Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen

Die Erfindung betrifft ein Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen durch in situ-Hybridisierung. Weiter betrifft die Erfindung spezifische Oligonukleotidsonden, die im Rahmen des Nachweisverfahrens eingesetzt werden sowie Kits, die diese Oligonukleotidsonden enthalten.

- Unter dem Oberbegriff "Alkoholfreie Getränke" (AfG) werden Getränkegruppen wie Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer zusammengefasst.
- Generell können alkoholfreie Getränke aufgrund ihrer sehr vielseitigen

 Zusammensetzung aus Nähr- und Wuchsstoffen als potenziell gefährdet durch das
 Wachstum eines breiten Spektrums von Mikroorganismen eingestuft werden.
 - Nach heutigem Kenntnisstand werden hauptsächlich Hefen, Schimmelpilze, Milchsäurebakterien, Essigsäurebakterien, Bazillen und Alicyclobazillen im AfG-
- Bereich vorgefunden und somit als "getränkeschädliche Mikroorganismen" beschrieben.

25

- Die Kontaminationen mit diesen Mikroorganismen führen in der Regel nicht zu gesundheitlichen Schäden des Konsumenten, sie gehen aber meist mit Trübungen, Geschmacks- und Geruchsveränderungen des Endprodukts einher und führen durch einen daraus resultierenden Imageverlust zu hohen wirtschaftlichen Einbußen für die produzierende Industrie.
- In Fruchtsäften und Fruchtnektaren können sich aufgrund der meist natürlicherweise hohen Konzentration an Fruchtsäuren und einem damit verbundenen niedrigen pH-
- Wert (pH-Bereich 2,5 bis 4,5) i.d.R. nur acidophile oder acidotolerante
 Mikroorganismen (z.B. Milchsäurebakterien, Alicyclobazillen, säuretolerante Hefe-

und Schimmelpilzarten) vermehren und somit zu einer Schädigung dieser Getränke führen.

Eine Maßnahme zur Einschränkung des Verderbs durch Mikroorganismen stellt die Carbonisierung von Getränken dar. Dieses Verfahren wird sehr häufig bei der Herstellung von Erfrischungsgetränken eingesetzt. Durch die Zugabe von CO₂ wird im Produkt ein nahezu anaerobes Milieu geschaffen und nur mikroaerophile, fakultativ anaerobe und anaerobe Mikroorganismen (z.B. Milchsäurebakterien, Essigsäurebakterien und Hefen) sind in der Lage, dieses Milieu zu tolerieren.

10

15

25

Stille Getränke werden in den meisten Fällen einem Pasteurisierungsprozess unterzogen, um eine lange Stabilität und Qualität dieser Produkte zu gewährleisten. Durch die Pasteurisierung sollen möglichst umfassend alle vegetativen Mikroorganismen abgetötet werden. Allerdings findet dadurch keine Eliminierung der durch Bazillen und Alicyclobazillen gebildeten Sporen statt. Zudem sind auch einige Schimmelpilzarten in der Lage, diesen Prozess ohne Schaden zu überstehen und nachfolgend Produktschäden hervorzurufen.

Ein entscheidender Faktor in der Gewährleistung der biologischen Qualität von

Getränken ist die Fahndung nach der Ursache der Kontamination, um diese endgültig zu beseitigen.

Im Allgemeinen werden dabei zwei Kontaminationswege unterschieden: Als Primärkontamination werden Kontaminationen bezeichnet, bei denen Mikroorganismen durch die Rohstoffe oder durch Verunreinigungen im Prozess in das Produkt eingetragen werden.

Sekundärkontaminationen sind Kontaminationen, die nach der eigentlichen Produktion des Getränks im Abfüllbereich auftreten.

Die Herausforderung, die sich durch diese verschiedenen Faktoren an die 30 mikrobiologische Qualitätskontrolle stellt, besteht darin, umfassend und schnell alle

- 3 -

im Produkt vorhandenen Keime zu identifizieren, um möglichst rasch entsprechende Gegenmaßnahmen einleiten zu können.

Bislang erfolgt der konventionelle Nachweis von AfG-Schädlingen durch mehrtägige

Anreicherung der Untersuchungsprobe in einem Selektivmedium und anschließende
Lichtmikroskopie. Zudem müssen zur genauen Bestimmung des AfG-Verderbers
weitere physiologische Tests (wie Gram-Färbung, Zuckerverwertungsreihen)
durchgeführt werden.

Die Nachteile dieser ausschließlich kultivierungsabhängigen Methode liegen in der langen Analysedauer, welche erhebliche logistische Kosten in den getränkeproduzierenden Betrieben verursacht. Darüber hinaus droht nach der Auslieferung von Produkten, deren mikrobiologischer Befund noch nicht einwandfrei feststand ein beträchtlicher Imageverlust für das betreffende Unternehmen, wenn im Fall von Kontaminationen Rückholaktionen von verdorbenen Produktchargen nötig werden.

Im Folgenden werden die getränkeschädlichen Mikroorganismen und deren Nachweis, wie er im Stand der Technik erfolgt, im Detail beschrieben.

20 <u>Hefen und Schimmelpilze:</u>

Zu denjenigen Mikroorganismen, die eine Hitzebehandlung überleben und anschließend Probleme in den Getränken verursachen können, zählen vor allem die Schimmelpilze Byssochlamys fulva und B. nivea, Neosartorya fischeri und Talaromyces flavus sowie einige Hefen. In carbonisierten Getränken sind die säuretoleranten, fermentativen Vertreter der Hefen (Saccharomyces spp., Dekkera spp. und Zygosaccharomyces bailii) vorherrschend. Neben der Beeinträchtigung der Produkte durch Geschmacksveränderungen und Trübung geht von diesen "gärfähigen Hefen" eine potenzielle Gefahr durch fallweise Explosion ("Bombagen") der Abfüllbehältnisse aus.

-4-

Der Nachweis von Hefen und Schimmelpilzen im AfG-Bereich erfolgt derzeit über die Kultivierung auf entsprechenden Nährmedien (z.B. SSL-Bouillon, OFS-Medium, Malzextrakt-Medium, Würze-Agar) und dauert zwischen 2 und 7 Tagen. Ein Nachweis auf Gattungs- oder gar Artebene ist sehr zeitaufwendig und wird in der Regel nicht durchgeführt.

Milchsäurebakterien:

5

20

25

Die Vertreter der Milchsäurebakterien sind gram-positive, nicht sporenbildende, Katalase-negative Stäbchen oder Kokken, die sich durch einen sehr hohen

Nährstoffanspruch (vor allem an Vitaminen, Aminosäuren, Purinen und Pyrimidinen) auszeichnen. Wie der Name schon andeutet, sind alle Milchsäurebakterien in der Lage, als Gärprodukt Milchsäure herzustellen.

Aufgrund ihres anaeroben Wachstums und der für anaerobe Mikroorganismen atypische hohe Toleranz und Unempfindlichkeit gegenüber Sauerstoff werden sie als aerotolerante Anaerobier bezeichnet.

Bis dato werden u.a. die Gattungen Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Carnobacterium, Bifidobacterium, Enterococcus, Pediococcus, Weissella und Streptococcus unter dem Begriff "Milchsäurebakterien" geführt.

Milchsäurebakterien haben in der Lebensmittelindustrie eine ambivalente Rolle. Einerseits ist ihr Vorhandensein in manchen Prozessen, wie z.B. der Herstellung von Sauerkraut, erwünscht und somit nicht wegzudenken. Andererseits kann ihr Vorkommen in Bier oder Fruchtsäften zu einem Verderb dieser Produkte führen. Das Wachstum dieser Bakterien äußert sich vornehmlich durch Trübung, Säuerung, Gasund Schleimbildung.

- 5 -

In der AfG-Industrie sind hauptsächlich die Bakteriengattungen Leuconostoc, Lactococcus, Lactobacillus, Oenococcus, Weissella und Pediococcus als Kontaminanten von Bedeutung.

Milchsäurebakterien werden durch 5- bis 7-tägige Inkubation bei 25 °C auf MRS-

5 Agar (pH 5,7) nachgewiesen.

Essigsäurebakterien:

Mit dem Trivialnamen "Essigsäurebakterien" werden Bakterien der Gattungen Acetobacter, Gluconobacter, Gluconoacetobacter und Acidomonas bezeichnet.

Bakterien dieser Gattungen sind gram-negative, obligat aerobe, Oxidase-negative Stäbchen, deren optimale Vermehrungstemperatur um 30 °C liegt. Essigsäurebakterien sind in der Lage, sich auch bei pH-Werten um 2,2 bis 3,0 zu vermehren und können daher in Getränken mit diesem pH-Wert Produktschäden hervorrufen.

15

20

Phylogenetisch werden Bakterien dieser Gattung als Mitglieder der Alphaproteobakterien eingestuft.

Die Produktschädigungen gehen zumeist mit Trübungen und Geschmacksveränderungen durch die Bildung von Essigsäure und Gluconsäure

Geschmacksveränderungen durch die Bildung von Essigsäure und Gluconsäure einher.

25

Für den Nachweis von Essigsäurebakterien haben sich vor allem ACM-Agar (Inkubationszeit: 14 Tage) und DSM-Agar (Inkubationszeit: 3 bis 5 Tage) bewährt.

Bazillen:

Bazillen sind gram-positive aerobe, z.T. fakultativ anaerobe, zumeist Katalasepositive sporenbildende Stäbchen. In der AfG-Industrie wurde bis dato hauptsächlich Bacillus coagulans als Verderbniserreger identifiziert.

- 6 -

Der Nachweis erfolgt durch Ausstrich des Untersuchungsmaterials auf Dextrose-Caseinpepton-Agar oder Hefeextrakt-Pepton-Dextrose-Stärke-Agar und anschließender Inkubation bei 55 °C (Inkubationszeit: 3 Tage). Um eine Aktivierung bzw. eine Auskeimung der B. coagulans-Sporen zu erreichen, wird vor der eigentlichen Inkubation eine Erwärmung der Probe bei 80 °C für 10 min empfohlen.

Alicyclobazillen:

5

10

Alicyclobazillen sind gram-positive, aerobe, thermophile und Katalase-positive sporenbildende Stäbchen. Vertreter dieser Gattung bilden ω-alicyclische Fettsäuren als zelluläre Hauptfettsäuren.

In der AfG-Industrie wurde bis dato weltweit hauptsächlich Alicyclobacillus acidoterrestris als Verderbniserreger nachgewiesen. In seltenen Fällen wurden auch A. acidocaldarius und A. acidiphilus in verdorbenen Getränken identifiziert.

Der optimale Wachstumstemperaturbereich für *Alicyclobacillus spp.* liegt zwischen 26 und 55 °C. Der pH-Bereich, in dem sich Bakterien dieser Gattung vermehren können, liegt zwischen 2,2 und 5,8.

Das Wachstum von A. acidoterrestris führt in Fruchtsäften zu Verderb, der sich infolge der Bildung von Guajakol und Di-Bromphenol in Geruchs- und Geschmacksveränderungen äußert. Eine Kontamination mit diesem Organismus verläuft zumeist inapparent, was bedeutet, dass nur in seltenen Fällen eine Trübung in den infizierten Getränken auftritt.

Alicyclobazillen können über mehrtägige Kultivierung bei 44 bis 46 °C auf
Orangenserum-Agar, Kartoffel-Dextrose-Agar, K-Agar, YSG-Agar oder BAM-Agar
nachgewiesen werden. Zudem ist zur sicheren Bestätigung des Befundes eine Reihe
physiologischer Tests notwendig. Um eine Aktivierung bzw. eine Auskeimung der
Alicyclobacillus ssp.-Sporen zu erreichen, wird vor der eigentlichen Inkubation eine
Erwärmung der Probe bei 80 °C für 10 min empfohlen.

-7-

Die bisher in der Routineanalytik eingesetzten Nachweisverfahren für getränkeschädliche Mikroorganismen sind sehr langwierig und teilweise zu ungenau und verhindern somit schnelle und wirkungsvolle Gegenmaßnahmen zum Erhalt des kontaminierten Produktes. Die Ungenauigkeit resultiert beim Nachweis aus einer fehlenden Differenzierung bis auf Gattungs- und/oder Artebene.

5

10

15

20

25

30

Als logische Konsequenz aus den Schwierigkeiten, welche bei traditionellen Kultivierungsverfahren beim Nachweis von getränkeschädlichen Mikroorganismen auftreten, bieten sich daher Nachweisverfahren auf Nukleinsäurebasis zur schnellen, sicheren und spezifischen Identifizierung von Verderbniserregern in alkoholfreien Gertränken an.

Bei der PCR, der Polymerase-Kettenreaktion, wird mit spezifischen Primern ein charakteristisches Stück des jeweiligen Mikroorganismengenoms amplifiziert. Findet der Primer seine Zielstelle, so kommt es zu einer millionenfachen Vermehrung eines Stücks der Erbsubstanz. Bei der anschließenden Analyse, z.B. mittels eines DNA-Fragmente auftrennenden Agarose-Gels, kann eine qualitative Bewertung stattfinden. Im einfachsten Fall führt dies zu der Aussage, dass die Zielstellen für die verwendeten Primer in der untersuchten Probe vorhanden waren. Weitere Aussagen sind nicht möglich; diese Zielstellen können sowohl von einem lebenden Bakterium, als auch von einem toten Bakterium oder von nackter DNA stammen. Da die PCR-Reaktion auch bei Anwesenheit eines toten Bakteriums oder nackter DNA positiv ausfällt, kommt es hier häufig zu falsch positiven Ergebnissen. Eine Weiterführung dieser Technik stellt die quantitative PCR dar, bei der versucht wird, eine Korrelation zwischen der Menge an vorhandenen Mikroorganismen und der Menge an amplifizierter DNA herzustellen. Vorteile der PCR liegen in ihrer hohen Spezifität, leichten Anwendbarkeit und im geringen Zeitaufwand. Wesentliche Nachteile sind ihre hohe Anfälligkeit für Kontaminationen und damit falsch positive Ergebnisse sowie die bereits erwähnte fehlende Möglichkeit, zwischen lebenden und toten Zellen bzw. nackter DNA zu unterscheiden.

-8-

Einen einzigartigen Ansatz, die Spezifität der molekularbiologischen Methoden wie der PCR mit der Möglichkeit der Mikroorganismenvisualisierung, wie sie die Antikörper-Methoden ermöglichen, zu verbinden, bietet die Methode der Fluoreszenz-In-Situ-Hybridisierung (FISH; Amann, R. I., W. Ludwig und K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59, S. 143-169). Hierbei können Mikroorganismenarten, -gattungen oder -gruppen hochspezifisch identifiziert und visualisiert werden.

10

5

Die FISH-Technik basiert auf der Tatsache, dass es in Mikroorganismenzellen bestimmte Moleküle gibt, die aufgrund ihrer lebenswichtigen Funktion im Laufe der Evolution nur wenig mutiert sind: Die 16S, 18S, 23S und 26S ribosomale Ribonukleinsäure (rRNA). Sie sind Bestandteile der Ribosomen, den Orten der Proteinbiosynthese, und können aufgrund ihrer ubiquitären Verbreitung, ihrer Größe, und ihrer strukturellen und funktionellen Konstanz als spezifische Marker dienen (Woese, C. R., 1987. Bacterial evolution. Microbiol. Rev. 51, S. 221-271). Ausgehend von einer vergleichenden Sequenzanalyse können phylogenetische Beziehungen allein aufgrund dieser Daten aufgestellt werden. Dazu müssen diese Sequenzdaten in ein Alignment gebracht werden. Im Alignment, welches sich auf Kenntnisse über die Sekundärstruktur und Tertiärstruktur dieser Makromoleküle stützt, werden die homologen Positionen der ribosomalen Nukleinsäuren in Einklang miteinander gebracht.

Ausgehend von diesen Daten können phylogenetische Berechnungen durchgeführt werden. Der Einsatz modernster Computertechnologie macht es möglich, auch großangelegte Berechnungen schnell und effektiv auszuführen, sowie große Datenbanken, welche die Alignment-Sequenzen der 16S, 18S, 23S und 26S rRNA beinhalten, anzulegen. Durch den schnellen Zugriff auf dieses Datenmaterial können neu erhaltene Sequenzen in kurzer Zeit phylogenetisch analysiert werden. Diese

-9-

rRNA Datenbanken können dazu verwendet werden, art- und gattungsspezifische Gensonden zu konstruieren. Hierbei werden alle verfügbaren rRNA Sequenzen miteinander verglichen und für bestimmte Sequenzstellen Sonden entworfen, die spezifisch eine Mikroorganismenart, -gattung oder -gruppe erfassen.

5

25

Bei der FISH (Fluoreszenz-In-Situ-Hybridisierung)-Technik werden diese
Gensonden, die zu einer bestimmten Region auf der ribosomalen Zielsequenz
komplementär sind, in die Zelle eingeschleust. Die Gensonden sind i.d.R. kleine, 16
bis 20 Basen lange, einzelsträngige Desoxyribonukleinsäurestücke und richten sich
gegen eine Zielregion, welche typisch für eine Mikroorganismenart oder eine
Mikroorganismengruppe ist. Findet die fluoreszenzmarkierte Gensonde in einer
Mikroorganismenzelle ihre Zielsequenz, so bindet sie daran und die Zellen können
aufgrund ihrer Fluoreszenz mit Hilfe eines Fluoreszenzmikroskops detektiert werden.

Die FISH-Analyse wird grundsätzlich auf einem Objektträger durchgeführt, da die Mikroorganismen bei der Auswertung durch Bestrahlung mit einem hochenergetischen Licht visualisiert, also sichtbar gemacht werden. Hierin liegt allerdings einer der Nachteile der klassischen FISH-Analyse: da auf einem Objektträger naturgemäß nur relativ kleine Volumina analysiert werden können, ist die Sensitivität der Methode unbefriedigend und für eine verlässliche Analyse nicht ausreichend.

Mit der vorliegenden Erfindung werden daher die Vorteile der klassischen FISH-Analyse mit denen der Kultivierung verknüpft. Durch einen vergleichsweise kurzen Kultivierungsschritt wird sichergestellt, dass die nachzuweisenden Mikroorganismen in ausreichender Zahl vorliegen, bevor der Nachweis der Mikroorganismen mittels spezifischer FISH durchgeführt wird.

Die Durchführung der in der vorliegenden Anmeldung beschriebenen Verfahren zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen

Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. 5 naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der 10 Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der 15 Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius umfasst somit die folgenden Schritte:

- Kultivieren der in der untersuchten Probe enthaltenen getränkeschädlichen Mikroorganismen

20

- Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen
- Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde, um eine Hybridisierung herbeizuführen,
- 25 Entfernen bzw. Abwaschen der nicht hybridisierten Oligonukleotidsonden und
 - Detektieren der mit den Oligonukleotidsonden hybridisierten getränkeschädlichen Mikroorganismen.

- 11 -

Im Rahmen der vorliegenden Erfindung wird unter "Kultivieren" die Vermehrung der in der Probe enthaltenen Mikroorganismen in einem geeigneten Kultivierungsmedium verstanden.

Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich B. coagulans, kann die Kultivierung z.B. auf Dextrose-Caseinpepton-Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.
Der Fachmann kann die geeigneten Kultivierungsverfahren für jeden zu untersuchenden Mikroorganismus bzw. jede Mikroorganismengruppe dem Stand der

15

Technik entnehmen.

Im Rahmen der vorliegenden Erfindung wird unter "Fixieren" der Mikroorganismen eine Behandlung verstanden, mit der die Hülle der Mikroorganismen für Nukleinsäuresonden durchlässig gemacht wird. Zur Fixierung wird üblicherweise Ethanol verwendet. Kann die Zellwand trotz dieser Behandlung nicht von den Nukleinsäuresonden penetriert werden, so sind dem Fachmann ausreichend weitere Maßnahmen bekannt, die zu demselben Ergebnis führen. Dazu zählen beispielsweise der Einsatz von Methanol, Mischungen von Alkoholen, einer niederprozentigen Paraformaldehydlösung oder einer verdünnten Formaldehydlösung, enzymatische Behandlungen oder ähnliches. Es kann sich in einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ein enzymatischer Schritt zum vollständigen Aufschluss der Mikroorganismen anschließen. Als Enzyme sind hier bspw. Lysozym, Proteinase K und Mutanolysin zu nennen. Dem Fachmann sind hier genügend geeignete Verfahren bekannt, und er wird auf einfache Weise feststellen

können, welches Mittel für den Zellaufschluss eines bestimmten Mikroorganismus besonders geeignet ist.

Im Rahmen der vorliegenden Erfindung werden für die "Hybridisierung" die fixierten Mikroorganismen mit fluoreszenzmarkierten Oligonukleotidsonden inkubiert. Diese Oligonukleotidsonden können nach dem Fixieren die Zellhülle penetrieren und an die der Oligonukleotidsonde entsprechende Zielsequenz im Zellinneren binden. Die Bindung ist als Ausbildung von Wasserstoffbrücken zwischen komplementären Nukleinsäurestücken zu verstehen.

10

5

Die Oligonukleotidsonde kann dabei komplementär zu einer chromosomalen oder episomalen DNA sein, aber auch zu einer mRNA oder rRNA des nachzuweisenden Mikroorganismus. Von Vorteil ist es, eine Oligonukleotidsonde zu wählen, die zu einem Bereich komplementär ist, der in einer Kopienzahl von mehr als 1 im nachzuweisenden Mikroorganismus vorhanden ist. Die nachzuweisende Sequenz liegt bevorzugt 500 bis 100.000 mal pro Zelle vor, besonders bevorzugt 1.000 bis 50.000 mal. Aus diesem Grunde wird bevorzugt eine Sequenz aus der rRNA als Zielsequenz verwendet, da die Ribosomen in der Zelle als Orte der Proteinbiosynthese viele tausendmal in jeder aktiven Zelle vorliegen.

20

15

Bei der Nukleinsäuresonde im Sinne der Erfindung kann es sich um eine DNA- oder RNA-Sonde handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25 Nukleotide. Die Auswahl der Nukleinsäuresonden geschieht unter dem

25 Gesichtspunkt, ob eine komplementäre Sequenz in dem nachzuweisenden Mikroorganismus vorliegt. Durch diese Auswahl einer definierten Sequenz kann eine Mikroorganismenart, eine Mikroorganismengattung oder eine ganze Mikroorganismengruppe erfasst werden. Komplementarität sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei Oligonukleotiden mit

mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

Zur Erhöhung der Spezifität von Nukleinsäuresonden können Kompetitorsonden eingesetzt werden. Unter dem Begriff "Kompetitorsonden" werden im Rahmen der vorliegenden Erfindung insbesondere Oligonukleotide verstanden, die eventuell auftretende ungewollte Bindungen der Nukleinsäuresonden abdecken und dabei eine höhere Sequenzähnlichkeit zu nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies aufweisen als zu den nachzuweisenden Mikroorganismengattungen bzw. -spezies. Durch den Einsatz von Kompetitorsonden kann verhindert werden, dass die Nukleinsäuresonde an die Nukleinsäuresequenz der nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies bindet und zu falschen Signalen führt. Die unmarkierte Kompetitorsonde wird immer zusammen mit der entsprechenden markierten Oligonukleotidsonde eingesetzt.

15

10

5

Die Kompetitorsonde sollte komplementär sein zu einer Nukleinsäuresequenz mit hoher Sequenzähnlichkeit zur Nukleinsäuresequenz der nachzuweisenden Mikroorganismengattungen bzw. -spezies. Besonders bevorzugt ist die Kompetitorsonde komplementär zur rRNA von nicht nachzuweisenden

20 Mikroorganismengattungen bzw. -spezies.

Bei der Kompetitorsonde kann es sich im Sinne der Erfindung um eine DNA- oder RNA-Sequenz handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25

Nukleotide. Durch die Auswahl einer definierten Sequenz kann die Hybridisierung der markierten Oligonukleotidsonde an die Nukleinsäuresequenz einer Bakterienart, einer Bakteriengattung oder einer ganzen Bakteriengruppe abgeblockt werden. Komplementarität zu der abzublockenden Nukleinsäuresequenz sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei

Oligonukleotiden mit mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

Im Rahmen der erfindungsgemäßen Verfahren haben die erfindungsgemäßen

Nukleinsäuresondenmoleküle die nachstehend angegebenen Längen und Sequenzen
(alle Nukleinsäuresondenmoleküle sind in 5'-3'-Richtung notiert).

Die erfindungsgemäßen Nukleinsäuresondenmoleküle sind zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae,

membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A.

20 fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides,

Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius geeignet und werden dementsprechend in dem erfindungsgemäßen Nachweisverfahren eingesetzt.

Im Rahmen der vorliegenden Erfindung können Sonden, die unterschiedliche Arten 30 von Mikroorganismen nachweisen, zusammen eingesetzt werden, um dadurch den gleichzeitigen Nachweis von unterschiedlichen Arten von Mikroorganismen zu ermöglichen. Dies führt ebenfalls zu einer Beschleunigung des Nachweisverfahrens.

a) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Hefen 5 nachweisen:

SEQ ID No. 1: 5'- GTTTGACCAGATTCTCCGCTC

Die Sequenz SEQ ID No. 1 ist vor allem zum Nachweis von Mikroorganismen der 10 Gattung Zygosaccharomyces geeignet.

SEQ ID No. 2: 5'- GTTTGACCAGATTTTCCGCTCT

SEQ ID No. 3: 5'- GTTTGACCAAATTTTCCGCTCT

SEQ ID No. 4: 5'- GTTTGTCCAAATTCTCCGCTCT

15

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 2 bis SEQ ID No. 4 werden als unmarkierte Kompetitorsonden für den Nachweis von Mikroorganismen der Gattung Zygosaccharomyces gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1 eingesetzt, um das Binden der markierten, für Mikroorganismen der

Gattung Zygosaccharomyces spezifischen Oligonukleotidsonde an 20 Nukleinsäuresequenzen, die nicht spezifisch für Mikroorganismen der Gattung Zygosaccharomyces sind, zu verhindern.

SEQ ID No. 5: 5'- CCCGGTCGAATTAAAACC

25 SEQ ID No. 6: 5'- GCCCGGTCGAATTAAAAC

SEQ ID No. 7: 5'- GGCCCGGTCGAATTAAAA

SEQ ID No. 8: 5'- AGGCCCGGTCGAATTAAA

SEQ ID No. 9: 5'- AAGGCCCGGTCGAATTAA

SEQ ID No. 10: 5'- ATATTCGAGCGAAACGCC

30 SEQ ID No. 11: 5'- AAAGATCCGGACCGGCCG

	SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 14	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 15	5'- AGATCCGGACCGGCCGAC
5	SEQ ID No. 16	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 17	5'- GAAAGGCCCGGTCGAATT
	SEQ ID No. 18	5'- AAAGGCCCGGTCGAATTA
	SEQ ID No. 19	5'- GGAAAGGCCCGGTCGAAT
	SEQ ID No. 20	5'- AGGAAAGGCCCGGTCGAA
10	SEQ ID No. 21	5'- AAGGAAAGGCCCGGTCGA

Die Sequenzen SEQ ID No. 5 bis SEQ ID No. 21 sind vor allem zum Nachweis von Zygosaccharomyces bailii geeignet.

15 SEQ ID No. 22: 5'- ATAGCACTGGGATCCTCGCC

Die Sequenz SEQ ID No. 22 ist vor allem zum Nachweis von Zygosaccharomyces fermentati geeignet.

20 SEQ ID No. 23: 5'- CCAGCCCCAAAGTTACCTTC SEQ ID No. 24: 5'- TCCTTGACGTAAAGTCGCAG

Die Sequenzen SEQ ID No. 23 und SEQ ID No. 24 sind vor allem zum Nachweis von Zygosaccharomyces microellipsoides geeignet.

SEQ ID No. 25: 5'- GGAAGAAAACCAGTACGC
SEQ ID No. 26: 5'- CCGGTCGGAAGAAAACCA
SEQ ID No. 27: 5'- GAAGAAAACCAGTACGCG
SEQ ID No. 28: 5'- CCCGGTCGGAAGAAAACC
30 SEQ ID No. 29: 5'- CGGTCGGAAGAAAACCAG

- 17 -

	SEQ ID No. 30:	5'- GGTCGGAAGAAACCAGT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACGCGGAAAAATCCG
5	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGTCGGAAGAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACGCGGAAAAATCC
10	SEQ ID No. 39:	5'- AGAAAACCAGTACGCGGA
	SEQ ID No. 40:	5'- GGCCCGGTCGGAAGAAA
	SEQ ID No. 41:	5'- ATAAACACCACCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
15	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
	SEQ ID No. 45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCAGTAAAT
• •	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
20	SEQ ID No. 49:	5'- TAAACACCACCCGATCCC
	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'- GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
25	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG
	SEQ ID No. 56:	5'- TTCACCAAGGGCCACAGG
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'- AGGGCCACAGGGACCCAG
30	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG

- 18 -

	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
5	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
10	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGTC
15	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC

Die Sequenzen SEQ ID No. 25 bis SEQ ID No. 75 sind vor allem zum Nachweis von Zygosaccharomyces mellis geeignet.

20

	SEQ ID No. 76:	5'- GTCGGAAAAACCAGTACG
	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCAGT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCAG
25	SEQ ID No. 80:	5'- TCGGAAAAACCAGTACGC
	SEQ ID No. 81:	5'- CGGAAAAACCAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAGTACGCGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
30	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG

- 19 -

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95:	5'- GGCCCGGTCGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAACCAGTACGCGGA
	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGTCGGAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGTCGGAAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGTCGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGTCGGAAAA
	SEQ ID No. 111:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGTCGGAA
	SEQ ID No. 113:	5'- ATCTCTTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTTCCGAAAGGTC
30	SEQ ID No. 115:	5'- CTCTTCCGAAAGGTCGAG

WO 2005/031004

	SEQ ID No. 116:	5'- CTTCCGAAAGGTCGAGAT
	SEQ ID No. 117:	5'- TCTCTTCCGAAAGGTCGA
	SEQ ID No. 118:	5'- TCTTCCGAAAGGTCGAGA
	SEQ ID No. 119:	5'- CCTAGTGGTGCCCTTCCG
5	SEQ ID No. 120:	5'- TAGTGGTGCCCTTCCGTC
	SEQ ID No. 121:	5'- AGTGGTGCCCTTCCGTCA
	SEQ ID No. 122:	5'- GCCAAGGTTAGACTCGTT
	SEQ ID No. 123:	5'- GGCCAAGGTTAGACTCGT
	SEQ ID No. 124:	5'- CCAAGGTTAGACTCGTTG
10	SEQ ID No. 125:	5'- CAAGGTTAGACTCGTTGG
	SEQ ID No. 126:	5'- AAGGTTAGACTCGTTGGC

Die Sequenzen SEQ ID No. 76 bis SEQ ID No. 126 sind vor allem zum Nachweis von Zygosaccharomyces rouxii geeignet.

15

SEQ ID No. 127: 5'- CTCGCCTCACGGGGTTCTCA

Die Sequenz SEQ ID No. 127 ist vor allem zum gleichzeitigen Nachweis von Zygosaccharomyces mellis und Zygosaccharomyces rouxii geeignet.

20

	SEQ ID No. 128:	5'- GGCCCGGTCGAAATTAAA
	SEQ ID No. 129:	5'- AGGCCCGGTCGAAATTAA
	SEQ ID No. 130:	5'- AAGGCCCGGTCGAAATTA
	SEQ ID No. 131:	5'- AAAGGCCCGGTCGAAATT
25	SEQ ID No. 132:	5'- GAAAGGCCCGGTCGAAAT
	SEQ ID No. 133:	5'- ATATTCGAGCGAAACGCC
	SEQ ID No. 134:	5'- GGAAAGGCCCGGTCGAAA
	SEQ ID No. 135:	5'- AAAGATCCGGACCGGCCG
	SEQ ID No. 136:	5'- GGAAAGATCCGGACCGGC
30	SEQ ID No. 137:	5'- GAAAGATCCGGACCGGCC

- 21 -

SEQ ID No. 138: 5'- GATCCGGACCGGCCGACC
SEQ ID No. 139: 5'- AGATCCGGACCGGCCGAC
SEQ ID No. 140: 5'- AAGATCCGGACCGGCCGA
SEQ ID No. 141: 5'- AGGAAAGGCCCGGTCGAA
SEQ ID No. 142: 5'- AAGGAAAGGCCCGGTCGA

Die Sequenzen SEQ ID No. 128 bis SEQ ID No. 142 sind vor allem zum Nachweis von Zygosaccharomyces bisporus geeignet.

