NIK Recurence

Jose Tamez

2023-05-12

Contents

es	a																											
gnature corre																												
gnature corre												•		٠		•		•			•		•	•			•	
	elation				•	٠																						
ve data																												
gnature corre	elation .																											
tive data .																												
me to event																												
the index .																												
me to event																												
Risks																												
ne ROC AUC	J																											
t & c i	gnature corretive data . gnature correx Model ime to event x Adjusted Mime to event the index . ime to event Risks	gnature correlation . tive data gnature correlation . x Model ime to event x Adjusted Model . ime to event g the index Risks	gnature correlation tive data	gnature correlation tive data	gnature correlation tive data gnature correlation x Model ime to event x Adjusted Model ime to event g the index ime to event Risks	gnature correlation tive data gnature correlation x Model ime to event x Adjusted Model ime to event the index ime to event Risks	gnature correlation	ive data gnature correlation tive data gnature correlation x Model ime to event x Adjusted Model ime to event g the index ime to event Risks he ROC AUC																				

library(survival)

```
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
```

```
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
       cov, smooth, var
library(Biobase)
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following object is masked from 'package:pROC':
##
##
       var
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:Hmisc':
##
##
       contents
## The following object is masked from 'package:miscTools':
##
##
       rowMedians
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
## Bioconductor version '3.15' is out-of-date; the current release version '3.17'
```

is available with R version '4.3'; see https://bioconductor.org/install

```
BiocManager::install("seventyGeneData")
## Bioconductor version 3.15 (BiocManager 1.30.20), R 4.2.3 (2023-03-15 ucrt)
## Warning: package(s) not installed when version(s) same as or greater than current; use
     `force = TRUE` to re-install: 'seventyGeneData'
##
## Installation paths not writeable, unable to update packages
    path: C:/Program Files/R/R-4.2.3/library
##
##
    packages:
       class, KernSmooth, lattice, MASS, Matrix, nnet, survival
library(seventyGeneData)
data(vanDeVijver)
class(vanDeVijver)
## [1] "ExpressionSet"
## attr(,"package")
## [1] "Biobase"
Getting the clinical data
pdata <- pData(vanDeVijver)</pre>
ROC Plots
table(pdata$Posnodes)
n y 151 144
pander::pander(table(pdata$TTMevent))
                                        0
                                                  1
                                       194
                                                 101
```

pmroc <- plotModels.ROC(cbind(pdata\$TTMevent,-pdata\$C1used),name="NIK",thr= -0.4) ## Using paper thresh

RR Plot Signature correlation

Relative Risk: Signature: Breast Cancer

ROC: Signature: Breast Cancer

CI Performance all data

pander::pander(t(RRAnalysisCI\$keyPoints),caption="Threshold values")

Table 2: Threshold values

	@:0.1	@:0.05	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.519	0.619	0.465	0.623	7.56e-01
$\mathbf{R}\mathbf{R}$	3.806	3.548	4.160	5.069	3.91e + 01
RR_LCI	2.082	1.642	2.391	1.954	8.17e-02
RR_UCI	6.957	7.666	7.237	13.150	1.87e + 04
\mathbf{SEN}	0.901	0.941	0.881	0.960	1.00e+00
\mathbf{SPE}	0.397	0.247	0.485	0.242	5.67e-02
\mathbf{BACC}	0.649	0.594	0.683	0.601	5.28e-01

pander::pander(RRAnalysisCI\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.698	0.698	0.648	0.745

pander::pander(t(RRAnalysisCI\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 4: ROC AUC

est	lower	upper
0.692	0.631	0.752

pander::pander((RRAnalysisCI\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 5: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisCI\$ROCAnalysis\$specificity), caption="Specificity")

Table 6: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisCI\$thr_atP),caption="Probability Thresholds")

Table 7: Probability Thresholds

10%	5%
0.517	0.618

pander::pander(RRAnalysisCI\$surdif,caption="Logrank test")

Table 8: Logrank test Chisq = 28.085735 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	55	6	23.5	13.01	17.1
class=1	33	5	12.9	4.87	5.6
class=2	207	90	64.6	10.00	27.9

Node positive data

RR Plot Signature correlation

NodePdata <- subset(pdata,Posnodes=="y")</pre>

rdata <- cbind(NodePdata\$TTMevent,NodePdata\$C1used)</pre>

Relative Risk: Signature: Breast Cancer

ROC: Signature: Breast Cancer

CI Performance positive data

pander::pander(t(RRAnalysisPos\$keyPoints),caption="Threshold values")

