Midterm

Usvyatsov Mikhail

March 31, 2015

1 Part 1

- (a) We know, that the first autocorrelation coefficient ϕ_1 is close to one and so we can write that $y_t = \phi_0 + \phi_1 y_{t-1} + \epsilon_t$. Due to the fact, that ϕ_1 is close to one we can decide, that there is a unit root. So, Canadian inflation rate has a stochastic trend. One of more formal approach to test for the unit root is Augmented DickeyFuller test.
- (b) $H_0: \theta = 0$ $ADF = -\frac{0.1}{0.05} = -2$
- (c) We have to accept Null hypothesis in all ocasions, because -2 is less negative than all the critical values.
- (d) It is necessary to look on the correlation between lag_i and current value of series. If the correlation is statistically significant we have to include this lag.
- (e) AR(1): $\delta Inf_t = 0.002 0.31 * (-1.5) = 0.46$ Inflation rate = $Inf_{t-1} + \delta Inf_t = 1.3 + 0.46 = 1.76$ The error is 1.76 2.1 = -0.34 AR(4): $\delta Inf_t = 0.021 0.46 (-1.5) 0.39 (-1.4) 0.25 (3.5) = 0.382$ Inflation rate = $Inf_{t-1} + \delta Inf_t = 1.3 + 0.382 = 1.682$ The error is 1.682 2.1 = -0.418 ADL(4,1): $\delta Inf_t = 1.279 0.51 (-1.5) 0.44 (-1.4) 0.3 (3.5) 0.16 (7) = 0.49$ Inflation rate = $Inf_{t-1} + \delta Inf_t = 1.3 + 0.49 = 1.79$ The error is 1.79 2.1 = -0.31

(f)