10 SEQ ID No. 143: 5'-CGAGCAAAACGCCTGCTTTG
SEQ ID No. 144: 5'-CGCTCTGAAAGAGAGTTGCC

Die Sequenzen SEQ ID No. 143 und SEQ ID No. 144 sind vor allem zum Nachweis von *Hanseniaspora uvarum* geeignet.

SEQ ID No. 145: 5'-AGTTGCCCCCTACACTAGAC
SEQ ID No. 146: 5'-GCTTCTCCGTCCCGCGCCG

Die Sequenzen SEQ ID No. 145 und SEQ ID No. 146 sind vor allem zum Nachweis 20 von Candida intermedia geeignet.

SEQ ID No. 147: 5'- AGATTYTCCGCTCTGAGATGG

Das Nukleinsäuresondenmoleküle gemäß SEQ ID No. 147 wird als unmarkierte Kompetitorsonde für den Nachweis von Candida intermedia gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 146 eingesetzt, um das Binden der markierten, für Candida intermedia spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Candida intermedia sind, zu verhindern.

5

15

SEQ ID No. 148: 5'- CCTGGTTCGCCAAAAAGGC

Die Sequenz SEQ ID No. 148 ist vor allem zum Nachweis von Candida parapsilosis geeignet.

5

SEQ ID No. 149: 5'-GATTCTCGGCCCCATGGG

Die Sequenz SEQ ID No. 149 ist vor allem zum Nachweis von Candida crusei (Issatchenkia orientalis) geeignet.

10

SEQ ID No. 150: 5'- ACCCTCTACGGCAGCCTGTT

Die Sequenz SEQ ID No. 150 ist vor allem zum gleichzeitigen Nachweis von Dekkera anomala und Brettanomyces (Dekkera) bruxellensis geeignet.

15

SEQ ID No. 151: 5'- GATCGGTCTCCAGCGATTCA

Die Sequenz SEQ ID No. 151 ist vor allem zum Nachweis von Brettanomyces (Dekkera) bruxellensis geeignet.

20

SEQ ID No. 152: 5'- ACCCTCCACGGCGGCCTGTT

Die Sequenz SEQ ID No. 152 ist vor allem zum Nachweis von Brettanomyces (Dekkera) naardenensis geeignet.

25

SEQ ID No. 153: 5'- GATTCTCCGCGCCATGGG

Die Sequenz SEQ ID No. 153 ist vor allem zum Nachweis von *Pichia membranaefaciens* geeignet.

- 23 -

SEQ ID No. 154: 5'- TCATCAGACGGGATTCTCAC

Die Sequenz SEQ ID No. 154 ist vor allem zum gleichzeitigen Nachweis von Pichia minuta und Pichia anomala geeignet.

5

SEQ ID No. 155:

5'- CTCATCGCACGGGATTCTCACC

SEQ ID No. 156:

5'- CTCGCCACACGGGATTCTCACC

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 155 und SEQ ID No. 156 werden als unmarkierte Kompetitorsonden für den gemeinsamen Nachweis von 10 Pichia minuta und Pichia anomala gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 154 eingesetzt, um das Binden der markierten, für Pichia minuta und Pichia anomala spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Pichia minuta und Pichia anomala sind, zu verhindern.

15

SEQ ID No. 157: 5'-AGTTGCCCCCTCTCTAAGC

Die Sequenz SEQ ID No. 157 ist vor allem zum Nachweis von Saccharomyces exiguus geeignet.

20

SEQ ID No. 158:

5'-CTGCCACAAGGACAAATGGT

SEQ ID No. 159:

5'-TGCCCCCTCTTCTAAGCAAAT

Die Sequenzen SEQ ID No. 158 und SEQ ID No. 159 sind vor allem zum Nachweis 25 von Saccharomycodes ludwigii geeignet.

SEQ ID No. 160:

5'-CCCCAAAGTTGCCCTCTC

Die Sequenz SEQ ID No. 160 ist vor allem zum Nachweis von Saccharomyces 30 cerevisiae geeignet.

SEQ ID No. 161: 5'-GCCGCCCCAAAGTCGCCCTCTAC

SEQ ID No. 162: 5'-GCCCCAGAGTCGCCTTCTAC

- Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 161 und SEQ ID No. 162 werden als unmarkierte Kompetitorsonden für den Nachweis von Saccharomyces cerevisiae gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 160 eingesetzt, um das Binden der markierten, für Saccharomyces cerevisiae spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für
- 10 Saccharomyces cerevisiae sind, zu verhindern.
 - b) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Schimmelpilze nachweisen:
- 15 SEQ ID No. 163: 5'-AAGACCAGGCCACCTCAT

Die Sequenz SEQ ID No. 163 ist vor allem zum Nachweis von *Mucor racemosus* geeignet.

20 SEQ ID No. 164: 5'- CATCATAGAACACCGTCC

Die Sequenz SEQ ID No. 164 ist vor allem zum Nachweis von Byssochlamys nivea geeignet.

25 SEQ ID No. 165: 5'- CCTTCCGAAGTCGAGGTTTT

Die Sequenz SEQ ID No. 165 ist vor allem zum spezifischen Nachweis von *Neosartorya fischeri* geeignet.

30 SEQ ID No. 166: 5'- GGGAGTGTTGCCAACTC

Die Sequenz SEQ ID No. 166 ist vor allem zum gleichzeitigen Nachweis von Aspergillus fumigatus und A. fischeri geeignet.

5 SEQ ID No. 167: 5'- AGCGGTCGTTCGCAACCCT

Die Sequenz SEQ ID No. 167 ist vor allem zum Nachweis von Talaromyces flavus geeignet.

10 SEQ ID No. 168: 5'- CCGAAGTCGGGGTTTTGCGG

Die Sequenz SEQ ID No. 168 ist vor allem zum gleichzeitigen Nachweis von Talaromyces bacillisporus und T. flavus geeignet.

5'- GCCACAGTTCGCCACTCATC

c) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche 15 Milchsäurebakterien nachweisen:

SEQ ID No. 169: 5'- GATAGCCGAAACCACCTTTC SEQ ID No. 170: 5'- GCCGAAACCACCTTTCAAAC 20 SEQ ID No. 171: 5'- GTGATAGCCGAAACCACCTT SEQ ID No. 172: 5'- AGTGATAGCCGAAACCACCT SEQ ID No. 173: 5'- TTTAACGGGATGCGTTCGAC SEQ ID No. 174: 5'- AAGTGATAGCCGAAACCACC SEQ ID No. 175: 5'- GGTTGAATACCGTCAACGTC 25 SEQ ID No. 176: 5'- GCACAGTATGTCAAGACCTG SEQ ID No. 177: 5'- CATCCGATGTGCAAGCACTT SEQ ID No. 178: 5'- TCATCCGATGTGCAAGCACT SEQ ID No. 179: 5'- CCGATGTGCAAGCACTTCAT SEQ ID No. 180: 5'- CCACTCATCCGATGTGCAAG

30

SEQ ID No. 181:

	SEQ ID No. 182:	5'- CCTCCGCGTTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
	SEQ ID No. 185:	5'- CCAGTTCGCCACAGTTCGCC
5	SEQ ID No. 186:	5'- CTCATCCGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTCGCCACAGTTCGCCA
	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
10	SEQ ID No. 191:	5'- CGCCACAGTTCGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTCGCCACT
	SEQ ID No. 194:	5'- TCCTCCGCGTTTGTCACCGG
	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
15	SEQ ID No. 196:	5'- AGTTCGCCACAGTTCGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTCGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTCGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
	SEQ ID No. 200:	5'- CCACAGTTCGCCACTCATCC
20	SEQ ID No. 201:	5'- GATTTAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTCGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTCGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
25	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCTCCGCGTTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
	SEQ ID No. 210:	5'- CACCAGTTCGCCACAGTTCG
30	SEQ ID No. 211:	5'- ACGGGATGCGTTCGACTTGC

- 27 -

	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
5	SEQ ID No. 216:	5'- TCCGCGTTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTTGTCACCGGCAGT
	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
10	SEQ ID No. 221:	5'- CATTTAACGGGATGCGTTCG
	SEQ ID No. 222:	5'- CACAGTTCGCCACTCATCCG
	SEQ ID No. 223:	5'- TTCGCCACAGTTCGCCACTC
	SEQ ID No. 224:	5'- CTCCGCGTTTGTCACCGGCA
	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
15	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
20	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCCTTC
25	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCGGGTCCTTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTCGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
	SEQ ID No. 240:	5'- CTCACCAGTTCGCCACAGTT
30	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG

	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'- TGGTGAACCATTACTCCACC
	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
5	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCGGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
	SEQ ID No. 249:	5'- AGTTCGCCACTCATCCGATG
	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
10	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCTCCGCGTTTGTCACC
	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC
	SEQ ID No. 255:	5'- CCTTCCTCCGCGTTTGTCAC
15	SEQ ID No. 256:	5'- ACGCCGCGGGTCCTTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
	SEQ ID No. 258:	5'- GGGTCCTTCCAGAAGTGATA
	SEQ ID No. 259:	5'- CTTCCAGAAGTGATAGCCGA
•	SEQ ID No. 260:	5'- GCCTTGGTGAACCATTACTC
20	SEQ ID No. 261:	5'- ACAGTTCGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCGTTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTTGGGTGTTG
	SEQ ID No. 264:	5'- GAACCGACTTTGGGTGTTGC
	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTTG
25	SEQ ID No. 266:	5'- ACCGAACCGACTTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTTGGGTG
	SEQ ID No. 269:	5'- GTTACCGAACCGACTTTGGG

- 29 -

Die Sequenzen SEQ ID No. 169 bis SEQ ID No. 269 sind vor allem zum Nachweis von *Lactobacillus collinoides* geeignet.

SEQ ID No. 270: 5'-

5'- CCTTTCTGGTATGGTACCGTC

5 SEQ ID No. 271:

30

SEQ ID No. 292:

5'- TGCACCGCGGAYCCATCTCT

Die Sequenzen SEQ ID No. 270 und SEQ ID No. 271 sind vor allem zum Nachweis von Mikroorganismen der Gattung Leuconostoc geeignet.

5'- ACGCCGAAGCGCCTTTTAAC

SEQ ID No. 272: 10 5'- AGTTGCAGTCCAGTAAGCCG SEQ ID No. 273: 5'- GTTGCAGTCCAGTAAGCCGC SEQ ID No. 274: 5'- CAGTTGCAGTCCAGTAAGCC SEQ ID No. 275: 5'- TGCAGTCCAGTAAGCCGCCT SEQ ID No. 276: 5'- TCAGTTGCAGTCCAGTAAGC SEQ ID No. 277: 5'- TTGCAGTCCAGTAAGCCGCC SEQ ID No. 278: 5'- GCAGTCCAGTAAGCCGCCTT SEQ ID No. 279: 5'- GTCAGTTGCAGTCCAGTAAG SEQ ID No. 280: 5'- CTCTAGGTGACGCCGAAGCG 5'- ATCTCTAGGTGACGCCGAAG SEQ ID No. 281: 20 SEQ ID No. 282: 5'- TCTAGGTGACGCCGAAGCGC SEQ ID No. 283: 5'- TCTCTAGGTGACGCCGAAGC SEQ ID No. 284: 5'- CCATCTCTAGGTGACGCCGA SEQ ID No. 285: 5'- CATCTCTAGGTGACGCCGAA SEQ ID No. 286: 5'- TAGGTGACGCCGAAGCGCCT 25 SEQ ID No. 287: 5'- CTAGGTGACGCCGAAGCGCC SEQ ID No. 288: 5'- CTTAGACGGCTCCTTCCTAA SEQ ID No. 289: 5'- CCTTAGACGGCTCCTTCCTA SEQ ID No. 290: 5'- ACGTCAGTTGCAGTCCAGTA SEQ ID No. 291: 5'- CGTCAGTTGCAGTCCAGTAA

	SEQ ID No. 293:	5'- GACGCCGAAGCGCCTTTTAA
	SEQ ID No. 294:	5'- GCCGAAGCGCCTTTTAACTT
	SEQ ID No. 295:	5'- CGCCGAAGCGCCTTTTAACT
	SEQ ID No. 296:	5'- GTGACGCCGAAGCGCCTTTT
5	SEQ ID No. 297:	5'- TGACGCCGAAGCGCCTTTTA
	SEQ ID No. 298:	5'- AGACGGCTCCTTCCTAAAAG
	SEQ ID No. 299:	5'- ACGGCTCCTTCCTAAAAGGT
	SEQ ID No. 300:	5'- GACGGCTCCTTCCTAAAAGG
	SEQ ID No. 301:	5'- CCTTCCTAAAAGGTTAGGCC
^		

10

Die Sequenzen SEQ ID No. 272 bis SEQ ID No. 301 sind vor allem zum gleichzeitigen Nachweis von Leuconostoc mesenteroides und L. pseudomesenteroides geeignet.

15	SEQ ID No. 302:	5'- GGTGACGCCAAAGCGCCTTT
	SEQ ID No. 303:	5'- AGGTGACGCCAAAGCGCCTT
	SEQ ID No. 304:	5'- TAGGTGACGCCAAAGCGCCT
	SEQ ID No. 305:	5'- CTCTAGGTGACGCCAAAGCG
	SEQ ID No. 306:	5'- TCTAGGTGACGCCAAAGCGC
20	SEQ ID No. 307:	5'- CTAGGTGACGCCAAAGCGCC
	SEQ ID No. 308:	5'- ACGCCAAAGCGCCTTTTAAC
	SEQ ID No. 309:	5'- CGCCAAAGCGCCTTTTAACT
	SEQ ID No. 310:	5'- TGACGCCAAAGCGCCTTTTA
	SEQ ID No. 311:	5'- TCTCTAGGTGACGCCAAAGC
25	SEQ ID No. 312:	5'- GTGACGCCAAAGCGCCTTTT
	SEQ ID No. 313:	5'- GACGCCAAAGCGCCTTTTAA
	SEQ ID No. 314:	5'- ATCTCTAGGTGACGCCAAAG
	SEQ ID No. 315:	5'- CATCTCTAGGTGACGCCAAA
	SEQ ID No. 316:	5'- TCCATCTCTAGGTGACGCCA
30	SEQ ID No. 317:	5'- CCATCTCTAGGTGACGCCAA

	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCCC
	SEQ ID No. 320:	5'- GTGTCATGCGACACTGAGTT
	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
5	SEQ ID No. 322:	5'- CTTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'- TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
	SEQ ID No. 325:	5'- AGACGGCTCCCCCTAAAAGG
	SEQ ID No. 326:	5'- TAGACGGCTCCCCTAAAAG
10	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCTAAAAGGTTAG
	SEQ ID No. 330:	5'- CTCCCCCTAAAAGGTTAGGC
	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC
15	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCCTAAAAGGTTA
	SEQ ID No. 335:	5'- CCCCCTAAAAGGTTAGGCCA
	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCCTAAA
20	SEQ ID No. 337:	5'- TTAGACGGCTCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCCTAA
	SEQ ID No. 340:	5'- ACGGCTCCCCTAAAAGGTT
	SEQ ID No. 341:	5'- GACGGCTCCCCCTAAAAGGT
25		

25

Die Sequenzen SEQ ID No. 302 bis SEQ ID No. 341 sind vor allem zum Nachweis von *Leuconostoc pseudomesenteroides* geeignet.

SEQ ID No. 342: 5'- ACGCCGCAAGACCATCCTCT

30 SEQ ID No. 343: 5'- CTAATACGCCGCAAGACCAT

- 32 -

	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
5	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA
	SEQ ID No. 349:	5'- ACCATCCTCTAGCGATCCAA
	SEQ ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTTCTGGTAAG
	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
10	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA
15	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
	SEQ ID No. 360:	5'- TTTGCTACGTCACTAGGAGG
	SEQ ID No. 361:	5'- GCCATCCCTTTCTGGTAAGG
	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
20	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
25	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
30	SEQ ID No. 373:	5'- CCATCCCTTTCTGGTAAGGT

- 33 -

	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGCGG
	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
5	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
	SEQ ID No. 382:	5'- TGGCACGTATTTAGCCATCC
10	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTTGCTACGTCACTAGGAG
	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT
15	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
	SEQ ID No. 390:	5'- CCCGAAGATCAATTCAGCGG
	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
•	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
20	SEQ ID No. 393:	5'- TCATTGCCTCACTTCACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
	SEQ ID No. 395:	5'- CACCCGAAGATCAATTCAGC
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTCACCC
	SEQ ID No. 397:	5'- CATTGCCTCACTTCACCCGA
25	SEQ ID No. 398:	5'- ATTGCCTCACTTCACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTCAGCGGCT
	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
	SEQ ID No. 402:	5'- TTGCCTCACTTCACCCGAAG
30	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG

	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
	SEQ ID No. 405:	5'- ACCCGAAGATCAATTCAGCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
5	SEQ ID No. 408:	5'- GCACCCATCGTTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTTACGGTATG
	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
10	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGCGGAAACCT
	SEQ ID No. 415:	5'- AGCCTCAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
15	SEQ ID No. 418:	5'- CAAGCTAATACGCCGCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
	SEQ ID No. 420:	5'- CCGAAGATCAATTCAGCGGC
	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
•	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
20	SEQ ID No. 423:	5'- GCGTTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
25	SEQ ID No. 428:	5'- ACAAGCTAATACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTTTACCTTAGGCACCGG
30	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA

- 35 -

	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
	SEQ ID No. 435:	5'- GCCAAGCGACTTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTTC
5	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
	SEQ ID No. 440:	5'- GGCCGGCCAGTCTCTCAACT
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
10	SEQ ID No. 443:	5'- CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTTCTGG

Die Sequenzen SEQ ID No. 342 bis SEQ ID No. 444 sind vor allem zum Nachweis von *Oenococcus oeni* geeignet.

SEQ ID No. 445: 5'- AACCCTTCATCACACACG SEQ ID No. 446: 5'- CGAAACCCTTCATCACAC SEQ ID No. 447: 5'- ACCCTTCATCACACACGC 5'- TACCGTCACACACTGAAC SEQ ID No. 448: 20 SEQ ID No. 449: 5'- AGATACCGTCACACACTG SEQ ID No. 450: 5'- CACTCAAGGGCGGAAACC SEQ ID No. 451: 5'- ACCGTCACACACTGAACA SEQ ID No. 452: 5'- CGTCACACACTGAACAGT SEQ ID No. 453: 5'- CCGAAACCCTTCATCACA 25 SEQ ID No. 454: 5'- CCGTCACACACTGAACAG SEQ ID No. 455: 5'- GATACCGTCACACACTGA SEQ ID No. 456: 5'- GGTAAGATACCGTCACAC SEQ ID No. 457: 5'- CCCTTCATCACACACGCG SEQ ID No. 458: 5'- ACAGTGTTTTACGAGCCG 30 SEQ ID No. 459: 5'- CAGTGTTTTACGAGCCGA

15

	SEQ ID No. 460:	5'- ACAAAGCGTTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
5	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACA
	SEQ ID No. 465:	5'- TGAGGGCTTTCACTTCAG
	SEQ ID No. 466:	5'- AGGGCTTTCACTTCAGAC
	SEQ ID No. 467:	5'- GAGGGCTTTCACTTCAGA
	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
10	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAC
	SEQ ID No. 470:	5'- TCCGGATAACGCTTGGAA
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT
	SEQ ID No. 473:	5'- CCCTGCTAAGAGGTAGGT
15	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
	SEQ ID No. 475:	5'- TCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCTTTCTGGTAAG
	SEQ ID No. 478:	5'- GCCGTTCCTTTCTGGTAA
20	SEQ ID No. 479:	5'- AGCCGTTCCTTTCTGGTA
	SEQ ID No. 480:	5'- GCACGTATTTAGCCGTTC
	SEQ ID No. 481:	5'- CACGTATTTAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTTAGCCGTT
	SEQ ID No. 483:	5'- CACTTTCCTCTACTGCAC
25	SEQ ID No. 484:	5'- CCACTTTCCTCTACTGCA
	SEQ ID No. 485:	5'- TCCACTTTCCTCTACTGC
	SEQ ID No. 486:	5'- CTTTCCTCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCTTTCTGGT
	SEQ ID No. 488:	5'-TTAGCCGTTCCTTTCTGG
30	SEQ ID No. 489:	5'- TTATCCCCTGCTAAGAGG

- 37 -

SEQ ID No. 490: 5'- GTTATCCCCTGCTAAGAG
SEQ ID No. 491: 5'- CCCGTTCGCCACTCTTTG
SEQ ID No. 492: 5'- AGCTGAGGGCTTTCACTT
SEQ ID No. 493: 5'- GAGCTGAGGGCTTTCACT
SEQ ID No. 494: 5'- GCTGAGGGCTTTCACTTC
SEQ ID No. 495: 5'- CTGAGGGCTTTCACTTCA

Die Sequenzen SEQ ID No. 445 bis SEQ ID No. 495 sind vor allem zum Nachweis von Bakterien der Gattung Weissella geeignet.

10

SEQ ID No. 496: 5' CCCGTGTCCCGAAGGAAC SEQ ID No. 497: 5' GCACGAGTATGTCAAGAC SEQ ID No. 498: 5' GTATCCCGTGTCCCGAAG SEQ ID No. 499: 5' TCCCGTGTCCCGAAGGAA 15 SEQ ID No. 500: 5' ATCCCGTGTCCCGAAGGA SEQ ID No. 501: 5' TATCCCGTGTCCCGAAGG SEQ ID No. 502: 5' CTTACCTTAGGAAGCGCC SEQ ID No. 503: 5' TTACCTTAGGAAGCGCCC SEQ ID No. 504: 5' CCTGTATCCCGTGTCCCG SEQ ID No. 505: 20 5' CCACCTGTATCCCGTGTC SEQ ID No. 506: 5' CACCTGTATCCCGTGTCC SEQ ID No. 507: 5' ACCTGTATCCCGTGTCCC SEQ ID No. 508: 5' CTGTATCCCGTGTCCCGA SEQ ID No. 509: 5' TGTATCCCGTGTCCCGAA 25 SEQ ID No. 510: 5' CACGAGTATGTCAAGACC SEQ ID No. 511: 5' CGGTCTTACCTTAGGAAG SEQ ID No. 512: 5' TAGGAAGCGCCCTCCTTG SEQ ID No. 513: 5' AGGAAGCGCCCTCCTTGC SEQ ID No. 514: 5' TTAGGAAGCGCCCTCCTT 30 SEQ ID No. 515: 5' CTTAGGAAGCGCCCTCCT

- 38 -

	SEQ ID No. 516:	5' CCTTAGGAAGCGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGCGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGC
	SEQ ID No. 519:	5' TACCTTAGGAAGCGCCCT
5	SEQ ID No. 520:	5' ACCACCTGTATCCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
	SEQ ID No. 524:	5' TGCGGTTAGGCAACCTAC
10	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC
	SEQ ID No. 529:	5' ATACAACGCGGGATCATC
15	SEQ ID No. 530:	5' CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGCGCCCTCCTTGCGG
	SEQ ID No. 533:	5' GGAAGCGCCCTCCTTGCG
•	SEQ ID No. 534:	5' CGTCCCTTTCTGGTTAGA
20	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
	SEQ ID No. 539:	5' GAGCCACTGCCTTTTACA
25	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG
	SEQ ID No. 541:	5' GGTCGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTCGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATCGCC
	SEQ ID No. 544:	5' TCGGCTATGTATCATCGC
30	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG

- 39 -

SEQ ID No. 546: 5' TCTTACCTTAGGAAGCGC

Die Sequenzen SEQ ID No. 496 bis SEQ ID No. 546 sind vor allem zum Nachweis von Bakterien der Gattung Lactococcus geeignet.

5

d) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Essigsäurebakterien nachweisen:

SEQ ID No. 547: 5'- GTACAAACCGCCTACACGCC 10 SEQ ID No. 548: 5'- TGTACAAACCGCCTACACGC SEQ ID No. 549: 5'- GATCAGCACGATGTCGCCAT SEQ ID No. 550: 5'- CTGTACAAACCGCCTACACG SEQ ID No. 551: 5'- GAGATCAGCACGATGTCGCC SEQ ID No. 552: 5'- AGATCAGCACGATGTCGCCA 15 SEQ ID No. 553: 5'- ATCAGCACGATGTCGCCATC SEQ ID No. 554: 5'- TCAGCACGATGTCGCCATCT SEQ ID No. 555: 5'- ACTGTACAAACCGCCTACAC SEQ ID No. 556: 5'- CCGCCACTAAGGCCGAAACC SEQ ID No. 557: 5'- CAGCACGATGTCGCCATCTA 20 SEQ ID No. 558: 5'- TACAAACCGCCTACACGCCC SEQ ID No. 559: 5'- AGCACGATGTCGCCATCTAG SEQ ID No. 560: 5'- CGGCTTTTAGAGATCAGCAC SEQ ID No. 561: 5'- TCCGCCACTAAGGCCGAAAC SEQ ID No. 562: 5'- GACTGTACAAACCGCCTACA 25 SEQ ID No. 563: 5'- GTCCGCCACTAAGGCCGAAA SEQ ID No. 564: 5'- GGGGATTTCACATCTGACTG SEQ ID No. 565: 5'- CATACAAGCCCTGGTAAGGT SEQ ID No. 566: 5'- ACAAGCCCTGGTAAGGTTCT SEQ ID No. 567: 5'- ACAAACCGCCTACACGCCCT 30 SEQ ID No. 568: 5'- CTGACTGTACAAACCGCCTA

- 40 -

	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT
	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
5	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCCA
	SEQ ID No. 577:	5'- GCCATCTAGCTTCCCACTGT
10	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCCACTG
	SEQ ID No. 580:	5'- GTCGCCATCTAGCTTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTTC
	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT
15	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
•	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
20	SEQ ID No. 588:	5'- TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
	SEQ ID No. 590:	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
25	SEQ ID No. 593:	5'- CTTCGTGCGACTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCGACTTGCATGT
	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCACCCAA
	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
30	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCCA

- 41 -

	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
	SEQ ID No. 600:	5'- CCGAAACCTTCGTGCGACTT
	SEQ ID No. 601:	5'- GCCGAAACCTTCGTGCGACT
	SEQ ID No. 602:	5'- AACCTTCGTGCGACTTGCAT
5	SEQ ID No. 603:	5'- CGAAACCTTCGTGCGACTTG
	SEQ ID No. 604:	5'- ACCTTCGTGCGACTTGCATG
	SEQ ID No. 605:	5'- GAAACCTTCGTGCGACTTGC
	SEQ ID No. 606:	5'- GGCCGAAACCTTCGTGCGAC
	SEQ ID No. 607:	5'- AAACCTTCGTGCGACTTGCA
10	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC

Die Sequenzen SEQ ID No. 547 bis SEQ ID No. 608 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter und Gluconobacter geeignet.

15 SEQ ID No. 609: 5'- GCTCACCGGCTTAAGGTCAA SEQ ID No. 610: 5'- CGCTCACCGGCTTAAGGTCA SEQ ID No. 611: 5'- TCGCTCACCGGCTTAAGGTC SEQ ID No. 612: 5'- CTCACCGGCTTAAGGTCAAA 20 SEQ ID No. 613: 5'- CCCGACCGTGGTCGGCTGCG SEQ ID No. 614: 5'- GCTCACCGGCTTAAGGTCAA SEQ ID No. 615: 5'- CGCTCACCGGCTTAAGGTCA SEQ ID No. 616: 5'- TCGCTCACCGGCTTAAGGTC SEQ ID No. 617: 5'- CTCACCGGCTTAAGGTCAAA 25 SEQ ID No. 618: 5'- CCCGACCGTGGTCGGCTGCG SEQ ID No. 619: 5'- TCACCGGCTTAAGGTCAAAC SEQ ID No. 620: 5'- CAACCCTCTCTCACACTCTA SEQ ID No. 621: 5'- ACAACCCTCTCTCACACTCT SEQ ID No. 622: 5'- CCACAACCCTCTCTCACACT 30 SEQ ID No. 623: 5'- AACCCTCTCTCACACTCTAG

- 42 -

	SEQ ID No. 624:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 625:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
5	SEQ ID No. 628:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
10	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTTCGCTCACCGGCTTAAG
15	SEQ ID No. 638:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCTTCGC
20	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 645:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 646:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
25	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 652:	5'- TCGCTGACCCGACCGTGGTC
30	SEQ ID No. 653:	5'- CGCTGACCCGACCGTGGTCG

	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 655:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGCGCCTTTGA
5	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
10	SEQ ID No. 663:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 665:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 667:	5'-TTTGACCCTCAGGTGTCATG
15	SEQ ID No. 668:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 669:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 670:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'-TTGACCCTCAGGTGTCATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGTCATGCGGTA
20	SEQ ID No. 673:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 675:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 676:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
25	SEQ ID No. 678:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 680:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 681:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT
30	SEQ ID No. 683:	5'- TCGATCATCGCCTTGGTAGG

	SEQ ID No. 684:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 685:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCGCCT
5	SEQ ID No. 688:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 689:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 691:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
10	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCGGCTTAAGGTCAAAC
15	SEQ ID No. 698:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 699:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 700:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 701:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCTCTCTCACACTC
20	SEQ ID No. 703:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 705:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCATG
25	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
30	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT

- 45 -

	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 715:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
5	SEQ ID No. 718:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAACCCTCTCT
10	SEQ ID No. 723:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
15	SEQ ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 729:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 731:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
20	SEQ ID No. 733:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 735:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 736:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
25	SEQ ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 739:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 740:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 741:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 742:	5'- CGCCTTTGACCCTCAGGTGT
30	SEQ ID No. 743:	5'- ACCCTCAGGTGTCATGCGGT

- 46 -

	SEQ ID No. 744:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 745:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 746:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 747:	5'- TGACCCTCAGGTGTCATGCG
5	SEQ ID No. 748:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 749:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 750:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 751:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 752:	5'- CTTTGACCCTCAGGTGTCAT
10	SEQ ID No. 753:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 754:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 755:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 756:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 757:	5'- AGCTATCGATCATCGCCTTG
15	SEQ ID No. 758:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 759:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATCGCCTTGGTAG
20	SEQ ID No. 763:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 765:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 766:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGCGC
25	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 769:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCTCACACTCT
30	SEQ ID No. 773:	5'- CCACAACCCTCTCTCACACT

- 47 -

	SEQ ID No. 774:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 775:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAACCCTCTCTCACA
5	SEQ ID No. 778:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
10	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787:	5'- GTTCGCTCACCGGCTTAAGG
15	SEQ ID No. 788:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 789:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 790:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
- •	SEQ ID No. 792:	5'- GAATTCCACAACCCTCTCTC
20	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 795:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 796:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
25	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 800:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCCAACATCCAGCACACAT
30	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC

	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
5	SEQ ID No. 808:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
10	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 815:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 817:	5'- CCTCAGGTGTCATGCGGTAT
15	SEQ ID No. 818:	5'-TTTGACCCTCAGGTGTCATG
	SEQ ID No. 819:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 820:	5'- TGACCCTCAGGTGTCATGCG
_	SEQ ID No. 821:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'- TTGACCCTCAGGTGTCATGC
20	SEQ ID No. 823:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 824:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 825:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 826:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
25	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 830:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATCGCCTTGGT
30	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT

- 49 -

	SEQ ID No. 834:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 835:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 836:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 837:	5'- CCACAGGCGACTTGCGCCTT
5	SEQ ID No. 838:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 839:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 841:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 842:	5'- ACAGGCGACTTGCGCCTTTG

10

Die Sequenzen SEQ ID No. 609 bis SEQ ID No. 842 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter geeignet.

15 e) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Bazillen nachweisen:

	SEQ ID No. 843:	5'- AGCCCCGGTTTCCCGGCGTT
	SEQ ID No. 844:	5'- CGCCTTTCCTTTTTCCTCCA
20	SEQ ID No. 845:	5'- GCCCGGTTTCCCGGCGTTA
	SEQ ID No. 846:	5'- GCCGCCTTTCCTTTTTCCTC
	SEQ ID No. 847:	5'- TAGCCCCGGTTTCCCGGCGT
	SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCGCC
	SEQ ID No. 849:	5'- AAGCCGCCTTTCCTTTTCC
25	SEQ ID No. 850:	5'- CCCCGGTTTCCCGGCGTTAT
	SEQ ID No. 851:	5'- CCGGCGTTATCCCAGTCTTA
	SEQ ID No. 852:	5'- AGCCGCCTTTCCTTTTCCT
	SEQ ID No. 853:	5'- CCGCCTTTCCTTTTCCTCC
	SEQ ID No. 854:	5'- TTAGCCCCGGTTTCCCGGCG
30	SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCTT

- 50 -

	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCGC
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'- TCCCGGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
5	SEQ ID No. 860:	5'- GAAGCCGCCTTTCCTTTTC
	SEQ ID No. 861:	5'- CCCGGTTTCCCGGCGTTATC
	SEQ ID No. 862:	5'- CGGCGTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCGTTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
10	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCCG
	SEQ ID No. 866:	5'- ATTAGCCCCGGTTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
15	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG
	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC
	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTTACGAC
20	SEQ ID No. 875:	5'- GGGGAAGGCCCTGTCTCCAG
	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCTTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGCACTTGTTCTTCCCCGG
25	SEQ ID No. 880:	5'- GTTCTTCCCCGGCAACAGAG
	SEQ ID No. 881:	5'- GGCACTTGTTCTTCCCCGGC
	SEQ ID No. 882:	5'- GCACTTGTTCTTCCCCGGCA
	SEQ ID No. 883:	5'- CACTTGTTCTTCCCCGGCAA
	SEQ ID No. 884:	5'- TCTTCCCCGGCAACAGAGTT
30	SEQ ID No. 885:	5'-TTGTTCTTCCCCGGCAACAG

	SEQ ID No. 886:	5'- ACTTGTTCTTCCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTTCCCCGGCAACAGA
	SEQ ID No. 888:	5'- CTTGTTCTTCCCCGGCAACA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
5	SEQ ID No. 890:	5'- GTCCGCCGCTAACCTTTTAA
	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892:	5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
10	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTTA
	SEQ ID No. 896:	5'- CGAAGCCGCCTTTCCTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTTCCTTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTTCCTT
15	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCCCCTG
	SEQ ID No. 901:	5'- CCGTGGCTTTCTGGCCGGGT
	SEQ ID No. 902:	5'- GCTTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTTCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTTCTGGCCGGGTACCG
20	SEQ ID No. 905:	5'- CTTTCTGGCCGGGTACCGTC
	SEQ ID No. 906:	5'- TGGCTTTCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTTCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTTCTGGCCGGGTA
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
25	SEQ ID No. 910:	5'- GGGAAGGCCCTGTCTCCAGG
	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCCTGTTCGAACG
30	SEQ ID No. 915:	5'- AGGCGCCGCCCTGTTCGAAC

- 52 -

	SEQ ID No. 916:	5'- AAGGCGCCGCCCTGTTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTTACG
	SEQ ID No. 918:	5'- CCCCGGCAACAGAGTTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
5	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	5'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
10	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTTT
15	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTTT
	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTTA
	SEQ ID No. 932:	5'- CCGTCCGCCGCTAACCTTTT

Die Sequenzen SEQ ID No. 843 bis SEQ ID No. 932 sind vor allem zum Nachweis 20 von *Bacillus coagulans* geeignet.

f) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Alicyclobazillen nachweisen:

25	SEQ ID No. 933:	5'- CTTCCTCCGACTTACGCCGG
	SEQ ID No. 934:	5'- CCTCCGACTTACGCCGGCAG
•	SEQ ID No. 935:	5'- TTCCTCCGACTTACGCCGGC
	SEQ ID No. 936:	5'- TCCTCCGACTTACGCCGGCA
	SEQ ID No. 937:	5'- TCCGACTTACGCCGGCAGTC
30	SEQ ID No. 938:	5'- CCGACTTACGCCGGCAGTCA

	SEQ ID No. 939:	5'- GCCTTCCTCCGACTTACGCC
	SEQ ID No. 940:	5'- CCTTCCTCCGACTTACGCCG
	SEQ ID No. 941:	5'- GCTCTCCCCGAGCAACAGAG
	SEQ ID No. 942:	5'- CTCTCCCCGAGCAACAGAGC
5	SEQ ID No. 943:	5'- CGCTCTCCCCGAGCAACAGA
	SEQ ID No. 944:	5'- CTCCGACTTACGCCGGCAGT
	SEQ ID No. 945:	5'- TCTCCCCGAGCAACAGAGCT
	SEQ ID No. 946:	5'- CGACTTACGCCGGCAGTCAC
	SEQ ID No. 947:	5'- TCGGCACTGGGGTGTGTCCC
10	SEQ ID No. 948:	5'- GGCACTGGGGTGTGTCCCCC
	SEQ ID No. 949:	5'- CTGGGGTGTGTCCCCCAAC
	SEQ ID No. 950:	5'- CACTGGGGTGTGTCCCCCCA
	SEQ ID No. 951:	5'- ACTGGGGTGTGTCCCCCAA
	SEQ ID No. 952:	5'- GCACTGGGGTGTGTCCCCCC
15	SEQ ID No. 953:	5'- TGGGGTGTGTCCCCCCAACA
	SEQ ID No. 954:	5'- CACTCCAGACTTGCTCGACC
	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
20	SEQ ID No. 958:	5'- CTCCCCGAGCAACAGAGCTT
	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG
	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCATGCCGCTCTCCCCGA
25	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
30	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA

- 54 -

	SEQ ID No. 969:	5'- CCCGCAAGAAGATGCCTCCT
	SEQ ID No. 970:	5'- AGAAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAAGATGCCTCCTCG
5	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
	SEQ ID No. 974:	5'- CCGCAAGAAGATGCCTCCTC
	SEQ ID No. 975:	5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No. 976:	5'- CCCCGCAAGAAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAAGATGCCTCCTCGCG
10	SEQ ID No. 978:	5'- TCCTTCGGCACTGGGGTGTG
	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
	SEQ ID No. 980:	5'- TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCCC
15	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
	SEQ ID No. 984:	5'- GGGGTGTGTCCCCCCAACAC
	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
20	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
	SEQ ID No. 989:	5'- GCAAGAAGATGCCTCCTCGC
	SEQ ID No. 990:	5'- CTCCAGACTTGCTCGACCGC
	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
25	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGTA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCCAACACC
30	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT

	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
	SEQ ID No. 1001:	5'- GCGCCGCGGGCTCCTCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCAACACCT
5	SEQ ID No. 1003:	5'- GTGTGTCCCCCAACACCTA
	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
	SEQ ID No. 1005:	5'- CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'- TCGCGGGCGTATCCGGCATT
10	SEQ ID No. 1008:	5'- TTTCACTCCAGACTTGCTCG
	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGGCGTATCCGGCATTA
15	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
	SEQ ID No. 1014:	5'- GGGCTCCTCTCTCAGCGGCC
	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTTACA
20	SEQ ID No. 1018:	5'- CCATCCCATGGTTGAGCCAT
	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
	SEQ ID No. 1020:	5'- GCGGGCGTATCCGGCATTAG
	SEQ ID No. 1021:	5'- CGAGCGGCTTTTTGGGTTTC
	SEQ ID No. 1022:	5'- CTTTCACTCCAGACTTGCTC
25	SEQ ID No. 1023:	5'- TTCCTTCGGCACTGGGGTGT
	SEQ ID No. 1024:	5'- CCGCCTTCCTCCGACTTACG
	SEQ ID No. 1025:	5'- CCCGCCTTCCTCCGACTTAC
	SEQ ID No. 1026:	5'- CCTCCTCGCGGGCGTATCCG
	SEQ ID No. 1027:	5'- TCCTCGCGGGCGTATCCGGC
30	SEQ ID No. 1028:	5'- CATTAGCGCCCGTTTCCGGG

- 56 -

SEQ ID No. 1029: 5'- GCATTAGCGCCCGTTTCCGG
SEQ ID No. 1030: 5'- GGCATTAGCGCCCGTTTCCG
SEQ ID No. 1031: 5'- GTCTCGCATGGGGCTTTCCA
SEQ ID No. 1032: 5'- GCCATGGACTTTCACTCCAG
SEQ ID No. 1033: 5'- CATGGACTTTCACTCCAGAC

Die Sequenzen SEQ ID No. 933 bis SEQ ID No. 1033 sind vor allem zum Nachweis von Bakterien der Gattung Alicyclobacillus geeignet.

10

5

SEQ ID No. 1034: 5'- CCTTCCTCCGGCTTACGCCGGC SEQ ID No. 1035: 5'- CCTTCCTCCGACTTGCGCCGGC SEQ ID No. 1036: 5'- CCTTCCTCCGACTTTCACCGGC

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 1034 bis SEQ ID No. 1036 werden als unmarkierte Kompetitorsonden für den Nachweis von Bakterien der Gattung Alicyclobacillus gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 933 eingesetzt, um das Binden der markierten, für Bakterien der Gattung Alicyclobacillus spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Bakterien der Gattung Alicyclobacillus sind, zu verhindern.

SEQ ID No. 1037: 5'- ACCGTCTCACAAGGAGCTTT SEQ ID No. 1038: 5'- TACCGTCTCACAAGGAGCTT SEQ ID No. 1039: 5'- GTACCGTCTCACAAGGAGCT 25 SEQ ID No. 1040: 5'- GCCTACCCGTGTATTATCCG SEO ID No. 1041: 5'- CCGTCTCACAAGGAGCTTTC SEQ ID No. 1042: 5'- CTACCCGTGTATTATCCGGC SEQ ID No. 1043: 5'- GGTACCGTCTCACAAGGAGC SEQ ID No. 1044: 5'- CGTCTCACAAGGAGCTTTCC 30 SEQ ID No. 1045: 5'- TCTCACAAGGAGCTTTCCAC

	SEQ ID No. 1046:	5'- TACCCGTGTATTATCCGGCA
	SEQ ID No. 1047:	5'- GTCTCACAAGGAGCTTTCCA
	SEQ ID No. 1048:	5'- ACCCGTGTATTATCCGGCAT
	SEQ ID No. 1049:	5'- CTCGGTACCGTCTCACAAGG
5	SEQ ID No. 1050:	5'- CGGTACCGTCTCACAAGGAG
	SEQ ID No. 1051:	5'- ACTCGGTACCGTCTCACAAG
	SEQ ID No. 1052:	5'- CGGCTGGCTCCATAACGGTT
	SEQ ID No. 1053:	5'- ACAAGTAGATGCCTACCCGT
	SEQ ID No. 1054:	5'- TGGCTCCATAACGGTTACCT
10	SEQ ID No. 1055:	5'- CAAGTAGATGCCTACCCGTG
	SEQ ID No. 1056:	5'- CACAAGTAGATGCCTACCCG
	SEQ ID No. 1057:	5'- GGCTCCATAACGGTTACCTC
	SEQ ID No. 1058:	5'- ACACAAGTAGATGCCTACCC
	SEQ ID No. 1059:	5'- CTGGCTCCATAACGGTTACC
15	SEQ ID No. 1060:	5'- GCTGGCTCCATAACGGTTAC
	SEQ ID No. 1061:	5'- GGCTGGCTCCATAACGGTTA
	SEQ ID No. 1062:	5'- GCTCCATAACGGTTACCTCA
	SEQ ID No. 1063:	5'- AAGTAGATGCCTACCCGTGT
	SEQ ID No. 1064:	5'- CTCCATAACGGTTACCTCAC
20	SEQ ID No. 1065:	5'- TGCCTACCCGTGTATTATCC
	SEQ ID No. 1066:	5'- TCGGTACCGTCTCACAAGGA
	SEQ ID No. 1067:	5'- CTCACAAGGAGCTTTCCACT
	SEQ ID No. 1068:	5'- GTAGATGCCTACCCGTGTAT
	SEQ ID No. 1069:	5'- CCTACCCGTGTATTATCCGG
25	SEQ ID No. 1070:	5'- CACTCGGTACCGTCTCACAA
	SEQ ID No. 1071:	5'- CTCAGCGATGCAGTTGCATC
	SEQ ID No. 1072:	5'- AGTAGATGCCTACCCGTGTA
	SEQ ID No. 1073:	5'- GCGGCTGGCTCCATAACGGT
	SEQ ID No. 1074:	5'- CCAAAGCAATCCCAAGGTTG
30	SEQ ID No. 1075:	5'- TCCATAACGGTTACCTCACC

	SEQ ID No. 1076:	5'- CCCGTGTATTATCCGGCATT
	SEQ ID No. 1077:	5'- TCTCAGCGATGCAGTTGCAT
	SEQ ID No. 1078:	5'- CCATAACGGTTACCTCACCG
	SEQ ID No. 1079:	5'- TCAGCGATGCAGTTGCATCT
5	SEQ ID No. 1080:	5'- GGCGGCTGGCTCCATAACGG
	SEQ ID No. 1081:	5'- AAGCAATCCCAAGGTTGAGC
	SEQ ID No. 1082:	5'- TCACTCGGTACCGTCTCACA
	SEQ ID No. 1083:	5'- CCGAGTGTTATTCCAGTCTG
	SEQ ID No. 1084:	5'- CACAAGGAGCTTTCCACTCT
10	SEQ ID No. 1085:	5'- ACAAGGAGCTTTCCACTCTC
	SEQ ID No. 1086:	5'- TCACAAGGAGCTTTCCACTC
	SEQ ID No. 1087:	5'- CAGCGATGCAGTTGCATCTT
	SEQ ID No. 1088:	5'- CAAGGAGCTTTCCACTCTCC
	SEQ ID No. 1089:	5'- CCAGTCTGAAAGGCAGATTG
15	SEQ ID No. 1090:	5'- CAGTCTGAAAGGCAGATTGC
	SEQ ID No. 1091:	5'- CGGCGGCTGGCTCCATAACG
	SEQ ID No. 1092:	5'- CCTCTCTCAGCGATGCAGTT
	SEQ ID No. 1093:	5'- CTCTCTCAGCGATGCAGTTG
	SEQ ID No. 1094:	5'- TCTCTCAGCGATGCAGTTGC
20	SEQ ID No. 1095:	5'- CTCTCAGCGATGCAGTTGCA
	SEQ ID No. 1096:	5'- CAATCCCAAGGTTGAGCCTT
	SEQ ID No. 1097:	5'- AATCCCAAGGTTGAGCCTTG
	SEQ ID No. 1098:	5'- AGCAATCCCAAGGTTGAGCC
	SEQ ID No. 1099:	5'- CTCACTCGGTACCGTCTCAC
25	SEQ ID No. 1100:	5'- GCAATCCCAAGGTTGAGCCT
	SEQ ID No. 1101:	5'- GCCTTGGACTTTCACTTCAG
	SEQ ID No. 1102:	5'- CATAACGGTTACCTCACCGA
	SEQ ID No. 1103:	5'- CTCCTCTCTCAGCGATGCAG
	SEQ ID No. 1104:	5'- TCGGCGGCTGGCTCCATAAC
30	SEQ ID No. 1105:	5'- AGTCTGAAAGGCAGATTGCC

- 59 -

	SEQ ID No. 1106:	5'- TCCTCTCTCAGCGATGCAGT
	SEQ ID No. 1107:	5'- CCCAAGGTTGAGCCTTGGAC
	SEQ ID No. 1108:	5'- ATAACGGTTACCTCACCGAC
	SEQ ID No. 1109:	5'- TCCCAAGGTTGAGCCTTGGA
5	SEQ ID No. 1110:	5'- ATTATCCGGCATTAGCACCC
	SEQ ID No. 1111:	5'- CTACGTGCTGGTAACACAGA
	SEQ ID No. 1112:	5'- GCCGCTAGCCCCGAAGGGCT
	SEQ ID No. 1113:	5'- CTAGCCCCGAAGGGCTCGCT
	SEQ ID No. 1114:	5'- CGCTAGCCCCGAAGGGCTCG
10	SEQ ID No. 1115:	5'- AGCCCCGAAGGGCTCGCTCG
	SEQ ID No. 1116:	5'- CCGCTAGCCCCGAAGGGCTC
	SEQ ID No. 1117:	5'- TAGCCCCGAAGGGCTCGCTC
	SEQ ID No. 1118:	5'- GCTAGCCCCGAAGGGCTCGC
	SEQ ID No. 1119:	5'- GCCCCGAAGGGCTCGCTCGA
15	SEQ ID No. 1120:	5'- ATCCCAAGGTTGAGCCTTGG
	SEQ ID No. 1121:	5'- GAGCCTTGGACTTTCACTTC
	SEQ ID No. 1122:	5'- CAAGGTTGAGCCTTGGACTT
	SEQ ID No. 1123:	5'- GAGCTTTCCACTCTCCTTGT
	SEQ ID No. 1124:	5'- CCAAGGTTGAGCCTTGGACT
20	SEQ ID No. 1125:	5'- CGGGCTCCTCTCAGCGAT
	SEQ ID No. 1126:	5'- GGAGCTTTCCACTCTCCTTG
	SEQ ID No. 1127:	5'- GGGCTCCTCTCAGCGATG
	SEQ ID No. 1128:	5'- TCTCCTTGTCGCTCTCCCCG
	SEQ ID No. 1129:	5'- TCCTTGTCGCTCTCCCCGAG
25	SEQ ID No. 1130:	5'- AGCTTTCCACTCTCCTTGTC
	SEQ ID No. 1131:	5'- CCACTCTCCTTGTCGCTCTC
	SEQ ID No. 1132:	5'- GGCTCCTCTCAGCGATGC
	SEQ ID No. 1133:	5'- CCTTGTCGCTCTCCCCGAGC
	SEQ ID No. 1134:	5'- CACTCTCCTTGTCGCTCTCC
30	SEQ ID No. 1135:	5'- ACTCTCCTTGTCGCTCTCCC

- 60 -

SEQ ID No. 1136: 5'- CTCTCCTTGTCGCTCTCCCC

SEQ ID No. 1137: 5'- GCGGGCTCCTCTCAGCGA

SEQ ID No. 1138: 5'- GGCTCCATCATGGTTACCTC

5 Die Sequenzen SEQ ID No. 1037 bis SEQ ID No. 1138 sind vor allem zum Nachweis von *Alicyclobacillus acidoterrestris* geeignet.

SEQ ID No. 1139: 5'- CCGTCTCCTAAGGAGCTTTCCA

10 Das Nukleinsäuresondenmolekül gemäß SEQ ID No. 1139 wird als unmarkierte Kompetitorsonde für den Nachweis von Alicyclobacillus acidoterrestris gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1044 eingesetzt, um das Binden der markierten, für Alicyclobacillus acidoterrestris spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Alicyclobacillus acidoterrestris sind,

15 zu verhindern.

SEQ ID No. 1140: 5'- TCCCTCCTTAACGGTTACCTCA

SEQ ID No. 1141: 5'- TGGCTCCATAA(A/T)GGTTACCTCA

20 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 1140 bis SEQ ID No. 1141 werden als unmarkierte Kompetitorsonden für den Nachweis von Alicyclobacillus acidoterrestris gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1057 eingesetzt, um das Binden der markierten, für Alicyclobacillus acidoterrestris spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Alicyclobacillus acidoterrestris sind, zu verhindern.

SEQ ID No. 1142: 5'- CTTCCTCCGGCTTGCGCCGG

SEQ ID No. 1143: 5'- CGCTCTTCCCGA(G/T)TGACTGA

SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

Die Sequenzen SEQ ID No. 1142 bis SEQ ID No. 1144 sind vor allem zum gleichzeitigen Nachweis von Alicyclobacillus cycloheptanicus und A. herbarius geeignet.

- Gegenstand der Erfindung sind auch Abwandlungen der obigen Oligonukleotidsequenzen, die trotz der Abweichungen in der Sequenz und/oder Länge eine spezifische Hybridisierung mit Ziel-Nukleinsäuresequenzen des jeweiligen Mikroorganismus zeigen und sich dadurch für den Einsatz des erfindungsgemäßen Verfahrens eignen und einen spezifischen Nachweis des jeweiligen Mikroorganismus gewährleisten. Hierunter fallen insbesondere
- a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch 15 eine oder mehrere Deletionen und/oder Additionen unterscheiden und eine spezifische Hybridisierung mit Nukleinsäuresequenzen von getränkeschädlichen Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, 20 Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, 25 Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivėa, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, 30

5

10

15

20

Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius ermöglichen. Dabei bedeutet "spezifische Hybridisierung", dass unter den hier beschriebenen oder dem Durchschnittsfachmann im Zusammenhang mit in situ-Hybridisierungstechniken bekannten stringenten Hybridisierungsbedingungen nur die ribosomale RNA der Ziel-Organismen, nicht aber die rRNA von Nicht-Ziel-Organismen an das Oligonukleotid bindet.

- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach a) oder b) mindestens ein weiteres Nukleotid aufweisen und eine spezifische Hybridisierung mit Nukleinsäuresequenzen von Ziel-Organismen ermöglichen.

Ebenso sind Gegenstand der Erfindung Abwandlungen der obigen

Kompetitorsondensequenzen, die trotz der Abweichungen in der Sequenz und/oder
Länge eine spezifische Hybridisierung mit Nukleinsäuresequenzen von nicht
nachzuweisenden Mikroorganismengattungen bzw. -spezies gewährleisten und
dadurch das Binden der Oligonukleotidsonde an die Nukleinsäuresequenzen der
nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies verhindern. Sie
eignen sich für den Einsatz des erfindungsgemäßen Verfahrens und gewährleisten

einen spezifischen Nachweis des jeweiligen Mikroorganismus. Hierunter fallen insbesondere

5

10

- a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.
- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach a) oder b) mindestens ein weiteres Nukleotid aufweisen und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.

Der Grad der Sequenzidentität eines Nukleinsäuresondenmoleküls mit den Oligonukleotidsonden mit der SEQ ID No. 1 bis SEQ ID No. 1144 kann mit üblichen Algorithmen bestimmt werden. Geeignet ist hierzu beispielsweise das Programm zur Bestimmung der Sequenzidentität, das unter http://www.ncbi.nlm.nih.gov/BLAST (auf dieser Seite z.B. der Link "Standard nucleotide-nucleotide BLAST [blastn]") zugänglich ist.

- 64 -

"Hybridisieren" kann im Rahmen dieser Erfindung gleichbedeutend sein mit "komplementär". Im Rahmen dieser Erfindung sind auch solche Oligonukleotide umfasst, die mit dem (theoretischen) Gegenstrang eines erfindungsgemäßen Oligonukleotids, einschließlich der erfindungsgemäßen Abwandlungen der SEQ ID No. 1 bis SEQ ID No. 1144, hybridisieren.

Der Begriff "stringente Bedingungen" steht allgemein für Bedingungen, unter denen eine Nukleinsäuresequenz präferenziell an ihre Zielsequenz hybridisieren wird, und zu einem deutlich geringeren Ausmaß oder gar nicht an andere Sequenzen.

- Stringente Bedingungen sind z.T. Sequenz-abhängig und werden unter verschiedenen Umständen unterschiedlich sein. Längere Sequenzen hybridisieren spezifisch bei höheren Temperaturen. Im Allgemeinen werden stringente Bedingungen so ausgewählt, dass die Temperatur etwa 5°C unter dem thermischen Schmelzpunkt (T_m) für die spezifische Sequenz bei einer definierten Ionenstärke und einem definierten pH liegt. Die T_m ist die Temperatur (unter definierter Ionenstärke, pH und Nukleinsäurekonzentration), bei der 50 % der zu der Zielsequenz komplementären Moleküle zu der Zielsequenz im Gleichgewichtszustand hybridisieren.
- Die erfindungsgemäßen Nukleinsäuresondenmoleküle können im Rahmen des Nachweisverfahrens mit verschiedenen Hybridisierungslösungen eingesetzt werden. Verschiedene organische Lösungsmittel können hierbei in Konzentrationen von 0 % bis 80 % eingesetzt werden. Durch das Einhalten von stringenten Hybridisierungsbedingungen wird gewährleistet, dass das
- Nukleinsäuresondenmolekül auch tatsächlich mit der Zielsequenz hybridisiert.

 Moderate Bedingungen im Sinne der Erfindung sind z.B. 0 % Formamid in einem Hybridisierungspuffer wie er nachfolgend beschrieben ist. Stringente Bedingungen im Sinne der Erfindung sind beispielsweise 20 % bis 80 % Formamid im Hybridisierungspuffer.

5

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei 5 (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 20 % bis 60 % Formamid, besonders bevorzugt 40 % Formamid. Sie hat außerdem eine 10 Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 15 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die 20 besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von

Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und
Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea,
Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T.
bacillisporus und T. flavus enthält eine typische Hybridisierungslösung 0 % bis 80 %
Formamid, bevorzugt 10 % bis 60 % Formamid, besonders bevorzugt 20 %

Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l,

30

bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration 5 von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 10 bis 9,0, bevorzugt 7,0 bis 8,0. Die besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und 15 Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 10 % bis 60 % Formamid, besonders bevorzugt 20 % Formamid. Sie hat außerdem eine 20 Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, 25 besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die

besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Es versteht sich, dass der Fachmann die angegebenen Konzentrationen der

Bestandteile des Hybridisierungspuffers derart auswählen kann, dass die gewünschte Stringenz der Hybridisierungsreaktion erzielt wird. Besonders bevorzugte Ausführungsformen geben stringente bis besonders stringente Hybridisierungsbedingungen wieder. Unter Einsatz dieser stringenten Bedingungen kann der Fachmann feststellen, ob ein bestimmtes Nukleinsäuremolekül einen spezifischen Nachweis von Nukleinsäuresequenzen von Ziel-Organismen ermöglicht und somit im Rahmen der Erfindung zuverlässig eingesetzt werden kann.

Die Konzentration der Nukleinsäuresonde im Hybridisierungspuffer ist abhängig von der Art ihrer Markierung und der Anzahl der Zielstrukturen. Um eine schnelle und 15 effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der Nukleinsäuresondenmoleküle die Anzahl der Zielstrukturen um mehrere Größenordnungen überschreiten. Allerdings ist bei der Fluoreszenz in situ-Hybridisierung (FISH) darauf zu achten, dass eine zu hohe Menge an fluoreszenzmarkierten Nukleinsäuresondenmolekülen zu erhöhter Hintergrundfluoreszenz führt. Die Konzentration der Nukleinsäuresondenmoleküle 20 sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/µl liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Nukleinsäuresondenmoleküls pro μl Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 µl und 100 ml liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen 25 Verfahren beträgt es 30 ul.

Die Konzentration der Kompetitorsonde im Hybridisierungspuffer ist abhängig von der Anzahl der Zielstrukturen. Um eine schnelle und effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der Kompetitorsondenmoleküle die Anzahl der

30

Zielstrukturen um mehrere Größenordnungen überschreiten. Die Konzentration der Kompetitorsondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/µl liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Kompetitorsondenmoleküls pro µl Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 µl und 100 ml liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 µl.

5

Die Dauer der Hybridisierung beträgt üblicherweise zwischen 10 Minuten und 12

Stunden; bevorzugt erfolgt die Hybridisierung für etwa 1,5 Stunden. Die Hybridisierungstemperatur beträgt bevorzugt zwischen 44 °C und 48 °C, besonders bevorzugt 46 °C, wobei der Parameter der Hybridisierungstemperatur, wie auch die Konzentration an Salzen und Detergenzien in der Hybridisierungslösung in Abhängigkeit von den Nukleinsäuresonden, insbesondere deren Längen und dem Grad der Komplementarität zur Zielsequenz in der nachzuweisenden Zelle optimiert werden kann. Der Fachmann ist mit einschlägigen Berechnungen hierzu vertraut.

Nach erfolgter Hybridisierung sollten die nicht hybridisierten und überschüssigen Nukleinsäuresondenmoleküle entfernt bzw. abgewaschen werden, was üblicherweise mittels einer herkömmlichen Waschlösung erfolgt. Diese Waschlösung kann, falls gewünscht, 0,001 % bis 0,1 % eines Detergens wie SDS, bevorzugt 0,005 % bis 0,05 %, besonders bevorzugt 0,01 %, sowie Tris-HCl in einer Konzentration von 0,001 Mol/l bis 0,1 Mol/l, bevorzugt 0,01 Mol/l bis 0,05 Mol/l, besonders bevorzugt 0,02 Mol/l enthalten, wobei der pH-Wert von Tris-HCl im Bereich von 6,0 bis 9,0, vorzugsweise bei 7,0 bis 8,0, besonders bevorzugt bei 8,0 liegt. Ein Detergens kann enthalten sein, ist aber nicht zwingend erforderlich. Weiter enthält die Waschlösung üblicherweise NaCl, wobei die Konzentration je nach benötigter Stringenz von 0,003 Mol/l bis 0,9 Mol/l, bevorzugt von 0,01 Mol/l bis 0,9 Mol/l, beträgt. Des weiteren kann die Waschlösung EDTA enthalten, wobei die Konzentration vorzugsweise

0,005 Mol/l beträgt. Ferner kann die Waschlösung auch dem Fachmann geläufige Konservierungsmittel in geeigneten Mengen enthalten.

Allgemein kommen bei dem Waschschritt Pufferlösungen zum Einsatz, die prinzipiell sehr ähnlich aussehen können wie die Hybridisierungspuffer (gepufferte Natriumchloridlösung), nur dass der Waschschritt in der Regel in einem Puffer mit niedrigerer Salzkonzentration bzw. bei höherer Temperatur durchgeführt wird. Zur theoretischen Abschätzung der Hybridisierungsbedingungen kann folgende Formel verwendet werden:

10

5

$$Td = 81,5 + 16,6 \lg[Na+] + 0,4 \times (\% GC) - 820/n - 0.5 \times (\% FA)$$

Td = Dissoziationstemperatur in °C

[Na+] = Molarität der Natriumionen

15 % GC = Anteil der Guanin- und Cytosinnukleotide an der Anzahl der Basen

n = Länge des Hybrids

%FA = Formamidgehalt

Mit Hilfe dieser Formel kann z.B. der Formamidanteil (der wegen der Toxizität des Formamids möglichst gering sein sollte) des Waschpuffers durch einen entsprechend niedrigeren Natriumchloridgehalt ersetzt werden. Allerdings ist dem Fachmann aus der umfangreichen Literatur zu in situ-Hybridisierungsmethoden bekannt, dass und auf welche Weise die genannten Bestandteile variiert werden können. Bezüglich der Stringenz der Hybridisierungsbedingungen gilt das oben im Zusammenhang mit dem Hybridisierungspuffer Gesagte.

Das "Abwaschen" der nicht gebundenen Nukleinsäuresondenmoleküle erfolgt üblicherweise bei einer Temperatur im Bereich von 44 °C bis 52 °C, bevorzugt von 44 °C bis 50 °C und besonders bevorzugt bei 46 °C für eine Dauer von 10 bis 40

30 Minuten, vorzugsweise für 15 Minuten.

- 70 -

Die spezifisch hybridisierten Nukleinsäuresondenmoleküle können anschließend in den jeweiligen Zellen detektiert werden. Voraussetzung hierfür ist, dass das Nukleinsäuresondenmolekül nachweisbar ist, z.B. dadurch dass das Nukleinsäuresondenmolekül durch kovalente Bindung mit einem Marker verknüpft 5 ist. Als detektierbare Marker werden z.B. fluoreszierende Gruppen wie z.B. CY2 (erhältlich von Amersham Life Sciences, Inc., Arlington Heights, USA), CY3 (ebenfalls erhältlich von Amersham Life Sciences), CY5 (ebenfalls zu beziehen von Amersham Life Sciences), FITC (Molecular Probes Inc., Eugene, USA), FLUOS (erhältlich von Roche Diagnostics GmbH, Mannheim, Deutschland), TRITC 10 (erhältlich von Molecular Probes Inc. Eugene, USA), 6-FAM oder FLUOS-PRIME verwendet, die dem Fachmann alle wohlbekannt sind. Auch chemische Marker, radioaktive Marker oder enzymatische Marker wie Meerrettich-Peroxidase, saure Phosphatase, alkalische Phosphatase und Peroxidase können verwendet werden. Für 15 jedes dieser Enzyme ist eine Reihe von Chromogenen bekannt, die anstelle des natürlichen Substrates umgesetzt werden können und entweder zu farbigen oder zu fluoreszierenden Produkten umgesetzt werden können. Beispiele für solche Chromogene sind in der nachfolgenden Tabelle angegeben:

20

Tabelle

	Enzyme	Chromogen
25	1. Alkalische Phosphatase und	4-Methylumbelliferylphosphat (*),
	saure Phosphatase	Bis(4-Methyiumbelliferylphosphat), (*) 3-O-
		Methylfluoreszein, Flavon-3-
		Diphosphattriammoniumsalz (*),
		p-Nitrophenylphosphatdinatriumsalz

2. Peroxidase	Tyraminhydrochlorid (*), 3-(p-Hydroxyphenyl)-
	Propionsäure (*), p-Hydroxy-
	phenethylalkohol(*),
	2,2'-Azino-di-3-ethylbenzthiazolinsulfonsäure
	(ABTS), ortho-Phenylendiamindihydrochlorid,
	o-Dianisidin, 5-Aminosalicylsäure,
	p-Ucresol (*),
	3,3'-dimethyloxybenzidin, 3-Methyl-2-
	benzothiazolinhydrazon, Tetramethylbenzidin
3. Meerrettichperoxidase	$H_2O_2 + Diammoniumbenzidin$
	H_2O_2 + Tetramethylbenzidin
4. β-D-Galaktosidase	o-Nitrophenyl-β-D-galaktopyranosid,

4-Methylumbelliferyl-β-D-galaktosid

ABTS, Glukose und Thiazolylblau

15

10

5

5. Glukoseoxidase

Schließlich ist es möglich, die Nukleinsäuresondenmoleküle so zu gestalten, dass an ihrem 5'- oder 3'-Ende eine weitere zur Hybridisierung geeignete 20 Nukleinsäuresequenz vorhanden ist. Diese Nukleinsäuresequenz umfasst wiederum ca. 15 bis 100, bevorzugt 15 bis 50 Nukleotide. Dieser zweite Nukleinsäurebereich kann wiederum von einem Nukleinsäuresondenmolekül erkannt werden, welches durch eines der oben erwähnten Mittel nachweisbar ist.

