OVERMIER

A Study of the Building up

of a Direct Current Generator

Electrical Engineering

M. S.

1912

A STUDY OF THE BUILDING UP OF A DIRECT CURRENT GENERATOR

BY

MELVERN D. OVERMIER

B. S., University of Illinois, 1911

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF SCIENCE

IN ELECTRICAL ENGINEERING

IN

THE GRADUATE SCHOOL

OF THE

UNIVERSITY OF ILLINOIS

1912

5161 500

111111

,

,

UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL

May 31, 1962

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

MELVERN D. OVERMIER

ENTITLED

A STUDY OF THE BUILDING UP

OF A DIRECT CURRENT GENERATOR

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

In Charge of Major Work

Serve Major Work

Mead of Department

Recommendation concurred in:

Morgan Brooks Ellery B. Paine.

Committee

Final Examination

Digitized by the Internet Archive in 2014

--- CONTENTS ---

I	Introduction	Pa	age 3	,
II	General Theory	4	_	10
III	Description of Tests	.1	-	12
IV	Oscillograms	13	-	16
V	Data Calculations and Curves	7	des	42
VI	Discussion of Data & Calculations -4	13	-	44

A STUDY OF THE BUILDING UP OF A DIRECT CURRENT GENERATOR

--- I INTRODUCTION ---

It is the purpose of this thesis to study the transient effects that follow when direct current voltages are impressed upon inductive circuits containing iron. This is to be occomplished both from a theoretical and experimental point of view. As a special application of the problem, the building up of the field of a direct current generator will be studied. The constants of the machine will be taken and the saturation curve determined. These values will then be substituted into the "step by step" equation and the points actually calculated. These calculated values will then be checked experimentally by means of the oscillograph.

In the following "General Theory", a brief discussion will be given as to the causes of the continuous current transient. From this, a comparison will be made of air and iron cored circuits and their resultant effects upon the building up of the current when the switch is closed on the circuit.

Lastly mathematical laws will be deduced showing the relation between time and current at any instant.

--- II GENERAL THEORY ---

During the normal or steady condition in any continuous current circuit, the voltage current and resistance vary according to Ohm's law. That is; the current equals the voltage divided by the resistance. If, however, a change takes place in the circuit conditions as for instance of the impressed voltage or resistance, the change is followed, not be an instantaneous change of the current, but by a transient condition which may be expressed by some exponential law into which the inductance, as well as the resistance, of the circuit enters.

The fundamental conception of an electric circuit is that current can not flow without setting up an electromagnetic field at right angles to the current carrying conductor. The current, in reality, is a measure of this electromagnetic field. As time is required to carry on any process where work is involved, accordingly, time is required to start or alter the electromagnetic field about an electric circuit. Hence time is required to start the electric current or to alter it when once established. There are three quantities that determine the rate of change of the current and the magnetic field in a continuous current circuit, the inductance, resistance and impressed voltage. The latter, however, does not apply to air cored coils.

Now, in considering problems of this type, there are two distinct circuit conditions to be met, first; circuits

that contain iron and second; circuits that do not. Considering for the time the latter, the inductance of such a circuit is a constant value due to the constant value of permeability or magnetic conductivity of air. Inductance is defined as the number of interlinkages of an electric circuit with the lines of magnetic force of the flux produced by unit current in the circuit, that is:

$$L = \frac{N \varphi}{10^8 i} \tag{1}$$

where L is the self inductance in henries, N the total number of turns, φ the total number of lines of flux and i the current. Thus, it is seen that the self inductance L is dependent upon the flux φ . Now, in air, the permeability or magnetic conductivity is a constant value, that is; unit increase in the magnetizing force produces unit increase in the flux. Thus it is seen from equation No. (1) that the self inductance remains constant for a coil with an air core. The mathematical relation for the current at any instant after closing the switch, in this case, will be developed and discussed later.

Considering now the case of a circuit with a coil containing iron, the self inductance is not a constant value but variable due to the variable magnetic conductivity of iron. Equal increments in the magnetizing force do not produce equal increments in the flux set up in the iron core. A point is finally reached where a large increase in the current produces very little increase in the flux. That is:

the ratio of the flux set up to the current flowing is a decreasing value as the current increases. Hence, referring to equation No. (1), it is seen that the inductance decreases in the same ratio. Thus, it is seen that the value of the current at any instant after closing the switch will be represented by a different law for air and for iron circuits. At the same time that the magnetic conductivity is a variable value for iron it also is a very much higher value for iron. Hence, the inductance will be very much higher than for air cored coils and it should be expected that the rate of change of the flux for iron cored coils, at least at high densities, to be lower than for air cored.

