Lab Nr. 1, Numerical Calculus

Review of Matlab

1. Matlab files .m

• script, live script and function files

2. Vectors and matrices

- generation
- operations (dot and matrix operations)
- special matrices

3. Polynomials

- evaluation, polyval
- rootfinding, roots

4. Graphics

- plot, plot3 with options
- subplot
- mesh

5. Display

- disp
- fprintf with options

Applications

- **1.** Let $p(x) = x^5 5x^4 16x^3 + 16x^2 17x + 21$.
 - a) Plot the graph of p on the interval [-4, 7.2].
 - **b)** Compute p(-2.5).
 - c) Find the roots of p.
- **2.** Plot the functions $f, g, h : [0, 2\pi] \to \mathbb{R}$, $f(x) = \sin x, g(x) = \sin 2x, h(x) = \sin 3x$, on the same figure, in three tiled positions, one on top of the other.
- **3.** For $R, r \in \mathbb{R}_+$, consider the *epicycloid* (also called *hypercycloid*), given by the parametric equations

$$\begin{cases} x(t) &= (R+r)\cos t - r\cos\left(\left(\frac{R}{r}+1\right)t\right) \\ y(t) &= (R+r)\sin t - r\sin\left(\left(\frac{R}{r}+1\right)t\right) \end{cases}, \ t \in [0,10\pi].$$

Plot its graph, for R=3.8, r=1 (see details at https://en.wikipedia.org/wiki/Epicycloid).

4. Plot the function of two variables $f: [-2,2] \times [0.5,4.5] \to \mathbb{R}, \ f(x,y) = \sin{(e^x)} \cos{(\ln{y})}$ (using both *mesh* and *plot3*).

Optional

5. Consider the expression

$$f(n) = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}},$$

where $n \in \mathbb{N}$ is the number of fractions (e.g., f(0) = 1 + 1, $f(1) = 1 + \frac{1}{1+1} = \frac{3}{2}$). Compute f(2), f(10), f(100) and f(2025). What can be noticed?