单编码方式。如果问题要求从D个特征中选出d个特征组合,我们用一个D位的0或 1 构成的字符串表示一种特征组合,其中数字 1 所对应的特征被选中,而数字 0 所对应的特征未被选中。很明显,对任何一种特征组合,存在唯一的一个字符串与之对应。而适应度函数可以用离散性度量 J 代替。

习题

8.1 三类 $\omega_1, \omega_2, \omega_3$ 如图 8.7,求 S_w 及 S_b 。

图 8.7 三类样本点分布

- 8.2 设有两个正态分布的样本集,它们的期望及协方差矩阵分别等于上题中 ω_1 及 ω_2 的均值向量及协方差矩阵,计算 ω_1 及 ω_2 的散度 J_0 及 Bhattacharyya 距离 J_8 。
- **8.3** 令 $p(\mathbf{x}|\omega_i) \sim N(\mu_i, \Sigma_i)$, i = 1, 2, 假定各特征分量 x_j , $j = 1, 2, \dots, D$, 相互独立, 试证按式(8-17)定义的散度 J_D 可写为

$$J_D = \sum_{j=1}^n J_{D_j}$$

- 8.4 证明公式(8-24)。
- 8.5 证明公式(8-25)。
- 8.6 两个一维正态分布,其期望与方差如下: 第一组 $\mu_1 = 0$, $\mu_2 = 2$, $\sigma_1^2 = 4$, $\sigma_2^2 = 0$. 25; 第二组 $\mu_1 = 0$, $\mu_2 = 2$, $\sigma_1^2 = 1$, $\sigma_2^2 = 1$.

求 Bhattacharyya 距离及散度。

- **8.7** 用例 8.2 中的数据,求使式(8-35)表示的 J_2 最大的变换。
- **8.8** 用题 8.1 中 ω_1 及 ω_2 的数据,分别计算使 J_B 及 J_2 (式 8-35)最大之变换。
- **8.9** 用简单方法说明 U(式 8-68)及 W(式 8-67)的最小点是一致的。
- **8.10** 令 x_i , i=1,2,3 为独立的二值特征,且 $p(x_i=1|\omega_1)=\alpha_i$, $p(x_i=1|\omega_2)=\beta_i$, 二类 210 •

先验概率相等,且 α_i , β_i 满足以下条件:

①
$$\alpha_1 < \beta_1 . \forall i$$
, ② $\beta_1 - \alpha_1 > \beta_2 - \alpha_2 > \beta_3 - \alpha_3$.

试证各特征分别使用时之错误概率 $e(x_i)$ 满足: $e(x_i) < e(x_i) < e(x_i)$ 。

8.11 仍按上题条件,试证当二个特征合用时其错误概率为

$$e(x_{i},x_{j}) = \frac{1}{2} [e(x_{i}) + e(x_{j}) - (\beta_{i} - \alpha_{i}) | e(x_{j}) - \alpha_{j} |$$

$$- (\beta_{i} - \alpha_{i}) | e(x_{i}) + \alpha_{i} |]$$

找出使 $e(x_1,x_2) < e(x_2,x_3)$ 之条件。

8.12 同上题,如果给定

$$\alpha_1 = 0.10, \alpha_2 = 0.05, \alpha_3 = 0.01,$$

 $\beta_1 = 0.90, \beta_2 = 0.80, \beta_3 = 0.70$

试计算 $e(x_1), e(x_2), e(x_3); e(x_1, x_2), e(x_1, x_3), e(x_2, x_3)$ 。