Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001717

International filing date: 04 February 2005 (04.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-028404

Filing date: 04 February 2004 (04.02.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 2月 4日

出 願 番 号 Application Number:

特願2004-028404

[ST. 10/C]:

[JP2004-028404]

出 願 人
Applicant(s):

学校法人神奈川大学 JSR株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月21日

1.000

【書類名】 特許願 【整理番号】 WP04549 【提出日】 平成16年 2月 4日 【あて先】 特許庁長官 今井 康夫 殿 【国際特許分類】 C07C 13/00 【発明者】 神奈川県藤沢市本藤沢三丁目6番8号 【住所又は居所】 【氏名】 西久保 忠臣 【発明者】 神奈川県横浜市神奈川区六角橋四丁目11番28号 ラークヒル 【住所又は居所】 ズB棟102号 【氏名】 工藤 宏人 【発明者】 【住所又は居所】 神奈川県座間市南栗原二丁目2番45号 【氏名】 三谷 浩司 【特許出願人】 【識別番号】 592218300 【氏名又は名称】 学校法人神奈川大学 【特許出願人】 【識別番号】 000004178 【氏名又は名称】 J S R 株式会社 【代理人】 【識別番号】 100088616 【弁理士】 【氏名又は名称】 渡邉 一平 【選任した代理人】 【識別番号】 100089347 【弁理士】 【氏名又は名称】 木川 幸治 【選任した代理人】 【識別番号】 100098213 【弁理士】 【氏名又は名称】 樋口 武 【手数料の表示】 【予納台帳番号】 009689 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 要約書 1 【物件名】 【包括委任状番号】 0305595 【包括委任状番号】 0305596

【包括委任状番号】

9901258

【書類名】特許請求の範囲

【請求項1】

式(1)で示されるカリックスアレーン系誘導体。

【化1】

(式中、 R^1 及び R^2 は相互に独立に炭素数 $1\sim 8$ の置換又は非置換アルキレン基; $X^1\sim$ X^4 は相互に独立に炭素数 $1\sim 1$ 0 の置換又は非置換のアルキル基、炭素数 $2\sim 1$ 0 の置 換又は非置換のアルケニル基、炭素数2~10の置換又は非置換のアルキニル基、炭素数 $7 \sim 1$ 0の置換又は非置換のアラルキル基、炭素数 $1 \sim 1$ 0の置換又は非置換のアルコキ 官能基を有する基、アルカリ可溶性基を有する基、又はアルキル鎖の炭素数が1~8の置 換アルキル基(但し、 $Z^1 \sim Z^8$ の少なくとも1つは水素原子以外の基である)を表し、; $q^{1} \sim q^{4}$ は相互に独立に 0 又は 1 の整数; n 1 は 2 又は 3 の整数を表す。)

【請求項2】

式 (1) において、 $Z^1 \sim Z^8$ で表される基のうち、少なくとも1つの基が重合性官能基を 有する請求項1に記載のカリックスアレーン系誘導体。

【請求項3】

前記重合性官能基が、重合性不飽和基及び/又は環状エーテル基である請求項2に記載の カリックスアレーン系誘導体。

【請求項4】

式 (1) において、 $Z^1\sim Z^8$ で表される基のうち、少なくとも1つがアルカリ可溶性基を 有する請求項1~3の何れか1項に記載のカリックスアレーン誘導体。

【請求項5】

前記アルカリ可溶性基が、カルボキシル基、アミノ基、スルホンアミド基、スルホン酸基 及びリン酸基から選ばれた少なくとも1種である請求項4に記載のカリックスアレーン系 誘導体。

【請求項6】

式 (1) において、 $Z^1\sim Z^8$ で表される基のうち、少なくとも1つが重合性官能基及びア ルカリ可溶性基の両方を有する請求項1~5の何れか1項に記載のカリックスアレーン系 誘導体。

【請求項7】

下記式(2)で示されるカリックスアレーン系誘導体。

【化2】

$$(X^{8})_{q8}$$

$$O$$

$$CH$$

$$CH$$

$$O$$

$$(X^{7})_{q7}$$

$$O$$

$$CH$$

$$CH$$

$$CH$$

$$R^{4}$$

$$Y^{2}$$

$$O$$

$$(X^{6})_{q6}$$

$$n2$$

(式中、 R^3 及び R^4 は相互に独立に炭素数 $1\sim 8$ の置換又は非置換アルキレン基; $X^5\sim$ X^8 は相互に独立に炭素数 $1\sim 1$ 0 の置換又は非置換アルキル基、炭素数 $2\sim 1$ 0 の置換 又は非置換アルケニル基、炭素数 $2\sim 1$ 0 の置換又は非置換アルキニル基、炭素数 $7\sim 1$ 0の置換又は非置換アラルキル基、炭素数1~10の置換又は非置換アルコキシ基、或い は置換又は非置換のフェノキシ基; $Y^1 \sim Y^4$ は相互に独立に炭素数 $1 \sim 8$ の置換又は非置 換アルキレン基を表し、; $q^5 \sim q^8$ は相互に独立に0又は1の整数;n2は2又は3の整 数を表す。)

【請求項8】

式 (1) 又は式 (2) において、n1又はn2が3である請求項 $1\sim7$ の何れか1項に記 載のカリックスアレーン系誘導体。

【請求項9】

式(1)又は式(2)において、 $X^1\sim X^4$ 又は $X^5\sim X^8$ が各々メチル基である請求項 $1\sim$ 8の何れか1項に記載のカリックスアレーン系誘導体。

【請求項10】

式 (1) 又は式 (2) において、 $q^1 \sim q^4$ 又は $q^5 \sim q^8$ が0である請求項 $1 \sim 8$ の何れか 1項に記載のカリックスアレーン系誘導体。

【請求項11】

式 (1) 又は式 (2) において、 R^1 及び R^2 又は R^3 及び R^4 が相互に独立に、炭素数3、 5、7又は8の置換又は非置換アルキレン基である請求項1~10の何れか1項に記載の カリックスアレーン系誘導体。

【請求項12】

請求項2に記載のカリックスアレーン系誘導体、前記誘導体を溶解する溶剤及び重合開始 剤を含む硬化性組成物。

【請求項13】

請求項4に記載のカリックスアレーン系誘導体及び前記誘導体を溶解する溶剤を含むレジ スト用組成物。

【書類名】明細書

【発明の名称】カリックスアレーン系誘導体及びその組成物

【技術分野】

[0001]

本発明は、新規なカリックスアレーン系誘導体及びその組成物に関し、特に硬化性組成物 やレジストへの利用及び包摂化合物としての利用が期待できる新規なカリックスアレーン 系誘導体、その硬化性組成物及びそのレジスト用組成物に関する。

【背景技術】

[0002]

カリックスアレーン系化合物は、一般にはフェノール、レゾルシノール等のフェノール系 化合物とアルデヒド系化合物の縮合により得られる環状オリゴマーである。近年、カリッ クスアレーン系化合物はホストーゲスト化学の分野においてクラウンエーテル、シクロデ キストリンに次ぐ、第三の包接化合物として注目されている。

[0003]

更に、カリックスアレーン系化合物は、一分子内に多くの水酸基を有し、熱的安定性に優れ、高いガラス転移温度と高融点を有すること、また構造によっては成膜性を有することから、優れた機能性材料として注目されている。例えば、p-メチルカリックス [6] アレーンへキサアセテートを用いた電子線ネガ型フォトレジストへの応用(例えば、非特許文献 1 参照)や、カリックス [4] レゾルシンアレーン、架橋剤、光酸発生剤に基づくアルカリ現像型のネガ型フォトレジストへの応用(例えば、非特許文献 2 参照)等が報告されている。またカリックスアレーン系化合物を高性能な光硬化材料へ応用することを目的とした、ラジカル重合性官能基、カチオン重合性官能基の導入、及び高解像度のレジスト材料への応用を目的とした保護基の導入によるカリックスアレーン系誘導体の合成及びその光反応特性についての評価が報告されている(例えば、非特許文献 3、4 及び 5 参照)。また、種々のカチオン重合性官能基を有する p-アルキルカリックス [n] アレーン誘導体の合成とその光カチオン重合についての検討が報告されている(例えば、非特許文献 6 参照)。

