FAKULTET TEHNIČKIH NAUKA, NOVI SAD, 28.VI 2023.

ZADACI ZA PRIJEMNI ISPIT IZ MATEMATIKE ZA UPIS NA STUDIJSKE PROGRAME: Energetika, elektronika i telekomunikacije; Računarstvo i automatika; Primenjeno softversko inženjerstvo; Merenje i regulacija; Softversko inženjerstvo i informacione tehnologije; Biomedicinsko inženjerstvo; Inženjerstvo informacionih sistema; Informacioni inženjering; Mehatronika i Animacija u inženjerstvu

- **1.** Dat je kompleksan broj $w = 1 + i\sqrt{3}$.
 - a) Odrediti |w| i $arg(w) \in (-\pi, \pi]$.
 - b) Napisati kompleksne brojeve w i \overline{w} u trigonometrijskom obliku.
 - c) Izračunati Im $\left(\frac{2w}{1-i} + 3w \cdot \overline{w}\right)$.

Rešenje:

a)
$$|w| = \sqrt{1^2 + (\sqrt{3})^2} = 2$$
, a kako je w u prvom kvadrantu, to je $\arg(w) = \arctan(\sqrt{3}) = \frac{\pi}{3}$.

- b) U trigonometrijskom obliku je $w = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), \ \overline{w} = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right).$
- c) Kako je $w \cdot \overline{w} = |w|^2$ realan broj, sledi

$$\operatorname{Im}\left(\frac{2w}{1-i}+3w\cdot\overline{w}\right)=\operatorname{Im}\left(\frac{2w}{1-i}\right)=\operatorname{Im}\left(\frac{2+2i\sqrt{3}}{1-i}\right)=\operatorname{Im}\left(1-\sqrt{3}+\left(1+\sqrt{3}\right)i\right)=1+\sqrt{3}.$$

- **2.** Data je kvadratna jednačina $x^2 + (4m 24)x + 4m 4 = 0$.
 - a) Odrediti sve vrednosti realnog parametra m za koje je jedno rešenje jednačine tri puta veće od drugog.
 - b) Za koje vrednosti realnog parametra m je $\frac{1}{x_1} + \frac{1}{x_2} = 0$, gde su x_1 i x_2 rešenja date jednačine?

Rešenje: Na osnovu Vijetovih formula je $x_1 + x_2 = -4m + 24$ i $x_1x_2 = 4m - 4$.

- a) Po uslovu zadatka $x_1=3x_2$ i iz Vijetovih formula sledi $x_1+x_2=4x_2=-4m+24$, tj. $x_2=-m+6$. Slično, $x_1x_2=3x_2^2=3(-m+6)^2=3(m^2-12m+36)=3m^2-36m+108$, pa je $3m^2-36m+108=4m-4$, tj. $3m^2-40m+112=0$, odakle je $m=4 \lor m=\frac{28}{3}$.
- b) $\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 x_2} = \frac{-4m + 24}{4m 4}$. Uz uslov $m \neq 1$ važi da je $\frac{1}{x_1} + \frac{1}{x_2} = 0 \Leftrightarrow -4m + 24 = 0 \Leftrightarrow m = 6$.
- **3.** Date su funkcije f sa $f(x) = \log_3(2x 11) \log_3(x^2 5x + 4)$ i g sa $g(x) = \log_3 \frac{1}{x}$.
 - a) Odrediti oblast definisanosti funkcije f.
 - b) Odrediti oblast definisanosti funkcije g.
 - c) Odrediti sva rešenja jednačine f(x) = g(x).

Rešenje:

- a) Funkcija f je definisana ako je 2x-11>0 i $x^2-5x+4>0$. Kako je $x^2-5x+4>0 \Leftrightarrow (x-1)(x-4)>0 \Leftrightarrow x\in (-\infty,1)\cup (4,\infty)$ i $2x-11>0 \Leftrightarrow x\in (\frac{11}{2},\infty)$, funkcija f je definisana za $x\in (\frac{11}{2},\infty)$.
- b) Funkcija g je definisana ako je $\frac{1}{x} > 0$, tj. za $x \in (0, \infty)$.
- c) $\operatorname{Za} x \in (\frac{11}{2}, \infty)$ je f(x) = g(x) $\Leftrightarrow \log_3(2x 11) \log_3(x^2 5x + 4) = \log_3 \frac{1}{x} \Leftrightarrow \log_3 \frac{2x 11}{x^2 5x + 4} = \log_3 \frac{1}{x}$ $\Leftrightarrow \frac{2x 11}{x^2 5x + 4} = \frac{1}{x} \Leftrightarrow x^2 6x 4 = 0$ $\Leftrightarrow x = 3 + \sqrt{13} \lor x = 3 \sqrt{13}$.

