Roteiro

- Uso das Redes de Computadores
- Hardware de Rede
- Software de Rede
- Modelos de Referência.
- Exemplos de Rede

- A Internet n\u00e3o \u00e9 uma rede propriamente dita, mas sim um vasto conjunto de redes diferentes com protocolos e servi\u00f3os comuns
- A Internet teve suas origens no final da década de 1950 e vem passando por diversas transformações
- A Arpanet foi a precursora da Internet
 - Rede criada pela ARPA (Advanced Research Projects Agency) ligada ao departamento de defesa dos Estados Unidos
 - Rede com comutação de pacotes com tolerância a falhas
 - Universidades americanas que tinham contratos com o departamento de defesa atuavam no seu desenvolvimento

A idéia era que a Arpanet pudesse resistir a guerras

 A sub-rede da Arpanet consistia de minicomputadores (os IMPs) conectados por linhas de 56 kbps (as melhores que o dinheiro podia comprar naquela época)

- Testes de comunicação entre hospedeiros situados em diferentes universidades mostraram a necessidade de desenvolver protocolos adequados
- O TCP/IP foi implementado em diferentes plataformas
- A versão 4.2BSB do Unix desenvolvido pela universidade de Berkeley vinha com o TCP/IP com uma interface de soquetes
- A medida que a rede cresceu, foi necessário desenvolver o sistema de nomes de domínio DNS (Domain Name System)

O crescimento da Arpanet (1969, 1970, 1971 e 1972)

A Internet

- A Arpanet teve um impacto considerável nas pesquisas nos Estados Unidos, mas estava restrito às universidades com contratos militares
- A NSF (National Science Foundation) desenvolveu um rede que se integrou a Arpanet e depois decidiu desenvolver uma rede sucessora da Arpanet
- A NSF desenvolveu um backbone que permitia ligar várias universidades, laboratórios de pesquisa e museus
- A rede da NSF era chamada de NSFNET
- Com a entrada de grandes empresas privadas, a rede se ampliou formando a ANSNET
- A partir daí, os serviços de rede passaram a ser oferecidos comercialmente
- A partir de 1990, com o surgimento da World Wide Web, a Internet explodiu

O backbone da NSFNET em 1988

Arquitetura da Internet

Atualmente, a Internet possui uma arquitetura similar à figura abaixo

Arquitetura da Internet

- Para entrar na Internet, um usuário precisa se conectar a um ISP (Internet Service Provider)
- A forma como o usuário se conecta ao ISP varia
 - DSL (Digital Subscriber Line)
 - Conexão discada (dial-up)
 - Cabo
 - FTTH (Fiber to the home)
- Os ISPs conectam suas redes nos IXPs (Internet eXchange Points)
 - Sala cheia de roteadores conectados por uma LAN de alta velocidade
- No topo estão os ISPs da camada 1 que formam o backbone principal da Internet

Redes de Telefonia Móvel 3G

- O número de usuários de telefonia móvel supera com folga o número de computadores e de linhas de telefone fixos
- A evolução do sistema de telefonia móvel passou por 3 gerações
 - 1ª geração: AMPS (Advanced Mobile Phone System)
 - 2ª geração: D-AMPS, CDMA e GSM (Global System for Mobile Communications)
 - 3ª geração: UMTS (Universal Telecommunications System) também chamado de WCDMA (Wideband Code Division Multiple Access)

Redes de Telefonia Móvel 3G

 O ponto de destaque de uma rede de telefonia móvel é a reutilização do espectro

Redes de Telefonia Móvel 3G

Arquitetura da rede de telefonia móvel 3G UMTS

LANs sem Fios: 802.11

- As redes 802.11 (WiFi) operam em uma faixa de freqüências do espectro não licenciada (2,4 - 2,5 GHz ou 5,725 - 5,825 GHz)
 - A potência de transmissão deve ser limitada a fim de que os dispositivos possam coexistir
- A estrutura da rede pode incluir pontos de acesso (APs) ou não (redes ad hoc)
- Dependendo da versão, o esquema de modulação usado varia
 - OFDM (Orthogonal Frequency Division Multiplexing) é usado no 802.11g
- O 802.11n utiliza até quatro antenas a fim de alcançar velocidades maiores

LANs sem Fios: 802.11

Configurações de redes sem fio

LANs sem Fios: 802.11

- A transmissão sem fio enfrenta mais desafios que a transmissão guiada
 - Atenuação e desvanecimento de multipercursos
 - Terminais ocultos
 - Necessidade de mobilidade
- Outro fator que merece destaque é a segurança, já que o meio físico é a princípio acessível a todos
 - Técnicas de criptografia como WEP (Wired Equivalent Privacy) e WPA/WPA2 (WiFi Protected Access) são utilizadas

LANs sem Fios: 802.11

Desvanecimento de multipercurso

Multipath fading

LANs sem Fios: 802.11

Problema do terminal oculto

RFID e Redes de Sensores

- A identificação por radiofrequência (RFID Radio Frequency IDentification) permite que objetos comuns façam parte de uma rede de computadores
- Uma etiqueta RFID contém um pequeno microchip com um identificador exclusivo e uma antena que recebe transmissões de rádio
- A tecnologia RFID pode ser passiva ou ativa (precisa de uma fonte de energia)
- Tipos de RFID
 - UHF RFID carteiras de habilitação
 - HF RFID passaportes, cartões de crédito, livros e sistemas de pagamento sem contato
 - LF RFID rastreamento de animais

RFID e Redes de Sensores

RFID em objetos

RFID e Redes de Sensores

Uma extensão das redes RFID são as redes de sensores

Padronização de Redes

- Várias organizações mundiais operam na padronização de redes e da Internet
 - ITU (International Telecommunication Union)
 - ISO (International Standards Organization)
 - IEEE (Institute of Electrical and Electronics Engineers)
 - IETF (Internet Engineering Task Force)
 - IAB (Internet Architecture Board)
- Protocolos da Internet s\u00e3o descritos nos RFCs (Request for Comments)

Grupos IEEE

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10 ↓	Virtual LANs and security
802.11 *	Wireless LANs (WiFi)
802.12 ↓	Demand priority (Hewlett-Packard's AnyLAN)

The 802 working groups. The important ones are marked with *. The ones marked with ↓ are hibernating. The one marked with † gave up and disbanded itself.

Grupos IEEE

802.13	Unlucky number; nobody wanted it
802.14 ↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth, Zigbee)
802.16 *	Broadband wireless (WiMAX)
802.17	Resilient packet ring
802.18	Technical advisory group on radio regulatory issues
802.19	Technical advisory group on coexistence of all these standards
802.20	Mobile broadband wireless (similar to 802.16e)
802.21	Media independent handoff (for roaming over technologies)
802.22	Wireless regional area network

The 802 working groups. The important ones are marked with * . The ones marked with \downarrow are hibernating. The one marked with \dagger gave up and disbanded itself.