Московский физико-технический институт

Лабораторная работа № 19

"Активные фильтры"

Выполнила студентка Б01-903 Юлия Прохорова

1. Задание №1. Звенья первого порядка.

Рис. 1: Пропорционально интегрирующее звено.

Рис. 2: Пропорционально дифференцирующее звено.

1) Измерим уровни подавления на частоте f_0 и в полосах задержания для пропорционального интегрирующей и дифференцирующей цепей с полюсом в точке $s=\frac{p}{\omega_0}=-1, f_0=\frac{\omega_0}{2\pi}$ и нулями в точках $s=-2, s=-\frac{1}{2}$. Измерим уровни подавления на частоте f_0 и в полосах задержания.

$$\delta = \frac{\beta}{\alpha + \beta} = \frac{1}{2}$$
 — уровень подавления в полосе задержания (1)

Подавление на частоте $f_0 = 10k$:

$$\frac{4}{5}$$
 — интегрирующее звено, $\frac{1}{5}$ — дифференцирующее звено

- 2) Измерим номиналы резисторов в схемах так, чтобы сохранив положения полюсов, переместить нули точки $s=-4, s=-\frac{1}{4}$ $\delta=\frac{1}{4}$ уровень подавления в полосе задержания. Уровень подавления на частоте $f_0\colon \frac{1}{2}$ интегрирующая, $\frac{3}{20}$ дифференцирующая.
- 3) Откроем модель integrator.cir реального интегратора с частотой единичного усиления $f_1 = \frac{1}{2\pi BC} = 10k$ и усилением $K = \frac{R_K}{R}$.

Рис. 3: Реальный интегратор.

f_1 , Γ ц	10k	10k	10k	10k	10k	10k
K	2	4	8	16	32	64
f_0, Γ ц	5k	2.5k	1.25k	0.61k	0.31k	0.15k

Соотношение $f_1 = f_0 K$ - выполняется.

4) Подключим step единичного перепада, изучим переходные характеристики интегратора $h_0(t/\tau_1), \, \tau_1 = RC = 15.92 \mu.$

t/τ	Τ	2	4	8	16	32	64
h		0.82	1.62	3.22	6.42	12.82	25.63
h		0.4	0.8	1.6	3.3	6.5	13.1

Подключим источник pulse, проанализируем результаты интегрирования серии прямоугольных импульсов.

t/ au	2	4	8	16	32	64
h	0.42	0.83	1.6	3.3	6.5	13.1

2. Задание №2. Активные звенья с двойным Т-мостом.

Рис. 4: Полосовой фильтр с двойным Т-мостом.

1) Откроем модель полосовго фильтра pass2T.cir с $f_0=10k, K_0=20$. Измерим усиление на частоте f_0 и полосу Δf по уровню -3dB. Получили усиление $K_0=20.92, \Delta f=1/93(R_2=20k)$.

R_2 , OM	40k	60k	80k	100k
K_0	40.45	59.21	76.91	93.33
Δf , Γ ц	1038	698	547	461

Таблица 1: Зависимость пикового усиления и ширины полосы от R_5 .

2) Изучим поведение фильтра при разбалансировании моста варьированием R_5 . Снимам зависимость пикового усиления.

R_5 , Om	1.5	2	2.5	3	3.5	4	4.5	5	5.5
K_0	32.46	43.77	79.67	956.78	90.59	42.88	28.13	21.01	16.85

Таблица 2: Зависимость пикового усиления от R_5 .

3) Измерим уровни скачка в нуле и первого выброса: уровень скачка - 0.96В.

R_5, O_{M}	5k	4.5k	4k	3.5k	3k	2.5k
Выброс	4.29	4.49	4.72	5.01	5.36	5.82

Таблица 3: Оценка значения R_5 , при котором фильтр теряет устойчивость.

Потеря устойчивости происходит при $R_5 = 3k$ Ом.

4) Откроем модель stop2T.cir с $f_0 = 10k, \gamma = 0.1$.

Рис. 5: Режекторный фильтр с двойным Т-мостом.

Измерим ширину полосы режекции Δf по уровню $0.7 = -3 \mathrm{dB}$. Получим: $\Delta = 4.06 k \Gamma$ ц. Изучим ее изменение при варьировании R_1 и поведение фильтра при разбалансировании моста варьированием R_5 .

5) Изучим уровни скачка в нуле и первого выброса. Уровень скачка: 1В;первый выброс - 701.2мВ.

3. Задание №3. Исследование созвездий.

- 1) $n=7,\ \varepsilon=1,\ \eta=2,\ \to\ \eta_1=5042$ уровень затухания фильтра Чебышева, тот же уровень затухания достигается фильтром Баттерворда порядка n=7 при $\eta=3.3808$
- 2) $n=7,\ \varepsilon=1,\ \eta=1.5,\ \to\ \eta_1=421.5$ уровень затухания фильтра Чебышева, порядок филтра Баттерворда с тем же затуханием при $\eta=1.5\ \to\ \eta=13$
- 3) Уровень затухания эллиптического фильтра при $n=7,\ \varepsilon=1,\ \eta=1.1\to\eta_1=608.46.$ При селективности $\eta=1.56$ достигается тот же уровень затухания филтром Чебышева $n=7,\ \varepsilon=1$

4) Полосовой фильтр с частотой $f_0=465k$, двусторонней полосой $\Delta f=24k$ ($Q=\frac{f_0}{\Delta f}\approx 20$), неравномерностью 3dB ($\varepsilon=1$) и затуханием $\eta_1=10^4=80dB$. Селективность $\eta=1.36$ обеспечивает затухание η_1 эллиптическим фильтром порядка n=7. При n=2 фильтр Чебышева обеспечивает сопоставимое значение селективности при том же затухани. Преобразовав эти фильтры в полосовые с Q=20 получаем максимальные добротности полюсов: $Q_{max}=1049.39$ для эллиптического и $Q_{max}=2084.96$ для фильтра Чебышева.

4. Задание №4. Звенья Саллена-Ки.

Рис. 6: Звенья Саллена-Ки

1) Откроем **skey.cir** звеньев Саллена-Ки с частотой $f_0 = 10k$ и добротностью Q = 1. Измерим значения кожффициентов передачи при $f = f_0$. Получим:

$$K_0 = 2$$
, $K_{lp} = 27.6$, $K_{hp} = 27.53$, $K_{bp} = 27.6$

2) Откроем модель **sk3pole.cir** с фильтром Баттерворда верхних и нижних частот порядка n=3 на частоту среза $f_0=10k$. Измерим скорости спада в dB на октаву и затухания на частотах $f_0/2$, $2f_0$:

ВЧ: затухания на $f_0/2$: -18~dB, скорость спада $-18\frac{dB}{\rm дек}$

НЧ: затухания на $2f_0$: -18.2~dB, скорость спада $15\frac{dB}{\rm дек}$