

EUROPÄISCHE PATENTANMELDUNG

② Anmeldenummer: 86117295.5

③ Int. Cl.4: B05D 7/16, C08G 18/08,
C08G 18/10, C09D 3/72,
C09D 5/44

② Anmeldetag: 11.12.86

④ Priorität: 21.12.85 DE 3545618

⑤ Anmelder: BASF Lacke + Farben
Aktiengesellschaft
Max-Winkelmann-Strasse 80
D-4400 Münster(DE)④ Veröffentlichungstag der Anmeldung:
08.07.87 Patentblatt 87/28⑥ Benannte Vertragsstaaten:
ES⑦ Erfinder: Hille, Hans Dieter
in der Schlade 24
D-5060 Bergisch-Gladbach(DE)
Erfinder: Ebner, Franz
Nonnengarten 4
D-8702 Kist(DE)
Erfinder: Drexler, Hermann-Josef, Dr.
An der Bleiche 13
D-4402 Greven(DE)⑧ Wasserverdünnbares Überzugsmittel zur Herstellung der Basisschicht eines
Mehrschichtüberzuges.⑨ Die Erfindung betrifft Basisbeschichtungszusammensetzungen zur Herstellung von mehrschichtigen -
schützenden und/oder dekorative Überzügen bestehend aus wässrigen Dispersionen, die(a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70,
welches hergestellt worden ist, indem aus(A) linearen Polyether und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
(B) Diisocyanaten(C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein
Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte
Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist,
ein endständige Isocyanatgruppen aufweisenden Zwischenprodukt hergestellt worden ist, dessen freie
Isocyanatgruppen anschließend mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugs-
weise Triol, umgesetzt worden sind,(b) Pigmente und
(c) weitere übliche Additive enthalten.

EP 0 228 003 A1

Wasserverdünntbares Überzugsmittel zur Herstellung der Basisschicht eines Mehrschichtüberzuges

Die Erfindung betrifft eine Basisbeschichtungszusammensetzung zur Herstellung von mehrschichtigen, - schützenden und/oder dekorativen Überzügen auf Substratoberflächen bestehend aus einer wässrigen Dispersion, die

- a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70,
- 5 welches hergestellt worden ist, indem aus
 - (A) linearen Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 - (B) Diisocyanaten und
 - (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte
- 10 Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit
 - (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen umgesetzt worden sind,
- 15 (b) Pigmente und
 - (c) weitere übliche Additive enthält.

Insbesondere bei der Automobillackierung aber auch in anderen Bereichen, in denen man Überzüge mit

mit mehreren, übereinander angeordneten Überzugschichten zu versehen.

- 20 Mehrschichtlackierungen werden bevorzugt nach dem sogenannten "Basecoat-Clearcoat"-Verfahren aufgebracht, d.h. es wird ein pigmentierter Basislack vorlackiert und nach kurzer Abluftzeit ohne Einbrennschritt (Naß-in-Naß-Verfahren) mit Klarlack überlackiert. Anschließend werden Basislack und Klarlack zusammen eingearbeitet.

Besonders große Bedeutung hat das "Basecoat-Clearcoat" Verfahren bei der Applikation von

- 25 Automobil-Metalleffektlacken erlangt.

Wirtschaftliche und ökologische Gründe haben dazu geführt, daß versucht wurde, bei der Herstellung von Mehrschichtüberzügen wässrige Basisbeschichtungszusammensetzungen einzusetzen.

- 30 Überzugsmittel zur Herstellung von Basisschichten für mehrschichtige Automobillackierungen müssen nach dem heute üblichen rationellen "Naß-in-Naß"-Verfahren verarbeitbar sein, d.h. sie müssen nach einer möglichst kurzen Vortrockenzeit mit einer (transparenten) Deckschicht überlackiert werden können, ohne störende Anlöseerscheinungen zu zeigen.

Bei der Entwicklung von Überzugsmitteln für Basisschichten von Metall-Effektlacken müssen außerdem noch weitere Probleme gelöst werden. Der Metalleffekt hängt entscheidend von der Orientierung der Metall-Pigmentteilchen im Lackfilm ab. Ein im "Naß-in-Naß"-Verfahren verarbeitbarer Metalleffekt-Basislack muß

- 35 demnach Lackfilme liefern, in denen die Metall-Pigmente nach der Applikation in einer günstigen räumlichen Orientierung vorliegen und in denen diese Orientierung schnell so fixiert wird, daß sie im Laufe des weiteren Lackierprozesses nicht gestört werden kann.

Bei der Entwicklung von wasserverdünnbaren Systemen, die die oben beschriebenen Forderungen erfüllen sollen, treten auf die besonderen physikalischen Eigenschaften des Wassers zurückzuführende, - schwer zu lösende Probleme auf und bis heute sind nur wenige wasserverdünnbare Lacksysteme bekannt, die als Basisbeschichtungszusammensetzungen im oben dargelegten Sinne verwendet werden können.

- 40 So sind in der US-4,558,090 Überzugsmittel zur Herstellung der Basisschicht von Mehrschichtüberzügen offenbart, die aus einer wässrigen Dispersion eines Polurethanharzes mit einer Säurezahl von 5 -70 bestehen. Die wässrige Polyurethandispersion, die neben dem Bindemittel Pigmente und übliche

45 Zusatzstoffe sowie gegebenenfalls noch weitere Bindemittelkomponenten enthalten kann, wird hergestellt durch Umsetzung (A) eines linearen Polyether-und/oder Polyesterdiols mit endständigen Hydroxylgruppen und einem Molekulargewicht von 400 bis 3 000, mit

(B) einem Diisocyanat und

- (C) einer Verbindung, die zwei gegenüber Isocyanatgruppen reaktive Gruppen und mindestens eine zur Anionenbildung befähigte Gruppe aufweist, wobei die zur Anionenbildung befähigte Gruppe vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist zu einem Zwischenprodukt mit endständigen Isocyanatgruppen, Überführung des aus (A), (B) und (C) enthaltenen Zwischenprodukts in eine überwiegend wässrige Phase und
- 50 (D) Umsetzung der noch vorhandenen Isocyanatgruppen mit einem Di-und/oder Polyamin mit primären und/oder sekundären Aminogruppen.

