MATH 305:201, 2020W T2

Homework set 1 — due January 22

Problem 1. Compute the real and imaginary parts of the following complex numbers:

(i)
$$(2+3i) - (1-i)$$

$$(ii) i^3 (1+i)$$

(iii)
$$\frac{2-2i}{4+2i}$$

$$(iv) = \frac{2}{2} + \frac{1}{2}$$

(ii)
$$\frac{2-2i}{4+3i}$$

(iv) $\frac{2}{i} + \frac{i}{2}$
(v) $\frac{2+i}{1-i} + \frac{3+2i}{i}$

Problem 2. Compute the following:

(i)
$$\left| \frac{1-i}{2+i} \right|$$

(ii)
$$|(1-2i)\overline{(1-i)}|$$

(iii) $|\frac{(1-i)^{2021}}{i^{2021}}|$

(iii)
$$\left| \frac{(1-i)^{2021}}{i^{2021}} \right|$$

(iv)
$$arg(\pi/2)$$
 and $Arg(\pi/2)$

(iv)
$$\arg(\pi/2)$$
 and $\arg(\pi/2)$
(v) $\arg(\sqrt{3} - i)$ and $\arg(\sqrt{3} - i)$

Problem 3. Describe geometrically the set of points z in the complex plane defined by:

(i)
$$|z - \zeta| = 2$$
 where $\zeta \in \mathbb{C}$ is a fixed complex number

(ii)
$$z^{-1} = \overline{z}$$

(iii)
$$Re(z) = 1/2$$

(iv)
$$\operatorname{Im}(z) - 2\operatorname{Re}(z) \le 3$$

(v)
$$z\overline{z} \ge 1$$

(vi)
$$z^5 = 1$$

Problem 4. Show that

(i) for any complex number
$$z$$
, $Re(iz) = -Im(z)$ and $Im(iz) = Re(z)$,

(ii) for any integer
$$n \in \mathbb{Z}$$
, $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$, and compute i^{2021} and i^{-2021} .

(iii) the complex numbers
$$z_1 = i$$
, $z_2 = -2 - 3i$ are solutions of the equation $(i-1)z^2 - 4z - 1 + 5i = 0$.

G(x)

D

r_(x)

Problem 5. A monochromatic plane wave of wavelength $\lambda = 2\pi/k$ hits a screen with just thin slits that are a distance d apart. The diffracted light hits a second screen that is at a distance D, see figure. Describe the diffracted light hitting the screen as the sum of two waves emitted from each slit:

$$u(x,t) = u_{+}(x,t) + u_{-}(x,t)$$
, where $(x,t) \in \mathbb{R}^{2}$ and $u_{+}(x,t) = \frac{A}{r} e^{i(kr_{+}(x) - \omega t)}$, $u_{-}(x,t) = \frac{A}{r} e^{i(kr_{-}(x) - \omega t)}$.

Let the intensity be $I(x,t) = |u(x,t)|^2$. Show that

$$I(x,t) = \frac{4A^2}{D^2}\cos^2(\theta)\cos^2\left(\frac{\pi d}{\lambda}\sin(\theta)\right) + \mathcal{O}\left(\frac{d}{D}\right) \qquad \left(\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)$$

Conclude that, for small x/D, the distance between two lines of maximal intensity is given by

$$\bar{\lambda} \approx \frac{D}{d} \lambda.$$