CSCI 5525 Machine Learning Fall 2019

#### Lecture 14: Boosting

Oct 22th 2019

Lecturer: Steven Wu Scribe: Steven Wu

In this lecture, we will study an *ensemble method* called *boosting*—a general method of converting rough rules of thumb into highly accurate prediction rule. The typical rules of thumb are given by decision trees.

#### **Decision Trees**

A decision tree is a predictor function  $f: \mathcal{X} \to \mathcal{Y}$ , represented by a binary tree in which:

- each tree node is associated with a splitting rule  $h: \mathcal{X} \to \{0, 1\}$ .
- each leaf node l is associated with a fixed prediction  $\hat{y}_l$ .

Here is a fun example in Figure 1.



Figure 1: Fun example from Rob Schapire. Left: data; Right: decision tree predictor.

**Top-down greedy training algorithm** How do you build a decision tree? A typical approach is the following "top-down" greedy algorithm:

- Initialize a tree with a single leaf node containing all training data.
- While "stopping criterion" is not met:

- Pick the leaf l and rule h that maximally reduces "uncertainty" measure u:

$$\sum_{l} w(l)u(S_l)$$

where w(l) denotes the fraction of examples reaching the leaf l and  $S_l$  denote the set of examples reaching leaf l.

- Split data in l using h, and grow tree accordingly
- Label  $\hat{y}_l$  of each leaf l is the majority label (for classification) or average label (for regression) among the data contained in the leaf.

For this algorithm, we need to define the uncertainty measure u as well as stopping criterion.

Notions of uncertainty (for binary classification). Suppose in a set of examples S, the fraction of positive examples is p. Then we can define three uncertainty measures.

1. Classification error (for the majority prediction rule):

$$u(S) = \min\{p, 1 - p\}$$

2. Gini index:

$$u(S) = 2p(1-p)$$

3. Entropy:

$$u(S) = p \log(1/p) + (1-p) \log(1/(1-p))$$

Note that both Gini index and rescaled entropy are upper bounds on the classification error. See Figure 2 for an illustration.



Figure 2: Three standard uncertainty or impurity functions. Image source.

#### Stopping criteria. Two common choices:

- Stop when the tree reaches a pre-specified size. Tree size is a hyperparamter we need to tune.
- Stop when every leaf is pure, that is the examples in each leaf belong to the same class. This will often lead to very large trees, which can result in a risk of overfitting. To mitigate over-fitting, we can perform *tree pruning*: first, split training data S into two parts  $S_1$  and  $S_2$ , and then
  - Use  $S_1$  to grow the tree until all leaves are pure.
  - Use  $S_2$  to choose a good pruning of the tree: Replace any tree node by a leaf node if it improves the error on  $S_2$  until no more such improvements possible.

#### **Boosting**

Boosting combines weak predictor that has say 51% accuracy to form a highly accurate predictor that say 99% accuracy. It is rooted in learning theory, and works very well in practice (especially in combination with trees). Here is the general approach:

- take a method for deriving rough rules of thumb
- apply the method to subset of examples
- obtain rule of thumb
- apply to 2nd subset of examples
- obtain 2nd rule of thumb
- repeat...

Two questions arise:

- 1. *How to choose examples on each round?* We should concentrate on "hardest" examples, that is those misclassified by previous weak rules of thumb.
- 2. How to combine rules of thumb into single prediction rule? Take weighted majority vote of rules of thumb.

*AdaBoost* is an elegant boosting method that implements these ideas. The algorithm takes as input a training dataset:  $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \{\pm 1\}$ :

- Initialize  $D_1$  as the uniform distribution over the examples.
- For t = 1, ..., T:
  - Train weak classifier ("rule of thumb")  $h_t$  on  $D_t$

– Let  $\epsilon_t = \sum_i D_t(i) \mathbf{1} \left[ h_t(x_i) \neq y_i \right]$  and choose parameter  $\alpha_t$ 

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)$$

- compute new distribution  $D_{t+1}$ : for each example i, the weight is

$$D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

( $\propto$  means "proportional to", which hides the normalization step.)

• Output final classifier:  $\hat{f}: x \to \text{sign}(\sum_t \alpha_t h_t(x))$ 

Let's work through an example (due to Rob Schapire). We will use *decision stump* of the form  $1[x_j \ge \theta]$  as our weak predictors. (Here I am abusing notation to write  $x_j$  as the j-th coordinate of x.) Suppose we are given training examples shown in Figure 3. Then Figure 4 shows a visualization of how AdaBoost updates over rounds, which leads to a final predictor with zero training error (in Figure 5).



Figure 3: Traning data.

Under some "weak learning" assumption, one can show that the training error goes to zero exponentially fast.

**Theorem 0.1.** Suppose the weak learning assumption holds for all t: each  $h_t$  is better than random guessing: for some  $\gamma > 0$ ,

$$\epsilon_t \le 1/2 - \gamma$$

Then the training error

$$\hat{\mathcal{R}}_{01}(\hat{f}) \le \exp\left(-2\gamma^2 T\right).$$

# Round 1



# Round 2



### Round 3



Figure 4: Adaboost re-weighting over rounds.

# Final Classifier



Figure 5: Final predictor with perfect accuracy.