Table 9: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.486	0.655	0.267	0.486	7.17e-01
$\mathbf{R}\mathbf{R}$	3.231	1.579	3.083	3.231	1.34e + 01
RR_LCI	1.377	0.563	1.746	1.377	2.94e-02
RR_UCI	7.578	4.431	5.444	7.578	6.14e + 03
\mathbf{SEN}	0.894	0.936	0.745	0.894	1.00e+00
\mathbf{SPE}	0.361	0.113	0.639	0.361	4.12e-02
\mathbf{BACC}	0.627	0.525	0.692	0.627	5.21e-01

pander::pander(RRAnalysisPos\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.7	0.7	0.634	0.771

pander::pander(t(RRAnalysisPos\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 11: ROC AUC

est	lower	upper
0.669	0.576	0.761

pander::pander((RRAnalysisPos\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 12: Sensitivity

est	lower	upper
0.894	0.769	0.965

pander::pander((RRAnalysisPos\$ROCAnalysis\$specificity),caption="Specificity")

Table 13: Specificity

est	lower	upper
0.371	0.275	0.475

pander::pander(t(RRAnalysisPos\$thr_atP),caption="Probability Thresholds")

Table 14: Probability Thresholds

10%	5%
0.484	0.651

pander::pander(RRAnalysisPos\$surdif,caption="Logrank test")

Table 15: Logrank test Chisq = 11.060876 on 2 degrees of freedom, p = 0.003964

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	15	3	5.80	1.35	1.55
class=1	26	2	9.73	6.14	7.77
class=2	103	42	31.47	3.52	10.71

Node Negative data

RR Plot Signature correlation

NodeNdata <- subset(pdata,Posnodes=="n")</pre>

rdata <- cbind(NodeNdata\$TTMevent,NodeNdata\$C1used)</pre>

Relative Risk: Signature: Breast Cancer

ROC: Signature: Breast Cancer

CI Performance negative data

pander::pander(t(RRAnalysisNeg\$keyPoints),caption="Threshold values")

Table 16: Threshold values

-	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.507	0.585	0.465	0.623	7.56e-01
$\mathbf{R}\mathbf{R}$	4.454	5.920	5.130	15.402	3.42e + 01
RR_LCI	2.040	1.959	2.344	2.211	7.18e-02
RR_UCI	9.723	17.889	11.228	107.305	1.63e + 04
\mathbf{SEN}	0.889	0.944	0.889	0.981	1.00e+00
\mathbf{SPE}	0.495	0.371	0.546	0.340	9.28e-02
\mathbf{BACC}	0.692	0.658	0.718	0.661	5.46e-01

pander::pander(RRAnalysisNeg\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.696	0.695	0.63	0.759

pander::pander(t(RRAnalysisNeg\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 18: ROC AUC

est	lower	upper
0.708	0.627	0.79

pander::pander((RRAnalysisNeg\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 19: Sensitivity

est	lower	upper
0.889	0.774	0.958

pander::pander((RRAnalysisNeg\$ROCAnalysis\$specificity), caption="Specificity")

Table 20: Specificity

est	lower	upper
0.495	0.392	0.598

pander::pander(t(RRAnalysisNeg\$thr_atP),caption="Probability Thresholds")

Table 21: Probability Thresholds

10%	5%
0.513	0.583

pander::pander(RRAnalysisNeg\$surdif,caption="Logrank test")

Table 22: Logrank test Chisq = 24.223875 on 2 degrees of freedom, p = 0.000005

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	40	3	18.18	12.67	19.29
class=1	14	3	5.43	1.09	1.21
class=2	97	48	30.39	10.21	23.58

RRPlot Cox Model

timeinterval <- 5 # Five years

h0 <- sum(pdata\$TTMevent & pdata\$RFS <= timeinterval)
h0 <- h0/sum((pdata\$RFS > timeinterval) | (pdata\$TTMevent==1))

mcox <- coxph(Surv(RFS,TTMevent)~Clused,pdata)
pander::pander(summary(mcox)\$coefficients)</pre>

	coef	$\exp(\mathrm{coef})$	se(coef)	${f z}$	$\Pr(> z)$
C1used	-1.5	0.224	0.263	-5.69	1.3e-08

