10/559434 IAP12 Rec'd PCT/PTO 65 DEC 2005

SEQUENCE LISTING

	<110>	Degussa AG
5	<120>	Screening process

<130> 030115 AM

<140> 10 <141>

<160> 16

<170> PatentIn Ver. 2.1

15

<210> 1

<211> 6

<212> PRT

<213> Artificial sequence

20.

25 <400> 1 Phe Xaa Asp Xaa Gly Leu

30 <210> 2

<211> 236

<212> PRT

<213> Arthrobacter crystallopoietes

35 <400> 2

50

Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu
1 5 10 15

for hydantoin racemases

Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile 40 20 25 30

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe 35 40 45

45 Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala 50 55 60

Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Gly Asp 65 70 75 80

Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly 85 90 95

Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe 55 100 105 110

Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu 115 120 125

	Val	Arg 130	Gln	Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	
5	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu	
10	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu	
15	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys	
	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala	
20	Asn 225	Ser	Tyr	Gln	Lys	Pro 230	Thr	Glu	Lys	Gln	Tyr 235	Leu					
25	<211 <212	0> 3 l> 71 2> DI 3> Ar	ΝA	icia:	l sed	quenc	ce										
30	<220 <223		escri	iptio	on of	f the	e ar	tific	cial	sequ	ience	e:1B0	37				
)> L> CI !> (1		(711))												
35	<400 atg Met	aga	atc Ile	ctc Leu	gtg Val 5	atc Ile	aac Asn	ccc Pro	aac Asn	agt Ser 10	tcc Ser	agc Ser	gcc Ala	ctt Leu	act Thr 15	gaa Glu	48
40	tcg Ser	gtt Val	gcg Ala	gac Asp 20	gca Ala	gca Ala	caa Gln	caa Gln	gtt Val 25	gtc	gcg Ala	acc Thr	ggc Gly	acc Thr 30	ata	att Ile	96
45	tct Ser	gcc Ala	atc Ile 35	aac Asn	ccc Pro	tcc Ser	aga Arg	gga Gly 40	ccc Pro	gcc Ala	gtc Val	att Ile	gaa Glu 45	ggc Gly	agc Ser	ttt Phe	144
50	gac Asp	gaa Glu 50	gca Ala	ctg Leu	gcc Ala	acg Thr	ttc Phe 55	cat His	ctc Leu	att Ile	gaa Glu	gag Glu 60	gtg Val	gag Glu	cgc Arg	gct Ala	192
55	gag Glu 65	cgg Arg	gaa Glu	aac Asn	ccg Pro	ccc Pro 70	gac Asp	gcc Ala	tac Tyr	gtc Val	atc Ile 75	gca Ala	tgt Cys	ttc Phe	agg Arg	gat Asp 80	240
	ccg Pro	gga Gly	ctt Leu	gac Asp	gcg Ala 85	gtc Val	aag Lys	gag Glu	ctg Leu	act Thr	gac Asp	agg Arg	cca Pro	gtg Val	gta Val	gga Gly	288

	gtt Val	gcc Ala	gaa Glu	gct Ala 100	gca Ala	atc Ile	cac His	atg Met	tct Ser 105	tca Ser	ttc Phe	gtc Val	gcg Ala	gcc Ala 110	acc Thr	ttc Phe	336
5	tcc Ser	att Ile	gtc Val 115	agc Ser	atc Ile	ctc Leu	ccg Pro	agg Arg 120	gtc Val	agg Arg	aaa Lys	cat His	ctg Leu 125	cac His	gaa Glu	ctg Leu	384
10	gta Val	cgg Arg 130	caa Gln	gcg Ala	ggg Gly	gcg Ala	acg Thr 135	aat Asn	cgc Arg	ctc Leu	gcc Ala	tcc Ser 140	atc Ile	aag Lys	ctc Leu	cca Pro	432
15	aat Asn 145	ctg Leu	ggg Gly	gtg Val	atg Met	gcc Ala 150	ttc Phe	cat His	gag Glu	gac Asp	gaa Glu 155	cat His	gcc Ala	gca Ala	ctg Leu	gag Glu 160	480
20	acg Thr	ctc Leu	aaa Lys	caa Gln	gcc Ala 165	gcc Ala	aag Lys	gag Glu	gcg Ala	gtc Val 170	cag Gln	gag Glu	gac Asp	ggc Gly	gcc Ala 175	gag Glu	528
	tcg Ser	ata Ile	gtg Val	ctc Leu 180	gga Gly	tgc Cys	gcc Ala	ggc Gly	atg Met 185	gtg Val	Gl ^y aaa	ttt Phe	gcg Ala	cgt Arg 190	caa Gln	ctg Leu	576
25	agc Ser	gac Asp	gaa Glu 195	ctc Leu	ggc ggc	gtc Val	cct Pro	gtc Val 200	atc Ile	gac Asp	ccc Pro	gtc Val	gag Glu 205	gca Ala	gct Ala	tgc Cys	624
30	cgc Arg	gtg Val 210	gcc Ala	gag Glu	agt Ser	ttg Leu	gtc Val 215	gct Ala	ctg Leu	ggc Gly	tac Tyr	cag Gln 220	acc Thr	agc Ser	aaa Lys	gcg Ala	672
35	aac Asn 225	tcg Ser	tat Tyr	caa Gln	aaa Lys	ccg Pro 230	aca Thr	gag Glu	aag Lys	cag Gln	tac Tyr 235	ctc Leu	tag				711
40	<212 <213	l> 23 2> PF 3> Ar						ific	ial:	sequ	ience	e:1B0	3 7				
45	<400 Met 1	_	Ile	Leu	Val 5	Ile	Asn	Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu	
F.O.	Ser	Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile	
50	Ser	Ala	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe	
55	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala	
	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala	Cys	Phe	Arg	Asp 80	

	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly	
5	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe	
	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu	
10	Val	Arg 130	Gln	Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	
15	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu	
20	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu	
	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys	
25	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala	
30	Asn 225	Ser	Tyr	Gln	Lys	Pro 230	Thr	Glu	Lys	Gln	Tyr 235	Leu					
35	<212	L> 71 2> DN	IA	icial	L sec	quenc	ce										
	<220 <223		escri	iptic	on of	E th∈	e art	cific	cial	sequ	ience	∋:3CH	H11				
40		l> CI		(711)	ı												
45	<400 atg Met 1	aga	atc Ile	ctc Leu	gtg Val 5	atc Ile	aac Asn	ccc Pro	aac Asn	agt Ser 10	tcc Ser	agc Ser	gcc Ala	ctt Leu	act Thr 15	gaa Glu	48
50	tcg Ser	gtt Val	gcg Ala	gac Asp 20	gca Ala	gca Ala	caa Gln	caa Gln	gtt Val 25	gtc Val	gcg Ala	acc Thr	ggc Gly	acc Thr 30	ata Ile	att Ile	96
55	tct Ser	gcc Ala	atc Ile 35	aac Asn	ccc Pro	tcc Ser	aga Arg	gga Gly 40	ccc Pro	gcc Ala	gtc Val	att Ile	gaa Glu 45	ggc Gly	agc Ser	ttt Phe	144
	gac Asp	gaa Glu 50	gca Ala	ctg Leu	gcc Ala	acg Thr	ttc Phe	cat His	ctc Leu	att Ile	gaa Glu	gag Glu	gtg Val	gag Glu	cgc Arg	gct Ala	192

5						ccc Pro 70											240
J	ccg Pro	gga Gly	ctt Leu	gac Asp	gcg Ala 85	gtc Val	aag Lys	gag Glu	ctg Leu	act Thr 90	gac Asp	agg Arg	cca Pro	gtg Val	gta Val 95	gga Gly	288
10						atc Ile											336
15						ctc Leu							_		-	_	384
20						gcg Ala	_		-		_			_			432
25						gcc Ala 150											480
23						gcc Ala											528
30						tgc Cys											576
35						gtc Val											624
40						ttg Leu						_					672
45		_				ccg Pro 230			_	_			_				711
50	<212	L> 23 2> PF	RТ	icia:	l sed	quenc	ce										
	<223	3> De	escri	iptio	on of	E the	e art	cific	cial	sequ	ience	e:3CI	111				
55	<400 Met 1		Ile	Leu	Val 5	Ile	Asn	Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu	
	Ser	Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile	

	Ser	Ala	35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe	
5	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala	
	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala	Cys	Phe	Glu	Asp 80	
10	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly	
15	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe	
	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu	
20	Val	Arg 130	Gln	Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	-
	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
25	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu	
30	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu	
	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	qaA	Pro	Val	Glu 205	Ala	Ala	Сув	
35	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala	
	Asn 225	Ser	Tyr	Gln	Lys	Pro 230	Thr	Glu	Lys	Gln	Tyr 235	Leu					
40	<212	> 71 ?> DN	ΙA														
45	<220																
50	<220			ptic.	n of	the	e art	ific	cial	sequ	ience	e: AE3	•				
50		?> (1		711)													
55	atg	aga	atc Ile	ctc Leu	gtg Val 5	atc Ile	aac Asn	ccc Pro	aac Asn	agt Ser 10	tcc Ser	agc Ser	gcc Ala	ctt Leu	act Thr 15	gaa Glu	48

				gac Asp 20													96
5	tct Ser	gcc Ala	atc Ile 35	aac Asn	ccc Pro	tcc Ser	aga Arg	gga Gly 40	ccc Pro	gcc Ala	gtc Val	att Ile	gaa Glu 45	ggc Gly	agc Ser	ttt Phe	144
10				ctg Leu													192
15				aac Asn													240
20				gac Asp													288
-	_	_	_	gct Ala 100	_			_				_		_			336
25				agc Ser									_		_	_	384
30	-			gcg Ala			_		-		_			_			432
35				gtg Val													480
40				caa Gln											_		528
10				ctc Leu 180												ctg Leu	576
45				ctc Leu													624
50				gag Glu													672
55		_		caa Gln		_			_	_			tag				711

	<213		ctif			quenc E the		ific	cial	sequ	ience	e: AE3	3			
5	<400 Met 1		Ile	Leu	Val 5	Ile	Asn	Pro	Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu
10	Ser	Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile
	Ser	Ala	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe
15	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala
20	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala	Cys	Phe	Gln	Asp 80
- •	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly
25	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe
	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu
30	Val	Arg 130	Gln	Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro
35	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160
	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu
40	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu
	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys
45	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala
50	Asn 225	Ser	Tyr	Gln	Lys	Pro 230	Thr	Glu	Lys	Gln	Tyr 235	Leu				
55	<212	0> 9 1> 7: 2> DI 3> A:	NA	icia:	l se	quen	ce									
	<220 <220		escr	iptio	on o	f the	e ar	tifi	cial	seq	uence	e:BB	5			

<220> <221> CDS <222> (1)..(711) <400> 9 atg aga atc ctc gtg atc aac ccc aac agt tcc agc gcc ctt act gaa Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu 10 10 tcg gtt gcg gac gca gca caa caa gtt gtc gcg acc ggc acc ata att 96 Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile 20 25 tct gcc atc aac ccc tcc aga gga ccc gcc gtc att gaa ggc agc ttt 144 15 Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe 40 gac gaa gca ctg gcc acg ttc cat ctc att gaa gag gtg gag cgc gct 192 Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala 20 55 gag cgg gaa aac ccg ccc gac gcc tac gtc atc gca tgt ttc ttg gat 240 Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Leu Asp 25 ccg gga ctt gac gcg gtc aag gag ctg act gac agg cca gtg gta gga 288 Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly 85 95 30 gtt gcc gaa gct gca atc cac atg tct tca ttc gtc gcg gcc acc ttc 336 Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe 100 105 tcc att gtc agc atc ctc ccg agg gtc agg aaa cat ctg cac gaa ctg 384 35 Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu 115 120 gta cgg caa gcg ggg gcg acg aat cgc ctc gcc tcc atc aag ctc cca 432 Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro 40 130 aat ctg ggg gtg atg gcc ttc cat gag gac gaa cat gcc gca ctg gag 480 Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu 145 150 155 45 acg ctc aaa caa gcc gcc aag gag gcg gtc cag gag gac ggc gcc gag 528 Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu 165 175 50 tcg ata gtg ctc gga tgc gcc ggc atg gtg ggg ttt gcg cgt caa ctg Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu 180 185 age gae gaa ete gge gte eet gte ate gae eee gte gag gea get tge 624 55 Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys 195 200

															aaa Lys		672
5				caa Gln									tag				711
10	<211 <212 <213		37 RT ctifi	icia]				- : - : -	.i.o.1			nn!					
15	<400)> 10)	lptio Leu										Leu	Thr 15	Glu	
20	Ser	Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile	
25	Ser	Ala	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Phe	
23	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala	
30	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	11e 75	Ala	Cys	Phe	Leu	Asp 80	
	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr 90	Asp	Arg	Pro	Val	Val 95	Gly	
35	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe	
40	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu	
		Arg 130		Ala	Gly		Thr 135		Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro	
45	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160	
	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu	
50	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Leu	
55	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys	
	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala	

Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu 225 230 5 <210> 11 <211> 25 <212> DNA <213> Artificial sequence 10 <223> Description of the artifical sequence: Primer5 <400> 11 gccgcaagga atggtgcatg catcg 25 15 <210> 12 <211> 30 <212> DNA 20 <213> Artificial sequence <220> <223> Description of the artificial sequence: Primer6 25 <400> 12 ggtcaggtgg gtccaccgcg ctactgccgc 30 <210> 13 30 <211> 5777 <212> DNA <213> Artificial sequence <220> 35 <223> Description of the artificial sequence: Plasmid pOM21 aattettaag aaggagatat acatatgaga ateetegtga teaaceecaa cagttecage 60 40 gcccttactg aatcggttgc ggacgcagca caacaagttg tcgcgaccgg caccataatt 120 tctgccatca accctccag aggacccgcc gtcattgaag gcagctttga cgaagcactg 180 gccacgttcc atctcattga agaggtggag cgcgctgagc gggaaaaccc gcccgacgcc 240 45 tacgtcatcg catgtttcgg ggatccggga cttgacgcgg tcaaggagct gactgacagg 300 ccagtggtag gagttgccga agctgcaatc cacatgtctt cattcgtcgc ggccaccttc 360 50 tccattgtca gcatcctccc gagggtcagg aaacatctgc acgaactggt acggcaagcg 420 ggggcgacga atcgcctcgc ctccatcaag ctcccaaatc tgggggtgat ggccttccat 480 gaggacgaac atgccgcact ggagacgctc aaacaagccg ccaaggaggc ggtccaggag 540 55 gacggcgccg agtcgatagt gctcggatgc gccggcatgg tggggtttgc gcgtcaactg 600 agcgacgaac tcggcgtccc tgtcatcgac cccgtcgagg cagcttgccg cgtggccgag 660

