

Auto3DSG

Autoencoding for 3D Scene Graph Learning via Object-Level Scene Reconstruction

Sebastian Koch^{1,2,3}, Pedro Hermosilla⁴, Narunas Vaskevicius^{1,2}, Mirco Colosi², Timo Ropinski⁴

Bosch Center for Artificial Intelligence¹, Bosch Cooperate Research², University of Ulm³, TU Wien⁴

ICCV2023 - SG2RL Workshop

Current Challenges in 3D Scene Graph Prediction

Problem:

Lack of large-scale relationship labels for 3D scene graph learning

Goal:

- Can we add self-supervision for more efficient learning?
- How can we use large-scale 3D datasets for scene graph learning?

- ✓ No explicit scene graph labels required
- ✓ Trainable on large scale 3D datasets such as ScanNet

3D scene reconstructions

3D scene reconstructions

Relationship	Accuracy
left of	0.92
right of	0.92
front of	0.90
behind of	0.90
higher than	0.96
lower than	0.96
smaller than	0.98
bigger than	0.98
same as	1.00
average	0.92

3D Scene graph prediction performance

3D Scene graph prediction performance

Method	Object		Predicate		Relationship	
	R@5	R@10	R@3	R@5	R@50	R@100
SGGPoint [31]	0.28	0.36	0.68	0.87	0.08	0.10
3D+MSDN [18]	0.61	0.72	0.86	0.94	0.47	0.53
3D+KERN [5]	0.67	0.77	0.83	0.96	0.51	0.58
3D+BGNN [17]	0.71	0.82	0.87	0.94	0.55	0.60
3DSSG [25]	0.68	0.78	0.89	0.93	0.40	0.66
Liu <i>et al</i> . [19]	0.74	0.83	0.90	0.96	0.62	0.68
SGFN [27]	0.70	0.80	0.97	0.99	0.85	0.87
Auto3DSG	0.80	0.87	0.97	0.99	0.89	0.91

3D Scene graph prediction performance

Method	Object		Predicate		Relationship	
	R@5	R@10	R@3	R@5	R@50	R@100
SGGPoint [31]	0.28	0.36	0.68	0.87	0.08	0.10
3D+MSDN [18]	0.61	0.72	0.86	0.94	0.47	0.53
3D+KERN [5]	0.67	0.77	0.83	0.96	0.51	0.58
3D+BGNN [17]	0.71	0.82	0.87	0.94	0.55	0.60
3DSSG [25]	0.68	0.78	0.89	0.93	0.40	0.66
Liu <i>et al</i> . [19]	0.74	0.83	0.90	0.96	0.62	0.68
SGFN [27]	0.70	0.80	0.97	0.99	0.85	0.87
Auto3DSG	0.80	0.87	0.97	0.99	0.89	0.91

Auto3DSG

kochsebastian.com/auto3dsg

Check out our full paper recently published on Arxiv

