Shoulder vibration feedback system for visually impaired people indoor navigation, and the study on the feedback strategy

Feng Wang

Supervisor: Prof. Chun Yu

Background

3% visually impaired, 0.5% completely blind

Inclusive design and guide dogs are not available for everyone, especially in developing countries.

Personal accessibility devices are still needed for visually impaired people (VIP).

Problem & Goal

Indoor navigation for visually impaired people. Category: Vibro-Haptic feedback Elements Where to: On shoulder Sensing → Calculating → Feedback -Form: Backpack strap Sensor fusion 2D Image **How to**: ? (The problem to be solved) Depth Image 3D reconstruction Distance Voice Decision making Goal Location

Clarification for "on shoulder"

- 1. Constrain: the movement of the body part must represent the movement of the person For collecting the body movement. The information is for a better feedback strategy
- 2. Prior test on vibration sensitivity

Part	Comment	
Earlobe	Not sensitive. Distractive noise.	
Back of the ear	Highly sensitive. Intense distractive and uncomfortable noise.	
Shoulder	Highly sensitive on clavicle.	
Upper arm	Not sensitive.	
Belly	Sensitive.	

Form

Method	Pros	Cons
Cane (robot)	Force feedback	Large
Cane (VR)	Force feedback	Large
Cane (vibration)	Simple	Limited information
Insole	Simulate road	Not sensitive
Wristband	Direction	Low accuracy
Two wristbands	Simple	Limited information
Jacket	Rich information	Large
Electrode	High accuracy	Dangerous
Belt	Rich information	Complex

Form is bonded with "where to", and effects "how to"

HOW to provide the vibration feedback on shoulders?

Clarify the variables

From the system - Latency from sensing to decision

Sensing Feedback

*for demonstration, also has impact on rotation

The latency is related to

- The workload of algorithm
- The calculation power
- Communication latency

1/60 s: Limited by camera frame rate

10² ms: Cloud computing

10³ ms: Edge computing

A variable for my tests
A constrain in solution
A problem to tackle

Clarify the variables

On strategy – Strategy for interpreting the instruction

Take advantage of locally information and calculation

From the feedback system In the feedback system

Decision on next move from calculation stage based on info moments ago

Additional information

e.g. movement since last instruction last instruction

Feedback strategy

How to merge all the information How to present the feedback

Actual feedback

Clarify the variables

On time – Frequency of Feedback adjustments

On space – Density of vibration points

On energy – Intensity of the vibration

Strategy VS latency

Find the optimal combination inside this problem space requires

Hardware above human limitation

Metrics to evaluate that

Hardware above human limitation

Hi-Fi shoulder vibration feedback.

Intensity control every 6ms

12⁺Bits intensity control 10³⁺ levels

Spatial density 1/(1*2cm)

New actuator and new driven method

Closed loop control within feedback system

Eccentric motors

Rotation -> vibration On/Off Inertia

Linear actuators

Direct vibration Analog intensity Fast response

Metrics¹ for finding out the limitation

Metrics² for comparison

Task: Indoor navigation with simple scenario

TBD

Ground truth tracking

CV system

Objective

Destination accuracy

Path accuracy

...

Subjective

Cognitive difficulty

Learning curve

...

Collaborated work with

Colleagues at Beijing working on general metrics

Other 2 GIX students with VIP navigation topics

Schedule

Time		Task	
UW	Quarter 4	Further investigation.	
		Build the haptic feedback prototype	
		Design the haptic feedback strategies	
		Design the tasks in Metrics 1 & 2	
	Break (1 month)	Build the HTC Vive test platform for Metrics 1 .	
		Find the optimal combination with None-VIP participants	
		Build the CV platform for Metrics 2 .	
		Performance evaluation with None-VIP participants	
	Quarter 5	Iterate	
Tsinghua		Rebuild the evaluation platforms.	
		Fine tuning the optimal combination with VIP participants	
		Performance evaluation with VIP participants	
		Paper writing	

Outcome

Reference

- [1] Bourne, R. R., Flaxman, S. R., Braithwaite, T., Cicinelli, M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H., Leasher, J. and Limburg, H. J. T. L. G. H. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis, 5, 9 (2017), e888-e897.
- [2] Shoval, S., Ulrich, I., Borenstein, J. J. I. r. and magazine, a. NavBelt and the Guide-Cane [obstacle-avoidance systems for the blind and visually impaired], 10, 1 (2003), 9-20.
- [3] Zhao, Y., Bennett, C. L., Benko, H., Cutrell, E., Holz, C., Morris, M. R. and Sinclair, M. Enabling People with Visual Impairments to Navigate Virtual Reality with a Haptic and Auditory Cane Simulation. ACM, City, 2018.
- [4] Megalingam, R. K., Nambissan, A., Thambi, A., Gopinath, A. and Nandakumar, M. Sound and touch based smart cane: Better walking experience for visually challenged. IEEE, City, 2014.
- [5] Velázquez, R., Bazán, O., Alonso, C. and Delgado-Mata, C. Vibrating insoles for tactile communication with the feet. IEEE, City, 2011.
- [6] Dobbelstein, D., Henzler, P. and Rukzio, E. Unconstrained pedestrian navigation based on vibro-tactile feedback around the wristband of a smartwatch. ACM, City, 2016.
- [7] Bosman, S., Groenendaal, B., Findlater, J.-W., Visser, T., de Graaf, M. and Markopoulos, P. *Gentleguide: An exploration of haptic output for indoors pedestrian guidance*. Springer, City, 2003.
- [8] Delazio, A., Nakagaki, K., Klatzky, R. L., Hudson, S. E., Lehman, J. F. and Sample, A. P. Force jacket: Pneumatically-actuated jacket for embodied haptic experiences. ACM, City, 2018.
- [9] Nguyen, T. H., Nguyen, T. H., Le, T. L., Tran, T. T. H., Vuillerme, N. and Vuong, T. P. A wearable assistive device for the blind using tongue-placed electrotactile display: Design and verification. IEEE, City, 2013.
- [10] Cosgun, A., Sisbot, E. A. and Christensen, H. I. Evaluation of rotational and directional vibration patterns on a tactile belt for guiding visually impaired people. IEEE, City, 2014.
- [11] Tsukada, K. and Yasumura, M. Activebelt: Belt-type wearable tactile display for directional navigation. Springer, City, 2004.
- [12] Niehorster, D. C., Li, L. and Lappe, M. J. i.-P. The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research, 8, 3 (2017), 2041669517708205.

Thanks