[0004]

【非特許文献1】Y. Ochiai, S. Manako, H. Yamamoto, T. Teshima, J. Fujita, E. Nomura: J. Photopolymer. Sci. Tech. 13, 413 (2000)

【非特許文献2】T. Nakayama, M. Nomura, K. Haga, M. Ueda:Bull. Chem. Soc. Jpn., 71, 2979 (1998)

【非特許文献3】T. Nishikubo, A. Kameyama, and H. Kudo, K, Tsutsui, : J. Polym. Sci. Part. Part A. Polym. Chem, 39, 1293 (2002)

【非特許文献4】T. Nishikubo, A. Kameyama, and H, Kudo:Polym J., 35, 213 (2003)

【非特許文献 5】 T. Nishikubo, A. Kameyama, and H. Kudo: Am. Chem. Soc, 31, 363

【非特許文献 6】 K. Tsutsui, S. Kishimoto, A. Kameya ma, T. Nishikubo: Polym. Prep. Jpn., 37, 1805 (1999)

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明は、カルセランドのような立体構造を有するカリックスアレーン系の新規な化合物 の誘導体であって、硬化性組成物やフォトレジストへの利用及び包摂化合物としての利用 が可能な新規なカリックスアレーン系誘導体を提供することを特徴とする。

【課題を解決するための手段】

本発明は、式(1)で示されるカリックスアレーン系誘導体を提供するものである。 [0006] [0007] 【化1】

$$Z^{7}O$$
 CH
 CH
 CH
 CH
 $CX^{3})_{q3}$
 $Z^{5}O$
 CH
 CH
 CH
 CH
 $CX^{1})_{q1}$
 CH
 CH
 R^{2}
 OZ^{3}
 OZ^{3}
 OZ^{3}
 OZ^{3}
 OZ^{3}
 $OZ^{4}O$
 OZ^{3}
 OZ^{3}
 OZ^{3}
 $OZ^{4}O$
 OZ^{2}
 OZ^{3}
 OZ^{3}
 $OZ^{4}O$
 OZ^{2}
 OZ^{3}
 $OZ^{4}O$
 OZ^{2}
 OZ^{3}
 $OZ^{4}O$
 OZ^{2}
 OZ^{3}
 $OZ^{4}O$
 OZ^{4

(式中、 R^1 及び R^2 は相互に独立に炭素数 $1\sim 8$ の置換又は非置換アルキレン基; $X^1\sim$ X^4 は相互に独立に炭素数 $1\sim 1$ 0の置換又は非置換アルキル基、炭素数 $2\sim 1$ 0の置換 又は非置換アルケニル基、炭素数 $2\sim 1$ 0 の置換又は非置換アルキニル基、炭素数 $7\sim 1$ 0の置換又は非置換アラルキル基、炭素数 $1\sim1$ 0の置換又は非置換アルコキシ基、或い は置換又は非置換のフェノキシ基; $Z^1\sim Z^8$ は相互に独立に水素原子、重合性官能基を有 する基、アルカリ可溶性基を有する基、又はアルキル鎖の炭素数が1~8の置換アルキル 基(但し、 $Z^1\sim Z^8$ の少なくとも1つは水素原子以外の基である)を表し、; ${\bf q}^1\sim {\bf q}^4$ は 相互に独立に0又は1の整数n1は2又は3の整数を表す。)

[0008]

式 (1) に示される誘導体において、 $Z^1 \sim Z^8$ で表される基のうち、少なくとも1つの基 が重合性官能基を有することが好ましく、重合性官能基が、重合性不飽和基及び/又は環 状エーテル基であることが更に好ましい。また、式(1)に示される誘導体において、Z $^1\sim\mathsf{Z}^8$ で表される基のうち、少なくとも1つがアルカリ可溶性基を有することも好ましく 、アルカリ可溶性基が、カルボキシル基、アミノ基、スルホンアミド基、スルホン酸基及 びリン酸基から選ばれた少なくとも1種であることが更に好ましい。更に、式(1)に示 される誘導体において、 $Z^1\sim Z^8$ で表される基のうち、少なくとも1つが重合性官能基及 びアルカリ可溶性基の両方を有することが好ましい。

[0009]

本発明はまた、下記式(2)で示されるカリックスアレーン系誘導体を提供する。

[0010]

【化2】

$$(X^8)_{q8}$$
 $(Y^3)_{q7}$
 $(X^8)_{q8}$
 $(Y^4)_{q7}$
 $(X^7)_{q7}$
 $(X^7)_{q7}$
 $(X^8)_{q8}$
 $(X^8)_{q8}$

(式中、 R^3 及び R^4 は相互に独立に炭素数 $1\sim 8$ の置換又は非置換アルキレン基; $X^5\sim$ X^8 は相互に独立に炭素数 $1\sim10$ の置換又は非置換アルキル基、炭素数 $2\sim10$ の置換 又は非置換アルケニル基、炭素数2~10の置換又は非置換アルキニル基、炭素数7~1 0の置換又は非置換アラルキル基、炭素数1~10の置換又は非置換アルコキシ基、或い は置換又は非置換のフェノキシ基; $Y^1 \sim Y^4$ は相互に独立に炭素数 $1 \sim 8$ の置換又は非置 換アルキレン基を表し、; $q^5 \sim q^8$ は相互に独立に0又は1の整数; n^2 は2又は3の整 数を表す。)

[0011]

式(1)又は式(2)で示されるカリックスアレーン系誘導体において、n1又はn2が 3であることが好ましい。また、 $X^1 \sim X^4$ 又は $X^5 \sim X^8$ が各々メチル基、或いは $q^1 \sim q^4$ 又は $q^5 \sim q^8$ が0であることが好ましい。また、 R^1 及び R^2 又は R^3 及び R^4 が相互に独立 に、炭素数3、5、7又は8の置換又は非置換アルキレン基であることが好ましい。

[0012]

本発明は更に、式(1)で示されるカリックスアレーン系誘導体において、 $Z^1 \sim Z^8$ で表 される基のうち、少なくとも1つの基が重合性官能基を有する誘導体、誘導体を溶解する 溶剤及び重合開始剤を含む硬化性組成物、及び式 (1) で示されるカリックスアレーン系 誘導体において、 $Z^1 \sim Z^8$ で表される基のうち、少なくとも1つの基がアルカリ可溶性基 を有する誘導体及び誘導体を溶解する溶剤を含むレジスト用組成物を提供する。

【発明の効果】

[0013]

本発明のカリックスアレーン系誘導体は、式(1)又は式(2)で示される基本骨格を有 するため耐熱性が高く、硬化性組成物やレジスト用組成物への利用及び包摂化合物として の利用、更に高機能を有するカリックスアレーン系誘導体の中間体としての利用など幅広 い分野での利用が期待できる。また、本発明のカリックスアレーン系誘導体を含む硬化性 組成物又は成膜性が改良されるため、高い耐熱性を有する膜を形成することができる。

【発明を実施するための最良の形態】

[0014]

以下、本発明の、カリックスアレーン系誘導体について、具体的な実施形態に基づき詳細 に説明するが、本発明は以下の実施形態に限定されるものではない。

[0015]

