

Standardisierte digitale Daten für den energieeffizienten Betrieb von Anlagen der technischen Gebäudeausrüstung

Florian Stinner

Wissenschaftlicher Mitarbeiter

RWTH Aachen / E.ON ERC

Unter der Schirmherrschaft des

Berlin, 22./23. März 2018

Energieströme können Schwerpunkte der Analyse ermitteln

Einschaltzeiten von Anlagen können Einblick in Betrieb geben

Zeitreihen können Zustände ermitteln

- → schnell komplex
- → automatische Auswertungen liefern Hilfestellung

Icons made by Freepik from Flaticon (is licensed by CC BY 3.0).

90 % der Flächen schlecht geregelt [1]

Quellen: [1] Waide, P., Ure, J., Karagianni, N., Smith, G., Bordass, B., 2014. The scope for energy and CO2 savings in the EU through the use of building automation technology: Final Report, Waide Strategic Efficiency Limited, White Paper.

90 % der Flächen schlecht geregelt [1]

90 % sehen min. hohes Energieeinsparpotential durch Gebäudeautomation [2]

Quellen: [1] Waide, P., Ure, J., Karagianni, N., Smith, G., Bordass, B., 2014. The scope for energy and CO2 savings in the EU through the use of building automation technology: Final Report, Waide Strategic Efficiency Limited, White Paper.

[2]. Schild, T., Fütterer, J., Müller, D., 2017. Gebäudeautomationssysteme in der Praxis, White Paper.

90 % der Flächen schlecht geregelt [1]

54 % nehmen GA-Daten auf [3]

90 % sehen min. hohes Energieeinsparpotential durch Gebäudeautomation [2]

Quellen: [1] Waide, P., Ure, J., Karagianni, N., Smith, G., Bordass, B., 2014. The scope for energy and CO2 savings in the EU through the use of building automation technology: Final Report, Waide Strategic Efficiency Limited, White Paper.

[2]. Schild, T., Fütterer, J., Müller, D., 2017. Gebäudeautomationssysteme in der Praxis, White Paper. [3] Davies, J., 2014. Three Big Myths About Big Data, GreenBiz Group Inc, White Paper.

90 % der Flächen schlecht geregelt [1]

33 % nehmen TGA-Daten auf [3]

90 % sehen min. hohes Energieeinsparpotential durch Gebäudeautomation [2]

Quellen: [1] Waide, P., Ure, J., Karagianni, N., Smith, G., Bordass, B., 2014. The scope for energy and CO2 savings in the EU through the use of building automation technology: Final Report, Waide Strategic Efficiency Limited, White Paper.

[2]. Schild, T., Fütterer, J., Müller, D., 2017. Gebäudeautomationssysteme in der Praxis, White Paper. [3] Davies, J., 2014. Three Big Myths About Big Data, GreenBiz Group Inc, White Paper.

90 % der Flächen schlecht geregelt [1]

33 % nehmen TGA-Daten auf [3]

90 % sehen min. hohes Energieeinsparpotential durch Gebäudeautomation [2]

49 % mit Qualität und Quantität unzufrieden [3]

Quellen: [1] Waide, P., Ure, J., Karagianni, N., Smith, G., Bordass, B., 2014. The scope for energy and CO2 savings in the EU through the use of building automation technology: Final Report, Waide Strategic Efficiency Limited, White Paper.

[2]. Schild, T., Fütterer, J., Müller, D., 2017. Gebäudeautomationssysteme in der Praxis, White Paper. [3] Davies, J., 2014. Three Big Myths About Big Data, GreenBiz Group Inc, White Paper.

VDI 3814 Blatt 1 DIN EN 81346-1 BacNet 150 16739 (IFC4)

Normen oder normähnliche Standards analysiert

VDI 3814 Blatt 1
DIN EN 150 16484
DIN EN 81346-1 150 16739 (IFCA)

Project Haystack Brick Schema Fraunhofer ISE

Standards der Forschung analysiert

Standardisierung?

VDI 3814 Blatt 1 DIN EN 81346-1 BacNet 150 16739 (IFC4)

Project Haystack Brick Schema Energy ADE BEDES Eraunhofer ISE

BLB NRW Stadt Frankfurt

Köln Bonn Airport
Köln Bonn München
RWTH Aachen
Universität Duisburg Essen
Universität

Forderungen von Bauherren analysiert

Standardisierung?

