sine basis 03

Statistics:

Design matrix n-values adjusted for search volume

Otatistics. p-values adjusted for search volume											
set-level	cluster-level				peak-level					mm mm mm	
рс	p_{FWE-c}	<i>g</i> corrFDR-co	orr E	puncorr	p_{FWE-c}	g corrFDR-co	T orr	(Z_{\equiv})	$p_{ m uncorr}$		
1.000133	0.013	0.005	297	0.000	0.166 0.989	0.179 0.829 0.874	4.77 3.90	4.71 3.86	0.000 0.000 0.000	-4 -2 0	18 52 4 68 16 62
	0.997 0.997 1.000 1.000	0.556 0.556 0.601 0.586	65 64 48 53	0.031 0.032 0.059 0.048	0.975	0.694 0.829 0.829 0.829	4.24 3.96 3.93 3.78	4.20 3.93 3.90 3.75	0.000 0.000 0.000	32 32 16 14	-96 10 -82 28 -98 0 18 68
		0.005			1.000 0.999 0.999	0.955 0.829	2.89 3.74 3.73 3.61	2.88 3.72 3.71 3.59	0.002 0.000 0.000 0.000	10 -30 -20 -30	30 64 -72 -22 -76 -22 -52 -22
	1.000	0.586	55	0.045	0.999	0.829 0.874		3.72 3.60	0.000	38 36	-80 -26 -66 -26
	0.982	0.556	75	0.022	1.000	0.874 0.991	3.53 2.53	3.51 2.52	0.000 0.006	22 22	12 -4 10 6
	1.000	0.800	34	0.105	1.000 1.000	0.874 0.947	3.52 3.06	3.50 3.04	0.000 0.001	4 12	-44 -54 -46 -54
		0.601		0.057	1.000 1.000	0.874 0.947	3.51 3.09	3.49 3.07	0.000 0.001	-52 -58	10 2 4 -2
	0.464	0.152	136	0.003	1.000 1.000 1.000	0.874 0.947 0.991	3.49 3.37 2.74	3.46 3.35 2.72	0.000 0.000 0.003	22 20 16	-76 -6 -74 -14 -66 -22

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 7.4 7.2 7.0 mm mm mm; 3.7 3.6 3.5 {voxels}

Expected voxels per cluster, $\langle k \rangle = 13.375$ Volume: 1709712 = 213714 voxels = 4266.5 resels

Expected number of clusters, $\langle c \rangle = 181.88$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 46.48 voxels)

FWEp: 5.062, FDRp: Inf, FWEc: 297, FDRo? 297