Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

1.96 R31 Fore

COOPERATIVE SNOW SURVEYS and IRRIGATION WATER FORECASTS

for **NEVADA**April 1,1949

by
Division of Irrigation, Soil Conservation Service
United States Department of Agriculture
Nevada Agricultural Experiment Station
and
Nevada State Engineer

Data included in this report were obtained by the agencies named above in cooperation with other Federal, State, and local organizations listed on the last page of this report.

FEDERAL-STATE COOPERATIVE SNOW SURVEYS and IRRIGATION WATER FORECASTS

noi ACAVIA

by
Division of Irrigation, Soil Conservation Service
United States Department of Agriculture
Nevada Agricultural Experiment Station
and
Nevada State Regineer

Data included in this report were obtained by the agencies named above in cooperation with other Federal, State, and local organizations listed on the last page of this report.

FEDERAL-STATE COOPERATIVE SNOW SURVEYS AND IRRIGATION WATER FORECASTS

FOR

NEVADA

Report Prepared

by

Clyde E. Houston, Irrigation Engineer
Division of Irrigation
Soil Conservation Service

and

H. P. Boardman-Chairman Nevada Cooperative Snow Surveys

Division of Irrigation
Soil Conservation Service
Nevada Agricultural Experiment Station
Reno, Nevada

INDEX TO SNOW COURSES

NUMBE	RS NAME	ELEVATION	NUMBERS	NAME	ELEVATION	NUMBERS	NAME	ELEVATION
	SNAKE RIVER			TRUCKEE BASIN			CARSON BASIN	
1.	Bear Creek	7 800	1.(Cal.) Granite Peak	8 200	1.(Cal.)	Carson Pass	8,600
	Fox Creek) Independence		2.(Cal.)	Poison Flat	7,900
4.	76 Creek) Webber Peak		3.(Cal.)	Blue Lakes	8,000
	Gold Creek) Donner Summit		Mor	OWNERDN ODERATE DAG	Thy
6.	Big Bend	•) Ward Creek .		NOF	THERN GREAT BAS	TN
) Webber Lake.		1. Bald	Mountain	6,720
	OWYHEE RIVER) Sage Hen Cree			ster Peak	
) Tahoe City .			WATEED DAGEN	-
1.	Lower Buckskin	. 6,700	9.(Cal.) Truckee #2 .	6,400		WALKER BASIN	
2.	Upper Buckskin	• • 7,200) Independence		1.(Cal.)	Center Mountai	n • 9,400
3.	Martin Creek	• • 6,700) Boca #2		2.(Cal.)	Sonora Pass	8,800
4.	Granite Peak) Furnace Flat		3. (Cal.)	Buckeye Forks.	8,500
5.	Gold Creek) Fordyce Lake	•		Virginia Lakes	
6.	Big Bend) Soda Springs			Willow Flat	
7.	Fry Canyon) Independence			Buckeye Roughs	
8.	Rodeo Flat		16.	Mt. Rose		1 1	Leavitt Meadow	
9.	Lower Jack Creek .		17 . (Cal .) Truckee Range		8.(Cal.)	Tioga Pass	9,900
10.	Upper Jack Creek .		20 (0.2		on. 6,000			
11.	Tremewan Ranch) Donner Lake.			TAHOE BASIN	
12.	Taylor Canyon	6,200	19.	Big Meadows.		1 (001.)	Lake Lucille .	8 400
	HENRY THURST OF DATE	ממז	20.	Little Valley	6,300		Rubicon #1	_
	UPPER HUMBOLDT RIV	/ EAC	10	WED COLODADO DE	TED		Hagans Meadow	
,	Dann Carala	7 000	10	WER COLORADO RI	V PAR	7 .	Freel Bench.	
2.	Bear Creek		1 0-:	wh	7 900	: :	Ward Creek	_
	Fox Creek			nbow Canyon		1	Upper Truckee.	•
4. 5.	76 Creek Gold Creek			e Canyon			Tahoe City	
6.	Big Bend		ī	Canyon #1			Rubi con #2	
7.	Fry Canyon			Canyon #2			Rubicon #3	
8.	Rodeo Flat			nbow Canyon #2. a Notch		1 1	Richardsons #2	•
9.	Lower Jack Creek			Springs			Echo Summit	
10.	Upper Jack Creek .			hew Canyon		13.	Marlette Lake.	
11.	Tremewan Ranch	-		e Canyon		14.	Daggetts Pass.	
12.	Taylor Canyon)• 1±11	c carryon	0,200	15 •	Glenbrook #2 .	
13.	Lower Trout Creek.			EASTERN NEVADA		16.	Mt. Rose · · ·	9,000
14.	Upper Trout Creek.	•		EVOTEIN NEAVEN				
15 •	Dorsey Basin		1. Cav	e Creek	7 000	CE	NTRAL GREAT BAS	IN
16.	Ryan Ranch			er Canyon				
17.	Dry Creek		-	ray Summit		1.	Clark Canyon.	9,000
18.	Lamoille #1			er #1 • • • •		2.	Trough Springs	
19.	Lamoille #2	7,300		er #2	•		McAfee Forks.	
20.	Lamoille #3	• • 7,700		er #3		_ :	Roberts Ranch	
21.	Lamoille #4			ry Creek			Goat Springs.	
	Lamoille #6		_	d Creek	•		Sage Hen Flats	
	Green Mountain				·		Ranger Station	
	Harrison Fass #1 .		I	OWER HUMBOLDT R	IVER	O. (Cal.)	White Mountain	15,000
25 .								
26.	Corral Canyon	. 8,500	1. Low	er Buckskin	• • 6 ₉ 700			
				er Buckskin				
				tin Creek	-			
				nite Peak				
				ance Creek	•			
				as				
				Creek Camp Gro				
			-	Creek Mine				
				er Big Creek				
				er Corral				
			11. Upp	er Corral	8,500			

WATER SUPPLY OUTLOOK

NEVADA

AFRIL 1, 1949

Snow stored water in the Sierra is quite heavy at the lower elevations being about twice normal while the higher elevation snow is about normal. Low snow in Humboldt Basin is about twice normal while high snow is about 135 percent.

In general precipitation throughout the State is about normal or slightly below. Heavy snow cover at this date is due to extremely low temperatures during the winter.

Groundwater levels are down in the major irrigated valleys. This shortage will be replenished by surface runoff with a resultant decrease in available surface water.

Early season streamflow has been retarded by subnormal temperatures.

Reservoir storage is poor with total storage on April 1 about 80 percent of last year, 45 percent of the 1938-47 average, and 35 percent of the usable capacity. Lake Mead contains about 95 percent of last years storage on this date.

A CANADA CANADA A CANADA CANADA A CANADA CA

⇔dis vo Babre, es corestas, i secon presentado se su su se se esta e como e colore. A presentado de como esta se tento e con se tento.

