Арифметика с плавающей запятой

Лисицын Сергей МФТИ 2019г.

История

1976

DEC, National Superconductor, Zilog, Motorola, Intel VAX (DEC) VS K-C-S (Уильям Кэхэн, Джероми Кунен и Гарольд Стоун)

Стандарт IEEE 754:

- формат чисел с плавающей точкой;
- представление положительного и отрицательного нуля, положительной и отрицательной бесконечностей, а также нечисла́;
- методы, используемые для преобразования числа при выполнении математических операций;
- исключительные ситуации: деление на ноль, переполнение, потеря значимости, работа с денормализованными числами и другие;
- операции: арифметические и другие.

Основы

$$(-1)^s \times M \times B^E$$

s — знак

В – основание

Е — порядок

М — мантисса

В = 2 наиболее устойчиво к ошибкам округления

$$1,010e+1 = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} = 2 + 0,5 = 2,5$$

Тип float6

 $(-1)^s \times M \times 2^E$

exp		ma	nti		res		
0 0		0	0	0	=	0	
0	0	0	0	1	=	1	
0	0	0	1	0	=	2	
0	0	0	1	1	=	3	
0	0	1	0	0	=	4	
0	0	1	0	1	=	5	
0	0	1	1	0	=	6	
0	0	1	1	1	=	7	
0	1	0	0	0	=	0	
0	1	0	0	1	=	2	
0	1	0	1	0	=	4	
0	1	0	1	1	=	6	
0	1	1	0	0	=	8	
0	1	1	0	1	=	10	
0	1	1	1	0	=	12	
0	1	1	1	1	=	14	
1	0	0	0	0	=	0	
1	0	0	0	1	=	4	
1	0	0	1	0	=	8	
1	0	0	1	1	=	12	
1	0	1	0	0	=	16	
1	0	1	0	1	=	20	
1	0	1	1	0	=	24	
1	0	1	1	1	=	28	
1	1	0	0	0	=	0	
1	1	0	0	1	=	8	
1	1	0	1	0	=	16	
1	1	0	1	1	=	24	
1	1	1	0	0	=	32	
1	1	1	0	1	=	40	
1	1	1	1	0	=	48	
1	1	1	1	1	=	56	

Эффективный порядок

 $(-1)^s \times 0.M \times 2^E$

exp		mantissa				res
0	0	0	0 0 0		=	0
0	0	0	0	1	=	0.125
0	0	0	1	0	=	0.25
0	0	0	1	1	=	0.375
0	0	1	0	0	=	0.5
0	0	1	0	1	=	0.625
0	0	1	1	0	=	0.75
0	0	1	1	1	=	0.875
0	1	0	0	0	=	0
0	1	0	0	1	=	0.25
0	1	0	1	0	=	0.5
0	1	0	1	1	=	0.75
0	1	1	0	0	=	1
0	1	1	0	1	=	1.25
0	1	1	1	0	=	1.5
0	1	1	1	1	=	1.75
1	0	0	0	0	=	0
1	0	0	0	1	=	0.5
1	0	0	1	0	=	1
1	0	0	1	1	=	1.5
1	0	1	0	0	=	2
1	0	1	0	1	=	2.5
1	0	1	1	0	=	3
1	0	1	1	1	=	3.5
1	1	0	0	0	=	0
1	1	0	0	1	=	1
1	1	0	1	0	=	2
1	1	0	1	1	=	3
1	1	1	0	0	=	4
1	1	1	0	1	=	5
1	1	1	1	0	=	6
1	1	1	1	1	=	7

