Announcements and Such

- Administrative Stuff
 - HW #5 will be graded soon (and I will post solutions soon)
 - HW #6 is due next Friday (April 22)
 - * Consists of two (sets of) probability problems: one involving general algebraic reasoning, one involving numerical calculation.
 - I have posted a *Practice Final Exam*. We will go over this Practice Final in class on our last class day next Tuesday (4/19).
 - I will also be doing *course evaluations* on Tuesday
- Unit #4 *Probability & Inductive Logic, Continued*
 - Measuring Factor #2 measures of confirmation (relevance)
 - Prospects for measuring "Overall Argument Strength"?
 - Probabilism and the Accuracy of Credences
 - Time-Permitting: The Dutch Book Argument for Probabilism

Three Grades of Measurement

• Suppose we are measuring some numerical quantity. Two examples: the temperature of an object o $[\mathfrak{t}(o)]$ and the degree to which E confirms H $[\mathfrak{c}(H,E)]$. Each of these cases involves three grades of measurement.

Qualitative Measurement

- * **Temperature**. This first grade of temperature measurement involves one object *o* being *warm* (or *cold*). This will correspond to the temperature of *o* being *above some threshold t*.
 - "Object o is warm" $\mapsto t(o) > t$.
- * **Confirmation**. This first grade of confirmation measurement involves an argument being *strong* (or *weak*) in the Factor #2 sense. This will correspond to the degree of confirmation that *E* provides for *H* being *above some threshold t*.
 - "E: H is strong" $\mapsto c(H, E) > t$.

Comparative Measurement

- * **Temperature**. This first grade of temperature measurement involves one object o_1 being warm er (or cold er) than another object o_2 .
 - "Object o_1 is warmer than object o_2 " $\mapsto \mathfrak{t}(o_1) > \mathfrak{t}(o_2)$.
- * **Confirmation**. This involves one argument $E_1 : H_1$ being strong er (or weak er) than another argument $E_2 : H_2$.
 - " E_1 : H_1 is stronger than E_2 : H_2 " $\mapsto \mathfrak{c}(H_1, E_1) > \mathfrak{c}(H_2, E_2)$.

Numerical Measurement

- * **Temperature**. This involves an object *o* having a precise numerical temperature.
 - "Object o is 32 degrees Fahrenheit" $\mapsto t(o) = 32^{\circ}$ Fahrenheit.
- * **Confirmation**. This involves an argument E : H having a precise numerical degree of confirmation/strength (in the Factor #2 sense).
 - "The degree to which *E* confirms *H* is 1/2." $\mapsto \mathfrak{c}(H, E) = 1/2$.

Measuring Factor 2: Degrees of Confirmation I

- *Dozens* of relevance/confirmation measures have been proposed in the literature. Here are the four most popular measures (each defined on a [-1, +1] scale, for ease of comparison).
 - The *Difference*: $d(H, E) = Pr(H \mid E) Pr(H)$
 - The *Ratio*: $r(H, E) = \frac{\Pr(H \mid E) \Pr(H)}{\Pr(H \mid E) + \Pr(H)}$
 - The *Likelihood-Ratio*: $l(H, E) = \frac{\Pr(E \mid H) \Pr(E \mid \sim H)}{\Pr(E \mid H) + \Pr(E \mid \sim H)}$
 - The *Normalized-Difference*:

$$s(H,E) = \Pr(H \mid E) - \Pr(H \mid \sim E) = \frac{1}{\Pr(\sim E)} \cdot d(H,E)$$

• *A fortiori, all* Bayesian confirmation measures agree on *qualitative* judgments like "*E* confirms/disconfirms/is irrelevant to *H*". But, these measures *disagree* with each other in various ways — *comparatively*.

Measuring Factor 2: Degrees of Confirmation III

- There is a relatively simple way of narrowing the field of competing measures of degree of confirmation, which is based on *thinking of inductive logic as a generalization of deductive logic*.
- The likelihood-ratio measure *l* stands out from the other relevance measures in the literature, since *l* is the only relevance measure that gets the (non-trivial) deductive cases right (as cases of *extreme relevance*).
- That is, l is the only measure (defined on the scale [-1, +1]) that satisfies:

• Here, we assume that \mathfrak{c} is *defined*, which constrains the unconditional Pr's.

Measuring Factor 2: Degrees of Confirmation V

• Here's how our 4 relevance measures handle non-trivial deductive cases.