Die in der US 4,558,090 offenbarten Überzugsmittel eignen sich gut zur Herstellung der Basisschicht von Mehrschichtüberzügen, sie sind aber für eine praktische Verwendung vor allem in Serienlackierprozessen ungeeignet, weil die schnell trocknenden Überzugsmittel in den zur Anwendung kommenden Applikationsgeräten (z.B. Lackspritzpistole; automatische, elektrostatisch unterstützte Hochrührtanksysteme u.s.w.)

5 so gut haften, daß sie nur unter großen Schwierigkeiten wieder entfernt werden können. Dadurch ist ein vor allem in der Automobilserienlackierung sehr oft schnell durchzuführender Wechsel der applizierten Lacksysteme (z.B. Farbtonwechsel) nicht möglich.

Aufgabe der vorliegenden Erfindung war es daher, wässrige Dispersionen zu entwickeln, die als Basisbeschichtungszusammensetzungen zur Herstellung von mehrschichtigen schützenden und/oder dekorativen Überzügen auf Substratoberflächen verwendet werden können und die alle oben dargelegten Forderungen, die an eine Basisbeschichtungszusammensetzung zu stellen sind, erfüllen und auch in den zur Anwendung kommenden Applikationsgeräten problemlos verarbeitet werden können.

Diese Aufgabe konnte überraschenderweise durch Verwendung von wässrigen Dispersionen gemäß dem Oberbegriff des Anspruchs 1 gelöst werden, die dadurch gekennzeichnet sind, daß das Polyurethanharz durch eine Umsetzung des aus (A) und (B) sowie (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in die wässrige Phase hergestellt worden ist.

Es ist überraschend und war nicht vorhersehbar, daß die auf die ansich gewünschten Eigenschaften (schnelles Antrocknen des aufgebrachten Naufilms, erschwertes Wiederanlösen des angetrockneten Films) zurückzuführenden Schwierigkeiten bei der Entfernung von in den Applikationsgeräten zurückgebliebenen Lackresten durch Verwendung der erfundungsgemäßen wässrigen Polyurethandispersion gelöst werden können und daß keine qualitativen Einbußen in der fertiggestellten Mehrschichtlackierung in Kauf genommen werden müssen.

25 Die erfundungsgemäßen Dispersionen werden erhalten, indem die Komponenten (A), (B) und (C) zu einem endständige Isocyanatgruppen aufweisenden Zwischenprodukt umgesetzt werden. Die Umsetzung der Komponenten (A), (B) und (C) erfolgt nach den gut bekannten Verfahren der organischen Chemie, wobei bevorzugt eine stufenweise Umsetzung der Komponenten (z.B. Bildung eines ersten Zwischenproduktes aus den Komponenten (A) und (B), das dann mit (C) zu einem zweiten Zwischenprodukt umgesetzt wird) durchgeführt wird. Es ist aber auch eine gleichzeitige Umsetzung der Komponenten (A), - (B) und (C) möglich.

Die Umsetzung wird bevorzugt in Lösungsmitteln durchgeführt, die gegenüber Isocyanatgruppen inert und mit Wasser mischbar sind. Vorteilhaft werden Lösungsmittel eingesetzt, die neben den oben beschriebenen Eigenschaften auch noch gute Löser für die hergestellten Polyurethane sind sich aus wässrigen Mischungen leicht abtrennen lassen. Besonders gut geeignete Lösungsmittel sind Aceton und Methyläthylketon.

Als Komponente (A) können prinzipiell alle bei der Herstellung von Beschichtungsmitteln auf Polyurethanbasis gebräuchlichen Diole eingesetzt werden. Geeignete Polyetherdiole entsprechen der allgemeinen Formel:

in der R = Wasserstoff oder ein niedriger Alkylrest, gegebenenfalls mit verschiedenen Substituenten, ist, n = 2 bis 6 und m = 10 bis 50 oder noch höher ist. Beispiele sind Poly(oxytetramethylen)glykole, Poly(oxyethylen)glykole und Poly(oxypropylen)glykole.

Die bevorzugten Polyalkylenetherpolyole sind Poly(oxypropylen)glykole mit einem Molekulargewicht im Bereich von 400 bis 3 000.

55 Polyesterdiole können ebenfalls als polymere Diolkomponente (Komponente A) bei der Erfahrung verwendet werden. Man kann die Polyesterdiole durch Veresterung von organischen Dicarbonsäuren oder ihren Anhydriden mit organischen Diolen herstellen. Die Dicarbonsäuren und die Diole können aliphatische oder aromatische Dicarbonsäuren und Diole sein.

Die zur Herstellung der Polyester verwendeten Diole schließen Alkylenolglycole wie Ethylenglykol, Butylenglykol, Neopentylglykol und andere Glycole wie Dimethylolglycolabutyl ein.

Die Säurekomponente des Polyesters besteht in erster Linie aus niedermolekularen Dicarbonsäuren oder ihren Anhydriden mit 2 bis 18 Kohlenstoffatomen im Molekül.

Geeignete Säuren sind beispielsweise Phtalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Hexahydrophthalsäure, Adipinsäure, Azelainsäure, Sebazinsäure, Maleinsäure, Glutarsäure,

5 Hexachlorheptadicarbonsäure und Tetrachlorphthalsäure. Anstelle dieser Säuren können auch ihre Anhydride, soweit diese existieren, verwendet werden.

Ferner lassen sich bei der Erfindung auch Polyesterdirole, die sich von Lactonen ableiten, als Komponente (A) benutzen. Diese Produkte erhält man beispielsweise durch die Umsetzung eines ϵ -Caprolactons mit einem Diol. Solche Produkte sind in der US-PS 3 189 945 beschrieben.

10 Die Polylactonpolyole, die man durch diese Umsetzung erhält, zeichnen sich durch die Gegenwart einer endständigen Hydroxylgruppe und durch wiederkehrende Polyesteranteile, die sich von dem Lacton ableiten, aus. Diese wiederkehrenden Molekülanteile können der Formel

$$\text{O} \text{---} (\text{CH}_2)_n \text{---} \text{O} \text{---}$$
 entsprechen, in der n bevorzugt 4 bis 6 ist und der Substituent Wasserstoff, ein Alkylrest, ein Cycloalkylrest 15 oder ein Alkoxyrest ist, wobei kein Substituent mehr als 12 Kohlenstoffatome enthält und die gesamte Anzahl der Kohlenstoffatome in dem Substituenten in dem Lactonring 12 nicht übersteigt.

Das als Ausgangsmaterial verwendete Lacton kann ein beliebiges Lacton oder eine beliebige Kombination von Lactonen sein, wobei dieses Lacton mindestens 6 Kohlenstoffatome in dem Ring enthalten sollte, zum Beispiel 6 bis 8 Kohlenstoffatome und wobei mindestens 2 Wasserstoffsubstituenten an dem Kohlenstoffatom vorhanden sein sollten, das an die Sauerstoffgruppe des Rings gebunden ist. Das als Ausgangsmaterial verwendete Lacton kann durch die folgende allgemeine Formel dargestellt werden.

25

2 2 11

0

in den n und R die bereits angegebene Bedeutung haben.

30 Die bei der Erfindung für die Herstellung der Polyesterdirole bevorzugten Lactone sind die Caprolactone, bei denen n den Wert 4 hat. Das am meisten bevorzugte Lacton ist das unsubstituierte ϵ -Caprolacton, bei dem n den Wert 4 hat und alle R-Substituenten Wasserstoff sind. Dieses Lacton wird besonders bevorzugt, da es in großen Mengen zur Verfügung steht und Überzüge mit ausgezeichneten Eigenschaften ergibt. Außerdem können verschiedene andere Lactone einzeln oder in Kombination benutzt werden.

35 Beispiele von für die Umsetzung mit dem Lacton geeigneten aliphatischen Diolen schließen ein Ethylen glykol, 1,3-Propandiol, 1,4-Butandiol, Dimethylolcyclohexan.

40 Als Komponente (B) können für die Herstellung der Polyurethandispersion beliebige organische Diisocyanate eingesetzt werden. Beispiele von geeigneten Diisocyanaten sind Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat, Propylenediisocyanat, Ethylenediisocyanat, 2,3-Dimethylethylenediisocyanat, 1-Methyltrimethylenediisocyanat, 1,3-Cyclopentylendiisocyanat, 1,4-Cyclohexylenediisocyanat, 1,2-Cyclohexylenediisocyanat, 1,3-Phelendiisocyanat, 1,4-Phenylenediisocyanat, 2,4-Toluylenediisocyanat, 2,6-Toluylenediisocyanat, 4,4'-Biphenylenediisocyanat, 1,5-Naphthylendiisocyanat, 1,4-Naphthylendiisocyanat, 1-Isocyanatomethyl-5-isocyanato-1,3,3-trimethylcyclohexan, Bis-(4-isocyanato cyclohexyl)methan, Bis-(4-isocyanato phenyl)-methan, 4,4'-Diisocyanatodiphenylether und 2,3-Bis-(8-isocyanato octyl)-4-octyl-5-hexyl-cyclohexen.

45 Als Komponente (C) werden Verbindungen eingesetzt, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert werden ist.

50 Durch Einstellung eines bestimmten Mischungsverhältnisses zwischen den zur Anionenbildung befähigten Gruppen enthaltenden und den von diesen Gruppen freien Verbindungen kann der Anteil an ioni- schen Gruppen im Polyurethanmolekül gesteuert werden.

55 Geeignete mit Isocyanatgruppen reagierende Gruppen sind insbesondere Hydroxylgruppen. Die Verwendung von Verbindungen, die primäre oder sekundäre Aminogruppen enthalten, kann einen negativen Einfluß auf die oben beschriebene Verarbeitbarkeit der Dispersionen haben. Art und Menge von gegebenenfalls einzusetzenden aminogruppenhaltigen Verbindungen sind vom Durchschnittsfachmann durch einfach durchzuführende Routineuntersuchungen zu ermitteln.

Als zur Anionenbildung befähigte Gruppen kommen vor allem Carboxyl- und Sulfonsäuregruppen in Betracht. Diese Gruppen können vor der Umsetzung mit einem tertiären Amin neutralisiert werden, um eine Reaktion mit den Isocyanatgruppen zu vermeiden.

Als Verbindung, die mindestens zwei mit Isocyanatgruppen reagierende Gruppen und mindestens eine 5 zur Anionenbildung befähigte Gruppe enthält, sind beispielsweise Dihydroxypropionsäure Dimethylolpropionsäure, Dihydroxybensteinsäure oder Dihydroxybenzoësäure geeignet. Geeignet sind auch die durch Oxydation von Monosacchariden zugänglichen Polyhydroxsäuren, z.B. Glukonsäure, Zuckersäure, Schleimsäure, Glukuronsäure und dergleichen.

10 Aminogruppenhaltige Verbindungen sind beispielsweise α,β -Diaminovaleriansäure, 3,4-Diaminobenzoësäure, 2,4-Diamino-toluol-sulfonsäure-(5), 4,4'-Diamino-diphenylethersulfonsäure und dergleichen.

Geeignete tertiäre Amine zur Neutralisation der anionischen Gruppen sind beispielsweise Trimethylamin Triethylamin, Dimethylamin, Diethylamin, Triphenylamin und dergleichen.

15 Als Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen aufweisen, jedoch frei von zur Anionenbildung befähigten Gruppen sind, können beispielsweise niedermolekulare Diole oder Diamine mit primären oder sekundären Aminogruppen eingesetzt werden.

