Traces of CM values and geodesic cycle integrals of modular functions

Claudia Alfes-Neumann

Bielefeld University

June 29th, 2021

Outline

- **1** Generating series and modular forms
- 2 Modular forms
- 3 Generating series of traces of CM values and geodesic cycle integrals and theta liftings
- 4 Harmonic weak Maass forms
- **5** Applications

Starting point

- Let $n \in \mathbb{N}$ and a(n) be an *interesting* function.
- Example 1: $r_2(n) = \#\{(a,b) \in \mathbb{Z}^2 \mid a^2 + b^2 = n\}$
 - We have $5 = 1^2 + 2^2$, so $r_2(5) \ge 1$.
 - For which n do we have $r_2(n) \neq 0$?
- Example 2: p(n) = # ways to write n as a sum of integers $\leq n$, the partition function.
 - p(5) = 7, p(100) = 190569292.
 - How does p(n) grow?
 - Is there a formula for p(n)?

Questions

- Further examples: divisor sums, special values of L-series (of elliptic curves),...
- Questions:
 - For which *n* is $a(n) \neq 0$?
 - Growth of a(n)?
 - Is there a formula for a(n)?
 - Can something be said on the rationality of the a(n)?

Generating series

- Let q be a formal variable.
- Consider:

$$f(q) = \sum_{n=1}^{33} a(n)q^n = a(1)q + a(2)q^2 + a(3)q^3 + \dots$$

• Set $q=e^{2\pi iz}$, where $z\in\mathbb{H}$, $\mathbb{H}=\{z\in\mathbb{C}\,|\,\mathrm{Im}(z)>0\}.$ helpful: \leadsto f(z) is a modular form

Why helpful?

The operation of the modular group

- Let $\mathbb{H}:=\{z\in\mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half plane.
- Let $SL_2(\mathbb{Z}) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{Z}^{2 \times 2} : ad bc = 1 \}.$
- The group $\mathrm{SL}_2(\mathbb{Z})$ acts on \mathbb{H} by fractional linear transformations

$$Mz = \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$$

- $\mathrm{SL}_2(\mathbb{Z})$ is generated by $T=\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right)$ and $S=\left(\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\right)$.
- Let p be prime and $\Gamma_0(p) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{p} \}.$

Now:
$$z\in\mathbb{H}$$
, $z=x+iy$, where $x,y\in\mathbb{R}$ and $q=e^{2\pi iz}$.
 Tell To Will Julyell

Modular forms

Definition

Let $k \in \mathbb{Z}$. A function $f : \mathbb{H} \to \mathbb{C}$ is called *modular form of weight* k for $\mathrm{SL}_2(\mathbb{Z})$, if:

- **1** f is holomorphic on \mathbb{H} .
- 2 $f\left(\frac{az+b}{cz+d}\right)=(cz+d)^k f(z), \text{ for all } M=\left(\frac{a}{c}\frac{b}{d}\right)\in \mathrm{SL}_2(\mathbb{Z}).$
- 3 f is holomorphic in ∞ .

Remark

 $T=\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right)\in \mathrm{SL}_2(\mathbb{Z})$ induces $z\mapsto z+1$. Therefore, f has a Fourier expansion

$$f(z) = \sum_{n \ge 0} a(n)q^n, \ q = e^{2\pi i n z}.$$

Properties of modular forms

- The space of modular forms of fixed weight (and group) is finite-dimensional.
- If two modular forms lie in the same space, there are relations between their Fourier coefficients.
- The generators are well-known (Eisenstein series and cusp forms).

Back to the generating series – representation numbers

The function

$$\theta^{2}(z) = 1 + \sum_{n=1}^{\infty} r_{2}(n)q^{n}$$

is a modular form of weight 1 (with character).

- This space is 1-dimensional and the generator is an Eisenstein series.
- The two forms agree up to a constant.
- Comparing the Fourier coefficients we obtain

$$r_2(n) = 4 \sum_{d|n,d>0 \text{ odd}} (-1)^{(d-1)/2}.$$

• \Rightarrow Every prime $p \equiv 1 \pmod{4}$ is a sum of two squares. (Fermat)

Back to the generating series – the partition function

The function

$$q^{-1/24} \sum_{n=n}^{\infty} p(n) q^n \left(= \frac{1}{\eta(z)} \right)$$

is a weakly holomorphic modular form of weight 1/2.

- \Rightarrow Hardy-Ramanujan/Rademacher: asymptotic resp. exact formula for p(n) (using the circle method)
- \Rightarrow Bruinier-Ono: p(n) = finite sum of algebraic numbers.

More examples of generating series

- Hurwitz class numbers
- Dimensions of the irreducible representations of the Monster
- Central L-values of elliptic curves
- Cycle integrals of certain functions
- ...

Binary quadratic forms

A binary integer quadratic form is a polynomial

$$Q(x,y) = ax^2 + bxy + cy^2$$

with $a, b, c \in \mathbb{Z}$.

- The discriminant of Q is defined as $D=b^2-4ac\equiv 0,1$ mod 4.
- Let Q_D be the set of all binary integer quadratic forms of discriminant D.
- $\mathrm{SL}_2(\mathbb{Z})$ acts on \mathcal{Q}_D with finitely many orbits, i.e. $\mathcal{Q}_D/\mathrm{SL}_2(\mathbb{Z})$ is finite.

CM points

- Let D < 0 and $Q = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ be a quadratic form of discriminant $D = b^2 4ac$.
- The equation

$$0 = az^2 + bz + c = Q(z, 1)$$

has a unique solution $z_Q \in \mathbb{H}$.

- z_Q is called CM point associated to Q.
- z_Q CM point ⇔ The elliptic curve C/(Z + z_QZ) has complex multiplication (i.e. Z ⊊ End(E)).

Geodesics

- Let D > 0 and $Q = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ be a quadratic form of discriminant $b^2 4ac = D$.
- The set of solutions of

$$a|z|^2+bx+c=0$$
 defines a geodesic c_Q in $\mathbb H.$

Generating series of traces of CM values

- Let F be modular of weight 0.
- For D < 0 we define the D-th trace of F

• Zagier: For F(z) = J(z) = j(z) - 744 the function

$$q^{-1} - \sum_{D=0}^{\infty} t_F(D) q^{-D}$$
 $(q = e^{2\pi i z})$

is a weakly holomorphic modular form of weight 3/2.

Generating series of traces of geodesic cycle integrals

- Let $F \in S_{2k+2}$ be a cusp form.
- For D > 0 we define

$$C(F,Q) = \int_{\Gamma_Q \setminus c_Q} F(z)Q(z,1)^k dz.$$

and

$$t_F(D) = \sum_{Q \in \mathcal{Q}_D/\mathrm{SL}_2(\mathbb{Z})} \mathcal{C}(F,Q).$$

Shintani:

$$\sum_{D>0} t_F(D)q^D.$$

is a cusp form of weight k + 3/2.

Observation

- The generating series of the traces of CM values of a (special) modular function is again modular.
- The generating series of the traces of geodesic cycle integrals of a cusp form is again a cusp form.

Is there a general framework for such results?

Theta liftings

For F of weight k we consider

$$I(F,\tau) = \int_{\mathrm{SL}_2(\mathbb{Z})\backslash \mathbb{H}} F(z) \overline{\Theta(\tau,z)} y^k \frac{dxdy}{y^2}.$$

- $\Theta(\tau, z)$ has weight k in z.
- $\overline{\Theta(\tau,z)}$ has weight ℓ in τ .
- Depending on the growth of F and Θ in y we might have to regularize the integral. (Howey - 1001ex Goldes)
- For suitable Θ(τ, z) the coefficients of the Fourier expansion of I(F, τ) are given by the traces of CM values or geodesic cycle integrals of F.
- This is how one can (re)prove the results of Zagier and Shintani (Bruinier, Funke, Alfes, Ehlen; Niwa).

