Lecture 8: Non-parametric Comparison of Location

GENOME 560

Doug Fowler, GS (dfowler@uw.edu)

Review

What do we mean by nonparametric?

What is a desirable location statistic for ordinal data?

What are NP equivalents of a one-sample t-test?

Goals

 Comparing the medians of two samples using the Wilcoxon Rank Sum test

 Comparing the medians of many mutually independent samples using the Kruskal-Wallis test

 Used to test whether two samples are likely to be drawn from the same distribution or different ones

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

$$X_1...X_{n_x}, \quad Y_1...Y_{n_y}$$
 $H_0: M_x = M_y$ $H_1: M_x \neq M_y$

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

$$X_1...X_{n_x}, Y_1...Y_{n_y}$$

Pool N = $n_x + n_y$ observations $H_1: M_x \neq M_y$

 $H_0: M_x = M_y$

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

$$X_1...X_{n_x}, \quad Y_1...Y_{n_y}$$
 $H_0: M_x = M_y$ Pool N = $\mathbf{n_x} + \mathbf{n_y}$ observations $H_1: M_x \neq M_y$

Arrange into an ordered array, preserving labels

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

$$X_1...X_{n_x}, \quad Y_1...Y_{n_y}$$
 $H_0: M_x = M_y$ Pool N = n_x + n_y observations $H_1: M_x \neq M_y$

- Arrange into an ordered array, preserving labels
- Assign ranks to each element of the array from 1...N

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

$$X_1...X_{n_x}, \quad Y_1...Y_{n_y}$$
 $H_0: M_x = M_y$ Pool N = $\mathbf{n_x} + \mathbf{n_y}$ observations $H_1: M_x \neq M_y$

- Arrange into an ordered array, preserving labels
- Assign ranks to each element of the array from 1...N
- The test statistic T_x is the sum of the ranks of X

$$T_x = \sum R_x$$

- Used to test whether two samples are likely to be drawn from the same distribution or different ones
- Identical to Mann-Whitney U test

$$X_1...X_{n_x}, \quad Y_1...Y_{n_y}$$
 $H_0: M_x = M_y$ Pool N = n_x + n_y observations $H_1: M_x \neq M_y$

- Arrange into an ordered array, preserving labels
- Assign ranks to each element of the array from 1...N
- The test statistic T_x is the sum of the ranks of X

$$T_x = \sum R_x$$

 Reject H₀ if T_x is very large or very small compared to possible values of T_x for n = N

Let's say we have measured a transcript level in 6 preoperative patients (X) and 3 post-operative patients (Y). Does the surgery change transcript levels?

 $H_0: M_x = M_y$

 $H_1: M_x \neq M_y$

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

Observation	Sample	Rank
2.5	X	
3	X	
6.2	X	
9.1	X	
14.3	Χ	
14.7	Χ	
14.1	Υ	
15.6	Υ	
16.7	Υ	

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

	<u> </u>	
Observation	Sample	Rank
2.5	Χ	1
3	X	2
6.2	X	3
9.1	X	4
14.1	Υ	5
14.3	X	6
14.7	X	7
15.6	Υ	8
16.7	Υ	9

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

Observati	on '	Sample	Rank				
		•					
2	2.5	X	1				
	3	Χ	2				
ϵ	5.2	Χ	3				
ç	9.1	X	4				
14	ł.1	Υ	5				
14	ł.3	X	6				
14	1.7	X	7				
15	5.6	Υ	8				
16	5.7	Υ	9				
$T_{:}$	x' = 1	(1+2)	2 + 3 +	-4 +	6+	7) =	23

- Consider a case where n_x = 2 and n_y = 3
- We know ranks must be 1, 2, 3, 4, 5
- Again, the issue is how to assign these ranks amongst the samples X and Y

- Consider a case where $n_x = 2$ and $n_y = 3$
- We know ranks must be 1, 2, 3, 4, 5
- Again, the issue is how to assign these ranks amongst the samples X and Y
- There are $\binom{5}{2} = 10$ ways of assigning five ranks to two samples
- Each way is equally likely under the null hypothesis so each has a probability of 10%

X Ranks	Y Ranks	Value of T _x	Probability
1, 2	3, 4, 5	3	0.10
1, 3	2, 4, 5	4	0.10
1, 4	2, 3, 5	5	0.10
2, 3	1, 4, 5	5	0.10
2, 4	1, 3, 5	6	0.10
1, 5	2, 3, 4	6	0.10
2, 5	1, 3, 4	7	0.10
3, 4	1, 2, 5	7	0.10
3, 5	1, 2, 4	8	0.10
4, 5	1, 2, 3	9	0.10

$$P(T_x \le 4) = 0.2$$

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

Let's say we have measured a transcript level in 6 preoperative patients (X) and 3 post-operative patients (Y). Does the surgery change transcript levels?

