Curve Fitting

Part-11

MA2103 - 2023

Least Square fit; a It. line We have det of data {(xi, yi)}, we want to fit best st. line, given beg y: an + b The not have seen that b = 1 2 32 - a 2 22 $\pi = 127 \chi^2$ 3 = 1 Nb= 2 - a =

$$\alpha = (\Xi'y)(\Xi'x^2) - (\Xi'x)(\Xi'xy)$$

$$\pi \Xi'x^2 - (\Xi'x)^2$$

$$\alpha = \Xi'(x - \bar{x})(y - \bar{y})$$

$$\Xi'(x - \bar{x})^2$$

$$\exists \alpha + b$$

Simulation

- 1. We don't have real data to work with!
- 2. First we generated a data set with known st.line, i.e. known $a = a_i$ and $b = b_i$, add noise (Gaussian random number with known $\sigma^2 = \sigma_i^2$).
- 3.We run the Least square algorithm on the data set, estimate $a=a_o$ and $b=b_0$ for modely = $a\,x+b$, compare with the original input a_i and b_i
- 4. Compute the error i.e $\sigma^2 = \sigma_o^2$ and compare with σ_i^2