25

30

Eine weitere Möglichkeit besteht in der Kopplung der nachweisbaren Nukleinsäuresondenmoleküle mit einem Hapten, das anschließend mit einem das Hapten erkennenden Antikörper in Kontakt gebracht werden kann. Als Beispiel für solch ein Hapten kann Digoxigenin angeführt werden. Dem Fachmann sind über die angegebenen Beispiele hinaus noch weitere wohlbekannt.

^{*}Fluoreszenz

Die abschließende Auswertung ist in Abhängigkeit von der Art der Markierung der verwendeten Sonde mit einem Lichtmikroskop, Epifluoreszenzmikroskop, Chemoluminometer, Fluorometer u.a. möglich.

5

Ein wichtiger Vorteil der in dieser Anmeldung beschriebenen Verfahren zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies

- Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder zum
- spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen
- 20 Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius gegenüber den weiter oben
- beschriebenen Nachweismethoden ist die außergewöhnliche Schnelligkeit. Im Vergleich zu herkömmlichen Kultivierungsverfahren, die bis zu zehn Tage benötigen, liegt das Ergebnis bei Anwendung der erfindungsgemäßen Verfahren innerhalb von 24 bis 48 Stunden vor.

Ein weiterer Vorteil liegt in der Befähigung, eine genaue Unterscheidung der nachzuweisenden, getränkerelevanten Mikroorganismen vorzunehmen. Mit bislang geläufigen Verfahren wurde beim Nachweis keine Differenzierung der Mikroorganismen bis auf Gattungs- und/oder Artebene vorgenommen, da die Differenzierung entweder gar nicht möglich oder zu zeitaufwendig war.

5

Ein weiterer Vorteil liegt in der Spezifität dieser Verfahren. Durch die verwendeten Nukleinsäuresondenmoleküle können hochspezifisch getränkeschädliche Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies 10 Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, 15 Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder getränkeschädliche Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder getränkeschädliche Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, 20 Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius nachgewiesen werden. Durch die Visualisierung der Mikroorganismen kann eine 25 gleichzeitige visuelle Kontrolle stattfinden. Falsch positive Ergebnisse, wie sie

häufig bei der Polymerase-Ketten-Reaktion auftreten, sind somit ausgeschlossen.

- 74 -

Ein weiterer Vorteil der erfindungsgemäßen Verfahren liegt in der leichten Handhabbarkeit. So können durch die Verfahren leicht große Mengen an Proben auf das Vorhandensein der genannten Mikroorganismen getestet werden.

5 Schließlich stellt die Möglichkeit des gleichzeitigen Nachweises mehrerer der genannten Keime durch den Einsatz von entsprechenden Mischungen von Sonden einen wesentlichen Vorteil gegenüber dem Stand der Technik dar. Dadurch können alle in der Praxis relevanten getränkeschädlichen Mikroorganismen in wenigen Versuchsansätzen nachgewiesen werden.

10

Verschiedene Sonden können dabei mit unterschiedlichen Markierungen versehen sein, so dass die verschiedenen, nachgewiesenen Mikroorganismen auf einfache und zuverlässige Weise diskriminiert werden können. Z. B. kann ein erstes Oligonukleotid spezifisch mit einem grünen Fluoreszenzfarbstoff markiert werden und zum

Nachweis einer ersten Mikroorganismengattung oder –art dienen. Ein zweites Oligonukleotid wird ebenfalls spezifisch, etwa mit einem roten Fluoreszenzfarbstoff, markiert und dient dem Nachweis einer zweiten Mikroorganismengattung oder –art. Die als Kompetitorsonden bezeichneten Oligonukleotide bleiben unmarkiert und verhindern das Binden des markierten ersten und/oder zweiten Oligonukleotids an Bakterien, die nicht zur nachzuweisenden Gattung oder Spezies gehören. Die verschiedenen Marker, z.B. ein grüner Fluoreszenzfarbstoff einerseits und ein roter Fluoreszenzfarbstoff andererseits, sind voneinander auf einfache Weise unterscheidbar, z.B. durch den Einsatz verschiedener Filter in der Fluoreszenzmikroskopie.

25 Die erfindungsgemäßen Verfahren können vielfältig angewendet werden.

So können beispielsweise alkoholfreie Getränke (z.B. Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer) auf die Anwesenheit der nachzuweisenden Mikroorganismen untersucht werden.

Auch können beispielsweise Umweltproben auf das Vorhandensein der nachzuweisenden Mikroorganismen untersucht werden. Diese Proben können hierzu z.B. aus dem Boden entnommen oder auch Teile von Pflanzen sein.

- Das erfindungsgemäße Verfahren kann weiter zur Untersuchung von Abwasserproben oder Silageproben eingesetzt werden.
 - Das erfindungsgemäße Verfahren kann weiter zur Untersuchung medizinischer Proben, z.B. von Stuhlproben, Blutkulturen, Sputum, Gewebeproben (auch Schnitte),
- Wundmaterial, Urin, Proben aus dem Respirationstrakt, Implantate und Katheteroberflächen eingesetzt werden.
- Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die Kontrolle von Lebensmitteln. In bevorzugten Ausführungsformen werden die Lebensmittelproben aus Milch oder Milchprodukten (Joghurt, Käse, Quark, Butter, Buttermilch), Trinkwasser, alkoholischen Getränken (z.B. Bier, Wein, Spirituosen), Backwaren oder Fleischwaren entnommen.
- Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die
 Untersuchung pharmazeutischer und kosmetischer Produkte, z.B. Salben, Cremes,
 Tinkturen, Säfte, Lösungen, Tropfen etc.
 - Erfindungsgemäß werden weiterhin Kits zur Durchführung der entsprechenden Verfahren zur Verfügung gestellt. Die in diesen Kits enthaltene
- 25 Hybridisierungsanordnung ist z.B. in der deutschen Patentanmeldung 100 61 655.0 beschrieben. Auf die in diesem Dokument enthaltene Offenbarung bezüglich der in situ-Hybridisierungsanordnung wird hiermit ausdrücklich Bezug genommen.
- Außer der beschriebenen Hybridisierungsanordnung (als VIT-Reaktor bezeichnet)
 umfassen die Kits als wichtigsten Bestandteil die jeweilige Hybridisierungslösung

mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen (VIT-Lösung). Weiterhin ist jeweils enthalten der entsprechende Hybridisierungspuffer (Solution C) und ein Konzentrat der entsprechenden Waschlösung (Solution D). Weiterhin sind enthalten gegebenenfalls Fixierungslösungen (Solution A und Solution B) sowie gegebenenfalls eine Einbettlösung (Finisher). Gegebenenfalls sind Lösungen zur parallelen Durchführung einer Positivkontrolle (Positive Control) sowie einer Negativkontrolle (Negative Control) enthalten.

10 Das folgende Beispiel soll die Erfindung erläutern, ohne sie einzuschränken:

Beispiel

Spezifischer Schnellnachweis getränkeschädlicher Mikroorganismen in einer Probe

15

5

Eine Probe wird in geeigneter Weise 20 bis 48 h kultiviert. Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von

Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich B. coagulans kann die Kultivierung z.B. auf Dextrose-Caseinpepton Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.

25

30

Zu einem Aliquot der Kultur wird dasselbe Volumen Fixierungslösung (Solution B, Ethanol absolut) zugegeben. Alternativ kann auch ein Aliquot der Kultur zentrifugiert werden (4 000 g, 5 min, Raumtemperatur) und – nach Verwerfen des Überstandes – das Pellet in 4 Tropfen Fixierungslösung (Solution B) aufgenommen werden.

- 77 -

Zur Durchführung der Hybridisierung wird ein geeignetes Aliquot der fixierten Zellen (bevorzugt 5 µl) auf einen Objektträger aufgebracht und getrocknet (46 °C, 30 min oder bis vollständig trocken). Alternativ können die Zellen auch auf andere Trägermaterialien (z. B. eine Mikrotiterplatte oder einen Filter) aufgebracht werden. Anschließend werden die getrockneten Zellen vollständig dehydratisiert durch erneuten Zusatz der Fixierungslösung (Solution B). Der Objektträger wird erneut getrocknet (Raumtemperatur, 3 min oder bis vollständig trocken).

Anschließend wird auf die fixierten, dehydratisierten Zellen die Hybridisierungslösung (VIT-Lösung, Hybridisierungspuffer mir markierten Sondenmolekülen) mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen aufgebracht. Das bevorzugte Volumen beträgt 40 μl. Der Objektträger wird anschließend in einer mit Hybridisierungspuffer (Solution C) befeuchteten Kammer, bevorzugt dem VIT-Reaktor (siehe DE 100 61 655.0), inkubiert (46 °C, 90 min).

Anschließend wird der Objektträger aus der Kammer entnommen, die Kammer mit Waschlösung befüllt (Solution D, 1:10 verdünnt in destilliertem Wasser) und der Objektträger in dieser inkubiert (46 °C, 15 min).

Anschließend wird die Kammer mit destilliertem Wasser befüllt, der Objektträger kurz eingetaucht und anschließend in seitlicher Stellung luftgetrocknet (46 °C, 30 min oder bis vollständig trocken).

25

20

5

Anschließend wird der Objektträger in einem geeigneten Medium (Finisher) eingebettet.

Abschließend wird die Probe mit Hilfe eines Fluoreszenzmikroskops analysiert.

PATENTANSPRÜCHE

Verfahren zum Nachweis von getränkeschädlichen Mikroorganismen in einer Probe, wobei der Nachweis mittels mindestens einer Oligonukleotidsonde
 erfolgt, die eine Nukleinsäuresequenz aufweist, ausgewählt aus der Gruppe bestehend aus (sämtliche Sequenzen in 5' → 3'-Richtung):

SEQ ID No. 1:	5'- GTTTGACCAGATTCTCCGCTC
SEQ ID No. 5:	5'- CCCGGTCGAATTAAAACC
SEQ ID No. 6:	5'- GCCCGGTCGAATTAAAAC
SEQ ID No. 7:	5'- GGCCCGGTCGAATTAAAA
SEQ ID No. 8:	5'- AGGCCCGGTCGAATTAAA
SEQ ID No. 9:	5'- AAGGCCCGGTCGAATTAA
SEQ ID No. 10:	5'- ATATTCGAGCGAAACGCC
SEQ ID No. 11:	5'- AAAGATCCGGACCGGCCG
SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
SEQ ID No. 14	5' GATCCGGACCGGCCGACC
SEQ ID No. 15	5'- AGATCCGGACCGGCCGAC
SEQ ID No. 16	5'- AAGATCCGGACCGGCCGA
SEQ ID No. 17	5'- GAAAGGCCCGGTCGAATT
SEQ ID No. 18	5'- AAAGGCCCGGTCGAATTA
SEQ ID No. 19	5'- GGAAAGGCCCGGTCGAAT
SEQ ID No. 20	5'- AGGAAAGGCCCGGTCGAA
SEQ ID No. 21	5'- AAGGAAAGGCCCGGTCGA
SEQ ID No. 22:	5'- ATAGCACTGGGATCCTCGCC
SEQ ID No. 23:	5'- CCAGCCCCAAAGTTACCTTC
SEQ ID No. 24:	5'- TCCTTGACGTAAAGTCGCAG
SEQ ID No. 25:	5'- GGAAGAAAACCAGTACGC
	SEQ ID No. 5: SEQ ID No. 6: SEQ ID No. 7: SEQ ID No. 8: SEQ ID No. 9: SEQ ID No. 10: SEQ ID No. 11: SEQ ID No. 12 SEQ ID No. 13 SEQ ID No. 14 SEQ ID No. 15 SEQ ID No. 16 SEQ ID No. 16 SEQ ID No. 17 SEQ ID No. 18 SEQ ID No. 19 SEQ ID No. 20 SEQ ID No. 21 SEQ ID No. 21 SEQ ID No. 22: SEQ ID No. 23: SEQ ID No. 24:

- 79 -

	SEQ ID No. 26:	5'- CCGGTCGGAAGAAACCA
	SEQ ID No. 27:	5'- GAAGAAAACCAGTACGCG
	SEQ ID No. 28:	5'- CCCGGTCGGAAGAAACC
	SEQ ID No. 29:	5'- CGGTCGGAAGAAACCAG
5	SEQ ID No. 30:	5'- GGTCGGAAGAAAACCAGT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACGCGGAAAAATCCG
	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
10	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGTCGGAAGAAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 39:	5'- AGAAAACCAGTACGCGGA
15	SEQ ID No. 40:	5'- GGCCCGGTCGGAAGAAAA
	SEQ ID No. 41:	5'- ATAAACACCACCCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
20	SEQ ID No. 45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCAGTAAAT
	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 49:	5'- TAAACACCACCCGATCCC
25	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'- GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
30	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG

... .

	SEQ ID No. 56:	5'- TTCACCAAGGGCCACAGG
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'- AGGGCCACAGGGACCCAG
	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG
5	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
10	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
15	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGTC
	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
20	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC
	SEQ ID No. 76:	5'- GTCGGAAAAACCAGTACG
	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCAGT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCAG
25	SEQ ID No. 80:	5'- TCGGAAAAACCAGTACGC
	SEQ ID No. 81:	5'- CGGAAAAACCAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAGTACGCGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
30	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG

- 81 -

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	-	
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95:	5'- GGCCCGGTCGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAACCAGTACGCGGA
	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGTCGGAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGTCGGAAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGTCGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGTCGGAAAA
	SEQ ID No. 111:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGTCGGAA
	SEQ ID No. 113:	5'- ATCTCTTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTTCCGAAAGGTC
30	SEQ ID No. 115:	5'- CTCTTCCGAAAGGTCGAG

	SEQ ID No. 116:	5'- CTTCCGAAAGGTCGAGAT
	SEQ ID No. 117:	5'- TCTCTTCCGAAAGGTCGA
	SEQ ID No. 118:	5'- TCTTCCGAAAGGTCGAGA
	SEQ ID No. 119:	5'- CCTAGTGGTGCCCTTCCG
5	SEQ ID No. 120:	5'- TAGTGGTGCCCTTCCGTC
	SEQ ID No. 121:	5'- AGTGGTGCCCTTCCGTCA
	SEQ ID No. 122:	5'- GCCAAGGTTAGACTCGTT
	SEQ ID No. 123:	5'- GGCCAAGGTTAGACTCGT
	SEQ ID No. 124:	5'- CCAAGGTTAGACTCGTTG
10	SEQ ID No. 125:	5'- CAAGGTTAGACTCGTTGG
	SEQ ID No. 126:	5'- AAGGTTAGACTCGTTGGC
	SEQ ID No. 127:	5'- CTCGCCTCACGGGGTTCTCA
	SEQ ID No. 128:	5'- GGCCCGGTCGAAATTAAA
	SEQ ID No. 129:	5'- AGGCCCGGTCGAAATTAA
15	SEQ ID No. 130:	5'- AAGGCCCGGTCGAAATTA
	SEQ ID No. 131:	5'- AAAGGCCCGGTCGAAATT
	SEQ ID No. 132:	5'- GAAAGGCCCGGTCGAAAT
	SEQ ID No. 133:	5'- ATATTCGAGCGAAACGCC
	SEQ ID No. 134:	5'- GGAAAGGCCCGGTCGAAA
20	SEQ ID No. 135:	5'- AAAGATCCGGACCGGCCG
	SEQ ID No. 136:	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 137:	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 138:	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 139:	5'- AGATCCGGACCGGCCGAC
25	SEQ ID No. 140:	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 141:	5'- AGGAAAGGCCCGGTCGAA
	SEQ ID No. 142:	5'- AAGGAAAGGCCCGGTCGA
	SEQ ID No. 143:	5'-CGAGCAAAACGCCTGCTTTG
	SEQ ID No. 144:	5'-CGCTCTGAAAGAGAGTTGCC
30	SEQ ID No. 145:	5'-AGTTGCCCCCTACACTAGAC

- 83 -

	SEQ ID No. 146:	5'-GCTTCTCCGTCCCGCGCCG
	SEQ ID No. 148:	5'- CCTGGTTCGCCAAAAAGGC
	SEQ ID No. 149:	5'-GATTCTCGGCCCCATGGG
	SEQ ID No. 150:	5'- ACCCTCTACGGCAGCCTGTT
5	SEQ ID No. 151:	5'- GATCGGTCTCCAGCGATTCA
	SEQ ID No. 152:	5'- ACCCTCCACGGCGGCCTGTT
	SEQ ID No. 153:	5'- GATTCTCCGCGCCATGGG
	SEQ ID No. 154:	5'- TCATCAGACGGGATTCTCAC
	SEQ ID No. 157:	5'-AGTTGCCCCCTCCTCAAGC
10	SEQ ID No. 158:	5'-CTGCCACAAGGACAAATGGT
	SEQ ID No. 159:	5'-TGCCCCCTCTTCTAAGCAAAT
	SEQ ID No. 160:	5'-CCCCAAAGTTGCCCTCTC
	SEQ ID No. 163:	5`-AAGACCAGGCCACCTCAT
	SEQ ID No. 164:	5'- CATCATAGAACACCGTCC
15	SEQ ID No. 165:	5'- CCTTCCGAAGTCGAGGTTTT
	SEQ ID No. 166:	5'- GGGAGTGTTGCCAACTC
	SEQ ID No. 167:	5'- AGCGGTCGTTCGCAACCCT
	SEQ ID No. 168:	5'- CCGAAGTCGGGGTTTTGCGG
	SEQ ID No. 169:	5'- GATAGCCGAAACCACCTTTC
20	SEQ ID No. 170:	5'- GCCGAAACCACCTTTCAAAC
	SEQ ID No. 171:	5'- GTGATAGCCGAAACCACCTT
	SEQ ID No. 172:	5'- AGTGATAGCCGAAACCACCT
	SEQ ID No. 173:	5'- TTTAACGGGATGCGTTCGAC
	SEQ ID No. 174:	5'- AAGTGATAGCCGAAACCACC
25	SEQ ID No. 175:	5'- GGTTGAATACCGTCAACGTC
	SEQ ID No. 176:	5'- GCACAGTATGTCAAGACCTG
	SEQ ID No. 177:	5'- CATCCGATGTGCAAGCACTT
	SEQ ID No. 178:	5'- TCATCCGATGTGCAAGCACT
	SEQ ID No. 179:	5'- CCGATGTGCAAGCACTTCAT
30	SEQ ID No. 180:	5'- CCACTCATCCGATGTGCAAG

	SEQ ID No. 181:	5'- GCCACAGTTCGCCACTCATC
	SEQ ID No. 182:	5'- CCTCCGCGTTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
5	SEQ ID No. 185:	5'- CCAGTTCGCCACAGTTCGCC
	SEQ ID No. 186:	5'- CTCATCCGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTCGCCACAGTTCGCCA
10	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
	SEQ ID No. 191:	5'- CGCCACAGTTCGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTCGCCACT
	SEQ ID No. 194:	5'- TCCTCCGCGTTTGTCACCGG
15	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
	SEQ ID No. 196:	5'- AGTTCGCCACAGTTCGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTCGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTCGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
20	SEQ ID No. 200:	5'- CCACAGTTCGCCACTCATCC
	SEQ ID No. 201:	5'- GATTTAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTCGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTCGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
25	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCTCCGCGTTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
30	SEQ ID No. 210:	5'- CACCAGTTCGCCACAGTTCG

SEQ ID No. 211: 5'- ACGGGATGCGTTCGACTTGC

- 85 -

	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
5	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
	SEQ ID No. 216:	5'- TCCGCGTTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTTGTCACCGGCAGT
10	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
	SEQ ID No. 221:	5'- CATTTAACGGGATGCGTTCG
	SEQ ID No. 222:	5'- CACAGTTCGCCACTCATCCG
	SEQ ID No. 223:	5'- TTCGCCACAGTTCGCCACTC
	SEQ ID No. 224:	5'- CTCCGCGTTTGTCACCGGCA
15	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
20	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
25	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCCTTC
	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCGGGTCCTTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTCGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
30	SEQ ID No. 240:	5'- CTCACCAGTTCGCCACAGTT

	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG
	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'- TGGTGAACCATTACTCCACC
	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
5	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCGGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
	SEQ ID No. 249:	5'- AGTTCGCCACTCATCCGATG
10	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCTCCGCGTTTGTCACC
	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC
15	SEQ ID No. 255:	5'- CCTTCCTCCGCGTTTGTCAC
	SEQ ID No. 256:	5'- ACGCCGCGGGTCCTTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
,	SEQ ID No. 258:	5'- GGGTCCTTCCAGAAGTGATA
	SEQ ID No. 259:	5'- CTTCCAGAAGTGATAGCCGA
20	SEQ ID No. 260:	5'- GCCTTGGTGAACCATTACTC
	SEQ ID No. 261:	5'- ACAGTTCGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCGTTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTTGGGTGTTG
	SEQ ID No. 264:	5'- GAACCGACTTTGGGTGTTGC
25	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTTG
	SEQ ID No. 266:	5'- ACCGAACCGACTTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTTGGGTG
	SEQ ID No. 269:	5'- GTTACCGAACCGACTTTGGG
30	SEQ ID No. 270:	5'- CCTTTCTGGTATGGTACCGTC

- 87 -

	SEQ ID No. 271:	5'- TGCACCGCGGAYCCATCTCT
	SEQ ID No. 272:	5'- AGTTGCAGTCCAGTAAGCCG
	SEQ ID No. 273:	5'- GTTGCAGTCCAGTAAGCCGC
	SEQ ID No. 274:	5'- CAGTTGCAGTCCAGTAAGCC
5	SEQ ID No. 275:	5'- TGCAGTCCAGTAAGCCGCCT
	SEQ ID No. 276:	5'- TCAGTTGCAGTCCAGTAAGC
	SEQ ID No. 277:	5'- TTGCAGTCCAGTAAGCCGCC
	SEQ ID No. 278:	5'- GCAGTCCAGTAAGCCGCCTT
	SEQ ID No. 279:	5'- GTCAGTTGCAGTCCAGTAAG
10	SEQ ID No. 280:	5'- CTCTAGGTGACGCCGAAGCG
	SEQ ID No. 281:	5'- ATCTCTAGGTGACGCCGAAG
	SEQ ID No. 282:	5'- TCTAGGTGACGCCGAAGCGC
	SEQ ID No. 283:	5'- TCTCTAGGTGACGCCGAAGC
	SEQ ID No. 284:	5'- CCATCTCTAGGTGACGCCGA
15	SEQ ID No. 285:	5'- CATCTCTAGGTGACGCCGAA
	SEQ ID No. 286:	5'- TAGGTGACGCCGAAGCGCCT
	SEQ ID No. 287:	5'- CTAGGTGACGCCGAAGCGCC
	SEQ ID No. 288:	5'- CTTAGACGGCTCCTTCCTAA
	SEQ ID No. 289:	5'- CCTTAGACGGCTCCTTCCTA
20	SEQ ID No. 290:	5'- ACGTCAGTTGCAGTCCAGTA
	SEQ ID No. 291:	5'- CGTCAGTTGCAGTCCAGTAA
	SEQ ID No. 292:	5'- ACGCCGAAGCGCCTTTTAAC
	SEQ ID No. 293:	5'- GACGCCGAAGCGCCTTTTAA
	SEQ ID No. 294:	5'- GCCGAAGCGCCTTTTAACTT
25	SEQ ID No. 295:	5'- CGCCGAAGCGCCTTTTAACT
	SEQ ID No. 296:	5'- GTGACGCCGAAGCGCCTTTT
	SEQ ID No. 297:	5'- TGACGCCGAAGCGCCTTTTA
	SEQ ID No. 298:	5'- AGACGGCTCCTTCCTAAAAG
	SEQ ID No. 299:	5'- ACGGCTCCTTCCTAAAAGGT
30	SEQ ID No. 300:	5'- GACGGCTCCTTCCTAAAAGG

	SEQ ID No. 301:	5'- CCTTCCTAAAAGGTTAGGCC
	SEQ ID No. 302:	5'- GGTGACGCCAAAGCGCCTTT
	SEQ ID No. 303:	5'- AGGTGACGCCAAAGCGCCTT
	SEQ ID No. 304:	5'- TAGGTGACGCCAAAGCGCCT
5	SEQ ID No. 305:	5'- CTCTAGGTGACGCCAAAGCG
	SEQ ID No. 306:	5'- TCTAGGTGACGCCAAAGCGC
	SEQ ID No. 307:	5'- CTAGGTGACGCCAAAGCGCC
	SEQ ID No. 308:	5'- ACGCCAAAGCGCCTTTTAAC
	SEQ ID No. 309:	5'- CGCCAAAGCGCCTTTTAACT
10	SEQ ID No. 310:	5'- TGACGCCAAAGCGCCTTTTA
	SEQ ID No. 311:	5'- TCTCTAGGTGACGCCAAAGC
	SEQ ID No. 312:	5'- GTGACGCCAAAGCGCCTTTT
	SEQ ID No. 313:	5'- GACGCCAAAGCGCCTTTTAA
	SEQ ID No. 314:	5'- ATCTCTAGGTGACGCCAAAG
15	SEQ ID No. 315:	5'- CATCTCTAGGTGACGCCAAA
	SEQ ID No. 316:	5'- TCCATCTCTAGGTGACGCCA
	SEQ ID No. 317:	5'- CCATCTCTAGGTGACGCCAA
	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCCC
20	SEQ ID No. 320:	5'- GTGTCATGCGACACTGAGTT
	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
	SEQ ID No. 322:	5'- CTTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'- TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
25	SEQ ID No. 325:	5'- AGACGGCTCCCCCTAAAAGG
	SEQ ID No. 326:	5'- TAGACGGCTCCCCCTAAAAG
	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCCTAAAAGGTTAG
30	SEQ ID No. 330:	5'- CTCCCCCTAAAAGGTTAGGC

	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC
	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCCTAAAAGGTTA
5	SEQ ID No. 335:	5'- CCCCCTAAAAGGTTAGGCCA
	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCTAAA
	SEQ ID No. 337:	5'- TTAGACGGCTCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCCTAA
10	SEQ ID No. 340:	5'- ACGGCTCCCCCTAAAAGGTT
	SEQ ID No. 341:	5'- GACGGCTCCCCCTAAAAGGT
	SEQ ID No. 342:	5'- ACGCCGCAAGACCATCCTCT
	SEQ ID No. 343:	5'- CTAATACGCCGCAAGACCAT
	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
15	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA
	SEQ ID No. 349:	5'- ACCATCCTCTAGCGATCCAA
20	SEQ ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTTCTGGTAAG
	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
25	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA
	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
30	SEQ ID No. 360:	5'- TTTGCTACGTCACTAGGAGG

	SEQ ID No. 361:	5'- GCCATCCCTTTCTGGTAAGG
	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
5	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
10	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
	SEQ ID No. 373:	5'- CCATCCCTTTCTGGTAAGGT
	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
15	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGCGG
	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
20	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
	SEQ ID No. 382:	5'- TGGCACGTATTTAGCCATCC
	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
25	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTTGCTACGTCACTAGGAG
	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT
	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
30	SEQ ID No. 390:	5'- CCCGAAGATCAATTCAGCGG
		,

	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
	SEQ ID No. 393:	5'- TCATTGCCTCACTTCACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
5	SEQ ID No. 395:	5'- CACCCGAAGATCAATTCAGC
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTCACCC
	SEQ ID No. 397:	5'- CATTGCCTCACTTCACCCGA
	SEQ ID No. 398:	5'- ATTGCCTCACTTCACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTCAGCGGCT
10	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
	SEQ ID No. 402:	5'- TTGCCTCACTTCACCCGAAG
	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG
	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
15	SEQ ID No. 405:	5'- ACCCGAAGATCAATTCAGCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
	SEQ ID No. 408:	5'- GCACCCATCGTTTACGGTAT
•	SEQ ID No. 409:	5'- CACCCATCGTTTACGGTATG
20	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGCGGAAACCT
25	SEQ ID No. 415:	5'- AGCCTCAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
	SEQ ID No. 418:	5'- CAAGCTAATACGCCGCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
30	SEQ ID No. 420:	5'- CCGAAGATCAATTCAGCGGC

	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
	SEQ ID No. 423:	5'- GCGTTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
5	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
	SEQ ID No. 428:	5'- ACAAGCTAATACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
10	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTTTACCTTAGGCACCGG
	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA
	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
15	SEQ ID No. 435:	5'- GCCAAGCGACTTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTTC
	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
20	SEQ ID No. 440:	5'- GGCCGGCCAGTCTCTCAACT
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
	SEQ ID No. 443:	5'- CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTTCTGG
25	SEQ ID No. 445:	5'- AACCCTTCATCACACACG
	SEQ ID No. 446:	5'- CGAAACCCTTCATCACAC
	SEQ ID No. 447:	5'- ACCCTTCATCACACACGC
	SEQ ID No. 448:	5'- TACCGTCACACACTGAAC
	SEQ ID No. 449:	5'- AGATACCGTCACACACTG
30	SEQ ID No. 450:	5'- CACTCAAGGGCGGAAACC

SEQ ID No. 451: 5'- ACCGTCACACACTGAACA

	SEQ ID No. 452:	5'- CGTCACACACTGAACAGT
	SEQ ID No. 453:	5'- CCGAAACCCTTCATCACA
	SEQ ID No. 454:	5'- CCGTCACACACTGAACAG
5	SEQ ID No. 455:	5'- GATACCGTCACACACTGA
	SEQ ID No. 456:	5'- GGTAAGATACCGTCACAC
	SEQ ID No. 457:	5'- CCCTTCATCACACACGCG
	SEQ ID No. 458:	5'- ACAGTGTTTTACGAGCCG
	SEQ ID No. 459:	5'- CAGTGTTTTACGAGCCGA
10	SEQ ID No. 460:	5'- ACAAAGCGTTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACA
15	SEQ ID No. 465:	5'- TGAGGGCTTTCACTTCAG
	SEQ ID No. 466:	5'- AGGGCTTTCACTTCAGAC
	SEQ ID No. 467:	5'- GAGGGCTTTCACTTCAGA
	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAC
20	SEQ ID No. 470:	5'- TCCGGATAACGCTTGGAA
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT
	SEQ ID No. 473:	5'- CCCTGCTAAGAGGTAGGT
	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
25	SEQ ID No. 475:	5'- TCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCTTTCTGGTAAG
	SEQ ID No. 478:	5'- GCCGTTCCTTTCTGGTAA
	SEQ ID No. 479:	5'- AGCCGTTCCTTTCTGGTA
30	SEQ ID No. 480:	5'- GCACGTATTTAGCCGTTC

