Band structure of an ionic solid: The case of MgO

Objectives

- Compute and analyze the band structure of an ionic solid

MgO an ionic solid that crystallizes in the rocksalt structure

Go to the directory where the exercise of the bands of MgO is included Inspect the input file, MgO.fdf

SystemName Magnesium Oxide Crystal SystemLabel MgO
NumberOfAtoms 2 NumberOfSpecies 2
%block Chemical_Species_Label 1 12 Mg
2 8 0 %endblock Chemical_Species_Label
LatticeConstant 4.117 Ang %block LatticeVectors 0.000 0.500 0.500
0.500 0.000 0.500 0.500 0.500 0.000
%endblock LatticeVectors
AtomicCoordinatesFormat Fractional %block AtomicCoordinatesAndAtomicSpecies 0.000 0.000 0.000 1
0.500 0.500 0.500 2
%endblock AtomicCoordinatesAndAtomicSpecies
%block kgrid_Monkhorst_Pack 6 0 0 0.5
0 6 0 0.5 0 0 6 0.5 %endblock kgrid_Monkhorst_Pack

More information at the Siesta web page http://www.icmab.es/siesta and follow the link Documentations, Manual

The equilibrium lattice constant within LDA has been computed for you...

Rocksalt structure:

FCC lattice

+ a basis of two atoms

Sampling in k in the first Brillouin zone to achieve self-consistency

First-Brillouin zone of a FCC, with the high symmetry points

New variables to plot the band structure

```
BandLinesScale
                    pi/a
%block BandLines
   1.5
         1.5
                                   # Begin at K
               0.0
                     \Gamma
   0.0
         0.0
               0.0
                                   # 38 points from K to Gamma
                                   # 36 points from Gamma to X
   0.0 2.0
              0.0
   1.0 2.0
                                   # 18 points from X to W
              0.0
               1.0
                                   # 26 points from W to L
                                   # 31 points from L to Gamma
               0.0
   0.0
                     \Gamma
%endblock BandLines
```

Check that you have all the required files

A pseudopotential file (.vps or .psf) for every atomic specie included in the input file For Mg and O within LDA, you can download it from the Siesta web page.

Run the code,

siesta < MgO.fdf > MgO.out

Wait for a few seconds... and then you should have an output, and a file called MgO.bands

If you inspect this file, you will find something like

-5.01887068217278
0.0000000000000000E+000
-25.1877901161284
18 1 150

0.000000 -23.1506 -11.6755 -10.7473 -9.0169 4.0923 ...

Coordinate of the k-point in the path, and eigenvalues (in eV). There are as many eigenvalues as orbitals in the unit cell.

Energy of the Fermi level

Minimum and maximum length of the path in k-space

Minimum and maximum eigenvalues

Number of orbitals in the unit cell, number of different spin polarization, and number of k-points in the walk through the 1BZ

To plot the band structure, there is a Utility in the directory Util, called gnubands.f To use it:

```
cp ~/siesta/Util/gnubands.f .
  <your_fortran_compiler> -o gnubands.x gnubands.f
gnubands.x < MgO.bands > MgO.bands.gnuplot.dat
```

The name of this file is free

```
gnuplot
```

plot "MgO.bands.gnuplot.dat" using 1:2 with lines

set xrange [0:3.34] \to 3.34 is the position of the last k-point in the path in k-space set yrange [-30.0:25.0] \to this is large enough to include all the valence bands replot

The Fermi energy lies in a gap ⇒ insulator

Theo. direct gap = 5.3 eV

Expt. Gap = 7.8 eV

(LDA band gap understimation)

One would expect O (one *s* band and three *p* bands) bands completely full and Mg bands completely empty

The Fermi energy lies in a gap ⇒ insulator

Theo. direct gap = 5.3 eV

Expt. Gap = 7.8 eV

(LDA band gap understimation)

O 2p

(three bands)

025

Once the transfer of charge is produced, the atoms only interact electrostatically

In a very simplified tight-binding model,

the width of the band is proportional to the interactions with nearest neighbours

If the interaction is small, the bands are very flat.

The Fermi energy lies in a gap ⇒ insulator

Theo. direct gap = 5.3 eV

Expt. Gap = 7.8 eV

(LDA band gap understimation)

O 2p

(three bands)

02s

Very small disperion of the O s and O p bands