TE 662 .A3 no. FHWA-RD-

73-501

port No. FHWA-RD-73-501

Library

RIDGE RATING AND ANALYSIS STRUCTURAL SYSTEM BRASS)

Vol. 1. System Reference Manual

R. R. Johnston, R. H. Day, and D. A. Glandt

September 1973 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

Prepared for FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the contracting organization, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

			TECHNICAL REPORT STANDARD TITLE	TAG
1. Report No. FHWA-RD-7	3-501 /	2. Government Accession No.	3. Recipient's Cotolog No.	
(BRASS)		is Structural System Manual	5. Report Date September 1973 6. Performing Organization Code	
7. Author(s) Ralph R. Dan A. Gl	Johnston, Rober andt	t H. Day and	8. Performing Organization Report No.	
Wyoming H P.O. 1708	onizotion Name and Addre ighway Departme Wyoming 82001		10. Work Unit No. FCP 36E1023 11. Contract or Grant No. FH-11-7936 13. Type of Report and Period Covered	
U.S. Depa	ency Nome ond Address rtment of Trans ighway Administ n, D.C. 20590		Final report 14. Sponsoring Agency Code P-0030	

15. Supplementory Notes
FHWA's contract manager: Richard Sharp, Region 8 Bridge Engineer, Denver, Col.
FHWA's implementation manager: Webster H. Collins, HDV-21
This is the first volume of a series of three under this same general title.

State bridge engineers are required by the 1971 National Bridge Inspection Standards to determine the safe load carrying capacity for each highway bridge in his State. In addition, he is required to determine a structural rating for each bridge. This report describes a computerized Bridge Rating and Analysis Structural System (BRASS), developed by the Wyoming Highway Department, which can be used by bridge engineers as a tool in making these determinations.

This report is the first volume in a series of three volumes. The titles of the three volumes are: I, System Reference Manual; II, Example Problems; and III, Programming Aids.

The material in this volume lists and describes the components of the System which include Bridge Design, Structural Inventory, Deck Design and Review, Structural Analysis, Structural Leading, and Girder Section Design and Review. The System consists of a set of 45 computer programs which are flexible and user oriented. The bridge design processes included in these programs adhere to uniform bridge design standards. The programs will work for any State highway organization. This volume, Volume I, describes in detail the coding of highway bridge structural and loading data for processing by the System's computer programs.

17. Key Words	18.	Distribution Statement		
Bridge Rating Highway bridge design		Availability un obtain this doo National Techni	nlimited. Th	ne public can
Highway bridge design Highway bridge review				
Bridge engineering computer	programs	Springfield, Vi	irginia, 2215	51.
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassifi		100	
Oliciassified	Unclassifie	eα	189	

662

no.

PREFACE

On April 27, 1971, the National Bridge Inspection Standards were presented to all states. These standards require a bridge rating to determine the safe load carrying capacity for each bridge in the nation. We in the State of Wyoming felt that it would be a monumental task to rate the approximately 2,000 bridges in our state by hand. We, therefore, felt that we had to look to a computer system for help.

We had originally visualized and charted our Bridge Design System in 1966. At that time, programming of the system, consisting of two basic subsystems, Structural Analysis and the Structural Loading, was begun. By April, 1971, the system was nearly self-sufficient and many of the bridges that must be rated had been designed by the system.

In addition, the original plan had included an Overload and Section Design subsystem. But by 1971, development of this subsystem had not yet been started.

Upon completing cost studies for the rating of our bridges by manual methods and for the expansion of our Bridge Design System, we found it feasible to expand the system to determine our bridge ratings.

The contents of this report reflect the views of the Wyoming Highway Department which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

ACKNOWLEDGEMENT

The authors of this manual wish to express their appreciation in this accomplishment for the cooperation received from the United States Department of Transportation, Federal Highway Administration. The opinions, findings and conclusions expressed in this publication are those of the Wyoming Highway Department and not necessarily those of the Federal Highway Administration.

DEPARTMENT OF TRANSPORTATION

SEP 0 9 1974

Luckary

TABLE OF CONTENTS

1. GENERAL INFORMATION. 1.1. Scope					1	Page
1.1 Scope 1 1.2 System Concepts 1 1.3 Programming Information 8 1.4 System Components 10 1.5 Job Card Groups 16 1.6 Description of Input 19 2. DECK DESIGN, REVIEW AND RATING 20 2.1 General Information 20 2.2 Mathematical Equations and Derivations 20 2.3 Description of Input 25 2.4 Description of Output 32 3. GIRDER DESIGN, REVIEW AND RATING 38 3.1 Structural Analysis 38 3.1.1 General Information 38 3.1.2 Mathematical Equations and Derivations 39 3.1.3 Description of Input 68 3.2.1 General Information 84 3.2.2 Mathematical Equations and Derivations 35 3.2.3 Description of Input 93 3.2.4 Description of Output 196 3.3.2 Mathematical Equations and Derivations 197 3.3.3 Description of Input 110 3.3.4 Description of Output 110 3.3.4 Description of Output 128 3.4 Matrix Inversion 136	1	GENER	RAL INFO	ORMATION		1
1.2 System Concepts 1 1.3 Programming Information 8 1.4 System Components 10 1.5 Job Card Groups 16 1.6 Description of Input 19 2 DECK DESIGN, REVIEW AND RATING 20 2.1 General Information 20 2.2 Mathematical Equations and Derivations 20 2.3 Description of Input 25 2.4 Description of Output 32 3.1 Structural Analysis 38 3.1.1 General Information 38 3.1.2 Mathematical Equations and Derivations 39 3.1.3 Description of Input 68 3.1.4 Description of Output 82 3.2 Mathematical Equations and Derivations 35 3.2.1 General Information 34 3.2.2 Mathematical Equations and Derivations 35 3.2.1 General Information 196 3.3 Section Design, Review and Rating 107 3.3.1 General Information 197 <t< td=""><td>1.</td><td></td><td></td><td></td><td></td><td>1</td></t<>	1.					1
1.3 Programming Information 8 1.4 System Components 10 1.5 Job Card Groups 16 1.6 Description of Input 19 2. DECK DESIGN, REVIEW AND RATING 20 2.1 General Information 20 2.2 Mathematical Equations and Derivations 20 2.3 Description of Input 25 2.4 Description of Output 32 3. GIRDER DESIGN, REVIEW AND RATING 38 3.1.1 General Information 38 3.1.2 Mathematical Equations and Derivations 39 3.1.3 Description of Input 68 3.1.4 Description of Output 82 3.2 Structural Loading 84 3.2.1 General Information 84 3.2.2 Mathematical Equations and Derivations 35 3.2.3 Description of Input 95 3.2.4 Description of Output 196 3.3 Section Design, Review and Rating 107 3.3.2 Mathematical Equations and Derivations 197 3.3.3 Description of Input 110 3.3.4 Description of Output 128 3.4 Matrix Inversion 136			System	Concents	•	
1.4 System Components 1.5 Job Card Groups 1.6 Description of Input. 1.6 Description of Input. 1.7 2. DECK DESIGN, REVIEW AND RATING 2.1 General Information 2.2 Mathematical Equations and Derivations 2.3 Description of Input 2.5 2.4 Description of Output 3.2 3. GIRDER DESIGN, REVIEW AND RATING 3.1 Structural Analysis 3.1.1 General Information 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input 3.1.4 Description of Input 3.1.5 Structural Loading 3.1.6 General Information 3.1.7 General Information 3.1.8 Structural Loading 3.1.9 Mathematical Equations and Derivations 3.1.1 General Information 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Output 3.1.4 Description of Input 3.1.5 Section Design, Review and Rating 3.1.6 General Information 3.1.7 Section Design, Review and Rating 3.1.8 Mathematical Equations and Derivations 3.1.9 Mathematical Equations and Derivations 3.1.1 General Information 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Output 3.1.4 Description of Output 3.1.5 Description of Output 3.1.5 Description of Output 3.1.6 Description of Output 3.1.7 Description of Output 3.1.8 Description of Output 3.1.9 Description of Output 3.1.9 Description of Output 3.1.10 De			Program	mming Information	۵	
1.5 Job Card Groups 1.6 Description of Input. 2. DECK DESIGN, REVIEW AND RATING 2.1 General Information 2.2 Mathematical Equations and Derivations 2.3 Description of Input. 2.4 Description of Output 32 3. GIRDER DESIGN, REVIEW AND RATING 3.1 Structural Analysis 3.1.1 General Information 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input 3.1.4 Description of Output 3.2 Structural Loading 3.1.2 General Information 3.1.3 Description of Output 3.2.1 General Information 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input 3.2.4 Description of Input 3.3.5 Section Design, Review and Rating 3.3.6 General Information 3.3.7 Mathematical Equations and Derivations 3.3.8 Description of Output 3.3.9 Mathematical Equations and Derivations 3.3.1 General Information 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Output 3.3.4 Description of Output 3.3.5 Description of Output 3.3.6 Mathematical Equations and Derivations 3.3.7 Mathematical Equations and Derivations 3.3.8 Description of Output 3.3.9 Description of Output 3.3.1 Description of Output 3.3.4 Description of Output 3.3.4 Matrix Inversion.			System	Commonents	•	
1.6 Description of Input. 19 2. DECK DESIGN, REVIEW AND RATING 20 2.1 General Information 20 2.2 Mathematical Equations and Derivations 20 2.3 Description of Input. 25 2.4 Description of Output 32 3. GIRDER DESIGN, REVIEW AND RATING 38 3.1 Structural Analysis 38 3.1.1 General Information 38 3.1.2 Mathematical Equations and Derivations 39 3.1.3 Description of Input 68 3.1.4 Description of Output 82 3.2 Structural Loading 43 3.2.1 General Information 84 3.2.2 Mathematical Equations and Derivations 85 3.2.3 Description of Input 95 3.2.4 Description of Input 97 3.2.5 Section Design, Review and Rating 107 3.3.1 General Information 107 3.3.2 Mathematical Equations and Derivations 107 3.3.3 Description of Input 119 3.3.4 Description of Output 128 3.4 Matrix Inversion 136			Job Car	rd Groims	•	
2. DECK DESIGN, REVIEW AND RATING			Doccrin	ntion of Input	•	
2.1 General Information 2.2 Mathematical Equations and Derivations. 2.3 Description of Input. 2.4 Description of Output. 2.5 Description of Output. 32 3. GIRDER DESIGN, REVIEW AND RATING 3.1 Structural Analysis 3.1.1 General Information. 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input. 3.1.4 Description of Output. 3.2 Structural Loading. 3.2.1 General Information. 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input. 3.2.4 Description of Output. 3.2.5 Section Design, Review and Rating 3.2.6 Mathematical Equations and Derivations 3.2.7 Mathematical Equations and Derivations 3.2.8 Description of Output. 3.3 Section Design, Review and Rating 3.3.1 General Information. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Output. 3.3.4 Description of Output. 3.3.5 Description of Output. 3.3.6 Mathematical Equations and Derivations 3.3.7 Description of Output. 3.3.8 Description of Output. 3.3.9 Description of Output. 3.3.9 Description of Output. 3.3.4 Description of Output. 3.3.5 Matrix Inversion.		1.0	Descri	peron of input.	•	1
2.1 General Information 2.2 Mathematical Equations and Derivations. 2.3 Description of Input. 2.4 Description of Output. 2.5 Description of Output. 32 3. GIRDER DESIGN, REVIEW AND RATING 3.1 Structural Analysis 3.1.1 General Information. 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input. 3.1.4 Description of Output. 3.2 Structural Loading. 3.2.1 General Information. 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input. 3.2.4 Description of Output. 3.2.5 Section Design, Review and Rating 3.2.6 Mathematical Equations and Derivations 3.2.7 Mathematical Equations and Derivations 3.2.8 Description of Output. 3.3 Section Design, Review and Rating 3.3.1 General Information. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Output. 3.3.4 Description of Output. 3.3.5 Description of Output. 3.3.6 Mathematical Equations and Derivations 3.3.7 Description of Output. 3.3.8 Description of Output. 3.3.9 Description of Output. 3.3.9 Description of Output. 3.3.4 Description of Output. 3.3.5 Matrix Inversion.	2	DECK	DESIGN.	REVIEW AND RATING		20
2.2 Mathematical Equations and Derivations. 2.3 Description of Input. 2.5 2.4 Description of Output. 32 3. GIRDER DESIGN, REVIEW AND RATING. 3.1 Structural Analysis. 3.1.1 General Information. 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input. 3.1.4 Description of Output. 3.2 Structural Loading. 3.2.1 General Information. 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input. 3.2.4 Description of Output. 3.2.5 Section Design, Review and Rating 3.2.6 General Information. 3.3.1 General Information. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Output. 3.3.4 Description of Input. 3.3.5 Mathematical Equations and Derivations 3.3.6 Mathematical Equations and Derivations 3.3.7 Mathematical Equations and Derivations 3.3.8 Mathematical Equations and Derivations 3.3.9 Mathematical Equations and Derivations 3.3.1 Description of Input. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Output. 3.3.4 Description of Output. 3.3.5 Mathematical Equations 3.4 Matrix Inversion.	۷.		Genera	1 Information	•	
2.3 Description of Input			Mathema	atical Equations and Derivations	•	
2.4 Description of Output						
3. GIRDER DESIGN, REVIEW AND RATING 3.1 Structural Analysis 3.1.1 General Information. 38 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input. 3.1.4 Description of Output. 3.2 Structural Loading. 3.2.1 General Information. 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input. 3.2.4 Description of Output. 3.3 Section Design, Review and Rating 3.3.1 General Information. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Input. 3.3.4 Description of Input. 3.3.5 Mathematical Equations and Derivations 3.3.6 Mathematical Equations and Derivations 3.3.7 Mathematical Equations and Derivations 3.3.8 Mathematical Equations and Derivations 3.3.9 Mathematical Equations and Derivations 3.3.1 Description of Input. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Output. 3.3.4 Matrix Inversion.			Descri	ntion of Output	•	
3.1 Structural Analysis 3.1.1 General Information. 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input. 3.1.4 Description of Output. 3.2 Structural Loading. 3.2.1 General Information. 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input. 3.2.4 Description of Output. 3.3 Section Design, Review and Rating 3.3.1 General Information. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Input. 3.3.4 Description of Input. 3.3.5 Description of Input. 3.3.6 Matrix Inversion. 3.6		2.7	Descri	peron or output	•	32
3.1 Structural Analysis 3.1.1 General Information. 3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input. 3.1.4 Description of Output. 3.2 Structural Loading. 3.2.1 General Information. 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input. 3.2.4 Description of Output. 3.3 Section Design, Review and Rating 3.3.1 General Information. 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Input. 3.3.4 Description of Input. 3.3.5 Description of Input. 3.3.6 Matrix Inversion. 3.6	3.	GIRDI	ER DEST	GN. REVIEW AND RATING		38
3.1.1 General Information	•	3.1	Structi	ural Analysis		
3.1.2 Mathematical Equations and Derivations 3.1.3 Description of Input 3.1.4 Description of Output 3.2 Structural Loading 3.2.1 General Information 3.2.2 Mathematical Equations and Derivations 3.2.3 Description of Input 3.2.4 Description of Output 3.3 Section Design, Review and Rating 3.3.1 General Information 3.3.2 Mathematical Equations and Derivations 3.3.3 Description of Input 3.3.4 Description of Input 3.3.4 Description of Output 3.3.4 Description of Output 3.3.4 Description of Output 3.3.5 Matrix Inversion 3.3.6 Matrix Inversion 3.3.7 Matrix Inversion 3.3.8 Matrix Inversion 3.3.9 Description of Output 3.3.9 Matrix Inversion 3.30 Description 3.30 Description of Output 3.30 Matrix Inversion 3.30 Description 3.30 Descriptio		0,1	3.1.1	General Information		
3.1.3 Description of Input				Mathematical Equations and Derivations	•	
3.1.4 Description of Output. 82 3.2 Structural Loading. 84 3.2.1 General Information. 84 3.2.2 Mathematical Equations and Derivations 85 3.2.3 Description of Input. 93 3.2.4 Description of Output. 196 3.3 Section Design, Review and Rating 197 3.3.1 General Information. 197 3.3.2 Mathematical Equations and Derivations 197 3.3.3 Description of Input 119 3.3.4 Description of Output. 128 3.4 Matrix Inversion. 136		·		Description of Input	•	
3.2 Structural Loading				Description of Output		
3.2.1 General Information		3 2		ural Loading		
3.2.3 Description of Input		0.2	3.2.1	General Information	•	
3.2.3 Description of Input				Mathematical Fountions and Derivations	•	
3.2.4 Description of Output				Description of Input	•	
3.3 Section Design, Review and Rating				Description of Output	•	
3.3.1 General Information		3.3	Section	n Design Review and Rating	•	
3.3.2 Mathematical Equations and Derivations		0.0	3 3 1	General Information		
3.3.3 Description of Input				Mathematical Fountions and Derivations	•	107
3.3.4 Description of Output						
3.4 Matrix Inversion				Description of Output	•	128
5.4 : Idella livel 51011.		3 4		Inversion	•	136
3 4 1 General Information 136		J. 1	3.4.1	General Information	•	136
3.4.2 Mathematical Derivations						
3.4.3 Description of Input						
3.4.4 Description of Output						

TABLE OF FIGURES

Figure Number	Title	Page
1	Bridge Design Subsystem	. 2
2	Structure Inventory Component	. 4
3	Deck Design and Review Component	. 5
4	Structural Analysis Component	. 6
5	Structural Loading Component	. 7
6	Girder Section Design and Review Component	. 9
7		
8	Slab Type Bridge Design	. 17
9	Design	17
10	Multistage (Composite) Girder Type Bridge Design (Deck Following Non-Composite Analysis)	
11	Analysis For More Than Three Live Loads	
12		
13	Typical Input Form	26
13		
15	Summary Sheet (Deck Design, Review and Rating)	. 40
	Possible Moment of Inertia Pattern	
16	Resulting Analogous Column	
17	Analogous Column Loaded With Moment Diagram	
18	Elastic Load Areas and Distances to Centroids of Are	
19	Nomenclature of Cell Structure	
20	Nomenclature of 19 Span Continuous Structure	
21	One Cell Matrices	
22	Two Cell Matrices	
23	Three Cell Matrices	. 47
24	Eight Cell Matrices	. 50
25	Four Cell Matrices	. 5.5
26	Six Span Integral Leg Matrices (Cell=7)	. 53
27	Five Cell Matrices	
28	Six Cell Matrices	
29	Nineteen Span Continuous Matrices (Cell=9)	
30	Structure Nomenclature (Three Span Slant Leg)	
31	Shear Sketch (Three Span Slant Leg)	. 58
32	Translation of Span One and Span Eight	. 58
33	Typical Translation	. 59
34	Three Span Integral (Slant) Leg Matrices	
35	Structure Nomenclature (Five Span Slant Leg)	
36	Shear Sketch (Five Span Slant Leg)	. 62
37	Five Span Integral (Slant) Leg Matrices	. 66
38	Statical Loading for Loaded Span	. 67
39	Statical Loading for Unloaded Span	. 67
40	Typical Area Condition for One Span	. 67
41	Basic Structure - Cell Layout	. 72
42	Slant Leg Layout	. 72
43	Continuous Type Layout	. 72
44	Typical Web Cases	. 72
45	Typical Cross Section	. 72
46	Typical Cross Section Ranges	. 72
47	Output Answers	. 72

48	Summary Sheet (Structural Analysis), Page 1 80
49	Summary Sheet (Structural Analysis), Page 2 81
50	Positioning of Reactions
51	Horizontal Force Determination
52	
53	Deflection Diagram-Fnd Moment
	Deflection Diagram-End Moment
54	Lane Load
55	Influence Line for Moment at B
56	Influence Line for Shear at B (Left)
57	Typical Influence Line
58	Lane Load Configuration
59	HS Truck Load Configuration (Going Up Milepost) 89
60	HS Truck Load Configuration (Going Down Milepost) 89
61	Special Truck Load Configuration (Going Up Milepost) . 90
62	Special Truck Load Configuration (Going Down Milepost) 90
63	Actual Static Loading on a Span
64	Simulated Static Loading Due to Beam Weight 92
65	Sign Convention for Structure Loading
66	Summary Sheet (Structural Loading)
67	Equivalent Full Section of Box Girder
68	Equivalent Built Up Section
69	Equivalent Full Section of Steel Box Girder
70	Axis of Member
71	Built Up Section With No Flanges
72	Rectangular Beam
73	I or T Beam
74	
• •	Rectangular Column
75	Circular Column
76	Summary Sheet (Girder Design, Review and Rating) 134
77	Design Point Locations

1. GENERAL INFORMATION

1.1 Scope. This system has been developed so that a designer or user may design, review or load rate structures. For example, in the design phase of a concrete structure, the user would make a preliminary layout of his structure and ask the computer to give him the amount of steel in the concrete sections that is required and the actual stresses in all parts of the section that is critical. In the review and rating phase, the user would code the data from "as constructed" plans and inspection reports.

This system will also design, review and load rate transversely reinforced concrete deck slabs and timber decks.

The loading component of the system allows dead loads and live loads. The live loads consist of what are commonly called lane loads in the AASIO manual and the HS truck. The HS truck has three axles with variable spacing between the second and last axle. The live loading may also consist of from one to 24 wheel loads at selected spacings. All live loads may be applied to the structure in a directional manner; that is, the user may have trucks going in one direction, ahead station for instance, or have them going in both directions. This facilitates load rating structures that have single direction traffic.

The section design component of the system has been combined to handle steel girders, concrete girders, concrete slabs, timber beams, and composite concrete-steel girders. The steel sections are always assumed to be broken into parts. This means that when a wide flange girder or built-up steel girder bridge is to be designed or rated, one must enter dimensions of the flange, the web and the fillets, as required.

The analysis component handles rigid frames one story in height with as many as seven legs. It will handle continuous structures with from one to 19 spans and slant leg structures with three through five spans. Rigid frame analysis allows no sidesway or settlement of any joints. The slant leg analysis allows sidesway of all upper joints and settlement of any upper joint into which the leg frames. Cantilever spans, hinges or pin connections are not allowed.

The load rating portion of the section analysis component load rates on shears, flexural stresses and bearing stresses. The bearing stresses govern only at the ends of the member. These load ratings may be controlled by the user entering those allowable stresses that he wishes. For example, if at the 1.0 point, a person did not want to load rate on bearing stresses, he need just omit the allowable stress in bearing. In composite sections the user may load rate all allowable shears between composite concrete and the steel girder by simply entering in the amount of shear allowed in that region, i.e., shear developed by shear connectors, welds, etc. A natural outcome of this is that if one wants to design for the shear in a weld section between flanges and web, he just needs to place an allowable shear stress in the weld.

The inventory component, as mentioned herein, is not included in the system.

1.2 System Concepts. The system concepts as displayed in Figure 1, entitled, "Bridge Design Subsystem", are that of separate components

BRIDGE DESIGN SUBSYSTEM EXECUTIVE EXECUTIVE CONTROL WORK **PROGRAM** FILE STRUCTURAL STRUCTURAL TEMPORARY INPUT INVENTORY STRUCTURE ANALYSIS INPUT INVENTORY & ROUTE FILE COMPONENT COMPONENT FILE REPORT REPORT STRUCTURE STRUCTURAL STRUCTURAL INVENTORY & ROUTE TEMPORARY FILE SELECTION EXECUTIVE LOADING INPUT WORK FILE COMPONENT COMPONENT FILE TEMPORARY INPUT FILE REPORT REPORT INPUT GIRDER SECTION DECK DESIGN DESIGN TEMPORARY & REVIEW INPUT & REVIEW FILE COMPONENT COMPONENT EMPORARY INPUT FILE REPORT REPORT FIGURE I

being related by a program that is called the executive control. The executive control has the duty of determining what the next job is that should be done. The input cards, called control cards, coded by the user call the first program in the series. Data cards following control cards determine the phases to follow in a given component.

Components are a group of programs that perform a single and specific job. These jobs generally break down into categories of work. The inventory component (Figure 2) indicates that it has the job of building an inventory file and maintaining it. The inventory file contains a route file, consisting of a route, a section of that route, mileposts at which structures are located, and the number of structures at each location. The route file identifies the structure on the main file. The main file carries all data related to that structure. No structure is entered in the file more than once, except in the route portion of the file. The data that is on the inventory file consists of all items currently required by the Federal Highway Administration in its bridge inventory. Also maintained on file, are inspection data, which describe the condition of a structure so that it may be down rated if in poor condition.

The deck design and review component (Figure 3) reviews, designs or rates the decks of bridges. The decks may be continuous over girders or simple spans with cantilever edges. In order for a user to design a concrete deck, it is only necessary for him to omit the amount of steel required in tension regions of the deck. The designer may obtain the ratings by filling out a request in the input.

The structural analysis component (Figure 4) develops influence lines for moments, shears and reactions for each point on the structure that the designer has requested. These influence lines are stored on the direct access file denoted as the executive work file. The executive work file will be built by each component with all data that will be required by subsequent components. This component also has the task of developing all dimensions for each section of the beam. These dimensions consist of flange thicknesses and widths, web depths and thicknesses, fillet dimensions, composite slab dimensions, etc.

The structural loading component (Figure 5) searches out each influence line and applies the dead load to it as requested and then applies each of the live loads that the user wants. There may be three live loads on any given rum. These live loads may be any combination of the aforementioned loading types. The live loading portion develops what is called an action matrix. This matrix consists of shears, moments, axial and reaction actions. The diagonal of this matrix is the maximum value for that loading condition. The other elements of that column are the other actions, with the live load in the position that created the maximum in the diagonal element. Therefore, when load rating a section, one may find an axial load and its corresponding flexural stresses for similar loadings.

This component also has the task of developing influence lines for deflections. The reason for this not being in the analysis portion is that the user needs to develop an influence line for a unit load crossing a span in his deflection calculations. Then, if so requested, the component will develop deflections. These deflections are for both dead load and live load.

FIGURE 2

DECK DESIGN & REVIEW COMPONENT

STRUCTURAL ANALYSIS COMPONENT

STRUCTURAL LOADING COMPONENT

The girder section design and review component (Figure 6) reads in the dimensional data developed by the analysis component program, the matrix developed by the load rating program, and other data necessary from cards coded by the user. From this data, allowable stresses and actual stresses are developed and stored on the direct access file. If requested by the user, the data is used in the calculation of load rating factors. The load rating factors are numbers which indicate the intensities of live loads that may be applied to this structure within the limits that have been coded. That is, the actual stress will be equal to the allowable stress if this intensity is applied.

In composite section design, a person codes a run for dead load using a steel section as the structural element and then applying the dead load which would be on the structure. The dead load, of course, would be the unit weight of the material of the girder, the weight of the forms, and the weight of the concrete that will be placed. If there is a live load that must be applied at this time, such as screeding equipment, etc., it may be placed in this dead load run. Of course, this would never be the case when strictly rating a structure. Next, the user must code a live load run which would be in the job stream immediately following the dead load, except superimposed dead load, consisting of surfacing, curbs, etc. Then the live loadings would be coded so that ratings may be made for each.

There is a relationship between what is referred to as truck no. 1 in the deck design portion and truck no. 1 in the girder design portion; i.e., they must be identical. Load ratings are calculated for each corresponding truck and the summary sheet will indicate the smallest load factor, and where it is in the deck or in the girder. The summary sheet indicates the governing load factor, the position of the factor (deck or girder), and the type of stress, such as a shear, flexure stress or bearing.

1.3 Programming Information. The programs are coded for the IBM 360 Model 40 computer, utilizing a storage capacity of 72,000 Bytes. All programming has been done using Fortran IV language.

Programming controls for design or review of a structure were established and consist of the following:

- a. The engineer must have full control over output desired. That is, by coding, he should be able to obtain intermediate output, along with final results. This concept enables the engineer to check all steps in a design.
- b. The system should be flexible enough to allow incorporation of any type of future structural analysis. Types of structures that the system is capable of analyzing are described in the description of input, Structural Analysis.
- c. The flexibility of the system must be such that a complete design would be possible with one run of the system. This means that any parameters calculated in the program must be stored on a file for use by any future program as input. It should be possible to analyze the girders by the analysis portion, load the girders with the load

GIRDER SECTION DESIGN & REVIEW COMPONENT

routines, design (or review) the sections with the design routines, etc., (getting the desired output from each component) all in one run.

- d. The designer should find the input to be straightforward and logical. To implement this, one form was decided upon and all input is entered in this format.
- 1.4 System Components. The parts of the system that deal with a logical phase of the work have been designated as components. The components are shown in the rectangular blocks in Figure 1. Figure 2, "Structural Inventory Component", is included in the text to depict the position of the structure inventory editing and the structure inventory and route files within the administrative component.

The four components that are pertinent in obtaining a review and rating of a bridge structure will be developed. These are: "Structural Analysis Component" (Figure 4), "Structural Loading Component" (Figure 5), "Girder Section Design and Review Component" (Figure 6), and "Deck Design and Review Component" (Figure 3).

- a. Structural Analysis Component. Each component is made up of blocks which represent a class of work to be done. These blocks are called applications, of which there are four in this component.
 - (1) Beam Properties. This program develops all properties of a section at each 1/20 point of the span. These properties include:

Beam depth
Cross-sectional area
Moment of inertia
Distance to centroid of area
Width of web
Flange thickness of top flange
Flange width of top flange
Flange width of top flange
Flange width of bottom flange
Composite slab dimensions
Cover plate dimensions

The span ratio and method of depth variation are also given for each span.

- (2) Beam Characteristics and Fixed End Moments. This program determines the relative stiffness and carryover factors for each end of each span. It then determines the fixed end moments for a unit load at each tenth point of each span and for a uniform load on each span.
- (3) Indeterminate Coefficients (Analysis). This program sets up the equations for indeterminacy and inverts the matrix of constant coefficients. The inverted matrix is used by successive programs to determine influence line coefficients.

(4) Influence Lines (Statics). This series applies loads to each tenth point of each span and finds the shears at each end of each span and calculates the moments at each tenth point (including ends of spans) of each span. The areas are then calculated for each influence line.

All coefficients are relative to the first span length, making use of the lines easy.

Structure Type (Main Members). Currently, the types of structures that can be analyzed are divided into six groups. The groups include:

- (1) The "basic structure" (Figure 41), is a cell type layout one story in height with from one to six cells. Most bridge structures can be designed using the members within this layout. Any member may be excluded, with the exception of member number one, thereby giving many variations. The structures allow no sidesway in the analysis. The structures may be thought of as piers in elevation, box girder sections, or any other structure with this basic configuration.
- (2) Continuous beam bridges with from one to nineteen spans. The "continuous type layout" (Cell type = 9), is to be used when there are more than six continuous spans (Figure 43).
- (3) Rigid frame structures with from one to six spans.
- (4) Slant leg and cant leg structures with from three to five spans. The legs may cant in any direction, thereby giving results for slant leg and so-called delta bent structures. The "slant leg layout" (Figure 42), allows sidesway and settlements of joints C, E, G, and I. Various other structures may be designed by omitting different spans.
- (5) Rigid frame box culverts with from one to six cells.
- (6) Simple span structures.
- (7) No hinges or cantilever spans are allowed.

Structure Type (Secondary Members). The types of members that can be analyzed are divided into three groups:

- (1) Continuous or simple span slabs, designed one way only, and timber decking.
- (2) Continuous or simple span slab supports.
- (3) Continuous or simple span floor beams.

Section and Material Types. The system is capable of analyzing the following sections:

(1) Reinforced Concrete - slabs, T-girders, box girders, circular columns, and rectangular beams or columns.

- (2) Structural Steel rolled section (composite or non-composite), welded plate (composite or non-composite), riveted girder, built-up girder, and box girder (composite or non-composite).
- (3) Timber

Web Depth Variations. All members of the structures are called spans and may have almost any cross-sectional variation desired. The first variation that is thought of is the so-called depth (thickness in elevation) of the member. These possible depth variations are indicated in Figure 44 and are straight line, parabolic and break types.

Cross Section Variations. Variations in cross section are the dimensions of the separate elements, such as web thickness, flange thickness, flange width, etc. Each of these dimensions (Figure 45), may change from 20th point to 20th point of each span and is calculated on a straight line ratio.

b. Structural Loading Component. This group of programs takes the influence lines created by the "Structural Analysis" component and the loadings specified by the designer and calculates the moments, shears, reactions and deflections for each required 10th point of each span.

The loadings are of two types:

- (1) The first type is static loading, where the magnitude and position of the load is entered by the designer. Static loading may be either uniform in nature or point loads.
- (2) The second type of loading is the live loading, where only the magnitudes and spacings of the loads are given by the designer. Live loads consist of point loads at specified distances apart or uniform loading with a point load.

The "Structural Loading" component has three application blocks (Figure 5), consisting of:

- (1) Static Load The static load programs calculate the redundants due to the loads shown in Figure 63. The dead load of the girder is broken into a uniform portion and equivalent point loads for the non-uniform portion. The static superimposed loads consist of a uniform load for each span and up to 72 point loads on a structure.
- (2) Live Load The live loading portion of the system consists of three types.
 - (a) A truck with three axles where each axle has a weight specified by the designer with the distance between the first and second axle a specified fixed space; the distance between the second and third axle will vary from a minimum to a maximum as desired.
 - (b) A lane load with a uniform portion and one or two point loads.

- (c) Truck with fixed axle spacings alternate loading which consists of one to 24 wheel loads with spacings and magnitudes specified by the designer.
- (3) Deflection influence lines for loads on the span and deflections for applied static and live loadings.
- c. Girder Section Design and Review Component. After the analysis and loading routines have been executed, the system will then take the moments and shears developed by these routines and design or review the sections desired.

The "Girder Section Design and Review" component has three main application blocks (Figure 6), consisting of "Reinforced Concrete Design and Review", "Steel Section Design and Review", and "Timber Section Design and Review".

Included under the concrete applications are subroutines which analyze rectangular and circular columns. A report is generated for each of these applications which gives pertinent data concerning the section in question, such as area of steel, concrete stresses, reinforcing steel stresses, etc.

The designer has the freedom to ask for either a design or review of the member. Furthermore, he may request this design or review for every tenth point of the span, or only for those points which are critical.

The system will review and load rate a structure in the following general manner:

(1) Structural Steel

- (a) A section is entered in the analysis routine (width and thickness of flange, etc.)
 - (b) Structure is loaded with the dead load and live load desired in the loading routine.
 - (c) Type of section, yield strengths of materials, and specification criteria are entered in the design and review routine.
 - (d) The program will calculate and print out the design stresses in the section due to moment, shear, and any added actions, such as torque and centrifugal force. Maximum transverse stiffener spacing allowed will be given for moment and shear.

Design of structural steel members is in accordance with the current AASHO Specifications and accepted design theory.

(2) Reinforced Concrete

(a) A section is entered in the analysis routine

(width and thickness of flange, etc.).

- (b) Structure is loaded with the dead load and live load desired in the loading routine.
- (c) Yield strengths of concrete and reinforcing steel, moduli of elasticity, clearance to reinforcing steel, etc., are entered in the design and review routine.
- (d) The program will calculate and print out the design stresses in the concrete and reinforcing steel (tensile and compressive) due to moment, shear and added actions. Areas of stirrups and reinforcing steel required to resist the given loads will be printed out. Stirrup spacing required will also be printed out.

Design of reinforced concrete members is in accordance with the current AASHO Specifications and the working stress theory as presented in the "Reinforced Concrete Design Handbook, Working Stress Method", 'Third Edition,' by the ACI.

(3) Timber - The same procedure is followed as is outlined in (1) and (2) above. The program will calculate and print out design stresses for moment, vertical shear, horizontal shear and reactions at the supports.

Structure Type (Secondary Members). The types of secondary members that can be analyzed are divided into three groups:

- (1) Continuous or simple span floor beams. Floor beams may be of any section and material types as shown for main members. Loads applied to the beams can be applied as uniform or point loads, as determined by the engineer. The system will analyze and design or review the member in the same manner as for main members.
- (2) Continuous or simple span slab supports. The same general criteria apply to slab supports as were enumerated for floor beams.
- (3) Continuous or simple span reinforced concrete decks and timber decking. A separate routine has been included in the system for the design and review of decks. The program designs the deck in the transverse direction (perpendicular to the girders) and will design the cantilever portion of the deck, as well as the span between the girders. The loads are distributed one way only. Following is the general procedure for executing the deck design and review routine.
 - (a) Pertinent data pertaining to the deck section is input (thickness, girder spacing, area steel, etc.).
 - (b) Live load and any superimposed dead loads are input to the program.
 - (c) Yield strengths of materials are entered.

