Effective stress

Effective stress tensor

$$m{\sigma}_{eff} = egin{bmatrix} S_{11} & S_{12} & S_{13} \ S_{12} & S_{22} & S_{23} \ S_{13} & S_{23} & S_{33} \end{bmatrix} - egin{bmatrix} P_p & 0 & 0 \ 0 & P_p & 0 \ 0 & 0 & P_p \end{bmatrix}$$

$$m{\sigma}_{eff} = egin{bmatrix} S_{11} - P_p & S_{12} & S_{13} \ S_{12} & S_{22} - P_p & S_{23} \ S_{13} & S_{23} & S_{33} - P_p \end{bmatrix}$$

• Faulting depends on the effective stress

Stress magnitudes at depth

Normal faulting

© Cambridge University Press Zoback (Fig. 1.4, pp. 13)

Strike-slip faulting

© Cambridge University Press Zoback (Fig. 1.4, pp. 13)

Reverse faulting

© Cambridge University Press Zoback (Fig. 1.4, pp. 13)

Stress measurement techniques

- S_v integration of density logs
- S_3 (S_{hmin} , except in reverse faulting) is obtained from mini-fracs and leak-off tests. Zoback (Chapter 6)
- ullet P_p measure directly or estimated from geophysical logs or siesmic data. Zoback (Chapter 2)
- Bound S_{Hmax} with frictional strength of crust or oberservations of wellbore failures. Zoback (Chapter 4, 7, 8)
- Orientation of principal stresses from wellbore observations, geology, earthquake focal mechanisms. Zoback (Chapter 5, 6)

Stress maps

Pore pressure at depth

$$P_p^{\text{hydro}} = \int_0^z \rho_w(z) g dz \approx \rho_w g z_w$$

Ratio of pore pressure to S_v

$$\lambda_p = P_p / S_v$$

Hydrostatic: $\lambda_p \approx 0.44$

Lithostatic: $\lambda_p = 1$

Overpressure

Monte Cristo field (onshore near Gulf of Mexico, Texas)

Reservior Compartmentalization