Cumulative vs. Observed: NIK: Breast Cancer

Decision Curve

Relative Risk: NIK: Breast Cancer

Kaplan-Meier: NIK: Breast Cancer

Expected time to event

```
timetoEvent <- meanTimeToEvent(rdata[rdata[,1]==1,2],timeinterval)
plot(timetoEvent,pdata[rdata[,1]==1,"RFS"],xlab="Expected time",ylab="Observed time",main="Expected vs.</pre>
```

Expected vs. Observed


```
pander::pander(cor.test(timetoEvent,pdata[rdata[,1]==1,"RFS"],method="spearman"))
```

Warning in cor.test.default(timetoEvent, pdata[rdata[, 1] == 1, "RFS"], :
Cannot compute exact p-value with ties

Table 24: Spearman's rank correlation rho: timetoEvent and pdata[rdata[, 1] == 1, "RFS"]

Test statistic	P value	Alternative hypothesis	rho
115797	0.000892 * * *	two.sided	0.326

```
MADerror <- mean(abs(timetoEvent-pdata[rdata[,1]==1,"RFS"]))
pander::pander(MADerror)</pre>
```

```
4.75
```

```
toinclude <- rdata[,1] == 1 | pdata$RFS > 0.5*timeinterval
sum(toinclude)
```

```
## [1] 285
```

Expected vs. Observed

pander::pander(cor.test(timetoEvent,obstiemToEvent,method="kendall"))

Table 25: Kendall's rank correlation tau: timetoEvent and obstiemToEvent

Test statistic	P value	Alternative hypothesis	tau
5.7	1.18e-08 * * *	two.sided	0.227

MADerror2 <- mean(abs(timetoEvent-obstiemToEvent))
pander::pander(MADerror2)</pre>

0.595

Unadjusted Cox Performance

pander::pander(t(RRAnalysisCox\$keyPoints),caption="Threshold values")

Table 26: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.176	0.154	0.190	0.153	1.27e-01	0.5041
RR	3.806	3.548	4.160	5.069	3.91e + 01	0.9241
RR_LCI	2.082	1.642	2.391	1.954	8.17e-02	0.4906
RR_UCI	6.957	7.666	7.237	13.150	1.87e + 04	1.7407
\mathbf{SEN}	0.901	0.941	0.881	0.960	1.00e+00	0.0693
\mathbf{SPE}	0.397	0.247	0.485	0.242	5.67e-02	0.9227
\mathbf{BACC}	0.649	0.594	0.683	0.601	5.28e-01	0.4960

	@:0.9	@:0.95	@MAX_BACC @MAX_	RR @SPE100	p(0.5)
${f NetBenefit}$	0.223	0.232	0.222 0.239	2.52 e-01	-0.0279

pander::pander(t(RRAnalysisCox\$0ERatio\$estimate),caption="0/E Ratio")

Table 27: O/E Ratio

O/E	Low	Upper	p.value
0.871	0.709	1.06	0.178

pander::pander(t(RRAnalysisCox\$0E95ci),caption="0/E Mean")

Table 28: O/E Mean

mean	50%	2.5%	97.5%
0.958	0.957	0.932	0.982

pander::pander(t(RRAnalysisCox\$OAcum95ci),caption="0/Acum Mean")

Table 29: O/Acum Mean

mean	50%	2.5%	97.5%
1.22	1.22	1.2	1.24

pander::pander(RRAnalysisCox\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.698	0.698	0.653	0.745

pander::pander(t(RRAnalysisCox\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 31: ROC AUC

est	lower	upper
0.692	0.631	0.752

pander::pander((RRAnalysisCox\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 32: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisCox\$ROCAnalysis\$specificity), caption="Specificity")

Table 33: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisCox\$thr_atP),caption="Probability Thresholds")

Table 34: Probability Thresholds

10%	5%
0.177	0.154

pander::pander(RRAnalysisCox\$surdif,caption="Logrank test")

Table 35: Logrank test Chisq = 28.085735 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	55	6	23.5	13.01	17.1
class=1	33	5	12.9	4.87	5.6
class=2	207	90	64.6	10.00	27.9

