CST 370 Design and Analysis of Algorithms SP'20 – Quiz 6

ame:	
our-digits ID:	_
On my honor, I have neither given nor received unauthoridoing this assignment."	zed aid
gnature	

- Do not start until told to do so.
- Look over all the questions and observe their point values before you start.
- Use your time wisely—make sure to answer the questions you know first.
- Read the questions carefully.

1. (3 points) Assume that you conduct the **linear probing** with the hash function $h(K) = K \mod 5$. This is the initial hash table for the problem. Note that the status 'E' indicates "Empty".

Index	Content	Status
0		Е
1		Е
2		Е
3		Е
4		Е

Assume that you will conduct the following four operations

- 1) **insert 49**
- 2) **insert 14**
- 3) delete 14
- 4) **insert 29**

Update the hash table below after the four operations. For the status, use "E" for "Empty", "A" for "Active", and "D" for "Deleted".

Index	Content	Status
0		
1		
2		
3		
4		

2. (3 points) Assume that you construct a hash table using the **separate chaining** for the following 7 keys:

Assume also that the hash function is $h(K) = K \mod 5$. For the problem, do not consider the rehashing.

(a) After constructing the hash table with the keys, **present all indexes** in the table which **do not have any collisions**, if they exist. If there's no index without collision, write it clearly.

- (b) For the hash table constructed, assume that you want to insert a new key 17. Is there any collision for the key "17"? (Yes / No).
- (c) For the hash table after inserting "17" in the problem (b), assume that you want to insert a new key 18. Is there any collision for the key "18"? (Yes / No).

3. (3 points) Apply the dynamic programming technique to solve the **coin-row problem** with the coins **2**, **7**, **1**, **6**, **5**, **3**.

(a) Fill out the table as you learned in the class.

index	0	1	2	3	4	5	6
$\mathbf{c_i}$							
F(i)							

(b)	Present	which	coin(s)	you	will	pick	based	on	the	result.
-----	---------	-------	---------	-----	------	------	-------	----	-----	---------