

Listado 2 Conjuntos

1. Considere como universo el conjunto de los números reales. Además, consideramos

$$A = \{ y \in \mathbb{Z} : y = x + 3 \land -5 \le x < 5 \},$$

$$B = \{ x \in \mathbb{R} : (x + 3)(x - 2) = 0 \},$$

$$C = \{ q \in \mathbb{Z} : q = 2k + 1, k \in \mathbb{Z} \}.$$

Determine $A \cap B$, $B \cap C^c$, A - C y C - B.

2. (P) Si el universo es el conjunto de los números reales y se definen los conjuntos

$$\begin{array}{lll} A & = & \left\{ x \in \mathbb{R} : \; (x-1)(x+1) = 0 \right\}, \\ B & = & \left\{ x \in \mathbb{Z} : \; -4 < x < 4 \right\}, \\ C & = & \left\{ x \in \mathbb{N} : \; x < 6 \right\}. \end{array}$$

Determine: $B \cup C$ y $A^c \cap C$.

3. Sea

$$A =]-\infty, -3], B =]-7, 7[, C = [0, 5], D =]7, +\infty[$$
 y $E = [1, 10[$.

Calcule:

$$a) A \cap D$$

$$d) E \cap C$$

$$g) E - D (\mathbf{P})$$
 $j) A^c \cap E$

$$i)$$
 $A^c \cap E$

b)
$$A \cap B$$

$$e) \ B \cup D$$

h)
$$D-F$$

$$h) D - E k) A^c \cap D^c$$

c)
$$E \cup C$$

$$f) B \cap D$$

$$i)$$
 C^c (P)

$$l) A \cup D \cup E$$

4. Suponga que

$$\begin{array}{lcl} A & = & \{2,4,6,8\}, B = \{1,2,3,4,5,6,7,8,9\}, \\ C & = & \{x:x \text{ es un número entero positivo par menor que } 10\}, \end{array}$$

 $D = \{1, 2, 3, 5, 7, 9, 10\}.$

Determine si las siguientes proposiciones son verdaderas o falsas, justifique:

a)
$$A \subset B$$
 (P) c) $C \subset A$ e) $A \subset C$ g) $C \subset B$

c)
$$C \subset A$$

$$e)$$
 $A \subset C$

$$g) \ C \subset B$$

b)
$$B \subset A$$

d)
$$A = B$$
 (P) f) $B \subset C$ h) $A = C$

$$f) B \subset C$$

$$h) A = C$$

5.	Indicar si las siguientes afirma	ciones son verdaderas o falsas.	Justifique su afirmación:
	$a) \ 5 = \{5\}$	$f) \emptyset \subseteq \{1,2\} (\mathbf{P})$	$k) \ \{a,b\} = \{a,b,\emptyset\}$
	$b) \ 3 \in \{3\}$	$g) \ \{a,b\} \subseteq \{a,\{a,b\},b\}$	$l) \{a\} \in \{\emptyset, \{a\}\}$
	$c) \ 6 \in \{\{6\}, 6, 4\} \ (\mathbf{P})$	$h) \ \{a\} \subseteq \{\emptyset, \{a\}\}$	$m) \{a, b\} = \{b, a\}$
	$d) \{6\} \in \{\{6\}, 6, 5\} (\mathbf{P})$	$i) \emptyset \in \{a\}$, (, , , , , , , , , , , , , , , , , ,
	$e) \{2,3\} = \{3,2\}$	$j) \ a \in \{\emptyset, \{a\}\}$	

 $\underline{Recuerde}$: \emptyset es el conjunto vacío. Si A es cualquier conjunto, entonces se cumple :

$$\bullet \ \emptyset \subseteq A \qquad \qquad \bullet \ \emptyset \cup A = A \qquad \qquad \bullet \ \emptyset \cap A = \emptyset$$

6. Para A y B conjuntos. Muestre que:

$$a) (A - B) \cap (B - A) = \emptyset$$
 (P)

b)
$$A - (B \cap C) = (A - B) \cup (A - C)$$

$$(A \cap B) = B \Rightarrow B \subseteq A$$

d) Si
$$A \subseteq C$$
 y $B \subseteq C$ entonces $A \cup B \subseteq C$

e) Si
$$C \subseteq A$$
 y $C \subseteq B$ entonces $C \subseteq A \cap B$ (P)

7. Sea el conjunto $A = \{3, 4, 5, 6\}$. Determine si las siguientes proposiciones son verdaderas o falsas (justifique):

a)
$$\{3,4\} \subseteq \mathcal{P}(A)$$
 f) $3 \in \mathcal{P}(A)$

 b) $\emptyset \in \mathcal{P}(A)$
 g) $A \in \mathcal{P}(A)$

 c) $\emptyset \subseteq \mathcal{P}(A)$ (P)
 h) $\mathcal{P}(A) \cap \{3,4\} = \{3,4\}$ (P)

 d) $\{5,6\} \in \mathcal{P}(A)$
 i) $\mathcal{P}(A) \cap \{\{4,6\}\} = \{\{4,6\}\}\}$

 e) $\{5\} \in \mathcal{P}(A)$ (P)
 j) $\mathcal{P}(A) \cup A = \mathcal{P}(A)$

8. Considere los conjuntos

$$\begin{array}{rcl} A & = & \left\{ n \in \mathbb{N} : \ n \leq 100 \right\}, \\ B & = & \left\{ z \in \mathbb{Z} : \ -10 \leq z \leq 10 \right\}, \\ C & = & \left\{ 2, 4, 6, 8 \right\}. \end{array}$$

Determine el valor de verdad de cada una de las siguientes proposiciones (justifique) y escriba su negación.

a)
$$(\forall n \in A) n^2 \le 100$$
 (P)
b) $(\exists n \in A) n^2 = 50$
c) $(\exists! n \in A) 2^n = n^2$
d) $(\forall z \in B) z + 9 = 8$
e) $(\forall p \in C) (\exists z \in B) p + z = 0$ (P)
f) $(\exists! n \in A) (\forall z \in B) n + z > 0$

- 9. Determine el valor de verdad de las siguientes proposiciones (justifique):
 - a) $(\forall m \in \mathbb{N})(\exists n \in \mathbb{N}) m = 2n$
 - b) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) xy = 1$
 - c) $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R}) xy = 1$
 - d) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y)^2 = x^2 + y^2$ (P)
 - $e) \ (\exists! \ x \in \mathbb{R}) (\forall y \in \mathbb{R}) \ x + y = y$
- 10. De un contraejemplo para establecer la falsedad de las proposiciones que siguen. Considere $x,y\in\mathbb{R}$:
 - a) $(\forall x \in \mathbb{R})(\exists p \in \mathbb{N}) p < x$
 - b) $(x^2 = y^2) \rightarrow (x = y)$ (P)
 - c) $(\forall z \in \mathbb{R})(\exists n \in \mathbb{N}) z + n = 0$
 - d) ($\forall z \in \mathbb{N}$)($\forall n \in \mathbb{N}$) z n = 0
- 11. Niegue las siguientes proposiciones:
 - a) $(\exists x > 0)(\forall y \in \mathbb{R}) x^2 + x < y$
 - b) $(\forall x \in \mathbb{R})(\forall y > 0) xy = 1$
 - c) $(\forall x < 0)(\exists y > 0) x + 2y \le 4$ (P)
 - d) $(\exists! \ x < 0) \ x^2 1 > 0$