## INTRODUCTION TO CATEGORY THEORY

## ROBERT CARDONA, MASSY KHOSHBIN, AND SIAVASH MORTEZAVI

ABSTRACT. Category Theory: Remain calm and carry on when all the mathematics you've ever known and loved gets abstracted away into dots and arrows.

## 0. MATH 697 Homework Zero

Exercise 0.1. (DF §10.2 Theorem 4): Prove Theorem 4 (Isomorphism Theorems):

(1) (The First Isomorphism Theorem for Modules) Let M, N be R-modules and let  $\varphi : M \to N$  be an R-modules homomorphism. Then  $\ker \varphi$  is a submodule of M and  $M/\ker \varphi \cong \varphi(M)$ .

*Proof.* Let M,N be R-modules and let  $\varphi:M\to N$  be an R-modules homomorphism. Then by definition  $\varphi(x+y)=\varphi(x)+\varphi(y)$  and  $\varphi(rx)=r\varphi(x)$  for all  $x,y\in M,\,r\in R$ . We want to show that  $\ker\varphi=\{m\in M:\varphi(m)=0\}$  is a submodule. Observe that since M is a module then M is an abelian group by definition so there exists  $0\in M$  such that m+0=m for all  $m\in M$ . In particular  $\varphi(0)=\varphi(0+0)=\varphi(0)+\varphi(0)$  implying  $\varphi(0)=0$ . Conclude that  $0\in\ker\varphi\neq\emptyset$ . Now let  $r\in R,\,x,y\in\ker\varphi$ . Observe that  $\varphi(x+ry)=\varphi(x)+\varphi(ry)=\varphi(x)+r\varphi(y)=0+r\cdot 0=0+0=0$ . Hence  $x+ry\in\ker\varphi$ . Conclude by the submodule criterion that  $\ker\varphi$  is in fact a submodule.

Now define  $\Phi: M/\ker \varphi \to \varphi(M)$  by  $\Phi(m + \ker \varphi) = \varphi(m)$ . We want to show that this mapping is a well-defined bijective homomorphism. We first show well-definedness. Suppose  $m + \ker \varphi = m' + \ker \varphi$  it follows by property of cosets that  $m - m' \in \ker \varphi$ , in particular  $\varphi(m - m') = \varphi(m) - \varphi(m') = 0$  and hence  $\varphi(m) = \varphi(m')$ . But since  $\varphi(m) = \Phi(m + \ker \varphi)$  and  $\varphi(m') = \Phi(m' + \ker \varphi)$  we have  $\Phi(m + \ker \varphi) = \Phi(m' + \ker \varphi)$ . Conclude that  $\Phi$  is in fact well-defined.

Suppose that  $\Phi(m + \ker \varphi) = \Phi(m' + \ker \varphi)$ . Then it follows that  $\varphi(m) = \varphi(m')$  and so  $\varphi(m - m') = 0$  and so  $m - m' \in \ker \varphi$ . By property of cosets it follows that  $m + \ker \varphi = m' + \ker \varphi$  and hence  $\Phi$  is injective.

Let  $n \in \varphi(M)$ . Then by definition of image of  $\varphi$  there exists  $m \in M$  such that  $n = \varphi(m)$ . It is immediate that  $m + \ker \varphi \in M/\ker \varphi$  and we can conclude that  $\Phi$  is surjective.

Now we must show that  $\Phi$  is an R-module homomorphism. Let  $x,y\in M/\ker\varphi$  where  $x=m+\ker\varphi$  and  $y=m'+\ker\varphi$  for some  $m,m'\in M$  and let  $r\in R$ . Observe that

$$\Phi(x+y) = \Phi(m+m'+\ker\varphi)$$

$$= \varphi(m+m')$$

$$= \varphi(m) + \varphi(m')$$

$$= \Phi(m+\ker\varphi) + \Phi(m'+\ker\varphi)$$

$$= \Phi(x) + \Phi(y)$$

and

$$\Phi(rx) = \Phi(r(m + \ker \varphi))$$

$$= \Phi(rm + \ker \varphi)$$

$$= \varphi(rm)$$

$$= r\varphi(m)$$

$$= r\Phi(m + \ker \varphi)$$

$$= r\Phi(x)$$

Hence we have shown that  $\Phi$  is a well-defined bijective homomorphism and thus we can conclude by definition of R-module isomorphism that  $M/\ker\varphi\cong\varphi(M)$ .

(2) (The Second Isomorphism Theorem) Let A, B be submodules of the R-module M. Then  $(A+B)/B \cong A/(A \cap B)$ .

Date: June 22, 2013.

*Proof.* Define  $\varphi: A \to (A+B)/B$  by  $\varphi(a) = a+B$ . This mapping is clearly well-defined. We want to show that  $\varphi$  is a homomorphism. Let  $r \in R$ ,  $a, a' \in A$  and observe that

$$\varphi(a + a') = a + a' + B$$
$$= a + B + a' + B$$
$$= \varphi(a) + \varphi(a')$$

and

$$\varphi(ra) = ra + B$$

$$= r(a + B)$$

$$= r\varphi(a)$$

and so  $\varphi$  is an R-module homomorphism by definition. Observe that  $\ker \varphi = \{a \in A : \varphi(a) = 0\} = \{a \in A : a + B = 0\} = \{a \in A : a \in B\} = A \cap B$ . Now let  $x \in (A+B)/B$  then x = a+b+B for some  $a \in A$ ,  $b \in B$ . But observe that a+b+B=a+B by absorbption. So  $\varphi$  is immediately surjective. In particular we have  $\varphi(A) = (A+B)/B$ . Conclude by the First Isomorphism Theorem for Modules that  $A/\ker \varphi = A/(A\cap B) \cong (A+B)/B = \varphi(A)$ .

(3) (The Third Isomorphism Theorem) Let M be an R-module, and let A and B be submodules of M with  $A \subseteq B$ . Then  $(M/A)/(B/A) \cong M/B$ .

*Proof.* Define  $\varphi M/A \to M/B$  by  $\varphi(m+A) = m+B$ . We need to show  $\varphi$  is well-defined. Suppose m+A=m'+A then  $m-m' \in A \subseteq B$  by property of cosets. It also follows that m+B=m'+B. Hence  $\varphi(m+A)=m+B=m'+B=\varphi(m'+A)$  and hence  $\varphi$  is well-defined.

Now we must show  $\varphi$  is an R-module homomorphism. Let  $m, m' \in M$  and  $r \in R$ . Observe that

$$\varphi((m+A) + (m'+a)) = \varphi(m+m'+A)$$

$$= m + m' + B$$

$$= (m+B) + (m'+B)$$

$$= \varphi(m+A) + \varphi(m'+A)$$

and

$$\varphi(r(m+A)) = \varphi(rm+A)$$

$$= rm + B$$

$$= r(m+A)$$

$$= r\varphi(m+A)$$

and hence we can conclude by definition that  $\varphi$  is an R-module homomorphism.

Observe that  $\ker \varphi = \{x \in M/A : \varphi(x) = 0\} = \{m + A^* \varphi(m + A) = m + B = 0\} = \{m + A : m \in B\} = B/A$ . Let  $m + B \in M/B$ . Clearly  $\varphi(m + A) = m + B$  and hence  $\varphi$  is surjective. Now by the First Isomorphism Theorem for Modules we have  $(M/A)/\ker \varphi = (M/A)/(B/A) \cong M/B = \varphi(M/A)$ .

(4) (The Fourth or Lattice Isomorphism Theorem) Let N be a submodule of the R-module M. There is a bijection between the submodules of M which contain N and the submodules of M/N. The correspondence is given by  $A \leftrightarrow A/N$ , for all  $A \supseteq N$ . The correspondence cummutes with the processes of taking sums and intersections (i.e., is a lattice isomorphism between the lattice of submodules of M/N and the lattice of submodules of M which contain N).

*Proof.* Let N be a submodule of M. Define  $S = \{K : K \text{ is a submodule of } M, N \subseteq K\}$ ,  $T = \{L : L \text{ is a submodule of } M/N\}$ . Define  $\varphi : S \to T$  by  $\varphi(K) = K/N$ . We want to show that this mapping is bijective.

Let  $K_1, K_2 \in S$  and suppose that  $\varphi(K_1) = \varphi(K_2)$ . Then  $K_1/N = K_2/N$ . We want to show that  $K_1 = K_2$ . Let  $x \in K_1$ , then  $x + N \in K_1/N = K_2/N$ , in particular there exists  $y \in K_2$  such that x + N = y + N. By property of cosets it follows that  $x - y \in N$ . But since  $N \subseteq K_2$  by construction  $x - y \in K_2$ . Since  $K_2$  is a submodule of M, it is closed under addition and so  $(x - y) + y = x \in K_2$ . Conclude that  $K_1 \subseteq K_2$ . By symmetric argument  $K_2 \subseteq K_1$  and hence  $K_1 = K_2$ . Thus by definition  $\varphi$  is injective.

Let L be a submodule of M/N. Consider the natural projection map  $\pi: M \to M/N$  defined by  $\pi(m) = m + N$ . We want to show that there exists  $K \in S$  such that  $\varphi(K) = L$ . To do this we will show that  $\pi^{-1}(L)$  is a submodule of M and that  $N \subseteq \pi^{-1}(L)$ . Recall that  $\pi^{-1}(L) = \{m \in M : \pi(m) \in L\}$ . Observe that  $0 \in \pi^{-1}(L)$  since  $\pi(0) = 0$  and hence  $\pi^{-1}(L) \neq \emptyset$ . Let  $x, y \in \pi^{-1}(L)$  and  $r \in R$ . Observe that  $\pi(x + ry) = \pi(x) + r\pi(y)$ . Since  $\pi(y) \in L$  by definition and L is a submodule of M/N, it follows that since scalar multiplication is closed  $r\pi(y) \in L$ . Thus it follows that  $\pi(x) + r\pi(y) \in L$  and hence  $x + ry \in \pi^{-1}(L)$ . Thus by the submodule criterion we can conclude that  $\pi^{-1}(L)$  is in fact a submodule. Now let  $n \in N$  and observe that  $\pi(n) = n + N = 0 + N \in L$  so by definition it follows that  $n \in \pi^{-1}(L)$ . Conclude that  $N \subseteq \pi^{-1}(L)$  and hence  $\varphi$  is surjective.

MATH 697 3

Conclude  $\varphi$  is bijective and result follows.

Exercise 0.2. (DF §10.2 Exercise 1): Use the submodule criterion to show that the kernels and images of R-module homomorphisms are submodules.

*Proof.* Let M, N be R-modules and  $\varphi: M \to N$  an R-module homomorphism. Recall that  $\ker \varphi = \{m \in M : \varphi(m) = 0\}$  and  $\operatorname{im} \varphi = \{n \in N : \text{there exists } m \in M \text{ with } \varphi(m) = n\}.$ 

Observe that  $\varphi(0) = 0$  so  $0 \in \ker \varphi \neq \emptyset$ . Let  $m, m' \in M$ ,  $r \in R$ . Now  $\varphi(m + rm') = \varphi(m) + r\varphi(m') = 0 + r \cdot 0 = 0 + 0 = 0$ . So  $m + rm' \in \ker \varphi$ . Thus by the submodule criterion  $\ker \varphi$  is a submodule.

Observe that  $\varphi(0) = 0 \in N$  so  $0 \in \operatorname{im} \varphi \neq \emptyset$ . Let  $n, n' \in N$ ,  $r \in R$ . Then there exists  $m, m' \in M$  such that  $\varphi(m) = n$  and  $\varphi(m') = n'$ . Now consider n + rn'.  $\varphi(m + rm') = \varphi(m) + r\varphi(m') = n + rn'$  so  $n + rn' \in \operatorname{im} \varphi$ . Conclude by submodule criterion that  $\operatorname{im} \varphi$  is in fact a submodule.

Exercise 0.3. (DF  $\S10.2$  Exercise 2): Show that the relation "is R-module isomorphic to" is an equivalence relation on any set of R-modules.

*Proof.* Let X be a set of R-modules.

