Quotient Group Examples

Ex: G = 1R2 w/ binary operation +.

 $(a,b) \in \mathbb{R}^{2}$ $(a,b) + H = \{(a+x,b) \mid x \in \mathbb{R}^{2}\}$

Quest: What is G/H?

 $(a,b)+H = (c,d)+H \iff b=d$

Def: If H is a normal subgroup of G, In quotient map
is the natural homomerphism to: G -> G/H
g -> gH

quotient map: 70:6 → G/H

(a,b) -> (a,b)+H={(a+x,b) | x < 1R}

Merally speaking: (a,b) -> b

= { (×,6) | KE 1/2} = (0,6) + H

$$\frac{Ex:}{H} = \frac{R^2}{(x_i x) | x \in \mathbb{R}^2}$$

Quest: What are all the elements of G/H?

$$(9,b)+H = (C,d)+H \Leftrightarrow (a-c,b-d) \in H=\{(x,x)|x\in P\}$$

 $\Leftrightarrow a-c=b-d$

The cosets are all elements of the form

(0, c)+H for some CEIR.

First, Second, and Third Gomorphism Thorens

Q: How do we create maps from a quotient group to another group?

G ayroup, H≤G G/H → G' ???

Idea: Build a homomorphism $V:G \longrightarrow G'$

Theorem: If 4:G->G' is a homomorphism and H < ku(2), then there exists 4': G/H ->G'

Such that $G \xrightarrow{\gamma} G'$ $G \xrightarrow{\gamma} G'$ $T \downarrow D \nearrow G'$

Def: if H \(\text{ku(Y)}, we say If descends to the quotient
to the map 20: G/H -> G'.
, , , , , , , , , , , , , , , , , , ,
First Isomorphism Theorem: Let 4.6 >6' be a
group homomorphism and H=ker(2p). Then
If induces can isomorphism if: E/H -> mg(1g)
Satisture
G G
Y
G/H - img(19)
1
Punch line: G/her(2) = mg(2)
Wait a montal le this well-defined???? We already noticed that ght = ght can hold even if g ≠ g.
Naif a moute: le this well-defondé:
we already noticed that gir - g" can hold
even it did.
No worries mate! If gH=gH, then g'geH=ken(2)
$50 10(2^{-1}a) = 0$
$50 \gamma(\tilde{g}^{-1}g) = e$
(q) - (q) = e ⇒ γ(q) = φ(q)
Second Bornorphism Theorem
Prop: If N&G and H < G, then HN < G.
int of man 11 - of them 1110 - of
Proof: You did this on the exam (hopefully).

Def: Let H, K & G. The join of H and K 13 The subeyour generated by HK HVK = < {hk | hell and ke K?}

Prop: Let His and Nide. Then HN = HVN = NH Monover of H&G Ilun HN&G. Proof:

Idea ~ if I can show HN is a subgroup, then $HN = \langle HN \rangle = H \vee N$.

If I can also show HN=NH, the we are done w? first port.

Take hi, hz EH and ni, nz EN. hini EHN, hznz EHN. I know N is normal.

NTS hinthanz = HN hinh EN & het, nen.

 $h_1 n_1 h_2 n_2 = h_1 h_1 h_2 h_1 h_2 n_1 h_2 n_2 \in HN$ eH = 0 eH = 0

NTS (b, n,) = n, b, EHN.

 $m_2^{-1}h_2^{-1} = h_2h_2n_2h_2 + HN$.

