

Introdução

Principais Características

- Sistema operacional de 32 bits preemptivo e multitarefa
- Padrão posix
- Ambiente de rede
- Interface gráfica Photon
- Procedimento de instalação do QNX
 - Reconhecimento automático do hardware
 - Determinação do tamanho da partição
 - Configurações essenciais ao QNX
 - Modo 32 bits
 - Região Eastern Brasil
 - Definição do número do nodo

Copyright © 2012 Accenture All rights reserved.

Introdução Boot do QNX · Partida do sistema operacional: 1. Seleção da partição de boot na mensagem abaixo: QNX Loader Boot partition (a digit): 2. Seleção de boot Normal ou Alternativo pela mensagem abaixo: Press Esc to Boot alternate OS 3. Abertura de sessão de usuário (login): password: • Opções de boot pelo usuário: Teclas de Comando: Ctrl+Alt+Shift+Del Prompt de Comando: # shutdown Introdução Diretórios e Processos do Sistema Operacional · Principais diretórios /.bitmap ▶ tabela de alocação do sistema ▶ licenças do QNX /.licenses /bin ▶ comandos do QNX /usr/bin ► comandos do usuário e QNX ▶ inicialização de diversos arquivos /etc/config arquivos de configuração, sysinit arquivos temporários /tmp • Principais processos do sistema operacional QNX Proc32 ▶ escalonador de processos Dev ▶ gerenciador de dispositivos

Introdução

Dev.xxx

Fsvs.xxx

Net.xxx

Laboratório

- Instalar o Oracle Virtual Toolbox e criar uma máquina virtual
- Configurar a máquina virtual para ler a imagem .iso do instalador QNX **Product Suite**

drivers de dispositivos (Ex: Dev.con, Dev.par)

▶ gerenciador de sistemas de arquivos

► drivers de placas de rede

▶ drivers de dispositivos de armazenamento

- Carregar o QNX Product Suite e instalar passo-a-passo:
 - 1. Tocar numa tecla, selecionar opção F2: VGA 16 color only e <space>
 - 2. Selecionar ${\bf Next}\ {\bf F2}$ para reconhecer e configurar o hardware
 - 3. Selecionar Next F2 e configurar região

Country: Brasil Keyboard: US - English Language: English

- Selecionar F4 I Agree e aceitar os termos da licença
 Selecionar Next F2 Create Partition e criar a partição QNX
- 6. Configurar o nodo e confirmar instalação completa **New Install** QNX Node Number: 1

Introdução

Laboratório

- Instalação QNX (Continuação) ...
 - Adicionar as Licenças no campo Enter License Number da tela Add Licenses teclando Add / F5 após a digitação de cada licença:
 - qnx.00228405.0j10.816i.a770.0031.50i8
 - tcprt.00461083.0106.gzb4.b300.yjb8.19e1
 - phrt.00413873.0va0.vbd0.m80q.21u3.0xf5
 - 8. Selecionar opção Start / F2 para instalar o QNX
 - 9. Definir boot QNX em modo texto:

Do you want to boot directly into Photon? No

10. Cancelar configuração de vídeo do Photon:

Do you want to probe and set video modes now? No

11. Configurar a QNX4_VM-1 para rede interna

Introdução

Laboratório

- Instalação QNX (Continuação) ...
 - 11. Consultar endereço IPv4 Address e Subnet Mask atribuído à QNX4_VM-1 pelo comando ipconfig
 - 12. Configurar IP Address da máquina virtual QNX com um endereço dessa
 - Configurar partida do TCP/IP Server:
 TCP/IP Mode: Enable TCP/IP Server
 Server Setup Configuration: Default

 - Configurar endereço IP
 IP Addresses / This Machine: um endereço IP dessa faixa NetMask: mesma Subnet Mask consultada pelo ipconfig.
 - 3. Anotar esse IP Address e NetMask para laboratório futuro
 - 13. Selecionar opção Finish / F3
 - 14. Selecionar opção Reboot F3 para dar boot no QNX

Índice

Comandos Básicos

Configurações Avançadas

Controle de Processos

municação entre Processos

Mecanismos de Entrada e Saída

Funções de Tempo

Comandos Básicos Comandos, Diretórios e Arquivos • Sintaxe e prompt de comandos # cmd -par1 compl ▶ comando e parâmetros precedidos de sinal – exibe a sintaxe e parâmetros do comando cmd # use cmd ▶ prompt de usuário comum ▶ prompt de super usuário (root) # 511 ▶ sessão de super usuário no shell # cmd | more ▶ pagina a informação exibida na tela • Manipulação de arquivos e diretórios # mv -v path1 path2 renomeia ou move path1 para path2 # mkdir path1 ► cria o diretório path1 ▶ apaga o diretório path1 # cp -vpOnr path1 path2 ► copia diretório path1 para path2 # rm -vr path1 ▶ apaga o diretório path1 e subdiretórios # pwd ▶ informa o diretório corrente

Comandos Básicos Processos e Sistema de Arquivos • Manipulação de arquivos # cat file1 ▶ exibe o arquivo file1 # cp -vp file1 file2 ► copia o arquivo file1 para o file2 # rm -v file1 ▶ apaga o arquivo; ► apaga o arquivo corrompido file1 ▶ ordena o arquivo; # find path1 -name file1 ▶ procura o arquivo dentro # install –u /path1.tzg ▶ instala upgrade path1.tgz, vale para extensão .F e .tgz • Espaço em Disco ▶ área livre em disco # df -h # du -k path1 ▶ área usada pelo diretório path1 ▶ lista arquivos e sua área # Is -lh path1 ▶ lista arquivos do diretório path1

Comandos Básicos Permissões e Usuários • Criação de usuário: # passwd user1 ► cria o usuário user1 • Criação de usuário: # newgrp group1 ► cria o grupo group1 • Alteração do grupo do arquivo: altera o grupo do arquivo file1 e subdiretórios (-R) para group # chgrp [-R] group file1 • Alteração do dono do arquivo: # chown [–R] newowner file1 ► altera o dono do arquivo file1 e subdiretórios (-R) para newowner • Alteração de permissões de arquivo: ▶ altera permissões do arquivo file1 para os atributos # chmod [-R] mode file1 sendo: u-owner, g-group, o-other, a=u+g+o + acrescenta permissão, - retira permissão permissões: r-read, w-write, x-execute Exemplos Mode: g=rwx, o=r, g+r

Comandos Básicos

Laboratório

- Verificar a sintaxe completa do comando Is
- Listar arquivos do diretório /etc
- Listar arquivos do diretório /etc mostrando a data paginando
- Mostrar a lista acima ordenada pelo path
- Listar o path dos arquivos e diretórios de /etc
- Listar somente os diretorios de /etc
- Localizar o arquivo netmap no disco
- Incluir o comando Is /etc/ no arquivo /tmp/cmd e executar:
 - Utilizando o comando sh
 - Alterar o atributo para executável e executar novamente

Conversable 2012 Accepture All rights researed

...

Comandos Básicos

Editor de textos

· Chamada do editor:

vedit file1 ▶ edita o arquivo file1

· Comandos internos do editor:

Ctrl+u ▶ retorna última alteração (undo)
Ctrl+l ▶ apaga linha corrente

F2 ▶ passa para próxima ocorrência da palavra
F2 ▶ procura palavra

Alt+F2 ▶ substituição de palavra

F9 ▶ marca início e fim de bloco

Ctrl+F9 ► copia bloco marcado

F11 ▶ copia bloco da área de transferência

Alt x ▶ sair do editor

Alt+F+S ► salvar arquivo e sair do editor

Copyright © 2012 Accenture All rights reserved

14

Comandos Básicos

Laboratório

- Gerar o arquivo /tmp/teste e /tmp/teste1 com o help dos comandos ls e sin
- Editar esses arquivos com o *vedit*
 - Apagar uma linha do arquivo teste
 - Copiar um bloco de linhas dentro do mesmo arquivo
 - Copiar um bloco de linhas de um arquivo para o outro
 - Pesquisar uma palavra no arquivo
 - Alterar o fundo da tela
 - Colocar a linha do cursor em highlight.
 - Criar uma macro
- Editar o arquivo /home/.profile e incluir
 - Prompt: Nodo.Usuário:Path_Atual
 - Incluir o path atual no caminho de busca

Copyright © 2012 Accenture All rights reserved

Introdução	
Comandos Básicos	
Configurações Avançadas	
Ferramentas e Desenvolvimento	
Controle de Processos	
Comunicação entre Processos	
Compartilhamento de Informações	
Mecanismos de Entrada e Saída	
Funções de Tempo	

Configurações Avançadas

Consoles e Nodos de Rede

- · Múltiplas consoles
 - Nº de consoles definido no comando *tinit* do arquivo *sysinit*
 - O sistema Score utiliza as consoles de 1 a 3
 - Comandos de comutação de console (modo texto e photon)
- Numeração dos nodos da rede
 - Cada nodo é identificado por um número
 - A numeração dos nodos está limitada de 1 a 255
 - A representação dos nodos é precedida de //, por exemplo: //1, //27

Configurações Avançadas

Boot do QNX

1. Seleção de boot Normal ou Alternativo pela mensagem abaixo:

Press Esc to Boot alternate OS

1. Boot Normal :

// Imagem de boot (módulo executável) /.boot /etc/config/sysinit.\$Nid // arquivo interpretado com sufixo nº do nodo

 $\ensuremath{/\!/}$ executado quando SO não encontra o arquivo com sufixo nº do nodo. /etc/config/sysinit

2. Boot Alternativo : // servidor photon reserva

// Imagem de boot alternativo (módulo executável) /.altboot /etc/config/altsysinit // arquivo inicialização de boot alternativo

2. Abertura de sessão de usuário (login): //comando tinit (sysinit)

password:

Configurações Avançadas Boot QNX - Imagem de Boot · Principais características • Somente comandos que serão pouco alterados • Módulo Executável (compilado e linkado) · Principais diretórios: /boot/build // arquivo fonte /boot/images // arquivo executável (imagem) // cópia da imagem executada no boot • Principais processos # Proc -I \$Nid ▶ gerenciador de processos (1º processo) # Slib ▶ gerenciador de bibliotecas compartilhadas gerenciador do sistema de arquivos cria ramdisk de 4 Mb # Fsys -f 4000 # mount –p \$h \$ht77 ► monta o HD ► gerenciador de rede Configurações Avançadas Boot QNX - Arquivo Sysinit Principais diretórios /etc/config/sysinit.\$Node // arquivo fonte • /etc/config/sysinit.score.\$Node // arquivo executável (imagem) · /etc/config/altsysinit // cópia da imagem executada no boot • Principais inicializações Relógio Drivers de dispositivos

Configurações Avançadas

Partida do login

Montagem de dispositivos e ramdisk
Inicialização de rede
Gerenciador de filas
Gerenciador do circuito virtual

Configuração do número de consolesPartida automática do Score

Laboratório

- Configurar a máquina virtual de desenvolvimento com as seguintes características
 - Nodo 1 para boot normal
 - Nodo 4 para boot alternativo
- Replicar a máquina Virtual QNX4_VM-1 para QNX4_VM-2 e QNX4_VM-3
- Configurar as máquinas virtuais QNX4_VM-2 e QNX4_VM-3 como nodos 2 e 3 respectivamente

Copyright © 2012 Accenture All rights reserved.

Configurações Avançadas Administração de Rede • Arquivo de configuração de Rede • Path: /etc/config/netmap • Descrição: mapeamento dos nodos QNX • Formato do Arquivo: MacAddress 0000c04a9330 0000c04a9130 ► Nodeld: Nº do nodo Netid: № da subrede MacAddress: Endereço da placa de rede 0000c04a9320 0000c04a9331 0000c04a9430 0000c04a9355 • Partida do driver de rede e inicialização do netmap em memória # nettrap start # netmap -f Configurações Avançadas Administração de Rede • Principais Processos de Rede (Sysinit / Altsysinit) # Net ▶ gerenciador de rede # Net.rtl # Socklet driver da placa de rede chipset Realtekgerenciador TCP/IP # nameloc ► gerenciador circuito virtual • Referências Técnicas: • Guia de Manutenção e Instalação: Capítulo 1 – Arquitetura de Rede do Score Manuais QNX

Configurações Avançadas

Laboratório

- Colocar as máquinas virtuais QNX4_VM-1, QNX4_VM-2, QNX4_VM-3 em rede
- Configurar o micro de desenvolvimento da seguinte forma:
 - Boot Normal: fora da rede
 - Boot Alternativo: em rede com as 3 máquinas virtuais QNX4_VM-1, QNX4_VM-2 e QNX4_VM-3

Copyright © 2012 Accenture All rights reserved.

Configurações Avançadas

Administração de Rede

- Arquivos de configuração TCP/IP
 - /etc/config/hosts: mapeamento de dispositivos da rede TCP/IP
 - /etc/config/netstart: partida do serviço TCP/IP
- Principais comandos TCP/IP
 - # ifconfig [Interface]
 - # ifconfig en1
 - # netstart
- ► verifica endereço IP do micro
- ▶ verifica endereco IP da 1ª interface ethernet
- ▶ ativa o serviço TCP/IP, configurado na instalação do Score (Score.init)

Conversabl © 2012 Accepture. All rights research

Configurações Avançadas

Comandos de Manutenção

Verificação do disco

fdisk /dev/hd0 // verifica partições do disco # chkfsys –R /dev/hd0t77 // verifica e repara integridade do HD

Teste de comunicação da porta serial

qtalk -m /dev/ser1 // conecta à porta serial 1

qtalk -m //13/dev/ser2 // conecta à porta serial 2 do nodo 13

• Comando Saída: CTRL + A + q

• Acesso remoto

on -n 13 -t /dev/con4 login // executa login na console 4 do nodo 13 # on -n 3 -r //3/ make // executa make no nodo 3 com path raiz no próprio nodo 3

ditto -n 13 -t 4 -k // conecta à console 4 do nodo 13

• Comando Saída: CTRL + e + q

Copyright © 2012 Accenture All rights reserved

26

Configurações Avançadas

Laboratório

- Partir as máquina virtuais QNX4_VM-1, QNX4_VM-2 e QNX4_VM-3 em rede
 - Logar na console 5 de QNX4_VM-2 via ditto pela QNX4_VM-1)
- Salvar as configurações Atuais:
 - Fazer backup das maquinas virtuais (nodos 1, 2 e 3)
 - Gerar boot alternativo igual ao principal
 - Salvar arquivos netmap e sysinit
- Instalar o sistema Score nos nodos 1, 2 e 3 a partir do micro de desenvolvimento:
 - Score Runtime
 - Base de Dados de Demonstração
- Partir o sistema e ver o que acontece
- Colocar os micros em rede novamente

Copyright © 2012 Accenture All rights reserved.

