Relatório Final PIBICjr 2023

Programando ideias: A idealização, prototipagem e desenvolvimento de um robô autônomo por alunos da rede pública de Vitória.

ORIENTADOR

Victor de Luna Zottis Pierobom

EQUIPE DO PROJETO

Ana Luiza Amorim Katheyne Gabriele S. Amaral Kevin Correa Amorim Mariana Valentim Meireles Nicolas Oliveira Venceslau

EQUIPE VOLUNTÁRIA

Ana Isabela Da Silva Arthur Nascimento Paulo Henrique A. de Oliveira Gabriel Amaral

Sumário

1.	Int	rodução	3
		posta Inicial do Projeto	
3.		etodologia	
		vidades Desenvolvidas	
	4.1.		
4	4.2.		
4	4.3.		
4	4.4.	Personalização dos Robôs:	
4	4.5.	Participação em Eventos:	7
5.	Re	sultados e Impacto	7
		nclusão	

Índice de figuras

Figura 1 - Alunos em sala de aula durante o projeto	. 3
Figura 2 - Imagem do robô seguidor de linha confeccionado no projeto	. 3
Figura 3 - Montagem, programação e teste dos sensores infra-vermelho	. 4
Figura 4 - Montagem e programação dos motores	. 5
Figura 5 - Confecção do código final do robô seguidor de linha	. 5
Figura 6 - Mapa mental explicando a lógica de funcionamento do código de programação	ა 6
Figura 7 - Alunos desenvolvendo carenagens personalizadas para os robôs	. 6
Figura 8 - Imagens do evento INOVAVIX	. 7

1. Introdução

O presente relatório apresenta uma análise abrangente do projeto "Programando Ideias", desenvolvido na Escola Municipal Edna de Mattos Siqueira Gáudio sob a coordenação do professor Victor de Luna Z. Pierobom. Este projeto teve como principal objetivo introduzir os alunos aos fundamentos da robótica e da programação, com ênfase na construção de um robô seguidor de linha. A proposta foi concebida com o intuito de promover o aprendizado interdisciplinar, estimular a criatividade e desenvolver habilidades essenciais para o século XXI.

Figura 1 - Alunos em sala de aula durante o projeto.

2. Proposta Inicial do Projeto

A proposta inicial do projeto "Programando Ideias" emergiu da necessidade de oferecer aos alunos uma formação prática e envolvente nas áreas de robótica e programação. Considerando o potencial do microcontrolador Arduino como uma ferramenta acessível e versátil, optou-se por utilizá-lo como base para a construção do robô seguidor de linha. Dessa forma, buscava-se não apenas expandir o repertório de conhecimento dos alunos, mas também fomentar a curiosidade, o pensamento crítico e a resolução de problemas.

Figura 2 - Imagem do robô seguidor de linha confeccionado no projeto.

3. Metodologia

A metodologia adotada foi fundamentada na integração entre teoria e prática, com a realização de atividades que estimulavam o aprendizado ativo e colaborativo. O projeto foi estruturado em etapas progressivas, começando com atividades introdutórias de montagem de LEGO e programação de colegas como "robôs" improvisados. Em seguida, os alunos foram gradualmente introduzidos ao uso do microcontrolador Arduino, com experimentos que abordavam desde conceitos básicos de eletrônica até a programação de dispositivos motorizados.

4. Atividades Desenvolvidas

Durante o período de junho a dezembro, uma série de atividades práticas e teóricas foram realizadas, visando à consecução dos objetivos estabelecidos. Destacam-se as seguintes atividades:

4.1. Montagem dos Sensores Infravermelhos:

No início do projeto, os alunos foram desafiados a montar os sensores infravermelhos no chassi do robô, explorando conceitos de eletrônica e circuitos básicos. Essa atividade proporcionou uma compreensão fundamental do funcionamento dos sensores e sua importância para a detecção de linhas.

Figura 3 - Montagem, programação e teste dos sensores infra-vermelho.

4.2. Montagem e programação dos Motores:

Uma etapa crucial do projeto foi a programação dos motores do robô, que envolveu a configuração de velocidades, direções e métodos de controle. Os alunos foram incentivados a experimentar diferentes abordagens e a compreender as nuances da programação de dispositivos físicos.

Figura 4 - Montagem e programação dos motores

4.3. Confecção do Código do Robô Seguidor de Linha:

Com base nos conhecimentos adquiridos, os alunos trabalharam em equipes para desenvolver o código final do robô seguidor de linha. Esse processo envolveu a integração dos sensores infravermelhos com os motores, garantindo um comportamento preciso e responsivo do robô em relação à linha preta no chão.

Figura 5 - Confecção do código final do robô seguidor de linha

Realizamos diversos testes simulando os diferentes cenários possíveis de leitura dos sensores e qual deveria ser a reação dos motores. O mapa mental abaixo ilustra a lógica de funcionamento do programa que controla o robô seguidor de linha.

Figura 6 - Mapa mental explicando a lógica de funcionamento do código de programação

4.4. Personalização dos Robôs:

Além das atividades técnicas, os alunos tiveram a oportunidade de personalizar seus robôs, projetando e decorando as carenagens de acordo com sua criatividade. Essa atividade promoveu o senso de identidade e pertencimento dos alunos em relação ao projeto.

Figura 7 - Alunos desenvolvendo carenagens personalizadas para os robôs

4.5. Participação em Eventos:

Como parte do projeto, os alunos tiveram a oportunidade de apresentar seus robôs na mostra científica da escola e no evento INOVAVIX. Essas experiências proporcionaram uma plataforma para compartilhar seus conhecimentos e habilidades com a comunidade escolar e o público em geral.

Figura 8 - Imagens do evento INOVAVIX

5. Resultados e Impacto

O projeto "Programando Ideias" obteve resultados significativos em termos de aprendizado e engajamento dos alunos. Através da abordagem prática e interativa, os alunos puderam desenvolver uma compreensão sólida dos princípios fundamentais da robótica e da programação, ao mesmo tempo em que cultivavam habilidades essenciais como trabalho em equipe, resolução de problemas e pensamento crítico. Além disso, a participação em eventos externos proporcionou aos alunos uma oportunidade única de compartilhar suas conquistas e inspirar outros a explorar o mundo da tecnologia e da inovação.

6. Conclusão

O projeto "Programando Ideias" demonstrou ser uma iniciativa bem-sucedida na promoção do aprendizado STEM e no desenvolvimento de habilidades essenciais para o século XXI. Através de uma abordagem hands-on e colaborativa, os alunos foram capacitados a se tornarem criadores e solucionadores de problemas, preparando-os para os desafios do mundo contemporâneo. À medida que concluímos este relatório, expressamos nossa gratidão a todos os envolvidos por seu apoio e dedicação ao longo deste emocionante percurso educacional.