Ответы к экзамену по курсу

"Методы Численного анализа" (1-ый семестр 2016/2017 учебного года, специальность "Информатика")

Содержание

1	Интерполяционный многочлен Лагранжа. Оценка погрешности	3
2	Оценка погрешности на равномерной сетке узлов	4
3	Разделённые разности и их свойства	5
4	Интерполяционный многочлен Ньютона	6
5	Конечные разности и их свойства	7
6	Интерполяционный многочлен Ньютона на равномерной сетке узлов	8
7	Многочлен Чебышева	9
8	Минимизация остатка интерполирования	10
9	Интерполирование с кратными узлами	11
10	Интерполяционный сплайн второго порядка	12
11	Интерполяционный кубический сплайн	13
12	Наилучшее приближение в линейном векторном пространстве	14
13	Наилучшее приближение в гильбертовом пространстве	15
14	Метод наименьших квадратов	16
15	Метод Пикара и метод рядов Тейлора 15.1 Метод Пикара 15.2 Метод рядов Тейлора	17 17 18
16	Методы Эйлера, трапеций, средней точки	19
17	Сходимость метода Эйлера	20
18	Методы последовательного повышения порядка точности	21
19	Методы Рунге-Кутта	22
20	Экстраполяционные методы Адамса	23
21	Интерполяционные методы Адамса	24
22	Усточивость линейных многошаговых методов	25
23	Простейшие разностные операторы	26
24	Основные понятия теории разностных схем	27
25	Интегро-интерполяционный метод	28
26	Разностные схемы повышенного порядка аппроксимации	29
27	Разностные схемы для уравнения Пуассона	30
28	Аппроксимация краевых условий 2-го и 3-го рода	31
29	Монотонные разностные схемы	32

30 Явная левостороняя схема для уравнения переноса	33
31 Неявная левостороняя схема для уравнения переноса	34
32 Начальная краевая задача для уравнения переноса	35
33 Явная схема для уравнения теплопроводности	36
34 Шеститочечная схема для уравнения теплопроводности	37

1. пока пусто

1 Интерполяционный многочлен Лагранжа. Оценка погрешности

Замечания:

1. пока пусто

2 Оценка погрешности на равномерной сетке узлов

Замечания:

1. пока пусто

3 Разделённые разности и их свойства

Замечания:

1. пока пусто

4 Интерполяционный многочлен Ньютона

Замечания:

1. пока пусто

5 Конечные разности и их свойства

Замечания:

1. пока пусто

6 Интерполяционный многочлен Ньютона на равномерной сетке узлов

Замечания:

1. пока пусто

7 Многочлен Чебышева

Замечания:

1. пока пусто

8 Минимизация остатка интерполирования

Замечания:

1. пока пусто

9 Интерполирование с кратными узлами

Замечания:

1. пока пусто

10 Интерполяционный сплайн второго порядка

Замечания:

1. пока пусто

11 Интерполяционный кубический сплайн

Замечания:

1. пока пусто

12 Наилучшее приближение в линейном векторном пространстве

Замечания:

1. пока пусто

13 Наилучшее приближение в гильбертовом пространстве

Замечания:

1. пока пусто

14 Метод наименьших квадратов

Если функция f(x) задана на конечном множестве узлов x_j , другими словами, f(x) - сеточная функция, то скалярное произведение определяется не интегралом, а суммой:

$$(f,g) = \sum_{i=1}^{m} \rho_i f_i g_i, f_i = f(x_i),$$
 (1)

 $\rho_i > 0$ — весовые коэффициенты.

Будем рассматривать полиномиальную аппроксимацию многочлена. Тогда базисные функции -

$$g_k(x) = x^k, k = \overline{0, n} \tag{2}$$

Если значения f задаются в (n+1) разных точках, то существует единственный интерполяционный полином степени не выше n.

Во многих случаях значения f находят в результате измерений и содержат ошибки. При этом число измерений проводят гораздо большее число раз, чем (n+1), надеясь при этом в результате измерения уменшить эти ошибки.

Обычно в качестве такого метода усреднения выбирают метод наименьших квадратов.

