HW1: N-gram Language models

Rahul R Huilgol (rrh2226)

February 7, 2016

1 Introduction

A simple Bigram Model works by predicting the probability of a word given the context of the previous word.

Data	Set	Word Perplexity		
		Forward	Backward	
ATIS	train	10.59	6.22	
	test	24.05	16.51	
WSJ	train	88.47	54.69	
	test	294.52	199.81	
Brown	train	110.47	61.27	
	test	509.69	311.54	

Table 1: Comparing perplexities of Backward and Forward Bigram Models

2 Bidirectional Bigram Model

 Data	Set	Word Perplexity			
		Forward	Backward	Bidirectional	
ATIS	train	10.59	6.22	7.34	
	test	24.05	16.51	13.47	
WSJ	train	88.47	54.69	46.80	
	test	294.52	199.81	140.51	
Brown	train	110.47	61.27	60.76	
	test	509.69	311.54	277.38	

Table 2: Comparing perplexities of Forward, Backward and Bidirectional Bigram Models

3 Conclusion