# Естественные эксперименты, или «Что на что влияет в мире»

Кирилл Борусяк

Гарвардский Университет

ЛШСМ, 21 июля 2015 г.

# Что вы видите?



## Интерпретации корреляции

- Причинно-следственная связь
- Самоотбор
  - Влияние наблюдаемых характеристик (напр. пола)
  - Влияние ненаблюдаемых характеристик (напр. способностей)
- Обратная причинно-следственная связь
- А также: погрешность измерения образования

## Причинно-следственная связь

- Что это такое?
  - Результат (воображаемого) воздействия, разница между потенциальными исходами
  - Никогда не наблюдается для отдельных людей, но иногда можно оценить среднее
  - Может различаться для разных групп людей, поэтому средние бывают разные

## Причинно-следственная связь

- Что это такое?
  - Результат (воображаемого) воздействия, разница между потенциальными исходами
  - Никогда не наблюдается для отдельных людей, но иногда можно оценить среднее
  - Может различаться для разных групп людей, поэтому средние бывают разные
- Зачем это нужно?
  - Принятие решений отдельными людьми
  - Принятие решений государством
  - Предсказание зарплаты по образованию не поможет

#### Как?

- Рандомизированный контролируемый эксперимент
  - Случайным образом распределяем людей на экспериментальную и контрольную группы (D) или большее количество групп
  - Контролируем, что они следуют нашим указаниям
  - Сравниваем средние исходы Y
  - Не забываем про статистическую погрешность

#### Как?

- Рандомизированный контролируемый эксперимент
  - Случайным образом распределяем людей на экспериментальную и контрольную группы (D) или большее количество групп
  - Контролируем, что они следуют нашим указаниям
  - Сравниваем средние исходы Y
  - Не забываем про статистическую погрешность
- Ключевое предположение: стабильность эффекта воздействия (SUTVA)
  - Потенциальные исходы не зависят от воздействия на другие объекты
- А если не можем?

## Отбор по наблюдаемым характеристикам

- Предположение (условная независимость):
  - Различие между группами связано только с дисбалансом ковариат. Условно на них, D определяется «как бы случайно», нет самоотбора

## Отбор по наблюдаемым характеристикам

- Предположение (условная независимость):
  - Различие между группами связано только с дисбалансом ковариат. Условно на них, D определяется «как бы случайно», нет самоотбора
- Метод: сравнивать «яблоки с яблоками»

# Отбор по наблюдаемым характеристикам

- Предположение (условная независимость):
  - Различие между группами связано только с дисбалансом ковариат. Условно на них, D определяется «как бы случайно», нет самоотбора
- Метод: сравнивать «яблоки с яблоками»
- Проблема: человек знает про себя больше, чем ученый, и использует информацию при принятии решений

#### Lalonde (1986): National Support Work

Table 5—Earnings Comparisons and Estimated Training Effects for the NSW Male Participants Using Comparison Groups From the PSID and the  $CPS-SSA^{a,b}$ 

