#### Recur3

- Due Feb 16 at 11:59pm
- Points 9
- Questions 3
- Available Feb 9 at 3:20pm Feb 16 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 16 at 11:59pm.

## Attempt History

|                               | Attempt   | Time       | Score        |  |
|-------------------------------|-----------|------------|--------------|--|
| LATEST                        | Attempt 1 | 13 minutes | 7.8 out of 9 |  |
| ① Correct answers are hidden. |           |            |              |  |

Score for this attempt: 7.8 out of 9

Submitted Feb 15 at 3:06pm

This attempt took 13 minutes.

Question 1

3 / 3 pts

Recall that to apply the Master Theorem on a recurrence of the form

$$T(n) = a T(n/b) + f(n)$$

we need to compute r = log b(a).

Match recurrences with r = log b(a)

$$T(n) = 8 T(n/2) + n^2$$

$$T(n) = 4 T(n/2) + 1$$

$$T(n) = 2 T(n/2) + n$$



 $T(n) = T(n/2) + n^2$ 



 $T(n) = 9 T(n/3) + n^2$ 



T(n) = T(n/3) + n



T(n) = 8 T(n/4) + n



T(n) = 4 T(n/4) + 1



 $T(n) = 2 T(n/4) + n^2$ 



::

#### Question 2

3 / 3 pts

Match recurrences to their solution

(we write '+ Theta(n)' for '+ f(n) where f(n) \in Theta(n)', etc):

T(n) in 3 T(n/2) + Theta $(n^2)$ 



T(n) in 4 T(n/2) + Theta(n)

Theta(n^2)

T(n) in 2 T(n/2) + Theta(n)

Theta(n lg(n))

T(n) in 2 T(n/2) + Theta(1)

Theta(n)

T(n) in T(n/2) + Theta(n)

Theta(n)

T(n) in T(n/2) + Theta(1)



PartialQuestion 3

1.8 / 3 pts

Match recurrences to their solutions:

T(n) = 2 T(n/2) + n



T(n) = 2 T(n/2) + n sqrt(n)



T(n) = 2 T(n/2) + n/sqrt(n)



T(n) = 2 T(n/2) + n Ig(n)

$$T(n) = 2 T(n/2) + n/lg(n)$$

Theta(n lg(n))

Quiz Score: 7.8 out of 9

#### Recur2

- Due Feb 14 at 11:59pm
- Points 5
- Questions 4
- Available Feb 7 at 3:20pm Feb 14 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 14 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time               | Score      |
|--------|-----------|--------------------|------------|
| KEPT   | Attempt 4 | less than 1 minute | 5 out of 5 |
| LATEST | Attempt 4 | less than 1 minute | 5 out of 5 |
|        | Attempt 3 | less than 1 minute | 4 out of 5 |
|        | Attempt 2 | less than 1 minute | 3 out of 5 |
|        | Attempt 1 | 8 minutes          | 2 out of 5 |

(!) Correct answers are hidden.

Score for this attempt: 5 out of 5 Submitted Feb 14 at 8:30am

This attempt took less than 1 minute.

Question 1

2 / 2 pts

Suppose we want to prove, by induction in n, that P(n) holds for all non-negative integers n. Which approaches (check all that apply) will be sufficient to accomplish this?

for all non-negative integers m, assume that P(m) holds, and then prove P(m+1)

1

for all non-negative integers m, assume that P(n) holds for all non-negative integers n with n < m, and then prove P(m)

for all non-negative integers m, assume that P(n) holds for all non-negative integers n with n != m, and then prove P(m)

prove P(0), and then: for all non-negative integers m, assume that P(m) holds, and then prove P(m+1)

for all non-negative integers m, assume that P(n) holds for all non-negative integers n with n > m, and then prove P(m)

Question 2

1 / 1 pts

Consider the recurrence

$$T(n) = 2 T(n/2) + n^2$$
.

We want to prove that for some c > 0,  $T(n) \le c n^2$  for all  $n \ge q$ . Without special assumptions on T, what is the smallest non-negative integer q for which this is possible?

1

Question 3

1 / 1 pts

Consider the recurrence

$$T(n) = 2 T(n/2) + n$$
.

