Supplementary file

Title: The National COVID-19 Vaccine Model (NCVM): Estimating the impact of variants and vaccines on hospital admissions and deaths in South Africa

Authors: Sheetal Prakash Silal^{1,2*}, Juliet RC Pulliam³, Gesine Meyer-Rath^{4,5}, Lise Jamieson⁴ and Harry Moultrie⁹

- ¹ Modelling and Simulation Hub, Africa (MASHA), Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
- ² Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- ³ South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
- ⁴ Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- ⁵ National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service, Johannesburg, South Africa
- *Corresponding author: Sheetal Prakash Silal (Sheetal.Silal@uct.ac.za)

NCVM Provincial Model – Technical Overview

This document provides a technical overview of the National COVID-19 Vaccine Model (NCVM) model. The model described in this document is the age-structured, provincial-level NCVM model, created by the South African COVID-19 Modelling Consortium. There is also a separate document, the NCEM Provincial Model Code Guide, that gives an overview of the structure of the model code for a previously published Provincial Model. The NCVM code structure follows a similar design. If there are any queries regarding the model or the code, please contact us on: info@sacovid19mc.co.za.

Model description

The NCVM is a multi-strain, age-structured, risk-structured, compartmental model of COVID-19 transmission. The model follows a generalised Susceptible-Exposed-Infectious-Removed (SEIR) structure accounting for disease severity (asymptomatic, mild, severe and critical cases), treatment pathways (outpatient services, inpatient non-ICU and ICU beds), non-pharmaceutical intervention impact, vaccination (coverage, effectiveness and waning) and variant emergence and spread (beta, delta and omicron) among age and risk groups in the nine provinces of South Africa. The mechanistic modelling system is depicted in Figure S1.

Key features of the model include:

- Age structure: The population has been subdivided into age classes accounting for agerelated differences in susceptibility to and severity of COVID-19 and to allow for age-related disease characteristics and age-targeted vaccination.
- Multi-strain: The wild type SARS-CoV-2 infection and the Beta, Delta and Omicron variants
 dominating transmission in South Africa's second, third and fourth wave of infections,
 respectively between 2020 and 2022, have been incorporated. The model structure assumes
 no co-infection with multiple strains, but allows for levels of reinfection with other variants.
 Likewise, imperfect natural immunity allows reinfection with the same lineage, with a lower

- transmissibility. Where relevant, variants are simulated to have immune escape characteristics, reducing protection against infection and severe disease.
- Behavioural response: Change in population contact behaviour and response is incorporated as a driver of transmission. Factors that influence contact rates include holiday travel, large events such as religious and political gatherings, changes in adherence to NPIs such as mask wearing, and changes to government-imposed restriction levels. Given the lack of representative data on the impact of behaviour change, the model incorporates the substantial uncertainty in the timing and the rate of change in both nationally directed and individual behaviour, in particular reduced NPI adherence due to fatigue, as a responsive mechanism to mortality where susceptibility to infection reduces as mortality increases above a threshold.
- Vaccination: The model has been developed to account for vaccination of the susceptible
 and naturally immune populations with multiple vaccines of 1 or 2 doses (primary series)
 and a booster dose, allowing for age targeting, vaccine waning, imperfect protection, and
 the ability to provide distinct levels of protection against infection and severe disease.
- Priority populations: Age-stratified priority populations are defined as Healthcare Workers,
 Population with Comorbidities, and Everyone Else with the ability for vaccine distribution to
 be tailored to these populations with respect to the type of vaccine, the timing of
 vaccination, and population age. The specific contact patterns and disease characteristics of
 these priority populations are additionally captured.

A)

Transmission States COVID-19 STATES S Gunceptible E Exposed prot infectious) En Exposed, re-infected (not infectious) Infected, re-infected (not infectious) Infected, seymptomatic or mild Infected, pre-symptomatic Ist infected, severe, untreated Ist Infected, severe, seeking treatment H Infected, severe, in general ward ICU Infected, critical, in ICU R Recovered D Oled

1	Wild Type
2	Beta Variant
3	Delta Variant
4	Omicron Variant

Transitions					
ARROW COLOURS					
Vaccination					
Infection					
Reinfection					
Recovery					
Death					

B)

Age groups (years)						
0-14	15-34	35-59	60-64	65-69	70-74	75+

C)

D)

Province								
EC	FS	GP	KZN	LP	MP	NC	NW	WC

Figure S1. The age and risk-structured National COVID-19 Vaccine Model. A) The transmission dynamics for four variants of COVID-19. B) The transmission dynamics in (A) are replicated for each of 7 age bands, and C) each of 3 risk groups (Healthcare workforce, population with co-morbidities, general population). The model encompassing A, B and C is then calibrated to each of the nine provinces of South Africa listed in D).

