Criptografia

Cifras simétricas clássicas

- Teoria dos números aplicada às cifras simétricas
- Classificação das cifras
- Cifra clássicas de substituição
- Cifra clássicas de transposição

Teoria dos números

Euclides — matemático grego que viveu em Alexandria por volta de 300 a.C.

Muitas áreas da matemática são relevantes para criptografia.

No entanto, o ramo mais importante da matemática para a criptografia é a **teoria dos números**.

Alguns dos teoremas e provas na teoria dos número já estavam incluídos na obra clássica de Euclides — *Elementos*.

Números primos

- Os números primos despertam o interesse dos matemáticos deste a Grécia antiga.
- Na era moderna, os números primos são de extrema importância para a criptografia.

Definição 1 (número primo). Um inteiro p > 1 é chamado de **primo** se seus únicos fatores positivos são 1 e o próprio p.

Definição 2 (número composto). *Um inteiro* n > 1 *que não é primo é chamado de composto.*

Números primos

- Os números primos são os **elementos de construção** de todos os outros números inteiros positivos.
- Essa propriedade é tão importante que o chamamos de Teorema Fundamental da Aritmética.

Teorema 1 (Teorema fundamental da aritmética). Todo inteiro positivo n > 1 pode ser escrito univocamente (exceto quanto à ordem dos fatores) como o produto de números primos, na forma

$$n = p_1^{e_1} \, p_2^{e_2} \cdots p_n^{e_n}$$

em que p_i são primos distintos e cada $e_i \ge 1$ é a multiplicidade de p_i .

Exemplo

 $3600 = 2^4 \cdot 3^2 \cdot 5^2$. Note que os fatores são escritos em ordem crescente.

Números primos

Perguntas e respostas importantes sobre os primos

Quantos números primos existem?

• Euclides de Alexandria provou, no século III a.C, que há infinitos números primos.

É fácil encontrar números primos?

- No começo, é muito fácil achar números primos: 2,3, 5, 7, 11, 13, 17, 19, 23, 29...
- Entretanto, esse padrão não continua. À medida que se avança nos inteiros positivos, os números primos se distanciam uns dos outros.

Existe uma fórmula que descreva precisamente qual o próximo primo de uma lista?

- Não existe padrão na formação dos números primos.
- A sequência de números primos parece totalmente aleatória.
- A falta de padrão é considerado um dos grandes mistérios da matemática.

- Em vez de fazermos aritmética sobre o conjunto de todos os **inteiros** \mathbb{Z} , faremos operações em um outro conjunto, \mathbb{Z}_n , em que n é um inteiro positivo, chamado **módulo**.
- \mathbb{Z}_n é chamado de **conjunto de inteiros módulo** n, e definido como:

$$\mathbb{Z}_n = \{0,1,2,\ldots,n-1\}.$$

Note que o conjunto \mathbb{Z}_n é finito, contendo todos os números naturais de 0 a n-1.

- Quase todos os algoritmos de criptografia são baseados em aritmética dentro de um conjunto finito de elementos.
 - Essa técnica de executar a aritmética em um **conjunto finito de números inteiros** é conhecida como **aritmética modular**.

••••

Mas é possível realizar operações aritméticas apenas dentro dos **limites** do conjuntos \mathbb{Z}_n ?

A resposta é **SIM**. Vejamos!

 Considere um relógio analógico. Dado uma hora qualquer, se incrementar a hora em 1, terá o seguinte:

- Mesmo que continue adicionando uma hora, nunca sairá do conjunto .
- Para converter entre o relógio de 24 horas e o de 12 horas, basta tomar o resto da divisão do valor no sistema de 24 horas por 12.

••••

 A aritmética modular é um sistema de aritmética de congruências — isto é, que opera sobre os restos dos inteiros divididos por um valor fixo, o módulo.

Definição 3 (Relação de congruência). Dado um inteiro positivo \mathbf{n} , chamado de **módulo**, diz-se que dois inteiros \mathbf{a} e \mathbf{b} são **congruentes módulo** \mathbf{n} , se \mathbf{n} divide a diferença \mathbf{a} — \mathbf{b} . Isso o é escrito como:

$$a \equiv b \pmod{n}$$

Dizer que $a \equiv b \pmod{n}$ é equivalente a dizer que $a \in b$ deixam o **mesmo resto** quando divididos por n.

