In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
 df

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
0	2001- 08-01 01:00:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000
2	2001- 08-01 01:00:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001
3	2001- 08-01 01:00:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002
4	2001- 08-01 01:00:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998
						•••				
217867	2001- 04-01 00:00:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000
217869	2001- 04-01 00:00:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000

217872 rows × 16 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217872 entries, 0 to 217871
Data columns (total 16 columns):

Data	CO Culli13	(total 10 Columns)	/ -
#	Column	Non-Null Count	Dtype
0	date	217872 non-null	object
1	BEN	70389 non-null	float64
2	CO	216341 non-null	float64
3	EBE	57752 non-null	float64
4	MXY	42753 non-null	float64
5	NMHC	85719 non-null	float64
6	N0_2	216331 non-null	float64
7	N0x	216318 non-null	float64
8	0XY	42856 non-null	float64
9	0_3	216514 non-null	float64
10	PM10	207776 non-null	float64
11	PXY	42845 non-null	float64
12	S0_2	216403 non-null	float64
13	TCH	85797 non-null	float64
14	T0L	70196 non-null	float64
15	station	217872 non-null	int64
dtype	es: float	64(14), int64(1),	object(1)
memo	ry usage:	26.6+ MB	

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.100000	0.07	56.250000	75.169998	2.11	42.
5	2001- 08-01 01:00:00	2.11	0.63	2.48	5.940000	0.05	66.260002	118.099998	3.15	33.!
21	2001- 08-01 01:00:00	0.80	0.43	0.71	1.200000	0.10	27.190001	29.700001	0.76	56.
23	2001- 08-01 01:00:00	1.29	0.34	1.41	3.090000	0.07	40.750000	51.570000	1.70	51.
25	2001- 08-01 02:00:00	0.87	0.06	0.88	2.410000	0.01	29.709999	31.440001	1.20	56.
217829	2001- 03-31 23:00:00	11.76	4.48	7.71	17.219999	0.89	103.900002	548.500000	7.62	9.(
217847	2001- 03-31 23:00:00	9.79	2.65	7.59	9.730000	0.46	91.320000	315.899994	3.75	6.(
217849	2001- 04-01 00:00:00	5.86	1.22	5.66	13.710000	0.25	64.370003	218.300003	6.46	7.4
217853	2001- 04-01 00:00:00	14.47	1.83	11.39	26.059999	0.33	84.230003	259.200012	11.39	5.4
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.040000	0.18	76.809998	206.300003	5.20	8.(

29669 rows × 16 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fafc990f310>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

```
Out[10]: v LinearRegression LinearRegression()
```

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fafc99c7310>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.28
                  988
          1.32
                  938
          1.29
                  908
          1.33
                  908
          1.27
                  905
          4.51
                     1
          3.88
                     1
          4.13
                     1
          3.22
                     1
          3.57
          Name: TCH, Length: 269, dtype: int64
```

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 17204

2.0 12465

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[15]: v Lasso
Lasso(alpha=5)

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fafb89eb370>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[18]:

▼ Ridge

Ridge(alpha=1)

In [19]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[19]: <matplotlib.collections.PathCollection at 0x7fafb8a54e80>

In [20]: rrs=rr.score(x_test,y_test)

ElasticNet

0.802413483222234

Out [24]: 0.7554666374129868

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 17204
                 12465
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7faf98106d10>
          Low
                High
                                                                       Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[38]: [Text(0.49318181818181817, 0.9285714285714286, 'NOx <= 167.25 \ngin
         i = 0.488 \setminus samples = 13134 \setminus samples = [12003, 8765] \setminus samples = Yes'),
          Text(0.239772727272728, 0.7857142857142857, 'PXY <= 2.165\ngini
         = 0.303\nsamples = 8414\nvalue = [10834, 2474]\nclass = Yes'),
          Text(0.13863636363636364, 0.6428571428571429, 'CO <= 0.785 
         = 0.214 \times = 5776 \times = [8000, 1112] \times = Yes'),
          Text(0.07272727272727272, 0.5, 'NMHC <= 0.155\ngini = 0.14\nsampl
         es = 5176\nvalue = [7555, 618]\nclass = Yes'),
          Text(0.03636363636363636, 0.35714285714285715, 'CO <= 0.635\ngini
         = 0.098 \times = 4890 \times = [7342, 398] \times = Yes'),
          Text(0.0181818181818181818, 0.21428571428571427, '0 3 \le 8.745 
         i = 0.086 \setminus samples = 4276 \setminus samples = [6459, 305] \setminus samples = Yes'),
          Text(0.00909090909090909, 0.07142857142857142, 'gini = 0.47 \nsamp
         les = 141\nvalue = [129, 78]\nclass = Yes'),
          Text(0.02727272727272727, 0.07142857142857142, 'gini = 0.067 \nsam
         ples = 4135\nvalue = [6330, 227]\nclass = Yes'),
          ni = 0.172 \setminus samples = 614 \setminus samples = [883, 93] \setminus samples = Yes'),
          Text(0.045454545454545456, 0.07142857142857142, 'gini = 0.487 \nsa
         print("Linear:",lis)
print("Lasso:",las)
In [39]:
         print("Ridge:", rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
```

Linear: 0.8024076584799325 Lasso: 0.7023527090369962 Ridge: 0.802413483222234

ElasticNet: 0.7942519438100765 Logistic: 0.5820694304010785 Random Forest: 0.9120762711864407

Best Model is Random Forest

In [41]: df2=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_pe
df2

Out[41]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.9
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.9
2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.4
3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42. ⁻
4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.
217291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.7
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.6
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.2

217296 rows × 16 columns

In [42]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 217296 entries, 0 to 217295 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	217296 non-null	object
1	BEN	66747 non-null	float64
2	CO	216637 non-null	float64
3	EBE	58547 non-null	float64
4	MXY	41255 non-null	float64
5	NMHC	87045 non-null	float64
6	N0_2	216439 non-null	float64
7	N0x	216439 non-null	float64
8	0XY	41314 non-null	float64
9	0_3	216726 non-null	float64
10	PM10	209113 non-null	float64
11	PXY	41256 non-null	float64
12	S0 <u>2</u>	216507 non-null	float64
13	TCH	87115 non-null	float64
14	T0L	66619 non-null	float64
15	station	217296 non-null	int64
dtvp	es: float	64(14). int64(1).	obiect(1)

In [43]: df3=df2.dropna()
df3

Out[43]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.9
5	2002- 04-01 01:00:00	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.37	27.4
22	2002- 04-01 01:00:00	2.02	0.80	1.57	3.66	0.15	93.860001	101.300003	1.77	6.99	33.0
24	2002- 04-01 01:00:00	3.02	1.04	2.43	5.38	0.21	103.699997	195.399994	2.15	14.04	37.3
26	2002- 04-01 02:00:00	2.02	0.53	2.24	5.97	0.12	91.599998	136.199997	2.55	6.76	19.9
						•••					
217269	2002- 10-31 23:00:00	1.24	0.28	1.26	2.64	0.11	60.080002	64.160004	1.23	15.64	13.9
217271	2002- 10-31 23:00:00	3.13	1.30	2.93	7.90	0.28	84.779999	184.000000	2.23	7.94	32.5
217273	2002- 11-01 00:00:00	2.50	0.97	3.63	9.95	0.19	61.759998	132.100006	4.46	5.45	29.5
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.6
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.2

32381 rows × 16 columns

In [44]: df3=df3.drop(["date"],axis=1)

In [45]: sns.heatmap(df3.corr())

Out[45]: <Axes: >


```
In [46]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [47]: li=LinearRegression()
li.fit(x_train,y_train)

Out[47]:

▼ LinearRegression

LinearRegression()

```
In [48]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[48]: <matplotlib.collections.PathCollection at 0x7fafd9241c30>


```
In [49]: lis=li.score(x_test,y_test)
```

```
In [50]: df3["TCH"].value_counts()
```

```
Out[50]: 1.29
                  1318
          1.30
                  1253
          1.27
                  1244
          1.28
                  1232
          1.31
                  1187
          3.68
                      1
          3.48
                      1
          3.41
                      1
          3.01
          2.51
          Name: TCH, Length: 232, dtype: int64
```

```
In [51]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[51]: 1.0 21925 2.0 10456

Name: TCH, dtype: int64

Lasso

```
In [52]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

In [53]: prediction1=la.predict(x_test)
 plt.scatter(y_test,prediction1)

Out[53]: <matplotlib.collections.PathCollection at 0x7fafd9293b50>

In [54]: las=la.score(x_test,y_test)

Ridge

In [55]: rr=Ridge(alpha=1)
 rr.fit(x_train,y_train)

Out[55]:

▼ Ridge

Ridge(alpha=1)

```
In [56]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[56]: <matplotlib.collections.PathCollection at 0x7fafd92e09d0>

In [57]: rrs=rr.score(x_test,y_test)

ElasticNet

ElasticNet()

```
In [58]: en=ElasticNet()
en.fit(x_train,y_train)

Out[58]: v ElasticNet
```

```
In [59]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[59]: <matplotlib.collections.PathCollection at 0x7fafd95d52d0>


```
In [60]: ens=en.score(x_test,y_test)
```

0.6823070107091946

Out[61]: 0.7220782029510737

Logistic

```
In [62]: g={"TCH":{1.0:"Low",2.0:"High"}}
    df3=df3.replace(g)
    df3["TCH"].value_counts()
```

Out[62]: Low 21925 High 10456

Name: TCH, dtype: int64

In [65]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)

Out[65]: <matplotlib.collections.PathCollection at 0x7fafd9698880>

In [66]: los=lo.score(x_test,y_test)

Random Forest

In [67]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

```
In [68]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(q1)
In [69]: |x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [70]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [70]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [71]:
         parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [72]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid_search.fit(x_train,y_train)
Out[72]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [73]: | rfcs=grid_search.best_score_
In [74]: | rfc_best=grid_search.best_estimator_
```

```
In [75]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[75]: [Text(0.50260416666666666, 0.9285714285714286, 'NMHC <= 0.205\ngini</pre>
         = 0.437 \times = 14311 \times = [15351, 7315] \times = Yes'),
          Text(0.2760416666666667, 0.7857142857142857, '0_3 \le 16.315 
         = 0.27 \times = 10945 \times = 10945 \times = [14572, 2794] \times = Yes'),
          Text(0.1328125, 0.6428571428571429, 'BEN <= 1.835 \setminus gini = 0.481 \setminus n
         samples = 2740\nvalue = [2606, 1764]\nclass = Yes'),
          Text(0.05729166666666664, 0.5, '0_3 \le 4.615 \eta ini = 0.407 \eta samp
         les = 989\nvalue = [1140, 453]\nclass = Yes'),
          Text(0.03125, 0.35714285714285715, 'EBE <= 1.455 \setminus gini = 0.489 \setminus s
         amples = 93\nvalue = [59, 79]\nclass = No'),
          Text(0.020833333333333333, 0.21428571428571427, 'NOx <= 70.655 \ng
         ini = 0.492 \setminus samples = 64 \setminus samples = [54, 42] \setminus samples = Yes'),
          mples = 32\nvalue = [30, 12]\nclass = Yes'),
          Text(0.03125, 0.07142857142857142, 'gini = 0.494\nsamples = 32\nv
         alue = [24, 30] \setminus nclass = No'),
          Text(0.04166666666666664, 0.21428571428571427, 'gini = 0.21 \nsam
         ples = 29\nvalue = [5, 37]\nclass = No'),
          print("Linear:", lis)
print("Lasso:", las)
In [76]:
         print("Ridge:", rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
```

Linear: 0.6822690751065204 Lasso: 0.5096590774151815 Ridge: 0.6823070107091946 ElasticNet: 0.5625064551260017

Logistic: 0.6779207411219763 Random Forest: 0.8961881231800936

Best model is Random Forest