We want to prove that for some c > 0,  $T(n) \le c n \lg(n)$  for all  $n \ge q$ . Without special assumptions on T, what is the smallest non-negative integer q for which this is possible?

2

Question 4

1 / 1 pts

Consider the recurrence

$$T(n) = 2 T(n/2) + 1.$$

We want to prove that for some c > 0,  $T(n) \le c$  n for all  $n \ge 1$ . When we try to prove that by induction, for which c does the inductive step go through?

- ofor no c
- ofor all c
- $\bigcirc$  for c >= 2 but not when c < 2
- of for  $c \ge 1$  but not when c < 1

Quiz Score: 5 out of 5

#### Recur1

- Due Feb 12 at 11:59pm
- Points 6
- Questions 3
- Available Feb 5 at 3:20pm Feb 12 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 12 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time      | Score      |
|--------|-----------|-----------|------------|
| LATEST | Attempt 1 | 9 minutes | 6 out of 6 |

(!) Correct answers are hidden.

Score for this attempt: 6 out of 6

Submitted Feb 12 at 6:32pm

This attempt took 9 minutes.

Question 1

2 / 2 pts

Consider the algorithm

```
F(A[1..n]) =
if n = 1
skip
else if n = 2
A[1] <-> A[2]
else
q <- n/2
F(A[1..q])
F(A[q+1..n])
F(A[1..q])
```

Its running time T(n) can be described by the recurrence

```
T(n) = aT(n/b) + h(n) with h in Theta(n^q).
```

What is a, b, q?

a =



b =



q =



Question 2

1 / 1 pts

Assume that we have a recurrence for T(n), and that we want to use the **substitution method** to find an upper approximation of the asymptotic behavior of T(n), that is, to prove that for some function f and some constant c,  $T(n) \le c$  f(n) for n big enough. What must we do?

- we have to guess c; then the method will help to find f
- the method will help to find both f and c
- we have to guess both f and c
- we have to guess f; then the method will help to find c

Question 3

3 / 3 pts

Consider the recurrence

$$T(n) \le 2 T(floor(n/2)) + n^2$$

We may use the substitution method to prove that for some c > 0,  $T(n) \le c n^2$  for all  $n \ge 1$ .

For  $n \ge 2$ , we have the calculation

Match each (in)equality with its justification

Α

| ,                    |   |
|----------------------|---|
| recurrence           | ~ |
| В                    |   |
| induction hypothesis | ~ |
| С                    |   |
| property of floor    | ~ |
| D                    |   |
| arithmetic           | ~ |
| E                    |   |
| when c >= 2          | ~ |

Quiz Score: 6 out of 6

# Loops2

- Due Feb 5 at 11:59pm
- Points 6
- Questions 4
- Available Jan 29 at 3:20pm Feb 5 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 5 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time               | Score         |
|--------|-----------|--------------------|---------------|
| KEPT   | Attempt 5 | less than 1 minute | 5 out of 6    |
| LATEST | Attempt 5 | less than 1 minute | 5 out of 6    |
|        | Attempt 4 | 2 minutes          | 3.33 out of 6 |
|        | Attempt 3 | 1 minute           | 4 out of 6    |
|        | Attempt 2 | 5 minutes          | 2.67 out of 6 |
|        | Attempt 1 | 5 minutes          | 1.67 out of 6 |

(!) Correct answers are hidden.

Score for this attempt: 5 out of 6

Submitted Feb 5 at 8:30am

This attempt took less than 1 minute.

Question 1

2 / 2 pts

Which functions (of n) are smooth?

