

European **Patent Office**

des brevets

Office européen

03/06817

-2.7 JUN 2003

Rec'd PCT/PTO 28 DEC 2004

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet nº

02077567.2

PRIOR

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts;

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

BEST AVAILABLE COPY

Anmeldung Nr:

Application no.: 02077567.2

Demande no:

Anmeldetag:

Date of filing: 28.06.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Faculté Universitaire des Sciences Agronomiques de Gembloux Passage des Déportés 2 5030 Gembloux BELGIQUE UNIVERSITE DE LILLE II 42, Rue Paul-Duez 59800 Lille FRANCE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Novel use of lipopeptide preparations

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeîchen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/ Classification internationale des brevets:

A61K38/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Novel use of lipopeptide preparations

Field of the invention

The present invention relates to a novel use of lipopeptide preparations.

Background of the invention

Disruption or destabilisation of a hydrophobic/hydrophilic interface is a common feature of several biological phenomena like virus fusion, lipid metabolism, neurotoxic mechanisms. One of the motifs involved in the mechanism is a tilted peptide. This peptide has the particularity to have a hydrophobicity gradient which gives it a tilted orientation in the lipid bilayer of a membrane, and is therefore referred to under the name of "tilted peptide".

This kind of peptide has been found in proteins involved in the fusion of virus (like for example Simian and Human Immunodeficiency Virus, Ebola, Newcastle Disease virus, Bovine and Murine Leukaemia Virus, Influenza Virus) with the host cell, in lipid metabolism (lipolytica enzymes, apolipoproteins, ...), in signal sequences, in membrane proteins, in the fusion of spermatozoon with ovum and also in neurotoxic proteins involved in neurodegenerative diseases (like Alzheimer's disease).

The general characteristics of several tilted peptides from the literature, namely LINS et al, in PROTEINS: Structure, Function and Genetics 44: 435-447, 2001 and BRASSEUR, in Molecular Membrane Biology, 17, 31-40, 2000 are presented in Table 1.

In this table, under "Protein or Virus", one will find the name of the protein or the virus in which the tilted peptide is detected. The following abbreviations are used:

- SIV and HIV: respectively, Simian and Human Immunodeficiency Virus;
- NDV: Newcastle Disease Virus:
- 30 1bct: bacteriorhodopsine;
 - BLV and MLV: respectively, Bovine and Murine Leukaemia Virus;
 - LCAT: Lecithin Cholesterol Acyl Transferase;
 - CETP: Cholesteryl Ester Transport Protein;
 - HLP: Hepatic Lipase;
- 35 LPL: Lipoprotein.

Table 1: General characteristics of several tilted peptides from the literature

Protein or virus	Amino	Mapping in	Sequence
Í	acids	the	1
	number	sequence	
SIV	12	528-539	GVFVLGFLGFLA
HIV	12	478-489	AVGIGALFLGFL
β Amyloid	14	29-42	GAIIGLMVGGVVIA
β Amyloid	12	29-40	GAIIGLMVGGVV
Measles virus	12	}	FAGVVLAGAALG
NDV	18	104-121	FIGAIIGSVALGVATAAG
Rous sarcoma virus	17		FLGFLLGVGSAIASGVA
1bct	16	177-192	VTVVLWSAYPVVWLIG
1bct	18	195-212	GAGIVPLNIETLLFMVLD
Sendai virus	17		FFGAVIGTIALGVATSA
BLV	12	269-280	SPVAALTLGLAL
MLV	17		GPVSLTLALLLGGLTMG
Yeast invertase	19	1-19	MLLQAFLFLLAGFAAKISA
Murine leukaemia virus	17		GPVSLTLALLLGGLTMG
Ebola	17	524-540	GAAIGLAWIPYFGPAAE
Human prion	18	118-135	AGAVVGGLGGYMLGSAMS
LCAT	13	56-68	DFFTIWLDLNMFL
Influenza HA-2	20	1-20	GLFGAIAGFIENGWEGMIDG
ApoB 100 human precursor	12		RPALLALLALPA
Hepatite B, S protein	16	1-16	MENITSGFLGPLLVLQ
Human Apo A-II Sakacin P	13	58-70	TELVNFLSYFVEL
CETP	16	461-476	FGFPEHLLVDFLQSLS
Meltrine	14	591-603	VIGTNAVSIETNIE
Human Apo A-II	18	53-70	IKKAGTELVNFLSYFVEL
HLP	13	234-246	FLELYRHIAQHGF
LPL	13	218-230	IGEAIRVIAERGL
Fertiline	17	83-99	DSTKCGKLICTGISSIP

The international code for the representation of amino acids is used herein, either in the form of the one-letter code as used above or in the form of the three-letter code where appropriate. For the avoidance of doubt, the code as used is reproduced herein below in table 2.

Table 2: Amino acids code

One-letter code	Amino acid name	Three-letters code
G	Glycine	Gly
P	Proline	Pro
A	Alanine	Ala
V	Valine	Val
L	Leucine	Leu

	3	•
One-letter code	Amino acid name	Three-letters code
J	Isoleucine	Ile
M	Methionine	Met
С	Cysteine	Cys
F	Phenylalanine	Phe
Y	Tyrosine	Tyr
W	Tryptophan	Trp
Н	Histidine	His
К	Lysine	Lys
R	Arginine	Arg
Q	Glutamine	Glŋ
N	Asparagine	Asn
E	Glutamic Acid	Glu
D	Aspartic Acid	Asp
S	Serine	Ser
Т	Threonine	Thr

Up to day, the diseases in which tilted peptides are involved remain extremely difficult to

5 State of the art

10

Some research of means for inhibiting membrane fusion have been carried out. US-A-6,228,983, US-A-6,017,536 and US-A-6,060,065 disclose virus peptides which exhibit antifusogenic activities.

It is also know from Martin, I. and Ruysschaert J-M., Biochimica et Biophysica Acta 1240 (1995) 95-100, that a phospholipide, namely lysophosphatidylcholine is able to inhibit vesicles fusion induced by the NH_2 -terminal extremity of SIV/HIV fusogenic proteins.

15 Summary of the invention

It has now been surprisingly found that lipopeptide preparations may be used as anti-tilted-peptide agents.

Definitions

As used herein, the following terms must be understood according to the definitions given below.

