期末報告

課程名稱:數學思維與解題

報告題目:最佳化問題

第8組組員姓名:

410831209 李博勛

411231108 張明耀

411231124 黄昱程

411231140 劉恆彬

411231220 曾億守

壹、報告前言

「最佳化問題」自古希臘時代以來,即在在人類追求知識與效率的過程中扮演關鍵角色。從傳統數學理論到當今的電腦運算與大數據技術,人類持續追求簡單、高效且普適的方法,以尋找問題的最優解。最佳化問題充斥於日常生活當中,如我們最常使用的導航,能為了覓食而規劃出最佳路徑的黏菌,以及資本家趨之若鶩的問題,"如何生產才最賺錢",皆與最佳化問題息息相關,此次報告將由淺入深與大家分享,一探大家日常生活中或多或少所接觸到的最佳化問題。

貳、內容

一、自然界啟發的最佳化現象

黏菌:

黏菌屬於原生生物界,具有細胞的特性,並且在生活史中展現出多樣的形態,包括單細胞和多細胞的階段。通常生活於潮濕環境,在生態系統中扮演著重要的分解者角色。

為了尋找食物,黏菌會先向四面八方擴展,定位所有潛在的食物來源後, 再收縮自身,建立一個高效率的傳輸網路,將各處的食物連結起來。這樣的網 路讓黏菌能有效地吸收營養,但結構不能過於複雜,否則會消耗過多能量。有 趣的是,黏菌在建構路徑時也會考量風險。如果通往某個食物的位置只有單一 路線,它們可能會額外建立備用路徑,以防主路徑中斷。這種策略在效率與安 全之間取得了良好的平衡。

科學家利用黏菌具有避光的特性,以光點模擬日本的地形,並在東京幾個重要地鐵站的對應位置放置食物來源。結果發現,黏菌為了有效吸收營養,鋪設出一條高效率的網路,而這條由自然生成的路徑竟然與東京複雜的地鐵系統幾乎完全相符。

換句話說,黏菌在沒有地圖、演算法或計算能力的情況下,只花了 26 小時,便重建了人類工程師花數十年設計出的交通網路,展現了自然演化出的驚人效率與智慧。

→ 左邊是東京地鐵圖,右邊是黏菌所繪製出的

科學家表示:黏菌所設計出來的路線與現今的路線非常相似,有些路線設計甚至比原先來的更好。

1. 黏菌走出路線分三個階段

(1) 接近食物

$$X^{t+1} = egin{cases} X_b^t + vb*(W*X_A^t - X_B^t), & r$$

$$W(S_{ ext{index}}(i)) = egin{cases} 1 + r_2 imes \log\left(rac{b_F - S_i}{b_F - w_F} + 1
ight), & F_{ ext{condition}} \ 1 - r_2 imes \log\left(rac{b_F - S_i}{b_F - w_F} + 1
ight), & 其他 \ S_{ ext{index}}(i) = ext{sort}(N) \end{cases}$$

參數 r 為 [0,1] 區間的隨機數, X_b 表示目前適應度最佳的個體位置, X_a 與 X_b 為隨機選取的兩個個體位置。振盪參數 v_b 與 v_c 分別模擬黏菌個體間的資訊交互與自我調整行為,其中 v_b \in [-a, a], a = arctanh(1 - t/T_max);而 $c=1-t/T_max$ 則控制 v_c 由 1 線性遞減至 0。權重因子 W 代表黏菌個體的品質,與其適應度相關,t 代表當前反覆運算次數,位置更新策略受參數 p 控制,其定義為: $p=tanh(|S_i-DF|)$ 其中 S_i 為個體的適應度值,DF 為反覆運算中的最優適應度值。此設計可根據個體與最優解的差距自適應地調整更新幅度。

族群前半數適應度較佳的個體(記為 F_condition)會依適應度排序 (S_index),以加強對優質解的聚焦。隨機數 r_2 ∈ [0,1] 模擬黏菌靜脈收縮過程中的不確定性,最優與最差適應度分別記為 bF 與 WF,其變化經由 log 函數平滑處理,避免劇烈震盪影響搜索穩定性。黏菌群體會根據食物濃度調整搜索策略:在高濃度區域中,個體權重 W 較大,更集中探索;而在低濃度區域則降低權重,促使演算法轉向其他區域尋找潛在最優解。

(2) 包圍食物

$$X^{t+1} = egin{cases} ext{rand} * (UB - LB) + LB, & ext{rand} < z \ X_b^t + vb * (W * X_A^t - X_B^t), & r < p \ vc * X^t, & r \geq p \end{cases}$$

其中 rand 和 r 取區間〔0,1〕中的隨機值,UB 和 LB 分別是搜索範圍的上邊界和下邊界。z 是一個參數,為黏菌分離個體偏離當前路徑、探索其他食物源的機率,亦即產生變異的機率,通常設為 0.03。

(3) 獲得食物

圖中顯示,黏菌個體在無方向性約束下進行覓食,能夠向任意方向接近最優 解。其核心更新機制如下圖所示:第一個式子引入隨機性,增強演算法的多樣 性;後兩個式子則根據震盪幅度的變化,分別實現全域與局部搜索能力。

$$X^{t+1} = egin{cases} ext{rand} * (UB - LB) + LB, & ext{rand} < z \ X_b^t + vb * (W * X_A^t - X_B^t), & r < p \ vc * X^t, & r \geq p \end{cases}$$

食物源的吸引會引發黏菌自身的振蕩,進而改變其靜脈網路中細胞質的流動,使其逐步向食物源靠近。v_b 和 v_c 即是類比這種振蕩的參數,v_b 的值在〔-a,a〕之間隨機振蕩,v_c 的值在〔-1,1〕之間振蕩,並隨著反覆運算次數的增加逐漸趨於零。

二、現代應用的路徑最佳化

1. 導航怎麼提供最佳化路徑?

```
    地圖資料 + 即時交通
    ↓

圖形建模 (節點 + 邊 + 權重)
    ↓

選擇演算法 (如 A*)
    ↓

計算最佳路徑 (以時間或距離為目標)
    ↓

持續更新 (動態調整)
```

主要是利用路徑規劃演算法,結合交通資料與地圖資訊。

```
var origin1 = new google.maps.LatLng(55.930385, -3.118425);
var origin2 = 'Greenwich, England';
var destinationA = 'Stockholm, Sweden';
var destinationB = new google.maps.LatLng(50.087692, 14.421150);
var service = new google.maps.DistanceMatrixService();
service.getDistanceMatrix(
   origins: [origin1, origin2],
   destinations: [destinationA, destinationB],
   travelMode: 'DRIVING',
    transitOptions: TransitOptions,
   drivingOptions: DrivingOptions,
    unitSystem: UnitSystem,
    avoidHighways: Boolean,
    avoidTolls: Boolean,
  }, callback);
function callback(response, status) {
  // See Parsing the Results for
  // the basics of a callback function.
```

方法會向距離矩陣服務發出要求,並將含有起點、目的地和交通方式的 DistanceMatrixRequest 物件常值,以及收到回應後要執行的回呼方法傳遞至該 服務。

- origins : 計算距離和時間時要做為起點的陣列,內含一或多個地址字 串、google.maps.LatLng 物件或 Place 物件。
- destinations : 計算距離和時間時要做為目的地的陣列,內含一或多個 地址字串、google.maps.LatLng 物件或 Place 物件。
- travelMode :計算路線時要使用的交通方式。
- unitSystem : 顯示距離時要使用的單位系統。
- avoidHighways:如為 true,系統計算起點與目的地之間的路線時,會盡量避開高速公路。
- avoidTolls : 如為 true,系統計算點與點之間的路線時,會盡量避開收 費路段。

```
{
   departureTime: Date,
   trafficModel: TrafficModel
}
```

 departureTime會將所需的出發時間指定為 Date 物件。如果在要求中加入 departureTime,
 API 就會根據當時的預期路況傳回最佳路線,並在回應中附上預估交通時間 (duration_in_traffic)。

```
{
  origins: [{lat: 55.93, lng: -3.118}, 'Greenwich, England'],
  destinations: ['Stockholm, Sweden', {lat: 50.087, lng: 14.421}],
  travelMode: 'DRIVING',
  drivingOptions: {
    departureTime: new Date(Date.now() + N), // for the time N milliseconds from now.
    trafficModel: 'optimistic'
  }
}
```

