Syllabus

Overview

This course is an introduction to high-frequency financial econometrics. Its focus is on understanding the core theory and applying its theorems to observed high-frequency financial data. Students will work with high-frequency data on different financial assets and create weekly project reports. The course is designed for students interested in obtaining a general understanding of high-frequency financial econometrics. See below for a list of topics.

Textbook

- Main Text: High-frequency Financial Econometrics by Ait-Sahalia and Jacod
- Secondary Text (Advanced): Discretization of Processes by Jacod and Protter

Readings

- Lecture Notes
- Papers from the literature (indicated in the lecture notes)

Prerequisites

- This course is intended for Duke MA and PhD students.
- Undergraduate econometrics or advanced statistics is required. Specifically, students should be comfortable with the notions of asymptotic approximations.
- Knowledge of Matlab is required. Students must have the latest version of Matlab installed, which is freely available via Duke OIT services.
- The following software packages can be learned over the semester: Python 3.x, TensorFlow, Bash and Git.

Grades

- Final grade will be based on weekly projects, a midterm and a final examination.
- Exams can be either 48-hour take home or in-class closed book with a note sheet allowed.
- Grade Division:
 - Projects: 35%Midterm: 20%*
 - Final: 45%
- *If a student misses the midterm for any reason, then its weight is placed on the final examination. If

a student attempts the midterm but fails to turn it in, then this student's midterm score is recorded as zero.

Projects

- Projects will be assigned on a weekly basis.
- Problem sets are <u>individual</u>. Each student must do the entire problem set. This includes: writing your own code, making your own plots, interpreting the results, and preparing a pdf report with Latex.
- The best way to learn the contents of the course and obtain an excellent grade is to do the hard work yourself.
- Grading of Projects:
 - o Projects are due by midnight of the announced due date. See schedule below for dates.
 - No late projects are accepted.
 - Grading is done on a 0-10 scale.
 - Projects with excessive overlap with other student's answers will receive a zero grade. Students must uphold the Duke Community Standard.

Schedule and Topics

The table below contains our schedule for the semester. Notice that the midterm and the final exam are already scheduled.

Tuesdays	Thursdays	Fridays	Topics of the Week
Aug 28th	Aug 30th	Aug 31st	
Lecture 1	Lecture 2	Project 1 Posted	Jump Diffusion Process
			Simulation
			LaTeX, Git
Sep 4th	Sep 6th	Sep 7th	
Lecture 3	Lecture 4	Project 2 Posted	Implied Volatility
In class lab 1	Project 1 Due		Volatility Signature
			Matlab
Sep 11th	Sep 13th	Sep 14th	
Lecture 5	Lecture 6	Project 3 Posted	Separating Jump Returns
In class lab 2	Project 2 Due		Truncated Variance
			Inference for IV

Sep 18th	Sep 20th	Sep 21st	
Lecture 7	Lecture 8	Project 4 Posted	Realized Beta
	Project 3 Due		Bootstrapping
			Local Variance
			Jump Regression
Sep 25th	Sep 27th		
Lecture 9	Lecture 10		Variance Forecasting
In class lab 3	Project 4 Due		AR, HAR and RQ Models
Oct 2nd	Oct 4th		
Review Lecture	<u>Midterm Due</u>		
Midterm Posted	Solution Discussion		
Oct 9th	Oct 11th		
Fall Break	Lecture 11		Neural Networks
Oct 16th	Oct 18th	Oct 19th	
Lecture 12	Lecture 13	Project 5 Posted	Stochastic Gradient Descent
			Python, Numpy, TensorFlow
Oct 23rd	Oct 25th	Oct 26th	
Lecture 14	Lecture 15	Project 6 Posted	Value at Risk
In class lab 4	Project 5 Due		Expected Shortfall
Oct 30th	Nov 1st	Nov 2nd	
Lecture 16	Lecture 17	Project 7 Posted	Options, Black-Scholes
	Project 6 Due		Heston Model, AFT Model

Nov 6th	Nov 8th	Nov 9th	
Lecture 18	Lecture 19	Project 8 Posted	Risk-Neutral Distribution
	Project 7 Due		Replicating Portfolios with Options
Nov 13th	Nov 15th	Nov 16th	
Lecture 20	Lecture 21	Project 9 Posted	Minimal Variance Portfolios
In class lab 5	Project 8 Due		Portfolio Risk
Nov 20th	Nov 22nd		
Thanksgiving	Thanksgiving		
Nov 27th	Nov 29th		
Lecture 22	Review		Microstructure Noise
	Project 9 Due		Two-Scale RV
Dec 4th	Dec 6th		
Reading Period	Reading Period		
Dec 11th	Dec 12th		
Reading Period	<u>Final Exam</u>		
	7 PM to 10 PM		
	Same room as lectures		