PROCESO DE POISSON CURSO 4 (PPROCESOS ESTOCASTICOS II) PARTE 1 / LECCION 1

Como una introducción a la teoría general que se expondrá más adelante, en este capítulo estudiaremos uno de los ejemplos más importantes de este tipo de modelos: **el proceso de Poisson.** Definiremos este proceso de varias formas equivalentes y estudiaremos algunas de sus propiedades, sus generalizaciones y algunas de sus aplicaciones. El proceso de Poisson es un modelo relevante tanto en las aplicaciones como en la teoría general de los procesos estocásticos.

Definición Constructiva del Proceso Poisson

Suponga que un mismo evento ocurre repetidad veces de manera aleatoria a lo largo del tiempo. Tal evento puede ser, por ejemplo, la llegada de una reclamación a una compañia aseguradora o la recepción de una llamda a un conmutador o los momentos en que una cierta maquinaria requiere reparacion etc.

Suponga que las variables aleatorias $T_1, T_2 \cdots$ representan los tiempos que transcurren entre una ocurrencia del evento y la siguiente ocurrencia. Suponga que estos tiempos son independientes uno del otro yq ue cada uno tiene distribucion $e \times p(\lambda)$.

Se define al **proceso de Poisson** al tiempo *t* como el número de ocurrencias del evento que se han observado hasta ese instante *t*.

Proceso de Conteo

Un proceso estocástico $\{N(t): t \ge 0\}$ es llamado de **conteo** si,

N(t)=Número de sucesos entre \ddot{c} ,

el cual satisface las siguientes condiciones:

- 1. $N(t) \ge 0$
- 2. N(t) es entero valuable.
- 3. Si $s \le t$ entonces $N(s) \le N(t)$
- 4. N(t) N(s): Número de sucesos que ocurre entre $\dot{\epsilon}$

Recuerda que:

- 1. Un proceso de conteo tiene **Incrementos Independientes** si el número de eventos que ocurren en intervalos de tiempo disjuntos son independientes.
- 2. Un proceso de conteo se dice tener **Incrementos Estacionarios** si la distribucion del número de eventos que ocurre en un intervalo de tiempo depende solo de la longitud del intervalo.

Definición Proceso Poisson

Definición 1: Un proceso de conteo $\{N(t):t\geq 0\}$ se le llama Proceso de Poisson con tasa λ , $\lambda>0$ si:

- 1. N(0)=0
- 2. Posee incrementos independientes.

3. El número de eventos de algún intervalo de longitud t esta distribuido Poisson con media λt .

Es decir, para todo
$$s, t \ge 0$$
, se tiene que: $P[N(s+t) - N(s) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$

Ejercicios

Ejercicio 1: Suponga que una panaderia abre a las 6am y los clientes llegan de acuerdo a un proceso de poisson con una tasa de 30 clientes por hora.

Encuentre la probabilidad de que lleguen 65 o mas clientes entre 9 y 11 a.m.

Solución:

```
from scipy.stats import poisson
```

Primero sera importante definir el proceso $\{N(t): t \ge 0\}$ con tasa $\lambda = 30$. Buscamos la probabilidad de que lleguen mas de 65 personas en el intervalo de tiempo [3,5]

$$P[N(5)-N(3)\geq 65]$$

```
lam = 30
t2 = 5
t1 = 3
prob = 1- poisson(lam * (t2 - t1)).cdf(64)
print(f'La probabilidad de que lleguen mas de 65 clientes es:
{prob:.4f}')
La probabilidad de que lleguen mas de 65 clientes es: 0.2759
```

Ejercicio 2: En una fábrica de componentes electrónicos, los pedidos de dos tipos de componentes (A y B) llegan de acuerdo a dos procesos de Poisson independientes. El tipo A llega con una tasa de 5 pedidos por día, mientras que el tipo B llega con una tasa de 3 pedidos por día.

Encuentra la probabilidad de que en 10 días lleguen:

1. Al menos 40 pedidos del tipo A y entre 20 y 30 pedidos del tipo B.

Solución:

Definimos dos procesos de Poisson independientes: uno para el componente A con tasa $\lambda_A=5$ y otro para el componente B con tasa $\lambda_B=3$. Buscamos la probabilidad conjunta de que lleguen al menos 40 pedidos de A y entre 20 y 30 pedidos de B en un intervalo de 10 días.

