Теортест-1 (Вариант 84)

Тема – определенный интеграл

Задача 1

Пусть $f \in R[a,b]$, $F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F не убывает на [a, b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. F первообразная для f на [a, b];
- 4. $\int_a^b f(x)dx = F(b) F(a);$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-1, 10];
- 2. [-2, 20];
- 3. [-10, 20];
- 4. [-1, 20];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. Длина любой кривой конечна;
- 2. Любая кривая имеет бесконечно много различных параметризаций;
- 3. Кусочно-гладкая кривая спрямляема;
- 4. Длины противоположных путей равны;
- 5. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;

Задача 4

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = du + C;
- 2. u = dv + C:
- 3. du = vdt;
- 4. vdt = u'dt;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) = f(b) = 1;
- 2. f > 0 на [a, b];
- 3. f(a) > 0, f(b) > 0;
- 4. f непрерывна в точке a и f(a) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 2. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 3. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$
- 4. $2 \int f'(x) \sqrt{x} dx = 2 \sqrt{x} f(x) \int \frac{f(x)}{\sqrt{x}} dx;$

Задача 7

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если f и g интегрируемы на [a,b], то $f \cdot g$ тоже интегрируема на [a,b];
- 2. Если $c \in [a, b]$ и f интегрируема на [a, c] и на (c, b], то f интегрируема и на [a, b];
- 3. Если $c \in [a, b]$ и f интегрируема на [a, c) и на [c, b], то f интегрируема и на [a, b];
- 4. Если f > 0 и интегрируема на [a, b], то 1/f тоже интегрируема на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \exists \xi \colon s_{\tau} = \sigma_{\tau}(\xi);$
- 2. $\forall \tau \colon s_{\tau} < S_{\tau};$
- 3. $\forall \tau \ \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 4. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем одной точки равен нулю;
- 2. если $A \subset B$, то объем A меньше объема B;
- 3. объем любого сечения тела A равен нулю;
- 4. объем A всегда неотрицателен;

Задача 10

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 2. $\frac{x^9}{x^5+1}$;
- 3. $\frac{2x+1}{x^2(x+1)^2}$;
- 4. $\frac{2x+1}{x^2+x+1}$