What is claimed is:

1. A compound or a pharmaceutically acceptable salt represented by Formula (I):

$$R^{1}-N \longrightarrow N \longrightarrow NH_{2} \longrightarrow NH_{2$$

wherein:

15

20

25

30

35

is a nitrogen-containing 3-to 10-membered heterocyclyl ring optionally substituted by one to three substituents selected from R⁷;

R¹ is:

i) R4.

ii) a group having a formula -SO_n-T-(CR⁹R¹⁰)_bR³, -SO_n-(CR⁹R¹⁰)_b-T-R³, -SO_nNR⁴C(O)R³, wherein n or b are, independently, 0, 1 or 2 and T is a bond, -O-, -NR⁴-, or -S-; or

iii) a group having a formula $-C(=O)-R^3$ $-C(=O)-HC=CH-R^3$, $-C(=O)NHR^3$, $-C(=O)NR^5R^6$, or $-C(=S)R^3$;

 R^2 is (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, $-O-(C_1-C_8)$ alkyl, (C_6-C_{10}) aryl, or 4-to 10-membered heterocyclyl, optionally substituted by one to four substituents selected from R^7 ;

 $\label{eq:wherein R3} \mbox{ wherein R3} \mbox{ is OH, F, CI, Br, I, CN, CF3, NO2, $-(CH_2)_dNR^5R^6$, $-O-R^4$, $-SO_p-R^4$ wherein p is 0,1, or 2, $-PO_p-R^4$ wherein p is 3 or 4, $(C_1-C_8)alkyl$, $-(CH_2)_d(C_3-C_{13})$ cycloalkyl$, $-O-(C_1-C_8)alkyl$, $-(CH_2)_d-(C_6-C_{10})$ aryl$, $-(CH_2)_d-(4-to 10-membered heterocyclyl$)$, $(C_2-C_6)alkenyl$, $(C_2-C_6)alkynyl$, $-SO_q-NR^5R^6$, wherein d is an integer 0 to 6 and q is 1 or 2, $-C(=O)-R^8$, $-C(O)OR^8$, $-C(=O)-NR^5R^6$;}$

wherein R⁴ is selected from the group consisting of hydrogen, (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, $-(CH_2)_e-(C_3-C_{13})$ cycloalkyl, $-(CH_2)_e-(C_6-C_{10})$ aryl, or $-(CH_2)_e-(4-to10-membered heterocyclyl);$

wherein R⁵ is independently H or (C₁-C₈)alkyl;

wherein R^6 is selected from the group consisting of $-Si(CH_3)_3$, $(C_1-C_8)alkyl$, $-O-(C_1-C_8)alkyl$, $-CH_2-(C=O)-O-(C_1-C_8)alkyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, and 4-to 10-membered heterocyclyl; or R^5 and R^6 when attached to the same nitrogen may optionally be taken together with the same nitrogen to form a 5-to 10-membered heterocyclyl ring;

wherein each (C₁-C₈)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, -O-(C₁-C₈)alkyl, (C₃-C₁₃)cycloalkyl, (C₆-C₁₀)aryl, and 4-to 10-membered heterocyclyl, in the above definitions of said R³, R⁴, R⁵, R⁶ and R⁸ may be optionally substituted by one to four R⁷ substituents; wherein R⁷ is (C₁-C₈)alkyl, (C₃-C₁₃)cycloalkyl, (C₆-C₁₀)aryl, 4-to 10-membered heterocyclyl, (C₂-C₆) alkenyl, (C₂-C₆) alkynyl, -O-(C₁-C₈)alkyl, H, OH, F, Cl, Br, I, CN, CF₃,

