

$\sum_{\substack{j=0\\j\neq i=0}}^{2} S(x,y) \cos^{\frac{i+2\pi i}{2}} \left(\pi(2x+1)\right)$

Effiziente Automatisierung von Logik höherer Stufe – realisierbarer Traum oder ewiger

Christoph E. Benzmüller

Albtraum?

6. Dezember 2007

$\sum_{y=0}^{2} \frac{s(x,y)}{s(x,y)} \cos^{\frac{x^2+2}{2}} \frac{1}{2} \left(\frac{\pi(2x+1)}{2} \right)$

Efficient Automation of Higher-Order Logic – viable Dream or perpetual Nightmare?

Christoph E. Benzmüller

December 6, 2007

Overview

- 1 Research Context: The ΩMEGA Project (thanks to: J. Siekmann, S. Autexier, ΩMEGA group)
- 2 Higher-Order Logic (HOL) (thanks to: C. Brown and M. Kohlhase) The Good Thing: Expressivitity

The Bad Thing: Automation is a Challenge

3 The LEO-II Prover

(thanks to: L. Paulson, F. Theiss, A. Fietzke)

Motivation and Architecture Solving Lightweight Problems Solving Less Lightweight Problems Ongoing and Future Work

Ωmega Project: Long Term Goal

The Ω mega Group

Current Team:

Dr. Serge Autexier

Dr. Christoph Benzmüller

Dominik Dietrich

Andreas Franke

PD Dr. Helmut Horacek

Dr. Henri Lesourd

Marvin Schiller

Ewaryst Schulz

Prof. Dr. Jörg Siekmann

Frank Theiss

Marc Wagner

Former Members Include:

Dr. Chad Brown

Mark Buckley

Dr. Detlef Fehrer

Dr. Manfred Kerber

Prof. Dr. Michael Kohlhase

Dr. Karsten Konrad

Dr. Andreas Meier

PD Dr. Erica Melis

Dr. Markus Moschner

Martin Pollet

Dr. Volker Sorge

Dimitra Tsovaltzi

Dr. Claus-Peter Wirth

Jürgen Zimmer

Ωmega Research Direction I: Scientific Office Suite

with SFB 378 Project OMEGA and DFG Project VeriMathDoc

Ωmega Research Direction II: Tutor System for Proofs

with SFB-378 Project DIALOG

Wizard of Oz Experiments: Student Room

- 1 Subject
- 2 Audio Recording
- 3 Subject GUI
- 4 Audio Control
- 5 Dome Camera
- 5 Dome Camera
- 6 Camera

Wizard of Oz Experiments: Wizard Room

- 1 Audio Recording
- 2 Video Recording
- 3 Experimenter
- 4 Overall Control
- 5 Wizard
- 6 Wizard GUI

Dialog Example

	correctnes	granularity	relevance	
Let R , S , T be binary relations.				
Show that $(R \cup S) \circ T = (R \circ T) \cup (S \circ T)$. Let $(a, b) \in (R \cup S) \circ T$	\checkmark	√	√	
Fine. Go ahead.				
From $(a, z) \in S$ and $(z, b) \in T$ it	\checkmark	√	√	
follows that $(a, b) \in S \circ T$ Very good. Please continue!	,		,	
Thus $(R \cup S) \circ T \subseteq (R \circ T) \cup (S \circ T)$	\checkmark	_	\checkmark	
You cannot directly infer this.				

<ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 り < ⊙

Typical Machine Proofs are Inadequate in Proof Tutoring

Proof of First-Order Automated Theorem Prover (FO-ATP)

- 3 [] setequal(x,y)— -subset(x,y)— -subset(y,x).
- 5 [] subset(x,y)— -member(f1(x,y),y).
- 22 [] -setequal(intersection(\$c2,\$c1),intersection(\$c2,\$c1)).
- 23 [factor,3.2.3] setequal(x,x)— -subset(x,x).
- 27 [] subset(x,y)—member(f1(x,y),x).
- 29 [hyper,27,23] member(f1(x,x),x)—setequal(x,x).
- 32 [hyper,29,22] mem-
- ber(\$f1(intersection(\$c2,\$c1),intersection(\$c2,\$c1)),intersection(\$c2,\$c1)).
- 41 [hyper,32,5] subset(intersection(\$c2,\$c1),intersection(\$c2,\$c1)).
- 53 [hyper,41,23] setequal(intersection(\$c2,\$c1),intersection(\$c2,\$c1)).
- 54 [binary,53.1,22.1] \$F.

[KI-07]

Representation Matters!

Mein Freund der Baum ist tot, er fiel im frühen Morgenrot

Christoph E. Benzmüller

Efficient Automation of Higher-Order Logic - viable Dream or perpetual Nightmare?

Saarland University

Christoph E. Benzmüller

Saarland University

Higher-Order Logic (HOL)

Higher-Order Logic (HOL)

Property	FOL	HOL	Example
Quantification over - individuals - functions - predicates/sets/relations	✓ - -	\checkmark	$\forall x. P(F(x))$ $\forall F. P(F(x))$ $\forall P. P(F(x))$
Unnamed - functions - predicates/sets/relations	<u>-</u>	√ √	$(\lambda x_{\bullet} x) (\lambda x_{\bullet} x \neq 2)$
Statements about - functions - predicates/sets/relations		√ √	$continuous(\lambda x \cdot x)$ reflexive(=)

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{*} x \in A \lor x \in B)$$

$$\cup := \lambda A_{*} \lambda B_{*} (\lambda x_{*} x \in A \lor x \in B)$$

commutative :=
$$\lambda R_{\bullet}(\forall x, y_{\bullet} R(x, y) \Rightarrow R(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := \{\lambda x \in A \lor x \in B\}$$

commutative :=
$$\lambda R_{\bullet}(\forall x, y_{\bullet} R(x, y) \Rightarrow R(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\bullet} x \in A \lor x \in B)$$

$$U := \lambda A_{\bullet} \lambda B_{\bullet} (\lambda x_{\bullet} x \in A \lor x \in B)$$

commutative :=
$$\lambda R_{\bullet}(\forall x, y_{\bullet} R(x, y) \Rightarrow R(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{1} x \in A \lor x \in B)$$

$$\cup := \lambda A_{1} \lambda B_{1} (\lambda x_{1} x \in A \lor x \in B)$$

commutative :=
$$\lambda R_{\bullet}(\forall x, y_{\bullet} R(x, y) \Rightarrow R(y, x))$$

$$A \cup B := \begin{cases} x \mid x \in A \lor x \in B \end{cases}$$

$$A \cup B := (\lambda x_{1} x \in A \lor x \in B)$$

$$\cup := \lambda A_{1} \lambda B_{1} (\lambda x_{1} x \in A \lor x \in B)$$

$$commutative := \lambda R_{\bullet}(\forall x, y_{\bullet}R(x, y) \Rightarrow R(y, x))$$

Sets and Relations in HOL

```
:= \lambda x \lambda A A(x)
\in
                   := \lambda x. \mid
                   := \lambda A \lambda B (\lambda x x \in A \land x \in B)
                   := \lambda A_{\bullet} \lambda B_{\bullet} (\lambda x_{\bullet} x \in A \lor x \in B)
                   := \lambda A \lambda B (\lambda x x \in A \lor x \notin B)
                   := \lambda A \lambda B (\forall x x \in A \Rightarrow x \in B)
                   := \lambda A (\lambda B B \subseteq A)
reflexive := \lambda R (\forall x R(x,x))
```


