

Human-Centered Data & Al

Google for Startups

Accelerator Mentor

Vinicius Caridá, Ph.D.

 Executive Specialist, Artificial Intelligence and Data - Itaú

MBA Professor – FIAP and ESPM

Algoritmos Genéticos

Objetivo

Tentar melhorar as qualidades genéticas de uma população através de um processo de renovação iterativa das populações

Roteiro

- Introdução
 - Otimização
- Algoritmos Genéticos
 - Representação
 - Seleção
 - Operadores Geneticos
- Aplicação
 - Caixeiro Viajante

Introdução

 Os Algoritmos Genéticos (AGs) são algoritmos de busca e otimização, que utilizam regras baseadas em uma metáfora do processo evolutivo proposto por Charles Darwin, operando sobre um espaço de soluções codificado (GOLDBERG, 1989); (HOLLAND, JOHN. H., 1992).

• Os AGs simulam o mecanismo evolucionário dos sistemas biológicos naturais, onde os indivíduos mais aptos têm maior probabilidade de se reproduzir gerando descendentes.

Características

✓ Método de busca populacional, i.e, parte de um conjunto de soluções, aplicando sobre estes operadores que visam à melhoria desse conjunto

✓ Fundamentam-se em uma analogia com processos naturais de evolução, nos quais, dada uma população, os indivíduos com características genéticas melhores têm maiores chances de sobrevivência e de produzirem filhos cada vez mais aptos, enquanto indivíduos menos aptos tendem a desaparecer

Características

- ✓ As características dos indivíduos, registradas em seus genes, são transmitidas para seus descendentes e tendem a propagar-se por novas gerações
- ✓ Características dos descendentes são <u>parcialmente herdadas de seus pais</u> (*Crossover*) e parcialmente de novos <u>genes criados durante o processo de reprodução</u> (*Mutação*)

Otimização - Definição

- Espaço de Busca
 - Possíveis soluções de um problema

- Função Objetivo
 - Avalia cada solução com uma nota

- Tarefa:
 - Encontrar a solução que corresponda ao ponto de máximo (ou mínimo) da função objetivo

Otimização - Dificuldades

Alguns problemas podem ter espaços de busca muito grandes

 Muitos algoritmos não são capazes de localizar ótimo global na presença de múltiplos ótimos locais

Otimização - Exemplo

- Achar ponto máximo da função
 - $f(x) = xsen(10\pi x) + 1$, $-1 \le x \le 2$

Exemplo – Problema do Caixeiro-viajante

Exemplo – Problema do Caixeiro-viajante

Problema

- Encontrar a melhor rota que percorre todas as distribuidoras
- Melhor = Menor Distância

Algoritmos Genéticos

- Geração de um conjunto inicial de soluções que são iterativamente melhoradas
 - População de indivíduos (cromossomos)

- Busca de soluções seguem um processo evolutivo
 - Seleção dos mais aptos +

Transmissão de características

AG x Problema de Otimização

AG	Problema de Otimização
Indivíduo	Solução de um problema
População	Conjunto de soluções
Cromossomo	Representação de uma solução
Gene	Parte da representação de uma solução
Crossover / Mutação	Operadores de busca

Algoritmos Genéticos

Algoritmos Genéticos

- Passo 1: Geração de uma população inicial com indivíduos escolhidos aleatoriamente
- Passo 2: Avaliação dos indivíduos
 - Cálculo da função de *fitness* (usando função objetivo)
- Passo 3: Seleção de indívíduos mais aptos
- Passo 4: Geração de uma nova população a partir dos indivíduos selecionados e ir para Passo 2
 - Operadores de busca (crossover e mutação)

Estrutura de um AG básico

Função de aptidão

Avalia os cromossomos (fitness)

• Em um problema de maximização pode ser a própria função objetivo

• Em um problema de minimização pode ser o complemento da função objetivo, ou seja, (-1*f_{obi})

Função de aptidão : exemplo para problema de minimização

Algoritmos Genéticos

- Pontos importantes a definir:
 - Representação dos invivíduos
 - Estratégia de seleção
 - Operadores de busca

Representação de Indivíduos

- A representação de uma solução do espaço de busca é dependente do problema de otimização
 - Porém, alguns esquemas de representação podem ser reaproveitados

Seleção de indivíduos: sobrevivência e morte

• Como selecionamos os cromossomos que devem sobreviver?

