A/ and/

 forming an array output signal based on one or more modified output signals and zero or more unmodified microphone output signals.

Unchanged claim 2:

- 1 2. The method of claim 1 wherein steps a, b, and c, are performed a
- 2 plurality of times to obtain an adaptive array response.

Amend claim 3:

3. (Amended) The method of claim 1 wherein a region of space other

2 than the predetermined region of space includes sources of undesired acoustic

3 energy.

Amend claim 4:

4. (Amended) The method of claim 1 wherein undesired acoustic

2 energy impinges on the array from a direction within a region of space other than the

3 predetermined region of space.

Unchanged claim 5:

- 5. The method of claim 1 wherein the array has a plurality of directivity
- 2 patterns corresponding to a plurality of frequency subbands, one or more of the
- 3 plurality of directivity patterns including a null.

Unchanged claim 6:

- 1 6. The method of claim 5 further comprising the step of forming a
- 2 plurality of subband microphone output signals based on an output signal of a
- 3 microphone of the array, wherein the step of modifying output signals comprises
- 4 modifying the subband microphone output signals based on the one or more
- 5 evaluated parameters.

Unchanged claim 7:

- 1 7. The method of claim 1 wherein the array comprises a plurality of
- 2 cardioid sensors.

Unchanged claim 8:

- 1 8. The method of claim 7 wherein the plurality of cardioid sensors
- 2 comprises a foreground cardioid sensor and a background cardioid sensor and
- 3 wherein the step of evaluating comprises determining a parameter reflecting a ratio
- 4 of (i) a product of output signals of the foreground and background cardioid sensors
- 5 to (ii) the square of the output signal of the background cardioid sensor.

Unchanged claim 9:

- 1 9. The method of claim 7 wherein the plurality of cardioid sensors
- 2 comprises a foreground cardioid sensor and a background cardioid sensor and
- 3 wherein the step of evaluating comprises determining a scale factor for an output
- 4 signal of the background cardioid sensor.

Unchanged claim 10:

- 1 10. The method of claim 9 wherein the scale factor is determined based
- 2 on an output signal of the background cardioid sensor and the array output signal.

Amend claim 11:

- 1 11. (Amended) An apparatus for enhancing the signal-to-noise ratio of a
- 2 microphone array, the array including a plurality of microphones and having a
- 3 directivity pattern, the directivity pattern of the array being adjustable based on one
- 4 or more parameters, the apparatus comprising:
- 5 a. means for evaluating one or more parameters to realize an angular orientation
- of a directivity pattern null, which angular orientation reduces microphone
- 7 array output signal level in accordance with a criterion, said evaluation
- 8 performed under a constraint that the null be precluded from being located
- 9 within a predetermined region of space which comprises a range of directions
- about the array which range reflects a predetermined directional variability of
- the desired acoustic energy with respect to the array;
- b. means for modifying output signals of one or more microphones of the array
- based on the one or more evaluated parameters; and
- 14 c. means for forming an array output signal based on one or more modified
- output signals and zero or more unmodified microphone output signals.

Amend claim 12:

12. (Amended) The apparatus of claim 11 wherein a region of space

2 other than the predetermined region of space includes sources of undesired acoustic

3 energy.

Amend claim 13:

1 13. (Amended) The apparatus of claim 11 wherein undesired acoustic

2 energy impinges on the array from a direction within a region of space other than the

3 predetermined region of space.

Unchanged claim 14:

1 14. The apparatus of claim 11 wherein the array has a plurality of

2 directivity patterns corresponding to a plurality of frequency subbands, one or more

3 of the plurality of directivity patterns including a null.

Unchanged claim 15:

1 15. The apparatus of claim 14 further comprising means for forming a

2 plurality of subband microphone output signals based on an output signal of a

3 microphone of the array, wherein the means for modifying output signals comprises

4 means for modifying the subband microphone output signals based on the one or

5 more evaluated parameters.

Unchanged claim 16:

1 16. The apparatus of claim 14 wherein the means for evaluating

2 comprises a polyphase filterbank.

Unchanged claim 17:

1 17. The apparatus of claim 11 wherein the means for modifying

2 comprises a means for performing fast convolution.

Unchanged claim 18:

- 1 18. The apparatus of claim 11 wherein the array comprises a plurality of
- 2 cardioid sensors.

Unchanged claim 19:

- 1 19. The apparatus of claim 18 wherein the plurality of cardioid sensors
- 2 comprises a foreground cardioid sensor and a background cardioid sensor and
- 3 wherein the means for evaluating comprises means for determining a parameter
- 4 reflecting a ratio of a (i) product of output signals of the foreground and background
- 5 cardioid sensors to (ii) the square of the output signal of the background cardioid
- 6 sensor.

Unchanged claim 20:

- 1 20. The apparatus of claim 18 wherein the plurality of cardioid sensors
- 2 comprises a foreground cardioid sensor and a background cardioid sensor and
- 3 wherein the means for evaluating comprises means for determining a scale factor for
- 4 an output signal of the background cardioid sensor.

Unchanged claim 21:

- 1 21. The apparatus of claim 18 wherein the scale factor is determined
- 2 based on an output signal of the background cardioid sensor and the array output
- 3 signal.

Unchanged claim 22:

- 1 22. The apparatus of claim 11 wherein the array comprises a cardioid
- 2 sensor and a dipole sensor.

Unchanged claim 23:

- 1 23. The apparatus of claim 11 wherein the array comprises a
- 2 omnidirectional sensor and a dipole sensor.

Remarks

This amendment is submitted in response to an Office Action dated January 26, 1995. In the Action, the Examiner rejected each independent claim (1, 11) under 35 U.S.C. § 102(b) as anticipated by U.S. Patent No. 4,802,227 to Elko *et al.* (the

