TITLE

Graham Cooper

Feb. 2nd, 2017

End of last lecture (which I missed)

For
$$y'' + py' + qy = 0$$
 (p,q ϵR)
 e^{mx} is a solution if $m = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$
(solution to $m^2 + pm + q = 0$)
Case 1: $p^2 > 4q$ (2 real roots)

The two functions e^{m_1x} and e^{m_2x} using the value of m's from above (\pm) This is the characteristics equation of the DE are both solutions. They are linearly independent, and so the general solution is:

Example: Solve the NP
$$y'' - y' - 2y = 0$$
, $y(0) = 0$, $y'(0) = 2$ Solution: The char. eqn is $m^2 - m - 2 = 0$ ie $(m-2)(m+1) = 0$, so $m = 2, -1$

The general solution is $y = C_1 e^{2x} + C_2 e^{-x}$ ($y' = 2C_1 e^{2x} - C_2 e^{-x}$) Enforcing hte initial conditions,

$$y(0) = 0 \rightarrow 0 = C_1 + C_2$$

 $y'(0) = 2 \rightarrow 2 = 2C_1 - C_2$
 $2 = 3C_1 \text{ so } C_1 = \frac{2}{3}, C_2 = \frac{-2}{3}$
So $y = \frac{2}{3}(e^{2x} - 2^{-x})$

Case 2: $p^2 < 4q$ (Complex Roots)

Here we can again say that the soution is $y = C_1 e^{m_1 x} + C_2 e^{m_2 x} = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}$

WE can write this in terms of real-valued functions.

$$y = e^{\alpha x} [C_1 e^{i\beta x} + C_2 e^{-i\beta x}]$$

$$= e^{\alpha x} [C_1 * (\cos(\beta x) + i\sin(\beta x) + C_2(\cos(\beta x) - i\sin(\beta x))]$$

$$= e^{\alpha x} [(C_1 + C_2)\cos(\beta x) + i(C_1 - C_2)\sin(\beta x)]$$

$$= e^{\alpha x} (A\cos(\beta x) + B\sin(\beta x))$$

Where $A = C_1 + C_2$ and $B = i(C_1 - C_2)$

Example: Find the general solution: y'' + 2y' + 5y = 0Solution: The char. eqation is $m^2 + 2m + 5 = 0$

$$(m+1)^2 + 4 = 0$$

 $m = -2 \pm 2i$
 $\rightarrow y = e^{-x}(C_1 cos(2x) + C_2 sin(2x))$

Example: Solve the IVP y'' + 4y' + 5y = 0, y(0) = 2, y'(0) = 1

This time:

$$m^{2} + 4m + 5 = 0$$

 $(m+2)^{2} + 1 = 0$
 $m = -2 \pm i$
 $\rightarrow y = e^{-2x}(C_{1}cos(x) + C_{2}sin(x))$

Enforce the ICs:

$$y' = -2e^{-2x}(C_1cos(x) + C_2sin(x)) + e^{-2x}(-C_1sin(x) + C_2cos(x))$$
$$y(0) = 2 \to C_1 = 2$$
$$y'(0) = 1 \to -2C_1 + C_2 = 1 \to C_2 = 5$$

Thus,
$$y = e^{-2x}(2\cos(x) + 5\sin(x))$$

Case 3: $p^2 = 4q$ (Repeated roots)

If $p^2=4q$ we get only one exponential solution. There must be a second solution which si not an exponentianal

Here's how it was found:

An equation with 2 identical roots should not differ much from an equation with 2 nearly identical roots.

Eg: Compare
$$y'' + 2y' + y = 0$$
 to $y'' + 2.001y' + y = 0$

So, suppose a DE has two roots, m and m + ϵ .

$$y = C_1 e^{mx} + C_2 e^{m+\epsilon} x$$

As $\epsilon \to 0$ It looks like we only get one family of solutions:

$$y = (C_1 + C_2)e6mx$$
 however, suppose: C_1 and C_2 , depend on ϵ

Consider the oslution:

$$y = \frac{1}{\epsilon} e^{m+\epsilon} x - \frac{1}{\epsilon} e^{mx}$$
$$= e^{mx} \left[\frac{e^{\epsilon x} - 1}{\epsilon} \right]$$

$$lim_{\epsilon \to 0}(\frac{e^{\epsilon x}-1}{\epsilon}) = lim_{\epsilon \to 0}\frac{xe^{\epsilon x}}{1} = x$$

Therefore xe^{mx} is a solution to the equation with $\epsilon = 0$. That is, the general solution for Case 3 is $y = C_1 e^{mx} + C_2 x e^{mx}$

Example: Solve y'' + 6y' + 9y = 0

Solution:
$$m^2 + 6m + 9 = 0 \iff (m+3)^2 = 0 \to m = -3$$

The general solution is $y = C_1 e^{-3x} + C_2 x e^{-3x}$

$$\overline{y_h = C_1 e^{-2x}} + C_2 x e^{-2x}$$

Example: Solve $y'' + 4y' + 4y2e^{-2x} + 4x$ $y_h = C_1e^{-2x} + C_2xe^{-2x}$ $y_p = Ae^{-2x}$ will fail, so we usually multiply by x, but that will also fail. Try multiplying by x again! $y_p = Ax^2e^{-2x} + Bx + C$

$$y_p = Ax^2e^{-2x} + Bx + C$$