gtsummary

Creating publication-ready analytical tables

Margie Hannum

Memorial Sloan Kettering Cancer Center

February 26, 2020

{gtsummary} package

{gtsummary} Overview

- Package will create your tabular summaries, with sensible defaults that are highly customizable
 - Summarize data frames/tibbles
 - Summarize regression models
 - Customize tables
 - Report statistics from {gtsummary} tables inline in R Markdown

{gtsummary} v1.2.5 - Package Website

- Package Website: http://www.danieldsjoberg.com/gtsummary/
 - Installation instructions
 - Thorough documentation on every function
 - Detailed tutorials
- Install {gtsummary} with the following code:

```
install.packages("gtsummary")
```

Also recommended to install the development version of {gt} from GitHub.

```
install.packages("remotes")
remotes::install_github("rstudio/gt")
```

{gt} - an aside

- New package from RStudio
- Package for printing highly customized tables
- Goal is to unify code for creating tables in HTML, Word (via RTF), and PDF
- Check it out! https://gt.rstudio.com/

{gt} - an aside

- "We can construct a wide variety of useful tables with a cohesive set of table parts. These include the table header, the stub, the stub head, the column labels, the table body, and the table footer."
- Workflow: input dataframe or tibble, create gt object (list with data and formatting elements), output gt table as HTML (previewed in the Viewer).

Image source: https://gt.rstudio.com/

Parts of a gt Table TITLE **TABLE HEADER SUBTITLE** SPANNER COLUMN LABEL STUB COLUMN COLUMN STUBHEAD LABEL COLUMN COLUMN HEAD **LABELS** LABEL LABEL LABEL **ROW GROUP LABEL ROW LABEL** CELL CELL CELL **TABLE** STUB **BODY** CELL CELL **ROW LABEL** CELL SUMMARY LABEL CELL **CELL** CELL **FOOTNOTES TABLE FOOTER SOURCE NOTES**

{gtsummary} Print Engines - gt or kable?

gt

- ♥ Highly Customizable
- ♥ All output includes informative footnotes
- **♥** HTML Output
- ♥ PDF Output

⚠ MS Word Output via RTF still in dev, requires re-sizing of tables by hand

kable

△ Less Customizable

▲ Footnotes and spanning headers stripped from all output

- **♥** HTML Output
- ♥ PDF Output
- ♥ MS Word Output

We built {gtsummary} as a companion to {gt} and highly recommend it!

All examples shown use {gt} print engine

trial dataset overview

```
head(trial, 3)
```

```
## # A tibble: 3 x 8
             age marker stage grade response death ttdeath
    trt
    <chr> <dbl> <dbl> <fct> <fct>
                                      <int> <int>
                                                    <dbl>
## 1 Drug A
              23 0.16 T1
                                                       24
            9 1.11 T2
                                                       24
    Drug B
## 3 Drug A
              31 0.277 T1
                                                0
                                                       24
```

variable	class	label
trt	character	Treatment Randomization
age	numeric	Age, yrs
marker	numeric	Marker Level, ng/mL
stage	factor	T Stage
grade	factor	Grade
response	integer	Tumor Response
death	integer	Patient Died
ttdeath	numeric	Months to Death/Censor

- Throughout this presentation examples will use the trial dataset, included with {gtsummary}.
- Dataset contains baseline characteristics of 200 patients who received Drug A or Drug B. Includes outcome of tumor response to the treatment.
- Variables have label attributes assigned using the labelled package.
- For simplicity in this presentation, subset data to a few variables of interest:

```
sm_trial ← trial %>%
  select(trt, age, response, grade)
```

tbl_summary()

Example: Summarizing clinical trial data

Produce a table of descriptive statistics using one line of code:

tbl_summary(sm_trial)

Notice some nice default behaviors:

- Detects variable types of input data and calculates descriptive statistics
 - Default statistics are median (IQR) for continuous variables, and n (percent) for categorical data.
- By default, variables coded as 0/1, TRUE/FALSE, and Yes/No are presented dichotomously.
- Recognizes NA values as "missing" and lists them as unknown
- Label attributes automatically printed
- Variable levels indented and footnotes added ({gt})

Characteristic	N = 200 ¹	
Chemotherapy Treatmen	t	
Drug A	98 (49%)	
Drug B	102 (51%)	
Age, yrs	47 (38, 57)	
Unknown	11	
Tumor Response	61 (32%)	
Unknown	7	
Grade		
I	68 (34%)	
II	68 (34%)	
III	64 (32%)	
¹ Statistics presented: n (%); median (IQR)		