RRPlot Cox Adjusted Model

This time we will include Lymph node status from pathology report and Estrogen receptor alpha expression measurement from microarray

```
mcox <- coxph(Surv(RFS,TTMevent)~Clused*(ESR1 + Posnodes),pdata)
pander::pander(summary(mcox)$coefficients)</pre>
```

	coef	$\exp(\operatorname{coef})$	se(coef)	${f z}$	$\Pr(> z)$
C1used	-0.403	0.668	0.629	-0.640	0.52186
$\mathbf{ESR1}$	0.123	1.131	0.255	0.481	0.63079
Posnodesy	-0.305	0.737	0.217	-1.401	0.16112
C1used:ESR1	-1.913	0.148	0.739	-2.588	0.00966
C1used:Posnodesy	0.378	1.460	0.583	0.649	0.51661

Cumulative vs. Observed: Adjusted: Breast Cancer

Decision Curve

Relative Risk: Adjusted: Breast Cancer

Kaplan-Meier: Adjusted: Breast Cancer

par(op)

Expected time to event

```
timetoEvent <- meanTimeToEvent(rdata[rdata[,1]==1,2],timeinterval)
plot(timetoEvent,pdata[rdata[,1]==1,"RFS"],xlab="Expected Time",ylab="Observed Time",main="Expected vs.</pre>
```

Expected vs. Observed


```
pander::pander(cor.test(timetoEvent,pdata[rdata[,1]==1,"RFS"],method="spearman"))
```

Warning in cor.test.default(timetoEvent, pdata[rdata[, 1] == 1, "RFS"], :
Cannot compute exact p-value with ties

Table 37: Spearman's rank correlation rho: timetoEvent and pdata[rdata[, 1] == 1, "RFS"]

Test statistic	P value	Alternative hypothesis	rho
117931	0.00143 * *	two.sided	0.313

```
MADerror <- c(MADerror,mean(abs(timetoEvent-pdata[rdata[,1]==1,"RFS"])))
pander::pander(MADerror)</pre>
```

```
4.75 and 5.02
```

Expected vs. Observed

pander::pander(cor.test(timetoEvent,obstiemToEvent,method="kendall"))

Table 38: Kendall's rank correlation tau: timetoEvent and obstiemToEvent

Test statistic	P value	Alternative hypothesis	tau
5.82	5.83e-09 * * *	two.sided	0.231

MADerror2 <-c(MADerror2,mean(abs(timetoEvent-obstiemToEvent)))
pander::pander(MADerror2)</pre>

0.595 and 0.649

Adjusted Cox Performance

pander::pander(t(RRAnalysisAdCox\$keyPoints),caption="Threshold values")

Table 39: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
$\overline{\text{Thr}}$	0.159	0.133	0.205	0.133	9.92e-02	0.50740
$\mathbf{R}\mathbf{R}$	3.422	4.043	3.235	4.699	3.54e + 01	1.72657
RR_LCI	1.928	1.863	2.100	2.004	7.42e-02	1.06501
RR_UCI	6.075	8.773	4.984	11.015	1.69e + 04	2.79908
\mathbf{SEN}	0.891	0.941	0.802	0.950	1.00e+00	0.07921
\mathbf{SPE}	0.392	0.278	0.572	0.273	5.15e-02	0.96907
\mathbf{BACC}	0.641	0.609	0.687	0.612	5.26e-01	0.52414

	@:0.9	@:0.95	@MAX_BACC @MAX_RR	@SPE100	p(0.5)
NetBenefit	0.230	0.249	0.202 0.252	2.74e-01	0.00617

pander::pander(t(RRAnalysisAdCox\$0ERatio\$estimate),caption="0/E Ratio")

Table 40: O/E Ratio

O/E	Low	Upper	p.value
0.904	0.737	1.1	0.344

pander::pander(t(RRAnalysisAdCox\$0E95ci),caption="0/E Mean")

Table 41: O/E Mean

mean	50%	2.5%	97.5%
0.98	0.98	0.954	1.01

pander::pander(t(RRAnalysisAdCox\$OAcum95ci), caption="0/Acum Mean")

Table 42: O/Acum Mean

mean	50%	2.5%	97.5%
1.24	1.24	1.22	1.25

pander::pander(RRAnalysisAdCox\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.707	0.707	0.662	0.751

pander::pander(t(RRAnalysisAdCox\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 44: ROC AUC

est	lower	upper
0.702	0.642	0.763

pander::pander((RRAnalysisAdCox\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 45: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisAdCox\$ROCAnalysis\$specificity),caption="Specificity")

