Надежность - свойство системы сохранять заданный уровень производительности

N - число ЭМ в системе

k - состояние BC, в котором имеется k исправных ЭМ

$$k \in E_0^N$$
, $E_0^N = \{0,1,2,...,N\}$

Ω(k) - производительность ВС, в которой k исправных ЭМ

$$\Omega(k) = A_k k \omega$$

ω - показатель производительности ЭМ

А_к - коэффициент

λ - интенсивность потока отказов (любой из N машин)

 λ^{-1} - среднее время безотказной работы одной ЭМ (средняя наработка до отказа ЭМ)

Отказы устраняются при помощи процедуры восстановления

m - размер восстанавливающей подсистемы (1≤ m ≤ N)

После отказа ЭМ поступает на восстанавливающее устройство (ВУ) сразу, или в порядке очереди (помещается в очередь на восстановление)

ВУ может быть свободным и занятым восстановлением одной ЭМ

μ - интенсивность восстановления

 $1/\mu$ - время, затраченное на обнаружение неисправной ЭМ + ее восстановление

В системе возможны переходы из состояния k в состояние k-1 (k!=0) или в состояние k+1 (k!=N)

ВС со структурной избыточностью

n - количество ЭМ в основной подсистеме

(N - n) - количество ЭМ во вспомогательной подсистеме, составляющей избыточность

Основная подсистема - предназначена для решения параллельных задач из n ветвей

Отказавшая ЭМ основной подсистемы может быть заменена исправной ЭМ вспомогательной подсистемы

График зависимости производительности от кол-ва работоспособных ЭМ (k) для систем со структурной избыточностью

Т.е. либо заданная производительность поддерживается и равна пω, либо нет, и равна нулю

 $\xi(t)$ - число исправных машин в момент времени t Функция $\xi(t)$ определяется:

- Начальным состоянием І
- Моментами появления и устранения отказов

Обозначим $\{P_{\mathbf{j}}(\mathbf{i},\mathbf{t})\}$ распределение вероятностей состояний системы в момент \mathbf{t} при условии, что в начальный момент времени было исправно $\mathbf{i} \in \mathbf{E}_0^N$

 $P_{j}(i,\,t)$ - вероятность того, что в системе, начавшей функционировать в состоянии $i,\,$ в момент t будет j исправных машин

 $P_{j}(i,t)$ - показатель, характеризующий поведение BC в **переходном режиме функционирования**

Нич не понял, но оч интересно:

При $i \neq j$, $i,j \in E_0^N$ имеет место:

$$P_i(i,0) = 0, P_i(i,0) = 1$$

Нетрудно показать, что распределение $\{P_j\}~(j\in E_0^N)$, где

$$P_{j} = \lim_{t \to \infty} P_{j}(i, t); \quad \sum_{j=0}^{N} P_{j} = 1$$

не зависит от начального состояния $i\in E_0^N$

Следовательно, $P_j \ (j \in E_0^N)$ - показатель надёжности для стационарного (или установившегося) режима работы ВС.

Показатели надежности ВС в переходном режиме:

- Функция надежности R(t)
- Функция восстановимости U(t)
- Функция готовности S(t)

Функция надёжности (учет отказов) — вероятность того, что <u>производительность ВС</u>, начавшей функционировать в состоянии і (n \leq і \leq N) <u>на промежутке времени</u> [0,t) равна <u>производительности основной подсистемы</u>

$$R(t) = P\{\forall \tau \in [0, t) \to \Omega(\tau) = A_n n\omega | n \le i \le N\}$$

, где $\Omega(\tau)$ - производительность системы в момент времени τ

Иначе - вероятность того, что в системе, начавшей функционировать с i (n ≤ i ≤ N) исправными ЭМ, на промежутке времени [0,t) будет не менее n исправных машин

Очевидно, что $R(0) = 1, R(+\infty) = 0$

Функция восстановимости (восстановление без учета отказов) - вероятность того, что в ВС, имеющей начальное состояние i ($0 \le i \le n$), на промежутке времени [0,t) будет восстановлен уровень производительности, равный производительности основной подсистемы

$$U(t) = 1 - P\{\forall \tau \in [0, t) \rightarrow \Omega(\tau) = 0 \mid 0 \le i < n\}$$

$$U(t) = 1 - P\{\forall \tau \in [0, t) \to \xi(\tau) < n \mid 0 \le i < n\}$$

Если по-тупому: то это вероятность, что в системе на заданном промежутке времени, элементарные машины восстановлены до числа n, или <u>система имеет производительность n ЭМ</u>. Как понимаю - это характеристика показывает, что подсистема восстановления вернет в строй неисправные машины, чтобы количество исправных ЭМ в основной подсистеме составляло n, без учета новых отказов

Очевидно, что $U(0) = 0, U(+\infty) = 1$

Функция готовности (учет отказов с восстановлением) — вероятность того, что производительность системы, начавшей функционировать в состоянии $\mathbf{i} \in \mathbf{E}_0^N$, равна в момент времени t производительности основной подсистемы

$$S(t) = P\{\Omega(t) = A_n n\omega \mid i \in E_0^N\}$$

Иначе - вероятность того, что в момент времени t число исправных ЭМ в системе с начальным состоянием $\mathbf{i} \in \mathbf{E}_0^N$ не меньше n (числа машин основной подсистемы)

$$S(t) = P\{\xi(t) \ge n | i \in E_0^N\}$$

Из определения:

$$S(0) = \begin{cases} 1, & \text{если } n \leq i \leq N \\ 0, & \text{если } 0 \leq i < n \end{cases}$$

для невосстанавливаемых ВС R(t) = S(t)

На практике вместо R(t) и U(t) используют матожидание (среднее время) безотказной работы и «среднее время восстановления»

$$\theta = \int_{0}^{\infty} R(t)dt \quad T = \int_{0}^{\infty} tdU(t)$$

Мини-итоги:

- **Функция надежности** характеризует способность BC обеспечить требуемую производительность на промежутке времени [0, t)
- **Функция готовности** способность BC обеспечить требуемую производительность в момент времени t
- Функция восстановимости возможности системы к восстановлению приобретению требуемого уровня производительности после отказа всех избыточных машин и части машин основной подсистемы

Когда n становится равно N (нет резервов / избыточности), то при отказе ЭМ, она поступает на систему восстановления, и только после этого вернется в строй. Т.е. нет возможности подменить ЭМ (рассматривается горячий резерв)

Вычислительные системы со структурной избыточностью имеют горячий резерв!

В лабораторной 1 исследование системы в переходном режиме