5

The term "tilted peptide" refers to peptide comprising 10 to 30 amino acids and presenting a helicoïdal secondary structure with an axis forming an angle of 45 \pm 20 $^{\circ}$ with respect to the plane of the membrane.

10

The term "anti-tilted-peptide agent" refers to molecules able to inhibit or limit the destabilisation effect of a tilted peptide on a hydrophobic/hydrophilic interface, for instance on membranes.

15

The term "lipopeptide" refers to a molecule having a cyclic or linear peptidic part and a lipidic part consisting in a fatty acid chain.

The term "lipopeptide preparation" refers to a preparation containing at least one lipopeptide, either alone or in combination with at least one other component.

20

The term "derivatives of lipopeptides" encompasses molecules in which at least a moiety has been modified, as for instance, esters of lipopeptide, amides of lipopeptide, sulfonated aminomethane derived of lipopeptides, lipopeptides with a different succession of amino acids, and the like.

25

The term "lipopeptide family" refers to a family of lipopeptide having all a common peptidic backbone and different lipidic parts having different carbon chain lengths and isomeries.

30

The term "crude lipopeptide mixture" refers to a preparation containing a mixture of surfactins, iturins and fengycins, each containing various homologous molecules having different fatty acid chain lengths and isomeries, as well as other molecules such as carbohydrates, amino acids, pigments, trace elements, the proportion of the other molecules being inferior to 25 %.

35

The term "lipopeptide mixture" refers to a preparation containing lipopeptides of different families.

The term "lipopeptide homologous "refers to a lipopeptide of a given lipopeptide family having a specific number of carbon atoms and isomery in its fatty acid chain.

The term "aerobic conditions" relates to conditions, in a process for the production of lipopeptide preparation wherein the aeration rate is usual in the field

The term "microaerobic conditions" relates to conditions, in a process for the production of lipopeptide preparations, wherein the aeration rate is reduced vis-à-vis the aerobic conditions.

Description of the invention

5

10

15

20

25

30

35

The present invention relates to the use of lipopeptide preparations as anti-tilted-peptide agents. According to a preferred embodiment, the lipopeptide preparations comprise lipopeptides which are selected from the group consisting of cyclic and linear lipopeptides, their homologous and derivatives and mixtures thereof.

Preferably, the cyclic lipopeptides are selected from the group consisting of surfactins, iturins, and fengycins.

Surfactins may have formula (I)

wherein the total number of carbon atoms in the fatty acid chain is comprised between 12 to 17, n being comprised between 6 and 11, AA_1 is Glu or Gln, AA_4 is Val or Ala and AA_7 is Val, Ile or Leu. Preferably, the surfactins are selected from the group consisting in a surfactin wherein n is comprised between 7 and 9, AA_1 is Glu, AA_4 is Val and AA_7 is Leu. In a particular embodiment, the surfactins are selected from the group consisting of an iso-branched β -hydroxyled fatty acid chain containing 13 carbon atoms (SC13), a surfactin with a linear β -hydroxyled fatty acid chain containing 14 carbon atoms (SC14), and a surfactin with an iso-branched β -hydroxyled fatty acid chain containing 15 carbon atoms (SC15).

Iturins may have formula (II)

5

10

15

20

25

30

35

wherein the total number of carbon atoms in the fatty acid chain is comprised between from 13 to 17, n being comprised between 6 and 10, AA₁ is Asn or Asp, AA₄ is Gin, Pro or Ser, and AA₅ is Pro, Glu, or Gln, AA₆ is Asn or Ser, and AA₇ is Ser, Asn or Thr. Preferably, the iturins are selected from the group consisting in an iturin wherein n is comprised between 7 and 10, AA₁ is Asn, AA₄ is Gin, AA₅ is Pro, AA₆ is Asn and AA₇ is Ser. In a particularly preferred embodiment, the iturins are selected from the group consisting of a linear β-amino fatty acid chain containing 14 carbon atoms (IC14), an iturin with an iso-branched β-amino fatty acid chain containing 15 carbon atoms (IC15), an iturin with an iso-branched or linear β -amino fatty acid chain containing 16 carbon atoms (IC16), an iturin with an anteiso-branched β-amino fatty acid chain containing 17 carbon atoms (IC17)

wherein the total number of carbon atoms in the fatty acid chain is comprised between from 12 to 18, n being comprised between 8 and 14, AA₃ is D Tyr or L Tyr, AA₈ is Val or Ala, and AA_{θ} is L Tyr or D Tyr. Preferably, fengycln is fengycin A with a β -hydroxyled fatty acid chain containing 16 carbon atoms (FAC16), wherein AA_a is D Tyr, AA_a is Ala and AAa is L Tyr.

In a preferred embodiment of the invention, the lipopeptide preparations comprise at least two lipopeptides, which preferably belong to different lipopeptide families. One of the lipopeptides may be selected from the group consisting of SC13 and SC15 and the other lipopeptide may be FAC16.

According to this invention, the lipopeptides may be obtained by a method chosen from biosynthesis by a micro-organism, chemical synthesis and chemical modifications of biosynthetised lipopeptides.

The micro-organism may be chosen from the group consisting in Pseudomonas spp. Bacillus spp., Arthrobacter spp, Streptomyces spp., Serratia spp., Gluconobacter spp., and Agrobacterium spp. The species may be chosen from the group consisting of Bacillus subtilis, Bacillus licheniformis, and Bacillus globigii, Streptomyces aurantiacus, Arthrobacter MIS 38, Serratia marcescens, Gluconobacter cerinu, and Agrobacterium tumefaciens. Preferably, the Bacillus subtilis is a strain chosen from the group consisting of ATCC 7087 and S499.

The invention also relates to a process for the production of a lipopeptide preparation according to the invention, which comprises an aerobic step followed by a microaerobic step. In a particularly preferred embodiment, the process produces a foam containing a concentrated mixture of different lipopeptide families

Detailed description of the invention

5

10

15

20

25

30

35

The invention will be further illustrated below by the description of some ways of carrying it out, with reference to the appended figures, wherein:

Fig. 1 represents the fluorescence intensity evolution as a function of time for large unilamellar vesicles (LUV) mixture in the presence of SIV tilted peptide at a concentration of 0.966µM or in the presence of DMSO;

Fig. 2 represents the percentage of charged LUV fusion induced by SIV tilted peptide at a concentration of 0.966µM in the presence of different concentrations of lipopeptides or lysophosphatidylcholine in a Tris NaCl buffer at pH 8.0.

