Zadanie Zaliczeniowe

Obliczeniowa Teoria Wyboru Społecznego

 $Semestr\ zimowy\ 2014/15$

Rozwiązanie

Celem zadania jest znalezienie algorytmu na znalezienia wartości :

$$contribution(\alpha_i, VBS(A))$$
 (1)

Zgodnie ze wzorem jest rowne:

$$contribution(\alpha_i, VBS(A)) = \phi_i((A, v))$$
 (2)

Przypomnijmy, że zgodnie z definicja z zadania wartość shapleya dla gracza $\alpha_i \in A$ wynosi

$$\phi_i((A, v)) = \frac{1}{n!} \sum \Delta_{\pi}^G(\alpha_i) \tag{3}$$

czyli gdy podstawimy do wzour zamiast v performance otrzymamy:

$$\phi_i((A, v)) = \frac{1}{n!} \sum \Delta_{\pi}^G(\alpha_i) \tag{4}$$

Co można rozpisać również w następujący sposób:

$$\phi_i((A, v)) = \frac{1}{n!} \sum_{\pi \in \Pi^A} (performance(VBS(C_i^{\pi} \cup \{a_i\})) - performance(VBS((C_i^{\pi}))))$$
 (5)

$$\phi_i((A, v)) = \frac{1}{n!} \frac{1}{|X|} \sum_{x \in X} \sum_{\pi \in \Pi^A} (min_{a_i \in C_i^{\pi} \cup \{a_i\}} time(a_i, x) - min_{a_i \in C_i^{\pi}} time(a_i, x))$$
 (6)

Co ten wzór oznacza? Oznacza on, ze aby otrzymać wartość Shapleya dla algorytmu a_i możemy rozpatrywać każde zadanie z osobna. Czyli teraz głównym problemem jest to jak efektywnie obliczyć przyrost efektywności (zbioru algorytmu) z przejściem algorytmu a_i dla każdej permutacji dla danego zadania, czyli jak efektywnie obliczyć ten człon:

$$\sum_{\pi \in \Pi^A} (min_{a_i \in C_i^{\pi} \cup \{a_i\}} time(a_i, x) - min_{a_i \in C_i^{\pi}} time(a_i, x))$$

$$\tag{7}$$

W tym celu (dla danego) zadania uszeregujmy algorytmy według ich wydajności (szybkości dojścia do rozwiązania) np. dla zadania x_3 mamy następującą kolejność:

$$x_3: a_1, a_2, a_3, a_4, a_5, a_6, a_7$$

Zauważmy, ze jeżeli algorytm a_i jest najwolniejszy ze wszystkich to nie wniesie żadnego przyrostu efektywności do jakiegokolwiek podzbioru algorytmu.

Zauważmy, tez ze jeżeli algorytm a_i dochodzi do zbioru w którym już jest szybszy od niego algorytmy to tez nie wniesie żadnej poprawy efektywności.

Jak zatem będziemy obliczać wartość Shapley dla algorytmu a_i dla konkretnego zadania. Prześledźmy to na krok po kroku. Załóżmy, że a_i to a_4 z przykładu wyżej.

Algorytm będzie wnosił przyrost efektywności tylko, gdy koalicja do której dochodzi nie zawiera szybszego algorytmu, a więc składnik wartości Shapleya będzie niezerowy dla:

- 1. wszystkich permutacji w których a_5 jest najszybszy, a tych jest (i to mnożymy razy przyrost efektywności pomiędzy a_4 , a a_5):
- $(3-1)!\binom{2}{2}=2$ dla zbiorów 3-elementowych
- $(2-1)!\binom{2}{1}=2$ dla zbiorów 2-elementowych
- (1 dla zbiorów 1-elementowych
- 2. wszystkich permutacji w których a_6 jest najszybszy, a tych jest (i to mnożymy razy przyrost efektywności pomiędzy a_4 , a a_6):
- $(1-1)!\binom{1}{1}=1$ dla zbiorów 2-elementowych
- (1 dla zbiorów 1-elementowych
- 3. wszystkich permutacji w których a_7 jest najszybszy, a tych jest(i to mnożymy razy przyrost efektywności pomiędzy a_4 , a a_7):
- 1 dla zbiorów 1-elementowych

Gdy zsumujemy te wszystkie iloczyny, wystarczy to podzielić przez n! oraz |X|, aby otrzymać wartość Shapleya dla danego algorytmu.

Rozwiązanie to działa w czasie wielomianowym.