Das aus (A), (B) und (C) gebildete isocyanatgruppenhaltige Zwischenprodukt wird mit dem mindestens drei Hydroxylgruppen enthaltenden Polyol umgesetzt, was höchstwahrscheinlich eine Kettenverlängerung und gegebenenfalls auch eine Verzweigung des Bindemittelmoleküls zur Folge hat.

20 Bei dieser Umsetzung muß sorgfältig darauf geachtet werden, daß keine vernetzten Produkte erhalten werden.

Das kann zum Beispiel durch Zugabe einer auf den Isocyanatgruppengehalt des aus (A), (B) und (C) erhaltenen Zwischenproduktes und die Reaktionsbedingungen abgestimmten Menge an Polyol erreicht werden.

25 Im Prinzip sind alle mindestens drei Hydroxylgruppen enthaltenden Polyole, die mit dem aus (A), (B) und (C) erhaltenen Zwischenprodukt so umgesetzt werden können, daß keine vernetzten Produkte entstehen, zur Herstellung der erfundungsgemäßen Polyurethandispersion geeignet. Als Beispiele seien Trimethylpropan, Glycerin, Erythrit, Mesoerythrit, Arabit, Adonit, Xylit, Mannit, Sorbit, Dulcit, Hexantritol, (Poly-)Pentaerythritol u.s.w. genannt.

30 Ganz besonders gute Ergebnisse können erzielt werden, wenn Trimethylpropan als Polyol eingesetzt wird.

Es ist auch denkbar, daß durch gleichzeitige Umsetzung aller vier Komponenten (A), (B), (C) und Polyol unvernetzte Polyurethane herstellbar sind, die zu brauchbaren Basisbeschichtungszusammensetzungen verarbeitet werden können.

35 Nach der Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit der Polyolkomponente, die vorzugsweise in einem gegenüber Isocyanatgruppen inerten, mit Wasser mischbaren, das entstehende Polyurethan gut lösenden und aus wässrigen Mischungen gut abtrennbaren Lösungsmitteln - (z.B. Aceton oder Methylethyl-keton) durchgeführt worden ist und gegebenenfalls noch durchzuführenden Neutralisierung der zur Anionenbildung befähigten Gruppen wird das Reaktionsprodukt in eine wässrige Phase überführt. Das kann zum Beispiel durch Dispergierung des Reaktionsgemisches in Wasser und 40 Abdestillieren der unter 100 °C siedenden organischen Lösungsmittelanteile geschehen.

Unter wässriger Phase ist Wasser, das auch noch organische Lösungsmittel enthalten kann, zu verstehen. Als Beispiele für Lösungsmittel, die im Wasser vorhanden sein können, seien heterocyclische, aliphatische oder aromatische Kohlenwasserstoffe, ein- oder mehrwertige Alkohole, Ether, Ester und Ketone, wie zum Beispiel N-Methylpyrrolidon, Toluol, Xylol, Butanol, Ethyl- und Butylglykol sowie deren Acetate, 45 Butyldiglycol, Ethylenglykoldibutylether, Ethylenglykoldiethylether, Diethylenglykoldimethylether, Cyclohexanon, Methylmethyleketon, Aceton, Isophoron oder Mischungen davon genannt.

50 Nachdem der pH-Wert der resultierenden Polyurethandispersion kontrolliert und gegebenenfalls auf einen Wert zwischen 6 und 9 eingestellt worden ist, bildet die Dispersion die Grundlage der erfundungsgemäßen Überzugsmittel, in die die übrigen Bestandteile wie z.B. zusätzliche Bindemittel, Pigmente, organische Lösungsmittel und Hilfsstoffe durch Dispergieren beispielsweise mittels eines Rührers oder Dissolvers homogen eingearbeitet werden. Abschließend wird erneut der pH-Wert kontrolliert und gegebenenfalls auf einen Wert von 6 bis 9, vorzugsweise 7,0 bis 8,5 eingestellt. Weiterhin werden der Festkörpergehalt und die Viskosität auf die an die jeweiligen Applikationsbedingungen angepaßten Werte eingestellt.

55 Die gebrauchsfertigen Überzugsmittel weisen in der Regel einen Festkörperanteil von 10 bis 30 Gew.-% auf, und ihre Auslaufzeit im ISO-Becher 4 beträgt 15 bis 30 Sekunden, vorzugsweise 18 bis 25 Sekunden. Ihr Anteil an Wasser beträgt 80 bis 90 Gew.-%, der an organischen Lösungsmitteln 0 bis 20 Gew.-%, jeweils bezogen auf das gesamte Überzugsmittel.

Die vorteilhaften Wirkungen der erfindungsgemäßen Beschichtungszusammensetzungen sind auf den Einsatz der oben beschriebenen wässrigen Polyurethandispersion zurückzuführen.

In vielen Fällen ist es wünschenswert, die Eigenschaften der erhaltenen Überzüge durch Mitverwendung weiterer Bindemittelsysteme in der Basis-Beschichtungszusammensetzung gezielt zu verbessern.

5 Die erfindungsgemäßen Basis-Beschichtungszusammensetzungen enthalten vorteilhaft als zusätzliche Bindemittelkomponente ein wasserverdünntbares Melaminharz in einem Anteil von 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, bezogen auf den Festkörpergehalt der Polyurethandispersion.

Wasserlösliche Melaminharze sind an sich bekannt und werden in größerem Umfang eingesetzt. Es handelt sich hierbei um veretherete Melamin-Formaldehyd-Kondensationsprodukte. Ihre Wasserlöslichkeit

10 hängt abgesehen vom Kondensationsgrad, der möglichst niedrig sein soll, von der Veretherungskomponente ab, wobei nur die niedrigsten Glieder der Alkanol- bzw. Ethylenglykolmonoetherreihe wasserlösliche Kondensate ergeben. Die größte Bedeutung haben die Hexamethoxymethylmelaminharze. Bei Verwendung von Lösungsvermittlern können auch butanolveretherete Melaminharze in wässriger Phase dispergiert werden.

15 Es besteht auch die Möglichkeit, Carboxylgruppen in das Kondensat einzufügen. Umetherungsprodukte hochveretherter Formaldehydkondensate mit Oxyacbonsäuren sind über ihre Carboxylgruppe nach Neutralisation wasserlöslich und können als Vernetzerkomponente in den erfindungsgemäßen Überzugsmitteln eingesetzt werden.

Anstelle der beschriebenen Melaminharze können auch andere wasserlösliche oder wasserdispersierbare Aminoharze wie z.B. Benzoguanaminharze eingesetzt werden.

20 Für den Fall, daß die erfindungsgemäße Basisbeschichtungszusammensetzung ein Melaminharz enthält, kann sie vorteilhaft zusätzlich als weitere Bindemittelkomponente ein wasserverdünntbares Polyesterharz und/oder ein wasserverdünntbares Polyacrylatherz enthalten, wobei das Gewichtsverhältnis Melaminharz zu Polyesterharz und/oder Polyacrylatherz einen Wert von 10 bis 500 beträgt und der Gesamtanteil an Melaminharz, Polyester-

/Polyacrylatherz, bezogen auf den gesamten Vernetzungsmittelgehalt, einen Wert von 10 bis 500% bewirkt.

25 20 bis 60 Gew.-% beträgt.

Wasserverdünntbare Polyester sind solche mit freien Carboxylgruppen, d.h. Polyester mit hoher Säurezahl.

Es sind grundsätzlich zwei Methoden bekannt, die benötigten Carboxylgruppen in das Harzsystem einzufügen. Der erste Weg besteht darin, die Veresterung bei der gewünschten Säurezahl abzubrechen.

30 Nach Neutralisation mit Basen sind die so erhaltenen Polyester in Wasser löslich und verfilmen beim Einbrennen. Die zweite Möglichkeit besteht in der Bildung partieller Ester von Di- oder Polycarbonsäuren mit hydroxyreichen Polyestern mit niedriger Säurezahl. Für diese Reaktion werden überlicherweise Anhydride der Dicarbonsäuren herangezogen, welche unter milden Bedingungen unter Ausbildung einer freien Carboxylgruppe mit der Hydroxylkomponente umgesetzt werden.

35 Die wasserverdünnbaren Polyacrylatherze enthalten ebenso wie die oben beschriebenen Polyesterharze freie Carboxylgruppen. Es handelt sich in der Regel um Acryl- bzw. Methacrylcopolymerate, und die Carboxylgruppen stammen aus den Anteilen an Acryl- oder Methacrylsäure.

Als Vernetzungsmittel können auch blockierte Polyisocyanate eingesetzt werden. Es können bei der Erfindung beliebige Polyisocyanate benutzt werden, bei denen die Isocyanatgruppen mit einer Verbindung

40 umgesetzt worden sind, so daß das gebildete blockierte Polyisocyanat gegenüber Hydroxylgruppen bei Raumtemperaturen beständig ist, bei erhöhten Temperaturen, in der Regel im Bereich von etwa 90 bis 300 °C, aber reagiert. Bei der Herstellung der blockierten Polyisocyanate können beliebige für die Vernetzung geeignete organische Polyisocyanate verwendet werden. Bevorzugt sind die Isocyanate, die etwa 3 bis etwa 36, insbesondere etwa 8 bis 15 Kohlenstoffatome enthalten. Beispiele von geeigneten Diisocyanaten sind

45 die oben genannten Diisocyanate (Komponente B).

Es können auch Polyisocyanate von höherer Isocyanatfunktionalität verwendet werden. Beispiele dafür sind Tris-(4-isocyanatophenyl)-methan, 1,3,5-Triisocyanatobenzol, 2,4,6-Triisocyanatotoluol, 1,3,5-Tris-(6-isocyanatohexy)-biuret. Bis-(2,5-diisocyanato-4-methylphenyl)-methan und polymere Polyisocyanate, wie Dimere und Trimere von Diisocyanatotoluol. Ferner kann man auch Mischungen von Polyisocyanaten benutzen..

50 Die bei der Erfindung als Vernetzungsmittel in Betracht kommenden organischen Polyisocyanate können auch Präpolymere sein, die sich beispielsweise von einem Polyol einschließlich eines Polyetherpolyols oder eines Polyesterpolyols ableiten. Dazu werden bekanntlich Polyole mit einem Überschuß von Polyisocyanaten umgesetzt, wodurch Präpolymere mit endständigen Isocyanatgruppen entstehen. Beispiele von Polyolen, die hierfür verwendet werden können, sind einfache Polyole, wie Glykole, z.B. Ethylenglykol

55 und Propylenglykol, und andere Polyole, wie Glycerin, Trimethylolpropan, Hexantriol und Pentaerythrit; ferner Monoether, wie Diethylenglykol und Dipropylenglykol sowie Polyether, die Addukte aus solchen Polyolen und Alkylenoxiden sind. Beispiele von Alkylenoxiden, die sich für eine Polyaddition an diese Polyole unter Bildung von Polyethern eignen, sind Ethylenoxid, Propylenoxid, Butylenoxid und Styroloxid.

Man bezeichnet diese Polyadditionsprodukte im allgemeinen als Polyether mit endständigen Hydroxylgruppen. Sie können linear oder verzweigt sein. Beispiele von solchen Polyethern sind Polyoxyethylenglykol von einem Molekulargewicht von 1 540, Polyoxypropylenglykol mit einem Molekulargewicht von 1 025, Polyoxytetramethylenglykol, Polyoxyhexamethylenglykol, Polyoxynonamethylenglykol, Polyoxydecamethylenglykol, Polyoxydodecamethylenglykol und Mischungen davon. Andere Typen von Polyoxyalkylenglykolethern können ebenfalls verwendet werden. Besonders geeignete Polyetherpolyole sind diejenigen, die man erhält durch Umsetzung von derartigen Polyolen, wie Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,4-Butandiol, 1,3-Butandiol, 1,6-Hexandiol und Mischungen davon; Glycerintrimethylethan, Trimethylolpropan, 1,2,6-Hexantriol, Dipentaerythrit, Tripentaerythrit, Polypentaerythrit, Methylglukosiden und Saccharose mit Alkylenoxiden, wie Ethylenoxid, Propylenoxid oder Mischungen davon.

