Kelvin Ly

kelvin.ly1618@gmail.com, (407)-269-7092, Orlando, FL

University of Central Florida MS, Computer Engineering

Cummulative GPA: 3.944 2016-2018

University of Central Florida BS, Electrical Engineering

Cummulative GPA: 3.905, Magna Cum Laude 2011-2015

OBJECTIVES

To begin and pursue a career in electrical engineering or firmware engineering

SKILLS

- Professional experience in electronics design (mostly mixed signal/digital, a little RF), PCB layout (KiCad, Altium Designer)
- Some experience with low-noise analog/mixed-signal design, analog filter design, digital signal processing, image processing (CUDA interoperating with OpenCV)
- Hobbyist level PCB assembly, reflow, and rework, SPICE circuit modeling, and reverse engineering (hardware and firmware)
- Some familiarity with I2C, SPI, UART, CAN, SDIO, Ethernet(10BASE-T), on-off keying, PCM, 802.11a/b, MIPI CSI, parallel camera interface, JESD204, SerDes, AMBA/AXI, DDR1, SPI Flash, Bluetooth Low Energy, I2C-based gyroscopes, accelerometers, magnetometers, USB 1.0
- Familiarity with nRF52, MSP430, PIC12, ATTiny/ATMega, SAM D09 microcontrollers
- Implemented I2C, SPI, UART, PWM, VGA, Ethernet RMII, Wishbone interfaces on FPGA logic
- Fluent in C99, C++14, Python 2/3, Go, Verilog
- Working knowledge of x86/x64/MIPS/MSP430 assembly, Java, LaTeX, MATLAB, Multisim, Xilinx ISE/Vivado, VHDL, Linux (scripting and low-level userland programming, some kernel module programming), JTAG/SWD, TCL

Professional Experience

STERIS IMS ELECTRICAL ENGINEER, COOPER CITY FL

May 2018 - Present

- Created PCB designs, layouts, sourced parts, and assembled and tested PCBs to create reproducible and manufacturable designs, including some flexible PCBs
- Developed firmware and support software for devices and prototype designs as needed, including work in image processing using OpenCV, and IMU sensor fusion using industry-standard Madgwick filter
- Tested devices to ensure compliance with IEC60601 and other standards

Cassina Technologies Software Engineer, Cooper City FL

October 2018 - Present

- Developed firmware for Bluetooth LE-based device and designed Bluetooth LE application level communication protocols to use in device
- Developed Android app to interface with and to control Bluetooth LE-based device

Fluorometric Instruments Design Engineer, Orlando FL

September 2017 - Present

- Designed PCBs part time for oxygen sensors, allowing client to test manufacturable products
- Created designs, layouts, sourced parts, and assembled and tested PCBs to create reproducible and manufacturable designs
- Developed firmware and support software for devices as needed

University of Central Florida Undergraduate/Graduate Researcher, Orlando Fl

November 2015 - May 2018

- Researched defenses and attack mitigations for the Internet of Things, producing four publications and one book chapter
- Designed and assembled PCBs for the lab, producing tools and prototypes for a wide variety of projects
 - Built mixed-signal or digital designs incorporating Texas Instruments, Expressif, and Atmel microcontrollers
 - Designed architecture and IP cores for Nexys 4 Artix-7 FPGA to transceive Ethernet packets and crack homomorphic encryption as part of our second place entry in NYU CSAW ESC '15
 - Designed IP cores in Verilog to patch OpenRISC processor core as part of our winning entry in NYU CSAW ESC '16

University of Central Florida Undergraduate Researcher, Orlando FL

December 2014 - March 2015

- Studied feature extraction from EEG data, implementing SSVEP frequency detection that was later used in senior design project
- Maintained and repaired RAVEN II medical robot running on ROS robotics framework, restoring it to operation and allowing its use under a new team in current research projects

