Laboratorio di Calcolo per Fisici, Esercitazione valutata del 16/12/2024 — MATTINA A.A. 2024/2025

Nome	Cognome
Matricola	☐ Ritirato/a

Lo scopo di questa esercitazione è scrivere un programma in C e uno script in python seguendo la traccia riportata di seguito. Si tenga presente che:

- 1. Per svolgere il compito si hanno a disposizione 3 ore.
- 2. Si possono usare libri di testo, prontuari e gli appunti ma non è ammesso parlare con nessuno né utilizzare cellulari, tablet o laptop, pena l'annullamento del compito.
- 3. Il programma va scritto e salvato esclusivamente sul computer del laboratorio, a cui si deve accedere utilizzando come username **studente** e come password **informatica**
- 4. Tutti i file vanno salvati in una cartella chiamata ELCDIC_NOME_COGNOME nella home directory, dove NOME e COGNOME indicano rispettivamente il tuo nome e cognome. Ad esempio lo studente *Marco Rossi* deve creare una cartella chiamata ELCDIC_MARCO_ROSSI contenente tutti i file specificati nel testo. Tutto ciò che non si trova all'interno della cartella suddetta non verrà valutato. In tutti i programmi e script inserisci all'inizio un commento con il tuo nome, cognome e numero di matricola.
- 5. Dovete consegnare il presente testo indicando nome, cognome e numero di matricola (vedi sopra), barrando la casella "Ritirato/a" se ci si vuole ritirare, ovvero se non si vuole che la presente prova venga valutata.

Un fisico della materia, studiando un fluido racchiuso in un pistone mantenuto alla temperatura T (fissata) e alla pressione P, ha scoperto che la probabilità $\rho(V)$ che il volume del fluido sia pari a V è data dalle seguente legge:

$$\rho(V, K) = K^V F(V), \tag{1}$$

dove K è una quantità che dipende da pressione e temperatura, e

$$F(V) = \frac{e^{-\frac{(V-2)^2}{2\sigma_1^2}}}{\sqrt{2\pi\sigma_1^2}} + \frac{e^{-\frac{(V-4)^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_2^2}}$$
(2)

dove $\sigma_1 = 0.15$, $\sigma_2 = 0.45$. Nel seguito tutte le grandezze fisiche in tale equazione saranno indicate senza unità di misura, ovvero in maniera adimensionale.

Figura 1: Grafico della funzione $\rho(V,K)$ normalizzata a 1 per K=0.6 (blu) e K=0.8 (arancione tratteggiata). Per la curva K=0.6 sono indicate le aree A_l (grigio chiaro) e A_r (grigio scuro).

Il fisico ha trovato che per K=0.6 l'andamento di $\rho(V,K)$, definita nell'intervallo $[V_l,V_r)$ con $V_l=0.0$ e $V_r=6.0$, è quello riportato in figura, e sa che esiste un valore $0.6 \le K^* < 2.0$ per cui il gas e il liquido sono in coesistenza, cioè la $\rho(V,K^*)$ è tale per cui le aree A_l e A_r sottostanti i massimi sono uguali (si veda la figura).

Si noti che l'area A_l corrisponde all'area sottostante la curva $\rho(V, K)$ nell'intervallo $[V_l, V_{\min})$ e l'area A_r all'area sottostante $\rho(V, K)$ nell'intervallo $[V_{\min}, V_r)$, dove V_{\min} corrisponde al minimo della funzione $\rho(V, K)$ compreso tra i due massimi.

Il fisico non è in grado di controllare la pressione del suo apparato sperimentale in modo da ottenere K^* , ma realizza che ciò non è necessario, infatti può variare K nell'Eq. (1) fintanto che non ottenga la condizione di uguale area attraverso un opportuno programma da eseguire al calcolatore.

▶ Prima parte:

Si realizzi un programma in C, chiamato nome_cognome.c (tutto minuscolo, senza eventuali spazi, accenti o apostrofi), per determinare il valore di K a cui si ha la condizione di uguale area discussa sopra. In tale programma si dovrà variare il valore di K tra 0.6 e 2.0 a passi di 0.05 (cioè ad ogni iterazione K deve variare di 0.05) e si devono calcolare ad ogni passo le aree A_l e A_r con il metodo Monte Carlo. Si sarà ottenuta una stima di K^* quando la differenza in valore assoluto tra tali aree sarà inferiore a 0.03 (cioè quando $|A_l - A_r| < 0.03$). Per determinare i due intervalli di integrazione per il calcolo di A_l e A_r si può fissare $V_{\min} = 2.577$ indipendentemente dal valore di K. In particolare il programma dovrà:

- 1. Salvare su di un file chiamato "kf06.dat" la funzione normalizzata $\rho(V, K=0.6)/A$ calcolata in $N_{\rm pts}=1000$ punti equispaziati nell'intervallo $[V_l,V_r)$, dove A è l'integrale di $\rho(V,K=0.6)$ nell'intervallo $[V_l,V_r)$.
- 2. Implementare un ciclo su $K \in [0.6, 2.0)$, con un incremento pari a 0.05. Per ogni iterazione di tale ciclo:
 - calcolare il valore delle aree A_l e A_r tramite il metodo Monte Carlo per il calcolo dell'integrale di una funzione, generando $N_{\rm mc} = 100000$ punti casuali in modo uniforme negli intervalli $[V_l, V_{\rm min})$ e $[V_{\rm min}, V_r)$;
 - verificare se la differenza tra le aree sia minore di 0.03 e in caso positivo salvare la funzione $\rho(V, K^*)$ normalizzata su di un file chiamato "kfopt.dat";
 - stampare su schermo con 5 cifre dopo la virgola i valore delle due aree la cui differenza in valore assoluto è minore di 0.03 e il valore di K (cioè K^*) per cui questa si è realizzata.
- 3. Definire i valori V_l , V_r , $N_{\rm pts}$ e $N_{\rm mc}$ con delle opportune macro.

Nello scrivere il programma si richiede che vengano implementate almeno le seguenti funzioni:

- func(), che calcola e restituisce il valore della funzione $\rho(V,K)$ e che prende come argomenti V e K.
- calcarea(), che calcola e restituisce l'area sottostante la funzione $\rho(V,K)$ nell'intervallo $[V_a,V_b)$ tramite il metodo Monte Carlo. La funzione prende V_a , V_b e K come argomenti. Questa funzione viene chiamata sia prima della stampa su file per calcolare l'integrale della funzione nell'intervallo $[V_l,V_r)$, sia all'interno del ciclo per calcolare le aree A_l e A_r utilizzando gli intervalli $[V_l,V_{\min})$ e $[V_{\min},V_r)$.
- salva_func(), che salva su file la funzione $\rho(V, K)$ normalizzata e calcolata in N_{pts} punti nell'intervallo $[V_l, V_r)$. La funzione prende come argomento una stringa contenente il nome del file su cui stampare, il valore di K ed il valore dell'area sottostante la funzione $\rho(V, K)$ nell'intervallo $[V_l, V_r)$, ovvero A.

► Seconda parte:

Eseguire il programma sviluppato nella prima parte e, utilizzando i file "kf06.dat" e "kf0pt.dat", creare con python un grafico che mostri le due curve con relativa legenda e etichette sugli assi. Infine, salvare un'immagine di tale grafico in un file chiamato "rhov.png". Lo script python si dovrà chiamare nome_cognome.py.