|                                             | Comparison<br>Group<br>Earnings |                          | ess Compa<br>Earr<br>aining       | nent Earning<br>rison Group<br>nings<br>Post-Tr<br>Year, | aining                            | Differe<br>Earn<br>Growth<br>Treatme | ence in<br>ences:<br>ence in<br>sings<br>1975–78<br>ents Less<br>arisons | Differ<br>Differ<br>Quasi D<br>in Ear |                                   | Controlling for<br>All Observed<br>Variables and |
|---------------------------------------------|---------------------------------|--------------------------|-----------------------------------|----------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------------------|
| Name of<br>Comparison<br>Group <sup>d</sup> | Growth<br>1975–78<br>(1)        | Unad-<br>justed<br>(2)   | Ad-<br>justed <sup>c</sup><br>(3) | Unad-<br>justed<br>(4)                                   | Ad-<br>justed <sup>c</sup><br>(5) | Without<br>Age<br>(6)                | With<br>Age<br>(7)                                                       | Unad-<br>justed<br>(8)                | Ad-<br>justed <sup>c</sup><br>(9) | Pre-Training<br>Earnings<br>(10)                 |
| Controls                                    | \$2,063                         | \$39                     | \$ - 21                           | \$886                                                    | \$798                             | \$847                                | \$856                                                                    | \$897                                 | \$802                             | \$662                                            |
| PSID-1                                      | (325)<br>\$2,043                | (383)<br>- \$15,997      | (378)<br>- \$7,624                | (476)<br>- \$15,578                                      | (472)<br>- \$8,067                | (560)<br>\$425                       | (558)<br>- \$749                                                         | (467)<br>- \$2,380                    | (467)<br>- \$2,119                |                                                  |
| PSID-2                                      | (237)<br>\$6,071                | (795)<br>- \$4,503       | (851)<br>- \$3,669                | (913)<br>- \$4,020                                       | (990)<br>- \$3,482                | (650)<br>\$484                       | (692)<br>- \$650                                                         | (680)<br>- \$1,364                    | (746)<br>- \$1,694                |                                                  |
| PSID-3                                      | (637)<br>(\$3,322<br>(780)      | (608)<br>(\$455<br>(539) | (757)<br>\$455<br>(704)           | (781)<br>\$697<br>(760)                                  | (935)<br>- \$509<br>(967)         | (738)<br>\$242<br>(884)              | (850)<br>- \$1,325<br>(1078)                                             | (729)<br>\$629<br>(757)               | (878)<br>- \$552<br>(967)         | (1024)<br>\$397<br>(1103)                        |
| CPS-SSA-1                                   | \$1,196<br>(61)                 | - \$10,585<br>(539)      | - \$4,654<br>(509)                | - \$8,870<br>(562)                                       | - \$4,416<br>(557)                | \$1,714                              | \$195<br>(441)                                                           | - \$1,543<br>(426)                    | -\$1,102<br>(450)                 |                                                  |
| CPS-SSA-2                                   | \$2,684<br>(229)                | - \$4,321<br>(450)       | - \$1,824<br>(535)                | - \$4,095<br>(537)                                       | - \$1,675<br>(672)                | \$226<br>(539)                       | - \$488<br>(530)                                                         | - \$1,850<br>(497)                    | - \$782<br>(621)                  | - \$319<br>(761)                                 |
| CPS-SSA-3                                   | \$4,548<br>(409)                | \$337<br>(343)           | \$878<br>(447)                    | - \$1,300<br>(590)                                       | \$224<br>(766)                    | - \$1,637<br>(631)                   | - \$1,388<br>(655)                                                       | - \$1,396<br>(582)                    | \$17<br>(761)                     | \$1,466<br>(984)                                 |

<sup>&</sup>lt;sup>a</sup>The columns above present the estimated training effect for each econometric model and comparison group. The dependent variable is earnings in 1978. Based on the experimental data an unbiased estimate of the impact of training presented in col. 4 is \$886. The first three columns present the difference between each comparison group's 1975 and 1978 earnings and the difference between the pre-training earnings of each comparison group and the NSW treatments.

<sup>&</sup>lt;sup>b</sup>Estimates are in 1982 dollars. The numbers in parentheses are the standard errors.

<sup>&</sup>lt;sup>c</sup>The exogenous variables used in the regression adjusted equations are age, age squared, years of schooling, high school dropout status, and race.

## Dehejia-Wahba (1999)

Table 3. Estimated Training Effects for the NSW Male Participants Using Comparison Groups From PSID and CPS

NSW treatment earnings less comparison group earnings. NSW earnings less conditional on the estimated propensity score comparison group Matching on the score earninas Stratifying on the score Quadratic in scoreb (2)(4) (5)(6)Unadjusted Adjusted<sup>a</sup> (3)Unadjusted Adjusted Observations<sup>c</sup> Unadiusted Adjusted<sup>1</sup> NSW 1.794 1,672 (633)(638)PSID-1<sup>e</sup> -15.205731 294 1.608 1.494 1.255 1.691 1.473 (886)(1.389)(1,571)(1.581)(2.209)(809)(1.154)PSID-2f -3.647683 496 2,220 2.235 389 1,455 1.480 (959)(1.028)(1,768)(1,793)(2.303)(808)(1.193)PSID-3f 1,069 825 647 2,321 1,870 247 2,120 1,549 (1.994)(2,335)(899)(1.104)(1,383)(2.002)(826)CPS-19 -8.498972 1.117 1,713 1.774 1,582 4.117 1.616 (712)(550)(747)(1,115)(1,152)(1,069)(751)CPS-29 790 505 1.622 1.788 1.563 -3.8221.543 1.493 (670)(658)(847)(1,461)(1,346)(1.205)(753)662 CPS-39 -6351.326 556 1.252 2.219 514 587 (1,496)(657)(798)(951)(1.617)(2.082)(776)

