第5章2次元における共形不変性

Conformal Field Theory

P. D. Francesco, P. Mathieu and D. Sènèchal

Ryoi Ohashi

Department of Applied Physics Nagoya University

Contents

5.1 2次元における共形群

共形写像

大域共形変換

共形生成子

プライマリー場

相関関数

5.2 Ward 恒等式

Ward 恒等式の正則型

共形 Ward 恒等式

Ward 恒等式の他の導出方法

5.3 自由場と演算子積展開

自由ボゾン系

自由フェルミオン系

ゴースト系

5.4 中心電荷

エネルギー・運動量テンソルの変換則

c の物理的解釈

2次元における共形不変性

2次元における共形群

5.1.1 共形写像

平面座標 $\mathbf{x} = (z^0, z^1)$ に対して、 $w: z^{\mu} \mapsto w^{\mu}(\mathbf{x})$ とする。

$$g^{\mu\nu} \mapsto \left(\frac{\partial w^{\mu}}{\partial z^{\alpha}}\right) \left(\frac{\partial w^{\nu}}{\partial z^{\beta}}\right) g^{\alpha\beta}$$
 (5.1)

この写像が共形変換となるために、 $g'_{\mu\nu}(w) \propto g_{\mu\nu}(z)$ を満たすように条件を整理すると、

2次元における共形写像の条件式

$$\frac{\partial w^1}{\partial z^0} = \frac{\partial w^0}{\partial z^1}, \quad \frac{\partial w^0}{\partial z^0} = -\frac{\partial w^1}{\partial z^1} \tag{5.4}$$

または

$$\frac{\partial w^1}{\partial z^0} = -\frac{\partial w^0}{\partial z^1}, \quad \frac{\partial w^0}{\partial z^0} = \frac{\partial w^1}{\partial z^1}$$
 (5.5)

→コーシーリーマンの関係式さえ成立していればよい!

5.1.1 共形写像

座標を複素平面で表せば、もっと簡単な条件式で書けるのでは...?

複素平面への写像

$$z = z^{0} + iz^{1} \quad z^{0} = \frac{1}{2}(z + \bar{z}) \quad \partial_{z} = \frac{1}{2}(\partial_{0} - i\partial_{1}) \quad \partial_{0} = \partial_{z} + \partial_{\bar{z}}$$

$$\bar{z} = z^{0} - iz^{1} \quad z^{1} = \frac{1}{2i}(z - \bar{z}) \quad \partial_{\bar{z}} = \frac{1}{2}(\partial_{0} + i\partial_{1}) \quad \partial_{1} = i(\partial_{z} - \partial_{\bar{z}})$$
(5.6)

この表記を使うとコーシーリーマンの関係式は簡潔な形で表現できる!

2 次元における共形写像の条件式 (複素平面 Ver.)

$$\partial_{\bar{z}}w(z,\bar{z}) = 0 \tag{5.9}$$

→ 複素平面座標の正則写像であれば、必ず共形写像となる!

5.1.2 大域共形変換

大域共形変換は次の写像で閉じている。

特殊共形群

$$f(z) = \frac{az+b}{cz+d}, \quad ad-bc = 1, \quad a,b,c,d \in \mathbb{C}$$
 (5.12)

$$\rightarrow SL(2,\mathbb{C})$$
 と同型。

5.1.3 共形生成子

無限小座標変換は一般に

$$z' = z + \epsilon(z), \quad \epsilon(z) = \sum_{n=0}^{\infty} c_n z^{n+1}$$
 (5.15)

すると、スピンレス&スケール次元 0 の場 ϕ は共形変換の下で次のように変化する。

$$\delta\phi = \sum_{n} \left\{ c_n l_n \phi(z, \bar{z}) + \bar{c}_n \bar{l}_n \bar{\phi}(z, \bar{z}) \right\}$$
 (5.17)

ここで、以下のように生成子を定義した。

生成子

$$l_n = -z^{n+1}\partial_z, \quad \bar{l}_n = -\bar{z}^{n+1}\partial_{\bar{z}} \tag{5.19}$$