本発明のカリックスアレーン系誘導体の1つの好ましい形態は、下記、式(1)で示され

る。 [0016]【化3】

(式中、 R^1 及び R^2 は相互に独立に炭素数 $1\sim 8$ の置換又は非置換アルキレン基; $X^1\sim$ X^4 は相互に独立に炭素数 $1\sim 1$ 0の置換又は非置換アルキル基、炭素数 $2\sim 1$ 0の置換 又は非置換アルケニル基、炭素数 $2\sim1$ 0 の置換又は非置換アルキニル基、炭素数 $7\sim1$ 0の置換又は非置換アラルキル基、炭素数 $1\sim10$ の置換又は非置換アルコキシ基、或い は置換又は非置換のフェノキシ基; $Z^1 \sim Z^8$ は相互に独立に水素原子、重合性官能基を有 する基、アルカリ可溶性基を有する基、又はアルキル鎖の炭素数が1~8の置換アルキル 基(但し、 $Z^1\sim Z^8$ の少なくとも1つは水素原子以外の基である)を表し、; ${\bf q}^1\sim {\bf q}^4$ は 相互に独立に0又は1の整数 n 1 は2又は3の整数を表す。)

[0017]

式(1)で示されるカリックスアレーン系誘導体において、 $Z^1 \sim Z^8$ で表される基のうち 、少なくとも1つの基が重合性官能基を有することが好ましい1つの形態である。式(1) で示される誘導体が、重合性官能基を有することにより硬化性組成物に利用可能となる 。また、このような官能基を有することにより、溶剤への溶解性及び成膜性も改善される

重合性官能基としては、重合性不飽和構造を有する基、環状エーテル構造を有する基等が 挙げられる。具体的には、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基 、置換又は非置換のグリシジル基、置換又は非置換のオキセタニル基、置換又は非置換の スピロオルトエステル基等が挙げられる。

[0019]

この形態において、式 (1) で示される誘導体は、上述のような重合性官能基を少なくと も1つ有していれば良いが、硬化の速度を高める観点から更に多くの重合性官能基を有す ることが好ましい。式(1)で示される誘導体は、1つの芳香環に、1つ以上の重合性官 能基を有することが好ましく、1つの芳香環に2つの重合性官能基を有することが更に好 ましい。

式(1)で示されるカリックスアレーン系誘導体における別の好ましい形態は、 $Z^1 \sim Z^8$ で表される基のうち、少なくとも1つがアルカリ可溶性基を有する形態である。カリック スアレーン系誘導体がこのような基を有することによりレジスト用の組成物に好適に利用

[0021]

更に、式(1)で示される誘導体が重合性官能基とアルカリ可溶性官能基の両方を有することが、フォトレジスト用組成物等に好適に用いることができるため好ましい。例えば、このカリックスアレーン系誘導体の膜を形成した後、特定の部分に光を照射するなどして特定の部分を硬化させた後、アルカリ水溶液によりその他の部分を溶解除去することにより、特定パターンの凹凸を形成することができる。

[0022]

アルカリ可溶性基としては、カルボキシル基、アミノ基、スルホンアミド基、スルホン酸 基及びリン酸基等が挙げられる。

[0023]

この形態において、式 (1) で示される誘導体は、上述のようなアルカリ可溶性基を少なくとも1つ有していれば良いが、アルカリ水溶液に対する溶解性を更に高める観点から更に多くのアルカリ可溶性基を有することが好ましい。式 (1) で示される誘導体は、1つの芳香環に、1つ以上のアルカリ可溶性基を有することが更ましく、1つの芳香環に2つのアルカリ可溶性基を有することが更に好ましい。

[0024]

更に、より多くの重合性官能基とアルカリ可溶性基を有することができるという観点から、 $Z^1 \sim Z^8$ で表される基の少なくとも1つの基が重合性官能基及びアルカリ可溶性基の両方を有することも好ましい。

[0025]

式(1)で示されるカリックスアレーン系誘導体において、 $Z^1 \sim Z^8$ で表される基のうち、少なくとも1つの基が、アルキル鎖の炭素数が $1 \sim 8$ の置換アルキル基を有することが好ましい更に別の形態である。例えばアルキル基をスペーサーとして、その先端に上述のような官能基を付けることにより、官能基の自由度が向上し、反応性が向上する。或いは、上述のような官能基を付加又は置換しうる置換基で置換された置換アルキル基を有する誘導体もレジスト用組成物等に使用しうる誘導体を合成するための中間体として好適に用いることができる。更に、上述のような官能基や置換基が保護基により保護された置換アルキル基を有する誘導体も中間体等として好適に用いることができる。

[0026]

本発明において、式(2)で示されるカリックスアレーン系誘導体も好ましい別の形態である。このような構造とすることにより、配座を強固に固定することができ、特定の化合物を包摂する包摂化合物として有用となる。

[0027]

【化4】

$$(X^8)_{q8}$$
 $(Y^3)_{q7}$
 $(X^8)_{q8}$
 $(Y^4)_{q7}$
 $(X^7)_{q7}$
 $(X^8)_{q8}$
 $(Y^4)_{q7}$
 $(X^8)_{q8}$
 $(Y^4)_{q7}$
 $(Y^5)_{q5}$
 $(Y^2)_{q7}$
 $(Y^8)_{q6}$
 $(Y^8)_{q6}$
 $(Y^8)_{q6}$

(式中、 R^3 及び R^4 は相互に独立に炭素数 $1\sim8$ の置換又は非置換アルキレン基; $X^5\sim$ X^8 は相互に独立に炭素数 $1\sim 1$ 0 の置換又は非置換アルキル基、炭素数 $2\sim 1$ 0 の置換 又は非置換アルケニル基、炭素数 $2\sim1$ 0 の置換又は非置換アルキニル基、炭素数 $7\sim1$ 0の置換又は非置換アラルキル基、炭素数 $1\sim1$ 0の置換又は非置換アルコキシ基、或い は置換又は非置換のフェノキシ基; $Y^1 \sim Y^4$ は相互に独立に炭素数 $1 \sim 8$ の置換又は非置 換アルキレン基を表し、; $q^5 \sim q^8$ は相互に独立に0又は1の整数; n^2 は2又は3の整 数を表す。)

[0028]

式(1)又は式(2)で示されるカリックスアレーン系誘導体において、1つの芳香環に おける置換基(各 $X^1\sim X^4$ 又は各 $X^5\sim X^8$)は、なくても良いが、目的に応じて種々の置 換基を有することも可能であり、置換基(各 $X^1 \sim X^4$ 又は各 $X^5 \sim X^8$)としては、炭素数 $1\sim 1$ 0の置換又は非置換アルキル基、炭素数 $2\sim 1$ 0の置換又は非置換アルケニル基、 炭素数 $2\sim1$ 0 の置換又は非置換アルキニル基、炭素数 $7\sim1$ 0 の置換又は非置換アラル キル基、炭素数 $1\sim 1$ 0 の置換又は非置換アルコキシ基、或いは置換又は非置換のフェノ キシ基等を挙げることができる。

[0029]

式(1)又は式(2)に示されるカリックスアレーン系誘導体において、芳香環が1置換 又は非置換のレゾルシン環の場合の芳香環の部分は、通常、式(3)に示される構造とな ることが好ましい。ここで、Xは水素原子又はメチル基であることが好ましい。

[0030] 【化5】

$$Z_{10}O$$

$$(3)$$

(式中、Xは炭素数1~10の置換又は非置換アルキル基、炭素数2~10の置換又は非 置換アルケニル基、炭素数2~10の置換又は非置換アルキニル基、炭素数7~10の置

[0031]

式(1)で示されるカリックスアレーン化合物における R^1 及び R^2 又は式(2)で示されるカリックスアレーン化合物における R^3 及び R^4 は、各々独立して、炭素数 $1\sim 8$ の置換又は非置換アルキレン基である。特に、(R^1 及び R^2)又は(R^3 及び R^4)が、炭素数 3、 5、 7又は 8 のアルキレン基であることが、環状体の基本骨格を容易に形成できる点で好ましい。更に R^1 及び R^2 がいずれも炭素数 3 の直鎖のアルキレン基の場合に非常に収率良く環状 3 量体の基本骨格を形成することができる。

