Совместное распределение. Независимость. Условное матожидание и дисперсия.

Классная работа

1. Совместное распределение случайных величин ξ и η имеет плотность

$$\rho_{\xi,\eta}(x,y) = \begin{cases} 4(x+y), & 0 \le x \le 1, 0 \le y \le 1\\ 0, & otherwise \end{cases}$$

Найдите

- (a) E_{ξ} , E_{η}
- (b) D_{ξ}, D_{η}
- (c) $E_{\xi\eta}$
- (d) $cov(\xi, \eta)$.
- 2. Случайные величины ξ и η независимы и нормально распределены с параметрами μ и σ . Найти коэффициент корреляции величин $a\xi+b\eta$ и $a\xi-b\eta$.
- 3. Найти коэффициент корреляции между ξ и $\eta=e^{-\xi}$, если ξ имеет стандартное нормальное распределение N(0,1).
- 4. Совместное распределение случайных величин ξ и η имеет плотность $\rho=1-e^{-(x+y)}$ (x,y > 0). Найти:
 - (a) $E(\xi|\eta = 2)$
 - (b) $D(\xi|\eta = 2)$
 - (c) $E(\xi|\eta)$
 - (d) $D(\xi|\eta)$

Совместное распределение. Независимость. Условное матожидание и дисперсия.

Домашняя работа

1. (16) Совместное распределение случайных величин ξ и η имеет плотность

$$\rho_{\xi,\eta}(x,y) = \begin{cases} \frac{3}{2}(x^2 + y^2), & 0 \le x \le 1, 0 \le y \le 1\\ 0, & otherwise \end{cases}$$

Найдите

- (a) E_{ξ} , E_{η}
- (b) D_{ξ} , D_{η}
- (c) $cov(\xi, \eta)$.
- 2. (16) Пусть X,Y независимые случайные величины с ф.р. $FX=1-e^{-ax},FY=1-e^{-by},x,y,a,b>0$. Найти E(XY).
- 3. (16) Найти коэффициент корреляции между ξ и $\eta=e^{-\xi}$, если ξ имеет нормальное распределение с параметрами μ и σ .
- 4. (16) Доказать, что не существует трех случайных величин ξ , η и θ таких, что коэффициент корреляции любых двух из них равен -1.
- 5. (1б)Пусть случайные величины ξ и η имеют нулевые средние значения, единичные дисперсии и коэффициент корреляции c. Показать, что $E \max{(\xi^2, \eta^2)} \ge 1 + \sqrt{1 c^2}$.