محرسة دلهي الخاصة ذ.م.م. DELHI PRIVATE SCHOOL L.L.C.

Affiliated to C.B.S.E., DELHI
(Approved & Recognized By Ministry of Education - United Arab Emirates)

FT/MAQP/1121/B

29-SEP-2021

FIRST TERM EXAMINATION (2021-22)

Subject: MATHEMATICS

Grade: XI

Max. Marks: 40

Time: 90 minutes

Name: Section: Roll No:

General Instructions:

• This question paper contains three sections – A, B and C. Each part is compulsory.

- Section A has 20 MCQs, attempt any 16 out of 20. Section B has 20 MCQs, attempt any 16 out of 20. Section C has 10 MCQs, attempt any 8 out of 10.
- There is no negative marking. All questions carry equal mark
- This question paper consists of 7 printed pages.
- All answers to be marked on the OMR sheet provided.

SECTION A (Answer any 16)

- 1. If $A = \{1, 2, 3, 4, 5\}$ then the number of proper subsets of A is
 - **a.** 120

b. 30

c. 31

d. 32

- 2. If $A \cap B = B$, then
 - **a.** $A \subseteq B$

b. $B \subseteq A$

c. $A = \phi$

d. $B = \phi$

- 3. If $A = \{1, 2, 4\}$, $B = \{2, 4, 5\}$, $C = \{2, 5\}$ then $(A B) \times (B C)$ is
 - **a.** $\{(1, 2), (1, 5), (2, 5)\}$

b. {(1, 4)}

c. (1, 4)

d. $\{(1,5)\}$

- **4.** If R is a relation on a set having n elements, then the number of relations on A is
 - **a.** 2^n

b. n^2

c. 2^{n^2}

d. n^n

5. If R is a relation on the set of natural numbers N defined by $R = \{(x, y): y = x + \frac{12}{x}, x, y \in N\}$,

then the domain of R is

a. {1, 2, 3, 4, 6, 12}

b. {1, 2, 3, 4, 6}

c. {2, 3, 4, 6, 12}

d. {3, 6, 12}

6. If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then which of the following is a function from A to B?

a. $\{(1,2),(1,3),(2,3),(3,3)\}$

b. {(1, 3), (2, 4)}

c. $\{(1,3),(2,2),(3,3)\}$

d. $\{(1,2),(2,3),(3,2),(3,4)\}$

- 7. The value of $(i^n + i^{n+1} + i^{n+2} + i^{n+3})$ is
 - **a.** 0

b. i

c. -1

d. 1

- 8. If $z = \frac{(1 i\sqrt{3})}{2(1 i)}$, then |z| =
 - **a.** $\frac{1}{\sqrt{2}}$

b. $\frac{1}{2\sqrt{2}}$

c. $\frac{1}{\sqrt{3}}$

- **d.** $\frac{1}{3\sqrt{2}}$
- **9.** If $z = (3 + \sqrt{2}i)$, then $z \bar{z}$ is equal to
 - **a.** 13

b. $\sqrt{13}$

c. 11

- **d.** $\sqrt{11}$
- 10. The multiplicative inverse of (-2 + 5i) is
 - **a.** $\frac{2}{29} + \frac{5}{29}i$

b. $\frac{2}{29} - \frac{5}{29}i$

 $\frac{c.}{29} - \frac{5}{29}i$

- **d.** $\frac{-2}{29} + \frac{5}{29}i$
- 11. If α and β are different complex numbers with $|\beta| = 1$, then the value of $\left| \frac{\beta \alpha}{1 \overline{\alpha} \beta} \right|$ is
 - **a.** 1

b. -1

c. $|\alpha + \beta|$

- **d.** $|\alpha \beta|$
- 12. If $x + iy = \frac{3+5i}{7-6i}$, then the value of y is
 - a. $\frac{9}{85}$

b. $\frac{-9}{85}$

 $\frac{\mathbf{c.}}{85}$

d. $\frac{3}{85}$

- 13. If $z = \frac{1+7i}{(2-i)^2}$ then
 - **a.** |z| = 2

b. |z| = 4

c. $|z| = \sqrt{2}$

- **d.** |z| = 0
- 14. The sum of n terms of an AP is $(3n^2 + 2n)$, What is the common difference?
 - **a.** 5

