Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

30.04.2024

Расчетная работа Методы оптимизации Вариант 9

Раевский Григорий, группа Р3221

Содержание

38	эдания	3
	Задание 1	3
	Задание 2	3
Pe	ешение. Задание 1.	4
	Задача	4
	Постановка задачи	4

	Симплекс метод	5
	Графический метод	7
	Двойственная задача	8
	Вывод	10
	Невыгодная цена для смеси 1	11
	Вывод	11
	Ответы	11
Pe	ешение. Задание 2.	12
	Задача	12
	Решение	12
	Otret	18

Задания

Задание 1

Для кормления животного ежедневно требуются витамины A, B и C. Эти витамины содержатся в кормовых смесях двух видов. Известно процентное содержание каждого витамина в каждой из смесей, дневная норма витаминов и цена каждой смеси. Определить наиболее дешёвый рацион, обеспечивающий норму. При какой цене смеси 1 её будет невыгодно (выгодно) использовать в рационе?

	Смесь 1	Смесь 2	Норма
A	-	0.1 %	0.003 г
В	0.3 %	$(3-\tfrac{i}{24})\cdot 0.1\%$	0.027 г
С	0.1 %	$(2 + \frac{i}{30}) \cdot 0.1\%$	$(12+\tfrac{i}{2})\cdot 0.001\mathrm{r}$
Цена	0.1 руб/г	$0.015 \cdot (3 + i - 6)$ руб/г	

Решить задачу:

- 1. Графический метод
- 2. Симплекс метод с использованием искусственного базиса
- 3. Через двойственную задачу

Задание 2

Дана транспортная сеть, состоящая из 7 вершин, связи между которыми заданы с помощью матрицы инцидентности. Найти оптимальный грузопоток.

$$G = egin{pmatrix} 0 & 1 & G_{13} & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & G_{24} & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & G_{35} & G_{36} & G_{37} \ 0 & G_{42} & 0 & 0 & 1 & 0 & G_{47} \ 0 & 0 & G_{53} & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$G_{13} = \begin{cases} 1, i = 3k, k = 0, 1, 2, \dots \\ 0, i \neq 3k \end{cases}, G_{24} = \begin{cases} 1, i = 2k \\ 0, i \neq 2k \end{cases}, G_{35} = \begin{cases} 1, i = 5k \\ 0, i \neq 5k \end{cases}, G_{36} = 1 - G_{13}, G_{37} = G_{13}, G_{42} = 1 - G_{24}, G_{47} = 1 - G_{35} - G_{53}, G_{53} = \begin{cases} 1, i = 5k \\ 0, i \neq 5k \end{cases}, G_{36} = 1 - G_{13}, G_{37} = G_{13}, G_{42} = 1 - G_{24}, G_{47} = 1 - G_{35} - G_{53}, G_{53} = \begin{cases} 1, i = 5k \\ 0, i \neq 5k \end{cases}$$

$$G_{47} = 1 - G_{35} - G_{53}, G_{53} = \begin{cases} 1, i = 5k + 4\\ 0, i \neq 5k + 4 \end{cases}$$

$$d_1 = 2i + 1, d_2 = i + 11, d_3 = d_4 = 0, d_5 = -i, d_6 = -(i + 4), d_7 = -(i + 8)$$

$$r_{15}=[rac{i+1}{2}], r_{27}=[rac{i+4}{3}],$$
 где $[\dots]$ - целая часть числа.

Матрица промежуточных расходов:

$$C_{kl} = [6 + 5\cos(\frac{\pi}{15}(i + 4k + l))].$$

Найти оптимальный грузопоток.

Решение. Задание 1.

