Analyse fréquentielle des signaux

TdS – Chapitre 1

I. Introduction

• Signal: représentation physique d'une info. à transmettre

• Bruit : Phénomène perturbant le signal.

	Formule	Energie fine (Ex : support borné)	Energie infinie (Ex : Périodiques)
Energie	$E = \int_{-\infty}^{+\infty} x(t) ^2 dt = \lim_{T_0 \to +\infty} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) ^2 dt$	$E \in \mathbb{R}$	$E o \infty$
Puissance	$P = \lim_{T_0 \to +\infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) ^2 dt$	P = 0	$P \in \mathbb{R}$ $P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) ^2 dt$ si périodique
Corrélation	$C_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) \cdot y^*(t-\tau) dt$	$C_{xy}(\tau) = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cdot y^*(t - \tau) dt$	
Rapport signal sur bruit	$R_{S/B} = \frac{P_{signal}}{P_{bruit}} \qquad R_{S/B}$	$_B(dB) = 10\log(R_{S/B})$	

II. Décomposition en série de Fourier (signal périodique)

Coefficients réels			Coefficients complexes	
	$x(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos\left(t\right)$	$x(t) = \sum_{n = -\infty}^{+\infty} c_n \exp\left(jn\frac{2\pi}{T}t\right)$		
	$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cos\left(n\frac{2\pi}{T}t\right) dt$	$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \sin\left(n\frac{2\pi}{T}t\right) dt$	$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \exp\left(-jn\frac{2\pi}{T}t\right)$	

$$c_n = \begin{cases} \frac{a_n - jb_n}{2} & n > 0 \\ \frac{a_n + jb_n}{2} & n < 0 \end{cases} \begin{cases} x(t) \text{ r\'eel} & c_{-n} = c_n^* \\ x(t) \text{ r\'eel pair} & c_{-n} = c_n \Rightarrow b_n = 0 \\ x(t) \text{ r\'eel impair} & c_{-n} = -c_n \Rightarrow a_n = 0 \end{cases}$$

III. Produit de convolution

1. Définition

$$f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau$$

2. Propriétés

• Commutatif, associatif, distribution par rapport à +.

• Dirac élément neutre : $f(t) * \delta(t) = f(t)$

• Translation temporelle : $f(t) * \delta(t - t_0) = f(t - t_0)$

Analyse fréquentielle des signaux

TdS - Chapitre 1

IV. Transformée de Fourier

1. Définition

$$\int_{-\infty}^{+\infty} X(f)e^{j2\pi ft} df = x(t) \leftrightarrow X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft} dt$$

2. Condition d'existence

$$\int_{-\infty}^{+\infty} |x(t)|^2 \, \mathrm{d}t \in \mathbb{R}$$
 ou
$$\int_{-\infty}^{+\infty} |x(t)| \, \mathrm{d}t \in \mathbb{R} \text{ et cont. par morceaux et nb. fini. de disc.}$$

3. Propriétés de la TF

Voir ci-contre

• Dualité:
$$X(t) \leftrightarrow x(-f)$$

Symétrie et parité :
$$x(t)$$
 imag.pur $\Leftrightarrow X(f) = -X(-f)$

$$x(t)$$
 réel \Leftrightarrow $X(f) = X(-f)$

$$x(t)$$
 réel pair \Leftrightarrow $X(f)$ réelle pair

$$x(t)$$
 réel impair $\Leftrightarrow X(f)$ imag.pur impaire

• Thm de Parseval :
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

V. Transformée de Laplace

1. Définition

$$\int_{-\infty}^{+\infty} X(s)e^{st} ds = x(t) \leftrightarrow X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st} dt = \sigma + j2\pi f$$

2. Région de convergence et passage en Fourier

$$RC = \{s \mid X(s) \text{ existe}\}$$
 $X(f) \text{ existe si } j2\pi f \in RC$

3. Propriétés de la TF et de la TL

Valable pour Fourier avec $s = j2\pi f$

Linéarité:
$$ax(t) + by(t) \leftrightarrow aX(s) + bY(s)$$

Décalage temporel :
$$x(t-t_0) \leftrightarrow e^{-st_0}X(s)$$

• Décalage fréquentiel :
$$e^{-s_0}x(t) \leftrightarrow X(s-s_0)$$

• Changement d'échelle :
$$x(at) \leftrightarrow \frac{1}{|a|}X(\frac{s}{a})$$

• Dérivation :
$$\frac{\mathrm{d}^k x(t)}{\mathrm{d}t^k} \leftrightarrow s^k X(s) \underbrace{+\sum_{i=1}^{k-1} x^{(i)}(0^+)}_{\text{si Laplace}}$$

• Intégration :
$$\int x(t) dt \leftrightarrow \frac{X(s)}{s}$$

• Théorème de Plancherel :
$$x(t) * y(t) \leftrightarrow X(s) \times Y(s)$$

$$x(t) \times y(t) \leftrightarrow X(s) * Y(s)$$