- Let  $M \in X$ . Observe that M is isomorphic to M trivially. So relation is reflexive.
- Let  $M, N \in X$ . Suppose M is isomorphic to N then by definition there exists  $\varphi : M \to N$  that is bijective. Immediately we have  $\varphi^{-1} : N \to M$  which is also bijective so N is isomorphic to M. By definition the relation is symmetric.
- Let  $L, M, N \in X$ . Suppose L is isomorphic to M, then by definition there exists  $\varphi : L \to M$  a bijective R-module homomorphism. Suppose M is isomorphic to N, then there exists  $\Phi : M \to N$  a bijective R-module homomorphism. Observe that  $\varphi \circ \Phi : L \to N$  is again a bijective R-module homomorphism by property of composition of mappings. Hence by definition L is isomorphic to N.

Conclude that the relation "is R-module isomorphic to" is an equivalence relation on any set of R-modules.

Exercise 0.4. (DF §10.2 Exercise 3): Give an explicit example of a map from one R-module to another which is a group homomorphism but not an R-module homomorphism.

Solution. Consider the Quaternions  $\mathbb{H}=R$ ; they form a commutative group under addition and a noncommutative group under multiplication. Hence  $\mathbb{H}$  is a noncommutative ring with unity. In particular  $\mathbb{H}$  is an R-module over itself. Define  $\varphi:\mathbb{H}\to\mathbb{H}$  by  $\varphi(h)=ih$ . This is a group homomorphism since  $\varphi(h+h')=i(h+h')=ih+ih'=\varphi(h)+\varphi(h')$ . But note that  $\varphi(j\cdot 1)=\varphi(j)=ij=k\neq -k=ji=j(i\cdot 1)=j\varphi(1)$ . Conclude that  $\varphi$  is not an R-module homomorphism since the definition is not satisfied.

**Exercise 0.5.** (DF §10.2 Exercise 4): Let A be and  $\mathbb{Z}$ -module, let a be any element of A and let n be a positive integer. Prove that the map  $\varphi_a : \mathbb{Z}/n\mathbb{Z} \to A$  given by  $\varphi(\overline{k}) = ka$  is a well-defined  $\mathbb{Z}$ -module homomorphism if and only if na = 0. Prove that  $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A) \cong A_n$ , where  $A_n = \{a \in A : na = 0\}$  (So  $A_n$  is the annihilator in A of the ideal (n) of  $\mathbb{Z}$ ).

Proof. Suppose that the map  $\varphi_a: \mathbb{Z}/n\mathbb{Z} \to A$  given by  $\varphi(\overline{k}) = ka$  is a well-defined  $\mathbb{Z}$ -module homomorphism. Then by definition if  $\overline{m} = \overline{k}$  then  $\varphi(\overline{m}) = \varphi(\overline{k})$  or equivalently ma = ka. Moreover  $\varphi(a+b) = \varphi(a) + \varphi(b)$  and  $\varphi(ra) = r\varphi(a)$  for all  $a, b \in A$  and  $r \in \mathbb{Z}$ . Observe that  $\overline{0} = \overline{k}$  so by hypothesis  $\varphi(\overline{0}) = \varphi(\overline{k})$  but observe that  $\varphi(\overline{0}) = 0 \cdot a = 0$  and  $\varphi(\overline{k}) = ka$ . Hence by equality ka = 0. Conversely suppose that na = 0. We want to show that  $\varphi: \mathbb{Z}/n\mathbb{Z} \to A$  defined by  $\varphi(\overline{k}) = ka$  is a well-defined R-module homomorphism. Say  $\overline{k} = \overline{m}$  then by property of cosets  $k - m \in \mathbb{Z}/n\mathbb{Z}$  and so  $n \cong k - m$ . By definition  $n \mid k - m$  and hence there exists  $t \in \mathbb{Z}$  such that k - m = nt. Observe that

$$k - m = nt$$
$$(k - m)a = nta$$
$$ka - ma = (na)t$$
$$ka - ma = 0$$
$$ka = ma$$

Thus we have  $\varphi(\overline{k}) = \varphi(\overline{m})$  and we can conclude that  $\varphi$  is in fact a well-defined R-module homomorphism.

