								+			_											_	
						+	-																
						+															+		
						_	_		_														
						-		-													+		
								+														+	
								-													_	_	
								+			+											+	
						_	_	-															
						+		+															
						+		+															
						_	_		_														
						+	+	+															
						+																	
						+		-													+		
						+		+														+	
						+																	
						_	-	-															
						+	+	+															
								+															
										_	_											_	

Thema Exponentialfunktionen AB9

23. a) Liegt bei den nachfolgenden Vorgängen näherungsweise ein exponentieller Wachstums- bzw. Zerfallsprozess vor?

2011	2012	2013	2014	2015	
112,7	132,7	152,7	172,7	192,7	ja nein
2011	2012	2013	2014	2015	ja nein
7,80	7,41	7,04	6,69	6,36	JuAma,

- b) Beim exponentiellen Wachstum gilt $q \ge 1$, beim exponentiellen Zerfall gilt $0 = q \le 1$.
- 24. Eine Anfangsmenge von 5 mg des radioaktiven Stoffes Radon 222 zerfällt exponentiell gemäß der Tabelle (t in Tagen; y in mg).

t	0	1	2	3	4
У	5	4,09	3,34	2,73	2,23

 a) Stellen Sie den Vorgang im Koordinatensystem dar.

- b) Ermitteln Sie den zugehörigen Funktionsterm auf 3 Arten.
- 1. Die Regression am WTR führt zu f(t) = _____
- 2. Der Anfangsbestand von a = $\frac{5}{100}$ und die Wachstumsfaktor q = $\frac{9}{100}$ führen zu f(t) = $\frac{5}{100}$ c.
- 3. Das Einsetzen des Anfangsbestandes von a = ____ und der Koordinaten des Punktes P(... | ...) in $f(t) = a \cdot e^{kt}$ führen zu ____ = ___ $\cdot e^{k \cdot ...}$

Somit gilt f(t) =______.

c) Die Halbwertszeit beträgt t_H = _____ . Überprüfen Sie dies am Schaubild.

Thema Exponentialfunktionen AB8

21. Die nachfolgenden exponentiellen Wachstums- bzw. Zerfallsvorgänge sollen durch Funktionsterme beschrieben werden. Geben Sie jeweils zwei Funktionsterme an.

Vorgang	$f(t) = a \cdot b^t$	$f(t) = a \cdot e^{kt}$
Ein Kapital von 1500 EUR wird mit einem Zinssatz von 3 % jährlich verzinst.	$f(t) = 1500 \cdot 1,03^{t}$ (t in Jahren)	e^{k} = 1,03 $k = In(1,03) \approx 0,03$ $f(t) = 1500 \cdot e^{0,03t}$
Ein Auto wird für 20000 EUR gekauft. Pro Jahr verliert es 30 % an Wert.	$f(t) = 20.20 \cdot 0.20^{t}$ (t in Jahren)	eh = 0,70 h = ((0,70) f(t) = 70.000.e (1,910).t
Zu Beginn sind 4 Rechner mit einem Computervirus infiziert. Die Anzahl der insgesamt infi- zierten Rechner verzehnfacht sich täglich.	f(t) = <u> </u>	eh = 10 h = ln(10) f(t) = 4. e ln(10).t
Von einem radioaktiven Stoff sind zu Beginn 5 g vorhanden. Die Menge halbiert sich jährlich.	$f(t) = \underbrace{5 \cdot \frac{1}{2} t}_{\text{(t in Jahren)}}$	e h = 2 k = ln(2) f(t) = 5.e ln(2).t

22.Das gesamte Holzvolumen (in m³) eines Waldes wächst exponentiell und ist für die Jahre ab 2011 in der nachfolgenden Tabelle dargestellt.

2011	2012	2013	2014	2015	
85000	90100	95506	101236	107310	

$$\frac{90100}{85000} = \frac{55506}{3000} = \frac{10730}{35306} = \frac{107300}{101236} = 106$$

- a) Weisen Sie rechnerisch nach, dass der Wachstumsfaktor q für alle Zeitschritte konstant ist.
- b) Der zugehörige Funktionsterm (mit t = 0 im Jahr 2011) lautet: $f(t) = 85000 \cdot e^{(l_1(l_2))} t$.

 Damit wird im Jahr 2020 ein Holzvolumen von $443.605.7445 \text{ m}^2$ erwartet.

19. Lösen Sie die Gleichung.

a)
$$-2e^{-x} + e^2 = 0$$

b)
$$\frac{1}{4} (e^{2x} - 3) = 0$$

a)
$$-2e^{-x} + e^2 = 0$$
 b) $\frac{1}{4}(e^{2x} - 3) = 0$ c) $-e^{2x} + 11e^x - 28 = 0$

d)
$$2 - e \cdot e^{0.5x} = 0$$
 e) $2e^x - 7e^{-x} = 0$

e)
$$2e^{x} - 7e^{-x} = 0$$

f)
$$e^{2x} - 5e^x = -6$$

20.Bestimmen Sie die Achsenschnittpunkte und die Asymptote von K_f. Skizzieren Sie K_f.

a)
$$f(x) = 4e^{-0.25x} - 3$$

b)
$$f(x) = -\frac{1}{8}e^{3x} + 3$$

$$f(0) =$$

$$f(0) =$$

$$S_y$$
 (

Schnittpunkt mit der x-Achse:

$$f(x) = 0$$

$$f(x) = 0$$

N(

Asymptote: y =

Thema Exponentialfunktionen AB6

15. Für welche Werte von c hat die Gleichung e^x + c = 0 eine Lösung? Antwort: Für c < 0

Begründen Sie mithilfe einer Skizze:

16. Lösen Sie die Gleichung mithilfe des Logarithmus.

3e ^{2x} = 15	2e ^{-x} - 3 = 1	$7 - 2e^{-0.2x} = 0$	$-e^{\frac{2}{5}X} + 2 = -1$
3e ^{2x} = 15	2e-3-1 +3	7-2e-0,2x =0 +Ze-0,2x	-e = +2 = -1 -2
$e^{2x} = 5$ $2x = \ln(5)$ $x = \frac{1}{2}\ln(5)$	$2c^{2} = 4 12$ $e^{2} = 1 10$	$7 = 2c^{-0,2x} : 2$ $3,5 = c^{-0,2x} ! \cdot 0,2$ $\frac{\ln(3,5)}{-0,2} = x$	-e ³ / ₃ = 3 T 3 = e ⁷ / ₄ (1, 1) (1, (3) = ² / ₃ × : ² / ₅ (1, (1)) = x

17. Lösen Sie die Gleichung mit dem Satz vom Nullprodukt.

$e^{2x} - 3e^x = 0$	$e^{x} - 3e^{-x} = 0$	$e^x - 4e^{2x} = 0$
$e^{x} (e^{x} - 3) = 0$ $e^{x} = 0 \lor e^{x} - 3 = 0$ $e^{x} = 3 \Rightarrow x = \ln(3)$ $e^{x} \neq 0$	$e^{x} \left(1 - 3e^{-2x} \right) = 0$ $\int \int 1 - 3e^{-2x} dx = 0 + 3e^{-2x}$ $\neq 0 \qquad 1 = 3e^{-2x} / 3$ $\int_{\frac{\pi}{3}} = e^{-2x} / 3e^{-2x}$ $\int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \int \int \int \int \int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \frac{1}{2} e^{-2x} dx = 0$ $\int \int \partial u dx = 0$ $\int \int \int \int \int \int \int \int \partial u dx = 0$ $\int \int \int \int \int \int \partial u dx = 0$ $\int \int \int \int \int \partial u dx = 0$ $\int \int \int \int \int \partial u dx = 0$ $\int \int \int \int \partial u dx = 0$ $\int \int \int \int \partial u dx = 0$ $\int \partial$	$e^{\lambda}(\Lambda - 4c^{\lambda}) = 0$ $\downarrow \Lambda - 4c^{\lambda} = 0 \mid 14c^{\lambda}$ $\uparrow \Lambda = 4c^{\lambda} \mid 14$ $\frac{1}{4} = c^{\lambda} \mid 1n$ $\ln\left(\frac{1}{4}\right) = \lambda$