Without Types: HOL is too Expressive

Russel's Paradox

The set of all sets which do not contain themselves:

$$\{x|x\notin x\}$$
 resp. $(\lambda x.x\notin x)$ resp. $(\lambda x.\neg x(x))$

Typed Sets and Relations in HOL

```
\in := \lambda x_{\alpha} \lambda A_{\alpha \to o} A(x)
```

$$\emptyset := \lambda x_{\alpha} \bot$$

$$\cap := \lambda A_{\alpha \to o^{\scriptscriptstyle{\blacksquare}}} \lambda B_{\alpha \to o^{\scriptscriptstyle{\blacksquare}}} (\lambda x_{\alpha^{\scriptscriptstyle{\blacksquare}}} x \in A \land x \in B)$$

$$\cup := \lambda A_{\alpha \to o^{\blacksquare}} \lambda B_{\alpha \to o^{\blacksquare}} (\lambda x_{\alpha^{\blacksquare}} x \in A \lor x \in B)$$

$$:= \lambda A_{\alpha \to o^{\scriptscriptstyle \parallel}} \lambda B_{\alpha \to o^{\scriptscriptstyle \parallel}} (\lambda x_{\alpha^{\scriptscriptstyle \parallel}} x \in A \lor x \notin B)$$

Without Types: HOL is too Expressive

Russel's Paradox

The set of all sets which do not contain themselves:

$$\{x|x\notin x\}$$
 resp. $(\lambda x \cdot x \notin x)$ resp. $(\lambda x \cdot \neg x(x))$

Typed Sets and Relations in HOL

```
\in := \lambda x_{\alpha} \lambda A_{\alpha \to o} A(x)
```

$$\emptyset$$
 := $\lambda x_{\alpha} \perp$

$$\cap := \lambda A_{\alpha \to o^{\bullet}} \lambda B_{\alpha \to o^{\bullet}} (\lambda x_{\alpha^{\bullet}} x \in A \land x \in B)$$

$$\cup := \lambda A_{\alpha \to o^{\bullet}} \lambda B_{\alpha \to o^{\bullet}} (\lambda x_{\alpha^{\bullet}} x \in A \lor x \in B)$$

$$:= \lambda A_{\alpha \to o^{\bullet}} \lambda B_{\alpha \to o^{\bullet}} (\lambda x_{\alpha^{\bullet}} x \in A \lor x \notin B)$$

Increasing Interest in HOL

Research Areas

Formal Methods Artificial Intelligence Philosophy Functional and Logical Programming Computational Linguistics

Industrial Context

Undecidable and Infinitary Unification

$$\exists F_{\iota \to \iota} F(g(x)) = g(F(x))$$

$$(1)$$
 $F \leftarrow \lambda y_i y$

$$(2)$$
 $F \leftarrow \lambda y_i \cdot g(y)$

$$(3)$$
 $F \leftarrow \lambda y_i g(g(y))$

(4) ...

Primitive Substitution

 $\exists S_{\bullet} reflexive(S)$ Example Theorem:

Negation and Expansion of Definitions:

$$\neg \exists S. (\forall x_{\iota}. S(x, x))$$

Clause Normalisation (a(S) Skolem term):

$$\neg S(a(S), a(S))$$

Guess some suitable instances for S

$$S \leftarrow \lambda y_{\bullet} \lambda z_{\bullet} \top$$

$$S \leftarrow \lambda y_{\bullet} \lambda z_{\bullet} V(y, z) = W(y, z)$$

$$\rightsquigarrow V(a(S), a(S)) \neq W(a(S), a(S))$$

$$S \leftarrow$$

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

- Axiom of excluded middle
- Comprehension axioms
- ► Functional and Boolean extensionality ✓ [CADE-98,PhD-99]
- ▶ Leibniz and other definitions of equality ✓ICADE-
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

[IJCAR-06]: Axioms that imply Cut Calculi that avoid these axioms

- Axiom of excluded middle
- Comprehension axioms
- ► Functional and Boolean extensionality √ [CADE-98,PhD-99]
- ▶ Leibniz and other definitions of equality √ [CADE-99,PhD-99]
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

Calculi that avoid these axioms

Comprehension axioms

LEO-I UNIVERSITY OF CAMBRIDGE UNIVERSITY OF CAMBRIDGE

LEO-II employs FO-ATPs:

E, Spass, Vampire

jww: L. Paulson (Cambridge), F. Theiss and A. Fietzke (Saarbr.)