5.1.3 共形生成子

この2つの生成子はWitt代数に従う。

Witt 代数

$$[l_{n}, l_{m}] = (n - m)l_{n+m}$$

$$[\bar{l}_{n}, \bar{l}_{m}] = (n - m)\bar{l}_{n+m}$$

$$[l_{n}, \bar{l}_{m}] = 0$$
(5.19)

このうち $n = 0, \pm 1$ は大域共形変換を表している。

大域共形変換との関係

 $l_{-1} = -\partial_z$: (複素平面上での) 並進

 $l_0 = -z\partial_z$: スケール変換と回転

 $l_1 = -z^2 \partial_z : 特殊共形変換 (5.20)$

5.1.4 プライマリー場

共形変換の下ではスケール次元と同時に場のスピンまでも考慮する必要がある。

共形次元

場がスケール次元: Δ 、スピン:s を持つときの、共形次元 h, \bar{h} は

$$h = \frac{1}{2}(\Delta + s), \quad \bar{h} = \frac{1}{2}(\Delta - s)$$
 (5.21)

場が次のような変換則に従うときをプライマリー場と呼んでいる。

プライマリー場

$$\phi'(w, \bar{w}) = \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{-h} \left(\frac{\mathrm{d}\bar{w}}{\mathrm{d}\bar{z}}\right)^{-h} \phi(z, \bar{z}) \tag{5.22}$$

または無限小変換 $w = z + \epsilon(z)$ 、 $\bar{w} = \bar{z} + \bar{\epsilon}(\bar{z}?)$ に対して

$$\begin{split} \delta_{\epsilon,\bar{\epsilon}}\phi &:= \phi'(z,\bar{z}) - \phi(z,\bar{z}) \\ &= - \left(h\phi \partial_z \epsilon + \epsilon \partial_z \phi \right) - \left(\bar{h}\phi \partial_{\bar{z}} \bar{\epsilon} + \bar{\epsilon} \partial_{\bar{z}} \phi \right) \end{split} \tag{5.23}$$

5.1.4 プライマリー場

準プライマリー場: 大域共形変換 (global CT) を満たす場プライマリー場: 局所共形変換 (local CT) を満たす場

5.1.5 相関関数

(2.149) よりプライマリー場の共形変換における相関関数の関係は

相関関数の共形変換

$$\langle \phi_1(w_1, \bar{w}_1) \cdots \phi_n(w_n, \bar{w}_n) \rangle = \prod_{i=1}^n \left(\frac{\mathrm{d}w}{\mathrm{d}z} \right)_{w=w_i}^{-h_i} \left(\frac{\mathrm{d}\bar{w}}{\mathrm{d}\bar{z}} \right)_{\bar{w}=\bar{w}_i}^{-\bar{h}_i} \langle \phi_1(z_1, \bar{z}_1) \cdots \phi_n(z_n, \bar{z}_n) \rangle \quad (5.24)$$

- 4.3.1 で行った大域共形変換の場合の議論と同様に行っていく
 - Δ は h, \bar{h} に置き換える (場のスピンも考慮している)
 - 2 点間の距離 x_{ij} は $\sqrt{z_{ij}\bar{z}_{ij}}$ に置き換える

5.1.5 相関関数

2 点相関関数

$$\langle \phi_1(z_1, \bar{z}_1)\phi_2(z_2, \bar{z}_2)\rangle = \frac{C_{12}}{(z_1 - z_2)^{2h}(\bar{z}_1 - \bar{z}_2)^{2\bar{h}}}, \quad \begin{cases} h_1 = h_2 = h\\ \bar{h}_1 = \bar{h}_2 = \bar{h} \end{cases}$$
(5.25)

