Variant 1. 2017-01-20. Please, don't forget to write you variant number. Sections A and B will make up 60% and 40% of the exam grade, respectively. Total duration of the exam is 120 min. Good luck! :)

SECTION A

- 1. Find the second order Taylor expansion of the function $f(x,y) = \cos(e^{2x} 1) \cos(e^{3y} 1)$ at a point x = 0, y = 0.
- 2. Find the limit or prove that it does not exist

$$\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^4 + 3y^4}$$

- 3. Consider the sphere given by $x^2 + y^2 + z^2 = 1$. Find the equation of the tangent plane to the sphere at the point $x = 1/\sqrt{3}$, $y = 1/\sqrt{3}$, $z = -1/\sqrt{3}$.
- 4. Using Lagrange multiplier method find and classify the constrained extrema of f(x, y, z) = 2x+3y+9z subject to $x^2 + y^2 + 4z^2 = 1$.
- 5. Consider the set A on the plane (x, y) given by the inequality

$$\frac{(x^2 + y^2 - 3)(x^2 + y^2 - 10)}{x^2 + y^2 - 10} \ge 0$$

- (a) Is the set A closed? open? bounded? convex? compact?
- (b) If possible represent the set A in the form $A = B_1 \times B_2$ where each set $B_i \subset \mathbb{R}$.
- 6. Find and classify the critical points of the function $f(x,y) = \exp(-x^2 6y^2 + 2xy + 2y)$. Check whether these local extrema are the global ones.

SECTION B

7. Short-run total costs of a firm are given by

$$STC(q, K) = q^2 + 3qK + 4K^2 - K + \frac{1}{16},$$

where q is the output and K is the amount of capital fixed in the short-run. In the long-run the firm can always adjust the capital in order to minimize costs. Use the appropriate envelope theorem to find MC = (TC)' long-run marginal costs.

8. Solve the constrained minimization problem in two variables: $x^2 + y^2 \to \min$ subject to constraint $(x-1)^3 = y^2$. Check firstly whether the method of Lagrange multipliers is valid to apply.

Variant 2. 2017-01-20. Please, don't forget to write you variant number. Sections A and B will make up 60% and 40% of the exam grade, respectively. Total duration of the exam is 120 min. Good luck! :)

SECTION A

- 1. Find the second order Taylor expansion of the function $f(x,y) = \cos(e^{2x} 1) \cos(e^{3y} 1)$ at a point x = 0, y = 0.
- 2. Find the limit or prove that it does not exist

$$\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^4 + 5y^4}$$

- 3. Consider the sphere given by $x^2 + y^2 + z^2 = 1$. Find the equation of the tangent plane to the sphere at the point $x = 1/\sqrt{3}$, $y = -1/\sqrt{3}$, $z = -1/\sqrt{3}$.
- 4. Using Lagrange multiplier method find and classify the constrained extrema of f(x, y, z) = 2x+3y+3z subject to $x^2 + y^2 + 4z^2 = 1$.
- 5. Consider the set A on the plane (x, y) given by the inequality

$$\frac{(x^2+y^2-5)(x^2+y^2-10)}{x^2+y^2-10} \ge 0$$

- (a) Is the set A closed? open? bounded? convex? compact?
- (b) If possible represent the set A in the form $A = B_1 \times B_2$ where each set $B_i \subset \mathbb{R}$.
- 6. Find and classify the critical points of the function $f(x,y) = \exp(-x^2 4y^2 + 2xy + 2y)$. Check whether these local extrema are the global ones.

SECTION B

7. Short-run total costs of a firm are given by

$$STC(q, K) = q^2 + 3qK + 4K^2 - K + \frac{1}{16},$$

where q is the output and K is the amount of capital fixed in the short-run. In the long-run the firm can always adjust the capital in order to minimize costs. Use the appropriate envelope theorem to find MC = (TC)' long-run marginal costs.

8. Solve the constrained minimization problem in two variables: $x^2 + y^2 \to \min$ subject to constraint $(x-1)^3 = y^2$. Check firstly whether the method of Lagrange multipliers is valid to apply.