Section 1.2 – Trigonometric Functions

Let (x, y) be a point on the terminal side of an angle θ in standard position

The distance from the point to the origin is given by: $r = \sqrt{x^2 + y^2}$

Six Trigonometry Functions

$$\sin \theta = \frac{Opposite}{Hypotenuse} = \frac{opp}{hyp} = \frac{y}{r}$$

$$\cos \theta = \frac{Adjacent}{Hypotenuse} = \frac{adj}{hyp} = \frac{x}{r}$$

$$\tan\theta = \frac{opp}{adj} = \frac{\sin\theta}{\cos\theta} = \frac{y}{x}$$

$$\cot \theta = \frac{adj}{opp} = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} = \frac{x}{y}$$

$$\sec \theta = \frac{hyp}{adj} = \frac{1}{\cos \theta} = \frac{r}{x}$$

$$\csc\theta = \frac{hyp}{opp} = \frac{1}{\sin\theta} = \frac{r}{y}$$

Undefined Function Values

If the terminal side of a quadrantal angle lies along the **y-axis**, then the **tangent** and **secant** functions are undefined.

If the terminal side of a quadrantal angle lies along the x-axis, then the *cotangent* and *cosecant* functions are undefined.

Example

Find the six trigonometry functions of θ if θ is in the standard position and the point (8, 15) is on the terminal side of θ .

$$\Rightarrow r = \sqrt{x^2 + y^2} = \sqrt{8^2 + 15^2} = 17$$

$$\sin \theta = \frac{y}{r} = \frac{15}{17} \qquad \cos \theta = \frac{x}{r} = \frac{8}{17} \qquad \tan \theta = \frac{y}{x} = \frac{15}{8}$$

$$\csc \theta = \frac{r}{y} = \frac{17}{15} \qquad \sec \theta = \frac{r}{x} = \frac{17}{8} \qquad \cot \theta = \frac{x}{y} = \frac{8}{15}$$

Find the sine and cosine of 45° at the convenient point (1, 1)

Solution

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\sin \theta = \frac{y}{r} = \frac{1}{\sqrt{2}}$$

$$\cos \theta = \frac{x}{r} = \frac{1}{\sqrt{2}}$$

Example

Find the six trigonometry functions of 270° **Solution**

The convenient point (0, -1)

$$\Rightarrow r = \sqrt{0^2 + (-1)^2}$$
$$= \sqrt{1}$$
$$= 1$$

$$\sin 270^\circ = \frac{y}{r} = -1$$

$$\cos 270^{\circ} = \frac{x}{r} = \frac{0}{1} = 0$$

$$\tan 270^{\circ} = \frac{y}{x} = \frac{-1}{0} = \text{undefined} = -\infty$$
 $\csc 270^{\circ} = \frac{r}{y} = \frac{1}{-1} = -1$

$$\cot 270^{\circ} = \frac{x}{y} = \frac{0}{-1} = 0$$

$$\sec 270^{\circ} = \frac{r}{x} = \frac{1}{0} = \infty$$

$$\csc 270^{\circ} = \frac{r}{y} = \frac{1}{-1} = -1$$

Example

Which will be greater, tan 30° or tan 40°? How large could $\tan \theta$ be?

Solution

$$\tan 30^\circ = \frac{y_1}{x}$$

$$\tan 40^\circ = \frac{y_2}{x}$$

Ratio:
$$\frac{y_2}{x} > \frac{y_1}{x}$$

$$\rightarrow$$
tan 40°> tan 30°

No limit as to how large $tan \theta$ can be

Function	I	II	III	IV
$y = \sin x$	+	+	•	•
y = cosx	+	-	-	+
y = tan x	+	-	+	-
$y = \cot x$	+	-	+	-
y = cscx	+	+	-	-
y = sec x	+	-	-	+

If $\cos \theta = \frac{\sqrt{3}}{2}$, and θ is QIV, find $\sin \theta$ and $\tan \theta$.

