Schneiden von Kreisen und Kugeln

Versuchen werde ich hier einen funktionalen Zusammenhang des folgenden Sachverhaltes zu ermitteln:

Wenn man einen Kreis mit dem Radius r an einer Sekante mit abstand h zu einer parallelen Tangente schneidet, wie wird der Flächeninhalt A verändert.

Pasted image 20240103145623.png

Beschreibung in Bezügen

Ein Kreis kann durch $x^2+y^2=r^2$ dargestellt werden. Vereinfacht man dies nun auf y, so gilt für den Kreis $y=\pm\sqrt{r^2-x^2}$. Da ich diesen Term folglich als eine Funktion behandeln werde, so muss das \pm aus diesem verschwinden. Dadurch verlieren wir die untere Hälfte des Kreises.

Verschiebt man nun diesen Halbkreis so, dass Nullstellen von y den Schnittpunkten der Sekante in der Distanz zueinander gleich sind, so bildet sich folgende Funktion:

$$a_o(x) = \sqrt{r^2 - x^2} + h - r$$

Allerdings muss beachtet werden, dass für h folgender Definitionsbereich gelten muss.

$$D_1:0\leq h\leq r$$

Beschreiben des Flächeninhaltes der kleineren Fläche

Da $a_o(x) = \sqrt{r^2 - x^2} + h - r$ gültig für den Flächeninhalt ist, und die Fläche der x-Achse identisch ist wie beim Kreis, so müssen die Nullstellen gefunden werden.

$$egin{aligned} 0 &= \sqrt{r^2 - x^2} + h - r & | + r - h \ r - h &= \sqrt{r^2 - x^2} & | ()^2 \ r^2 - x^2 &= (r - h)^2 \ r^2 - x^2 &= r^2 - 2rh + h^2 & | - r^2 \ - x^2 &= -2rh + h^2 & | \cdot (-1) \ x^2 &= 2rh - h^2 & | \sqrt{ \ x_{l\,r} &= \mp \sqrt{2rh - h^2} \ } \end{aligned}$$

Mit diesem Ausdruck für Nullstellen kann nun der Flächeninhalt der Funktion gebildet werden. Es gilt:

$$A(x) = \Big| \int_{x_l}^{x_r} a_o(x) dx \Big|$$

Berechnung des Flächeninhaltes

Durch A(x) wird der Flächeninhalt dargestellt.

$$egin{aligned} A_o(x) &= \Big| \int_{x_l}^{x_r} a_o(x) dx \Big| \ &= \Big| \int_{x_l}^{x_r} \sqrt{r^2 - x^2} + h - r \ dx \Big| \ &= \Big| \int_{x_l}^{x_r} \sqrt{d^2 - x^2} \ dx + \int_{x_l}^{x_r} h \ dx + \int_{x_l}^{x_r} - r \ dx \Big| \end{aligned}$$

Weil die Funktion $a_o(x)$ eine y-Achsen Symmetrie besitzt, so kann eine der Integralgrenzen auf 0 gesetzt werden. Zusätzlich muss das Integral darauf mit 2 multipliziert werden, da das Intervall davor um die hälfte kleiner gemacht wurde.

$$\begin{split} &A_{o}(x) = 2 \left| \int_{0}^{x_{r}} a_{o}(x) dx \right| \\ &= 2 \cdot \left| \int_{0}^{x_{r}} \sqrt{r^{2} - x^{2}} \ dx + \int_{0}^{x_{r}} h \ dx + \int_{0}^{x_{r}} - r \ dx \right| \\ &= 2 \cdot \left| \left[\frac{1}{2} \cdot \left(x \cdot \sqrt{r^{2} - x^{2}} + r^{2} \cdot \sin^{-1} \left(\frac{x}{r} \right) \cdot \operatorname{sgn}(r) \right) \right]_{0}^{x_{r}} + \left[hx \right]_{0}^{x_{r}} + \left[-rx \right]_{0}^{x_{r}} \right| \\ &= 2 \cdot \left| \frac{1}{2} \cdot \left(\sqrt{2rh - h^{2}} \cdot \sqrt{r^{2} - \sqrt{2rh - h^{2}^{2}}} + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \cdot \operatorname{sgn}(r) \right) - \frac{1}{2} \cdot \left(0 \cdot \sqrt{r^{2} - 0^{2}} + r^{2} \cdot \sin^{-1} \left(\frac{0}{r} \right) \cdot \operatorname{sgn}(r) \right) + \left(h \cdot \sqrt{2rh - h^{2}} - h \cdot 0 \right) + \left(-r \cdot \sqrt{2rh - h^{2}} - (-r \cdot 0) \right) \right| \\ &= 2 \cdot \left| \frac{1}{2} \cdot \left(\sqrt{2rh - h^{2}} \cdot \sqrt{r^{2} - \sqrt{2rh - h^{2}^{2}}} + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \cdot \operatorname{sgn}(r) \right) + h \cdot \sqrt{2rh - h^{2}} \cdot r \cdot \sqrt{2rh - h^{2}} \right| \\ &= 2 \cdot \left| \frac{1}{2} \cdot \left(\sqrt{2rh - h^{2}} \cdot \sqrt{r^{2} - 2rh + h^{2}} + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \cdot \operatorname{sgn}(r) \right) + \sqrt{2rh - h^{2}} \cdot (h - r) \right| \\ &= \left| \sqrt{2rh - h^{2}} \cdot (r - h) + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) + 2 \cdot \sqrt{2rh - h^{2}} \cdot (h - r) \right| \\ &= \left| \sqrt{2rh - h^{2}} \cdot \left((r - h) + 2(h - r) \right) + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \right| \\ &= \left| \sqrt{2rh - h^{2}} \cdot (h - r) + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \right| \\ &= \left| \sqrt{2rh - h^{2}} \cdot (h - r) + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \right| \\ &= \left| \sqrt{2rh - h^{2}} \cdot (h - r) + r^{2} \cdot \sin^{-1} \left(\frac{\sqrt{2rh - h^{2}}}{r} \right) \right| \end{aligned}$$

Diese Funktion unter Abhängigkeit von h gilt nur, insofern D_1 erfüllt, und r>0 ist.

Der Betrag kann zusätzlich ebenfalls entfernt werden, da die Funktion in dem Intervall in dem integriert wird immer ≥ 0 ist.

Wenn man einen Kreis laut der Formel in der hälfte teilt, also h=r ist, so fällt folgendes auf:

$$egin{aligned} A_o(h) &= \left| \sqrt{r^2 - (h-r)^2} \cdot (h-r) + r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (h-r)^2}}{r}
ight)
ight| \ A_o(r) &= \left| \sqrt{r^2 - (r-r)^2} \cdot (r-r) + r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (r-r)^2}}{r}
ight)
ight| \ &= \left| \sqrt{r^2 - (0)^2} \cdot (0) + r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (0)^2}}{r}
ight)
ight| \ &= \left| \sqrt{r^2} \cdot 0 + r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2}}{r}
ight)
ight| \ &= \left| r^2 \cdot \sin^{-1}\left(1
ight)
ight| \ &= r^2 \cdot rac{\pi}{2} = 0, 5 \cdot (\pi r^2) \Rightarrow 0, 5 \cdot A_g \end{aligned}$$

Verbindungen von $A_o(h)$

Da $A_o(h)$ den Flächeninhalt des kleineren Segments beschreibt, und dieser von der Gesamtfläche abgezogen wird, so kann man folgenden Schluss ziehen:

$$A_{o+u} = A_o(h) + A_u$$

 A_{o+u} ist hier die Gesamtfläche des Kreises dessen Teilabschnitt getrennt wird. A_u ist die untere Fläche nach der Teilung.

Da die Gesamtfläche von A_{o+u} mit $A_{o+u}=\pi\cdot r^2$ beschrieben werden kann, so kann folglich der Flächeninhalt der unteren Fläche ausgedrückt werden:

$$A_u = A_{o+u} - A_o(h) \ A_u = \pi \cdot r^2 - A_o(h)$$

Bildung von $A_g(h)$

Da in A_o ein Definitionsbereich D_1 gegeben ist, so werde ich versuchen eine zusammengesetzte Funktion zu finden, welche diesen Bereich erweitert, damit anstelle des halben Kreises, der ganze von h getrennt werden kann.

Da es sich bei der Form um einen Kreis handelt, so kann ein größer abgeschnittenes Stück von dem Kreis mit h>r als das Anschneiden von einem kleinerem Stück gesehen werden.

