# PROCESSAMENTO DE IMAGENS APLICADO A AGROINDUSTRIA

### A disciplina

- Ementa
  - □ Fundamentos de Processamento de Imagens. Áreas de Aplicação. Formação de Imagens. Amostragem e Quantização. Técnicas de Melhoramento de Imagens. Segmentação de Imagens. Representação e Descrição. Aplicação do Processamento de Imagens para casos reais do agronegócio.
- □ Carga horária → 45 h/a

### A disciplina

#### Bibliografia















### Objetivo

- □ Introdução ao Processamento de Imagens
- □ Canais de cor

#### Recursos

- ImageJ (free)
  - Disponível em: <a href="http://rsb.info.nih.gov/ij/index.html">http://rsb.info.nih.gov/ij/index.html</a>

- RoboRealm (trial)
  - Disponível em: <a href="http://www.roborealm.com/index.php">http://www.roborealm.com/index.php</a>

#### Recursos

- Conversores 2
  - □ Ferramenta que demonstra canais de cores
  - Desenvolvido para material de aula

### Computação Gráfica



Criação das imagens, representações visuais.

**Dados -> Imagens** 

Melhoria das Imagens, transformações, realce, ...

**Imagens -> Imagens** 

Obtenção de características a partir da imagem

**Imagens -> Dados** 

### **Imagem Digital**

- Representação de uma imagem em uma região discreta.
- Limitada através de um conjunto finito de valores inteiros que representam cada um dos seus pontos.
- Unidimensional, bidimensional ou tridimensional.
- □ Binária, monocromática, multibanda ou colorida.
- Vetorial ou matricial.

### Síntese de Imagens



- Criação de imagens por computador.
- Transforma dados em imagens
- Podem ser consideradas na forma vetorial ou matricial.
- Pode usar técnicas de inteligência artificial que inserem objetos reais e modelos de textura nos objetos e cenas geradas.



### Processamento de Imagens

- Manipulação de imagens.
- As imagens são tanto dados de entrada como de saída
- Rearranjo dos pontos ou pixels (picture element) da imagem.

Exemplos: diminuição de ruídos, realce de imagem,

restauração de imagens, etc.





### Visão Computacional

- Extração de informações de imagens e identificação e classificação de objetos nesta imagem.
- Aplicações: reconhecimento de pessoas, de assinaturas e de objetos; inspeção de peças em linhas de montagem; orientação de movimentos de robôs em indústrias automatizadas; etc.
- Utiliza IA (ou técnicas de tomada de decisão).





### Análise de Imagens

- Interpretação de informações da imagem através de algoritmos computacionais.
- Tomam imagens como entradas, mas produzem outros tipos de saída.
- Obtém parâmetros descritivos da imagem.
- Usada para a realização de Reconhecimento de Padrões, Visão Computacional ou de extração de conhecimento das imagens (Mineração de Imagens).



### Aplicações do PDI

















• • •

### Etapas do PDI



### Aquisição da Imagem











### **Imagem**

- Um arranjo de M x N x 3 pixels onde cada pixel é formado por 24 bits (3 canais de 8 bits) em uma localização espacial específica.
- A junção desses elementos forma a cor





#### COR

- Percepção visual provocada pela ação de um feixe de fótons sobre células especializadas da retina, que transmitem através de informação préprocessada no nervo óptico, impressões para o sistema nervoso
- impressão que as diferentes variedades de luz (comprimentos de onda) produzem nos órgãos visuais

#### Cor – Sistema Visual Humano

- Bastonetes 75 a 150 milhões retornam a sensação de visão noturna (em preto e branco)
- Cones 6 a 7 milhões, são responsáveis pela percepção das cores, formado por 3 tipos de cones, alguns mais sensíveis ao vermelho, outros ao verde e outros ao azul



### PERCEPÇÃO DA COR

- Newton demonstrou, através de experimentos, que a luz consiste de energia de diferentes comprimentos de onda (prisma).
- O olho percebe somente o comprimento de onda que vai de 400-700 nanômetros (bilionésima parte do metro).





## Comprimento de Ondas



### Teorias da Percepção de Cor

#### **Teoria Tricromática**

 Apenas três tipos de receptores da retina são necessários operando com sensibilidades a diferentes comprimentos de onda. É baseada na existência de três tipos de cores primárias.

#### Teoria de Maxwell

• Os três cones existentes na retina são sensíveis respectivamente ao vermelho (R), ao verde (G) e ao azul (B), chamadas *cores primárias de luz*.

