

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Note

Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture

Maciej Kalkowski^a, Michał Karoński^{a,b}, Florian Pfender^c

- ^a Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznań, Poland
- ^b Emory University, Department of Mathematics and Computer Science, Atlanta, GA, USA
- ^c Universität Rostock, Institut für Mathematik, Rostock, Germany

ARTICLE INFO

Article history: Received 17 December 2008

Keywords: Irregular graph labellings

ABSTRACT

A weighting of the edges of a graph is called vertex-coloring if the weighted degrees of the vertices yield a proper coloring of the graph. In this paper we show that such a weighting is possible from the weight set {1, 2, 3, 4, 5} for all graphs not containing components with exactly 2 vertices.

© 2009 Elsevier Inc. All rights reserved.

All graphs in this note are finite and simple. For notation not defined here we refer the reader to [4].

For some $k \in \mathbb{N}$, let $\omega : E(G) \to \{1, 2, \dots, k\}$ be an integer weighting of the edges of a graph G. This weighting is called vertex-coloring if the weighted degrees $\omega(v) = \sum_{u \in N(v)} \omega(uv)$ of the vertices yield a proper vertex-coloring of the graph. It is easy to see that for every graph which does not have a component isomorphic to K^2 , there exists such a weighting for some k.

In 2002, Karoński, Łuczak and Thomason (see [5]) conjectured that such a weighting with k=3 is possible for all such graphs (k=2 is not sufficient as seen for instance in complete graphs and cycles of length not divisible by 4). A first constant bound of k=30 was proved by Addario-Berry, Dalal, McDiarmid, Reed and Thomason in 2007 [1], which was later improved to k=16 by Addario-Berry, Dalal and Reed in [2] and to k=13 by Wang and Yu in [6].

In this note we show a completely different approach that improves the bound to k = 5, based on a method developed in [3].

Theorem 1. For every graph G without components isomorphic to K^2 , there is a weighting $\omega : E(G) \to \{1, 2, 3, 4, 5\}$, such that the induced vertex weights $\omega(v) := \sum_{u \in N(v)} \omega(uv)$ properly color V(G).

E-mail addresses: kalkos@atos.wmid.amu.edu.pl (M. Kalkowski), karonski@amu.edu.pl (M. Karoński), Florian.Pfender@uni-rostock.de (F. Pfender).

Proof. We may assume that G is connected, otherwise we can argue component-wise. If $|G| \le 1$, there is nothing to prove, so we may assume that $|G| \ge 3$ and G contains a vertex with degree ≥ 2 . Order the vertices $V(G) = \{v_1, v_2, \ldots, v_n\}$ so that $d(v_n) \ge 2$ and for every $1 \le i \le n-1$, v_i has a neighbor in $\{v_{i+1}, v_{i+2}, \ldots, v_n\}$.

We start by assigning the provisional weight f(e)=3 to every edge and adjust it at most twice while going through all vertices in order. To every vertex v_i with i < n, we will assign a set of two colors $W(v_i) = \{w(v_i), w(v_i) + 2\}$ with $w(v_i) \in \{0, 1\} \mod 4$, so that for every edge $v_j v_i \in E(G)$ with $1 \le j < i$, we have $W(v_j) \cap W(v_i) = \emptyset$, and we will guarantee that $f(v_i) = \sum_{u \in N(v_i)} f(uv_i) \in W(v_i)$. Finally we will adjust the weights of the edges incident to v_n to make sure that $f(v_n)$ is different from $f(v_i)$ for all $v_i \in N(v_n)$.

To this end, let $f(v_1) = 3d(v_1)$, and pick $W(v_1) = \{w(v_1), w(v_1) + 2\}$ so that $f(v_1) \in W(v_1)$ and $w(v_1) \in \{0, 1\} \mod 4$. Let $2 \le k \le n - 1$ and assume that we have picked $W(v_i)$ for all i < k and

- $f(v_i) \in W(v_i)$ for i < k,
- $f(v_k v_j) = 3$ for all edges with j > k, and
- if $f(v_iv_k) \neq 3$ for some edge with i < k, then $f(v_iv_k) = 2$ and $f(v_i) = w(v_i)$ or $f(v_iv_k) = 4$ and $f(v_i) = w(v_i) + 2$.

If $v_iv_k \in E$ for some i < k we can either add or subtract 2 to $f(v_iv_k)$ keeping $f(v_i) \in W(v_i)$. If v_k has d such neighbors, this gives us a total of d+1 choices (all of the same parity) for $f(v_k)$. In addition to this we will allow to alter the weight $f(v_kv_j)$ by 1, where j > k is smallest such that $v_kv_j \in E$. This way, $f(v_k)$ can take all values in an interval [a, a+2d+2]. We want to adjust the weights and assign $w(v_k)$ so that

- (1) $f(v_i) \in W(v_i)$ for $1 \le i \le k$,
- (2) $w(v_i) \neq w(v_k)$ for $v_i v_k \in E$ with i < k, and
- (3) either $f(v_k) = w(v_k)$ and $f(v_k v_j) \in \{2, 3\}$ or $f(v_k) = w(v_k) + 2$ and $f(v_k v_j) \in \{3, 4\}$.

Condition (2) can block at most 2d values in [a, a+2d+2], and condition (3) can block only the values a and a+2d+2 (for all other values $f(v_k)$ with $f(v_kv_j) \neq 3$, we have the choice between $f(v_kv_j) = 2$ and $f(v_kv_j) = 4$). At least one value remains open for $f(v_k)$.

This way, we can assign the sets $W(v_k)$ step by step for all $k \le n-1$ without conflict. Note that the first time $f(v_k)$ may get changed by an adjustment of an edge $v_k v_i$ for i > k is when i = j, so we don't run into problems with edges weighted 2 or 4.

As the final step, we have to find an open weight for v_n . This time, we don't have an extra edge v_nv_j to work with, but we don't have to worry about later vertices. If $v_iv_n \in E$ for some i < n we can again either add or subtract 2 to $f(v_iv_n)$ keeping $f(v_i) \in W(v_i)$. These possible adjustments give a total of $d(v_n) + 1 \geqslant 3$ options (all of the same parity) for $f(v_n)$. Hence if the smallest such option a has $a \in \{2,3\}$ mod 4, then picking the lower possible weight on each edge incident to v_n gives a proper coloring of the vertices. If $a \in \{0,1\}$ mod 4 and there is a $v_i \in N(v_n)$ with $w(v_i) \neq a$, then picking the higher weight on v_iv_n and the lower weight on all other edges gives $f(v_n) = a + 2$ in a proper coloring. Finally, if $a \in \{0,1\}$ mod 4 and $w(v_i) = a$ for all $v_i \in N(v_n)$, picking the higher weight on at least two edges gives a proper coloring. This finalizes f and finishes the proof by setting $\omega = f$. \square

Acknowledgment

The third author thanks Christian Reiher for very productive discussions on this topic.

References

- [1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, A. Thomason, Vertex-colouring edge-wheitings, Combinatorica 27 (2007) 1–12.
- [2] L. Addario-Berry, K. Dalal, B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168-1174.

- [3] M. Kalkowski, A note on the 1,2-conjecture, submitted for publication.
- [4] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, 2005.
- [5] M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151–157.
- [6] T. Wang, Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 1-7.