Содержание

1	Длина кривой. Определение криволинейных интегралов первого и второго рода по параметризованной гладкой прямой.	2
2	Условия существования криволинейных интегралов.	4
3	Замена параметра в криволинейном интеграле первого рода.	5
4	Ориентированная гладкая кривая и криволинейный интеграл второго рода по ней.	6
5	Формула Грина.	7
6	Условие независимости криволинейного интеграла второго рода от пути интегрирования.	10
7	Гладкая поверхность. Ориентация поверхности. Площадь поверхности.	10
8	Поверхностный интеграл первого рода и теорема о его существовании.	13
9	Поверхностый интеграл второго рода и его свойства.	16
10	Формула Стокса.	18
11	Формула Остроградского-Гаусса.	20

1 Длина кривой. Определение криволинейных интегралов первого и второго рода по параметризованной гладкой прямой.

1. Теорема о длине кривой:

Если функция $\overline{\gamma}$ имеет на отрезке [a,b] непрерывную производную $\overline{\gamma}'=(\gamma_1^{'},\gamma_2^{'}),$ то кривая $L=L_{\overline{\gamma}}$ спрямляема и её длина S выражается равенством

$$S = \int_{a}^{b} |\overline{\gamma}'(t)| dt.$$

Доказательство:

Для любого разбиения $a = t_0 < t_1 < \ldots < t_n = b$ отрезка [a, b] имеем

$$\sum_{i=1}^{n} |\overline{\gamma}(t_i) - \overline{\gamma}(t_{i-1})| = \sum_{i=1}^{n} \left| \int_{t_{i-1}}^{t_i} \overline{\gamma}'(t) dt \right| \le \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} |\overline{\gamma}'(t)| dt = \int_{a}^{b} |\overline{\gamma}'(t)| dt.$$

Переходя к верхней грани по всевозможным разбиениям отрезка, получим неравенство

$$S \le \int_a^b |\overline{\gamma}'(t)| dt.$$

Докажем справедливость неравентсва противоположного. Пусть $\epsilon>0$. В силу равномерной непрерывности функции $\overline{\gamma}' \quad \exists \delta>0 \quad (|s-t|<\delta\Rightarrow|\overline{\gamma}'(s)-\overline{\gamma}'(t)|<\epsilon)$. Возьмём разбиение отрезка с диамотром меньшим δ . Тогда $\forall t\in [t_{i-1},t_i]$ имеем

$$|\overline{\gamma}'(t)| = |(\overline{\gamma}'(t) - \overline{\gamma}'(t_i)) + \overline{\gamma}'(t_i)| \le |\overline{\gamma}'(t) - \overline{\gamma}'(t_i)| + |\overline{\gamma}'(t_i)| \le |\overline{\gamma}'(t_i)| + \epsilon.$$

Далее получим

$$\int_{t_{i-1}}^{t_i} |\overline{\gamma}'(t)| dt - \epsilon \Delta t_i \le |\overline{\gamma}'(t_i)| \Delta t_i = |\int_{t_{i-1}}^{t_i} (\overline{\gamma}'(t) + \overline{\gamma}'(t_i) - \overline{\gamma}'(t)) dt| \le$$

$$\leq |\int_{t_{i-1}}^{t_i} \overline{\gamma}'(t)dt| + |\int_{t_{i-1}}^{t_i} (\overline{\gamma}')(t_i) - \overline{\gamma}'(t)dt| \leq |\overline{\gamma}(t_i) - \overline{\gamma}(t_{i-1})| + \epsilon \Delta t_i$$

И

$$\int_a^b |\overline{\gamma}'(t)| dt = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} |\overline{\gamma}'(t)| dt \leq \sum_{i=1}^n |\overline{\gamma}(t_i) - \overline{\gamma}(t_{i-1})| + 2\epsilon(b-a) \leq S + 2\epsilon(b-a)$$

Тогда в силу произвольности $\epsilon > 0$ имеем неравенство

$$\int_{a}^{b} |\overline{\gamma}'(t)| dt \le S.$$

2-3. Определение криволинейных интегралов первого и второго рода по параметризованной гладкой прямой:

Пусть $L=L_{\overline{\gamma}}$ — гладкая кривая, а функции f(x,y), P(x,y), Q(x,y) определены на L. Пусть $a=t_0< t_1<\ldots< t_n=b$ — разбиение отрезка $[a,b], \quad M_k=(x_k,y_k)=(\gamma_1(t_k),\gamma_2(t_k)), \quad k=0,\ldots,n,$ и l_k — дуга $M_{k-1}M_k$ кривой $L,\quad k=1,\ldots,n.$

На каждой дуге $M_{k-1}M_k$ выберем произвольную точку $N_k(\xi_k,\eta_k)$, соответсвующую некоторому значению $\tau_k\in[t_{k-1},t_k]$ параметра t.