Fig. 3 represents the percentage of charged LUV fusion induced by SIV tilted peptide at a concentration of 0.966µM in the presence of a mix of SC13 and FAC16 in proportion 1:1 at a concentration of 8.05x10⁻¹ µM in comparison with the activity of SC13 and FAC16 alone at the same concentration in a Tris NaCl buffer at pH 8.0.; the white rectangle represents the expected value.

Fig. 4 represents the percentage of uncharged LUV fusion induced by SIV tilted peptide at a concentration of 0.966µM in the presence of different concentrations of SC15 and fengycins mixture in a Tris NaCl buffer at pH 8.0.

Fig. 6 represents the percentage of charged LUV fusion induced by SIV tilted peptide at a concentration of 0.966µM in the presence of different concentrations of lipopeptides in a Tris NaCl buffer at pH 7.4.

Fig. 7 represents the percentage of charged LUV fusion induced by SIV tilted peptide at a concentration of 0.966µM in the presence of a mix of SC15 and FAC16 in different molar proportion at a concentration of 1.29 µM in a Tris NaCl buffer at pH 7.4.; the dashed line represents the expected value.

Fig. 8 represents the percentage of charged LUV fusion induced by *Bordetella pertussis* tilted peptide at a concentration of 2.42 µM in the presence of SC15 or FAC16 at different concentrations in a Tris NaCl buffer at pH 7.4

Example

5

10

15

20

25

30

35

1. Production of lipopeptides

Bacillus subtilis 8 499 is well known from the literature; PEYPOUX et al., in European Journal of Biochemistry, Vol. 202, 101-106, 1991; JACQUES et al., in Applied Biochemistry and Biotechnology Vol. 77-79, 223-233, 1999; AKPA et al., in Applied Biochemistry and Biotechnology, Vol. 91-93, 551-561, 2001; HBID et al., in Applied Biochemistry and Biotechnology, Vol. 57-58, 571-579, 1996, and RAZAFINDRALAMBO et al., in Journal of Chromatography, Vol. 639, 81-85, 1993. This strain was isolated by Dr. Lucien DELCAMBE, (Centre National de Production et d'Etude des Substances d'Origine Microblenne in Liège) from Ituri, Congo.

The strain was grown on a solid rich medium (glucose 2%, peptone 1% and yeast extract 1%) at 30 °C during 48h. A colony was then used to inoculate 100 ml of optimised medium and grown at 130 rpm (incubator Shaker Model 625, New Brunswick, NJ, USA), at 30°C for 8 hours. 250µl of this pre-culture were then transferred into a 11-flask containing 500 ml of optimised medium. This second pre-culture was transferred into a 20

I-fermenter containing 12 litres of optimised medium after 16 h of incubation at 30°C at 130 rpm.

The composition of the optimised medium (Jacques et al., Appl. Biochem. Biotech., Vol. 77-79, 223-233,1999) is presented in Table 3.

5

10

15

Table 3: Composition of optimised medium

Peptone de caséine N1 (Organo-Technie)	30 g/l
Saccharose (Raffineries tirlemontolses)	20 g/l
Yeast extract (Organo-Technie)	7 g/l
KH ₂ PO ₄ (Merck)	1.9 g/j
CuSO ₄ (Merck)	0.001 mg/l
FeCl ₃ .6H ₂ O (Merck)	0.005 mg/i
NaMoO ₄ (Merck)	0.004 mg/l
KI (Merck)	0.002 mg/l
MnSO₄.H₂O (Merck)	3.6 mg/l
MgSO ₄ (Merck)	0.45 mg/l
ZNSO ₄ .7H ₂ O (Merck)	0.014 mg/l
H₃BO₃ (Merck)	0,01 mg/l
Citric acid (Merck)	10 mg/l

The fermenter used (BIOLAFITTE) is controlled by an electronic control unit for monitoring and automatically correcting the temperature and the pH. It was equipped with three Rushton turbines (TD4) with a diameter of 10 cm. Their positions from the bottom of the recipient are: 10, 20 and 30 cm.

The fermenter containing the optimised culture medium was sterilised in situ during 30 min at 121°C. The initial fermentation conditions were: temperature: 30 °C, pH: 7, stirring: 200 rpm. These parameters were kept constant automatically throughout the fermentation period and, in particular, the pH was kept at 7 by the addition of H₃PO₄ 3N or NaOH 3N.

The aeration rate was initially fixed at 6 l/min. After 7 hours, foam appeared and was continuously collected from the fermenter up to 23 h of culture. During this period, air supply was split between air inlet by the top of the fermenter and air inlet by the base of the fermenter. The collecting foam represented a volume of 1.5 l.

After 23h of culture, aeration by the base of the fermenter was completely closed, in such a way that the culture is under microaerobic conditions. The fermentation period was 72 h.

At the end of the fermentation, biomass was determined by optical density at 600 nm, dry weight and cell counting. Qualitative and quantitative analysis of Ilpopeptides in the foam and in the culture medium were performed by HPLC with on-line UV/ELSD (Evaporative Light Scattering Detector) detection.

The HPLC system used is a Waters 2690 Alliance System, with thermostatised auto sampler and column oven, a Waters 996 PDA UV detector and an Alitech ELSD detector. The column is a Waters C:18 Spherisorb, S5 ODS2, i.d. 4.6 mm and length 25 cm. The process conditions are as follows: flow: 1ml/min, temperature: 30°C, λ_A = 214 nm; λ_B = 254 nm and λ_C = 280 nm (simultaneous detection). The gradient used is given in Table 4, where ACN stands for acetonitrile and TFA for trifluoroacetic acid.

Table 4: HPLC gradient for the analysis of lipopeptides

		i abie	4.17	LLC SI	auton	,,0, ,,,	w =1101	J					
Time (min.)	0	2	26,5	28,5	30,5	55,5	60,5	65,5	90,5	92,5	100	110	115
% ACN	35	35	50	50	60	65	65	85	85	100	100	35	35
+ 0.05% TFA % water + 0.05% TFA	65	65	50	50	40	35	35	15	15	0	0	65	65
+ U.U576 11A	<u> </u>												

The process is a global determination method, which allows to detect in one run the three families of lipopeptides contained in the culture medium or in the foam (surfactins, iturins and fengycins). This method will be often used to control the percentage of recovery of lipopeptides in all samples. Results are presented in Table 5.

Table 5: Biomass and lipopeptide concentrations at the end of the culture for the culture medium and lipopeptide concentrations in the collected foam.

Culture medium	Foam
11.8	Nd
5.97	Nd
2.2 10°	Nd
344	1400
24	2500
	1500
	11.8 6.97 2.2 10 ⁸

n.d.: not determined

Similar results have been obtained with the strain Bacillus subtilis ATCC 7067.

20

25

5

10

2. Extraction of crude lipopeptide mixture

5

10

15

20

25

30

35

The extraction of lipopeptides is performed either on the foam or on the culture medium. The extraction procedure is exactly the same whatever the origin of the sample.

When fermentation is over, the bioreactor is emptied and the culture medium collected. and centrifuged at 2740 g during 45 minutes. This allows to remove quite 99 % of the Bacillus cells from the culture medium to simplify the further extraction and purification procedures.

The centrifuge supernatant is collected and the centrifuge residues are extracted twice with 50ml of methanol, to determine the effective concentration of lipopeptides.

Extraction consist of shaking, during 30 minutes, with 50 ml of methanol and further centrifugation. The two methanolic phases are pulled together and evaporated to dryness. The evaporation residue is re-dissolved in a known volume of methanol.

HPLC, with on-line UV/ELSD (Evaporative Light Scattering Detector) detection is performed on the extract and on the centrifuged methanolic phases, according to the method described in Table 4 to control the recovery of lipopeptides.

The supernatant is then passed through an ultrafiltration hollow fibre membrane system. Ultrafiltration plays an important role in the lipopeptides recovery as large volumes of media can be processed rapidly at low cost.

The ultrafiltration process comprises three steps. The first step is called the concentration step. The lipopeptides are present in the solution as micelles, the size of which is greater than 10,000 Da (between 30,000 and 50,000 Da), so that they are easily retained on a hollow membrane fibre which has a cut -off of 10,000 Da. The lipopeptides thus remain in the retentate contained in a tank.

HPLC, with the same apparatus and gradient as presented above, is performed on an aliquot of both the retentate and the permeate in order to control the percentage of lipopeptides in each fraction.

A second step, called diafiltration step is performed. Its principle is to add a known quantity of water in order to get the same value as at the beginning of the concentration step, to the remaining retentate. Filtration according to the same method is performed. The diafiltration process is applied two or three times, to wash out the small molecules, such as salts, small peptides and the like.

The third step is the permeation step. An organic solvent is added (volume/volume) to the retentate to destabilise the micelles in monomers. These monomers are of course smaller (quite about 1.000 Da) and can easily pass through the hollow fibre membrane of 10.000 Da cut-off. The high molecular weigh molecules, such as proteins or carbohydrates are retained in the retentate, while lipopeptides are present in the permeate, which is collected.

Once again HPLC is performed on each fraction, to check the percentage of lipopeptides. The global performance of this system is about 80-85 % recuperation. The permeate is then evaporated (using a Büchi like rotavapor) till all the organic solvent has disappeared and then lyophilised (using a freeze dryer at -50°C under 47.10°3 M Pa).

The product obtained at the end of the extraction process is a crude lipopeptide mixture, which is under the form of a powder. This product may find applications in the agro-food industry, oil industry, cosmetics, and pharmacy.

3. Purification

5

10

15

20

25

30

35

The first purification step allows to obtain fractions of each family of lipopeptides. The second purification step allows to separate each homologous in each family.

The samples are prepared by re-dissolution of the crude lipopeptide mixture (0.2 to 0.7 g) in mQ water (volume from 1.5 up to 3 ml), and placed in an ultrasonic bath, with a power not higher than 120 Watts, during 2-3 minutes.

Purification technique

The purification process is based on the column chromatography elution system, with octadecylsilicagel (ODS, Varian Bondesil C:18, 40µm, U.S.A.) as stationary phase. The chromatography system is a flash Chromatography Assembly, provided by Sigma-Aldrich.

The work pressure is between 0.5 and 1.5 bars. 30 g of ODS are utilized for purification of 0.2 to 0.7 g of crude lipopeptide mixture. These 30 g are poured in the column carefully in order to get a plane surface. Four filter papers Wattman n°1 are placed on top of the phase. The stationary phase in then conditioned with 60 ml of methanol and then with 60 ml of mQ water. After, the sample is placed on top of the column, and left to penetrate the gel for about 1-2 minutes. Lipopeptides are than eluted utilizing a gradient of acetonitrile (ACN): water: trifluoroacetic acid (TFA). Acetonitrile is HPLC grade provided by Sharlau, water is mQ Millipore and TFA is pure for synthesis, provided by SDS. The gradient is described below, in Table 6. Fractions of about 10ml are collected.

10

5

Table 6 Gradient used in Flash chromatography

Composition mix	% ACN	% H ₂ O	Volume (mi)
	+0.1 % TFA	+0.1 % TFA	
1	15	85	100
2	30	70	200
3	40	60	200
4	50	50	100
5	65	35	200
6	85	15	200

15

25

At the end, 100 ml of pure methanol (HPLC grade, Sharlaŭ) are passed through the column, in order to remove lipopeptides which could not have been desorbed of the column. An aliquot of each 10 ml fraction is passed on HPLC, to determine in which tubes lipopeptides are present. Tubes containing lipopeptides of a same lipopeptide family (either surfactin, or iturin or fengycin) are than pulled together, evaporated and lyophilised.

The three products obtained are respectively an iturins mixture, a fengycins mixture, and a surfactins mixture, purified up to 85-90 %.

The homologous molecules of surfactins (SC13, SC14 and SC15) and fengycins (FAC16) are respectively isolated from the above-mentioned surfactins mixture and fengycins mixtures by reversed phase chromatography using a Chromspher 5µm C18 column (1 x 25 cm, Chrompack, Middelburg, The Netherlands).

