LEXICAL ANALYZER AND PARSER

Disusun Untuk Memenuhi Tugas Besar Teori Bahasa Automata

Disusun oleh:

1.	Hilman Taris Muttaqin	(1301204208)
2.	Adel Naufal	(1301204208)
3	Muhammad Daffa Fauzan	(1301204208)

FAKULTAS INFORMATIKA
TELKOM UNIVERSITY
2022

Daftar Isi

CONTEXT FREE GRAMMAR	3
FINITE AUTOMATA	3
Subjek	3
Predikat	4
Objek	4
Gabungan	5
C. PARSE TABLE (LL)	6
D. IMPLEMENTASI APLIKASI	6
Implementasi aplikasi Lexical Analyzer	6
E. LANGKAH-LANGKAH PENGGUNAAN	11
Website Lexical Analisis	11

A. CONTEXT FREE GRAMMAR

Context free grammar yang digunakan untuk tugas besar ini adalah Bahasa Sunda. Definisi dari grammar yang dimaksud adalah sebagai berikut:

 $S \rightarrow SB VB OB$

 $SB \rightarrow (saya)$ abdi | (saya) urang | (ibu) indung | (tukang) emang

VB → (mengendarai) tumpak | (memakai) nganggo | (memakan) dahar | (memasak) masak

OB → (mobil) mobil | (cincin) ali | (roti) roti | (kain) kaen | (kecap) kecap | (bawang) bawang

Simbol non-terminal: **S** (starting symbol), **SB** (subjek), **VB** (predikat), **OB** (objek). Simbol terminal: kata dalam bahasa sunda yang sudah didefinisikan.

B. FINITE AUTOMATA

Setelah membuat aturan untuk grammar yang akan digunakan nantinya, langkah selanjutnya adalah membuat finite automata sebagai rules of state yang akan digunakan pada program lexical analyzer yang akan dibuat. Bentuk model finite automata adalah sebagai berikut:

1. Subjek

2. Predikat

3. Objek

4. Gabungan

C. PARSE TABLE (LL)

	abdi	urang	indung	emang	tumpak	nganggo	dahar	masak	mobil	ali	roti	kaen	kecap	bawang
	NN	NN	NN	NN					NN	NN	NN	NN	NN	NN
S	VB	VB	VB	VB	error	error	error	error	VB	VB	VB	VB	VB	VB
	OB	ОВ	ОВ	OB					ОВ	ОВ	ОВ	ОВ	ОВ	OB
NN	abdi	urang	indung	emang	error	error	error	error	error	error	error	error	error	error
VB	error	error	error	error	tumpak	nganggo	dahar	masak	error	error	error	error	error	error
ОВ	error	error	error	error	error	error	error	error	mobil	ali	roti	kaen	kecap	bawang

D. IMPLEMENTASI APLIKASI

Source code:

https://github.com/Hilmantm/lexicala-analyzer-and-parser

a. Implementasi aplikasi Lexical Analyzer

Tampilan untuk website

```
index.html M X Js lexical_analyzer.js
                                         ① README.md U ● ■ Preview README.md
index.html
      <!DOCTYPE html>
       <html lang="en"
           <meta charset="UTF-8">
           <meta http-equiv="X-UA-Compatible" content="IE=edge">
           <meta name="viewport" content="width=device-width, initial-scale=1.0">
           <title>Lexical Analyzer</title>
       <body class="container mt-5">
           <div class="card">
               <div class="card-body">
                        <h5 class="card-title">Lexical Analyzer</h5>
                        <h6 class="card-subtitle text-muted">Bahasa Sunda</h6>
Input berupa bahasa sunda dengan kriteria 3 kata seperti subjek, predikat, dan objek
                           <label for="input_kalimat" class="form-label">Input kalimat</label>
<input type="text" class="form-control" id="input_kalimat" required placeholder="ex: abdi nganggo mobil">
                         <button type="submit" id="btn-analyze" class="btn btn-primary">
                            Analyze
                             <div class="spinner-border text-light spinner-border-sm ms-2" id="loading" style="display: none" role="status">
                                  <span class="visually-hidden">Loading...</span>
                           <label for="result" class="form-label">Hasil</label>
<input type="text" class="form-control" disabled id="result">
                         <button type="button" id="btn-clear" class="btn btn-danger">
                            Clear
           <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/js/bootstrap.bundle.min.js"
integrity="sha384-pprn3073KE6tl6bjs2QrFaJGz5/SUSLqktiwsUTF55Jfv3qYSDhgCecCxMW52nD2" crossorigin="anonymous"></script>
           <script type="text/javascript" src="./lexical_analyzer.js"></script>
```