	SEQ ID No. 481:	5'- CACGTATTTAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTTAGCCGTT
	SEQ ID No. 483:	5'- CACTTTCCTCTACTGCAC
	SEQ ID No. 484:	5'- CCACTTTCCTCTACTGCA
5	SEQ ID No. 485:	5'- TCCACTTTCCTCTACTGC
	SEQ ID No. 486:	5'- CTTTCCTCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCTTTCTGGT
	SEQ ID No. 488:	5'- TTAGCCGTTCCTTTCTGG
	SEQ ID No. 489:	5'- TTATCCCCTGCTAAGAGG
10	SEQ ID No. 490:	5'- GTTATCCCCTGCTAAGAG
	SEQ ID No. 491:	5'- CCCGTTCGCCACTCTTTG
	SEQ ID No. 492:	5'- AGCTGAGGGCTTTCACTT
	SEQ ID No. 493:	5'- GAGCTGAGGGCTTTCACT
	SEQ ID No. 494:	5'- GCTGAGGGCTTTCACTTC
15	SEQ ID No. 495:	5'- CTGAGGGCTTTCACTTCA
	SEQ ID No. 496:	5' CCCGTGTCCCGAAGGAAC
	SEQ ID No. 497:	5' GCACGAGTATGTCAAGAC
	SEQ ID No. 498:	5' GTATCCCGTGTCCCGAAG
	SEQ ID No. 499:	5' TCCCGTGTCCCGAAGGAA
20	SEQ ID No. 500:	5' ATCCCGTGTCCCGAAGGA
	SEQ ID No. 501:	5' TATCCCGTGTCCCGAAGG
	SEQ ID No. 502:	5' CTTACCTTAGGAAGCGCC
	SEQ ID No. 503:	5' TTACCTTAGGAAGCGCCC
	SEQ ID No. 504:	5' CCTGTATCCCGTGTCCCG
25	SEQ ID No. 505:	5' CCACCTGTATCCCGTGTC
	SEQ ID No. 506:	5' CACCTGTATCCCGTGTCC
	SEQ ID No. 507:	5' ACCTGTATCCCGTGTCCC
	SEQ ID No. 508:	5' CTGTATCCCGTGTCCCGA
	SEQ ID No. 509:	5' TGTATCCCGTGTCCCGAA
30	SEQ ID No. 510:	5' CACGAGTATGTCAAGACC

	SEQ ID No. 511:	5' CGGTCTTACCTTAGGAAG
	SEQ ID No. 512:	5' TAGGAAGCGCCCTCCTTG
	SEQ ID No. 513:	5' AGGAAGCGCCCTCCTTGC
	SEQ ID No. 514:	5' TTAGGAAGCGCCCTCCTT
5	SEQ ID No. 515:	5' CTTAGGAAGCGCCCTCCT
	SEQ ID No. 516:	5' CCTTAGGAAGCGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGCGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGC
	SEQ ID No. 519:	5' TACCTTAGGAAGCGCCCT
10	SEQ ID No. 520:	5' ACCACCTGTATCCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
	SEQ ID No. 524:	5' TGCGGTTAGGCAACCTAC
15	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC
	SEQ ID No. 529:	5' ATACAACGCGGGATCATC
20	SEQ ID No. 530:	5' CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGCGCCCTCCTTGCGG
	SEQ ID No. 533:	5' GGAAGCGCCCTCCTTGCG
	SEQ ID No. 534:	5' CGTCCCTTTCTGGTTAGA
25	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
	SEQ ID No. 539:	5' GAGCCACTGCCTTTTACA
30	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG

	SEQ ID No. 541:	5' GGTCGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTCGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATCGCC
	SEQ ID No. 544:	5' TCGGCTATGTATCATCGC
5	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG
	SEQ ID No. 546:	5' TCTTACCTTAGGAAGCGC
	SEQ ID No. 547:	5'- GTACAAACCGCCTACACGCC
	SEQ ID No. 548:	5'- TGTACAAACCGCCTACACGC
	SEQ ID No. 549:	5'- GATCAGCACGATGTCGCCAT
10	SEQ ID No. 550:	5'- CTGTACAAACCGCCTACACG
	SEQ ID No. 551:	5'- GAGATCAGCACGATGTCGCC
	SEQ ID No. 552:	5'- AGATCAGCACGATGTCGCCA
	SEQ ID No. 553:	5'- ATCAGCACGATGTCGCCATC
	SEQ ID No. 554:	5'- TCAGCACGATGTCGCCATCT
15	SEQ ID No. 555:	5'- ACTGTACAAACCGCCTACAC
	SEQ ID No. 556:	5'- CCGCCACTAAGGCCGAAACC
	SEQ ID No. 557:	5'- CAGCACGATGTCGCCATCTA
	SEQ ID No. 558:	5'- TACAAACCGCCTACACGCCC
	SEQ ID No. 559:	5'- AGCACGATGTCGCCATCTAG
20	SEQ ID No. 560:	5'- CGGCTTTTAGAGATCAGCAC
	SEQ ID No. 561:	5'- TCCGCCACTAAGGCCGAAAC
	SEQ ID No. 562:	5'- GACTGTACAAACCGCCTACA
	SEQ ID No. 563:	5'- GTCCGCCACTAAGGCCGAAA
	SEQ ID No. 564:	5'- GGGGATTTCACATCTGACTG
25	SEQ ID No. 565:	5'- CATACAAGCCCTGGTAAGGT
	SEQ ID No. 566:	5'- ACAAGCCCTGGTAAGGTTCT
	SEQ ID No. 567:	5'- ACAAACCGCCTACACGCCCT
	SEQ ID No. 568:	5'- CTGACTGTACAAACCGCCTA
	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
30	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT

	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
5	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCCA
	SEQ ID No. 577:	5'- GCCATCTAGCTTCCCACTGT
	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCCACTG
10	SEQ ID No. 580:	5'- GTCGCCATCTAGCTTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTTC
	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT
	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
15	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
	SEQ ID No. 588:	5'- TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
20	SEQ ID No. 590:	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
	SEQ ID No. 593:	5'- CTTCGTGCGACTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCGACTTGCATGT
25	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCACCCAA
	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCCA
	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
30	SEQ ID No. 600:	5'- CCGAAACCTTCGTGCGACTT

. . .

	SEQ ID No. 601:	5'- GCCGAAACCTTCGTGCGACT
	SEQ ID No. 602:	5'- AACCTTCGTGCGACTTGCAT
	SEQ ID No. 603:	5'- CGAAACCTTCGTGCGACTTG
	SEQ ID No. 604:	5'- ACCTTCGTGCGACTTGCATG
5	SEQ ID No. 605:	5'- GAAACCTTCGTGCGACTTGC
	SEQ ID No. 606:	5'- GGCCGAAACCTTCGTGCGAC
	SEQ ID No. 607:	5'- AAACCTTCGTGCGACTTGCA
	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC
	SEQ ID No. 609:	5'- GCTCACCGGCTTAAGGTCAA
10	SEQ ID No. 610:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 611:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 612:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 613:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 614:	5'- GCTCACCGGCTTAAGGTCAA
15	SEQ ID No. 615:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 616:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 617:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 618:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 619:	5'- TCACCGGCTTAAGGTCAAAC
20	SEQ ID No. 620:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 621:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 622:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 623:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 624:	5'- CACAACCCTCTCTCACACTC
25	SEQ ID No. 625:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 628:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCATG
30	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCTT

	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
5	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 638:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
10	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAACCCTCTCTC
•	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAACCCTCTCT
15	SEQ ID No. 645:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 646:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACC
20	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 652:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 653:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
25	SEQ ID No. 655:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
30	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT

- 100 -

	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 663:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTTGACCCTCAGGTGT
5	SEQ ID No. 665:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 667:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 668:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 669:	5'- TGACCCTCAGGTGTCATGCG
10	SEQ ID No. 670:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 673:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTTGACCCTCAGGTGTCAT
15	SEQ ID No. 675:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 676:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 678:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATCGCCTTG
20	SEQ ID No. 680:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 681:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 683:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 684:	5'- ATCGATCATCGCCTTGGTAG
25	SEQ ID No. 685:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 688:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 689:	5'- CCTCCACAGGCGACTTGCGC
30	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCGCC

- 101 -

	SEQ ID No. 691:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTC
5	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 698:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 699:	5'- ACAACCCTCTCTCACACTCT
10	SEQ ID No. 700:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 701:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 703:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAACCCTCTCTCACA
15	SEQ ID No. 705:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
20	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
25	SEQ ID No. 715:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 718:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAACCCTCTCTC
30	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTTCGC

- 102 -

	•	
	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 723:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCCACAGG
5	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 729:	5'- ACCCAACATCCAGCACACAT
10	SEQ ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 731:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 733:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
15	SEQ ID No. 735:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 736:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 739:	5'- CGCAGGCTCCTCCACAGGCG
20	SEQ ID No. 740:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 741:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 742:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 743:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 744:	5'- CCTCAGGTGTCATGCGGTAT
25	SEQ ID No. 745:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 746:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 747:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 748:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 749:	5'- TTGACCCTCAGGTGTCATGC
30	SEQ ID No. 750:	5'- CCCTCAGGTGTCATGCGGTA

- 103 -

	SEQ ID No. 751:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 752:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 753:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 754:	5'- CCAGCTATCGATCATCGCCT
5	SEQ ID No. 755:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 756:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 757:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 758:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 759:	5'- CTATCGATCATCGCCTTGGT
10	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 763:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGCGCCTT
15	SEQ ID No. 765:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 766:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 769:	5'- ACAGGCGACTTGCGCCTTTG
20	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 773:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 774:	5'- AACCCTCTCTCACACTCTAG
25	SEQ ID No. 775:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 778:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCTTCG
30	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCATG

- 104 ⁻

	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
5	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 788:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 789:	5'- ATTCCACAACCCTCTCTCAC
10	SEQ ID No. 790:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 792:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTTCGCC
15	SEQ ID No. 795:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 796:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CCGGCTTAAGGTCAAACCAA
20	SEQ ID No. 800:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
25	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 808:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
30	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG

- 105 -

	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTCATGCGGTATT
5	SEQ ID No. 815:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 817:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 818:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 819:	5'- GACCCTCAGGTGTCATGCGG
10	SEQ ID No. 820:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 821:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 823:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 824:	5'- CCTTTGACCCTCAGGTGTCA
15	SEQ ID No. 825:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 826:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATCGCCTT
20	SEQ ID No. 830:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 834:	5'- TCGATCATCGCCTTGGTAGG
25	SEQ ID No. 835:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 836:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 837:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 838:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 839:	5'- TCCTCCACAGGCGACTTGCG
30	SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGCGC

	SEQ ID No. 841:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 842:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 843:	5'- AGCCCCGGTTTCCCGGCGTT
	SEQ ID No. 844:	5'- CGCCTTTCCTTTTTCCTCCA
5	SEQ ID No. 845:	5'- GCCCCGGTTTCCCGGCGTTA
	SEQ ID No. 846:	5'- GCCGCCTTTCCTTTTTCCTC
	SEQ ID No. 847:	5'- TAGCCCCGGTTTCCCGGCGT
	SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCGCC
	SEQ ID No. 849:	5'- AAGCCGCCTTTCCTTTTCC
10	SEQ ID No. 850:	5'- CCCCGGTTTCCCGGCGTTAT
	SEQ ID No. 851:	5'- CCGGCGTTATCCCAGTCTTA
	SEQ ID No. 852:	5'- AGCCGCCTTTCCTTTTTCCT
	SEQ ID No. 853:	5'- CCGCCTTTCCTTTTTCCTCC
	SEQ ID No. 854:	5'- TTAGCCCCGGTTTCCCGGCG
15	SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCTT
	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCGC
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'- TCCCGGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
20	SEQ ID No. 860:	5'- GAAGCCGCCTTTCCTTTTC
	SEQ ID No. 861:	5'- CCCGGTTTCCCGGCGTTATC
	SEQ ID No. 862:	5'- CGGCGTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCGTTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
25	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCCG
	SEQ ID No. 866:	5'- ATTAGCCCCGGTTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
30	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG

- 107 -

	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC
	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTTACGAC
5	SEQ ID No. 875:	5'- GGGGAAGGCCCTGTCTCCAG
	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCTTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGCACTTGTTCTTCCCCGG
10	SEQ ID No. 880:	5'- GTTCTTCCCCGGCAACAGAG
	SEQ ID No. 881:	5'- GGCACTTGTTCTTCCCCGGC
	SEQ ID No. 882:	5'- GCACTTGTTCTTCCCCGGCA
	SEQ ID No. 883:	5'- CACTTGTTCTTCCCCGGCAA
	SEQ ID No. 884:	5'- TCTTCCCCGGCAACAGAGTT
15	SEQ ID No. 885:	5'- TTGTTCTTCCCCGGCAACAG
	SEQ ID No. 886:	5'- ACTTGTTCTTCCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTTCCCCGGCAACAGA
.	SEQ ID No. 888:	5'- CTTGTTCTTCCCCGGCAACA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
20	SEQ ID No. 890:	5'- GTCCGCCGCTAACCTTTTAA
	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892:	5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
25	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTTA
	SEQ ID No. 896:	5'- CGAAGCCGCCTTTCCTTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTTCCTTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTTCCTT
30	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCGCCCTG

SEQ ID No. 901: 5'- CCGTGGCTTTCTGGCCGGGT

	SEQ ID No. 902:	5'- GCTTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTTCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTTCTGGCCGGGTACCG
5	SEQ ID No. 905:	5'- CTTTCTGGCCGGGTACCGTC
	SEQ ID No. 906:	5'- TGGCTTTCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTTCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTTCTGGCCGGGTA
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
10	SEQ ID No. 910:	5'- GGGAAGGCCCTGTCTCCAGG
	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCCTGTTCGAACG
15	SEQ ID No. 915:	5'- AGGCGCCGCCCTGTTCGAAC
	SEQ ID No. 916:	5'- AAGGCGCCGCCCTGTTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTTACG
	SEQ ID No. 918:	5'- CCCCGGCAACAGAGTTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
20	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	5'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
25	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTTT
30	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTTT

- 109 -

	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTTA
	SEQ ID No. 932:	5'- CCGTCCGCCGCTAACCTTTT
	SEQ ID No. 933:	5'- CTTCCTCCGACTTACGCCGG
	SEQ ID No. 934:	5'- CCTCCGACTTACGCCGGCAG
5	SEQ ID No. 935:	5'- TTCCTCCGACTTACGCCGGC
	SEQ ID No. 936:	5'- TCCTCCGACTTACGCCGGCA
	SEQ ID No. 937:	5'- TCCGACTTACGCCGGCAGTC
	SEQ ID No. 938:	5'- CCGACTTACGCCGGCAGTCA
	SEQ ID No. 939:	5'- GCCTTCCTCCGACTTACGCC
10	SEQ ID No. 940:	5'- CCTTCCTCCGACTTACGCCG
	SEQ ID No. 941:	5'- GCTCTCCCCGAGCAACAGAG
	SEQ ID No. 942:	5'- CTCTCCCCGAGCAACAGAGC
	SEQ ID No. 943:	5'- CGCTCTCCCCGAGCAACAGA
	SEQ ID No. 944:	5'- CTCCGACTTACGCCGGCAGT
15	SEQ ID No. 945:	5'- TCTCCCCGAGCAACAGAGCT
	SEQ ID No. 946:	5'- CGACTTACGCCGGCAGTCAC
	SEQ ID No. 947:	5'- TCGGCACTGGGGTGTGTCCC
	SEQ ID No. 948:	5'- GGCACTGGGGTGTGTCCCCC
	SEQ ID No. 949:	5'- CTGGGGTGTGTCCCCCAAC
20	SEQ ID No. 950:	5'- CACTGGGGTGTGTCCCCCCA
	SEQ ID No. 951:	5'- ACTGGGGTGTGTCCCCCAA
	SEQ ID No. 952:	5'- GCACTGGGGTGTGTCCCCCC
	SEQ ID No. 953:	5'- TGGGGTGTGTCCCCCCAACA
	SEQ ID No. 954:	5'- CACTCCAGACTTGCTCGACC
25	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
	SEQ ID No. 958:	5'- CTCCCCGAGCAACAGAGCTT
	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
30	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG

- 110 -

	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCATGCCGCTCTCCCCGA
	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
5	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA
	SEQ ID No. 969:	5'- CCCGCAAGAAGATGCCTCCT
10	SEQ ID No. 970:	5'- AGAAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAAGATGCCTCCTCG
	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
	SEQ ID No. 974:	5'- CCGCAAGAAGATGCCTCCTC
15	SEQ ID No. 975:	5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No. 976:	5'- CCCCGCAAGAAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAAGATGCCTCCTCGCG
	SEQ ID No. 978:	5'- TCCTTCGGCACTGGGGTGTG
	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
20	SEQ ID No. 980:	5'- TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCCC
	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
	SEQ ID No. 984:	5'- GGGGTGTGTCCCCCCAACAC
25	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
	SEQ ID No. 989:	5'- GCAAGAAGATGCCTCCTCGC
30	SEQ ID No. 990:	5'- CTCCAGACTTGCTCGACCGC

- 111 -

	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
5	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGTA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCCAACACC
	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT
	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
10	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
	SEQ ID No. 1001:	5'- GCGCCGCGGGCTCCTCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCCAACACCT
	SEQ ID No. 1003:	5'- GTGTGTCCCCCCAACACCTA
	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
15	SEQ ID No. 1005:	5'- CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'- TCGCGGGCGTATCCGGCATT
	SEQ ID No. 1008:	5'- TTTCACTCCAGACTTGCTCG
	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
20	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGGCGTATCCGGCATTA
	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
	SEQ ID No. 1014:	5'- GGGCTCCTCTCTCAGCGGCC
25	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTTACA
	SEQ ID No. 1018:	5'- CCATCCCATGGTTGAGCCAT
	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
30	SEQ ID No. 1020:	5'- GCGGGCGTATCCGGCATTAG

SEQ ID No. 1021: 5'- CGAGCGGCTTTTTGGGTTTC

	52 (12 1.0. 1021.	
	SEQ ID No. 1022:	5'- CTTTCACTCCAGACTTGCTC
	SEQ ID No. 1023:	5'- TTCCTTCGGCACTGGGGTGT
	SEQ ID No. 1024:	5'- CCGCCTTCCTCCGACTTACG
5	SEQ ID No. 1025:	5'- CCCGCCTTCCTCCGACTTAC
	SEQ ID No. 1026:	5'- CCTCCTCGCGGGCGTATCCG
	SEQ ID No. 1027:	5'- TCCTCGCGGGCGTATCCGGC
	SEQ ID No. 1028:	5'- CATTAGCGCCCGTTTCCGGG
	SEQ ID No. 1029:	5'- GCATTAGCGCCCGTTTCCGG
10	SEQ ID No. 1030:	5'- GGCATTAGCGCCCGTTTCCG
	SEQ ID No. 1031:	5'- GTCTCGCATGGGGCTTTCCA
	SEQ ID No. 1032:	5'- GCCATGGACTTTCACTCCAG
	SEQ ID No. 1033:	5'- CATGGACTTTCACTCCAGAC
	SEQ ID No. 1037:	5'- ACCGTCTCACAAGGAGCTTT
15	SEQ ID No. 1038:	5'- TACCGTCTCACAAGGAGCTT
	SEQ ID No. 1039:	5'- GTACCGTCTCACAAGGAGCT
	SEQ ID No. 1040:	5'- GCCTACCCGTGTATTATCCG
	SEQ ID No. 1041:	5'- CCGTCTCACAAGGAGCTTTC
	SEQ ID No. 1042:	5'- CTACCCGTGTATTATCCGGC
20	SEQ ID No. 1043:	5'- GGTACCGTCTCACAAGGAGC
	SEQ ID No. 1044:	5'- CGTCTCACAAGGAGCTTTCC
	SEQ ID No. 1045:	5'- TCTCACAAGGAGCTTTCCAC
	SEQ ID No. 1046:	5'- TACCCGTGTATTATCCGGCA
	SEQ ID No. 1047:	5'- GTCTCACAAGGAGCTTTCCA
25	SEQ ID No. 1048:	5'- ACCCGTGTATTATCCGGCAT
	SEQ ID No. 1049:	5'- CTCGGTACCGTCTCACAAGG
	SEQ ID No. 1050:	5'- CGGTACCGTCTCACAAGGAG
	SEQ ID No. 1051:	5'- ACTCGGTACCGTCTCACAAG
	SEQ ID No. 1052:	5'- CGGCTGGCTCCATAACGGTT
30	SEQ ID No. 1053:	5'- ACAAGTAGATGCCTACCCGT

- 113 -

	SEQ ID No. 1054:	5'- TGGCTCCATAACGGTTACCT
	SEQ ID No. 1055:	5'- CAAGTAGATGCCTACCCGTG
	SEQ ID No. 1056:	5'- CACAAGTAGATGCCTACCCG
	SEQ ID No. 1057:	5'- GGCTCCATAACGGTTACCTC
5	SEQ ID No. 1058:	5'- ACACAAGTAGATGCCTACCC
	SEQ ID No. 1059:	5'- CTGGCTCCATAACGGTTACC
	SEQ ID No. 1060:	5'- GCTGGCTCCATAACGGTTAC
	SEQ ID No. 1061:	5'- GGCTGGCTCCATAACGGTTA
	SEQ ID No. 1062:	5'- GCTCCATAACGGTTACCTCA
10	SEQ ID No. 1063:	5'- AAGTAGATGCCTACCCGTGT
	SEQ ID No. 1064:	5'- CTCCATAACGGTTACCTCAC
	SEQ ID No. 1065:	5'- TGCCTACCCGTGTATTATCC
	SEQ ID No. 1066:	5'- TCGGTACCGTCTCACAAGGA
	SEQ ID No. 1067:	5'- CTCACAAGGAGCTTTCCACT
15	SEQ ID No. 1068:	5'- GTAGATGCCTACCCGTGTAT
	SEQ ID No. 1069:	5'- CCTACCCGTGTATTATCCGG
	SEQ ID No. 1070:	5'- CACTCGGTACCGTCTCACAA
	SEQ ID No. 1071:	5'- CTCAGCGATGCAGTTGCATC
	SEQ ID No. 1072:	5'- AGTAGATGCCTACCCGTGTA
20	SEQ ID No. 1073:	5'- GCGGCTGGCTCCATAACGGT
	SEQ ID No. 1074:	5'- CCAAAGCAATCCCAAGGTTG
	SEQ ID No. 1075:	5'- TCCATAACGGTTACCTCACC
	SEQ ID No. 1076:	5'- CCCGTGTATTATCCGGCATT
	SEQ ID No. 1077:	5'- TCTCAGCGATGCAGTTGCAT
25	SEQ ID No. 1078:	5'- CCATAACGGTTACCTCACCG
	SEQ ID No. 1079:	5'- TCAGCGATGCAGTTGCATCT
	SEQ ID No. 1080:	5'- GGCGGCTGGCTCCATAACGG
	SEQ ID No. 1081:	5'- AAGCAATCCCAAGGTTGAGC
	SEQ ID No. 1082:	5'- TCACTCGGTACCGTCTCACA
30	SEQ ID No. 1083:	5'- CCGAGTGTTATTCCAGTCTG

SEQ ID No. 1084: 5'- CACAAGGAGCTTTCCACTCT

- 114 -

	SEQ ID No. 1085:	5'- ACAAGGAGCTTTCCACTCTC
	SEQ ID No. 1086:	5'- TCACAAGGAGCTTTCCACTC
	SEQ ID No. 1087:	5'- CAGCGATGCAGTTGCATCTT
5	SEQ ID No. 1088:	5'- CAAGGAGCTTTCCACTCTCC
	SEQ ID No. 1089:	5'- CCAGTCTGAAAGGCAGATTG
	SEQ ID No. 1090:	5'- CAGTCTGAAAGGCAGATTGC
	SEQ ID No. 1091:	5'- CGGCGGCTGGCTCCATAACG
	SEQ ID No. 1092:	5'- CCTCTCTCAGCGATGCAGTT
10	SEQ ID No. 1093:	5'- CTCTCTCAGCGATGCAGTTG
	SEQ ID No. 1094:	5'- TCTCTCAGCGATGCAGTTGC
	SEQ ID No. 1095:	5'- CTCTCAGCGATGCAGTTGCA
	SEQ ID No. 1096:	5'- CAATCCCAAGGTTGAGCCTT
	SEQ ID No. 1097:	5'- AATCCCAAGGTTGAGCCTTG
15	SEQ ID No. 1098:	5'- AGCAATCCCAAGGTTGAGCC
	SEQ ID No. 1099:	5'- CTCACTCGGTACCGTCTCAC
	SEQ ID No. 1100:	5'- GCAATCCCAAGGTTGAGCCT
	SEQ ID No. 1101:	5'- GCCTTGGACTTTCACTTCAG
	SEQ ID No. 1102:	5'- CATAACGGTTACCTCACCGA
20	SEQ ID No. 1103:	5'- CTCCTCTCTCAGCGATGCAG
	SEQ ID No. 1104:	5'- TCGGCGGCTGGCTCCATAAC
	SEQ ID No. 1105:	5'- AGTCTGAAAGGCAGATTGCC
	SEQ ID No. 1106:	5'- TCCTCTCTCAGCGATGCAGT
	SEQ ID No. 1107:	5'- CCCAAGGTTGAGCCTTGGAC
25	SEQ ID No. 1108:	5'- ATAACGGTTACCTCACCGAC
	SEQ ID No. 1109:	5'- TCCCAAGGTTGAGCCTTGGA
	SEQ ID No. 1110:	5'- ATTATCCGGCATTAGCACCC
	SEQ ID No. 1111:	5'- CTACGTGCTGGTAACACAGA
	SEQ ID No. 1112:	5'- GCCGCTAGCCCCGAAGGGCT
30	SEQ ID No. 1113:	5'- CTAGCCCCGAAGGGCTCGCT

- 115 -

	SEQ ID No. 1114:	5'- CGCTAGCCCCGAAGGGCTCG
	SEQ ID No. 1115:	5'- AGCCCCGAAGGGCTCGCTCG
	SEQ ID No. 1116:	5'- CCGCTAGCCCCGAAGGGCTC
	SEQ ID No. 1117:	5'- TAGCCCCGAAGGGCTCGCTC
5	SEQ ID No. 1118:	5'- GCTAGCCCCGAAGGGCTCGC
	SEQ ID No. 1119:	5'- GCCCGAAGGGCTCGCTCGA
	SEQ ID No. 1120:	5'- ATCCCAAGGTTGAGCCTTGG
	SEQ ID No. 1121:	5'- GAGCCTTGGACTTTCACTTC
	SEQ ID No. 1122:	5'- CAAGGTTGAGCCTTGGACTT
10	SEQ ID No. 1123:	5'- GAGCTTTCCACTCTCCTTGT
	SEQ ID No. 1124:	5'- CCAAGGTTGAGCCTTGGACT
	SEQ ID No. 1125:	5'- CGGGCTCCTCTCAGCGAT
	SEQ ID No. 1126:	5'- GGAGCTTTCCACTCTCCTTG
	SEQ ID No. 1127:	5'- GGGCTCCTCTCTCAGCGATG
15	SEQ ID No. 1128:	5'- TCTCCTTGTCGCTCTCCCCG
	SEQ ID No. 1129:	5'- TCCTTGTCGCTCTCCCCGAG
	SEQ ID No. 1130:	5'- AGCTTTCCACTCTCCTTGTC
-	SEQ ID No. 1131:	5'- CCACTCTCCTTGTCGCTCTC
	SEQ ID No. 1132:	5'- GGCTCCTCTCTCAGCGATGC
20	SEQ ID No. 1133:	5'- CCTTGTCGCTCTCCCCGAGC
	SEQ ID No. 1134:	5'- CACTCTCCTTGTCGCTCTCC
	SEQ ID No. 1135:	5'- ACTCTCCTTGTCGCTCTCCC
	SEQ ID No. 1136:	5'- CTCTCCTTGTCGCTCTCCCC
	SEQ ID No. 1137:	5'- GCGGGCTCCTCTCAGCGA
25	SEQ ID No. 1138:	5'- GGCTCCATCATGGTTACCTC
	SEQ ID No. 1142:	5'- CTTCCTCCGGCTTGCGCCGG
	SEQ ID No. 1143:	5'- CGCTCTTCCCGA(G/T)TGACTGA
	SEQ ID No. 1144:	5'- CCTCGGGCTCCTCCATC(A/T)GC

- 2. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Zygosaccharomyces mittels der Oligonukleotidsonde SEQ ID No. 1 nachgewiesen werden.
- 3. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Zygosaccharomyces bailii mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 5 bis SEQ ID No. 21, nachgewiesen wird.
- 4. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Zygosaccharomyces fermentati mittels der Oligonukleotidsonde
 SEQ ID No. 22 nachgewiesen wird.
- Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Zygosaccharomyces microellipsoides mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 23 bis SEQ ID No. 24, nachgewiesen wird.
- Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Zygosaccharomyces mellis mittels mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 25 bis
 SEQ ID No. 75, nachgewiesen wird.
- Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Zygosaccharomyces rouxii mittels mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 76 bis
 SEQ ID No. 126, nachgewiesen wird.

- 8. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Zygosaccharomyces mellis und Zygosaccharomyces rouxii gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 127 nachgewiesen werden.
- 9. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Zygosaccharomyces bisporus mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 128 bis SEQ ID No. 142, nachgewiesen wird.
- 10 10. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Hanseniaspora uvarum mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 143 und SEQ ID No. 144, nachgewiesen wird.
- 11. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida intermedia* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 145 und SEQ ID No. 146, nachgewiesen wird.
- 20 12. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Candida parapsilosis mittels der Oligonukleotidsonde SEQ ID No. 148 nachgewiesen wird.
- 13. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 25 Mikroorganismus Candida crusei (Issatchenkia orientalis) mittels der
 Oligonukleotidsonde SEQ ID No. 149 nachgewiesen wird.

30

14. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Brettanomyces (Dekkera) anomala* und *Dekkera bruxellensis* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 150 nachgewiesen werden.

PCT/EP2004/010695

WO 2005/031004

- 118 -

15. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Brettanomyces (Dekkera) bruxellensis mittels der Oligonukleotidsonde SEQ ID No. 151 nachgewiesen wird.

5

- 16. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Brettanomyces (Dekkera) naardenensis mittels der Oligonukleotidsonde SEQ ID No. 152 nachgewiesen wird.
- 10 17. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Pichia membranaefaciens mittels der Oligonukleotidsonde SEQ ID No. 153 nachgewiesen wird.
- 18. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Pichia minuta und Pichia anomala gleichzeitig mittels der 15 Oligonukleotidsonde SEQ ID No. 154 nachgewiesen werden.
- 19. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Saccharomyces exiguus mittels der Oligonukleotidsonde SEQ ID No. 157 nachgewiesen wird. 20
 - 20. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Saccharomycodes ludwigii mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 158 und SEQ ID No. 159, nachgewiesen wird.
 - 21. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Saccharomyces cerevisiae mittels der Oligonukleotidsonde SEQ ID No. 160 nachgewiesen wird.

25

PCT/EP2004/010695

- 22. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Mucor racemosus* mittels der Oligonukleotidsonde SEQ ID No. 163 nachgewiesen wird.
- 5 23. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Byssochlamys nivea* mittels der Oligonukleotidsonde SEQ ID No. 164 nachgewiesen wird.
- 24. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 10 Mikroorganismus Neosartorya fischeri mittels der Oligonukleotidsonde SEQ ID No.
 165 nachgewiesen wird.
 - 25. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Aspergillus fumigatus und A. fischeri gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 166 nachgewiesen werden.
 - 26. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Talaromyces flavus* mittels der Oligonukleotidsonde SEQ ID No. 167 nachgewiesen wird.

20

15

- 27. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Talaromyces bacillisporus* und *T. flavus* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 168 nachgewiesen werden.
- 28. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Lactobacillus collinoides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 169 bis SEQ ID No. 269, nachgewiesen wird.

- 120 -

29. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Leuconostoc mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 270 bis SEQ ID No. 271, nachgewiesen werden.

5

30. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Leuconostoc mesenteroides und L. pseudomesenteroides gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 272 bis SEQ ID No. 301, nachgewiesen werden.

10

31. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Leuconostoc pseudomesenteroides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 302 bis SEQ ID No. 341, nachgewiesen wird.

15

32. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Oenococcus oeni* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 342 bis SEQ ID No. 444, nachgewiesen wird.

20

33. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Weissella mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 445 bis SEQ ID No. 495, nachgewiesen werden.

25

34. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Lactococcus mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 496 bis SEQ ID No. 546, nachgewiesen werden.

