)

Massenspektrum (SKA): $(M+H)^+ = 484$

Beispiel 75

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-indol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[2-(4-cyanophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-indol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 53 % der Theorie,

C31H31N5O4S (569.69)

 R_f -Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 4:1)

WO 00/08014 PCT/EP99/05371

- 73 -

Massenspektrum (EKA): $(M+H)^+ = 570$ $(M+2H)^{++} = 285.7$ $(M+H+Na)^{++} = 296.6$

Beispiel 76

1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylamino]-indol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-indol und Natronlauge.

Ausbeute: 96 % der Theorie,

 $C_{29}H_{27}N_{5}O_{4}S$ (541.63)

Massenspektrum (EKA): $(M+H)^+ = 542$ $(M+Na)^+ = 564$ $(M+2H)^{++} = 271.7$ $(M-H)^- = 540$

Beispiel 77

1-Methyl-2-(4-amidinobenzylamino)-5-(chinolin-8-sulfonylami-no)-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-(4-cyanobenzyl-amino)-5-(chinolin-8-sulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 85 % der Theorie,

 $C_{25}H_{23}N_{7}O_{2}S$ (485,57)

Rf-Wert: 0.40 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 486$ $(M+H+Na)^{++} = 254,7$

1-Methyl-2-(4-amidinobenzylthio)-5-(chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-(4-cyanobenzyl-thio)-5-(chinolin-8-sulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 69 % der Theorie,

 $C_{25}H_{22}N_{6}O_{2}S_{2}$ (502,62)

 R_t -Wert: 0.45 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 503$ $(M+Na)^+ = 525$

Beispiel 79

2-[(4-Amidinophenyl)methylthio]-5-(N-chinolin-8-sulfonylami-no)-benzothiazol-hydrochlorid

a. 2-[(4-Cyanophenyl)methylthiol-6-nitro-benzothiazol
Zu einer Lösung aus 1.5 g (7.06 mMol) 2-Mercapto-6-nitrobenzothiazol wird portionsweise 0.37 g (7.7 mMol) Natriumhydrid (50%ig in Mineralöl) zugegeben und anschließend 30 Minuten bei 50°C gerührt. Danach wird 1.45 g (7.4 mMol) 4-Brommethylbenzonitril zugetropft und eine weitere Stunde bei 50°C
gerührt. Die Reaktionsmischung wird mit 30 ml Essigester und
70 ml 14%iger Natriumchloridlösung versetzt, woraufhin ein
Großteil der Titelverbindung als beiger Niederschlag ausfällt.
Die organische Phase wird im Vakuum konzentriert, das ausgefallene Rohprodukt wird mit Diethylether verrieben und die
flüssige Phase abgetrennt. Der erhaltene Feststoff wird mit
dem beigen Präzipitat vereinigt.

Ausbeute: 1.3 g (56 % der Theorie),

 R_f -Wert: 0.52 (Kieselgel; Essigester/Petrolether = 3:7)

b. 2-[(4-Cyanophenyl)methylthiol-6-amino-benzothiazol
Eine Suspension von 1.0 g (3.05 mMol) 2-[(4-Cyanophenyl)methylthio]-6-nitro-benzothiazol wird in 60 ml Eisessig solange zum Sieden erhitzt, bis eine klare Lösung entsteht. Anschließend gibt man in zwei Portionen 2.0 g (36 mMol) Eisenpulver zu und kocht 5 Minuten am Rückfluß. Es wird filtriert,
und das Filtrat wird im Vakuum konzentriert. Das Rohprodukt
wird durch Zugabe von konz. Ammoniak alkalisch gestellt und
durch Flash-Chromatographie (Kieselgel, Essigester/Petrolether
= 20:80 bis 35:65) gereinigt.

Ausbeute: 0.22 g (24 % der Theorie) beige-farbigen amorphen Feststoff,

R.-Wert: 0.44 (Kieselgel; Essigester/Petrolether = 4:6)

c. 2-[(4-Cyanophenyl)methylthio]-6-(N-chinolin-8-sulfonyl-amino)-benzthiazol

Ein Gemisch aus 2.3 g (7.74 mMol) 2-[(4-Cyanophenyl)methyl-thio]-6-amino-benzothiazol und 1.85 g (8.1 mMol) Chinolin-8-sulfonsäurechlorid wird in 30 ml Pyridin 2 Stunden bei Raumtemperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum abdestilliert und das Rohprodukt durch Flash-Chromatographie (Kieselgel, Methylenchlorid/Ethanol = 99:1) gereinigt. Ausbeute: 3.15 g (83 % der Theorie),

Schmelzpunkt: 106-108°C

R.-Wert: 0.33 (Kieselgel; Essigester/Petrolether = 4:6)

d. 2-[(4-Amidinophenyl)methylthio]-6-(N-chinolin-8-sulfonyl-amino)-benzothiazol-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)methyl-thio]-6-(N-chinolin-8-sulfonylamino)-benzthiazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 91 % der Theorie,

 $C_{24}H_{19}N_5O_2S_3$ (505.64)

 R_f -Wert: 0.34 (Kieselgel; Methylenchlorid/Ethanol = 4:1

+ einige Tropfen Essigsäure)

Massenspektrum (SKA): $(M+H)^+ = 506$

Gemisch aus 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-6-(chinolin-8-sulfonylamino)-imidazo[4,5-b]pyridin-hydrochlorid und 2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-(chinolin-8-sulfonylamino)-imidazo[4,5-b]pyridin-hydrochlorid

a. 3-(4-Cyanophenyl)-N-(3,5-dinitro-pyrid-2-yl)-propionsäure-amid

Eine Lösung aus 1.8 g (10 mMol) 2-Amino-3,5-dinitro-pyridin, 2.4 g (12 mMol) 3-(4-Cyanophenyl)propionylchlorid, 2.0 ml Triethylamin und 0.1 g Dimethylamin in 35 ml Chlorbenzol wird 3 Stunden auf 150°C erhitzt. Anschließend wird das Lösungsmittel im Vakuum abdestilliert, und der Rückstand wird in 50 ml Essigester aufgenommen. Es wird mit 50 ml Wasser und 50 ml gesättigter Natriumchloridlösung gewaschen, mit Natriumsulfat getrocknet, und nach Abdestillieren des Lösungsmittels mittels Flash-Chromatographie (Kieselgel, Methylenchlorid) gereinigt. Ausbeute: 2.2 g (65 % der Theorie),

 R_f -Wert: 0.67 (Kieselgel; Methylethylketon/Kylol = 1:1)

b) 2-[2-(4-Cyanophenyl)ethyl]-6-phtalimido-imidazo[4,5-b]py-ridin

Eine Suspension aus 2.1 g (6.15 mMol) 3-(4-Cyanophenyl)N-(3,5-dinitro-pyrid-2-yl)-propionsäureamid und 0.50 g 10%igem
Palladium auf Kohle in 50 ml Eisessig wird bei 80°C bei 3 bar
Wasserstoffdruck zur Reaktion gebracht. Nach dem Abkühlen wird
der Katalysator abfiltriert, 1.1 g (7.4 mMol) Phthalsäureanhydrid zugesetzt und für 1 Stunden zum Sieden erhitzt. Das Lösungsmittel wird im Vakuum abdestilliert, und das Rohprodukt
wird in 50 ml Methylenchlorid aufgenommen, 2x mit gesättigter
Natriumhydrogencarbonatlösung gewaschen und durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 40:1 bis
19:1) gereinigt.

Ausbeute: 0.95 g (41 % der Theorie),

R_f-Wert: 0.50 (Kieselgel; Essigester/Ethanol/Ammoniak = 90:10:1) c. Isomerengemisch aus 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-6-phtalimido-imidazo[4,5-b]pyridin und

2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-phtalimido-imidazo-[4.5-b]pyridin

Ein Gemisch aus 0.80 g (2.0 mMol) 2-[2-(4-Cyanophenyl)-ethyl]-6-phtalimido-imidazo[4,5-b]pyridin, 0.25 g (2.2 mMol) Kalium-tert.butylat und 0.32 g (2.2 mMol) Methyliodid wird in 10 ml Dimethylsulfoxid 1 Stunden bei Raumtemperatur gerührt. Anschließend wird auf Eiswasser gegossen, mit 100 ml Essigester extrahiert, mit Natriumsulfat getrocknet, und das Lösungsmittel im Vakuum abdestilliert.

Ausbeute: 0.80 g (98 % der Theorie),

d. Isomerengemisch aus 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-6-imidazo[4,5-b]pyridin und

2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-imidazo[4.5-b]pyridin 0.80 g (2.0 mMol) des Isomerengemisch aus 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-6-phtalimido-imidazo[4.5-b]pyridin und aus 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-phtalimido-imidazo-[4.5-b]pyridin werden in 5 ml 40%iger wäßriger Methylamin-Lösung und 20 ml Ethanol 1 Stunden bei 40-60°C gerührt. Anschließend wird das Lösungsmittel im Vakuum abdestilliert, das Rohprodukt in 40 ml Essigester/Ethanol (9:1) aufgenommen und sukzessiv mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Nach dem Entfernen des Lösungsmittels im Vakuum wird der Rückstand in Pyridin aufgenommen und analog Beispiel 79c mit 0.41 g (1.8 mMol) Chinolin-8-sulfonsäurechlorid umgesetzt, aufgearbeitet und durch Flash-Chromatographie (Kieselgel, Methylenchlorid bis Methylenchlorid/Ethanol = 19:1) gereinigt.

Ausbeute: 0.50 g (54 % der Theorie),

 R_{r} -Wert: 0.63 + 0.50 (Kieselgel; Essigester/Ethanol/Ammoniak = 90:10:1)

e. Isomerengemisch aus 2-[2-(4-Amidinophenyl)-ethyl]-1-methyl-6-(chinolin-8-sulfonylamino)-imidazo[4,5-b]pyridin-hydrochlo-rid und

2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-(chinolin-8-sulfonyl-amino)-imidazo[4.5-blpyridin-hydrochlorid

Hergestellt analog Beispiel le aus dem Isomerengemisch aus 2-[2-(4-Cyanophenyl)-ethyl]-1-methyl-6-(chinolin-8-sulfonyl-amino)-imidazo[4,5-b]pyridin und 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-(chinolin-8-sulfonylamino)-imidazo[4,5-b]pyridin und methanolischer Salzsäure, Methanol und Ammoniumcarbonat. Ausbeute: 80 % der Theorie,

C₂₅H₂₃N₇O₂S (485.57)

 R_t -Wert: 0.25 + 0.21 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (SKA): $(M+H)^+ = 486$

Beispiel 81

2-(4-Amidinobenzylthio)-6-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzthiazol

Hergestellt analog Beispiel 1e aus 2-(4-Cyanobenzylthio)-6-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzthiazol und ethanolischer Salzsäure, Ethanol und Ammonium-carbonat.

Ausbeute: 28 % der Theorie,

 $C_{27}H_{23}N_{5}O_{4}S_{3}$ (577.41)

R_t-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 578$ $(M+H+Na)^{++} = 300.7$ WO 00/08014 PCT/EP99/05371

- 79 -

Beispiel 82

2-[(4-Amidinophenyl)oxymethyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzothiazol-hydrochlorid

a. (4-Cyanophenyl)oxy-N-(5-nitro-2-mercaptophenyl)-essigsäure-

Eine Lösung aus 1.05 g (6.5 mMol) Carbonyldiimidazolid und 1.15 g (6.5 mMol) (4-Cyanophenyl)oxyessigsäure in 10 ml Tetrahydrofuran wird 30 Minuten auf 50°C erwärmt. Anschließend versetzt man mit 1.0 g (5.9 mMol) 2-Mercapto-5-nitroanilin und erhitzt weitere 3 Stunden auf 50°C. Man filtriert, konzentriert das Filtrat im Vakuum und reinigt das Rohprodukt durch Flash-Chromatographie (Kieselgel, Methylenchlorid/Ethanol = 19:1 bis 4:1).

Ausbeute: 1.05 q (54 % der Theorie),

Schmelpunkt: 274-276°C

 R_f -Wert: 0.54 (Kieselgel; Methylenchlorid/Ethanol = 19:1

+ einige Tropfen konz. Ammoniak)

b. 2-[(4-Cyanophenyl)oxymethyl]-5-nitrobenzothiazol

Man erhitzt eine Lösung aus 2.1 g (6.4 mMol) (4-Cyanophenyl) - oxy-N-(5-nitro-2-mercaptophenyl) - essigsäureamid in 20 ml Eisessig 1 Stunden auf 80°C, verdünnt mit Eiswasser und filtriert das ausgefallene Rohprodukt ab. Nach Flash-Chromatographie (Kieselgel, Methylenchlorid:Ethanol = 99:1) erhält man einen beigen amorphen Feststoff.