<sup>&</sup>lt;sup>9</sup> CPS-1, CPS-2, and CPS-3: Prob (T<sub>i</sub> = 1) = F(age, age<sup>2</sup>, education, education<sup>2</sup>, no degree, married, black, Hispanic, RE74, RE75, u74, u75, education\* RE74, age<sup>3</sup>).



a Least squares regression: RE78 on a constant, a treatment indicator, age, age2, education, no degree, black, Hispanic, RE74, RE75.

b Least squares regression of RE78 on a quadratic on the estimated propensity score and a treatment indicator, for observations used under stratification; see note (g).

c Number of observations refers to the actual number of comparison and treatment units used for (3)-(5); namely, all treatment units and those comparison units whose estimated propensity score is greater than the minimum, and less than the maximum, estimated propensity score for the treatment group.

d Weighted least squares: treatment observations weighted as 1, and control observations weighted by the number of times they are matched to a treatment observation [same covariates as (a)].

Propensity scores are estimated using the logistic model, with specifications as follows:

PSID-1: Prob (T<sub>i</sub> = 1) = F(age, age<sup>2</sup>, education, education<sup>2</sup>, married, no degree, black, Hispanic, RE74, RE75, RE74<sup>2</sup>, RE75<sup>2</sup>, u74\*black).
PSID-2 and PSID-3: Prob (T<sub>i</sub> = 1) = F(age, age<sup>2</sup>, education, education<sup>2</sup>, no degree, married, black, Hispanic, RE74, RE75<sup>2</sup>, RE75, RE75<sup>2</sup>, u74, u75).

#### Естественные эксперименты

ullet Неконтролируемые, но случайные факторы Z влияют на D, но не влияют на Y, иначе как через D

#### Естественные эксперименты

- Неконтролируемые, но случайные факторы Z влияют на D, но не влияют на Y, иначе как через D
- Вместо корреляции D с Y, смотрим только на ту её часть, которая «вызвана» Z

#### Естественные эксперименты

- Неконтролируемые, но случайные факторы Z влияют на D, но не влияют на Y, иначе как через D
- Вместо корреляции D с Y, смотрим только на ту её часть, которая «вызвана» Z
- Три подхода:
  - Инструментальные переменные
  - Четкий разрывный дизайн
  - Комбинация: нечеткий разрывный дизайн

# Инструменты. Случай бинарных Z, D

Как влияет таблетка на скорость выздоровления?

|       | L           | )          |             |
|-------|-------------|------------|-------------|
| Z     | 0           | 1          | Сред.<br>10 |
| 0     | 10<br>[300] | _          | 10          |
| 1     | 12<br>[100] | 6<br>[200] | 8           |
| Сред. | 10.5        | 6          |             |

- Двухшаговая оценка:
  - 1 шаг: влияние Z на D
  - ullet 2 шаг: влияние Z на Y делим на результат первого шага

- Двухшаговая оценка:
  - ullet 1 шаг: влияние Z на D
  - 2 шаг: влияние Z на Y делим на результат первого шага
- Предположения:
  - Независимость: Z определяется «случайно»
  - ullet Исключаемость: Z влияет на Y только через D
  - Монотонность: Z никогда не снижает D (+ релевантность: иногда повышает)

- Двухшаговая оценка:
  - 1 шаг: влияние Z на D
  - 2 шаг: влияние Z на Y делим на результат первого шага
- Предположения:
  - Независимость: Z определяется «случайно»
  - Исключаемость: Z влияет на Y только через D
  - Монотонность: Z никогда не снижает D (+ релевантность: иногда повышает)
- Люди делятся на 3 группы:  $D \equiv 0$ ,
  - D=Z («чувствительные»/«compliers»),  $D\equiv 1$ 
    - Мы оцениваем средний эффект на «чувствительных»—«локальный средний эффект воздействия» (LATE)
    - Группы не наблюдаемы, но можно узнать долю чувствительных и их средние характеристики

