Topic 2 **Set Theory**

What you will learn in this lecture:

- Sets and its Structures
- Set Elements
- Cardinality of a Set
- Infinite Sets
- Equality of a Set
- Subset of a Set
- Power Set of a Set
- Operations on Sets
- Set Identities

Definition of a Set

A set is an *unordered* collection of objects/elements/members.

Sets are usually denoted as follows

$$S = \{a, b, c\}$$

 $T = \{x \mid P(x)\}$

Set S is defined by listing its elements. Set T is defined by property of its element x.

This is read as "x such that P(x)"

This is read as "x is an element of S"

$$N = \{0, 1, 2, 3, 4, ...\}$$
, so $3 \in N$

 $T = \{x \mid x \text{ is a letter of the English alphabets} \}$, so $a \in T$

Definition of a Set

Sets are unordered.

Thus $\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.$

All of those sets above are equal!

All elements are *distinct* (unequal); multiple listings make no difference!

Suppose a = b, then

$$T = \{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}.$$

If x is NOT an object in a set, then we use the symbol, $\not\in$ $x \notin S$ informs us that object x is NOT in S.

Cardinality of a Set

Cardinality: is defined as the number of **distinct elements** in a set.

|M| refers to the cardinality of set M.

These two lines are used to refer to cardinality.

These are known as *empty set* or *null set*.

If |S| = A, where A is some number, then we say S is **finite** or **countable**. Otherwise, we say S is **infinite** or **uncountable**.

Note:

$$\{\emptyset\} \neq \{\}$$

Example 1: TRUE or FALSE?

• $e \in \{x \mid x \text{ is a vowel}\}$

• cat $\in \{x \mid x \text{ is an animal}\}$ T/F

• $\{3\} \in \{x \mid x \text{ is an odd number}\}\$

Peter $\in \{x \mid x \text{ is a male}\}$ T/F

Example 2

Determine the **cardinality** of the following:

|{cat, rabbit, parrot}| = _3___ |{a, b, c, a, c}| = ____

$$|\{a, b, c, a, c\}| = \underline{\hspace{1cm}}$$

 $|\{x \mid x \text{ is non negative even and } x < 11\}| = \underline{\hspace{1cm}}$

Common Infinite Sets to Know

$$N = \{0, 1, 2, 3, 4, 5, ...\}$$

$$Z = \{..., -2, -1, 0, 1, 2, ...\}$$

$$Z^+ = \{1, 2, 3, ...\}$$

$$Z^{-} = \{-1, -2, -3, ...\}$$

$$Q = \{p/q | p \in Z, q \in Z, q \neq 0\}$$

R = {All real numbers}

Set of **natural** numbers ←

Set of **integers**

Set of positive integers

Set of negative integers

Set of **rational** numbers

Set of real numbers

Also known as Counting Number or Nonnegative Integer

Another name for Rational Numbers is Fractions.

Examples of real numbers:

-12.66547, 100000000.02, 244.0, $\sqrt{2}$

Equality of a Set

Two sets are *equal* if and only if they have the same members.

It does not matter how the set is defined or denoted!

Example 3

Given

 $M_1 = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5 \}$

 $M_2 = \{x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25\}$

 $M_3 = \{x \mid x \text{ is an integer whose square is } > 0 \text{ and } < 25\}$

Determine if

 $M_1 = M_2$?

 $M_1 = M_3$?

 $M_2 = M_3$?

Subsets and Proper Subsets

A set **S** is said to be a **subset** of another set **T** if and only if every element of set **S** is contained in set **T**.

The notation for subset is \subseteq

$$\mathsf{S} \subseteq \mathsf{T}$$

Subsets of set T includes the set itself.

That is, $T \subseteq T$.

The notation for proper subset is \subset

$$S \subset T : S \subset T \text{ and } S \neq T$$

This means:

A proper subset for set T is

ALL subsets of set T

EXCEPT the set itself.

Example 4: True or False?

• $4 \subseteq \{x \mid x \text{ is an even number}\}$

T/F

• $\{5/8\} \subseteq \{x \mid x \text{ is a fraction}\}$

T/F

• {rice, ice-cream} \subseteq {x | x is food}

T/F

• {rice, ice-cream} \subset {x | x is food}

T/F

• $\{1, 2, 3\} \subseteq \{1, 2, 3\}$

T/F

• $\{1, 2, 3\} \subseteq \{1, 2, 2, 3\}$

T/F

• $\{1, 2, 3\} \subset \{1, 2, 3, 4\}$

T/F

• $\{1, 2, 3\} \subset \{1, 2, 3, 4\}$

T/F

• $\{1, 2, 3\} \subset \{1, 2, 2, 3\}$

T/F

Power Sets

A **power set** P(S) of a set S is the set of all subsets of S.

$$P(S) = \{x \mid x \subseteq S\}$$

Example: If $S = \{a,b\}$, then $P(S) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$.

