Sarteneias.	26	de	octubre	de	2022
Sarteneias.	20	uc	OCCUDIC	u	LULL

			Sartenejas, 26 de o	ctubre de 2022
	APELLIDO: Blanco Funula	NOMBRE:	William Jo	ré
	CARNET: 20-10160	,NOMBRE: CÉDULA:	25 523 684	
	SECCIÓN: 1			
	Primer Examen Parcial FS1112. Valor	20 puntos.		
	 Marque con una X la opción correct Cada planteamiento tiene una única 	a, justificando debidame a respuesta correcta.	nte y de manera escrita (cada respuesta.
	 Marcar más de una opción anula la 		de corrección.	
	$ullet$ Use $m{g}=m{10}\ m{m/s^2}$ cuando sea requ			
	• Responda las preguntas de desarro	lo también con sus corre	spondientes justificacio	nes.
	(1) El centro de masa de un sistema de referencia inercial si:	e partículas viaja a velocio	dad constante respecto a	a un sistema de (2 puntos)
	a) Inicialmente está en reposo y las f		ro. ∇F	= 0 = M. acm
	 b) Inicialmente está en reposo y las f c) Inicialmente viaja a velocidad no n 			
	d) Las fuerzas internas suman cero.	ula y las luerzas externas	P=M.V	CM = CTE
	e) Las fuerzas externas suman cero.		<i>y</i>	
	-			
	La figura sombreada muestra una	placa delgada con densid	ad uniforme σ (g/cm ²),	contenida en
	el plano XY. La posición $R_{\it CM}$ del cen	tro de masa está dada po	or:	(2 puntos)
		A 70027		
	a) $R_{CM} = \frac{1}{8} (15i + 14j) cm$	= M PIACAT	1	
	(b) $R_{CM} = \frac{1}{8} (17i + 14j) cm$	= M A [[3] A P [3] M [3]		3
	c) $R_{CM} = \frac{1}{8} (14i + 17j) cm$	m [3]	2	
	d) $R_{CM} = \frac{1}{8} (14i + 15j) cm$	æ. 23.	*	
	•		e g	1- 17/
<u></u>	e) Ninguna de las anteriores	grann i jeu i Aus		X = 17/8 cm
X = 1	cm. 39+2cm. 1g+3cm x 4c	1 = 3+2+12 cm		V-1/1/
	39+19+49	8	2 X [cm]	7= 14/8 cm
V = 1	5cm , 3g + 1,5 cm x 1g + 2cm x 4g	- 4,5+1,5+8 cm	A (cm)	1
7	89	8	ana una dancidad lineal	de masa que es /
	3 Una barra hecha con una mezcla proporcional a la posición $\rho(x) = k x$	especial de materiales u	miden en centímetros de	acuerdo con el $T(x) = \Delta Cm$
	sistema de referencia dado en la fig	ura y k es una constante	(medida en g/cm³). Dete	rmine el centro
	de masa de la barra.	1		(2 puntos) $e^{(x)} = a$
	5 10			$\rho(\mathbf{L}) = \mathbf{k} \mathbf{L}$
	$\sum_{k=0}^{\infty} x_{k} = 2 L/3 cm$)) = 0		
	c) $x_{cin} = 4 L/5 cm$		\$	
112				L .
1 2-	e) Ninguna de las anteriores		10	1 Come and
- 19		dm= Pdx	dm= KX.0	Signe en Signe en La parte de ahai 1/6
	Vennidas t = dm	0.11	1	la parte
	Lineal dx	CM= Xd	m = JXK	X.dx / fill
		Cds	m /k	X dy de anas
		J	2	1/0
			MOR S.	1/6

$$CM = K \left| \frac{\chi^2 dx}{\chi^2 dx} \right| CM = \frac{\chi^3}{3 |_0}$$

$$\frac{\chi^2 |_L}{2 |_0}$$

$$CM = \frac{L^{3} - 0^{3}}{\frac{3}{2}} \quad CM = \frac{2}{3}$$

$$\frac{L^{2} - 0^{2}}{2}$$

$$CM = \frac{2}{3} \cdot \frac{\lfloor 3 \rfloor}{\sqrt{2}} \quad \boxed{CM = \frac{2}{3} \lfloor \frac{2 \text{ [cm]}}{3} \rfloor}$$

DIOX S. 2/6

4. Un perro de 30 kg corre con una velocidad de 1 m/s (en la dirección $\hat{\imath}$) y salta sobre una patineta (de masa 3 kg) que inicialmente estaba en reposo y alineada con la velocidad inicial del perro.

