ha hair a

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-238103

(43) Date of publication of application: 31.08.1999

(51)Int.CI.

. G06K 17/00

(21)Application number: 10-191624 (71)Applicant: DENSO CORP

(22)Date of filing:

07.07.1998 (72)Inventor: KAWACHI SATOSHI

KOSAKA TOSHIYUKI

(30)Priority

Priority number: 09349501 Priority date: 18.12.1997 Priority country: JP

(54) NON-CONTACT IC CARD READER-WRITER

(57)Abstract:

PROBLEM TO BE SOLVED: To eliminate the need of individually designing a radio wave output circuit and to prevent the leakage of unrequired electromagnetic waves and the influence of the electromagnetic waves from the outside by contriving the structure of the case body with respect to a non-contact

IC card reader-writer.

SOLUTION: An antenna 10a printed on an antenna substrate 10 and an electronic circuit 40a mounted on a printed wiring board 40 are arranged inside the case body 30 provided with an electromagnetic wave shielding function. Then, in order to discharge the electromagnetic waves outputted from the antenna 10a from the case body 30 only in a direction required for communication with a non-contact card, an electromagnetic wave shielding pattern 10b is printed on the antenna substrate 10 fixed to the opening part of an upper case body member 30u for constituting the case body 30 and an electromagnetic wave passing port for discharging the electromagnetic waves is formed.

LEGAL STATUS

[Date of request for examination]

06.08.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It is based on directions from the main computer connected with the antenna for communicating between noncontact IC cards outside. The electronic circuitry which communicates between said noncontact IC cards through said antenna, and directs either [at least] read-out of information or writing to the noncontact IC card concerned, While having the case which covers an electromagnetic wave and arranging said antenna and electronic circuitry inside said case The non-contact IC card reader writer characterized by forming in said case electromagnetic wave passage opening for emitting the electromagnetic wave outputted from said antenna only in the direction required for the communication link with said noncontact IC card.

[Claim 2] The non-contact IC card reader writer by which it is forming-by electromagnetic wave electric shielding pattern which opening which formed said electromagnetic wave passage opening in case was printed by wrap printed wired board in non-contact IC card reader writer according to claim 1, and was connected to grand terminal characterized.

[Claim 3] The non-contact IC card reader writer characterized by constituting so that a conductor and the resistor concerned concerned may form a loop

formation in the perimeter of said antenna by arranging in the perimeter of said antenna the conductor of the shape of a loop formation which prepared the clearance in the middle of the loop formation in a non-contact IC card reader writer according to claim 1 or 2, and making a resistor placed between the clearances concerned.

[Claim 4] The non-contact IC card reader writer characterized by having the electromagnetic wave electric shielding wall which is arranged between said antennas and electronic circuitries and covers an electromagnetic wave further in a non-contact IC card reader writer according to claim 1 to 3, and the electromagnetic wave absorption member which is prepared in the field by the side of the antenna of said electromagnetic wave electric shielding wall, and absorbs an electromagnetic wave.

[Claim 5] It is the non-contact IC card reader writer which is constituted possible [activation of communication link test processing for said electronic circuitry to perform a communication link check with said noncontact IC card in a non-contact IC card reader writer according to claim 1 to 4], and is characterized by having an information means to report to a user whether the communication link condition was further established by activation of said communication link test processing.

[Claim 6] The non-contact IC card reader writer characterized by constituting so that the lobe located in the emission side of an electromagnetic wave to said antenna arranged inside said case in a non-contact IC card reader writer according to claim 1 to 5 may be lost as much as possible.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention performs radio using an electromagnetic wave between the noncontact IC cards which have a transceiver function, and relates to the non-contact IC card reader writer used for the non-contact IC card system which directs read-out and the writing of card data to a noncontact IC card based on the directions from the main computer.

[0002]

[Description of the Prior Art] A noncontact IC card has many points of having excelled compared with a contact process card which is represented by the magstripe card. For example, it not being necessary to insert a card in a card reader writer at the time of read-out of the security engine performance of the data memorized by the card being high and card data and writing, and excelling in convenience, excelling in the waterproofing engine performance, etc. are mentioned. For this reason, it is being used by the noncontact IC card more often as an identification medium used for an introduction managerial system, an entrance managerial system, a settlement-of-accounts managerial system, etc. [0003] The non-contact IC card reader writer which used telecommunications standards, such as RS232C, for the main computer, and was connected to it performs the communication link using an electromagnetic wave between this noncontact IC card. A non-contact IC card reader writer transmits a command to a noncontact IC card based on the directions from the main computer. Based on this command, a noncontact IC card reads card data from memory, and it

transmits to a non-contact IC card reader writer, or it writes the data received from the non-contact IC card reader writer in memory as card data. That is, in the non-contact IC card system which consists of a noncontact IC card, a non-contact IC card reader writer, and the main computer, a non-contact IC card reader writer functions as a communication device.

[0004]

[Problem(s) to be Solved by the Invention] Hereafter, the conventional trouble in the non-contact IC card reader writer mentioned above is explained. The 1st trouble is designing an electromagnetic wave output circuit according to an individual to each non-contact IC card reader writer, in order to adjust the field strength of the electromagnetic wave which a non-contact IC card reader writer outputs.

[0005] In order that a non-contact IC card reader writer may use an electromagnetic wave, the field strength of the electromagnetic wave to output is regulated by Wireless Telegraph Law of each country. For example, while preparing a convention in each to a predetermined frequency, to the other frequency, it positioned as a "feeble radio station", and has regulated uniformly in Japan. Consequently, it is necessary to design an electric-wave output circuit according to an individual according to the country which uses it, and the frequency to be used.

[0006] Of course, although it is also possible to design the electric-wave output circuit which can adjust field strength, there is a problem that circuitry becomes complicated. Moreover, since the convention of domestic Wireless Telegraph Law is not fulfilled, the electric-wave output circuit of existing, for example, foreign-made goods, cannot be used if it remains as it is. But since costs will increase if the existing electric-wave output circuit is converted, the present condition is designing the electric-wave output circuit according to an individual after all.

[0007] Moreover, there was the need that the specification of a non-contact IC card reader writer also designs an electric-wave output circuit according to an

individual. That is, it is because it is necessary for what needs a long communication range to adjust the field strength of the electromagnetic wave which is outputted for a certain reason according to the specification if a short thing also has a communication range between a non-contact IC card reader writer and a noncontact IC card with the specification of the non-contact IC card reader writer.

[0008] Thus, in addition to designing so that the field strength specified to Wireless Telegraph Law according to each frequency may not be exceeded, the electric-wave output circuit of a non-contact IC card reader writer needed to be separately designed according to the specification of a non-contact IC card reader writer. The 2nd trouble is reading a noncontact IC card also except the front face (field by the side of card reading) of a non-contact IC card reader writer with the directivity of the antenna used for a non-contact IC card reader writer. [0009] Although it has the antenna in order that the non-contact IC card reader writer which functions as a communication device may perform the communication link with a noncontact IC card, as shown in drawing 4 (b), as for this antenna, what printed loop-formation-like antenna 10a on the printed wired board is common. In drawing 4 R> 4 (b), the printed wired board on which antenna 10a was printed was shown as an antenna substrate 10. Hereafter, the printed wired board on which the antenna was printed is considered as an antenna substrate.

[0010] Drawing 7 is the side elevation of the antenna substrate 10 shown by drawing 4 (b), and shows the directivity of this antenna. As shown in drawing 7, the electromagnetic wave outputted from an antenna has the character type directivity of 8, and is emitted to both-sides side of the antenna substrate 10. In addition, the broken line showed the location where the field strength of the electromagnetic wave outputted from an antenna serves as a predetermined value to drawing 7.

[0011] In order to perform the communication link with a noncontact IC card efficiently, as for such an antenna substrate, it is common to be arranged in the

front face inside the case of a non-contact IC card reader writer, but since the antenna has the character type directivity of 8 as shown in drawing 7, a part of electromagnetic wave will be emitted also to the tooth back of this non-contact IC card reader writer. Consequently, un-arranging [that the communication link with a noncontact IC card will be performed, and card data will be read also at the tooth back of a non-contact IC card reader writer] arises.

[0012] The 3rd trouble is that the effect by the perimeter environment is large. For example, when other devices are brought close, a communication link condition with a noncontact IC card becomes unstable, and the stability of actuation of a non-contact IC card reader writer may be spoiled by the effect of the electromagnetic wave revealed from the device.

[0013] This invention aims at abolishing the need of designing an electric-wave output circuit separately, and preventing leakage of an unnecessary electromagnetic wave, and the effect of the electromagnetic wave from the outside by being made in order to solve three troubles mentioned above, and devising the structure of the case in a non-contact IC card reader writer.

[0014]

[The means for solving a technical problem and an effect of the invention] The non-contact IC card reader writer according to claim 1 made in order to attain the purpose mentioned above It is based on directions from the main computer connected with the antenna for communicating between noncontact IC cards outside. The electronic circuitry which communicates between noncontact IC cards through an antenna, and directs either [at least] read-out of information or writing to the noncontact IC card concerned, While having the case which covers an electromagnetic wave and arranging an antenna and an electronic circuitry inside a case, it is characterized by forming in a case electromagnetic wave passage opening for emitting the electromagnetic wave outputted from an antenna only in the direction required for the communication link with a noncontact IC card.

[0015] It has the transceiver function which communicates with an external

device using an electromagnetic wave, and a "noncontact IC card" here reads the card data memorized by the predetermined storage section based on the directions from an external device, and by using as card data information received from the external device, it writes in the predetermined storage section, or it has [**** / transmitting to the external device] the function to carry out. [0016] It is equivalent to the external device mentioned above, an electronic circuitry communicates between noncontact IC cards through an antenna based on the directions from the main computer connected outside, and the non-contact IC card reader writer of this invention directs either [at least] read-out of information or writing to a noncontact IC card. The noncontact IC card which received directions performs read-out or the writing of card data, as mentioned above. In this way, a non-contact IC card reader writer reads card data from a noncontact IC card, writes card data in a noncontact IC card, or carries out them. [0017] in addition, "read-out or writing -- at least -- on the other hand -- " -- ** -an electronic circuitry's being able to read having carried out and it also being able to direct a chisel and the thing which is considered and which can carry out and can direct only writing are considered -- it carries out or is both because it is also considered that it can direct.

[0018] And in the non-contact IC card reader writer of this invention, in order that a case may cover an electromagnetic wave, the electromagnetic wave outputted from an antenna is emitted to the case exterior through electromagnetic wave passage opening prepared in the case. At this time, electromagnetic wave passage opening is formed so that the electromagnetic wave from an antenna may be emitted only in the direction required for the communication link with a noncontact IC card. For example, in the non-contact IC card reader writer which performs the communication link with the noncontact IC card put close to the front face of a case, it is condition of forming electromagnetic wave passage opening in the front face of a case.

[0019] According to the non-contact IC card reader writer of this invention, only the electromagnetic wave to a direction required for the communication link with

a noncontact IC card will be emitted to the case exterior. Conversely, if it says, the electromagnetic wave to a direction unnecessary to the communication link with a noncontact IC card will be covered with a case, and will not be emitted to the case exterior. For this reason, if electromagnetic wave passage opening is formed only in the front face of a case, a communication link will be performed between the noncontact IC cards put close to the tooth back of a case, and it will be lost that card data do not mean but are read. Moreover, the electromagnetic wave emitted from an electronic circuitry is not revealed from the side face and tooth back of a case, either. Furthermore, since a case also covers the electromagnetic wave from the outside, it can also prevent the effect of the electromagnetic wave from the side face and tooth back of the case by an external instrument etc., and can raise the stability of a non-contact IC card reader writer of operation.

[0020] In addition, in order to emit the electromagnetic wave outputted from an antenna to the case exterior through electromagnetic wave passage opening formed in the case, a part of electromagnetic wave outputted from an antenna depending on the magnitude of electromagnetic wave passage opening will be covered. Therefore, the field strength of the electromagnetic wave outputted from an antenna is determined by the magnitude of this electromagnetic wave passage opening. Therefore, even if it is the case where the same electric-wave output circuit and the same antenna are used, it becomes possible by changing the magnitude of this electromagnetic wave passage opening to adjust field strength to arbitration. That is, it does not call at an electric-wave output circuit, but the magnitude of electromagnetic wave passage opening adjusts the output level of an electromagnetic wave. The time amount which it becomes unnecessary to design an electric-wave output circuit according to an individual, and the design of an electric-wave output circuit takes by this according to a convention of Wireless Telegraph Law or the specification of a non-contact IC card reader writer is reducible. Moreover, a non-contact IC card reader writer can also be manufactured using the existing electric-wave output circuit. Therefore, if a labor cost etc. is taken into consideration, large cost reduction is realizable. [0021] Here, the relation between above-mentioned field strength and electromagnetic wave passage opening is explained with reference to a drawing. Drawing 6 is the sectional view of a non-contact IC card reader, and showed the physical relationship of a case 30 and the antenna substrate 10 with which antenna 10a was printed. And "electromagnetic wave passage opening" is formed in the case 30. The field strength of the electromagnetic wave outputted from the antenna substrate 10 by such configuration will be adjusted by the area of electromagnetic wave passage opening. For example, the field strength of the electromagnetic wave to which drawing 6 (a) is sent out from antenna 10a printed on the antenna substrate 10 since electromagnetic wave passage opening of a case 30 is large compared with drawing 6 (b) becomes large. In drawing 6, the broken line connected and showed the location where field strength is equal.

[0022] By the way, as a case which covers an electromagnetic wave effectively, it forms with a metallic material and the thing linked to the grand terminal of an electronic circuitry can be considered. That is, it is effective to make the impedance of a case into the lowest condition. In addition, it is not restricted to what formed and carried out grounding with the metal, but a case may be formed using the electromagnetic wave electric shielding member which covers an electromagnetic wave.

[0023] In addition, although considering as opening formed in the case is also considered, as shown in claim 2, it is good [electromagnetic wave passage opening] to form by the electromagnetic wave electric shielding pattern which opening which formed electromagnetic wave passage opening in the case was printed by the wrap printed wired board, and was connected to the grand terminal. [0024] For example, it is possible to print an electromagnetic wave electric shielding pattern on the antenna substrate 10 shown in drawing 6. That is, it is condition of printing antenna 10a on the field shown by the arrow head A of drawing 6 (a), i.e., the field by the side of the interior of a case, and printing an

electromagnetic wave electric shielding pattern on the field shown in drawing 6 (a) by the arrow head B, i.e., the field by the side of the exterior of a case. Here, although the example which prints antenna 10a and an electromagnetic wave electric shielding pattern on the same printed wired board was given, printing an electromagnetic wave electric shielding pattern on printed wired board with the another antenna substrate 10 naturally is also considered.

[0025] An electromagnetic wave electric shielding pattern can consider printing on condition as shown in drawing 4 (a). In drawing 4 (a), the field which gave the slash is the metal part which covers an electromagnetic wave, and it is electromagnetic wave electric shielding pattern 10b connected to grand terminals, such as an electronic circuitry. And the field which has not given the slash is electromagnetic wave passage opening 10c. Antenna 10a as shown in the background side of electromagnetic wave passage opening 10c at drawing 4 (b) shall be printed.

[0026] Moreover, 10d of clearances shown in drawing 4 (a) prevents the fall of the communication range produced when an eddy current occurs in electromagnetic wave electric shielding pattern 10b and the inductance of antenna 10a falls to it. Thus, if electromagnetic wave passage opening is formed with the electromagnetic wave electric shielding pattern printed on the printed wired board, compared with the case where opening is formed as electromagnetic wave passage opening, it is advantageous to a case at the point that process tolerance becomes good. If the need of forming 10d (referring to drawing 4 (a)) of clearances for suppressing generating of an eddy current is considered as especially mentioned above, since an electromagnetic wave electric shielding pattern is formed by the so-called etching, it is advantageous also at the point that processing is easy.

[0027] In addition, as mentioned above, Men of process tolerance of Men that processing is easy is also effective, but, for example in the prototype phase of a product, adjusting the magnitude of electromagnetic wave passage opening and adjusting field strength by forming an electromagnetic wave electric shielding

pattern by etching, will need to create electromagnetic wave passage opening of various magnitude, in order to adjust field strength. At this time, forming electromagnetic wave passage opening by the electromagnetic wave electric shielding pattern by the so-called etching becomes the activity which a man day requires, though processing is easy.

[0028] Then, as shown in claim 3, the conductor of the shape of a loop formation which prepared the clearance in the middle of the loop formation is arranged in the perimeter of an antenna, and it is possible by making a resistor placed between the clearances concerned to constitute so that a conductor and the resistor concerned concerned may form a loop formation in the perimeter of an antenna. A "loop formation" may say the annular thing which does not have a clearance (intermittence part) on the way, and may not be restricted to circular and an ellipse form, but polygons, such as a square and a triangle, are sufficient as it here. In this case, the conductor which does not form a loop formation is arranged in the perimeter of an antenna in itself which prepared the clearance in the middle of the loop formation. And the loop formation which contains a resistor in a part only after making a resistor placed between these clearances is formed. [0029] A communication range becomes short, namely, this technical thought pays its attention to the fact that field strength is stopped, if the loop formation of a conductor exists in the perimeter of an antenna as mentioned above. That is, when electromagnetic wave passage opening was formed with an electromagnetic wave electric shielding pattern, in order to suppress the fall of the field strength by generating of an eddy current, the clearance was prepared so that the loop formation of a conductor might not be formed, but if the fall of the field strength by generating of an eddy current is used conversely, field strength can be stopped even if it is the case where electromagnetic wave passage opening is made into fixed magnitude. If loads, such as a resistor, are not made to intervene but a loop formation is formed at this time, field strength will fall extremely, but it turns out that the fall of field strength becomes small, so that it is the loop formation which a resistor with big resistance is made to intervene and is formed, when a loop formation is formed using a conductor and a resistor. Therefore, if the conductor of the shape of a loop formation which forms a loop formation in the perimeter of an antenna by making a resistor intervene is arranged, it will become possible to adjust field strength by exchanging a resistor for that from which resistance differs. Therefore, it becomes unnecessary to print many kinds of electromagnetic wave electric shielding patterns for adjustment of field strength, and reduction of the further man day is realized.

[0030] In addition, as long as the antenna is printed on the printed wired board, such a conductor may be printed on the printed wired board as an electric conduction pattern, and may be printed on the printed wired board on which the electromagnetic wave electric shielding pattern was printed as mentioned above as an electric conduction pattern. When printing on the printed wired board on which the electromagnetic wave electric shielding pattern was printed, you may print on the outside of an electromagnetic wave electric shielding pattern, or as long as the electromagnetic wave electric shielding pattern is printed on the front face of a printed wired board, an electric conduction pattern may be printed on a tooth back.

[0031] According to the non-contact IC card reader writer shown in claims 1-3 explained above, the antenna arranged inside a case and the unnecessary electromagnetic wave from an electronic circuitry become, without becoming, without revealing to the case exterior, and being influenced of the electromagnetic wave from the case outside.

[0032] However, in the interior of a case, the electronic circuitry arranged at the case side [by the side of the tooth back of an antenna] and tooth-back side of an antenna serving as a reflector to an antenna, producing generating of an eddy current and interference of an electromagnetic wave, and affecting a communication range is known. Therefore, when performing the communication link with the noncontact IC card which only a certain distance left, the device of building a "space gap" was required between the electronic circuitries by the side of the case side by the side of the tooth back of an antenna, or the tooth back of

an antenna. For example, when it constituted so that the communication link of antenna 10a printed on the antenna substrate 10 and the noncontact IC card 70 for a communication link may be attained, after only distance alpha has separated as shown in drawing 8, the "space gap" of distance alpha was about required between electronic-circuitry 40a and antenna 10a which were mounted in the printed wired board 40. The reason is that a lifting, consequently the field strength of the electromagnetic wave outputted to the electronic-circuitry 40a side will become small about interference, and the field strength of the electromagnetic wave emitted to a noncontact IC card 70 side will also become small to the same extent in connection with it when the electromagnetic wave outputted to the electronic-circuitry 40a side reflects by electronic-circuitry 40a if a "space gap" is made smaller than distance alpha. There was a problem that a non-contact IC card reader writer will be enlarged with the "space gap" which prevents interference of such an electromagnetic wave. [0033] Then, it is desirable to adopt a configuration as shown in claim 4. namely, the configuration which showed the configuration to claims 1-3 -- in addition, it is characterized by having the electromagnetic wave electric shielding wall which is arranged between an antenna and an electronic circuitry and covers an electromagnetic wave further, and the electromagnetic wave absorption member which is prepared in the field by the side of the antenna of an electromagnetic wave electric shielding wall, and absorbs an electromagnetic wave. [0034] In this case, since the electromagnetic wave electric shielding wall has been arranged between an antenna and an electronic circuitry, it is lost that the electromagnetic wave emitted from an antenna and an electronic circuitry, respectively interferes. Furthermore, since the electromagnetic wave absorption member was prepared in the field by the side of the antenna of this electromagnetic wave electric shielding wall, the electromagnetic wave from an antenna is absorbed by the electromagnetic wave absorption member, and it does not reflect with an electromagnetic wave electric shielding wall. Therefore, it can prevent that the electromagnetic wave outputted from an antenna interferes

mutually, or an eddy current occurs in an electromagnetic wave electric shielding wall. By this, the need of preparing a "space gap" between an antenna and an electronic circuitry is lost, and a non-contact IC card reader writer can be miniaturized as a result.

[0035] By the way, as mentioned above, a non-contact IC card reader writer is used in the condition of having connected with the main computer. Therefore, the field which can be communicated cannot be checked in the condition of having not connected the main computer. Although the work which suppresses the effect of an installation environment by arranging an antenna and an electronic circuitry inside the case which covers an electromagnetic wave is carried out in this invention, it is possible that the field which can be communicated changes according to the individual difference of a non-contact IC card reader writer, or the individual difference of a noncontact IC card. Therefore, in case a noncontact IC card reader writer is installed, before connecting with the main computer, it is convenient if the field which can be communicated can be checked.

[0036] Then, as shown in claim 5, an electronic circuitry is constituted possible [activation of the communication link test processing for performing a communication link check with a noncontact IC card], and it can think further considering as a configuration equipped with an information means to report to a user whether the communication link condition was established in the case of communication link test processing.

[0037] In this case, a non-contact IC card reader writer performs communication link test processing independently, without connecting the external main computer. This communication link test processing is performed by directions of a user. At this time, establishment of the communication link of an information means with a non-contact card is reported to a user. For this reason, a user can check the field which can be communicated by bringing a noncontact IC card close to a non-contact card reader writer, or keeping it away. In case a non-contact IC card reader writer installs by this, or in case an installation is changed,

without connecting with the main computer, the field which can be communicated can be checked and it is convenient. In addition, an information means may perform information by light and may perform information by the sound.

[0038] In addition, as for the non-contact IC card reader writer explained above, it is common to be used after having been contained by the receipt case where an electromagnetic wave is made to penetrate. For example, it is because a non-contact IC card reader writer can be installed also in the outdoors if a receipt case is formed with the synthetic resin which has protection against dust and the waterproofing effectiveness.

[0039] However, the reading distance of a substantial IC card may become short by containing a non-contact IC card reader writer in a receipt case. This is explained based on drawing 15 (a). Drawing 15 (a) shows signs that the noncontact IC card reader writer 5 is contained to the receipt case 500. Although the screw stop of the antenna substrate 103 is carried out to a case 303 with the screw 91 for antenna substrates, since the head of the screw 91 for antenna substrates has projected at this time, the non-contact IC card reader writer 5 shown in drawing 15 (a) is the clearance delta 1 between the receipt case 500 and the antenna substrate 103 by this head. It is formed. When it reads in the antenna substrate 103 here and distance to a marginal location is set to d, it reads in electromagnetic wave emission side 500a of the receipt case 500, and it is the substantial reading distance x1 to a marginal location. Clearance delta 1 lt will become small. Generally, in such a non-contact IC card reader writer, since there is the present condition that the device which secures a several mm communication range, such as 1-2mm, is made, the several mm clearance formed of the screw head section for fixing a printed wired board etc. poses a problem from a viewpoint of a communication range.

[0040] Then, as shown in claim 6, it is good to constitute so that the lobe located in the emission side of an electromagnetic wave to the antenna arranged inside a case may be lost as much as possible. Since an antenna is arranged inside a case, it can consider that lobes, such as a screw for fixing the part and antenna

of a case to the emission side of an electric wave, are located. For example, if it says by drawing 15 (a), the upper part of a case 303 and the head of the screw 91 for cases are located in the emission side of an electromagnetic wave, i.e., the space upper part, as a lobe to the antenna substrate 103. It is condition of losing screw 91 head for cases as a lobe as much as possible, or losing some cases 303 as a lobe located more nearly up than the antenna substrate 103 as follows, for example, uses small screws, such as a pan screw and M3, instead of the screw 91 for antenna substrates and inserts the antenna substrate 103 in opening of a case 303 exactly as much as possible.

[0041] Thus, if the lobe by the side of electromagnetic wave emission becomes small relatively when containing the constituted non-contact IC card reader writer in a receipt case, an antenna can be made to approach the electromagnetic wave emission side of a receipt case. Therefore, as shown in drawing 15 (b), it is the clearance delta 2 between the antenna substrate 103 and the receipt case 500. It can be made small. When it reads in the antenna substrate 103 and distance to a marginal location is set to d like drawing 1515 (a) Distance x1 shown in drawing 15 (a) It compares, reads in IC card reading side 500a of the receipt case 500, and is substantial reading distance x2 to a marginal location. It can lengthen.

[0042] In addition, if the screw head section as a lobe is seen from a viewpoint of losing as much as possible, it will also be considered to have mentioned above a pan screw and to use a small screw relatively, but since there is the so-called need which forms the part which receives the pan part of a screw in a case side of "rubbing a pan" when a pan screw is used, the man day which processing of a case takes may increase. The reason is because the precision is further required when rubbing a pan, although the man day of rubbing a pan itself is also needed. That is, if it is the usual screw, since some screw holes by the side of a case can be made more greatly and play can be built to a case, the gap of some of screw holes for fixing an antenna substrate and a case does not become a problem, but with a pan screw, since the play over a case is lost, precision is required of the

screw hole for fixing a case and an antenna substrate. Moreover, when a small screw is used, there is also a problem that dependability will become low.

[0043] Therefore, if the dependability of an activity man day and a product is taken into consideration, it is desirable by devising the structure of an antenna substrate and a case so that a screw may not be used for the emission side of an electromagnetic wave to lose a lobe as much as possible.

[0044]

[Embodiment of the Invention] Hereafter, the operation gestalt which materialized this invention is explained with reference to a drawing. In addition, it cannot be overemphasized that it can carry out with the gestalt which becomes various in the range which this invention is not limited to the operation gestalt explained below at all, and does not deviate from the meaning of this invention.

The non-contact IC card reader writer 1 of the 1st operation gestalt is shown in [1st operation gestalt] drawing 1 and drawing 2. Drawing 1 is a top view and drawing 2 is the A-A line sectional view of drawing 1.

[0045] The non-contact IC card reader writer 1 is equipped with the magnetic substance 61 as an "electromagnetic wave absorption member" prepared in the field by the side of the antenna substrate 10, electronic-circuitry 40a as an "electronic circuitry" mounted in the printed wired board 40, the shielding plate 60 as an "electromagnetic wave electric shielding wall", and the antenna substrate 10 of the shielding plate 60, and the case 30 which carries out receipt arrangement of these. In addition, metallic materials, such as aluminum and iron, are used for the shielding plate 60 and a case 30. It is effective to use aluminum, if a lightweight point is considered especially. Moreover, the magnetic substance 61 can consider using a ferrite.

[0046] The case 30 consists of upper case member 30u and 30d of bottom case members, and the screw stop is carried out with the screw 92 for cases. Opening 30a of a square configuration is formed in upper case member 30u, and the antenna substrate 10 is arranged so that this opening 30a may be covered from the case 30 interior. Rather than this antenna substrate 10, further, the shielding

plate 60 is arranged at the case 30 inside, and this shielding plate 60 is being fixed to upper case member 30u with the screw 91 for antenna substrates with the antenna substrate 10.

[0047] Annular electromagnetic wave electric shielding pattern 10b is printed on the front face (field by the side of the exterior of a case 30) of the antenna substrate 10 with the square as shown in drawing 4 (a). In drawing 4 (a), the field which gave the slash is electromagnetic wave electric shielding pattern 10b which covers an electromagnetic wave. And the field which has not given the slash surrounded by electromagnetic wave electric shielding pattern 10b is electromagnetic wave passage opening 10c as "electromagnetic wave passage opening." That is, electromagnetic wave passage opening 10c in the case 30 of the non-contact IC card reader writer 1 of a **** 1 operation gestalt is formed by electromagnetic wave electric shielding pattern 10b printed on the antenna substrate 10. On the other hand, antenna 10a of the shape of a loop formation of the square as an "antenna" as shown in drawing 4 (b) is printed on the tooth back (field by the side of the interior of a case 30) of the antenna substrate 10. [0048] Moreover, 10d of clearances shown in drawing 4 (a) prevents that an eddy current occurs in electromagnetic wave electric shielding pattern 10b, and the inductance of antenna 10a falls to it by the electromagnetic wave outputted from antenna 10a. The fall of the inductance of antenna 10a causes the fall of a communication range.

[0049] The top view of drawing 1 showed signs that the screw stop of such an antenna substrate 10 was carried out to opening 30a of a case 30 with the screw 91 for antenna substrates. All over drawing, the broken line showed antenna 10a printed on the tooth back of the antenna substrate 10. In addition, electromagnetic wave electric shielding pattern 10b and antenna 10a are formed by the so-called etching technique.

[0050] Moreover, as shown in drawing 2, the printed wired board 40 is arranged to the shielding plate 60 in the antenna substrate 10 and the opposite side, and it is fixed to 30d of bottom case members with the screw 93 for printed wired

boards. Electronic-circuitry 40a for performing communication link test processing mentioned later is mounted in this printed wired board 40. In drawing 2, not each electronic device illustrated but showed the field where the electronic-circuitry 40a is mounted with an alternate long and short dash line. [0051] The screw 93 for printed wired boards is connected to the grand terminal of the power source which operates electronic-circuitry 40a, and all of a case 30, the shielding plate 60, and electromagnetic wave electric shielding pattern 10b are connected to the grand terminal of a power source through the screw 91 for antenna substrates, the screw 92 for cases, and the screw 93 for printed wired boards. Therefore, at the time of actuation of the non-contact IC card reader writer 1, the impedance of a case 30, the shielding plate 60, and electromagnetic wave electric shielding pattern 10b becomes the lowest, and a case 30, the shielding plate 60, and electromagnetic wave electric shielding pattern 10b cover an electromagnetic wave.

[0052] Next, based on drawing 3, the electric configuration of the non-contact IC card reader writer 1 of a **** 1 operation gestalt is explained. Drawing 3 is the block diagram showing the electric configuration of the non-contact IC card reader writer 1. The non-contact IC card reader writer 1 of a **** 1 operation gestalt realizes card data transfer between noncontact IC cards 70 by usually being used in the condition of having connected with the external main computer 80, communicating between noncontact IC cards 70 using an electromagnetic wave, and performing read-out directions of card data, and write-in directions of the card data to a noncontact IC card 70 from a noncontact IC card 70. [0053] The noncontact IC card 70 has the transceiver function to perform the communication link which used the electromagnetic wave. That is, it has the microcomputer which controls the communication circuit which communicates through an antenna and an antenna, and a communication circuit. Moreover, it has the memory apparatus as the storage section which memorizes card data, and by the communication circuit, the communication link with the non-contact IC card reader writer 1 is performed, and based on the directions from the noncontact IC card reader writer 1, read card data from this memory apparatus, card data are written in this memory apparatus, or it carries out. In addition, from the non-contact IC card reader writer 1, current supply of the noncontact IC card 70 is carried out by the non-contact method, and it operates.

[0054] Electrically, the non-contact IC card reader writer 1 is classified into the block of electronic-circuitry 40a mentioned above and antenna 10a. ROM42 which memorized the program for the processing whose CPU41 and CPU41 perform electronic-circuitry 40a, The card communications control section 44 which controls the communication link through antenna 10a with a noncontact IC card 70, It consists of LED45 as an "information means", a switch 46 for a user to direct activation of the communication link test processing mentioned later, RS-232C interface 43 for performing the communication link with the main computer 80, and a power supply section 47.

[0055] A power supply section 47 outputs to CPU41, RS-232C interface 43, ROM42, the card communications control section 44, and LED45 with wiring which does not stabilize and illustrate the operating voltage of the direct current outputted from AC adapter 51. Consequently, the non-contact IC card reader writer 1 will operate. AC adapter 51 outputs the operating voltage of a direct current to a power supply section 47 in response to the supply voltage of the alternating current outputted from AC power 52.

[0056] In the non-contact IC card reader writer 1, CPU41 outputs communications control directions to the card communications control section 44 based on the directions transmitted through RS-232C interface 43 from the main computer 80. Based on these communications control directions, the card communications control section 44 performs the communication link with a noncontact IC card 70 through antenna 10a. The electric-wave output circuit which determines the output level of the electromagnetic wave from antenna 10a is included in the communications control section 44.

[0057] Thus, although it usually connects with the main computer 80 and the non-contact IC card reader writer 1 operates based on the directions from the

main computer 80, performing communication link test processing with a noncontact IC card 70 consists of non-contact IC card reader writers 1 of a **** 1 operation gestalt possible, without connecting the main computer 80. [0058] Here, this communication link test processing is explained based on the flow chart shown in drawing 5. Without connecting the main computer 80, the non-contact IC card reader writer 1 of a **** 1 operation gestalt performs this processing independently, and when the directions from a user are made through the switch 46 in drawing 3, it is performed. The program for this communication link test processing is memorized by ROM42, and is performed by CPU41. [0059] In the first step S1000, a card response demand command is transmitted first. This processing requires a response from a noncontact IC card 70. Consequently, the non-contact IC card reader writer 1 receives the reply signal from the noncontact IC card 70 in the field of the non-contact IC card reader writer 1 which can be communicated.

[0060] A collision-prevention command is transmitted in S1100. This processing requires the response of the card of one of them, when two or more noncontact IC cards 70 answer together when there are two or more received reply signals to the response demand which transmitted in S1000 namely.

[0061] A card select command is transmitted in S1200. This processing notifies communication link initiation to the card which answered by processing of S1100. A PAUSE command of operation is transmitted in S1300. This processing directs a halt of operation to a noncontact IC card 70. By this, the communication link with the non-contact IC card reader writer 1 and a noncontact IC card 70 is completed.

