

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

Abordar alguns conceitos básicos referentes a:

- Sistemas de comunicação
- Sinais
- Limitações Fundamentais à transmissão
- Modulação e codificação

1

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- ELEMENTOS DE UM SISTEMA DE COMUNICAÇÃO -

canal de transmissão meio físico que o sinal percorre da origem até ao destino (e.g. par de fios, coaxial, fibra, espaço livre,..). Introduz atenuação de sinal, potência do sinal decresce progressivamente com a distância

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

Canal de transmissão:

3

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

Canal de transmissão: diferentes tipos de canais de transmissão possuem diferentes:

- capacidades de transmissão
- atenuações de sinal [problemas com as grandes distâncias?]
- frequências de operação
- necessidade/tipo de equipamentos de interligação
- níveis de imunidade a ruído
- custos \$\$
- robustez física, dimensões, etc.
- etc.

4

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

Tipos de transmissão:

- Transferência num só sentido (simplex)
- Transferência em ambos os sentidos mas não simultaneamente (half-duplex)
- Transferência simultânea em ambos os sentidos (full-duplex)

5

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

- SINAIS DE COMUNICAÇÃO -
 - Diferentes tipos de sinal tem diferentes formas de onda com características próprias
 - Representação dos sinais no domínio temporal vs representação no domínio das frequências
 - Todos os meios de transmissão possuem características próprias que afectam os sinais, por vezes torna-se necessário modular os sinais por forma a adapta-los ao meio de transmissão

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- EXEMPLO DE SINAIS E REPRESENTAÇÃO ESPECTRAL -

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- EXEMPLO DE SINAIS E REPRESENTAÇÃO ESPECTRAL -

- espectro tem elevada importância para a caracterização do sinal...
- ... e requisitos para a sua correta transmissão no canal de comunicação
- Além disso, os canais de comunicação tem também limitações...

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- LIMITAÇOES FUNDAMENTAIS-

As limitações fundamentais à transmissão da informação por meios eléctricos são:

- Largura de banda
- Ruído

Consequências:

- Ritmo máximo teórico de símbolos digitais que por ele se podem transmitir
- Limite máximo para a <u>capacidade do canal</u>

9

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- LIMITAÇOES FUNDAMENTAIS: Largura de Banda -
- Largura de banda de um sistema de transmissão relaciona-se com a facilidade com que o sistema consegue "acompanhar" as variações do sinal de entrada
- Ritmo máximo teórico de símbolos digitais que se podem transmitir no sistema (Ritmo de Nyquist):

$$r_s \leq 2 * B_T$$

já anteriormente referido no âmbito da digitalização

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- LIMITAÇOES FUNDAMENTAIS: Ruído -
- Constitui a segunda limitação à transmissão de informação
- Existem vários tipos de ruído: movimento aleatório de partículas carregadas electricamente dá origem a correntes e tensões aleatórias ruído térmico
 - introdução de tensões aleatórias que se adicionam ao sinal
 - altera a "forma" do sinal dificultando a distinção entre os diferentes níveis do sinal

11

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- LIMITAÇOES FUNDAMENTAIS: Ruído -
- O ruído é considerado um sinal aleatório, n(t)
 - possui uma determinada densidade de potência expressa em $\eta \; {
 m Watt/Hz}$
 - Potência média total do ruído (N) na banda do canal:

$$N = \eta B_T$$
 Watts

13

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

- LIMITAÇOES FUNDAMENTAIS: Ruído -
- A influência do ruído no sinal mede-se em termos de razão de potências de sinal-ruído, (S/N)
- S potência média do sinal no destino
- Para pequenos valores de S/N o ruído dá origem a erros nas comunicações digitais
- Problemas críticos nas comunicações de longa distância quando a potência do sinal é reduzida substancialmente

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- LIMITAÇOES FUNDAMENTAIS: Ruído -
- Implicações em termos de capacidade do canal
- Ritmo de informação não pode exceder (Lei de Hartley-Shannon):

base adoptada depende da unidade de medida da informação escolhida

15

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- TÉCNICAS DE MODULAÇÃO -
- O objectivo da modulação é gerar um sinal adaptado às características do canal físico de transmissão
 - e.g. características do sinal não são adequadas ao canal onde se pretende transmitir → necessidade outra gama de frequências
 - e.g. por questões de multiplexagem → necessidade de ocupar uma determinada faixa de frequências
 - etc...

espectro sinal vs frequências suportadas no canal

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- TÉCNICAS DE MODULAÇÃO -
- Modulação envolve duas formas de onda: o sinal modulante e a portadora
- Sinal modulante representa a mensagem que se pretende transmitir
- Onda portadora é alterada de acordo com as variações de amplitude do sinal modulante [normalmente a portadora possui uma frequência bastante maior que qualquer dos componentes de frequência do sinal modulante]

17

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

- TÉCNICAS DE MODULAÇÃO -
- Onda resultante "transporta" a informação do sinal original; necessária uma operação de desmodulação

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- TÉCNICAS DE MODULAÇÃO -
- Se sinal modulante é analógico → modulação analógica

