Dimension Reduction for Big Data

Devin Nanayakkara

25th June 2018

Overview

- Introduction
 - Motivation
- Goal
- Implementation
- Results
- Conclusion

Applications

Analytics

Business Intelligence

Infrastructure

Other Technologies

Curse of Dimensionality

1. Data isolation

Curse of Dimensionality

1. Data isolation

 Number of training samples required for a K-Nearest Neighbour search algorithm

Dimension size	10	15	20	30	50	100	150
Number of samples required	1	3	39	45,378	5.76×10^{12}	4.22×10^{39}	1.28×10^{72}

Curse of Dimensionality

- Data isolation
- 2. Overfitting

 X_1

Curse of Dimensionality

- Data isolation
- 2. Overfitting
- 3. False Structure

 X_1

Curse of Dimensionality

- 1. Data isolation
- 2. Overfitting
- 3. False Structure
- 4. Computation difficulty
 - Time
 - Complexity

Random Projection (1)

 Assist applications whose data is represented geometrically in high dimensional vector spaces

X – Data matrix

d – Euclidean space dimension

k – Reduced space dimension

Random Projection (2)

Johnson-Lindenstrauss Transform

- Fundemental method for dimension reduction.
- Theorem:

For any
$$(x, y) \in X$$
,
$$(1 - \epsilon) \|x - y\|_2 \le \|\Phi(x - y)\|_2 \le (1 + \epsilon) \|x - y\|_2$$

- Projecting any point in the data set (X) on to a random low dimensional subspace should, up to a distortion of $1 \pm \epsilon$, preserve pairwise distances
- Classic JL Transform (FJLT):
 - Runtime: 0(kd)

Goal

- Implement structured random matrices to speed up the JL transform
 - Fast JL Transforms (FJLT)

25th June 2018

Design Methods

- 1. FJLT projection method 1
 - Sparse matrices
- 2. FJLT projection method 2
 - Methods from coding theory

FJLT Method 1

$$\Phi = S.H.D$$

- $(k \times d)$ Sparse matrix.
 - $S_{ij} \sim N(0, 1/q)$, with probability q
 - $S_{ij} = 0$, with probability (1 q)
 - $q = \min\left\{\frac{\log^2 n}{d}, 1\right\}$

FJLT Method 1

- $(k \times d)$ Sparse matrix
 - S_{ij} non zero with probability q
 - $q = \min\left\{\frac{\log^2 n}{d}, 1\right\}$

- $(d \times d)$ Walsh-Hadamard matrix
 - Fourier transform matrix
 - Simple to compute; runtime of $O(d \log d)$

$$- H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$- H_{2^{2n}} = \begin{pmatrix} H_{2^n} & H_{2^n} \\ H_{2^n} & -H_{2^n} \end{pmatrix}$$

FJLT Method 1

- $(k \times d)$ Sparse matrix
 - S_{ij} non zero with probability q
 - $q = \min\left\{\frac{\log^2 n}{d}, 1\right\}$

- $(d \times d)$ Walsh-Hadamard matrix
 - Fourier transform matrix
- $(d \times d)$ Random diagonal matrix
 - $D_{ii} = \{-1,1\}$ with probability 1/2

$$\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$$

FJLT Method 1

- $(k \times d)$ Sparse matrix
 - S_{ij} non zero with probability q
 - $q = \min\left\{\frac{\log^2 n}{d}, 1\right\}$

• $(d \times d)$ Walsh-Hadamard matrix

 $\Phi = S \cdot H \cdot D$

- Fourier transform matrix
- $(d \times d)$ Random diagonal matrix
 - $D_{ii} = \{-1,1\}$ with probability 1/2

• For $k \le d^{1/3}$, the runtime is $O(d \log d)$

Results

- FJLT 1
 - Test 1
 - $-k \leq 4$

Results

- FJLT 1
 - Test 1
 - $-k \leq 4$

Results

- FJLT 1
 - Test 2
 - $-k \leq 8$

Design Methods

- 1. FJLT projection method 1
 - Sparse matrices
 - Computation time: $O(d \log d)$
 - Reduced dimension: $k \le d^{1/3}$
- 2. FJLT projection method 2
 - Methods from coding theory