Table 46: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisAdCox\$thr_atP),caption="Probability Thresholds")

Table 47: Probability Thresholds

10%	5%
0.159	0.133

pander::pander(RRAnalysisAdCox\$surdif,caption="Logrank test")

Table 48: Logrank test Chisq = 28.504862 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	60	6	25.3	14.73	19.76
class=1	28	5	11.2	3.45	3.89
class=2	207	90	64.5	10.11	28.16

Calibrating the index

h0	Gain	DeltaTime
0.401	0.987	7.16

Cumulative vs. Observed: Cal. NIK: Breast Cancer

Decision Curve

Relative Risk: Cal. NIK: Breast Cancer

Kaplan-Meier: Cal. NIK: Breast Cancer

Expected time to event

timetoEvent <- meanTimeToEvent(rdata[rdata[,1]==1,2],timeinterval)
plot(timetoEvent,pdata[rdata[,1]==1,"RFS"],xlab="Expected time",ylab="Observed time",main="Expected vs.</pre>

Expected vs. Observed


```
pander::pander(cor.test(timetoEvent,pdata[rdata[,1]==1,"RFS"],method="spearman"))
```

Warning in cor.test.default(timetoEvent, pdata[rdata[, 1] == 1, "RFS"], :
Cannot compute exact p-value with ties

Table 50: Spearman's rank correlation rho: timetoEvent and pdata[rdata[, 1] == 1, "RFS"]

Test statistic	P value	Alternative hypothesis	rho
117931	0.00143 * *	two.sided	0.313

```
MADerror <- c(MADerror,mean(abs(timetoEvent-pdata[rdata[,1]==1,"RFS"])))
pander::pander(MADerror)</pre>
```

```
4.75, 5.02 and 5.20
```

Expected vs. Observed

pander::pander(cor.test(timetoEvent,obstiemToEvent,method="kendall"))

Table 51: Kendall's rank correlation tau: timetoEvent and obstiemToEvent

Test statistic	P value	Alternative hypothesis	tau
5.82	5.83e-09 * * *	two.sided	0.231

MADerror2 <-c(MADerror2,mean(abs(timetoEvent-obstiemToEvent)))
pander::pander(MADerror2)</pre>

0.595, 0.649 and 0.661

Calibrated and Adjusted Cox Performance

pander::pander(t(RRAnalysisCalAdCox\$keyPoints),caption="Threshold values")

Table 52: Threshold values

	@:0.9	@:0.95	@MAX_BACC	© @MAX_RR	@SPE100	p(0.5)
$\overline{\text{Thr}}$	0.215	0.181	0.274	0.180	1.36e-01	0.5003
$\mathbf{R}\mathbf{R}$	3.422	4.043	3.235	4.699	3.54e + 01	1.8316
RR_LCI	1.928	1.863	2.100	2.004	7.42e-02	1.3487
RR_UCI	6.075	8.773	4.984	11.015	1.69e + 04	2.4875
\mathbf{SEN}	0.891	0.941	0.802	0.950	1.00e+00	0.3366
\mathbf{SPE}	0.392	0.278	0.572	0.273	5.15e-02	0.8454
\mathbf{BACC}	0.641	0.609	0.687	0.612	5.26e-01	0.5910

	@:0.9	@:0.95	@MAX_BACC @MAX_	RR @SPE100	p(0.5)
NetBenefit	0.196	0.217	0.168 0.220	2.44e-01	0.0135

pander::pander(t(RRAnalysisCalAdCox\$0ERatio\$estimate),caption="0/E Ratio")

Table 53: O/E Ratio

O/E	Low	Upper	p.value
0.923	0.752	1.12	0.445

pander::pander(t(RRAnalysisCalAdCox\$0E95ci),caption="0/E Mean")

Table 54: O/E Mean

mean	50%	2.5%	97.5%
1.01	1.01	0.978	1.03

pander::pander(t(RRAnalysisCalAdCox\$OAcum95ci),caption="O/Acum Mean")

Table 55: O/Acum Mean

mean	50%	2.5%	97.5%
0.973	0.973	0.963	0.982

pander::pander(RRAnalysisCalAdCox\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.707	0.707	0.662	0.752

pander::pander(t(RRAnalysisCalAdCox\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 57: ROC AUC

est	lower	upper
0.702	0.642	0.763

pander::pander((RRAnalysisCalAdCox\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 58: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisCalAdCox\$ROCAnalysis\$specificity), caption="Specificity")

