Deep Learning for Visual Recognition Part 2

Injung Kim
Handong Global University

Advances of CNN

Improved structures

- Max-out network[Goodfellow13]
- Network-in-network[Lin13]
- Spatial pyramid pooling CNN [He14]
- Very deep CNN [Simonyan15]
- GoogLeNet[Szegedy14], Inception v2,v3,v4, Inception-ResNet
- Residual learning networks [He15]
- Dense convolutional networks [Huang16]
- Dual-Path Net[Chen17]
- SENet[Hu17], Non-local nets[Wang18], BAM[Park18], CBAM[Woo18]

Improved learning algorithms

- Batch normalization [loffe15], layer/weight/group normalization
- Xavier init[Xavier10], He init[He15], LL-init [Balduzzi17]

Detection & classification

- R-CNN[Girshik14], Fast R-CNN[Girshik14], Faster R-CNN[Ren15]
- Mask R-CNN[He17]
- Visual attention models [Mnih14, Ba15, Sermanet15]
- YOLO[Redmon16], SSD[Liu16]
- FCN[Long16], DeepLab1/2/3/3+[Chen15-18], PSP-Net[Zhao17], GCN[Peng17]

Advances of CNN

- Visualization and understanding
 - Visualization using deconvolution layers [Zeiler13]
 - Class saliency maps [Simonyan13]
 - Inverting CNN [Mahendran14]
- Building lightweight networks
 - Network compression [Bucilu06]
 - Knowledge distillation [Hinton14]
 - FitNet [Romero14]
 - SqueezNet [landola16]
 - ShuffleNet [Zhang17]
 - MobileNet, MobileNet.v2, MobileNet.v3

Agenda

Advanced CNN Models

- Maxout net
- Network in networks
- Spatial pyramid pooling
- VGG net
- Inception
- ResNet
- Nonlinearity Functions

Network in Networks

- Lin, et al. "Network In Network", 2014
- MLPConv layer to learn non-linear filters
 - Equivalent to (conv + CCCP)
 - □ CCCP: a series of 1x1 conv layers
 - □ 1x1 conv layers are also used to reduce # of feature maps

Network In Networks

- Lin, et al. "Network In Network", 2014
- Global average pooling (GAP) layer Less suffers from overfitting than fully-connected layer
 - Usually, preceded by CCCP
 - Less sensitive to position variation of salient feature

CNN

GAP for Object Localization

- Cook, "GAP for Object Localization," Apr. 2017.
- Qui, "Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification," Sep. 2018.

VGG Net

- Simonyan and Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition" 2015
 - Stack convolution layers have large receptive field
 - □ Two 3x3 layers 5x5 receptive field
 - □ Three 3x3 layers 7x7 receptive field
 - More nonlinearity
 - Less parameters
 - → Multiple 3x3 conv layers are better than single conv layer with a large filter

VGG Net

 Simonyan and Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition" 2015

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	

Inception (GoogLeNet)

- Szegedy, et al. "Going deeper with convolutions", 2015
 - Very deep network with 22 layers
 - Inception module

Inception (GoogLeNet)

- Inception module
 - Multi-scale convolution
 - Dimensionality reduction by 1x1 convolution

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Figure 2: Inception module

ResNet

- He, et.al, "Deep Residual Learning for Image Recognition", Dec. 2015
 - Target function H(x) = F(x) + x

$$H(x) = F(x) + x$$

Residual Function F(x) = H(x) - x

$$F(x) = H(x) - x$$

Deep residual network contains 152 layers

Figure 2. Residual learning: a building block.

Bottleneck building block

ResNet

- Veit, et.al., "Residual Networks Behave Like Ensembles of Relatively Shallow Networks", 2016
 - During training, gradients are mainly from relatively shallow paths

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of Equation (1). When we expand this formulation to Equation (6), we obtain an *unraveled view* of a 3-block residual network (b). Circular nodes represent additions. From this view, it is apparent that residual networks have $O(2^n)$ implicit paths connecting input and output and that adding a block doubles the number of paths.

ResNet.v2

- He, et al., "Identity Mappings in Deep Residual Networks," Jul. 2016.
 - Analysis of ResNet

$$\begin{aligned} \mathbf{x}_{l+1} &= \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathcal{W}_l) \\ \mathbf{x}_L &= \mathbf{x}_l + \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathcal{W}_i) \\ \frac{\partial \mathcal{E}}{\partial \mathbf{x}_l} &= \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \frac{\partial \mathbf{x}_L}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{E}}{\partial \mathbf{x}_L} \left(1 + \frac{\partial}{\partial \mathbf{x}_l} \sum_{i=l}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathcal{W}_i) \right) \end{aligned}$$

□ Gradient of top layer $(\frac{\partial \mathcal{E}}{\partial x_L})$ directly propagates to lower layers

ResNet.v2

- He, et al., "Identity Mappings in Deep Residual Networks," Jul. 2016.
 - Typical blocks: Weight-BN-ReLU Weight-BN-ReLU …
 - Pre-activation is better than post-activation
 - □ BN+ReLU+Weight > Weight+BN+ReLU
 - Identity mapping is the best among skip connection

Agenda

- Quick Review
- Advanced CNN Models
 - Maxout net
 - Network in networks
 - Spatial pyramid pooling
 - VGG net
 - Inception
 - ResNet
- Nonlinearity Functions

Nonlinearity Functions

- Activation function
 - Non-linearity
 - Restrict outputs in a specific range
 - Measurement → probability or decision

Output Units

- Activation functions for output units
 - Identity function: unbounded value (for regression)
 - Sigmoid: Bernoulli distribution, values in range (0,1)
 - Tanh: Sigmoid scaled to range (-1,1)
 - Softmax: probabilities of categories (for classification)

