Διαχείριση και διανομή κλειδιών

Νικόλαος Ε. Κολοκοτρώνης Επίκουρος Καθηγητής

Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου

Email: nkolok@uop.gr

Web: http://www.uop.gr/~nkolok/

ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ

Περιεχόμενα

- Διανομή συμμετρικών κλειδιών
- Διανομή δημοσίων κλειδιών
- Ψηφιακά πιστοποιητικά X.509
- Υποδομές δημοσίου κλειδιού

Διανομή συμμετρικών κλειδιών

ΜΕ ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Διανομή κλειδιών: ανάγκη

- For symmetric encryption to work, the two parties to an exchange must share the same key
 - that key must be protected from access by others
- Frequent key changes are usually desirable to limit the amount of data compromised if an attacker learns the key
- Key distribution technique
 - The means of delivering a key to two parties that wish to exchange data, without allowing others to see the key

Διανομή κλειδιών: επιλογές

For two parties A and B, there are the following options:

• A key can be selected by A and physically delivered to B

• A third party can select the key and physically deliver it to A and B

• If A, B have previously/recently used a key, a party could transmit a new key to the other using the old key to encrypt the new one

 If A, B each have an encrypted connection to a third party C, C could deliver a key on the encrypted links to A and B

Διανομή κλειδιών: ιεραρχία

Διανομή κλειδιών: χρήση KDC

Διανομή κλειδιών: ανά υπηρεσία

Διανομή κλειδιών: κατανεμημένο

Διανομή κλειδιών: με έλεγχο

- We may define different types of session keys on the basis of their use
 - Data-encrypting key, for general communication across a network
 - PIN-encrypting key, for personal identification numbers (PINs) used in electronic funds transfer and point-of-sale applications
 - File-encrypting key, for encrypting files stored in publicly accessible locations
- Π.χ. τα bit ισοτιμίας σε κλειδί για τον αλγόριθμο DES θα μπορούσαν να χρησιμοποιηθούν για το σκοπό αυτό

Διανομή κλειδιών: με έλεγχο

(α) Κρυπτογράφηση

(β) Αποκρυπτογράφηση

- Key input $K_c = K_m \oplus h(CV)$ Key input $K_c = K_m \oplus h(CV)$
- Ciphertext $C = \text{Enc}(K_c, K_s)$ Plaintext $K_s = \text{Dec}(K_c, C)$

$$K_{\rm c} = K_{\rm m} \oplus h({\rm CV})$$

$$K_{\rm s} = {\rm Dec}(K_{\rm c}, C)$$

Διανομή συμμετρικών κλειδιών

ΜΕ ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Διανομή κλειδιών: με χρήση PKC

Απλός τρόπος συμφωνίας κλειδιού

Διανομή κλειδιών: MiTM

Διανομή κλειδιών: χρήση PKC

Εάν οι χρήστες έχουν ήδη ανταλλάξει δημόσια κλειδιά

Διανομή δημοσίων κλειδιών

Διανομή κλειδιών

- Προσωπική διανομή κλειδιών
- Χρήση ενός δημόσιου καταλόγου
- Έμπιστες αρχές διανομής δημοσίων κλειδιών
- Πιστοποιητικά δημοσίων κλειδιών

Διανομή κλειδιών: προσωπική

Παραδείγματα χρήσης από PGP

Διανομή κλειδιών: κατάλογος

 Πρέπει να υπάρχει ασφαλής αντιστοίχιση χρηστών με τα δημόσια κλειδιά τους

Διανομή κλειδιών: έμπιστες αρχές

Διανομή κλειδιών: πιστοποιητι κά

(a) Obtaining certificates from CA

(b) Exchanging certificates

Ψηφ. πιστοποιητικά

- Πρότυπα ψηφιακών πιστοποιητικών
 - X.509 (v1, v2, και v3)
 - O PKCS #6

- Πιο διαδεδομένο: X.509 v3
 - V1: 1988 (προτάθηκε από ISO και ITU)
 - Υιοθετήθηκε από Visa και MasterCard
 - Χρήση στο SET (Secure Electronic Transactions)

