Maximum Cardinality Matching Problem

Narek Bojikian, Piotr Witkowski, Martin Vogel

June 10, 2019

Assignment Problem

Definitions

Matching

Definition

Set of non overlapping edges.

Bipartite Matching

Definition

Matching on a bipartite graph.

Perfect Matching

Definition

Matching of size $\frac{|V(G)|}{2}$.

Maximum Matching

Definition

Matching of the maximum size.

Maximum Matching vs Maximal Matching

Maximum: matching of the maximum size:

Maximal: no more edges can be added:

Bipartite graphs

Hall's Theorem

Definition

A bipartite graph G consisting of sets U and W, has a matching satisfying |u| if and only if $|N(x)| \ge |x|$ for every nonempty subset X of U.

Examples - Hall's Theorem

- Examples on the board -

Königs Theorem

Definition

The maximum matching for a bipartite graph equals its minimum vertex cover

Königs Theorem - Example

- Example on the Board -

Alternating Path

Definition

Let G = (X, Y, E) be a bi-partite graph where the vertices are divided into the sets X and Y and E the edges.

Alternating Path

Alternating Path

Alternating Path - Summary

- starts in a vertex element of X and ends in vertex element of Y
- must have an odd-number of edges
- will visit nodes in X und Y alternatedly
- And it starts and ends in free/unmatched vertices
- ightarrow To go forward, use an edge that is not part of the matching
- ightarrow To go backward, use an edge that is part of the matching

Augmenting Path - Definition

Definition

An augmenting path is an alternating path where the first and last vertex are unmatched.

Augmenting Path - example

- Example on the Board -

Breadth First Search - repetition

- Example on the Board -

Berge Theorem

A matching is a maximum matching if it contains no augmenting path.

Hungarian Method

Search augmenting paths in the graph until no augmenting path can be found

 \rightarrow Time complexity: $O(|V|^3)$

Precise information can be found here:

https://brilliant.org/wiki/hungarian-matching/

Note: It is not an algorithm, so it does not specify a implementation

Maximum Flow Reduction

- Example on the Board -

Hopcraft-Carp Algorithm

Input: A bipartite Graph Initialize Matching

- 1. Repeat
- ightarrow Build alternating level graph rooted at unmatched vertices using bfs
- → Augment M via maximal set of vertex disjoint shortest-length paths
- \rightarrow until no augmenting paths exists
- 2. Return M

Time complexity: $O(|E| * \sqrt{|V|})$

Hopcraft-Carp Algorithm - bipartite Graph

Example on the Board –

General graphs

General graphs

Problem: odd-length cycles

Maximal: matching of size 2

Optimum: matching of size 3

General graphs

Bipartite graphs can have cycles, but always only of even length:

Blossom algorithm uses the idea of Berge's Theorem, that

Blossom algorithm uses the idea of Berge's Theorem, that matching is a **maximum matching** iff there is **no augmenting path**.

Blossom algorithm uses the idea of Berge's Theorem, that matching is a **maximum matching** iff there is **no augmenting path**.

Input: Graph \mathcal{G} , initial matching \mathcal{M} on \mathcal{G} **Output:** maximum matching \mathcal{M}^* on \mathcal{G}

Blossom algorithm uses the idea of Berge's Theorem, that matching is a **maximum matching** iff there is **no augmenting path**.

Input: Graph \mathcal{G} , initial matching \mathcal{M} on \mathcal{G} **Output:** maximum matching \mathcal{M}^* on \mathcal{G}

In other words, Blossom algorithm improves existing matching $\mathcal M$ in $\mathcal G$ as long as augmenting paths exist, then returns.

Problem: How to guarantee no augmenting paths in a graph?

Problem: How to guarantee no augmenting paths in a graph?

Definition: Exposed vertex

Vertex v is exposed iff no edge of M is incident with v.

Problem: How to guarantee no augmenting paths in a graph?

Definition: Exposed vertex

Vertex v is exposed iff no edge of M is incident with v.

Blossom algorithm examines all exposed vertices v and

- if an augmenting path is found, improve matching
- if a "blossom" (odd cycle*) is found, temporarily remove cycle and execute algorithm on a modified graph
- (delete vertex v from exposed vertices)

Edmonds' Blossom algorithm (1965)

Blossom contraction

Edmonds' Blossom algorithm (1965)

Blossom lift

Edmonds' Blossom algorithm (1965)

Blossom lift (other variant)

General graphs

Complexity: For general graphs a straightforward implementation of the maximum matching algorithm of Edmonds (1965) runs in $O(n^4)$ time (Papadimitriou and Steiglitz, 1982). More efficient general matching algorithms have been designed with the following running times:

- $O(n^3)$ Gabow, 1976,
- O(n*m) Kameda and Munro, 1974,
- $O(n^{2,5})$ Even and Kariv, 1975,
- $O(n^{1/2} * m)$ Micali and Vazirani, 1980

Randomized Algorithms

A short tour in number theory,

A short tour in number theory, **Permutation**

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

i	1	2	3	4	5
$\delta(i)$	3	2	4	1	5

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

 S_n - Set of all permutations of n elements.

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

 S_n - Set of all permutations of n elements.

For an $n \times n$ -matrix A, we define

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

 S_n - Set of all permutations of n elements.

For an $n \times n$ -matrix A, we define

Determinant of a matrix

$$det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$$

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

 S_n - Set of all permutations of n elements.