Kako
$$3 - \sqrt{13} \notin \left(\frac{11}{2}, \infty\right)$$
, jedino rešenje date jednačine je $3 + \sqrt{13}$.

4. Rešiti nejednačinu $81 \cdot 2^{x^2 - 3} - 2 \cdot 3^{x^2} \ge 0$.

Rešenje:
$$81 \cdot 2^{x^2 - 3} - 2 \cdot 3^{x^2} \ge 0 \Leftrightarrow \frac{3^4 \cdot 2^{x^2}}{2^3} \ge 2 \cdot 3^{x^2} \Leftrightarrow \left(\frac{2}{3}\right)^{x^2} \ge \left(\frac{2}{3}\right)^4 \Leftrightarrow x^2 \le 4$$
 $\Leftrightarrow (x - 2)(x + 2) \le 0 \Leftrightarrow x \in [-2, 2].$

- 5. Data je funkcija f sa $f(x) = 2 7\sin x + 2\cos^2 x$.
 - a) Odrediti nule funkcije f.
 - b) Odrediti nule funkcije f koje zadovoljavaju nejednakost $\cos x \ge 0$.

Rešenje:

- a) Iz $\cos^2 x = 1 \sin^2 x$, sledi da je $f(x) = 0 \Leftrightarrow -2\sin^2 x 7\sin x + 4 = 0$. Smenom $\sin x = t$ dobija se kvadratna jednačina $-2t^2 7t + 4 = 0$ čija su rešenja -4 i $\frac{1}{2}$. Kako je $|\sin x| \le 1$, jednačina $\sin x = -4$ nema rešenja. Rešenja jednačine $\sin x = \frac{1}{2}$ su $x = \frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$ ili $x = \frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$. Dakle, skup svih nula funkcije f je $\left\{\frac{\pi}{6} + 2k\pi \mid k \in \mathbb{Z}\right\} \cup \left\{\frac{5\pi}{6} + 2k\pi \mid k \in \mathbb{Z}\right\}$.
- b) Na osnovu rezultata pod a) i kako za svako x iz skupa $\left\{\frac{\pi}{6} + 2k\pi \mid k \in \mathbb{Z}\right\}$ važi $\cos x = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} > 0$, a za svako x iz skupa $\left\{\frac{5\pi}{6} + 2k\pi \mid k \in \mathbb{Z}\right\}$ važi $\cos x = \cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} < 0$, sledi da je skup svih nula funkcije f koje zadovoljavaju datu nejednakost $\left\{\frac{\pi}{6} + 2k\pi \mid k \in \mathbb{Z}\right\}$.
- **6.** U konveksnom četvorouglu ABCD dijagonale AC i BD su uzajamno normalne i seku se u tački O.

Neka je
$$|\overrightarrow{OA}| = 2\sqrt{3}$$
, $|\overrightarrow{OB}| = |\overrightarrow{OC}| = 1$ i $|\overrightarrow{OD}| = \frac{7\sqrt{3}}{3}$.

- a) Izračunati $|\overrightarrow{AB}|$ i $|\overrightarrow{DC}|$.
- b) Odrediti ugao između vektora \overrightarrow{AB} i \overrightarrow{DC} .

Rešenje.

a) Kako su trouglovi $\triangle ABO$ i $\triangle DOC$ pravougli, to je

$$|\overrightarrow{AB}| = \sqrt{|\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2} = \sqrt{12 + 1} = \sqrt{13},$$

$$|\overrightarrow{DC}| = \sqrt{|\overrightarrow{OD}|^2 + |\overrightarrow{OC}|^2} = \sqrt{\frac{49}{3} + 1} = \sqrt{\frac{52}{3}} = 2\sqrt{\frac{13}{3}}.$$

b) Skalarni proizvod vektora \overrightarrow{AB} i \overrightarrow{DC} dat je sa

$$\overrightarrow{AB} \cdot \overrightarrow{DC} = |\overrightarrow{AB}||\overrightarrow{DC}|\cos \sphericalangle (\overrightarrow{AB}, \overrightarrow{DC}) = \sqrt{13} \cdot 2\sqrt{\frac{13}{3}}\cos \sphericalangle (\overrightarrow{AB}, \overrightarrow{DC}) = \frac{26\sqrt{3}}{3}\cos \sphericalangle (\overrightarrow{AB}, \overrightarrow{DC}).$$

Kako je $\overrightarrow{OB} \perp \overrightarrow{OC}$ i $\overrightarrow{OA} \perp \overrightarrow{OD}$, to je $\overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OA} \cdot \overrightarrow{OD} = 0$. Dalje, $\sphericalangle(\overrightarrow{OB}, \overrightarrow{OD}) = \sphericalangle(\overrightarrow{OA}, \overrightarrow{OC}) = \pi$, pa je $\cos \sphericalangle(\overrightarrow{OB}, \overrightarrow{OD}) = \cos \sphericalangle(\overrightarrow{OA}, \overrightarrow{OC}) = -1$, te se skalarni proizvod vektora \overrightarrow{AB} i \overrightarrow{DC} može predstaviti i kao

$$\overrightarrow{AB} \cdot \overrightarrow{DC} = (\overrightarrow{OB} - \overrightarrow{OA}) \cdot (\overrightarrow{OC} - \overrightarrow{OD}) = \overrightarrow{OB} \cdot \overrightarrow{OC} - \overrightarrow{OB} \cdot \overrightarrow{OD} - \overrightarrow{OA} \cdot \overrightarrow{OC} + \overrightarrow{OA} \cdot \overrightarrow{OD}$$
$$= |\overrightarrow{OB}||\overrightarrow{OD}| + |\overrightarrow{OA}||\overrightarrow{OC}| = \frac{7\sqrt{3}}{3} + 2\sqrt{3} = \frac{13\sqrt{3}}{3}.$$

Sledi da je
$$\cos \sphericalangle(\overrightarrow{AB}, \overrightarrow{DC}) = \frac{\frac{13\sqrt{3}}{3}}{\frac{26\sqrt{3}}{3}} = \frac{1}{2}$$
. Dakle, $\sphericalangle(\overrightarrow{AB}, \overrightarrow{DC}) = \frac{\pi}{3}$.

7. Dat je trapez ABCD čije su osnovice AB = 8 i CD = 2. Ako je u datom trapezu $\triangleleft DAC$ jednak uglu kod temena B, odrediti dužinu dijagonale AC.

Rešenje: Kako je $\triangleleft DCA = \triangleleft CAB$ (naizmenični uglovi), sledi da su trouglovi ABC i CAD slični. Stoga je

$$AB:AC=AC:CD$$
, tj. $8:AC=AC:2$,

odakle je $AC = \sqrt{8 \cdot 2} = \sqrt{16} = 4$.

8. Poluprečnik r, visina H i izvodnica s prave kupe tim redom čine tri uzastopna člana aritmetičke progresije. Ako je zapremina kupe 768π , odrediti površinu osnog preseka.

Rešenje: Na osnovu Pitagorine teoreme $r^2 + H^2 = s^2$, koristeći da je H = r + d i s = r + 2d, d > 0, sledi da je $r^2 + (r+d)^2 = (r+2d)^2$, tj. $r^2 - 2rd - 3d^2 = 0$.

Kako je $r^2 - 2rd - 3d^2 = 0 \Leftrightarrow r^2 + rd - 3rd - 3d^2 = 0 \Leftrightarrow (r - 3d)(r + d) = 0 \Leftrightarrow r = 3d \lor r = -d i d > 0$, sledi r = 3d i H = 4d. Kako je $V = 768\pi$, iz formule za zapreminu kupe je

$$V = \frac{1}{3}r^2H\pi \Leftrightarrow 768\pi = \frac{1}{3} \cdot 9d^2 \cdot 4d \cdot \pi \Leftrightarrow d^3 = 64 \Leftrightarrow d = 4.$$

Konačno, kako je je r = 12, H = 16, površina osnog preseka kupe je $r \cdot H = 192$.

- **9.** Data je funkcija f sa $f(x) = \frac{5x}{9-x^2}$.
 - a) Odrediti oblast definisanosti funkcije f.
 - b) Odrediti intervale monotonosti funkcije f.
 - c) Izračunati površinu oblasti ograničene grafikom funkcije f, x-osom i pravama x = 1 i x = 2.

Rešenje:

- a) Funkcija f je definisana za $9-x^2 \neq 0$, tj. oblast definisanosti funkcije je $\mathbb{R} \setminus \{-3,3\}$.
- b) Izvod funkcije je $f'(x) = \frac{5(9-x^2)-5x(-2x)}{(9-x^2)^2} = \frac{5x^2+45}{(9-x^2)^2} > 0$ za svako $x \in \mathbb{R} \setminus \{-3,3\}$. Funkcija f je monotono rastuća po intervalima $(-\infty, -3), (-3, 3)$ i $(3, \infty)$.
- c) Kako je funkcija f pozitivna na intervalu [1,2], to je

$$P = \int_{1}^{2} \frac{5x}{9 - x^{2}} dx = -\frac{5}{2} \ln|9 - x^{2}|\Big|_{1}^{2} = -\frac{5}{2} (\ln 5 - \ln 8) = -\frac{5}{2} \ln \frac{5}{8} = \frac{5}{2} \ln \frac{8}{5}.$$

- **10.** Na koliko različitih načina se može rasporediti 5 kuglica u 3 kutije tako da je svaka kuglica u nekoj kutiji i u svakoj kutiji je bar jedna kuglica, ako se:
 - a) kuglice ne razlikuju i kutije ne razlikuju,
 - b) kuglice ne razlikuju i kutije razlikuju,
 - c) kuglice razlikuju i kutije ne razlikuju,
 - d) kuglice razlikuju i kutije razlikuju.

Rešenje:

a) Postoje samo dve mogućnosti:

b) **Prvi način:** Označimo 3 kutije koje se razlikuju sa P,Q i R. Postavimo u niz 5 kuglica koje se ne razlikuju. Zatim se na 4 moguća mesta između svake dve susedne kuglice postavlja najviše jedna od ukupno dve pregrade, tako da su kuglice levo do prve pregrade u kutiji P, kuglice između prve i druge pregrade su u kutiji Q i kuglice desno od druge (poslednje) pregrade su u kutiji R, tj.

$$o|o|ooo, \quad o|oo|oo, \quad o|ooo|o, \quad oo|o|oo, \quad oo|oo|o, \quad ooo|o|o.$$

Od 4 mesta između susednih kuglica dva mesta se mogu odabrati na $\binom{4}{2} = 6$ načina. To su kombinacije bez ponavljanja od 4 elementa druge klase.

Drugi način: To su kombinacije sa ponavljanjem od tri elementa P, Q i R pete klase u kojima se svaki element pojavljuje bar jednom, tj.

$$\binom{1\,2\,3\,4\,5}{PQRRR}, \qquad \binom{1\,2\,3\,4\,5}{PQQRR}, \qquad \binom{1\,2\,3\,4\,5}{PQQQR}, \qquad \binom{1\,2\,3\,4\,5}{PPQRR}, \qquad \binom{1\,2\,3\,4\,5}{PPQQR}, \qquad \binom{1\,2\,3\,4\,5}{PPPQR}, \qquad \text{i ima ih 6}.$$

Treći način: Neka je p broj kuglica u kutiji P, q broj kuglica u kutiji Q i r broj kuglica u kutiji R. Tada po uslovu zadatka važi

$$\left(p,q,r \in \{1,2,3,4,5\} \land p+q+r=5\right) \Leftrightarrow (p,q,r) \in \{(1,1,3),(1,3,1),(3,1,1),(1,2,2),(2,1,2),(2,2,1)\} = M.$$

Kako je |M| = 6 broj elemenata skupa M, to rezultat u ovom slučaju jeste 6.

c) Rezultat je broj svih particija skupa $A = \{1, 2, 3, 4, 5\}$ na tri neprazna podskupa, tj. broj svih tročlanih skupova čiji elementi su neprazni podskupovi skupa od 5 elemenata koji su međusobno disjunktni i čija unija je jednaka skupu A, koji se zove Stirlingov broj S_3^5 . Postoje samo dva tipa ovih particija prema broju elemenata u podskupovima i to su 113 i 122. Prvih ima 10, a drugih 15, tj. $S_3^5 = {5 \choose 3} + {5 \choose 2}{2 \choose 2} \frac{1}{2!} = 10 + 15 = 25$. Te particije su:

$$\left\{ \{1\}, \{2\}, \{3,4,5\} \right\}, \left\{ \{1\}, \{3\}, \{2,4,5\} \right\}, \left\{ \{1\}, \{4\}, \{2,3,5\} \right\}, \left\{ \{1\}, \{5\}, \{2,3,4\} \right\}, \\ \left\{ \{2\}, \{3\}, \{1,4,5\} \right\}, \left\{ \{2\}, \{4\}, \{1,3,5\} \right\}, \left\{ \{2\}, \{5\}, \{1,3,4\} \right\}, \\ \left\{ \{3\}, \{4\}, \{1,2,5\} \right\}, \left\{ \{3\}, \{5\}, \{1,2,4\} \right\}, \\ \left\{ \{4\}, \{5\}, \{1,2,3\} \right\}, \\ \left\{ \{1\}, \{2,3\}, \{4,5\} \right\}, \left\{ \{1\}, \{2,4\}, \{3,5\} \right\}, \left\{ \{1\}, \{2,5\}, \{3,4\} \right\}, \\ \left\{ \{2\}, \{1,3\}, \{4,5\} \right\}, \left\{ \{2\}, \{1,4\}, \{3,5\} \right\}, \left\{ \{2\}, \{1,5\}, \{3,4\} \right\}, \\ \left\{ \{3\}, \{1,2\}, \{4,5\} \right\}, \left\{ \{3\}, \{1,4\}, \{2,5\} \right\}, \left\{ \{4\}, \{1,5\}, \{2,3\} \right\}, \\ \left\{ \{4\}, \{1,2\}, \{3,5\} \right\}, \left\{ \{4\}, \{1,3\}, \{2,4\} \right\}, \left\{ \{5\}, \{1,4\}, \{2,3\} \right\}.$$

