DATA SCIENCE FUNDAMENTALS LESSON 3

Hay Kranen Monday October 1st, 2018

TODAY'S PROGRAMME

Recap Variables and memory in Python Break Lists Exercise Advanced use of lists Exercise Lunch break

RECAP

Examples

For every week there is a Jupyter Notebook containing examples relating to the subjects of that week

- Lessons 1 & 2: Math, variables, print(), input(), comparisons, types, if, string methods
- Lessons 3 & 4: Lists, for , while , files, csv
- Lessons 5 & 6: dicts, json, f-strings, HTTP api's
- Lessons 7 & 8: Reddit / praw , Pandas
- Lessons 9 & 10: Web scraping

Exercises

These are optional exercises you can make during the lesson to test your knowledge. You **don't** need to submit these with the final assignment.

- Lesson 1: Myfitnesspal
- Lesson 2: Lovetest

Slides

These are PDF versions of the slides i use during classes.

- Lesson 1
- Lesson 2
- Lesson 3
- Lesson 4
- Lesson 5
- Lesson 6
- Lesson 7
- Lesson 8
- Lesson 9
- Lesson 19

Exercises

Assignment

For practice

To pass the course

Optional

Mandatory

Work on in class

Work on in your own time

Share during class on Slack

Deliver all before deadline

Build your own love test


```
#asking for the names
name_1 = input("What is your name?")
name_2 = input("What is your lovers name?")

#make the names all lowercase
name_1 = name_1.lower()
name_2 = name_2.lower()

#delete spaces around the names
name_1 = name_1.strip()
name_2 = name_2.strip()
```

```
name1 = input("What is your name?").lower().strip()
name2 = input("What the name of the second person?").lower().strip()
```

```
#the comments below is the code for the basic assignment
#if name_1 == name_2:
#     print("You are in love with yourself")
#elif name_1 > name_2:
#     print("It's a match!")
#else:
#     print("You are not a match, go dating again")
```

```
# this is the basic assignment
""""

If name_1 == name_2:
    print("Match made in heaven")

elif name_1 > name_2:
    print("Matchiematchie")

else:
    print ("Neup, download tinder")
```

```
95 lines (94 sloc) 2 KB
                                                                                                        Blame History 🖵 🧨 🛅
                                                                                                  Raw
        "cells": [
          "cell_type": "code",
          "execution_count": 62,
          "metadata": {},
          "outputs": [],
          "source": [
   8
           "# variable names\n",
   9
           "name1 = input(\"First name \")\n",
  10
           "name2 = input(\"Second name \")"
  11
  12
  13
  14
          "cell_type": "code",
  15
          "execution_count": 63,
  16
          "metadata": {},
  17
          "outputs": [
  18
  19
```

```
#Giving the difference a percentage outcome
if positive_difference == 0:
    print("You are a 100% match made in heaven!")

elif positive_difference == 1:
    print("You are a 90% match, you will be a good couple!")

elif positive_difference == 2:
```

```
if count_dif == 0:
    print("You are a 100% match!")
elif count_dif == 1:
    print("You are a 80% match")
elif count_dif == 2:
    print("You are a 60% match")
```

```
if difference_two < 1:
    print("Perfect match, 100% match")

elif difference_two < 2:
    print("Almost a perfect match, keep working on your relation, 80% match")

elif difference_two < 3:
    print("You have to work harder to get a good relationship, 60% match")

elif difference_two < 4:</pre>
```

```
# Print the text to the screen
#function to compare the names
                                                   print("Hello, world")
def compare_names():
                                                   def say_hello():
    name_length = len(name)
                                                       print("Hello!")
    lover_name_length = len(lover_name)
                                                   say_hello()
    count = 0
    if name_length == lover_name_length:
        while count < (name_length * lover_name_length) + 2:</pre>
            print(count)
            count += 1
    elif name_length != lover_name_length:
        while count < (name_length * lover_name_length) * 2:</pre>
            print(count)
            count += 1
    else:
        print("0...")
```

def print(text):

```
#Count the letters
count_name_1 = (len)name_1)
count_name_2 = len(name_2)
count_dif = (abs)count_name_1 - count_name_2)
```

Function	Description	Example
abs()	Returns the absolute value: makes any number positive	abs(-20) # 20
len()	Returns the length of a string	len("Hello") # 5
round()	Rounds up to the nearest integer	round(1.2) # 1 round(1.5) # 2
max()	Returns the largest number from a series	max(4, 20, 1) # 20
min()	Returns the lowest number from a series	max(-20, 1, -3) # -20

```
#counting the characters in both names
count_name_1 = len(name_1)
count_name_2 = len(name_2)
#because the difference between the amount of cha
count_dif = abs(count_name_1 - count_name_2)
#if the difference between the amount of characte
if count_dif == 0:
       print("You are a 100% match!")
elif count_dif == 1:
       print("You are a 80% match")
elif count_dif == 2:
       print("You are a 60% match")
elif count_dif == 3:
       print("You are a 40% match")
elif count_dif == 4:
       print("You are a 20% match")
elif count_dif == 5:
       print("You are a 10% match")
else:
       print("You are a 0% match")
```

```
#Count the letters
count_name_1 = len(name_1)
count_name_2 = len(name_2)
count_dif = abs(count_name_1 - count_name_2)
#turning it into %
if count_dif == 0:
    print("You're a 100% match")
elif count_dif == 1:
    print("You're a 80% match")
elif count_dif == 2:
    print("You're a 60% match")
elif count_dif == 3:
    print("You're a 40% match")
elif count_dif == 4:
    print("You're a 20% match")
elif count_dif == 5:
    print("You're a 10% match")
else:
    print("Download Tinder,Grindr or She")
```

