

STGP12NB60KD - STGB12NB60KD

N-CHANNEL 18A - 600V TO-220/D²PAK SHORT CIRCUIT PROOF PowerMESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)} (Max) @25°C	I _C (#) @ 100°C
STGP12NB60KD	600 V	< 2.8 V	18 A
STGB12NB60KD	600 V	< 2.8 V	18 A

- HIGH INPUT IMPEDANCE
- LOW ON-LOSSES
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- OFF LOSSES INCLUDE TAIL CURRENT
- VERY HIGH FREQUENCY OPERATION
- TYPICAL SHORT CIRCUIT WITHSTAND TIME 10 MICROS
- CO-PACKAGED ANTIPARALLEL DIODE

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the Power-MESH™ IGBTs, with outstanding performances. The suffix "K" identifies a family optimized for high frequency applications (up to 50kHz) and short circuit proof in order to achieve very high switching performances (reduced tfall) mantaining a low voltage drop.

APPLICATIONS

- HIGH FREQUENCY MOTOR CONTROLS
- SMPS
- UPS

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STGP12NB60KD	GP12NB60KD	TO-220	TUBE
STGB12NB60KDT4	GB12NB60KD	D ² PAK	TAPE & REEL

<u>December 2003</u> 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Emitter-Collector Voltage	20	V
V _{GE}	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuous) at T _C = 25°C (#)	30	А
Ic	Collector Current (continuous) at T _C = 100°C (#)	18	Α
I _{CM} (•)	Collector Current (pulsed)	60	А
Tsc	Short Circuit Withstand	10	μs
P _{TOT}	Total Dissipation at T _C = 25°C	125	W
	Derating Factor	1.0	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

^(•) Pulse width limited by safe operating area

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1.0	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_C = 250 \mu A, V_{GE} = 0$	600			V
I _{CES}	Collector cut-off (V _{GE} = 0)	V _{CE} = Max Rating, T _C = 25 °C V _{CE} = Max Rating, T _C = 125 °C			50 100	μA μA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ± 20V , V _{CE} = 0			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	5		7	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} = 15V, I _C = 12 A V _{GE} = 15V, I _C = 12 A, Tj =125°C		2.2 1.7	2.8	V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs}	Forward Transconductance	V _{CE} = 25 V , I _C = 12 A		5		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		890 110 22		pF pF pF
Q _g Q _{ge} Q _{gc}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	V _{CE} = 480V, I _C = 12 A, V _{GE} = 15V		54 8 31		nC nC nC
I _{CL}	Latching Current	V_{clamp} = 480 V , V_{GE} =15V, Tj = 125°C , R_{G} = 10 Ω		48		А
T _{wsc}	Short Circuit WITHSTAND Time	V_{CE} = 0.5 BV _{ces} , V_{GE} = 15 V Tj = 125°C , R_{G} = 10 Ω	10			μs

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{CC} = 480 \text{ V}, I_{C} = 12 \text{ A}$		25		ns
t _r	Rise Time	$R_G = 10\Omega$, $V_{GE} = 15 \text{ V}$		14.5		ns
(di/dt) _{on}	Turn-on Current Slope	V_{CC} = 480 V, I_{C} = 12 A R_{G} =10 Ω		590		A/µs
Eon	Turn-on Switching Losses	V _{GE} = 15 V,Tj = 125°C		180		μJ

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	$V_{CC} = 480 \text{ V}, I_{C} = 12 \text{ A},$		130		ns
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 V$		25		ns
t _d (off)	Delay Time			96		ns
t _f	Fall Time			100		ns
E _{off} (**)	Turn-off Switching Loss			258		μJ
E _{ts}	Total Switching Loss			410		μJ
t _C	Cross-over Time	$V_{cc} = 480 \text{ V}, I_{C} = 12 \text{ A},$		310		ns
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 V$ $T_{j} = 125 °C$		80		ns
t _d (off)	Delay Time	1, = 120 0		150		ns
t _f	Fall Time			220		ns
E _{off} (**)	Turn-off Switching Loss			650		μJ
E _{ts}	Total Switching Loss			830		μJ

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

COLLECTOR-EMITTER DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _f	Forward Current Forward Current pulsed				12 48	A A
V _f	Forward On-Voltage	I _f = 6 A I _f = 6 A, Tj = 125 °C		1.3 1.1	1.9	V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_f = 6 \text{ A} \text{ ,V}_R = 50 \text{ V},$ Tj =125°C, di/dt = 100 A/ μ s		80 240 5.5		ns nC A

(#) Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

A7/3

Pulse width limited by max. junction temperature.

^(**)Losses include Also the Tail (Jedec Standardization)

Output Characteristics

Transconductance

Collector-Emitter On Voltage vs Temperature

Transfer Characteristics

Normalized Collector-Emitter On Voltage vs Temp.

Collector-Emitter On Voltage vs Collector Current

Gate Threshold vs Temperature

Total Switching Losses vs Gate Resistance

Normalized Breakdown Voltage vs Temperature

Gate Charge vs Gate-Emitter Voltage

Total Switching Losses vs Temperature

477. 5/11

Total Switching Losses vs Collector Current

Turn-Off SOA

Diode Forward Voltage

Thermal Impedance

Fig. 1: Gate Charge test Circuit

Fig. 2: Test Circuit For Inductive Load Switching

TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

D²PAK MECHANICAL DATA

DIM		mm.	mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.4		4.6	0.173		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.027		0.036	
B2	1.14		1.7	0.044		0.067	
С	0.45		0.6	0.017		0.023	
C2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
E	10		10.4	0.393			
E1		8.5			0.334		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.590		0.625	
L2	1.27		1.4	0.050		0.055	
L3	1.4		1.75	0.055		0.068	
М	2.4		3.2	0.094		0.126	
R		0.4			0.015		
V2	00		80				

D²PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

REEL MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
Α		330		12.992
В	1.5		0.059	
С	12.8	13.2	0.504	0.520
D	20.2		0795	
G	24.4	26.4	0.960	1.039
N	100		3.937	
Т		30.4		1.197

BASE QTY	BULK QTY
1000	1000

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A0	10.5	10.7	0.413	0.421
B0	15.7	15.9	0.618	0.626
D	1.5	1.6	0.059	0.063
D1	1.59	1.61	0.062	0.063
E	1.65	1.85	0.065	0.073
F	11.4	11.6	0.449	0.456
K0	4.8	5.0	0.189	0.197
P0	3.9	4.1	0.153	0.161
P1	11.9	12.1	0.468	0.476
P2	1.9	2.1	0.075	0.082
R	50		1.574	
Т	0.25	0.35	0.0098	0.0137
W	23.7	24.3	0.933	0.956

47/°

^{*} on sales type

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com