Cardinality of a Power Set

If S is finite then $|P(S)| = 2^{|S|}$. |P(N)| > |N|.

Example:

$$A=\{0, 2, b\}$$

$$|A|=3$$

$$P(A) = {\emptyset, \{0\}, \{2\}, \{b\}, \{0,2\}, \{0,b\}, \{2,b\}, \{0,2,b\} \}}.$$

$$|P(A)| = 2^{|A|} = 2^3 = 8$$

13

Example 5

Let
$$A = \{1, 2, 3\}$$

- 1) Write out P(A).
- 2) What is |P(A)|?

The Universal Set

The idea of a "set of all sets" leads to logical difficulties.

Difficulties are avoided by always working within a local "universal set" which includes only those objects under consideration.

The **Universal set notation** is U.

Operations on Sets

Operation	Name
$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$	Union
$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$	Intersection
$A - B = \{x x \in A \text{ and } x \notin B\}$	Difference
$\overline{A} = A^c = U - A$ where U is the universal set	Complement of A
$A \triangle B = (A - B) \cup (B - A)$ $= (A \cup B) - (A \cap B)$	Symmetric difference of two sets A and B

Example 6

Determine the elements resulting from the set operations of the following:

- {a,b,c}\(\oplu\){2,3} = _____
- {2,3,5} \cup {3,5,7} =_____

- {2,4,6}\(\cap \{3,4,5\} = _____
- {1,2,3,4,5,6} {2,3,5,7,9,11} = _____
- {3,4,5,6} \(\simeq \{5,7,9\} = ______
- $Z N = \{..., -1, 0, 1, 2, ...\} \{0, 1, ...\} = \underline{\hspace{1cm}}$
- Given A={2, 3, 4, 5, 6, 7, 8} and U={ $x \in Z^+ \mid x < 10$ }. $\overline{A} = \underline{\hspace{1cm}}$

Set Identities/Laws

Identity: $A \cup \emptyset = A$

 $A \cap U = A$

Domination: $A \cup U = U$

 $A \cap \emptyset = \emptyset$

Idempotent: $A \cup A = A = A \cap A$

Double complement: $(A^c)^c = \overline{(\overline{A})} = A$

Commutative: $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Associative: $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$

18

Set Identities/Laws

Distributive: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $(A \cup B)' = A' \cap B'$ De Morgan's:

 $(A \cap B)' = A' \cup B'$

 $A \cup (A \cap B) = A$ Absorption:

 $A \cap (A \cup B) = A$

Complement: $A \cup A^c = U$

 $A \cap A^c = \emptyset$

To understand all these identities, you can draw a Venn Diagram but a Venn Diagram does not prove correctness!

A Venn diagram can be used to illustrate the set identities e.g. De Morgan's: $(A \cup B)' = A' \cap B'$

Left side of the equation

Right side of the equation

Summary

We have learnt the following concepts related to sets:

- Notation for sets,
- ∈ relational operator,
- cardinality |S|, the empty set Ø and infinite sets N, Z, Q, R,
- equal sets, subsets and proper subsets =, ⊆, ⊂,
- power sets P(S),
- set operations \cup , \cap , -, S^c , \triangle
- set identities.

Exercise 1

Let
$$A = \{x \mid x \in N \land x \text{ divides } 24 \land x < 10\}$$
 and $B = \{x \mid x \in N \land x \text{ is prime number } \land x < 16\}$

- a) List all elements in A and B.
- b) Find

i)
$$A \cap B =$$

ii)
$$A \cup B =$$

iii)
$$A - B =$$

iv)
$$A \Delta B =$$

v)
$$P(A \cap B) =$$

vi)
$$|P(A \cap B)| =$$

Exercise 2

Given the following sets

$$M_1 = \{1, 3, 5, 7\}$$

 $M_2 = \{\emptyset, \{1, K\}\}$

Give

$$P(M_1) =$$

$$P(M_2) =$$

23

Exercise 3

Given the following sets

$$M_1 = \{ x \mid x \in N \text{ and } x + 1 \text{ is even} \}$$

 $M_2 = \{ x \mid x \in N \text{ and } x \text{ has } 1 \text{ as its first digit} \}$
 $M_3 = \{ x \mid x \in N \text{ and } x \text{ is divisible by } 3 \}$

$$M_1 \cup M_3 = M_2 - M_1 = M_1 \cap M_2 = M_1 \cap M_3 = M_1 \cap M_2 = M_1 \cap M_2 = M_1 \cap M_3 = M_1 \cap M_2 = M_1 \cap M_2 = M_1 \cap M_3 = M_1 \cap M_2 = M_1 \cap M_2 = M_2 \cap M_3 = M_1 \cap M_2 = M_2$$