Ausbeute: 0.77 g (37 % der Theorie),

 R_t -Wert: 0.56 (Kieselgel; Methylenchlorid/Ethanol = 50:1)

C. 2-[(4-Cyanophenyl)oxymethyl]-5-amino-benzothiazol

Eine Lösung aus 0.62 g (2.0 mMol) 2-[(4-Cyanophenyl)oxymethyl]-5-nitro-benzothiazol in 20 ml Pyridin wird sukzessiv
mit 1.0 g (5.7 mMol) Natriumdithionit und 4 ml Wasser versetzt
und 2 Stunden bei 95°C gerührt. Anschließend wird das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit Eiswasser

verdünnt. Es wird filtriert und der Filterrückstand mehrmals mit wenig kaltem Wasser gewaschen.

Ausbeute: 0.44 g (79 % der Theorie),

R,-Wert: 0.37 (Kieselgel; Methylenchlorid/Ethanol = 50:1)

d. 2-[(4-Cyanophenyl)oxymethyl]-5-(chinolin-8-sulfonylamino)-benzothiazol

Hergestellt analog Beispiel 79c aus 0.40 g (1.42 mMol)
2-[(4-Cyanophenyl)oxymethyl]-5-amino-benzothiazol und 0.34 g
(1.5 mMol) Chinolin-8-sulfonsäurechlorid. Die weitere Reinigung erfolgt durch Flash-Chromatographie (Kieselgel, Methylen-chlorid/Ethanol = 99:1).

Ausbeute: 0.41 g (61 % der Theorie),

R.-Wert: 0.49 (Kieselgel; Methylenchlorid/Ethanol = 50:1)

e. 2-[(4-Cyanophenyl)oxymethyl]-5-[N-[ethoxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzothiazol

Eine Suspension aus 0.39 g (0.83 mMol) 2-[(4-Cyanophenyl)oxymethyl]-5-(chinolin-8-sulfonylamino)-benzothiazol, 0.23 ml (0.35 g, 2.1 mMol) Bromessigsäureethylester, 0.14 ml (0.14 g, 0.94 mMol) 1,8-Diazabicyclo[5,4,0]undec-7-en und 0.60 g (4.1 mMol) Kaliumcarbonat in 30 ml Aceton wird 3 Stunden zum Sieden erhitzt. Anschließend wird filtriert, das Lösungsmittel im Vakuum abdestilliert und der Rückstand durch Flash-Chromatographie (Kieselgel, Methylenchlorid:Ethanol = 99:1) gereinigt.

Ausbeute: 0.41 g (61 % der Theorie),

R.-Wert: 0.54 (Kieselgel: Methylenchlorid/F

f. 2-[(4-Amidinophenyl)oxymethyl]-5-[N-(methoxycarbonylme-thyl)-chinolin-8-sulfonylaminol-benzothiazol-hydrochlorid
Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)oxymethyl]-5-[N-[ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzothiazol und methanolischer Salzsäure, Methanol und Ammoniumcarbonat.

Ausbeute: 67 % der Theorie,

```
C_{27}H_{23}N_5O_5S_2 (561.64)

R_t-Wert: 0.36 (Kieselgel; Methylenchlorid/Ethanol 4:1)

Massenspektrum (SKA): (M+H) + = 562

(M+H+Na) ++ = 292.7
```

1-Methyl-2-(4-amidinobenzylthio)-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-(4-cyanobenzyl-thio)-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und methanolischer Salzsäure, Methanol und Ammoniumcarbonat.

Ausbeute: 50 % der Theorie,

 $C_{28}H_{26}N_6O_4S_2$ (574,69)

R_f-Wert: 0.35 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 575$ $(M+H+Na)^{++} = 299$

Beispiel 84

1-Methyl-2-[4-(N-ethoxycarbonyl-amidino)-benzylthio]-

5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-

benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-(4-amidino-benzylthio)-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol und Chlorameisensäureethylester.

Ausbeute: 62 % der Theorie,

 $C_{31}H_{30}N_{6}O_{6}S_{2}$ (646,75)

R.-Wert: 0.55 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 647$ $(M+Na)^+ = 669$

```
1-Methyl-2-(4-amidinobenzylthio)-5-[N-(hydroxycarbonylmethyl)-
chinolin-8-sulfonylaminol-benzimidazol
Hergestellt analog Beispiel 3 aus 1-Methyl-2-(4-amidinobenzyl-
thio) -5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]-
benzimidazol und Natronlauge.
Ausbeute: 61,5 % der Theorie,
C_{27}H_{24}N_{6}O_{4}S (560,66)
R<sub>f</sub>-Wert: 0.20 (Kieselgel; Essigester:Ethanol:Ammoniak
               = 50:45:5
Massenspektrum (EKA): (M+H)^+ = 561
                       (M+Na)^{+} = 583
Beispiel 86
2-[(4-Amidinophenyl)-oxymethyl]-5-[N-(hydroxycarbonylmethyl)-
Hergestellt analog Beispiel 3 aus 2-[(4-Amidinophenyl)-oxyme-
```

chinolin-8-sulfonylaminol-benzthiazol

thyl]-5-[N-(methoxycarbonylmethyl)-chinolin-8-sulfonylamino]benzthiazol und Natronlauge.

Ausbeute: 93 % der Theorie,

 $C_{26}H_{21}N_5O_5S_2$ (547.62)

R_r-Wert: 0.13 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): (M+H)+ = 548 $(M+2H)^{++} = 274.6$ $(M+H+Na)^{++} = 285.6$ $(M+2Na)^{++} = 296.6$

Beispiel 87

1-Methyl-2-(4-amidinobenzylthio)-5-benzovlamino-benzimidazol Hergestellt analog Beispiel 1e aus 1-Methyl-2-(4-cyanobenzylthio)-5-benzoylaminobenzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 54,8 % der Theorie, $C_{23}H_{21}N_5OS$ (415,52)

WO 00/08014 PCT/EP99/05371

- 83 -

 R_t -Wert: 0.35 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 416$

Beispiel 88

2-[N-(4-Amidinophenyl)-aminomethyl]-5-[N-(ethoxycarbonylme-thyl)chinolin-8-sulfonylaminol-benzthiazol

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzthiazol und ethanolischer Salzsäure, Ethanol und Ammonium-carbonat.

Ausbeute: 80 % der Theorie,

 $C_{28}H_{26}N_6O_4S_2$ (574.69)

R,-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 575$ $(M+H+Na)^{++} = 299$

Beispiel 89

2-[N-(4-Amidinophenyl)-aminomethyl]-5-[N-(hydroxycarbonylme-thyl)-chinolin-8-sulfonylaminol-benzthiazol

Hergestellt analog Beispiel 3 aus 2-[N-(4-Amidinophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzthiazol und Natronlauge.

Ausbeute: 94 % der Theorie,

 $C_{26}H_{22}N_6O_4S_2$ (546.63)

R.-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 547$ $(M+Na)^+ = 569$ $(M+2H)^{++} = 274$ $(M+H+Na)^{++} = 285$ $(M+2Na)^{++} = 296$

 $(2M+3Na)^{3+} = 387$

1-Methyl-2-(4-amidinobenzylthio)-5-[N-(ethoxycarbonylmethyl)-benzovlaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-(4-cyanobenzyl-thio)-5-[N-(ethoxycarbonylmethyl)-benzoylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 68,8 % der Theorie,

 $C_{27}H_{27}N_{5}O_{3}S$ (538,08)

 R_t -Wert: 0.27 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 502$

 $(M+H+Na)^{++} = 262.8$

Beispiel 91

1-Methyl-2-(4-amidinobenzylthio)-5-[N-(hydroxycarbonylmethyl)-benzoylaminol-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-(4-amidinobenzyl-thio)-5-[N-(ethoxycarbonylmethyl)-benzoylamino]-benzimidazol und Natronlauge.

Ausbeute: 79 % der Theorie,

 $C_{25}H_{23}N_{5}O_{3}S$ (473.53)

R_f-Wert: 0.21 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): $(M+H)^+ = 474$

 $(M+Na)^+ = 496$

Beispiel 92

- 2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-imidazo[4,5-b]pyridin
- a. 3,5-Di-[3-(4-cyanophenyl)propionylamido]-2-methylamino-pyridin

Eine Lösung von 3.8 g (19 mMol) 3,5-Dinitro-2-methylaminopyridin wird in 90 ml Ethanol/Methylenchlorid (2:1) bei 5 bar Wasserstoffdruck mit 1.0 g 10%igem Palladium auf Kohle innerhalb von 2 Stunden hydriert. Der Katalysator wird abfiltriert, und das Lösungsmittel wird im Vakuum abdestilliert. Das schwarze, ölige Rohprodukt wird in 50 ml Pyridin gelöst und bei 0°C mit 7.0 g (36 mMol) 3-(4-Cyanophenyl)propionsäurechlorid versetzt. Nach 2 Stunden wird das Lösungsmittel im Vakuum abdestilliert, der Rückstand in 100 ml Essigester aufgenommen und mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Es wird mit Natriumsulfat getrocknet, das Lösungsmittel abdestilliert und der erhaltene Rückstand durch Flash-Chromatographie (Kieselgel, Methylenchlorid/Ethanol = 49:1 bis 19:1) gereinigt.

Ausbeute: 4.8 g (59 % der Theorie),

R_f-Wert: 0.40 (Kieselgel; Essigester/Ethanol/Ammoniak
= 90:10:1)

b. 3-Methyl-2-[2-(4-cyanophenyl)-ethyl]-6-[3-(4-cyanophenyl)-propionylamidol-imidazo[4,5-b]pyridin

Man erhitzt eine Lösung von 1.6 g (3.5 mMol) 3,5-Di-[3-(4-cy-anophenyl)propionylamido]-2-methylamino-pyridin in 30 ml Eisessig 1 Stunden auf 100°C. Anschließend destilliert man das Lösungsmittel im Vakuum ab, nimmt den Rückstand in 80 ml Methylenchlorid auf und neutralisiert mit Natriumhydrogencarbonat-Lösung. Die organische Phase wird mit Natriumsulfat getrocknet, das Lösungsmittel im Vakuum abdestilliert und das Rohprodukt durch Flash-Chromatographie (Kieselgel, Methylenchlorid/Ethanol = 49:1 bis 19:1) gereinigt.

Ausbeute: 0.90 g (60 % der Theorie),

- c. 6-Amino-3-methyl-2-[2-(4-cyanophenyl)-ethyl]-imidazo[4.5-b]pyridin
- 0.80 g (1.8 mMol) 3-Methyl-2-[2-(4-cyanophenyl)-ethyl]-6-[3-(4-Cyanophenyl)propionylamido]-imidazo[4,5-b]pyridin wird in 20 ml 0.5N Salzsäure 2 Stunden lang auf 100°C erhitzt. Nach dem Erkalten wird mit Ammoniak alkalisch gestellt und mit Es-

sigester extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen und das Lösungsmittel abdestilliert.

Ausbeute: 0.42 g (84 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Essigester/Ethanol/Ammoniak

= 90:10:1)

d. 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-(chinolin-8-sul-fonylamino)-imidazo[4.5-b]pyridin

Hergestellt analog Beispiel 79c aus 0.40 g (1.4 mMol) 6-Amino-3-methyl-2-[2-(4-cyanophenyl)-ethyl]-imidazo[4,5-b]pyridin mit 0.39 g (1.6 mMol) Chinolin-8-sulfonsäurechlorid.

Ausbeute: 0.60 g (90 % der Theorie),

e. 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-imidazo[4,5-b]pyridin

Hergestellt analog Beispiel 82e aus 0.60 g (1.3 mMol)

2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-(chinolin-8-sulfo-nylamino)-imidazo[4,5-b]pyridin mit 0.33 g (1.5 mMol) Bromessigsäureethylester.

Ausbeute: 0.70 g (98 % der Theorie),

R_f-Wert: 0.80 (Kieselgel; Essigester/Ethanol/Ammoniak
= 90:10:1)

f. 2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbo-nylmethyl)-chinolin-8-sulfonylaminol-imidazo[4.5-b]pyridin

Hergestellt analog Beispiel 1e aus 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-imidazo[4,5-b]pyridin und ethanolischer Salzsäure,

Ethanol und Ammoniumcarbonat.

Ausbeute: 91 % der Theorie,

 $C_{29}H_{29}N_{7}O_{4}S$ (571.66)

R_f-Wert: 0.22 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

```
Massenspektrum (SKA): (M+H)^+ = 572
(M+H+Na)^{++} = 297.8
```

2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(hydroxycarbonyl-methyl)-chinolin-8-sulfonylaminol-imidazo[4.5-b]pyridin

Hergestellt analog Beispiel 3 aus 2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-chinolin-8-sul-fonylamino]-imidazo[4,5-b]pyridin und Natronlauge.

Ausbeute: 77 % der Theorie,

C27H25N7O4S (543.59)

R₂-Wert: 0.16 (Kieselgel; Essigester/Ethanol/Ammoniak
= 50:45:5)

Massenspektrum (EKA): (M+H)+ = 544

(M+H+Na)++ = 283,8

Beispiel 94

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(ethoxycar-bonylmethyl)-chinolin-8-sulfonylaminol-indol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-indol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 55 % der Theorie, $C_{30}H_{30}N_{6}O_{4}S \ (570.68)$ $R_{t}\text{-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 4:1)}$ $Massenspektrum \ (EKA): \ (M+H)^{+} = 571$ $(M+2H)^{++} = 286$ $(M+H+Na)^{++} = 297$

```
1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycar-
bonylmethyl)-chinolin-8-sulfonylaminol-indol
Hergestellt analog Beispiel 3 aus 1-Methyl-2-[N-(4-amidinophe-
nyl) -aminomethyl] -5- [N-(ethoxycarbonylmethyl) -chinolin-8-sul-
fonylamino] - indol und Natronlauge.
Ausbeute: 97 % der Theorie,
C_{28}H_{26}N_{6}O_{4}S (542.62)
Massenspektrum (EKA): (M+H)+
                                   = 543
                         (M+Na)^+
                                    = 565
                         (M+2H)^{++} = 272
                         -(M+H+Na)^{++} = 283
                         (M+2Na)^{++} = 294
<sup>1</sup>H-NMR (d<sub>c</sub>-DMSO):
\delta = 3.61 \text{ (s,3H)}; 4.50 \text{ (d,2H)}; 4.67 \text{ (s,2H)}; 6.20 \text{ (s,1H)};
6.30 (d,1H); 6.70 (d,2H); 7.01 (d,1H); 7.29 (t,1H);
7.38 (s,1H); 7.40-7.65 (m,3H); 7.77 (dd,1H); 8.03 (d,1H);
8.20 (d,1H); 8.42 (breites s,2H); 8.55 (dd,1H); 9.20 (dd,1H)
ppm
```

Beispiel 96

1-Methyl-2-[(4-amidinophenyl)-thiomethyl]-5-[N-(ethoxycarbo-nylmethyl)-chinolin-8-sulfonylaminol-benzimidazol

Hergestellt analog Beispiel le aus 1-Methyl-2-[(4-cyanophe-nyl)-thiomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

1-Methyl-2-[(4-amidinophenyl)-thiomethyl]-5-[N-(hydroxycarbo-nylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 3 aus 1-Methyl-2-[(4-amidinophe-nyl)-thiomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Natronlauge.

Ausbeute: 76 % der Theorie,

C27H24N6O4S (560,66)

R_f-Wert: 0.21 (Kieselgel; Essigester/Ethanol/Ammoniak

= 50:45:5)

Massenspektrum (EKA): (M+H)+ = 561

 $(M+Na)^+ = 583$

Beispiel 98

1-Methyl-2-[(4-amidinophenyl)-thiomethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[(4-cyanophenyl)-thiomethyl]-5-(chinolin-8-sulfonylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 70 % der Theorie,

C25H22N6O2S2 (502,62)

R_f-Wert: 0.29 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

Massenspektrum (EKA): (M+H)+ = 503

Beispiel 99

- 2-[(4-Amidinophenyl)-acetyl]-7-(chinolin-8-sulfonylamino)-1.2.3.4-tetrahydro-isochinolin-hydrochlorid
- a. 2-[(4-Cyanophenyl)-acetyl]-7-nitro-1,2,3,4-tetrahydro-iso-
- 4.0 g (22.5 mMol) 7-Nitro-1,2,3,4-tetrahydro-isochinolin werden in 100 ml Chlorbenzol gelöst, mit 4.24 g (25 mMol) 4-Cyanophenylessigsäurechlorid versetzt und 2 Stunden unter

Rückfluß erhitzt. Nach Abkühlung auf Raumtemperatur wird mit 1 l Petrolether verdünnt und filtriert. Der Rückstand wird in Essigester gelöst und an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1 und 25:1) eluiert wird. Die gewünschten Fraktionen werden vereinigt und eingedampft.

Ausbeute: 3.80 g (53 % der Theorie),

R_f-Wert: 0.50 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

b. 2-[(4-Cyanophenyl)-acetyl]-7-amino-1,2,3,4-tetrahydro-iso-chinolin

Hergestellt analog Beispiel 1b aus 2-[(4-Cyanophenyl)-acetyl]-7-nitro-1,2,3,4-tetrahydro-isochinolin und Wasserstoff/-Palladium.

Ausbeute: 27 % der Theorie,

Schmelzpunkt: 186-188°C

c. 2-[(4-Cyanophenyl)-acetyl]-7-(chinolin-8-sulfonylamino)-

1.2.3.4-tetrahydro-isochinolin

Hergestellt analog Beispiel 1c aus 2-[(4-Cyanophenyl)-acetyl]-7-amino-1,2,3,4-tetrahydro-isochinolin und Chinolin-8-sulfonylchlorid.

Ausbeute: 80 % der Theorie,

 R_f -Wert: 0.55 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

d. 2-[(4-Amidinophenyl)-acetyl]-7-(chinolin-8-sulfonylamino)1.2.3.4-tetrahydro-isochinolin-hydrochlorid

Hergestellt analog Beispiel le aus 2-[(4-Cyanophenyl)-acetyl]-7-(chinolin-8-sulfonylamino)-1,2,3,4-tetrahydro-isochinolin und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 35 % der Theorie,

Schmelzpunkt: sintert ab 173°C

 $C_{27}H_{25}N_5O_3S$ (499.50)

Massenspektrum: $(M+H)^+ = 500$

.

PCT/EP99/05371

- 91 -

Beispiel 100

WO 00/08014

2-[(4-Amidinophenyl)-acetyl]-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylaminol-1.2.3.4-tetrahydro-isochinolin
Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)-acetyl]-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-1,2,3,4-tetrahydro-isochinolin und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 35 % der Theorie,

 $C_{31}H_{31}N_{5}O_{5}S$ (585.68)

R_f-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Massenspektrum (EKA): $(M+H)^+ = 586$ $(M+2H)^{++} = 293.6$ $(M+H+Na)^{++} = 304.6$

Beispiel 101

2-[(4-Amidinophenyl)-acetyl]-7-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]-1.2.3.4-tetrahydro-isochinolin
Hergestellt analog Beispiel 3 aus 2-[(4-Amidinophenyl)-acetyl]-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-1,2,3,4-tetrahydro-isochinolin und Natronlauge.

Ausbeute: 49 % der Theorie,

 $C_{29}H_{27}N_{5}O_{5}S$ (557.6)

R.-Wert: 0.17 (Kieselgel; Dichlormethan/Ethanol = 3:2)

Massenspektrum (EKA): $(M+H)^+$ = 558 $(M+Na)^+$ = 580 $(M+2H)^{++}$ = 279.7 $(M+H+Na)^{++}$ = 290.7 $(2M+H+Na)^{++}$ = 569

2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-chinolin-hydrochlorid

a. 7-Amino-2.4-dimethyl-chinolin

54.8 g (0.36 Mol) 3-Acetylamino-anilin, 38.0 g (0.38 Mol) Acetylaceton und 32.5 ml Eisessig werden 2 Stunden bei 80°C gerührt. Nach Abkühlung wird das Reaktionsgemisch auf Eiswasser gegossen und mit Natriumhydrogencarbonatlösung neutralisiert. Nach dreifacher Extraktion mit Essigester werden die vereinigten organischen Phasen mit Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingedampft. Das so erhaltene Rohprodukt wird mit 200 ml konz. Schwefelsäure 1 Stunde auf 105°C erhitzt. Nach Abkühlung wird das Reaktionsgemisch auf Eiswasser gegossen und mit Ammoniaklösung neutralisiert. Nach dreifacher Extraktion mit Essigester werden die vereinigten organischen Phasen mit Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingedampft. Das Rohprodukt wird an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1, 25:1, 19:1 und 9:1) eluiert wird. Die gewünschten Fraktionen werden vereinigt, eingedampft und mit Petrolether verrieben.

Ausbeute: 24.15 g (39 % der Theorie),

 $C_{11}H_{12}N_2$ (172.20)

Massenspektrum: $M^+ = 172$

b. 7-Phthalimido-2.4-dimethyl-chinolin

6.90 g (40 mMol) 7-Amino-2,4-dimethyl-chinolin, 5.95 g (42 mMol) Phthalsäureanhydrid und 100 ml Eisessig werden 2 Stunden zum Rückfluß erhitzt. Nach Abkühlung wird das Reaktionsgemisch auf Eiswasser gegossen, das ausgefallene Produkt abgesaugt, mit Wasser gewaschen und getrocknet.

Ausbeute: 8.85 g (73 % der Theorie),

Schmelzpunkt: 203-205°C

c. 7-Phthalimido-2.4-dimethyl-chinolin-1-oxid

4.25 g (14 mMol) 7-Phthalimido-2,4-dimethyl-chinolin werden in 500 ml siedendem Methylenchlorid gelöst. Nach Abkühlung auf Raumtemperatur werden 4.80 g 3-Chlorperbenzoesäure (ca. 50%ig) zugegeben. Nach 3 Stunden bei Raumtemperatur wird die Reaktionslösung je 1 x mit Natriumhydrogencarbonatlösung und Kochsalzlösung gewaschen, über Natriumsulfat getrocknet, eingedampft und aus Ethanol umkristallisiert.

Ausbeute: 2.45 g (55 % der Theorie),

Schmelzpunkt: >250°C

d. 2-Chlormethyl-4-methyl-phthalimido-chinolin

4.30 g (13.5 mMol) 7-Phthalimido-2,4-dimethyl-chinolin-1-oxid und 4.20 g (22 mMol) p-Toluolsulfochlorid werden in 300 ml Methylenchlorid 8 Stunden unter Rückfluß erhitzt. Nach Abkühlung auf Raumtemperatur wird die Reaktionslösung je 1 x mit Natriumhydrogencarbonatlösung und Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1) eluiert wird. Die gewünschten Fraktionen werden vereinigt, eingedampft und mit Ether verrieben.

Ausbeute: 3.15 g (70 % der Theorie),

Schmelzpunkt: 212-215°C

e. 2-[(4-Cyanophenyl)-oxymethyll-4-methyl-phthalimido-chinolin 895 mg (6.2 mMol) Kalium-tert.butylat werden in 50 ml Dimethylsulfoxid gelöst, mit 740 mg (6.2 mMol) 4-Hydroxy-benzonitril versetzt und 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 2.0 g 2-Chlormethyl-4-methyl-7-phthalimido-chinolin wird das Reaktionsgemisch weitere 12 Stunden bei Raumtemperatur gerührt. Nach Zusatz von Eiswasser wird vom gebildeten Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet. Ausbeute: 2.20 g (89 % der Theorie),

Schmelzpunkt: 231-233°C

f. 2-[(4-Cyanophenyl)-oxymethyll-4-methyl-7-amino-chinolin 2.15 g (5.1 mMol) 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-phthalimido-chinolin werden in 75 ml Toluol/Methanol (2:1) gelöst, mit 7.5 ml 40%iger wäßriger Methylaminlösung versetzt und 2 Stunden bei Raumtemperatur gerührt. Anschließend wird die Lösung im Vakuum eingedampft, der Rückstand mit 2N Essigsäure verrührt, abgesaugt und getrocknet. Das Rohprodukt wird an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1) eluiert wird. Die gewünschten Fraktionen werden vereinigt, eingedampft und mit Ether verrieben.

Ausbeute: 1.05 g (71 % der Theorie),

Schmelzpunkt: 192-194°C

g. 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-(chinolin-8-sulfonylamino)-chinolin

Hergestellt analog Beispiel 1c aus 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-amino-chinolin und Chinolin-8-sulfonylchlorid.

Ausbeute: 67 % der Theorie,

Schmelzpunkt: 240-242°C

h. 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbo-nylmethyl)-chinolin-8-sulfonylamino)-chinolin

Hergestellt analog Beispiel 1d aus 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-(chinolin-8-sulfonylamino)-chinolin und Bromessigsäureethylester.

Ausbeute: 92 % der Theorie, Schmelzpunkt: sintert ab 85°C

i. 2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbo-nylmethyl)-chinolin-8-sulfonylamino)-chinolin-hydrochlorid
Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino)-chinolin und Salzsäure/Ammoniumcarbonat in Ethanol.
Ausbeute: 49 % der Theorie,

Schmelzpunkt: sintert ab 78°C

- 95 -

 $C_{31}H_{29}N_{5}O_{5}S$ (583.62) Massenspektrum: $(M+H)^{+}$ = 584 $(M+H+Na)^{+}$ = 303.7 $(2M+H)^{+}$ = 1167

Beispiel 103

2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(hydroxycarbo-nylmethyl)-chinolin-8-sulfonylaminol-chinolin

Hergestellt analog Beispiel 3 aus 2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-chinolin und Natronlauge.