Load Rating. The expression "load rating" is defined as the analysis of a structure using a group of specified loads, utilizing two stress levels. The stresses must take into account the condition of the members being rated. The two stress levels used give ratings which are called Inventory and Operating.

The Inventory Rating is designed to give the load which can safely utilize a structure for an indefinite period. The Operating Rating is designed to give the absolute maximum permissible load which may utilize a structure on an infrequent basis or, in other words, it is the absolute maximum permissible stress level to which a structure may be subjected.

Load Factor (Not to be confused with term describing a design procedure). A reduction in allowable stresses for a member due to a reduced condition rating may be taken into account as an input item in the design and review routine. This is accomplished by taking a ratio of allowable stress over yield stress of the material comprising the member.

A load factor for the member in question will be calculated and printed out. This factor is multiplied by the gross weight of the truck that is being used for the rating to give both the operating and inventory ratings for that member.

The load factor for non-composite sections is determined by the equation

Load Factor = 1 +
$$\frac{(F_a-f)T_{action}}{LL_{action}(f)}$$

where:

 T_{action} = Total action (moment, shear) F_a = Allowable stress given the material f - Actual stress computed for the given applied loads

LLaction = Live load action (moment, shear)

This equation is expanded from the basic equation as follows:

Load Factor =
$$\frac{F_a - f_{DL}}{f_{LL}}$$
=
$$\frac{f_{LL} + F_a - f_{DL} - f_{LL}}{f_{LL}}$$
=
$$\frac{f_{LL}}{f_{LL}} + \frac{F_a - (f_{DL} + f_{LL})}{f_{LL}}$$

Let fDL+fLL = f

Let
$$\frac{fI}{c}$$
 Taction (or vIt/Q = Taction)

Let
$$\frac{fLLI}{c}$$
 = LL_{action} (or ν LLIt/Q = LL_{action})

Then

Load Factor = 1 +
$$\frac{(F_a-f)(f_{DL}+f_{LL})I/c}{(f_{DL}+f_{LL})f_{LL}I/c}$$

Load Factor = 1 +
$$\frac{(F_a-f)T_{action}}{(f)LL_{action}}$$

The load factor for composite sections is determined by the equation

Load Factor =
$$\frac{F_a - f_{DL}}{f_{LL}}$$

where:

 F_a = Allowable stress given the material

 f_{DL} = Dead load stress f_{LL} = Live load stress

1.5 Job Card Groups. Each component of this system is initiated by a control card. In the following possible sequences, each group of data is denoted by its control card. Thus, 'DC006' coded in card columns 1 thru 5 is followed by data cards for a deck design, review or rating.

All structures do not have members reinforced perpendicular to traffic and, therefore, do not have deck design data. In this document the word "design" will have the connotation of design, review and rating, and will be understood as such. Figure 7 indicates the necessary data groups to design a slab bridge.

When designing a girder type bridge that is not multistage, such as a welded plate, the first data group will be the deck design. Figure 8 indicates the required data grouping to complete the problem.

When designing a multistage girder, such as composite steel and concrete, there are two acceptable card groupings. The requirement is that the deck must be designed prior to the final design of the girder. Therefore, Figure 9 shows the deck design first and non-composite and composite sequences following. The sequence shown in Figure 10 is used when different titles are desired on the live load run.

MULTISTAGE (COMPOSITE) GIRDER TYPE BRIDGE DESIGN Deck Input First Figure 9

Figure 10 shows the deck design between the non-composite and composite analysis.

MULTISTAGE (COMPOSITE) GIRDER TYPE BRIDGE DESIGN
Deck Following Non-Composite Analysis
Figure 10

In the deck design and structural loading components, a maximum of three live loading cases is allowed in a single run. When more than three live loadings are desired, the user will have to code an extra group of cards. Figure 11 shows the necessary groups if the same maximum axle load is not used in more than one loading case. If all of the maximum wheel loads are the same, one must still code that same value for each truck on the first deck design and the second deck design may be omitted.

1.6 Description of Input

H		SHYRY I		SHTRY		ATRY 4	ENTRY 8	SHTPY 6
Π.		*						
\equiv								
4								
-	ш							
4		4444444						
-		******		*****				
-		4 * * * * * * * * * * * * * * * * * * *	*******				*****	
11								********
1			*****		***			********
Н.	1							
	CA CA	arb .						
9.9.9								

TYPICAL INPUT FORM Figure 12

- a. Use the Standard Bridge Program Form C-16 shown above.
- b. The blank "Sheet No. of __ " should be filled in each time. This allows you and everyone else (primarily keypunch operators) to know if you have as many forms as you list and if they are all there.
- c. Your name, "By ___ " and the date the form was filled out,
 "Date ___ " should both be entered.
- d. The blank "Checked __ " should be filled out each time. The time lost through simple mistakes, which require the program to be rerun, plus the expense in wasted computer time, make a check almost mandatory.
- e. The <u>COMMENT CARD</u> line is intended for the designer's convenience in recording a title of pertinent information about his structure and to obtain billing information. This title and billing information will appear at the top of each page of the program output and will serve as a permanent record, both for the designer and for anyone reviewing the design in the future. An example of this type of information is shown below.

								Employe No.	68 Code	Por/Job D /Code 7	Work 5 Code	Str	80
COMMENT CARD													EA
ØØHE ADING,	DATA	APPEARING	AT	TOP	OF.	EACH,	PAGE	OF O	UTP	UT.			Ĭ

f. All input data must be entered using the "floating point" method; i.e., a decimal point must be included with each entry.

2. DECK DESIGN. REVIEW AND RATING

2.1 General Information. This component calculates actual stresses, allowable stresses and load factors for concrete and timber decks. If input for areas of required steel are omitted in concrete sections, the program will calculate the required steel areas.

This routine must be executed immediately prior to executing the girder analysis routine so that the load factors will be available on the disk for the report generator program to access.

2.2 Mathematical Equations and Derivations. Following are shown the derivations for moments. The basic difference in all equations is the effective span length. (All dimensions are in feet.)

The derivations for the concrete design subroutine are found in "Reinforced Concrete Design Handbook, Working Stress Method", Third Edition, published by ACI, example 18, on page 31.

The derivations for the timber design routine are found in the American Association of State Highway Officials publication, "Standard Specifications for Highway Bridges", Tenth Edition.

STEEL GIRDER (3 or more Girder System)

Exterior Girder (with a > (nL+f)), n = number of girder spaces

1) Dead Load Moment (Take M about 1/4 of top flange)

	Wt	Arm	M=Wt x \rm
Curb	1/2(b+c)e(.150)	$1/2(a-nL-\frac{f}{2})+1/4(3b-c)$	1
Slab	$g[1/2(a-nL-\frac{f}{2})+b].150$	$1/2[1/2(a-nL-\frac{f}{2})+b]$	^N 1 ₂
FWS	$1/2 (a-nL-\frac{f}{2})W_1$	$1/4(a-nL-\frac{f}{2})$	y i ³
Rai1	W_2	$1/2(a-nL-\frac{f}{2})+h-d$	r 1 ₂₄

20

ΣΝ=M1+) 12+1 (3+1)

2) Live Load Moment (Cantilever M)

$$E = .8X + 3.75 = .8[1/2(a-nL-f/2)-1]+3.75=.4[a-nL-f/2]+2.95$$

$$M = \frac{P}{E}X = \frac{P(1+I)}{.4[a-nL-f/2]+2.95} [1/2(a-nL-f/2)-1]$$

Where
$$P_{20} = 16^{K}$$
, $P_{15} = 12^{K}$, $P_{10} = 8^{K}$

$$1) + 2) = Cantilever M$$

T-GIRDER (3 or more Girder System)

Exterior Girder (with a > (nL+f)), n = number of girder spaces

1) <u>Dead Load Moment</u> (Take M about outside face of web)

}	Wt	Arm	M=WtxArm
Curb	1/2(b+c)e(.150)	1/2(a-nL-f)+1/4(3b-c)	*1 ₁
S1ab	g[1/2(a-nL-f)+b].150	1/2[1/2(a-nL-f)+b]	^N 12
FWS	1/2(a-nL-f)W ₁	1/4(a-nL-f)	113
Rai1	W_2	1/2(a-nL-f)+b-d) I ₄
			,

$$\Sigma M = M_1 + M_2 + M_3 + M_4$$

2) Live Load Moment (Cantilever M)

$$E = .8X + 3.75 = .8[1/2(a-nL-f)-1] + 3.75 = .4(a-nL-f)+2.95$$

$$M = \frac{P}{E}X = \frac{P(1+I)}{.4(a-nL-f)+2.95} [1/2(a-nL-f)-1]$$
Where $P_{20} = 16^K$, $P_{15} = 12^K$, $P_{10} = 8^K$

$$1) + 2) = Cantilever M$$

STEEL GIRDER OR T-GIRDER

Interior Girder

1) Dead Load Moment

$$M_{\rm DL} = \frac{1}{10} \text{ WS}^2 = \frac{S^2}{10} [g(.150) + W_1]$$

2) Live Load Moment

LLM =
$$\frac{S+2}{32}$$
 P (1+I) (0.8)

Where
$$\begin{array}{ccc} P_{2\,0} &=& 16^K \\ P_{1\,5} &=& 12^K \\ P_{1\,0} &=& 8^{-K} \end{array}$$

STEEL GIRDER (2 Girder System)

Negative Moment

1) Dead Load Moment (Take M about 1/4 of top flange)

	Wt	Arm	M=WtxArm
Curb	1/2(b+c)e(.150)	$1/2(a-L-\frac{f}{2})+1/4(3b-c)$	M_1
S1ab	$g[1/2(a-L-\frac{f}{2})+b].150$	$1/2[1/2(a-L-\frac{f}{2})+h]$	M_2
FWS	$1/2(a-L-\frac{f}{2})W_1$	$1/4(a-L-\frac{f}{2})$	M ₃
Rai1	1V ₂	$1/2 (a-L-\frac{f}{2})+b-d$	$M_{\mathbf{L}}$

$$\Sigma M = M_1 + M_2 + M_3 + M_4$$

2) Live Load Moment

$$E = .8X + 3.75 = .8[1/2(a-1-f/2)-1] + 3.75 = .4(a-L-f/2) + 2.95$$

$$M = \frac{P}{E}X = \frac{P(1+I)}{.4(a-L-f/2)+2.95} [1/2(a-L-f/2)-1]$$
Where $P_{20} = 16_{K}^{K}$

$$P_{15} = 12_{K}^{K}$$

$$P_{10} = 8_{K}$$

$$1) + 2) = Cantilever M$$

Positive Moment

1) Dead Load Moment (Take M about center of span)

$$R = W_2 + 1/2aW_1 + 1/2(b+c)e(.150) + 1/2(a+2b)g(.150)$$

	Wt	Arm	M=WtxArm
Curb	1/2(b+c)e(.150)	1/2a+1/4(3b-c)	M_1
S1ab	1/2(a+2b)g(.150)	(1/2a+b)1/2	M ₂
FWS	1/2aW ₁	1/4a	M ₃
Rai1	W_2	1/2a+b-d	M_{L}

$$\Sigma M = M_1 + M_2 + M_3 + M_4$$

$$+ M_{\text{E}} = R \frac{L}{2} - \Sigma M$$

2) Live Load Moment

M = (P)(S+2)(1+I)/32
Where
$$P_{20} = 16^{K}$$

 $P_{15} = 12^{K}$
 $P_{10} = 8^{K}$

$$S = L-1/2f$$

1) + 2) = + M at center of span

T-GIRDER (2 Girder System)

Negative Moment

1) Dead Load Moment (Take M about outside face of web)

	Wt	Arm	M=WtxArm
Curh	1/2(b+c)e(.150)	1/2(a-L-f)+1/4(3b-c)	M_1
S1ab	g[1/2(a-L-f)+b].150	[1/2(a-L-f)+h]1/2	`1 ₂
FWS	1/2(a-L-f)W ₁	1/4(a-L-f)	: , M ₃
Rai1	W ₂	1/2(a-L-f)+b-d	7 14

$$\Sigma^{M} = M_1 + M_2 + M_3 + M_4$$

2) Live Load Moment

$$E = .8X + 3.75 = .8[1/2(a-L-f)-1] + 3.75 - .4(a-L-f) + 2.95$$

$$M = \frac{P}{E}X = \frac{P(1+I)}{.4(a-L-f)+2.95}[1/2(a-L-f)-1]$$
Where $P_{20} = 16K$

$$P_{15} = 12K$$

$$P_{10} = 8K$$

1) + 2) = Cantilever M

Positive Moment

1) Dead Load Moment (Take M about center of span)

$$R = W_2 + 1/2aW_1 + 1/2(b+c)e(.150 + 1/2(a+2b)g(.150)$$

	Wt	Arm	M=WtxArm,
Curb	1/2(b+c)e(.150)	1/2a+1/4(3b-c)	M_1
Slab	1/2(a+2b)g(.150)	(1/2a+b)1/2	M_2
FWS	1/2aW ₁	1/4a	M ₃
Rai1	W_2	1/2a+b-d	M ₄

$$\Sigma M = M_1 + M_2 + M_3 + M_4$$

+
$$M_G = R\frac{L}{2} - \Sigma M$$

2) Live Load Moment

$$M = \frac{S+2}{32} P(1+I)$$

Where
$$P_{20} = 16^{K}$$

 $P_{15} = 12^{K}$
 $P_{10} = 8^{K}$

$$1) + 2) = + M$$
 at center of span

2.3 Description of Input. The work code entry, "DC", is made only once. Refer to Figure 13 for identification of input criteria. It should be noted that the dimensions D1 through D12 may be used for a concrete deck either on steel girders or on concrete girders. Dimensions D13 through D24 are used for unidentical cantilevers on either girder type. These dimensions may be negative if desired. The various dimensions and loads are available to allow the user some flexibility in types of cantilever configurations he may encounter. For example, a light pole mounted on the outside of the curb could be P1 and D3 would be negative. W3 could be a loading caused by several utility lines attached below the cantilever deck. The following items supplement that material shown on pages 33 thru 36.

CANTILEVER LOADING - T GIRDER

DI7 DI6
DI3
P4 P3 DI5
FHL Web
Web

DSI DSS

26

a. Data Code 006 has entries which control the output desired and define the type of deck.

Entry #1 asks which output report is desired by the designer. A number "1" shall be entered for each report desired. It is necessary to enter a "1" for design in both cases as the rating requires the stresses from the design portion.

Entry #2 defines the type of span: 7 = simple supported; 8 = continuous over steel girders; and 9 = continuous over concrete girders.

Entry #3 defines the type of girders that support the slab: 2 = steel; 3 = concrete without fillets; and 4 = concrete with fillets.

Entry #4 defines the type of cantilevers, if any. The number 20 is entered if there are no cantilevers, 21 = identical cantilevers, and 22 = non-identical cantilevers.

Entry #5 asks if this is a timber deck. A number "1" is entered if the deck material is timber.

Entry #6 asks for the portion of impact above one that is desired; usually = .3.

b. Data Code 011 defines the reinforcing steel in a concrete decl. See Figure 13 for positioning of the steel in the deck. All areas of steel are input as square inches per foot of the deck.

Entry #1 is compressive steel in the positive moment region. (AS1)

Entry #2 is tensile steel in positive moment region. (AS2)

Entry #3 is tensile steel in negative moment region. (AS3)

Entry #4 is compressive steel in negative moment region. (AS4)

Entry #5 is distance from top of deck to centroid of compressive steel in positive moment region, in inches. (C1)

Entry #6 is distance from bottom of deck to centroid of tensile steel in positive moment region, in inches. (C2)

c. Data Code 012 is required for all rums on concrete decks and consists of the actual stresses and the allowable fractions to be used in determining the operating rating and inventory rating.

Entry #1 is the breaking strength of the concrete at the time desired, in pounds per square inch. Usually, this entry is a 28-day test.

Entry #2 is yield stress of reinforcing steel, in pounds per square inch.

Entry #3 is the fraction of yield stress of reinforcing steel to be used as allowable stress for the operating rating.

Entry #4 is the fraction of compressive stress of concrete to be used as allowable stress for the operating rating.

Entry #5 is the fraction of yield stress of reinforcing steel to be used as allowable stress for the inventory rating.

Entry #6 is the fraction of compressive stress of concrete to be used as allowable stress for the inventory rating.

d. Data Code 013 is the general data for the girder spacings, deck thickness and wheel loads. The wheel loads for the trucks are the maximum wheel loads of the corresponding trucks in the girder analysis portion. This card is always required.

Entry #1 is the girder spacing or the distance from center to center of the supports, in feet. This spacing should be altered if the reinforcing steel is skewed relative to the centerline of the girder. To obtain the proper spacing, divide the girder spacing by the cosine of the skew angle.

Entry #2 is the flange width for a steel girder or the web thickness if it is a concrete girder, in inches. If it is an 1-Beam type concrete girder, this distance would equal the top flange width.

Entry #3 is the deck thickness between girders, in inches. (T)

Entry #4 is the maximum wheel load of truck loading no. 1 in the girder analysis, in kips.

Entry #5 is the maximum wheel load of truch loading no. 2, in line.

Entry #6 is the maximum wheel load of truck loading no. 3, in kips.

e. Data Code 014. This is general data and is in all rums. See Figure 13 for location of the loads.

Entry #1 is the concentrated load on the cantilever portion, in pounds; usually the railing (pounds per foot). (P1)

Entry #2 is unit weight of reinforced concrete, in pounds per cubic foot. (W1)

Entry #3 is unit weight of wearing surface, in pounds per square foot. (W2)

Entry #4 is distance from top of slab to centroid of tensile steel in negative moment region, in inches. (C3)

Entry #5 is distance from bottom of slab to centroid of compressive steel in negative moment region, in inches. (C4)

f. Data Code 015. This card is cantilever data and is required only for decks with cantilevers. These distances are in feet for all entries. See Figure 13.

Entry #1 is the length from the centerline of the exterior girder to the outside edge of the overhanging deck. (D1)

Entry #2 is the horizontal length of the fillet or taper on the cantilever, if there is one. (D2)

Entry #3 is the distance from the outside of the deck to the concentrated load defined in Entry #1 of the 014 card. (D3)

Entry #4 is the distance from the outside of the deck to the outside edge of the miscellaneous load. (D4)

Entry #5 is the width of the miscellaneous uniform load. (D5)

Entry #6 is the distance from the outside of the deck to the concentrated load defined in the 017 card, Entry #6. (D6)

g. Data Code 016. Continuation of the 015 data.

Entry #1 is the total depth of deck at the girder for the cantilever portion, in inches. (D7)

Entry #2 is the vertical height of fillet over the girder for the cantilever, in inches. (D8)

Entry #3 is the depth of deck at outside edge of cantilever, in inches. (D9)

Entry #4 is the height of curb, in inches. (D10)

Entry #5 is the width of curb, in feet. (D11)

Entry #6 is the distance from centerline of exterior girder to where the fillet begins, in feet. (D12)

h. Data Code 017. This is miscellaneous data and is required for decks with fillets, lightweight aggregates, or for miscellaneous loads on the cantilevers. It is also used for a different impact factor on cantilever.

Entry #1 is the horizontal length of the fillet on the inside of the girder, in inches. (FHL)

Entry #2 is the vertical height of the fillet on the inside of the girder, in inches. (FVL)

Entry #3 is the modulus of elasticity ratio of steel to concrete. (n)

Entry #4 is the impact fraction to be used on cantilever if not equal to the impact fraction defined in Entry #6 of the 006 card.

Entry #5 is the weight of the miscellaneous uniform load, in pounds per square foot. (W3)

Entry #6 is the second cantilever concentrated load whose position is defined in Entry #6 of the 015 card, in pounds per foot. (P2)

i. Data Code 018. This card is filled out when there is a cantilever on the other side of the bridge that does not have the same dimensions and loadings as the one already defined. See Figure 13. All dimensions are in feet.

Entry #1 is the distance from centerline of girder to the outside edge of deck. (D13)

Entry #2 is the horizontal length of fillet. (D14)

Entry #3 is the distance from outside edge of deck to concentrated load defined in Entry #3 of the 020 card. (D15)

Entry #4 is the distance from outside edge of deck to the outside edge of the miscellaneous uniform load. (D16)

Entry #5 is the width of the miscellaneous uniform load. (D17)

Entry #6 is the distance from outside edge of deck to concentrated load defined in Entry #4 of the 020 card. (D18)

j. Data Code 019. Continuation of the 018 data.

Entry #1 is the total depth of deck over the girder for cantilever, in inches. (D19)

Entry #2 is the vertical height of the fillet for the cantilever, in inches. (D20)

Entry #3 is the depth of deck at outside edge of cantilever, in inches. (D21)

Entry #4 is the height of curb, in inches. (D22)

Entry #5 is the width of curb, in feet. (D23)

Entry #6 is the distance from centerline of girder to beginning of taper or fillet, in feet. (D24)

k. Data Code 020. Continuation of 018 data.

Entry #1 is the unit weight of wearing surface, in pounds per square foot. (W4)

Entry #2 is the weight of miscellaneous uniform load defined in Entry #5 of the 018 card, in pounds per square foot. (W5)

Entry #3 is the concentrated load on the cantilever, in pounds; usually the railing (pounds per foot). Distance is defined in Fntry #3 of the 018 card. (P3)

Entry #4 is the second cantilever concentrated load whose distance is defined in Entry #6 of the 018 card. This load is to be in pounds per foot. (P4)

1. Data Code 021. Continuation of the cantilever data on the 018 card; used only if steel areas or centroids are different from those over the interior girders.

Entry #1 is tensile steel in top of deck for cantilever design, in square inches per foot. (AS5)

Entry #2 is compressive steel in bottom of deck for cantilever design, in square inches per foot. (AS6)

Entry #3 is distance from top of deck to tensile steel defined in Entry #1 of this card, in inches. (C5)

Entry #4 is distance from bottom of deck to compressive steel defined in Entry #2 of this card, in inches. (C6)

m. Data Code 022. This card is required if the decking to be designed is timber.

Entry #1 is the distance center to center of stringers, in feet.

Entry #2 is the width of the flooring member (plank), in inches.

Entry #3 is the depth of the flooring (planks), in inches.

Entry #4 is the unit weight of the timber material, in pounds per cubic foot.

Entry #5 is the weight of the wearing surface, in pounds per square foot.

Entry #6 is the width of the supporting member (stringer), in inches.

n. Data Code 023. Continuation of 022 data.

Entry #1 is the allowable bending stress in decking for the operating rating, in pounds per square inch.

Entry #2 is the allowable horizontal shear in decking for the operating rating, in pounds per square inch.

Entry #3 is the allowable bending stress in decking for the inventory rating, in pounds per square inch.

Entry #4 is the allowable horizontal shear stress in decking for the inventory rating, in pounds per square inch.

Entry #5. If the decking is continuous over more than two spans, enter "1" in this field.

Entry #6. Enter "1" in this field if it is a plank floor, a "2" if it is a laminated floor, or a "3" if it is a splined or a doweled floor.

o. Data Code 024. Loading card for the timber deck, defining the width and length of the tires. This card may be used if the user knows that the width and length of the tire print are not the same as required by the AASHO manual. See AASHO 1.3.4(A). All dimensions are in inches.

Entry #1 is the length of tire for truck no. 1 perpendicular to the decking.

Entry #2 is the width of tire for truck no. 1 parallel to the decking.

Entry #3 is the length of tire for truck no. 2 perpendicular to the decking.

Entry #4 is the width of tire for truck no. 2 parallel to decking.

Entry #5 is the length of tire for truck no. 3 perpendicular to decking.

Entry #6 is the width of tire for truck no. 3 parallel to decking.

- 2.4 Description of Output. The output consists of the following reports:
 - a. Verification of Input Data
 - b. Design Reports
 - c. Rating Reports

The first report is always printed, but the last two are printed only if requested. The Design Report is printed by the mainline program. The rating data is stored on disk and is printed at the end of the girder design run.

When areas of steel in the section are omitted, the areas printed out, including compressive steel, have been calculated by the concrete design subroutine. The deck thickness assumed is that which has been defined in Entry #3 of the 013 card.

Note: The following pages including Figure 14 are prepared as summaries of the description of input. Each type of input card is portrayed with its corresponding entries and what they represent.

_		<u> </u>		1				
Į.	Wheel load truck #3 (Maximum wheel of truck #3 in the Girder Analysis) Kips	Wheel load truck #2 (Maximum wheel of truck #2 in the Girder Analysis) Kips	Wheel load truck #1 (Maximum wheel of truck #1 in the Girder Analysis)	Slab thickness in spans (T) Inches	Flange width or web thickness Inches	Girder spacing or center to center supports Feet	GENERAL DATA (Always Required)	1
	Fraction of ft to be used as allowable stress for Inventory Rating	Fraction of f, to be used as allowable stress for Inventory Rating	Fraction of ft to be used as allowable stress for Operating Rating	Fraction of fy to be used as allowable stress for Operating Rating	fy-yield stress of reinforcing steel Lbs./Sq. In.	fc-28 day compressive stress of concrete Lbs./Sq. In.	MYTERIALS FACTORS (Required for Concrete Decks)	
	Distance from bottom of deck to centroid of AS2 (C2)	Distance from top of deck to centroid of AS1 (C1)	Compressive steel in negative moment region (AS4)	Tensile steel in negative moment region (AS3)	Tensile steel in positive moment region (AS2)	Compressive steel in positive moment region (AS1)	REINFORCED CONCRETE DECK	
	Impact fraction (generally <.3)	Enter 1. for timber deck	20=No cantilevers 21=Identical cantilevers 22=Non-identical cantilevers	2=Steel girders 3=Concrete girders without fillets 4=Concrete girders with fillets	7=Simply supported 8=Continuous over steel girders 9=Continuous over concrete girders or timber girders	Output Control Design Rating	CONTROL CARD	
S TAN	ENTRY 6	ENTRY 5	ENLEK †	ENTRY 3	ELLIK S	PT ENLEK J	60.0.6 0.0.6	D'C
2	,				J		A PRACT	NC. OP

				1		1		
	Second cantilever concentrated load (P2)	Weight of miscellaneous uniform load (W3) Lbs./Sq. Ft.	Impact fraction to be used on cantilever if not equal to impact fraction for spans	Modulus of elasticity ratio - steel to concrete (n)	Vertical leg of fillets on interior spans (FVL) Inches	Horizontal leg of fillets on interior spans (FHL.) Inches	MISCELLANFOUS DATA (Read. for decks with of fillets lightweight ag-	gregates, misc. loads on cantilever or different impact for cantilever)
	Distance from centerline exterior girder to start of taper or fillet (D12) Feet	Curb width (D11) Feet	Curb height (D10)	Depth of deck without tapers (D9) Inches	Depth of taper or vertical leg of fillet on cantilever (D8) Inches	Total depth of deck plus taper at cantilever (D7)	CANTILEVER DATA (continued)	
	Distance from outside of deck to second concentrated load, P2 Feet	Width of miscellaneous uniform load (D5)	Distance from outside of deck to outside edge of miscellaneous uniform load (D4)	Distance from outside of deck to first concentrated load, Pl (D3) Feet	Length of taper or horizontal leg of fillet on cantilever (D2)	Cantilever length, centerline exterior girder to outside edge of deck (D1) Feet	CANTILEVER DATA (Required only for decks Houth cantilevers)	See Figure 13
		Distance from bottom of deck to centroid of AS4 (C4)	Distance from top of deck to centroid of AS3 (C3) . Inches	Weight of wearing surface (W2) Lbs./Sq. Ft.	Weight of concrete (W1) Lbs./Cu. Ft.:	First cantilever concentrated load usually railing (P1) Lbs./Ft.	GENERAL DATA Continued)	
Z.	. , , , , , , , ,				, , , , , , , , , , , , , , , , , , , ,		t'I'0	
100	ENTRY 6	ENTRY 5	H XETNE	ENTRY 3	ENTRY 2	ENLEK T	B&5&	M83R

S T				
9 YATMA	Distance from outside edge of deck to second concentrated load, P4 (D18)	Distance from centerline exterior girder to start of taper or fillet (D24)	T T T T T T T T T T T T T T T T T T T	
S AHIME	Width of miscellaneous uniform load (D17)	Curb width (D23)	77777777	
FALEK †	Distance from outside edge of deck to outside edge of miscellaneous uniform load (D16)	Curb height (D22)	Second cantilever concentrated load (P4)	Distance from bottom of deck to AS6 Not required if C6=C4 (C6) Inches
ENLES 3	Distance from outside edge of deck to first concentrated load, P3. (D15) Feet	Depth of deck without tapers (D21)	First cantilever concentrated load usually railing (P3)	Distance from ton of deck to AS5 Not required if C5=C3 (C5) Inches
S YATUE	Length of taper or horizontal leg of fillet on cantilever (D14)	Depth of taper or vertical leg of fillet on cantilever (D20)	Weight of miscellaneous uniform load (W5) Lbs./Sq. Ft.	Compressive steel in cantilever Not required if AS6=AS4 (AS6) Inches ² /Ft.
EMLEK T	Cantilever length, centerline exterior girder to outside edge of deck (D13)	Total depth of deck plus taper at cantilever (D19)	Weight of wearing surface (W4) Lbs./Sq. Ft.	Tensile steel in cantilever Not required if AS5=AS3 (AS5) Inches ² /Ft.
#GBK PATA	CANTILEVER DATA (continued) Used only when right and left cantilevers are not identical (Figure 13)	CANTILEVER DATA (continued)	CANTILEVER DATA (continued)	CANTILEVER DATA (continued) Used only if steel areas or centroids at the can- tilever differ with those over the supports

3714				
PHISA 6	Width of stringer or supporting member Inches	1=Plank floor 2=Laminated floor 5=Splined or doweled floor	Width of tire, truch #3	
S XHING	Weight of wearing surface Lbs./Sq. Ft.	Enter 1, if decking is continuous over more than two spans	Length of tire, truck #3	
H ZHINT	Weight of timber decking Lbs./Cu. Ft.	Allowable horizontal shear stress for decking (Inventory Rating) Lbs./Sq. In.	Width of tire, truck #2	
ENIBX 3	Depth of flooring member (planks)	Allowable bending stress in decking (Inventory Rating) Lbs./Sq. In.	Length of tire truck #2	
ENTRY 2	Width of flooring member (planks)	Allowable horizontal shear stress for decking (Operating Rating) Lbs./Sq. In.	Width of tire, truck #1 (See AASHO 1.3.4(a))	
тилк т	Stringer spacing	Allowable bending stress in decking (Operating Rating) Lbs./Sq. In.	Length of tire, truck #1, if other than allowed by AASHO Inches	
REDE GODE	TIMBER DECK DATA	TIMBER DECK DATA Continued)	TIMBER DECK LOADING CARD	
8				

SUMMARY SHEET

FORM C-16 Rev. 3/11/69

//EXEC BRSYSOO

I COMMENT CARD

WYOMING STATE HIGHWAY DEPARTMENT CHEYENNE WYOMING BRIDGE DIVISION

DESIGN SYSTEM

		311	to the 1	.,,,,		_ 0,		
		BY			DAT	E		
		СН	ECK	ED				
		-		_				
65	Employee No BB	Code D	04/ 3	9b 15a 75	Work	Str	an .	
		-	Ť.		-			
			<u>ــــــــــــــــــــــــــــــــــــ</u>			<u> </u>	64	
_				-			7	

SHEET NO | OF |

DECK DESIGN, REVIEW, 100 8 RATING WCOOR D D C A O T D A E ENTRY 2 ENTRY 3 ENTRY 4 ENTRY I ENTRY 5 ENTRY 6 Deck 7=Non-Cont 8= Output Control arders 2=Steel Cantilevers 200 imber teck (Inter raction Request (Design and Cont-steel girders =Conc(no fillets) generally _. 21=Identical Rating Reports) 0 0 9=Cont-conc girder 4=Conc (fillets) 2=Non-identical Compressive steel. Tensile steel, Tensile steel. Distance from top of deck to centroi Compressive steel, Distance from bott ositive moment negative moment positive moment negative moment of deck to centroid 0.1 region (AS1) region (AS2) region (AS3) region (AS4) of ASI (CI) of AS2 (C2) fy (yield stress of reinforcing f: (28-day Fraction of f_V for Fraction of ft for Fraction of fy for raction of it for determining Operating Rating ompressive st determining determining letermining 1 3 of concrete) Operating Rating steel) Inventory Dating Inventory Rating Sirder spacing or Deck thickness Flange width or Wheel load of Wheel load of Wheel load of web thickness -c supports etween girders(T) truck #1 0 1 3 irst cantilever Weight of concrete Weight of wearing Distance from top Distance from bott point load, usually surface (W2) of slab to centroid of slah to centroid 1.4 railing (P1) of AS3 (C3) of AS4 (C4) Length of taper or Distance from edge Length of Dist from edge of Width of misc Dist from edge of hor leg of fillet on cantilever (D2) of deck to first point load, Pl (D3) cantilever (D1) deck to edge of misc unif load (D4) uniform load (D5) deck to second point load, P2 (16) Deck thickness plus Depth of taper or Deck thickness. Height of curh Width of curb Dist from Cext vert leg of fillet on cantilever (D8) taper not included taper on cantilever (D10) girder to taper or fillet (D12) llorizontal leg of fillet on interior Vertical leg of fillet on interior Cantilever impact fraction (when ≠ to Modulus of Weight of misc Second cantilever elasticity ratiouniform load (W3) point load (P2) span (IHL) span (FVL) steel to concrete interior impact) Length of taper or Length of canti-Distance from edge Dist from edge of deck to edge of Width of misc uniform load (D17) Distance from edge lever, when cantihor leg of fillet of deck to first of deck to secon on cantilever (D14) misc unif load(D16) 0 1 8 levers (D13) point load, P3(D15) oint load, P4(D18 Deck thickness plus Deck thickness. Height of curh Width of curh Dist from @ ext girder to taper or fillet (N24) taper on cantilever vert leg of fillet on cantilever (D20) taper not included (D21) (D19) Weight of wearing Weight of misc First cantilever Second cantilever uniform load (W5) surface (W4) point load, usually railing (P3) point load (P4) Tensile steel, can-Comp steel, can-Distance from top Distance from hott of deck to centroid tilever, not reqd if AS6=AS4 (AS6) of deck to centroid of AS5 (C5) tilever, not read if AS5=AS3 (AS5) of AS6 (C6) Timber Decks stringer spacing Width of flooring Thickness of leight of timber Weight of wearing Width of stringer member (plank) flooring member (plank) decking or supporting 2.5 nember Allowable bending Allowahle hor shear Allowable bending Allowahle hor shear stress--decking Decking continuous Deck 1=Plank tress--decking tress--decking tress--decking over more than two =Laminated Operating Rating (Operating Rating (Inventory Rating (Inventory Rating tringers (Enter =Splined/doweled Length of tire, truck #1 (if not as in AASHO specs) Width of tire, truck #1 (see AASHO 1.3.4(Λ) Length of tire, Width of tire, Width of tire, Length of tire. truck #3 truck #2 truck #2 0 2 4 TRAILER CARD 9,9,9

NOTE: A treiler card must follow the last structure card centaining data

3. GIRDER DESIGN, REVIEW AND RATING

3.1 Structural Analysis

3.1.1 General Information. The series of programs in this Section, called "Structural Analysis", is a group of programs designed and interconnected in such a way that the designer is given a great deal of freedom in design and analysis.

Input is minimized through selection of the basic structure. First, the designer must think of his structure as a series of lines. Then, he must impose upon this linear layout the elevations, or thickness of each member, which we will call spans. After being satisfied with the aesthetics of the planar layout, he must give each span its depth; in other words, define the cross section.

Output is in various forms and may be requested as needed. The beginning user may wish to have all reports such as "Beam Properties", "Beam Characteristics" and "Influence Lines". After becoming familiar with the system it is possible that these reports may not be needed.

There are four main programs in this series. They are:

a. Beam Properties. The "Beam Properties" programs calculates for each twentieth point of the span:

Beam depth
Cross-sectional area
Moment of inertia
Distance to centroid of area
Thickness of web
Flange thickness of top flange
Flange width of top flange
Flange width of bottom flange
Flange width of bottom flange

The span ratio and method of depth variation are also given for each span.