Linear Output Units

No activation function

$$\hat{m{y}} = m{W}^{ op} m{h} + m{b}$$

- Regression
- The mean of conditional Gaussian distribution

$$p(\boldsymbol{y} \mid \boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}; \hat{\boldsymbol{y}}, \boldsymbol{I})$$

Ex) encoder of VAE outputs $\mu_{z|x}$, $\log \sigma_{z|x}^2$

Sigmoid Output Units

Often used to model Bernoulli distribution

$$\hat{y} = \sigma \left(\mathbf{w}^{\top} \mathbf{h} + b \right)$$
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Neural net predicts p(y = 1|x)
 - □ Predicting a binary variable y
 - Classification with two classes

Learns
$$z = \log \tilde{P}(y = 1 \mid \boldsymbol{x})$$
 by $\boldsymbol{z} = \boldsymbol{W}^{\top} \boldsymbol{h} + \boldsymbol{b}$

$$\log \tilde{P}(y) = yz$$

$$\tilde{P}(y) = \exp(yz)$$

$$p(y = 1) = \frac{\exp(z)}{\sum_{y \in \{0,1\}} \exp(yz)}$$

$$= \frac{\exp(z)}{\exp(z) + \exp(0)} = \frac{1}{1 + \exp(-z)}$$

Hyperbolic Tangent Unit

■ Tanh: scaled Sigmoid

$$Sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{2 - (1 + e^{-2x})}{1 + e^{-2x}}$$

$$= \frac{2}{1 + e^{-2x}} - 1 = 2 \cdot Sigmoid(2x) - 1$$

Derivatives of Sigmoid/Tanh

$$y = softmax(z)$$

$$\frac{\partial y}{\partial z} = y(1-y)$$

- Derivative of tanh
 - y = tanh(z)

Softmax Output Units

Probability distribution over n different classes

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Softmax Output Units

Approximate
$$z_i = \log ilde{P}(y=i \mid m{x})$$
 by $m{z} = m{W}^{ op} m{h} + m{b}$

Take exponent and normalize

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

$$\log \operatorname{softmax}(\boldsymbol{z})_i = z_i - \log \sum_j \exp(z_j)$$

Derivative of Softmax

Softmax

$$\hat{y}_j = \frac{e^{o_j}}{\sum_k e^{o_k}}$$

Derivative of fraction function

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) g(x) - f(x)g'(x)}{g(x)^2}$$

Derivative of Softmax

$$\frac{\partial \widehat{y}_j}{\partial o_i} = \widehat{y}_j (1_{i,j} - \widehat{y}_i)$$

■ If
$$i = j$$
, $\frac{\partial \hat{y}_{j}}{\partial o_{i}} = \frac{e^{oj}(\sum_{k} e^{ok}) - e^{oj} e^{oi}}{(\sum_{k} e^{ok})^{2}} = \frac{e^{oj}(\sum_{k} e^{ok})}{(\sum_{k} e^{ok})^{2}} - \frac{e^{oj} e^{oi}}{(\sum_{k} e^{ok})^{2}}$

$$= \frac{e^{oj}}{\sum_{k} e^{ok}} - \frac{e^{oj}}{\sum_{k} e^{ok}} \frac{e^{oi}}{\sum_{k} e^{ok}} = \hat{y}_{j} - \hat{y}_{j} \hat{y}_{i} = \hat{y}_{j} (1 - \hat{y}_{i})$$
■ If $i \neq j$, $\frac{\partial \hat{y}_{j}}{\partial o_{i}} = \frac{-e^{oj} e^{oi}}{(\sum_{k} e^{ok})^{2}} = -\frac{e^{oj}}{\sum_{k} e^{ok}} \frac{e^{oi}}{\sum_{k} e^{ok}} = -\hat{y}_{j} \hat{y}_{i} = \hat{y}_{j} (-\hat{y}_{i})$

Derivative of Softmax Cross Entropy

Softmax

$$\hat{\mathbf{y}}_i = \frac{\exp(z_i)}{\sum_i \exp(z_i)}$$

Cross entropy

$$L = -\sum_{i} y_i \log(\hat{\mathbf{y}}_i)$$

- $y_i \in \{0,1\}$: label (only $y_{true} = 1$)
- Gradient w.r.t. logit z_t

$$\frac{\partial L}{\partial z_i} = \sum_{j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i} = -\frac{1}{\hat{y}_{true}} \hat{y}_{true} (1_{i,true} - \hat{y}_i) = \hat{y}_i - 1_{i,true}$$

Hidden Units

- Activation functions for hidden units
 - Traditional units
 - □ Sigmoid, Tanh
 - □ RNN, gates, regression
 - Piece-wise linear units
 - ReLU, LReLU, PReLU, RReLU, ELU
 - Gated units
 - □ GTU, GLU

ReLU Activation Function [Hinton10]

- ReLU (Rectified Linear Unit)
 - Faster than Sigmoid or Tanh
 - No 'saturated regime'
 - Makes network activation sparse
- Problems
 - No gradient for negative input
 - Unbounded in positive direction

Variations of ReLU

$$a_{i,j,k} = \max(z_{i,j,k}, 0) + \lambda_k \min(z_{i,j,k}, 0)$$

- \blacksquare λ is fixed
- Parametric ReLU (PReLU)
 - λ is learned
- Randomized ReLU (RReLU)
 - lacksquare λ is randomly sampled
- Exponential LU (ELU)

$$a_{i,j,k} = \max(z_{i,j,k}, 0) + \min(\lambda(e^{z_{i,j,k}} - 1), 0)$$

Thank you for your attention!

