Final Project Report

Group: 19

Member: B07901093 蘇磐洋、B07901087 蔡沛洹

1. No latch

Register Name	Туре	Width	Bus	MB	AR	AS	SR	SS	ST	1
register4_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	ī
register2_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register3_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register1_reg	Flip-flop	64	Y	N	Y	N	N	N	N	-1
mem_addr_I_reg	Flip-flop	30	Y	N	Y	N	N	N	N	-1
register31_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register30_reg	Flip-flop	64	Y	N	ΙΥ	N	N	N	N	-1
register29_reg	Flip-flop	64	Y	N	Y	N	N	N	N	-1
register28_reg	Flip-flop	64	Y	N	Y	N	N	N	N	-1
register27_reg	Flip-flop	64	Y	N	Y	N	N	N	N	-1
register26_reg	Flip-flop	64	Y	N	Y	N	N	N	N	- 1
register25_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register24_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register23_reg	Flip-flop	64	Υ	N	ΙY	N	N	l N	N	-1
register22_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register21_reg	Flip-flop	64	Y	N	Y	N	N	N	N	-1
register20_reg	Flip-flop	64	ΙΥ	N	Y	N	N	N	N	-1
register19_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register18_reg	Flip-flop	64	Υ	N	ΙY	N	N	N	N	-1
register17_reg	Flip-flop	64	Y	N	Y	N	N	l N	N	-1
register16_reg	Flip-flop	64	Υ	N	l Y	N	N	I N	N	-1
register15_reg	Flip-flop	64	Y	N	Y	N	N	N	N	-1
register14_reg	Flip-flop	64	Y	N	IY	N	N	N	N	-1
register13_reg	Flip-flop	64	Y	N	ΙY	N	N	N	N	-1
register12_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register11_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	-1
register10_reg	Flip-flop	64	Υ	N	Y	N	N	I N	N	-1
register9_reg	Flip-flop	64	Y	N	Y	N N	N	l N	N	-1
register8_reg	Flip-flop	64	Y	N	IY	N	N	N	N	1
register7_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	1
register6_reg	Flip-flop	64	Υ	N	Y	N	N	N	N	1
register5_reg	Flip-flop	64	ΙΥ	N	ΙΥ	N	N	j N	N	1

Presto compilation completed successfully.

Current design is now '/home/raid7_2/userb07/b07087/Final_Project_v2/RISCV.db:RISCV'

2. Timing report

clock CLK (rise edge)	5.00	5.00
clock network delay (ideal)	0.50	5.50
clock uncertainty	-0.10	5.40
mem_addr_I_reg_22 /CK (DFFRX4)	0.00	5.40 r
library setup time	-0.04	5.36
data required time		5.36
data required time		5.36
data arrival time		-5.36
slack (MET)		0.00

3. Area report

Combinational area:	146702.885790				
Buf/Inv area:	22247.821702				
Noncombinational area:	65360.082207				
Macro/Black Box area:	0.000000				
Net Interconnect area:	1898922.956390				
Total cell area:	212062.967997				
Total area:	2110985.924387				

4. Architecture and analysis

In general, our architecture is similar to that of the textbook. First, we read the instruction. Second, we give values for the control signals based on the instructions. Then, based on the control signals, we decide what operations the ALU should perform. Finally, we can write the data into the registers or the memory.

We adopt the following techniques to achieve better performance. First, we use case instead of if-else statements because cases use MUX while if-else statements use other gates. Second, we use wires instead of registers whenever possible, which may help the whole circuit run faster. Third, we combine the control signals, which at first are composed of 8 registers, into 1 register, which help lower the area. Finally, we remove some redundant parts.

5. Work distribution

蘇磐洋:基本架構、跑過 tb2 及 tb3、優化、寫報告

蔡沛洹:細部處理、跑過 tb1、優化、寫報告