Lecture 5

Simple Linear Regression IV

Reading: Chapter 11

STAT 8020 Statistical Methods II August 30, 2019

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

Whitney Huang Clemson University

Agenda

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

Review of Last Class

- Suppose $Y = \beta_0 + \beta_1 X + \varepsilon$, where $\beta_0 = 3$, $\beta_1 = 1.5$ and $\sigma^2 \sim N(0, 1)$
- We take 100 random sample each with sample size 20
- We then construct the 95% CI for each random sample (⇒ 100 CIs)

Review of Last Class

(ANOVA) Approach to Regression

Confidence Intervals vs. Prediction Intervals

Simple Linear

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

Review of Last Class

Review of Last Class

Total Sum of Squares: SST

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The **total mean square** is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1).

Regression Sum of Squares: SSR

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

"Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^{2} + \beta_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Error Sum of Squares: SSE

SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

ANOVA Table and F test

Source	df	SS	MS
Model	1	$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	MSR = SSR/1
Error	n-2	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)
Takal	- 1	COT ∇^h (V \bar{V})?	

n-1 SSI = $\sum_{i=1}^{n} (Y_i - Y)^2$ Iotal

• Goal: To test $H_0: \beta_1 = 0$

- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1 = 0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1, d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

Signif. codes:

Null distribution of F test statistic

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple Linear Regression IV

Review of Last Class

Correlation and Simple Linear Regression

- Pearson Correlation: $r = \frac{\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i \bar{X})^2 \sum_{i=1}^{n} (Y_i \bar{Y})^2}}$
- $-1 \le r \le 1$ measures the strength of the **linear** relationship between Y and X
- ullet We can show $r=\hat{eta}_{1,\mathrm{LS}}\sqrt{rac{\sum_{i=1}^n(X_i-ar{X})^2}{\sum_{i=1}^n(Y_i-ar{Y})^2}},$ this implies

$$\beta_1 = 0$$
 in SLR $\Leftrightarrow \rho = 0$

Review of Last Class

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

 Defined as the proportion of total variation explained by SLR

$$R^2 = rac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} = rac{\text{SSR}}{\text{SST}} = 1 - rac{\text{SSE}}{\text{SST}}$$

• We can show $r^2 = R^2$:

$$r^{2} = \left(\hat{\beta}_{1,LS} \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}}\right)^{2}$$

$$= \frac{\hat{\beta}_{1,LS}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

$$= \frac{\text{SSR}}{\text{SST}}$$

$$= R^{2}$$

Residual Plot Revisited

Analysis of Variance (ANOVA) Approach to Regression

⇒ Nonlinear relationship

⇒ Non-constant variance

Transform X

Transform Y

Nonlinear regression

Weighted least squares

Summary

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

In this lecture, we learned ANOVA Approach to Regression

Next time: Multiple linear regression