Wenn h=r gilt ist, wie zuvor gezeigt, die hälfte des Kreises auf beiden Seiten getrennt.

Folglich muss wegen der Symmetrie ab der hälfte eine Punktsymmetrie in der Funktion am Ende von D_1 vorliegen. Diese Symmetrie führt dazu, dass bei 2r die Fläche nun mit der neuen Erweiterung auf πr^2 steigt.

Bilden der "halben" Punktsymmetrie an dem oberen Ende von D_1

Anstelle eine Punktsymmetrie an dem Punkt $P\left(r\mid 0,5\pi r^2\right)$ durch den folgenden Ausdruck an A_o zu testen, werde ich die entstehende Bedingung mit dem Punkt $(a\mid b)$ durch

dazu benutzen mir die andere Funktion zu erstellen.

$$egin{aligned} A_u(h) &= -A_o(2r-h) + \pi r^2 \ &= -\sqrt{r^2 - ((2r-h) - r)^2} \cdot ((2r-h) - r) - r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - ((2r-h) - r)^2}}{r}
ight) + \pi r^2 \ &= -\sqrt{r^2 - (r-h)^2} \cdot (r-h) - r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (r-h)^2}}{r}
ight) + \pi r^2 \ A_u(h) &= \sqrt{r^2 - (h-r)^2} \cdot (h-r) - r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (h-r)^2}}{r}
ight) + \pi r^2 \end{aligned}$$

Zu bedenken von dieser neuen Funktion ist jetzt, dass der Definitionsbereich dadurch ebenfalls geändert wurde. Nun ist dieser Definitionsbereich der folgende:

$$D_2: r \leq h \leq 2r$$

Bilden der bedingten Funktion

Nun sind die für mich wichtigen Funktionshälften fertig definiert und müssen nun vereint werden. Als Resultat erhält man folgende Funktion:

$$egin{aligned} A_g(h) &= egin{cases} A_o(h) & ext{wenn } D_1 \ A_u(h) & ext{wenn } D_2 \ \end{cases} \ A_g(h) &= egin{cases} \sqrt{r^2 - (h-r)^2} \cdot (h-r) + r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (h-r)^2}}{r}
ight) & ext{wenn } 0 \leq h \leq r \ \sqrt{r^2 - (h-r)^2} \cdot (h-r) - r^2 \cdot \sin^{-1}\left(rac{\sqrt{r^2 - (h-r)^2}}{r}
ight) + \pi r^2 & ext{wenn } r \leq h \leq 2r \end{aligned}$$

Da neben h auch r verändert betrachtet werden kann, so kann A_g durch $A_g(h,r)$ ebenfalls ausgedrückt werden. Die Bedingungen bleiben hierbei allerdings bestehen.

Schneiden von Kugeln in \mathbb{R}^3

Versuchen werde ich hier einen funktionalen Zusammenhang des folgenden Sachverhaltes zu ermitteln:

Wenn man eine Kugel mit dem Radius r an einer Ebene mit abstand h zu einer parallelen Tangierenden Ebene schneidet, wie wird der Flächeninhalt A verändert.

Beschreibung in Bezügen

Erneut werde ich das Kugelsegment mit einer Funktion darstellen, mit welchem das Volumen ermittelt werden kann.

Eine Kugel kann durch $x^2+y^2+z^2=r^2$ dargestellt werden. Vereinfacht man dies nun auf y, so gilt für den Kreis $z=\pm\sqrt{r^2-x^2-y^2}$

Da ich mich von Volumina in \mathbb{R}^3 direkt aus diesem Auszug fernhalten möchte, so werde ich die Bezugsfunktion $a_o(x)=\sqrt{r^2-x^2}+h-r$ für die Segmentgröße eines Kreises als Rotationskörper um die y-Achse verwenden um somit das Volumen der getrennten Kugel auszudrücken.

Wenn $a_o(x)=\sqrt{r^2-x^2}+h-r$ die um die y-Achse gedrehte Funktion ist, so werde ich diese zu $a_o^{-1}(x)$ umwandeln, um diese anschließend um die x-Achse rotieren zu lassen um einfacher mit dieser zu arbeiten.

$$egin{aligned} a_o(x) &= \sqrt{r^2 - x^2} + h - r \ y &= \sqrt{r^2 - x^2} + h - r \ y - h + r &= \sqrt{r^2 - x^2} &|()^2 \ (y - h + r)^2 &= r^2 - x^2 &|-r^2 \ -r^2 + (y - h + r)^2 &= -x^2 &|\cdot (-1) \ r^2 - (y - h + r)^2 &= x^2 &|\sqrt{r^2 - (y - h + r)^2} \ &\downarrow \ a_o^{-1}(x) &= \sqrt{r^2 - (x - h + r)^2} \end{aligned}$$

Die negative Version des Wurzelterms entfällt hier, da dieser für weitere Arbeiten unwichtig ist.

Bilden der Rotationskörpervolumina

Die Darstellung von generellen Rotationskörpern ist die folgende:

$$V=\pi\cdot\int_a^b f(x)^2\ dx$$

Die Grenzwerte unseres Integrals liegen hierbei bei a=0 und b=h, da das von a_o existente Maximum auf der y-Achse liegt und dabei die höhe h hat. $a_o(0)=h$. Durch die Umkehrfunktion ist dieser Punkt nun eine Nullstelle, welche als Intervallgrenzen gewertet werden kann. $a_o^{-1}(h)=0$. Die Nullstelle welche zuvor bei $x_{l,r}=\sqrt{2rh-h^2}$ lag, ist nun bei der Stelle $a_o^{-1}(0)$. Dadurch werden die Grenzen für das Integral klar.

$$\begin{split} V &= \pi \cdot \int_a^b \left(a_o^{-1}(x) \right)^2 dx \\ &= \pi \cdot \int_0^h \left(\sqrt{r^2 - (x - h + r)^2} \right)^2 dx \\ &= \pi \cdot \int_0^h r^2 - (x - h + r)^2 dx \\ &= \pi \cdot \int_0^h r^2 - \left(x^2 + h^2 + r^2 - 2hx + 2rx - 2hr \right) dx \\ &= \pi \cdot \int_0^h r^2 - x^2 - h^2 - r^2 + 2hx - 2rx + 2hr dx \\ &= \pi \cdot \int_0^h -x^2 - h^2 + 2hx - 2rx + 2hr dx \\ &= \pi \cdot \left(\int_0^h -x^2 dx \right. + \int_0^h -h^2 dx \right. + \int_0^h 2hx dx \right. \\ &= \pi \cdot \left(\left[-\frac{1}{3}x^3 \right]_0^h + \left[-h^2x \right]_0^h + \left[hx^2 \right]_0^h + \left[-rx^2 \right]_0^h + \left[2hrx \right]_0^h \right) \\ &= \pi \cdot \left(\left(-\frac{1}{3}h^3 - \left(-\frac{1}{3}0^3 \right) \right) + \left(-h^2h - \left(-h^2 \cdot 0 \right) \right) + \left(h \cdot h^2 - \left(h \cdot 0^2 \right) \right) + \left(-rh^2 - \left(-r0^2 \right) \right) + \left(2hrh - \left(2hr0 \right) \right) \right) \\ &= \pi \cdot \left(\left(-\frac{1}{3}h^3 - h^3 + h^3 - h^2r + 2h^2r \right) \right) \\ &= \pi \cdot \left(\left(-\frac{1}{3}h^3 - h^3 + \pi h^2r \right) + \left(-\frac{h^2}{3}h^3 - h^3 + \pi h^2r \right) \end{split}$$

Für V gilt wie bei dem Kreis der gleiche Definitionsbereich. Allerdings da dieser durch eine Polynomfunkion gebildet ist, so ist der Definitionsbereich hier $D_3:0\leq h\leq 2r$.

Vergleich der Funktion

 $V_g(h)$ stellt das Volumen des zunächst kleineren Segments dar, falls die Ebene der x_1,x_2 Ebene zuzutragen ist und die Kugel sich unter ihr mit h o 2r der x_3 Achse steigt nähert.

Folglich ist bei h=2r die komplette Kugel über oder in der Ebene, wodurch sich die allgemeine Funktion für Volumina mit Kugeln zeigen sollte:

$$egin{aligned} V_K(r) &= rac{4}{3} \cdot \pi \cdot r^3 \ V_g(h) &= -rac{\pi}{3} h^3 + \pi h^2 r \ V_g(2r) &= -rac{\pi}{3} (2r)^3 + \pi (2r)^2 r \ &= -rac{\pi}{3} 2^3 r^3 + \pi 2^2 r^2 r \ &= -rac{8\pi}{3} r^3 + 4\pi r^3 \ &= \left(4\pi - rac{8\pi}{3}
ight) \cdot r^3 \ &= \left(rac{12\pi - 8\pi}{3}
ight) \cdot r^3 \ &= \left(rac{4\pi}{3}
ight) \cdot r^3 \ &= rac{4}{3} \cdot \pi \cdot r^3 \end{aligned}$$

In diesem Fall ist $V_k(r)\equiv V_g(2r).$ Als einen weiteren Test werde ich die Kugel nun mittels meinem Zusammenhang diese halbieren. Erneut sollte eine Kongruenz ersichtlich sein.

$$V_K(r) = rac{1}{2} \cdot rac{4}{3} \cdot \pi \cdot r^3$$
 $V_g(h) = -rac{\pi}{3}h^3 + \pi h^2 r$
 $V_g(r) = -rac{\pi}{3}(r)^3 + \pi (r)^2 r$
 $= -rac{\pi}{3}r^3 + \pi r^2 r$
 $= -rac{\pi}{3}r^3 + \pi r^3$
 $= \left(1 - rac{1}{3}\right) \cdot \pi r^3$
 $= \left(rac{3-1}{3}\right) \cdot \pi r^3$
 $= \left(rac{2}{3}\right) \cdot \pi r^3$
 $= \left(rac{1}{2} \cdot rac{4}{3}\right) \cdot \pi r^3$
 $= rac{1}{2} \cdot rac{4}{3} \cdot \pi \cdot r^3$

Hier in diesem Fall gilt $rac{1}{2}\cdot V_K(r)\equiv V_g(rac{1}{2}\cdot 2r)$.

Allerdings gilt nicht durch diesen Aufschrieb, dass $rac{1}{n}\cdot V_K(r)\equiv V_g\left(rac{1}{n}\cdot 2r
ight)$. Diese These werde ich nun klären:

$$\begin{split} \frac{1}{n} \cdot V_K(r) &= V_g \left(\frac{1}{n} \cdot 2r\right) \\ \frac{1}{n} \cdot \frac{4}{3} \cdot \pi \cdot r^3 &\equiv -\frac{\pi}{3} \left(\frac{1}{n} \cdot 2r\right)^3 + \pi \left(\frac{1}{n} \cdot 2r\right)^2 r \\ \frac{4}{3n} \cdot \pi r^3 &= -\frac{\pi}{3} \left(\frac{1}{n^3} \cdot 2^3 r^3\right) + \pi \left(\frac{1}{n^2} \cdot 2^2 r^2\right) r \\ \frac{4}{3n} \cdot \pi r^3 &= -\frac{\pi}{3} \cdot \frac{1}{n^3} \cdot 2^3 r^3 + \pi \frac{1}{n^2} \cdot 2^2 r^2 r \\ \frac{4}{3n} \cdot \pi r^3 &= -\frac{8}{3n^3} \cdot \pi r^3 + \frac{4}{n^2} \cdot \pi r^3 \\ \frac{4}{3n} \cdot \pi r^3 &= \left(\frac{4}{n^2} - \frac{8}{3n^3}\right) \cdot \pi r^3 \\ \frac{4}{3n} \cdot \pi r^3 &= \left(\frac{12n^3 - 8n^2}{3n^5}\right) \cdot \pi r^3 \\ \frac{4}{3n} &= \frac{12n^3 - 8n^2}{3n^5} \\ \frac{4}{3n} &= \frac{n^2 (12n - 8)}{3n^5} \\ \frac{4}{3n} &= \frac{n^2 (12n - 8)}{3n^5} \\ \frac{4}{3n} &= \frac{12n - 8}{3n^3} &| \cdot 3n^3 \right. \\ \frac{12n^3}{3n} &= 12n - 8 \\ 4n^2 &= 12n - 8 \\ 0 &= -4n^2 + 12n - 8 \\ n_{1,2} &= 1, 5 \pm 0, 5 \end{split}$$

Weil $|\mathbb{L}|
eq \infty$, so sind die beiden Aussagen nicht identisch.