Examples for 10/19/2020 (2) and Examples for 10/23/2020 (2) (continued)

1. Let $\beta > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta) = \frac{\beta^2 \ln x}{x^{\beta+1}},$$
 $x > 1,$ zero otherwise.

Recall: W = ln X has a Gamma ($\alpha = 2$, $\theta = \frac{1}{\beta}$) distribution.

$$\Rightarrow$$
 $Y = \sum_{i=1}^{n} \ln X_i = \sum_{i=1}^{n} W_i$ has a Gamma ($\alpha = 2n$, $\theta = \frac{1}{\beta}$) distribution.

- k) Suggest a confidence interval for β with $(1 \alpha) 100 \%$ confidence level.
 - ① Use $Y = \sum_{i=1}^{n} \ln X_i$.
 - If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$Y = \sum_{i=1}^{n} \ln X_i = \sum_{i=1}^{n} W_i$$
 has a Gamma $(\alpha = 2n, \theta = \frac{1}{\beta})$ distribution.

$$2 \beta \sum_{i=1}^{n} \ln X_i$$
 has a $\chi^2(2\alpha = 4n)$ distribution.

$$\Rightarrow P(\chi_{1-\alpha/2}^{2}(4n) < 2\beta \sum_{i=1}^{n} \ln X_{i} < \chi_{\alpha/2}^{2}(4n)) = 1-\alpha.$$

$$\Rightarrow P\left(\frac{\chi_{1-\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln X_{i}} < \beta < \frac{\chi_{\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln X_{i}}\right) = 1 - \alpha.$$

A
$$(1 - \alpha)$$
 100 % confidence interval for β:

$$\left(\begin{array}{c} \frac{\chi_{1-\alpha/2}^{2}(4n)}{2\sum\limits_{i=1}^{n}\ln x_{i}}, \frac{\chi_{\alpha/2}^{2}(4n)}{2\sum\limits_{i=1}^{n}\ln x_{i}} \end{array}\right).$$

1) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2.0$, $x_4 = 3.0$, $x_5 = 5.0$. Use part (k) to construct a 95% confidence interval for β .

$$\chi^{2}_{0.975}(20) = 9.591,$$
 $\chi^{2}_{0.025}(20) = 34.17.$

$$\sum_{i=1}^{n} \ln x_i = \ln 1.3 + \ln 1.4 + \ln 2.0 + \ln 3.0 + \ln 5.0 \approx 4.$$

$$\left(\begin{array}{c} \frac{\chi_{1-\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln x_{i}}, \frac{\chi_{\alpha/2}^{2}(4n)}{2\sum_{i=1}^{n}\ln x_{i}} \end{array}\right) = \left(\begin{array}{c} 9.591\\ 2\cdot 4 \end{array}, \frac{34.17}{2\cdot 4}\right) \approx (1.20, 4.27).$$

```
> x = c(1.3,1.4,2.0,3.0,5.0)
> y = sum(log(x))
> y
[1] 4.000034
> qchisq(0.025,4*5)
[1] 9.590777
> qchisq(0.025,4*5)/(2*y)
[1] 1.198837
> qchisq(0.975,4*5)
[1] 34.16961
> qchisq(0.975,4*5)/(2*y)
[1] 4.271165
```

Recall:
$$\hat{\beta} = \frac{2n}{\sum_{i=1}^{n} \ln X_i}$$
 is the maximum likelihood estimator for β .

m) Show that $\hat{\beta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.

② If g(x) is differentiable at μ and $g'(\mu) \neq 0$, then

$$\sqrt{n}\,\left(\,g\left(\,\overline{\mathrm{W}}\,\right) - g\left(\,\mu_{\,\mathrm{W}}\,\right)\,\right) \,\stackrel{D}{\to}\, N\left(\,\,0\,,\,\left[\,g^{\,\prime}(\,\mu_{\,\mathrm{W}}\,)\,\right]^2\sigma_{\,\mathrm{W}}^2\,\right).$$

That is, for large n,

$$g(\overline{W})$$
 is approximately $N(g(\mu_W), [g'(\mu_W)]^2 \frac{\sigma_W^2}{n})$.

 $W = ln \, X$ has a Gamma ($\alpha = 2, \, \theta = \frac{1}{\beta}$) distribution.

By CLT,
$$\sqrt{n} \left(\overline{W} - \mu_W \right) \stackrel{D}{\to} N \left(0, \sigma_W^2 \right)$$
.

$$\sqrt{n}\left(\overline{W}-\frac{2}{\beta}\right)\stackrel{D}{\to} N\left(0,\frac{2}{\beta^2}\right).$$

$$g(x) = \frac{2}{x}.$$
 $g(\overline{W}) = \hat{\beta}.$ $g(\frac{2}{\beta}) = \beta.$

$$g'(x) = -\frac{2}{x^2}.$$
 $g'(\frac{2}{\beta}) = -\frac{\beta^2}{2}.$ $\left(-\frac{\beta^2}{2}\right)^2 \cdot \frac{2}{\beta^2} = \frac{\beta^2}{2}.$

$$\sqrt{n} \left(g\left(\overline{W}\right) - g\left(\frac{2}{\beta}\right) \right) = \sqrt{n} \left(\hat{\beta} - \beta\right) \xrightarrow{D} N(0, \frac{\beta^2}{2}).$$

For large
$$n$$
, $\hat{\beta} \sim N(\beta, \frac{\beta^2}{2n})$.