- lg(n)
- \_\_\_ 1/n
- 2^n
- ✓ n^2
- sqrt(n)

```
::
```

Question 2

1 / 1 pts

Which is a correct approximation of

$$sum_{i = 1}^{n} 2^{i}$$

- Theta(n^2)
- Theta(n 2<sup>n</sup>)
- Theta(2<sup>n</sup>)

Question 3

2 / 2 pts

According to our results,

is in

Theta( $n^{\prime}$  [Select]  $\checkmark$  sqrt( $n^{\prime}$  [Select]  $\checkmark$  )) = Theta( $n^{\prime}$ 6)

#### Answer 1:

4

6

2

8

#### Answer 2:

8

6

2

#### **Answer 3:**

8

4

6

IncorrectQuestion 4

0 / 1 pts

Consider the expression Theta(n^2 lg(n^2)). It

- on be simplified to Theta(n^2)
- cannot be simplified
- o can be simplified to Theta(n^2 lg(n))
- can be simplified to Theta(n^2 lg(n)^2)

Quiz Score: 5 out of 6

# Loops1

- Due Feb 2 at 11:59pm
- Points 5
- Questions 3
- Available Jan 26 at 3:20pm Feb 2 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 2 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time               | Score      |
|--------|-----------|--------------------|------------|
| KEPT   | Attempt 2 | 3 minutes          | 5 out of 5 |
| LATEST | Attempt 2 | 3 minutes          | 5 out of 5 |
|        | Attempt 1 | less than 1 minute | 1 out of 5 |

(!) Correct answers are hidden.

Score for this attempt: 5 out of 5

Submitted Jan 30 at 2:34pm

This attempt took 3 minutes.

Question 1

2 / 2 pts

Consider the program (with E some expression)

z < -0

k <- n

while k > 1

z < -z + 1

k <- E

For each E, state what is the asymptotic running time of the resulting program, as a function of n

E subtracts by two: k - 2



E divides by two: k / 2

```
2/20/24, 2:46 PM
  Theta(lg n)
 Question 2
2 / 2 pts
Consider the program
  x < -0
  m <- n * n
  for i <- 1 to m
    q <- i * i * i
    for k <- 1 to q
      x < -x + 1
Its asymptotic running time, as a function of n, is given by
  sum_{i = 1}^{n} i^3
Answer 1:
m
m^2
n^2
```

n^3

#### Answer 2:

n^3

i^2

n^2

i^3

::

Question 3

1 / 1 pts

#### Consider the program

```
x < -0
for i <- 1 to n
  q <- 1
  while q <= i
    q < -q + q
    x < -x + 1
```

Its asymptotic running time, as a function of n, is given by  $sum_{i} = 1$ <sup>n</sup> E where E is

- i^2
- lg i
- o sqrt(i)
- $\bigcirc$  i

Quiz Score: 5 out of 5

## Intro2

- Due Jan 26 at 11:59pm
- Points 9
- Questions 5
- Available Jan 19 at 3:20pm Jan 26 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Jan 26 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time      | Score        |
|--------|-----------|-----------|--------------|
| KEPT   | Attempt 5 | 2 minutes | 9 out of 9   |
| LATEST | Attempt 5 | 2 minutes | 9 out of 9   |
|        | Attempt 4 | 4 minutes | 4 out of 9   |
|        | Attempt 3 | 5 minutes | 3 out of 9   |
|        | Attempt 2 | 2 minutes | 5.5 out of 9 |
|        | Attempt 1 | 1 minute  | 1.5 out of 9 |

(!) Correct answers are hidden.

Score for this attempt: 9 out of 9

Submitted Jan 23 at 4:52pm

This attempt took 2 minutes.

Question 1

1 / 1 pts

How do we in our pseudocode express the assignment of value 7 to variable w?

- w <- 7
  </p>
- w <-> 7
- w := 7
- $\sim$  w = 7

Question 2

1 / 1 pts

Assume that x is 5 and y is 7 before the parallel assignment

What are the values of x and y afterwards?

x is

| 7    | ~ |
|------|---|
| y is |   |
| 12   | ~ |
| :    |   |

Question 3

3 / 3 pts

Consider the iterative implementation of Insertion Sort.

It runs in time proportional to

the size of the input

| most) sc 🗸 |
|------------|
|------------|

the square of the size of the input

| when the input is randomly | ~ |
|----------------------------|---|
|----------------------------|---|

the cube of the size of the input

| never | ~ |
|-------|---|
|       |   |

Question 4

1 / 1 pts

Which claims are true about the space use of the iterative implementation of Insertion Sort?

