

Chimie Niveau moyen Épreuve 2

Jeudi 11 mai 2017 (après-midi)

Numéro de session du candidat									

1 heure 15 minutes

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- · Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du recueil de données de chimie est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [50 points].

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1.		Il existe de nombreux oxydes d'argent de formule $\mathrm{Ag_xO_y}$. Lorsqu'ils sont chauffés fortement, ils se décomposent tous en leurs éléments.										
	(a)	(i)	Après avoir chauffé 3,760 g d'oxyde d'argent, il reste 3,275 g d'argent. Déterminez la formule empirique de ${\rm Ag_xO_y}$.	[2]								
		(ii)	Suggérez pourquoi la masse finale de solide obtenue par chauffage de $3,760\mathrm{g}$ de $\mathrm{Ag_xO_y}$ pourrait être supérieure à $3,275\mathrm{g}$ en donnant une amélioration de la méthode pour la suggestion que vous avez formulée. Ignorez les erreurs possibles dans la procédure de pesée.	[2]								
	(b)	L'arg	gent d'origine naturelle est composé de deux isotopes stables, ¹⁰⁷ Ag et ¹⁰⁹ Ag.									
			nasse atomique relative de l'argent est de 107,87. Montrez que l'isotope ¹⁰⁷ Ag est abondant.	[1]								

(Suite de la question 1)

(c) (i) Certains oxydes de la période 3, tels que Na₂O et P₄O₁₀, réagissent avec l'eau. Une quantité de chaque oxyde mesurée à l'aide d'une spatule est ajoutée à des ballons distincts de 100 cm³ contenant de l'eau distillée et quelques gouttes de l'indicateur bleu de bromothymol.

L'indicateur figure à la section 22 du recueil de données.

Déduisez la couleur de la solution résultante et la formule chimique du produit formé après la réaction de chaque oxyde avec l'eau.

[3]

Ballon contenant	Couleur de la solution	Formule du produit
Na ₂ O		
P ₄ O ₁₀		

	(ii)		Exp	pilo	uez	z la	cor	ndu	ctiv	ʻité	éle	ectr	iqu	e d	le N	la ₂ (Эе	t de	e P	₄ O ₁	o fc	nd	us.						[[2]
																		٠.												
																		٠.												
(d)		ésur es d												éle	ctro	onic	lue	dé	dui	it d	u s _l	oec	tre	d'é	mi	ssic	on d	е	[2	[2]

Tournez la page

(a)	(i) (ii)	Exprimez la demi-équation d'oxydation. À l'aide de la section 24 du recueil de données, dédu de la réaction entre Sn²+(aq) en milieu acide et Cr₂O		[1]
	(ii)			[1]
• • • •	(ii)			[1]
(b)	(i)	Calculez le pourcentage d'incertitude sur la masse d données suivantes.	e K ₂ Cr ₂ O ₇ (s) à partir des	[1]
		Masse de la coupelle de pesée / g ±0,001 g	1,090	
		Masse de la coupelle de pesée + $K_2Cr_2O_7(s)$ / $g \pm 0,001 g$	14,329	
	(ii)	L'échantillon de K ₂ Cr ₂ O ₇ (s) dans la partie (i) est disso pour former 0,100 dm³ de solution. Calculez sa cond		[1]

(Suite de la question 2)

(iii) $10.0\,\mathrm{cm^3}$ de l'échantillon de déchets nécessitent $13.24\,\mathrm{cm^3}$ de la solution de $\mathrm{K_2Cr_2O_7}$. Calculez la concentration molaire de $\mathrm{Sn^{2^+}}$ (aq) dans l'échantillon de déchets.

[2]

3. $PCl_5(g)$ et $Cl_2(g)$ sont placés dans un ballon scellé et on laisse s'établir l'équilibre à 200 °C. La variation d'enthalpie, ΔH , de la décomposition de $PCl_5(g)$ est positive.

[Source: http://education.alberta.ca/media]

(a) (i) Déduisez l'expression de la constante d'équilibre, K_c , de la décomposition de $PCl_5(g)$.

[1]

(Suite de la question 3)

	 (ii) Déduisez, en justifiant votre réponse, le facteur responsable de l'établissement d'un nouvel équilibre après 14 minutes. 	[2]
	(b) Déduisez la structure de Lewis (électrons représentés par des points) et la géométrie moléculaire de PCl ₃ .	[2]
	Structure de Lewis :	
	Géométrie moléculaire :	
1 .	Les liaisons peuvent se former de nombreuses façons.	
	(a) Le module d'exploration de la mission Apollo utilisait du carburant pour fusée composé d'un mélange d'hydrazine, N ₂ H ₄ , et d'hémitétroxyde d'azote, N ₂ O ₄ .	
	$2N_2H_4(l) + N_2O_4(l) \rightarrow 3N_2(g) + 4H_2O(g)$	
	(i) Exprimez et expliquez la différence de la force de liaison entre les atomes d'azote dans une molécule d'hydrazine et dans une molécule d'azote.	[2]

(Suite de la question 4)

	(ii) Exprimez pourquoi l'hydrazine a un point d'ébullition plus élevé que celui de l'hémitétroxyde d'azote.	[1]
	(iii) Déterminez l'état d'oxydation de l'azote dans les deux réactifs.	[1]
N ₂ H		
N ₂ C) ₄ :	
	(iv) Déduisez, en justifiant votre réponse, quelle espèce est l'agent réducteur.	[1]
(b)	Déduisez les structures de Lewis (électrons représentés par des points) de l'ozone.	[2]

Tournez la page

5. (a) Le magnésium réagit avec l'acide sulfurique :

$$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$$

Le graphique montre les résultats d'une expérience utilisant un ruban de magnésium en excès et de l'acide sulfurique dilué.