### Tipos de Cor

- Acromática (sem cor)
  - Intensidade de luz (luminância ou brilho)
  - Tons de cinza
- Cromática (com cores)
  - Sensação de cores usando intensidade e cromaticidade
  - Cromaticidade
    - Tonalidade (hue/matiz)—distinção entre cores
    - ■Saturação indica o quão pura é a cor

### Formação da COR

#### Aditiva

 é feita a projeção de luzes de várias cores (RGB) no mesmo ponto (televisão)

#### Subtrativa

- a sensação é a de passagem da luz por uma serie de filtros
- mistura de tintas em um desenho, essa formação de cor é comumente usada em impressoras coloridas e fotografias





#### Nomenclatura de Cores

- Cada um entende cores de sua maneira
- Difícil haver uniformidade
- □ Para isso foram definidos os "espaços de cores" ou "modelos de cores" ou "formatos de cor"
- Cada espaço de cor tem características próprias que permitem que sejam mais adequados para determinadas aplicações.

### RGB (red, green e blue)

- □ Formação aditiva (câmeras e monitores de vídeo)
- Baseado na teoria tricromática
- Conhecido também como cubo de cores, onde os seus oito vértices são formados pelas três cores primárias, as secundárias (ciano, magenta, amarelo) e mais o preto e o branco



#### Prática

Usando ImageJ abram a figura "flores.jpg"



 $\square$  Vá em Image  $\rightarrow$  Color  $\rightarrow$  Channels Tool



 $\square$  Vá em Image  $\rightarrow$  Color  $\rightarrow$  Split Channels

### RGB (red, green e blue)











### RGB (red, green e blue)



Ìmagem Original



Canal G



Canal R



Canal B

### HSI (Hue/Saturation/Intensidade)

- □ Baseia-se na percepção de cor do ser humano
- Matiz (hue) Tinta, cor pura (ângulo)

 Saturação – Sombreamento, concentração de tinta (raio)

□ Intensidade – Brilho (altura)





### HSI (Hue/Saturation/Intensidade)



**Ìmagem Original** 



Saturação



Intensidade

#### Conversão RGB -> HSI

- □ Intensidade (0 a 255)
- □ Hue (-180° a 180°)
- □ Saturação (0 a 1)

$$I = \frac{R + G + B}{3}$$

$$H = arctg \left( \frac{\sqrt{3} \cdot (G - B)}{(R - G) + (R - B)} \right)$$

$$S = 1 - \frac{\min(R, G, B)}{I}$$

### HSV (Hue/Saturation/Value)

- Variação do HSI, onde o V é a cor mais brilhante,
   que é a metade do valor de I
- Baseado em coordenadas cilíndricas.



### **HSV** (Hue/Saturation/Value)



**Imagem Original** 



Hue



Saturação



Imagem Convertida



Valor

#### Conversão RGB -> HSV

$$H_{1} = \cos^{-1} \left( \frac{\frac{1}{2}((R-G)+(R-B))}{\sqrt{(R-G)^{2}+(R-B)(G-B)}} \right) \qquad H = H1, \quad \text{si } B \le G$$

$$H = H1, \quad \text{si } B \le G$$

$$H = H1, \quad \text{si } B \le G$$

$$H = 360^{\circ} - H1, \quad \text{si } B > G$$

$$M = \max(R, G, B)$$
$$m = \min(R, G, B)$$

$$H = H1$$
,  $si B \le G$   
 $H = 360^{\circ} - H1$ ,  $si B > G$ 

$$S = \frac{M - m}{M}$$
$$V = \frac{M}{255}$$

### **HSL** (Hue/Saturation/Lightness)

- A cor não é definida em função de primárias
- Definido por um hexágono duplo
- Facilidade para especificar cores



### CMYK (ciano/magenta/yellow/black)

- □ Padrão das impressoras jato de tinta
- □ Espaço de cor subtrativo
- □ Conversão:
  - $\Box$  C = 1.0 red;
  - $\square M = 1.0$  green;
  - = Y = 1.0 blue;





### XYZ

- Criado pela
   International
   Commission on
   Illumination (CIE) em
   1931
- A cor é expressa como uma mistura de três estímulos (X,Y,Z)



### Conversão RGB - XYZ - RGB

### **RGB-XYZ**

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} 0.4125 & 0.3576 & 0.1804 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{G} \end{bmatrix}$$

$$\mathbf{Z} \begin{bmatrix} 0.2127 & 0.7152 & 0.0722 \end{bmatrix} \begin{bmatrix} \mathbf{G} \\ \mathbf{B} \end{bmatrix}$$

### **XYZ-RGB**

$$\begin{bmatrix} \mathbf{R} \\ \mathbf{G} \\ \end{bmatrix} = \begin{bmatrix} 3.2405 & -1.5372 & -0.4985 \\ -0.9693 & 1.8760 & 0.0416 \\ 0.0556 & -0.2040 & 1.0573 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix}$$

