Contents			Game Theory	
1	Data atmustumes		6.1 Grundy Numbers	16
1	Data structures 1.1 Disjoint set with rollback		Combinatorics	16
	1.2 Min-Max queue		7.1 Factorial	16
	1.3 Sparse table		7.2 Factorial mod smallPrime	16
	1.4 Squirtle decomposition		7.3 Lucas theorem	17
	1.5 In-Out trick		7.4 Stars and bars	17
			7.5 N choose K	17
			7.6 Catalan	17
	1.7 Mo's algorithm		7.7 Burnside's lemma	17
	1.8 Static to dynamic		7.8 Prime factors of N!	17
	1.9 Disjoint intervals			
	1.10 Ordered tree		Number Theory	17
	1.11 Unordered tree		8.1 Goldbach conjecture	17
	1.12 D-dimensional Fenwick tree 5		8.2 Prime numbers distribution	17
	1.13 Dynamic segment tree 5		8.3 Sieve of Eratosthenes	17
	1.14 Persistent segment tree 5		8.4 Phi of euler	17
	1.15 Wavelet tree		8.5 Miller-Rabin	17
	1.16 Li Chao tree		8.6 Pollard-Rho	18
	1.17 Explicit Treap 6		8.7 Amount of divisors	18
	1.18 Implicit Treap	.	8.8 Bézout's identity	18
	1.19 Splay tree		8.9 GCD	18
			8.10 LCM	18
2	Graphs 7	'	8.11 Euclid	18
	2.1 Tarjan algorithm (SCC)	.	8.12 Chinese remainder theorem	18
	2.2 Kosaraju algorithm (SCC) 8			
	2.3 Two Sat	9	Math	18
	2.4 Topological sort		9.1 Progressions	18
	2.5 Cutpoints and Bridges 8		9.2 Mod multiplication	18
	2.6 Detect a cycle		9.3 Fpow	18
	2.7 Euler tour for Mo's in a tree 9		9.4 Fibonacci	18
	2.8 Lowest common ancestor (LCA) 9	.		
	2.9 Isomorphism	1 10) Bit tricks	19
	2.10 Guni		10.1 Bitset	19
	2.11 Centroid decomposition		10.2 Real	19
			T. C.	10
	2.12 Heavy-light decomposition		Points	19
	2.13 Link-Cut tree		11.1 Points	19
3	Flows 10		11.2 Angle between vectors	19
J			11.3 Closest pair of points	19
	, , , , , , , , , , , , , , , , , , , ,		11.4 Projection	19
	3, , , , , , , , , , , , , , , , ,	1	2 Lines and segments	20
	3.3 Hopcroft-Karp $\mathcal{O}(E\sqrt{V})$		12.1 Line	
	3.4 Hungarian $\mathcal{O}(N^3)$	1	12.1 Line	20
	C		12.3 Distance point segment	20 20
4	8		12.4 Distance segment segment	20
	4.1 Hash		12.4 Distance segment segment	20
	4.2 KMP	119	3 Circles	20
	4.3 KMP automaton	'	13.1 Circle	20
	4.4 Z algorithm		13.2 Distance point circle	21
	4.5 Manacher algorithm		19.2 Distance point effect	21
	4.6 Suffix array	14	4 Polygons	21
	4.7 Suffix automaton		14.1 Area of polygon	$\frac{-}{21}$
	4.8 Aho corasick	:	14.2 Convex-Hull	21
	4.9 Eertree		14.3 Cut polygon by a line	21
			14.4 Perimeter	21
5	Dynamic Programming 15		14.5 Point in polygon	$\frac{21}{21}$
	5.1 All submasks of a mask 15		7 om boy 80m	
	5.2 Matrix Chain Multiplication 15	15	6 Geometry misc	21
	5.3 Digit DP		15.1 Radial order	$\frac{-}{21}$
	5.4 Knapsack 0/1		15.2 Sort along a line	22
	5.5 Convex Hull Trick $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)$ 15		<u> </u>	
	5.6 Divide and conquer $\mathcal{O}(kn^2) \Rightarrow \mathcal{O}(k \cdot nlogn)$ 16			
	5.7 Knuth optimization $\mathcal{O}(n^3) \Rightarrow \mathcal{O}(n^2)$ 16			
	C_{ii}			

Think twice, code once Template

```
return uniform_int_distribution<T>(1, r)(rng);
tem.cpp
                                                             }
 #pragma GCC optimize("Ofast,unroll-loops,no-stack-
                                                            Fastio
     protector")
 #include <bits/stdc++.h>
                                                             char gc() { return getchar_unlocked(); }
using namespace std;
                                                             void readInt() {}
#ifdef LOCAL
                                                             template <class H, class... T>
#include "debug.h"
                                                             void readInt(H &h, T&&... t) {
 #else
                                                               char c, s = 1;
 #define debug(...)
                                                               while (isspace(c = gc()));
 #endif
                                                               if (c == '-') s = -1, c = gc();
                                                               for (h = c - '0'; isdigit(c = gc()); h = h * 10 + c
#define df(b, e) ((b) > (e))
#define fore(i, b, e) for (auto i = (b) - df(b, e); i
                                                               h *= s;
     != e - df(b, e); i += 1 - 2 * df(b, e))
                                                               readInt(t...);
 #define sz(x) int(x.size())
                                                             }
 #define all(x) begin(x), end(x)
 #define f first
                                                             void readFloat() {}
 #define s second
                                                             template <class H, class... T>
 #define pb push_back
                                                             void readFloat(H &h, T&&... t) {
                                                               int c, s = 1, fp = 0, fpl = 1;
using 1li = long long;
                                                               while (isspace(c = gc()));
using ld = long double;
                                                               if (c == '-') s = -1, c = gc();
using ii = pair<int, int>;
                                                               for (h = c - '0'; isdigit(c = gc()); h = h * 10 + c
using vi = vector<int>;
                                                                   - '0');
                                                               h *= s;
 int main() {
                                                               if (h == '.')
   cin.tie(∅)->sync_with_stdio(∅), cout.tie(∅);
                                                                 for (; isdigit(c = gc()); fp = fp * 10 + c - '0',
   // solve the problem here D:
                                                                      fpl *= 10);
   return 0;
                                                               h += (double)fp / fpl;
                                                               readFloat(t...);
  debug.h
 template <class A, class B>
ostream & operator << (ostream &os, const pair<A, B> &
                                                            Compilation (gedit /.zshenv)
                                                             touch a_in{1..9} // make files a_in1, a_in2,..., a_in9
   return os << "(" << p.first << ", " << p.second << "
                                                             tee {a..m}.cpp < tem.cpp // "" with tem.cpp like base</pre>
       )";
                                                             cat > a_in1 // write on file a_in1
}
                                                             gedit a_in1 // open file a_in1
                                                             rm -r a.cpp // deletes file a.cpp :'(
 template <class A, class B, class C>
basic_ostream<A, B> & operator << (basic_ostream<A, B>
                                                             red='\x1B[0;31m'
      &os, const C &c) {
                                                             green='\x1B[0;32m'
   os << "[";
                                                             noColor='\x1B[0m'
   for (const auto &x : c)
                                                             alias flags='-Wall -Wextra -Wshadow -
    os << ", " + 2 * (&x == &*begin(c)) << x;
                                                                 D_GLIBCXX_ASSERTIONS -fmax-errors=3 -02 -w'
   return os << "]";</pre>
                                                             go() { g++ --std=c++11 $2 ${flags} $1.cpp && ./a.out }
                                                             debug() { go $1 -DLOCAL < $2 }
                                                             run() { go $1 "" < $2 }
void print(string s) { cout << endl; }</pre>
                                                             random() { // Make small test cases!!!
 template <class H, class... T>
                                                              g++ --std=c++11 $1.cpp -o prog
 void print(string s, const H &h, const T&... t) {
                                                              g++ --std=c++11 gen.cpp -o gen
   const static string reset = "\033[0m", blue = "\033[
                                                              g++ --std=c++11 brute.cpp -o brute
       1;34m", purple = "\033[3;95m";
                                                              for ((i = 1; i \le 200; i++)); do
  bool ok = 1;
                                                               printf "Test case #$i"
   do {
                                                               ./gen > in
    if (s[0] == '\"') ok = 0;
                                                               diff -uwi <(./prog < in) <(./brute < in) > $1_diff
    else cout << blue << s[0] << reset;</pre>
                                                               if [[ ! $? -eq 0 ]]; then
    s = s.substr(1);
                                                                printf "${red} Wrong answer ${noColor}\n"
   } while (s.size() && s[0] != ',');
                                                               break
   if (ok) cout << ": " << purple << h << reset;</pre>
                                                               else
   print(s, t...);
                                                               printf "${green} Accepted ${noColor}\n"
                                                               fi
                                                              done
Randoms
                                                             }
mt19937 rng(chrono::steady_clock::now().
     time_since_epoch().count());
                                                             test() {
```

template <class T>

 $T ran(T 1, T r) {$

```
g++ --std=c++11 $1.cpp -o prog
  for ((i = 1; i \le 50; i++)); do
   [[ -f $1_in$i ]] || break
   printf "Test case #$i"
   diff -uwi <(./prog < $1_in$i) $1_out$i > $1_diff
   if [[ ! $? -eq 0 ]]; then
    printf "${red} Wrong answer ${noColor}\n"
   else
    printf "${green} Accepted ${noColor}\n"
   fi
  done
 }
Bump allocator
 static char buf[450 << 20];</pre>
 void* operator new(size_t s) {
   static size_t i = sizeof buf; assert(s < i);</pre>
   return (void *) &buf[i -= s];
```

void operator delete(void *) {}

Disjoint set with rollback 1.1

Data structures

```
struct Dsu {
  vi par, tot;
  stack<ii> mem;
  Dsu(int n = 1) : par(n + 1), tot(n + 1, 1) {
    iota(all(par), ∅);
  }
  int find(int u) {
    return par[u] == u ? u : find(par[u]);
  void unite(int u, int v) {
    u = find(u), v = find(v);
    if (u != v) {
      if (tot[u] < tot[v])</pre>
        swap(u, v):
      mem.emplace(u, v);
      tot[u] += tot[v];
      par[v] = u;
  }
  void rollback() {
    auto [u, v] = mem.top();
    mem.pop();
    if (u != -1) {
      tot[u] -= tot[v];
      par[v] = v;
    }
  }
};
```

Min-Max queue

```
template <class T>
struct MinQueue : deque< pair<T, int> > {
  // add a element to the right {val, pos}
  void add(T val, int pos) {
    while (!empty() && back().f >= val)
      pop_back();
    emplace_back(val, pos);
  }
  // remove all less than pos
 void rem(int pos) {
   while (front().s < pos)</pre>
      pop_front();
  }
```

```
T qmin() { return front().f; }
};
      Sparse table
1.3
 template <class T, class F = function<T(const T&,</pre>
     const T&)>>
 struct Sparse {
   int n:
   vector<vector<T>>> sp;
   F f;
   Sparse(vector<T> &a, const F &f) : n(sz(a)), sp(1 +
       __lg(n)), f(f) {
     sp[0] = a;
     for (int k = 1; (1 << k) <= n; k++) {
       sp[k].resize(n - (1 << k) + 1);
       fore (1, 0, sz(sp[k])) {
         int r = 1 + (1 << (k - 1));
         sp[k][1] = f(sp[k - 1][1], sp[k - 1][r]);
     }
   }
   T query(int 1, int r) {
     int k = _{-}lg(r - l + 1);
     return f(sp[k][1], sp[k][r - (1 << k) + 1]);
};
      Squirtle decomposition
The perfect block size is squirtle of N
 int blo[N], cnt[N][B], a[N];
 void update(int i, int x) {
```

1.4


```
cnt[blo[i]][x]--;
   a[i] = x;
   cnt[blo[i]][x]++;
 int query(int 1, int r, int x) {
   int tot = 0;
   while (1 \le r)
     if (1 % B == 0 && 1 + B - 1 <= r) {</pre>
       tot += cnt[blo[1]][x];
       1 += B;
     } else {
       tot += (a[1] == x);
       1++;
   return tot;
}
1.5 In-Out trick
```

```
vector<int> in[N], out[N];
vector<Query> queries;
fore (x, 0, N) {
  for (int i : in[x])
    add(queries[i]);
  // solve
  for (int i : out[x])
    rem(queries[i]);
}
```

1.6 Parallel binary search

```
int lo[Q], hi[Q];
queue<int> solve[N];
vector<Query> queries;
```

```
fore (it, 0, 1 + __lg(N)) {
                                                                 void undo(Update &u) {
                                                                   if (1 <= u.pos && u.pos <= r) {</pre>
   fore (i, 0, sz(queries))
     if (lo[i] != hi[i]) {
                                                                     rem(u.pos);
       int mid = (lo[i] + hi[i]) / 2;
                                                                     a[u.pos] = u.prv;
                                                                     add(u.pos);
       solve[mid].emplace(i);
                                                                   } else {
   fore (x, 0, n) {
                                                                     a[u.pos] = u.prv;
     // simulate
     while (!solve[x].empty()) {
                                                                 }
       int i = solve[x].front();
                                                               • Solve the problem :D
       solve[x].pop();
       if (can(queries[i]))
                                                                 l = queries[0].1, r = 1 - 1, upd = sz(updates) - 1;
         hi[i] = x;
                                                                 for (Query &q : queries) {
       else
                                                                   while (upd < q.upd)</pre>
         lo[i] = x + 1;
                                                                     dodo(updates[++upd]);
     }
                                                                   while (upd > q.upd)
   }
                                                                     undo(updates[upd--]);
 }
                                                                   // write down the normal Mo's algorithm
                                                                 }
1.7
       Mo's algorithm
                                                             1.8
                                                                    Static to dynamic
 vector<Query> queries;
 // N = 1e6, so aprox. sqrt(N) +/- C
                                                              template <class Black, class T>
 uniform_int_distribution<int> dis(970, 1030);
                                                              struct StaticDynamic {
 const int blo = dis(rng);
                                                                Black box[LogN];
 sort(all(queries), [&](Query a, Query b) {
                                                                vector<T> st[LogN];
   const int ga = a.1 / blo, gb = b.1 / blo;
   if (ga == gb)
                                                                void insert(T &x) {
     return (ga & 1) ? a.r < b.r : a.r > b.r;
                                                                  int p = 0;
   return a.1 < b.1;
                                                                  fore (i, 0, LogN)
                                                                    if (st[i].empty()) {
 });
 int l = queries[0].l, r = l - 1;
                                                                      p = i;
 for (Query &q : queries) {
                                                                      break;
   while (r < q.r)
                                                                    }
     add(++r);
                                                                  st[p].pb(x);
   while (r > q.r)
                                                                  fore (i, 0, p) {
     rem(r--);
                                                                    st[p].insert(st[p].end(), all(st[i]));
   while (1 < q.1)
                                                                    box[i].clear(), st[i].clear();
     rem(l++);
   while (1 > q.1)
                                                                  for (auto y : st[p])
     add(--1);
                                                                    box[p].insert(y);
   ans[q.i] = solve();
                                                                  box[p].init();
                                                                }
                                                              };
To make it faster, change the order to hilbert(l, r)
                                                             1.9 Disjoint intervals
 11i hilbert(int x, int y, int pw = 21, int rot = 0) {
                                                              struct Range {
   if (pw == 0)
                                                                int 1, r;
     return 0;
                                                                bool operator < (const Range& rge) const {</pre>
   int hpw = 1 << (pw - 1);
                                                                  return 1 < rge.1;</pre>
   int k = ((x < hpw ? y < hpw ? 0 : 3 : y < hpw ? 1 :
       2) + rot) & 3;
                                                              };
   const int d[4] = \{3, 0, 0, 1\};
   11i a = 1LL << ((pw << 1) - 2);</pre>
                                                              struct DisjointIntervals : set<Range> {
   lli b = hilbert(x & (x ^{\circ} hpw), y & (y ^{\circ} hpw), pw - 1
                                                                void add(Range rge) {
        , (rot + d[k]) & 3);
                                                                  iterator p = lower_bound(rge), q = p;
   return k * a + (d[k] ? a - b - 1 : b);
                                                                  if (p != begin() && rge.l <= (--p)->r)
                                                                    rge.1 = p->1, --q;
Mo's algorithm with updates in O(n^{\frac{5}{3}})
                                                                  for (; q != end() && q->l <= rge.r; erase(q++))</pre>
```

- Choose a block of size $n^{\frac{2}{3}}$
- Do a normal Mo's algorithm, in the Query definition add an extra variable for the updatesSoFar
- Sort the queries by the order (l/block, r/block,updatesSoFar)
- If the update lies inside the current query, update the data structure properly

```
struct Update {
 int pos, prv, nxt;
};
```

```
Ordered tree
1.10
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
```

rge.r = max(rge.r, q->r);

insert(rge);

void add(int 1, int r) {

add(Range{1, r});