Обозначим длину дуги $M_{k-1}M_k$ через

$$\Delta s_k = \int_{t_{k-1}}^{t_k} |\overline{\gamma}'(t)| dt = \int_{t_{k-1}}^{t_k} \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

и диаметром разбиения кривой L назовём число $\Delta = \max_{1 \le k \le n} \Delta s_k$.

Определим интегральные суммы

$$\sigma_1 = \sum_{k=1}^n f(\xi_k, \eta_k) \Delta s_k.$$

$$\sigma_2 = \sum_{k=1}^n P(\xi_k, \eta_k) \Delta x_k.$$

$$\sigma_3 = \sum_{k=1}^n Q(\xi_k, \eta_k) \Delta y_k,$$

где $\Delta x_k = x_k - x_{k-1}$, $\Delta y_k = y_k - y_{k-1}$.

Определение криволинейных интегралов первого и второго рода:

Назовём число I_m пределом интегральных сумм σ_m (m=1,2,3) при стремлении диаметра Δ к нулю, если

 $\forall \epsilon > 0 \quad \exists \delta > 0 \quad (\Delta < \delta \Rightarrow |\sigma - I_m| < \epsilon)$ (независимо от выбора точек N_k).

Число I_1 называют криволинейным интегралом первого рода от функции f по кривой L и обозначают символом

$$\int_{I} f(x,y)ds.$$

Число I_2 называют криволинейным интегралом второго рода от функции P по кривой L (в направлении от A до B) и обозначают символом

$$\int_{L} P(x,y)dx.$$

2 Условия существования криволинейных интегралов.

Условия существования криволинейных интегралов:

Если кривая $L=L_{\overline{\gamma}}$ является гладкой и функции f,P,Q непрерывны вдоль этой кривой, то все три криволинейных интеграла существуют и могут быть вычислены по формулам

$$\int_{L} f(x,y)dx = \int_{a}^{b} f(\gamma_{1}(t), \gamma_{2}(t)) \sqrt{(\gamma'_{1}(t))^{2} + (\gamma'_{2}(t))^{2}} dt, \qquad (1)$$

$$\int_{L} P(x,y)dx = \int_{a}^{b} P(\gamma_1(t), \gamma_2(t))\gamma_1'(t)dt, \qquad (2)$$

$$\int_{L} Q(x,y)dy = \int_{a}^{b} Q(\gamma_1(t), \gamma_2(t))\gamma_2'(t)dt \qquad (3)$$

Доказательство:

Прежде всего отметим, что определенные интегралы, стоящие в правых частях формул, существуют, так как их подынтегральные функции непрерывны на отрезке [a,b]

Докажем первое равенство. Обозначим

$$I_1 = \int_a^b f(\gamma_1(t), \gamma_2(t)) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

и оценим разность

$$\sigma_1 - I_1 = \sum_{k=1}^n f(\xi_k, \eta_k) \Delta l_k - \int_a^b f(\gamma_1(t), \gamma_2(t)) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt =$$

$$= \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} (f(\gamma_1(\tau_k), \gamma_2(\tau_k)) - f(\gamma_1(t), \gamma_2(t))) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

Так как функции $\gamma_1'(t)$ и $\gamma_2'(t)$ непрерывны на [a,b] и одновременно не обращаются в нуль, то

$$m = \min_{a \le t \le b} \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} > 0$$
 и $\Delta s_k \ge m \int_{t_{k-1}}^{t_k} dt = m \Delta t_k$.

Следовательно

$$\Delta t_k \le \frac{1}{m} \Delta s_k$$

и при стримлении к нулю диаметра разбиения Δ кривой L стемится к нулю и наибольшая из разностей $\Delta t_k = t_k - t_{k-1}$.

Поскольку функция $f(\gamma_1(t),\gamma_2(t))$ равномерно непрерывна на отрезке [a,b], то $\forall \epsilon>0 \quad \exists \delta>0 \quad : \quad \Delta<\delta \Rightarrow$

$$|f(\gamma_1(\tau_k), \gamma_2(\tau_k)) - f(\gamma_1(t), \gamma_2(t))| < \frac{\epsilon}{S},$$

где S — длина кривой L.

Тогда

$$|\sigma_1 - I_1| \le \frac{\epsilon}{S} \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \sqrt{(\gamma_1'(t)) + (\gamma_2'(t))^2} dt = \frac{\epsilon}{S} \sum_{k=1}^n \Delta s_k = \epsilon.$$

Таким образом мы доказали, что интегральные суммы σ_1 стемятся к числу I_1 при $\Delta \to 0$, то есть мы доказали первое равенство.

Для доказательства второго равенства оценим разность

$$\sigma_2 - I_2 = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(P(\gamma_1(\tau_k), \gamma_2(\tau_k)) - P(\gamma_1(t), \gamma_2(t)) \right) \gamma_1'(t) dt.$$

 $\forall \epsilon > 0 \quad \exists \delta > 0 \quad : \quad \Delta < \delta \Rightarrow$

$$P(\gamma_1(\tau_k), \gamma_2(\tau_k)) - P(\gamma_1(t), \gamma_2(t))| < \frac{\epsilon}{M(b-a)},$$

где $M = \max_{a < t < b} |\gamma'_1(t)|$. Тогда

$$|\sigma_2 - I_2| \le \frac{\epsilon}{M(b-a)} \sum_{k=1}^n \int_{t_{k-1}}^{t_k} |\gamma_1'(t)| dt \le \frac{\epsilon}{M(b-a)} M \sum_{k=1}^n \Delta t_k = \epsilon.$$

Это означает, что интегральные суммы $\sigma_2 \to I_2$ при $\Delta \to 0$, то есть мы доказали второе равенство.

Третье равенство доказывается аналогично.

3 Замена параметра в криволинейном интеграле первого рода.

Замена параметра в криволинейном интеграле первого рода:

Пусть $L = L_{\gamma}$ — гладкая кривая, функция $\overline{\gamma}$ определена на отрезке [a,b], а функция ϕ определена на отрезке $[a_1,b_1]$, отображает его на отрезок [a,b], имеет непрерывную производную и $\phi'(u) \neq 0 \quad \forall u \in [a_1,b_1]$.

Тогда функция ϕ' сохраняет знак на отрезке $[a_1,b_1]$ и функция ϕ является возрастающей, если $\phi(u)>0$, и является убывающей, если $\phi(u)<0$. Согласно правилу замены переменной в интеграе Римана имеем

$$\int_a^b f(\gamma_1(t), \gamma_2(t)) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt = \int_a^b f(\overline{\gamma}(t)) |\overline{\gamma}'(t)| dt =$$

$$= \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\overline{\gamma}(\phi(u))) |\overline{\gamma}'(\phi(u))| \phi'(u) du.$$

Если
$$\phi'(u)>0$$
, то $|\overline{\gamma}'(\phi(u))|\phi'(u)=|\overline{\gamma}'(\phi(u))\phi'(u)|=|(\overline{\gamma}\circ\phi)'(u)|, \quad \phi^{-1}(a)=a_1,\phi^{-1}(b)=b_1$

Если же
$$\phi'(u) < 0$$
, то $|\overline{\gamma}'(\phi(u))|\phi'(u) = -|\overline{\gamma}'(\phi(u))\phi'(u)| = -|(\overline{\gamma}\circ\phi)'(u)|, \quad \phi^{-1}(a) = b_1, \phi^{-1}(b) = a_1.$

Тогда в любом случае

$$\int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\overline{\gamma}(\phi(u))) |\overline{\gamma}'(\phi(u))| \phi'(u) du = \int_{a_1}^{b_1} f(\overline{\gamma}(\phi(u))) |(\overline{\gamma} \circ \phi)'(u) du$$

Обозначим $\overline{\gamma^*}(u) = (\overline{\gamma} \circ \phi)(u)$. Очевидно, что вектор-функция $\overline{\gamma^*}$ непрерывно диффиренцируема на отрезке $[a_1,b_1]$ и её производная ни в одной точке этого отрезка не равна вектору (0,0). Тогда вектор-функцию $\overline{\gamma^*}$ можно считать другим параметрическим представлением кривой L.

4 Ориентированная гладкая кривая и криволинейный интеграл второго рода по ней.

1. Понятие ориентированной гладкой кривой:

Пусть L - гладкая кривая. Две ее параметризации $L_{\overline{\gamma}}$, где $\overline{\gamma}$ определена на отрезке [a,b], и $L_{\overline{\gamma}^*}$, где $\overline{\gamma}^*$ определена на отрезке $[a_1,b_1]$, назовем положительно эквивалентными, если существует функция φ определеная на отрезке $[a_1,b_1]$, отображающая его на отрезок [a,b], имеющая непрерывную производную с условием $\varphi'(u) > 0$ при всех $u \in [a_1,b_1]$, такая, что $\overline{\gamma}^* = (\overline{\gamma} \circ \varphi)$.

Класс всех положительно эквивалентных друг другу параметризаций называют ориентированной гладкой кривой.

2. Понятие криволинейного интеграла второго рода по ориентированной гладкой кривой:

Криволинейный интеграл второго рода по ориетированной кривой определяют как интеграл по одной из ее параметризаций.

Пользуясь формулой замены переменной в интеграле Римана, легко показать, что данное определение корректно.

Обозначим одну из ориентаций гладкой кривой L через L^+ , а другую через L^- . Тогда справедливо равенство

$$\int\limits_{L^+} P(x,y)dx + Q(x,y)dy = -\int\limits_{L^-} P(x,y)dx + Q(x,y)dy.$$

5 Формула Грина.

1. Определение трапеции первого рода:

Множество D назовем трапецией первого рода,

если

$$D = \bigg\{ (x,y) \in \mathbb{R}^2 : x \in [a,b], \; \varphi_1(x) \leq y \leq \varphi_2(x) \bigg\},$$

где функции φ_1, φ_2 - непрерывно дифференцируемые на отрезке [a, b].

