

Universidade do Estado do Rio de Janeiro

centro

unidade patrono

Nome Sobrenome

Título do trabalho acadêmico

Cidade

Nome Sobrenome

Título do trabalho acadêmico

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Curso, da Universidade do Estado do Rio de Janeiro.

Orientador: Cargo Titulação Nome Sobrenome Coorientador: Cargo Titulação Nome Sobrenome

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/D

D979	Sobrenome, Nome
	Título do trabalho acadêmico / Nome Sobrenome Cidade, aaaa-
	29 f.

Orientador: Cargo Titulação Nome Sobrenome Dissertação (Mestrado) — Universidade do Estado do Rio de Janeiro, unidade, Programa de Pós-Graduação em Curso, aaaa.

1. primeira palavra chave.. 2. segunda palavra chave.. 3. terceira palavra chave.. I. Cargo Titulação Nome Sobrenome. II. Universidade do Estado do Rio de Janeiro. III. unidade. IV. Título

CDU 02:141:005.7

Autorizo, apenas para fins acadêmicos e cie	entíficos, a reprodução total ou parcial desta
dissertação, desde que citada a fonte.	
Assinatura	Data

Nome Sobrenome

Título do trabalho acadêmico

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Curso, da Universidade do Estado do Rio de Janeiro.

Aprovada em dd de Mês de aaaa. Banca Examinadora: Cargo Titulação Nome Sobrenome (Orientador) Unidade – Instituição Cargo Titulação Nome Sobrenome (Coorientador) Unidade – Instituição primeiro membro titular da banca instituição segundo membro titular da banca instituição terceiro membro titular da banca instituição primeiro membro suplente da banca instituição segundo membro suplente da banca instituição terceiro membro suplente da banca instituição instituição instituição

Cidade

aaaa

DEDICATÓRIA

AGRADECIMENTOS

Texto de agradecimento

RESUMO

SOBRENOME, Iniciais. Do. Nome. *Título do trabalho acadêmico*. aaaa. 29 f. Dissertação (Mestrado em Curso) – unidade, Universidade do Estado do Rio de Janeiro, Cidade, aaaa.

Texto do resumo em português.

Palavras-chave: primeira palavra chave. segunda palavra chave. terceira palavra chave.

ABSTRACT

SOBRENOME, Iniciais. Do. Nome. *Title of dissertation*. aaaa. 29 f. Dissertação (Mestrado em Curso) – unidade, Universidade do Estado do Rio de Janeiro, Cidade, aaaa.

Abstract in English.

Keywords: first keyword. second keyword. third keyword.

LIST OF FIGURES

Figure	1 - Título da figura.																		19
Figure	2 - Título da figura.																		20

LIST OF TABLES

Table	1 - Título da tabela.	 19

LISTA DE ALGORITMOS

Algoritmo 1 - Título do algoritmo																							2	1
-----------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

LISTA DE ABREVIATURAS E SIGLAS

sigla1	por extenso
sigla2	por extenso
sigla3	por extenso

LISTA DE SÍMBOLOS

simbolo1	significado e/ou valor
simbolo2	significado e/ou valor
simbolo3	significado e/ou valor

CONTENTS

	INTRODUÇÃO	4
1	BOLTZMANN MACHINES	.5
1.1	Boltzmann Machines	5
2	TÍTULO DO CAPÍTULO 1 1	.8
3	TÍTULO DO CAPÍTULO 2 2	1
	CONCLUSÃO	23
	BIBLIOGRAPHY	24
	GLOSSÁRIO	25
	APPENDIX A – Primeiro apêndice	26
	APPENDIX B – Segundo apêndice	27
	ANNEX A – Primeiro anexo	28
	ANNEX B – Segundo anexo	29

INTRODUÇÃO

Texto da introdução. Texto, texto texto (AMADO, 1969), texto Amado (1969). Texto Andrade em 1997, texto ANDRADE, texto.

1 BOLTZMANN MACHINES

Here we begin by explaining the theory behind Boltzmann Machines

1.1 Boltzmann Machines

Boltzmann Machines (BM) are a type of stochastic neural networks (SNN) where the connections between units, which are described by w, are symmetrical, i.e., $w_{ij} = w_{ji}$ [HERTZ]. This kind of stochastic neural networks are capable of learning internal representation and to model an input distribution. Boltzmann Machines were named after the Boltzmann distribution. Due to its stochastics behaviour, the probability of the state of the system to be found in a certain configuration is given by previous mentioned distribution [HERTZ]. According to [MONTUFAR, 2018], BM can be seen as an extension of Hopfield networks to include hidden units.

Boltzamann Machines have visible and hidden units. The visible units are linked to the external world and they correspond to the components of an observation. On the other hand, the hidden units do not have any connection outside of the network and model the dependencies between the components of the observations [FISCHER, 2012]. In BM, there is no connection restriction, this means that every unit, visible or hidden, can be connected to every other unit as in a complete graph, this pattern is not mandatory as some of the connections may not exists depending on the network layout.

Training Boltzmann Machines means finding the right connection between the units.

Boltzmann Machines (BM) are stochastics neural networks with symmetric connections, i.e., $w_{ij} = w_{ji}$. Boltzmann Machines use the Boltzmann distribution to determine the probability of the state of the system of the network. BM ressambles the Hopfield networks with the inclusion of hidden units. Finding the right connections between the hidden units without knowing it from the training patterns what the hidden units represent is part of the solving the Boltzmann Machine problem.

Units x_i in BM are split into two kinds: visible and hidden units. The visible units have connection to the outside world and are the units that receive the data input. On the other hand, the hidden units do not have any connection to the outside of the network and they are resposible to find the data relation from the input. In a BM, the connections between units can be complete or not. Regardless of how the connections are, every connection in a BM is symmetric.

BM are made of stochastics units x_i which each of them can assume a binary value

with a certain probabily as follows:

$$x_i = \begin{cases} 1 \text{ with probability } g(h_i) \\ 0 \text{ with probability } 1 - g(h_i) \end{cases} , \tag{1}$$

where

$$h_i = \sum_j w_{ij} x_j, \tag{2}$$

and

$$g(h_i) = \frac{1}{1 + e^{-2\beta h_i}}. (3)$$

Due to the symmetrical connections, there is an energy function give by

$$H(\vec{x}) = -\sum_{i} \sum_{j} w_{ij} x_i x_j - \sum_{i} w_{ii} x_i, \tag{4}$$

where $\vec{x} = (x_1, x_2, \dots, x_n)$, and n is equal to the number of units in the network, and the above energy function has minimum when there is a stable state characterised by

$$x_i = sgn(h_i). (5)$$

The probability P of finding the system in a given state \vec{x} after the equilibrium is reached can be computed as follows:

$$P(\vec{x}) = \frac{1}{Z} e^{-\beta H(\vec{x})},\tag{6}$$

where

$$Z = \sum_{\vec{x}'} e^{-\beta H(\vec{x}')} \tag{7}$$

is the partition function.

The learning process of a Boltzmann Machine consists in a justing the connections w_{ij} in such a way that the state of the visible units have a particular desired probability distribution.

Let us identify the state of the visible units by an index α and the state of the hidden units by an index β . Considering a system which has N visible units and K hidden units, the whole system have 2^{N+K} possibilities of states in which it can be found.

The joint probability $P_{\alpha\beta}$ is the probability of finding the visible and hidden units in the states α and β , respectively. This probability measurement is given by the Boltzmann

distribution:

$$P_{\alpha\beta} = \frac{e^{-\frac{1}{T}} H_{\alpha\beta}}{Z},\tag{8}$$

where

$$Z = \sum_{u} \sum_{k} e^{\frac{1}{T}H_{uk}},\tag{9}$$

and

$$H_{\alpha\beta} = -\sum_{i} \sum_{j} w_{ij} x_i^{\alpha\beta} x_j^{\alpha\beta} - \sum_{i} w_{ii} x_i^{\alpha\beta}.$$
 (10)

As metioned above, the problem a Boltzmann Machine is trying to solve is determining the connections w_{ij} between units such that the visible units have a certain probability distribution. In order to do that, we need to find the marginal probability of the state α in which the visible units are found regardless of the state β of the hidden units. The marginal probability P_{α} is given by

$$P_{\alpha} = \sum_{\beta} P_{\alpha\beta} = \sum_{\beta} \frac{e^{\frac{1}{T}H_{\alpha\beta}}}{Z}.$$
 (11)

Although we know that P_{α} is a function of the connections w_{ij} , and that this is the probability of finding the visible units in the state α . We want

2 TÍTULO DO CAPÍTULO 1

Texto do capítulo. Texto, texto, Figura 1. Texto Figura 2(a).

