Let's get deep.

Discussion 2

A high-level view of deep learning.

<u>Preview</u>

- How Deep Nets see
- Main components of a convolutional neural network (CNN)
- Walking through a CNN
- A zoo of CNN architectures
- A zoo of software
- Applications in Astro
- Broader outlook

Neural Networks: How do they work?

HOW A DEEP NEURAL NETWORK SEES

more layers = increasing depth

HOW A DEEP NEURAL NETWORK SEES

more layers = increasing depth

Convolutional Neural Network: It's made of layers.

- Convolutional: sharpens some features, blurs others.
- Activation: highlights features (talked about in first session)
- Pooling: collects (zooms in on) highlighted image regions
- · Dropout: removes neurons that might get calcified
- Dense: correlates features with predictions

Convolutional Neural Network: weight parameters

- Each pixel in the blue filter is one parameter in the network model
- The resulting feature map is the result of the convolution.

LeCun + Bengio, 1995

Convolutional Neural Network: Convolution

- Each computational neuron is an image filter, where w_i is the value of a pixel in that filter and a model parameter
- During convolution and activation, the model acts on the input image, highlighting features, such as edges or circles.

Pooling

- Reduces the size of the image very quickly.
- Preserves information in the image.
- Doesn't add parameters to the network
- Paper: <u>Scherer + 2010</u>

CNN Architecture structure

Learns the representation features

Associates features with labels

CNN Architecture structure

Learns the representation features

Associates features with labels

- As the image progresses through the layers, image features are learned
 - Through highlighting by activations in convolutions
 - On multiple spatial scales by pooling
- Features are then associated with truth labels via fully-connected layers

A Zoo of Architectures

Feed-forward Fully connected Network

Convolutional Neural Network

AutoEncoder

Generative Adversarial Network (GAN)

- A Generative model in which two networks (Generator and Discrimator) learn simultaneously.
- GANs can create hyper-resolution images (higher res than original)

Generative Adversarial Network (GAN)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and SSIM are shown in brackets. [4× upscaling]

- A Generative model in which two networks (Generator and Discrimator) learn simultaneously.
- GANs can create hyper-resolution images (higher res than original)

Evolution of networks

Evolution of networks

What happens when Data comes alive?

Ready Player One?

- Software
 - Scikit Learn
 - XGBoost
 - Keras/ TensorFlow
 - Theano (no longer developed)
 - Lasagne
 - PyTorch
 - Caffe
- How to choose!
 - Depends on performance requirements, ease of deployment, familiarity, rest of software stack

Deep Nets meet the Deep Sky:

Is it full of stars or full of ...?

Finding and measuring

Simulations

Finding and measuring

Simulations

Finding and measuring

Simulations -----

Finding and measuring

Simulations

Publications: Deep Learning in Astro

2 DIMENSIONS

Galaxy Morphology classification (Dieleman+2015)

Star-galaxy classification (Kim+Brunner 2016)

Star-galaxy classification (Kim+Brunner 2016)

Deep Lensing: Lens Classification

- Simulations for Training Set
 - Training 15K objects; 50 epochs
 - Empirically motivated density and light profiles of sources and lenses
 - Mimic DES Survey characteristics: noise levels, exposure time, PSF, photometry, resolution

Diagnostics: Einstein Radius

False-identification
 rates are higher at
 small Einstein radius,
 where there can be
 more confusion in
 discerning source
 image from lens.

Layers

True Positive **0.999**

False Positive

0.525

What's Inside?

 Each column is a different object and its probability of detection in the network.

Left: True positive **Right:** False positive

- Convolution layers filter the images to highlight features
- Pooling layers downsample images, efficiently reducing parameters for modeling
- See also work by Lanusse+17, Trejillo+17 for lens-finding with CNNs

Input

Convolution

Pooling

Convolution

Pooling

Predicting strong lens parameters: e.g., Regress on Einstein Radius

DeepCMB: de-lensing the CMB with UNets (Caldeira+2018)

DeepCMB: de-lensing the CMB with UNets (Caldeira+2018)

DeepCMB: de-lensing the CMB with UNets (Caldeira+2018)

Galaxy Image Simulation (Schawinski+2017)

- Generative Adversarial Networks (GANs) offer an avenue to simulate realistic images of galaxies.
- We currently lack the functionality to propagate errors with these frameworks, leaving us without estimates of noise, let alone the ability to track noise sources.

1 DIMENSION

Fitting Stellar Spectra with 1D CNNs (Nord + Price-Whelan)

- Fit 1D Apogee stellar spectra with labeled quantities: Teff, log g, metallicity (see Ness+2015)
- Architecture
 - 3 conv, 3 pooling, and 1 drop out layer
 - 15 lines of (DL) code, a GPU and 40 minutes of compute time.

Gravity (log g)

- moderate biases
- architecture achieves very low

- Neural Architecture Search: Neural Networks tailored to your problem
 - Google AutoML
 - ENAS (Stanford)
 - Oak Ridge's MENDL uses genetic algorithms

76

- Neural Architecture Search: Neural Networks tailored to your problem
 - Google AutoML
 - ENAS (Stanford)
 - Oak Ridge's MENDL uses genetic algorithms
- Uncertainties
 - Bayesian Neural Nets can they work for physical physical parameters
 - Current standard: concrete dropout

- Neural Architecture Search: Neural Networks tailored to your problem
 - Google AutoML
 - ENAS (Stanford)
 - Oak Ridge's MENDL uses genetic algorithms
- Uncertainties
 - Bayesian Neural Nets can they work for physical physical parameters
 - Current standard: concrete dropout
- Searching for symmetries
 - Group symmetries govern the the convolutional process.
 - · Different group symmetries mean different spaces that can be convolved.
 - Z² for translational symmetry
 - SO3 for 3D rotational symmetry

- Neural Architecture Search: Neural Networks tailored to your problem
 - Google AutoML
 - ENAS (Stanford)
 - Oak Ridge's MENDL uses genetic algorithms
- Uncertainties
 - Bayesian Neural Nets can they work for physical physical parameters
 - Current standard: concrete dropout
- Searching for symmetries
 - Group symmetries govern the the convolutional process.
 - · Different group symmetries mean different spaces that can be convolved.
 - Z² for translational symmetry
 - SO3 for 3D rotational symmetry
- Quantum Computing
 - IBM has a 20-qubit system you can submit a job to.
 - Machine Learning and quantum has significant promise ... and peril.

Perspectives and Problem-solving Approaches

Data scientist perspective:
"What is the format of the data, and what are the patterns you might see?"

Scientist perspective:

"What is a model with physical meaning that can describe the patterns in this data?"

DeepSkiesLab.com

DEEP SKIES

Bringing Artificial Intelligence to Astrophysics

Brian Nord, PhD

Kimmy Wu, PhD

Josh Peek, PhD

João Caldeira

Camille Avestruz, PhD

Shubhendu Trivedi

Current Projects:

- Strong Lensing
- Early Universe
- Simulations
- Quantum Computing
- Automating Telescopes

