FONDAMENTI DI ELETTRONICA – Corso di laurea in Ingegneria Biomedica a.a. 2021/22 – Appello del 07/07/2022

COGNOME E NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE L'ESAME

- 1) Il tempo a disposizione è 2.5 ore
- 2) Scrivere cognome, nome e numero di matricola su questo foglio e su tutti i fogli consegnati
- 3) Bisogna consegnare il testo del compito anche in caso di ritiro
- 4) Fornire risposte chiare e adeguatamente giustificate
- 5) Nei conti e nei risultati, i valori numerici DEVONO essere accompagnati dalla relativa unità di misura.
- 6) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore della resistenza R_5 in modo che la corrente $I_3 = 70$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 , M_3 , M_4
- 3) la potenza totale dissipata dal circuito;
- 4) il guadagno di tensione ai piccoli segnali ac $A_v = v_{out}/v_{sig}$ (considerare $\lambda_{p3} = 0.01 \text{ V}^{-1}$);
- 5) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} .

Dati:

 V_{DD} =12 V R_I =120 k Ω , R_2 =180 k Ω , R_3 =0.5 k Ω , R_4 =0.5 k Ω , R_L =1.0 k Ω , R_i =1.0 k Ω ,

 M_1 : k_{p1} =5 mA/V², V_{TP1} = -1 V M_2 : k_{n2} =5 mA/V², V_{TN2} = 1 V M_3 : k_{p3} =40 mA/V², V_{TP3} = -1 V M_4 : k_{p4} =10 mA/V², V_{TP4} = -1 V

Per analisi DC: $\lambda_p = \lambda_n = 0 \text{ V}^{-1}$;

PROBLEMA P2

Sia dato il circuito in figura che usa un amplificatore operazionale ideale. **Dati:** $R_1 = 2 \text{ k}\Omega$, $R_2 = 200 \text{ k}\Omega$, $R_3 = 180 \text{ k}\Omega$, $R_4 = 20 \text{ k}\Omega$. Le capacità valgono: $C_1 = 5\mu\text{F}$, $C_2 = 0.5\text{pF}$, $C_4 = 0.5\text{nF}$.

(prosegue sul retro \rightarrow)

- 1) ricavare l'espressione della funzione di trasferimento $W(s)=v_0(s)/v_{in}(s)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W(s), (per la fase non usare l'approssimazione a gradino).
- 3) Calcolare $v_0(t)$ sapendo che $v_s = 2V + 1V*\sin(\omega_0 t)$ con $\omega_0 = 100$ rad/s.
- 4) Determinare il nuovo valore di C_2 che permetta di eliminare dalla W(s) un polo e uno zero.

PROBLEMA Q1

L'amplificatore in figura è realizzato con un amplificatore operazionale ideale e un diodo Zener ideale.

- 1) Determinare i valori della tensione di ingresso per la quale il diodo è ON, OFF e in Breakdown.
- 2) Determinare v_0 quando $v_s = -5 \text{ V}$.
- 3) (facoltativo) tracciare la transcaratteristica del circuito.

Dati: $R = 1 \text{ k}\Omega$, $V_{ON} = 0$, $V_Z = 5V$

PROBLEMA Q2

L'amplificatore in figura è realizzato usando un amplificatore operazionale reale con $V_{OS} = 5 \text{mV}$ e alimentato con tensione +/- $V_{CC.}$ calcolare la tensione di uscita e la tensione del morsetto negativo V_n con:

- 1) $V_S = 0 \text{ V}$,
- 2) $V_S = 4V$.

Dati: $R_1 = 1 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $R_4 = 3 \text{ k}\Omega$, $V_{CC} = 10 \text{ V}$.

PROBLEMA Q3

Data la seguente mappa di Karnaugh

- 1) Trovare una F minimizzata
- 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

CD AB	00	01	11	10
00	1	0	1	1
01	1	0	0	0
11	X	0	0	1
10	1	1	X	1