# Quantifying soiling losses for an industrial-scale photovoltaic plant

A project for Nispera AG.





Daniel Gisler Konstantinos Kirtsonis Dave Lonsdale

### Introduction to the team

#### Daniel Gisler



#### **Konstantinos Kirtsonis**



#### **Dave Lonsdale**



- MSc Geography at University of Zurich
- Several years of working experience as a consultant and data analyst in
   real estate field
- Looking for projects (also open source) and part time positions

- MEng Civil Structural Engineering
- Experience working with Geospatial data and operating systems
- Searching for a position/internship as a Data Scientist
- MEng Manufacturing Engineering at University of Cambridge (UK)
- Experienced strategy consultant in telecoms industry
- Managed and executed commercial and technical analytical projects
- Looking for opportunities in Data Science field

# Business problem: quantify the energy losses due to dirty panels

slow accumulation of dirt, dust etc. on solutions to accumulation of dirt, dust etc. on

panels leading to energy losses

Range: 3-39% per annum observed in Chile

Locally: ~3% per annum in Atacama desert

Photovoltaic plant - Atacama desert



Peak power: 100 MWp

• 0.4% of national installed capacity

A surprisingly difficult problem to answer using indirect data => no commercial solution in the market

1: Cordero, R.R., Damiani, A., Laroze, D. et al. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Sci Rep 8, 13943 (2018).

© 2020 Propulsion Academy AG | Technoparkstrasse 1, 8005 Zürich | www.propulsionacademy.com



## Other factors that decide efficiency of solar panels

• Disconnecting:



• Underperformance:



Cloudy days:



Technical restrictions:



Temperature effect:
As temperature drops
the efficiency of the

panels improves

Panel Degradation: Drop in efficiency as panels age (0.5%/year)



### How to filter out all those other factors?



1 string contains 20 solar panels

Actual energy profileExpected energy profile



380 daily string profiles

**Good performance:** 







**Poor performance:** 

Filtering result:

Selecting good strings and removing the mentioned factors

# Our toolkit filters for good days and good strings, reducing noise

#### Daily view of irradiance and strings



Automatic filtering of good and bad strings

- can easily be applied to other power plants
- a set of different filtering methods to choose
- integration of new methods is possible
- significantly reduces noise in the time-series data



## We identified saturation during summer...



## ...unexpected non-linear behaviour...



## ...and a step change in performance...



## ... but not enough signal to detect soiling



## Identified next steps

**Calibration:** Plant is currently being cleaned which will provide a baseline reference

More data: In unsaturated periods (late autumn - early spring)

Non-linearity: Investigate observation, focusing on temperature parameters

Clustering: Further develop ML techniques (e.g. time-series clustering)

Toolkit: Further develop additional physical models

### Conclusions

| No soiling detected: | Remains a very hard problem, with no indirect-measurement solution offered in the market                                                                                     |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Toolkit:             | Significantly reduces noise so that trends and events in production efficiency can be observed                                                                               |
| Business insights:   | <ul> <li>Saturation negates any soiling effect during summer</li> <li>Possible non-linear effect in winter</li> <li>Performance improvement identified on plant 2</li> </ul> |

## Thank you!

### {Propulsion}

#### **Daniel Gisler**



**Konstantinos Kirtsonis** 



#### **Dave Lonsdale**





dergisler@gmail.com



www.linkedin.com/in/daniel-gisler



kyrkost@outlook.com

www.linkedin.com/in/konstantinoskirtsonis



lonsdale.dave@gmail.com

www.linkedin.com/in/ dave-lonsdale