Ψηφ. πιστοποιητικά: χρήση

- Στοιχεία πιστοποιητικού
 - Σειριακός αριθμός
 - ο Περίοδος ισχύος

- Στοιχεία αρχής/δικαιούχου
 Στοιχεία επαλήθευσης
 - Ο Όνομα καταλόγου Χ.500

- Στοιχεία κλειδιού
 - Ο Αλγ. δημοσίου κλειδιού
 - Ο Τιμή δημοσίου κλειδιού

- - Ο Ψηφιακή υπογραφή

Το πρότυπο χρησιμοποιεί την εξής σημειογραφία

 $CA \ll A \gg = CA\{V, SN, AI, CA, UCA, A, UA, Ap, T^A\}$

όπου Υ≪Χ≫ το πιστοποιητικό του Χ από τον Υ και

Y{I} = the signing of I by Y

V = version of the certificate

SN = serial number of the certificate

Al = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

Το πρότυπο χρησιμοποιεί την εξής σημειογραφία

 $CA \ll A \gg = CA\{V, SN, AI, CA, UCA, A, UA, Ap, T^A\}$

όπου Υ≪Χ≫ το πιστοποιητικό του Χ από τον Υ και

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

T^A = period of validity of the certificate

Ψηφ. πιστοποιητικά: PKCS #6

- Το πρότυπο ορίστηκε από την RSA Data Security Inc.
 - o http://www.rsasecurity.com/
- Περιλαμβάνονται τα ακόλουθα στοιχεία:
 - Ο Αριθμός έκδοσης
 - Ο Πιστοποιητικό τύπου Χ.509
 - Ο Λίστα επιλεγμένων χαρακτηριστικών
 - Ο Αλγόριθμος ψηφιακής υπογραφής
 - Ο Ψηφιακή υπογραφή αρχής έκδοσης

Ψηφ. πιστοποιητικά: PKCS #6

Επιλεγμένα χαρακτηριστικά (PKCS #9)

businessCategory	commonName	countryName
description	destinationIndicator	x121Address
iSDNAddress	localityName	member
objectClass	organizationName	title
postalAddress	postalCode	postOfficeBox
presentation Address	registeredAddress	streetAddress
roleOccupant	serialNumber	stateOrProvinceName
telephoneNumber	surname	preferredDeliveryMethod

Ιεραρχία πιστοποιητι κών Χ.509

Μονοπάτια πιστοποίησης

ΕΠΑΛΗΘΕΥΣΗ

- Η επαλήθευση ενός πιστοποιητικού απαιτεί ένα ολοκληρωμένο μονοπάτι
- Παράδειγμα σχήματος

$$Z \ll Y \gg Y \ll V \gg V \ll W \gg W \ll X \gg X \ll A \gg$$

ΜΟΝΤΕΛΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

- Ένα σύνολο μονοπατιών πιστοποίησης ονομάζεται μοντέλο εμπιστοσύνης
- Κύριοι αντιπρόσωποι
 - ο ιεραρχικό μοντέλο
 - ο σύνθετο ιεραρχικό μοντέλο
 - web of trust

Μονοπάτια πιστοποίησης

- Η επίτευξη σχέσεων εμπιστοσύνης μεταξύ των δύο βασικών αρχών πιστοποίησης μπορεί να επιτευχθεί
 - Ο Μέσω διασταυρωμένων πιστοποιητικών
 - Ο Προσοχή: διαπίστευση και από τις δύο πλευρές
- Η ασφάλεια του όλου συστήματος βασίζεται στο ιδιωτικό κλειδί της βασικής αρχής πιστοποίησης
 - Ο Κίνδυνοι από πιθανή αποκάλυψη
- Μεγάλα μήκη αλυσίδων επαλήθευσης ακόμα και για χρήστες που ανήκουν στην ίδια ιεραρχία

Μονοπάτια πιστοποίησης

Web of trust

Χρησιμοποιήθηκε πρώτη φορά από το PGP

Προβλήματα επεκτασιμότητας

Θεωρία προσανα-τολισμένων γράφων

Ανάκληση πιστοποιητικών

- Cert. revocation list (CRL)
 - Ο Κλασικό μοντέλο
 - Σημεία διανομής CRLs (CDP)
 - Freshest CRLs (FCRL)

- Online cert. status protocol (OCSP)
 - Προτάθηκε από την IETF αναπτύχθηκε από τη VeriSign
 - Επαλήθευση πραγματικού χρόνου
 - OCSP responders παρέχουν πληροφορίες στους clients

- Επεκτάσεις
 - Σε κάθε αντικείμενο της λίστας
 - ο Συνολικά στη λίστα

- Θέματα επεκτασιμότητας
 - ανάλογη του πλήθος των συνδρομητών
 - ανάλογη της πιθανότητας ανάκλησης
 - ανάλογη του χρόνου ζωής πιστοποιητικών

- Θέματα αποδοτικότητας
 - ανάγκη συχνής ανανέωσης της λίστας
 - ανάγκη λήψης για κάθε εφαρμογή
 - ανάγκη λήψης από πολλές αρχές πιστοποίησης

- Κατάχρηση διαθέσιμου εύρους ζώνης δικτύου
 - ανάλογη του τετραγώνου του πλήθους χρηστών
- Λύση προβλήματος(;)
 - Σημεία διανομής CRLs (CDP)
 - κατάτμηση σε μικρότερα τμήματα
 - Freshest CRLs (FCRL)
 - μόνο πρόσφατα πιστοποιητικά
 - Συχνότερες εκδόσεις της λίστας

- Η αίτηση OCSP έχει
 - ο Έκδοση πρωτοκόλλου
 - ο S/Ν πιστοποιητικού
- Απάντηση ψηφιακά υπογεγραμμένη
- Κατάσταση (status)
 - o good
 - revoked
 - unknown

- Ανάγκη για ασφάλεια σε υποδομές
- Οι OCSP
 responders θα
 πρέπει να
 υπογράφουν με
 το ίδιο κλειδί

Ανάκληση πιστοποιητικών: DPD

Ανάκληση πιστοποιητικών: DPV

- Delegated path validation
 - Περιπτώσεις περιορισμένων πόρων
- Εκδοχή 1^η
 - Η απάντηση είναι ψηφιακά υπογεγραμμένη

Ανάκληση πιστοποιητικών: DPV

- Delegated path validation
 - Περιπτώσεις περιορισμένων πόρων
- Εκδοχή 2ⁿ
 - Μειωμένη ανάγκη για ασφάλεια
 - Επιστρέφει ότι ανακτήθηκε

Υποδομές δημοσίου κλειδιού

Υποδομές δημοσίου κλειδιού

Ορισμός

Ο Η ΥΔΚ είναι οι δομές αρχών πιστοποίησης οι οποίες επιτρέπουν την αξιοποίηση των δυνατοτήτων της κρυπτογραφίας δημοσίου κλειδιού

Απαιτήσεις σχεδιασμού

- ο μεγάλος βαθμός επεκτασιμότητας
- ο δια-λειτουργικότητα ανεξάρτητων υποδομών
- ο υποστήριξη πολλαπλών πολιτικών/εφαρμογών
- ο απλουστευμένη διαχείριση κινδύνων

Υποδομές δημοσίου κλειδιού

- Βασικές απαιτήσεις χρηστών
 - Ο Πρόληψη, προστασία, αποφυγή σφαλμάτων
 - Ο Ανίχνευση και διόρθωση σφαλμάτων
 - Ο Πρόληψη, προστασία, αποφυγή αμφισβητήσεων
 - Ο Απόδοση αποζημιώσεων
 - Ο Μηχανισμός διασφάλισης επιδόσεων
 - Ο Παρακολούθηση χρηστών και υπηρεσιών

Υποδομές δημοσίου κλειδιού: PKIX

- Δημιουργία πιστοποιητικού
 - Ο Μετά από από αίτηση της RA
- Αποθήκευση και ανάκτηση πιστοποιητικού
 - Ο Διατήρηση αντιγράφου
 - Ο Διανομή πιστοποιητικού
- Ανάκληση πιστοποιητικού
 - Ο Λήξη περιόδου ισχύος
 - Ο Διακύβευση ιδιωτικού κλειδιού

- Δήλωση πρακτικών πιστοποίησης
 - Η εξακρίβωση της εγκυρότητας των στοιχείων που αναγράφονται στο πιστοποιητικό γίνεται από την "αρχή εγγραφής" (πιστοποιητικά κλάσης Α, Β, και C)
 - Όλες οι λειτουργίες γίνονται βάση της "δήλωσης πρακτικών πιστοποίησης" που διατηρεί στην κατοχή της ο πάροχος υπηρεσιών πιστοποίησης
 - Ο Η "δήλωση πρακτικών πιστοποίησης" συντάσσεται από την "αρχή δημιουργίας πολιτικών" και εγκρίνεται από την "αρχή έγκρισης πολιτικών"

- Have several well-known CA's
 - Verisign one of most widely used
- Verisign issues several types of Digital IDs
 - Increasing levels of checks & hence trust

Class	Identity checks	Usage
1	name/email check	web browsing/email
2	+ enroll/address check	email, subs, software validate
3	+ ID documents	e-banking/service access

