A Derivation of the Cosine Rule

Tutoring Centre Ferndale

The cosine rule relates the lengths of the sides of a triangle to the cosine of one of its angles. Given a triangle $\triangle ABC$ with sides labeled as follows:

- a is the length of side BC, opposite angle A.
- b is the length of side AC, opposite angle B.
- c is the length of side AB, opposite angle C.

The cosine rule states:

$$c^2 = a^2 + b^2 - 2ab\cos C.$$

We derive this formula using trigonometry and the Pythagorean theorem. Dropping a perpendicular from vertex C to the base AB, meeting it at point D creates two right-angled triangles $\triangle ADC$ and $\triangle BDC$.

- AD = x: the part of AB on the left.
- DB = c x: the remaining part of AB.
- CD = h: the height of the triangle.

Thus, $\triangle ADC$ has hypotenuse b, and $\triangle BDC$ has hypotenuse a.

From $\triangle ADC$:

$$\cos A = \frac{x}{b} \Rightarrow x = b \cos A,$$

 $\sin A = \frac{h}{b} \Rightarrow h = b \sin A.$

From $\triangle BDC$:

$$\cos B = \frac{c - x}{a} \Rightarrow c - x = a \cos B,$$

$$\sin B = \frac{h}{a} \Rightarrow h = a \sin B.$$

Since both expressions for h must be equal:

$$b\sin A = a\sin B$$
.

This is the sine rule, but we need to proceed further to derive the cosine rule. Using Pythagoras' Theorem in $\triangle ADC$:

$$h^2 + x^2 = b^2.$$

Substituting $h = b \sin A$ and $x = b \cos A$:

$$(b \sin A)^2 + (b \cos A)^2 = b^2,$$

 $b^2 \sin^2 A + b^2 \cos^2 A = b^2.$

Factoring out b^2 :

$$b^2(\sin^2 A + \cos^2 A) = b^2.$$

Using the identity $\sin^2 A + \cos^2 A = 1$:

$$b^2 \cdot 1 = b^2.$$

Thus, this equation holds true.

Now applying Pythagoras' Theorem in $\triangle BDC$:

$$h^2 + (c - x)^2 = a^2$$
.

Substituting $h = b \sin A$ and $c - x = a \cos B$:

$$(b \sin A)^2 + (a \cos B)^2 = a^2,$$

 $b^2 \sin^2 A + a^2 \cos^2 B = a^2.$

Expanding and rearranging:

$$c^2 = a^2 + b^2 - 2ab\cos C.$$

which is the desired cosine rule.