基礎コンピュータ工学 第2章 情報の表現 (パート3)

2進数の和差の計算

10 **進数の場合**を思い出してみる.

• 9より大きくなる時に**桁上げ**が発生する.

桁借りでは10借りてくる。

2進数の和差の計算

2進数の場合は以下のようになる.

● 1より大きくなる時に**桁上げ**が発生する.

桁借りでは2借りてくる。

2進数の和差の計算(問題)

問題8:10進数の計算と2進数の計算をしなさい.

12 - 7

負の数を2進数でどのようにビットで表現するか約束する.

(1) 符号付き絶対値表現

左端のビットを符号 (+/一) として使用する.

- 4ビット符号付き絶対値表現の例

負数	2進数	正数	2進数
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	11112	+7	01112
-6	1110_2	+6	0110_{2}
-5	1101_2	+5	0101_2
-1	1001_2	+1	0001_2
-0	1000_2	+0	0000_{2}

- 4ビットで-7から+7の範囲を表現できる。
- 0の表現が二つある(-0と+0).

補数表現

- n桁の b進数において b^n から x を引いた数 y を x に対する「b の補数」と呼ぶ. $y = b^n x$ (y は x に対する b の補数)
- n桁のb進数において
 bⁿ − 1 からxを引いた数zをxに対する「(b − 1)の補数」と
 呼ぶ

$$z = b^n - 1 - x$$
 (z は x に対する $(b-1)$ の補数)

2桁の10進数における補数の例

$$b = 10$$
進数
 $n = 2$ 桁 100
 $b^n = 100$ —25 75 は 25 に対す
 $x = 25$ 75 は 25 に対す
 $a = 25$ 3 10 の補数
 $a = 2$ 桁 99
 $a = 2$ 桁 99
 $a = 2$ 桁 99
 $a = 2$ 74 は 25 に対す
 $a = 2$ 3 9 の補数

4桁の2進数における補数の例

$$b=2$$
進数 0110_2 は $n=4$ 桁 10000_2 1010_2 に $b^n=10000_2$ $x=1010_2$ 0110_2 対する 2 の補数 $b=2$ 進数 $n=4$ 桁 1111_2 $b^n-1=1111_2$ $x=1010_2$ 対する $x=1010_2$ 0101_2 は $x=1010_2$ 1 の補数

(2) 1の補数による負数の表現

1の補数を負数の表現に使用する.

· 4 ビット2進数の1の補数(2⁴ – 1 – x = z)·

もとの数 (x)	補数へ変換		補数(z)
0	$1111_2 - 0000_2$	=	1111_{2}
1	$1111_2 - 0001_2$	=	1110_{2}
2	$1111_2 - 0010_2$	=	1101_{2}
3	$1111_2 - 0011_2$	=	1100_{2}
4	$1111_2 - 0100_2$	=	1011_{2}
5	$1111_2 - 0101_2$	=	1010_{2}
6	$1111_2 - 0110_2$	=	1001_{2}
7	$1111_2 - 0111_2$	=	1000_{2}

1の補数を用いた符号付き数値

```
1000_{2}
-7
-6
     1001_{2}
-5
     1010_{2}
-4
     1011_{2}
-3
     1100_{2}
-2
     1101_{2}
-1
     1110_{2}
-0
     1111_2 +
+0
     0000_2 +
+1
     0001_2
     0010_{2}
+2
+3
     0011_{2}
+4
     0100_{2}
+5
     0101_{2}
+6
     0110_{2}
+7
     0111_{2}
```

● 1の補数の求め方

$$x = +3_{10} = 0011_2$$
 (もとの数)
 $y = -3_{10} = 1100_2$ (1の補数)

• 表現できる数値の範囲

4 ビット:
$$-7 \sim +7 \left(-(2^3-1) \sim +(2^3-1)\right)$$

n ビット: $-(2^{n-1}-1) \sim +(2^{n-1}-1)$

• 正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

(3) 2の補数による負数の表現

2の補数 $(2^n - x)$ を負数の表現に使用する.

- 4ビット2進数の2の補数($2^4 - x = y$)

もとの数 (x)	補数へ変換		補数 (y)
0	$10000_{2} - 0000_{2}$	=	10000_{2}
1	$10000_{2} - 0001_{2}$	=	1111_{2}
2	$10000_{2} - 0010_{2}$	=	1110_{2}
3	$10000_{2} - 0011_{2}$	=	1101_{2}
4	$10000_{2} - 0100_{2}$	=	1100_{2}
5	$10000_{2} - 0101_{2}$	=	1011_{2}
6	$10000_{2} - 0110_{2}$	=	1010_{2}
7	$1 0000 _{2} - 0111 _{2}$	=	1001_{2}
8	$1 0000_2 - 1000_2$	=	1000_{2}

2の補数を用いた符号付き数値・

```
1000_{2}
-8
-7
     1001_{2}
-6
    1010_{2}
-5
    1011_{2}
-4
    1100_{2}
-3
    1101_{2}
-2 	1110_2
-1
    1111_{2}
 0
     0000_2 +
     0001_2
     0010_{2}
 3
     0011_{2}
     0100_{2}
 5
     0101_{2}
     0110_{2}
     0111_{2}
```

• 2の補数の求め方

ビット反転 + 1
$$x = +3_{10} = 0011_2 \text{ (もとの数)}$$

$$y = -3_{10} = 1100_2 + 1 = 1101_2 \text{ (2の補数)}$$

元に戻すのもビット反転+1

$$y = -3_{10} = 1101_2$$
 (2の補数)
 $y = +3_{10} = 0010_2 + 1 = 0011_2$ (もとの数)

• 表現できる数値の範囲

4 ビット:
$$-8\sim +7 (-2^3\sim + (2^3-1))$$
n ビット: $-2^{n-1}\sim + (2^{n-1}-1)$

• 正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

負数の表現(問題1/2)

問題9:次の10進数を2の補数表現形式の4桁の2進数に変換しなさい.

- **1)** 4₁₀
- **2)** -4_{10}
- **3)** 5₁₀
- 4) -5_{10}
- **5)** 6₁₀
- **6)** -6_{10}

負数の表現(問題2/2)

問題10:次の2の補数表現形式の4桁の2進数を10進数に変換しなさい.

- **1)** 1001₂
- **2)** 0111₂
- **3)** 1101₂
- **4)** 0011₂
- **5)** 1011₂
- **6)** 1100₂