4□ > 4□ > 4 = > 4 = > = 9 q @

Motivation for LEO-II

- ▶ TPS system of Peter Andrews et al.
- LEO hardwired to $\Omega_{\rm MEGA}$ (predecessor of LEO-II) [CADE-98,PhD-99]
- Agent-based architecture Ω -ANTS (with V. Sorge) [AIMSA-98,EPIA-99,Calculemus-00]
- Collaboration of LEO with FO-ATP via Ω -ANTS (with V. Sorge) [KI-01,LPAR-05,JAL-07]
- Progress in Higher-Order Termindexing (with F. Theiss and A. Fietzke)

[IWIL-06]

Architecture of LEO-II

Solving Lightweight Problems

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\blacksquare}(B = C \Leftrightarrow \forall x_{\blacksquare}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATP

- % SPASS---3.0
 - Problem : SET171+3
- % SPASS beiseite: Ran out of time.
 - έ E---0.999
- % Problem : SET171+3
- % Failure: Resource limit exceeded (time)
- % Vampire---9.0
- % Problem : SET171+3
- % Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATP:

- % SPASS---3.0
 - Problem : SET171+3
- % SPASS beiseite: Ran out of time.
- % E---0.999
- % Problem : SET171+3
- % Failure: Resource limit exceeded (time)
 - % Vampire---9.0
 - Problem: SET171+3
- % Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded

(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s LEO-II (Proof Found!)

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded
(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina!

Total Reasoning Time: 0.03s

LEO-II (Proof Found!)

Results

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E	Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E	
014+4	114.5	2.60	0.300	648+3	98.2	0.12	0.037	
017 + 1	1.0	5.05	0.059	649 + 3	117.5	0.25	0.037	
066 + 1	_	3.73	0.029	651 + 3	117.5	0.09	0.029	
067 + 1	4.6	0.10	0.040	657 + 3	146.6	0.01	0.028	
076 + 1	51.3	0.97	0.031	669+3	83.1	0.20	0.041	
086 + 1	0.1	0.01	0.028	670 + 3	_	0.14	0.067	
096 + 1	5.9	7.29	0.033	671 + 3	214.9	0.47	0.038	
143+3	0.1	0.31	0.034	672+3	_	0.23	0.034	
171 + 3	68.6	0.38	0.030	673+3	217.1	0.47	0.042	
580+3	0.0	0.23	0.078	680+3	146.3	2.38	0.035	
601 + 3	1.6	1.18	0.089	683+3	0.3	0.27	0.053	
606 + 3	0.1	0.27	0.033	684+3	_	3.39	0.039	
607 + 3	1.2	0.26	0.036	716+4	_	0.40	0.033	
609 + 3	145.2	0.49	0.039	724+4	_	1.91	0.032	
611 + 3	0.3	4.00	0.125	741 + 4	_	3.70	0.042	
612 + 3	111.9	0.46	0.030	747+4	_	1.18	0.028	
614 + 3	3.7	0.41	0.060	752+4	_	516.00	0.086	
615 + 3	103.9	0.47	0.035	753+4	_	1.64	0.037	
623+3	_	2.27	0.282	764+4	0.1	0.01	0.032	
624 + 3	3.8	3.29	0.047					
630 + 3	0.1	0.05	0.025					
640 + 3	1.1	0.01	0.033		Vamp. 9.0: 2.80GHz, 1GB memory, 600s time limit			
646 + 3	84.4	0.01	0.032	LEO+Va	mp.: 2.40GHz,	4GB memory, 120)s time limit	
647 + 3	98.2	0.12	0.037	LEO-	-II+E: 1.60GHz	, 1GB memory, 60	s time limit	

Representation (and the right System Architecture) Matters!

