Keyword Spotting on STM32

Group Members

組長: VS6102124 高德龍

組員: N26101266 陳冠智

組員: NE6105012 許銘森

Outline

- 1. Motivation
- 2. Hardware Setup and System Framework
- 3. Probing PDM Microphone
- 4. MFCC and Neural Network
- 5. FreeRTOS Implementation
- 6. Performance Optimization
- 7. Experiment Results

1. Motivation

TinyML is a branch of machine learning and **embedded systems** research that looks into the types of models that can be run on small, low-power devices like microcontrollers. It delivers low-latency, low-power, and low-bandwidth model inference at edge devices.

Advantages:

- Eliminates the necessity of data transmission to a central server
- Fast inference with low latency
- Microcontrollers are Cheap, Prevalent and Low-power

TinyML

FreeRTOS

Embedded System

2.1 Hardware Setup and Function

Keyword: Yes

STM32F407

MEMS PDM Microphone MP45DT02

Input Keyword: Noise

Case 2:

Input Keyword: Yes

MP45DT02

STM32F407

2.2 System Framework

3. PDM Microphone

If Inference Buffer[0] is full, then it is ready for inference and switch to Inference Buffer[1] for receive

4.1 MFCC

4.2 Convolutional Neural Network

Trainable params: 1,347

Convolutions = 1x3 filter size, stride=1, padding=same Max-Pooling = 1x2 filter size, stride=2

Classifier

5. FreeRTOS Implementation

6. Performance Optimization - Quantization

- 1. Find out the largest and smallest value of FP32 parameters as input and input low
- 2. Mapping from FP32 space to INT8 space:

$$output = \frac{\left \lfloor (\textbf{clamp}(input, input_{low}, input_{high}) - input_{low}) * \textbf{S} \right \rfloor}{\textbf{S}} + input_{low}$$

Restrict the input value range

ho clamp(input, input_{low}, input_{high}) = $min(max(input, input_{low}), input_{high})$

Scaling Factor:

Pros:

Reduce model size Reduce computational cost Improve latency Cons:

Accuracy may drop

7.1 Experimental Results – Neural Network

INT8 Model:

Accuracy = 93.8% Loss = 0.18

	_NOISE	_UNKNOWN	YES
_NOISE	99.5%	0.5%	0%
_UNKNOWN	6.1%	89.4%	4.5%
YES	2.496	4.7%	92.9%
F1 SCORE	0.95	0.92	0.94

FP32 Model:

Accuracy = 93.9% Loss = 0.18

	_NOISE	_UNKNOWN	YES
_NOISE	99.5%	0.5%	0%
_UNKNOWN	5.3%	89.8%	4.9%
YES	2.0%	5.1%	92.9%
F1 SCORE	0.96	0.92	0.94

7.2 Experimental Results – DEMO

On-board Performance using INT8 model

MFCC Latency	120 ms	
Neural Network Latency	10 ms	
Peak RAM Usage (NN)	5.0K	
Flash Usage (NN)	34.6K	

