Modelica-based simulation of building and district energy systems

Session 7: Hands-on training / Heating system

- Create a model of a heating system with ideal radiator
- Create the control logic

- **First, we need to size our heating system!** This is because we will need to insert some parameters in the various components that are related to the system sizing.
 - 1. The heating peak load is 230 W.
 - 2. What's the nominal (peak) water mass flow rate required?

(SEE NEXT PAGE FOR THE SOLUTION - in red)

STEP 1 - Model of a heating system with radiator

- 1. Create a new model **Radiator** in Components.
- 2. Drag and drop the following models:
 - Modelica.Fluid.Interfaces.FluidPort a (1)
 - Modelica.Fluid.Interfaces.FluidPort b (1)
 - Modelica. Thermal. HeatTransfer. Interfaces. HeatPort a (1)
 - Modelica.Blocks.Sources.Constant (1)
 - Modelica.Blocks.Math.Gain (1)
 - Modelica. Thermal. Heat Transfer. Sources. Prescribed Heat Flow (1)
 - Buildings.Fluid.HeatExchangers.SensibleCooler T (1)

port_house

returnWatTemp

k=273.15 + 40

port_supply

port_return

Figure 7.1: Connections in **Radiator**

- 5. Connect the components according to figure 7.1.
- 6. Give to parameters the values according to the table on the right
- 7. Go to the icon view and draw a simple icon of a radiator

Figure 7.2: Icon of **Radiator**

Component	Parameter	Value
return Wat Temp	k	273.15+40
gain	k	-1
rad	Medium	Water
	QMin_flow	-230 W (heating peak load)
	m_flow_nominal	0.0027 kg/s (water flow rate)
	dp_nominal	0 Pa
port_supply	Medium	Water (Package with model for liquid water with constant density)
port_return	Medium	Same medium as port_supply

STEP 2 - Model of a single-zone house with heat port for heating

- 1. Duplicate HouseWallWin and create a new model HouseWallWinRad in Building
- 2. Drag and drop the following models:
 - Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a (1)
- 3. Connect the components according to Fig. 7.3

Figure 7.3: Connections in **HouseWallWinRad**

STEP 3 – Connect the heating system to the house and simulate

- 1. Duplicate Experiment2 and create a new model **Experiment3** in Building
- 2. Drag and drop the following models:
 - SimpleHouse.Components.Radiator (1)
 - Modelica.Blocks.Sources.Constant (1)
 - Buildings.Fluid.Sources.MassFlowSource T (1)
 - Buildings.Fluid.Sources.Boundary pT (1)
 - Buildings.Fluid.Sensors.TemperatureTwoPorts (1)
- 3. Change class of HouseWallWin into HouseWallWinRad
- 4. Connect the components according to Fig. 7.4
- 5. Give to parameters the values according to the table below

Component	Parameter	Value
watFlow	k	0.0027
watSource	Medium	Water
	use_m_flow_in	True
	Т	60°C
senTem	Medium	Water
	m_flow_nomial	0.0027
WatSink	Medium	Water

6. Simulate the model for 2 days and explore results (plot the air temperature in the house)

Figure 7.4: Connections in **Experiment3**

Results

Figure 7.5: Temperature profiles (Experiment1 vs Experiment3 vs Experiment2)

We are delivering the nominal heat flow rate constantly...

We need a controller that varies the water flow rate according to the actual needs

STEP 4 – Create an on/off controller to vary the water flow rate in the heating system

- 1. Duplicate Experiment3 and create a new model **Experiment4** in Building
- 2. Drag and drop the following models:
 - Buildings.Controls.OBC.CDL.Conversions.BooleanToReal(1)
 - Buildings.Controls.OBC.CDL.Reals.Hysteresis(1)
 - Modelica. Thermal. Heat Transfer. Sensors. Temperature Sensor (1)
- 3. Connect the components according to Fig. 7.6
- 4. Give to parameters the values according to the table below

Component	Parameter	Value
hys	uLow	273.15 + 19
	uHigh	273.15 + 21
mWat_flow	realTrue	0
	realFalse	0.0027

5. Simulate the model for 2 days and explore results (plot the air temperature in the house and the heat flow rate)

Figure 7.6: Connections in **Experiment4**

Results

Figure 7.7: Temperature profiles (Experiment1 vs Experiment2 vs Experiment3 vs Experiment4)

Results

Figure 7.8: Heat delivered by the radiator

STEP 5 – How would the heating system react to extreme winter conditions?

- 1. Duplicate Experiment4 and create a new model **Experiment5** in Building
- 2. Change the values of the following parameters:

Model	Parameter	Value
Sine (outdoor air temperature)	Offset	263.15
Sine (solar radiation)	Amplitude	0

3. Simulate the model for 2 days and explore results. Plot the air temperature in the house. Is the heating system still able to keep 20°C?

