Chapter 1. Introduction

- What Is Data Mining?
- Data Mining: An Essential Step in Knowledge Discovery
- Diversity of Data Types for Data Mining
- Mining Various Kinds of Knowledge
- Data Mining: Confluence of Multiple Disciplines
- Data Mining and Applications
- Data Mining and Society
- Summary

What Is Data Mining?

- We live in a world where vast amounts of data are generated constantly and rapidly
- Data mining is the process of discovering interesting patterns, models and other kinds of knowledge in large data sets
 - "Data mining": a misnomer? It should be "knowledge mining from data"
 - Other terms: Knowledge mining from data, KDD (Knowledge Discovery from Data),
 pattern discovery, knowledge extraction, data analytics, information harvesting
- Data mining is a young, dynamic, and promising field
- Example: Data mining turns a large collection of data into knowledge
 - Google's Flu Trends found a close relationship between the number of people who search for flu-related info. and the number of people who have flu symptoms
 - It can estimate flu activity up to two weeks faster than traditional systems

Data Mining: An Essential Step in Knowledge Discovery

Diversity of Data Types for Data Mining (I)

Structured vs. unstructured data

- Structured: uniform, record- or table-like structures, defined by data dictionaries, with a fixed set of attributes, each with a fixed set of value ranges and semantic meaning
 - Ex. Data stored in relational databases, data cubes, data matrices, and many data warehouses
- Semi-structured: allow a data object to contain a set value, a small set of heterogeneous typed values, or nested structures, or to allow the structure of objects or sub-objects to be defined flexibly and dynamically
- Data having certain structures with clearly defined semantic meaning, such as transactional data set, sequence data set (e.g., time-series data, gene or protein data, or Weblog data)
- Graph or network data: A more sophisticated type of semi-structured data set
- Unstructured data: text data and multimedia (e.g., audio, image, video) data
- ☐ The real-world data can often be a mixture of structured, semi-structured data and unstructured data

Diversity of Data Types for Data Mining (II)

- Data associated with different applications
 - Different applications: different data sets and require different data analysis methods
 - □ Sequence data: *Biological sequences* vs. *shopping transaction sequences*
 - Time-series: ordered set of numerical values with equal time interval
 - Spatial, temporal and spatiotemporal data
 - ☐ Graph and network data: Social networks, computer communication networks, biological networks, and information networks may carry rather different semantics
 - On the same data set, finding different kinds of patterns: require different mining methods
 - Ex. software programs: finding plagiarized modules vs. finding copy-and-paste bugs
- Stored vs. streaming data
 - Stored data: Finite, stored in various kinds of large data repositories
 - Streaming data (e.g., video surveillance or remote sensing): Dynamic, constantly coming, infinite, real-time response—posing challenges on effective data mining

Mining Various Kinds of Knowledge

- Multidimensional Data Summarization
- Mining Frequent Patterns, Associations, and Correlations
- Classification and Regression for Predictive Analysis
- Cluster Analysis
- Deep Learning
- Outlier Analysis
- □ Are All Mining Results Interesting?

Multidimensional Data Summarization

- Information integration and data warehouse construction
 - Data cleaning, transformation, integration, and multidimensional data model
- Data cube technology
 - Scalable methods for computing (i.e., materializing) multidimensional aggregates
 - OLAP (online analytical processing)
- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet region

Pattern Discovery: Mining Frequent Patterns, Associations, and Correlations

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
- Association and Correlation Analysis

- A typical association rule
 - □ Diaper \rightarrow Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

Classification and Regression for Predictive Analysis

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, webpages, ...

Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- □ Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity& minimizing interclass similarity
- Many methods and applications

Deep Learning

- Deep learning: A fast expanding dynamic frontier in machine learning
- Deep learning has developed various neural network architectures
 - Feed-forward neural networks
 - Convolutional neural networks
 - Recurrent neural networks
 - Graph neural networks
 - Transformer

- Deep learning has been reshaping a variety of data mining tasks
 - Ex. classification, clustering, outlier detection, and reinforcement learning

Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception?—One person's garbage could be another person's treasure
 - Methods: by product of clustering or regression analysis, ...
 - Useful in fraud detection, rare events analysis

Other Data Mining Functions: Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

- Sequence, trend and evolution analysis
 - Trend, time-series, and deviation analysis
 - e.g., regression and value prediction
 - Sequential pattern mining
 - e.g., buy digital camera, then buy large memory cards
 - Periodicity analysis
 - Motifs and biological sequence analysis
 - Approximate and consecutive motifs
 - Similarity-based analysis
- Mining data streams
 - Ordered, time-varying, potentially infinite, data streams

Other Data Mining Functions: Structure and Network Analysis

- Graph mining
 - ☐ Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges):
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - □ A person could be multiple information networks: friends, family, classmates, ...
 - ☐ Links carry a lot of semantic information: Link mining
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of "patterns"
 - □ Some may fit only certain dimension space (time, location, ...)
 - Some may not be representative, may be transient, ...
- Evaluation of mined knowledge → directly mining only interesting knowledge?
 - Descriptive vs. predictive
 - Coverage
 - Typicality vs. novelty
 - Accuracy
 - Timeliness

Data Mining: Confluence of Multiple Disciplines

Why Confluence of Multiple Disciplines?

- Tremendous amount of data
 - Algorithms must be scalable to handle big data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social and information networks
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Data Mining and Applications

- Web page analysis: classification, clustering, ranking
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis
- Data mining and software engineering
- Data mining and text analysis
- Data mining and social and information network analysis
- □ Built-in (invisible data mining) functions in Google, Microsoft, LinkedIn, Meta, ...
- Major dedicated data mining systems/tools
 - SAS, MS SQL-Server Analysis Manager, Oracle Data Mining Tools)

Data Mining and Society

- Data mining technology may benefit society
 - Ex.: Help scientific discovery, business management, economy recovery, and security protection (*e.g.*, the real-time discovery of intruders and cyberattacks)
- Need to guard against the misuse of data mining
 - Data mining also poses the risk of unintentionally disclosing some confidential business or government information and disclosing an individual's personal information
- Studies on data security in data mining and privacy-preserving data publishing and data mining are important, ongoing research theme
 - The philosophy is to observe data sensitivity and preserve data security and people's privacy while performing successful data mining
- These and other related issues will be discussed throughout the book

Summary

- Data mining: Discovering interesting patterns and knowledge from massive amounts of data
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Different data mining method on a wide variety of data
- Data mining functionalities: summarization, pattern discovery, classification, clustering, deep learning, outlier analysis, trend and outlier analysis, ...
- Data mining is a confluence of multiple disciplines
- Data mining has broad applications
- Promote secure data mining to benefit society