

AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1 1. (Currently amended) A computer-implemented method of text equivalenc-

2 ing from a query string of characters comprising:

3 modifying the query string of characters using a predetermined set of heuris-
4 tics;

5 performing a character-by-character comparison of the modified query string
6 with at least one known string of characters in a corpus in order to locate a
7 match; and

8 responsive to not finding an exact match, performing the steps of:

9 forming a plurality of sub-strings of characters from the query string of
10 characters, the sub-strings having varying lengths; and

11 using an information retrieval technique on the sub-strings formed from
12 the query string of characters to identify determine a known string of
13 characters equivalent to the query string of characters.

1 2. (Currently amended) The method of claim 1, wherein the information re-

2 trieval technique further comprises:

3 weighting the sub-strings;

4 scoring the known strings of characters; and

5 retrieving information associated with the a known string of characters with
6 having the highest score.

1 3. (Currently amended) The method of claim 2, further comprising, responsive
2 to the highest score being greater than a first threshold, automatically accepting
3 the known string of characters having the highest score as an exact match.

1 4. (Currently amended) The method of claim 2, further comprising, responsive
2 to the highest score being less than a second threshold and greater than a first
3 threshold, presenting the known string of characters having the highest score to a
4 user for manual confirmation.

1 5. (Currently amended) The method of claim 2, further comprising, responsive
2 to the highest score being less than a second threshold and greater than a third
3 threshold, presenting the known string of characters having the highest score to a
4 user to select the equivalent string of characters.

1 6. (Currently amended) The method of claim 1, wherein the sub-strings of
2 characters are 3-grams forming a plurality of sub-strings of characters comprises suc-
3 cessively extending sub-strings based on frequency of occurrence in the modified
4 query string.

1 7. (Currently amended) The method of claim 1, wherein the query string of
2 characters is selected from the group consisting of a song title, a song artist, an album
3 name, a book title, an author's name, a book publisher, a genetic sequence, and a
4 computer program.

1 8. (Currently amended) The method of claim 1, wherein the predetermined
2 set of heuristics comprises removing whitespace from the query string of characters.

1 9. (Currently amended) The method of claim 1, wherein the predetermined
2 set of heuristics comprises removing a portion of the query string of characters.

1 10. (Currently amended) The method of claim 1, wherein the predetermined
2 set of heuristics comprises replacing a symbol in the query string of characters with
3 an alternate representation for the symbol.

1 11. (Currently amended) The method of claim 1 further comprising storing a
2 database entry indicating an indication that the query string of characters is the an
3 equivalent of the identified known string of characters.

1 12. (Currently amended) A computer implemented system for text equiva-
2 lencing from a query string of characters comprising:
3 a heuristics module for modifying the query string of characters using a pre-
4 determined set of heuristics;
5 a comparator module, coupled to the heuristics module, for performing a
6 character-by-character comparison of the modified query string with at
7 least one known string of characters in a corpus in order to find a match;
8 a sub-string formation module, coupled to the comparator module, for, re-
9 sponsive to not finding an exact match, for forming a plurality of sub-

10 strings of characters from the query string of characters, the sub-strings
11 having varying lengths; and
12 an information retrieval module, coupled to the sub-string formation module,
13 for performing an information retrieval technique on the sub-strings
14 formed from the query string of characters to identify determine a known
15 string of characters equivalent to the query string of characters.

1 13. (Currently amended) The system of claim 12, wherein the information re-
2 trieval module further comprises:

3 a weight module for weighting the sub-strings;
4 a score module for scoring the known strings of characters; and
5 a retrieval module, coupled to the weight and score modules, for retrieving in-
6 formation associated with the known string of characters with having the
7 highest score.

1 14. (Original) The system of claim 13, further comprising an accept module,
2 coupled to the retrieval module, for accepting the information retrieved as an exact
3 match for the highest score greater than a first threshold.

1 15. (Original) The system of claim 13, further comprising an accept module,
2 coupled to the retrieval module, for presenting the information retrieved to a user for
3 manual confirmation for the highest score less than a first threshold and greater than
4 a second threshold.

1 16. (Original) The system of claim 13, further comprising an accept module,
2 coupled to the retrieval module, for presenting the information retrieved to the user
3 as a set of options for a user to select for the highest score less than a second thresh-
4 old and greater than a third threshold.

1 17. (Currently amended) The system of claim 12, wherein ~~the sub-strings of~~
2 ~~characters are 3-grams~~ the sub-string formation module forms a plurality of sub-
3 strings of characters by successively extending sub-strings based on frequency of oc-
4 currence in the modified query string.

1 18. (Currently amended) The system of claim 12, wherein the query string of
2 ~~characters~~ is selected from the group consisting of a song title, a song artist, an album
3 name, a book title, and author's name, a book publisher, a genetic sequence, and a
4 computer program.

1 19. (Currently amended) The system of claim 12, wherein the predetermined
2 set of heuristics comprises removing whitespace from the query string of ~~characters~~.

1 20. (Currently amended) The system of claim 12, wherein the heuristics
2 module comprises a removal module for removing a portion of the query string of
3 ~~characters~~.

1 21. (Currently amended) The system of claim 12, wherein the heuristics
2 module comprises a replacement module for replacing a symbol in the query string
3 of characters with an alternate representation for the symbol.

1 22. (Currently amended) The system of claim 12 further comprising a data-
2 base update module for storing a database entry indicating an indication that the
3 query string of characters is the an equivalent of the identified known string of char-
4 acters.

1 23. (Currently amended) A computer-readable medium comprising com-
2 puter-readable code for performing text equivalencing from a query string of charac-
3 ters comprising:

4 computer-readable code adapted to modify the query string of characters us-
5 ing a predetermined set of heuristics;

6 computer-readable code adapted to perform a character-by-character com-
7 parison of the modified query string with at least one known string of
8 characters in a corpus in order to locate a match; and

9 computer-readable code adapted to, responsive to not finding an exact match,
10 adapted to:

11 form a plurality sub-strings of characters from the query string of charac-
12 ters, the sub-strings having varying lengths; and to

13 computer readable code adapted to use an information retrieval technique
14 on the sub-strings formed from the query string of characters to iden-

15 tify determine a known string of characters equivalent to the query
16 string of characters.

1 24. (Currently amended) The computer-readable medium of claim 23,
2 wherein the information retrieval technique further comprises:
3 computer-readable code adapted to weight the sub-strings;
4 computer-readable code adapted to score ~~the~~ known strings of characters; and
5 computer-readable code adapted to retrieve information associated with ~~the a~~
6 known string of characters ~~with~~ having the highest score.

1 25. (Currently amended) The computer-readable medium of claim 24, further
2 comprising computer-readable code, responsive to the highest score being greater
3 than a first threshold, adapted to automatically accept the known string of characters
4 having the highest score as an exact match.

1 26. (Currently amended) The computer-readable medium of claim 24, further
2 comprising computer-readable core, responsive the highest score being less than a
3 second threshold and greater than a first threshold, adapted to present the known
4 string of characters having the highest score to a user for manual confirmation.

1 27. (Currently amended) The computer-readable medium of claim 24, further
2 comprising computer-readable code, responsive to the highest score being less than a
3 second threshold and greater than a third threshold, adapted to present the known

4 string of characters having the highest score to a user to select the equivalent string of
5 characters.

1 28. (Currently amended) The computer-readable medium of claim 23,
2 wherein ~~the sub-strings of characters are 3-grams computer-readable code adapted to~~
3 ~~form a plurality of sub-strings of characters comprises computer-readable code~~
4 ~~adapted to successively extend sub-strings based on frequency of occurrence in the~~
5 modified query string.

1 29. (Currently amended) The computer-readable medium of claim 23,
2 wherein the query string of characters selected from a group consisting of a song ti-
3 tle, a song artist, an album name, a book title, an author's name, a book publisher, a
4 genetic sequence, and a computer program.

1 30. (Currently amended) The computer-readable medium of claim 23,
2 wherein the predetermined set of heuristics comprises removing whitespace from the
3 query string of characters.

1 31. (Currently amended) The computer-readable medium of claim 23,
2 wherein the predetermined set of heuristics comprises removing a portion of the
3 query string of characters.

1 32. (Currently amended) The method of claim 23, wherein the predetermined
2 set of heuristics comprises replacing a symbol in the query string of characters with
3 an alternate representation for the symbol.

1 33. (Currently amended) The computer-readable medium of claim 23 further
2 comprising computer-readable code adapted to store a database entry indicating that
3 the query string updating the known string of characters to indicate the string of
4 characters is the an equivalent of the identified known string of characters.

1 34. (Currently amended) A computer-implemented system for performing
2 text equivalencing from a query string of characters comprising:
3 a modifying means for modifying the query string of characters using a prede-
4 termined set of heuristics;
5 a comparator means for performing a character-by-character comparison of
6 the modified query string with at least one known string of characters in a
7 corpus in order to locate a match;
8 a formation means for, responsive to not finding an exact match, a formation
9 means for forming a plurality of sub-strings of characters from the query
10 string of characters, the sub-strings having varying lengths; and
11 an information retrieval means for determining identifying a known string of
12 characters equivalent to the query string of characters.

1 35. (Currently amended) The system of claim 34, wherein the information re-
2 trieval means further comprises:
3 a weight means for weighting the sub-strings;
4 a score means for scoring the known strings of characters; and

5 a retrieval means for retrieving information associated with the known string
6 of characters with having the highest score.