3 点相関関数

$$\langle \phi_{1}(z_{1}, \bar{z}_{1}) \phi_{2}(z_{2}, \bar{z}_{2}) \phi_{3}(z_{3}, \bar{z}_{3}) \rangle = C_{123} \frac{1}{z_{12}^{h_{1} + h_{2} - h_{3}} z_{23}^{h_{2} + h_{3} - h_{1}} z_{13}^{h_{1} + h_{3} - h_{2}}} \times \frac{1}{\bar{z}_{12}^{\bar{h}_{1} + \bar{h}_{2} - \bar{h}_{3}} \bar{z}_{23}^{\bar{h}_{2} + \bar{h}_{3} - \bar{h}_{1}} \bar{z}_{13}^{\bar{h}_{1} + \bar{h}_{3} - \bar{h}_{2}}}$$
(5.26)

5.1.5 相関関数

4 点相関関数

$$\langle \phi_1(x_1) \cdots \phi_4(x_4) \rangle = f\left(\frac{x_{12}x_{34}}{x_{13}x_{24}}, \frac{x_{12}x_{34}}{x_{14}x_{23}}\right) \prod_{i < j}^4 z_{ij}^{h/3 - h_i - h_j} \bar{z}_{ij}^{\bar{h}/3 - \bar{h}_i - \bar{h}_j}$$

但し、
$$h = \sum_{i=1}^4 h_i$$
、 $\bar{h} = \sum_{i=1}^4 \bar{h}_i$

ここで、2次元においては複比同士に関係が生じる。

$$\eta = \frac{z_{12}z_{34}}{z_{13}z_{24}}, \quad 1 - \eta = \frac{z_{14}z_{23}}{z_{13}z_{24}}, \quad \frac{\eta}{1 - \eta} = \frac{z_{12}z_{34}}{z_{14}z_{23}}$$
(5.27)

なので、上式の f はもう少し簡潔にかけて、

4 点相関関数

$$\langle \phi_1(x_1) \cdots \phi_4(x_4) \rangle = f(\eta, \bar{\eta}) \prod_{i < j}^4 z_{ij}^{h/3 - h_i - h_j} \bar{z}_{ij}^{\bar{h}/3 - \bar{h}_i - \bar{h}_j}$$
 (5.28)

2次元における共形不変性

Ward 恒等式

5.2.1 Ward 恒等式の正則型

4.3.2 で議論した大域共形変換における Ward 恒等式を複素数表示してみる

大域共形変換における Ward 恒等式

$$2\pi\partial_{z}\langle T_{\bar{z}z}X\rangle + 2\pi\partial_{\bar{z}}\langle T_{zz}X\rangle = -\sum_{i=1}^{n}\partial_{\bar{z}}\frac{1}{z-w_{i}}\partial_{w_{i}}\langle X\rangle\dots$$
 並進
$$2\pi\partial_{z}\langle T_{\bar{z}\bar{z}}X\rangle + 2\pi\partial_{\bar{z}}\langle T_{\bar{z}z}X\rangle = -\sum_{i=1}^{n}\partial_{z}\frac{1}{\bar{z}-\bar{w}_{i}}\partial_{\bar{w}_{i}}\langle X\rangle\dots$$
 並進
$$2\langle T_{z\bar{z}}X\rangle + 2\langle T_{\bar{z}z}X\rangle = -\sum_{i=1}^{n}\delta(\boldsymbol{x}-\boldsymbol{x}_{i})\Delta_{i}\langle X\rangle\dots$$
 がきのばし
$$-2\langle T_{z\bar{z}}X\rangle + 2\langle T_{\bar{z}z}X\rangle = -\sum_{i=1}^{n}\delta(\boldsymbol{x}-\boldsymbol{x}_{i})s_{i}\langle X\rangle\dots$$
 ローレンツ (回転) (5.37)