- it uses space proportional to the size of the input array
- ✓ it is in-place

| it uses space at most logarithmic in the size of the input |
|------------------------------------------------------------|
| running it causes the stack to grow                        |
|                                                            |
| Question 5                                                 |
| 3 / 3 pts                                                  |

Let B[1..n] be an array of integers. To express that no integer occurs twice in B, we may write (check all that applies)

- forall i in 1..n, forall j in 1..n, i != j and B[i] != B[j]
- forall i in 1..n, forall j in 1..n, B[i] != B[j]
- forall i in 1..n, forall j in i+1..n, B[i] != B[j]
- forall i in 1..n, forall j in 1..n, i != j implies B[i] != B[j]
- forall i in 1..n-1, B[i] != B[i+1]
- forall i in 1..n, forall j in 1..n, B[i] = B[j] implies i = j

Quiz Score: 9 out of 9

## Intro1

- Due Jan 24 at 11:59pm
- Points 5
- Questions 4
- Available Jan 17 at 3:20pm Jan 24 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Jan 24 at 11:59pm.

#### **Attempt History**

|        | Attempt   | Time               | Score      |
|--------|-----------|--------------------|------------|
| KEPT   | Attempt 3 | less than 1 minute | 5 out of 5 |
| LATEST | Attempt 3 | less than 1 minute | 5 out of 5 |
|        | Attempt 2 | 1 minute           | 4 out of 5 |
|        | Attempt 1 | 2 minutes          | 3 out of 5 |

#### (!) Correct answers are hidden.

Score for this attempt: 5 out of 5

Submitted Jan 19 at 2:28pm

This attempt took less than 1 minute.

Question 1

1 / 1 pts

Assume we must implement a given specification, with a precondition and a postcondition. For which input is our implementation required to establish the postcondition?

- for input that satisfies the precondition
- of for no input
- of for all input

Question 2

1 / 1 pts

Which is **NOT** a valid way to express that an array B[1..n] is "non-decreasing"?

- forall i forall j (1 <= i < j <= n => B[i] <= B[j])</p>
- forall i forall j (1 <= i < j <= n => B[i] < B[j])</p>
- forall i forall j (1 <= i <= j <= n => B[i] <= B[j])</p>

Question 3

1 / 1 pts

Which is **NOT** a valid way to express that an array B[1..n] is "non-decreasing"?

- o forall k (1 <= k <= n => B[k] <= B[k+1])
- of forall j (1 < j <= n => B[j-1] <= B[j])
- of forall i  $(1 \le i \le n => B[i] \le B[i+1])$

::

Question 4

2 / 2 pts

Consider the array B with content [21,17,21,28,17].

Given the specification of the selection problem, what is then the

2nd smallest element of B



3rd smallest element of B



Quiz Score: 5 out of 5

# Graphs2

- Due Feb 9 at 11:59pm
- Points 7
- Questions 3
- Available Feb 2 at 3:20pm Feb 9 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 9 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time               | Score      |
|--------|-----------|--------------------|------------|
| KEPT   | Attempt 3 | less than 1 minute | 7 out of 7 |
| LATEST | Attempt 3 | less than 1 minute | 7 out of 7 |
|        | Attempt 2 | 4 minutes          | 6 out of 7 |
|        | Attempt 1 | less than 1 minute | 1 out of 7 |

(!) Correct answers are hidden.

Score for this attempt: 7 out of 7

Submitted Feb 9 at 9:39am

This attempt took less than 1 minute.

Question 1

2 / 2 pts

With the Adjacency **Matrix** representation of graphs, which operations always run in constant time? (check all that apply)

- ✓ Put
- ✓ Get
- AllFrom
- Delete

Question 2

2 / 2 pts

| With the Adjacency Lists representation of graphs, which operations always run in constant time? (check all that apply)    |
|----------------------------------------------------------------------------------------------------------------------------|
| ☐ Get                                                                                                                      |
| ✓ AllFrom                                                                                                                  |
| ☑ Put                                                                                                                      |
| □ Delete                                                                                                                   |
|                                                                                                                            |
| Question 3                                                                                                                 |
| 3 / 3 pts                                                                                                                  |
| In which situation                                                                                                         |
| can we expect the 'get' operator to take the most time?                                                                    |
| a dense graph represented b                                                                                                |
| can we expect a graph to require the least amount of space?                                                                |
| a sparse graph represented I 🗸                                                                                             |
| does the AllFrom operator have a running time that is linear in the number of nodes but yet will return a very short list? |
| a sparse graph represented I 🗸                                                                                             |
| Quiz Score: 7 out of 7                                                                                                     |