The following conditions are used: flow rate at 4 ml/mln, ACN: H₂O; TFA 0.05% as mobile phase under isocratic conditions for surfactin (85% ACN + 0.05% TFA) and under the following gradient for fengyclns:

Time (min)	0	30	43
Acetonítrile + 0.05% TFA	60	65	65

The detection is performed at 214 and 280 nm simultaneously.

Fractions are collected by hand in glass tubes. Several injections are carried out before pooling the similar fractions. Evaporation of the solvent is performed with a Büchi like rotavapor. Fractions are then lyophilised and submitted to purity control tests.

At the end of this step, four different compositions containing each one of the following molecules are obtained:

- SC13: surfactin with an iso-branched β -hydroxyled fatty acid chain containing 13 carbon atoms
- SC14: surfactin with a linear β-hydroxyled fatty acid chain containing 14 carbon atoms
- SC15: surfactin with an iso-branched β-hydroxyled fatty acid chain containing 15 carbon atoms
- FAC16: fengyoin A with a β-hydroxyled fatty acid chain containing 16 carbon atoms

Each of these homologous is a product with a very high added value.

4. Characterisation

5

10

15

20

30

ì

- Families and homologous of lipopeptides are then characterised. This characterisation is carried out by four different methods
 - 1) HPLC UV/ELSD characterisation by co-chromatography with standards of each family. The method used has already been described in table 4.
 - Surface tension measurement, using either a Tensimat[™] or a Lauda TVT. Lipopeptides are solubilised in an aqueous buffer solution (pH 8.5 for surfactins, pH 7.0 for iturins A and fengycins). Several dijutions (10, 50, 100, 200, 500, 1000 and

10000 times) are also needed to establish the profile characteristic curve of the surface tension versus the dilutions. These curves are then compared with references products.

 Composition in amino acids. Chemical formulas of the cyclic lipopeptides rings are well known, and the number of amino acids residues are well defined for each family.

5

10

15

20

25

30

35

An acidic hydrolysis with HCl 6.0 N + 0.1% phenol is carried out. 1 mg of raw material are weighted in a Sovirel screw-capped tube. Nitrogen is injected in continuous to saturate the atmosphere in the tube (no air is allowed to enter the enceinte). The tubes are then heated at 110°C during 24 hours.

After 24 hours, tubes are taken out of the heater and placed in pilled ice. The remaining HCl is evaporated under vacuum. In the cooled tube, an known volume of norleucine is then added at a known concentration. The tubes are vortexed for 10 seconds and centrifuged 6 minutes at 7825 g. An aliquot of the supernatants are then collected and adjusted to pH 2.2 with NaOH 7.5 N, in a 5 ml HPLC vial. When pH is 2.2 is reached, a citrate buffer (also pH 2.2) is added to obtain a final concentration of norleucine round 500nM/ml.

The sample is then filtered on 0.2 µm (Gelman, 0.2µm filters) and 20µl are injected automatically in the amino acids analyser (Stein & Moor, Biochrom 20 Plus, Pharmacia-Amersham) and revealed with ninhydrin. Detection wavelengths are 440 nm and 570 nm . The % of amino acids residues are calculated and compared to the ones of the literature.

4) Maldi-TOF analysis as characterisation technique is performed on the samples, according to the method described by Williams et al., 2000 in J. Mass Spectrom., 37, 259-264.

It is important to note that, although - as described above - the lipopeptides have been obtained by extraction and purification after biosynthesis, each of the lipopeptides homologous which, according to the present invention, may be used as anti-tilted-peptide agent may also be obtained either by chemical synthesis, or by chemical modifications of biosynthetised lipopeptides.

5. Effects of the lipopeptide preparations on membrane fusion induced by a tilted peptide

A number of different systems have been developed to assay peptide membrane fusion activity. Large unilamellar vesicles (LUV) are appropriate model for biological membrane fusion. Their curvature and their stability mimic suitably the cell membrane. Several different techniques for detecting and quantifying vesicle fusion are in common use. These include fluorescence assays that monitor fusion-induced lipid mixing between the two lipid bilayers of the membranes by observing the increase of fluorescence of a probe included in a part of vesicles in mixture. The dilution of the probe by fusion of the two bilayers from the two categories of vesicles causes a decrease of the self-quenching phenomenon leading to an increase of the fluorescence intensity.

Fusion requirements for simple membrane model systems such as LUV are far from those known to be required for biological membranes. However, such studies undoubtedly contribute to a molecular description of different steps of the fusion process.

Large unilamellar vesicles (LUV) preparation

Two sets of LUV are prepared: LUV with fluorescent probe (labelled LUV) and free probe LUV (unlabelled LUV). The probe used is the octadecyl rhodamine chloride (R18) (Molecular probes, Eugene, OR).

The first step is the preparation of large multijamellar vesicles. For this, a mixing of different lipids is operated in a round bottomed Büchi flask.

Two lipid compositions are tested: a composition with charged lipids and a composition with uncharged lipids. Charged LUV contain phospholipids such as phosphatidylinositol (PI) and phosphatidylserine (PS) that are electrically charged. The charged lipid composition renders the LUV model closer to biological membranes.

The lipid composition, their molar ratio, the concentration of the lipid stock solutions prepared in chloroform/methanol (2/1) solvent and the taken volume are presented in tables 7 and 8, for charged LUV and uncharged LUV respectively.

5

10

15

25

Table 7: Lipid composition of charged LUV, their molar ratio, the concentration of the lipid stock solutions and the taken volume.

Lipid composition	Molar ratio	Stock concentration (mg/ml)	Volumes for free probe LUV (µI)	Volumes for labelled LUV (µI)
Egg phosphatidylcholine (PC) (Sigma, St. Louis, MO, USA)	6	10.00	511.8	321.6
Egg phosphatidylethanolamine (PE) (Lipid products, redhill, Sumey, UK)	6	17.86	280.4	175.9
Phosphatidylinositol (PI) (Lipid products, Redhill, Surrey, UK)	0.5	10.00	46.9	29.4
Phosphatidylserine (PS) (Avanti)	2	10.00	165,2	105.6
Sphingomyelin (SM) (Sigma, St. Louis, MO, USA)	1	10,00	80,0	50.0
Cholesterol (Chol) (Sigma, St. Louis, MO, USA)	1.5	10.00	195.3	122.7

Table 8: Lipid composition of uncharged LUV, their molar ratio, the concentration of the lipid stock solutions and the taken volume.

10

15

	Molar ratio	Stock concentration (mg/ml)	Volume for free probe LUV (µl)	Volumes for labelled LUV (µl)
Egg phosphatidylchóline (PC) (Sigma, St. Louis, MO, USA)	1	10.00	452	282
Egg phosphatidylethanolamine (PE) (Lipid products, Redhill, Surrey, UK)	1	18.52	253	161
Sphingomyelin (SM) (Sigma, St. Louis, MO, USA)	1	10,00	428	267
Cholesterol (Chol) (Sigma, St. Louis, MO, USA)	0.76	10.00	174	110 μΙ

For the labelled LUV, R18 is added at 5.18% and 6.30% of total lipid concentration for charged and uncharged LUV respectively.

The solvent is evaporated by use of a Büchi evaporator. Then, the Büchi flasks are placed in a dessicator during 24 hours. After, the lipid films are wetted by adding 3 and 2 ml of buffer in the free probe LUV flask and the labelled LUV flask respectively. Two compositions of buffer are tested. One is composed by 10mM Tris (Sigma, St. Louis, MO, USA), 150 mM NaCl (Merck, Darmstadt, Germany), 0.01% EDTA (Merck, Darmstadt, Germany), 1mM NaN₃ (Sigma, St. Louis, MO, USA) with the pH at 8.0 or 7.4, adjusted by

HCI or NaCl 1M solution. The other is composed by Tris base 10 mM at pH 8.0. MilliQ water (Water purification Millipore, Molsheim, France) is used to prepare the solutions. The flasks are then dived in a 37°C bain-marie during one hour and agitated each 15 minutes.

5

In a second step, large unilamellar vesicles (LUV) are prepared from large multilamellar vesicles. For this, large multilamellar vesicles solutions are transferred from flasks to tubes freezing-proof to undergo 5 cycles of freezing/defrosting. The freezing is performed by plunging the tubes in liquid nitrogen during one minute and the defrosting is performed by plunging the tubes in a 37°C bain-marie during about 2 minutes. After, each solution is extruded 10 times on a Lipex Biomembranes Extruder (Vancouver, Canada) through one prefilter and two stacked polycarbonate membranes with a pore size of 0.1 µm (Polycarbonate filters Lipex Biomembranes, Vancouver, Canada) previously washed 5 times with the buffer.

15

10

The exact lipid concentration in the freshly prepared large unilamellar vesicle solution is determined by the following procedure. A 30 µl and a 60µl aliquot of each LUV sample is placed in assay tubes. A 30µl and a 60 µl aliquot of the buffer are used for control. Three repetitions are performed.

20

The aqueous solution is evaporated in an air drier (Dri-block FisherScientific Techne, Cambridge, UK) warmed at 60°C. After cooling, 400 µl of perchloric acid (Perchloric acid 60 %, Merck Eurolab, Leuven) is added in each tube. Four controls of the perchloric acid are carried out (400µl) and four standard solutions constituted by sodium dihydrogen phosphate monohydrate (Merck, Darmstadt, Germany) at 125 µM (400µl) are also prepared.

25

30

35

All the tubes are then placed during 45 minutes in a sand bath (LHG) preheated at 200°C. A marble is put on each tube to avoid the solution evaporation. After cooling, two milliliters of ammonium heptamolybdate tetrahydrate (Merck, Darmstadt, Germany) and 100 µl of 1-amino-2-hydroxy-naphthalene-sulfonic acid (AANS) (Merck, Darmstadt, Germany) are added in each tube. The tubes are then warmed during ten minutes in a bain-marie at 100°C. The solution is cooling in an ice bath before measuring the absorbance of each solution at 830 nm on a spectrometer lambda 40 UV/VIS (Perkin-Elmer, Norwalk, CT USA) with a slit width of 2.00 nm. Experiments were conducted in a 3 ml cuvette with two frosted sides.

The exact lipid concentration is calculated by the following equation:

[Lipid] =
$$\frac{A_{\text{Sample}} - A_{\text{Control buffler}}}{A_{\text{Standard}} - A_{\text{Perchloric acid control}}} \times \frac{0.05}{x} \times \frac{100}{100 - \%\text{Chol}}$$

where A_{sample} , $A_{\text{control} \text{ buffer}}$ A_{standard} and $A_{\text{perchloric acid control}}$ are the absorbance of the LUV sample, of the buffer control, of the sodium dihydrogenate phosphate standard, and of the perchloric acid control, respectively, x = 0.03 for 30µl aliquot and x = 0.06 for 60 µl aliquot, and %Chol is the percentage of cholesterol in the composition of the LUV.

Assay of vesicles fusion

5

20

30

Vesicles fusion is determined by measuring the fluorescence intensity change resulting from the fluorescence of the R18 probe, Fluorescence is monitored using fluorimeter LS-50B Perkin-Elmer (Norwalk, CT USA). Experiments are conducted in a 2 ml cuvette with right angle illumination. Excitation and emission wavelength are set at 590 nm and 560 nm, respectively, employing a slit width of 10 nm. 300 µl of labelled LUV are mixed with 1200µl probe free LUV.

25µl of anti-tilted-peptide agent to be tested, in solution in dimethyl sulfoxyde (DMSO, Sigma, St. Louis, MO, USA) at different concentrations are added. 25µl of the tilted peptide solution at a fixed concentration in DMSO are then added. The measurement of fluorescence is operated during 15 minutes. For each measurement, a blanco where the unlabelled LUV are replaced by buffer is carried out. This curve is substracted to the measurement curve. The maximal fluorescence intensity of the resulting curve is taken as data. The percentage of vesicle fusion is calculated by the following equation:

25 % fusion =
$$\left(\frac{I_{sample} - I_{DMSO}}{I_{iilled peptide} - I_{DMSO}}\right) \times 100$$

where I_{sample}, I_{DMSO}, I_{tilisad peptide} are the maximal intensity of fluorescence of the mix of LUV with anti-tilted-peptide agent and tilted peptide, of the mix of LUV with DMSO and of the mix of LUV with tilted peptide and DMSO, respectively.

The 0% vesicle fusion is determined by measuring the fluorescence of the mix of LUV with 50µl of DMSO. The 100% vesicle fusion is determined by measuring the fluorescence of the mix of LUV with 25 µl of SIV tilted peptide and 25µl of DMSO.