5.2.1 Ward 恒等式の正則型

(5.37) は次の2式にまとめられる。

大域共形変換における Ward 恒等式

$$\partial_{\bar{z}} \left\{ \langle T(z,\bar{z})X \rangle - \sum_{i=1}^{n} \left[\frac{1}{z - w_{i}} \partial_{w_{i}} \langle X \rangle + \frac{h_{i}}{(z - w_{i})^{2}} \langle X \rangle \right] \right\} = 0$$

$$\partial_{z} \left\{ \langle \bar{T}(z,\bar{z})X \rangle - \sum_{i=1}^{n} \left[\frac{1}{\bar{z} - \bar{w}_{i}} \partial_{\bar{w}_{i}} \langle X \rangle + \frac{\bar{h}_{i}}{(\bar{z} - \bar{w}_{i})^{2}} \langle X \rangle \right] \right\} = 0$$
 (5.39)

但し、 $T=-2\pi T_{zz}$ $\bar{T}=-2\pi T_{\bar{z}\bar{z}}$ とおいた。

つまりこれらは正則・反正則な式であることから $T(z, \bar{z}) = T(z)$ であり、

大域共形変換における Ward 恒等式 (Ver.2)

$$\langle T(z)X\rangle = \sum_{i=1}^{n} \left\{ \frac{1}{z - w_i} \partial_{w_i} \langle X \rangle + \frac{h_i}{(z - w_i)^2} \langle X \rangle \right\} + \text{reg.}$$
 (5.41)

但し、 $z=w_i$ で正則な成分を reg. と表している。

5.2.2 共形 Ward 恒等式

共形 Ward 恒等式

$$\delta_{\epsilon,\bar{\epsilon}} \langle X \rangle = -\frac{1}{2\pi i} \oint_C dz \epsilon(z) \langle T(z)X \rangle + \frac{1}{2\pi i} \oint_C d\bar{z} \bar{\epsilon}(\bar{z}) \langle \bar{T}(\bar{z})X \rangle$$
 (5.46)

但しCはXを囲んでいるような閉経路である。

大域的共形変換の範囲では次の関係性が現れる。

大域的共形変換での (共形)Ward 恒等式

$$\begin{cases}
\sum_{i} \partial_{w_{i}} \langle \Phi(w_{1}) \cdots \Phi(w_{i}) \cdots \Phi(w_{n}) \rangle &= 0 \\
\sum_{i} (w_{i} \partial_{w_{i}} + h_{i}) \langle \Phi(w_{1}) \cdots \Phi(w_{i}) \cdots \Phi(w_{n}) \rangle &= 0 \\
\sum_{i} (w_{i}^{2} \partial_{w_{i}} + 2w_{i} h_{i}) \langle \Phi(w_{1}) \cdots \Phi(w_{i}) \cdots \Phi(w_{n}) \rangle &= 0
\end{cases} (5.51)$$

↑もちろん 2,3,4 点相関関数 (5.25),(5.26),(5.51) は上式が成立する。

5.2.3 Ward 恒等式の他の導出方法

editing...

2次元における共形不変性

自由場と演算子積展開

5.3 自由場と演算子積展開

2 つの場 A、B が積の形で現れたとき、それらを一つの和の形で表す方法を<mark>演算子積展開</code> (OPE) という。</mark>

演算子積展開 (OPE)

$$A(z)B(w) = \sum_{n = -\infty}^{N} \frac{\{AB\}_{n}(w)}{(z - w)^{n}}$$
(5.72)

2点 zと w が十分近いときには相関関数の形から発散項をみることで、OPE を行うことが可能になる。

エネルギー・運動量テンソルの OPE

φをプライマリー場とすると (5.41) の Ward 恒等式から

$$T(z)\phi(w,\bar{w}) \sim \frac{h}{(z-w)^2}\phi(w,\bar{w}) + \frac{1}{z-w}\partial_w\phi(w,\bar{w})$$
 (5.71)

5.3.1 自由ボゾン系

質量のない自由ボゾン場 φ について考えてみる。

自由ボゾン場の作用

$$S = \frac{1}{2}g \int d^2x \partial_\mu \varphi \partial^\mu \varphi \tag{5.73}$$

q は規格化因子

以下、各種の OPE を掲載。

$\partial \varphi$ 同士の OPE

$$\partial \varphi(z)\partial \varphi(w) \sim -\frac{1}{4\pi g} \frac{1}{(z-w)^2}$$
 (5.77)