Для базиса из полиномов (2) система определяет элемент наилучшего определения.

$$\sum_{i=0}^{n} \alpha_i(g_i, g_j) = (f_i, g_j) \tag{3}$$

Имеет следующий вид: $[(g_0, g_0) = (1, 1) = m]$.

$$\begin{bmatrix} m & \sum x_i & \sum x_i^2 & \dots & \sum x_i^n \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \dots & \sum x_i^{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum x_i^n & \sum x_i^{n+1} & \sum x_i^{n+2} & \dots & \sum x_i^{2n} \end{bmatrix} \cdot \begin{bmatrix} d_0 \\ d_1 \\ \vdots \\ d_n \end{bmatrix} = \begin{bmatrix} \sum f_i \\ \sum x_i f_i \\ \vdots \\ \sum x_i^n f_i \end{bmatrix}$$

$$(4)$$

Уравнения в (4) называются нормальными.

$$\phi = \alpha_0 + \alpha_1 x + \ldots + \alpha_n x^n.$$

На практике, когда $n \geqslant 5$ нормальные уравнения обычно становятся плохо обусловленными. Решить эту проблему можно с помощью ортогональных полиномов.

Будем говорить, что полиномы g_j , где j - степень полинома, образуют на множестве точек $x_1, \dots x_m$ ортогональную систему, если

$$(g_k, g_j) = \sum_{i=1}^m g_k(x_i)g_j(x_i) = 0, \forall k \neq j, k, j = \overline{0, n}.$$
 (5)

Тогда система (3) будет иметь вид

$$\sum_{i=1}^{m} g_k^2(x_i) \alpha_k = \sum_{i=1}^{m} g_k(x_i) f_i, k = \overline{0, n}.$$
 (6)

Из (6)

$$\alpha_k = \frac{\sum_{i=1}^{m} g_k(x_i) f_i}{\sum_{i=1}^{m} g_k^2(x_i)}$$
 (7)

Для полинома Чебышева: $T_p=1, T_1=x,\dots$ $T_{n+1}=2xT_n-T_{n-1}$ - частный случай ортогональных полиномов с $\rho=\frac{1}{\sqrt{1-x^2}}$. Элемент наилучшего приближения

$$\phi(x) = \sum_{k=0}^{n} \alpha_k g_k(x) \tag{8}$$

Геометрический смысл -проекция.

1. пока пусто

15 Метод Пикара и метод рядов Тейлора

15.1 Метод Пикара

Рассмотрим задачу Коши для однородного дифференциального уравнения:

$$\begin{cases} u'(x) = f(x, u), u = u(x), x \in [x_0, x_l] \\ u(x_0) = u_0 \end{cases}$$
 (1)

Проинтегрируем уравнение (1)

$$u(x) = u(x_0) + \int_{x_0}^{x} f(t, u(t))dt$$
 (2)

y - приближённое решение, s - номер итерации.

$$\begin{cases} y_s(x) = u_0 + \int_{x_0}^x f(t, y_{s-1}(t)) dt \\ y_0(t) = u_0 \end{cases}$$
 (3)

Этот метод удобен, если интеграл можно вычислить аналитически. Докажем сходимость метода Пикара.

Пусть в некоторой ограниченной области G функция f(x,u) непрерывная и удовлетворяет условию Лившица по переменной u:

$$|f(x_1, u_1) - f(x_1, u_2)| \le L |u_1 - u_2| \tag{4}$$

$$\begin{cases}
|x - x_0| \leq E, \forall x \in G \\
|u - u_0| \leq V, E, V - \text{const}
\end{cases}$$
(5)

(5) - условия ограниченности, выполняются в силу ограниченности области G.

$$(2), (3) \Rightarrow |y_s(x) - u(x)| = \left| \int_{x_0}^x f(t, y_{s-1}(t)) dt - \int_{x_0}^x f(t, u(t)) dt \right|$$
 (6)

$$|y_s(x) - u(x)| \le \int_{x_0}^x |f(t, y_{s-1}(t)) - f(t, u(t))| dt$$
 (7)

Обозначим $z_s(x) = y_s(x) - u(x)$ - погрешность в точке x.

$$|z_s(x)| \leqslant L \int_{x_0}^x |z_{s-1}(t)| dt \tag{8}$$

Если s=0, то

 $|z_0(x)| = |u_0 - u(x)| \leqslant V$ - погрешность начального приближения.

$$|z_1(x)| \leqslant LV |x - x_0|$$

$$|z_2(x)| \le \frac{1}{2} L^2 V \left| (x - x_0)^2 \right|$$
 (9)

