projeto

December 1, 2019

1 Projeto Final

Este é o projeto final da disciplina Aprendizado de Máquina (IA006-C), ministrado pelos professores Levy Boccato e Romis, na Unicamp no 2S2019.

1.1 Projeto

A ideia do projeto é permitir a clusterização de conteúdo textual, para que a partir deste seja criado um chatbot.

Os textos passarão pro um processo de clusterização (e aqui serão apresentados duas técnicas para gerar o espaço vetorial de documentos [TF-IDF e Doc2Vec]) usando o algoritmo KMeans e usando duas métricas para cálculo das distâncias dos documentos no espaço vetorial desejado.

Posterior a isso, textos que não forem similares (ou proximamente similares aos já "classificados") serão considerados como anomalias e por conseguintes novos clusters poderão ser gerados futuramente.

1.1.1 Carregamento dos datasets

Os datasets de exemplos são frases já pré-categorizadas usadas em chatbots. Contém 32 categorias e ao todo 690 documentos ou frases.

	perguntas	$\operatorname{cluster}$
198	como faco para trocar o meu usuario	ACCOUNT
204	eu consigo trocar meu username para outro?	ACCOUNT
237	estou falando com um bot não?	BOT_FOUND
226	quero solicitar a renovação de um certificado digital	CERTIFICATE
148	estou sem acesso ao meu endereco eletronico	EMAIL
167	como saber mais sobre o email da empresa	EMAIL
113	quais outras opções tem para me mostrar?	NO OPTION
119	nenhuma dessas opções me ajuda	NO OPTION
23	Não consigo trocar a minha senha	PASSWORD
0	posso consultar informações relativas a outros serviços e	projetos? SERVICES

Qtde. de documentos por categoria:

<IPython.core.display.HTML object>

 $\begin{array}{lll} Total\ docs &: 272 \\ Total\ cluster &: 272 \\ X_train\ size &: (217,) \\ X_test\ size &: (55,) \end{array}$

1.1.2 Dataset tokenization

Tokenization...

Qtd documentos treino: 217 Qtd Intents treino : 12

Finished...

1.1.3 Doc2Vec

Parâmetros iniciais... quantidade de dimensões dos vetores gerados para cada frase, épocas de treinamento e épocas de posterior inferência para novas frases.

A quantidade de épocas de inferência, sugere-se ser bem superior as de treinamento.

Dimensions: 1000 Epochs: 200 Infer Epochs: 15000 Starting model...

Building vocab...
Training...
Finish...

Validação do modelo gerado pelo Doc2Vec... teste tanto nos dados apresentados para treinamento quanto nos dados de testes e as acurácias alcançadas.

Randomicamente escolhendo 100 amostras de teste.

Acurácia treino: 99.0
Acurácia teste 1 : 80.0
Acurácia teste 2 : 80.0
Acurácia teste 3 : 80.0
Acurácia teste 4 : 80.0
Acurácia teste 5 : 80.0
Acurácia média teste: 80.0

Clusterização Utilizou-se o KMeans definindo a quantidade de clusters para o número ideal de categorias existentes no caso 33. A métrica de distância utilizada, não foi a euclidiana, mas sim a de cosseno (métrica comumente usada na classificação de texto em seu espaço vetorial).

Frases por cluster:

<IPython.core.display.HTML object>

Documentos por cluster:

<IPython.core.display.HTML object>

Visualização Apresentação dos protótipos gerados pelo KMeans, reduzindo a dimensão usando o algoritmo MDS (Multidimensional Scaling).

Clusterização dos dados de Teste Por fim, realizada a clusterização dos dados de teste e a apresentação das 8 primeiras frases do conjunto de teste juntamente com outras duas frases do cluster ao qual foi identificado como o melhor.

* Meu email está com problema

- Meu email não entra, sem acesso
- Como eu configuro meu email no thunderbird
- * existem mais serviços com os quais eu posso consultar?
- quero consultar outro tipo de informação com você, posso?
- que tipos de serviços você oferece?

* como eu faco para criar um novo usuario?

- é permitido que patrulheiros tenham uma conta?
- quero criar uma conta de usuário para um colaborador externo, como fazer?
- * como me conectar ao wifi (rede sem fio) da empresa
- e necessario instalar algum software adicional para conectar na rede sem fio?
- preciso conectar me a internet através da rede sem fio (wifi)

- * eu consigo alterar meu nome de usuário para outro?
- não estou conseguindo criar um novo nome de usuário
- tem como trocar o meu username?
- * qual usuario e senha usar para acessar os sistemas?
 - existe alguma maneira de alterar meu nome de usuário?
 - tem como eu mudar meu nome de usuário?

- * Não consigo entrar no meu email
- estou sem acesso ao meu email
- Meu email não entra, sem acesso

- * tem como renovar um certificado digital emitido?
- certificados digitais
- Revogação de certificado digital

Métricas Abaixo são apresentadas métricas para demonstrar o quanto a clusterização parece funcionar.

 $\begin{array}{lll} Homogeneidade & : 0.79 \\ Completude & : 0.804 \\ Silhouette & : 0.137 \end{array}$

Como exemplo de comparação, foi executado o mesmo algoritmo de clusterização (conforme apresentado acima) entretanto variando a quantidade do número de clusters para verificar como as métricas se comportam.