agtttggtcg ctctgggcta ccagaccagc aaagcgaact cgtatcaaaa accgacagag 720 aagcagtacc tctagctgca gccaagcttc tgttttggcg gatgagagaa gattttcagc 780 5 ctgatacaga ttaaatcaga acgcagaagc ggtctgataa aacagaattt gcctggcggc 840 agtagcgcgg tggtcccacc tgaccccatg ccgaactcag aagtgaaacg ccgtagcgcc 900 gatggtagtg tggggtctcc ccatgcgaga gtagggaact gccaggcatc aaataaaacg 960 10 aaaggctcag tcgaaagact gggcctttcg ttttatctgt tgtttgtcgg tgaacgctct 1020 cctgagtagg acaaatccgc cgggagcgga tttgaacgtt gcgaagcaac ggcccggagg 1080 15 gtggcgggca ggacgcccgc cataaactgc caggcatcaa attaagcaga aggccatcct 1140 gacggatggc ctttttgcgt ttctacaaac tcttttgttt atttttctaa atacattcaa 1200 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat cgtccattcc 1260 20 gacagcatcg ccagtcacta tggcgtgctg ctagcgctat atgcgttgat gcaatttcta 1320 tgcgcacccg ttctcggagc actgtccgac cgctttggcc gccgcccagt cctgctcgct 1380 25 tegetacttg gagecactat egactaegeg ateatggega ceaeaceegt eetgtggate 1440 ctctacgccg gacgcatcgt ggccggcatc accggcgcca caggtgcggt tgctggcgcc 1500 tatatcgccg acatcaccga tggggaagat cgggctcgcc acttcgggct catgagcgct 1560 30 tgtttcggcg tgggtatggt ggcaggcccc gtggccgggg gactgttggg cgccatctcc 1620 ttgcatgcac cattccttgc ggcggcggtg ctcaacggcc tcaacctact actgggctgc 1680 35 ttcctaatgc aggagtcgca taagggagag cgtcgaccga tgcccttgag agccttcaac 1740 ccagtcagct ccttccggtg ggcgcggggc atgactatcg tcgccgcact tatgactgtc 1800 ttctttatca tgcaactcgt aggacaggtg ccggcagcgc tctgggtcat tttcggcgag 1860 40 gaccgctttc gctggagcgc gacgatgatc ggcctgtcgc ttgcggtatt cggaatcttg 1920 cacgccctcg ctcaagcctt cgtcactggt cccgccacca aacgtttcgg cgagaagcag 1980 45 gccattatcg ccggcatggc ggccgacgcg ctgggctacg tcttgctggc gttcgcgacg 2040 cgaggctgga tggccttccc cattatgatt cttctcgctt ccggcggcat cgggatgccc 2100 gcgttgcagg ccatgctgtc caggcaggta gatgacgacc atcagggaca gcttcaagga 2160 50 tegetegegg etettaceag cetaaetteg ateaetggae egetgategt eaeggegatt 2220 tatgccgcct cggcgagcac atggaacggg ttggcatgga ttgtaggcgc cgccctatac 2280 55 cttgtctgcc tccccgcgtt gcgtcgcggt gcatggagcc gggccacctc gacctgaatg 2340 gaagccggcg gcacctcgct aacggattca ccactccaag aattggagcc aatcaattct 2400 tgcggagaac tgtgaatgcg caaaccaacc cttggcagaa catatccatc gcgtccgcca 2460

tetecageag eegeaegegg egeatetegg geagegttgg gteetggeea egggtgegea 2520 tgatcgtgct cctgtcgttg aggacccggc taggctggcg gggttgcctt actggttagc 2580 5 agaatgaatc accgatacgc gagcgaacgt gaagcgactg ctgctgcaaa acgtctgcga 2640 cctgagcaac aacatgaatg gtcttcggtt tccgtgtttc gtaaagtctg gaaacgcgga 2700 10 agtcccctac gtgctgctga agttgcccgc aacagagagt ggaaccaacc ggtgatacca 2760 cgatactatg actgagagtc aacgccatga gcggcctcat ttcttattct gagttacaac 2820 agtccgcacc gctgtccggt agctccttcc ggtgggcgcg gggcatgact atcgtcgccg 2880 15 cacttatgac tgtcttcttt atcatgcaac tcgtaggaca ggtgccggca gcgcccaaca 2940 gtcccccggc cacggggcct gccaccatac ccacgccgaa acaagcgccc tgcaccatta 3000 20 tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct acatctgtat 3060 taacgaagcg ctaaccgttt ttatcaggct ctgggaggca gaataaatga tcatatcgtc 3120 aattattacc tccacgggga gagcctgagc aaactggcct caggcatttg agaagcacac 3180 25 ggtcacactg cttccggtag tcaataaacc ggtaaaccag caatagacat aagcggctat 3240 ttaacgaccc tgccctgaac cgacgaccgg gtcgaatttg ctttcgaatt tctgccattc 3300 30 atccgcttat tatcacttat tcaggcgtag caccaggcgt ttaagggcac caataactgc 3360 cttaaaaaaa ttacgccccg ccctgccact catcgcagta ctgttgtaat tcattaagca 3420 ttctgccgac atggaagcca tcacagacgg catgatgaac ctgaatcgcc agcggcatca 3480 35 gcaccttgtc gccttgcgta taatatttgc ccatggtgaa aacgggggcg aagaagttgt 3540 ccatattggc cacgtttaaa tcaaaactgg tgaaactcac ccagggattg gctgagacga 3600 40 aaaacatatt ctcaataaac cctttaggga aataggccag gttttcaccg taacacgcca 3660 catcttgcga atatatgtgt agaaactgcc ggaaatcgtc gtggtattca ctccagagcg 3720 atgaaaacgt ttcagtttgc tcatggaaaa cggtgtaaca agggtgaaca ctatcccata 3780 45 tcaccagctc accgtctttc attgccatac gaattccgga tgagcattca tcaqqcqqqc 3840 aagaatgtga ataaaggccg gataaaactt gtgcttattt ttctttacgg tctttaaaaa 3900 50 ggccgtaata tccagctgaa cggtctggtt ataggtacat tgagcaactg actgaaatgc 3960 ctcaaaatgt tctttacgat gccattggga tatatcaacg gtggtatatc cagtgatttt 4020 tttctccatt ttagcttcct tagctcctga aaatctcgat aactcaaaaa atacgcccgg 4080 55 tagtgatett attteattat ggtgaaagtt ggaacetett aegtgeegat caaegtetea 4140 ttttcgccaa aagttggccc agggcttccc ggtatcaaca gggacaccag gatttattta 4200