STREAMFLOW FORECASTS AFRIL 1, 1949

	April-Jul		sive stream					
Forecast Stream	Forecast 1949	1938-47 Average	1949 as % 10 yr.Avg.				1947	1946
Owyhee River nr. Owyhee, Nev.	150	82	183	80	187	54	32	88
Lamoille Crk.nr. Lamoille, Nev.	32	29	110	30	107	25	25	30
So.Fk.Humboldt nr. Elko, Nev.	160	87	184	70	218	45	44	90
Humboldt River at Palisade, Nev.	300	247	121	200	150	104	94	256
Martin Crk. nr. Paradise, Nev.	14	16	87	20	70	13	7	14
West Carson at Woodfords, Calif.	50	63	7 9	65	77	45	35	55
East Carson nr. Gardnerville,Nev.	180	213	85	210	86	151	121	178
Carson River nr. Carson City, Nev.	160	206	7 8	200	80	132	93	172
Carson River at Ft.Churchill, Nev.	135	191	71	195	69	113	80	154
West Walker nr. Coleville,Calif.	165	163	101	175	94	109	104	149
East Walker nr. Bridgeport,Calif.	2 65	77	84	7 5	87	32	31	56
Truckee River at Farad, Calif. 3	250	272	92	290	86	211	127	2 68
Lake Tahoe ⁴	359	692	52	583	62	465	611	737

^{1,} Corrected for storage in Wildhorse Reservoir.

-2-

^{2.} For period April through August corrected for storage in Britgeport Reservoir.

^{3.} Exclusive of Tahoe and corrected for storage in Donner, Independence, and Boca Reservoirs.

^{4.} Maximum storage with gates closed.

STREAMFLOW FORECASTS APRIL 1, 1949

Snake River Basin in Nevada

Snow stored water on the headwaters of Salmon Falls and Bruneau River is about 150 percent of last year on this date and 150 percent of average.

Flow of Owyhee River near Owyhee, Nevada, for the period April through July is forecast at 150,000 acre feet. This is three times the flow last year or 187 percent of the 45 year normal. Wildhorse Reservoir contained 6,000 acre feet on April 1, or 20 percent of capacity. The reservoir will probably fill this season.

Upper Humboldt Basin

Snow stored water on the headwaters of Marys River, North Fork, and Susie, and Maggie Creeks is about twice normal at the low elevations and about 40 percent above at the high elevations. Snow is wind packed indicating gradual melting with late runoff.

From Trout Creek to Lamoille Creek snow stored water at the low elevations is about 200 percent of normal while there is about 115 percent at high elevations.

The April-July flow of Lamoille Creek near Lamoille is forecast at 32,000 acre feet. This is 30 percent better than last year and 10 percent above normal. South Fork of Humboldt near Elko is forecast to flow 160,000 acre feet. This is three times that available last year and twice normal.

The forecast flow of Humboldt River at Palisade for the period April-July is 300,000 acre feet or three times last year and 150 percent of normal. Cumulative discharge since October 1, is 70 percent of the median.

The second secon

BARRIER CONTRACTOR CON

The second of th

Lower Humboldt Basin

Snow stored water on the headwaters of Little Humboldt Basin is twice normal at low elevations and about normal at high elevations. The April-July forecast flow of Martin Creek near Paradise Valley is 14,000 acre feet. This is approximately the same as was available last year and is 70 percent of normal.

Snow stored water on the headwaters of Reese River is slightly better than last year and about 150 percent of normal.

Snow cover on Rock Creek is three times greater than normal with snow conditions similar to those in 1945.

Pitt-Taylor and Rye Patch Reservoirs contained 65,000 acre feet on April 1. This is approximately 50 percent of the storage on this date last year and 30 percent of capacity. Above average runoff from Upper Humboldt maybe sufficient to fill the reservoirs.

Northern Great Basin

Snow stored water contributing to Quinn River and McDermitt Creek is greater than normal and will cause these streams to flow about 25 percent above normal.

Eastern Nevada

Snow stored water above Steptoe and Ruby Valleys is much greater than normal. Snow surveys by the Fish and Wildlife Service at the south end of Ruby Valley indicate a snow cover twice normal.

Service in the second considerable of the construction of the service of the construction of the construct

្រុម និសាស្តីមើមកាមសុជី ដីសេខភាពមាន ខេត្តប្រជាពលរបស់ ប្រធានធ្វើប្រធានធ្វើប្រធានធ្វើ ខ្លាំងសេចបញ្ជាញ់ ប្រើប្រើបាលសម្រាស់ សុខភាព ទីសមាន ១០០១ ទី១០១ ទៅ ប្រើប្រើប្រើប្រឹក្សា ព្រះប្រជាពលរបស់ ដី

regards realize the property of a regard to the first season of the moment of the control of the

This is not appropriate the second of the local and the second of the se

Land Street amounts a

Approximate in territory and sequent first set increase because the form of the first section of the first section

The state of the s

ed y 2 ° 10 metro arra estable to research de la collectión de la collectión de la collectión de la collectión Para la 20° 20° 20° 20° 10 metro de la collectión de la collecti The Snake Range contains 130 percent of last years snow and 120 percent of normal.

Snow water above the City of Ely is still heavy with the amount measured April 1 about twice normal or similar to that available in 1945.

Central Great Basin

Snow on the White Mountains above Fish Lake Valley in West Central Nevada is better than average. A new snow course near White Mountain Peak at 12,000 feet elevation established and surveyed in cooperation with the U.S. Navy and Deep Springs School measured 36 inches of snow and 15 inches of water.

Lower Colorado River in Nevada

Snow cover in the Mount Charleston area near Las Vegas is about 80 percent better than last year and 60 percent greater than the past 8 year average.

The heavy snow pack on Meadow Valley Wash is practically gone. Danger of high water from snow melt no longer exits.

Lake Mead contains about 1,000,000 acre feet less water than last year at this time.

Walker Basin

West Walker River near Coleville is forecast to flow 165,000 acre feet from April through July. This is 150 percent of last year and 95 percent of the 45 year normal. Cumulative discharge since October 1 is 50 percent of median. Topaz Reservoir contained 22,000 acre feet in storage on April 1. This is less than last year and only 40 percent of capacity. The Reservoir will probably fill this year.

The second secon

The newer snow pack on Pages Unitary aso is psintently gone. Hanger of him water from soon and tenger exits.

Laws Meyd combains wheat 1,000,000 acre Mest Wetom than last fear hes water

Falker Lectn

West Talker River near Toloville is forecast to flow 155,000 acre feet from April through July. This is 150 percent of law jear 150 percent of the hf year named. Oursiesive discherge since October 1 is 50 percent of median. This dependent contained 27,000 year feet in storage on April 1. This is less turn jest year and only ho percent of capacity. The Regervoir will probably fill this year.