d) Prvi način: Rešićemo pomoću formule uključenja-isključenja koja glasi:

$$|B_1 \cup B_2 \cup B_3| = |B_1| + |B_2| + |B_3| - |B_1 \cap B_2| - |B_1 \cap B_3| - |B_2 \cap B_3| + |B_1 \cap B_2 \cap B_3|,$$

tj. pomoću njenog specijalnog slučaja za

$$|B_1| = |B_2| = |B_3| = a_1,$$
 $|B_1 \cap B_2| = |B_1 \cap B_3| = |B_2 \cap B_3| = a_2,$ $|B_1 \cap B_2 \cap B_3| = a_3.$

Dakle,

$$|B_1 \cup B_2 \cup B_3| = 3a_1 - 3a_2 + a_3 = {3 \choose 1}a_1 - {3 \choose 2}a_2 + {3 \choose 3}a_3.$$

Neka je $\{1,2,3,4,5\}$ skup kuglica, $\{P,Q,R\}$ skup kutija i neka je B_1 skup raspoređivanja u kojima je kutija P prazna, B_2 skup raspoređivanja u kojima je kutija Q prazna, a B_3 skup raspoređivanja u kojima je kutija R prazna. Tada je $B_1 \cup B_2 \cup B_3$ skup raspoređivanja u kojima je bar jedna kutija prazna, a komplement tog skupa, $\overline{B_1 \cup B_2 \cup B_3}$ je skup svih raspoređivanja u kojim nijedna kutija nije prazna, tj. skup raspoređivanja u kojima nema praznih kutija.

S obzirom na to da je

$$|B_1| = |B_2| = |B_3| = a_1 = 2^5,$$
 $|B_1 \cap B_2 \cap B_3| = a_3 = 0,$ $|B_1 \cap B_2| = |B_1 \cap B_3| = |B_2 \cap B_3| = a_2 = 1,$

a broj svih mogućih raspoređivanja bez ikakvih ograničenja je 3⁵, sledi da je

$$|\overline{B_1 \cup B_2 \cup B_3}| = 3^5 - |B_1 \cup B_2 \cup B_3| = 3^5 - 3a_1 + 3a_2 - a_3 = 3^5 - 3 \cdot 2^5 + 3 \cdot 1 = 150.$$

Drugi način: Posmatrajmo sve tročlane particije skupa $\{1,2,3,4,5\}$ navedene u rešenju dela zadatka pod c). U svakoj od tih 25 particija, svakom podskupu je pridružena jedna od kutija P,Q,R, tj. u kutiji P se nalaze kuglice iz podskupa koji joj je pridružen, itd. Kako se kutije razlikuju, to je redosled pridruživanja tih podskupova kutijama P,Q,R bitan, pa za svaku od 25 mogućnosti postoji 3! = 6 raspoređivanja kutija, tj.

Prema tome, traženi broj je

$$25 \cdot 6 = S_3^5 \cdot 3! = {5 \choose 3} + {5 \choose 2} {3 \choose 2} \frac{1}{2!} \cdot 3! = (10+15) \cdot 3! = 150.$$

Treći način: Traženi broj je broj svih sirjektivnih funkcija skupa kuglica $A = \{1, 2, 3, 4, 5\}$ na skup kutija $B = \{P, Q, R\}$, a to su sve permutacije sa ponavljanjem od sledećih 6 navedenih rasporeda:

kojih redom ima

$$\frac{5!}{3!}$$
, $\frac{5!}{3!}$, $\frac{5!}{3!}$, $\frac{5!}{2!2!}$, $\frac{5!}{2!2!}$, $\frac{5!}{2!2!}$,

čiji zbir je $3 \cdot \frac{5!}{3!} + 3 \cdot \frac{5!}{2!2!} = 150$. Svaki od elemenata P, Q, R je morao da se pojavi u svakoj permutaciji bar jednom.

Svaki zadatak vredi maksimum 6 bodova.

KATEDRA ZA MATEMATIKU