

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Dr. Pilászy György

Digitális technika 1 07 előadás

(Funkcionális építőelemek – Multiplexerek, komparátorok)

Lektorálta: Dr. Horváth Tamás

Minden jog fenntartva. Jelen könyvet, illetve annak részleteit a szerzők írásbeli engedélye nélkül tilos reprodukálni, adatrögzítő rendszerben tárolni, bármilyen formában vagy eszközzel elektronikus vagy más módon közölni.

Funkcionális építőelemek

Az alábbi fejezetben röviden ismertetünk néhány olyan építőelemet, amely kapcsolódik a kombinációs hálózatok témaköréhez. Ezeknek az építőelemeknek a használata nagy mértékben csökkenti a felhasznált építő elemek számát a "hagyományos" kapuáramkörökkel végzett megvalósításhoz képest. Bár ezeknek az alkatrészeknek az alkalmazása során elsősorban intuitív tervezési módszerek a meghatározóak, ahol lehet, igyekszünk néhány szisztematikusan is használható módszert bemutatni.

Multiplexerek

A multiplexer áramkörök vezérelt kapcsolóként működnek. A kiválasztó bemeneteikre kapcsolt bináris kombinációval képesek kiválasztani egy jelbemenetet és azt megjeleníteni a kimenetükön. Ez a megfogalmazás első olvasásra bonyolultnak tűnik, ezért a következőkben egy logikai tervezési feladatként készítjük el.

2/1 multiplexer

Egy logikai hálózatnak három bemenete (A,B,S) és egy kimenete (Y) van. S="0" érték esetén a hálózat kimenete megegyezik az A bemenet értékével Y=A. S="1" érték esetén a hálózat kimenete megegyezik a B bemenet értékével Y=B. Tervezzük meg ezt a három bemenetű egy kimenetű logikai hálózatot.

Érdemes megfigyelni a 2/1 multiplexer elvi logikai rajzát. Jól látszik, hogy a két ÉS kapu közül az S bemenettől függően vagy az A, vagy a B bemenet értéke szerint változik az Y.

4/1 multiplexer

Az előző példa alapján akár intuitívan is elkészíthetjük a 4/1 multiplexer elvi logikai rajzát. Ez a multiplexer a C0...C3 bemenetek közül választ egyet az S1, S0 kiválasztó bemenetekre adott bináris kód szerint. Ha rendelkezésünkre áll 2/1 multiplexer, akkor abból is kialakíthatunk 4/1-eset az alábbi elrendezésben.

8/1 multiplexer

Az előző két alkatrészből előállíthatunk 8/1-es multiplexert, de értelem szerint a kétszintű kombinációs megvalósítás is megoldható. A 8/1-es multiplexer a D0...D7 bemeneteiből jelenít meg egyet az Y kimenetén az S2..S0 kiválasztó bemenetek értékétől függően.

_	D ₀	Υ	H
_	D_1		
_	D_2		
	D₃		
_	D_4		
_	D ₅		
_	D_6		
_	D ₇		
	S ₂ S ₁		
		T	

S ₂	S ₁	S ₀	Υ	
0	0	0	D ₀	
0	0	1	D ₁	
0	1	0	D ₂	
0	1	1	D ₃	
1	0	0	D_4	
1	0	1	D_5	
1	1	0	D_6	
1	1	1	D ₇	

A következőkben a multiplexerek gyakorlati felhasználásához mutatunk példát. A működésükből adódóan hazárdmentes kombinációs hálózat kialakítására nem alkalmasak, azonban egyetlen építőelemmel és minimális kiegészítő hálózattal tetszőleges logikai függvény megvalósítására alkalmasak. Egyetlen 8/1 multiplexer kiegészítő alkatrészek nélkül alkalmas tetszőleges három változós logikai függvény megvalósítására. Gondoljunk csak utána, a három változót bekötjük az S₀,S₁,S₂ kiválasztó bemenetekre, majd az igazságtáblázatnak megfelelő bináris értékeket rákötjük a D₀...D₇ bemenetekre. Négy változós függvény is kialakítható, de ilyenkor elképzelhető, hogy szükség lesz egy inverterre is, amint a következő példában látni fogjuk.

