Contrôle S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (9 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.
- 3. Déterminez, en valeur absolue, le plus petit et le plus grand nombre du format IEEE754 simple précision à mantisse **dénormalisée**. Exprimez le résultat sous la forme 2^n pour le plus petit et $(1 2^{n1}) \times 2^{n2}$ pour le plus grand où n, n1 et n2 sont des entiers relatifs. Sur le <u>document réponse</u>, vous préciserez en base 10 les valeurs numériques de n, de n1 et de n2.

Exercice 2 (3 points)

Soit le montage ci-dessous :

- 1. Complétez la table de vérité présente sur le <u>document réponse</u>.
- 2. Quel est le nom de ce circuit?

Exercice 3 (2 points)

Donnez le type de chaque bascule ci-dessous (répondre sur le document réponse).

Exercice 4 (6 points)

- 1. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) selon que la bascule RS est synchronisée sur état haut (Q0), sur front montant (Q1), sur front descendant (Q2) et sur impulsion (Q3).
- 2. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	Е	M
165	0	10000110	01001010000000000000000
59,625	0	10000100	11011101000000000000000
0,921875	0	01111110	1101100000000000000000

2.

Représentation IEEE 754	Représentation associée
485C 0000 0000 0000 ₁₆	7×2^{132}
7FF0 0000 0000 0000 ₁₆	+∞
0002 3000 0000 0000 ₁₆	35×2^{-1030}
3FF0 0000 0000 0000 ₁₆	1× 2 ⁰

3.

n	n1	n2
-149	-23	-126

Exercice 2

Α	В	Q
0	0	q
0	1	1
1	0	0
1	1	0

Nom du circuit
Bascule RS asynchrone

Exercice 3

Bascule	Type de bascule	
1	Bascule RS synchronisée sur front montant	
2	Bascule RS synchronisée sur impulsion (bascule RS maître esclave)	
3	Bascule RS synchronisée sur état (verrou RS synchrone)	
4	Bascule RS synchronisée sur front descendant	

Exercice 4

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.

