Тензорная гусеница

Алтай Эйнуллаев Эльшан оглы

Московский физико-технический институт

Курс: Математические методы прогнозирования

Лабораторная работа 2

2025

Цель работы и источники

Задача:

Разобраться в обобщении гусеницы на случай набора временных рядов, с использованием тензорного представления траекторных матриц.

Источники:

K. Семкин, $Metog\ tSSA$, https://github.com/intsystems/tssa_method/blob/master

Траекторный тензор 🗶

- $\{x_t^{(i)}\}_{i=1}^P$ набор из P сигналов, $t=1,\ldots,n$.
- $\mathbf{x}_t^{(i)} = (x_t^{(i)}, \dots, x_{t+\tau-1}^{(i)})^\mathsf{T}$ вектор задержек, размерности $au,\ i$ го сигнала, $t=1,\dots,n$.
- $\mathbf{X}^{(i)} = (\mathbf{x}_1^{(i)} \mathbf{x}_2^{(i)} \dots \mathbf{x}_n^{(i)})$ траекторная матрица i го сигнала.
- Объединим эти матрицы в траекторный тензор третьего порядка: $\mathbf{X}_{:...i} = \mathbf{X}^{(i)}$
- Сигналы связанные, если они имеют общий собственный базис в фазовых пространствах.

СР-разложение **X** и интерпретация факторов

CP-разложение траекторного тензора $\underline{\mathbf{X}}$:

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r.$$

Разложение траекторных матриц:

$$\mathbf{X}^{(i)} = \sum_{r=1}^{R} \sigma_{ri} \mathbf{a}_r \mathbf{b}_r^{\mathsf{T}} = \sum_{r=1}^{R} \mathbf{C}_r^{(i)} = \mathbf{A} \mathbf{\Sigma}_i \mathbf{B}^{\mathsf{T}},$$

где ${\bf A}=({\bf a}_1\dots {\bf a}_R)$ – общий собственный базис сигналов, ${\bf \Sigma}_i={\rm diag}(\sigma_{1i},\dots,\sigma_{Ri})$ – аналог сингулярных чисел, но могут быть и отрицательными, ${\bf B}=({\bf b}_1\dots {\bf b}_R),\ {\bf c}_r=(\sigma_{r1},\dots,\sigma_{rn})^{\sf T}.$

Декомпозиция сигнала и оператор ганкелизации

- Оператор ганкелизации $Hankel(\cdot)$ выполняет антидиагональное усреднение элементов матрицы,
- Невязка ганкелизации: $\mathbf{H}_r^{(i)} = \mathbf{C}_r^{(i)}$ Hankel $(\mathbf{C}_r^{(i)})$,
- При точном разложении траекторного тензора: $\sum_{r=1}^{R} \mathbf{H}_{r}^{(i)} = 0$,
- Упрощенная задача декомпозиции сигнала на две компоненты:

$$\begin{cases} \|\sum\limits_{r=1}^{R-1}\mathbf{H}_r^{(i)}\beta_r^{(i)}\| \rightarrow \min_{\beta^{(i)}} \\ \beta \in \{0,1\} \\ \sum\limits_{r=1}^{R-1}\beta_r^{(i)} \geqslant 2, \end{cases}$$

Прогнозирование с помощью тензорной гусеницы

- Вектор задержки, с неизвестной последней компонентой: $\mathbf{x}_{n-\tau+2} = (\mathbf{x}_{kn}|x_{pr})^\mathsf{T}$,
- Введем обозначение: ${f A} = \left({{{f A}_{kn}} \over {{f a}_{pr}^{\sf T}}} \right)$. Решаем задачу наименьших квадратов:

$$\mathbf{x}_{n-\tau+2} = \mathbf{A}\lambda$$

- Решение: $\lambda = (\mathbf{A}_{kn}^\mathsf{T} \mathbf{A}_{kn})^{-1} \mathbf{A}_{kn}^\mathsf{T} \mathbf{x}_{kn}$. Предсказание:

$$x_{n+1} = \mathbf{a}_{pr}^\mathsf{T} (\mathbf{A}_{kn}^\mathsf{T} \mathbf{A}_{kn})^{-1} \mathbf{A}_{kn}^\mathsf{T} \mathbf{x}_{kn}$$

- Модель предсказания: $AR(\tau - 1)$.

Данные

Эксперимент был проведен на данных потребления электроэнергии. Временной ряд был разделен на три ряда потребления энергии за лето, соответственно, 2005, 2006, 2007-х годов:

Временные ряды и их разделение на обучающую и тестовую выборки.

Декомпозиция временных рядов

- 1. По сетке рангов, произведем разложение траекторного тензора с помощью ALS.
- 2. Для каждого ранга выполним декомпозицию, численно решив задачу группировки.
- 3. Выберем ранг, отвечающий наименьшей средней относительной ошибке ганкелизации:

$$\mathsf{RHE} = \frac{\|\mathbf{C} - \mathsf{Hankel}(\mathbf{C})\|_2}{\|\mathbf{C}\|_2},$$

усредненной по трем рядам.

Декомпозиция временных рядов

Декомпозиция временных рядов на две компоненты при ранге разложения R=45.

Прогнозирование временных рядов.

- 1. По сетке рангов, произведем разложение траекторного тензора с помощью ALS.
- 2. Для каждого ранга выполним прогноз на валидационной выборке и вычислим МАРЕ.

3. Выберем ранг, отвечающий наименьшему среднему МАРЕ и выполним прогноз на тесте.

Прогнозирование временных рядов.

Предсказания временных рядов на тесте при ранге R=10.

Сглаживание временных рядов

Проведем сглаживание временных рядов, с помощью умреднения антидиагональных элементов восстановленных траекторных матриц:

Сглаживание временных рядов при ранге R = 10.

Выводы

- Сглаживание и прогнозирование дали удовлетворительный результат.
- Сложность и неинтерпретируемость декомпозиции главный недостаток метода.