An On-chip learning Neuromorphic Accelerator for Wireless Edge Al application

Muhammad Farhan Azmine

- Committee Members
- Dr. Yang (Cindy) Yi
- Dr. Dong Sam Ha
- Dr. Creed F. Jones
- Dr. Xiaoting Jia
- Dr. Jeffrey Walling

Outline

- Introduction
- **-** Challenges
- State of the Art
- Research improvement (Concept)
- Detailed Hardware Implementation (Novelty)
- Performance Analysis
- **Summary**
- **Future Work**
- **Acknowledgement**
- **Reference**

About me

- Educational Background
 - BSc in Electrical and Electronic Engineering in Bangladesh University of Engineering & Technology (BUET)
 - Direct PhD (Fourth Semester) in Virginia Tech CPE
- Research Interest
 - Hardware Accelerator for AI
 - Spiking Neural Network Accelerator on FPGA
- Publications
 - Lin, Chunxiao, Muhammad Farhan Azmine, and Yang Yi. "Accelerating Next-G Wireless Communications with FPGA-Based AI Accelerators." 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023.
 - Lin, Chunxiao, Muhammad Farhan Azmine, Yibin Liang, and Yang Yi. "Leveraging neuro-inspired AI accelerator for high-speed computing in 6G networks." *Frontiers in Computational Neuroscience* 18 (2024): 1345644.

Importance of Edge Computing based AI hardware

- **Exponential growth** of IoT (Internet of Things) applications
- **Extensive workload on Data centers**
- Incurs high latency
- High network bandwidth usage
- Industry and research effort to push AI computing to network edge

What is Edge AI and Why?

- Combination of computation on end edge of network and AI applications
- **Traditional AI applications** are cloud driven
- Worsens latency in network connection
- Increased communication cost
- Privacy concerns

Figure: Network hierarchy for edge Al applications [2]

Edge cloud and Edge AI [2]

- Computations being performed as close to data sources as possible
- Edge computing can decentralize the cloud to edge nodes
- Data can be sent to edge nodes to be processed for machine learning
- Creating edge cloud

Figure: Data is analyzed on-device, and the processed insights of multiple edge devices are gathered in the cloud [2]

Spike based-Computing for Edge AI

- Building up dedicated energy efficient accelerator for AI training is crucial
- Human brain can perform 1000 petaflops of instructions against supercomputers which perform 1100 petaflop instructions!!
- Human brain can perform using only 20 Wh/100
 Wh power against supercomputers that uses 5-20
 MWh power

Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, and Bill Kay. "Opportunities for neuromorphic computing algorithms and applications." *Nature Computational Science* 2, no. 1 (2022): 10-19. [4]

Shrestha, Amar, et al. "A survey on neuromorphic computing: Models and hardware." *IEEE Circuits and Systems Magazine* 22.2 (2022): 6-35. [5]

Spike Based On Chip Training

- Leveraging on-chip training on hardware accelerator can benefit Edge AI
- So far, the ANN based accelerators use off-line software training and inference on hardware
- Spiking networks use local learning vs propagation-based learning of ANN

Why LSM?

- Simpler Network (Less parameters)
- Sparse Spike based computation
- Local learning (No back propagation needed)
- Avoidance of Overfitting
- Hardware friendly design

Figure : Liquid State Machine Network

- $s[t] = (1-c)s[t-1] + c \cdot f_{activation}(W_{in}^T x[t] + W_{res}^T s[t-1]);$
- $y[t] = (W_readout)^T * (s[t])$

Challenges?

- Accuracy: Poorer performance because of low complex learning
- Solution: Find out combination of unsupervised local learning in reservoir and supervised learning in readout layer

Figure : Liquid State Machine Network

- $s[t] = (1-c)s[t-1] + c \cdot f_{activation}(W_{in}^T x[t] + W_{res}^T s[t-1]);$
- $y[t] = (W_readout)^T * (s[t])$

- Peng Li et ai. [6] Developed LSM in FPGA for speech signal recognition
- Developed two types of separate neuron named as LE (Learning Element)
 and OE (Output Element)

Figure: LSM network by Peng Li et ai [6]

Neuron Structure (LE and OE)

LIF spiking equation :

$$V_{mem}(t) = V_{mem}(t-1) - \frac{V_{mem}(t-1)}{\tau} + R_{+} - R_{-}$$

$$R_{+} = \frac{ES_{+} - ES_{-}}{\tau_{ES_{+}} - \tau_{ES_{-}}}, \quad R_{-} = \frac{IS_{+} - IS_{-}}{\tau_{IS_{+}} - \tau_{IS_{-}}}$$

SRU (Synaptic Response Unit) calculation .

$$\begin{cases} ES_{+}(t) = ES_{+}(t-1)(1-1/\tau_{ES_{+}}) + \sum w_{i} \cdot E_{+}(i) \\ ES_{-}(t) = ES_{-}(t-1)(1-1/\tau_{ES_{-}}) + \sum w_{i} \cdot E_{+}(i) \\ IS_{+}(t) = IS_{+}(t-1)(1-1/\tau_{IS_{+}}) + \sum w_{i} \cdot E_{-}(i) \\ IS_{-}(t) = IS_{-}(t-1)(1-1/\tau_{IS_{-}}) + \sum w_{i} \cdot E_{-}(i) \end{cases}$$

Figure: Digital Neuron by Peng Li et ai [7]

Figure: SRU unit by Peng Li et ai [7]

LSM Learning (Spike-timing-dependent-plasticity)

STDP Equation

Reward-based STDP equation:

$$ext{Weight}_{ij} = ext{Weight}_{ij} + \eta \cdot \Delta w_{ij}^{ ext{potentiation/depression}}$$

Where:

$$\Delta w_{ij}^{potentiation} = A_{pos} \cdot \exp(-\frac{\Delta t_{potentiation}}{\tau_{pos}})$$

$$\Delta w_{ij}^{depression} = -A_{\rm neg} \cdot \exp(-\frac{\Delta t_{depression}}{\tau_{\rm neg}})$$

MakeAGIF.con

Figure: STDP GIF

Figure : STDP nearest neighbor by Y. Jin et ai [8]

LSM Learning (Spike-timing-dependent-plasticity)

STDP Equation

Reward-based STDP equation:

$$ext{Weight}_{ij} = ext{Weight}_{ij} + \eta \cdot \Delta w_{ij}^{ ext{potentiation/depression}}$$

Where:

$$\Delta w_{ij}^{potentiation} = A_{\text{pos}} \cdot \exp(-\frac{\Delta t_{potentiation}}{\tau_{\text{pos}}})$$

$$\Delta w_{ij}^{depression} = -A_{\rm neg} \cdot \exp(-\frac{\Delta t_{depression}}{\tau_{\rm neg}})$$

Supervised STDP Learning

- Uses a teacher signal (CT)
- > Follows one hot encoding

Figure [10]: Supervised STDP (Classification Teacher)

Figure : STDP nearest neighbor by Y. Jin et ai [8]

Learning Engine (Unsupervised LE)

STDP Equation curve:

$$\Delta w^{+} = A_{+}(w) \cdot e^{-\frac{|\Delta t|}{\tau_{+}}} if \Delta t > 0$$

$$\Delta w^{-} = A_{-}(w) \cdot e^{-\frac{|\Delta t|}{\tau_{-}}} if \Delta t < 0,$$

Hardware STDP LUT:

Figure: Unsupervised Learning unit by Peng Li et ai [6]

Learning Engine (Supervised OE)

STDP Equation:

$$\Delta w^{+} = A_{+}(w) \cdot e^{-\frac{|\Delta t|}{\tau_{+}}} if \Delta t > 0$$

$$\Delta w^{-} = A_{-}(w) \cdot e^{-\frac{|\Delta t|}{\tau_{-}}} if \Delta t < 0,$$

Activity basedProbabilistic-STDP:

$$w \leftarrow w + \Delta W$$
 with $p \propto |\Delta w^+|$ $w \leftarrow w - \Delta W$ with $p \propto |\Delta w^-|$

Figure: Supervised Learning unit by Peng Li et ai [6]

- Two stages of training:
 - > Sparsification training period
 - > Classification training period
- Uses two look up tables for AP-STDP

Simplified LIF neuron vs SRU

Membrane Potential Equation:

$$V_{mem}(t) = V_{mem}(t-1) - \frac{V_{mem}(t-1)}{\tau_{mem}} + \sum_{i} W_{i} * S_{i}$$

- Advantages:
 - > Vmem is directly calculated from weight and input spikes
 - > Simplified digital neuron structure
 - > Does not exacerbate performance
 - > No need of Synaptic Response Unit (SRU)

Figure [10]: Spiking Neuron Model

Triplet STDP vs Duplet STDP in Unsupervised LE

STDP Equation curve:

$$\Delta w = \begin{cases} \Delta w^+ = e^{-\Delta t_1/\tau^+} (A_2^+ + A_3^+ e^{-\Delta t_2/\tau^y}) \\ \Delta w^- = -e^{\Delta t_1/\tau^-} (A_2^- + A_3^- e^{-\Delta t_3/\tau^x}) \end{cases}$$

Advantages:

- Considers 3 spike event instead of two spike events
- Real-time exponential approximation
- Encoder based asynchronous architecture
- > More accurate weight update

Figure : TSTDP Timing Differences for pre-post-pre spiking and post-pre-post spiking respectively

Adaptive threshold vs Sparsification in Supervised OE:

Adaptive Threshold Equation:

$$V_{th}(t) = V_{th}(t-1) - \frac{V_{th}(t-1)}{\tau_{th}} + C_{th}$$

- Advantages:
 - Cth input is directly the spike event input
 - > Helps to avoid weight saturation and thus overfitting
 - Reduces training time period as no sparsification mode needed
 - > Used in typical software SNN models

Hardware Friendly Loss function

Reward-based STDP equation:

$$\mathrm{Weight}_{ij} = \mathrm{Weight}_{ij} + \eta \cdot \Delta w_{ij}^{\mathrm{potentiation/depression}}$$

$$\Delta w_{ij}^{potentiation} = A_{\text{pos}} \cdot \exp(-\frac{\Delta t_{potentiation}}{\tau_{\text{pos}}})$$

$$\Delta w_{ij}^{depression} = -A_{\text{neg}} \cdot \exp(-\frac{\Delta t_{depression}}{\tau_{\text{neg}}})$$

Figure [11]: Spike Output Encoding Scheme

Predicted Output
$$\hat{y} = \sum_{t=0}^{T} S[t].$$

Hardware friendly reward prediction error (RPE)

```
Algorithm 1 Adaptive Learning with Weight Reversion
Initialize weights Wmatrix
Initialize other parameters and hyper-parameters
loss constant C
for each iteration i \to \text{maximum number of iteration do}

Weight<sub>temp</sub> \leftarrow Wmatrix<sub>i</sub>
loss<sub>i</sub> \leftarrow 0
for each sample j \to \text{all the samples do}

Wmatrix<sub>i</sub> \leftarrow Wmatrix<sub>i</sub> + reward
loss<sub>i</sub> \leftarrow loss<sub>i</sub> \leftarrow loss<sub>i</sub> + (y_j - \hat{y}_j)
end for
if loss<sub>i</sub> < loss<sub>i-1</sub> - C then Wmatrix<sub>i</sub> \leftarrow Weight<sub>temp</sub>
end if
end for
```

- Advantages
 - > Guides to reach Global Minima
 - Helps reduce training period
 - Helps retaining optimized weights in hardware

Figure: Loss function landscape

Predicted Output
$$\hat{y} = \sum_{t=0}^T S[t].$$
 Loss function $L_{\mathrm{loss}} = \sum_{i=1}^{\mathrm{I}} (y_i - \hat{y}_i)$

Detailed Hardware Implementation (Proposed)

Digital LIF neuron

Membrane Potential Calculation

$$V_{mem}(t) = V_{mem}(t-1) - \frac{V_{mem}(t-1)}{\tau_{mem}} + \sum_{i} W_{i} * S_{i}$$

Adaptive threshold Calculation :

$$V_{th}(t) = V_{th}(t-1) - \frac{V_{th}(t-1)}{\tau_{th}} + C_{th}$$

- No SRU needed
- Learning engine differs for LE and OE
- No sparsification stage needed

Figure: Spiking Neuron Model

Detailed Hardware Implementation (Proposed)

Triplet STDP in Unsupervised LE

Finalized Triplet Equation

$$\begin{split} \Delta w^+ &= A_2^+ 2^{-1.4375}^{\frac{\Delta t_1}{\tau^+}} + A_3^+ 2^{-1.4375}^{\left(\frac{\Delta t_2}{\tau_y} + \frac{\Delta t_1}{\tau_+}\right)} \\ \Delta w^- &= -A_2^- 2^{-1.4375}^{\frac{\Delta t_1}{\tau^-}} + A_3^- 2^{-1.4375}^{\left(\frac{\Delta t_3}{\tau_x} - \frac{\Delta t_1}{\tau_-}\right)} \end{split}$$

Figure: Implementation of exponential approximation in Triplet-STDP

Figure: Hardware implementation of Triplet-based STDP

Detailed Hardware Implementation (Proposed)

Supervised Learning Engine (SLE)

- Simplified hardware design
 - > Less look up tables
 - > No sparsification gates or modes
- Implements the loss function weight adaptation

Figure: Implementation of exponential approximation in Triplet-STDP

Spectrum Sensing dataset from RWTH Achen University

- Input contains one feature data of received energy signal
- Output contains binary target label (1/0)
- Chosen for testing performance against other accelerators
- Central Frequency of channel (fc=3750 MHz)
- Bandwidth (Bw=1500 MHz)
- Frequency resolution (fr=200 KHz)
- Total Samples (7500)
- Train data (6000) (80%)
- Test data (1500) (20%)

Wang, L., Hu, J., Jiang, R., & Chen, Z. (2024). A Deep Long-Term Joint Temporal–Spectral Network for Spectrum Prediction. *Sensors*, *24*(5), 1498 [12].

Comparative Analysis (Accuracy)

Figure: Accuracy comparison of different models

Comparative Analysis (Accuracy)

Figure: Accuracy comparison of different models

Loss function Training period improvement (%)

Figure: Training period improvement

FPGA resource utilization

Table: Resource Comparisons of different architecture and accuracy comparison for -20 db dataset

Power Report

Table: Power consumption of different accelerators for spectrum sensing

Inference Time

TABLE VII: Inference Speed Comparison Table

Model	Inference time
Unsupervised STDP	1
Triplet-STDP-without loss	1.2x
Triplet-STDP-with loss	1.2084x

Table: Latency time during inference mode

Summary

- Improved accuracy in real-time on-chip training
- Reduced training period for worst case scenarios
- No sparsification training period needed
- Achieved satisfactory power and design optimization for on-chip training hardware

Future Work

- Introduce local supervised learning with better and hardware friendly loss function to increase accuracy
- **Build an LSM with Time-to-first-spike (TTFS) based R-STDP**
- **Simplify the reservoir structure with smarter unsupervised learning method and architectural optimization**
- Increase power efficiency of the design using power clock gating

Acknowledgments

Advisory Committee

Dr. Yang (Cindy) Yi

Dr. Creed F. Jones

Dr. Dong Ha

Dr. Xiaoting Jia

Dr. Jeffrey Walling

Reference

- 1. https://www.statista.com/chart/17727/global-data-creation-forecasts/
- 2. https://viso.ai/edge-ai/edge-ai-applications-and-trends/
- 3. https://www.knack4data.com/celebrating-the-human-brain-brain-versus-machine-a92ecf8e3b92
- 4. Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, and Bill Kay. "Opportunities for neuromorphic computing algorithms and applications." Nature Computational Science 2, no. 1 (2022): 10-19.
- 5. Shrestha, Amar, et al. "A survey on neuromorphic computing: Models and hardware." IEEE Circuits and Systems Magazine 22.2 (2022): 6-35.
- 6. Y. Liu, S. S. Yenamachintala, and P. Li, "Energy-efficient fpga spiking neural accelerators with supervised and unsupervised spike-timingdependent-plasticity," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 15, no. 3, pp. 1–19, 2019.
- 7. Wang, Qian, Yingyezhe Jin, and Peng Li. "General-purpose LSM learning processor architecture and theoretically guided design space exploration." In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4. IEEE, 2015.
- 8. Jin, Y., & Li, P. (2016, July). AP-STDP: A novel self-organizing mechanism for efficient reservoir computing. In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 1158-1165). IEEE.
- 9. Lagani, Gabriele, et al. "Spiking Neural Networks and Bio-Inspired Supervised Deep Learning: A Survey." *arXiv preprint arXiv:2307.16235* (2023).
- 10. Shrestha, Amar, et al. "Approximating back-propagation for a biologically plausible local learning rule in spiking neural networks." *Proceedings of the International Conference on Neuromorphic Systems*. 2019.
- 11. Eshraghian, Jason K., et al. "Training spiking neural networks using lessons from deep learning." *Proceedings of the IEEE* (2023).
- Wang, L., Hu, J., Jiang, R., & Chen, Z. (2024). A Deep Long-Term Joint Temporal—Spectral Network for Spectrum Prediction. Sensors, 24(5), 1498.

Contribution

Gauri Sharma

- Software design of LSM for Algorithm Verification
- Triplet STDP RTL design
- Integration of Triplet STDP in LSM reservoir RTL
- Encoder RTL designs

Muhammad Farhan Azmine

- Fixed point software design of Baseline LSM reservoir for hardware verification
- RTL design of LIF neuron, SRU, Learning engines of both Unsupervised and Supervised algorithm and verification
- Integration of LSM reservoir RTL and verification of baseline
- Integration of Triplet STDP in LSM reservoir RTL