Задача

Т. к. вариант 9, то i = 9. Тогда задача имеет вид:

	Смесь 1	Смесь 2	Норма
A	-	0.1 %	0.003 г
В	0.3 %	0.2625%	0.027 г
С	0.1 %	0.23%	0.0165г
Цена	0.1 руб/г	0.09 руб/г	

Постановка задачи

Пусть x_1^* и x_2^* - оптимальные веса 1 и 2 кормов. Тогда нужно решить ЗЛП вида: $f=0.1x_1+0.09x_2 \to min$ при ограничениях:

$$\begin{cases} 0.001x_2 \ge 0.003 \\ 0.003x_1 + 0.002625x_2 \ge 0.027 \\ 0.001x_1 + 0.0023x_2 \ge 0.0165 \end{cases}$$

Или $min\{C^Tx|Ax \geq b, x \geq 0\}$:

$$\mathbf{C} = \begin{pmatrix} 0.1 \\ 0.09 \end{pmatrix}, \, \mathbf{A} = \begin{pmatrix} 0 & 0.001 \\ 0.003 & 0.002625 \\ 0.001 & 0.0023 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} 0.003 \\ 0.027 \\ 0.0165 \end{pmatrix}, \, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \text{при ограничениях } \begin{cases} x_2 \geq 3 \\ 3x_1 + 2.625x_2 \geq 27 \\ x_1 + 2.3x_2 \geq 16.5 \end{cases}$$

Симплекс метод

Так как $min(0.1x_1+0.09x_2) = -max(-0.1x_1-0.09x_2)$, то ищем максимум -f. Приведем задачу к каноническому виду:

$$\begin{cases} x_2 - x_3 = 3 \\ 3x_1 + 2.625x_2 - x_4 = 27 \\ x_1 + 2.3x_2 - x_5 = 16.5 \\ x_i \ge 0, i = 1...5 \end{cases}$$

Применим метод искусственного базиса введя y_1, y_2, y_3 :

$$\begin{cases} x_2 - x_3 + y_1 = 3 \\ 3x_1 + 2.625x_2 - x_4 + y_2 = 27 \\ x_1 + 2.3x_2 - x_5 + y_2 = 27 \\ x_1 + 2.3x_2 - x_5 + y_3 = 16.5 \\ x_i \ge 0, i = 1..5 \\ y_j \ge 0, j = 1...3 \end{cases}$$

Будем решать вспомогательную задачу $W = y_1 + y_2 + y_3 \to min$:

1.
$$y_1 = 3 - x_2 + x_2$$

2.
$$y_2 = 27 - 3x_1 + 2.625x_2 + 4$$

3.
$$y_3 = 16.5 - x_1 - 2.3x_2 + x_5$$

Тогда $W = -4x_1 - 5.925x_2 + x_3 + x_4 + x_5 + 46.5$. Составим начальную симплекс таблицу:

	x_1	x_2	x_3	x_4	x_5	β
y_1	_	-1	1	_		3
y_2	-3	-2.625	_	1	_	27
y_3	-1	-2.3	_	_	1	16.5
W	-4	-5.925	1	1	1	46.5

Наибольший по модулю отрицательный элемент - -5.925. При росте x_2 быстрее до нуля доходит y_1 . Значит меняем их местами:

$$\begin{aligned} x_2 &= 3 + x_3 - y_1 \\ y_2 &= 27 - 3x_1 - 2.625(3 + x_3 - y_1) + x_4 = 19.125 - 3x_1 - 2.625x_3 + 2.625y_1 + x_4 \\ y_3 &= 16.5 - x_1 - 2.3(3 + x_3 - y_1) + x_5 = 9.6 - x_1 - 2.3x_3 + 2.3y_1 + x_5 \\ W &= -4x_1 - 4.925x_3 + x_4 + x_5 + 5.925y_1 + 28.725 \end{aligned}$$

Тогда новая симплекс таблица будет иметь вид:

	x_1	y_1	x_3	x_4	x_5	β
x_2	_	-1	1	_	_	3
y_2	-3	2.625	-2.625	1	_	19.125
y_3	-1	2.3	-2.3	_	1	9.6
W	-4	5.925	-4.925	1	1	28.725

