1. Exercise 3.4

(a) we know $y = w^{*T}x + \epsilon$ and $H = X(X^TX)^{-1}X^T$ from (3.6), and we know $\hat{y} = Hy$ by definition, we want to prove $\hat{y} = Xw^* + H\epsilon$

$$\hat{y} = H(w^*X + \epsilon)$$

$$= X(X^TX)^{-1}X^T(w^*X + \epsilon)$$

$$= X(X^TX)^{-1}X^Tw^*X + X(X^TX)^{-1}X^T\epsilon$$

$$= w^*X + H\epsilon$$

(b) for $\hat{y} - y$, we have

$$\hat{y} - y = w^*X + H\epsilon - (w^* + \epsilon)$$
$$= H\epsilon - \epsilon$$
$$= \epsilon(H - I)$$

where I denotes the identity matrix

(c) let $E_{in}(w) = \frac{1}{N}||\hat{y} - y||^2$

$$E_{in}(w) = \frac{1}{N} ||\epsilon(H - I)||^2$$
$$= \frac{1}{N} \epsilon^T (H - I)^T \epsilon (H - I)$$

We know H - I is symmetric, so $(H - I)^T = (H - I)$

$$E_{in}(w) = \frac{1}{N} \epsilon^T \epsilon (H - I)^2$$
$$= \frac{1}{N} \epsilon^T \epsilon (I - H)^2$$

(d) We know

$$E_D[E_{in}(w_{lin})] = E_D[\frac{1}{N}(\epsilon^T \epsilon (I - H))]$$
$$= \frac{1}{N}(E_D[\epsilon^T \epsilon] - E_D[\epsilon^T \epsilon H])$$

Given that ϵ is a noise term with zero mean and σ^2 variance. The variance of each noise

component ϵ is σ^2 , so

$$E_D[E_{in}(w_{lin})] = \frac{1}{N}(N\sigma^2 - E_D[\epsilon^T \epsilon H])$$
$$= \sigma^2 - \frac{1}{N}E_D[\epsilon^T \epsilon H]$$

finish