CS 154 - Introduction to Automata and Complexity Theory

Spring Quarter, 2001

Assignment #3 - Due date: Wednesday, 5/02/01

Remark: Since I went nuts and asked you to solve 6 questions, some of which are not all that easy, I have increased the total score of this problem set to 120 from the usual 100.

Problem 1. (25 points) For any language L, we define the language $L^{\downarrow k}$ as all strings in L of length no more than k; that is,

$$L^{\downarrow k} = \{ w \mid w \in L \text{ and } |w| \le k \}.$$

Show that the following claims are true. You may use results from the class or the textbook to help with this task.

- (a). Suppose that a DFA M has n states and its language is L = L(M). Then, L is non-empty if and only if $L^{\downarrow n}$ is non-empty.
- (b). Suppose that a DFA M has n states and its language is L = L(M). Then, the complement language \overline{L} has a DFA with at most n states.
- (c). Let M_1 be a DFA with n_1 states, and M_2 be a DFA with n_2 states. Denote by L_1 and L_2 the languages of the machines M_1 and M_2 , respectively. Then, the language $L = L_1 \cap L_2$ must have a DFA M with no more than $n = n_1 \times n_2$ states.
- (d). Let M_1 be a DFA with n_1 states, M_2 be a DFA with n_2 states, and define $n = n_1 \times n_2$. Denote by L_1 and L_2 the languages of the machines M_1 and M_2 , respectively. Then, $L_1 = L_2$ if and only if $L_1^{1n} = L_2^{1n}$. (Hint: Use the claims from parts (a), (b) and (c).)

Problem 2. (20 points) Show that the class of regular languages is closed under the following operation:

$$\mathit{max}(L) = \{ w \ | \ w \text{ is in } L \text{ and, for all } x \neq \epsilon \text{ the string } wx \text{ is } \mathit{not} \text{ in } L \}$$

Informally, max(L) is the set of all strings in L which cannot be extended into another string in L by adding symbols at the end.

Problem 3. (20 points) Give an algorithm to solve the following decision problem. You must justify the correctness of the algorithm to receive full credit.

Given a regular language R over $\Sigma = \{0, 1\}$, verify that R does not contain any string that begins with 1 and ends with 1.

Problem 4. (15 points) Consider the context-free grammar $G = (\{X, Y, Z, S\}, \{0, 1\}, P, S)$, where the productions in P are as follows.

1.
$$S \rightarrow \epsilon \mid Y \mid Z$$

2.
$$X \rightarrow \epsilon \mid X \mid XX$$

- 3. $Y \rightarrow 01Y \mid X$
- 4. $Z \rightarrow 0Z \mid Y \mid \epsilon$
- (a). Give a regular expression for the set of all sentences that can be derived from Y.
- (b). Give the simplest regular expression you can for L(G).
- (c). Let \widehat{G} be the grammar obtained from G by dropping the production $X \to \epsilon$. Give the simplest regular expression you can for the language $L(\widehat{G})$.

Problem 5. (20 points) Give a context-free grammar for the language L consisting of all strings from $\{0,1\}^*$ that are not of the form ww. Thus, the complement of L would contain only strings that can be viewed as some string w repeated twice.

Problem 6. (20 points) In the book (Sections 5.4.1 and 5.4.2) we have discussed the issue of ambiguity of CFGs for arithmetic expressions written in the *infix* notation. In the infix notation, binary operators are written between the two operands (e.g., x + y or $x \times y$). There are other ways of writing operators such as the *prefix* notation where we would write +xy or +xy0 and the *postfix* notation where we would write +xy1 or +xy2 or +xy3 and the +xy3 or +xy4 or +xy5 or +xy5 denote the same arithmetic expressions.

The following context-free grammar generates arithmetic expressions in the postfix notation which is used, for example, in the programming language APL. Notice the lack of parentheses in the grammar.

$$S \longrightarrow SS + \mid SS - \mid SS * \mid x \mid y$$

- (a). For the string xxy * x +, find a derivation tree.
- (b). For the string xxy * x +, find a leftmost derivation.
- (c). For the string xxy*x-+, find a rightmost derivation.
- (d). Is this grammar ambiguous? Give a brief justification. (While a formal proof is not required, think about how you might give such a proof.)

Reading Assignment:

We are done with Chapter 4. We are already into Chapter 5 and will finish with Chapter 6 and portions of Chapter 7 before the midterm. While we will not cover Section 5.3 and Section 6.4 in class, they make for very interesting reading and are strongly recommended.