Machine Learning

Ravi Kumar Tiwari 14 June 2016

```
library(caret)
library(rpart.plot)
library(rattle)
library(calibrate)
library(randomForest)
```

Decision Tree Example

Problem Description

Given a data set that contains some observation and corresponding class label, can a machine learning algorithm be trained to determine the class label of any data set (not necessarily the data that was used for training) from its observation

Solution using decision tree

```
head(iris)
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
             5.1
                        3.5
                                     1.4
                                                0.2 setosa
                        3.0
## 2
             4.9
                                     1.4
                                                0.2 setosa
## 3
             4.7
                        3.2
                                     1.3
                                                0.2 setosa
## 4
             4.6
                        3.1
                                    1.5
                                                0.2 setosa
## 5
             5.0
                        3.6
                                     1.4
                                                0.2 setosa
## 6
             5.4
                        3.9
                                     1.7
                                                0.4 setosa
```

Create data partition

```
inTrain <- createDataPartition(iris$Species, p = 0.6, list = FALSE)
trainData <- iris[inTrain,]
testData <- iris[-inTrain,]</pre>
```

Build a decision tree model and use it for prediction on test data set

```
treeModel <- train(Species ~ ., data = trainData, method = "rpart")
preClass <- predict(treeModel, newdata = testData)
cMatrix <- confusionMatrix(preClass, testData$Species)
cMatrix$table</pre>
```

```
##
            Reference
## Prediction setosa versicolor virginica
                 20
##
   setosa
                         0
##
    versicolor
                0
                          19
                                    1
                  0
                           1
                                   19
##
    virginica
```

Look at what are the important variables

varImp(treeModel)

```
## rpart variable importance
##
## Overall
## Petal.Width 100.00
## Petal.Length 95.35
## Sepal.Length 35.57
## Sepal.Width 0.00
```

Visualization of the decision tree

fancyRpartPlot(treeModel\$finalModel)

Visualization of the prediction result

Clustering Example

K-means clustering

head(obs)

Create 2 clusters

```
kmeansObj <- kmeans(obs, centers = 2)
data.frame(obs, cluster = kmeansObj$cluster)</pre>
```

```
## x y cluster
## 1 1 4.009373 2
## 2 2 3.907874 2
## 3 3 3.314335 2
## 4 4 3.700416 2
```

```
## 5 5 4.147273 2
## 6 6 8.581343 1
## 7 7 7.707038 1
## 8 8 8.892733 1
## 9 9 7.333703 1
## 10 10 7.776717 1
```

kmeansObj\$centers

```
## x y
## 1 8 8.058307
## 2 3 3.815854
```


Create 4 clusters

```
kmeansObj <- kmeans(obs, centers = 4)
data.frame(obs, cluster = kmeansObj$cluster)</pre>
```

```
##
                y cluster
       Х
       1 4.009373
                         1
       2 3.907874
## 2
                         1
## 3
       3 3.314335
                         3
## 4
       4 3.700416
                         3
## 5
       5 4.147273
## 6
      6 8.581343
                         2
```

```
## 7 7 7.707038 2
## 8 8 8.892733 2
## 9 9 7.333703 2
## 10 10 7.776717 2
```

kmeansObj\$centers

x y ## 1 1.5 3.958623 ## 2 8.0 8.058307 ## 3 3.5 3.507375 ## 4 5.0 4.147273

Hierarchical Clustering


```
distM <- dist(obs)
clusters <- hclust(distM, method = "ward.D")</pre>
```

```
mem <- cutree(clusters, k =2)
data.frame(obs, cluster = mem)</pre>
```

##		x	У	cluster
##	1	1	4.009373	1
##	2	2	3.907874	1
##	3	3	3.314335	1
##	4	4	3.700416	1
##	5	5	4.147273	1
##	6	6	8.581343	2
##	7	7	7.707038	2
##	8	8	8.892733	2
##	9	9	7.333703	2
##	10	10	7.776717	2

Cluster Dendrogram

Same color points form a group

Create 4 partitions

```
mem <- cutree(clusters, k =4)
data.frame(obs, cluster = mem)</pre>
```

##		x	у	cluster
##	1	1	4.009373	1
##	2	2	3.907874	1
##	3	3	3.314335	2
##	4	4	3.700416	2
##	5	5	4.147273	2
##	6	6	8.581343	3
##	7	7	7.707038	3
##	8	8	8.892733	3
##	9	9	7.333703	4
##	10	10	7.776717	4

Cluster Dendrogram

Same color points form a group

Cross-validation

5 fold cross validation illustration

random Forest

 \mathbf{ntree}

Random Forest

Random Forest

rfModel <- randomForest(Species ~ . , data = trainData, ntree = 3)</pre>