# **EDUCATALYSTS**

Class(12th)

**Introduction to Relations and Functions** 

### CHAPTER - 2

## RELATIONS AND FUNCTIONS

#### CONCEPT MAP

 Ordered Pair: An ordered pair consists of two objects or elements in a given fixed order.

Remarks: An ordered pair is not a set consisting of two elements.

The ordering of two elements in on ordered pair is important and the two elements need not be distinct.

Equality of Ordered Pair: Two ordered pairs (x<sub>1</sub>, y<sub>1</sub>) & (x<sub>2</sub>, y<sub>2</sub>) are equal if x<sub>1</sub> = x<sub>2</sub> and y<sub>1</sub> = y<sub>2</sub>.

i.e. 
$$(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2 \text{ and } y_1 = y_2$$

- ★ Cartesian product of two sets: Cartesian product of two nonempty sets A and B is given by A × B and A × B = {(x, y) : x ∈ A and y ∈ B}.
- Cartesian product of three sets: Let A, B and C be three sets, then A × B × C is the set of all ordered triplet having first element from set A, 2nd element from set B and 3rd element from set C.

i.e., 
$$A \times B \times C = \{(x, y, z) : x \in A, y \in B \text{ and } z \in c\}.$$

- Number of elements in the Cartesian product of two sets: If n(A) = p and n(B) = q, then n(A × B) = pq.
- Relation: Let A and B be two non-empty sets. Then a relation from set A to set B is a subset of A × B.

- No. of relations: If n(A) = p, n(B) = q then no. of relations from set A to set B is given by 2<sup>pq</sup>.
- **Domain of a relation:** Domain of R = {a : (a, b) ∈ R}
- ★ Range of a relation: Range of R = { b : (a, b) ∈ R}
- \* Co-domain of R from set A to set B = set B.
- ⋆ Range ⊆ Co-domain
- Relation an a set: Let A be non-empty set. Then a relation from A to B itself. i.e., a subset of A × A, is called a relation on a set.
- Inverse of a relation: Let A, B be two sets and Let R be a relations from set A to set B.
  - Then the inverse of R denoted  $R^{-1}$  is a relation from set B to A and is defined by  $R^{-1} = \{(b, a) : (a, b) \in R\}$
- Function: Let A and B be two non-empty sets. A relation from set A to set B is called a function (or a mapping or a map). If each element of set A has a unique image in set B.
  - Remark: If  $(a, b) \in f$  then 'b' is called the image of 'a' under f and 'a' is called reimage of 'b'.
- Domain of range of a function: If a function 'f' is expressed as the set of ordered pairs, the domain of 'f' is the set of all the first components of members of f and range of 'f' is the set of second components of member of 'f'.
  - i.e.,  $D_f = \{a : (a, b) \in f\}$  and  $R_f = \{b : (a, b) \in D_f\}$
- No. of functions: Let A and B be two non-empty finite sets such that n(A) = p and n(B) = q then number of functions from A to B = q<sup>p</sup>.
- Real valued function: A function f : A → B is called a real valued function if B is a subset of R (real numbers).

★ Identity function: f:R→R given by f(x) = x ∀ x ∈ R (real number)

Here,  $D_f = R$  and  $R_f = R$ 



★ Constant function: f:R→R given by f(x) = c for all x ∈ R where c is any constant

Here,  $D_f = R$  and  $R_f = \{c\}$ 



\* Modulus function:  $f: R \to R$  given by  $f(x) = |x| \forall x \in R$ Here,  $D_f = R$  and  $R_f = [0, \infty)$ 

Remarks:  $\sqrt{x^2} = |x|$ 



\* Signum function: 
$$f: R \to R$$
 defined by  $f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 
or  $f(x) = \begin{cases} 1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x > 0 \end{cases}$ 

or 
$$f(x) = \begin{cases} 1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x > 0 \end{cases}$$



Greatest Integer function:  $f: R \to R$  defined by  $f(x) = [x], x \in R$ assumes the value of the greatest integer, less than or equal to x. Here,  $D_f = R$  and  $R_f = Z$ 

Graph for  $f: R \rightarrow R$ , defined by  $f(x) = x^2$ Here,  $D_f = R$  and  $R_f = [0, \infty)$ 



Graph for  $f: R \to R$ , defined by  $f(x) = x^3$ 



**Exponential function:**  $f: R \rightarrow R$ , defined by  $f(x) = a \cdot a > 0$ ,  $a \ne 1$ 



When 0 < a < 1

 $f(x) = a^{x} \begin{cases} >1 & \text{for } x < 0 \\ =1 & \text{for } x = 0 \\ <1 & \text{tor } x > 0 \end{cases} \qquad f(x) = 0^{x} \begin{cases} <1 & \text{for } x < 0 \\ =1 & \text{for } x = 0 \\ >1 & \text{tor } x > 0 \end{cases}$ 

$$f(x) = 0^x \begin{cases} < 1 & \text{for } x < 0 \\ = 1 & \text{for } x = 0 \\ > 1 & \text{for } x > 0 \end{cases}$$

Natural exponential function, f(x) = e<sup>x</sup>

$$e = 1 + \frac{1}{11} + \frac{1}{21} + \frac{1}{31} + \dots \infty$$
,  $2 < e < 3$ 

★ Logarithmic functions,  $f:(0, \infty) \to R$ ;  $f(x) \log_a x$ , a > 0,  $a \neq 1$ 





$$f(x) = \log_a x, 0 < a < 1$$

$$f(x) = \log_a x$$
, for  $a > 1$ 

$$D_f = (0, \infty)$$

$$D_f = (0, \infty)$$

$$R_f = R$$

$$R_f = R$$

Case I When 0 < a < 1

Case II When a > 1

- \* Natural logarithm function:  $f(x) = \log_e x$  or ln(x).
- ★ Let f: X → R and g: X → R be any two real functions where x ⊂ R then

$$(f \pm g)(x) = f(x) \pm g(x) \forall x \in X$$

$$(fg)(x) = f(x)g(x) \forall x \in X$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \quad \forall x \in X \text{ provided } g(x) \neq 0$$

#### **VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)**

1. If  $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\} \text{ then } (A - B) \times (B - C)$ (a) {(1, 2), (1, 5), (2, 5)} (b) {1, 4} (c) {1, 4} (d) None of these. 2. If R is a relation on set A = {1, 2, 3, 4, 5, 6, 7, 8} given by  $xRy \Leftrightarrow y = 3x$ , then R = ?(a) {(3, 1), (6, 2), (8, 2), (9, 3)} (b) {(3, 1), (6, 2), (9, 3)} (c) {(3, 1), (2, 6), (3, 9)} (d) None of these. 3. Let  $A = \{1, 2, 3\}$ ,  $B = \{4, 6, 9\}$  if relation R from A to B defined by x is greater then y. the range of R is -(a) {1, 4, 6, 9} (b) {4, 6, 9} (d) None of these. (c) {1} 4. If R be a relation from a set A to a set B then -(a) R = A ∪ B (b)  $R = A \cap B$ (c) R⊆A×B (d)  $R \subseteq B \times A$ . If  $2f(x) - 3f\begin{pmatrix} -1 \\ x \end{pmatrix} = x^2$  (x \neq 0), then f(2) is equal to -5. (a)  $\frac{-7}{4}$ (b)  $\frac{5}{2}$ (c) -1(d) None of these. Range of the function  $f(x) = \cos[x]$  for  $\frac{-\pi}{2} < x < \frac{\pi}{2}$  is -6. (a) {-1, 1, 0} (b) {cos1, cos2, 1} (c) {cos1, -cos1, 1} (d) {-1, 1}.

7. If 
$$f(x) = \log(\frac{1+x}{1-x})$$
 and  $g(x) = \frac{3x+x^3}{1+3x^2}$  then  $f(g(x))$  is equal to -

(a) f(3x)

(b)  $\{f(x)\}^3$ 

(c) 3f(x)

(d) -(f(x).

8. If 
$$f(x) = \cos(\log x)$$
 then value of  $f(x).f(y) - \frac{1}{2} \left\{ f \begin{pmatrix} x \\ y \end{pmatrix} + f(xy) \right\}$  is -

(a) 1

(b) -1

(c) 0

(d) ±1.

9. Doman of 
$$f(x) = \sqrt{4x - x^2}$$
 is -

(a) R - [0, 4]

(b) R - (0, 4)

(c)(0,4)

(d) [0, 4].

10. If 
$$[x]^2 - 5[x] + 6 = 0$$
, where [ . ] denote the greater integer function then -

(a)  $x \in [3, 4]$ 

(b)  $x \in (2, 3]$ 

(c)  $x \in [2, 3]$ 

(d)  $x \in [2, 4)$ .

- 12. A × B
- 13. B × A
  Let A = {1,2}, B = {2,3,4}, C = {4,5}, find (Question 14, 15)
- 14. A × (B ∩ C)
- 15. A × (B ∪ C)

- 16. If P = {1,3}, Q = {2,3,5}, find the number of relations from P to Q
- 17. If  $R = \{(x,y): x,y \in Z, x^2 + y^2 = 64\}$ , then,

Write R in roster form

Which of the following relations are functions? Give reason. (Questions 18 to 20)

- 18.  $R = \{ (1,1), (2,2), (3,3), (4,4), (4,5) \}$
- 19.  $R = \{ (2,1), (2,2), (2,3), (2,4) \}$
- 20.  $R = \{ (1,2), (2,5), (3,8), (4,10), (5,12), (6,12) \}$

#### SHORT ANSWER TYPE QUESTIONS (2 MARKS)

- If A and B are finite sets such that n(A) = 5 and n(B) = 7, then find the number of functions from A to B.
- 22. If f(x) = x² 3x + 1 find x ∈ R such that f (2x) = f(x)
  Let f and g be two real valued functions, defined by, f(x) = x,
  g(x) = |x|.

Find: (Question 23 to 26)

- 23. f+g
- 24. f-g
- 25. fg
- 26. ±
- 27. If  $f(x) = x^3$ , find the value of,  $\frac{f(5)-f(1)}{5-1}$

- 28. Find the domain of the real function,  $f(x) = \sqrt{x^2 4}$
- 29. Find the domain of the function,  $f(x) = \frac{x^2 + 2x + 3}{x^2 5x + 6}$

Find the range of the following functions. (Question- 30, 31)

30. 
$$f(x) = \frac{1}{4-x^2}$$

- 31.  $f(x) = x^2 + 2$
- 32. Find the domain of the relation,
  R = {(x, y): x, y ∈ Z, xy = 4}

Find the range of the following relations: (Question-33, 34)

33. 
$$R = \{(a,b) : a, b \in N \text{ and } 2a + b = 10\}$$

34. 
$$R = \left\{ \left( x, \frac{1}{x} \right) : x \in z, 0 < x < 6 \right\}$$

### SHORT ANSWER TYPE QUESTIONS (4 MARKS)

35. Let A = {1,2,3,4}, B = {1,4,9,16,25} and R be a relation defined from A to B as,

$$R = \{(x, y): x \in A, y \in B \text{ and } y = x^2\}$$

- (a) Depict this relation using arrow diagram.
- (b) Find domain of R.
- (c) Find range of R.
- (d) Write co-domain of R.
- 36. If A = {2,4,6,9} B = {4,6,18,27,54} and a relation R from A to B is defined by R = {(a,b): a∈ A, b∈ B, a is a factor of b and a < b}, then find in Roster form. Also find its domain and range.</p>

37. Let 
$$f(x) = \begin{cases} x^2, & \text{when } 0 \le x \le 2\\ 2x, & \text{when } 2 \le x \le 5 \end{cases}$$

$$g(x) = \begin{cases} x^2, & \text{when } 0 \le x \le 3 \\ 2x, & \text{when } 3 \le x \le 5 \end{cases}$$

Show that f is a function while g is not a function.

Find the domain and range of,

$$f(x) = |2x - 3| - 3$$

- Draw the graph of the Greatest Integer function
- 40. Draw the graph of the Constant function f : R → R; f(x) = 2 ∀ x
   ∈ R. Also find its domain and range.
- 41. Draw the graph of the function |x-2|

Find the domain and range of the following real functions (Question 42 to 47)

42. 
$$f(x) = \sqrt{x^2 + 4}$$

43. 
$$f(x) = \frac{x+1}{x-2}$$

44. 
$$f(x) = \frac{|x+1|}{x+1}$$

45. 
$$f(x) = \frac{x^2 - 9}{x - 3}$$

46. 
$$f(x) = \frac{4-x}{x-4}$$

47. 
$$f(x) = 1 - |x - 3|$$

- 48. Determine a quadratic function (f) is defined by  $f(x) = ax^2 + bx + c$ . If f(0) = 6; f(2) = 11, f(-3) = 6
- 49. Draw the graph of the function  $f(x) = \begin{cases} 1+2x & x < 0 \\ 3+5x & x \ge 0 \end{cases}$  also find its range.
- 50. Draw the graph of following function

$$f(x) = \begin{cases} \frac{|x|}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Also find its range.

Find the domain of the following function.

$$51. \qquad f(x) = \frac{1}{\sqrt{x + |x|}}$$

$$52. \qquad f(x) = \frac{1}{\sqrt{x - |x|}}$$

53. 
$$f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}}$$

54. 
$$f(x) = \frac{1}{\sqrt{9-x^2}}$$

55. 
$$f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$$

- 56. Find the domain for which the followings:  $f(x) = 2x^2 1$  and g(x) = 1 3x are equal.
- 57. If  $f(x) = x \frac{1}{x}$  prove that  $[f(x)]^3 = f(x^3) + 3f(\frac{1}{x})$
- 58. If [x] denotes the greatest integer function. Find the solution set

$$[x]^2 + 5[x] + 6 = 0$$

59. If 
$$f(x) = \frac{ax - b}{bx - a} = y$$
  
Find the value of  $f(y)$ 

60. Draw the graph of following function and find range 
$$(R_1)$$
 of  $f(x) = |x-2| + |2+x| \quad \forall \quad -3 \le x \le 3$ 

### **ANSWERS**

- 1. (b) 2. (d) 3. (c) 4. (c) 5. (a)
- 6. (b) 7. (c) 8. (c) 9. (d) 10. (d)
- 11. a = 3, b = -2
- 12.  $A \times B = \{(1,2), (1,3), (3,2), (3,3), (5,2), (5,3)\}$
- 13.  $B \times A = \{ (2,1), (2,3), (2,5), (3,1), (3,3), (3,5) \}$
- 14. {(1,4), (2,4)}
- 15. {(1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5)}
- 16. 2<sup>6</sup> = 64
- 17.  $R = \{ (0,8), (0,-8), (8,0), (-8,0) \}$
- 18. Not a function because 4 has two images.
- 19. Not a function because 2 does not have a unique image.
- Function because every element in the domain has its unique image.
- 21.  $7^5$  22. 0,1
- 23.  $f+g=\begin{cases} 2x & x \ge 0 \\ 0 & x < 0 \end{cases}$  24.  $f-g=\begin{cases} 0 & x \ge 0 \\ 2x & x < 0 \end{cases}$

$$25. \qquad \text{fg} = \begin{cases} x^2 \\ -x^2 \end{cases}$$

29.

35.

36.

38.

26. 
$$\frac{f}{g} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$
 and Note:-  $\frac{f}{g}$  is not defined at  $x = 0$ 

$$R - \{2,3\}$$
 30.  $(-\infty, 0) \cup [1/4, \infty)$ 

33. 
$$\{2, 4, 6, 8\}$$
 34.  $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\}$ 



$$R = \{ (2,4) (2,6) (2,18) (2,54) (6,18) (6,54) (9,18) (9,27) (9,54) \}$$

Domain is 
$$R = \{2,6,9\}$$

Domain is R



- 42. Domain = R,Range = [2, ∞)
- 43. Domain = R {2}
  Range = R {1}
- 44. Domain = R − {−1}
  Range = {1, −1}
- 45. Domain = R {3} Range = R - {6}
- 46. Domain = R {4} Range = {-1}
- 47. Domain = RRange =(-∞, 1]
- 48.  $\frac{1}{2}x^2 + \frac{3}{2}x + 6$
- 49.  $(-\infty, 1) \cup [3, \infty)$

50. Range of  $f = \{-1,0,1\}$ 



- 51. (0, ∞)
- 52. φ (given function is not defined)
- 53.  $(-\infty, -2) \cup (4, \infty)$

54. (-3, 3)

55. (-∞, -1) ∪ (1, 4]

 $56. \quad \left\{-2, \frac{1}{2}\right\}$ 

58. [-3, -1)

- 59. x
- 60.  $R_f = [4, 6]$  and graph is

