§ 20.2 第二型曲线积分

一、第二型曲线积分的背景

•常力 F 沿直线从点 A 运动到点 B 做功:

$$W = \overrightarrow{F} \cdot \overrightarrow{AB}$$

设质点受力 F(x,y)
 的作用沿平面曲线L
 从点 A 移动到点 B,
 求 F(x,y)所作的功.

$$\overrightarrow{F}(x,y) = (P(x,y),Q(x,y)).$$

(1) 分割: 用点 M_1, \dots, M_{n-1} 分割曲线;

(2)近似:

$$W_i \approx F(\xi_i, \eta_i) \cdot L_{M_{i-1}M_i}$$

= $P(\xi_i, \eta_i) \Delta x_i + Q(\xi_i, \eta_i) \Delta y_i$;

(3) 求和:

$$W = \sum_{i=1}^n W_i \approx \sum_{i=1}^n P(\xi_i, \eta_i) \Delta x_i + \sum_{i=1}^n Q(\xi_i, \eta_i) \Delta y_i.$$

(4)取极限:

$$W = \lim_{\|T\| \to 0} \sum_{i=1}^{n} P(\xi_{i}, \eta_{i}) \Delta x_{i} + \lim_{\|T\| \to 0} \sum_{i=1}^{n} P(\xi_{i}, \eta_{i}) \Delta y_{i}.$$

二、第二型曲线积分的定义

定义:设 $L = \widehat{AB}$ 是xoy面上的有向可求长曲线弧, $\vec{F}(x,y) = (P(x,y), Q(x,y))$ 在 L 上有界. 对 L 上的任一分割 $T: \widehat{M}_{i-1}M_i (i=1,\cdots,n)$, 其中 $M_0 = A, M_n = B$. 记曲线段 $M_{i-1}M_i$ 的弧长为 Δs_i , || T ||= $\max_{1 \le i \le n} \Delta s_i$. 设 $M_i(x_i, y_i)$, 记 $\Delta x_i = x_i - x_{i-1}, \ \Delta y_i = y_i - y_{i-1}, (i = 1, 2, \dots, n).$

任取 $(\xi_i, \eta_i) \in \widehat{M_{i-1}M_i}$,若极限

$$\lim_{\|T\|\to 0} \sum_{i=1}^{n} P(\xi_{i}, \eta_{i}) \Delta x_{i} + \lim_{\|T\|\to 0} \sum_{i=1}^{n} P(\xi_{i}, \eta_{i}) \Delta y_{i}$$

存在且与分割 T 和点 (ξ_i, η_i) 的取法无关,则称

此极限为向量值函数 $\vec{F}(x,y) = (P(x,y),Q(x,y))$

在有向曲线 L上的积分,也叫第二型曲线积分,记为

$$\int_{L} P(x,y) dx + Q(x,y) dy.$$

注1: 若 L 为封闭曲线, 记为

$$\oint_L P(x,y) dx + Q(x,y) dy.$$

注2: 记 $d\vec{s} = (dx, dy)$,第二型曲线积分也可写为 $\int_{L} \vec{F}(x, y) \cdot d\vec{s}.$

性质:设 L 为有向光滑曲线,

- (1) 若 $P(x,y),Q(x,y) \in C(L)$,则 $\int_L P(x,y) dx + Q(x,y) dy$ 存在.
- $(2)\int_{L} P(x,y) dx + Q(x,y) dy$ 有线性性,曲线弧可加性.

(3)
$$\int_{L^{-}} P(x, y) dx + Q(x, y) dy = -\int_{L} P(x, y) dx + Q(x, y) dy.$$

三、第二型曲线积分的计算

$$= \int_a^b [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt.$$

特别地, 若 $L: y = y(x), x: a \rightarrow b$,则

$$\int_{L} P(x, y) dx + Q(x, y) dy$$

$$= \int_a^b [P(x, y(x)) + Q(x, y(x)y'(x))] dx.$$

例1、求 $\int_L y^2 dx$,其中L:

- (1) 以原点为圆心, a 为半径, 逆时针绕向的上半圆周.
- (2) 从点 A(a,0) 沿 x 轴到点 B(-a,0) 的直线段.

例2、求
$$\int_L y dx + x dy$$
, 其中 L :

- (1) $y = 2x^2$ 上从 O(0,0) 到 B(1,2) 的一段弧;
- (2) 沿直线段 O(0,0) 到 B(1,2);
- (3)沿着 $O(0,0) \to A(1,0) \to B(1,2)$ 的折线段.

● 类似地,可以定义三维向量值函数

$$\vec{F}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$$

在空间有向光滑曲线 L上第二型曲线积分

$$\int_{L} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz.$$

例3、设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 y = z 的交线, 其方向按曲线依次经过 1,2,7,8 卦限,求 $\int_L xyz dz$.

例4、求在力F(y,-x,x+y+z)作用下,

(i)质点由A沿螺旋线 L_1 到B所作的功,其中

 $L_1: x = a \cos t, y = a \sin t, z = bt, 0 \le t \le 2\pi;$

(ii)质点由A沿直线 L_2 到B所作的功.

→ 两类曲线积分之间的关系

设有向曲线 L上任一点的切向量 (与L指向一致) $\vec{\tau} = \vec{\tau}(x, y)$. 记 α, β 分别为 $\vec{\tau}$ 与 x 轴和 y 轴正方向 的夹角,则

$$d\vec{s} = (dx, dy) = (\cos\alpha ds, \cos\beta ds).$$

从而

$$\int_{L} P(x,y)dx + Q(x,y)dy$$

$$= \int_{L} [P(x,y)\cos\alpha + Q(x,y)\cos\beta] ds.$$

例5、(1)证明曲线积分的估计式:

$$\left|\int_{AB} P(x,y) dx + Q(x,y) dy\right| \le LM,$$

其中
$$L$$
 为 AB 的弧长, $M = \max_{(x,y)\in AB} \sqrt{P^2 + Q^2}$.

(2)利用上述不等式估计积分

$$I_R = \int_{x^2 + y^2 = R^2} \frac{y dx + x dy}{(x^2 + xy + y^2)^2},$$

并证明
$$\lim_{R\to+\infty}I_R=0$$
.

作业

习题20-2: 1(2)(3)(5)、2