- 121 -

35. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattungen Acetobacter und Gluconobacter gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 547 bis SEQ ID No. 608, nachgewiesen werden.

5

10

15

25

30

- 36. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 609 bis SEQ ID No. 842, nachgewiesen werden.
- 37. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Bacillus coagulans* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 843 bis SEQ ID No. 932, nachgewiesen wird.
- 38. Verfahren nach Anspruch 1, wobei getränkeschädliche
 Mikroorganismen der Gattung Alicyclobacillus mittels mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 933 bis
 SEQ ID No. 1033, nachgewiesen werden.
 - 39. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Alicyclobacillus acidoterrestris* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1037 bis SEQ ID No. 1138, nachgewiesen wird.
 - 40. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Alicyclobacillus cycloheptanicus und A. herbarius gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1142 bis SEQ ID No. 1144, nachgewiesen werden.

- 41. Verfahren nach Anspruch 2,
- dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

5

42. Verfahren nach Anspruch 41,

dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 2 bis SEQ ID No. 4, verwendet wird.

10

- 43. Verfahren nach Anspruch 11,
- dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 44. Verfahren nach Anspruch 43, dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 146 zusammen mit der Kompetitorsonde SEQ ID No. 147 verwendet wird.
 - 45. Verfahren nach Anspruch 18,
- 20 **dadurch gekennzeichnet**, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
 - 46. Verfahren nach Anspruch 45,
- dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 154 zusammen 25 mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 155 bis SEQ ID No. 156, verwendet wird.
 - 47. Verfahren nach Anspruch 21,

dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen
 mit einer oder mehreren Kompetitorsonden verwendet wird.

- 123 -

48. Verfahren nach Anspruch 47, dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 160 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEO ID No. 161 bis SEO ID No. 162, verwendet wird.

5

10

15

- 49. Verfahren nach Anspruch 38, dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 50. Verfahren nach Anspruch 49, dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 933 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1034 bis SEQ ID No. 1036, verwendet wird.
- 51. Verfahren nach Anspruch 39, dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 52. Verfahren nach Anspruch 51,
 dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1044
 zusammen mit der Kompetitorsonde SEQ ID No. 1139 verwendet wird.
- 53. Verfahren nach Anspruch 51,
 dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1057
 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1140 und SEQ ID No. 1141, verwendet wird.

- 124 -

- 54. Verfahren nach einem der Ansprüche 1 bis 53, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
- a) Kultivieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
- b) Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
- 5 c) Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde,
 - d) Entfernen nicht hybridisierter Oligonukleotidsonden,
 - e) Detektieren und Visualisieren sowie ggf. Quantifizieren der getränkeschädlichen Mikroorganismen mit den hybridisierten Oligonukleotidsonden.

10

15

- 55. Verfahren nach einem der Ansprüche 1 bis 54, dadurch gekennzeichnet, dass es sich bei der Probe um eine Probe aus alkoholfreien Getränken handelt.
- 56. Kit zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 55, enthaltend mindestens ein Oligonukleotid nach Anspruch 1.

V7588.ST25.txt SEQUENCE LISTING

<110>	Vermicon AG	
<120>	Method for the specific fast detection of microorganisms which are harmful to beverages $\dot{\ }$	
<130>	v 7588	
<140> <141>	PCT/ 2004-09-23	
<150> <151>	DE 103 44 057.7 2003-09-23	
<160>	1144	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 21 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttga	1 ccag attctccgct c	21
<210> <211> <212> <213>	2 22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttga	2 ccag attttccgct ct	22
<210> <211> <212> <213>	3 22 · · · · · · · · · · · · · · · · ·	
<220> <223>	oligonucleotide	
<400> gtttga	3 ccaa attttccgct ct	22
<210> <211> <212> <213>	4 22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttgt	4 ccaa attctccgct ct	22
<210>	5	

. ..

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 5 18 cccggtcgaa ttaaaacc <210> 6 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 6 18 gcccggtcga attaaaac <210> 7 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 7 18 ggcccggtcg aattaaaa <210> 8 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide 18 aggcccggtc "gaattaaa " <210> 9 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 9 18 aaggcccggt cgaattaa 10 <210> <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 10

3/203

<210> 16

<211> <212> DNA

18

<213> Artificial

		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> aagatc	16 cgga ccggccga		18
<210> <211> <212> <213>	17 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gaaagg	17 Eccg gtcgaatt		18
<210> <211> <212> <213>	18 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aaaggc	18 ccgg tcgaatta		18
<210> <211> <212> <213>	19 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggaaag	19 gccc ggtcgaat		18
<210> <211> <212> <213>	20 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aggaaa	20 ggcc cggtcgaa		18
<210> <211> <212> <213>	21 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aaggaaa	21 aggc ccggtcga		18
<210>	22		

		V7588.ST2	5.txt		
<211> <212> <213>	20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> atagca	22 ctgg gatcctcgcc				20
<210> <211> <212> <213>	23 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> ccagcc	23 ccaa agttaccttc				20
<210> <211> <212> <213>	24 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> tccttg	24 acgt aaagtcgcag				20
<210> <211> <212> <213>	25 18 DNA Artificial				
<220> <223>	oligonucleotide				
<400> ggaaga	25 aaac cagtacgc				18
<210> <211> <212> <213>	26 18 DNA Artificial			·	
<220> <223>	oligonucleotide				
<400> ccggtc	26 ggaa gaaaacca				18
<210> <211> <212> <213>	27 18 DNA Artificial				
<220> <223>	oligonucleotide				
<400>	27				

. . .

gaagaa	aacc agtacgcg	V7588.ST25.txt	18
<210> <211> <212> <213>	28 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cccggt	28 cgga agaaaacc		18
<210> <211> <212> <213>	29 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cggtcg	29 gaag aaaaccag		18
<210> <211> <212> <213>	30 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggtcgg	30 aaga aaaccagt		18
<210> <211> <212> <213>	31 18 DNA Artificial		
<220> <223>	oligonucleotide		-
<400> aagaaa	31 acca gtacgcgg		18
<210> <211> <212> <213>	32 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtacgc	32 ggaa aaatccgg		18
<210> <211> <212> <213>	33 18 DNA Artificial		

WO 2005/031004 PCT/EP2004/010695
V7588.ST25.txt

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> agtacg	33 ocgga aaaatccg	18
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> gcggaa	34 Jaaat ccggaccg	18
<210> <211> <212> <213>	35 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cggaag	35 yaaaa ccagtacg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> gcccgg	36 ptcgg aagaaaac	18
<210> <211> <212> <213>	37 · 18 ··································	
<220> <223>	oligonucleotide	
<400> cgcgga	37 aaaaa tccggacc	18
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> cagtao	38 cgcgg aaaaatcc	18
<210>	39	

	V7588.ST25.txt	
<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> agaaaa	39 accag tacgcgga	18
<210> <211> <212> <213>	40 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggcccg	40 ggtcg gaagaaaa	18
<210> <211> <212> <213>	41 18 DNA Artificial	
<220> <223>	oligonucleotide	
	41 cacca cccgatcc	18
<210> <211> <212> <213>	18 DNA	
<220> <223>	oligonucleotide	
<400> acgcgg	42 gaaaa atccggac	18
<210> <211> <212> <213>	43 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gagagg	43 gcccg gtcggaag	18
<210> <211> <212> <213>	18 DNA	
<220> <223>	oligonucleotide	
<400>	44	

PCT/EP2004/010695 WO 2005/031004 v7588.ST25.txt 18 agaggcccgg tcggaaga <210> 45 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 45 gaggcccggt cggaagaa 18 <210> 46 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 46 18 aggcccggtc ggaagaaa <210> 47 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 47 18 ccgagtgggt cagtaaat <210> 48 <211> 18 <212> DNA <213> Artificial <220> · · <223> oligonucleotide <400> 48 18 ccagtacgcg gaaaaatc <210> 49 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 49 18 taaacaccac ccgatccc <210> 50

18

<213> Artificial

<211> <212> DNA

V7588.ST25.txt <220> <223> oligonucleotide <400> 50 18 ggagaggccc ggtcggaa <210> 51 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 51 18 gaaaaccagt acgcggaa 52 18 <210> <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 52 18 tacgcggaaa aatccgga <210> <211> <212> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 53 18 ggccacaggg acccaggg <210> <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 54 18 tcaccaaggg ccacaggg <210> 55 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

18

<400> 55

<210> 56

gggccacagg gacccagg

PCT/EP2004/010695 WO 2005/031004 V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 56 18 ttcaccaagg gccacagg <210> 57 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 57 18 acagggaccc agggctag <210> 58 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 58 18 agggccacag ggacccag <210> 59 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 59 gttcaccaag ggccacag 18 <210> 60 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 60 18 gccacaggga cccagggc

<220> <223> oligonucleotide <400> 61

61

18 <212> DNA

<213> Artificial

<210>

<211>

		V7588.ST25.txt	10
(cagggac	cca gggctagc	18
	<210> <211>	18	
	<212>	DNA Artificial	
	<220> <223>	oligonucleotide	
	<400> agggaco	62 ccag ggctagcc	18
	<210> <211>	18	
	<212> <213>	DNA Artificial	
	<220> <223>	oligonucleotide	
	<400> accaagg	63 ggcc acagggac	18
	<210> <211>	18	
	<212>	DNA Artificial	
	<220> <223>	oligonucleotide	
	<400> ccacag	64 ggac ccagggct	18
	<210> <211>	18	
	<212>	DNA Artificial	
	<220> <223>	oligonucleotide	
	<400> cacagg	65 gacc cagggcta	18
	<210> <211>	66 18	
	<212>	DNA Artificial	
	<220> <223>	oligonucleotide	
	<400> caccaa	66 gggc cacaggga	18
	<210> <211>	67 18	
	<212>	DNA Artificial	

<220>		V7588.ST25.txt	
<223>	oligonucleotide	2	
<400> gggaco	67 ccagg gctagcca		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide	.	
	68 uggcc cggtcgga		18
<210> <211> <212> <213>	18 DNA		
<220> <223>	oligonucleotide		
<400> aaggag	69 aggc ccggtcgg		18
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> gaagga	70 gagg cccggtcg		18
<210> <211> <212> <213>	71 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agggcta	71 agcc agaaggag	. ·	18
<210> <211> <212> <213>	72 18 DNA Artificial	·	
<220> <223>	oligonucleotide		
<400> gggctag	72 Jcca gaaggaga		18
<210>	73		

V7588.ST25.txt

<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> agaagga	73 agag gcccggtc	18
<210> <211> <212> <213>	74 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> caaggg	74 ccac agggaccc	18
<210> <211> <212> <213>	75 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccaagg	75 gcca cagggacc	18
<210> <211> <212> <213>	76 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtcgga	76 aaaa ccagtacg ·· ·· ·· ·· ·· ·· ·· · · · · · · · ·	18
<210> <211> <212> <213>	77 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gcccgg	77 tcgg aaaaacca	18
<210> <211> <212> <213>	78 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	78	

... .

<210>

<211>

<212>

84

18

DNA <213> Artificial

-220:	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> agtacg	84 cgga aaaatccg	18
<210> <211> <212> <213>	85 18 DNA Artificial	
<220> <223>	oligonucleotide	
	85 aaat ccggaccg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> ggtcgga	86 aaaa accagtac	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> actccta	87 agtg gtgccctt	18
<210> <211> <212> <213>	88 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gctcca	88 ctcc tagtggtg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> cactcc1	89 cagt ggtgccct	18

<210> 90

		V7588.ST25.txt		
<211> <212> <213>	18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctccac	90 tcct agtggtgc			18
<210> <211> <212> <213>	91 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tccact	91 ccta gtggtgcc			18
<210> <211> <212> <213>	92 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ccactc	92 ctag tggtgccc			18
<210> <211> <212> <213>	93 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ggctcc	93 actc ctagtggt			18
<210> <211> <212> <213>	94 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> aggctco	94 cact cctagtgg		;	18
<210> <211> <212> <213>	95 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	95			

WO 2005/031004

Artificial

<213>

PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide <400> 101 caggctccac tcctagtg 18 <210> 102 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 102 ctcctagtgg tgcccttc 18 <210> 103 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 103 tcctagtggt gcccttcc 18 <210> 104 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 104 gcaggctcca ctcctagt 18 <210> 105 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 105 aggcccggtc ggaaaaac 18 <210> 106 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 106 acgcggaaaa atccggac 18

<210> 107

		V75	88.ST25.tx1	t		
<211> <212> <213>	18 DNA Artificial					
<220> <223>	oligonucleotide					
<400> ccagta	107 cgcg gaaaaatc				1:	8
<210> <211> <212> <213>	108 18 DNA Artificial					
<220> <223>	oligonucleotide					
	108 gtgc ccttccgt				18	8
<210> <211> <212> <213>	109 18 DNA Artificial					
<220> <223>	oligonucleotide					
<400> gaaagg	109 cccg gtcggaaa				1	8
<210> <211> <212> <213>	110 18 DNA Artificial					
<220> <223>	oligonucleotide					
<400> aaaggc	110 ccgg tcggaaaa			· ••	. 18	8
<210> <211> <212> <213>	111 18 DNA Artificial					
<220> <223>	oligonucleotide					
<400> tacgcg	111 gaaa aatccgga				18	8
<210> <211> <212> <213>	112 18 DNA Artificial					
<220> <223>	oligonucleotide					
<400>	112					

WO 2005/031004

<213> Artificial

PCT/EP2004/010695

<220>		V7588.ST25.txt	
<223>	oligonucleotide		
<400> tcttcc	118 gaaa ggtcgaga		18
<210> <211> <212> <213>	119 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cctagt	119 ggtg cccttccg		18
<210> <211> <212> <213>	120 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tagtgg	120 tgcc cttccgtc		18
<210> <211> <212> <213>	121 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agtggt	121 gccc ttccgtca		18
<210> <211> <212> <213>	122 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccaag	122 gtta gactcgtt		18
<210> <211> <212> <213>	123 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggccaag	123 ggtt agactcgt		18
<210>	124		

<211> <212> <213>	18 DNA	V/588.ST25.txt	
<220>	Artificial		
<223>	oligonucleotide		
<400> ccaagg	124 ttag actcgttg		18
<210> <211> <212> <213>	125 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> caaggt	125 taga ctcgttgg		18
<210> <211> <212> <213>	126 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aaggtt	126 agac tcgttggc		18
<210> <211> <212> <213>	127 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctcgcc	127 tcac ggggttctca		20
<210> <211> <212> <213>	128 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggcccg	128 gtcg aaattaaa	:	18
<210> <211> <212> <213>	129 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	129		

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt aggcccggtc gaaattaa 18 <210> 130 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 130 aaggcccggt cgaaatta 18 <210> 131 18 DNA <211> <212> <213> Artificial <220> <223> oligonucleotide <400> 131 aaaggcccgg tcgaaatt 18 <210> 132 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 132 gaaaggcccg gtcgaaat 18 <210> 133 <211> 18 <212> DNA <213> Artificial <220> ······
<223> oligonucleotide <400> 133 atattcgagc gaaacgcc 18 <210> 134 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 134 ggaaaggccc ggtcgaaa 18 <210> 135

<211> 18 <212> DNA <213> Artificial

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 135 aaagatccgg accggccg 18 <210> 136 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 136 ggaaagatcc ggaccggc 18 <210> 137 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 137 gaaagatccg gaccggcc 18 <210> 138 <210> 138 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 138 gatccggacc ggccgacc 18 <210> 139 18·· <211> <212> <213> Artificial <220> <223> oligonucleotide <400> 139 agatccggac cggccgac 18 <210> 140 18 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 140

18

aagatccgga ccggccga

<210> 141

	V7588.ST25.txt	
<211> <212> <213>	18 DNA	
<220> <223>		
<400> aggaa	141 aggcc cggtcgaa	18
<210> <211> <212> <213>	18 DNA	
<220> <223>	oligonucleotide	
<400> aaggaa	142 aaggc ccggtcga	18
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	143 naaac gcctgctttg	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> cgctct	144 gaaa gagagttgcc	20 .
<210> <211> <212> <213>	145 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> agttgc	145 cccc tacactagac	20
<210> <211> <212> <213>	146 19 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	146	

27/203

20

<400> 151

<223> oligonucleotide

gatcggtctc cagcgattca

4220-	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> accctc	152 cacg gcggcctgtt	20
<210> <211> <212> <213>	153 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gattct	153 ccgc gccatggg	18
<210> <211> <212> <213>	154 20 DNA Artificial	
<220> <223>	oligonucleotide	
	154 gacg ggattctcac	20
<210> <211> <212> <213>	155 22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ctcatc	155 gcac gggattctca cc	22
<210> <211> <212> <213>	156 22	•
<220> <223>	oligonucleotide	
<400> ctcgcc	156 acac gggattctca cc	22
<210> <211> <212> <213>	157 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> agttgc	157 cccc tcctctaagc	20
<210>	158	

244	V7	'588.ST25.txt	
<211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> ctgcca	158 acaag gacaaatggt	_	20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> tgcccc	159 cctct tctaagcaaa t	;	21
<210> <211> <212> <213>	160 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccccaa	160 agtt gccctctc	1	18
<210> <211> <212> <213>	161 23 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccgcc	161 ccaa agtcgccctc tac ···· - · ·	· - · · · · · · · · · · · · · · · · · ·	23 ·
<210> <211> <212> <213>	162 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcccca	162 gagt cgccttctac	. 2	:0
<210> <211> <212> <213>	163 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	163		

WO 2005/031004

<213> Artificial

PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide <400> 169 gatagccgaa accacctttc 20 <210> 170 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 170 gccgaaacca cctttcaaac 20 171 20 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 171 gtgatagccg aaaccacctt 20 <210> 172 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 172 agtgatagcc gaaaccacct 20 <210> 173 20 .. .- -<211> . . . _. <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 173 tttaacggga tgcgttcgac 20 <210> 174 <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 174 aagtgatagc cgaaaccacc 20 <210> 175

.211	20	V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggttga	175 atac cgtcaacgtc		20
<210> <211> <212> <213>	176 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcacag	176 tatg tcaagacctg		20
<210> <211> <212> <213>	177 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> catccg	177 atgt gcaagcactt		20
<210> <211> <212> <213>	178 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tcatcc	178 gatg-tgcaagcact		20
<210> <211> <212> <213>	179 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccgatg	179 tgca agcacttcat		20
<210> <211> <212> <213>	180 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	180		

<210>

<211> 20 <212> DNA

186 20

<213> Artificial

-220-	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> ctcatc	186 cgat gtgcaagcac	20
<210> <211> <212> <213>	187 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tccgat	187 gtgc aagcacttca	20
<210> <211> <212> <213>	188 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cgccac	188 tcat ccgatgtgca	20
<210> <211> <212> <213>	189 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cagttc	189 gcca cagttcgcca	20
<210> <211> <212> <213>	190 20	
<220> <223>	oligonucleotide	
<400> gccacto	190 catc cgatgtgcaa	20
<210> <211> <212> <213>	191 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cgccaca	191 gtt cgccactcat	20
<210>	192	

. ..

		V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> atccga	192 tgtg caagcacttc	2	20
<210> <211> <212> <213>	193 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gttcgc	193 caca gttcgccact	2	20
<210> <211> <212> <213>	194 20 DNA Artificial		
<220> <223>	oligonucleotide		
	194 gcgt ttgtcaccgg	2	20
<210> <211> <212> <213>	195 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgccag	195 ggtt catectgage		20
<210> <211> <212> <213>	196 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agttcg	196 ccac agttcgccac	. 2	20
<210> <211> <212> <213>	197 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	197		

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt tcgccacagt tcgccactca 20 <210> 198 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 198 ttaacgggat gcgttcgact 20 <210> 199 <211> 20 199 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 199 tcgccactca tccgatgtgc 20 200 20 <210> <211> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 200 ccacagttcg ccactcatcc 20 <210> 201 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 201 gatttaacgg gatgcgttcg 20 202 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 202 taacgggatg cgttcgactt 20 203 20 <210> <211>

<212> DNA

<213> Artificial

		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> aacgg	203 gatgc gttcgacttg		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> cgaagg	204 gttac cgaaccgact		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> ccgaag	205 gtta ccgaaccgac		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> cccgaa	206 ggtt accgaaccga		20
<211> <212>	207 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ttcctc	207 cgcg tttgtcaccg		20
<210> <211> <212> <213>	208 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccgccag	208 ggt tcatcctgag		20
<210>	209		

.211.	V	7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial	·	
<220> <223>	oligonucleotide		
<400> tccttc	209 caga agtgatagcc		20
<210> <211> <212> <213>	210 20 DNA Artificial		
<220> <223>	oligonucleotide		
	210 ttcg ccacagttcg		20
<210> <211> <212> <213>	211 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> acggga	211 tgcg ttcgacttgc	2	20
<210> <211> <212> <213>	212 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtcctt	212 ccag aagtgatagc		20
<210> <211> <212> <213>	213 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccagg	213 gttc atcctgagcc	2	20
<210> <211> <212> <213>	214 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	214	•	

actcat	ccga tgtgcaagca	V/588.S125.txt	20
<210> <211> <212> <213>	215 20 DNA Artificial	·	
<220> <223>	oligonucleotide		
<400> atcatt	215 gcct tggtgaaccg		20
<210> <211> <212> <213>	216 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tccgcg	216 tttg tcaccggcag		20
<210> <211> <212> <213>	217 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tgaacc	217 gtta ctccaccaac		20
<210> <211> <212> <213>	218 20 DNA Artificial		
<220> <223>			
<400> gaagtg	218 atag ccgaaaccac		20
<210> <211> <212> <213>	219 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccgcgt	219 ttgt caccggcagt		20
<210> <211> <212> <213>	220 20 DNA Artificial		

<220> V7588.ST25.txt	
<220> <223> oligonucleotide	
<400> 220 ttcgccactc atccgatgtg	20
<210> 221 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 221 catttaacgg gatgcgttcg	20
<210> 222 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 222 cacagttcgc cactcatccg	20
<210> 223 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 223 ttcgccacag ttcgccactc	20
<210> 224 <211> 20	
<220> <223> oligonucleotide	
<400> 224 ctccgcgttt gtcaccggca	20
<210> 225 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 225 acgccgccag ggttcatcct	20
<210> 226	

.- -- - .

<211><212><213>	20 DNA Artificial	V/588.ST25.txt	
<220> <223>			
<400> ccttc			20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> tcatto	227 Joctt ggtgaaccgt		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> cacagt	228 atgt caagacctgg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ttggtg	229 aacc gttactccac		20
<210> <211> <212> <213>	230 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cttggt	230 gaac cgttactcca		20
<210> <211> <212> <213>	231 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	231		

:

<210>	237
<211>	20
<212>	DNA
<213>	Artificial

gaaccgttac tccaccaact

20

.220	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> tacgco	237 cgcgg gtccttccag	20
<210> <211> <212> <213>	20	
<220> <223>		
<400> tcacca	238 agttc gccacagttc	20
<210> <211> <212> <213>	20	
<220> <223>		
<400> ccttgg	239 gtgaa ccgttactcc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>		
<400> ctcacc	240 cagtt cgccacagtt	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cgccgc	241 ccagg gttcatcctg	20
<210> <211> <212> <213>	20	
<220> <223>		
<400> ccttgg	242 gtgaa ccattactcc	20
<210>	243	

		V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tggtga	243 acca ttactccacc	2	0
<210> <211> <212> <213>	244 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccgcc	244 aggg ttcatcctga	20	0
<210> <211> <212> <213>	245 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggtgaa	245 ccat tactccacca	20	0
<210> <211> <212> <213>	246 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccaggg	246 ttca tcctgagcca	· · · · · · · · · · · · · · · 20	O
<210> <211> <212> <213>	247 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aatacg	247 ccgc gggtccttcc	20)
<210> <211> <212> <213>	248 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	248		

cacgcc	gcca gggttcatcc	V/388.5123.TXT	20
<210> <211> <212> <213>	249 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agttcg	249 ccac tcatccgatg		20
<210> <211> <212> <213>	250 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgggat	250 gcgt tcgacttgca		20
<210> <211> <212> <213>	251 20 DNA Artificial		
<220> <223>	oligonucleotide	•	
<400> cattgc	251 cttg gtgaaccgtt		20
<210> <211> <212> <213>	252 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcacgc	252 cgcc agggttcatc		20
<210> <211> <212> <213>	253 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cttcct	253 ccgc gtttgtcacc		20
<210> <211> <212> <213>	254 20 DNA Artificial		

	v	7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> tggtga	254 accg ttactccacc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ccttcc	255 tccg cgtttgtcac		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	256 cggg tccttccaga		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	257 ccgt tactccacca		20
 <211> <212>	258 20 · · · · · · · · · · · · · · · · · · ·	· 	
<220> <223>	oligonucleotide		
<400> gggtcc	258 ttcc agaagtgata		20
<210> <211> <212> <213>	259 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cttccag	259 gaag tgatagccga		20
<210>	260		

<211> <212> <213>	20 DNA Artificial	7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> gccttg	260 Igtga accattactc		20
<210> <211> <212> <213>	261 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> acagtt	261 cgcc actcatccga		20
<210> <211> <212> <213>	262 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> accttc	262 ctcc gcgtttgtca		20
<210> <211> <212> <213>	263 20 DNA Artificial		
<220> <223>	oligonucleotide		
	263 gact ttgggtg t tg		 . 20
<210> <211> <212> <213>	264 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gaaccg	264 actt tgggtgttgc		20
<210> <211> <212> <213>	265 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	265		

20011	V7588.ST25.txt				
aygıl	accga accgactttg	20			
<210> <211> <212> <213>	20 DNA				
<220> <223>					
<400> accgaa	266 accga ctttgggtgt	20			
<210> <211> <212> <213>	20 DNA				
<220> <223>					
	267 gaacc gactttgggt	20			
<210> <211> <212> <213>	20				
<220> <223>					
	268 aaccg actttgggtg	20			
<210> <211> <212> <213>	20 DNA				
<220> <223>	oligonucleotide				
<400> gttacc	269 cgaac cgactttggg	20			
<210> <211> <212> <213>	270 21 DNA Artificial				
<220> <223>	oligonucleotide				
	270 ctggt atggtaccgt c	21			
<210> <211> <212> <213>	271 20 DNA Artificial				

-220	,	V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> tgcac	271 gcgg ayccatctct		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> agttg	272 agtc cagtaagccg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> gttgca	273 gtcc agtaagccgc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> cagtto	274 cagt ccagtaagcc		20
<210> <211> <212> <213>	275 20 ······ DNA Artificial		
<220> <223>	oligonucleotide		
<400> tgcagt	275 ccag taagccgcct		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> tcagtt	276 gcag tccagtaagc		20
<210>	277		

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 277 ttgcagtcca gtaagccgcc 20 <210> 278 20 <211> <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 278 gcagtccagt aagccgcctt 20 <210> 279 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 279 gtcagttgca gtccagtaag 20 <210> 280 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 280 ctctaggtga cgccgaagcg 20 281 20 <210> <211> <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 281 atctctaggt gacgccgaag 20 282 20 <210> <211> <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 282

WO 2005/031004

PCT/EP2004/010695

			V7588.ST2	5.txt		
<220> <223>	oligonucleotide					
<400> cttaga	288 cggc tccttcctaa					20
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
	289 acgg ctccttccta					20
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
<400> acgtca	290 gttg cagtccagta					20
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
	291 ttgc agtccagtaa					20
 <210> <211> <212> <213>	292 20 DNA Artificial	· -	· ··		 -	
<220> <223>	oligonucleotide					
<400> acgccga	292 aagc gccttttaac					20
<210> <211> <212> <213>	293 20 DNA Artificial					
<220> <223>	oligonucleotide					
<400> gacgccg	293 Jaag cgccttttaa					20
<210>	294					

		V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccgaa	294 gcgc cttttaactt		20
<210> <211> <212> <213>	295 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgccga	295 agcg ccttttaact		20
<210> <211> <212> <213>	296 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtgacg	296 ccga agcgcctttt		20
<210> <211> <212> <213>	297 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tgacgc	297 cgaa gcgcctttta		· · · 20·
<210> <211> <212> <213>	298 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agacgg	298 ctcc ttcctaaaag		20
<210> <211> <212> <213>	299 20 DNA Artificial		•
<220> <223>	oligonucleotide		
<400>	299		

acggct	CCtt cctaaaaggt	7588.ST25.txt	20
<210> <211> <212> <213>	300 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gacggc	300 ctcct tcctaaaagg		20
<210> <211> <212> <213>	301 20 DNA Artificial		
<220> <223>	oligonucleotide		
	301 taaa aggttaggcc		20
<210> <211> <212> <213>	302 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggtgac	302 gcca aagcgccttt		20
<210> <211> <212> <213>	303 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aggtga	303 cgcc aaagcgcctt		20
<210> <211> <212> <213>	304 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> taggtg	304 acgc caaagcgcct		20
<210> <211> <212> <213>	305 20 DNA Artificial		

<220>	V7588.ST25.txt	
<223>	oligonucleotide	
<400> ctctag	305 gtga cgccaaagcg	20
<210> <211> <212> <213>	306 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tctagg	306 tgac gccaaagcgc	20
<210> <211> <212> <213>	307 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> 307 ctaggtgacg ccaaagcgcc		20
<210> <211> <212> <213>	308 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> acgccaa	308 aagc gccttttaac	20
<210> <211> <212> <213>	309 20 ····· · · · · · · · · · · · · · · · ·	
<220> <223>	oligonucleotide	
<400> cgccaaa	309 agcg ccttttaact	20
	310 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tgacgco	310 caaa gcgcctttta	20
<210>	311	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 311 tctctaggtg acgccaaagc 20 <210> 312 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 312 gtgacgccaa agcgcctttt 20 313 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 313 gacgccaaag cgccttttaa 20 <210> <211> 314 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 314 20 . . . atctctaggt gacgccaaag - · · 315 20 DNA <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 315 catctctagg tgacgccaaa 20 316 20 <210> <211> <212> <213> DNA Artificial <220> <223> oligonucleotide <400> 316

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt tccatctcta ggtgacgcca 20 317 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 317 ccatctctag gtgacgccaa 20 <210> 318 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 318 ctgccttaga cggctccccc 20 <210> 319 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 319 cctgccttag acggctcccc 20 320 20 <210> <211> <212> DNA <213> Artificial . . - -<220> <223> oligonucleotide <400> 320 gtgtcatgcg acactgagtt 20 <210> 321 <211> <212> 20 DNA Artificial <213> <220> <223> oligonucleotide <400> 321 tgtgtcatgc gacactgagt 20

<210>

<211> 20 <212> <213>

322

DNA

Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 322 20 ctttgtgtca tgcgacactg 323 20 <210> <211> <210> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 323 20 ttgtgtcatg cgacactgag 324 20 <210> <211> <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 324 20 tgccttagac ggctcccct 325 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 325 20 agacggctcc ccctaaaagg <210> 326 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 326 tagacggctc cccctaaaag 20 <210> <211> <212> 327 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 327 20 gccttagacg gctccccta <210> 328

		V7588.ST25.txt		
<211> <212> <213>	20 DNA Artificial		,	
<220> <223>	oligonucleotide			
<400> gctccc	328 ccta aaaggttagg		20	0
<210> <211> <212> <213>	329 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ggctcc	329 ccct aaaaggttag		20	o
<210> <211> <212> <213>	330 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctcccc	330 ctaa aaggttaggc		20)
<210> <211> <212> <213>	331 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tccccc	331 taaa aggttaggcc	<u>.</u>	20)
<210> <211> <212> <213>	332 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ccctaa	332 aagg ttaggccacc		20)
<210> <211> <212> <213>	333 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	333			

<210> 336
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 336
cttagacggc tccccctaaa

20

<210> 337
<211> 20
<212> DNA
<213> Artificial

<210> 339 <211> 20

<211> 20 <212> DNA <213> Artificial

4220s	V7588.	ST25.txt	
<220> <223>	oligonucleotide		
<400> cctta	339 gacgg ctccccctaa		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> acggc	340 tcccc ctaaaaggtt		20
<210> <211> <212> <213>	341 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gacggo	341 ctccc cctaaaaggt		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> acgccg	342 gcaag accatcctct		20
<210> <211> <212> <213>	343 20 ····································		·
<220> <223>	oligonucleotide		
<400> ctaata	343 cgcc gcaagaccat	·	20
<210> <211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> tacgcc	344 gcaa gaccatcctc		20
<210>	345		

....

v7588.ST25.txt

244		V7588.ST25.1	txt	
<211> <212> <213>	DNA			
<220> <223>	oligonucleotide			
	345 patct agcaagccgc			20
<210> <211> <212> <213>	20 DNA			
<220> <223>	oligonucleotide			
<400> aatacg	346 JCCgc aagaccatcc			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			-
<400> cgccgc	347 caaga ccatcctcta			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> gctaat	348 acgc cgcaagacca			 20
<210> <211> <212> <213>	349 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> accato	349 ctct agcgatccaa			20
<210> <211> <212> <213>	350 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	350			

V7588.ST25.txt taatacgccg caagaccatc 20 <210> 351 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 351 agccatccct ttctggtaag 20 <210> 352 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 352 atacgccgca agaccatcct 20 353 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 353 agttacgatc tagcaagccg 20 <210> 354 20 <211> <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 354 agctaatacg ccgcaagacc 20 <210> 355 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 355 gccgcaagac catcctctag 20 356 20 <210> <211> <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 356 ttacgatcta gcaagccgct 20 <210> 357 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 357 gaccatcctc tagcgatcca 20 <210> 358 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 358 ttgctacgtc actaggaggc 20 359 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 359 acgtcactag gaggcggaaa 20 <210> 360 <211> ~ 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 360 tttgctacgt cactaggagg 20 361 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 361 gccatccctt tctggtaagg 20

<210> 362

V7588.ST25.txt <211> 20 <212> DNA <213> Art DNA Artificial <220> <223> oligonucleotide <400> 362 tacgtcacta ggaggcggaa 20 <210> 363 20 <211> <212> DNA <213> Artificial <220> oligonucleotide <223> <400> 363 cgtcactagg aggcggaaac 20 <210> 364 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 364 aagaccatcc tctagcgatc 20 <210> 365 <211> <212> <213> 20 DNA Artificial <220> <223> oligonucleotide <400> 365 gcacgtattt agccatccct 20 <210> 366 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 366 ctctagcgat ccaaaaggac 20 367 20 <210> <211> <212> DNA <213> Artificial <220> oligonucleotide <223> <400> 367

<210>

<211>

<212>

373

20

DNA <213> Artificial

		v7588.sT25.t	:xt	
<220> <223>	oligonucleotide			
<400> ccatcc	373 cttt ctggtaaggt			20
<210> <211> <212> <213>	374 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> agacca	374 tcct ctagcgatcc			20
<210> <211> <212> <213>	375 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> caagac	375 catc ctctagcgat			20
<210> <211> <212> <213>	376 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> gctacg	376 tcac taggaggcgg		,	20
<210> <211> <212> <213>	377 20			·
<220> <223>	oligonucleotide			
<400> tgctac	377 gtca ctaggaggcg			20
<210> <211> <212> <213>	378 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctacgto	378 act aggaggcgga			20
<210>	379			

V7588.ST25.txt <211> 20 <212> DNA <213> Art Artificial <220> <223> oligonucleotide <400> 379 cctcaacgtc agttacgatc 20 380 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 380 gtcactagga ggcggaaacc 20 381 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 381 tcctctagcg atccaaaagg 20 <210> 382 <211> <212> 20 DNA Artificial <213> <220> <223> oligonucleotide <400> 382 tggcacgtat ttagccatcc 20 <210> 383 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 383 acgatctagc aagccgcttt 20 384 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 384

. .

