titanic-survival-prediction

January 20, 2024

1 TITANIC SURVIVAL PREDICTION

AIM: Building a model that predicts whether a passenger on the Titanic survived or not using the given dataset

IMPORTING ESSENTIAL LIBRARIES

```
[]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
```

DATA COLLECTION, PROCESSING AND ANALYSIS

```
[]: #takes a path to a CSV file and reads the data into a DataFrame df=pd.read_csv("/content/tested.xls") df
```

```
[]:
          PassengerId Survived Pclass
     0
                   892
                                0
                                        3
                   893
     1
                                1
                                        3
     2
                   894
                                0
                                        2
     3
                   895
                                0
                                        3
                   896
                                        3
     4
                                1
     413
                  1305
                                        3
     414
                  1306
                                        1
                                1
     415
                  1307
                                0
                                        3
     416
                  1308
                                0
                                        3
                  1309
                                0
                                        3
     417
                                                                     Age SibSp Parch \
                                                     Name
                                                               Sex
                                                             male 34.5
     0
                                        Kelly, Mr. James
```

```
1
                  Wilkes, Mrs. James (Ellen Needs)
                                                         female
                                                                  47.0
                                                                                     0
                                                                             1
2
                          Myles, Mr. Thomas Francis
                                                                  62.0
                                                                                     0
                                                           male
                                                                             0
3
                                    Wirz, Mr. Albert
                                                           male
                                                                  27.0
                                                                             0
                                                                                     0
4
     Hirvonen, Mrs. Alexander (Helga E Lindqvist)
                                                         female
                                                                  22.0
                                                                             1
                                                                                     1
                                                                    •••
                                  Spector, Mr. Woolf
                                                                             0
                                                                                     0
413
                                                           male
                                                                   {\tt NaN}
414
                       Oliva y Ocana, Dona. Fermina
                                                                  39.0
                                                                             0
                                                                                     0
                                                         female
415
                       Saether, Mr. Simon Sivertsen
                                                                                     0
                                                           male
                                                                  38.5
                                                                             0
                                                                                     0
416
                                 Ware, Mr. Frederick
                                                                             0
                                                           male
                                                                   {\tt NaN}
417
                            Peter, Master. Michael J
                                                           male
                                                                   NaN
                                                                             1
                                                                                     1
                  Ticket
                                Fare Cabin Embarked
0
                   330911
                              7.8292
                                        NaN
                                                     Q
1
                   363272
                              7.0000
                                        NaN
                                                     S
2
                   240276
                              9.6875
                                                     Q
                                        NaN
3
                   315154
                              8.6625
                                        NaN
                                                     S
4
                  3101298
                                                     S
                             12.2875
                                        NaN
. .
                                                     S
413
               A.5. 3236
                              8.0500
                                        NaN
414
                PC 17758
                            108.9000
                                       C105
                                                     С
415
     SOTON/O.Q. 3101262
                              7.2500
                                                     S
                                        {\tt NaN}
416
                   359309
                              8.0500
                                                    S
                                        \mathtt{NaN}
417
                     2668
                             22.3583
                                                     С
                                        {\tt NaN}
[418 rows x 12 columns]
```

[]: df.head()

3

315154

8.6625

 ${\tt NaN}$

[]:		Passenger	Id	Surviv	red	Pclass	\							
(0	89	92		0	3								
	1	89	93		1	3								
:	2	89	94		0	2								
;	3	89	95		0	3								
•	4	89	96		1	3								
									Name	Sex	Age	SibSp	Parch	\
(0					K	elly	, Mr.	James	male	34.5	0	0	
	1		W	ilkes,	Mrs	s. Jame:	s (E	llen	Needs)	female	47.0	1	0	
:	2				Myle	es, Mr.	Thor	nas F	rancis	male	62.0	0	0	
;	3					W	irz,	Mr.	Albert	male	27.0	0	0	
	4	Hirvonen,	Mrs	. Alex	ande	er (Hel	ga E	Lind	qvist)	female	22.0	1	1	
		Ticket	F	are Ca	bin	Embark	ed							
(0	330911	7.8	292	NaN		Q							
	1	363272	7.0	000	NaN		S							
:	2	240276	9.6	875	NaN		Q							

S

[]: df.tail()