The model describes the temporal evolution of the following state variables. These state variables represent a single subpopulation amongst all age groups and risk groups.

Table S1: NCVM State variable list and description

State	Description
S	Uninfected non-immune
E1	Wild:infected & exposed
lam1	Wild:asymptomatic or mild and infectious
lp1	Wild:pre-symptomatic and infectious
IsnotT1	Wild:severe, destined to be untreated and infectious
lst1	Wild:severe, destined to be treated and infectious
H1	Wild:severe treated in general bed
ICU1	Wild:severe entry in ICU bed
1	Wild:removed from infectious stage
Er1	Wild:infected & exposed with natural immunity
D	Dead
E2	New:infected & exposed
lam2	New:asymptomatic or mild and infectious
Ip2	New:pre-symptomatic and infectious
IsnotT2	New:severe, destined to be untreated and infectious
Ist2	New:severe, destined to be treated and infectious
H2	New:severe treated in general bed
ICU2	New:severe entry in ICU bed
2	New:removed from infectious stage
Er2	New:infected & exposed with natural immunity
VP1_S	Pfizer: 1st dose on Susceptible (Protected)
VPnot1_S	Pfizer: 1st dose on Susceptible (Not Protected)
VP1_R	Pfizer: 1st dose on Recovered (Protected)
VPnot1_R	Pfizer: 1st dose on Recovered (Not Protected)
VP2_S	Pfizer: 2nd dose on Susceptible (Protected)
VPnot2_S	Pfizer: 2nd dose on Susceptible (Not Protected)
VP2_R	Pfizer: 2nd dose on Recovered (Protected)
VPnot2_R	Pfizer: 2nd dose on Recovered (Not Protected)
VJ_S	JnJ: on Susceptible (Protected)
VJnot_S	JnJ: on Susceptible (Not Protected)
VJ_R	JnJ: on Recovered (Protected)
VJnot_R	JnJ: on Recovered (Not Protected)
VP3_S	Pfizer: 3rd dose on Susceptible (Protected)

VPnot3_S	Pfizer: 3rd dose on Susceptible (Not Protected)
VP3_R	Pfizer: 3rd dose on Recovered (Protected)
VPnot3_R	Pfizer: 3rd dose on Recovered (Not Protected)
VJ2_S	JnJ: 2nd dose on Susceptible (Protected)
VJnot2_S	JnJ: 2nd dose on Susceptible (Not Protected)
VJ2_R	JnJ: 2nd dose on Recovered (Protected)
VJnot2_R	JnJ: 2nd dose on Recovered (Not Protected)
IPam1	Wild:asymptomatic or mild and infectious for Pfizer Vaccinated
IPp1	Wild:pre-symptomatic and infectious for Pfizer Vaccinated
IPam2	New:asymptomatic or mild and infectious for Pfizer Vaccinated
IPp2	New:pre-symptomatic and infectious for Pfizer Vaccinated
IJam1	Wild:asymptomatic or mild and infectious for JnJ Vaccinated
IJp1	Wild:pre-symptomatic and infectious for JnJ Vaccinated
IJam2	New:asymptomatic or mild and infectious for JnJ Vaccinated
IJp2	New:pre-symptomatic and infectious for JnJ Vaccinated

Key parameter values

Table 2 and 3 below show the values of key parameters used to inform the model. Parameter values have been selected for use by an expert panel of clinicians on the SA COVID-19 Modelling Consortium and updated with inputs from recent South African data where indicated. Parameter values that are provided as ranges only differ by province.