Für die Blockierung der Polyisocyanate können beliebige geeignete aliphatische, cycloaliphatische oder aromatische Alkymonoalkohole verwendet werden. Beispiele dafür sind aliphatische Alkohole, wie Methyl-, Ethyl-, Chlorethyl-, Propyl-, Butyl-, Amyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, 3,3,5-Trimethylhexyl-, Decyl- und Laurylalkohol; aromatische Alkylalkohole, wie Phenylcarbinol und Methylphenylcarbinol. Es können auch geringe Anteile an höhermolekularen und relativ schwer flüchtigen Monoalkoholen gegebenenfalls mitverwendet werden, wobei diese Alkohole nach ihrer Abspaltung als Weichmacher in den Überzügen wirken. Andere geeignete Blockierungsmittel sind Oxime, wie Methylmethylenketonoxim, Acetonoxim und Cyclohexanoxim, sowie auch Caprolactame, Phenole und Hydroxamsäureester. Bevorzugte Blockierungsmittel sind Malonester, Acetessigester und β -Diketone.

Die blockierten Polyisocyanate werden hergestellt, indem man eine ausreichende Menge eines Alkohols mit dem organischen Polyisocyanat umsetzt, so daß keine freien Isocyanatgruppen mehr vorhanden sind. Die erfindungsgemäßen Basisbeschichtungszusammensetzungen können alle bekannten und in der Lackindustrie üblichen Pigmente oder Farbstoffe enthalten.

Als Farbstoffe bzw. Pigmente, die anorganischer oder organischer Natur sein können, werden beispielsweise genannt Titandioxid, Graphit, Ruß, Zinkchromat, Strontiumchromat, Bariumchromat, Bleichromat, Bleicyanamid, Bleisilicochromat, Zinkoxid, Cadmiumsulfid, Chromoxid, Zinksulfid, Nickelititangelb, Chromtitanangelb, Eisenoxidrot, Eisenoxidschwarz, Ultramarinblau, Phthalocyaninkomplexe, Naphtholrot, Chinacridone, halogenierte Thioindigo-Pigmente oder dergleichen.

Als besonders bevorzugte Pigmente werden Metallpulver einzeln oder im Gemisch wie Kupfer, Kupferlegierungen, Aluminium und Stahl, vorzugsweise Aluminiumpulver, in wenigstens überwiegendem Anteil eingesetzt, und zwar in einer Menge von 0,5 bis 25 Gew.-% bezogen auf den gesamten Festkörpergehalt der Überzugsmittel an Bindemitteln. Als metallische Pigmente werden solche handelsüblichen Metallpulver bevorzugt, die für wäßrige Systeme speziell vorbehandelt sind.

Die Metallpulver können auch zusammen mit einem oder mehreren der obengenannten nichtmetallischen Pigmente bzw. Farbstoffe eingesetzt werden. In diesem Fall wird deren Anteil so gewählt, daß der erwünschte Metallic-Effekt nicht unterdrückt wird.

Die erfindungsgemäßen Basisbeschichtungszusammensetzungen können auch weitere übliche Zusätze wie Lösungsmittel, Füllstoffe, Weichmacher, Stabilisatoren, Netzmittel, Dispergierhilfsmittel, Verlaufsmittel, Entschäumer und Katalysatoren einzeln oder im Gemisch in den üblichen Mengen enthalten. Diese Substanzen können den Einzelkomponenten und/oder der Gesamtmasse zugesetzt werden.

Geeignete Füllstoffe sind z.B. Talkum, Glimmer, Kaolin, Kreide, Quarzmehl, Asbestmehl, Schiefermehl, Bariumsulfat, verschiedene Kieselsäuren, Silikate, Glasfasern, organische Fasern und dergleichen.

Die oben beschriebenen Beschichtungszusammensetzungen werden erfindungsgemäß in Verfahren zur Herstellung von mehrschichtigen Überzügen auf Substratoberflächen verwendet, bei welchen

(1) als Basisbeschichtungszusammensetzung eine wäßrige Dispersion aufgebracht wird

(2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm auf der Substratoberfläche gebildet wird

(3) auf der so erhaltenen Basisschicht eine geeignete transparente Deckschichtzusammensetzung aufgebracht und anschließend

(4) die Basisschicht zusammen mit der Deckschicht eingebrannt wird.

Als Deckschichtzusammensetzungen sind grundsätzlich alle bekannten nicht oder nur transparent pigmentierten Überzugsmittel geeignet. Hierbei kann es sich um konventionelle Lösungsmittelhaltige Klarlacke, wasserverdünnbare Klarlacke oder Pulverklarlacke handeln.

Als zu beschichtende Substrate kommen vor allem vorbehandelte Metallsubstrate in Frage, es können aber auch nicht vorbehandelte Metalle und beliebige andere Substrate wie zum Beispiel Holz, Kunststoffe u.s.w. unter Verwendung der erfindungsgemäßen Basisbeschichtungszusammensetzungen mit einer mehrschichtigen schützenden und/oder dekorativen Beschichtung überzogen werden.

Die Erfindung wird in den folgenden Beispielen näher erläutert. Alle Angaben über Teile und Prozentsätze sind Gewichtsangaben, falls nicht ausdrücklich etwas anderes festgestellt wird.

