Nome do acadêmico

Título do Trabalho

Belo Horizonte 2014 Espaço reservado para dedicatória. Inserir seu texto aqui...

Agradecimentos

"O fator decisivo para vencer o maior obstáculo é, invariavelmente, ultrapassar o obstáculo anterior." (Henry Ford)

Resumo

Inserir seu texto aqui... (máximo de 500 palavras)

Lista de ilustrações

Figura 1 $-$	Exemplo da estrutura de uma árvore KD	14
Figura 2 $-$	Resultado da busca por imagem	15
Figura 3 -	Componentes desconectados na remoção híbrida	15

Lista de tabelas

Tabela 1 –	Correlação de valores x e y	 	 . 16
Tabela 2 –	Resultado dos testes	 	 . 16

Lista de abreviaturas e siglas

Fig. Area of the i^{th} component

456 Isto é um número

123 Isto é outro número

lauro cesar este é o meu nome

Lista de símbolos

- Γ Letra grega Gama
- Λ Lambda
- \in Pertence

Sumário

1	Intr	odução	ο.																				10
	1.1	Motiva	açã	io .																	 		10
	1.2	Caract	ter	izaç	ção	do) Pi	rol	ble	ma											 		10
	1.3	Objeti	ivo	s .																	 		10
		1.3.1	О) bje	tiv	o (Ger	al													 		10
		1.3.2	О)bje	tiv	os	Esj	peo	cífi	cos	з.										 		10
	1.4	Organ	iiza	ıção	do	o D)oci	un	ıen	to											 		11
	1.5	Justifi	icat	iva																	 		11
2	Tral	balhos	Re	elac	ior	ıad	los	; .															12
3	Fun	damen	ita	ção	Te	eór	rica	э.															14
	3.1	Figura	as e	e gr	áfic	cos															 		14
	3.2	Quadr	ros	еТ	ab	ela	S														 		14
	3.3	Equaç	ções	3																	 		16
	3.4	Siglas	e s	símb	olo	os																	16
4	Met	odolog	gia																				17
	4.1	Deline	ean	ıent	O (da	pes	squ	iisa	a											 		17
	4.2	Coleta	a de	e da	ado)S .															 	, .	17
5	Aná	lise de	R	esu	lta	do	S																18
	5.1	Situaç	ção	atu	ıal																 		18
	5.2	Anális	se c	los	dao	dos	s co	olet	tad	los											 		18
Re	eferêr	ncias .																					19
A	pêno	dices																					20
ΑF	PÊNE	DICE A	Α	No	me	e d	lo a	ар	ên	dic	e												21
ΑF	PÊNE	DICE I	В	No	me	e d	lo a	ар	ên	dic	e												22
A	nexo	os																					23
Δι	VEX(ΙΑΟ	Nοι	me	do	וב (ทคา	χn															24

ANEXO B Nome do anexo		25
-----------------------	--	----

1 Introdução

O presente documento é um exemplo de uso do estilo de formatação LATEX elaborado para atender às Normas para Elaboração de Trabalhos Acadêmicos. O estilo de formatação abntex2-cefetmg.cls tem por base o pacote ABNTEX – cuja leitura da documentação (ABNTEX, 2009) é fortemente sugerida.

Para melhor entendimento do uso do estilo de formatação, aconselha-se que o potencial usuário analise os comandos existentes no arquivo main.tex e os resultados obtidos no arquivo main.pdf depois do processamento pelo software LATEX + BIBTEX (LATEX, 2009; BIBTEX, 2009). Recomenda-se a consulta ao material de referência do software para a sua correta utilização (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

1.1 Motivação

Uma das principais vantagens do uso do estilo de formatação para LATEX é a formatação *automática* dos elementos que compõem um documento acadêmico, tais como capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo, abstract, listas de figuras, tabelas, siglas e símbolos, sumário, capítulos, referências, etc. Outras grandes vantagens do uso do LATEX para formatação de documentos acadêmicos dizem respeito à facilidade de gerenciamento de referências cruzadas e bibliográficas, além da formatação – inclusive de equações matemáticas – correta e esteticamente perfeita.

1.2 Caracterização do Problema

Inserir seu texto aqui...

1.3 Objetivos

1.3.1 Objetivo Geral

Prover um modelo de formatação LATEX que atenda às normas da instituição atual e às normas brasileiras.

1.3.2 Objetivos Específicos

- Obter documentos acadêmicos automaticamente formatados com correção e perfeição estética.
- Desonerar autores da tediosa tarefa de formatar documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.
- Desonerar orientadores e examinadores da tediosa tarefa de conferir a formatação de documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.

1.4 Organização do Documento

Inserir seu texto aqui...

1.5 Justificativa

2 Trabalhos Relacionados

Este capítulo inclui muitas citações bibliográficas. Os principais itens de bibliográfia citados são livros, artigos em conferências, artigos em journals e páginas Web. A bibliografia deve seguir o padrão ABNT¹.

A bibliografia é feita no padrão bibtex. As referências são colocadas em um arquivo separado. Os elementos de cada item bibliográfico que devem constar na bibliografia são apresentados a seguir.

Para livros, o formato da bibliografia no arquivo fonte é o seguinte:

```
@Book{linked,
   author = {A. L. Barabasi},
   title = {Linked: The New Science of Networks},
   publisher = {Perseus Publishing},
   year = {2002},
}
```

A citação deste livro se faz da seguinte forma \cite{linked} e o resultado fica assim (BARABASI, 2002). Para os artigos em journals, veja por exemplo (CHAKRABARTI; FALOUTSOS, 2006), descrito da seguinte forma no arquivo .bib:

```
@article{acmsurveys,
```

```
= {Deepayan Chakrabarti and Christos Faloutsos},
   author
   title
             = {Graph mining: Laws, generators, and algorithms},
             = {ACM Computing Surveys},
   journal
             = {38},
   volume
             = \{1\},
   number
             = \{2006\},
   year
             = \{2-59\},
   pages
   publisher = {ACM},
            = {New York, NY, USA},
   address
}
```

O artigo (FALOUTSOS; FALOUTSOS; FALOUTSOS, 1999) foi publicado em conferência. Embora às vezes seja difícil distinguir um artigo publicado em journal de

¹Este não é o endereço oficial da ABNT pois as Normas Técnicas oficiais são pagas e não estão disponíveis na Web.

um artigo publicado em conferência, esta distinção é fundamental. Em caso de dúvida, procure ajuda de seu orientador.

Veja também duas citações juntas (PAGH, 1999; NEUBERT, 2000) e como citar endereços Web (IRL, 2007). O trabalho realizado para editar as citações no formato correto é compensado por uma bibliografia impecável.

3 Fundamentação Teórica

A seguir ilustra-se a forma de incluir figuras, tabelas, equações, siglas e símbolos no documento, obtendo indexação automática em suas respectivas listas. A numeração sequencial de figuras, tabelas e equações ocorre de modo automático. Referências cruzadas são obtidas através dos comandos \label{} e \ref{}. Por exemplo, não é necessário saber que o número deste capítulo é 3 para colocar o seu número no texto. Isto facilita muito a inserção, remoção ou relocação de elementos numerados no texto (fato corriqueiro na escrita e correção de um documento acadêmico) sem a necessidade de renumerá-los todos.

Este modelo prove um arquivo *makefile*, portanto, para gerar este documento no formato PDF, basta apenas executar o comando make all no linux. Para limpar os arquivos temporários, basta digitar o comando make clean.

3.1 Figuras e gráficos

Abaixo é apresentado um exemplo de figura e de gráfico. A figura 1 aparece automaticamente na lista de figuras e o gráfico 2 aparece automaticamente na lista de gráficos. Para uso avançado de imagens no LATEX, recomenda-se a consulta de literatura especializada (GOOSSENS et al., 2007).

Figura 1: Exemplo da estrutura de uma árvore KD

3.2 Quadros e Tabelas

Também é apresentado o exemplo do quadro 3 e da tabela 1, que aparece automaticamente na lista de tabelas. Informações sobre a construção de tabelas no LATEX podem ser encontradas na literatura especializada (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

Figura 2: Resultado da busca por imagem.