Theta liftings: changing the role of z and τ

• For F of weight ℓ we consider

$$I(F,z) = \int_{\mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H}} F(\tau) \overline{\Theta(\tau,z)} v^k \frac{dudv}{v^2}.$$

- $\Theta(\tau, z)$ has weight k in z.
- $\overline{\Theta(\tau,z)}$ has weight ℓ in τ .
- Depending on the growth of F and Θ in v we might have to regularize the integral.
- This lifting is called the additive Borcherds lift.

Ex.: Shimwa lift

Harmonic weak Maass forms

• Let $\Delta_k = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$ be the hyperbolic Laplace operator of weight $k \ (\in \frac{1}{2}\mathbb{Z})$.

Definition

A function $f: \mathbb{H} \to \mathbb{C}$ is called *harmonic weak Maass form of weight k for* $\mathrm{SL}_2(\mathbb{Z})$ if the following hold:

- f is smooth and $\Delta_k f = 0$.
- $f\left(\frac{az+b}{cz+d}\right)=(cz+d)^k f(z), \text{ for all } M=\left(\frac{a}{c}\frac{b}{d}\right)\in \mathrm{SL}_2(\mathbb{Z}).$
- There is a Fourier polynomial $P_f(z) = \sum_{n \leq 0} c^+(n)q^n \in \mathbb{C}[q^{-1}]$, such that $f(z) P_f(z) = \mathcal{O}(e^{-Cy})$ for $y \to \infty$ for a C > 0.

Fourier expansion

Lemma (Bruinier-Funke)

A harmonic weak Maass form of weight k ($k \neq 1$) has a Fourier expansion of the form

$$f(z) = \sum_{\substack{n \gg -\infty}} c_f^+(n) q^n + \sum_{\substack{n < 0}} c_f^-(n) \Gamma(k-1, 4\pi |n| v) q^n,$$

nonholomorphic part f^-

at the cusp ∞ . Here, $\Gamma(a,x) = \int_x^\infty t^{a-1} e^{-t} dt$ is the incomplete Γ -function.

Notation

Let:

- $M_k(p) :=$ the space of modular forms of weight k for $\Gamma_0(p)$
- $S_k(p) :=$ the space of cusp forms of weight k for $\Gamma_0(p)$
- $M_k^!(p)$:=the space of weakly holomorphic modular forms of weight k for $\Gamma_0(p)$
- $H_k(p) :=$ the space of harmonic weak Maass forms of weight k for $\Gamma_0(p)$

Relation to classical modular forms

Lemma (Bruinier-Funke)

Define $\xi_k := 2iy^k \frac{\overline{\partial}}{\partial \overline{z}}$. This gives a map

$$\xi_k: H_k \to S_{2-k}.$$

We have

- $\xi_k(f) = \xi_k(f^-)$.
- ξ_k is surjective.

Theta liftings of harmonic weak Maass forms (it is / M. F(81 -> 1(F,E) H 112+K: holomorphic pout = gawaating series of the (regularized) intediars of E Suntani Bruinier - Funke (generalization Millson halomorphic part = generating series of Ch values of R-2x F

Theta liftings of harmonic weak Maass forms: symplectic to orthogonal $F(t) \mapsto \pm (F_1 + t)$

weight of smooth Outside a cortain Bruinier- Ono: **Clivisa**r

AN-Bruinier-Schwagenschaidt: wei Glut 2k, smooth Outside a certain

Elliptic curves

Let E be an elliptic curve over Q of conductor p

$$E: y^2 = x^3 + ax + b \ (a, b \in \mathbb{Q}).$$

- Let L(E, s) be the Hasse-Weil-Zeta function of E.
- ullet We consider twists of E with a fundamental discriminant Δ

$$E(\Delta): \Delta y^2 = x^3 + ax + b.$$

• Mordell-Weil: $E(\mathbb{Q}) \simeq E(\mathbb{Q})^{\mathsf{tors}} \oplus \mathbb{Z}^r$, r is the rank of E.