[]:	Passe	ngerId	Survive	ed Pclass			Na	me Sex	\
413		1305		0 3		Spector	, Mr. Woo	lf male	
414		1306		1 1	Oliva y	Ocana, Dor	na. Fermi	na female	
415		1307		0 3	Saether,	Mr. Simor	n Siverts	en male	
416		1308		0 3		Ware, Mr	. Frederi	ck male	
417		1309		0 3	Pete	er, Master	. Michael	J male	
	Age	SibSp	Parch		Ticket	Fare	Cabin Em	barked	
413	NaN	0	0		A.5. 3236	8.0500	NaN	S	
414	39.0	0	0		PC 17758	108.9000	C105	C	
415	38.5	0	0	SOTON/O.Q	. 3101262	7.2500	NaN	S	
416	NaN	0	0		359309	8.0500	NaN	S	
417	${\tt NaN}$	1	1		2668	22.3583	NaN	C	

[]: df.shape

[]: (418, 12)

[]: df.dtypes

[]: PassengerId int64Survived int64 Pclass int64 Name object Sex object Age float64 SibSp int64 Parch $\mathtt{int} 64$ Ticket object Fare float64 Cabin object object Embarked dtype: object

[]: df.describe().T

[]:		count	mean	std	min	25%	50%	\
	PassengerId	418.0	1100.500000	120.810458	892.00	996.2500	1100.5000	
	Survived	418.0	0.363636	0.481622	0.00	0.0000	0.0000	
	Pclass	418.0	2.265550	0.841838	1.00	1.0000	3.0000	
	Age	332.0	30.272590	14.181209	0.17	21.0000	27.0000	
	SibSp	418.0	0.447368	0.896760	0.00	0.0000	0.0000	
	Parch	418.0	0.392344	0.981429	0.00	0.0000	0.0000	

```
Fare
                  417.0
                            35.627188
                                        55.907576
                                                      0.00
                                                              7.8958
                                                                         14.4542
                       75%
                                  max
     PassengerId 1204.75
                            1309.0000
     Survived
                      1.00
                               1.0000
     Pclass
                     3.00
                               3.0000
                    39.00
                              76.0000
     Age
     SibSp
                      1.00
                               8.0000
     Parch
                     0.00
                               9.0000
     Fare
                    31.50
                             512.3292
[]: df.describe(include='object').T
[]:
              count unique
                                           top freq
     Name
                418
                        418 Kelly, Mr. James
                                                  1
     Sex
                418
                          2
                                         male
                                                266
     Ticket
                418
                        363
                                     PC 17608
                                                  5
     Cabin
                 91
                         76
                              B57 B59 B63 B66
                                                  3
     Embarked
                418
                          3
                                               270
[]: df.isna().sum()
[]: PassengerId
                       0
     Survived
                       0
     Pclass
                       0
     Name
                       0
     Sex
                       0
                      86
     Age
     SibSp
                       0
     Parch
                       0
     Ticket
                       0
     Fare
                       1
     Cabin
                    327
     Embarked
                      0
     dtype: int64
[]: df['Cabin'].value_counts()
[]: B57 B59 B63 B66
                         3
     B45
                         2
     C89
                         2
     C55 C57
                         2
     A34
                         2
                        . .
     E52
                         1
     D30
                         1
     E31
                         1
```

```
1
     C105
                         1
     Name: Cabin, Length: 76, dtype: int64
[]: #droping irrelavant column
     df.drop(['PassengerId','Name','Ticket'],axis=1,inplace=True)
[]:
          Survived Pclass
                                       Age SibSp Parch
                                                                Fare Cabin Embarked
                                 Sex
                  0
                          3
                                male
                                      34.5
                                                 0
                                                              7.8292
                                                                       NaN
                            female 47.0
                                                                                   S
     1
                  1
                          3
                                                 1
                                                         0
                                                              7.0000
                                                                       NaN
     2
                  0
                          2
                                male 62.0
                                                                                   Q
                                                 0
                                                         0
                                                              9.6875
                                                                       NaN
     3
                  0
                          3
                                male 27.0
                                                                                   S
                                                 0
                                                         0
                                                              8.6625
                                                                       NaN
                                                                                   S
     4
                  1
                          3
                             female 22.0
                                                 1
                                                        1
                                                             12.2875
                                                                       NaN
     . .
     413
                  0
                          3
                                male
                                       {\tt NaN}
                                                 0
                                                        0
                                                              8.0500
                                                                       {\tt NaN}
                                                                                   S
     414
                            female 39.0
                                                        0
                                                           108.9000
                                                                      C105
                                                                                   С
                  1
                          1
                                                 0
     415
                                male 38.5
                                                                                   S
                  0
                          3
                                                 0
                                                        0
                                                              7.2500
                                                                       NaN
     416
                  0
                          3
                                male
                                                        0
                                                              8.0500
                                                                                   S
                                       {\tt NaN}
                                                 0
                                                                       {\tt NaN}
     417
                  0
                          3
                                male
                                       NaN
                                                             22.3583
                                                                                   С
                                                 1
                                                                       NaN
     [418 rows x 9 columns]
[]: df['Age']=df['Age'].fillna(df['Age'].mean())
     df['Fare'] = df['Fare'].fillna(df['Fare'].mode()[0])
[]: df.isna().sum()
[]: Survived
                    0
     Pclass
                    0
     Sex
                    0
     Age
                    0
     SibSp
                    0
     Parch
                    0
     Fare
                    0
     Cabin
                  327
     Embarked
     dtype: int64
[]: #drops the "Cabin" column from the DataFrame
     df.drop(['Cabin'],axis=1,inplace=True)
[]: df.isna().sum()
[]: Survived
                  0
     Pclass
                  0
     Sex
                  0
```

C62 C64

```
Parch
                 0
                 0
    Fare
     Embarked
     dtype: int64
[]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 418 entries, 0 to 417
    Data columns (total 8 columns):
         Column
                   Non-Null Count Dtype
                   _____
                                   ____
         Survived 418 non-null
     0
                                   int64
     1
         Pclass
                   418 non-null
                                   int64
     2
         Sex
                   418 non-null
                                   object
     3
         Age
                   418 non-null
                                   float64
     4
         SibSp
                   418 non-null
                                   int64
     5
         Parch
                   418 non-null
                                   int64
     6
         Fare
                   418 non-null
                                   float64
         Embarked 418 non-null
                                   object
    dtypes: float64(2), int64(4), object(2)
    memory usage: 26.2+ KB
[]: df.dtypes
[]: Survived
                   int64
    Pclass
                   int64
     Sex
                  object
                 float64
     Age
     SibSp
                   int64
    Parch
                   int64
    Fare
                 float64
    Embarked
                  object
     dtype: object
    DATA VISUALIZATION
[]: df['Survived'].value_counts()
[]: 0
          266
     1
          152
     Name: Survived, dtype: int64
[]: plt.figure(figsize=(10,8))
     label=['not survived','survived']
```

Age

SibSp

0

0

[]: <matplotlib.legend.Legend at 0x793198043010>


```
[]: df['Sex'].value_counts()
```

[]: male 266 female 152

Name: Sex, dtype: int64

```
[]: color=['teal','green']
sns.countplot(x='Sex',data=df,hue='Sex')
plt.show()
```



```
[]: sns.countplot(x='Pclass',data=df)
```

[]: <Axes: xlabel='Pclass', ylabel='count'>


```
[]: sns.barplot(x=df['Pclass'],y=df['Survived'])
```

[]: <Axes: xlabel='Pclass', ylabel='Survived'>


```
[]: sns.countplot(x='Pclass',data=df,hue='Survived')
```

[]: <Axes: xlabel='Pclass', ylabel='count'>

CORRELATION

```
[]: df.corr()
[]:
             Survived
                       Pclass
                                   Age
                                          SibSp
                                                   Parch
                                                             Fare
    Survived 1.000000 -0.108615 -0.000011 0.099943
                                                0.159120 0.192229
    Pclass
            -0.108615 1.000000 -0.440782
                                       0.001087
                                                0.018721 -0.577491
    Age
            -0.000011 -0.440782 1.000000 -0.079535 -0.045073 0.323839
    SibSp
             0.099943 0.001087 -0.079535 1.000000
                                                0.306895 0.172034
    Parch
             Fare
             0.192229 - 0.577491 \ 0.323839 \ 0.172034 \ 0.230411 \ 1.000000
[]: plt.figure(figsize=(14,8))
    sns.heatmap(df.corr(),annot=True)
    plt.show()
```



```
[]: df1=df.drop(columns='Survived')
df1.corrwith(df['Survived']).plot.bar(figsize=(15,9),title='Correlated with

Survived Column',rot=45,grid=True)
```

[]: <Axes: title={'center': 'Correlated with Survived Column'}>

LABEL ENCODING

```
[]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['Sex']=le.fit_transform(df['Sex'])
df['Embarked']=le.fit_transform(df['Embarked'])
df
```

[]:	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	34.50000	0	0	7.8292	1
1	1	3	0	47.00000	1	0	7.0000	2
2	0	2	1	62.00000	0	0	9.6875	1
3	0	3	1	27.00000	0	0	8.6625	2
4	1	3	0	22.00000	1	1	12.2875	2
	•••				•••	•••	•••	
413	0	3	1	30.27259	0	0	8.0500	2
414	1	1	0	39.00000	0	0	108.9000	0
415	0	3	1	38.50000	0	0	7.2500	2
416	0	3	1	30.27259	0	0	8.0500	2
417	0	3	1	30.27259	1	1	22.3583	0

[418 rows x 8 columns]

X AND Y SEPARATION

```
[]: x=df.drop(columns='Survived',axis=1)
     y=df['Survived']
[]: x
[]:
         Pclass
                 Sex
                            Age
                                 SibSp Parch
                                                   Fare Embarked
               3
                    1
                       34.50000
                                                 7.8292
     1
               3
                       47.00000
                                     1
                                            0
                                                 7.0000
                                                                2
               2
                       62.00000
                                     0
     2
                    1
                                            0
                                                 9.6875
                                                                1
     3
               3
                    1
                      27.00000
                                     0
                                            0
                                                 8.6625
                                                                2
     4
               3
                      22.00000
                                            1
                                                                2
                    0
                                     1
                                                12.2875
                                                                2
                       30.27259
                                     0
     413
               3
                    1
                                            0
                                                 8.0500
     414
                    0 39.00000
                                     0
                                            0
                                              108.9000
                                                                0
               1
     415
               3
                    1
                       38.50000
                                     0
                                            0
                                                 7.2500
                                                                2
               3
                    1 30.27259
                                            0
                                                                2
     416
                                     0
                                                 8.0500
    417
               3
                      30.27259
                                     1
                                            1
                                                22.3583
                                                                0
                    1
     [418 rows x 7 columns]
[]:|y
[]:0
            0
     1
            1
     2
            0
     3
            0
     4
            1
     413
           0
     414
            1
     415
            0
     416
            0
     417
    Name: Survived, Length: 418, dtype: int64
    SPLITING IN TO TRAINING AND TESTING DATA
[]: from sklearn.model_selection import train_test_split
     x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.
      →3,random_state=42)
    FEATURE SCALING
[]: from sklearn.preprocessing import StandardScaler
     sd=StandardScaler()
     x_train=sd.fit_transform(x_train)
     x_test=sd.fit_transform(x_test)
```

```
[]: from sklearn.metrics import

→accuracy_score,classification_report,ConfusionMatrixDisplay
```

2 MODEL BUILDING AND EVALUATION

K Nearest Neighbor Classifier

SVC

LOGISTIC REGRESSION

DECISION TREE CLASSIFIER

RANDOM FOREST CLASSIFIER

1.KNN (K Nearest Neighbours)

```
[]: #model creation
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=7)
knn.fit(x_train,y_train)
knn_pred=knn.predict(x_test)
```

[]: #accuracy score knn_acc=accuracy_score(y_test,knn_pred) knn_acc

[]: 0.9841269841269841

[]: #classification report and confusion matrix
print(classification_report(y_test,knn_pred))
print(ConfusionMatrixDisplay.from_predictions(y_test,knn_pred))

	precision	recall	f1-score	support
0	0.99	0.99	0.99	85
1	0.98	0.98	0.98	41
accuracy			0.98	126
macro avg	0.98	0.98	0.98	126
weighted avg	0.98	0.98	0.98	126

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at
0x793198041150>

2.SVC (SUPPORT VECTOR CLASSIFIER)

```
[]: #model creation
from sklearn.svm import SVC
model=SVC()
model.fit(x_train,y_train)
y_pred_svm=model.predict(x_test)
```

```
[]: #accuracy score
svm_acc=(accuracy_score(y_test,y_pred_svm))
svm_acc
```

[]: 0.9920634920634921

[]: print(classification_report(y_test,y_pred_svm))
print(ConfusionMatrixDisplay.from_predictions(y_test,y_pred_svm))

support	f1-score	recall	precision	
85	0.99	1.00	0.99	0
41	0.99	0.98	1.00	1

accuracy			0.99	126
macro avg	0.99	0.99	0.99	126
weighted avg	0.99	0.99	0.99	126

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at
0x7931993cf670>

3.LOGISTIC REGRESSION

```
[]: #model creation
    from sklearn.linear_model import LogisticRegression
    lg=LogisticRegression(random_state=42)
    lg.fit(x_train,y_train)
    y_pred_lg=lg.predict(x_test)
[]: #accuracy score
    lg_acc=(accuracy_score(y_test,y_pred_lg))
    lg_acc
```

[]: 1.0

[]: #classification report and confusion matrix print(classification_report(y_test,y_pred_lg)) print(ConfusionMatrixDisplay.from_predictions(y_test,y_pred_lg))

	precision	recall	f1-score	support
0 1	1.00 1.00	1.00	1.00	85 41
accuracy			1.00	126
macro avg	1.00	1.00	1.00	126
weighted avg	1.00	1.00	1.00	126

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at
0x793197fc9090>

4.DECISION TREE CLASSIFIER

```
[]: #model creation
from sklearn.tree import DecisionTreeClassifier
decision=DecisionTreeClassifier()
decision.fit(x_train,y_train)
```

y_pred_decision=decision.predict(x_test)

1.0

	precision	recall	f1-score	support
0	1.00	1.00	1.00	85
1	1.00	1.00	1.00	41
accuracy			1.00	126
macro avg	1.00	1.00	1.00	126
weighted avg	1.00	1.00	1.00	126

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at
0x793197d94af0>

[]: #accuracy score
dtree_acc=accuracy_score(y_test,y_pred_decision)
dtree_acc

[]: 1.0

[]: #classification report and confusion matrix print(classification_report(y_test,y_pred_decision)) print(ConfusionMatrixDisplay.from_predictions(y_test,y_pred_decision))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	85
1	1.00	1.00	1.00	41
accuracy			1.00	126
macro avg	1.00	1.00	1.00	126
weighted avg	1.00	1.00	1.00	126

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at
0x7931980425c0>

RANDOM FOREST CLASSIFIER

```
[]: #model creation
from sklearn.ensemble import RandomForestClassifier
random=RandomForestClassifier(random_state=42)
random.fit(x_train,y_train)
```

y_pred_random=random.predict(x_test)

[]: #accuracy score rf_acc=accuracy_score(y_test,y_pred_random) rf_acc

[]: 1.0

```
[]: #classification report and confusion matrix
print(classification_report(y_test,y_pred_random))
print(ConfusionMatrixDisplay.from_predictions(y_test,y_pred_random))
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	85
1	1.00	1.00	1.00	41
accuracy			1.00	126
macro avg	1.00	1.00	1.00	126
weighted avg	1.00	1.00	1.00	126

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at
0x793197762560>


```
[]: model=['KNN','SVM','LOGISTIC','DECISION TREE','RANDOM FOREST']
accuracy_scores=[knn_acc,svm_acc,lg_acc,dtree_acc,rf_acc]
accuracy_scores
```

[]: [0.9841269841269841, 0.9920634920634921, 1.0, 1.0, 1.0]

```
[]: color=['black','teal','turquoise','cadetblue','green']
  plt.figure(figsize=(10,6))
  sns.barplot(x=model,y=accuracy_scores,palette=color)
  plt.ylabel('accuracy_scores')
  plt.title('Accuracy scores of models')
  # Adding percentage labels
  for i, score in enumerate(accuracy_scores):
     plt.text(i, score +0.01, f'{score*100:.2f}%', ha = 'center')
  plt.show()
```


3 CONCLUSION

After a comprehensive analysis on the Titanic Survival Prediction dataset, multiple machine learning models were employed:

• KNN: 98.41% accuracy

• **SVM**: 99.21% accuracy

• Logistic Regression: 100% accuracy

• Decision Tree: 100% accuracy

• Random Forest: 100% accuracy

All models performed exceptionally well, achieving high accuracy scores. It's noteworthy that the Logistic Regression, Decision Tree, and Random Forest models achieved perfect accuracy, indicating robust predictive capabilities.