Logic untuk website lexical analyzer

```
JS lexical_analyzer.js X 1 README.md U 1 Improview README.md
index.html M
Js lexical_analyzer.js > ...
       var inputKalimat = document.getElementById('input_kalimat');
       var hasil = document.getElementById('result');
       var clear = document.getElementById('btn-clear');
       var loading = document.getElementById('loading');
       var form = document.getElementById('form')
       var transition_table = {};
       var state_list = [];
       var alphabet_list = [];
       for(var i = 32; i <= 126; i++) {
            alphabet_list.push(String.fromCharCode( i ))
       for(let i = 1; i <= 46; i++) {
           state_list.push('q' + i)
       for(var state in state_list) {
            for(alphabet in alphabet_list) {
                transition_table[[state_list[state], alphabet_list[alphabet]]] = 'error'
            transition_table[[state_list[state], '#']] = 'error'
            transition_table[[state_list[state], ' ']] = 'error'
       transition_table['q1', ' '] = 'q1'
       transition_table[['q9', 'n']] = 'q2'
       transition_table[['q9', 'd']] = 'q10'
transition_table[['q9', 'e']] = 'q14'
       transition_table[['q9', 'u']] = 'q18'
  34
       transition_table[['q9', 'i']] = 'q19'
       transition_table[['q9', 'b']] = 'q22'
       transition_table[['q9', 'k']] = 'q25'
       transition_table[['q9', 'm']] = 'q31'
       transition_table[['q9', 't']] = 'q38'
       transition_table[['q9', 'a']] = 'q42'
       transition_table[['q9', 'r']] = 'q45'
       transition_table[['q8', ' ']] = 'q9'
       transition_table[['q8', '#']] = 'accept'
transition_table[['q9', ' ']] = 'q9'
transition_table[['q9', '#']] = 'accept'
```

```
index.html M
Js lexical_analyzer.js > ...
        // transition table for: nganggo
        transition_table[['q1', 'n']] = 'q2'
        transition_table[['q2', 'g']] = 'q3'
        transition_table[['q3', 'a']] = 'q4'
        transition_table[['q4', 'n']] = 'q5'
        transition_table[['q5', 'g']] = 'q6'
        transition_table[['q6', 'g']] = 'q7'
        transition_table[['q7', 'o']] = 'q8'
        transition_table[['q1', 'd']] = 'q10'
transition_table[['q10', 'a']] = 'q11'
transition_table[['q11', 'h']] = 'q12'
transition_table[['q12', 'a']] = 'q13'
transition_table[['q13', 'r']] = 'q8'
        transition_table[['q1', 'e']] = 'q14'
        transition_table[['q14', 'm']] = 'q15'
        transition_table[['q15', 'a']] = 'q16'
        transition_table[['q16', 'n']] = 'q17'
        transition_table[['q17', 'g']] = 'q8'
        transition_table[['q1', 'u']] = 'q18'
        transition_table[['q18', 'r']] = 'q15'
        transition_table[['q1', 'i']] = 'q19'
        transition_table[['q19', 'n']] = 'q20'
        transition_table[['q20', 'd']] = 'q21'
        transition_table[['q21', 'u']] = 'q16'
        transition_table[['q1', 'b']] = 'q22'
        transition_table[['q22', 'a']] = 'q23'
transition_table[['q23', 'w']] = 'q24'
        transition_table[['q24', 'a']] = 'q16'
        transition_table[['q1', 'k']] = 'q25'
        transition_table[['q25', 'e']] = 'q26'
        transition_table[['q26', 'c']] = 'q27'
transition_table[['q27', 'a']] = 'q28'
        transition_table[['q28', 'p']] = 'q8'
        transition_table[['q25', 'a']] = 'q29'
```

```
index.html M
