Tareq "Torque" El Dandachi https://tareqdandachi.github.io

EDUCATION

Massachusetts Institute of Technology (MIT)

B.S. in Electrical Engineering and Computer Science

B.S. in Mechanical Engineering and Quantum Information and Computation

GPA: 4.85/5.0 Graduating May 2022

SKILLS

Hardware & Circuits

FPGA Design, Hardware Simulation, PCB Design, Processor Design, Nanoelectronics, Embedded Systems, Signal Processing, Electromagnetism, Solid State Circuits, SPICE Simulation

Software

Computational Photography, Computer Vision, Machine Controls, Learning, Security Research, Web Design

Physics

Circuit QED, Quantum Simulation, Optics, Superconductivity, Conductor Physics, Quantum Systems Control, Quantum Measurement, **Nanophotonics**

Mathematics

Linear Algebra, Group Theory, Complexity Theory, Information Theory, Calculus, Differential Probability, Equations

Mechanical Skills

Mill, Lathe, 3D printing, Robotics, Thermodynamics, Fluid Dynamics

Languages

Software: C, C++, Python, Swift, JavaScript, Ruby, Julia, Kotlin, MAT-LAB, Java, Objective-C, PHP, bash Hardware: BlueSpec, Verik, SystemVerilog

EXPERIENCE

MIT Quantum Photonics Group (QPG)

Undergraduate Researcher February 2022 - Now Implementing fast GPU quantum stabilizer formalism simulations for a Julia quantum simulation package QuantumClifford.jl

MIT Quantum Photonics Group (OPG)

Undergraduate Researcher Sept. 2020 - October 2021 Built software using tensorflow in Python that generates optimal microwave control pulses for diamond-based quantum computers with a web tool to view simulation results. Developed models to simulate arbitrary arrangements of color centers and wavequides. Implemented optimal control theory techniques to find time-varying pulses that, along with other methods, increase the number of qubits we can control on a diamond-based quantum computer by 3 orders of magnitude.

MIT Quantum Nanostructures and Nanofabrication (QNN)

Undergraduate Researcher Developed mathematical methods and implemented an electro-thermal model in Python to efficiently simulate superconducting wires and superconducting nanowire single photon detector (SNSPDs).

MIT ESI Rapid Response Group (RRG)

Web Designer June - Aug. 2020 Designed the new logo and website for MIT's Environmental Solutions Initiative new initiative RRG. Link to website: rrg.mit.edu

PROJECTS

FPGA Depth Estimation using a Camera Array

Programmed an FPGA to estimate depth information from two camera feeds. January 2022 — Link to github page.

Eclipse - glasses that modulate epileptic triggers

Developed and launched an alpha prototype with a team of product designers. I worked on sensing and modulation, user interaction, designing and performing EEG trials, coding in Microchip Studio and choosing PCB components. Sept. - Dec. 2021 — Link to product brochure

Non-Photorealistic Renderer

Developed a C++ project that processes images and converts them into detailed multi-layered paintings with the ability to interpolate and incorporate design styles from a reference image.

May 2020 — Link to github page.

Computer Vision and LIDAR Based Obstacle Avoidance

Programmed a self-driving car using ROS to race on a track while avoiding obstacles for MIT's Robotics Systems and Science. Used image segmentation and classification to build the navigation space and path-find around obstacles. Implemented SLAM on LIDAR data with a team to assist navigation.

Feb. - May 2020