- b. Beam Characteristics and Fixed End Moments. The "Beam Characteristics and Fixed End Moments" program determines the relative stiffness and carryover factor for each end of each span. It then determines the fixed end moments for a unit load at each tenth point of each span.
- c. Indeterminate Coefficients. The "Indeterminate Coefficients" program sets up the equations for indeterminacy and inverts the matrix of constant coefficients. The inverted matrix is used by successive programs to determine influence line coefficients. The inversion, if obtained, can be a handy tool for investigating various loading conditions on the structure, such as horizontal live load, settlement of supports, shrinkage, etc.
- d. Influence Lines. The "Influence Line" series applies loads to each tenth point of each span and finds the shears at each

end of each span and calculates the moments at each tenth point (including ends of spans) of each span. The areas are then calculated for each influence line.

All coefficients are relative to the first span length, making use of the lines easy.

The "basic structure" (Figure 41), previously mentioned, is called the cell type layout. Most bridge structures can be designed using the members within this layout. One must only define those spans that are in his particular structure.

Many types of frames may be analyzed, such as piers, abutments, box girder sections and the like.

The "continuous type layout" is to be used when there are more than six continuous spans. The nineteen spans maximum allows an analytical approach to the design of such things as floor beams for arches, etc.

The "slant leg layout" is a routine for the design of a three (or five) span slant leg bridge. Sidesway and settlement of the joints C, E, G, and I are allowed in this structure. Various other structures may be designed by omitting different spans.

Ranges and restrictions are:

- a. Maximum number of cross section ranges for any one span is eighteen.
- b. Maximum number of cross sections for one structure is ten.
- c. Maximum number of web depths for a span is five.
- d. Ranges for web depth are always measured from left to right from the center line of bearing of the span.
- e. The moment of inertia of a span may be used to describe a span.
- f. Span number one of the designer's structure <u>must</u> be the same as span number one of the example sketches. Refer to Figures 41 thru 43, page 72.
- g. Maximum number of continuous spans is nineteen.
- h. Maximum number of cells is six.
- i. Maximum number of upper spans in a slant leg structure is five.
- j. The joint at the left end of any span entered by a 401 or 402 card will be fixed. The maximum number of joints that can be fixed is seven.
- k. The left ends of the vertical (or canted) spans are considered to be at the top.
- 1. Only one span may frame into a given fixed joint.
- m. Only cell one through six and cell nine type structures may have fixed joints. That is, structures may be made by excluding members of any cell to leave the desired structure.
- 3.1.2 Mathematical Equations and Derivations. DC101, Beam Characteristics and Fixed End Moments.

General. This program will find the stiffness and carryover factors for both ends of any shaped beam. The required information is moment of inertias, or inertia ratios, at both sides of each twentieth point of the span. This was chosen so an abrupt change in a section could be handled.

Method of Analysis. The method of analysis is column analogy¹. The elastic

¹Indeterminate Structural Analysis, J. Sterling Kinney; Addison-Wesley Publishing Co., Inc., 1957; Chapter 10, Section 10-2, P. 445

loads for fixed end moments are derived for point loads only. The point loads are placed at each successive tenth point of the span.

The analogous column is built up by dividing the miminum moment of inertia by the average moment of inertia for each segment. See Figures 15 and 16.

POSSIBLE MOMENT OF INERTIA PATTERN Figure 15

RESULTING ANALOGOUS COLUMN Figure 16

The areas and moments of the areas are calculated for all segments and summed up. The distance from the left end to the centroid of the column is next calculated by dividing the summation of moments by the summation of areas.

Next, the moment of inertia of the analogous column is calculated about its own centroid.

By definition, the stiffness of a member is that moment necessary to rotate the end of the member one radian. So a load of one radian is applied at one end at a time and the resultant flexural strains are calculated from the flexural strain formula:

F = P/A ± Pec/I which, with a unit load, breaks down to 1/Area ± ec/I.

Where e = eccentricity of load

c = distance to calculated strain

I - moment of inertia of analogous column

 $FL = 1/\text{Area} + Y_0^2/I$, $F_2 = 1/\text{Area} - X_0(L-X_0)/I$, $FR = 1/\text{Area} + (L-X_0)^2/I$,

Where X_0 = distance to centroid of column

FL = relative stiffness at the left end

FR = relative stiffness at the right end

Again, by definition, the carryover is that portion of the moment that will go to the opposite end of a member when the end has rotated one

radian. Therefore, F2 is the amount and F2/FL is the carryover factor for the left end and F2/FR is the carryover factor for the right end.

To demonstrate, Table I will show the calculations for the stiffness of the member found in Figure 16. The table will use only three segments, although the program uses twenty.

ment	ment nate Length Area Arm Moment $I_c = b\frac{d}{12}$ $I_t = A d$												
1 2	.5	.2	.1	.1	.01	$(.5) .2^3/12 = .00033$ $(.75) .2^3/12 = .0005$	$(.1)$ $.46^2 = .02116$ $(.15)$ $.26^2 = .01014$						
2 3	1.00	.6	.15 .6 .85	.1 .3 .7	.045 .42 .475	$(1) .6^3/12 = .0003$ $(1) .6^3/12 = .018$ 0.01883	$\begin{array}{c} (.13).2001014 \\ (.6) .14^{2} = .01176 \\ \hline .04306 \end{array}$						
	$X_0 = \frac{.475}{.85} = .5588$ $I = .01883 + .04306 = .06189$												
FL =	$\frac{1}{.85}$ +	$\frac{.5588^2}{.06189}$	= 6.22	18									
FR =	$\frac{1}{.85}$ +	$\frac{(15)}{.06189}$	588)2	= 4.3217	•								
F2 =	$\frac{1}{.85}$ -	$\frac{(15)}{.06189}$	588) .	<u>5588</u> = -	2.8071								
CL =	$F_2 = \frac{1}{.85} - \frac{(15588) .5588}{.06189} = -2.8071$ $CL = \frac{-2.8071}{6.2218} =45117 \qquad CR = \frac{-2.8071}{4.3217} =6495$												

Moment

Seg- Ordia

TABLE I

The calculations for fixed end moments are a continuation of the stiffness and carryover calculations. The elastic load is the simple beam moment diagram which is imposed over the analogous column. The volume of the moment diagram with a width equal to the ordinates of the column is calculated as illustrated in Figure 17 and Table II.

The moment of the volume about the centroid is then calculated and the flexure formula again applied to find the strains at each end. Table II illustrates the calculations for the problem in Figure 17, with the unit load at the center of the span. The fixed end moments (FEM) are represented by the flexure caused

ANALOGOUS COLUMN LOADED WITH MOMENT DIAGRAM
(Unit load at 0.5 L)
FIGURE 17

ELASTIC LOAD AREAS AND DISTANCES TO CENTROIDS OF AREAS
Figure 18

by the loading, just as in the stiffness case. Fixed end moments for any other loading condition may be calculated in exactly the same manner.

	SEG.	AVG. ORD	LENGTH	WIDTH	VOLUME	ARM	MOMENT
	1	<u>()+.1</u>	.2	.5	.005	56+.133=427	002135
	2	1+.2	. 2	.75	.0225	56+.311=249	00560
	3	00245					
	4	·25+0 2	. 5	1.	.0625	56+.667=.107	.00668
I	3385				.1125		00351
	64	.0317 = .1637					
	IEE, IS	= 1125 +	.06189	• • • • • • • • • • • • • • • • • • • 	.132	0249 = .1071	

TABLE II

It may be noted that the average ordinates and distances to the centroids of the segments are independent of the width of the analogous column for any given moment diagram. A table of values has been prepared for each ordinate and distance, as illustrated in Figure 18, and the resulting values have been stored in the program.

DC401, Standard Analysis

General. This program includes the analysis for all six of the cell type structures (single cell, double cell, etc. thru six cells); the six span integral leg structure, called cell seven; six span continuous (cell eight); 19 span continuous, denoted as cell number nine.

The cell structure with its nomenclature is used for the first eight cells (cell number one thru eight, plus cells ten and eleven) and is shown in Figure 19. The 19 span continuous structure (cell nine) has a different nomenclature and may be found in Figure 20.

NOMENCLATURE OF CELL STRUCTURE

Figure 19

NOMENCLATURE OF 19 SPAN CONTINUOUS STRUCTURE Figure 20

Method of Analysis. The slope-deflection method² is the method used in the analysis of the cell structure. Equations were written for each member (span) and set up in a matrix equation form for inversion.

The general conditions of the structure are:

- a. Sidesway was not allowed; displacement angles at joints B,D, F,H,J,L and N of spans 7 thru 13 respectively equal zero.
- b. Settlement at supports was not allowed, all other displacement angles equal zero.

DEFINITION OF TERMS

MAC = Final moment (after distribution at joint A in member AC [span 1])

FAB = Fixed end moment at joint A in member AB (span 7)

θA = rotation of joint A due to moment distribution

KAC = Relative stiffness in member AC at end A

CCA = Carryover factor in member AC at end C

SAC = KAC times CAC = KCA times CCA

 $\rho 7$ = Displacement angle of span 7

SINGLE CELL ANALYSIS

Slope-deflection equations are:

1.1 MAB = FAB - KAB \times Θ A - CBA \times KBA \times Θ B + (KAB + CBA \times KBA) \times Θ 7

1.2 MAC = FAC - KAC \times ΘA - CCA \times KCA \times ΘC + (KAC + CCA \times KCA) \times $\rho 1$

1.3 MBA = FBA - KBA x θ B - CAB x KAB x θ A + (KBA + CAB x KAR) x ρ 7
1.4 MBD = FBD - KBD x θ B - CDB x KDB x θ D + (KBD + CDB x KDB) x ρ 14

1.5 MCA = FCA - KCA x θ C - CAC x KAC x θ A + (KCA + CAC x KAC) x ρ 1

1.6 MCD = FCD - KCD x θ C - CDC x KDC x θ D + (KCD + CDC x KDC) x θ 8

1.7 MDB = FDB - KDB x θ D - CBD x KBD x θ B + (KDB + CBD x KBD) x ϕ 14

1.8 MDC = FDC - KDC x θ D - CCD x KCD x θ C + (KDC + CCD x KCD) x ρ 8

Statical condition equations are:

2.1 MAB = - MAC

2.2 MBD = - MBA

2.3 MCD = - MCA

2.4 MDB = -1 MDC

2.5 pl, p7, p8 and p14 = zero

Set identities are:

Zibid, page 477

```
3.1 SAC = KAC x CAC = KCA x CCA
3.2 SAB = KAB x CAB = KBA x CBA
3.3 SBD = KBD x CBD = KDB x CDB
3.4 SCD = KCD x CCD = KDC x CDC
```

Substituting equations 2 and 3 into equations 1 and arranging in matrix form, we get the matrices displayed in Figure 21.

ONE CELL MATRICES
Figure 21

DOUBLE CELL ANALYSIS

Slope-deflection equations. The equations of single cell are valid and the additional equations are:

```
1.9 MCE = FCE - KCE x 0C - CEC x KEC x 0E
1.10 MEC = FEC - KEC x 0E - CCE x KCE x 0C
1.11 MDF = FDF - KDF x 0D - CFD x KFD x 0F
1.12 MFD = FFD - KFD x 0F - CDF x KDF x 0D
1.13 MEF = FEF - KEF x 0E - CFE x KFE x 0F
1.14 MFE = FFE - KFE x 0F - CEF x KEF x 0E
```

Statical condition equations are:

```
2.2 MBD = - MBA

2.3 MFD = - MFE

2.4 MEF = - MEC

2.5 MCD = - (MCA + MCE)

2.6 MDF = - (MDB + MDC)
```

2.1 MAB = - MAC

Set identities (additional) are:

```
SCE = KCE x CCE = KEC x CEC
SDF = KDF x CDF = KFD x CFD
SEF = KEF x CEF = KFE x CFE
```

Again, by substitution and arranging in matrix form, we get the matrices displayed in Figure 22.

								KAC		SAC		Ι	T		MAC	1	FAG
1								MAC		SAC	-				MAC		FAC
	1.							SAB	KBA						MBA		FBA
		1						SAC		KCA					MCA		FCA
			1							Ксе		SCE			MCE		FCE
L				1					SBD		KDB				MDB		FDB
					1					SCD	KDC				MDC		FDC
						1				SCE		KEC		Χ	MEC	=	FEC
							1					SEF	KFE		MFE		FFE
-1								Kae	Sae						θА		FAB
	- 1								KBD		SBD				θВ		FBD
		-1	-1							Kcd	Scd				θС		FCD
				-1	-1						KDF		Sdf		θЪ		FDF
						-1				_		CEF	SEF		θЕ		FEF
							-1				SDF		KFD		θF		FFD

TWO CELL MATRICES Figure 22

TRIPLE CELL ANALYSIS

Slope-deflection equations. The previous equations are valid and the additional equations are:

```
1.15 MEG = FEG - KEG x 0E - CGE x KGE x 0G
1.16 MGE = FGE - KGE x 0G - CEG x KEG x 0E
1.17 MGH = FGH = KGH x 0G - CHG x KHG x 0H
1.18 MHG = FHG - KHG x 0H - CGH x KGH x 0G
1.19 MHH = FFH - KHH x 0F - CHF x KHF x 0H
1.20 MHF = FHF - KHF x 0H - CFH x KFH x 0F
```

Statical condition equations and identities are:

```
SAB = KAB \times CAB = KBA \times CBA
2.1 \text{ MAB} = - \text{ MAC}
                                      3.1
2.2 \text{ MBD} = - \text{MBA}
                                      3.2
                                             SCD = KCD \times CCD = KDC \times CDC
2.3 \text{ MHF} = - \text{ MIG}
                                      3.3
                                             SCE = KCE \times CCE = KEC \times CEC
                                             SDF = KDF \times CDF = KFD \times CFD
2.4 \text{ MGH} = - \text{ MGE}
                                      3.4
                                      3.5
                                             SEG = KEG \times CEG = KGE \times CGE
2.5 \text{ MCD} = - (\text{MCA} + \text{MCE})
2.6 \text{ MDF} = - \text{ (MDC} + \text{MDB)}
                                      3.6
                                              SFH = KFH x CFH = KHF x CHF
                                      3.7
                                              SAC = KAC \times CAC = KCA \times CCA
2.7 \text{ MEF} = - \text{ (MEC} + \text{MEG)}
                                              SBD = KBD \times CBD = KDB \times CDB
2.8 \text{ MFH} = - \text{ (MFE} + \text{MFD)}
                                      3.8
                                      3.9
                                             SEF = KEF x CEF = KFE x CFE
                                      3.10 SGH - KGH \times CGH = KHG \times CHG
```

By substituting equations 2 and 3 into 1 and arranging into matrix form, we get the matrices displayed in Figure 23.

FOUR CELL ANALYSIS

Slope-deflection equations. Previous equations are valid. The new equations required are:

```
1.21 MGI = FGI - KGI x 0G - KIG x CIG x 0I

1.22 MIG = FIG - KIG x 0I - KGI x CGI x 0G

1.23 MIJ = FIJ - KIJ x 0I - KJI x CJI x 0J

1.24 MJI = FJI - KJI x 0J - KIJ x CIJ x 0I

1.25 MJII = FJII - KJI x 0J - KHJ x CHJ x 0H

1.26 MJJ = FIJ - KJJ x 0H - KJH x CJH x 0J
```

Statical condition equations and identities are:

```
2.1 MAB = - MAC
                                                   3.1 SAB = KAB \times CAB = KBA \times CBA
2.2
     MBD = - MBA
                                                   3.2
                                                         SCD = KCD \times CCD = KDC \times CDC
2.3 \text{ MJH} = - \text{MJI}
                                                   3.3 SCE = KCE \times CCE = KEC \times CEC
2.4 \text{ MIJ} = - \text{MIG}
                                                   3.4 SDF = KDF \times CDF = KFD \times CFD
2.5 \text{ MCD} = - (\text{MCA} + \text{MCE})
                                                   3.5 SEG = KEG \times CEG = KGE \times CGE
2.6 \text{ MDF} = - \text{ (MDC} + \text{MDB)}
                                                   3.6 SFH = KFH \times CFH = KHF \times CHF
2.7 \text{ MEF} = - (\text{MEC} + \text{MEG})
                                                   3.7 SGI = kGI \times CGI = KIG \times CIG
2.8 \text{ MFH} = - \text{ (MFE + MFD)}
                                                   3.8 SHJ = KHJ \times CHJ = KJH \times CJH
2.9 \text{ MGH} = - \text{ (MGE X MGI)}
                                                  3.9 SAC = KAC \times CAC = KCA \times CCA
2.10 \text{ MHJ} = - (\text{MHG} + \text{MHF})
                                                  3.10 SBD = KBD x CBD = KDB x CDB
                                                   3.11 SEF = KEF x CEF = KFE x CFE
                                                   3.12 SGH = KGH \times CGH = KHG \times CHG
                                                   3.13 \text{ SIJ} = \text{KIJ} \times \text{CIJ} = \text{KJI} \times \text{CJI}
```

By substituting equations 2 and 3 into 1 and arranging into matrix form, we get the matrices displayed in Figure 25, page 53.

				· ·					1							0			ין ק	-0		,	
1.												KAC		SAC							MAC		FAC
	1.											Sab	Ква								MBA		FBA
		1.										SAC		Кса							MCA		FCA
			1.											КСЕ		SCE					MCE		FCE
				1.									SBD		KDВ						MDB		FDB
					1.									Scd	Kda						MDC		FDC
·						1.								SCE		KEC					MEC		FEC
							1.									KEG		SEG			MEG		FEG
				~				1.							SDF		KFD				MFD		FFD
									1.							Sef	KFE			Х	MFE	_	FFE
										1.						SEG		KGE		2	MGE		FGE
											1.							SGH	КнG		MHG		FHG
-1.										1-7		KAB	SAB					,			θА		FAB
	-1.												Квр		SBD						θВ		FBD
		-1.	-1.											Kcd							9 C		FCD
				-1.	-1.										KDF		SDF				θD		FDF
						-1.	-1.									Kef	SEF				θЕ		FEF
								-1.	-1.								KFH		SFH		θF		FFH
									-	-1.								КGН	SGH		θG		FGH
											-1.						SFH		Кнг		θH		FHF

THREE CELL
MATRICES
Figure 23

FIVE CELL ANALYSIS

Slope-deflection equations. Previous equations are valid. The new equations required are:

```
1.27 MIK = FIK - KIK x 0 I - KKI x CKI x 0 K
1.28 MKI = FKI - KKI x 0 K - KIK x CIK x 0 I
1.29 MKL = FKL - KKL x 0 K - KLK x CLK x 0 L
1.30 MLK = FLK - KLK x 0 L - KKL x CKL x 0 K
1.31 MLJ = FLJ - KLJ x 0 L - KJL x CJL x 0 J
1.32 MJL = FJL - KJL x 0 J - KLJ x CLJ x 0 L
```

Statical condition equations and identities are:

```
2.1 MAB = - MAC
                                                                                       SAB = YAB \times CAB = KBA \times CBA
                                                                              3.1
2.2 MBD = - MBA
                                                                              3.2
                                                                                       SCD = KCD \times CCD = KDC \times CDC
2.3 \text{ MLJ} = - \text{MLK}
                                                                              3.3 SCE = KCE \times CCE = KEC \times CEC
2.4 MKL = - MKI
                                                                             3.4 SDF = KDF x CDF = KFD x CFD
2.5 \text{ MCD} = - (\text{MCA} + \text{MCE})
                                                                             3.5 SEG = KEG x CEG = KGE x CGE
2.5 MCD = - (MCA + MCE)

2.6 MDF = - (MDC + MDB)

2.7 MEF = - (MEC + MEG)

2.8 MFH = - (MFE + MFD)

2.9 MGH = - (MGE + MGI)

2.10 MHJ = - (MHG + MHF)

2.11 MIJ = - (MIG + MIK)

2.12 MJL = - (MJI + MJH)
                                                                  3.6 SFH = KFH x CFH = KHF x CHF
3.7 SKL = KKL x CKL = KLK x CLK
3.8 SGI = KGI x CGI = KIG x CIG
3.9 SHJ = KHJ x CHJ = KJH x CJH
3.10 SIK = KIK x CIK = KKI x CKI
3.11 SJL = KJL x CJL = KLJ x CLJ
3.12 SAC = KAC x CAC = KCA x CCA
                                                                            3.12 \text{ SAC} = \text{KAC} \times \text{CAC} = \text{KCA} \times \text{CCA}
2.12 \text{ MJL} = - (\text{MJI} + \text{MJH})
                                                                             3.13 \text{ SBD} = \text{KBD} \times \text{CBD} = \text{KDB} \times \text{CDB}
                                                                              3.14 SEF = KEF \times CEF = KFE \times CFE
                                                                              3.15 SGH - KGH x CGH = KHG x CHG
                                                                              3.16 \text{ SIJ} = \text{KIJ} \times \text{CIJ} = \text{KJI} \times \text{CJI}
```

By substituting equations 2 and 3 into 1 and arranging into matrix form, we get the matrices displayed in Figure 27, page 54.

SIX CELL ANALYSIS

Slope-deflection equations. The previous equations are valid and the new equations are:

```
1.33 MKM = FKM - KKM x 0K - KMK x CMK x 0M
1.34 MMK = FMK - KMK x 0M - KKM x CKM x 0K
1.35 MMN = FMN - KMN x 0M - KNM x CNM x 0N
1.36 MNM = FNM - KNM x 0N - KMN x CMN x 0M
1.37 MNL = FNL - KNL x 0N - KLN x CLN x 0L
1.38 MLN = FLN - KLN x 0L - KNL x CNL x 0N
```

Statical condition equations and identities are:

```
2.1 MAB = - MAC
2.2 MBD = - MBA
2.3 MMN = - MMK
2.4 MNL = - MNM
2.5 MCD = - (MCA + MCE)
2.6 MDF = - (MCC + MDB)
2.7 MEF = - (MEC + MEG)
2.8 MFH = - (MFE + MFD)
2.9 MGH = - (MGE + MGI)
2.10 MHJ = - (MHG + MHF)
2.11 MJL = - (MJI + MJH)
2.12 MIJ = - (MIG + MIK)
2.13 MKL = - (MKI + MKM)
2.14 MLN = - (MLK + MLJ)
```

```
SAB = KAB \times CAB = KBA \times CBA
                                               3.11 SJL = KJL \times CJL = KLJ \times CLJ
3.2
      SCD = KCD \times CCD = KDC \times CDC
                                               3.12 SKM = KKM \times CKM = KMK \times CMK
      SCE = KCE \times CCE = KEC \times CEC
3.3
                                               3.13 SLN = KLN \times CLN = KNL \times CNL
3.4
      SDF = KDF \times CDF = KFD \times CFD
                                               3.14 SAC = KAC \times CAC = KCA \times CCA
      SEG = KEG \times CEG = KGE \times CGE
                                               3.15 SBD = KBD \times CBD = KDB \times CDB
3.5
      SFH = KFH \times CFH = KHF \times CHF
3.6
                                               3.16 SEF = KEF \times CEF = KFE \times CFE
                                               3.17 SGH = KGH \times CGH = KHG \times CHG
3.7
      SMN = KMN \times CMN = KNM \times CNM
3.8
      SGI = KGI \times CGI = KIG \times CIG
                                               3.18 SIJ = KIJ \times CIJ = KJI \times CJI
      SHJ = KHJ \times CHJ = KJH \times CJH
                                               3.19 SKL = KKL x CKL = KLK x CLK
3.10 SIK = KIK \times CIK = KKI \times CKI
```

By substituting equations 2 and 3 into 1 and arranging into matrix form, we get the matrices displayed in Figure 28, page 55.

SEVEN CELL ANALYSIS (Six span integral leg structure)

Slope-deflection equations are:

```
MAC = FAC - KAC \times \theta A - KCA \times CCA \times \theta C
       MCA = FCA - KCA \times \theta C - KAC \times CAC \times \theta A
       MCD = FCD - KCD \times \theta C - KDC \times CDC \times \theta D
       MDC = FDC - KDC \times \theta D - KCD \times CCD \times \theta C
1.9 MCE = FCE - KCE x \thetaC - KEC x CEC x \thetaE
1.10 MEC = FEC - KEC \times \theta E - KCE \times CCE \times \theta C
1.13 MEF = FEF - KEF \times \theta E - KFE \times CFE \times \theta F
1.14 MFE = FFE - KFE x \thetaF - KEF x CEF x \thetaE
1.15 MEG = FEG - KEG x \thetaE - KGE x CGE x \thetaG
1.16 MGE = FGE - KGE x \thetaG - KEG x CEG x \thetaE
1.17 MGH = FGH - KGH \times \thetaG - KHG \times CHG \times \thetaH
1.18 MHG = FHG - KHG \times \thetaH - KGH \times CGH \times \thetaG
1.21 MGI = FGI - KGI \times \theta G - KIG \times CIG \times \theta I
1.22 MIG = FIG - KIG \times \theta I - KGI \times CGI \times \theta G
1.23 MIJ = FIJ - KIJ \times \theta I - KJI \times CJI \times \theta J
1.24 MJI = FJI - KJI \times \theta J - KIJ \times CIJ \times \theta I
1.27 MIK = FIK - KIK x \theta I - KKI x CKI x \theta K
1.28 MKI = FKI - KKI \times \theta K - KIK \times \theta I
1.29 MKL = FKL - KKL \times 0K - KLK \times CLK \times 0L
1.30 MLK = FLK - KLK \times \thetaL - KKL \times CKL \times \thetaK
1.33 MKM = FKM - KKM \times \theta K - KMK \times CMK \times \theta M
1.34 MMK = FMK - KMK \times \theta M - KKM \times CKM \times \theta K
```

Statical condition equations and identities are:

```
2.1
      MAC = Zero
                                                3.1
                                                      SAC = KAC \times CAC = KCA \times CCA
2.2
      MDC = Zero
                                                      SCD = KCD \times CCD = KDC \times CDC
                                                3.2
2.3
      MFE = Zero
                                                3.3
                                                      SCE = KCE \times CCE = KEC \times CEC
      MHG = Zero
                                                      SEF = KEF \times CEF = KFE \times CFE
2.4
                                                3.4
      MJI = Zero
2.5
                                                      SEG = KEG \times CEG = KGE \times CGE
                                                3.5
2.6
     MLK = Zero
                                                3.6
                                                      SGH = KGH \times CGH = KHG \times CHG
2.7
     MMK = Zero
                                               3.7
                                                      SGI = KGI \times CGI = KIG \times CIG
2.8
      MCD = - (MCA + MCE)
                                               3.8
                                                      SIJ = KIJ \times CIJ = KJI \times CJI
2.9
      MEF = - (MEC + MEG)
                                               3.9
                                                      SIK = KIK \times CIK = KKI \times CKI
2.10 \text{ MGH} = - (\text{MGE} + \text{MGI})
                                               3.10 SKL = KKL \times CKL = KLK \times CLK
                                               3.11 SKM = KKM \times CKM = KMK \times CMK
2.11 \text{ MIJ} = - \text{ (MIG + MIK)}
2.12 \text{ MKL} = - (\text{MKI} + \text{MKM})
```

By substituting equations 2 and 3 into 1 and arranging into matrix form, we get the matrices displayed in Figure 26, page 53.

EIGHT CELL ANALYSIS (Six span continuous structure)

Slope-deflection equations are:

```
1.2 MAC = FAC - KAC x 0A - KCA x CCA x 0C
1.5 MCA = FCA - KCA x 0C - KAC x CAC x 0A
1.9 MCE = FCE - KCE x 0C - KEC x CEC x 0E
1.10 MEC = FFC - KEC x 0E - KCE x CCE x 0C
1.15 MEG = FEB - KEG x 0E - KCE x CCE x 0C
1.16 MCC = FGE - KGE x 0G - KEG x CEG x 0E
1.21 MGI = FGI - KGI x 0G - KIG x CIG x 0I
1.22 MIG = FIG - KIG x 0I - KGI x CGI x 0G
1.27 MIK = FIK - KIK x 0I - KKI x CKI x 0K
1.28 MKI = FKI - KKI x 0K - KIK x CIK x 0I
1.33 MKM = FKM - KKM x 0K - KMK x CMK x 0M
1.34 MIK = FMK - KMK x 0M - KKM x CKM x 0K
```

Statical condition equations and identities are:

2.1 'MC = Zero	3.1 SAC = KAC	x CAC =	KCA x CCA
2.2 MMK = Zero	3.2 SCE = KCE	x CCE =	KEC x CEC
2.3 MCA = - MCE	3.3 SEG = KEG	x CEG =	KGE x CGE
2.4 MEC = - MEG	3.4 SGI = KGI	x CGI =	KIG x CIG
2.5 MCE = - MGI	3.5 SIK = KIK	x CIK =	KKI x CKI
2.6 MIG = - MIK	3.6 SKM = KKM	x CKM =	KMK x CMK
2.7 MKI = - MKM			

By substituting equations 2 and 3 into 1 and arranging into matrix form, we get the matrices displayed in Figure 24.

I					S _{AC}	K _{CA}							M _{CA}		F _{CA}
	1					SCE	K _{EC}						MEC		F _{EC}
	,	1					SEG	K _{GE}					$^{\mathrm{M}}_{\mathrm{GE}}$		F _{GE}
			1					$S_{ m GI}$	K _{IG}				M _{IG}		F _{IG}
				1					SIK	K _{KI}			MKI		F _{KI}
					K _{AC}	S _{AC}						Х	$^{\theta}A$	=	FAC
-1						K_{CE}	SCE						θС		FCE
	-1						K _{EG}	SEG					θЕ		FEG
		-1						K _{GI}	S _{GI}				θG		F _{GI}
			-1						KIK	S_{IK}			θΙ		F _{IK}
				- 1						KKM	SKM		θК		FKM
										S KM	K MK		θМ		F _{MK}

Figure 24

Slope-deflection equations are:

```
MAB = FAB - KAB \times \theta A - CBA \times KBA \times \theta B
       MBA = FBA - KBA \times \theta B - CAB \times KAB \times \theta A
      MBC = FBC - KBC x \thetaB - CCB x KCB x \thetaC
1.3
       MCB = FCB - KCD \times \theta C - CBC \times KBC \times \theta B
       MCD = PCD - KCD \times \theta C - CDC \times KDC \times \theta D
      \mathsf{IDC} = \mathsf{FDC} \quad \mathsf{KDC} \times \mathsf{\thetaD} - \mathsf{CCD} \times \mathsf{KCD} \times \mathsf{\thetaC}
1.0
       MDE = FDE - KDE \times \theta D - CED \times KED \times \theta E
1.8
      'MED = MED - KED x \theta E - CDE x KDE x \theta D
1.9 MHF = 19HF - KLF \times 9E - CFE \times KFE \times 9F
1.10 MFE = FFE - KFE x \theta F - CEF x KEF x \theta E
1.11 MFG = FFG - KFG x \theta F - CGF x KGF x \theta G
1.1? GF = FGF - KGF \times \theta G - CFG \times KFG \times \theta F
1.15 96H = 16H - KGH \times \theta G - CHG \times KHG \times \theta H
1.14 MHG = FHG - NHG \times \thetaH - CGH \times KGH \times \thetaG
1.15 MH = FHI - KHI \times \thetaH - CIH \times KIH \times \thetaI
1.16 Mill = FTH - KTH x \theta I - CHI x KHI x \theta II
1.17 MIJ = FIJ - KIJ \times \theta I - CJI \times KJI \times \theta J
1.18 MJ1 = FJ1 - KJI x \theta J - CIJ x KIJ x \theta I
1.19 MJK = FJK - KJK x \theta J - CKJ x KKJ x \theta K
1.20 MkJ = FKJ - KKJ \times \thetaK - CJK \times KJK \times \thetaJ
1.21 MKL = FKL - KKL x 0K - CLK x KLK x 0L
1.22 MLK = FLK - KLK \times \thetaL - CKL \times KKL \times \thetaK
1.23 MLM = FLM - KLM \times \theta L - CML \times KML \times \theta M
1.24 'ML = FML - KML \times \thetaM - CLM \times KLM \times \thetaL
1.25 MeV = FMN - KMN x \thetaM - CMM x KMM x \thetaN
1.26 MNM = FNM - KNM \times \thetaN - CMN \times KMN \times \thetaM
1,27 ANO = FNO - KNO x \theta N - CON x KON x \theta O
1.28 MON = FON - KON x \theta O - CNO x KNO x \theta N
1.29 MOP = FOP - KOP x \thetaO - CPO x KPO x \thetaP
1.50 MPO = FPO - KPO x \theta P - COP x KOP x \theta O
1.51 MP) = FPQ - KPQ x \theta P - CQP x KQP x \theta Q
1.32 MQP = FQP - KQP \times \theta Q - CPQ \times KPQ \times \theta P
1.33 MOR = FQR - KQR \times \thetaQ - CRQ \times KRQ \times \thetaR
1.34 MRQ = FRQ - KRQ \times \theta R - CQR \times KQR \times \theta Q
1.35 MRS = FRS - KRS x \theta R - CSR x KSR x \theta S
1.30 MSR = TSR - KSR x \theta S - CRS x KRS x \theta R
1.57 MST = FST - KST x \thetaS - CTS x KTS x \thetaT
1.38 ATS = FTS - KTS x \theta T - CST x KST x \theta S
```

Statical condition equations and identities are:

2.1				2.11 MJK	=	- NJ
2.2				2.12 MKJ.	= -	- MK
2.3				2.13 MLM		
			· MCA	2.14 MMN	=	- MM
2.0	HDE	= -	· MDC	2.15 MNO	= -	- MN
			MED	2.16 MOP	= -	- MOI
			MEE	2.17 MPQ	= -	- MPO
5.8	TEH	= -	MGF	2.18 MQR		
2.9	HIII	= -	MIG	2.19 MRS		
2.IO	MIJ	= -	MIH	2.20 MST		

```
SAB = KAB \times CAB = KBA \times CBA
                                                 3.11 SKL = KKL \times CKL = KLK \times CLK
      SBC = KBC \times CBC = KCB \times CCB
                                                 3.12 SLM = KLM x CLM = KML x CML
3.2
      SCD = KCD \times CCD = KDC \times CDC
                                                 3.13 SMN = KMN x CMN = KMM x CMM
3.3
      SDE = KDE \times CDE = KED \times CED
                                                 3.14 SNO = KNO x CNO = KON x CON
3.4
3.5
     SEF = KEF \times CEF = KFE \times CFE
                                                 3.15 SOP = KOP \times COP = KPO \times CPO
      SFG = KFG \times CFG = KGF \times CGF
                                                 3.16 SPQ = KPQ x CPQ = KQP x CQP
      SGH = KGH \times CGH = KHG \times CHG
                                                 3.17 \text{ SQR} = \text{KOR} \times \text{CQR} = \text{KRO} \times \text{CRO}
3.7
3.8 SHI = KHI x CHI = KIH x CIH
                                                 3.18 SRS = KRS \times CRS = KSR \times CSR
3.9 SIJ = KIJ \times CIJ = KJI \times CJI
                                                 3.19 SST = KST \times CST = KTS \times CTS
3.10 \text{ SJK} = \text{KJK} \times \text{CJK} = \text{KKJ} \times \text{CKJ}
```

By substituting equations 2 and 3 into equation 1 and arranging into matrix form, we get the matrices displayed in Figure 29, page 56.

FOUR CLU.

MTRICES

Figure 25

INTEGRAL 1000

'MATRICES

(Coll = Sover)

SIX SEY

FIVE CELL MATRICES

Figure 27

SAX CELL MATRICES

Figure 28

MINETEEN SPAN CONTINUOUS MATRICES

(Cell = Nine) Figure 29 DC401A, 3 Span Slant Leg Rigid Frame Analysis

By slope-deflection method. .

STRUCTURE NOMENCLATURE Figure 30

Assumptions:

Pinned joints at A, D, F, and G (Soments = 0).

b. Sidesway and settlement of joint C and E are allowed.

c. No exterior horizontal reaction at A and G.

d. All members remain their original lengths.

Definitions:

MAC = Final moments at A in member AC.

FAC = Fixed end moment at A in member AC.

KAC = Stiffness at A in member AC.

CAC = Carryover factor at A in member AC.

 θA = Angle joint A will rotate under loading

 $\rho\Lambda$ = Angle defined by Δ/L , where Δ is the amount of translation of end of member and L = length of member.

= Amount of sidesway (travel in horizontal direction).

II = Summation of horizontal reactions.

L8 = Length of member 8.

Derivations:

$$a = HD + HF$$

b.
$$MCD = RDxL8xCos\alpha_1 + IDxL8xSin\alpha_1$$

b. MCD = RDxL8xCos
$$\alpha_1$$
 + HDxL8xSin α_1
c. MEF = -RFxL9xCos α_2 + HFxL9xSir α_2

By combining,

$$H = \frac{\text{MCD}}{\text{L8X} \sin \alpha_1} + \frac{\text{MEF}}{\text{L9X} \sin \alpha_2} - \frac{\text{RD} \cos \alpha_1}{\sin \alpha_1} + \frac{\text{RF} \cos \alpha_2}{\sin \alpha_2}$$
 (Equation 1)

Considering that shears (or reactions) at joints C and E cause moments in the structure, the condition equations for reactions are written.

SHEAR SKETCH Figure 31

Condition 1

Load in Span 1.
$$(0 < g \le L1)$$

RC = [MCA + g]/L1 - [MCE + MEC]/L2 = RD
RD x L1 + [MCE + MEC]L1/L2 - MCA = g (Equation 2A)

$$RE = \text{NEC} + \text{NCE}/\text{L2} - \text{NEG/L3} = RF$$

$$RF + \text{NEG/L3} - [\text{NEC} + \text{NCE}]/\text{L2} = 0$$
(Equation 3A)

Condition 2

$$RE = -REG/L3 + [MCE + MEC]/L2 + [g-L1]/L2 = RF$$

$$RF + MEG/L3 - [MCE + MEC]/L2 = [g-L1]/L2 \qquad (Figure 3B)$$

 $\frac{\text{Condition 3}}{\text{Load in Span 3.}} \quad \text{(L1 + L2 < g < L1 + L2 + L3)}$

$$RC = MCA/L1 - [MCE+MEC]/L2 = RD$$

$$RD \times L1 + [MCE+MEC]L1/L2 - MCA = 0$$
(Equation 2C)

$$RE = [MCE+MCA]/L2-MEG/L3+[L1+L2+L3-g]/L3 = RF$$

 $RF = +MEG/L3-[MCE+MEC]/L2 = L1+L2+L3-g]/L3$ (Fquation 3C)

Note the similarity between equations 2A, 2B and 2C and equations 3A, 3B and 3C, the only difference being on the right of the equal sign. Let the constants be designated by C1 for equations 2 and C2 for equations 3.

Allowing sidesway of the joints causes translation (ρ) of each member end. This translation can be written in terms of a horizontal displacement Δ , (called sidesway).

TRANSLATION OF SPAN 1 AND SPAN 8 Figure 32

$$\Delta_8 = \Delta/\sin \left[\alpha_1 - \rho_1/2\right]$$

$$\Delta_1 = \Delta \cot \left[\alpha_1 - \rho_1/2\right]$$

$$\rho_1 = \Delta_8 360/2\pi L8 = 15\Delta_8/\pi L8 \quad (L8 \text{ in ft.})$$

$$\alpha_1 - \rho_1/2 = \alpha_1 - 7.5\Delta_8/\pi L8 = \alpha_1 - 2.3873\Delta_8/L8$$

We see that p, is a negligible term, therefore:

$$\Delta_8 \simeq \Delta/\sin\alpha_1$$
 $\Delta_1 \simeq \Delta \text{ Ctn } \alpha_1$
 $\Delta_9 \simeq \Delta/\sin\alpha_2$ $\Delta_3 \simeq \Delta \text{ Ctn } \alpha_2$

 $\Delta_2 = \Delta_1 + \Delta_3 \simeq \Delta \text{ Ctn } \alpha_1 + \Delta \text{ Ctn } \alpha_2$

General equations of the beams are:

```
1.1 MAC = FAC - KACx\theta - CCAxKCAx\theta + \rho_1 (KAC + CCAxKCA)
1.2 MCA = FCA - KCAx\thetaC - CACxKACx\thetaC + \rho_1 (KCA + CACxKAC)
1.3 MCE = FCE - KCEx\thetaC - CECxKECx\thetaA + \rho_2 (KCE + CECxKEC)
1.4 MEC = FEC - KECx\thetaE - CCExKCEx\thetaC + \rho_2 (KEC + CCExKCE)
1.5 MEG = FEG - KEGx\thetaE - CGEXKGEx\thetaC + \rho_3 (KEG + CGEXKGE)
1.6 MGE = FGE - KGEx\thetaC - CEGXKEGx\thetaE + \rho_3 (KGE + CEGXKEG)
1.7 MCD = FCD - KCDx\thetaC - CDCxKDCx\thetaD + \rho_8 (KCD + CDCxKDC)
1.8 MDC = FDC - KDCx\thetaD - CCDxKCDx\thetaC + \rho_8 (KDC + CCDxKCD)
1.9 MEF = FEF - KEFx\thetaE - CFEXKEFx\thetaE + \rho_9 (KFE + CFEXKEF)
1.10 MFE = FFE - KFEx\thetaF - CEFXKEFx\thetaE + \rho_9 (KFE + CEFXKEF)
```

Condition equations are:

Identities to be used:

Substituting equations 2 and 3 into equations 1 and arranging into matrix form, we get the matrices displayed in Figure 34, page 60.

I	FCE	FEC	FEG	FAC	FCD	FEF	FGE	FDC	FFE	FCA	٥ -	C2
	П											
MCA	MCE	MEC	MEG	θ	θ	Θ ^w	မိ	θВ	θ	٥	RD	RF
	×										,	
Ctn œ2							,					-
-Ctnæ, Ctnæ											1-	
T	(KCE+SCE)(Ctnæ,+Ctnæ)	(KEC+SCE)(Ctnac+Ctnaz)	(KEG+SEG) Ctnα ₂ L ₃	- (KAC SAC) Ctn cc.	- (KCD+SCD) Sin œ, Lø	(KEF+SEF) Sin $\alpha_2 L_9$	(KGE+SEG) Ctnaz	(KDC+SCD) Sin cc, Lg	(KFE+SEF) Sin œ2L9	- (KCA+SAC) Cłn α.		
						SEF			KFE			
					D	S		O	天			
					SCD			KDC				
			SEG				SGE					
	핑	S	KEG			KEF	SEG KGE		SEF			
	KCE SCE	SCE KEC	X	U	0	ㅗ	S		S	٨		
	Δ	SCI		C SAC	KCD			SCD		KC		
				KAC						SAC KCA		
L ₉ Snα ₂			-							J,		- - - 3
L ₉ Snœ ₂		-				-					 	 -
L _B Snœ,	-				_						- <u> </u> -	_ ²
La Snœ,					-					-	- -	

THREE SPAN INTEGRAL (SLANT) LEG MATRICES

(Cell Ten) Figure 34

Basic Equations are:

)
$$\Sigma[I] = I[I] + I[I] + I[I] + I[I] = \Sigma[Iorizontal Loads]$$

$$\Sigma V = \mathbb{R}A + \mathbb{R}D + \mathbb{R}F + \mathbb{R}U + \mathbb{R}J + \mathbb{R}K = \Sigma \text{Vertical Loads}$$

3)
$$|CD = -R_{\rm PL} \cdot 8 \cos \alpha 1 - R_{\rm DL} \cdot 8 \sin \alpha 1$$

4) | TEF = RFL9Cos
$$\alpha_2$$
 - FFL9Sin α_2

5) MGH =
$$-\text{RUL}10\text{Cos}_{\alpha\beta}$$
 - HHL10Sina3

6) MIJ = RJL11Cos
$$\alpha_4$$
 + IIJL11Sin α_4

By combining equations 1, 3, 4, 5, and 6,

$$H = \frac{\text{NCD}}{\text{L8Sinal}} = \frac{\text{RDCos}_{\alpha 1}}{\text{Sin}_{\alpha 1}} = \frac{\text{MGF}}{\text{L9Sin}_{\alpha 2}} + \frac{\text{RFCos}_{\alpha 2}}{\text{Sin}_{\alpha 2}} = \frac{\text{NGH}}{\text{L10Sin}_{\alpha 3}} = \frac{\text{RHCos}_{\alpha 3}}{\text{Sin}_{\alpha 3}} = \frac{\text{MLJ}}{\text{L11Sin}_{\alpha 4}}$$

RJCosa4 Sina4 Considering that shears (or reactions) at joints C, E, G, and I cause moments in the structure, the condition equations for reactions are written.

SHEAR SKETCH Figure 36

With

RC = VCA + VCL = -RD RE = VEC + VEG = -RF RG = VGE + VGI = -RH R1 = VIG + VIK = -RJ

Condition 1

And a point load in the first span $[0 \le g \le L1]$,

by substitution,

-RD = (MCA+g)/L1 - (MCE+MEC)/L2 -RF = (MEC+MCE)/L2 - (MEG+MGE)/L3 -RH = (MEG+MGE)/L3 - (MGI+MIG)/L4 -RJ = (MGI+MIG)/L4 - MIK/L5

and

Condition 2

Point load in Span #2 [L1<g<(L1+L2)]

```
by substitution,
```

```
-RC = MCA/L1 - (MCE+MEC)/L2 + (L1+L2-g)/L2 = RD

-RE = (MCE+MEC)/L2 + (g-L1)/L2 - (MEG+MGE)/L3 = RF

-RG = (MEG+MGE)/L3 - (MGI+MIG)/L4 = RH

-RI = (MGI+MIG)/L4 - MIK/L5 = RJ
```

so

-RD +	(MCE+MEC)/L2 - MCA/L1 = (L1+L2-g)/L2	(Equation 2B)
-RF +	(MEG+MGE)/L3 - (MCE+MEC)/L2 = (g-L1)/L2	(Equation 3B)
-RH +	(MGI+MIG)/L4 - (MEG+MGE)/L3 = 0	(Equation 4B)
-RJ +	MIK /L5 - (MGI+MIG)/L4 = 0	(Equation 5B)

Condition 3

Point load on Span #3 [(L1+L2)<g<(L1+L2+L3)]

VCA = MCA/L1 VCE = -(MCE+MEC)/L2

 $VEC = (MEC+MCE)/L2 \qquad VEG = -(MEG+MGE)/L3 + (L1+L2+L3-g)/L3$

VGE = (MEG+MGE)/L3+(g-L1-L2)/L3 VGI = -(MGI+MIG)/L4

VIG = (MGI+MIG)/L4 VIK = -MIK/L5

by substitution,

-RD + (MCE+MEC)/L2 - MCA/L1 = 0	(Equation 2C)
-RF + (MEG+MGE)/L3 - (MEC+MCE)/L2 = (L1+L2+L3-g)/L3	(Equation 3C)
-RH + (MGI+MIG)/L4 - (MEG+MGE)/L3 = (g-L1-L2)/L3	(Equation 4C)
-RJ + MIK/L5 - (MGI+MIG)/L4 = 0	(Equation 5C)

Condition 4

Point load in Span #4 [(L1+L2+L3)<g<(L1+L2+L3+L4)]

VCA = MCA/L1 VCE = -(MCE+MEC)/L2 VEG = -(MEG+MGE)/L3

 $VGE = (MEG+MGE)/L3 \qquad VGI = -(MGI+MIG)/L4 + (L1+L2+L3+L4-g)/L4$

VIG = (MGI+MIG)/L4+(g-L1-L2-L3)/L4 VIK = -MIK/L5

and

-RD + (1	MCE+MEC)/L2-MCA/L1 = 0	(Equation	2D)
-RF + (1	MEG+MGE)/L3-(MEC+MCE)/L2 = 0	(Equation	3D)
-RH + ()	MGI+MIG)/L4-(MEG+MGE)/L3=(L1+L2+L3+L4-g)/L4	(Equation	4D)
-RJ + M	IIK/L5 - (MGI+MIG)/L4 = (g-L1-L2-L3)/L4	(Equation	5D)

Condition 5

Load in Span #5 [(L1+L2+L3+L4)<g \leq (L1+L2+L3+L4+L5)]

VCA = MCA/L1 VCE = -(MCE+MEC)/L2 VEC = (MEC+MCE)/L2 VEG = -(MEG+MGE)/L3VGE = (MEG+MGE)/L3 VGI = -(MGI+MIG)/L4

 $VIG = (MIG+MGI)/L4 \qquad VIK = -MIK/L5 + (L1+L2+L3+L4+L5-g)/L5$

and

-RD +	(MCE+MEC)/L2 - MCA/L1 = 0	(Equation 2E)
-RF +	(MEG+MGE)/L3 - (MEC+MCE)/L2 = 0	(Equation 3E)
-RH +	(MGI+MIG)/L4 - (MEG+MGE)/L3 = 0	(Equation 4E)
-RJ +	(MIK)/L5 - (MGI+MIG)/L4 = (L1+L2+L3+L4+L5-g)/L5	(Equation 5E)

Since the left sides of all equations for RD, RF, RH, and RJ are equal, these equations can be written in the following form:

TABLE OF REACTION EQUATIONS

EQUATION		Load in Span #1	Load in Span #2			
-RD + MCE/L2 + MEC/L2 - MCA/L1 =	=	G1/L1	1-G2/L2	0	0	0
-RF + MEG/L3 + MGE/L3 - MEC/L2 - MCE/L2 =	=	0	G2/L2	1-G3/L3	0	0
-RH + MGI/L4 + MIG/L4 - MEG/L3 - MGE/L3 =	=	0	0	G3/L3	1-G4/L4	0
-RJ + MIK/L5 - MGI/L4 - MIG/L4 =	=	0	0	0	G4/L4	1-G5/L5

Where G1, G2, G3, G4, and G5 are distances from the left ends of the respective spans (1, 2, 3, 4, and 5) to the point load.

A horizontal displacement of joint A will cause corresponding displacements of joints C, E, G, I and K (See Figure 32). Ignoring the secondary displacement due to rotation, the displacements are:

```
\Delta_1 = \Delta \operatorname{Ctn}_{\alpha_1}
         \Delta_2 = \Delta \left( \text{Ctn}_{\alpha_1} + \text{Ctn}_{\alpha_2} \right)
         \Delta_3 = \Delta \left( \text{Ctn}_{\alpha_2} + \text{Ctn}_{\alpha_3} \right)
         \Delta 4 = \Delta \left( \text{Ctn}_{\alpha 3} + \text{Ctn}_{\alpha 4} \right)
        \Delta 5 = \Delta C t n \alpha 4

\Delta 8 = \Delta / S i n \alpha 1
        \Delta 9 = \Delta / Sin\alpha 2
        \Delta 10 = \Delta / \sin \alpha 3
        \Delta 11 = \Delta / Sin \alpha 4
and \rho_1 = \Delta_1/L_1 = \Delta Ctn\alpha_1/L_1
                                                                                                                                        (Equation 6)
        \rho_2 = \Delta_2/L_2 = \Delta (Ctn\alpha_1 + Ctn\alpha_2)/L_2
                                                                                                                                        (Equation 7)
        \rho_3 = \Delta_3/L_3 = \Delta (Ctn\alpha_2 + Ctn\alpha_3)/L_3
                                                                                                                                        (Equation 8)
        \rho_4 = \Delta_4/L_4 = \Delta \left( \frac{\text{Ctn}\alpha_3 + \text{Ctn}\alpha_4}{L_4} \right) / L_4
                                                                                                                                        (Equation 9)
        \rho_5 = \Delta_5/L_5 = \Delta Ctn\alpha_4/L_5
                                                                                                                                        (Equation 10)
        \rho_8 = \Delta_8/L_8 = \Delta / ((Sin\alpha_1)L_8)
                                                                                                                                        (Equation 11)
        \rho 9 = \Delta 9/L9 = \Delta / ((Sin\alpha_2)L_9)
                                                                                                                                        (Equation 12)
        \rho10= Δ10/L10=Δ /((Sinα<sub>3</sub>)L10)
                                                                                                                                        (Equation 13)
        \rho 11 = \Delta 11/L_{11} = \Delta / ((Sin\alpha 4)L_{11})
                                                                                                                                        (Equation 14)
```

Writing slope-deflection equations for the spans:

```
- MAC = FAC - KACXOA - CCAX KCAXOC - pl (KAC+CCAx KCA)
1.1
1.2' - MCA = FCA - KCA_X\theta C - CAC_X KAC_X\theta A - \rho 1 (KCA_X\theta CAC_X KAC)
1.3 - MCE = FCE - KCE \times \thetaC - CEC\times KEC \times \thetaE + \rho2 (KCE+CEC\times KEC)
     - MEC = FEC - KEC \times \thetaE - CCE\times KCE\times \thetaC + \rho2 (KEC+CCE\timesKCE)
1.4
     - MEG = FEG - KEGX\thetaE - CGEX KGEX\thetaG - \rho3 (KEG+CGEX KGE)
1.5
     - MGE = FGE - KGExθG - CEGxKEGxθE - ρ3 (KGE+CEGxKEG)
1.7
     - MGI = FGI - KGIx0G - CIGxKIGx0I + p4 (KGI+CIGxKIG)
1.8 - MIG = FIG - KIG_{X}\thetaI - CGI_{X}KGI_{X}\thetaG + _{\rho}4 (KIG+CGI_{X}KGI)
1.9 - MIK = FIK - KIKx\thetaI - CKIxKKIx\thetaK - \rho5 (KIK+CKIxKKI)
1.10 - MKI = FKI - KKI_{X}\thetaK - CIK_{X}KIK_{X}\thetaI - _{\rho}5 (KKI+CIK_{X}KIK)
1.11 - MCD = FCD - KCD_{x}\thetaC - CDC_{x}KDC_{x}\thetaD - \rho8 (KCD+CDC_{x}KDC)
1.12 - MDC = FDC - KDCx\thetaD - CCDxKCDx\thetaC - \rho8 (KDC+CCDx KCD)
1.13 - MEF = FEF - KEFxθE - CFExKFExθF - ρ9 (KEF+CFEx KFE)
1.14 - MFE = FFE - KFEx\thetaF - CEFxKEFx\thetaE - \rho9 (KFE+CEFxKEF)
1.15 - MGH = FGH - KGH_{X}\thetaG - CHG_{X}KHG_{X}\thetaH - \rho10 (KGH+CHG_{X}KHG)
1.16 - MHG = FHG - KHG \times0H - CGH\timesKGH \times0G - \rho10 (KHG+CGH\times KGH)
1.17 - MIJ = FIJ - KIJ\times01 - CJI\timesKJI\times0J - \rho11 (KIJ+CJI\timesKJI)
1.18 - MJI = FJI - KJIx\thetaJ - CIJxKIJx\thetaI - \rho11 (KJI+CIJxKIJ)
```

Writing Condition equations:

Identities to be used:

			(MCA (MEC							CAC×KAC CCE×KCE		CCA _x KCA CEC _x KEC
2.3	MGH	= -	(MGE	+	MGI)		3.3	SEG	=	CEG× KEG	=	CGEXKGE
2.4	MIJ :	= _	(MIG	+	MIK)		3.4	SGI	=	CGI×KGI	=	CIGXKIG
2.5	MAC	= ()					3.5	SIK	=	CIKXKIK	=	CKIxKKI
2.6	MDC :	= 0					3.6	SCD	=	CCDx KCD	=	CDCx KDC
2.7	MFE :	= ()					3.7	SEF	=	CEFX KEF	=	CFEx KFE
2.8	MHG	= ()					3.8	SGH	=	CGHX KGH	=	CHGx KHG
2.9	MJI	= 0					3.9	SIJ	=	CIJ× KIJ	=	CJ Ix KJI
2.10	MKI:	= 0										

Substituting equations 2.1 thru 2.10, 3.1 thru 3.9 and 6 thru 14 into equations 1.1 thru 1.18, we get the equations show in matrix form in Figure 37, page 66.

```
DC501A, Influence Lines (Statical Moments)
DC501D, Influence Lines (End Moments, Slant Leg)
```

The end influence lines are derived by multiplying the inverse matrix by the fixed end moments of point loads at each tenth point of each span.

$$MI = FIM(L) \times A(I,L) + FEM(R) \times A(I,R)$$

Where

MI = End moment at I

FFM(L) = Fixed end moment at left end of span

FEM(R) = Fixed end moment at right end of span A(I,L) = Coefficient of matrix for left moment

A(I,R) = Coefficient of matrix for right moment

ŀ	ğ	2	-2	3	128	FIG	Ħ	O E	2	ð	Fr	É	Z	1	2	FJI	2	J	ą	8	ತ	ž
\$		F)		3	ğ	S	ğ	8	ş	00	18 18 18	h. O	g		ä	3	ä	8	2	ā	2	٥
	- (Ker-Sca) (Ctral •Ctra2)	- (ESC+SCS) (Ctno.1 +Ctns.2) L.2	(IDE+SEC) (Ctno2+Ctne3)	(Ker-Sec) (Cme2-Cme3)	-(ICI+SCI)(Cthe3+Cthe4) L3	-(KIG+SEI) (Cthe 3+Cthe4) LA	(KIR+SIR) (Ctmo4)	(KAC+SAC) (CER-1)	(ICA+SAC) (Cthal)	(ECD+SCD)		STEPSET)	(E28-958)	(Mar- 800)	(ms-ms)	Sin-stil	(EXI+SIR) (Ctho4)					(CS-368)
-Ctna4																					-1	
Ctno 3																				-:		
-Ctna2																			7			
Ctna1																		-				
							SIR										ä					
					138	KIG	KIK	_							72	St. LI	SIK	_				
													3	9								
\vdash			Sign	IGE	IC.	33		_			SEF	S.A.O	IIC.	ğ		-	-	-				
	S	KIRC	Kec	3							à	SEP										Ü
-	KC?	20			_			SAC	Ş	ICD SCD							\vdash				_	Sco IOC
								KAC	S													
11151no4							7								-						1 23	
LITSInot						7									-					ᅺ	<u>-</u> 12	
1 Litsina3					Ţ								1							-15	1. 17	
1 11081/no 3				7									1						-E	-1		
Listan			-1								1								-B	-1-		
1 1951ac2		-1									1							- □	- <u>1</u>			
Lasinal										1								-12	1.0			
1 Leisel	I								-:	-1								- <u>L</u>				

FIVE SPAN INTEGRAL (SIANT) LEG MATRICES

(Cell Eleven)

Figure 37

The shears and statical moments are calculated by two different routines. One routine is when the span is loaded, Figure 38, and the other when the span is unloaded, Figure 39. The equations for the cases are as shown below:

$$VL = \frac{(LR-g)P + ML + MR}{LR(SR)}$$

$$VR = P - VL$$

When
$$X < g$$

$$SMX = VL(X)SR - ML$$

When
$$X > g$$

$$SMX = VL(X)SR - ML - P(X-g)SR$$

Where

LR = Relative span length

SR = Actual span length divided by relative span length

 $VL = \frac{(ML + MR)}{LR(SR)}$

SMX = VL(X)SR - ML

VR = -VL

VR = Shear

SM = Statical Moment

DC511, Influence Areas. The areas are found by using the trapezoidal rule with increments of tenths.

TYPICAL AREA CONDITION FOR ONE SPAN Figure 40

Dividing the plane area into 10 strips with equidistant parallel lines y_0 , y_1 , . . y_{10} and with LR(SR)/10 the distance between them, then:

Area =
$$\frac{LR(SR)}{10} \left[\frac{1}{2} (y_0 + y_{10}) + (y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9) \right]$$

For influence lines, LR = 1.

3.1.3 Description of Input. Description of input is given below for the data code numbers and entries that are required to execute the analysis routine.

The "Work Code" entry is made only once. The "DC" tells the computer that it is a "superstructure design" program.

The 'Data Code' is the name given to the heading for types of input. Cards with data codes 100 thru 110, 121 thru 124, and 131 thru 134 must be grouped together by spans; i.e., the cards for span number one must have all of the 100 thru 110, 121 thru 124, and 131 thru 134 cards listed in sequence. However, any card not needed in the sequence may be omitted.

Cards with data codes 111 thru 115 must also be listed in sequence, while any card not needed may be omitted.

a. Data Code 001 calls for entries as explained below.

Entry #1 asks for the type of output desired. By placing the number "1" in the proper space, you may request:

(1) Influence Lines
(2) Equations of Indeterminacy
(3) Beam Characteristics
(4) Beam Properties
(5) Shear Influence Lines

When a particular output is not wanted, enter a "0" in that space.

Entry #2 asks for the number of continuous spans in the structure. Counting spans is generally very straightforward; however, for the sake of clarity, each type of structure is discussed now.

- (1) Piers and Abutments: (Transverse to bridge centerline). Count each span from centerline to centerline on the cap and the supports as an accumulating count of ones. The cap, of course, is counted only if the supports are fixed to it.
- (2) Continuous Spans: (Longitudinal to bridge centerline). Count each continuous span and each fixed pier and/or abutment as an accumulating count of ones. Disregard whether piers and abutments are fixed at the bottom.
- (3) Box Culverts: (Transverse to culvert centerline). Count each vertical and horizontal fixed span as an accumulating count of ones.

Entry #3 asks for the number of typical cross sections in the structure. In any span you have to consider each marked or major change in a horizontal or vertical dimension listed as a separate cross section. However, once a typical cross section has been counted, it will represent every other cross section that is the same, and is given a unique code number from one

thru ten. An accumulating count of ones is then made to determine all of the unlike typical cross sections for a total. Circular or round sections are not counted. Those sections that are described by use of their moments of inertia will be discussed later.

Entry #4 asks which structure layout is being used as a pattern for the structure. Put a number in this entry to select the one wanted.

0 = Cell Type Layout

9 = Continuous Type Layout

10 = Slant Leg Layout (3 Span)

11 = Slant Leg Layout (5 Span)

Cell nine is used only for structures of more than six continuous spans.

b. Data Code 100 defines the tenth points of the span at which the analysis is desired. Maximum number of points per span is eleven, with the total number that may be asked for being 209. If this card is not entered, all tenth points will be analyzed. The center of span number two (the 2.5 point) is entered as 205. When more than six points are desired, code subsequent 100 cards.

c. Data Code 101 defines general span data.

Entry #1 is the number of this span. All numbering of spans must be patterned after one of the structure layouts. Span number one of the structure must be the same as span number one of one of the structure layout types. Since every span of the structure must be described, a data code 101 card is required for each span.

Entry #2 is the length of the span measured along the member from centerline to centerline of bearing, in feet.

Entry #3 defines web range no. 1. The distance, in feet, to the first major change in the web depth going from the centerline of bearing along the member in a left to right direction is "web range no. 1".

A variation of this entry is the option to describe the member in terms of the moment of inertia. The moment of inertia, in inches⁴, entered will be used in all sections of this span (Entry #5). It may be helpful to code Entry #5 before coding Entry #3.

Entry #4 defines web range no. 2. The distance, in feet, to the second major change in the web depth going from the centerline of bearing along the member in a left to right direction is "web range no. 2".

Entry #5 is the typical web case number. Five typical web cases are available to choose from in describing a member. List one of these cases (Figure 44).

Case 0 = If moment of inertia was placed in Entry #3.

Case 1 = Constant linear variation (or constant depth).

Case 2 = Linear varying to constant depth to linear varying.

Case 3 = Parabolic varying to constant depth to parabolic varying.

Case 4 = Variable section described by moments of inertia.
21 moments of inertia will be entered (if "section design" is desired, 21 distances to centroid must also be entered). See data cards 121-124 and 131-134.

Case 5 = One to four immediate depth breaks.

Entry #6 asks for the web depth at the left end. This depth is the distance between flanges or the height of a beam without flanges on the left end of a member at centerline of support, in inches. (D_1)

d. Data Code 102 is the continuation of 101 data.

Entry #1 asks for the web depth at the right end. This depth is the distance between flanges or the height of a beam without flanges on the right end of a member at centerline of support, in inches. (D_2)

Entry #2 defines the web depth at right end of left haunch or left end of right haunch. Three types of members require this entry; they are typical web case numbers two, three and five. The depth is the distance between flanges or the height of a beam without flanges at the centerline of a member, in inches. (D_3)

e. Data Code 103 thru 108. May call for a maximum of 18 cross section range entries and 18 cross section case entries per span.

Entries #1, #3 and #5 define the cross section range no. XX. These entries are the distances from centerline of bearing, going from left to right on the span, to each major change in the span cross section (excluding web depth), in feet.

The dimensions for web thickness, top flange width and thickness, and bottom flange width and thickness are calculated as uniformly varying between each cross section over the range specified. It may be seen that if a range is such that it does not include a twentieth point of the span, the effect approximates an immediate section change.

Entries #2, #4 and #6 are the respective cross section code numbers for the cross section ranges defined in the previous entries. When the designer first begins coding his program form, he should list all of his typical span cross sections and number them in order. Once a cross section has been described (111 thru 113 cards) and numbered, it may be reused anytime by simply listing its number. A total of ten typical span cross sections are allowed for each structure. If a circular section is desired, this code number will be "11".

f. Data Code 109 and 110. These cards are required only for slant leg structures and ask for the amounts of inclination of the legs. All inclinations are input as angles in degrees and decimals of degrees.

Entries #1 thru #6 of the 109 card and Entry #1 of the 110 card are angles β 1 thru β 7. Entries #2 and #5 of the 109 card are also used for angles α 1 thru α 4. (Figures 41 and 42)

g. Data Code 111 thru 115. These cards are used to define a typical cross section case (Figure 45). Once a typical cross section case has been described, it does not have to be described again, but may be reused by listing its number. All typical cross sections to be used, however, must be described. The cross section code for circular sections need not be entered on these cards. All dimensions are in inches.

It may be noted here that all dimensions except fillets will vary uniformly between any two typical sections.

h. Data Code 121 thru 124. Moments of inertia for twentieth points of a span are entered on these cards, in inches⁴. Entries are explained on pages 77 and 78.

The moments of inertia cannot be used when rating a structure, but may be used for a design or review when the "Girder Section Design and Review" routine will not be run.

- i. Data Code 131 thru 134. Distance from the bottom of the beam to the centroid of the area (Figure 45) of each twentieth point section is entered on these cards. These cards are required only if 121 thru 124 cards are entered for the span and the "Girder Section Design and Review" routine is to be rum following the "Structural Loading" routine. Entries are explained on pages 78 and 79.
- j. Data Code 401 and 402. These two cards are used when there are joints that the designer wishes to fix. By "fix", it is meant that no rotation of a joint is allowed and no moment that enters a joint is carried back to the other end of the span.

To fix a joint, the number of the span to the right of the joint is entered. Thus, to fix joint "C", the span number "2" would be entered; joint "F", enter span number "16"; joint "N", enter span number "20" (Figure 41).

The maximum number of joints that may be fixed is seven. Span numbers 1 thru 13 are valid when fixing a joint. At any joint, only one span may frame into that joint.

Pages 73 thru 81 are prepared as summaries of the description of input. Each type of input card is portrayed with its corresponding entries and what they represent.

Further information on developing sections for designing and review can be found in the description of input for "Girder Section Design and Review", pages 119 and 120.

77				
0 X		Point Number	Web depth at left end	Web depth #5
eann		11-61	Inches	Inches
S ARITY		Point Number	Typical Web Case 0. Const. Nom. of Iner. 1. Uniform Varying 2. Uniform Haunch 3. Parabolic Haunch 4. = 121-124 Cards to enter 5. Immediate Break	Web case #4 Web case #5 only Feet
# AHLMS	Basic Structure Type 0=cell type 9=7-19 span cont. 10=slant leg (3 span) 11=slant leg (5 span)	Point Number	Web Range #2 Feet	Web depth #4 Web case #5 only Inches
ELLES ?	Number of typical cross sections in this structure. Do not include circular.	Point Number	When Case No. (Entry 5) is: 0., Enter Noment of Inertia (in. 4); 1, 2, 3, or 5, Enter Web Range No. 1 (ft.); 4, Leave Blank	Web case #5 only Feet
ELLIK S	Number of members in this structure.	Point Number	Length of this span	Web depth at right end of left hawnch or left end of right hawnch Inches
T ANILUM	Influence Lines? Equations of Indet.? Beam Characteristic? Beam Properties? Shear Infl. Lin.?	Point Number 205.=Span #2 at 5/10 point.	Designated number of this span (corresponds to basic structure type chosen, Entry 4 on Control Card)	Web depth at right end Inches
इत्रक्ष उन्हरू	D'C 0'0'I	DESIGN POINTS CARD Max. No.=11 points per span. If not entered, all points will be analyzed.	SPAN CARD NIMBER 1 (See Figure 44)	SPAN CARD NUMBER 2 Clust follow a 101 card) (See Figure 44)

			L.	1		
Cross Section Code for Range #3 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Code for Range #6 (from 1 to 10 for typical sections, Equal to '11' for Circular Sections)		Cross Section Code for Range #9 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Range for 1 Fqual	Cross Section Code for Range #12 (from 1 to 10 for twoical sections. Equal to '11' for Circular Sections)	
 Cross Section Range #5 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Range #6 (distance from left end to where Entry #6 cross section is typical) Feet	11111111	Cross Section Range #0 (distance from left end to where Entry #6 cross section is typical)	Cross (dist	Cross Section Range #12 (distance from left end to where Entry #6 cross section is typical) Feet	I
 Cross Section Code for Range #2 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Code for Range #5 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	11111111	Cross Section Code for Range #8 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Range for t Equal	Cross Section Code for Range #11 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	1
Cross Section Range #2 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Range #5 (distance from left end to where Entry #4 corss section is typical) Feet	11111111	Cross Section Range #8 (distance from left end to where Entry #4 cross Section is typical) Feet	Cross (dist	Cross Section Range #11 (distance from left end to where Entry #4 cross section is typical)	1
 Cross Section Code for Range #1 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Code for Range #4 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	11111111	Cross Section Code for Range #7 (from 1 to 10 for typical sections Equal to '11' for Circular sections)	Cross Range for t Fqual	Cross Section Code for Range #10 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Τ
 Cross Section Range #1 (distance from left end to where Entry #2 cross section is typical)	Cross Section Range #4 (distance from left end to where Entry #2 cross section is typical) Feet	11111111	Cross Section Range #7 (distance from left end to where Entry #2 cross section is typical) Feet	Cross (dist to where secti	Cross Section Range #10 (distance from left end to where Entry #2 cross section is typical) Feet	
SPAN CARD NUMBER 3 (Must follow a 102 card)	SPAN CARD NUMBER 4 (Must follow a 103 card)	S'0'I	SPAN CARD NUMBER 5 (Must follow a 104 card)	SPAN (Must	SPAN CARD NUMBER 6 (Must follow a 105 card)	1
		7		1		

SULF				
витку б	Cross Section Code for Range #15 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section for Range #18 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Angle 26	,
entra 5	Cross Section Range #15 (distance from left end to where Entry #6 cross section is typical) Feet	Cross Section Range #18 (distance from left end to where Entry #6 cross section is typical) Feet	Angle α4 or β5	
ENTRY 4	Cross Section Code for Range #14 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Code for Range #17 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Angle a3 or 34	
ENLEK 3	Cross Section Range #14 (distance from left end to where Entry #4 cross section is typical) Feet	Cross Section Range #17 (distance from left end to where Entry #4 cross section is typical) Feet	Angle a2 or 83	
S YATHE	Cross Section Code for Range #13 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Cross Section Code for Range #16 (from 1 to 10 for typical sections. Equal to '11' for Circular Sections)	Angle alor 82	
FULLEX T	Cross Section Range #13 (distance from left end to where Entry #2 cross section is typical) Feet	Cross Section Range #16 (distance from left end to where Entry #2 cross section is typical) Feet	Angle 81	Angle 87
RABE SOLF	SPAN CARD NUMBER 7 (Must follow a 106 card)	SPAN CAUD NUMBER 8 (Must follow a 107 card)	ANGLE OF LEGS (See Figures 41 and 42) Degrees and decimals of degrees	ANGLE OF LEG

