

FACULTY OF COMPUTING

SEMESTER 1 2024/2025

SECI 1013 DISCRETE STRUCTURE

SECTION 03

ASSIGNMENT 3

LECTURER: DR. MUHAMMAD ALIIF BIN AHMAD

Student name	Matric Number
TOH SHEE THONG	A24CS0309
NUR ALIA ATHIRAH BINTI SUZUDDIN	A24CS0153
LEE PEI YUAN	A24CS0262
MUHAMMAD ALIFF BIN HELMI	A24CS0272

3.
$$\frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{3}{100} = 0.03$$

4.
$$0.4 \quad P = 0.8 \quad S \quad P(P') = (0.6 \times 0.5) + (0.6 \times 0.7)$$

$$= 0.6 \quad P' = 0.5 \quad S' \quad = 0.6$$

ii)
$$P(P|S) = \frac{P(P \cap S)}{P(S)}$$

= $\frac{0.4(0.8)}{0.4(0.8) + 0.6(0.3)}$

b. lines that connected 2 points (A) (B) (. vertices that connected by an edge .

d. edge that connect 2 vertices.

e. reitices that doesn't connect with others ⑥→⑥ ② means that C is isolated vertex.

f. edge that start and end in one vertex.

9. 2 edge connected with 2 same vertices. (A) B) means that e, and ez are

ii) incident matrix:

	٠,	67	ls	€4	ls	l 6	Q1	ℓ_{ϵ}	$\ell_{\mathfrak{q}}$	l 10	l.	l12	l13	l 14	lis	
٧,	(0	0	0	0	0	0	0	D	0	D	0	0	0	D	İ
V2	1	(ĺ												0	
V3		1	O	0	0	0	1	0	0	0	0	1	0	0	0	
VH	0	0	0	1	1	D	U	0	0	0	0	0	0	0	D	
\^2	D	0	Ì	0	0	1	0	0	0	0	0	1.	0	1	0	
VL		0	0	0	į	1	D	l	1	0	0	0	2	O	0	
17	0	0	0	0	0	0	1	ĺ	(1	0	b	0	D	0	
18	0	O	0	0	0	0	0	í)	j	0	1	0	O	D	0	
Vq												0				

 \hat{a} V8 Ŋς V2 Vu $\sqrt{3}$ 2 2 2 4) 1 3 ١ Out

incident matrix:

0

adjacent matrix .

i) { V,, e,, V2, e2, V6, e3, V9} {V, P, V2 Ps, V8, V1, V5, P12, V9} EV., e1, V2, e, V8, V11, VE, eq, V4, er, V3, e6, V7, e1, V6, e10, V93 { V1, l4, V3, le, V6, l10, V9} { V1, e1, V2, e2, V6, en, V5, e4, V4, er, V3, e6, V6, e10, V9} { V,, la, V3, l5, V4, l1, V5, l1, Ve, l3, V9} { V1, e1, V3, es, V4, eq, V5, e12, V9} { V1, l4, V3, l6, V7, l7, V6, l8, V3, l5, V4, l9, V5, l12, V9} { V1, l4, V2, l8, V6, l7, V1, l6, V3, l5, V4, l9, V5, l12, V9} 5 a) d(A)=4 No. Since all the degrees d(B)=2 are even. d(1)=4 d(0) = 2d(E):2 d(f)=4

- b) Euler circuit : {A, B, C, D, F, C, A, F, E, A}
- O Hamilton arcuit : { A,B,C,D,F,E,A}
- d) Euler circuit passes through edge exactly one but Hamilton doesn't need to connect all the edges.

i) {V1, e1, V2, l2, V6, e3, Vq}

{V1, e1, V2, e3, V6, V1, V5, e12, Vq}

{V1, e1, V2, e3, V6, V1, V5, e4, V4, e5, V3, e6, V1, e1, V6, e10, Vq}

{V1, e4, V3, e6, V6, e10, Vq}

{V1, e1, V2, e2, V6, e11, V5, e4, V4, e5, V3, e8, V6, e10, Vq}

{V1, e4, V3, e5, V4, e4, V5, e11, V6, e3, Vq}

{V1, e11, V2, e5, V4, e4, V5, e12, Vq}

iii) and iv)
shortest: {V,, l,, V2, V2, V2, l3, V9}
{V1, l4, V3, l2, V6, l10, V9}
longest: {V1, l1, V2, l2, V6, l11, V5, l9, V4, l5, V2, l6, V7, l7,
V6, l10, V4]