10

15

20

25

35

amidino, $-C(O)OR^9$, $-C(O)R^9$, $-SR^9$, $-SO_2R^9$, $-NO_2$, $-NR^9C(O)R^{10}$, $-OC(O)R^9$ -aryl, $-NSO_2R^9$, $-SC(O)R^9$, $-NC(=S)NR^9R^{10}$, $-O-N=CR^9$, $-N=N-R^9$, $-C(O)NR^9R^{10}$, $-(CH_2)_t-NR^9R^{10}$, 2- to 10-membered heteroalkyl, 3- to 10- membered heteroalkenyl, 3- to 10- membered heteroalkynyl, $-(CH_2)_t(C_6-C_{10} \text{ aryl})$, $-(CH_2)_t(4-\text{ to 10- membered heterocyclic})$, -(2- to 10- membered heteroalkyl)- $-(C_6-C_{10} \text{ aryl})$, -(2- to 10- membered heteroalkyl)- $-(C_6-C_{10} \text{ aryl})$, -(C-10), $-(CH_2)_tOR^9$, and $-(CH_2)_tOR^9$, wherein t is an integer from 0 to 6 and u is an integer from 2 to 6, H or $-(C_1-C_9)$ alkyl;

wherein R^8 is selected from the group consisting of H, OH, CF₃, (C₁-C₈)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, -O-(C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, -O-(C₃-C₁₀)cycloalkyl, 4-to 10-membered heterocyclyl, and 4-to 10-membered –O-heterocyclyl;

wherein each R^9 and R^{10} are independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_1-C_8) alkoxyl, $-CH_2-(C=O)-O-(C_1-C_8)$ alkyl, (C_3-C_{10}) cycloalkyl, (C_6-C_{10}) aryl, and 4-to 10-membered heterocyclyl; or R^9 and R^{10} when together attached to the same N, may optionally be taken together with the same nitrogen to form a 5-to 10-membered heterocyclyl ring; with the proviso that where R^9 and R^{10} are both attached to the same nitrogen, then R^9 and R^{10} are not both bonded to the nitrogen directly through an oxygen;

wherein any of the ring members of each (C_3-C_{13}) cycloalkyl or 4-to 10-membered heterocyclyl in R^3 , R^4 , R^6 , R^7 , R^8 , R^9 and R^{10} may be optionally substituted with an oxo (=O) and wherein any of the (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, (C_3-C_{13}) cycloalkyl, (C_6-C_{10}) aryl, and 4-to 10-membered heterocyclyl in R^7 , R^9 and R^{10} may be independently further substituted with at least one OH, F, CL, Br, I, CN, CF₃, NO₂, $-(C_1-C_8)$ alkyl, $-(C_1-C_8)$ alkoxyl, COH, or $-(C_1-C_8)$ alkyl, $-(C_1-C_8)$ alkoxyl, COH, or $-(C_1-C_8)$ alkyl).

- 2. A compound or salt according to claim 1, wherein R¹ is R⁴, optionally substituted by one or more R⁹ substituents.
 - 3. A compound or pharmaceutically acceptable salt represented by Formula (I):

wherein:

is a nitrogen-containing 3-to 10-membered heterocyclyl ring optionally substituted by one to three substituents selected from R⁷;

10

15

20

25

30

35

 R^1 is a group having a formula $-SO_n-T-(CR^9R^{10})_bR^3$, $-SO_n-(CR^9R^{10})_b-T-R^3$, $-SO_nNR^4C(O)R^3$, wherein n or b are, independently, 0, 1 or 2 and T is a bond, -O-, $-NR^4$ -, or -S-; or

