ECE 884 Deep Learning

Lecture 6: Loss Function

02/04/2021

Logistics

- Google sheet
 - Please form your groups ASAP
- 02/11/2021: Presentations of the Project Ideas
 - Each group has 10mins presentation + 3mins Q&A
 - Please prepare your presentation slides with the following items
 - What topic you aim to work on?
 - What are the existing works?
 - How your idea is different from existing ones?
 - What are the expected results?
 - What is the impact?

Review of last lecture

- Function form#2: parametric linear models
- Function form#3: parametric nonlinear models (DL models)
 - Understand why deep learning models are powerful and importance of massive computation and large data sets.

Today's lecture

- Loss Function
 - What it is, what is it for?
 - Example: cross-entropy loss function

Recall: Task#1: function form

Task#1: function form

Formulation:

- Given training data: {(x₁,y₁), ..., (x_N,y_N)},
- Find $y = f(x) \in "$ using training data
- such that f is correct on test data

Score Function

Decision Regions

(Linear) Score Function

$$f(x,W) = Wx + b$$

Given a W (and b), we can compute a score for each class given an input x.

Score Function

Decision Regions

(Linear) Score Function

$$f(x,W) = Wx + b$$

Good classifier: output a high score for the correct class, and a low score for the wrong class.

What is loss function: a loss function is a function that measures how good our classifier is.

Low loss = good classifier

High loss = bad classifier

Input

Output

Function form

Input of the loss function

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Output: Loss for a single data {xi, yi} $L_i(f(x_i, W), y_i)$

Output: Loss for a single data

$$L_i(f(x_i, W), y_i)$$

Output: Loss for the whole training data set with N data samples

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Loss Function has different forms

Loss Function has different forms

Different problems have different loss functions

- CV
- NLP
- Speech

Cross-Entropy Loss Function

- One of the most commonly used ones in deep learning
- Nice property: interpret as probabilities

Input: Xi

Stretch pixels into column **56** 231 24 **24** Input image 2 Xi

Xi

Output: Yi

One-hot encoding

Input -> Score Function

Measure how good the classifier by comparing:

raw classifier scores (logits)

3.2

5.1

-1.7

One-hot encoding

1

0

0

Measure how good the classifier by comparing:

raw classifier scores (logits)

This is Not probability

One-hot encoding

Softmax Transformation

logits
$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_{j} \exp(s_j)}$$

Softmax Transformation

raw classifier scores (logits)

This is Not probability

This is probability

Measure the distance between 2 probability vectors

Softmax One-hot encoding 0.12 Cross Entropy 0 0.87 0 0.01 True Label

Measure the distance between 2 probability vectors

Measure the distance between 2 probability vectors

Softmax

q

0.12

0.87

0.01

Cross Entropy

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Only with one-hot

One-hot encoding

p

1

0

0

Q: What is the min/max possible loss L_i?

A: Min 0, max+infinity

Measure the distance between 2 probability vectors

Softmax One-hot encoding p

0.12

Cross Entropy

0.87

0.01

 $L_i = -\log P(Y = y_i \mid X = x_i)$

Only with one-hot

1

0

0

Q: If all scores are small random values, what is the loss?

Measure the distance between 2 probability vectors

Softmax

q

0.12

0.87

0.01

Cross Entropy

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Only with one-hot

One-hot encoding

p

1

0

0

Q: If all scores are small random values, what is the loss?

A: -log(1/C)

 $\log(10) \approx 2.3$

Summary

Any Question?