Chapitre 10. Ensembles et applications.

1 Ensembles

1.a Définition d'un ensemble

Un ensemble E est par définition une collection d'objets (en nombre fini ou infini). Ces objets sont appelés les éléments de E.

Si x est un élément de E, on note : $x \in E$.

Représentations intuitive :

Exemples:

Il y a deux façons de définir un ensemble :

- en énumérant ses éléments. Par exemple $E_1=\{2,4,6,8\},\,E_2=\{n\pi\ /\ n\in\mathbb{Z}\}$
- en donnant une <u>propriété</u> qui <u>caractérise</u> les éléments de E; autrement dit on écrit $E = \{x \in ... / P(x)\}$. Par exemple $E_1 =$ et $E_2 =$

Remarque : Lorsqu'on résout une équation (E), c'est en fait qu'on passe de la forme "propriété" à la forme "énumération" pour l'ensemble des solutions S :

Pour $(E): z^2 = -2$ d'inconnue le complexe z:

$$S =$$

Pour (E): x + y = 0 d'inconnue le couple (x, y):

$$S =$$

Pour (E): y'=y d'inconnue une fonction dérivable y de \mathbb{R} dans \mathbb{R} :

$$S =$$

Quelques ensembles particuliers:

- L'ensemble vide, noté \emptyset : il ne contient aucun élément.
- Un ensemble avec un seul élément s'appelle un singleton : $\{x\}$. Un ensemble avec deux éléments s'appelle une paire : $\{x,y\}$ avec $x \neq y$.

1.b Inclusion

Définition:

Soient E et F des ensembles.

On dit que F est inclus dans E ou que F est une partie de E si :

$$\forall x \in F, x \in E.$$

On note $F \subset E$.

$\mathbf{Exemples}:$

Remarques:

- Si $F \subset E$ mais que $F \neq E$, on note parfois $F \subsetneq E$.
- \emptyset est inclus dans l'importe quel ensemble E
- $F \not\subset E$ signifie donc :

Méthode:

- Pour montrer que $F \subset E$, on écrit :
- Pour montrer que E = F: E = F signifie que $x \in E \iff x \in F$.

D'où deux possibilités :

- Soit on arrive à montrer directement $x \in E \iff ... \iff x \in F$. Parfois facile, parfois difficile, parfois infaisable.
- Soit on raisonne par double inclusion :

Définition:

L'ensemble des parties de E est noté $\mathcal{P}(E)$.

Ainsi, si E et F sont des ensembles,

 $\mathcal{P}(E)$ contient toujours \emptyset et E.

Exemple : Pour $E = \{1, 2, 3\},\$

$$\mathcal{P}(E) = \{$$

1.c Réunion, intersection, différence, complémentaire

Dans cette partie, E désigne un ensemble et A, B, C des parties de E.

Définition:

 $A \cup B =$

• Intersection de A et B : c'est l'ensemble des éléments de E appartenant à A et A

 $A \cap B =$

Ces définitions se généralisent au cas de plus de 2 ensembles :

Si I est un ensemble d'indices (fini ou infini) et si pour tout $i \in I$, A_i est une partie de E, on définit :

 $\bigcup_{i \in I} A_i =$

 $\bigcap_{i \in I} A_i =$

${\bf Exemples}:$

— Le domaine de définition de tan est

$$--\bigcap_{n\in\mathbb{N}^*}\left[1,2+\frac{1}{n}\right[=$$

Proposition:

• (Propriétés élémentaires)

$$A \cup A = \qquad \qquad A \cup E = \qquad \qquad A \cup \emptyset = \\ A \cap A = \qquad \qquad A \cap E = \qquad \qquad A \cap \emptyset =$$

• (Distributivité de \cap sur \cup et de \cup sur \cap)

w	1	
_	· `	di
	_	S
	W.	

Démonstration 1

Généralisation :
$$A \cap \left(\bigcup_{i \in I} B_i\right) =$$

$$A \cup \left(\bigcap_{i \in I} B_i\right) =$$

Définition:

• <u>Différence de A par B</u> : c'est l'ensemble des éléments x de E appartenant à A mais pas à B :

$$A \backslash B =$$

• Complémentaire de A dans E: c'est l'ensemble des éléments x de E n'appartenant pas à A; autrement dit, c'est $E \setminus A$.

