

# UNIVERSITÀ DEGLI STUDI DI MILANO

## FACOLTÀ DI SCIENZE POLITICHE, ECONOMICHE E SOCIALI

Political communication and populist rhetoric, an analysis of Italian politicians in the digital arena.

By

## RICCARDO RUTA

in partial fulfillment of the requirement for the degree of ... in Political, Economic and Social Sciences

#### Abstract

(the spacing is set to 1.5)

no more than 250 words for the abstract

- a description of the research question/knowledge gap what we know and what we don't know
- how your research has attempted to fill this gap
- a brief description of the methods
- brief results
- key conclusions that put the research into a larger context

# Contents

| 1 | Data | a cleaning                                                 | 1  |
|---|------|------------------------------------------------------------|----|
|   | 1.1  | Import the dataset and check variables                     | 1  |
|   | 1.2  | Adjust date.time format                                    | 1  |
|   |      | 1.2.1 Check the conversion                                 | 2  |
|   | 1.3  | Create the week variable                                   | 2  |
|   |      | 1.3.1 Check the variable                                   | 2  |
|   | 1.4  | Create the month variable                                  | 3  |
|   |      | 1.4.1 Check the number of month                            | 3  |
|   | 1.5  | Count the number of missing values                         | 3  |
|   |      | 1.5.1 Inspect where are the missings                       | 4  |
|   |      | 1.5.2 Remove rows with missing tweets                      | 5  |
|   | 1.6  | Check that the variables make sense                        | 6  |
|   |      | 1.6.1 Adjust the variable genere                           | 6  |
|   |      | 1.6.2 Verify the substitution                              | 7  |
|   | 1.7  | Create a new dataset selecting only necessary informations | 7  |
|   | 1.8  | Create the corpus                                          | 8  |
|   | 1.9  | Create the DFM                                             | 8  |
|   | 1.10 | Trim the data                                              | 9  |
|   | 1.11 | Remove the emoji                                           | 9  |
|   | 1.12 | Take the proportion of the frequencies                     | 11 |
|   |      | 1.12.1 Now the data are ready for the next analysis        | 11 |

| 2 | Pre | limina  | r analysis                                            | 12 |
|---|-----|---------|-------------------------------------------------------|----|
|   | 2.1 | Topfea  | atures frquency                                       | 12 |
|   |     | 2.1.1   | Relative frequency of the top<br>features by Party ID | 13 |
|   | 2.2 | Most    | common hashtag                                        | 15 |
|   |     | 2.2.1   | Most common hashtag by Gender                         | 16 |
|   |     | 2.2.2   | Co-occurrence Plot of hashtags                        | 17 |
|   | 2.3 | Most    | frequently mentioned usernames                        | 19 |
|   |     | 2.3.1   | Most frequently mentioned usernames by gender         | 20 |
|   |     | 2.3.2   | Co-occurrence plot of usernames                       | 21 |
| 3 | Dic | tionary | v analysis                                            | 24 |
|   | 3.1 | Create  | e the dictionary                                      | 24 |
|   | 3.2 | Apply   | dictionary                                            | 26 |
|   | 3.3 | Decad   | ri_Boussalis_Grundl                                   | 27 |
|   |     | 3.3.1   | Level of sparsity                                     | 27 |
|   | 3.4 | Roodu   | nijn_Pauwels_Italian                                  | 30 |
|   |     | 3.4.1   | Level of sparsity                                     | 30 |
|   |     | 3.4.2   | General level of populism in time                     | 32 |
|   |     | 3.4.3   | Most populist party                                   | 32 |
|   |     | 3.4.4   | Most populist politician                              | 33 |
|   | 3.5 | Grund   | ll_Italian_adapted                                    | 35 |
|   |     | 3.5.1   | Level of sparsity                                     | 35 |
|   |     | 3.5.2   | General level of populism in time                     | 37 |

|   |     | 3.5.3        | Most populist party               | 37 |
|---|-----|--------------|-----------------------------------|----|
|   |     | 3.5.4        | Most populist politician          | 38 |
|   | 3.6 | Decad        | ri_Boussalis                      | 40 |
|   |     | 3.6.1        | Level of sparsity                 | 40 |
|   |     | 3.6.2        | General level of populism in time | 42 |
|   |     | 3.6.3        | Most populist party               | 42 |
|   |     | 3.6.4        | Most populist politician          | 43 |
| 4 | Sen | ${f timent}$ | analysis                          | 46 |
|   |     | 4.0.1        | Clean text from dataframe         | 46 |
|   | 4.1 | Create       | e the filtered dataframes         | 47 |
|   | 4.2 | Create       | e nrc objects                     | 48 |
|   | 4.3 | Giorgi       | a Meloni                          | 49 |
|   |     | 4.3.1        | Proportion of the emotion         | 49 |
|   |     | 4.3.2        | Wordcloud of emotions             | 50 |
|   | 4.4 | Giusep       | ppe Conte                         | 51 |
|   |     | 4.4.1        | Proportion of the emotion         | 51 |
|   | 4.5 | Matte        | o Renzi                           | 53 |
|   |     | 4.5.1        | Proportion of the emotion         | 53 |
|   |     | 4.5.2        | Wordcloud of emotions             | 54 |
|   | 4.6 | Matte        | o Salvini                         | 55 |
|   |     | 4.6.1        | Proportion of the emotion         | 55 |
|   |     | 4.6.2        | Wordcloud of emotions             | 56 |

|   | 4.7                    | Enrice | Letta                                                                                                                     | 57 |
|---|------------------------|--------|---------------------------------------------------------------------------------------------------------------------------|----|
|   |                        | 4.7.1  | Proportion of the emotion                                                                                                 | 57 |
|   |                        | 4.7.2  | Wordcloud of emotions                                                                                                     | 58 |
|   | 4.8                    | Silvio | Berlusconi                                                                                                                | 59 |
|   |                        | 4.8.1  | Proportion of the emotion                                                                                                 | 59 |
|   |                        | 4.8.2  | Wordcloud of emotions                                                                                                     | 60 |
|   | 4.9                    | Rober  | to Speranza                                                                                                               | 61 |
|   |                        | 4.9.1  | Proportion of the emotion                                                                                                 | 61 |
|   |                        | 4.9.2  | Wordcloud of emotions                                                                                                     | 62 |
| 5 | $\mathbf{L}\mathbf{D}$ | A Topi | c model analysis                                                                                                          | 63 |
|   | 5.1                    | CREA   | TE THE DTM                                                                                                                | 63 |
|   |                        | 5.1.1  | Remove all the account's mentions                                                                                         | 63 |
|   | 5.2                    | FIND   | THE BEST NUMBER OF TOPICS K                                                                                               | 63 |
|   |                        | 5.2.1  | Search the best number of Topics comparing coherence and exclusivity values                                               | 63 |
|   |                        | 5.2.2  | Plot the values of coherence and exclusivity in order to find                                                             |    |
|   |                        |        | the best $K \dots $ | 64 |
|   | 5.3                    | ANAI   | JISYS OF THE TOPICS                                                                                                       | 65 |
|   |                        | 5.3.1  | Repeat the analysis selecting $k=22$                                                                                      | 65 |
|   |                        | 5.3.2  | The most important terms from the model, for each topic $$ . $$                                                           | 65 |
|   |                        |        |                                                                                                                           |    |
|   |                        | 5.3.3  | Report on the analysis made with FER Puthon package                                                                       | 69 |

## 1 Data cleaning

### 1.1 Import the dataset and check variables

```
# import the data
tw <- read_csv("data/large_files/politicians_final_corrected.csv", show_col_types {
    kable(colnames(tw), col.names = "variables")

    variables
    tw_screen_name
    nome
    tweet_testo
    creato_il
    creato_il_code
    url
    party_id
    genere
    chamber
    status</pre>
```

## 1.2 Adjust date.time format

```
# RUN IN THIS ORDER !!
Sys.setlocale("LC_TIME", "C")
tw$date <- as.Date(strptime(tw$creato_il,"%a %b %d %H:%M:%S %z %Y", tz = "CET"))
tw$date <- na.replace(tw$date, as.Date(tw$creato_il))</pre>
```

#### 1.2.1 Check the conversion

```
check_dates <- tw %>% select(creato_il,date)
kable(head(check_dates), col.names = c("Old date", "New date"))
```

| Old date   | New date   |
|------------|------------|
| 2021-02-13 | 2021-02-13 |
| 2021-02-09 | 2021-02-09 |
| 2021-02-07 | 2021-02-07 |
| 2021-01-21 | 2021-01-21 |
| 2021-01-21 | 2021-01-21 |
| 2021-01-20 | 2021-01-20 |

```
kable(tail(check_dates), col.names = c("Old date", "New date"))
```

| Old date                       | New date   |
|--------------------------------|------------|
| Mon Dec 28 09:51:35 +0000 2020 | 2020-12-28 |
| Tue Jul 20 11:15:44 +0000 2021 | 2021-07-20 |
| Thu Nov 26 13:46:51 +0000 2020 | 2020-11-26 |
| Fri Oct 15 17:28:57 +0000 2021 | 2021-10-15 |
| Wed Jun 03 12:22:31 +0000 2020 | 2020-06-03 |
| Fri Dec 03 21:01:20 +0000 2021 | 2021-12-03 |

### 1.3 Create the week variable

```
tw <- tw %>% mutate(week = cut.Date(date, breaks = "1 week", labels = FALSE))
```

#### 1.3.1 Check the variable

Inspect the first and the last dates and check if the number of weeks is correct

```
max(tw$date)

## [1] "2022-04-18"

min(tw$date)

## [1] "2020-01-01"

difftime(max(tw$date), min(tw$date), units = "weeks")

## Time difference of 119.7143 weeks
```

#### 1.4 Create the month variable

```
tw <- tw %>% mutate(month = cut.Date(date, breaks = "1 month", labels = FALSE))
```

#### 1.4.1 Check the number of month

```
max(tw$month)

## [1] 28

length(seq(from = min(tw$date), to = max(tw$date), by = 'month'))

## [1] 28
```

## 1.5 Count the number of missing values

```
sum(is.na(tw))
## [1] 154672
```

#### 1.5.1 Inspect where are the missings

```
missings <- c(
sum(is.na(tw$tw_screen_name)),
sum(is.na(tw$nome)),
sum(is.na(tw$tweet_testo)),
sum(is.na(tw$creato_il)),
sum(is.na(tw$creato_il_code)),
sum(is.na(tw$url)),
sum(is.na(tw$party id)),
sum(is.na(tw$genere)),
sum(is.na(tw$chamber)),
sum(is.na(tw$status)),
sum(is.na(tw$date)),
sum(is.na(tw$week)),
sum(is.na(tw$month)) )
missing_df <- data.frame(colnames(tw), missings)</pre>
kable(missing_df)
```

| colnames.tw.   | missings |
|----------------|----------|
| tw_screen_name | 0        |
| nome           | 0        |
| tweet_testo    | 6494     |
| creato_il      | 0        |
| creato_il_code | 0        |
| url            | 148178   |
| party_id       | 0        |
| genere         | 0        |
| chamber        | 0        |
| status         | 0        |
| date           | 0        |
| week           | 0        |
| month          | 0        |
|                |          |

From that analysis i obtain 148178 url missing, this is because the url is collected only when the tweets has an external link to other sources, for our analysis we can ignore those missings, with this check also results 6494 tweets missing those are the cases when someone post only images or video without text, so the extraction is correct.

### 1.5.2 Remove rows with missing tweets

```
sum(is.na(tw$tweet_testo))
```

## [1] 6494

```
tw <- tw %>% drop_na(tweet_testo)
```

### 1.6 Check that the variables make sense

```
unique(tw$party_id)
    [1] "PD"
                       "FDI"
                                                      "FI"
##
                                      "M5S"
                                                                     "REG_LEAGUES"
                                      "IV"
                                                      "INDIPENDENTE" "CI"
    [6] "MISTO"
                       "LEGA"
## [11] "LEU"
unique(tw$genere)
## [1] "male" "female" "male "
unique(tw$chamber)
## [1] "NotParl" "Senate" "Camera"
unique(tw$status)
## [1] "sottosegretario" "presregione"
                                           "viceministro"
                                                              "ministro"
## [5] "segretario"
                         "Parl"
1.6.1 Adjust the variable genere
# Remove space from genere variable [RUN ONLY ONCE!]
```

a <- unique(tw\$genere)</pre>

a[3]

```
## [1] "male "
which(tw$genere == a[3])

## [1] 33300 33301 33302 33303 33304

tw$genere <- gsub(a[3], "male", tw$genere)

1.6.2 Verify the substitution

which(tw$genere == a[3])

## integer(0)

unique(tw$genere)

## [1] "male" "female"</pre>
```

1.7 Create a new dataset selecting only necessary

### informations

## [6] "status"

Now all the variables are ready for next steps

```
# Select variables for the analysis
dataset <- tw %>% select(nome, tweet_testo, genere, party_id,chamber,status, date, colnames(dataset)
## [1] "nome" "tweet_testo" "genere" "party_id" "chamber"
```

"month"

"date"

"week"

### 1.8 Create the corpus

```
corpus <- corpus(dataset, text = "tweet_testo")
ndoc(corpus)
## [1] 391197</pre>
```

#### 1.9 Create the DFM

```
DFM <- dfm(doc.tokens, tolower = TRUE)</pre>
```

#### 1.10 Trim the data

Only words that occur in the top 20% of the distribution and in less than 30% of documents. Very frequent but document specific words.

| ## | governo  | grazie | lavoro   | paese | anni     | presidente | grande |
|----|----------|--------|----------|-------|----------|------------|--------|
| ## | 26036    | 20835  | 18314    | 16473 | 16317    | 14258      | 13656  |
| ## | italiani | italia | l'italia | via   | politica | cittadini  | bene   |
| ## | 12011    | 11980  | 11752    | 11504 | 9964     | 9360       | 9311   |
| ## | forza    |        |          |       |          |            |        |
| ## | 8505     |        |          |       |          |            |        |

## 1.11 Remove the emoji

```
# Create a copy of the dfm

test <- DFM_trimmed

# Remove from the copy all the non ASCII carachters

test@Dimnames$features <- gsub("[^\x01-\x7F]", "", test@Dimnames$features)</pre>
```

```
# Check the difference from the list of features before and after apply gsub
a <- unique(test@Dimnames$features)</pre>
b <- unique(DFM_trimmed@Dimnames$features)</pre>
setdiff(b,a) #I have selected also words that cannot be removed
# Create an object with the features after remove non ASCII characters
c <- test@Dimnames$features</pre>
# Create an object with the original features
d <- DFM_trimmed@Dimnames$features</pre>
# Create the list of the removed features
diff <- setdiff(d,c)</pre>
emoji <- diff[diff %>% nchar() < 4]</pre>
emoji <- list(emoji)</pre>
emoji
# Now i can remove this list from the dfm
DFM_trimmed <- dfm_remove(DFM_trimmed, emoji)</pre>
#save(DFM_trimmed,file="data/dfm_trimmed.Rda")
```



Figure 1: Emoji removed

## 1.12 Take the proportion of the frequencies

```
# Weight the frequency
dfm_weight <- DFM_trimmed %>%
    dfm_weight(scheme = "prop")
```

### 1.12.1 Now the data are ready for the next analysis

## 2 Preliminar analysis

## 2.1 Topfeatures frquency



```
# Plot frequency of the topfeatures in the DFM
features_dfm <- textstat_frequency(dfm_weight, n = 50)

# Sort by reverse frequency order
features_dfm$feature <- with(features_dfm, reorder(feature, -frequency))

ggplot(features_dfm, aes(x = feature, y = frequency)) +
    geom_point() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```



### 2.1.1 Relative frequency of the topfeatures by Party ID

```
kable(unique(DFM_trimmed$party_id),col.names = "Party")
```

```
Party
PD
FDI
M5S
FI
REG_LEAGUES
MISTO
LEGA
IV
INDIPENDENTE
CI
LEU
```



## 2.2 Most common hashtag

```
tag_dfm <- dfm_select(dfm_weight, pattern = "#*")
toptag <- names(topfeatures(tag_dfm, 20))
toptag</pre>
```

```
"#covid19"
        "#iostoconsalvini" "#coronavirus"
                                                                      "#fratelliditalia"
##
##
    [5]
        "#lega"
                             "#salvini"
                                                  "#governo"
                                                                      "#conte"
                             "#m5s"
                                                  "#roma"
##
    [9]
        "#oggivotolega"
                                                                      "#draghi"
   [13] "#meloni"
                             "#senato"
                                                 "#forzalombardia"
                                                                      "#greenpass"
##
                                                                      "#mes"
                             "#covid"
                                                 "#italia"
        "#nocoprifuoco"
```

```
tag_dfm %>%
  textstat_frequency(n = 20) %>%
  ggplot(aes(x = reorder(feature, frequency), y = frequency)) +
  geom_point() +
  coord_flip() +
  labs(x = NULL, y = "Frequency") +
  theme_minimal()
```



### 2.2.1 Most common hashtag by Gender



#### 2.2.2 Co-occurrence Plot of hashtags

```
# NOT WEIGHTED

tag_dfm_NOT_W <- dfm_select(DFM, pattern = "#*")

toptag_NOT <- names(topfeatures(tag_dfm_NOT_W, 20))

tag_fcm_NOT <- fcm(tag_dfm_NOT_W)

set.seed(666)

topgat_fcm_NOT <- fcm_select(tag_fcm_NOT, pattern = toptag_NOT)

textplot_network(topgat_fcm_NOT, min_freq = 0.1, edge_alpha = 0.8, edge_size = 5)</pre>
```



```
# WEIGHTED

tag_fcm <- fcm(tag_dfm)

set.seed(123)

topgat_fcm <- fcm_select(tag_fcm, pattern = toptag)

textplot_network(topgat_fcm)#, min_freq = 0.1, edge_alpha = 0.8, edge_size = 5)</pre>
```



## 2.3 Most frequently mentioned usernames

```
user_dfm <- dfm_select(dfm_weight, pattern = "@*")
topuser <- names(topfeatures(user_dfm, 20, scheme = "docfreq"))
kable(topuser, col.names = "Most mentioned username")</pre>
```

| Most mentioned username |
|-------------------------|
| @matteosalvinimi        |
| @fratelliditalia        |
| @forza_italia           |
| @pdnetwork              |
| @stampasgarbi           |
| @mov5stelle             |
| @legasalvini            |
| @italiaviva             |
| @giuseppeconteit        |
| @giorgiameloni          |
| @montecitorio           |
| @deputatipd             |
| @repubblica             |
| @vocedelpatriota        |
| @legacamera             |
| @berlusconi             |
| @matteorenzi            |
| @fattoquotidiano        |
| @enricoletta            |
| @borghi_claudio         |
|                         |

## 2.3.1 Most frequently mentioned usernames by gender



### 2.3.2 Co-occurrence plot of usernames

```
# WEIGHTED

user_fcm <- fcm(user_dfm)

set.seed(123)

user_fcm <- fcm_select(user_fcm, pattern = topuser)

textplot_network(user_fcm, min_freq = 0.1, edge_color = "orange", edge_alpha = 0.8,</pre>
```



```
# NOT WEIGHTED

user_dfm_NOT_W <- dfm_select(DFM, pattern = "@*")

topuser_NOT <- names(topfeatures(user_dfm_NOT_W, 20, scheme = "docfreq"))

user_fcm_NOT <- fcm(user_dfm_NOT_W)

set.seed(6)

topuser_fcm_NOT <- fcm_select(user_fcm_NOT, pattern = topuser_NOT)

textplot_network(topuser_fcm_NOT, min_freq = 0.1, edge_alpha = 0.8, edge_size = 5)</pre>
```

## @vocedelpatriota



## 3 Dictionary analysis

At the level of political parties, which ones make most use of populist rhetoric? At the level of individual politicians, which ones make most use of populist rhetoric?

I use 3 dictionary to perform the analysis

- Rooduijn & Pauwels: Rooduijn, M., and T. Pauwels. 2011. "Measuring Populism: Comparing Two Methods of Content Analysis." West European Politics 34 (6): 1272–1283.
- Decadri & Boussalis: Decadri, S., & Boussalis, C. (2020). Populism, party membership, and language complexity in the Italian chamber of deputies.
   Journal of Elections, Public Opinion and Parties, 30(4), 484-503.
- Grundl: Gründl J. Populist ideas on social media: A dictionary-based measurement of populist communication. New Media & Society. December 2020.
- Decadri & Boussalis + Grundl: this is simply a more extended version of the D&B dictionary, which also contains some terms taken from Grundl.

## 3.1 Create the dictionary

```
# import dictionaries file
dict <- read_excel("data/populism_dictionaries.xlsx")
variable.names(dict)

## [1] "Rooduijn_Pauwels_Italian"
## [2] "Grundl_Italian_adapted"</pre>
```

```
## [4] "Decadri_Boussalis_Grundl_People"
  [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri_Boussalis_Grundl_Elite"
# create the dictionary
Rooduijn_Pauwels_Italian <-</pre>
  dictionary(list(populism =
                     (dict$Rooduijn_Pauwels_Italian
                      [!is.na(dict$Rooduijn_Pauwels_Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                     dict$Grundl Italian adapted
                   [!is.na(dict$Grundl Italian adapted)]))
Decadri Boussalis <-
  dictionary(list(populism =
                     dict$Decadri_Boussalis
                   [!is.na(dict$Decadri_Boussalis)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
                     dict$Decadri_Boussalis_Grundl_People
                   [!is.na(dict$Decadri_Boussalis_Grundl_People)],
                   common_will =
                     dict$`Decadri_Boussalis_Grundl_Common Will`
                   [!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
                   elite =
```

## [3] "Decadri\_Boussalis"

```
dict$Decadri_Boussalis_Grundl_Elite
[!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
```

# 3.2 Apply dictionary

## ${\bf 3.3 \quad Decadri\_Boussalis\_Grundl}$

### 3.3.1 Level of sparsity

```
daily: 12.08%
weekly: 0.55%
monthly: 0%

# Daily Dictionary analysis with Decadri_Boussalis_Grundl on the whole dataset
dfm_dict1 <- dfm_lookup(dfm_weight, dictionary = Decadri_Boussalis_Grundl)
# Group by date
dfm_by_date1 <- dfm_group(dfm_dict1, groups= date)
#dfm_by_date1
# Group by week
dfm_by_week1 <- dfm_group(dfm_dict1, groups= week)
#dfm_by_week1
# Group by month
dfm_by_month1 <- dfm_group(dfm_dict1, groups= month)</pre>
```

| $doc\_id$ | people   | common_will | elite    |
|-----------|----------|-------------|----------|
| 1         | 63.08421 | 6.7206174   | 30.07071 |
| 2         | 51.95882 | 3.5324477   | 36.73581 |
| 3         | 59.69107 | 3.0654092   | 26.04866 |
| 4         | 51.97619 | 1.9757148   | 38.92381 |
| 5         | 49.45054 | 1.0127899   | 35.60162 |
| 6         | 43.57187 | 1.7857503   | 39.61004 |
| 7         | 56.55317 | 3.7960223   | 29.79968 |
| 8         | 53.00149 | 9.5933176   | 28.46625 |
| 9         | 85.44455 | 20.3706540  | 29.07701 |
| 10        | 59.49955 | 2.7737546   | 39.66205 |
| 11        | 49.73316 | 3.7235276   | 37.89949 |
| 12        | 49.94546 | 0.6535908   | 40.42253 |
| 13        | 55.60681 | 3.8602075   | 54.16762 |
| 14        | 40.04550 | 0.9839938   | 22.10838 |
| 15        | 45.56965 | 2.5438049   | 24.07726 |
| 16        | 55.96528 | 10.9229303  | 39.12011 |
| 17        | 56.86530 | 2.7511473   | 32.82973 |
| 18        | 48.81594 | 9.1557063   | 21.42126 |
| 19        | 59.91423 | 15.9431835  | 24.08967 |
| 20        | 52.91074 | 7.2841548   | 33.03036 |
| 21        | 89.42553 | 17.8845192  | 24.03434 |
| 22        | 89.60724 | 10.1613697  | 44.03908 |
| 23        | 62.27881 | 6.8619658   | 38.56875 |
| 24        | 46.69026 | 4.8762916   | 30.41294 |
| 25        | 62.78604 | 4.6705967   | 30.18396 |
| 26        | 60.27223 | 12.2456079  | 27.17848 |
| 27        | 48.96990 | 2.6807170   | 16.48902 |
| 28        | 32.12638 | 0.8460317   | 12.31448 |
|           |          |             | 00       |



Looking at the populist rhetoric for each party divided into the 3 components people-centrism, anti-elitism and common-will, we note that the most frequent components is People-centrism.

## 3.4 Rooduijn\_Pauwels\_Italian

### 3.4.1 Level of sparsity

```
daily: 0.60%
weekly: 0.%
monthly: 0%

# Daily Dictionary analysis with Rooduijn_Pauwels_Italian on the whole dataset
dfm_dict2 <- dfm_lookup(dfm_weight, dictionary = Rooduijn_Pauwels_Italian)
# Group by date
dfm_by_date2 <- dfm_group(dfm_dict2, groups= date)
#dfm_by_date2
# Group by week
dfm_by_week2 <- dfm_group(dfm_dict2, groups= week)
#dfm_by_week2
# Group by month
dfm_by_month2 <- dfm_group(dfm_dict2, groups= month)</pre>
```

| $doc\_id$ | populism |
|-----------|----------|
| 1         | 28.10591 |
| 2         | 34.76596 |
| 3         | 24.91863 |
| 4         | 37.43421 |
| 5         | 32.79228 |
| 6         | 37.74417 |
| 7         | 28.35085 |
| 8         | 27.36380 |
| 9         | 28.08691 |
| 10        | 38.72625 |
| 11        | 36.03047 |
| 12        | 38.57222 |
| 13        | 51.75047 |
| 14        | 20.10344 |
| 15        | 23.24975 |
| 16        | 36.54012 |
| 17        | 31.14446 |
| 18        | 20.58931 |
| 19        | 22.07645 |
| 20        | 30.04277 |
| 21        | 22.06137 |
| 22        | 41.01336 |
| 23        | 35.59173 |
| 24        | 25.65097 |
| 25        | 27.54361 |
| 26        | 25.97639 |
| 27        | 15.44186 |
| 28        | 11.47281 |

## 3.4.2 General level of populism in time



## 3.4.3 Most populist party

```
# Most populist party
dfm_dict2_tstat_party <- textstat_frequency(dfm_dict2, groups = party_id)
kable(dfm_dict2_tstat_party %>% slice_max(frequency, n = 20))
```

|    | feature  | frequency   | rank | docfreq | group        |
|----|----------|-------------|------|---------|--------------|
| 6  | populism | 303.9474786 | 1    | 1919    | LEGA         |
| 10 | populism | 149.7512641 | 1    | 1671    | PD           |
| 2  | populism | 113.7388243 | 1    | 1124    | FDI          |
| 3  | populism | 98.6906136  | 1    | 941     | FI           |
| 8  | populism | 87.6625041  | 1    | 1119    | M5S          |
| 9  | populism | 60.9720255  | 1    | 669     | MISTO        |
| 7  | populism | 11.7023384  | 1    | 175     | LEU          |
| 1  | populism | 3.7116701   | 1    | 45      | CI           |
| 5  | populism | 1.8540424   | 1    | 26      | IV           |
| 11 | populism | 1.0264294   | 1    | 11      | REG_LEAGUES  |
| 4  | populism | 0.0833333   | 1    | 1       | INDIPENDENTE |

# 3.4.4 Most populist politician

```
dict2_tstat_nome <- textstat_frequency(dfm_dict2, groups = nome)
kable(dict2_tstat_nome %>% slice_max(frequency, n = 20))
```

|     | feature  | frequency | rank | docfreq | group                      |
|-----|----------|-----------|------|---------|----------------------------|
| 194 | populism | 42.115152 | 1    | 146     | FERRERO Roberta            |
| 472 | populism | 15.910436 | 1    | 160     | SGARBI Vittorio            |
| 341 | populism | 14.112659 | 1    | 77      | MORANI Alessia             |
| 24  | populism | 13.999694 | 1    | 52      | BALDELLI Simone            |
| 179 | populism | 13.821584 | 1    | 48      | FAGGI Antonella            |
| 271 | populism | 13.095709 | 1    | 149     | LANNUTTI Elio              |
| 217 | populism | 12.884799 | 1    | 39      | FREGOLENT Sonia            |
| 450 | populism | 12.806346 | 1    | 64      | RUSPANDINI Massimo         |
| 326 | populism | 12.518396 | 1    | 192     | MELONI Giorgia             |
| 427 | populism | 12.257891 | 1    | 40      | RIVOLTA Erica              |
| 106 | populism | 10.788399 | 1    | 68      | CECCHETTI Fabrizio         |
| 283 | populism | 10.783981 | 1    | 108     | LOLLOBRIGIDA Francesco     |
| 260 | populism | 10.778644 | 1    | 76      | IEZZI Igor Giancarlo       |
| 230 | populism | 10.648954 | 1    | 155     | GARNERO SANTANCHE' Daniela |
| 303 | populism | 10.133849 | 1    | 78      | MALAN Lucio                |
| 447 | populism | 9.885108  | 1    | 29      | RUFA Gianfranco            |
| 455 | populism | 9.561830  | 1    | 93      | SALVINI Matteo             |
| 360 | populism | 9.110910  | 1    | 105     | NOBILI Luciano             |
| 35  | populism | 8.689617  | 1    | 57      | BAZZARO Alex               |
| 501 | populism | 8.495460  | 1    | 32      | TONELLI Gianni             |

# 3.5 Grundl\_Italian\_adapted

## 3.5.1 Level of sparsity

```
daily: 0.24%
weekly: 0.0%
monthly: 0%

# Daily Dictionary analysis with Grundl_Italian_adapted on the whole dataset
dfm_dict3 <- dfm_lookup(dfm_weight, dictionary = Grundl_Italian_adapted)
# Group by date
dfm_by_date3<- dfm_group(dfm_dict3, groups= date)
#dfm_by_date3
# Group by week
dfm_by_week3 <- dfm_group(dfm_dict3, groups= week)
#dfm_by_week3
# Group by month
dfm_by_month3 <- dfm_group(dfm_dict3, groups= month)</pre>
```

| $doc_id$ | populism |
|----------|----------|
| 1        | 30.09665 |
| 2        | 26.23980 |
| 3        | 22.99661 |
| 4        | 32.36833 |
| 5        | 33.50214 |
| 6        | 21.44168 |
| 7        | 27.84302 |
| 8        | 28.97910 |
| 9        | 42.01900 |
| 10       | 26.10592 |
| 11       | 27.73779 |
| 12       | 30.11849 |
| 13       | 38.82232 |
| 14       | 18.62336 |
| 15       | 23.43787 |
| 16       | 34.35922 |
| 17       | 27.47914 |
| 18       | 28.23726 |
| 19       | 44.51744 |
| 20       | 37.22778 |
| 21       | 47.97110 |
| 22       | 36.88430 |
| 23       | 34.36299 |
| 24       | 40.02462 |
| 25       | 30.90143 |
| 26       | 33.14042 |
| 27       | 22.64935 |
| 28       | 13.13454 |
|          |          |

## 3.5.2 General level of populism in time



## 3.5.3 Most populist party

```
# Most populist party
dict_3_tstat_party <- textstat_frequency(dfm_dict3, groups = party_id)
kable(dict_3_tstat_party %>% slice_max(frequency, n = 20))
```

|    | feature  | frequency  | rank | docfreq | group        |
|----|----------|------------|------|---------|--------------|
| 6  | populism | 225.678708 | 1    | 2075    | LEGA         |
| 10 | populism | 153.269683 | 1    | 2017    | PD           |
| 8  | populism | 133.053746 | 1    | 1724    | M5S          |
| 3  | populism | 131.838292 | 1    | 1524    | FI           |
| 2  | populism | 99.425177  | 1    | 1087    | FDI          |
| 9  | populism | 86.092041  | 1    | 997     | MISTO        |
| 7  | populism | 15.213765  | 1    | 231     | LEU          |
| 1  | populism | 10.602522  | 1    | 157     | CI           |
| 5  | populism | 2.559005   | 1    | 40      | IV           |
| 4  | populism | 1.983671   | 1    | 31      | INDIPENDENTE |
| 11 | populism | 1.505044   | 1    | 22      | REG_LEAGUES  |

# 3.5.4 Most populist politician

```
dict_3_tstat_nome <- textstat_frequency(dfm_dict3, groups = nome)
kable(dict_3_tstat_nome %>% slice_max(frequency, n = 20))
```

|     | feature  | frequency | rank | docfreq | group                      |
|-----|----------|-----------|------|---------|----------------------------|
| 287 | populism | 23.033031 | 1    | 240     | LANNUTTI Elio              |
| 210 | populism | 19.501980 | 1    | 110     | FERRERO Roberta            |
| 562 | populism | 19.042283 | 1    | 131     | VITO Elio                  |
| 275 | populism | 16.483870 | 1    | 120     | IEZZI Igor Giancarlo       |
| 494 | populism | 15.974269 | 1    | 184     | SGARBI Vittorio            |
| 341 | populism | 11.063928 | 1    | 159     | MELONI Giorgia             |
| 15  | populism | 10.731212 | 1    | 120     | ANZALDI Michele            |
| 298 | populism | 10.659433 | 1    | 98      | LOLLOBRIGIDA Francesco     |
| 74  | populism | 10.645964 | 1    | 97      | BORGHI Claudio             |
| 476 | populism | 9.238862  | 1    | 122     | SALVINI Matteo             |
| 248 | populism | 9.004085  | 1    | 139     | GARNERO SANTANCHE' Daniela |
| 96  | populism | 8.438949  | 1    | 103     | CANGINI Andrea             |
| 546 | populism | 8.339166  | 1    | 106     | URSO Adolfo                |
| 224 | populism | 8.162373  | 1    | 101     | FONTANA Lorenzo            |
| 472 | populism | 7.850014  | 1    | 68      | RUSPANDINI Massimo         |
| 44  | populism | 7.832168  | 1    | 120     | BERGESIO Giorgio Maria     |
| 165 | populism | 7.565932  | 1    | 92      | DE MARTINI Guido           |
| 141 | populism | 7.036558  | 1    | 43      | CROSETTO Guido             |
| 446 | populism | 7.000320  | 1    | 47      | RIVOLTA Erica              |
| 359 | populism | 6.861311  | 1    | 73      | MORELLI Alessandro         |

## 3.6 Decadri Boussalis

### 3.6.1 Level of sparsity

```
daily: 0%
weekly: 0.0%
monthly: 0%

# Daily Dictionary analysis with Decadri_Boussalis on the whole dataset
dfm_dict4 <- dfm_lookup(dfm_weight, dictionary = Decadri_Boussalis)
# Group by date
dfm_by_date4<- dfm_group(dfm_dict4, groups= date)
#dfm_by_date4
# Group by week
dfm_by_week4 <- dfm_group(dfm_dict4, groups= week)
#dfm_by_week4
# Group by month
dfm_by_month4 <- dfm_group(dfm_dict4, groups= month)</pre>
```

| $doc\_id$ | populism  |
|-----------|-----------|
| 1         | 93.79618  |
| 2         | 88.79620  |
| 3         | 85.17899  |
| 4         | 90.99191  |
| 5         | 83.84470  |
| 6         | 82.69573  |
| 7         | 86.64935  |
| 8         | 81.95542  |
| 9         | 115.45515 |
| 10        | 99.27498  |
| 11        | 87.54297  |
| 12        | 89.72799  |
| 13        | 110.94629 |
| 14        | 62.65329  |
| 15        | 70.34687  |
| 16        | 94.13414  |
| 17        | 90.03489  |
| 18        | 71.30863  |
| 19        | 89.16969  |
| 20        | 85.12252  |
| 21        | 120.57959 |
| 22        | 134.28306 |
| 23        | 100.48658 |
| 24        | 74.25601  |
| 25        | 91.93483  |
| 26        | 90.76021  |
| 27        | 64.69319  |
| 28        | 46.01515  |
|           |           |

## 3.6.2 General level of populism in time



## 3.6.3 Most populist party

```
# Most populist party
dict_4_tstat_party <- textstat_frequency(dfm_dict4, groups = party_id)
kable(dict_4_tstat_party %>% slice_max(frequency, n = 20))
```

|    | feature  | frequency  | rank | docfreq | group        |
|----|----------|------------|------|---------|--------------|
| 6  | populism | 651.348390 | 1    | 5672    | LEGA         |
| 10 | populism | 493.532735 | 1    | 6417    | PD           |
| 8  | populism | 376.966170 | 1    | 5178    | M5S          |
| 3  | populism | 376.609606 | 1    | 4532    | FI           |
| 2  | populism | 270.814483 | 1    | 2960    | FDI          |
| 9  | populism | 202.466904 | 1    | 2463    | MISTO        |
| 7  | populism | 44.919508  | 1    | 659     | LEU          |
| 1  | populism | 35.105322  | 1    | 506     | CI           |
| 5  | populism | 14.132863  | 1    | 197     | IV           |
| 4  | populism | 10.615825  | 1    | 153     | INDIPENDENTE |
| 11 | populism | 6.122696   | 1    | 93      | REG_LEAGUES  |

# 3.6.4 Most populist politician

```
dict_4_tstat_nome <- textstat_frequency(dfm_dict4, groups = nome)
kable(dict_4_tstat_nome %>% slice_max(frequency, n = 20))
```

|     | feature  | frequency | rank | docfreq | group                      |
|-----|----------|-----------|------|---------|----------------------------|
| 236 | populism | 62.66405  | 1    | 282     | FERRERO Roberta            |
| 560 | populism | 41.70723  | 1    | 443     | SGARBI Vittorio            |
| 329 | populism | 34.85565  | 1    | 397     | LANNUTTI Elio              |
| 391 | populism | 33.15912  | 1    | 496     | MELONI Giorgia             |
| 344 | populism | 32.36912  | 1    | 358     | LOLLOBRIGIDA Francesco     |
| 540 | populism | 29.61242  | 1    | 368     | SALVINI Matteo             |
| 27  | populism | 27.44810  | 1    | 135     | BALDELLI Simone            |
| 280 | populism | 26.74696  | 1    | 372     | GARNERO SANTANCHE' Daniela |
| 530 | populism | 24.85093  | 1    | 184     | ROTONDI Gianfranco         |
| 68  | populism | 24.50676  | 1    | 252     | BONACCINI Stefano          |
| 220 | populism | 24.35617  | 1    | 122     | FAGGI Antonella            |
| 317 | populism | 24.31241  | 1    | 207     | IEZZI Igor Giancarlo       |
| 128 | populism | 23.82148  | 1    | 195     | CECCHETTI Fabrizio         |
| 585 | populism | 23.63509  | 1    | 327     | TAJANI Antonio             |
| 80  | populism | 22.82617  | 1    | 240     | BORGHI Claudio             |
| 161 | populism | 21.54784  | 1    | 158     | CROSETTO Guido             |
| 39  | populism | 21.35229  | 1    | 202     | BAZZARO Alex               |
| 47  | populism | 21.29380  | 1    | 318     | BERGESIO Giorgio Maria     |
| 535 | populism | 20.92822  | 1    | 140     | RUSPANDINI Massimo         |
| 365 | populism | 20.38171  | 1    | 185     | MALAN Lucio                |



# 4 Sentiment analysis

http://saifmohammad.com/WebPages/lexicons.html ## Inspect the dictionary

```
head(get_sentiment_dictionary(dictionary = "nrc", language = "italian"),15)
```

```
##
                      word sentiment value
         lang
## 1
      italian
                                          1
                      abba
                            positive
## 2
      italian
                  capacità
                            positive
                                          1
      italian sopra citato
## 3
                            positive
                                          1
## 4
      italian
                                          1
                  assoluto positive
## 5
                                          1
      italian
               assoluzione positive
## 6
      italian
                 assorbito positive
                                          1
## 7
      italian
                abbondanza positive
                                          1
                abbondante positive
## 8
      italian
                                          1
## 9
      italian
                accademico positive
                                          1
                                          1
## 10 italian
                 accademia positive
## 11 italian accettabile
                                          1
                            positive
## 12 italian accettazione
                            positive
                                          1
## 13 italian accessibile
                                          1
                            positive
## 14 italian
                                          1
                            positive
                   encomio
## 15 italian
                  alloggio
                            positive
                                          1
```

#### 4.0.1 Clean text from dataframe

Define function to make the text extracted from dataframe suitable for analysis

```
# Define function to make the text suitable for analysis
clean.text = function(x)
{
```

```
# tolower
  x = tolower(x)
  # remove rt
  x = gsub("rt", "", x)
  # remove at
 x = gsub("@\\\\ "", "", x)
  # remove punctuation
  x = gsub("[[:punct:]]", "", x)
  # remove numbers
  x = gsub("[[:digit:]]", "", x)
  # remove links http
  x = gsub("http\\w+", "", x)
  # remove tabs
  x = gsub("[ | t]{2,}", "", x)
  # remove blank spaces at the beginning
 x = gsub("^", "", x)
  # remove blank spaces at the end
 x = gsub(" $", "", x)
  return(x)
}
```

### 4.1 Create the filtered dataframes

```
# Create filtered dataframes

MELONI <- dataset %>% filter(nome == "MELONI Giorgia")

CONTE <- dataset %>% filter(nome == "CONTE Giuseppe")

RENZI <- dataset %>% filter(nome == "RENZI Matteo")

SALVINI <- dataset %>% filter(nome == "SALVINI Matteo")
```

```
LETTA <- dataset %>% filter(nome == "LETTA Enrico")

BERLUSCONI <- dataset %>% filter(nome == "BERLUSCONI Silvio")

SPERANZA <- dataset %>% filter(nome == "SPERANZA Roberto")
```

## 4.2 Create nrc objects

