Chapter 1

Extract from:

Bradley Efron and Trevor Hastie

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science

Cambridge University Press, 2016

1

Modern Bayesian practice uses various strategies to construct an appropriate "prior" $g(\mu)$ in the absence of prior experience, leaving many statisticians unconvinced by the resulting Bayesian inferences. Our second example illustrates the difficulty.

	1	2	3	4	5	6	7	8	9	10	11
mechanics vectors	7 51	44 69	49 41	59 70	34 42	46 40	0 40	32 45	49 57	52 64	44 61
	12	13	14	15	16	17	18	19	20	21	22
mechanics vectors	36 59	42 60	5 30	22 58	18 51	41 63	48 38	31 42	42 69	46 49	63 63

Table 1: Frequencies of word classes

Table 3.1 shows the scores on two tests, mechanics and vectors, achieved by n = 22 students. The sample correlation coefficient between the two scores is $\hat{\theta}$ = 0.498,

$$\hat{\theta} = \sum_{i=1}^{22} (m_i - \hat{m}) (v_i - \hat{v}) / \left[\sum_{i=1}^{22} (m_i - \hat{m})^2 \sum_{i=1}^{22} (v_i - \hat{v})^2 \right]^{1/2}$$

with m and v short for mechanics and vectors, \bar{m} and \bar{v} their averages