Statistics for Business and Economics 7th Edition

Chapter 10

Hypothesis Testing: Additional Topics

Chapter Goals

After completing this chapter, you should be able to:

- Test hypotheses for the difference between two population means
 - Two means, matched pairs
 - Independent populations, population variances known
 - Independent populations, population variances unknown but equal
- Complete a hypothesis test for the difference between two proportions (large samples)
- Use the chi-square distribution for tests of the variance of a normal distribution
- Use the F table to find critical F values
- Complete an F test for the equality of two variances

Two Sample Tests

Two Sample Tests

Population Means,
Dependent
Samples

Population
Means,
Independent
Samples

Population Proportions

Population Variances

Examples:

Same group before vs. after treatment

Group 1 vs. independent Group 2

Proportion 1 vs. Proportion 2

Variance 1 vs. Variance 2

Dependent Samples

Dependent Samples

Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$d_i = x_i - y_i$$

- Assumptions:
 - Both Populations Are Normally Distributed

Test Statistic: Dependent Samples

Dependent Samples

The test statistic for the mean difference is a t value, with n – 1 degrees of freedom:

$$t = \frac{\bar{d} - D_0}{\frac{s_d}{\sqrt{n}}}$$

where
$$\overline{d} = \frac{\sum d_i}{n} = \overline{x} - \overline{y}$$

 D_0 = hypothesized mean difference s_d = sample standard dev. of differences n = the sample size (number of pairs)

Decision Rules: Matched Pairs

Matched or Paired Samples

Lower-tail test:

 $H_0: \mu_x - \mu_y \ge 0$

 H_1 : $\mu_x - \mu_v < 0$

Upper-tail test:

 $H_0: \mu_x - \mu_y \le 0$

 $H_1: \mu_x - \mu_v > 0$

Two-tail test:

 H_0 : $\mu_x - \mu_y = 0$

 $H_1: \mu_x - \mu_v \neq 0$

Reject H_0 if $t < -t_{n-1, \alpha}$

Reject H_0 if $t > t_{n-1, \alpha}$

Where
$$t = \frac{\overline{d} - D_0}{\frac{s_d}{\sqrt{n}}}$$
 has $n - 1$ d.f.

Matched Pairs Example

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? You collect the following data:

Salesperson	Number of Before (1)	Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>d</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

$$= -4.2$$

$$S_{d} = \sqrt{\frac{\sum (d_{i} - \overline{d})^{2}}{n-1}}$$

$$= 5.67$$

Matched Pairs: Solution

■ Has the training made a difference in the number of complaints (at the $\alpha = 0.05$ level)?

$$H_0: \mu_x - \mu_y = 0$$

 $H_1: \mu_x - \mu_y \neq 0$

$$\alpha = .05$$
 $\overline{d} = -4.2$

Critical Value =
$$\pm 2.776$$

d.f. = n - 1 = 4

Test Statistic:

$$t = \frac{\bar{d} - D_0}{s_d / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = -1.66$$

Decision: Do not reject H_0 (t stat is not in the reject region)

Conclusion: There is not a significant change in the number of complaints.

Difference Between Two Means

Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_x - \mu_y$

- Different populations
 - Unrelated
 - Independent
 - Sample selected from one population has no effect on the sample selected from the other population
 - Normally distributed

Difference Between Two Means

(continued)

σ_x^2 and σ_y^2 Known

*

Population means, independent samples

 σ_x^2 and σ_y^2 known

 σ_x^2 and σ_y^2 unknown

Assumptions:

- Samples are randomly and independently drawn
- both population distributions are normal
- Population variances are known

σ_x^2 and σ_y^2 Known

(continued)

Population means, independent samples

 σ_x^2 and σ_v^2 known

 σ_x^2 and σ_v^2 unknown

When σ_x^2 and σ_y^2 are known and both populations are normal, the variance of $\overline{X} - \overline{Y}$ is

$$\sigma_{\overline{X}-\overline{Y}}^2 = \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}$$

...and the random variable

$$Z = \frac{(\overline{x} - \overline{y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_x^2}{n_X} + \frac{\sigma_y^2}{n_Y}}}$$

has a standard normal distribution

Test Statistic, σ_x^2 and σ_y^2 Known

Population means, independent samples

 σ_x^2 and σ_v^2 known

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ unknown

$$H_0: \mu_x - \mu_y = D_0$$

The test statistic for

$$\mu_x - \mu_y$$
 is:

$$z = \frac{(\overline{x} - \overline{y}) - D_0}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}$$

Hypothesis Tests for Two Population Means

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_x \ge \mu_y$$

 $H_1: \mu_x < \mu_y$
i.e.,

$$H_0: \mu_x - \mu_y \ge 0$$

 $H_1: \mu_x - \mu_y < 0$

Upper-tail test:

$$H_0: \mu_x \le \mu_y$$

 $H_1: \mu_x > \mu_y$
i.e.,

$$H_0$$
: $\mu_x - \mu_y \le 0$
 H_1 : $\mu_x - \mu_v > 0$

Two-tail test:

$$H_0$$
: $\mu_x = \mu_y$
 H_1 : $\mu_x \neq \mu_y$
i.e.,

$$H_0$$
: $\mu_x - \mu_y = 0$
 H_1 : $\mu_x - \mu_y \neq 0$

Decision Rules

Two Population Means, Independent Samples, Variances Known

Lower-tail test:

 $H_0: \mu_x - \mu_y \ge 0$

 H_1 : $\mu_x - \mu_v < 0$

Upper-tail test:

 $H_0: \mu_x - \mu_y \le 0$

 H_1 : $\mu_x - \mu_y > 0$

Two-tail test:

 H_0 : $\mu_x - \mu_y = 0$

 $H_1: \mu_x - \mu_y \neq 0$

Reject H_0 if $z < -z_{\alpha}$

Reject H_0 if $z > z_{\alpha}$

Reject H_0 if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$

σ_x² and σ_y² Unknown, Assumed Equal

Population means, independent samples

 σ_x^2 and σ_y^2 known

 σ_x^2 and σ_v^2 unknown

 σ_x^2 and σ_y^2 assumed equal

*

 σ_x^2 and σ_y^2 assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

σ_x² and σ_y² Unknown, Assumed Equal

(continued)

Population means, independent samples

 σ_x^2 and σ_y^2 known

 σ_x^2 and σ_v^2 unknown

 σ_x^2 and σ_y^2 assumed equal

 σ_x^2 and σ_y^2 assumed unequal

- The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ
- use a t value with (n_x + n_y - 2) degrees of freedom

Test Statistic, σ_x^2 and σ_v^2 Unknown, Equal

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ unknown

 σ_x^2 and σ_y^2 assumed equal

σ_x² and σ_y² assumed unequal The test statistic for

$$\mu_x - \mu_y$$
 is:

$$t = \frac{(\overline{x} - \overline{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}}}$$

Where t has $(n_1 + n_2 - 2)$ d.f.,

and

$$s_{p}^{2} = \frac{(n_{x} - 1)s_{x}^{2} + (n_{y} - 1)s_{y}^{2}}{n_{x} + n_{y} - 2}$$

Decision Rules

Two Population Means, Independent Samples, Variances Unknown

Lower-tail test:

 $H_0: \mu_x - \mu_y \ge 0$

 H_1 : $\mu_x - \mu_y < 0$

Upper-tail test:

 $H_0: \mu_x - \mu_y \le 0$

 $H_1: \mu_x - \mu_y > 0$

Two-tail test:

 H_0 : $\mu_x - \mu_y = 0$

 $H_1: \mu_x - \mu_y \neq 0$

Reject H_0 if $t < -t_{(n1+n2-2), \alpha}$

Reject H_0 if $t > t_{(n1+n2-2), \alpha}$

Reject H₀ if

$$t < -t_{(n1+n2-2), \alpha/2}$$
 or

 $t > t_{(n1+n2-2), \alpha/2}$

Pooled Variance t Test: Example

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

Number Sample mean Sample std dev

NYSE	NASDAQ	
21	25	
3.27	2.53	
1.30	1.16	

Assuming both populations are approximately normal with equal variances, is there a difference in average yield ($\alpha = 0.05$)?

Calculating the Test Statistic

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)} = 1.5021$$

Solution

2.040

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 21 + 25 - 2 = 44$$

Critical Values: t = ± 2.0154

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence of a difference in means.

σ_x^2 and σ_y^2 Unknown, Assumed Unequal

Population means, independent samples

 σ_x^2 and σ_y^2 known

 σ_{x}^{2} and σ_{y}^{2} unknown

σ_x² and σ_y² assumed equal

 σ_x^2 and σ_y^2 assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown and assumed unequal

σ_x^2 and σ_y^2 Unknown, Assumed Unequal

(continued)

Population means, independent samples

 σ_x^2 and σ_y^2 known

 σ_{x}^{2} and σ_{v}^{2} unknown

σ_x² and σ_y² assumed equal

 σ_x^2 and σ_y^2 assumed unequal

Forming interval estimates:

- The population variances are assumed unequal, so a pooled variance is not appropriate
- use a t value with v degrees of freedom, where

$$v = \frac{\left[\left(\frac{s_x^2}{n_x} \right) + \left(\frac{s_y^2}{n_y} \right) \right]^2}{\left(\frac{s_x^2}{n_x} \right)^2 / (n_x - 1) + \left(\frac{s_y^2}{n_y} \right)^2 / (n_y - 1)}$$

Test Statistic, σ_x^2 and σ_v^2 Unknown, Unequal

 σ_x^2 and σ_y^2 assumed equal

 σ_x^2 and σ_y^2 assumed unequal

The test statistic for

$$\mu_x - \mu_y$$
 is:

$$t = \frac{(\overline{x} - \overline{y}) - D_0}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}$$

Where t has ν degrees of freedom:

$$v = \frac{\left[\left(\frac{s_x^2}{n_x} \right) + \left(\frac{s_y^2}{n_y} \right) \right]^2}{\left(\frac{s_x^2}{n_x} \right)^2 / (n_x - 1) + \left(\frac{s_y^2}{n_y} \right)^2 / (n_y - 1)}$$