Taller 1 ALGOBO: Grafos, BFS, DFS.

Mauricio Velasco

- Implemente una clase Grafo que represente un grafo dirigido G como lista de adyacencia. La clase debe recibe sólo el número de vértices del grafo e implementar las operaciones G.nueva_arista(i,j), G.nuevo_vertice()y G.print().
 - a) Escriba el código de su implementación.
 - b) Demuestre que un grafo con n vértices y m aristas puede representarse usando O(m+n) números enteros.
- 2. Visitamos todos los vértices del grafo del dibujo usando BFS iniciando en el vértice (2).
 - a) Escriba la lista de vértices en el orden en el que los visitaríamos.
 - b) Hay otro orden posible adicional al que escribió en el numeral anterior?
 - c) Cuántos órdenes posibles hay? Escríbalos todos.
 - d) *Generalizado el ejemplo anterior, cuántos órdenes BFS hay para recorrer un árbol binario con ℓ niveles?
- 3. Implemente una función que reciba un $\operatorname{\tt Grafo} H$ y el índice de un vértice de H y retorne un árbol breadth-first-search T para H. El árbol T debe ser una instancia de la clase $\operatorname{\tt Grafo}$.
 - a) Escriba el código de su implementación.
 - b) Utilice su implementación en el grafo del problema (2) y dibuje el árbol T obtenido.
- 4. Demuestre las siguientes afirmaciones:
 - a) Si G es un grafo con n vértices y m aristas entonces $m = O(n^2)$.
 - b) Todo árbol con n vértices tiene n-1 aristas.

- c) Concluya que si G es un grafo conexo con m vértices entonces $m = \Omega(n)$ y $m = O(n^2)$.
- 5. Implemente una función que reciba un ${\tt Grafo}\ H$ y el índice de un vértice de H y retorne la lista de vértices recorrida en Depth-First-Search (DFS)
 - a) Escriba el código de su implementación.
 - b) Corra su código en el grafo del problema (2) de arriba y escriba la lista resultante.
 - c) Es la lista de (b) única? Justifique su respuesta.