Ratio of Godine Ratio of Godine Ratio of Godine	-		- 1		1
Height of Bottom Left Distance from top of steel flange to hottom Linches Fillet (Fs) Concrete flange or Inches Inc	Bottom Flan (T ₂) Inch	ge Thickness	Width of Bottom Left Fillet (F ₆) Inches	lus steel t Enter #3 and plates.	Area steel in composite slab (AS ₂)
Width of Top Right Fillet Thickness or Cover	Top Flange (T ₁)	Thickness hes	Height of Bottom Left Fillet (F _S) Inches	Distance from top of steel flange to bottom of concrete flange or cover plate (D ₄)	
Width Fillet (F ₃) Fillet (F ₃) Inches Code (For Height of Top Left Fillet Inches Inches Inches Code (For Height of Top Left Fillet Inches Inches	Top Flang (B3)	e Width ches	Width (F4)	Concrete Flange Thickness or Cover Plate (T ₃) Inches	steel in (AS ₁) Inches ²
Width of Top Left Fillet Width of Bottom Right Code (For to be Fillet (F1) Inches Fillet (F1) Inches Fillet (F1) Inches Fillet (F2) CARD NUMBER 2 CARD NUMBER 2 CARD NUMBER 3 CARD NUMBER 4 CARD NUMBER 5 CARD NUMBER 5 CARD NUMBER 6 CARD NUMBER 6 CARD NUMBER 7 CARD NUMBER 7 CARD NUMBER 8 CARD NUMBER 8 CARD NUMBER 9 C	Bottom F (B2)	lange Width nches	Height of Top Right Fillet (F ₃) Inches	Effective concrete flange width for composite girder or width of cover plate (B4)	Distance between bottom flange and bottom cover plate (D ₅) Inches
Code (For Height of Top Left Height of Bottom Right Fillet (F7) Sse Inches Inches Inches DIMENSIONS CROSS SECTION DIMENSIONS CARD NUMBER 2 CARD NUMBER 2 CARD NUMBER 2 CARD NUMBER 3	Web Thickness (B ₁) Inches	lnches		Width of Bottom Right Fillet (F8) Inches	Width of Bottom Cover Plate (B ₅) Inches
DIMENSIONS CROSS SECTION DIMENSIONS CROSS SECTION DIMENSIONS CARD NUMBER 2 CARD NUMBER 2 (Must follow a 111 card) (Must follow a 112 card)	Cross Secti Cross sect defined by dimensions)	de o be hru	Height of Top Left Fillet (F ₁) Inches	Height of Bottom Right Fillet (F7) Inches	Thickness of Bottom Cover Plate (T ₄) Inches
	CROSS SECTION CARD NUMBER 1 See Figure 45	ECTION DIMENSIONS MBER 1 ure 45	CROSS SECTION DIMENSIONS CARD NUMBER 2 (Must follow a 111 card)	CROSS SECTION DIMENSIONS CARD NUMBER 3 (Must follow a 112 card)	

7				
9 7		Moment of Inertia at 5/20 of span	Noment of Inertia at 11/20 of span	Moment of Inertia at 17/20 of span
RILLE		Inches ⁴	Inches ⁴	. Inches ⁴
5		Noment of Inertia at 4/20 of span	Moment of Inertia at 10/20 of span	Moment of Inertia at 16/20 of span
ENTRY		Inches ⁴	Inchest	Inchest
7 2		Moment of Inertia at 3/20 of span	Noment of Inertia at 9/20 of span	Moment of Inertia at 15/20 of span
ENTR		Inches ⁴	Inches ⁴	Inchest
ξX		Moment of Inertia at 2/20 of span	Moment of Inertia at 8/20 of span	Moment of Inertia at 14/20 of span
ENTE		Inches ⁴	Inches ⁴	Inches ⁴
Z Y		Moment of Inertia at 1/20 of span	Moment of Inertia at 7/20 of span	Moment of Inertia at 13/20 of span
ELLE		Inches ^t	Inchest	Inches ⁴
τ	Distance from AS ₂ to top of top flange (D_7)	Noment of Inertia at left support	Moment of Inertia at 6/20 of span	Moment of Inertia at 12/20 of span
ENLEZ	Inches	Inches ⁴	Inches ^t	Inchest
₽9₽₽	CARD NUMBER 5 CARD LINES FOLLOW a 114 card)	CARD NUMBER 1	MOTENTS OF INFRTIA CARD NINBER 2 Chist Follow a 121 card)	CARD NUMBER 3
RBBR	See Figure 45		CHAST LOUISING A L-1 CALLE)	

21717			L	
		X-Bar at 5/20 span	X-Bar at 11/20 span	7-Bar at 17/20 span
9 YHTHE	7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Inches	Inches	Inches
	· · · · · · · · · · · · · · · · · · ·	X-Bar at 4/20 span	X-Bar at 10,29 span	N-Bar at 16/20 span
S REIM	7777	Inches	Inches	Inches
t	. i .	N-Bar at 3/20 span	X-Bar at 9/20 span	7-511 at 15/20 span
nulus r	፥ ሰር የሚጠጣ	Inches	Inches	Inches
٤	- Moment of Inertia at right support	X-Bar at 2/20 span	X-Bar at 8/20 span	X-Bar at 14/20 span
ENLEX	Inches	Inches	Inches	Inches
7	- Moment of Inertia at	X-Bar at 1/20 span	X-Bar at 7/20 span	X-Bar at 13/20 span
ENTRY	Inches ⁴	Inches	Inches	Inches
τ	- Moment of Inertia at 18/20 of span	- X-Bar at left support	X-Bar at 6/20 span	X-Bar at 12/20 span
EILEK	Inchest	Inches	Inches	Inches
BED#	CARD NUMBER 4	CARD NUMBER 1 (X-BAR) See Figure 45	DISTANCE TO CENTROID CARD NUMBER 2 (X-BAR)	CARD NUMBER 3 (X-BAR)
RB3R				3
		The second secon		

SUE.				
9 YRTNZ		Span with fixed joint at left end		
ENIBK 2		Span with fixed joint at left end	111111	
FILLRY 4		Span with fixed joint at left end		
ENTRY 3	X-Bar at right support	Span with fixed joint at left end		
S YRTHE	X-Bar at 19/20 span	Span with fixed joint at left end		
ENLEK J	X-Bar at 18/20 span ,Inches	Span with fixed joint at left end	Span with fixed joint at left end	
M83K BATA	DISTANCE TO CENTROID CARD NUMBER 4 (X-BAR) (Must follow a 133 card)	JOINT FIXITY CARD	JOINT FIXITY CARD A NIMBER 2	

SUMMARY SHEET

FORM C-16 Rev. 3/11/69

//EXEC BRSYS##

WYOMING STATE HIGHWAY DEPARTMENT CHEYENNE WYOMING DRIDGE DIVISION

DESIGN SYSTEM

SHEET NO 1 OF 2
BY DATE CHECKED

I COMMENT CARD 100 STRUCTURAL ANALYS, IS CODE ENTRY I **ENTRY 2** ENTRY 3 FNTRY 4 ENTRY 5 ENTRY 6 Output Control Number of members Number of typical Structure Type (See figure 41,42,8 Request (See figure 47) in the structure cross sections in 0 0 the structure 43) Design point Design point Design point Design point Design point Design point number number number number number 0 (Designated number Case no. (Entry #5) 0=Moment of inertia Length of span Web range #? Web case (See figure 44) Web denth at left end () 1=Web range #1 Web depth at right web depth-right end Web runge #4 (Case no. 5 only) Web range #3 Web depth #4 Web depth #5 end left haunch or left (Case no. 5 only) (Case no. 5 only (Case no. 5 only) (1 end right haunch Cross section range Cross section code Cross section code for range #2 Cross section code for range #3 Cross section range Cross section range for range #1 1 () Cross section range Cross section code Cross section range Cross section code Cross section range Cross section code for range #4 For range #6 0 -Cross section range Cross section code Cross section range Cross section code Cross section range Cross section code for range for range #8 for range #9 0 9 Cross section code Cross section range Cross section range Cross section code Cross section range Cross section code #10 for range #10 for range #11 for range #12 0 Cross section range Cross section code for range #13 Cross section range Cross section code Cross section range Cross section code for range #14 for range #15 1 0 Cross section range Cross section code Cross section code Cross section range Cross section code Cross section range for range #18 116 for range #16 for range #1 0 8 Angle altor 32 Angle 31 Angle a2 or 83 Angle a3 or ±4 Angle 24 or 85 Angle 36 0 9

leight of bottom Distance from ton of steel flange to Width of bottom Width of effective concrete flange or Thickness of conc Modulus of elasright fillet (F-) right fillet (Fa) ticity ratio --steel to concrete flange or cover 1 over plate (B4) plate (T₃ bott of T3 (D4) Distance from AS_1 to top of top flange (D_6) Thickness of bot-Width of bottom Area of steel in Distance from bott Area of steel in composite slab composite slab om cover plate cover plate (B,) flange to bottom cover plate (D₅) 1 Distance from ASo top of top

Width of top flange

Width of top right

Moment of inertia at 15/20 point of

span

fillet (F4)

 (B_3)

Thickness of ton

Height of bottom

left fillet (F₅)

Moment of inertia

at 16/20 point of

span

flange (T₁)

Thichness of bot-

tom flange (Ta)

Width of hottom

left fillet (F₆)

Moment of inertia at 17/20 point of

span

Width of bottom flange (B₂)

Height of top

right fillet (F3)

Moment of inertia at left support at 1/20 point of at 2/20 point of at 3/20 point of at 4/20 point of at 5/20 point of span span span span snan Moment of inertia Moment of inertia forment of inertia Moment of inertia at 9/20 point of Moment of inertia at 10/20 point of Moment of inertia at 11/20 point of at 6/20 point of at 7/20 point of at 8/20 point of span span span

> Moment of inertia at 14/20 point of

1 2 3 span

Angle 37

Cross section code

Height of top left

fillet (F_1)

flance (D₂)

Moment of inertia

at 12/20 point of

Thickness of web

Width of top left

Moment of inertia at 13/20 point of

fillet (F₂

1

1 '

1 !

NOTE: A trailer cord must follow the lest structure cord containing date

SUMMARY SHEET

FORM C-16 Rev. 3/11/69

//EXEC BRSYS##

WYOMING STATE HIGHWAY DEPARTMENT CHEYENNE WYOMING BRIDGE DIVISION

DESIGN SYSTEM

SHEET NO.	2_of_	2
8Y	DATE	
CHECKED_		
1 400	10 TO 10 17	

1 CO	MMENT	CARD					
1 2 ₩ C 0 O R D K E	3 5 D C A O T D A E	ENTRY I	ENTRY 2	ENTRY 3	ENTRY 4	ENTRY 5	ENTRY 6
	1,2,4	Moment of inertia at 18/20 point of span	Moment of inertical at 19/20 point of span	Moment of inertia at right support			
	1 3 1	Distance to centroid, Y-Bar, at left support	Distance to centroid, \-Bar, at 1/20 point of span		Distance to centroid, X-Bar, at 3/20 point of span	Distance to centroid, Y-Bar, at 4/20 point of soan	Distance to centroid, X-Bar, at 5/20 point of span
	1 3 2		Distance to centroid, X-Bar, at 7/20 point of span	Distance to centroid, X-Bar, at 8/20 point of span	Distance to centroid, X-Bar, at 9/20 point of span	Distance to centroid, X-Bar, at 10/20 point of span	Distance to centroid, V-Bar, at 11/20 noint of span
	1 3 3	centroid, \-Bar, at	Distance to centroid, N-Bar, at 13/20 point of span	Distance to centroid, X-Bar, at 14/20 point of span	Distance to centroid, X-Bar, at 15/20 point of span	Distance to centroid, X-Bar, at 16/20 point of span	Distance to centroid, Y-Bar, at 17/20 point of span
	1 3 4	Distance to centroid, N-Bar, at 18/20 point of span		Distance to centroid, V-Bar, at right support			
	4 0 1	Span with fixed joint at left end	Span with fixed joint at left end	Span with fixed joint at left end	Span with fixed point at left end	Span with fixed joint at left end	Span with fixed joint at left end
	4 0 2	Span with fixed joint at left end					
						1 - A - 1 - 1 - A - A - A - A - A - A -	
						A-A-A-A-A-A-A	
	1						
9.9.9	ER CAP	RD					

Figure 49

3.1.4 Description of Output. The output consists of the following reports:

- a. Beam Properties
- b. Beam Characteristics
- c. Indeterminate Coefficients
- d. Influence Lines

Beam properties and beam characteristics may be printed out as separate reports or may be combined into one report per span, as asked for.

Indeterminate coefficients are a group of values that allow a designer to distribute moments in his structure without the time-consuming labor of moment distribution.

The influence lines come with fully documented arrays of coefficients. The influence lines for shear and moments for the left half of the span are printed first and then those for the right half are printed.

As output, reactions and shears are always perpendicular to the member. Figure 50 indicates their relative positions on each member type.

On slant leg structures, reactions 9.0 and 10.0 do not represent horizontal forces, except in the special case where $\alpha_1=\alpha_2=\alpha_3=\alpha_4=90^\circ$. Therefore, one must use a free body diagram to calculate HD, HF, HH, and HJ. It can be shown that:

$$\label{eq:energy_loss} \text{HD = V9.0L } (\frac{\sin \alpha_1 + \cos^2 \alpha_1}{\sin \alpha_1}) + \text{RD } \frac{\cos \alpha_1}{\sin \alpha_1}$$

Where RD = R2.0 + weight of Span #8.

HF = V10.0L
$$(\sin\alpha 2 + \cos^2\alpha 2)$$
 - RF $\cos\alpha 2$
 $\sin\alpha 2$

Where RF = R3.0 + weight of Span #9.

HH = V11.0L
$$(\sin \alpha 3 + \cos^2 \alpha 3) + RH \cos \alpha 3$$

 $\sin \alpha 3$

Where RH = R4.0 + weight of Span #10.

III = V12.0L
$$(\sin \alpha 4 + \cos^2 \alpha 4)$$
 - RJ $\frac{\cos \alpha 4}{\sin \alpha 4}$

Where RH = R5.0 + weight of Span #11.

When a horizontal force is applied to a slant leg structure, one must remember the the influence line coefficients are for loads perpendicular to the leg. The horizontal force desired must, therefore, be resolved into components. Figure 51 depicts the application of a horizontal force at a distance "X" on Span #8.

HORIZONTAL FORCE DETERMINATION Figure 51

3.2 Structural Loading

3.2.1 General Information. This group of programs take the influence lines created by the "Structural Analysis" subsystem and the loadings specified by the designer and calculates the moments, shears, reactions and deflections for each tenth point of each top span.

The loadings are of two types, the first being static loading, where the magnitude and position of the load is entered by the designer. Static loading may be either uniform in nature or point loads.

The second type of loading is live loading, where only the magnitude and spacing of the load is given by the designer. Live loads consist of point loads at a specified distance apart or uniform loading with a point load. The American Association of State Highway Officials (AASHO) type loading may easily be duplicated and the military loading is preset and only needs to be asked for.

There are basically five types of output and they are:

- a. Static load moments, shears and reactions.
- b. Live load moments, shears and reactions.
- c. Deflections due to static and live loads.
- d. Influence lines for deflections.
- e. Maximum positive and negative moments, shears, reactions and deflections.

It is possible to request any or all of these reports on any given computer run.

Ranges and restrictions are:

- a. Maximum number of superimposed static point loads is 72. These loads must be entered in the order they appear from the first support of the structure.
- b. Maximum number of superimposed static uniform loads per span is one.
- c. No restrictions on span lengths.
- d. Maximum number of truck wheel loads is 24.
- e. Minimum number of truck wheel loads is one.
- f. Maximum number of uniform lane loads is one per structure.
- g. Maximum number of point loads for positive moment lane loading is one.
- h. Maximum number of point loads for negative moment lane loading is two. (These two point loads must not both be in the same span.)
- i. Distance between front and center truck wheels for an AASHO HS loading is fixed at the spacing specified.

- j. Distance between center and rear truck wheel for an AASHO HS loading may vary. There is no program restriction as to the maximum and minimum rear wheel spacing.
- k. There are no restrictions on wheel spacings for the general vehicle (maximum of 24 truck wheel loads).
- 1. All ranges and restrictions for the "Structural Analysis" subsystem apply.
- m. When deflections are calculated by "Card Input", deflections may be solved for only one span at a time.
- 3.2.2 Mathematical Equations and Derivations. Deflections. The deflections computed are those resulting from flexural strains.³

Data that is input consists of influence lines for moment at each tenth point of each span, moments of inertia for each twentieth point of each span, dead load moments and the modulus of elasticity of the girder material.

The basic formula is for the internal virtual work resulting from flexural strains.

$$\Delta y = \int_0^{\tau} \frac{Mxz(mxy)dx}{E I_x}$$
 (Equation 1)

Where Mxz = moment at x due to a unit real load at z

dx = increment of the span length

E = modulus of elasticity of the material

 I_{x} = moment of inertia of the cross section at x

mxy = moment at x due to a unit fictitious load at y (simple beam moment)

Figure 52 depicts the loading conditions for the derivation of the influence lines for a point load deflection.

Using equation 1 and numerical integration,

$$\Delta y = \sum_{x=1}^{X=21} \frac{Mxz(mxy)dx}{EI_x}.$$
 (Equation 2)

and the influence line for deflection at point x is built by incrementing through the influence lines for Mxz with the same line mxy.

Deflections for a unit moment at each end of the span use the same equation (Equation 2) that was used for point loads. The only difference is in Mxz, as shown in Figure 53.

DEFLECTION DIAGRAM - END MOMENT Figure 53

Calculations for dead load deflections are the same as for other deflections, with Mxz being the actual dead load moment for the span.

Live Loading for Deflections. Point load deflection influence lines are loaded by positioning the various wheel loads and their associated wheel spacings in such a manner as to create the maximum deflection.

Lane loading uses three different influence lines to solve for the maximum deflection of a point.

Moment influence lines are loaded with uniform loads on every other span away from the span that the deflection being solved for lies in. This produces end moments for the right and left ends of the span. These end moments are converted to deflections by multiplying by the unit moment coefficients for each end.

The span in which the deflection point lies is loaded with a simulated uniform load, which is broken into ten point loads. These tenth point loads and the concentrated load for moment are placed on the point load deflection influence lines in order to create the greatest deflection due to lane loading. (See Figure 54 for orientation of lane loading for deflection at the 2.5 point of a four span bridge).

Live Load Moments, Shear and Reactions. Live load moments, shears and reactions are computed by loading the appropriate influence lines with the various loading conditions in such a manner as to obtain the maximum positive and negative values for each defined point on the structure. Since the influence lines, and their areas, have already been computed and stored on disk, the following derivations will consist of methods of loading influence lines to obtain maximum values.

INFLUENCE LINE FOR MOMENT AT B

FIGURE 55

INFLUENCE LINE FOR SHEAR AT B (Left)

FIGURE 56

Derivation of Live Loading Equations

Where

RSL = reference span length = span 1

PAREA = total positive area under line = AREA 1 + AREA 3 NAREA = total negative area under line = AREA 2 + AREA 4

GPC = greatest positive coefficient on line GNC = greatest negative coefficient on line

NGPC = next greatest positive coefficient in a span other than that which GPC is in

NGNC = next greatest negative coefficient in a span other than that which GNC is in

As an example of live loading techniques, an influence line for a four span bridge and the moment at the 1.4 point has been chosen, as it best represents the loading principles. Other lines for other points, shears, or reactions are only minor variations from this principle. Therefore, all further reference to an influence line will be made to Figure 57. The live loading truck load configurations are represented in Figures 58 thru 62.

Where

W = uniform lane load

PV = concentrated load for shear PM = concentrated load for moment

IIS TRUCK LOAD CONFIGURATION (GOING UP MILEPOST) Figure 59

Where

P(1) = concentrated load, front truck wheel
P(2) = concentrated load, center truck wheel
P(3) = concentrated load, rear truck wheel
S(1) = wheel spacing between P(1) and P(2)
S(2) = wheel spacing between P(2) and P(3)
S(3) = minimum spacing between P(2) and P(3)
S(4) = maximum spacing between P(2) and P(3)

S(5) = distance from P(1) to the centroid of all wheel loads

HS TRUCK LOAD CONFIGURATION (GOING DOWN MILEPOST) Figure 60

Where

P(1) = concentrated load, rear truck wheel P(2) = concentrated load, center truck wheel P(3) = concentrated load, front truck wheel

S(1) = wheel spacing between P(1) and P(2)

S(2) = wheel spacing between P(2) and P(3)S(3) = minimum spacing between P(1) and P(2)

S(4) = maximum spacing between P(1) and P(2)

S(5) = distance from P(1) to the centroid of all wheel loads

Up Milepost

SPECIAL TRUCK LOAD CONFIGURATION (GOING UP MILEPOST) Figure 61

Where

P(1) = concentrated load, front truck wheel P(N) = concentrated load, rear truck wheel

N = number of truck wheel loads, between 1 and 24 S(1) = wheel spacing between front and second wheel

S(N-1) = wheel spacing between next to last and rear wheel

S(N) = distance from P(1) to the centroid of all wheel loads

SPECIAL TRUCK LOAD CONFIGURATION (GOING DOWN MILEPOST)
Figure 62

Where

P(1) = concentrated load, rear truck wheel

P(N) = concentrated load, front truck wheel

N = number of truck wheel loads, between 1 and 24 S(1) = wheel spacing between next to last and rear wheel

S(N-1)=wheel spacing between front and second wheel

S(N) = distance from P(1) to the centroid of all wheel loads

Lane loading equations are as follows:

Where

MPM = maximum positive moment
MNM = maximum negative moment
MPV = maximum positive shear
MNV = maximum negative shear
MPR = maximum positive reaction
MNR = maximum negative reaction
WFR = wheel fraction

Then,

MPM = [(PAREA) (W) (RSL)²+(PM) (GPC) (RSL)] (IMPACT) (WFR)
MNM = [(NAREA) (W) (RSL)²+(PM) (GNC+NGNC) (RSL)] (IMPACT) (WFR)
MPV = [(PAREA) (W) (RSL)+(PV) (GPC)] (IMPACT) (WFR)
MNV = [(NAREA) (W) (RSL)+(PV) (GNC)] (IMPACT) (WFR)
MPR = [(PAREA) (W) (RSL)+(PV) (GPC)] (IMPACT) (WFR)
MNR = [(NAREA) (W) (RSL)+(PV) (GNC)] (IMPACT) (WFR)

HS or special truck loading equations are as follows:

Where

SAVE(K) = array to save values of the summation of the P values times their respective influence line coefficients due to the location of the loads

K = number of positions a truck is placed on in order to obtain a maximum loading = 4(N+1)

GPSUM = greatest positive sum of P loads times coefficients GNSUM = greatest negative sum of P loads times coefficients

Following is the sequence of steps for placing each truck loading on each influence line:

a. P(1) is placed over GPC.

- b. P(1) and all other wheel loads are multiplied by the respective interpolated influence line coefficients under the wheel loads.
- c. The summation of loads times coefficients is set equal to $\ensuremath{\mathsf{SAVE}}(K)$.
- d. P(2) is placed over GPC and steps two and three are repeated.
- e. All P loads up thru P(N) repeat steps one, two and three. f. The centroid of the loading group is then placed over GPC

and steps two and three are repeated.

g. Steps one thru six are then repeated for GNC, NGPC, and NGNC.

h. Array SAVE(K) is then searched and the greatest positive and negative values are set equal to GPSUM and GNSUM respectively.

Then,

MPM = (GPSUM) (RSL) (IMPACT) (WFR) MNV = (GNSUM) (IMPACT) (WFR)

All interpolation is straight line interpolation between tenth points on the influence line.

MNM = (GNSUM) (RSL) (IMPACT) (WFR) MPR = (GPSUM) (IMPACT) (WFR) MPV = (GPSUM) (IMPACT) (WFR) MNR = (GNSUM) (IMPACT) (WFR)

Static Load Moments, Shears and Reactions. Static load moments, shears and reactions are computed by loading the appropriate influence lines with the static loading conditions. The influence lines and their areas have already been computed and stored on disk; therefore, the following consists of the method used to break static loading down so that it may be applied to the influence lines.

ACTUAL STATIC LOADING ON A SPAN

FIGURE 63

SIMULATED STATIC LOADING DUE TO BEAM WEIGHT

FIGURE 64

The following generalized formulas solve for static superimposed load and static beam load moments, shears and reactions.

Where W = a uniform load over the whole span length

P = a point load at a point on the span A = area under influence line for the span

C = coefficient on influence line corresponding to P load

L = 1ength of span 1

Moment = $\left[\Sigma(A)(W)(L^{2})\right] + \Sigma(P)(C)(L)$ Shear = $\left[\Sigma(A)(W)(L)\right] + \Sigma(P)(C)$ Reaction= $\left[\Sigma(A)(W)(L)\right] + \Sigma(P)(C)$

- 3.2.3 Description of Input. Figure 65 shows the sign convention for all loading. The 'Work Code' entry, 'DC', is made only once.
 - a. Data Code 002 calls for entries as explained below.

Entry #1 asks for the type of output desired. By placing the number "1" in the proper space, you may request:

Entry #2 calls for the wheel distribution factor.

Entry #3 calls for the percent of impact above one to be used. That is, if the internally calculated impact will be 1.3 and you desire it to be 1.15, this entry will equal 50.

Entries #4, #5 and #6 ask for the total weight of the trucks that are to be used for the review or rating of the structure, in tons. These trucks must be the same and be in the same sequence as those used in the deck routine.

b. Data Code 201 is the general data card. This card is always filled out.

Entry #1 calls for the uniform load on all spans that have been defined, kips per foot. Sometimes it will be better to leave this entry blank and use 202 cards.

Entry #2 calls for the unit weight of girder material, in kips per cubic foot.

Entry #3 calls for the modulus of elasticity of girder material, in kips per square inch. This entry is needed when deflections are wanted, except by the card input method. (See Entry #3 of the 401 card.)

c. Data Code 202 is the uniform load card. These loads override the uniform load specified in the 201 card. That is, any span that does not have the same load as the load in the 201 card may have any other load, including zero.

Entry #1 calls for the uniform load for span(s) defined by Entries #2 and #3, in kips per foot.

Entry #2 calls for the first span with the uniform load specified in Entry #1.

Entry #3 calls for the last span with the uniform load specified in Entry #1. This entry must be equal to or greater than Entry #2.

SIGN CONVENTION FOR STRUCTURE LOADING

Figure 65

Entry #4 is uniform load for span(s) defined by Entries #5 and #6, in kips per foot.

Entry #5 is the first span with the uniform load specified in Entry #4.

Entry #6 calls for the last span with the uniform load specified in Entry #4. It must be equal to or greater than Entry #5.

d. Data Code 203 is the point load card. There may be a maximum of 36 of these cards (72 point loads).

Entry #1 calls for span number this point load is in.

Entry #2 calls for the distance from the left support of span this load is in to where the point load is acting, in feet.

Entry #3 calls for the magnitude of the point load, in kips.

Entry #4 is the span number this point load is in.

Entry #5 calls for the distance from the left support of the span this load is in to where the point load is acting, in feet.

Entry #6 calls for the magnitude of the point load, in kips.

e. Data Code 301 thru 308 define the truck loads.

Entry #1 asks in which direction the reviewer desires the load to proceed across the structure. This entry also asks whether the live load is a standard HS truck or a special load vehicle.

Entry #2 is the weight of front wheel of truck, in kips.

Entry #3 calls for the distance from first wheel to second wheel, in feet.

Entry #4 is the weight of second wheel of truck, in kips.

Entry #5 calls for the distance from second wheel to third wheel, in feet. If Entry #1 is coded for HS20 loading, enter 14 feet.

Entry #6 is the weight of third wheel of truck, in kips.

f. Data Code 302 is a continuation of the truck load data. If Entry #1, 301 card is coded for an HS20 truck, enter 30 feet for Entry #1, 302 card.

Continue coding of wheel weights and spacings and increase data code by one for each additional card required for up to 24 truck wheels.

g. Data Code 309 is the lane load card. This card is filled out when live load moments, shears or deflections are wanted.

Entry #1 calls for the uniform lane load for live load, in kips per foot.

Entry #2 calls for the concentrated load for moment, in kips.

Entry #3 calls for the concentrated load for shear, in kips.

h. Data Code 401 is the span data card. This card is entered only when deflections are being solved for the use of card input.

Entry #1 calls for the length of span number one, which is always the reference span, in feet.

Entry #2 calls for the length of the span for which deflections are desired, in feet.

Entry #3 is the modulus of elasticity of girder material, in kips per square inch.

i. Data Code 402 is the real load moments card. This card is entered only when deflections are being solved for by the use of card input. The values entered are the real load moments at tenth points of the span for which the deflections are desired.

Entry #1 calls for real load moment at the left support, in kip-feet.

Entry #2 calls for real load moment at the 1/10 point on the span, in kip-feet.

Entry #3 calls for real load moment at the 2/10 point on the span, in kip-feet.

Entry #4 calls for real load moment at the 3/10 point on the span, in kip-feet.

Entry #5 calls for real load moment at the 4/10 point on the span, in kip-feet.

Entry #6 calls for real load moment at the 5/10 point on the span, in kip-feet.

j. Data Code 403 is a continuation of the 402 card.

Entry #1 calls for real load moment at the 6/10 point on the spanin kip-feet. Entry #2 calls for real load moment at the 7/10 point on the span, in kip-feet.

Entry #3 calls for real load moment at the 8/10 point on the span, in kip-feet.

Entry #4 calls for real load moment at the 9/10 point on the span, in kip-feet.

Entry #5 calls for real load moment at the right support, in kip-feet.

k. Data Code 404 is the moments of inertia card. This card is entered only when deflections are being solved for by the use of card input. The entered values are the moments of inertia of the beam cross section at twentieth points of the span for which the deflections are wanted.

Entry #1 calls for the moment of inertia of the cross section at the left support, in inches⁴.

Entry #2 calls for the moment of inertia of the cross section at the 1/20 point of the span, in inches⁴.

Entry #3 calls for the moment of inertia of the cross section at the 2/20 point of the span, in inches⁴.

Entry #4 calls for the moment of inertia of the cross section at the 3/20 point of the span, in inches⁴.

Entry #5 calls for the moment of inertia of the cross section at the 4/20 point of the span, in inches⁴.

Entry #6 calls for the moment of inertia of the cross section at the 5/20 point of the span, in inches⁴.

1. Data Code 405 is a continuation of the 404 card.

Entry #1 calls for the moment of inertia of the cross section at the 6/20 point of the span, in inches⁴.

Entry #2 calls for the moment of inertia of the cross section at the 7/20 point of the span, in inches⁴.

Entry #3 calls for the moment of inertia of the cross section at the 8/20 point of the span, in inches⁴.

Entry #4 calls for the moment of inertia of the cross section at the 9/20 point of the span, in inches⁴.

Entry #5 calls for the moment of inertia of the cross section at the 10/20 point of the span, in inches⁴.

Entry #6 calls for the moment of inertia of the cross section at the 11/20 point of the span, in inches⁴.

m. Data Code 406 is a continuation of the 405 card.

Entry #1 is the moment of inertia of the cross section at the 12/20 point of the span, in inches⁴.

Entry #2 is the moment of inertia of the cross section at the 13/20 point of the span, in inches⁴.

Entry #3 is the moment of inertia of the cross section at the 14/20 point of the span, in inches⁴.

Entry #4 is the moment of inertia of the cross section at the 15/20 point of the span, in inches⁴.

Entry #5 is the moment of inertia of the cross section at the 16/20 point of the span, in inches⁴.

Entry #6 is the moment of inertia of the cross section at the 17/20 point of the span, in inches⁴.

n. Data Code 407 is a continuation of the 406 card.

Entry #1 is the moment of inertia of the cross section at the 18/20 point of the span, in inches⁴.

Entry #2 is the moment of inertia of the cross section at the 19/20 point of the span, in inches⁴.

Entry #3 is the moment of inertia of the cross section at the right support, in inches⁴.

o. Data Code 408 is the left support moment influence line card. This card is entered only when deflections are being solved for by the use of card input. These values are the influence line coefficients at tenth points for the left support of the span for which the deflections are wanted.

Entry #1 calls for the influence line coefficient at the left support.

Entry #2 calls for the influence line coefficient at the 1/10 point of the span.

Entry #3 calls for the influence line coefficient at the 2/10 point of the span.

Entry #4 calls for the influence line coefficient at the 3/10 point of the span.

Entry #5 calls for the influence line coefficient at the 4/10 point of the span.

Entry #6 calls for the influence line coefficient at the 5/10 point of the span.

p. Data Code 409 is a continuation of the 408 card.

Entry #1 is the influence line coefficient at the 6/10 point of the span.

Entry #2 is the influence line coefficient at the 7/10 point of the span.

Entry #3 is the influence line coefficient at the 8/10 point of the span.

Entry #4 is the influence line coefficient at the 9/10 point of the span.

Entry #5 is the influence line coefficient at the right support.

q. Data Code 410 is the right support moment influence line card. This card is entered only when deflections are being solved for by the use of card input. These values are the influence line coefficients at tenth points for the right support of the span for which the deflections are wanted.

Entry #1 is the influence line coefficient at the left support.

Entry #2 is the influence line coefficient at the 1/10 point of the span.

Entry #3 is the influence line coefficient at the 2/10 point of the span.

Entry #4 is the influence line coefficient at the 3/10 point of the span.

Entry #5 is the influence line coefficient at the 4/10 point of the span.

Entry #6 is the influence line coefficient at the 5/10 point of the span.

r. Data Code 411 is a continuation of the 410 card.

Entry #1 is the influence line coefficient at the 6/10 point of the span.

Entry #2 is the influence line coefficient at the 7/10 point of the span.

Entry #3 is the influence line coefficient at the 8/10 point of the span.

Entry #4 is the influence line coefficient at the 9/10 point of the span.

Entry #5 is the influence line coefficient at the right support.

Pages 100 thru 105 are summaries of the required input data and supplement the aforementioned descriptions.