WARIABLES AND YEYORY N

```
name = "Barrie"
name.upper()
print(name) # "Barrie"
print(name.upper()) # "BARRIE"
name = name.upper()
print(name) # "BARRIE"
```

```
hay_name = "Hay Kranen"
hay_age = 35
hay_is_male = True

jonas_name = "Jonas Moons"
jonas_age = 35
jonas_is_male = True
```

Variable name	Value
hay_name	"Hay Kranen"
hay_age	35
hay_is_male	True

Variable name	Value
jonas_name	"Jonas Moons"
jonas_age	35
jonas_is_male	True

How many variables? How many values?

jonas_age

hay_age

Variable name	Value
hay_name	"Hay Kranen"
hay_age	35
hay_is_male	True

Variable name	Value
jonas_name	"Jonas Moons"
jonas_age	35
jonas_is_male	True

Variable name	Address
hay_name	#2
hay_age	#3
hay_is_male	#4
jonas_name	#1
jonas_age	#3
jonas_is_male	#4

Address	Value
#1	"Jonas Moons"
#2	"Hay Kranen"
#3	35
#4	True

```
hay_age = 35
jonas_age = hay_age
hay_age = hay_age + 1
```

```
hay_age = 35
jonas_age = 35
hay_age = hay_age + 1
```

```
jonas_age = 35
hay_age = jonas_age
hay_age = 36
```

```
Put integer 35 in memory location #1
Point variable 'hay_age' to memory location #1
Point variable 'jonas_age' to memory location #1
Put integer 36 in memory location #2
Point variable 'hay_age' to memory location #2
```

```
name = "Barrie"
name.upper()
print(name) # "Barrie"
print(name.upper()) # "BARRIE"
name = name.upper()
print(name) # "BARRIE"
```


Memory address #1

In Python, everything is an object

value	"Barrie"
lower()	"barrie"
upper()	"BARRIE"
length	6
size in memory	55
type	str

name Memory address #1

Memory address #1

value	"Barrie"
lower()	"barrie"
upper()	"BARRIE"
length	6
size in memory	55
type	str

Lets write this out

```
name = "Barrie"
name = name.upper()
print(name)
```


Address	Value
#1	"Jonas Moons"
#2	"Hay Kranen"
#3	35
#4	True

Reference

Use the **examples-2 notebook** from the Github repoand try out everything until you get to "the 'in' operator"

Basic

Write a program that loops through the names of three friends you predefine in a list. Print out the names and the length of the name.

Advanced

Extend the program so that after printing the name the program asks for their favourite snack. After completing the loop, loop through the names again and print the name and their favourite snack.

```
names = ["Barrie", "Tinus", "Hans"]
index = 0
for name in names:
    print(name)
    print(index)
    index = index + 1
```

```
name = "Barrie"
name.upper()
print(name) # "Barrie"

names = []
names.append("Barrie")
print(names) # ["Barrie"]
```

Type	Storage	Updates
int	literal	immutable
str	literal	immutable
list	container	mutable

Variable name	Address
hay_name	#2
hay_age	#3
hay_is_male	#4
jonas_name	#1
jonas_age	#3
jonas_is_male	#4

Address	Value
#1	"Jonas Moons"
#2	"Hay Kranen"
#3	35
#4	True

jonas_age = 35
hay_age = 35

jonas_age

hay_age


```
letters = ["a", "b", "c"]
chars = ["a", "b", "c"]
```


chars

letters

["a", "b", "c"]

["a", "b", "c"]

chars ["a", "b", "c"]

ADVANCED LISTS

Spell checker

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Reference

Use the **examples-2 notebook** from the Github repo and try out everything you haven't done until 'Day 2'

Basic

Write a program that has a short list of words (around 5 to 10) that are considered 'wrong'. Ask the user for a sentence. Loop through all the words in the sentence, check if the word is 'wrong', and if so, display an error.

- 1 Define a **list** of words
- 2 Ask for a sentence using input()
- 3 split() that sentence in a new list of words
- 4 Loop through the new sentence list using the for statement
- 5 In the for loop, check if your word is **in** the list you defined in step 1
- 6 If that is the case, print a warning

Advanced

Apart from warning the user when looping through the sentence print back a 'corrected' sentence at the end where you replace all the 'wrong' words with 'corrected' words.