## Lecture 4

#### Announcements

- Tuesday lectures in SF1101
- Practicals start on 23/9 or 26/9

# Logic Gates



Figure 1: Symbols for different logic gates

## **Truth Gates**

| $\overline{x_1}$ | $x_2$ | AND |
|------------------|-------|-----|
| 0                | 0     | 0   |
| 0                | 1     | 0   |
| 1                | 0     | 0   |
| 1                | 1     | 1   |
|                  |       |     |

| $\overline{x_1}$ | $x_2$ | OR |
|------------------|-------|----|
| 0                | 0     | 0  |
| 0                | 1     | 1  |
| 1                | 0     | 1  |
| 1                | 1     | 1  |
|                  |       |    |

**Design Example:** Switches x and y and a light L. L is off if both x and y are on or off.

Truth table:

| $\overline{x_1}$ | $x_2$ | NOR |
|------------------|-------|-----|
| 0                | 0     | 0   |
| 0                | 1     | 1   |
| 1                | 0     | 1   |
| 1                | 1     | 0   |

#### **Additional Gates:**

| $\overline{x_1}$ | $x_2$ | NAND |
|------------------|-------|------|
| 0                | 0     | 1    |
| 0                | 1     | 1    |
| 1                | 0     | 1    |
| 1                | 1     | 0    |

NAND (not and) gates are used because they are cheaper to produce than combining NOT and AND (4 vs 6 transistors). They are **functionally complete**, ie they can implement all logic functions.

| $\overline{x_1}$ | $x_2$ | NOR |
|------------------|-------|-----|
| 0                | 0     | 1   |
| 0                | 1     | 0   |
| 1                | 0     | 0   |
| 1                | 1     | 1   |
|                  |       |     |

NOR (not or) gates are also **functionally complete**. Similarly, NOR is cheaper to build than OR (4 vs 6 transistors).

## **Sum of Products**

- $\bullet\,$  Literal: any variable or its complement
- Product Term: synonym for AND
- Sum Term: synonym for OR
- Sum of Products: as the name suggests
- Minterm: a product term that evaluates to 1 for exactly 1 row of truth
- Canonical SOP: SOP expression for a function that comprises its minterms

### Example:

| $\overline{x_1}$ | $x_2$ | $x_3$ | Minterm                |
|------------------|-------|-------|------------------------|
| 0                | 0     | 0     | $\overline{x_1x_2x_3}$ |

| $\overline{x_1}$ | $x_2$ | $x_3$ | Minterm                           |
|------------------|-------|-------|-----------------------------------|
| 0                | 0     | 1     | $\overline{x_1x_2}x_3$            |
| 0                | 1     | 0     | $\overline{x_1}x_2\overline{x_3}$ |
| 0                | 1     | 1     | $\overline{x_1}x_2x_3$            |
| 1                | 0     | 0     | $x_1\overline{x_2}\overline{x_3}$ |
| 1                | 0     | 1     | $x_1\overline{x_2}x_3$            |
| 1                | 1     | 0     | $x_1x_2\overline{x_3}$            |
| 1                | 1     | 1     | $x_1x_2x_3$                       |
|                  |       |       |                                   |

The short forms above are  $m_0, m_1, m_2, \ldots, m_7$ , and a function can be represented as

$$f = m_0 + m_1 + m_2 + m_3 + m_6 + m_7$$