- trafficModel: 指定計算交通時間時要採用的假設。這項設定會影響回應中 duration_in_traffic 欄位傳回的值,其中包含根據歷來平均值預估的交通時間。
- optimistic:表示傳回的 duration_in_traffic 在大多數日子應該都會比實際交通時間短,但偶爾路 況特別好時,實際交通時間可能會短於這個值。

- originAddresses 陣列包含距離矩陣要求 origins 欄位中所傳遞的地點。 地址會由地理編碼器進行格式化,然後傳回。
- destinationAddresses 陣列包含 destinations 欄位中所傳遞的地點,並採用地理編碼器傳回的格式。

- rows 是 DistanceMatrixResponseRow 物件的陣列,其中每一列都對應一個起點。
- elements 是 rows 的子項,會對應該列中起點與每個目的地的組合,且 包含每個起點/目的地組合的狀態、時間長度、距離和車資資訊 (如有)。

```
distance": {
    "value": 1262780,
    "text": "785 mi"
}
}, {
    "elements": [ {
        "status": "0K",
        "duration": {
            "value": 96800,
            "text": "1 day 3 hours"
},
    "distance": {
            "value": 2566737,
            "text": "1595 mi"
}
}, {
        "status": "0K",
        "duration": {
            "value": 69698,
            "text": "19 hours 22 mins"
},
        "distance": {
            "value": 1942809,
            "text": "1207 mi"
}
}
}
```

- status:距離矩陣回應包含整個回應的狀態碼,以及各項元素的狀態 duration:行經這條路線所需的時間,以秒為單位 (value 欄位),格式為 text。文字值的格式取決於要求中指定的 unitSystem (如未提供偏好設 定,則採用公制)。
- duration_in_traffic:將目前路況列入考量,行經這條路線所需的時間, 以秒 (value 欄位)為單位,格式為 text。文字值的格式取決於要求中指 定的 unitSystem (如未提供偏好設定,則採用公制)。只有在有車流量資 料可用、mode 已設為 driving,且 departureTime 包含在要求的 distanceMatrixOptions 欄位中的情況下,才會傳回 duration_in_traffic。
- distance: 這條路線的總距離,以公尺 (value) 為單位,格式為 text。文字值的格式取決於要求中指定的 unitSystem (如未提供偏好設定,則採用公制)。


```
function initMap(): void {
 const directionsRenderer = new google.maps.DirectionsRenderer();
const directionsService = new google.maps.DirectionsService();
  const map = new google.maps.Map(
    document.getElementById("map") as HTMLElement,
      zoom: 14,
      center: { lat: 37.77, lng: -122.447 },
  directionsRenderer.setMap(map);
  calculateAndDisplayRoute(directionsService, directionsRenderer);
  (document.getElementById("mode") as HTMLInputElement).addEventListener(
    "change",
    () => {
      calculateAndDisplayRoute(directionsService, directionsRenderer);
function calculateAndDisplayRoute(
  directionsService: google.maps.DirectionsService,
  directionsRenderer: google.maps.DirectionsRenderer
 const selectedMode = (document.getElementById("mode") as HTMLInputElement)
```

```
const selectedMode = (document.getElementById("mode") as HTMLInputElement)
    .value;
  directionsService
    .route({
     origin: { lat: 37.77, lng: -122.447 }, // Haight.
     destination: { lat: 37.768, lng: -122.511 }, // Ocean Beach.
      // Note that Javascript allows us to access the constant
      // using square brackets and a string value as its
     // "property."
     travelMode: google.maps.TravelMode[selectedMode],
    .then((response) => {
     directionsRenderer.setDirections(response);
    })
    .catch((e) => window.alert("Directions request failed due to " + status));
declare global {
  interface Window {
    initMap: () => void;
window.initMap = initMap;
```

三、經濟面向的最佳化實務

1. 如何生產才最賺錢

(1) 人工算出

玩具工廠正考慮下個月要產出多少塑膠貝殼和塑膠蝦?每個塑膠貝殼與塑膠 蝦的利潤分別是 3 元及 4 元,耗費塑膠粒數分別為 125 粒和 175 粒,到月底前 能夠生產五百個塑膠貝殼和七百隻塑膠蝦,但庫存的塑膠粒僅剩十一萬粒,請 問以最佳利潤為前提下,分別要生產出多少個?

解: 先從每個產品所需原料切入,算出每粒塑膠值多少錢,算出後會發現生產 塑膠貝殼是最賺的,於是在時間限制內生產 500 個塑膠貝殼剩下的時間及原料 生產 271 塑膠蝦,最後原料會剩下 75 粒,利潤來到 2584,接下來討論,如何 使剩下的原料最小化,得到的結果是生產 499 個塑膠貝殼和 272 個塑膠蝦,原料剩下 25 粒,而利潤來到了 2585。

		_	_	_			_	_		4 day	ys, 21 hours,	34 minutes r	emaining
	Α	В	С	D		A	В	С	D	Obje	ective Fun	ction Cell:	2
1	決策變量				1	決策變量							•
2		塑膠貝殼	塑膠蝦		2		塑膠貝殼	塑膠蝦				Min / Max?	
3	生產數量(個)	499	272		3	生產數量(個)	499	272		B10		Maximize \$	
4	_/_xx_(iii)				4	(,				Dec	ision Varia	bles: 🙆	
5	目標函式				5	目標函式				Chec	ok the boxes	for integers (?
6					- 6	單位利潤(元)	3	4			Cell Reference	or Range	
	單位利潤(元)	3	4		- 7	+11171/13(7C)	3	-		1	B3		
7					- 8								-
8					_					✓	C3		
9	目標變量	2585 ×			9	目標變量				Add	Variables		
10	總利潤(元)	=B3*B6+C3*C6			10	總利潤(元)	2585						
11					11					Con	straints:	3	
12	限制條件				12	限制條件				0	Non-Nega	ecision Variable tivity	
13	時間內限制(個)	500	700		13	時間內限制(個)	500	700		LHS	Opera	tor RH	IS
14					14	單位塑膠粒(個)	109975 × 125	175		C3	<=	¢ C13	
	單位塑膠粒(個)	125	175		15	總共使用塑膠粒	=B14*B3+C14*C3	3		20		A D40	=
15	總共使用塑膠粒(16	塑膠粒庫存上限(110000			B3	<=	\$ B13	Î
16	塑膠粒庫存上限(110000			- 17		110000			B15	<=	\$ B16	Î
17					- "								

以上為試算表配合外掛程式的應用

(2) 藉由外掛程式

一家製造公司生產三種產品:A、B、C,並有兩條產線:產線 1 與產線 2。公司目標是在滿足市場需求與資源限制的條件下,最大化每月總利潤。利潤分別是 40、35、60(美元),已知資訊如下:

		在不同產線的 產品所需要 產線1 (小時)	消耗原料(公		\$市場需求限制\$ 1.至少生產200單位的產品A				
	生口口	産級1 (小村)	産級2(小吋)	消耗(公斤)	2.最多只能銷售500單位產品C				
	A	2	1	4	\$產線要求\$				
	В	S	2	3	產線1的A物和B物至少產出50單				
,	C	4	3	5	位物出來 產線2的A物和B物要至多產出				
	產	個月最多運(線1:1,600 線2:1,200	多運作時數 原料上限:4300公斤 3.600 小時						