} };

```
} else {
 template <class K, class V = null_type>
                                                                  if (!rs) rs = new Dyn(m + 1, r);
using ordered_tree = tree<K, V, less<K>, rb_tree_tag,
                                                                  rs->update(p, v);
     tree_order_statistics_node_update>;
                                                                }
 // less_equal<K> for multiset, multimap (?
                                                                pull();
 #define rank order_of_key
 #define kth find_by_order
                                                              11i qsum(int 11, int rr) {
1.11 Unordered tree
                                                                if (rr < l || r < ll || r < l)</pre>
 struct chash {
                                                                  return 0;
   const uint64_t C = uint64_t(2e18 * 3) + 71;
                                                                if (ll <= l && r <= rr)
   const int R = rng();
                                                                  return sum;
   uint64_t operator ()(uint64_t x) const {
                                                                int m = (1 + r) >> 1;
     return __builtin_bswap64((x ^ R) * C); }
                                                                return (ls ? ls->qsum(ll, rr) : 0) +
};
                                                                       (rs ? rs->qsum(ll, rr) : 0);
                                                              }
template <class K, class V = null_type>
                                                            };
using unordered_tree = gp_hash_table<K, V, chash>;
                                                           1.14
                                                                   Persistent segment tree
      D-dimensional Fenwick tree
                                                            struct Per {
 template <class T. int ...N>
                                                              int 1, r;
struct Fenwick {
                                                              lli sum = 0;
  T v = 0;
                                                              Per *ls, *rs;
  void update(T v) { this->v += v; }
  T query() { return v; }
                                                              Per(int 1, int r) : l(1), r(r), ls(∅), rs(∅) {}
                                                              Per* pull() {
 template <class T, int N, int ...M>
                                                                sum = 1s->sum + rs->sum;
 struct Fenwick<T, N, M...> {
                                                                return this;
   #define lsb(x) (x & -x)
   Fenwick<T, M...> fenw[N + 1];
                                                              void build() {
   template <typename... Args>
                                                                if (1 == r)
   void update(int i, Args... args) {
                                                                  return;
    for (; i <= N; i += lsb(i))
                                                                int m = (1 + r) >> 1;
       fenw[i].update(args...);
                                                                (ls = new Per(1, m))->build();
                                                                (rs = new Per(m + 1, r)) -> build();
                                                                pull();
   template <typename... Args>
   T query(int 1, int r, Args... args) {
    T v = 0;
                                                              Per* update(int p, lli v) {
    for (; r > 0; r -= lsb(r))
                                                                if (p < 1 || r < p)
      v += fenw[r].query(args...);
                                                                  return this;
     for (--1; 1 > 0; 1 -= 1sb(1))
                                                                Per* t = new Per(1, r);
      v -= fenw[1].query(args...);
                                                                if (1 == r) {
    return v;
                                                                  t->sum = v:
   }
                                                                  return t;
};
       Dynamic segment tree
                                                                t->ls = ls->update(p, v);
                                                                t->rs = rs->update(p, v);
 struct Dyn {
                                                                return t->pull();
   int 1, r;
   11i sum = 0;
   Dyn *ls, *rs;
                                                              1li qsum(int ll, int rr) {
                                                                if (r < 11 || rr < 1)</pre>
   Dyn(int l, int r) : l(l), r(r), ls(0), rs(0) {}
                                                                  return 0;
                                                                if (ll <= l && r <= rr)
   void pull() {
                                                                  return sum;
    sum = (ls ? ls -> sum : 0);
                                                                return ls->qsum(ll, rr) + rs->qsum(ll, rr);
    sum += (rs ? rs->sum : 0);
                                                              }
   }
                                                            };
   void update(int p, lli v) {
                                                           1.15
                                                                   Wavelet tree
    if (l == r) {
                                                            struct Wav {
      sum += v;
      return;
                                                              #define iter int* // vector<int>::iterator
                                                              int lo, hi;
    }
    int m = (1 + r) >> 1;
                                                              Wav *ls, *rs;
     if (p <= m) {
                                                              vi amt;
      if (!ls) ls = new Dyn(1, m);
                                                              Wav(int lo, int hi) : lo(lo), hi(hi), ls(0), rs(0)
      ls->update(p, v);
```

```
{}
                                                                   return f(x);
                                                                 11i m = (1 + r) >> 1;
                                                                 if (x <= m)
   void build(iter b, iter e) { // array 1-indexed
                                                                    return min(f(x), ls ? ls->query(x) : inf);
     if (lo == hi || b == e)
                                                                  return min(f(x), rs ? rs->query(x) : inf);
       return;
     amt.reserve(e - b + 1);
                                                               }
                                                             };
     amt.pb(0);
     int m = (lo + hi) >> 1;
                                                                     Explicit Treap
                                                            1.17
     for (auto it = b; it != e; it++)
      amt.pb(amt.back() + (*it <= m));</pre>
                                                             typedef struct Node* Treap;
     auto p = stable_partition(b, e, [&](int x) {
                                                             struct Node {
      return x <= m;</pre>
                                                               Treap ch[2] = \{0, 0\}, p = 0;
     });
                                                               uint32_t pri = rng();
     (ls = new Wav(lo, m))->build(b, p);
                                                               int sz = 1, rev = 0;
     (rs = new Wav(m + 1, hi))->build(p, e);
                                                               int val, sum = 0;
                                                               void push() {
   int kth(int 1, int r, int k) {
                                                                 if (rev) {
     if (r < 1)
                                                                    swap(ch[0], ch[1]);
       return 0;
                                                                    for (auto ch : ch) if (ch != 0) {
     if (lo == hi)
                                                                     ch->rev ^= 1;
       return lo;
                                                                   }
     if (k <= amt[r] - amt[l - 1])</pre>
                                                                   rev = 0;
       return ls->kth(amt[1 - 1] + 1, amt[r], k);
                                                                 }
     return rs->kth(1 - amt[1 - 1], r - amt[r], k - amt
                                                               }
         [r] + amt[l - 1]);
   }
                                                               Treap pull() {
                                                                  #define gsz(t) (t ? t->sz : 0)
   int leq(int 1, int r, int mx) {
                                                                  #define gsum(t) (t ? t->sum : 0)
     if (r < l || mx < lo)
                                                                  sz = 1, sum = val;
       return 0;
                                                                  for (auto ch : ch) if (ch != 0) {
     if (hi <= mx)</pre>
                                                                   ch->push();
       return r - 1 + 1;
                                                                    sz += ch->sz;
     return ls->leq(amt[1 - 1] + 1, amt[r], mx) +
                                                                   sum += ch->sum;
            rs->leq(1 - amt[1 - 1], r - amt[r], mx);
                                                                   ch->p = this;
  }
                                                                 }
};
                                                                 p = 0;
                                                                 return this;
       Li Chao tree
1.16
 struct Fun {
   lli m = 0, c = inf;
                                                               Node(int val) : val(val) {}
  1li operator ()(lli x) const { return m * x + c; }
                                                             pair<Treap, Treap> split(Treap t, int val) {
struct LiChao {
                                                                // <= val goes to the left, > val to the right
  Fun f;
                                                               if (!t)
                                                                 return {t, t};
   11i 1, r;
   LiChao *ls, *rs;
                                                                t->push();
                                                                if (val < t->val) {
   LiChao(lli 1, lli r) : l(1), r(r), ls(0), rs(0) {}
                                                                  auto p = split(t->ch[0], val);
                                                                  t->ch[0] = p.s;
   void add(Fun &g) {
                                                                 return {p.f, t->pull()};
     if (f(1) \le g(1) \&\& f(r) \le g(r))
                                                               } else {
                                                                 auto p = split(t->ch[1], val);
       return:
                                                                 t->ch[1] = p.f;
     if (g(1) < f(1) && g(r) < f(r)) {
       f = g;
                                                                 return {t->pull(), p.s};
                                                               }
       return:
                                                             }
     11i m = (1 + r) >> 1;
     if (g(m) < f(m))
                                                             Treap merge(Treap 1, Treap r) {
       swap(f, g);
                                                               if (!1 || !r)
     if (g(1) \le f(1))
                                                                 return 1 ? 1 : r;
     ls = ls ? (ls->add(g), ls) : new LiChao(l, m, g);
                                                               1->push(), r->push();
                                                                if (1->pri > r->pri)
     rs = rs ? (rs - > add(g), rs) : new LiChao(m + 1, r,
                                                                 return l->ch[1] = merge(l->ch[1], r), l->pull();
                                                               else
           g);
   }
                                                                 return r->ch[0] = merge(1, r->ch[0]), r->pull();
                                                             }
   lli query(lli x) {
     if (1 == r)
                                                             Treap qkth(Treap t, int k) { // 0-indexed
```

```
if (!t)
                                                                 if (p->ch[0] == this) return 0; // left child
                                                                 if (p->ch[1] == this) return 1; // right child
    return t;
   t->push();
                                                                 return -1; // root of current splay tree
   int sz = gsz(t->ch[0]);
   if (sz == k)
                                                               bool isRoot() { return dir() < 0; }</pre>
    return t:
   return k < sz? qkth(t->ch[0], k) : qkth(t->ch[1], k
        - sz - 1);
                                                               friend void add(Splay u, Splay v, int d) {
                                                                 if (v) v \rightarrow p = u;
                                                                 if (d \ge 0) u->ch[d] = v;
 int qrank(Treap t, int val) { // 0-indexed
   if (!t)
    return -1;
                                                               void rotate() {
   t->push();
                                                                 // assume p and p->p propagated
   if (val < t->val)
                                                                 assert(!isRoot());
                                                                 int x = dir();
    return qrank(t->ch[0], val);
                                                                 Splay g = p;
   if (t->val == val)
    return gsz(t->ch[0]);
                                                                 add(g->p, this, g->dir());
  return gsz(t->ch[0]) + qrank(t->ch[1], val) + 1;
                                                                 add(g, ch[x ^ 1], x);
                                                                 add(this, g, x ^ 1);
                                                                 g->pull(), pull();
Treap insert(Treap t, int val) {
   auto p1 = split(t, val);
   auto p2 = split(p1.f, val - 1);
                                                               void splay() {
  return merge(p2.f, merge(new Node(val), p1.s));
                                                                 // bring this to top of splay tree
                                                                 while (!isRoot() && !p->isRoot()) {
                                                                   p->p->push(), p->push(), push();
Treap erase(Treap t, int val) {
                                                                   dir() == p->dir() ? p->rotate() : rotate();
   auto p1 = split(t, val);
                                                                   rotate();
   auto p2 = split(p1.f, val - 1);
   return merge(p2.f, p1.s);
                                                                 if (!isRoot()) p->push(), push(), rotate();
                                                                 push(), pull();
1.18 Implicit Treap
                                                               void pull() {
 pair<Treap, Treap> splitsz(Treap t, int sz) {
                                                                 #define gsz(t) (t ? t->sz : 0)
  // <= sz goes to the left, > sz to the right
                                                                 sz = 1 + gsz(ch[0]) + gsz(ch[1]);
   if (!t)
    return {t, t};
   t->push();
                                                               void push() {
   if (sz <= gsz(t->ch[0])) {
                                                                 if (rev) {
     auto p = splitsz(t->ch[0], sz);
                                                                   swap(ch[0], ch[1]);
    t->ch[0] = p.s;
                                                                   for (auto ch : ch) if (ch) {
    return {p.f, t->pull()};
                                                                    ch->rev ^= 1;
   } else {
                                                                   }
     auto p = splitsz(t->ch[1], sz - gsz(t->ch[0]) - 1)
                                                                   rev = 0;
                                                                 }
    t->ch[1] = p.f;
    return {t->pull(), p.s};
  }
                                                               void vsub(Splay t, bool add) {}
}
                                                             };
 int pos(Treap t) {
                                                                 Graphs
  int sz = gsz(t->ch[0]);
                                                                  Tarjan algorithm (SCC)
                                                            2.1
   for (; t->p; t = t->p) {
    Treap p = t \rightarrow p;
                                                             int tin[N], fup[N];
    if (p->ch[1] == t)
                                                             bitset<N> still;
       sz += gsz(p->ch[0]) + 1;
                                                             stack<int> stk;
   }
                                                             int timer = 0;
   return sz + 1;
                                                             void tarjan(int u) {
                                                              tin[u] = fup[u] = ++timer;
1.19
        Splay tree
                                                               still[u] = true;
 typedef struct Node* Splay;
                                                               stk.push(u);
 struct Node {
                                                               for (int v : graph[u]) {
   Splay ch[2] = \{0, 0\}, p = 0;
                                                                if (!tin[v])
  bool rev = 0;
                                                                   tarjan(v);
  int sz = 1;
                                                                 if (still[v])
                                                                   fup[u] = min(fup[u], fup[v]);
   int dir() {
                                                               if (fup[u] == tin[u]) {
    if (!p) return -2; // root of LCT component
```

```
int v;
                                                                         pop_back())
     do {
                                                                      id[s.back()] = k;
      v = stk.top();
                                                                };
      stk.pop();
                                                                 fore (u, 0, sz(imp))
      still[v] = false;
       // u and v are in the same scc
                                                                  if (!id[u]) dfs(u);
    } while (v != u);
   }
                                                                vi val(n);
}
                                                                 fore (u, 0, n) {
                                                                  int x = 2 * u;
      Kosaraju algorithm (SCC)
                                                                  if (id[x] == id[x ^ 1])
                                                                    return {};
int scc[N], k = 0;
                                                                  val[u] = id[x] < id[x ^ 1];
char vis[N];
vi order;
                                                                return val;
                                                              }
void dfs1(int u) {
                                                            };
   vis[u] = 1;
   for (int v : graph[u])
                                                                  Topological sort
                                                           2.4
    if (vis[v] != 1)
      dfs1(v);
                                                            vi order;
   order.pb(u);
                                                            int indeg[N];
}
                                                            void topsort() { // first fill the indeg[]
void dfs2(int u, int k) {
                                                              queue<int> qu;
  vis[u] = 2, scc[u] = k;
                                                              fore (u, 1, n + 1)
   for (int v : rgraph[u]) // reverse graph
                                                                if (indeg[u] == 0)
     if (vis[v] != 2)
                                                                  qu.push(u);
      dfs2(v, k);
                                                              while (!qu.empty()) {
}
                                                                int u = qu.front();
                                                                qu.pop();
void kosaraju() {
                                                                order.pb(u);
   fore (u, 1, n + 1)
                                                                 for (int v : graph[u])
    if (vis[u] != 1)
                                                                  if (--indeg[v] == 0)
      dfs1(u);
                                                                    qu.push(v);
   reverse(all(order));
   for (int u : order)
                                                            }
     if (vis[u] != 2)
      dfs2(u, ++k);
                                                                  Cutpoints and Bridges
}
                                                            int tin[N], fup[N], timer = 0;
2.3
      Two Sat
 struct TwoSat {
                                                            void findWeakness(int u, int p = 0) {
   int n;
                                                              tin[u] = fup[u] = ++timer;
   vector<vi> imp;
                                                              int children = 0;
                                                              for (int v : graph[u]) if (v != p) {
   TwoSat(int _n) : n(_n + 1), imp(2 * n) {}
                                                                if (!tin[v]) {
                                                                  ++children;
   void either(int a, int b) {
                                                                  findWeakness(v, u);
    a = max(2 * a, -1 - 2 * a);
                                                                  fup[u] = min(fup[u], fup[v]);
    b = max(2 * b, -1 - 2 * b);
                                                                  if (fup[v] >= tin[u] && p) // u is a cutpoint
    imp[a ^ 1].pb(b);
                                                                  if (fup[v] > tin[u]) // bridge u -> v
    imp[b ^ 1].pb(a);
   }
                                                                fup[u] = min(fup[u], tin[v]);
   void implies(int a, int b) { either(~a, b); }
                                                              if (!p && children > 1) // u is a cutpoint
   void setVal(int a) { either(a, a); }
                                                            }
   vi solve() {
                                                           2.6
                                                                 Detect a cycle
    int k = sz(imp);
    vi s, b, id(sz(imp));
                                                            bool cycle(int u) {
                                                              vis[u] = 1;
     function<void(int)> dfs = [&](int u) {
                                                              for (int v : graph[u]) {
      b.pb(id[u] = sz(s));
                                                                if (vis[v] == 1)
      s.pb(u);
                                                                  return true;
      for (int v : imp[u]) {
                                                                if (!vis[v] && cycle(v))
        if (!id[v]) dfs(v);
                                                                  return true;
         else while (id[v] < b.back()) b.pop_back();</pre>
                                                              }
                                                              vis[u] = 2;
      if (id[u] == b.back())
                                                              return false;
         for (b.pop_back(), ++k; id[u] < sz(s); s.</pre>
```

Euler tour for Mo's in a tree

```
Mo's in a tree, extended euler tour tin[u] = ++timer, tout[u]
= \mathop{++\mathrm{timer}}_{\bullet} \quad u = \mathop{lca}(u,\,v),\, \mathop{query}(\mathop{tin}[u],\, \mathop{tin}[v])
   • u \neq lca(u, v), query(tout[u], tin[v]) + query(tin[lca],
       tin[lca])
```

2.8Lowest common ancestor (LCA)

```
const int LogN = 1 + _{-}lg(N);
 int par[LogN][N], dep[N];
void dfs(int u, int par[]) {
   for (int v : graph[u])
    if (v != par[u]) {
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfs(v, par);
}
 int lca(int u, int v){
   if (dep[u] > dep[v])
    swap(u, v);
   fore (k, LogN, 0)
    if (dep[v] - dep[u] >= (1 << k))
      v = par[k][v];
   if (u == v)
    return u;
   fore (k, LogN, 0)
     if (par[k][v] != par[k][u])
      u = par[k][u], v = par[k][v];
   return par[0][u];
 int dist(int u, int v) {
  return dep[u] + dep[v] - 2 * dep[lca(u, v)];
}
void init(int r) {
  dfs(r, par[0]);
   fore (k, 1, LogN)
     fore (u, 1, n + 1)
      par[k][u] = par[k - 1][par[k - 1][u]];
2.9
     Isomorphism
```

```
11i f(11i x) {
   // K * n <= 9e18
   static uniform_int_distribution<lli> uid(1, K);
  if (!mp.count(x))
    mp[x] = uid(rng);
  return mp[x];
lli hsh(int u, int p = 0) {
   dp[u] = h[u] = 0;
   for (int v : graph[u]) {
    if (v == p)
      continue;
    dp[u] += hsh(v, u);
   return h[u] = f(dp[u]);
2.10 Guni
```

```
int cnt[C], color[N];
int sz[N];
int guni(int u, int p = 0) {
  sz[u] = 1;
  for (int &v : graph[u]) if (v != p) {
```

```
sz[u] += guni(v, u);
     if (sz[v] > sz[graph[u][0]] || p == graph[u][0])
       swap(v, graph[u][0]);
   }
  return sz[u];
 void add(int u, int p, int x, bool skip) {
   cnt[color[u]] += x;
   for (int i = skip; i < sz(graph[u]); i++) // don't</pre>
       change it with a fore!!!
     if (graph[u][i] != p)
       add(graph[u][i], u, x, 0);
 }
 void solve(int u, int p, bool keep = 0) {
   fore (i, sz(graph[u]), 0)
     if (graph[u][i] != p)
      solve(graph[u][i], u, !i);
   add(u, p, +1, 1); // add
   // now cnt[i] has how many times the color i appears
        in the subtree of u
   if (!keep) add(u, p, -1, 0); // remove
}
2.11
        Centroid decomposition
 int cdp[N], sz[N];
 bitset<N> rem;
 int dfsz(int u, int p = 0) {
   sz[u] = 1;
   for (int v : graph[u])
     if (v != p && !rem[v])
      sz[u] += dfsz(v, u);
   return sz[u];
 }
 int centroid(int u, int n, int p = 0) {
   for (int v : graph[u])
     if (v != p && !rem[v] && 2 * sz[v] > n)
      return centroid(v, n, u);
   return u;
 }
 void solve(int u, int p = 0) {
   cdp[u = centroid(u, dfsz(u))] = p;
   rem[u] = true;
   for (int v : graph[u])
     if (!rem[v])
       solve(v, u);
}
       Heavy-light decomposition
 int par[N], dep[N], sz[N], head[N], pos[N], who[N],
     timer = ∅;
Lazy* tree;
 int dfs(int u) {
   sz[u] = 1, head[u] = 0;
   for (int &v : graph[u]) if (v != par[u]) {
     par[v] = u;
     dep[v] = dep[u] + 1;
     sz[u] += dfs(v);
     if (sz[v] > sz[graph[u][0]])
      swap(v, graph[u][0]);
   }
   return sz[u];
 }
 void hld(int u, int h) {
   head[u] = h, pos[u] = ++timer, who[timer] = u;
```

```
for (int &v : graph[u])
     if (v != par[u])
       hld(v, v == graph[u][0] ? h : v);
template <class F>
void processPath(int u, int v, F f) {
   for (; head[u] != head[v]; v = par[head[v]]) {
     if (dep[head[u]] > dep[head[v]]) swap(u, v);
     f(pos[head[v]], pos[v]);
   if (dep[u] > dep[v]) swap(u, v);
   if (u != v) f(pos[graph[u][0]], pos[v]);
   f(pos[u], pos[u]); // only if hld over vertices
void updatePath(int u, int v, lli z) {
   processPath(u, v, [&](int 1, int r) {
     tree->update(1, r, z);
  });
}
11i queryPath(int u, int v) {
   11i sum = 0;
   processPath(u, v, [&](int 1, int r) {
     sum += tree->qsum(1, r);
   });
  return sum:
        Link-Cut tree
2.13
 void access(Splay u) {
   // puts u on the preferred path, splay (right
       subtree is empty)
   for (Splay v = u, pre = NULL; v; v = v -> p) {
     v->splay(); // now pull virtual children
     if (pre) v->vsub(pre, false);
    if (v->ch[1]) v->vsub(v->ch[1], true);
     v \rightarrow ch[1] = pre, v \rightarrow pull(), pre = v;
   }
   u->splay();
void rootify(Splay u) {
   // make u root of LCT component
   access(u), u->rev ^= 1, access(u);
  assert(!u->ch[0] && !u->ch[1]);
 Splay lca(Splay u, Splay v) {
  if (u == v) return u;
   access(u), access(v);
  if (!u->p) return NULL;
   return u->splay(), u->p ?: u;
}
bool connected(Splay u, Splay v) {
   return lca(u, v) != NULL;
}
void link(Splay u, Splay v) { // make u parent of v
   if (!connected(u, v)) {
     rootify(v), access(u);
     add(v, u, ∅), v->pull();
   }
}
void cut(Splay u) {
   // cut u from its parent
   access(u);
```

```
u \rightarrow ch[0] \rightarrow p = u \rightarrow ch[0] = NULL;
   u->pull();
 }
 void cut(Splay u, Splay v) { // if u, v are adjacent
      in the tree
   cut(depth(u) > depth(v) ? u : v);
 }
 int depth(Splay u) {
   access(u);
   return gsz(u->ch[0]);
 }
 Splay getRoot(Splay u) { // get root of LCT component
   access(u);
   while (u->ch[0]) u = u->ch[0], u->push();
   return access(u), u;
 Splay ancestor(Splay u, int k) {
   // get k-th parent on path to root
   k = depth(u) - k;
   assert(k \ge 0);
   for (;; u->push()) {
     int sz = gsz(u->ch[0]);
     if (sz == k) return access(u), u;
     if (sz < k) k = sz + 1, u = u - ch[1];
     else u = u - ch[0];
   assert(₀);
 Splay query(Splay u, Splay v) {
   return rootify(u), access(v), v;
 }
     Flows
       Dinic \mathcal{O}(min(E \cdot flow, V^2E))
3.1
If the network is massive, try to compress it by looking for
patterns.
 template <class F>
 struct Dinic {
   struct Edge {
     int v, inv;
     F cap, flow;
     Edge(int v, F cap, int inv) : v(v), cap(cap), flow
          (0), inv(inv) {}
   };
   F eps = (F) 1e-9;
   int s, t, n, m = 0;
   vector< vector<Edge> > g;
   vi dist, ptr;
   Dinic(int n) : n(n), g(n), dist(n), ptr(n), s(n - 2)
        , t(n - 1) {}
   void add(int u, int v, F cap) {
     g[u].pb(Edge(v, cap, sz(g[v])));
     g[v].pb(Edge(u, 0, sz(g[u]) - 1));
     m += 2;
   }
   bool bfs() {
     fill(all(dist), -1);
     queue<int> qu({s});
     dist[s] = 0;
     while (sz(qu) && dist[t] == -1) {
       int u = qu.front();
```

```
qu.pop();
                                                                  fill(all(state), 0);
       for (Edge &e : g[u]) if (dist[e.v] == -1)
                                                                  fill(all(cost), numeric_limits<C>::max());
         if (e.cap - e.flow > eps) {
                                                                  deque<int> qu;
           dist[e.v] = dist[u] + 1;
                                                                  qu.push_back(s);
           qu.push(e.v);
                                                                  state[s] = 1, cost[s] = 0;
                                                                  while (sz(qu)) {
     }
                                                                    int u = qu.front(); qu.pop_front();
     return dist[t] != -1;
                                                                    state[u] = 2;
   }
                                                                    for (Edge &e : g[u]) if (e.cap - e.flow > eps)
                                                                      if (cost[u] + e.cost < cost[e.v]) {</pre>
   F dfs(int u, F flow = numeric_limits<F>::max()) {
                                                                        cost[e.v] = cost[u] + e.cost;
     if (flow <= eps || u == t)</pre>
                                                                        prev[e.v] = &e;
       return max<F>(0, flow);
                                                                        if (state[e.v] == 2 \mid | (sz(qu) \&\& cost[qu.
     for (int &i = ptr[u]; i < sz(g[u]); i++) {</pre>
                                                                             front()] > cost[e.v]))
       Edge &e = g[u][i];
                                                                          qu.push_front(e.v);
                                                                        else if (state[e.v] == 0)
       if (e.cap - e.flow > eps && dist[u] + 1 == dist[
            e.vl) {
                                                                          qu.push_back(e.v);
        F pushed = dfs(e.v, min<F>(flow, e.cap - e.flow
                                                                        state[e.v] = 1;
            ));
         if (pushed > eps) {
                                                                  }
           e.flow += pushed;
                                                                  return cost[t] != numeric_limits<C>::max();
           g[e.v][e.inv].flow -= pushed;
           return pushed;
                                                                pair<C, F> minCostFlow() {
         }
       }
                                                                  C cost = 0; F flow = 0;
                                                                  while (bfs()) {
     }
     return 0;
                                                                    F pushed = numeric_limits<F>::max();
   }
                                                                    for (Edge* e = prev[t]; e != nullptr; e = prev[e
                                                                         ->u])
   F maxFlow() {
                                                                      pushed = min(pushed, e->cap - e->flow);
     F flow = 0;
                                                                    for (Edge* e = prev[t]; e != nullptr; e = prev[e
     while (bfs()) {
                                                                         ->u]) {
       fill(all(ptr), ∅);
                                                                      e->flow += pushed;
       while (F pushed = dfs(s))
                                                                      g[e->v][e->inv].flow -= pushed;
         flow += pushed;
                                                                      cost += e->cost * pushed;
     }
                                                                    }
     return flow;
                                                                    flow += pushed;
   }
                                                                  }
};
                                                                  return make_pair(cost, flow);
3.2
      Min cost flow O(min(E \cdot flow, V^2E))
                                                              };
If the network is massive, try to compress it by looking for
                                                             3.3
                                                                   Hopcroft-Karp \mathcal{O}(E\sqrt{V})
patterns.
                                                              struct HopcroftKarp {
 template <class C, class F>
 struct Mcmf {
                                                                int n, m = 0;
                                                                vector<vi> g;
   struct Edge {
     int u, v, inv;
                                                                vi dist, match;
     F cap, flow;
                                                                HopcroftKarp(int _n) : n(_n + 5), g(n), dist(n),
     Edge(int u, int v, C cost, F cap, int inv) : u(u),
                                                                    match(n, 0) {} // 1-indexed!!
          v(v), cost(cost), cap(cap), flow(₀), inv(inv
         ) {}
                                                                void add(int u, int v) {
   };
                                                                  g[u].pb(v), g[v].pb(u);
                                                                  m += 2;
   F eps = (F) 1e-9;
                                                                }
   int s, t, n, m = 0;
   vector< vector<Edge> > g;
                                                                bool bfs() {
   vector<Edge*> prev;
                                                                  queue<int> qu;
   vector<C> cost;
                                                                  fill(all(dist), -1);
   vi state;
                                                                  fore (u, 1, n)
                                                                    if (!match[u])
   Mcmf(int n) : n(n), g(n), cost(n), state(n), prev(n)
                                                                      dist[u] = 0, qu.push(u);
        s(n - 2), t(n - 1) {}
                                                                  while (!qu.empty()) {
                                                                    int u = qu.front(); qu.pop();
   void add(int u, int v, C cost, F cap) {
                                                                    for (int v : g[u])
                                                                      if (dist[match[v]] == -1) {
     g[u].pb(Edge(u, v, cost, cap, sz(g[v])));
     g[v].pb(Edge(v, u, -cost, 0, sz(g[u]) - 1));
                                                                        dist[match[v]] = dist[u] + 1;
     m += 2:
                                                                        if (match[v])
   }
                                                                          qu.push(match[v]);
                                                                      }
   bool bfs() {
                                                                  }
```

```
return dist[0] != -1;
                                                               oper(+) oper(-) oper(*)
   }
                                                             } pw[N], ipw[N];
   bool dfs(int u) {
                                                             struct Hash {
     for (int v : g[u])
                                                               vector<H> h;
       if (!match[v] || (dist[u] + 1 == dist[match[v]]
           && dfs(match[v]))) {
                                                               Hash(string \&s) : h(sz(s) + 1) {
         match[u] = v, match[v] = u;
                                                                 fore (i, 0, sz(s)) {
                                                                   int x = s[i] - 'a' + 1;
         return 1;
                                                                   h[i + 1] = h[i] + pw[i] * H{x, x};
     dist[u] = 1 << 30;
     return 0;
   }
                                                               H cut(int 1, int r) {
   int maxMatching() {
                                                                 return (h[r + 1] - h[l]) * ipw[l];
     int tot = 0;
                                                               }
     while (bfs())
                                                             };
       fore (u, 1, n)
         tot += match[u] ? 0 : dfs(u);
                                                             const int P = uniform_int_distribution<int>(27, min(
     return tot;
                                                                  mod[0], mod[1]) - 1)(rng);
   }
                                                             pw[0] = ipw[0] = \{1, 1\};
 };
                                                             H Q = \{inv(P, mod[0]), inv(P, mod[1])\};
                                                             fore (i, 1, N) {
3.4
      Hungarian \mathcal{O}(N^3)
                                                               pw[i] = pw[i - 1] * H{P, P};
n jobs, m people
                                                               ipw[i] = ipw[i - 1] * Q;
 template <class C>
 pair<C, vi> Hungarian(vector< vector<C> > &a) {
   int n = sz(a), m = sz(a[0]), p, q, j, k; // n \le m
                                                             // Save {1, r} in the struct and when you do a cut
  vector<C> fx(n, numeric_limits<C>::min()), fy(m, 0);
                                                             H merge(vector<H> &cuts) {
   vi x(n, -1), y(m, -1);
                                                               F f = \{0, 0\};
   fore (i, 0, n)
                                                               fore (i, sz(cuts), 0) {
     fore (j, 0, m)
                                                                 F g = cuts[i];
       fx[i] = max(fx[i], a[i][j]);
                                                                 f = g + f * pw[g.r - g.l + 1];
   fore (i, 0, n) {
                                                               }
     vi t(m, -1), s(n + 1, i);
                                                               return f;
     for (p = q = 0; p \le q \&\& x[i] \le 0; p++)
                                                             }
       for (k = s[p], j = 0; j < m && x[i] < 0; j++)
                                                                  _{
m KMP}
                                                            4.2
         if (abs(fx[k] + fy[j] - a[k][j]) < eps && t[j]</pre>
              < 0) {
                                                            period = n - p[n - 1], period(abcabc) = 3, n \mod period \equiv 0
           s[++q] = y[j], t[j] = k;
                                                             vi lps(string &s) {
           if (s[q] < 0) for (p = j; p >= 0; j = p)
                                                               vi p(sz(s), 0);
             y[j] = k = t[j], p = x[k], x[k] = j;
                                                               int j = 0;
         }
                                                               fore (i, 1, sz(s)) {
     if (x[i] < 0) {
                                                                 while (j && s[i] != s[j])
       C d = numeric_limits<C>::max();
                                                                   j = p[j - 1];
       fore (k, 0, q + 1)
                                                                 j += (s[i] == s[j]);
         fore (j, 0, m) if (t[j] < 0)
                                                                 p[i] = j;
           d = min(d, fx[s[k]] + fy[j] - a[s[k]][j]);
       fore (j, 0, m)
                                                               return p;
         fy[j] += (t[j] < 0 ? 0 : d);
                                                             }
       fore (k, 0, q + 1)
                                                              // how many times t occurs in s
         fx[s[k]] = d;
                                                             int kmp(string &s, string &t) {
       i--;
                                                               vi p = lps(t);
     }
                                                               int j = 0, tot = 0;
   }
                                                               fore (i, 0, sz(s)) {
   \mathbf{C} cost = \mathbf{0};
                                                                 while (j && s[i] != t[j])
   fore (i, 0, n) cost += a[i][x[i]];
                                                                   j = p[j - 1];
   return make_pair(cost, x);
                                                                 if (s[i] == t[j])
 }
                                                                   j++;
4
     Strings
                                                                 if (j == sz(t))
                                                                   tot++; // pos: i - sz(t) + 1;
4.1
     Hash
                                                               }
 vi mod = {999727999, 999992867, 1000000123, 1000002193
                                                               return tot;
      , 1000003211, 1000008223, 1000009999, 1000027163,
      1070777777};
                                                            4.3 KMP automaton
 struct H : array<lli, 2> {
                                                             int go[N][A];
   #define oper(op) friend H operator op (H a, H b) { \
   fore (i, 0, sz(a)) a[i] = (a[i] op b[i] + mod[i]) %
                                                             void kmpAutomaton(string &s) {
       mod[i]; \
                                                               s += "$";
   return a; }
                                                               vi p = lps(s);
```

```
fore (i, 0, sz(s))
     fore (c, 0, A) {
       if (i && s[i] != 'a' + c)
         go[i][c] = go[p[i - 1]][c];
         go[i][c] = i + ('a' + c == s[i]);
   s.pop_back();
      Z algorithm
4.4
 vi zf(string &s) {
   vi z(sz(s), ∅);
   for (int i = 1, l = 0, r = 0; i < sz(s); i++) {
     if (i <= r)
       z[i] = min(r - i + 1, z[i - 1]);
     while (i + z[i] < sz(s) \&\& s[i + z[i]] == s[z[i]])
       ++z[i];
     if (i + z[i] - 1 > r)
      l = i, r = i + z[i] - 1;
   }
   return z;
 }
      Manacher algorithm
```