[0062] In S1400, normal termination of a series of communications processing mentioned above is judged. When it is judged that the communication link terminated normally here (S1400:YES), LED45 is blinked in S1500. Then, the processing from S1000 is repeated. On the other hand, when it is judged that the communication link terminated abnormally (S1400:NO), processing of S1500 is not performed but the processing from S1000 is repeated.

[0063] Next, the effectiveness which the non-contact IC card reader writer 1 of a **** 1 operation gestalt demonstrates is explained. In addition, in order to make an understanding of explanation here easy, the trouble in the conventional noncontact IC card reader writer is explained repeatedly first. The electric-wave output circuit where the 1st trouble determines the output level of the electromagnetic wave of a non-contact IC card reader writer is designing separately so that it may become the field strength doubled with the specification of a non-contact IC card reader writer in addition to designing separately so that the field strength specified to Wireless Telegraph Law may not be exceeded. [0064] Although it is common to be arranged in the front face inside the case of a non-contact IC card reader writer as for the 2nd trouble in order to perform the communication link with a noncontact IC card efficiently Since the antenna has the character type directivity of 8 as shown in drawing 7, a part of electromagnetic wave It is that it will be emitted also to the tooth back of this noncontact IC card reader writer, and may not mean as a result, but the communication link with a noncontact IC card may be performed, and card data may be read.

[0065] The 3rd trouble is that a communication link condition with a noncontact IC card becomes unstable, and the stability of actuation of a non-contact IC card reader writer is spoiled by the effect of the electromagnetic wave revealed from the device, when other devices are brought close. In the non-contact IC card reader writer 1 of a **** 1 operation gestalt, antenna 10a and electronic-circuitry 40a have been arranged to the case 30 interior which has an electromagnetic wave electric shielding function by having connected with the grand terminal of a power source. The electromagnetic wave from antenna 10a is not emitted by this other than the front face of a case 30. Consequently, a communication link is performed between the noncontact IC cards 70 put close to the tooth back of the non-contact IC card reader writer 1, and it is lost that card data do not mean but are read. Moreover, the electromagnetic wave emitted from electronic-circuitry 40a becomes, without revealing outside.

[0066] Moreover, the effect by the electromagnetic wave emitted from the device which is outside can also be prevented by having arranged antenna 10a and electronic-circuitry 40a to the case 30 interior which covers an electromagnetic wave. Therefore, it can be lost that a communication link condition with a noncontact IC card 70 becomes unstable by the electromagnetic wave from the outside, and the stability of actuation of the non-contact IC card reader writer 1 can be raised.

[0067] Thus, the 2nd and 3rd trouble mentioned above was solved by arranging antenna 10a and electronic-circuitry 40a to the case 30 interior which covers an electromagnetic wave. And in the non-contact IC card reader writer 1 of a **** 1 operation gestalt, electromagnetic wave passage opening 10c for performing the communication link with a noncontact IC card 70 to a case 30 was formed. Therefore, a part of electromagnetic wave outputted from antenna 10a by electromagnetic wave electric shielding pattern 10b which forms this electromagnetic wave passage opening 10c will be covered, the output level of the electromagnetic wave outputted from antenna 10a does not adjust an electric-wave output circuit, but ** is also determined. That is, the field strength of the electromagnetic wave outputted from antenna 10a is determined by the magnitude of this electromagnetic wave passage opening 10c. Therefore, even if it is the case where the same electric-wave output circuit and antenna 10a are used, it becomes possible by changing the magnitude of this electromagnetic wave passage opening 10c to adjust field strength to arbitration. The time amount which it becomes unnecessary to design the electric-wave output circuit which determines the output level of an electromagnetic wave according to an individual according to a convention of Wireless Telegraph Law or the specification of the non-contact IC card reader writer 1, and the design of an electric-wave output circuit takes by this is reducible. Moreover, the non-contact IC card reader writer 1 can also be manufactured using the existing electric-wave output circuit. Therefore, if a labor cost etc. is taken into consideration, large cost reduction is realizable. Thus, the 1st trouble was solved by having formed

electromagnetic wave passage opening 10c.

[0068] Here, the relation between above-mentioned field strength and electromagnetic wave passage opening 10c is concretely explained with reference to drawing 6. In addition, although electromagnetic wave passage opening 10c was formed in the antenna substrate 10 by electromagnetic wave electric shielding pattern 10b at the non-contact IC card reader writer 1, opening of a case 30 was set to electromagnetic wave passage opening 30c in drawing 6. By outputting the electromagnetic wave from antenna 10a outside through electromagnetic wave passage opening 30c, the electromagnetic wave outputted from antenna 10a is covered in part by the periphery section of electromagnetic wave passage opening 30c. Therefore, the field strength of the electromagnetic wave from antenna 10a will be adjusted by the area of electromagnetic wave passage opening 30c formed in the case 30. For example, although the broken line showed the location which becomes equal [field strength] in drawing 6, the field strength by the electromagnetic wave to which drawing 6 (a) is sent out from antenna 10a printed on the antenna substrate 10 since the area of electromagnetic wave passage opening 30c of a case 30 is large compared with drawing 6 (b) becomes large.

[0069] In addition, in the non-contact IC card reader writer 1 of this operation gestalt, electromagnetic wave passage opening 10c was formed on printing electromagnetic wave electric shielding pattern 10b on the antenna substrate 10. By this, formation of electromagnetic wave passage opening 10c becomes easy, and process tolerance also becomes high.

[0070] Moreover, in the non-contact IC card reader writer 1 of this operation gestalt, the printed wired board 40 has been arranged to the opposite side of the antenna substrate 10 to the shielding plate 60 (refer to drawing 2). Since this shielding plate 60 also covered the electromagnetic wave by connecting with the grand terminal of a power source and has arranged this shielding plate 60 between antenna 10a and electronic-circuitry 40a, it is lost that the electromagnetic wave emitted from antenna 10a and electronic-circuitry 40a

interferes each other. Furthermore, since the electromagnetic wave from antenna 10a is not reflected with the shielding plate 60 since the magnetic substance 61 was formed in the field by the side of antenna 10a of this shielding plate 60, but it is absorbed with the magnetic substance 61, it can prevent that the electromagnetic wave outputted from antenna 10a interferes mutually, or an eddy current occurs to the shielding plate 60. By this, the need of preparing a "space gap" like before between antenna 10a and electronic-circuitry 40a is lost, and the non-contact IC card reader writer 1 can be miniaturized as a result.

[0071] Although the non-contact IC card reader writer 1 of this operation gestalt is usually used in the condition of having connected with the main computer 80 (refer to drawing 3), in order that a user may know the field of a noncontact IC

is usually used in the condition of having connected with the main computer 80 (refer to drawing 3), in order that a user may know the field of a noncontact IC card 70 which can be communicated, it consists of non-contact IC card reader writer 1 independent one further again possible [activation of communication link test processing with a noncontact IC card 70] (refer to drawing 5). LED45 is turned on when it is judged that this communication link test processing was performed by directions of the user through a switch 46, and the communication link terminated it normally (S1400:YES) (S1500).

[0072] Therefore, a user can bring a noncontact IC card 70 close to the non-contact card reader writer 1, or can keep it away, and can check the field which can be communicated by checking visually whether LED45 lights up. In addition, a buzzer etc. may be used instead of LED45. In case the non-contact IC card reader writer 1 is installed by this, or in case an installation is changed, without connecting with the main computer 80, the field which can be communicated can be checked and it is convenient.

The non-contact IC card reader writer 2 of the 2nd operation gestalt which has structure where the non-contact IC card reader writer 1 of the 1st operation gestalt of the [2nd operation gestalt] above is another is explained. In addition, the non-contact IC card reader writer 2 of a **** 2 operation gestalt is the same as that of the non-contact IC card reader writer 1 of the above-mentioned 1st operation gestalt about an electric configuration, and only physical structures

differ. Therefore, the explanation about the electric configuration of the non-contact IC card reader writer 2 is omitted, and explains the physical structure of the non-contact IC card reader writer 2 hereafter.

[0073] The non-contact IC card reader writer 2 of the 2nd operation gestalt is shown in drawing 9 and drawing 10. Drawing 9 is a top view and drawing 10 is the B-B line sectional view of drawing 9. The non-contact IC card reader writer 2 is equipped with the magnetic substance 61 as an "electromagnetic wave absorption member" prepared in the field by the side of the antenna substrate 100, electronic-circuitry 40a as an "electronic circuitry" mounted in the printed wired board 40, the shielding plate 600 as an "electromagnetic wave electric shielding wall", and the antenna substrate 100 of the shielding plate 600, and the case 300 which carries out receipt arrangement of these. In addition, the ingredient used for the shielding plate 600 and a case 300, and the magnetic substance 61 is the same as that of the above-mentioned 1st operation gestalt. [0074] The case 300 consists of upper case member 300u and 300d of bottom case members, and the screw stop is carried out with the screw 92 for cases. Opening 300a of a rectangle configuration is formed in upper case member 300u from the edge of upper case member 300u, the antenna substrate 100 is arranged so that this opening 300a may be covered from the case 30 interior, and it is fixed to upper case member 300u with the screw 91 for antenna substrates. With the **** 2 operation gestalt, opening of a case 300 was formed from the edge of upper case member 300u, and antenna 100a has been shifted and arranged from the core of upper case member 300u.

[0075] Electromagnetic wave electric shielding pattern 100b as shown in drawing 9 is printed on the front face (field by the side of the exterior of a case 300) of the antenna substrate 100. In drawing 9, the annular field of the hexagon which gave the slash is electromagnetic wave electric shielding pattern 100b which covers an electromagnetic wave. And the field of the hexagon configuration which has not given the slash surrounded by electromagnetic wave electric shielding pattern 100b formed annularly is electromagnetic wave passage

opening 100c as "electromagnetic wave passage opening." Moreover, electromagnetic wave electric shielding pattern 100b has 100d of clearances which prevent generating of an eddy current. On the other hand, antenna 100a of the shape of a loop formation of the hexagon as an "antenna" as shown in drawing 9 with a broken line is printed on the tooth back (field by the side of the interior of a case 30) of the antenna substrate 100. In addition, electromagnetic wave electric shielding pattern 100b and antenna 100a are formed of the so-called etching.

[0076] Moreover, as shown in drawing 10, the shielding plate 600 as an "electromagnetic wave electric shielding wall" which stuck the magnetic substance 61 as an "electromagnetic wave absorption member" is arranged at the tooth-back side of the antenna substrate 100. The printed wired board 40 is arranged to this shielding plate 600 in the antenna substrate 100 and the opposite side. And the printed wired board 40 is being fixed to 300d of bottom case members with the screw 93 for printed wired boards with the shielding plate 600. Electronic-circuitry 40a for performing the same communication link test processing as the above-mentioned 1st operation gestalt etc. is mounted in this printed wired board 40. All over drawing 1010, not each electronic device illustrated but showed the field where the electronic-circuitry 40a is mounted with an alternate long and short dash line.

[0077] The screw 93 for printed wired boards is connected to the grand terminal of the power source which operates electronic-circuitry 40a, and all of a case 300, the shielding plate 600, and electromagnetic wave electric shielding pattern 100b are connected to the grand terminal of a power source through the screw 91 for antenna substrates, the screw 92 for cases, and the screw 93 for printed wired boards. Therefore, at the time of actuation of the non-contact IC card reader writer 2, the impedance of a case 300, the shielding plate 600, and electromagnetic wave electric shielding pattern 100b becomes the lowest, and a case 300, the shielding plate 600, and electromagnetic wave electric shielding pattern 100b cover an electromagnetic wave.

[0078] According to the structure which more than explained, the same effectiveness as the non-contact IC card reader writer 1 of the above-mentioned 1st operation gestalt is demonstrated. That is, the unnecessary electromagnetic wave emitted from antenna 100a or electronic-circuitry 40a is not revealed outside by having arranged antenna 100a and electronic-circuitry 40a to the case 300 interior which covers an electromagnetic wave by having connected with the grand terminal of a power source. Moreover, the effect by the electromagnetic wave emitted from the device which is outside can also be prevented. Therefore, it can prevent that a noncontact IC card 70 is read at the tooth back of the noncontact IC card reader writer 2, or actuation of the non-contact IC card reader writer 2 becomes unstable.

[0079] And since the field strength of an electromagnetic wave can be adjusted by adjusting the area of electromagnetic wave passage opening 100c for performing the communication link with a noncontact IC card 70 to a case 300, the time amount which it becomes unnecessary to design the electric-wave output circuit which determines the output level of an electromagnetic wave according to an individual according to a convention of Wireless Telegraph Law or the specification of the non-contact IC card reader writer 2, and the design of an electric-wave output circuit takes is reducible. Moreover, the non-contact IC card reader writer 2 can also be manufactured using the existing electric-wave output circuit. Therefore, if a labor cost etc. is taken into consideration, large cost reduction is realizable.

[0080] In addition, also in the **** 2 operation gestalt, electromagnetic wave passage opening 100c was formed like the above-mentioned 1st operation gestalt on printing electromagnetic wave electric shielding pattern 100b on the antenna substrate 100. By this, formation of electromagnetic wave passage opening 100c becomes easy, and process tolerance also becomes high.

[0081] Moreover, that the electromagnetic wave emitted, respectively interferes disappears from antenna 10a and electronic-circuitry 40a with the shielding plate 600 formed between the antenna substrate 100 and electronic-circuitry 40a.

Furthermore, since the electromagnetic wave from antenna 100a is not reflected with the shielding plate 600 since the magnetic substance 61 was formed in the field by the side of antenna 100a of this shielding plate 600, but it is absorbed with the magnetic substance 61, it can prevent that the electromagnetic wave outputted from antenna 100a interferes mutually, or an eddy current occurs to the shielding plate 600. By this, the need of preparing a "space gap" like before between antenna 100a and electronic-circuitry 40a is lost, and the non-contact IC card reader writer 2 can be miniaturized as a result.

[0082] The non-contact IC card reader writer 2 of a **** 2 operation gestalt is the same as that of the above-mentioned 1st operation gestalt about an electric configuration, and activation of communication link test processing (refer to drawing 5) is also possible for it further again. Therefore, a user can bring a noncontact IC card 70 close to the non-contact card reader writer 1, or can keep it away, and can check the field which can be communicated by checking visually whether LED45 lights up. In case the non-contact IC card reader writer 1 is installed by this, or in case an installation is changed, without connecting with the main computer 80, the field which can be communicated can be checked and it is convenient.

[0083] Furthermore, the following effectiveness is also produced as effectiveness concerning the configuration of the 2nd operation gestalt. With the **** 2 operation gestalt, opening of a case 300 was formed from the edge of upper case member 300u, and antenna 100a has been shifted and arranged from the core of upper case member 300u. Consequently, when communicating where a noncontact IC card 70 is brought close to the non-contact IC card reader writer 2 as shown in drawing 11, it decreases that the finger of a user with a noncontact IC card 70 hits the non-contact IC card reader writer 2.

The non-contact IC card reader writers 1 and 2 of the 1st and 2nd operation gestalt of the [3rd operation gestalt] above and the non-contact IC card reader writer 3 of the 3rd operation gestalt which has still more nearly another structure are explained. In addition, the non-contact IC card reader writer 3 of a **** 3

operation gestalt is the same as that of the non-contact IC card reader writers 1 and 2 of the above-mentioned 1st and 2nd operation gestalt about an electric configuration, and only physical structures differ. Therefore, only structure physical about the non-contact IC card reader writer 3 is hereafter explained as the 3rd operation gestalt.

[0084] The non-contact IC card reader writer 3 of the 3rd operation gestalt is shown in drawing 12. Drawing 12 (a) is a top view and drawing 12 (b) is the C-C line sectional view of drawing 12 (a). The non-contact IC card reader writer 3 is equipped with the antenna substrate 101, electronic-circuitry 40a as an "electronic circuitry" mounted in this antenna substrate 101, and the case 301 that carries out receipt arrangement of these.

[0085] As for the case 301, the antenna substrate 101 is arranged so that all front faces may be opening 301a and may cover this opening 301a. Four heights 101e is formed in the periphery section of the antenna substrate 101, and 101f of insertion holes is formed in these heights 101e. On the other hand, heights 301b corresponding to 101f of insertion holes is formed in the periphery section of opening 301a of a case 301. The antenna substrate 101 is fixed to opening 301a of a case 301 by inserting heights 301b of this case 301 in 101f of insertion holes formed in heights 101e of the antenna substrate 101, applying external force to heights 301b, and twisting heights 301b.

[0086] Electromagnetic wave electric shielding pattern 101b as shown in drawing 12 (a) is printed on the front face (field by the side of the exterior of a case 301) of the antenna substrate 101. In drawing 12 (a), the field and the circular and annular field of the square configuration where the slash was given are electromagnetic wave electric shielding pattern 101b which covers an electromagnetic wave. It connects with the grand terminal of electronic-circuitry 40a, and this electromagnetic wave electric shielding pattern 101b has the electromagnetic wave electric shielding function. And the circular field which has not given the slash surrounded by the annular field of electromagnetic wave electric shielding pattern 101b is electromagnetic wave passage opening 101c as

"electromagnetic wave passage opening." Moreover, electromagnetic wave electric shielding pattern 101b has 101d of clearances for preventing generating of an eddy current. On the other hand, antenna 101a of the shape of a loop formation of the round shape configuration as an "antenna" as shown in drawing 9 with a broken line is printed on the tooth back (field by the side of the interior of a case 30) of the antenna substrate 101.