Minterm indexeivel adott az alábbi logikai függvény:

$$F(A,B,C,D) = \sum_{1}^{4} (0,3,6,9,12,15)$$

Egyetlen 8/1 multiplexer és minimális kiegészítő hálózat felhasználásával állítsuk elő az F függvényt.

Első lépésként ábrázoljuk F Karnaugh táblázatát. Láthatjuk, hogy nehezen minimalizálható függvénnyel van dolgunk. A multiplexeres megvalósítás alapötlete legyen a következő. Kössük be az A,B,C változókat a multiplexer kiválasztó bemeneteire. Készítsünk egy segéd táblázatot, amely nagyon hasonló a Karnaugh táblázathoz, de minden cellája a multiplexer 1-1 bemenetéhez tartozik. Ez a segédtáblázat fog nekünk segíteni abban, hogy meghatározzuk, a multiplexer bemenetére "0", "1"konstans értéket vagy a negyedik változót illetve annak negáltját kell-e kapcsolni.

Az alábbiakban felrajzolt elrendezésben az A,B,C=000 bemeneti kombináció esetén az F Karnaugh táblájának bal felső sarkában található két cella tartozik (m^4_0 és m^4_1). Ezeket szögletes téglalappal bejelöltük. Figyeljük meg, hogy D=0 esetén F=1, míg D=1 esetén F=0 függvényérték van előírva ezeken a helyeken, ezért a multiplexer D $_0$ bemenetére \overline{D} értéket kell kapcsolni. Hasonlóan az alatta lévő két cellában 0 érték van előírva, ezért a multiplexer D $_2$ bemenetére fix "0" értéket kell kapcsolni.

Komparátorok

Amennyiben binárisan ábrázolt számokat szeretnénk összehasonlítani, akkor a két szám közötti reláció megjelenítésére komparátor áramkört használhatunk. Két szám azonos helyi értékének összehasonlításakor az a nagyobb, amelyik "1" értékű. Ha a vizsgált helyi értéken mindkét számjegy azonos, akkor az alacsonyabb helyi érték alapján döntünk. Egyenlőnek csak akkor nyilváníthatjuk a két számot, ha egyik helyi értéken sem találtunk eltérést.

A következőkben tervezzünk meg kétbites bináris számok összehasonlítására szolgáló komparátort. A tervezendő hálózatnak négy bemenete (A₁, A₀, B₁, B₀) és három kimenete (A<B, A=B, A>B) van. A₀, B₀ jelöli a legkisebb helyi értékeket. Adjuk meg a komparátor igazságtáblázatát, majd grafikus minimalizálással állítsuk elő a három kimenet logikai függvényeit.

A1	Α0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0		1	
0	0	0	1	1		
0	0	1	0	1		
0	0	1	1	1		
0	1	0	0			1
0	1	0	1		1	
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0			1
1	0	0	1			1
1	0	1	0		1	
1	0	1	1	1		
1	1	0	0			1
1	1	0	1			1
1	1	1	0			1
1	1	1	1		1	

$$\begin{split} A &< B \longrightarrow B_1 \cdot \overline{A_1} + B_0 \cdot \overline{A_1} \cdot \overline{A_0} + B_1 \cdot B_0 \cdot \overline{A_0} \\ A &> B \longrightarrow A_1 \cdot \overline{B_1} + A_0 \cdot \overline{B_1} \cdot \overline{B_0} + A_1 \cdot A_0 \cdot \overline{B_0} \\ A &= B \longrightarrow \overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_0} + \overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot B_0 + A_1 \cdot A_0 \cdot B_1 \cdot B_0 + A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0} \end{split}$$

