Algebra

June 17, 2017

1 Commutative Algebra

1.1 ED, PID and UFD (week 9)

We shall consider R to be an integral domain below.

Def 1. A function $N: R \to \mathbb{N}$ with N(0) = 0 is called a norm on R.

Def 2. R is called a Euclidean domain if exists a norm N on R satisfying

$$\forall a, b \in R, \exists q, r \in R \text{ s.t. } a = qb + r \text{ with } r = 0 \text{ or } N(r) < N(b)$$

Eg 1.1.1.

- \mathbb{Z} is a ED with N(n) = |n|.
- K[x] is a ED with $N(f) = \deg f, \forall f \in K[x]$.

Def 3. A_d is defined to be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{d})$ with $d \neq 1$ and d is square-free. That is,

$$A_d \triangleq \{\alpha \in \mathbb{Q}(\sqrt{d}) \mid \alpha \text{ is integral over } \mathbb{Z}\}\$$

Theorem 1.

• If $d \equiv 1 \pmod{4}$, then

$$A_d = \left\{ a + b \frac{1 + \sqrt{d}}{2} : a, b \in \mathbb{Z} \right\}$$

• Else, $d \equiv 2, 3 \pmod{4}$, then

$$A_d = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}\$$

Proof. Let $\alpha = p + q\sqrt{d} \in A_d$ for $p, q \in \mathbb{Q}$ with $q \neq 0$. We have $\alpha - p = q\sqrt{d}$, then $(\alpha - p)^2 = q^2d$ and thus $\alpha^2 - 2p\alpha + (p^2 - q^2d) = 0$. Let $g(x) \triangleq x^2 - 2px + (p^2 - q^2d)$. Assume $f(x) \in \mathbb{Z}[x]$ with f monic and $f(\alpha) = 0$, then we could write f(x) = q(x)g(x) + (ax + b). Since α is not rational, $a\alpha + b = 0 \implies a = b = 0$, so f(x) = q(x)g(x) in $\mathbb{Q}[x]$. By gauss lemma, $g(x) \in \mathbb{Z}[x]$, so $2p \in \mathbb{Z}$ and $p^2 - q^2d \in \mathbb{Z}$.

If 2p is even, then $p \in \mathbb{Z}$, and $p^2 - q^2 d \in \mathbb{Z}$ implies q is also an integer since d is square free.

If 2p is odd, say 2p=2m+1, then $(2p)^2\equiv (2m+1)^2\equiv 1\pmod 4$. Also, $4(p^2-q^2d)\equiv 0\pmod 4$, so $4q^2d\equiv 4p^2\equiv 1\pmod 4$. Since d is square free, so $4\nmid d$, thus q has to be of the form q=(2n+1)/2. Plug in the equation we get $d\equiv 1\pmod 4$. Thus in this case, p,q are half integer and $d\equiv 1\pmod 4$.

Theorem 2. A_d is a ED if d = 2, 3, 5, -1, -2, -3, -7, -11. Hence A_d is also PID and UFD for these value.

Proof. Let $N'(p+q\sqrt{d})=(p+q\sqrt{d})(p-q\sqrt{d})=p^2-q^2d$. Define $N(\alpha)\triangleq |N'(\alpha)|$ which is positive since $p^2-q^2d=0\iff p=q=0$. Notice also N is multiplicative.

Now, for $\alpha, \beta \in A_d$, write $\alpha/\beta = x + y\sqrt{d}$. If we could find $\lambda = a + b\sqrt{d}$ such that $|\alpha/\beta - \lambda| < 1$, then $\alpha = \beta\lambda + \gamma$ with $N(\gamma) < N(\beta)$ which proves that A_d is an ED.

• d=2,3,-2,-1: Choose $a,b\in\mathbb{Z}$ such that $|x-a|,|y-b|\leq 1/2$. Then $N\triangleq N(\alpha/\beta-\lambda)=|(x-a)^2-(y-b)^2d|$.

- If
$$d = 2, 3$$
, then $N \le \max(|(x - a)^2|, |(y - b)^2 d|) \le \max(1/4, d/4) < 1$.
- If $d = -2, -1$, then $N \le |(x - a)^2| + |(y - b)^2 d| \le 1/4 + |d|/4 < 1$.

• d=5,-3,-7,-11: Similarly, but now $d\equiv 1\pmod 4$, so we could choose $\lambda=a+b(1+\sqrt{d})/2=(a+b/2)+b/2\sqrt{d}$. Thus let b be the one such that $|2y-b|\leq 1/2$, and then choose a so that $x-a-b/2\leq 1/2$. We have $N(\alpha/\beta-\lambda)=|(x-a-b/2)^2-d(y-b/2)^2|\leq 1/4+d/16<1$.

Eg 1.1.2. A_{-5} is not a ED.

Proof. Consider $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. Notice that $1+\sqrt{-5}$ is irreducible, since if $1+\sqrt{-5}=\alpha\beta$, then $6=N(1+\sqrt{-5})=N(\alpha)N(\beta)$. But this implies $a^2+5b^2=2$ or 3 which has no integer solution. Also $1+\sqrt{-5}\nmid 2,3$. Since if $(1+\sqrt{-5})\alpha=2$, then $N(1+\sqrt{-5})N(\alpha)=N(2)=4$, but $N(1+\sqrt{-5})=6$. Similarly $1+\sqrt{-5}\nmid 3$. So A_{-5} is not an UFD thus not an ED.

1.1.1 A_{-1} and A_{-3}

Def 4. If p is odd and $a \not\equiv 0 \pmod{p}$, then

- If $x^2 \equiv a \pmod{p}$ is solvable, then define $\left(\frac{a}{p}\right) = 1$.
- Else $x^2 \equiv a \pmod{p}$ is not solvable and define $\left(\frac{a}{p}\right) = -1$.

Prop 1.1.1.

- $a \equiv b \pmod{p} \implies \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- $\left(\frac{a}{p}\right) = a^{(p-1)/2}$:

Proof. Consider the sequence:

$$1 \longrightarrow (\mathbb{F}_p^{\times})^2 \longrightarrow \mathbb{F}_p^{\times} \stackrel{\varphi}{\longrightarrow} \{\pm 1\} \longrightarrow 1$$
$$y^2 \longmapsto y^2 = x \longmapsto (-1)^{(p-1)/2} \longmapsto 1$$

which is exact since $y^2 \mapsto y^2 \mapsto y^{2(p-1)/2} \equiv 1$. And since \mathbb{F}_p^{\times} is cyclic with even elements, $\left[\mathbb{F}_p^{\times}: (\mathbb{F}_p^{\times})^2\right] = 2$, and $(\mathbb{F}_p^{\times})^2 = \ker \varphi$.

- $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.
- Let $t_k \equiv ka \pmod{p}$ with $0 \le t_k < p$, for $1 \le k \le (p-1)/2$. Assume that $n = \#\{t_i \mid t_i > p/2\}$, then $\left(\frac{a}{p}\right) = (-1)^n$.

Proof. Define

$$|t_i| = \begin{cases} t_j & \text{If } 1 \le t_j < p/2 & (t_j \equiv |t_j|) \\ p - t_j & \text{If } p/2 < t_j < p & (t_j \equiv -|t_j|) \end{cases}$$

Notice that $|t_i|$ takes value between 1 and (p-1)/2, and $|ra| \equiv |sa| \pmod{p} \implies ra \equiv \pm sa \pmod{p} \implies r \equiv \pm s \pmod{p}$ since $\gcd(a,p) = 1$. So $|t_k|$ would have distinct value for $1 \le k \le (p-1)/2$. Thus

$$\prod t_k \equiv \frac{p-1}{2}! a^{(p-1)/2} \equiv (-1)^n \frac{p-1}{2}! \implies a^{(p-1)/2} \equiv (-1)^n$$

• If p, q are odd primes, then we have:

$$\left(\frac{q}{p}\right) = (-1)^{\left(\sum_{k=1}^{(p-1)/2} \left\lfloor \frac{kq}{p} \right\rfloor\right)}$$

Proof. Write $kq = g_k p + t_k$ with $0 \le t_k < p$ consistent with the previous definition. Then we have $|kq/p| = g_k$, and

$$\begin{split} &\text{if } |t_k| = t_k & \rightsquigarrow qk = g_k p + |t_k| & \rightsquigarrow k \equiv g_k + |t_k| \pmod{2} \\ &\text{if } |t_k| = p - t_k & \rightsquigarrow qk = (g_k + 1)p - |t_k| & \leadsto k \equiv g_k + 1 + |t_k| \pmod{2} \end{split}$$

So

$$\sum_{i=1}^{(p-1)/2} k \equiv n + \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{qk}{p} \right\rfloor + \sum_{k=1}^{(p-1)/2} |t_k| \pmod{2}$$

As in the previous proof, $\sum k = \sum |t_k|$, so $n \equiv \sum \lfloor qk/p \rfloor \pmod{2}$, which proves the statement.

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$$

By above,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\sum_{k=1}^{(p-1)/2} \left\lfloor \frac{kq}{p} \right\rfloor\right)} (-1)^{\left(\sum_{k=1}^{(q-1)/2} \left\lfloor \frac{kp}{q} \right\rfloor\right)}$$

Which is the number of integer points in the rectangle:

And we know that there are $\frac{p-1}{2}\frac{q-1}{2}$ points in the rectangle.

Prop 1.1.2. • α is a unit $\iff N(\alpha) = 1$.

Proof. "
$$\Rightarrow$$
": If $\alpha\beta = 1$, $N(\alpha)N(\beta) = 1$ so $N(\alpha) = 1$.
" \Leftarrow ": Immediately by $\alpha\bar{\alpha} = N(\alpha) = 1$.

• If α is a prime in A_d , then $N(\alpha) = p$ or p^2 for some prime integer p. Also $N(\alpha) = p^2 \implies \alpha \sim p$.

Proof. $\alpha \bar{\alpha} = N(\alpha) = p_1 \cdots p_n$ where p_i are primes in \mathbb{Z} . Continue using the fact that "If α is a prime and $\alpha \mid xy$, then $\alpha \mid x$ or $\alpha \mid y$ ", we will get $\alpha \mid p_i$ for an i. Say $\alpha \beta = p_i$, then $\bar{\alpha} \bar{\beta} = \bar{p}_i = p_i$, so $N(\alpha)N(\beta) = p_i^2$ which means that $N(\alpha) = p_i$ or p_i^2 . Also, if $N(\alpha) = p_i^2$, then $N(\beta) = 1 \implies \beta$ is a unit .

By the proposition above we identify the unit in A_{-1} , A_{-3} .

- A_{-1} : $\pm 1, \pm i$.
- A_{-3} : $\pm 1, \pm \omega, \pm \omega^2$.

Now, notice that $2 = (1 + \sqrt{-1})(1 - \sqrt{-1})$, $3 = (1 - \omega)(1 - \omega^2)$, so 2, 3 are not prime in A_{-1}, A_{-3} respectively.

Let p be a prime in \mathbb{Z} .

• In A_{-1} :

$$\begin{array}{l} p \text{ is a prime in } \mathbb{Z}[\sqrt{-1}] \\ \iff \langle p \rangle \text{ is maximal ideal} \\ \iff \frac{\mathbb{Z}[\sqrt{-1}]}{\langle p \rangle} \cong \frac{\mathbb{Z}[x]}{\langle p, x^2 + 1 \rangle} \cong \frac{\mathbb{Z}[x]/\langle p \rangle}{\langle p, x^2 + 1 \rangle/\langle p \rangle} \cong \frac{\mathbb{F}_p[x]}{x^2 + 1} \text{ is a field} \\ \iff x^2 + 1 \text{ irreducible in } \mathbb{F}_p[x] \\ \iff x^2 \equiv -1 \pmod{p} \text{ is not solvable} \\ \iff \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} \neq 1 \\ \iff p \not\equiv 1 \pmod{4} \end{array}$$

So p is **not** a prime in $A_{-1} \iff p \equiv 1 \pmod{4}$.

• In A_{-3} : If a prime $p \neq 3$ in \mathbb{Z} is not a prime in $\mathbb{Z}[\omega]$, then it has a nontrivial factor $\alpha \mid p$. But $N(p) = p^2$, so we must have $N(\alpha) = p$, i.e. $\alpha \bar{\alpha} = p$. Let $\alpha = a + b\omega$, then $p = \alpha \bar{\alpha} = a^2 + b^2 - ab \implies 4p = (2a - b)^2 + 3b^2$, so $p \equiv (2a - b)^2 \equiv 1 \pmod{3}$. $(p \not\equiv 0 \text{ since } p \neq 3)$

Conversely, if $p \equiv 1 \pmod{3}$, then

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) = (-1)^{(p-1)/2}\left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2}\cdot\frac{3-1}{2}} = \left(\frac{p}{3}\right) = \left(\frac{1}{3}\right) = 1$$

So exists $a \in \mathbb{Z}$ such that $a^2 \equiv -3 \pmod{p}$, say $pb = a^2 + 3 = (a + \sqrt{-3})(a - \sqrt{-3}) = (a + 1 + 2\omega)(a - 1 - 2\omega)$.

If p is a prime in $\mathbb{Z}[\omega]$, then $p \mid (a+1+2\omega)$ or $p \mod (a-1-2\omega)$, which implies that $p \mid 2$ (since $p \in \mathbb{Z}$, $p \mid a+b\omega \implies p \mid a,p \mid b$), which leads to a contradiction, thus p is not a prime.

Hence $p \neq 3$ is not a prime in $A_{-3} \iff p \equiv 1 \pmod{3}$.

1.2 Primary decomposition

Def 5.

- The radical of an ideal I is defined by $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some } n \in \mathbb{N}\}.$
- I is radical if $\sqrt{I} = I$.

Def 6. The **nilradical** is defined as $\sqrt{\langle 0 \rangle} \triangleq \{ a \in R \mid a^n = 0 \text{ for some } n \in \mathbb{N} \}$. Elements in it are called nilpotent.

Prop 1.2.1. $\sqrt{\langle 0 \rangle} = \bigcap_{P \in \operatorname{Spec} R} P$, where $\operatorname{Spec} R$ is the set of prime ideals in R.

Proof. " \subset ": Notice that $a^n = 0 \in P$ for any prime ideal P. By the definition of prime ideal, either $a \in P$ or $a^{n-1} \in P$. No matter which, eventually we would get $a \in P$.

"">": Let $S \triangleq \{I : \text{ ideal in } R \mid a^n \notin I, \forall n \in \mathbb{N} \}$. By the routine argument of Zorn's lemma, exists maximal element Q in S. We claim that Q is a prime ideal.

For each $x, y \notin Q$, we have $Q + Rx \supseteq Q$ and $Q + Ry \supseteq Q$. By the maximality of Q, these two ideals are not in S. So exists n, m such that $a^n \in Q + Rx$, $a^m \in Q + Ry$ which implies $a^{n+m} \in Q + Rxy$, so $Q + Rxy \notin S$, thus $xy \notin Q$, hence Q is prime.

Coro 1.2.1.

$$\sqrt{I} = \bigcap_{\substack{P \supset I \\ P \in \text{Spec } R}} P$$

Proof. Notice that Spec $R/I = \{P \in \operatorname{Spec} R \mid R \subset I\}$. By the proposition above,

$$\sqrt{\langle \bar{0} \rangle} = \bigcap_{\bar{P} \in \operatorname{Spec} R/I} \bar{P} \quad \Longrightarrow \quad \sqrt{I} = \bigcap_{\substack{P \supset I \\ P \in \operatorname{Spec} R}} P \qquad \Box$$

Def 7. An ideal q of R is called primary if $q \neq R$ and " $xy \in q$ and $x \notin q$ " implies $y^n \in q$ for some $n \in \mathbb{N}$.

Prop 1.2.2.

- prime \implies primary.
- $\sqrt{\text{primary}} \implies \text{prime}$. Also, if q is primary, then $p = \sqrt{q}$ is the smallest prime ideal containing q, we say q is p-primary.

Proof. The first one is obvious.

If q is primary and $\sqrt{q} = p$. For any $xy \in p$ and $x \notin p$, there exists n so that $x^ny^n \in q$, and for this $n, x^n \notin q$. Thus $(y^n)^m \in q$ for some m, hence $y \in p$. We conclude that p is a prime ideal.

Finally, by corollary 1.2.1,

$$p = \sqrt{q} = \bigcap_{\substack{P \supset q \\ P \in \operatorname{Spec} R}} P \subset P, \quad \forall \, P \text{ prime },$$

thus p is indeed the smallest.

Eg 1.2.1. The primary ideals in \mathbb{Z} are $\langle 0 \rangle$ and $\langle p^m \rangle$ where p is a prime.

Proof. If $q = \langle a \rangle$ is primary, then $\sqrt{q} = \langle p \rangle$ is prime, and $p^n \in \langle a \rangle$. So $ab = p^n$ which implies $a = p^m$ for some m.

Def 8. An ideal I is said to be **irreducible** if $I = q_1 \cap q_2 \implies I = q_1 \vee I = q_2$.

Def 9. Define $(I : x) = \{a \in R \mid ax \in I\}.$

Theorem 3. In a Noetherian ring R, every irreducible ideal I is primary.

Proof. Let $xy \in I$ and $x \notin I$. Consider $(I:y) \subseteq (I:y^2) \subseteq \cdots$. Since R is Noetherian, exists n such that $(I:y^n) = (I:y^m)$ for any $m \ge n$.

We claim that $I = (I + Ry^n) \cap (I + Rx)$.

- "⊂": Obvious.
- " \supset ": For any $b \in (I + Ry^n) \cap (I + Rx)$, write $b = a_1 + r_1y^n = a_2 + r_2x$. Then $r_1y^{n+1} = a_2y a_1y + r_2xy \in I$ since $a_1, a_2, xy \in I$. So $r_1 \in (I : y^{n+1}) = (I : y^n) \implies r_1y^n \in I$. Thus $b = a_1 + r_1y^n \in I$.

Now by the fact that I is irreducible and $I \neq I + Rx$ since $x \notin I$, thus $I = I + Ry^n \implies y^n \in I$. \square

Theorem 4. In a Noetherian ring R, every ideal is a finite intersection of irreducible ideals.

Proof. If not, let $\mathcal{I} \triangleq \{I : \text{ ideal in } R \mid I \text{ is not a finite intersection of irreducible ideals } \}$ and \mathcal{I} is not an empty set. Since R is Noetherian, the set has a maximal element I_0 . Then I_0 is not irreducible (or else it is an intersection of itself, which is irreducible). Write $I_0 = I_1 \cap I_2$, with $I_1, I_2 \neq I_0$. Then $I_1, I_2 \notin \mathcal{I}$, so these two ideals could be written as a finite intersection of irreducible ideals, implying that I_0 could also be written as a finite intersection of irreducible ideals, which is a contradiction.

Prop 1.2.3. Let q be a p-primary ideal and $x \in R$.

1. If $x \in q$, then (q : x) = R.

Proof. In this case
$$1 \in (q:x)$$
, thus $(q:x) = R$.

2. If $x \notin q$, then (q:x) is p-primary.

Proof. For any $y \in (q:x)$, $xy \in q$ but $x \notin q$, thus $y^n \in q \implies y \in p$. Hence

$$q\subset (q:x)\subset p\implies p=\sqrt{q}\subset \sqrt{(q:x)}\subset \sqrt{p}=p$$

and thus (q:x) is p-primary.

For any y, z with $yz \in (q:x)$ but $y \notin (q:x)$, which is equivalent to $xyz \in q$ but $xy \notin q$. Since q primary, $z^n \in q \subset (q:x)$.

3. If $x \notin p$, then (q:x) = q.

Proof.

$$\left\{ \begin{array}{ll} y \in (q:x) \\ x \notin p \end{array} \right. \implies \left\{ \begin{array}{ll} xy \in (q:x) \\ x^n \notin q, \ \forall \ n \in \mathbb{N} \end{array} \right. \implies y \in q \qquad \qquad \square$$

Prop 1.2.4. If each q_i are p-primary, then $q \triangleq \bigcap_{i=1}^n q_i$ is p-primary.

Proof. We check that $\sqrt{q} = \bigcap_{i=1}^n \sqrt{q_i} = \bigcap_{i=1}^n p = p$.

Also, if $xy \in q$ with $x \notin q$, then $x \notin q_k$ for some k. But $xy \in q_k$, thus $y^n \in q_k$. But $q_k \subseteq \sqrt{q_k} = p = \sqrt{q}$, so $(y^n)^{m'} = y^m \in q$, thus q is p-primary.

Def 10. A **primary decomposition** of $I = q_1 \cap \cdots \cap q_n$ is **minimal** if $\sqrt{q_1}, \dots, \sqrt{q_n}$ are distinct and $q_i \not\supseteq \bigcap_{j \neq i} q_j$.

A minimal primary decomposition of an ideal always exists in Noetherian ring since by theorem 4, the ideal could be written as a finite intersection of irreducible ideals, and then by theorem 3, these ideals are primary. Now If $\sqrt{q_i} = \sqrt{q_j}$ happen in these ideals, we could remove these two ideals and add $q' = \sqrt{q_i} \cap \sqrt{q_j}$. By proposition 1.2.4, q' is also primary. And if $q_i \supseteq \bigcap_{j \neq i} q_j$, we could simply remove q_i .

Theorem 5 (Uniqueness of primary decomposition). Let $I = \bigcap_{i=1}^{n} q_i$ be a minimal decomposition of I. If $p_i = \sqrt{q_i}$, $\forall i$, then we have

$$\{p_i\} = \left\{\sqrt{(I:x)} \mid x \in R \land \sqrt{(I:x)} \in \operatorname{Spec} R\right\}$$

which is independent of the decomposition.

Proof. "\(\times\)": Let
$$x \in R \setminus I$$
, then $(I:x) = \left(\bigcap_{i=1}^n q_i:x\right) = \bigcap_{i=1}^n (q_i:x)$. By proposition 1.2.3, we have $\sqrt{(I:x)} = \bigcap \sqrt{(q_i:x)} = \bigcap_{x \notin q_i} p_i$.

Now, we have the following observation. "If $p \in \operatorname{Spec} R$ with $p = \bigcap_{i=1}^n J_i$, then $p = J_j$ for some j." If not, then $J_i \not\subset p$ for all i, so we could pick $x_i \in J_i \setminus p$. But then $x_1 x_2 \cdots x_n \in \cap J_i \in p$ since J_i are ideals, which leads to a contradiction since p is prime.

So if $\sqrt{(I:x)}$ is a prime, then it is equal to some p_i .

"C": By assumption,
$$q_i \not\supseteq \bigcap_{j \neq i} q_j$$
 for each i , thus we could pick $x \in \bigcap_{j \neq i} q_j \setminus q_i$, then $\sqrt{(I:x)} = \bigcap_j \sqrt{(q_j:x)} = \sqrt{(q_i:x)} = p_i$.

Def 11. If $\{p_i\}$ is the unique prime ideals from the minimal primary decomposition of I.

- $\{p_i\}$ is said to be associated with I or to belong to I.
- The minimal elements in $\{p_i\}$ are called isolated primes.
- The other are called embedded primes.

Eg 1.2.2. Let R = k[x, y] and $I = \langle x^2, xy \rangle$. If $P_1 = \langle x \rangle, P_2 = \langle x, y \rangle$, then $I = P_1 \cap P_2^2$. P_1 is isolated, while P_2 is embedded.

1.3 The equivalence of algebra and geometry (week 10)

In the following, k will be an algebraically closed field.

Def 12. The category of affine algebraic sets \mathcal{G} and its objects and morphisms are defined as following:

objects: The objects are affine algebraic sets in k^n .