Escolha da quantidade de Cluster Como não sabe-se ao certo quantos clusteres na realidade podem vir a existir, considerou-se que a quantidade máxima de clusters seria algo em torno de 40.

Para calcular exatamente qual a quantidade máxima, utilizou-se do maior valor dados pelas métricas Elbow e Silhouette (cada uma dando seu valor ideal de clusteres).

Abaixo segue o resultado.

Running Elbow...
Running Silhouette...
N. Elbow Cluster: 18
N. Silhouette Cluster: 9

Dados treinamento

 $\begin{array}{ll} Homogeneity &: 61.0 \\ Completeness &: 70.0 \\ V\text{-}Measure &: 65.0 \end{array}$

Silhouette : 0.30134716629981995

Dados teste

Homogeneity: 69.0 Completeness: 79.0 V-Measure: 74.0

 $Silhouette \quad : 0.11756753921508789$

Frases por cluster:

< IPython.core.display.HTML object>

Documentos por cluster:

Out[28]: <IPython.core.display.HTML object>

1.1.4 TF-IDF

No caso do tf-idf, assim como no doc2vec foi escolhido um máximo de até 500 features (ou dimensões). Entretanto, diferentemente do doc2vec o tf-idf não adiciona dimensões caso a quantidade de termos (palavras) seja inferior a esse máximo, mas ele corta caso for maior.

Tokenization...

Qtd documentos treino: 217 Qtd Intents treino : 12

Finished...

'email nao entrar acessar'

Validação do modelo gerado pelo TF-IDF... teste tanto nos dados apresentados para treinamento quanto nos dados de testes e as acurácias alcançadas.

Randomicamente escolhendo 100 amostras de teste.

Acurácia treino: 87.0
Acurácia teste 1 : 78.18
Acurácia teste 2 : 78.18
Acurácia teste 3 : 78.18
Acurácia teste 4 : 78.18

- Acurácia teste 5 : 78.18 - Acurácia média teste: 78.18

Clusterização Utilizou-se o KMeans definindo a quantidade de clusters para o número ideal de categorias existentes no caso 33. A métrica de distância utilizada, não foi a euclidiana, mas sim a de cosseno (métrica comumente usada na classificação de texto em seu espaço vetorial).

Frases por cluster:

<IPython.core.display.HTML object>

Documentos por cluster:

Out[35]: <IPython.core.display.HTML object>

Visualização Apresentação dos protótipos gerados pelo KMeans, reduzindo a dimensão usando o algoritmo MDS (Multidimensional Scaling).

Clusterização dos dados de Teste Por fim, realizada a clusterização dos dados de teste e a apresentação das 8 primeiras frases do conjunto de teste juntamente com outras duas frases do cluster ao qual foi identificado como o melhor.

- * Meu email está com problema
- vc tem nome?
- Como redirecionar meus emails para outro endereço

* existem mais serviços com os quais eu posso consultar?

- existem outros programas para acessar meu email?
- posso consultar informações relativas a outros serviços e projetos?

- * como eu faco para criar um novo usuario?
- como trocar minha senha
- tem como trocar o meu nome de usuário para outro?

- * como me conectar ao wifi (rede sem fio) da empresa
- quero me conectar a rede sem fio
- como me conectar a rede sem fio

- * eu consigo alterar meu nome de usuário para outro?
- como trocar minha senha
- tem como trocar o meu nome de usuário para outro?

- como faco para acessar a rede sem fio de fora da empresa?
- quero acessar a rede da empresa da minha casa

- o email não esta no spam
- estou tentanto criar meu username, mas não estou conseguindo

- como emitir novos certificados digitais?
- como faço para criar um novo certificado digital?

Métricas Abaixo são apresentadas métricas para demonstrar o quanto a clusterização parece funcionar.

Homogeneidade: 0.773 Completude : 0.742 Silhouette : 0.191

Escolha da quantidade de Cluster Como não sabe-se ao certo quantos clusteres na realidade podem vir a existir, considerou-se que a quantidade máxima de clusters seria algo em torno de 40.

Para calcular exatamente qual a quantidade máxima, utilizou-se do maior valor dados pelas métricas Elbow e Silhouette (cada uma dando seu valor ideal de clusteres).

Abaixo segue o resultado.

Running Elbow... Running Silhouette...

^{*} qual usuario e senha usar para acessar os sistemas?

^{*} Não consigo entrar no meu email

^{*} tem como renovar um certificado digital emitido?

N. Elbow Cluster: 18 N. Silhouette Cluster: 26

Dados treinamento

 $\begin{array}{ll} Homogeneity &: 65.0 \\ Completeness &: 63.0 \\ V\text{-}Measure &: 64.0 \end{array}$

Silhouette : 0.15650876153333035

Dados teste

 $\begin{array}{ll} Homogeneity & : 79.0 \\ Completeness & : 79.0 \\ V\text{-}Measure & : 79.0 \\ \end{array}$

Silhouette : 0.16472088296509504

Frases por cluster:

<IPython.core.display.HTML object>

Documentos por cluster:

Out[59]: <IPython.core.display.HTML object>