EE 301 Fall 2018-2019

HW₂

Group Number:66

Group Members: Ali AYDIN, Enes AYAZ

1) a)
$$X[n] + w[n] = \sum_{k=-n}^{\infty} \left(\frac{1}{2}\right)^{k} (k-1) \cdot u[n-k+1]$$

$$U[k+1] | k \ge 1 | \frac{1}{1} \quad u(n-k+1) | \frac{k \times n + 1}{1} | \frac{1}{1}$$

$$X[n] + w[n] = \sum_{j=1}^{n+1} \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2} (n-k) \right)$$

$$= \frac{1 - \left(\frac{1}{2}\right)^{k+1} - 1}{1 - \frac{1}{2}} = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \cdot u[n]$$

$$V[n] + vu[n] = \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \left(u[k-1] - u[k-1nn] + k[1] \right) u[n-k]$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-k]$$

$$+ \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-k]$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-k]$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[k-1] \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - n > 1$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2}\right)^{k} \cdot u[2n-2k] - u[$$

$$\begin{array}{c}
\sum_{k=-\infty}^{\infty} |\mathbf{r}| |\mathbf{r}| |\mathbf{r}| |\mathbf{r}| \\
|\mathbf{r}| |\mathbf{r}|$$

2) a	for linearity
	$\chi(C) \rightarrow \chi(C)$
	12 mg -> grand
	axicn]+bx2[n]->axicn]+faxicn-2]
	+ 12 X2[n] + 15/2[n-2]
	= ayım + by2m [
	System: 2 linear
	Br Time-Invariant
	XITO] ->yTO]
	x(n-no) -> x(n-no) -1 x(n-no-2)
	= y [0-12]
	System is Time invariant
	WC-7 DC R
	XENT=8[N], we can find impulse responsit
	$h[n] = S[n] - \frac{1}{2}S[n-2]$
	IFIR because only for n=0 and n=2,
	we can give nonzero value and
	they are Alhite number.

b)	
	$\frac{(y^{C}n)}{n} + \frac{1}{2}y^{C}n^{-2} = x^{C}n$
	Justem is LTI because output
	depends only input
	h[n]+3h[n-2) = &[n]
	for no htn] + 1/1/(n-2) =0
	h[n] = 2n
	2n+ 12n-2=0
	$2^{n} + \frac{1}{2}2^{n-2} = 0$ $2^{2} = -\frac{1}{2} \longrightarrow 2 = -\frac{1}{\sqrt{2}}$ $2 = -\frac{1}{\sqrt{2}}$
	$h[n] = A\left(\frac{i}{\sqrt{2}}\right) + A_2\left(-\frac{i}{\sqrt{2}}\right)^n \qquad n > 0$
	for n=0, h[0] + 1/1-2] =1
	[h to 3=1]
	16 n=1, hti] + 1 hr-17 = 0
	Th [17=2)
	$h(0) = A_1 + A_2 = 1$
	$NCO = \frac{A_1^2}{12} - A_2 \frac{i}{12} = 0 =)A_1 = A_2 = \frac{1}{2}$
	$h(n) = \frac{1}{2} \left[\left(\frac{1}{\sqrt{2}} \right)^n + \left(-\frac{1}{\sqrt{2}} \right)^n \right], n \ge 0$
	2 L (12/ 1 (12/)) =
	FIR because in can take only
	four value.

3)	93-) 4)
	h(n)= V[n+2] (y[n] = x[n] *h[n]
	System 1 is not memoryless since yen = & xen-2)(U[k+3]+U[k+4]+U[k+3])
	depends on future value. Also, not k=-00
	causal.
	E h[k] is not absolutely y(n) = & x(n) + & x(n) + & x(n) summable and
	System is not stable (y(n) = y(n-1) + x(n+5) + x(n+6)
	(0
	$h_{[n]} = \underbrace{5^{1}}_{m=-3} S[n-m]$ $e)_{[n]=u[n+5]+u[n+u]+v[n+3]}$
	n2(n) = Stn+3] + Stn+2]+ Stn+1] Sistem is not memoryless and not
	System 2 is linear stace it only causal since it depends on future
	I value.
	Strid -> hind (Ethill is not absolutely summable
	&[n-no] → &[n-no+3]+&[n-no+2]+&[n-no+1) = and System is not stable. = h(n-no)
	System 2 & Time invariant.
	c) we can take advantage of
	Associative property.
	$h = h_1 = h_1 = h_2 = 0$
	£(8[k+3]+8[k+7]+6[k+1]) ∪[n-k+2]
	= U(n+5)+U[n+4]+U[n+3)

