Does price of the application impact its quality?

Michal Borek - CMSE 201 (Section 5)

Why did I do it?

Kaggle:

https://www.kaggle.com/datasets/lava18/google-play-store-apps

Cleaning Data

Rating vs Installs vs Reviews

5357	I am extremely Rich	LIFESTYLE	2.9	41	2.9M	1000.0	Paid	379.99	Everyone	Lifestyle
5358	I am Rich!	FINANCE	3.8	93	22M	1000.0	Paid	399.99	Everyone	Finance
5359	I am rich(premium)	FINANCE	3.5	472	965k	5000.0	Paid	399.99	Everyone	Finance
5362	I Am Rich Pro	FAMILY	4.4	201	2.7M	5000.0	Paid	399.99	Everyone	Entertainment
5364	I am rich (Most expensive app)	FINANCE	4.1	129	2.7M	1000.0	Paid	399.99	Teen	Finance
5366	I Am Rich	FAMILY	3.6	217	4.9M	10000.0	Paid	389.99	Everyone	Entertainment
5369	I am Rich	FINANCE	4.3	180	3.8M	5000.0	Paid	399.99	Everyone	Finance
5373	I AM RICH PRO PLUS	FINANCE	4.0	36	41M	1000.0	Paid	399.99	Everyone	Finance
6624	BP Fitness Lead Scanner	EVENTS	NaN	0	6.7M	1.0	Paid	109.99	Everyone	Events
6692	cronometra-br	PRODUCTIVITY	NaN	0	5.4M	0.0	Paid	154.99	Everyone	Productivity
9719	EP Cook Book	MEDICAL	NaN	0	3.2M	0.0	Paid	200.00	Everyone	Medical
9730	Lean EQ	BUSINESS	NaN	6	10M	10.0	Paid	89.99	Everyone	Business

Research

OUTLIERS

Apps with very high number of installs, such as apps with 10 million installs or more. Apps with very low number of installs, such as apps with only 10 installs. Apps with very low number of reviews, such as apps with only 1 or 2 reviews. Apps with very low or very high ratings, such as apps with a rating of 1 or 5.

Introduction to Machine Learning

- Linear Regression
- RMSE
- R^2
- Coefficients and Intercept

```
In [15]: 1 from sklearn.model selection import train test split
            from sklearn.linear model import LinearRegression
          3 from sklearn.metrics import mean squared error, mean absolute error
          4 from sklearn import preprocessing
          6 X = ml_set[['Rating', 'Installs']]
           7 y = ml set['Price']
In [16]: 1 # creating train and test sets
          2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            model = LinearRegression()
            model.fit(X train,y train)
Out[16]: LinearRegression()
In [17]: 1 predictions = model.predict(X test)
         1 from sklearn.metrics import mean squared error, r2 score
          3 rmse = mean_squared_error(y_test, predictions, squared=False)
            r2 = r2_score(y_test, predictions)
            print('RMSE:', rmse)
          6 print('R^2:', r2)
         RMSE: 2.2863124930743175
         R^2: -0.015851856689165222
In [33]: 1 model.coef , model.intercept
Out[33]: (array([-1.48405691e-01, -3.74087184e-08]), 4.327360946546034)
In [20]: 1 plt.scatter(X_test['Rating'], y_test, color='blue', label='Actual Price')
            plt.scatter(X test['Rating'], predictions, color='red', label='Predicted Price')
            plt.xlabel('Rating')
            plt.ylabel('Price')
            plt.title('Actual vs Predicted Prices')
            plt.legend()
            plt.show()
```

Machine Learning Models

RMSE: 5.641668585351931 R^2: 0.007960612033099279

Rating

RMSE: 5.641668585351931 R^2: 0.014787435559041495

Conclusion

- We can conclude that there is small or no relationship between price and quality,
- Furthermore, we can deduce that developers prefer free apps with in-app purchases, and these apps may be more profitable than paid apps. However, we do not have enough data to establish the percentage of users that buy in-app products.