An **affine algebraic set** is the common zero set of $\{F_i\}_{i\in\Lambda}\subset k[x_1,\ldots,x_n]$ in k^n . We denote it by $V=\mathcal{V}(\{F_i\}_{i\in\Lambda})\subset k^n$. (In fact, $I=\langle F_i:i\in\Lambda\rangle$ is Noetherian, so $I=\langle F_1,\ldots,F_n\rangle$ and $V=\mathcal{V}(I)$.) **morphisms:** The morphisms are the polynomial map from k^n to k^m .

A **polynomial map** is a mapping as following:

$$k^n \longrightarrow k^m$$

 $\alpha \longmapsto (F_1(\alpha), \dots, F_m(\alpha))$

where each F_i is a polynomial in $K[x_1, \ldots, x_n]$.

Given two affine algebraic sets $V \subset k^n$ and $W \subset k^m$, if a map $F: V \to W$ is the restriction of a polynomial map from k^n to k^m , then F is a morphism from V to W.

Moreover, if $F: V \to W$ and $G: W \to V$ satisfy $F \circ G = \mathrm{Id}$ and $G \circ F = \mathrm{Id}$, then we say $V \cong W$.

Def 13. The category of finitely generated reduced k-algebra \mathcal{A} and its objects and morphisms are defined as following:

objects: The objects are the reduced finitely generated k-algebra R.

A finitely generated k-algebra R is reduced if R has no non-zero nilpotent elements. **morphisms:** The morphisms are the k-algebra homomorphisms.

Eg 1.3.1. It is easy to see that $\mathcal{V}(0) = k^n$ and $\mathcal{V}(1) = \emptyset$.

1.3.1 One-one correspondence between affine algebraic sets and radical ideals

Def 14. Define
$$\mathcal{I}(V) = \{ f \in k[x_1, ..., x_n] \mid f(\alpha) = 0, \forall \alpha \in V \}.$$

The one-one correspondence is given by

{affine algebraic sets in
$$\mathbb{A}^n_k$$
} \longleftrightarrow { radical ideals in $k[x_1, \dots, x_n]$ }
$$V \longmapsto \mathcal{I}(V)$$

$$\mathcal{V}(I) \longleftarrow I$$

Prop 1.3.1.

• $\sqrt{\mathcal{I}(V)} = \mathcal{I}(V)$.

Proof. For all
$$f^n \in \mathcal{I}(V)$$
, $f^n(\alpha) = 0, \forall \alpha \in V \implies f(\alpha) = 0, \forall \alpha \in V$. Thus $f \in \mathcal{I}(V)$.

• If V is an affine set, then $\mathcal{V}(\mathcal{I}(V)) = V$.

Proof. "\(\times \)":
$$\forall \alpha \in V, f \in \mathcal{I}(V), f(\alpha) = 0 \implies \alpha \in \mathcal{V}(\mathcal{I}(V)).$$
"\(\times \)": Since V is an affine set, $V = \mathcal{V}(I)$, then $I \subset \mathcal{I}(V)$, so $\mathcal{V}(\mathcal{I}(V)) \subset \mathcal{V}(I) = V.$

Lemma 1. Given T/S/R, a tower of rings. If R is Noetherian, T/S is a module finite and T/R is a ring finite, then S/R is a ring finite.

Proof. Let $T = R[a_1, \ldots, a_n] = S\omega_1 + \cdots + S\omega_m$. Then $a_i = \sum_j r_{i,k}\omega_k$ for some $r_{i,k}$ and $\omega_{i,j} = \sum_j t_{i,j,k}w_k$ for some $t_{i,j,k}$.

Let $S' = R[\{r_{i,k}\}, \{t_{i,j,k}\}] \subseteq S$, which is Noetherian by the Hilbert basis theorem (R Notherian $\Longrightarrow R[x]$ Notherian). Thus $T = S'\omega_1 + \cdots + S'\omega_m$ is a Noetherian S'-module by the fact that finitely generated module over a Noetherian ring is a Noetherian module.

Since $S \subset T$, S is a finitely generated S' submodule, so $S = S'v_1 + \cdots + S'v_r = R[\{r_{i,k}\}, \{t_{i,j,k}\}, \{v_i\}]$.

Lemma 2. If $S = k(z_1, \ldots, z_p)$, p > 0 with each z_i transcendental, then S/k is not ring finite.

Proof. If not, say $S = k[f_1, \ldots, f_n]$ with $f_i = g_i/h_i$, $g_i, h_i \in k[z_1, \ldots, z_p]$. Then for any irreducible polynomial p such that $p \nmid h_i$ for each h_i (This polynomial exists since for each h_i there are only finite degree 1 factors). Then $1/p \notin k[f_1, \ldots, f_n]$ by checking the divisibility of the denominator under addition and multiplication, which leads to a contradiction.

Lemma 3. If A/k is an extension of fields and ring finite, then A/k is algebraic.

Proof. If A/k is transcendental and let $\{z_1, \ldots, z_t\}$ be a transcendental base. Then $A/k(z_1, \ldots, z_t)$ is algebraic, thus a module finite. By lemma $1, k(z_1, \ldots, z_t)$ is ring finite, which contradict with lemma 2.

Theorem 6 (Weak form of Hilbert Nullstellensatz).

$$I \subseteq k[x_1, \dots, x_n] \implies v(I) \neq \emptyset$$

Proof. Since I proper, by lemma $\ref{eq:constraints}$, exists a maximal ideal M such that $I \subseteq M$. Consider $K \triangleq k[x_1,\ldots,x_n]/M = k[\bar{x}_1,\ldots,\bar{x}_n]$. By proposition $\ref{eq:constraints}$, K is a field, and by lemma $\ref{eq:constraints}$, K, is algebraic. Since K is already algebraically closed, K = K and hence each $\bar{x}_i \in K$. Let $\alpha \triangleq (\bar{x}_1,\ldots,\bar{x}_n) \in A_k^n$, then for any $f \in M$, $f(\alpha) = f(\bar{x}_1,\ldots,\bar{x}_n) = \bar{f} = 0$, thus $\alpha \in \mathcal{V}(M) \subseteq \mathcal{V}(I)$.

Theorem 7 (Strong form of Hilbert Nullstellensatz). $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$

Proof. "\to": $f \in \sqrt{I} \implies f^n \in I$, then $f^n(\alpha) = 0, \forall \alpha \in \mathcal{V}(I) \implies f(\alpha) = 0, \forall \alpha \in \mathcal{V}(I)$, thus $f \in \mathcal{I}(\mathcal{V}(I))$.

"C": If $\mathcal{I}(\mathcal{V}(I)) = 0$, then $I \subseteq \sqrt{I} \subseteq \mathcal{I}(\mathcal{V}(I)) = 0$, thus I = 0.

Otherwise, exists $0 \neq f \in \mathcal{I}(\mathcal{V}(I))$, Let $J = \langle I, ft-1 \rangle \subset k[x_1, \dots, x_n, t]$. If (a_1, \dots, a_n, t_0) is a zero of J, then $ft-1 \in J \implies -1 = f(a_1, \dots, a_n)t_0 - 1 = 0$, which is a contradiction, so by theorem 6, $J = k[x_1, \dots, x_n, t]$.

Write $1 = \sum h_i f_i + s(ft-1)$, where each $f_i \in I$ and $h_i, s \in k[x_1, \dots, x_n, t]$. This is a equation of variables, so if we set t = 1/f, the equation still holds. Now each h_i would be the form $\sum p_i/f^{k_i}$, so we could multiply each side by a suitable f^{ρ} and get $f^{\rho} = \sum c_i f_i$ with each $c_i \in k[x_1, \dots, x_n]$. This implies $f^{\rho} \in I$, thus $f \in \sqrt{I}$.

Def 15. Let $V \in \mathcal{G}$, the coordinate ring of V is $k[V] \triangleq k[x_1, \dots, x_n]/\mathcal{I}(V)$

1.3.2 Equivalence of \mathcal{G} and \mathcal{A}

We define a functor F from \mathcal{G} to \mathcal{A} by

$$F: \quad \mathcal{G} \longrightarrow \mathcal{A}$$

$$V \longmapsto k[V]$$

And For a polynomial map $f: V \to W$, define

$$F(f) = f^*: \quad k[W] \longrightarrow k[V]$$
$$g \longmapsto g \circ f$$

Conversely, define a functor G by

$$G: \quad \mathcal{A} \longrightarrow \mathcal{G}$$

$$k[x_1, \dots, x_n]/I \longmapsto \mathcal{V}(I)$$

Then if

$$\varphi: \quad k[\ldots]/I \longrightarrow k[\ldots]/J$$

$$\bar{x}_i \longmapsto \bar{f}_i$$

Define

$$G(\varphi) = \psi:$$
 $\mathcal{V}(J) \longrightarrow \mathcal{V}(I)$ $\alpha = (a_1, \dots, a_m) \longmapsto (f_1(\alpha), \dots, f_n(\alpha))$

1.4 Gröbner basis (week 11)

1.4.1 Division algorithm in $K[X_1, ..., X_n]$

Eg 1.4.1. $I = \langle xy - 1, y^2 - 1 \rangle \subseteq K[x, y], f_1 = xy - 1 \text{ and } f_2 = y^2 - 1 \ G = \{f_1, f_2\}.$ Does $f = x^2y + xy^2 + y^2 \in I$?

- Choose a lexicographic monomial ordering: x > y
- The multidegree $\partial(f) = (2,1), \, \partial(f_1) = (1,1), \, \partial(f_2) = (0,2)$
- The leading term $LT(f) = x^2y$, $LT(f_1) = xy$, $LT(f_2) = y^2$
- LT(f) = xLT(f₁) \Rightarrow f = $xf_1 + xy^2 + y^2 + x \Rightarrow$ f = $(x+y)f_1 + (1)f_2 + (x+y+1)$ or $f = \underset{h_1}{x} f_1 + (x+1)f_2 + (2x+1)$.

Note: Divisor h_1 , h_2 and remainder \bar{f}^G are not unique!!

Def 16. Fix a monomial ordering and let I be an ideal of $K[X_1, \ldots, X_n]$. The ideal of leading terms in I is defined to be $LT(I) = \langle LT(f) | f \in I \rangle$.

Remark 1. Let $I = \langle f_1, \dots, f_n \rangle$. In general, $\langle LT(f_1), \dots, LT(f_n) \rangle \subsetneq LT(I)$.

Eg 1.4.2. Let $f_1 = xy^2 + y$, $f_2 = x^2y$. And, $xf_1 - yf_2 = xy \in \langle f_1, f_2 \rangle$ but $xy \notin \langle xy^2, x^2y \rangle$.

Def 17. $G = \{g_1, \ldots, g_m\}$ is called a Gröbner basis of I if $I = \langle g_1, \ldots, g_m \rangle$ and $LT(I) = \langle LT(g_1), \ldots, LT(g_m) \rangle$.

Prop 1.4.1. Let $g_1, \ldots, g_m \in I$, then $LT(I) = \langle LT(g_1), \ldots, LT(g_m) \rangle \implies I = \langle g_1, \ldots, g_m \rangle$.

Proof. $\forall f \in I$, do the division process. Then $f = \sum_{i=1}^{m} h_i g_i + r$, either r = 0 or $\bigstar = \text{no term of } r$ is divisible by any of $LT(g_1), \ldots, LT(g_m)$. Assume $r \neq 0$, then $r = f - \sum_{i=1}^{m} h_i g_i \in I \Rightarrow LT(r) \in LT(I) = \langle LT(g_1), \ldots, LT(g_m) \rangle$, which is a contradiction. Hence, r = 0 (i.e. $f \in \langle g_1, \ldots, g_m \rangle$). \square

Theorem 8. Each ideal *I* has a Gröbner basis.

Proof. By Hilbert basis thm, $LT(I) = \langle f_1, \dots, f_m \rangle$ for some f_i 's. Write $f_i = \sum_{j=1}^{m_i} h_{ij} LT(g_{ij})$ with $h_{ij} \in K[X_1, \dots, X_n], g_{ij} \in I$. Then $LT(I) = \langle LT(g_{ij}) | i = 1, \dots, m, j = 1, \dots, m_i \rangle$. By prop 1.4.1, This is Gröbner basis.

Theorem 9. Let $G = \{g_1, \dots, g_m\}$ be a Gröbner basis of I, then

- $\forall f \in K[X_1, \dots, X_n], f = f_I + r$ where $f_I \in I, r = \bigstar$ are unique.

 Proof. By division algorithm, $f = f_I + r = f'_I + r'$, then $r r' = f_I f'_I$. But if $r r' \neq 0$, then $LT(r r') \in LT(I) = \langle LT(g_1), \dots, LT(g_m) \rangle$, which is a contradiction. Hence, $r r' = 0 \Rightarrow f_I = f'_I$.
- $f \in I \iff r = 0$.

Proof. Suppose $f \in I$, then $f = f_I + r$, and if $r \neq 0$, $r = f - f_I \in I$, which is a contradiction. Hence, r = 0. Conversly, if r = 0, $f = f_I \in I$.

1.4.2 Buchberger's algorithm

Def 18. Let $f, g \in K[x_1, ..., x_n]$ and M be the monic least common multiple of LT(f) and LT(g). $S(f,g) = \frac{M}{LT(f)}f - \frac{M}{LT(g)}g$ is called an S-polynomial of f,g.

Let $I = \langle g_1, \ldots, g_m \rangle$ and $G = \{g_1, \ldots, g_m\}$. A Gröbner basis of I can be constructed by the following algorithm:

- 1. Initially let $G_0 \leftarrow G$.
- 2. Repeatly construct $G_{i+1} \leftarrow G_i \cup (\{S(f,g) \mod G_i \mid f,g \in G_i\} \setminus \{0\})$, until once $G_{i+1} = G_i$, then G_i is a Gröbner basis of I.

Lemma 4. Let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ with $a_1, \ldots, a_m \in K$ satisfying $\partial(f_1) = \partial(f_2) = \cdots = \partial(f_m) = \alpha$ and $h = \sum_{i=1}^m a_i f_i$ with $\partial(h) < \alpha$. Then $h = \sum_{i=2}^m b_i S(f_{i-1}, f_i)$ for some $b_i \in K$.

Proof. Write $f_i = c_i f'_i$ with $c_i \in K$ and f'_i being monic of multidegree α . Note: $S(f_i, f_j) = f'_i - f'_j$ since all multidegree are equal. Then,

$$h = \sum_{i=1}^{m} (a_i c_i f_i')$$

$$= a_1 c_1 (f_1' - f_2') + (a_1 c_1 + a_2 c_2) (f_2' - f_3') + \dots + (a_1 c_1 + \dots + a_{m-1} c_{m-1}) (f_{m-1}' - f_m')$$

$$+ (a_1 c_1 + \dots + a_m c_m) f_m'$$

$$= \sum_{i=2}^{m} b_i S(f_{i-1}, f_i) + b_{m+1} f_m' \text{ with } b_i = \sum_{j=1}^{i-1} a_j c_j.$$

Also, in this equality, f'_m is the only term that has multidegree α (other terms have multidegree less than α). So $b_{m+1}=0$ must hold. Then, we have $h=\sum_{i=2}^m b_i S(f_{i-1},f_i)$.

Theorem 10 (Buchberger's criterion). Assume $I = \langle g_1, \ldots, g_m \rangle$, then $G = \{g_1, \ldots, g_m\}$ is a Gröbner basis of $I \iff S(g_i, g_j) \equiv 0 \pmod{G}$ for each i, j.

Proof.

- Suppose G is a Gröbner basis of I. $S(g_i, g_j) \in I \Rightarrow S(g_i, g_j) = 0$ by thm 9.
- Converely, suppose $S(g_i, g_j) \equiv 0 \pmod{G} \forall i, j$. For $f \in I$, $f = \sum_{not \ division} \sum_{i=1}^m h_i g_i$ for some $h_i \in K[x_1, \dots, x_n]$. Define $\alpha = \max\{\partial(h_1 g_1), \dots, \partial(h_m g_m)\}$. We have $\partial(f) \leq \alpha$ and we can select an expression $f = \sum_{i=1}^m h_i g_i$ for f s.t α is minimal.
- Claim: $\partial(f) = \alpha$.
- (pf) If not, we rewrite f

$$\begin{split} f &= \sum_{i=1}^m h_i g_i \\ &= \sum_{\partial (h_i g_i) = \alpha} h_i g_i + \sum_{\partial (h_i g_i) < \alpha} h_i g_i \qquad \text{(the first term } \neq 0 \text{ since } \alpha \text{ is minimal.)} \\ &= \sum_{\partial (h_i g_i) = \alpha} \operatorname{LT}(h_i) g_i + \sum_{\partial (h_i g_i) = \alpha} (h_i - \operatorname{LT}(h_i) g_i) + \sum_{\partial (h_i g_i) < \alpha} h_i g_i \end{split}$$

Let $LT(h_i) = a_i h_i^0$ with h_i^0 being a monic monomial. Comparing the multidegree on both side, $\partial \left(\sum_{\partial (h_i g_i) = \alpha} a_i h_i^0 g_i \right) < \alpha$ By lemma 4, $\sum_{\partial (h_i g_i) = \alpha} \left(a_i h_i^0 g_i \right) = c_{12} S(h_{i_1}^0 g_{i_1}, h_{i_2}^0 g_{i_2}) + \dots$ (finite)

where $\partial(h_{i_1}g_{i_1}) = \partial(h_{i_2}g_{i_2}) = \cdots = \alpha$. By def, if we set $M_{st} = X_{st}^{\beta}$ = the monic LCM of $LT(g_{i_s}), LT(g_{i_t})$, then

$$\begin{split} S(h_{i_s}^0g_{i_s},h_{i_t}^0g_{i_t}) &= \frac{X^\alpha}{\mathrm{LT}(h_{i_s}^0g_{i_s})}h_{i_s}^0g_{i_s} - \frac{X^\alpha}{\mathrm{LT}(h_{i_t}g_{i_t})}h_{i_t}^0g_{i_t} \\ &= X^{\alpha-\beta_{st}}\left(\frac{X^{\beta_{st}}}{\sum_{i_s}\mathrm{LT}(g_{i_s})}h_{i_s}^0g_{i_s} - \frac{X^{\beta_{st}}}{\sum_{i_s}\mathrm{LT}(g_{i_t})}h_{i_s}^0g_{i_t}\right) \\ &= X^{\alpha-\beta_{st}}S\left(g_{i_s},g_{i_t}\right) \\ &= X^{\alpha-\beta_{st}}\sum_{j=1}^m l_jg_j \text{ (by division)} \end{split}$$

• Then, $\partial(l_j g_j) < \beta_{st} \implies$ we found a expression with multidegree less than α , which is a contradiction. Therefore, $\partial(f) = \alpha \implies \operatorname{LT}(f) = \sum_{\partial(h_i g_i) = \alpha} \operatorname{LT}(h_i) \operatorname{LT}(g_i) \implies \operatorname{LT}(f) \in \langle \operatorname{LT}(g_1), \dots, \operatorname{LT}(g_m) \rangle$.

Theorem 11. The Buchberger's algorithm will terminate

Proof. .

- $\langle \operatorname{LT}(G_i) \rangle \subsetneq \langle \operatorname{LT}(G_{i+1}) \rangle$ if $G_i \neq G_{i+1}$ $G_i \neq G_{i+1} \implies \exists f, g \in G_i \text{ s.t. } S(f,g) \not\equiv 0 \pmod{G} \implies \operatorname{LT}(S(s,g)) \notin \langle \operatorname{LT}(G_i) \rangle$
- $\langle LT(G_0) \rangle \subsetneq \langle LT(G_1) \rangle \subsetneq \cdots$ is not possible since $K[x_1, \ldots, x_n]$ is a Noetherian ring. (Noetherian ACC condition).

1.5 Applications of Gröbner basis

Def 19. Let $I \subseteq K[x_1, \ldots, x_n]$ and $x_1 > x_2 > \cdots > x_n$. $I_i \triangleq I \cap K[x_{i+1}, \ldots, x_n]$ is called the *i*-th elimination ideal of I.

Theorem 12 (Elimination theorem). Let $G = \{g_1, \ldots, g_m\}$ be a Gröbner basis of $I \neq 0$ with ordering $x_1 > \cdots > x_n$. Then $G_i \triangleq G \cap K[x_{i+1}, \ldots, x_n]$ is a Gröbner basis of I_i (i.e., $\langle \operatorname{LT}(G_i) \rangle = \operatorname{LT}(I_i)$).

Proof. " \subseteq ": Obvious.

"\righthap": Let $f \in I_i$. Write

$$LT(f) = \sum h_i LT(g_i) = \sum a_k x^{\alpha_k} LT(g_{i_k})$$

Since LT(f) involves only the variables x_{i+1}, \ldots, x_n , and each terms of $x^{\alpha_k} LT(g_{i_k})$ which uses variables x_k with $k \leq i$ must sum to zero. Remove those term we could write LT(f) as a combination of $LT(g_i)$ with $LT(g_i) \in K[x_{i+1}, \ldots, x_n]$. But by the definition of leading term and the ordering $x_1 > \cdots > x_n$, we have $g_i \in K[x_{i+1}, \ldots, x_n] \implies g_i \in G_i$. Thus $LT(f) \in \langle LT(G_i) \rangle$.

Eg 1.5.1. Find $V = \mathcal{V}(x+y-z, x^2+y^2-z^3, x^3+y^3-z^5)$.

We compute a Gröbner basis of $I = \langle f_1, \dots, f_3 \rangle$ with respect to the ordering x > y > z. The Gröbner basis is $\{x + y - z, 2y^2 - 2yz - z^3 + z^2, 2z^5 - 3z^4 + z^3\}$.

Eg 1.5.2.

We compute a Gröbner basis of $I = \langle t^4 - x, t^3 - y, t^2 - z \rangle$ with respect to t > x > y > z. The Gröbner basis is $\{-t^2 + z, ty - z^2, tz - y, x - z^2, y^2 - z^3\}$.

Eg 1.5.3.

$$f: V = \mathcal{V}(x^3 - x^2z - y^z) \longrightarrow \mathbb{A}^3$$
$$(x, y, z) \longmapsto (x^2z - y^2z, 2xyz, -z^3)$$

The ideal is $\langle x^3-x^2z-y^2z,u-x^2z+y^2z,v-2xyz,w+z^3\rangle$ has a Gröbner basis $\langle \dots,u^2+v^2-w^2\rangle$.

Theorem 13. Let I, J be two ideals of $K[x_1, \ldots, x_n]$, then $I \cap J = (t\tilde{I} + (1-t)\tilde{J}) \cap K[x_1, \ldots, x_n]$, where $\tilde{I} \triangleq K[x_1, \ldots, x_n, t]I$.

Proof. " \subseteq ": If $f \in I \cap J$, then $f = tf + (1-t)f \in RHS$.

"\(\to\$": If $f \in \text{RHS}$, then $f = t\tilde{f}_1 + (1-t)\tilde{f}_2$. with $\tilde{f}_1 \in \tilde{I}$, $\tilde{f}_2 \in \tilde{J}$. Write

$$\tilde{f}_1 = \sum (h_i t + r_i) f_i, \quad \tilde{f}_2 = \sum (h'_j t + r'_j) f_j$$

with each $r_i, r'_j \in K[x_1, ..., x_n], \ h_i, h'_j \in K[t, x_1, ..., x_n].$ Take $t = 0, \ f = \sum r'_j f_j \in J.$ Then take $t = 1, \ f = \sum (h_i(1, x_1, ..., x_n) + r_i) f_i \in J.$ Thus $f \in I \cap J.$

Eg 1.5.4. $I = \langle y^2, x - yz \rangle$, $J = \langle x, z \rangle$. We shall find $I \cap J$. $tI + (1-t)J = \langle tx - tyz, ty^2, (1-t)x, (1-t)z \rangle$ has a Gröbner basis $\{f_1, f_2, f_3, f_4, xy, x - yz\}$, so $I \cap J = \langle xy, x - yz \rangle$.

Theorem 14. Let $L = \langle f_1, \dots, f_s \rangle \subsetneq K[x_1, \dots, x_n]$, then $f \in \sqrt{I} \iff \langle f_1, \dots, f_s, 1 - tf \rangle = K[x_1, \dots, x_n, t]$.

Proof. " \Leftarrow ": By theorem 6, $\langle f_1, \ldots, f_s, 1-tf \rangle = K[x_1, \ldots, x_n, t]$ if and only if $\mathcal{V}(f_1, \ldots, f_s, 1-tf) = \emptyset$. Notice that 1-tf has no zero if f=0, which means that If x is a common zero of f_1, \ldots, f_s , then f(x)=0. So $f\in \mathcal{I}(\mathcal{V}(I))\implies f\in \sqrt{I}$ by theorem 7.

"⇒":
$$f^m \in I \implies 1 = t^m f^m + 1 - t^m f^m = t^m f^m + (1 - tf)(1 + tf + \dots + t^{m-1} f^{m-1}) \in \langle f_1, \dots, f_s, 1 - tf \rangle.$$

Eg 1.5.5. Let $I = \langle xy^2 + 2y^2, x^4 - 2x^2 + 1 \rangle$, and we are to determine $f = y - x^2 + 1$ is in \sqrt{I} or not.

Prop 1.5.1. An affine algebraic set V in \mathbb{A}^n_k has a unique minimal decomposition. $V = V_1 \cap V_2 \cap \cdots \cap V_m$ with V_i irreducible and $V_i \not\subset V_j$.

Proof.

Existence: If not, then $V = V_1 \cup V_1'$, and one of V_1, V_1' , say $V_1 = V_2 \cup V_2'$, ... So we would find

$$V \supseteq V_1 \supseteq V_2 \subseteq \cdots \implies \mathcal{I}(V) \subseteq \mathcal{I}(V_1) \subseteq \mathcal{I}(V_2) \subseteq \text{ in } k[x_1, \dots, x_n]$$

Which contradict that $k[x_1, \ldots, x_n]$ is Noetherian.

• Uniqueness: If

$$V = V_1 \cup \cdots \cup V_m = V_1' \cup \cdots \cup V_m'$$

then $V_i = (V_i \cap V_1') \cup \cdots \cup (V_i \cap V_m')$. But V_i irreducible, so $V_i = V_i \cap V_j' \implies V_i \subset V_j'$. By symmetry we would find $V_j' \subset V_k$, then $V_i \subset V_j' \subset V_k \implies V_i = V_k$. Thus these two decomposition is equal.

Theorem 15 (Decomposition). Assume $\sqrt{I} = I$ and $I \subset J$, then $\mathcal{V}(I:J) = \mathcal{V}(\mathcal{I}(\mathcal{V}(I) \setminus \mathcal{V}(J)))$. and $\mathcal{V}(I) = \mathcal{V}(J) \cup \mathcal{V}(I:J)$.

Proof. Let $f \in \mathcal{I}(\mathcal{V}(I) \setminus \mathcal{V}(J))$ and $g \in J$, then $fg = \mathcal{I}(\mathcal{V}(I)) = \sqrt{I} = I$ since $f(\alpha) = 0$ for each $\alpha \in \mathcal{V}(I) \setminus \mathcal{I}(J)$ and $g(\alpha) = 0$ for each $\alpha \in \mathcal{V}(J)$. Thus $f \in (I:J)$.

Eg 1.5.6. Let $I = \langle xz - y^2, x^3 - yz \rangle$ and $V = \mathcal{V}(I)$.

Notice that $\langle xz-y^2,x^3-yz\rangle\subseteq\langle x,y\rangle=J,$ so $(I:J)=(I:\langle x\rangle)\cap(I:\langle y\rangle).$

First we calculate (I:x). Notice that we know how to calculate $I \cap \langle x \rangle$ now. After a calculation, $I \cap \langle x \rangle = \{x^2z - xy^2, x^4 - xyz, x^3y - xz^2\}$, so $(I:x) = \langle f_1/x, f_2/x, f_3/x \rangle = I + \langle x^2y - z^3 \rangle$. Simarly one could find that (I:y) = (I:x), thus (I:J) = (I:x).

Hence $V = V(x, y) \cap V(xz - y^2, x^3 - yz, x^2y - z^2)$.

Prop 1.5.2. Let $f: V \to W$, then $\overline{f(V)} = \mathcal{V}(\ker f^*)$ where $f^*: k[W] \to k[V]$.

Proof. We claim that ker $f^* = \mathcal{I}(f(V))$, since

$$\bar{g} \in \mathcal{I}(f(V)) \iff \bar{g}(f(\alpha)) = 0, \ \forall \ \alpha \in V \iff \bar{g} \circ f \in \mathcal{I}(V) \iff f^*(\bar{g}) = \overline{g \circ f} = \bar{0} \iff \bar{g} \in \ker f^*$$

Thus $\mathcal{V}(\ker f^*) = \mathcal{V}(\mathcal{I}(f(V))) = \overline{f(V)}$.

Remark 2. In general, if $W \subseteq \mathbb{A}_k^n$ is an affine algebraic set defined by $x_i = f_i(t_1, \dots, t_m)$, then W is irreducible.

Proof. $f: \mathbb{A}_k^m \to W$ is onto, so $\overline{f(\mathbb{A}_k^m)} = W = \mathcal{V}(0)$. By the previous proposition, $\ker f^* = 0$, thus $f^*: K[W] \cong k[x_1, \dots, x_n]/\mathcal{I}(W) \hookrightarrow k[t_1, \dots, t_m]$. But $k[t_1, \dots, t_m]$ is an integer domain, so $\mathcal{I}(W)$ is a prime ideal, thus W is irreducible.

1.6 Local Rings (week 12)

From now on, R is a commutative ring with 1.

Def 20. R is called a local ring if it has a unique maximal ideal.

Prop 1.6.1.

- (1) R is a local ring.
- (2) The set of non-units forms an ideal.
- (3) $\exists M \in \text{Max } R \text{ s.t. } 1+m \text{ is a unit } \forall m \in M.$

Proof.

- (1) \Rightarrow (2): Let M be the unique maximal ideal of R. Then M couldn't contain any unit. For each non-unit x, $\langle x \rangle \neq R$ and is contained in a maximal ideal by lemma ??, thus $x \in M$. Hence $M = \{\text{non-units}\}$.
- (2) \Rightarrow (3): This ideal must be a maximal ideal M since it can't be extended. Now, $1 \notin M \rightsquigarrow 1 + m \notin M$. So 1 + m is a unit.
- (3) \Rightarrow (1): If there exists another maximal ideal N, then M+N=R. Say $m \in M, n \in N$ s.t. m+n=1, then n=1-m is a unit $\implies N=R$, which is a contradiction.

Eg 1.6.1. k[[x]] is a local ring with the unique maximal ideal $\langle x \rangle$.

Proof. For each $f = \sum a_n x^n \in k[[x]]$, one could see that f is an unit if and only if $a_n \neq 0$, and the leftovers form an ideal $\langle x \rangle$.

Eg 1.6.2. Let $P \in \operatorname{Spec} R$. If $S = R \setminus P$, then S is a multiplicatively closed set with $1 \in S$ and $R_P \triangleq R_S$ is a local ring.

Proof. S is a multiplicatively closed set simply follow from the definition of prime ideal. One could then easily see that $P_P \triangleq \left\{ \frac{x}{s} \mid x \in P, s \in S \right\}$ contains all non-unit, thus R_P is local.

Prop 1.6.2. The following sets are correspondent (k is algebraically closed):

- (1) \mathbb{A}^n_k
- (2) $\text{Max } k[x_1, \dots, x_n]$
- (3) $\operatorname{Hom}_{k}(k[x_{1},\ldots,x_{n}],k)$

Proof. (1) \Rightarrow (2): For any $(a_1, \ldots, a_n) \in \mathbb{A}^n_k$, $k[x_1, \ldots, x_n]/\langle x_1 - a_1, \ldots, x_n - a_n \rangle \cong k$ is a field, hence $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$ is a maximal ideal.

- (2) \Rightarrow (1): Let $M \in \text{Max } k[x_1, \ldots, x_n]$, by theorem 6, $\mathcal{V}(M) \neq \emptyset$, so exists $(a_1, \ldots, a_n) \in \mathcal{V}(M)$. Now $M = \sqrt{M} = \mathcal{I}(\mathcal{V}(M)) \subseteq \mathcal{I}((a_1, \ldots, a_n)) = \langle \ldots, x_i - a_i, \ldots \rangle$ which is maximal, We conclude that (a_1, \ldots, a_n) is the only element in $\mathcal{V}(M)$ and $M = \langle \ldots, x_i - a_i, \ldots \rangle$.
- $(1) \Rightarrow (3)$: For each (a_1, \ldots, a_n) , define $\varphi \in \operatorname{Hom}_k(\cdots)$ by evaluation:

$$\varphi: \quad k[x_1, \dots, x_n] \longrightarrow k$$

$$x_i \longmapsto a_i$$

(3) \Rightarrow (1): Similarly, for each $\varphi \in \text{Hom}_k(\cdots)$, recover (a_1, \ldots, a_n) by $(\varphi(x_1), \ldots, \varphi(x_n))$.

Remark 3. Inspired by the correspondence,

Def 21. A property of an R-module M is said to be a local property if

M has this property $\iff M_P$ (as an R_P -module) has this property $\forall P \in \operatorname{Spec} R$

Prop 1.6.3. TFAE

- (1) M = 0
- (2) $M_P = 0 \quad \forall P \in \operatorname{Spec} R$
- (3) $M_Q = 0 \quad \forall Q \in \operatorname{Max} R$

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are clear.

(3) \Rightarrow (1): If $M \neq 0$, let $x \in M$ such that $x \neq 0$, then $\operatorname{Ann}(x) \subsetneq R$ since $1 \notin \operatorname{Ann}(x)$. Let $\operatorname{Ann}(x) \subset Q \in \operatorname{Max} R$. By assumption, $M_Q = 0$ implies $\frac{x}{1} = \frac{0}{1}$. By the definition of equal in localization, $\exists r \notin Q$ such that rx = 0, thus $r \in \operatorname{Ann}(x)$ which leads to a contradiction.

Coro 1.6.1. Let $N \subseteq M$, TFAE (consider M/N)

- (1) N = M
- (2) $N_P = M_P \quad \forall P \in \operatorname{Spec} R$
- (3) $N_Q = M_Q \quad \forall Q \in \operatorname{Max} R$

Prop 1.6.4. TFAE

- (1) $0 \to M \xrightarrow{\phi} N \xrightarrow{\psi} L \to 0$ exact
- (2) $0 \to M_P \xrightarrow{\phi_P} N_P \xrightarrow{\psi_P} L \to 0$ exact $\forall P \in \operatorname{Spec} R$
- (3) $0 \to M_Q \xrightarrow{\phi_Q} N_Q \xrightarrow{\psi_Q} L \to 0$ exact $\forall Q \in \operatorname{Max} R$

Proof. (1) \Rightarrow (2): By the fact that localization preserves exact sequence.

- $(2) \Rightarrow (3)$: Obvious.
- (3) \Rightarrow (1): Let $K = \ker \phi$, then $0 \to K \to M \to N$ exact. Since we just proved (1) \Rightarrow (3), $0 \to K_Q \to M_Q \to N_Q$ exact, but $K_Q = 0$, by proposition 1.6.3, K = 0.

We could prove the other half similarly by letting K to be the cokernel.

Def 22.

- Let $R \subseteq S$. $\bar{R} = \{x \in S \mid x \text{ is integral over } R\}$ is called the integral closure of R in S.
- R is integrally closed in S if $R = \bar{R}$.
- An integral domain R is called normal if R is integrally closed in its field of fractions.

Theorem 16. UFD is normal.

Proof. Let R be a UFD and K be its field of fractions. If $a \in K$ is integral over R and $a^n + r_1a^{n-1} + \cdots + r_n = 0$. Write a = u/s with gcd(u, s) = 1. Then $u^n + r_1su^{n-1} + \cdots + r_ns^n = 0$. Now if s is a non-unit, says $p \mid s$ with p is a prime. Then $p \mid u$ obviously $\leadsto p \mid gcd(u, s) = 1$, which is a contradiction. So s is a unit $\implies a \in R$.

Prop 1.6.5.

• Let S/R is an integral extension and $T \subset R$ be a m.c. set with $1 \in T$. Then S_T is also integral over R_T .

Proof. Let $a/t \in S_T$ with $a^n + r_1 a^{n-1} + \cdots + r_n = 0$, then we have

$$\left(\frac{a}{t}\right)^n + \frac{r_1}{t} \left(\frac{a}{t}\right)^{n-1} + \dots + \frac{r_n}{t^n} \left(\frac{a}{t}\right)^n = 0$$

Thus a/t is integral over R_T .

• Let S/R be an arbitrary extension and $T \subset R$ be m.c. with $1 \in T$. Then $(\bar{R})_T = \overline{(R_T)}$ in S_T .

Proof. By 1., $(\overline{R})_T$ is integral over R_T . If $a/t \in S_T$ is integral over R_T , say

$$\left(\frac{a}{t}\right)^n + \frac{r_1}{t_1} \left(\frac{a}{t}\right)^n + \dots + \frac{r_n}{t_n} \left(\frac{a}{t}\right)^n = 0$$

If we let $v = t_1 t_2 \cdots t_n$, multiply the equation by $(tv)^n$, we get

$$(va)^n + (r_1tt_2\cdots t_n)(va)^{n-1} + \cdots = 0 \implies va \in \overline{R}$$

So $a/t = va/(vt) \in \overline{R}_T$.

Prop 1.6.6. "Being normal" is a local property. TFAE

- (1) R is normal
- (2) R_P is normal $\forall P \in \operatorname{Spec} R$
- (3) R_Q is normal $\forall Q \in \text{Max } R$

Proof. The key is to realize that if K is the field of fraction of R, then K is also the field of fraction of any R_P . Then by lemma 1.6.4,

$$0 \to R \to \overline{R} \to 0 \iff 0 \to R_P \to (\overline{R})_P \to 0, \forall P$$

By the previous proposition, $(\overline{R})_P = \overline{R_P}$ in S_P , this proves all.

Def 23. An R-module F is flat if the functor $-\otimes_R M$ is exact (i.e., it preserves exact sequence).

Prop 1.6.7. Given an homomorphism $R_1 \to R_2$. If M is a flat R_1 -module, then $R_2 \otimes_{R_1} M$ is a flat R_2 module.

Proof. Notice that $N \otimes_{R_1} M \cong N \otimes_{R_2} (R_2 \otimes_{R_1} M)$, so

$$0 \to N \to N' \text{ exact} \implies 0 \to N \otimes_{R_1} M \to N' \otimes_{R_1} M \text{ exact}$$
$$\implies 0 \to N \otimes_{R_2} (R_2 \otimes_{R_1} M) \to N' \otimes_{R_2} (R_2 \otimes_{R_1} M) \text{ exact}$$

Which is to say that $R_2 \otimes_{R_1} M$ flat.

Prop 1.6.8. TFAE

- (1) M is a flat R-module
- (2) M_P is a flat R-module $\forall P \in \operatorname{Spec} R$
- (3) M_Q is a flat R-module $\forall Q \in \operatorname{Max} R$

Proof. (1) \Rightarrow (2): By the previous proposition combined with the property of localization, $M_P \cong R_P \otimes_R M$ is a flat module.

- $(2) \Rightarrow (3)$: Obvious.
- (3) \Rightarrow (1): If $0 \to N \to N'$ exact, then by prop 1.6.4, $0 \to N_Q \to N_Q'$ exact, so

$$0 \to N_Q \otimes_{R_Q} M_Q \to N_Q' \otimes_{R_Q} M_Q$$

is also exact. By the property of localization, $N_Q \otimes_{R_Q} M_Q \cong (N \otimes_R M)_Q$. Using prop 1.6.4, $0 \to N \otimes_R M \to N' \otimes_R M$ exact.

1.7 Krull dimension

Def 24.

- The Krull dimension of a topological space X is the supremum of the lengths n of all chains $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n$, where X_i are closed irreducible subset of X.
- The Krull dimension of a commutative ring R with 1 is the supremum of the lengths n of all chains $P_0 \subsetneq \cdots \subsetneq P_n$ where $P_i \in \operatorname{Spec} R$.

Prop 1.7.1. Let $R \subseteq S$ be two integral domains and S/R be integral. Then S is a field if and only if R is a field.

Proof. " \Rightarrow ": For each $a \neq 0$ in R, $a^{-1} \in S$, so we could write

$$(a^{-1})^n + r_1(a^{-1})^{n-1} + \dots + r_n = 0, \ r_i \in R$$

Which implies

$$a^{-1} = -(r_1 + \dots + r_n a^{n-1}) \in R$$

"\(= \)": For each $a \neq 0$ is S, write

$$a^n + r_1 a^{n-1} + \dots + r_n = 0, \ r_i \in R$$

Notice that we could assume $r_n \neq 0$, or else $a(a^{n-1} + r_1 a^{n-2} + \cdots + r_{n-1}) = 0$ and hence $a^{n-1} + r_1 a^{n-2} + \cdots + r_{n-1} = 0$ because R is an integral domain. Then

$$a^{-1} = -r_n^{-1}(a^{n-1} + r_1a^{n-2} + \dots + r_{n-2})$$

Prop 1.7.2. Let S/R be integral.

1. If $q \in \operatorname{Spec} S$ and $p = q \cap R \in \operatorname{Spec} R$, then $q \in \operatorname{Max} S \iff p \in \operatorname{Max} R$.

Proof. It is easy to see that S/q is integral over R/p by the identification

$$R/p \longleftrightarrow S/p$$

$$r+p \longmapsto r+q$$

So

 $q \in \operatorname{Max} S \iff S/q \text{ is a field } \iff R/p \text{ is a field } \iff p \in \operatorname{Max} R$

19

2. If $q, q' \in \operatorname{Spec} S$ with $q \subseteq q'$ and $q \cap R = p = q' \cap R$. Then q = q'.

Proof. We know that $S_P \triangleq S_{R \setminus P}$ is integral over R_P . Since $q_P \subseteq q_P'$ and both $q_p \cap R_P$ and $q_p' \cap R_P$ equal P_P is maximal in R_P . Using 1., q_P, q_P' are maximal in S_P , but $q_P \subseteq q_P' \implies q_P = q_P'$. By corollary 1.6.1, $q_P = q_P'$.

Theorem 17 (Going-up theorem). Let S/R be integral, then

• If $p \in \operatorname{Spec} R$, then $\exists q \in \operatorname{Spec} S$ such that $q \cap R = p$.

Proof. We have the diagram:

$$p \xrightarrow{} R \xrightarrow{} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$P_p \xrightarrow{} R_p \xrightarrow{} S_p$$

Pick $q_p = N \in \operatorname{Max} S_p$, then $N \cap R_p \in \operatorname{Max} R_p = \{P_p\}$ by 1. of proposition 1.7.2, so $N \cap R_p = P_p$, and $(q \cap R)_p = q_p \cap R_p = P_p$, thus $q \cap R = p$.

• If $p_1 \subset p_2$ in Spec R and $q_1 \in \operatorname{Spec} S$ with $q_1 \cap R = p_1$, then $\exists q_2 \in \operatorname{Spec} S$ with $q_1 \subset q_2$ and $q_2 \cap R = p_2$.

Proof. Let $R' = R/p_1$ and $S' = S/q_1$. Then again, S'/R' is integral. By the previous statement, exists $q_2/q_1 \in \operatorname{Spec} S'$ so that $q_2/q_1 \cap R' = p_2/p_1$, thus $q_2 \cap R = p_2$ and $q_2 \supseteq q_1$. \square

Theorem 18. If S/R is integral, then dim $S = \dim R$.

Proof. For any chain $q_0 \subsetneq q_1 \subsetneq \cdots \subsetneq q_n$ in Spec S, by prop 2., $q_0 \cap R \subsetneq q_1 \cap R \subsetneq \cdots \subsetneq a_n \cap R$. Conversely, given $p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n$ in Spec R, there is $q_0 \subsetneq q_1 \subsetneq \cdots \subsetneq q_n$ by the going up theorem (17).

Prop 1.7.3. Let S, R be integral domains and S/R be integral, assume R is normal with the field of fractions K. If $a \in S$ is integral over $I \subseteq R$, then $f = m_{\alpha,K} = x^n + r_1 x^{n-1} + \cdots + r_n$ with $r_i \in \sqrt{I}$.

Proof. Assume deg f = n and $a_1, \ldots, a_n \in \overline{K}$ are the zeros of f. By assumption, $a^m + t_1 a^{m-1} + \cdots + t_m = 0$ with $t_i \in I \subset R \subset K$. For each i, exists $\varphi \in \operatorname{Aut}(\overline{K}/K)$ such that $\varphi(a) = a_i$. Then $0 = \varphi(a^m + t_1 a^{m-1} + \cdots + t_m) = a_i^m + t_1 a_i^{m-1} + \cdots + t_m$, so a_i is integral over I. Moveover, the coefficients of f are the elementary symmetry symmetric polynomial of a_i , hence they are integral over I and lie in $\sqrt{IR} = \sqrt{IR} = \sqrt{I}$.

Theorem 19 (Going-down theorem). Let S, R be integral domains and S/R be integral, assume R is normal with the field of fractions K. If $p_1 \supset p_2$ in Spec R and $q_1 \in \operatorname{Spec} S$ with $q_1 \cap R = p_1$, then $\exists q_2 \in \operatorname{Spec} S$ such that $q_1 \supset q_2$ and $q_2 \cap R = p_2$.

Proof. First we claim that $p_2S_{q_1} \cap R = p_2$.

"⊃": Obvious.

" \subseteq ": For $b/t \in p_2S_{q_1} \cap R$, $b \in p_2S \subset \sqrt{p_2S} = \sqrt{p_2R}$, which means that b is integral over p_2 and $t \in S \setminus q_1$. By proposition 1.7.3, if $m_{b,K} = x^l + r_1x^{l-1} + \cdots + r_l$, then $r_i \in \sqrt{p_2} = p_2$.

Now, $a = b/t \in R$, so $t = b/a \in S_{R \setminus \{0\}} = SK$, so

$$\left(\frac{b}{a}\right)^{l} + \left(\frac{r_1}{a}\right)\left(\frac{b}{a}\right)^{l-1} + \dots + \left(\frac{r_l}{a^l}\right) \leftrightarrow b^l + r_1b^{l-1} + \dots + r_l = 0$$

is a correspondence. Thus we know that $m_{t,K} = x^l + (r_1/a)x^{l-1} + \cdots + (r_l/a^l)$.

Again by proposition 1.7.3, since t is integral over R, $u_i \triangleq r_i/a^i \in R$, and $u_i a^i = r_i$ for each i.

If $a \notin p_2$, then $u_i a^i = r_i \in p_2$, so $u_i \in p_2$. But with $m_{t,K}$ we will find that $t^l \in p_2 S \subseteq p_1 S \subseteq q_1$, so $t \in q_1$, which leads to a contradiction. Thus $a \in p_2$.

Now we've proved $p_2S_{q_1}\cap R=p_2$, by exercise 12.4, $p_2=Q\cap R$ for some $Q\in S_{q_1}$. Letting $q=Q\cap S$ and we're done.

Theorem 20. All maximal chain in Spec $K[x_1, \ldots, x_n]$ have the same length n, and thus

$$\dim K[x_1,\ldots,x_n]=n.$$

Proof. Let $P_0 \subset P_1 \subset \cdots \subset P_m$ in Spec $K[x_1, \ldots, x_n]$ We shall use induction on n to prove m = n. n = 0: Then $\langle 0 \rangle$ is a max chain in Spec K, so m = 0 = n.

n > 0: Let $K[y_1, \ldots, y_n] \hookrightarrow K[x_1, \ldots, x_n]$ be a strong Noether normalization with $P_1 \cap K[y_1, \ldots, y_n] = \langle y_{d+1}, \ldots, y_n \rangle$, then $h(p_1) = 1 \implies h(p_1 \cap k[y_1, \ldots, y_n])$ by the going down theorem (19). (爲什麼 這樣就證完了???)

1.8 Artinian rings and DVR (week 13)

1.8.1 Artinian rings

Def 25. R is called an Artinian ring if one of the followings holds:

- any non-empty set of ideals has a minimal element.
- any descending chain of ideals is stationary (DCC).

Goal:

- 1. $R = \cong R_1 \times \cdots \times R_l$ where R_i is an Artinian local rings.
- 2. Artinian \iff Noetherian $+ \dim = 0$.

Prop 1.8.1.

$$\bullet \quad \sqrt{\mathfrak{m}_i^{n_i} + \mathfrak{m}_j^{n_j}} = \sqrt{\sqrt{\mathfrak{m}_i^{n_i}} + \sqrt{\mathfrak{m}_j^{n_j}}}$$

Proof.

"
$$\subseteq$$
" \forall $a \in \text{LHS}$, that is, $a^n = b + c$ with $b \in m_i^{n_i} \subseteq \sqrt{m_i^{n_i}}$ and $c \in m_j^{n_j} \subseteq m_j^{n_j}$ then $a \in \text{RHS}$. " \supseteq " \forall $a \in \text{RHS}$, that is, $a^n = b + c$ with $b^k \in m_i^{n_i}$ and $c^t \in m_j^{n_j}$. Then $(a^n)^{k+t} = (b+c)^{k+t} = b^{k+t} + \cdots + C_t^k b^k c^t + \cdots + c^{k+t}$. Every term either in $m_i^{n_i}$ or $m_j^{m_j}$, then $(a^n)^{k+t} = c + d$ with $c \in m_i^{n_i}$ $d \in m_i^{n_j} \Rightarrow a \in \text{LHS}$

• If m is prime, $\sqrt{m^n} = m$

Proof.

"
$$\subseteq$$
 " $a \in \text{LHS} \Rightarrow a^k \in m^n$ and m is prime. $\Rightarrow a \in m$.
" \subseteq " $a \in \text{RHS} a \in m \Rightarrow a^n \in \text{LHS}$.

• If $m, m_i, i = 1, \dots, n$ are prime and $m \supseteq m_1 \cap \dots \cap m_n$, then $m \supseteq m_i$ for some i.

Proof.

Suppose not, then we pick $a_i \in m_i$ m. $b = a_1 \cdots a_n \in m_i \forall i. \rightsquigarrow b \in m_1 \cap \cdots \cap m_n \subseteq m$. But, m is prime, exist $a_i \in m$, a contradiction.

Prop 1.8.2. Let R be an Artinian ring

- (1) $I \subseteq R \leadsto R/I$ is also Artinian.
- (2) If R is an integral domain, then R is a field.

Proof.
$$\forall a \in R, \langle a \rangle \supseteq \langle a^2 \rangle \supseteq \cdots$$
 is a descending chain of ideals $\implies \langle a^l \rangle = \langle a^{l+1} \rangle = \cdots$ for some $l \in \mathbb{N} \implies a^l = ba^{l+1} \implies a^l(1-ab) = 0 \implies ab = 1$ since $a^l \neq 0$.

(3) Spec $R = \operatorname{Max} R$. $(\Longrightarrow \dim R = 0)$

Proof.
$$\forall p \in \operatorname{Spec} R, R/p$$
 is an integral domain $\rightsquigarrow R/p$ is a field $\rightsquigarrow p \in \operatorname{Max} R$.

(4) $|\operatorname{Max} R| < \infty$.

Proof. Consider the set $\left\{\bigcap_{\text{finite}} \mathfrak{m} \mid \mathfrak{m} \in \operatorname{Max} R\right\} \neq \emptyset$. So there exists a minimal element in this set (R is Artinian), say $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$. Now, for $\mathfrak{m} \in \operatorname{Max} R$, we have $\mathfrak{m} \cap \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$ since the latter is minimal $\implies \mathfrak{m} \supseteq \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k \rightsquigarrow \mathfrak{m} \supseteq \mathfrak{m}_i$ for some i, by Prop 1.8.1. $\rightsquigarrow m = m_i$, since m_i is max. So $\operatorname{Max} R = \{\mathfrak{m}_1, \ldots, \mathfrak{m}_k\}$.

(5) $\exists n_1, \dots, n_k \in \mathbb{N} \text{ s.t. } \langle 0 \rangle = \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} = \mathfrak{m}_1^{n_1} \cap \mathfrak{m}_2^{n_2} \cap \cdots \cap \mathfrak{m}_k^{n_k}.$

Proof.

• $\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}=\mathfrak{m}_1^{n_1}\cap\mathfrak{m}_2^{n_2}\cap\cdots\cap\mathfrak{m}_k^{n_k}$. Recall I_i,I_j are coprime for $i\neq j \leadsto \prod_{i=1}^n I_i=\bigcap_{i=1}^n I_i$. And, by Prop 1.8.1

$$\sqrt{\mathfrak{m}_i^{n_i}+\mathfrak{m}_j^{n_j}}=\sqrt{\sqrt{\mathfrak{m}_i^{n_i}}+\sqrt{\mathfrak{m}_j^{n_j}}}=\sqrt{\mathfrak{m}_i+\mathfrak{m}_j}=\sqrt{R}=R \leadsto \mathfrak{m}_i^{n_i}+\mathfrak{m}_j^{n_j}=R.$$

• $\langle 0 \rangle = \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k}$ for suitable $\{n_i\}$ that $\mathfrak{m}_i^{n_i} = \mathfrak{m}_i^{n_i+1}$ Let $S = \{J \subseteq R \mid J\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \neq 0\}$. If $\langle 0 \rangle \neq \mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k}$, then $\mathfrak{m}_i \in S$. $\rightsquigarrow S \neq \varnothing$. Since R is Artinian, there exists a minimal element $J_0 \in S$. By definition of $S, \exists x \in J_0, x\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \neq 0 \rightsquigarrow \langle x \rangle \in S$ and $\langle x \rangle \subseteq J_0 \Rightarrow \langle x \rangle = J_0$. Also, $x\mathfrak{m}_1^{n_1+1}\mathfrak{m}_2^{n_2+1} \cdots \mathfrak{m}_k^{n_k+1} = x\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \neq 0 \rightsquigarrow I = x\mathfrak{m}_1 \dots \mathfrak{m}_k \in S$ and $I \subseteq J_0 = xR \rightsquigarrow I = xR$.

$$(\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_k)xR = xR \leadsto (\mathfrak{m}_1\cap\mathfrak{m}_2\cap\cdots\cap\mathfrak{m}_k)xR = xR \leadsto (\operatorname{Jac} R)xR = xR$$

By Nakayama's lemma, $xR = 0 \implies x = 0$, which is a contradiction.

(6) The nilradical \mathfrak{n}_R of R is nilpotent.

Proof. By (3), $\mathfrak{n}_R = \operatorname{Jac} R$. Let $n = \max\{n_1, \dots, n_k\}$ in (5), then $\mathfrak{n}_R^n = (\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_k)^n = 0$.

Goal 1: $R \cong R_1 \times R_k$ where R_i is Artinian local ring.

Proof. By Chinese Remainder theorem,

$$R \cong R/\langle 0 \rangle = R/\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_h^{n_k} \cong R/\mathfrak{m}_1^{n_1}\times R/\mathfrak{m}_2^{n_2}\times\cdots\times R/\mathfrak{m}_h^{n_k}$$

Let $R_i = R/\mathfrak{m}_i^{n_i}$, then $\bar{\mathfrak{m}} \in \operatorname{Max} R_i$ if $\mathfrak{m} \in \operatorname{Max} R$ and $\mathfrak{m} \supset \mathfrak{m}_i^{n_i} \leadsto \mathfrak{m} = \mathfrak{m}_i$. So $\operatorname{Max} R_i = \{\bar{\mathfrak{m}}_i\} \implies R_i$ is a local ring.

Lemma 5. Let V be a K-vector space, TFAE

- (1) $\dim_k V < \infty$
- (2) V has DCC on subspaces.
- (3) V has ACC on subspaces.

Proof.

<u>Fact</u>: If $V_1 \subseteq V_2$ is finite dimensional vector space over K, then $V_1 = V_2 \iff \dim_k V_1 = \dim_k V_2$. Otherwise, $\dim_k V_1 < \dim_k V_2$.

 $(1) \Leftrightarrow (3)$

" \Rightarrow " Suppose there exists a chain in vector space V with strictly increasing and infinite length,

$$V_1 \subset V_2 \subset \cdots \subseteq V \Rightarrow \dim_k V_1 < \dim_k V_2 < \cdots \leq \dim_k V$$

Then, $\dim_k V$ must be infinite.

" \Leftarrow " If $\dim_k V$ is infinite, let $S = \{b_1, b_2, \dots\}$ be basis of V.

$$\langle b_1 \rangle_K \subset \langle b_1, b_2 \rangle_K \subset \cdots$$

is a infinite ascending chain.

Similarly, $(1) \Leftrightarrow (2)$.

Observation: If R is Northerian and dim R = 0, then $\langle 0 \rangle = \bigcap_{i=1}^k q_i$ (primary decomposition) and $\sqrt{q_i} = \mathfrak{m}_i \in \operatorname{Spec} R = \operatorname{Max} R$. Also, $\exists n_i \ \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} = \langle 0 \rangle$

Since \mathfrak{m}_i is finitely generated, $\exists n_i$ s.t. $\mathfrak{m}_i^{n_i} \subseteq q_i$. Hence

$$\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}=\mathfrak{m}_1^{n_1}\cap\mathfrak{m}_2^{n_2}\cap\cdots\cap\mathfrak{m}_k^{n_k}\subseteq q_1\cap q_2\cap\cdots\cap q_k=\langle 0\rangle$$

$$\implies \mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k} = \langle 0 \rangle$$

Goal 2: In a ring R, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be, not necessarily different, maximal ideals in R s.t. $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=0$. Then R is Artinian $\iff R$ is Noetherian.

Proof. We have a chain of ideals in R: $\mathfrak{m}_0 = R \supset \mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = 0$.

Let $M_i = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i$ as R-module. Notice that $\mathfrak{m}_i M_i = 0$, we can treat M_i as R/\mathfrak{m}_i -module. But R/\mathfrak{m}_i is a field, so M_i can be regarded as a vector space. Hence, by lemma 5

$$M_i$$
 is Artinian \iff M_i is Noetherian.

By definition,

$$0 \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1} \to M_i \to 0$$

By Ex1,

$$\mathfrak{m}_0 = R \text{ Artinian } \iff \mathfrak{m}_1, M_1 \text{ Artinian }$$

$$\iff \mathfrak{m}_1 \mathfrak{m}_2, M_1, M_2 \text{ Artinian }$$

$$\vdots$$

$$\iff \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n, M_1, \dots, M_n \text{ Artinian }$$

$$\iff \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n, M_1, \dots, M_n \text{ Noetherian }$$

$$\vdots$$

$$\iff \mathfrak{m}_1 \mathfrak{m}_2, M_1, M_2 \text{ Noetherian }$$

$$\iff \mathfrak{m}_1, M_1 \text{ Noetherian } \iff \mathfrak{m}_0 = R \text{ Noetherian }$$

Note: Goal 2 is accomplished by recongnizing that,

- R is Artinian $\implies \mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_k^{n_k} = \langle 0 \rangle$ by prop 1.8.2 (4).
- R is Noetherian $+ \dim 0 \implies \mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_k^{n_k} = \langle 0 \rangle$ by Observation.

1.8.2 DVR (Discrete Valuation Ring)

Def 26.

- (1) Let K be a field. A discrete valuation of K is $\nu: K^{\times} \to \mathbb{Z}$ $(\nu(0) = \infty)$ s.t.
 - $\nu(xy) = \nu(x) + \nu(y)$.
 - $\nu(x \pm y) = \min{\{\nu(x), \nu(y)\}}.$
- (2) The valuation ring of ν is $R = \{x \in K \mid \nu(x) \ge 0\}$, called a DVR.
 - Fact $\nu(1) = 0: \nu(1) = \nu(1) + \nu(1) \Longrightarrow \nu(1) = 0$ $\nu(x) = -\nu(x^{-1}): 0 = \nu(xx^{-1}) = \nu(x) + \nu(x^{-1})$
 - $\mathfrak{m} = \{x \in R \mid \nu(x) > 0\}$ is the unique maximal ideal in R since $\nu(x) = 0 \iff x$ is a unit.

"
$$\Rightarrow$$
 " $\nu(x) = 0 \leadsto \nu(x^{-1}) = 0 \leadsto x^{-1} \in R$ " \Leftarrow " $\nu(x^{-1}), \nu(x) \ge 0$. And, $\nu(x) = -\nu(x) \le 0 \leadsto \nu(x) = 0$

- Let $t \in R$ with $\nu(t) = 1$, then $\mathfrak{m} = \langle t \rangle$. $\forall x \in \mathfrak{m}, \nu(x) = k > 0. \rightsquigarrow \nu(x(t^k)^-1) = \nu(x) - k\nu(t) = 0 \rightsquigarrow x = t^k u, u \text{ is unit in R.}$
- Let $I \subseteq \mathfrak{m}$ and define $m = \min\{l \in \mathbb{N} \mid x = t^l u \quad \forall x \in I\}$. Then $I = \langle t^m \rangle$.

Prop 1.8.3. R is a DVR \iff R is 1-dimensional normal, Noetherian local domain.

Proof.

"
$$\Rightarrow$$
": DVR \Longrightarrow PID \Longleftrightarrow UFD \Longrightarrow normal Noetherian

 $\forall\,P\neq0\in\mathrm{Spec}\,R,\,P=\langle t^k\rangle=m^k\text{ for some }k\in\mathbb{N}\leadsto P=\sqrt{P}=\sqrt{m^k}=m\leadsto P=m\leadsto\langle0\rangle\subset m\leadsto\dim R=1.$ " \Leftarrow ":

• $\mathfrak{m} \neq \mathfrak{m}^2$:

If $\mathfrak{m} = \mathfrak{m}^2$ and $\mathfrak{m} = \operatorname{Jac} R$, then $m = \langle 0 \rangle$ by Nakayama's lemma, which is a contradiction to $\dim R = 1$.

• Let $t \in \mathfrak{m} - \mathfrak{m}^2$ and $\mathfrak{m} = \langle t \rangle$

Consider $M = \mathfrak{m}/\langle t \rangle$ and assume $M \neq 0$

<u>Fact</u>: $I = \operatorname{Ann}(\bar{x}) \ \bar{x} \in M \implies I \in \operatorname{Spec} R \ \operatorname{Since} \ ab \in I, \ a, b \notin I, \ \operatorname{then} \ ab\bar{x} = 0, \ \operatorname{and} \ b\bar{x} \neq 0.$ Suppose I is maximal, $\operatorname{Ann}(b\bar{x}) \supseteq \operatorname{Ann}(\bar{x}) \rightsquigarrow \operatorname{Ann}(b\bar{x}) = \operatorname{Ann}(\bar{x}) \ \operatorname{Then}, \ a \in \operatorname{Ann}(b\bar{x}) = \operatorname{Ann}(\bar{x}), \ \operatorname{which} \ \text{is a contradiction}.$

By the Fact, $\exists \bar{x} \neq 0 \in M$ s.t. $\operatorname{Ann}(\bar{x}) = \mathfrak{m} \leadsto x\mathfrak{m} = \langle t \rangle = tR \leadsto \frac{x}{t}\mathfrak{m} \subseteq R$.

- (1) If $\frac{x}{t} = R \leadsto \frac{xy}{t} = 1$ for some $y \in \mathfrak{m} \leadsto t = xy \in \mathfrak{m}$, which is a contratiction.
- (2) If $\frac{x}{t} \subset \mathfrak{m}$, let $\mathfrak{m} = \langle y_1, \cdots, y_n \rangle_R$ Write $\frac{x}{t}y_i = \sum_{j=1}^l a_{ij}y_j \forall i = 1, \cdots, l$ By using determinant

trick, we have $\frac{x}{t}$ is integral over R, but R is normal $\rightsquigarrow \frac{x}{t} \in R \rightsquigarrow x \in \langle t \rangle \leadsto \bar{x} = \bar{0}$, which is a contradiction.

Therefore, $\mathfrak{m} = \langle t \rangle$.

- By Ex3, $\bigcap_{n=0}^{\infty} m^n = 0$. Thus, $\forall x \in R$, $\exists ! k \text{ s.t. } x \in m^k \text{ and } x \notin m^k + 1$. $\leadsto x = t^k u$, u is units.
- Define $\nu(x) = k$ and $\forall \frac{x}{y} \in \operatorname{Frac} R\nu(\frac{x}{y}) = \nu(x) \nu y$.

$$(1) \ \frac{x}{y} = \frac{x'}{y'} \leadsto xy' = x'y \leadsto \nu(xy') = \nu(x'y).$$

$$\begin{array}{l} (2) \ \nu(\frac{a}{b}\frac{c}{d}) = \nu(ac) - \nu(bd) = \left[\nu(a) - \nu(b)\right] - \left[\nu(c) - \nu(d)\right] = \nu(\frac{a}{b}) - \nu(\frac{c}{d}) \\ (3) \ \nu(\frac{a}{b} + \frac{c}{d}), \ \nu(a) = v_a, \ \nu(b) = v_b, \ \nu(c) = v_c, \\ \nu(d) = v_d. \ \nu(\frac{a}{b}) + \frac{c}{d} = \min\left\{\nu(\frac{a}{b}), \nu(\frac{c}{d})\right\} = \min\left\{\nu(\frac{ad}{bd}), \nu(\frac{bc}{bd})\right\} = \nu(\frac{ad+bd}{bd}). \end{array}$$

Therefore, R is DVR.

1.8.3 Dedekind domains

Def 27. A Dedekind domain is a Noetherian normal domain of dim 1.

Def 28. Let R be an integral domain and $K = \operatorname{Frac}(R)$. A nonzero R-submodule I of K is called a fractional ideal of R if $\exists 0 \neq a \in R$ s.t. $aI \subset R$.

Eg 1.8.1. If $I = \langle f_1, \dots, f_n \rangle_R$ with $f_i = \frac{a_i}{b_i} \in K$, then $a = b_1 b_2 \cdots b_n$ and $aI \subset R \implies I$ is fractional.

In general, if R is a Noetherian, then every fractional ideal I of R is finitely generated.

Def 29. A fractional ideal I of R is invertible if $\exists J$: a fractional ideal of R s.t. IJ = R.

Prop 1.8.4.

1. If I is invertible, then $J = I^{-1}$ is unique and equals $J = (R : I) \triangleq \{a \in K \mid aI \subset R\}$.

Proof.
$$J \subseteq (R:I) \subseteq (R:I)R \subseteq (R:I)IJ \subseteq RJ = J \leadsto J = (R:I)$$

2. If I is invertible, then I is a finitely generated R-module.

Proof.
$$I(R:I) = R \rightsquigarrow 1 = \sum_{i=0}^{k} x_i y_i, \ x_i \in I \text{ and } y_i \in (R:I).$$
 Then, $\forall x \in I, \ x = \sum_{i=0}^{k} \underbrace{(xy_i)}_{\in R} x_i \rightsquigarrow I = \langle x_0, \dots, x_k \rangle_R.$

3. Let R be a local domain but not a field, $K = \operatorname{Frac}(R)$. Then R is a DVR \iff every nonzero fractional ideal I of R is invertible.

Proof.

" \Rightarrow ": Let I be fractional ideal of R, then $\exists \ a \in R \leadsto aI \subseteq R$. And, $\mathfrak{m} = \langle t \rangle$, since R is not a field $t \neq 0$. $\leadsto a = t^k u$ where u is a unit in R. If aI = R, then $J = \langle a \rangle_R$. $\leadsto IJ = R$. If not, $aI \subseteq R \leadsto aI \subseteq \mathfrak{m} \leadsto aI = \langle t^l \rangle \leadsto I = \langle t^{l-k} \rangle_R$. Let $J = \langle t^{k-l} \rangle_R$, then IJ = R. " \Leftarrow ".

- R is Neotherian: $\forall I \subseteq R$ and I is invertible $\leadsto I$ is f.g. R-module.
- $\mathfrak{m} \neq \mathfrak{m}^2$, \mathfrak{m} is the unique maximal in R: $\mathfrak{m} = \mathfrak{m}^2$ and $\mathfrak{m} = \operatorname{Jac} R \rightsquigarrow \mathfrak{m} = 0 \rightsquigarrow R$ is a field, which is a contradiction.
- $\mathfrak{m} = \langle t \rangle_R$: Pick $t \in \mathfrak{m} \mathfrak{m}^2$ and let $\mathfrak{m}\mathfrak{m}^{-1} = R \leadsto t\mathfrak{m}^{-1} \subseteq R$. If $t\mathfrak{m} \subseteq$, then $t\mathfrak{m}\mathfrak{m}^{-1} = tR \subseteq \mathfrak{m}^2$, a contradiction. Therefore, $\mathfrak{m} \subset t\mathfrak{m} \leadsto t\mathfrak{m} = R \leadsto t\mathfrak{m}\mathfrak{m}^{-1} = tR = \mathfrak{m} \leadsto \mathfrak{m} = \langle t \rangle_R$.
- Using the same construction ν in prop 1.8.3 we have the R is DVR.

Theorem 21. Let R be an integral domain and $K = \operatorname{Frac}(R)$. TFAE

(a) R is a Dedekind domain.

- (b) R is Noetherian and R_P is a DVR for all $P \in \operatorname{Spec} R$.
- (c) Every nonzero fractional ideal of R is invertible.
- (d) Every nonzero proper ideal of R can be written (uniquely) as a product of powers of prime ideals.

Proof.

 $(a)\Leftrightarrow(b)$:

- R is normal $\iff R_P$ is normal for all $P \in \operatorname{Spec} R$.
- $\dim R_P = 1 \quad \forall P \in \operatorname{Spec} R \iff h(P) = 1 \quad \forall 0 \neq P \in \operatorname{Spec} R \iff \dim R = 1.$

(b)⇔(c):

- (b) and (c) $\implies R$ is Noetherian
- $I_P(R:I)_P = I_P(R_P:I_P)$ (Hint: I is f.g.)
- R_P is DVR $\forall P \in \text{Spec } R \iff \text{Every nonzero fractional ideal of } R$ is invertable.

$$\forall P \in \operatorname{Spec} R \ R_P = I_P(R_P : I_P) = I_P(R : I)_P = I(R : I)_P \iff R = I(R : I)$$

 $(a)(b)(c) \Rightarrow (d)$:

Existence:

- $I = q_1 \cap \cdots \cap q_n$ and $\sqrt{q_i} = P_i \in R$ by primary decomposition thm.
- $q_1 \cap \cdots \cap q_n = q_1 \cdots q_n$ Since dim R = 1, $P_i \in \text{Max } R$. And, R is Noetherian, $\exists n_i \in \mathbb{N}$ s.t. $m_i^{n_i} \subseteq q_i$. Then, $m_i^{n_i} + m_j^{n_j} = R \forall i \neq j \rightsquigarrow q_i + q_j = R \rightsquigarrow q_1 \cap \cdots \cap q_n = q_1 \cdots q_n$
- $I = m_i^{r_i} \cdots m_n^{r_n}$ Since R_{m_i} is DVR $\leadsto (q_i)_{m_i} = (m_i^{r_i})_{m_i} \leadsto q_i = m_i^{r_i}$ by prime ideals have 1-1 correspondence in localization. Therefore, $I = m_i^{r_i} \cdots m_n^{r_n}$.

Uniqueness:

• $P_1 \cdots P_k = Q_1 \cdots Q_r$ P_i, Q_i is prime. Then, $P_1 \cdots P_k \subseteq Q_1 \leadsto P_i \subseteq Q_1$, say i = 1 by prop 1.8.1. Since Q_1 is invertible, then $P_2 \cdots P_k = Q_2 \cdots Q_r$. By induction by hypothesis, we have the uniqueness result.

 $(d) \Rightarrow (c)$:

- Every invertible prime is maximal: If not, let $p + aR = P_1 \cdots P_k$ and $p + a^2R = Q_1 \cdots Q_r$. $\leadsto p \subseteq P_i$ and Q_j $\underline{\operatorname{Claim}} \ (p + aR)^2 = (p + a^2R)$: $\underline{\operatorname{In}} \ R/p, \langle \bar{a} \rangle = (P_1/p) \cdots (P_k/p)$ and $\langle \bar{a}^2 \rangle = (Q_1/p) (Q_r/p)$. And, $\langle \bar{a} \rangle = (P_1/p)^2 \cdots (P_k/p)^2 = (Q_1/p) \cdots (Q_r/p)$
- $P = P^2 + aP$

$$P \subseteq P + a^2 R = (P + aR)^2 \subseteq P^2 + aR$$

Then,

$$\forall \, x \in P, \quad \underset{\in P}{x} = \underset{\in P^2}{y} + a \underset{\in R}{z} \leadsto z \in P$$

Therefore, $P \subseteq P^2 + aP \rightsquigarrow P = P^2 + aP$. By invertibility of P, we have R = P + aR, which is a contradiction.

• Every nonzero prime is invertible: Let $0 \neq a \in P$, and $P \supseteq \langle a \rangle$ is invertible. $\langle a \rangle = P_1 \cdots P_n$ and P_i is invertible. And, $P \subseteq P_i \leadsto P = P_i$ since P_i is maximal.

- \forall ideal $0 \neq I \subseteq R, I = P_1 \cdots P_m \leadsto I$ is invertible.
- If I is fractional ideal of R, say $aI \subseteq R \leadsto \exists J$ ideal in $R \leadsto aIJ = R \leadsto I(aJ) = R$. I is invertible.

2 Introduction to Homological Algebra

2.1 Projective, Injective and Flat modules (week 14)

Def 30.

- $M \in \mathbf{Mod}_R$ is **projective** if $\mathrm{Hom}(M,\cdot)$ preserves the *right* exactness.
- $N \in \mathbf{Mod}_R$ is **injective** if $\mathrm{Hom}(\cdot, N)$ preserves the *right* exactness.
- $M \in \mathbf{Mod}_R$ is flat if $M \otimes \cdot$ preserves the *left* exactness.

Fact 2.1.1.

 $\bullet \ \ M \ \text{is projective} \iff \underbrace{\begin{array}{c} \exists \ \tilde{f} \\ \downarrow f \\ M_2 \longrightarrow M_3 \longrightarrow 0 \\ 0 \longrightarrow M_1 \longrightarrow M_2 \\ \\ \bullet \ \ N \ \text{is injective} \iff \underbrace{\begin{array}{c} M \\ M_2 \longrightarrow M_3 \longrightarrow 0 \\ 0 \longrightarrow M_1 \longrightarrow M_2 \\ \\ g \downarrow \\ N \end{array}}_{\sharp \ \tilde{g}}$

• free \Longrightarrow projective: If $X = \{x_i \mid i \in \Lambda\}$ and $f : x_i \mapsto a_i$. Since β onto, exists b_i so that $\beta(b_i) = a_i$. we can then set $\tilde{f} : x_i \mapsto b_i$ by the universal property of free module.

$$F(X)$$

$$\downarrow^{\tilde{f}} \qquad \downarrow^{f}$$

$$M_2 \xrightarrow{\beta} M_3 \longrightarrow 0$$

• free \Longrightarrow flat: Let $F \cong R^{\oplus \Lambda}$ be a free module, and M_1, M_2 be two modules such that $0 \to M_1 \to M_2$. Since $R \otimes_R M \cong M$, we have

$$0 \to M_1 \to M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to R \otimes M_1 \to R \otimes M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to \bigoplus_{i \in \Lambda} R \otimes M_1 \to \bigoplus_{i \in \Lambda} R \otimes M_2 \qquad \text{exact}$$

$$\stackrel{(a)}{\Longrightarrow} 0 \to R^{\oplus \Lambda} \otimes M_1 \to R^{\oplus \Lambda} \otimes M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to F \otimes M_1 \to F \otimes M_2 \qquad \text{exact}$$

Where (a) is by the fact that $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$. Thus F flat.

• If S is a multiplication closed set in R with $1 \in S$, then

$$0 \to M \to N \to L \to 0 \implies 0 \to M_S \to N_S \to L_S \to 0.$$

We know that $M_S \cong R_S \otimes_R M$. So R_S is a flat R-module. e.g. \mathbb{Q} is a flat \mathbb{Z} -module.

For any $M \in \mathbf{Mod}_R$, a projective module N such that $N \to M \to 0$ could be easily found: Simply let N = F, a free module on the generating set of M.

Now we shall ask for any module M, does there exist $N \in \mathbf{Mod}_R$ such that N is injective and $0 \to M \to N$?

Theorem 22 (Baer's criterion). N is injective $\iff \forall I \subset R$, and a homomorphism f, there exists a homomorphism h such that the following diagram commutes:

$$0 \longrightarrow I \longrightarrow R$$

$$f \downarrow \qquad \qquad \downarrow \\ N$$

Proof. " \Rightarrow ": See I as an R module, then it is immediate by the definition of injective module.

"←: Consider the following diagram:

$$0 \longrightarrow M_1 \longrightarrow M_2$$

$$\downarrow^g$$

$$N$$

Let $S \triangleq \{(M, \rho) \mid M_1 \subseteq M \subseteq M_2 \text{ and } \rho : M \to N \text{ extends } g\} \neq \emptyset \text{ since } (M_1, g) \in S.$

By the routinely proof using Zorn's lemma, exists a maximal element $(M^*, \mu) \in S$.

We claim that $M^* = M_2$. If not, pick $a \in M_2 \setminus M^*$ and let $M' \triangleq M^* + Ra \supseteq M^*$, $I \triangleq \{r \in R \mid ra \in M^*\}$. Define $f: I \to N$ with $r \mapsto \mu(ra)$. Then we have an extension $h: R \to N$ of f.

Now, let $\mu': M' \to N = x + ra \mapsto \mu(x) + h(r)$. We shall prove that this map is well-defined: If $x_1 + r_1a = x_2 + r_2a$, then $(r_1 - r_2)a = x_2 - x_1 \in M \implies r_1 - r_2 \in I$. So $h(r_1) - h(r_2) = f(r_1 - r_2) = \mu((r_1 - r_2)a) = \mu(x_2) - \mu(x_1)$, which prove μ' is well defined, and the existence of μ' contradicts the fact that (M^*, μ) is maximal.

Def 31. M is **divisible** if $\forall x \in M, r \in R \setminus \{0\}$, there exists $y \in M$ such that x = ry, i.e. $rM = M \quad \forall r \in R \setminus \{0\}$.

Prop 2.1.1.

1. Every injective module N over an integral domain is divisible.

Proof. For any $x_0 \in N$ and $r_0 \in R \setminus \{0\}$. Let $I = \langle r_0 \rangle \subset R$. As long as R is an integral domain, $I \cong R$ as an R-module, so the R-module homomorphism $f: I \to N = rr_0 \mapsto rx_0$ is well-defined. Since N injective, this map extends to $h: R \to N$. Let $y_0 \triangleq h(1)$, then $r_0y_0 = r_0h(1) = h(r_0) = x_0$. Thus N injective.

2. Every divisible module N over an PID is injective.

Proof. For any $I \subseteq R$ and a homomorphism $f: I \to N$, if I = 0 then $h = x \mapsto 0$ is always an extension of f. So assume $I \neq 0$. Since R is a PID, $I = \langle r_0 \rangle$ for some $r_0 \neq 0 \in R$. By the fact that N divisible, exists $y_0 \in N$ such that $r_0 y_0 = x_0 \triangleq f(r_0)$.

Now we could define $h: R \to N$ by $1 \mapsto y_0$. Then $h(r_0) = r_0 h(1) = r_0 y_0 = x_0$, thus h is an extension of f and N injective.

3. If R is a PID, then any quotient N of a injective R-module M is injective.

Proof. By 2., rM = M for any $r \neq 0$, thus rN = N for any $r \neq 0$, and hence N injective. \square

Theorem 23. For any $M \in \mathbf{Mod}_R$, there exists an injective module N containing M.

Proof.

Case 1: $R = \mathbb{Z}$.

Let $X = \{x_i\}_{i \in \Lambda}$ be a generating set for M and F is free on X. Let f be the natural map from F to M, then $M \cong F/\ker f$.

Define $F' = \bigoplus_{i \in \Lambda} \mathbb{Q}e_i \supset F$, which is obviously a divisible \mathbb{Z} -module. Then $M \subseteq F' / \ker f \triangleq M'$, where M' is injective by proposition 2.1.1.

Case 2: R arbitrary.

We can regard any M as a \mathbb{Z} -module, then there exists an injective module $N_0 \supset M$. Now, we have an R-module $N \triangleq \operatorname{Hom}_{\mathbb{Z}}(R, N_0)$ with multiplication $rf \triangleq x \mapsto f(xr)$.

We claim that N is injective. For any $f: M_1 \to N$, and a homomorphism $\alpha: M_1 \to M_2$, first we can regard α as a \mathbb{Z} -module homomorphism, then we define $f': M_1 \to N_0$ as $x \mapsto f(x)(1)$. Since N_0 injective (in $\mathbf{Mod}_{\mathbb{Z}}$), there exists a \mathbb{Z} -module homomorphism h' from M_2 to N_0 .

Now, define

$$h: M_2 \longrightarrow N$$

$$y \longmapsto h(y): R \longrightarrow N_0$$

$$1 \longmapsto h'(y)$$

$$r \longmapsto h'(ry)$$

We check that h is well-defined.

- $h(y) \in \text{Hom}_{\mathbb{Z}}(R, N_0)$ $h(y)(r_1 + r_2) = h'((r_1 + r_2)y) = h'(r_1y + r_2y) = h'(r_1y) + h'(r_2y) = h(y)(r_1) + h(y)(r_1)$
- $h \in \operatorname{Hom}_R(M_2, N)$

$$h(r_1y_1 + y_2)(r) = h'(r(r_1y_1 + y_2)) = h'(rr_1y_1 + ry_2)$$

$$= h'(rr_1y_1) + h'(ry_2)$$

$$= h(y)(rr_1) + h(y_2)(r)$$

$$= (r_1h(y))(r) + h(y_2)(r)$$

• Show diagram commute $f = h \circ \alpha$. Fix $y \in M_1$, then $\forall r \in R$:

$$(h \circ \alpha)(y)(r) = h(\alpha(y))(r) = h'(r\alpha(y))$$
$$= h'(\alpha(ry)) = f'(ry)$$
$$= f(ry)(1) = rf(y)(1)$$
$$= f(y)(r)$$

Thus N injective.

Now, notice that $\operatorname{Hom}_{\mathbb{Z}}(R,\cdot)$ is a left exact functor, so $M \hookrightarrow N_0$ implies $\operatorname{Hom}_{\mathbb{Z}}(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,N_0)$, thus $M \cong \operatorname{Hom}_R(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,N_0) = N$.

Prop 2.1.2. TFAE

- 1. M is projective.
- 2. Every exact sequence $0 \to M_1 \to M_2 \to M \to 0$ split.

3. $\exists M'$ s.t. $M \oplus M' \cong F$: free.

Proof.

(1) \Rightarrow (2) : Since M projective, the map λ with $\beta \circ \lambda = \text{Id}$ exists in the following diagram:

$$M_2 \xrightarrow{\exists \lambda \qquad \qquad \downarrow \text{Id}} M \longrightarrow 0$$

Then λ is a lifting, so $M_2 \cong M_1 \oplus M$ and $0 \to M_1 \to M_2 \to M \to 0$ split.

(2) \Rightarrow (3): Let F be a free module on a generating set of M, and $\beta :: F \to M$ be the natural map, then $0 \to \ker \beta \to F \to M \to 0$ split, so $F \cong \ker \beta \oplus M$.

(3) \Rightarrow (1): For any $M_2 \to M_3 \to 0$, since $M' \oplus M$ free and thus projective, λ' exists in the following diagram:

$$0 \longrightarrow M' \longrightarrow M' \oplus M \xrightarrow{\mu} M \longrightarrow 0$$

$$\downarrow^{\exists \lambda'} \qquad \downarrow^{f}$$

$$M_{2} \xrightarrow{\beta} M_{3} \longrightarrow 0$$

Define $\lambda = \lambda' \circ \mu$. Then $\beta \circ \lambda = \beta \circ \lambda' \circ \mu = f \circ \pi \circ \mu = f$.

Prop 2.1.3. TFAE

- 1. *M* is injective.
- 2. Each exact sequence $0 \to M \to M_2 \to M_3 \to 0$ split.

Proof. (1) \Rightarrow (2): Similar to the projective case, μ exists in the following diagram:

$$0 \longrightarrow M \xrightarrow{\alpha} M_2$$

$$\downarrow^{\operatorname{Id}}_{\mathbb{K}} \exists \mu$$

$$M$$

So $M_2 = M \oplus M_3$.

 $(2) \Rightarrow (1)$: By theorem 23, there is a module $N \subset M$ so that N is injective.

Consider $0 \longrightarrow M \xrightarrow{i \atop \exists \mu} N \longrightarrow \operatorname{coker} i \longrightarrow 0$ split exact and $\mu \circ i = \operatorname{Id}_M$. Since N injective, h' exists in the following diagram:

Let $h = \mu \circ h'$, then $h \circ \alpha = \mu \circ h' \circ \alpha = \mu \circ i \circ f = f$.

Prop 2.1.4. projective \implies flat.

Proof. Observe that $\bigoplus_{i \in \Lambda} M_i$ is flat if and only if M_i is flat for each i, since if $0 \to N_1 \xrightarrow{\alpha} N_2$ exact, then

$$0 \longrightarrow (\bigoplus M_i) \otimes N_1 \xrightarrow{1 \otimes \alpha} (\bigoplus M_i) \otimes N_2$$

$$\parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \bigoplus (M_i \otimes N_1) \xrightarrow{\oplus (1 \otimes \alpha)} \bigoplus (M_i \otimes N_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M_i \otimes N_1 \xrightarrow{1 \otimes \alpha} M_i \otimes N_2 \qquad \forall i \in \Lambda$$

If M is projective, then by proposition $2.1.2 \exists M'$ such that $M \oplus M' \cong F$ is free. Since free implies flat, by above, M is flat.

Def 32.

• A chain complex C_{\bullet} of R-modules is a sequence and maps:

$$C_{\bullet}: \cdots \to C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \to \cdots \to C_1 \xrightarrow{d_1} C_0 \to 0$$

with $d_n \circ d_{n+1} = 0$, $\forall n$. (i.e. $\operatorname{Im} d_{n+1} \subseteq \ker d_n$)

Then define

- $-Z_n(C_{\bullet}) \triangleq \ker d_n$ is the *n*-cycle.
- $-B_n(C_{\bullet}) \triangleq \operatorname{Im} d_{n+1}$ is the *n*-boundary.
- $-H_n(C_{\bullet}) \triangleq Z_n(C_{\bullet})/B_n(C_{\bullet})$ is called the *n*-th homology.
- A cochain complex C^{\bullet} of R-modules is a sequence and maps:

$$C^{\bullet}: 0 \to C^0 \xrightarrow{d^1} C^1 \to \cdots \to C^{n-1} \xrightarrow{d^n} C^n \xrightarrow{d^{n+1}} C^{n+1} \to \cdots$$

with $d^{n+1} \circ d^n = 0$, $\forall n$. (i.e. Im $d^n \subseteq \ker d^{n+1}$)

Then define

- $-Z^n(C^{\bullet}) \triangleq \ker d^{n+1}$ is the *n*-cocycle.
- $-B^n(C^{\bullet}) \triangleq \operatorname{Im} d^n$ is the *n*-coboundary.
- $-H^n(C^{\bullet}) \triangleq Z^n(C^{\bullet})/B^n(C^{\bullet})$ is called the *n*-th cohomology.
- $\varphi: C_{\bullet} \to \tilde{C}_{\bullet}$ is a chain map if the following diagram commutes:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{\varphi_{n+1}} \qquad \downarrow^{\varphi_n} \qquad \downarrow^{\varphi_{n-1}}$$

$$\cdots \longrightarrow \tilde{C}_{n+1} \xrightarrow{\tilde{d}_{n+1}} \tilde{C}_n \xrightarrow{\tilde{d}_n} \tilde{C}_{n-1} \longrightarrow \cdots$$

Observe that $\varphi_n(\ker d_n) \subseteq \ker \tilde{d}_n$ and $\varphi_n(\operatorname{Im} d_{n+1}) \subseteq \operatorname{Im} \tilde{d}_{n+1}$. This will induce the following maps:

$$\varphi_*: H_n(C_{\bullet}) \to H_n(\tilde{C}_{\bullet})$$

 $x + B_n(C_{\bullet}) \mapsto \varphi_n(x) + B_n(\tilde{C}_{\bullet})$

• $f: C_{\bullet} \to \tilde{C}_{\bullet}$ is null homotopic if $\exists s_n: C_n \to \tilde{C}_{n+1}$ s.t. $f_n = \tilde{d}_{n+1} \circ s_n + s_{n-1} \circ d_n, \quad \forall n$.

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{f_{n+1}} \searrow^{s_n} \downarrow^{f_n} \downarrow^{f_{n-1}} \downarrow^{f_{n-1}}$$

$$\cdots \longrightarrow \tilde{C}_{n+1} \xrightarrow{d_{n+1}} \tilde{C}_n \xrightarrow{d_n} \tilde{C}_{n-1} \longrightarrow \cdots$$

Prop 2.1.5. If f is null homotopic, then $f_* = 0$.

Proof.
$$f_*(x) = \tilde{d}_{n+1}s_n(x) + s_{n-1}d_n(x) = \tilde{d}_{n+1}s_n(x) \in B_n(\tilde{C}_{\bullet}) \implies f_*(\bar{x}) = 0.$$

- Two chain map $f, g: C_{\bullet} \to \tilde{C}_{\bullet}$ are homotopic if f-g is null homotopic. $(f_* = g_*)$
- Let $M \in \mathbf{Mod}_R$. A projection resolution of M is an exact sequence:

$$\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \to 0$$

where P_i is projective for all i.

For any M, projection resolution always exists. Let P_0 be a free module on the generators of M. We get $P_0 \xrightarrow{\alpha} M \to 0$. Similarly, let P_1 be free on $\ker \alpha$, then we could extend the map to $P_1 \to P_0 \to M \to 0$. Continue the process we would get a diagram as below, where K_i are the kernels:

Theorem 24 (Comparison theorem). Given two chain as following:

$$\cdots \longrightarrow P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \longrightarrow 0 \qquad \text{(projective resolution)}$$

$$\downarrow \exists f_2 \qquad \downarrow \exists f_1 \qquad \downarrow \exists f_0 \qquad \downarrow f$$

$$\cdots \longrightarrow \tilde{C}_2 \xrightarrow{d'_2} \tilde{C}_1 \xrightarrow{d'_1} \tilde{C}_0 \xrightarrow{\alpha'} N \longrightarrow 0 \qquad \text{(exact sequence)}$$

Then $\exists f_i : P_i \to C_i$ s.t. $\{f_i\}$ forms a chain map making the completed diagram commutes. And any two such chain maps are homotopic.

Proof. Using induction on n.

For n = 0, the existence of f_0 is guaranteed by the definition of projective module.

$$P_0$$

$$\downarrow^{f \circ \alpha}$$

$$C_0 \xrightarrow{k} N \longrightarrow 0$$

For n > 0, we claim that $f_{n-1}d_n(P_n) \subseteq \operatorname{Im} d'_n$, since $d'_{n-1}f_{n-1}d_n(x) = f_{n-2}d_{n-1}d_n(x) = 0$ and by the fact that C is exact, $f_{n-1}d_n(x) \in \ker d'_{n-1} = \operatorname{Im} d'_n$. So using the diagram and again by the definition of projective module, f_n exists.

$$\begin{array}{ccc}
P_n \\
\downarrow f_{n-1} \circ d_n \\
C_n & \longrightarrow \operatorname{Im} d'_n & \longrightarrow
\end{array}$$

Now, for another chain map $\{g_i: P_i \to C_i\}$, we shall construct suitable $\{s_n\}$ to prove they are homotopic. For $s_{-1}: M \to C_0$ we could simply pick the zero map. Again, if we could prove that $\operatorname{Im}(g_n - f_n - s_{n-1}d_n) \subset \ker d'_n$, then by the definition of projective module, we would obtain s_n with

$$d_{n+1}s_n = g_n - f_n - s_{n-1}d_n \implies g_n - f_n = d_{n+1}s_n + s_{n-1}d_n$$

immediately. For this we calculate $d'_n(g_n - f_n - s_{n-1}d_n) = g_{n-1}d_n - f_{n-1}d_n - d'_ns_{n-1}d_n$. Notice that $d'_ns_{n-1} = g_{n-1} - f_{n-1} - s_{n-2}d_{n-1}$, and with $d_{n-1}d_n = 0$, we get $d'_n(g_n - f_n - s_{n-1}d_n) = 0$. \square

Def 33. Let $M \in \mathbf{Mod}_R$ and $\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \to 0$ be a projective resolution of M. Fix $N \in \mathbf{Mod}_R$. Applying $\mathrm{Hom}_R(\cdot, N)$ will get a complex:

$$0 \to \operatorname{Hom}_R(M,N) \xrightarrow{\bar{\alpha}} \operatorname{Hom}_R(P_0,N) \xrightarrow{\bar{d}_1} \operatorname{Hom}_R(P_1,N) \to \cdots$$

Define

- $\operatorname{Ext}_R^0(M,N) = \ker \bar{d}_1 = \operatorname{Im} \bar{\alpha} \cong \operatorname{Hom}_R(M,N).$
- $\operatorname{Ext}_{R}^{n}(M, N) = H^{n}(\operatorname{Hom}(P_{\bullet}, N)), \quad \forall n \geq 1.$

Theorem 25 (Indenpedency of the choice of projective resolutions). $\operatorname{Ext}^n(M,N)$ is independent of the choice of the projective resolution used.

Proof. First, consider two projective resolutions of M, \tilde{M} , and map $f: M \to \tilde{M}$, and two liftings $\{f_i\}, \{g_i\}$. Use $\bar{\cdot}$ to denote the natural transformation from $X \to Y$ to $\text{Hom}(Y, N) \to \text{Hom}(X, N)$ by $\bar{f} \triangleq g \mapsto g \circ f$. Then we shall prove that $\bar{f_{\bullet}}^* = \bar{g_{\bullet}}^*$, which is to say $\bar{f_{\bullet}}^*$ is independent of the lifting used.

By comparison theorem (24), $\{f_i\}$, $\{g_i\}$ are homotopic, and we could write down the diagram below:

$$\cdots \longrightarrow P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \longrightarrow 0$$

$$\downarrow f_2 \downarrow g_2 \qquad \downarrow f_1 \downarrow g_1 \qquad \downarrow f_0 \downarrow g_0 \qquad \downarrow f$$

$$\cdots \longrightarrow \tilde{P}_2 \xrightarrow{\tilde{d}_2} \tilde{P}_1 \xrightarrow{\tilde{d}_1} \tilde{P}_0 \xrightarrow{\tilde{\alpha}} \tilde{M} \longrightarrow 0$$

Notice that \bar{f} act linearly, that is, $\overline{f+g}=\bar{f}+\bar{g}$, and $\overline{fg}=\bar{g}\bar{f}$. So we have

$$g_n - f_n = s_{n-1}d_n + \tilde{d}_{n+1}s_n \implies \bar{g}_n - \bar{f}_n = \bar{d}_n\bar{s}_{n-1} + \bar{s}_n\bar{d}_{n+1}$$

and \bar{f}_n, \bar{g}_n are homotopic. Thus by proposition 2.1.5, $\bar{f}_{\bullet}^* = \bar{g}_{\bullet}^*$.

Now, let $P_{\bullet}, P'_{\bullet}$ be two projective resolutions. Consider the diagram:

$$\begin{array}{cccc}
& \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0 \\
& & \operatorname{Id} \left\langle \downarrow f_1 & \operatorname{Id} \left\langle \downarrow f_0 & \downarrow \operatorname{Id} \right. \\
& \cdots \longrightarrow P'_1 \longrightarrow P'_0 \longrightarrow M \longrightarrow 0 \\
& & \downarrow g_0 & \downarrow \operatorname{Id} \\
& \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0
\end{array}$$

Then $g_i \circ f_i$ and Id are two liftings, and thus by previous we have $\bar{g}_i^* \circ \bar{f}_i^* = \text{Id}^*$. By symmetry, $\bar{f}_i^* \circ \bar{g}_i^* = \text{Id}^*$, which means that the homology calculated using different resolution are isomorphic.

П

Theorem 26 (Horseshoe Lemma). Given $0 \to L \to M \to N \to 0$ and projective resolutions $P_{\bullet} \to L \to 0$, $\tilde{P}_{\bullet} \to N \to 0$. Then there is a projective resolution for M such that the following

diagram commutes:

Proof. Let $\bar{P}_n \triangleq P_n \oplus \tilde{P}_n$. \bar{P}_n is projective by the fact that direct sum of projective modules are projective. Also $0 \to P_n \to P_n \oplus \tilde{P}_n \to \tilde{P}_n \to 0$ by injection and projection. It remains to show that the maps in the middle column exists.

Consider the following diagram:

 σ exists because \tilde{P}_0 is projective. Define

$$\bar{\alpha}: P_0 \oplus \tilde{P}_0 \longrightarrow M$$

$$(z,y) \longmapsto f \circ \alpha(z) + \sigma(y)$$

It easy to see that $\bar{\alpha}$ let the diagram commutes. So we show that $P_0 \oplus \tilde{P}_0 \xrightarrow{\bar{\alpha}} M \to 0$:

For any $x \in M$, consider $g(x) \in N$. Since $\tilde{P}_0 \xrightarrow{\tilde{\alpha}} N \to 0$, there exists $y \in \tilde{P}_0$ such that $\tilde{\alpha}(y) = g(x) \implies g \circ \sigma(y) = g(x)$. Then $x - \sigma(y) = \ker g = \operatorname{Im} f$, so there exists $w \in L$ such that $f(w) + \sigma(y) = x$. Now, since $P_0 \xrightarrow{\tilde{\alpha}} L \to 0$, there exists $z \in P_0$ such that $\alpha(z) = w$. Then we have $\bar{\alpha}(z,y) = x$. So $P_0 \oplus \tilde{P}_0 \xrightarrow{\bar{\alpha}} M \to 0$.

By induction on n, but we use $\ker d_{n-1}$, $\ker \bar{d}_{n-1}$, $\ker \tilde{d}_{n-1}$ to replace L, M, N ($d_{-1} = \alpha$ and so on). Then we are done.

Theorem 27 (Long exact sequence for Ext). If $0 \to L \to M \to N \to 0$ exact, then there is a long exact sequence:

$$0 \to \operatorname{Hom}(N,K) \to \operatorname{Hom}(M,K) \to \operatorname{Hom}(L,K)$$

$$\to \operatorname{Ext}^1(N,K) \to \operatorname{Ext}^1(M,K) \to \operatorname{Ext}^1(L,K) \to \operatorname{Ext}^2(N,K) \to \dots$$

Proof. Taking $\operatorname{Hom}(-,K)$ in the diagram of Horseshoe' lemma (26) and delete the first row, we get

Notice that $\operatorname{Hom}(M \oplus N, K) \cong \operatorname{Hom}(M, K) \oplus \operatorname{Hom}(N, K)$, so each row is indeed exact.

By exercise 14.7, the long exact sequence in the statement exists. (one can check the kernels of the first row are indeed Hom(N,K), Hom(M,K), Hom(L,K).)

2.2 Ext and Tor (week 15)

Given $M, N \in \mathbf{Mod}_R$, there are two ways to define $\mathrm{Ext}^n(M, N)$:

Def 34 (Ext functor).

- Find any projective resolution $P_{\bullet} \xrightarrow{\alpha} M \to 0$, and let $P_M : P_{\bullet} \to 0$ (called a deleted resolution). We can define $\operatorname{Ext}^n_{\operatorname{proj}}(M,N) = H^n(\operatorname{Hom}(P_M,N))$.
- Find any injective resolution $0 \xrightarrow{\alpha} N \to E^{\bullet}$, and let $E_N : 0 \to E^{\bullet}$. We can define $\operatorname{Ext}_{\operatorname{inj}}^n(M,N) = H^n(\operatorname{Hom}(M,E_N))$.

Prop 2.2.1. $\operatorname{Ext}_{\operatorname{proj}}^{0}(M,N) \cong \operatorname{Ext}_{\operatorname{inj}}^{0}(M,N) \cong \operatorname{Hom}(M,N).$

Proof.

$$\operatorname{Hom}(P_M,N): 0 \xrightarrow{\overline{d_0}} \operatorname{Hom}(P_0,N) \xrightarrow{\overline{d_1}} \operatorname{Hom}(P_1,N) \to \cdots$$
so $\operatorname{Ext}^0_{\operatorname{proj}}(M,N) = \ker \overline{d_1} / \operatorname{im} \overline{d_0} = \ker \overline{d_1} = \operatorname{im} \alpha = \operatorname{Hom}(M,N).$

Similarly, $\operatorname{Ext}_{\operatorname{inj}}^0(M, N) = \operatorname{Hom}(M, N)$.

Lemma 6.

- If M is projective, then $\operatorname{Ext}_{\operatorname{proj}}^n(M,N)=0$ for all $n>0, N\in\operatorname{\mathbf{Mod}}_R$.
- If N is injective, then $\operatorname{Ext}_{\operatorname{inj}}^n(M,N)=0$ for all $n>0, M\in\operatorname{\mathbf{Mod}}_R.$

Proof. If M is projective, then $0 \to M \xrightarrow{\mathbf{1}_M} M \to 0$ is a projective resolution of M. Its deleted resolution is then $P_M: 0 \to M \to 0$. Hence for n > 0, $\operatorname{Ext}^n_{\operatorname{proj}}(M, N) = H^n(\operatorname{Hom}(P_M, N)) = 0$.

The argument applies similarly to injective case.

Theorem 28 (Equivalence of Ext_{proj} and Ext_{inj}).

$$\operatorname{Ext}_{\operatorname{proj}}^n(M,N) \cong \operatorname{Ext}_{\operatorname{inj}}^n(M,N).$$

Proof. Let $P_{\bullet} \to M \to 0$ and $0 \to N \to E^{\bullet}$ be projective and injective resolutions, then we have $0 \to K_0 \to P_0 \to M \to 0$ and $0 \to N \to E^0 \to L^1 \to 0$ exact.

We can construct long exact sequences of homology of $\operatorname{Hom}(\cdot, E_N)$:

$$0 \to \operatorname{Hom}(M,N) \to \operatorname{Hom}(M,E^0) \to \operatorname{Hom}(M,L^1) \to \operatorname{Ext}^1_{\operatorname{inj}}(M,N) \to \operatorname{Ext}^1_{\operatorname{inj}}(M,E^0) = 0$$
$$0 \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(P_0,E^0) \to \operatorname{Hom}(P_0,L^1) \to 0$$
$$0 \to \operatorname{Hom}(K_0,N) \to \operatorname{Hom}(K_0,E^0) \to \operatorname{Hom}(K_0,L^1) \to \operatorname{Ext}^1_{\operatorname{inj}}(K_0,N) \to \operatorname{Ext}^1_{\operatorname{inj}}(K_0,E^0) = 0$$

The second sequence is short because P_0 is projective (so $\text{Hom}(P_0,\cdot)$ preserves exactness). Similarly, for $\text{Hom}(P_M,\cdot)$ we have:

$$0 \to \operatorname{Hom}(M,N) \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(K_0,N) \to \operatorname{Ext}^1_{\operatorname{proj}}(M,N) \to \operatorname{Ext}^1_{\operatorname{proj}}(P_0,N) = 0$$

$$0 \to \operatorname{Hom}(M, E^0) \to \operatorname{Hom}(P_0, E^0) \to \operatorname{Hom}(K_0, E^0) \to 0$$
$$0 \to \operatorname{Hom}(M, L^1) \to \operatorname{Hom}(P_0, L^1) \to \operatorname{Hom}(K_0, L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(M, L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(P_0, L^1) = 0$$

Combining these sequences together, we got the following 2D diagram:

By Snake lemma, there is an exact sequence

$$(\ker \alpha \to) \ker \beta \to \ker \gamma \to \operatorname{coker} \alpha \to \operatorname{coker} \beta (\to \operatorname{coker} \gamma)$$

and this reads

$$\operatorname{Hom}(M, E^0) \xrightarrow{\phi} \operatorname{Hom}(M, L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(M, N) \to 0$$

Thus $\operatorname{Ext}^1_{\operatorname{proj}}(M,N) \cong \operatorname{coker} \phi \cong \operatorname{Ext}^1_{\operatorname{inj}}(M,N)$. (From now on, we don't need to distinguish proj/inj for Ext^1 !)

Since σ is onto, im $\gamma = \operatorname{im}(\gamma \circ \sigma)$. Similarly, im $\tau = \operatorname{im}(\tau \circ \beta)$.

By the commutativity of the diagram, im $\gamma = \text{im } \tau$, so

$$\operatorname{Ext}^1(K_0, N) \cong \operatorname{coker} \gamma = \operatorname{Hom}(K_0, L^1) / \operatorname{im} \gamma \cong \operatorname{coker} \tau \cong \operatorname{Ext}^1(M, L^1).$$

Write $K_{-1} := M, L^0 := N$, then $\operatorname{Ext}^1(K_0, L^0) = \operatorname{Ext}^1(K_{-1}, L^1)$ (*).

$$0 \to K_i \to P_i \to K_{i-1} \to 0$$

$$0 \to L^i \to E^i \to L^{i+1} \to 0$$

, we can obtain $\operatorname{Ext}^1(K_i, L^i) \cong \operatorname{Ext}^1(K_{i-1}, L^{i+1})$ for $i, j \geq 0$.

Now, observe that

Similarly, from the exact sequences

$$0 \to L^{n-1} \to E^{n-1} \xrightarrow{d_{n-1}} E^n \xrightarrow{d_n} \cdots$$

is an injective resolution of L^{n-1} , and $\operatorname{Ext}^1(M, L^{n-1}) \cong \ker \overline{d_n} / \operatorname{im} \overline{d_{n-1}} \cong \operatorname{Ext}^n_{\operatorname{inj}}(M, N)$. Similarly, for projective resolution we have $\operatorname{Ext}^1(K_{n-2}, N) \cong \operatorname{Ext}^n_{\operatorname{proj}}(M, N)$. Finally, by (\star) ,

$$\operatorname{Ext}_{\operatorname{inj}}^n(M,N) \cong \operatorname{Ext}^1(K_{-1},L^{n-1}) \cong \operatorname{Ext}^1(K_0,L^{n-2}) \cong \cdots \cong \operatorname{Ext}^1(K_{n-2},L^0) \cong \operatorname{Ext}_{\operatorname{proj}}^n(M,N).$$

Def 35 (Tor functor). Let $M, N \in \mathbf{Mod}_R$, and $P_{\bullet} \to M \to 0$ be a projective resolution of M, similar to the Ext case, for $n \geq 0$ we can define

$$\operatorname{Tor}_n(M,N) = H_n(P_M \otimes N).$$

Fact 2.2.1. By Horseshoe lemma, short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ induces a long exact sequence:

$$\cdots \to \operatorname{Tor}_1(M_1,N) \to \operatorname{Tor}_1(M_2,N) \to \operatorname{Tor}_1(M_3,N) \to M_1 \otimes N \to M_2 \otimes N \to M_3 \otimes N \to 0$$

Prop 2.2.2. If M is flat, then $Tor_n(M, N) = 0$ for $n > 0, N \in \mathbf{Mod}_R$.

Proof. M is flat $\Longrightarrow M \otimes \cdot$ is an exact functor. If $Q_{\bullet} \to N \to 0$ is a projective resolution of N, then $\cdots \to M \otimes Q_1 \to M \otimes Q_0 \to M \otimes N \to 0$ is also exact. By Exercise 15-1, we have

$$\operatorname{Tor}_n(M,N) \cong H_n(M \otimes Q_N) = 0.$$

Theorem 29 (Tor for flat resolutions). Let $U_{\bullet} \to M \to 0$ be a flat resolution of M, then for $n \ge 0$,

$$\operatorname{Tor}_n(M,N) \cong H_n(U_M \otimes N).$$

Proof.

$$\cdots \to U_2 \xrightarrow{\qquad} U_1 \xrightarrow{\qquad} U_0 \to M \to 0$$

$$W_1 \xrightarrow{\qquad} W_0$$

$$0 \xrightarrow{\qquad} 0$$

$$H_{\bullet}(U_M \otimes N) : \cdots \to U_2 \otimes N \xrightarrow{d_2 \otimes \mathbf{1}} U_1 \otimes N \xrightarrow{d_1 \otimes \mathbf{1}} U_0 \otimes N \to 0$$

• n = 0: Since tensor is right exact, $U_1 \otimes N \xrightarrow{d_1 \otimes 1} U_0 \otimes N \xrightarrow{\alpha \otimes 1} M \otimes N \to 0$ is exact. Hence

$$H_0(U_M \otimes N) = (U_0 \otimes N) / \operatorname{im}(d_1 \otimes \mathbf{1}) = (U_0 \otimes N) / \ker(\alpha \otimes \mathbf{1}) \cong M \otimes N$$

Any projective resolution also has this property, so $Tor_0(M, N) = H_0(U_M \otimes N)$.

• n=1: $0 \to W_0 \to U_0 \to M \to 0$ induces a long exact sequence:

$$\cdots \to \operatorname{Tor}_1(W_0,N) \to 0 \to \operatorname{Tor}_1(M,N) \to W_0 \otimes N \xrightarrow{i \otimes 1} U_0 \otimes N \to M \otimes N \to 0$$

where $\operatorname{Tor}_1(U_0, N) = 0$ because U_0 is flat. We can see that $\operatorname{Tor}_1(M, N) \cong \ker(i \otimes 1)$.

Since $\alpha' \otimes 1$ is onto, $W_0 \otimes N \cong (U_1 \otimes N) / \ker(\alpha' \otimes 1)$. Also, $x \in \ker(d_1 \otimes 1) \iff (d_1 \otimes 1)(x) = 0 \iff (\alpha' \otimes 1)(x) \in \ker(i \otimes 1)$, so $\ker(i \otimes 1) = (\alpha' \otimes 1)(\ker(d_1 \otimes 1)) \cong \ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1)$. $(\alpha' \otimes 1)$ can be considered a quotient map, then $\ker(d_1 \otimes 1)$ descends to $\ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1)$.

Now, in the diagram $W_1 \otimes N \to U_1 \otimes N \to W_0 \otimes N \to 0$ exact, so $\ker(\alpha' \otimes 1) = \operatorname{im}(j \otimes 1)$. But $\beta' \otimes 1$ is onto, thus $\operatorname{im}(j \otimes 1) = \operatorname{im}(d_2 \otimes 1)$.

Finally,

 $\operatorname{Tor}_1(M,N) \cong \ker(i \otimes 1) \cong \ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1) = \ker(d_1 \otimes 1) / \operatorname{im}(d_2 \otimes 1) = H_1(U_M \otimes N).$

• $n \ge 2$:

Let's see further in the previous long exact sequences:

$$\cdots \to \operatorname{Tor}_2(W_0, N) \to 0 \to \operatorname{Tor}_2(M, N) \xrightarrow{\sim} \operatorname{Tor}_1(W_0, N) \to 0 \to \operatorname{Tor}_1(M, N) \to \cdots$$

we can see that $\operatorname{Tor}_n(M,N) \cong \operatorname{Tor}_{n-1}(W_0,N)$ for $n \geq 2$.

Now,

$$\cdots U_3 \xrightarrow{d_3} U_2 \xrightarrow{d_2} U_1 \to W_0 \to 0$$

is a flat resolution of W_0 , and its homology is $H_{n-1}(U_{W_0} \otimes N) = \ker(d_n \otimes 1)/\operatorname{im}(d_{n-1} \otimes 1) = H_n(U_M \otimes N)$.

By induction, assume it's true for n-1, then

$$H_n(U_M \otimes N) = H_{n-1}(U_{W_0} \otimes N) \cong \operatorname{Tor}_{n-1}(W_0, N) \cong \operatorname{Tor}_n(M, N).$$

Eg 2.2.1. $R = \mathbb{Z}, M = \mathbb{Z}/m\mathbb{Z}$ with $m \geq 2$. Then

$$P: 0 \to \mathbb{Z} \xrightarrow{m} \mathbb{Z} \xrightarrow{/m\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \to 0$$

is a projective resolution of $\mathbb{Z}/m\mathbb{Z}$. So for any $N \in \mathbf{Mod}_{\mathbb{Z}}$,

$$H^n(\operatorname{Hom}_{\mathbb{Z}}(P_{\mathbb{Z}/m\mathbb{Z}},N)):0\to\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},N)\xrightarrow{\overline{m}}\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},N)\to 0,$$

$$\operatorname{Ext}_{\mathbb{Z}}^{0}(\mathbb{Z}/m\mathbb{Z}, N) = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, N) \cong {}_{m}N := \{a \in N \mid ma = 0\}$$

$$\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, N) \cong N/mN$$

$$\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z}/m\mathbb{Z}, N) = 0 \text{ (for } n \geq 2)$$

Eg 2.2.2. $\mathbb{Q} = \mathbb{Z}_{(0)}$ is a localization, thus a flat \mathbb{Z} module. Then

$$U: 0 \to \mathbb{Z} \xrightarrow{i} \mathbb{O} \to \mathbb{O}/\mathbb{Z} \to 0$$

is a flat resolution of \mathbb{Q}/\mathbb{Z} . For $G \in \mathbf{Mod}_{\mathbb{Z}}$ (i.e. an abelian group),

$$H_n(G \otimes U_{\mathbb{Q}/\mathbb{Z}}) : 0 \to G \otimes \mathbb{Z} \xrightarrow{\mathbf{1} \otimes i} G \otimes \mathbb{Q} \to 0$$

$$\operatorname{Tor}_0(G, \mathbb{Q}/\mathbb{Z}) \cong G \otimes \mathbb{Q}/\mathbb{Z}$$

$$\operatorname{Tor}_1(G, \mathbb{Q}/\mathbb{Z}) = \ker(\mathbf{1} \otimes i) \cong t(G) := \{ a \in G \mid ma = 0 \text{ for some } m \in \mathbb{N} \}$$

$$\operatorname{Tor}_n(G, \mathbb{Q}/\mathbb{Z}) = 0 \text{ (for } n \ge 2)$$

Def 36. Let M be a left R-module, then define $M^* := \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ as a right R-module by

$$fr: M \to \mathbb{Q}/\mathbb{Z}$$

 $x \mapsto f(rx)$

Fact 2.2.2.

- 1. \mathbb{Q}/\mathbb{Z} is injective.
- 2. $A = 0 \iff A^* = 0$.
- 3. $B \hookrightarrow C \iff C^* \twoheadrightarrow B^*$.

Proof.

- 1. For $m \in \mathbb{Z} \setminus \{0\}$, $m(\mathbb{Q}/\mathbb{Z}) = \mathbb{Q}/\mathbb{Z}$ by $m(\frac{a}{mb} + \mathbb{Z}) \leftarrow \frac{a}{b} + \mathbb{Z}$, so \mathbb{Q}/\mathbb{Z} is divisible. But \mathbb{Z} is a PID, so \mathbb{Q}/\mathbb{Z} is injective.
- 2. (\Rightarrow) $A^* = \operatorname{Hom}_{\mathbb{Z}}(0, \mathbb{Q}/\mathbb{Z}) = 0$.
 - (\Leftarrow) If $A \neq 0$, then $\exists a \in A, a \neq 0$, so $0 \to \mathbb{Z}a \xrightarrow{i} A$ is an inclusion.

Since $\mathbb{Z}a$ is a cyclic abelian group, there is a nonzero $g: \mathbb{Z}a \to \mathbb{Q}/\mathbb{Z}$. (If $\mathbb{Z}a \cong \mathbb{Z}/m\mathbb{Z}$, let $g: a \mapsto \frac{1}{m}$; if $\mathbb{Z}a \cong \mathbb{Z}$, let $g: a \mapsto \frac{1}{2}$.)

But \mathbb{Q}/\mathbb{Z} is injective, so $\exists f: A \to \mathbb{Q}/\mathbb{Z}$ (i.e. $f \in A^*$), and $f \circ i = g \neq 0$ so $f \neq 0$, thus $A^* \neq 0$.

3. Since \mathbb{Q}/\mathbb{Z} is injective, $\operatorname{Hom}(\cdot,\mathbb{Q}/\mathbb{Z})$ is exact. Let $0 \to \ker f \to B \xrightarrow{f} C$ exact, applying $\operatorname{Hom}(\cdot,\mathbb{Q}/\mathbb{Z})$ results in $C^* \xrightarrow{f^*} B^* \to (\ker f)^* \to 0$ exact. Thus $\operatorname{coker} f^* = (\ker f)^*$.

By 2., $B \hookrightarrow C \iff \ker f = 0 \iff (\ker f)^* = 0 \iff \operatorname{coker} f^* = 0 \iff C^* \twoheadrightarrow B^*$.

Prop 2.2.3. Let M be an R-module, then TFAE

- 1. M is flat.
- 2. M^* is injective (as a R-module).
- 3. $\operatorname{Tor}_1(R/I, M) = 0$ for all ideal $I \subseteq R$.
- 4. $I \otimes_R M \cong IM$ for all ideal $I \subseteq R$.

Proof.

• 3. \iff 4.

For any ideal $I \subseteq R$, $0 \to I \xrightarrow{i} R \xrightarrow{q} R/I \to 0$ is exact. This induces a long exact sequence:

$$\operatorname{Tor}_1(R,M) \to \operatorname{Tor}_1(R/I,M) \to I \otimes_R M \xrightarrow{i \otimes \mathbf{1}} R \otimes_R M \xrightarrow{q \otimes \mathbf{1}} R/I \otimes_R M \to 0$$

- $Tor_1(R, M) = 0$ since R is a flat R-module.
- $-R\otimes_R M\cong M.$
- $-R/I \otimes_R M \cong M/IM$ by $(r+I) \otimes a \mapsto (ra+IM)$.

So we have

$$0 \to \operatorname{Tor}_1(R/I, M) \to I \otimes_R M \xrightarrow{i'} M \xrightarrow{q'} M/IM \to 0$$

exact, with $q': M \to M/IM$ being exactly the quotient map (one can check that $q \otimes \mathbf{1} \cong q'$).

Now it's clear that $\operatorname{Tor}_1(R/I, M) = 0 \iff I \otimes_R M \cong \ker(q') \cong IM$.

(The reverse direction requires $I \otimes_R M \cong IM$ being the natural isomorphism $r \otimes b \mapsto rb$, so $i': IM \to M$ can then be the natural inclusion.)

• 1. \iff 2. Let $0 \to N' \xrightarrow{f} N$, then $\operatorname{Hom}_R(N, M^*) \xrightarrow{\overline{f}} \operatorname{Hom}_R(N', M^*)$. By the adjoint relation,

$$\operatorname{Hom}_R(N, M^*) = \operatorname{Hom}_R(N, \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})) \cong \operatorname{Hom}_{\mathbb{Z}}(N \otimes_R M, \mathbb{Q}/\mathbb{Z}) = (N \otimes_R M)^*,$$

we have another map $(N \otimes_R M)^* \xrightarrow{(f \otimes 1)^*} (N' \otimes_R M)^*$ isomorphic to the previous one, with its unstarred map $N' \otimes_R M \xrightarrow{f \otimes 1} N \otimes_R M$.

Now, M^* is injective $\iff \overline{f}$ is surjective $\forall N, N' \iff (f \otimes \mathbf{1})^*$ is surjective $\forall N, N' \iff f \otimes \mathbf{1}$ is injective $\forall N, N' \iff M$ is flat.

• 2. \iff 4. Similar to the previous section, by Baer's criterion,

$$\begin{array}{ll} M^* \text{ is injective} & \Longleftrightarrow & \operatorname{Hom}_R(R,M^*) \twoheadrightarrow \operatorname{Hom}_R(I,M^*), \forall \ I \subseteq R \\ & \Longleftrightarrow & (R \otimes_R M)^* \twoheadrightarrow (I \otimes_R M)^*, \forall \ I \subseteq R \\ & \Longleftrightarrow & I \otimes_R M \hookrightarrow R \otimes_R M \cong M, \forall \ I \subseteq R \\ & \Longleftrightarrow & I \otimes_R M \cong IM, \forall \ I \subseteq R. \end{array}$$

Similarly, this requires the isomorphism of $I \otimes_R M \cong IM$ be natural (the following f).

The map $f: I \otimes_R M \to IM$ is always onto, but may not be 1-1. If it is, $I \otimes_R M \cong IM$.

Prop 2.2.4. For $I, J \subseteq R$ being ideals, then $Tor_1(R/I, R/J) \cong (I \cap J)/IJ$.

Proof. $0 \to I \xrightarrow{i} R \to R/I \to 0$ induces a long exact sequence

$$0 \to \operatorname{Tor}_1(R/I, R/J) \to I \otimes_R R/J \xrightarrow{i \otimes 1} R \otimes_R R/J \to R/I \otimes_R R/J \to 0,$$

where $Tor_1(R, R/J) = 0$ since R is flat.

Also $I \otimes_R R/J \cong I/IJ$, $R \otimes_R R/J \cong R/J$, so we have $I/IJ \xrightarrow{i'} R/J$ with $\operatorname{Tor}_1(R/I, R/J) \cong \ker(i \otimes 1) \cong \ker i'$.

But $i': I/IJ \to R/J \atop x+IJ \mapsto x+J$, so $\overline{x} \in \ker i' \iff x \in I$ and $x \in J \iff x \in I \cap J$, hence $\ker i' \cong (I \cap J)/IJ$.

2.3 Koszul complex (week 16)

In this section, we assume that R is commutative with 1.

Def 37. Let $L \in \mathbf{Mod}_R$, with $f: L \to R$ an R-linear map, define

$$d_f: \quad \Lambda^n L \to \quad \Lambda^{n-1} L$$
$$x_1 \wedge \dots \wedge x_n \mapsto \sum_{i=1}^n (-1)^{i+1} f(x_i) x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge x_n$$

where $\Lambda^n L$ is the *n*-th exterior power of L, and \hat{x}_i means omitting x_i .

Then we can define a chain complex called **Koszul complex**:

$$K_{\bullet}(f): \cdots \to \Lambda^n L \xrightarrow{\mathrm{d}_f} \Lambda^{n-1} L \to \cdots \to \Lambda^2 L \xrightarrow{\mathrm{d}_f} L \xrightarrow{f} R$$

Also, d_f can be considered as a graded R-homomorphism of degree -1:

$$\begin{aligned} \mathrm{d}_f : \; \Lambda L \; &\to \; \quad \Lambda L \\ x \wedge y &\mapsto \mathrm{d}_f(x) \wedge y + (-1)^{\deg x} \cdot x \wedge \mathrm{d}_f(y) \end{aligned}$$

where ΛL is the exterior algebra of L, and x, y are any homogeneous elements of ΛL .

Def 38. Let $(C_{\bullet}, d), (C'_{\bullet}, d')$ be chain complexes of R-modules, define their tensor product to be a chain complex $C_{\bullet} \otimes C'_{\bullet}$ with

$$(C_{\bullet} \otimes C'_{\bullet})_n = \bigoplus_{i=0}^n (C_i \otimes_R C'_{n-i})$$

with the boundary maps being

$$d \otimes d' : (C_{\bullet} \otimes C'_{\bullet})_{n} \to (C_{\bullet} \otimes C'_{\bullet})_{n-1}$$
$$\sum_{i=0}^{n} x_{i} \otimes y_{n-i} \mapsto \sum_{i=0}^{n} (d(x_{i}) \otimes y_{n-i} + (-1)^{i} \cdot x_{i} \otimes d'(y_{n-i}))$$

One can verify that

$$(d \otimes d') \circ (d \otimes d')(x \otimes y) = (d \otimes d')(d(x) \otimes y + (-1)^{\deg x} \cdot x \otimes d'(y))$$

$$= d \circ d(x) \otimes y + (-1)^{\deg x - 1} \cdot d(x) \otimes d'(y)$$

$$+ (-1)^{\deg x} \cdot d(x) \otimes d'(y) + x \otimes d' \circ d'(y)$$

$$= 0$$

Prop 2.3.1. Let $L_1, L_2 \in \mathbf{Mod}_R, f_1 \in \mathrm{Hom}_R(L_1, R), f_2 \in \mathrm{Hom}_R(L_2, R)$. Define

$$f = f_1 + f_2 : L_1 \oplus L_2 \to R$$

 $(x, y) \mapsto f_1(x) + f_2(y)$

then

$$K_{\bullet}(f_1) \otimes K_{\bullet}(f_2) \cong K_{\bullet}(f)$$

$$\bigoplus_{i=0}^{n} (\Lambda^i L_1 \otimes_R \Lambda^{n-i} L_2) \cong \Lambda^n(L_1 \oplus L_2)$$

with $d_{f_1} \otimes d_{f_2} = d_f$.

Proof. Exercise 16-1(2).

Def 39. Let $L = \bigoplus_{i=1}^n Re_i$ be a free R-module, and $\mathbf{x} = (x_1, \dots, x_n)$ with $x_i \in R$, define

$$K_{\bullet}(\mathbf{x}) := K_{\bullet}(f), \text{ with } \begin{array}{c} f : L \to R \\ e_i \mapsto x_i. \end{array}$$

Coro 2.3.1. $K_{\bullet}(\mathbf{x}) \cong K_{\bullet}(x_1) \otimes \cdots \otimes K_{\bullet}(x_n)$ with $K_{\bullet}(x_i) : 0 \to R \xrightarrow{x_i} R$.

Prop 2.3.2. Let $x \in R$ and (C_{\bullet}, ∂) be a chain complex of R-modules, then there exist ρ, π s.t.

$$0 \to C_{\bullet} \xrightarrow{\rho} C_{\bullet} \otimes K_{\bullet}(x) \xrightarrow{\pi} C_{\bullet}(-1) \to 0$$

is exact, where $(C_{\bullet}(-1))_n = C_{n-1}$.

Proof. Since $K_{\bullet}(x): 0 \to R \xrightarrow{x} R$, so

$$(C_{\bullet} \otimes K_{\bullet}(x))_n = (C_i \otimes_R R) \oplus (C_{i-1} \otimes_R R),$$

and the boundary map is

$$d: (C_i \otimes_R R) \oplus (C_{i-1} \otimes_R R) \to (C_{i-1} \otimes_R R) \oplus (C_{i-2} \otimes_R R) (z_1 \otimes r_1, z_2 \otimes r_2) \mapsto (\partial z_1 \otimes r_1 + (-1)^{i-1} z_2 \otimes xr_2, \partial z_2 \otimes r_2).$$

Under the isomorphism $C_i \otimes_r R \cong C_i$, the boundary map become

$$d: C_{i} \oplus C_{i-1} \to C_{i-1} \oplus C_{i-2}$$

$$\begin{pmatrix} r_{1}z_{1} \\ r_{2}z_{2} \end{pmatrix} \mapsto \begin{pmatrix} \partial & (-1)^{i-1}x \\ 0 & \partial \end{pmatrix} \begin{pmatrix} r_{1}z_{1} \\ r_{2}z_{2} \end{pmatrix}$$

Let

$$\begin{array}{ccc} \rho_i:C_i\to C_i\oplus C_{i-1} & \text{and} & \pi_i:C_i\oplus C_{i-1}\to C_{i-1}\\ z_1\mapsto & (z_1,0) & (z_1,z_2) \mapsto & z_2 \end{array}$$

then

$$0 \longrightarrow C_{i} \xrightarrow{\rho_{i}} C_{i} \oplus C_{i-1} \xrightarrow{\pi_{i}} C_{i-1} \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow d \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow C_{i-1} \xrightarrow{\rho_{i-1}} C_{i-1} \oplus C_{i-2} \xrightarrow{\pi_{i-1}} C_{i-2} \longrightarrow 0$$

commutes and exact:

- $d \circ \rho(z_1) = d(z_1, 0) = (\partial z_1, 0)$
- $\rho \circ \partial(z_1) = \rho(\partial z_1) = (\partial z_1, 0)$
- $\partial \circ \pi(z_1, z_2) = \partial(z_2) = \partial z_2$
- $\pi \circ d(z_1, z_2) = \pi(\partial z_1 + (-1)^{i-1}xz_2, \partial z_2) = \partial z_2$

Coro 2.3.2. This induces a long exact sequence

$$\cdots \to H_i(C_{\bullet}) \xrightarrow{\rho_*} H_i(C_{\bullet} \otimes K_{\bullet}(x)) \xrightarrow{\pi_*} H_i(C_{\bullet}(-1)) \xrightarrow{\pm x} H_{i-1}(C_{\bullet}) \to \cdots$$

Proof. We only need to show the connection homomorphism is indeed $\pm x$.

Given $z \in C_{i-1}$ with $\partial z = 0$,

$$z \xrightarrow{\pi^{-1}} (0, z) \xrightarrow{d} ((-1)^{i-1}xz, 0) \xrightarrow{\rho^{-1}} (-1)^{i-1}xz.$$

Def 40. We call x to be C_{\bullet} -regular, if x is not a zero divisor of C_i and $C_i/xC_i \neq 0$, for all $i \geq 0$.

Prop 2.3.3. If x is C_{\bullet} -regular, then $H_i(C_{\bullet} \otimes K_{\bullet}(x)) \cong H_i(C_{\bullet}/xC_{\bullet})$ for all $i \geq 0$.

Proof. Let

$$\phi_i: C_i \oplus C_{i-1} \to C_i/xC_i$$
$$(z_1, z_2) \mapsto \overline{z_1}$$

then

$$C_{i} \oplus C_{i-1} \xrightarrow{\phi_{i}} C_{i}/xC_{i}$$

$$\downarrow^{d_{i}} \qquad \downarrow^{\overline{\partial}_{i}}$$

$$C_{i-1} \oplus C_{i-2} \xrightarrow{\phi_{i-1}} C_{i-1}/xC_{i-1}$$

commutes.

- $\overline{\partial} \circ \phi_i(z_1, z_2) = \overline{\partial}(z_1) = \overline{\partial}z_1$.
- $\phi_{i-1} \circ d(z_1, z_2) = \phi_{i-1}(\partial z_1 + (-1)^{i-1}xz_2, \partial z_2) = \overline{\partial z_1}$, since $xz_2 \in xC_{i-1}$.

Now we need to show the induced maps

$$\phi_{*i} : \ker \underline{\mathbf{d}_i / \operatorname{im} \mathbf{d}_{i+1}} \to \ker \overline{\partial}_i / \operatorname{im} \overline{\partial}_{i+1}$$
$$(z_1, z_2) \mapsto \overline{\overline{z_1}} = \overline{z_1} + \operatorname{im} \overline{\partial}_{i+1}$$

are isomorphisms.

• Onto:

For $\overline{z} \in \ker \overline{\partial}_i$ with $\partial z = xz' \in xC_{i-1}$, $z' \in C_{i-1}$. Then $\phi_i(z, (-1)^i z') = \overline{z}$, and $d(z, (-1)^i z') = (\partial z - xz', (-1)^i \partial z') = (0, 0)$, so $(z, (-1)^i z') \in \ker d_i$. (Since $x\partial z' = \partial(xz') = \partial^2 z = 0$, and x is not a zero divisor of C_i , so $\partial z' = 0$.)

Now,
$$\phi_{*i}\left(\overline{(z,(-1)^iz')}\right) = \overline{\overline{z}}$$
, so ϕ_{*i} is onto.

• 1-1

Let $(z, z') \in \ker d_i$ with $\phi_i(z, z') = \overline{z} \in \operatorname{im} \overline{\partial}_{i+1}$, i.e. $\overline{z} = \partial \overline{z''}$ with $z'' \in C_{i+1}$. This means $z - \partial z'' = xz'''$ with $z''' \in C_i$, so $\partial (z - \partial z'') = \partial z = x \partial z'''$.

On the other hand, $d(z,z')=(\partial z+(-1)^{i-1}xz',\partial z')=(0,0),$ so $\partial z=(-1)^ixz',\partial z'=0.$

So $d(z'', (-1)^i z''') = (\partial z'' + (-1)^{2i} x z'''), (-1)^i \partial z''') = (z, z')$, i.e. $(z, z') \in \text{im } d_{i+1}$. $(\partial z = x \partial z''' = (-1)^i x z'$, since x is not a zero divisor, so $\partial z''' = (-1)^i z'$.)

Hence,
$$\phi_{*i}\left(\overline{(z_1,z_2)}\right) = \overline{0}$$
 implies $\overline{(z_1,z_2)} = \overline{0}$, so ϕ_{*i} is 1-1.

Def 41. Let $M \in \mathbf{Mod}_R$. A sequence $\{a_1, \dots, a_m\}, m \geq 0$ is said to be M-regular if

- $M/\langle a_1, \cdots, a_m \rangle M \neq 0$.
- a_{i+1} is not a zero divisor of $M/\langle a_1, \cdots, a_i \rangle M$ for $0 \le i \le m-1$.

Theorem 30. If $\mathbf{x} = (x_1, \dots, x_n)$ is an R-regular sequence, then $K_{\bullet}(\mathbf{x}) \to R/\langle x_1, \dots, x_n \rangle \to 0$ is a free resolution of $R/\langle x_1, \dots, x_n \rangle$.

Proof. Since its modules are $K_i(\mathbf{x}) = \Lambda^i R^n \cong R^{\binom{n}{i}}$, i.e. free *R*-modules, so we only need to show the exactness.

By induction on n,

• n = 1: $K_{\bullet}(x_1) : 0 \to R \xrightarrow{x_1} R \to R/\langle x_1 \rangle \to 0$ exact.

• n > 1: Assume that $\mathbf{x}' = (x_1, \dots, x_{n-1})$ and $K_{\bullet}(\mathbf{x}') \to R/\langle x_1, \dots, x_{n-1} \rangle \to 0$ exact, i.e. $H_i(K_{\bullet}(\mathbf{x}')) = 0$ for i > 0.

Since we have $K_{\bullet}(\mathbf{x}) \cong K_{\bullet}(\mathbf{x}') \otimes K_{\bullet}(x_n)$ and a long exact sequence

$$\cdots \to H_i(K_{\bullet}(\mathbf{x}')) \to H_i(K_{\bullet}(\mathbf{x})) \to H_i(K_{\bullet}(\mathbf{x}')(-1)) \xrightarrow{\pm x_n} H_{i-1}(K_{\bullet}(\mathbf{x})) \to \cdots$$

where $H_i(K_{\bullet}(\mathbf{x}')(-1)) = H_{i-1}(K_{\bullet}(\mathbf{x}')).$

For i > 1, the sequence becomes

$$\cdots \to 0 \to H_i(K_{\bullet}(\mathbf{x})) \to 0 \xrightarrow{\pm x_n} \cdots$$

so $H_i(K_{\bullet}(\mathbf{x})) = 0$.

For i = 1, we have $H_0(K_{\bullet}(\mathbf{x})) \cong R/\langle x_1, \cdots, x_{n-1} \rangle$, so

$$0 \to H_1(K_{\bullet}(\mathbf{x})) \to R/\langle x_1, \cdots, x_{n-1} \rangle \xrightarrow{\pm x_n} R/\langle x_1, \cdots, x_{n-1} \rangle$$

But x_n is not a zero divisor of $R/\langle x_1, \dots, x_{n-1} \rangle$, so the map $\pm x_n$ is 1-1, then $H_1(K_{\bullet}(\mathbf{x})) \cong \ker(\pm x_n) = 0$.

Eg 2.3.1. Let $\mathbf{x} = (x_1, x_2)$, then

$$K_{\bullet}(\mathbf{x}): 0 \to R \xrightarrow{\alpha} R^2 \xrightarrow{\beta} R \xrightarrow{q} R/\langle x_1, x_2 \rangle \to 0$$

with $\alpha: r \mapsto (-x_2r, x_1r)$ and $\beta: (r_1, r_2) \mapsto x_1r_1 + x_2r_2$.

Coro 2.3.3. Let $I = \langle x_1, \dots, x_n \rangle \subset R$ be an ideal with $\{x_1, \dots, x_n\}$ be R-regular, then R/I has projective dimension pd(R/I) = n, i.e. the shortest projective resolution of R/I has length n.

Proof. $K_{\bullet}(\mathbf{x})$ is already a projective resolution of length N, so we only need to show that there's no shorter ones.

The left side of $K_{\bullet}(\mathbf{x})$ reads

$$0 \to \Lambda^n R^n \xrightarrow{d_n} \Lambda^{n-1} R^n \to \cdots$$

But

$$\Lambda^n R^n = R(e_1 \wedge \dots \wedge e_n) \cong R, \quad \Lambda^{n-1} R^n = \bigoplus_{i=1}^n R(e_1 \wedge \dots \wedge \hat{e_i} \wedge \dots \wedge e^n) \cong R^n$$

so

$$d_n: R \to R^n$$

$$r \mapsto (x_1 r, -x_2 r, \cdots, (-1)^{n-1} x_n r)$$

Taking tensor with R/I, we get

$$0 \to R \otimes_R R/I \xrightarrow{d_n \otimes 1} R^n \otimes_R R/I \to \cdots$$

but $R \otimes_R R/I \cong R/I, R^n \otimes_R R/I \cong (R/I)^n$, so

$$d_n \otimes \mathbf{1}: R/I \to \underbrace{(R/I)^n}_{\overline{r}} \mapsto (\overline{x_1 r}, \overline{-x_2 r}, \cdots, \overline{(-1)^{n-1} x_n r})$$

Now,

$$\operatorname{Tor}_n(R/I,R/I) = H_n(K_{\bullet}(\mathbf{x}) \otimes R/I) = \ker(d_n \otimes \mathbf{1}) = \operatorname{Ann}_{R/I} I = \{\overline{r} \in R/I \mid rI = I\} = R/I \neq 0.$$

 $(R/I \neq 0 \text{ is because } \{x_1, \dots, x_n\} \text{ is } R\text{-regular.})$ Thus, any projective resolution can't have length shorter than n since that will imply $\operatorname{Tor}_n(R/I, R/I) = 0$.

Remark 4. Let $I = \langle x_1, \dots, x_n \rangle$ generated by R-regular sequence $\{x_1, \dots, x_n\}$, then

- $\operatorname{Tor}_n(R/I, M) \cong \operatorname{Ann}_M I$.
- $\operatorname{Ext}^n(R/I, M) \cong M/IM$.

2.4 Derived category

Def 42.

• \mathcal{C} is a pre-additive category if $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ is an abelian group $\forall X,Y\in\mathcal{C}$ s.t.

$$X \xrightarrow{u} Y \xrightarrow{f} Z \xrightarrow{v} T$$

with (f+g)u = fu + gu and v(f+g) = vf + vg.

- addivitve category: a pre-additive category $\mathcal C$ s.t.
 - There exists a zero object 0 s.t. $\forall X$, $\operatorname{Hom}_{\mathcal{C}}(0,X) = \{0\} = \operatorname{Hom}_{\mathcal{C}}(X,0)$.
 - Finite sum and finite products exist.

Def 43.

- $f \in \text{Hom}(B,C)$ is called a monomorphism if $\forall X \xrightarrow{g} B \xrightarrow{f} C$ with $f \circ g = 0 \implies g = 0$.
- $f \in \text{Hom}(B,C)$ is called a epimorphism if $\forall B \xrightarrow{f} C \xrightarrow{h} D$ with $h \circ f = 0 \implies h = 0$.
- a kernel of $f \in \text{Hom}(B,C)$ is a morphism $i:A \to B$ s.t. $f \circ i = 0$ and $\forall g:X \to B$ with $f \circ g = 0$, we have

$$A \xrightarrow{i} B \xrightarrow{f} C$$

$$\exists ! \qquad X$$

• a cokernel of $f \in \text{Hom}(B,C)$ is a morphism $p:C \to D$ s.t. $p \circ f = 0$ and $\forall h:C \to Y$ with $h \circ f = 0$, we have

$$B \xrightarrow{f} C \xrightarrow{p} D$$

$$\downarrow h$$

$$Y$$

$$Y$$

Remark 5.

- If i is a kernel of f, then i is a monomorphism.
- If p is a cokernel of f, then p is a epimorphism.

Remark 6. An epimorphism may not be a cokernel. Consider $\mathbb{Z} \xrightarrow{\times 3} \mathbb{Z}$ which is an epimorphism in the category of f.g. free \mathbb{Z} -modules. If $\mathbb{Z} \xrightarrow{\times 3} \mathbb{Z}$ is the cokernel of $G \xrightarrow{f} \mathbb{Z}$, then

$$G \xrightarrow{f} \mathbb{Z} \xrightarrow{\times 3} \mathbb{Z}$$

$$\downarrow \\ \downarrow \\ \downarrow \\ \mathbb{Z}$$

$$\downarrow \\ \downarrow \\ \mathbb{Z}$$

This implies $\tilde{f}: 1 \mapsto \frac{2}{3}$, which is impossible.

Def 44. \mathcal{A} is an abelian category if it is an additive category s.t.

- kernels and cokernels always exist in A.
- every monomorphism is a kernel and every epimorphism is a cokernel.

Fact 2.4.1. If A is an abelian category, then:

• every morphism is expressible as the composite of an epimorphism and a monomorphism. Given $f: B \to C$, we have

$$B \xrightarrow{f} C$$

$$\text{Im } f$$

where $\operatorname{Im} f$ is unique up to isomorphism.

Proof. Consider the following diagram:

$$\ker f \stackrel{i}{\longleftarrow} B \stackrel{f}{\longrightarrow} C \stackrel{p}{\longrightarrow} \operatorname{coker} f$$

$$\downarrow p' \qquad \downarrow i'$$

$$\operatorname{coker} i \xrightarrow{\exists : -\overline{\sigma}} \ker p$$

where μ, ν exist because i', p' are kernel and cokernel. Now, $i'\mu i = fi = 0$, and since i' is a monomorphism, $\mu i = 0$. Moreover, since p' is the cokernel of i, there exists a unique σ letting the diagram commute.

By exercise, σ is both a monomorphism and epimorphism. In an abelian category, this implies that σ is actually an isomorphism (i.e., σ^{-1} exists).

• $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact if f is monomorphism, g is epimorphism and $\operatorname{Im} f = \ker g$.

Theorem 31 (Freyd-Mitchell theorem). A small abelian category is equivalent to a full subcategory of a category of *R*-modules.

Def 45.

- $I \in \text{Obj } A$ is injective if the functor Hom(-, I) is exact.
- An abelian category is said to be **enough injectives** if for any $A \in \text{Obj } A$, there exists an injective object I such that $A \hookrightarrow I$.

Def 46. Given a functor $F: A \to B$ satisfy:

- 1. F is additive, which is to say F is a group homomorphism $\operatorname{Hom}(A, A') \to \operatorname{Hom}(FA, FA')$.
- 2. F is left exact. If $0 \to A' \to A \to A'' \to 0$, then $0 \to FA' \to FA \to FA''$.

Then the derived functor $R^iF: \mathcal{A} \to \mathcal{B}$ is defined as

$$R^{i}F(A) = \begin{cases} F(A), & \text{if } i = 0\\ H^{i}(F(I^{\bullet})), & \text{else} \end{cases}$$

Our goal is to construct the derived category $D^+(A)$ and $D^+(B)$ letting RF be a exact functor.

Def 47. Let A be an abelian category.

• Kom(A) is the category of complexes over A.

• K(A) is the homotopy category of A, defined by Obj(K(A)) = Obj(Kom(A)) and

$$\operatorname{Hom}_{K(\mathcal{A})}(A^{\bullet}, B^{\bullet}) = \operatorname{Hom}_{\operatorname{Kom}(\mathcal{A})}(A^{\bullet}, B^{\bullet}) / \sim,$$

where \sim indicates homotopy equivalences.

Remark 7.

- $\operatorname{Hom}_{K(\mathcal{A})}(I_A^{\bullet}, I_B^{\bullet}) \cong \operatorname{Hom}_{\mathcal{A}}(A, B)$ by comparison theorem (24).
- It could be shown that K(A) is additive but may not be abelian.

Def 48. $f \in \text{Hom}_{K(\mathcal{A})}(A^{\bullet}, B^{\bullet})$ is called a quasi-isomorphism if $H^n(f)$ is an isomorphism between $H^n(A^{\bullet})$ and $H^n(B^{\bullet})$ for each n.

Eg 2.4.1. • A quasi-isomorphism is often not invertible. For example:

• Given $0 \to A \to I^{\bullet}$,

$$0 \longrightarrow A \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow I^0 \longrightarrow I^1 \longrightarrow I^2 \longrightarrow \cdots$$

are two quasi-isomorphic complexes.

Def 49. Let \mathcal{B} be a category. A class of morphism $S \subset \operatorname{Mor}(\mathcal{B})$ is said to be **localizing** if

- 1. S is closed under composition with $\mathrm{Id}_X \in S$ for each object X in \mathcal{B} .
- 2. Extension condition holds: For each $f \in \text{Mor } \mathcal{B}$, $s \in S$, exists $g \in \text{Mor } \mathcal{B}$, $t \in S$ such that ft = sg. The dual version should hold as well.
- 3. For any $f, g \in \text{Hom}(X, Y)$,

$$\exists s \in S \text{ s.t. } sf = sg \iff \exists t \in S \text{ s.t. } ft = gt.$$

Theorem 32. If S is localizing, then there exists a category $\mathcal{B}[S^{-1}]$ with a functor $Q: \mathcal{B} \to \mathcal{B}[S^{-1}]$ such that

- 1. Q(s) is an isomorphism for each $s \in S$.
- 2. Given another functor $F: \mathcal{B} \to \mathcal{B}'$ satisfy condition 1, there exists a unique functor $G: \mathcal{B}[S^{-1}] \to \mathcal{B}'$ such that $F = G \circ Q$.

Proof. Define a roof to be a pair (s,t) with

$$X \xrightarrow{S\ni s} X'$$
 $X \qquad Y$

Also, define $(s, f) \sim (t, g)$ if there exists Z such that

with $sp = tq \in S$ and fp = gq.

First we check that " \sim " is indeed an equivalence relation. $(s,f) \sim (s,f)$ and $(s,f) \sim (t,g) \implies (t,g) \sim (s,f)$ are trivial. If $(s,f) \sim (t,g)$ and $(t,g) \sim (u,h)$, then we have the following diagram:

Using definition 2. on $tr \in S$ and sp, there are morphism z,a with $z \in S$ and spz = tra. Moreover, tqz = spz = tra, if we let b = qz, c = ra, then by 3., morphism $w \in S$ exists with bw = cw. Define x = pzw, y = vaw, we have sx = spzw = tqzw = tbw = tcw = traw = uvaw = uy and $sx \in S$ since sx = spzw and sp, z, w are all in S. Similarly, fx = hy, thus $(s, f) \sim (u, h)$. Hence we've just proved that \sim is an equivalence relation.

Now we could construct the localized category as following: The objects are $\mathrm{Obj}(\mathcal{B}[S^{-1}]) = \mathcal{B}$ and $\mathrm{Mor}(\mathcal{B}[S^{-1}]) = \{$ equivalence classes under $\sim \}$. $[(t,g)] \circ [(s,f)] = [(su,gh)]$ could be defined as in the following diagram:

Finally, define functor Q by Q(X) = X, $\forall X \in \text{Obj}(\mathcal{B})$ and $Q(f) = [(\text{Id}_X, f)]$. For the universal property, if F is another functor making every morphism in S be invertible, then the functor G exists uniquely by $G([(s, f)]) = F(f)F(s)^{-1}$.

Def 50. The mapping cone of a chain map f between two chain $X^{\bullet} \xrightarrow{f} Y^{\bullet}$ is defined as a chain with cone $(f)^n = X^{n+1} \oplus Y^n$, and the chain map is defined as

$$d_{\operatorname{cone}(f)} : \operatorname{cone}(f)^n = X^{n+1} \oplus Y^n \longrightarrow \operatorname{cone}(f)^{n+1} = X^{n+2} \oplus Y^{n+1}$$

$$(x_{n+1}, y_n) \xrightarrow{\begin{pmatrix} -d_X & 0 \\ f & d_Y \end{pmatrix}} \begin{pmatrix} -d_X(x^{n+1}), f(x^{n+1}) + d_Y(y_n) \end{pmatrix}$$

It is easy to see that $d_{\text{cone}(f)}^2 = 0$.

Prop 2.4.1. Suppose that $f: X^{\bullet} \to Y^{\bullet}$ is a chain map, then there is a short exact sequence

$$0 \longrightarrow Y \longrightarrow \operatorname{cone}(f) \longrightarrow X[+1] \longrightarrow 0$$
$$y \longmapsto (0, y)$$
$$(x, y) \longmapsto x$$

Proof. It is easy to see that the rows are exact. Tracing the diagram shows that the diagram commutes. \Box

Coro 2.4.1. There exists a long exact sequence of homology:

$$\cdots \to H^m(Y^{\bullet}) \to H^m(\operatorname{cone}(f)) \to H^{m+1}(X^{\bullet}) \xrightarrow{\delta} H^{m+1}(Y^{\bullet}) \to H^{m+1}(\operatorname{cone}(f)) \to \cdots$$

Where the connecting homomorphism $\delta = f^*$.

Proof. Tracing the diagram below as in the snake lemma,

$$X^m \oplus Y^{m-1} \longrightarrow X^m \\ \downarrow \qquad \qquad \downarrow \\ Y^m \longrightarrow X^{m+1} \oplus Y^m \longrightarrow X^{m+1}$$

Suppose $\bar{x} \in H^m(X^{\bullet})$, then $d_X(x) = 0$, so $d(x, 0) = (-d_X(x), f(x)) = (0, f(x))$, which implies $f(x) :: Y^m \mapsto d(x, 0) :: X^{m+1} \oplus Y^m$, then $\delta(\bar{x}) = \overline{f(x)}$, so $\delta = f^*$.

Coro 2.4.2. cone(f) acyclic (exact) \iff f quasi-isomorphic.

Proof. Directly by the exact sequence

$$H^{m-1}(\operatorname{cone}(f)) \to H^m(X^\bullet) \to H^m(Y^\bullet) \to H^m(\operatorname{cone}(f))$$

Notice that X[-k] is defined as $X[-k]^n = X^{n-k}$ with $d_{X[-k]} = (-1)^k d_X$ below.

Theorem 33. Let \mathcal{A} be an abelian category and $K(\mathcal{A})$ be the homotopy category. Then the class of quasi-isomorphisms are localizing.

Proof. We check that:

1. It is closed under composition: If f, g are quasi-isomorphic, then $(fg)^* = f^*g^*$ is a isomorphism since both f^*, g^* are, thus fg is quasi-isomorphic.

2. The diagram could be completed:

$$\exists W^{\bullet} \xrightarrow{----} Z^{\bullet}$$

$$\downarrow \qquad \qquad \downarrow g: \text{ q-iso}$$

$$X^{\bullet} \xrightarrow{f} Y^{\bullet}$$

Consider the following diagram:

Where cone $(\pi f)^n \cong X^{n+1} \oplus \text{cone}(q)^n \cong X^{n+1}Z^{n+1}Y^n$

We claim that $fk \simeq gh[-1]$. Since $(fk - gh[-1])(x_n, z_n, y_{n-1}) = f(x_n) + g(z_n)$. Define

$$\varphi : \operatorname{cone}(\pi f)[-1]^n = \operatorname{cone}(\pi f)^{n-1} \longrightarrow Y^{n-1}$$
$$(x_n, z_n, y_{n-1}) \longmapsto -y_{n-1}$$

Then

$$\varphi d_{C(\pi f)[-1]}(x_n, (z_n, y_{n-1})) = \varphi(d(x_n), -\pi f(x_n) - d(z_n, y_{n-1}))$$

$$= \varphi(d(x_n), -(0, f(x_n)) - (d(z_n), g(z_n) + d(y_{n-1})))$$

$$= \varphi(d(x_n), -d(z_n), -f(x_n) - g(z_n) - d(y_{n-1}))$$

$$= f(x_n) + g(z_n) + d(y_{n-1})$$

and $d_Y \varphi(x_n, z_n, y_{n-1}) = -d(y_{n-1})$, so $\varphi d_{C(\pi f)[-1]} + d_Y \varphi = fk - gh[-1]$, thus $fk \simeq gh[-1]$.

3. Let $f: X^{\bullet} \to Y^{\bullet}$ in $K(\mathcal{A})$. We shall prove that

$$\exists s: Y^{\bullet} \to Z^{\bullet} \text{ s.t. } sf = 0 \iff \exists t: W^{\bullet} \to X^{\bullet} \text{ s.t. } ft = 0$$

Let $h^i: X^i \to Z^{i-1}$ be a homotopy bewteen sf and 0. Consider the diagram:

$$\operatorname{cone}(s)[-1] \xleftarrow{g} X^{\bullet} \xleftarrow{t} \operatorname{cone}(g)[-1] = W^{\bullet}$$

$$\downarrow f$$

$$\operatorname{cone}(s)[-1] \xrightarrow{p[-1]} Y^{\bullet} \xrightarrow{s} Z^{\bullet} \xrightarrow{\pi} \operatorname{cone}(s)$$

One can check that g is a chain map. Now, we have ft = p[-1]gt, but $gt \simeq 0$ by

$$k_n:$$
 $W^n = X^n \oplus Y^{n-1} \oplus Z^{n-2} \longrightarrow C(s)[-1]^{n-1} = Y^{n-1} \oplus Z^{n-2}$ $(x_n, y_{n-1}, z_{n-2}) \longmapsto (y_{n-1}, z_{n-2})$

since

$$kd(x_n, y_{n-1}, z_{n-2}) = k(-(dx_n, g(x_n) + d(y_{n-1}, z_{n-2})))$$

$$= k(-dx_n, -(f(x_n), -h(x_n)) + (-dy_{n-1}, g(y_{n-1}) + dz_{n-2}))$$

$$= (-f(x_n) - dy_{n-1}, h(x_n) + g(y_{n-1}) + dz_{n-2})$$

and
$$dk(x_n, y_{n-1}, z_{n-2}) = d(y_{n-1}, z_{n-2}) = (dy_{n-1}, -g(y_{n-1}) - dz_{n-2})$$
. Thus $dk + kd = -gt \implies gt \simeq 0$.

Now, since s is quasi-isomorphic, by corollary 2.4.2, cone(s) is acyclic, and thus t is quasi-isomorphic. Hence we've find t so that $ft \simeq 0$.

We could then define the derived category as $D(A) = K(A)[S^{-1}]$ now.

Prop 2.4.2. The derived category is additive.

Proof. Let $\varphi, \varphi': X \to Y$ in D(A) with $\varphi = [(s, f)], \varphi' = [(s', f')]$, that is, we have the following two diagram

using 2. in the definition of localizing, exists U so that

$$\exists U \xrightarrow{r'} Z'$$

$$\downarrow^r \qquad \qquad \downarrow^{s'}$$

$$Z \xrightarrow{s} X$$

with one of r, r' is guaranteed to be quasi-isomorphic, say r. But then $H^n(U) \cong H^n(Z) \cong H^n(X) \cong H^n(Z')$ since r, s, s' are all quasi-isomorphic. This implies r' is also quasi-isomorphic, so we'll have the new roof for φ

Similarly, this applies to φ' . Since rs = r's', we could define $\varphi + \varphi' = [(rs, g + g')]$.

Def 51. Let A, B be abelian categories, $F : A \to B$ be an additive functor.

- Define $D^+(\mathcal{A})$ as a subcategory of $D(\mathcal{A})$ consist of all the objects (chains) X^{\bullet} in $D(\mathcal{A})$ such that $X^i = 0$ for all $i \leq i_0(X^{\bullet})$. $K^+(\mathcal{A})$ is defined similarly.
- Assume that F act on complexes component wise. $K^+(F): K^+(A) \to K^+(B)$.
- A triangle in $K^+(\mathcal{A})$ is a diagram of the form $\Delta: X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to X^{\bullet}[1]$
- \triangle is said to be distinguished if

In this case, we denote it as \triangle .

Recall that $\bar{Y}^{\bullet} \to \text{cone}(\bar{f}) \to \bar{X}^{\bullet}$ induces a long exact sequence

$$\cdots \to H^i(\bar{Y}) \to H^i(\operatorname{cone}(\bar{f})) \to H^i(\bar{X}[1]) \to H^{i+1}(\bar{Y}) \to \cdots$$

Prop 2.4.3. Let $F: A \to B$ be an exact functor, then

1. The exact functor $D^+(F): D^+(A) \to D^+(B)$ exists.

2. $D^+(F)$ preserves distinguished triangle, (i.e., $\triangle \mapsto \triangle$.)

Proof. First, we have the following observation:

• F sends acyclic chain to acyclic chain: If X^{\bullet} acyclic, then X^{\bullet} could be decomposed to many short exact sequence:

$$0 \to \ker d_X^i \to X^i \to \ker d_X^{i+1} \to 0$$

Apply F we would then get

$$0 \to F(\ker d_X^i) \to F(X^i) \to \ker d_X^{i+1} \to 0$$

which we could connect them and get the desired exact sequence

$$\cdots \to F(X^{i-1}) \to F(X^i) \to F(X^{i+1}) \to \cdots$$

• If $f: X^{\bullet} \to Y^{\bullet}$, then $F(f): F(X)^{\bullet} \to F(Y)^{\bullet}$, and we have $F(\operatorname{cone}(f)) \cong \operatorname{cone}(F(f))$, since $F(\operatorname{cone}(f))^n = F(X^{n+1} \oplus Y^n) \cong F(X^{n+1}) \oplus F(Y^n) = \operatorname{cone}(F(f))^n$ because F is additive. Moreover, the boundary map $d_{\operatorname{cone}(F(f))}$ is

$$\begin{pmatrix} -F(d_X) & 0 \\ F(f) & F(d_Y) \end{pmatrix} = F \begin{pmatrix} d_X & 0 \\ f & d_Y \end{pmatrix} = d_{F(\text{cone}(f))}$$

Since F transform the object and morphisms consistently, thus $F(\operatorname{cone}(f)) \cong \operatorname{cone}(F(f))$. Similarly we have $F(\operatorname{cyl}(f)) \cong \operatorname{cyl}(F(f))$.

Now, return to our proof:

1. If f quasi-isomorphic, then cone(f) acyclic by corollary 2.4.2, and $F(cone(f)) \cong cone(F(f))$ acyclic by the discussion above, and finally F(f) acyclic by the same corollary. Thus F preserves quasi-isomorphisms.

Moreover, we could complete the following diagram

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B})$$

$$\downarrow^{Q_{A}} \qquad \downarrow^{Q_{B}}$$

$$K^{+}(\mathcal{A})[S_{A}^{-1}] \xrightarrow{\exists !D^{+}(F)} K^{+}(\mathcal{B})[S_{B}^{-1}]$$

since F send quasi-isomorphisms to quasi-isomorphism and by the universal property of the localized category. Thus $D^+(f)$ exists.

2. Apply $D^+(F)$ to the diagram

We get

Where the quasi-isomorphisms are preserved by the discussion above.

Def 52. A class R of objects in Obj \mathcal{A} is said to be adapted to a left exact functor F if

- 1. It is stable under finite direct sums
- 2. F sends acyclic chain in $\text{Kom}^+(R)$ to acyclic chain (in $\text{Kom}^+(\mathcal{B})$).
- 3. For each $X \in \text{Obj } \mathcal{A}$, exists $I \in \mathbb{R}$ such that $0 \to X \to I$.

Theorem 34. Let F be a left exact functor, R be a class of objects adpated to F. Define S_R to be the class of quasi-isomorphisms on $K^+(R)$ which is localizing since it is stable with the construction of mapping cones. Then $D^+(A) \cong K^+(R)[S_R^{-1}]$.

Proof. First we claim that for all $C^{\bullet} \in D^{+}(A)$ (which we assume $C^{i} = 0, \forall i < 0$), There exists $I^{\bullet} \in K^{+}(R)$ such that $C^{\bullet} \cong I^{\bullet}$.

We shall construct quasi-isomorphism $t^n: \mathbb{C}^n \to I^n$. Using induction on n:

n=0: By the definition of adapting class we have $0 \to C^0 \xrightarrow{t^0} I^0$ for some I^0 . Consider the following diagram:

Where $I^0 \coprod_{C^0} C^1 \triangleq (I^0 \oplus C^1) / \{(t^0(x), -d_C(x)) \mid x \in C^0\}.$

We shall prove that t^0 is an isomorphism between $H^0(C^{\bullet}) = \ker d_C^1$ and $H^0(I^{\bullet}) = \ker d_I^1$. It is obviously 1-1 since $0 \to C^0 \xrightarrow{t^0} I^0$, so we need to check it is onto. For any $y \in \ker d_I^1 = \ker b$ since c is monomorphism. Then $b(y) = 0 \implies (y,0) = (t^0(x), -d_C^1(x))$ for some $x \in C^0$. So $y = t^0(x)$ with $d_C^1(x) = 0 \implies x \in \ker d_C^1$.

n = 1: Consider the diagram now:

Similarly, we shall prove that

$$H^1(t): \xrightarrow{\ker d_C^2} \xrightarrow{\sim} \xrightarrow{\ker d_I^2} \xrightarrow{\Gamma}$$

is an isomorphism.

- 1-1: Let $t^1(x) \in \operatorname{Im} d_I^1$. Since $t^1 = ca$ and $d_I^1 = cb$, there is y such that ca(x) = cb(y). Since c 1-1, $a(x) = b(y) \implies (0, x) = (y, 0)$. in the pushout, so $(y, -x) = (t^0(z), -d_C^1(z))$ for some $z \in C^0$. Thus $x = d_c^1(z) \in \operatorname{Im} d_C^1$.
- onto: For each $y \in \ker d_I^2 = \ker b'p$ since c' 1-1. Then

$$b'p(y) = 0 \implies (y + \operatorname{Im} d_I^1, 0) = (t'(x) + \operatorname{Im} d_I^1, -d_C^2(x))$$
 for some $x \in C^1$

in the pushout, so we have $y - t'(x) \in \operatorname{Im} d_I^1$ and $x \in \ker d_C^2$ and thus $H^1(t)(\bar{x}) = \bar{y}$.

n > 1: Similar as n = 1.

After proving this claim, we shall show that $\operatorname{Hom}_{K^+(R)[S_R^{-1}]}(X^{\bullet},Y^{\bullet}) \cong \operatorname{Hom}_{K^+(A)[S_A^{-1}]}(X^{\bullet},Y^{\bullet})$. We will use left roofs instead of right roofs defined before here.

• 1-1: If $(f,s) \cong (g,t)$ in $K^+(\mathcal{A})[S_{\mathcal{A}}^{-1}]$, then

where u exists by the previous claim.

• onto: Given a root in A

We could find a root in R which is equivalent to it again by the previous claim.

Finally, if $F: A \to \mathcal{B}$ is an additive left exact functor, then we will have $K^+(F): K^+(A) \to K^+(B)$ which sends acyclic chain in $K^+(R)$ to acyclic chain in $K^+(B)$. This implies that $K^+(F)$ sends quasi-isomorphism in $K^+(R)$ to quasi-isomorphism in $K^+(B)$. So we have the following diagram:

$$K^{+}(R) \xrightarrow{K^{+}(F)} K^{+}(B)$$

$$\downarrow_{Q_{R}} \qquad \downarrow_{Q_{R}}$$

$$I^{\bullet} \in K^{+}(R)[S_{R}^{-1}] \xrightarrow{\exists ! F} D^{+}(B)$$

$$\downarrow^{\uparrow}$$

$$D^{+}(A)$$

Where \bar{F} exists by the universal property of localization. Then the derived functor RF could be defined with $R^iF(C^{\bullet}) = H^i(RF(C^{\bullet}))$.

The universal property of RF is as following: $RF: D^+(A) \to D^+(B)$ is exact and the diagram commutes:

with $\epsilon_F: Q_B \circ K^+(F) \to RF \circ Q_A$ being a morphism of functors (???). Moreover, if $G: D^+(A) \to D^+(B)$ is another exact functor with $\epsilon_G: Q_B \circ K^+(F) \to G \circ Q_A$, then there is an unique $y:RF\to G$ such that

Now, one may ask that whether $RG \circ RF \cong R(G \circ F)$, the answer is no in generally, but there are spectral sequences so that ... Which is another story then...

Index

ı	Module	
ldeal	flat module	18
irreducible	5	
		N
M	nilradical	4