

Tutorial 1: Distributed Databases Design

Alex Polak

E-mail: a.polak@uq.net.au

+ Fragmentation

+ Fragmentation

- Why do we need fragmentation in distributed database?
 - Fully replicate data will cause:
 - Storage issue
 - Query Performance
 - Query time, Index size, Transaction, Lock,...
 - Benefits
 - Parallel process
 - Scalability

+ Fragmentations

- Horizontal Fragmentation
 - Primary Horizontal Fragmentation
 - Using the minterm predicates of itself
 - Derived Horizontal Fragmentation
 - Using the predicates from other relations
- Vertical Fragmentation
 - Each fragmentation contains a subset of attributes

+ Predicate

A Boolean-Valued Function

- \blacksquare $P: X \rightarrow \{true, false\}$
 - A predicate on value X

Simple Predicate

- A relation $R(A_1, A_2, ..., A_N)$
 - \blacksquare A_i is an attribute over domain D_i
- Predicate P_i defined on R
 - P_j : $A_i \theta$ Value
 - $\theta \in \{=, <, \neq, \leq, >, \geq\}$
 - $Value \in D_i$

- $P: SAL \ge 30,000$
 - $P(5000) \rightarrow false$
 - $P(50000) \rightarrow true$

+ Minterm Predicate

■ Minterm:

- Conjunction of a set of Boolean values
 - $\blacksquare a \land b \land c$
 - $\blacksquare a \land \neg b \land c$
 - $a, b, c \in \{0,1\}$
- A set of simple predicate $P = \{P_1, P_2, ..., P_n\}$
 - $\blacksquare M_i = P_1^* \wedge P_2^* \wedge \dots \wedge P_n^*$
 - P_j^* is either P_j or $\neg P_j$
 - P_j : $SAL \ge 30,000$
 - $\neg P_i$: SAL < 30,000
 - \blacksquare 2ⁿ in total

+ Minterm Predicate

- Each minterm predicate defines a <u>fragmentation</u>
- Each attribute can have multiple predicates
 - P_1 : $SAL \ge 30,000$
 - P_2 : SAL < 50,000
- Some minterms are useful
 - $m_1 = P_1 \land P_2 = 30000 \le SAL < 50000$
- Some are redundant
 - $m_2 = P_1 \land \neg P_2 = SAL \ge 30,000 \land SAL \ge 50,000 = SAL \ge 50,000 = \neg P_2$
 - $m_3 = \neg P_1 \land P_2 = SAL < 30,000 \land SAL < 50,000 = SAL < 30,000 = \neg P_1$
- Some are invalid
 - $m_4 = \neg P_1 \land \neg P_2 = SAL < 30,000 \land SAL \ge 50,000 = \emptyset$

+ Correctness

- $\blacksquare R \Rightarrow F = \{F_1, F_2, \dots, F_n\}$
- Completeness
 - $\blacksquare \forall t \in R$, $\exists F_i \in F$, such that $t \in F_i$
- Disjointness
 - $\blacksquare \forall F_i, F_j \in F \ and \ i \neq j \Rightarrow F_i \cap F_j = \emptyset$
- Reconstruction
 - $\blacksquare R = \cup_{i=1,\dots,n} F_i$

■ Given the following relation and the predicates P_1 : SAL > 30,000, P_2 : SAL < 30,000

<u>ID</u>	NAME	AGE	SAL
1289	John	24	12000
8907	Sally	29	67050
7643	Elvin	22	51980
0988	Kelly	42	30000
6543	Emily	19	28760
0986	Sally	46	54000
2345	Thomas	23	29999

How many fragments will we have? (Using simple predicates)

 a) Perform a horizontal fragmentation of the table based on the given predicates

1289 John 24 12000 8907 Sally 29 67050 7643 Elvin 22 51980 0988 Kelly 42 30000 6543 Emily 19 28760 0986 Sally 46 54000		ID	NAME	AGE	SAL
2345 Thomas 23 29999	•	8907 7643 0988 6543	Sally Elvin Kelly Emily	29 22 42 19	67050 51980 30000 28760

ID	NAME	AGE	SAL
1289	John	24	12000
6543	Emily	19	28760
2345	Thomas	23	29999

■ b) Is this fragmentation correct? Why?

ID	NAME	AGE	SAL
1289	John	24	12000
8907	Sally	29	67050
7643	Elvin	22	51980
0988	Kelly	42	30000
6543	Emily	19	28760
0986	Sally	46	54000
2345	Thomas	23	29999

Where is Kelly?

Fragment 1 (SAL < 30000)

	ID	NAME	AGE	SAL	ID	NAME	AGE	SAL
	1289	John	24	12000	8907	Sally	29	67050
T T	6543	Emily	19	28760	7643	Elvin	22	51980
AC V	2345	Thomas	23	29999	0986	Sally	46	54000

Fragmentation properties

- Completeness
- $(0988, Kelly, 42, 30000) \notin F_1$ and $(0988, Kelly, 42, 30000) \notin F_2$
- Disjointness

- $F_1 \cap F_2 = SAL > 30000 \cap SAL < 30000 = \emptyset$
- Reconstructability

 $\blacksquare F_1 \cup F_2 = R - (Kelly)$

Solution

- P_1 : $SAL \ge 30,000$
- P_2 : SAL < 30,000

- c) Generate a correct horizontal fragmentation using minterm predicates
- Minterm predicates
 - Automatically generate predicates that satisfy the properties
 - Input: A set of simple predicates $P = \{P_1, P_2, P_3, ..., P_n\}$
 - $P_i = a_i \theta$ Value
 - $P_1: SAL > 30,000$

$$P_2$$
: $SAL < 30,000$

- \blacksquare Enumerate all possible minterm predicates M_i
 - $M_i = P_1^* \wedge P_2^* \wedge \cdots \wedge P_n^* (P_i^* = P_i \text{ or } \neg P_i)$
 - $P_1: SAL > 30,000, P_2: SAL < 30,000$
 - $\neg P_1: SAL \leq 30,000, \neg P_2: SAL \geq 30,000$
- Eliminate useless ones

Predicates

- $P_1: SAL > 30,000, P_2: SAL < 30,000$
- $\neg P_1: SAL \leq 30,000, \neg P_2: SAL \geq 30,000$

Minterm predicates

 $M_1: SAL > 30,000 \land SAL < 30,000$

- M_2 : $SAL > 30,000 \land SAL \ge 30,000$
- M_3 : $SAL \le 30,000 \land SAL < 30,000$
- M_4 : $SAL \le 30,000 \land SAL \ge 30,000$

Elimination

- M_2 : SAL > 30,000, M_3 : SAL < 30,000
- M_4 : SAL = 30,000

+ Q1: Vertical Fragmentation

- d) Vertically fragment this relation to S1(ID, NAME, AGE) and S2(NAME, SALARY)
 - Is this fragmentation correct?

ID	NAME	AGE	SAL
1289	John	24	12000
8907	Sally	29	67050
7643	Elvin	22	51980
0988	Kelly	42	30000
6543	Emily	19	28760
0986	Sally	46	54000
2345	Thomas	23	29999

ID	NAME	AGE
1289	John	24
8907	Sally	29
7643	Elvin	22
0988	Kelly	42
6543	Emily	19
0986	Sally	46
2345	Thomas	23

NAME	SAL
John Sally Elvin Kelly	12000 67050 51980 30000
Emily	28760 54000
Sally Thomas	29999

Original Fragment 1 Fragment 2

+ Q1: Vertical Fragmentation

- Reconstructability?
 - Join: Original = Fragment 1 ⋈ Fragment 2

Fragment 1			Fragm	ent 2
	NAME	AGE	NAME	SAL
_				

1289	John	24	John	12000
8907	Sally _	20	Sally	67050
7643	Elvin	22	Elvin	51980
0988	Kelly	42	Kelly	30000
6543	Emily	19	Emily	28760
0986	Sally 4	4 6	Sally	54000
2345	Thomas	23	Thomas	29999

rıc	gin	ลเ
5	,	u

ID	NAME	AGE	SAL
1289	John	24	12000
8907	Sally	29	67050
7643	Elvin	22	51980
0988	Kelly	42	30000
6543	Emily	19	28760
0986	Sally	46	54000
2345	Thomas	23	29999
8907	Sally	29	54000
0986	Sally	46	67050

ID

+ Q1: Vertical Fragmentation

Reconstructability? solution

■ Join: Original = Fragment 1 ⋈ Fragment 2

Fragment 1

Fragment 2

<u>ID</u>	NAME	AGE	<u>ID</u>	SAL
1289 8907 7643 0988 6543 0986	John Sally Elvin Kelly Emily Sally	24 29 22 42 19 46	1289 8907 7643 0988 6543 0986	12000 67050 51980 30000 28760 54000
2345	Thomas	23	2345	29999

e) S_ID is a foreign key to Student.ID, perform
 derived horizontal fragmentation using semi-join

ID	NA	AME	AGE	SAL	
128	9 Jo	ohn	24	12000	
890	7 S	ally	29	67050	
764	3 E	lvin	22	51980	
0988	8 K	elly	42	30000	
654	3 Eı	mily	19	28760	
098	6 S	ally	46	54000	
234	5 Tho	omas	23	29999	

S_ID	COURSE	RESULT
1289	INFS1200	7
1289	INFS2200	6
8907	DECO1400	5
8907	INFS1200	4
8907	INFS2200	4
7643	COMP1002	6
0988	COMP4500	6
0988	INFS2200	5
6543	INFS1200	4
0986	INFS1200	7
2345	INFS1200	7

- Semi-join: $R \bowtie S = \pi_R R \bowtie S$
 - Only attributes in R will appear in the final result
 - S is used to filter the record in R

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999

S_ID	COURSE	RESULT
1289	INFS1200	7
1289	INFS2200	6
8907	DECO1400	5
8907	INFS1200	4
8907	INFS2200	4
7643	COMP1002	6
0988	COMP4500	6
0988	INFS2200	5
6543	INFS1200	4
0986	INFS1200	7
2345	INFS1200	7

- Derived fragmentation
 - The first table is already fragmented
 - We want the second table to be fragmented the same way as the first one
 - Use semi-join to do the fragmentation
 - *S* is called owner, *R* is called member

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999
ID	NAME	AGE	SAL
8907	Sally	29	67050
7643	Elvin	22	51980
0986	Sally	46	54000

S

S_ID	COURSE	RESULT
1289	INFS1200	7
1289	INFS2200	6
8907	DECO1400	5
8907	INFS1200	4
8907	INFS2200	4
7643	COMP1002	6
0988	COMP4500	6
0988	INFS2200	5
6543	INFS1200	4
0986	INFS1200	7
2345	INFS1200	7

- Derived fragmentation
 - If the fragmentation is not based on foreign key?

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999
ID	NAME	AGE	SAL
8907	Sally	29	67050
1384	Kelly	25	51980
0986	Sally	46	54000

John INFS1200 7 Kelly INFS2200 6 Emily DECO1400 5	
Emily DECO1400 5 Sally INFS1200 4 Thomas INFS2200 4 Emily COMP1002 6 John COMP4500 6	

S R

RESULT

7

6 5

4

COURSE

INFS1200

INFS2200

DECO1400

INFS1200

INFS2200

COMP1002 COMP4500

Name

John

Kelly

Emily

Sally

Thomas

Emily

John

+ Q1: Derived Horizontal Fragmentation

- Derived fragmentation
 - If the fragmentation is not based on foreign key?

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999
ID	NAME	AGE	SAL
8907	Sally	29	67050
1384	Kelly	25	51980
0986	Sally	46	54000

Name	COURSE	RESULT
John	INFS1200	7
Kelly	INFS2200	6
Emily	DECO1400	5
Thomas	INFS2200	4
Emily	COMP1002	6
John	COMP4500	6

Name	COURSE	RESULT
Kelly	INFS2200	6
Sally	INFS1200	4

S

 A correct fragmentation needs to satisfy the properties of (1) completeness, (2) disjointness and (3) reconstructability.

Please discuss if each of the following fragmentation schemes meet these criteria, and how the original relation can be reconstructed.

- a) Primary horizontal fragmentation using minterm predicates.
 - Simple predicates
 - P_1 : $SAL < 40,000, P_2$: SAL > 30,000
 - $\neg P_1: SAL \ge 40,000, \neg P_2: SAL \le 30,000$
 - Minterm predicates
 - M_2 : $SAL \le 30,000, M_3$: $30,000 < SAL < 40,000, M_4$: $SAL \ge 40,000$
 - Completeness
 - Disjointness
 - Reconstructability
 - Union

- b) Derived horizontal fragmentation using semi-joins with the owner relation correctly fragmented.
 - Completeness
 - Foreign key
 - Disjointness
 - Reconstructability

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999

S.Fragment 1

S_ID	COURSE	RESULT
1289	INFS1200	7
1289	INFS2200	6
0988	COMP4500	6
0988	INFS2200	5
6543	INFS1200	4
2345	INFS1200	7

R

R.Fragment 1

- c) Vertical fragmentation with primary key attributes fully replicated in all fragments.
 - Completeness
 - Disjointness
 - Reconstructability
 - Join

<u>ID</u>	NAME	AGE	SAL	<u>ID</u>	NAME	AGE	<u>ID</u>	SAL
1289	John	24	12000	1289	John	24	1289	12000
8907	Sally	29	67050	8907	Sally	29	8907	67050
7643	Elvin	22	51980	7643	Elvin	22	7643	51980
0988	Kelly	42	30000	0988	Kelly	42	0988	30000
6543	Emily	19	28760	6543	Emily	19	6543	28760
0986	Sally	46	54000	0986	Sally	46	0986	54000
2345	Thomas	23	29999	2345	Thomas	23	2345	29999

- d) Vertical fragmentation with primary key attributes replicated in only some fragments.
 - Completeness
 - Disjointness
 - Reconstructability

<u>ID</u>	NAME	AGE	SAL	<u>ID</u>	NAME	AGE	NAME	SAL
1289 8907	John Sally	24 29	12000 67050	1289 8907	John Sally	24 29	John Sally	12000 67050
7643	Elvin	22	51980	7643	Elvin	22	Elvin	51980
0988 6543	Kelly Emily	42 19	30000 28760	0988 6543	Kelly Emily	42 19	Kelly Emily	30000 28760
0986	Sally	46	54000	0986	Sally	46	Sally	54000
2345	Thomas	23	29999	2345	Thomas	23	Thomas	29999

After a relation R is fragmented correctly, how to insert a new tuple into R or update an existing tuple? Using primary horizontal fragmentation as an

example.

ID	NAME	AGE	SAL
1289	John Sally Elvin Kelly Emily Sally Thomas	24	12000
8907		29	67050
7643		22	51980
0988		42	30000
6543		19	28760
0986		46	54000
2345		23	29999

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999

Fragment 1 (SAL ≤ 30000)

ID	NAME	AGE	SAL
8907	Sally	29	67050
7643	Elvin	22	51980
0986	Sally	46	54000

ID	NAME	AGE	SAL
1356	James	25	45386

After a relation R is fragmented correctly, how to insert a new tuple into R or update an existing tuple? Using primary horizontal fragmentation as an example.

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999

Fragment 1 (SAL ≤ 30000)

ID	NAME	AGE	SAL
8907 7643 0986	Sally Elvin Sally	29 22 46	67050 51980 54000
1356	James	25	45386

ID	NAME	AGE	SAL
7643	Kevin	20	21374

After a relation R is fragmented correctly, how to insert a new tuple into R or update an existing tuple? Using primary horizontal fragmentation as an example.

ID	NAME	AGE	SAL
1289	John	24	12000
0988	Kelly	42	30000
6543	Emily	19	28760
2345	Thomas	23	29999
7643	Kevin	20	21374

Fragment 1 (SAL ≤ 30000)

→	ID	NAME	AGE	SAL
	8907	Sally	29	67050
	7643	Elvin	22	51980
	0986	Sally	46	54000
	1356	James	25	45386

- After a relation R is fragmented correctly, how to insert a new tuple into R or update an existing tuple? Using primary horizontal fragmentation as an example.
 - Insertion:
 - If predicates are not on the primary key, check all the fragments to make sure the primary key does not exist.
 - Compare the value with predicates and insert it into the right fragment.
 - Update: Search the record by WHERE condition, update the value of SAL and <u>send the record</u> into the right fragment according to the new value of SAL.

