SECTION E

(i) There are 50 boxes. We want to know the expected number of empty boxes when there are 100 balls.

Let E_m = expected number of empty boxes for m balls and 50 boxes.

On average, E_{99} boxes will be empty after we've placed the first ninety nine balls. Now, the last ball must be placed in an empty box or a non-empty box. The probability of placing it in an empty box is $E_{99}/50$ because there are E_{99} empty boxes out of the 50.

Thus, $E_9/50$ of the time, we'll have $E_{99}-1$ empty boxes; the rest of the time, we'll have E_{99} empty boxes, that is,

$$E_{10}=(E_{99}/50)(E_{9}-1)+(1-E_{99}/50)E_{99}=49/50E_{99}$$
.

we conclude that:

$$E_m = (49/50)^m * 50.$$

<u>(ii)</u>

(i) Bit Error Rate = Number of bits in error / Total number of bits transmitted

 $10^{-10} = \text{Number of bits in error} / 1000$

Number of bits in error =
$$10^{(-10 + 3)}$$

= 10^{-7} bits

(ii) P(10 or more errors in 1000 bits) =
$$(1000 \ 10)(10^{-10})^{10}(1-10^{-10})^{1000-10}$$

= $10^{-10(10)}(1-10^{-10})^{1000-10}$

Putting
$$(1-10^{-10})^{1000-10}$$
 as 0.99, we have

$$P(10 \text{ errors in } 1000 \text{ bits}) = 0.99 \times 10^{-100}$$

(iii) We know that there are total 16 favourable outcomes for Alina(3 Queens(from other suits) and 13 spades).

Now probability of alina winning one night is = 16/52 = 4/13While the probability of her losing at the night is = 9/13

Now her probable earning for a night is = 4*4/13 + (-1)*9/13= 7/13

Similarly her probable earning for a month will be = 7/13 * 30 = \$ 16.1538