A control of the absence of fusion (data not shown) in presence of anti-tilted-peptide agent alone is carried out.

5 Results

10

15

20

25

The ability of tilted peptide to induce intervesicular lipid mixing of LUV is demonstrated by measuring the increase of the fluorescence intensity of the R18 occurring during mixing of fluorescently labelled and unlabelled population of vesicles. The dilution of the probe during the mixing induces the decrease of the self-quenching phenomenon existing when the R18 probe is highly concentrated in the lipid medium.

Fig. 1 presents as example the complete curve of fluorescence intensity variation during the 15 minutes of measurement when the tilted peptide SIV or DMSO is added to the two populations of LUV in mixture. The maximum intensity in the SIV peptide curve is 414.2 (arbitrary unit) and 105.7 in the DMSO curve.

As can be seen from figure 1, SIV tilted peptide induces pronounced fusion of labelled and unlabelled LUV populations, whereas the fusion of the two populations is very slight when DMSO alone is added. In presence of lipopeptides, no fusion is observed (data not shown). This can explain the negative values of the fusion percentage obtained in the different graphs.

An overview of the different sets of experiments carried out according to the present invention with lipopeptides or, as already known from the state of the art, with lysophosphatidylcholine is presented in Table 9.

Table 9: the different sets of experiments carried out with anti-tilted-peptide agents

LUV composition	Buffer	Hq	Tilted peptide	Anti-tilted-peptide Agent	Fig.
Charged	Tris 10mM NaCl 150 mM	8	SIV	SC15, SC14, SC13 Fengycins mixture FAC16 Lysophosphatidylcholine Sigma, St-Louis, USA (comparative example)	2
Charged	Tris 10mM NaCl 150 mM	8	SIV	SC13 FAC16 SC13/FAC16 (1:1)	3

LUV composition	Buffer	Hq	Tilted peptide	Anti-tilted-peptide Agent	Fig.
Uncharged	Tris 10mM NaCl 150 mM	8	SIV	SC15	4
Uncharged	Tris 10 mM	8	SIV	Fengycins mixture SC15 Fengycins mixture	5
Charged	Tris 10mM NaCl 150 mM	7.4	SIV	SC15 FAC16 Iturins A mixture	6
Charged	Tris 10mM NaCi 150 mM	7.4	SIV	Crude lipopeptides mixture SC15 FAC16 SC15/FAC16	7
Charged	Tris 10mM NaCl 150 mM	7.4	Bordetella pertussis	SC15 FAC16	8

SIV tilted peptide has been obtained from SYNT:EM (Nîmes, France). This tilted peptide has the amino acid sequence GVFVLGFLGFLA, and induces viral fusion with the host cell.

5

10

15

20

25

The tilted peptide of *Bordetella pertussis* has been obtained from EPYTOP (Nîmes, France), has the sequence MNTNLYRLVFSHVRGMLV and is part of the signal sequence which causes the secretion of a protein involved in the whooping cough disease.

Figure 2 represents the percentage of vesicles fusion as a function of anti-tilted peptide agent concentration in the case of charged LUV in a Tris NaCl buffer at pH 8.0. For all antifusogenic agents tested, their addition to the medium results in a concentration dependent inhibition of the LUV fusion. The fusion percentage in presence of lipopeptides falls sharply at concentration below 1µM.

For fengycins mixture and FAC16, the inhibition is superior to 60% at 3.22.10 $^{-1}\mu$ M. The complete inhibition is reached at concentration near 1 μ M.

For the three surfactins, the inhibition reaches 40-50% at concentrations around 1µM. For the surfactins category, the complete inhibition is dependent on the chain of the fatty acid. The SC15 and SC14 inhibit nearly completely the fusion at concentration near 2.4 µM whereas SC13 inhibits the fusion at concentration superior to 4.8 µM. At these concentrations, lipopeptides do not induce lysis of the vesicles since no increase of the fluorescence is observed when they are added without tilted peptide in the medium (data not shown).

Lysophosphatidylcholine is known from the literature (Martin, I. and Ruysschaert J-M, Biochimica et Biophysica Acta 1240 (1995) 95-100) to have an antifusogenic effect. It has therefore been tested as comparative example. One can see that at concentrations below 1 µM, lysophosphatidylcholine has no effect at all on the fusion percentage. A slight antifusogenic activity (<50%) exists at concentrations between 1 and 2 µM. It is between 1.5 and 3.5-fold lower than surfactins activity and between 2 and 5-fold lower than fengyelns activity.

5

10

15

20

25

30

35

The mix of lipopeptides from two different families (SC13 and FAC16) exerts also an inhibition on the fusion (Figure 3). A synergistic effect between the two molecules exists, the value for the mix being inferior to the expected one, which is represented on the Figure by a white rectangle.

The absence of charge in the lipids composing the LUV does not impede the antifusogenic activity of SC15 and fengycins mixture towards the fusion induced by SIV tilted peptide in a Tris NaCl buffer at pH 8.0 (Figure 4). The fengycins mixture and the SC15 inhibit completely the fusion at concentration near 1µM and near 3.2µM, respectively.

The absence of NaCl in the buffer does not impede the antifusogenic activity of SC15 and fengyoins mixture when the other conditions are the same (Figure 5). The activity of SC15 is even slightly improved. Complete inhibition is reached for concentrations near 2µM.

At the physiological pH (pH 7.4), the behaviour of SC15, FAC16 and iturins A mixture towards the fusion of charged LUV induced by SIV tilted peptide is similar (Figure 6). At the concentration of 0.8µM the inhibition is superior to 60%. It reaches 90% in the case of FAC16. The inhibition is complete for concentration near 2.4 µM. The antifusogenic activity of crude lipopeptides mixture is slightly lower. At concentration near 2µM the inhibition is 40%.

In these conditions, the mix of SC15 and FAC16 in different molar ratio develops a synergistic effect on the inhibitory activity (Figure 7). The antifusogenic activity of the mix at all tested percentages is around 3-fold higher than the expected one, which are represented by the dashed line.