5.3.1 自由ボゾン系

T と $\partial \varphi$ の OPE

$$T(z)\partial\varphi(w) \sim \frac{\partial\varphi(w)}{(z-w)^2} + \frac{\partial_w^2\varphi(w)}{z-w}$$
 (5.82)

これより $\partial \varphi$ は (5.71) と比較して、共形次元 h=1 のプライマリー場であることがわかる。

T 同士の OPE

$$T(z)T(w) \sim \left[\frac{1/2}{(z-w)^4} \right] + \frac{2T(w)}{(z-w)^2} + \frac{\partial T(w)}{z-w}$$
 (5.83)

(5.83) と (5.71) を比較すると、 $\frac{1}{2}/(z-w)^4$ だけズレが生じてる。

5.3.2 自由フェルミオン系

自由フェルミオン場 φ について考えてみる。

自由ボゾン場の作用

$$S = g \int d^2x \left(\bar{\psi} \partial \bar{\psi} + \psi \bar{\partial} \psi \right) \tag{5.88}$$

g は規格化因子

以下、各種の OPE を掲載。

ψ 同士の OPE

$$\psi(z)\psi(w) \sim \frac{1}{2\pi g} \frac{1}{z - w} \tag{5.95}$$

5.3.2 自由フェルミオン系

$T \succeq \psi \circ OPE$

$$T(z)\psi(w) \sim \frac{\frac{1}{2}\psi(w)}{(z-w)^2} + \frac{\partial\psi(w)}{z-w}$$
 (5.99)

これより ψ は (5.71) と比較して、共形次元 h=1/2 のプライマリー場であることがわかる。

T同士の OPE

$$T(z)T(w) \sim \left(\frac{1/4}{(z-w)^4}\right) + \frac{2T(w)}{(z-w)^2} + \frac{\partial T(w)}{z-w}$$
 (5.100)

(5.100) と (5.71) を比較すると、 $\frac{1}{4}/(z-w)^4$ だけズレが生じてる。

5.3.3 ゴースト系

editing...

2次元における共形不変性

中心電荷

5.4.1 エネルギー・運動量テンソルの変換則

共形 Ward 恒等式 (5.46) を微小共形変換の定義とする。このとき、エネルギー・運動量テンソルの変化は次の通り。

エネルギー・運動量テンソルの変化量

$$\delta_{\epsilon} T(w) = -\frac{1}{2\pi i} \oint_{C} dz \, \epsilon(z) T(z) T(w)$$

$$= -\frac{1}{12} \partial_{w}^{3} \epsilon(w) - 2T(w) \partial_{w} \epsilon(w) - \epsilon(w) \partial_{w} T(w)$$
(5.123)

また、有限共形変換も上の議論から導ける。

エネルギー運動量テンソルの有限共形変換

$$T'(w) = \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{-2} \left[T(z) - \frac{c}{12}\{w; z\}\right]$$
 (5.124)

5.4.2 c の物理的解釈

• エネルギー・運動量テンソルの期待値

円筒座標 $z \to w = \frac{L}{2\pi} \ln z$ へ射影した際のエネルギー運動テンソルの真空 期待値を評価してみると

$$\langle T_{\text{cyl.}}(w) \rangle = -\frac{c\pi^2}{6L^2}$$

 \rightarrow 円筒の周期境界から現れる Casimir エネルギーの割合に c が現れる。

• 自由エネルギー密度

円筒座標では自由エネルギーにも、円周 L とのトレードオフの形で c が現れる。

$$F_L = f_0 L + \frac{\pi c}{6L} \tag{5.143}$$

トレース・アノマリー

曲がった2次元多様体上ではトレース・アノマリーとして現れる。

$$\left\langle T^{\mu}_{\ \mu}\right\rangle _{g}=\frac{c}{24\pi}R(\boldsymbol{x})\tag{5.144}$$