_

MINI ENSAYO DE MATEMÁTICA Nº 2

- 1. Un comerciante tiene bandejas con capacidades para 20 y 30 huevos cada una. Si quiere colocar 750 huevos en igual número de bandejas de ambas capacidades, ¿cuántas bandejas de cada capacidad necesita para colocar todos los huevos?
 - A) 30
 - B) 20
 - C) 15
 - D) 10
 - E) 5
- 2. El mínimo común múltiplo y el máximo común divisor entre 60 y 72 corresponde, respectivamente, a
 - A) $2^3 \cdot 3^2 \cdot 5$ y $2 \cdot 3$
 - B) $2^3 \cdot 3^2 \cdot 5 \quad y \quad 2^2 \cdot 3$
 - C) $2^3 \cdot 3 \cdot 5$ y $2^2 \cdot 3$
 - D) $2^2 \cdot 3 \cdot 5$ y $2^3 \cdot 3^2$
 - E) $2 \cdot 3^2 \cdot 5$ y $2^2 \cdot 3$
- 3. Si a=-3, b=5 y c=-2, entonces ¿cuál(es) de las siguientes expresiones representa(n) un número primo?
 - I) a + b
 - II) 2a + b 3c
 - III) 3b 2c
 - A) Sólo I
 - B) Sólo I y II
 - C) Sólo I y III
 - D) Sólo II y III
 - E) I, II y III
- 4. El resultado de -8 + 12 : 4 $[2^4 3^2 (2 \cdot 3 2)]$ es
 - A) -23
 - B) -7
 - C) 1
 - D) 3
 - E) 25

- 5. Si p = 2 y q = -5, entonces |p + q| es equivalente a
 - A) 4p q
 - B) 4p + q
 - C) p + q
 - D) p q
 - E) 6p + 3q
- 6. Si $a = \frac{1}{2}$, $b = \frac{2}{3}$ y c = 1, entonces $a + \frac{b a}{c + \frac{c}{a}} =$
 - A) $\frac{5}{9}$
 - B) $\frac{11}{18}$
 - C) $\frac{2}{9}$

 - E) 1
- 7. En la secuencia numérica 1², 2², 4², 8², ..., el producto del cuarto con el quinto término es igual a
 - A) 128
 - B) 16^2
 - C) 32² D) 64²

 - E) 128²
- 8. Si **p** es un entero par positivo y **q** un entero impar positivo, entonces ¿cuál(es) de las siguientes afirmaciones es (son) siempre verdadera(s)?
 - I) 3(p + q) es un entero par positivo.
 - II) 4p 2q es un entero par positivo.
 - III) (p + q)(p q) es un entero impar negativo.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) Ninguna de ellas.
 - E) Todas ellas.

- 9. El producto de $8,56 \cdot 3,2 \cdot 10^{-2}$ expresado en notación científica es
 - A) $2,7392 \cdot 10^{-1}$
 - B) 2,7392 · 10⁻²
 - C) $2,7392 \cdot 10^{-3}$
 - D) 2,7392 · 10
 - E) 0,27392 · 10
- $10. \ \frac{4^2 2^3}{2^4} =$

 - A) 2 B) 2⁰

 - C) 2⁻¹ D) 2⁻² E) -2⁻¹
- 11. Al comprar un computador se paga \$ 600.000, lo que corresponde a dos tercios de su valor y el resto se paga en 10 cuotas iguales. ¿Cuál es el valor de cada cuota?
 - A) \$ 90.000
 - B) \$60.000
 - C) \$50.000
 - D) \$ 30.000
 - E) \$ 25.000
- 12. ¿Cuál(es) de las siguientes proposiciones es (son) verdadera(s)?
 - 1) Si a = 2 y b = 3, entonces $\sqrt{a b}$ es irracional.
 - II) Si a = -1 y b = -3, entonces $\sqrt{a^2 + b^2}$ es irracional.
 - III) Si a = 1 y b = 2, entonces $\sqrt[3]{a b}$ es real.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) Sólo I y II
 - E) Sólo II y III

13. El orden decreciente de los números $a=3\sqrt{6}$, $b=4\sqrt{3}$ y $c=5\sqrt{2}$ es

- A) a, b, c
- B) c, b, a
- C) c, a, b
- D) a, c, b
- E) b, c, a

14. El precio de un televisor ha sido rebajado en un 20%, costando ahora \$ 240.000. ¿Cuánto costaba antes de la rebaja?

- A) \$ 300.000
- B) \$ 280.000
- C) \$ 260.000
- D) \$ 250.000
- E) \$ 200.000

15. Las variables \mathbf{x}^2 y \mathbf{p} son directamente proporcionales, siendo $\mathbf{x}=3$, cuando $\mathbf{p}=8$. ¿Cuál es el valor de \mathbf{x} si $\mathbf{p}=32$?

- A) 2
- B) 6
- C) 12
- D) 36
- E) Otro valor

16. Si el precio de 5 litros de gasolina es \$ 2.900, ¿cuál sería el valor de 3 litros y medio de gasolina?

- A) \$ 20.300
- B) \$ 2.030
- C) \$ 1.740
- D) \$ 1.450
- E) \$ 580

17. \mathbf{x} y \mathbf{p}^2 son inversamente proporcionales, siendo $\mathbf{x}=4$, cuando $\mathbf{p}=3$. ¿Cuál es el valor de \mathbf{p} cuando $\mathbf{x}=2$?

