Kushal Singh CS 5875 - Applied Machine Learning Homework 0

Team Member: Andrew Palmer 5 September 2019

Iris Flowers

1.1 Downloading the dataset

In order to download the dataset, we called the **pd.read_csv**¹ function on the iris dataset URL, which contains CSV data on the iris plants database.

- 1 url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
- **2** df = pd.read_csv(url, header=None)
- **3** df.columns = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'class']

Taking a look at the iris.names file, we can see that there are 150 total samples/instances, with 5 features/attributes for each sample—sepal length (cm), sepal width (cm), petal length (cm), petal width (cm), species. We also observe that there are 3 different species types (*iris setosa*, *iris versicolour*, *iris virginica*), and 50 samples of each species.

1.2 Parsing the dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

The above screenshot illustrates a sample of the N * p dimensional data frame. In the code, the line $\frac{|abel_vec = df['class'].to_numpy()^2}{|abel_vec = df['class'].to_numpy()^2}$, creates the *N*-dimensional array of the class type.

¹ https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

² https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to numpy.html

1.3 Visualizing the dataset

From the above scatterplots, generated using the seaborn library³, we can see that petal length and petal width provide the most information about the class/species type. We can also verify this with the high class correlation coefficients found in iris.names (0.9490 for petal length, 0.9565 for petal width).

³ http://seaborn.pydata.org/examples/scatterplot matrix.html