 $R^2 \text{ is } (C_1\text{-}C_8) \text{alkyl, } (C_3\text{-}C_{10}) \text{cycloalkyl, } -\text{O-}(C_1\text{-}C_8) \text{alkyl, } (C_6\text{-}C_{10}) \text{aryl, or } 4\text{-to } 10\text{-}$ membered heterocyclyl, optionally substituted by one to four substituents selected from R^7 ; wherein R^3 is OH, F, Cl, Br, I, CN, CF₃, NO₂, $-\text{NR}^5R^6$, $-\text{O-R}^4$, $-\text{SO}_p\text{-}R^4$ wherein p is 0,1, or 2, $-\text{PO}_p\text{-}R^4$ wherein p is 3 or 4, $(C_1\text{-}C_8) \text{alkyl, } -(\text{CH}_2)_d(C_3\text{-}C_{13}) \text{cycloalkyl, } -\text{O-}(C_1\text{-}C_8) \text{alkyl, } -(\text{CH}_2)_d\text{-}(C_6\text{-}C_{10}) \text{aryl, } -(\text{CH}_2)_d\text{-}(4\text{-to } 10\text{-membered heterocyclyl), } (C_2\text{-}C_6) \text{alkenyl, } (C_2\text{-}C_6) \text{alkynyl, } -\text{SO}_q\text{-}NR^5R^6$, wherein d is an integer 0 to 6 and q is 1 or 2, $-\text{C}(=\text{O})\text{-}R^8$, $-\text{C}(\text{O})\text{OR}^8$, or $-\text{C}(=\text{O})\text{-}NR^5R^6$;

wherein R⁴ is each independently selected from the group consisting of hydrogen, (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, $-(CH_2)_e-(C_3-C_{13})$ cycloalkyl, $-(CH_2)_e-(C_6-C_{10})$ aryl, or $-(CH_2)_e-(4-to10-membered heterocyclyl)$;

wherein R⁵ is independently H or (C₁-C₈)alkyl;

wherein R^6 is selected from the group consisting of $-Si(CH_3)_3$, $(C_1-C_8)alkyl$, $-O-(C_1-C_8)alkyl$, $-CH_2-(C=O)-O-(C_1-C_8)alkyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, and 4-to 10-membered heterocyclyl; or R^5 and R^6 when attached to the same nitrogen may optionally be taken together with the same nitrogen to form a 5-to 10-membered heterocyclyl ring;

wherein each (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, -O- (C_1-C_8) alkyl, (C_3-C_{13}) cycloalkyl, (C_6-C_{10}) aryl, and 4-to 10-membered heterocyclyl, in the above definitions of said R^3 , R^4 , R^5 , R^6 and R^8 may be optionally substituted by one to four R^7 substituents;

wherein R^7 is (C_1-C_8) alkyl, (C_3-C_{13}) cycloalkyl, (C_6-C_{10}) aryl, 4-to 10-membered heterocyclyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, H, OH, F, CI, Br, I, CN, CF₃, amidino, $-C(O)OR^9$, $-C(O)R^9$, $-SR^9$, $-SO_2R^9$, $-NO_2$, $-NR^9C(O)R^{10}$, $-OC(O)R^9$ -aryl, $-NSO_2R^9$, $-SC(O)R^9$, $-NC(=S)NR^9R^{10}$, $-O-N=CR^9$, $-N=N-R^9$, $-C(O)NR^9R^{10}$, $-(CH_2)_t-NR^9R^{10}$, 2 to 10 membered heteroalkyl, 3- to 10- membered heteroalkenyl, 3- to 10- membered heteroalkyl, $-(CH_2)_t(C_6-C_{10} \text{ aryl})$, $-(CH_2)_t(4 \text{ to 10 membered heterocyclic})$, -(2 to 10 membered heteroalkyl)- $(C_6-C_{10} \text{ aryl})$, -(2 to 10 membered heteroalkyl)- $(C_6-C_{10} \text{ aryl})$, -(2 to 10 membered heteroalkyl)- $(CH_2)_tO(CH_2)_uOR^9$, and $-(CH_2)_tOR^9$, wherein t is an integer from 0 to 6 and u is an integer from 2 to 6, H or (C_1-C_8) alkyl;

wherein R^8 is selected from the group consisting of H, OH, CF_3 , (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, (C_3-C_{10}) cycloalkyl, $-O-(C_3-C_{10})$ cycloalkyl, $-O-(C_3-C_{10$

