1 Logistics

https://www.stat.berkeley.edu/~aldous/205B/index.html

- 5 weeks Convergence in Distribution
- 5 weeks Markov Chains
- 2 weeks Ergodic Theory
- 2 weeks Brownian Motion

2 Background

Have definitions for

- Probability measure μ on \mathbb{R} .
 - Given *F*, \exists a μ such that $F(x) = \mu[-\infty, x]$ holds.
 - This required first proving existence of Lebesgue measure on [0,1], then use inverse CDF.
- Distribution function F on \mathbb{R} .
 - Given μ , $F(x) = \mu[-\infty, x]$ is a distribution function.

x is a *continuity point* of *F* iff F(x) = F(x-) iff $\mu(x) = 0$.

Theorem 2.1. For PMs $(\mu_n, 1 \le n < \infty)$ and μ on \mathbb{R} , the following are equivalent:

- (a) $F_{\mu_n}(x) \to F_{\mu}(x)$ as $n \to \infty$ for all continuity points x of F_{μ}
- (b) $\int_{-\infty}^{\infty} g(x) \mu_n(dx) \to \int_{-\infty}^{\infty} g(x) \mu(dx)$ for all bounded continuous functions $g: \mathbb{R} \to \mathbb{R}$.
- (c) There exists, on some probability space, random variables $(\hat{X}_n, 1 \leq n < \infty)$ and (\hat{X}) such that $dist(\hat{X}_n) = dist(X_n)$, $1 \leq n < \infty$, $dist(\hat{X}) = dist(X)$, and $\hat{X}_n \stackrel{a.s.}{\to} X$ as $n \to \infty$. Call this "weak convergence" $\mu_n \to \mu$.

Note: (b) and (c) make sense for PMs on metric space S and define *weak convergence* on S. In fact, (b) \iff (c) on general S ("Skorohod representation theorem") Theorem shows (a) not just arbitrary.

Write $X_n \stackrel{d}{\to} X$ "in distribution" to mean $dist(X_n) \to dist(X)$.

Proof. (c) \Longrightarrow (b).

$$\hat{X}_n \stackrel{\text{a.s.}}{\to} \hat{X} \implies g(\hat{X}_n) \stackrel{\text{a.s.}}{\to} g(\hat{X}) \ (g \text{ continuous})$$
 (2.1)

$$\implies \mathbb{E}g(\hat{X}_n) \stackrel{\text{a.s.}}{\rightarrow} \mathbb{E}g(\hat{X}) \ (g \text{ bounded})$$
 (2.2)

$$\implies \mathbb{E}g(\hat{X}_n) \stackrel{\text{a.s.}}{\rightarrow} \mathbb{E}g(X) \tag{2.3}$$

(b) \implies (a). TODO: Fig 1.1

Fix x_0 . Define bounded continuous $f_i(x)$ by

$$F_{\mu_n}(x_0) = \int_{-\infty}^{\infty} 1_{x \le x_0} \mu_n(dx) \le \int_{-\infty}^{\infty} f_j(x) \mu_n(dx)$$
 (2.4)

$$\lim \sup_{n} F_{\mu_{n}}(x_{0}) \leq \lim_{n} \int_{-\infty}^{\infty} f_{j}(x) \mu_{n}(dx) \stackrel{(b)}{=} \int_{-\infty}^{\infty} f_{j}(x) \mu(dx) \leq_{\mu} (x_{0} + 1/j)$$
 (2.5)

But this holds for every j, so letting $j \to \infty$

$$\limsup_{n} F_{\mu_n}(x_0) \le F_{\mu}(x_0) \tag{2.6}$$

Symmetrically, define $g_i(x)$ by TODO: Fig 1.2

$$\liminf_{n} F_{n}(x_{0}) \geq \lim_{n} \int_{-\infty}^{\infty} g_{j}(x) \mu_{n}(dx) = \int_{-\infty}^{\infty} g_{j}(x) \mu(dx) \geq F_{\mu}(x_{0} - 1/j)$$
 (2.7)

Letting $j \to \infty \implies \liminf_n F_n(x_0) \ge F_\mu(x_0-)$.

If x_0 is a continuity point, then $\lim \inf = \lim \sup$.

(a) \Longrightarrow (c). Recall inverse function of F_{μ}

$$F_u^{-1}(y) := \sup\{x : F(x) < y\} = \inf\{x : F(x) \ge y\}$$
 (2.8)

TODO: Fig 1.3

Exercise 2.2. (a) implies $F_{\mu_n}^{-1}(y) \to F_{\mu}^{-1}(y)$ for all y such that $\{x : F_{\mu}(x) = y\}$ is either empty or a single point x.

The other case is $\{x : F_{\mu}(x) = y\}$ is a non-trivial interval (i.e. when F(x) has a plateau). This can only happen for countably many y.

$$F_{u_n}^{-1}(u) \stackrel{\text{a.s.}}{\to} F_u^{-1}(u) \text{ (all } U \text{ outside countable set)}$$
 (2.9)

This is (c).
$$\Box$$

Elementary examples where we show (a) by calculation.

- (a) X_n uniform on $\{1, 2, ..., k\}$. Then $\frac{X_n}{n} \stackrel{d}{\to} U[0, 1]$.
- (b) X_{θ} has Geometric(θ) distribution $P(X > i) = (1 \theta)^i$, i = 0, 1, 2, ..., then $\theta X_{\theta} \stackrel{d}{\to} Y$ with Exponential(1) distributions $P(Y > y) = e^{-y}$, $0 \le y < \infty$.
- (c) B_n = "birthday RV" = $\min\{j: \xi_j = \xi_i, 1 \le i < j\}$ for IID $\xi_i \sim U\{1, 2, ..., n\}$, then $n^[-1/2]B_n \xrightarrow{d} R$ with Rayleigh distribution $P(R > x) = \exp(-x^2/2)$.