Vértices	Componentes Excluídos							
Retirados	Quantidade	Vértices do maior componente						
Original	0	-						
1%	4	3						
5%	14	3						
10%	31	5						
20%	66	5						
30%	94	5						
40%	110	5						
50%	166	5						
75%	352	6						
90%	688	19						

Figura 3: Componentes desconectados na remoção híbrida

Muitos confundem, mas existe diferença entre tabelas e quadros. Um quadro é formado por linhas horizontais e verticais, sendo, portanto "fechado". Normalmente é usado para apresentar dados secundários. Nada impede, porém, que um quadro apresente resultados da pesquisa. Um quadro normalmente apresenta resultados qualitativos (textos). O número do quadro e o título vêm acima do quadro, e a fonte, deve vir abaixo. Uma tabela é formada apenas por linhas verticais, sendo, portanto "aberta". Normalmente é usada para apresentar dados primários, e geralmente vem nos "resultados" e na discussão do trabalho. Nada impede, porém, que uma tabela seja usada no referencial teórico de um trabalho. Uma tabela normalmente apresenta resultados quantitativos (números). O número da tabela e o título vêm acima da tabela, e a fonte, deve vir abaixo, como no quadro.

Exemplos de tabelas:

X	У
1	2
3	4
5	6
7	8

Tabela 1: Exemplo de uma tabela mostrando a correlação entre x e y.

	Valores 1	Valores 2	Valores 3	Valores 4
Caso 1	0,86	0,77	0,81	163
Caso 2	0,19	0,74	$0,\!25$	180
Caso 3	1,00	1,00	1,00	170

Tabela 2: Resultado dos testes.

3.3 Equações

A transformada de Laplace é dada na equação (3.1), enquanto a equação (3.2) apresenta a formulação da transformada discreta de Fourier bidimensional¹.

$$X(s) = \int_{t=-\infty}^{\infty} x(t) e^{-st} dt$$
 (3.1)

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \exp\left[-j2\pi \left(\frac{um}{M} + \frac{vn}{N}\right)\right]$$
(3.2)

3.4 Siglas e símbolos

¹Deve-se reparar na formatação esteticamente perfeita destas equações.

4 Metodologia

Inserir seu texto aqui...

4.1 Delineamento da pesquisa

Inserir seu texto aqui...

4.2 Coleta de dados

5 Análise de Resultados

Inserir seu texto aqui...

5.1 Situação atual

Inserir seu texto aqui...

5.2 Análise dos dados coletados

Referências

ABNTEX. Absurdas normas para TeX. 2009. Disponível em: http://sourceforge.net-apps/mediawiki/abntex/index.php. Acesso em: 8 de novembro de 2009.

BARABASI, A. L. Linked: The New Science of Networks. [S.1.]: Perseus Publishing, 2002.

BIBTEX. BibTeX.org. 2009. Disponível em: http://www.bibtex.org. Acesso em: 8 de novembro de 2009.

BUERGER, D. J. LaTeX for scientists and engineers. Singapura: McGraw-Hill, 1989.

CHAKRABARTI, D.; FALOUTSOS, C. Graph mining: Laws, generators, and algorithms. *ACM Computing Surveys*, ACM, New York, NY, USA, v. 38, n. 1, p. 2–59, 2006.

FALOUTSOS, M.; FALOUTSOS, P.; FALOUTSOS, C. On power-law relationships of the internet topology. In: *Proceedings of the ACM SIGCOMM '99.* New York, NY, USA: ACM Press, 1999. p. 251–262. ISBN 1-58113-135-6.

GOOSSENS, M. et al. *The LaTeX graphics companion*. 2. ed. Boston: Addison-Wesley, 2007.

IRL. Internet Research Laboratory. 2007. http://irl.cs.ucla.edu/topology. Acesso em março de 2007.

KOPKA, H.; DALY, P. W. Guide to LaTeX. 4. ed. Boston: Addison-Wesley, 2003.

LAMPORT, L. LaTeX: a document preparation system. Boston: Addison-Wesley, 1986.

LATEX. The LaTeX project. 2009. Disponível em: http://www.latex-project.org. Acesso em: 8 de novembro de 2009.

MITTELBACH, F. et al. The LaTeX companion. 2. ed. Boston: Addison-Wesley, 2004.

NEUBERT, M. S. Algoritmos Distribuídos para a Construção de Arquivos Invertidos. Dissertação (Mestrado) — Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Março 2000.

PAGH, R. Hash and displace: Efficient evaluation of minimal perfect hash functions. In: Workshop on Algorithms and Data Structures. [S.l.: s.n.], 1999. p. 49–54.

APÊNDICE A - Nome do apêndice

APÊNDICE B - Nome do apêndice

ANEXO A - Nome do anexo

ANEXO B - Nome do anexo