	А	В	С	D	E	F
1	決策變量	A物	B物	C物		
2						
3	產線1					產線1總時數
4	生產量	2	288	183		
5	單位產量所需時間	2	3	4		1600
6	A+B	290				
7	產線2					產線2總時數
8	生產量	198	27	316		
9	單位產量所需時間	1	2	3		1200
10	A+B	225				
11						
12	單位耗材(公斤)	4	3	5		
13						
14	總生產數量	200	315	499		
15	總耗量(公斤)	4240				
16						
17	目標函式					
18	單位利潤(美元)	40	35	60		
19						
20	目標變量					
21	總利潤(美元)	48965				
22						
23	限制條件					
24		產線1	產線2			
25	運作時間上限(小	1600	1200			
26						
27	原料上限(公斤)	4300				
28	市場需求	200		500		
29	產線1的A+B	50				
30	產線2的A+B	225				

F5	▼ fix =B5*B4+C5*C4+D5*D4								
	A B		С	D	E	F	G	Н	
1	決策變量	A物	B物	C物					
2									
3	產線1					產線1總時數			
4	生產量	2	288	183					
5	單位產量所需時	2	3	4		? =B5*B4+C5*C4+	∙D5*D4		
6	A+B	290							
7	產線2					產線2總時數			
8	生產量	198	27	316					
9	單位產量所需時	1	2	3		? =B9*B8+C9*C8+	D9*D8		
10	A+B	225							
11									
12	單位耗材(公斤)	4	3	5					
13									
14	總生產數量	200	315	499					
15	總耗量(公斤) ?	=B12*B14+C12*(C14+D12*D14						
16									
17	目標函式								
18	單位利潤(美元)	40	35	60					
19									
20	目標變量								
21	總利潤(美元) ?	=B14*B18+C14*0	C18+D14*D18						
22	DES HAR ARE ALL								
23	限制條件								
24		產線1	產線2						
25	運作時間上限(小	1600	1200						
26									
27	原料上限(公斤)	4300							
28	市場需求	200		500					
29	產線1的A+B	50							
30	產線2的A+B	225							

三、結論

本報告從自然界、生產管理與現代科技三個層面探討了最佳化問題的應用 與意義。透過黏菌模擬東京地鐵路網的實驗,我們看到生物體在無中心控制下 仍能自發形成高效路徑,展現了自然演化出的最佳化能力。導航系統則是數學 與演算法在人類日常生活中的實踐,為使用者提供成本最低或時間最短的路 徑。而在生產管理中,工廠如何在原物料受限的條件下最大化利潤,則體現了 最佳化在資源配置上的關鍵價值。

綜上所述,最佳化不僅是理論上的數學問題,更深刻地影響著自然、生產 與生活。未來隨著人工智慧與計算技術的進步,最佳化方法將持續拓展其應用 範疇,為人類解決更複雜的決策問題提供支持。

四、參考資料

1.黏菌演算法原理、實作及其改良與利用

https://blog.csdn.net/sfejojno/article/details/135043239

2.揭秘大規模多目標黏菌算法:高效優化與未來應用展望

https://www.oryoy.com/news/jie-mi-da-gui-mo-duo-mu-biao-nian-jun-suan-fa-gao-xiao-you-hua-yu-wei-lai-ying-yong-zhan-wang.html

3.這種「單細胞生物」只花幾小時就超越「東京地鐵」數十年努力!實驗結果 「沒腦」是比人聰明關鍵

https://www.teepr.com/805484/adrianchiang/黏菌東京地鐵/

4.最佳化問題:規劃求解

https://blog.pulipuli.info/2017/09/optimization-problem-solver.html

5.距離矩陣服務

https://developers.google.com/maps/documentation/javascript/legacy/distancematrix?hl=zh-tw#distance_matrix_requests

6.路線中的出行方式

https://developers.google.com/maps/documentation/javascript/examples/directions-travel-modes#maps_directions_travel_modes-typescript

7. Number Engine:外掛程式

https://www.numberengine.app/home