Studying Annihilation Distributions

Adriano Del Vincio, Germano Bonomi, Simone Stracka

University of Brescia, INFN Pisa

07/11/2023

I tried to fit the distributions the radial distribution of the anti-hydrogen annihilation with analytic models. This should improve the results, avoiding statistical fluctuations: The models are listed below:

• Pdf Mixing: the Normal distribution.

- Pdf Uwlosses: Rayleigh distribution $\frac{r}{\sigma^2}e^{-\frac{r^2}{2\sigma^2}}$.
- Pdf Cosmic: $k \cdot x$.

The factor k is the normalization constant. The Mixing, UW losses and cosmic data are fitted and the result are shown in the following slides.

MIXING

Mixing dataset represents almost pure data of anti-hydrogen annihilation on the walls. The radius distribution is fitted with a Gaussian.

UWlosses

The microwave losses represent an almost pure anti-hydrogen sample of annihilation events due to residual gas inside the trap.

Cosmic

The cosmic distribution is obtained from dataset without anti-hydogren.

Cosmic PDF

Pdfs normalized plotted together

07/11/2023

Radial Density

The histogram in r variable doesn't account for the different area of the bin which is $2\pi r \cdot dr$. So it is useful to divide per $2\pi r$ to obtain the radial density of the events.

Toy simulation.

To study the accuracy of the algorithm to reconstruct the various parameter, we have developed a "toy" simulation tool. The model to generate the data is:

$$Pdf_{total} = a \cdot Gauss_{mix} + b \cdot Rayleigh + c \cdot linearModel_{cosmic}$$
 (1)

where a, b, c represent the "weights" of the various contributions to the Pdf used to generate the data. The number of annihilation is indicated as N_{sample} . Once the data are generated, they are fitted with the model:

$$Pdf_{fit} = Nfit_{mix} \cdot Gauss_{mix} + Nfit_{uw} \cdot Rayleigh + Nfit_{bk} \cdot linearModel_{cosmic}$$
 (2)

The parameters of the fit are $Nfit_{mix}$, $Nfit_{uw}$ and $Nfit_{bk}$. The "true value" are defined as:

- $Ngen_{mix} = a \cdot N_{sample}$
- $Ngen_{uw} = b \cdot N_{sample}$
- $Ngen_{bk} = c \cdot N_{sample}$

Example of fit, Toy: $N_{sample} = 1000$, a = 33%, b = 33%, c = 33%

Fit Toy Model

Toy: $N_{sample} = 1000$, a = 33%, b = 33%, c = 33%

 σ_{fit}

In this plot we have fixed the weight of each distribution to 33%, with $N_{sample}=1000$ and $N_{trials}=1000$. This first plot is made to ensure that the algorithm is able to reconstruct the parameters, and check the presence of a bias. The variable of the histograms are: Ngen-Nfit

The distribution are normal, the fit is behaving as expected.

weight variation a for mix.

Now we study how or if the coefficients of the fit \textit{Nfit}_{mix} , \textit{Nfit}_{uw} and \textit{Nfit}_{bk} vary with the increment of the weight a. At fixed c=10%, a is raised from 10% to 80% and b is decreased accordingly.

The number events is always $N_{sample} = 1000$. For each value of the weight a we iterate 100 times ($N_{trials} = 100$) to study the reconstructed coefficients with the variation of the weights.

N = 165.

Now we have done the same plot with N=165, the same amount of data in r68465_uw_exp_freq4.vertex.csv after applying cut1. The value of c is fixed to reproduce the number of expected events from background (c=6%).

Fit to data.

Pdf = Gaussian (Mixing) + Rayleigh (Uwlosses) + linear model (cosmic fixed). Data taken from: r68465_uw_exp_freq4.vertex.csv

Analitic Fit

ADDITIONAL MATERIAL

 $N_{mix} - N_{fit}$ for a = 46%, b = 46%, c = 6%.

N_{uw} parameter of the fit model fixed

The Toy simulation is tested fixing the N_{uw} parameter of the fit model fixed. In the following plot the weight are a=46%, b=46%, c=6%, where c is fixed in such a way to reproduce the number of expected background events in r68465_uw_exp_freq4.vertex.csv, which correspond to 6% of the total events.

4 D F 4 D F 4 D F 4 D

N_{uw} parameter of the fit model fixed

We study the bias $N_{mix} - N_{reconstructed}$ with the parameter N_{uw} of the fit model fixed at 0. For small value of w_{mix} , corresponding to small contribution of Mixing (and, conversely, a significant contribution of Uwlosses pdf) we observe a large bias.

