∨ DATA ANALYSE

✓ 1. Load the file

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
fp_df = pd.read_csv('/content/Clean_Dataset.csv')
```

2. Print first 5 rows of data

fp_df.head()

₹		Unnamed: 0	airline	flight	source_city	departure_time	stops	arrival_time	destination_city	class	duration	days_left	price
	0	0	SpiceJet	SG- 8709	Delhi	Evening	zero	Night	Mumbai	Economy	2.17	1	5953
	1	1	SpiceJet	SG- 8157	Delhi	Early_Morning	zero	Morning	Mumbai	Economy	2.33	1	5953
	2	2	AirAsia	I5-764	Delhi	Early_Morning	zero	Early_Morning	Mumbai	Economy	2.17	1	5956
	3	3	Vistara	UK-995	Delhi	Mornina	zero	Afternoon	Mumbai	Economy	2.25	1	5955

→ 3. Print last 5 rows of data

fp_df.tail()

₹		Unnamed: 0	airline	flight	source_city	departure_time	stops	arrival_time	destination_city	class	duration	days_left	pri
	300148	300148	Vistara	UK- 822	Chennai	Morning	one	Evening	Hyderabad	Business	10.08	49	6926
	300149	300149	Vistara	UK- 826	Chennai	Afternoon	one	Night	Hyderabad	Business	10.42	49	771(
	300150	300150	Vistara	UK- 832	Chennai	Early_Morning	one	Night	Hyderabad	Business	13.83	49	7909 •

4. Cleaning the data for missing values, null values etc.

fp_df.isnull().sum()

→ 6. Get some info about the data

```
fp_df.info()
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 300153 entries, 0 to 300152
    Data columns (total 12 columns):
     # Column
                          Non-Null Count
                                           Dtype
         -----
                          -----
     0
        Unnamed: 0
                          300153 non-null int64
         airline
                          300153 non-null
                                          object
         flight
                          300153 non-null
                                          object
         source_city
                          300153 non-null
                                          object
         departure_time
                          300153 non-null
                          300153 non-null
         stops
                                           object
         arrival_time
                          300153 non-null
                                          object
         destination_city 300153 non-null
                          300153 non-null
                                           object
                          300153 non-null
         duration
                                          float64
     10 days_left
                          300153 non-null
                                           int64
     11 price
                          300153 non-null
    dtypes: float64(1), int64(3), object(8)
    memory usage: 27.5+ MB
```

7. Get some description about the data

fp_df.describe()

*		Unnamed: 0	duration	days_left	price
	count	300153.000000	300153.000000	300153.000000	300153.000000
	mean	150076.000000	12.221021	26.004751	20889.660523
	std	86646.852011	7.191997	13.561004	22697.767366
	min	0.000000	0.830000	1.000000	1105.000000
	25%	75038.000000	6.830000	15.000000	4783.000000
	50%	150076.000000	11.250000	26.000000	7425.000000
	75%	225114.000000	16.170000	38.000000	42521.000000
	max	300152.000000	49.830000	49.000000	123071.000000

DATA VISUALIZATION

1. What are the airlines in the dataset, accompanied by their frequencies?

```
airline_counts = fp_df['airline'].value_counts()
print(airline_counts)
→ airline
     Vistara
                  127859
     Air_India
                   80892
     Indigo
                   43120
     GO_FIRST
                   23173
     AirAsia
                   16098
                    9011
     SpiceJet
     Name: count, dtype: int64
```

2. Departure time against Arrival time using barplot.

```
plt.figure(figsize=(12, 6))
sns.countplot(x='departure_time', hue='arrival_time', data=fp_df)
plt.xlabel('Departure Time')
plt.ylabel('Count')
plt.title('Departure Time vs Arrival Time')
plt.xticks(rotation=45)
plt.legend(title='Arrival Time')
plt.show()
```


3. Source city against Destination city

```
plt.figure(figsize=(12, 6))
sns.countplot(x='source_city', hue='destination_city', data=fp_df)
plt.xlabel('Source City')
plt.ylabel('Count')
```

```
plt.title('Source City vs Destination City')
plt.xticks(rotation=45)
plt.legend(title='Destination City')
plt.show()
```


4. Does price vary with Airlines?

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='airline', y='price', data=fp_df)
plt.xlabel('Airline')
plt.ylabel('Price')
plt.title('Price Variation by Airline')
plt.xticks(rotation=45)
plt.show()
```


Price Variation by Airline

5. Does ticket price change based on the departure time and arrival time using line plot?

```
plt.figure(figsize=(12, 6))
sns.lineplot(x='departure_time', y='price', hue='arrival_time', data=fp_df)
plt.xlabel('Departure Time')
plt.ylabel('Price')
plt.title('Ticket Price Variation by Departure and Arrival Time')
plt.xticks(rotation=45)
plt.legend(title='Arrival Time')
plt.show()
```

₹

Ticket Price Variation by Departure and Arrival Time

6. How the price changes with change in Source and Destination?

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='source_city', y='price', hue='destination_city', data=fp_df)
plt.xlabel('Source City')
plt.ylabel('Price')
plt.title('Price Variation by Source and Destination City')
plt.xticks(rotation=45)
plt.legend(title='Destination City')
plt.show()
```


Price Variation by Source and Destination City

→ 7. Duration of travel vs city

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='source_city', y='duration', data=fp_df)
plt.xlabel('Source City')
plt.ylabel('Duration')
plt.title('Duration of Travel by Source City')
plt.xticks(rotation=45)
plt.show()

plt.figure(figsize=(12, 6))
sns.boxplot(x='destination_city', y='duration', data=fp_df)
plt.xlabel('Destination City')
plt.ylabel('Duration')
plt.title('Duration of Travel by Destination City')
plt.xticks(rotation=45)
plt.show()
```