NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and

```
then you'll be asked some more complicated questions.
```

```
Import NumPy as np
```

```
import numpy as np
```

Create an array of 10 zeros

```
array = np.zeroes(10)
print(array)
```

Out[0]: array([0., 0., 0., 0., 0., 0., 0., 0., 0.])

Create an array of 10 ones

array = np.ones(10)

print(array)

```
Out[0]: array([ 1., 1., 1., 1., 1., 1., 1., 1., 1.])
```

Create an array of 10 fives

array = np.ones(10)*5

44, 45, 46, 47, 48, 49, 50])

Create a 3x3 matrix with values ranging from 0 to 8

array = np.arrange(0,9).reshape((3,3))

[3, 4, 5], [6, 7, 8]])

Create a 3x3 identity matrix

l.,

[0., 0., 1.]])

print(np.random.normal(0,1,15))

0.1.

0.,

print(dom.randint(0,1))

import random

Out[0]: array([0.42829726])

print(array)

print (array) Out[0]: array([5., 5., 5., 5., 5., 5., 5., 5., 5.])

Create an array of the integers from 10 to 50

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

array = np.arrange(10,51)print(array)

Out[0]: array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

Create an array of all the even integers from 10 to 50 array = np.arrange(10, 51, 2)

Out[0]: array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50])

print(array) Out[0]: array([[0, 1, 2],

```
print(np.eye(3))
Out[0]: array([[ 1., 0., 0.],
```

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

Out[0]: array([1.32031013, 1.6798602 , -0.42985892, -1.53116655,

print(np.arrange(0.01,1).reshape(10,10))

0.92, 0.93,

Numpy Indexing and Selection

[0.91,

Out[0]: array([0.

mat

Out[0]: array([[1,

Out[0]: 20

print(np.linspace(0,1,20))

0.26315789,

0.52631579,

0.78947368,

2,

[6,

mat[2: , 1:]

mat[0:3, 1:2]

Out[0]: array([[2],

3,

7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]])

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

[21, 22, 23, 24, 25]])

mat.sum()

Out[0]: 7.2111025509279782

Out[0]: 325

4,

Use NumPy to generate a random number between 0 and 1

-0.45454399, -0.64754649, -0.29391671, 0.02339861, 0.382721241) Create the following matrix:

0.95,

0.89473684,

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

0.96,

0.10526316, 0.15789474,

0.31578947, 0.36842105, 0.42105263, 0.47368421,

0.63157895, 0.68421053,

0.97,

0.94736842,

0.98,

1.

0.99,

0.21052632,

0.73684211,

1.]])

-0.49478947, 1.08279872, 0.76488333, -2.3039931, 0.35401124,

0.85753232,

0.99530727, 0.10991879,

Out[0]: array([[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1], [0.11, 0.12, 0.16, 0.17, 0.13, 0.14, 0.15, 0.19, 0.18, 0.2], 0.28, 0.3], 0.25, [0.21, 0.22, 0.23, 0.24, 0.26, 0.27, 0.29, 0.36, 0.38, 0.4], [0.31,0.33, 0.32, 0.34, 0.35, 0.37, 0.39, 0.48, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.49, 0.5], 0.41, 0.52, 0.56, [0.51,0.53, 0.54, 0.55, 0.57, 0.58, 0.59, 0.6], 0.7], 0.62, 0.66, 0.67, [0.61,0.63, 0.64, 0.65, 0.68, 0.69, 0.73, 0.75, 0.8], [0.71, 0.72, 0.74, 0.76, 0.77, 0.78, 0.79, [0.81,0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9],

0.94,

Create an array of 20 linearly spaced points between 0 and 1:

0.05263158,

0.57894737,

0.84210526,

0.87339938, 0.35668636, -1.47491157, 0.15349697, -0.94865451, -1.69174783, 1.57525349, -0.70615234,

mat = np.arange(1,26).reshape(5,5)

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

Out[0]: array([[12, 13, 14, 15], [17, 18, 19, 20], [22, 23, 24, 25]])

BE ABLE TO SEE THE OUTPUT ANY MORE mat[3,4]

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T # BE ABLE TO SEE THE OUTPUT ANY MORE

[12]]) # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

mat[4] Out[0]: array([21, 22, 23, 24, 25])

mat[3:] Out[0]: array([[16, 17, 18, 19, 20],

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

Now do the following Get the sum of all the values in mat

Get the standard deviation of the values in mat mat.std()

Get the sum of all the columns in mat

mat.sum(axis=1)

Out[0]: array([55, 60, 65, 70, 75])