Нормализованные числа

 $(-1)^s \times 1.M \times 2^E$

exp		m	antis		res		
	0	0	0	0	0	=	1
	0	0	0	0	1	=	1.125
	0	0	0	1	0	=	1.25
	0	0	0	1	1	=	1.375
	0	0	1	0	0	=	1.5
	0	0	1	0	1	=	1.625
	0	0	1	1	0	=	1.75
	0	0	1	1	1	=	1.875
	0	1	0	0	0	=	2
	0	1	0	0	1	=	2.25
	0	1	0	1	0	=	2.5
	0	1	0	1	1	=	2.75
	0	1	1	0	0	=	3
	0	1	1	0	1	=	3.25
	0	1	1	1	0	=	3.5
	0	1	1	1	1	=	3.75
	1	0	0	0	0	=	4
	1	0	0	0	1	=	4.5
	1	0	0	1	0	=	5
	1	0	0	1	1	=	5.5
	1	0	1	0	0	=	6
	1	0	1	0	1	=	6.5
	1	0	1	1	0	=	7
	1	0	1	1	1	=	7.5
	1	1	0	0	0	=	8
	1	1	0	0	1	=	9
	1	1	0	1	0	=	10
	1	1	0	1	1	=	11
	1	1	1	0	0	=	12
	1	1	1	0	1	=	13
	1	1	1	1	0	=	14
	1	1	1	1	1	=	15

manticca

Денормализованные числа

(-1)^s × 1.M × 2^E, если Emin≤E≤Emax

 $(-1)^s \times 0.M \times 2^{Emin}$, если E=Emin-1

Emax = 3, Emin = 1, E = 0 — денормализованные числа

exp		m	antis		res		
	0	0	0	0	0	=	0
	0	0	0	0	1	=	0.125
	0	0	0	1	0	=	0.25
	0	0	0	1	1	=	0.375
	0	0	1	0	0	=	0.5
	0	0	1	0	1	=	0.625
	0	0	1	1	0	=	0.75
	0	0	1	1	1	=	0.875
	0	1	0	0	0	=	1
	0	1	0	0	1	=	1.125
	0	1	0	1	0	=	1.25
	0	1	0	1	1	=	1.375
	0	1	1	0	0	=	1.5
	0	1	1	0	1	=	1.625
	0	1	1	1	0	=	1.75
	0	1	1	1	1	=	1.875
	1	0	0	0	0	=	2
	1	0	0	0	1	=	2.25
	1	0	0	1	0	=	2.5
	1	0	0	1	1	=	2.75
	1	0	1	0	0	=	3
	1	0	1	0	1	=	3.25
	1	0	1	1	0	=	3.5
	1	0	1	1	1	=	3.75
	1	1	0	0	0	=	4
	1	1	0	0	1	=	4.5
	1	1	0	1	0	=	5
	1	1	0	1	1	=	5.5
	1	1	1	0	0	=	6
	1	1	1	0	1	=	6.5
	1	1	1	1	0	=	7
	1	1	1	1	1	=	7.5

manticca

Специальные числа

(-1)^s × 1.M × 2^E, если Emin≤E≤Emax

 $(-1)^s \times 0.M \times 2^{Emin}$, если E=Emin-1

Emax = 2, Emin = 1

Е = 0 – денормализованные числа

NaN:
∞+(- ∞)
0 x ∞
0/0, ∞/∞
sqrt(x), где x<0
±0:
$(+\infty/0) + \infty = +\infty$
$(+\infty/-0) + \infty = NaN$

exp		m	antis		res		
0	0	0	0	0	=	0	
0	0	0	0	1	=	0.125	
0	0	0	1	0	=	0.25	
0	0	0	1	1	=	0.375	
0	0	1	0	0	=	0.5	
0	0	1	0	1	=	0.625	
0	0	1	1	0	=	0.75	
0	0	1	1	1	=	0.875	
0	1	0	0	0	=	1	
0	1	0	0	1	=	1.125	
0	1	0	1	0	=	1.25	
0	1	0	1	1	=	1.375	
0	1	1	0	0	=	1.5	
0	1	1	0	1	=	1.625	
0	1	1	1	0	=	1.75	
0	1	1	1	1	=	1.875	
1	0	0	0	0	=	2	
1	0	0	0	1	=	2.25	
1	0	0	1	0	=	2.5	
1	0	0	1	1	=	2.75	
1	0	1	0	0	=	3	
1	0	1	0	1	=	3.25	
1	0	1	1	0	=	3.5	
1	0	1	1	1	=	3.75	
1	1	0	0	0	=	+∞	
1	1	0	0	1	=	NaN	
1	1	0	1	0	=	NaN	
1	1	0	1	1	=	NaN	
1	1	1	0	0	=	NaN	
1	1	1	0	1	=	NaN	
1	1	1	1	0	=	NaN	
1	1	1	1	1	=	NaN	

