2-4 Teasure Hunting — Mergesort

(Wednesday, April 11, 2018 ~ Sunday, April 15, 2018)

Hengfeng Wei

hfwei@nju.edu.cn

April 11, 2018

Analysis of Mergesort in CLRS (# of Comparisions; $a_i : \infty$ not Counted)

- (a) Analyze the worst case W(n) and the best case B(n) time complexity of mergesort as accurately as possible. Explore the relation between them and the binary representations of numbers.
 - Plot W(n) and B(n) and explain what you observe.
- (b) Analyze the average case A(n) time complexity of mergesort. Plot A(n) and explain what you observe.
- (c) Prove that: The minimum number of comparisons needed to merge two sorted arrays of equal size m is 2m-1.

Analysis of Mergesort in CLRS (# of Comparisions; $a_i : \infty$ not Counted)

- (a) Analyze the worst case W(n) and the best case B(n) time complexity of mergesort as accurately as possible. Explore the relation between them and the binary representations of numbers.
 - Plot W(n) and B(n) and explain what you observe.
- (b) Analyze the average case A(n) time complexity of mergesort. Plot A(n) and explain what you observe.
- (c) Prove that: The minimum number of comparisons needed to merge two sorted arrays of equal size m is 2m-1.

(WED., April 11, 2018)

(THU, April 12, 2018)

$$W(n) = \begin{cases} 0, & n = 1 \\ W(\lfloor \frac{n}{2} \rfloor) + W(\lceil \frac{n}{2} \rceil) + (n-1), & \text{o.w.} \end{cases}$$

$$W(n+1) - W(n)$$

The total number of bits in the binary representations of all the numbers less than n.

KEEP
CALM
AND
STAY
TUNED

(SAT, April 14, 2018)

(SUN, April 15, 2018)

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn