Laporan Pertemuan 6 – Machine Learning

Optimasi Model Random Forest untuk Prediksi Kelulusan Mahasiswa

Nama: Galih Naufal Faturrohman

NIM: 231011402731

Program Studi: Informatika – Universitas Pamulang

1. Pendahuluan

Tahap ini merupakan kelanjutan dari analisis sebelumnya yang berfokus pada pembangunan model prediksi kelulusan mahasiswa menggunakan algoritma *Machine Learning*. Jika pada pertemuan ke-5 dilakukan perbandingan antara *Logistic Regression* dan *Random Forest*, maka pada pertemuan ke-6 ini fokus diarahkan pada **optimasi performa model Random Forest** dengan menggunakan *cross-validation* dan *hyperparameter tuning*.

Pendekatan ini bertujuan untuk meningkatkan akurasi, kestabilan, serta kemampuan generalisasi model dalam memprediksi kelulusan berdasarkan fitur akademik seperti IPK, jumlah absensi, dan waktu belajar.

2. Tujuan

Tujuan utama dari analisis ini adalah:

- 1 Melakukan pembagian dataset menjadi data latih, validasi, dan uji.
- 2 Membangun model **Random Forest** dengan preprocessing yang tepat.
- 3 Melakukan evaluasi awal model menggunakan metrik **F1-score**.
- 4 Mengoptimalkan parameter model menggunakan **GridSearchCV** dan **StratifiedKFold**.
- 5 Mengevaluasi hasil akhir model dengan metrik **ROC-AUC**, **precision-recall**, dan **confusion matrix**.

3. Metode Analisis

Analisis dilakukan menggunakan dataset *processed_kelulusan.csv* yang telah melalui tahap pembersihan dan rekayasa fitur pada pertemuan sebelumnya. Langkah-langkah utama yang dilakukan adalah:

1 Preprocessing Data:

- Menangani nilai kosong dengan SimpleImputer (strategi median).
 - Menstandarkan fitur numerik menggunakan *StandardScaler*.

2 Modeling:

- Menggunakan algoritma Random Forest Classifier dengan parameter awal:
 - n = 300
 - max_features = "sqrt"
 - class weight = "balanced"

3 Validasi Model:

- Menggunakan StratifiedKFold sebanyak 2 fold untuk menjaga proporsi kelas.
- Melakukan *cross-validation* dengan metrik F1-macro untuk mengukur stabilitas model.

4 **Hyperparameter Tuning:**

- Menggunakan *GridSearchCV* dengan variasi parameter:
 - max depth = [None, 12, 20, 30]
 - min_samples_split = [2, 5, 10]
- Pemilihan model terbaik berdasarkan nilai rata-rata F1-score tertinggi.

5 Evaluasi Model:

- Menggunakan metrik **F1-score**, **ROC-AUC**, **precision-recall curve**, dan **confusion matrix**.
- Analisis pentingnya fitur (*feature importance*) dilakukan untuk mengetahui variabel paling berpengaruh terhadap kelulusan.

4. Hasil dan Pembahasan

Model awal **Random Forest** menghasilkan performa yang baik pada data validasi dengan nilai F1-macro yang stabil.

Setelah dilakukan tuning parameter, didapatkan peningkatan performa pada data validasi dan uji.

Temuan utama:

- *Cross-validation* menunjukkan hasil yang konsisten dengan rata-rata F1-macro relatif tinggi.
- Parameter terbaik diperoleh pada kombinasi kedalaman pohon menengah (max_depth=20) dan jumlah minimum sampel split kecil (min_samples_split=2).
- ROC Curve menunjukkan model memiliki kemampuan klasifikasi yang baik dengan area di bawah kurva (AUC) mendekati nilai maksimum.
- Hasil *feature importance* menunjukkan bahwa variabel **IPK** dan **IPK_x_Study** memiliki pengaruh paling signifikan terhadap status kelulusan mahasiswa.

Dengan demikian, model yang telah dioptimasi memiliki kemampuan prediktif yang lebih baik dibandingkan model baseline dari pertemuan sebelumnya.

5. Kesimpulan

- 1 Model **Random Forest** yang dioptimasi menggunakan *GridSearchCV* menunjukkan peningkatan performa dalam memprediksi kelulusan mahasiswa.
- 2 Proses *cross-validation* membantu menjaga keandalan model dengan memastikan hasil evaluasi tidak tergantung pada satu subset data saja.
- 3 Variabel akademik seperti **IPK** dan **jumlah absensi** menjadi faktor dominan yang memengaruhi hasil prediksi.
- 4 Model yang dihasilkan memiliki kemampuan diskriminatif yang baik berdasarkan nilai ROC-AUC dan F1-score.
- 5 Untuk penelitian lanjutan, disarankan memperbanyak jumlah data serta mencoba algoritma lain seperti Gradient Boosting atau XGBoost untuk perbandingan performa.

Catatan:

Seluruh proses analisis dilakukan menggunakan bahasa Python pada file main 6.py, yang

mencakup preprocessing, pelatihan model, validasi, serta visualisasi kurva ROC dan Precision-Recall.