Consumer Theory Concepts

Ryan Safner

ECON 306

Consumer's Constrained Optimization

- Constrained optimization (in general) always involves the following three elements:
 - 1. Choose: <some alternative>
 - 2. In order to maximize: <some objective>
 - 3. Subject to: <some constraints>
- The Consumer's (constrained optimization) problem is:
 - 1. Choose: <bur>dle of goods>
 - 2. In order to maximize: <utility>
 - 3. Subject to: <income and market prices>

Choices

• Consumers choose bundles of goods:

where x = amount of good x, and y = amount of good y

Constraints: The Budget Constraint

• Budget set: the set of all bundles of goods that are affordable:

$$p_x x + p_y y \le m$$

- Consumers can buy bundles that do not spend all income (income leftover)
- Budget constraint: the set of all bundles of goods that spend all income

$$p_x x + p_y y = m$$

- To graph, solve for y:

$$y = \frac{m}{p_y} - \frac{p_x}{p_y}x$$

- * Vertical intercept: $\frac{m}{p_y}$
- * Horizontal intercept: $\frac{m}{p_x}$
- * Slope: $-\frac{p_x}{p_y}$

Figure 1: The Budget Constraint (blue) and Budget Set (green)

- All points on the line spend all income
 - All points beneath line are affordable (in budget set) but do not spend all income
 - All points above the line are *not* affordable at current income and prices
- \bullet Budget constraint determined by three parameters: p_x, p_y, m
 - Change in income: shifts budget constraint in parallel
 - * New m' in intercepts
 - * No change in slope
 - Change in a market price: rotates budget constraint
 - * New intercept for good that changed in price
 - * New slope
- Slope of budget constraint measures the market exchange rate between x and y (their relative prices)

Table 1: How the budget constraint changes with income and market prices

Objective: Utility and Preferences

- Preferences express rankings between bundles of goods
 - For any two bundles of goods a and b:
 - * $a \succ b$: a is preferred to b
 - * $a \prec b$: b is preferred to a
 - * $a \sim b$: indifferent between a and b
 - Assumptions about "well-behaved" preferences:
 - 1. Reflexivity: $a \succeq a$
 - 2. Completeness: for all a and b: $a \succ b, \ a \prec b, \ \text{or} \ a \sim b$
 - 3. Transitivity: if $a \succ b$ and $b \succ c \implies a \succ c$
- Indifference curves link all bundles which the consumer is indifferent between

Figure 2: Indifference curves: $E \succ A \sim B \sim C \succ D$

- Assumptions of "well-behaved" indifference curves:
 - 1. We can always draw indifference curves
 - 2. Monotonicity: "more is preferred to less"
 - 3. Convexity: "averages are preferred to extremes"
 - 4. Transitivity: indifference curves can never cross

- In general, even non-monotonic indifference curves (i.e. when there is 1 or more bads) follow a pattern. Figure 3 shows four types of indifference curves, broken down into four quadrants. Black arrows show the direction of better bundles in each of the four cases:
 - I. x is a good, y is a bad
 - II. x and y are both bads
 - III. x and y are both goods
 - IV. x is a bad, y is a good

Figure 3: Possible indifference curves with goods and bads. Arrows show direction of higher utility for each quadrant.

- Marginal rate of substitution (MRS): an individual's exchange rate between good x and y
 - * MRS = the slope of the indifference curve
 - * Literally: the amount of y given up to obtain 1 more x and remain indifferent
- Utility function: represents preferences in functional form

- We can assign utility levels to any bundles such that for any bundles a and b:

$$a \succ b \iff u(a) > u(b)$$

- Utility is **ordinal** not **cardinal**!
 - * The actual utility numbers for bundle a and b mean nothing literally!
 - * All that matters is if u(a) > u(b), the consumer prefers a over b (we can't say how much)
 - * Implies that multiple utility functions can represent the same preferences
- All points on the same indifference curve yield the same utility

- ${\bf Marginal\ utility}:$ the change in utility from a 1-unit increase in consumption of a good

$$MU_{x} = \frac{\Delta u(x, y)}{\Delta x}$$
$$MU_{y} = \frac{\Delta u(x, y)}{\Delta y}$$

* Marginal utilities are related to the MRS:

$$MRS = \frac{MU_x}{MU_y}$$

Figure 4: Indifference curves for u(x,y) = xy

- Shape & slopes (MRS) of indifference curves:
 - * Steep vs. flat \implies relative intensity of preference for x vs. y

Vertical $\implies y$ is a neutral (more~less y)

5
4
B
S
1
1
2
3
4
5

Horizontal $\implies x$ is a neutral (more~less x)

5
4
C
D
1
2
3
4
5

2

3

4

5

1

Steeper \implies willing to give up more y for x

Flatter \Longrightarrow willing to give up less y for x 5 4 3 2 1 2 3 4 3 2 3 4 3 4 3 4 5

* Bent vs. straight \implies complementarity vs. substitutability between x and y

Straight line \implies perfect substitutes

5
4
3
2
1
2
3
4
5

Always consume at same rate of combination

Always substitute at same rate

Solving the Consumer's Problem

- Consumer chooses bundle of x and y to maximize utility subject to their income and market prices
 - * Expressed mathematically:

$$\max_{x,y} u(x,y)$$
 s. t. $p_x x + p_y y = m$

* Graphically: optimum is the point of tangency between the highest indifference curve and the budget constraint

Figure 5: The consumer's optimum at point A: indifference curve is tangent to budget constraint

* At the tangency point (A), all of the following are true:

$$|\text{Slope of I.C.}| = |\text{Slope of B.C.}| \quad \text{Slopes are equal}$$

$$MRS = \frac{p_x}{p_y} \qquad \text{Definition of each slope}$$

$$\frac{MU_x}{MU_y} = \frac{p_x}{p_y} \qquad \text{Individual exchange rate same as market exchange rate}$$

$$\frac{MU_x}{p_x} = \frac{MU_y}{p_y} \qquad \text{Marginal utility per 1 is the same between x and y}$$

- **Equimarginal principle**: utility is optimized when individual can get no more utility by spending \$1\$ more on either x or y
 - * Consumer is indifferent between buying more x or buying more y: has no reason to change consumption decisions!
 - * If marginal utility per dollar were greater for (e.g.) x than for y, could buy more x and get more utility!

Deriving Demand

• An individual's **Demand** (for good x) is the optimal quantity that the individual would consume given current market prices and income:

$$q = D(p_x, p_y, m)$$

We explore how a person's demand changes as one of the parameters to the demand function changes:

• Income effects $\left(\frac{\Delta q}{\Delta m}\right)$: how demand changes with income

Consume more x and y with \uparrow m

Consume less x, more y with \uparrow m

- Income Elasticity of Demand: how responsive consumption is to changes in income

$$\epsilon_{q,m} = \frac{\%\Delta q}{\%\Delta m} = \frac{\left(\frac{(q_2 - q_1)}{q_1}\right)}{\left(\frac{(m_2 - m_1)}{m_1}\right)}$$

- * Measures the % change in quantity consumed for a 1% change in income
 - · i.e. "if income changes by 1%, quantity consumed changes by $\epsilon_{q,m}$ %"
- * If $\epsilon > 0$: normal good: consume more with higher income (and vice versa)
 - · If $0 < \epsilon < 1$: **necessity**: increase consumption by proportionately less than income increase
 - · If $\epsilon > 1$: luxury: increase consumption by proportionately more than income increase
- * If $\epsilon < 0$: inferior good: consume less with higher income (and vice versa)
- Price effects $\left(\frac{\Delta q}{\Delta p}\right)$: how demand changes with price
 - Substitution effect: change in consumption due to change in relative prices
 - * Buy more of the relatively cheaper good, less of the relatively more expensive good
 - * Always the same direction, the primary reason for the law of demand (as $p\downarrow,q\uparrow$)
 - * Graphically: new bundle of x and y at new exchange rate that yields same utility as before
 - \cdot Shift new budget constraint inwards parallel until tangent to original indifference curve
 - · Movement from $A \to B$
 - Real Income effect: change in consumption due to change in purchasing power

- * A cheaper good frees up ability to buy more (less) goods overall (and vice versa), despite no change in *nominal* income
- * Positive for normal goods, negative for inferior goods!
- * Often smaller than the substitution effect
- * Larger for goods that are a large portion of budget (e.g. housing, cars, etc)
- * Graphically: new bundle of x and y at new exchange rate that yields more utility than before . Movement from $B \to C$
- Total price effect = substitution effect + real income effect
 - * Graphically: overall movement from $A \to C$
 - * Law of demand: $\downarrow p, \uparrow q$

Table 2: Substitution effects $(A \to B)$, Real income effects $(B \to C)$, and Price effects $(A \to C)$ for a decrease in the price of x

- **Giffen good**: theoretical good that violates law of demand $(\downarrow p, \downarrow q)$, requires:
 - * Negative real income effect (an inferior good)
 - * Real income effect > substitution effect (good is a very very large portion of budget)
- Cross-price effects $\left(\frac{\Delta q_x}{\Delta p_y}\right)$: how demand changes with price of *other* goods
 - Cross-Price Elasticity of Demand: how responsive consumption is to changes in price of another good

$$\epsilon_{qx,py} = \frac{\% \Delta q_x}{\% \Delta p_y} = \frac{\left(\frac{(qx_2 - q_1)}{qx_1}\right)}{\left(\frac{(py_2 - py_1)}{py_1}\right)}$$

- * Measures the % change in quantity consumed for a 1% change in price of another good
 - · i.e. "if price of y changes by 1%, quantity of x consumed changes by $\epsilon_{qx,py}$ %"
- * If $\epsilon > 0$: x and y are substitutes: $\downarrow p_y, \downarrow q_x; \uparrow p_y, \uparrow q_x$
 - · e.g. Pepsi becoming cheaper reduces demand for Coke (switch to cheaper substitute)
- * If $\epsilon < 0$: x and y are **complements**: $\downarrow p_y, \uparrow q_x; \uparrow p_y, \downarrow q_x$
 - · e.g. Milk becoming cheaper boosts demand for Cereal (the combination is now cheaper)