Start customizing using arguments and pipe operator %>% to string additional functions together

```
tbl_summary_1 ← sm_trial %>%
  tbl_summary(by = trt) %>%
  add_p()
```

- by = argument to split table by a categorical variable
- add_p() default tests are the Wilcoxon rank-sum test for continuous variables, chi-square test of independence/ Fisher's exact test for categorical (Fisher's for low expected counts).
- add_overall() to add back in an overall summary of the data (not split by the by argument)

Characteristic ⁷	Drug , N = 107	Placebo, N = 93	p-value ²
Age, yrs	47 (39, 58)	45 (36, 54)	0.3
Unknown	6	3	
Tumor Response	53 (51%)	30 (34%)	0.023
Unknown	4	5	
Grade			0.3
I	38 (36%)	29 (31%)	
II	34 (32%)	24 (26%)	
III	35 (33%)	40 (43%)	

¹ Statistics presented: median (IQR); n (%)

² Statistical tests performed: Wilcoxon rank-sum test; chi-square test of independence

Customize further using formula syntax and tidy selectors

```
tbl summary 3 ← sm trial %>%
 tbl summary(
   bv = trt.
   statistic = list(
 • all continuous() ~ "{mean} ({sd})",
 • all categorical() ~ "{n} / {N} ({p}%)"),
 • label = vars(age) ~ "Patient Age") %>%
 • add_p(test = all_continuous() ~ "t.test")
```

continuous (default is median)

Characteristic ¹	Drug , N = 107	Placebo, N = 93	p-value ²	
Patient Age	48 (15)	46 (13)	0.4	
Unknown	6	3		
Tumor Response	53 / 103 (51%)	30 / 88 (34%)	0.023	
Unknown	4	5		
Grade			0.3	
1	38 / 107 (36%)	29 / 93 (31%)		
II	34 / 107 (32%)	24 / 93 (26%)		
III	35 / 107 (33%)	40 / 93 (43%)		
¹ Statistics presented: mean (SD); n / N (%) ² Statistical tests performed: t-test; chi-square test of independence				

Formulas

• Most arguments to tbl_summary() require formula syntax, and provide many more options to easily select the table variables you want to modify. More on that later.

select variables ~ specify what you want to do

Additional tbl_summary Features

- Use **{tidyselect}** functions to select variables for customization
- Use **custom functions** for calculating p-values and reporting any statistic for continuous variables (inlcuding user-written functions)
- Missing data options
- **Sort variables** by significance (sort_p()); sort categorical variables by frequency
- Calculate **cell percents and row percents** (default is column-wide)
- Only report p-values for select variables (add_p(include = ...)); report q-values (like false discovery rate)
- Rounding options and ability to set global options for rounding p-values

Review tbl_summary() vignette for more details and examples!

tbl_regression()

Raw model output

⚠ Difficult to work with

⚠ Format varies from different types of models

⚠ Need to exponentiate betas to get odds ratios from a logistic regression etc.

```
###
## Call: glm(formula = response ~ trt + grade + age, family
      data = trial)
###
##
## Coefficients:
## (Intercept)
                trtDrug B gradeII
                                            gradeIII
    -1.694687
                  0.124330
                              -0.160518
                                            0.007672
##
## Degrees of Freedom: 182 Total (i.e. Null); 178 Residual
    (17 observations deleted due to missingness)
## Null Deviance:
                        228.6
## Residual Deviance: 225.3 AIC: 235.3
```

5 age

`broom::tidy() output

- ♥ Using broom::tidy() a step in the right direction!
- ♥ All models returned with consistent table format (term, estimates, standard errors...)
- ⚠ Does not include reference groups
- ⚠ Needs additional modification before it can be presented

```
broom::tidy(m1, conf.int = TRUE, exponentiate = TRUE)
## # A tibble: 5 x 7
                 estimate std.error statistic p.value conf.
    term
    <chr>
                   <dbl>
                             <dbl>
                                        <dbl>
                                               <dbl>
##
## 1 (Intercept)
                   0.184
                            0.630
                                      -2.69
                                             0.00715
                                                        0.0
## 2 trtDrug B
                                             0.699
                                                       0.6
                   1.13
                            0.321
                                     0.387
## 3 gradeII
                   0.852
                            0.395
                                      -0.406 0.685
                                                       0.3
                                      0.0199 0.984
## 4 gradeIII
                            0.385
                                                        0.4
                   1.01
```

1.02

0.0114

1.67

0.0952

0.9

{gtsummary} Output

tbl_regression() accepts regression
model object as input. Uses {broom} in the
background, outputs table with nice
defaults:

- ♥ Reference groups added to the table
- ♥ Sensible default number rounding and formatting
- ▼ Label attributes printed
- ♥ Certain model types detected ♥ Estimate header and footnote included

tbl_reg_1 ← tbl_regression(m1, exponentiate = TRUE)

Characteristic	OR ¹	95% CI ⁷	p-value
Chemotherapy Treatment			
Drug A		_	
Drug B	1.13	0.60, 2.13	0.7
Grade			
1	_		
II	0.85	0.39, 1.85	0.7
III	1.01	0.47, 2.15	>0.9
Age, yrs	1.02	1.00, 1.04	0.10
¹ OR = Odds Ratio, CI = Con	fidence	e Interval	

Format variables with tbl_regression arguments

- label Specify labels
- show_single_row If variable is dichotomous (e.g. Yes/No), you can choose to print regression coefficient on a single row

```
tbl_reg_1a ← tbl_regression(
    m1,
    show_single_row = trt,
    label = trt ~ "Treatment B vs A",
    exponentiate = TRUE)
```

Format values with tbl_regression arguments

- exponentiate default is FALSE
- conf.level Specify between 0-1. Default 0.95.
- estimate_fun, pvalue_fun Specify
 functions to round and format values
- tidy_fun Specify a specific or custom tidier

```
tbl_reg_1b ← tbl_regression(
    m1,
    conf.level = 0.9,
    pvalue_fun = function(x) style_pvalue(x, digits = 2),
    exponentiate = TRUE)
```

- Build Cox regression model with same predictors as previous model.
- Merge the two regression models with the same predictors and present results side-by-side.

Ch and at a side	Tumor Response			Time to Death		
Characteristic	OR ¹	95% CI ⁷	p-value	HR ¹	95% CI ⁷	p-value
Treatment Randomization						
Drug	_	_		_	_	
Placebo	0.52	0.28, 0.94	0.032	1.31	0.89, 1.94	0.2
Grade						
I	_	_		_	_	
II	0.60	0.28, 1.29	0.2	1.25	0.74, 2.12	0.4
III	0.85	0.41, 1.74	0.6	1.87	1.16, 3.01	0.011
Age, yrs	1.00	0.98, 1.02	0.7	1.01	0.99, 1.02	0.4
¹ OR = Odds Ratio, HR = Haza	rd Ratio	o, CI = Confid	ence Interva	al		

{gtsummary} summarize data with tbl_uvregression()

```
library(survival)
tbl_uvregression_1 ←
  tbl_uvregression(
    sm_trial,
    method = glm,
    y = response,
    method.args = list(family = binomial),
    exponentiate = TRUE
)
```

- Table of univariate regression models.
- Specify the outcome, and the remaining variables in data frame serve as predictors.

Characteristic	N	OR ¹	95% CI ¹	p-value
Treatment Randomization	191			
Drug		_	_	
Placebo		0.49	0.27, 0.87	0.016
Age, yrs	182	1.00	0.98, 1.02	0.7
Grade	191			
I		_	_	
II		0.65	0.31, 1.34	0.2
III		0.76	0.38, 1.49	0.4
⁷ OR = Odds Ratio, CI = Confidence Interval				

inline_text()

{gtsummary} reporting results with inline_text()

- Tables are important, but we often need to report results in-line in a report.
- Any statistic reported in a {gtsummary} table can be extracted and reported in-line in a R Markdown document with the inline_text() function.

```
inline_text(tbl_reg_1, variable = "trt", level = "Drug A")
NA (95% CI NA, NA; NA)
```

- The pattern of what is reported can be modified with the pattern = argument.
- Default is pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high};
 {p.value})".

Customization

Formulas

• Most arguments to tbl_summary() require formula syntax, and provide many more options to easily select the table variables you want to modify.

select variables ~ specify what you want to do

```
tbl_summary(
  trial,
  by = trt,
  statistic = age ~ "{mean} ({sd})"
)
```

Formulas

select variables ~ specifiy what you want to do

select variables

- o use quoted or unquoted variables, minus sign to negate (e.g. age or "age" to select, -age to deselect)
- o use any {tidyselect} functions, e.g. contains("stage") ~ ...
- use attribute (e.g all_character() ~ ...) or type (e.g., all_continuous() ~ ...)
- specify what you want to do (depends on the argument)
 - o change the statistic you report using {glue} syntax. e.g statistic = ... ~ "{mean} ({sd})"
 - pass a string to change labels

- Report levels for the response variable.
- Report mean instead of median (using glue)
- Modify the default rounding for age.
- Specify t-test for all continuous variables and Fisher's test for response variable.