For an $n \times n$ -matrix A, we define

Determinant of a matrix

Permanent of a matrix

$$det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$$

$$\mathit{perm}(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

 S_n - Set of all permutations of n elements.

For an $n \times n$ -matrix A, we define

Determinant of a matrix

Permanent of a matrix

$$det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$$

$$\mathit{perm}(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$

Laplace expansion (on board) Efficient Gaussian Elimination $O(n^{\omega}), \omega = 2.373$ Matrix-Multiplication Exponent

A short tour in number theory,

Permutation - Bijection over *n* elements to themselves.

 S_n - Set of all permutations of n elements.

For an $n \times n$ -matrix A, we define

Determinant of a matrix

$$det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$$

Laplace expansion (on board) Efficient Gaussian Elimination $O(n^{\omega}), \omega=2.373$ Matrix-Multiplication Exponent

Permanent of a matrix

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$

NP-Hard problem.

Presumably no polynomial time algorithm to compute.

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

u _i	1	2	3
$\pi(u_i)$	2	3	1

How to check if a bipartite graph admits a perfect matching?

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

u _i	1	2	3
$\pi(u_i)$	2	3	1

The graph admits a perfect matching \iff

How to check if a bipartite graph admits a perfect matching?

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

u _i	1	2	3
$\pi(u_i)$	2	3	1

The graph admits a perfect matching \iff

There is a permutation π , s.t. $\prod_{i \in [n]} A^{\mathcal{G}}_{i,\pi(i)} = 1 \iff$

How to check if a bipartite graph admits a perfect matching?

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

u _i	1	2	3
$\pi(u_i)$	2	3	1

The graph admits a perfect matching \iff

There is a permutation π , s.t. $\prod_{i \in [n]} A_{i,\pi(i)}^{\mathcal{G}} = 1 \iff$

For ${\mathcal S}$ the set of all permutations on n elements

$$\sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A^G_{i,\pi(i)} > 0$$

How to check if a bipartite graph admits a perfect matching?

$$A^G = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

u _i	1	2	3
$\pi(u_i)$	2	3	1

The graph admits a perfect matching \iff

There is a permutation
$$\pi$$
, s.t. $\prod_{i \in [n]} A_{i,\pi(i)}^{\mathcal{G}} = 1 \iff$

For ${\mathcal S}$ the set of all permutations on n elements

$$\underbrace{\sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}^{G}}_{perm(A^{G})} > 0$$

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$

$$\mathit{perm}(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$

...is a known hard problem

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$

$$det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$$

...is a known hard problem

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$
 ... is a known hard problem $det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$

We don't have to bound ourselves with ones in the matrix...

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$
 ... is a known hard problem
$$det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$$

We don't have to bound ourselves with ones in the matrix..

$$A^{\prime G} = \begin{bmatrix} x_{11} & x_{12} & 0 \\ 0 & x_{22} & x_{23} \\ x_{31} & 0 & 0 \end{bmatrix}$$

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$
 ... is a known hard problem $det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$

We don't have to bound ourselves with ones in the matrix...

$$A^{\prime G} = \begin{bmatrix} x_{11} & x_{12} & 0 \\ 0 & x_{22} & x_{23} \\ x_{31} & 0 & 0 \end{bmatrix}$$

 $det(A^{\prime G})$ is a polynomial of degree n.

$$perm(A) = \sum_{\pi \in \mathcal{S}} \prod_{i \in [n]} A_{i,\pi(i)}$$
 ... is a known hard problem $det(A) = \sum_{\pi \in \mathcal{S}} sign(\pi) \prod_{i \in [n]} A_{i,\pi(i)}$

We don't have to bound ourselves with ones in the matrix..

$$A^{\prime G} = \begin{bmatrix} x_{11} & x_{12} & 0 \\ 0 & x_{22} & x_{23} \\ x_{31} & 0 & 0 \end{bmatrix}$$

 $det(A^{\prime G})$ is a polynomial of degree n.

The graph admits a perfect matching \iff the polynomial $det(A'^G)$ is not identical zero.

Schwartz-Zippel lemma

Schwartz-Zippel lemma

Let ρ be a non-zero polynomial of n variables and degree d over a field \mathbb{F} . Let $\mathcal{S} \subseteq \mathbb{F}^n$, then for $x_0 \in \mathcal{S}$

$$Pr[\rho(x_0)=0] \leq \frac{d}{|\mathcal{S}|}$$

Schwartz-Zippel lemma

Schwartz-Zippel lemma

Let ρ be a non-zero polynomial of n variables and degree d over a field \mathbb{F} . Let $\mathcal{S} \subseteq \mathbb{F}^n$, then for $x_0 \in \mathcal{S}_{u.a.r}$

$$Pr[\rho(x_0)=0] \leq \frac{d}{|\mathcal{S}|}$$

Choosing |S| = 2d, we get a method that tells with probability at least 1/2, if the polynomial is identical zero.

Schwartz-Zippel lemma

Schwartz-Zippel lemma

Let ρ be a non-zero polynomial of n variables and degree d over a field \mathbb{F} . Let $\mathcal{S} \subseteq \mathbb{F}^n$, then for $x_0 \in \mathcal{S}$

$$Pr[\rho(x_0)=0] \leq \frac{d}{|\mathcal{S}|}$$

Choosing |S| = 2d, we get a method that tells with probability at least 1/2, if the polynomial is identical zero.

Since one non-zero answer is enough to know the polynomial is a non-zero, we can repeat the operation a couple of times magnifying the probability.