# Graphs1

- Due Feb 7 at 11:59pm
- Points 8
- Questions 7
- Available Jan 31 at 3:20pm Feb 7 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 7 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time               | Score        |
|--------|-----------|--------------------|--------------|
| KEPT   | Attempt 4 | less than 1 minute | 8 out of 8   |
| LATEST | Attempt 4 | less than 1 minute | 8 out of 8   |
|        | Attempt 3 | less than 1 minute | 7.5 out of 8 |
|        | Attempt 2 | 1 minute           | 6 out of 8   |
|        | Attempt 1 | 8 minutes          | 5.5 out of 8 |

(!) Correct answers are hidden.

Score for this attempt: 8 out of 8

Submitted Feb 4 at 3:32pm

This attempt took less than 1 minute.

Question 1

1 / 1 pts

Assume that a directed graph G has 5 nodes. What is the highest possible number of edges in G?

25

Question 2

1 / 1 pts

Assume that an **un**directed graph G has 5 nodes. What is the highest possible number of edges in G?

10

Question 3

1 / 1 pts

What is the smallest number of nodes needed to form a cycle

in a directed graph



in an undirected graph



Question 4

1 / 1 pts

Assume that the undirected graph G has exactly 5 nodes, and that G is connected. What is the smallest possible number of edges in G?



Question 5

1 / 1 pts

Assume that the **directed** graph G has exactly 5 nodes, and that G is **strongly** connected. What is the smallest possible number of edges in G?



::

Question 6

2 / 2 pts

If a graph algorithm has running time in Theta(n+a) then we can write that running time as

Theta(n), if we know



#### Theta(n^2), if we know

| a in Omega(n^2) | ~ |
|-----------------|---|
| #               |   |

Question 7

1 / 1 pts

Assume that a tree has 5 nodes. Which situations are then possible (check all that applies)

- ✓ it has 4 edges
- it has 5 edges
- it has 3 edges

Quiz Score: 8 out of 8

#### Correct1

- Due Feb 19 at 11:59pm
- Points 8
- Questions 7
- Available Feb 12 at 3:20pm Feb 19 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Feb 19 at 11:59pm.

#### **Attempt History**

|        | Attempt   | Time      | Score        |
|--------|-----------|-----------|--------------|
| KEPT   | Attempt 2 | 2 minutes | 8 out of 8   |
| LATEST | Attempt 2 | 2 minutes | 8 out of 8   |
|        | Attempt 1 | 7 minutes | 6.5 out of 8 |

(!) Correct answers are hidden.

Score for this attempt: 8 out of 8

Submitted Feb 19 at 6:02pm

This attempt took 2 minutes.

Question 1

1 / 1 pts

At which points must a loop invariant hold (check all that apply)

- just before the loop is entered for the first time
- in the middle of the loop body
- at the end of the loop body
- just after loop exit
- at the beginning of the loop body

Question 2

1 / 1 pts

What must we prove about the code before a loop? (check all that apply)



and that the loop invariant is Q. What is then a suitable loop guard?

P and Q

P

|          | not P    |
|----------|----------|
|          | not Q    |
| <b>∷</b> | estion 7 |
|          | 2 pts    |

Consider the program (where we assume  $n \ge 0$ )

$$x,z <- n,0$$
 while  $x > 0$ 

В

where we want the loop (with yet unspecified body B) to have invariant x + z = n.

