技术规格书 SPECIFICATIONS

红外测距传感器

Model Name: LIDAR07-100W-B

目录

楖	ij	Σ		3
产	딞	尚介	·	4
1		产品	品参数(T=25℃,VCC=+5V,90%反射率被测物,室内环境)	4
	1.	1	基本参数表	4
	1.	2	电气参数表	5
	1.	3	被测物最小边长与被测物距离对应关系	5
	1.	4	模组工作寿命(数据测量累计时间)	6
	1.	5	测距方式的选择	6
	1.	6	滤波处理方式的选择	6
	1.	7	模组收发光线示意图	7
2		接口	1线序及功能说明	8
3		典型	¹ 应用回路	8
	3.	1	UART 通讯方式	8
	3.	2	IIC 通讯方式	9
4		通信	情协议	.0
	4.	1	UART 通信配置参数1	.0
	4.	2	IIC 通信配置参数 1	.0
	4.	3	通信协议(UART)1	.0
	4.	4	通信协议(IIC)	.1
	4.	5	校验码生成1	.2
	4.	6	指令1	.2
	4.	7	通信时序1	.5
	4.	8	噪声去除和滤波处理1	.5
5		模组	l外形尺寸1	.8
6		注意	[事项	.8
7		变更	· - - - - - - - - - - - - - - - - - - -	9

概述

LIDAR07-100W 测距模组是一个基于单点TOF技术,采用850nm LED光源,配合独特的光学、结构、电路设计而成的低成本测距模组,实现中短距离的测距需求,测距范围为0.2m~12m,结合相应的滤波算法处理,可以得到极低的测量噪声。

LIDAR07-100W 测距模组搭载了850nm的窄带滤波片,可以有效滤除99%的环境光,保证在不同环境下测距的准确性,兼顾室内/室外的应用场景。

LIDAR07-100W 测距模组提供多种通讯接口,同时支持 IIC 和 UART 的通讯,便于终端产品的集成。在测距方面提供多种测量方式,单次自动曝光测量以及连续自动曝光测量,以满足不同终端产品的实际使用需求。

在数据输出方面,可以选择使用滤波, 从而得到更加平滑的距离数据;或者不使 用滤波,从而得到更快的动态测距响应。 在非测量期间,模块不再进行测试,从而 有效的降低功耗,以及保证光源的使用寿 命。

LIDAR07-100W 测距模块在出厂前 经过多道矫正标定和测试,具有很好的一 致性。

特点

- ◆ 室内/室外兼容对应
- ◆ 中短距离对应(0.2m~12m)
- ◆ 小型化对策,易于安装
- ◆ 多种测量模式
- ◆ 使用寿命长
- ◆ 帧率高,大于 500Hz(@5us 曝光)
- ◆ 温度补偿
- ◆ 不同物体反射率补偿
- ◆ LED 光源,人眼安全
- ◆ 低成本化测距方案

应用

- 距离测定仪
- 机器人避障
- 扫地机等 SLAM 建模
- 安防、门禁监控
- 物体分类

产品简介

产品是一个基于 TOF(Time Of Flight)原理,采用 850nm LED 光源,配合独特的 光学、电子、结构设计而成的测距模组,可以实现高速高精度测距需求。

采用 UART 以及 IIC 通讯的方式,可以获取到测量距离的信息。因为受限于光学特性以及功率等参数,测量距离的有效范围最大为 12 米,最小为 20cm 范围。

1 产品参数(T=25°C, VCC=+5V, 90%反射率被测物, 室内环境)