[0087] Moreover, as shown in drawing 12 (b), electronic-circuitry 40a is mounted in the tooth back of the antenna substrate 101. Electronic-circuitry 40a presupposes that it is the same as that of the above-mentioned 1st and 2nd operation gestalt. Not each electronic device illustrated in drawing 12 (b), but showed the field where the electronic-circuitry 40a is mounted with an alternate long and short dash line to it.

[0088] Next, the effectiveness which IC card reader writer 3 of a **** 3 operation gestalt demonstrates is explained. The unnecessary electromagnetic wave emitted from antenna 101a or electronic-circuitry 40a is not revealed outside by having arranged antenna 101a and electronic-circuitry 40a to the case 301 interior the non-contact IC card reader writer 3 of a **** 3 operation gestalt as well as the above-mentioned 1st and 2nd operation gestalt covers an electromagnetic wave by having connected with the grand terminal of a power source. Moreover, the effect by the electromagnetic wave emitted from the device which is outside can also be prevented. Therefore, it can prevent that a noncontact IC card 70 is read at the tooth back of the non-contact IC card reader writer 3, or actuation of the non-contact IC card reader writer 3 becomes unstable. [0089] And since the field strength of an electromagnetic wave can be adjusted by adjusting the area of electromagnetic wave passage opening 101c for performing the communication link with a noncontact IC card 70, the time amount which it becomes unnecessary to design the electric-wave output circuit which determines the output level of an electromagnetic wave according to an individual according to a convention of Wireless Telegraph Law or the specification of the non-contact IC card reader writer 3, and the design of an

electric-wave output circuit takes is reducible. Moreover, the non-contact IC card reader writer 3 can also be manufactured using the existing electric-wave output circuit. Therefore, if a labor cost etc. is taken into consideration, large cost reduction is realizable.

[0090] In addition, also in the **** 3 operation gestalt, electromagnetic wave passage opening 101c was formed like the above-mentioned 1st and 2nd operation gestalt on printing electromagnetic wave electric shielding pattern 101b on the antenna substrate 101. By this, formation of electromagnetic wave passage opening 101c becomes easy, and process tolerance also becomes high. [0091] However, with a **** 3 operation gestalt, since the shielding plate 60,600 which was used with the above-mentioned 1st and 2nd operation gestalt is not used, it is possible [it] that the distance with a noncontact IC card 70 which can be communicated becomes short with interference of the electromagnetic wave emitted from antenna 101a and electronic-circuitry 40a, respectively. Therefore, it is used for the system which performs the communication link with a noncontact IC card 70 in a short distance, and becomes effective. In addition, although the distance with a noncontact IC card 70 which can be communicated becomes short, since unlike the configuration of the above-mentioned 1st and 2nd operation gestalt the case 301 is formed as one, twists heights 301b of this case 301 and is fixing the antenna substrate 101, a screw stop is also unnecessary and it is advantageous at the point that manufacture is easy. [0092] Antenna 10a was formed in the square configuration with the abovementioned 1st operation gestalt, antenna 100a was formed in the hexagon configuration with the above-mentioned 2nd operation gestalt, and antenna 101a was formed in the round shape configuration with the **** 3 operation gestalt. This antenna configuration is not restricted to these, but can consider forming in various configurations. In addition, it turned out that the field strength of an electromagnetic wave becomes [the direction with few parts which become the opening periphery of a case and parallel into an antenna pattern] large, and these people's experiment showed that field strength became strong at the order

of the shape of a square, a hexagon configuration, and a round shape configuration in the above-mentioned example.

The non-contact IC card reader writers 1, 2, and 3 of the 1st, 2nd, and 3rd operation gestalt of the [4th operation gestalt] above and the non-contact IC card reader writer 4 of the 4th operation gestalt which has still more nearly another structure are explained.

[0093] The non-contact IC card reader writer 4 of the 4th operation gestalt is shown in drawing 13. Drawing 13 (a) is a top view and drawing 13 (b) is D-D line sectional view of drawing 13 (a). The non-contact IC card reader writer 4 is equipped with the antenna substrate 102, electronic-circuitry 40a as an "electronic circuitry" mounted in this antenna substrate 102, and the case 302 that carries out receipt arrangement of these.

[0094] The screw stop of upper case member 302u and the 302d of the bottom case members is carried out with the screw 92 for cases, and the case 302 is constituted. At this time, opening 302a is formed of upper case member 302u and 302d of bottom case members, and the antenna substrate 102 is being pinched and fixed by upper case member 302u and 302d of bottom case members so that this opening 302a may be covered.

[0095] First, the installation structure of the antenna substrate 102 over a case 302 is explained. Upper case member 302u is the sheet metal member of an abbreviation rectangle configuration. 302g of screw stop pieces is prepared in the side of 1 of upper case member 302u, and piece of pinching 302e and 302f of regulation pieces are prepared in the side of two ****** around there.

[0096] Piece of pinching 302e is turned up by horseshoe-shaped at the antenna substrate 102 side, and puts 102g (refer to drawing 14) of crevices formed the side parallel to the longitudinal direction of the antenna substrate 102. Upper case member 302u is fixed to the antenna substrate 102 by this.

[0097] moreover, the piece of a screw stop mentioned above at this time -- 302g and the piece of regulation -- 302f is perpendicularly bent to the antenna substrate 102 side -- having -- the piece of a screw stop -- from through tube 102i

[in / in 302g / the longitudinal direction of the antenna substrate 102] (refer to drawing 14) by which while was formed in the edge -- moreover, the piece of regulation -- 302f projects to the antenna substrate 102 bottom from 102h of crevices formed the side parallel to the longitudinal direction of the antenna substrate 102. In addition, the screwhole which is not illustrated is formed 302g of screw stop sides.

[0098] 302d of bottom case members is the box-like sheet metal member which consists of a bottom surface part of a rectangle configuration, and four lateral portions of the rectangle configuration perpendicularly formed from this bottom surface part. Here, the field which counters a bottom surface part is opened wide, and opening 302a is formed in this field by fixing upper case member 302u, as mentioned above.

[0099] The screwhole which is not illustrated is formed in 302h of lateral portions of 1 of 302d of bottom case members. And into the corner part with a ****** lateral portion, it has piece of regulation 302c at lateral portion 302b and lateral portion 302b which counter 302h of lateral portions in which the screwhole was formed.

[0100] The die length of the longitudinal direction of the antenna substrate 102 is longer than the die length of the longitudinal direction of 302d of bottom case members, while is perpendicular to the longitudinal direction of the antenna substrate 102, and piece of regulation 102j is formed in the neighboring central part. And 302g of screw stop pieces of upper case member 302u mentioned above is fixed to 302h of lateral portions of 302d of bottom case members with the screw 92 for cases. At this time, piece of regulation 102j of the antenna substrate 102 is supported from a lower part in the lateral portion 302b upper part of 302d of bottom case members, and the both-sides corner part of piece of regulation 102j of the antenna substrate 102 is supported from the upper part by piece of regulation of 302d of bottom case members 302c. An edge is fixed in the vertical direction in the longitudinal direction of the antenna substrate 102 is longer than

302d of bottom case members to a longitudinal direction, it is supported from the bottom in the 302h upper part of lateral portions of 302d of bottom case members. Therefore, the antenna substrate 102 will be fixed to the open field of 302d of bottom case members. Furthermore, 302f of regulation pieces of upper case member 302u contacts the lateral portion of 302d of bottom case members from the inside, and the antenna substrate 102 prevents shifting in the direction perpendicular to a longitudinal direction to 302d of bottom case members. [0101] The antenna substrate 102 is only one screw 92 for cases, and a configuration which was mentioned above is certainly fixed so that opening 302a of a case 302 may be covered. A case 302 is connected to the grand terminal of a power source at this time. Next, the antenna substrate 102 is explained based on the explanatory view of drawing 14.

[0102] Electromagnetic wave electric shielding pattern 102b as shown in drawing 14 (a) is printed on the front face (field by the side of the exterior of a case 302) of the antenna substrate 102. In drawing 14 (a), the field of the inside which gave the slash is electromagnetic wave electric shielding pattern 102b which covers an electromagnetic wave. And the field which has not given the slash surrounded by electromagnetic wave electric shielding pattern 102b is electromagnetic wave passage opening 102c as "electromagnetic wave passage opening." That is, electromagnetic wave passage opening 102c in the case 302 of the non-contact IC card reader writer 4 of a **** 4 operation gestalt is formed by electromagnetic wave electric shielding pattern 102b printed on the antenna substrate 102. In addition, 102d of clearances for preventing the fall of the communication range by generating of an eddy current is established in electromagnetic wave electric shielding pattern 102b. On the other hand, antenna 102a of the shape of a circular loop formation as an "antenna" as shown in drawing 14 (b) is printed on the tooth back (field by the side of the interior of a case 302) of the antenna substrate 102.

[0103] Furthermore, in the front face of the antenna substrate 102, electric conduction pattern 102f is printed on the tooth back of electric conduction pattern

102e and the antenna substrate 102 so that the perimeter of antenna 102a mentioned above may be surrounded. These electric conduction patterns 102e and 102f have flowed by through hole 102k, and form the "loop-formation-like conductor" in the perimeter of antenna 102a. In addition, the clearance is established in the electric conduction pattern 102f center section, and electric conduction pattern 102e and 102f itself do not form a loop formation in it. And the electric conduction patterns 102e and 102f form a "loop formation" in the perimeter of antenna 102a with a resistor 400 by mounting a resistor 400 in an electric conduction pattern 102f [of the tooth back of the antenna substrate 102] center section.

[0104] In addition, electromagnetic wave electric shielding pattern 102b, antenna 102a, and the electric conduction patterns 102e and 102f are formed of the so-called etching. Next, the effectiveness which IC card reader writer 4 of a **** 4 operation gestalt demonstrates is explained. When the non-contact IC card reader writer 4 of a **** 4 operation gestalt as well as the above-mentioned 1st, 2nd, and 3rd operation gestalt has arranged antenna 102a and electronic-circuitry 40a to the case 302 interior linked to the grand terminal of a power source, the unnecessary electromagnetic wave emitted from antenna 102a or electronic-circuitry 40a is not revealed outside. Moreover, the effect by the electromagnetic wave emitted from the device which is outside can also be prevented. Therefore, it can prevent that a noncontact IC card 70 is read at the tooth back of the non-contact IC card reader writer 4, or actuation of the noncontact IC card reader writer 4 becomes unstable.

[0105] And in the non-contact IC card reader writer 4 of a **** 4 operation gestalt, the electric conduction patterns 102e and 102f were formed in the perimeter of antenna 102a. And the loop formation was formed in the perimeter of antenna 102a by making a resistor 400 placed between electric conduction pattern 102f clearances.

[0106] A communication range becomes short, namely, this technical thought pays its attention to the fact that field strength is stopped, if the loop formation of

a conductor exists in the perimeter of antenna 102a. That is, when electromagnetic wave electric shielding pattern 102b was formed, in order to suppress the fall of the field strength by generating of an eddy current, 102d of clearances was prepared, but if the fall of the field strength by generating of an eddy current is used conversely, field strength can be stopped even if it is the case where electromagnetic wave passage opening 102c is made into fixed magnitude. At this time, field strength can be stopped, so that the resistor 400 with large resistance is made to intervene and a loop formation is formed. Therefore, it becomes possible to adjust field strength by exchanging the resistor 400 between which electric conduction pattern 102f is made to be placed for that from which resistance differs. It is not necessary to change the magnitude of electromagnetic wave passage opening 102c as a result for adjustment of field strength, and reduction of the further man day can be realized. Get it blocked, for example, it becomes unnecessary to reprint electromagnetic wave electric shielding pattern 102b in a prototype phase for adjustment of field strength, and reduction of a man day can be aimed at compared with the above-mentioned 1st, 2nd, and 3rd operation gestalt. Therefore, if a labor cost etc. is taken into consideration, large cost reduction is realizable.

[0107] Moreover, the non-contact IC card reader writer 4 of a **** 4 operation gestalt put the antenna substrate 102 by devising the structure of a case 302 and the antenna substrate 102 by upper case member 302u and 302d of bottom case members. That is, heights 301b (refer to drawing 12) of a screw 91 (refer to drawing 2 and drawing 10) for antenna substrates like the above-mentioned 1st and 2nd operation gestalt and a case 301 like the above-mentioned 3rd operation gestalt is not prepared in the electromagnetic wave emission side of the antenna substrate 102. Consequently, when using the non-contact IC card reader writer 4 in the condition of having contained in the predetermined receipt case, an antenna 102 can be made to approach the electromagnetic wave emission side of the receipt case. Therefore, substantial reading distance of an IC card can be lengthened more compared with the structure of the above-

mentioned 1st, 2nd, and 3rd operation gestalt.

[0108] This is explained based on drawing 15 (a). Drawing 15 (a) shows signs that the non-contact IC card reader writer 5 is contained to the receipt case 500. The non-contact IC card reader writer 5 shown in drawing 1515 (a) carried out the screw stop of the antenna substrate 103 to the case 303 with the screw 91 for antenna substrates, and the head of the screw 91 for antenna substrates has projected it to the reading side side of the receipt case 500. Therefore, it is the clearance delta 1 between the receipt case 500 and the antenna substrate 103 by this screw head section. It is formed. When it reads in the antenna substrate 103 here and distance to a marginal location is set to d, it reads in card reading side 500a of the receipt case 500, and it is the substantial reading distance x1 to a marginal location. Clearance delta 1 It will become short. Generally, in such a non-contact IC card reader writer, since there is the present condition that the device which secures a several mm communication range, such as 1-2mm, is made, the several mm clearance formed of the screw head section for fixing an antenna substrate poses a problem from a viewpoint of a communication range. [0109] On the other hand, in the non-contact IC card reader writer 4 of a **** 4 operation gestalt, as mentioned above, to the electromagnetic wave emission side side of the antenna substrate 102, the structure of a case 302 and the antenna substrate 102 was devised so that neither the screw 91 (refer to drawing 2 and drawing 10) for antenna substrates nor heights 301b (R> drawing 12 2 reference) might be prepared. Therefore, as shown in drawing 15 (b), it is the clearance delta 2 between the antenna substrate 103 and the receipt case 500. It can be made small. When it reads in the antenna substrate 103 and distance to a marginal location is set to d like drawing 15 (a) Distance x1 shown in drawing 15 (a) It compares, reads in IC card reading side 500a of the receipt case 500, and is substantial reading distance x2 to a marginal location. It can enlarge. [0110] In addition, although it was made for neither a screw nor a projection to project in an electromagnetic wave emission side with a **** 4 operation gestalt as the antenna substrate 102 was put by upper case member 302u and 302d of

bottom case members When it is going to acquire the same effectiveness by the non-contact IC card reader writers 1, 2, and 3 of the above-mentioned 1st, 2nd, and 3rd operation gestalt, it replaces with the screw 91 for antenna substrates, and it is possible to use a pan screw with the above-mentioned 1st and 2nd operation gestalt. Moreover, what is necessary is to change the sense and direction of heights of 301d of bottom case members 301b which are shown in drawing 12, and just to make it heights 301b not project in the electromagnetic wave emission direction with the above-mentioned 3rd operation gestalt. [0111] However, since there is the so-called need which forms in a case the part which receives the pan part of a screw of "rubbing a pan" when a pan screw is used, the man day which processing of a case takes may increase. The reason is because the precision is further required when rubbing a pan, although the man day of rubbing a pan itself is also needed. That is, if it is the usual screw, since some screw holes by the side of a case can be made more greatly and play can be built to a case, the gap of some of screw holes for fixing an antenna substrate and a case does not become a problem, but with a pan screw, since the play over a case is lost, precision is required of the screw hole for fixing a case and an antenna substrate. Therefore, if an activity man day is taken into consideration, it is desirable like the 4th operation gestalt to lose the protrusion of a screw etc. as much as possible by devising the structure of an antenna substrate and a case.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the top view showing the non-contact IC card reader writer of the 1st operation gestalt.

[Drawing 2] It is the A-A line sectional view of drawing 1.

[Drawing 3] It is the block diagram showing the electric configuration of the non-contact IC card reader writer of the 1-3rd operation gestalt.

[Drawing 4] It is the explanatory view showing the print pattern of an antenna substrate.

[Drawing 5] It is the flow chart which shows the communication link test processing in the non-contact IC card reader writer of the 1-3rd operation gestalt.

[Drawing 6] It is the explanatory view showing the relation between electric-wave passage opening and field strength.

[Drawing 7] It is the explanatory view showing the directivity of an antenna.

[Drawing 8] It is the explanatory view showing a space gap.

[Drawing 9] It is the top view showing the non-contact IC card reader writer of the 2nd operation gestalt.

[Drawing 10] It is the B-B line sectional view of drawing 9 .

[Drawing 11] It is the explanatory view showing the effectiveness by the arrangement location of an antenna.

[Drawing 12] (a) is the top view showing the non-contact IC card reader writer of the 3rd operation gestalt, and (b) is the C-C line sectional view of (a).

[Drawing 13] (a) is the top view showing the non-contact IC card reader writer of the 4th operation gestalt, and (b) is D-D line sectional view of (a).

[Drawing 14] It is the explanatory view showing the print pattern of the antenna substrate in the 4th operation gestalt.

[Drawing 15] It is the explanatory view showing the relation between a receipt case and a communication range.

[Description of Notations]

1, 2, 3, 4, 5, 6 -- Non-contact IC card reader writer

10,100,101,102,103 -- Antenna substrate

10a, 100a, 101a, 102a -- Antenna

10b, 100b, 101b, 102b -- Electromagnetic wave electric shielding pattern

10c, 100c, 101c, 102c -- Electromagnetic wave passage opening

10d, 100d, 101d, 102d -- Clearance

101e -- Heights

101f -- Insertion hole

102e, 102f -- Electric conduction pattern

102k -- Through hole

30,300,301,302,303 -- Case

30a, 300a, 301a, 302a -- Opening

30c -- Electromagnetic wave passage opening

30u, 300u, 302u -- Top case member

30d, 300d, 302d -- Bottom case member

40 -- Printed wired board 40a -- Electronic circuitry

41 -- CPU 42 -- ROM

43 -- RS-232C interface 44 -- Card communications control section

45 -- LED 46 -- Switch

47 -- Power supply section 51 -- AC adapter

52 -- AC power

60,600 -- Shielding plate 61 -- Magnetic substance

70 -- Noncontact IC card 80 -- Main computer

91 -- Screw for antenna substrates 92 -- Screw for cases

93 -- Screw for printed wired boards 500 -- Receipt case

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]
1 非接触 I Cカードリーダライタ
30a 30
92 91 91 91 92
A 10d 10c

[Drawing 5]

背面

[Drawing 6]

[Drawing 10]

[Drawing 13]

[Drawing 14]

[Drawing 15]

[Translation done.]

G 0 6 K 17/00

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平11-238103

(43) 公開日 平成11年(1999) 8月31日

(51) Int. Cl. 6

識別記号

FΙ

G 0 6 K 17/00

F

審査請求 未請求 請求項の数6

OL

(全17頁)

(21) 出願番号

特願平10-191624

(22) 出願日

平成10年(1998)7月7日

(31) 優先権主張番号 特願平9-349501

(32) 優先日

平9 (1997) 12月18日

(33) 優先権主張国

日本(JP) .

(71) 出願人 000004260

株式会社デンソー

愛知県刈谷市昭和町1丁目1番地

(72) 発明者 河内 聡

愛知県刈谷市昭和町1丁目1番地 株式会社

デンソー内

(72) 発明者 小坂 俊之

愛知県刈谷市昭和町1丁目1番地 株式会社

デンソー内

(74) 代理人 弁理士 足立 勉

(54) 【発明の名称】非接触 I Cカードリーダライタ

(57) 【要約】

【課題】 非接触ICカードリーダライタにおいて、そ の筐体の構造を工夫することによって、個々に電波出力 回路を設計する必要をなくし、かつ、不必要な電磁波の 漏洩及び外部からの電磁波の影響を防止する。

【解決手段】 アンテナ基板 10 にプリントされたアン テナ10a及びプリント配線板40に実装された電子回 路40aを、電磁波遮蔽機能を有する筐体30内部に配 置する。そして、アンテナ10 aから出力される電磁波 が筐体30から非接触カードとの通信に必要な方向にの み放出されるように、筐体30を構成する上筐体部材3 0 u の開口部に固定したアンテナ基板 1 0 に電磁波遮蔽 パターン10bをプリントして電磁波を放出するための 電磁波通過口を形成する。

【特許請求の範囲】

【 請求項 1 】 非接触 I C カードとの間で通信を行うためのアンテナと、

1

外部に接続されたメインコンピュータからの指示に基づき、前記アンテナを介して前記非接触ICカードとの間で通信を行い、当該非接触ICカードに対し情報の読み出し又はむき込みの少なくとも一方を指示する電子回路と、

電磁波を遮蔽する筺体とを備え、

前記アンテナ及び電子回路を前記筺体内部に配置すると 10 共に、前記アンテナから出力される電磁波を前記非接触 I Cカードとの通信に必要な方向にだけ放出するための 電磁波通過口を前記筺体に形成したことを特徴とする非接触 I Cカードリーダライタ。

【請求項2】 請求項1に記載の非接触ICカードリー ダライタにおいて、

前記電磁波通過口を、筐体に形成した開口部を覆うプリント配線板にプリントされ、グランド端子に接続された 電磁波遮蔽パターンで形成したこと特徴とする非接触 I Cカードリーダライタ。

【請求項3】 請求項1又は2に記載の非接触ICカードリーダライタにおいて、

ループの途中に隙間を設けたループ状の導電体を前記アンテナの周囲に配設し、当該隙間に抵抗器を介在させることによって当該導電体と当該抵抗器とが前記アンテナの周囲にループを形成するよう構成したことを特徴とする非接触 I Cカードリーダライタ。

【請求項4】 請求項1~3のいずれかに記載の非接触 ICカードリーダライタにおいて、

さらに、

前記アンテナと電子回路との間に配置され電磁波を遮蔽 する電磁波遮蔽壁と、

前記電磁波遮蔽壁のアンテナ側の面に設けられ電磁波を 吸収する電磁波吸収部材と、

を備えることを特徴とする非接触 I Cカードリーダライタ。

【請求項5】 請求項1~4のいずれかに記載の非接触ICカードリーダライタにおいて、

前記電子回路は、前記非接触ICカードとの通信確認を 行うための通信試験処理を実行可能に構成されており、 さらに、前記通信試験処理の実行によって通信状態が確立したか否かを利用者に報知する報知手段を備えたこと を特徴とする非接触ICカードリーダライタ。

【請求項6】 請求項1~5のいずれかに記載の非接触 I Cカードリーダライタにおいて、

前記憶体内部に配置される前記アンテナに対して電磁波 の放出側に位置する突出部を極力なくすよう構成したことを特徴とする非接触 I Cカードリーダライタ。

【発明の詳細な説明】

[0001]

【発明の瓜する技術分野】本発明は、送受信機能を有する非接触ICカードとの間で電磁波を用いた無線通信を行い、メインコンピュータからの指示に基づいて、非接触ICカードに対してカードデータの読み出し及び書き込みを指示する非接触ICカードシステムに用いられる

非接触ICカードリーダライタに関する。

[0002]

【従来の技術】非接触ICカードには、磁気ストライプカードに代表されるような接触式カードに比べて優れた点が多い。例えば、カードに記憶されるデータのセキュリティ性能が高いこと、カードデータの読み出し時及びむき込み時にカードリーダライタにカードを挿入する必要がなく利便性に優れていること、防水性能に優れていること等が挙げられる。このため、非接触ICカードは、入門管理システム、入室管理システム、精算管理システム等に用いる個人識別媒体として使用されることが多くなってきている。

【0003】この非接触ICカードとの間で電磁波を用いた通信を行うのが、メインコンピュータにRS232
C等の通信規格を用いて接続された非接触ICカードリーダライタである。非接触ICカードリーダライタは、メインコンピュータからの指示に基づき非接触ICカードに対してコマンドを送信する。非接触ICカードは、このコマンドに基づいて、カードデータをメモリから読み出して非接触ICカードリーダライタへ送信したり、非接触ICカードリーダライタから受信したデータをメモリヘカードデータとして書き込んだりする。つまり、非接触ICカード、非接触ICカードリーダライタ及びメインコンピュータから構成される非接触ICカードシステムにおいて、非接触ICカードリーダライタは、通信装置として機能する。

[0004]

【発明が解決しようとする課題】以下、上述した非接触 I Cカードリーダライタにおける従来の問題点を説明する。第1の問題点は、非接触 I Cカードリーダライタが 出力する電磁波の電界強度を調整するために、非接触 I Cカードリーダライタそれぞれに対し個別に電磁波出力 回路を設計する必要があることである。

【0005】非接触ICカードリーダライタは電磁波を 40 使用するため、出力する電磁波の電界強度は各国の電波 法によって規制される。例えば日本国内では、所定の周 波数に対してはそれぞれに規定を設けると共に、それ以 外の周波数に対しては「微弱無線局」として位置づけ一 律に規制している。その結果、使用する国、使用する周 波数に合わせて電波出力回路を個別に設計することが必 要となってくる。

【0006】もちろん、電界強度を調整可能な電波出力 回路を設計することも可能ではあるが、回路構成が複雑 になるという問題がある。また、既存の例えば外国製の 電波出力回路は、国内の電波法の規定を満たしていない

ため、そのままでは利用することができない。そうかといって、既存の電波出力回路を改造すれば費用が樹むため、結局、個別に電波出力回路を設計しているのが現状である。

【0007】また、非接触ICカードリーダライタの仕様によっても、電波出力回路を個別に設計する必要性があった。つまり、非接触ICカードリーダライタと非接触ICカードとの間の通信距離が、その非接触ICカードリーダライタの仕様によって短くてよいものもあれば長い通信距離を必要とするものもあるため、出力する電 10 磁波の電界強度をその仕様に合わせて調整することが必要となるからである。

【0008】このように、非接触ICカードリーダライタの電波出力回路は、個々の周波数に合わせて電波法に規定される電界強度を越えないように設計することに加え、非接触ICカードリーダライタの仕様に合わせて個々に設計する必要があった。第2の問題点は、非接触ICカードリーダライタの前面(カードよって、非接触ICカードリーダライタの前面(カード読み取り側の面)以外でも非接触ICカードを読み取ってしまう可能性があることである。

【0009】通信装置として機能する非接触ICカードリーダライタは、非接触ICカードとの通信を行うためにアンテナを有しているのであるが、このアンテナは、図4(b)に示すように、プリント配線板にループ状のアンテナ10aをプリントしたものが一般的である。図4(b)中にはアンテナ10aのプリントされたプリント配線板をアンテナ基板10として示した。以下、アンテナのプリントされたプリント配線板をアンテナ基板ということとする。

【0010】図7は、図4(b)で示したアンテナ基板 10の側面図であり、このアンテナの指向性を示すものである。図7に示すように、アンテナから出力される電磁波は、8の字型の指向性を持っており、アンテナ基板 10の両面側に放出される。なお、図7には、アンテナから出力される電磁波の電界強度が所定値となる場所を破線で示した。

【0011】このようなアンテナ基板は、非接触ICカードとの通信を効率よく行うために非接触ICカードリーダライタの筐体内部の前面に配置されるのが一般的であるが、アンテナは、図7に示したような8の字型の指向性を持っているため、電磁波の一部は、この非接触ICカードリーダライタの背面にも放出されてしまう。その結果、非接触ICカードリーダライタの背面でも、非接触ICカードとの通信が行われカードデータが読み取られてしまうという不都合が生じる。

【0012】第3の問題点は、周囲環境による影響が大きいことである。例えば他の機器を近づけた場合に、その機器から漏洩する電磁波の影響によって非接触ICカードとの通信状態が不安定となり、非接触ICカードリ

4

ーダライタの動作の安定性が損なわれることもある。 【0013】本発明は、上述した3つの問題点を解決するためになされたものであり、非接触ICカードリーダライタにおいて、その筺体の構造を工夫することによって、個々に電波出力回路を設計する必要をなくし、かつ、不必要な電磁波の漏洩及び外部からの電磁波の影響を防止することを目的とする。

[0014]

【課題を解決するための手段及び発明の効果】上述した 目的を達成するためになされた請求項1に記載の非接触 I Cカードリーダライタは、非接触 I Cカードとの間で 通信を行うためのアンテナと、外部に接続されたメイン コンピュータからの指示に基づき、アンテナを介して非接触 I Cカードとの間で通信を行い、当該非接触 I Cカードに対し情報の読み出し又は書き込みの少なくとも一方を指示する電子回路と、電磁波を遮蔽する筐体とを備え、アンテナ及び電子回路を筺体内部に配置すると共に、アンテナから出力される電磁波を非接触 I Cカードとの通信に必要な方向にだけ放出するための電磁波通過 口を筺体に形成したことを特徴とする。

【0015】ここでいう「非接触ICカード」は、電磁波を用いて外部装置と通信を行う送受信機能を有し、外部装置からの指示に基づき、所定の記憶部に記憶されたカードデータを読み出しその外部装置へ送信したり、外部装置から受信した情報をカードデータとして所定の記憶部へ書き込んだりする機能を有している。

【0016】本発明の非接触ICカードリーダライタは、上述した外部装置に相当し、外部に接続されたメインコンピュータからの指示に基づき、電子回路が、アン30 テナを介して非接触ICカードとの間で通信を行い、非接触ICカードに対し情報の読み出し又は書き込みの少なくとも一方を指示する。指示を受けた非接触ICカードは、上述したようにカードデータの読み出し又は書き込みを行う。こうして、非接触ICカードリーダライタは、非接触ICカードからカードデータを読み出したり、非接触ICカードへカードデータを書き込んだりするのである。

【0017】なお、「読み出し又は書き込みの少なくとも一方」としたのは、電子回路が読み出しのみを指示可能であることも考えられるし、書き込みのみを指示可能であることも考えられるし、あるいは、両方指示可能であることも考えられるからである。

【0018】そして、本発明の非接触ICカードリーダライタでは、筐体が電磁波を遮蔽するため、アンテナから出力される電磁波は、その筐体に設けられた電磁波通過口を介して筐体外部に放出される。このとき、電磁波通過口は、非接触ICカードとの通信に必要な方向にだけアンテナからの電磁波が放出されるように形成する。例えば、筐体の前面に近づけた非接触ICカードとの通50 信を行う非接触ICカードリーダライタにおいては、筐

体の前面に電磁波通過口を形成するという具合である。 【0019】本発明の非接触ICカードリーダライタに よれば、非接触ICカードとの通信に必要な方向への電 磁波のみが筺体外部へ放出されることになる。逆に言え ば、非接触ICカードとの通信に不要な方向への電磁波 は筐体によって遮蔽され、筐体外部へ放出されない。こ のため、筐体の前面にのみ電磁波通過口を形成すれば、 筐体の背面に近づけた非接触 I Cカードとの間で通信が 行われカードデータが意図せず読み出されることがなく なる。また、電子回路からの放射される電磁波も筺体の 側面及び背面からは漏洩しない。さらに、筐体は外部か らの電磁波も遮蔽するため、外部機器等による筐体の側 面及び背面からの電磁波の影響をも防止でき、非接触I Cカードリーダライタの動作安定性を向上させることが できる。

【0020】加えて、アンテナから出力される電磁波 を、筐体に形成された電磁波通過口を介して筐体外部へ 放出するため、電磁波通過口の大きさによってはアンテ ナから出力される電磁波の一部が遮蔽されることにな る。そのため、アンテナから出力される電磁波の電界強 20 度はこの電磁波通過口の大きさによって決定される。従 って、同様の電波出力回路及びアンテナを用いた場合で あっても、この電磁波通過口の大きさを変更することに よって任意に電界強度を調整することが可能となる。つ まり、電波出力回路によらず電磁波通過口の大きさによ って電磁波の出力レベルを調整するのである。これによ って、電波法の規定や非接触ICカードリーダライタの 仕様に合わせて、個別に電波出力回路を設計する必要が なくなり、電波出力回路の設計に要する時間を削減する ことができる。また、既存の電波出力回路を利用して非 30 接触ICカードリーダライタを製作することもできる。 そのため、人件費等を考慮すれば、大幅なコスト削減を 実現することができる。

【0021】ここで、上述の電界強度と電磁波通過口と の関係を図面を参照して説明する。図6は、非接触IC カードリーダの断面図であり、筐体30とアンテナ10 aがプリントされたアンテナ基板10との位置関係を示 した。そして、筐体30には、「電磁波通過口」が形成 されている。このような構成によって、アンテナ基板1 0から出力される電磁波の電界強度は、電磁波通過口の 40 面積によって調整されることになる。例えば、図6

(a) は、図6(b)に比べて、筐体30の電磁波通過 口が大きくなっているため、アンテナ基板10にプリン トされたアンテナ10aから送出される電磁波の電界強 度は大きくなる。図6中では、電界強度の等しい場所を 破線で結んで示した。

【0022】ところで、電磁波を有効に遮蔽する筺体と しては、金属材料で形成し、電子回路のグランド端子に 接続したものが考えられる。つまり、筺体のインピーダ ンスを最も低い状態とすることが有効である。なお、金 50 途中に隙間を設けたループ状の導電体をアンテナの周囲

属で形成しグランド接続したものには限られず、電磁波 を遮蔽する電磁波遮蔽部材を用いて筐体を形成しても構

【0023】なお、電磁波通過口は、筐体に形成した開 口部とすることも考えられるが、請求項2に示すよう に、電磁波通過口を、筺体に形成した開口部を覆うプリ ント配線板にプリントされ、グランド端子に接続された 電磁波遮蔽パターンで形成するとよい。

【0024】例えば、図6に示したアンテナ基板10に 電磁波遮蔽パターンをプリントすることが考えられる。 つまり、図6(a)の矢印Aで示した面、すなわち筐体 の内部側の面にはアンテナ10aをプリントし、図6 (a) に矢印Bで示した面、すなわち筐体の外部側の面 には電磁波遮蔽パターンをプリントするという具合であ る。ここでは、同一のプリント配線板にアンテナ10a と電磁波遮蔽パターンをプリントする例を挙げたが、当 然、アンテナ基板10とは別のプリント配線板に電磁波 遮蔽パターンをプリントすることも考えられる。

【0025】電磁波遮蔽パターンは、図4(a)に示す ような具合にプリントすることが考えられる。図4

(a) では、斜線を施した領域が電磁波を遮蔽する金属 部分であり、電子回路等のグランド端子に接続された電 磁波遮蔽パターン10bである。そして、斜線を施して いない領域が電磁波通過口10cである。電磁波通過口 10cの裏側面に図4(b)に示すようなアンテナ10 aがプリントされているものとする。

【0026】また、図4(a)に示す隙間10dは、電 磁波遮蔽パターン10bに渦電流が発生しアンテナ10 aのインダクタンスが低下することによって生じる通信 距離の低下を防止するものである。このように、プリン ト配線板にプリントした電磁波遮蔽パターンによって電 磁波通過口を形成すれば、筐体に電磁波通過口として開 口部を形成する場合に比べて、加工精度がよくなるとい う点で有利である。特に、上述したように渦電流の発生 を抑えるための隙間10d (図4(a)参照)を形成す る必要性を考えれば、電磁波遮蔽パターンはいわゆるエ ッチングで形成されるため加工が容易という点でも有利 である。

【0027】なお、電磁波遮蔽パターンをエッチングで 形成することによって電磁波通過口の大きさを調整し電 界強度を調整することは、上述したように、加工精度の 面でも、また、加工が容易であるという面でも有効では あるが、例えば製品の試作段階などでは、電界強度を調 整するため、様々な大きさの電磁波通過口を作成する必 要が生じる。このとき、電磁波通過口を、いわゆるエッ チングによって電磁波遮蔽パターンにて形成すること は、加工が容易であるとしても工数のかかる作業とな

【0028】そこで、請求項3に示すように、ループの

に配設し、当該隙間に抵抗器を介在させることによって 当該導電体と当該抵抗器とがアンテナの周囲にループを 形成するよう構成することが考えられる。ここで「ルー プ」は、途中に隙間(断続部分)を有しない環状のもの をいい、円形、楕円形に限られず、四角形や三角形など の多角形でもよい。この場合、ループの途中に隙間を設 けたそれ自体ではループを形成しない導電体をアンテナ の周囲に配設しておく。そして、この隙間に抵抗器を介 在させてはじめて抵抗器を一部に含むループが形成され るようにする。

7

【0029】この技術思想は、上述したように、アンテ ナの周囲に導電体のループが存在すると、通信距離が短 くなる、すなわち電界強度が抑えられるという事実に着 目したものである。つまり、電磁波遮蔽パターンにより 電磁波通過口を形成する場合には、渦電流の発生による 電界強度の低下を抑えるために導電体のループが形成さ れないよう隙間を設けたのであるが、渦電流の発生によ る電界強度の低下を逆に利用すれば、電磁波通過口を一 定の大きさにした場合であっても、電界強度を抑えるこ とができるのである。このとき、抵抗器などの負荷を介 20 在させずループを形成すると電界強度は極端に低下する が、導電体と抵抗器を用いてループを形成すると、抵抗 値の大きな抵抗器を介在させて形成されるループである ほど、電界強度の低下が小さくなることが分かってい る。従って、抵抗器を介在させることによってアンテナ 周囲にループを形成するループ状の導電体を配置すれ ば、抵抗器を抵抗値の異なるものと交換することによっ て電界強度を調整することが可能となる。そのため、電 界強度の調整のために何種類もの電磁波遮蔽パターンを プリントする必要がなくなり、さらなる工数の削減が実 30

【0030】なお、このような導電体は、アンテナがプリント配線板にプリントされていれば、そのプリント配線板に導電バターンとしてプリントしてもよいし、上述したように電磁波遮蔽パターンがプリントされたプリント配線板に導電パターンとしてプリントしてもよい。電磁波遮蔽パターンがプリントされたプリント配線板にプリントする場合は、電磁波遮蔽パターンの外側にプリントしてもよいし、あるいは、プリント配線板の前面に電磁波遮蔽パターンがプリントされているのであれば、導 40電パターンを背面にプリントしてもよい。

【0031】以上説明した請求項1~3に示す非接触ICカードリーダライタによれば、筐体内部に配置されたアンテナ及び電子回路からの不必要な電磁波が箇体外部へ漏洩することもなくなり、また、筐体外部からの電磁波の影響を受けることもなくなる。

【0032】ところが、箇体内部において、アンテナに対し、アンテナの背面側の筐体面やアンテナの背面側に配置された電子回路が反射体となり、渦電流の発生や電磁波の干渉を生じて通信距離に影響を及ぼすことが知ら

れている。従って、ある距離だけ離れた非接触ICカー ドとの通信を行う場合には、アンテナの背面側の筺体面 又はアンテナの背面側の電子回路との間に「空間ギャッ プ」をつくる等の工夫が必要であった。例えば、図8に 示すように、アンテナ基板10にプリントされたアンテ ナ10aと通信対象の非接触ICカード70とが距離α だけ離れた状態で通信可能となるよう構成する場合、プ リント配線板40に実装された電子回路40aとアンテ ナ10aとの間におおよそ距離αの「空間ギャップ」が 必要であった。その理由は、「空間ギャップ」を距離 α よりも小さくすると、電子回路40a側に出力された電 磁波が電子回路40aで反射することによって干渉を起 こし、その結果、電子回路40a側に出力された電磁波 の電界強度が小さくなり、それに伴って、非接触ICカ ード70側に放出される電磁波の電界強度も同程度に小 さくなってしまうからである。このような電磁波の干渉 を防止する「空間ギャップ」によって、非接触ICカー ドリーダライタが大型化してしまうという問題があっ た。

【0033】そこで、請求項4に示すような構成を採用することが望ましい。すなわち、その構成は、請求項1~3に示した構成に加えて、さらに、アンテナと電子回路との間に配置され電磁波を遮蔽する電磁波遮蔽壁と、電磁波遮蔽壁のアンテナ側の面に設けられ電磁波を吸収する電磁波吸収部材とを備えることを特徴とするものである。

【0034】この場合、電磁波遮蔽壁をアンテナと電子 回路との間に配置したため、アンテナ及び電子回路から それぞれ放出される電磁波が干渉することがなくなる。 さらに、この電磁波遮蔽壁のアンテナ側の面には電磁波 吸収部材を設けたため、アンテナからの電磁波が電磁波 吸収部材によって吸収され電磁波遮蔽壁で反射しない。 そのため、アンテナから出力される電磁波が互いに干渉したり、電磁波遮蔽壁に渦電流が発生したりすることを 防止することができる。これによって、アンテナと電子 回路との間に「空間ギャップ」を設ける必要性がなくなり、結果として、非接触ICカードリーダライタを小型 化することができる。

【0035】ところで、上述したように、非接触ICカ 40 ードリーダライタは、メインコンピュータに接続された 状態で使用される。従って、メインコンピュータを接続していない状態では通信可能領域を確認することができ ない。本発明では、電磁波を遮蔽する筺体内部にアンテナ及び電子回路を配置することによって設置環境の影響を抑える工夫をしているが、非接触ICカードリーダライタの個体差、あるいは非接触ICカードの個体差によって通信可能領域が変わってくることが考えられる。従って、非接触ICカードリーダライタを設置する際、メインコンピュータに接続する前に、通信可能領域が確認 できれば便利である。

【0036】そこで、請求項5に示すように、非接触Ⅰ Cカードとの通信確認を行うための通信試験処理を実行 可能に電子回路を構成し、さらに、通信試験処理の際、 通信状態が確立したか否かを利用者に報知する報知手段 を備える構成とすることが考えられる。

【0037】この場合、外部のメインコンピュータを接 続することなく、非接触 I Cカードリーダライタが単独 で通信試験処理を実行する。この通信試験処理は、例え ば利用者の指示によって実行されるものである。このと き、報知手段が非接触カードとの通信の確立を利用者に 報知する。このため、利用者は、非接触ICカードを非 接触カードリーダライタに近づけたり遠ざけたりするこ とによって通信可能領域を確認することができる。これ によって、非接触ICカードリーダライタの設置する際 又は設置場所を変更する際、メインコンピュータに接続 することなく通信可能領域を確認することができ便利で ある。なお、報知手段は、光による報知を行うものであ ってもよいし、音による報知を行うものであってもよ 61

【0038】なお、以上説明した非接触ICカードリー ダライタは、電磁波を透過させる収納ケースに収納され た状態で使用されるのが一般的である。例えば、防塵・ 防水効果を有する合成樹脂などで収納ケースを形成すれ ば、非接触ICカードリーダライタを屋外にも設置でき ることになるからである。

【0039】ところが、非接触ICカードリーダライタ を収納ケースに収納することによって、実質的なICカ ードの読み取り距離が短くなってしまう可能性がある。 これを図15 (a) に基づいて説明する。図15 (a) は、収納ケース500に非接触ICカードリーダライタ 5が収納されている様子を示している。図15 (a) に 示す非接触ICカードリーダライタ5は、アンテナ基板 103を筐体303にアンテナ基板用ネジ91でネジ止 めしたものであるが、このとき、アンテナ基板用ネジ9 1の頭部が突出しているため、この頭部によって収納ケ ース500とアンテナ基板103との隙間δ,が形成さ れる。ここでアンテナ基板103から読み取り限界位置 までの距離をdとした場合、収納ケース500の電磁波 放出面500aから読み取り限界位置までの実質的な読 み取り距離 x_1 は、隙間 δ_1 によって小さくなってしま 40 う。一般的に、このような非接触 I Cカードリーダライ タでは、1~2mmというような数mmの通信距離を確 保する工夫がなされる現状があるため、プリント配線板 を固定するためのネジ頭部等によって形成される数mm の隙間が通信距離の観点から問題となるのである。

【0040】そこで、請求項6に示すように、筐体内部 に配置されるアンテナに対して電磁波の放出側に位置す る突出部を極力なくすよう構成するとよい。アンテナ は、筐体内部に配置されるのであるから、電波の放出側 には筺体の一部やアンテナを固定するためのネジなどの 50 触ICカードリーダライタ1を示す。図1は平面図であ

突出部が位置することが考えられる。 例えば図15 (a) で言えば、アンテナ基板103に対して電磁波の 放出側、すなわち紙面上方には、筐体303の上部及び 箇体用ネジ91の頭部が突出部として位置する。従っ て、例えばアンテナ基板用ネジ91の代わりにさらネジ やM3などの小さなネジを使用して、突出部としての筐 体用ネジ91頭部を極力なくしたり、あるいは、アンテ ナ基板103を筐体303の開口部に丁度はめ込むよう にして、アンテナ基板103よりも上方に位置する突出 部としての筐体303の一部を極力なくしたりするとい う具合である。

【0041】このように構成した非接触ICカードリー ダライタを、収納ケースに収納する場合、電磁波放出側 の突出部が相対的に小さくなれば、収納ケースの電磁波 放出面にアンテナを近接させることができる。従って、 図15(b)に示すように、アンテナ基板103と収納 ケース500との隙間δ2を小さくすることができ、ア ンテナ基板103から読み取り限界位置までの距離を図 15 (a) と同様にdとした場合に、図15 (a) に示 した距離x1に比べて、収納ケース500のICカード 読み取り面500aから読み取り限界位置までの実質的 な読み取り距離 x2 を長くすることができる。

【0042】なお、突出部としてのネジ頭部を極力なく すという観点から見れば、上述したようにさらネジや相 対的に小さなネジを使用することも考えられるが、さら ネジを使用すると、筐体側にネジのさら部分を受ける部 分を形成する、いわゆる「さらをもむ」必要があるた め、筐体の加工に要する工数が増大する可能性がある。 その理由は、さらをもむこと自体の工数も必要となるの であるが、さらに、さらをもむ場合にはその精度が要求 されるためである。つまり、通常のネジであれば、筺体 側のネジ穴を多少大きめに開け、筺体に対して遊びをつ くることができるため、アンテナ基板と筐体とを固定す るためのネジ穴の多少のずれは問題にならないが、さら ネジでは、筐体に対する遊びがなくなるため、筐体とア ンテナ基板とを固定するためのネジ穴に精度が要求され るのである。また、小さなネジを使用すると、信頼性が 低くなってしまうという問題もある。

【0043】従って、作業工数及び製品の信頼性を考慮 すれば、電磁波の放出側にはネジを使用しないようにア ンテナ基板と筺体との構造を工夫することによって、突 出部を極力なくすようにすることが好ましい。

[0044]

【発明の実施の形態】以下、本発明を具体化した実施形 態を図面を参照して説明する。なお、本発明は以下説明 する実施形態に何等限定されるものではなく、本発明の 趣旨を逸脱しない範囲において種々なる形態で実施でき ることは言うまでもない。

[第1実施形態] 図1及び図2に、第1実施形態の非接

30

り、図2は、図1のA-A線断面図である。

【0045】非接触ICカードリーダライタ1は、アンテナ基板10と、プリント配線板40に実装された「電子回路」としての電子回路40aと、「電磁波遮蔽壁」としてのシールド板60と、シールド板60のアンテナ基板10側の面に設けられた「電磁波吸収部材」としての磁性体61と、これらを収納配置する筐体30とを備えている。なお、シールド板60及び筐体30には、アルミニウム、鉄などの金属材料が用いられる。特に軽量である点を考えれば、アルミニウムを用いることが有効である。また、磁性体61は、例えばフェライトを用いることが考えられる。

11

【0046】筐体30は、上筐体部材30uと下筐体部材30dとから構成されており、筐体用ネジ92でネジ止めされている。上筐体部材30uには、正方形形状の開口部30aを筐体30内部から覆うようにアンテナ基板10が配置されている。このアンテナ基板10よりもさらに筐体30内側には、シールド板60が配置され、このシールド板60は、アンテナ基板10と共にアンテナ基板用ネジ91によって上筐体部材30uに固定されている。

【0047】アンテナ基板10の前面(筐体30の外部側の面)には、図4(a)に示すような四角形で環状の電磁波遮蔽パターン10bがプリントされている。図4(a)中では、斜線を施した領域が電磁波を遮蔽する電磁波遮蔽パターン10bである。そして、電磁波遮蔽パターン10bに囲まれた斜線を施していない領域が「電磁波通過口」としての電磁波通過口10cである。つまり、本第1実施形態の非接触ICカードリーダライタ1の筐体30における電磁波通過口10cは、アンテナ基板10にプリントされた電磁波遮蔽パターン10bで形成されている。一方、アンテナ基板10の背面(筐体30の内部側の面)には、図4(b)に示すような「アンテナ」としての四角形のループ状のアンテナ10aがプリントされている。

【0048】また、図4(a)に示す隙間10dは、アンテナ10aから出力される電磁波によって、電磁波遮蔽パターン10bに渦電流が発生しアンテナ10aのインダクタンスが低下することを防止するものである。アンテナ10aのインダクタンスの低下は、通信距離の低 40下を引き起こす。

【0049】図1の平面図は、このようなアンテナ基板 10が筐体30の開口部30aにアンテナ基板用ネジ91でネジ止めされている様子を示した。図中では、アンテナ基板10の背面にプリントされたアンテナ10aを破線にて示した。なお、電磁波遮蔽パターン10b及びアンテナ10aは、いわゆるエッチング技術により形成される。

【0050】また、図2に示すように、シールド板60 に対しアンテナ基板10と反対側にプリント配線板40 が配置されており、プリント配線板用ネジ93によって下筺体部材30dに固定されている。このプリント配線板40には、後述する通信試験処理等を行うための電子回路40aが実装されている。図2中には、個々の電子素子は図示せず、一点鎖線でその電子回路40aの実装される領域を示した。

【0051】プリント配線板用ネジ93は、電子回路40aを動作させる電源のグランド端子に接続されており、アンテナ基板用ネジ91、筐体用ネジ92、プリント配線板用ネジ93を介して、筐体30、シールド板60及び電磁波遮蔽パターン10bは全て電源のグランド端子に接続されている。従って、非接触ICカードリーダライタ1の動作時には、筐体30、シールド板60及び電磁波遮蔽パターン10bのインピーダンスが最も低くなり、筐体30、シールド板60、電磁波遮蔽パターン10bは電磁波を遮蔽する。

【0052】次に、図3に基づいて、本第1実施形態の非接触ICカードリーダライタ1の電気的な構成を説明する。図3は、非接触ICカードリーダライタ1の電気的な構成を示すブロック図である。本第1実施形態の非接触ICカードリーダライタ1は、通常、外部のメインコンピュータ80に接続された状態で使用され、電磁波を用いて非接触ICカード70との間で通信を行い、非接触ICカード70からカードデータの語み出し指示及び非接触ICカード70へのカードデータの書き込み指示を行うことによって、非接触ICカード70との間でカードデータ授受を実現する。

【0053】非接触ICカード70は、電磁波を用いた通信を行う送受信機能を有している。すなわち、アンテナ、アンテナを介して通信を行う通信回路、通信回路を制御するマイクロコンピュータを備えている。また、カードデータを記憶する記憶部としてのメモリ装置を備えており、通信回路によって非接触ICカードリーダライタ1との通信を行い、非接触ICカードリーダライタ1から指示に基づき、このメモリ装置へカードデータを書き込んだりするのである。なお、非接触ICカード70は、非接触ICカードリーグライタ1から非接触方式にて電源供給され動作する。

【0054】非接触ICカードリーダライタ1は、電気的には、上述した電子回路40aと、アンテナ10aのプロックに区分される。電子回路40aは、CPU41と、CPU41が実行する処理のためのプログラムを記憶したROM42と、非接触ICカード70とのアンテナ10aを介した通信を制御するカード通信制御部44と、「報知手段」としてのLED45と、後述する通信試験処理の実行を利用者が指示するためのスイッチ46と、メインコンピュータ80との通信を行うためのRS232Cインターフェース43と、電源部47とから構成されている。

【0055】電源部47は、ACアダプタ51から出力される直流の動作電圧を安定化して図示しない配線によってCPU41、RS232Cインターフェース43、ROM42、カード通信制御部44及びLED45に出力する。その結果、非接触ICカードリーダライタ1が動作することになる。ACアダプタ51は、AC電源52から出力される交流の電源電圧を受けて直流の動作電圧を電源部47へ出力する。

