MCR3U

Final Exam Review

1. What is the third term of the sequence: $t_n = n^2 + 3$.	1
2. Find the next two terms of the sequence: 1, 8, 27, 64,,	2
3. Calculate the simple interest on borrowing \$500 at 12% for 3 years.	3
4. True or False: The following sequence is geometric: 2, 8, 32, 128,	4
5. What is the interest rate per period of an investment at 9%/a, compounded quarterly?	5
6. Evaluate: $27^{\frac{-2}{3}}$ (No decimals)	6
7. Simplify: $(16x^8)^{\frac{1}{4}}$	7
8. If $g(x) = 3x^2 - 2x + 1$, find $g(-2)$	8
9. Is the following set of ordered pairs a function? $\{(2,7),(3,5),(-2,5),(0,3)\}$	9
10. What is the inverse of the function $y = 2x + 1$?	10
11. Evaluate: $-\sqrt{20}$	11
12. How many x-intercepts does the function $y = -(x - 3)^2 + 4$?	12
13. Find the value of "d" that makes the following expression a perfect square:	13
$x^2 + \frac{3}{2}x + d$	
14. Using the discriminant, determine the number of zeros of the function, $y = 2x^2 + 4x - 3$	14
15. What are the next two positive, coterminal angles of 41°?	15
16. What is the principal angle of -187°?	16
17. What is the range of the cosine function.	17
18. State the period of the function $y = 2 \sin 3\theta$ in degrees.	18.
19. Solve for θ : $\cos \theta = 0$, $0^{\circ} \le \theta \le 360^{\circ}$	19
20. What is the range of the function $y = 3 \sin \theta + 6$	20
21. What is the exact value of tan 60°?	21
22. If a \$12000 car depreciates by 20% each year, what is its value after 6.5 years? 23. What is the range of the function $y = 2(3)^x + 5$.	22 23
24. What is the y-intercept of $f(x) = -5(\frac{1}{2})^x + 3$,
- · · · · · · · · · · · · · · · · · · ·	24
25. What is the horizontal asymptote of $y = (1.5)^x + 9$	25
26. What is the domain of $y = 13(\frac{2}{7})^x - 2$	26
27. Is the above function increasing or decreasing?	27
28. The value of a vase is given by $f(x) = 500(1.028)^x$ where x is the number of years and $f(x)$ is the value.	
What is the value of the vase today (original value)?	28A
How much does it appreciate by each year?	28B
29. Is $f(x) = -5^x$ increasing or decreasing?	29

30. Evaluate: $\left(\frac{1}{36}\right)^{\frac{1}{2}}$ 30. _____ 31. Evaluate: $16^{\overline{4}}$ 31. _____ 32. Evaluate: $(32)^{\frac{-3}{5}}$ 32. ____ 33. Evaluate: $(3^2 \times 4)^{-1}$ 33. _____ 34. Evaluate to **two decimal places**: $9.34^{\frac{-3}{5}}$ 34. 35. Simplify: $\left(\frac{\sqrt[4]{y^4}}{\sqrt[3]{v^2}}\right)^{\frac{3}{2}}$ 35. 36. Express using only positive exponents: $\frac{9x^{-6}y^3}{6x^{-3}v^{-2}}$ 36. 37. Solve the following exponential equation: $4^x = \sqrt[3]{4}$ 37. 38. Solve the following exponential equation: $2^x = 2^{2x} \times 2^3$ 38. 39. Simplify: $\left[\left(2x^2 - 3x^2 \right)^3 - 4x \left(2x + 5x^3 \right)^{-4} \right]^0$ 39. ____ 40. Simplify $(-2x^3 + 4x - 7) + (5x^3 - 12)$ 40. 41. Express $\sqrt{90}$ as a mixed radical. 41. _____ 42. Express $5\sqrt{4}$ as an entire radical. 42 ._____ 43. Simplify: $2\sqrt{6} \times 3\sqrt{6}$ 43._____ 44. Simplify: $\sqrt{5x} \times \sqrt{4x}$ 44. _____ 45. True or False: $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$ 45. _____ 46. Simplify: $3\sqrt{2} - 8\sqrt{2} + 4\sqrt{2}$ 46. _____ 47. Simplify: $\sqrt{20} + \sqrt{5}$ 47. _____ 48. Simplify: $(3+5\sqrt{7})(3-5\sqrt{7})$ 48. _____ 49. Simplify: $(\sqrt{*} + \sqrt{*})^2$ 49. 50. What is the domain of the function $y = \sqrt{2x-7}$ 50. ____ 51. Determine the fifth term of the following sequence: $t_n = \frac{2n^2+5}{n+4}$ 51. 52. 52. Find the next term of the following sequence: 41, 44, 39, 46, 37, 53. Write the general term for the sequence 3, 15, 75, 375, ... 53.____ 54. Write the general term for -32, -11, 10, 31, ... 54._____ 55. Does the general term, $t_n = 3^{n+1}$, represent an arithmetic sequence, 55.____ geometric sequence or neither? 56. Does the general term, $t_n = (n+2)(n-3)$, represent an arithmetic sequence, 56. geometric sequence or neither?

57. Prove the following identity: $\sin x + \tan x = \tan x (1 + \cos x)$

57.

58. Simplify using only positive exponents: $\frac{6x^{-2}y^3z}{15x^{-4}y^2}$

58.____

59. State the restrictions on the following expression: $\frac{2x^2 - 5}{3x^2(x+7)}$

59.____

60. Simplify: $-\frac{-(a-b)}{-a+b}$

60.____

61. Simplify: $(2x^2 - 7x + 6) - (x^2 - 2x - 9)$

61._____

62. Expand and Simplify: $-6x(3x+2)+4x^2-7x+11$

62.____

63. Expand and Simplify: $(x-5)^2$

63.____

64. Is $(x-6)^2 = (6-x)^2$

64.____

65. Factor: 2ab + 2a - 3b - 3

65.____

66. What is the equation of the vertical asymptote of $y = \frac{1}{2x - 5}$

66.____

67. At what coordinates is the hole for the graph $y = \frac{(x-3)}{(x-3)(x+2)}$

67.____

68. State the vertex of $f(x) = 3x^2 - 6x + 5$.

- 68._____
- 69. State the equation of a parabola with zeros -2 and 4 and y intercept of -16.
- 69.____

70. Factor: $16a^2 - 4$

70.____

71. Factor: x(x-3) - 2(x-3)

71.____

72. Factor: $2n - 6m + 5n^2 - 15mn$

72._____

73. Factor: $3a^2 - 10a - 8$

73._____

74. What are the coefficients in the expansion of $(y-1)^6$?

74. _____

75. What is the recursive formula for 3,5,2,-3,-5,-2,....

75. _____