Ausbeute: 19 % der Theorie,

C29H25N5O5S (555.6)

Massenspektrum (EKA): (M+H)+ = 556

(M+Na)+ = 578

(M+2Na)++ = 300

(M-H+2Na)+ = 600

Beispiel 104

2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-(chinolin-8-sulfonylamino)-chinolin

Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)-oxymethyl]-4-methyl-7-(chinolin-8-sulfonylamino)-chinolin und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 22 % der Theorie,

C27H23N5O3S (497.55)

R_f-Wert: 0.23 (Kieselgel; Dichlormethan/Ethanol = 4:1)

Schmelzpunkt: sintert ab 195°C

Massenspektrum (EKA): (M+H) + = 498

2-[N-(4-Amidinophenyl)-aminomethyl]-6-(chinolin-8-sulfonylami-no)-imidazo[1,2-alpyridin-hydrochlorid

a. 2-Chlormethyl-5-nitro-imidazo[1,2-alpyridin

12.6 g (0.1 Mol) 1,3-Dichloraceton werden auf 105°C erhitzt und portionsweise mit 8.25 g (60 mMol) 2-Amino-5-nitro-pyridin versetzt. Nach 10 Minuten bei 105°C wird das Reaktionsgemisch abgekühlt, mit Methylenchlorid/Ethanol (8:2) versetzt und an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (25:1, 19:1 und 9:1) eluiert wird. Die gewünschten Fraktionen werden vereinigt, eingedampft und mit Ether verrieben.

Ausbeute: 4.35 g (34 % der Theorie),

Schmelzpunkt: 124-127°C

b. 2-[N-(4-Cyanophenyl)-aminomethyl]-6-nitro-imidazo[1,2-a]pyridin

3.0 g (25.4 mMol) 4-Aminobenzonitril werden bei 120°C geschmolzen und portionsweise mit 1.30 g (6.3 mMol) 2-Chlormethyl-5-nitro-imidazol[1,2-a]pyridin versetzt. Nach 30 Minuten bei 120°C wird das Reaktionsgemisch abgekühlt, mit Methylenchlorid/Ethanol (8:2) versetzt und an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1, 25:1 und 15:1) eluiert wird. Die gewünschten Fraktionen werden vereinigt und eingedampft. Ausbeute: 0.71 g (39 % der Theorie),

R_f-Wert: 0.50 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

c. 2-[N-(4-Cyanophenyl)-aminomethyl]-6-amino-imidazo[1,2-a]-pyridin

Hergestellt analog Beispiel 1b aus 2-[N-(4-Cyanophenyl)-aminomethyl]-6-nitro-imidazo[1,2-a]pyridin und Wasserstoff/Palladium.

Ausbeute: 75 % der Theorie,

 R_{ℓ} -Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

d. 2-[N-(4-Cyanophenyl)-aminomethyl]-6-(chinolin-8-sulfonyl-amino)-imidazo[1.2-a]pyridin

Hergestellt analog Beispiel 1c aus 2-[N-(4-Cyanophenyl)-aminomethyl]-6-amino-imidazo[1,2-a]pyridin und Chinolin-8-sulfonyl-chlorid.

Ausbeute: 35 % der Theorie,

 R_f -Wert: 0.78 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + Eisessig)

e. 2-[N-(4-Amidinophenyl)-aminomethyl]-6-(chinolin-8-sulfonyl-amino)-imidazo[1,2-a]pyridin-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-6-(chinolin-8-sulfonylamino)-imidazo[1,2-a]pyridin und Salzsäure/Ammoniumcarbonat.

Ausbeute: 51 % der Theorie,

 R_t -Wert: 0.15 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + Eisessig)

 $C_{24}H_{27}N_{7}O_{2}S$ (471.48)

Massenspektrum: $(M+H)^+ = 472$

Beispiel 106

2-[N-(4-Amidinophenyl)-aminomethyl]-6-[N-(ethoxycarbonylme-thyl)-chinolin-8-sulfonylaminol-imidazo[1,2-a]pyridin

Hergestellt analog Beispiel le aus 2-[N-(4-Cyanophenyl)-aminomethyl]-6-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-imidazo[1,2-a]pyridin und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 11 % der Theorie,

 $C_{28}H_{27}N_{7}O_{4}S$ (557.65)

Massenspektrum (EKA): $(M+H)^{+} = 558$ $(M+Na)^{+} = 580$

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycar-bonylmethyl)-chinolin-8-sulfonylaminol-benzofuran-hydrochlorid

a 4-Acetylamino-2-hydroxy-acetophenon

16.5 g (0.10 Mol) 3-Methoxy-acetanilid werden in 40 ml Dichlorethan gelöst und nach Zugabe von 19.6 g (0.25 Mol) Acetylchlorid portionsweise bei 5°C mit 42.0 g (0.32 Mol) Aluminiumchlorid versetzt. Nach 2 Stunden bei Raumtemperatur wird das Reaktionsgemisch noch 2 Stunden unter Rückfluß erhitzt. Nach Abkühlung auf Raumtemperatur wird Eis zugegeben, der gebildete Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet.

Ausbeute: 14.8 g (77 % der Theorie),

 R_r -Wert: 0.40 (Kieselgel; Petrolether/Essigester = 1:1)

b. 4-Amino-2-hvdroxy-acetophenon

10.0 g (52 mMol) 4-Acetylamino-2-hydroxy-acetophenon und 100 ml 18%ige Salzsäure werden 15 Minuten zum Rückfluß erhitzt. Nach Abkühlung auf Raumtemperatur wird der gebildete Niederschlag abgesaugt, mit Eiswasser gewaschen und getrocknet. Das Filtrat wird eingedampft, in Wasser aufgenommen und mit konz. Ammoniak versetzt. Der gebildete Niederschlag wird abgesaugt, mit Eiswasser gewaschen, getrocknet und mit dem ersten Niederschlag vereinigt.

Ausbeute: 7.6 g (97 % der Theorie),

R_f-Wert: 0.65 (Kieselgel; Petrolether/Essigester = 1:1)

c. 4-Phthalimido-2-hydroxy-acetophenon

Hergestellt analog Beispiel 102b aus 4-Amino-2-hydroxy-acetophenon und Phthalsäureanhydrid.

Ausbeute: 75 % der Theorie,

R_f-Wert: 0.55 (Kieselgel; Petrolether/Essigester = 1:1)

d. 4-[(2-Carboxy)-benzoylaminol-2-carboxymethyloxy-acetophenon 18.9 g (67 mMol) 4-Phthalimido-2-hydroxy-acetophenon, 16.5 g (99 mMol) Bromessigsäureethylester und 40.0 g (0.3 Mol) Kaliumcarbonat werden in 100 ml Aceton aufgenommen und 6 Stunden unter Rückfluß erhitzt. Nach Abkühlung auf Raumtemperatur wird der gebildete Niederschlag abgesaugt und getrocknet. Das Filtrat wird eingedampft, in Wasser aufgenommen und 3 x mit Essigester extrahiert. Die vereinigten organischen Extrakte werden mit Wasser gewaschen und getrocknet. Die vereinigten Rohprodukte werden in 50 ml Ethanol gelöst, mit 50 ml 3 N Natronlauge versetzt und 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 100 ml Wasser und Ansäuern mit 6 N Salzsäure wird der gebildete Niederschlag abgesaugt, mit kaltem Wasser gewaschen und getrocknet.

Ausbeute: 19.4 g (81 % der Theorie),

R.-Wert: 0.30 (Kieselgel; Methylenchlorid/Ethanol = 7:3)

e. 3-Methyl-6-phthalimido-benzofuran

Eine Mischung von 36.0 g (0.1 Mol) 4-[(2-Carboxy)-benzoylami-no]-2-carboxymethyloxy-acetophenon, 30 g (0.37 Mol) Natrium-acetat, 770 ml Acetanhydrid und 153 ml Eisessig werden 2.5 Stunden zum Rückfluß erhitzt. Das Reaktionsgemisch wird eingedampft, der Rückstand wird mit Wasser verrieben, abgesaugt, mit Wasser gewaschen und getrocknet.

Ausbeute: 21.6 g (77 % der Theorie),

R_f-Wert: 0.85 (Kieselgel; Methylenchlorid + 2,5 % Ethanol)

f. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-phthalimidobenzofuran

5.68 g (20 mMol) 3-Methyl-6-phthalimido-benzofuran werden in 150 ml Methylenchlorid gelöst, mit 5.0 g Paraformaldehyd und 20 g Thionylchlorid versetzt und 60 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wird eingedampft, 2 mal in Methylenchlorid gelöst und erneut zur Trockene eingedampft. Das Rohprodukt wird in 150 ml Toluol gelöst, mit 5.1 g (43 mMol) 4-Aminobenzonitril und 20 g Aluminiumoxid versetzt und 6 Stunden unter Rückfluß erhitzt. Das Reaktionsgemisch wird einge-

dampft, der Rückstand in Methylenchlorid aufgenommen und an Kieselgel (Methylenchlorid) chromatographiert. Die gewünschten Fraktionen werden vereinigt, eingedampft und mit Petrolether/-Methylenchlorid verrieben.

Ausbeute: 6.0 g (68 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Methylenchlorid)

g. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-amino-benzofuran

Hergestellt analog Beispiel 102f aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-phthalimido-benzofuran und Methylamin.

Ausbeute: 65 % der Theorie,

R.-Wert: 0.25 (Kieselgel; Methylenchlorid)

h. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-(chinolin-8-sulfonylamino)-benzofuran

Hergestellt analog Beispiel 1c aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-amino-benzofuran und Chinolin-8-sulfonyl-chlorid.

Ausbeute: 97 % der Theorie,

 R_f -Wert: 0.65 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

i. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycar-bonylmethyl)-chinolin-8-sulfonylamino)-benzofuran

Hergestellt analog Beispiel 1d aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-(chinolin-8-sulfonylamino-benzofuran und Bromessigsäureethylester.

Ausbeute: 99 % der Theorie,

 R_f -Wert: 0.70 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

j. 2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxy-carbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran-hydro-chlorid

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und Salzsäure/Ammoniumcarbonat.

Ausbeute: 32 % der Theorie,

2-[N-(4-Amidinophenyl) -aminomethyl] -3-methyl-6-[N-(hydroxycar-bonylmethyl) -chinolin-8-sulfonylaminol-benzofuran

Hergestellt analog Beispiel 3 aus 2-[N-(4-Amidinophenyl) -ami-nomethyl] -3-methyl-6-[N-(ethoxycarbonylmethyl) -chinolin-8-sulfonylamino] -benzofuran und Natronlauge.

Ausbeute: 94 % der Theorie,

C28H25N5O5S (543,61)

R_f-Wert: 0.12 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eis-essig)

Massenspektrum (EKA): (M+H) + = 544

(M+2H) ++ = 272.7

(M+H+Na) ++ = 283.6

(M+2Na) ++ = 294.7

Beispiel 109

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-(chinolin-8-sulfonylamino)-benzofuran

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-(chinolin-8-sulfonylamino)-benzofuran und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 17 % der Theorie,

C26H23N5O3S (485,58)

R2-Wert: 0.17 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eisessig)

Massenspektrum (EKA): (M+H)+ = 486

2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbonyl-methyl)-benzoylaminol-chinolin

Hergestellt analog Beispiel 1e aus 2-[(4-Cyanophenyl)-oxyme-thyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-benzoylamino]-chinolin und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 64 % der Theorie,

 $C_{29}H_{28}N_4O_4$ (496.6)

Massenspektrum (EKA): $(M+H)^+ = 497$ $(M+H+Na)^{++} = 260$

Beispiel 111

2-[N-(4-Amidinophenyl)-aminomethyl]-4-methyl-7-[N-(ethoxycar-bonylmethyl)-chinolin-8-sulfonylaminol-chinolin

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-chinolin und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 63 % der Theorie,

 $C_{31}H_{30}N_{6}O_{4}S$ (582,69)

 R_f -Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eis-

essig)

Massenspektrum (EKA): $(M+H)^+ = 583$ $(M+H+Na)^{++} = 303$

Beispiel 112

2-[N-(4-Amidinophenyl)-aminomethyl]-4-methyl-7-[N-(hydroxycar-bonylmethyl)-chinolin-8-sulfonylaminol-chinolin

Hergestellt analog Beispiel 3 aus 2-[N-(4-Amidinophenyl)-aminomethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylaminol-chinolin und Natronlauge.

- 103 -

Ausbeute: 49 % der Theorie,

 $C_{29}H_{26}N_{6}O_{4}S$ (554,64)

Massenspektrum (EKA): $(M+H)^+$ = 555

 $(M+Na)^+ = 577$

 $(M+2Na)^{++} = 300$

 $(2M+3Na)^{3+} = 392.6$

Beispiel 113

2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(hydroxycarbo-nylmethyl)-benzoylaminol-chinolin

Hergestellt analog Beispiel 3 aus 2-[(4-Amidinophenyl)-oxymethyl]-4-methyl-7-[N-(ethoxycarbonylmethyl)-benzoylamino]-chinolin und Natronlauge.