4.5

```
vector<vi> manacher(string &s) {
  vector<vi> pal(2, vi(sz(s), 0));
  fore (k, 0, 2) {
    int 1 = 0, r = 0;
    fore (i, 0, sz(s)) {
      int t = r - i + !k;
      if (i < r)
        pal[k][i] = min(t, pal[k][l + t]);
      int p = i - pal[k][i], q = i + pal[k][i] - !k;
      while (p \ge 1 \& q + 1 < sz(s) \& s[p - 1] == s[
          q + 1]
        ++pal[k][i], --p, ++q;
      if (q > r)
        1 = p, r = q;
   }
  }
  return pal;
```

Suffix array 4.6

- Duplicates $\sum_{i=1}^{n} lcp[i]$
- Longest Common Substring of various strings Add not Used characters between strings, i.e. a+\$+b+#+cUse two-pointers to find a range [l, r] such that all notUsedcharacters are present, then query(lcp[l+1],..,lcp[r]) for that window is the common length.

```
struct SuffixArray {
  int n;
  string s;
  vi sa, lcp;
  SuffixArray(string &s): n(sz(s) + 1), s(s), sa(n),
      lcp(n) {
    vi top(max(256, n)), rk(n);
    fore (i, 0, n)
      top[rk[i] = s[i] & 255]++;
    partial_sum(all(top), top.begin());
    fore (i, 0, n)
      sa[--top[rk[i]]] = i;
    vi sb(n);
    for (int len = 1, j; len < n; len <<= 1) {</pre>
      fore (i, 0, n) {
        j = (sa[i] - len + n) % n;
        sb[top[rk[j]]++] = j;
```

```
sa[sb[top[0] = 0]] = j = 0;
      fore (i, 1, n) {
        if (rk[sb[i]] != rk[sb[i - 1]] || rk[sb[i] +
             len] != rk[sb[i - 1] + len])
           top[++j] = i;
        sa[sb[i]] = j;
      copy(all(sa), rk.begin());
      copy(all(sb), sa.begin());
      if (j >= n - 1)
        break;
    for (int i = 0, j = rk[lcp[0] = 0], k = 0; i < n - 0
          1; i++, k++)
      while (k \ge 0 \& s[i] != s[sa[j - 1] + k])
        lcp[j] = k--, j = rk[sa[j] + 1];
  char at(int i, int j) {
    int k = sa[i] + j;
    return k < n ? s[k] : 'z' + 1;</pre>
  int count(string &t) {
    ii lo(0, n - 1), hi(0, n - 1);
    fore (i, 0, sz(t)) {
      while (lo.f + 1 < lo.s) {</pre>
        int mid = (lo.f + lo.s) / 2;
        (at(mid, i) < t[i] ? lo.f : lo.s) = mid;
      while (hi.f + 1 < hi.s) {</pre>
        int mid = (hi.f + hi.s) / 2;
        (t[i] < at(mid, i) ? hi.s : hi.f) = mid;
      int p1 = (at(lo.f, i) == t[i] ? lo.f : lo.s);
      int p2 = (at(hi.s, i) == t[i] ? hi.s : hi.f);
      if (at(p1, i) != t[i] || at(p2, i) != t[i] || p1
            > p2)
        return 0;
      lo = hi = ii(p1, p2);
    return lo.s - lo.f + 1;
  }
};
```

Suffix automaton

- sam[u].len sam[sam[u].link].len = distinct strings
- Number of different substrings (dp)

$$diff(u) = 1 + \sum_{v \in trie[u]} diff(v)$$

• Total length of all different substrings (2 x dp)

$$totLen(u) = \sum_{v \in trie[u]} diff(v) + totLen(v)$$

- Leftmost occurrence trie[u].pos = trie[u].len 1if it is **clone** then trie[clone].pos = trie[q].pos
- All occurrence positions
- Smallest cyclic shift Construct sam of s + s, find the lexicographically smallest path of sz(s)
- Shortest non-appearing string

```
nonAppearing(u) = \min_{v \in trie[u]} nonAppearing(v) + 1
struct SuffixAutomaton {
  struct Node : map<char, int> {
    int link = -1, len = 0;
```

```
vector<Node> trie;
int last;
SuffixAutomaton() { last = newNode(); }
int newNode() {
 trie.pb({});
  return sz(trie) - 1;
void extend(char c) {
  int u = newNode();
  trie[u].len = trie[last].len + 1;
  int p = last;
  while (p != -1 && !trie[p].count(c)) {
   trie[p][c] = u;
   p = trie[p].link;
  if (p == -1)
    trie[u].link = 0;
  else {
    int q = trie[p][c];
    if (trie[p].len + 1 == trie[q].len)
      trie[u].link = q;
    else {
      int clone = newNode();
      trie[clone] = trie[q];
      trie[clone].len = trie[p].len + 1;
      while (p != -1 \&\& trie[p][c] == q) {
        trie[p][c] = clone;
        p = trie[p].link;
      trie[q].link = trie[u].link = clone;
    }
  }
 last = u;
}
string kthSubstring(lli kth, int u = 0) {
  // number of different substrings (dp)
  string s = "";
  while (kth > 0)
    for (auto &[c, v] : trie[u]) {
      if (kth <= diff(v)) {</pre>
        s.pb(c), kth--, u = v;
       break;
      kth -= diff(v);
    }
 return s;
void occurs() {
  // trie[u].occ = 1, trie[clone].occ = 0
  vi who;
  fore (u, 1, sz(trie))
   who.pb(u);
  sort(all(who), [&](int u, int v) {
   return trie[u].len > trie[v].len;
  });
  for (int u : who) {
   int 1 = trie[u].link;
    trie[l].occ += trie[u].occ;
  }
}
1li queryOccurences(string &s, int u = 0) {
  for (char c : s) {
    if (!trie[u].count(c))
      return 0;
```

```
u = trie[u][c];
    }
     return trie[u].occ;
   int longestCommonSubstring(string &s, int u = 0) {
     int mx = 0, clen = 0;
     for (char c : s) {
      while (u && !trie[u].count(c)) {
         u = trie[u].link;
         clen = trie[u].len;
      if (trie[u].count(c))
        u = trie[u][c], clen++;
      mx = max(mx, clen);
     }
     return mx;
   string smallestCyclicShift(int n, int u = 0) {
     string s = "";
     fore (i, 0, n) {
      char c = trie[u].begin()->f;
      s += c;
      u = trie[u][c];
     }
     return s;
   int leftmost(string &s, int u = 0) {
     for (char c : s) {
       if (!trie[u].count(c))
         return -1;
      u = trie[u][c];
     }
     return trie[u].pos - sz(s) + 1;
   Node& operator [](int u) {
     return trie[u];
   }
};
4.8
     Aho corasick
 struct AhoCorasick {
   struct Node : map<char, int> {
     int link = 0, out = 0;
     int cnt = 0, isw = 0;
   vector<Node> trie;
   AhoCorasick() { newNode(); }
   int newNode() {
    trie.pb({});
     return sz(trie) - 1;
   void insert(string &s, int u = 0) {
     for (char c : s) {
      if (!trie[u][c])
         trie[u][c] = newNode();
      u = trie[u][c];
     trie[u].cnt++, trie[u].isw = 1;
   int go(int u, char c) {
    while (u && !trie[u].count(c))
      u = trie[u].link;
```

```
return trie[u][c];
                                                                 last = trie[u][c];
   }
                                                               }
   void pushLinks() {
     queue<int> qu;
                                                               Node& operator [](int u) {
     qu.push(0);
                                                                 return trie[u];
     while (!qu.empty()) {
                                                               }
       int u = qu.front();
                                                             };
       qu.pop();
                                                                  Dynamic Programming
                                                            5
       for (auto &[c, v] : trie[u]) {
         int 1 = (trie[v].link = u ? go(trie[u].link, c
                                                                   All submasks of a mask
                                                            5.1
                                                             for (int B = A; B > 0; B = (B - 1) & A)
         trie[v].cnt += trie[l].cnt;
                                                            5.2
         trie[v].out = trie[l].isw ? l : trie[l].out;
                                                                  Matrix Chain Multiplication
         qu.push(v);
                                                             int dp(int 1, int r) {
       }
                                                               if (1 > r)
    }
                                                                 return OLL;
   }
                                                               int &ans = mem[1][r];
                                                               if (!done[1][r]) {
   int match(string &s, int u = 0) {
                                                                 done[1][r] = true, ans = inf;
     int ans = 0;
                                                                  fore (k, l, r + 1) // split in [l, k] [k + 1, r]
                                                                    ans = min(ans, dp(1, k) + dp(k + 1, r) + add);
     for (char c : s) {
      u = go(u, c);
                                                               }
       ans += trie[u].cnt;
                                                               return ans;
       for (int x = u; x != 0; x = trie[x].out)
                                                             }
         // pass over all elements of the implicit
                                                            5.3
                                                                   Digit DP
     }
                                                            Counts the amount of numbers in [l, r] such are divisible by k.
                                                            (flag nonzero is for different lengths)
     return ans;
                                                            It can be reduced to dp(i, x, small), and has to be solve like
                                                            f(r) - f(l-1)
   Node& operator [](int u) {
                                                             #define state [i][x][small][big][nonzero]
     return trie[u];
                                                             int dp(int i, int x, bool small, bool big, bool
   }
                                                                  nonzero) {
};
                                                               if (i == sz(r))
                                                                  return x % k == 0 && nonzero;
4.9
      Eertree
                                                               int &ans = mem state;
                                                               if (done state != timer) {
 struct Eertree {
                                                                 done state = timer;
   struct Node : map<char, int> {
                                                                 ans = 0;
     int link = 0, len = 0;
                                                                 int lo = small ? 0 : 1[i] - '0';
   };
                                                                  int hi = big ? 9 : r[i] - '0';
                                                                  fore (y, lo, max(lo, hi) + 1) {
   vector<Node> trie;
                                                                   bool small2 = small | (y > 1o);
   string s = "$";
                                                                   bool big2 = big | (y < hi);
   int last;
                                                                   bool nonzero2 = nonzero | (x > 0);
                                                                   ans += dp(i + 1, (x * 10 + y) % k, small2, big2,
   Eertree() {
                                                                         nonzero2);
     last = newNode(), newNode();
                                                                 }
     trie[0].link = 1, trie[1].len = -1;
                                                               }
                                                               return ans:
                                                             }
   int newNode() {
     trie.pb({});
                                                            5.4
                                                                 Knapsack 0/1
     return sz(trie) - 1;
                                                             for (auto &cur : items)
   }
                                                               fore (w, W + 1, cur.w) // [cur.w, W]
                                                                 umax(dp[w], dp[w - cur.w] + cur.cost);
   int go(int u) {
                                                            5.5
                                                                   Convex Hull Trick \mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)
     while (s[sz(s) - trie[u].len - 2] != s.back())
       u = trie[u].link;
                                                            dp[i] = \min_{j < i} (dp[j] + b[j] * a[i])
     return u:
                                                            dp[i][j] = \min_{k < j} (dp[i-1][k] + b[k] * a[j])
   }
                                                            b[j] \ge b[j+1] optionally a[i] \le a[i+1]
   void extend(char c) {
                                                             // for doubles, use inf = 1/.0, div(a,b) = a / b
                                                             struct Line {
     s += c;
                                                               mutable lli m, c, p;
     int u = go(last);
     if (!trie[u][c]) {
                                                               bool operator < (const Line &l) const { return m < l</pre>
       int v = newNode();
                                                                    .m; }
       trie[v].len = trie[u].len + 2;
                                                               bool operator < (lli x) const { return p < x; }</pre>
       trie[v].link = trie[go(trie[u].link)][c];
                                                               1li operator ()(lli x) const { return m * x + c; }
       trie[u][c] = v;
                                                             };
```

```
struct DynamicHull : multiset<Line, less<>> {
   lli div(lli a, lli b) {
     return a / b - ((a ^ b) < 0 && a % b);
   }
   bool isect(iterator x, iterator y) {
     if (y == end())
       return x->p = inf, 0;
     if (x->m == y->m)
       x->p = (x->c > y->c ? inf : -inf);
     else
       x->p = div(x->c - y->c, y->m - x->m);
     return x->p >= y->p;
   }
   void add(lli m, lli c) {
     auto z = insert(\{m, c, \emptyset\}), y = z++, x = y;
     while (isect(y, z)) z = erase(z);
     if (x != begin() && isect(--x, y))
       isect(x, y = erase(y));
     while ((y = x) != begin() && (--x)->p >= y->p)
       isect(x, erase(y));
   1li query(lli x) {
     if (empty()) return OLL;
     auto f = *lower_bound(x);
     return f(x);
   }
 };
       Divide and conquer \mathcal{O}(kn^2) \Rightarrow \mathcal{O}(k \cdot nlogn)
Split the array of size n into k continuous groups. k \leq n
```

 $cost(a, c) + cost(b, d) \le cost(a, d) + cost(b, c)$ with $a \le b \le c \le d$

```
void dc(int cut, int 1, int r, int optl, int optr) {
  if (r < 1)
    return;
  int mid = (1 + r) / 2;
  pair<lli, int> best = {inf, -1};
  fore (p, optl, min(mid, optr) + 1) {
    11i nxt = dp[~cut & 1][p - 1] + cost(p, mid);
    if (nxt < best.f)</pre>
      best = {nxt, p};
  dp[cut & 1][mid] = best.f;
  int opt = best.s;
  dc(cut, 1, mid - 1, optl, opt);
  dc(cut, mid + 1, r, opt, optr);
fore (i, 1, n + 1)
  dp[1][i] = cost(1, i);
fore (cut, 2, k + 1)
  dc(cut, cut, n, cut, n);
```

Knuth optimization $\mathcal{O}(n^3) \Rightarrow \mathcal{O}(n^2)$

```
dp[l][r] = \min_{l \le k \le r} \{dp[l][k] + dp[k][r]\} + cost(l, r)
 fore (len, 1, n + 1)
   fore (1, 0, n) {
      int r = 1 + len - 1;
      if (r > n - 1)
        break;
      if (len <= 2) {</pre>
        dp[1][r] = 0;
        opt[1][r] = 1;
        continue;
```

```
dp[l][r] = inf;
  fore (k, opt[l][r - 1], opt[l + 1][r] + 1) {
    lli cur = dp[1][k] + dp[k][r] + cost(1, r);
    if (cur < dp[l][r]) {</pre>
      dp[1][r] = cur;
      opt[1][r] = k;
    }
  }
}
```

Game Theory 6

Grundy Numbers 6.1

If the moves are consecutive $S = \{1, 2, 3, ..., x\}$ the game can be solved like $stackSize \pmod{x+1} \neq 0$

```
int mem[N];
int mex(set<int> &st) {
  int x = 0;
  while (st.count(x))
  return x;
}
int grundy(int n) {
  if (n < 0)
    return inf;
  if (n == 0)
    return 0;
  int &g = mem[n];
  if (g == -1) {
    set<int> st;
    for (int x : {a, b})
      st.insert(grundy(n - x));
    g = mex(st);
 }
 return g;
}
```

Combinatorics 7

Combinatorics table					
Number	Factorial	Catalan			
0	1	1			
1	1	1			
2	2	2			
3	6	5			
4	24	14			
5	120	42			
6	720	132			
7	5,040	429			
8	40,320	1,430			
9	362,880	4,862			
10	3,628,800	16,796			
11	39,916,800	58,786			
12	479,001,600	208,012			
13	6,227,020,800	742,900			

Factorial 7.1

```
fac[0] = 1LL;
fore (i, 1, N)
  fac[i] = 11i(i) * fac[i - 1] % mod;
ifac[N - 1] = fpow(fac[N - 1], mod - 2);
fore (i, N - 1, 0)
  ifac[i] = lli(i + 1) * ifac[i + 1] % mod;
```

7.2Factorial mod smallPrime

```
lli facMod(lli n, int p) {
    lli r = 1LL;
    for (; n > 1; n /= p) {
        r = (r * ((n / p) % 2 ? p - 1: 1)) % p;
        fore (i, 2, n % p + 1)
            r = r * i % p;
    }
    return r % p;
}
```

7.3 Lucas theorem

Changes $\binom{n}{k} \mod p$, with $n \geq 2e6, k \geq 2e6$ and $p \leq 1e7$

7.4 Stars and bars

}

Enclosing n objects in k boxes

$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

7.5 N choose K

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! * k_2! * \dots * k_m!}$$
1li choose(int n, int k) {
 if (n < 0 || k < 0 || n < k)
 return OLL;
 return fac[n] * ifac[k] % mod * ifac[n - k] % mod;
}

1li choose(int n, int k) {
 double r = 1;
 fore (i, 1, k + 1)
 r = r * (n - k + i) / i;
 return 1li(r + 0.01);
}

7.6 Catalan
 catalan[0] = 1LL;
fore (i, 0, N) {
 catalan[i + 1] = catalan[i] * 11i(4 * i + 2) % mod *

fpow(i + 2, mod - 2) % mod;

7.7

$$|classes| = \frac{1}{|G|} \cdot \sum_{x \in G} f(x)$$

Burnside's lemma

7.8 Prime factors of N!

```
vector< pair<lli, int> > factorialFactors(lli n) {
  vector< pair<lli, int> > fac;
  for (lli p : primes) {
    if (n < p)
       break;
    lli mul = 1LL, k = 0;
    while (mul <= n / p) {
       mul *= p;
  }
}</pre>
```

```
k += n / mul;
}
fac.emplace_back(p, k);
}
return fac;
}
```

8 Number Theory

8.1 Goldbach conjecture

- All number ≥ 6 can be written as sum of 3 primes
- All even number > 2 can be written as sum of 2 primes

8.2 Prime numbers distribution

Amount of primes approximately $\frac{n}{\ln(n)}$

8.3 Sieve of Eratosthenes

```
Numbers up to 2e8
 int erat[N >> 6];
 #define bit(i) ((i >> 1) & 31)
 #define prime(i) !(erat[i >> 6] >> bit(i) & 1)
 void bitSieve() {
   for (int i = 3; i * i < N; i += 2) if (prime(i))
     for (int j = i * i; j < N; j += (i << 1))
       erat[j >> 6] |= 1 << bit(j);
 }
To factorize divide x by factor[x] until is equal to 1
 void factorizeSieve() {
   iota(factor, factor + N, 0);
   for (int i = 2; i * i < N; i++) if (factor[i] == i)</pre>
     for (int j = i * i; j < N; j += i)
       factor[j] = i;
 }
Use it if you need a huge amount of phi[x] up to some N
 void phiSieve() {
   isp.set(); // bitset<N> is faster
   iota(phi, phi + N, ∅);
   fore (i, 2, N) if (isp[i])
     for (int j = i; j < N; j += i) {
       isp[j] = (i == j);
       phi[j] /= i;
       phi[j] *= i - 1;
  }
     Phi of euler
8.4
lli phi(lli n) {
   if (n == 1)
     return 0;
   11i r = n;
   for (lli i = 2; i * i <= n; i++)
     if (n % i == 0) {
       while (n % i == ∅)
         n /= i;
       r -= r / i;
     }
   if (n > 1)
     r = r / n;
   return r;
      Miller-Rabin
bool miller(lli n) {
   if (n < 2 || n % 6 % 4 != 1)
     return (n | 1) == 3;
```

auto compo = [&](lli p, lli d, lli n, lli k) {

while (x != 1 && x != n - 1 && p % n && i--)

11i x = fpow(p % n, d, n), i = k;

```
x = mul(x, x, n);
                                                                  g = \gcd(a_1, a_2, ..., a_n)
     return x != n - 1 && i != k;
   }
                                                                 8.9 GCD
   int k = __builtin_ctzll(n - 1);
                                                                a \le b; gcd(a + k, b + k) = gcd(b - a, a + k)
   11i d = n >> k;
   for (lli p: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
                                                                 8.10 LCM
        , 37}) {
     if (compo(p, d, n, k))
                                                                x = p * lcm(a_1, a_2, ..., a_k) + q, 0 \le q \le lcm(a_1, a_2, ..., a_k)
       return 0;
                                                                  x \pmod{a_i} \equiv q \pmod{a_i} as a_i \mid lcm(a_1, a_2, ..., a_k)
     if (compo(2 + rng() % (n - 3), d, n, k))
       return 0:
                                                                         Euclid
                                                                 8.11
   }
                                                                  pair<lli, lli> euclid(lli a, lli b) {
   return 1;
                                                                    if (b == 0)
 }
                                                                      return {1, 0};
                                                                    auto p = euclid(b, a % b);
8.6
      Pollard-Rho
                                                                    return {p.s, p.f - a / b * p.s};
lli rho(lli n) {
   while (1) {
     11i x = 2 + rng() \% (n - 3), c = 1 + rng() \% 20;
                                                                8.12
                                                                        Chinese remainder theorem
     auto f = [\&](lli x) \{ return (mul(x, x, n) + c) \%
                                                                  pair<lli, lli> crt(pair<lli, lli> a, pair<lli, lli> b)
          n; };
     11i y = f(x), g;
                                                                    if (a.s < b.s)
     while ((g = \_gcd(n + y - x, n)) == 1)
                                                                      swap(a, b);
       x = f(x), y = f(f(y));
                                                                    auto p = euclid(a.s, b.s);
     if (g != n) return g;
                                                                    11i g = a.s * p.f + b.s * p.s, l = a.s / g * b.s;
   }
                                                                    if ((b.f - a.f) % g != ∅)
   return -1;
                                                                      return {-1, -1}; // no solution
 }
                                                                   p.f = a.f + (b.f - a.f) \% b.s * p.f \% b.s / g * a.s;
                                                                    return \{p.f + (p.f < 0) * 1, 1\};
 void pollard(lli n, map<lli, int> &fac) {
                                                                  }
   if (n == 1) return;
   if (n % 2 == 0) {
                                                                9
                                                                      Math
     fac[2]++;
                                                                        Progressions
     pollard(n / 2, fac);
                                                                9.1
     return;
                                                                 Arithmetic progressions
   if (miller(n)) {
                                                                     a_n = a_1 + (n-1) * diff
     fac[n]++;
                                                                     \sum_{i=1}^{n} a_i = n * \frac{a_1 + a_n}{2}
     return:
   11i x = rho(n);
                                                                 Geometric progressions
   pollard(x, fac);
   pollard(n / x, fac);
                                                                     a_n = a_1 * r^{n-1}
                                                                     \sum_{k=1}^{n} a_1 * r^k = a_1 * \left(\frac{r^{n+1} - 1}{r - 1}\right) : r \neq 1
       Amount of divisors
8.7
 lli divs(lli n) {
   1li cnt = 1LL;
                                                                9.2
                                                                      Mod multiplication
   for (lli p : primes) {
                                                                 lli mul(lli x, lli y, lli mod) {
     if (p * p * p > n)
                                                                    11i r = 0LL;
       break;
                                                                    for (x \% = mod; y > 0; y >>= 1) {
     if (n % p == 0) {
                                                                      if (y \& 1) r = (r + x) \% mod;
       11i k = 0;
                                                                      x = (x + x) \% mod;
       while (n > 1 \& n \% p == 0)
                                                                    }
         n /= p, ++k;
                                                                    return r;
       cnt *= (k + 1);
                                                                  }
   }
                                                                 9.3
                                                                       Fpow
   11i sq = mysqrt(n); // A binary search, the last x *
                                                                  11i \text{ fpow}(11i \text{ x}, 11i \text{ y}, 11i \text{ mod})  {
        x <= n
                                                                    lli r = 1;
   if (miller(n))
                                                                    for (; y > 0; y >>= 1) {
     cnt *= 2:
                                                                      if (y & 1) r = mul(r, x, mod);
   else if (sq * sq == n && miller(sq))
                                                                      x = mul(x, x, mod);
     cnt *= 3;
                                                                    }
   else if (n > 1)
                                                                    return r;
     cnt *= 4;
                                                                  }
   return cnt;
 }
                                                                9.4 Fibonacci
      Bézout's identity
                                                                      \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} fib_{n+1} & fib_n \\ fib_n & fib_{n-1} \end{bmatrix}
a_1 * x_1 + a_2 * x_2 + \dots + a_n * x_n = g
```

10 Bit tricks

$\mathrm{Bits}++$		
Operations on <i>int</i>	Function	
x & -x	Least significant bit in x	
lg(x)	Most significant bit in x	
c = x&-x, r = x+c;	Next number after x with same	
(((r^x) » 2)/c) r	number of bits set	
builtin_	Function	
popcount(x)	Amount of 1's in x	
clz(x)	0's to the left of biggest bit	
ctz(x)	0's to the right of smallest bit	

10.1 Bitset

Bitset <size></size>				
Operation	Function			
_Find_first()	Least significant bit			
_Find_next(idx)	First set bit after index idx			
any(), none(), all()	Just what the expression says			
set(), reset(), flip()	Just what the expression says x2			
to_string('.', 'A')	Print 011010 like .AA.A.			

10.2 Real

```
const ld eps = 1e-9;
#define eq(a, b) (abs((a) - (b)) <= +eps)
#define neq(a, b) (!eq(a, b))
#define geq(a, b) ((a) - (b) >= -eps)
#define leq(a, b) ((a) - (b) <= +eps)
#define ge(a, b) ((a) - (b) > +eps)
#define le(a, b) ((a) - (b) < -eps)</pre>
```

