Author: Pavel Kocourek

Problem Set 3

- 1. Consider the function $f(x) = 3 + 2x + x^2$. Which is true (use Taylor approximation, or the definition of the little–o and big–O to argue):
 - a. f(x) = 3 + o(1) as $x \to 0$
 - b. f(x) = 3 + o(x) as $x \to 0$
 - $c. f(x) = 3 + O(x) \text{ as } x \to 0$
 - d. f(x) = 3 + 2x + o(x) as $x \to 0$
 - e. f(x) = 6 + o((x-1)) as $x \to 1$
 - $f. f(x) = 6 + O((x-1)) \text{ as } x \to 1$
 - g. $f(x) = 6 + 4(x-1) + O((x-1)^2)$ as $x \to 1$
 - i. f(x) = 6 + 4(x 1) + o((x 1)) as $x \to 1$
- 2. Consider the function $f(x) = 3 + 2x + |x|^{1.5}$. Which of the following statements are true:
 - a. f(x) = 3 + o(1) as $x \to 0$
 - b. f(x) = 3 + o(x) as $x \to 0$
 - $c. f(x) = 3 + O(x) \text{ as } x \to 0$
 - d. f(x) = 3 + 2x + o(x) as $x \to 0$
 - e. f(x) = 6 + o((x-1)) as $x \to 1$
 - $f. f(x) = 6 + O((x-1)) \text{ as } x \to 1$
 - g. $f(x) = 6 + 3.5(x 1) + O((x 1)^2)$ as $x \to 1$
 - i. f(x) = 6 + 3.5(x 1) + o((x 1)) as $x \to 1$
- 3. Consider the functions $F(x,y) = 2x^2 + 2xy + y^2 2x + 2$ and g(x,y) = 2x:
 - a. Find the minimum of F in $\mathbb{R}^{\,2}$
 - b. Find the minimum of F subject to the constraint g(x, y) = 4
 - c. Find the minimum of F subject to the constraint $g(x, y) \ge 4$
 - d. Find the minimum of F subject to the constraint $g(x, y) \le 4$