

Quantitative trait in patchy environment: beneath the Gaussian approximation

The scenery

The scenery

Main motivation

Given m (migration), g (selection), $n_1(t=0)$, $n_2(t=0)$ (initial state) \rightsquigarrow Predict long term evolutionary outcomes?

Num. observed in Ronce and Kirkpatrick 2001

Asexual models: Débarre, Ronce, and Gandon 2013; Mirrahimi and Gandon 2020

Asexual models: Débarre, Ronce, and Gandon 2013; Mirrahimi and Gandon 2020

Deterministic model on the **trait distributions*** $((i, j) \in \{1, 2\})$:

$$\frac{\partial n_i}{\partial t} = \overbrace{\mathcal{B}[n_i]}^{\text{reproduction}} - \overbrace{N_i n_i}^{\text{competition}} - \overbrace{g\left(z - \theta_i\right)^2 n_i}^{\text{selection}} + \overbrace{m\left(n_j - n_i\right)}^{\text{migration}},$$

 $^{^*}$ Can be derived from agents-based models in large population size asymptotics.

Deterministic model on the **trait distributions*** $((i, j) \in \{1, 2\})$:

$$\frac{\partial n_i}{\partial t} = \overbrace{ \boldsymbol{\mathcal{B}}[n_i] }^{\text{reproduction}} - \overbrace{ \boldsymbol{N_i n_i} }^{\text{competition}} - \overbrace{ \boldsymbol{g} \left(z - \boldsymbol{\theta_i} \right)^2 n_i }^{\text{selection}} + \overbrace{ \boldsymbol{m} \left(n_j - n_i \right) }^{\text{migration}},$$

i Justify Gaussian approximation with the infinitesimal model of sexual reproduction.

^{*}Can be derived from agents-based models in large population size asymptotics.

Deterministic model on the **trait distributions*** $((i, j) \in \{1, 2\})$:

$$\frac{\partial n_i}{\partial t} = \overbrace{ \boldsymbol{\mathcal{B}}[n_i] }^{\text{reproduction}} - \overbrace{ \boldsymbol{N_i n_i} }^{\text{competition}} - \overbrace{ \boldsymbol{g} \left(\boldsymbol{z} - \boldsymbol{\theta_i} \right)^2 \boldsymbol{n_i} }^{\text{selection}} + \overbrace{ \boldsymbol{m} \left(\boldsymbol{n_j} - \boldsymbol{n_i} \right) }^{\text{migration}},$$

- i Justify Gaussian approximation with the infinitesimal model of sexual reproduction.
- ii Rigorous separation of time scales ECO/EVO.

 $^{^*\}mathrm{Can}$ be derived from agents-based models in large population size asymptotics.

Deterministic model on the **trait distributions*** $((i, j) \in \{1, 2\})$:

$$\frac{\partial n_i}{\partial t} = \overbrace{ \boldsymbol{\mathcal{B}}[n_i] }^{\text{reproduction}} - \overbrace{ \boldsymbol{N_i n_i} }^{\text{competition}} - \overbrace{ \boldsymbol{g} \left(\boldsymbol{z} - \boldsymbol{\theta_i} \right)^2 \boldsymbol{n_i} }^{\text{selection}} + \overbrace{ \boldsymbol{m} \left(\boldsymbol{n_j} - \boldsymbol{n_i} \right) }^{\text{migration}},$$

- *i* Justify Gaussian approximation with the infinitesimal model of sexual reproduction.
- ii Rigorous separation of time scales ECO/EVO.
- *iii* Exhaustive analytical results.

 $^{^*\}mathrm{Can}$ be derived from agents-based models in large population size asymptotics.

The infinitesimal model (Fisher 1919; Barton, Etheridge, and Véber 2017)

Within family trait distribution:

The infinitesimal model (Fisher 1919; Barton, Etheridge, and Véber 2017)

Within family trait distribution:

 σ^2 : segregational variance, parameter, constant across families

The infinitesimal model (Fisher 1919; Barton, Etheridge, and Véber 2017)

Within family trait distribution:

$$m{\mathcal{B}}[n](z) = \iint G_{0,\,m{\sigma}^2}\left(z - rac{z_1 + z_2}{2}
ight) n(z_1) rac{n(z_2)}{N} \, dz_1 \, dz_2$$

Justify Gaussian approximation for (large) **population** trait distributions:

Justify Gaussian approximation for (large) **population** trait distributions:

Homogeneous space, no selection: blending effect of sexual reproduction

Justify Gaussian approximation for (large) **population** trait distributions: $\sigma \ll \Delta \theta$

> Patchy space, strong differentiation: only a perturbation, do an expansion[‡]

[‡]multiplicative: geometric optics tools adapted for concentration phenomena for quantitative genetics models in Diekmann et al. 2005

SMB 2021

Justify Gaussian approximation for (large) **population** trait distributions: $\sigma \ll \Delta \theta$

Implication: monomorphism in the meta population

 \approx Gaussian trait distribution in each patch and $\mathbf{migration}.$

NOT GAUSSIAN

Separation of time scales ECO/EVO $(\sigma \ll \Delta \theta)$

Separation of time scales ECO/EVO ($\sigma \ll \Delta \theta$)

Reduction of complexity

Slow dynamics (ODE) on the line (algebraic equations).

Analytical long term evolutionary outcomes*

*Dekens (2021), https://arxiv.org/pdf/2012.10115.pdf SMB 2021 dekens@math.univ-lyon1.fr

Analytical long term evolutionary outcomes*

*Dekens (2021), https://arxiv.org/pdf/2012.10115.pdf SMB 2021 dekens@math.univ-lyon1.fr

Analytical long term evolutionary outcomes*

Analytical long term evolutionary outcomes

Conclusion

♦ Integrative framework for sexual reproduction, do not need prior assumptions on trait distributions.

Conclusion

- ⋄ Integrative framework for sexual reproduction, do not need prior assumptions on trait distributions.
- Here, allows to describe exhaustively the outcomes.
 Substituting source-sink scenario to local adaptation by dimorphism due to combined blending by sexual reproduction (within patches) and by migration (between patches).

Conclusion

- ⋄ Integrative framework for sexual reproduction, do not need prior assumptions on trait distributions.
- Here, allows to describe exhaustively the outcomes.
 Substituting source-sink scenario to local adaptation by dimorphism due to combined blending by sexual reproduction (within patches) and by migration (between patches).
- Can be used for more complex genetic architecture (major locus vs infinitesimal background, forthcoming) or other biological contexts (evolution of dispersion and range expansion, ...)

Acknowledgments

(a) Sepideh Mirrahimi[†]

(b) Vincent Calvez [‡]

(c) Sarah Otto §

[†]https://www.math.univ-toulouse.fr/ smirrahi/, credits: Vincent Moncorgé

[‡]http://vcalvez.perso.math.cnrs.fr/

 $[\]S_{\rm https://biodiversity.ubc.ca/people/faculty/sarah-otto}$