Table 59: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisCalAdCox\$thr_atP),caption="Probability Thresholds")

Table 60: Probability Thresholds

10%	5%
0.215	0.181

pander::pander(RRAnalysisCalAdCox\$surdif,caption="Logrank test")

Table 61: Logrank test Chisq = 28.504862 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	60	6	25.3	14.73	19.76
class=1	28	5	11.2	3.45	3.89
class=2	207	90	64.5	10.11	28.16

Comparing Risks

Comparing concordance Index

```
## Correlation Index
cindex <- RRAnalysisCI$c.index$cstatCI
## Cox Index
cindex <- rbind(cindex,RRAnalysisCox$c.index$cstatCI)
## Adjusted Cox Index
cindex <- rbind(cindex,RRAnalysisAdCox$c.index$cstatCI)
## Adjusted and Calibrated Cox Index
cindex <- rbind(cindex,RRAnalysisCalAdCox$c.index$cstatCI)
rownames(cindex) <- c("CI", "Cox", "Adj. Cox", "Cal. Adj. Cox")
pander::pander(cindex)</pre>
```

	mean.C Index	median	lower	upper
CI	0.698	0.698	0.648	0.745
\mathbf{Cox}	0.698	0.698	0.653	0.745
Adj. Cox	0.707	0.707	0.662	0.751
Cal. Adj. Cox	0.707	0.707	0.662	0.752

Comparing Risk Ratios Index

```
## Correlation Index
RRratio <- c(RR=RRAnalysisCI$keyPoints$RR[1],
             LCI=RRAnalysisCI$keyPoints$RR LCI[1],
             UCI=RRAnalysisCI$keyPoints$RR_UCI[1])
## Cox Index
RRratio <- rbind(RRratio,c(RR=RRAnalysisCox$keyPoints$RR[1],
                           LCI=RRAnalysisCox$keyPoints$RR_LCI[1],
                           UCI=RRAnalysisCox$keyPoints$RR UCI[1]))
## Adjusted Cox Index
RRratio <- rbind(RRratio,c(RR=RRAnalysisAdCox$keyPoints$RR[1],
                           LCI=RRAnalysisAdCox$keyPoints$RR_LCI[1],
                           UCI=RRAnalysisAdCox$keyPoints$RR_UCI[1]))
## Adjusted and Calibrated Cox Index
RRratio <- rbind(RRratio,c(RR=RRAnalysisCalAdCox$keyPoints$RR[1],
                           LCI=RRAnalysisCalAdCox$keyPoints$RR_LCI[1],
                           UCI=RRAnalysisCalAdCox$keyPoints$RR_UCI[1]))
rownames(RRratio) <- c("CI", "Cox", "Adj. Cox", "Cal. Adj. Cox")</pre>
pander::pander(RRratio)
```

	RR	LCI	UCI
CI	3.81	2.08	6.96
\mathbf{Cox}	3.81	2.08	6.96
Adj. Cox	3.42	1.93	6.07
Cal. Adj. Cox	3.42	1.93	6.07

Comparing logRank values

```
## Correlation Index
SurvDif <- c(chisq=RRAnalysisCI$surdif$chisq,pvalue=RRAnalysisCI$surdif$pvalue)
## Cox Index
SurvDif <- rbind(SurvDif,c(chisq=RRAnalysisCox$surdif$chisq,pvalue=RRAnalysisCox$surdif$pvalue))
## Adjusted Cox Index
SurvDif <- rbind(SurvDif,c(chisq=RRAnalysisAdCox$surdif$chisq,pvalue=RRAnalysisAdCox$surdif$pvalue))
## Adjusted and Calibrated Cox Index
SurvDif <- rbind(SurvDif,c(chisq=RRAnalysisCalAdCox$surdif$chisq,pvalue=RRAnalysisCalAdCox$surdif$pvalue
rownames(SurvDif) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")</pre>
pander::pander(SurvDif)
```

	chisq	pvalue
CI	28.1	7.97e-07
\mathbf{Cox}	28.1	7.97e-07
Adj. Cox	28.5	6.46 e - 07
Cal. Adj. Cox	28.5	6.46 e - 07

