Trabalho #7

Simular o algoritmo Combined M-MRAC + LS.

Caso geral: $\forall n$ (ordem da planta) $n^* = 1$ (grau relativo)

Resumo do algoritmo

Subsystem	Equation	Order
Plant	y = P(s) u	n
Model	$y_m = M(s) r$	n
Track. error	$e_a = \operatorname{sign}(k_p)(y - y_m)$	
SV-filters	$\dot{\omega}_1 = A_f \omega_1 + b_f u$	n-1
	$\dot{\omega}_2 = A_f \omega_2 + b_f y$	n-1
Regressor	$\omega^T = \begin{bmatrix} \omega_1^T & y & \omega_2^T & r \end{bmatrix}$	
ξ -filter	$\dot{\xi} = -\ell_0 \xi + \omega$	2n
	$\ell_0 > a_m$	
Control	$u = \theta^T \omega + \dot{\theta}^T \xi$	
Update law	$\dot{\theta} = -\Gamma \xi e_a - \sigma \Delta,$	2n
	$\Gamma = \Gamma^T > 0, \sigma > 0$	
	$\Delta = \theta - \psi$	
Filters	$\dot{\zeta} = -\ell_0 \zeta + u$	1
	$\dot{\varphi} = -\ell_0 \varphi + e_0$	1
Prediction	$\hat{\zeta} = \psi^T \phi$	
	$\phi = \xi + \begin{bmatrix} 0^T & (e_0 - \alpha \varphi) \end{bmatrix}^T$	
	$0 \in \mathbb{R}^{2n-1}$	
Pred. error	$\varepsilon = \hat{\zeta} - \zeta$	
LS estimator	$\dot{\psi} = -R\left(\frac{\tau\phi\varepsilon}{m^2} - \frac{\sigma}{\beta}\Gamma^{-1}\Delta\right)$	2n
	$\tau > \frac{1}{2}, \beta > 0$	
	$\dot{R} = -\frac{R\phi\phi^T R}{m^2}$	$4n^2$
	$R(0) = R^T(0) > 0$	
	$m^2 = 1 + \kappa \phi^T R \phi, \ \kappa \ge 0$	

- (1) Demonstre a estabilidade do algoritmo Combined MRAC descrito na seção 6.2.1 das notas de aula.
- (2) Avalie o algoritmo para uma planta de 3a. ordem. Verifique o comportamento do algoritmo variando parâmetros do algoritmo.
- ★ Na apresentação do trabalho, o grupo deverá demonstrar detalhadamente a estabilidade do algoritmo.

Avaliação do trabalho

Preparar e enviar por email:

- 1. Relatório contendo a descrição do algoritmo, resultados das simulações e discussão dos resultados.
- 2. Código dos scripts e modelos (Matlab & Simulink) utilizados para as simulações.
- 3. Slides preparados para a apresentação do trabalho.

Apresentações

- Os grupos terão cerca de 25 minutos para fazer a apresentação.
- As apresentações serão realizadas na seguinte data:

