ZESTAW ZADAŃ III

Zadanie 1

(a) Zapisz wzór Taylora dla funkcji $f(x) = \frac{2x}{2-x}$ z dokładnością do dwóch wyrazów w okolicy $x_0 = 1$; wykorzystaj otrzymany wzór do przybliżenia wartości funkcji dla x = 0.9,

(b) Zapisz wzór Taylora dla funkcji $f(x) = \cos x$ z dokładnością do wyrazów 2-go rzędu w okolicy $x_0 = 0$. Za pomocą uzyskanego wzoru oblicz przybliżoną wartość $\cos 15^\circ$ (wartość podana przez kalkulator: $\cos 15^\circ \approx$ 0,96596; w obliczeniach przyjmij: $\pi \approx 3,14$).

Zadanie 2

Wyznacz przedziały monotoniczności i ekstrema lokalne podanych funkcji:

(a)
$$y = -2x^3 + 4x^2 + 8x + 10$$
, (b) $y = -x^4 + x^3 + 6x^2 - 9x + 5$, (c) $y = 3x + \frac{1}{x^3}$,

(a)
$$y = -2x^3 + 4x^2 + 8x + 10$$
, (b) $y = -x^4 + x^3 + 6x^2 - 9x + 5$, (c) $y = 3x + \frac{1}{x^3}$, (d) $y = x^5 + (1-x)^5$, (e) $y = x^4(2x-3)^6$, (f) $y = \frac{2x^2 - 5x + 2}{3x^2 - 10x + 3}$, (g) $y = x^2 \ln x$.

Zadanie 3 Wyznaczając ekstremum pewnej funkcji oblicz odległość punktu P(2,3) od prostej y=2x.

Zadanie 4 Wyznacz współrzędne wierzchołków trójkąta prostokątnego o najmniejszym polu, jeżeli wiadomo, że jego przyprostokatne leża na osiach układu współrzednych oraz punkt (3,1) należy do przeciwprostokatnej.

Zadanie 5 Asfaltowy odcinek drogi o długości b znajduje się w odległości (w linii prostej) a od punktu, w którym sie znajdujemy (rysunek poniżej). Chcemy dojechać do niej po odcinku prostej nachylonym pod kątem α do poziomu , a potem dalej poruszać się wzdłuż asfaltowego odcinka drogi (prędkość poruszania się poza drogą 30 km/h, wzdłóż drogi 60 km/h). Wyznacz α , dla którego całą drogę pokonamy w najkrótszym czasie.