[0032]

式(1)又は式(2)で示されるカリックスアレーン化合物において、n1又はn2は、2又は3、即52量体又は3量体である。2量体又は3量体となったところで容易に環化し、耐熱性の高い骨格となり、幅広い用途に使用可能な誘導体の基本骨格とすることができる。

[0033]

重合性官能基を有するカリックスアレーン系誘導体を硬化性組成物に用いる場合には、一般に、溶剤及び重合開始剤とともに用いる。重合開始剤としては、例えばベンゾイン、ベンゾインエチルエーテル、ジベンジル、イソプロピルベンゾインエール、ベンゾフェノン、ミヒラーズケトンクロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、アセトフェノンジエチルケタール、ベンジルジメチルケタール、αーヒドロキシシクロヘキシルフェニルケトン等の光重合開始剤、熱重合開始剤を挙げることができ、これらの中の少なくとも1種の重合開始剤を用いることが好ましい。

[0034]

好適な溶剤としては、アルコール系溶媒、エーテル系溶媒、ハロゲン化炭化水素系溶媒、 芳香族炭化水素系溶媒、アミド系溶媒等を挙げることができる。

$\{0035\}$

カリックスアレーン系誘導体をフォトレジスト用組成物に用いる場合には、通常上述と同様の溶剤とともに用いる。

[0036]

次に、カリックスアレーン系誘導体の製造方法について説明する。まず、基本骨格を形成するカリックスアレーン系化合物を得る。この化合物は、下記式(4)で示される化合物と下記式(5)で示される化合物を縮合させることにより得ることができる。

[0037]

【化6】

(式中、 X^9 は炭素数 $1\sim10$ の置換又は非置換アルキル基、炭素数 $2\sim10$ の置換又は非置換アルケニル基、炭素数 $2\sim10$ の置換又は非置換アルキニル基、炭素数 $7\sim10$ の置換又は非置換アルコキシ基、或いは置換又は非置換のフェノキシ基; q^9 は0又は1の整数を表す。)

[0038]

【化7】

OHC — R⁵ — CHO

(5)

(式中、R⁵は炭素数1~8の置換又は非置換アルキレン基を示す。)

式(4)で示される化合物は、1置換又は非置換のジヒドロキシベンゼンである。式(4)における X^9 及び q^9 は式(1)における $X^1\sim X^4$ 及び $q^1\sim q^4$ に各々対応し、式(4) における X^9 及び q^9 は式(2)における $X^5\sim X^8$ 及び $q^5\sim q^8$ に各々対応する。式(4) で示される化合物の好ましい具体例としては、レゾルシノール、メチルレゾルシノール、 ブチルレゾルシノール等が挙げられ、これらの中の少なくとも1種の化合物を用いること が好ましい。この中でも特にレゾルシノール及びメチルレゾルシノールが好ましい。

[0040]

式 (5) で示される化合物はジアルデヒド系の化合物であり、式 (5) における \mathbb{R}^5 は、 式 (1) における \mathbb{R}^1 、 \mathbb{R}^2 又は式 (2) における \mathbb{R}^3 、 \mathbb{R}^4 に各々対応する。式 (5) で示 される化合物の具体例としては、1,5-ペンタンジアール、1,7-ヘプタンジアール 、1,9-ノナンジアール、1,10-デカンジアール等が挙げられる。

[0041]

式(4)で示される化合物(以下、化合物(A)という)と、式(5)で示される化合物 (以下、化合物 (B) という) の比に特に制限はないが、収率の観点から、化合物 (B) /化合物(A)が、 $0.05\sim0.85$ の範囲であることが好ましく、 $0.075\sim0.$ 6の範囲であることが更に好ましく、 $0.1\sim0.3$ の範囲であることが特に好ましい。 反応溶液中のモノマー濃度(化合物(A)と(B)の合計の濃度)に特に制限はないが、 収率の観点から2mo1/L以上であることが好ましく、4mo1/L以上であることが 更に好ましく、 $4\sim10$ mo 1/Lの範囲であることが特に好ましい。

これらの化合物を溶媒中、触媒の存在下で脱水縮合させることにより、式(1)における [0042] $Z^1 \sim Z^8$ が総て水素原子であるカリックスアレーン系化合物を得ることができる。触媒と しては酸触媒等が挙げられる。

[0043]

得られたカリックスアレーン系化合物におけるフェノール性水酸基の水素原子を重合性官 能基を有する基、アルカリ可溶性基を有する基、及び/又はアルキル鎖の炭素数が1~8 の置換アルキル基で置換することにより、式(1)で示されるカリックスアレーン系誘導 体を得ることができる。フェノール性水酸基の水素原子の置換は、通常知られている方法 で行うことができる。

[0044]

例えば、ハロゲンやエポキシ基等のフェノール性水酸基との反応性を有する基と重合性官 能基等の所望の官能基とを有する化合物を、THF等の溶媒中、トリエタノールアミンな どの触媒の存在下、カリックスアレーン系化合物に加えて反応させることにより、式(1) で示される誘導体を得ることができる。

[0045]

また、両末端にフェノール性水酸基との反応性を有する基を有する置換アルカン類などを レゾルシノール系のカリックスアレーン化合物と反応させることにより、式(2)で示さ れる誘導体を得ることができる。

【実施例】

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定され るものではない。

[0047]

(参考例:カリックスアレーン系化合物の合成)

レゾルシノール2.20g(20mmo1)をエタノール4.5mLに溶解させ塩酸1. 5mL加えた。この溶液を撹拌しながら5℃まで氷冷し、グルタルアルデヒドの50%水 溶液 0. 4 0 g (2 mm o 1) をゆっくりと滴下した。その後、80℃で48時間加熱し 、濁った黄色の溶液が得られた。この懸濁液をメタノール中に注ぎ、沈殿物をろ過により 取得後、メタノールで3回洗浄した。得られた固体は室温で24時間減圧乾燥した。その 結果、粉末状の淡黄色固体が得られた。構造確認はMALDI-TOF-MS、IR及び 1 $\mathrm{H-NMR}$ で行った。結果を以下に示し、この化合物の構造を式(6)に示す。なお、 式(6)において、各水素原子の位置に付した記号($a\sim f$)は、NMRのデータにおけ る水素の記号に対応するものである。以下、式 (6) に示す化合物をT3という。

[0048]

MALDI-TOF-MS:分子量1705.86の化合物のみが得られたことが示され た。

収量: 0. 43g(収率: 79%)

IR (film法): (cm⁻¹)

 $3\ 4\ 0\ 6\ (\nu_{OH})$; $2\ 9\ 3\ 1\ (\nu_{C-H})$; $1\ 6\ 2\ 1$, $1\ 5\ 0\ 5$, $1\ 4\ 3\ 6\ (\nu_{C=C(aromati})$ c))

¹ H-NMR (500MHz、溶媒CDCl3、内部標準TMS):δ (ppm) = 0.8 $6\sim2$. 35 (b, 32.0 H, $\mbox{H}^{\mbox{\scriptsize a}},~\mbox{H}^{\mbox{\scriptsize b}})$,

3. 98 \sim 4. 22 (m, 4.0H, $\mbox{H}^{\mbox{\scriptsize c}})$,

6. $0.9 \sim 7.42$ (m, 8.0 H, aromatic H^d , H^e)

8. $6.5 \sim 9.56$ (m, 8.0 H, OH^f)

[0049]

【化8】

[0050]

(実施例1:メタクリル酸クロリド (MAC) を用いた誘導体の合成 (ラジカル重合性官 能基の導入))

3. 00g (1. 76mmol, OH当量: 42. 2mmol) のT3をトリエチルアミ ン21.2mL (152mmol) で懸濁させ、脱水THF30mLを加え氷冷し、メタ クリル酸クロリド(MAC) 13.30g(127mmo1)を窒素雰囲気下で、滴下し、室温で24時間撹拌した。反応終了後、酢酸エチルで希釈し、炭酸水素ナトリウム水溶液で洗い、蒸留水で3回洗浄した後、無水硫酸マグネシウムで乾燥させた。その後、良溶媒に酢酸エチル、貧溶媒にエーテルを用い2回再沈を行い、乳白色の粉末状固体を得た。また、ろ液を濃縮し、メタノールを加えることにより析出した白色固体を回収した。得られた固体の構造を $1R及び^1H-NMR$ で分析した。結果を以下に示し、この化合物の構造を式(7)に示す。なお、式(7)において、各水素原子の位置に付した記号($a\sim g$)は、NMRのデータにおける水素の記号に対応するものである。この結果より、得られた誘導体はエステル化率100%であることが明らかとなった。以下、式(7)に示す化合物を T_3-1 という。

[0051]

収量: 2.56g(44%)

 $IR (KRS) : (cm^{-1})$

2929 (ν_{CH}); 1739 ($\nu_{C=0(ester)}$); 1637 ($\nu_{C=C(methacryl)}$); 149 4 ($\nu_{C=C(aromatic)}$); 1294, 1131 ($\nu_{C=0-C}$)

 1 H-NMR(500MHz,溶媒DMSO,内部標準TMS): δ (ppm)=1.6 $4\sim2$.36(m、36.0H、H^a、H^b、H^f)、

3. $80 \sim 4$. 45 (m, 4. 00 H, H^c),

5. $6.0 \sim 6$. 2.5 (m, 1.6. 1.H, H^g , H^g),

6. $6.0 \sim 7.50$ (m, 8.00 H, H^e , H^d)

[0052]

【化9】

[0053]

(実施例2:メタクリル酸グリシジル (GMA) を用いた誘導体の合成 (ラジカル重合性官能基の導入))

T₃を0.50g(0.29mmol, OH当量: 7.03mmol)、テトラブチルア 出証特2005-3002027 ンモニウムブロミド(以下、TBABという)を 0.22g(0.030mmo1) 秤取り、NMP5mLを加えメタクリル酸グリシジル(GMA)2.00g(0.59mmo1)を加え、100で48時間撹拌した。反応終了後、酢酸エチルで希釈し、塩酸水溶液で洗い、蒸留水で3回洗浄した後、無水硫酸マグネシウムで乾燥させた。その後、良溶媒に酢酸エチル、貧溶媒にシクロヘキサンを用い再沈を行い、淡黄色粉末状固体を得た。得られた固体の構造を IR 及 V^1H-NMR で分析した。結果を以下に示し、この化合物の構造を式(8)に示す。なお、式(8)において、各水素原子の位置に付した記号(a~k)は、NMR のデータにおける水素の記号に対応するものである。この結果より、得られた誘導体はエーテル化率 100%であることが明らかとなった。以下、式(8)に示す化合物を T_3-2 という。

[0054]

収量: 1. 38g (92%)

 $IR (KRS) : (cm^{-1})$

 $3438(\nu_{OH})$; $2931(\nu_{CH})$; $1714(\nu_{C=0(ester)})$; $1634(\nu_{C=C(methacryl)})$; $1502(\nu_{C=C(aromatic)})$; 1296, $1172(\nu_{C=0-C})$

 1 H-NMR(500MHz, 溶媒DMSO, 内部標準TMS): δ (ppm) = 1.8 $3\sim2$.17 (m.36.0H, H^{a} , H^{b} , H^{j})、

3. $5.8 \sim 5.60$ (m, 5.2.0 H, H^c , H^f , H^g , H^h , H^i),

5. $6.9 \sim 6$. 0.2 (m, 1.6. 0.4, H^k , $H^{k'}$),

6. $3.9 \sim 7.70$ (m, 8.00 H, H^e, H^d)

[0055]

[0056]

(実施例3~6:T₃-2の合成条件の検討)

GMAの仕込み量及び温度を表1に示す条件とし、実施例2と同様にして、誘導体の合成を行った。収率及びエーテル化率(¹H-NMRで測定)を表1に示す。

出証特2005-3002027

[0057]【表1】

GMA	温度	エーテル化率	収率
mmol (OHeq.)	(℃)	(%)	(%)
0.29(1.0)	70	65	45
0.29(1.0)	100	91	55
0.44(1.5)	100	98	77
0.59(2.0)	100	100	92

TBAB:5mol%

[0058]

(実施例7、8:T3-1及びT3-2の光硬化反応)

実施例 7 として、 1 0 0 重量部の T_3-1 に対して、式(9)に示す重合開始剤(チバガ イギー社製、商品名Irgacure907)を3重量部及び2-エチルアントラキノン を1重量部加え、更に少量のTHFを加えた後、KBr板に塗布し、室温で乾燥させた後 、250W、光度8mW/cm²(254nm)の光を照射して光硬化反応を行った。転 化率は、FT-IRにより $1638cm^{-1}$ のメタクリロイル基($\nu c=c$)に起因する吸収 の減衰から算出した。実施例 8 として、 T_3-2 に対して同様の試験を行った。これらの 結果を図1に示す。なお、図1において、Gは T_3-2 の転化率を示し、Sは T_3-1 の転 化率を示す。

[0059]【化11】

[0060]

 T_3-1 、 T_3-2 ともに架橋が起こり、硬化が進行することが確認された。また、 T_3- 1、T₃-2ともに一分子内に24個のメタクリロイル基を有するにもかかわらず、転化 率には56%と25%という違いが観察され、T3-2はかなり光反応性が高いことがわ かった。これは、官能基の分子鎖が長いことにより自由度が増し、架橋が効率よく進行し たためと考えられる。

[0061]

(実施例9:T3-2に対するアルカリ可溶性基の導入)

0.30g(0.175mmol、OH当量:4.22mmol)のT3-2をN-メチ ルピロリドン (NMP) 5mLに溶解させ、トリエチルアミン0. 67mL(4. 22m mo1)、更に無水 cis-1, 2, 3, 6ーテロラヒドロフタル酸無水物(THPA) 0.64g(4.22mmol)をNMP1mLに溶解させた溶液を加えた後、70℃で 24時間加熱撹拌した。反応終了後、0.05 N塩酸水溶液に落とし、不溶部を減圧乾燥 させた。続いてクロロホルムに溶解させポンプアップした。その結果、淡黄色粉末固体を 得た。得られた固体の構造をIR、1H-NMR及びMALDI-TOF-MSで分析し た。結果を以下に示し、この化合物の構造を式(10)に示す。なお、式(10)におい て、各水素原子の位置に付した記号(a~p)は、NMRのデータにおける水素の記号に 対応するものである。この結果より、得られた誘導体は、エステル化率100%であるこ

とが明らかとなった。以下、式(10)に示す化合物を T_3-2 aという。 [0062]収量: 0. 495g (96%) IR (KRS) : (cm⁻¹) $3515~(\nu_{OH})$; $1724~(\nu_{C=0(ester)})$; $1633~(\nu_{C=C(methacryl)})$; 1503 ($\nu_{C=C(aromatic)}$); 1294, 1183 (ν_{C-0-C}) 1 H-NMR(500MHz,溶媒DMSO,内部標準TMS): δ (ppm)=1.4 $3\sim2$. 3 4 (m, 68.0 H, H^a , H^b , H^i , H^i , $H^n)$ 2. $5.1 \sim 3.20$ (m, 1.6.0 H, H^k , H^o) 3. $6.2 \sim 5$. 0.2 (m, 3.6. 0 H, H^c , H^f , H^h) 5. $0.0 \sim 6$. 3.5 (m, 4.0. 0.0 H, H^g , H^j , H^j , H^m , $H^{m'}$) 6. $39 \sim 7.70$ (m, 8.00 H, H^e , H^d) 11. $8 \sim 12$. 5 (m, 4. 58 H, H^p) 質量分析 (MALDI-TOF-MS) 計算値 (m/z):8769.20 [M+H+] 実測値 (m/z):8770.95 [M+H+] [0063]

【化12】

[0064]

(実施例10:3-クロロー1ープロパノールを用いた誘導体の合成 (スペーサーの導入))

T3を0.30g(0.18mmol、OH当量:4.22mmol)、TBABを0. 07g(0.21mmol) 秤取り、NMP3mLに溶解させた後、炭酸カリウム0.5 8 6 g (4. 2 2 mm o 1) を加え、6 0 ℃で1 2 時間撹拌した。塩形成後、3 ークロロ -1-プロパノールを 0.35 m L (4.22 m m o 1) 滴下し80℃で5時間撹拌した 。反応終了後、0.01N塩酸水溶液に落とし、析出部を60℃で減圧乾燥後、良溶媒に メタノール、貧溶媒にエーテルを用いて再沈を行い、ともに淡赤色粉末固体を得た。得ら れた固体の構造を $IR及び^1H-NMR$ で分析した。結果を以下に示し、この化合物の構 造を式(11)に示す。なお、式(11)において、各水素原子の位置に付した記号(a \sim h) は、NMRのデータにおける水素の記号に対応するものである。この結果より、得 られた固体はエーテル化率52%であることが明らかとなった。以下、式(11)に示す 化合物をT3-31という。

【0067】 (実施例11:6-クロロ-1-ヘキサノールを用いた誘導体の合成(スペーサーの導入)) 3-クロロ-1-プロパノールに代えて、6-クロロ-1-ヘキサノールを0.56mL3-クロロ-1-プロパノールに代えて、6-クロロ-1-ヘキサノールを0.56mL4. 22mmo1) 用いた以外は、実施例10と同様にして、淡赤色粉末固体を得た。 (4.22mmo1) 用いた以外は、実施例10と同様にして、淡赤色粉末固体を得た。 得られた固体の構造を1R及び1H-NMRで分析した。結果を以下に示し、この化合物 得られた固体の構造を1R及び1H-NMRで分析した。 各水素原子の位置に付した記号の構造を式(12)に示す。なお、式(12)において、各水素原子の位置に付した記号

 $(a\sim j)$ は、NMRのデータにおける水素の記号に対応するものである。この結果より、得られた固体はエーテル化率 5~2~%であることが明らかとなった。以下、式(1~2)に示す化合物を T_3-4_1 という。

[0068]

収量0.492g(68%)

IR (KRS): (cm⁻¹)
3 3 7 4 (νοΗ)、2935 (νcΗ)、1612、1496 (νc=C(aromatic))、12
91、1055 (νc-ο-c)
¹ H-NMR (600MHz、溶媒DMSO-d₆、内部標準TMS); δ (ppm) = 1
. 31~2.41 (m、45.3H、H^a、H^b、H^g、H^h、Hⁱ)、
3.20~4.84 (m、20.7H、H^c、H^f、H^j)、
6.06~7.64 (t、8.00H、H^e、H^d)、
7.70~9.10 (m、3.84H、H^j)、

【0069】 【化14】

$$R^{10}:-H^{j} \quad \text{Xit} \underbrace{\begin{array}{c} H_{2}^{g} & H_{2}^{h} & H_{2}^{j} \\ C & C & C & C \\ H_{2} & H_{2} & H_{2} & \end{array}}_{OH}$$

[0070]

[0071]

収量:0.04g(6%) IR(KRS):(cm⁻¹) 3 3 9 1 (ν OH) , 2 9 3 7 (ν CH) , 1 6 0 8 , 1 5 0 2 (ν C=C(aromatic)) , 1 2 6 3 , 1 0 5 3 (ν C-O-C)

¹H-NMR (500MHz、溶媒DMSO-d₆、内部標準TMS):δ(ppm)=1.25-1.51(m、4.00H、H^b)、

1. 88-2. 34 (m, 24. 0H, H^a , H^g),

3. 56-3. 95 (m, 16. 0H, H^h),

3. 72-4. 35 (m, 4.00 H, H^c),

4. 54-4.75 (m, 16.0H, H^f),

6. 60-6. 73 (m, 8. 00 H, H^e , H^d)

[0072]

【化15】

[0073]

(実施例13:6-クロロ-1-ヘキサノールを用いた誘導体の合成-2)

[0074]

収量 0. 19g (27%)

 $IR (KRS) : (cm^{-1})$ $3\ 3\ 7\ 5\ (\nu_{OH})$, $2\ 9\ 3\ 5\ (\nu_{CH})$, $1\ 6\ 0\ 9$, $1\ 5\ 0\ 0\ (\nu_{C=C(aromatic)})$, $1\ 2$ 64, 1055 (vc-o-c) ¹H-NMR (500MHz、溶媒DMSO-d6、内部標準TMS);δ(ppm)=1 . 3 1 \sim 1. 8 2 (m, 78. 0 H, H^a , H^b , H^g , H^h , H^i), 3. $56 \sim 3$. 64 (t, 16. 0 H, H^{i}), 3. $6.7 \sim 3$. 7.9 (t, 1.6. 0.H, H^f), 4. $0.2 \sim 4$. 1.1 (m, 4. 0.0 H, H^c), 5. $9.2 \sim 6.73$ (m, 8. 0.0 H, H^e , H^d) [0075]【化16】

[0076] (実施例14:3-クロロメチル-3-エチルオキセタン (СМЕО) を用いた誘導体の 合成 (カチオン重合性基の導入))

T3を0.30g(0.18mmol、OH当量4.22mmol)、TBAB0.07 gを(0.21mmol)秤取り、NMP9mLに溶解させた後、水素化ナトリウム0. 25g(10.6mmol)を加え、室温で1時間撹拌した。塩形成後、CMEOを1. 70g(12.7mmol)加え、80℃で48時間撹拌した。反応終了後、酢酸エチル で希釈し、蒸留水で3回洗浄後、有機相を無水硫酸マグネシウムで乾燥させた。乾燥剤を ろ別後濃縮し、良溶媒にクロロホルム、貧溶媒にn-ヘキサンを用いて再沈を行い、白色 粉末固体を得た。得られた固体の構造をIR、 $^1H-NMR及びMALDI-TOF-M$ Sで分析した。結果を以下に示し、この化合物の構造を式(15)に示す。なお、式(1 5)において、各水素原子の位置に付した記号($a\sim i$)は、NMRのデータにおける水 素の記号に対応するものである。この結果より、得られた誘導体はエーテル化率100% であることが明らかとなった。以下、式 (15)に示す化合物をT3-5という。

[0077]

収量: 0.50g(70%)

 $IR (KRS) : (cm^{-1})$ 2962 (ν cH3) 、2935 (ν CH2) 、2935 (ν CH) 、1608、1502、14 60 ($\nu C = C(aromatic)$), 1292, 1107 ($\nu C = O - C(ether)$), 980 ($\nu C = O - C(c)$

yclic ether))

 $^{1}H-NMR$ (600MHz、溶媒DMSO-d6、内部標準TMS); δ (ppm)=0 . 68 \sim 1. 91 (m, 52. 0 H, H^a , H^b , H^h , H^i),

3. 96 \sim 4. 95 (m, 52. 0H, H^c, H^f, H^g),

5. $4.2 \sim 7.81$ (m, 8.00 H, H^e , H^d)

質量分析 (MALDI-TOF-MS)

計算値 (m/z):4098.74 [M+K+] 実測値 (m/z):4096.47 [M+K+]

[0078]【化17】

[0079]

(実施例15:T3-5の合成条件の検討)

合成条件を表 2 に示す条件とし、実施例 1 4 と同様にして、誘導体 (T₃-5) の合成を 行った。収率及びエーテル化率(1 H - N M R で測定)を表 2 に示す。

[0080]

【表2】

	 塩基	時間	エーテル化率	収率
CMEO	塩基	(h) _	(%)	(%)
mmol(OHeq.)	N - CO	48	50	73
8. 45 (2)	Na ₂ CO ₃	48	50	72
12.7(3)	Na ₂ CO ₃		$\frac{35}{75}$	40
8.45(2)	Cs_2CO_3	48		45
12.7(3)	Cs ₂ CO ₃	48	80	
12.7(3)	NaH	24	98	70
12.7(3)	NaH	48	100	70

温度:80℃、TBAB:5mol%

塩基として炭酸ナトリウムを用いた場合、仕込み比を変化させてもエーテル化率は50% であり、MALDI-TOF-MSからも選択的に12置換体が得られることがわかった 。即ち、反応条件を選択することによって、所定数のOH基を残すことが可能であり、残 った〇H基に別の官能基を導入することにより、官能基の複合化が可能となる。

(実施例16:2-クロロエチルビニルエーテル (CEVE) を用いた誘導体の合成 (ラ ジカル重合性基の導入))

T3を1g(0.58mmol、OH当量14.4mmol)、TBABを0.23g(0. 70mmol) 秤取り、15mLのNMPに溶解させた後、水素化ナトリウム0. 6 8g(28.8mmol)を加え、室温で1時間撹拌した。塩形成後、2-クロロエチル ビニルエーテル3.00g(28.8mmol)を加え、80℃で48時間撹拌した。反 応終了後、酢酸エチルで希釈し、蒸留水で3回洗浄し、有機相を無水硫酸マグネシウムで 乾燥させた。乾燥剤をろ別後濃縮し、良溶媒にクロロホルム、貧溶媒にメタノールを用い て再沈を行い、白色粉末固体を得た。得られた固体の構造を I R、1H-NMR及びMA LDI-TOF-MSで分析した。結果を以下に示し、この化合物の構造を式(16)に 示す。なお、式(16)において、各水素原子の位置に付した記号($a\sim i$)は、NMRのデータにおける水素の記号に対応するものである。この結果より、得られた誘導体はエ ーテル化率100%であることが明らかとなった。以下、式(16)に示す化合物をT3 -6という。 T_3-6 について、立体構造及び分子運動を解析した結果、近接した分子同 士が非常に接近し、チャンネル構造になることが確認された。このことより、ビニル基及 びベンゼン環の $\pi - \pi$ スタッキングが強く作用し、自己集合することが示唆される。従っ て、自己集合を利用することにより分子量の高い分子の結晶化が容易に行われることが明 らかとなった。また、チャンネル構造を利用して、チャンネル内部に導電性ポリマーを配 置することにより、絶縁性であるカリックスアレーン系誘導体に囲まれた非常に微細な導 電路を形成することができ、超微細電子回路等種々の分野に適用しうる。

[0083]

収量:1.54g(78%)

IR (KRS) : (cm⁻¹)

 $2939~(\nu cH)$, $1617~(\nu c=c)$, 1500 , $1455~(\nu c=c(aromatic))$, 1294, 1158 ($\nu c-0-c$), 1005 ($\nu = c-0-c$)

¹H-NMR (600MHz、溶媒DMSO-d6、内部標準TMS);δ (ppm) = 0 . $2.8 \sim 1$. 3.7 (m, 4.00 H, H^b),

1. $3.7 \sim 2$. 3.7 (m, 8. 0.0 H, H^a),

3. $65\sim4$. 75 (m, 52. 0H, H^c , H^f , H^g , H^i , $H^{i'}$),

6. $0.0 \sim 7.50$ (m, 1.6.0 H, H^e , H^d , H^h)

質量分析 (MALDI-TOF-MS) 計算値 (m/z):3387.30 [M] 実測値 (m/z):3387.44 [M]

[0084] 【化18】

[0085]

(実施例17:T3-5及びT3-6の光カチオン重合)

オキセタンを有する T3 - 5 及びビニルエーテルを有する T3 - 6 に光酸発生剤としてビス [4-(ジフェニルスルフォニオ)フェニル]スルフイド-ビス(ヘキサフルオロホスフ ェート) (以下、DPSPという) を官能基に対して1mol%或いは5mol%添加し 、クロロホルムに溶解させKBr板に塗布し、室温で乾燥させ、フィルム状態で超高圧水 銀灯(波長:360 nm、光度:15 mW/cm²)を用いて、光カチオン重合を行った 。転化率はFT-IRを用いてフェニル基の吸収ピークを基準にし、環状エーテル残基の 吸収ピーク(T_3-5)或いはビニルエーテル残基(T_3-6)の減少を算出した。結果を 図2及び図3に示す。更に、360秒間の光照射を行ったフィルムを150℃で加熱し、 温度効果を検討した。結果を図4及び図5に示す。

[0086]

ビニルエーテルを有する T_3-6 では、光照射により、ビニル基に起因した $1617cm^ ^1$ のピークが減少した。また、ビニルエーテルに起因した $1\ 2\ 9\ 3\ c\ m^{-1}$ の吸収ピークが 1187 c m⁻¹ にシフトし、更にエーテルの吸収ピークが増大したことから、目的とする カチオン重合が進行していることが示された。光カチオン重合は迅速に進行し、360秒 間の光照射で転化率は80% (5mol%のDPSP)、及び40% (1mol%のDP

[0087]

オキセタンを有する T_3-5 の光カチオン重合は迅速に進行し、360 秒間の光照射で転化率は60%(1mo1%のDPSP)に達した。また、光照射を行ったフィルムを加熱することで 80%まで転化率が向上した。 T_3-6 と同様に分子運動性が低くなり、150% で加熱を行ってもそれほど転化率は向上しなかった。

[0088]

(実施例18: (T₃-6) の光ラジカル重合)

エーテル化率 100%の T_3-6 について、実施例 7と同様に光硬化反応を行った。なお、転化率は 1617 c m⁻¹のビニル基(ν c=c)に起因する吸収の減衰から算出した。その結果、1分間の光照射後で転化率は 15%に達した。

[0089]

(実施例19:T3-6の脱ビニル化)

 T_3-6 、0.50 g(0.15 mm o 1、O H 当量 3.55 mm o 1)を秤取り、エーテルと塩化メチレンを 4:1 (v/v) の比率で混合した混合溶媒に完全に溶解させた。 12 N 塩酸 0.35 m L(4.26 mm o 1)を滴下し、室温で 5 分間撹拌した。その後、大量のエーテルを注ぎ沈殿物をろ過し、エーテルとメタノールの混合溶媒で 3 回洗浄し、うぐいす色の粉末固体を得た。得られた固体の構造を 1 R 及び 1 H 1 N M R で分析した。結果を以下に示し、この化合物の構造を式(17)に示す。なお、式(17)において、各水素原子の位置に付した記号(1 a 1 以

[0090]

収量: 0. 37g (91%)

IR (KRS) : (cm⁻¹)

 $3\ 3\ 6\ 7\ (\nu_{OH})$, $2\ 9\ 2\ 9\ (\nu_{CH})$, $1\ 4\ 9\ 9$, $1\ 4\ 5\ 0\ (\nu_{C=C(aromatic)})$, $1\ 2\ 9\ 3$, $1\ 1\ 8\ 7\ (\nu_{C=0-C})$

¹ H-NMR (600MHz、溶媒DMSO-d₆、内部標準TMS);δ (ppm)=0.18~2.31 (m、12.0H、H^a、H^b)、

3. $25 \sim 5$. 94 (m, 36. 0H, H^c , H^f , H^g),

6. $50 \sim 8$. 30 (m, 8. 00 H, H^e, H^d)

[0091]

【化19】

$$R^{15}: \begin{array}{c} H_2^f \\ C \\ C \\ H_2^g \end{array} OH$$

[0092]

