ClinVar Report

James Diao

January 8, 2017

${\bf Contents}$

1	Collect and Merge ClinVar Data 1.1 Import ClinVar VCF	
2	1.2 Merge ClinVar with 1000 Genomes and ExAC	3
3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	ourcing ClinVar input from: clinvar_2013-09-30.vcf ending output to: Report_2013-09-30.pdf	

1 Collect and Merge ClinVar Data

1.1 Import ClinVar VCF

1.2 Merge ClinVar with 1000 Genomes and ExAC

Breakdown of ClinVar Variants

Subset_ClinVar	Number_of_Variants
Total ClinVar	22944
LP/P	15853
ACMG LP/P	1987
ACMG LP/P in gnomAD	465
ACMG LP/P in ExAC	333
ACMG LP/P in 1000 Genomes	86

Breakdown of ACMG-gnomAD Variants

Subset_gnomAD	Number_of_Variants
ACMG in gnomAD	96742
ClinVar-ACMG in gnomAD	2209
LP/P-ACMG in gnomAD	465

Breakdown of ACMG-ExAC Variants

Subset_gnomAD	Number_of_Variants
ACMG in ExAC	59883
ClinVar-ACMG in ExAC	1799
LP/P-ACMG in ExAC	333

Breakdown of ACMG-1000G Variants

Subset_gnomAD	Number_of_Variants
ACMG in 1000G	141466
ClinVar-ACMG in 1000G	769
LP/P-ACMG in 1000G	86

2 Summary Statistics

2.1 Fraction of Individuals with Pathogenic Non-Reference Sites

ACMG-59 Pathogenic: Fraction in 1000 Genomes

ACMG-59 Pathogenic: Fraction in gnomAD

3 Penetrance Estimates

3.1 Max/Min Penetrance as a Function of P(D) and P(V|D)

The left end of the boxplot indicates P(V|D) = 0.01, the bold line in the middle indicates P(V|D) = point value, the right end of the boxplot indicates P(V|D) = 1.

gnomAD: Barplot of Min/Point/Max Penetrance

Note: Some diseases have mean theoretical penetrance = 1 because the assumed allelic heterogeneity is greater than is possible, given the observed prevalence and allele frequencies.

3.2 Penetrance Estimates by Ancestry

Radar Plot: Max Penetrance by Ancestry (gnomAD)

[1] These are the top 10 diseases by summed allele frequencies. NULL values are not plotted.

AFR

[1] Each radius is proportional to the penetrance of the disease in the given population.

SAS

PTEN Hamartomas

Barplot: Penetrance by Ancestry (gnomAD)

Heatmap: Max Penetrance by Ancestry (gnomAD)

 $\hbox{\it \#\# Dark gray boxes are NA: no associated variants discovered in that ancestral population.}$