Resonante fersore:

- Churugettypen, Freguenzen fo - Stallering: f., Of DF, OF DF 1 DF OF Makrial proslenatih (then) Eteric file / Esmel - Messing. Roden, A(x)Empf.: $\frac{df}{dp} \rightarrow \overline{oint}$ (Membran, Ballan.) Schrichtlichen optiming (t/t, Pless mat) (Flik: Einfleps von Steps, Peopspara mots) Einspaugsmöglichtente II II Resonator grissolen; He: With, 10, Mind, 10 Temperinfleys: 1) Enckling V 2) Kompenvation

5.2.93 Sidy: amough, 300-800 un stande do.
gring Adm. Certife GPa, CTO Voi gelt un auf Si-dreht. Afer i nogs paster et schicken puste outsch Stochesometre i Bothey? Jedu Pamentor Si'Ox) baben Grufleys Grantproops: gepusitie Beaufling

[every), volable. Petat. bære geneelen Arrage møjerel Silvichtscriften, Trep and tra, ists, Item) won standerd purgese ægelie

tiso / tru. refall: cr. Al. 1) Var. Esin | trut unt | 30 - 100 hm

1) cont | var | 30f4./5./100 hm

4ix1 = 24m 4W = 2 Mm (Cr:) Girt C (50) 100 17Pa (Husi'le) tsiN= 500 mm/1/1,57 amosph - polytentallien tar = 30 mm li: Jentrefe 10 - hos nun Si de t Atstop (-> ele atsoloconisch)

Mikromechanische Schwinger

Mikromechanische Grundstrukturen

Figure 2. Three basic resonant structures and their fundamental flexural resonance frequencies, where E is Young's modulus, ρ is the density and ν is the Poisson's ratio

Verschiedene Schwingungsformen

Figure 3. Cantilever beams in fundamental (a) flexural, (b) torsional and (c) longitudinal vibration modes.

Biegeschwingungen und Oberwellen

Figure 4. Fundamental and two first overtones of flexural cantilever beam vibration.

Quelle: G. Stemme, J.Micromech.Microeng. 1 (1991)

Tabelle 2.1: Mechanische Materialeigenschaften mikromechanischer Werkstoffe

Material	E-Modul [10 ¹¹ Pa]	Poisson-Zahl	Dichte [kg/m³]	Innere Spannung [MPa]
Si-(100)	1,30	0,28		86 (bordot.)
Si-(110)	1,69	0,063	2330	
Si-(111)	1,88	0,26		
Quarz	0,88	0,12	2650	
SiO ₂	0,70	0,17	2220	eing GPa
Si ₃ N ₄	1,40 - 3,89	0,30	3100	stressfrei
poly-Si	1,74	0,25	2330	10
Polyimid	0,03	0,30		
Pyrex	0,63	0,20	2230	
Al ₂ O ₃	3,10	0,24	3900	

Probleme:

- Temperaturabhängigkeit (RT = 20°C)
- anisotrope Eigenschaften: Definition der Poissonzahl
- Dichte abhängig von der Stöchiometrie
- innere Spannungen (Zug-,Druck und stressfrei)
- Abhängigkeit von Schichtdicke
- Prozeßparameter (Abscheiderate, Temperaturen, Gasdruck, Gaszusammensetzung)

Berechnung der Resonanzfrequenz der Grundbiegeschwingungsmode:

$$f = c \frac{t}{l^2} \sqrt{\frac{E'}{\rho}}$$
 wobei: $E' = \frac{E}{1 - v^2}$

t, I: Resonatordicke, -länge

E, v, ρ : E-Modul, Poissonzahl, Dichte

Die Tabellenwerte sind mit folgenden Konstanten zu multiplizieren:

- einseitig eingespannte Zunge:

c = 0,162 (E' = E)

- doppelseitig eingespannter Balken:

c = 1,028

- volleingespannte Membran:

c = 1,654

l/t Dicke t	10 ¹	10 ²	10 ³	10⁴
1 <i>μ</i> m	85,33 MHz	853 kHz	8,53 kHz	85 Hz
	(10 μm)	(100 <i>µ</i> m)	(1 mm)	(10 mm)
10 <i>µ</i> m	8,53 MHz	85,3 kHz	853 Hz	8,5 Hz
	(100 μm)	(1 mm)	(10 mm)	(10 cm)
100 <i>µ</i> m	853 kHz	8,53 kHz	85 Hz	0,85 Hz
	(1 mm)	(10 mm)	(10 cm)	(1 m)

Grundschwingung von Biegebalken Frequenzanaloge Sensoren in Si

Balkenlänge:

RB/ZWD/Schweikhardt 22.1.1991

Mendrauen:
- iMiT.

BOJC M

Moto Me ter

		L	t
• ін	iT	3 mm	25 per
o GN	15	lowu	50 um
• Bod	H	5 mm	John

Zugempfindlichkeit von Biegebalken Frequenzanaloge Sensoren in Si

RB/ZWD/Schweikhardt 7.12.1990

Hatisches Verhalten unedan. Fingen:

Auslenkungs-Konstanten e24 für einen Silizium-Balken mit ZnO-Schicht

h _{Si}	h _p	L = 1 mm	2 mm	5 mm	
10 μm	1 µm	0,12 μm/V	0,47 μm/V	2,95 μm/V	
	5 <i>µ</i> m	0,06 µm/V	0,26 μm/V	1,60 μm/V	
20 µm	1 <i>µ</i> m	0,03 μm/V	0,13 μm/V	0,82 μm/V	
	5 <i>µ</i> m	0,02 µm/V	0,09 µm/V	0,57 µm/V	
30 <i>µ</i> m	1 <i>µ</i> m	0,02 μm/V	0,06 μm/V	0,38 μm/V	
	5 <i>µ</i> m	0,01 µm/V	0,05 μm/V	0,29 µm/V	

.

S-kgr

Kraft-Konstanten e_{24}/e_{22} für einen Silizium-Balken mit ZnO-Schicht

h _{si}	h _p	L = 1 mm	2 mm	5 mm	
10 <i>µ</i> m	1 <i>µ</i> m	2,43 μN/V	1,22 μN/V	0,49 µN/V	
	5 µm	2,45 μN/V	1,23 μN/V	0,49 μN/V	
20 µm	1 <i>µ</i> m	4,86 µN/V	2,43 μN/V	0,97 μN/V	
	5 <i>µ</i> m	4,88 μN/V	2,44 μN/V	0,98 µN/V	
30 µm	1 μm	7,29 µN/V	3,64 μN/V	1,46 µN/V	
	5 μm	7,31 μN/V	3,66 μN/V	1,46 μN/V	

F~M

Einfluß des Schichtsystems auf die Auslenkungen und Kräfte

Größe:	AlN	ZnO	PZT	Verhältnis	Dimension	
δ_{\max} [μ m]	19,1	29,5	548	1/1,5/29	Variante 1	
F _{max} [µN]	3,8	4,9	81,7	1/1,3/22	U = 10 V	
δ_{\max} [μ m]	0,34	1,0	11,5	1/2,9/34	Variante 2	
F _{max} [µN]	273	366	6500	1/1,3/24	U = 50 V	

Resonanter Drucksensor

Hahn-Schickard-Institut für Mikro- und Informationstechnik

 $p_1 < p_2$

Abb. 1: Resonanter Silizium-Drucksensor

Tab.1: Materialeigenschaften mikromechanischer Werkstoffe

Bezugstemperatur: T = 300 K

6 [ka/m ₃]	S ^E ₁₁ /S ^E ₁₂	V	d ₃₁ [10 ⁻¹² C/N]	d ₃₃ [10 ⁻¹² C/N]	$\epsilon^{T}_{11}/\epsilon_{0}$	$\epsilon^{T}_{33}/\epsilon_{0}$	α _{th} [10 ⁻⁶ K ⁻¹]	الا mK]	k _p ^{met}
2329	7,68	0,28		-	10711	10711	2,3 - 2,6	156	
2650	12,78	0,14	$d_{11} = 2,30$	$d_{14} = -0.67$	4,51	4,63	7,48 ∥ z 13,7 ⊥ z	12	(0,1)
3260	3,53	0,29	-2,00	5,53	9,04	11,4	4,15 ∥ z 5,27 ⊥ z	1	0,18
5470	7,91	0,42	-5,12	12,0	9,26	8,2	2,92 ∥ z 4,75 ⊥ z	54	0,40
7600	15,4	0,37	-160	355	1600	1600	≈ 7,0	1,2	0,61
	2650 3260 5470	2329 7,68 -2,14 2650 12,78 -1,81 3260 3,53 -1,01 5470 7,91 -3,30	2329 7,68 0,28 -2,14 2650 12,78 0,14 -1,81 3260 3,53 0,29 -1,01 5470 7,91 0,42 -3,30 7600 15,4 0,37	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2329 7,68 -2,14 0,28 — — 2650 12,78 -1,81 0,14 d1=2,30 d1=-0,67 3260 3,53 -1,01 0,29 -2,00 5,53 5470 7,91 -3,30 0,42 -5,12 12,0 7600 15,4 0,37 -160 355	[kg/m³] [10-1²Pa-1] [10-1²C/N] [10-1²C/N] 2329 7,68	Q [kg/m³] S 11/3 12 [10-12 Pa-1] V [10-12 C/N] [10-12 C/N] [10-12 C/N] 2329 7,68 -2,14 0,28 -2,14 — — — — — — — — — — — — — — — — — — —		

