UNIVERSITY OF CALIFORNIA

College of Engineering

Department of Materials Science & Engineering

Professor R. Gronsky

E45

Fall Semester 2014

Properties of Materials

Date	Lecture (12-1 PM)	AM Lab	PM Lab	HW/Exams	
Thu, Aug 28, 2014	Instruction Begins	· · · · · · · · · · · · · · · · · · ·			
Fri, Aug 29, 2014	Introduction to Engineering Materials				
	0 0				
Mon, Sep 1, 2014	Labor Day Holiday				
Tue, Sep 2, 2014	, , , , , , , , , , , , , , , , , , ,	Orientation	Orientation		
Wed, Sep 3, 2014	Strength of Materials, Stress, Strain		Orientation		
Thu, Sep 4, 2014		Orientation	Orientation		
Fri, Sep 5, 2014	Deformation Modes, Elastic and Plastic	Orientation	Orientation	HW01	
, ,	,				
Mon, Sep 8, 2014	Hardness, Toughness, Mechanical Testing		Lab01		
Tue, Sep 9, 2014		Lab01	Lab01		
Wed, Sep 10, 2014	Materials at the Atomic Level		Lab01		
Thu, Sep 11, 2014	21,200,21,000	Lab01	Lab01		
Fri, Sep 12, 2014	Classifications by Bond Types	Lab01	Lab01	HW02	
111, 500 12, 2011	Classifications by Bona Types	Eucoi	Eucoi	111102	
Mon, Sep 15, 2014	< Engineering Laboratory Protocols >				
Tue, Sep 16, 2014	Engineering Eusoratory Protocols				
Wed, Sep 17, 2014	< Preparation for Midterm Exam(s) >				
Thu, Sep 18, 2014	· Treparation for Matter in Exam(s) >				
Fri, Sep 19, 2014	Exam			Midterm 01	
111, Sep 19, 2014	Exam			Wildtei iii VI	
Mon, Sep 22, 2014	Fundamentals of Crystallography		Lab02		
Tue, Sep 23, 2014	rundamentals of Crystanography	Lab02	Lab02 Lab02		
Wed, Sep 24, 2014	Crymmatery and Cerestal Crystams	La002	Lab02 Lab02		
	Symmetry and Crystal Systems	I ab02			
Thu, Sep 25, 2014	Ct-1 Stt	Lab02	Lab02	1133703	
Fri, Sep 26, 2014	Crystal Structures of Engineering Materials	Lab02	Lab02	HW03	
M C 20 2014	Ct 1 A 1 : - 1 D: CC t:				
Mon, Sep 29, 2014	Structural Analysis by Diffraction				
Tue, Sep 30, 2014	C (11: D C)				
Wed, Oct 1, 2014	Crystalline Defects				
Thu, Oct 2, 2014				TTTT A	
Fri, Oct 3, 2014	Dislocations, Grain Boundaries			HW04	
M 0 1 6 201 1	D.00		T 100		
Mon, Oct 6, 2014	Diffusion in Solids	1 100	Lab03		
Tue, Oct 7, 2014	N C	Lab03	Lab03		
Wed, Oct 8, 2014	Phases, Components, Phase Rule	T 100	Lab03		
Thu, Oct 9, 2014		Lab03	Lab03		
Fri, Oct 10, 2014	Phase Diagrams Lab03 Lab		Lab03	HW05	
Mon, Oct 13, 2014	Understanding Reaction Isotherms				
Tue, Oct 14, 2014					
Wed, Oct 15, 2014	Predicting Microstructural Development				
Thu, Oct 16, 2014					
Fri, Oct 17, 2014	Exam			Midterm 02	

Date	Lecture (12-1 PM)	AM Lab	PM Lab	HW/Exams
Mon, Oct 20, 2014	Reaction Kinetics			
Tue, Oct 21, 2014		Lab04	Lab04	
Wed, Oct 22, 2014	TTT Curves		Lab04	
Thu, Oct 23, 2014		Lab04	Lab04	
Fri, Oct 24, 2014	Control of Kinetics in Engineering Alloys	Lab04	Lab04	HW06
	<u> </u>			
Mon, Oct 27, 2014	Failure of Engineering Materials			
Tue, Oct 28, 2014				
Wed, Oct 29, 2014	Brittle Fracture: Griffith Crack Model			
Thu, Oct 30, 2014				
Fri, Oct 31, 2014	Fatigue Damage			HW07
Mon, Nov 3, 2014	Polymers and Polymerization		Lab05	
Tue, Nov 4, 2014		Lab05	Lab05	
Wed, Nov 5, 2014	Viscoelastic and Elastomeric Behavior		Lab05	
Thu, Nov 6, 2014		Lab05	Lab05	
Fri, Nov 7, 2014	Composite Materials	Lab05	Lab05	HW08
Mon, Nov 10, 2014	Isostrain and Isostress Loading			
Tue, Nov 11, 2014	Veterans' Day Holiday			
Wed, Nov 12, 2014	Property Averaging			
Thu, Nov 13, 2014				
Fri, Nov 14, 2014	Exam			Midterm 03
Mon, Nov 17, 2014	Electrical and Electronic Properties		Lab06	
Tue, Nov 18, 2014		Lab06	Lab06	
Wed, Nov 19, 2014	Magnetic Properties		Lab06	
Thu, Nov 20, 2014		Lab06	Lab06	
Fri, Nov 21, 2014	Optical Properties	Lab06	Lab06	HW09
Mon, Nov 24, 2014	Dielectrics, Ferroelectrics, Piezoelectrics			
Tue, Nov 25, 2014				
Wed, Nov 26, 2014	Solid State Devices			
Thu, Nov 27, 2014	Thanksgiving Day Holiday			
Fri, Nov 28, 2014	Thanksgiving Day Holiday			
M D 1 2014	F : (1D 1): CM (:1			
Mon, Dec 1, 2014	Environmental Degradation of Materials			
Tue, Dec 2, 2014	Matariala Calcation and Darian			
Wed, Dec 3, 2014	Materials Selection and Design			
Thu, Dec 4, 2014	Enilogue Borious for Final Errors			113710
Fri, Dec 5, 2014	Epilogue — Review for Final Exam			HW10
Mon, Dec 8, 2014	RRR			
Tue, Dec 9, 2014	RRR			
Wed, Dec 10, 2014	RRR			
Thu, Dec 11, 2014	RRR			
Fri, Dec 12, 2014	RRR			
111, DCC 12, 2014	MM			
Mon, Dec 15, 2014	Finals Week			
Tue, Dec 16, 2014	Finals Week			
Wed, Dec 17, 2014	Finals Week			
Thu, Dec 18, 2014	Finals Week			
Fri, Dec 19, 2014	Final Exam, 11:30AM–2:30PM			Final Exam
111, 200 17, 2017	1 Him DAMH, 11.30/11/1 2.30/11/1			I mai Daam

E45 Logistics

Course Website <u>bCourses</u>

Lecture MWF 12-1PM, 10 Evans Hall

Office Hours 218 Hearst Memorial Mining Building

M 8-10 AM, and W 8-9 AM, and/or by appointment

Textbook J.F. Shackelford, *Introduction to Materials Science for Engineers*, Eighth Edition, Pearson Higher Education, Inc., Upper Saddle River, NJ 07458, (2015).

USED copies of the 7th (2009), 6th (2005), or 5th (2000) editions are also acceptable, but please verify numbering of homework problems, as they may be different.

Note: Outside reading from other textbooks and auxiliary sources is **strongly** encouraged.

Laboratory All lab sections meet in **Room 230 HMMB** unless otherwise instructed by GSIs.

Six laboratory exercises complement the lectures in biweekly experiments investigating the properties of materials, using the *Lab Guide* and *Lab Manuals* posted to our *bCourses* site.

Lab 01 Basics of Mechanical Behavior

Lab 02 The Uniaxial Tensile Test

Lab 03 Recovery, Recrystallization, and Grain Growth

Lab 04 Binary Alloy Phase Diagrams

Lab 05 Heat Treatment of Steel

Lab 06 Electronic Properties of Materials

The lab is divided into 8 sections, meeting biweekly according to the following calendar.

Lab Sections	Monday	Tuesday	Wednesday	Thursday	Friday
8-11 AM		101		104	106
2-5 PM	108	102	103	105	107

Each lab section has a primary Graduate Student Instructor (GSI) who is responsible for grading lab reports, and a secondary GSI, who assists with safety and staffing of experimental stations.

E45 Grading

"As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others."

Ethics

Please remember that this is your honor code. It is a simple pledge that will serve you well during your academic career, and provide a solid foundation for success in your career as a practicing professional, when you will be held to even higher standards. The National Society of Professional EngineersTM articulates those standards <u>here</u>.

Course Grade

There are no individual grading thresholds assigned to individual assessment methods. All components are scored, weighted, pooled, then mapped onto a curve for a course grade determination at the **end** of the semester, according to the following guidelines.

Homework 10%

Homework is submitted by uploading solutions in pdf to *bCourses* by the due date and time. No raw "word processing" documents are accepted; submissions must be converted to pdf to preserve formatting, which is common professional engineering practice. Deadlines are firm, to allow for timely uploading of solutions as additional study guides. Each homework submission is individually worth 50 points.

The topmost objective of your homework assignments is to **guide your self-learning**. Homework is **not** meant to be "group learning" exercise, and certainly not an artistic alteration of answers from others to avoid a plagiarism charge. Homework problems are taken directly from the textbook, so your answers can be found in the textbook. You should therefore think of your homework assignments this way: **read the textbook** and **develop your own (imaginative, creative, fully articulated, and professionally presented) answers** to the homework problems.

Your homework submissions MUST be your own work; **consultation with others is strictly forbidden**. If you choose to adopt or modify the solutions presented in any of the "Instructor's Manuals" available on line, or an instructor's previously distributed solutions to any of the problems assigned this semester, you MUST give a full citation of such resources; otherwise you are engaging in plagiarism, which yields NO points and risks a report to the Center for Student Conduct.

Please note that your GSIs are **not** consultants on homework submissions; they have special responsibilities to serve as your mentors in laboratory "hands-on" experimental practice. If you are having trouble with your homework, please use your instructor's posted **office hours** to seek guidance **after** you've attempted your solutions.

Lab Reports 30%

Formal lab reports are due on the dates established by your GSIs, normally one week after completion of the lab exercises, also by uploading them in pdf to our *bCourses* site. Late penalties are enforced. Each lab report is individually worth 100 points.

In the laboratory you will be working in small groups to gather data, which, most of the time, must be shared by all members of your lab group. This is **not** plagiarism. Rather, it should be an incentive to work with your group members to secure the best data set possible. Reading the laboratory protocols ahead of time to be sure of the data required for your report is the prudent path to proper preparation. Afterwards, with your data set in hand, you will **individually** analyze, render in drawings, plot in graphs, interpret, and present your findings in your **own** formal laboratory report. Sharing a plot made by one of your lab group members is plagiarism, as is the incorporation of any analysis or interpretation that is not your own. Such content MUST be cited appropriately in professional citation format, and points will be deducted for not individually executing the content requested in the manual.

After your graded lab reports are returned, you may notice differences in scoring between lab sections. Some GSIs may appear much "harder" than others. Please know that at the end of the semester, all lab scores are normalized, removing any variations in grading styles among lab sections. Accept the challenge to work with your GSIs, especially those who hold you to high standards, to guide you in your learning.

Midterm Exams 30% Three in-class midterm examinations taken during normal class times on three different Fridays throughout the semester (see calendar above for dates) are administered by your instructor and/or GSIs. Midterm exams begin at 12:10 PM and end at 1:00 PM sharp. Each exam is individually worth 100 points.

> Studying for exams is best done as a **group** effort. This is **not** plagiarism. Please consider organizing/joining study groups and challenging one another on the concepts covered in lecture, emphasizing the fundamentals and varying the applications. Take turns explaining those concepts and applications to one another. It should be evident to you when you cannot explain yourself that you don't fully understand the topic. There will be practice exams and study guides posted to bCourses. Use these as a guide, but don't make the mistake of simply memorizing answers; be vigilant about recognizing the concepts that underpin the questions. Your lecture notes, not the textbook, are your best guide to examination content. If a topic is not covered in lecture, it will not be on the exam, even if it is covered in the text.

All examinations are "closed book" exams. No reference materials are permitted. No calculators are permitted. No "Blue Books" are permitted. No electronic devices are permitted. Cell phones must be turned OFF. You are allowed a supply of pencils and pens (at least two colors will be helpful), erasers (remember the properties of isoprene when choosing yours), and a straightedge (long enough to construct figures across an $8\frac{1}{2} \times 11$ inch page.

Final Exam 30%

Although your midterm exams have focused sequential coverage with little or no overlap, the final examination is a fully "comprehensive" one, covering all concepts developed throughout the semester. It is a "closed book" 3-hour exam (no 10-minute delay at start) worth 300 points.