Generating Permutations and Combinations Section 6.6

Section Summary

- Generating Permutations
- Generating Combinations

Problem:

List the permutations of any set of n elements.

Solution:

- Any set with n elements can be placed in one-to-one correspondence with the set {1, 2, ..., n}
- Generate the permutation of the n smallest positive integers, and then replace these integers with the corresponding elements.

Generating Permutations

The lexicographic ordering of the set of permutations of $\{1, 2, ..., n\}$

The permutation $a_1a_2...a_n$ precedes the permutation of $b_1b_2...b_n$, if for some k, with $1 \le k \le n$, $a_1 = b_1$, $a_2 = b_2$, ..., $a_{k-1} = b_{k-1}$, and $a_k < b_k$,

For example:

123465 124635

Algorithm of producing the n! permutations of the integers 1, 2, ..., n

- ❖ Begin with the smallest permutation in lexicographic order, namely 1234...n.
- Produce the next larger permutation.
- \diamond Continue until all n! permutations have been found.

Generating Permutations

Given permutation $a_1a_2...a_n$, find the next larger permutation in increasing order:

(1) Find the integers

$$a_{j}, a_{j+1}$$
 with $a_{j} < a_{j+1}$ and $a_{j+1} > a_{j+2} > \cdots > a_{n}$

- (2) Put in the *j*th position the least integer among $a_{j+1}, a_{j+2}, \dots, a_n$ that is greater than a_j
- (3) List in increasing order the rest of the integers

$$a_j, a_{j+1}, \dots, a_n$$

Example 1:

What is the next larger permutation in lexicographic order after 124653?

Solution:

The next largest permutation of 124653 in lexicographic order is 125346

Generating Combinations

Problem 1:

Generate all combinations of the elements of a finite set.

Solution:

- A combination is just a subset. ⇒ We need to list all subsets of the finite set.
- Use bit strings of length n to represent a subset of a set with n elements. ⇒ We need to list all bit strings of length n.
- The 2ⁿ bit strings can be listed in order of their increasing size as integers in their binary expansions.

Generating Combinations

Algorithm of producing all bit strings

- \Leftrightarrow Start with the bit string 000...00, with *n* zeros.
- ❖ Then, successively find the next larger expansion until the bit string 111...11 is obtained.

The method to find the next larger binary expansion:

Locate the first position from the right that is not a 1, then changing all the 1s to the right of this position to 0s and making this first 0 a 1.

For example:

 $1000110011 \rightarrow 1000110100$

Generating Combinations

Problem 1:

Generate all r-combinations of the set $\{1, 2, ..., n\}$

Solution:

The algorithm for generating the r-combination of the set $\{1, 2, ..., n\}$

- (1) $S_1 = \{1, 2, ..., r\}$
- (2) If $S_i = \{a_1, a_2, \dots, a_r\}, 1 \le i \le C_n^r 1$ has found, then the next combination can be obtained using the following rules.

First, locate the last element a_i in the sequence such that $a_i \neq n-r+i$. Then replace a_i with a_i+1 and a_j with $a_i+j-i+1$, for j=i+1,i+2,...,r.

Example 2:

 $S_i = \{2,3,5,6,9,10\}$ is given from the set $\{1,2,3,4,5,6,7,8,9,10\}$. Find S_{i+1} .

Solution:

$$S_{i+1} = \{2,3,5,7,8,9\}$$

Homework

Sec. 6.6 6(f), 7, 9