Configurações Avançadas Comandos de Data e Hora • Exibir data e hora na console ▶ exibe data e hora no canto superior esquerdo # clock & # clock -b black -f yellow & da console • Verificar e alterar data e hora (memória) ► exibe a data atual # date 22 11 12 • Atualiza e lê hora do relógio de tempo real ▶ exibe data do relógio de tempo real do computador # rtc -s hw ▶ altera a data do relógio de tempo real a partir da data da memória # rtc net 5 ▶ exibe data do relógio de tempo real do nodo 5 ▶ atualiza a data do relógio de tempo real do micro local a # rtc -sl hw net 5 com a data do nodo 5 (memória)

Configurações Avançadas

Laboratório

- Testar os comandos de relógio :
 - Alterar a data e hora na QNX4_VM-1 e atualizar QNX4_VM-2 através dela

Copyright © 2012 Accenture All rights reserved

Introdução
Comandos Básicos
Configurações Avançadas
Ferramentas e Desenvolvimento
Controle de Processos
Comunicação entre Processos
Compartilhamento de Informações
Mecanismos de Entrada e Saída
Funções de Tempo

Ferramentas e Desenvolvimento

Makefile

- Principais características
 - Declaração de dependências arquivos .h (prólogos/includes), .o (módulo objeto), .c (fontes) e .lib (bibliotecas)
 - Compilação e linkedição somente de arquivos necessários
 - A relação de dependência do sistema depende do makefile
- · Formato makefile
 - Declaração de bibliotecas e prólogos

LIBS: Photon.lib RedeRem.lib

HDRS: PhHdr.h RemHdr.h

• Dependência do módulo executável (fontes e prólogos ou includes)

MyTrgt1: MySrc1.o \$(LIBS)

• Dependência de módulo objeto

MySrc1.o: MySrc1.c MyHdr.h \$(HDRS)

wcc MySrc1.c

Copyright © 2012 Accenture All rights reserved.

32

Ferramentas e Desenvolvimento

Ferramentas de Desenvolvimento

• Principais componentes do compilador Watcom C/C++

WCC

- compilador e linkeditor, gera módulos objeto e executáveis
- # wlib ▶ cria e consulta bibliotecas de módulos objeto

wtrip

 elimina informações de debug do módulo objeto tornando o tamanho do arquivo menor

wd

► debugger de programas

Copyright © 2012 Accenture All rights reserved.

Ferramentas e Desenvolvimento	
Laboratório	
Abrir o makefile de geração de imagem de boot e analisar,	
identificando os seguintes itens:	
# Declaração de includes e bibliotecas	
# Dependência de fontes, includes, objetos e bibliotecas	-
# Passagens de parâmetros como macros	
# Labels	
	-
Copyright © 2012 Accenture All rights reserved. 34	<u> </u>
	7
Ferramentas e Desenvolvimento	
Interface Photon	
Chamada do Photon # ph	-
Principais recursos do Photon para desenvolvimento	
Help	
Sin Gráfico	
 Shell (pterm) Aplicações de desenvolvimento Score em ambiente Photon 	
Arquivo de configuração de video:	
/etc/config/trap/crt.\$NODE	
Uso do Phindows para desenvolvimento	
Copyright © 2012 Accenture All rights reserved. 35	
	7
Ferramentas e Desenvolvimento	
	-
Preparação da Plataforma de Desenvolvimento	
Partir a interface photon e conhecer	
# ph	
Instalar o compilador Watcom conforme a sequencia abaixo:	
Instalar as licenças do compilador Instalar a compilador Watcom polo ed ONY Product Suita polo	
Instalar o compilador Watcom pelo cd QNX Product Suite pelo comando phinstall	
Instalar o upgrade curso_qnx.tgz com os laboratórios do curso	
QNX	
Configurar o video do photon no nodo 3 para partir o sistema	
 Partir como boot alternativo e desativar a partida automática Apagar o arquivo /etc/config/trap/crt.\$NODE 	
Configurar o vídeo para 1024 x 768	
•	

Configurações Avançadas

Programação Shell - Introdução

- Chamada do arquivo de comandos *cmdshell* pelo utilizando o shell ou não:
 - # sh cmdshell // arquivo texto comum
 - # cmdshell // precisa mudar o atributo para executável
 - # chmod a+x cmdshell // converte o arquivo para executável
- Variáveis de Ambiente:
 - O QNX possui várias variáveis de ambiente cujo nome é sempre em letras maiúsculas com prefixo \$, exemplo: \$NODE
 - As principais variáveis de ambiente são atribuídas dentro do arquivo .profile para o usuário e pelo comando export para o sistema operacional.
- Sintaxe:
 - O caractere # é a marca de comentário no arquivo shell

Conversable 0 2012 Accepture All rights research

27

Configurações Avançadas

Programação Shell - Entrada e Saída

- Leitura de linha de comandos pelos comandos read e echo dentro do arquivo de comandos shell:
 - # cmdshell Hello world! // chamada do arquivo shell
 - read v1 # nesse caso v1= "Hello world!"
- Passagem de parâmetros:
 - Posição: parâmetros separados por espaço na chamada do programa
 - # copia arq1 arq2 // dentro do programa: arq1 = \$1 e arq2 = \$2
 - echo \$1 e \$2

 # exibe os valores dos parâmetros passados
 - Referência: atribui uma variável na chamada
 - # gmake b=hard.1 // dentro do programa o parâmetro: b = \$b

Copyright © 2012 Accenture All rights reserved.