•
$$l(H, E) =$$

$$\begin{cases}
+1 & \text{if } E \vDash H, \Pr(E) > 0, \Pr(H) \in (0, 1) \\
-1 & \text{if } E \vDash \sim H, \Pr(E) > 0, \Pr(H) \in (0, 1)
\end{cases}$$

•
$$d(H, E) = \begin{cases} \Pr(\sim H) & \text{if } E \vDash H, \Pr(E) > 0 \\ -\Pr(H) & \text{if } E \vDash \sim H, \Pr(E) > 0 \end{cases}$$

•
$$r(H, E) = \begin{cases} \frac{1 - \Pr(H)}{1 + \Pr(H)} & \text{if } E \vDash H, \Pr(E) > 0, \Pr(H) > 0 \\ -1 & \text{if } E \vDash \sim H, \Pr(E) > 0, \Pr(H) > 0 \end{cases}$$

• $s(H, E) = \begin{cases} \Pr(\sim H \mid \sim E) & \text{if } E \vDash H, \Pr(E) \in (0, 1) \\ -\Pr(H \mid \sim E) & \text{if } E \vDash \sim H, \Pr(E) \in (0, 1) \end{cases}$

•
$$s(H, E) = \begin{cases} \Pr(\sim H \mid \sim E) & \text{if } E \vDash H, \Pr(E) \in (0, 1) \\ -\Pr(H \mid \sim E) & \text{if } E \vDash \sim H, \Pr(E) \in (0, 1) \end{cases}$$

 \bullet From an inductive-logical point of view, this favors l over the other measures. Other considerations can also be used to narrow the field.

Can We Measure Argument Strength (Numerically)? I

- We know how to measure Factor #1 this is just the conditional probability of the conclusion, given the premise: $Pr(C \mid P)$.
- We have some idea of how we might go about measuring Factor #2-a measure like l(C,P) seems a plausible candidate. Let's run with that.
- This allows us to give a *numerical* version of our "Two-Factor" Chart for graphing the two components of argument strength (next slide).
- Every argument will have associated with it an *ordered pair/vector*: $\langle \Pr(C \mid P), l(C, P) \rangle$, which records values for both Factors.
- However, it is not at all clear how we might *combine* these two measures to yield a *single measure* of *overall* argument strength.
- Presumably, such a measure would be *some function* f *of* $Pr(C \mid P)$ and l(C, P). The challenge is to say *which function* f *is.* Let's think about this, in terms of our *three grades of measurement*.

• We've already given a definition of *qualitative* argument strength.

That's the *first grade of measurement* for "overall argument strength".

Proposal #3. An argument P : C is *inductively strong* iff

- (1) *C* is probable, given *P*, i.e., $Pr(C \mid P) > \frac{1}{2}$, and
- (2) P is positively relevant to C, i.e., $Pr(C \mid P) > Pr(C)$.
- This places a strong constraint on the shape of f. Specifically, it requires that f be above some threshold t in the upper-right quandrant of our 4-quadrant chart, and below t in the other three compartments.
- We can visualize f as adding a *third dimension* to our 4-quadrant chart (imagine a z-axis, coming out of the chart). The height of each point in this third dimension will correspond to the value of f(x, y).
- Of course, this qualitative constraint is not the end of the story. To get a better grip on f, we'd need to think about its *comparative* structure. This would involve thinking about various $pairs \langle x, y \rangle$ and their (intuitive) comparative relationship to each other...

Probabilism and The Accuracy of Credences I

- Many philosophers have argued for **Probabilism**, which is the claim that one's degrees of confidence (*i.e.*, one's credences) *should obey the probability calculus*. I will discuss one argument for probabilism.
- In epistemology (the theory of knowledge and rational belief), it is typical to suppose that *accuracy* in one's judgments is a virtue.
- For instance, when it comes to (qualitative) *belief*, it is better to have true beliefs than false beliefs. If a belief is false, then it *misrepresents* the world, and this is generally agreed to be (epistemically) *bad*.
- Something similar can be said for credences. Here is a principle.

 The Principle of Gradational Accuracy (qualitative rendition). One ought to be more confident in truths than in falsehoods.
- Ideally, one would assign maximal confidence to all the truths and minimal confidence to all the falsehoods (think: omniscient agents).

Probabilism and The Accuracy of Credences II

- Of course, it would be far too strong to require all rational agents to live up to this ideal. But, we can use this ideal notion to generate an interesting argument for probabilism.
- Let's call the ideal credence function (in a possible world) the vindicated credence function. I will use $v_w(\cdot)$ to denote this ideal function.

$$v_w(p) = \begin{cases} 1 & \text{if } p \text{ is true in } w, \\ 0 & \text{if } p \text{ is false in } w. \end{cases}$$

- We can use $v_w(\cdot)$ to state a quantitative form of the PGA.

