STAT 5010: Advanced Statistical Inference

Lecturer: Tony Sit

Lecture # 4

Scribe: Bowen Jia and Zheng Zhang

1 Sufficiencies

Recap: Neyman-Fisher Factorization criterion. T(X) is sufficient is sufficient iff $p(x;\theta) = g_{\theta}(T(x))h(x)$ prove for the discrete cases, p(x|T) is independent of θ We will look at the proof for the continuous case (Ref. Keener 6.4).

To begin, suppose $p_{\theta} \in p$ and $\theta \in \Omega$

$$p(x;\theta) = g_{\theta}(T(x))h(x).$$

With respect to μ . Modifying h, we can assume without loss of generality that μ us a probability measure equivalent to the family $P = \{p_{\theta} : \theta \in \Omega\}$ [Equivalence referes to the situation where $\mu(N) = 0$ iff $p_{\theta}(N) = 0 \quad \forall \theta \in \Omega$].

Let E^* and P^* be the expectation and probability where $X \sim \mu$. Let G^* and G_θ denote marginal distribution for T(x) where $X \sim \mu$ and $X \sim P_\theta$ respectively. Let Q be the conditional distribution for X given T where $X \sim \mu$.

To find the densities for T,

$$E_{\theta}f(T) = \int f(T(x))g_{\theta}(T(x))h(x)d\mu(x)$$

$$= E^*\{f(T)g_{\theta}(T)h(X)\}$$

$$= \int \int f(t)g_{\theta}(T)h(x)dQ_t(x)dG^*(t)$$

$$\triangleq \int f(t)g_{\theta}(t)\omega(t)dG^*(t),$$

where $\omega(t) = \int h(x)dQ_t(x)$. If f is an indicator function this shows that G_{θ} has the density $g_{\theta}\omega(t)$ with respect to G^* . Next we define \widetilde{Q} to have density $h/\omega(t)$ with respect to Q(t), so that

$$\widetilde{Q}_t(B) = \int_B \frac{h(x)}{\omega(t)} dQ_t(x),$$

the conditional distribution of X given T under P_{θ} is independent of Q.

$$E_{\theta} \int (X, T) = E^* \{ f(X, T) g_{\theta}(T) h(x) \}$$

$$= \iint f(x, t) g_{\theta}(t) h(x) dQ_t(x) dG^*(t)$$

$$= \iint f(x, t) d\widetilde{Q}_t(x) dG_{\theta}(t)$$

By the definition of conditional distribution, it shows that \widetilde{Q} is a conditional distribution of X given under P_{θ} . Because \widetilde{Q} does not depend on Q, it is sufficient statistic.

2nd part: T is sufficient statistic → factorization holds(tutorial)

2 Sufficiency

Data reduction \rightarrow all information about θ is stored in $\Theta \rightarrow$ improves data interpretability. (c.f. example

$$\begin{cases} \widetilde{X} = TU, \\ \widetilde{Y} = T(1 - U), \end{cases} \tag{1}$$

where U is a uniform (0,1) independent of T.

Question: how much data compression/reduction can be achieved while the inference for θ is not impaired (in any sense)? what is the optimal data reduction strategy?

3 Exponential families

3.1 Basics

Definition: The model $\{P_{\theta} : \theta \in \Omega\}$ forms an s-dimensional exponential family if each P_{θ} has density of the form:

$$P(x_j, \theta) = \exp\left(\sum_{i=1}^{s} \eta_i(\theta) T_i(x) - B(\theta)\right) h(x)$$

where $\eta_i(\theta) \in \mathbb{R}$ are called the natural parameters, $T_i(X) \in \mathbb{R}$ are its sufficient statistics, $B(\theta)$ is the log-partition function, which means that it is the logarithm of a normalising factor:

$$B(\theta) = \log \left(\int \exp \left\{ \sum_{i=1}^{s} \eta_i(\theta) T_i(x) \right\} h(x) d_{\mu}(x) \right) \in \mathbb{R},$$

and $h(x) \in \mathbb{R}$ is the base measure (e.g. $I(x \in \mathbb{R})$ or $I(x) \ge 0$).

Remark: Many common distributions are exponential families. Examples include Normal, Binomial, Poisson distribution to name but a few. Exponential families are also closely related to the motions of sufficiency and optimal data reduction.

Example 1. Exponential distribution $P = \{\exp(\theta) : \theta > 0\}$ the densities take the form:

$$p(x;\theta) = \theta e^{-\theta x} = \exp(-\theta x + \log \theta) I_{(x>0)},$$

which means that the family is a one-dimensional exp family with $\eta_i(\theta) = -\theta$, $T_i(x) = x$, $B(\theta) = -log(\theta)$ and $h(x) = I_{(x>0)}$. It is noteworthy that the parameterization is not unique.

Example 2. Beta distribution $P = \{Beta(\alpha, \beta) : \alpha, \beta > 0\}$, $\theta = (\alpha, \beta)$ the densities take the form

$$p(x;\theta) = x^{\alpha-1} (1-x)^{\beta-1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} I_{(0 < x < 1)}$$

$$= \exp\left\{ (\alpha-1)\log x + (\beta-1)\log(x-1) + \log\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\} I(0 < x < 1)$$

which means that the beta distribution belongs to a 2-dimensional exponential family with $\eta_i(\theta) = \alpha - 1$, $\eta_2(\theta) = \beta - 1$, $T = (T_1, T_2) = (\log x, \log(1 - x))$, $B(\theta) = -\log(\Gamma(\alpha + \beta)/(\Gamma(\alpha)\Gamma(\beta)))$ and h(x) = I(0 < x < 1). One may also rewrite $p(x; \theta)$ as:

$$p(x;\theta) = \exp\left\{\alpha \log x + p \log(1-x) + \log\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right\} \frac{I(0 < x < 1)}{x(1-x)}\right\}$$

which change the natural parameter from $\eta_1(\theta)$ to $\eta_1^*(\theta) = \alpha$ and $\eta_2(\theta)$ to $\theta_2^* = \beta$ with $h^*(x)$ becomes $I(0 < x < 1)/\{x(1-x)\}.$

Definition 1. An exponential family is in canonical form when the density has the form

$$p(x;\eta) = \exp\left(\sum_{i=1}^{s} \eta_i T_i(x) - A(\eta)\right) h(x). \tag{2}$$

This parameterises the densities in terms of the natural parameters η instead of θ .

Definition 2. The set of all valid natural parameters Θ is called the natural parameter space: for each $\eta \in \Theta$, there exists a normalising constant $A(\eta)$ such that $\int p(x;\eta) dx = 1$, Equivalently,

$$\Theta = \left\{ \eta : 0 < \int \exp\left(\sum_{i=1}^{s} \eta_i T_i(x)\right) h(x) d\mu x < \infty \right\}$$
(3)

For any canonical exponential family $P = p_{\eta} : \eta \in H$, we have $H \in \Theta$. One can show that Θ is convex. The differences between canonical and non-canonical one is that for the non-canonical one, there is other parametrisations.

3.2 Dimension reduction

There are two cases when the superficial dimension of an s-dimensional exponential family $P = p_{\eta} : \eta \in H$ can be reduced.

3.2.1 Case 1

The $T_i(x)$'s satisfy an affine equality constraint for all $x \in X$. In other words, $\{T_i\}$ are linearly dependent and we call η unidentifiable.

Definition 3. If $\mathcal{P} = \{p_{\theta}; \theta \in \Omega\}$, then θ is unidentifiable if for two parameters $\theta_1 \neq \theta_2$, $p_{\theta_1} = p_{\theta_2}$.

Example 3. Let $X \sim \exp(\eta_1, \eta_2)$ with

$$p(x; \eta_1, \eta_2) = \exp\{-\eta_1 x - \eta_2 x + \log(\eta_1 + \eta_2)\} I(x \ge 0)$$
(4)

Here $T_1(x) = T_2(x) = x$ (they are linearly dependent). We can actually combine (η_1, η_2) into $\eta_1 + \eta_2$ and write

$$p(x; \eta_1, \eta_2) = \exp\{-(\eta_1 + \eta_2)x + \log(\eta_1 + \eta_2)\}I(x \ge 0)$$
(5)

Besides, η is unidentifiable since $p(x; \eta_1 + c, \eta_2 - c) = p(x; \eta_1, \eta_2)$ for all $c < \eta_2$.

3.2.2 Case 2

The η_i 's satisfy an affine equality constraint for all $\eta \in H$.

Example 4. Let $p(x; \eta) = c(\eta_1, \eta_2) \exp(\eta_1 x + \eta_2 x^2)$ for all (η_1, η_2) satisfying $\eta_1 + \eta_2 = 1$. Then we can rewrite

$$p(x;\eta) = c(\eta_1, \eta_2) \exp(\eta_1(x - x^2) + x^2)$$
(6)

3.2.3 Minimal

When neither of the above two cases hold, we call the exponential family minimal.

Definition 4. A canonical exponential family $P = p_{\eta} : \eta \in H$ is minimal if

- (1) $\sum_{i=1}^{s} \lambda_i T_i(x) = \lambda_0, \forall x \in X \Longrightarrow \lambda_i = 0 \ \forall i \in \{0, ..., s\}$ (2) $\sum_{i=1}^{s} \lambda_i \eta_i = \lambda_0, \forall \eta \in H \Longrightarrow \lambda_i = 0 \ \forall i \in \{0, ..., s\}$

Definition 5. Suppose is $P = p_{\eta} : \eta \in H$ a s-dimensional exponential family. If H contains an open sdimensional rectangle, then P is called full-rank, otherwise P is called curved, which means that the η_i 's are related non-linearly.

Example 5. Consider $N(\mu, \sigma^2)$ where in this case $\eta_1 = 1/(2\sigma^2)$, $\eta_2 = \mu/\sigma^2$, $T_1(x) = -x^2$, $T_2(x) = x$.

- 1. Take $\mu = \sigma^2$, then $\eta_1 = 1/(2\sigma^2)$, $\eta_2 = 1$, then $1/(2\sigma^2)\eta_2 \eta_1 = 0$. Therefore, the family is non-minimal in this case.
- 2. Take $\mu = \sqrt{\sigma^2}$, then $\eta_1 = 1/(2\sigma^2)$, $\eta_2 = 1/\sqrt{\sigma^2}$, then $\eta_2 = \sqrt{2\eta_1}$. Therefore, the family is minimal and curved in this case.
- 3. When there's no constraint on (μ, σ^2) , H contains an open rectangle: $\mathbb{R} \times (0, \infty)$. Therefore, the family is minimal and full-rank in this case.

Properties of exponential families

- 1. If $X_1, X_2, ..., X_n \stackrel{i.i.d}{\sim} p(x; \theta) = \exp\{\sum_{i=1}^s \eta_i(\theta) T_i(x) B(\theta)\} h(x)$. Then by NFFC, $(\sum_{j=1}^{n} T_1(x), ..., \sum_{j=1}^{n} T_s(x))$ is a sufficient statistic. Hence the exponential family is exceptionally compressible.
- 2. If f is integrable and $\eta \in \Theta$, then

$$G(f,\eta) = \int f(x) \exp\left\{\sum_{i=1}^{s} \eta_i T_i(x)\right\} h(x) d\mu(x)$$
(7)

is infinitely differentiable with respect to η and the derivatives can be obtained by differentiating under the integral sign.

3. The moments of T_i 's can be directly calculated by taking f(x) = 1:

$$G(f,\eta) = \int \exp\left\{\sum_{i=1}^{s} \eta_i T_i(x)\right\} h(x) d\mu(x) = \exp(A(\eta))$$
 (8)

$$\frac{\partial G(f,\eta)}{\partial \eta_i} = \int T_i(x) \exp\left\{\sum_{i=1}^s \eta_i T_i(x)\right\} h(x) d\mu(x) = \frac{\partial A(\eta)}{\partial \eta_i} \exp(A(\eta)). \tag{9}$$

Therefore,

$$\frac{\partial A(\eta)}{\partial \eta_i} = \int T_i(x) \exp\{\sum_{i=1}^s \eta_i T_i(x) - A(\eta)\} h(x) d\mu(x) = E_{\eta}\{T_i(x)\}$$
 (10)

Besides, it can be shown that

$$\frac{\partial^2 A(\eta)}{\partial \eta_i \partial \eta_j} = \text{Cov}_{\eta}(T_i(x), T_j(x)) \tag{11}$$

3.4 Minimal Sufficiency

Definition 6. A sufficient statistic T is minimal if for every sufficient statistics T' and for every $x, y \in X$, T(x) = T(y) when T'(x) = T'(y). In other words, T is a function of T'. i.e. there exists a function f such that T(x) = f(T'(x)) for any $x \in X$.

The following theorem allows us to verify whether a sufficient statistic is minimal or not.

Theorem 7. Let $p(x; \theta) : \theta \in \Omega$ be a family of densities with respect to some measure μ (usually lebesgue measure for continuous distribution and counting measure for discrete distribution). Suppose that there exists a statistic T such that for every $x, y \in X$

$$p(x;\theta) = c(x,y)p(y;\theta) \longleftrightarrow T(x) = T(y) \tag{12}$$

for every θ and some $c(x,y) \in \mathbb{R}$. Then T is a minimal sufficient statistic.

Proof. First prove that T is sufficient and then T is minimal.

1. (T is sufficient) For all $t \in T(X)$ (the image of T), consider the preimage $A_t = T^{-1}(t)$. For each A_t , we denote x_t as a representative. Then for any $y \in X$, we have $y \in A_{T(y)}$ and $x_{T(y)} \in A_{T(y)}$. From the assumption of T, we have

$$p(y;\theta) = c(y, x_{T(y)})p(x_{T(y)};\theta) = h(y)g_{\theta}(T(y))$$
 (13)

Therefore, by NFFC, T is sufficient.

2. (T is minimal) Consider another sufficient statistic T'. By NFFC,

$$p(x;\theta) = \tilde{g}_{\theta}(T'(x))\tilde{h}(x) \tag{14}$$

Take any x and y such that T'(x) = T'(y), then

$$p(x;\theta) = \tilde{g}_{\theta}(T'(x))\tilde{h}(x) = \tilde{g}_{\theta}(T'(y))\tilde{h}(y)\frac{\tilde{h}(x)}{\tilde{h}(y)} = p(y;\theta)C(x,y)$$
(15)

By the assumption of T, T(x) = T(y). Therefore, we've proved that for any sufficient statistics T' and any x and y, T'(x) = T'(y) implies T(x) = T(y). T is minimal.