4) a)	$x_{1}(1) \rightarrow y_{1}(1)$ $x_{1}(1) \rightarrow y_{2}(1)$ $= Q \int e^{-2(t-\tau-1)} (ox_{1}+bx_{2}) d\tau$ $= Q \int e^{-2(t-\tau-1)} (ox_{1}+bx_{$
b)	$\int_{0}^{\infty} x(T) h(t-T) dT = \int_{0}^{\infty} x(T) e^{-2(t-T-1)} dT$ $h(t-T) u(t-T)$ $T < t$ $h(t) = e^{-2(t-1)}, u(t)$

 $x(t) = \left(u(t) - u(t-1)\right) - \left(u(-t) - u(t-1)\right)$ t = 2T $t > 0 = 2(t-T-1) \cdot u(t-1).$ t > 0 = 0 t = 2T t = 0+>1 e2-1+ = 27 37 1<0 e 2 t dT + 2-2+ 5 e27 dT $2\left(\frac{e^{2t}-1}{2}\right)e^{2-2t} = \frac{e^{2}-e^{2-2t}}{2} \cdot \upsilon(2)$ $2\left(\frac{e^{2t}-e^{2}}{2}\right)e^{2-2t} = e^{2}-e^{2-4t} \cdot \upsilon(2)$ $\left(\frac{1-e^{2t}}{2}\right)e^{2-2t} = -\frac{e^2+e^{2-2t}}{2} \circ (-t)$ $\left(\frac{e^2-e^{2t}}{2}\right)e^{2-2t} = -\frac{e^2+e^{2-2t}}{2} \circ (-t-1)$ $\left(\frac{e^2-e^{2t}}{2}\right)e^{2-2t} = -\frac{e^2+e^{2-2t}}{2}$

d) $h(t) = e^{-2(t-1)}$ System is not memoryless since it depends on past value. Because of this, system is causal. Sh(+) b= Se-2(+-1) dt $= \left| \frac{e^{-2t} \cdot e^2}{-2} \right|^{\infty} = \infty$ System is not stable. e) e(t) = (t) $h(t) = \int_{t-4}^{t+4} e^{-2(\tau-t)} S(\tau-1) d\tau - S(t-1)$ h(t)= e2t-2 + S(+-1)

b)
$$Qk = \frac{1}{T} \int_{X(+)}^{T_0} e^{-jk\omega_0} dt$$

$$T_0 = R \quad , \quad Q_0 = \frac{2}{T_0} = \frac{2}{3}$$

$$Q_1k = \frac{1}{3} \int_{2}^{1} 2 e^{-jk\omega_0} dt$$

$$= \frac{2}{3(-j)k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2j}{3k\omega_0} \left(e^{-jk\omega_0} - 1 \right) \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{T_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

$$= \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0} - 1 \quad , \quad \omega_0 = \frac{2\pi}{3k\omega_0} \cdot e^{-jk\omega_0}$$

6 a)	$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t) h(t-t) dt$ $x(2t) * h(2t) = \int_{-\infty}^{\infty} x(2t) h(2t-2t) dt$ $2t = \lambda \Rightarrow 2dt = d\lambda$ $= \int_{-\infty}^{\infty} x(\lambda) h(2t-\lambda) \frac{d\lambda}{2}$ $= \frac{y(2t)}{2}$
b)	b) $y \in \mathbb{N} = x \in \mathbb{N} + h \in \mathbb{N} = \mathcal{E} \times \mathcal{E} + h \in \mathbb{N} + h \in \mathbb{N} = \mathcal{E} \times \mathcal{E} + h \in \mathbb{N} + h \in \mathbb{N} = \mathcal{E} \times \mathcal{E} + h \in \mathbb{N} + h \in \mathbb{N} = \mathcal{E} \times \mathcal{E} + \mathcal{E} + h \in \mathbb{N} = \mathcal{E} \times \mathcal{E} + \mathcal{E} + \mathcal{E} \times \mathcal{E} + \mathcal{E} + \mathcal{E} \times \mathcal{E} + \mathcal{E} + \mathcal{E} \times \mathcal{E}$