13

【0056】非接触ICカードリーダライタ1では、CPU41が、メインコンピュータ80からRS232Cインターフェース43を介して送信される指示に基づいて、カード通信制御部44に対して通信制御指示を出力する。この通信制御指示に基づいて、カード通信制御部44はアンテナ10aを介して非接触ICカード70との通信を行うのである。通信制御部44には、アンテナ10aからの電磁波の出力レベルを決定する電波出力回路が含まれている。

【0057】このように、非接触 I Cカードリーダライタ1は、通常、メインコンピュータ80に接続され、メインコンピュータ80からの指示に基づいて動作するの 20であるが、本第1実施形態の非接触 I Cカードリーダライタ1では、メインコンピュータ80を接続することなく非接触 I Cカード70との通信試験処理を実行することが可能に構成されている。

【0058】ここで、この通信試験処理について、図5に示すフローチャートに基づき説明する。この処理は、メインコンピュータ80を接続することなく、本第1実施形態の非接触ICカードリーダライタ1が単独で行うものであり、図3中のスイッチ46を介して利用者からの指示がなされた場合に実行される。この通信試験処理 30のためのプログラムは、ROM42に記憶されており、CPU41によって実行される。

【0059】まず最初のステップS1000において、カード応答要求コマンドを送信する。この処理は、非接触ICカード70に対して応答を要求するものである。その結果、非接触ICカードリーダライタ1は、非接触ICカードリーダライタ1の通信可能領域にある非接触ICカード70からの応答信号を受信する。

【0060】S1100では、衝突防止コマンドを送信する。この処理は、S1000にて送信した応答要求に 40対して、受信した応答信号が複数あった場合、すなわち複数の非接触ICカード70が揃って応答したときに、そのうちの一のカードの応答を要求するものである。

【0061】S1200では、カード選択コマンドを送信する。この処理は、S1100の処理によって応答したカードに対し、通信開始を通知するものである。S1300では、動作停止コマンドを送信する。この処理は、非接触ICカード70に対して動作の停止を指示するものである。これによって、非接触ICカードリーダライタ1と非接触ICカード70との通信が終了する。

【0062】S1400では、上述した一連の通信処理の正常終了を判断する。ここで通信が正常終了したと判断された場合(S1400:YES)、S1500にてLED45を点滅させる。その後、S1000からの処理を繰り返す。一方、通信が異常終了したと判断した場合(S1400:NO)、S1500の処理を実行せず、S1000からの処理を繰り返す。

【0063】次に、本第1実施形態の非接触ICカードリーダライタ1の発揮する効果を説明する。なお、ここでの説明に対する理解を容易にするために、はじめに従来の非接触ICカードリーダライタにおける問題点を繰り返し説明しておく。第1の問題点は、非接触ICカードリーダライタの電磁波の出力レベルを決定する電波出力回路は、電波法に規定される電界強度を越えないように個々に設計することに加え、非接触ICカードリーダライタの仕様に合わせた電界強度となるよう個々に設計する必要があることである。

【0064】第2の問題点は、非接触ICカードとの通信を効率よく行うために非接触ICカードリーダライタの筐体内部の前面に配置されるのが一般的であるが、アンテナは、図7に示したような8の字型の指向性を持っているため、電磁波の一部は、この非接触ICカードリーダライタの背面にも放出されてしまい、結果として、意図せず非接触ICカードとの通信が行われカードデータが読み取られてしまう可能性があることである。

【0065】第3の問題点は、他の機器を近づけた場合に、その機器から漏洩する電磁波の影響によって非接触ICカードとの通信状態が不安定となり、非接触ICカードリーダライタの動作の安定性が損なわれることである。本第1実施形態の非接触ICカードリーダライタ1では、電源のグランド端子に接続したことで電磁波で電子に接続したことで電磁波で電路40aを配置した。これによって、アンテナ10aからの電磁波が筺体30の前面以外に放出されることがない。その結果、非接触ICカードワーダライタ1の背に近づけた非接触ICカード70との間で通信が行われカードデータが意図せず読み出されるというようなことがなくなる。また、電子回路40aから放出される電磁波が外部に漏洩することもなくなる。

【0066】また、電磁波を遮蔽する筐体30内部にアンテナ10a及び電子回路40aを配置したことによって、外部にある機器等から放出された電磁波による影響をも防止することができる。従って、非接触ICカード70との通信状態が外部からの電磁波により不安定となることがなくなり、非接触ICカードリーダライタ1の動作の安定性を向上させることができる。

【0067】このように、アンテナ10a及び電子回路 40aを電磁波を遮蔽する筺体30内部に配置すること で、上述した第2、第3の問題点を解決した。そして、

本第1実施形態の非接触 I Cカードリーダライタ1で

は、

館体30に非接触ICカード70との通信を行うた めの電磁波通過口10cを形成した。そのため、この電 磁波通過口10cを形成する電磁波遮蔽パターン10b でアンテナ10 aから出力される電磁波が一部遮蔽され ることになり、アンテナ10aから出力される電磁波の 出力レベルが電波出力回路を調整せずとも決定される。 つまり、アンテナ10 aから出力される電磁波の電界強 度は、この電磁波通過口10cの大きさによって決定さ れる。従って、同様の電波出力回路及びアンテナ10a を用いた場合であっても、この電磁波通過口10cの大 10 きさを変更することによって任意に電界強度を調整する ことが可能となる。これによって、電波法の規定や非接 触ICカードリーダライタ1の仕様に合わせて個別に電 磁波の出力レベルを決定する電波出力回路を設計する必 要がなくなり、電波出力回路の設計に要する時間を削減 することができる。また、既存の電波出力回路を利用し て非接触 I Cカードリーダライタ1を製作することもで きる。そのため、人件費等を考慮すれば、大幅なコスト 削減を実現することができる。このように、電磁波通過 口10cを形成したことによって、第1の問題点を解決 20

【0068】ここで、上述の電界強度と電磁波通過口10cとの関係を図6を参照して具体的に説明する。なお、非接触ICカードリーダライタ1では、電磁波通過口10cを電磁波遮蔽パターン10bでアンテナ基板10に形成したが、図6では、筐体30の開口部を電磁波通過口30cとした。アンテナ10aからの電磁波が電磁波通過口30cを介して外部に出力されることによって、アンテナ10aから出力される電磁波は、電磁波通過口30cの周縁部によって一部遮蔽される。従って、アンテナ10aからの電磁波の電界強度は、筐体30に形成された電磁波通過口30cの面積によって調整されることになる。例えば、図6中には、電界強度の等しくなる位置を破線にて示したが、図6(a)は、図6

(b) に比べて、筐体30の電磁波通過口30cの面積が大きくなっているため、アンテナ基板10にプリントされたアンテナ10aから送出される電磁波による電界強度は大きくなる。

【0069】なお、本実施形態の非接触ICカードリーダライタ1において、電磁波通過口10cは、アンテナ 40基板10に電磁波遮蔽パターン10bをプリントすることで形成した。これによって、電磁波通過口10cの形成は容易になり、加工精度も高くなる。

【0070】また、本実施形態の非接触ICカードリー ダライタ1では、シールド板60に対しアンテナ基板1 0の反対側にプリント配線板40を配置した(図2参 照)。このシールド板60も電源のグランド端子に接続 することで電磁波を遮蔽するようになっており、このシールド板60をアンテナ10aと電子回路40aとの間 に配置したため、アンテナ10a及び電子回路40aか 50 16

ら放出される電磁波が互いに干渉し合うことがなくなる。さらに、このシールド板60のアンテナ10a側の面には磁性体61を設けたため、アンテナ10aからの電磁波がシールド板60で反射されず磁性体61によって吸収されるため、アンテナ10aから出力される電磁波が相互に干渉したり、シールド板60に渦電流が発生したりすることを防止することができる。これによって、アンテナ10aと電子回路40aとの間に従来のような「空間ギャップ」を設ける必要性がなくなり、結果として、非接触ICカードリーダライタ1を小型化することができる。

【0071】さらにまた、本実施形態の非接触 I Cカードリーダライタ1は、通常、メインコンピュータ80に接続された状態で使用されるのであるが(図3参照)、非接触 I Cカード70の通信可能領域を利用者が知るために、非接触 I Cカードリーグライタ1単独で非接触 I Cカード70との通信試験処理を実行可能に構成されている(図5参照)。この通信試験処理は、スイッチ46を介した利用者の指示により実行され、通信が正常終了したと判断された場合(S1400:YES)、LED45を点灯する(S1500)。

【0072】従って、利用者は、非接触ICカード70を非接触カードリーダライタ1に近づけたり遠ざけたりし、LED45が点灯するか否かを視覚にて確認することによって通信可能領域を確認することができる。なお、LED45の代わりにブザー等を用いてもよい。これによって、非接触ICカードリーダライタ1を設置する際又は設置場所を変更する際、メインコンピュータ80に接続することなく通信可能領域を確認することがで30き便利である。

[第2実施形態] 上記第1実施形態の非接触 I Cカード リーダライタ1とは別の構造を有する第2実施形態の非 接触ICカードリーダライタ2を説明する。なお、本第 2実施形態の非接触 I Cカードリーダライタ 2 は、電気 的な構成については上記第1実施形態の非接触 I Cカー ドリーダライタ1と同様であり、物理的な構造のみが異 なっている。従って、非接触ICカードリーダライタ2 の電気的な構成についての説明は省略し、以下、非接触 ICカードリーダライタ2の物理的な構造を説明する。 【0073】図9及び図10に、第2実施形態の非接触 ICカードリーダライタ2を示す。図9は平面図であ り、図10は、図9のB-B線断面図である。非接触I Cカードリーダライタ2は、アンテナ基板100と、プ リント配線板40に実装された「電子回路」としての電 子回路40 aと、「電磁波遮蔽壁」としてのシールド板 600と、シールド板600のアンテナ基板100側の 面に設けられた「電磁波吸収部材」としての磁性体61 と、これらを収納配置する筐体300とを備えている。 なお、シールド板600及び筐体300、磁性体61に 用いられる材料は、上記第1実施形態と同様である。

【0074】 筺体300は、上筺体部材300 uと下筺 体部材300dとから構成されており、筐体用ネジ92 でネジ止めされている。上筺体部材300uには、長方 形形状の開口部300aが上筐体部材300uの端部か ら形成されており、この開口部300aを筐体30内部 から覆うようにアンテナ基板100が配置され、アンテ ナ基板用ネジ91によって上筐体部材300uに固定さ れている。本第2実施形態では、筺体300の開口部を 上筺体部材300uの端部より形成し、アンテナ100 aを上筺体部材300uの中心からずらして配置した。 【0075】アンテナ基板100の前面(筐体300の 外部側の面)には、図9に示すような電磁波遮蔽パター ン100bがプリントされている。図9中では、斜線を 施した六角形の環状の領域が電磁波を遮蔽する電磁波遮 **蔽パターン100bである。そして、環状に形成された** 電磁波遮蔽パターン100bによって囲まれた斜線を施 していない六角形形状の領域が「電磁波通過口」として の電磁波通過口100cである。また、電磁波遮蔽パタ ーン100bは、渦電流の発生を防止する隙間100d を有している。一方、アンテナ基板100の背面(筺体 30の内部側の面)には、図9に破線で示すような「ア ンテナ」としての六角形のループ状のアンテナ100a がプリントされている。なお、電磁波遮蔽パターン10 0 b 及びアンテナ1 0 0 a は、いわゆるエッチングによ り形成される。

17

【0076】また、図10に示すように、アンテナ基板100の背面側には、「電磁波吸収部材」としての磁性体61を張り付けた「電磁波遮蔽壁」としてのシールド板600に対しアンテナ基板100と反対側にプリント配線板40が配置されている。そして、プリント配線板40は、シールド板600と共に、プリント配線板用ネジ93によって下筐体部材300dに固定されている。このプリント配線板40には、上記第1実施形態と同様の通信試験処理等を行うための電子回路40aが実装されている。図10中には、個々の電子素子は図示せず、一点鎖線でその電子回路40aの実装される領域を示した。

【0077】プリント配線板用ネジ93は、電子回路40aを動作させる電源のグランド端子に接続されており、アンテナ基板用ネジ91、筐体用ネジ92、プリン40ト配線板用ネジ93を介して、筐体300、シールド板600及び電磁波遮蔽パターン100bは全て電源のグランド端子に接続されている。従って、非接触ICカードリーダライタ2の動作時には、筐体300、シールド板600及び電磁波遮蔽パターン100bのインピーダンスが最も低くなり、筐体300、シールド板600、電磁波遮蔽パターン100bは電磁波を遮蔽する。

【0078】以上の説明した構造によって、上記第1実施形態の非接触ICカードリーダライタ1と同様の効果を発揮する。すなわち、電源のグランド端子に接続した50

ことで電磁波を遮蔽する筐体300内部にアンテナ100a及び電子回路40aを配置したことによって、アンテナ100aや電子回路40aから放出される不要な電磁波が外部に漏洩することがない。また、外部にある機器等から放出された電磁波による影響をも防止することもできる。従って、非接触ICカードリーダライタ2の背面で非接触ICカード70が読み取られたり、非接触ICカードリーダライタ2の動作が不安定になったりすることを防止できる。

【0079】そして、筐体300に非接触ICカード70との通信を行うための電磁波通過口100cの面積を調整することによって、電磁波の電界強度を調整できるため、電波法の規定や非接触ICカードリーダライタ2の仕様に合わせて、電磁波の出カレベルを決定する電波出力回路を個別に設計する必要がなくなり、電波出力回路の設計に要する時間を削減することができる。また、既存の電波出力回路を利用して非接触ICカードリーダライタ2を製作することもできる。そのため、人件費等を考慮すれば、大幅なコスト削減を実現することができる。

【0080】なお、上記第1実施形態と同様に、本第2 実施形態においても、電磁波通過口100cは、アンテナ基板100に電磁波遮蔽パターン100bをプリント することで形成した。これによって、電磁波通過口10 0cの形成は容易になり、加工精度も高くなる。

【0081】また、アンテナ基板100と電子回路40 aとの間に設けたシールド板600によって、アンテナ10a及び電子回路40aからそれぞれ放出される電磁波が干渉することがなくなる。さらに、このシールド板600のアンテナ100a例の面には磁性体61を設けたため、アンテナ100aからの電磁波がシールド板600で反射されず磁性体61によって吸収されるため、アンテナ100aから出力される電磁波が相互に干渉したり、シールド板600に渦電流が発生したりすることを防止できる。これによって、アンテナ100aと電子回路40aとの間に従来のような「空間ギャップ」を設ける必要性がなくなり、結果として、非接触ICカードリーダライタ2を小型化することができる。

【0082】さらにまた、本第2実施形態の非接触ICカードリーダライタ2は、電気的構成について上記第1実施形態と同様であり、通信試験処理(図5参照)の実行も可能である。従って、利用者は、非接触ICカード70を非接触カードリーダライタ1に近づけたり遠ざけたりし、LED45が点灯するか否かを視覚にて確認することによって通信可能領域を確認することができる。これによって、例えば非接触ICカードリーダライタ1を設置する際又は設置場所を変更する際、メインコンピュータ80に接続することなく通信可能領域を確認することができ便利である。

【0083】さらに、第2実施形態の構成に係る効果と

して次のような効果も生じる。本第2実施形態では、管 体300の開口部を上筺体部材300uの端部より形成 し、アンテナ100aを上筐体部材300uの中心から ずらして配置した。その結果、図11に示すように、非 接触ICカード70を非接触ICカードリーダライタ2 に近づけた状態で通信を行う場合、非接触 I Cカード7 0を持つ利用者の指が非接触 I Cカードリーダライタ 2 に当たることが少なくなる。

19

[第3実施形態] 上記第1及び第2実施形態の非接触 [Cカードリーダライタ1, 2と、さらに別の構造を有す る第3実施形態の非接触 I Cカードリーダライタ3を説 明する。なお、本第3実施形態の非接触ICカードリー ダライタ3も、電気的な構成については上記第1及び第 2 実施形態の非接触 I Cカードリーダライタ1, 2 と同 様であり、物理的な構造のみが異なっている。従って、 以下、第3実施形態として、非接触 I Cカードリーダラ イタ3について物理的な構造のみを説明する。

【0084】図12に、第3実施形態の非接触ICカー ドリーダライタ3を示す。図12(a)は平面図であ り、図12(b)は、図12(a)のC-C線断面図で ある。非接触ICカードリーダライタ3は、アンテナ基 板101と、このアンテナ基板101に実装された「電 子回路」としての電子回路40aと、これらを収納配置 する筐体301とを備えている。

【0085】筐体301は、前面が全て開口部301a となっており、この開口部301aを覆うようにアンテ ナ基板101が配置されている。アンテナ基板101の 周縁部には、4つの凸部101eが形成され、この凸部 101eには挿入穴101fが形成されている。一方、 筐体301の開口部301aの周縁部には、挿入穴10 1 f に対応する凸部301bが形成されている。この筐 体301の凸部301bをアンテナ基板101の凸部1 01eに形成された挿入穴101fに挿入し、凸部30 1 b に対し外力を加え凸部301 b をねじることによっ て、アンテナ基板101は、筐体301の開口部301 aに固定される。

【0086】アンテナ基板101の前面(筺体301の 外部側の面)には、図12(a)に示すような電磁波遮 蔽パターン101bがプリントされている。図12

(a) では、斜線を施した四角形形状の領域及び円形で 環状の領域が電磁波を遮蔽する電磁波遮蔽パターン10 1 b である。この電磁波遮蔽パターン101bは、電子 回路40aのグランド端子に接続されており、電磁波遮 蔽機能を有している。そして、電磁波遮蔽パターン10 1 b の 環状の 領域に 囲まれた 斜線を施していない 円形の 領域が「電磁波通過口」としての電磁波通過口101c である。また、電磁波遮蔽パターン101bは、渦電流 の発生を防止するための隙間101dを有している。一 方、アンテナ基板101の背面(筺体30の内部側の 面)には、図9に破線で示すような「アンテナ」として 50

20 の丸形形状のループ状のアンテナ101aがプリントさ れている。

【0087】また、図12(b)に示すように、アンテ ナ基板101の背面には、電子回路40aが実装されて いる。電子回路40aは、上記第1及び第2実施形態と 同様とする。図12(b)には、個々の電子素子は図示 せず、一点鎖線でその電子回路40aの実装される領域 を示した。

【0088】次に、本第3実施形態のICカードリーダ ライタ3の発揮する効果を説明する。上記第1及び第2 実施形態と同様に、本第3実施形態の非接触 I Cカード リーダライタ3でも、電源のグランド端子に接続したこ とで電磁波を遮蔽する筺体301内部にアンテナ101 a及び電子回路40aを配置したことによって、アンテ ナ101aや電子回路40aから放出される不要な電磁 波が外部に漏洩することがない。また、外部にある機器 等から放出された電磁波による影響をも防止することが できる。従って、非接触ICカードリーダライタ3の背。 面で非接触ICカード70が読み取られたり、非接触I Cカードリーダライタ3の動作が不安定になったりする ことを防止できる。

【0089】そして、非接触ICカード70との通信を 行うための電磁波通過ロ101cの面積を調整すること によって、電磁波の電界強度を調整できるため、電波法 の規定や非接触ICカードリーダライタ3の仕様に合わ せて、電磁波の出力レベルを決定する電波出力回路を個 別に設計する必要がなくなり、電波出力回路の設計に要 する時間を削減することができる。また、既存の電波出 カ回路を利用して非接触 I Cカードリーダライタ3を製 作することもできる。そのため、人件費等を考慮すれ ば、大幅なコスト削減を実現することができる。

【0090】なお、上記第1及び第2実施形態と同様 に、本第3実施形態においても、電磁波通過口101c は、アンテナ基板101に電磁波遮蔽パターン101b をプリントすることで形成した。これによって、電磁波 通過口101cの形成は容易になり、加工精度も高くな る。

【0091】但し、本第3実施形態では、上記第1及び 第2実施形態で用いたようなシールド板60,600を 40 用いていないため、アンテナ101a及び電子回路40 aからそれぞれ放出される電磁波の干渉により、非接触 ICカード70との通信可能距離が短くなることが考え られる。従って、非接触ICカード70との通信を短い 距離で行うシステムに用いられて有効となる。なお、非 接触ICカード70との通信可能距離は短くなるもの の、上記第1及び第2実施形態の構成と異なり、筐体3 01が一体として形成してあり、この筐体301の凸部 301bをねじってアンテナ基板101を固定している ため、ネジ止めも必要なく製造が容易という点で有利で ある。

【0092】上記第1実施形態ではアンテナ10aを四角形形状に形成し、上記第2実施形態ではアンテナ10 0aを六角形形状に形成し、本第3実施形態ではアンテナ101aを丸形形状に形成した。このアンテナ形状は、これらに限られず、種々の形状で形成することが考えられる。なお、本出願人が実験した結果、アンテナパターンの中に筺体の開口部周縁と平行になる部分が少ない方が電磁波の電界強度が大きくなることが分かり、上述の例では、四角形状、六角形形状、丸形形状の順に電界強度が強くなることが分かった。

21

[第4実施形態]上記第1、第2及び第3実施形態の非接触ICカードリーダライタ1,2,3と、さらに別の構造を有する第4実施形態の非接触ICカードリーダライタ4を説明する。

【0093】図13に、第4実施形態の非接触ICカードリーダライタ4を示す。図13(a)は平面図であり、図13(b)は、図13(a)のD-D線断面図である。非接触ICカードリーダライタ4は、アンテナ基板102と、このアンテナ基板102に実装された「電子回路」としての電子回路40aと、これらを収納配置する筐体302とを備えている。

【0094】 筺体302は、上筺体部材302 u と下筐体部材302 d とが筐体用ネジ92でネジ止めされて構成されている。このとき、上筐体部材302 u と下筺体部材302 d とによって開口部302 a が形成され、この開口部302 a を覆うようにアンテナ基板102が上筐体部材302 u と下筺体部材302 d とで挟まれて固定されている。

【0095】まず最初に、筺体302に対するアンテナ 基板102の取り付け構造について説明する。上筺体部 30材302uは、略長方形形状の薄板金属部材である。上 筺体部材302uの一の辺には、ネジ止め片302gが 設けられ、また、その辺に隣合う2つの辺には、挾持片302eと規制片302fが設けられている。

【0096】挾持片302eは、アンテナ基板102側にコの字状に折り返され、アンテナ基板102の長手方向に平行な辺に形成された凹部102g(図14参照)を挟み込む。これによって、上筺体部材302uは、アンテナ基板102に固定される。

【0097】また、このとき、上述したネジ止め片302g及び規制片302fはアンテナ基板102側へ垂直に折り曲げられ、ネジ止め片302gはアンテナ基板102の長手方向における一方の端部に形成された貫通孔102i(図14参照)から、また、規制片302fはアンテナ基板102の長手方向に平行な辺に形成された凹部102hから、アンテナ基板102の下側へ突出する。なお、ネジ止め辺302gには、図示しないネジ孔が形成されている。

【0098】下筺体部材302dは、長方形形状の底面部と、この底面部から垂直に形成された長方形形状の4

つの側面部とからなる箱状の薄板金属部材である。ここで、底面部に対向する面は開放されており、上述したように上筺体部材302 uが固定されることによって、この面に開口部302 aが形成される。

【0099】下筐体部材302dの一の側面部302hには、図示しないネジ孔が形成されている。そして、ネジ孔の形成された側面部302hに対向する側面部302bと側面部302bに隣合う側面部とのコーナー部分には、規制片302cを有している。

【0100】アンテナ基板102の長手方向の長さは、 下筺体部材302dの長手方向の長さよりも長くなって おり、アンテナ基板102の長手方向に垂直な一方の辺 の中央部分には規制片102jが形成されている。そし て、上述した上筺体部材302uのネジ止め片302g が、下筺体部材302dの側面部302hに筐体用ネジ 92で固定される。このとき、アンテナ基板102の規 制片102jは、下筺体部材302dの側面部302b 上部で下方より支えられ、アンテナ基板102の規制片 102jの両側コーナー部分は、下筐体部材302dの 規制片302cで上方より支えられる。これによって、 アンテナ基板102の長手方向における一方の端部が上 下方向に固定される。また、上述したようにアンテナ基 板102は下筐体部材302dよりも長手方向に長いた め、下筐体部材302dの側面部302h上部で下側よ り支えられる。従って、アンテナ基板102は、下筐体 部材302dの開放面に固定されることになる。さら に、上筐体部材302uの規制片302fは、下筐体部 材302dの側面部に内側から当接し、アンテナ基板1 02が、下筐体部材302dに対し長手方向に垂直な方 向へずれることを防止する。

【0101】上述したような構成によって、アンテナ基板102は、1本の筐体用ネジ92のみで、筐体302の開口部302aを覆うように確実に固定される。このとき、筐体302は、電源のグランド端子に接続される。次に、図14の説明図に基づき、アンテナ基板102について説明する。

【0102】アンテナ基板102の前面(筐体302の 外部側の面)には、図14(a)に示すような電磁波遮 蔽パターン102bがプリントされている。図14

(a) 中では、斜線を施した内側の領域が電磁波を遮蔽する電磁波遮蔽パターン102bである。そして、電磁波遮蔽パターン102bに囲まれた斜線を施していない領域が「電磁波通過口」としての電磁波通過口102cである。つまり、本第4実施形態の非接触ICカードリーダライタ4の筺体302における電磁波通過口102cは、アンテナ基板102にプリントされた電磁波遮蔽パターン102bで形成されている。なお、電磁波遮蔽パターン102bには、渦電流の発生による通信距離の低下を防止するための隙間102dが設けられている。

50 一方、アンテナ基板 102の背面(筐体 302の内部側

の面)には、図14(b)に示すような「アンテナ」としての円形のループ状のアンテナ102aがプリントされている。

【0103】さらに、上述したアンテナ102aの周囲を囲むように、アンテナ基板102の前面には導電パターン102eが、そして、アンテナ基板102の背面には導電パターン102eが、そして、アンテナ基板102の背面には導電パターン102e、102fは、スルーホール102kによって導通しており、アンテナ102aの周囲に「ループ状の導電体」を形成している。なお、導電パターン102fの中央部には、隙間が設けられており、導電パターン102e、102f自体は、ループを形成しない。そして、アンテナ基板102の背面の導電パターン102fの中央部に抵抗器400が実装されることによって、導電パターン102e、102fは、抵抗器400と共にアンテナ102aの周囲に「ループ」を形成する。

【0104】なお、電磁波遮蔽パターン102b、アンテナ102a及び導電パターン102e,102fは、いわゆるエッチングにより形成される。次に、本第4実20施形態のICカードリーダライタ4の発揮する効果を説明する。上記第1、第2及び第3実施形態と同様に、本第4実施形態の非接触ICカードリーダライタ4でも、電源のグランド端子に接続した筐体302内部にアンテナ102a及び電子回路40aを配置したことによって、アンテナ102aや電子回路40aから放出される不要な電磁波が外部に漏洩することがない。また、外部にある機器等から放出された電磁波による影響をも防止することができる。従って、非接触ICカードリーダライタ4の背面で非接触ICカード70が読み取られたり、非接触ICカードリーダライタ4の動作が不安定になったりすることを防止できる。

【0105】そして、本第4実施形態の非接触 I Cカードリーダライタ4では、アンテナ102aの周囲に導電パターン102e, 102fを形成した。そして、導電パターン102fの隙間に抵抗器400を介在させることによってアンテナ102aの周囲にループが形成されるようにした。

【0106】この技術思想は、アンテナ102aの周囲に導電体のループが存在すると、通信距離が短くなる、 40 すなわち電界強度が抑えられるという事実に着目したものである。つまり、電磁波遮蔽パターン102bを形成する場合には、渦電流の発生による電界強度の低下を抑えるために隙間102dを設けたのであるが、渦電流の発生による電界強度の低下を逆に利用すれば、電磁波通過口102cを一定の大きさにした場合であっても、電界強度を抑えることができるのである。このとき、抵抗値の大きい抵抗器400を介在させてループを形成するほど電界強度を抑えられる。従って、導電パターン102fに介在させる抵抗器400を抵抗値の異なるものと 50

24

交換することによって電界強度を調整することが可能となる。結果として、電界強度の調整のために電磁波通過口102cの大きさを変える必要がなく、さらなる工数の削減を実現することができる。つまり、例えば試作段階において、電界強度の調整のために電磁波遮蔽パターン102bをプリントしなおす必要がなくなり、上記第1、第2及び第3実施形態と比べ工数の削減を図ることができるのである。従って、人件費等を考慮すれば、大幅なコスト削減を実現することができる。

【0107】また、本第4実施形態の非接触ICカードリーダライタ4は、筐体302及びアンテナ基板102を内構造を工夫することによって、アンテナ基板102を上筐体部材302はで挟み込むようにした。つまり、アンテナ基板102の電磁波放出側には、上記第1及び第2実施形態のようなアンテナ基板用ネジ91(図2及び図10参照)や、上記第3実施形態のような筐体301の凸部301b(図12参照)を設けていない。その結果、非接触ICカードリーダライタ4を所定の収納ケースに収納した状態で使用するときに、その収納ケースの電磁波放出面にアンテナ102を近接させることができる。従って、ICカードの実質的な読み取り距離を、上記第1、第2及び第3実施形態の構造に比べ、より長くすることができる。

【0108】これを図15(a)に基づいて説明する。 図15(a)は、収納ケース500に非接触ICカード リーダライタ5が収納されている様子を示している。図 15 (a) に示す非接触 I Cカードリーダライタ 5 は、 アンテナ基板103を筐体303にアンテナ基板用ネジ 91でネジ止めしたものであり、収納ケース500の読 30 み取り面側にアンテナ基板用ネジ91の頭部が突出して いる。従って、このネジ頭部によって収納ケース500 とアンテナ基板103との隙間δ,が形成される。ここ でアンテナ基板103から読み取り限界位置までの距離 をdとした場合、収納ケース500のカード読み取り面 500aから読み取り限界位置までの実質的な読み取り 距離 x 」は、隙間 δ 」によって短くなってしまう。一般 的に、このような非接触ICカードリーダライタでは、 1~2mmというような数mmの通信距離を確保する工 夫がなされる現状があるため、アンテナ基板を固定する 40 ためのネジ頭部によって形成される数mmの隙間が通信 距離の観点から問題となるのである。

【0109】これに対して、本第4実施形態の非接触ICカードリーダライタ4では、上述したように、アンテナ基板102の電磁波放出面側には、アンテナ基板用ネジ91(図2及び図10参照)や、凸部301b(図12参照)を設けないよう筐体302及びアンテナ基板102の構造を工夫した。従って、図15(b)に示すように、アンテナ基板103と収納ケース500との隙間 62を小さくすることができ、アンテナ基板103から読み取り限界位置までの距離を図15(a)と同様にd

とした場合に、図15(a)に示した距離 x_1 に比べて、収納ケース500のI Cカード読み取り面500 aから読み取り限界位置までの実質的な読み取り距離 x_2 を大きくすることができる。

25

【0110】なお、本第4実施形態では、アンテナ基板 102を上箇体部材302uと下箇体部材302dで挟み込むようにして、電磁波放出側にネジや突起が突出しないようにしたが、上記第1、第2及び第3実施形態の非接触ICカードリーダライタ1、2、3で同様の効果を得ようとした場合、上記第1及び第2実施形態では、アンテナ基板用ネジ91に代え、さらネジを使用することが考えられる。また、上記第3実施形態では、図12に示す下箇体部材301dの凸部301bが突出しないようにすればよい。

【0111】但し、さらネジを使用すると、ネジのさら部分を受ける部分を筺体に形成する、いわゆる「さらをもむ」必要があるため、筺体の加工に要する工数が増大する可能性がある。その理由は、さらをもむこと自体の工数も必要となるのであるが、さらに、さらをもむ場合にはその精度が要求されるためである。つまり、通常のネジであれば、筺体側のネジ穴を多少大きめに開け、筺体に対して遊びをつくることができるため、アンテナ基板と筺体とを固定するためのネジ穴の多少のずれは問題にならないが、さらネジでは、筺体に対する遊びがなくなるため、筺体とアンテナ基板とを固定するためのネジ穴に精度が要求されるのである。従って、作業工数を考慮すれば、第4実施形態のように、アンテナ基板と筺体との構造を工夫することによって、ネジなどの突出を極力なくすようにすることが好ましい。30

【図面の簡単な説明】

【図1】第1実施形態の非接触ICカードリーダライタを示す平面図である。

【図2】図1のA-A線断面図である。

【図3】第1~3実施形態の非接触ICカードリーダライタの電気的な構成を示すプロック図である。

【図4】アンテナ基板のプリントパターンを示す説明図である。

【図5】第1~3実施形態の非接触ICカードリーダライタにおける通信試験処理を示すフローチャートである。

【図6】電波通過口と電界強度との関係を示す説明図で ある

【図7】アンテナの指向性を示す説明図である。

【図8】空間ギャップを示す説明図である。

【図9】第2実施形態の非接触ICカードリーダライタを示す平面図である。

【図10】図9のB-B線断面図である。

【図11】アンテナの配置位置による効果を示す説明図である。

【図12】 (a) は第3実施形態の非接触 I Cカードリーダライタを示す平面図であり、(b) は(a) のC-C線断面図である。

【図13】(a)は第4実施形態の非接触ICカードリーダライタを示す平面図であり、(b)は(a)のD-D線断面図である。

【図14】第4実施形態におけるアンテナ基板のプリン10 トパターンを示す説明図である。

【図15】収納ケースと通信距離との関係を示す説明図である。

【符号の説明】

1, 2, 3, 4, 5, 6…非接触 I Cカードリーダライタ

10,100,101,102,103…アンテナ基板 10a,100a,101a,102a…アンテナ 10b,100b,101b,102b…電磁波遮蔽パ

ターン 0 10c, 100c, 101c, 102c…電磁波通過口

10d, 100d, 101d, 102d…隙間 101e…凸部

101 f …挿入穴

102e、102f…導電パターン

102k…スルーホール

30, 300, 301, 302, 303…筐体

30a, 300a, 301a, 302a…開口部

30c…電磁波通過口

30u, 300u, 302u…上筐体部材

30 30d, 300d, 302d…下筐体部材

40…プリント配線板40a…電子回路41…CPU42…ROM43…RS232Cインターフェース44…カード通信制御部45…LED46…スイッチ47…電源部51…ACアダプタ

40 52…AC電源

60,600…シールド板61…磁性体70…非接触ICカード80…メインコンピュータ91…アンテナ基板用ネジ92…筐体用ネジ

93…プリント配線板用ネジ 500…収納ケース

【図12】

【図14】

【図13】