The lipopeptides are active towards different tilted peptides. Figure 8 show example of lipopeptides inhibition activity towards the fusion induced by the tilted peptide of Bordetella pertussis. The fusogenic effect of the Bordetella pertussis tilted peptide is inhibited completely by FAC16 at concentration near 1.61 μ M and by SC15 at concentration near 4.8 μ M.

CLAIMS

- 1. Use of lipopeptide preparations as anti-tilted-peptide agents.
- Use according to claim 1, wherein the lipopeptide preparations comprise lipopeptides
 which are selected from the group consisting of cyclic and linear lipopeptides, their
 homologous and derivatives and mixtures thereof.
- Use according to claim 2, wherein the cyclic lipopeptides are selected from the group consisting of surfactins, iturins and fengycins.
- 4. Use according to claim 3, wherein surfactins have formula (I)

10

20

5

- wherein the total number of carbon atoms in the fatty acid chain is comprised between 12 to 17, π being comprised between 6 and 11, AA₁ is Glu or Gln, AA₄ is Val or Ala and AA₇ is Val, Ite or Leu.
 - 5. Use according to any of claims 3 and 4, wherein the surfactins are selected from the group consisting in a surfactin wherein n is comprised between 7 and 9, AA₁ is Glu, AA₂ is Val and AA₇ is Leu.
 - 6. Use according to claim 5 wherein the surfactins are selected from the group consisting of an iso-branched β-hydroxyled fatty acid chain containing 13 carbon atoms (SC13), a surfactin with a linear β-hydroxyled fatty acid chain containing 14 carbon atoms (SC14), and a surfactin with an iso-branched β-hydroxyled fatty acid chain containing 15 carbon atoms (SC15).
 - 7. Use according to any of claims 3 to 6, wherein iturins have formula (II)

30

25

wherein the total number of carbon atoms in the fatty acid chain is comprised between from 13 to 17, n being comprised between 6 and 10, AA₁ is Asn or Asp, AA₄ is Gin, Pro or Ser, and AA₅ is Pro, Glu, or Gin, AA₅ is Asn or Ser, and AA₇ is Ser, Asn or Thr.

- 8. Use according to any of claims 3 and 7, wherein the iturins are selected from the group consisting in an iturin wherein n is comprised between 7 and 10, AA_1 is AS_1 , AA_4 is AS_1 is AS_2 is AS_3 is AS_4 is AS_4 is AS_4 is AS_4 is AS_5 is AS_6 is AS_7 is AS_7 .
- 9. Use according to claim 8 wherein the iturins are selected from the group consisting of a linear β-amino fatty acid chain containing 14 carbon atoms (IC14), an iturin with an iso-branched β-amino fatty acid chain containing 15 carbon atoms (IC15), an iturin with an iso-branched or linear β-amino fatty acid chain containing 16 carbon atoms (IC16), an iturin with an anteiso-branched β-amino fatty acid chain containing 17 carbon atoms (IC17)
- 10. Use according to any of claims 3 to 9, wherein fengycins have formula (III)

 CH₃(CH₂)_nCHOH(CH₂)CO→L Glu →D Orn → AA₃ →D Allo Thr →L Glu →D AA₆

 O ←L IIe ← AA₆ ←L Gin ←L Pro

15

20

25

30

35

wherein the total number of carbon atoms in the fatty acid chain is comprised between from 12 to 18, π being comprised between 8 and 14, π is D Tyr or L Tyr, π is Valor Ala, and π is L Tyr or D Tyr.

- 11. Use according to claim 10, wherein fengycin is fengycin A with a β-hydroxyled fatty acid chain containing 16 carbon atoms (FAC16), wherein AA₃ is D Tyr, AA₆ is Ala and AA₆ is L Tyr.
- 12. Use according to any of the preceding claims, wherein the lipopeptide preparations comprise at least two lipopeptides.
- 13. Use according to claim 12, wherein the lipopeptides belong to different lipopeptide families.
- 14. Use according to claim 13, wherein one of the lipopeptides is selected from the group consisting of SC13 and SC15 and the other lipopeptide is FAC16.
- 15. Use according to any of the preceding claims, wherein the lipopeptides have been obtained by a method chosen from biosynthesis by a micro-organism, chemical synthesis and chemical modifications of biosynthetised lipopeptides.
- 16. Use according to claim 15, wherein the micro-organism is chosen from the group consisting in Pseudomonas spp, Bacillus spp., Arthrobacter spp, Streptomyces spp., Serratia spp., Gluconobacter spp., and Agrobacterium spp.
- 17. Use according to claim 16, wherein the species are chosen from the group consisting of Bacillus subtilis, Bacillus licheniformis, and Bacillus globigii, Streptomyces aurantiacus, Arthrobacter MIS 38, Serratia marcescens, Gluconobacter cerinu, and Agrobacterium tumefaciens

- 18. Use according to claim 17, wherein the Bacillus subtilis is a strain chosen from the group consisting of ATCC 7067 and S499.
- 19. Process for the production of a lipopeptide preparation according to any of claims 15 to 18, which comprises an aerobic step followed by a microaerobic step.
- 20. Process according to claim 19, which produces a foam containing a concentrated mixture of different lipopeptide families

ABSTRACT

Novel use of lipopeptide preparations

8

The present invention relates to the use of lipopeptide preparations as anti-tilted-peptide agent, which are able to inhibit or limit the destabilisation effect of tilted peptides on hydrophobic/hydrophilic interfaces, for instance on membranes. The lipopeptides comprise surfactins, iturins, and fengycins. It also relates to a process for the production of the lipopeptide preparations.

15

Figure 2

Figure

Figure 4

Figure 5

Figure 6

Figure 7

Tigure 8

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BURDERS		•			
IMAGE CUT OFF AT TOP, BOTTO	OM OR SID	ES	•		
FADED TEXT OR DRAWING		- X -			
☐ BLURRED OR ILLEGIBLE TEXT	OR DRAW	ING		:	
☐ SKEWED/SLANTED IMAGES			••••••	*	· ·
☐ COLOR OR BLACK AND WHITE	PHOTOGR	APHS			
☐ GRAY SCALE DOCUMENTS				:	
LINES OR MARKS ON ORIGINAL	L DOCUME	NT	•	•. • •	
REFERENCE(S) OR EXHIBIT(S) S	SUBMITTEL	ARE I	POOR QUA	LITY	
OTHER:				<u> </u>	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.