18. Lösen Sie die Gleichung mit Substitution.

$e^{2x} - 4e^x = -3$	$-2e^{2x} + 6e^x + 8 = 0$	$e^{x} + 4e^{-x} + 5 = 0$ $\left(\cdot \right)_{x}^{x}$
$e^{2x} - 4e^{x} + 3 = 0$ $e^{x} = u \ (e^{2x} = u^{2})$ $u^{2} - 4u + 3 = 0$ $u = 1 \lor u = 3$	$-2u^{2} + 6u + 8 = 0 (-2)$ $u^{2} - 3u - 4 = 0$ $u_{A12} = \frac{3 + \sqrt{(-3)^{2} - 4 \cdot A \cdot (-4)}}{2 \cdot A}$ $1 + \sqrt{A}$	$e^{2x} + 445e^{x}$ $u^{2} + 5u + 4 = 0$ $u_{10} = \frac{-5 \pm \sqrt{(5)^{2} - 4 \cdot 4 \cdot 4}}{2 \cdot 1}$
$e^{x} = 1 \Rightarrow x = \ln(1) = 0$ $e^{x} = 3 \Rightarrow x = \ln(3)$	U112 = 341	$u_{A_2} = \frac{-5 \pm \sqrt{5}}{2}$ $u_{A_2} = \frac{-5 \pm \sqrt{3}}{2}$
	$u_{\Lambda} = \frac{4}{2} = 2 c_{X=2}^{X=2} \mid (u_{\Lambda}) = x_{\Lambda}$ $u_{\Lambda} = \frac{2}{2} = \Lambda x_{\Lambda} = \Lambda (u_{\Lambda}) = x_{\Lambda}$ $(u_{\Lambda}) = x_{\Lambda}$	$4a_1 = \frac{-2}{2} = -1$ $4a_2 = \frac{-8}{2} = -4$ $4a_2 = \frac{-8}{2} = -4$ $4a_3 = \frac{-8}{2} = -4$ $4a_4 = \frac{-8}{2} = -4$ $4a_4 = \frac{-8}{2} = -4$

Beispiel:

$$f(x) = 2^{x}$$

$$g(x) = \left(\circ_{5z} \left(x \right) \right)$$

Allgemeine Form:

$$a^{x} = b$$

Lösung:

Definition:

Der Loganthums von b zur Basis a' it disjenige Hochzahl, und der man a' potenzioren muss, un , b' zu ohalten.

Regeln:

```
Exponential gleichungen
1) Des Logaithmus
  Osp 2 = 8 => gould in der Exponent x
      Lösung X = 3 => Loganthunus von 8 zur Basis 2
Schreibweise: S = Pos (8)
            Exponentialgleinung zur Basis e
    Csp. e = 4 Logardhmus naturalis

Losung: x = ln(4)

Losung: x = ln(4)
           x ≈ 1,38
                  Losen von Exporential gleichungen
  a) Anwendung des Logarthmus
   bsp. 1 \Rightarrow e^* = 5 | lin
                                                6 co.3 ex -2e =0 1+Ze
           \ln(e^{x}) = \ln(5)
                                                           e = 2e | (n
        \Rightarrow x = (u(5))
                                                         Zx = ( u (2e) 1:2
                                                             x = \frac{(n (2e))}{2}
  65-2 1 1-x = 0 (+3
                                                64 4
                                                e +3 =0 | -3 -e -3 = 0 | +3
           \frac{1}{2}e = 3 (2
            e = 6 (u
                                                 -2x = 3 | ln e = 3 | q
           1-x = (n(6) 1-1
                                                 -2x = (n(·3) 4
             -x = (n (6)-1 (·(-1)
             \times = -\ln(6) + 1
```


								+			_											_	
						+	-																
						+															+		
						_	_		_														
						-		-													+		
								+														+	
								-													_	_	
								+			+											+	
						_	_	-															
						+		+															
						+		+															
						_	_		_														
						+	+	+															
						+																	
						+		-													+		
						+		+														+	
						+																	
						_	-	-															
						+	+	+															
								+															
										_	_											_	

