AUFGABE 3 (5 Punkte): Sei G ein pt-Algorithmus, der eine Funktion $\{0,1\}^n \to \{0,1\}^{\ell(n)}$ mit $\ell(n) > n$ berechnet. Wir definieren $\Pi_s = (Gen, Enc, Dec)$ mit Sicherheitsparameter n für Nachrichten der Länge $\ell(n)$
wie in der Vorlesung: $\operatorname{Gen}(1^n) \colon \operatorname{Gib} \ k \in_R \{0,1\}^n \ \operatorname{zur\"{uck}}.$ $\operatorname{Enc}_k(m) \colon \operatorname{Gib} \ c := \operatorname{G}(k) \oplus m \ \operatorname{zur\"{uck}}.$
$Dec_k(m)\text{: Gib }m := G(k) \oplus c \text{ zur\"{u}ck}.$ Zeigen Sie, dass G ein Pseudozufallsgenerator ist, wenn Π_s KPA-sicher ist.
TIS KPA => G PRIVG
115 LP/1 - / G PKWG
Beh. G Kein PRG => TTs nich) KPA
3 Universcheide D mit Angrese ppt A. V A gill:
E(n) > z + negl(n) (certzel-cma)
e(n) D
UE {0,13 } RER {0,13 } (m0,m1)
RER (0,13 (110,111)
C=WBm C
15"E {0,13 Date (1 h=h')
$= b'' \in \{0,1\} 0 : b = b' = b'$
1) W=G(R)
UST ()(G(h))=1]=USTPrivK _{A,TS} (n)=1] $= \frac{1}{2} + \varepsilon(n)$
- 2 2 2 (11)

Daniel Sergej Mux	Benford Mamberson Royndhuhn	108 01	9 210 9 231 9 211 2	217 345 207
ŪG A	F			

Index der Kommentare

- 1.1 Aber wer sagt, dass dieser so aussehen muss???
- 1.2 Euch ist schon klar, dass ihr für jeden Unterscheider D zeigen müsst, dass dieser keinen Vorteil haben kann, nun habt ihr hier nur eine spezielle Familie von Unterscheidern angegeben.
- 2.1 Nein, ihr habt einen beliebigen Angreifer genommen, über den nur bekannt sein kann, dass er nicht vernachlässigbaren Vorteil hat (Pi sicher), womit euer spezieller Unterscheider D dann nicht besser als vernachlässigbar unterscheiden kann. Ihr müsst dies aber für alle Unterscheider zeigen!!