Álgebra Superior I: Tarea 01

Rendón Ávila Jesús Mateo February 9, 2025

Universidad Nacional Autónoma de México Facultad de Ciencias Profesora: Cristina Angélica Núñez Rodríguez 1. Encuentra una proposición adecuada para describir a cada uno de los siguientes conjuntos.

a)
$$A = \{30, 31, 32, \dots\}$$

 $A = \{x \in \mathbb{N} \mid x \ge 30\}$

b)
$$B = \{-1, 2, -3, 4, -5, 6, -7, ...\}$$

 $B = \{x \in \mathbb{N} - \{0\} \mid \text{ si } x \mod 2 \neq 0 \Rightarrow -1(x)\}$

c)
$$C = \{-1, 3, -5, 7, -9, 11, ...\}$$

 $C = \{x \in \mathbb{N} - \{0\} \mid \text{ si } \}$

d)
$$D = \{4, 7, 12, 19, ...\}$$

 $D = \{...\}$

2. Describe los siguientes conjuntos listando todos sus elementos.

a)
$$\{x \in \mathbb{N} \mid x^2 - 3x = 0\}$$

 $\{3\}$

b)
$$\{n^3 + n^2 \mid n \in \{0, 1, 2, 3, 4\}\}\$$

 $\{0, 2, 12, 36, 80\}$

c)
$$\left\{ \frac{1}{n^2+n} \mid n \text{ es un positivo impar y } n \in \{1, 2, 3, 4, 5, 7\} \right\}$$
 $\left\{ \frac{1}{2}, \frac{1}{12}, \frac{1}{30}, \frac{1}{56} \right\}$

d)
$$\{l \in \mathbb{Z} \mid l = 2n - 1 \text{ y } -3 \le n \le 9\}$$

 $\{-7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17\}$

3. Sea \mathbb{N} el conjunto de los números naturales. Determinar $A \cup B$, $A \cap B$ y A^c en:

a)
$$A = \{n \mid n \text{ es par}\} \text{ y } B = \{n \mid n < 14\}$$

 $A \cup B = \{2, 4, 6, 8, 10, \ldots\}$
 $A \cap B = \{2, 4, 6, 8, 10, 12\}$
 $A^c = \{1, 3, 5, 7, 9, 11, \ldots\}$

b)
$$A = \{n \mid n^2 > 2n-1\}, B = \{n \mid n^2 = 2n+3\}$$

 $A \cup B = \{2, 3, 4, 5, 6, ...\}$
 $A \cap B = \{9\}$
 $A^c = \{0, 1\}$

4. Dibuja el diagrama de Venn para el siguiente problema:

Un grupo de jóvenes fue entrevistado acerca de sus preferencias por diferentes medios de transporte: bicicleta, motocicleta y automóvil. Los datos de las encuestas fueron los siguientes:

- Motocilceta solamente 5.
- Motocicleta 38.
- No gustan del automóvil 9.
- Motocicleta y bicicleta pero no automóvil 3.
- Motocicleta y automóvil pero no bicicleta 20.

- No gustan de la bicicleta 72.
- No gustan de las tres cosas 19.
- No gustan de la motocicleta 61.

Determinar:

- a) ¿Cuál fue el número de personas entrevistadas? 99 personas
- b) ¿A cuántos les gusta la bicicleta solamente? 4 personas
- c) ¿A cuántos les gusta el automóvil solamente? 34 personas
- d) ¿A cuántos les gustan las tres cosas? 10 personas
- e) ¿A cuántos les gusta la bicicleta y el automóvil pero no la motocicleta? 4 personas
- **5.** Sean A y B conjuntos. Prueba que:
- a) $A B = B^c A^c$ $A - B \iff A \cap B^c$ por propiedad de la diferencia $A \cap B^c \iff B^c \cap A$ por conmutatividad de la intersección $B^c \cap A \iff B^c - A^c$ por propiedad de la diferencia
- b) $B \subseteq A \iff (A B) \cup B = A$ \subseteq) Sea $x \in B$ por definición de subconjunto $x \in A$ como $x \in A$ y $x \in B$ entonces $x \notin A - B$ como $x \notin A - B$ y $x \in B$ entonces $x \in (A - B) \cup B$ y por hipotesis, como $B \subseteq A$ entonces $B \cup (A - B) = A$
 - ⊇) Sea $x \in (A B) \cup B$ entonces $x \in A B$ o $x \in B$ como por nuestra hipotesis $(A B) \cup B = A$ entonces $x \in A$ por lo que debe ser $x \in A B$ como $x \notin B$ pero si $x \in (A B) \cup B$ entonces debe ser $B \subseteq A$

$$\therefore B \subseteq A \Longleftrightarrow (A - B) \cup B = A$$

- 13. Determina cuáles de las siguientes oraciones son proposiciones:
- a) Algunos números enteros son negativos. Es una proposición con valor de verdad V.
- b) El número 15 es un número par. Es una proposición con valor de verdad F.
- c) ¿Qué hora es?

 No es una proposición pues no se puede determinar veracidad.

- d) En los números enteros, $11 + 6 \neq 12$ Si es proposición con valor de verdad V.
- e) La tierra es casi una esfera. Si es una proposición con valor de verdad V.

14. Si P y R representan proposiciones verdaderas y Q y S representan proposiciones falsas, encuentra el valor de verdad de las proposiciones compuestas dadas a continuación:

a)
$$\neg P \wedge R$$

 $F \wedge V = F$

b)
$$\neg [\neg P \land (\neg Q \land P)]$$

 $\neg [F \land (V \land V)] = \neg [F \land V] = \neg F = V$

c)
$$(P \wedge R) \vee \neg Q$$

 $(V \wedge V) \vee V = V \vee V = V$

d)
$$P \Longrightarrow (Q \Longrightarrow R)$$

 $V \Longrightarrow (F \Longrightarrow V) = V \Longrightarrow V = V$

e)
$$[(P \land \neg Q) \Longrightarrow (Q \land R)] \Longrightarrow (S \lor \neg Q)$$

 $[(V \land V) \Longrightarrow (F \land V)] \Longrightarrow (F \lor V) = [V \Longrightarrow F] \Longrightarrow V = F \Longrightarrow V = V$

15. Responde:

a) Si la proposición Q es verdadera, determine todas las asiganciones de valores de verdad para las proposiciones P, R y S para la proposición:

$$\{Q \Longrightarrow [(\neg P \vee R) \wedge (\neg S)]\} \wedge \{\neg S \Longrightarrow (\neg R \wedge Q)\}$$

Q	P	R	S	$\neg P$	$\neg R$	$\neg S$
V	V	V	V	F	F	F
V	V	V	F	\mathbf{F}	F	V
V	V	\mathbf{F}	V	\mathbf{F}	V	F
V	V	F	F	\mathbf{F}	V	V
V	F	V	V	V	F	F
V	F	V	F	V	F	V
V	F	F	V	V	V	F
V	F	F	F	V	V	V

Table 1: Tabla de valor de las variables

b) Lo mismo que en a), pero suponiendo que Q es falsa.

Q	P	R	S	$\neg P$	$\neg R$	$\neg S$
F	V	V	V	F	F	F
F	V	V	F	F	F	V
F	V	F	V	F	V	F
F	V	F	F	F	V	V
F	F	V	V	V	F	F
F	F	V	F	V	F	V
F	F	F	V	V	V	F
F	F	F	F	V	V	V

Table 2: Tabla de valor de las variables