Álgebra Linear B

COM+MEC

Exame da 1ª chamada da Época Normal – 2006/2007 – 12 de Janeiro de 2007

Departamento de Matemática para a Ciência e Tecnologia – Universidade do Minho

Curso: Nome: Número: Classificação:

A prova tem a duração de 120 minutos, é sem consulta e não é permitida a utilização de máquina de calcular. Durante a realização da prova os telemóveis devem estar desligados e só se pode abandonar a sala passados 20 minutos do seu início. A prova é constituído por três grupos e termina com a palavra "Fim". No início de cada grupo indicam-se as cotações na escala de 0 a 200.

Grupo I — Indique, na folha do enunciado da prova sem apresentar cálculos nem justificações, se as seguintes proposições são verdadeiras ou falsas usando para tal os caracteres "V" ou "F", respectivamente. Cotações — resposta certa: 5; resposta em branco: 0; resposta errada: -5, sendo 0 a cotação mínima neste grupo.

- I.1 \square {(1,0,1), (1,1,0), (0,1,-1)} é uma base de \mathbb{R}^3 .
- I.2 \square A aplicação $f: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R}), f(A) = A^2$, é linear.
- I.3 \square $\{1, x, x^2\}$ e $\{2, 2x, 2x^2\}$ são conjuntos geradores de $\mathbb{R}_2[x]$.
- I.4 \square Seja a matriz $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Então, fer(A) = A.
- I.5 Considere o conjunto \mathbb{R}^2 munido das operações $(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ e $\alpha \odot (x_1, x_2) = (\alpha^2 x_1, \alpha^2 x_2)$. Então, $\forall \alpha, \beta \in \mathbb{R}, \forall x \in \mathbb{R}^2$: $(\alpha + \beta) \odot x = \alpha \odot x \oplus \beta \odot x$.
- I.6 _ Seja A uma matriz triangular inferior. Então, A é uma matriz não-singular.

I.7 $[(x_1, x_2, x_3) \in \mathbb{R}^3 x_1 \ge 0, x_2 \ge 0, x_3 \ge 0]$ é um subespaço de \mathbb{R}^3 .
I.8
Grupo II — Complete, na folha do enunciado da prova sem apresentar cálculos nem justificações, as seguintes frases de modo a obter proposições verdadeiras. Cotações
— resposta certa: 3; resposta em branco ou errada: 0.
II.1 Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ matrizes invertíveis. Se $A^{-1}XB^{-1} - A^{-1} = 0_{n \times n}$, então $X = \boxed{}$.
II.2 As matrizes $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} a & 6 \\ 3 & 1 \end{bmatrix}$, $a \in \mathbb{R}$, são comutáveis se e só se $a \in \mathbb{R}$.
II.3 Considere o sistema de equações lineares (S) cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha(\alpha-2) \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} 1 \\ 0 \\ \alpha \end{bmatrix}, \alpha \in \mathbb{R}$.
(a) $c(A) = 1$ se e só se $\alpha \in$
(b) Se $\alpha = 2$, então $c(A) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
(c) (S) é possível e determinado se e só se $\alpha \in \hfill \Box$.
(d) Se $\alpha = 2$, então $CS_{(S)} =$
II.4 Seja V um espaço vectorial tal que $V = \langle v_1, v_2, v_3 \rangle$. Então, $\dim(V)$.
II.5 Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$, $T(x, y) = (x + y, 2x)$.
(a) $A_T = \boxed{}$. (b) $\mathcal{N}_T = \boxed{}$.

$$(a) \mid {\stackrel{a}{b}} {\stackrel{c}{d}} \mid = \boxed{ }.$$

(c)
$$|\operatorname{adj}(A)| =$$

(b)
$$|A^2 A^T A^{-1}| =$$

- II.7 (a) Sejam x = (0, 2, 3) e $S_1 = ((1, 0, 0), (0, 1, 0), (0, 0, 1))$ uma base ordenada de \mathbb{R}^3 . Então, $[x]_{S_1} = \boxed{}$.
 - (b) Sejam y = (2, 1, 3) e $S_2 = ((0, 1, 0), (1, 0, 0), (0, 0, 1))$ uma base ordenada de \mathbb{R}^3 . Então, $[y]_{S_2} = \boxed{}$.
 - (c) Sejam z = (1, 1, 0) e $S_3 = ((1, 1, 1), (0, 1, 1), (1, 0, 1))$ uma base ordenada de \mathbb{R}^3 . Então, $[z]_{S_3} =$
 - (d) Sejam $p = x^2 + x + 1$ e $S_4 = (x^2, x^2 1, x + 2)$ uma base ordenada de $\mathbb{R}_2[x]$. Então, $[p]_{S_4} = \boxed{}$.

II.8 Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 e $B = [b_{ij}] \in \mathcal{M}_{2 \times 2}(\mathbb{R}), b_{ij} = \begin{cases} -1 & \text{se } i \geq j, \\ 1 & \text{se } i < j. \end{cases}$

(a)
$$A^2 = \boxed{ }$$
 . (b) $AB = \boxed{ }$. (c) $B^{-1} = \boxed{ }$

Grupo III — Responda, nas folhas que lhe foram distribuídas e por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efectuar, bem como as respectivas justificações. Cotações: 20+10+(5+5)+20+20+20.

III.1 Seja A uma matriz quadrada tal que $A^p=\underline{0}$ para algum $p\in\mathbb{N}$. Mostre que $(I-A)^{-1}=I+\sum_{k=1}^{p-1}A^k.$

- III.2 Defina conjunto gerador e base de um espaço vectorial.
- III.3 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 2 \\ -3 & 6 \end{bmatrix}$ e o vector dos termos independentes é $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Resolva o sistema de equações lineares através da Regra de Cramer.
- III.4 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5 \end{bmatrix}$ e o vector dos termos independentes é $b = \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$. Resolva-o através do método de Gauss e do método de Gauss-Jordan.
- III.5 Considere a seguinte definição: sejam os conjuntos $A, B \in C$, e f uma aplicação de A em B e g uma aplicação de B em C. Então, chama-se composição de f com g, que se representa por $g \circ f$ e que se lê "g após f", à aplicação

$$g \circ f : A \longrightarrow C$$

 $x \longmapsto g(f(x)).$

Considere, agora, as aplicações lineares $S \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$, S(x,y) = (x+y, 2x, 0) e $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, T(a, b, c) = (b, a - 3c). Verifique que $A_{S \circ T} = A_S A_T$.

III.6 Determine o espectro da matriz $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, bem como o espaço próprio do valor próprio de menor módulo.

Fim.

Classifique numa escala de 1 (horrível) a 6 (espectacular) o Maple TA: