Teoría de la Medida e Integración 2023

Lista 2

13.febrero.2023

- 1. Sea $\{E_k\}_{k=1}^\infty$ una secuencia de conjuntos Lebesgue mesurables. Mostrar que:
 - a) Si $E_k \nearrow E$, entonces $\lim_{k \to \infty} |E_k| = |E|$.
 - b) Si $E_k \searrow E$, y $|E_k| < \infty$, para todo k, entonces $\lim_{k \to \infty} |E_k| = |E|$. Dar un ejemplo, para mostrar que la hipótesis $|E_k| < \infty$ es indispensable.
- 2. Sea $\{E_k\}_{k=1}^{\infty}$ una secuencia de conjuntos mesurables, tales que $\sum_k |E_k|_e < \infty$. Entonces, $\limsup E_k$ (y también $\liminf E_k$) tienen medida cero.
- 3. (a) Construir un subconjunto del intervalo [0,1] usando la misma estrategia que el conjunto de Cantor, excepto que en el k-ésimo paso, cada intervalo removido tiene longitud $\frac{\delta}{3^k}$, con $0 < \delta < 1$. Mostrar que el conjunto resultante es mesurable, y que posee medida de Lebesgue 1δ .
 - (b) Construir un subconjunto del intervalo [0,1] al estilo Cantor, pero removiendo en el k-ésimo paso un subintervalo de longitud θ_k , con $0 < \theta_k < 1$. Mostrar que el conjunto remanente posee medida cero si, y sólo si,

$$\sum_{k\geq 1}\theta_k=\infty.$$

4. Pruebe que si E_1 y E_2 son subconjuntos Lebesgue mesurables en \mathbb{R} , entonces el producto $E_1 \times E_2$ es Lebesgue mesurable en \mathbb{R}^2 , y que

$$|E_1 \times E_2| = |E_1| \cdot |E_2|.$$

(Aquí interpretamos $0 \cdot \infty$ como 0.)

- 5. Sea $E \subseteq \mathbb{R}^n$. Definimos la **medida interior** de Lebesgue de E, como $|E|_i = \sup |F|$, donde el supremo se toma sobre todos los subconjuntos cerrados $F \subseteq E$. Mostrar que
 - i) $|E|_i \leq |E|_e$,
 - ii) Si $|E|_e < \infty$, entonces E es Lebesgue measurable si, y sólo si, $|E|_i = |E|_e$.
- 6. Dar un ejemplo para mostrar que la imagen de un conjunto Lebesgue mesurable, por una función continua, no necesariamente es Lebesgue mesurable.

(Hint: Considere la función de Cantor-Lebesgue).

- 7. (a) ¿ Cuál es la σ -álgebra de \mathbb{R}^n generada por los subconjuntos unitarios $\{x\}$, $x \in \mathbb{R}$?
 - (b) Sea X un conjunto infinito. Demuestre que no puede haber una σ -álgebra \mathcal{A} en X que contiene una cantidad infinita enumerable de miembros.

(Hint: recuerde que $A \in \mathcal{A}$ es un **átomo** si A no contiene un subconjunto propio $\varnothing \neq B \in \mathcal{A}$, y mostrar que $\#\mathcal{A} = \#\mathbb{N}$ implica que \mathcal{A} tiene una cantidad infinita enumerable de átomos.)

- 8. a) Dar un ejemplo de dos σ -álgebras \mathcal{A} y \mathcal{B} cuya unión no es una σ -álgebra.
 - b) Proporcione un ejemplo de una secuencia $\{\mathcal{A}_k\}_{k\geq 1}$ estrictamente creciente de σ -álgebras,

$$A_1 \subset A_2 \subset A_3 \subset \dots$$

cuya unión no es una σ -álgebra.

9. Sea $T:\mathbb{R}^n \to \mathbb{R}^n$ una transformación Lipschitz, con constante de Lipschitz C>0, esto es

$$||T\mathbf{x} - T\mathbf{y}|| \le C||\mathbf{x} - \mathbf{y}||, \text{ para todo } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

Mostrar que existe una otra constante $\widetilde{C}>0$ tal que para todo intervalo n-dimensional

$$|TI| \leq \widetilde{C} |I|.$$

- 10. Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal, con representación matricial $T=(t_{ij})$.
 - i) Mostrar que

$$||T\mathbf{x} - T\mathbf{y}|| \le ||T||_F ||\mathbf{x} - \mathbf{y}||, \quad \text{para todo } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$$

donde $||T||_F = \left(\sum_{i,j} t_{ij}^2\right)^{1/2}$ es la norma de Frobenius (norma de Hilbert-Schmidt o norma de Schur) de T.

ii) Mostrar que para cualquier subconjutno mesurable $E\subseteq\mathbb{R}^n$ vale

$$|TE| = \delta |E|$$
, donde $\delta = |\det E|$.