2. Определение трапеции второго рода:

Множество D назовем трапецией второго рода,

если

$$D = \left\{ (x, y) \in \mathbb{R}^2 : y \in [c, d], \ \psi_1(y) \le x \le \psi_2(y) \right\},\,$$

где функции ψ_1, ψ_2 - непрерывно дифференцируемые на отрезке [c,d].

3. Формула Грина для трапеции первого рода:

(формула Грина для трапеции первого рода.) Пусть замкнутое множество D является трапецией первого рода, L - положительно ориентированная граница D, а функция P и ее частная производная $\frac{\partial P}{\partial y}$ непрерывны на D. Тогда справедливо равенство

$$\oint_{P} P(x, y)dx = -\iint_{P} \frac{\partial P}{\partial y}(x, y)dxdy. \tag{49}$$

Доказательство. Пусть

$$D = \left\{ (x, y) \in \mathbb{R}^2 : x \in [a, b], \ \varphi_1(x) \le y \le \varphi_2(x) \right\},\,$$

где функции φ_1, φ_2 - непрерывно дифференцируемые на отрезке [a,b]. Обозначим точки $A(a,\varphi_1(a)),\ B(b,\varphi_1(b)),\ E(b,\varphi_2(b)),\ F(a,\varphi_2(a))$. Тогда положительная ориентация границы L соответствует последовательности точек ABEFA этого контура.

Согласно определению криволинейного интеграла второго рода имеем

$$\begin{split} \int\limits_{AB} P(x,y)dx &= \int\limits_a^b P(x,\varphi_1(x))dx, \\ \int\limits_{EF} P(x,y)dx &= \int\limits_b^a P(x,\varphi_2(x))dx = -\int\limits_a^b P(x,\varphi_2(x))dx, \\ \int\limits_{BE} P(x,y)dx &= 0, \quad \int\limits_{FA} P(x,y)dx = 0. \end{split}$$

Следовательно,

$$\oint_L P(x, y)dx = \int_a^b P(x, \varphi_1(x))dx - \int_a^b P(x, \varphi_2(x))dx.$$

С другой стороны, сводя двойной интеграл к повторному и используя формулу Ньютона-Лейбница, имеем

$$\iint\limits_{D}\frac{\partial P}{\partial y}(x,y)dxdy=\int\limits_{a}^{b}dx\int\limits_{\varphi_{1}(x)}^{\varphi_{2}(x)}\frac{\partial P}{\partial y}(x,y)dxdy=\int\limits_{a}^{b}P(x,\varphi_{2}(x))dx-\int\limits_{a}^{b}P(x,\varphi_{1}(x))dx.$$

Таким образом справедливо равенство

$$\oint\limits_L P(x,y)dx = -\iint\limits_D \frac{\partial P}{\partial y}(x,y)dxdy.$$

4. Формула Грина для трапеции второго рода:

(формула Грина.) Пусть замкнутое множество D является элементарным замкнутым множеством и L - положительно ориентированная граница D, которая является простым контуром. Пусть функции P, Q и их частные производные $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ непрерывны на D. Тогда справедливо равенство

$$\oint_{L} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy.$$

5. Понятие плоского элементарного множества:

Плоское множество D назовем элементарным, если прямыми, параллельными координатным осям, его можно разбить на конечное число трапеций первого рода, а также на конечное число трапеций второго рода.

6. Формула Грина для замкнуторго элементарного множества:

(формула Грина.) Пусть замкнутое множество D является элементарным замкнутым множеством и L - положительно ориентированная граница D, которая является простым контуром. Пусть функции P, Q и их частные производные $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ непрерывны на D. Тогда справедливо равенство

$$\oint_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy. \tag{51}$$

7. Понятние односвязной и многосвязной плоской области:

Плоскую область D называют односвязной областью, если она обладает следующим свойством: если простой замкнутый контур L целиком лежит в области D, то и область, ограниченная контуром L, целиком лежит в D. Плоскую область, не являющуюся односвязной, называют многосвязной.

8. Формула Грина для многосвязной области:

формулу Грина для многосвязной области

$$\oint_{L_0} Pdx + Qdy - \sum_{i=1}^{n} \oint_{L_i} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy, \quad (52)$$

где все контуры $L_i, i = 0, 1, \dots, n$, обходятся против часовой стрелки.

6 Условие независимости криволинейного интеграла второго рода от пути интегрирования.

Условие независимости криволинейного интеграла второго рода от пути интегрирования:

Для того чтобы криволинейный интеграл в области D не зависел от пути интегрирования, необходимо и достаточно, чтобы для любого кусочно гладкого контура L в D выполнялось равенство

$$\oint_{L} P(x, y)dx + Q(x, y)dy = 0.$$

Доказательство: Пока ещё не доказал.

