Class 7 -2

情報科学基礎

問題解説資料

数の表現

● コンピュータの基本は 0 と 1 で計算している。電源が 0ff の場合は 0、電源が 0n の場合は 1 となる。この電源 0n と 0ff の二つの状態から計算を行う場合、最も簡単な表現方法 は 2 進数[Binary]となる。

私たちが普段使っている数字、例えば「1. 2. 3. 4 ... 9. 10. 11. 12 ... 99. 100. 101 ...」は 10 進数と言います。

10 になったら桁が上がりますね。

対して、2で桁が上がる数字を2進数と言います。

2 進数には 0 と 1 しかなく、「0. 1. 10. 11 ...」のように数えていきます。

コンピュータは、私たちが使っている 10 進数は理解できません。

全てのデータを2進数によって表現しています。

そのため私たちが10進数で表現している数字は、2進数に変換されコンピュータに伝えられています。

コンピュータで 2 進数が使われる理由は、**0 と 1** の 2 通りがあれば、**電圧が ON か OFF かの電気信号に対 応させて扱うことができるから**です。

1 を True(真)つまり電圧が通っている状態 ON、0 を False(偽)つまり電圧が通っていない状態 OFF で表現することができます。

電圧が ON か OFF の 2 通りのみで表現できる 2 進数は、非常にシンプルでコンピュータにとって都合が良かったのです。

ちなみに用語として知っておいてほしいのですが

コンピュータが扱う最小単位のことをビット(bit)といい、1 ビットで表現できる数字は「0」と「1」 の 2 つだけです。この「0」と「1」という 2 個の数字で数をあらわすのが 2 進数です。

そして、コンピュータの世界では 1 バイト(Byte) = 8 ビット(bit)と定義されています。

でもコンピュータは「A」のような文字を表現していますよね?

コンピュータが文字を理解できているのは「文字コード」と呼ばれる文字と 2 進数の対応表があるからです。

コンピュータに文字を表現させているのは「文字コード」と呼ばれるものです。

コンピュータが理解できる「0」と「1」の集まりと、文字の対応表を作り コンピュータはその対応 表通りに文字を表現しています。

2進数をしっかりと理解するためには、<mark>基数</mark>という考え方を知っておかなければなりません。

数値表現の基になる数値。1桁で数えられる数の個数

私たちが普段使っている数字は、**10を基数**とした表現です。 10を基数とした表現を「10進数」と言います。 10進数では、1桁で「0~9」の 10個の数を数えられますね。 そして、10になった段階で桁が上がります。

2 進数における **1 桁目**は、「**1」**がいくつあるかを表現します。

入る数字は、**0~1 個まで**です。

1が2個になった時に、まとめて1つ上の桁に持っていきます。

基数变换

● 2 進数と 10 進数[Decimal]の変換、または 8 進数や 16 進数といった基数を変換することを基数変換[Base Conversion]と呼ぶ。

10 進数から2 進数へ変換するときなどの使うのが「桁の重み」です。

桁の重みとは、各桁の単位のことで、10 進数で例えると「100 の位」「10 の位」「1 の位」など、「~の位」を桁の重みといいます。

重みは、基数×(n-1)乗で求めることができます。

例えば 121 だったら

これを2進数も同様にして考えます

〈10進数→2進数の変換〉

10 進数を n 進数に変換するには、次のように 10 進数の整数部を基数で割っていきます。(今回の例は 2 進数への変換なので 2 で割る)

8 進数と 16 進数

● 2 進数と同じように、8・16 個の数で表現する方法を 8 進数 [Octal] • 16 進数[Hexadecimal, Hex]という。

〈8進数、16進数→10進数の変換〉

1 2 3 4 5 6 7 8 9 ABCDEF

〈10進数→8進数、16進数の変換〉

Note 🕰

16 進数の "数字" は 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F である。

2 進数の演算

● 2 進数の桁上がり: 1+1=10。

● 2 進数の桁下がり: 10 - 1 = 1。

+	1011 0101	×	1011 101
	10000		1011
_	1011 0101		0000 1011
	110		110111

問題:人の指で最大何個の数を表現できるか考えてみよう!

Tips 🔆

16進数を表示する場合 の表示方法:

- 1. 右下に小さく「16」 と書く: 17FA₁₆。
- 2. 冒頭に「0x」を書く 0x17FA。

10進数	2進数	8進数	16進数
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

9

© LightHouseIT. All rights reserved.

https://www.chugakujuken.com/koushi_blog/shibata/20170717.html

データ容量の単位

一度に取入じ 52 ヒットのテータを 処理できる CPU を 32 ビット CPU、 64 ビットのデータを処理できる CPU を 64 ビットCPUと呼ぶ。

● ビットとバイト

コンピュータは 2 進数ですべてのデータが構成される。この時の最小単位「2 進数の 1 桁分」をビット[Bit]と呼び、8 ビット分をまとめた単位をバイト[Byte]と呼ぶ。

0 or 1 1 ビット (bit) 1 バイト (byte) 8 ビット (bit) = 1 バイト (byte)

● 補助単位

大きい値の補助単位		小さい値の補助単位	
k(キロ)	103=1,000倍	m(ミリ)	$1/10^3 = 1/1,000$
M(メガ)	10 ⁶ =1,000,000倍	μ(マイクロ)	1/10 ⁶ =1/1,000,000
G(ギガ)	109=1,000,000,000倍	n(ナノ)	1/109=1/1,000,000,000
T(テラ)	1012=1,000,000,000,000倍	p(ピコ)	1/10 ¹² =1/1,000,000,000,000