Ausbeute: 26 % der Theorie,

 $C_{27}H_{24}N_4O_4$ (468.49)

Massenspektrum (EKA): $(M+H)^+ = 469$

Beispiel 114

2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonyl-methyl)-chinolin-8-sulfonylaminol-benzofuran

Hergestellt analog Beispiel le aus 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 84 % der Theorie,

 $C_{31}H_{30}N_4O_5S$ (570.68)

R_f-Wert: 0.24 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eis-

essiq)

Massenspektrum (EKA): $(M+H)^+$ = 571

 $(M+H+Na)^{++} = 297$

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycar-bonylmethyl)-benzolsulfonylamino]-benzofuran

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-benzolsulfonyl-amino]-benzofuran und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 36 % der Theorie,

 $C_{27}H_{28}N_4O_5S$ (520.62)

 R_t -Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eis-

essig)

Massenspektrum (EKA): $(M+H)^+ = 521$

Beispiel 116

2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylaminol-benzofuran

Hergestellt analog Beispiel 3 aus 2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und Natronlauge.

Ausbeute: 87 % der Theorie,

 $C_{29}H_{26}N_4O_5S$ (542,63)

 R_{t} -Wert: 0.13 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eis-

essig)

Massenspektrum (EKA): $(M+H)^+ = 543$

 $(M+Na)^{+} = 565$

Beispiel 117

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(hydroxycar-bonylmethyl)-benzolsulfonylaminol-benzofuran

Hergestellt analog Beispiel 3 aus 2-[N-(4-Amidinophenyl)-ami-

nomethyl]-3-methyl-6-[N-(ethoxycarbonylmethyl)-benzolsulfonyl-amino]-benzofuran und Natronlauge.

WO 00/08014 PCT/EP99/05371

- 105 -

Ausbeute: 79 % der Theorie,

 $C_{25}H_{24}N_{4}O_{5}S$ (492,57)

R,-Wert: 0.12 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eis-

essig)

Massenspektrum (EKA): $(M+H)^+ = 493$

 $(M+Na)^+ = 515$

 $(M+2Na)^{++} = 269$

Beispiel 118

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(ethoxy-carbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylami-nol-benzofuran

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 81 % der Theorie,

 $C_{32}H_{32}N_6O_6S$ (628,72)

Massenspektrum (EKA): $(M+H)^+$ = 629

 $(M+H+Na)^{++} = 326$

Beispiel 119

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(1H-te-trazol-5-yl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran

a. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(1H-te-trazol-5-yl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran

0.53 g (1.0 mMol) 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-carboxymethyl-chinolin-8-sulfonylamino)-benzofuran werden in 20 ml Tetrahydrofuran gelöst, mit 0.2 g (1.2 mMol) Carbonyldi-imidazol und 0.1 g (1.0 mMol) 5-Amino-tetrazol versetzt und 5 Stunden unter Rückfluß erhitzt. Das Reaktionsgemisch wird eingedampft, der Rückstand in Ethanol gelöst und an Kieselgel

(Methylenchlorid + 2,5 % Ethanol) chromatographiert. Die gewünschten Fraktionen werden vereinigt und eingedampft.

Ausbeute: 0.11 g (19 % der Theorie),

 $C_{29}H_{23}N_{9}O_{4}S$ (593.64)

R,-Wert: 0.18 (Kieselgel; Methylenchlorid/Ethanol = 9:1)

Massenspektrum: $(M-H)^- = 592$

b. 2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(1H-tetrazol-5-yl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(1H-tetrazol-5-yl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und Salzsäure/Ammoniumcarbonat.

Ausbeute: 97 % der Theorie,

 $C_{29}H_{26}N_{10}O_4S$ (610.67)

Massenspektrum (EKA): $(M+H)^+ = 611$ $(M+Na)^+ = 633$ $(M+H+Na)^{++} = 317$

Beispiel 120

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(1H-tetra-zol-5-yl)-methyl)-chinolin-8-sulfonylaminol-benzofuran

a. 5-Brommethyl-1-(2-cyanoethyl)-tetrazol

1.50 g (7.85 mMol) Bromessigsäure-(2-cyanoethyl)-amid werden in 50 ml Methylenchlorid gelöst und mit 508 mg (7.85 mMol) Natriumazid versetzt. Bei 0°C wird eine Lösung von 2.20 g (7.85 mMol) Trifluoressigsäureanhydrid in 5 ml Methylenchlorid zugetropft. Nach 22 Stunden bei Raumtemperatur wird gesättigte Natriumhydrogencarbonatlösung zugegeben und 3 x mit Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und eingedampft. Das Rohprodukt wird an Kieselgel chromatographiert, wobei anfangs mit Methylenchlorid, später mit Methylenchlorid/Ethanol (50:1) eluiert

wird. Die gewünschten Fraktionen werden vereinigt und eingedampft.

Ausbeute: 505 mg (30 % der Theorie),

 $C_5H_6BrN_3$ (216.06)

Massenspektrum (EKA): $M^+ = 215/217$ (Br)

b. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-[1-(2-cy-anoethyl)-tetrazol-5-yl)-methyl)-chinolin-8-sulfonylamino]-benzofuran

Hergestellt analog Beispiel 1d aus 2-{N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-(chinolin-8-sulfonylamino)-benzofuran und 5-Brommethyl-1-(2-cyanoethyl)-tetrazol.

Ausbeute: 98 % der Theorie,

R.-Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

c. 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-(1H-tetrazol-5-yl-methyl)-chinolin-8-sulfonylaminol-benzofuran

0.5 g (0.83 mMol) 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-[N-[1-(2-cyanoethyl)-tetrazol-5-yl-methyl]-chinolin-8-sul-fonylamino]-benzofuran werden in 50 ml Methylenchlorid gelöst, mit 0.28 g (2.5 mMol) Kalium-tert.butylat versetzt und 90 Minuten bei Raumtemperatur gerührt. Das Reaktionsgemisch wird eingedampft, der Rückstand in Wasser gelöst und mit Eisessig angesäuert. Der gebildete Niederschlag wird abfiltriert, mit Wasser gewaschen und getrocknet. Das Rohprodukt wird an Kieselgel (Methylenchlorid + 1-2 % Ethanol) chromatographiert. Die gewünschten Fraktionen werden vereinigt und eingedampft. Ausbeute: 110 mg (24 % der Theorie),

R_f-Wert: 0.43 (Kieselgel; Dichlormethan/Ethanol = 9:1)

d. 2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(1H-te-trazol-5-yl)-methyl)-chinolin-8-sulfonylamino]-benzofuran-hydrochlorid

Hergestellt analog Beispiel 1e aus 2-[N-(4-Cyanophenyl)-aminomethyl]-3-methyl-6-<math>[N-(1-tetrazol-5-yl-methyl)-chinolin-8-sulfonylamino]-benzofuran und Salzsäure/Ammoniumcarbonat.

Ausbeute: 97 % der Theorie,

```
C_{28}H_{25}N_{9}O_{3}S (567.66)

Massenspektrum (EKA): (M+H)<sup>+</sup> = 568

(M+Na)<sup>+</sup> = 590

(M+H+Na)<sup>++</sup> = 295.6

(M+2Na)<sup>++</sup> = 306.7
```

Beispiel 121

2-[2-(4-Amidinophenyl)-ethyl]-3-methyl-6-[N-(N'-(ethoxycarbo-nylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran

Hergestellt analog Beispiel 1e aus 2-[2-(4-Cyanophenyl)-ethyl]-3-methyl-6-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 61 % der Theorie,

 $C_{33}H_{33}N_{5}O_{6}S$ (627,73)

R₂-Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eisessig)

Massenspektrum (EKA): $(M+H)^+ = 628$ $(M+2H)^{++} = 314.7$ $(M+H+Na)^{++} = 325.7$

Beispiel 122

2-[N-(4-Amidinophenyl)-aminomethyl]-3-methyl-6-[N-(N'-(hydro-xycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylami-nol-benzofuran

Hergestellt analog Beispiel 3 aus 2-[N-(4-Amidinophenyl)-ami-nomethyl]-3-methyl-6-[N-(N'-(ethoxycarbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonylamino]-benzofuran und Natron-lauge.

Ausbeute: 69 % der Theorie,

C30H28N6O6S (600.67)

Massenspektrum (EKA): $(M+H)^+ = 601$ $(M+Na)^+ = 623$ $(M+2H)^{++} = 301$ - 109 -

 $(M+H+Na)^{++} = 312$ $(M+2Na)^{++} = 323$

Beispiel 123

2-[2-(4-Amidinophenyl)-ethyl]-4-methyl-7-[N-(1H-tetrazol-5-yl-methyl)-chinolin-8-sulfonylaminol-chinolin

Hergestellt analog Beispiel 1e aus 2-[2-(4-Cyanophenyl)-ethyl]-4-methyl-7-[N-(1H-tetrazol-5-yl-methyl)-chinolin-8-sulfonylamino]-chinolin und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 31 % der Theorie,

C30H27N9O2S (577.67)

R_f-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 4:1 + Eisessig)

Massenspektrum (EKA): (M+H)+ = 578

(M+Na)+ = 600

(M-H)- = 576

Beispiel 124

1-Methyl-2-[N-(4-(N-n-hexyloxycarbonylamidino)phenyl)-amino-methyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Chlorameisensäure-n-hexylester.

Ausbeute: 61 % der Theorie, $C_{36}H_{41}N_{7}O_{6}S \ (699.84)$ $R_{t}\text{-Wert: 0.60 (Kieselgel; Dichlormethan/Methanol = 9:1)}$ $Massenspektrum \ (EKA): \ (M+H)^{+} = 700$ $(M+Na)^{+} = 722$ $(M+H+Na)^{++} = 361.8$

WO 00/08014 PCT/EP99/05371

- 110 -

Beispiel 125

1-Methyl-2-[N-(4-(N-n-octyloxycarbonylamidino)phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Chlorameisensäure-n-octylester.

Ausbeute: 65 % der Theorie,

 $C_{38}H_{45}N_{7}O_{6}S$ (727.89)

R_f-Wert: 0.58 (Kieselgel; Dichlormethan/Methanol = 9:1)

Massenspektrum (EKA): $(M+H)^+ = 728$ $(M+Na)^+ = 750$ $(M+H+Na)^{++} = 3.75.8$

Beispiel 126

1-Methyl-2-[N-(4-(N-n-butyloxycarbonylamidino)phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Chlorameisensäure-n-butylester.

Ausbeute: 64 % der Theorie,

 $C_{34}H_{37}N_{7}O_{6}S$ (671.78)

R_f-Wert: 0.57 (Kieselgel; Dichlormethan/Methanol = 9:1)

Massenspektrum (EKA): $(M+H)^+ = 672$ $(M+Na)^+ = 694$ $(M+H+Na)^{++} = 347.8$

Beispiel 127

1-Methyl-2-[N-(4-amidino-2-methoxy-phenyl)-aminomethyl]5-(N-methyl-benzolsulfonylamino)-benzimidazol
Hergestellt analog Beispiel le aus 1-Methyl-2-[N-(4-cyano-2-methoxy-phenyl)-aminomethyl]-5-(N-methyl-benzolsulfonylami-no)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 57 % der Theorie,

 $C_{24}H_{26}N_{6}O_{3}S$ (478.6)

Massenspektrum (EKA): $(M+H)^+ = 479$ $(M+Na)^+ = 501$

Beispiel 128

1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-(N-methyl-phe-nylacetylamino)-benzimidazol

Hergestellt analog Beispiel 1e aus 1-Methyl-2-[N-(4-cyanophenyl)-aminomethyl]-5-(N-methyl-phenylacetylamino)-benzimidazol und ethanolischer Salzsäure, Ethanol und Ammoniumcarbonat.

Ausbeute: 54 % der Theorie,

 $C_{25}H_{26}N_{6}O$ (426.53)

R.-Wert: 0.27 (Kieselgel; Dichlormethan/Methanol = 5:1)

Massenspektrum (EKA): $(M+H)^+ = 427$ $(M+2H)^{++} = 214$

Beispiel 129

1-Methyl-2-[N-(4-(N-benzoylamidino)-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(ethoxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und Benzoylchlorid.

Ausbeute: 54% der Theorie,

C36H33N7O5S (675.77)

Massenspektrum: $(M+H)^+ = 676$

WO 00/08014 PCT/EP99/05371

- 112 -

 $(M+Na)^{+} = 698$

Beispiel 130

1-Methyl-2-[N-(4-(N-benzoylamidino)-phenyl)-aminomethyl]-5-[N-(n-propyloxycarbonylmethyl)-chinolin-8-sulfonylamino]-

benzimidazol

Hergestellt analog Beispiel 31 aus 1-Methyl-2-[N-(4-amidino-phenyl)-aminomethyl]-5-[N-(n-propyloxycarbonylmethyl)-chino-lin-8-sulfonylamino]-benzimidazol und Benzoylchlorid.