Souvent, il n'y a pas d'ambiguïté sur E, et le complémentaire de A dans E est alors noté \overline{A} ou A^c .

$$\overline{A} =$$

Exemple : le domaine de définition de tan est

Proposition:

$$\overline{\emptyset} =$$

$$A \cup \overline{A} =$$

$$\overline{A \cup B} =$$

$$\overline{E} =$$

$$A \cap \overline{A} =$$

$$\overline{A \cap B} =$$

Démonstration 2

Généralisation :
$$\overline{\bigcup_{i \in I} A_i} =$$

$$\overline{\bigcap_{i\in I}A_i} =$$

Parties disjointes, recouvrements disjoints, partitions 1.d

Définition:

On dit que deux parties A et B d'un ensemble E sont disjointes si

Exemples:

Si I est un ensemble d'indices et si pour tout $i \in I$, A_i est une partie d'un ensemble E, on dit que les ensembles A_i sont deux à deux disjoints si :

Définition:

Soit $(A_i)_{i \in I}$ des parties d'un ensemble E.

On dit que les A_i forment un recouvrement disjoint de E

si les A_i sont deux à deux disjoints, et si $\bigcup A_i = E$.

Si de plus les A_i sont tous non vides, on dit plutôt que les A_i forment une partition de E.

Exemples:

- Avec $E = \mathbb{Z}$:
- Avec $E = \mathbb{R}$:
- Avec E l'ensemble des prénoms des élèves de la PTSI2 :

1.e Produit cartésien

Définition:

Soient E et F des ensembles. On appelle <u>produit cartésien de E et F l'ensemble des couples d'un élément de E et d'un élément de F:</u>

$$E \times F =$$

Une égalité entre deux éléments de $E \times F$ revient à une égalité dans E et une égalité dans F :

$$(x,y) = (x',y') \iff \begin{cases} x = x' \\ y = y' \end{cases}$$

 \triangle L'ordre compte! $(0,1) \neq (1,0)$.

 $\underline{\wedge}$ Ne pas confondre avec $\{x, y\}$ qui désigne un ensemble.

Par exemple, $\{x,y\}$ est réduit à $\{x\}$ si x=y, alors que (x,x) a un sens différent de x.

Illustration:

Cette définition se généralise à un nombre fini quelconque d'ensembles :

$$E_1 \times E_2 \times \cdots \times E_n =$$

En particulier, $E \times E \times \cdots \times E$ (où E apparaît n fois) est noté E^n .

Exemples:

2 Applications : quelques notions générales

2.a Définition

Définition:

On appelle application (ou fonction) la donnée de trois choses :

- $\bullet~$ Un ensemble de départ E non vide
- $\bullet~$ Un ensemble d'arrivée F non vide
- Pour tout $x \in E$, la donnée d'un unique élément f(x) de F associé, noté f(x).

Notations:

$$f: E \to F$$
 ou $f: E \to F$ ou $E \xrightarrow{f} F$.
 $x \mapsto f(x)$

On dit que f est une application :

"de E dans F" ou bien "de E sur F" ou bien "définie sur E à valeurs dans F" L'ensemble des applications de E dans F est noté F^E ou $\mathcal{F}(E,F)$.

Vocabulaire:

- Si $x \in E$, f(x) est l'image de x par f.
- Si $y \in F$, tout élément $x \in E$ qui vérifie f(x) = y s'appelle <u>un antécédent de y par f</u>. Il peut y avoir plusieurs antécédents pour un même y!
- Le graphe de f est . Lorsque $E \subset \mathbb{R}$ et $F = \mathbb{R}$, c'est une partie de \mathbb{R}^2 que l'on appelle courbe représentative de f.

$\mathbf{Exemples}:$

$$id_E: E \to E$$
$$x \mapsto x$$

 $f: \quad E \quad \to \quad F \qquad \text{où } E = \text{PTSI2}$ et F = ensemble des prénoms écrits dans notre alphabet. élève $\ \mapsto \ \text{prénom}$

$$f_1: \mathbb{R} \to \mathbb{R}$$
, $f_2: \mathbb{R}_+ \to \mathbb{R}$, $f_3: \mathbb{R} \to \mathbb{R}_+$, $f_4: \mathbb{R}_+ \to \mathbb{R}_+$
 $x \mapsto x^2$ $x \mapsto x^2$ $x \mapsto x^2$ $x \mapsto x^2$ sont 4 applications distinctes.

Montrer l'égalité de deux applications $f:E\to F$ et $g:E'\to F'$, c'est donc :

- Montrer que pour tout $x \in E$, f(x) = g(x).

Composition **2.b**

Définition:

Soient E, F, G des ensembles, et des applications $E \xrightarrow{f} F$ et $F \xrightarrow{g} G$. On appelle composée de f par g l'application notée $g\circ f$ définie par :

Illustration:

Proposition:

(Associativité) Soient E, F, G, H des ensembles et $f: E \to F, g: F \to G, h: G \to H$. Alors:

On peut donc écrire

⚠ Il n'y a pas de commutativité en général!!