._5...

at ar wide tite w

STATE OF THE STATE

Talear River Total initiaville in forecourt to the court total court for the court bereaugh init. The court is a fact of a court in the court of a court in the court of the court in the c

April through August flow of East Walker River near Bridgeport is forecast at 65,000 acre feet. This is twice the flow of last year and almost 90 percent of normal. Bridgeport Reservoir stored 20,000 acre feet on April 1, which is slightly less than last year and about 50 percent of capacity. The reservoir will probably fill this year.

Carson Basin

East Carson River near Gardnerville is forecast to flow 180,000 acre feet, which is more than was available last year and 86 percent of the long time normal. Stream discharge will probably remain above 200 second feet until the last week in July.

April through July flow of West Carson at Woodfords is forecast at 50,000 acre feet. This is slightly more than the runoff of last year and almost 80 percent of normal.

Water supplies from local drainages in Upper Carson Valley which are dependent upon low elevation snow should be better than any year since 1941.

Flow at Fort Churchill is forecast at 135,000 acre feet or 69 percent of the 45 year normal and about 20 percent greater than last year.

Lahontan Reservoir contained 197,000 acre feet on April 1 of this year compared to 189,000 last year and 248,000 for the 1938-47 average for this date. This years storage is almost 70 percent of capacity.

product the forevast as public acre fuct. This is true to the first infinite as public acre fuct. This is true to the first infinite year and almost if percent or the care the first in thick in alightly less than last year and about for earners and this file than last year and this file for expecting. The reservoir all proceedings.

alou por at

And invan eiver near Archerville is Forerat to Lie 189, 19 and foot, which is near than as availwite itel come and So carrent of the Bon the namel. Su en discouple till probably remain there 200 second foot malle the last week in 2017.

Appliant to apply the policy of the self production of fine and self-principles of the self-principle of the fine that are self-principles of the self-principles of the self-principles of the self-principles of the self-principles.

water chapties them boad dealinger in Apper Carcon Valter book and dependent upon low elevition arov shifted better than any year since lybl.

File of dort Clarochill is its ecosy at 135,000 less Factour (c. berecht of the hy wer normal and els c followers in the star less were.

ldiction eventuals contiled level 177,000 toral feet on the 11 in at the event economic of the 500 last parater 201,000 torate 1935-in over the chis late. This year to accomp in absorb 16 percent of copacity.

Tahoe Basin

April 1 storage in Lake Tahoe was 183,000 acre-feet. This is 68 percent of the stored water last year and only 36 percent of the past ten year average for this date. Truckee Basin Water Committee forecasts a maximum storage, assuming gates closed, of 359,000 acre feet. This is 77 percent of last year and 62 percent of the 45 year normal. When storage drops below 200,000 acre feet it becomes difficult to release sufficient water from the Lake to satisfy decreed rates of flow in Truckee River.

Truckee Basin

Truckee Basin Water Committee forecasts the April-July flew of Truckee River at Farad, to be 250,000 acre feet. This is 118 percent of last year and 86 percent of the 45 year normal.

STATUS OF RESERVOIR STORAGE, ARRIL 1, 1949

BASIN and STREA	m reservoir	USABLE CAPACITY	THOUSA	NDS ACRE	FEET IN	STOR AGE	ABOUT APR.1
		(THOUS. A.F.)	1949	1948	1947	1946	10-yr.avg. 1938-1947
Owyhee	Wildhorse	33	6	6	19	24	15 ^a
Lower Humboldt	Pitt Taylor	27	0	0	23	19	2 2 b
Lower Humboldt	Rye Patch	178	65	120	1.86	187	180°
Tahoe	Tahoe	750	183	268	534	589	509
Carson	Lahontan	286	197	189	246	250	245
West Walker	Topaz	59	22	25	52	55	48
East Walker	Bridgeport	42	20	24	44	L ₁ 3	39
Colorado	Mead	27,935	L7,735	18,620	16,383	17,776	19,229 ^d

a - Average for years 1940 - 1947

b - Average for years 1938 - 1941, 1945 - 1947

c - Average for years 1943 - 1947

d - Average for years 1939 - 1947

94				Albertains As an	and the state of t	to to contrational times to the engage appeals between the engage of the lates.
	.18	et.	2	£8	42 - 2 - 3 - 3 - 1	458 978
1 s " 3 - 1		\$		\$ 15 \$ 15	205 1 273.	a following that we
Total	18.	P.J.	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		drawl sta	drafts make them.
(Cit	Ÿ. Z			w. ·	9 m. (A.)	38.00 L
310	N.S.	**			onderwik t	AC 047 C T

The second of the second

ngar na kanalaga na masa k

the control of the co

อาเมาส์ (โค)

off a little of the contract o

was, the first of the white beings to bear

Commence of the Commence of th

The state of the s

NEVADA SNOW SURVEYS ARIL 1, 1949

	Water	Content inches)		20,	5.8 9.1		7.71	m co a	o Hi	٠. م.	ا ا	
	cord Av.	Conten (inches		8 1	17.6		7 11	מנו מנו		0 0 -	10,	5 61
NEASUREWENTS	Past Record Years A	oi Record		12 6	2 y y		8 5	∞ o∧ c	21	0	† ∞ t	8
SNOW COVER ME	t(inches) Approx.date	1947		15.0	3.6		100	7.2	3.6	t.2 t.2	4.2	00
SNOW	Content(inches Same Approx.d	1948		20.0	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٠	10.2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ທ ກັບ ທີ່	× 6.	11.6	0 0 0 5
	Water	1949		24.4			14.5	Σ Φ C	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	14 24 50 60	14.9	4.0
	Snow	Depth (inches)			No Survey 28.9 42.4		39.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	42.4	444 47.0°	1000	13.1 29.4
	Date	of Survey		3/30			1 1 1 1 1 1 1	1/5 1/5	3/28	3/29	3/31	3/30
		Elev.		7800	7100 6600 6700		6700	7800	6700	6800	7250	5700
LION		Rge.		58E 53E	7.7.0 2.0.0 2.0.0 2.0.0 3.0 3		39年39年	140日 39日 20日 20日	26E	23E	いなり	55E 53E
LOCATION		Sec. Twp. Rge.		1,61V	45N 45N		45N	K K K K K K K K K K K K K K K K K K K	45N 45N	43N 43N	42N	39 N 39 N
		Sec		H H	9 H &		25	18 22 12	7 R E	7% ²	900	32.6
		Number		нα.	ひいた	•	Н 0	M#1	n Φ 1	~∞ 0	70	12
	DRAINAGE BASIN	and SNOW COURSE	SNAKE RIVER	Bear Creek Fox Creek	76 Creek Gold Creek Big Bend	OWYHEE RIVER	Lower Buckskin Upper Buckskin	Martin Creek Granite Peak	Gold Greek Big Bend	fry Canyon Rodeo Flat Iomos Isak Canol	Upper Jack Greek	Tremewan Kanch Taylor Canyon

•

		LOCATION	TION						SNOW COVER	R MEASUREMENTS	- 1		- 1
DRAINAGE BASIN and SNOW COURSE	Number	Sec.	Sec. Twp. Rge.	Rge.	Elev.	Date of Survey	Snow Depth (inches)	Water 1949	Content(inches) Same Approx.date 1948 1947	nches) x.date 1947	Pas Years of Record	Past Record S Av. Water Content rd (inches)	1 1
UPPER HUMBOLDT													
Bear Creek	٦ 8	33	46N	58E	7800	3/30	77.2	24.4 13.9	20.0	15.0	6 12	19.2	
76 Creek	1 -7	10	TTN TTN	28E	7100	No	Survey		11.3	6.7	~	11.1	
Gold Creek	· \ \	31	45N	56E	0099	3/28	28.9	2. TU	ν, Φ	0	6	ν, ω	
Big Bend	91	8 8	45N	56E	6700	3/28	42.4	יין ר געיר	დ r ლ ი	% - -	27	٧ a ښار	
Fry Canyon	<u>~</u> «	7 %	1,3N	ない。	00/00	3/29	144.5	16.2	ره <i>ا</i>	1. t	o co	0 0	
Lower Jack Creek	0 0	287	12N	23日	6800	3/31	15.4	4.5	14.7	0	17	T-07	
Upper Jack Creek	. 9	6	42N	53E	7250	3/31	43.0	14.3	11.6	4.2	∞	10.1	
Tremewan Ranch	디	6	39N	5年	5700	3/30	13.1	7.0	0	0	~	0.1	
Taylor Canyon	12	35	39N	53E	6200	3/30	29.4	8°9		0	ω	3°3	
Lower Trout Creek	13	28	37N	61E	0069	3/31	22.3	0°2	က်	0	m	1.9	
Upper Trout Creek	†r.	ή,	36N	61E	8500	3/31	77.2	28.8	=	21.5	m:	30.2	
Dorsey Basin	15	28 د	35N	(SEE	8100	4/2	54.4	18.4	11.9	7.9	<i>~</i> ′	16.1	
hyan hancn Dry Creek	77	- 1 _C	24 N	ひ よ ら ば ら	7000 7000 7000	16/5 1/1	1 0 C	0,0) (> C	- ~	0 0	
Lamoille #1	- 87	, , ,	32N	28 8 8 8	2700	3/29	42,3	12.4	11.2	0.47	17	0	
	19	14	32N	SB B	7300	3/29	, 9° Th	13.0	12.1	5.9	50	10.4	
Lamoille #3	20	24	32N	58月	7700	3/29	53.2	18.2	15,2	7.0	77	13.8	
Lamoille #4	27	19	32N	59E	8000	3/28	72.5	24.0	20.7	13.5	ω	19.1	
Lamoille #5	22	31	32N	59 E	8700	3/29	88.2	29.4	24.4	23.6	걲	26.8	
24	23	23	29N	57E	8000	No	Survey		14.1	4.4	2	14.0	
Pass	5₽	0,	28N	57压	0099	3/31	23.0	0.6	ν, ν,	0	12	5.2	
Harrison Pass #2	25	16	28N	5年	2400		30°6	0°11	7.1	0 .	2	8.4	
Corral Canjon	56	27	28N	57E	8500	2	Survey		17.5	14.8	2	19.5	

)[LOCATION								SNOW			
BASIN			E	P	1	Date	Snow	Water (Content (inches) Same Approx, cate	nches) ox, date	Past I Years	Record Av. Veter
and SNOW COURSE	Numoer	yec.	Sec. IMP. Rge	0 50 51	erev.	Survey	(inches)	1949	1948	1947	Record	(inches)
LOWER HU BOLDT												
Lower Buckskin	r-1	25	LSN	395	00/9	4/3	39.5	14.2	10.2	0	œ	7.5
Upper Buckskin	2	H	15N	39E	7200	t/1	29.6	1.6	10.4	7.4	13	11°1
Martin Creek	M	18	ηψN	100万	0029	17/2	26.3	9,0	2.6	7,	න _'	ന്
Granite Peak	7	22	17/1N	39周	7800	11/2	31.4	8.9	2.6	7.2	ο.	11.8
Lamance Creek	_ك ،	13	L2N	383	0099	[/]	33.1	11.9	ν, ~-	0 (⊅ °	Ф Ф
Midas	9	∞ ⊏l	3911	1033	7200	4/1	25.2	ω, Ο,	7.4	0		2.0
Big Creek Camp Ground	~ ∞	23	NZT NZT	13E	9009	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11.7	かいた	w r	00	· ·	0 0 %
Upper Big Creek	0 0	28	173	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8000	£/3	24.3	10.3	10.5	6.2	2	5.6
Lower Corral	10	12	11.N	TOE.	2500	4/2	7-7	2 7	6 6	0	c-1	2,1
Upper Corral	Ħ	20	NTT.	仁田	8500	7/5	19.4	7.9	χ	0		0•0
EASTERN NEVADA												
Cave Creek	۲۱ (25	27W	573	7000	3/31	52.1	24.2	170	လ (Φ 0	13.4
Hager Canyon	2 (7 T	27.N	五,5	4500	3/31 12/4 12/4	ر د د	- C. Z.	0 -	7.1	٥ در	10.0
Murray Summit	ν-	ر ر ر	TON	62E	7050	الا/د الا/د	17.00	٥, ۲	7 ×	٥ د	77	7.0
Baker #2	ⅎ℩) <u>%</u>	13N	三(0)	8950	1/2	0,00 0,00 0,00	20,00	17.71	19.8	- 6	18.4
	· •	27	13N	S8E	9250	1/5	63.1	20,5	17.0	22.4	7	19.9
Berry Creek	2	56	17N	65年	9100	3/30	57.4	18.9	14.2		Course	
Bird Creek	ω	34	19N	65匹	7500	3/29	22.9	7.3	6.8	New	Course	