Наибольший по модулю отрицательный элемент - -4.925. При росте x_3 быстрее до нуля доходит y_3 . Значит меняем их местами:

$$x_3 = 4.17 - 0.44x_1 + y_1 + 0.44x_5 - 0.44y_3$$

$$x_2 = -y_1 + 3 + (4.17 - 0.44x_1 + y_1 + 0.44x_5 - 0.44y_3) = 7.17 - 0.44x_1 + 0.44x_5 - 0.44y_3$$

$$y_2 = -1.845x_1 + 1.155y_3 + x_4 - 1.155x_5 + 8.179$$

$$W = -1.83x_1 + x_4 - 1.167x_5 + y_1 + 8.188 + 2.167y_3.$$

Тогда новая симплекс таблица будет иметь вид:

	x_1	y_1	y_3	x_4	x_5	β
x_2	-0.44		-0.44		0.44	7.17
y_2	-1.845	_	1.155	1	-1.155	8.179
x_3	-0.44	1	-0.44	_	0.44	4.17
W	-1.83	1	2.167	1	-1.167	8.118

Наибольший по модулю отрицательный элемент - -1.83. При росте x_1 быстрее до нуля доходит y_2 . Значит меняем их местами:

$$x_1 = 0.542x_4 - 0.626x_5 - 0.542y_2 + 0.626y_3 + 4.433$$

$$x_2 = -0.239x_4 + 0.715x_5 + 0.239y_2 - 0.715y_3 + 5.22$$

$$x_3 = 0.239x_4 + 0.715x_5 + y_1 + 0.239y_2 - 0.715y_3 + 2.19$$

 $W = 0x_4 + 0x_5 + y_1 + y_2 + y_3 + 0$ - СДЕЛАТЬ ТАБЛИЦУ при y = 1, следовательно, план оптимален. Уберем y и вернемся к исходной задаче:

$$x_1 = 0.542x_4 - 0.626x_5 + 4.433$$

$$x_2 = -0.239x_4 + 0.715x_5 + 5.22$$

$$x_3 = 0.239x_4 + 0.715x_5 + 2.19$$

$$f = 0.1x_1 + 0.09x_2 = 0.0327x_4 + 0.0018x_5 + 0.9131$$
:

	x_4	x_5	β
x_1	0.542	-0.626	4.433
x_2	-0.239	0.715	5.22
x_3	0.239	0.715	2.19
-f	-0.0327	-0.0018	-0.9131

Все δ отрицательные, значит оптимальное решение найдено. Тогда $x_1^*=4.39, x_2^*=5.26, f=0.913.$

Графический метод

$$f=0.1x_1+0.09x_2\to min$$
 при
$$\begin{cases} \mathbf{x}_2\geq 3\\ 3\mathbf{x}_1+2.625x_2\geq 27 \end{cases}$$
 . Градиент f равен $gradf=\begin{pmatrix} 0.1\\ 0.09 \end{pmatrix}$. Удобнее рассматривать
$$\begin{pmatrix} 1\\ 1\\ \end{pmatrix}$$

$$10 \operatorname{grad} f = \begin{pmatrix} 1 \\ 0.9 \end{pmatrix}$$

При движении в направлении антиградиента оптимальное решение будет в точке пересечения функций

$$\begin{cases} 3x_1 + 2.625x_2 = 27 \\ x_1 + 2.3x_2 = 16.5 \end{cases}$$

Решим систему: $x_1=16.5-2.3x_2$, подставим в 1 уравнение, $3(16.5-2.3x_2)+2.625x_2=27x_2=\frac{100}{19}\approx 5.263$. Подставим в 2 уравнение и получим $x_1=16.5-2.3\cdot\frac{100}{19}=\frac{167}{38}\approx 4.395$.

Тогда получаем $x_1^* = 4.395$ и $x_2^* = 5.263,$ а функция $f \approx 0.91.$

Двойственная задача

Прямая задача имеет вид $min\{Cx|Ax\geq b, x\geq 0\}$ и ограничениях

$$\begin{cases} 0.001x_2 \ge 0.003 \\ 0.003x_1 + 0.002625x_2 \ge 0.027 \\ 0.001x_1 + 0.0023x_2 \ge 0.0165 \end{cases}$$

и $min(0.1x_1 + 0.09x_2)$.

Тогда двойственная задача будет иметь вид $\max\{B^Tx|A^T\lambda\ leC,\lambda\geq 0\}$

$$\mathbf{A} = \begin{pmatrix} 0 & 0.001 \\ 0.003 & 0.002625 \\ 0.001 & 0.0023 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} 0.003 \\ 0.027 \\ 0.0165 \end{pmatrix}, \, \mathbf{C} = \begin{pmatrix} 0.1 \\ 0.09 \end{pmatrix} \text{ if } A^T = \begin{pmatrix} 0 & 0.003 & 0.001 \\ 0.001 & 0.002625 & 0.0023 \end{pmatrix}$$

Тогда получаем двойственную задачу $max\{0.003\lambda_1 + 0.027\lambda_2 + 0.0165\lambda_3\}$ при ограничениях

$$\begin{cases} 0.003\lambda_2 + 0.001\lambda_3 \le 0.1 \\ 0.001\lambda_1 + 0.002625\lambda_2 + 0.0023\lambda_3 \le 0.09 \end{cases}$$

Домножим на 1000 и приведем к каноническому виду:

$$\begin{cases} 3\lambda_2 + \lambda_3 + lb_4 = 100 \\ \lambda_1 + 2.625\lambda_2 + 2.3\lambda_3 + \lambda_5 = 90 \end{cases}$$

Построим симплекс таблицу:

$$\lambda_4 = 100 - 3\lambda_2 - \lambda_3$$

$$\lambda_5 = 90 - \lambda_1 - 2.625\lambda_2 - 2.3\lambda_3$$

$$f_{\pi} = 0.003\lambda_1 + 0.027\lambda_2 + 0.0165\lambda_3$$

	λ_1	λ_2	λ_3	β
λ_4	0	-3	-1	100
λ_5	-1	-2.625	-2.3	90
$f_{\mathcal{A}}$	0.003	0.027	0.0165	

Наибольший положительный элемент - 0.027. При увеличении λ_2 λ_4 убывает до нуля быстрее всего, поэтому меняем их местами:

$$\lambda_2 = \frac{1}{3}(100 - \lambda_3 - \lambda_4) = -0.3333\lambda_3 - 0.3333\lambda_4 + 33.33$$

$$\lambda_5 = -\lambda_1 - 1.425\lambda_3 + 0.875\lambda_4 + 2.509$$

$$f_{\rm d} = 0.003\lambda_1 + 0.0075\lambda_3 - 0.009\lambda_4 + 0.899.$$

Тогда новая симплекс таблица:

	λ_1	λ_4	λ_3	β
λ_2	0	-0.3333	-0.3333	33.33
λ_5	-1	0.875	-1.425	2.509
$f_{\scriptscriptstyle \mathcal{A}}$	0.003	-0.009	0.0075	0.899

Наибольший положительный элемент - 0.0075. При увеличении λ_3 λ_5 убывает до нуля быстрее всего, поэтому меняем их местами:

$$\lambda_3 = -0.702\lambda_1 + 0.614\lambda_4 - 0.702\lambda_5 + 1.76$$

$$\lambda_2 = 0.2339\lambda_1 - 0.5379\lambda_4 + 0.2339\lambda_5 + 32.7434$$

$$f_{\rm fi} = -0.0023\lambda_1 - 0.0044\lambda_4 - 0.0053\lambda_5 + 0.9122.$$

Тогда новая симплекс таблица:

	λ_1	λ_4	λ_5	β
λ_2	0.2339	-0.5379	0.2339	32.7434
λ_3	-0.702	0.614	-0.702	1.76
$f_{\scriptscriptstyle \mathcal{A}}$	-0.0023	-0.044	-0.0053	0.9122

Итак, критерий оптимальности выполнен: все $\delta \leq 0$. $\lambda_1^* = 0, \lambda_2^* = 32.75, \lambda_3^* - 1.75, f = 0.9122$.

