Apprentissage sous contraintes physiques

Molecule Energy prediction

Hanna Bekkare - Maxime Moshfeghi

June 27, 2025

Problématique

Objectif du projet : prédire l'**énergie d'atomisation** d'une molécule à partir de sa structure géométrique 3D.

Contraintes physiques à respecter (invariances) :

• Invariance par translation :

$$E(\{\mathbf{r}_i + \mathbf{t}\}) = E(\{\mathbf{r}_i\})$$
 pour tout $\mathbf{t} \in \mathbb{R}^3$

• Invariance par rotation :

$$E(\lbrace R\mathbf{r}_i \rbrace) = E(\lbrace \mathbf{r}_i \rbrace)$$
 pour toute rotation $R \in SO(3)$

• Invariance par permutation des atomes de même nature :

$$E(\{\mathbf{r}_{\pi(i)}, Z_{\pi(i)}\}) = E(\{\mathbf{r}_i, Z_i\})$$
 pour toute permutation π

Enjeu : construire des *descripteurs moléculaires* qui respectent naturellement ces invariances pour entraı̂ner un modèle de régression fiable. Dynamic of the system is controlled by the equation of motion:

Descripteur : Matrice de Coulomb

Définition de la matrice :

$$M_{ij} = \begin{cases} 0.5Z_i^{2.4} & \text{si } i = j \\ \frac{Z_iZ_j}{R_{ij}} & \text{si } i \neq j \end{cases}$$

Visualisation de la matrice de Coulomb :

Matrice de Coulomb d'une molécule

Descripteur : Scattering

Scattering Harmonique 3D : méthode mathématique inspirée de la théorie des ondelettes pour exploiter les caractéristiques des densités électroniques de la molécule. **Apport des invariance :**

$$\underbrace{\rho_x(u) = \sum_k \gamma_k g(u - r_k)}_{\text{Permutation}} \qquad \underbrace{U[j, l] \rho(u) = \left(\sum_{-l}^{l} |\rho * \psi_{j, l}^m(u)|^2\right)^{1/2}}_{\text{Rotation}} \qquad \underbrace{S\rho[j, l, q] = \int_{\mathbb{R}^3} |U[j, l] \rho(u)|^q du}_{\text{Translation}}$$

Visualisation du scattering :

Analyse du scattering au premier ordre centré de 7 molécules

Results

Regressor	Méthode d'encodage	RMSE Train	RMSE Test
XGBRegressor + SOAP	Confusion matrix with sorted_12	0.110	0.466
Ridge, $alpha = 0.001$	Scattering, $J = L = 3$, (M, N, O)=(160, 112, 80)	0.108	0.108

Table: Comparaison des performances en RMSE des différents modèles testés

Les meilleurs résultats sont obtenus avec les méthodes contraints par la physique.

Annexe

Formule des ondelettes solides

$$\psi_{\ell}^{m}(u) = \frac{1}{\left(\sqrt{2\pi}\right)^{3}} e^{-|u|^{2}/2} |u|^{\ell} Y_{\ell}^{m} \left(\frac{u}{|u|}\right)$$

References

Michael Eickenberg, Georgios Exarchakis, M. H. S. M. and Thiry, L. (2018). Solid harmonic wavelet scattering for predictions of molecule properties.