CSED601 Dependable Computing Lecture 2

Jong Kim
Dept. of CSE
POSTECH

Copyright, 2018 © JKim POSTECH HPC

What is the difference?

- Failure (External universe)
 - The delivered service deviates from the specified service.
- Error (information universe)
 - An error is that part of the system state which is liable to lead to failure.
- Fault (Physical universe)
 - The cause of a fault

Techniques for dependable computing

- Fault-avoidance
 - Prevent the occurrence of a fault
- Fault-tolerance
 - Providing a specified service in spite of faults occurrence.
- Error-removal
 - Minimize the presence of latent fault.
- Error-forecasting
 - Estimating the presence, the creation, and the consequences of errors

Cause of faults

- Specification mistakes
 - Specification/Design errors
- Implementation mistakes
 - Misuse of tools
- Component defects
 - Physical worn out, aging
- External disturbance
 - External noise, E-M signal

Sources of Downtime

Category	Early 80's	late 80's	90's
Hardware + Environment	32%	29%	20%
Software	26%	58%	40%
Human Operators	42%	13%	40%

^{*} Data from Stanford lecture

• Is software getting worse?

Is Software Getting Worse?

- Known data
 - Tandem OS (1985): 4 MLOC
 - Linux (2001): 30MLOC
 - Windows XP (2001): 40-50 MLOC
- Gray's estimate: 1 bug/KLOC
- Reducing bugs/KLOC vs. increasing KLOCs/product

Classification of faults

- By fault nature:
 - H/W (analog or digital) or S/W
- By fault duration:
 - Permanent or Intermittent or Transient
- By fault value:
 - Determinate or Indeterminate
- By fault extent:
 - Local or Global

Software Failures

- Crash
- Hang
- Respond correctly but too late
- Provide wrong data

Data Corrupting Bugs

Bug Type (top five only)	% of all data- corrupting bugs	% of data- corrupting bugs w/ wide impact	% of data- corrupting bugs inducing a reboot
Buffer overflow	20%	13%	5%
Use of dealloc'd mem	19%	31%	17%
Use of corrupt ptr	13%	16%	27%
Data structure mismatch	12%	10%	0%
Synchronization	8%	12%	17%

© 2003 George Candea

Non-Data Corrupting Bugs

Bug Type (top five only)	% of all non- data- corrupting bugs	% of non-data- corrupting bugs w/ wide impact	% of non-data- corrupting bugs inducing a reboot
Undefined state	12%	49%	6%
Synchronization	9%	-	22%
Use of corrupt ptr	9%	-	-
Use of unitialized ptr	8%	10%	-
Buggy path	8%	-	-

Top-5 Triggers: Data Corrupting Bugs

Trigger	% of all data- corrupting bugs	% of data- corrupting bugs w/ wide impact	% of data- corrupting bugs inducing a reboot
Boundary conditions	24%	22%	23%
Bad recovery code	21%	35%	38%
Interaction w/ bug patch	20%	24%	5%
Timing	12%	19%	28%
Third-party code	6%	-	6%

Top-5 Triggers: Non-Data Corrupting Bugs

Trigger	% of all non- data- corrupting bugs	% of non- data-corr. bugs w/ wide impact	% of non- data-corr. bugs inducing a reboot
Boundary conditions	34%	56%	4%
Interaction w/ bug patch	16%	31%	3%
Bad recovery code	13%	5%	31%
No trigger (Bohrbug)	12%	-	-
Timing	11%	8%	59%

Fault Models

Needed

- to define the types of faults that will be considered
- to define the behavior these faults will have
- to make problems tractable
- Modeling level
 - Circuit-level : short or open
 - Logical-level: stuck-at-0 or stuck-at-1
 - Register-Transfer level : working/failed
 - System-level : design / naturally / artificial

Digital system Fault Modeling

- Manufacturing stages
 - Design maturity testing
 - Incoming inspection
 - Process maturity testing (burn-in test)
- Operational life stages
 - Infant mortality period
 - Steady-state stress
 - Wear-out period

Fault Avoidance

- Informal definition
 - Any techniques that is used to prevent faults in the first place.
- Methods
 - Design review
 - Component testing
 - Other quality control methods
 - Shielding

Errors

- When does it happens
 - When faults in a system affect the information in the way that the information differs with the specified behavior. (information universe)
- Sources of errors
 - Permanent fault : low
 - Intermittent fault : high
 - Transient fault : low

Error Model

- Error characteristic
 - Information change in undesired way
- Error model
 - Change of truth table (logical value change)

Fault Masking

• Informal definition

 Any process that prevents faults in a system from introducing errors into the information structure of that system.

Methods

- Error-correcting memory
- Majority voting

Fault Tolerance

- Informal definition
 - The ability of a system to continue to perform its tasks after the occurrence of faults.
 - Consists of a series of actions
 - Fault-detection
 - Fault-location
 - Fault containment
 - Damage assessment
 - Reconfiguration
 - Recovery

Homework #1

- Submit a summary of the paper (max. 4 pages)
- Investigate/find a fault/error model on Blockchain or IoT that is not common in general systems
- Investigate what dependability aspect(s) is(are) important in blockchain or IoT
- Due on Sep. 12 (one week)