Characteristic	Statistic	Drug , N = 107	Placebo, N = 93	p-value ¹
Age, yrs	mean (SD)	48 (15.4)	46 (13.2)	0.4
Unknown	n	6	3	
Tumor Response				0.023
0	n (%)	50 (49%)	58 (66%)	
1	n (%)	53 (51%)	30 (34%)	
Unknown	n	4	5	
Grade				0.3
1	n (%)	38 (36%)	29 (31%)	
II	n (%)	34 (32%)	24 (26%)	
III	n (%)	35 (33%)	40 (43%)	

¹ Statistical tests performed: t-test; chi-square test of independence

{gtsummary} tbl_summary() advanced customization

Advanced Customization Using {gt}

- It's natural a {gtsummary} package user would want to customize the aesthetics of the table with one or more of the many {gt} functions available.
- Every function in {gt} is available to use with a {gtsummary} object.
- 1. Create a {gtsummary} table.
- 2. Convert the table to a {gt} object with the as_gt() function.
- 3. Continue formatting as a {gt} table with any {gt} function.

{gtsummary} tbl_summary() advanced customization

Advanced Customization Using {gt}

- tab_header() add a table title
- tab_spanner() add headers that span columns
- tab_options() change table padding and font size
- tab_footnote() add additional footnotes to table

And many more! https://gt.rstudio.com/

{gtsummary} tbl_summary() advanced customization

Advanced Customization Using {gt}

```
tbl_summary_5 \leftarrow sm_trial %>%
  tbl_summary(by = trt) %>%
  # convert from gtsummary object to gt object
  as_gt() %>%
  # modify with gt functions
  tab_header("Table 1: Baseline Characteristics") %>%
  tab_spanner(
    label = "Randomization Group",
    columns = starts_with("stat_")
  ) %>%
  tab_options(
    table.font.size = "small",
    data_row.padding = gt::px(1))
```

Characteristic ¹	Randomization Group			
Characteristic	Drug , N = 107 Placebo , N = 93			
Age, yrs	47 (39, 58)	45 (36, 54)		
Unknown	6	3		
Tumor Response	53 (51%)	30 (34%)		
Unknown	4	5		
Grade				
1	38 (36%)	29 (31%)		
II	34 (32%)	24 (26%)		
III	35 (33%)	40 (43%)		

{gtsummary} Advanced

{gtsummary} output is a list that prints as a {gt} table.

```
names(tbl summary 1)
   [1] "gt calls"
                    "kable calls" "table body"
                                                "table header" "meta data"
                                   "call list"
                                                "bv"
                                                              "df bv"
   [6] "inputs"
## [11] "fmt fun"
pluck(tbl summary 1, "table body") %>% head()
                                                          pluck(tbl_summary_1, "gt_calls") %>% head(n = 4)
## # A tibble: 6 x 6
                                                         ## $gt
                                                         p##væjtuæ gt(data = x$table bodv)
   variable row_type label
                           stat 1 stat 2
                             <chr>
                                              <chr>
                                                         ##<dbl>
###
    <chr>
           <chr>
                    <chr>
        label Age, yrs
                             46 (37, 59) 48 (39, 56) ##0$\tau_1s_align
## 1 age
        missing Unknown
                                                         #MA gt::cols align(align = 'center') %>% gt::cols align(align
## 2 age
                                              4
## 3 response label
                    Tumor Response 28 (29%)
                                              33 (34%)
                                                         ##0.637
                                                         #M#A $fmt missing
## 4 response missing
                    Unknown
                                              4
                                                         ##0 g&7:1 fmt_missing(columns = gt::everything(), missing_text
## 5 grade
           label
                    Grade <NA>
                                              <NA>
## 6 grade
           level
                                  35 (36%)
                                             33 (32%)
                                                         #N#A
                    Ι
                                                         ## $tab_style_text_indent
                                                         ## gt::tab_style(style = gt::cell_text(indent = gt::px(10),
```

Conclusion

{gtsummary}

- Every function is documented further in the help file •
- · Check out the package website for vignettes including detailed examples and explanations ·
 - {gtsummary} documentation/website danieldsjoberg.com/gtsummary/
 - **Q** {gtsummary} package github.com/ddsjoberg/gtsummary
 - ▶ slides at github.com/margarethannum/gtsummary-presentation-rladies
- Source code for slides at github.com/margarethannum/gtsummary-presentation-rladies
 - **Q** {gt} package github.com/rstudio/gt

Download {gtsummary} today!

Thank you

Author/Maintainer: Daniel Sjoberg

Authors: Margie Hannum, Karissa Whiting, Emily Zabor, Michael Curry

Contributors: Esther Drill, Jessica Flynn