b. -5

c. 6

- **d.** 6
- **15.** The 4^{th} , 7^{th} , and the 10^{th} terms of a GP form
 - a. an arithmetic progression

b. a geometric progression

c. neither AP nor GP

d. cannot say

16. If a, x, b are in GP then

$$\mathbf{a.} \quad x^2 = ab$$

b.
$$a^2 = xb$$

c.
$$b^2 = ax$$

d.
$$x = \frac{(a+b)}{2}$$

17. The geometric mean between 27 and 243 is

c.
$$3\sqrt{30}$$

18. For any two positive numbers a and b, which statement is true?

a.
$$AM \leq GM$$

b.
$$AM \geq GM$$

$$\mathbf{c.} \quad AM = \frac{3}{4}GM$$

d.
$$AM = \sqrt{2} GM$$

19. If the sum of n terms of a GP is $(2^n - 1)$ then the common ratio is

c.
$$\frac{1}{2}$$

$$-\frac{1}{2}$$

20. If the nth term of a GP 3, $\sqrt{3}$, 1, ..., $is \frac{1}{243}$ then the value of n is

SECTION B (Answer any 16 questions)

21. Two finite sets have m and k elements. If the total number of subsets of first set is 112 more than the total number of subsets of second set, what are the values of m and k?

a.
$$m = 7, k = 4$$

b.
$$m = 6, k = 3$$

c.
$$m = 3, k = 6$$

d.
$$m = 4, k = 7$$

22. If $n(\xi) = 40$, $n(A \cup B)' = 12$, n(A - B) = 10 and n(B - A) = 14, then $n(A \cap B)$ is equal to

23. In a beauty contest half the judges voted for Ms. Aruna, $\frac{2}{3}$ voted for Ms. Brinda, 10 voted for both and 6 did not vote for either. The number of judges present in all were

24. Let $R = \{(x, y): x, y \in \mathbb{Z}, y = 2x - 4\}$. If (a, -2) and (4, b²) belong to R, the values of a and b are

a.
$$a = -2, b = \pm 2$$

b.
$$a = -2, b = 4$$

c.
$$a = 1, b = +2$$

d.
$$a = +2, b = 2$$

25. If $f = \{(x, \frac{x^2}{1+x^2}) : x \in R\}$ be a function from R to R, then the range of f is

a.
$$[0, 1)$$

b. [0, 1]

d. (0, 1)