- Двухшаговая оценка:
  - 1 шаг: влияние Z на D
  - 2 шаг: влияние Z на Y делим на результат первого шага
- Предположения:
  - Независимость: Z определяется «случайно»
  - ullet Исключаемость: Z влияет на Y только через D
  - Монотонность: Z никогда не снижает D (+ релевантность: иногда повышает)
- Люди делятся на 3 группы:  $D \equiv 0$ ,
  - D=Z («чувствительные»/«compliers»),  $D\equiv 1$ 
    - Мы оцениваем средний эффект на «чувствительных»—«локальный средний эффект воздействия» (LATE)
    - Группы не наблюдаемы, но можно узнать долю чувствительных и их средние характеристики
- Обобщается на не-бинарные инструменты и воздействия

# Angrist (1990)

• Как влияет служба в армии на будущие доходы?

# Angrist (1990)

- Как влияет служба в армии на будущие доходы?
- Angrist (1990) использует лотерею на основе дней рождений при призыве на войну во Вьетнаме
- Но не все, попавшие под призыв, отслужили
  - а многие пошли добровольцами—как быть?
  - $Pr(D = 1 \mid Z = 1) Pr(D = 0 \mid Z = 0) = 16\%$
- Можно посчитать эффект «победы» в лотерее—а эффект службы?
  - Сравнить тех, кто служил, с остальными?

# Angrist (1990)

Table 4.1.3: Wald estimates of the effects of military service on the earnings of white men born in 1950

|               | Earnings |                       | Vet   | eran Status           | Wald                             |
|---------------|----------|-----------------------|-------|-----------------------|----------------------------------|
| Earnings year | Mean     | Eligibility<br>Effect | Mean  | Eligibility<br>Effect | Estimate of<br>Veteran<br>Effect |
|               | (1)      | (2)                   | (3)   | (4)                   | (5)                              |
| 1981          | 16,461   | -435.8<br>(210.5)     | 0.267 | 0.159<br>(0.040)      | -2,741<br>(1,324)                |
| 1971          | 3,338    | -325.9<br>(46.6)      |       | (0.040)               | -2050<br>(293)                   |
| 1969          | 2,299    | -2.0<br>(34.5)        |       |                       | , ,                              |

# Образование и доходы: Angrist, Krueger (1991)

• Что определяется «случайно», влияет на образование, но не на доходы напрямую?

# Образование и доходы: Angrist, Krueger (1991)

- Что определяется «случайно», влияет на образование, но не на доходы напрямую?
- Дата рождения!
  - Поступают в школу по году рождения
  - А бросать можно в определенном возрасте

# Образование и доходы: Angrist, Krueger (1991)

- Что определяется «случайно», влияет на образование, но не на доходы напрямую?
- Дата рождения!
  - Поступают в школу по году рождения
  - А бросать можно в определенном возрасте
- Проблемы
  - неслучайность даты рождения?
  - психологические факторы?
  - в защиту: нулевой эффект на вероятность окончить университет, если поступил

# Angrist, Krueger (1991)



# Angrist, Krueger (1991)

Table 4.1.2: Wald estimates of the returns to schooling using quarter of birth instruments

|                    | (1)               | (2)               | (3)                        |  |
|--------------------|-------------------|-------------------|----------------------------|--|
|                    | Born in the 1st   | Born in the 3rd   | Difference<br>(std. error) |  |
|                    | or 2nd quarter of | or 4th quarter of |                            |  |
|                    | year              | year              | (1)-(2)                    |  |
| ln (weekly wage)   | 5.8916            | 5.9051            | -0.01349                   |  |
|                    |                   |                   | (0.00337)                  |  |
| Years of education | 12.6881           | 12.8394           | -0.1514                    |  |
|                    |                   |                   | (0.0162)                   |  |
| Vald estimate of   |                   |                   | 0.0891                     |  |
| eturn to education |                   |                   | (0.0210)                   |  |
| OLS estimate of    |                   |                   | 0.0703                     |  |
| eturn to education |                   |                   | (0.0005)                   |  |

• Как понять, влияет ли Z на Y не через D? Трудно, но иногда можно

- Как понять, влияет ли Z на Y не через D? Трудно, но иногда можно
- Найти часть популяцию, где на D не влияет, а на Y всё равно влияет

- Как понять, влияет ли Z на Y не через D? Трудно, но иногда можно
- ullet Найти часть популяцию, где на D не влияет, а на Y всё равно влияет
- Увеличивает ли падение доходов вероятность вооруженного конфликта?

