INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO. Gampus São João da Boa Vista

Relatório 5 – Grupo G2

OBJETIVO:

• Estudar o MRUV através do movimento do carrinho no trilho de ar.

MATERIAL UTILIZADO:

• 01 Conjunto Básico do Trilho de Ar;

PROCEDIMENTO EXPERIMENTAL

Imagem 1: Erros de medida associados ao tempo e posição.

Erro Tempo	Erro Posição
± 5ms	± 0,5cm

Tabela 1: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 10g.

X _F (cm)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média Δt (s)
(30 ± 0.5)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)
(32 ± 0.5)	(0.205 ± 0.005)	(0.205 ± 0.005)	(0.209 ± 0.005)	(0.208 ± 0.005)	(0.203 ± 0.005)	(0.206 ± 0.005)
(35 ± 0.5)	(0.349 ± 0.005)	(0.352 ± 0.005)	(0.352 ± 0.005)	(0.349 ± 0.005)	(0.350 ± 0.005)	(0.350 ± 0.005)
(40 ± 0.5)	(0.507 ± 0.005)	(0.514 ± 0.005)	(0.509 ± 0.005)	(0.510 ± 0.005)	(0.506 ± 0.005)	(0.509 ± 0.005)
(50 ± 0.5)	(0.726 ± 0.005)	(0.733 ± 0.005)	(0.731 ± 0.005)	(0.727 ± 0.005)	(0.733 ± 0.005)	(0.730 ± 0.005)
(60 ± 0.5)	(0.891 ± 0.005)	(0.893 ± 0.005)	(0.893 ± 0.005)	(0.893 ± 0.005)	(0.877 ± 0.005)	(0.889 ± 0.005)
(70 ± 0.5)	(1.035 ± 0.005)	(1.028 ± 0.005)	(1.027 ± 0.005)	(1.027 ± 0.005)	(1.027 ± 0.005)	(1.029 ± 0.005)
(80 ± 0.5)	(1.166 ± 0.005)	(1.151 ± 0.005)	(1.170 ± 0.005)	(1.149 ± 0.005)	(1.149 ± 0.005)	(1.157 ± 0.005)

Tabela 2: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 20g.

<u>ac 205.</u>						
X _F (cm)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	∆t 4 (s)	Δt5 (s)	Média Δt (s)
(30 ± 0.5)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)
(32 ± 0.5)	(0.169 ± 0.005)	(0.170 ± 0.005)	(0.175 ± 0.005)	(0.169 ± 0.005)	(0.170 ± 0.005)	(0.171 ± 0.005)
(35 ± 0.5)	(0.286 ± 0.005)	(0.287 ± 0.005)	(0.286 ± 0.005)	(0.288 ± 0.005)	(0.289 ± 0.005)	(0.287 ± 0.005)
(40 ± 0.5)	(0.416 ± 0.005)	(0.413 ± 0.005)	(0.416 ± 0.005)	(0.414 ± 0.005)	(0.419 ± 0.005)	(0.416 ± 0.005)
(50 ± 0.5)	(0.594 ± 0.005)	(0.592 ± 0.005)	(0.593 ± 0.005)	(0.592 ± 0.005)	(0.594 ± 0.005)	(0.593 ± 0.005)
(60 ± 0.5)	(0.732 ± 0.005)	(0.729 ± 0.005)	(0.731 ± 0.005)	(0.729 ± 0.005)	(0.751 ± 0.005)	(0.734 ± 0.005)
(70 ± 0.5)	(0.848 ± 0.005)	(0.842 ± 0.005)	(0.844 ± 0.005)	(0.843 ± 0.005)	(0.844 ± 0.005)	(0.844 ± 0.005)
(80 ± 0.5)	(0.944 ± 0.005)	(0.946 ± 0.005)	(0.949 ± 0.005)	(0.954 ± 0.005)	(0.948 ± 0.005)	(0.948 ± 0.005)

Tabela 3: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 30g.

X _F (cm)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Δt 4 (s)	Δt5 (s)	Média Δt (s)
(30 ± 0.5)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)	(0.000 ± 0.005)
(32 ± 0.5)	(0.151 ± 0.005)	(0.149 ± 0.005)	(0.152 ± 0.005)	(0.146 ± 0.005)	(0.147 ± 0.005)	(0.149 ± 0.005)
(35 ± 0.5)	(0.252 ± 0.005)	(0.250 ± 0.005)	(0.250 ± 0.005)	(0.254 ± 0.005)	(0.250 ± 0.005)	(0.251 ± 0.005)
(40 ± 0.5)	(0.362 ± 0.005)	(0.365 ± 0.005)	(0.368 ± 0.005)	(0.373 ± 0.005)	(0.366 ± 0.005)	(0.367 ± 0.005)
(50 ± 0.5)	(0.522 ± 0.005)	(0.523 ± 0.005)	(0.524 ± 0.005)	(0.522 ± 0.005)	(0.519 ± 0.005)	(0.522 ± 0.005)
(60 ± 0.5)	(0.640 ± 0.005)	(0.641 ± 0.005)	(0.642 ± 0.005)	(0.640 ± 0.005)	(0.642 ± 0.005)	(0.641 ± 0.005)
(70 ± 0.5)	(0.741 ± 0.005)	(0.741 ± 0.005)	(0.738 ± 0.005)	(0.739 ± 0.005)	(0.739 ± 0.005)	(0.740 ± 0.005)
(80 ± 0.5)	(0.828 ± 0.005)	(0.827 ± 0.005)	(0.827 ± 0.005)	(0.827 ± 0.005)	(0.828 ± 0.005)	(0.827 ± 0.005)

Gráfico representando os resultados das tabelas 1, 2 e 3:

^{*} Barras de erro aumentadas em 10x para melhor visualização

As equações dos gráficos X = f(t) possuem a forma $f(x) = ax^2 + bx + c$, que representa uma equação do segundo grau. Ao analisarmos o gráfico gerado por essa equação, podemos observar que a sua forma é de uma parábola. Essa característica nos indica que o objeto se move com uma aceleração constante não nula, ou seja, com um Movimento Uniformemente Variado (MUV), e sua velocidade varia linearmente em um intervalo de tempo.

Dessa forma, a equação apresenta três coeficientes que possuem um significado físico. O coeficiente "a" representa a aceleração do objeto, que está associada ao coeficiente de grau dois da equação. Esse coeficiente determina se a concavidade da parábola é para cima ou para baixo, o que indica a direção do movimento do objeto.

O coeficiente "b" está associado ao coeficiente de grau um da equação e representa a velocidade inicial do objeto. Esse coeficiente determina como a parábola corta o eixo Y. Se o coeficiente "b" for negativo, a parábola ainda estará descendo ao cortar o eixo Y, indicando que o objeto está se movendo em uma direção oposta ao eixo X. Se for positivo, a parábola estará subindo, indicando que o objeto está se movendo na mesma direção do eixo X.

Por fim, o coeficiente "c" está associado ao termo independente da equação, que representa a posição inicial do objeto no tempo zero. Esse coeficiente determina onde a parábola corta o eixo Y, que indica a posição inicial do objeto.

Imagem 2: Equações horárias do movimento do carrinho nas diferentes tabelas.

	Equação Horária
Tabela 1	S = 30.891 -15.093t + 41.825t ²
Tabela 2	S = 30.073 + 1.5267t + 53.935t ²
Tabela 3	S = 30.141 + 0.6934t + 71.878t ²

Gráfico Velocidade x Tempo da tabela 1 (10g):

^{*} Barras de erro aumentadas em 10x para melhor visualização

Gráfico Velocidade x Tempo da tabela 2 (20g):

^{*} Barras de erro aumentadas em 10x para melhor visualização

Gráfico Velocidade x Tempo da tabela 3 (30g):

^{*} Barras de erro aumentadas em 10x para melhor visualização

As equações dos gráficos V = f(t) possuem a forma f(x) = ax + b, que representa uma função afim. Ao analisarmos o gráfico, podemos observar que sua forma é uma reta, indicando que a velocidade aumenta de forma linear, o que indica a presença de uma aceleração constante.

O coeficiente angular "a" representa a aceleração do objeto durante o movimento, e o coeficiente linear "b" representa a velocidade inicial do objeto.

Dessa forma, podemos representar a equação de outra maneira, utilizando a fórmula V = Vo + at, em que "V" é a velocidade final, "Vo" é a velocidade inicial, "a" é a aceleração e "t" é o tempo. Essa forma da equação permite a determinação da velocidade do objeto em qualquer instante de tempo, desde que se conheçam os valores iniciais de velocidade e aceleração.

^{*} Barras de erro aumentadas em 10x para melhor visualização

Área do Gráfico Velocidade x Tempo da tabela 2 (20g):

^{*} Barras de erro aumentadas em 10x para melhor visualização

Área do Gráfico Velocidade x Tempo da tabela 3 (30g):

^{*} Barras de erro aumentadas em 10x para melhor visualização

Observa-se que as áreas abaixo dos gráficos correspondem a triângulos retângulos, que representam o crescimento linear da velocidade.

Ao término da análise, podemos concluir que o movimento analisado é, de fato, um Movimento Uniformemente Variado (MUV). Durante o experimento, foi observado que, à medida que peso era adicionado ao carrinho, sua aceleração aumentava, causando uma variação linear na velocidade do objeto durante o movimento.

De acordo com a teoria, foi possível comprovar que, para um mesmo peso adicionado ao carrinho, a aceleração permanecia constante, o que resultava em uma variação linear da velocidade do objeto ao longo do tempo