Na aritmética modular, se dois números a e b são congruentes, então consideramos a e b iguais.

Classes de resíduos

Observe que o operador (mod n) mapeia todos os inteiros para o conjunto

$$\mathbb{Z}_n = \{0,1,2,\ldots,n-1\}.$$

- Qualquer inteiro é **congruente módulo** n a um único inteiro no conjunto \mathbb{Z}_n .
- O conjunto \mathbb{Z}_n é conhecido como o **conjunto de classes de resíduos** módulo n.

Isto significa que cada inteiro em \mathbb{Z}_n representa uma classe de resíduos módulo \boldsymbol{n} , que são denotadas por [0],[1],[2],...,[n-1].

Definição 3 (classe de resíduos). Uma classe de resíduos consiste em todos os inteiros com o mesmo resto, quando divididos por **n**, tal como

$$[x] = \{ a \in \mathbb{Z} \mid a \equiv x \pmod{n} \}$$

Classes de resíduos

As classes de resíduos módulo 4 são:

De todos os inteiros em uma classe de resíduos, o **menor não negativo** é aquele normalmente usado para representá-la.

Por exemplo, a classe representada ao número 2 é exatamente o conjunto dos inteiros que são congruentes com 2 módulo 4.

Cifras simétricas

1

Classificação das cifras

Os sistemas criptográficos são caracterizados em três dimensões independentes.

Cifras simétricas

Cifras clássicas

••••

 Os dois blocos básicos de construção de todas as técnicas de criptografia são a substituição e a transposição.

Essa abordagem é chamada monoalfabética porque o alfabeto cifrado permanece fixo durante todo o processo de cifração

Essa abordagem é chamada de polialfabética porque o alfabeto cifrado muda durante o processo de cifração. Isto é, cada letra do texto simples é substituída por mais de uma letra cifrada.

- A cifra, que ficou conhecida como cifra de César, envolve a substituição de cada letra do alfabeto pela letra que está três posições adiante.

A cifra de substituição mais antiga e mais simples é creditada a **Júlio César**.

• Ou seja, a letra "A" é substituída pela letra "D", a letra "B" é substituída pela letra "E", e assim por diante.

Note que o alfabeto recomeça no final, de modo que a letra após dizer é **Z** é **A**.

 Suponha que Alice queira enviar para Bob a seguinte mensagem de forma segura:

> aprendendo criptografia na ufc DSUHQGHQGR FULSWRJUDILD QD XIF

- Se Bob não souber o que Alice fez, não compreenderá a mensagem, pois a mensagem que ela enviou não faz sentido.
- No entanto, se Bob souber que Alice aplicou a cifra de César, ele pode decifrar a mensagem.
- Basta que Bob substitua cada letra pela que vem três posições antes no alfabeto.

A cifra de Cesar, apesar de simples, é um criptossistema.

Relembrando!

Um **sistema criptográfico** é um par de algoritmos, um para converter de um **texto simples** para um texto cifrado e o outro para converter de um **texto cifrado** para um texto simples.

• O protocolo para transformar a mensagem.

Uma chave específica.

No caso da cifra de César, a chave é **3** — i.e., cada letra deve ser substituída pela letra que está **três** posições a frente.

Generalizando!

• Vamos atribuir um equivalente numérico a cada letra.

а	b	С	d	е	f	g	h	i	j	k	l	m	n	0	р	q	r	S	t	V	V	W	Х	У	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

• Para cifrar, substitua cada letra p do texto claro pela letra c do alfabeto cifrado deslocando c posições. c é a chave e pode assumir um valor no intervalo de 1 a 25.

$$C = (p + k) \mod 26$$

• O protocolo de **decifração** é:

$$p = (C - k) \mod 26$$

 $\bullet \bullet \bullet \bullet$

Quebrando a cifra de Cesar

Uma criptoanálise por força bruta é fácil. Basta tentar todas as 25 chaves possíveis.