5 Herstellung einer erfindungsgemäßen Polyurethandispersion

255 g eines Polyesters aus Hexandiol-1,6 und Isophthalsäure mit einem mittleren Molekulargewicht von 614, werden zusammen mit 248 g eines Polypropylenglykols mit einem mittleren Molekulargewicht von 600 und mit 100 g Dimethylolpropionsäure auf 100°C erhitzt und 1 Stunde im Vakuum entwässert. Bei 80°C 70 werden 526 g 4,4'-Dicyclohexylmethandiisocyanat und 480 g Methylmethyleketon zugegeben. Es wird bei 80°C so lange gerührt, bis der Gehalt an freien Isocyanatgruppen 1,69 %, bezogen auf die Gesamt einwaage, beträgt.

Jetzt werden 28,5 g Trimethylolpropan und anschließend 0,4 g Dibutylzinndilaurat zugegeben und 2 Stunden bei 80°C weiter gerührt. Nach Zugabe von 1590 g Methylmethyleketon wird so lange bei 80°C 75 gehalten, bis die Viskosität, gemessen im DIN-Becher, 65 s beträgt (Probe im Verhältnis 2:3 in N-Methylpyrrolidon gelöst).

Nach Zugabe einer Mischung aus 22,4 g Dimethylethanolamin und 2650 g deionisiertem Wasser wird im Vakuum das Methylmethyleketon abdestilliert, und man erhält eine feinteilige Dispersion mit einem Festkörpergehalt von 30 %, einem pH-Wert von 7,4 und einer Viskosität von 48 s, gemessen im DIN-20 Becher.

Herstellung einer erfindungsgemäßen Metalleffekt-Lackierung nach dem Base-Coat-/Clear-Coat-Verfahren unter Verwendung der hier beschriebenen Polyurethandispersion

25 Die Herstellung der Zweischichtlackierung erfolgte nach den in der US 4,558,090 angegebenen experimentellen Angaben.

Ein unter Verwendung der erfindungsgemäßen Polyurethandispersion hergestellter Metalleffekt-Basislack konnte zu einer qualitativ hochwertigen zweischichtigen Metalleffektlackierung mit einem ausgezeichneten Metalleffekt verarbeitet werden.

Die Entferbarkeit von in den Applikationsgeräten zurückgebliebenen Lackresten wird anhand der folgenden Vergleichsversuche demonstriert:

Auf einer Glasplatte wurde ein Metalleffekt-Basislack gemäß der US 4,558,090 und ein Metalleffekt-Basislack gemäß der vorliegenden Erfindung in einer Naßfilmdicke von 100 µm mit Hilfe eines Rakes aufgetragen.

Nach 2ständigem Trocknen bei Raumtemperatur wurde mit einer Mischung auf 50 Teilen Wasser und 50 Teilen n-Propanol versucht, den angetrockneten Lackfilm von der Glasplatte zu entfernen. Dazu wurde ein mit dieser Reinigungsmischung getränkter Pinsel mit leichtem Druck in kreisenden Bewegungen über den getrockneten Lackfilm geführt. Der aus dem erfindungsgemäß hergestellten Metalleffekt-Basislack 40 gebildete Lackfilm löste sich schon nach den ersten Kreisbewegungen homogen auf. Der unter Verwendung der in der US 4,558,090 offenbarten Dispersion hergestellte Lackfilm dagegen quoll zunächst auf und löste sich erst nach vielfachen Kreisbewegungen in größeren zusammenhängenden Flächen vom Untergrund ab.

Dieser Versuch wurde mit einer Vielzahl unterschiedlichster Lösungsmittel bzw. Lösungsmittelgemische wiederholt. In allen Fällen wurden ähnliche Ergebnisse erhalten.

45

Ansprüche

1. Basisbeschichtungszusammensetzung zur Herstellung von mehrschichtigen, schützenden und/oder dekorativen Überzügen bestehend aus einer wässrigen Dispersion, die
 - (a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches hergestellt worden ist, indem aus
 - (A) linearer Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 - (B) Diisocyanaten und
 - (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist, ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie

Isocyanatgruppen anschließend mit
 (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen
 umgesetzt worden sind
 (b) Pigmente und
 5 (c) weitere übliche Additive
 enthält
dadurch gekennzeichnet, daß
 die wässrige Polyurethandispersion durch Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und
 10 Überführung des so gewonnenen Reaktionsproduktes in eine wässrige Phase hergestellt worden ist.

2. Verfahren zur Herstellung eines mehrschichtigen, schützenden und/oder dekorativen Überzuges auf einer Substratoberfläche, bei welchem
 (1) als Basisbeschichtungszusammensetzung eine wässrige Dispersion aufgebracht wird, die
 (a) als filmbildendes Material mindestens eine Polyurethanharz mit einer Säurezahl von 5 bis 70, welches
 15 hergestellt worden ist, indem aus
 (A) linearen Polyether- und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
 (B) Diisocyanaten und
 (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte
 20 Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist
 ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie Isocyanatgruppen anschließend mit
 (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen
 umgesetzt worden sind.

25 (b) Pigmente und
 (c) weitere übliche Additive enthält.
 (2). Aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm auf der Oberfläche gebildet wird,
 (3) auf der so erhaltenen Basisschicht eine geeignete transparente Deckschichtzusammensetzung aufgebracht und anschließend die Basisschicht zusammen mit der Deckschicht eingearbeitet wird,
 30 dadurch gekennzeichnet, daß
 die die Basisbeschichtungszusammensetzung bildende Polyurethandispersion durch eine Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in die wässrige Phase hergestellt worden ist.

35 3. Basisbeschichtungszusammensetzung oder Verfahren nach den Ansprüchen 1 oder 2
dadurch gekennzeichnet, daß
 die Umsetzung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit dem Polyol in einem wassermischbaren, unter 100 °C siedenden gegenüber Isocyanatgruppen inerten und aus wässrigen Mischungen gut abtrennbaren organischen Lösungsmittel, bevorzugt Aceton, durchgeführt worden ist.

40 4. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 3
dadurch gekennzeichnet, daß
 das aus (A), (B) und (C) erhaltene Zwischenprodukt mit Trimethylolpropan umgesetzt worden ist.

5. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 4
dadurch gekennzeichnet, daß

45 die Basisbeschichtungszusammensetzung als zusätzliche Bindemittelkomponente ein wasserverdünntbares Melaminharz in einem Anteil von 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, bezogen auf den Festkörpergehalt der Polyurethandispersion, enthält.

6. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 5
dadurch gekennzeichnet, daß

50 die Basisbeschichtungszusammensetzung als weitere Bindemittelkomponente ein wasserverdünntbares Polyesterharz und/oder ein wasserverdünntbares Polyacrylatharz enthält, wobei das Gewichtsverhältnis Melaminharz zu Polyesterharz und/oder Polyacrylatharz 2:1 bis 1:4 beträgt und der Gesamtanteil an Melaminharz, Polyester und Polyacrylatharz, bezogen auf den Festkörpergehalt der Polyurethandispersion, 1 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-% beträgt.

55 7. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 6
dadurch gekennzeichnet, daß
 die Basisbeschichtungszusammensetzung als zusätzliche Bindemittelkomponente ein blockiertes Polyiso-

cyanat, zusammen mit einem wasserverdünnbaren Polyesterharz und/oder einem wasserverdünnbaren Polyacrylatharz, enthält, wobei der Anteil an Polyisocyanat, Polyesterharz, und/oder Polyacrylatharz insgesamt 1 bis 80 Gew.-%, bezogen auf den Festkörpergehalt der Polyurethandispersion, beträgt.

8. Basisbeschichtungszusammensetzung oder Verfahren nach einem der Ansprüche 1 bis 7

5 dadurch gekennzeichnet, daß
die Basisbeschichtungszusammensetzung 0,5 bis 25 Gew.-% Metallpigmente, bezogen auf den gesamten
Festkörpergehalt der Polyurethandispersion, enthält.

9. Verwendung von wässrigen Dispersionen, die

10 (a) als filmbildendes Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches
hergestellt worden ist, indem aus

(A) linearen Polyether-und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
(B) Diisocyanaten und

(C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein
Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte

15 Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist,
ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie
Isocyanatgruppen anschließend mit einem mindestens drei Hydroxylgruppen enthaltenden Polyol, vorzugs-
weise Triol, umgesetzt worden sind,

20 (b) Pigmente und
(c) weitere übliche Additive
enthalten, als Basisbeschichtungszusammensetzungen für die Herstellung von mehrschichtigen, -

erhalten worden ist, indem

25 (1) als Basisbeschichtzungszusammensetzung eine wässrige Dispersion aufgebracht worden ist, die
(a) als filbildunges Material mindestens ein Polyurethanharz mit einer Säurezahl von 5 bis 70, welches
hergestellt worden ist, indem aus
(A) linearen Polyether und/oder Polyesterdiolen mit einem Molekulargewicht von 400 bis 3000
(B) Diisocyanaten und
30 (C) Verbindungen, die zwei gegenüber Isocyanatgruppen reaktive Gruppen enthalten, wobei zumindest ein
Teil der als Komponente (C) eingesetzten Verbindungen mindestens eine zur Anionenbildung befähigte
Gruppe aufweist, die vorzugsweise vor der Umsetzung mit einem tertiären Amin neutralisiert worden ist,
ein endständige Isocyanatgruppen aufweisendes Zwischenprodukt hergestellt worden ist, dessen freie
Isocyanatgruppen anschließend mit
35 (D) weiteren, gegenüber Isocyanatgruppen reaktive Gruppen enthaltenden Verbindungen umgesetzt worden
sind
(b) Pigmente und
(c) weitere übliche Additive enthält.
40 (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm auf der Oberfläche gebildet
worden ist,
45 (3) auf der so erhaltenen Basissschicht eine geeignete transparente Deckschicht-Zusammensetzung
aufgebracht worden ist und anschließend
(4) die Basissschicht zusammen mit der Deckschicht eingebrannt worden ist,
dadurch gekennzeichnet, daß
45 die Basisbeschichtzungszusammensetzung bildende wässrige Polyurethandispersion durch eine Umset-
zung des aus (A), (B) und (C) erhaltenen Zwischenproduktes mit einem mindestens drei Hydroxylgruppen
enthaltenden Polyol, vorzugsweise Triol, und Überführung des so gewonnenen Reaktionsproduktes in eine
wässrige Phase hergestellt worden ist.

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Bereit Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)
A	EP-A-0 022 452 (HOECHST) * Seite 7, Zeile 8 - Seite 8, Zeile 7; Ansprüche 1,2,4 *	1	B 05 D 7/16 C 08 G 18/08 C 08 G 18/10 C 09 D 3/72 C 09 D 5/44
A	EP-A-0 148 970 (MOBAY CHEMICAL CORPORATION) * Seite 10, Zeilen 17-27; Seite 31, Zeile 16 - Seite 32, Zeile 12; Ansprüche 1,2,6 *	1	
A	US-A-3 438 940 (W. KEBERLE et al.) * Spalte 1, Zeile 53 - Spalte 4, Zeile 69 *	1	
A	EP-A-0 089 497 (BASF AG) * Insgesamt * & US-A-4 558 090 (Cat. D)	1-10	RECHERCHIERTE SACHGEBiete (Int. Cl. 4)
			C 08 G C 09 D
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.			
Recherchenort DEN HAAG	Abschlußdatum der Recherche 26-02-1987	Prüfer BOURGONJE A. F.	
KATEGORIE DER GENANNTEN DOKUMENTE		E : altes Patentdokument, das jedoch erst am oder nach dem Anmelddatum veröffentlicht worden ist	
X : von besonderer Bedeutung allein betrachtet		D : in der Anmeldung angeführtes Dokument	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie		L : aus andern Gründen angeführtes Dokument	
A : technologischer Hintergrund			
O : nichtschriftliche Offenbarung			
P : Zwischenliteratur			
T : der Erfindung zugrunde liegende Theorien oder Grundsätze			
			8 : Mitglied der gleichen Patentfamilie, überein- stimmendes Dokument