Comparing Sensitivity

```
## Correlation Index
sensi <- RRAnalysisCI$ROCAnalysis$sensitivity
## Cox Index</pre>
```

```
sensi <- rbind(sensi,RRAnalysisCox$ROCAnalysis$sensitivity)
## Adjusted Cox Index
sensi <- rbind(sensi,RRAnalysisAdCox$ROCAnalysis$sensitivity)
## Adjusted and Calibrated Cox Index
sensi <- rbind(sensi,RRAnalysisCalAdCox$ROCAnalysis$sensitivity)
rownames(sensi) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(sensi)</pre>
```

	est	lower	upper
CI	0.891	0.813	0.944
\mathbf{Cox}	0.891	0.813	0.944
Adj. Cox	0.891	0.813	0.944
Cal. Adj. Cox	0.891	0.813	0.944

Comparing Specificity

```
## Correlation Index
speci <- RRAnalysisCI$ROCAnalysis$specificity
## Cox Index
speci <- rbind(speci,RRAnalysisCox$ROCAnalysis$specificity)
## Adjusted Cox Index
speci <- rbind(speci,RRAnalysisAdCox$ROCAnalysis$specificity)
## Adjusted and Calibrated Cox Index
speci <- rbind(speci,RRAnalysisCalAdCox$ROCAnalysis$specificity)
rownames(speci) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(speci)</pre>
```

	est	lower	upper
CI	0.397	0.328	0.469
\mathbf{Cox}	0.397	0.328	0.469
Adj. Cox	0.397	0.328	0.469
Cal. Adj. Cox	0.397	0.328	0.469

Comparing O/E

```
OERatio <- NULL
## Cox Index
OERatio <- rbind(OERatio,RRAnalysisCox$OERatio$estimate)
## Adjusted Cox Index
OERatio <- rbind(OERatio,RRAnalysisAdCox$OERatio$estimate)
## Adjusted and Calibrated Cox Index
OERatio <- rbind(OERatio,RRAnalysisCalAdCox$OERatio$estimate)
rownames(OERatio) <- c("Cox","Adj. Cox","Cal. Adj. Cox")</pre>
pander::pander(OERatio)
```

	O/E	Low	Upper	p.value
Cox	0.871	0.709	1.06	0.178

	O/E	Low	Upper	p.value
Adj. Cox	0.904	0.737	1.10	0.344
Cal. Adj. Cox	0.923	0.752	1.12	0.445

Comparing O/Acum

```
OARatio <- NULL
## Cox Index
OARatio <- rbind(OARatio,RRAnalysisCox$OARatio$estimate)
## Adjusted Cox Index
OARatio <- rbind(OARatio,RRAnalysisAdCox$OARatio$estimate)
## Adjusted and Calibrated Cox Index
OARatio <- rbind(OARatio,RRAnalysisCalAdCox$OARatio$estimate)
rownames(OARatio) <- c("Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(OARatio)</pre>
```

	O/A	Low	Upper	p.value
Cox	1.263	1.029	1.53	0.0217
$\mathbf{Adj.}$ \mathbf{Cox}	1.290	1.051	1.57	0.0128
Cal. Adj. Cox	0.997	0.812	1.21	1.0000

Comparing NetBenefit

```
NetBen <- NULL
## Cox Index
NetBen <- rbind(NetBen,RRAnalysisCox$keyPoints$NetBenefit)
## Adjusted Cox Index
NetBen <- rbind(NetBen,RRAnalysisAdCox$keyPoints$NetBenefit)
## Adjusted and Calibrated Cox Index
NetBen <- rbind(NetBen,RRAnalysisCalAdCox$keyPoints$NetBenefit)
colnames(NetBen) <- rownames(RRAnalysisCox$keyPoints)
rownames(NetBen) <- c("Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(NetBen)</pre>
```

	@:0.9	@:0.95	@MAX_BACC	C @MAX_RR	@SPE100	p(0.5)
Cox	0.223	0.232	0.222	0.239	0.252	-0.02795
Adj. Cox	0.230	0.249	0.202	0.252	0.274	0.00617
Cal. Adj. Cox	0.196	0.217	0.168	0.220	0.244	0.01345

Compare the ROC AUC

 $\label{thm:correlated:correlate$

Test statistic	P value	Alternative hypothesis	AUC of roc1	AUC of roc2
-0.988	0.323	two.sided	0.692	0.702