Figure 1 - Título da figura.

Legend: Texto da legenda. Source: Citação da fonte ou 'O

autor.'.

Table 1 - Título da ${\rm tabela.}$

X	Y
$\frac{1}{1,20}$	15,7
1,20 $1,23$	15,6
1,23 $1,19$	15,0 $15,3$
,	l ′
1,26	15,1
1,22	15,5
1,16	15,3
	15,7

Legend: Texto da

legenda.

Source: Citação da

fonte ou 'O

autor.'.

Figure 2 - Título da figura.

Legend: Texto da legenda. (a) Texto da imagem. (b) Texto da imagem.

Source: Citação da fonte ou 'O autor'.

3 TÍTULO DO CAPÍTULO 2

Texto do capítulo. Texto, texto Algoritmo 1. Texto.

Algoritmo 1 - Título do algoritmo.

DOCUMENTAÇÃO

Título

Nome do algoritmo

Propósito

Propósito do algoritmo.

MÉTODO

Método utilizado no algoritmo.

Entradas

a, m: multiplicador e módulo

n0: semente

i: contador auxiliar

Saídas

n: número aleatório

Observações, Restrições, Requisitos

Observações, restrições e requisitos.

ALGORITMO IDENTIFICAÇÃO

— continua —

```
declarar a, m, i numéricos declarar n0, n numéricos
```

```
m \leftarrow 13
1.
    n0 \leftarrow 1
2.
    para a de 2 até m-1, fazer
                                          {para cada possível valor de 'a'}
3.
        escrever "a = ", a, ": n = {"}
4.
                     {reinicia a geração com a semente n0}
5.
        para i de 0 até m-1, fazer
6.
            n \leftarrow resto(a * n, m)
                                      {gerador de números aleatórios}
7.
            se (n == n0), então
                                       {se fim da sequencia ...}
8.
                escrever n, "}"
9.
                parar
10.
11.
            senão
                escrever n
12.
            fim se
13.
        fim para
14.
    fim para
15.
```

Algoritmo 1 - Título do algoritmo. (continuação)

```
— continuação —
       a \leftarrow 1
       enquanto (a < 10), fazer \{coment\'{a}rio\}
       escrever a
        a \leftarrow a + 1
       fim enquanto
       a \leftarrow 1
                  \{coment\'{a}rio\}
       repetir
        escrever a
           a \leftarrow a + 1
       até que (a \ge 10)
       a \leftarrow 1
                 {comentário}
       fazer
        escrever a
        a \leftarrow a + 1
       enquanto (a < 10)
   FIM ALGORITMO
Fim documentação
```

CONCLUSÃO

Texto da conclusão.

BIBLIOGRAPHY

AMADO, J. $Dona\ Flor\ e\ seus\ dois\ maridos$: historia moral e de amor. 9. ed. Rio de Janeiro: Record, 1969. 535 p.

ANDRADE, M. M. d. Introdução à metodologia científica. São Paulo: Atlas, 1997. 151 p.

GLOSSÁRIO

termo significado termo significado termo significado

APPENDIX A – Primeiro apêndice

A.1 Primeira seção

Texto da primeira seção.

A.1.1 Primeira subseção

Texto da primeira subseção.

A.1.1.1 Primeira subsubseção

APPENDIX B – Segundo apêndice

B.1 Primeira seção

Texto da primeira seção.

B.1.1 Primeira subseção

Texto da primeira subseção.

B.1.1.1 Primeira subsubseção

ANNEX A – Primeiro anexo

A.1 Primeira seção

Texto da primeira seção.

A.1.1 Primeira subseção

Texto da primeira subseção.

A.1.1.1 Primeira subsubseção

ANNEX B – Segundo anexo

B.1 Primeira seção

Texto da primeira seção.

B.1.1 Primeira subseção

Texto da primeira subseção.

B.1.1.1 Primeira subsubseção