```
# Create the nrc object
nrc meloni <- get nrc sentiment(MELONI$tweet testo, language="italian")</pre>
save(nrc meloni,file="data/nrc meloni.Rda")
nrc conte <- get nrc sentiment(CONTE$tweet testo, language="italian")</pre>
save(nrc conte,file="data/nrc conte.Rda")
nrc renzi <- get nrc sentiment(RENZI$tweet testo, language="italian")</pre>
save(nrc renzi,file="data/nrc renzi.Rda")
nrc_salvini <- get_nrc_sentiment(SALVINI$tweet_testo, language="italian")</pre>
save(nrc salvini,file="data/nrc salvini.Rda")
nrc_letta <- get_nrc_sentiment(LETTA$tweet_testo, language="italian")</pre>
save(nrc_letta,file="data/nrc_letta.Rda")
nrc_berlusconi <- get_nrc_sentiment(BERLUSCONI$tweet_testo, language="italian")</pre>
save(nrc berlusconi, file="data/nrc berlusconi.Rda")
nrc speranza <- get nrc sentiment(SPERANZA$tweet testo, language="italian")</pre>
save(nrc speranza,file="data/nrc speranza.Rda")
```

# 4.3 Giorgia Meloni

# 4.3.1 Proportion of the emotion

# **Emotions in tweets by Giorgia Meloni**



#### 4.3.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Giorgia Meloni



# 4.4 Giuseppe Conte

# 4.4.1 Proportion of the emotion

# **Emotions in tweets by Giuseppe Conte**



### Word cloud of emotions

## Emotion Comparison Word Cloud for tweets by Giuseppe Conte



# 4.5 Matteo Renzi

# 4.5.1 Proportion of the emotion

# **Emotions in tweets by Matteo Renzi**



#### 4.5.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Matteo Renzi



# 4.6 Matteo Salvini

# 4.6.1 Proportion of the emotion

# **Emotions in tweets by Matteo Salvini**



#### 4.6.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Matteo Salvini



# 4.7 Enrico Letta

# 4.7.1 Proportion of the emotion

# **Emotions in tweets by Enrico Letta**



### 4.7.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Enrico Letta



# 4.8 Silvio Berlusconi

# 4.8.1 Proportion of the emotion

# **Emotions in tweets by Silvio Berlusconi**



#### 4.8.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Silvio Berlusconi



# 4.9 Roberto Speranza

# ${\bf 4.9.1} \quad {\bf Proportion \ of \ the \ emotion}$

# **Emotions in tweets by Roberto Speranza**



#### 4.9.2 Wordcloud of emotions

Emotion Comparison Word Cloud for tweets by Roberto Speranza



# 5 LDA Topic model analysis

#### 5.1 CREATE THE DTM

5.1.1 Remove all the account's mentions

```
DFM_trimmed@Dimnames$features <- gsub("^@", "", DFM_trimmed@Dimnames$features)
###Convert the Document Feature Matrix (Dfm) in a Topic Model (Dtm)
dtm <- quanteda::convert(DFM_trimmed, to = "topicmodels")</pre>
```

## 5.2 FIND THE BEST NUMBER OF TOPICS K

5.2.1 Search the best number of Topics comparing coherence and exclusivity values

```
K = 10:50
```

```
# 10 : 50 iter 1000
top1 <- c(10:50)

## let's create an empty data frame
risultati <- data.frame(first=vector(), second=vector(), third=vector())

system.time(
  for (i in top1)
  {
    set.seed(123)
    lda_test <- LDA(dtm, method= "Gibbs", k = (i), control=list(verbose=50L, iter=</pre>
```

```
topic <- (i)
  coherence_test <- mean(topic_coherence(lda_test, dtm))
  exclusivity_test <- mean(topic_exclusivity(lda_test))
  risultati <- rbind(risultati , cbind(topic, coherence_test, exclusivity_test ))
}

# save(risultati, file="data/results_K_10-50.Rda")</pre>
```

# 5.2.2 Plot the values of coherence and exclusivity in order to find the best K

# Scatterplot k=10:50



Interpreting those data i can state that K=22 has the best values of coherence and exclusivity.

# 5.3 ANALISYS OF THE TOPICS

# 5.3.1 Repeat the analysis selecting k=22