Solving Less Lightweight Problems

Logic Systems Interrelationships

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$54 = K$$

$$+ M: \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems

$$S4 \subseteq K$$
 (1)

Experiments

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge: www.tptp.org

Example

$$54 = K$$

$$+ M: \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \quad \not\subseteq \quad K \tag{1}$$
$$(M \land 4) \quad \Leftrightarrow \quad (refl(R) \land trans(R)) \quad (2)$$

+)QQ

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M: \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \quad \not\subseteq \quad K \tag{1}$$
$$(M \land 4) \quad \Leftrightarrow \quad (refl(R) \land trans(R)) \tag{2}$$

Experiments

FO-ATPs	LEO-II + E
[SutcliffeEtal-07]	[BePa-08]

Much simpler: Reasoning within Multimodal Logics

Problem	LEO-II + E
$\operatorname{valid}(\square_r \top)$	0.025s
$\mathtt{valid}(\square_ra{\Rightarrow}\square_ra)$	0.026s
$\mathtt{valid}(\square_ra{\Rightarrow}\square_sa)$	_
$\mathtt{valid}(\square_s (\square_r a \! \Rightarrow \! \square_r a))$	0.026s
$\mathtt{valid}(\Box_r (a \land b) \Leftrightarrow (\Box_r a \land \Box_r b))$	0.044s
$\mathtt{valid}(\lozenge_r(a \Rightarrow b) \Rightarrow \Box_r a \Rightarrow \lozenge_r b)$	0.030s
$\operatorname{valid}(\neg \lozenge_r a \Rightarrow \Box_r (a \Rightarrow b))$	0.029s
$\mathtt{valid}(\square_rb \Rightarrow \square_r(a \Rightarrow b))$	0.026s
$\mathtt{valid}((\lozenge_r a \Rightarrow \square_r b) \Rightarrow \square_r (a \Rightarrow b))$	0.027s
$\mathtt{valid}((\lozenge_r a \Rightarrow \square_r b) \Rightarrow (\square_r a \Rightarrow \square_r b))$	0.029s
$valid((\lozenge_r a \Rightarrow \square_r b) \Rightarrow (\lozenge_r a \Rightarrow \lozenge_r b))$	0.030s

Representation (and the right System Architecture) Matters!

I FO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

I FO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic. Prop. Logic, Arithmetic, ...
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEΩ-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC) Formal Methods, CL, ...

I FO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic. Prop. Logic, Arithmetic, ...
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- TPTP Language(s) for HOL
- Repository of Proof Problems
- HOL Prover Contest.

I FO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic. Prop. Logic, Arithmetic, ...
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- TPTP Language(s) for HOL
- Repository of Proof Problems
- HOL Prover Contest.

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL. . . .

Dream or Nightmare?

Simple, Straightforward Encoding of Multimodal Logic

- base type ι : set of possible worlds certain terms of type $\iota \to o$: multimodal logic formulas
- multimodal logic operators:

$$\neg_{(\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o^{\blacksquare}}(\lambda x_{\iota} \neg A(x))
\lor_{(\iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o}, B_{\iota \to o^{\blacksquare}}(\lambda x_{\iota} \neg A(x) \lor B(x))
\square_{R(\iota \to \iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda R_{\iota \to \iota \to o}, A_{\iota \to o^{\blacksquare}}
(\lambda x_{\iota} \neg A(x)) \Rightarrow A(y))$$

Related Work

[Gallin-73], [Carpenter-98], [Merz-99], [Brown-05], [Hardt&Smolka-07], [Kaminski&Smolka-07]

Encoding of Validity

$$valid := \lambda A_{\iota \to o^{\bullet}} (\forall w_{\iota} A(w))$$

Encoding of the Theorems

- $(1) \ \forall R_{\bullet}(\forall A_{\bullet} \text{valid}(\Box_{R} A \Rightarrow A) \land \text{valid}(\Box_{R} A \Rightarrow \Box_{R} \Box_{R} A)) \\ \Leftrightarrow (\text{reflexive}(R) \land \text{transitive}(R))$
 - (2.3s, LEO-II passes 70 clauses to E, E generates 21769 clauses before finding the empty clause)
- $(2) \ \exists R_{\bullet} \exists A_{\bullet} \exists B_{\bullet} (\neg \mathsf{valid}(\square_R A \Rightarrow A)) \lor (\neg \mathsf{valid}(\square_R B \Rightarrow \square_R \square_R B))$
 - (17.3s, LEO-II instantiates R with \neq via primitive substitution)