	ttctgcgaag	tgatcttccg	tcacaggtat	ttattcggcg	caaagtgcgt	cgggtgatgc	4260
	tgccaactta	ctgatttagt	gtatgatggt	gtttttgagg	tgctccagtg	gcttctgttt	4320
5	ctatcagctg	tccctcctgt	tcagctactg	acggggtggt	gcgtaacggc	aaaagcaccg	4380
	ccggacatca	gcgctagcgg	agtgtatact	ggcttactat	gttggcactg	atgagggtgt	4440
10	cagtgaagtg	cttcatgtgg	caggagaaaa	aaggctgcac	cggtgcgtca	gcagaatatg	4500
10	tgatacagga	tatattccgc	ttcctcgctc	actgactcgc	tacgctcggt	cgttcgactg	4560
	cggcgagcgg	aaatggctta	cgaacggggc	ggagatttcc	tggaagatgc	caggaagata	4620
15	cttaacaggg	aagtgagagg	gccgcggcaa	agccgttttt	ccataggctc	cgcccccctg	4680
	acaagcatca	cgaaatctga	cgctcaaatc	agtggtggcg	aaacccgaca	ggactataaa	4740
20	gataccaggc	gtttcccctg	gcggctccct	cgtgcgctct	cctgttcctg	cctttcggtt	4800
20	taccggtgtc	attccgctgt	tatggccgcg	tttgtctcat	tccacgcctg	acactcagtt	4860
	ccgggtaggc	agttcgctcc	aagctggact	gtatgcacga	accccccgtt	cagtccgacc	4920
25	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggaaagacat	gcaaaagcac	4980
	cactggcagc	agccactggt	aattgattta	gaggagttag	tcttgaagtc	atgcgccggt	5040
30	taaggctaaa	ctgaaaggac	aagttttggt	gactgcgctc	ctccaagcca	gttacctcgg	5100
30	ttcaaagagt	tggtagctca	gagaaccttc	gaaaaaccgc	cctgcaaggc	ggtttttcg	5160
	ttttcagagc	aagagattac	gcgcagacca	aaacgatctc	aagaagatca	tcttattaat	5220
35	cagataaaat	atttcaagat	ttcagtgcaa	tttatctctt	caaatgtagc	acctgaagtc	5280
	agccccatac	gatataagtt	gtaattctca	tgtttgacag	cttatcatcg	ataagcttta	5340
40	atgcggtagt	ttatcacagt	taaattgcta	acgcagtcag	gcaccgtgta	tgaaatctaa	5400
40	caatgcgctc	atcgtcatcc	tcggcaccgt	caccctggat	gctgtaggca	taggcttggt	5460
	tatgccggta	ctgccgggcc	tcttgcggga	ttagtcatgc	cccgcgccca	ccggaaggag	5520
45	ctgactgggt	tgaaggctct	caagggcatc	ggtcgacgct	ctcccttatg	cgactcctgc	5580
	attaggaagc	agcccagtag	taggttgagg	ccgttgagca	ccgccgccgc	aaggaatggt	5640
50	gcatgcatcg	atcaccacaa	ttcagcaaat	tgtgaacatc	atcacgttca	tctttccctg	5700
50	gttgccaatg	gcccattttc	ctgtcagtaa	cgagaaggtc	gcgaattcag	gcgcttttta	5760
	gactggtcgt	aatgaac					5777
c c							

55

<210> 14 <211> 7175 <212> DNA

<213> Artificial sequence

<220>
<223> Description of the artificial sequence:Plasmid pOM22

5 <400> 14 aattettaag aaggagatat acatatgace etgeagaaag egeaagegna gegeattgag 60 aaagagatet gggagetete ceggtteteg geggaaggee ceggtgttac ceggetgaee 120 10 tacactecag ageatgeege egegegggaa acgeteattg eggetatgga ageggeeget 180 ttgagcgttc gtgaagacgc tctcgggaac atcatcggcc gacgtgaagg cactgatccg 240 cageteeetg egategeggt eggtteacae ttegattetg teegaaaegg egggatgtte 300 15 gatggcactg caggcgtggt gtgcgccctt gaggctgccc gggtgatgct ggagagcggc 360 tacgtgaatc ggcatccatt tgagttcatc gcgatcgtgg aggaggaagg ggcccgcttc 420 20 agcagtggca tgttgggcgg ccgggccatt gcaggtttgg tcgccgacag ggaactggac 480 tetttggttg atgaggatgg agtgteegtt aggeaggegg etaetgeett eggettgaag 540 ccgggcgaac tgcaggctgc agcccgctcc gcggcggacc tgcgtgcttt tatcgaacta 600 25 cacattgaac aaggaccgat cctcgagcag gagcaaatag agatcggagt tgtgacctcc 660 atcgttggcg ttcgcgcatt gcgggttgct gtcaaaggca gaagcgcaca cgccggcaca 720 30 acceccatge acctgegeea ggatgegetg gtaccegeeg eteteatggt gegggaggte 780 aaccggttcg tcaacgagat cgccgatggc acagtggcta ccgttggcca cctcacagtg 840 gcccccggtg gcggcaacca ggtcccgggg gaggtggagt tcacactgga cctgcgttct 900 35 ccgcatgagg agtcgctccg ggtgttgatc aaccgcatct cggtcatggt cggcqaqqtc 960 gcctcgcagg ccggtgtggc tgccgatgtg gatgaatttt tcaatctcag cccggtgcag 1020 40 ctggctccta ccatggtgga cgccgttcgc gaagcggcct cggccctgca gttcacgcac 1080 cgggatatca gcagtggggc gggccacgac tcgatgttca tcgcccaggt cacggacgtc 1140 ggaatggttt tegttecaag cegtgetgge eggagecaeg tteeegaaga atggaeegat 1200 45 ttcgatgacc ttcgcaaggg aactgaggtt gtcctccggg taatgaaggc acttgaccgg 1260 ggateceate ateateatea teattgactg cagecaaget tetgttttgg eggatgagag 1320 50 aagattttca gcctgataca gattaaatca gaacgcagaa gcggtctgat aaaacagaat 1380 ttgcctggcg gcagtagcgc ggtggtccca cctgacccca tgccgaactc agaagtgaaa 1440 cgccgtagcg ccgatggtag tgtggggtct ccccatgcga gagtagggaa ctgccaggca 1500 55 tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc 1560 ggtgaacgct ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca 1620

acggcccgga gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca 1680 gaaggccatc ctgacggatg gcctttttgc gtttctacaa actcttttgt ttattttct 1740 5 aaatacattc aaatatgtat ccgctcatga gacaataacc ctgataaatg cttcaataat 1800 attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt cccttttttg 1860 cggcattttg ccttcctgtt tttgctcacc cagaaacgct ggtgaaagta aaagatgctg 1920 10 aagatcagtt gggtgcacga gtgggttaca tcgaactgga tctcaacagc ggtaagatcc 1980 ttgagagttt tcgccccgaa gaacgttttc caatgatgag cacttttaaa gttctgctat 2040 15 gtggcgcggt attatcccgt gttgacgccg ggcaagagca actcggtcgc cgcatacact 2100 attctcagaa tgacttggtt gagtactcac cagtcacaga aaagcatctt acggatggca 2160 tgacagtaag agaattatgc agtgctgcca taaccatgag tgataacact gcggccaact 2220 20 tacttctgac aacgatcgga ggaccgaagg agctaaccgc ttttttgcac aacatggggg 2280 atcatgtaac tegeettgat egttgggaac eggagetgaa tgaageeata eeaaacgaeg 2340 25 agcgtgacac cacgatgcct gtagcaatgg caacaacgtt gcgcaaacta ttaactggcg 2400 aactacttac tctagcttcc cggcaacaat taatagactg gatggaggcg gataaagttg 2460 caggaccact tctgcgctcg gcccttccgg ctggctggtt tattgctgat aaatctggaq 2520 30 ceggtgageg tgggtetege ggtateattg cageactggg gecagatggt aagecetece 2580 gtatcgtagt tatctacacg acggggagtc aggcaactat ggatgaacga aatagacaga 2640 35 tcgctgagat aggtgcctca ctgattaagc attggtaact gtcagaccaa gtttactcat 2700 tttttgataa tctcatgacc aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag 2820 40 accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 2880 gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac 2940 45 caactctttt tecgaaggta actggettea geagagegea gataceaaat actgteette 3000 tagtgtagcc gtagttaggc caccacttca agaactctgt agcaccgcct acatacctcg 3060 ctctgctaat cctgttacca gtggctgctg ccagtggcga taagtcgtgt cttaccgggt 3120 50 tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt 3180 gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta cagcgtgagc 3240 55 tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg gtaagcggca 3300 gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatctttata 3360 gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg 3420

