ACCELERATION

DETERMINISTIC OPTIMAL GROWTH MODEL

• Consider the following social planner's problem:

$$\max_{c_t, k_{t+1}} \sum_{t=0}^\infty eta^t rac{c_t^{1-\gamma}}{1-\gamma},$$

s.t. $c_t + k_{t+1} = k_t^{lpha} + (1-\delta)k_t$, and $k_0 > 0$ is given.

• The recursive formulation is given by

$$v(k_t) = \max_{c_t, k_{t+1}} [rac{c_t^{1-\gamma}}{1-\gamma} + eta v(k_{t+1})],$$

s.t. $c_t + k_{t+1} = k_t^{lpha} + (1-\delta)k_t$, and $k_0 > 0$ is given. Or

$$v(k_t) = \max_{c_t, k_{t+1}} \{ rac{[k_t^lpha + (1-\delta)k_t - k_{t+1}]^{1-\gamma}}{1-\gamma} + eta v(k_{t+1}) \}$$

TRADEOFF: PRECISION VS DURATION

grid number	maximum error	Duration
100	0.0768	1.56
200	0.0364	6.47
400	0.0192	25.41
800	0.0118	101.88
1600	0.0059	415.94

• The curse of dimensionality occurs when dealing with multiple state variables (eg., stochastic models).

WHY IS THE BENCHMARK ALGORITHM SO SLOW?

- using lots of loops (scalar operation)
- interpreted language is slow
 - interpreted language vs compiled languages
- code is executing on a single CPU core
- algorithm is not optimized

POSSIBLE SOLUTIONS

reasons	solutions
scalar operation	vectorization
slow interpreted language	compilation
executing on a single core	parallelization
algorithm is not optimized	optimization

ACCELERATION

- vectorization
- compilation
- parallelization
 - GPU acceleration
- algorithm optimization
 - standard tricks: concavity and monotonicity
 - multigrid method
 - interpolation
 - beyond value function iteration

VECTORIZATION

- an operation that operates on entire arrays (vector or matrix), also called array programming
 - lacktriangledown calculate v as a vector function, treat k as a vector
 - \circ for each k_t , calculate the objective function for all k_{t+1}
 - \circ calculate all k_t together
- In Python, most functions can operate on vectors directly.
- tradeoff
 - RAM demanding for huge vectors
 - programming language dependent
 - not possible to implement lower-level optimization techniques

EXAMPLE

```
def CRRA(c):
    return c** (1-gamma) / (1-gamma)
def u(c):
    res = np.empty_like(c, dtype=float)
   positive_mask = c > 0
    res[positive_mask] = CRRA(c[positive_mask])
    res[~positive_mask] = -np.inf
    return res
def budget(k, x):
    return np.subtract.outer(k**alpha + (1-delta)*k, x)
c = budget(kgrid, kgrid) # consumption matrix, calculate once for all
utility = u(c) # utility matrix, calculate once for all
def V_update(V_next):
    rhs = utility + beta * V_next
   V \max = np.\max(rhs,axis=1)
   g index = np.argmax(rhs, axis=1)
   g_k = kgrid[g_index]
    return V max, q k
```

grid	benchmark	vectorization
100	1.56	0.005
200	6.47	0.021
400	25.41	0.040
800	101.88	0.129
1600	415.94	0.886

COMPILATION

- Pros: substantial speed gain, comparable to that of C/Fortran
- Cons:
- requires additional compilation time
- imposes limitations on coding
- OS/platform/hardware dependent

A SIMPLE WAY: USE Numba JIT

```
1. installation: conda install numba
2. import: from numba import njit
3. usage
@njit
def test():
    pass
```

or

```
def test():
    pass

test = njit(test)
```

The second method is recommended, since it can be easily switched off:

```
bytecode = True

if bytecode:
    test = njit(test)
```

grid	benchmark	bytecode
100	1.56	0.025
200	6.47	0.098
400	25.41	0.388
800	101.88	1.549
1600	415.94	6.262

PARALLELIZATION

- Pros: allows for parallel execution of independent computations
 - GPU computing
- Cons:
- not suitable for performing serial dependent computations
- hardware dependent
- requires specific modifications to the algorithm
- communication cost might be very high

A SIMPLE WAY: USE Numba JIT

```
1.installation: conda install numba
2.import: from numba import njit, prange
3.usage
@njit(parallel=True)
def test():
    for i in prange(n):
        pass
```

or

```
def test():
    pass

test = njit(test, parallel=True)
```

The second method is recommended, since it can be easily switched off:

```
parallel = True
test = njit(test, parallel=parallel)
```

grid	benchmark	bytecode	parallelization
100	1.56	0.025	0.018
200	6.47	0.098	0.039
400	25.41	0.388	0.087
800	101.88	1.549	0.269
1600	415.94	6.262	1.382

ALGORITHM OPTIMIZATION

- standard tricks: concavity and monotonicity
- multigrid method
- interpolation
- beyond value function iteration

BENCHMARK ALGORITHM

OPTIMIZED ALGORITHM

grid	benchmark	concavity
100	1.56	0.911
200	6.47	3.621
400	25.41	14.596
800	101.88	57.786
1600	415.94	242.854

• can work with compilation and parallelization

MONOTONICITY OF POLICY FUNCTION

- ullet For each k_t , we must have $g(k_t) \geq g(k_{t+1}).$ Hence we only need to search between $g(k_{t+1})$ and $k_{max}.$
 - Pros: reduce half of the computational workload
 - Cons: serial dependent, cannot be parallelized

BENCHMARK ALGORITHM

OPTIMIZED ALGORITHM

grid	benchmark	concavity	monotonicity
100	1.56	0.911	0.601
200	6.47	3.621	2.397
400	25.41	14.596	9.497
800	101.88	57.786	37.096
1600	415.94	242.854	151.907

- can work with concavity
 - How much speed improvement can we attain if we make use of both concavity and monotonicity?

grid	benchmark	concavity	monotonicity	both concavity and monotonicity
100	1.56	0.911	0.601	0.067
200	6.47	3.621	2.397	0.150
400	25.41	14.596	9.497	0.295
800	101.88	57.786	37.096	0.588
1600	415.94	242.854	151.907	1.123

[•] substantial speed gains can be achieved with both concavity and monotonicity

MULTIGRID METHOD

- Solve the model under a relatively sparse grid with mesh size h_0 , which results in a fixed point V^{h_0} (converge very fast!).
- ullet V^{h_0} can then be used as initial condition for the value function iteration with a finer mesh size $h_1 < h_0$.
 - Since the distance between V^{h_0} and the true fixed point is very close, it requires significantly fewer steps to achieve convergence.

algorithm	grid number	duration	Iterations
benchmark	1600	416	284
multigrid	100+1600	1.5+47	284+36

- The time has been reduced by 88%.
- can work with any optimization method

INTERPOLATION

- use iterpolation to make discrete function continuous
 - pros: It is possible to achieve a desired level of precision using sparser grids, which results in reduced computation time compared to the standard algorithm.
 - cons: Utilizing lower-level optimization techniques can be challenging, unless you are willing to write the interpolation and maximization code from scratch.

CODE EXAMPLE

```
from scipy.optimize import minimize_scalar
def V_current(k_next, k, kgrid, V):
    c = budget(k, k_next)
   V_interp = np.interp(k_next, kgrid, V)
    res = -(u(c) + beta * V_interp)
    return res
def V_max(k_index, kgrid, V):
   k = kgrid[k_index]
   k_bound = budget(k, 0)
    res = minimize_scalar(fun=V_current, bounds=(
        kmin, k_bound), args=(k, kgrid, V))
   V \max = -res.fun
   q_k = res.x
    return V max, q k
```

grid	benchmark	interpolation
100	1.56	3.58
200	6.47	6.74
400	25.41	12.79
800	101.88	25.52
1600	415.94	50.56

• can work with both compilation and parallelization

NUMBER OF GRIDS NEEDED TO ACHIEVE THE SAME PRICISION

benchmark: grid	ark: grid benchmark: error interpolation: grid		interpolation: error	
800	0.008	140	0.008	
1600	0.003	350	0.003	

- Aside from the interpolation method, the benchmark algorithm maintains the same level of precision as the other algorithms mentioned above.
- It is possible to reduced computation time by using sparser grids.

SUMMARY OF DURATION

- the same precision as the benchmark model with 1600 grids
- without compilation or parallelization

algorithm	compilation	parallelization	duration
benchmark			415.940
concavity			242.854
monotonicity			151.907
multigrids			49.950
interpolation (350)			11.247
interpolation with multigrids (350)			3.926
concavity and monotonicity			1.123
vectorization			0.886
multigrids with concavity and monotonicity			0.209

SUMMARY OF DURATION

- the same precision as the benchmark model with 1600 grids
- with compilation or/and parallelization

algorithm	compilation	parallelization	duration
monotonicity	Υ		2.508
benchmark	Υ	Υ	1.382
concavity	Υ	Υ	1.036
multigrids	Υ	Υ	0.149
interpolation (350)	Υ	Υ	0.036
interpolation with multigrids (350)	Υ	Υ	0.023
concavity and monotonicity	Υ		0.023
multigrids with concavity and monotonicity	Υ		0.005

BEYOND VALUE FUNCTION ITERATION

- policy function iteration
- time iteration
- endogenous grid
- machine learning
- etc