Spring 2011 Topology Qualifying Exam

Instructions: Do all eight problems. Start each problem on a separate page and clearly indicate the problem number.

- (a) Define what it means for a topological space to be connected.
 - (b) Define what it means for a topological space to be path connected.
 - (c) Prove that if a topological space X is path connected, then X is connected.
 - (d) Give an example of a topological space which is connected, but not path connected.
- (2) (a) Show that the space $Mat_{\geq k}(m \times n)$ of $m \times n$ matrices of rank $\geq k$ is open in $Mat(m \times n) = 1$
 - (b) When is the set $Mat_k(m \times n)$ of matrices of rank k open in $Mat(m \times n)$?
 - (c) When is $Mat_k(m \times n)$ closed?
- (3) Give an example of a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ that has a dense set of critical values [hint: use partition of unity.
- (4) A weak equivalence between two vector bundles $\pi_1: E_1 \to B$, $\pi_2: E_2 \to B$ over the same base space B is a bundle map (F, f), where $F: E_1 \to E_2$ is an isomorphism on each fiber and $f: B \to B$ is a homeomorphism. Find two inequivalent, but weakly equivalent, vector bundles over the following spaces:
 - (a) the disjoint union of two circles;
 - (b) the wedge of two circles;
 - (c) the torus.
- (5) (a) Compute $H_{dR}^*(\mathbb{R}^2 \setminus \{0\})$. (b) Prove that $\omega = \frac{xdy ydx}{x^2 + y^2}$ is closed but not exact on $\mathbb{R}^2 \setminus \{0\}$.
 - (c) Let M be compact, connected, orientable smooth manifold of dimension 2, and let p be any point of M. Let U be a neighborhood of p diffeomorphic to \mathbb{R}^2 and let $V = M \setminus \{p\}$. Show that the connecting homomorphism $\delta \colon H^1_{dR}(U \cap V) \to H^2_{dR}(M)$ is an isomorphism [hint: show that $\delta[\omega] \neq 0$, where ω is the 1-form on $U \cap V \simeq \mathbb{R}^2 \setminus \{0\}$ as in 5b].
 - (d) For M and p as in 5c, show that the inclusion $M \setminus \{p\} \hookrightarrow M$ induces isomorphism in de Rham cohomology in degrees 0 and 1.
- Let X_n be the quotient space of $D^2 = \{z \in \mathbb{C} | |z| \le 1\}$ by the equivalence relation \equiv generated

$$e^{i\theta} \equiv e^{i\omega} \text{ iff } e^{in\theta} = e^{in\omega}$$

(Note: the only equivalence classes with more than one element are the equivalence classes of points on the bounding copy of S^1 .)

Prove that

$$\pi_1(X_n)\cong \mathbb{Z}/n\mathbb{Z}$$
.

and

$$H_k(X_n) \cong \left\{ egin{array}{ll} \mathbb{Z} & k=0 \\ \mathbb{Z}/n & k=1 \\ 0 & k>1 \end{array} \right.$$

- (7) Let X_n be as in the previous problem. For this problem, you may assume the results of the previous problem even if you have not proved them.
 - (a) Find the homology of $X_n \times X_m$.

 - (b) Find the homology of ΣX_n × X_m.
 (c) Find the homology of Σ(X_n × X_m).
- (8) (a) Find $H^*(\mathbb{RP}^2)$.
 - (b) Find $H^*(\mathbb{CP}^3)$.

In each case justify your work either by giving a CW complex decomposition of the space and computing the cellular cohomology, or by a calculation in which each step is justified by one of the Eilenberg-MacLane Axioms or the Meyer-Vietoris Theorem.