Неассоциативность арифметики

1	0	0	0	0 =	2
+					
0	0	0	1	1 =	0.375
+					
0	0	0	1	1 =	0.375
=					
1	0	0	1	0 =	2.5

0	0	0	1	1 =	0.375
+					
0	0	0	1	1 =	0.375
+					
1	0	0	0	0 =	2
=					
1	0	0	1	1 =	2.75

$$(10^{20} + 1) - 10^{20} == 0$$

 $(10^{20} - 10^{20}) + 1 == 1$

$$x^2 - y^2 vs (x - y)(x + y)$$

 $x == y vs (x - y) < \varepsilon$

exp		mantissa				res	
	0	0	0	0	0	=	0
	0	0	0	0	1	=	0.125
	0	0	0	1	0	=	0.25
	0	0	0	1	1	=	0.375
	0	0	1	0	0	=	0.5
	0	0	1	0	1	=	0.625
	0	0	1	1	0	=	0.75
	0	0	1	1	1	=	0.875
	0	1	0	0	0	=	1
	0	1	0	0	1	=	1.125
	0	1	0	1	0	=	1.25
	0	1	0	1	1	=	1.375
	0	1	1	0	0	=	1.5
	0	1	1	0	1	=	1.625
	0	1	1	1	0	=	1.75
	0	1	1	1	1	=	1.875
	1	0	0	0	0	=	2
	1	0	0	0	1	=	2.25
	1	0	0	1	0	=	2.5
	1	0	0	1	1	=	2.75
	1	0	1	0	0	=	3
	1	0	1	0	1	=	3.25
	1	0	1	1	0	=	3.5
	1	0	1	1	1	=	3.75
	1	1	0	0	0	=	+∞
	1	1	0	0	1	=	NaN
	1	1	0	1	0	=	NaN
	1	1	0	1	1	=	NaN
	1	1	1	0	0	=	NaN
	1	1	1	0	1	=	NaN
	1	1	1	1	0	=	NaN
	1	1	1	1	1	=	NaN

IEEE 754


```
3f80 0000 = 1 c000 0000 = -2

7f7f fffff ≈ 3.4028234 × 10^{38} (максимальное одинарной точности) 0000 0001 = 2^{-149} \approx 1.401298464 \times 10^{-45} (Минимальное положительное число одинарной точности — денормализованное) 0080 0000 = 2^{-126} \approx 1.175494351 \times 10^{-38} (Минимальное нормализованное положительное число одинарной точности) (-1)^s \times 1.M \times 2^{E-127}, если Emin \le E-127 \le Emax (-1)^s \times 0.M \times 2^{Emin}, если E=Emin-1 Emax = 127, Emin = -126 E-127 = -127 — денормализованные числа E-127 = -127 — денормализованные числа E-127 = 128 — специальные E-127 = 1
```

Округление до четного

Название	Полное	Основание	Кол-во двоичных	Число десятичных разрядов	Экспононта (бит)	Десятичный	Смещение экспоненты[1]	E min	E max	Примечания
пазвание	название	Основание	разрядов мантиссы	число десятичных разрядов	экспонента (оит)	E max	смещение экспоненты	E 111111	EIIIax	Примечания
binary16	Половинная точность	2	11	3.31	5	4.51	24-1 = 15	-14	+15	Не основной
binary32	Одинарная точность	2	24	7.22	8	38.23	2 ⁷ -1 = 127	-126	+127	
binary64	Двойная точность	2	53	15.95	11	307.95	2 ¹⁰ -1 = 1023	-1022	+1023	
binary128	Четырёхкратная точность	2	113	34.02	15	4931.77	2 ¹⁴ -1 = 16383	-16382	+16383	
binary256	Восьмикратная точность	2	237	71.34	19	78913.2	2 ¹⁸ -1 = 262143	-262142	+262143	Не основной
decimal32		10	7	7	7.58	96	101	-95	+96	Не основной
decimal64		10	16	16	9.58	384	398	-383	+384	
decimal128		10	34	34	13.58	6144	6176	-6143	+6144	