HILL				
9	Total weight truck #3		Last span with uniform load of Entry #4	- Magnitude of point
ENTRY	Tons			Kips
S	Total weight truck #2	1 1 1	First span with uniform load of Entry #4.	Distance from left support to point of
ENTRY	Tons	11111	11111	- application - Feet
1 7)	Total weight truck #1		Uniform load on the following spans.	Span number this load will be on.
ENTR	Tons		Kips/Ft.	
٤	Percent of impact (above 1.) to be used.	Modulus of elasticity of girder material.	Last span with uniform load of Entry #1.	Magnitude of point
ENTRY	1 1 1 1	Kips/Sq. In.		Kips
S YR	Wheel fraction	Unit weight of the girder material.	First span with uniform	Distance from left support to point of application
THE		Kips/Cu. Ft.		Feet
IBX J	Deflections wanted Dead load Live load Max. Design values	Uniform load on all spans (This loading may be modified by 202 Card).	Uniform load on the following spans.	Span number this load will be on.
	Deflection card input Live load composite m	Kips/Ft.	Kips/Ft	•
P&T&	CONTROL CARD	O GENERAL DATA	o_UNIFORM LOAD CARD	O POINT LOAD CARD
M83K	D . C		Entry #1).	Loads (36 cards)
		A		·

							elasticity naterial.	/Sq. In.	span		span number	opar)	SPAN DATA FOR DEFLECTIONS (Card Innut) Entry #1 of	of 002 card must equal 100000.
	11111		1111	111	.,,,	1111	Modulus of elasticity of girder material.	Kips/Sq.	Length of span	Feet	Length of span number one		<u> 1</u>	of 002 carc
							Concentrated load for shear	Kips	Concentrated load for moment	Kips	Uniform lane load	Kips/Ft.	LANE LOAD CARD	
						1111		111			hen ed.	33		ad ad
	Truck	Kıps	Spacing between truck wheels #5 and #6.	Feet	Truck wheel load #5	Kips	Spacing between truck wheels #4 and #5	Feet	Truck wheel load #4	Kips	Spacin wheels HS loa	enter maximum spacing between wheels #2 & #3)	TRUCK LOAD DATA (continued)	Required for HS loading or more than 3 overload wheels.
	77777		= -		7777			111					Z'0'S	
	Truck wheel load #3	Alps	Spacing between truck wheels #2 and #3. (When HS loading is indicated,	enter minimum spacing).	Truck wheel load #2	Kips	Spacing between truck wheels #1 and #2	Feet	Truck wheel load #1	K	CONTROL CODE Direction Code 1=Up M.P. Z=Down M.P.	Loading Type	TRUCK LOAD DATA	
· Arc	9 YAT	ING	≤ X	Bane :	4	FINLEX	£ Y	Elne	Z Y	STUE	τ χ ε	FILL	SQT&	

	Woment of inertia at	Inches ⁴	Moment of inertia at 10/20 point	Inches	Moment of inertia at 9/20 point	Inches ⁴	Woment of inertia at 8/20 point	Inches	Moment of inertia at 7/20 point	Inches ⁴	**Yoment of inertia at 6/20 point	Inches ⁴	MANIENTS OF INERTIA	(continued)
	Noment of inertia at 5/20 point	Inches ⁴	Moment of inertia at 4/20 point	Inches ⁴	Moment of inertia at 3/20 point	Inches ⁴	Moment of inertia at 2/20 point	Inches ⁴	Moment of inertia at 1/20 point	Inches ⁴	Moment of inertia at left support	Inches ⁴	MOMENTS OF INERTIA	for Deflections (Card Input)
	1111	,	Moment at right support	Kip-Feet	Moment at 9/10 point	Kip-Feet	Moment at 8/10 point	Kip-Feet	Moment at 7/10 point	Kip-Feet	Moment at 6/10 point	Kip-Feet	REAL LOAD NOVENTS	(continued)
	Moment at 5/10 point	Kip-Feet	Moment at 4/10 point	Kip-Feet	Moment at 3/10 point	Kip-Feet	Moment at 2/10 point	Kip-Feet	Noment at 1/10 point	Kip-Feet	Moment at left support	, Kip-Feet	REAL LOAD MOMENTS	for Deflections (Card Input)
-FALO	9 X	RING	S	KHINE	η X	ENTE	٤ ٦	ENTR	2 1	EILLE	τ λ	PMLK	99₽ 7,0,2	M83K S

	~					*	
		Coefficient at right support	Coefficient at 9/10 point	Coefficient at 8/10 point	Coefficient at 7/10 point	Coefficient at 6/10 point	LEFT SUPPORT MOMENT INFLUENCE LINE (continued)
L							6 0 7
	Coefficient at 5/10 point	Coefficient at 4/10 point	Coefficient at 3/10 point	Coefficient at 2/10 point	Coefficient at 1/10 point	Coefficient at left support	LEFT SUPPORT MOMENT INFLUENCE LINE for Deflections (Card Imput)
		1111111		11111111	11111111		8,0,4
	·			Moment of inertia at right support Inches ⁴	Moment of inertia at 19/20 point Inches ⁴	Moment of inertia at 18/20 point Inches ⁴	MOMENTS OF INERTIA (continued)
	11111111	*********	********	*******	71111111	71717171	۷'0'Þ
	Moment of inertia at 17/20 point Inches ⁴	Moment of inertia at 16/20 point Inches*	Moment of inertia at 15/20 point Inches ⁴	Moment.of inertia at 14/20 point Inches ⁴	Noment of inertia at 13/20 point Inches ⁴	Moment of inertia at 12/20 point Inches ⁴	Continued)
7	3 YRTN2	ENTRY 5	ENTRY 4	ENTRY 3	S IEILE	ENLEK T	4208 35 85
2	y round	3 Admin	y Acuma	E Vermier	C MUMANIA	L Addition	MOSK DATA

	· · · · · · · · · · · · · · · · · · ·		**********	111111111	177777777	******		
			11111111	77177777	11111111	77777777	7 7	
		Coefficient at right support	Coefficient at 9/10 point	Coefficient at 8/10 point	Coefficient at 7/10 point	Coefficient at 6/10 point	RIGHT SUPPORT MOMENT INFLUENCE LINE	(continued)
	1111111	1111111		11111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111	1'1'	-
	Coefficient at 5/10 point	Coefficient at 4/10 point	Coefficient at 3/10 point	Coefficient at 2/10 point	Coefficient at 1/10 point	Coefficient at left support	RIGHT SUPPORT MOMENT INFLUENCE LINE	for Deflections (Card Input)
Ţ			*****	11111111	1111111		0'1'0	
7	5 YRTNE	ENIBY 5	# 18TNE	ENTRY 3	S YRTHE	ENLEK J	SATA	M8BR

SUMMARY SHEET

FORM C-16 Rev 3/11/69

//EXEC BRSYS##

WYOMING STATE HIGHWAY DEPARTMENT CHEYENNE WYOMING BRIDGE DIVISION

DESIGN SYSTEM

	SHEET NO_	OF	·
	8Y	DATE_	
	CHECKED		
			_
1.		A 77 18 4 17	1
Employee Da	0 Can 73	Part H	00

I COMMENT CARD	لبب	L		6
STRUCTURAL LOADING		 		

3 0 1 3 0 2 3 0 3 4 0 1 4 0 3 4 0 4	Spacing between trick sheets 15 and 24 Butform time load Length of Span number one		Persent of ammact Fi descred Todath Fi descred Todath Fi descred Todath Fi descred List span with uniform load specified in batter of Thenitable of load specified in later #1 outline between track wheels #1 and #2 Spacing between track theels #1 and #5	thirrer load on following spans Span number on which the point load is located from wheel load for the control wheel load for th	First span with uniform load spec- ified in Entry #1 Jist Iron Left sup- sort to load spec- ified in Entry #4 En wine between truck wheels #2 and #% Spacing between	Last snan with uniform load spec- ified in Entry *1 'agritude of load specified in Intry *1 Truck wheel load *3
3 0 1 3 0 2 3 0 2 4 0 1 4 0 3 4 0 4	spans Cay be modified by 202 card) Uniform load on following spans Joan number in which the point load is located Direction code and Loading type Request: Spating between trick wheels 55 and 54 Uniform lane load Length of Span number one	girder material First sum with uniform load spec- ified in lates of Dist, from left sum- port to load one- ified in letts of Truck wheel load of Concentrated load	elasticate is circle material last soan with uniform load specified in butto if funitude of load specified in butto if truck wheels is land if and if	following spans South number in which the point load is located Trial wheel load 2	Imiform load specified in Intro #1 1st from Int sum- nort to load specified in Intro #1 "nucine between truck sheels #2 and #3	uniform load spec- ified in Entry #1 Pagnitude of load specified in Entry #1
3,0,2 3,0,0 4,0,1 4,0,4 4,0,5	following spans Jam number in shigh the point load is located Direction code and Loading type Request: Spacing between trick sheels (5) and (4) Direction take load Length of Span number one	imiform load specified in Intro-1 District of load specified in left sub- port to load specified in letts of Truck wheel load %1 Truck wheel load %1 Concentrated load	uniform load specified in butto 11 Shenitude of load specified in butto 11 outline between truck wheels 11 and 12 Spacing between truck theels 21 and 85	following spans South number in which the point load is located Trial wheel load 2	Imiform load specified in Intro #1 1st from Int sum- nort to load specified in Intro #1 "nucine between truck sheels #2 and #3	uniform load spec- ified in Entry #1 Pagnitude of load specified in Entry #1
3,0,2 3,0,0 4,0,1 4,0,4 4,0,5	shirth the point food is focated Direction code and Loading type Request: Spacing between trick sheets (5) and (4). Uniform time food Length of Span number one	port to load ence- ified in letts 21 Truck wheel load 21 Fruck vicel load 21 Concentrated load	specified in Intra- *1 outing between truck wheels *1 and *2 Spacing between truck theels *1 and *5	which the point load is located truet wheel load	nort to load spec- ified in later *1 "nucing between truck wheels #2 and #3	specified in Intro
3,0,2 3,0,0 4,0,1 4,0,4 4,0,5	Loading type Request: Spacing between trick sheels 55 and 34 Uniform line load Length of Span number one	Frick vicel load #1 Concentrated load	track wheels #1 and #2 Spacing between track cheels #1 and #5	# 2	truck wheels #2 and #3	Truck wheel load
4 0 1 4 0 3 4 0 4 4 0 5	trick wheels 55 and 44 Briform Line load Length of Span number one	Concentrated Load	truck theels #1 and #5	inucl wheel lond	Spacing between	
4.0.3	Length of Span number one				truck wheels #5 and #6	Fruct wheel Ioud
4,0,3	number one		Concentrated load for shear			
4,0,3	The reference spans	Length of Span	Modulus of Plasticity			
4,0,4	'Woment at Left Support	Moment at .1 Point	Moment at .2 Point	Moment ut .3 Point	Moment ar ,4 Point	Moment at .5 Point
4,0,4	Moment at .6 Point	Noment at .7 Point	Moment at .8 Point	Moment at .º Point	Moment at Right Support	
4,0,5	Noment of Inertia	Moment of Inertia at .05 Point	Moment of Inertia at .10 Point	Money - Deertin at 17 - 1	Moment of Inertia at .20 Point	Noment of Inertia at .25 Point
	Moment of Inertia at .30 Point	Noment of Inertia ut .35 Point	Noment of Inertia at .10 Point	Noment of Incitia at .45 Point	Moment of Inertia at .50 Point	Moment of Inertia at .55 Point
	Moment of Inertia	Momént of Inertia at .65 Point	Noment of Inertia at .70 Point	Moment of Unertica at .75 Point	Moment of Inertia at .80 Point	Moment of Inertia at .85 Point
4,0.7	Moment of Inertia at .90 Point	Moment of Inertia at .95 Point	Moment of Inertia it Right Support			
4 0 8	Coefficient at Left Support	Coefficient at .1 Point	Coefficient of .2 Point	Coefficient at .5 Point	Coefficient at .4 Point	Coefficient at .5 Point
4 0 9	Coefficient at .6 Point	Coefficient at . Point	Coefficient at .8 Point	Coefficient at	Coefficient at Right Sumport	
4.1.0	Coefficient at Left Support	Coefficient ut .1 Point	Coefficient ut .2 Point	Poefficient at .5 Point	Coefficient at _4 Point	Coefficient at .5 Point
4,1,1	Coefficient at	Coefficient at .7 Point	Coefficient at .8 Point	Coefficient at .9 Point	Coefficient at Right Support	
	4				_	

9.9.9

3

HOTE: A treiler card must fellow the last structure card containing date

3.2.4 Description of Output. All output has been designed to be as self-documenting as possible. The output consists of a listing of all input entered, and blocks of output data corresponding to the various types of reports requested by the user.

All output reports are in a column and row format. All columns and rows on a report are labeled as to the type of values contained in the column or row. Values are listed for requested types of loading for tenth points on all spans with the exception of reactions, which are listed at span supports only.

Output for design values consists of the combination of the respective static and live load values to obtain maximum values to be used in a design.

Output for static load deflections is printed out both in decimals of an inch and fractions of an inch to sixteenths.

3.3 Section Design, Review and Rating

3.3.1 General Information. This component will design, review and rate steel, concrete, timber and composite sections.

When designing a structure, only data having to do with general characteristics are entered. In concrete design, clearances to steel, breaking strength of concrete, yield strength of reinforcing and percentages need only be entered. When designing steel structures, only steel properties and percentages need be entered.

A set of data must be coded for every section to be investigated. For this reason the capability of choosing design points is included.

If a design point is to be investigated for only one given action, such as shear, then only those applicable stresses need be input in the review and rating. Conversely, if a given action in any one section is not desired, the allowable stress parameters may be set equal to zero.

3.3.2 Mathematical Equations and Derivations.

a. Rectangular Column

TYPICAL SECTION

This stress checking method is a new approach to a difficult problem. The basic idea is to reduce the check to two separate checks. The first check is made for the load that causes the greatest e/t ratio, and then adding to the stresses found, the ones caused by the least e/t ratio.

The problem, then, is to first calculate the e/t ratios

$$e_X = E_X / B$$

$$e_y = E_v / w$$

Checking to see if the column is a cracked section,

$$e_X + e_y \stackrel{\geq}{=} .273$$

and if

$$E_{y} \stackrel{\leq}{=} w / 6$$
$$E_{x} \stackrel{\leq}{=} B / 6$$

If a cracked section is indicated and E_{γ} is less than w/6, we reorient the section by setting

$$E_X = E_Y$$
 $B = W$ $E_Y = E_X$ $W = B$

If the section is cracked and E_y is equal to or greater than w/6, we find the stresses in each corner from the moment caused by E_y .

CHECK NO. 1 STRESS PATTERN (Initial stresses from E_{γ})

CROSS SECTION OF STRESS PATTERN

Writing summation of moments about "P" (ΣM_p) :

$$\Sigma M_{p} = 0 = -f_{c} \left(\frac{kw}{2}\right) B \left(E_{y} - \frac{w}{2} + \frac{kw}{3}\right) - f_{sc}(2N-1) \frac{A_{s1}}{2} \left(E_{y} - \frac{w}{2} + c\right)$$

$$-\frac{f_{sc}}{2} (2N-1)A_{s2} \left(\frac{kw-c}{w-2c}\right) \left(E_{y} - \frac{w}{2} + c + \frac{kw-c}{3}\right)$$

$$+f_{st}(N) \frac{A_{s1}}{2} (E_{y} + \frac{w}{2} - c) + \frac{f_{st}}{2} (N)A_{s2} \left(\frac{w-kw-c}{w-2c}\right) \left(F_{y} + \frac{w}{2} - c - \frac{w-kw-c}{3}\right)$$

and

$$f_{sc} = f_c \left(\frac{kw-c}{kw}\right)$$

$$f_{st} = f_c \left(\frac{w-kw-c}{kw}\right)$$

set the identities

$$X_1 = E_y + \frac{w}{2} - c$$

$$X_2 = E_y - \frac{w}{2}$$

$$X_3 = E_y - \frac{w}{2} + c$$

therefore,

and dividing both sides by f_c,

$$ZM_{p} = 0 = \frac{-B(kw)}{2} \left(X_{2} + \frac{kw}{3} \right) - \frac{(2N-1)}{2} \left(\frac{kw-c}{kw} \right) \left[A_{S1}(X_{3}) + A_{S2} \left(\frac{kw-c}{w-2c} \right) \left(X_{3} + \frac{kw-c}{3} \right) \right] + \frac{N}{2} \left(\frac{w-kw-c}{kw} \right) \left[A_{S1}(X_{1}) + A_{S2} \left(\frac{w-kw-c}{w-2c} \right) \left(X_{1} - \frac{w-kw-c}{3} \right) \right]$$
(Equation 1)

Solving for kw gives the distance to the neutral axis and consequently the new section for the additional moment $(E_{\mathbf{x}})$.

To find the stress in the concrete from the applied load, we write an equation for summation of verticals ($\Sigma V=0$).

$$z_{V} = 0 = P + f_{st}(A_{s1}) \frac{N}{2} + f_{st}(A_{s2}) \frac{N}{2} \left(w - \frac{kw - c}{w - 2c}\right) - f_{sc}(A_{s1}) \left(\frac{2N - 1}{2}\right) - f_{sc}\left(\frac{2N - 1}{2}\right) \left(\frac{kw - c}{w - 2c}\right) A_{s2} - f_{c}(kw) \frac{B}{2}$$

substituting for f_{sc} and f_{st},

$$V = 0 = P + f_{c} \left(\frac{w - kw - c}{kw} \right) \left(\frac{N}{2} \right) \left[A_{s_{1}} + A_{s_{2}} \left(\frac{w - kw - c}{w - 2c} \right) \right] - f_{c}(kw) \frac{B}{2} - f_{c} \left(\frac{kw - c}{kw} \right)$$

$$\left(\frac{2N - 1}{2} \right) \left[A_{s_{1}} + A_{s_{2}} \left(\frac{kw - c}{w - 2c} \right) \right]$$

Solving for fc

$$f_{C} = P / \left[\frac{N}{2} \left[\frac{w - kw - c}{kw} \right] \left[A_{S1} + A_{S2} \left[\frac{w - kw - c}{w - 2c} \right] \right] - B \left[\frac{kw}{2} \right] - \frac{2N - 1}{2} \left[\frac{kw - c}{kw} \right] \right]$$

$$\left[A_{S1} + A_{S2} \left[\frac{kw - c}{w - 2c} \right] \right]$$

Solving for tension in steel (fst)

$$f_{st} = \left(\frac{w - kw - c}{kw}\right) f_{c}(N)$$

Solving for compression in steel (f_{SC})

$$f_{SC} = f_C \left(\frac{kw-c}{kw} \right) (2N-1)$$

Solving for fictional stress in concrete (tension) (f_{C2} & f_{C3})

$$f_{cn} = -f_c \left(\frac{w - kw}{kw} \right)$$

By assuming the concrete section is now kw wide and B long and including the equivalent concrete from the reinforcing steel, we find the stresses due to the influence of the moment caused by the X-eccentricity (E_X) .

Note: A_{S2} includes T₃ & T₄

NEW EFFECTIVE SECTION

The stresses are

$$f_y = \pm \frac{P(E_x)(\frac{B}{2})}{I_y}$$

$$I_{y} = \frac{1}{12} (kw) B^{3} + \frac{1}{12} T_{1} (B-2c)^{3} + \frac{1}{12} T_{2} (B-2c)^{3} + 2(T_{3}) (kw-c) \left(\frac{B-2c}{2}\right)^{2} + 2(T_{4}) (w-kw-c) \left(\frac{B-2c}{2}\right)^{2}$$

The final stresses are found by summation

$$f_{c1} = f_c + f_y$$

$$f_{c2} = f_{cn} - f_y$$

$$f_{c3} = f_{cn} + f_y$$

$$f_{c4} = f_c - f_y$$

The new distances to the neutral axis are found from the concrete stresses:

$$kw_1 = w \left(\frac{f_{C1}}{f_{C1} - f_{C2}} \right)$$
$$kw_2 = w \left(\frac{f_{C4}}{f_{C4} - f_{C2}} \right)$$

The final stresses in the steel are

$$f_{st} = f_{c_4} \left(\frac{w - kw_2 - c}{kw_2} \right) N$$

$$f_{sc} = f_{c_1} \left(\frac{kw_1 - c}{kw_1} \right) (2N-1)$$

When the section is not of a cracked type, then the stresses are found by

$$f_{c} = \frac{P}{A} \pm \frac{P(E_{x})x}{I_{y}} \pm \frac{P(E_{y})y}{I_{x}}$$

$$f_{sn} = \left[f_{c2} + \frac{(f_{c1} - f_{c2})}{w} (w-c)\right]$$
 (2n-1)
$$f_{st} = \left[f_{c4} + \frac{(f_{c3} - f_{c4})}{w} (w-c)\right]$$
 (N)

Where $\mathbf{I}_{\mathbf{V}}$ is as above with kw equal to w and

$$I_X = \frac{1}{12} B(w)^3 + A_{S_1} \left[\frac{(w-2c)}{2} \right]^2 + \frac{1}{6} T_3 (w-2c)^3$$

The expansion of Equation 1, page 109, is

$$kw^{3} \left[-\frac{B}{3} - \frac{A_{s_{2}}(N-1)}{3(w-2c)} \right] + kw^{2} \left[-B(X_{2}) - \frac{A_{s_{2}}(N-1)X_{2}}{(w-2c)} \right] + kw \left[\frac{A_{s_{2}}(N-1)X_{2}}{(w-2c)} \right]$$

$$\left[(2N-1)c(2X_3-c)+N(w-c)((w-c)-2X_1) \right] - A_{S1}((2N-1)X_3+N(X_1))$$

$$+ \left[A_{S1}(c(2N-1)X_3+(w-c)N(X_1)) - \frac{A_{S2}(2N-1)c^2}{(w-2c)} \left(X_3 - \frac{c}{3} \right) + \frac{A_{S2}(N)}{(w-2c)} \right]$$

$$(w-c)^2 \left[X_1 - \frac{w-c}{3} \right] = 0$$

b. Circular Column

Basic Sketch

Cracked Section

GIVEN: N,e,n,A_S,D,d FIND: Final Stresses f_c , f_s , f_s ' RESTRICTIONS: Eccentricity Ratio Greater Than .5

Steel Ring

$$I = \int y^2 dA$$

$$y = r \sin \theta$$

$$dA = rd\theta + t$$

$$I_{XX} = t \int r^2 \sin^2 \theta dA = t \int r^2 \sin^2 \theta r d\theta$$

$$= t \int r^3 \sin^2 \theta d\theta$$

$$I_{XX} = tr^3 \left[\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right]$$

Any Arc

$$I_{XX} = tr^{3} \begin{bmatrix} \theta - \sin 2\theta \\ 2 \end{bmatrix} \frac{\pi}{2} + \alpha$$

$$tr^{3} \begin{bmatrix} \frac{\pi}{2} + \alpha \\ \frac{\pi}{2} - \alpha \end{bmatrix}$$

$$-tr^{3} \begin{bmatrix} \frac{\pi}{2} - \alpha \\ \frac{\pi}{2} - \alpha \end{bmatrix}$$

$$I_{XX} = tr^{3} (2\alpha + \sin 2\alpha)$$

Centroid of Arc, y

$$L = 2r^{\frac{1}{2}}$$

$$L\overline{y} = \int y dA = \int r \sin \alpha r d\theta = r^{\frac{1}{2}} \int \sin \theta d\theta$$

$$= r^{\frac{1}{2}} \left[-\cos \theta \right] \frac{\pi}{2} + \alpha = r^{\frac{1}{2}} \left[-\cos \left(\frac{\pi}{2} + \alpha \right) + \cos \left(\frac{\pi}{2} - \alpha \right) \right]$$

$$L\overline{y} = r^{2} \left[\sin \alpha + \sin \alpha \right] = 2r^{\frac{1}{2}} \sin \alpha$$

$$\overline{y} = \frac{2r^{2} \sin \alpha}{2r\alpha}$$

$$\overline{y} = \frac{r \sin \alpha}{\alpha}$$

Concrete Segment

Centroid of Segment

$$A_{C} \overline{X}_{C} = 2 \begin{cases} r \\ y \sqrt{r^{2}-y^{2}} dy = 2 \left[-\frac{(r^{2}-y^{2})^{3/2}}{3} \right] r \\ r\cos\alpha \end{cases}$$

$$= 2 \left[\frac{(r^{2}(1-\cos^{2}\alpha))^{3/2}}{3} \right] = \frac{2[r^{2}\sin^{2}\alpha]^{3/2}}{3}$$

$$= 2r^{3}\frac{\sin^{3}\alpha}{3}$$

$$\overline{X}_{C} = \frac{2r^{3}\sin^{3}\alpha}{3A_{C}} = \frac{2r^{3}\sin^{3}\alpha}{\frac{3r^{2}}{2} - (2\alpha - \sin^{2}\alpha)}$$

$$\overline{X}_{C} = \frac{4r\sin^{3}\alpha}{3(2\alpha - \sin^{2}\alpha)}$$

Concrete Segment, Moment of Inertia

$$I_{XX} = 2 \begin{cases} r \\ r \cos_{\alpha} y^{2} \sqrt{r^{2} - y^{2}} \ dy = 2 \left[\frac{-y(r^{2} - y^{2})^{3/2}}{4} + \frac{r^{2}y(r^{2} - y^{2})^{1/2}}{8} + \frac{r^{4}}{8} \sin^{-1} \frac{y}{r} \right]_{rco}^{r}$$

$$= 2 \left(\frac{r^{4}\pi}{16} + \left[\frac{r^{4}\sin^{3}\alpha\cos\alpha}{4} - \frac{r^{4}\sin\alpha\cos\alpha}{8} - \frac{r^{4}\pi}{16} + \frac{r^{4}\alpha}{8} \right] \right)$$

$$= 2 \left[\frac{r^{4}\pi}{16} + \frac{r^{4}\sin^{3}\alpha\cos\alpha}{4} - \frac{r^{4}\sin\alpha\cos\alpha}{8} - \frac{r^{4}\pi}{16} + \frac{r^{4}\alpha}{8} \right]$$

$$= \frac{r^{4}\alpha}{4} + \frac{2r^{4}\sin^{3}\alpha\cos\alpha}{4} - \frac{r^{4}\sin\alpha\cos\alpha}{4}$$

$$= \frac{r^{4}}{4} \left[\alpha + 2\sin^{3}\alpha\cos\alpha - \frac{\sin2\alpha}{2} \right]$$

$$= \frac{r^{4}}{8} \left[2\alpha - \sin2\alpha + 4\sin^{3}\alpha\cos\alpha \right]$$

$$= \frac{r^{4}}{8} \left(2\alpha - \sin2\alpha \right) + \frac{r^{4}}{8} \left(4\sin^{3}\alpha\cos\alpha \right)$$

$$= \frac{Acr^{2}}{4} + \frac{2r^{4}\sin^{3}\alpha\cos\alpha}{4} = \frac{Acr^{2}}{4} \left[\frac{Ac}{Ac} + \frac{2r^{2}\sin^{3}\alpha\cos\alpha}{Ac} \right]$$

$$= \frac{A_{C}r^{2}}{4} \left[\frac{1 + \frac{2r^{2}\sin^{3}\alpha\cos\alpha}{r^{2}}}{\frac{r^{2}}{2}(2\alpha - \sin2\alpha)} \right] = \frac{A_{C}r^{2}}{4} \left(\frac{1 + \frac{4\sin^{3}\alpha\cos\alpha}{2\alpha - \sin2\alpha}}{2\alpha - \sin2\alpha} \right)$$

$$I_{XX} = \frac{A_{C}r^{2}}{4} \left(1 + \frac{2\sin^{3}\alpha\cos\alpha}{\alpha - \sin\alpha\cos\alpha} \right)$$

Moment of Inertia of Steel Ring, t = 1

$$I_{XX} = \frac{r^3}{2} \left(2\pi + \frac{\sin 4\pi}{2} \right) = \pi r^3 = \frac{2\pi r r^2}{2}$$

$$d = 2r \; ; \; 2\pi r = nA_S \; ; \; I_{XX} = \frac{nA_S d^2}{8}$$

Moment of Inertia of Arc for Steel Ring, t = 1

$$I_{XX} = \frac{r^3}{2} \left[2\alpha + \sin 2\alpha \right] ; L = (2r)\alpha = \frac{\alpha}{\pi} (n-1)A_S$$
$$= \frac{(2r)\alpha}{2r\alpha} \frac{r^3}{2} \left[2\alpha + \sin 2\alpha \right]$$

Replace Length of Arc with Area of Steel

$$I_{XX} = \frac{(n-1)(A_S)\alpha}{(\pi)(2rd)} \frac{r^3}{2} [2\alpha + \sin 2\alpha]$$

$$I_{XX} = \frac{(n-1)A_S}{4\pi} \frac{r^2}{4\pi} [2\alpha + \sin 2\alpha]$$

$$I_{XX} = \frac{(n-1)A_Sd^2}{16\pi} [2\alpha + \sin 2\alpha]$$

$$(n-1)A_S = \frac{A_S''\pi}{\alpha}$$

$$I_{XX} = \frac{A_S''\pi}{\alpha} \frac{d^2}{16\pi} (2\alpha + \sin 2\alpha) = \frac{d^2A_S''}{16\alpha} (2\alpha + \sin 2\alpha)$$

DERIVATIVE	$\frac{dA_{S}^{i}}{dy} = 0 \text{(none)}$	$\frac{dA_S''}{dy} = \left[\frac{(n-1)A_S}{\pi}\right] \frac{d\alpha}{dy}$	$\frac{dA_C}{dy} = \frac{D^2}{4} (1 - \cos 2\alpha) \frac{d\alpha}{dy}$	$\frac{dA_{T}}{dy} = 0 + \frac{dA_{S}''}{dy} + \frac{dA_{C}}{dy}$	$\frac{d\alpha}{dy} = \frac{-2}{\sqrt{D^2 - 4y^2}} = \frac{-2}{Ds \ln \alpha}$	$\frac{dX_S}{dy} = \frac{d(\alpha \cos \alpha - \sin \alpha)}{2\alpha^2} \frac{d\alpha}{dy}$	$\frac{dX_C}{dy} = \frac{\left[(6D) \left(2\alpha - \sin 2\alpha \right) \left(\sin^2 \alpha \cos \alpha \right) - (4D) \left(\sin^3 \alpha \right) \left(1 - \cos 2\alpha \right) \right] d\alpha}{3 \left(2\alpha - \sin 2\alpha \right)^2} d\alpha$	$\frac{dX_T}{dy} = \begin{bmatrix} A_T \left(X_S dA_S^u + A_S^u d\overline{X}_S + \overline{X}_C dA_C + A_C d\overline{X}_C \right) - \left(A_S^u X_S + A_C X_C \right) dA_T \\ \overline{dy} & A_T^2 \end{bmatrix}$	$\frac{dC_{S}}{dy} = \frac{d\overline{X}_{T}}{dy}$	$\frac{\det_{C} = -d\bar{X}T}{dy}$	(none required)	$\frac{de'}{dy} = \frac{-d\overline{X}_T}{dy}$	(continued)
FUNCTION	$A_S^{\dagger} = nA_S$	$A_S'' = \left[\frac{(n-1)A_S}{\pi}\right] \alpha$	$A_{C} = \frac{D^{2}}{8} (2\alpha - \sin 2\alpha)$	$A_{\rm T} = A_{\rm S}^{1} + A_{\rm S}^{1} + A_{\rm C}$	$\alpha = \tan r \left[\sqrt{D^2 - 4y^2} \right]$	$\bar{X}_{S} = \frac{d\sin\alpha}{2\alpha}$	$\chi_{c} = \frac{2D\sin^{3}\alpha}{3(2\alpha - \sin 2\alpha)}$	$\overline{X}_{T} = \frac{A_{S}^{U}}{A_{T}} \overline{X}_{S} + A_{C} \overline{X}_{C}$	$C_{S} = \frac{d}{2} + \overline{X}_{T}$	$C_{\rm C} = \frac{D_{\rm c}}{2} - X_{\rm T}$	$C_{cs} = \frac{d}{2} - X_{T}$	e' = e - X T	(continued)

			OF FO			IRCULAR				
DERIVATIVE	$\frac{\mathrm{d}f_{\mathbf{t}}}{\mathrm{d}y} = \frac{-\mathrm{P}}{\mathrm{A}_{\mathbf{T}}^{2}} \frac{\mathrm{d}A_{\mathbf{T}}}{\mathrm{d}y} - \left(\frac{\mathrm{P}}{\mathrm{I}_{\mathbf{T}}^{2}}\right) \left[\mathrm{I}_{\mathbf{T}}\left(\mathrm{e}^{'} \frac{\mathrm{d}C_{S_{+}}}{\mathrm{d}y} + C_{S_{-}} \frac{\mathrm{d}e^{'}}{\mathrm{d}y}\right) - \mathrm{e}^{'} C_{S_{-}} \frac{\mathrm{d}I_{\mathbf{T}}}{\mathrm{d}y}\right]$	$\frac{\mathrm{df_C}}{\mathrm{dy}} = \frac{-\mathrm{P}}{\mathrm{A_T}^2 \mathrm{dy}} + \left(\frac{\mathrm{P}}{\mathrm{I_T}^2}\right) \left[\mathrm{I_T} \left(\mathrm{e}^{\mathrm{i}} \frac{\mathrm{dC_C}}{\mathrm{dy}} + \mathrm{C_C} \frac{\mathrm{de}^{\mathrm{i}}}{\mathrm{dy}}\right) - \mathrm{e}^{\mathrm{i}} \mathrm{C_C} \frac{\mathrm{dI_T}}{\mathrm{dy}}\right]$	(none required)	$\frac{\mathrm{df}(y)}{\mathrm{d}y} = 1 + \left(\frac{\mathrm{d+D}}{2}\right) \left[\left(\int_{0}^{\infty} \frac{\mathrm{df}_{t}}{\mathrm{d}y} - \int_{0}^{\infty} \frac{\mathrm{df}_{t}}{\mathrm{d}y} \right) \left(\int_{0}^{\infty} f_{t}^{-1} f_{t}^{-1} \right)^{2} \right] = 0$	(none required)	$\frac{\mathrm{dIT}}{\mathrm{d}y} = \left(\frac{A_{\mathrm{CD}}^2}{16}\right) \left[\frac{(\alpha - \sin\alpha \cos\alpha)\left(6\sin^2\alpha - 8\sin^4\alpha\right) - (4\sin^5\alpha \cos\alpha)}{(\alpha - \sin\alpha \cos\alpha)^2}\right] \frac{\mathrm{d}\alpha}{\mathrm{d}y}$	$+ \left[1 + \frac{2\sin^3 \alpha \cos \alpha}{\alpha - \sin \alpha \cos \alpha}\right] \frac{\mathrm{D}^2}{16} \frac{\mathrm{d} A_{\mathrm{C}}}{\mathrm{d} y} + 2 A_{\mathrm{C}} \left[\left(\overline{X_{\mathrm{T}}}{-}\overline{X_{\mathrm{C}}}\right) \frac{\mathrm{d} \overline{X}_{\mathrm{T}}}{\mathrm{d} y} - \overline{X_{\mathrm{T}}} \frac{\mathrm{d} \overline{X}_{\mathrm{C}}}{\mathrm{d} y}\right]$	+ $(\mathbf{X}_{\mathrm{T}^2} - 2\bar{X}_{\mathrm{T}}\bar{X}_{\mathrm{C}})\frac{\mathrm{d}A_{\mathrm{C}}}{\mathrm{d}y}$ + $2(\bar{X}_{\mathrm{T}}A_{\mathrm{S}}^{\mathrm{I}})\frac{\mathrm{d}\bar{X}_{\mathrm{T}}}{\mathrm{d}y}$	$+ \frac{d^2 A_S'' (1 + \cos 2\alpha) d\alpha}{8\alpha} + \frac{d^2 (2\alpha + \sin 2\alpha)}{16\alpha^2} \left(\frac{\alpha d A_S''}{dy} - A_S'' \frac{d\alpha}{dy} \right)$	$+ \frac{dA_S^{"}}{dy} \left(\overline{X}_{\Gamma}^2 - 2\overline{X}_{\Gamma}\overline{X}_{S} \right) + 2 A_S^{"} \left[\left(\overline{X}_{\Gamma} - \overline{X}_{S} \right) \frac{d\overline{X}_{\Gamma}}{dy} - \overline{X}_{\Gamma} \frac{d\overline{X}_{S}}{dy} \right]$
FUNCTION	$f_{\rm t} = \frac{P}{A_{\rm T}} - \frac{Pe^{*}C_{\rm S}}{1_{\rm T}}$	$f_{c} = \frac{P}{A_{T}} + \frac{Pe'C_{c}}{I_{T}}$	$f_{CS} = \frac{P}{A_{T}} + \frac{Pe'C_{CS}}{I_{T}}$	* $f(y) = y - \frac{D}{2} + \left(\frac{d+D}{2}\right)\left(\frac{f_c}{f_c - f_t}\right) = 0$	** $Y_{i+1} = Y_i - \frac{f(y)}{f^i(y)}$	$I_{T} = \left(\frac{A_{C}D^{2}}{16}\right)\left(1 + \frac{2\sin^{3}\alpha\cos\alpha}{\alpha - \sin\alpha\cos\alpha}\right)$	+ $A_{C}(\bar{X}T^{2} - 2\bar{X}T\bar{X}_{C})$ + $A_{S}^{4}\frac{d^{2}}{8} + A_{S}^{4}\bar{X}_{T}^{2}$	$+\left(\frac{A_{S}''d^{2}}{16\alpha}\right)\left(2\alpha+\sin 2\alpha\right)$	+ A'' $(\overline{X}T^2 - 2\overline{X}T\overline{X}_S)$	•

118

- c. Reinforced Concrete (Excluding Columns) Design. The equations are found in "Reinforced Concrete Design Handbook, Working Stress Method", Third Edition, published by ACI, example 18, on page 31.
- d. Steel and Timber Design. The equations are standard elastic analysis equations, such as:

$$f = \frac{Mc}{I}$$
 and $f_V = \frac{VQ}{IB}$

The stress reductions are found in the American Association of State Highway Officials publication, "Standard Specifications for Highway Bridges", Tenth Edition.

3.3.3 Description of Input. The input for this component depends a great deal upon the type of section input into the "Structural Analysis" component. Figure 45 indicates all of the dimensions possible for a section to have. A designer may ask himself, "How about a built-up section, consisting of plates, angles, channels, etc?". How this can be accomplished is best shown by figures.

First of all, it must be understood that the structure analysis is for a structure in a single plane. That is, there are no deformations considered in the "z" direction. With this in mind, we can understand how the Figures 67 and 68 are valid assumptions.

Figure 67

Figure 67 shows how to input a box girder section into the system. If this had been the section used in the analysis, then the reinforcing steel required in a design run and the stresses will be for the complete section. When reviewing this structure, the input reinforcing would be all the steel placed in the deck and lower slab that ran parallel to the axis of the structure. If, on the other hand, a person would want to design or review an exterior or interior girder, the analysis input, wheel fractions, superimposed dead loads and reinforcing data would be for one such girder.

On steel bridges that are built of rolled sections and riveted or welded together, some minor calculations will be required by the user. Figure 68 shows a typical steel girder section and the dimensions that are required for input.

