Three-part diachronic semantic change dataset for Russian

Andrey Kutuzov, Lidia Pivovarova

University of Oslo, University of Helsinki

https://github.com/akutuzov/rushifteval_public

Contents

- RuShiftEval dataset construction
 - Historical periods to compare
 - Target word list creation
- Annotation setup
 - DURel framework
- RuShiftEval shared task
- 4 Diachronic trajectory types revealed in RuShiftEval
- Summing up

1

► RuShiftEval is a manually annotated dataset of graded diachronic semantic changes for Russian nouns.

- RuShiftEval is a manually annotated dataset of graded diachronic semantic changes for Russian nouns.
- ► ...but wait, we have already seen a dataset for Russian, no?

- RuShiftEval is a manually annotated dataset of graded diachronic semantic changes for Russian nouns.
- ...but wait, we have already seen a dataset for Russian, no?

Right. This was RuSemShift

- ► Two sub-sets (comparisons) each covering a specific pair of time periods:
 - 1. RuSemShift₁: pre-Soviet VS Soviet times (71 words)
 - 2. *RuSemShift*₂: **Soviet VS post-Soviet** times (69 words).

[Rodina and Kutuzov, 2020]

- RuShiftEval is a manually annotated dataset of graded diachronic semantic changes for Russian nouns.
- ▶ ...but wait, we have already seen a dataset for Russian, no?

Right. This was RuSemShift

- ► Two sub-sets (comparisons) each covering a specific pair of time periods:
 - 1. *RuSemShift*₁: **pre-Soviet VS Soviet** times (71 words)
 - 2. RuSemShift₂: Soviet VS post-Soviet times (69 words).

[Rodina and Kutuzov, 2020]

What is novel in RuShiftEval?

- 1. Adds the third sub-set (comparison):
 - ► pre-Soviet VS post-Soviet times
- 2. a new single set of target nouns over all three comparisons

The annotation effort for this shared task was supported by the Russian Science Foundation grant 20-18-00206. This work has been partially supported by the European Union Horizon 2020 research and innovation programme under grants 770299 (NewsEye) and 825153 (EMBEDDIA).

Time periods:

- 1. 1700 : 1916: the period of Russian Empire before the 1917 revolution (pre-Soviet).
- 2. 1918 : 1990: the period of the Soviet Union (Soviet).
- 3. 1992 : 2016: the period after the fall of the Soviet Union (post-Soviet).

Time periods:

- 1. 1700 : 1916: the period of Russian Empire before the 1917 revolution (pre-Soviet).
- 2. 1918 : 1990: the period of the Soviet Union (Soviet).
- 3. 1992 : 2016: the period after the fall of the Soviet Union (post-Soviet).

Period pairs (sub-sets):

- RuShiftEval-1 (pre-Soviet VS Soviet)
- RuShiftEval-2 (Soviet VS post-Soviet)
- ► RuShiftEval-3 (pre-Soviet VS post-Soviet)

Time periods:

- 1. 1700 : 1916: the period of Russian Empire before the 1917 revolution (pre-Soviet).
- 2. 1918 : 1990: the period of the Soviet Union (Soviet).
- 3. 1992 : 2016: the period after the fall of the Soviet Union (post-Soviet).

Period pairs (sub-sets):

- RuShiftEval-1 (pre-Soviet VS Soviet)
- ► RuShiftEval-2 (Soviet VS post-Soviet)
- ► RuShiftEval-3 (pre-Soviet VS post-Soviet)

Time periods:

- 1. 1700 : 1916: the period of Russian Empire before the 1917 revolution (pre-Soviet).
- 2. 1918 : 1990: the period of the Soviet Union (Soviet).
- 3. 1992 : 2016: the period after the fall of the Soviet Union (post-Soviet).

Period pairs (sub-sets):

- RuShiftEval-1 (pre-Soviet VS Soviet)
- ► RuShiftEval-2 (Soviet VS post-Soviet)
- ► RuShiftEval-3 (pre-Soviet VS post-Soviet)

Sentences for the annotation were sampled from the *Russian National Corpus* (RNC).

Target word list creation

The workflow was similar to [Kutuzov and Kuzmenko, 2018], [Rodina and Kutuzov, 2020], [Schlechtweg et al., 2020], etc.

Target word list creation

The workflow was similar to [Kutuzov and Kuzmenko, 2018], [Rodina and Kutuzov, 2020], [Schlechtweg et al., 2020], etc.

How we chose target words?

- Manually picked words with changed meaning from prior linguistic work and dictionaries.
- ► Added 2 randomly sampled 'fillers' or 'distractors' with similar frequency distributions per each target word.
- ► This alone does not give us relative change strength!
- ► For this, human annotation is needed
- 111 nouns total: 12 in the development set and 99 in the test set.