FJLT Method 2

- $(k \times d)$ code matrix
 - Matrix containing unit norm vector columns

- $(d \times d)$ Random diagonal matrix
 - $D_{ii} = \{-1,1\}$ with probability 1/2
- $(d \times d)$ matrix
 - Combination of H_d and D_d

$$\Phi_d^{(r)} = HD^{(r)}HD^{(r-1)}\dots HD^{(1)}$$

• For $k < d^{1/2}$, the runtime is $O(d \log k)$

Results

- FJLT 2
 - Test 1
 - k < 12

Results

- FJLT 2
 - Test 1
 - k < 12

Results

- FJLT 2
 - Test 2
 - k < 23

Results

- FJLT 2
 - Test 2
 - k < 23

25th June 2018

Summary

- 1. FJLT projection method 1
 - Sparse matrices
 - Computation time: $O(d \log d)$
 - Reduced dimension: $k \le d^{1/3}$
- 2. FJLT projection method 2
 - Methods from coding theory
 - Computation time: $O(d \log k)$
 - Reduced dimension: $k < d^{1/2}$

Comparison (1)

Comparison (2)

Dimension Reduction for Big Data

25th June 2018

FJLT 1 on ML

k: reduced dimension; d: original dimension;

FJLT 2 on ML

k: reduced dimension; d: original dimension;

Dimension Reduction for Big Data

25th June 2018

25th June 2018

FJLT on ML

Cross-validation test

		Actual Class			
		setosa	versicolor	virginica	
Predicted Class	setosa	50	0	0	
	versicolor	0	48	6	
	virginica	0	2	44	
	undefined	0	0	0	

Table 5.9: Confusion matrix for FJLT 2 projection with k=4

		Actual Class		
		setosa	versicolor	virginica
Predicted Class	setosa	50	0	0
	versicolor	0	47	2
	virginica	0	3	48
	undefined	0	0	0

Table 5.10: Confusion matrix for FJLT 2 projection with $\mathbf{k}=5$

Conclusions

- 1. FJLT projection method 1
 - Sparse matrices
 - Computation time: $O(d \log d)$; Reduced dimension: $k \le d^{1/3}$
- 2. FJLT projection method 2
 - Methods from coding theory
 - Computation time: $O(d \log k)$; Reduced dimension: $k < d^{1/2}$
- 3. For very complex datasets, the computation time is similar.
 - Better probability of success achieved by FJLT 2
- 4. Great performance in standard ML techniques

Future Work

- Simulations of FJLT on large pixel image datasets
 - Emotion/face recognition
- Restriction on reduced dimension
 - Current $k < d^{1/2}$
 - Use of techniques such as Restricted Isometry Property and sparse dimension reduction
- Improving the computation time
 - Better than $O(d \log k)$

Thank you

Devin Nanayakkara

APPENDIX

Devin Nanayakkara

FJLT Method 1

Theorem:

Given a fixed set of X of n points in \mathbb{R}^d , and $\epsilon < 1$, draw a matrix Φ from FJLT 1. With probability at least $\frac{2}{3}$, the following 2 events occur:

- 1. For any $x \in X$, $(1 - \epsilon)k||x||_2 \le ||\Phi x||_2 \le (1 + \epsilon)k||x||_2$
- 2. The mapping $\Phi: \mathbb{R}^d \to \mathbb{R}^k$ requires, $O(d \log d + \min\{d\epsilon^{-2} \log n, \epsilon^{-2} \log^3 n\})$ operations.

FJLT Method 1

			k							
d	$d^{1/3}$	n	2	3	4	8	16	32		
64	4	1000	0.540	0.540	0.640	0.760	0.880	0.940		
		5000	0.460	0.540	0.680	0.820	0.880	0.940		
		10000	0.580	0.600	0.720	0.800	0.880	0.940		
	5	1000	0.520	0.420	0.380	0.680	0.800	0.900		
128		5000	0.500	0.500	0.600	0.740	0.840	0.920		
		10000	0.520	0.560	0.620	0.760	0.880	0.920		
	6	1000	0.680	0.520	0.400	0.580	0.720	0.860		
256		5000	0.600	0.380	0.400	0.640	0.780	0.880		
		10000	0.540	0.380	0.440	0.640	0.820	0.900		
512	8	1000	NaN	0.740	0.480	0.380	0.620	0.780		
		10000	0.780	0.480	0.360	0.520	0.720	0.840		
1024	10	10000	NaN	0.840	0.500	0.340	0.600	0.720		

Table 5.1: Error at which 2/3 probability is reached for different tests.

