Phase 2 Project

By: Tommy Quan-Duc Phung

Overview

Client: Zillow Home Group Inc.

Source: King County House Sales

Parameters Used:

- Dependent Price
- > Independent Square Feet of Living, Grade, and House Age
 - > Extra categorical variables were used

Business Problem

- What makes an expensive house?
- Is the house price market correctly?
- Could we predict the price of a house?

Objective

Zillow Estimation Tool: Zestimate

- Company's Algorithm
- Median Error Rate 2.4% to 7.49%

Objective:

Create a model to incorporate with or replace currently placed algorithm in hopes to improve accuracy for seller and buyers.

Data

- > **30154** samples (3%)
- > 25 columns or attributes
- Numerical and Categorical data types

Analysis should only be applied to houses in King County, Washington

Baseline Model - Intercept-Only Model

Y = 982,866

Interpretation:

All houses are priced at \$982,866.

Baseline Model - Limitation

Simple To Model

- Only uses price mean
- No manipulation required

Not Accurate

- Assume all house price are the same
- Assume no factors influence price

Method

A series of modeling and progression plots:

- 1. Highest correlation Single Variable
- 2. Second Highest 2 Variables
- **3.** ... Multi-Variable

Added parameters:

- > Interaction Terms Top Two Highest
- > House Age Modify Year Built

Why Linear Regression

- 1. Explains the **relationship** between two variables.
- 2. Can be used to **predict prices** with given variables.

Line of Best Fit:

Price = (sqft_living cost * num sqft) + constant

Model Overview

36.2%

41.8%

46.4%

Model 1:

+ Square Feet of Living

Model 2:

+ Grade

Model 3:

+ House Age

- Only 1 parameter
- Relatively low house cost

- Two parameters with a negative house cost.
- > High grade influence.

- A larger negative starting value.
- Lower cost per square foot.
- Bigger grade influence.

Model 1

Interpretation -

- Constant = \$261,000
- > **\$356** per square foot

Model 1 Limitations

Simple To Interpret

- > Single Regression Plot
- Logical starting price

Only Explains 36.2% of Variance

- Not Considering Other parameters
- "A house with no living cost \$261,000"

Multiple Linear Regression

Uses:

- Multiple Variables
- Increase complexity

Partial Regression Plots

- Plot values not explained by model against one another
- > Shows **benefit** of adding the variable in the model

Model 2

Partial Regression QQ Plot - Sqft_living

Partial Regression QQ Plot - Grade

Interpretation -

- Constant = -\$62,690.
- > **\$232** per square foot of living
- > **\$150,700** per grade (1-13)

Model 2 Limitations

Best Parameters

- Two Highest Correlating Parameters
- Grade and square foot of living benefits price
- Not too complicated

Only 4.4% increase

- Negative house cost
- Assume all grade increase price

Model 3

Interpretation -

- Constant = \$-1,286,000
- > **\$221** per square foot
- > **\$216,400** per grade
- \$3867 per age of house.

The more parameters added, the larger the constant becomes

Model 3 Limitations

Logical Coefficients

- All coefficient are reasonable
- Higher R Square Value

Only 4.4% increase

- Negative initial House Cost
- Still assume all grade is beneficial

Other Categorical Data

Method: Grouped by category with mean taken for each sub-category

Outcome:

No significant difference in Nuisance

Include: Waterfront and Greenbelt

Exclude: Nuisance

Final Model Reference

The model parameters are in reference to the following:

- > No Greenbelt
- > No view
- Average Condition
- ➤ Oil Heat Source
- Private Sewer System
- ➤ Grade 7

Final Model Key Coefficients

- 1. **Sqft_living** \$116 per square feet
- 2. **Grade** (1-13) Depends on grade
- 3. **Greenbelt** \$126,900 if on a greenbelt
- 4. **house_age** \$3673 per year *
- 5. **Interaction Terms** (9) \$112 per square feet if grade is 9 *
- 6. **Constant** \$191,400

* Created variables added to the final model

Other parameters didn't influence price heavily.

Final Model Regression Plots

Slight Positive Linear Relationship

- ➤ Not as strong as model 2
- House Age has clear relationship

Legend:

Top Left: Sqft_living **Top Right:** Grade 9

Bottom Left: Sqft_living * Grade 9

Bottom Right: House Age

Grade Interpretation

Formula:

Price = Constant + grade + (interaction * square foot of living) + others*

- Grades below 7 are negative
- > Grades above 7 are **positive**.
- Grade doesn't match their interaction terms.
 - (Positive Grade, Negative Living)
- > Less influence the closer to Grade 7

Continuous Interpretation

In general, **all parameters** involving square foot of an area are **positive**, **excluding square foot of garage**.

- Garage appears less valuable than patio, basement or living.
- > The more square footage, the higher the price.

Other Categorical Parameters

Greenbelt - Yes = \$126,900

View -

- Average = \$61,690
- \rightarrow Good = \$72,050
- Excellent = \$288,600

Condition -

- \rightarrow Good = 42,480
- Very Good = 106,700

In general, any parameters that is better than the reference, will increase house value.

Conclusion

- ➤ More Parameters → Better modeling
- ➤ Negative Parameter → More Positive Constant

- > Strongest Effect on Price: Square living and Grade
- Not all parameters are useful such as sqft_above, nuisance, etc.

Recommendations

Zillow: Use model to improve Zestimate.

Improve Accuracy

Buyers: Inform on expensive and inexpensive aspect of a house.

Price Checking

Sellers: Renovate or improve aspects to increase price.

Increase Home Values

Next Step

1. More interaction terms

Greenbelt and Square Foot of Living

2. More outside interaction

Schools, parks, crime rate

3. Economic Status

> Recession, Pandemic

Question?

Email: phungtommy109@gmail.com

Github: @Tommyphung1