26. If f is a real valued function given by f(x) = 1 - |x - 2|, then the range of f is

b. $(-\infty, 1)$

c.
$$[1, \infty)$$

d. $(-\infty, 1]$

27. The least positive integer n such that $\left(\frac{2i}{1+i}\right)^n$ is a positive integer is

b. 8

d. 2

28. If $(x+iy)^{\frac{1}{3}}=a+ib$, where $x,y,a,b\in R$, then the value of $\frac{x}{a}-\frac{y}{b}$ is equal to

a.
$$-2(a^2+b^2)$$

b.
$$2(a^2 + b^2)$$

c.
$$(a^2 + b^2)$$

d.
$$-(a^2+b^2)$$

29. If (1+i)(1+2i)(1+3i)......(1+ni) = a+ib then $2\cdot 5\cdot 10\cdot 17$ $(1+n^2) =$

a.
$$a^2 + b^2$$

b.
$$a^2 - b^2$$

c.
$$a + ib$$

d.
$$a - ib$$

30. If $\frac{3+2isin\theta}{1-2isin\theta}$ is a real number, then the value of θ is

b.
$$\frac{\pi}{2}$$

c.
$$\frac{\pi}{3}$$

d.
$$\frac{\pi}{6}$$

31. If $x + iy = \frac{(a^2 + 1)^2}{2a - i}$, then $x^2 + y^2$ is equal to

a.
$$\frac{(a^2+1)^4}{4a^2+1}$$

b.
$$\frac{(a+1)^2}{4a^2+1}$$

c.
$$\frac{(a^2-1)^4}{4a^2+1}$$

d.
$$\frac{(a-1)^4}{4a^2+1}$$

32. If $a + ib = \frac{c+i}{c-i}$ then $\frac{b}{a}$ is equal to

a.
$$\frac{2c}{c^2+1}$$

b.
$$\frac{2c}{c^2 - 1}$$

c.
$$\frac{c^2 - 1}{c^2 + 1}$$

d.
$$\frac{c^2+1}{c^2-1}$$

33. Given the equation |z| = z + 1 + 2i, the complex number z is equal to

a.
$$z = 3 - 2i$$

b.
$$z = \frac{3}{2} - 2i$$

c.
$$z = \frac{3}{2} + 2i$$

d.
$$z = 3 + 2i$$

34. The sum of an infinite series is 8 and the second term is 2. The common ratio is

a.
$$\frac{1}{2}$$

b. $\frac{1}{4}$

c.
$$\frac{2}{3}$$

d. $\frac{3}{4}$

35. If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P.

is

a. 0

b. 22

c. 220

- **d.** 198
- **36.** If n A.M's are inserted between 3 and 17 such that the ratio of the last mean to the first mean is 3:1, then the value of n is

a.
$$(2+3\sqrt{2})$$

b.
$$\frac{(4+3\sqrt{2})}{2}$$

$$\mathbf{c.} \quad \frac{\left(3+2\sqrt{2}\right)}{2}$$

d.
$$(3+\sqrt{2})$$

38. For the infinite GP $y = x + x^2 + x^3 + x^4 + \dots \infty$, where |x| < 1, the value of x is

$$\mathbf{a.} \quad \frac{y}{1-y}$$

$$\mathbf{b.} \quad \frac{y}{1+y}$$

$$\mathbf{c.} \quad \frac{y-1}{y}$$

$$\mathbf{d.} \quad \frac{y+1}{y}$$

39. The ratio between the sums of n terms of two arithmetic progressions is $\frac{3n+8}{7n+15}$. The ratio of their 12th terms is

40. If $4, A_1, A_2, A_3, 28$ are in AP, then $A_3 = ?$

b. 22

d. 16

SECTION C (Answer any 8 questions)

41. If $f = \{(0,-5), (1,-2), (2,1), (3,4), (4,7)\}$ is a linear function from Z into Z, then the function f is given by

a.
$$f(x) = 2x + 5$$

b.
$$f(x) = 3x + 5$$

c.
$$f(x) = 3x - 5$$

d.
$$f(x) = 5x - 3$$

42. The value of $(1+i)^4 + (1-i)^4$ is equal to

43. The value of $\frac{(i^5+i^6+i^7+i^8+i^9)}{1+i}$ is equal to

a.
$$\frac{1}{2}(1+i)$$

b.
$$\frac{1}{2}(1-i)$$

c.
$$\frac{1}{2}$$

44. In a GP the ratio of the sum of first three terms to the sum of first 6 terms is $\frac{125}{152}$. The common ratio

is

a.
$$\frac{1}{2}$$

b.
$$\frac{2}{3}$$

c.
$$\frac{3}{5}$$

d.
$$\frac{5}{6}$$

45. How many terms of the GP $\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \dots$ must be taken to make the sum $\frac{55}{72}$

46. <u>CASE STUDY</u>

In a group of children, 45 play football out of which 30 play football only, 28 play hockey, 25 play cricket, out of which 11 play cricket only. Further 7 play cricket and football but not hockey. 5 play football and hockey but not cricket and 10 play football and cricket both. 4 children do not play any game.

How many children play all the three games?

a. 2

b. 7

c. 3

d. 4

47. How many play hockey only?

a. 20

b. 16

c. 11 **d.** 21 **48.** How many children are there in the group? 80 76 b. a. 128 d. 124 c. **49.** How many children play atleast one game? **a.** 57 b. 61 76 d. 24 c. **50.** How many children play only one game? 128 b. 73 d. 57 **c.** 61