Ferramentas e Desenvolvimento

Laboratório

- Criar um arquivo de comandos cmdtest e incluir:
 - Exibição da mensagem "Mensagem do Shell"
 - Exibição do 1º parâmetro
- Executar o comando
 - Chamar o comando direto no prompt
 - Executar o comando utilizando o comando sh
 - Alterar os atributos de execução e executar sem o comando sh

Copyright © 2012 Accenture All rights reserved.

Ferramentas e Desenvolvimento Programação Shell – Estruturas de Programação • Comandos if, elif (else if) e else If expr1 then Iist1 [elif expr2 then Iist2] ... [else Iist3] fi • Expressões de testes numéricos • V1 –eq V2 # V1 = V2 V1 –ne V2 # V1 = V2 V1 –ne V2 # V1 > V2 V1 –gt V2 # V1 > V2 V1 –gt V2 # V1 > V2 V1 –le V2 # V1 < V2 • string1 = string2 string1 = string2

Ferramentas e Desenvolvimento Programação Shell – Estruturas de Programação • Atribuição de valores • Let var1 = 100 # atribui 100 a var1 • Comando Case case word in pattern1) | list1;; pattern2 | pattern1) | list2;; ... *) | listdefault;; esac • Comando For For name in list do list1 done

Ferramentas e Desenvolvimento Programação Shell – Estruturas de Programação • Comando While While test \$var1 - It 100 do echo \$a let var1 = var1 + 1 done • Comando Until Var1 = 0 Unit test \$var1 - eq 100 do echo \$var1 let var1 = var1 + 1 done • Comandos de Interrupção de Loop (for, while, until) • break: interrompe o loop e passa para o 1º comando fora dele • continue: reroma ao início da iteração seguinte do loop

Ferramentas e Desenvolvimento

Programação Shell – Estruturas de Programação

- Criação de função *Funcshell*
 - Declaração da função

Function Funcshell ou Funcshell ()

lista

• Chamada da função Funcshell Funcshell

- Arquivos de comando shell importantes:
 - QNX: sysinit, sysinit.\$NODE, altsysinit, .profile
 - Score: setup, netstart, ManutRede

Ferramentas e Desenvolvimento

Laboratório

- Implementar um arquivo de comandos para montar um pendrive USB com as seguintes características :
 - Sem parâmetros : monta dispositivo QNX
 - Parâmetro -q: monta dispositivo QNX
 - Parâmetro -d: monta dispositivo DOS
 - Consistir parâmetros e emitir mensagem de uso em caso de erro
- Localizar e editar o arquivo de setup de instalação do sistema em QNX4_MV-4 e identificar:
 - Geração do arquivo de boot hard.\$NODE
 - Quais nodos tem TCP/IP
 - Instalação do arquivo queue
- Localizar e editar o arquivo ManutRede e identificar:
 - Estruturas de programação case, if, read, case e utilização de funções
 Redirecionamento de nodo de trabalho.

 - Diferença de tratamento entre os nodos de controle e supervisão

Índice Comandos Básicos Configurações Avançadas Controle de Processos omunicação entre Processos Mecanismos de Entrada e Saída Funções de Tempo

Controle de Processos Multiprocessamento · Principais características: · Multi-Usuário e Multi-Tarefa · Suporte a sistemas modulares Comunicação e sincronismo entre tarefas Operações em background e foreground simultaneamente • Prioridade de execução de tarefas (1 a 30) • Processos de gerenciamento do sistema operacional # Proc ► controle de todos recursos usados pelos processos # Fsys ▶ operações de I/O de discos # Dev ► controle de dispositivos de I/O # Net ▶ gerenciamento da rede de comunicação # idle ▶ preenche o tempo livre do processador # aueue ▶ controle de filas de comunicação Controle de Processos Status e Comandos • Principais estados dos processos: Ready ▶ pronto para rodar (escalonados de acordo com a prioridade) • Blocked ▶ bloqueado por send, receive, reply ou signal ▶ preso pela interrupção SIGSTOP • Wait ▶ aguardando a execução da tarefa filha criada Dead ► tarefa Zombie, tarefa morreu sem enviar send ao criador • Escalonamento de tarefas (Adaptativo, Round Robin, Fifo) • Executar o comando sin e discutir SID (section id) • Pid (process id) • PRI (prioridade) • STATE Controle de Processos Status e Comandos Cuidado! Evitar Loop Ativo • Alguns comandos de processos # sin exibe processos em execução # slay process ▶ mata tarefa process em execução # kill -p 1023 ▶ mata tarefa em execução de PID 1023 # sac -i 10 -p 20 ▶ mostra taxa de uso da CPU