Ausbeute: 52% der Theorie,

 $C_{37}H_{35}N_{7}O_{5}S$ (689.77)

Massenspektrum: $(M+H)^+ = 690$ $(M+Na)^+ = 712$

Beispiel 131

Trockenampulle mit 75 mg Wirkstoff pro 10 ml

Zusammensetzung:

Wirkstoff 75,0 mg
Mannitol 50,0 mg
Wasser für Injektionszwecke ad 10,0 ml

Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet. Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 132

Trockenampulle mit 35 mg Wirkstoff pro 2 ml

Zusammensetzung:

Wirkstoff

35,0 mg

WO 00/08014 PCT/EP99/05371

- 113 ~

Mannitol

100,0 mg

Wasser für Injektionszwecke ad 2,0 ml

Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet.

Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

Beispiel 133

Tablette mit 50 mg Wirkstoff

Zusammensetzung:

(1)	Wirkstoff	50,0	mg
(2)	Milchzucker	98,0	mg
(3)	Maisstärke	50,0	πg
(4)	Polyvinylpyrrolidon	15,0	mg
(5)	Magnesiumstearat	2.0	шg
		215,0	πg

Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugemischt. Aus dieser Mischung werden Tabletten gepreBt, biplan mit beidseitiger Facette und einseitiger Teilkerbe. Durchmesser der Tabletten: 9 mm.

Beispiel 134

Tablette mit 350 mg Wirkstoff

Zusammensetzung:

(1) Wirkstoff

350,0 mg

WO 00/08014

- 114 -

(2)	Milchzucker	136,0	mg
(3)	Maisstärke	80,0	mg
(4)	Polyvinylpyrrolidon	30,0	mg
(5)	Magnesiumstearat	4.0	ng
	·	600.0	ma

Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugemischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe.

Durchmesser der Tabletten: 12 mm.

Beispiel 135

Kapseln mit 50 mg Wirkstoff

Zusammensetzung:

(1)	Wirkstoff	50,0	mg
(2)	Maisstärke getrocknet	58,0	mg
(3)	Milchzucker pulverisiert	50,0	mg
(4)	Magnesiumstearat	2.0	mg
		160,0	mg

Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 3 abgefüllt.

- 115 -

Beispiel 136

Kapseln mit 350 mg Wirkstoff

Zusammensetzung:

(1)	Wirkstoff	350,0	mg
(2)	Maisstärke getrocknet	46,0	mg
(3)	Milchzucker pulverisiert	30,0	mg
(4)	Magnesiumstearat	4.0	mg
		430,0	ma

Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 0 abgefüllt.

Beispiel 137

Suppositorien mit 100 mg Wirkstoff

1 Zäpfchen enthält:

Wirkstoff	100,0 mg
Polyethylenglykol (M.G. 1500)	600,0 mg
Polyethylenglykol (M.G. 6000)	460,0 mg
Polyethylensorbitanmonostearat	<u>840.0 mg</u>
	2 000,0 mg

Herstellung:

Das Polyethylenglykol wird zusammen mit Polyethylensorbitanmonostearat geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz in der Schmelze homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

Patentansprüche

1. Disubstituierte bicyclische Heterocyclen der allgemeinen Formel

$$R_a$$
 - Het - B - Ar - E , (I)

in der

B eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Ethylengruppe, wobei eine Methylengruppen der Ethylengruppe, die entweder mit dem Rest Het oder Ar verknüpft ist, durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl-, Carbonyl- oder -NR₁-Gruppe ersetzt sein kann, wobei

R₁ ein Wasserstoffatom oder eine C₁₋₆-Alkylgruppe darstellt,

oder B auch eine geradkettige C_{3-5} -Alkylengruppe, in der eine Methylengruppe, die weder mit dem Rest Het noch mit dem Rest Ar verknüpft ist, durch eine -NR₁-Gruppe ersetzt ist, in der R₁ wie vorstehend erwähnt definiert ist,

E eine Cyano- oder RbNH-C(=NH)-Gruppe, in der

 $R_{\rm b}$ ein Wasserstoffatom, eine Hydroxygruppe, eine C_{1-3} -Alkylgruppe oder einen in vivo abspaltbaren Rest darstellt,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, C_{1-3} -Alkyl- oder C_{1-3} -Alkoxygruppe substituierte Phenylen- oder Naphthylengruppe,

eine gegebenenfalls im Kohlenstoffgerüst durch eine C_{1-3} -Al-kylgruppe substituierte Thienylen-, Thiazolylen-, Pyridinylen-, Pyrimidinylen-, Pyrazinylen- oder Pyridazinylengruppe,

Het einen bicyclischen Heterocyclus der Formel

$$X$$
 , in der

X ein Stickstoffatom oder eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Methingruppe und

Y eine gegebenenfalls durch eine C_{1-5} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

X ein Stickstoffatom und

Y eine durch eine C_{1-5} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte Iminogruppe, wobei der Alkyl- und Cycloalkyl-substituent jeweils durch eine Carboxygruppe oder eine invivo in eine Carboxygruppe überführbare Gruppe substituiert ist, wobei in einem der vorstehend erwähnten Heterocyclen zusätzlich eine nicht angulare Methingruppe durch ein Stickstoffatom ersetzt sein kann,

oder Het eine Gruppe der Formeln

$$N$$
 , wobei

R₁ wie vorstehend erwähnt definiert ist,

und Ra eine Phenyl-C1-3-alkoxygruppe,

eine Aminogruppe,

eine C_{1-3} -Alkylaminogruppe, die am Stickstoffatom zusätzlich durch eine Phenyl- C_{1-3} -alkylgruppe substituiert ist,

eine R₃-CO-R₄N- oder R₃-SO₂-R₄N-Gruppe, in denen

 R_3 eine C_{1-5} -Alkyl-, Phenyl- C_{1-3} -alkyl-, C_{3-7} -Cycloalkyl-, Phenyl-, Naphthyl-, Pyridyl-, Chinolyl-, Isochinolyl-, Tetrahydrochinolyl- oder Tetrahydroisochinolylgruppe und

 R_4 ein Wasserstoffatom, C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkyl-gruppe, die jeweils im Alkylteil durch eine in vivo in eine Carboxygruppe überführbare Gruppe, durch eine Carboxy- oder Tetrazolylgruppe, durch eine Aminocarbonyl- oder C_{1-3} -Alkyl-aminocarbonylgruppe, die jeweils am Stickstoffatom zusätzlich durch eine in vivo in eine Carboxy- C_{1-3} -alkylgruppe überführbare Gruppe oder durch eine Carboxygruppe substituiert sind, eine endständig durch eine $Di-(C_{1-3}$ -Alkyl)-aminogruppe substituierte C_{2-5} -Alkylgruppe oder eine C_{3-7} -Cycloalkylgruppe darstellen,

bedeuten,

deren Tautomere, deren Streoisomere und deren Salze.

2. Disubstituierte bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in denen

B eine gegebenenfalls durch eine oder zwei Methylgruppen substituierte Ethylengruppe, wobei eine Methylengruppen der Ethylengruppe, die entweder mit dem Rest Het oder Ar verknüpft ist, durch ein Sauerstoff- oder Schwefelatom, durch eine Carbonyl- oder -NR1-Gruppe ersetzt sein kann, wobei

R1 ein Wasserstoffatom oder eine Methylgruppe darstellt,

oder B auch eine n-Propylengruppe, in der die mittlere Methylengruppe durch eine $-NR_1$ -Gruppe ersetzt ist, in der R_1 wie vorstehend erwähnt definiert ist,

E eine Cyano- oder RbNH-C(=NH)-Gruppe, in der

 $R_{\rm b}$ ein Wasserstoffatom, eine C_{1-8} -Alkyloxy-carbonyl-, C_{5-7} -Cycloalkyloxy-carbonyl-, Benzoyl-, Nicotinoyl- oder Isonicotinoylgruppe darstellt,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Methyl- oder Methoxygruppe substituierte Phenylengruppe, oder eine gegebenenfalls im Kohlenstoffgerüst durch eine Methylgruppe substituierte Thienylengruppe,

Het einen bicyclischen Heterocyclus der Formel

$$\chi$$
 , in der

X ein Stickstoffatom oder eine gegebenenfalls durch eine Methylgruppe substituierte Methingruppe und

Y eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{3-7} -Cycloalkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

X ein Stickstoffatom und

Y eine durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, wobei der Alkylteil zusätzlich durch eine Carboxyoder C_{1-3} -Alkyloxy-carbonylgruppe substituiert ist,

oder Het eine Gruppe der Formeln

$$\begin{array}{c} R_1 \\ N \\ N \\ N \\ N \\ N \\ R_2 \\ \end{array}$$

- 121 -

$$R_1$$

R₁ wie vorstehend erwähnt definiert ist und

R₂ eine durch eine Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituiert C_{1-3} -Alkylgruppe darstellt,

und Ra eine Benzyloxygruppe,

eine Aminogruppe,

eine C_{1-3} -Alkylaminogruppe, die am Stickstoffatom zusätzlich durch eine Benzylgruppe substituiert ist,

eine R_3 -CO- R_4 N- oder R_3 -SO $_2$ - R_4 N-Gruppe, in denen

R, eine C₁₋₄-Alkyl-, Benzyl-, C₅₋₇-Cycloalkyl-, Phenyl-, Pyridyl-, Chinolyl-, Isochinolyl-, Tetrahydrochinolyl- oder Tetrahydroisochinolylgruppe und

 R_4 ein Wasserstoffatom, eine C_{1-3} -Alkylgruppe, die durch eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Tetrazolyl-, Aminocarbonyloder C_{1-3} -Alkylaminocarbonylgruppe substituiert ist, wobei die Aminocarbonyl- und C_{1-3} -Alkylaminocarbonylgruppe jeweils am Stickstoffatom zusätzlich durch eine eine Carboxy- C_{1-3} -alkyl- oder C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkylgruppe substituiert sind, oder eine endständig durch eine Di- $(C_{1-3}-alkyl)$ -aminogruppe substituierte $C_{2-3}-Alkylgruppe$ darstellen,

bedeuten, deren Isomere und deren Salze.

3. Disubstituierte bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in denen

B eine gegebenenfalls durch eine oder zwei Methylgruppen substituierte Ethylengruppe, wobei eine Methylengruppen der Ethylengruppe, die entweder mit dem Rest Het oder Ar verknüpft ist, durch ein Sauerstoff- oder Schwefelatom, durch eine Carbonyl- oder -NR₁-Gruppe ersetzt sein kann, wobei

 R_1 ein Wasserstoffatom oder eine Methylgruppe darstellt,

oder B auch eine n-Propylengruppe, in der die mittlere Methylengruppe durch eine $-NR_1$ -Gruppe ersetzt ist, in der R_1 wie vorstehend erwähnt definiert ist,

E eine RbNH-C(=NH)-Gruppe, in der

 $R_{\rm b}$ ein Wasserstoffatom, eine C_{1-8} -Alkyloxy-carbonyl-, C_{5-7} -Cycloalkyloxy-carbonyl- oder Benzoylgruppe darstellt,

Ar eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Trifluormethyl-, Methyl- oder Methoxygruppe substituierte Phenylengruppe, oder eine gegebenenfalls im Kohlenstoffgerüst durch eine Methylgruppe substituierte Thienylengruppe,

Het einen bicyclischen Heterocyclus der Formel

X ein Stickstoffatom oder eine gegebenenfalls durch eine Methylgruppe substituierte Methingruppe und

Y eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{3-7} -Cyc-loalkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

X ein Stickstoffatom und

Y eine durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, wobei der Alkylteil zusätzlich durch eine Carboxyoder C_{1-3} -Alkyloxy-carbonylgruppe substituiert ist,

und Ra eine Benzyloxygruppe,

eine Aminogruppe,

eine C_{1-3} -Alkylaminogruppe, die am Stickstoffatom zusätzlich durch eine Benzylgruppe substituiert ist,

eine R₃-CO-R₄N- oder R₃-SO₂-R₄N-Gruppe, in denen

 R_3 eine C_{1-4} -Alkyl-, Benzyl-, C_{5-7} -Cycloalkyl-, Phenyl-, Pyridyl-, Chinolyl-, Isochinolyl-, Tetrahydrochinolyl- oder Tetrahydroisochinolylgruppe und

 R_4 ein Wasserstoffatom, eine C_{1-3} -Alkylgruppe, die durch eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Tetrazolyl-, Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe substituiert ist, wobei die Aminocarbonyl- und C_{1-3} -Alkylaminocarbonylgruppe jeweils am Stickstoffatom zusätzlich durch eine eine Carboxy- C_{1-3} -alkyl- oder C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkylgruppe substituiert sind, oder eine endständig durch eine Di- $(C_{1-3}$ -alkyl)-aminogruppe substituierte C_{2-3} -Alkylgruppe darstellen,

bedeuten, deren Isomere und deren Salze.