	LOCATION	NO							SI	SNOW COVER	MEASUREMENTS	ENTS	
DRAINAGE BASIN	1	C	Ė	t i	[Date	Snow	Water	Content(inches) Same Approx.date	nches)	16	Past Record s Av. Water	
and SNOW COURSE	Number	vec.	Sec. IWP. Rge	rge•	• ner	Survey	(inches)	1949	1948	1947	Record	(inches)	
LOWER COLORADO													
Rainbow Canyon	Н	H H		57E	7800	3/29	46.1	17.1	32.6	1.9		12.7	
Kyle Canyon	2 0		198	56E	8200	3/29	45.9	16.8	10.5	% - %	~ 0	11.2	
Lee Canyon #1	Υ			ン で 近 で 正 の 正 の に に に に に に に に に に に に に に に に	9000	الا /ك 12/ ك	20.40	10°/	7 0	1 11		10.0	
Rainbow Canyon #2	\$ <i>TV</i>	, 0		5年	8100	3/29	м. 0.	9.02	14.8	12.		13.6	
Mathew Canyon	, Φ			70E	0009	1/2	2.4	6.0		New Sno	w Course		
Pine Canyon	6	Ħ		69正	9500	11/3	2.1	2•3		=	=		
CENTRAL GREAT BASIN												Ŷ	
Clark Canyon	٦		198	56E	9000	1/1	9.19	18.0	8.1	5.5	5.2 4	0.6	
Trough Springs	2	23	188	55E	8500	14/3	51.8	14,3	7.2	1.6	m M	5.2	
McAfee Forks (Cal.)	Μ.		SŢ.		7500	4/2	12.0	5.6	0		r Course		
Roberts Ranch (Cal.)	41		65		8300	3/30	w, M	0,1	0	.0	rey 2	1.1	
່ຕີ	rv ,	13	6S 2		10300	3/30	26.0	ω (0)	0		5	2.7	
	ا ۵	53	کر ہے تک ہ		10500	3/29	30.4	2,0	H (2	3.7	
	~ 0	74	ر ا ا		9500	3/28	24.9	9•/	6.0		5	1.7	
White Mountain (Cal.)	Ö	2	3		12000	3/29	35.7	15.0	New	Snow Co	Course		
NORTHERN GREAT BASIN											,		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		1		000	20/0	1	(
bald wountain Disaster Peak	-1 2	18	45N 47N	当 第 5 5 5 7 7 7	0059	3/31	39.4	7°-71	2.2 New	Snow Cc	0 9 Course	۳ <u>.</u> ۲	

NEVADA SNOW SURVEYS AFRIL 1, 1949

Same Approx.date Year J948 1947 Record 1948 1947 Record 10.1 13.6 25.1 10.1 13.6 25.5 30.6 37.8 33.0 12.6 5.7 22.8 30.0 224.8 31.7 22.8 30.0 224.8 31.7 22.8 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9		LOCATION	Z						Water Co	SNOW COVER MEAS	MEASUREMENTS		Past Record
2 8 12N 17E 8400 4/2 149.3 57.9 43.8 49.3 35 3 6 12N 18E 8000 4/3 122.7 45.2 26.1 41.8 33 3 6 12N 18E 8000 4/3 122.7 45.2 26.1 41.8 33 3 6 12N 18E 7300 4/3 115.4 186.2 30.6 19 5 21 15N 18E 6400 4/3 34.1 13.7 2.8 0.0 38 8 6 15N 17E 6250 4/2 165.1 22.5 5.5 0.0 38 10 32 14N 17E 6700 4/3 67.6 22.8 5.5 0.0 38 11 12N 18E 7500 4/1 55.5 12.4 13.1 5.1 13.1 12 12N 18E 8000 4/1 55.5 12.8 12.4 13.1 5.1 13.1 13 13 14N 18E 7500 4/1 55.5 12.8 12.6 13.1 5.1 14 19 13N 19E 7500 4/1 78.2 27.2 30.1 9 15 11 14N 18E 8000 4/1 78.2 27.9 13.5 28.9 39 15 12N 18E 8000 4/1 78.2 27.9 13.5 28.9 39 16 12N 18E 8000 4/1 78.2 27.9 13.5 28.9 39 17.2 24 15N 17E 8200 No Survey No Survey 17.2 24.8 38 18 25 17N 14E 6900 3/28 101.7 42.0 24.8 38 21 15N 14E 6900 3/28 101.7 42.0 24.8 38 22 15N 14E 6900 4/7 70.0 13.5 10.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0		Number	Sec.	Twp.	. Rge	Elev.	Date of Survey	Snow Depth (inches)	ျပ	ne Approx 1948	date 1947	Years of Record	Av. Water Content (inches)
2 8 12N 17E 8400 4/2 149.3 57.9 43.8 449.3 35 3 6 12N 18E 8000 4/3 122.7 45.2 26.1 41.8 33 4 5 12N 18E 8000 4/3 122.7 45.2 26.1 41.8 33 5 12N 18E 8000 4/3 115.4 186.2 26.1 41.8 33 5 12N 18E 7000 4/2 115.4 186.2 30.6 37.8 36 7 12N 18E 6400 4/3 34.1 13.7 2.8 0.6 37.8 9 6 13N 17E 7500 4/3 77.6 30.8 18.1 25.9 30 10 32 14N 17E 6250 4/4 57.6 25.5 12.4 13.1 9 11 6 12N 18E 6500 4/4 57.6 25.5 12.4 13.1 9 12 6 11N 18E 6500 4/4 57.6 25.5 12.4 13.1 9 13 13 15N 18E 8000 4/5 55.4 19.0 12.6 20.5 33 14 19 13N 19E 7500 4/1 78.2 27.2 8.0 10.0 7 16 7 17N 19E 8200 4/1 78.2 27.9 13.5 28.9 39 1 24 19N 17E 8200 4/2 117.0 43.6 24.8 31.7 12 2 2 18N 15E 8450 4/2 117.0 43.6 24.8 31.7 12 2 2 15N 14E 6900 3/28 101.7 42.0 24.8 31.7 12 2 2 15N 14E 7000 4/2 117.0 43.0 30.0 30.0 27 6 2 19N 14E 7000 4/2 115.4 188.2 24.8 31.7 12 5 2 1 15N 14E 7000 4/2 115.4 188.2 24.8 31.7 12 5 2 1 15N 14E 7000 4/2 115.4 188.2 30.9 30.0 30.0 27 6 2 1 15N 14E 7000 4/2 115.4 188.2 30.9 30.0 30.0 30.0 37.8 31.7 31.7 31.8 31.7							·						
2 6 13N 17E 6100 L/3 122,7 L/5.2 26,1 L/1.6 33 3 6 12N 18E 6000 L/3 L/2 L/2.1 16,2 6,7 L/2 19, 13,6 19, 15,2 15N 16E 7000 L/2 115,4 L/6.2 6.7 L/2 19, 15,4 13,6 19, 19, 12N 16E 7000 L/2 115,4 L/6.1 22,6 0.0 37,6 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		r	28	12N	17E	8400	17/2	149,3	57.9	43.8	49.3	35	56.2
3 36 12N 18E 8000 14/3 57.1 22.4 10.1 13.6 31 5 21 15N 16E 7000 14/2 115.4 16.2 6.7 4.6 19 7 21 12N 16E 7000 14/2 115.4 188.2 6.7 4.6 19 8 6 15N 17E 6250 14/2 15.5 12.8 30.6 38 10 32 14N 17E 6700 14/3 67.6 25.5 12.4 13.1 9 11 6 12N 18E 6500 14/4 55.5 22.8 9.8 7.2 55.9 30 12 6 11N 18E 7500 14/4 55.5 22.8 9.8 7.2 59.1 9 13 15N 18E 8000 14/5 55.5 22.8 9.8 7.2 50.1 9 14 19 13N 18E 8000 14/5 55.4 19.0 12.6 20.5 33 15 13 14N 18E 6900 14/1 78.2 27.2 30.1 9 16 7 17N 19E 8200 No Survey No Survey 17.2 24 1 24 19N 17E 8200 No Survey 17.0 24.8 31.7 12 2 9 18N 15E 8450 14/2 17.0 42.0 24.8 31.7 12 3 30 19N 14E 8000 14/2 117.0 42.0 24.8 36.5 24.8 30.9 30.0 57.0 27.0 10.0 7 5 2 1-15N 16E 7000 14/2 115.4 182.0 24.8 36.9 30.9 30.9 30.9 30.9 30.9 30.9 30.9 30		2	9	13N	17E	8100	1/3	122,7	45.2	26,1	F. 63	33	45.4
1	~	~	36	12N	18E	8000	1/3	57.1	22.4	10.1	13.6	33	16.5
5 21 15N 16E 7000 4/2 115,4 48,2 30,6 37,8 36 6 15N 17E 6250 4/2 46,1 22,5 5.5 0.0 38 0.6 19 0.6 19 0.0 13N 17E 6250 4/1 67,6 25,5 12,4 13,1 9 0.0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		τ,	36	12N	18匠	7300	14/3	1,007	16,2	6.7	9.4	19	6
7 21 12N 18E 6400 4/3 34.1 13.7 2.8 0.6 19 8 6 15N 17E 6250 4/2 46.1 22.5 5.5 0.0 38 10 32 14N 17E 7500 4/3 67.6 22.5 12.4 13.1 9 11 6 12N 18E 6500 4/1 55.5 22.8 9.8 7.2 5 13 13N 18E 7500 4/1 99.5 37.2 27.2 30.1 14 19 13N 19E 7500 4/1 78.2 27.2 27.2 30.1 15 13 14N 18E 6900 4/1 78.2 27.9 13.5 28.9 39 16 7 17N 19E 8200 4/1 78.2 27.9 13.5 28.9 39 17.2 9 18N 15E 8450 4/2 117.0 43.0 30.0 27 18 25 17N 14E 6900 3/28 101.7 42.0 24.8 38.0 5 21-15N 16E 7000 4/7 195.4 36.6 24.8 38.0 6 20 19N 14E 7000 4/7 115.4 48.2 30.9 30.9 36.9 6 20 19N 14E 7000 4/7 115.4 48.2 30.9 30.9		N	21	15N	16	2000	1/2	115.4	48,2	30°6	37,8	36	43.9
8 6 15N 17E 6250 4/2 46.1 22.5 5.5 0.0 38 9 6 13N 17E 7500 4/3 77.6 30.8 18.1 25.9 30 10 32 14N 17E 6700 4/3 77.6 25.5 12.4 13.1 9 11 6 12N 18E 6500 4/1 55.5 22.8 9.8 7.2 5 13 15N 18E 8000 4/1 55.4 19.0 12.6 20.5 32 14 19 13N 19E 7360 4/1 38.2 14.2 8.0 12.6 20.5 33 15 15N 18E 6900 4/1 78.2 27.9 13.5 28.9 39 16 7 17N 19E 8000 4/1 78.2 27.9 13.5 28.9 39 1 24 19N 17E 8200 No Survey No Survey 17.2 24 1 25 17N 14E 8000 4/2 117.0 43.0 30.0 27 1 26 20 19N 14E 8000 4/2 117.0 43.0 30.0 27 1 5 21-15N 14E 7000 4/2 115.4 18.2 30.9 30.9 36.9 6 20 19N 14E 7000 4/2 115.4 18.2 30.9 30.9 36.9	<u> </u>	2	21	12N	18E	0079	4/3	34.1	13.7	2.8	9.0	19	7.9
9 6 13N 17E 7500 L/3 77.6 30.8 18.1 25.9 30 10 32 1\text{th} 17E 6700 L/3 67.6 25.5 12.4 13.1 9 11 6 12N 18E 6500 L/4 55.5 22.8 9.8 7.2 5.0 5 13 13 15N 18E 8000 L/5 99.5 37.2 27.2 30.1 9 13 13 15N 18E 8000 L/5 55.4 19.0 12.6 20.5 32 14 19 13N 19E 7350 L/3 41.4 16.2 6.7 7.6 33 15 13 1\text{th} 18E 6900 L/4 38.2 14.2 8.0 10.0 7 16 7 17N 19E 9000 L/1 78.2 27.9 13.5 28.9 39 16 7 17N 19E 8200 No Survey No Survey 17.2 24 1 24 19N 17E 8200 L/2 117.0 43.0 30.0 30.0 27 2 9 18N 15E 8450 L/2 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 38 5 21-15N 16E 7000 L/2 115.4 48.2 30.9 30.9 30.9 6 20 19N 14E 7000 L/2 115.4 48.2 30.9 30.9 30.9		8	9	15N	17E	6250	1/2	46,1	22.5	ひん	0.0	38	12.9
10 32 14M 17E 6700 4/3 67.6 25.5 12.4 13.1 9 11 6 12N 18E 6500 4/1 55.5 22.8 9.8 7.2 50.1 12 6 11N 18E 7500 4/1 99.5 37.2 27.2 30.1 13 13 15N 18E 8000 4/7 99.5 37.2 27.2 30.1 14 19 13N 19E 7350 4/1 38.2 14.4 16.2 6.7 7.6 33 15 13 14N 18E 6900 4/1 78.2 27.9 13.5 28.9 39 16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28.9 39 17 17N 19E 8200 No Survey No Survey 17.2 24 18 24 19N 17E 8200 4/2 117.0 43.0 30.0 30.0 27 18 25 17N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 2 9 18N 15E 8450 4/2 117.0 43.0 30.0 30.0 27 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 57 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36.0 27 6 20 19N 14E 7000 4/2 115.4 48.2 30.9 30.9 30.9		6	9	13N	17E	7500	1/3	77.,6	30.8	18,1	25.9	30	28.6
11 6 12N 18E 6500 4/4 55.5 22.8 9.8 7.2 5 12 6 11N 18E 7500 4/1 99.5 37.2 27.2 30.1 9 13 13 15N 18E 8000 4/5 55.4 19.0 12.6 20.5 32 14 19 13N 19E 6900 4/1 38.2 142 8.0 10.0 7 15 13 14N 18E 6900 4/1 78.2 27.9 13.5 28.9 39 16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28.9 39 17.2 9 18N 17E 8200 No Survey No Survey 17.2 24 18 24 19N 17E 8000 4/2 117.0 43.0 30.0 30.0 27 2 9 18N 16E 6900 3/28 101.7 42.0 24.8 38.6 21.8 38 5 21-15N 14E 6900 3/28 101.7 42.0 24.8 38.9 50.9 50.0 30.9 36.0 27 6 20 19N 14E 7000 4/2 115.4 48.2 30.9 30.9 30.9 50.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0		10	32	1/1N	17E	0029	1/3	.67.6	25.5	12.4	13.1	6	20.0
12 6 11N 18E 7500 4/1 99.5 372 272 30.1 9 13 13 15N 18E 8000 4/5 55.4 19.0 12.6 20.5 32 14 19 13N 19E 7350 4/1 382 142 8.0 10.0 7 15 13 14N 18E 6900 4/1 78.2 27.9 13.5 28.9 39 16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28.9 39 1 24 19N 17E 8200 No Survey No Survey 172 24 1 24 19N 17E 8000 4/2 117.0 43.0 30.0 30.0 27 2 9 18N 15E 8450 4/2 117.0 43.0 30.0 30.0 27 3 30 19N 14E 6900 3/28 101.7 42.0 24.8 24.8 38.6 24.8 5 20.9 36.0 27 6 20 19N 14E 7000 4/2 115.4 48.2 30.9 30.9 56.6 20 19.1 14E 7000 4/2 115.4 18.2 30.9 30.9 30.9	•	H	9	12N	18E	9069	1/17	55.5	22,8	و د د	7.2	ſΛ	13.5
13 13 15N 18E 8000 4,5 55.4 19.0 12.6 20.5 32 14 19 13N 19E 7350 4,7 41.4 16.2 6.7 7.6 33 15 13 14N 18E 6900 4,7 78.2 14.2 8.0 10.0 7 16 7 17N 19E 9000 4,7 78.2 27.9 13.5 28.9 39 16 7 17N 17E 8200 No Survey No Survey 17.2 24 1 24 19N 17E 8200 No Survey 17.2 24 2 9 18N 15E 8450 4,7 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3,28 101.7 42.0 24.8 38 5 21-15N 14E 7000 4,7 115.4 48.2 30.9 30.9 36.9 5 20 19N 14E 7000 4,7 115.4 48.2 30.9 30.9 30.9 5.1 19.5 19.5 19.5		12	9	LIN	18E	7500	1/1	99.5	372	27,2	30.1	6	38.,5
14 19 13N 19E 7350 4/3 41.4 16.2 6.7 7.6 33 15 13 14N 18E 6900 4/1 78.2 14.2 8.0 10.0 7 16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28.9 39 1 24 19N 17E 8200 No Survey No Survey 17.2 24 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 24.8 36 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 30.9 6 20 19.1 14.2 10.0 4/2 90.0 35.0 19.5 19.5 19.5		13	13	15N	18E	8000	17.5	55.4	19.0	12.6	20°2	32	23.1
15 13 14N 18E 6900 4/4 38,2 14,2 8,0 10.0 7 16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28,9 39 16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28,9 39 17.2 9 18N 17E 8200 No Survey No Survey 17.2 24,3 31.7 12 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 24.8 38 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36.9 6 20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5 21.		14	19	13N	19E	7350	14/3	41.4	16.2	6.7	7.6	33	13.1
16 7 17N 19E 9000 4/1 78.2 27.9 13.5 28.9 39 1 24 19N 17E 8200 No Survey No Survey 17.2 24 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 38 5 21-15N 14E 7000 4/2 90.0 35.0 19.5 24.8		15	13	14N	18E	0069	17/17	38,2	14,2	8,0	10.0	7	14,2
1 24 19N 17E 8200 No Survey No Survey 17.2 24 3 29 18N 15E 8450 4/3 96.6 36.6 24.8 31.7 12 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 24.8 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36.9 6 20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5		16	2	17N	19匹	9000	۲/1	78.2	27.9	13.5	28°3	39	31.1
1 24 19N 17E 8200 No Survey No Survey 17.2 24 3 29 18N 15E 8450 4/3 96.6 36.6 24.8 31.7 12 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 38 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36.9 36.0 6 20 19.1 14.2 90.0 35.0 19.5 19.5 21.													
1 24 19N 17E 8200 No Survey No Survey 17.2 24 3 9 18N 15E 8450 4/3 96.6 36.6 24.8 31.7 12 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 24.8 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36.9 6 20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5													
) 2 9 18N 15E 8450 4/3 96.6 36.6 24.8 31.7 12 3 30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 4 25 17N 14E 6900 3/28 101.7 42.0 24.8 24.8 38 5 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36 6 20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5 21.		٦	24	19N	17E	8200		urvey		ırvey	17.2	24	19.0
30 19N 14E 8000 4/2 117.0 43.0 30.0 30.0 27 25 17N 14E 6900 3/28 101.7 42.0 24.8 24.8 38 21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36 20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5 21	Cal.)	2	6	18N	15E	8450		96°6		274.8	31.7	12	142.0
25 17N 14E 6900 3/28 101,7 42,0 24,8 38 21-15N 16E 7000 4/2 115,4 48,2 30,9 30,9 36 20 19N 14E 7000 4/2 90,0 35,0 19,5 19,5		ς,		19N	14E	8000		117.0		30°0	30.0	27	4001
21-15N 16E 7000 4/2 115.4 48.2 30.9 30.9 36 20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5 21	<u> </u>	4		17N	14E	0069		101,7		24.8	24.8	38	38.6
20 19N 14E 7000 4/2 90.0 35.0 19.5 19.5		۳۷,	21-	15N	16E	2000		115.4		30.9	30.9	36	13.9
		9	50	19N	1年	2000		90°0		19.5	, 6 , 7	75	000

A PERCENTAGE ere ek En conormando de la constanta

NEVADA SNOW SURVIYS ARIL 1, 1949

TOC	LOCATION							Weren	SNOW CO	COVER MEAS	MEASUREMENTS	t Record	1.
DRAINAGE BASIN	Number	Sec. Two. Rge	Twp	Ree	Elev.	Date	Snow Depth	1 1	Same Apprex	g	Years	Av. Water Content	1
SNOW COURSE			4			Survey	(inches)	1949	1948	1947	Record	(inches)	- 1
TRUCKEE (Con't.)													
Sage Hen Creek (Cal.)	7	. ~	18N	16E	6500	1,1/2	52.6	20.6	4.9	7.6	12	17.6	
Tahoe City (Cal.)	. ω	9		17压	6250	1/2	46.1	22.5	N	0	38	12.6	
Truckee #2 (Cal.)	6	22	17N	16E	0079	14/2	9'61	18,9	7.4	6,8	19	14.3	
Independence Creek(Cal.)	10		19N	15年	90069	1/17	42.6	15.6	4.2	4.4	12	12.7	
Boca #2 (Cal.)		28	18N	17E	2900	No	Survey		No Sur	vey 0	15	2000	
Furnace Flat (Cal.)	12		17N	133	0099	t1/t1	113.7	148.5	28.7	28,6	8	43.7	
	13			13臣	9200	14/5	110.4	149.6	23.0	20.7	31	37.5	
\sim	17		17N	14E	6750	3/23	87.,6	36.3	19.5	23.1	20	34.3	
_	_			13	2000	14/2	62,5	25.0	12,1	12.7	Φ	20°0	
Wt. Rose	16		17N	19E	9000	1/1	78.2	27.9	13.5	28.9	39	31.1	
Truckee Ranger Sta. (Cal.)				16E	0009	3/31	43.7	16.2	6.N	0	77	7.5	
Donner Lake (Cal.)				15日	5950	11/2	72,3	30.0	12,0	ထ	W.	18,8	
Big Meadows	19	15.	18N	18E	8800	17/17	46.3	18,7	16.7	16.4	56	23•3	
Little Valley	50			19压	90069	3/31	75.6	21.7	5.6	0•3	7	8.2	
CARSON													
	ч %			18E 21E	8600	3/26	95.3	35.4	33.4	30.5	19	36.7	
Blue Lakes (Cal.) Clear Creek	m 4	199	N6 N71	19E 19E	8000	3/26 14/3	100.1	36.3		30.1 Snow Course		35.2	
						-17-							

NEVADA SNOW SURVEYS ARIL 1, 1949

SNOW COVER MEASUREMENTS	Snow Same Annual (inches) Pa	odile Approve	Survey (inches) 1949 1948 1947 Record		23E 9400 4/1 108.6 39.9 22.8 30.9 26	21E 8800 4/5 68 ₀ 1 27 ₀ 0 14 ₀ 1 17 ₀ 9 17	23E 8500 3/31 66.7 22.7 12.1 16.1 18	25E 9500 3/25 53.8 18.5 10.4 15.9 2	23E 8250 3/29 38.5 12.2 5.5 7.9 .15		22E 7200 4/5 32.5 11.9 3.1 1.4 19	25E 9900 4/1 47.6 14.9 15.7 19.4 19
					Ψ.	2	2	-	-	2	٢	7
	Sport	Depth	(inches		108.6	68,1	7.99	53.8	38.5	71.4	32.5	17.6
	סליכר	of	Survey		1/1	14/5	3/31	3/25	3/29	3/31	1/5	1/1
		Elev.			9400	8800	8500	9500	8250	2900	7200	0066
		Rge										
		Twp			3N	5N	NH TN	2N	SN	PN PN	SN	LN
NO		Sec			4	႕	• 20	w	27	15	7	9
LOCATION		Number			Н	2	~	7	ݖ	9	2	ထ
	MISAG GOMMIA GG	DRAINAGE BASIN and	SNOW COURSE	WALKER	Center Mountain (Cal.)	Sonora Pass (Cal.)	Buckeye Forks (Cal.)	Virginia Lakes (Cal.)	Willow Flat (Cal.)	Buckeye Roughs (Cal.)	Leavitt Feadows (Cal.)	Tioga Pass (Cal.)

SNOW SURVEYORS

April 1949

3.F	Arzuaga
¥.	Danabill
A .	Barnhill
В.	Bell
В.	Benson
W.	Birdsall
Μ.	Bishop
T.	Blohm
T.	Brierley
Α.	Chase
J.	Church
P.	Cowgill
Ε.	Dillwith
W_{\bullet}	Dillwith
G.	Dillwith Dillwith Doll
J	Dove
J.	Ferguson
М.	Follstad
R.	Gardner
C.	Gnevo
D.	
	Goodale
В.	Halliday
Ε.	Hance
Н.	Hansen
E.	Hanson
R.	Harringto
J.	Hart
J. V.	Hart
R.	Hauk
J.	Hess
C.	
	Houston
J.	Hunnicutt
D_{\bullet}	Jewett
K.	Jones
C.	Karplus
J.	Kingsley
R.	Kuehner
Α.	Lamson
R.	
R.	Law

A.	Lincoln
G.	Martin
C. E.	Mason
C.	Matson
E.	McKinnon
Α.	Murchie
В.	Murphy
E.	Murphy, Jr.
Ε.	Naanes
G.	Neuharth
M.	Neuharth
Ε.	Ford
Ρ.	Ogden
R.	Patch
B.	Peterson
J.	Pescio
W.	Price
Ε.	Raiford
F.	Richardson
R.	Ross
C.	Salls
L.	Sawyer
D.	Schmidtlein
J.	Silva
G.	Slovik
В.	Smith
L.	Smith
M.	Steninger
G.	Swainston
A.	Swindlehurst Te Selle
Α.	Te Selle
G.	Warren
J.	Watts
L.	Wilkerson
J.	
F.	Woods
L.	Woods
Α.	Wright

i dal 100 mg 10 ला उत्तरमा , म a now . and the second of 3.49 1 37.00 . Hadige 10 May 1 18 1.194. . (4 (64) Adamstey of Joseph " A CHANGE 17. 28.7. 27 Commence of

14,000 .31

an Arma E 😱 🗸

....

• i.i.

4 12

A. Oak S

The following organizations cooperate in the Nevada snow survey work:

FEDERAL

Soil Conservation Service Forest Service Weather Bureau Bureau of Reclamation Geological Survey Fish and Wildlife Service Navy

STATE

Nevada State Engineer Nevada Agricultural Experiment Station Nevada Agricultural Extension Service California Division of Water Resources

MUNICIPAL

City of Bunkerville, Nevada City of Ely, Nevada City of Mesquite, Nevada

PUBLIC UTILITIES

Sierra Pacific Power Company Wells Power Company Virginia City Water Company

ORGANIZED PUBLIC AGENCIES

Truckee-Carson Irrigation District
Washoe County Water Conservation District
Walker River Irrigation District

PRIVATE ORGANIZATIONS

Deep Springs School Kennecott Copper Corp. Union Pacific Railroad

Other organizations and individuals furnish valuable information for the snow survey reports. Their cooperation is gratefully acknowledged.

 $\frac{1}{2} \left(\frac{1}{2} \left$

rents.

Substitution of the substitution of th

Markette (m. 1905) 1870 - Markette (m. 1905) 1880 - Markette (m. 1905)

The second secon