Now we want to show that  $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A) \cong A_n = \{a \in A : na = 0\}$ . Note: We are making the assumption that we want to show this in an isomorphism of R-modules as exercise does not specify group, ring or module isomorphism. Define  $\Phi: A_n \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},A)$  by  $\Phi(a) = \varphi_a$ . We will show that this is in fact an R-module homomorphism, then that is a bijection.

Let  $a, a' \in A_n, r \in \mathbb{Z}$ . Observe that

$$\begin{split} \Phi(a+a')(\overline{k}) &= \varphi_{a+a'}(\overline{k}) \\ &= (a+a')k \\ &= ak + a'k \\ &= \varphi_a(\overline{k}) + \varphi_{a'}(\overline{k}) \end{split}$$

$$= \Phi(a)(\overline{k}) + \Phi(a')(\overline{k})$$

So  $\Phi(a+a') = \Phi(a) + \Phi(a')$  by definition. Moreover

$$\Phi(ra)(\overline{k}) = \varphi_{ra}(\overline{k})$$

$$= rak$$

$$= r\varphi_{a}(\overline{k})$$

$$= r\Phi(a)(\overline{k})$$

Hence  $\Phi(ra) = r\Phi(a)$  by definition. Conclude by definition that  $\Phi$  is in fact an R-module homomorphism.

Recall that  $\ker \Phi = \{a \in A_n : \Phi(a) = 0\}$  and observe that

$$\begin{split} \ker \varphi &= \{a \in A_n : \Phi(a) = 0\} \\ &= \{a \in A_n : \varphi_a(\overline{k}) = 0 \text{ for all } \mathbf{k} \in \mathbb{Z}/n\mathbb{Z}\} \\ &= \{0\} \end{split}$$

So we conclude that  $\ker \Phi = \{0\}$  and hence  $\Phi$  is injective.

Let  $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, A_n)$ . Define  $a = \varphi(\overline{1})$  and hence  $na = n\varphi(\overline{1}) = \varphi(n\overline{1}) = \varphi(\overline{n}) = \varphi(\overline{0}) = 0$  and hence  $a \in A_n$ . Observe that for all  $\overline{k} \in \mathbb{Z}/n\mathbb{Z}$  it follows that  $\varphi(\overline{k}) = \varphi(\overline{k} \cdot \overline{1}) = \varphi(k\overline{1}) = k\varphi(\overline{1}) = ka = \varphi_a(\overline{k})$ . Thus by definition  $\varphi = \varphi_a$ . So for any  $\varphi \in \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, A_n)$  we can find  $a \in A_n$  such that  $\Phi(a) = \varphi_a = \varphi$ . Conclude by definition that  $\Phi(a) = \varphi_a = \varphi$ .

Now applying the First Isomorphism Theorem for R-modules we can conclude that  $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},A_n)\cong A_n$ .

**Exercise 0.6.** (DF §10.2 Exercise 5):

Exercise 0.7. (DF  $\S10.2$  Exercise 6):

**Exercise 0.8.** (DF §10.2 Exercise 7): Let z be a fixed element of the center of R. Prove that the map  $m \to zm$  is an R-module homomorphism from M to itself. Show that for a commutative ring R the map from R to  $\operatorname{End}_R M$  given by  $r \to rI$  is a ring homomorphism (where I is the identity endomorphism).)

*Proof.* Recall that the center of R is  $\{z \in R : zr = rz \text{ for all } r \in R\}$ . Let z be in the center of R then by definition zr = rz for all  $r \in R$ . Define  $\varphi : M \to M$  by  $\varphi(m) = zm$ . We claim that this is an R-module homomorphism. Let  $m, m' \in M$ ,  $r \in R$ . Observe that  $\varphi(m+m') = z(m+m')zm + zm' = \varphi(m) + \varphi(m')$  and  $\varphi(rm) = zrm = rzm = r\varphi(m)$ . Conclude by definition that  $\varphi$  is in fact an R-module homomorphism.

Note: We are making the assumption that "I being the identity endomorphism" means multiplicative identity. Now let R be a commutative ring and define  $\Phi: R \to \operatorname{End}_R(M)$  by  $\Phi(r) = rI$  where  $I: M \to M$ , defined by I(m) = m, is the identity endomorphism. We want to show that  $\Phi$  is a ring homomorphism. Let  $r, s \in R$  and observe that for all  $m \in M$ 

$$\begin{split} \Phi(r+s)(m) &= (r+s)I(m) \\ &= (r+s)m \\ &= rm + rs \\ &= rI(m) + sI(m) \\ &= \Phi(r)(m) + \Phi(s)(m) \end{split}$$

So by definition  $\Phi(r+s) = \Phi(r) + \Phi(s)$ . Moreover,

$$\Phi(rs) = rsI(m)$$

$$= rsI(m)I(m)$$

$$= rI(m) \cdot sI(m)$$

$$= \Phi(r)(m)\Phi(s)(m)$$

And hence  $\Phi(rs) = \Phi(r)\Phi(s)$  and we can conclude by definition that  $\Phi$  is a ring homomorphism.

**Exercise 0.9.** (DF §10.2 Exercise 8): Let  $\varphi: M \to N$  be an R-module homomorphism. Prove that  $\varphi(\text{Tor}(M)) \subseteq \text{Tor}(N)$ .

Proof. Recall that  $\operatorname{Tor}(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in R\}$ . Now it follows that  $\varphi(\operatorname{Tor}(M)) = \{n \in N : n = \varphi(m) \text{ for some } m \in \operatorname{Tor}(M)\}$ . Let  $n \in \varphi(\operatorname{Tor}(M))$  then  $n = \varphi(m)$  for some  $m \in \operatorname{Tor}(M)$  by definition. Since  $m \in \operatorname{Tor}(M)$  there exists  $0 \neq r \in R$  such that rm = 0. Hence  $rn = r\varphi(m) = \varphi(rm) = \varphi(0) = 0$ . Conclude that  $n \in \operatorname{Tor}(N)$  and hence  $\varphi(\operatorname{Tor}(M)) \subseteq \operatorname{Tor}(N)$ .

**Exercise 0.10.** (DF §10.2 Exercise 9): Let R be a commutative ring. Prove that  $\operatorname{Hom}_R(R, M)$  and M are isomorphic as left R-modules.

MATH 697 5

*Proof.* Define  $\Phi: \operatorname{Hom}_R(R,M) \to M$  by  $\Phi(\varphi) = \varphi(1)$ . We must first show that this is in fact an R-module homomorphism. Observe that for all  $\varphi, \xi \in \operatorname{Hom}_R(R,M)$  and all  $r \in R$  it follows that

$$\Phi(\varphi + \xi) == (\varphi + \xi)(1)$$

$$= \varphi(1) + \varphi(\xi)$$

$$= \Phi(\varphi) + \Phi(\xi)$$

and also by Proposition 2 we have

$$\Phi(r\varphi) = (r\varphi)(1)$$
$$= r\varphi(1)$$
$$= r\Phi(\varphi)$$

Hence we can now conclude that  $\Phi$  is an R-module homomorphism.

We must now show that  $\Phi$  is injective. Suppose that  $\Phi(\varphi) = \Phi(\xi)$  then by definition  $\varphi(1) = \xi(1)$  or equivalently  $\varphi(1) - \xi(1) = 0$  and hence  $(\varphi - \xi)(1) = 0$ . But since  $\varphi - \xi \in \operatorname{Hom}_R(R, M)$  it is an R-module homomorphism so  $(\varphi - \xi)(x) = (\varphi - \xi)(x \cdot 1) = x(\varphi - \xi)(1) = x \cdot 0 = 0$  for all  $x \in R$ . Conclude that  $\varphi(x) = \xi(x)$  for all  $x \in R$  and hence by definition  $\varphi = \xi$ . Conclude that  $\Phi$  is inective.