(実施例20:熱的特性の評価) 表3に示す誘導体の分解開始温度、5%質量減少温度及びガラス転移温度を、TG/DT A及びDSCを用いて測定した。結果を表3に示す。いずれもガラス転移温度は観測され なかった。また、いずれも、高い耐熱性を有することが確認された。T₃とビニルエーテ ルを脱保護してスペーサーを導入した T_3-7 を比較すると、分解開始温度と5%質量減 少温度はスペーサーを導入してもほとんど変化はなかった。これらが他の誘導体と比較し て分解開始点が早いのは、水酸基に起因したわずかな酸性度によるものである。フェノー ル性水酸基を有するT3がより分解開始点が早いという結果になった。T3-2aはフタル 酸のエステル結合の分解とメタクリロイル基のエステル結合の分解で、二段階で分解した 。メタクリロイル基に起因する分解開始点は、T3-2と良く一致した。

[0093]

【表3】

エステル又は	第1分解温度(℃)(*1)		第2分解温度(℃)(*2)
i	分解開始温度	5%分解温度	
0	234	347	
100	344	418	
100	317	365	_
	196	226	320
	336	365	
		387	
		348	
	100 100 100 100	(%) 分解開始温度 0 234 100 344 100 317 100 196 100 336	(%) 分解開始温度 5%分解温度 0 234 347 100 344 418 100 317 365 100 196 226 100 336 365 100 347 387 248

(*1):TG/DTAを用い、窒素雰囲気中、昇温速度10℃/minで測定

(*2):DSCを用い、窒素雰囲気中、昇温速度10℃/minで測定

[0094]

(実施例21:溶解性試験)

表4に示す誘導体を各2mg量りとり、表4に示す溶媒2m1を加え、溶解性試験を行っ た。結果を表4に示す。水酸基を修飾することによって、溶解性が増し、十分なフィルム 形成能を有することが明らかとなった。

[0095]【表4】

	——— Т ₃	$T_3 - 1$	$T_3 - 2$	$T_3 - 2 a$	$T_3 - 6$	$T_3 - 5$	T_3-7
111 AK		<u> </u>			_	_	_
水				, , , , , , , , , , , , , , , , , , , ,			_
メタノール	-		++	++			
2ープロパノール	-	+-	+-	+-	+-		
nーヘキサン	_	-	_	-			
		++	++	++	++	++	
アセトン			++	++	++	++	-
クロロフォルム		++				++	
THF	+-	++	++	++	++		++
DMF	++	++	++	++	++	++	
NMP	++	++	++	++	++	++	++
	+	++	++	++	++	++	++
DMSO	++			+	++	++	· _
PGMEA_		++	++			+	
2-ヘプタノン	\ <u></u>	++	+	++	++	++	
フィルム形成性	×		0	0	0		×
一							

++:室温で溶解、+:加熱により溶解、+-:部分的に溶解、-:不溶 溶解性

フィルム形成性 〇:フィルム形成可能、×:フィルム形成できず

(キャスト溶媒:クロロフォルム)

(実施例22:カリックスアレーンーキャビタントの合成)

メチルレゾルシノールとグルタルアルデヒドを原料として用い、参考例 1 と同様の方法で、カリックスアレーン系化合物を得た。この化合物 0 . 4 6 g (0 . 2 5 mm o 1 、O H 当量 6 mm o 1)、 K_2 C O 3 0 . 8 2 g (6 . 5 mm o 1)及び、TBAB0 . 0 1 g (0 H 当量に対し 0 . 0 5 m o 1 %)を N - メチルピロリドン 4 m 1 に溶解させ、5 0 $\mathbb C$ 3 時間撹拌した。次に、ジブロモメタン 1 . 5 5 g (8 mm o 1)を加え、8 0 $\mathbb C$ で 2 4 時間撹拌した。反応終了後、反応溶液を 0 . 1 M 塩酸水溶液中に注ぎ酸析した。沈殿物を 1 過し、蒸留水で洗浄後、減圧乾燥して淡褐色固体を得た。得られた固体を塩化メチレンに溶解させシリカゲルカラムクロマトグラフィー(展開溶媒;1 C 1 2)で単離を行い、白色固体を得た。構造決定は、1 R、1 R、1 R、1 R、1 R C 1 R C 1 C

[0097]

収量: 0.106g(21%)

 $IR (KRS) : (cm^{-1})$

2933, (ν_{C-H}) , 1477 $(\nu_{C=C(aromatic)})$, 1094 (ν_{C-0-C})

 1 H-NMR(600MHz、溶媒CDC13、内部標準TMS); δ (ppm)=1.72~1.97(m、24.0H、H^a、H^b、H^e)、

4. 26 (br s, 4. $0 \text{ H}, \text{ H}^{f}$),

4. $8.3 \sim 5$. 0.1 (m, 4. 0 H, H^c),

5.87 (br s, 4.0 H, H^f),

6. $9.8 \sim 7.21$ (m, 4.0 H, H^d)

MALDI-TOF-MS

計算値 (m/z):2015.96 [M+H] +

実測値 (m/z):2016.12 [M+H] +

[0098]

【化20】

【産業上の利用可能性】

[0099]

【図面の簡単な説明】

[0100]

- 【図1】実施例7及び8における光硬化反応による転化率の推移を示すグラフである
- 【図2】実施例17における T_3-5 の光カチオン反応による転化率の推移を示すグラフである。
- 【図3】実施例17における T_3-6 の光カチオン反応による転化率の推移を示すグラフである。
- 【図4】実施例17における T_3-5 の光カチオン反応後の加熱による転化率の推移を示すグラフである。
- 【図 5】実施例 17 における T_3-6 の光カチオン反応後の加熱による転化率の推移を示すグラフである。

【書類名】図面 【図1】

【図2】

5 m o l % 1 m o l % :DPSP:DPSP

【図4】

【図5】

♦:DPSP 5mol%
▲:DPSP 1mol%

【書類名】要約書

【要約】

【課題】カリックスアレーン系の新規な化合物の誘導体であって、硬化性組成物やフォトレジストへの利用及び包摂化合物としての利用が可能な新規なカリックスアレーン系誘導体及びその組成物を提供する。

【解決手段】本発明は、式(1)等で示されるカリックスアレーン系誘導体、その硬化性 組成物及びレジスト用組成物を提供する。

【化1】

$$Z^{7}O$$
 CH
 CH
 R^{1}
 OZ^{1}
 $(X^{3})_{q3}$
 $(X^{3})_{q3}$
 CH
 CH
 CH
 R^{2}
 OZ^{2}
 CH
 CH
 R^{2}
 OZ^{3}
 OZ

(式中、 R^1 及び R^2 は相互に独立に炭素数 $1\sim 8$ の置換又は非置換アルキレン基; $X^1\sim X^4$ は相互に独立に炭素数 $1\sim 1$ 0 の置換又は非置換アルキル基等; $Z^1\sim Z^8$ は相互に独立に水素原子、重合性官能基を有する基、アルカリ可溶性基を有する基、又はアルキル鎖の炭素数が $1\sim 8$ の置換アルキル基(但し、 $Z^1\sim Z^8$ の少なくとも 1 つは水素原子以外の基である)を表し、; $q^1\sim q^4$ は相互に独立に 0 又は 2 の整数; n 1 は 2 又は 3 の整数を表す。)

【選択図】なし

特願2004-028404

出 願 人 履 歴 情 報

識別番号

[592218300]

1. 変更年月日

1992年 9月 7日

[変更理由]

新規登録

住所

氏 名

神奈川県横浜市神奈川区六角橋3丁目27番1号

学校法人神奈川大学

特願2004-028404

出 願 人 履 歴 情 報

識別番号

[000004178]

1. 変更年月日 [変更理由] 住 所 氏 名 2003年 9月 1日 名称変更 東京都中央区築地五丁目6番10号 JSR株式会社