Language & Logic Dave Parker

${\bf Assignment~2-Solutions}$ Natural Deduction for Propositional Logic

Model solutions for the required proofs are given below, although these are not unique (and not necessarily the best or the shortest proofs possible!).

1. The argument is:

$$(R \wedge Q) \to S : (P \wedge R) \to (Q \to (S \wedge P))$$

A proof of validity is:

1.	$P \wedge R$	Hypothesis	{1}
2.	Q	Hypothesis	$\{2\}$
3.	$\mid \; \mid \; R$	\land -elimination ₁	{1}
4.	$R \wedge Q$	\wedge -introduction _{3,2}	$\{1,\!2\}$
5.	$R \cap (R \wedge Q) \to S$	Premise	$\{5\}$
6.	$\mid \; \mid \; S$	\rightarrow -elimination _{5,4}	$\{1,2,5\}$
7.	P	\land -elimination ₁	{1}
8.	$S \wedge P$	\wedge -introduction _{6,7}	$\{1,2,5\}$
9.	$Q \to (S \land P)$	\rightarrow -introduction _{2,8}	$\{1,\!5\}$
10.	$(P \land R) \to (Q \to (S \land P))$	\rightarrow -introduction _{1,9}	$\{5\}$

2. The argument is:

$$R \to (S \land P), \ \neg S \to P, \ Q, \ \neg P \lor (Q \to R) : S$$

A proof of validity is:

1.	$\neg P \lor (Q \to R)$	Premise	{1}
2.	$\neg P$	Hypothesis	{2}
3.	$\neg S \to P$	Premise	{3}
4.	$\neg S$	Hypothesis	$\{4\}$
5.	$\mid \; \mid \; P$	\rightarrow -elimination _{3,4}	$\{3,4\}$
6.		\wedge -introduction _{5,2}	$\{2,3,4\}$
7.	$\neg \neg S$	\neg -introduction _{4,6}	$\{2,3\}$
8.	S	$\neg\neg$ -elimination ₇	$\{2,3\}$
9.	$Q \to R$	Hypothesis	{9}
10.	Q	Premise	{10}
11.	R	\rightarrow -elimination _{9,10}	$\{9,10\}$
12.	$R \to (S \land P)$	Premise	{12}
13.	$S \wedge P$	\rightarrow -elimination _{12,11}	$\{9,10,12\}$
14.	S	\land -elimination ₁₃	${9,10,12}$
15.	\overline{S}	\vee -elimination _{1,2,8,9,14}	$\{1,3,10,12\}$

Language & Logic Dave Parker

3. The argument is:

$$: \ (Q \wedge (P \to (Q \to R))) \to (\neg P \vee R)$$

A proof of validity is:

1.	$Q \wedge (P \to (Q \to R))$	Hypothesis	{1}
2.	Q	\land -elimination ₁	{1}
3.	$P \to (Q \to R)$	\land -elimination ₁	{1}
4.	$\neg(\neg P \lor R)$	Hypothesis	$\{4\}$
5.	P	Hypothesis	$\{5\}$
6.	$Q \to R$	\rightarrow -elimination _{3,5}	$\{1,\!5\}$
7.	R	\rightarrow -elimination _{6,2}	$\{1,\!5\}$
8.	$\neg P \lor R$	\vee -introduction ₇	$\{1,\!5\}$
9.		\land -introduction _{8,4}	$\{1,4,5\}$
10.	$\neg P$	\neg -introduction _{5,9}	$\{1,\!4\}$
11.	$\neg P \lor R$	\vee -introduction ₁₀	$\{1,\!4\}$
12.		\land -introduction _{11,4}	$\{1,\!4\}$
13.	$\neg\neg(\neg P\lor R)$	\neg -introduction _{4,12}	{1}
14.	$\neg P \lor R$	$\neg\neg$ -elimination ₁₃	{1}
15.	$(Q \land (P \to (Q \to R))) \to (\neg P \lor R)$	\rightarrow -elimination _{1,14}	{}

4. The argument is:

$$\neg (P \land (Q \lor R)) : \neg P \lor (\neg Q \land \neg R)$$

A proof of validity is:

1.	$\neg (P \land (Q \lor R))$	Premise	{1}
2.	$\neg(\neg P \lor (\neg Q \land \neg R))$	Hypothesis	$\{2\}$
3.	$\neg P$		
	*	Hypothesis	$\{3\}$
4.		∨-introduction ₃	$\{3\}$
5.		\land -introduction _{4,2}	$\{2,3\}$
6.	$\neg \neg P$	\neg -introduction _{3,5}	$\{2\}$
7.	PP	$\neg \neg$ -elimination ₆	$\{2\}$
8.	$\neg (Q \lor R)$	Hypothesis	$\{8\}$
9.	Q	Hypothesis	{9}
10.	$ Q \lor R$	\vee -introduction ₉	{9}
11.		\land -introduction _{10.8}	$\{8,9\}$
12.	$\neg Q$	¬-introduction _{9,11}	{8}
13.	R	Hypothesis	$\{13\}$
14.	$ Q \lor R$	\vee -introduction ₁₃	$\{13\}$
15.		\land -introduction _{14,8}	$\{8,13\}$
16.	-R	\neg -introduction _{13,15}	$\{8\}$
17.	$ \neg Q \wedge \neg R$	\land -introduction _{12,16}	{8}
18.	$\neg P \lor (\neg Q \land \neg R)$	\vee -introduction ₁₇	{8}
19.		\land -introduction _{18,2}	$\{2,\!8\}$
20.	$\neg \neg (Q \lor R)$	\neg -introduction _{8,19}	$\{2\}$
21.	$Q \lor R$	$\neg\neg$ -elimination ₂₀	$\{2\}$
22.	$P \wedge (Q \vee R)$	\land -introduction _{7,21}	{2}
23.	上	\land -introduction _{22,1}	$\{1,\!2\}$
24.		\neg -introduction _{2,23}	{1}
25.	$\neg P \lor (\neg Q \land \neg R)$	$\neg \neg$ -elimination ₂₄	{1}