

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title : Operating System

Course Code : P18CS52 | Semester : 5 | L :T:P : 4:0:0 | Credits: 4

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs | Weightage: CIE:50%, SEE:50%

Course Content

Unit-1

INTRODUCTION TO OPERATING SYSTEMS: Overview: Need of operating systems, Computer System organization, Computer System architecture, Operating System structure, Operating System operations, Process management, Memory management, Storage management, Protection and security, Distributed system, computing environments.

System structure: Operating System Services, User- Operating System interface, System calls, Types of system calls, System programs, Operating System design and implementation, Operating System structure, , System boot.

Self-study component: Virtual machines

10 Hours

Unit-2

PROCESS MANAGEMENT: Process concepts: Overview, Process scheduling, operations on processes, Inter-process communication.

Multi-Threaded Programming: Overview, Multi-threading models, Thread Libraries, threading issues.

Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple-Processor scheduling

Self-study component: Thread scheduling

11 Hours

Unit-3

PROCESS SYNCHRONIZATION: Synchronization: Background, The Critical section problem, Peterson's solution, Synchronization hardware, Semaphores, Classical problems of synchronization, Monitors

Deadlocks: Deadlocks: System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance,

Self-study component: Deadlock detection and recovery from deadlock

10 Hours

Unit-4

MEMORY MANAGEMENT AND PROTECTION: Memory Management Strategies: Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation.

Virtual Memory Management: Background, Demand paging, Copy-on-write, Page replacement, Allocation of frames,

Self-study component: Thrashing.

10 Hours

Unit-5

STORAGE MANAGEMENT AND CASE STUDY: File system: File concept, Access methods, Directory structure, File system mounting, File sharing, Protection.

Implementing File System: File system structure, File system implementation, Directory implementation, Allocation methods, Free space management.

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Secondary storage structures: Mass storage structures, Disk structure, Disk attachment, Disk scheduling,

Self-study component: Disk management, Swap space management.

11 Hours

Text Book:

1. Operating System Principles – Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 9th edition, Wiley-India, 2012.

Reference Books:

- 1. Operating Systems: A Concept Based Approach D.M Dhamdhere, 2nd Edition, Tata McGraw- Hill, 2006.
- 2. Operating Systems William Stallings, 6th Edition, PHI, 2009.
- 3. Operating Systems Harvey M Deital, 3rd Edition, Addison Wesley, 1990

Course outcomes

- 1. Explain operating system structure, services, types, design and implementation of OS
- 2. **Apply** the various algorithms of process scheduling.
- 3. **Develop** solutions to process synchronization and dead lock problems.
- 4. Analyze various memory management techniques.
- 5. Explain file system implementation and allocation methods

CO-PO Mapping

Semester: 6 th		Course code :					Title: Operating System									
			P18CS52													
CO	Statement	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	PS	PS	
		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	
CO1	Explain operating system structure, services, types, design and implementation of OS	1												2		
CO2	Apply the various algorithms of process scheduling.	1	1	1										2		
CO3	Develop solutions to process synchronization and dead lock problems.	1	1	1										2		
CO4	Analyze various memory management techniques	1	1	1										2		
CO5	Explain file system implementation and allocation methods	1												2		