HW1

Shane Drafahl

30 August, 2017

1. Use mathematical induction to prove the following statements

(a)
$$\forall_n \ge 1, \sum_{i=1}^n i^3 = (\sum_{i=1}^n i)^2$$

lemma: $\sum_{i=1}^{n} i = \frac{n^2}{2} + \frac{n}{2}$ where $n \in N$ Base Case: $\sum_{i=1}^{1} i = 1 = \frac{1^2}{2} + \frac{1}{2}$ Inductive Hypothesis: $\sum_{i=1}^{n} i = \frac{n^2}{2} + \frac{n}{2}$

Inductive Steps:

Using induction on n
$$\frac{(n+1)^2}{2} + \frac{n+1}{2} = \frac{n^2}{2} + \frac{3n}{2} + 1 = \frac{n^2}{2} + \frac{n}{2} + (n+1)$$

So therefore the lemma is true for all natural numbers n greater than 1.

With the lemma we can solve the proof easier

Base Case: For n = 1 would be $\sum_{i=1}^{1} i^3 = 1^3 = 1$. $(\sum_{i=1}^{1} i)^2 = 1$.

Inductive Hypothesis: From the base n is true for $\forall_n \geq 1, \sum_{i=1}^n i^3 =$ $(\sum_{i=1}^n i)^2$

Inductive Step: Using lemma we can re-write this to $(\frac{n^2}{2}+\frac{n}{2})^2=\sum_{i=1}^n i^3$ We will first add n+1, $(\frac{(n+1)^2}{2}+\frac{(n+1)}{2})^2=\frac{n^4}{4}+\frac{3n^3}{2}+\frac{13n^2}{4}+3n+1$. Now we will do $(\frac{n^2}{2}+\frac{n}{2})^2+(n+1)^3=\frac{n^4}{4}+\frac{3n^3}{2}+\frac{13n^2}{4}+3n+1$. So therfore $\forall_n\geq 1,\, \sum_{i=1}^n i^3=(\sum_{i=1}^n i)^2$ is true for all natural numbers for n greater then or equal to 1 than or equal to 1.

(b)
$$\forall_n \ge 4, \, 2^n < n!$$