- 7 Гладкая поверхность. Ориентация поверхности. Площадь поверхности.
- 1. Понятие гладкой поверхности:

1) множество D является замкнутым ограниченным элементарным множеством, граница γ которого представляет собой простой кусочно гладкий контур, а отображение, задаваемое равенствами

$$\begin{cases} x = x(u,v), \\ y = y(u,v), \\ z = z(u,v). \end{cases} (u,v) \in D \subset \mathbb{R}^2,$$

взаимно однозначно на множестве внутренних точек множества D

- 2) функции $x=x(u,v),\ y=y(u,v),\ z=z(u,v)$ и их частные производные первого порядка непрерывны на множестве D вплоть до границы γ
- 3) хотя бы один из якобианов

$$\frac{D(x,y)}{D(u,v)}, \ \frac{D(y,z)}{D(u,v)}, \ \frac{D(z,x)}{D(u,v)}$$

отличен от нуля при любых значениях u и v

Поверхности, удовлетворяющие указанным трем условиям, будем называть кратко гладкими поверхностями.

2. Понятие ориентации поверхности:

Выделение одной из сторон поверхности Φ с помощью параметризации называется **ориентацией поверхности** Φ .

Для поверхности заданной явно уравнением $z=f(x,y),\;(x,y)\in D,$ имеем

$$\begin{cases} x = u, \\ y = v, & (x, y) \in D. \\ z = f(u, v). \end{cases}$$

Тогда

$$\overline{r}'_u = (1, 0, f'_u), \ \overline{r}'_v = (0, 1, f'_v)$$

И

$$\overline{r}'_u \times \overline{r}'_v = (-f'_u, -f'_v, 1).$$

После нормировки получим

$$\cos \alpha = \frac{-f'_u}{\sqrt{1 + (f'_u)^2 + (f'_v)^2}},$$

$$\cos \beta = \frac{-f'_v}{\sqrt{1 + (f'_u)^2 + (f'_v)^2}},$$

$$\cos \gamma = \frac{1}{\sqrt{1 + (f'_u)^2 + (f'_v)^2}},$$

Если поверхность, заданна неявно уравнением F(x,y,z)=0, то вектор $(F_x,\ F'_y,\ F'_z)$ ортогонален к касательной плоскости. Следовательно,

$$\begin{split} \cos\alpha &= \frac{F_x'}{\sqrt{(F_x')^2 + (F_y')^2 + (F_z')^2}},\\ \cos\beta &= \frac{F_y'}{\sqrt{(F_x')^2 + (F_y')^2 + (F_z')^2}},\\ \cos\gamma &= \frac{F_z'}{\sqrt{(F_x')^2 + (F_y')^2 + (F_z')^2}}. \end{split}$$

3. Понятие площади поверхности:

. Предел $\sigma(T)$ при стремлении диаметра разбиения κ нулю $(h \to 0)$ назывют **площадью поверхности** Φ . Обозначим ее через S.

В то же время сумма $\sigma(T)$ является интегральной суммой для двойного интеграла по области D от функции $|r'_u \times r'_v|$. Таким образом, для площади поверхности Φ имеем равенство

$$S = \iint_{D} |\overline{r}'_{u} \times \overline{r}'_{v}| du dv. \qquad (11)$$

Поскольку

$$|\overline{r}'_u \times \overline{r}'_v| = \sqrt{A^2 + B^2 + C^2}$$

то

$$S = \iint_{C} \sqrt{A^2 + B^2 + C^2} du dv.$$
 (12)

Введем функции

$$\begin{split} E &= (r'_u)^2 = (x'_u(u,v))^2 + (y'_u(u,v))^2 + (z'_u(u,v))^2, \\ F &= r'_u r'_v = x'_u(u,v) x'_v(u,v) + y'_u(u,v) y'_v(u,v) + z'_u(u,v) z'_v(u,v), \\ G &= (r'_v)^2 = (x'_v(u,v))^2 + (y'_v(u,v))^2 + (z'_v(u,v))^2. \end{split}$$

Нетрудно проверить, что

$$|\overline{r}_u' \times \overline{r}_v'|^2 = (r_u')^2 (r_v')^2 - (r_u' r_v')^2 = EG - F^2.$$

Поэтому равенство (12) можно переписать в виде

$$S = \iint_{D} \sqrt{EG - F^2} du dv. \tag{13}$$

В случае поверхности Φ , заданной явно уравнением z=f(x,y), $(x,y)\in D,$ будем иметь равенство

$$S = \iint_{D} \sqrt{1 + (f'_u)^2 + (f'_v)^2} du dv.$$
 (14)

8 Поверхностный интеграл первого рода и теорема о его существовании.