WO 2005/031004

<213> Artificial

PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide <400> 390 cccgaagatc aattcagcgg 20 <210> 391 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 391 ccggccagtc tctcaactcg 20 <210> 392 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 392 ccagccagtc tctcaactcg 20 <210> 393 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 393 tcattgcctc acttcacccg 20 <210> 394 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 394 gccagccagt ctctcaactc 20 395 <210> <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 395 cacccgaaga tcaattcagc 20 <210> 396

V7588.ST25.txt <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 396 gtcattgcct cacttcaccc 20 <210> 397 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 397 cattgcctca cttcacccga 20 <210> <211> 398 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 398 attgcctcac ttcacccgaa 20 <210> 399 <211> <212> 20 DNA Artificial <213> <220> <223> oligonucleotide <400> 399 20 · · · · cgaagatcaa ttcagcggct .. -400 <210> 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 400 agtcattgcc tcacttcacc 20 <210> 401 <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 401

<210> <211> <212> <213>	404 20 DNA Artificial	
<220> <223>	oligonucleotide	
	404 cgta tttagccatc	20
<211> <212>	405 20 DNA Artificial	
<220> <223>	oligonucleotide	
	405 agat caattcagcg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tctage	406 gatc caaaaggacc	20
<210> <211> <212> <213>	407 20 DNA Artificial	

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 407 ctagcgatcc aaaaggacct 20 <210> 408 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 408 gcacccatcg tttacggtat 20 <210> 409 <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 409 cacccatcgt ttacggtatg 20 <210> 410 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 410 gccactctag tcattgcctc 20 <210> <211> 411 20 ··· <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 411 cgtttgctac gtcactagga 20 <210> 412 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide

20

73/203

<400> 412

<210> 413

gcctcaacgt cagttacgat

		V7588.ST25.txt	
<211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> gccgg	413 ccagt ctctcaactc		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> tcacta	414 Aggag gcggaaacct		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> agccto	415 aacg tcagttacga		20
<210> <211> <212> <213>	20		•
<220> <223>	oligonucleotide		
	416 tctc tcaactcggc		20
<210> <211> <212> <213>	417 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggccag	417 tctc tcaactcggc		20
<210> <211> <212> <213>	418 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	418		

caagct	aata cgccgcaaga	V/588.ST25.txt	20
<210> <211> <212> <213>	419 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ttcgcc	419 actc tagtcattgc		20
<210> <211> <212> <213>	420 20 DNA Artificial	1	
<220> <223>	oligonucleotide		
<400> ccgaag	420 atca attcagcggc		20
<210> <211> <212> <213>	421 20 DNA Artificial		
<220> <223>	oligonucleotide		
	421 acca tcctctagcg		20
<210> <211> <212> <213>	422 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcaaga	422 ccat cctctagcga		20
<210> <211> <212> <213>	423 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcgttt	423 gcta cgtcactagg		20
<210> <211> <212> <213>	424 20 DNA Artificial		

400A		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> ccacto	424 ctagt cattgcctca		20
<210> <211> <212> <213>	425 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cactct	425 agtc attgcctcac		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide	·	
<400> ccagto	426 tctc aactcggcta		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ttacct	427 tagg caccggcctc		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> acaago	428 taat acgccgcaag		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> tttacc	429 ttag gcaccggcct		20
<210>	430		

₄ 211.	20	V758	8.ST25.txt		
<211> <212> <213>	20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> tttta	430 cctta ggcaccggcc				20
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
<400> atttta	431 cctt aggcaccggc				20
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
	432 acct taggcaccgg				20
<210> <211> <212> <213>	433 20 DNA Artificial			·	
<220> <223>	oligonucleotide				
	433 tcac ccgaagatca				20
<210> <211> <212> <213>	434 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> acgcca	434 ccag cgttcatcct				20
<210> <211> <212> <213>	435 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400>	435				

<212> DNA <213> Artificial

441

20

<210>

<211>

222		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> ggtaag	441 gtac cgtcaagctg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> gtaagg	442 tacc gtcaagctga		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ccgcaa	443 gacc atcctctagg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> atttag	444 ccat ccctttctgg		20
 <210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> aaccct	445 tcat cacacacg		18
<211> <212>	446 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgaaac	446 cctt catcacac		18
<210>	447		

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 447 accettcate acacacge 18 <210> 448 18 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 448 taccgtcaca cactgaac 18 <210> 449 <211> <212> 18 DNA Artificial <213> <220> <223> oligonucleotide <400> 449 agataccgtc acacactg 18 <210> 450 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 450 18 · · · · · · - · cactcaaggg cggaaacc <210> 451 <211> 18 <212> DNA 18 <213> Artificial <220> <223> oligonucleotide <400> 451 accgtcacac actgaaca 18 <210> 452 18 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 452

<212>

DNA <213> Artificial

-220-	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> acagtg	458 tttt acgagccg	18
<210> <211> <212> <213>	459 18 DNA Artificial	
<220> <223>	oligonucleotide	
	459 ttta cgagccga	18
<210> <211> <212> <213>	460 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> acaaag	460 cgtt cgacttgc	18
<210> <211> <212> <213>	461 18 DNA Artificial	
<220> <223>	oligonucleotide	
	461 acgc ttggaaca	18
<210> <211> <212> <213>	462 18 · · · · · · · · · · · · · · · · · · ·	
<220> <223>	oligonucleotide	
<400> agggcgg	462 gaaa ccctcgaa	18
<210> <211> <212> <213>	463 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gggcgga	463 Haac cctcgaac	18
<210>	464	

244		V7588.ST2	5.txt		
<211> <212> <213>	18 DNA Artificial				
<220> <223>	oligonucleotide				
<400> ggcgga	464 aacc ctcgaaca				18
<210> <211> <212> <213>	465 18 DNA Artificial				
<220> <223>	oligonucleotide				
<400> tgaggg	465 cttt cacttcag				18
<210> <211> <212> <213>	466 18 DNA Artificial				
<220> <223>	oligonucleotide				
<400> agggct	466 ttca cttcagac				18
<210> <211> <212> <213>	467 18 DNA Artificial				
<220> <223>	oligonucleotide				
	467 tttc acttcaga				18
<210> <211> <212> <213>	468 18 DNA Artificial				
<220> <223>	oligonucleotide				
<400> actgca	468 ctca agtcatcc			. 0	18
<210> <211> <212> <213>	469 18 DNA Artificial				
<220> <223>	oligonucleotide				
<400>	469				

<211> 18 <212> DNA

<213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 475 tcccctgcta agaggtag 18 <210> 476 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 476 atccctgct aagaggta 18 <210> 477 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 477 ccgttccttt ctggtaag 18 <210> 478 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 478 gccgttcctt tctggtaa 18 <210> 479 <211> 18. . . <212> DNA . . <213> Artificial <220> <223> oligonucleotide <400> 479 agccgttcct ttctggta 18 <210> 480 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 480 gcacgtattt agccgttc 18 <210> 481

.211.	10	V7588.ST25.txt	
<211> <212> <213>	18 DNA Artificial		
<220> <223>	oligonucleotide		
	481 ttta gccgttcc		18
<210> <211> <212> <213>	482 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggcacg	482 tatt tagccgtt		18
<210> <211> <212> <213>	483 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cacttt	483 cctc tactgcac		18
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> ccactt	484 tcct ctactgca		18
<210> <211> <212> <213>	485 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tccact	485 ttcc tctactgc	-	18
<210> <211> <212> <213>	486 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	486		

<400> 491 cccgttcgcc actctttg <210> 492 <211> 18 <212> DNA <213> Artificial

18

.220.		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> agctga	492 gggc tttcactt		18
<210> <211> <212> <213>	493 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gagctg	493 aggg ctttcact		18
<210> <211> <212> <213>	494 18 DNA Artificial	-	
<220> <223>	oligonucleotide		
<400> gctgag	494 ggct ttcacttc		18
<210> <211> <212> <213>	495 18 DNA Artificial		
<220> <223>	oligonucleotide		
	495 gctt tcacttca		18
<210> <211> <212> <213>	496 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cccgtg	496 ECCC gaaggaac		18
<210> <211> <212> <213>	497 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcacgag	497 tat gtcaagac	:	18
<210>	498		

. . . . -

		V/588.S125.TXT	
<211> <212> <213>	18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtatcc	498 cgtg tcccgaag	:	18
<210> <211> <212> <213>	499 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tcccgt	499 gtcc cgaaggaa		18
<210> <211> <212> <213>	500 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> atcccg	500 tgtc ccgaagga	· :	18
<210> <211> <212> <213>	501 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tatccc	501 gtgt cccgaagg		18
<210> <211> <212> <213>	502 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cttacc	502 ttag gaagcgcc	:	18
<210> <211> <212> <213>	503 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	503		

.. ..

V7588.ST25.txt

ttacct	tagg aagcgccc		18
<210> <211> <212> <213>	504 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cctgta	504 tccc gtgtcccg		18
<210> <211> <212> <213>	505 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccacct	505 gtat cccgtgtc		18
<210> <211> <212> <213>	506 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cacctg	506 tatc ccgtgtcc		18
<210> <211> <212> <213>	507 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> acctgt	507 atcc cgtgtccc	•	18
<210> <211> <212> <213>	508 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctgtat	508 cccg tgtcccga		18
<210><211><211><212><213>	509 18 DNA Artificial		

. . ..

220		V7588.ST2	5.txt	
<220> <223>	oligonucleotide			
<400> tgtatc	509 ccgt gtcccgaa			18
<210> <211> <212> <213>	510 18 DNA Artificial			
<220> <223>	oligonucleotide			
	510 tatg tcaagacc			18
<210> <211> <212> <213>	511 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> cggtct	511 tacc ttaggaag			18
<210> <211> <212> <213>	512 18 DNA Artificial	·		
<220> <223>	oligonucleotide			
<400> taggaa	512 gcgc cctccttg			18
<210> <211> <212> <213>	513 18 ····································	·		
<220> <223>	oligonucleotide			
<400> aggaage	513 cgcc ctccttgc			18
<211> <212>	514 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ttaggaa	514 agcg ccctcctt			18
<210>	515			

	V7588.ST25.txt	
<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cttagg	515 aagc gccctcct	18
<210> <211> <212> <213>	516 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccttag	516 gaag cgccctcc	18
	517 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> acctta	517 ggaa gcgccctc	18
<210> <211> <212> <213>	518 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tgcaca	518 caat ggttgagc	18
<210> <211> <212> <213>	519 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tacctta	519 agga agcgccct	18
<210> <211> <212> <213>	520 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	520	

<213> Artificial

-220		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> ggtct	> 526 ttacct taggaagc		18
<211> <212>	- 527 - 18 - DNA - Artificial		
<220> <223>			
<400> gctaa	. 527 Itacaa cgcgggat		18
<211> <212>	528 18 DNA Artificial		
<220> <223>			
<400> ctaat	528 acaac gcgggatc		18
<210> <211> <212> <213>	18 DNA		
<220> <223>			
<400> ataca	529 acgcg ggatcatc		18
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> cggtta	530 aggca acctactt		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> tgcacc	531 cacct gtatcccg		:18
<210>	532		

<211>	V7588.ST25.txt	
<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gaagc	532 gccct ccttgcgg	18
<210> <211> <212> <213>	533 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggaage	533 cgccc tccttgcg	18
<210> <211> <212> <213>	534 18 DNA Artificial	
<220> <223>	oligonucleotide	
	534 Etttc tggttaga	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> agctaa	535 taca acgcggga — · · · · · · · · · · · · · · · · · ·	18
<210> <211> <212> <213>	536 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tagcta	536 atac aacgcggg	18
<210> <211> <212> <213>	537 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	537	

WO 2005/031004

PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide <400> 543 cggctatgta tcatcgcc 18 <210> 544 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 544 tcggctatgt atcatcgc 18 <210> 545 18 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 545 gtcttacctt aggaagcg 18 <210> <211> 546 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 546 18 tcttacctta ggaagcgc <210> 547 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 547 gtacaaaccg cctacacgcc 20 <210> 548 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 548 tgtacaaacc gcctacacgc 20 <210> 549

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 549 20 gatcagcacg atgtcgccat <210> 550 20 <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 550 ctgtacaaac cgcctacacg 20 <210> 551 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 551 gagatcagca cgatgtcgcc 20 <210> 552 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 552 agatcagcac gatgtcgcca 20 553 20 <210> <211> <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 553 20 atcagcacga tgtcgccatc 554 20 <210> <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide

<400> 554

20

DNA

Artificial

<211> <212>

<213>

220		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> cggctt	560 ttag agatcagcac		20
<210> <211> <212> <213>	561 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tccgcc	561 acta aggccgaaac		20
<210> <211> <212> <213>	562 20 DNA Artificial		
<220> <223>	oligonucleotide		
	562 acaa accgcctaca		20
<210> <211> <212> <213>	563 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtccgc	563 cact aaggccgaaa		20
<210> <211> <212> <213>	564 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggggati	564 ctca catctgactg		20
<210> <211> <212> <213>	565 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> catacaa	565 agcc ctggtaaggt		20
<210>	566		

V7588.ST25.txt <211> 20 <212> DNA <213> Art Artificial <220> <223> oligonucleotide <400> 566 acaagccctg gtaaggttct 20 567 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 567 acaaaccgcc tacacgccct 20 <210> 568 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 568 ctgactgtac aaaccgccta 20 <210> 569 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 569 tgactgtaca aaccgcctac 20 <210> 570 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 570 acgatgtcgc catctagctt 20 571 20 <210> <211> <212> DNA <213> Artificial <220> oligonucleotide <223> <400> 571

WO 2005/031004

PCT/EP2004/010695

-220 .	V7588.ST25.txt	
<220> <223> oligonucleotide		
<400> 577 gccatctagc ttcccactgt		20
<210> 578 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 578 tcgccatcta gcttcccact		20
<210> 579 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 579 cgccatctag cttcccactg		20
<210> 580 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 580 gtcgccatct agcttcccac		20
<210> 581 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 581 tacaagccct ggtaaggttc		20
<210> 582 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 582 gccactaagg ccgaaacctt		20
<210> 583		

V7588.ST25.txt <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 583 actaaggccg aaaccttcgt 20 584 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 584 ctaaggccga aaccttcgtg 20 <210> 585 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 585 cactaaggcc gaaaccttcg 20 <210> 586 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 586 aaggccgaaa ccttcgtgcg . 20 <210> 587 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 587 ccactaaggc cgaaaccttc 20 <210> 588 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 588

<211> 20 <212> DNA

<212> DNA <213> Artificial

	V7588.ST25.txt	
<220> <223>		
<400> ccttc	- 594 Egtgcg acttgcatgt	20
<210> <211> <212> <213>	- 20 - DNA	
<220> <223>	oligonucleotide	
<400> ctctc	tagag tgcccaccca	20
<210> <211> <212> <213>	20 DNA	
<220> <223>		
<400> tctcta	596 agagt gcccacccaa	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> acgtat	597 tcaaa tgcagctccc	20
<210> <211> <212> <213>	598 20	
<220> <223>	oligonucleotide	
<400> cgtatc	598 caaat gcagctccca	20
<210> <211> <212> <213>	599 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cgccact	599 taag gccgaaacct	20
<210>	600	

. .

V7588.ST25.txt <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 600 ccgaaacctt cgtgcgactt 20 601 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 601 gccgaaacct tcgtgcgact 20 <210> 602 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 602 aaccttcgtg cgacttgcat 20 <210> 603 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 603 cgaaaccttc gtgcgacttg . 20 <210> 604 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 604 accttcgtgc gacttgcatg 20 <210> <211> 605 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 605

<212> DNA

<213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 611 tcgctcaccg gcttaaggtc 20 <210> <211> 612 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 612 ctcaccggct taaggtcaaa 20 <210> 613 <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 613 cccgaccgtg gtcggctgcg 20 <210> <211> 614 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 614 gctcaccggc ttaaggtcaa 20 <210> 615 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 615 cgctcaccgg cttaaggtca 20 <210> 616 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide

<210> 617

<400> 616

tcgctcaccg gcttaaggtc

20

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 617 20 ctcaccggct taaggtcaaa <210> 618 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 618 cccgaccgtg gtcggctgcg 20 <210> 619 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 619 20 tcaccggctt aaggtcaaac <210> 620 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 620 __caaccctctc tcacactcta 20 <210> 621 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 621 20 acaaccctct ctcacactct <210> 622 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 622

WO 2005/031004

DNA <213> Artificial PCT/EP2004/010695

٠.

<220>		V/388.5125.TXT	•
<223>	oligonucleotide		
<400> gagcca	628 uggtt gccgccttcg		20
<210> <211> <212> <213>	629 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aggtca	629 aacc aactcccatg		20
<210> <211> <212> <213>	630 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> atgage	630 cagg ttgccgcctt		20
<210> <211> <212> <213>	631 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tgagcc	631 aggt tgccgccttc		20
<210> <211> <212> <213>	632 20 DNA Artificial		-
<220> <223>	oligonucleotide		
<400> aggctc	632 ctcc acaggcgact	,	20
<210> <211> <212> <213>	633 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> caggcto	633 cctc cacaggcgac		20
<210>	634		

v7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 634 gcaggctcct ccacaggcga 20 635 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 635 ttcgctcacc ggcttaaggt 20 <210> 636 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 636 gttcgctcac cggcttaagg 20 <210> 637 <211> <212> <213> 20 DNA Artificial <220> <223> oligonucleotide <400> 637 ggttcgctca ccggcttaag - - - --20 <210> 638 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 638 attccacaac cctctctcac 20 <210> 639 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 639

V7588.ST25.txt tgacccgacc gtggtcggct 20 <210> 640 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 640 ccctctctca cactctagtc 20 <210> 641 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 641 gaattccaca accctctctc 20 <210> 642 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 642 agccaggttg ccgccttcgc 20 <210> 643 <211> 20 <212> DNA <213> Artificial<220>__. <223> oligonucleotide <400> 643 gccaggttgc cgccttcgcc 20 <210> 644 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 644 ggaattccac aaccctctct 20 <210> 645 <211> 20 <212> DNA <213> Artificial

PCT/EP2004/010695

WO 2005/031004

V7588.ST25.txt <220> <223> oligonucleotide <400> 645 gggaattcca caaccctctc 20 <210> 646 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 646 aacgcaggct cctccacagg 20 <210> 647 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 647 cggcttaagg tcaaaccaac 20 <210> 648 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 648 ccggcttaag gtcaaaccaa 20 <210> 649 <211> 20 - ----. <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 649 caccggctta aggtcaaacc 20 <210> 650 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 650 accggcttaa ggtcaaacca 20 <210> 651

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 651 acccaacatc cagcacacat 20 <210> 652 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 652 tcgctgaccc gaccgtggtc 20 <210> 653 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 653 cgctgacccg accgtggtcg 20 <210> 654 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 654 gacccgaccg tggtcggctg 20 <210> 655 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 655 gctgacccga ccgtggtcgg 20 <210> 656 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 656

PCT/EP2004/010695 WO 2005/031004 V7588.ST25.txt ctgacccgac cgtggtcggc 20 <210> <211> 657 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 657 caggcgactt gcgcctttga 20 <210> 658 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 658 tcatgcggta ttagctccag 20 <210> 659 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 659 actagctaat cgaacgcagg 20 <210> <211> 660 20 <212> DNA <213> Artificial . . .<220> **...** <223> oligonucleotide <400> 660 catgcggtat tagctccagt 20 <210> 661 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 661 cgcaggctcc tccacaggcq 20 <210> 662 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt

		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> acgcag	662 gctc ctccacaggc		20
<210> <211> <212> <213>	663 20 DNA Artificial		
<220> <223>	oligonucleotide		
	663 tgtc atgcggtatt		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
	664 tgac cctcaggtgt		20
<210> <211> <212> <213>	665 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> accctc	665 aggt gtcatgcggt		20
<210> <211> <212> <213>	666 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cctcag	666 gtgt catgcggtat		20
<210> <211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> tttgac	667 cctc aggtgtcatg		20
<210>	668	·	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 668 gaccctcagg tgtcatgcgg 20 <210> 669 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 669 tgaccctcag gtgtcatgcg 20 670 20 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 670 gcctttgacc ctcaggtgtc 20 <210> 671 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 671 20 ttgaccctca ggtgtcatgc-<210> 672 <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 672 ccctcaggtg tcatgcggta 20 <210> 673 <211> 20 <212> DNA <213> Artificial <220> oligonucleotide <223> <400> 673

<220>	V7588.ST25.txt	
<223> oligonucleotide		
<400> 679 agctatcgat catcgccttg		20
<210> 680 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 680 gctatcgatc atcgccttgg		20
<210> 681 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 681 ctatcgatca tcgccttggt		20
<210> 682 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 682 ttcgtgcgac ttgcatgtgt		20
<210> 683 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 683 tcgatcatcg ccttggtagg		20
<210> 684 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 684 atcgatcatc gccttggtag		20
<210> 685		

WO 2005/031004 v7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 685 20 cacaggcgac ttgcgccttt <210> 686 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 686 20 ccacaggcga cttgcgcctt <210> 687 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 687 20 tccacaggcg acttgcgcct <210> 688 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 688 20 <210> 689 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 689 cctccacagg cgacttgcgc 20 <210> 690 <211> 20 <212> DNA

<213> Artificial

<223> oligonucleotide

<220>

<400> 690

WO 2005/031004

PCT/EP2004/010695

V7588.ST25.txt

222	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> cccgad	696 ccgtg gtcggctgcg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tcacco	697 ggctt aaggtcaaac	20
<210> <211> <212> <213>	698 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> caacco	698 ctctc tcacactcta	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> acaaco	699 ctct ctcacactct	20
<210> <211> <212> <213>	700 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccacaa	700 ccct ctctcacact	20
<210> <211> <212> <213>	701 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> aaccct	701 ctct cacactctag	20
<210>	702	

v7588.ST25.txt

<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cacaac	702 cctc tctcacactc		20
<210> <211> <212> <213>	703 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tccaca	703 accc tctctcacac		20
<210> <211> <212> <213>	704 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ttccac	704 aacc ctctctcaca		20
<210> <211> <212> <213>	705 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> acccto	705 tctc acactctagt		20 -
<210> <211> <212> <213>	706 20 DNA Artificial		
<220> <223>	oligonucleotide	•	
<400> gagcca	706 lggtt gccgccttcg		20
<210> <211> <212> <213>	707 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	707		

4

V7588.ST25.txt 20 aggtcaaacc aactcccatg <210> 708 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 708 20 atgagccagg ttgccgcctt <210> 709 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 709 20 tgagccaggt tgccgccttc <210> 710 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 710 20 aggctcctcc acaggcgact <210> 711 <211> 20 <212> DNA <213> Artificial ··· <220>··· <223> oligonucleotide <400> 711 20 caggctcctc cacaggcgac <210> 712 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 712 20 gcaggctcct ccacaggcga <210> 713 <211> 20 <212> DNA <213> Artificial

. - -

V7588.ST25.txt

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> ttcgct	713 cacc ggcttaaggt	20
<210> <211> <212> <213>	714 20 DNA Artificial	
<220> <223>	oligonucleotide	
	714 tcac cggcttaagg	20
<210> <211> <212> <213>	715 20 DNA Artificial	
<220> <223>	oligonucleotide	
	715 ctca ccggcttaag	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> attcca	716 caac cctctctcac	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> tgacco	717 gacc gtggtcggct	20
<210> <211> <212> <213>	718 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccctct	718 cctca cactctagtc	20
<210>	719	

- - --

v7588.sT25.txt

<211> <212> <213>	DNA	
<220> <223>		
<400> gaattc	719 ccaca accctctctc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>		
<400> agccag	720 ggttg ccgccttcgc	20
<210> <211> <212> <213>	· 20 · DNA	
<220> <223>		
<400> gccagg	721 gttgc cgccttcgcc	20
<210> <211> <212> <213>	· 20 · DNA	
<220> <223>		
<400> ggaatt	tccac aaccetetet	 20
<210> <211> <212> <213>	· 20 · DNA	
<220> <223>		
<400> gggaat	723 ttcca caaccctctc	20
<210> <211> <212> <213>	· 20 · DNA	
<220> <223>		
<400>	. 724	

<213> Artificial

V7588.ST25.txt

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> tcgctga	730 accc gaccgtggtc	20
<210> <211> <212> <213>	731 20 DNA Artificial	
<220> <223>	oligonucleotide	
	731 cccg accgtggtcg	20
<210> <211> <212> <213>	732 20 DNA Artificial	
<220> <223>	oligonucleotide	
	732 accg tggtcggctg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> gctgac	733 ccga ccgtggtcgg	20
<210> <211> <212> <213>	734 20 ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	
<220> <223>	oligonucleotide	
	734 cgac cgtggtcggc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> caggcg	735 actt gcgcctttga	20
<210>	736	

1

v7588.ST25.txt

	<211>	20	V/588.ST	
	<212>	DNA		
	<213>	Artificial	•	
	<220>			
	<223>	oligonucleotide		
	<400>	736		
		ggta ttagctccag		20
	<210>	737		
	<211>	20		
	<212>	DNA Artificial		
		Artificial		
	<220>	alimanual aamida		
	<223>	oligonucleotide		
		737		20
	actage	taat cgaacgcagg		20
	<210>			
	<211> <212>	DNA		
	<213>	Artificial		
	<220>			
	<223>	oligonucleotide		
	.400-	728		
		738 gtat tagctccagt	•	20
		3 cm c cm 3 c c c c c c c c c c c c c c c c c c c		
	<210>	739		
	~~10/	733		
	<211>	20		
	<212>	20 DNA		
	<212>	20		
	<212> <213> <220>	20 DNA Artificial		
	<212> <213>	20 DNA		
	<212> <213> <220> <223> <400>	20 DNA Artificial oligonucleotide 739		
	<212> <213> <220> <223> <400>	20 DNA Artificial oligonucleotide		 20
	<212> <213> <220> <223> <400>	20 DNA Artificial oligonucleotide 739		 20
	<212> <213> <220> <223> <400> cgcagg	20 DNA Artificial oligonucleotide 739 ctcc tccacaggcg		 20
. .	<212> <213> <220> <223> <400> cgcagg	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20		 20
	<212> <213> <220> <223> <400> cgcagg	20 DNA Artificial oligonucleotide 739 ctcc tccacaggcg		 20
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213>	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA		 20
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <220>	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial		 20
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <223>	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <223> <400>	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <223> <400>	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide		 20
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <400> acgcag	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <400> acgcag	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		
	<212> <213> <220> <223> <400> cgcagg <211> <212> <213> <400> cgtagg <211> <212> <213> <220> <2213> <213> <220> <221> <223> <400> acgcagg	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <400> acgcag	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <220> <211> <212> <213> <400> acgcag <210> <211> <221> <221> <213> <220> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210>	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <220> <211> <212> <213> <223> <400> acgcag	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		
	<212> <213> <220> <223> <400> cgcagg <210> <211> <212> <213> <220> <2213> <400> acgcag <210> <221> <223> <400> acgcag	20 DNA Artificial oligonucleotide 739 ctcc tceacaggcg 740 20 DNA Artificial oligonucleotide 740 gctc ctccacaggc		

V7588.ST25.txt 20 ctcaggtgtc atgcggtatt <210> 742 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 742 20 cgcctttgac cctcaggtgt <210> 743 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 743 20 accctcaggt gtcatgcggt <210> 744 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 744 20 cctcaggtgt catgcggtat <210> 745 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 745 20 tttgaccctc aggtgtcatg <210> 746 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 746 20 gaccctcagg tgtcatgcgg <210> 747 <211> 20 <212> DNA Artificial

WO 2005/031004

<213>

PCT/EP2004/010695

V7588.ST25.txt

	V/588.5125.txt	
<220> <223>	oligonucleotide	
	747 tcag gtgtcatgcg	20
<210> <211> <212> <213>	748 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gccttt	748 gacc ctcaggtgtc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> ttgacc	749 cctca ggtgtcatgc	20
<210> <211> <212> <213>	750 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccctca	750 aggtg tcatgcggta	20
<210> <211> <212> <213>	. 20	
<220> <223>	oligonucleotide	
<400> cctttg	751 Jaccc tcaggtgtca	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ctttga	752 accct caggtgtcat	20
<210>	753	

V7588.ST25.txt

<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agttate	753 cccc cacccatgga	20	0
<210> <211> <212> <213>	754 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccagct	754 atcg atcatcgcct	20	0
<210> <211> <212> <213>	755 20 DNA Artificial	•	
<220> <223>	oligonucleotide		
<400> accago	755 tatc gatcatcgcc	2	0
<210> <211> <212> <213>	756 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cagcta	756 tcga tcatcgcctt		20
<210> <211> <212> <213>	757 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agctat	757 cgat catcgccttg	2	20
<210> <211> <212> <213>	758 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	758		

Ę

V7588.ST25.txt 20 gctatcgatc atcgccttgg 759 <210> <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 759 20 ctatcgatca tcgccttggt <210> 760 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 760 20 ttcgtgcgac ttgcatgtgt <210> 761 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 761 20 tcgatcatcg ccttggtagg <210> 762 <211> 20 <212> DNA <213> Artificial <220> - .. <223> oligonucleotide <400> 762 20 atcgatcatc gccttggtag <210> 763 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 763 20 cacaggcgac ttgcgccttt <210> 764 <211> 20 <212> DNA <213> Artificial

