Course No.	Course Name	L-T-P -Credits	Year of Introduction
AU201	S.I. ENGINES & COMBUSTION	3-1-0-4	2016

Course Objectives

- To impart basic concepts of SI Engine and Combustion, automotive engines
- To know constructional details of engine components.
- To differentiate ideal and actual cycles
- To understand lubrication, cooling, ignition and fuel systems in SI engines.

Syllabus

I.C Engine cycles and analysis: Otto & diesel cycle, Comparison of air standard cycle & fuel air cycle - actual cycle-losses in actual cycle - Combustion in SI engines- P-θ diagram- Stages of combustions - Abnormal combustion - Knock theories - rating of fuels - Octane number, Alternative fuels - Air fuel mixture requirements - Solex Carburettor- Fuel injection systems in SI engines - Combustion System Design- Ignition System Overview - distributor less ignition - CDI & Coil on plug type of ignition system - Constructional details of engine components: Cylinders -cylinder liners, engine block, types of cylinder head - Two stroke engines: Port timing diagrams - Comparison of Scavenging Systems - Valve and valve mechanism - OHV, OHC, DOHC, variable valve timing systems - Intake system components - Intake manifold - Waste heat recovery, Exhaust mufflers - Cooling system - types of cooling systems - components of water cooling - Lubrication system - types of lubricants - properties - lubrication systems

Expected outcome.

The students will be able to

- i. explain basic concepts of SI Engine and Combustion, automotive engines
- ii. identify engine components and their functions
- iii. differentiate ideal and actual cycles and problems
- iv. analyse lubrication, cooling, ignition and fuel systems in SI engines.

Text Book:

- 1. M. L. Mathur, R. P. Sharma Internal Combustion Engines, Dhanpat Rai Publications
- 2. R.K. Rajput, Internal Combustion Engines, Laxmi Publications
- 3. V Ganesan, *Internal Combustion Engine* Tata McGraw Hill Publishing Company Ltd., New Delhi 2006.

References:

- 1. Heinz Heisler, Advanced Engine Technology, Society of Automotive Engineers Inc
- 2. William H Crouse / Donald L Anglin, Automotive Mechanics , Tata McGraw-Hill Publishers
- 3. I.C.Engines By Lichty., McGraw Hill
- 4. Fuels & Combustion By Smith & Stinson., McGraw-Hill
- 5. John B Heywood, Internal Combustion Engine Fundamentals, McGraw Hill Publishing Company.
- 6. Obert E F, Internal Combustion Engine and air Pollution McGraw Hill book company New

York.

- 7. Sharma S.P, Fuels and Combustion, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 8. A.W. Judge, Modern petrol engine, Chapman and Hall, London

	Course Plan	A	-		
Module	Contents	Hours	Sem. Exam Marks		
I	I.C Engine cycles and analysis: Otto & Diesel cycle, Comparison of air standard cycle & fuel air cycle, effects of variation of specific heat, dissociation effect, and numerical problems related, actual cycle-losses in actual cycle - Efficiencies of real Engines	9	15%		
II	Combustion in SI engines- P-θ diagram- Stages of combustions- Ignition lag. Flame Propagation- factors / engine variables affecting combustion stages. Different combustion chambers in SI engines. Abnormal combustion – Knock theories - detonation effects-factors and variables affecting knock-surface ignition. Fuels – Qualities & properties - rating of fuels - Octane number, Alternative fuels.	9	15%		
	FIRST INTERNAL EXAMINATION				
III	Air fuel mixture requirements – Solex Carburetor. Stochiometric and excess air calculations. Fuel injection systems in SI engines - nozzle- direct and indirect injections. MPFI systems and GDI engines. Combustion System Design - Port Injection Combustion Systems - Direct Injection Spark ignition (DISI) Introduction - Spark Ignition and Ignition Timing - Ignition System Overview - The Ignition Process - Ignition Timing Selection and Control - Battery & magneto ignition system - distributor less ignition - CDI & Coil on plug type of ignition system	9	15%		
IV	Constructional details of engine components: Cylinders – cylinder liners, engine block, types of cylinder head, gasket materials. Piston - types, materials, piston rings, piston pins, connecting rod, crank shaft, flywheel, cam shaft, valve, valve mechanism, hydraulic tappets. Two stroke engines: Port timing diagrams, Symmetrical & unsymmetrical timing, Three port engine. Theoretical Scavenging processes, Scavenging parameters, Comparison of Scavenging Systems; Cross flow, loop flow, uniflow, Pre blow down, Blow down. Scavenging pumps, blowers. SECOND INTERNAL EXAMINATION	9	15%		

	Valve and valve mechanism: Angle of seat, Operating	12	20%			
	Conditions, operating temperatures, valve cooling, Sodium					
	cooled valves, Valve rotators, valve seats, valve guides, , valve					
	springs, valve clearance & timing, OHV, OHC, DOHC,					
	variable valve timing systems – V TECH.VVT. Camshaft,-					
V	drives of cams, cam types, tappets, push rods, rocker arms					
	Intake system components, Discharge coefficient, Pressure					
	drop, Air filters, Intake manifold, connecting pipe. Exhaust	7				
	system components: Exhaust manifold and exhaust pipe, Spark	V/				
	arresters, Waste heat recovery, Exhaust mufflers, Type of	A. T.				
	mufflers.	10	200/			
	Cooling system: Necessity of engine cooling, operating	12	20%			
	temperatures, types of cooling systems: Direct air cooling,					
	Indirect or water cooling, Liquid cooling, Pressure sealed cooling, Evaporative cooling or steam cooling, components of					
	water cooling system, antifreeze solution, temperature gauges.					
VI	Lubrication system: Functions, lubrication principles,					
V1	classification of lubricants, types of lubricants, properties of					
	lubricants, service ratings of oils, oil additives, specification of					
	lubricants, crankcase ventilation, lubrication systems, pre- lubrication systems, effect of engine conditions on lubricating					
	oil, consumption of lubricating oil, Components of lubrication					
	system, Oil pressure warning system, oil pressure gauges,					
	chassis lubrication.					
	END SEMESTER EXAM					

Question Paper Pattern

Total marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.