3.1 State the Taylor's theorem for a *n*-times differentiable function f.

3.2 Approximate $\cos 0.1$ by using the second order Taylor expansion and estimate the error in the

3.3 Let $f \in C^2(\mathbb{R})$, prove that f achieves a local maximum at x = a if

$$f'(a) = 0$$
 and $f''(a) < 0$.

Solution:

3.1 Let $f:(a,b)\to\mathbb{R}$ be n-times differentiable, then $\forall x_0,x\in(a,b),\ \exists \xi$ between x_0 and x such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1} + \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n.$$

3.2 For x > 0, expand $\cos x$ at point x = 0, we have

os
$$x$$
 at point $x = 0$, we have $\cos x = 0$, where $\cos x = 0$, we have $\cos x = 0$, we have $\cos x = 0$, where $\cos x = 0$, we have $\cos x = 0$, where $\cos x = 0$, we have $\cos x = 0$, where $\cos x = 0$, we have $\cos x = 0$, where $\cos x = 0$, where $\cos x = 0$, where $\cos x = 0$, we have $\cos x = 0$, and $\cos x = 0$, where $\cos x = 0$, we have $\cos x = 0$, and $\cos x = 0$, where $\cos x = 0$, whe

Hence the second order approximation of cos 0.1 is 0.995. The error can be estimate as

$$\left|\frac{\cos\xi}{4!}0.1^4\right| \le \frac{1}{4!}0.1^4 \approx 4.167 \times 10^{-6}.$$

3.3 We have Taylor expansion at x = a

for expansion at
$$x = a$$

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(\xi)}{2}(x - a)^2 = f(a) + \frac{f''(\xi)}{2}(x - a)^2,$$

for some ξ between x and a.

Since $f \in C^2(\mathbb{R})$, $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall |x - a| < \delta$, $|f''(x) - f''(a)| < \epsilon$. Choose $\epsilon = \frac{|f''(a)|}{2}$, then when $|x - a| < \delta$, we have $|f''(x) - f''(a)| < \frac{|f''(a)|}{2}$, which implies $f''(x) < \frac{f''(a)}{2} < 0$. So $\forall |x-a| < \delta$, $\exists \xi$ between x and a such that

$$f(x) - f(a) = \frac{f''(\xi)}{2}(x - a)^2 < 0.$$

Therefore, f achieves a local maximum at x = a.