4. Disubstituierte bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 3, in denen

 R_a in 5-Stellung eine R_3 -CO- R_4 N- oder R_3 -SO₂- R_4 N-Gruppe, in denen R_3 und R_4 wie vorstehend erwähnt definiert sind,

deren Isomere und deren Salze.

5. Disubstituierte bicyclische Heterocyclen der allgemeinen Formel Ia, in der

$$R_a$$

$$N$$

$$B - Ar - E$$

$$R_1$$

$$R_1$$

in der

X eine Methingruppe oder ein Stickstoffatom,

B eine Ethlengruppe, wobei die mit Ar verknüpte Methylengruppe durch ein Sauerstoffatom oder eine Iminogruppe ersetzt sein kann,

Ar eine 1,4-Phenylengruppe,

E eine Amidinogruppe,

R₁ eine Methylgruppe und

Ra eine R3-CO-R4N- oder R3-SO2-R4N-Gruppe, wobei

 R_4 eine durch eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Carboxymethylaminocarbonyl- oder C_{1-3} -Alkoxy-carbonylmethyl-aminocarbonylgruppe substituierte Methylgruppe und

R, eine Isochinolin-8-yl-Gruppe darstellen,

deren Isomere und deren Salze.

6. Disubstituierte bicyclische Heterocyclen der allgemeinen Formel Ia gemäß Anspruch 5, in denen R_a eine R_1 -SO₂- R_4 N-Gruppe darstellt,

deren Isomere und deren Salze.

- 7. Folgende disubstituierte bicyclische Heterocyclen der allgemeinen Formel Ia gemäß Anspruch 5:
- (a) 1-Methyl-2-[(4-amidinophenyl)-oxymethyl]-5-[N-(hydroxycar-bonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol,
- (b) 1-Methyl-2-[2-(4-amidinophenyl)-ethyl]-5-[N-(N'-(hydroxy-carbonylmethyl)-aminocarbonylmethyl)-chinolin-8-sulfonyl-amino]-benzimidazol,
- (c) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]-benzimidazol und
- (d) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-5-[N-(hydroxycarbonylmethyl)-chinolin-8-sulfonylamino]-indol

sowie deren Salze.

- 8. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 7.
- 9. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 7, in denen E eine R_bNH-C(=NH)-Gruppe darstellt, oder ein Salz gemäß Anspruch 8 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 10. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 7, bis 7, in denen E eine R_bNH-C(=NH)-Gruppe darstellt, oder ein Salz gemäß Ansprüch 8 zur Herstellung eines Arzneimittels mit einer die Thrombinzeit verlängernder Wirkung, einer thrombinhemmender Wirkung und einer Hemmwirkung auf verwandte Serinproteasen.

- ll. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 9, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 7, in denen E eine $R_bNH-C(=NH)$ -Gruppe darstellt, oder ein Salz gemäß Anspruch 8 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 12. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß
- a. zur Herstellung einer Verbindung der allgemeinen Formel I, in der E eine $R_bNH-C(=NH)$ -Gruppe bedeutet, in der R_b ein Wasserstoffatom, eine Hydroxy- oder C_{1-3} -Alkylgruppe darstellt, eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

$$R_a$$
 - Het - B - Ar - C(=NH) - Z_1 , (II)

in der

B, Ar, Het und R_a wie in den Ansprüchen 1 bis 7 erwähnt definiert sind und

 \mathbf{Z}_1 eine Alkoxy-, Aralkoxy-, Alkylthio- oder Aralkylthiogruppe, mit einem Amin der allgemeinen Formel

$$H_2N - R_b'$$
 , (III)

in der

 R_b ein Wasserstoffatom, eine Hydroxy- oder C_{1-3} -Alkylgruppe darstellt, umgesetzt wird oder

b. zur Herstellung einer Verbindung der allgemeinen Formel I, in der die R_a -Gruppe und E mit der Maßgabe wie in den Ansprüchen 1 bis 7 erwähnt definiert sind, daß die R_a -Gruppe eine Carboxygruppe enthält und E wie in den Ansprüchen 1 bis 7 definiert ist oder die R_a -Gruppe wie in den Ansprüchen 1 bis 7 erwähnt definiert ist und E eine NH_2 -C(=NH)-Gruppe darstellt

oder die R_a -Gruppe eine Carboxygruppe enthält und E eine NH_2 -C(=NH)-Gruppe darstellt, eine Verbindung der allgemeinen Formel

$$R_a'$$
 - Het - B - Ar - E' , (IV)

in der

A, B, Ar und Het wie in den Ansprüchen 1 bis 7 definiert sind

die R_a' -Gruppe und E' die für die R_a -Gruppe und E in den Ansprüchen 1 bis 7 erwähnten Bedeutungen mit der Maßgabe besitzen, daß die R_a' -Gruppe eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxylgruppe überführbare Gruppe enthält und E wie in den Ansprüchen 1 bis 7 definiert ist oder E' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine NH_2 -C(=NH)-Gruppe überführbare Gruppe darstellt und die R_a' -Gruppe die für die R_a -Gruppe in den Ansprüchen 1 bis 7 erwähnten Bedeutungen aufweist oder die R_a' -Gruppe eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxylgruppe überführbare Gruppe enthält und E' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine NH_2 -C(=NH)-Gruppe überführbare Gruppe darstellt,

mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Verbindung der allgemeinen Formel I übergefürt wird, in der die R_a -Gruppe und E mit der Maßgabe wie in den Ansprüchen 1 bis 7 erwähnt definiert sind, daß die R_a -Gruppe eine Carboxygruppe enthält und E wie in den Ansprüchen 1 bis 7 definiert ist oder die R_a -Gruppe die in den Ansprüchen 1 bis 7 erwähnten Bedeutungen aufweist und E eine NH_2 -C(=NH)-Gruppe darstellt oder die R_a -Gruppe eine Carboxygruppe enthält und E eine NH_2 -C(=NH)-Gruppe darstellt, übergeführt wird oder

c. zur Herstellung einer Verbindung der allgemeinen Formel I, in der die R_a -Gruppe eine der bei der Definition der R_a -Gruppe

in den Ansprüchen 1 bis 7 erwähnten Estergruppen enthält, eine Verbindung der allgemeinen Formel

$$R_a$$
" - Het - B - Ar - E , (V)

in der

B, E, Ar und Het wie in den Ansprüchen 1 bis 7 definiert sind und

 R_a "-Gruppe die für die R_a -Gruppe in den Ansprüchen 1 bis 7 erwähnten Bedeutungen mit der Maßgabe aufweist, daß die R_a "-Gruppe eine Carboxylgruppe oder eine mittels eines Alkohols in eine entsprechende Estergruppe überführbare Gruppe enthält, mit einem Alkohol der allgemeinen Formel

$$HO - R_8$$
 , (VI)

in der

 R_8 der Alkylteil einer der in den Ansprüchen 1 bis 7 erwähnten in-vivo abspaltbaren Reste mit Ausnahme der R_5 -CO-O- (R_5CR_7) -Gruppe für eine Carboxylgruppe darstellt, oder mit deren Formamidacetalen

oder mit einer Verbindung der allgemeinen Formel

$$Z_2 - R_9$$
 , (VII)

in der

 R_9 der Alkylteil einer der in den Ansprüchen 1 bis 7 erwähnten in-vivo abspaltbaren Reste mit Ausnahme der R_5 -CO-O- (R_5CR_7) -Gruppe für eine Carboxylgruppe und Z_2 eine Austrittsgruppe darstellen, umgesetzt wird oder

d. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_{b} einen in vivo abspaltbaren Rest darstellt, eine Verbindung der allgemeinen Formel

$$R_a$$
 - Het - B - Ar - C(=NH) - NH₂ , (VIII)

in der

 R_a , Het, B und Ar wie in den Ansprüchen 1 bis 7 definiert sind, mit einer Verbindung der allgemeinen Formel

$$Z_3 - R_{10}$$
 , (IX)

in der

 R_{10} einen in vivo abspaltbaren Rest und Z_3 eine nukleofuge Austrittsgruppe bedeuten, umgesetzt wird oder

e. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine Aminogruppe und E eine Cyanogruppe darstellen, eine Nitroverbindung der allgemeinen Formel

$$NO_2$$
 - Het - B - Ar - CN ,(X)

in der

- B, Ar und Het wie in den Ansprüchen 1 bis 7 erwähnt definiert sind, reduziert wird oder
- f. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine Aminogruppe und E eine Cyanogruppe darstellen, ein Schutzrest für eine Aminogruppe von einer Verbindung der allgemeinen Formel

$$R_a$$
"' - Het - B - Ar - CN , (XI)

in der

- B, Ar und Het wie in den Ansprüchen 1 bis 7 erwähnt definiert sind und
- R_a "' eine durch einen Schutzrest geschützete Aminogruppe bedeutet, abgespalten wird oder
- g. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine R_3 -CO- R_4 N- oder R_3 -SO₂- R_4 N-Gruppe und E eine Cyanogruppe darstellen, eine Verbindung der allgemeinen Formel

- 130 -

$$R_ANH - Het - B - Ar - CN$$
 , (XII)

in der

 R_4 , Het, B und Ar wie in den Ansprüchen 1 bis 7 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$R_3 - X - Z_4$$
 , (XIII)

in der

R, wie in den Ansprüchen 1 bis 7 erwähnt definiert ist,
X eine Carbonyl- oder Sulfonylgruppe und
Z, eine nukleofuge Austrittsgruppe oder auch, falls X eine Carbonylgruppe darstellt, zusammen mit einem Wasserstoffatom des benachbarten Stickstoffatoms eine weitere Kohlenstoff-Stickstoffbindung bedeuten, umgesetzt wird oder

h. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_a eine R_3 -CO- R_4 N- oder R_3 -SO₂- R_4 N-Gruppe und E eine Cyanogruppe darstellen, wobei R_4 mit Ausnahme des Wasserstoffatoms wie in den Ansprüchen 1 bis 7 erwähnt definiert ist, eine Verbindung der allgemeinen Formel

$$R_3 - X - NH - Het - B - Ar - CN$$
 , (XIV)

in der

 R_3 , Het, B, Ar und X wie in den Ansprüchen 1 bis 7 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$R_4^1 - Z_5$$
 , (XV)

in der

 R_4 ' mit Ausnahme des Wasserstoffatoms die für R_4 in den Ansprüchen 1 bis 7 erwähnten Bedeutungen besitzt und Z_5 eine nukleofuge Austrittsgruppe bedeutet, umgesetzt wird oder

i. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R, eine C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkylgruppe, die jeweils im Alkylteil durch eine in vivo in eine Carboxygruppe

überführbare Gruppe, durch eine Tetrazolylgruppe, durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Stickstoffatom zusätzlich durch eine durch eine in vivo in eine Carboxy- C_{1-3} -alkylgruppe überführbare Gruppe substituiert sind und E eine Cyanogruppe darstellen, eine Verbindung der allgemeinen Formel

$$R_3 - X - NR_4' - Het - B - Ar - CN$$
 , (XVI)

in der

 R_3 , Het, B, Ar und X wie in den Ansprüchen 1 bis 7 erwähnt definiert sind und

 R_4 ' eine C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkylgruppe, die jeweils im Alkylteil durch eine in vivo in eine Carboxygruppe überführbare Gruppe, durch eine Tetrazolylgruppe, durch eine Aminocarbonyl- oder C_{1-3} -Alkylaminocarbonylgruppe, die jeweils am Stickstoffatom zusätzlich durch eine durch eine in vivo in eine Carboxy- C_{1-3} -alkylgruppe überführbare Gruppe substituiert sind, oder deren reaktionsfähigen Derivaten mit einer Verbindung der allgemeinen Formel

$$R_{11} - H$$
 , (XVII)

in der

 R_4 ' mit Ausnahme des Wasserstoffatoms die für R_4 in den Ansprüchen 1 bis 7 erwähnten Bedeutungen besitzt und R_{11} ein der bei der Definition der Restes R_4 in den Ansprüchen 1 bis 7 erwähnten Substituenten der C_{1-5} -Alkyl- oder Phenyl- C_{1-3} -alkylgruppe darstellt, der über eine Carbonylgruppe mit der Rest R_{11} verbunden ist, umgesetzt wird oder

j. zur Herstellung einer Benzimidazolyl-, Benzthiazolyl- oder Benzoxazolylverbindung der allgemeinen Formel I, in der B eine Ethylengruppe darstellt, eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

$$R_a$$
 , (XVIII)

in der

R_a und Y wie in den Ansprüchen 1 bis 7 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$HO-CO - B'- Ar - E$$
 , (IXX)

in der

Ar und E wie in den Ansprüchen 1 bis 7 erwähnt definiert sind und

B' eine gegebenenfalls durch eine oder zwei C_{1-3} -Alkylgruppen substituierte Ethylengruppe bedeutet, umgesetzt wird oder

k. zur Herstellung einer Verbindung der allgemeinen Formel I, die eine der in den Ansprüchen 1 bis 7 erwähnten Tetrahydrochinolin- oder -isochinolinreste enthält, eine Verbindung der allgemeinen Formel I, die eine der in den Ansprüchen 1 bis 7 erwähnten Chinolin- oder -isochinolinreste enthält, hydriert wird und

erforderlichenfalls anschließend ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutz für gegebenenfalls vorhandene reaktive Gruppen abgespalten wird und/oder