Des contre-exemples :

${\bf Proposition:}$

Soit
$$f: E \to F$$
.

$$f \circ = f \circ f = f$$

Démonstration 3

2.c Restriction, prolongements

Définition:

Soit $f: E \to F$ et A une partie de E.

On appelle restriction de f à A l'application $f|_A$ définie par :

Ce sont bien deux applications distinctes :

elles n'ont pas le même graphe!

Exemple : cos et cos $|_{[0,\pi]}$:

Définition:

Soit A une partie de E et $f: A \to F$.

Un prolongement de f à E est une application $\tilde{f}:E\to F$ qui vérifie :

⚠ Il n'y a pas un seul prolongement possible mais une infinité!

2.d Images directes, images réciproques

Définition:

Soit $f: E \to F$ et A une partie de E.

On appelle <u>image</u> directe de A par f, et on note f(A), l'ensemble des images des éléments de A:

$$f(A) = \{ f(x) / x \in A \}$$

C'est une partie de F.

Cela revient à dire, pour $y \in F$:

$$y \in f(A) \iff$$

C'est ce qu'il faut retenir en priorité!

Exemple: Pour $f: \mathbb{R} \to \mathbb{R}$

$$f([0,2]) = f(\mathbb{R}) =$$

Exemple : Lorsque $f:I\to\mathbb{R}$ est continue et strictement croissante avec I intervalle, on a déjà vu comment obtenir f(I):

si
$$I = [a, b]$$
, c'est $[f(a), f(b)]$; si $I = [a, b]$, c'est $\lim_{x \to a} f(x), f(b)$

$$\begin{split} &\text{si }I = [a,b], \text{ c'est }[f(a),f(b)] \ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),f(b)] \\ &\text{si }I = [a,b[, \text{ c'est }[f(a),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I =]a,b[, \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I =]a,b[, \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to b} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x),\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }I = [a,b], \text{ c'est }]\lim_{x \to a} f(x)[\ ; \\ &\text{si }$$

Dans le cas où f est strictement décroissante, il suffit d'inverser les bornes.

Définition:

Soit $f: E \to F$ et B une partie de F.

On appelle image réciproque de B par f, et on note provisoirement $f^{\leftarrow}(B)$, l'ensemble des antécédents des éléments de B :

$$f^{\leftarrow}(B) = \{ x \in E / \ f(x) \in B \}$$

C'est une partie de E.

Cela revient à dire, pour $x \in E$:

$$x \in f^{\leftarrow}(B) \Longleftrightarrow$$

C'est ce qu'il faut retenir en priorité!

La notation officielle sera $f^{-1}(B)$, on en reparlera dans la partie 3.

Exemple : Pour
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2$

$$f^{\leftarrow}([0,4]) =$$

 $f^{\leftarrow}(]-\infty,-1]) =$
 $f^{\leftarrow}(\{3\}) =$
 $f^{\leftarrow}([-3,1]) =$

Remarque : Soit $y \in F$; $f^{\leftarrow}(\{y\})$ est

Désormais, en particulier dans les exercices, on se force à utiliser la notation $f^{-1}(B)$ au lieu de $f^{\leftarrow}(B)$.

3 Injectivité, surjectivité et bijectivité

3.a Injectivité

Définition:

On dit que $f:E\to F$ est $\underline{\text{injective}}$ (ou : est une injection) si

Autrement dit:

$$f$$
 injective \iff

 \Leftarrow

 ${\bf Illustration}:$

Méthodes:

- C'est la dernière équivalence qu'on utilise le plus souvent.
- $\bullet\,$ Prouver que f n'est pas injective, c'est

Exemples:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

$$\begin{array}{cccc} f: & \mathbb{C}\backslash\{i\} & \to & \mathbb{C} \\ & z & \mapsto & \frac{z+i}{z-i} \end{array}$$

Traduction en termes d'équations :

f injective \iff Pour tout $y \in F$, l'équation f(x) = y (d'inconnue $x \in E$) a

3.b Surjectivité

Définition:

On dit que $f:E\to F$ est $\underline{\text{surjective}}$ (ou : est une surjection) si

Autrement dit:

f surjective \iff

Remarque : Dire que $f: E \to F$ est surjective, c'est dire que f(E) = F.

Illustration:

Traduction en termes d'équations :

f surjective \iff Pour tout $y \in F$, l'équation f(x) = y (d'inconnue $x \in E$) a

Méthode:

Prouver que f n'est pas surjective, c'est

Exemples:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

3.c Bijectivité, réciproque

Définition :

On dit que $f:E\to F$ est <u>bijective</u> (ou : est une bijection) si elle est injective et surjective, c'est-à-dire si

Autrement dit:

f bijective \iff

Illustration:

Exemples: Récapitulons avec:

$$\begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R} \\
x & \mapsto & x^2 \\
& y_{+}
\end{array}$$

$$\begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & x^2 \end{array}$$

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_+ \\ x & \mapsto & x^2 \end{array}$$

$$\begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R}_+ \\ x & \mapsto & x^2 \end{array}$$

Traduction en termes d'équations

f bijective \iff Pour tout $y \in F$, l'équation f(x) = y (d'inconnue $x \in E$) a

Exemples:

- Pour tout ensemble E, id_E est bijective.
- Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (y,x+2)$

 $\bullet \quad \text{Soit} \quad f: \quad \mathbb{R}\backslash\{3\} \quad \to \quad \mathbb{R}\backslash\{1\} \quad \text{Montrer que f est bijective.} \\ x \qquad \mapsto \quad \frac{x+1}{x-3}.$

Démonstration 4

Si l'exercice avait été :

Soit $f: \mathbb{R} \setminus \{3\} \to \mathbb{R}$ f est-elle bijective?

Démonstration 5

Définition:

Soit f une application bijective de E dans F.

L'application qui à tout $y \in F$, associe son unique antécédent par f, s'appelle l'application réciproque de f. On la note f^{-1} .

On a donc:

Illustration:

Remarques:

- Si $f: E \to F$ est bijective alors f^{-1} est bijective et $(f^{-1})^{-1} = f$.
- Par définition, pour tout $x \in E$, $f^{-1}(f(x)) = x$, et pour tout $y \in F$, $f(f^{-1}(y)) = y$. Ainsi :

Exemples:

Pour tout ensemble E, l'application réciproque de id_E est

L'application réciproque de $\mathbb{R}_+ \to \mathbb{R}_+$ est

$$x \mapsto x^2$$

L'application réciproque de $[0,\pi] \rightarrow [-1,1]$ est

$$x \mapsto \cos x$$

D'après ce qui précède, l'application réciproque de

$$(x,y) \mapsto (y,x+2)$$

D'après ce qui précède, l'application réciproque de $f: \mathbb{R}\backslash\{3\} \to \mathbb{R}\backslash\{1\}$ est $x \mapsto \frac{x+1}{x-3}$

$$x \mapsto \frac{x+1}{x-3}$$

Retenir:

Pour montrer qu'une fonction est bijective et trouver la réciproque, une bonne méthode est de résoudre, pour tout $y \in F$, l'équation f(x) = y d'inconnue $x \in E$.

Si pour tout $y \in F$, on trouve une unique solution, alors on peut affirmer que f est bijective... et l'unique solution obtenue, qui s'exprime en fonction de y, est $f^{-1}(y)$!

Si vous trouvez ne serait-ce qu'une valeur de y pour laquelle on n'a pas de solution ou plusieurs solutions, alors f n'est pas bijective.

Notation pour l'image réciproque

Soit $f: E \to F$ une fonction bijective, notons $g = f^{-1}$, on a $g: F \to E$. Soit B une partie de F.

- On peut considérer l'image directe de B par q, c'est $g(B) = f^{-1}(B)$, l'ensemble des images par f^{-1} des éléments de B.
- \bullet Comme B est une partie de l'ensemble d'arrivée de f, on peut aussi considérer l'image réciproque de B par f, notée $f^{-1}(B)$ (ou, avec la notation provisoire, $f^{\leftarrow}(B)$): c'est l'ensemble des antécédents par f des éléments de B. Or, pour $y \in B$, l'antécédent de y par f est $f^{-1}(y)$, c'est bien une image d'un élément y de B par la fonction f^{-1} .
- Conclusion : la notation $f^{-1}(B)$ n'est pas ambigüe lorsque f est bijective, cela désigne indifféremment l'image réciproque de B par f ou l'image directe de B par f^{-1} .

 \bigwedge La notation $f^{-1}(B)$ existe même si f n'est pas bijective!

3.d Liens avec la composition

On a vu que si $f: E \to F$ est bijective, alors $f^{-1} \circ f = \mathrm{id}_E$ et $f \circ f^{-1} = \mathrm{id}_F$. Il y a une réciproque :

Théorème:

(Caractérisation des fonctions bijectives)

Soit $f: E \to F$.