Κλάσεις πιστοποιητι κών VeriSign

IA = Issuing Authority

CA = Certification Authority

PCA = VeriSign public primary certification authority

PIN = Personal Identification Number

LRAA = Local Registration Authority Administrator

	Class 1	Class 2	Class 3
Summary of Confirmation of Identity	Automated unambiguous name and e-mail address search.	Same as Class 1, plus automated enrollment information check and automated address check.	Same as Class 1, plus personal presence and ID documents plus Class 2 automated ID check for individuals; business records (or filings) for organizations.
IA Private Key Protection	PCA: trustworthy hardware; CA: trustworthy software or trustworthy hardware.	PCA and CA: trustworthy hardware.	PCA and CA: trustworthy hardware.
Certificate Applicant and Subscriber Private Key Protection	Encryption software (PIN protected) recommended but not required.	Encryption software (PIN protected) required.	Encryption software (PIN protected) required; hardware token recommended but not required.
Applications Implemented or Contemplated by Users	Web-browsing and certain e-mail usage.	Individual and intra- and inter-company e- mail, online subscriptions, password replacement, and software validation.	E-banking, corp. database access, personal banking, membership-based online services, content integrity services, e-commerce server, software validation; authentication of LRAAs; and strong encryption for certain servers.

IETF PKIX

- Part I: Certificate and CRL
 Profiles
- Part III: Cert. Mgmt. Protocols
- Part IV: Certificate Policy and Certification Practices

- Υπάρχουν όμως κι άλλα πρωτόκολλα, π.χ.
 - ANSI X9.55 και X9.57
 - PKCS #10 cert. request
 - S/MIME cert. request
 - Cisco certificate mgmt.

- Ενδεικτικό λογισμικό για την υλοποίηση ΥΔΚ
 - OpenSSL (<u>https://www.openssl.org/</u>)
 - TinyCA (https://tinyca.alioth.debian.org/)
 - OpenCA PKI (https://www.openca.org/)
 - EJBCA (https://www.ejbca.org/)
 - gnoMint CA (http://gnomint.sourceforge.net/)
 - Universal SSL (https://blog.cloudflare.com/)
 - Dogtag (http://pki.fedoraproject.org/)

- Δημιουργία ζεύγους κλειδιών
- Αντιστοίχιση ζεύγους κλειδιών και οντότητας
- Αποθήκευση κλειδιού
- Διανομή κλειδιών
- Ανάκτηση ζεύγους κλειδιών
- Ενημέρωση κλειδιού

- Μηχανισμοί εφεδρείας (back–up)
- Μηχανισμοί ανάκτησης κλειδιών (key recovery)
 - ο ενθυλάκωσης κλειδιών (key encapsulation)
 - ο αναπαραγωγής κλειδιών (key derivation)
 - ο εγγύησης κλειδιών (key escrow)

- Για να ικανοποιούνται τα αιτήματα επιβολής του νόμου πρέπει:
 - Ο Διεθνής η υιοθέτηση των συστημάτων ανάνηψης κλειδιών
 - Ο Πρόσβαση κυβερνητικών υπηρεσιών χωρίς τη συγκατάθεση και τη γνώση του κατόχου του κλειδιού
 - Πρόσβαση στη μη-κρυπτογραφημένη πληροφορία, επί 24ώρη βάση, κάτω από οποιαδήποτε συνθήκη
 - Πρόσβαση τόσο σε κρυπτογραφημένες επικοινωνίες όσο και σε αποθηκευμένες (κρυπτογραφημένες) πληροφορίες

- Τα συστήματα ανάκτησης δεδομένων/κλειδιών είναι:
 - Ο Λιγότερο ασφαλή
 - Ο Πιο δύσκολα στη χρήση
 - Ο Πιο δαπανηρά

- Άλλα προβλήματα:
 - Έλλειψη κυριαρχίας στον τρόπο αποκρυπτογράφησης των δεδομένων
 - Καταπάτηση των θεμελιωδών αρχών της ελευθερίας και της ιδιωτικότητας

Προτεινόμενη βιβλιογραφία

- W. Stallings
 Cryptography and Network Security: Principles & Practice 7th Ed., Prentice Hall, 2017.
- H. Bidgoli
 Handbook of Information Security
 Vol. 1, John Wiley & Sons, 2006
- S. Choudhury, K. Bhatnagar, and W. Haque Public Key Infrastructure: Implementation and Design M&T Pubs, 2002.