Sistemas Digitais 2023.1 TESTE DE REVISÃO AP2

* Inc	lica uma pergunta obrigatória				
1.	NOME/MATRÍCULA *				
2.	Explicar com suas palavras a diferença entre circuitos digitais combinacionais e circuitos digitais sequenciais.				
3.	2. Muitas aplicações de circuitos sequenciais envolvem o emprego de uma referência temporal, chamada de relógio ou clock . Quanto ao uso ou não do sinal de clock, os circuitos podem ser classificados como:				
	Marcar apenas uma oval.				
	Síncronos ou combinacionais				
	Síncronos ou sequenciais				
	Assíncronos ou combinacionais				
	Assíncronos ou sequenciais				
	Síncronos ou assíncronos				

4. 3. Tipicamente, o sinal de clock é um trem de ondas quadradas, que va entre dois níveis lógicos: alto e baixo. Circuitos que operam na transição nível para outro são chamados de:					
	Marcar apenas uma oval.				
	Gatilhados pela borda (edge triggered) Circuitos de lógica positiva Circuitos de lógica negativa Circuitos síncronos Circuitos assíncronos				
5.	4. Seja um circuito digital que opera sincronizado por um sinal de clock com frequência de 2 MHz. Quanto tempo o sinal permanece no nível alto em um ciclo se o sinal possui <i>duty cicle</i> de 35%?				

6. 5. Seja um sistema cujo comportamento dinâmico está representado no diagrama de estados da figura. Os bits 0 e 1 representam um sinal de entrada do sistema. Quantas variáveis no total são necessárias para implementar digitalmente o sistema?

Marcar apenas uma oval.

/	١.	-
()	

 \bigcirc 2

 $\bigcap \Delta$

() 5

7.	6. Como são designadas as variáveis que representam as informações das elipses do diagrama?				
	Marcar apenas uma oval.				
	variáveis estáticas				
	variáveis dinâmicas				
	variáveis de estado				
	eventos				
	variáveis de transição				
8.	7. Apresentar a expressão de cada uma das variáveis de estado.				

9. 8. A célula binária é um circuito sequencial elementar que possui a capacidade de armazenar 1 bit. Como se designa essa célula binária?

	Flip Flop tipo D
	Flip Flop SR
	Flip Flop tipo T
	Flip Flop JK
	Latch
10.	9. Pode-se alimentar as entradas SET e CLEAR ambas com 0? Explicar a resposta.

Marcar apenas uma oval.

11. 10. Seja o FF JK apresentado na figura. Propor um circuito divisor de frequência usando FF JK.

J	K	CLK	Q
0	0	1	Q ₀ (não muda)
1	0	1 1	1
0	1	1	0
1	1	1	Q (comuta)

Arquivos enviados:

12. 11. Dada uma sequência temporal de entrada apresentada na figura. A saída em cada intervalo de clock será dada por (admitir gatilhamento na subida e Q0=0):

Marcar apenas uma oval.

0-1-0-1

1-0-1-0

0-0-0-0

Outro:

3.	12. Propor uma sequência de JK para o circuito apresentar como saída a sequência 0-1-1-0.
4.	13. Explicar or meio de tabla verdade como se pode obter um Flip Flop tipo T utilizando-se um Flip Flop tipo JK.
5.	14. Propor um registrador paralelo de 2 bits utilizando um Flip Flop tipo D.
	Arquivos enviados:

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários