2015 Algebra Prelim September 14, 2015

- 1. (a) Find an irreducible polynomial of degree 5 over the field \mathbb{Z}_2 of two elements and use it to construct a field of order 32 as a quotient of the polynomial ring $\mathbb{Z}_2[x]$.
- (b) Using the polynomial you found in part (a), find a 5×5 matrix M over \mathbb{Z}_2 of order 31, so that $M^{31} = I$ but $M \neq I$.

Solution:

(a)

To prove that a degree five polynomial is irreducible it suffices to show that it has no roots in \mathbb{Z}_2 and no quadratic factors (factors of degree three or four imply quadratic factors and roots respectively). Among all 32 degree five polynomials in $\mathbb{Z}_2[x]$ we can search for one with no linear or quadratic factors by brute force. We find quickly that $f(x) = x^5 + x^3 + 1$ has no roots (and hence no linear factors) and furthermore we can check that it is not a multiple of any of the four quadratic polynomials in $\mathbb{Z}_2[x]$:

- f(x) is not a multiple of x^2 or $x^2 + x$ since it has a nonzero constant term.
- f(x) is not a multiple of $x^2 + 1$ since $x^2 + 1$ has a root in \mathbb{Z}_2 while f(x) does not.
- f(x) is not a multiple of $x^2 + x + 1$ because by the Euclidean algorithm we have $f(x) = (x^2 + x + 1)(x^3 + x^2 + x) + (x + 1)$ and so f(x) has nonzero remainder when divided by $x^2 + x + 1$.

We conclude that f(x) has no linear or quadratic factors in $\mathbb{Z}_2[x]$ and so is irreducible. Since it is irreducible we know that $\mathbb{Z}_2[x]/\langle f(x)\rangle$ is a field, and it will have order $2^5=32$ since f(x) has degree five. In particular this field is a 5-dimensional vector space over \mathbb{Z}_2 .

(b)

To find a matrix of order 31 we consider \mathbb{F} as a 5-dimensional vector space over \mathbb{Z}_2 , and associate each $p(x) \in \mathbb{F}$ to the linear transformation corresponding to multiplication by p(x). This yields an embedding of \mathbb{F} into the ring of 5×5 matrices over \mathbb{Z}_2 . To compute the specific matrix associated to each p(x) we need to specify a basis for \mathbb{F} over \mathbb{Z}_2 . A simple one is given by $\{1, x, x^2, x^3, x^4\}$.

The group of units of \mathbb{F} has order 31, a prime, and so any nonzero nonidentity element of \mathbb{F} generates it. We choose x as our generator and note that x has multiplicative order 31. To associate x to a matrix we consider its action on the basis previously described. Under this basis the action of x is described by the matrix

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

where the last column arises from the relation $x^5 = x^3 + 1$ in \mathbb{F} . Since the embedding of \mathbb{F} into the ring of 5×5 matrices preserves order we conclude that the matrix above has the same order as x, namely 31.

2. Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . Justify your answer.

Solution:

Let $\alpha=\sqrt{2}+\sqrt{3}$ and $F=\mathbb{Q}(\sqrt{2},\sqrt{3})$. Note that F is Galois over \mathbb{Q} and contains α , and so to determine the other roots of $\min_{\alpha}(\mathbb{Q})$ we need only determine the possible images of α under the elements of $\operatorname{Gal}(F/\mathbb{Q})$. There are four elements of $\operatorname{Gal}(F/\mathbb{Q})$: the identity, the map which replaces $\sqrt{2}$ by its negative, the map which replaces $\sqrt{3}$ by its negative, and the map which replaces both $\sqrt{2}$ and $\sqrt{3}$ by their negatives. From this we see quickly that the other roots of $\min_{\alpha}(\mathbb{Q})$ are $-\sqrt{2}+\sqrt{3}$, $\sqrt{2}-\sqrt{3}$, and $-\sqrt{2}-\sqrt{3}$. Thus we have

$$\min_{\alpha}(\mathbb{Q}) = (x - \sqrt{2} - \sqrt{3})(x + \sqrt{2} + \sqrt{3})(x - \sqrt{2} + \sqrt{3})(x + \sqrt{2} - \sqrt{3})$$

$$= (x^2 - 5 - 2\sqrt{6})(x^2 - 5 + 2\sqrt{6})$$

$$= x^4 - 10x + 1.$$

- 3. (a) Let R be a commutative ring with no nonzero nilpotent elements. Show that the only units in the polynomial ring R[x] are the units of R, regarded as constant polynomials.
 - (b) Find all units in the polynomial ring $\mathbb{Z}_4[x]$.
- 4. Let p and q be two distinct primes. Prove that there is at most one nonabelian group of order pq (up to isomorphisms) and describe the pairs (p,q) such that there is no non-abelian group of order pq.
- 5. (a) Let L be a Galois extension of a field K of degree 4. What is the minimum number of subfields there could be strictly between K and L? What is the maximum number of such subfields? Give examples where these bounds are attained.
- (b) How do these numbers change if we assume only that L is separable (but not necessarily Galois) over K?
- 6. (a) Let R be a commutative algebra over \mathbb{C} . A derivation of R is a \mathbb{C} -linear map $D: R \to R$ such that (i) D(1) = 0, and (ii) D(ab) = D(a)b + aD(b) for all $a, b \in R$.
 - (a) Describe all derivations of the polynomial ring $\mathbb{C}[x]$.
- (b) Let A be the subring (or \mathbb{C} -subalgebra) of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ generated by all derivations of $\mathbb{C}[x]$ and the left multiplications by x. Prove that $\mathbb{C}[x]$ is a simple left A-module. Note that the inclusion $A \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ defines a natural left A-module structure on $\mathbb{C}[x]$.
 - 7. Let G be a non-abelian group of order p^3 with p a prime.
 - (a) Determine the order of the center Z of G.
 - (b) Determine the number of inequivalent complex 1-dimensional representations of G.
- (c) Compute the dimensions of all the inequivalent irreducible representations of G and verify that the number of such representations equals the number of conjugacy classes of G.
- 8. Prove that every finitely generated projective module over a commutative noetherian local ring is free.