Internships

IBM EXTREME BLUE INTERN, RTP NC

May 2015 - August 2015

- Developed on-disk encryption for IBM Connections, creating a roadmap of design pitfalls for IBM's teams to work off of
- Implemented project in JavaScript and Node.js, with patches to existing Java and Python code and libraries, successfully providing encrypted context access and search indexing

- Patched existing benchmarking code for Skia rendering engine, allowing collection of gigabytes of data per day into a single database
- Contributed code in C++, Python and Go to create actionable visualizations of benchmarking data, fulfilling Skia team's recommendations

NOTABLE PROJECTS

Project Reflow oven from toaster (WIP)	Software/FPGA PID controller using MSP430 MCU	Analog/RF Temperature reading using thermocouple	DSP/Control	Power/Misc Mains isolation from controller, zero-crossing gate driver, housing design with emphasis on thermal insulation and even heating
Guitar looper effects pedal (WIP)	FPGA logic for communicating with DDR DRAM, ADC and DAC	Simple passive filtering, discrete ADC design	Second order $\Sigma - \Delta$ ADC design, simple FIR filtering, DAC im- plemented on FPGA using PDM (pulse den- sity modulation)	-
915 MHz 1 Mbps discrete RF transceiver (WIP)	Signal processing on FPGA	Half duplex IQ modula- tion/demodulation us- ing discrete diode ring mixer, multiple VGA stages, discrete power amplifier design	Error correction, AGC, packet decoding imple- mented on FPGA	Multi-board design
Capacitive linear encoder (rev. 3, WIP)	Bare metal ARM coded in C for Microchip SAM D09	Common mode noise reduction using differ- ential signal along with 5th order Butterworth active filter	Same as before	Use of cheaper op amps based on better noise analysis
Sensorless brushless DC motor driver for RC plane (WIP)	FOC using Lattice iCE40 FPGA driving TI DRV8353 gate driver	-	State observer and FOC implemented on FPGA	Layout designed for high current, space for heatsinking for MOSFETs
Visible light transmitter and receiver	Bare metal ARM coded in C, using USB peripheral for data transfer, MSP430-based transmitter, signal processing code written in Python	Transimpedance photo- diode front end with several stages of vari- able gain amplifiers and bandpass filtering	Cortas phase locking loop, software-controlled AGC, BPSK demodulation with CRC checksum, PID-based automatic gain control	Space-constrained, low power transmitter de- sign with capacitive- touch buttons, IMU for position sensing
RF broadband attenuator blocks	-	RF layout, routing ta- per design to transition from SMA connector to coplanar waveguide on two-layer FR4	-	(WIP) Aluminum housing to reduce RF emissions
144 MHz Yagi-Uda antenna with discrete LNA	LNA designed using Jupyter Notebook, im- plemented noise calcu- lation code for scikit-rf	Infineon BFU520 based LNA, L-matching net- works designed using VNA measurements, antenna tuning and characterization using modified TinyVNA	-	Modified TinyVNA to have lower output power to avoid satu- rating BFU520 during measurements
Universal motor controller board	-	-	-	Four H-bridges using DI DGD0506A MOS- FET gate drivers
Capacitive linear encoder (rev. $1/2$)	Bare metal ARM coded in C	High impedance front end followed by cas- caded active low pass filters into ADC driver	Computationally efficient digital filtering to remove harmonics and calculate phase using CORDIC	
Lunar Knights robotics team software lead (UCF) for NASA Mars Rover Competition	Software written in C++ using ROS framework using Jetson TX2, autonomous navigation and teleoperation	-	PID tuning for wheels and digging arm	Mitigated noise on digging arm position potentiometers, wrote code to interface with CAN-based motor controller
Mind-controlled wheelchair (UCF)	Wheelchair controls implemented on Rasp- berry Pi 3	-	Feature extraction from electrodes on scalp, based on steady state visually evoked potential (SSVEP)	Designed laser cut joy- stick gimbal