10進数155を2進数で表したものはどれか。

出典:令和2年秋期 問62

集合とは

● ある特性をもったデータ(要素)の集まりを<mark>集合[Set]という。集合を表す図にベン図[Venn Diagram]</mark>がある。

全体集合	対象とするデータ すべて で構成される集合。
補集合	ある集合Aに対して「Aでない」要素の集まり。
部分集合	ある集合Aに対して「Aに含まれる」集合Bのこと。

コンピュータはデータを扱う時、条件で対象を絞り込みする。この絞り込み条件は集合論の概念を用いている。かつ [AND]、または[OR]などを見ていこう。

集合に含まれる 1 つ 1 つの「もの」を、その集合の**要素**と呼びます。「要素」は、それ以上分割できない単位の「もの」です。

集合を考えるときは、まず最初に**全体集合**を定義します。また、その中に含まれる個々の集合を 部分集合と呼びます。

全体集合は、英語で "Universal set" というのでアルファベットの U で表すことが多く、部分集合は A, B, C, \cdots など任意のアルファベットで表現します。

和集合と積集合

● 和集合[Union]: A または B (A OR B)。

● 積集合[Product]: A かつ B (A AND B)。

差集合

● 差集合[Difference]: A かつ B でない(A AND NOT B)。

集合演算と論理演算

論理和(OR、または)	二つの値がいずれも偽(0)のときのみ結果が偽(0)となり、それ以外は真(1)となる
<mark>論理積(AND</mark> 、かつ)	二つの値がいずれも真(1)のときのみ結果が真(1)となり、それ以外は偽(0)となる
否定(NOT、ではない)	値が真(1)のときに結果が偽(0)となり、値が偽(0)のときに結果が真(1)となる
排他的論理和(XOR)	二つの値が異なるときに結果が真(1)となり、二つの値が等しいときに結果が偽(O)となる

● 真[True]と偽[False]:集合において、条件(A)を満たすこと、集合 A に含まれることを「真」といい、条件(A)を満たさない、集合 A に含まれないことを「偽」という。論理演算の場合、真を 1 で表し、偽を 0 で表すこともある。

論理演算の真理値表

1 論理和

А	В	A OR B
1	1	1
1	0	1
0	1	1
0	0	0

④排他的論理和

Α	В	A XOR B
1	1	0
1	0	1
0	1	1
0	0	0

②論理積

Α	В	A AND B
1	1	1
1	0	0
0	1	0
0	0	0

③否定

and the same of the same of	10
Α	NOT A
1	0
0	1

各論理演算は、記号を用いて、

A OR B → A+B

A AND B - A · B

NOT A $\rightarrow \overline{A}$

A XOR B → A⊕B

のように表現することもあります。

ド・モルガンの法則

NOT $(a \ AND \ b) = (NOT \ a) \ OR (NOT \ b)$ NOT $(a \ OR \ b) = (NOT \ a) \ AND (NOT \ b)$

https://univ-juken.com/de-morgan

【問題1】

次のベン図の網掛けした部分の検索条件はどれか。

平成29年秋期 間98 40間目/選択範囲の問題数51間

ベン図の網掛け領域を言葉で表すと、BまたはCであり、かつ、Aでない部分 となります。 "BまたはC"を論理式で表すと"B or C"、Aでない部分は"not A"です。さらに図の領域は2つの条件を共に満たす部分であるので、2つの論理式を and で繋ぎます。つまり答えは $(not\ A)\ a$ nd $(B\ or\ C)$ になります。

演習問題

【問題 2】

二つの集合AとBについて,常に成立する関係を記述したものはどれか。ここで, $(X \cap Y)$ は,XとYの両方に属する部分(積集合), $(X \cup Y)$ は,X又はYの少なくとも一方に属する部分(和集合)を表す。

平成27年春期 間62 24問目/選択範囲の問題数51問

ア (A∪B)は, (A∩B)でない集合の部分集合である。

イ (A∪B)は, Aの部分集合である。

ウ (A∩B)は, (A∪B)の部分集合である。

エ (A∩B)は、Aでない集合の部分集合である。

集合Aの全てに要素が集合Bに含まれるとき、AはBの一部分であるという意味で「AはBの部分集合である」といいます。

(A∪B)と(A∩B)をベン図で表現すると以下のようになります。

(A∩B)は(A∪B)の一部分になっているので「ウ」が正解です。

【問題 3】

二つの集合AとBについて、常に成立する関係を記述したものはどれか。ここで、 $(X \cap Y)$ は、XとYの共通部分(積集合)、 $(X \cup Y)$ は、X又はYの少なくとも一方に属する部分(和集合)を表わす。

出典:平成22年春期 間69

ア (A∩B)は、Aでない集合の部分集合である。

イ A∩B)は、Aの部分集合である。

ウ (A∪B)は、(A∩B)の部分集合である。

エ (A∪B)は、Aの部分集合である。

次のベン図は(A∩B)と(A∪B)を視覚化したものです。

ア: "(A∩B)は, Aでない集合の部分集合である。"

(A∩B)は、Aの部分集合です。

イ: "(A∩B)は, Aの部分集合である。"

正しい。

ウ: "(A∪B)は, (A∩B) の部分集合である。"

 $(A \cup B)$ は $(A \cap B)$ より広い集合なので、選択肢の文とは逆で、 $(A \cap B)$ は $(A \cup B)$ の部分集合ということになります。

エ: "(A∪B)は、Aの部分集合である。"

(A∪B)は、Bの部分集合を含んでいるので、Aの部分集合とはいえません。