EE230-02 RFIC II Fall 2018

Lecture 21: PLL Wrap-up

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Schedule

No Class – I am traveling

- Nov.15, Thursday
- Nov. 20, Tuesday HW#3 Due

Remaining schedule

•	Nov. 27	Project Presentation Group 1-3
---	---------	--------------------------------

- Nov. 29 Project Presentation Group 4-6
- Dec. 4 Project Presentation Group 7-9 & PA Lecture
- Dec. 6 PA lecture & Final Review
- Dec. 10 Project Report Due
- Dec. 14 Final Exam at 2:45 PM

Project Presentation

Group	Student 1	Student 2	Presentation Order
1	Chad	Muhammad	8
2	Khoa	Yueyang	5
3	Jesus		4
4	Lenny		3
5	Ashley	Lava	2
6	Justin	Arthur	1
7	Hoa	Cuong	6
8	Xing	Alex	7
9	Yu-Chung		9

Project Description

1.9 GHz Charge Pump PLL VDD=1V

Project Report

One Project Report per group

- Report should include the followings
 - Verilog-A or Verilog-AMS model and simulation results
 - Matlab behavioral simulation showing stability
 - Schematic capture of major blocks
 - Key Simulation results
 - Summary table showing the performance achieved
- Report should be in IEEE conference paper format
- Project Report due: 5 PM, Dec 10

Project Reference

Reference: Charge Pump PLL*

^{*} A 216μW 281MHz-1.126GHz Self-Calibrated SSCG PLL with 0.6V Supply Voltage in 55nm DDC™ CMOS Process – Unpublished work by Ahn & Lee

Target Spec – Beat the best

TABLE I PERFORMANCE COMPARISON

	Ref[4]	This Work	
Process	0.13μm CMOS	Conventional 55nm CMOS	DDC 55nm CMOS
Supply Voltage	0.5V	0.85V	0.6V
PLL Locking Range [MHz]	360~610	257 ~ 1,218	281~1,126
RMS Jitter	8.01ps @550MHz	12.75ps @800MHz	8.16ps @800MHz
Power Comsumption	1.25mW @550MHz	701μW @800MHz	216μW @ 800MHz
Active Dle Area	0.04mm ²	0.06mm ²	0.06mm ²
FoM [dB]	-221	-219	-228

*
$$\mathbf{FoM} = 10 \cdot log \left(Jitter^2 \cdot Power/1mW \right)$$

Design Constraint

- Architecture: Type-II Integer-N Charge Pump PLL
- ➤ Goal is to achieve FoM < -220 dB with the following constraint
 - Use 45nm technology PDK in gpdk045
 - VDD=1V
 - Device types available for the design
 - → nmos1v, pmos1v, resnsppoly, Ideal cap
 - RefCLK = 30 MHz
 - Bias Current: Use "ideal_bias" current cell in the next slide
 - PVT corners
 - TT, 1V, 27C
 - SS, FF
 - 0.9V, 1.1V
 - -40C, 125C

Bias Current

Lib: ee288lib

Cell: ideal_bias

Choose different value for IBIAS to vary the output current level

```
Iout = VBG / Rpoly = IBIAS (1.2V / 65Kohm)

At Room Temperature with IBIAS = 1

TT = 8.8 uA

SS = 7.8 uA

FF = 11 uA

If IBIAS = 1, TT = 8.8 uA

VBGR

VBGR

VBGR

VBGR

Value = 1.8 value
```

References

- > PLL
 - Rishi Ratan, From Chapter 3, MS Thesis, UIUC, 2014
 - H. Ahn and S. Lee, File name: VLSI2014_PLL_v7
- ➤ Verilog-A
 - VCO_VerilogA_ECE546_UIUC
 - PLL Jitter measurement in Spectre
- Verilog-AMS
 - Rishi Ratan, Chapter 6, MS Thesis, UIUC, 2014
- > Jitter measurement
 - PLL_Jitter_measurement_in_Spectre
 - https://www.youtube.com/watch?v=VvkHPoSVpVc

Modeling of Charge-Pump PLL

Open Loop Transfer Function

Linear Model of Charge-Pump PLL

$$LG(s) = K_{PD} \cdot F(s) \cdot \frac{K_{VCO}}{s}$$
$$= K_{PD} \cdot K_{VCO} \cdot \frac{s + \frac{1}{RC_1}}{C_2 s^2 \left(s + \frac{C_1 + C_2}{RC_1 C_2}\right)}$$

$$\omega_z = \frac{1}{RC_1}; \ \omega_{p1} = \omega_{p2} = 0; \omega_{p3} = \frac{C_1 + C_2}{RC_1C_2}$$

$$\phi_M = \arctan\left(\frac{\omega_{ugb}}{\omega_z}\right) - \arctan\left(\frac{\omega_{ugb}}{\omega_{p3}}\right)$$

$$\omega_{ugb} = \omega_z \sqrt{\frac{C_1}{C_2} + 1}$$

$$\phi_{M_max} = \arctan(\sqrt{\frac{C_1}{C_2} + 1}) - \arctan(\frac{1}{\sqrt{\frac{C_1}{C_2} + 1}})$$

What is arctangent?

If $C_1/C_2 = 10$, then Phase Margin is

$$\arctan(\text{sqrt}(11)) =$$
 $- \arctan(1/\text{sqrt}(11)) =$ $=$ 57 degree $=$ 73.2213451 degree $=$ 16.7786549 degree

Loop Filter Design Procedure

1. Choose desired bandwidth ω_{ugb} , phase margin ϕ_M and resistor R according to specification. Then calculate the K_c from Eq. 4.6:

$$K_c = \frac{C_1}{C_2} = 2(\tan^2(\phi_M) + \tan(\phi_M \sqrt{\tan^2(\phi_M) + 1}))$$
 (4.6)

2. From Eq. 4.4 we have:

$$\omega_z = \frac{\omega_{ubg}}{\sqrt{\frac{C_1}{C_2} + 1}} \tag{4.7}$$

$$C_1 = \frac{1}{\omega_z R}; C_2 = \frac{C_1}{K_c};$$
 (4.8)

3. From aforementioned equations, we can determine the value for I_{CP} :

$$I_{CP} = \frac{2\pi C_2}{K_{VCO}} \cdot \omega_{ugb}^2 \cdot \sqrt{\frac{\omega_{p3}^2 + \omega_{ugb}^2}{\omega_z^2 + \omega_{ugb}^2}}$$
(4.9)

PLL Verilog AMS Modeling from Ashley

*Adapted from Ratan Thesis "Design of a Phase Locked Loop Based Clocking Circuit for High Speed Serial Link Applications"

MATLAB Simuation

59.466816794831374

Transient Simulation

average freq(v("/VOUT" ?result "tran") "rising" ?xName "time" ?mode "auto" ?threshold 0.0)

PLL Practical Design Example

	Spec.	Result
Kvco	< 300MHz/V	216 ~ 274MHz/V
Power	< 9mW	2.0 ~ 2.5mW @ 324MHz
Locking Time	< 30us	< 10usec
Wc	< (1/10)*Wi	22 ~ 45
Wz	> 3Wc	3.76 ~4.77
Wp	< Wc/3	3.94 ~ 4.64
Damping Factor	~ 1.0	1.006 ~ 1.133
Phase Margin	> 50	> 51.97
Jitter(peak-to-peak)	< 0.1 UI (~300ps)	VCO: ~50ps, PLL: ~65ps
Jitter_rms	10 ⁻⁷ BER (~30ps)	VCO: ~7.5ps, PLL: ~11 ps

• ICP = 16uA, Rz=21.8k, Cz=29.1pF, Cp=1.77pF

Behavioral Model

- Open-Loop Transfer Function
- Natural Frequency (Wn)
- Damping Factor (ζ)
- Crossover Frequency (Wc)
- Stability Criteria
- Phase Margin

$$PM = \tan^{-1} \left(\frac{\omega_c}{\omega_z} \right) - \tan^{-1} \left(\frac{\omega_c}{\omega_{p2}} \right)$$

$$TF(s) = \frac{I_{CP}K_{VCO}}{2\pi N} \frac{1 + sR_zC_z}{s^2(C_z + C_p)(1 + sR_zC_p)}$$

$$\omega_n = \sqrt{\frac{I_{CP} K_{VCO}}{2\pi C_z N}} \qquad \zeta = \frac{R_z}{2} \sqrt{\frac{C_z I_{CP} K_{VCO}}{2\pi N}}$$

$$\omega_c = \frac{I_{CP} K_{VCO} R_z}{2\pi C_z N} \frac{C_z}{C_z + C_p}$$

$$\omega_n^2 < \frac{\omega_{in}^2}{\pi (C_z R_z \omega_{in} + \pi)}$$

Behavioral Simulation

Charge Pump

Star-up Circuit for 11 state

Top Simulation

