Data Structures and Algorithms

Spring 2014

Cesar Agustin Garcia Vazquez

March 6, 2014

1 Programming Assignment 01

1.1 Introduction

For this assignment, I work with a MacBook Aluminum latex 2008, with a 2 GHz Intel Core 2 Duo processor and 8 GB 1067 MHz DDR3 in RAM.

All the experiments run for this assignment are with a complete graph, so generating |V|(|V|-1)/2 edges might not feasible for certain values. The number of nodes the program is expected to handle is shown in Table 1, which helps to determine what values can be computed straightforward and what values required special treatment. If we consider $n=2^k$, then the number of edges is $2^k(2^k-1)/2 < 2^k \cdot 2^k/2 = 2^{2k}/2 = 2^{2k-1}$, then we have an upper bound for the number of edges as a power of 2.

Tabl	le 1:	Cardinality	of nodes	and	edges	
		,			-	

Nodes		Edge	Upper bound	
16	2^4	120	128	2^7
32	2^{5}	496	512	2^{9}
64	2^{6}	2,016	2,048	2^{11}
128	2^{7}	8,128	8,192	2^{13}
256	2^{8}	32,640	32,768	2^{15}
512	2^{9}	130,816	131,072	2^{17}
1,024	2^{10}	523,776	$524,\!288$	2^{19}
2,048	2^{11}	2,096,128	2,097,152	2^{21}
4,096	2^{12}	8,386,560	8,388,608	2^{23}
8,192	2^{13}	33,550,336	33,554,432	2^{25}
16,384	2^{14}	134,209,536	$134,\!217,\!728$	2^{27}
32,678	2^{15}	533,909,503	536,870,912	2^{29}

Considering how much RAM I have, we have that $8 \text{ GB} = 8{,}192 \text{ MB} = 8(1{,}024) \text{ MB} = 8{,}388{,}608 \text{ KB} = 8(1{,}024)^2 \text{ KB} = 8{,}589{,}934{,}592 \text{ B} = 8(1{,}024)^3 \text{ B} = 8(2^{10})^3 B = 8(2^{30})$

Table 2: Running time with different values of n

n Time in millisecon	
16	0
32	3
64	5
128	9
256	239
512	436
1,024	1,800
2,048	14,371
4,096	39,714
8,192	177,060
16,384	$466,\!158$
32,678	2,190,921

B, so this gives an idea of how much I can compute.

if I assign 4,096 MB for memory heap and I tried to create a complete graph with 16,384 nodes in \mathbb{R}^4 , I get an OutOfMemoryError while trying to create the edge number 38, 293, 002. If I increase the memory heap to 6,144 MB, then I get the error while creating the edge 50, 331,651. Hence it is not going to be possible to create 134, 217, 728 edges and keep all of them at the same time in memory.

For the cases $2^{13} + 1$ nodes and more, 8,193 nodes, weight computed from points in \mathbb{R}^3 , my own MergeSort implementation, and using