Controle de Processos

Laboratório

- Abrir o vedit e verificar o status das tarefas
 - Verificar a hierarquia de criação das tarefas
 - Matar a tarefa pai do vedit e verificar o que aconteceu

Controle de Processos Criação de Tarefas Prog A ← Spawn (Prog X) → Fsys • Sequencia de Execução • Prog A cria Prog X via spawn Prog X • Proc recebe aquisição e ativa leitura do código de execução em disco via Fsys • Proc carrega Prog X em memória e executa Prog X

Controle de Processos

Criação de Tarefas

- Se a tarefa criadora morrer todas tarefas filhas também morrem
- Primitivas de criação de tarefas:

► cria tarefas utilizando toda estrutura de permissões qnx_spawn(...) e prioridades do sistema operacional QNX

- Cria a tarefa filha e suspende a execução do pai até a filha terminar ou de forma que as duas executem de forma concorrente
- Cria somente módulos executáveis (programas)

- ▶ abre uma instância do shell e executa uma string de comando montada previamente
- Cria a tarefa filha e suspende a execução do pai até a filha terminar ou de forma que as duas executem de forma concorrente
- Cria 3 tipos de processos diferentes:
 - Módulos executáveis ou programas
 - Comandos do sistema operacional QNX

Controle de Processos

Laboratório

- Criar makefile para compilar os programas qspawn.c e child.c no diretório /curso_qnx/qnxspawn
- Compilar e executar o programa qspawn.c e child.c no diretório /curso_qnx/qnxspawn
 - Testar com exec=0 e exec=1
 - Alterar prioridade
 - Testar criando filho em outro nodo da rede

Índice

Comandos Básicos

Configurações Avançadas

Ferramentas e Desenvolvimento

Comunicação entre Processos

Compartilhamento de Informaçõe

ecanismos de Entrada e Saída

Comunicação entre Processos

Comunicação Síncrona

<u>Bloqueada</u>

- Dead Lock
- Solução
- Produtor → Consumidor
 Programa Agente para intermediar

• Exemplos:
• MCP → MCC
• MCP → McpCorrida
• MCP → AePotTerm

Comunicação entre Processos

Laboratório

- Compilar e abrir os programas envia.c e recebe.c do diretório /curso_qnx/msgs
- Partir a tarefa recebe:
 - # Recebe &
- Executar o programa envia passando o pid informado pelo recebe anterior
- Alterar o programa recebe para ver o programa envia bloqueado num reply
- Alterar o programa recebe para o programa envia ficar bloqueado num send.

Copyright © 2012 Accepture All rights reserved

Comunicação entre Processos

Comunicação Assíncrona - Queue

Não-Bloqueada (Queue)

Processo A

Begin
QueueWrite(...)

RegMsg1
RegMsg2

RegMsg1
RegMsg

RegMsg

Processo B

RegMsg1
QueueRead(...)

End;

End;

Exemplos:

Fila Eventos

Fila Comandos ATN8

Comunicação entre Processos Comunicação Assíncrona - Queue • Administrador de filas # queue & ▶ Gerencia as filas de mensagens • Programa customizado pela equipe de desenvolvimento • Informações mais detalhadas de implementação arquivo abaixo no QNX, instalado pelo kit de desenvolvimento • /score/srcs/queue/README • Prólogo de filas # include <queue.h> Copyrigh © 2012 Accenture Al/ rights reserved.

Comunicação entre Processos Comunicação Assíncrona - Queue • Primitivas de criação / fechamento da fila • int queue_open(char *name, char *mode, unsigned window_size); • Função: cria e/ou abre a fila de mensagens • Parâmetros: nome, modo de acesso e tamanho máximo da fila. Retorno: >= 0 → Id da fila < 0 ightarrow c'odigo de erro• int queue_close(int id) • Função: fecha a fila de mensagens • Parâmetros: Id da fila retornado pela função queue_open • Retorno: $0 \rightarrow \text{fila fechada}$ $< 0 \rightarrow \text{código de erro}$ Comunicação entre Processos Comunicação Assíncrona - Queue • Primitivas de leitura / escriga de mensagens na fila • queue_write(int id, void *msg, int msg_size, int priority) • Função: grava mensagens na fila Parâmetros: Id da fila, ponteiro para a mensagem, tamanho da mensagem (máximo 2000 bytes) e prioridade (0 → mais alta) • **Retorno:** 0 → mensagem postada < 0 → código de erro • Int queue_read(int id, int wait, void *msg, int msg_size); • Função: lê e retira mensagens da fila • Parâmetros: Id da fila, modo de espera da leitura, ponteiro para a mensagem e tamanho da mensagem Retorno: 0 → mensagem postada < 0 → código de erro

Comunicação entre Processos

Laboratório

- Compilar os programas do diretório /curso_qnx/queue
 - Queuercv recebe dado da fila
 - Queuesnd envia dado para a fila
- Executar o programa queuercv
 - # queuercv
- Executar o programa queuesnd em outra janela
 - # Queuesnd "Mensagem enviada"
- Analisar o comportamento dos programas

Copyright © 2012 Accenture All rights reserved

Comunicação entre Processos Comunicação Não-Bloqueada - Proxy Não-Bloqueada (Proxies) Processo A Begin PidProx = qnx_proxy_attach(...) PidProx • End; • Exemplos: • ATN1.4 → DrvSad (Interrupção Hardware gera um proxy) • DrvSad → MCP Copyright 6/2012 Accenture All rights reserved.

Comunicação Não-Bloquead	la - Proxy
Tarefa A	XY Tarefa B
• Primitivas de comunicação (QNX)	
PidProxy = qnx_proxy_attach()	► Tarefa A atraca ao proxy
PidB = receive(0,)	► Tarefa A pronta para receber
	mensagem de qualquer tarefa
Trigger(PidProxy,)	► Tarefa B envia mensagem para
	Tarefa A que executa sem
	bloqueá-la

Comunicação entre Processos

Laboratório

- Compilar os programas do diretório /curso_qnx/proxies
 - recprox recebe proxy
 - sendprox envia sinal via Pid da tarefa sem mensagem
 - sendpr2 atraca proxy no recprox e envia sinal pelo Proxyld passando ponteiro da mensagem
- Executar o programa recprox
 - # Recprox
- Verificar proxies criados pelo comando sin
 - # sin proxies
- Executar o programa sendprox e sendpr2 em outra janela passando como parâmetro os ids informados
- Analisar o comportamento dos programas

Copyright © 2012 Accenture All rights reserved.

Comunicação entre Processos Comunicação por Interrupção de Software Processo A Begin Beg

Comunicação entre Processos

Laboratório

- Compilar os programas do diretório /curso_qnx/signals
 - killflex sinaliza um signal para o processo
 - sighndl trata 2 signals (SIGUSR1 e SIGUSR2)
- Executar o programa sighndl

sighndl

- Executar o programa killflex em outra janela passando como parâmetro o pid e o número do signal tratado (16 e/ou 17). (Consultar /usr/include/signal.h)
- Analisar o comportamento dos programas

Copyright © 2012 Accenture All rights reserve

Comunicação entre Processos

Circuito Virtual (VC)

nameloc &

- ▶ gerenciador do circuito virtual (VC)
- Primitivas de registro nomes no circuito virtual (QNX)
- qnx_name_attach(...) ► registra nome na rede (VC)
 - qnx_name_locate(...) ▶ localiza nome registrado na rede (VC)
 - qnx_name_detach(...) ► cancela o nome registrado na rede
 - O registro do nome também é cancelado se a tarefa que registrou morrer
- Aplicações do registro de nomes
 - Implementação de semáforos (AdminSemaf)
 - Verificar se as tarefas residentes estão executando (Watchdog)
- Outras primitivas de rede
 - getpid(...)
 getppid(...)
 getnid(...)
- ► consulta o pid da própria tarefa
- consulta o pid da tarefa criadora
 consulta o nodo de rede da tarefa
- # sin na
- ▶ verifica os nomes registrados na rede

Comunicação Bl	oqueada (Rede)	
Nodo Vid1	qnx_name_locate Vid2	
PidA	Send Reply PidB	
Primitivas de registr	ro de nome (QNX)	
qnx_name_attach	() Tarefa B registra nome na rede	
PidB=qnx_name_l	ocate() Tarefa A consulta nome, estabelece circuito virtual entre nodos e recebe Vid2 = PidB	
Primitivas de comur	nicação (QNX)	
send(PidB,)	► Tarefa A envia mensagem para Tarefa B (Bloqueio)	
PidA=receive()	► Tarefa B recebe mensagem da Tarefa A	
reply(PidA,)	► Tarefa B retorna mensagem à Tarefa A (Desbloqueio)	
opyright © 2012 Accenture All rights reserved.		