The dimensions FT and FB can be shown to be equal to

$$F = \frac{2Area}{3(dc)}$$

Where Area = the cross section area of the angle

dc = the distance to the centroid of the angle

F = FT or FB

On steel box girders, the web is not always vertical and may consist of two members. Figure 69 indicates the proper method of calculating the web thickness and depth. The designer would enter the thickness of web equal to two times the actual thickness, divided by the cosine of the angle of inclination of the web.

The "Work Code" entry, "DC", is made only once.

a. Data Code 005 calls for the following entries.

Entry #1 asks which output report is desired by the designer.

A number "1" shall be entered for each report desired. Both reports may be requested.

Rating Report

Design Report

Entry #2 determines the type of control to be placed upon the computer run. When a rating report is requested in Entry #1, enter a "1". When a design and review report is requested in Entry #1, enter a "0".

Entry #3 is completed when a composite section is being analyzed. This entry determines whether the computer run is for a dead or live load analysis of a composite section.

b. Data Code 501 asks for the material factors used in the design, review and Inventory Rating. These entries allow the reviewer to take into account any reduced condition ratings found in the structural members. The condition rating is considered when establishing the value used for the allowable stresses.

Entry #1 is the materials factor for

reinforcing steel (beams) = $\frac{\text{Allowable stress, reinforcing steel}}{\text{Yield stress, reinforcing steel}}$

Entry #2 is the materials factor for

reinforcing steel (columns) = $\frac{\text{Allowable stress, reinforcing steel}}{\text{Yield stress, reinforcing steel}}$

Entry #3 is the materials factor for

concrete members = Allowable stress, concrete
Ultimate stress, concrete

Entry #4 is the materials factor for

structural steel members = Allowable stress, structural steel
Yield stress, structural steel

Entry #5 is the materials factor for

timber members = Allowable stress, timber
Design stress, timber

The timber design stress, the stress used in designing the structure, is used for timber, since the design of timber members is based on a safe working stress which is not based on a percentage of a yield stress.

- c. Data Code 502 asks for the same entries as Data Code 501, except that the factors are used in determining the Operating Rating.
- d. Data Code 510 calls for all the sections that were used in

the "Structural Analysis" routine to be defined.

Entries #1, #3 and #5 ask for the section numbers (as numbered in the "Structural Analysis" coding).

Entries #2, #4 and #6 ask for the section type description.

- 1 = Steel, rolled or built-up section (welded or riveted
 plate)
- 3 = Concrete, reinforced
- 5 = Composite, concrete and steel
- 7 = Timber
- e. Data Code 520 may be used to request critical points in the members at which a review or design is desired, if not previously requested by the 100 series cards. The tenth points are entered as 205, 206, etc. Maximum number of points that may be called for is 18. A 520 card may be repeated if more than six points are desired.
- f. Data Code 521 and 522 are used to apply any moments, shears or loads (in addition to those caused by the live and dead loads applied in the "Structural Loading" routine) to the member that may be desired. (An example would be the centrifugal force in curved girders.) Maximum number of cards that may be used is 18. The point numbers would correspond to those of Data Code 520 or 100. The axis notations and actions are depicted in Figure 70.

Figure 70

- g. Data Code 523 is used to add moments of inertia to be used in designing or reviewing members that have loads in more than one direction.
- h. Data Code 530 is used when a structural steel section is being designed or reviewed. Entries #2 thru #6 have repeat capabilities; that is, they need not be entered for subsequent points after the first point is defined, providing that the section at the subsequent points is the same as the previous one entered.

Entry #1 asks for the number of the point in question, corresponding to a point number on the 100 or 520 card.

Entry #2 asks that the type of section be defined.

- 2 = rolled or welded plate section
- 3 = riveted
- 4 = composite

Entry #3 asks for the yield strength of the steel used for the web, in pounds per square inch.

Entry #4 asks for the yield strength of the steel used for the bottom flange, in pounds per square inch. Do not enter if it is the same as the yield strength of the web.

Entry #5 asks for the yield strength of the steel used for the top flange, in pounds per square inch. Do not enter if it is the same as the yield strength of the web.

Entry #6 asks for the ratio of moduli of elasticity of steel to concrete (n) for composite sections.

i. Data Code 531 continues the description of the steel section. Code a "1" in column 66 of the 530 card when using a 531 card.

Entry #1 asks for the angle of the web from vertical, in degrees and decimals of degrees.

Entry #2 asks for the transverse stiffener spacing, in inches. This may be entered if a check is desired on the stiffener spacing.

Entries #3 and #4 describe the area of the bearing stiffener. These entries are made if a rating is desired for the bearing stiffeners. Each entry is input in inches.

Entry #5 asks if there are longitudinal stiffeners. If the section has a longitudinal stiffener, enter a number "1", and if the section does not have a longitudinal stiffener, enter a "0".

Entry #6 asks for the unsupported length of the compression member, in feet.

When reviewing or designing built-up sections and there are no flanges entered, such as shown in Figure 71, and the section will have an unsupported flange length not equal to zero, then a compression flange width will have to be entered. See Entries #3 and #4 of the lll card. If the flange width is not entered, no reduction will be taken in the allowable stress.

BUILT-UP SECTION WITH NO FLANGES

Figure 71

This card is not required when the web is vertical and there are no longitudinal stiffeners.

j. Data Code 532 continues the description of the steel section and is used only if there is torsion (Mxx) involved. Code a "1" in column 66 of the previous card if this data card is used.

Entry #1 defines the type of section. Examples of an open section would be an I-Beam or channel, while the closed section would be a tube.

1 = open type 2 = closed type

Entry #2 is the radius of the fillet connecting the flange with the web, in inches. This is used in calculating stresses.

k. Data Code 533 is also a continuation of the steel section description if the section is either composite or has cover plates. Code a "1" in column 66 of the previous card if this data card is used.

Entry #1 is the allowable shear at the bottom of the top cover plate or composite section, in pounds per lineal inch of beam. This shear may be developed by welds, rivets or shear connectors.

Entry #2 is the allowable shear at the top of the bottom cover plate, in pounds per lineal inch. See Entry #1.

Entry #3 is the ultimate strength of the concrete in compression, in pounds per square inch. This is usually the 28-day breaking strength.

1. Data Code 550 is used when a reinforced concrete section is being designed or reviewed. Entries #2 thru #6 have repeat capabilities; that is, they need not be entered for subsequent points after the first point is defined, providing that the section at the subsequent points is the same as the previous one entered.

Entry #1 asks for the tenth point number of the point in question. This entry must be the same as one of the entries in the 100 or 520 card.

Entry #2 is the yield stress of the main reinforcing steel for the beam or girder, in pounds per square inch.

Entry #3 is the yield stress of the reinforcing steel for stirrups and ties, in pounds per square inch.

Entry # 4 is the ultimate strength of the concrete in compression, in pounds per square inch. This is usually the 28-day breaking strength.

Entry #5 is the percent of concrete to be used in shear normal to the span. In cases where the concrete has no visible cracks, this will be equal to "100". When there are visible failures in the tension side of beams, such as severe spalling and relatively wide shear cracking, this entry should be determined by the engineer inspecting the bridge.

Entry #6 is the ratio of the moduli of elasticity of steel to concrete (n). This entry is used in determining stresses.

m. Data Code 551 is used if this is a design and not a review or rating run. Code a "1" in column 66 of the 550 card when this card is used.

Entry #1 is the distance from the bottom of the section to the centroid of the reinforcing steel, in inches. When you think there will be more than one row of steel required, an average centroidal distance should be entered.

Entry #2 is the distance from the top of the section to the centroid of the reinforcing steel, in inches. See Entry #1.

n. Data Code 552 is used when this is a review or rating run. Code a "1" in column 66 of the 550 card when this card is used. Data codes 551 and 552 are never used in the same run.

When entering reinforcing steel that is on the compression side of the beam or column, the designer must be certain the reinforcing is truly in the compression area. If it happens to fall outside of the compression area, a significant error will occur in the output. In addition, tension reinforcing that is too close to the neutral axis will cause a decrease in the carrying capacity of the section and should be omitted when reviewing members.

See Figures 72 thru 75 for clarification of reinforcing dimensions.

INPUT IDENTIFICATION-REINFORCED CONCRETE BEAMS AND COLUMNS

RECTANGULAR BEAM Figure 72

I OR T BEAM Figure 73

CL

DΙ

CIRCULAR COLUMN Figure 75

In the Figures 72 thru 74, the orientation of the section is as follows: On top and bottom spans (1 thru 6 and 14 thru 19), shown in Figures 41 and 42, the AS4 and AS5 reinforcing is always on top regardless of which portion is in tension. In the vertical or inclined spans, the right side is considered to be the top of the beam. See 3.1.1, Ranges and Restrictions, k.

In rectangular columns, Figure 74, since the right side is considered to be the top of the column, it follows that ASL will be on the left side of the section.

Entries #1, #3 and #5 are areas of reinforcing in their respective locations defined by Entries #2, #4 and #6. Areas are input in square inches and distances to centroids in inches.

o. Data Code 553 is used when reviewing or rating a structure that has top steel and/or stirrups to be rated. Code a "1" in column 66 of the previous card. See Figures 72 thru 74 for clarification.

Entry #1 is the area of steel, AS4, in square inches.

Entry #2 is the distance to centroid of AS4, D4, in inches.

Entry #3 is the area of steel, AS5, in square inches.

Entry #4 is the distance to centroid of AS5, D5, in inches.

Entry #5 is the area of steel of stirrups, ties or spiral reinforcement within the space indicated in Entry #6. To determine it, cut the section along the XZ plane and calculate the area of the cut stirrups, ties or spirals, in square inches.

Entry #6 is the space in which the area calculated in Entry #5 is repeated, in inches.

p. Data Code 554 is used when a rectangular or circular reinforced concrete column is being designed or reviewed. Refer to Figure 74 or 75 for clarification. Code a "1" in column 66 of the previous card.

Entry #1 is the area of steel, ASL, in the left side of the column, in square inches.

Entry #2 is the distance, CLL, to the centroid of the reinforcing in the left face, in inches.

Entry #3 is the area of steel, ASR, in the right side of the column, in square inches.

Entry #4 is the distance, CLR, to the centroid of the reinforcing in the right face, in inches.

Entry #5 is a code that denotes the type of shear reinforcement.

1 = ties 2 = spirals

q. Data Code 590 is used when a timber section is being designed or reviewed.

Entry #1 is the tenth point to which the following data will apply. This point will have been previously defined in the 100 or 520 card.

Entry #2 is the design stress of timber in flexure, in pounds per square inch.

Entry #3 is the design stress of timber in horizontal shear, in pounds per square inch.

Entry #4 is the design stress of timber in compression perpendicular to the grain, in pounds per square inch.

Entries #2 thru #4 have repeat capabilities; they need not be entered for subsequent points after the first point is defined, providing that the section at the subsequent points is the same as the previous one entered.

r. Data Code 591 is used for timber sections when the section is over a support. Code a "1" in column 66 of the 590 card.

Entry #1 is the length of the bearing area, in inches.

Entry #2 is the distance from the end of the member to the beginning of the bearing area, in inches.

Entry #3 is the width of the bearing area, in inches.

- 3.3.4 Description of Output. The output may consist of any of the following printed reports, depending upon the section type and user request:
 - a. Input verification
 - b. Reinforced concrete section design/review
 - c. Structural steel section design/review
 - d. Timber section design/review
 - e. Load rating factors
 - f. Load rating summary sheet

The section design/review reports consist of the following divisions:

- a. Point description
- b. Input section dimensions
- c. Materials factors
- d. Applied actions
- e. Allowable stresses

	Type Code	Section Number	Type Code	Section Number	Type Code 1=Steel(welded,rolled or riveted) 3=Concrete, reinforced 5=Composite,steel&concrete 7=Timber	Section Number	SECTION TYPES (Sections as numbered in Structural Analysis) define all sections	
		Allowable stress over design stress - timber	Allowable stress over yield stress - structural steel	Allowable stress over ultimate stress - concrete	Allowable stress over yield stress-reinforcing steel (columns	Allowable stress over yield stress-reinforcing steel (beams)	MATERIALS FACTORS (Operating Rating)	
		Allowable stress over design stress - timber	Allowable stress over yield stress - structural steel	Allowable stress over ultimate stress - concrete	Allowable stress over yield stress-reinforcing steel (columns)	Allowable stress over yield stress-reinforcing steel (beams)	ص (Design, Review or ما Inventory Rating)	
		11111111		Composite dead load run 0=No, 1=Yes, 2=Composite live load run	- Run Control 0=Design-Review 1=Rating	Report Request Rating Report Design Report	CONTROL CARD	I
COME	SNIRY 6	S YRING	t XHLNE	ENTRY 3	ENLIK S	EMLHK T	8PE SQLE	┪

								,		about yy axis	Inches ⁴	Point Number		ADD PROPERTIES	S T
		1111				*****		· · · · · ·	i	Neact101-yy	Kips	Shear-zy	Kips	ADD ACTIONS Continued)	
	Moment-yy	Kip/Feet	- Moment-xx (Torque)	Kip/Feet	Axial	Kips	Moment-zz	Kip/Feet	- Choor-177	7/ 17/10	Kips	Point Number	• • • • • • • • • • • • • • • • • • • •	ADD ACTIONS Max. No. cards = 18	
	Point Number		Point Number		Point Number		Point Number	• • • • • •	- Point Number			Point Number	11111	DESIGN POINTS Max. No. = 18 Points	
WZF-	9	FINTRY		८ प्रशास	†	ENTRY		ENTRY 3		2 %	ENTR	-	EMIBA 1	8658	M8BE

Is must be so further to further in the sile sile sile sile sile sile sile sil	
thru 533 data cards must be thru 533 data cards must be rds are required to further will be last card in the last coup. Allowable concrete flexure Lbs./Sq. In. Allowable shear at allowable shear at composite or upper cover plate Lbs./In.	COMP
mus red	Σ'Σ'S
NOTE: Each group of 530 thru 533 data cards mus in sequence. If 531, 532 and/or 533 cards are required to fur define a given point number (Entry #1 of the 530 card) a continue statement, number "1" is required the last card in the sequence. It is not necessary, however, that each of the 5 thru 533 cards be required in each group. Data cards 550 thru 554 musi be coded in a like manner. Radius of fillet Inches Inch	STEEL SECTION DETAILS - TORSION (continued)
	7 2 3
Unsupported length of compression flange Feet Are there longitudinal stiffeners? 1='ves 0='No Inches Inches Inches Inches Inches Inches Inches Inches Inches Oadie of web from vertical Degrees and decimals of degrees	STEEL SECTION DETAILS WEB AND STIFFENERS (continued)
	Ι'Σ'S
Modulus of elasticity ratio - steel to concrete (n) Yield stress of top flange (if same as web stress, do not enter) Lbs./Sq. In. Yield stress of bottom flange (if same as web stress, do not enter) Lbs./Sq. In. Lbs./Sq. In. Lbs./Sq. In. Z=Rolled Section or Welded Plate 3=Riveted 4=Composite Point Number	STEEL SECTION DETAILS
ENTRY L ENTRY S ENTRY & ENTRY 6 8	2' 2' 0 '

	ties	or	jo		Jo		e.
ſī	Spacing of stirrups, ti or spiral reinforcement	Area steel stirrups of ties, or spiral reinforcement Sq. In.	AS5 (D5) Inches	Area of steel (AS5)	Distance to centroid AS4 (D4) Inches	Area of steel (AS4)	CONCRETE SECTIONS CONTINUED (Continued) (Review and Rating)
(T	Distance to centroid of AS3 (D3) Inches	Area of steel (AS3) Sq. In.	Distance to centroid of AS2 (D2) Inches	Area of steel (AS2) Sq. In.	Distance to centroid of ASI (D1) Inches	Area of steel (AS1) Sq. In.	DETAILS FOR RFINFORCED CONCRETE SECTIONS (Continued) (Review and Rating) See Figures 72-75, p 126
		1.1) 1. ; 1.1 1.1	111111	וידווזי! (Distance to centroid of steel in top of section Inches	Distance to centroid of steel in bottom of section Inches	DETAILS FOR REINFORGED OF CONCRETE SECTIONS (Continued) (Design run only)
	Modulus of elasticity ratio-steel to concrete (n)	Percent of concrete to be used in shear normal to the member	Ultimate stress of concrete Lbs./Sq. In.	Yield stress of reinforcing steel for stirrups, ties, etc. Lbs./Sq. In.	Yield stress of main reinforcing steel lbs./Sq. In.	Point Number	DETAILS FOR REINFORCED CONCRETE SECTIONS (Design and Review)
CASS IT	9 XXING	ENTRY 5	7 XETME	FILLS 7	S YMTHM	T YRINI	3638 3638 3638

				•			
		1111111	11111111	11111111	111111111	11111111	
				Width of bearing Inches	Distance from end of member Inches	Length of bearing Inches	TIMBER BEARING DATA
L							I '6 'S
			Design stress of timber in compression perpendicular to grain Lbs./Sq. In.	Design stress of timber in horizontal shear Lbs./Sq. In.	Design stress of timber in flexure Lbs./Sq. In.	Point Number	TIMBER DESIGN
I		11111111		11111111	1111111		0 '6 '5 '
		Type of shear reinforcement 1=Tie 2= Spiral	Distance to centroid of ASR (CLR)	Area of steel in right end of column (ASR) Sq. In.	Distance to centroid of ASL (CLL) Inches	Area of steel in left end of section (ASL.) Sq. In.	DETAILS FOR REINFORCED CONCRETE SECTIONS (Continued) (Column Review)
R A							7' S' S '
2	eutry 6	ENTRY 5	ENTRY 4	ENTRY 3	S YRTHE	ENLEK J	R83K SQLE

SUMMARY SHEET

FORM C-16 Rev. 3/11/69

//EXEC BRSYSØØ

COMMENT CARD

WYOMING STATE HIGHWAY DEPARTMENT CHEYENNE WYOMING BRIDGE DIVISION

DESIGN SYSTEM

CHECKED								
65	Employee No. 66	246	Job Code 75	Gode	Sir. No. ec			
		لما	L		64	,		
NG		-						

SHEET NO.

DATE

100 GIRDER DESIGN, REVIEW, & RATING ENTRY I ENTRY 2 ENTRY 3 ENTRY 4 ENTRY 5 FNTRY 6 'opposite-dead load Output Control Pan Control Request (Buting and D=Design/Review rim 0='.0 1=Ye Westen Reports 1=Ratine Elave load run Ratio, allowable to vield stress-reinl Ratio, allocable to ultimate stress--Patio, allowable to yield stress--Ratio, allowable to Ratio, allowable to vield stress--reinf Jesign stresssteel (beams) steel (columns) concrete structural steel timber Patio, altowable to Ratio, allowable to Ratio, allowable to Ratio, allowable to Ratio, allowable to vield stress - rein vield stress--rein ultimate stressyield stress--structural steel design stresssteel (beams) steel (columns) timber concrete Section number Type code Section number Type code Section number I'vne code Design noint number Design point Design point number Design point number Design point number Design coint number Point number for Shear parallel to koment about Axial load 'loment about Moment about yz plane, in y direction added actions xx axis (torque) yv axis Shear parallel to Reaction parallel zy plane, in z direction to yz plane, in y direction Point number for added properties noment of inertia about vy axis Point number for steel section Type of section P, 2=Rolled;Welded Yield stress of ton flange (when ≠ to 'fodulus of Yield stress of web Yield stress of bott flange (when elasticity ratio --5 3 3=Riveted 4=Comp ≠ to web stress) web stress steel to concrete Width of bearing Unsupported length Angle of web from Spacing of Thickness of Longitudinal vertical stiffeners 1=Yes 0=Vo of compression transverse hearing stiffeners stiffeners stiffeners Type of section 1=Open 2=Closed Radius of fillet Mowable shear at Allowable shear at f! (composite run composite or upper lower cover plate cover plate Point number for Yield stress of Yield stress of reinf steel for Ultimate stress of Percent of con-Modulus of elascrete for shear reinforced conmain reinf steel concrete ticity ratio--steel stirrups, ties,etc crete section in tension to concrete Distance to Distance to centroid of steel centroid of steel in bott of section in top of section Area of steel (AS2) Distance to centroid of ASS Distance to centroid of AS2 Area of steel Area of steel Distance to (AS3) (AS1) centroid of ASI (1)2)(D3)Distance to Distance to centroid of ASS Spacing of Area of steel Area of steel Area of steel for centroid of AS4 stirrups, ties or soirals (AS4) (AS5) stirrums, ties or (D5) spirals Area of steel in left end of sec-Area of steel in right end of Type of shear Distance to centroid of ASL Distance to centroid of ASR reinforcement tion (ASL) section (ASR) (CLR) 1=Tie 2=Spiral Point number for lesien stress of Design stress of Design stress of timber section timber in flexure timber in timber in horizontal shear compression Length of bearing Distance from and Width of bearing of mercher TRAIL ER CARD

9,9,9

NOTE: A trailer card must fallow the last structure card containing data

f. Actual stressesg. Special design criteria, depending upon the section type.

The actual stresses report refers to design stress points one thru seven, as shown in Figure 77.

DESIGN POINT LOCATIONS

Figure 77

3.4 Matrix Inversion

3.4.1 General Information. This program, 'Matrix Inversion' (MB001), will take an array, up to 38 by 38, and produce an inversion for it. It is imperative that the matrix be square; i.e., it must have the same number of rows as it has columns. In addition, no principle diagonal value may be equal to zero. If a zero condition exists, an error message will be typed with the subscript of the diagonal.

The input may consist of a comment card, control card, any number of data cards from one to 999 and a trailer card. The number of cards for one row will be the size of the matrix divided by six, with the number always rounded up to the next whole digit. The total number of input cards will be the number of cards times the size of the matrix. Input may also be called internally by the program from the disk record numbers 135 through 207.

The printed output is achieved by MB001G, which is called internally. The inverted matrix is then recorded on the disk at record numbers 135 through 207, replacing the original input matrix.

3.4.2 Mathematical Derivations. Matrix inversion routine for solution of many equations in many unknowns. Given the matrices

$$\begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\ A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where the "A" matrix is a coefficient matrix of size m² coupled with the identity matrix to make an m by 2m array (let us say mm array).

Using Gauss' method¹ (elimination), with the restriction that no principle diagonal can ever be equal to zero, we have the following:

if
$$A_{1,1} \neq 0$$

$$C = A_{1,1}$$
 FORM
$$A_{1,1} = A_{1,1}/C \qquad A_{1,2} = A_{1,2}/C \qquad A_{1,3} = A_{1,3}/C \qquad [A_{1,n} = A_{1,n}/C]$$

$$n = 1 \rightarrow m$$

¹Numerical Analysis, Kaiser S. Kunz, McGraw-Hill Book Company, Inc., 1957, Chapter 10

Step 2

$$B_1 = A_{2,1}$$

$$[A_2,n = A_2,n - A_1,nB]$$

$$n = 1 \rightarrow m$$

$$A_{2,1} = A_{2,1} - A_{1,1} B_1$$

$$A_{2,2} = A_{2,2} - A_{1,2} B_1$$

$$A_{2,3} = A_{2,3} - A_{1,3} B_1$$

Step 3

$$B_2 = A_{3,1}$$

$$[A_3,n = A_3,n - A_1,nB]$$

 $n = 1 \rightarrow m$

$$A_{3,1} = A_{3,1} - A_{1,1} B_2$$

$$A_{3,2} = A_{3,2} - A_{1,2} B_2$$

[Ai,i = Ai,j - A1,jBj]

$$i = 2 \rightarrow m$$

 $j = 1 \rightarrow n$

 $n = 1 \rightarrow m$

Step 4

$$C = A_{2,2}$$

$$A_{2,2} = A_{2,2}/C$$

 $[A_{2}, n = A_{2}, n/C]$ $n = 2 \rightarrow m$

Step 5

$$B_1 = A_{3,2}$$

$$[A_{3,n} = A_{3,n} - A_{2,n}B_1]^n$$

$$A_{3,2} = A_{3,2} - A_{2,2} B_1$$

$$n = 2 \rightarrow m$$
 GENERAL

 $A_{3,3} = A_{3,3} = A_{2,3} B_1$

$$[A_{\mathbf{i},j} = A_{\mathbf{i},j} - A_{2,i}B_{\mathbf{j}}]$$

$$i = 3 \rightarrow m$$

$$j = 2 \rightarrow n$$

until the generated matrix is

$$\begin{bmatrix} 1 & A_{1,2} & A_{1,3} & A_{1,4} \\ 0 & 1 & A_{2,3} & A_{2,4} \\ 0 & 0 & 1 & A_{3,4} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{1,5} & A_{1,6} & A_{1,7} & A_{1,8} \\ A_{2,5} & A_{2,6} & A_{2,7} & A_{2,8} \\ A_{3,5} & A_{3,6} & A_{3,7} & A_{3,8} \\ A_{4,5} & A_{4,6} & A_{4,7} & A_{4,8} \end{bmatrix}$$

Step 6

$$B = A_{1,2}$$
 $A_{1,2} = A_{1,2} - A_{2,2} B$
 $A_{1,3} = A_{1,3} - A_{2,3} B$
 $A_{1,4} = A_{1,4} - A_{2,4} B$
Step 7

$$[A_1,n = A_1,n - A_2,nB]^n$$

$$n = 2 \rightarrow m$$

$$B = A_{1,3}$$

$$A_{1,3} = A_{1,3} - A_{3,3} B$$
 $A_{1,4} = A_{1,4} - A_{3,4} B$

$$[A_{1,n} = A_{1,n} - A_{3,n}B]^{n}$$

$$n = 3 \rightarrow m$$

$$B = A_{2,3}$$
 $A_{2,3} = A_{2,3} - A_{3,3} B$
 $A_{2,4} = A_{2,4} - A_{3,4} B$
Step 9

$$[A_{2,n} = A_{2,n} - A_{3,n}B]^{n}$$

$$n = 3 \rightarrow m$$

$$B = A_{1,4}$$
 $A_{1,4} = A_{1,4} - A_{4,4} B$

 $A_{1,5} = A_{1,5} - A_{4,5} B$

$$[A_{1,n} = A_{1,n} - A_{4,n}B]^{n}$$

$$n = 4 \rightarrow m$$

until the generated matrix is

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4} \\ A_{4,1} & A_{4,2} & A_{4,3} & A_{4,4} \end{bmatrix}$$

3.4.3 Description of Input. The input may consist of cards punched from a coded Form C-16 or may be read from the disk at record numbers 135 through 207.

The comment card consists of 77 positions of alphanumeric program identification.

- a. The control card contains the work code entry, 'MB', and data code entry 001. Entry #1 asks for the matrix size, m.
- b. Data Code 001 asks for the matrix elements in sequence in the first row. Each entry contains one element. If the matrix size is of such a nature that additional entries are required for the first row, increment the data code by one, and enter consecutively the next six elements. Repeat this process to a maximum of 38 elements, as required.
- c. Upon completing the entries for the first row of the matrix, using the next data code in sequence, repeat the steps listed above for all other rows in the matrix.

Since the data cards contain an ascending numeric code in the data code field, they must be in ascending order when processing. The total number of input cards is determined by the number of cards in each row times the size of the matrix.

3.4.4 Description of Output. The output is recorded on disk at disk records numbers 135 through 207. When this is recorded, it destroys the original matrix.

For samples of printed output, with program input, see 4. Sample Problems.

-				T	·		·
	, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	- 1 T T T T T T T T T T T T T T T T T T		******	71717777		MATRIX ELEMENTS continued) continuation of first or second row, or first six elements in 3rd row
	Twelfth Element of First Row, If Necessary or Sixth Element of Second Row	Eleventh Element of First Row, If Necessary or Fifth Element of Second Row	Tenth Element of First Row, If Necessary or Fourth Element of Second Row	Ninth Element of First Row, If Necessary or Third Element of Second Row	Eighth Element of First Row, If Necessary or Second Element of Second Row	Seventh Element of First Row, If Necessary or First Element of Second Row	MATRIX ELEMENTS continued) Data Code Incremented by 1
	Sixth Element of First Row	Fifth Element of First	Fourth Element of First ROW	Third Element of First Row	Second Element of First Row	First Element of First Row	MATRIX ELEMENTS O IST ROW O
	111111					Matrix Size, m	CONTROL CARD
3	ENTRY 6	ENTRY 5	ENTRY 4	ENTRY 3	S YETHE	EMIBK J	W8BE POT

RECORDS THAT STATICAL NOMENTS AND REACTIONS ARE RECORDED IN 2137 is statical moments [3127] is reactions

Stored by Analysis 1-15=1st&15thwor in 14th Record, in 15th Record REMARKS 9 word etc. OR TEM. PERM Per Per Per FIRST RECORD LAST RECORD NUMBER NUMBER 13 14 2 DISK STORAGE OF DATA 8,2-16,10,4-18,12,6-20,14 .1-15,9,3-17,11,5-19,13 16grp of 1 1-15,9,3-17,11,5-19,13,7 2-16,10,4-18,12,6-20,14, 3-17,11,5-19,13,7,1-15, 4-18,12,6-20,14,8,2-16, 6-20,14,8,2-16,10,4-18, 20 5-19-13,7,1-15,9,3-17, WORD NUMBERS 1-19 Even ppo ∞ 19 19 Grp of 6 19 Grp of 6 NO OF VAR PER GROUP Span Length Span Length VAR LABLE NAME XSec Range XSec Code XSec No. Cell No. B1 B2 **B**3 T2F2 1 H DATA GROUP XSec Range XSec Input Cell No. code Data Basic Str PROGRAM Analysis DCØØ1

There is 13 blanks Word & 21 Con-Word=21 Record REMARKS sec. words First OR TEN. PER FIRST RECORD LAST RECORD 20 NUMBER 21 NUMBER DISK STORAGE OF DATA 93-1,99-1,105-1,111-1, 10,4-18,12,6-20,14,8, 10 Grps of 1 14,8,2-16,10,4-18,12, 12,6-20,14,8,2-16,10, 9,3-17,11,5-19,13,7, 22-2,28-2,34-2,40-2, 11,5-19,13,7,1-15,9, 13,7,1-15,9,3-17,11, 21-1,27-1,33-1,39-1, 45-1,51-1,57-1,63-1, 69-1,75-1,81-1,87-1, 117-1,123-1,129-1 WORD NUMBERS 1-15 2-16 4-18 3-17 5-19 6-20 Jpans NO OF VAR PER GROUP 19 Spans W/21 VARIABLE NAME Depths Areas E ₹7**;** FJ 5 F. 6 F18 F7 Characteris-Seam Depths DATA GROUF foments of Inertia & tics PROGRAM

	AST RECORD PERM REMARKS NUMBER OR TEM.	•																		
ľA	FIRST RECORD LAST NUMBER										-									
DISK STORAGE OF DATA	WORD NUMBERS	25-6,31-6,37-6,43-6,	49-6,55-6,61-6,67-6,	73-6,79-6,85-6,91-6,	97-6,103-6,109-6,115-6,	121-6,127-6,133-6	25-7,31-7,37-7,43-7,	49-7,55-7,61-7,67-7,	73-7,79-7,85-7,91-7,	97-7,103-7,109-7,115-7,	121-7,127-7,133-7	25-8,31-8,37-8,43-8,	49-8,55-8,61-8,67-8,	73-8,79-8,85-8,91-8.	97-8,103-8,109-8,115-8,	121-8,127-8,133-8	25-9,31-9,37-9,43-9,	49-9,55-9,61-9,67-9,	73-9,79-9,85-9,91-9,	97-9 103-9 109-9 115-9
	THO OF VAR	19 Spans	W/1				19 Spans	W/1				19 Spans	W/1				19 Spans	6/M		
	VAR IABLE NAME	K Right				•	C Left					C Right					FEM Right			
	DATA GROUP			·										•						
	PROGRAM																			

REMARKS									O=Parabolic								16 blank in Rec.	207	By Span 19 Grps.
PERM OR TEM.																			Tem
TIRST RECORD LAST RECORD NUMBER								134									207-4		
TIRST RECORD NUMBER														135					208
WORD NUMBERS	121-9,127-9,133-9	25-18,31-18,37-18,	43-18,49-18,55-18,	61-18,67-18,73-18,	79-18,85-18,91-18,	97-18,103-18,109-18,	115-18,121-18,127-18,	133-18	26-7,32-7,38-7,44-7,	50-7,56-7,62-7,68-7,	74-7,80-7,86-7,92-7,	98-7,104-7,110-7,116-7,	122-7,128-7,134-7	I varies First A(1,39),	A(2,39), A(3,39)	A(38,39) A(1,40)	A(38,40)A(38,76)		
NO OF VAR PER GROUP		19 Spans	6/M						19 Spans	W/1									322
VARIABLE		FEM Left	•						Case Type					A(I,J)	I=1,38	J=39,76		<i>></i>	14,23 A(I,J)
DATA GROUP														Matrix	Inversion				VYE, MZZ, RYZ AREAS
PROGRAM																			DC511

REMARKS #10 #13 #15 #18 #12 91# #19 #11 #14 #17 #3 6# #4 #5 9# #8 Span #2 47 Span PERM OR TEM. FIRST RECORD LAST RECORD NUMBER NUMBER 530 225 242 259 276 293 310 344 378 395 412 429 944 463 514 327 361 480 497 DISK STORAGE OF DATA WORD NUMBERS TO OF VAR VARIABLE NAME DATA GROUP PROGRAM

Grouped as such REMARES (KL,CL,KR) FIRST RECORD LAST RECORD PERM NUMBER OR TEM. Per 533 531 DISK STORAGE OF DATA WORD NUMBERS NO OF VAR 57 VAR IABLE NAME A(I,J) DATA GROUP Stiffness & Carryovers PROGRAM DC101

			·		
			,		

		P		T	T	T	T	T -	T	1							
REMARKS		Reserve 548 thru	580 for Bridge	Exec		Page No.	Cant Leg #3	Cant Leg #4	Employee Number	Department Code	Production or Develop, Code	Project Code	Work Type "Det" etc.	Structure or Program No	Beginning of Job time		
PERM OR TEM.		Tem															Tem
LAST RECORD						548									548		549
FIRST RECORD		548														549	
WORD NUMBERS F1		1	2	3,4,5,6,7,8		9 Page No.			13	14	15	16	17	18	19	1–19	20
NO OF VAR PER GROUP		1	1	6		1	1	1	1	1	1	1	1	1	1	19	Н
VARIABLE		WC	DC .	EC(I)I-1,6		NZ	Alph 3	Alph 4	EMP	Dept	Work	Job	WRKTYP	STR	SAV1	ACOM .	всом
DATA GROUP		Control	Card									·				Comment	Card
PROGRAM	Bridge	Executive					DC001R	DC001R	Executive	Cont.				-	,		

The second second	-			The same of the same of	_		_	 _	-					 		_
REMARKS	Next Control	Card read	Page & Line	Counter						17 Spare						
PERM OR TEM.	Perm					Perm										
LAST RECORD NUMBER		550	550				551				·					
FIRST RECORD LAST RECORD NUMBER	550		550			551				552						
WORD NUMBERS FI	1 thru 8		9 & 10			Array of Spans	1 to No of Spans			Total Truck Weights	1					
NO OF VAR PER GROUP			1			19			,						·	
VARIABLE	İ	0,1=1(1)	NZ & NNZ			NN(I)	I=1,19			WI(3)						
DATA GROUP	Control	Card				Effective	Spans		Comment	Card						
PROGRAM	All Programs					DC501			Exec							

	REMARKS		17 Blanks in 584				7 Blanks in 588													
	PERM OR TEM.																			
	LAST RECORD NUMBER		584				588		592		596		009		604		809		612	
A	TIRST RECORD NUMBER					585		589		593		597		601		605		609		613
DISK STUKAGE OF DAIA	WORD NUMBERS	Span 1 (63 consec.words)				Span 2		Span 3		Span 4		Span 5		Span 6		Span 7		Span 8		Span 9
	NO OF VAR PER GROUP	21	21			21														
	VARIABLE NAME	Web(N,J)	FTGT(N,J)			FTGB(N,J)														
	DATA GROUP	Web Widths	Top Flange	Thickness	Bot Flange	Thickness														
	PROGRAM	Beam Depths Web Widths	DC101																	

REMARKS								•						7	\		17 Blanks in 648		
PERM OR TEM.															1				
LAST RECORD NUMBER	616		620		624		628		632		636		949		644		648		
FIRST RECORD LAST RECORD NUMBER		617		621		625		629		633		637		641		645			649
WORD NUMBERS FI		Span 10		Span 11		Span 12		Span 13		Span 14		Span 15		Span 16		Span #17			Span #18
NO OF VAR PER GROUP																21	21		21
VARIABLE			-													WEB (J)	FIGT (J)		FTCB (J)
DATA GROUP																WEB Widths	FING Thick	(Top)	FLNG. Thick
PROGRAM																BM Depths			

1																		
REMARKS	17 Blanks in 652		17 Blanks in 656	EM(1.0L 1												θА	9 B	Э Ө
PERM	OK LEM.																	
LAST RECORD	,		656															
FIRST RECORD	NORDEN	653		657	658	659	099	661	662	663	799	999	999			947	957	967
WORD NUMBERS		Span #19	,	Span 1 & 2 in Consect.	Span 3 & 4	Span 5 & 6	Span 7 & 8	Span 9 & 10	Span 11 & 12	Span 13 & 14	Span 15 & 16	Span 17 & 18	Span 19 & 20	37	647	10 this data overlays End Moment Influence Lines		
NO OF VAR	FEN GROOF			191										No. x 20 + 637	20 +	nd Moment In		
VARIABLE	TILTUNI			E(1,J,N)	N=Load									No. = Span No.	11	overlays E		
DATA GROUP	Bottom			MZZ End Mom.										Left End Moment Record No.	Right End Noment Record No.	10 this date		
PROGRAM				STATICS	DC501									Left End Mc	Right End	For Cell =		

PERM REMARKS		өр	θE	θF	V	RD	RF		1,01				,						
	NUMBER OF						1036				-								
FIRST RECORD LAST RECORD	NUMBER	776	987	266	1007	1017	1027		1037										
WORD NUMBERS									Span 1 & 2 in Consect.	Span 3 & 4	Span 5 & 6	Span 7 & 8	Span 9 & 10	Span 11 & 12	Span 13 & 14	Span 15 & 16	Span 17 & 18	Span 19 & 20	The real Property lies, the last of the la
NO OF VAR	PER GROUP							and R's	191										0. x 20 + 10 7
VARIABLE	NAME			-				as for 0, A	V(J, I,N)										No. = Span No.
DATA GROUP								10 & 11 Areas	Shears										Left End Shear Record No. Right End Shear Record No.
PROGRAM								Note: Cell	STATICS										Left End Sh Right End S

				T				Т			T							
REMARKS	SM(1.1)				Cell 11 SM 14.1 ¢K	SM 14.2 △	SM 14.3 R _D	SM 14.4 Rr	SM 14.5 R _H	SM 14.6 RJ	RC 1							
PERM OR TEM																		
LAST RECORD	,										-							
FIRST RECORD LAST RECORD NUMBER	1417				2587	2597	2607	2617	2627	2637	3127							
WORD NUMBERS FI	As End Moments			it Influence								Span 1 & 2 in Consect.	Span 3 & 4	Span 5 & 6	Span 7 & 8	Span 9 & 10	Span 11 & 12	Span 13 & 14
NO OF VAR	191	SSM	10 + 1317	11 this data overlays Statical Moment							191							
VARIABLE		Moments =	enth Point	overlays S							R ()							
DATA GROUP	MZZ Static Mom.	for Statical	No. x 90 + Tenth Point	11 this data							RYZ Reactions							
PROGRAM	STATICS	Record No.	RSM = Span	For Cell =							AREAS	DC501		-				

	REMARKS																		Span #1				
	PERM OR TEM.																						
	LAST RECORD NUMBER														3310			3383				3389	
4	FIRST RECORD NUMBER						1000	3307										3383	3384				
DISK STONAGE OF DAIR	WORD NUMBERS	Span 15 & 16	Span 17 & 18	8					11 Foint Moments 11 Girder Shears	11 Super. Shears	Il Point Shears	1-Left Girder Reaction	1-1 oft Point Reservon	1-Right Girder Reac.	1-Right Super. Reac. 1-Right Point Reaction	+3303	2	1, 2, 3		1 – 99	100 Skip		101 - 111 112 - 120 Skip
	NO OF VAR PER GROUP						7.0	7/								Span No. x 4		3					
	VARIABLE NAME			-	= RR	17	Mom	riom •	Shear	Doort	React					Moments =		React	D(I,J)	,		DLDF(I)	
	DATA GROUP				for Reaction	RR = Span No. x 10 + 3117	д и мом									for Statical		Reactions	Live Load	Inf. Lines	& Dead	Load Def1-	ections
	PROGRAM				Record No.	RR = Span N	MOM I d									Record No.		D.L. MOM.	DEFLECTIONS Live Load				

REMARKS		Span #19		Lane Load Deflections		Military Load Deflections		Truck Load Deflections		-		19 blanks Regred 3520					360 Only		
PERM OR TEM.																	Temp		
LAST RECORD NUMBER	•		3497		3507		3517		3527			3529	3540	3541		3542		3545	
FIRST RECORD LAST RECORD NUMBER		3492		3498		3508		3518		3528			3530	3541	3542		3373	3543	
WORD NUMBERS	8,		-	1 - 191		1 - 191				1	2	3 - 21	1 -216	1 - 10	1 - 19	20	1 - 2888	1 - 24	
NO OF VAR	No. x 6 + 3378			191		191		191									2888	24	
VARIABLE	= Span			DL(I)		DM(I)		DT(I)		Unit	last.	UDL(I)	P (K)	XN(I)	WT(I)	USP	A(I,J)		
DATA GROUP	for Deflections									<pre>1 Girder)Wt./Ft.³</pre>	Modulus of Blast. ESUBG	19 Uniform Loads	216 Point Loads .	Live Loading	Min Uniform Weight	Total Spans	Matrix	Truck Overload	
PROGRAM	Recrod No.	DEFLECTIONS		LIVE LOAD DEFLECTIONS						DEAD LOAD 1 Girder MOMENT (READ) Wt./Ft.3					Dead Load Moment	`		BYSYS24	

-			-																7
REMARKS	126 in 4005	126 in 4011	126 in 4017	16 in 4022	46 in 4027	126 in 4033	86 in LAST REC	11.	2	=	~	=	=	=	=	=	=	=	
PERM OR TEM.	TEM	z	2	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	
LAST RECORD NUMBER	4005	4011	4017	4022	4027	4033	4037	4041	4045	6707	4053	4057	4061	4065	6907	4073	7207	4081	
FIRST RECORD NUMBER	0007	9007	4012	4018	4023	4028	4034	4038	4042	4046	4050	4024	4058	4067	9907	4070	7207	8707	
WORD NUMBERS	X(12,9)	Y(12,9)	S(12,9)	DI(11,9)	GL(12,8)	OFST (12,9)	10(72)												
WORD	X(1,1)	Y(1,1)	\$(1,1)	DL(1,1)	GL(1,1)	OFST(1,1)	X10(1)	=	2		2	2	#	=	Ξ	=	=	=	
NO OF VAR	108	108	108	66	96	108	72	=	=	z	=	=	=	=	2	2	č	ě	
VARIABLE	×	¥		DL	GL	OFST	X1Ø	=	=	=	=	=	=	=	=	Ξ	=	Ξ	
DATA GROUP	X COORD	Y COORD	SPIRAL LEN	DIAG LEN	GIRD LEN	OFFSETS	LINE 1	LINE 2	LINE 3	LINE 4	LINE 5	LINE 6	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11	LINE 12	
PROGRAM	BRFGCA	=	z	=	=	=	BRFGCB	=	=	1	=	=	=	=	=		=		

-																		
REMARKS	8b in last Rec	=	=		Ξ	-	-	'n	Ε	11 .				8b in last Rec.	en e	2	-	
PERN OR TEM.	-1	11	=	=	=	=	=	11	Ξ	-	Ξ	=		Tem	# # # # # # # # # # # # # # # # # # #	11	=	=
LAST RECORD NUMBER	4085	4089	4093	4097	4101	4105	4109	4113	4117	4121	4125	4129		4133	4137	4141	4145	4149
FIRST RECORD NUMBER	4082	4086	0607	4094	8607	4102	4106	4110	4114	4118	4122	4126		4130	4134	4138	4142	4146
WORD NUMBERS	Y10(1) X10(72)	п	Ξ	1	Ξ	11	11	1	1	=	11	П		\$1(1) \$1(72)	Ξ	11	=	Ξ
NO OF VAR	72	=	1	=	=	=	Ξ	=	=	=	=	=		72	1	=	-	dos da
VARIABLE	ΔIV	=		=	=	Ξ	=	=	=	=	11			S1			12	11
DATA GROUP	LINE 1	LINE 2	LINE 3	LINE 4	LINE 5	LINE 6	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11	LINE 12		LINE 1	LINE 2	LINE 3	LINE 4	LINE 5
PROURAN	BRFGCB	- =	=	11	=	1	=	=	Ξ	=	=	-		BRFGCB	=		\$0	1

			1						1						-				
REMARIAS	8b in last Rec.	-	=	11	11	1	Ξ	,	-	1	1	ı	=	11	=	n	41	11	П
PERN OR TEM.	TEM	1	=	=	11	=	Ξ		Ξ	11	11	11	=	=	=	Ξ		=	=
LAST RECORD NUMBER	4.53	4.57	4161	4165	6914	4173	4177		4181	4185	4189	4193	4197	4201	4205	4209	4213	4217	4221
FIRST RECORD NUMBER	4150	4154	4158	4162	4166	4170	4174		4178	4182	4186	4190	4194	4198	4202	4206	4210	4214	4218
WORD NUMBERS	\$1(72)		=	_	-	=	11		OST (72)	1	2		ž			=	11	11	Ξ.
WORD	\$1(1)								OST(1)										
NO ÒF VAR PER GROUP	72	=	=	=	=	=	=		72	Ξ	=	=	=	=	Ξ	Ξ	=	=	=
VAR TABLE NAME		=	*	1	=	Ξ	=		LSO	=	Ξ	=	=	=	=	=	=	Ξ	=
DATA GROUP	LINE 6	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11	LINE 12		LINE 1	LINE 2	LINE 3	LINE 4	LINE 5 .	LINE 6	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11
PROGRAM	BRFGCB	=	=	=	=	=	=		BRFGCB	Ξ	=	=	=	=	1	=	=	=	-

REMARKS		8b in last Rec.	15 blanks	12 b in last Rec		12 b in last Rec														
PERM	OR TEM.	TEM	Ξ	=		=														
ORD	NUMBER	4225	4226	4232		4238		4242	4246	4250	4254	8577	4262	4266	4270	7227	8267	4282	4286	
TIRST RECORD	NUMBER	4222	4226	4227		4233		4239	4243	4247	4251	4255	4259	4263	4267	4271	4275	4279	4283	
OF DA		OST (72)		XW(108)		YW (108)		XW(72)					XW (72)							
WORD NUMBERS		OST(1)		XW(1)		YW(1)		XW(1)	1	1	=	=	XW(1)	11	=	-	Ξ	11	1	
NO OF VAR	PER GROUP	72	7.7	108		108		72	=	=	=	Ξ	72	=	=	Ξ	=	1	=	
回	NAME	TSO	AL1, AL2, AL3 AL4, FEE	. MX		ΜĀ		XW	=	Ξ	=	=	ΧW	=	=	=	11	=	=	
DATA GROUP		LINE 12	LENGTHS	ALL X INTER-	Sects	ALI. Y INTER-	Sects	LINE 1	LINE 2	LINE 3	LINE 4	LINE 5	LINE 6	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11	LINE 12	
PROGRAM		BRFGCB	BRFGCC	11		Ξ		=	=	=	Ξ	=	BRFGCC	=	=	=	=	=	=	

REMARKS													12b in last Rec.	8b in last Rec.	=	11		Garage Control	=
PERN OR TEN													TEM	TEM	=	11	=	=	=
LAST RECORD NUMBER	4290	4594	4298	4302	4306	4310	4314	4318	4322	4326	4330	4334	4340	4344	4348	4352	4356	4360	4364
TIRST RECORD	4287	4291	4295	4299	4303	4307	4311	4315	4319	4323	4327	4331	4335	4341	4345	4349	4353	4357	4361
WORD WUMBERS	YW(1) YW(72)	=		11	Ξ	=	Ξ	11	Ξ	=	1	"	ELEV(1,1) ELEV (12,9)	ELEV (1) ELEV (72)	п	п	ш	=	=
NO OF VAR	72	н	=	=	=	=	=	=	=	=	=	=	108	72	=	=	=	=	=
VARIABLE	ΜĀ	1	=	=	=	=	2	=	-	=		=	ELEV	ELEV	=	=	=	1	=
DATA GROUP	LINE 1	LINE 2	LINE 3	LINE 4	LINE 5	LINE 6	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11	LINE 12	LAYOUT	LINE 1	LINE 2	LINE 3	LINE 4	LINE 5	LINE 6
PROCRAM	BRF6CC	=	Ξ	=	=	Ξ	=	=	=	=	=	=	BRFGCD	=	=	=	=	=	=

П,																				
	REMARKS	8b in last Rec.	11	11	11	=														
	PERM OR TEM.	Tem		E	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
	LAST RECORD NUMBER	4368	4372	4376	4380	4384														
ľA	FIRST RECORD NUMBER	4365	4369	4373	4377	4381	4385													
DISK STORAGE OF DATA	WORD NUMBERS	ELEV (1) ELEV (72)	2			11	1	2	3	4	5	9	7	00	6	10	. 11	12	13	14
	NO OF VAR PER GROUP	72	=	1		0.0 0.0	1	1	1	1	Ţ	1	1	FH	FH			-1		-1
	VARIABLE NAME	ELEV	E	, 11	и.	=	+ML	+M.1	+M• 2	+M.3	+M* 4	+M. 5	9*W+	+M.7	+M.8	+MR	-ML	-M.1	-M. 2	-M.3
	DATA GROUP	LINE 7	LINE 8	LINE 9	LINE 10	LINE 11	Span 1													
	PROGRAM	BRFGCD	=	1	11	1	DC003									-				

REMARKS																			
PERM OR TEM.	Tem	=	=	=	=	=		=	Ξ	=	=	=	2	=	11	=	=	11	=
LAST RECORE NUMBER																			
RST RECORD					4386														
WORD NUMBERS FI	15	16	17	18	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
NO OF VAR PER GROUP	H	p=4	FI	1	1	1	٦	H	г	H	H	, —1	1	1	-1	1	1	1	-1
VARIABLE NAME		-M.5	-M.6	-M.7	-M.9	-MR	+ML	+M.1	+M.2	+M.3	+W•4	+M.5	+M.6	+M.7	+M.8	+M.9	MR	-ML	-M.1
DATA GROUP	Span 1																		
PROGRAM	DC003																		

REMARKS																			
PERM OR TEM.	Tem		=	=	:	-	=	=	90- 90-	=	&- -	=	-	do- to-	0+ 0+	80 80	60- 60-	-	60- 60-
LAST RECORD NUMBER	,																		
RST RECORD						4387													
WORD NUMBERS FI	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	. 51	52	53	54
NO OF VAR PER GROUP	1	1	1	1	1	1	1	1	П	F	1	1	1	1	1	1	-	F1	1
VARIABLE		-M.3	-M.4	-M.5	-M.6	-M.7	-M.8	6.M−	-MR	+MI	+M.1	+M.2	+M.3	+M.4	+M.5	+M.6	+M.7	+M.8	+M.9
DATA GROUP	Span 1												•						
PROGRAM	DC003																		

REMARKS OR TEM. Tem = Ξ = = = = = Ξ = = = = = = = = = @== M== TIRST RECORD LAST RECORD NUMBER C 4388 DISK STORAGE OF DATA WORD NUMBERS 55 99 57 58 59 9 61 62 63 9 65 99 29 89 69 70 71 72 73 NO OF VAR \vdash \vdash Н \vdash --Н Н Н Н Н Н VAR IABLE NAME -M.9 -M. 2 -M.3 -M.4 -M.5 -M.6 -M.7 -M.8 -M.1 -MR V.5 V.6 V.2 V.3 V.4 林 -M V.1Z/ DATA GROUP PROGRAM DC003

REMARKS								,											
PERM OR TEM.	Tem	=	=	=	=	=	=	=	=	=	=	=	=	=	=	4-	Gr- Gr-		=
LAST RECORD																			
RST RECORD								4389											
WORD NUMBERS FI																			
WORD N	74	75	76	77	78	62	80	81	82	83	84	85	98	87	88	89	06	16	92
NO OF VAR PER GROUP	1	1	-	П	1	1	1	1		П	7	1	1	1	1	1	1	1	1
VARIABLE		V.8	, 6.V	VR	VL	V.1	V.2	V.3	V.4	V.5	V.6	V.7	V.8	V.9	VR	VL	V.1	V.2	ν, 3
DATA GROUP																			
PROGRAM	DC003																		

REMARKS PERM OR TEM. Tem = = = = = Ξ = = = = = = 0~ PD Ξ Ξ = = FIRST RECORD LAST RECORD NUMBER 4390 NUMBER DISK STORAGE OF DATA WORD NUMBERS 103 105 110 100 102 104 106 108 109 101 107 96 98 93 76 66 97 NO OF VAR PER GROUP - \vdash \vdash -Н -- \vdash \vdash Н \vdash -- \vdash --Right Lane React Reac Right Neg Truck Truck Reac React Left Truck Reac Lane React Reac Left Neg Truck Reac Left Reac Left VARIABLE Military Military Neg Lane Neg Lane Neg Milt Reac Rt. Reac Rt. NAME Right Left Left V.5 V.6 V.7 V.8 0.V V.4 DATA GROUP PROGRAM DC003

	REMARKS		6 blanks last record								400000000000000000000000000000000000000	
	PERM OR TEM.		Temp									
	LAST RECORD NUMBER	`	4539									
J.A	TRST RECORD NUMBER	•	4529		10 + 4429							
DISK STORAGE OF DATA	WORD NUMBERS	+4379	$VI = 1 \rightarrow 191$	AREA → 192 → 214	x 90 + Point No. x							
	NO OF VAR	Span No. x 6	191	23	es = Span No							
	VARIABLE NAME	Moments -	 Shear Infl. Line VI	Area	fluence Lin							
	DATA GROUP	for Liveload	Span 1		Record No. for Shear Influence Lines							
	PROGRAM	Record No.	DC501J		Record No.							

REMARKS																			
PERM OR TEM.												- C	E C	Dorm	101		,	T E	
LAST RECORD NUMBER	. 6539	6310	6321	6332	6343	6354	6365	6376	6387	6398	67,09	7070	6672	7500		7501		0035	7523
FIRST RECORD	6289	6300	6311	6322	6333	6344	6355	6366	6377	6388	6366	01/9	9879	7500			2035	1302	7521
WORD NUMBERS F1														1-19		20-18	7502-1,7503-1, etc.	7502-9,7503-9, etc.	Array(3,10)
NO OF VAR PER GROUP												1		19 Spans with one	14-1	19 Spans w/	9 per span	9 per span	section
VARIABLE			1											Left end coef.		Right end coefficient	Left end	Right end	girder
DATA GROUP	8-00)	6.	span 19 .1	.2	.3	7.	.5	9.	7.	8	6.	X,Y,&Z coordinates		Fixed end moments for	uniform loads		Shears from Left end	fixed end moments	composite
PROGRAM												GF001	COGO scratch	DC101			DC101		DC001R

_	_	_	-	_	-		,	-		_	-		-			_	_				-			-	
REMARKS	16 blanks Last Rec.	16 blanks Last Rec.					16 blanks	Last Rec.	16 blanks Last Rec.							16 blanks	16 blanks	Last Rec.						16 blanks	Last Rec.
PERM OR TEM	Tem	=	=			:		=	=	=		=	=			=	:			=		=	0- 0-	=	:
LAST RECORD	7534	7545	7555	1000	595/	2,57	/ 282	7596	7607	7617	1701	7627	7637	1001	7647	7658		/069	7679	7680		7699	2700		1/20
RST RECORD	7524	7535	757.6		7336	7526	0/6/	7586	7597	7608		7618	2632	070	7638	7648		600/	7670	7680		7690	0022		T OT//
WORD NUMBERS																									
NO OF VAR	204	204	200		007	2002	007	704	204	200		200	200		200	204	700	407	200	200		200	200	20%	101
VAR LABLE NAME	DJ	R	AI.	, c	2	7M	117	N N	R	AX		S	YM		ZM	DJ	0	4	AL	S		YM	ZM	LQ	
DATA GROUP	Joint Disp (WL Case 1)	Reactions (WL Case 1	Axial Loads	Shears		Z Moments	Joint Disp	(WL Case 2)	(WL Case 2)	Axial Load (WL Case 2)		(WL Case 2)	Y Moments		(WL Case 2)	Joint Disp (WL Case 3)	Reactions		(WL Case 3)	Shears (WL Case 3)	Y Moments	(WL Case 3)	Z Moments (WL Case 3)	Joint Disp	()
PROGRAM	YS08 01	Cr-	=	-			0-	44		e =	9.0			-			22	11		=	-			Do-	

	REMARKS	16 blanks	Last Rec.							16 blanks	Last Rec.	16 blanks	Tage Wee	•						16 blanks	Last Rec.	16 blanks	rast Nec.							16 blanke	Last Rec.	16 blanks	Last Rec.
	PERM OR TEM.		Tem			1	:	=	e- e-			8 .		11				Ξ	=			=		8.8		11		=	=		11		11
		,	//31	7741	7.77	7751		7761	1777		7782	7793		7803		7813		7823	7833		7844	7955	1000	7865		7875		7885	7895		9062		7917
TA	FIRST RECORD LAST RECORD NUMBER	i d	17.77	7732		7742	1 1 1	1/52	7762		7772	7783		7794		7804		7814	7824		7834	787.5		7856		7866		7876	7886		7896		7907
DISK STORAGE OF DATA	WORD NUMBERS																																
	NO OF VAR	700	704	200		200	600	700	200		204	204		200		200		200	200		204	204		200		200	000	200	200		204	,00	704
	VARIABLE NAME	ç	4	AL		S		III	ZM		DJ	æ		AL		S	Š.	ΧW	ZM		DJ	ĸ		AL		S	NA.	111	ZM		DJ	P	LI LI
	DATA GROUP	Reactions	WL Case 47	(WL Case 4)	Shears	(WL Case 4)	Y Moments	(WL Case 4)	Z Moments (WL Case 4)		(WL Case 5)	Reactions (WL Case 5)	Axial Load	(WL Case 5)	Shears	(WL Case 5)		(WL Case 5)	Z Moments (WL Case 5)		(WL Case 6)	Keactions (WL Case 6)	Axial Load	(WL Case 6)	Shears	(WL Case 6)	Y Moments	7 Momonto	(WL Case 6)	Joint Disp	(Ice Load)	Keactions (Ice Load)	ודרב חחמת)
	PROGRAM	BRSYS08	דווערטק		-		2 0-	1		-			0- 0-		00								0								88	L. Pour Line	

DATA	4777
OF	
STORACE	
POR	2
DICK	
-	

REMARKS								16 blanks Last Rec	16 hlanke	Last Rec.				•					16 blanks	Last Rec.	16 blanks	Last Rec.							S ANSOTE.	16 blanks	Last Rec.	16 blanks	Last Rec.		
PERM OD TEM	ON LLFI.	Tem	=		=		=	=		=		=		=		=		=		=		=	=		=		=		=		-		-		in the
LAST RECORD	, and the same of	7927	7937		7947		7957	7968		7979		7989		7999		8009		8019		8030		8041	8051		8061		8071		8081		8092		8103		8113
TIRST RECORD	Norman	7918	7928		7938		7948	7958		6962		7980		7990		8000		8010		8020		8031	8042		8052		8062		8072		8082		8093		8104
WORD NUMBERS																																			
NO OF VAR		200	200		200		200	204		204		200		200		200		200		204		204	200		200		200		200		204		204		200
VARIABLE		AL	S		ΥM		ZM	DJ		R		AL		S		ΥM		ZM		DJ		W.	AL		S		ΥM		ZM		DJ		R	P d	AL
DATA GROUP	Axial Load	(Ice Load)	Shears (Ice Load)	Y Moments	(Ice Load)	Z Moments	(Ice Load)	Joint Disp (Dead Load)	Reactions	(Dead Load)	Axial Load	(Dead Load)	Shears	(Dead Load)	Y Moments	(Dead Load)	Z Moments	(Dead Load)	Joint Disp	(WL SP)	Reactions	(WL SP)	Axial Load (WL SP)	Shears	(WL SP)	Y Moments	(WL SP)	Z Moments	(WL SP)	Joint Disp	(Pt. Loads)	Reactions	(Pt. Loads)	Axial Load	(Ft. Loads)
PROGRAM	BRSYS08	DC701	-	=		=			1.		=				a									0					,				0		

REMARKS 16 blanks 16 blanks 16 blanks 16 blanks 16 blanks 16 blanks Last Rec. Last Rec. Last Rec. Last Rec Last Rec. Last Rec OR TEM. PERM Tem = = = = = = = = = = = = = = = = = e-FIRST RECORD LAST RECORD NUMBER 8123 8133 8175 8185 8195 8216 8143 8154 8165 8205 8278 8289 8237 8299 8309 8227 8247 8257 8267 8206 8114 8124 8166 8176 8196 8134 8144 8155 8186 8217 8228 8238 8248 8258 8268 8279 8290 8300 NUMBER DISK STORAGE OF DATA WORD NUMBERS NO OF VAR 200 200 200 200 200 200 204 204 200 200 200 200 200 200 204 204 204 204 200 VARIABLE NAME YII ZMDJ XΜ ZM Γ ΥM ZM AL AL DJ AL S α S α S ĸ S (Pt. Loads) (Pt. Loads) (Pt. Loads) DAIA GROUP AXIAL LOAD Load Gp. 1 AXIAL LOAD Load Gp. 2 Load Gp. 2 Load Gp. 2 AXIAL LOAD Load Gp. 1 Load Gp. 1 REACTIONS REACTIONS REACTIONS Load Gp. Load Gp. Load Gp. Load Gp. Load Gp. Z Moment Load Gp. Load Gp. Y MOMENT Load Gp. Load Gp. Y Moment Y MOMENT Load Gp Z MOMENT Z MOMENT SHEARS WHEARS Shears SHEARS DISP. DISP. DISP. PROGRAM BRSYS08 DC701 = = =

				T								T	T		-	T	T		
REMARKS			16 blanks Last Rec.	16 blanks Last Rec.					16 blanks Last Rec	16 blanks					1 blank Last Word	10 blanks	10 blanks	10 blanks	3
PERN OR TEM.	Tem	=	=	=	do- the	die die	=	**	=	11	=	00- 00-	=	=	=	=	-	- 44	
LAST RECORD	8319	8329	8340	8351	8361	8371	8381	8391	8402	8413	87.73	85.78	8773	8453	8454	7978	8474	7878	
IRST RECORD	8310	8320	8330	8341	8352	8362	8372	8382	8392	8403	8/1/	7678	78.78	8444	8454	8455	8465	5.278	8485
WORD NUMBERS FI															1=sp 1, 2=sp2 etc.	1+10=Span 1,11+20= Span 2, etc.			
NO OF VAR PER GROUP	200	200	204	204	200	200	200	200	204	204	200	200	200	200	19	190	190	190	
VARIABLE	YM	ZM	DJ	. ж	AL	S	YM	ZM	CDJ	CR	CAL	CS	CYM	CZM	NSD	rs V10	YM10	ZM10	
DATA GROUP	Load Gp. 3 Y MOMENT	Load Gp. 3 Z MOMENT	Max Des DISP.	Max Des REACTION	Max Des AXIAL LOAD	Max Des SHEAR	Max Des Y MOMENT	Max Des Z MOMENT	Load Cond Max Des DISP	Load Cond Max Des REACTIONS	Hoad Cond Max Des AXIAL LOAD	Load Cond Max Des SHEAR	Load Cond Max Des Y MOMENT	Load Cond MakonenT	SPANS TO DESIGN	Max Des 10th Pt Shears	Max Des 10th Pt Y MOM	Max Des 10th Pt Z MOM	
PROGRAM	BRSYS08 DC701						44	=		=	-	-	Gr-	1	-	**	-		

	REMARKS												•									
	PERM OR TEM.																					
	IAST RECORD		8488	8490		8492	8494	2078	0420	8498	0	8500	8502		8504							
V.	TIRST RECORD NUMBER		8485	8489		8491	8493	87.05	0000	8497		8499	8501		8503	8505						
OF DA	WORD NUMBERS																					
	NO OF VAR PER GROUP		(38,2)	(38)		(38)	38	350		38	o	20	38		38							
	VARIABLE	6	anels																			
	DATA GROUP	Member & Pos	With sign panels	Load	Load	Ice	WL #1	Load W. #2	Load	WL #3	Load	1 000 T	Load WL #5	Load	WL #6							
	PROGRAM																			`		

	_	_	-	_	_	_		_											
REMARKS			1/ blanks in last record	=	=	Ξ	-	, 11		11	Ξ	-	=	de de	30 30		gio es	-	
PERM OR TEM.			Tem	=	=	=	=	=	-	=	11	=	=	11	1.1	=	to-	9- 9-	-
LAST RECORD NUMBER			8488	8492	8496	8500	8504	8508	8512	8516	8520	8524	8528	8532	8536	8540	8544	8548	8552
FIRST RECORD NUMBER	8485			8489	8493	8497	8501	8505	8509	8513	8517	8521	8525	8529	8533	8537	8541	8545	8549
WORD NUMBERS	Bottom Flange widths at 20th Pt. on Span	Top Flange width at 20th Pt. on Span	Cross Section Codes at 20th Pt. on Span	11	и	п	ı.	11	11	11	11	11	2	-	11	1	12	=	-
NO OF VAR	(21)	(21)	(21)	н	11			=	44		1		11	÷	14	-	**	11	**
VARIABLE	BFW	TFW	XSECCD	£.	Ξ	=	=	=	=	-	п	=	=	=	11		gno gno	=	den den
DATA GROUP	Span 1	Span 1	Span 1	Span 2	Span 3	Span 4	Span 5	Span 6	Span 7	Span 8	Span 9	Span 10	Span 11	Span 12	Span 13	Span 14	Span 15	Span 16	Span 17
PROGRAM	BRSYS02 DC101			=	=	=	=	=	=	=	=	=		11		90-	0- 0-	=	-

	-		_	-								 	
REMARKS	17 blanks in last record	=	12 hks in Rec	=			2 Byte Integers		·				
PERM OR TEM.	Tem	=	=	=		Porm	=						
LAST RECORD NUMBER	,	8560	8561	8562	8563		8574						
TIRST RECORD	8553	8557	8561	8562	8563	8564	8564						
WORD NUMBERS FI	Cross Section Codes at 20th Pt. on Span	2	Fictions Member Array for fixed joint	Store 109 card	1-7		2-210						
NO OF VAR PER GROUP	(21)	11	80		7		209 Max						
VARIABLE		=	C(7), FJT		ANGL	NOPT	PT(I)						
DATA GROUP	Span 18	Span 19			Angles of Legs	No. of Design Pts.	Design Pt. Array						
PROGRAM	DC101	z	BRSYS01 DC001R	BRSYS60 GC001	DCOOIR								

REMARKS		1.1		1.1		1.1							Truck #1		
PERM	OR TEM.														
LAST RECORD	NUMBER	8580		9625		10670				12754	@ Rec. 8564				
TIRST RECORD	NUMBER	8575		9620		10665		11710		eg M.	ber in array		12755		
WORD NUMBERS FI			55 + (Point#-1) * 5		55 + (Point#-1) * 5		55 + (Point#-1) * 5	(8,2,2,3)	Truck No. 1=Inv. 2=Opr	1=Pos M. 2=Neg Factors	Seg. No. = Sequence Number in array	h R	Same as DCC05		
NO OF VAR	PER GROUP	86	+ (\$pan#-1) *	86	(Span#-1) *	86	(Span#-1) *	96					96		
VARIABLE	NAME	AM(7,7,2)	= 8575	AM(7,7,2)	d = 9620 +	AM(7,7,2)	d = 10665 +	LDFCT			5 * (Seq. No. * 5)	XSECCD (Integer)			
DATA GROUP		Load Type Action Matr	For other points record	Load Type 2 Action Matr	For other points record =	Load Type 3 Action Matr	For other points record	Load Factors LDFCT			 11705 * (Se	Cross Sect.	Load Factors Slab		
PROGRAM		DC003	For other	DC003	For other	DC003	For other	DC005			Record N =	DC005	DC006		

REMARKS			Span #1							Output Control	Wheel Fraction	Percent Impact	Total Weight Truck #1	Total Weight		
PERM	ON LEN	Perm					ļ		Perm							
LAST RECORD	NUMBER						12983									
IRST RECORD	NOFIBER	12756							12984	12991	12991	12991	12991	12991	12991	
WORD NUMBERS		Packed 21 per variable					12 + 12744	ın		Word 5	Word 6	Word 7	Word 8	Word 9	Word 10	
NO QF VAR	ren Groue	Z31					Span N = N *	70 per span	I=1-3 J=1-48		1	1	1	1	1	
Г	EFW T3	D4 T4	WS DS	D6 D7	AS1 AS2	RME	Record for Span	AB(7,10)		. ICR	WHF	PCTIM	TWT1	TWT2	TWT 3	
DATA GROUP	Dimensions of Section							Sections	Truck Characteristics							
PROGRAM	DC101							DC001R							`	

	REMARKS	Points Packed to front of	area.		Points Packed	to front of		SFACSS(2) last 2 words							
	PERM OR TEM.														
	LAST RECORD NUMBER	13003	15499		15511	18007		18019	18032	18043					
,A	FIRST RECORD LAST RECORD NUMBER	12992	13004		15500	15512		18007	18000	18033	-18044				
DISK STORAGE OF DATA	WORD NUMBERS	12 rec/point	for 209 points		12 rec/point	for 209 points		Add Action Array All runs & DL for Comp.	Add Action Array LL run for Composite	Point #'s DCOO5					
	NO OF VAR PER GROUP				*										
	VARIABLE NAME			-	n Used for	LL Run on Composite	On1y	ADDACT(30,8)	ADDACT(30,8)						
	DATA GROUP	Point Design Data			Point Design Used for	Data	·								
	PROGRAM	DC005			DC005			DC005	DC005						

REMARKS	Span #1			EM(1.0L)			EM(1,0L)			EV(1.0L)						
PERM OR TEM.																
LAST RECORD	17288		A Committee of the Comm	17298			17678			18058				18058		
FIRST RECORD	17251			17289			17669			18049				18429		
WORD NUMBERS F1		8						9						S	(Point#-1) * 10	
WORD		(Span#-1) * 38		(38 gps)	* 20	* 20	(38 gps)	* 20	* 20		* 20	* 20		171 groups	* 90 + (Po	
NO OF VAR PER GROUP	759	17251 + (Sp		191	9 + (Span#)	9 + (Span#)	191	9 + (Span#)	49 + (Span#)	191	+ (Span#)	29 + (Span#)		191	(Span#-1)	
VARIABLE	A(33,23)	ng record =	~	EMxx	scord = 17259	record = 17269	ЕМуу	record = 17639	record = 17649	EVzy	record = 18019	record = 18029			d = 18429 +	
DATA GROUP	Areas Mxx, Myy, Vzy	spans beginning		Mxx End Mom	end of span record	end of span	Myy End Mom	end of span r	end of span	Vzy End Shears	end of span r	end os span		Mxx Static Mom	points record	
PROGRAM	i	For other		ć	For left er	For right	٠.	For left en	For right	0.	For left e	For right	•	٠.	For other	

	REMARKS	1.1		1.1			,						
	PERM OR TEM.												
	LAST RECORD NUMBER	20148		21858									
ĽA	FIRST RECORD NUMBER	20139		21849			23559						
DISK STORAGE OF DATA	WORD NUMBERS	171 groups	* 90 + (Point#-1) * 10	171 groups	* 90 + (Point#-1) * 10								
	NO OF VAR PER GROUP	191	(Span #-1)	191	(Span #-1)						The state of the s		
	VARIABLE NAME		1 = 20139 +	-	= 21849 +								
	DATA GROUP	Myy Static Mom	points record	Vzy Static Shear	For other points record								
	PROGRAM	i	For other n	٠	For other p								

A3 no.FHWARD- 73-501

BORROWER

BORROWER

FORM DOT F 1720.
FORMERLY FORM DOT