1. Понятие поверхностного интеграла первого рода:

Пусть функция f(x, y, z) определена в точках гладкой поверхности Φ , имеющей параметрическое представление

$$\overline{r} = \overline{r}(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) \in D.$$

Пусть τ - набор измеримых по Жордану множеств D_1, \ldots, D_n являющийся разбиением множества $D, \ \Delta_{\tau}$ - диаметр разбиения, $\Phi_i, \ i=1,\ldots,n,$ части поверхности, соответствующие множествам $D_i, \ i=1,\ldots,n, \ \Delta S_i$ - их площади, и точки $(u_i,v_i)\in D_i, \ i=1,\ldots,n.$

Построим сумму

$$\sigma(\tau) = \sum_{i=1}^{n} f(x(u_i, v_i), y(u_i, v_i), z(u_i, v_i))\Delta S_i$$

Если существует предел I при $\Delta_{\tau} \to 0$ интегральной суммы $\sigma(\tau)$, то он называется поверхностным интегралом первого рода от функции f по поверхности Φ и обозначается символом

$$I = \iint_{\Phi} f(x, y, z) dS.$$

2. Теорема о существовании поверхностного интеграла первого рода:

Пусть Φ - гладкая поверхность, имеющая параметрическое представление (5), и функция f(x, y, z) непрерывна во всех точках Φ . Тогда поверхностный интеграл первого рода существует и может быть вычислен по формуле

$$\iint_{\Phi} f(x, y, z)dS = \iint_{D} f(x(u, v), y(u, v), z(u, v))\sqrt{A^2 + B^2 + C^2}dudv =$$

$$= \iint_{D} f(x(u, v), y(u, v), z(u, v))\sqrt{EG - F^2}dudv. \quad (15)$$

Доказательство. Обозначим

$$I^* = \iint\limits_{D} f(x(u,v),y(u,v),z(u,v)) \sqrt{EG - F^2} du dv.$$

Имеем

--

$$|I^* - \sigma(\tau)| = |I^* - \sum_{i=1}^n f(x(u_i, v_i), y(u_i, v_i), z(u_i, v_i))\Delta S_i| \le$$

 $\le \sum_{i=1}^n \iint_{D_i} |f(x(u, v), y(u, v), z(u, v)) -$
 $-f(x(u_i, v_i), y(u_i, v_i), z(u_i, v_i))| \sqrt{EG - F^2} du dv \le$
 $\le \max_{(u,v)\in D} \sqrt{EG - F^2} \sum_{i=1}^n \omega_i \mu(D_i),$

где ω_i - колебание функции f на множестве D_i . Последняя часть цепочки неравенств стремится к нулю при $\Delta_{\tau} \to 0$ в силу непрерывности функций f и $\sqrt{EG-F^2}$ на замкнутом множестве D. Таким образом, предел интегральной суммы $\sigma(\tau)$ при $\Delta_{\tau} \to 0$ равен числу I^* .

Поверхностый интеграл второго рода и его свойства.

1-2. Понятие поверхностного интеграла второго рода и его свойства:

Пусть Ф - гладкая поверхность с параметрическим представлением (5)

$$\overline{r} = \overline{r}(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) \in D,$$

и на поверхности Φ заданы функции $P(x,y,z),\ Q(x,y,z),\ R(x,y,z).$ Определим поверхностные интегралы второго рода:

$$\iint_{\Phi} P(x, y, z)dydz := \iint_{D} P(x(u, v), y(u, v), z(u, v))A(u, v)dudv, \quad (17)$$

$$\iint\limits_{\Phi} Q(x, y, z)dzdx := \iint\limits_{\Omega} Q(x(u, v), y(u, v), z(u, v))B(u, v)dudv, \quad (18)$$

$$\iint\limits_{\Phi} R(x,y,z)dxdy := \iint\limits_{D} R(x(u,v),y(u,v),z(u,v))C(u,v)dudv, \quad (19)$$

или

$$\iint\limits_{\Delta} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy :=$$

$$= \iint\limits_{D} \big(P(x(u,v),y(u,v),z(u,v)) A(u,v) + Q(x(u,v),y(u,v),z(u,v)) B(u,v) + Q(x(u,v),y(u,v),z(u,v)) A(u,v) + Q(x(u,v),z(u,v),z(u,v)) A(u,v) + Q(x(u,v),z(u,v),z(u,v),z(u,v)) A(u,v) + Q(x(u,v),z(u,v),z(u,v),z(u,v),z(u,v)) A(u,v) + Q(x(u,v),z(u,v),z(u,v),z(u,v),z(u,v)) A(u,v) + Q(x(u,v),z(u,v),z(u,v),z(u,v),z(u,v),z(u,v),z(u,v)) A(u,v) + Q(x(u,v),z(u,v$$

$$+R(x(u, v), y(u, v), z(u, v))C(u, v))dudv.$$
 (20)

Используя направляющие косинусы вектора \overline{n}

$$\cos \alpha = \frac{A}{\sqrt{A^2 + B^2 + C^2}} = \frac{A}{\sqrt{EG - F^2}},$$

$$\cos \beta = \frac{B}{\sqrt{A^2 + B^2 + C^2}} = \frac{B}{\sqrt{EG - F^2}},$$

$$\cos \gamma = \frac{C}{\sqrt{A^2 + B^2 + C^2}} = \frac{C}{\sqrt{EG - F^2}},$$

преобразуем равенство (20)

$$\iint_{\Phi} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iint_{\Phi} (P(x, y, z) \cos \alpha + Q(x, y, z) \cos \beta + R(x, y, z) \cos \gamma) dS. \qquad (21)$$

Обратим внимание на следующий факт. Введем вектор-функцию $\overline{F} = (P, Q, R)$. Тогда подинтегральная функция в интеграле из правой части равенства (21) является скалярным произведением $\overline{F}\overline{n}$.