wherein each R^9 and R^{10} are independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_1-C_8) alkoxyl, $-CH_2-(C=O)-O-(C_1-C_8)$ alkyl, (C_3-C_{10}) cycloalkyl, (C_6-C_{10}) aryl, and 4-to 10-membered heterocyclyl; or R^9 and R^{10} when together attached to the same N, may optionally be taken together with the same nitrogen to form a 5-to 10-membered heterocyclyl

ring; with the proviso that where R^9 and R^{10} are both attached to the same nitrogen, then R^9 and R^{10} are not both bonded to the nitrogen directly through an oxygen;

wherein any of the ring members of each (C_3-C_{13}) cycloalkyl or 4-to 10-membered heterocyclyl in R^3 , R^4 , R^6 , R^7 , R^8 , R^9 and R^{10} may be optionally substituted with an oxo (=O) and wherein any of the (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, (C_3-C_{13}) cycloalkyl, (C_6-C_{10}) aryl, and 4-to 10-membered heterocyclyl in R^7 , R^9 and R^{10} may be independently further substituted with at least one OH, F, CL, Br, I, CN, CF₃, NO₂, $-(C_1-C_8)$ alkyl, $-(C_1-C_8)$ alkoxyl, COH, or $-(C_1-C_8)$ alkyl, $-(C_1-C_8)$ alkoxyl, COH, or $-(C_1-C_8)$ alkyl).

10 4. A compound or pharmaceutically acceptable salt represented by Formula (I):

$$R^{1}-N \longrightarrow N \longrightarrow NH_{2}$$

$$R^{2} \longrightarrow NH_{2}$$

$$R^{2} \longrightarrow NH_{2}$$

$$R^{2} \longrightarrow NH_{2}$$

$$R^{2} \longrightarrow NH_{2}$$

wherein:

-C(=O)-NR5R6;

5

15

20

25

30

35

is a nitrogen-containing 3-to 10-membered heterocyclyl ring optionally substituted by one to three substituents selected from R⁷;

 R^1 is a group having a formula $-C(=O)-R^3$, $-C(=O)-HC=CH-R^3$, $-C(=O)NHR^3$, $-C(=O)NR^5R^6$ or $-C(=S)R^3$;

R² is (C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, -O-(C₁-C₈)alkyl, (C₆-C₁₀)aryl, or 4-to 10-membered heterocyclyl, optionally substituted by one to four substituents selected from R⁷; wherein R³ is OH, F, Cl, Br, I, CN, CF₃, NO₂, -NR⁵R⁶, -O-R⁴, -SO_p-R⁴ wherein p is 0,1, or 2, -PO_p-R⁴ wherein p is 3 or 4, (C₁-C₈)alkyl, -(CH₂)_d(C₃-C₁₃)cycloalkyl, -O-(C₁-C₈)alkyl, -(CH₂)_d-(C₆-C₁₀)aryl, -(CH₂)_d-(4-to 10-membered heterocyclyl), (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, -SO_q-NR⁵R⁶, wherein d is an integer 0 to 6 and q is 1 or 2, -C(=O)-R⁸, -C(O)OR⁸, or

wherein R⁴ is each independently selected from the group consisting of hydrogen, (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, $-(CH_2)_e-(C_3-C_{13})$ cycloalkyl, $-(CH_2)_e-(C_6-C_{10})$ aryl, or $-(CH_2)_e-(4-to10-membered heterocyclyl)$;

wherein R⁵ is independently H or (C₁-C₈)alkyl;

wherein R^6 is selected from the group consisting of $-Si(CH_3)_3$, $(C_1-C_8)alkyl$, $-O-(C_1-C_8)alkyl$, $-CH_2-(C=O)-O-(C_1-C_8)alkyl$, $(C_3-C_{10})cycloalkyl$, $(C_6-C_{10})aryl$, and 4-to 10-membered heterocyclyl; or R^5 and R^6 when attached to the same nitrogen may optionally be taken together with the same nitrogen to form a 5-to 10-membered heterocyclyl ring;

