人工智能学院本	体科生 2019—2020	学年第一学期线	性代数课	怪期末考试试 着	ś (A 卷)		
专业(大类): 说明: A ⁷ 表示矩阵 A 的转 A ⁻¹ 表示可逆矩			单位矩阵, 0 2	是零矩阵, R(A)或 r(- •	
一 .客观题: 1-3	小题为判断题,有	在对的后面括号中	中填"√",	错的后面括号	¦中填"×",		
4–8	4-8 为单选题,将正确选项前的字母填在括号中. (每小题 2 分, 共 16 分)。						
1. 对应于 n(n>3)阶等	实矩阵的相异特征	值的实特征向量	必是正交的	勺。		()
2. 欧式空间 V 中的向量 $lpha$, eta 满足 $ lpha = eta $,则 $lpha$ + eta 与 $lpha$ - eta 正交。						()
3. 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$	设 $lpha_1,lpha_2,\cdots,lpha_m$ 是 R^n 中一个正交向量组,则它们作为列向量组构成的矩阵的秩必为。)
.设三阶矩阵 A ,满足 $ A =-1$,则 $\left 2A^* ight $ =						()
(A) -8	(B) 8	(C) -2	(D) 2				
5. 设A为n阶方阵,	,满足 <i>AB=O</i> ,且	L <i>B≠0</i> 则:				()
(A) A 的列向量组	线性无关	(B) A=O					
(C) A 的列向量组	(C) A 的列向量组线性相关 (D) A 的行向量组线性无关						
6. 对于方阵 A 与 A	对于方阵 $A 与 A^{T}$,下面说法错误的是:)
(A) 它们有相同的	(A) 它们有相同的特征根 (B) 它们有相同的特征向量						
(C) 它们有相同的特征多项式 (D) 它们的行列式值相同							
n元齐次线性方程组 $Ax=0$ 有非零解的充要条件是:						()
(A) $R(A) > n$	(B) $R(A) < n$	(C) $R(A) = n$	(D)	$R(A) \leq n$			
8. 设矩阵 $A = \begin{pmatrix} a & b \\ b & -b \end{pmatrix}$	(a - a)其中 $a > b > 0$ 且	且 $a^2+b^2=1$,则	A为:			()
(A) 正定矩阵	(B) 负定矩阵	(C) 初等矩阵	(D)正	交矩阵			

二、行列式计算 (第1小题6分,第2小题8分,共14分)

1. 计算行列式
$$|D_n| = \begin{vmatrix} 0 & 2 & 3 & \dots & n-1 & n \\ 1 & 0 & 3 & \dots & n-1 & n \\ 1 & 2 & 0 & \dots & n-1 & n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & 3 & \dots & 0 & n \\ 1 & 2 & 3 & \dots & n-1 & 0 \end{vmatrix}$$
, 其中 $n > 2$ 。

三、已知
$$A = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 8 & 3 \\ 0 & 0 & 5 & 2 \end{pmatrix}$$
, 求 $|A^4|$ 及 $|A^*|$ 。

(本题 10 分)

四、当 a 与 b 取何值时, 下面方程组有唯一解? 无解? 有无穷解? 当有无穷解时, 求出全部解。

(本题 14 分)

$$\begin{cases}
-x_1 + x_3 + x_4 = 1 \\
x_1 + x_2 + x_3 + x_4 = 0 \\
-x_2 + (a - 3)x_3 - 2x_4 = 2b \\
3x_1 + 2x_2 + x_3 + ax_4 = -1
\end{cases}$$

得 分

五、设在线性空间 $P_4[x]$ 中,有序基底(I)为 $\left[x^4,x^3,x^2,x,1\right]$,有序基底(II)为

$$[1, 1+x, 1+x+x^2, 1+x+x^2+x^3, 1+x+x^2+x^3+x^4],$$

- (1) 求基底(I)到基底(II)的过渡矩阵。
- (2) 求多项式 $1+2x+3x^2+4x^3+5x^4$ 在基底(II)下的坐标。

(本题 9 分)

早 桐 区

六、已知二次型: $f(x_1,x_2,x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$,

(本题 14 分)

用正交变换化 $f(x_1,x_2,x_3)$ 为标准形,并求出所用正交变换矩阵 \mathbb{Q} 及该二次型的符号差。

草稿区

得 分

八、设A,B,C,D 都是n阶矩阵,其中|A|=6 并且AC=CA ,

求证:
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|$$
。

(本题 9 分)

九、A是三阶实对称方阵,且满足条件 $A^2-2A=O$,已知R(A)=2。

- (1) 求A的全部特征值。
- (2) 当 k 为何值时,矩阵 A+kE 为正定矩阵,其中 E 为三阶单位矩阵。

(本题5分)