UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 2

Date	26th September 2022
Team ID	PNT2022TMID27839
Student Name	Akash S (311519104007)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

```
↑ ↓ ⇔ □ ‡ :

import pandas as pd
import numpy as np
import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

3.)HANDLE MISSING VALUES IN THE DATASET

```
    Handle the Missing Values in the Dataset

  [ ] #Removing Unwanted Values
       df = df.drop(columns=['RowNumber','CustomerId','Surname'])
  [ ] df.isnull().sum()
       CreditScore
                         0
       Geography
                         0
                         0
       Gender
                        0
       Age
                        0
       Tenure
       Balance
       NumOfProducts
                        0
       HasCrCard
       IsActiveMember
                        0
       EstimatedSalary
                        0
       Exited
                         0
       dtype: int64
```

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

[] sns.lineplot(df.Age,df.Exited) C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: warnings.warn(<AxesSubplot:xlabel='Age', ylabel='Exited'> 1.0 0.8 0.6 Exited 0.4 0.2 0.0 90 20 50 80 30 40 60 Age

b.) BI - VARIANTE ANALYSIS

```
    Bi - Variante Analysis

  [ ] def countplot_2(x,hue,title=None,figsize=(6,5)):
         plt.figure(figsize=figsize)
         sns.countplot(data=df[[x,hue]],x=x,hue=hue)
         plt.title(title)
         plt.show()
  [ ] countplot_2('IsActiveMember','NumOfProducts','Credit Card Holders Product Details')
                       Credit Card Holders Product Details
                                                 NumOfProducts
          2500
                                                     1
                                                       2
                                                    3
          2000
       1500
1500
          1000
           500
                                IsActiveMember
```

c.) MULTI - VARIANTE ANALYSIS

[]	df.corr()									
		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
	Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
	Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
	Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
	NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
	HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
	IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
	EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
	Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

→ Cł	nec	k for Cat	egorica	ıl Colu	ımı	ns and	d Perfo	rm Encod	ing			
<pre>[] from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df.Geography = le.fit_transform(df.Geography) df.Gender = le.fit_transform(df.Gender)</pre>												
[]	df.	head()										
		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	CreditScore 619	Geography 0	Gender 0		Tenure 2	Balance 0.00	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0							NumOfProducts 1	HasCrCard 1 0	IsActiveMember 1 1		
		619	0		42 41	2	0.00	NumOfProducts 1 1 3			101348.88	1
	1	619 608	0 2		42 41	2	0.00 83807.86				101348.88 112542.58	1
	1 2	619 608 502	0 2		42 41 42	2 1 8 1	0.00 83807.86 159660.80				101348.88 112542.58 113931.57	1 0 1

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

9.) SCALE THE INDEPENDENT VARIABLES

•	Sc	ale the Independent Variables
	[]	<pre>from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler() X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)</pre>

10.) SPLIT THE DATA INTO TRAINING AND TESTING

•	Sp	lit the data into Training and Testing
		<pre>from sklearn.model_selection import train_test_split x_train , y_train , x_test , y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)</pre>
		X_scaled.shape
		(10000, 10)
		x_train.shape
		(8000, 10)