Когда 2 — квадратичный вычет?

Полезная таблица.

	$\left(\frac{2}{p}\right)$	$\left(\frac{-1}{p}\right)$	$\left(\frac{-2}{p}\right)$
p = 8k + 1	1	1	1
p = 8k + 3	-1	-1	1
p = 8k + 5	-1	1	-1
p = 8k + 7	1	-1	-1

Первый столбец таблицы коротко можно записать как $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.

Замечание. Про второй столбец вы и так знали. Третий столбец следует из первого и второго. Значит надо разобраться в истинности первого...

- **1. (а)** Рассмотрим остатки 2, 4, 6, ... , p-1. Докажите, что никакие два числа не дают в сумме число, кратное p.
 - **(6)** Перемножим рассматриваемые остатки: $2 \cdot 4 \cdot 6 \cdot ... \cdot (p-1)$. Докажите, что это произведение сравнимо с $\pm k$, где $k = \left(\frac{p-1}{2}\right)!$
 - **(в)** Задайте себе вопрос «А как найти знак перед k?» и докажите истинность первого столбца таблицы.
- **2.** Докажите, что у числа $2^n + 1$ не может быть простых делителей вида 8k + 7.
- **3.** Докажите, что простых чисел вида **(a)** 8k + 3; **(б)** 8k + 5; **(в)** 8k + 7 бесконечно много.
- **4.** Докажите, что $2^{3^n} + 1$ имеет хотя бы n различных простых делителей вида 8k + 3.
- 5. Чему равна сумма

$$\left[\frac{2^0}{2003}\right] + \left[\frac{2^1}{2003}\right] + \left[\frac{2^2}{2003}\right] + \dots + \left[\frac{2^{2001}}{2003}\right]?$$

6. Докажите, что уравнение $x^3 - 3 = 2y^2$ не имеет решений в целых числах.