The Modularity Theorem and the BSD Conjecture

• Modularity Theorem (Wiles/...): For every E there is a cusp form $G_E(z) = \sum_{n>0} a_E(n)q^n \in S_2(p)$ such that

$$L(E(\Delta),s) = L(G_E,\chi_{\Delta},s) \left(= \sum_{n=1}^{\infty} \chi_{\Delta}(n) a_E(n) n^{-s} \right).$$

BSD Conjecture:

$$L(E, s) = c \cdot (s - 1)^r + \text{higher order terms},$$

where $c \neq 0$ und r = rank(E).

Harmonic Maass forms as generating series of central

L-derivatives — Approach 1

$$G_E \in S_2^{\text{new}}(p) \longrightarrow E$$

Shintani

 $f_E \in H_{\frac{1}{2}}(4p) \xrightarrow{\xi_{1/2}} g_E \in S_{\frac{3}{2}}^{\text{new}}(4p).$

Theorem (Bruinier-Ono)

For a fundamental discriminant $\Delta>0$ with $\left(rac{\Delta}{
ho}
ight)=1$ we have

$$L'(G_E, \chi_{\Delta}, 1) = 0 \Leftrightarrow c_E^+(\Delta) \in \mathbb{Q}.$$

$$L'(E, \chi_{\Delta}, \Lambda)$$

Harmonic Maass forms as generating series of central construct a caronical " L-derivatives – Approach 2 Fe using Werestrees $F_{E} \in H_{0}(p) \xrightarrow{\xi_{0}} G_{E} \in S_{2}^{\text{new}}(p) \Leftrightarrow \int_{2}^{\text{Millson}} \text{Millson} \qquad \text{Shintani}$ $f_{E} \in H_{\frac{1}{2}}(4p) \xrightarrow{\xi_{1/2}} g_{E} \in S_{\frac{3}{2}}^{\text{new}}(4p).$

Theorem (Alfes) $\Delta > 0$ with $\Delta > 0$ with $\Delta > 0$ we have

$$L'(G_F, \chi_{\Lambda}, 1) = 0 \Leftrightarrow c_F^+(\Delta) \in \mathbb{Q}.$$

The coefficient $c_F^+(\Delta)$ as a quotient of periods

Theorem (Bruinier)

There is a unique differential $\zeta_{\Delta}(f_E)$ of the third kind with residue divisor $\sum_{n<0} c_E^+(n)Z_{\Delta}(n)$ that satisfies:

• the first Fourier

- the first Fourier coefficient of $\zeta_{\Delta}(f_E)$ vanishes,
- for all Hecke operators T we have: $T\zeta_{\Delta}(f_E) - \lambda_{G_E}(T)\zeta_{\Delta}(f_E) = \frac{dF}{E}, F \in \mathbb{C}(X)^{\times},$

and

$$c_E^+(\Delta) = \frac{\Re\left(\int_{c_{G_E}} \zeta_\Delta(f)\right)}{\sqrt{\Delta}\int_{c_{G_E}} \omega_G}.$$

Generalization to higher weight

$$F \in H_{-2k}(p) \xrightarrow{\xi_0} G \in S_{2k+2}^{\mathrm{new}}(p)$$

$$\downarrow^{\mathsf{Millson}} \qquad \qquad \downarrow^{\mathsf{Shintani}}$$
 $f \in H_{\frac{1}{2}-k}(4p) \xrightarrow{\xi_{1/2}} g \in S_{\frac{3}{2}+k}^{\mathrm{new}}(4p).$

- The coefficient c_f^+ is now given as the CM trace of $R_{2k}^k(F)$.
- AN-Bruinier-Schwagenscheidt:

$$c_f^+(\Delta) = \frac{\Re\left(\int_{c_G} \zeta_\Delta(f,z) Q_G(z,1)^k dz\right)}{(G,G)},$$

where:

- c_G and Q_G are chosen such that $\int_{C_G} G(z)Q_G(z,1)^k dz = (G,G).$
- $\zeta_{\Delta}(f,z)$ is given as a certain linear combination of the functions $f_{k,d}(z) = \sum_{Q \in Q_{d,k}} Q(z,1)^{-k}$.