We must now show that  $\Phi$  is surjective. Let  $m \in M$  be arbitrary. We want to show that there exists  $\varphi \in \operatorname{Hom}_R(R,M)$  such that  $\Phi(\varphi) = m$ . Let us define  $\varphi : R \to M$  by  $\varphi(x) = xm$ . We need to show that  $\varphi \in \operatorname{Hom}_R(R,M)$ . Observe that  $\varphi(x+y) = (x+y)m = xm + ym = \varphi(x) + \varphi(y)$  for all  $x, y \in R$  and  $\varphi(rx) = rxm = r\varphi(x)$  for all  $x \in R$ ,  $r \in R$ . Hence we have shown that  $\varphi$  is in fact an R-module homomorphism. Now observe that  $\Phi(\varphi) = \varphi(1) = 1 \cdot m = m$ . Conclude by definition that  $\Phi$  is surjective.

We have shown that  $\Phi$  is a bijective R-module homomorphism. Conclude that  $\operatorname{Hom}_R(R,M) \cong M$ .

**Exercise 0.11.** (DF §10.2 Exercise 10): Let R be a commutative ring. Prove that  $\operatorname{Hom}_R(R,R)$  and R are isomorphic as rings.

*Proof.* Define  $\Phi: \operatorname{Hom}_R(R,R) \to R$  by  $\Phi(\varphi) = \varphi(1)$ . We will first show that  $\Phi$  is a ring homomorphism. Observe that for all  $\varphi, \xi \in \operatorname{Hom}_R(R,R)$  and all  $r \in R$  by Proposition 2 we have

$$\Phi(\varphi + \xi) = (\varphi + \xi)(1)$$
$$= \varphi(1) + \xi(1)$$
$$= \Phi(\varphi) + \Phi(\xi)$$

and also by property of commutativity

$$\begin{split} \Phi(\varphi \circ \xi) &= (\varphi \circ \xi)(1) \\ &= \varphi(\xi(1)) \\ &= \varphi(\xi(1) \cdot 1) \\ &= \xi(1)\varphi(1) \\ &= \varphi(1)\xi(1) \\ &= \Phi(\varphi)\Phi(\xi) \end{split}$$

Hence we can conclude that  $\Phi$  is in fact a ring homomorphism.

We must now show that  $\Phi$  is injective. Suppose that  $\Phi(\varphi) = \Phi(\xi)$  then by definition  $\varphi(1) = \xi(1)$  or equivalently  $\varphi(1) - \xi(1) = 0$  and hence  $(\varphi - \xi)(1) = 0$ . But since  $\varphi - \xi \in \operatorname{Hom}_R(R,R)$  it is an R-module homomorphism so  $(\varphi - \xi)(x) = (\varphi - \xi)(x \cdot 1) = x(\varphi - \xi)(1) = x \cdot 0 = 0$  for all  $x \in R$ . Conclude that  $\varphi(x) = \xi(x)$  for all  $x \in R$  and hence by definition  $\varphi = \xi$ . Conclude that  $\Phi$  is inective.

We must now show that  $\Phi$  is surjective. Let  $r \in R$  be arbitrary. We want to show that there exists  $\varphi \in \operatorname{Hom}_R(R,R)$  such that  $\Phi(\varphi) = r$ . Let us define  $\varphi: R \to R$  by  $\varphi(x) = xr$ . We need to show that  $\varphi \in \operatorname{Hom}_R(R,R)$ . Observe that  $\varphi(x+y) = (x+y)r = xr + yr = \varphi(x) + \varphi(y)$  for all  $x,y \in R$  and  $\varphi(x) = xr = x\varphi(x)$  for all  $x \in R$  and all  $x \in R$ . Hence we have shown that  $\varphi$  is in fact an R-module homomorphism. Now observe that  $\Phi(\varphi) = \varphi(1) = 1 \cdot r = r$ . Conclude by definition that  $\Phi$  is surjective.

We have shown that  $\Phi$  is a bijective ring homomorphism. Conclude that  $\operatorname{Hom}_R(R,R) \cong R$ .

