Angelica Contero AI Project #1 Due: 10/2/13

- 1) I would say that the number of possible states of the board is 9! since this is a permutation of the number of spaces on the board. However, it is known that the number of solvable states is 9!/2.
- 2) The average number of possible moves from a given position of the board is the average heuristic branching factor. For the 8-puzzle it's 3.81 (per the article below). This makes sense because each tile on the board can move 3 different directions, but only the one in the middle can move 4.
- 3) I would estimate that the number of moves required for an optimal solution to a "worst-case" problem would be exactly the number of moves it would take us to solve this puzzle which is 30 moves. I came up with this answer in the following manner, using the worst case scenario puzzle:

First you have to move the #8 tile to the middle. (1 move)
Then you have to shift #1-#7 over by one tile each. Since #1 starts in a position that is 4
tiles away from it's goal position. This step will happen 4 times. (7 moves x 4)
Finally, you can move #8 from the middle position so that it is in it's goal position (1 move)
TOTAL MOVES: 1 + 28 + 1 = 30

- 4) $b^d = 3.81^{30} = 2.677622 \times 10^{17}$ nodes would have to be examined to find an answer by the brute force breadth-first search.
- 5) No, this is equal to 2.67762 x 10¹⁴ seconds which is 8.48505 x 10⁶ years! Also, it would run out of memory.
- 6) It's the easiest for humans to solve because we recognize easily the pattern due to the natural heuristics we have formed in our brain. Whereas if a computer is not programmed to use that heuristic, it cannot recognize the pattern.
- 7) A* algorithms are pretty efficient. A* using the Manhattan heuristic if faster than A* using the misplaced tile heuristic and it has to expand less nodes in the process, so it uses less memory. It is also able to figure our the worse-case scenario puzzle, while A* using the misplaced tile heuristic is unable to within a reasonable amount of time. DFBnB is much faster than IDA* and but uses a lot of memory. IDA* uses much less memory but takes a very long time.

References:

Complete Solution of the Eight-Puzzle and the Benefit of Node Ordering in IDA* Alexander Reinefeld http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL1/PDF/035.pdf

				total time for optimal sol'n	sol'n	total time for entire program
A* w/ misplaced tile	1	14	5	1	6	
	2	55	9	6	10	
	3	157	12	19	13	
	4	n/a	n/a	n/a	n/a	
A* w/ Manhattan	1	12	5	1	6	
	2	31	9	2	10	
	3	53	12	6	13	
	4	2587	30	330	31	
DFBnB	1	21	5	2	6	2
	2	78	17	4	18	5
	3	68	18	5	19	5
	4	11485	56	530	57	1270
IDA*	1	19	5	2	6	3
	2					
	3					
	4					