Results

- FJLT 1
 - Test 2
 - $-k \leq 8$

FJLT Method 2

Theorems:

Theorem 3.2 For any code matrix A of size $k \times d$ for k < d, the mapping $x \mapsto Ax$ can be computed in time $O(d \log k)$.

Theorem 3.3 Let $\delta > 0$ be some arbitrarily small constant. For any d, k satisfying $k < d^{\frac{1}{2}-\delta}$, there exists an algorithm constructing a random matrix A of size $k \times d$ satisfying Johnson-Lindenstrauss properties $(0 \le \epsilon \le 1/2)$, such that the time to compute $x \mapsto Ax$ for any $x \in \mathbb{R}^d$ is $O(d \log k)$. The constriction uses O(d) random bits and applies to both the Euclidean (p = 2) and the Manhattan (p = 1) cases.

FJLT Method 2

$$A = B \cdot D \cdot \Phi_d^r$$

$$B_{k \times d} = [B_k \quad B_k \quad B_k \dots B_k]$$

$$BD = \underbrace{(B_k \quad B_k \quad B_k \dots B_k)}_{d/\beta \text{ copies of } k \times \beta \text{ blocks}} \begin{bmatrix} D_\beta & 0 & \cdots & 0 \\ 0 & D_\beta & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_\beta \end{bmatrix}$$

$$\frac{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}}{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}}$$

FJLT Method 2

$$A = B \cdot D \cdot \Phi_d^r$$

$$BD = \underbrace{(B_k \quad B_k \quad B_k \dots B_k)}_{d/\beta \text{ copies of } k \times \beta \text{ blocks}} \underbrace{\begin{pmatrix} D_\beta & 0 & \cdots & 0 \\ 0 & D_\beta & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_\beta \end{pmatrix}}_{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}}$$

$$HD' = \underbrace{\begin{pmatrix} H_{\beta} & 0 & \cdots & 0 \\ 0 & H_{\beta} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & H_{\beta} \end{pmatrix}}_{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}} \underbrace{\begin{pmatrix} D_{\beta}^{(1)} & 0 & \cdots & 0 \\ 0 & D_{\beta}^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_{\beta}^{(r)} \end{pmatrix}}_{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}} \bullet \text{For } k < d^{1/2}, \text{ the runtime is } O(d \log k)$$

FJLT Method 2 (1)

Theorem 3.2 For any code matrix A of size $k \times d$ for k < d, the mapping $x \mapsto Ax$ can be computed in time $O(d \log k)$.

Theorem 3.3 Let $\delta > 0$ be some arbitrarily small constant. For any d, k satisfying $k < d^{\frac{1}{2}-\delta}$, there exists an algorithm constructing a random matrix A of size $k \times d$ satisfying Johnson-Lindenstrauss properties $(0 \le \epsilon \le 1/2)$, such that the time to compute $x \mapsto Ax$ for any $x \in \mathbb{R}^d$ is $O(d \log k)$. The constriction uses O(d) random bits and applies to both the Euclidean (p = 2) and the Manhattan (p = 1) cases.

Lemma 3.1 There exists a 4-wise independent code matrix of size $k \times f_{BCH}(k)$, where $f_{BCH}(k) = \Theta(k^2)$.

Lemma 3.2 Assume B is a $k \times d$ 4-wise independent code matrix.