10

15

20

25

30

35

wherein each (C_1 - C_8)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, -O-(C_1 - C_8)alkyl, (C_3 - C_{13})cycloalkyl, (C_6 - C_{10})aryl, and 4-to 10-membered heterocyclyl, in the above definitions of said R^3 , R^4 , R^5 , R^6 and R^8 may be optionally substituted by one to four R^7 substituents;

wherein R^7 is (C_1-C_8) alkyl, (C_3-C_{13}) cycloalkyl, (C_6-C_{10}) aryl, 4-to 10-membered heterocyclyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, -O- (C_1-C_8) alkyl, H, OH, F, CI, Br, I, CN, CF₃, amidino, -C(O)OR⁹, -C(O)R⁹, -SR⁹, -SO₂R⁹, -NO₂, -NR⁹C(O)R¹⁰, -OC(O)R⁹-aryl, -NSO₂R⁹, -SC(O)R⁹, -NC(=S)NR⁹R¹⁰, -O-N=CR⁹, -N=N-R⁹, -C(O)NR⁹R¹⁰, -(CH₂)_t-NR⁹R¹⁰, 2- to 10-membered heteroalkyl, 3- to 10- membered heteroalkenyl, 3- to 10- membered heteroalkyl, (C₆-C₁₀ aryl), -(CH₂)_t(4 to 10 membered heterocyclic), -(2 to 10 membered heteroalkyl)-(C₆-C₁₀ aryl), -(2 to 10 membered heteroalkyl)-(4 to 10 membered heterocyclyl), -(CH₂)_tO(CH₂)_uOR⁹, and -(CH₂)_tOR⁹, wherein t is an integer from 0 to 6 and u is an integer from 2 to 6, H or (C₁-C₈)alkyl;

wherein R^8 is selected from the group consisting of H, OH, CF_3 , (C_1-C_8) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, $-O-(C_1-C_8)$ alkyl, (C_3-C_{10}) cycloalkyl, $-O-(C_3-C_{10})$ cycloalkyl, 4-to 10-membered heterocyclyl, and 4-to 10-membered -O-heterocyclyl;

wherein each R^9 and R^{10} are independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_1-C_8) alkoxyl, $-CH_2-(C=O)-O-(C_1-C_8)$ alkyl, (C_3-C_{10}) cycloalkyl, (C_6-C_{10}) aryl, and 4-to 10-membered heterocyclyl; or R^9 and R^{10} when together attached to the same N, may optionally be taken together with the same nitrogen to form a 5-to 10-membered heterocyclyl ring; with the proviso that where R^9 and R^{10} are both attached to the same nitrogen, then R^9 and R^{10} are not both bonded to the nitrogen directly through an oxygen;

wherein any of the ring members of each $(C_3\text{-}C_{13})$ cycloalkyl or 4-to 10-membered heterocyclyl in R^3 , R^4 , R^6 , R^7 , R^8 , R^9 and R^{10} may be optionally substituted with an oxo (=O) and wherein any of the $(C_1\text{-}C_8)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, -O- $(C_1\text{-}C_8)$ alkyl, $(C_3\text{-}C_{13})$ cycloalkyl, $(C_6\text{-}C_{10})$ aryl, and 4-to 10-membered heterocyclyl in R^7 , R^9 and R^{10} may be independently further substituted with at least one OH, F, CL, Br, I, CN, CF₃, NO₂, -(C₁-C₈)alkyl, -(C₁-C₈) alkoxyl, COH, or C(O)- $(C_1\text{-}C_8\text{alkyl})$.