Contents

- RuShiftEval dataset construction
 - Historical periods to compare
 - Target word list creation
- Annotation setup
 - DURel framework
- 3 RuShiftEval shared task
- 4 Diachronic trajectory types revealed in RuShiftEval
- Summing up

- Diachronic Usage Relatedness (DURel) semantic change annotation methodology [Schlechtweg et al., 2018]:
- The degree of semantic change is a function of mean semantic relatedness across pairs of word's occurrences in different time periods.
- ► The annotators are given 2 sentences from 2 time periods containing a target word
- asked to choose a relatedness score from 0 to 4:

- Diachronic Usage Relatedness (DURel) semantic change annotation methodology [Schlechtweg et al., 2018]:
- ► The degree of semantic change is a function of mean semantic relatedness across pairs of word's occurrences in different time periods.
- ► The annotators are given 2 sentences from 2 time periods containing a target word
- ► asked to choose a relatedness score from 0 to 4:

Score	core Relatedness		
0	Cannot decide		
1	Senses unrelated		
2	Senses distantly related		
3	Senses closely related		
4	Senses identical		

[Hätty et al., 2019]

- ➤ Yandex.Toloka crowd-workers assigned relatedness scores for 30 randomly sampled sentence pairs for each target word and period pair (sub-set).
- ► Each sentence pair annotated by 3 human raters (about 100 for each sub-set).
- ▶ Native speakers of Russian, older than 30, with a university degree.

- ➤ Yandex. Toloka crowd-workers assigned relatedness scores for 30 randomly sampled sentence pairs for each target word and period pair (sub-set).
- ► Each sentence pair annotated by 3 human raters (about 100 for each sub-set).
- ▶ Native speakers of Russian, older than 30, with a university degree.
- ► RuShiftEval uses COMPARE: the mean relatedness between two time periods.
- ▶ The 1st sentence from the *earlier* period, and the 2nd sentence from the *later* period.
- ► Supposed to approximate the inverted degree of semantic change for a given word.

3 period pairs: 3 scores to be predicted for each word

The inter-rater agreement is on par with other semantic change annotation efforts.

Period pairs	Krippendorff α	Spearman $ ho$	Judgments	0-judgments		
Test set (99 words)						
RuShiftEval-1	0.506	0.521	8 863	42		
RuShiftEval-2	0.549	0.559	8 879	25		
RuShiftEval-3	0.544	0.556	8 876	31		
Development set (12 words)						
RuShiftEval-1	0.592	0.613	1 013	7		
RuShiftEval-2	0.609	0.627	1 014	3		
RuShiftEval-3	0.597	0.632	1 015	2		
<u> </u>		-		-		

About 30 000 human judgments in total. Publicly available, including the raw scores.

Contents

- RuShiftEval dataset construction
 - Historical periods to compare
 - Target word list creation
- Annotation setup
 - DURel framework
- RuShiftEval shared task
- 4 Diachronic trajectory types revealed in RuShiftEval
- Summing up

RuShiftEval'2021

- ► Shared task collocated with the Dialogue 2021 conference [Kutuzov and Pivovarova, 2021]
- ► First open shared task in graded semantic change detection for Russian
- Not surprisingly, used the RuShiftEval annotations to evaluate the submissions
- ► Participants could train on the prior RuSemShift dataset

RuShiftEval'2021

- ► Shared task collocated with the Dialogue 2021 conference [Kutuzov and Pivovarova, 2021]
- ► First open shared task in graded semantic change detection for Russian
- Not surprisingly, used the RuShiftEval annotations to evaluate the submissions
- ► Participants could train on the prior RuSemShift dataset

Some results of the shared task

Contextualized architectures topped the leaderboard: XLM-R, BERT and ELMo

RuShiftEval'2021

- ► Shared task collocated with the Dialogue 2021 conference [Kutuzov and Pivovarova, 2021]
- ► First open shared task in graded semantic change detection for Russian
- ► Not surprisingly, used the RuShiftEval annotations to evaluate the submissions
- ► Participants could train on the prior RuSemShift dataset

Some results of the shared task

- ► Contextualized architectures topped the leaderboard: XLM-R, BERT and ELMo
- ► The first and the second best submissions relied on the multi-lingual XLM-R model,
 - ▶ But it didn't work so well at the SemEval'2020. Why?

RuShiftEval'2021

- ► Shared task collocated with the Dialogue 2021 conference [Kutuzov and Pivovarova, 2021]
- ► First open shared task in graded semantic change detection for Russian
- ► Not surprisingly, used the RuShiftEval annotations to evaluate the submissions
- ► Participants could train on the prior RuSemShift dataset

Some results of the shared task

- ► Contextualized architectures topped the leaderboard: XLM-R, BERT and ELMo
- ▶ The first and the second best submissions relied on the multi-lingual XLM-R model,
 - ▶ But it didn't work so well at the SemEval'2020. Why?
- ► Using training data helps lexical semantic change detection
 - ▶ 4 top systems all train or fine-tune on RuSemShift