FJLT Method 2 (2)

$$B_{k \times d} = [B_k \quad B_k \quad B_k \dots B_k]$$

$$D' = D^{(1)}, D^{(2)}, D^{(3)}, \dots, D^{(r)}$$

$$\Phi_d^{(r)} = HD^{(r)}HD^{(r-1)}\dots HD^{(1)}$$

$$BD = \underbrace{(B_k \quad B_k \quad B_k \dots B_k)}_{d/\beta \text{ copies of } k \times \beta \text{ blocks}} \underbrace{\begin{pmatrix} D_\beta & 0 & \cdots & 0 \\ 0 & D_\beta & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_\beta \end{pmatrix}}_{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}}$$

$$HD' = \underbrace{\begin{pmatrix} H_{\beta} & 0 & \cdots & 0 \\ 0 & H_{\beta} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & H_{\beta} \end{pmatrix}}_{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}} \underbrace{\begin{pmatrix} D_{\beta}^{(1)} & 0 & \cdots & 0 \\ 0 & D_{\beta}^{(2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_{\beta}^{(r)} \end{pmatrix}}_{d/\beta \text{ copies of } \beta \times \beta \text{ blocks}}$$

FJLT Method 2 (3)

d	$d^{1/2}$	n	k	β	error
32	5.7	50	5	16	0.380
64	8	50	6	32	0.350
128	11.3	500	3	8	0.310
120	11.5	5000	3	8	0.330
	16	50	8	64	0.340
256		500	8	64	0.330
		10000	8	64	0.360
512	22.6	1000	18	256	0.330
012		10000	18	256	0.300

Table 5.2: Best performing reduced dimension solution for different tests

Comparison Tests

		F.	JLT 1	FJLT 2				
n	n d		min e	k	beta	min e		
50	32	3	0.40	5	16	0.40		
	64	4	0.44	6	32	0.38		
	128	4	0.40	7	32	0.35		
	256	8	0.32	9	64	0.25		
	512	16	0.30	16	256	0.25		
	32	2	0.50	5	16	0.38		
	64	3	0.40	7	32	0.37		
100	128	4	0.40	6	32	0.34		
	256	8	0.32	10	128	0.34		
	512	8	0.36	15	256	0.28		
	32	2	0.52	5	16	0.42		
	64	2	0.50	7	32	0.40		
500	128	3	0.44	7	32	0.37		
	256	4	0.40	9	64	0.35		
	512	8	0.30	14	256	0.32		
	32	2	4.80	5	16	0.46		
	64	2	0.54	7	32	0.41		
1000	128	4	0.38	7	32	0.38		
	256	4	0.40	9	64	0.35		
	512	8	0.38	18	256	0.33		
	32	2	0.58	5	16	0.45		
	64	2	0.46	7	32	0.42		
5000	128	3	0.50	7	32	0.39		
	256	3	0.38	9	64	0.35		
	512	4	0.36	14	256	0.33		
	32	2	0.50	5	16	0.45		
	64	2	0.60	7	32	0.41		
10000	128	2	0.52	7	32	0.39		
10000	256	3	0.38	9	64	0.34		
	512	4	0.36	18	256	0.32		
	1024	8	0.34	25	512	0.30		

Table 1: Optimal reduced dimension and error for different parameters

FJLT on ML

Summary of correctness tests

Type	Test Size	Accuracy (as per dataset) %									
		Original	k								
		Original	2	3	4	5	6	7	8	9	10
FJLT 1	5	80.0	78.0	84.0	88.0	86.0	90.0	92.0	90.0	84.0	92.0
FJLT 2	5	80.0	86.0	86.0	84.0	88.0	86.0	90.0	90.0	86.0	86.0
FJLT 1	10	90.0	89.0	88.0	92.0	90.0	91.0	93.0	94.0	92.0	91.0
FJLT 2	10	90.0	92.0	87.0	85.0	87.0	94.0	92.0	93.0	94.0	92.0
FJLT 1	15	100.0	94.0	94.0	100.0	99.3	100.0	100.0	100.0	100.0	100.0
FJLT 2	15	100.0	90.0	95.3	98.0	97.3	100.0	100.0	99.3	99.3	100.0

l_p -norm

$$||x_p|| = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

ℓ₂ Regression

- Least square fit of an overdetermined linear system
- Old method:
 - Solution obtained by down sampling
- Problem:
 - Complex solution
 - Down sampling distribution depends on norms of rows of the left singular vector matrix of the original system
- Solution:
 - Multiply the equation matrix on the left by HD
 - The resulting left singular matrix have almost uniform sampling

Imperial College London

Dimension Reduction for Big Data

25th June 2018

Imperial College London

Dimension Reduction for Big Data

25th June 2018