$$k_p^{mat} = \sqrt{\frac{2}{1-\nu}} \cdot k_{31} \approx 1, 6...1, 9 \cdot k_{31}$$

$$k_{31}^2 = \frac{d_{31}^2}{S_{11}^E \cdot \varepsilon_{33}^T}$$

Resonanzfrequenz in Abhangigkeit der Membrandicke

Vergleich: analytische Rechnung --- FEM

analytisch

20 Mm

Modalanalyse einer Siliziummembran

Amplitudenspektrum A(f,x)

Hahn-Schickard-Institut für Mikro- und Informationstechnik

Frequenzverschiebung bei Druckbeaufschlagung

Membranparameter:

Abm.: $9,2 \times 9,2 \text{ mm}^2$,

Gesamtdicke: Si = 148 μ m, ZnO = 15 μ m

BOSCH

Frequenzempfindlichkeit: Frequenzshift infolge von innerer Schichtspannung:

$$\Delta f/\Delta p \approx 1 \text{ Hz/mbar}$$

$$f = f_o \sqrt{(1 + c \cdot \sigma_{int})}$$

 $\sigma_{int} \approx -100 \text{ MPa}$

Dreifach Salken:

Kraft/Frequenz-Kennlinie einer Dreifachbalkenstruktur im Mode M3. Der Verlauf der Kennlinie zeigt einen Buckling-Effekt der ZnO-Schicht.

$$\frac{\ell}{t} = \frac{3 \text{ nm}}{2t_1 \text{ fun}} \approx 110$$

$$f_0(s) \approx 1,028 \cdot \frac{2t_1 \text{ fun}}{(3 \text{ nm})^2} \sqrt{\frac{\epsilon}{s}} \approx 26,8 \text{ thr}$$

$$f_0(si-tw) \approx 25,1 \text{ thr} \implies 5 = 23,4 \text{ Mpc}$$

$$f_0(si-tw) \approx 25,1 \text{ thr} \implies 3,1 \text{ thr}$$

$$f_0(si-tw) \approx 22 \text{ thr} \implies 45 \text{ weigh} : 3,1 \text{ thr}$$

$$f_0(si) \approx 1,7 \text{ three forms of } 5 \approx 15 \text{ TPa}$$

Kopplungsfaktor in Abhängigkeit des Schichtdickenverhältnisses

Membran: 9.2 x 9.2 mm² $t_{Si} = 20 \mu m$

Hahn-Schickard-Institut für Mikro- und Informationstechnik

Abb. 6: Elektromechanischer Kopplungsfaktor in Abhängigkeit

des Schichtdickenverhältnisses

Elektromechanische Kopplungsfaktoren in Abh. von den relativen Materialdicken ZnO/Si-Membranen, strukturiert

Abb. 21 Meßwerte für unterschiedliche Schichtspannungen

Effektive Kopplungsparameter von ZnO/Si-Biegezungen b = 5mm, l = 7 mm, d(Si) = 124 μm

Vergleich von Groß- und Kleinsignal messungen

Reaktives Magnetronsputtern von ZnO Einfluß von Substrattemp: und Sputterrate auf piezoelektr. Konstante d31

Krümmungen von ZnO/Si-Membranen

Nov. 91

Tag

T = 280 °C

21

Dr. Baitrich: 0774- 930-540 Temperatorientlys bei gundsiegeschings mode Si-Ballan: &= 10 mm d = 50 mm 1,5 pm 8102 (86+ 22 repuete Wiedenann analyt get Het ANTY JOO Z PETT ANSTS 5.0