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 764 ccacaggcga cttgcgcctt 20 <210> 765 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 765
tccacaggcg acttgcgcct 20

<210> 766 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 766
tcctccacag gcgacttgcg 20

<210> 767 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 767
cctccacagg cgacttgcgc 20

<210> 768
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide

<400> 768 ctccacaggc gacttgcgcc 20

<210> 769 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 769

acaggcgact tgcgcctttg 20

<210> 770

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 770 20 tcaccggctt aaggtcaaac <210> 771 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 771 caaccctctc tcacactcta 20 <210> 772 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 772 20 acaaccctct ctcacactct <210> 773 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 773 ··· ccacaaccct ctctcacact ··· ·· . . <210> 774 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 774 20 aaccctctct cacactctag <210> 775 <211> 20 <212> DNA

<213> Artificial

<223> oligonucleotide

<220>

<400> 775

<210> 781

<211> 20 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 781 20 atgagccagg ttgccgcctt <210> 782 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 782 tgagccaggt tgccgccttc 20 <210> 783 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 783 20 aggctcctcc acaggcgact <210> 784 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 784 caggctcctc cacaggcgac 20 <210> 785 <211> 20-<212> DNA <213> Artificial <220> <223> oligonucleotide <400> 785 20 gcaggctcct ccacaggcga <210> 786 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 786 20 ttcgctcacc ggcttaaggt

<210> 787

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt

<211>	20	700.51231 CAC
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> gttcgc	787 tcac cggcttaagg	20
<210> <211>	788 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggttcg	788 ctca ccggcttaag	20
<210> <211>	789 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> attcca	789 caac cctctctcac	20
<210> <211>	790 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> tgaccc	790 gacc gtggtcggct-	20
<210> <211>	791 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccctct	791 ctca cactctagtc	20
<210> <211>	792 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400>	792	

WO 2005/031004

<213> Artificial

PCT/EP2004/010695

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
	798 aagg tcaaaccaac	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> ccggct	799 taag gtcaaaccaa	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> caccgg	800 ctta aggtcaaacc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> accggc	801 ttaa ggtcaaacca	20
<210> <211> <212> <213>	802 20 · · · · · · · · · · · · · · · · · · ·	
<220> <223>	oligonucleotide	
<400> acccaa	802 catc cagcacacat	20
<210> <211> <212> <213>	803 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tcgctg	803 accc gaccgtggtc	20
<210>	804	

WO 2005/031004 PCT/EP2004/010695

v7588.ST25.txt

<211> <212>	20 DNA	•		
<213>	Artificial			
<220> <223>	oligonucleotide			
<400> cgctga	804 cccg accgtggtcg		·	20
<210> <211> <212> <213>	805 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> gacccg	805 accg tggtcggctg			20
<210> <211> <212> <213>	806 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> gctgac	806 ccga ccgtggtcgg			20
<210> <211> <212> <213>	807 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctgacc	807 cgac cgtggtcggc		 	 20
<210> <211> <212> <213>	808 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> caggcg	808 actt gcgcctttga			20
<210> <211> <212> <213>	809 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	809			

WO 2005/031004

PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide

<400> 815 20 cgcctttgac cctcaggtgt

<210> <211> 816 20 <212> DNA

<213> Artificial

<220> <223> oligonucleotide

<400> 816 20 accctcaggt gtcatgcggt

<210> 817 <211> 20 <212> DNA

<213> Artificial

<220> <223> oligonucleotide <400> 817

20 cctcaggtgt catgcggtat

<210> 818 <211> 20 <212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 818

20 tttgaccctc aggtgtcatg

<210> 819 <211> 20· <212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 819

20 gaccctcagg tgtcatgcgg

820 <210> <211> <212> 20 DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 820

tgaccctcag gtgtcatgcg

<210> 821

20

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 821 gcctttgacc ctcaggtgtc 20 822 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 822 ttgaccctca ggtgtcatgc 20 <210> 823 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 823 20 ccctcaggtg tcatgcggta <210> 824 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 824 20 825 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 825 ctttgaccct caggtgtcat 20 <210> 826 <211> 20 <212> DNA

<213> Artificial

<223> oligonucleotide

<220>

<400> 826

PCT/EP2004/010695

WO 2005/031004

<213> Artificial

<210> 838

V7588.ST25.txt <220> <223> oligonucleotide <400> 832 20 ctatcgatca tcgccttggt <210> <211> 833 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 833 20 ttcgtgcgac ttgcatgtgt <210> 834 <211> <212> 20 DNA Artificial <213> <220> <223> oligonucleotide <400> 834 tcgatcatcg ccttggtagg 20 <210> 835 20 <211> <212> <213> DNA Artificial <220> <223> oligonucleotide <400> 835 20 atcgatcatc gccttggtag <210> 836 20 . <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 836 cacaggcgac ttgcgccttt 20 837 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 837 20 ccacaggcga cttgcgcctt

v7588.sT25.txt

.511.	V/588.5125.TXT	
<211> <212> <213>	20 DNA Artificial	
<220>		
<223>	oligonucleotide	
<400> tccaca	838 ggcg acttgcgcct	20
<210> <211> <212> <213>	20	
<220>	oligonucleotide	
	-	
<400> tcctcc	839 acag gcgacttgcg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cctcca	840 cagg cgacttgcgc	20
<210>	0.41	
<211>	20	
<212>	DNA Artificial	
<220> <223>	oligonucleotide	
 <400> ctccac	841 caggorgacttgcgcc	20
<210>	842	
<211>	20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
	842 cgact tgcgcctttg	20
<210>	843	
<211><212><213>	20 DNA	
<220> <223>	oligonucleotide	
<400>	843	

١

agccccg	ggtt tcccggcgtt	V/588.ST25.txt	20
<210> <211> <212> <213>	844 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgcctti	844 tcct ttttcctcca		20
<210> <211> <212> <213>	845 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccccg	845 gttt cccggcgtta		20
<210> <211> <212> <213>	846 20 DNA Artificial		
<220> <223>	oligonucleotide		
	846 tttc ctttttcctc	·	20
<210> <211> <212> <213>	847 20 DNA Artificial		
<220> · <223>	oligonucleotide		
<400> tagccc	847 cggt ttcccggcgt		20
<210> <211> <212> <213>	848 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccgggt	848 accg tcaaggcgcc		20
<210> <211> <212> <213>	849 20 DNA Artificial		

WO 2005/031004 V7588.ST25.txt <220> <223> oligonucleotide <400> 849 20 aagccgcctt tcctttttcc <210> 850 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 850 20 ccccggtttc ccggcgttat <210> 851 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 851 20 ccggcgttat cccagtctta <210> 852 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 852 20 agccgccttt cctttttcct <210> 853 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 853 20 ccgcctttcc tttttcctcc <210> 854 <211> 20 <212> DNA

<210> 855

<400> 854

<213> Artificial

<220> <223> oligonucleotide

ttagccccgg tttcccggcg

20

v7588.ST25.txt

<211> <212>	20 DNA	
<213>	Artificial	
<220> <223>	oligonucleotide	
	855 gtta tcccagtctt	20
<210> <211> <212> <213>	856 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gccggg	856 tacc gtcaaggcgc	20
<210> <211> <212> <213>	857 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggccgg	857 gtac cgtcaaggcg	20
<210> <211> <212> <213>	858 20 DNA Artificial	
<220> <223>	oligonucleotide	
	858 cgtt atcccagtct " ··· ··	 20 -
<210> <211> <212> <213>	859 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tggccg	859 ggta ccgtcaaggc	20
<210> <211> <212> <213>	860 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	860	

gaagcc	gcct ttcctttttc	V/588.S125.txt	20
<210> <211> <212> <213>	861 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cccggt	861 ttcc cggcgttatc		20
<210> <211> <212> <213>	862 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cggcgt	862 tatc ccagtcttac		20
<210> <211> <212> <213>	863 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggcgtt	863 atcc cagtcttaca		20
<210> <211> <212> <213>	864 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcgtta	864 tccc agtcttacag		20
<210> <211> <212> <213>	865 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgggta	865 ccgt caaggcgccg		20
<210> <211> <212> <213>	866 20 DNA Artificial		

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 866 attagccccg gtttcccggc 20 <210> 867 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 867 aaggggaagg ccctgtctcc 20 <210> 868 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 868 ggccctgtct ccagggaggt 20 <210> 869 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide aggccctgtc tccagggagg 20 <210> 870 20. <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 870 aaggccctgt ctccagggag 20 <210> 871 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

20

154/203

<400> 871

<210> 872

gccctgtctc cagggaggtc

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 872 20 cgttatccca gtcttacagg 873 20 <210> <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 873 20 gggtaccgtc aaggcgccgc <210> 874 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 874 20 cggcaacaga gttttacgac <210> 875 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 875 20 ggggaaggcc ctgtctccag <210> 876 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 876 20 aggggaaggc cctgtctcca <210> 877 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 877

<211> <212>

<213>

20 DNA

Artificial

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide <400> 883 cacttgttct tccccggcaa 20 <210> 884 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 884 20 tcttcccgg caacagagtt <210> 885 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 885 20 ttgttcttcc ccggcaacag <210> 886 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 886 20 acttgttctt ccccggcaac <210> 887 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 887 20 tgttcttccc cggcaacaga <210> 888 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 888 20 cttgttcttc cccggcaaca

<210> 889

WO 2005/031004 PCT/EP2004/010695

		V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> acggca	889 cttg ttcttccccg		20
<210> <211> <212> <213>	890 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtccgc	890 cgct aaccttttaa		20
<210> <211> <212> <213>	891 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctggcc	891 gggt accgtcaagg		20
<210> <211> <212> <213>	892 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tctggc	892 cggg taccgtcaag		20
<210> <211> <212> <213>	893 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ttctgg	893 ccgg gtaccgtcaa		20
<210> <211> <212> <213>	894 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	894		

V7588.ST25.txt	
caatgctggc aactaaggtc	20
<210> 895 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 895 cgtccgccgc taacctttta	20
<210> 896 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 896 cgaagccgcc tttcctttt	20
<210> 897 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 897 ccgaagccgc ctttcctttt	20
<210> 898 <211> 20 <212> DNA <213> Artificial	
<220>	
<400> 898 gccgaagccg cctttccttt	20
<210> 899 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 899 agccgaagcc gcctttcctt	20
<210> 900 <211> 20 <212> DNA <213> Artificial	

V7588.ST25.txt <220> <223> oligonucleotide <400> 900 20 accgtcaagg cgccgccctg <210> 901 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 901 20 ccgtggcttt ctggccgggt <210> 902 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 902 20 gctttctggc cgggtaccgt <210> 903 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 903 20 gccgtggctt tctggccggg <210> 904 <210> 504 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 904 20 ggctttctgg ccgggtaccg 905 <210> <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide

20

<400> 905

<210> 906

ctttctggcc gggtaccgtc

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt <211> 20 <212> DNA <213> Art Artificial <220> <223> oligonucleotide <400> 906 tggctttctg gccgggtacc 20 <210> 907 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 907 gtggctttct ggccgggtac 20 <210> 908 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 908 cgtggctttc tggccgggta 20 <210> 909 <211> <212> <213> 20 DNA Artificial <220> <223> oligonucleotide <400> 909 20 <210> 910 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 910 gggaaggccc tgtctccagg 20 <210> 911 <211> <212> 20 DNA Artificial <213> <220> oligonucleotide <223>

<400> 911

WO 2005/031004

PCT/EP2004/010695

V7588.ST25.txt

	V/588.ST25.tXt	
<220> <223>	oligonucleotide	
<400> cccggc	917 aaca gagttttacg	20
<210> <211> <212> <213>	918 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccccgg	918 caac agagtttac	20
<210> <211> <212> <213>	919 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccatct	919 gtaa gtggcagccg	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> tctgta	920 agtg gcagccgaag	20
<210> <211> <212> <213>	921 20 · · · · · · · · · · · · · · · · · · ·	•
<220> <223>	oligonucleotide	
<400> ctgtaa	921 agtgg cagccgaagc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cccato	922 ctgta agtggcagcc	20
<210>	923	

7

V7588.ST25.txt <211> 20 <212> DNA <213> Art DNA Artificial <220> <223> oligonucleotide <400> 923 20 tgtaagtggc agccgaagcc <210> 924 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 924 catctgtaag tggcagccga 20 925 20 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 925 atctgtaagt ggcagccgaa 20 <210> 926 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 926 - cagccgaagc cgcctttcct - · · · 20 <210> 927 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 927 ggcaacagag ttttacgacc 20 <210> 928 <211> 20 <212> <213> DNA Artificial <220>

oligonucleotide

<223> <400>

928

V7588.ST25.txt 20 ccggcaacag agttttacga <210> 929 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 929 20 ttccccggca acagagtttt <210> 930 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 930 20 cttcccggc aacagagttt <210> 931 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 931 20 tccccggcaa cagagtttta <210> 932 <211> 20 <212> DNA <213> Artificial . . . · ·· <220>· <223> oligonucleotide <400> 932 20 ccgtccgccg ctaacctttt <210> 933 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide cttcctccga cttacgccgg 20 934 20 <210> <211> <212> DNA

<213> Artificial

WO 2005/031004 PCT/EP2004/010695

-220		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> cctccg	934 actt acgccggcag		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ttcctc	935 cgac ttacgccggc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> tcctcc	936 gact tacgccggca		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> tccgac	937 ttac gccggcagtc		20
<210> <211> <212> <213>	938 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccgact	938 tacg ccggcagtca		20
<210> <211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> gccttc	939 ctcc gacttacgcc		20
<210>	940		

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 940 20 ccttcctccg acttacgccg 941 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 941 20 gctctccccg agcaacagag <210> 942 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 942 20 ctctcccga gcaacagagc <210> 943 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 943 cgctctcccc gagcaacaga ..20. <210> 944 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 944 20 ctccgactta cgccggcagt <210> 945 <211> 20 <212> DNA <213> Artificial

<220>

<400> 945

<223> oligonucleotide

tctccc	cgag caacagagct	V7588.ST25.txt	20
<210> <211> <212> <213>	946 20 DNA Artificial		
<220> <223>	oligonucleotide	,	
<400> cgactt	946 acgc cggcagtcac		20
<210> <211> <212> <213>	947 20 DNA Artificial		
<220> <223>	oligonucleotide		
	947 ctgg ggtgtgtccc		20
<210> <211> <212> <213>	948 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggcact	948 gggg tgtgtccccc		20
<210> <211> <212> <213>	949 20 DNA Artificial		
<220> <223>	oligonucleotide		
	949 tgtg tcccccaac		20
<210> <211> <212> <213>	950 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cactgg	950 ggtg tgtccccca		20
<210> <211> <212> <213>	951 20 DNA Artificial		

v7588.ST25.txt <220> <223> oligonucleotide <400> 951 20 actggggtgt gtcccccaa 952 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 952 20 gcactggggt gtgtccccc <210> 953 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 953 20 tggggtgtgt cccccaaca <210> 954 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 954 20 cactccagac ttgctcgacc <210> 955 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 955 20 tcactccaga cttgctcgac 956 <210> <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 956 20 cggcactggg gtgtgtcccc

V7588.ST25.txt <211> 20 <212> DNA Artificial <213> <220> <223> oligonucleotide <400> 957 20 cgccttcctc cgacttacgc <210> 958 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 958 20 ctcccgagc aacagagctt <210> 959 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 959 20 actccagact tgctcgaccg <210> 960 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 960 20 cccatgccgc tctccccgag <210> 961 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 961 20 ccatgccgct ctccccgagc <210> <211> 962 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 962

v7588.ST25.txt 20 ccccatgccg ctctccccga <210> 963 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 963 20 tcactcggta ccgtctcgca <210> 964 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 964 20 catgccgctc tccccgagca <210> 965 <211> 20 DNA <212> <213> Artificial <220> <223> oligonucleotide <400> 965 20 atgccgctct ccccgagcaa <210> 966 <211> 20 <211> 20 <212> DNA <213> Artificial -····· <220> · · · <223> oligonucleotide <400> 966 20 ttcggcactg gggtgtgtcc <210> 967 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 967 20 tgccgctctc cccgagcaac <210> 968 <211> 20 <212> DNA <213> Artificial

WO 2005/031004 V7588.ST25.txt <220> <223> oligonucleotide <400> 968 20 ttcactccag acttgctcga <210> 969 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 969 20 cccgcaagaa gatgcctcct <210> 970 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 970 20 agaagatgcc tcctcgcggg <210> 971 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 971 20 aagaagatgc ctcctcgcgg <210> 972 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 972 cgcaagaaga tgcctcctcg 20 973 <210> <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide

<210> 974

<400> 973

aagatgcctc ctcgcgggcg

20

v7588.ST25.txt

		V/J00.312J.LAL		
<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
	974 gaag atgcctcctc		2	20
<210> <211> <212> <213>	975 20 DNA Artificial			
<220> <223>	oʻligonucleotide			
	975 gcct cctcgcgggc		2	20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> ccccgc	976 aaga agatgcctcc		2	20
<210> <211> <212> <213>	977 20 DNA Artificial			
<220> <223>	oligonucleotide			
	977 gatg cctcctcgcg ·			20
<210> <211> <212> <213>	978 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tccttc	978 ggca ctggggtgtg		Z	20
<210> <211> <212> <213>	979 20 DNA Artificial			
<220> <223>	oligonucleotide			
-400 >	979			

PCT/EP2004/010695

.

WO 2005/031004

<213> Artificial

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt

		v7588.ST25.txt	
<220> <223>	oligonucleotide		
	985 ctcc ccgagcaaca		20
<211> <212>	986 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agatgc	986 ctcc tcgcgggcgt		20
<210> <211> <212> <213>	987 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cactcg	987 gtac cgtctcgcat		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ctcact	988 cggt accgtctcgc		20
 <210> <211> <212> <213>	989 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcaaga	989 agat gcctcctcgc	·	20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ctccag	990 actt gctcgaccgc		20
<210>	991		

WO 2005/031004 PCT/EP2004/010695

v7588.ST25.txt

		V7588.ST25.tXt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide	,	
	991 cggc agtcacctgt		20
<210> <211> <212> <213>	992 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cttcgg	992 cact ggggtgtgtc		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> ctcgcg	993 ggcg tatccggcat		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> gcctco	994 ctcgc gggcgtatcc		20
<210> <211> <212> <213>	995 20 DNA Artificial		
<220> <223>	oligonucleotide	·	
<400> actcgg	995 ptacc gtctcgcatg		20
<210> <211> <212> <213>	996 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	996		

WO 2005/031004

<213> Artificial

PCT/EP2004/010695

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> ggtgtg	1002 tccc cccaacacct	20
<210> <211> <212> <213>	1003 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtgtgt	1003 cccc ccaacaccta	20
<210> <211> <212> <213>	1004 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cctcgc	1004 gggc gtatccggca	20
<210> <211> <212> <213>	1005 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cctcac	1005 tcgg taccgtctcg	20
<210> <211> <212> <213>	1006 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tcctca	1006 ctcg gtaccgtctc	20
<210> <211> <212> <213>	1007 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tcgcgg	1007 gcgt atccggcatt	20
<210>	1008	

WO 2005/031004 PCT/EP2004/010695

V7588.ST25.txt

<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tttcac	1008 tcca gacttgctcg	20
<210> <211> <212> <213>	1009 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tacgcc	1009 ggca gtcacctgtg	20
<210> <211> <212> <213>	1010 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tccaga	1010 cttg ctcgaccgcc	20
<210> <211> <212> <213>	1011 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ctcggt	1011 caccg tctcgcatgg	20
<210> <211> <212> <213>	1012 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cgcggg	1012 Jogta tooggoatta	20
<210> <211> <212> <213>	1013 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	1013	

V7588.ST25.txt 20 gcgtatccgg cattagcgcc <210> 1014 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1014 20 gggctcctct ctcagcggcc 1015 <210> 20 DNA <211> <212> <213> Artificial <220> <223> oligonucleotide <400> 1015 20 tccccgagca acagagcttt <210> 1016 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1016 20 ccccgagcaa cagagcttta <210> 1017 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 1017 20 ccgagcaaca gagctttaca <210> 1018 <211> 20 <212> DNA <213> Artificial <220> . <223> oligonucleotide <400> 1018 20 ccatcccatg gttgagccat <210> 1019

<211> 20

<212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 1019 20 gtgtccccc aacacctagc <210> 1020 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1020 20 gcgggcgtat ccggcattag <210> 1021 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1021 20 cgagcggctt tttgggtttc <210> 1022 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1022 20 ctttcactcc agacttgctc <210> 1023 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1023 20 ttccttcggc actggggtgt <210> 1024 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1024 20 ccgccttcct ccgacttacg

v7588.st25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1025 20 cccgccttcc tccgacttac <210> 1026 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1026 20 cctcctcgcg ggcgtatccg <210> 1027 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1027 20 tcctcgcggg cgtatccggc <210> 1028 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1028 20 cattagcgcc cgtttccggg <210> 1029 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1029 20 gcattagcgc ccgtttccgg <210> 1030 <211> 20 <212> DNA <213> Artificial

. ----

<220>

<400> 1030 ·

<223> oligonucleotide

	V7588.ST25.txt	
ggcatta	agcg cccgtttccg	20
<210> <211> <212> <213>	1031 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtctcg	1031 catg gggctttcca	20
<210> <211> <212> <213>	1032 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gccatg	1032 gact ttcactccag	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> catgga	1033 cttt cactccagac	20
<210> <211> <212> <213>	1034 22 DNA Artificial	
<220> <223>	oligonucleotide	-
<400> ccttcc	1034 tccg gcttacgccg gc	22
<210> <211> <212> <213>	1035 22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccttcc	1035 tccg acttgcgccg gc	22
<210> <211> <212> <213>	1036 22 DNA Artificial	

***	2003/031004		1 € 1/121 2004/0100
		v7588.ST25.txt	·
<220> <223>	oligonucleotide		
<400> ccttcc	1036 cccg actttcaccg gc		22
<212>	1037 20 DNA Artificial		
<220> <223>	oligonucleotide		
	1037 tcac aaggagcttt		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> taccgt	1038 ctca caaggagctt		20
<210> <211> <212> <213>	1039 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtaccg	1039 tctc acaaggagct		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> gcctac	1040 ccgt gtattatccg		20
<210> <211> <212> <213>	1041 20 DNA Artificial		
<220> <223>	oligonucleotide		

20

<400> 1041 ccgtctcaca aggagctttc

V7588.ST25.txt

<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
	1042 gtgt attatccggc		20
<210> <211> <212> <213>	1043 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggtacc	1043 gtct cacaaggagc		20
<210> <211> <212> <213>	1044 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgtcto	1044 cacaa ggagctttcc		20
<210> <211> <212> <213>	1045 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tctca	1045 caagg agctttccac	 	 20
<210> <211> <212> <213>	1046 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tacco	1046 gtgta ttatccggca		20
<210> <211> <212> <213>	20 DNA		
<220> <223>			
-400-	1047		

9	gtctcac	aag gagctttcca	V7588.ST	25.txt		20
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400> acccgtg	1048 tat tatccggcat				20
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400> ctcggta	1049 accg tctcacaagg				20
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400> cggtaco	1050 cgtc tcacaaggag				20
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide		•••	~···	•
	<400> actcgg	1051 tacc gtctcacaag				20
	<210> <211> <212> <213>	1052 20 DNA Artificial				
	<220> <223>	oligonucleotide				
	<400> cggctg	1052 gctc cataacggtt				20
	<210> <211> <212> <213>	1053 20 DNA Artificial				

WO 2005/031004 PCT/EP2004/010695

v7588.ST25.txt

	v7588.st25.txt	
<220> <223>	oligonucleotide	
	1053 agat gcctacccgt	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tggctco	1054 cata acggttacct	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> caagta	1055 gatg cctacccgtg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	1056 taga tgcctacccg	20
 <210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ggctcc	1057 ataa cggttacctc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> acacaa	1058 gtag atgcctaccc	20
<210>	1059	

v7588.ST25.txt

		٧/.	,00.3123.0			
<211> <212> <213>	20 DNA Artificial					
<220> <223>	oligonucleotide					
<400> ctggct	1059 ccat aacggttacc					20
<210> <211> <212> <213>	DNA					
<220> <223>	oligonucleotide				•	
	1060 tcca taacggttac					20
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
<400> ggctgg	1061 ctcc ataacggtta					20
<210> <211> <212> <213>	DNA					
<220> <223>	oligonucleotide					
<400> gctcca	1062 Itaac ggttacctca			-		20
<210> <211> <212> <213>	1063 20 DNA Artificial					
<220> <223>	oligonucleotide					
<400> aagtag	1063 patgc ctacccgtgt					20
<210> <211> <212> <213>	1064 20 DNA Artificial					
<220> <223>	oligonucleotide					
<400>	1064					

<212>

DNA <213> Artificial

v7588.ST25.txt <220> <223> oligonucleotide <400> 1070 20 cactcggtac cgtctcacaa <210> 1071 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1071 20 ctcagcgatg cagttgcatc <210> 1072 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1072 20 agtagatgcc tacccgtgta <210> 1073 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1073 20 gcggctggct ccataacggt <210> 1074 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1074 20 ccaaagcaat cccaaggttg <210> 1075 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1075 20 tccataacgg ttacctcacc

V7588.ST25.txt <211> 20 <212> DNA Artificial <213>

<220> <223> oligonucleotide

<400> 1076 20 cccgtgtatt atccggcatt

1077 20 <210> <211> <212> DNA

<213> Artificial

<220> <223> oligonucleotide

<400> 1077 20 tctcagcgat gcagttgcat

<210> 1078 <211> 20 <212> DNA 1078

<213> Artificial

<220> <223> oligonucleotide

<400> 1078 20 ccataacggt tacctcaccg

<210> 1079 <211> 20 <212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 1079 20 -- tcagcgatgc agttgcatct

<210> 1080 <211> 20 <212> DNA

<213> Artificial

<220> <223>

oligonucleotide

<400> 1080 ggcggctggc tccataacgg

<210> 1081 <211> 20

<212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 1081 20

WO 2005/031004

<212> DNA

<213> Artificial

PCT/EP2004/010695

V7588.ST25.txt <220> <223> oligonucleotide <400> 1087 20 cagcgatgca gttgcatctt <210> 1088 <211> 20 <212> DNA 1088 <213> Artificial <220> <223> oligonucleotide <400> 1088 20 caaggagctt tccactctcc <210> 1089 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1089 20 ccagtctgaa aggcagattg <210> 1090 <211> 20 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1090 20 cagtctgaaa ggcagattgc <210> 1091 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1091 20 cggcggctgg ctccataacg <210> 1092 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1092 20 cctctctcag cgatgcagtt

v7588.sT25.txt

		00.0.		
<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctctct	1093 cagc gatgcagttg			20
<210> <211> <212>	1094 20 DNA			
<213> <220>	Artificial			
<223> <400>	oligonucleotide 1094			
tctctc	agcg atgcagttgc			20
<210> <211> <212> <213>	1095 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctctca	1095 gcga tgcagttgca			20
<210> <211> <212> <213>	1096 20 DNA Artificial			
<220> <223>	oligonucleotide		•	
<400> caatco	1096 caag gttgagcctt			20
<210> <211> <212> <213>	1097 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> aatccc	1097 caagg ttgagccttg			20
<210> <211> <212> <213>	1098 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	1098			

V7588.ST25.txt 20 agcaatccca aggttgagcc <210> 1099 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1099 20 ctcactcggt accgtctcac <210> 1100 20 DNA <211> <212> <213> Artificial <220> <223> oligonucleotide <400> 1100 20 gcaatcccaa ggttgagcct <210> 1101 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1101 20 gccttggact ttcacttcag <210> 110 <211> 20 1102 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1102 cataacggtt acctcaccga 20 <210> 1103 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1103 20 ctcctctct agcgatgcag <210> 1104 <211> 20 <212> DNA <213> Artificial

v7588.ST25.txt <220> <223> oligonucleotide <400> 1104 20 tcggcggctg gctccataac <210> 1105 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1105 20 agtctgaaag gcagattgcc <210> 1106 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1106 20 tcctctcta gcgatgcagt <210> 1107 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1107 20 cccaaggttg agccttggac <210> 1108 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1108 20 ataacggtta cctcaccgac <210> 110 <211> 20 <212> DNA 1109 20 <213> Artificial <220> <223> oligonucleotide <400> 1109 20 tcccaaggtt gagccttgga

20

20

20

20

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1110

attatccggc attagcaccc

<210> 1111 <211> 20 <212> DNA <213> Artificial

<220>

<223> oligonucleotide <400> 1111

ctacgtgctg gtaacacaga

<210> 1112 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1112 gccgctagcc ccgaagggct

<210> 1113 <211> 20 <212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 1113 ctagccccga agggctcgct

<210> 1114 <211> 20 <212> DNA

<213> Artificial

<220> <223> oligonucleotide

<400> 1114

cgctagcccc gaagggctcg

1115 <210> <211> 20 <212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 1115

197/203

V7588.ST25.txt 20 agccccgaag ggctcgctcg <210> 1116 <211> <212> 20 DNA <213> Artificial <220> <223> oligonucleotide <400> 1116 20 ccgctagccc cgaagggctc <210> 1113 <211> 20 <212> DNA 1117 <213> Artificial <220> <223> oligonucleotide <400> 1117 20 tagccccgaa gggctcgctc <210> 1118 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1118 20 gctagcccg aagggctcgc <210> 1119 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1119 20 gccccgaagg gctcgctcga <210> 1120 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1120 20 atcccaaggt tgagccttgg <210> 1121 <211> 20 <212> DNA <213> Artificial

	v7588.ST25.txt	
<220> <223>	oligonucleotide	
	1121 tgga ctttcacttc	20
<210> <211> <212> <213>	1122 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> caaggt	1122 tgag ccttggactt	20
<210> <211> <212> <213>	1123 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gagctt	1123 tcca ctctccttgt	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> ccaagg	1124 ttga gccttggact	20
<210> <211> <212> <213>	1125 20 · · · · · · · · · · · · · · · · · · ·	
<220> <223>	oligonucleotide	
<400> cgggct	1125 cctc tctcagcgat	20
<210> <211> <212> <213>	1126 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggagct	1126 ttcc actctccttg	20

v7588.sT25.txt

		V/ J(30.3123. CA		
<211> <212> <213>	20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> gggctc	1127 ctct ctcagcgatg				20
<212>	1128 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> tctcct	1128 tgtc gctctccccg				20
<210> <211> <212> <213>	1129 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> tccttg	1129 tcgc tctccccgag				20
<210> <211> <212> <213>	1130 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> agcttt	1130 ccac tctccttgtc			 	20
<210> <211> <212> <213>	1131 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> ccacto	1131 tcct tgtcgctctc				20
<210> <211> <212> <213>	20 DNA				
<220> <223>	oligonucleotide				
<400>	1132				

V7588.ST25.txt ggctcctctc tcagcgatgc 20 <210> 1133 20 <211> <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1133 ccttgtcgct ctccccgagc 20 <210> 1134 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1134 cactctcctt gtcgctctcc 20 <210> 1135 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1135 actctccttg tcgctctccc 20 <210> 1136 <211> 20 <212> DNA <213> Artificial · · ··· <220> · <223> oligonucleotide <400> 1136 ctctccttgt cgctctcccc 20 <210> 1137 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1137 gcgggctcct ctctcagcga 20 <210> 1138 20 <211> <212> DNA

WO 2005/031004

<213> Artificial

PCT/EP2004/010695

W	O 2005/031004	PCT/EP2004/010695
<220> <223>	V oligonucleotide	7588.ST25.txt
	1138 catca tggttacctc	20
<210> <211> <212> <213>	1139 22 DNA Artificial	

<220> <223> oligonucleotide <400> 1139

ccgtctccta aggagctttc ca 22

<210> 1140 <211> 22 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1140

tccctcctta acggttacct ca 22

<210> 1141 <211> 22 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 1141 tggctccata awggttacct ca 22

<210> 1142 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 1142 cttcctccgg cttgcgccgg 20

<210> 1143
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 1143
cgctcttccc gaktgactga

PCT/EP2004/010695 WO 2005/031004

V7588.ST25.txt

<211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1144 cctcgggctc ctccatcwgc

20

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.