

Department of Computer Science & Engineering (CSE)

Course Title: Digital Logic Design

Shahriar Rahman Khan

Lecturer

Dept. of CSE, MIST

Course Code: CSE 103

Credit Hr: 3.00

Contact Hr: 3.00

Overview

- What is MSI and PLD?
- Binary parallel Adder
- Binary Adder-Subtractors
- Carry Propagation
- Decimal Adder
 - BCD Adder
- Magnitude Comparator
- Decoders and Encoders
- Priority Encoders
- De-multiplexers and Multiplexers

MSI Components

- Scale of Integration = Complexity of the Chip
 - SSI: small-scale integrated circuits, 1-10 gates
 - MSI: medium-scale IC, 10-100 gates
 - LSI: large scale IC, 100-1000 gates
 - VLSI: very large-scale IC, 1000+ gates
 - Today's chip has millions of gates on it.
- A combinational circuit designed with individual gates can be implemented with SSI circuits that contain several independent gates.
- The number of gates in an SSI circuit is limited by the number of pins in it, (generally 14 16 pins).
- Medium Scale Integration components perform specific digital functions commonly needed in the design of digital systems.
- MSI components: adder, subtracter, comparator, decoder, encoder, multiplexer.

PLD Components

- LSI technology introduced highly generalized circuit structures known as programmable logic devices (PLDs).
- Can consist of an array of and-gates and an array of or-gates. Must be modified for a specific application.
- Modification involves specifying the connections using a hardware procedure. Procedure is known as programming.
- Three types of programmable logic devices:
 - Programmable read-only memory (PROM)
 - Programmable logic array (PLA)
 - Programmable array logic (PAL)

You remember this combinational circuit named Full-Adder from chap 4. As this is a combinational circuit that adds three 1 bit binary digits, so there will be 3 input variables and 2 output variables.

Xi	Yi	Ci	Ci+1	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

0	1	0	1
1	0	1	0

0	0	1	0
0	1	1	1

Corresponding minimal sums:

$$s_i = \overline{x}_i \overline{y}_i c_i + \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + x_i y_i c_i$$
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

We can simplify the sum for s_i by using xor:

$$s_i = c_i \oplus x_i \oplus y_i$$

• So far, we have seen that, we can add 2 binary numbers, each consisting of 1 bit. For example,

```
0 \\ +1 \\ 1
```

• But consider this scenario, we want to add two binary numbers, each consisting of n bits.

 $0110101 \\ +1011001$

• One direct approach, write a truth table with 2^2n rows corresponding all the combinations of values and also specifying the values of the sum bits. But, that's really time consuming.

What About Many Bits?

Adding two 4-bit Numbers

What About Many Bits?

Subscript i	4	3	2	1		Full-adder of Fig. 4-5
Input carry	0	1	1	0	C_i	z
Augend	1	0	1	1	A_i	x
Addend	0	0	1	1	$\boldsymbol{B_i}$	у
Sum	1	1	1	0	S_i	S
Output carry	0	0	1	1	C_{i+1}	C

- Here, Let A=1011 and B=0011. The bits are added with full adders, starting from the least significant position. This will form a sum bit and a carry bit.
- The input carry C1 must be 0. The value of Ci+1 in a given significant position is the output carry of the full adder.

What About Many Bits?

Subscript i	4	3	2	1		Full-adder of Fig. 4-5
Input carry	0	1	1	0	C_i	z
Augend	1	0	1	1	A_i	x
Addend	0	0	1	1	B_i	у
Sum	1	1	1	0	S_i	S
Output carry	0	0	1	1	C_{i+1}	C

- There are two ways to implement this: 1. Serial addition 2. Parallel addition.
- Serial addition: It uses only one full adder and a storage device to hold the generated output carry.
- Parallel addition: It uses n full adder and all bits of A and B are applied simultaneously. The output carry of one full adder is connected to the input carry of next full adder.

Parallel (ripple) Binary Adder

Why is it called "ripple" adder?

