第3章作业参考答案

P118/1(1):

基变量	x_1	x_2	x_3	x_4	右端项	基变量	x_1	x_2	x_3	x_4	右端项
x_3	1	<mark>4</mark>	1	0	80	x_2	1/4	1	1/4	0	20
x_4	2	3	0	1	90	X_4	<mark>5/2</mark>	0	-3/4	1	30
检验数	9	16	0	0	0	检验数	5	0	-4	0	-320

基变量	x_1	x_2	x_3	x_4	右端项
x_2	0	1	2/5	-1/5	14
x_1	1	0	-3/5	4/5	24
检验数	0	0	-1	-4	-440

 $x^* = (24,14,0,0)^T$, $z^* = -440$.

P118/1(2): 化为极小化问题。

基变量	x_1	x_2	x_3	x_4	右端项	基变量	x_1	x_2	x_3	x_4	右端项
x_3	2	3	1	0	6	x_3	5	0	1	-3	3
<i>x</i> ₄	-1	1	0	1	1	<i>x</i> ₂	-1	1	0	1	1
检验数	1	3	0	0	0	检验数	4	0	0	-3	-3

基变量	x_1	x_2	x_3	x_4	右端项
x_1	1	0	1/5	-3/5	3/5
x_2	0	1	1/5	2/5	8/5
检验数	0	0	-4/5	-3/5	-27/5

 $x^* = (3/5, 8/5, 0, 0)^T, \quad z^* = 27/5.$

P119/1(4):

	x_1	x_2	x_3	X_4	x_5	x_6	x_7	
--	-------	-------	-------	-------	-------	-------	-------	--

x_5	1	1	1	0	1	0	0	4
x_6	4	-1	1	2	0	1	0	6
x_7	-1	1	2	3	0	0	1	12
	-3	5	2	1	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_2	1	1	1	0	1	0	0	4
x_6	5	0	2	2	1	1	0	10
x_7	-2	0	1	3	-1	0	1	8
	-8	0	-3	1	-5	0	0	-20

	x_1	x_2	x_3	X_4	x_5	<i>x</i> ₆	<i>x</i> ₇	
x_2	1	1	1	0	1	0	0	4
x_6	19/3	0	4/3	0	5/3	1	-2/3	14/3
X_4	-2/3	0	1/3	1	-1/3	0	1/3	8/3
	-22/3	0	-10/33	0	-14/3	0	-1/3	-68/3

$$x^* = (0,4,0,8/3,0,14/3,0)^T, \quad z^* = -68/3.$$

P119/2(2):

	x_1	x_2	x_3	X_4	x_5	
x_3	1	1	1	0	0	5
x_4	-1	1	0	1	0	0
x_5	<mark>6</mark>	2	0	0	1	21
	2	1	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	
x_3	0	<mark>2/3</mark>	1	0	-1/6	3/2
X_4	0	4/3	0	1	1/6	7/2
x_1	1	1/3	0	0	1/6	7/2
	0	1/3	0	0	-1/3	-7

	x_1	x_2	x_3	x_4	X_5	
x_2	0	1	3/2	0	-1/4	9/4
\mathcal{X}_4	0	0	-2	1	1/2	1/2

x_1	1	0	-1/2	0	1/4	11/4
	0	0	-1/2	0	-1/4	-31/4

$$x^* = (11/4, 9/4, 0, 1/2, 0)^T$$
, $z^* = 31/4$.

P119/2(4):

		1	-3	1				
		x_1	x_2	x_3	x_4	x_5	у	
1	x_3	2	-1	1	0	0	0	8
М	у	2	1	0	-1	0	1	2
0	X_5	1	2	0	0	1	0	10
		2M+1	M+2	0	-M	0	0	2M+8

		1	-3	1				
		x_1	x_2	x_3	X_4	<i>x</i> ₅	у	
1	x_3	0	-2	1	1	0	-1	6
1	x_1	1	1/2	0	-1/2	0	1/2	1
0	X_5	0	3/2	0	1/2	1	-1/2	9
		0	3/2	0	1/2	0	-M-1/2	7

	x_1	x_2	x_3	x_4	x_5	
x_3	4	0	1	-1	0	10
x_2	2	1	0	-1	0	2
x_5	-3	0	0	2	1	6
	-3	0	0	2	0	4

		x_1	x_2	x_3	x_4	x_5	
	x_3	5/2	0	1	0	1/2	12
3	x_2	1/2	1	0	0	1/2	5
	x_4	-3/2	0	0	1	1/2	3
		0	0	0	0	-1	-2

$$x^* = (0,5,12,3,0)^T$$
, $z^* = -2$.

P119/2(8):

2	-3	0	0	0	М	М	
x_1	x_2	x_3	X_4	x_5	y_1	y_2	

М	y_1	2	-1	-1	-1	0	1	0	3
М	<i>y</i> ₂	1	-1	1	0	-1	0	1	2
		3M-2	-2M+3	0	-M	-M	0	0	5M

	2	-3	0	0	0	М	М	
	x_1	x_2	x_3	X_4	x_5	\mathcal{Y}_1	y_2	
2 x ₁	1	-1/2	-1/2	-1/2	0	1/2	0	3/2
M y ₂	0	-1/2	<mark>3/2</mark>	1/2	-1	-1/2	1	1/2
	0	-1/2M+2	2/3M-1	1/2M-1	-M	-3/2M+1	0	1/2M+3

	2	-3	0	0	0	М	М	
	x_1	x_2	x_3	x_4	X_5	y_1	y_2	
2 x ₁	1	-2/3	0	-1/3	-1/3	1/3	1/3	5/3
0 X ₃	0	-1/3	1	1/3	-2/3	-1/3	2/3	1/3
	0	5/3	0	-2/3	-2/3	2/3-M	2/3-M	10/3

$$x^* = (5/3, 0, 1/3)^T$$
, $z^* = 10/3$.

P120/6:

因此d是可行域的方向。

假设d 不是可行域的极向,则存在可行域的不同方向 $d^1,d^2:Ad^1=Ad^2=0,d^1,d^2\geq 0$ 和 $a_1,a_2>0$,使 $d=a_1d^1+a_2d^2$,则

$$0 = d_k = a_1 d_k^1 + a_2 d_k^2 \Rightarrow d_k^1 = d_k^2 = 0, \forall k \in I_N \setminus \{j\}$$

$$0 = A\boldsymbol{d}^{1} = B\boldsymbol{d}_{B}^{1} + d_{i}^{1}\boldsymbol{p}_{i} \Longrightarrow \boldsymbol{d}_{B}^{1} = -d_{i}^{1}B^{-1}\boldsymbol{p}_{i} = d_{i}^{1}\boldsymbol{y}_{i}$$

因此 $d^1 = d_j^1 d$, 同理 $d^2 = d_j^2 d$, 因此 d^1, d^2 同方向,矛盾。因此d是可行域的极向。