- Sobrevivem os que possuem os melhores níveis de aptidão?
- É importante permitir também a sobrevida de cromossomos menos aptos, do contrário o método ficaria preso em ótimos locais

Elitismo

Seleção de indivíduos: métodos

- Roleta
- Torneio
- Aleatório, etc...

Método da Roleta

 Coloca-se os indivíduos em uma roleta, dando a cada um uma "fatia" proporcional à sua aptidão relativa

 Roda-se a roleta. O indivíduo em cuja fatia a agulha parar permanece para a próxima geração

• Repete-se o sorteio tantas vezes quanto forem necessárias para selecionar a quantidade desejada de indivíduos

Roleta - Exemplo

Indivíduo	Aptidão Absoluta	Aptidão Relativa
1	2	0,052631579
2	4	0,105263158
3	5	0,131578947
4	9	0,236842105
5	18	0,473684211
Total	38	1

Seleção de indivíduos: métodos

- Roleta
- Torneio
- Aleatório, etc...

Método do Torneio

- Utiliza sucessivas disputas para realizar a seleção
- Para selecionar k indivíduos, realiza k disputas, cada disputa envolvendo n indivíduos escolhidos ao acaso
- O indivíduo de maior aptidão na disputa é selecionado
- É muito comum utilizar n = 3
- Este processo se repetirá até que a população intermediária seja preenchida.

Torneio - Exemplo

Operadores Genéticos

- A etapa de seleção, gera uma população intermediária de potenciais cromossomos pais
- Na nova geração, escolhe-se aleatoriamente dois pais para aplicação de operadores genéticos (crossover e mutação)
- Produção de filhos é feita até completar o tamanho da população desejada

Operadores genéticos

Operador de Cruzamento

• Também chamado de *reprodução* ou *crossover*

 Combina as informações genéticas de dois indivíduos (pais) para gerar novos indivíduos (filhos)

• Versões mais comuns criam sempre dois filhos para cada operação

Operador de Cruzamento

Operador genético principal

• Responsável por gerar novos indivíduos diferentes (sejam melhores ou piores) a partir de indivíduos já promissores

• Deve atuar com probabilidade alta

Cruzamento Um-Ponto

Operador de Mutação

• Operador randômico de manipulação

• Introduz e mantém a variedade genética da população

- Garante a possibilidade de se alcançar qualquer ponto do espaço de busca
- Contorna mínimos locais

• Opera sobre os indivíduos resultantes do processo de cruzamento

Operador de Mutação

• É um operador genético secundário

 Se seu uso for exagerado, reduz a evolução a uma busca totalmente aleatória

• Deve atuar com probabilidade baixa

Operador de Mutação

Elitismo

• O elitismo é uma técnica utilizada para melhorar a convergência dos AGs. Ele foi primeiramente introduzido por Jong (1975) como uma adição aos métodos de seleção. O elitismo força os AG a reter certo número de "melhores" indivíduos em cada geração. Tais indivíduos podem ser perdidos se não forem selecionados para reprodução ou se forem destruídos por cruzamento ou mutação.

Parâmetros Genéticos

- Tamanho da população
- Taxa de cruzamento
- Taxa de mutação
- Intervalo de geração
- Critério de parada

Algoritmos Genéticos – Observações Importantes

- Convergência Prematura
 - Em algumas execuções, AG pode convergir para soluções iguais
 - Cromossomos com boa aptidão (mas ainda não ótimos) que geram filhos com pouca diversidade
 - Nesses casos, aconselha-se:
 - Aumento da taxa de mutação e crossover
 - Evitar a inserção de filhos duplicados

Algoritmos Genéticos – Observações Importantes

- População inicial
 - Não pode ser excessivamente pequena
 - Pouca representatividade do espaço de busca
 - Não pode ser excessivamente grande
 - Demora na convergência
 - Para melhorar a representatividade população inicial pode possuir indivíduos igualmente espaçados no espaço de busca

Algoritmos Genéticos – Observações Importantes

- Critérios de Parada
 - Número máximo de gerações
 - Função objetivo com valor ótimo alcançado (quando esse valor é conhecido)
 - Convergência na função objetivo (i.e., quando não ocorre melhoria significativa da função)

Algoritmos Genéticos

Caixeiro Viajante

O Problema

- Dado um número de cidades, encontrar o caminho mais curto passando por todas as cidades uma única vez
 - Função Objetivo = Distância Total Percorrida

Aplicações

- Alocação de tarefas
- Configuração de sistemas complexos
- Seleção de Rotas
- Problemas de Otimização e de Aprendizagem de Máquina
- Problemas cuja solução seja um estado final e não um caminho

Thank you!