- Как понять, влияет ли Z на Y не через D? Трудно, но иногда можно
- ullet Найти часть популяцию, где на D не влияет, а на Y всё равно влияет
- Увеличивает ли падение доходов вероятность вооруженного конфликта?
  - Инструмент для дохода: количество дождя

- Как понять, влияет ли Z на Y не через D? Трудно, но иногда можно
- Найти часть популяцию, где на D не влияет, а на Y всё равно влияет
- Увеличивает ли падение доходов вероятность вооруженного конфликта?
  - Инструмент для дохода: количество дождя
- Sarsons (2015) для Индии: инструмент не валиден—как доказать?

- Как понять, влияет ли Z на Y не через D? Трудно, но иногда можно
- Найти часть популяцию, где на D не влияет, а на Y всё равно влияет
- Увеличивает ли падение доходов вероятность вооруженного конфликта?
  - Инструмент для дохода: количество дождя
- Sarsons (2015) для Индии: инструмент не валиден—как доказать?
- Дамбы!

## Четкий разрывный дизайн

• Как влияет нахождение у власти на результат (честных) выборов?

# Lee (2008), Lee, Lemieux (2010)



# Манипуляции



Figure 16. Density of the Forcing Variable (Vote Share in Previous Election)

• Снова образование и зарплата

- Снова образование и зарплата
- Во Флориде есть порог школьного среднего балла, при котором можно поступать в государственные университеты
- Порог одинаковый, а средний балл рассчитывается каждым вузом по-разному
  - у Флоридского Международного Университета—самый высокий

- Снова образование и зарплата
- Во Флориде есть порог школьного среднего балла, при котором можно поступать в государственные университеты
- Порог одинаковый, а средний балл рассчитывается каждым вузом по-разному
  - у Флоридского Международного Университета—самый высокий
- Сравниваем абитуриентов вокруг этого порога
  - не все из них в итоге пошли учиться
  - некоторых ниже порога всё-таки тоже взяли

- Снова образование и зарплата
- Во Флориде есть порог школьного среднего балла, при котором можно поступать в государственные университеты
- Порог одинаковый, а средний балл рассчитывается каждым вузом по-разному
  - у Флоридского Международного Университета—самый высокий
- Сравниваем абитуриентов вокруг этого порога
  - не все из них в итоге пошли учиться
  - некоторых ниже порога всё-таки тоже взяли
- Совмещает разрывный дизайн с инструментом!
- Проблема: разрыв в плотности

# Zimmerman (2014)



# Zimmerman (2014)



## Zimmerman (2014)

Table 5
Earnings Effects 8–14 Years after High School Completion

|                                   | Main    | Controls | BW=.5   | BW=.15  | Local Linear |
|-----------------------------------|---------|----------|---------|---------|--------------|
| Reduced-form estimates:           |         |          |         |         |              |
| Above cutoff                      | 372*    | 366**    | 409**   | 479**   | 410**        |
|                                   | (141)   | (130)    | (154)   | (198)   | (147)        |
| Instrumental variables estimates: |         |          |         |         |              |
| FIU admission                     | 1,593*  | 1,575**  | 1,665** | 1,700** | 2,001*       |
|                                   | (604)   | (584)    | (645)   | (621)   | (696)        |
| Years of SUS attendance           | 815**   | 792**    | 833**   | 966***  | 977**        |
|                                   | (276)   | (262)    | (271)   | (305)   | (306)        |
| BA degree                         | 6,547*  | 6,442*   | 7,366*  | 10,769  | 5,958**      |
|                                   | (2,496) | (2,411)  | (2,998) | (5,726) | (2,024)      |
| N                                 | 6,542   | 6,542    | 9,659   | 3,294   | 6,542        |

