Vety

Cauchy-Schwarzova nerovnost

Pro kazde $x,y\in V$ plati $|\langle x,y\rangle|\leq ||x||\cdot ||y||$ **Dukaz**Pro y=0 trivialne, pro $y\neq 0$:
Uvazme realnou funkci $f(t)=\langle x+ty,x+ty\rangle\geq 0$ promene $t\in \mathbb{R}$ $f(t)=\langle x,x\rangle+t\langle x,y\rangle+t\langle y,x\rangle+t^2\langle y,y\rangle=\langle x,x\rangle+2t\langle x,y\rangle+t^2\langle y,y\rangle$ Ma kladny diskriminant $4\langle x,y\rangle^2-4\langle x,x\rangle\langle y,y\rangle\leq 0$ z toho dostavame $\langle x,y\rangle^2\leq \langle x,x\rangle\langle y,y\rangle$

Gram-Schmidtova ortogonalizace (alg. + důkaz správnost)

Bud $x_1, ..., x_n \in V$ nezavisle

- 1. for k = 1 to n do
- 2. $y_k = x_k \sum_{j=1}^{k-1} \langle x_k, z_j \rangle z_j$ // kolmice
- 3. $z_k = \frac{y_k}{||y_k||} / ||y_k||$ normalizace
- 4. end for

Vystup: $z_1, ..., z_n$ ortonormalni baze prostoru $span\{x_1, ..., x_n\}$

Dukaz

Matematickou indukci podle n

Pro n=1 je $y_1=x_1\neq 0$ a $z_1=\frac{x_1}{||x_1||}$ je dobre zadefinovane a $span\{x_1\}=span\{z_1\}$ indukcni krok $n\leftarrow n-1$

Ortogonální projekce

Bud V vektorovy prostor a U jeho podprostor. Pak projekci vektoru $x \in V$ rozumime takovy vektor $x_U \in U$, který splnuje $||x - x_U|| = \min_{u \in U} ||x - y||$

Řádková linearita determinantu

```
Bud A \in T^{n \times n} a b \in T^n
Pak pro libovolne i = 1, ..., n plati:
det(A + e_i b^T) = det(A) + det(A + e_i (b^T - A_{i*}))
```

Determinant součinu matic / Multiplikativnost determinantu

Pro kazde $A,B \in T^{n \times n}$ platidet(AB) = det(A)det(B)

Laplaceův rozvoj podle řádku/sloupce

Bud $A \in T^{n \times n}$, $n \ge 2$ Pak pro každé i=1,...,n platí $det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} det(A^{ij})$ kde A^{ij} je matice vzniklá z A vyskrtnutim i-teho radku a j-teho sloupce

Vlastnosti vlastních čísel

Necht $A \in C^{n \times n}$ má vlastní čísla $\lambda_1, ..., \lambda_n$ a jim odpovidajíci vlastní vektory $x_1, ..., x_n$. Pak:

- 1. A je regularni prave tehdy, kdyz 0 neni jeji vlastni cislo
- 2. je-li A regularni, pak A^{-1} ma vlastni cisla $\lambda_1^{-1},...,\lambda_n^{-1}$ a vlastni vektory $x_1,...,x_n$
- 3. A^2 ma vlastni cisla $\lambda_1^2,...,\lambda_n^2$ a vlastni vektory $x_1,...,x_n$

- 4. αA ma vlastni cislo $\alpha \lambda_1, ..., \alpha \lambda_n$ a vlastni vektory $x_1, ..., x_n$
- 5. $A + \alpha I_n$ ma vlastni cisla $\lambda_1 + \alpha, ..., \lambda_n + \alpha$ a vlastni vektory $x_1, ..., x_n$
- 6. A^T ma vlastni cisla $\lambda_1, ..., \lambda_n$, ale vlastni vektory obecne jine

Vlastní čísla podobných matic

Podobne matice maji stejna vlastníi cisla

Diagonalizovatelnost a báze vlastních vektorů

Matice $A \in \mathbb{C}^{n \times n}$ je diagonalizovatelna prave tehdy, kdyz ma n linearne nezavislych vlastnich vektoru

Vlastní čísla symetrických (Hermitovských) matic

Vlastni cisla realnych symetrickych (resp. obecneji komplexnich hermitovskych) jsou realna

Spektrální rozklad symetrických matic

Pro kazdou symetrickou matici $A \in \mathbb{R}^{n \times n}$ existuje ortogonální $Q \in \mathbb{R}^{n \times n}$ a diagonální $V \in \mathbb{R}^{n \times n}$ tak, že $A = QVQ^T$

Ekvivalentní charakteristiky positivně (semi-)definitních matic

Bud $A \in \mathbb{R}^{n \times n}$ symetricka.

Pak nasledujici podminky jsou ekvivalentni:

- 1. A je positivne (semi)definitni
- 2. vlastni cisla A jsou kladna(nezaporna)
- 3. existuje matice $U \in R^{m \times n}$ hodnosti n taková, ze $A = U^T U$

Rekuretní test positivní definitnosti

Choleského rozklad

Sylvestrovo kritérium pos. definitnosti

Skalární součin a pos. definitnost

Sylvestrův zákon setrvačnosti