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

Observatio			
n	Sample	Rank	
2.5	Χ	1	
3	Χ	2	
6.2	Χ	3	
9.1	Χ	4	
14.1	Υ	5	
14.3	Χ	6	
14.7	Χ	7	
15.6	Υ	8	
16.7	Υ	9	
T_x	= (1 + 2)	2 + 3	+4+6+7) = 23
p =	= 0.095		

Accept H₀

Frank Wilcoxon

Wilcoxon lived from 1892 to 1965. He was a polymath, working as an oilman and a tree surgeon before training as a physical chemist, working in plant research and then in process control in industry. In a single paper in 1945 he published both tests that bear his name.

Goals

 Comparing the medians of two samples using the Wilcoxon Rank Sum test

 Comparing the medians of many mutually independent samples using the Kruskal-Wallis test

- Generalization of the Wilcoxon rank sum test to 3 or more independent random samples
- Used to test whether the medians of the samples are equal
- Nonparametric version of the one-way ANOVA

- Generalization of the Wilcoxon rank sum test to 3 or more independent random samples
- Used to test whether the medians of the samples are equal
- Nonparametric version of the one-way ANOVA

$$H_0 = M_1 = M_2... = M_k$$

 $H_1 = all \ medians \ not \ equal$

- Generalization of the Wilcoxon rank sum test to 3 or more independent random samples
- Used to test whether the medians of the samples are equal
- Nonparametric version of the one-way ANOVA
- Pool all observations

$$H_0 = M_1 = M_2... = M_k$$

 $H_1 = all \ medians \ not \ equal$

- Generalization of the Wilcoxon rank sum test to 3 or more independent random samples
- Used to test whether the medians of the samples are equal
- Nonparametric version of the one-way ANOVA
- Pool all observations
- Rank the pooled samples

$$H_0 = M_1 = M_2... = M_k$$

 $H_1 = all \ medians \ not \ equal$

- Generalization of the Wilcoxon rank sum test to 3 or more independent random samples
- Used to test whether the medians of the samples are equal
- Nonparametric version of the one-way ANOVA
- Pool all observations

$$H_0 = M_1 = M_2... = M_k$$

 $H_1 = all \ medians \ not \ equal$

- Rank the pooled samples
- Sum the ranks for each sample to get individual sample rank sums $R_1, R_2, ..., R_k$

Under the null hypothesis, what should be true about the relationship between any two rank sums R_i, R_i?

$$R_1, R_2, ..., R_k$$

The sum of all the sample rank sums is

$$R_1 + R_2 + \dots + R_k = \frac{N(N+1)}{2}$$

Kruskal-Wallis Test Outcome

• Given the way the test statistic/hypotheses are constructed, what does a rejection of H_0 mean?

Nonparametric Location Tests

- Can be used to perform one or two sample tests with fewer assumptions about the distribution from which the sample(s) are drawn
- Usage of sign and rank (rather than interval, as with parametric tests) enable this and confer other benefits
 - More robust (immune to outliers)
 - Can be used on ordinal data
- NP tests still have assumptions, and still must be used with care (e.g. zeroes for sign test, ties, similarity of distributions for rank-sum test)

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

 Let's say we have measured a transcript level in 6 preoperative patients (X) and 3 post-operative patients (Y). Does the surgery change transcript levels?

$$X: (2.5, 3.0, 6.2, 9.1, 14.3, 14.7)$$
 $H_0: M_x = M_y$
 $Y: (14.1, 15.6, 16.7)$ $H_1: M_x \neq M_y$

If we assume normality and identicality of variance, then a two sample t-test gives:

$$p = 0.02$$

Generally speaking, nonparametric tests trade fewer assumptions for less power

- Generally speaking, nonparametric tests trade fewer assumptions for less power
- Different nonparametric tests perform better or worse in this regard (efficiency)

- Generally speaking, nonparametric tests trade fewer assumptions for less power
- Different nonparametric tests perform better or worse in this regard (efficiency)
- All will do better than their parametric counterparts when assumptions are violated

- Generally speaking, nonparametric tests trade fewer assumptions for less power
- Different nonparametric tests perform better or worse in this regard (efficiency)
- All will do better than their parametric counterparts when assumptions are violated
- The Mann-Whitney-Wilcoxon test is particularly good, giving up little power even for normally distributed data

R Goals

Executing nonparametric tests in R

 Playing around with different distribution shapes and test assumptions

Examining effect size vs. test outcome

Reading/Resources

- http://www.statsoft.com/Textbook/Nonparametric-Statistics/button/2
- http://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1 945.pdf
- http://www.mayo.edu/mayo-edu-docs/center-fortranslational-science-activities-documents/berd-5-6.pdf
- Nonparametric statistics: an introduction, Jean Gibbons (available online through UW libraries at http://goo.gl/NERixX)