Table S2. Key model parameters

Parameter	Description	Value	Lower bound	Upper bound	Source
Vaccination	parameters				
vstartJ	Day since start of simulation of Vaccination Sisonke Trial (Jansen)	138	-	-	https://sacoronavirus.co.za/latest-vaccine- statistics/
vstartP	Day since start of simulation of Vaccination Dose 2 (Pfizer)	229	-	-	https://sacoronavirus.co.za/latest-vaccine- statistics/
vdelay	rate of delay after vaccination till protection against severe infection develops (days)	1/14 days			Polack et al (2020)
epsP_S	Pfizer: effectiveness of protection against infection for 1 dose in naïve population	0.57	0.50	0.63	Pouwels et al (2021)
epsP_R	Pfizer: effectiveness of protection against infection for 1 dose in previously infected population	0.91	0.84	0.95	Pouwels et al (2021)
epsJ_S	JJ: effectiveness of protection against infection for 1 dose in naïve population	0.35	0.31	0.39	unpublished
epsJ_R	JJ: effectiveness of protection against infection for 1 dose in previously infected population	0.91	0.84	0.95	Assumption; same as epsP_R
epsJ_S2	JJ: effectiveness of protection against infection for 2 dose in naïve population	0.05			Gray et al (2021)

Parameter	Description	Value	Lower bound	Upper bound	Source
epsJ_R2	JJ: effectiveness of protection against infection for 2 dose in previously infected population	0.05			Assumption; same as epsJ_S2
epsP_S2	Pfizer: effectiveness of protection against infection for 2 doses in naïve population	0.85	0.79	0.90	Pouwels et al (2021)
epsP_R2	Pfizer: effectiveness of protection against infection for 2 doses in previously infected population	0.93	0.87	0.96	Pouwels et al (2021)
epsP_S3	Pfizer: effectiveness of protection against infection for 3 doses in naïve population	0.669	0.661	0.676	Andrews et al (2022b)
epsP_R3	Pfizer: effectiveness of protection against infection for 3 doses in previously infected population	0.669	0.661	0.676	Assumption; same as epsP_S3
sevP_1	Pfizer: VE against severe infection after 1 dose	0.92	0.85	0.95	Andrews et al (2022a)
sevP_2	Pfizer: VE against severe infection after 2 dose	0.97	0.92	0.99	Andrews et al (2022a)
sevP_3	Pfizer: VE against severe infection after 3 dose	0.91	0.79	0.96	Chemaitelly et al (2022)
sevJ	JJ: VE of 1 dose against severe infection	0.83	0.80	0.87	unpublished
sevJ2	JJ: VE of 2 doses against severe infection	0.70			Gray et al 2022 (https://www.nejm.org/doi/full/10.1056/N EJMc2202061)
omega	Waning rate per dose across vaccines and immune history (p.a.)	2			Andrews et al (2022a)

^{*} A full list of parameters are available in the code.

References

- Andrews, N., Tessier, E., Stowe, J., Gower, C., Kirsebom, F., Simmons, R., ... & Lopez Bernal, J. (2022). Duration of protection against mild and severe disease by Covid-19 vaccines. *New England Journal of Medicine*, 386(4), 340-350.
- 2. Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., ... & Lopez Bernal, J. (2022). Covid-19 vaccine effectiveness against the Omicron (B. 1.1. 529) variant. *New England Journal of Medicine*, *386*(16), 1532-1546.
- 3. Chemaitelly, H., Ayoub, H. H., AlMukdad, S., Coyle, P., Tang, P., Yassine, H. M., ... & Abu-Raddad, L. J. (2022). Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA. 1 and BA. 2 subvariants in Qatar. *Nature communications*, *13*(1), 3082.
- 4. Gray, G. E., Collie, S., Garrett, N., Goga, A., Champion, J., Zylstra, M., ... & Bekker, L. G. (2021). Vaccine effectiveness against hospital admission in South African health care workers who received a homologous booster of Ad26. COV2 during an Omicron COVID19 wave: Preliminary Results of the Sisonke 2 Study. *MedRxiv*, 2021-12.
- Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England journal of medicine, 383(27), 2603-2615.
- Pouwels, K.B., Pritchard, E., Matthews, P.C. et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat Med 27, 2127–2135 (2021). https://doi.org/10.1038/s41591-021-01548-7

Calibration output (October 2020 to September 2023)

This work is licensed under a Creative Commons Attribution 4.0 International License.