

Lissage spatial avec R

- **01** Lissage spatial avec R
- 12 Exemple : les prix immobiliers à Paris en 2021

Lissage spatial avec R

PARTIE 01

3 manières de cartographier les données ponctuelles

- 1. **Agrégation sur territoire administratif** : une partition irrégulière de l'espace. Plusieurs difficultés : essentiellement l'effet **MAUP** (*Modifiable areal unit problem*) ;
- 2. **Agrégation sur grille carroyée** : un découpage régulier de l'espace en carreaux. Par construction, ces données peuvent être très erratiques ;
- 3. **Lissage spatial** : une extension du carroyage consistant à décrire l'environnement d'une population dans un rayon donné.

Pourquoi avoir développé BTB?

Il existe d'autres packages de lissage :

- KernSmooth
- spatstat...

Mais...

- Souhait de lissage conservatif;
- Souhait de pouvoir gérer les effets de bord;
- Souhait de pouvoir imposer une zone de lissage
 - o pas de taux de pauvreté dans la mer!;
 - résolution choisie
- Souhait de faire du « lissage quantile » ;
- Souhait de disposer d'un algorithme rapide.

6/18

btb

- Package R
- Développé depuis 2018, par l'Insee
- Mis à jour en 2022 (versions 0.2.0)
- Cœur écrit en C++ (Rcpp)
- Répond aux contraintes de l'analyse urbaine

Les paramétrages du lissage

- Un noyau (kernel) indiquant la manière d'approcher le voisinage;
- Le rayon de lissage, décrivant la taille du voisinage (arbitrage biais/variance);
- La résolution ou le nombre de points sur lesquels des valeurs lissées seront estimées;
- La gestion des effets de bord, pour expliciter la manière dont les frontières géographiques et la zone d'observation sont prises en compte dans le lissage.

Dans btb...

- Méthode d'estimatation par noyau quadratique
- Un paramètre de rayon de lissage
- Un paramètre de *taille des carreaux*
- Grille de lissage paramétrable

02

Exemple : les prix immobiliers à Paris en 2021

PARTIE 02

« Demandes de Valeurs Foncières »,

- Base de données des transactions immobilières (maisons et appartements)
- En 2021
- Région parisienne
- Géolocalisée (1 transaction = 1 point géographique)

Variables utilisées dans notre exemple :

- id_mutation: identifiant de chaque transaction
- valeur_fonciere: prix en euros
- surface_reelle_bati: surface en m²
- x : longitude (projection Lambert 93)
- y : latitude (projection Lambert 93)

Mesurer pour comprendre

Chargement des fonds de carte

id_mutation	valeur_fonciere	surface_ı
2021-447023	480000	
2021-447024	345000	
2021-447025	384000	
2021-447027	261900	
2021-447029	407200	

Filtrer les données et gérer les effets de bord

1. Transformation des observations en points géométriques

2. Zone tampon autour de Paris

```
paris_sf <- suburbs_sf %>% filter(code=="75")
buffer_sf <- st_buffer(paris_sf,dist = 2000)</pre>
```

3. Sélection par intersection géographique

Étape 0 : Carroyage (facultatif)

PARTIE 02

12 / 18

 Pour bien maîtriser son jeu de données avant lissage : commencer par carroyer les données!

- Très facile avec les fonctions intégrées à btb :
 - btb_add_centroids
 - btb_ptsToGrid
- Calculons les prix moyens au mètre-carré (parmis les transactions de 2021) sur des carreaux de 50m de côté

Lissage spatial avec btb::btb_smooth

- pts: table des points avec uniquement des variables numériques (objet geometrique ou non);
- iCellSize : Taille des carreaux en mètres (granularité de la grille des résultats) ;
- iBandwidth: Rayon de lissage en mètres.

X	y	valeur_fonciere	surface_reelle_bati	geometry
651475	6867325	67810.0992	8.3208764	POLYGON ((651450 6867350, 6
646525	6862175	610034.2982	49.2174889	POLYGON ((646500 6862200, 6
660925	6860375	144876.4983	17.6343084	POLYGON ((660900 6860400, 6
642575	6864375	8850.0240	1.0743428	POLYGON ((642550 6864400, 6
641675	6862975	8379.2341	1.2727656	POLYGON ((641650 6863000, 6
653675	6859775	40044.2777	4.4192896	POLYGON ((653650 6859800.6

Obtenir les prix au m² lissés

```
smooth_result <- smooth_result %>%
  mutate(smooth_price=
    valeur_fonciere / surface_reelle_bati)
```

Ne conserver que les estimations lissées à l'intérieur de Paris

```
smooth_result <- smooth_result %>%
  st_join(paris_sf[,"geometry"],left=F)
```

Cartographier le résultat

Avec différents rayons de lissage (arbitrage biais-variance)

Mesurer pour comprendre

PARTIE 02

17 / 18

btb disponible sur le CRAN et sur Github

install.packages("btb")

Trouver toute la documentation:

- Site web de btb
- Manuel d'analyse spatiale de l'Insee
- → Auto-formation

Et n'hésitez pas à nous contacter!

analyse-urbaine@insee.fr

Merci pour votre attention!

Retrouvez-nous sur:

insee.fr 💆

Kim Antunez Julien Pramil Insee, France analyse-urbaine@insee.fr