Chave 1	crtgpfgpfq	etkrvqitchkc	рс	whe
Chave 2	bqsfoefoep	dsjquphsbgjb	ob	vgd
Chave 3	aprendendo	criptografia	na	ufc
Chave 4	zoqdmcdmcn	bqhosnfqzehz	mΖ	teb
Chave 5	ynpclbclbm	apgnrmepydgy	ly	sda
Chave 6	xmobkabkal	zofmqldoxcfx	kx	rcz
Chave 7	wlnajzajzk	ynelpkcnwbew	jw	qby
Chave 8	vkmziyziyj	xmdkojbmvadv	iv	pax
Chave 9	ujlyhxyhxi	wlcjnialuzcu	hu	OZW
Chave 10	tikxgwxgwh	vkbimhzktybt	gt	nyv
Chave 11	shjwfvwfvg	ujahlgyjsxas	fs	mxu
Chave 12	rgiveuveuf	tizgkfxirwzr	er	lwt
Chave 13	qfhudtudte	shyfjewhqvyq	dq	kvs

Chave	14	pegtcstcsd	rgxeidvgpuxp	ср	jur
Chave	15	odfsbrsbrc	qfwdhcufotwo	bo	itq
Chave	16	nceraqraqb	pevcgbtensvn	an	hsp
Chave	17	mbdqzpqzpa	odubfasdmrum	zm	gro
Chave	18	lacpyopyoz	nctaezrclqtl	уl	fqn
Chave	19	kzboxnoxny	mbszdyqbkpsk	xk	epm
Chave	20	jyanwmnwmx	larycxpajorj	wj	dol
Chave	21	ixzmvlmvlw	kzqxbwozinqi	νi	cnk
Chave	22	hwyluklukv	jypwavnyhmph	uh	bmj
Chave	23	gvxktjktju	ixovzumxglog	tg	ali
Chave	24	fuwjsijsit	hwnuytlwfknf	sf	zkh
Chave	25	etvirhirhs	gvmtxskvejme	re	уjg

Análise de frequência

• As **cifras monoalfabéticas** são fáceis de ser quebradas porque refletem os dados de frequência relativa das letras do alfabeto original.

• Para dificultar a **análise de frequência**, pode-se construir uma cifra mais forte, conhecida como **cifra polialfabética**.

Em uma **cifra de substituição polialfabética**, cada letra do texto simples é substituída por mais de uma letra cifrada, tornando o trabalho mais difícil para o criptoanalista.

- Por exemplo, a letra "e" pode ser atribuída a vários símbolos cifrados diferentes, conhecidos como **homófonos**.
 - Neste caso, cada homófono seria usado em rodizio ou aleatoriamente.
 - Ou seja, se um "g" for cifrado como um "X" em um ponto, ele não será necessariamente cifrado como um "X" posteriormente na mensagem.

Cifra

Cifra de Vigenère

- A **cifra de Vigenère**, criada no século XVI, é a cifra polialfabética mais conhecida e uma das mais simples.
- Esta cifra é semelhante à cifra de César, exceto que as letras não são deslocadas por um valor fixo.

 No caso da cifra de Vigenère, o valor do deslocamento muda para cada letra definido por uma chave.

A chave é uma simples coleção de letras que representam números com base em sua posição no alfabeto.

 Dito de outra forma, o conjunto de regras de substituição consiste nos 26 alfabetos cifrados de César, com deslocamentos de 0 a 25.

Cifra de Vigenère

Para auxiliar no uso deste esquema, uma matriz conhecida como **tabela de Vigenère** é usada.

• TEXTO SIMPLES: prove theth eorem

• CHAVE : GRAPE GRAPE GRAPE

TEXTO CIFRADO: VIOKI ZYEIL KFRTQ

Cifra de Vigenère

Em resumo!

- Para cifrar, usa-se "G" como a chave para a primeira letra, "R" como a chave para a segunda e assim por diante.
 - Assim que a chave termina, recomeça do início da palavra.
- Para decifrar, se o primeiro caractere do texto cifrado é "V" e a primeira letra da chave é "G", então percorre-se na coluna "G" até encontrar o "V".
 - A letra "V" aparece na linha "p". Portanto, a primeira letra do texto simples é "p".
 - Continua-se fazendo isso para cada letra no texto cifrado.

