Checking Maths for $\mathcal{V}^{\mathrm{ab}}$

Reinaldo Arturo Zapata Peña

The equation for \mathcal{V}^{ab} for normal incidence in the xy plane is given by

$$\begin{split} \mathcal{V}^{\mathrm{ab}} &= \frac{\mu^{\mathrm{abxx}} E^2 \cos^2 \theta + \mu^{\mathrm{abyy}} E^2 \sin^2 \theta + 2 \mu^{\mathrm{abxy}} E^2 \cos \theta \sin \theta}{\xi^{\mathrm{xx}} E^2 \cos^2 \theta + \xi^{\mathrm{yy}} E^2 \sin^2 \theta}, \\ &= \frac{\mu^{\mathrm{abxx}} \cos^2 \theta + \mu^{\mathrm{abyy}} \sin^2 \theta + 2 \mu^{\mathrm{abxy}} \cos \theta \sin \theta}{\xi^{\mathrm{xx}} \cos^2 \theta + \xi^{\mathrm{yy}} \sin^2 \theta}. \end{split}$$

For an angle $\theta = \frac{\pi}{4}$ this expression can be reduced to

$$\mathcal{V}^{ab} = \frac{\mu^{abxx} + \mu^{abyy} + 2\mu^{abxy}}{\xi^{xx} + \xi^{yy}}.$$

The input files are

chi1.kk_xx_yy_zz_...

7 columns

mu.kk_xxxx_xxxy_xxxz_xxyx_xxyy_xxyz_xxzx_xxzy_xxzz.... 10 columns mu.kk_xyxx_xyxy_xyxz_xyyx_xyyy_xyyz_xyzx_xyzy_xyzz....

mu.kk_xzxx_xzxy_xzxz_xzyx_xzyy_xzyz_xzzx_xzzy_xzzz...

mu.kk_yxxx_yxxy_yxxz_yxyx_yxyy_yxzz_yxzx_yxzy_yxzz_...

 $\verb"mu.kk_-yyxx_-yyxy_-yyxz_-yyyx_-yyyz_-yyzx_-yyzy_-yyzz_-\dots$

mu.kk_yzxx_yzxy_yzxz_yzyx_yzyy_yzyz_yzzx_yzzy_yzzz....

Then I pasted first each mu.kk... followed for the chi1.kk... file to have 17 column file

	mu.kk									chil.kk							
	energy	abxx	abxy	abxz	abyx	abyy	abyz	abzx	abzy	abzz	energy	Re xx	Im xx	Re yy	Im yy	Re zz	Im zz
column:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

I defined the variables

0.00001)) }'

```
\cos cuad = \cos^2 \theta \sin cuad = \sin^2 \theta \cos sin = \cos \theta \sin \theta and used awk comand to produce the corresponding v.kk_ab... file as follows: awk ' \{ print \$1, ((\$2*' ``\$ coscuad'' '+ \$6* ' ``\$ sincuad'' '+ 2* \$3* ' ``\$ coscuad'' '+ \$15* ' ``\$ sincuad'' '+ \$15* ' ``$ sincuad'' '+ $ sincuad'' '+
```