$$\cos \theta = \frac{\sqrt{3}}{2} = \frac{x}{r} \rightarrow x = \sqrt{3}, \quad r = 2$$

$$r^2 = x^2 + y^2$$

$$\Rightarrow y^2 = r^2 - x^2$$

$$y = \sqrt{r^2 - x^2}$$

$$y = \sqrt{2^2 - (\sqrt{3})^2}$$

$$= \sqrt{4 - 3}$$

$$= 1$$
Since θ is Q IV $\Rightarrow y = -1$

$$\sin \theta = \frac{y}{r} = -\frac{1}{2}$$

$$\tan \theta = \frac{y}{x} = \frac{-1}{\sqrt{3}} = -\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$

Reciprocal Identities

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sin \theta = \frac{1}{\csc \theta}$
 $\cot \theta = \frac{1}{\tan \theta}$

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$
 $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

Ratio Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$$x^2 + y^2 = r^2$$

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$$

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$

$$(\cos \theta)^2 + (\sin \theta)^2 = 1 \implies \cos^2 \theta + \sin^2 \theta = 1$$

Solving for $\cos \theta$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\cos^2\theta = 1 - \sin^2\theta$$

$$\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$$

Solving for $sin \theta$

$$\sin^2 \theta = 1 - \cos^2 \theta \implies \sin \theta = \pm \sqrt{1 - \cos^2 \theta}$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

$$\frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

$$\left(\frac{\cos\theta}{\cos\theta}\right)^2 + \left(\frac{\sin\theta}{\cos\theta}\right)^2 = \left(\frac{1}{\cos\theta}\right)^2$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\cos\theta = \pm\sqrt{1-\sin^2\theta}$$

$$\sin \theta = \pm \sqrt{1 - \cos^2 \theta}$$

$$1+\tan^2\theta = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Prove $\sin \theta \cot \theta = \cos \theta$

Solution

$$\sin\theta\cot\theta = \sin\theta \frac{\cos\theta}{\sin\theta}$$
$$= \cos\theta$$

Example

Write $\tan \theta$ in terms of $\sin \theta$.

Solution

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\pm \sqrt{1 - \sin^2 \theta}}$$

$$= \pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$$

Example

If $\cos \theta = \frac{1}{2}$ and θ terminated in QIV, find the remaining trigonometric ratios for θ .

$$\sin \theta = -\sqrt{1 - \cos^2 \theta}$$

$$= -\sqrt{1 - \left(\frac{1}{2}\right)^2}$$

$$= -\sqrt{1 - \frac{1}{4}}$$

$$= -\sqrt{\frac{3}{4}}$$

$$= -\frac{\sqrt{3}}{2}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{1/2} = 2$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\sqrt{3}/2} = -\frac{2}{\sqrt{3}}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\sqrt{3}/2}{1/2} = -\sqrt{3}$$

$$\cot \theta = -\frac{1}{\sqrt{3}}$$

Find $\sin \theta$ and $\cos \theta$, given that $\tan \theta = \frac{4}{3}$ and θ is in QIII.

Solution

Using the identity $1 + \tan^2 \theta = \sec^2 \theta$

$$\sec^2 \theta = 1 + \left(\frac{4}{3}\right)^2$$
$$= 1 + \frac{16}{9}$$
$$= \frac{25}{9}$$

$$\sec\theta = -\sqrt{\frac{25}{9}} = -\frac{5}{3}$$

$$\theta \in QIII \Rightarrow \cos \theta < 0 \rightarrow \sec \theta < 0$$

$$\cos\theta = -\frac{3}{5}$$

$$\sin^2 \theta = 1 - \cos^2 \theta$$
$$= 1 - \left(-\frac{3}{5}\right)^2$$
$$= 1 - \frac{9}{25}$$
$$= \frac{16}{25}$$

$$\sin \theta = -\frac{4}{5} \quad (\theta \in QIII)$$

Example

Show that the following statement is true by transforming the left side into the right side.