- A) 36
- B) 18
- C) 9
- D) $3\sqrt{2}$
- E) $2\sqrt{3}$

- 18. En un establo hay 12 animales que tienen comida sólo para 20 días. Si el número de animales aumenta a 30, ¿para cuántos días les alcanzaría la misma cantidad de comida?
 - A) 2
 - B) 8
 - C) 18
 - D) 50
 - E) Ninguna de las anteriores.
- 19. Para que el valor de **a** en la igualdad 3a + 2 = 4b sea -4, el valor de **b** debe ser
 - A) -6

 - C) $-\frac{5}{2}$ D) $\frac{5}{2}$
 - E) $\frac{7}{2}$
- 20. Si al cuadrado de la diferencia entre a y b se le resta el doble del cuadrado de la suma entre a y b, se obtiene
 - A) 0
 - B) -a 3b
 - C) $3a^2 + 2ab + 3b^2$
 - D) $a^2 + 6ab + b^2$
 - E) $-[a^2 + 6ab + b^2]$
- 21. Un capital de \$ 20.000.000 se deposita en un Banco durante 2 años a un interés simple trimestral de un 2%. ¿Cuál sería la ganancia en el primer año?
 - A) \$ 20.000.000 · (0,08)
 - B) \$ 20.000.000 · (0,16)
 - C) \$ 20.000.000 · (1,08)
 - D) \$ 20.000.000 · (1,16)
 - E) \$ 20.000.000 · (0,2)

- 22. Si el pasaje del transantiago (\$ 400) se reajustara anualmente en un 10%, ¿cuál sería el valor del pasaje en 10 años más?
 - A) \$ 440
 - B) \$800
 - C) $\$ 400 \cdot (0,1)^{10}$
 - D) $$400 \cdot (1,01)^{10}$
 - E) $\$ 400 \cdot (1,1)^{10}$
- 23. Las rectas L_1 y L_2 de la figura 1, se intersectan en el punto O. Si \overrightarrow{OA} es bisectriz del $\angle BOC$, ¿cuál es la medida del $\angle y$?

- B) 52°
- C) 64°
- D) 104°
- E) 128°

- 24. En el triángulo ABC de la figura 2, \overrightarrow{DE} // \overrightarrow{AB} , \measuredangle FAD = 150° y \measuredangle BCA = 80°. ¿Cuál es el complemento del \measuredangle x?
 - A) 10°
 - B) 20°
 - C) 30°
 - D) 40°
 - E) 60°

- 25. En la figura 3, \triangle ABE es equilátero y BCDE es rectángulo. Si \triangle ABF \cong \triangle CFB, ¿cuál es la medida del \angle x?
 - A) 120°
 - B) 210°
 - C) 240°
 - D) 270°
 - E) Ninguna de las anteriores

26. En el paralelogramo ABCD de la figura 4, ∡BAC = 20°, ∡CDB = 50° y DB es bisectriz del ∡ABE. ¿Cuál es la medida del ∡EFC?

C) 100°

D) 110°

E) No se puede determinar

27. Se puede afirmar que $\sqrt{a + b}$ es racional si :

(1)
$$b = 3a$$

(2)
$$a = 1$$

A) (1) por sí sola

B) (2) por sí sola

C) Ambas juntas, (1) y (2)

D) Cada una por sí sola, (1) ó (2)

E) Se requiere información adicional

28. Se puede conocer el valor numérico de $\frac{4^{2a}}{4^b}$ si :

(1)
$$a = 1 y b = 2$$

(2)
$$b = 2a$$

- A) (1) por sí sola
- B) (2) por sí sola
- C) Ambas juntas, (1) y (2)
- D) Cada una por sí sola, (1) ó (2)
- E) Se requiere información adicional
- 29. En el $\triangle ABC$ de la figura 5, se puede asegurar que $\triangle ADF \cong \triangle CEF$ si :

(1)
$$\overline{CD} \perp \overline{AB}$$
 y $\overline{AE} \perp \overline{BC}$

- (2) ΔABC es equilátero.
- A) (1) por sí sola
- B) (2) por sí sola
- C) Ambas juntas, (1) y (2)
- D) Cada una por sí sola, (1) ó (2)
- E) Se requiere información adicional

fig. 5

30. Se puede determinar que el triángulo ABC de la figura 6, es isósceles de base \overline{AB} si :

- (1) $\overline{AD} \cong \overline{DB}$
- (2) $\overline{CD} \perp \overline{AB}$
- A) (1) por sí sola
- B) (2) por sí sola
- C) Ambas juntas, (1) y (2) D) Cada una por sí sola, (1) ó (2)
- E) Se requiere información adicional

CLAVES

1	С	6	Α	11	D	16	В	21	Α	26	В
2	В	7	E	12	E	17	D	22	E	27	С
3	Ε	8	D	13	D	18	В	23	Ε	28	D
4	С	9	Α	14	Α	19	С	24	С	29	С
5	В	10	С	15	В	20	Е	25	В	30	С