DEPLOYMENT AND INTEGRATION: DEPLOYING AI MODELS IN REAL-WORLD SETTINGS. INTEGRATION WITH EXISTING SYSTEMS AND APPLICATIONS. CONTINUOUS MONITORING AND UPDATES

Problem Identification

STAGES
OF THE
AI
PROJECT
LIFECYCL
E

Monitoring and Maintenance

Problem Scoping

Deployment and Integration

Data Collection and **Preparation**

Model Development

AI MODEL DEPLOYMENT AND INTEGRATION

- Model deployment –
 moving/transitioning machine learning
 models into production, enabling their
 predictions to be accessible to users,
 developers, or systems. This allows for
 data-driven business decisions,
 application interactions (such as facial
 recognition), and more.
- 3 patterns of deployment and integration
 [1]
 - Precalculation
 - o Reimplementation
 - o Encapsulated Al component
- https://www.ibm.com/blog/ai-modellifecycle-management-deploy-phase/

PRECALCULATION

Klaus Haller. Managing AI in the Enterprise

REIMPLEMENTATION

Klaus Haller. Managing AI in the Enterprise

ENCAPSULATED ANALYTICS

Klaus Haller. Managing Al in the Enterprise

DEPLOYMENT STRATEGIES

- Answer a question how does your model generates and gives its predictions to end users?
- Batch Prediction vs Online Prediction/Real-time prediction [2]
 - Batch prediction only batch features
 - Online prediction with only batch features
 - Online prediction batch + streaming features (Streaming prediction)
- https://medium.com/mlops-republic/mlops-batch-vs-online-ml-system-cbacee834837
- https://developers.google.com/machine-learning/crash-course/production-mlsystems/static-vs-dynamic-inference

Huyen, C. Designing Machine Learning Systems

DEPLOYMENT STRATEGIES

- On-Premises, Cloud, and Edge Deployment
 - On-premises computations are done within the company / using own resources
 - On the cloud a large amount of computations are done on the cloud (public clouds or private clouds)
 - Edge deployment a large amount of computations are done on consumer devices
- https://medium.com/@cprasenjit32/deployment-of-machine-learning-models-on-premises-and-in-the-cloud-39b021efba97
- https://www.trek10.com/blog/ml-on-premise-vs-ml-cloud
- https://www.vector8.com/en/articles/mlops-in-on-prem-environments

COMPILING AND OPTIMIZING MODELS FOR EDGE DEVICES

- Framework has to be supported by the hardware vendor
- Model optimization
 - Vectorization
 - Parallelization
 - Loop tiling
 - Operator fusion
 - o Using ML to optimize ML models
- ML in Browsers
 - TensorFlow.js
 - Synaptic,
 - Brain.js
 - But JS is slow
 - WebAssembly (WASM).

INTEGRATION

- API-based Integration
- Database and Middleware
- Compatibility.Interfacing with Front-End Applications
- Legacy System Challenges.

DEPLOYMENT PIPELINES AND CI/CD FOR AI

- Al project always has an artifact called an ML pipeline
- The ML pipeline is a software artifact that addresses several considerations in your Al system [3]
- Al system [3]:
 - Al algorithms operate on the data (Storage questions)
 - Data quality
 - Different sources
 - o Results must be presented to end user or ensure that the AI system follows some business and safety rules that are specific to domain

DEPLOYMENT PIPELINES AND CI/CD FOR AI (CHALLENGES)

- Real-world ML pipelines are complex
- No universal solution
- Codification of the technical AND business decisions
- The cost of maintenance of the ML pipeline

WHY USE CI/CD

Automation of the pipeline Catching errors early Reproducibility Testing and monitoring Faster iteration Scalability

TOOLS AND TECHNOLOGIES

- Deployment tools:
 - AWS SageMaker
 - Azure ML
 - TensorFlow
 - Serving
- Monitoring tools:
 - Prometheus (Open source)
 - Grafana
- Version Control:
 - DVC
 - MLflow