 The Principle of Gradational Accuracy (PGA, quantitative rendition).

 The closer a credence function $b(\cdot)$ is to $v_w(\cdot)$, the better.
- To precisify PGA, we need a way to measure the *distance* between a credence function $b(\cdot)$ and the vindicated/ideal function $v_w(\cdot)$.

Probabilism and The Accuracy of Credences III

- Because we are only dealing with finite probability spaces, $b(\cdot)$ and $v_w(\cdot)$ will always be representable as *finite vectors of real numbers*.
- So, distance between $b(\cdot)$ and $v_w(\cdot)$ is just distance between finite vectors of real numbers. A very natural way to measure the distance between such vectors is *via* (squared) *Euclidean distance*.
- To make things easy, let's focus on the simplest possible example. Suppose we're assigning credences over a language with one atomic sentence: P. This means we'll have just *two states*: $\{P, \sim P\}$.
- So, any assignment of credence in this case will consist of vector containing two numbers: $\langle b(P), b(\sim P) \rangle$. This means we can visualize all such credences *via* a two-dimensional plot.
- On the next slide, I use such a plot to explain the simplest case of what I will call *the accuracy dominance argument for probabilism*.

Probabilism and The Accuracy of Credences IV

• The diagonal lines are the *probabilistic b*'s (on $\langle P, \sim P \rangle$). The point $\langle 1, 0 \rangle$ ($\langle 0, 1 \rangle$) corresponds to the values assigned by $v_w(\cdot)$ in the $P(\sim P)$ world.

Theorem (de Finetti). b is non-probabilistic \Leftrightarrow there exists a $b'(\cdot)$ which is (Euclidean) closer to $v_w(\cdot)$ in every possible world.

• The plot on the left (right) explains the \Rightarrow (\Leftarrow) direction.

The Dutch Book Argument for Probabilism I

- The key assumptions/set-up of the Dutch Book argument are as follows:
 - For each proposition p that our agent (Mr. B) entertains at t, Mr. B must announce a number q(p) called his *betting quotient* on p, at t and *then* Ms. A (the bookie) will choose the *stake* \mathfrak{s} of the bet.
 - |s| should be small in relation to Mr. B's total wealth (more on this later). But, it can be positive or negative (so, she can "switch sides").

Mr. B's payoff (in \$) for a bet about
$$p = \begin{cases} \mathfrak{s} - q(p) \cdot \mathfrak{s} & \text{if } p \text{ is true.} \\ -q(p) \cdot \mathfrak{s} & \text{if } p \text{ is false.} \end{cases}$$

- NOTE: If $\mathfrak{s} > 0$, then the bet is *on* p, if $\mathfrak{s} < 0$, then the bet is *against* p.
- q(p) is taken to be a measure of Mr. B's *degree of belief* in p (at t).
- If there is a sequence of multiple bets on multiple propositions, then Mr. B's total payoff is the *sum* of the payoffs for each bet on each proposition. This is called "the package principle".

The Dutch Book Argument for Probabilism II

- The **Dutch Book Theorem** (DBT) has four parts [3 axioms for $Pr(\cdot)$ plus 1 definition of $Pr(\cdot | \cdot)$]. In each part, we prove that if $q(\cdot)$ [or $q(\cdot | \cdot)$] *violates* the axioms (or defn.), then $q(\cdot)$ is *in*coherent.
- If Mr. B violates Axiom 1, then his q is incoherent. Proof:
 - If q(p) = a < 0, then Ms. A sets $\mathfrak{s} < 0$, and Mr. B's payoff is $\mathfrak{s} a\mathfrak{s} < 0$ if p, and $-a\mathfrak{s} < 0$ if $\sim p$. [If $q(p) \ge 0$, then Mr. B's payoff is $\mathfrak{s} q\mathfrak{s} \ge 0$ if $\mathfrak{s} > 0$ and p is true, and $-q\mathfrak{s} \ge 0$ if $\mathfrak{s} < 0$ and $\sim p$, avoiding *this* Book.]
- If Mr. B violates Axiom 2, then his q is incoherent. Proof:
 - If Mr. B assigns $q(\top) = a < 1$, then Ms. A sets $\mathfrak{s} < 0$, and Mr. B's payoff is always $\mathfrak{s} a\mathfrak{s} < 0$, since \top cannot be false.
 - Similarly, if Mr. B assigns $q(\top) = a > 1$, then Ms. A sets $\mathfrak{s} > 0$, and Mr. B's payoff is always $\mathfrak{s} a\mathfrak{s} < 0$, since \top cannot be false.
 - * NOTE: if $q(\top) = 1$, then Mr. B's payoff is always $\mathfrak{s} \mathfrak{s} = 0$, which avoids *this particular* Dutch Book.