```
system.time(lda_22 <- LDA(dtm, method= "Gibbs", k = 22, control = list(seed = 123))
# save(lda, file = "data/lda_k_22.Rda")</pre>
```

## 5.3.2 The most important terms from the model, for each topic

| Top terms 01     | Top terms 02 | Top terms 03     | Top terms 04 | Top terms 05         | Top terms 06     |
|------------------|--------------|------------------|--------------|----------------------|------------------|
| vaccini          | guerra       | #draghi          | grazie       | #referendumgiustizia | #tokyo2020       |
| aprile           | #ucraina     | draghi           | mondo        | luglio               | #afghanistan     |
| vaccinale        | ucraina      | governo          | insieme      | giustizia            | talebani         |
| pandemia         | pace         | #governodraghi   | presidente   | #ddlzan              | agosto           |
| @fratelliditalia | putin        | lavoro           | lavoro       | gazebo               | afghanistan      |
| buon             | marzo        | paese            | solidarietà  | #primalitalia        | medaglia         |
| draghi           | russia       | @fratelliditalia | donne        | giugno               | oro              |
| #draghi          |              | presidente       | paese        | riforma              | @fattoquotidiano |
| covid            | popolo       | buon             | grande       | firme                | kabul            |
| @pdnetwork       | ucraino      | vaccini          | nazionale    | #euro2020            | medaglie         |

| Top terms 7  | Top terms 8      | Top terms 9   | Top terms 10          | Top terms 11     | Top terms 12    |
|--------------|------------------|---------------|-----------------------|------------------|-----------------|
| #coronavirus | maggio           | sindaco       | #iostoconsalvini      | #iostoconsalvini | conte           |
| misure       | #ddlzan          | ottobre       | #oggivotolega         | luglio           | governo         |
| momento      | coprifuoco       | pass          | salvini               | paese            | crisi           |
| coronavirus  | @stampasgarbi    | roma          | #borgonzonipresidente | #salvini         | #crisidigoverno |
| emergenza    | vaccinale        | @forza_italia | governo               | giugno           | #conte          |
| grazie       | #fratelliditalia | green         | #salvini              | #conte           | maggioranza     |
| l'emergenza  | lavoro           | città         | #prescrizione         | rilancio         | paese           |
| #covid19     | #meloni          | candidato     | @fratelliditaiia      | conte            | presidente      |
| casa         | #coprifuoco      | #roma         | #m5s                  | #2giugno         | gennaio         |
| medici       | sinistra         | elettorale    | #emiliaromagna        | #recoveryfund    | fiducia         |

| Top terms 13     | Top terms 14    | Top terms 15               | Top terms 16     | Top terms 17     | Top terms 18     |
|------------------|-----------------|----------------------------|------------------|------------------|------------------|
| #dpcm            | #fase2          | presidente                 | draghi           | the              | natale           |
| #iostoconsalvini | maggio          | #quirinale                 | pass             | @fratelliditalia | dicembre         |
| ottobre          | #mes            | repubblica                 | green            | to               | bilancio         |
| #mes             | lavoro          | #presidentedellarepubblica | covid            | of               | anno             |
| jole             | ripartire       | #mattarella                | via              | and              | #atreju21        |
| covid            | aprile          | #quirinale2022             | #greenpass       | bilancio         | @fattoquotidiano |
| contagi          | imprese         | quirinale                  | @fratelliditalia | covid            | #natale          |
| @fratelliditalia | liquidità       | gennaio                    | vaccinati        | #mes             | euro             |
| #conte           | #forzalombardia | mattarella                 | @stampasgarbi    | natale           | buon             |
| de               | #recoveryfund   | david                      | pandemia         | #covid           | auguri           |

| Top terms 19 | Top terms 20       | Top terms 21     | Top terms 22 |
|--------------|--------------------|------------------|--------------|
| governo      | settembre          | novembre         | grazie       |
| italiani     | #iovotono          | de               | lavoro       |
| #covid19     | elettorale         | violenza         | anni         |
| paese        | @fratelliditalia   | pass             | politica     |
| #governo     | #referendum        | @fattoquotidiano | governo      |
| imprese      | scuola             | donne            | grande       |
| conte        | parlamentari       | reddito          | bene         |
| l'italia     | #iostoconsalvini   | et               | l'italia     |
| crisi        | referendum         | @theskeptical_   | forza        |
| decreto      | #processateancheme | renzi            | via          |

|           | Topic 1          | Topic 2  | Topic 3          | Topic 4     | Topic 5              | Topic 6          |
|-----------|------------------|----------|------------------|-------------|----------------------|------------------|
| titles_22 | 1                | 2        | 3                | 4           | 5                    | 6                |
|           | vaccini          | guerra   | #draghi          | grazie      | #referendumgiustizia | #tokyo2020       |
|           | aprile           | #ucraina | draghi           | mondo       | luglio               | #afghanistan     |
|           | vaccinale        | ucraina  | governo          | insieme     | giustizia            | talebani         |
|           | pandemia         | pace     | #governodraghi   | presidente  | #ddlzan              | agosto           |
|           | @fratelliditalia | putin    | lavoro           | lavoro      | gazebo               | afghanistan      |
|           | buon             | marzo    | paese            | solidarietà | #primalitalia        | medaglia         |
|           | draghi           | russia   | @fratelliditalia | donne       | giugno               | oro              |
|           | #draghi          |          | presidente       | paese       | riforma              | @fattoquotidiano |
|           | covid            | popolo   | buon             | grande      | firme                | kabul            |
|           | @pdnetwork       | ucraino  | vaccini          | nazionale   | #euro2020            | medaglie         |

## kable(t22.2)%>%

kable\_styling(latex\_options = c("HOLD\_position","scale\_down"))

|           | Topic 7      | Topic 8          | Topic 9       | Topic 10              | Topic 11         | Topic 12        |
|-----------|--------------|------------------|---------------|-----------------------|------------------|-----------------|
| titles_22 | 7            | 8                | 9             | 10                    | 11               | 12              |
|           | #coronavirus | maggio           | sindaco       | #iostoconsalvini      | #iostoconsalvini | conte           |
|           | misure       | #ddlzan          | ottobre       | #oggivotolega         | luglio           | governo         |
|           | momento      | coprifuoco       | pass          | salvini               | paese            | crisi           |
|           | coronavirus  | @stampasgarbi    | roma          | #borgonzonipresidente | #salvini         | #crisidigoverno |
|           | emergenza    | vaccinale        | @forza_italia | governo               | giugno           | #conte          |
|           | grazie       | #fratelliditalia | green         | #salvini              | #conte           | maggioranza     |
|           | l'emergenza  | lavoro           | città         | #prescrizione         | rilancio         | paese           |
|           | #covid19     | #meloni          | candidato     | @fratelliditaiia      | conte            | presidente      |
|           | casa         | #coprifuoco      | #roma         | #m5s                  | #2giugno         | gennaio         |
|           | medici       | sinistra         | elettorale    | #emiliaromagna        | #recoveryfund    | fiducia         |

# kable(t22.3)%>%

kable\_styling(latex\_options = c("HOLD\_position","scale\_down"))

|           | Topic 13         | Topic 14        | Topic 15                   | Topic 16         | Topic 17         | Topic 18         |
|-----------|------------------|-----------------|----------------------------|------------------|------------------|------------------|
| titles_22 | 13               | 14              | 15                         | 16               | 17               | 18               |
|           | #dpcm            | #fase2          | presidente                 | draghi           | the              | natale           |
|           | #iostoconsalvini | maggio          | #quirinale                 | pass             | @fratelliditalia | dicembre         |
|           | ottobre          | #mes            | repubblica                 | green            | to               | bilancio         |
|           | #mes             | lavoro          | #presidentedellarepubblica | covid            | of               | anno             |
|           | jole             | ripartire       | #mattarella                | via              | and              | #atreju21        |
|           | covid            | aprile          | #quirinale2022             | #greenpass       | bilancio         | @fattoquotidiano |
|           | contagi          | imprese         | quirinale                  | @fratelliditalia | covid            | #natale          |
|           | @fratelliditalia | liquidità       | gennaio                    | vaccinati        | #mes             | euro             |
|           | #conte           | #forzalombardia | mattarella                 | @stampasgarbi    | natale           | buon             |
|           | de               | #recoveryfund   | david                      | pandemia         | #covid           | auguri           |

```
kable(t22.4)%>%
```

kable\_styling(latex\_options = c("HOLD\_position", "scale\_down"))

|           | Topic 19 | Topic 20           | Topic 21         | Topic 22 |
|-----------|----------|--------------------|------------------|----------|
| titles_22 | 19       | 20                 | 21               | 22       |
|           | governo  | settembre          | novembre         | grazie   |
|           | italiani | #iovotono          | de               | lavoro   |
|           | #covid19 | elettorale         | violenza         | anni     |
|           | paese    | @fratelliditalia   | pass             | politica |
|           | #governo | #referendum        | @fattoquotidiano | governo  |
|           | imprese  | scuola             | donne            | grande   |
|           | conte    | parlamentari       | reddito          | bene     |
|           | l'italia | #iostoconsalvini   | et               | l'italia |
|           | crisi    | referendum         | @theskeptical_   | forza    |
|           | decreto  | #processateancheme | renzi            | via      |

#### 5.3.3 Report on the analysis made with FER Puthon package

The package use the FER-2013 dataset created by Pierre Luc Carrier and Aaron Courville.

The dataset was created using the Google image search API to search for images of faces that match a set of 184 emotion-related keywords like "blissful", "enraged," etc. These keywords were combined with words related to gender, age or ethnicity, to obtain nearly 600 strings which were used as facial image search queries. The first 1000 images returned for each query were kept for the next stage of processing. OpenCV face recognition was used to obtain bounding boxes around each face in the collected images. Human labelers than rejected incorrectly labeled images, corrected the cropping if necessary, and filtered out some duplicate images. Approved, cropped images were then resized to 48x48 pixels and converted to grayscale. Mehdi Mirza and Ian Goodfellow prepared a subset of the images for this contest, and mapped the fine-grained emotion keywords into the same seven broad categories used in the Toronto Face Database Joshua Susskind, Adam Anderson, and Geoffrey E. Hinton. The Toronto face dataset. Technical Report UTML TR 2010-001, U. Toronto, 2010.]. The resulting dataset contains 35887 images, with 4953 "Anger" images, 547 "Disgust" images, 5121 "Fear" images, 8989 "Happiness" images, 6077 "Sadness" images, 4002 "Surprise" images, and 6198 "Neutral" images. FER-2013 could theoretical suffer from label errors due to the way it was collected, but Ian Goodfellow found that human accuracy on FER-2013 was  $65\pm5\%$ .

66% ACCURACY REPORTED BY OCTAVIO ARRIAGA, Matias Valdenegro-Toro, Paul Plöger (Real-time Convolutional Neural Networks for Emotion and Gender Classification)