ggcggagcct atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 3480 ggccttttgc tcacatgttc tttcctgcgt tatcccctga ttctgtggat aaccgtatta 3540 5 ccgcctttga gtgagctgat accgctcgcc gcagccgaac gaccgagcgc agcgagtcag 3600 tgagcgagga agcggaagag cgcctgatgc ggtattttct ccttacqcat ctgtqcqgta 3660 10 tttcacaccg catatatggt gcactctcag tacaatctgc tctgatgccg catagttaag 3720 ccagtataca ctccgctatc gctacgtgac tgggtcatgg ctgcgccccg acacccgcca 3780 acaccegetg acgegeettg acgggettgt etgeteeegg cateegetta cagacaaget 3840 15 gtgaccgtct ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg 3900 aggcagetge ggtaaagete ateagegtgg tegtgaageg atteacagat gtetgeetgt 3960 20 tcatccgcgt ccagctcgtt gagtttctcc agaagcgtta atgtctggct tctgataaag 4020 cgggccatgt taagggcggt tttttcctgt ttggtcactt gatgcctccg tgtaaggggg 4080 aatttctgtt catgggggta atgataccga tgaaacgaga gaggatgctc acgatacggg 4140 25 ttactgatga tgaacatgcc cggttactgg aacgttgtga gggtaaacaa ctggcggtat 4200 ggatgcggcg ggaccagaga aaaatcactc agggtcaatg ccagcgcttc gttaatacag 4260 30 atgtaggtgt tccacagggt agccagcagc atcctgcgat gcagatccgg aacataatgg 4320 tgcagggcgc tgacttccgc gtttccagac tttacgaaac acggaaaccg aagaccattc 4380 atgttgttgc tcaggtcgca gacgttttgc agcagcagtc gcttcacgtt cgctcgcgta 4440 35 teggtgatte attetgetaa eeagtaagge aacceegeea geetageegg gteeteaacg 4500 acaggagcac gatcatgcgc acccgtggcc aggacccaac gctgcccgag atgcgccgcg 4560 40 tgcggctgct ggagatggcg gacgcgatgg atatgttctg ccaagggttg gtttgcgcat 4620 tcacagttct ccgcaagaat tgattggctc caattcttgg agtggtgaat ccgttagcga 4680 ggtgccgccg gcttccattc aggtcgaggt ggcccggctc catgcaccgc gacgcaacgc 4740 45 ggggaggcag acaaggtata gggcggcgcc tacaatccat gccaacccgt tccatgtgct 4800 cgccgaggcg gcataaatcg ccgtgacgat cagcggtcca gtgatcgaag ttaggctggt 4860 50 aagagccgcg agcgatcctt gaagctgtcc ctgatggtcg tcatctacct gcctqqacaq 4920 catggcctgc aacgcgggca tcccgatgcc gccggaagcg agaagaatca taatggggaa 4980 ggccatccag cctcgcgtcg cgaacgccag caagacgtag cccagcgcgt cggccgccat 5040 55 gccggcgata atggcctgct tctcgccgaa acgtttggtg gcgggaccag tgacgaaggc 5100 ttgagcgagg gcgtgcaaga ttccgaatac cgcaagcgac aggccgatca tcgtcgcgct 5160

ccagcgaaag cggtcctcgc cgaaaatgac ccagagcgct gccggcacct gtcctacgag 5220 ttgcatgata aagaagacag tcataagtgc ggcgacgata gtcatgcccc gcgcccaccg 5280 5 gaaggagctg actgggttga aggctctcaa gggcatcggt cgacgctctc ccttatgcga 5340 ctcctgcatt aggaagcagc ccagtagtag gttgaggccg ttgagcaccg ccgccgcaag 5400 gaatggtgca tgcatcgatc accacaattc agcaaattgt gaacatcatc acgttcatct 5460 10 ttccctggtt gccaatggcc cattttcctg tcagtaacga gaaggtcgcg aattcaggcq 5520 ctttttagac tggtcgtaat gaacaattct taagaaggag atatacatat gtttgacgta 5580 15 atagttaaga actgccgtat ggtgtccagc gacggaatca ccgaggcaga cattctggtg 5640 aaagacggca aagtcgccgc aatcagctcg gacacaagtg atgttgaggc gagccgaacc 5700 attgacgcgg gtggcaagtt cgtgatgccg ggcgtggtcg atgaacatgt gcatatcatc 5760 20 gacatggate tgaagaaceg gtatggeege ttegaacteg atteegagte tgeggeegtg 5820 ggaggcatca ccaccatctt tgagatgccg tttaccttcc cgcccaccac cactttggac 5880 25 gccttcctcg aaaagaagaa gcaggcgggg cagcggttga aagttgactt cgcgctctat 5940 ggcggtggag tgccgggaaa cctgcccgag atccgcaaaa tgcacgacgc cggcgcagtg 6000 ggcttcaagt caatgatggc agcctcagtt ccgggcatgt tcgacgccgt cagcgacggc 6060 30 gaactgttcg aaatcttcca ggagatcgca gcctgtggtt cagtcgccgt ggtccatgcc 6120 gagaatgaaa cgatcattca agcgctccag aagcagatca aagccgctgg tcgcaaqqac 6180 35 atggccgcct acgaggcatc ccaaccagtt ttccaggaga acgaggccat tcagcgtgcg 6240 ttactactgc agaaagaagc cggctgtcga ctgattgtgc ttcacgtgag caaccctgac 6300 ggggtcgagc tgatacatcg ggcgcaatcc gagggccagg acgtccactg cgagtcgggt 6360 40 ccgcagtatc tgaatatcac cacggacgac gccgaacgaa tcggaccgta tatgaaggtc 6420 gcgccgcccg tccgctcagc cgagatgaac gtcagattat gggaacaact tgagaacggg 6480 45 ctcatcgaca cccttgggtc agaccacggc ggacatcctg tcgaggacaa agaacccggc 6540 tggaaggacg tgtggaaagc cggcaacggt gcgctgggcc ttgagacatc cctgcctatg 6600 atgctgacca acggagtgaa taaaggcagg ctatccttgg aacgcctcgt cgaggtgatg 6660 50 tgcgagaaac ctgcgaagct ctttggcatc tatccgcaga agggcacgct acaggttggt 6720 tccgacgccg atctgctcat cctcgatctg gatattgaca ccaaagtgga tgcctcgcag 6780 55 ttccgatccc tgcataagta cagcccgttc gacgggatgc ccgtcacggg tgcaccggtt 6840 ctgacgatgg tgcgcggaac ggtggtggca gagaagggag aagttctggt cgagcaggga 6900 ttcggccagt tcgtcacccg tcacgactac gaggcgtcga agtgaggatc tcgacgctct 6960

cccttatgcg actcctgcat taggaagcag cccagtagta ggttgaggcc gttgagcacc 7020 gccgccgcaa ggaatggtgc atgcatcgat caccacaatt cagcaaattg tgaacatcat 7080 5 cacgttcatc tttccctggt tgccaatggc ccattttcct gtcagtaacg agaaggtcgc 7140 gaattcaggc gctttttaga ctggtcgtaa tgaac 7175 10 <210> 15 <211> 5989 <212> DNA <213> Artificial sequence 15 <223> Description of the artificial sequence: Plasmid pDHYH <400> 15 20 aattettaag aaggagatat acatatggat geaaagetae tggttggegg caetattgtt 60 tectegaceg geaaaateeg ageegacgtg etgattgaaa aeggeaaagt egeegetgte 120 ggcatgctgg acgccgcgac gccggacaca gttgagcggg ttgactgcga cggcaaatac 180 25 gtcatgcccg gcggtatcga cgttcacacc cacatcgact ccccctcat ggggaccacc 240 accgccgatg attttgtcag cggaacgatt gcagccgcta ccggcggaac aacgaccatc 300 30 gtcgatttcg gacagcagct cgccggcaag aacctgctgg aatccgcaga cgcgcaccac 360 aaaaaggcgc aggggaaatc cgtcattgat tacggcttcc atatgtgcgt gacgaacctc 420 tatgacaatt tcgattccca tatggcagaa ctgacacagg acggaatctc cagtttcaag 480 35 gtcttcatgg cctaccgcgg aagcctgatg atcaacgacg gcgaactgtt cgacatcctc 540 aagggagteg geteeagegg tgeeaaacta tgegteeacg cagagaacgg egacgteate 600 40 gacaggateg cegeegacet etaegeecaa ggaaaaaceg ggeeegggae ecaegagate 660 gcacgcccgc cggaatcgga agtcgaagca gtcagccggg ccatcaagat ctcccggatg 720 gccgaggtgc cgctgtattt cgtgcatctt tccacccagg gggccgtcga ggaagtagct 780 45 gccgcgcaga tgacaggatg gccaatcagc gccgaaacgt gcacccacta cctgtcgctg 840 agccgggaca tctacgacca gccgggattc gagccggcca aagctgtcct cacaccaccg 900 50 ctgcgcacac aggaacacca ggacgcgttg tggagaggca ttaacaccgg tgcgctcagc 960 gtcgtcagtt ccgaccactg ccccttctgc tttgaggaaa agcagcggat gggggcagat 1020 gacttccggc agatccccaa cggcgggccc ggcgtggagc accgaatgct cgtgatgtat 1080 55 gagaccggtg tcgcggaagg aaaaatgacg atcgagaaat tcgtcgaggt gactgccgag 1140 aacccggcca agcaattcga tatgtacccg aaaaagggaa caattgcacc gggctccgat 1200

	gcagacatca	tcgtggtcga	ccccaacgga	acaaccctca	tcagtgccga	cacccaaaaa	1260
	caaaacatgg	actacacgct	gttcgaaggc	ttcaaaatcc	gttgctccat	cgaccaggtg	1320
5	ttctcgcgtg	gcgacctgat	cagcgtcaaa	ggcgaatatg	tcggcacccg	cggccgcggc	1380
	gaattcatca	agcggagcgc	ttggagccac	ccgcagttcg	aaaaataaaa	gcttggctgt	1440
10	tttggcggat	gagagaagat	tttcagcctg	atacagatta	aatcagaacg	cagaagcggt	1500
10	ctgataaaac	agaatttgcc	tggcggcagt	agcgcggtgg	tcccacctga	ccccatgccg	1560
	aactcagaag	tgaaacgccg	tagcgccgat	ggtagtgtgg	ggtctcccca	tgcgagagta	1620
15	gggaactgcc	aggcatcaaa	taaaacgaaa	ggctcagtcg	aaagactggg	cctttcgttt	1680
	tatctgttgt	ttgtcggtga	acgctctcct	gagtaggaca	aatccgccgg	gagcggattt	1740
20	gaacgttgcg	aagcaacggc	ccggagggtg	gcgggcagga	cgcccgccat	aaactgccag	1800
20	gcatcaaatt	aagcagaagg	ccatcctgac	ggatggcctt	tttgcgtttc	tacaaactct	1860
	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	taaccctgat	1920
25	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	cgtgtcgccc	1980
	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	acgctggtga	2040
30	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	ctggatctca	2100
30	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	atgagcactt	2160
•	ttaaagttct	gctatgtggc	gcggtattat	cccgtgttga	cgccgggcaa	gagcaactcg	2220
35	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	acagaaaagc	2280
	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	atgagtgata	2340
40	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	accgcttttt	2400
10	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	ctgaatgaag	2460
	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	acgttgcgca	2520
45	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	gactggatgg	2580
	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	tccggctggc	tggtttattg	2640
50	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	ctggggccag	2700
30	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	actatggatg	2760
	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	taactgtcag	2820
55	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	tttaaaagga	2880
	tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	cccttaacgt	gagttttcgt	2940
	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	ccttttttc	3000

tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc 3060 cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac 3120 5 caaatactgt ccttctagtg tagccgtagt taggccacca cttcaagaac tctgtagcac 3180 cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt qqcqataaqt 3240 10 cgtgtcttac cgggttggac tcaagacgat agttaccgga taaqqcqcaq cqqtcqqqct 3300 gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat 3360 acctacagcg tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt 3420 15 atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacq 3480 cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt 3540 20 gatgctcgtc aggggggcgg agcctatgga aaaacgccag caacgcggcc tttttacggt 3600 tectggeett ttgetggeet tttgeteaca tgttetttee tgegttatee cetgattetg 3660 tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg 3720 25 agcgcagcga gtcagtgagc gaggaagcgg aagagcgcct gatgcggtat tttctcctta 3780 cgcatctgtg cggtatttca caccgcatat atggtgcact ctcagtacaa tctqctctqa 3840 30 tgccgcatag ttaagccagt atacactccg ctatcgctac gtgactgggt catggctgcg 3900 ccccgacacc cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccqqcatcc 3960 gcttacagac aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca 4020 35 tcaccgaaac gcgcgaggca gctgcggtaa agctcatcag cgtggtcgtg aagcgattca 4080 cagatgtctg cctgttcatc cgcgtccagc tcgttgagtt tctccagaag cgttaatgtc 4140 40 tggcttctga taaagcgggc catgttaagg gcggtttttt cctgtttggt cacttgatgc 4200 ctccgtgtaa gggggaattt ctgttcatgg gggtaatgat accgatgaaa cgagagagga 4260 tgctcacgat acgggttact gatgatgaac atgcccggtt actggaacgt tgtgagggta 4320 45 aacaactggc ggtatggatg cggcgggacc agagaaaaat cactcagggt caatgccagc 4380 gcttcgttaa tacagatgta ggtgttccac agggtagcca gcagcatcct qcqatqcaqa 4440 50 tccggaacat aatggtgcag ggcgctgact tccgcgtttc caqactttac gaaacacgga 4500 aaccgaagac cattcatgtt gttgctcagg tcgcagacgt tttgcagcag cagtcgcttc 4560 acgttcgctc gcgtatcggt gattcattct gctaaccagt aaggcaaccc cgccagccta 4620 55 gccgggtcct caacgacagg agcacgatca tgcgcacccg tggccaggac ccaacgctgc 4680 ccgagatgcg ccgcgtgcgg ctgctggaga tggcggacgc gatggatatg ttctgccaag 4740