                           JS lexical_analyzer.js X 🐧 README.md U 💿 🗟 Preview README.md
lexical_analyzer.js > ...
         transition_table[['q28', 'p']] = 'q8'
          transition_table[['q25', 'a']] = 'q29'
transition_table[['q29', 'e']] = 'q30'
transition_table[['q30', 'n']] = 'q8'
          transition_table[['q1', 'm']] = 'q31'
transition_table[['q31', 'o']] = 'q32'
transition_table[['q32', 'b']] = 'q33'
transition_table[['q33', 'i']] = 'q34'
transition_table[['q34', 'l']] = 'q8'
          transition_table[['q31', 'a']] = 'q35'
          transition_table[['q35', 's']] = 'q36'
transition_table[['q36', 'a']] = 'q37'
          transition_table[['q37', 'k']] = 'q8'
          transition_table[['q1', 't']] = 'q38'
          transition_table[['q38', 'u']] = 'q39'
          transition_table[['q39', 'm']] = 'q40'
transition_table[['q40', 'p']] = 'q41'
transition_table[['q41', 'a']] = 'q37'
          // transition table for: abdi
          transition_table[['q1', 'a']] = 'q42'
          transition_table[['q42', 'b']] = 'q43'
transition_table[['q43', 'd']] = 'q44'
          transition_table[['q44', 'i']] = 'q8'
          // transition table for: ali
          transition_table[['q42', 'l']] = 'q44'
          transition_table[['q1', 'r']] = 'q45'
          transition_table[['q45', 'o']] = 'q46'
transition_table[['q46', 't']] = 'q44'
           form.onsubmit = (event) => {
                 event.preventDefault()
                 loading.style = 'display: inline-block'
```

```
index.html M
                 lexical_analyzer.js > ...
       transition_table[['q1', 'r']] = 'q45'
       transition_table[['q45', 'o']] = 'q46'
transition_table[['q46', 't']] = 'q44'
       form.onsubmit = (event) => {
           event.preventDefault()
           loading.style = 'display: inline-block'
          var indexChar = 0;
          var state = 'q1';
          var currentToken = '';
          var validation = '';
          var inputChar = inputKalimat.value + '#';
           console.log(inputChar);
           while (state != 'accept') {
              var currentChar = inputChar.charAt(indexChar)
              currentToken += currentChar
              state = transition_table[[state, currentChar]]
               if(state == 'q8') {
                  console.log("valid gais")
                  validation += "valid "
                  currentToken = ''
               if(state == 'error') {
                  console.log("error")
                  validation += "error "
                  break;
               indexChar += 1
           console.log(validation);
           hasil.value = validation.trim();
           loading.style = 'display: none'
       clear.onclick = (event) => {
           inputKalimat.value = "";
          hasil.value = "";
       3
```

E. LANGKAH-LANGKAH PENGGUNAAN

a. Website Lexical Analisis

Clone atau download aplikasi dari https://github.com/Hilmantm/lexicala-analyzer-and-parser
Setelah itu buka file **index.html** di browser.

Tampilan akan seperti ini:

Setelah berhasil dibuka, maka ketikkan inputan berupa subjek, predikat, dan objek dalam bahasa sunda.

Hasil akan muncul pada field hasil berupa valid atau error.

Contoh input:

1. abdi tumpak mobil

hasil:

valid valid valid

2. abdi numpak mobil

hasil:

valid error

program akan berhenti ketika terdeteksi kata yang error.