UE20MA251 LINEAR ALGEBRA AND ITS APPLICATIONS

.Unit 3: Orthogonality

Linear Transformations, Orthogonal Vectors and Subspaces, Orthogonal Bases, Cosines and Projections onto Lines, Projections and Least Squares.

Class No.	Portions to be covered
29-30	Linear Transformations , Examples
31	Transformations Represented by Matrices
32-33	Rotations, Reflections and Projections
34	Matlab Class Number 5 –Span of Column space of A
35-36	Orthogonal Vectors and Subspaces, Orthogonal Bases
37-38	Cosines and Projections onto Lines
39	Projections and Least Squares
40	Applications
41	Matlab Class Number 6 –Four fundamental Subspaces of A

Classwork problems:

Find the image of these points after applying the transformation given:

(i)Reflect (-3,2) across 90° line and then project on x-axis.

(ii)Project (3,4) on y-axis and then rotate by 45° in clockwise direction.

Answer: (i)(3,0) (ii) $2\sqrt{2}(-1,1)$

Which of these transformations are not linear? Give reasons. 2.

$$(i)T(x, y, z) = (x, y, 0)$$
 $(ii)T(x, y) = (x+1, y+2)$

$$(ii)T(x, y) = (x+1, y+2)$$

$$(iii)T(x, y, z) = (|x|, y+z)$$

$$(iii)T(x, y, z) = (|x|, y + z)$$
 $(iv)T(x, y) = (x + 3, 2y, x + y)$

Answer: (ii)T(0) is not equal to 0 (iv)T(kv) \neq KT(v)

Find a 2x2 matrix A that maps (i)(1,3) and (1,4) into (-2,5) and (3,-1) 3. respectively. (ii) Find the image of (2,-4) and (-1,2)

Answer: (i) $A = \begin{pmatrix} -17 & 5 \\ 23 & -6 \end{pmatrix}$ (ii) (-54,70), (27,-35).

For each of the following linear transformations T, find a basis and the 4. dimension of the range and kernel of T:

(i) $T: \square^3 \rightarrow \square^2$ defined by T(x, y, z) = (x+2y-z, x+y-2z)

(ii) $T: \Box^2 \rightarrow \Box^3$ defined by T(x, y)=(x+y, x-2y, 3x+y)

Answer: (i) {(1,1),(2,1)} 2; {(3,-1,1)} 1 (ii) {(1,1,3),(1,-2,1)} 2; {(0,0)} 0

5.	Find the matrix of the linear transformation T on □ ³ defined by
	T(x,y,z)=(x+2y-z, y+z, x+y-2z) with respect to
	(i)the standard basis (1,0,0),(0,1,0), ((0,0,1)
	(ii)the basis (1,1,1),(1,1,0), ((1,0,0)
	$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$
	Answer: (i) $\begin{pmatrix} 1 & 3 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ (ii) $\begin{pmatrix} 0 & 2 & 1 \\ 2 & -1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$
	$\begin{pmatrix} 1 & 1 & -2 \end{pmatrix} \qquad \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$
6.	From the cubics P_3 to P_2 what matrix represents d/dt (3t ³ -5t ² +2t+3)?
7.	Find a linear mapping $T:\Box \ ^4 ightarrow \Box \ ^3$ whose Kernel is spanned by
	(1,2,3,4) and (0,1,1,1).
	Answer: $T(x,y,z,t)=(x+y-z, 2x+y-t, 0)$
8.	Find the projection of w=(-1,1,4,3) onto the column space of V spanned
	by v_1 =(1,1,0,1), v_2 =(0,-1,1,1) . Which space does p belong to? Find a
	basis of the orthogonal complement V^{\perp} of V. Split the vector w=v+u
	such that v is in C(V) and u is a vector in $N(V^T)$.
	Answer: $p=(1,-1,2,3), \{(-,1,1,0), (-2,1,0,1)\}; p=v, u==(-2,2,2,0)$
9.	Let P be the plane in \square 4 with equation x+y+z+t=0. What is the basis for
	P^{\perp} ? what matrix has the plane P as its null space?
	Answer: Basis for $P^{\perp} = \{(1,1,1,1)\}, A.$
10.	, , , , , , , , , , , , , , , , , , , ,
	intersection of the planes x-2y+3z=0 and y-z=0. What are the column
	space and row space of this matrix.
	Answer: $C(P)$ and $C(P^T)$ is a line in \mathbb{R}^3 .
11.	. ,
	a basis for V^{\perp} (ii)a projection matrix P_1 onto V^{\perp} (iii)the projection
	matrix P_2 onto V .
12	Answer: {(2,1,0), (1,0,1)}; {(2,-2,1)}
12.	A sales organization obtains the following data relating the number of
	salespersons to annual sales: Number of 5 6 7 8 9 10
	Number of 5 6 7 8 9 10 salespersons: x
	Annual sales(in 2 3 4 5 6 7
	millions of rupees):y
	(a)Find the least squares line relating x and y.
	(b)Use the equation obtained in (a) to estimate the annual sales when
	there are 14 salespersons.

Answer: (a)y=x-3 (b)11millions of rupees.

13. If S is the subspace of R³ containing only the zero vector, what is S^{\perp} ? If S is spanned by (1,1,1), what is S^{\perp} ? If S is spanned by (2,0,0)and (0,0,3), what is S^{\perp} ?

Answer: R³; {(-1,1,0), (-1,0,1)}; {(0,1,0)}

14. What multiple of a=(1,1,1) is closest to b=(2,4,4)? Find also the point closest to a on the line through b.

Answer: (10/3)a; (5/9,10/9,10/9)

15. Find $||E||^2 = ||Ax - b||^2$ and solve the normal equations $A^T A \hat{x} = A^T b$. Find the solution \hat{x} and the projection p=A \hat{x} . (Use Least squares method) Given

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}, x = \begin{pmatrix} u \\ v \\ w \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 2 \\ -1 \end{pmatrix}$$

Answer: (24/17,-8/17); p=(8/17(5,3,1,-4)