$$\cos\theta \tan\theta = \sin\theta$$

$$\cos\theta\tan\theta = \cos\theta \frac{\sin\theta}{\cos\theta}$$

$$=\sin\theta$$

Simplify the expression $\sqrt{x^2+9}$ as much as possible after substituting $3\tan\theta$ for x

$$x = 3\tan\theta$$

$$\sqrt{x^2 + 9} = \sqrt{(3\tan\theta)^2 + 9}$$

$$= \sqrt{9\tan^2\theta + 9}$$

$$= \sqrt{9\left(\tan^2\theta + 1\right)}$$

$$= 3\sqrt{\sec^2\theta}$$

$$= 3\sec\theta$$

Exercise Section 1.2 – Trigonometric Functions

- 1. Find the six trigonometry functions of θ if θ is in the standard position and the point (-2, 3) is on the terminal side of θ .
- 2. Find the six trigonometry functions of θ if θ is in the standard position and the point (-3, -4) is on the terminal side of θ .
- 3. Find the six trigonometry functions of θ in standard position with terminal side through the point (-3, 0).
- **4.** Find the six trigonometry functions of θ if θ is in the standard position and the point (12, -5) is on the terminal side of θ .
- 5. Find the values of the six trigonometric functions for an angle of 90° .
- **6.** Indicate the two quadrants θ could terminate in if $\cos \theta = \frac{1}{2}$
- 7. Indicate the two quadrants θ could terminate in if $\csc \theta = -2.45$
- **8.** Find the remaining trigonometric function of θ if $\sin \theta = \frac{12}{13}$ and θ terminates in QI.
- 9. Find the remaining trigonometric function of θ if $\cot \theta = -2$ and θ terminates in QII.
- **10.** Find the remaining trigonometric function of θ if $\tan \theta = \frac{3}{4}$ and θ terminates in QIII.
- 11. Find the remaining trigonometric function of θ if $\cos \theta = \frac{24}{25}$ and θ terminates in QIV.
- 12. Find the remaining trigonometric functions of θ if $\cos \theta = \frac{\sqrt{3}}{2}$ and θ is terminates in QIV.
- 13. Find the remaining trigonometric functions of θ if $\tan \theta = -\frac{1}{2}$ and $\cos \theta > 0$.
- **14.** If $\sin \theta = -\frac{5}{13}$, and θ is QIII, find $\cos \theta$ and $\tan \theta$.
- **15.** If $\cos \theta = \frac{3}{5}$, and θ is QIV, find $\sin \theta$ and $\tan \theta$.
- **16.** Use the reciprocal identities if $\cos \theta = \frac{\sqrt{3}}{2}$ find $\sec \theta$
- 17. Find $\cos \theta$, given that $\sec \theta = \frac{5}{3}$
- **18.** Find $\sin \theta$, given that $\csc \theta = -\frac{\sqrt{12}}{2}$
- **19.** Use a ratio identity to find $\tan \theta$ if $\sin \theta = \frac{3}{5}$ and $\cos \theta = -\frac{4}{5}$

- **20.** If $\cos \theta = -\frac{1}{2}$ and θ terminates in QII, find $\sin \theta$
- **21.** If $\sin \theta = \frac{3}{5}$ and θ terminated in QII, find $\cos \theta$ and $\tan \theta$.
- **22.** Find $\tan \theta$ if $\sin \theta = \frac{1}{3}$ and θ terminates in QI
- 23. Find the remaining trigonometric ratios of θ , if $\sec \theta = -3$ and $\theta \in QIII$
- **24.** Using the calculator and rounding your answer to the nearest hundredth, find the remaining trigonometric ratios of θ if $\csc \theta = -2.45$ and $\theta \in QIII$
- **25.** Write $\frac{\sec \theta}{\csc \theta}$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.
- **26.** Write $\cot \theta \csc \theta$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.
- 27. Write $\frac{\sin \theta}{\cos \theta} + \frac{1}{\sin \theta}$ in terms of $\sin \theta$ and/or $\cos \theta$, and then simplify if possible.
- **28.** Write $\sin \theta \cot \theta + \cos \theta$ in terms of $\sin \theta$ and $\cos \theta$, and then simplify if possible.
- **29.** Multiply $(1-\cos\theta)(1+\cos\theta)$
- **30.** Multiply $(\sin \theta + 2)(\sin \theta 5)$
- 31. Simplify the expression $\sqrt{25-x^2}$ as much as possible after substituting $5\sin\theta$ for x.
- 32. Simplify the expression $\sqrt{4x^2 + 16}$ as much as possible after substituting $2 \tan \theta$ for x