DATE	18 OCT 2023
TEAM ID	344
PROJECT NAME	AI BASED DIABETES PREDICTION
NAME	ANSARI.S

```
Project Name: AI Based Diabetic Prediction
PHASE 3;
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,
precision_score, recall_score
```

In [2]:

Load the dataset
data = pd.read_csv("/kaggle/input/diabetes-data-set/diabetes.csv")

data.<u>head</u>()

Output:

Pregnanc ies	Gluco se	BloodPress ure	SkinThickn ess	Insul in	B MI	DiabetesPedigreeFu nction	Age	Outco me	
0	6	148	72	35	0	33.6	0.6 27	50	1

1	1	85	66	29	0	26.6	0.3 51	31	0
2	8	183	64	0	0	23.3	0.6 72	32	1
3	1	89	66	23	94	28.1	0.1 67	21	0
4	0	137	40	35	16 8	43.1	2.2 88	33	1

summary_stats = data.describe()
summary_stats

output:

	Pregna ncies	Glucos e	BloodPre ssure	SkinThic kness	Insulin	ВМІ	DiabetesPedigre eFunction	Age	Outco me
co un t	768.00 0000	768.00 0000	768.000 000	768.000 000	768.00 0000	768.00 0000	768.000000	768.00 0000	768.00 0000
m ea n	3.8450 52	120.89 4531	69.1054 69	20.5364 58	79.799 479	31.992 578	0.471876	33.240 885	0.3489 58
st d	3.3695 78	31.972 618	19.3558 07	15.9522 18	115.24 4002	7.8841 60	0.331329	11.760 232	0.4769 51

mi n	0.0000 00	0.0000 00	0.00000 0	0.00000	0.0000 00	0.0000 00	0.078000	21.000 000	0.0000 00
25 %	1.0000 00	99.000 000	62.0000 00	0.00000	0.0000 00	27.300 000	0.243750	24.000 000	0.0000 00
50 %	3.0000 00	117.00 0000	72.0000 00	23.0000 00	30.500 000	32.000 000	0.372500	29.000 000	0.0000 00
75 %	6.0000 00	140.25 0000	80.0000 00	32.0000 00	127.25 0000	36.600 000	0.626250	41.000 000	1.0000
m ax	17.000 000	199.00 0000	122.000 000	99.0000 00	846.00 0000	67.100 000	2.420000	81.000 000	1.0000

class_distribution = data['Outcome'].value_counts()
class_distribution

output:

Outcome

0 500

1 268

Name: count, dtype :int64