Ricardo Mokhtari

ricardomokhtari@gmail.com | +44 7508 813327 | GitHub | LinkedIn | Google Scholar | ricardomokhtari.com

Summary

I am a highly self-motivated AI Research Scientist at AstraZeneca with a passion for driving impact in society using AI. At AstraZeneca I have worked on applying and developing state of the art models to large datasets of millions of images, as well as large scale genomic data. I have 3.5 years of experience in Machine Learning with 2.5 years in Computer Vision, and I am highly proficient in Python and PyTorch. Prior to AstraZeneca, I graduated from Imperial College London with a First-Class Master's Degree in Engineering, where I worked on generative models and reinforcement learning. I have extensive experience of applying the fundamental architectures in Computer Vision and Graph Machine Learning such as CNNs, GANs, VAEs, UNets and Transformers.

Experience

Al Research Scientist | AstraZeneca

Sept. 2021 - Present

Project 1: Applying self-supervised learning to medical imaging [Pre-Print]

- Developed and applied state of the art open-source computer vision methods to 1000s of gigapixel images to inform translational medicine teams within AstraZeneca (work showcased to EVP level and presented research to Global Product Team) – pushed AUC from 0.6 to 0.87
- Proactively communicated research findings to unfamiliar and non-technical audiences
- Collaborated extensively with interdisciplinary teams including AI scientists, image analysts and pathologists, using Agile framework

Project 2: Continual active learning platform for medical imaging

- Developed robust infrastructure for deploying, continuously monitoring and improving computer vision models for 3 internal stakeholders
- Deployed models on server backend using MONAI, built a GUI using Dash to serve users
- Proactively gathered user requirements, refined solution using Agile methodology

Project 3: Using graph machine learning to discover new cancer biomarkers

- Leveraged multi-modal genomic dataset to identify novel cancer subtypes and associated biomarkers using graph machine learning and presented to translational teams to inform 2023 oncology R&D strategy
- Explored and demonstrated that graph approaches are powerful for multi-modal cancer datasets - pushed AUC from 0.83 to 0.89

I have proactively championed a data-driven culture at AstraZeneca by:

- Organising the first AZ Hack (organising team of 3) a global-scale Data Science hackathon attended by 173 participants across 15 countries
- Writing (from scratch) and delivering a 3-hour computer vision workshop to 50 AZ employees
- Teaching an 8-week Python course to a class of 60 AZ employees

Data Scientist | Imperial College London + Refinitiv

Nov. 2020 - May 2021

- Industrial Data Science research project with Refinitiv, a large financial services company
- Selected to be part of Imperial's Advanced Data Science Team developed data-driven methods for autonomous web crawling using reinforcement learning
- Co-developed intelligent web crawling strategy from scratch, co-wrote technical reports and delivered presentations to managing directors at Refinitiv

Research Assistant | Imperial College London

Oct. 2019 - Jun. 2021

- Explored and evaluated the utility of using generative models as a data augmentation technique for boosting the performance and robustness of computer vision models
- Devised a simple framework for quantitatively evaluating model robustness, showed that generative models are a successful approach
- Developed and applied SOTA models (StyleGAN, Pix2Pix, VAE) [Pre-Print]

Publications

- R Mokhtari et al., Interpretable histopathology-based prediction of disease relevant features in Inflammatory Bowel Disease biopsies using weakly-supervised deep learning. [Accepted for MIDL 2023]
- R Mokhtari et al., Predicting disease relevant features in Crohn's Disease and Ulcerative Colitis from Haematoxylin & Eosin stained whole slide images using self-supervised deep learning, *Journal of Crohn's and Colitis* 2023, https://doi.org/10.1093/ecco-jcc/jjac190.0407 (Impact factor >10)
- Attar, R., Hurault, G., Wang, Z., Mokhtari, R., Pan, K., Olabi, B., Earp, E., Steele, L., Williams, H. and Tanaka, R.J., 2022. Reliable detection of eczema areas for fully automated assessment of eczema severity from digital camera images. medRxiv.
- Hurault, G., Pan, K., Mokhtari, R., Olabi, B., Earp, E., Steele, L., Williams, H.C. and Tanaka, R.J., 2022. Detecting
 eczema areas in digital images: an impossible task? *JID Innovations*, p.100133.

Education

Imperial College London MEng Molecular Bioengineering Oct. 2017 – Jun. 2021

- Grade: First Class Hons. (74.93%)
- Dean's List 2021 Prize for scoring in top 10% of students
- Relevant modules:
 - Image Processing (1st)
 - Signal Processing (1st)
 - o Reinforcement Learning (1st)
 - Mathematics (1st)
 - Modelling in Biology (1st)
 - Molecular & cellular biology (1st)
 - Synthetic Biology (1st)

Charterhouse School

2012 - 2017

A-Level: A* A* A A
 GCSEs: 11 A*s

 Academic scholarship worth £1500/year

Technical Skills

Programming

Highly proficient: Python (3.5 years'

experience)

Familiar: R, C/C++, MATLAB, JavaScript, ReactJS, HTML, CSS

Machine Learning Tools

Proficient: PyTorch, PIL, OpenCV, pandas, numpy, sklearn

Familiar: TensorFlow/Keras, bokeh

Machine Learning Theory

Computer Vision (vision transformer, SSL, WSL, CNN, GAN, VAE, UNet)
Graph ML (GCN, link prediction, knowledge graphs, graph embedding)
Classic ML (logistic regression, SVM, kmeans, decision trees, random forests)

Other Tools

Git, Bash scripting, HPC, LaTeX

Soft Skills

Excellent presentation/communication skills

Agile working methodology (JIRA, MIRO)