### Luv e Lab

 Criados para medir a diferença entre duas cores

 A diferença entre as cores é proporcional a distância

geométrica no espaço de cor



blue green L O white

blue b-

b+ yellow

magenta

### Conversões

$$\begin{array}{lll} \textbf{XYZ-Luv} & L^* &=& \left\{ \begin{array}{lll} 116(Y/Y_n)^{1/3} - 16, & Y/Y_n > (6/29)^3 \\ (29/3)^3(Y/Y_n), & Y/Y_n \leq (6/29)^3 \end{array} \right. \\ u^* &=& 13L^*(u'-u'_n) \\ v^* &=& 13L^*(v'-v'_n) \end{array} \\ & u' &=& 4X/(X+15Y+3Z) = 4x/(-2x+12y+3) \\ v' &=& 9Y/(X+15Y+3Z) = 9y/(-2x+12y+3) \end{array}$$

#### XYZ-Lab

$$L^* = 116 f(Y/Y_n) - 16$$
 $a^* = 500 [f(X/X_n) - f(Y/Y_n)]_{f(t)} - \begin{cases} t^{1/3} & t > (6/29)^3 \\ \frac{1}{3} (\frac{29}{6})^3 t + \frac{4}{29} & \text{otherwise} \end{cases}$ 
 $b^* = 200 [f(Y/Y_n) - f(Z/Z_n)]$ 

# YCrCb (YUV / CCIR 601)

- Modelo de representação da cor dedicado à vídeos analógicos.
- □ Usa um canal de luminância e dois de cor.
- A luminância (Y) (traz informações preto e branco), enquanto U (Cr) e V (Cb) permitem representar a cor.

$$Y = 0.299R + 0.587 G + 0.114 B$$
  
 $U = -0.147R - 0.289 G + 0.436B = 0.492(B - Y)$   
 $V = 0.615R - 0.515G - 0.100B = 0.877(R-Y)$ 

### Prática

# Conversores 2 - XYZ











# Prática Conversores 2 - YCrCb



**RGB** 



YCrCb

Cb

Cr







### Prática

# Conversores2 - Lab



**RGB** 



Lab







## Imagens Monocromáticas

- Apresenta somente uma banda espectral
- □ Podem ser:
  - □ binárias (preto e branco)
  - tons de cinza (0 a 255)

### Conversão RGB - Tons de Cinza

 Deve-se ler os valores de cada canal, efetuar a conversão e colocar o resultado em todos os canais

$$Cinza = \frac{R + G + B}{3}$$

Em geral fica escuro, pois a luminosidade é maior no verde e menor no azul

$$Cinza = 0.3R + 0.59G + 0.11B$$

Fórmula Clássica

$$Cinza = 0.23R + 0.65G + 0.12B$$

Imagens muito escuras

# Histograma

 Mostra a freqüência de determinado nível de cinza em uma imagem

| 0 | 0 | 1 | 0 | 2 | 0 |
|---|---|---|---|---|---|
| 1 | 0 | 7 | 7 | 7 | D |
| 0 | 7 | 0 | 0 | 7 | 0 |
| 1 | 0 | 0 | 7 | 2 | 0 |
| 0 | 0 | 7 | 1 | 0 | 1 |
| 1 | 0 | 7 | 7 | 7 | 0 |

Frequências: F(0) = 18 F(1) = 6 F(2) = 2 F(3)..F(6) = 0F(7) = 10



Imagem

Histograma

### Histograma

Valores muito baixos Imagem Escuras



Valores muito altos Imagem Clara

### Valores próximos Baixo contraste



Valores espalhados Alto contraste



# Equalização de Histograma

 Aumenta o contraste geral da imagem através da redistribuição dos níveis de cinza de forma uniforme









# Equalização de Histograma





Equalizada





Originais



Equalizadas







### Prática - ImageJ

- □ Abra a imagem
- □ Transforme em tons de cinza (Image → Type → 8 bits)
- Gere o histograma da imagem de cinza (Analyse
   Histogram)
- □ Faça a equalização da imagem em tons de cinza (Process → Enhance Contrast → Equalize Histogram)
- □ Gere o histograma da imagem equalizada (Analyse → Histogram)

### Referências

- CONCI, Aura; AZEVEDO, Eduardo; LETA, Fabiana R.
   Computação Gráfica: Teoria e Prática Volume 2. Elsevier.
   Rio de Janeiro, 2008.
- FACON, Jacques. Processamento e Análise de Imagens.
   Material de Aula, Mestrado em Informática Aplicada PUCPR 2005.
- GONZALEZ, R. C.; WOODS, R. E. Processamento de Imagens Digitais. Edgard Blucher, 2000.
- PEDRINI, Hélio; SCHWARTZ, William R. Análise de Imagens Digitais – Princípios, Algoritmos e Aplicações. Thomson. São Paulo, 2008.