- Unterscheidung der Vorgaben hinsichtlich
 - Aufbau
 - Kategorien
 - **■** Trennzeichen
 - Begrenzungen in Zeichenanzahl
 - **■** Vokabular
 - Eingliederung in Organisationsstrukturen
 - ⇒Automatische Auswertung der Gebäudeautomation wird erschwert
 - ⇒Potentielle Effizienzsteigerung wird nicht ausgeschöpft

Lösung: Buildings Unified Data point naming schema for Operation management

- Potential der Effizienzsteigerung nutzen durch standardisierten objektorientierten Datenpunktschlüssel
- Erkannte Anforderungen an Schlüssel:
 - Hoher Grad an Flexibilität
 - Hoher Standardisierungsgrad
 - **■** Interpretation durch Mensch und Maschine
 - Zuordnung der Komponenten zu Positionen im System

Team

- Grundentwicklung von Fraunhofer ISE
 - Nicolas Réhault
 - **■** Tim Rist

- Weiterentwicklung von E.ON ERC
 - **≡** Florian Stinner
 - **■** Alina Kornas
 - **■** Marc Baranski
 - **■** Dirk Müller

Vorschlag für standardisierten Datenpunktschlüssel

Spezifizierung aller Kategorien und Ergänzung von optionalen Bezeichnungen (z.B. auf Bauplänen zu finden)

Icons made by Smashicons from Flaticon (is licensed by CC BY 3.0).

Eingliederung in den Planungsprozess

Anwendung Datenpunktschlüssel Excel-Werkzeug

Alter Datenpunktschlüssel	Gebäud	System		Spezifizg.	-	Bezeich _	Bauteil/Sı	. Spezifizg	Bezeich_
4120.H02 .DEALS01 Heizung Not-Aus	4120	Kessel				H02.1	Schalter	Not Aus	
4120.H02 .AASYY01 Ventil Kessel-1		Kessel Kühlturm		₹		H02.1	Ventil	Verteil	Y01
4120.H02 .AEMWB01 Temp VL Kessel1	4120	Luft	•	*		H02.1	Sensor	Temperatur	B01
4120.H02 .DEBMA01 Kessel1 Betrieb		Lüftungsmaschine Solarthermie				H02.1			
4120.H02 .DESMA01 Kesselsteu STO		Speicher Unterverteiler				H02.1			
4120.H02DASBA01_Kesselsteuerung	4120	Unterverteilsystem •				H02.1			
4120.H02DEBMM01_Pumpe K-1 Anf	4120	Kessel				H02.1	Pumpe		M01.K1
4120.H02DEBMM01_Pumpe K-2 Anf	4120	Kessel				H02.1	Pumpe		M01.K2
4120.H02AASYA01_Sollwert Brenner	4120	Kessel				H02.1			
4120.H02AEMWB06_Temp RL Kessel1	4120	Kessel				H02.1	Sensor	Temperatur	B06
4120.H02DASBM01_Pumpe Kessel-1	4120	Kessel				H02.1	Pumpe		M01
4120.H02DEBMM01_Pumpe Kessel-1	4120	Kessel				H02.1	Pumpe		M01
4120.H02DESMM01_Pumpe Kessel-1	4120	Kessel				H02.1	Pumpe		M01
4120.H02AEMWB03_Temp hydr Weich	4120	Kessel				H02.1	Sensor	Temperatur	B03

Anwendung Datenpunktschlüssel Excel-Werkzeug

Alter Datenpunktschlüssel	Datenpunkt	. Spezifizierung _	_ Funktionsart	Übersetzung in BUDO
4120.H02DEALS01_Heizung Not-Aus	Störung	Not-Aus	Digitaler Eingang (DE/BE)	4120//BOI-H02.1_SW.EMR_AL.EMR_BI
4120.H02AASYY01_Ventil Kessel-1	Stellbefehl	Position	Analoger Ausgang (AA)	4120//BOI-H02.1_VAL.DIV-Y01_WS.H.SUP.PRIM_SEV.POS_AO
4120.H02AEMWB01_Temp VL Kessel1	Messwert	Temperatur	Analoger Eingang (AE)	4120//BOI-H02.1_SEN.T-B01_WS.H.SUP.PRIM_MEA.T_AI
4120.H02DEBMA01_Kessel1 Betrieb	Betriebsmeldung		Digitaler Eingang (DE/BE)	4120//BOI-H02.1_STAT_BI
4120.H02DESMA01_Kesselsteu STO	Störung		Digitaler Eingang (DE/BE)	4120//BOI-H02.1_AL_BI
4120.H02DASBA01_Kesselsteuerung	Schaltbefehl	Freigabe	Digitaler Ausgang (DA/BA)	4120//BOI-H02.1_COM.CLEA_BO
4120.H02DEBMM01_Pumpe K-1 Anf	Betriebsmeldung		Digitaler Eingang (DE/BE)	4120//BOI-H02.1_PU-M01.K1_STAT_BI
4120.H02DEBMM01_Pumpe K-2 Anf	Betriebsmeldung		Digitaler Eingang (DE/BE)	4120//BOI-H02.1_PU-M01.K2_STAT_BI
4120.H02AASYA01_Sollwert Brenner	Stellbefehl	Temperatur	Analoger Ausgang (AA)	4120//BOI-H02.1_SEV.T_AO
4120.H02AEMWB06_Temp RL Kessel1	Messwert	Temperatur	Analoger Eingang (AE)	4120//BOI-H02.1_SEN.T-B06_WS.H.RET.PRIM_MEA.T_AI
4120.H02DASBM01_Pumpe Kessel-1	Schaltbefehl		Digitaler Ausgang (DA/BA)	4120//BOI-H02.1_PU-M01_WS.H.RET.PRIM_COM_BO
4120.H02DEBMM01_Pumpe Kessel-1	Betriebsmeldung		Digitaler Eingang (DE/BE)	4120//BOI-H02.1_PU-M01_WS.H.RET.PRIM_STAT_BI
4120.H02DESMM01_Pumpe Kessel-1	Störung		Digitaler Eingang (DE/BE)	4120//BOI-H02.1_PU-M01_WS.H.RET.PRIM_AL_BI
4120.H02AEMWB03_Temp hydr Weich	Messwert	Temperatur	Analoger Eingang (AE)	4120//BOI-H02.1_SEN.T-B03_HYDS_MEA.T_AI

