Aprendizaje no supervisado

Agrupamiento basado en densidad - DBSCAN

Javier Sevilla

Agrupamiento

Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- ► Basados en densidad
- ► Probabilísticos

Agrupamiento

Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- Basados en densidad
- ▶ Probabilísticos

Conceptos

Densidad

¿Cómo definir densidad?

▶ Vecindario (parámetro ϵ)

Conceptos

Densidad

¿Cómo definir densidad?

- ▶ Vecindario (parámetro ϵ)
- ▶ Punto nuclear (parámetros ϵ , M)

Conceptos

Conceptos

Densidad

En base al valor de los parámetros ϵ y M, se definen:

► Punto nuclear (x o y)

Densidad

- ► Punto nuclear (x o y)
- ▶ Punto directamente denso-alcanzable (y desde x, z desde y)

Densidad

- ► Punto nuclear (x o y)
- ▶ Punto directamente denso-alcanzable (y desde x, z desde y)
- ▶ Punto borde (z)

Densidad

- ► Punto nuclear (x o y)
- ▶ Punto directamente denso-alcanzable (y desde x, z desde y)
- ▶ Punto borde (z)
- ▶ Punto ruido (n)

Densidad

En base al valor de los parámetros ϵ y M, se definen:

▶ Punto **directamente** denso-alcanzable (y desde x, z desde y)

Densidad

- ▶ Punto **directamente** denso-alcanzable (y desde x, z desde y)
- ► Punto denso-alcanzable (z desde x)
 - ** Relación asimétrica **

Densidad

- ▶ Punto **directamente** denso-alcanzable (y desde x, z desde y)
- ► Punto denso-alcanzable (z desde x)
 - ** Relación asimétrica **
- ▶ Puntos denso-conectados (a y z)
 - ** Relación simétrica **

Clúster

Conjunto de puntos nucleares denso-conectados y el resto de puntos (directamente) denso-alcanzables desde ellos.

DBSCAN

- 1. C = 1
- Para todo ejemplo, x_i
 - 2.1. Si x_i ya está asignado, continuar (volver a 2)
 - 2.2. Calcular vecindario V de x_i (dado \mathcal{E})
 - 2.3. Si $|V| < \mathcal{M}$, asignar x_i como ruido y continuar (volver a 2)
 - 2.4. Crear clúster número C y asignarle x_i
 - Para todo ejemplo x_i ∈ V
 - 2.5.1. Si x_i está asignado como ruido, asignarlo al clúster C y continuar (volver a 2.5)
 - 2.5.2. Si x_i tiene otra asignación, continuar (volver a 2.5)
 - 2.5.3. Asignar x, al clúster C
 - 2.5.4. Calcular vecindario V' de x_i (dado \mathcal{E})
 - 2.5.5. Si $|V| \ge \mathcal{M}, V = V \cup V'$
- 2.6. C = C + 1

DBSCAN: Efecto de ambos, M y ϵ

Ventajas

- ► No es necesario especificar *K*
- Definición basada en densidad
- ► Funciona con clústeres de diferente tamaño y formas
- ► Generalizable a otros conceptos de densidad
- Puede funcionar con diferentes medidas de distancia

Desventajas

- ► Definición compleja
- Problemas al lidiar con clústeres de diferente densidad
- ► Dos parametros interdependientes a ajustar

Gracias