

Feature-based Time Series Forecasting

Thiyanga S. Talagala 13 March 2019

Joint work with

Introduction

Big picture of the problem

Time series features

■ Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'\}$.

Time series features

Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'\}$.

Time series features

Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'\}$.

Features used to select a forecasting model

- length
- strength of seasonality
- strength of trend
- linearity
- curvature
- spikiness
- stability
- lumpiness
- parameter estimates of Holt's linear trend method
- spectral entropy
- Hurst exponent
- nonlinearity

- parameter estimates of Holt-Winters' additive method
- unit root test statistics
- crossing points, flat spots
- peaks, troughs
- ACF and PACF based features - calculated on raw, differenced, and remainder series.
- ARCH/GARCH statistics and ACF of squared series and residuals.

Meta-learning

Feature-based forecasting algorithms

FFORMS: Feature-based FORecast Model Selection

Peeking inside FFORMS

Feature-based FORecast Model Averaging

Feature-based FORecast Model Performance Prediction

R packages

References