Transfer Functions of Multivariable ODEs

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Seborg Ex. 4.4a Given constant liquid density ρ , volume V, mass flow rates w_1 , w_2 , and w, the governing equation for a continuous blending process is

$$ho Vrac{dx}{dt}=w_1x_1+w_2x_2-wx_1$$

where x are compositions. Determine the transfer function for output x and varying input x_1 while x_2 is held constant.

Seborg Ex. 4.4a (cont.)

Seborg Ex. 4.4a (cont.)

Seborg Ex. 4.4b Given constant liquid density ρ , volume V, mass flow rates w_1 , w_2 , and w, the governing equation for a continuous blending process is

$$ho Vrac{dx}{dt}=w_1x_1+w_2x_2-wx_1$$

where x are compositions. Determine the transfer function for output x and varying inputs x_1 and x_2 .

Seborg Ex. 4.4b (cont.)

Seborg Ex. 4.4b (cont.)

Linearity and input-output relationship

$$X'(s) = G_1(s) X_1'(s) + G_2(s) X_2'(s)$$