Encoding of Validity

$$valid := \lambda A_{\iota \to o^{\bullet}} (\forall w_{\iota} A(w))$$

Encoding of the Theorems

(1)
$$\forall R \cdot (\forall A \cdot \text{valid}(\Box_R A \Rightarrow A) \land \text{valid}(\Box_R A \Rightarrow \Box_R \Box_R A))$$

 $\Leftrightarrow (\text{reflexive}(R) \land \text{transitive}(R))$

(2)
$$\exists R \cdot \exists A \cdot \exists B \cdot (\neg \mathsf{valid}(\Box_R A \Rightarrow A)) \lor (\neg \mathsf{valid}(\Box_R B \Rightarrow \Box_R \Box_R B))$$

Encoding of Validity

$$valid := \lambda A_{\iota \to o^{\bullet}} (\forall w_{\iota} A(w))$$

Encoding of the Theorems

(1)
$$\forall R \cdot (\forall A \cdot \text{valid}(\Box_R A \Rightarrow A) \land \text{valid}(\Box_R A \Rightarrow \Box_R \Box_R A))$$

 $\Leftrightarrow (\text{reflexive}(R) \land \text{transitive}(R))$

(2.3s, LEO-II passes **70** clauses to E, E generates **21769** clauses before finding the empty clause)

(2)
$$\exists R \cdot \exists A \cdot \exists B \cdot (\neg \text{valid}(\square_R A \Rightarrow A)) \lor (\neg \text{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

(17.3s, LEO-II instantiates R with \neq via primitive substitution)

$$\mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Definition expansion

$$\neg(\forall x_{\iota^{\blacksquare}} \forall y_{\iota^{\blacksquare}} : \neg s(x, y) \lor ((\neg(\forall u_{\iota^{\blacksquare}} \neg r(y, u) \lor a(u))) \lor (\forall v_{\iota^{\blacksquare}} \neg r(y, v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic

$$\begin{array}{ll} \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(s,x),y) & \neg \mathbb{Q}_{(\iota o),\iota}(a,u) \\ \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),u) & \mathbb{Q}_{(\iota o),\iota}(a,V) \vee \neg \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),V) \end{array}$$

$$\mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Definition expansion

$$\neg(\forall x_{\iota} \exists \forall y_{\iota} \exists : \neg s(x,y) \lor ((\neg(\forall u_{\iota} \exists \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \exists \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic

$$\begin{array}{ll} \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(s,x),y) & \neg \mathbb{Q}_{(\iota o),\iota}(a,u) \\ \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),u) & \mathbb{Q}_{(\iota o),\iota}(a,V) \vee \neg \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),V) \end{array}$$

$$\mathsf{valid}(\square_s (\square_r \, a \Rightarrow \square_r \, a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Definition expansion

$$\neg(\forall x_{\iota} \exists \forall y_{\iota} \exists : \neg s(x,y) \lor ((\neg(\forall u_{\iota} \exists \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \exists \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic

$$\begin{array}{ll} \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(s,x),y) & \neg \mathbb{Q}_{(\iota o),\iota}(a,u) \\ \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),u) & \mathbb{Q}_{(\iota o),\iota}(a,V) \vee \neg \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),V) \end{array}$$

$$\mathsf{valid}(\Box_s (\Box_r a \Rightarrow \Box_r a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\Box_s (\Box_r \ a \Rightarrow \Box_r \ a))$$

Definition expansion

$$\neg(\forall x_{\iota \blacksquare} \forall y_{\iota \blacksquare} : \neg s(x,y) \lor ((\neg(\forall u_{\iota \blacksquare} \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota \blacksquare} \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic

62