Silizium-PIN-Fotodiode mit Tageslichtsperrfilter NEU: in SMT und als Reverse Gullwing Silicon PIN Photodiode with Daylight Filter NEW: in SMT and as Reverse Gullwing BPW 34 F BPW 34 FS BPW 34 FS (E9087)

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- Speziell geeignet für Anwendungen bei 950 nm
- kurze Schaltzeit (typ. 20 ns)
- DIL-Plastikbauform mit hoher Packungsdichte
- BPW 34 FS/(E9087); geeignet für Vapor-Phase Löten und IR-Reflow Löten

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Gerätefernsteuerungen
- Lichtschranken für Gleich- und Wechsellichtbetrieb

Features

- Especially suitable for applications of 950 nm
- Short switching time (typ. 20 ns)
- DIL plastic package with high packing density
- BPW 34 FS/(E9087); suitable for vaporphase and IR-reflow soldering

Applications

- IR remote control of hi-fi and TV sets, video tape recorders, remote controls of various equipment
- Photointerrupters

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Typ Type	Bestellnummer Ordering Code		
BPW 34 F	Q62702-P929		
BPW 34 FS	Q62702-P1604		
BPW 34 FS (E9087)	Q62702-P1826		

Grenzwerte Maximum Ratings

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 85	°C
Sperrspannung Reverse voltage	V_{R}	32	V
Verlustleistung, $T_{\rm A}$ = 25 °C Total power dissipation	P_{tot}	150	mW

Kennwerte ($T_A = 25$ °C, $\lambda = 950$ nm) **Characteristics**

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Fotoempfindlichkeit Spectral sensitivity $V_{\rm R}$ = 5 V, $E_{\rm e}$ = 1 mW/cm ²	S	50 (≥ 40)	μΑ
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	$\lambda_{\text{S max}}$	950	nm
Spektraler Bereich der Fotoempfindlichkeit $S = 10 \%$ von $S_{\rm max}$ Spectral range of sensitivity $S = 10 \%$ of $S_{\rm max}$	λ	780 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	7.00	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	2.65 × 2.65	mm×mm
Halbwinkel Half angle	φ	± 60	Grad deg.
Dunkelstrom, $V_{\rm R}$ = 10 V Dark current	I_{R}	2 (≤ 30)	nA
Spektrale Fotoempfindlichkeit Spectral sensitivity	S_{λ}	0.59	A/W
Quantenausbeute Quantum yield	η	0.77	Electrons Photon
Leerlaufspannung, $E_{\rm e}$ = 0.5 mW/cm ² Open-circuit voltage	Vo	330 (≥ 275)	mV

Kennwerte ($T_{\rm A}$ = 25 °C, λ = 950 nm) Characteristics (cont'd)

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Kurzschlußstrom, $E_{\rm e}$ = 0.5 mW/cm ² Short-circuit current	$I_{ exttt{SC}}$	25	μΑ
Anstiegs- und Abfallzeit des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 5 V; λ = 850 nm; $I_{\rm p}$ = 800 μ A	$t_{\rm r},\ t_{\rm f}$	20	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V_{F}	1.3	V
Kapazität, $V_R = 0 \text{ V}, f = 1 \text{ MHz}, E = 0$ Capacitance	C_0	72	pF
Temperaturkoeffizient von $V_{\rm O}$ Temperature coefficient of $V_{\rm O}$	TC_{V}	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm SC}$ Temperature coefficient of $I_{\rm SC}$	TC_1	0.18	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V	NEP	4.3 × 10 ⁻¹⁴	$\frac{W}{\sqrt{Hz}}$
Nachweisgrenze, $V_{\rm R}$ = 10 V Detection limit	D*	6.2 × 10 ¹²	<u>cm · √Hz</u> W

Relative spectral sensitivity

Photocurrent $I_P = f(E_e)$, $V_R = 5 \text{ V}$ Open-circuit voltage $V_O = f(E_e)$

Total power dissipation

Dark current

Capacitance

$$C = f(V_R), f = 1 \text{ MHz}, E = 0$$

Dark current

Directional characteristics $S_{rel} = f(\phi)$

