TALHA ARSHAD

San Jose CA · talha@utexas.edu · (512) 698-7349 · https://talha-arshad.github.io · https://www.linkedin.com/in/tarshad

SUMMARY A data scientist with broad expertise in machine learning and experience in research and industry. Skilled at owning projects end-to-end, technical leadership and effective collaboration. **Status:** Permanent Resident.

SKILLS

- LANGUAGES: Python, SQL.
- ML/DL FRAMEWORKS & LIBRARIES: PyTorch, TensorFlow (Keras), NumPy, XGBoost, Scikit-learn.
- DATA & VISUALIZATION: Pandas, Matplotlib, Seaborn.
- CLOUD & MLOPS: Google Cloud Platform (GCP), Weights & Biases (Wandb).
- ENVIRONMENT & TOOLS: Linux, Bash scripting, Git.
- **MODELING:** machine learning, deep learning, statistics.

EDUCATION

PHD CHEMICAL ENGINEERING, THE UNIVERSITY OF TEXAS AT AUSTIN

2016

RESEARCH: Mathematical modeling and computational optimization for manufacturing nanostructured devices.

MENG CHEMICAL ENGINEERING, CAMBRIDGE UNIVERSITY BA (HONS) CHEMICAL ENGINEERING, CAMBRIDGE UNIVERSITY

2010 2009

EXPERIENCE

STAFF DATA SCIENTIST, INTEL CORPORATION (SANTA CLARA CA) SENIOR DATA SCIENTIST, INTEL CORPORATION (SANTA CLARA CA)

2020-Present 2018-2020

Modeling and optimization of deep ultraviolet (DUV) lithography for memory chips:

- Pushed models and code to production and managed these through the development lifecycle for 7 lithography steps across 3 generations of memory products.
- Led the definition, implementation and analysis of multi-die experiments to compare the performance of alternate design configurations and enable 30% denser memory.
- Led training and mentored engineers on lithography source-mask optimization (SMO).
- Devised and implemented corrective measures on a lithography step to reduce model error from 10% to 1% and improve throughput (dose) by 20%.

SENIOR DATA SCIENTIST, GLOBALFOUNDRIES (MALTA NY)

2016-2018

Modeling and optimization of extreme ultraviolet (EUV) lithography for logic chips:

- Built data pipelines to transform and visualize datasets at various stages of the modeling workflow.
- Created tests and analyzed results to investigate tradeoffs between optimization runtime and performance.
- Designed a project to compare error statistics between alternate photomask vendors and mentored a graduate intern through its execution.

PROJECTS

DEFECT INSPECTION FOR SEMICONDUCTOR WAFERS WITH DEEP LEARNING

2022

Built a convolutional neural network (CNN) image classification model to replace manual visual defect inspection in semiconductor manufacturing. Defined an architecture based on literature, implemented a hyperparameter search and evaluated error distributions to achieve a >90% recall and precision across all 8 defect types on the validation dataset, including when up to 4 defect types are present simultaneously.

FAILURE PREDICTION OF HARD DRIVES WITH GRADIENT-BOOSTED TREES

2021

Trained gradient-boosted decision tree (XGBoost) models to predict the failure of hard drives in a data center up to a week in advance based on health and usage metrics. Experimented with feature-selection and grid-searched hyperparameter values resulting in an F1-score of 0.93 on the validation dataset.

PUBLICATIONS, COURSES, ACCREDITATION

- PUBLICATIONS: 3 papers in high-impact journals on applied modeling and optimization.
- STANFORD CS231n: Deep Learning for Computer Vision.
- COLUMBIA X 4721: Machine Learning.
- COURSERA: SQL for Data Science, Data Structures & Algorithms I & II.
- **GOOGLE:** TensorFlow Developer Certificate.