11 Points

11.1 Points

```
int sgn(1d x) \{ return x > 0 ? 1 : (x < 0 ? -1 : 0); \}
struct Pt {
  ld x, y;
  explicit Pt(1d x = 0, 1d y = 0) : x(x), y(y) {}
  Pt operator + (Pt p) const { return Pt(x + p.x, y +
  Pt operator - (Pt p) const { return Pt(x - p.x, y -
      p.y); }
  Pt operator * (ld k) const { return Pt(x * k, y * k)
      ; }
  Pt operator / (ld k) const { return Pt(x / k, y / k)
      ; }
  ld dot(Pt p) const {
    // 0 if vectors are orthogonal
    // - if vectors are pointing in opposite
        directions
    \ensuremath{//} + if vectors are pointing in the same direction
    return x * p.x + y * p.y;
  }
  ld cross(Pt p) const {
   // 0 if collinear
   // - if b is to the right of a
   // + if b is to the left of a
   // gives you 2 * area
    return x * p.y - y * p.x;
  }
  1d norm() const { return x * x + y * y; }
  ld length() const { return sqrtl(norm()); }
  ld angle() {
   1d ang = atan2(y, x);
    return ang + (ang < 0 ? 2 * pi : 0);</pre>
```

```
}
   Pt perp() const { return Pt(-y, x); }
   Pt unit() const { return (*this) / length(); }
   Pt rotate(ld angle) const {
     // counter-clockwise rotation in radians
     // degree = radian * 180 / pi
     return Pt(x * cos(angle) - y * sin(angle), x * sin
         (angle) + y * cos(angle));
   bool operator == (Pt p) const { return eq(x, p.x) &&
        eq(y, p.y); }
   bool operator != (Pt p) const { return neq(x, p.x)
       || neq(y, p.y); }
   friend ostream &operator << (ostream &os, const Pt &
       p) { return os << "(" << p.x << ", " << p.y <<
       ")"; }
   friend istream &operator >> (istream &is, Pt &p) {
       return cin >> p.x >> p.y; }
   int cuad() const {
     if (x > 0 \&\& y >= 0) return 0;
     if (x \le 0 \& y > 0) return 1;
     if (x < 0 && y <= 0) return 2;
     if (x \ge 0 \& y < 0) return 3;
     assert(x == 0 \&\& y == 0);
     return -1:
  }
 };
 ld ccw(Pt a, Pt b, Pt c) {
   return (b - a).cross(c - a);
11.2
        Angle between vectors
 double angleBetween(Pt a, Pt b) {
   double x = a.dot(b) / a.length() / b.length();
   return acosl(max(-1.0, min(1.0, x)));
 }
11.3
        Closest pair of points
 pair<Pt, Pt> closestPairOfPoints(Poly &pts) {
   sort(all(pts), [&](Pt a, Pt b) {
     return le(a.y, b.y);
   });
   set<Pt> st;
   ld ans = inf;
   Pt p, q;
   int pos = 0;
   fore (i, 0, sz(pts)) {
     while (pos < i && geq(pts[i].y - pts[pos].y, ans))</pre>
       st.erase(pts[pos++]);
     auto lo = st.lower_bound(Pt{pts[i].x - ans - eps,
         -inf});
     auto hi = st.upper_bound(Pt{pts[i].x + ans + eps,
         -inf});
     for (auto it = lo; it != hi; ++it) {
      ld d = (pts[i] - *it).length();
       if (le(d, ans))
         ans = d, p = pts[i], q = *it;
     st.insert(pts[i]);
  }
   return {p, q};
 }
11.4 Projection
ld proj(Pt a, Pt b) {
   return a.dot(b) / b.length();
```

12 Lines and segments

```
12.1 Line
 struct Line {
  Pt a, b, v;
   Line() {}
   Line(Pt a, Pt b) : a(a), b(b), v((b - a).unit()) {}
   bool contains(Pt p) {
    return eq((p - a).cross(v), 0);
   int intersects(Line 1) {
    if (eq(v.cross(l.v), 0)) // -1: infinite
         intersection, 0: none
       return eq((1.a - a).cross(v), 0) ? -1 : 0;
    return 1; // 1 point intersection
   int intersects(Seg s) {
    if (eq(v.cross(s.v), 0)) // -1: infinite
         intersection, 0: none
       return eq((s.a - a).cross(v), 0) ? -1 : 0;
    return sgn(v.cross(s.a - a)) != sgn(v.cross(s.b -
         a));
   }
   bool parallel(Line 1) {
    return eq(v.cross(1.v), 0);
   }
   template <class T>
   Pt intersection(T t) {
    return a + v * ((t.a - a).cross(t.v) / v.cross(t.v
         ));
   }
   Pt projection(Pt p) {
    return a + v * proj(p - a, v);
   }
   Pt reflection(Pt p) {
    return a * 2 - p + v * 2 * proj(p - a, v);
   }
};
12.2 Segment
 struct Seg {
   Pt a, b, v;
   Seg() {}
   Seg(Pt a, Pt b) : a(a), b(b), v(b - a) {}
   bool contains(Pt p) {
    return eq(v.cross(p - a), 0) && leq((a - p).dot(b
         - p), 0);
   }
   int intersects(Seg s) {
    int t1 = sgn(v.cross(s.a - a)), t2 = sgn(v.cross(s.a - a))
         .b - a));
    if (t1 == t2)
      return t1 == 0 && (contains(s.a) || contains(s.b
           ) || s.contains(a) || s.contains(b)) ? -1 :
    return sgn(s.v.cross(a - s.a)) != sgn(s.v.cross(b
         - s.a));
   }
   template <class T>
```

```
return a + v * ((t.a - a).cross(t.v) / v.cross(t.v
   }
};
12.3
        Distance point segment
 ld distance(Pt p, Seg s) {
   if (le((p - s.a).dot(s.b - s.a), 0))
     return (p - s.a).length();
   if (le((p - s.b).dot(s.a - s.b), 0))
     return (p - s.b).length();
   return abs((s.a - p).cross(s.b - p) / (s.b - s.a).
       length());
 }
12.4
        Distance segment segment
 ld distance(Seg a, Seg b) {
   if (a.intersects(b))
     return 0.0;
   return min({distance(a.a, b), distance(a.b, b),
       distance(b.a, a), distance(b.b, a)});
 }
13
      Circles
13.1 Circle
 struct Cir {
   #define sq(x)(x) * (x)
   1d r;
   Cir(ld x, ld y, ld r) : o(x, y), r(r) {}
   Cir(Pt o, ld r) : o(o), r(r) {}
   int inside(Cir c) {
     // circleInsideCircle
     // -1: internally, 0: overlap, 1: inside
    ld l = r - c.r - (o - c.o).length();
     return ge(1, 0) ? 1 : eq(1, 0) ? -1 : 0;
   int outside(Cir c) {
     // circleOutsideCircle
     // -1: externally, 0: overlap, 1: outside
     ld l = (o - c.o).length() - r - c.r;
     return ge(1, 0) ? 1 : eq(1, 0) ? -1 : 0;
   int contains(Pt p) {
     // pointInCircle
     // -1: perimeter, 0: outside, 1: inside
    ld 1 = (p - c.o).length() - r;
     return le(1, 0) ? 1 : eq(1, 0) ? -1 : 0;
   Pt projection(Pt p) {
     // projectionPointCircle
     // point outside the circle
     return o + (p - o).unit() * r;
   pair<Pt, Pt> tangency(Pt p) {
     // pointsOfTangency
     // point outside the circle
     Pt v = (p - o).unit() * r;
     1d d2 = (p - o).norm(), d = sqrt(d2);
     Pt v1 = v * (r / d), v2 = v.perp() * (sqrt(d2 - r))
         * r) / d);
     return \{c + v1 - v2, c + v1 + v2\};
```

Pt intersection(T t) {

```
vector<Pt> intersection(Cir c) {
                                                                low.pb(pts[i]);
    // intersectionCircles
    Pt d = c.o - o;
                                                              fore (i, sz(pts), ∅) {
    1d d2 = d.norm();
                                                                while(sz(up) \ge 2 \& (up.end()[-1] - up.end()[-2])
                                                                    .cross(pts[i] - up.end()[-1]) \le 0)
    if (eq(d2, 0)) return {} // concentric circles
    1d pd = (d2 + r * r - c.r * c.r) / 2;
                                                                  up.pop_back();
    1d h2 = r * r - pd * pd / d2;
                                                                up.pb(pts[i]);
    Pt p = o + d * pd / d2;
    if (eq(h2, 0)) return {p}; // circles touch at one
                                                              low.pop_back(), up.pop_back();
                                                              low.insert(low.end(), all(up));
    if (le(h2, 0)) return {}; // circles don't
                                                              return low;
         intersect
    Pt u = d.perp() * sqrt(h2 / d2);
                                                           14.3
                                                                   Cut polygon by a line
    return {p - u, p + u}; // circles intersects twice
                                                            Poly cut(const Poly &pts, Line 1) {
   }
                                                              Poly ans;
                                                              int n = sz(pts);
   template <class T>
                                                              fore (i, 0, n) {
   vector<Pt> intersection(T t) {
                                                                int j = (i + 1) % n;
     // intersectLineCircle and intersectSegmentCircle
                                                                if (geq(l.v.cross(pts[i] - l.a), 0)) // left
     // for a segment you need to check that the point
                                                                  ans.pb(pts[i]);
         lies on the segment
                                                                Seg s(pts[i], pts[j]);
    1d h2 = sq(r) - sq(t.v.cross(o - t.a)) / t.v.norm
                                                                if (l.intersects(s) == 1) {
         ();
                                                                  Pt p = 1.intersection(s);
    Pt p = t.a + t.v * 1.v.dot(o - t.a) / t.v.norm();
                                                                  if (p != pts[i] && p != pts[j])
     if (eq(h2, 0)) return {p}; // line tangent to
                                                                    ans.pb(p);
         circle
    if (le(h2, 0)) return {}; // no intersection
                                                              }
    Pt u = t.v.unit() * sqrt(h2);
                                                              return ans;
    return {p - u, p + u}; // two points of
                                                            }
         intersection (chord)
   }
                                                                   Perimeter
                                                           14.4
                                                            ld perimeter(const Poly &pts){
   Cir get(Pt a, Pt b, Pt c) {
                                                              1d \text{ sum } = 0;
     // getCircle
                                                              fore (i, 0, sz(pts))
     // find circle that passes through points a, b, c
                                                                sum += (pts[(i + 1) % sz(pts)] - pts[i]).length();
    Line ab((a + b) / 2, (b - a).perp());
                                                              return sum;
    Line cb((c + b) / 2, (c - b).perp());
    Pt p = ab.intersection(cb);
    return Cir(p, (p - a).length());
                                                           14.5
                                                                   Point in polygon
   }
                                                            int contains(const Poly &pts, Pt p) {
};
                                                              int rays = 0, n = sz(pts);
                                                              fore (i, 0, n) {
13.2
       Distance point circle
                                                                Pt a = pts[i], b = pts[(i + 1) % n];
ld distance(Pt p, Cir c) {
                                                                if (ge(a.y, b.y))
   // distancePointCircle
                                                                  swap(a, b);
   return max(ld(0), (p - c.o).length() - c.r);
                                                                if (Seg(a, b).contains(p))
}
                                                                  return -1; // lies on the perimeter
                                                                rays ^= (leq(a.y, p.y) && le(p.y, b.y) && ge((a -
14
      Polygons
                                                                    p).cross(b - p), 0));
14.1
       Area of polygon
                                                              return rays & 1; // odd: inside, even: out
ld area(const Poly &pts) {
   1d \text{ sum} = 0;
   fore (i, 0, sz(pts))
                                                           15
                                                                  Geometry misc
     sum += pts[i].cross(pts[(i + 1) % sz(pts)]);
   return abs(sum / 2);
                                                                   Radial order
                                                           15.1
                                                            struct Radial {
14.2
       Convex-Hull
                                                              Pt c;
 Poly convexHull(Poly pts) {
                                                              Radial(Pt c) : c(c) {}
   Poly low, up;
   sort(all(pts), [&](Pt a, Pt b) {
                                                              bool cmp(Pt a, Pt b) {
    return a.x == b.x ? a.y < b.y : a.x < b.x;
                                                                if (a.cuad() == b.cuad())
                                                                  return a.y * b.x < a.x * b.y;
   pts.erase(unique(all(pts)), pts.end());
                                                                return a.cuad() < b.cuad();</pre>
   if (sz(pts) <= 2)
                                                              }
    return pts;
   fore (i, 0, sz(pts)) {
                                                              bool operator()(Pt a, Pt b) const {
    while(sz(low) \ge 2 \& (low.end()[-1] - low.end()[-1]
                                                                return cmp(a - c, b - c);
         2]).cross(pts[i] - low.end()[-1]) <= 0)
      low.pop_back();
                                                            };
```

15.2 Sort along a line

```
void sortAlongLine(vector<Pt> &pts, Line 1){
   sort(all(pts), [&](Pt a, Pt b){
     return a.dot(1.v) < b.dot(1.v);
   });
}</pre>
```