ggttggtttg cgcattcaca gttctccgca agaattgatt ggctccaatt cttggagtgg 4800

	ggttggtttg	cycattcaca	gccccccgca	agaattyatt	ggctccaact	cccggagcgg	4000
	tgaatccgtt	agcgaggtgc	cgccggcttc	cattcaggtc	gaggtggccc	ggctccatgc	4860
5	accgcgacgc	aacgcgggga	ggcagacaag	gtatagggcg	gcgcctacaa	tccatgccaa	4920
	cccgttccat	gtgctcgccg	aggcggcata	aatcgccgtg	acgatcagcg	gtccagtgat	4980
10	cgaagttagg	ctggtaagag	ccgcgagcga	tccttgaagc	tgtccctgat	ggtcgtcatc	5040
10	tacctgcctg	gacagcatgg	cctgcaacgc	gggcatcccg	atgccgccgg	aagcgagaag	5100
	aatcataatg	gggaaggcca	tccagcctcg	cgtcgcgaac	gccagcaaga	cgtagcccag	5160
15	cgcgtcggcc	gccatgccgg	cgataatggc	ctgcttctcg	ccgaaacgtt	tggtggcggg	5220
	accagtgacg	aaggcttgag	cgagggcgtg	caagattccg	aataccgcaa	gcgacaggcc	5280
20	gatcatcgtc	gcgctccagc	gaaagcggtc	ctcgccgaaa	atgacccaga	gcgctgccgg	5340
20	cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	cgatagtcat	5400
	gccccgcgcc	caccggaagg	agctgactgg	gttgaaggct	ctcaagggca	tcggtcgacg	5460
25	ctctccctta	tgcgactcct	gcattaggaa	gcagcccagt	agtaggttga	ggccgttgag	5520
	caccgccgcc	gcaaggaatg	gtgcatgctc	gatggctacg	agggcagaca	gtaagtggat	5580
30	ttaccataat	cccttaattg	tacgcaccgc	taaaacgcgt	tcagcgcgat	cacggcagca	5640
	gacaggtaaa	aatggcaaca	aaccacccta	aaaactgcgc	gatcgcgcct	gataaatttt	5700
	aaccgtatga	atacctatgc	aaccagaggg	tacaggccac	attaccccca	cttaatccac	5760
35	tgaagctgcc	atttttcatg	gtttcaccat	cccagcgaag	ggccatgcat	gcatcgaaat	5820
	taatacgacg	aaattaatac	gactcactat	agggcaattg	cgatcaccac	aattcagcaa	5880
40	attgtgaaca	tcatcacgtt	catctttccc	tggttgccaa	tggcccattt	tcctgtcagt	5940
10	aacgagaagg	tcgcgaattc	aggcgctttt	tagactggtc	gtaatgaac		5989
45	<210> 16 <211> 6958 <212> DNA <213> Arti	ficial sequ	ence				
50		ription of	the artific	ial sequenc	e:Plasmid	-	
55	<400> 16 aattcttaag	aaggagatat	acatatggcg	aaaaacttga	tgctcgcggt	cgctcaagtc	60
	ggcggtatcg	atagttcgga	atcaagaccc	gaagtcgtcg	cccgcttgat	tgccctgctg	120

gaagaagcag cttcccaggg cgcggaactg gtggtctttc ccgaactcac gctgaccacg 180

ttcttcccgc gtacctggtt cgaagaaggc gacttcgagg aatacttcga taaatccatg 240 cccaatgacg acgtcgcgcc ccttttcgaa cgcgccaaag accttggcgt gggcttctac 300 5 ctcggatacg cggaactgac cagtgatgag aagcggtaca acacatcaat tctqqtqaac 360 aagcacggcg acatcgtcgg caagtaccgc aagatgcatc tgccgggcca cgccgataac 420 cgggaaggac tacccaacca gcaccttgaa aagaaatact tccgcgaagg agatctcgga 480 10 tteggtgtet tegaetteea eggegtgeag gteggaatgt gtetetgeaa egaeeggega 540 tggccggagg tctaccgctc tttggccctg cagggagcag agctcgtcgt cctgggctac 600 15 aacacccccg atttcgttcc cggctggcag gaagagcctc acgcgaagat gttcacgcac 660 cttctttcac ttcaggcagg ggcataccag aactcggtat ttgtggcggc tgccggcaag 720 tegggetteg aagaegggea ceaeatgate ggeggateag eggtegeege geeeagegge 780 20 gaaatcctgg caaaagcagc cggcgagggc gatgaagtcg tcgttgtgaa agcagacatc 840 gacatgggca agccctataa ggaaagcgtc ttcgacttcg ccgcccatcg gcgccccgac 900 25 gcatacggca tcatcgccga aaggaaaggg cggggcgccc cactgcccgt cccgttcaac 960 gtgaatgact aaggatccga aggagatata catatggatg caaagctact ggttggcggc 1020 actattgttt cctcgaccgg caaaatccga gccgacgtgc tgattgaaaa cggcaaagtc 1080 30 gccgctgtcg gcatgctgga cgccgcgacg ccggacacag ttgagcgggt tgactgcgac 1140 ggcaaatacg tcatgcccgg cggtatcgac gttcacaccc acatcgactc cccctcatg 1200 35 gggaccacca ccgccgatga ttttgtcagc ggaacgattg cagccgctac cggcggaaca 1260 acgaccatcg tcgatttcgg acagcagctc gccggcaaga acctgctgga atccgcagac 1320 gcgcaccaca aaaaggcgca ggggaaatcc gtcattgatt acggcttcca tatgtgcgtg 1380 40 acgaacctct atgacaattt cgattcccat atggcagaac tgacacagga cggaatctcc 1440 agtttcaagg tettcatgge etacegegga ageetgatga teaaegaegg egaaetgtte 1500 45 gacatectea agggagtegg etceageggt gecaaactat gegteeaege agagaaegge 1560 gacgtcatcg acaggatcgc cgccgacctc tacgcccaag gaaaaaccgg gcccgggacc 1620 cacgagateg cacgeeegee ggaateggaa gtegaageag teageeggge cateaagate 1680 50 tcccggatgg ccgaggtgcc gctgtatttc gtgcatcttt ccacccaggg ggccgtcgag 1740 gaagtagctg ccgcgcagat gacaggatgg ccaatcagcg ccgaaacgtg cacccactac 1800 55 ctgtcgctga gccgggacat ctacgaccag ccgggattcg agccggccaa agctgtcctc 1860 acaccaccgc tgcgcacaca ggaacaccag gacgcgttgt ggagaggcat taacaccggt 1920 gcgctcagcg tcgtcagttc cgaccactgc cccttctgct ttgaggaaaa gcagcggatg 1980

ggggcagatg acttccggca gatccccaac ggcgggcccg gcgtggagca ccgaatgctc 2040 gtgatgtatg agaccggtgt cgcggaagga aaaatgacga tcgagaaatt cgtcgaggtg 2100 5 actgccgaga acccggccaa gcaattcgat atgtacccga aaaagggaac aattgcaccg 2160 ggctccgatg cagacatcat cgtggtcgac cccaacggaa caaccctcat cagtgccgac 2220 10 acccaaaaac aaaacatgga ctacacgctg ttcgaaggct tcaaaatccg ttgctccatc 2280 gaccaggtgt tetegegtgg egacetgate agegteaaag gegaatatgt eggeaceege 2340 ggccgcggcg aattcatcaa gcggagcgct tggagccacc cgcagttcga aaaataaaag 2400 15 cttggctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa atcagaacgc 2460 agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt cccacctgac 2520 20 cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg gtctccccat 2580 gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga aagactgggc 2640 ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa atccgccggg 2700 25 agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac gcccgccata 2760 aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt ttgcgtttct 2820 30 acaaactctt ttgtttattt ttctaaatac attcaaatat gtatccgctc atgagacaat 2880 aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc 2940 gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa 3000 35 cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac 3060 tggatctcaa cagcggtaag atccttgaga gttttcgccc cgaagaacgt tttccaatga 3120 40 tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtgttgac gccgggcaag 3180 agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac tcaccagtca 3240 cagaaaagca tettaeggat ggeatgaeag taagagaatt atgeagtget geeataacca 3300 45 tgagtgataa cactgcggcc aacttacttc tgacaacgat cggaggaccg aaggagctaa 3360 ccgctttttt gcacaacatg ggggatcatg taactcgcct tgatcgttgg gaaccggagc 3420 5.0 tgaatgaagc cataccaaac gacgagcgtg acaccacgat gcctgtagca atggcaacaa 3480 cgttgcgcaa actattaact ggcgaactac ttactctagc ttcccggcaa caattaatag 3540 actggatgga ggcggataaa gttgcaggac cacttctgcg ctcggccctt ccggctggct 3600 55 ggtttattgc tgataaatct ggagccggtg agcgtgggtc tcgcggtatc attgcagcac 3660 tggggccaga tggtaagccc tcccgtatcg tagttatcta cacgacgggg agtcaggcaa 3720

ctatggatga acgaaataga cagatcgctg agataggtgc ctcactgatt aagcattggt 3780 aactgtcaga ccaagtttac tcatatatac tttagattga tttaaaaactt catttttaat 3840 5 ttaaaaggat ctaggtgaag atcctttttg ataatctcat gaccaaaatc ccttaacgtg 3900 agttttcgtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc 3960 cttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg 4020 10 tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag 4080 cgcagatacc aaatactgtc cttctagtgt agccgtagtt aggccaccac ttcaagaact 4140 15 ctgtagcacc gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg 4200 gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc 4260 ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg 4320 20 aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg 4380 cggacaggta tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag 4440 25 ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc 4500 gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct. 4560 ttttacggtt cctggcctt tgctggcctt ttgctcacat gttctttcct gcgttatccc 4620 30 ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc 4680 gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga agagcgcctg atgcggtatt 4740 35 ttctccttac gcatctgtgc ggtatttcac accgcatata tggtgcactc tcagtacaat 4800 ctgctctgat gccgcatagt taagccagta tacactccgc tatcgctacg tgactgggtc 4860 atggctgcgc cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc 4920 40 ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt 4980 tcaccgtcat caccgaaacg cgcgaggcag ctgcggtaaa gctcatcagc gtggtcgtga 5040 45 agggatteae agatgtetge etgtteatee gegteeaget egttgagttt etecagaage 5100 gttaatgtct ggcttctgat aaagcgggcc atgttaaggg cggttttttc ctgtttggtc 5160 acttgatgcc tccgtgtaag ggggaatttc tgttcatggg ggtaatgata ccgatgaaac 5220 50 gagagaggat gctcacgata cgggttactg atgatgaaca tgcccggtta ctggaacgtt 5280 gtgagggtaa acaactggcg gtatggatgc ggcgggacca gagaaaaatc actcagggtc 5340 55 aatgccagcg cttcgttaat acagatgtag gtgttccaca gggtagccag cagcatcctg 5400 cgatgcagat ccggaacata atggtgcagg gcgctgactt ccgcgtttcc agactttacg 5460 aaacacggaa accgaagacc attcatgttg ttgctcaggt cgcagacgtt ttgcagcagc 5520

50

agtegettea egttegeteg egtateggtg atteattetg etaaceagta aggeaacece 5580 gccagcctag ccgggtcctc aacgacagga gcacgatcat gcgcacccgt ggccaggacc 5640 5 caacgctgcc cgagatgcgc cgcgtgcggc tgctggagat ggcggacgcg atggatatgt 5700 tctgccaagg gttggtttgc gcattcacag ttctccgcaa gaattgattg gctccaattc 5760 10 ttggagtggt gaatccgtta gcgaggtgcc gccggcttcc attcaggtcg aggtggcccg 5820 gctccatgca ccgcgacgca acgcggggag gcagacaagg tatagggcgg cgcctacaat 5880 ccatgccaac ccgttccatg tgctcgccga ggcggcataa atcgccgtga cgatcagcgg 5940 15 tccagtgatc gaagttaggc tggtaagagc cgcgagcgat ccttgaagct gtccctgatg 6000 gtcgtcatct acctgcctgg acagcatggc ctgcaacgcg ggcatcccga tgccgccgga 6060 20 agcgagaaga atcataatgg ggaaggccat ccagcctcgc gtcgcgaacg ccagcaagac 6120 gtagcccagc gcgtcggccg ccatgccggc gataatggcc tgcttctcgc cgaaacgttt 6180 ggtggcggga ccagtgacga aggcttgagc gagggcgtgc aagattccga ataccgcaag 6240 25 cgacaggccg atcatcgtcg cgctccagcg aaagcggtcc tcgccgaaaa tgacccagag 6300 cgctgccggc acctgtccta cgagttgcat gataaagaag acagtcataa gtgcggcgac 6360 30 gatagtcatg ccccgcgccc accggaagga gctgactggg ttgaaggctc tcaagggcat 6420 cggtcgacgc tctcccttat gcgactcctg cattaggaag cagcccagta gtaggttgag 6480 gccgttgagc accgccgccg caaggaatgg tgcatgctcg atggctacga gggcagacag 6540 35 taagtggatt taccataatc ccttaattgt acgcaccgct aaaacgcgtt cagcgcgatc 6600 acggcagcag acaggtaaaa atggcaacaa accacctaa aaactgcgcg atcgcgcctg 6660 40 ataaatttta accgtatgaa tacctatgca accagagggt acaggccaca ttacccccac 6720 ttaatccact gaagctgcca tttttcatgg tttcaccatc ccagcgaagg gccatgcatg 6780 catcgaaatt aatacgacga aattaatacg actcactata gggcaattgc gatcaccaca 6840 45 attcagcaaa ttgtgaacat catcacgttc atctttccct ggttgccaat ggcccatttt 6900 cctgtcagta acgagaaggt cgcgaattca ggcgcttttt agactggtcg taatgaac 6958