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere in ihre physiologisch verträglichen Salze übergeführt wird.

a. classification of subject matter IPC 7 C07D401/12 A61K A61K31/33 C07D235/14 C07D235/12 C07D235/16 C07D215/38 C070417/12 C07D471/041 C07D215/40 C07D405/12 C07D471/04 C07D405/14 C07D401/14 C07D307/81 C07D235/28 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * WO 97 21437 A (BERLEX LABORATORIES, INC.) 1,2,9,10 Α 19 June 1997 (1997-06-19) page 1, line 1 - line 9; claim 1 1,2,9,10 EP 0 540 051 A (DAIICHI PHARMACEUTICAL CO., LTD.) 5 May 1993 (1993-05-05) page 3; claim 1 1,2,9,10 WO 97 30971 A (THE DU PONT MERCK Α PHARMACEUTICAL COMPANY) 28 August 1997 (1997-08-28) page 1; claim 1 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken stone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 23/11/1999 11 November 1999 **Authorized officer** Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Van Bijlen, H

1

A. CLASSIF IPC 7	RCATION OF SUBJECT MATTER //(C070471/04,235:00,221:00),(C070	0471/04,235:00,221:00)	
According to	International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do	cumentation searched (classification system followed by classificati	on symbols)	
Documentati	on searched other than minimum documentation to the extent that s	uch documents are included in the fields s	parched
Electronic da	ata base consulted during the international search (name of data ba	se and, where practical, search terms used	()
			•
C. DOCUME	NTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
	<u> </u>		
			•
1			
		•	·
			<u> </u>
Funt	ner documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special cat	tegories of cited documents :	"T" later document published after the inte or priority date and not in conflict with	
	ent defining the general state of the art which is not ered to be of particular relevance	cited to understand the principle or th invention	
"E" earlier d	locument but published on or after the international ate	"X" document of particular relevance; the cannot be considered novel or cannot	
	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step when the do	cument is taken alone
citation	n or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or me	ventive step when the
other n	neans	ments, such combination being obvio in the art.	
	int published prior to the international filing date but an the priority date claimed	"&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
1	l November 1999		
Name and n	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 Nt. – 2280 HV Rijswijk Tel (231, 70) 240, 240, Te. 21,651 eeg pl		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Van Bijlen, H	

1

INTERNATIONAL SEARCH REPORT

PC./EP 99/05371

Patent document cited in search repor	t	Publication date		Patent family member(s)	Publication date
WO 9721437	A	19-06-1997	US	5849759 A	15-12-1998
	• •		AU	700894 B	14-01-1999
			AU	1395697 A	03-07-1997
			CN	1209062 A	24-02-1999
			CZ	9801776 A	16-09-1998
			ÉP	0865281 A	23-09-1998
			NO	982606 A	10-08-1998
•			PL	327169 A	23-11-1998
			SK	74698 A	02-12-1998
EP 540051		05-05-1993	AT	136293 T	15-04-1996
	• •		AU	666137 B	01-02-1996
			AU	2747092 A	06-05-1993
			- CA	2081836 A	01-05-1993
			CN	1072677 A	02-06-1993
			CN	1168885 A	31-12-1997
			CN	1168886 A	31-12-1997
			CZ	284381 B	11-11-1998
			ĎĒ	69209615 D	09-05-1996
			DE	69209615 T	09-01-1997
			DK	540051 T	06-05-1996
			ES	2088073 T	01-08-1996
			FI	924932 A	01-05-1993
			GR	3019832 T	31-08-1996
			HK	1002999 A	30-09-1998
			HR	921147 B	30-04-1999
			HR	921147 A	31-10-1995
			HÜ	65890 A	28-07-1994
			ΪĹ	103564 A	06-12-1998
			ĴΡ	10291931 A	04-11-1998
			JP	2879718 B	05-04-1999
			JP	5208946 A	20-08-1993
			ΜX	9206295 A	01-08-1993
			NO	302948 B	11-05-1998
			NZ	244936 A	26-05-1995
			PL	170312 B	29-11-1996
			US	5962695 A	05-10-1999
			US	5576343 A	19-11-1996
			US	5620991 A	15-04-1997
			US	5866577 A	02-02-1999
			ZA	9208276 A	06-05-1993
WO 9730971	 А	28-08-1997	AU	2056197 A	10-09-1997
		· · · · · · · · · · · · · · · · · ·	CA	2244851 A	28-08-1997
			EP	0892780 A	27-01-1999
			์ บร	5942544 A	24-08-1999

a. klassi IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D401/12 A61K31/33 C07D235/	/16 CO7D235/12	C07D22C/14
III /	C07D405/12 C07D215/40 C07D215/		C07D233/14 C07D471/041
	CO7D235/28 CO7D307/81 CO7D405/		
Nach der in	ternationalen Patentklassifikation (IPK) oder nach der nationalen Kla		0070471704
	RCHIERTE GEBIETE		
Recherchie	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb	ole)	
IPK 7	C07D A61K	•	
Pachambia	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, si		0.00
Technology	ue aper most min minosophuiston genorence verolleriumingen, si	oweit diese miset die lecuelichien	en Gebiete rasien
Während de	er internationalen Recherche konsuttlerte elektronische Datenbank (N	lame der Datenbank und evti, ve	rwendete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Te	ile Betr. Anspruch Nr.
		- Gor ar Oddacht Kondrietscen Te	Gen. Anspider Nr.
	HO 07 01407 4 (DEDLEY LABORATORY		
A	WO 97 21437 A (BERLEX LABORATORIE 19. Juni 1997 (1997-06-19)	:5, INC.)	1,2,9,10
	Seite 1, Zeile 1 - Zeile 9; Anspr	such 1	
	Serie 1, Zerre 1 - Zerre 9, Alispi	ucii 1	
Α	EP 0 540 051 A (DAIICHI PHARMACEL	ITTCAL	1,2,9,10
	CO., LTD.) 5. Mai 1993 (1993-05-0		1,2,3,10
	Seite 3; Anspruch 1	,	

Α	WO 97 30971 A (THE DU PONT MERCK		1,2,9,10
,	PHARMACEUTICAL COMPANY)		
	28. August 1997 (1997-08-28)		
	Seite 1; Anspruch 1		
			
			1
			}
			·
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfar	nille
	Kategorian von angegabenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die	nach dem internationalen Anmeldedatum
"A" Veröffe	ntlichung, die den allgemeinen Stand der Technik definiert,	oder dem Prioritätsdatum ve	röffentlicht worden ist und mit der ondern nur zum Verständnis des der
	icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder inach dem internationalen	Erfindung zugrundellegende	n Prinzips oder der ihr zugrundellegenden
Anmel	dedatum veröffentlicht worden ist	Theorie angegeben ist "X" Veröffentlichung von besonde	erer Bedeutung; die beanspruchte Erfindung
l echoir	ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	antinatariantaria Titalalaria barra I	Veröffentlichung nicht als neu oder auf hend betrachtet werden
andere soll od	an im Recherchenbericht genannten Veröffentlichung belegt werden ber die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonde	erer Bedeutung; die beanspruchte Erfindung
ausge		werden, wenn die Veröffentli	mer i augkeit beruneng betrechtet ichung mit einer oder mehreren anderen
eine 8	enutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veröffentlichungen dieser Ka diese Verbindung für einen F	stegorie in Verbindung gebracht wird und Fachmann nahellegend ist
	ntlichung, die vor dem internationalen. Anmeldedaturn, aber nach eanspruchten Prioritätsdaturn veröffentlicht worden ist	"&" Veröffentlichung, die Mitglied	derselben Patentfamilie ist
Datum des	Abschlusses der internationalen Recherche	Absendedatum des internation	onalen Recherchenberichts
1	1. November 1999	23/11/1999	
Name und F	Postanschrift der Internationalen Recherchenbehörde	Bevoltmächtigter Bedienstete	or
	Europäisches Patentamt, P.B. 5818 Patentlaan 2	Devounacingle Deciensie	91
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni,	W 82.13	
	Fav (+31-70) 240-2016	l Van Biilen.	H

1

a. Klassi IPK 7	A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 //(CO7D471/04,235:00,221:00),(CO7D471/04,235:00,221:00)					
Nach der in	ternationalen Patentidassifikation (IPK) oder nach der nationalen KI	assifikation und der IPK				
	RCHIERTE GEBIETE					
Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)						
Recherchia	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	soweit diese unter die recherchierten Gebiete	a fallen			
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete	Suchbegriffe)			
C ALC WE	SENTLICH ANGESEHENE UNTERLAGEN		<u> </u>			
Kategorie*			T			
Kategore-	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	be der in Betracht kommenden Teile	Betr. Anspruch Nr.			
	,					
			·			
		r				
Weite	ere Veröffentlichungen sind der Fortsetzung von Feld C zu	V Sinha Ashana Calanda - iii.				
L entne	hmen	X Siehe Anhang Patentfamilie				
"A" Veröffen aber nie "E" älteres D Anmeld "L" Veröffen	Kategorien von angegebenen Veröffentlichungen: ttlichung, die den allgemeinen Stand der Technik definiert, cht als besonders bedeutsam anzusehen ist Ookument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist ttlichung, die geeignet ist, einen Prioritätsanspruch zweifefhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	"T" Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht Anmeldung nicht kollidlert, sondern nur Erfindung zugrundellegenden Prinzipa Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeu kann allein aufgrund dieser Veröffentlich	worden ist und mit der zum Verständnis des der oder der ihr zugrundeliegenden tung; die beanspruchte Erfindung hung nicht als neu oder auf			
andere soll ode ausgefi "O" Veröffen eine 8e "P" Veröffen	n im Recherchenbericht genannten Veröffentlichung belegt werden ar die aus einem anderen besonderen Grund angegeben ist (wie ührt) tillchung, die sich auf eine mündliche Offenbarung, enufzung, eine Ausstellung oder andere Maßnahmen bezieht flüchung, die vor dem internationalen Anmeldedatum, aber nach	erfinderischer Tätigkeit beruhend betra: "Y" Veröffentlichung von besonderer Bedeu kann nicht als auf erfinderischer Tätigk werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann "&" Veröffentlichung, die Mitglied derselben	tung; die beanspruchte Erfindung eit beruhend betrachtet einer oder mehreren anderen Verbindung gebracht wird und nahellegend ist			
	anspruchten Prioritätsdatum veröffentlicht worden ist bschlusses der internationalen Recherche	Absendedatum des internationalen Red				
	l. November 1999					
Name und Po	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Van Bijlen, H				

1

					VEP 33/053/1
Im Recherchenbericht geführtes Patentdokum	ent	Datum der Veröffentlichung		tglied(er) der atentfamilie	Datum der Veröffentlichung
WO 9721437	Α	19-06-1997	US	5849759 A	15-12-1998
			AU	700894 B	14-01-1999
			AU	1395697 A	03-07-1997
			CN	1209062 A	
			CZ	9801776 A	
			EP	0865281 A	23-09-1998
			NO Z.	982606 A	
			PL	327169 A	
			SK	74698 A	
EP 540051	Α	05-05-1993	AT	136293 T	15-04-1996
LI 340031		03 03 1333	ÄÜ	666137 B	01-02-1996
			AU	2747092 A	
			CA	2081836 A	
			CN	1072677 A	02-06-1993
			CN	1168885 A	
			CN	1168886 A	
			CZ	284381 B	
			DE	69209615 D	09-05-1996
			DE	69209615 T	09-01-1997
			DK		06-05-1996
			ES	540051 T 2088073 T	01-08-1996
					_
			FI	924932 A	
			GR	3019832 T	31-08-1996
			HK	1002999 A	
			HR	921147 B	30-04-1999
			HR	921147 A	
			HU	65890 A	
			IL	103564 A	
	•		JP	10291931 A	
			JP	2879718 B	
			JP	5208946 A	
			MX	9206295 A	
			NO	302948 B	
			NZ	244936 A	
			PL	170312 B	
	-		US	5962695 A	
			US	5576343 A	
			US	5620991 A	
			US	5866577 A	
			ZA	9208276 A	06-05-1993
WO 9730971	A	28-08-1997	AU	2056197 A	
			CA	2244851 A	
			EP	. 0892780 A	
			US	5942544 A	24-08-1999