

Welcome

to Advanced Topics in Algorithms

Summary: Advanced Topics in Algorithms

Revision: [Deep] Learning: Classification

Fashion-MNIST is a dataset of Zalando's article images

https://arxiv.org/pdf/1708.07747.pdf

XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

Neural network models

Multi-layer Perceptron (MLP)

MLP is a supervised learning algorithm that learns a function $f(\cdot)$: $R^m \to R^o$ by training on a dataset, where m is the number of dimensions for input and o is the number of dimensions for output [1].

Neurons

Action potential Resting state Refractory period Resting state

[1] https://scikit-learn.org/stable/modules/neural_networks_supervised.html [2] https://en.wikipedia.org/wiki/Action_potential#/media/File:Action_potential.svg [3] https://en.wikipedia.org/wiki/Sigmoid_function#/media/File:Logistic-curve.svg

TH V

Matrix representation

Each row represents a prediction for a single observation in our training set

Backpropagation 1/2

Training data

x = np.array(([0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]), dtype=float) y = np.array(([0], [1], [1], [0]), dtype=float)

X			У
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0
	3		

w1 = np.random.rand(3, 4)

0.1980562	0.8675463	0.25031689	0.61791776
0.56455728	0.64895493	0.73713434	0.69868288
0.33841526	0.91953443	0.0589787	0.8731658

w2 = np.random.rand(4,1)

0.25678541		
0.7534222		
0.56365436		
0.17331184		

TH TOWL

Backpropagation 2/2

Adjust each weight in the network in proportion to how much it contributes to overall error

Exam 2022

Report:

- 6 Pages double-column IEEE format
- Deadline 01/31/2022

Presentation with code review

- 02/04/2022 or
- **02/11/2022**

Thank you!