#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

비트코인 가격 분석

#01. 작업준비

패키지 참조

pyupbit 패키지의 설치가 필요하다.

```
import sys
sys.path.append("../../")

import pyupbit
import datetime as dt
from matplotlib import pyplot as plt
from matplotlib import dates as mdates
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
import seaborn as sb

from helper import set_datetime_index, exp_time_data
```

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

```
비트코인 가격 분석
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

```
KRW : 한국화폐
```

• BTC : Bitcoin

• ETH : 이더리움

```
print(pyupbit.get_tickers())
```

```
['KRW-BTC', 'KRW-ETH', 'BTC-ETH', 'BTC-XRP', 'BTC-ETC', 'BTC-CVC', 'BTC-
```

특정 단어를 포함하는 조회 가능 목록만 가져오기

```
print(pyupbit.get_tickers(fiat='KRW'))
```

```
['KRW-BTC', 'KRW-ETH', 'KRW-NEO', 'KRW-MTL', 'KRW-XRP', 'KRW-ETC', 'KRW-
```

현재 시세 가져오기

조회하고자 하는 단위의 이름을 리스트로 설정한다.

```
pyupbit.get_current_price(["KRW-BTC", "KRW-ETH"])
```

```
{'KRW-BTC': 38545000.0, 'KRW-ETH': 2435000.0}
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

특정 기간에 대한 시세 데이터 가져오기

비트코인의 한국 화폐단위(KRW-BTC) 데이터를 오늘 날짜부터 500일간 일단위(day)로 조회

조회간격 단위: minute1, minute3, minute5, minute10, minute15, minute30, minute60, minute240, day, week, month

필드	설명
open	시가
high	고가
low	저가
close	종가
volume	거래량
value	거래량을 지정된 화폐 단위로 환산한 가치

```
ticker = 'KRW-BTC'
to = dt.datetime.now().strftime('%Y-%m-%d')
count = 500
interval = 'day'
df = pyupbit.get_ohlcv(ticker=ticker,interval=interval,to=to,count=count df.head()
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

	open	high	low	close	volume	
2022- 03-25 09:00:00	52907000.0	54450000.0	52700000.0	53791000.0	5670.827515	3.03815
2022- 03-26 09:00:00	53836000.0	54241000.0	53402000.0	53902000.0	3333.058744	1.79588
2022- 03-27 09:00:00	53888000.0	56201000.0	53674000.0	55949000.0	5341.023716	2.92027
2022- 03-28 09:00:00	55936000.0	57678000.0	55827000.0	56914000.0	6374.435146	3.61568
2022- 03-29 09:00:00	56900000.0	57540000.0	56390000.0	56985000.0	6629.178471	3.78907
4)

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

최고가와 최저가의 평균을 그날의 시세가격으로 삼기로 결정하고 데이터 전처리를 수행

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

df['price'] = (df['high'] + df['low']) / 2
df.head()

	open	high	low	close	volume	
2022- 03-25 09:00:00	52907000.0	54450000.0	52700000.0	53791000.0	5670.827515	3.03815
2022- 03-26 09:00:00	53836000.0	54241000.0	53402000.0	53902000.0	3333.058744	1.79588
2022- 03-27 09:00:00	53888000.0	56201000.0	53674000.0	55949000.0	5341.023716	2.92027
2022- 03-28 09:00:00	55936000.0	57678000.0	55827000.0	56914000.0	6374.435146	3.61568
2022- 03-29 09:00:00	56900000.0	57540000.0	56390000.0	56985000.0	6629.178471	3.78907
4						•

인덱스에 대한 날짜 형식 지정

set_datetime_index(df, inplace=True)

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

#04. 데이터 검정

이상치는 보이지만 데이터 자체가 실제 거래 데이터이므로 정상 데이터로 판단함.

결측치 수: 0

07 비트코인 가격분석.ipynb

비트코인 가격 분석

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

```
검정통계량(ADF Statistic)
                                 -3.07508
유의수준(p-value)
                                0.0284529
최적차수(num of lags)
                                        3
관측치 개수(num of observations)
                                     496
기각값(Critical Values) 1%
                                  -3.4436
기각값(Critical Values) 5%
                                 -2.86738
기각값(Critical Values) 10%
                                 -2.56988
데이터 정상성 여부(0=Flase,1=True)
                                      1
```

#04. ARIMA 분석

분석 모델 구축

```
model = ARIMA(df['price'], order=(1,0,0), seasonal_order=(1,1,0,7))
fit = model.fit()
print(fit.summary())
```

SARIMAX Results

```
Dep. Variable:
                                                  No. Observations:
                                          price
Model:
                   ARIMA(1, 0, 0)x(1, 1, 0, 7)
                                                  Log Likelihood
                              Mon, 07 Aug 2023
Date:
                                                  AIC
Time:
                                       11:51:57
                                                  BIC
Sample:
                                     03-25-2022
                                                  HOIC
                                   - 08-06-2023
Covariance Type:
                                            opg
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

	coef	std err	Z	P> z	[0.025	
ar.L1	0.6069	0.002	359.813	0.000	0.604	
ar.S.L7	-0.2590	0.002	-112.625	0.000	-0.263	
sigma2	8.931e+11	5.46e-16	1.64e+27	0.000	8.93e+11	8.
Ljung-Box (L1) (Q):			68.82	Jarque-Bera	(JB):	
Prob(Q):			0.00	Prob(JB):		
Heteroskedasticity (H):			0.17	Skew:		
Prob(H) (two-sided):		0.00	Kurtosis:		

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (d
- [2] Covariance matrix is singular or near-singular, with condition numbe

분석 모델에 대한 예측치

fv = fit.fittedvalues
fv.head()

2022-03-25 09:00:00 0.000000e+00 2022-03-26 09:00:00 3.207295e+07 2022-03-27 09:00:00 3.193289e+07 2022-03-28 09:00:00 3.212577e+07

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

```
2022-03-29 09:00:00 3.240832e+07 Freg: D, dtype: float64
```

향후 30일간의 데이터 예측

```
fc = fit.forecast(30)
fc.head()
```

```
2023-08-07 09:00:00 3.831736e+07

2023-08-08 09:00:00 3.818717e+07

2023-08-09 09:00:00 3.856191e+07

2023-08-10 09:00:00 3.844897e+07

2023-08-11 09:00:00 3.837836e+07

Freq: D, Name: predicted_mean, dtype: float64
```

시각화

```
plt.figure(figsize=(20,8))

sb.lineplot(data=df, x=df.index, y='price', label='Original')
sb.lineplot(x=fv.index, y=fv.values, label='FittedValues', linestyle='--
sb.lineplot(x=fc.index, y=fc.values, label='Predict', linestyle='--', cc

plt.xlabel('Month')
plt.ylabel('Price')
plt.legend()
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

```
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set_major_formatter(monthyearFmt)
```

```
plt.grid()
plt.show()
plt.close()
```


#05. AutoARIMA 사용

분석모델 구축

```
my_p = 1# AR의 차수 (검증한 결과를 활용)my_d = 1# 차분 횟수 (검증한 결과를 활용)my_q = 0# MA의 차수 (검증한 결과를 활용)
```

```
비트코인 가격 분석
 #01. 작업준비
   패키지 참조
 #02 pyupbit 패키지 사용
   조회 가능한 단위 목록
   특정 단어를 포함하는 조회 가
   능 목록만 가져오기
   현재 시세 가져오기
   특정 기간에 대한 시세 데이터
   가져오기
 #03. 데이터 전처리
   시세가격에 대한 파생변수 추
   인덱스에 대한 날짜 형식 지정
 #04. 데이터 검정
 #04. ARIMA 분석
   분석 모델 구축
   분석 모델에 대한 예측치
   향후 30일간의 데이터 예측
   시각화
 #05. AutoARIMA 사용
```

```
mv s = 7 # 계절성 주기 (분석가가 판단)
model = auto arima(
  v=df['price'].
              # 모델링하려는 시계열 데이터 또는 배열
  start p=0. # p의 시작점
  max p=my p,
                # p의 최대값
                 # 차분 횟수
  d=my d,
               # q의 시작점
  start q=0,
               # q의 최대값
  max q=my q,
  seasonal=True, # 계절성 사용 여부
                  # 계절성 주기
  m=my s,
  start P=0.
                 # P의 시작점
               # P의 최대값
  max_P=my_p,
               # 계절성 차분 횟수
  D=my d,
  start Q=0, # Q의 시작점
  max_Q=my_q, # Q의 최대값
  trace=True # 학습 과정 표시 여부
print(model.summary())
Performing stepwise search to minimize aic
ARIMA(0,1,0)(0,1,0)[7]
                          : AIC=14956.004, Time=0.02 sec
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

Dep. Variable:						У	No.	Observations:
Model:	SARIMAX(1,	1,	0)x(1,	1,	0,	7)	Log	Likelihood

Date: Mon, 07 Aug 2023 AIC Time: 11:52:07 BIC

Sample: 03-25-2022 HQIC

- 08-06-2023

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	
ar.L1	0.0420	0.005	7.769	0.000	0.031	
ar.S.L7	-0.0844	0.004	-21.001	0.000	-0.092	
sigma2	8.058e+11	1.15e-16	7.03e+27	0.000	8.06e+11	8.

Ljung-Box (L1) (Q):	54.67	Jarque-Bera (JB):
Prob(Q):	0.00	Prob(JB):
Heteroskedasticity (H):	0.43	Skew:
<pre>Prob(H) (two-sided):</pre>	0.00	Kurtosis:

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (d
- [2] Covariance matrix is singular or near-singular, with condition numbe

잔차 분석

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추 가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

model.plot_diagnostics(figsize=(20, 12))
plt.show()

학습 결과에 대한 예측값

fv = model.fittedvalues()
fv.head()

```
비트코인 가격 분석
```

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

#05. AutoARIMA 사용

```
2022-03-25 09:00:00 0.000000e+00

2022-03-26 09:00:00 5.582250e+07

2022-03-27 09:00:00 5.383184e+07

2022-03-28 09:00:00 5.498430e+07

2022-03-29 09:00:00 5.682831e+07

Freq: D, dtype: float64
```

향후 30일간의 시세 예측

```
fc = model.predict(n_periods=30)
fc.head()
```

```
2023-08-07 09:00:00 3.858298e+07

2023-08-08 09:00:00 3.865642e+07

2023-08-09 09:00:00 3.916127e+07

2023-08-10 09:00:00 3.904907e+07

2023-08-11 09:00:00 3.901622e+07

Freq: D, dtype: float64
```

시각화

```
plt.figure(figsize=(20,8))
# 원본 데이터
sb.lineplot(data=df, x=df.index, y='price', label='Original')
```

```
비트코인 가격 분석
 #01. 작업준비
   패키지 참조
 #02 pyupbit 패키지 사용
   조회 가능한 단위 목록
   특정 단어를 포함하는 조회 가
   능 목록만 가져오기
   현재 시세 가져오기
   특정 기간에 대한 시세 데이터
   가져오기
 #03. 데이터 전처리
   시세가격에 대한 파생변수 추
   인덱스에 대한 날짜 형식 지정
 #04. 데이터 검정
 #04. ARIMA 분석
   분석 모델 구축
   분석 모델에 대한 예측치
   향후 30일간의 데이터 예측
```

4

```
# 원본에 대한 학습결과
sb.lineplot(x=fv.index, y=fv.values, label='FittedValues', linestyle='--
# 예측 데이터
sb.lineplot(x=fc.index, y=fc.values, label='Predict', linestyle='--', cd
plt.xlabel('Month')
plt.ylabel('Price')
plt.legend()
# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set_major_formatter(monthyearFmt)
plt.grid()
plt.show()
plt.close()
```

시각화

#01. 작업준비

패키지 참조

#02 pyupbit 패키지 사용

조회 가능한 단위 목록

특정 단어를 포함하는 조회 가 능 목록만 가져오기

현재 시세 가져오기

특정 기간에 대한 시세 데이터 가져오기

#03. 데이터 전처리

시세가격에 대한 파생변수 추가

인덱스에 대한 날짜 형식 지정

#04. 데이터 검정

#04. ARIMA 분석

분석 모델 구축

분석 모델에 대한 예측치

향후 30일간의 데이터 예측

시각화

