Smart BusCounter AI: Automatic Bus Counting Using Computer Vision

Propose by: Chantharith Ny (Computer Vision and Al Club)

I. Background and Motivation

Public transportation systems, especially in developing countries like Cambodia, often lack real-time data on bus occupancy. This makes it difficult for operators to:

- Optimize routes and fleet allocation
- Monitor overcrowding
- Improve passenger experience

While some modern systems use ticket scans or sensors, these solutions are expensive and not easily scalable. Using **affordable front and back cameras** with Al-based counting can provide an accurate, low-cost, and scalable alternative.

II. Problem Statement

- Buses often lack real-time passenger counting systems.
- Manual counting is inefficient and error-prone.
- Many buses are equipped only with basic surveillance cameras.
- There is no Al system in place that can utilize these camera feeds to count passengers boarding and exiting in real time.

III. Objectives

 Develop a computer vision system to count passengers from front and back bus cameras.

- Use object detection and tracking models to identify entry and exit events.
- Aggregate counts from both cameras to provide an accurate real-time passenger number.
- Deploy the model to work in real-time or near-real-time with limited hardware resources.

IV. Scope of Work

No.	Task	Description
1.	Literature Review	Explore methods for object detection and people counting using computer vision.
2.	Data Collection	Collect bus footage from front and back cameras.
3.	Data Annotation	Label passenger movements for supervised learning.
4.	Model Development	Train and fine-tune object detection/tracking models.
5.	Integration	Combine both camera streams to compute passenger count.
6.	App Development	Develop an interface/dashboard to show real-time count.
7.	Testing	Test system accuracy in different conditions (crowded, low light, etc.).
8.	Deployment	Deploy on edge devices or local servers in buses.

V. Methodology

Step	Description	Tools/Tech Used
1. Data Collection	Gather real footage from buses.	Bus-mounted cameras

2. Annotation	Use tools to label passenger entries/exits.	CVAT, LabelImg
3. Object Detection	Detect passengers in frames.	YOLOv8, EfficientDet
4. Tracking	Track individuals across frames and views.	DeepSORT, ByteTrack
5. Movement Analysis	Classify movement as entry or exit.	Optical flow, custom logic
6. Camera Synchronization	Align front and back camera timestamps.	Video timestamp analysis
7. Count Aggregation	Calculate net passenger count.	Custom counting algorithm
8. Interface	Display count live or export data.	Streamlit, React, Flask
9. Deployment	Run on local devices or edge servers.	Raspberry Pi, Jetson Nano

VI. Expected Outcomes

- A dual-camera Al system that accurately counts passengers boarding and exiting the bus.
- A dashboard or API that displays live passenger count.
- Reduced cost compared to commercial counting systems.
- High scalability for public transport in Cambodia.

VII. Significance of The Project

- Supports intelligent transportation systems.
- Provides real-time data for public transport operators.
- Helps optimize route management and improve passenger safety.
- Enables smart city initiatives without high hardware costs.

VIII. Budget Estimate

Item	Description	Estimated Cost (USD)
Edge Device	For onboard AI processing (e.g., Jetson Nano)	\$100 – \$200
Camera Equipment	Front and back bus cameras	Already installed or \$40–\$80
Cloud/Server (optional)	For model updates or data sync	\$10 – \$30/month
Annotation Tools	Open-source	Free
ML Libraries	PyTorch, YOLOv8	Free
Total	_	\$150 – \$250 one-time, minimal monthly cost

IX. Challenges and Risk Management

Challenge	Description	Mitigation
Occlusion	People overlap in crowded conditions	Use tracking + multiple camera views
Lighting Issues	Nighttime or poor lighting affects accuracy	Use IR-compatible cameras or preprocessing
Camera Sync	Front and back video misaligned	Timestamp-based sync or hardware sync setup
Model Generalization	Different buses, angles, and movement patterns	Train on diverse datasets, fine-tune per environment
Privacy Concerns	Capturing faces or identities	Blur faces, comply with data protection laws

X. Future Work & Expansion

- Add face-blur for privacy protection.
- Expand to multi-bus systems with central tracking.
- Integrate with GPS for location-aware analysis.
- Build predictive models for route demand forecasting.
- Collaborate with city authorities for broader smart transport systems.

XI. References & Learning Resources

Papers:

- 1. "YOLOv8 for Real-Time Object Detection" Ultralytics
- 2. "DeepSORT: Simple Online and Realtime Tracking with a Deep Association Metric"

Tools:

- YOLOv8, OpenCV, DeepSORT, PyTorch
- Labellmg, CVAT

Public Datasets:

• MOTChallenge, CityPersons, CrowdHuman

Learning:

- PapersWithCode
- YouTube: Roboflow, Computer Vision Zone
- Fast.ai / Coursera Al courses

XII. Conclusion

This project proposes an Al-powered system to count passengers using dual-camera setups in buses. By leveraging real-time computer vision, the system offers an efficient and scalable alternative to traditional counting methods. With wide applicability in Cambodia's growing transport sector, it represents a practical and impactful use of Al in public service.