На примере интеграла (19) сформулируем основные свойства поверхностного интеграла второго рода.

- При изменении стороны поверхности (при смене ориентации поверхности) интеграл меняет знак.
- 2. Интеграл обладает свойством линейности:

$$\iint_{\Phi} \sum_{j=1}^{m} \alpha_j R_j(x, y, z) dxdy = \sum_{j=1}^{m} \alpha_j \iint_{\Phi} R_j(x, y, z) dxdy.$$

3. Если поверхность Φ разбита на конечное число частей $\Phi_k \subset \Phi$, $k=1,\ldots,N$, не имеющих общих внутренних точек, то

$$\iint\limits_{\Phi} R(x, y, z) dxdy = \sum_{k=1}^{N} \iint\limits_{\Phi_{k}} R(x, y, z) dxdy.$$

4. Интеграл

$$\iint R(x,y,z) dx dy$$

по цилиндрической поверхности Φ с образующей, параллельной оси Oz, равен нулю.

Рассмотрим случай явного задания поверхности Φ уравнением z=f(x,y). Если выбрана ее верхняя сторона, т. е.

$$\cos \gamma = \frac{1}{\sqrt{1 + (f_u')^2 + (f_v')^2}},$$

то

$$\iint\limits_{\Phi}R(x,y,z)dxdy=\iint\limits_{\Phi}R(x,y,z)\cos\gamma dS=\iint\limits_{D_{xy}}R(x,y,f(x,y))dxdy.$$

10 Формула Стокса.

Формула Стокса:

Пусть Ф - гладкая поверхность с параметрическим представлением

$$\overline{r} = \overline{r}(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) \in D,$$

где функции x(u, v), y(u, v), z(u, v) дважды непрерывно дифференцируемы в замкнутой области D, ограниченной гладким контуром L^* .

Контуру L^* при отображении $\overline{r}(u,v)$ сответствует контур L, ограничивающий поверхность Φ . Обходу контура L^* на плоскости соответствует обход контура L, и наоборот. Условимся считать положительным такое направление обхода контура L, которому соответствует положительное направление обхода контура L^* . Если единичный вектор \overline{n} нормали к поверхности определить формулой (7), то при положительном обходе контура L поверхность будет оставаться слева, если смотреть с конца вектора \overline{n} . Таким образом, положительное направление обхода границы поверхности согласуется с выбором ее стороны.

Пусть в некоторой области G, целиком содержащей поверхность Φ , заданы непрерывно дифференцируемые функции P, Q, R. Тогда имеет место формула Стокса

$$\oint_{L} Pdx + Qdy + Rdz =$$

$$= \iint_{\Phi} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy. \quad (22)$$

Докажем, что

$$\oint_{L} P dx = \iint_{\Delta} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial y} dx dy. \tag{23}$$

Сначала преобразуем криволинейный интеграл второго рода по контуру L в левой части (23). Пусть контур L^* задан параметрическими уравнениями

$$u = u(t), v = v(t), t \in T = [t_1, t_2].$$

Тогда параметрические уравнения, задающие контур L, имеют вид

$$x=x(u(t),v(t)),\quad y=y(u(t),v(t)),\quad z=z(u(t),v(t)),\qquad t\in T$$

В соответствии с формулами для вычисления криволинейного интеграла второго рода имеем

$$\oint_{L} P dx = \int_{t_{1}}^{t_{2}} P \left(\frac{\partial x}{\partial u} u'(t) + \frac{\partial x}{\partial v} v'(t) \right) dt =$$

$$= \oint_{L} P \left(x(u, v), y(u, v), z(u, v) \right) \left(\frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv \right).$$

К интегралу в правой части этого равенства применим формулу Грина:

$$\begin{split} \oint\limits_{L^*} P \frac{\partial x}{\partial u} du + P \frac{\partial x}{\partial v} dv &= \iint\limits_{D} \left(\frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial v} \right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u} \right) \right) du dv = \\ &= \iint\limits_{D} \left(\left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial u} \right) \frac{\partial x}{\partial v} + P \frac{\partial^2 x}{\partial u \partial v} \right) du dv - \\ &- \iint\limits_{D} \left(\left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial v} \right) \frac{\partial x}{\partial u} + P \frac{\partial^2 x}{\partial v \partial u} \right) du dv = \\ &= \iint\limits_{D} \frac{\partial P}{\partial z} \left(\frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial z}{\partial v} \frac{\partial x}{\partial u} \right) du dv - \iint\limits_{D} \frac{\partial P}{\partial y} \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right) du dv = \\ &= \iint\limits_{D} \left(\frac{\partial P}{\partial z} B - \frac{\partial P}{\partial y} C \right) du dv = \iint\limits_{\Phi} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial y} dx dy. \end{split}$$

Аналогично доказываются равенства

$$\oint_{L} Qdy = \iint_{\Phi} \frac{\partial Q}{\partial x} dx dy - \frac{\partial Q}{\partial z} dy dz,$$

$$\oint\limits_{L}Rdx=\iint\limits_{\Phi}\frac{\partial R}{\partial y}dydz-\frac{\partial R}{\partial x}dzdx.$$

Скадывая доказанные равенства, получим равенство (22).

Формула Стокса справедлива в случае, когда контур L^* является кусочно гладким.

Отметим, что если поверхность Φ является плоской областью и лежит в плоскости, параллельной координатной плоскости xOy, то формула Стокса переходит в формулу Грина. Доказательство формулы Стокса для поверхностей, ограниченных несколькими контурами, аналогично доказательству формулы Грина для многосвязных областей.

11 Формула Остроградского-Гаусса.

Понятие правильной в некотором направлении области:

Область является правильной в направлении оси Oz, если она ограничена двумя поверхностями Φ_1 и Φ_2 вида $z = \varphi_1(x,y)$ и $z = \varphi_2(x,y)$, где функции $\varphi_1(x,y)$ и $\varphi_2(x,y)$ определены в замкнутой области D_{xy} и удовлетворяют неравенству $\varphi_1(x,y) \leq \varphi_2(x,y), \ (x,y) \in D_{xy}$, а также цилиндрической поверхностью Φ_3 с образующей, параллельной оси Oz. Положительная ориентация границы такой области будет означать выбор внешней стороны поверхности (т. е. соответствующей внешней нормали).

Аналогично определяются области, правильные относительно осей Ох и Оу.

Понятие правильной области:

Область будем называть простой, если ее можно разбить на конечное число частичных областей, правильных относительно оси Ox и не имеющих общих внутренних точек. И то же самое можно сделать относительно двух других осей координат. Положительная ориентация границы простой области будет означать выбор внешней стороны поверхности.

Формула Остроградского-Гаусса:

Пусть V - простая замкнутая область, граница Φ которой положительно ориентирована. Если функции $P(x,y,z),\ Q(x,y,z),\ R(x,y,z)$ непрерывно дифференцируемы в области G, содержащей V, то справедлива формула Остроградского - Гаусса

$$\iint_{\Phi} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iiint_{H} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz. \tag{24}$$

Формула Остроградского - Гаусса распадается на три самостоятельных равенства, соответствующие трем подынтегральным функциям P, Q и R. Эти равенства доказываются схожим образом. Докажем одно из них, например, равенство

$$\iint\limits_{\Phi}R(x,y,z)dxdy=\iiint\limits_{V}\frac{\partial R}{\partial z}dxdydz.$$

Докажем это равенство сначала для замкнутой области V, являющейся правильной в направлении оси Oz. По правилу вычисления тройного интеграла имеем

$$\iint\limits_{V} \frac{\partial R}{\partial z} dx dy dz = \iint\limits_{D_{xy}} dx dy \int\limits_{\varphi_{1}(x,y)}^{\varphi_{2}(x,y)} \frac{\partial R}{\partial z} dz =$$

$$= \iint\limits_{D_{xy}} R(x,y,\varphi_{2}(x,y)) dx dy - \iint\limits_{D_{xy}} R(x,y,\varphi_{1}(x,y)) dx dy =$$

$$= \iint\limits_{\Phi_{0}} R dx dy + \iint\limits_{\Phi_{0}} R dx dy + \iint\limits_{\Phi_{0}} R dx dy = \iint\limits_{\Phi} R dx dy.$$

Мы учли, что для поверхности Φ_2 нужно брать верхнюю сторону, а для поверхности Φ_1 - нижнюю. К этим интегралам добавили равный нулю поверхностный интеграл по внешней стороне боковой цилиндрической поверхности Φ_3 с образующей, параллельной оси Oz.

Далее, простую область V разобьем на частичные, правильные в направлении оси Oz области $V_k, \ k=1,\ldots,m$, ограниченные кусочно гладкими поверхностями Φ_k . В силу доказанного имеем

$$\iint_{\Phi_k} R(x, y, z) dxdy = \iiint_{V_k} \frac{\partial R}{\partial z} dxdydz, \ k = 1, \dots, m.$$

Просуммировав эти равенства, получим

$$\sum_{k=1}^{m} \iint\limits_{\Phi_k} R(x,y,z) dx dy = \sum_{k=1}^{m} \iiint\limits_{V_k} \frac{\partial R}{\partial z} dx dy dz = \iiint\limits_{V} \frac{\partial R}{\partial z} dx dy dz.$$

Сумма в левой части равенства равна интегралу по поверхности Φ , так как по частям границ Φ_k частичных областей V_k , не входящим в поверхность Φ , интегрирование проводится дважды с выбором противоположных сторон поверхности, а такие интегралы взаимно уничтожаются.

Таким образом формула Остроградского - Гаусса полностью доказана.