Herbst 12 Themennummer 1 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Sei g eine positive differenzierbare Funktion. Welche Stammfunktion hat dann die Funktion g'/g?
- b) Bestimmen Sie die Lösung $y = \varphi(x)$ des Anfangswertproblems

$$y' = -xy \ln y, \quad y(0) = e$$

und deren maximalen Definitionsbereich. Zeigen Sie, dass die Lösung auf diesem Definitionsbereich der Abschätzung $1 < \varphi(x) \le e$ genügt, und skizzieren Sie den Graphen der Funktion φ .

Lösungsvorschlag:

- a) $\ln g$.
- b) Formen wir die Differentialgleichung um, so erhalten wir $(\ln y)' = y'/y = -x \ln y$; also genügt $\ln y$ der Differentialgleichung u' = -xu. Diese ist trennbar; aus $(\ln u)' = u'/u = -x$ folgt $u: x \mapsto ce^{-\frac{x^2}{2}}$ für ein $c \in \mathbb{R}$ und daraus dann $y(x) = e^{ce^{-\frac{t^2}{2}}}, c \in \mathbb{R}$. Die Anfangsbedingung impliziert $e^c = e$ und daher c = 1, also ist $\varphi(x) = e^{e^{-\frac{x^2}{2}}}$. Man verifiziert leicht, dass es sich bei φ tatsächlich um die Lösung handelt und es ist klar, dass diese auf \mathbb{R} definiert ist und dort das Anfangswertproblem löst. Für alle $x \in \mathbb{R}$ gilt $-\frac{x^2}{2} \leq 0$. Wegen der strengen Monotonie der Exponentialfunktion ist daher $0 < e^{-\frac{x^2}{2}} \leq e^0 = 1$ und $1 = e^0 < \underbrace{e^{-\frac{x^2}{2}}}_{=\varphi(x)} \leq e^1 = e$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$