Comunicação entre Processos

Laboratório

- Partir o sistema score principal, reserva e supervisão
 - Verificar as tarefas que estão em execução nos micros de controle
 - Desativar o principal e acompanhar a partida do reseva
 - Analisar essa comunicação
- Verificar os nomes que estão registrados na rede pelo comando sin

Copyright © 2012 Accenture All rights reserved

Introdução
Comandos Básicos
Configurações Avançadas
Ferramentas e Desenvolvimento
Controle de Processos
Comunicação entre Processos
Compartilhamento de Informações
Mecanismos de Entrada e Saída
Funções de Tempo

Compartilhamento de Informações Memória Compartilhada Processo B Begin AlocaSemaf(...) LiberaSemaf(...) End: O acesso à memória compartilhada do Score é feito através de bibliotecas do sistema. Exemplos: AVC e Comum

Compartilhamento de Informações Laboratório Compilar os programas do diretório /curso_qnx/sharemem ShmExample1 - exemplo de mapeamento de área física ShmExample2 - exemplo de uma tarefa criando a memória compartilhada (cria, escreve e morre) ShmExample3 - exemplo de mapeamento e criação de 2 tarefas acessando a mesma memória Executar o programa ShmExample1 Executar o programa ShmExample2 com depurador e ver memora aberta (Is -Ih /dev/shmem)

Índice		
-	Introdução	
	Comandos Básicos	
	Configurações Avançadas	
	Ferramentas e Desenvolvimento	
	Controle de Processos	
	Comunicação entre Processos Compartilhamento de Informações	
	Mecanismos de Entrada e Saída	
	Funções de Tempo	
Copyright © 2012	Acconture All rights reserved.	76

Mecanismos de Entrada e Saída

Operações de I/O

- O ambiente de desenvolvimento QNX permite a implementação de acesso direto à memória e portas de I/O do processador do computador.
- Nesse tópico os recursos serão apenas citados para conhecimento, pois já estão encapsulados nas bibliotecas do Score para o usuário.
- Memory-Mapped I/O
 - O mapeamento e acesso direto à memória via programas em C é implementado através do comando shm_open conforme exemplo 1 do laboratório anterior.

Copyright © 2012 Accenture All rights reserved

Mecanismos de Entrada e Saída

Operações de I/O

- <u>I/O Port</u>
 - O acesso às portas de comunicação da CPU com os dispositivos de I/O mapeados é possível através dos comandos inp, outp, inpw e outw.
 - Um exemplo de utilização de I/O Port no sistema é a comunicação com as placas PCLTA.

• Serial I/O

- A comunicação com porta serial também pode ser implementada via programação C.
- O QNX a nível de sistema operacional já disponibiliza drivers como Dev.ser para comunicação os dispositivos seriais como por exemplo /dev/ser1 e /dev/ser2.
- Como exemplo temos a comunicação entre os micros de controle principal e reserva via serial e o utilitário qtalk do QNX

Copyright © 2012 Accenture All rights reserved.

Mecanismos de Entrada e Saída

Operações de I/O

• Trigger e Proxies

- A comunicação com um dispositivo de hardware pode ser implementada atribuindo um *Proxy* ao dispositivo e posteriormente acionando-o através de seu respectivo *Trigger* associado.
- Um exemplo de utilização de Trigger e Proxy no sistema é a leitura dos sinais analógicos de corrente e tensão implementada pelo DRVSAD.

• Entrada e Saida padrão

• Conceito utilizado na maioria dos programas no QNX

• Terminal Devices - Consoles

 A comunicação com terminais de consoles como /dev/stty1, /dev/stty2 também é possível através do driver Dev.stty redirecionando saída ou através de outras operações, como por exemplo o monitoramento remoto através via ditto.

Mecanismos de Entrada e Saída

Operações de I/O

• Terminal Devices - Photon

 É possivel criar janelas texto de console no ambiente photon através da aplicação pterm. A cada uma destas janelas é associado um dispositivo de I/O, como /dev/ttyp1, /dev/ttyp2 etc.

• Interrupções

- O QNX permite também a implementação de interrupções de hardware e software como forma de comunicação.
- Um exemplo de interrupção por software é o tratamento de exceções utilizado para depuração em algumas tarefas.

Copyright © 2012 Accenture All rights reserved

80

Introdução Comandos Básicos Configurações Avançadas Ferramentas e Desenvolvimento Controle de Processos Comunicação entre Processos Compartilhamento de Informações Mecanismos de Entrada e Saída Funções de Tempo

Funções de Tempo Tratamento de Tempo • Principais funções de tratamento de tempo time(NULL) pega data corrente no formato interno do sistema operacional localtime(&time) ▶ converte hora no formato interno para struct tm mktime(time_tm) converte hora no formato struct tm para formato interno do sistema operacional sleep(x) ▶ suspende o processo por x segundos delay(y) ▶ suspende o processo por y milisegundos difftime(x,y) ▶ diferença em segundos entre as horas x e y no formato interno do sistema operacional Struct tm ▶ sec, min, hours, day, months, years, ...

Funções de Tempo

Laboratório

- Compilar os programas do diretório /curso_qnx/timers
 - delay implementação de espera pelo comando delay
 - sleep implementação de espera pelo comando sleep
 - Interval2 exemplo de medição de intervalo de tempo com alta precisão
- Implementar um programa para pegar a data no formato interno do QNX e exibir no formato dd/mm/aaaa hh:mm:ss
- Implementar um programa para recebe a data e hora no formato dd/mm/aaaa - hh:mm:ss e fique aguardando essa hora ocorrer para encerrar sua execução

Copyright © 2012 Accenture All rights reserve