Теперь найдем оптимум в исходной задаче с помощью уравнения $\lambda_i^*(Ax^*-B)_i=0$:

$$\lambda^* = \begin{pmatrix} 0 \\ 32.75 \\ 1.75 \end{pmatrix}, A = \begin{pmatrix} 0 & 0.001 \\ 0.003 & 0.002625 \\ 0.001 & 0.0023 \end{pmatrix}, b = \begin{pmatrix} 0.003 \\ 0.027 \\ 0.0165 \end{pmatrix}$$

Получаем систему

$$\begin{cases} 0.09825x_1 + 0.08596875x_2 - 0.88425 = 0\\ 0.00175x_1 + 0.004025x_2 - 0.028875 = 0 \end{cases}$$

Из которой $x_1^* = 4.395$ и $x_2^* = 5.263, f = 0.9122.$

Вывод

Во всех 3 способах ответы получились идентичные или очень похожие (из-за неточности вычислений вручную).

Невыгодная цена для смеси 1

Так как ограничение $x_2 \ge 3$ не зависит от x_1 , а $3x_1 + 2.625x_2 \ge 27$ больше зависит от x_1 , чем $x_1 + 2.3x_2 \ge 16.5$, то будем поворачивать вектор градиента до тех пор, пока он не станет перпендикулярен прямой $3x_1 + 2.625x_2 = 27$. В случае, когда он станет \bot этой прямой, решением будут являться все точки прямой, лежащие в допустимой области. При дальнейшем повороте градиента оптимальным решением будет $x_1^* = 0, x_2^* = 12,2857$, т. е. смесь 1 будет невыгодно использовать.

Пусть
$$c_1^*$$
 — максимальная цена на 1 смесь. Тогда $gradf' = \begin{pmatrix} c_1^* \\ 0.09 \end{pmatrix} \perp 3x_1 + 2.625x_2 = 27 \parallel$ вектору $\begin{pmatrix} 3 \\ 2.625 \end{pmatrix}$.

Тогда получаем уравнение $\frac{c_1^*}{3} = \frac{0.09}{2.625} \rightarrow c_1^* = 0.10286$. Тогда при $c_1^* > 0.10286$ смесь 1 будет невыгодно использовать в рационе.

Вывод

В процессе решения был определен наиболее дешевый рацион: 4,395 г 1 смеси и 5.263 г 2 смеси. Так же была определена стоимость этого рациона 0.9122 руб. за грамм. Так же была рассчитана максимальная выгодная стоимость 1 кормовой смеси: 0.10286 руб. за грамм.

Ответы

Ответы на задачу:

 $x_1^* = 4.395$ грамм - 1 смеси в рационе

 $x_2^* = 5.263$ грамм - 2 смеси в рационе

f = 0.9122 руб - стоимость рациона

 $c_1^* = 0.10286$ руб - максимальная стоимость 1 смеси

 $\lambda_1 = 0$

 $\lambda_{2}32.75$

 $\lambda_3 = 1.75$

 $f_{\rm d} = 0.9122$

Решение. Задание 2.

Задача

Т. к. вариант 9, то i = 9. Тогда задача имеет вид:

$$\mathbf{G} = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Потребители и источники:

$$d_1 = 2 \cdot 9 + 1 = 19, d_2 = 9 + 11 = 20, d_3 = d_4 = 0, d_5 = -9, d_6 = -(9+4) = -13, d_7 = -(i+8) = -17$$

Ограничения:

$$r_{15} = 5, r_{27} = 4$$

Решение

Стоимости: $C_{12}=1, C_{13}=1, C_{15}=1, C_{23}=3, C_{27}=7, C_{35}=8, C_{37}=10, C_{42}=10, C_{45}=11, C_{53}=10, C_{56}=8, C_{67}=3.$

Таблица:

i	d_i	(i, j)	C_{ij}	r_{ij}
1	19	(1, 2)	1	-
		(1, 3)	1	-
		(1, 5)	1	5
2	20	(2, 3)	3	-
		(2, 7)	7	4
3	0	(3, 4)	8	_
		(3, 7)	10	-
4	0	(4, 2)	10	_
		(4, 5)	11	-
5	-9	(5, 3)	10	-
		(5, 6)	8	-
6	-13	(6, 7)	3	-
7	-17	-		_

Кратчайшие пути:

- $\bullet 1 \colon 1 \xrightarrow{20} 5 \colon 1, 3, 4, 5; \ 1 \xrightarrow{28} 6 \colon 1, 3, 4, 5, 6; \ 1 \xrightarrow{11} 7 \colon 1, 3, 7; \ 1 \xrightarrow{1} 8 \colon 1, 8; \ 1 \xrightarrow{8} 10 \colon 1, 10.$
- •2: $2 \stackrel{22}{\rightarrow} 5: 2, 3, 4, 5; 2 \stackrel{30}{\rightarrow} 6: 2, 3, 4, 5, 6; 2 \stackrel{13}{\rightarrow} 7: 2, 3, 7; 2 \rightarrow 8: -; 2 \stackrel{7}{\rightarrow} 10: 2, 10.$
- $\bullet 9 \colon 9 \overset{0}{\to} 5 : 9, 5; \, 9 \overset{8}{\to} 6 : 9, 5, 6; \, 9 \overset{11}{\to} 7 : 9, 5, 6, 7; \, 9 \overset{0}{\to} 8 : 9, 8; \, 9 \overset{35}{\to} 10 : 9, 5, 3, 4, 2, 10.$
- •11: $11 \to 5: -; 11 \to 6: -; 11 \xrightarrow{0} 7: 11, 7; 11 \to 8: -; 11 \xrightarrow{0} 10: 11, 10.$

Стоимости перевозок:

Начальный опорный план C/x_0 (здесь указаны стоимость/грузопоток):

	5	6	7	8	10	a			
1	20	28	11/10	1/5	4/4	19	14	10	0
2	22/4	30/13	13/3	-	4	20	17	13	0
9	0/5	8	11	0	32	5	0		
11	-	-	0/4	-	0	4	0		
b	9	13	17	5	4				
	1	0	13	0	0				
	0		3						

Из него получаем базис

		10	5	4
4	13	3		
5				
			4	

$$\begin{cases} u_1+\nu_3=11\\ u_1+\nu_4=1\\ u_1+\nu_5=19\\ u_2+\nu_1=2\\ u_2+\nu_2=30\\ u_2+\nu_3=13\\ u_3+\nu_1=0\\ u_4+\nu_4=0 \end{cases} \Rightarrow \begin{cases} u_1=0\\ u_2=2\\ \nu_1=20\\ u_3=-20\\ \nu_2=28\\ \nu_4=-11\\ \nu_4=-11\\ \nu_4=1\\ \nu_5=4 \end{cases}$$
 И дельты имеют вид (здесь указаны стоимость/ δ):

И дельты имеют вид (здесь указаны стоимость/ δ):

	5	6	7	8	10	u
1	20/0	28/0	11/0	1/0	4/0	0
2	22/0	30/0	13/0	-/-	4/2	2
9	0/0	8/0	11/-11	0/-19	32/-16	-20
11	-/-	-/-	0/0	-/-	0/-10	-11
ν	20	28	11	1	4	

План не является оптимальным, так как имеются $\delta_{ij}>0$. Наибольший положительный элемент это (2,5) : 2+4-4=2>0.

С помощью метода потенциалов получим цикл $(2,5 \to 2,3 \to 1,3 \to 1,5)$ и на его основе составим новый план (здесь указаны стоимость/грузопоток):

	5	6	7	8	10	a
1	20	28	11/13	1/5	4/1	19
2	22/4	30/13	13	-	4/3	20
9	0/5	8	11	0	32	5
11	-	-	0/4	-	0	4
b	9	13	17	5	4	

Из него получаем базис

		13	5	1
4	13			3
5				
			4	

$$\begin{cases} u_1+\nu_3=11\\ u_1+\nu_4=1\\ u_1+\nu_5=4\\ u_2+\nu_1=22\\ u_2+\nu_2=30 \end{cases} \Rightarrow \begin{cases} u_1=0\\ u_2=0\\ \nu_1=22\\ u_3=-22\\ \nu_2=30\\ \nu_1=22\\ \nu_2=30\\ \nu_2=30\\ \nu_1=22\\ \nu_2=30\\ \nu_2=30\\ \nu_2=31\\ \nu_2=11\\ \nu_3=11\\ \nu_4=1\\ \nu_5=4\\ \nu_5=4\\ \nu_5=4\\ \nu_7=1\\ \nu_8=1\\ \nu_8=1$$

И план имеет вид (здесь указаны стоимость/ δ):

	5	6	7	8	10	u
1	20/2	28/2	11/0	1/0	4/0	0
2	22/0	30/0	13/-2	-/-	4/0	0
9	0/-2	8/0	11/-22	0/-21	32/-18	-22
11	-/-	-/-	0/0	-/-	0/-10	-11
ν	22	30	11	1	4	

План не является оптимальным, так как имеются $\delta_{ij}>0$. Положительные δ идентичны, поэтому выбираем (1,1):

С помощью метода потенциалов получим цикл $(1,1\to 1,5\to 2,5\to 2,1)$ и на его основе составим новый план (здесь указаны стоимость/грузопоток):

	5	6	7	8	10	a
1	20/1	28	11/13	1/5	4	19
2	22/3	30/13	13	ı	4/4	20
9	0/5	8	11	0	32	5
11	-	-	0/4	-	0	4
b	9	13	17	5	4	

$$\begin{cases} u_1 + \nu_1 = 20 \\ u_1 + \nu_3 = 11 \\ u_1 + \nu_4 = 1 \\ u_2 + \nu_1 = 22 \\ u_2 + \nu_2 = 30 \end{cases} \Rightarrow \begin{cases} u_1 = 0 \\ u_2 = 2 \\ u_3 = -20 \\ u_4 = -11 \\ \nu_1 = 20 \\ \nu_2 = 28 \\ \nu_3 = 11 \\ \nu_4 = 1 \\ \nu_5 = 2 \end{cases}$$

И план имеет вид (здесь указаны стоимость/ δ):

	5	6	7	8	10	u
1	20/0	28/0	11/0	1/0	4/-2	0
2	22/0	30/0	13/0	-/-	4/0	2
9	0/0	8/0	11/-20	0/-19	32/-18	-20
11	-/-	-/-	0/0	-/-	0/-9	-11
ν	20	28	11	1	2	

Так как все $\delta \leq 0$, то план можно считать оптимальным. Базис:

1		13	5	
3	13			4
5				
			4	

Тогда $f = 20 \cdot 1 + 11 \cdot 13 + 1 \cdot 5 + 22 \cdot 3 + 30 \cdot 13 + 4 \cdot 4 + 0 \cdot 5 + 0 \cdot 4 = 640.$

И оптимальный грузопоток:

Для 5 нужно 9 единиц груза:

1. $1 \xrightarrow{1} 5 : 1, 3, 4, 5$, перевезут 1, останется 8

2. $1 \to 8, 9 \to 5: 1, 8, 9, 5$, перевезут 5, останется 3

3. $2 \xrightarrow{3} 5 : 2, 3, 4, 5$, перевезут 3, останется 0

Для 6 нужно 13 единиц груза:

1. $2 \stackrel{13}{\to} 6: 2, 3, 4, 5, 6$, перевезут 13, останется 0

Для 7 нужно 17 единиц груза:

1. 1 $\overset{13}{7}$ 1,3,7, перевезут 13, останется 4

2. $2 \to 10, 11 \to 7: 2, 10, 11, 7,$ перевезут 4, останется 0

Ответ

Оптимальный грузопоток:

f = 640.