Descrição algébrica da cifra de Vigenère

- Em vez de pensar na mensagem como sendo composta por **letras**, vamos pensar nela como sendo composta por **números**, de **0** a **25**.
 - Assim, A será 0, B será 1 e assim por diante.

Notação

- Denotamos o **texto simples** por $P=p_0,p_1,p_2,...,p_{i-1}$, em que p_i é o i-ésimo número em P.
- Denotamos a **chave** por $K=k_0,k_1,k_2,...,k_{m-1}$, em que k_m é o m-ésimo número em K .

Normalmente, a chave é menor que a mensagem. Assim, repete-se a chave até o tamanho do texto simples.

Descrição algébrica da cifra de Vigenère

A equação geral do processo de cifração é:

$$C_i = (p_i + k_j) \bmod 26$$

E a equação geral do processo de **decifração** é:

$$p_i = (C_i - k_j) \bmod 26$$

Descrição algébrica da cifra de Vigenère

Exemplo!

Chave : deceptivedeceptive

Texto simples : wearediscoveredsaveyourself

Texto cifrado : ZICVTWQNGRZGVTWAVZHCQYGLMGJ

• Expresso numericamente, temos:

*	3	4	2	4	15	19	8	21	4	3	4	2	4	15	19	8	21	4	3	4	2	4	15	19	8	21	4
@	22	4	0	17	4	3	8	18	2	14	21	4	17	4	3	18	0	21	4	24	14	20	17	18	4	11	5
#	25	8	2	21	19	22	16	13	6	17	25	6	21	19	22	0	21	25	7	2	16	24	6	11	12	6	9

Legenda: * chave | @ texto claro | # texto cifrado

 Um tipo diferente de cifra é obtido realizando algum tipo de permutação nas letras do texto simples. Essa técnica é chamada de cifra de transposição.

Relembrando!

Uma **permutação** é um conjunto finito de elementos S em uma sequência ordenada de todos os elementos de S, com cada um aparecendo exatamente uma vez.

• Por exemplo, se $S=\{a,b,c\}$, existem seis permutações de S: $\{abc\},\{acb\},\{bca\},\{cab\},\{cba\}\}$

Existem n! permutações de um conjunto de n elementos, porque o primeiro elemento pode ser escolhido de uma das n maneiras, o segundo de n - 1 maneiras, o terceiro de n - 2 maneiras, e assim por diante.

- **Note que!** Uma cifra de **transposição** não substitui um símbolo por outro; na verdade, ela modifica a localização dos símbolos.
- Um símbolo na **primeira** posição do texto claro pode aparecer na **décima** posição do texto cifrado.

Em outras palavras, uma cifra de transposição reordena (transpõe) os símbolos.

Cifra de rail fence (cerca de trilhos)

A cifra de **rail fence** é uma técnica na qual o texto simples é escrito como uma sequência de diagonais e depois lido como uma sequência de linhas —como se estivéssemos descendo e subindo diagonalmente nos trilhos de uma cerca.

Exemplo!

 Para cifrar a mensagem "meet me after the toga party" com uma cerca de trilho profundidade 2, faz-se:

• A chave é um número de linhas na cerca. A mensagem cifrada é:

Cifra de rail fence (cerca de trilhos)

- Note que no exemplo anterior, temos uma mensagem com 23 caracteres.
 Portanto, precisamos de uma grade com 23 colunas e 2 linhas, que a chave.
- Para decifrar a texto cifrado MEMATRHTGPRY ETEFETEOAAT, basta preencher os espaços destacados em ordem de cima para baixo.

Preenche a primeira linha completa antes de passar para a segunda linha.

• Por fim, basta ler o texto na diagonal para recuperar o texto simples.

Cifra de rail fence (cerca de trilhos)

Quebrando a cifra

- A cifra da cerca de trilhos não é muito segura, porque **não há muitas chaves possíveis.**
- Note que n\u00e3o faz muito sentido se o comprimento da chave for maior do que o comprimento do texto simples.
- Dessa forma, o número de chaves possíveis pode ser facilmente verificado por computador, ou mesmo a mão.

Fim!

[Aula 03] Cifras simétricas clássicas