F-statistics and Population Structure

Trees are foundational to Systematics and Evolution

Or really complicated

Or (nearly) continuous

nature

Vol 456 6 November 2008 doi:10.1038/nature07331

LETTERS

Genes mirror geography within Europe

John Novembre^{1,2}, Toby Johnson^{4,5,6}, Katarzyna Bryc⁷, Zoltán Kutalik^{4,6}, Adam R. Boyko⁷, Adam Auton⁷, Amit Indap⁷, Karen S. King⁸, Sven Bergmann^{4,6}, Matthew R. Nelson⁸, Matthew Stephens^{2,3} & Carlos D. Bustamante⁷

Continuous structure

Discrete structure

Inferring discontinuities

Where do individuals move?

Figure: McRae & Beier 2007

Peter, Petkova & Novembre (2020)

Models are starting points!

Discrete pops

- Trees
- Clustering
- Admixture graphs

Continuous pops

- PCA
- Spatial methods

Recap: F-stats as branches on tree

- F2 is pairwise distance
- F3 is external branch
- F4 is internal branch

Simple hypothesis tests involving 2,3 or four pops

Estimating Trees from F-stats

- Calculate all F2-statistics
- Treat them as distances
- Estimate tree (fitting covariance, or standard algorithms such as neighbor-joining)

Covariance of a tree

B. Covariance matrix for tree in A.

X ₁	C ₂ + C ₆	c ₂	0	0
X_2	C ₂	C ₂ + C ₅	0	0
X ₃	0	0	C ₁ + C ₃	C ₁
X ₄	0	0	C ₁	C ₁ + C ₄
	X ₁	X ₂	X ₃	X ₄

F2(X, Y) = Var(X) + Var(Y) - 2Cov(X, Y)

Figure from Pickrell & Pritchard (2012)

Distance matrix of a tree

$$F2(X, Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$

Covariance of Admixture Graph

D. Covariance matrix for graph in C.

X ₁	C ₂ + C ₆	c ₂	WC ₂	0
X_2	C ₂	C ₂ +C ₅ +C ₇	$\mathbf{w}(\mathbf{c}_2 + \mathbf{c}_5)$	0
X ₃	WC ₂	$\mathbf{w}(\mathbf{c}_2 + \mathbf{c}_5)$	$w^{2}(c_{2}+c_{5})$ + $(1-w)^{2}(c_{1}+c_{3})$	(1-w) c ₁
X ₄	0	0	(1-w)c ₁	C ₁ + C ₄
,	X ₁	X ₂	X ₃	X ₄

Distance matrix of Admixture Graph

Applications

PUBLISH

ABOUT

treemix

qpgraph (admixtools)

PLOS GENETICS

⑥ OPEN ACCESS № PEER-REVIEWED
RESEARCH ARTICLE

Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data

Joseph K. Pickrell , Jonathan K. Pritchard

Published: November 15, 2012 • https://doi.org/10.1371/journal.pgen.1002967

ADMIXTOOLS 2 Tutorial

Robert Maier

2021-02-23

Source: vignettes/admixtools.Rmd

This tutorial gives an overview of the basic workflow for computing f-statistics, and for using qpWave, qpAdm, and qpGraph.

Documentation for each ADMIXTOOLS 2 function can be found under Reference, and more detailed information about specific topics under Articles.

For the examples here and on the other pages, the following R packages need to be loaded.

library(admixtools) library(tidyverse)

While this website focuses on the R command line interface of ADMIXTOOLS 2, there is also a browser application that can be launched from R with the following command:

run_shiny_admixtools()