Datenpunktschlüssel und Datenvisualisierung

■ Beispiel Heizkreis

Verfügbare Datenpunkte:

MWME__WTH____OA__MEA_T

MWME__WC.H.NO___HW_SUP.SEC_MEA_T

MWME__WC.H.NO___HW_RET.SEC_MEA_T

MWME__WC.H.NO_PU _ HW_SUP.SEC_SIG_CTRLSIG

Datenpunktschlüssel und Datenvisualisierung

■ Beispiel Heizkreis

Verfügbare Datenpunkte:

MWME__WTH____OA__MEA_T

MWME__WC.H.NO___HW_SUP.SEC_MEA_T

MWME__WC.H.NO___HW_RET.SEC_MEA_T

MWME__WC.H.NO_PU _ _HW_SUP.SEC_SIG_CTRLSIG

Datenpunktschlüssel und Datenvisualisierung

■ Beispiel Heizkreis

Verfügbare Datenpunkte:

MWME__WTH____OA__MEA_T

MWME__WC.H.NO___HW_SUP.SEC_MEA_T

MWME__WC.H.NO___HW_RET.SEC_MEA_T

MWME__WC.H.NO_PU__HW_SUP.SEC_SIG_CTRLSIG

Datenpunktschlüssel und automatisierte Fehlererkennung

■ Beispiel Heizkreis

Verfügbare Datenpunkte:

THW50_5.OG_WTH____OA__MEA_T
THW50_5.OG_WC.H.RAD_PU__HW_SIG_STAT
THW50_5.OG_WC.H.RAD__MTR.H_HW_SUP_MEA_T
THW50_5.OG_WC.H.RAD__MTR.H_HW_RET_MEA_T

Datenpunktschlüssel und BIM

■ Semantische Interoperabilität zwischen BIM, Gebäudeautomation und Betriebsführungsmethoden

Anwendung Datenpunktschlüssel BIM

Wirtschaftliches Potential Datenpunktschlüssel

Beispiel: Kantine eines Großbetriebes

- Nur Energieeffizienzmaßnahmen betrachtet
- Standardisierte vs. Nicht standardisierte Daten

Kennziffer	Wert
Investition	-4.600 €
Zahlungen pro Jahr	+5.800€
Kapitalwert	+51.600 €

Zinssatz: 4 %

Laufzeit: 10 Jahre

Take Aways

Standardisiert benannte Datenpunkte ermöglichen standardisierte Anwendung von Algorithmen

Schnelleres Ermitteln von Effizienzpotentialen und Fehlern im System

Einfach anzuwendendes Werkzeug

Hohes wirtschaftliches Potential von einheitlicher Benennung von Datenpunkten

Vielen Dank für die Aufmerksamkeit!

Excel-Werkzeug verfügbar unter:

https://www.ebc.eonerc.rwth-aachen.de/cms/E-ON-ERC-EBC/Forschung/OPEN-SOURCE/~qajk/Standardisierte-Bezeichnung-zeitaufgeloe/

https://github.com/RWTH-EBC/BUDO

Florian Stinner
T +49 241 80 49623
F +49 241 80 49769
fstinner@eonerc.rwth-aachen.de
http://www.eonerc.rwth-aachen.de

E.ON Energy Research Center Mathieustraße 10 52074 Aachen

Wir danken für die finanzielle Unterstützung durch das *BMWi* (Bundesministerium für Wirtschaft und Energie), Fördernummer 03ET1022A, 03SBE0006A, 03ET1373A.