NOTE.—FIU = Florida International University; SUS = State University; System; BA = bachelor's degree. Standard errors are clustered within grade bins. The p-values are calculated using a clustered wild bootstrap-procedure described in Sec. III and app. B. The dependent variable in each regression is average quarterly earmings in 2005 dollars. The "BW=,15" specification uses observations within .15 grade points above and below the cutoff and allows for a linear trend in distance from the cutoff. The "BW=,5" specification uses observations within the .5 grade points on either side of the cutoff and allows for a quartic polynomial in distance from the cutoff. The "Local Linear" specification is identical to the main specification, but it allows for linear slope terms in distance from the cutoff that differ above and below the threshold.

- Как минимум, две группы и два года
- «Экспериментальная» группа получила воздействие во втором году, «контрольная» никогда

- Как минимум, две группы и два года
- «Экспериментальная» группа получила воздействие во втором году, «контрольная» никогда
- Группы разные, но предполагаем параллельность трендов
- Оценка:  $(\bar{y}_{T,2} \bar{y}_{C,2}) (\bar{y}_{T,1} \bar{y}_{C,1})$
- Проблема: параллельны ли тренды?

- Как минимум, две группы и два года
- «Экспериментальная» группа получила воздействие во втором году, «контрольная» никогда
- Группы разные, но предполагаем параллельность трендов
- Оценка:  $(\bar{y}_{T,2} \bar{y}_{C,2}) (\bar{y}_{T,1} \bar{y}_{C,1})$
- Проблема: параллельны ли тренды?
  - решение: смотрим на предыдущие периоды

- Как минимум, две группы и два года
- «Экспериментальная» группа получила воздействие во втором году, «контрольная» никогда
- Группы разные, но предполагаем параллельность трендов
- Оценка:  $(\bar{y}_{T,2} \bar{y}_{C,2}) (\bar{y}_{T,1} \bar{y}_{C,1})$
- Проблема: параллельны ли тренды?
  - решение: смотрим на предыдущие периоды
- Проблема: нет ли одновременно других шоков?

- Как минимум, две группы и два года
- «Экспериментальная» группа получила воздействие во втором году, «контрольная» никогда
- Группы разные, но предполагаем параллельность трендов
- Оценка:  $(\bar{y}_{T,2} \bar{y}_{C,2}) (\bar{y}_{T,1} \bar{y}_{C,1})$
- Проблема: параллельны ли тренды?
  - решение: смотрим на предыдущие периоды
- Проблема: нет ли одновременно других шоков?
  - лучше иметь много групп, много периодов и воздействия в разные годы

- Как минимум, две группы и два года
- «Экспериментальная» группа получила воздействие во втором году, «контрольная» никогда
- Группы разные, но предполагаем параллельность трендов
- Оценка:  $(\bar{y}_{T,2} \bar{y}_{C,2}) (\bar{y}_{T,1} \bar{y}_{C,1})$
- Проблема: параллельны ли тренды?
  - решение: смотрим на предыдущие периоды
- Проблема: нет ли одновременно других шоков?
  - лучше иметь много групп, много периодов и воздействия в разные годы
- Или можно добавить третье измерение: два региона (C, T), два периода (1, 2), две группы людей (N, Y):

$$((\bar{y}_{TY2} - \bar{y}_{CY2}) - (\bar{y}_{TY1} - \bar{y}_{CY1})) - ((\bar{y}_{TN2} - \bar{y}_{CN2}) - (\bar{y}_{TN1} - \bar{y}_{CN1}))$$

• например: программа здравоохранения для пожилых в регионе, у—показатель здоровья, У—пожилые, И—немножко моложе

#### Больше примеров

- Как телевидение влияет на политические предпочтения?
- 2 Как рождение ребенка влияет на склонность женщин работать?
- Как соавторы влияют на производительность изобретателей?
- Как привелегированные школы (charter schools) влияют на успеваемость?

- Enikolopov, Petrova, Zhuravskaya (2011)
- Как НТВ повлияло на исход выборов в России в 1999 году?

- Enikolopov, Petrova, Zhuravskaya (2011)
- Как НТВ повлияло на исход выборов в России в 1999 году?
- ullet D= регулярный просмотр HTB, Y= голосование за оппозицию

- Enikolopov, Petrova, Zhuravskaya (2011)
- Как НТВ повлияло на исход выборов в России в 1999 году?
- ullet D= регулярный просмотр HTB, Y= голосование за оппозицию
- Естественный эксперимент?
  - НТВ ловило не везде
  - Случайные причины: наследие советских телевышек
  - Инструмент!

- Enikolopov, Petrova, Zhuravskaya (2011)
- Как НТВ повлияло на исход выборов в России в 1999 году?
- ullet D= регулярный просмотр HTB, Y= голосование за оппозицию
- Естественный эксперимент?
  - НТВ ловило не везде
  - Случайные причины: наследие советских телевышек
  - Инструмент!
- Вывод: снижение результата Единства на 9 проц.пунктов

 $\bullet$  Angrist and Evans (1998)

- Angrist and Evans (1998)
- Как рождение третьего ребенка влияет на вероятность, что женщина будет работать?

- Angrist and Evans (1998)
- Как рождение третьего ребенка влияет на вероятность, что женщина будет работать?
- Естественный эксперимент? (Целых два!)
  - Первые два ребенка разных полов
  - Второй и третий ребенок—двойняшки

- Angrist and Evans (1998)
- Как рождение третьего ребенка влияет на вероятность, что женщина будет работать?
- Естественный эксперимент? (Целых два!)
  - Первые два ребенка разных полов
  - Второй и третий ребенок—двойняшки
- Вывод: эффект есть, но слабее, чем кажется, и только на менее образованных и бедных женщин

• Jaravel, Petkova, Bell (2015)

- Jaravel, Petkova, Bell (2015)
- Влияют ли соавторы на производительность изобретателя?

- Jaravel, Petkova, Bell (2015)
- Влияют ли соавторы на производительность изобретателя?
- Естественный эксперимент?
  - Внезапная смерть соавтора
  - Хотя и случайна, но нужна аккуратная контрольная группа
    - соавторы умершего более успешны, чем случайный изобретатель! (Эффект Фейсбука)
  - Отбор на наблюдаемым характеристикам: прошлым патентам и т.п.

- Jaravel, Petkova, Bell (2015)
- Влияют ли соавторы на производительность изобретателя?
- Естественный эксперимент?
  - Внезапная смерть соавтора
  - Хотя и случайна, но нужна аккуратная контрольная группа
    - соавторы умершего более успешны, чем случайный изобретатель! (Эффект Фейсбука)
  - Отбор на наблюдаемым характеристикам: прошлым патентам и т.п.
- Вывод: большой и продолжительный эффект на патенты, их качество (цитирования) и зарплату

- Jaravel, Petkova, Bell (2015)
- Влияют ли соавторы на производительность изобретателя?
- Естественный эксперимент?
  - Внезапная смерть соавтора
  - Хотя и случайна, но нужна аккуратная контрольная группа
    - соавторы умершего более успешны, чем случайный изобретатель! (Эффект Фейсбука)
  - Отбор на наблюдаемым характеристикам: прошлым патентам и т.п.
- Вывод: большой и продолжительный эффект на патенты, их качество (цитирования) и зарплату
- Проблема: баланс общего заработка, но не его отдельных составляющий

• Angrist, Pathak, Walters (2011) и более старые работы

- Angrist, Pathak, Walters (2011) и более старые работы
- Как поступление в бесплатную «charter school» влияет на успеваемость, измеренную стандартированными тестами (вроде ГИА)?

- Angrist, Pathak, Walters (2011) и более старые работы
- Как поступление в бесплатную «charter school» влияет на успеваемость, измеренную стандартированными тестами (вроде ГИА)?
- Естественный эксперимент: отбор по лотерее

- Angrist, Pathak, Walters (2011) и более старые работы
- Как поступление в бесплатную «charter school» влияет на успеваемость, измеренную стандартированными тестами (вроде ГИА)?
- Естественный эксперимент: отбор по лотерее
- Вывод: большой эффект, но только среди школ с философией «без глупостей» («No excuses»)
  - упор на дисциплину и поведение, подготовку к университету и качество учителей
  - но не на «social and physical well-being», лидерство и т.п.