A következőkben röviden bemutatunk egy konkrét katalógus áramkört, egy négy bites kaszkádosítható komparátort [5]. A komparátort, mint funkcionális építő elemet az alábbi szimbólummal ábrázoljuk:

A komparátor négy bites bináris számokat hasonlít össze, melyeket az A₀...A₃ és a B₀...B₃ bemenetekre kell kapcsolni. Az A₀, B₀ jelöli a legkisebb helyi értékeket. Amennyiben az A és B bemenetre kapcsolt számok különböznek, úgy az áramkör azonnal mutatja a relációnak megfelelő eredményt. Ilyenkor a kaszkádosító bemenetek semmilyen módon nem szólnak bele az összehasonlítás végeredményébe. Amennyiben az A és B bemenetre kapcsolt négy bites bináris számok egyformák, úgy a kaszkádosító bemenetek határozzák meg a kimenetek értékeit. Az A=B kimenet kizárólag akkor ad "1" értéket, ha az A és B szám megegyezik és az A=B kaszkádosító bemeneten is "1" érték van. A részletes működést bemutató táblázat az alábbi [5].

Összehasonlító bemenetek			Kaszkádosító bemenetek			Kimenetek			
A ₃ ,B ₃	A ₂ ,B ₂	A ₁ ,B ₁	A ₀ ,B ₀	A>B	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A ₃ >B ₃	-	-	-	-	-	-	1	0	0
A ₃ <b<sub>3</b<sub>	-	-	-	-	-	-	0	1	0
A ₃ =B ₃	A ₂ >B ₂	-	-	-	-	ı	1	0	0
A ₃ =B ₃	A ₂ <b<sub>2</b<sub>	-	-	-	-	ı	0	1	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ >B ₁	-	-	-	ı	1	0	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ <b<sub>1</b<sub>	-	-	-	ı	0	1	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ >B ₀	-	-	ı	1	0	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ <b<sub>0</b<sub>	-	-	ı	0	1	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	1	0	0	1	0	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	0	1	0	0	1	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	-	-	1	0	0	1
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	1	1	0	0	0	0
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	0	0	0	1	1	0

Négybites kaszkádosítható komparátor működési táblázata

A komparátor gyakorlati használatának bemutatására két példát ismertetünk. Először alakítsunk ki a fenti építőelemekből olyan komparátor egységet, amely alkalmas $X(x_0...x_5)$ és $Y(y_0...y_5)$ hatbites előjel nélküli egész számok összehasonlítására. x_0 és y_0 jelöli a legkisebb helyi értékeket. A kisebb helyi értékeket összehasonlító építőelem kaszkádosító bemeneteire az 010 kombinációt kötjük, hogy egyenlőség esetén ezt jelezze. Ugyanennek az építőelemnek a kimeneteit rákötjük a magasabb helyi értékeket összehasonlító építőelemre. Mivel csak hatbites számokat hasonlítunk össze, az "üresen" maradó bemenetekre azonos konstans (0) értéket kapcsolunk. Természetesen más, de egyforma érték is jó lehet a nem használt bemeneteken.

Hatbites bináris számok összehasonlítása

A második feladatunk egy olyan komparátor kialakítása, amely $C(c_0...c_3)$ és $D(d_0...d_3)$ négybites kettes komplemensben ábrázolt számokat hasonlít össze. c_0 és d_0 jelöli a legkisebb helyi értékeket. A komplemens ábrázolás miatt azonos előjelű számok összehasonlításakor helyes eredményt

kapunk, azonban különböző előjelek esetén éppen az a legfelső bit különbözik, amely eldönti a végeredményt. Mivel kettes komplemensben a negatív számok előjelbitje "1" értékű, ezért a komparátor bekötésekor fel kell cserélni a két szám előjelbitjeit egymással. Ha azonos előjelűek a számok, akkor a felcserélés után is azonosak maradnak, azonban különböző előjelek esetén így éppen a helyes eredmény irányába változik a komparátor kimenete.

Négybites kettes komplemens számok összehasonlítása