Los eventos se pueden representar como:

$$P[N_A(10) \ge 40 \text{ y } 20 \le N_B(10) \le 30]$$

Dado que los procesos son independientes, calculamos las probabilidades por separado y luego multiplicamos los resultados:

1. Probabilidad de que lleguen al menos 40 pedidos del tipo A:

$$P[N_A(10) \ge 40] = 1 - P[N_A(10) \le 39]$$

2. Probabilidad de que lleguen entre 20 y 30 pedidos del tipo B:

$$P[20 \le N_B(10) \le 30] = P[N_B(10) \le 30] - P[N_B(10) \le 19]$$

La probabilidad conjunta es el producto de las dos probabilidades, dado que los procesos son independientes:

$$P[N_A(10) \ge 40 \text{ y } 20 \le N_B(10) \le 30]$$

Al calcular esto, obtenemos la probabilidad conjunta.

```
# Parámetros del tipo A
lam A = 5 # tasa de pedidos del tipo A por día
t A = 10 # 10 días
lower_bound_A = 40 # al menos 40 pedidos
# Parámetros del tipo B
lam_B = 3 # tasa de pedidos del tipo B por día
t B = 10 # 10 días
lower bound B = 20 # al menos 20 pedidos
upper bound B = 30 # no más de 30 pedidos
# Probabilidad para el tipo A (al menos 40 pedidos)
prob A = 1 - poisson.cdf(lower bound A - 1, lam A * t A)
# Probabilidad para el tipo B (entre 20 y 30 pedidos)
prob B = poisson.cdf(upper bound B, lam B * t B) -
poisson.cdf(lower bound B - 1, lam B * t B)
# Probabilidad conjunta (independencia)
prob total = prob A * prob B
print(f'La probabilidad de que llequen al menos 40 pedidos del tipo A
y entre 20 y 30 pedidos del tipo B es: {prob total:.4f}')
La probabilidad de que lleguen al menos 40 pedidos del tipo A y entre
20 y 30 pedidos del tipo B es: 0.4925
```

Ejercicio 3: En un call center, las llamadas entrantes siguen un proceso de Poisson con una tasa de 25 llamadas por hora.

Encuentra la probabilidad de que lleguen entre 45 y 60 llamadas entre las 10:00 a.m. y las 12:00 p.m.

Solución:

Definimos el proceso N(t): $t \ge 0$ con tasa $\lambda = 25$. Buscamos la probabilidad de que lleguen entre 45 y 60 llamadas en el intervalo de tiempo [10,12].

$$P[45 \le N(12) - N(10) \le 60]$$

```
lam = 25  # tasa de llamadas por hora
t2 = 12
t1 = 10
lower_bound = 45
upper_bound = 60

# Probabilidad de que lleguen entre 45 y 60 llamadas
prob = poisson.cdf(upper_bound, lam * (t2 - t1)) -
poisson.cdf(lower_bound - 1, lam * (t2 - t1))
print(f'La probabilidad de que lleguen entre 45 y 60 llamadas es:
{prob:.4f}')
La probabilidad de que lleguen entre 45 y 60 llamadas es: 0.7068
```

Ejercicio 4: En un almacén, los pedidos de productos llegan de acuerdo a un proceso de Poisson con una tasa de 7 pedidos por día.

Encuentra la probabilidad de que lleguen al menos 25 pedidos en una semana (7 días).

Solución:

Definimos el proceso N(t): $t \ge 0$ con tasa $\lambda = 7$ por día. Buscamos la probabilidad de que lleguen al menos 25 pedidos en un intervalo de tiempo de 7 días (una semana).

```
lam = 7  # tasa de pedidos por día
t2 = 7  # número de días (una semana)
lower_bound = 25  # al menos 25 pedidos

# Probabilidad de que lleguen al menos 25 pedidos en 7 días
prob = 1 - poisson.cdf(lower_bound - 1, lam * t2)
print(f'La probabilidad de que lleguen al menos 25 pedidos en una
semana es: {prob:.4f}')

La probabilidad de que lleguen al menos 25 pedidos en una semana es:
0.9999
```