**Exercise 0.12.** (DF §10.2 Exercise 11): Let  $A_1, A_2, \ldots, A_n$  be R-modules and let  $B_i$  be submodules of  $A_i$  for each  $i = 1, 2, \ldots, n$ . Prove that

П

$$(A_1 \times A_2 \times \cdots \times A_n)/(B_1 \times B_2 \times \cdots \times B_n) \cong (A_1/B_1) \times (A_2/B_2) \times \cdots \times (A_n/B_n).$$

*Proof.* Define  $\varphi: A_1 \times A_2 \times \cdots \times A_n \to (A_1/B_1) \times (A_2/B_2) \times \cdots \times (A_n/B_n)$  by  $\varphi(a_1, a_2, \dots, a_n) = (a_1+B_1, a_2+B_2, \dots, a_n+B_n)$ . We want to show that this is an R-module homomorphism and that  $\ker \varphi = B_1 \times B_2 \times \cdots \times B_n$  and that the mapping is surjective. Then the first isomorphism theorem for modules yields the result.

Let 
$$x, y \in A_1 \times A_2 \times \cdots \times A_n$$
 where  $x = (a_1, a_2, \dots, a_n)$  and  $y = (a'_1, a'_2, \dots, a'_n)$ . Observe that 
$$\varphi(x + y) = \varphi((a_1, a_2, \dots, a_n) + (a'_1, a'_2, \dots, a'_n))$$

$$= \varphi(a_1 + a'_1, a_2 + a'_2, \dots, a_n + a'_n)$$

$$= (a_1 + a'_1 + B_1, a_2 + a'_2 + B_2, \dots, a_n + a'_n + B_n)$$

$$= (a_1 + B_1 + a'_1 + B_1, a_2 + B_2 + a'_2 + B_2, \dots, a_n + B_n + a'_n + B_n)$$

$$= (a_1 + B_1, a_2 + B_2, \dots, a_n + B_n) + (a'_1 + B_1, a'_2 + B_2, \dots, a'_n + B_n)$$

$$= \varphi(a_1, a_2, \dots, a_n) + \varphi(a'_1, a'_2, \dots, a'_n)$$

$$= \varphi(x) + \varphi(y)$$

and for  $r \in R$ 

$$\varphi(rx) = \varphi(r(a_1, a_2, \dots, a_n))$$

$$= \varphi(ra_1, ra_2, \dots, ra_n)$$

$$= (ra_1 + B_1, ra_2 + B_2, \dots, ra_n + B_n)$$

$$= (r(a_1 + B_1), r(a_2 + B_2), \dots, r(a_n + B_n))$$

$$= r(a_1 + B_1, a_2 + B_2, \dots, a_n + B_n)$$

$$= r\varphi(a_1, a_2, \dots, a_n)$$

$$= r\varphi(x)$$

Thus by definition we can conclude that  $\varphi$  is an R-moduel homomorphism.

Now we want to show that  $\ker \varphi = B_1 \times B_2 \times \cdots \times B_n$ . Observe that

$$\ker \varphi = \{x \in A_1 \times A_2 \times \dots \times A_n : \varphi(x) = 0\}$$

$$= \{(a_1, a_2, \dots, a_n) \in A_1 \times A_2 \times \dots \times A_n : \varphi(a_1, a_2, \dots, a_n) = 0\}$$

$$= \{(a_1, a_2, \dots, a_n) \in A_1 \times A_2 \times \dots \times A_n : (a_1 + B_1, a_2 + B_2, \dots, a_n + B_n) = (0, 0, \dots, 0)\}$$

$$= \{(a_1, a_2, \dots, a_n) \in A_1 \times A_2 \times \dots \times A_n : a_1 \in B_1, a_2 \in B_2, \dots, a_n \in B_n\}$$

Hence  $\ker \varphi \subseteq B_1 \times B_2 \times \cdots \times B_n$  and trivially  $B_1 \times B_2 \times \cdots \times B_n \subseteq \ker \varphi$  by construction of  $\varphi$ . Conclude that  $\ker \varphi = B_1 \times B_2 \times \cdots \times B_n$ .

The mapping is trivially surjective. Applying first Isomorphism theorem yields the result.

 $\label{lem:department} \begin{tabular}{ll} Department of Mathematics, California State University Long Beach $E$-mail $address$: mrrobertcardona@gmail.com and massy255@gmail and siavash.mortezavi@gmail.$