Contents

- RuShiftEval dataset construction
 - Historical periods to compare
 - Target word list creation
- Annotation setup
 - DURel framework
- RuShiftEval shared task
- Diachronic trajectory types revealed in RuShiftEval
- 5 Summing up

- changes in every period pair, all relatedness scores are low: линейка ('carriage/ruler/series of goods')
- 2. change in the Soviet period VS the pre-Soviet period: роспись ('list/painting')
- 3. change in the post-Soviet period VS the Soviet period: тачка ('wheelbarrow/car')
 - 4. (trivial) no changes: all three relatedness scores are high.
- 5. (not found) change in the Soviet period then coming back to the original meaning

- changes in every period pair, all relatedness scores are low: линейка ('carriage/ruler/series of goods')
- 2. change in the Soviet period VS the pre-Soviet period: роспись ('list/painting')
- 3. change in the post-Soviet period VS the Soviet period: тачка ('wheelbarrow/car')
 - 4. (trivial) no changes: all three relatedness scores are high.
 - 5. (not found) change in the Soviet period then coming back to the original meaning

Time relatedness graphs. Nodes: time periods; edge width: relatedness scores.

Trajectory detection task: a toy preliminary experiment

- ► How good were the RuShiftEval submissions in capturing these trajectory types?
- Successful capturing is:
 - ► Type 1: percentile ranks of the scores for all 3 sub-sets are below 50
 - ► Type 2: score for the 'Soviet:post-Soviet' sub-set is the highest
 - ► Type 3: score for the 'pre-Soviet:Soviet' sub-set is the highest

Trajectory detection task: a toy preliminary experiment

- ► How good were the RuShiftEval submissions in capturing these trajectory types?
- Successful capturing is:
 - ► Type 1: percentile ranks of the scores for all 3 sub-sets are below 50
 - ► Type 2: score for the 'Soviet:post-Soviet' sub-set is the highest
 - ► Type 3: score for the 'pre-Soviet:Soviet' sub-set is the highest

Туре	Example	Baseline	Top 4 systems
1	линейка ('carriage/ruler/series of goods')	0.5	1.0
2	роспись ('list/painting')	1.0	1.0
3	тачка ('wheelbarrow/car')	0.4	0.8-1.0

Percentages of words with correctly captured types. Baseline: diachronic CBOW and local neighbors [Hamilton et al., 2016]. Top systems: ELMo, BERT and XLM-R.

Contents

- RuShiftEval dataset construction
 - Historical periods to compare
 - Target word list creation
- Annotation setup
 - DURel framework
- 3 RuShiftEval shared task
- 4 Diachronic trajectory types revealed in RuShiftEval
- Summing up

Summing up

A future sub-task?

- ► Performance in detecting diachronic trajectories correlates with the performance in 'traditional' graded semantic change...
- ▶ ...but not 100%

1

Summing up

A future sub-task?

- ► Performance in detecting diachronic trajectories correlates with the performance in 'traditional' graded semantic change...
- ▶ ...but not 100%
- ► Can be an interesting sub-task within semantic change detection...
- ...once more datasets like RuShiftEval are available...
- and 'capturing the trajectory' is defined more strictly.

Summing up

A future sub-task?

- ► Performance in detecting diachronic trajectories correlates with the performance in 'traditional' graded semantic change...
- ▶ ...but not 100%
- ► Can be an interesting sub-task within semantic change detection...
- ► ...once more datasets like RuShiftEval are available...
- ▶ and 'capturing the trajectory' is defined more strictly.
- ► Thanks for your attention!
- ► Feel free to use RuShiftEval!

https://github.com/akutuzov/rushifteval_public

1

References I

change.

Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2016). Cultural shift or linguistic drift? comparing two computational measures of semantic

In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2116–2121, Austin, Texas. Association for Computational Linguistics.

Hätty, A., Schlechtweg, D., and Schulte im Walde, S. (2019). SURel: A gold standard for incorporating meaning shifts into term extraction. In *Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)*, pages 1–8, Minneapolis, Minnesota. Association for Computational Linguistics.

References II

Two centuries in two thousand words: neural embedding models in detecting diachronic lexical changes.

Quantitative Approaches to the Russian Language, page 95.

Rodina, J. and Kutuzov, A. (2020).
RuSemShift: a dataset of historical lexical semantic change in Russian.
In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 1037–1047, Barcelona, Spain (Online). International Committee on Computational Linguistics.

References III

Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., and Tahmasebi, N. (2020).

SemEval-2020 task 1: Unsupervised lexical semantic change detection. In *Proceedings of the Fourteenth Workshop on Semantic Evaluation*, pages 1–23, Barcelona (online). International Committee for Computational Linguistics.

Schlechtweg, D., Schulte im Walde, S., and Eckmann, S. (2018). Diachronic usage relatedness (DUReI): A framework for the annotation of lexical semantic change.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 169–174, New Orleans, Louisiana. Association for Computational Linguistics.