L'application f est bijective si et seulement s'il existe une application $g: F \to E$ telle que

Si c'est le cas, une telle application g est unique, c'est f^{-1} .

Démonstration 6

Cela donne une bonne méthode dans les exercices abstraits pour montrer qu'une fonction est bijective : trouver une application $g: F \to E$ telle que $\begin{cases} g \circ f = \mathrm{id}_E \\ f \circ g = \mathrm{id}_F. \end{cases}$

On peut alors affirmer que f est bijective et que $f^{-1} = g$ (dans cet ordre).

Proposition:

Soient $f: E \to F$ et $g: F \to G$.

Si f et g sont bijectives, alors :

- la fonction $g \circ f : E \to G$ est bijective
- et sa réciproque est :

Démonstration 7

Illustration:

Proposition:

Soient $f: E \to F$ et $g: F \to G$ deux applications.

- Si f et g sont injectives, alors $g \circ f$ aussi.
- Si f et g sont surjectives, alors $g \circ f$ aussi.

Démonstration 8

4 Quelques notions de plus au programme

4.a Fonction indicatrice

Définition:

Soit E un ensemble et A une partie de E.

La fonction indicatrice de A (ou fonction caractéristique de A) est la fonction de E dans $\{0,1\}$ notée $\mathbbm{1}_A$ et définie par :

$$\begin{array}{cccc} \mathbb{1}_A: & E & \to & \{0,1\} \\ & & \\ x & \mapsto & \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases} \end{array}$$

Ainsi, pour tout $x \in E : x \in A \iff \mathbb{1}_A(x) = 1$ et $x \notin A \iff \mathbb{1}_A(x) = 0$.

Connaître $\mathbb{1}_A$, c'est connaître exactement pour quels $x \in E$ on a $\mathbb{1}_A(x) = 1$ et pour quels $x \in E$ on a $\mathbb{1}_A(x) = 0$; autrement dit, cela revient à connaître exactement quels sont les éléments de E qui constituent la partie A. On peut dire que la partie A est caractérisée par sa fonction indicatrice.

Si A et B sont des parties de E, $A = B \iff \mathbb{1}_A = \mathbb{1}_B$.

L'application $A \mapsto \mathbb{1}_A$ est une bijection de

4.b Familles indexées

Si $x_1, x_2, ..., x_n$ sont des éléments d'un ensemble $E, (x_i)_{i \in \{1,2,...,n\}}$ désigne la <u>famille</u> $(x_1, x_2, ..., x_n)$ d'éléments de E. On peut en fait voir cela comme une application de l'ensemble des indices vers E:

$$x: \{1, 2, \dots, n\} \rightarrow E$$

$$i \mapsto x(i) = x_i$$

Par exemple une suite réelle $(x_n)_{n\in\mathbb{N}}$ est en fait une application de \mathbb{N} dans \mathbb{R} , d'où la notation pour l'ensemble des suites réelles : $\mathbb{R}^{\mathbb{N}}$.

Plus généralement, si I et E sont des ensembles, une <u>famille d'éléments de E indexée par I est en fait une application de I dans E:</u>

$$\begin{array}{ccc} x: & I & \to & E \\ & i & \mapsto & x(i) \end{array}$$

18

On note cette famille $(x_i)_{i \in I}$.

Exemple:

On pose, pour tout
$$a \in \mathbb{R}^*$$
, $f_a: \mathbb{R}^*_+ \to \mathbb{R}$
 $x \mapsto \ln(|a|x)$

Alors $(f_a)_{a \in \mathbb{R}^*}$ est une famille de fonctions de \mathbb{R}_+^* dans \mathbb{R} , indexée par \mathbb{R}^* .

Plan du cours

1	En	sembles	1	
	1.a	Définition d'un ensemble	1	
	1.b	Inclusion	2	
	1.c	Réunion, intersection, différence, complémentaire	3	
	1.d	Parties disjointes, recouvrements disjoints, partitions	5	
	1.e	Produit cartésien	6	
2	Applications : quelques notions générales			
	2.a	Définition	7	
	2.b	Composition	9	
	2.c	Restriction, prolongements	10	
	2.d	Images directes, images réciproques	10	
3	Injectivité, surjectivité et bijectivité			
	3.a	Injectivité	12	
	3.b	Surjectivité	13	
	3.c	Bijectivité, réciproque	14	
	3.d	Liens avec la composition	17	
4	Quelques notions de plus au programme			
	4.a	Fonction indicatrice	18	
	4 h	Familles indexées	18	