- 5. A compound or salt according to claim 3, wherein R¹ is -SO_n-T-R³, T is as defined above and R³ is a 4-to 10-membered heterocyclic, optionally substituted by one to four substituents selected from R⁷.
- 6. A compound or salt according to claim 3, wherein T is a bond, R^3 is a 4-to 10-membered heterocyclic and R^7 is an -(C₁-C₈)alkyl.
- 7. A compound or salt according to claim 4, wherein R^3 is a -(CH₂)_d(C₃-C₁₃)cycloalkyl, -O-(C₁-C₈)alkyl, -(CH₂)_d-(C₆-C₁₀)aryl, -(CH₂)_d-(4-to 10-membered heterocyclyl), wherein each

 R^3 (C_3 - C_{10})cycloalkyl, (C_6 - C_{10})aryl, or 4-to 10-membered heterocyclic may be optionally substituted by one to four R^7 substituents.

- 8. A compound or salt according to claim 3, wherein T is a bond, R³ is a 5-membered heterocyclyl; and R³ is (C₁-C₀)alkyl, (C₃-C₁₃)cycloalkyl, (C₆-C₁₀)aryl, or 4-to 10-membered heterocyclyl, -O-(C₁-C₀)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl; wherein each (C₁-C₀)alkyl, (C₃-C₁₃)cycloalkyl, (C₆-C₁₀)aryl, or 4-to 10-membered heterocyclyl, -O-(C₁-C₀)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl may be independently optionally substituted with at least one OH, F, CL, Br, I, CN, CF₃, NO₂, -(C₁-C₀)alkyl, -(C₁-C₀) alkoxyl, COH, or C(O)-(C₁-C₀alkyl).
- 9. A compound or salt according to claim 4, wherein R³ is a 5-membered heteroaryl; and R³ is (C₁-C₀)alkyl, (C₃-C₁₀)cycloalkyl, (C₀-C₁₀)aryl, or 4-to 10-membered heterocyclyl, -O-(C₁-C₀)alkyl, (C₂-C₀)alkenyl, or (C₂-C₀)alkynyl; wherein each (C₁-C₀)alkyl, (C₃-C₁₀)cycloalkyl, (C₀-C₁₀)aryl, or 4-to 10-membered heterocyclyl, (C₁-C₀)alkyl-O-, (C₂-C₀)alkenyl, or (C₂-C₀)alkynyl may be optionally substituted with at least one OH, F, CL, Br, I, CN, CF₃, NO₂, (C₁-C₀)alkyl, -(C₁-C₀) alkoxyl, COH, or C(O)-(C₁-C₀alkyl);
 - 10. A compound or salt according to claim 1, wherein R² is a 4- to 10- membered heterocyclyl having one or more substituents selected from the group consisting of F, Cl, Br, I.
- 20 11. A compound or salt according to claim 3, wherein the group: is a nitrogen-containing 4-6 membered heterocyclyl ring optionally substituted with (C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, or 4- to 10-membered heterocyclyl; and R² is a (C₆-C₁₀)aryl, or a 4- to 10-membered heterocyclyl having one or more substituents selected from the group consisting of a F, Cl, Br, I.
- 12. A compound or salt according to claim 4, wherein the group: is a nitrogen-containing 4-6 membered heterocyclyl ring optionally substituted by (C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, (C₆-C₁₀)aryl, or 4- to 10-membered heterocyclyl; and R² is a (C₆-C₁₀)aryl or 4- to 10-membered heterocyclyl having one or more substituents selected from the group consisting of F, Cl, Br, I.
 - 13. A pharmaceutical composition comprising an amount of active agent effective to modulate cellular proliferation and a pharmaceutically acceptable carrier, said active agent being selected from the group consisting of a compound as defined in claim 1, or a pharmaceutically acceptable salt thereof.

35

30

- 14. A pharmaceutical composition comprising an amount of active agent effective to inhibit protein kinases and a pharmaceutically acceptable carrier, said active agent being selected from the group consisting of a compound as defined in claim 1, or a pharmaceutically acceptable salt thereof.
- 15. A compound selected from the group consisting of:

or a pharmaceutically acceptable salt of such compound.