SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Graph the complex number.

Find sum of the pair of complex numbers.

$$3) -6 - 5i$$
, $+ 3i$

$$4) + 6i, -4$$

Write the complex number in rectangular form.

5)
$$4(\cos 5^{\circ} + i \sin 5^{\circ})$$

6)
$$3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

Write the complex number in trigonometric form $r(\cos \theta + i \sin \theta)$, with θ in the interval [0°, 360°).

9)
$$5\sqrt{3} + 5i$$

Find the product. Write the product in rectangular form, using exact values.

10)
$$[7(\cos 45^{\circ} + i \sin 45^{\circ})] [2(\cos 90^{\circ} + i \sin 90^{\circ})]$$

Find the quotient and write in rectangular form. First convert the numerator and denominator to trigonometric form.

12)
$$\frac{5(\cos 200^{\circ} + i \sin 200^{\circ})}{4(\cos 50^{\circ} + i \sin 50^{\circ})}$$

13)
$$\frac{4(\cos 120^{\circ} + i \sin 120^{\circ})}{5(\cos 60^{\circ} + i \sin 60^{\circ})}$$

Solve the problem.

14) The current I in a circuit with voltage E, resistance R, capacitive reactance X_C and inductive reactance X_L is

$$I = \frac{E}{R + (X_I - X_C) i}$$

Find I if E = $2\sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$, R = 5, X_L = 7, and X_C = 5.

Give your answer in rectangular form.

Find the given power. Write answer in rectangular form.

15)
$$(-\sqrt{3} + i)^6$$

17)
$$(\cos 30^{\circ} + i \sin 30^{\circ})^{12}$$

Find all cube roots of the complex number. Leave answers in trigonometric form.

20)
$$-3\sqrt{3} - 3i$$

Find all specified roots.

21) Fifth roots of 1.

Find all solutions of the equation. Leave answers in trigonometric form.

22)
$$x^3 - 8 = 0$$

23)
$$x^3 + 8i = 0$$

Plot the point.

24)
$$\left[2, \frac{7\pi}{4}\right]$$

Give the rectangular coordinates for the point.

The rectangular coordinates of a point are given. Express the point in polar coordinates with $r \ge 0$ and $0^{\circ} \le \theta < 360^{\circ}$.

$$28) \left(\frac{1}{4}, \frac{\sqrt{3}}{4} \right)$$

Determine two pairs of polar coordinates for the point with $0^{\circ} \le \theta < 360^{\circ}$.

30)
$$(5\sqrt{3}, 15)$$

For the given rectangular equation, give its equivalent polar equation.

31)
$$x - y = 15$$

32)
$$8x - 7y = -12$$

Find an equivalent equation in rectangular coordinates.

33)
$$r = \cos \theta$$

34)
$$r(\cos \theta - \sin \theta) = 5$$

2)

$$4) -2 + 6i$$

$$5) 4 + 0.3i$$

6)
$$\frac{3}{2} + \frac{3\sqrt{3}}{2}i$$

10)
$$-7\sqrt{2} + 7\sqrt{2}i$$

11) $24 - 24\sqrt{3}i$

12)
$$-\frac{5\sqrt{3}}{8} + \frac{5}{8}i$$

13)
$$\frac{2}{5} + \frac{2}{5}i\sqrt{3}$$

14)
$$\frac{14}{29} + \frac{6}{29}i$$

20)
$$\sqrt[3]{6}$$
 cis 70°, $\sqrt[3]{6}$ cis 190°, $\sqrt[3]{6}$ cis 310°

Answer Key

Testname: REVIEW SUPPLEMENT FOR FINAL HCCS

21) 1, cis
$$\frac{2\pi}{5}$$
, cis $\frac{4\pi}{5}$, cis $\frac{6\pi}{5}$, cis $\frac{8\pi}{5}$

- 22) {2, 2 cis 120°, 2 cis 240°}
- 23) {2 cis 90°, 2 cis 210°, 2 cis 330°}

24)

25)
$$\left[\frac{5\sqrt{3}}{2}, -\frac{5}{2}\right]$$

$$26) \left[\frac{3}{2}, -\frac{3\sqrt{3}}{2} \right]$$

28)
$$\left[\frac{1}{2}, 60^{\circ}\right]$$

- 29) $(4\sqrt{2}, 315^{\circ}), (-4\sqrt{2}, 135^{\circ})$
- 30) (10√3, 60°), (-10√3, 240°)

31)
$$r = \frac{15}{\cos \theta - \sin \theta}$$

32)
$$r = \frac{-12}{8 \cos \theta - 7 \sin \theta}$$

33)
$$x^2 + y^2 = x$$

34)
$$x - y = 5$$