. .

$$|z_s(x)| \leqslant \frac{1}{s!} L^s V |(x - x_0)^s|$$

Формула Стирлинга:

$$n! \approx \frac{\sqrt{2\pi}n^{n+\frac{1}{2}}}{e^n} (1 + \varepsilon_n), \lim_{n \to \infty} \varepsilon_n = 0$$

$$(9) \Leftrightarrow |z_s(x)| \leqslant \frac{1}{s!} L^s V E^s$$

$$(10)$$

Используя формулу Стирлинга

$$|z_s(x)| \leqslant \frac{v}{\sqrt{2\pi s}} \left(\frac{eEL}{s}\right)^s$$
 (11)

 $(11) \Rightarrow |z_s(x)| \xrightarrow[s \to \infty]{} 0 \Rightarrow$ итерационный процесс сходится.

15.2 Метод рядов Тейлора

Рассмотрим

$$\begin{cases} u' = f(x, u), x \in [x_0, x_l] \\ u(x_0) = u_0 \end{cases}$$
 (1)

Продифференцируем (1) по x:

$$u'' = f_x + f_u \cdot u' = f_x + f \cdot f_u$$

$$u''' = f_{xx} + 2f_{xu}u' + f_{uu}u'^2 + f_uu''$$
(2)

Подставим в формулу (2) в качестве $x = x_0, u = u_0$, последовательно находим значения $u'(x_0), u''(x_0), u'''(x_0)$ и т. д. Получаем ряд Тейлора:

$$u(x) \approx y_n(x) = \sum_{i=0}^n \frac{u^{(i)}(x_0)}{i!} \cdot (x - x_0)^i$$
(3)

Если $|x-x_0|$ не превышает радиуса сходимости ряда Тейлора, то приближенное решение $y_n(x) \xrightarrow[n \to \infty]{} u(x)$.

Иногда полезно разбить исходный отрезок $[x_0, x_l]$ на N частей $[x_{j-1}, x_j], j = \overline{1, N}, x_N = x_l$. Отрезки не обязательно равные. На каждом отрезке применим метод рядов Тейлора для более точного решения.

Рассмотрим произвольный отрезок $[x_j, x_{j+1}]$. Будем считать, что y_j найдено. Значит, мы можем найти $u^{(i)}(x_j)$. Тогда применяя метод рядов, можно приблизить на этом отрезке

$$u(x) \approx v_j(x) = \sum_{i=0}^n \frac{u_j^{(i)}}{i!} (x - x_j)^i$$

$$y_{j+1} = v_j(x_{j+1})$$
(4)

При использовании метода рядов необходимо находить значения $\approx \frac{n(n+1)}{2}$ различных функций, поэтому на практике обычно ограничиваются первым и вторым порядком точности (2-3 производные).

1. пока пусто

16 Методы Эйлера, трапеций, средней точки

Замечания:

1. пока пусто

17 Сходимость метода Эйлера

Замечания:

1. пока пусто

18 Методы последовательного повышения порядка точности

Замечания:

1. пока пусто

19 Методы Рунге-Кутта

Замечания:

1. пока пусто

20 Экстраполяционные методы Адамса

Замечания:

1. пока пусто

21 Интерполяционные методы Адамса

Замечания:

1. пока пусто

22 Усточивость линейных многошаговых методов

Замечания:

1. пока пусто

23 Простейшие разностные операторы

Замечания:

1. пока пусто

24 Основные понятия теории разностных схем

Замечания:

1. пока пусто

25 Интегро-интерполяционный метод

Замечания:

1. пока пусто

26 Разностные схемы повышенного порядка аппроксимации

Замечания:

1. пока пусто

27 Разностные схемы для уравнения Пуассона

Замечания:

1. пока пусто

28 Аппроксимация краевых условий 2-го и 3-го рода

Замечания:

1. пока пусто

29 Монотонные разностные схемы

Замечания:

1. пока пусто

30 Явная левостороняя схема для уравнения переноса

Замечания:

1. пока пусто

31 Неявная левостороняя схема для уравнения переноса

Замечания:

1. пока пусто

32 Начальная краевая задача для уравнения переноса

Замечания:

1. пока пусто

33 Явная схема для уравнения теплопроводности

Замечания:

1. пока пусто

34 Шеститочечная схема для уравнения теплопроводности

Замечания: