Linear Regression.

How to calculate linear regression Clarge least square method?

]	-ndependent Variable	Dependent Variable	
	× 1 2345	JUN 46 4 6	$\hat{y} = b_0 + b_1 \times$ $b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$
mean	3	4	

	-				
×	4	×-×	4-7	(x-x)2	(x-x)(y-q)
	2	-2	-2	4	4
2	4	-1	0		4
3	5	0			0
-				0	0
4	4	1	0	1	0
5	5	2		4	2
				10	6

$$b_1 = \frac{6}{10} = 0.6$$

$$\hat{y} = b_0 + b_1 \times \text{ [bo is calculated]}$$

$$4 = b_0 + 0.6 \times 3 \text{ Using the mean Coordinate}$$

$$b_0 = 2.2$$

$$\hat{y} = 2.2 + 0.6 \times$$

How to predict for a new x Value:

ig x is given as 10, predicted y value is

$$\hat{y} = 2.2 + 0.6 \times 10$$
 $\hat{y} = 8.2$

How to calculate R2 Wrng Regression Analysis?

×	7	y-9	(4-4)2	ŷ	9-5	(9-5)
1	2	-2	4	2.8	-1-2	1.44
2	4	0	0	3.4	-0.6	0.36
3	5	1	1	4	0	0
4	4	0	0	4.6	0.6	0.36
5	5	1	t	5.2	1.2	1.44
mea	n = 4		6			3.6
			1 - 12			

$$R^{2} = \frac{z(\hat{y} - \bar{y})^{2}}{(y - \bar{y})^{2}} = \frac{3.6}{6} = 0.6$$

R² is closed to 1 means the distance between actual and predicted value is less/closed R² is closed to 0 means the distance between actual and predicted value is more/greater. Therefore its presented to have R² closed to 1.

Example: 2 Regression
$$\hat{y} = b_0 + b_1 \times 1$$

(Sy) $(\xi x^2) - (\xi x)(\xi xy)$

N $(\xi x^2) - (\xi x)^2$

(Coefficient $b_1 = \frac{n(\xi xy) - (\xi x)(\xi y)}{n(\xi x^2) - (\xi x)^2}$

	Age	Glucose level	×g	× ²
	43	99	4 2 5 7	1849
	21	65	1365	441
1	25	79	1975	625
	42	75	3150	1764
	57	87	4959	3249
	59	81.	4779	3481
1.	247	486	20485	11409

Sum!

$$b_0 = \frac{(\xi y)(\xi x^2) - (\xi x)(\xi xy)}{\eta(\xi x^2) - (\xi x)^2}$$

$$= \frac{486 \times 11409 - 247 \times 20485}{120485}$$

$$b_0 = \frac{4848979}{7445} = 65.14$$

$$b_1 = \frac{6 \times 20485 - 247 \times 486}{6 \times 11409 - (247)^2} = \frac{2868}{7445} = 0.385$$

For given & value Predict y:

x=55, Regression line Equation: 9=65.14(0.385)x

 $\hat{y} = 65.14 + 0.385 \times 55$

= 86.327

Predicted Glucose for age 55 is 86.3/