We now propose some options for B; you should evaluate each.

$$x,z <- x+1,z+1$$

| does not maintain invariant : | ~ |
|-------------------------------|---|
| x,z <- x+1,z-1                |   |
| maintains invariant, but does | ~ |
| x,z <- x-1,z+1                |   |
| maintains invariant and mak   | ~ |
| x,z <- x-1,z-1                |   |
| makes progress towards terr   | ~ |

Quiz Score: 8 out of 8

# Asymp1

- Due Jan 29 at 11:59pm
- Points 5
- Questions 5
- Available Jan 22 at 3:20pm Jan 29 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Jan 29 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time               | Score        |
|--------|-----------|--------------------|--------------|
| KEPT   | Attempt 4 | less than 1 minute | 5 out of 5   |
| LATEST | Attempt 4 | less than 1 minute | 5 out of 5   |
|        | Attempt 3 | less than 1 minute | 4 out of 5   |
|        | Attempt 2 | less than 1 minute | 4 out of 5   |
|        | Attempt 1 | 3 minutes          | 4.5 out of 5 |

! Correct answers are hidden.

Score for this attempt: 5 out of 5

Submitted Jan 24 at 1:35pm

This attempt took less than 1 minute.

Question 1

1 / 1 pts

Assume that we have analyzed an algorithm, and found that on input of size n it runs in time (measured in microseconds)

5 n<sup>3</sup> + 973 n<sup>2</sup> + 28n + 46.

Which parts of that formula shall we consider essential information?

- all of it
- 973 n^2
- n^3
- **5**

::

Question 2

1 / 1 pts

Given a set with n elements, how many subsets are there?

- 2^n
- n^n
- n^2
- $\bigcirc$  n

Question 3

1 / 1 pts

Find the smallest integer n such that 2<sup>n</sup> is at least one billion (that is, 10<sup>n</sup>)

30

Question 4

1 / 1 pts

Which functions belong to O(n^2)? (check all that apply)

- n^3 4n + 8
- $\sqrt{7}$  7n + 3
- $\sqrt{5}$  5n<sup>2</sup> + 4n + 8
- 2^n

Question 5

1 / 1 pts

What is the (sufficient and necessary) condition for n^p to belong to O(n^q)?

- p >= q
- $\bigcirc$  p = q
- p <= q</pre>
- p < q</p>
- p > q

Quiz Score: 5 out of 5

# Asymp2

- Due Jan 31 at 11:59pm
- Points 9
- Questions 6
- Available Jan 24 at 3:20pm Jan 31 at 11:59pm
- Time Limit None
- Allowed Attempts 5

This quiz was locked Jan 31 at 11:59pm.

## **Attempt History**

|        | Attempt   | Time      | Score         |
|--------|-----------|-----------|---------------|
| KEPT   | Attempt 4 | 1 minute  | 9 out of 9    |
| LATEST | Attempt 4 | 1 minute  | 9 out of 9    |
|        | Attempt 3 | 2 minutes | 8.5 out of 9  |
|        | Attempt 2 | 3 minutes | 8 out of 9    |
|        | Attempt 1 | 3 minutes | 2.33 out of 9 |

(!) Correct answers are hidden.

Score for this attempt: 9 out of 9

Submitted Jan 31 at 2:28pm

This attempt took 1 minute.

Question 1

1 / 1 pts

Which functions belong to Omega(n^2)?

- $\square$  n lg(n)
- 3n
- (n+7)^2
- ✓ 5n^3 + 4n

Question 2

1 / 1 pts



- (n+7)^2
- 2n^3 + 4n + 8
- $\sqrt{5}$  5n<sup>2</sup> + 3n + 7
- 3n + 8

Question 3

1 / 1 pts

Which functions belong to o(n^2)?

- (n+1)<sup>2</sup>
- n lg(n)
- 0.03 n^2

Question 4

1 / 1 pts

Which functions belong to omega(n^2)?

- n^2 lg(n)
- (1,001)<sup>n</sup>
- n lg(n)
- 237 n^2 + 8n

Question 5

4 / 4 pts

The running time of insertion sort is in

O(n)

O(n^2)

1 / 1 pts

Question 6

Match each ??? with the appropriate symbol (here Ig is the binary logarithm, and In the natural logarithm)

Ig(n) in ???(sqrt(n))



#### lg(n) in ???(ln n)



Quiz Score: 9 out of 9