The Dutch Book Argument for Probabilism III

• Axiom 3 requires that

$$Pr(p \vee r) = Pr(p) + Pr(r)$$

if p and r are inconsistent (*i.e.*, if they can't both be true).

- The argument for this *additivity* axiom is more controversial. The main source of controversy is the "package principle".
- I will now go through the additivity case of the DBT.
- **Setup**: Let p and r be some pair of inconsistent propositions that the agent entertains at t. And, suppose Mr. B announces these q's:

$$q(p) = a$$
, $q(r) = b$, and $q(p \lor r) = c$, where $c \ne a + b$.

• This leaves Mr. B susceptible to a *Dutch Book*. Next: the proof of this case of the DBT (note how this presupposes the "package principle").

The Dutch Book Argument for Probabilism IV

- Case 1: c < a + b. Ms. A asks Mr. B to make *all 3* of these bets ($\mathfrak{s} = +\$1$):
 - 1. Bet a on p to win (1-a) if p, and to lose a if p.
 - 2. Bet b on r to win (1-b) if r, and to lose b if r.
 - 3. Bet \$(1-c) against $p \vee r$ to win \$c if $\sim (p \vee r)$, and lose \$(1-c) o.w.
- Since p and r are mutually exclusive (by assumption of the additivity axiom), the conjunction p & r cannot be true. \therefore There are 3 cases:

Case	Payoff on (1)	Payoff on (2)	Payoff on (3)	Total Payoff
p & ~r	1-a	-b	-(1-c)	c-(a+b)
~p&r	-a	1-b	-(1-c)	c-(a+b)
~p & ~r	-a	-b	С	c-(a+b)

- Since c < a + b, c (a + b) is negative. So, Mr. B loses [c (a + b)].
- Case 2: c > a + b. Ms. A simply reverses the bets ($\mathfrak{s} = -\$1$), and a parallel argument shows that the total payoff for Mr. B is \$-[c-(a+b)]<0.
- Note: he can avoid *this* Book, by setting c = a + b.

The Dutch Book Argument for Probabilism V

- We also need to show that an agent's *conditional* betting quotients $q(\cdot | \cdot)$ are coherent only if they satisfy our ratio definition of $Pr(\cdot | \cdot)$. There's a DBT for this too (note: this case *also* assumes the "package principle").
- Suppose Mr. B announces: q(p & r) = b, q(r) = c > 0, and $q(p \mid r) = a$. Ms. A asks Mr. B to make *all* 3 of these bets (stakes depend on quotients!):
- 1. Bet $(b \cdot c)$ on p & r to win $[(1-b) \cdot c]$ if p & r, and lose $(b \cdot c)$ o.w. [s = c]
- 2. Bet $\{(1-c)\cdot b\}$ against r to win $\{(b\cdot c) \text{ if } r, \text{ and lose } \{(1-b)\cdot c\} \text{ o.w. } [\mathfrak{s}=b]$
- 3. Bet $\$[(1-a)\cdot c]$ against p, conditional on r, to win $\$(a\cdot c)$ if r & p, and lose $\$[(1-a)\cdot c]$ if $r \& \sim p$. If $\sim r$, then the bet is *called off*, and payoff is \$0. $[\mathfrak{s}=c]$

Case	Payoff on (1)	Payoff on (2)	Payoff on (3)	Total Payoff
p & r	$(1-b)\cdot c$	$-[(1-c)\cdot b]$	$-[(1-a)\cdot c]$	$(a \cdot c) - b$
~p & r	$-(b\cdot c)$	$-[(1-c)\cdot b]$	$a \cdot c$	$(a \cdot c) - b$
$\sim \gamma$	$-(b\cdot c)$	$b \cdot c$	0	0

• If $a < \frac{b}{c}$, then Mr. B loses *come what may*. If $a > \frac{b}{c}$, then Ms. A just asks Mr. B to take the other side on all three bets. So, coherence requires: $q(p \mid r) = \frac{q(p\&r)}{a(r)}$.