Processamento de Sinal (2013/14)

Teste 1 – 15 de novembro de 2013

N	lome: Nº Curso
	Grupo I
lassific	que, neste enunciado, as questões que se seguem indicando se são verdadeiras (V) ou falsas (F). Duas
espost	as erradas anulam uma resposta correta.
1.	Um sistema causal tem que ter memóriaF
2.	Se um sinal é real então a _k =a _{-k} (relativamente aos coeficientes da série de Fourier)F
3.	Um sistema linear verifica sempre a propriedade da aditividade e da homogeneidadeV
4.	Se o $\int_{-\infty}^{+\infty}h(t)dt=-30$, então o sistema com resposta impulsional $h(t)$ é estávelV
5.	O sistema em tempo discreto definido por y[n]=(n+1).x[n] é um sistema sem memóriaV
6.	Se os coeficientes de um sinal são pares e puramente reais, então o sinal também é par e real.
7.	O sistema definido pela resposta impulsional h[n]=u[1-n] é um sistema não causalV
8.	Num sistema LIT definido pela sua resposta impulsional $h(t)$ se a entrada é um impulso de Dirac, então a saída também é um impulso de DiracF
9.	Se um sistema é variante no tempo, então a saída do sistema não pode ser calculada usando o integra de convoluçãoV
10.	Um sistema não tem memória se, por exemplo, h[n]=1F
11.	Para que possamos calcular a saída de um sistema usando o somatório de convolução, o sistema tem que verificar a propriedade da causalidadeF
	O impulso de Dirac é uma função própria dos sistemas LITF
13.	A resposta impulsional $h(t)$ da cascata de dois sistemas LIT ($h_1(t)$ e $h_2(t)$ respetivamente) é definida como $h(t) = h_1(t) * h_2(t)$ V
	Course II
	Grupo II
Res	ponda às seguintes questões numa folha separada. Todas as respostas carecem de uma justificação adequada.
1.	Considere um sistema LIT, de saída $y(t)$, caracterizado pela sua resposta impulsional, $h(t)$, definida por:
	$h(t) = \begin{cases} -t+1, t < 1\\ 0, t \ge 1 \end{cases}$
	Considere ainda a entrada desse sistema, x(t), definida por:
	$x(t) = \begin{cases} -1, t < 1\\ 0, t \ge 1 \end{cases}$
	a) Esboce as funções $h(t)$ e $x(t)$.
	b) Calcule a saída, $y(t)$, deste sistema quando o sinal de entrada é o $x(t)$ definido anteriormente (isto

c) Qual a saída deste sistema se a entrada for o sinal g(t)=2.x(t)+1, em que x(t) é o sinal definido

é resolva o integral de convolução y(t) = h(t) * x(t).

anteriormente.

2. Considere o sinal x(t) periódico (com período 4), definido pela figura seguinte:

- a) Calcule o valor médio do sinal.
- b) Calcule os coeficientes (de ordem diferente de 0) da série de Fourier que define o sinal x(t). (A resolução deste exercício pela equação de análise é muito demorada, por isso sugere-se a utilização das propriedades da série de Fourier)
- c) Calcule a potência associada ao 2º harmónico.

Caso não tenha conseguido resolver b), considere
$$a_k=rac{j}{k\pi}-rac{\sin\left(rac{k\pi}{8}
ight)e^{-jrac{5k\pi}{4}}}{j(k\pi)^2}$$

- 3. Considere o circuito representado ao lado:
 - a) Calcule a função de transferência $H(j\omega) = \frac{v_o(j\omega)}{v_i(j\omega)}$.
 - b) Faça os diagramas de Bode (módulo e fase) do resultado obtido em a), considerando que R=1 Ω e C=1F.

(Caso não tenha conseguido resolver a) considere o seguinte resultado: $H(j\omega)=\frac{j\omega RC+2}{3+j\omega 2RC}$)

6)

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} h(z) x(t-z) dz$$

$$\begin{array}{cccc} & & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$\frac{1}{1+1} = \frac{1}{1+1} = \frac{1}$$

$$= -\frac{t^2}{2} + 2t - 2$$

c) Y₁(t) é a Saíde a 9(t)

porque o sinter o linear:

Se y(t) é a Saide de x(t) e g(t) = 2x(t)

entes y1(t) = 2 y(t) + 42(t)

em que yz(t) é a saide quando a entrede é 1

$$Y_2(t) = \int_{-1}^{1} (1-z) \cdot 1 dz = \left[z - z^2 \right]_{-1}^{1} = z$$

$$a) q_0 = \frac{3.1}{4} = \frac{3}{4}$$

$$C_{K} = 2. \frac{1}{T} = \frac{2}{4} = \frac{1}{2}$$

Ag(t)
$$\rightarrow f_k = \frac{\operatorname{Fun}(\frac{k 2 \pi}{4}, \frac{1}{2})}{k \pi} = \frac{\operatorname{Fun}(\frac{k \pi}{4})}{k \pi}$$

$$Ne_{\lambda}(t) = g(t - \frac{1}{2})$$

$$dk = f_k \cdot e^{-jk\frac{2\pi}{4}\cdot\frac{1}{2}} = \frac{\operatorname{cun}\left(\frac{k\pi}{4}\right) \cdot e^{-j\frac{k\pi}{4}}}{k\pi}$$

$$Ne_3(t) = 9\left(t - \frac{5}{2}\right)$$

$$\frac{du(t)}{dt} = ne_1(t) - ne_2(t) - ne_3(t)$$

$$b_{K} = C_{K} - d_{K} - \ell_{K} = \frac{1}{2} - \frac{\operatorname{cen}\left(\frac{K\Pi}{4}\right)}{K\Pi}\left(e^{-j\frac{K\Pi}{4}} + e^{-j\frac{5\Pi K}{4}}\right)$$

l'ele propriedede de integraçal

$$a_{k} = \frac{1}{j k \frac{2\pi}{4}} b_{k} = \frac{1}{j k \pi} - \frac{2}{j} \frac{\text{Sen}(k \pi_{k})}{(k \pi)^{2}} \left(e^{-j \frac{k \pi}{4}} + e^{-j \frac{s k \pi}{4}} \right)$$

c)
$$q_{2} = \frac{1}{j2\pi} - \frac{2}{j} \frac{Sem(\frac{2\pi}{4})}{4\pi^{2}} \left(e^{-j\frac{\pi}{2}} + \lambda^{-j}\frac{S\pi}{2}\right)$$

$$q_{1} = \frac{1}{j2\pi} - \frac{2}{j} \frac{1}{4\pi^{2}} \left(e^{-j\frac{\pi}{2}} + \lambda^{-j}\frac{S\pi}{2}\right)$$

$$= \frac{1}{j2\pi} - \frac{2}{j} \frac{1}{4\pi^{2}} \left(-2j\right) = \frac{1}{j2\pi} - \frac{1}{\pi^{2}} = \frac{1}{\pi^{2}} - j\frac{1}{2\pi}$$

$$|q_{2}| = \sqrt{\left(\frac{1}{\pi^{2}}\right)^{2} + \left(\frac{1}{2\pi}\right)^{2}} = 0,1887$$

$$|q_{2}| = |q_{2}|^{2}$$

$$|q_{2}| = |q_{2}|^{2} + |q_{2}|^{2} = 0,07/2$$

$$V_0(j\omega) = \frac{\overline{z}_c}{\overline{z}_c + \overline{z}_c} \cdot V_x(\omega) = \frac{1}{j\omega_c} V_x(\omega) = \frac{1}{z} V_x(j\omega) + \frac{1}{j\omega_c} V_y(\omega) = \frac{1}{z} V_x(j\omega) + \frac{1}{z} V_x(j\omega)$$

$$\overline{z}_{eq} = (\overline{z}_c + \overline{z}_c) / R = \frac{\overline{z}_c \cdot R}{\overline{z}_c} = \frac{zR}{z + j \omega Rc}$$

$$V_{K}(j\omega) = \frac{2R}{2+j\omega RC} V_{:}(j\omega) = \frac{2R}{2+j\omega RC}$$

$$V_X(j\omega) = \frac{2R}{2R + j\omega R^2C + 2R} \frac{V_2(j\omega)}{2R} = 0$$

$$V_{x}(j\omega) = \frac{2}{4 + j \omega RC} V_{i}(j\omega) = V_{x}(j\omega) = \frac{1}{2} \frac{1}{1 + j \omega \frac{RC}{4}} V_{i}(j\omega)$$

$$\psi_{o}(j\omega) = \frac{1}{2} V_{x}(j\omega) = V_{o}(j\omega) = \frac{1}{2} \cdot \frac{1}{2} \frac{1}{1+j \frac{\omega}{\omega_{o}}} V_{i}(j\omega) , \quad \omega_{o} = \frac{4}{Rc}$$

$$\frac{V_0(j\omega)}{V_j(j\omega)} = \frac{1}{4} \frac{1}{1+j} \frac{1}$$

600 20 dB/dec