(4.1 Determine el vector momentum lineal del sistema perro-patineta luego de que el perro aborda el vehículo (desprecie la fricción entre la patineta y el suelo). (1 punto)

4.2 Calcule el vector velocidad del sistema en ese

momento, (1 punto)

(4.3) Calcule el momentum lineal transferido del perro a la patineta. (2 puntos)

5. Un vagón de montaña rusa tiene un motor que le permite controlar su rapidez (impulsarlo o frenarlo). En este caso, el vagón da la vuelta incrementando siempre su rapidez. (3 puntos, 1 c/u) Delado a que

(5.1)En el punto C, ¿cuál diagrama describe mejor la aceleración del vagón?

el vector resulta

es este

5.2 En el punto D, ¿cuáles fuerzas contribuyen a la fuerza centrípeta?

a) La normal que ejerce la pista y el peso del vagón
b) La normal y la fricción ejercidas por la pista
c) El peso del vagón, la normal y la fricción que ejerce la pista Raclial Contripeta

d) La normal que ejerce la pista

e) La fricción que ejerce la pista

pero y la Prucción son perpendicular Vedor radia unitario enel punto D 5.3 El vagón pasa dos veces por el punto A (antes y después de dar la vuelta). Sean N₂ y Nd los módulos de la fuerza normal (ejercida por la pista sobre el vagón) en el punto A, antes y después de dar la vuelta respectivamente, se cumple que:

a) N_a = N_d porque no hay una componente vertical del momentum lineal

(b) N_a = N_d por ser iguales al peso del vagón

c) $N_a > N_d$

d) $N_a < N_d$

e) No hay datos suficientes para resolver esta pregunta

Solo hay monumento en el eye x, no end eje vertical y la rumatoria de luenzar en y es O

Diaz S 36

Probema 4 M1 = 30 Kg M2 = 3Kg Pi=M1. V1+M2.12 V=0m/s V1 = 1 m/s PA = M1. V1+ M2. V2 Pr= (m1+m2) V2+ El perrore delione es Pi = M1, V1 Pi = 30 kg x 1m | Pi = 30 kg m | S 30 Kgm = (30 kg +3kg) Vzf $V_{2f} = \frac{30 \text{ m}}{33 \text{ s}} \hat{s}$ Veda momentum se conserva Prist (30+3)(30) = Momento de = P2+= 3kg, 30 m = P2+= 30 kg m 2 La patineta 335 Diaz S.

- a) ¿Qué ángulo (en grados) es barrido en 1 segundo? (0.5 puntos)
- (b) ¿Cuánto tiempo tarda en completar una vuelta? (0.5 puntos)
- (c) Un punto del borde del disco se encuentra inicialmente en el punto marcado en la figura con una x blanca. Utilizando un sistema de referencia centrado en el disco y usando los ejes indicados en la figura, hallar: \vec{r} , \vec{v} y \vec{a} a los 3 segundos de iniciado el movimiento (usar MKS). (3 puntos)

<u>Nota</u>: lo usual es medir el ángulo en sentido antihorario a partir del eje x (paralelo al vector t)

- 7. Una lavadora gira intercalando el sentido del movimiento. El diámetro de su tambor es de 50 cm. Usando el sistema de referencia de la figura, el ángulo θ evoluciona en el tiempo de la siguiente forma: $\theta = \pi \left[1 - \cos\left(t \pi/2\right)\right]$ radianes, donde $\pi/2$ es una constante en radianes por segundo.
- (a) Determine el vector posición a los 3 segundos. (1 punto)
- (b) Calcule el vector velocidad a los 3 segundos. (1 punto)
- (c) Calcule el vector aceleración también a los 3 segundos. (2 puntos)

$$a_r = V \cdot a$$
 Sundo $a = 0$ No hay advancing tangencial $a_r = V \cdot w^2$
 $a_r = V \cdot w^2$
 $a_r = C \cdot fm \cdot \left(\frac{2\pi}{2\pi g}\right)^2 = \frac{1}{10} \cdot \frac{q_{m2}}{q_{sag}} \left[a_r = \frac{q_{m}^2}{40} \frac{m}{s^2}\right]$
 $\vec{a} = + \frac{q_{m}^2}{40} \frac{m}{s^2}$
 \vec