Se sinal modulante é digital → modulação digital

19

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

- TÉCNICAS DE MODULAÇÃO -
- Que técnicas de modulação existem?
 - baseadas em <u>amplitude</u>, <u>frequência</u>, <u>fase</u>
 - ... e <u>várias outras</u> que derivam (ou combinam) dessas técnicas
- Porquê existem alternativas?
 - as diferentes técnicas de modulação apresentam vantagens/desvantagens que podem justificar, ou não, a sua utilização

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação analógica de onda contínua [em Amplitude]

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação analógica de onda contínua [em Frequência]

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação <u>digital</u> de onda contínua [em Amplitude – ASK]

23

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação <u>digital</u> de onda contínua [em Amplitude – ASK]

- Desmodulação: basta detetar (ou não) a presença de uma sinusoide num determinado intervalo de tempo
- Vantagens: simplicidade
- Desvantagens: mecanismo de modulação facilmente afetado pelo ruído (amplitudes são mais afetadas pelo ruído/interferências)

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação <u>digital</u> de onda contínua [em Frequência – FSK]

25

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação <u>digital</u> de onda contínua [em Frequência – FSK]

- Desmodulação: é necessário detetar qual das duas frequências possíveis está presente num determinado intervalo de tempo
- Vantagens: FSK é menos afetado pelo ruído que o ASK. Como se baseia em frequência, possíveis alterações de amplitude são ignoradas
- Desvantagens: normalmente ocupa mais largura de banda que o ASK

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação <u>digital</u> de onda contínua [em Fase – PSK]

27

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: modulação <u>digital</u> de onda contínua [em Fase – PSK]

- Desmodulação: é necessário detetar a fase da sinusoide tendo em conta algum valor de referência
- Vantagens: PSK é menos afetado pelo ruído que o ASK; conseguem-se débitos superiores aos obtidos pelo FSK
- Desvantagens: mais complexo o processo de detecção / recuperação do sinal transmitido

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

- MODULAÇÃO: modulação digital de onda contínua
- A operação de modulação <u>altera o espectro</u> do sinal modulante
- O espectro do sinal modulado tem alguma relação com o espectro do sinal original?
 - esta questão será abordada mais tarde no capítulo Análise de Sinais
 - Teorema da Modulação.....

29

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: outras variantes

- Várias técnicas de modulação são derivações/extensões/ combinações das técnicas anteriores referidas
 [2 exemplos ilustrativos]
- Variantes PSK

QPSK (Quadrature Phase-shift keying), 8-PSK, 16-PSK, etc.

Mistura ASK + PSK

QAM (Quadrature Amplitude Modulation), 8-QAM, 16-QAM, ..., etc.

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: outras variantes [QPSK - Quadrature Phase-shift keying]

- Modulação em fase em que assume 4 possibilidades diferentes para a fase da sinusoide (e.g. 45°, 135°, 225°, 315°, ou outras combinações)
- Cada alternativa de sinal representa 2 bits → melhor aproveitamento da largura de banda, maiores débitos, ...

Exemplo Ilustrativo

31

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

MODULAÇÃO: outras variantes [8-PSK]

É possível aumentar o número de alternativas de fases,
 e.g. passando de 4 para 8 (8-PSK), cada alternativa
 representa 3 bits

 Normalmente com valores acima das 8 fases as taxas de erros começam a ser elevadas → utilização de outras modulações (mas + complexas) e.g. QAM

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

[QAM - Quadrature Amplitude Modulation]

- Técnica que combina as técnicas ASK e PSK
- Após modulação o sinal pode assumir diferentes combinações de amplitudes & fases
 - > sinal é gerado a partir de 2 portadoras desfasadas que são modeladas em amplitude
- Maior número de alternativas para amplitude/fase → Maior capacidade de transmitir mais bits por símbolo
- mas ... quantas mais alternativas → maior sensibilidade ao ruído dificuldade em distinguir o sinal [necessidade de uma maior relação S/N]

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

[QAM – Quadrature Amplitude Modulation]

Exemplo: 8-QAM (usando 2 amplitudes e 4 fases)

 Outros esquemas: 16-QAM, 64-QAM, 256-QAM, ..., 1024-QAM, etc. etc. (cada um com constellation diagram próprios)

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

[QAM - Quadrature Amplitude Modulation]

Exemplos de constelações 16-QAM [4 bits por símbolo]
 [não é obrigatório usar todas as combinações de fases * amplitudes... porquê?!]

Fundamentos de Comunicação de Dados

Licenciatura em Engenharia Informática Departamento de Informática, Universidade do Minho

IV. CONCEITOS GERAIS DE SISTEMAS DE COMUNICAÇÃO E SINAIS

[QAM – Quadrature Amplitude Modulation]

- Técnicas QAM (e derivadas) bastante usadas por várias tecnologias, e.g.:
 - · Digital Cable Television
 - Cable Modems
 - Powerline Ethernet
 - ITU G.hn [home network technology: power lines, phone lines and coaxial cables with 2 Gbps → até 12 bits/símbolo → 4096-QAM]
 - ADSL [e.g. até 15 bits/símbolo → 32768-QAM]
 - Wi-Fi [dependente da versão]
 - etc.