1.1 基本参数表

	1016
项目	规格
产品名称	LIDAR07-100W-B
工作范围	0.2~12m(室内/90%反射率)※1
电压适用范围	4.8~5.2V
模组测距方式	主动连续测量※2 被动单次测量
接收视野角	半角: 1°
发送视野角	半角: 2° ※3
背景光	15 kLux ※5
曝光时间	5us ∼ 5000us
信号幅度	3400LSB ~ 7000LSB
测距精度	20~350cm ±5cm 351~1200cm ±1.5% %6
噪声抖动(1σ)	2.5mm
红外光源质心波长	850nm
外形尺寸	42mm×15mm×17mm
工作温度	-10℃~60℃(非凝露)
保存温度	-20°C∼70°C
通讯方式	UART、IIC
最小分辨率	1mm
测试频率	Max 500(Hz) × 4
重量	4g

注意:

- 1) ※1: 0~0.2m 内为盲区,测试数据不建议采用。
- 2) ※2: 产品出厂默认为被动测量模式。主机发送一次测量指令才会进行一次测量 动作。
- 3) ※3: 12 米处的光斑约为直径 0.9m 的圆。若被测物体相对较小,则测量的结果偏差会比较大。
- 4) ※4: 曝光时间为 5us 的测试帧率。在实际应用中,模块内部会自动调节相应的测量时间,在测试结束后才会输出数据。

最大曝光时间测量的时候, 帧率会降低为约 10Hz 左右。

- 5) ※5: 环境光为被测物表面直射的强度, 当环境光的入射角度不同时, 允许更强的环境光。
- 6) ※6: 当温度剧烈变化的时候, 测距偏差会随着温度变化而产生额外偏差。
- 7) 如果目标距离较远或者反射率低,因为模块内部的多帧处理,实际输出的帧率可能会变慢。

1.2 电气参数表

项目	符号	典型值	单位
输入电压	DC	5	V
平均电流	Ι	80	mA
平均功率	P	400	mW
峰值电流	I _{max}	250	mA
UART 电平	V _{TTL}	3.3	V
IIC 电平	V _{TTL}	3.3	V

1.3 被测物最小边长与被测物距离对应关系

被测物距离/单位: m	1	2	3	4	5
被测物最小边长/单位: mm	70	140	210	279	349

注意: 一般被测物体的边长应大于最小边长,模组输出数据才可信; 当被测物体的 边长小于最小边长时,模组输出数据的偏差会增大。

1.4 模组工作寿命(数据测量累计时间)

模组内性能随时间变化最敏感的是红外 LED,根据其发光强度衰减时间、测量时最大占空比等因素计算,模组可靠数据测量累计时间为 30000 小时以上。

1.5 测距方式的选择

主动连续测量:

主机通过串口设定模组的输出频率,模组将以固定的频率进行连续测量,完成一次测量后立刻输出当前的结果,用户只需要在主机端接收测量的结果就可以。

当不需要测量的时候, 主机发送连续测量关闭指令, 模块则进入待机状态。

被动单次测量:

主机通过串口或者 IIC 给出测距指令,模组完成一次采样后便停止测试,并返回本次测量的距离信息。

1.6 滤波处理方式的选择

针对模组的测量距离输出,针对不同的场景,终端客户可以选择不同的方式。

模组内部集成滤波(median filter)处理,可以消除一定距离噪声,使输出的距离值更加平稳可信。由于滤波算法处理的存在,输出的数据和当前实际测量值在时域上会有一定的偏差。

为了得到更高的相应速度的话,则可以选择没有滤波的方式。终端用户再根据测量 值进行进一步的处理。

在模组滤波有效的情况下,则可以提升帧率来减少时域上的输出延迟。

1.7 模组收发光线示意图

模块的发射/接收部分的光路示意图如下,当被测物完全覆盖发射光源的时候,可以得到准确的距离信息,否则会出现距离偏差。

12 米处的光斑直径约为 0.9m

^{*}蓝色为模组LED发射光斑

^{*}红色为模组接收部分

2 接口线序及功能说明

Pin NO	定义	功能说明
8	VDD	模块主供电电源(5V)
7	GND	模块主供电地
6	RX	UART 接收数据线
5	TX	UART 发送数据线(DATA_READY)
4	VCC_LED	光源供电电源(5V)
3	GND_LED	光源供电地
2	SDA	IIC 通讯数据线
1	SCL	IIC 通讯时钟线

3 典型应用回路

3.1 UART 通讯方式

终端 LIDAR-07

采用单电源,以 UART 的通讯方式,模块内部针对 TX/RX 已经有上拉电阻,终端无需再追加额外电路。UART 的通讯参数,参考 4.1 UART 通信配置参数

3.2 IIC 通讯方式

终端 LIDAR-07 单电源,以 IIC 的通讯方式,DATA READY 为模块通知终端;

采用单电源,以 IIC 的通讯方式,DATA_READY 为模块通知终端设备数据可读的接口。当数据可以读取时,该端口由低电平变成高电平。因此主机端需要设定为输入状态,否则可能会出现异常。针对 SDA/SCL 通讯线上,已经有上拉电阻,终端无需再追加额外电路,IIC 的通讯参数,参考 4.2 IIC 通信配置参数 以及 4.7 通信时序。

4 通信协议

4.1 UART 通信配置参数

参数	数值	单位	备注
波特率	115200	Bit/s	
起始位	1	Bit	低电位
停止位	1	Bit	
数据位	8	Bit	高电位
校验位	None		

4. 2 IIC 通信配置参数

参数	设定值	单位
主从模式	从机模式	
波特率	400K	Bps
地址	0x70	7位

4.3 通信协议(UART)

主机发送数据格式

帧头	命	*	数据位	校验码			
0xF5	W/R	TYPE	LSBMSB	LSBMSB			
1 byte	1 b	yte	4 byte	4 byte			

模块响应数据格式

帧头	命令		数据书	长度(N)	数据位	校验码		
0xFA	W/R	TYPE	LSB	MSB	LSBMSB	LSBMSB		
1 byte	1 byte		2 b	yte	N byte	4 byte		

命令构成: (W/R) | TYPE

W(写入): 0x80 R(读取): 0x00

4.4 通信协议(IIC)

模块工作在从机模式,接收主机的指令和完成相应的处理。

主机写数据格式

※CRC 为 CMD+DATA 的计算结果

主机读数据格式

读数据的时候, 需要先写入指令, 然后才进行数据的读入操作。

时序请参考【4.7 单次测量的通讯时序 IIC 时序图】

L	Slave	Read/		CMD	Α	DATA	Α	DATA	A	DATA	Α	DATA	Α
TART	Addr	Write	ACK	CMD	C	DAIA	C	DAIA	C	DAIA	C	DAIA	C
ST	0x70	0		LSB	K	LSB	K		K		K	MSB	K
_	•												

CRC1	A	CRC2	A	CRC3	A	CRC4	A	0.
LSB	C		C	•••	C	LSB	C	STOF
	K		K		K		K	01

※CRC 为 CMD+DATA 的计算结果

		/	•			-, -										
Ī	Г	Slave	Read/		CMD	A	LEN	Α	LEN	Α	DATA1	A	DATA	A	DATA	A
	TAR	Addr	Write	ACK		C		C		C		C		C		C
	Ø	0x70	1			K	LSB	K	MSB	K	LSB	K		K		K

DATAn	A	CRC1	A	CRC2	Α	CRC3	A	CRC4	N	
MSB	C K	LSB	C K		C K		C K	LSB	A C K	STOP

※CRC 为 0xFA+CMD+LEN+DATA 的计算结果

4.5 校验码生成

从帧头开始,到数据位结束的所有数据,进行 CRC 冗余校验,从而避免或识别数据传输过程中出现干扰导致的异常错误数据。

■校验码方式: CRC32

■CRC 初始值: 0xFFFFFFFF ■CRC 多项式: 0x04C11DB7

■xor 值: 0x00

4.6 指令

编号	指令名称	指令 (HEX)	描述		
1	读取版本号	0x43	返回模组批次的版本号		
2	滤波的使用	0x59	滤波的开关(默认关闭)		
3	距离测量开关	0x60	打开: 1 关闭: 0		
4	测距模式的选择	0x61	选择单次测量和连续测量		
5	测量频率	0x62	在连续测量模式下,可以设定 连续测量的频率。		
6	系统运行错误状 态	0x65	模块运行过程中的错误状态查 询		

4.6.1 读取版本号

命令:

读取 0x43 | 0x00

数据位:不做要求

示例:

命令 | 0xF5 | 0x43 | 0x00 0x00 0x00 0x00 | 0xAC 0x45 0x62 0x3B |

响应 | 0xFA | 0x43 | 0x04 0x00 | 0x07 0x01 0x01 0x00 | 0xB7 0x1D 0xC1 0x04 |

备注: 07 为 次版本号;

01 为 主版本号

01 为 产品编号

4.6.2 测试间隔周期

命令:

设定 0x62 | 0x80 读取 0x62 | 0x00

数据位:设定的具体测量间隔周期

该参数仅仅只有连续测量中才有效,以 ms 为单位进行设定测量的周期。最小设定为 10ms (即 100Hz)

示例:设定为100ms(10Hz)

命令 | 0xF5 | 0xE2 | 0x64 0x00 0x00 0x00 | 0x93 0xBF 0x91 0x3B|

响应 | 0xFA | 0xE2 | 0x04 0x00 | 0x64 0x00 0x00 0x00 | 0xA8 0x41 0xFE 0xFB |

4.6.3 测距方式的选择

命令:

设定 0x61 | 0x80 读取 0x61 | 0x00

数据位:

0 被动单次测量1 主动连续测量

示例:设定为单次测量

命令 | 0xF5 | 0xE1 | 0x00 0x00 0x00 0x00 | 0xA5 0x8D 0x89 0xA7 |

响应 | 0xFA | 0xE1 | 0x04 0x00 | 0x00 0x00 0x00 0x00 | 0x3A 0x63 0x08 0x6D |

4.6.4 测量的开启和关闭

命令: 0x60 | 0x80

数据位:

0 关闭测量

1 开启测量(单次测量模式下,采样结束后将自行关闭)

示例: 开启测量

命令 | 0xF5 | 0xE0 | 0x01 0x00 0x00 0x00 | 0x9F 0x70 0xE9 0x32 |

响应 | 0xFA | 0xE0 | 0x10 0x00 | 距离(2 byte) | 温度(2 byte) | 信号幅度(2 byte) |

背景光(2 byte) | TOF 相位信息(8) byte) |CRC32(4 byte) |

注意:

模式处于单次测量时,当模组接收到测量指令时,模组开始进行距离采样,响应距

离数据后,将自动关闭测量。

模式处于连续测量时,当模组接收到测量指令时,模组会根据设定的频率,不停的测量,并在每次测量结束时,将距离数据输出至主机端。

距离等信息是按照 16 进制方式传输,低位在前,高位在后。距离单位是 mm,换 算式如下:

测量距离 = 低位(BYTE4) + 高位(BYTE5) * 256

※此处定义 OxFA 为接收数据的 BYTEO

4.6.5 滤波的开启和关闭

命令:

设定 0x59 | 0x80

读取 0x59 | 0x00

数据位:

0 滤波关

1 滤波开

示例: 开启测量

命令 | 0xF5 | 0xD9 | 0x01 0x00 0x00 0x00 | 0xB7 0x1F 0xBA 0xBA |

响应 | 0xFA | 0xD9 | 0x04 0x00 | 0x01 0x00 0x00 0x00 | 0x88 0x87 0x0A 0xEC |

4.6.6 错误代码查询

命令:

读取 0x65 | 0x00

数据位:

0x00000001 : SPI 通讯出错

0x00000002 : 像素饱和

0x00000004 : 采样上溢出

0x00000008 : 采用下溢出

0x00000010 : 内部测距异常

0x00000020 : 信号太强

0x00000040 : 信号太弱

示例: 开启测量

命令 | 0xF5 | 0x65 | 0x00 0x00 0x00 0x00 | 0x9A 0x08 0xE9 0x8A |

响应 | 0xFA | 0x65 | 0x04 0x00 | 0x01 0x00 0x00 0x00 | 0x1B 0xAA 0x29 0xA5 |

4.7 通信时序

在主机通过 UART 或者 IIC 对模组进行测距请求时,终端主机发送指令与测距模块 应答主机指令的时许如下图所示。

1) UART 时序

2) IIC 时序

备注: 当 IIC 读取测量数据的时候,模块在测量结束的时候,PIN5 会由低置高,从而通知主机进行数据的读取。在数据读取完成后 PIN 又会变成低电平。

因此在以 IIC 进行通讯的时候,请使用该端口,主机端设定为读状态或者外部触发方式。

4.8 噪声去除和滤波处理

LIADR-07模块是通过3D TOF 成像方式进行测距。距离噪声受限于被测物体的轮廓以及深度,这个噪声也被称为时间噪声,随着每次测量的不同而变化。由于该噪声是一个统计值,可以通过滤波来减少其影响。LIDAR-07模块出厂默认状态是直接输出测量结果,未经过任何滤波处理,以保证最快的动态测量响应

4.8.1 模块内藏中值滤波

模块内部已经实现了轻量级的中值滤波处理, 当使能滤波有效,设定指令 0x19 为 0x00000001。则可以得到低噪声的距离数据。

下图中,数据前段(520个点之前)是未开启滤波,噪声幅度为30mm。

下图中,数据后段(520个点之后)是开启滤波,噪声幅度为10mm。

4.8.2 卡尔曼滤波

除了上述模块内藏中值滤波以外,可以使用基于卡尔曼理论的滤波方式,在不损失系统精度的情况下显著降低噪声。动态卡尔曼的算法下记参考,终端产品可以加入该算法从而得到噪声低且稳定的测量效果。

```
sumX = 0;
sumXX = 0;
n++;
for (j = 0; j < n; j++)
{
 sumX += x[j];
 sumXX += x[j] * x[j];
}
r = (sumXX - (sumX * sumX) / n) / (n - 1);
p = p + q;
k = p / (p + r);
p = (1 - k) * p;
if (x[i]-x[i-1]<t)</pre>
{
 x[i] = k * x[i] + (1 - k) * x[i - 1];
}
else
{
 n = 0;
}
各参数的描述如下:
q:过程噪声协方差,这个参数由终端产品决定,最初可以设定为 q=2。
r:测量噪声协方差。
t: 滤波器使能阈值
```

p:预测协方差,初始化后初始值为 P=1。

k:卡尔曼增益,它改变滤波器的灵敏度,设定值在 $0\sim1$ 之间。

n: 计数器, 初始化后初始值为 n=0。

5 模组外形尺寸

6 注意事项

为避免损坏设备,应小心操作。在存储,处理,装配和测试的所有阶段,应防止产品跌落碰撞,并采取 ESD 静电防护以及灰尘防护措施。

7 变更履历

编号	内容	版本	日期
1	LIDAR07-100W 规格书做成	1.0	2020/08/03
2	1)波特率修正,115200	1.1	2020/08/05
	2) 主动模式下测试频率的设定说明		
	追加		
3	1)LED 光源为 850nm	1.2	2020/10/16
	2) 通讯指令部分,错误代码查询指		
	令追加		
	3) 数据查询指令部分,TOF 相位信		
	息修正为8字节		
	4) IIC 读取数据指令时序追加		
4	1) 通信协议更新	1.3	2020/11/23
	2) 连接器型号信息追加		
5	1) 修改测试距离为12米	1.4	2020/12/30
	2) 去除上电指令,模块通电后会直		
	接开启内部电源使能		
6	错误描述修正	1.5	2020/7/6