(i) Résumez pourquoi la vitesse de réaction diminue avec le temps. [1]

......

(ii) Représentez, sur le même graphique, les résultats attendus si l'expérience était répétée en utilisant du magnésium en poudre, en gardant sa masse et toutes les autres variables inchangées.

[1]

(Suite de la question 5)

(b) Le dioxyde d'azote et le monoxyde de carbone réagissent selon l'équation suivante :

$$NO_2(g) + CO(g) \rightleftharpoons NO(g) + CO_2(g)$$

$$\Delta H = -226 \,\mathrm{kJ}$$

Coordonnées de la réaction

\triangle	17 4		-1-1-	4 1:	:
	i enernie r	d'activation	0A 12	reaction	INVARGA
Calculcz	i Cilcigio (uc ic		

[1]

(c)	Exprimez l'équation de la réaction de NO ₂ dans l'atmosphère pour produire un dépôt	
	acide	[1

[1]

- **6.** La chloration photochimique du méthane peut se produire à basse température.
 - (a) À l'aide d'équations pertinentes, montrez les étapes d'initiation et de propagation de cette réaction.

[3]

Initiation:

Propagation:

(b) Du brome est ajouté à de l'hexane, à de l'hex-1-ène et à du benzène. Identifiez le(s) composé(s) qui réagira (réagiront) avec le brome dans un laboratoire bien éclairé.

[1]

(c) Le chlorure de polyvinyle (PVC) est un polymère dont la structure est la suivante:

Exprimez la formule structurale du monomère de PVC.

[1]

- 7. Les acides et les bases solubles s'ionisent dans l'eau.
 - (a) L'hypochlorite de sodium s'ionise dans l'eau:

$$OCl^{-}(aq) + H_2O(l) \rightleftharpoons OH^{-}(aq) + HOCl(aq)$$

(i) Identifiez l'espèce amphiprotique (amphotère).

[1]

(ii) Identifiez une paire acide-base conjuguée dans la réaction.

[1]

Acide	Base	

(b) Une solution contenant 0,510 g d'un acide monoprotique inconnu, HA, est titrée avec NaOH (aq) 0,100 mol dm⁻³. Il faut 25,0 cm³ pour atteindre le point d'équivalence.

(i)	Calculez la	quantité,	en mol, o	de NaOH	(aq) utilisée
-----	-------------	-----------	-----------	---------	---------------

[1]

(ii) Calculez la masse molaire de l'acide.

[1]

(iii) Calculez [H⁺] dans la solution de NaOH.

[1]

8. Le coléoptère bombardier projette un mélange d'hydroquinone et de peroxyde d'hydrogène pour lutter contre les prédateurs. On peut écrire l'équation de la réaction qui permet de produire la pulvérisation de la façon suivante :

$$\begin{array}{l} {\rm C_6H_4(OH)_2(aq)+H_2O_2(aq) \rightarrow C_6H_4O_2(aq)+2H_2O(l)} \\ {\rm hydroquinone} \end{array}$$

(a)	(i)	Calculez la variation d'enthalpie, en kJ, de la réaction de pulvérisation,
		en utilisant les données ci-dessous.

[2]

$$C_6H_4(OH)_2(aq) \rightarrow C_6H_4O_2(aq) + H_2(g)$$

$$\Delta H^{\oplus} = +177,0 \,\mathrm{kJ}$$

$$2H_2O(l) + O_2(g) \rightarrow 2H_2O_2(aq)$$

$$\Delta H^{\ominus} = +189,2 \,\mathrm{kJ}$$

$$H_2O(l) \to H_2(g) + \frac{1}{2}O_2(g)$$

$$\Delta H^{\ominus} = +285,5 \,\mathrm{kJ}$$

(ii) L'énergie libérée par la réaction d'une mole de peroxyde d'hydrogène avec l'hydroquinone est utilisée pour chauffer 850 cm³ d'eau initialement à 21,8 °C. Déterminez la température la plus élevée atteinte par l'eau.

Capacité calorifique massique de l'eau = $4,18 \text{ kJ kg}^{-1} \text{ K}^{-1}$.

(Si vous n'avez pas obtenu de réponse à la partie (i), utilisez une valeur de 200,0 kJ pour l'énergie libérée, bien que ce ne soit pas la bonne réponse.)

[2]

(Suite de la question 8)

(b) Identifiez l'espèce responsable du pic à m/z = 110 dans le spectre de masse de l'hydroquinone.

[1]

[Source: http://webbook.nist.gov]

.....

(c) Identifiez la valeur la plus élevée de *m*/*z* dans le spectre de masse de la quinone. [1]

[Source: http://webbook.nist.gov]

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