Considering now the mathematics of the continuous current circuit during the transient condition, at the first instant after closing the switch a small current begins to flow. This current sets up a flux which in turn sets up a counter E. M. F. which may be expressed as follows:

$$e = -N \frac{d \varphi}{d t} = -N \frac{d \varphi}{d i} \cdot \frac{d i}{d t} = -L \frac{d i}{d t}$$

By Lentz's law, the expression is negative, since it is opposed to the impressed E. M. F. Then, if E equals the impressed E. M. F., R the resistance, d i the increase of current during time moment d t and L the inductance, then the following expression may be written:

$$E = i R + L \frac{d i}{d t}$$
Transposing,
$$\frac{d i}{d t} + \frac{i R}{L} = \frac{E}{L}$$

This is of the type form;

Whence
$$y = \varepsilon^{-\int A dx} \left[\int \varepsilon + \int A dx \cdot B dx + C \right]$$
where $dx = dt$, $y = i$, $A = \frac{r}{L}$, $B = \frac{E}{L}$

Then $i = \varepsilon^{-\frac{R}{L}t} \left[\int \varepsilon + \frac{R}{L}t \cdot \frac{E}{L} dt + C \right]$
 $= \varepsilon^{-\frac{R}{L}t} \left[\frac{E}{L} \cdot \frac{E}{L} \cdot \frac{R}{L}t + C \right]$
 $= \varepsilon^{-\frac{R}{L}t} \left[\frac{E}{L} \cdot \frac{E}{L} \cdot \frac{E}{L}t + C \right]$

At the instant of closing the switch when

t = 0, then i = 0

Then,
$$C = -\frac{E}{R}$$

Then, $i = \frac{E}{R} - \frac{E}{R} \cdot \mathcal{E}^{-\frac{R}{L}} t$

or $i = \frac{E}{R} \left[1 - \mathcal{E}^{-\frac{R}{L}} t \right]$

This equation which is fairly simple is the value of the current at any instant t after closing the switch. This equation, however, does not take into account the saturation curve. The case here assumed is that of a straight line saturation curve such as we would get from an air cored coil.

Consider now the case of an iron cored coil where

the saturation curve is taken into account. The latter is the case of the direct current field on which the oscillograms and calculations for this thesis were based. In 1882 Frolich developed an empirical formula for the saturation curve which can, approximately, as was first shown, be represented by a parabolic curve.

$$\Phi = \frac{K \mathbf{i}}{1 + K_1 \mathbf{i}}$$

Where Φ is the magnetic flux, K and K₁ are constants which depend upon the ratio of the flux developed to the current flowing. i is the current flowing in the circuit. If we know two simultaneous values of Φ and the corresponding values of i, then we may solve simultaneously and get the values of K and K₁ for the particular saturation curve.

Substituting this equation in the equation for the self inductance, we get;

$$L = \frac{N \Phi}{10^8 i} = \frac{N K}{10 (1 + K_1 i)}$$

Then we have

E = i r + L
$$\frac{d-i}{d-t}$$
 = i r + $\frac{N K}{10^8 (1 + K_1 i)}$ · $\frac{d i}{d t}$

Separating the variables

$$(E - i r) (1 + K_1 i) = \frac{N}{10^8} \cdot \frac{d}{d} \cdot \frac{i}{d} \cdot \frac{1}{t}$$

$$\frac{10^8 d t}{N K} = \frac{d i}{(E - i r) (1 + K_1 i)}$$

Then,
$$\int_{\frac{1}{(E-i r)}}^{\frac{d i}{(i + K_1 i)}} = \frac{t \times 10^8}{N K} + C$$

But we have the following relation:

$$\int_{-\infty}^{\infty} \frac{d x}{(a + b x) (a' + b' x)} = \frac{1}{a b' - a' b} \cdot \frac{1 \log x}{a + b x}$$
Then,
$$\int_{-\infty}^{\infty} \frac{d i}{(E - i r) (1 + K_1 i)} = \frac{1}{E K_1 + r} \cdot \frac{1 \log x}{E - i r}$$

$$\frac{1}{E K_1 + r} \cdot \frac{1}{E - i r} = \frac{t \times 10^8}{N K} + C$$

$$Log. \frac{1 + K_1 i}{E - i r} = \frac{10^8 t (E K_1 + r)}{N K} + C$$

If we have,

Then
$$a = \mathcal{E}^{b+C} = \mathcal{E}^{b} + C_1 = C_2 \cdot \mathcal{E}^{b}$$

$$\frac{1 + K_1 i}{E - i r} = C_2 \cdot \mathcal{E}^{b}$$
N K

The starting conditions are.

Then
$$\mathbf{t} = 0, \quad \mathbf{i} = 0$$

$$\mathbf{c}_2 = \frac{1}{R}$$

and
$$\frac{1 + K_1 i}{E - i r} = \frac{1}{E} \cdot \varepsilon$$

$$\frac{10^8 (E K_1 + r)}{N K} t$$

Let
$$\frac{10^8 (E K_1 + r)}{N K} = P$$

Then
$$i = -\frac{E(1 - \varepsilon^{P} t)}{K_1 E + r \cdot \varepsilon}$$

This formula gives a relation between the current and time at any instant after closing the switch for iron cored coils and is correct within the limits of the saturation curve.

While it is a fairly simple matter to develop an equation for the current at any instant in air cored coils and is possible to derive a differential equation that may be integrated for iron circuits, yet it is a much simpler matter, in the latter case, to develop a "step by step" method in which values from the actual saturation curve are used.

We have,
$$E = i r + \frac{N}{10^8} \cdot \frac{d}{d} + \frac{\varphi}{d}$$

Now take increments instead of differentials

Then

$$E - i r = \frac{N}{108} \cdot \frac{\Delta \varphi}{\Delta t}$$

Assume

E = 100 volts

r = 100 ohms

N = 4000 turns

and take increments of 0.1 Sec. Then $\triangle t = 0.1$

Then
$$E - i r = \frac{N}{107} \cdot \triangle \varphi = 100 - 100 i = 100 (1 - i)$$

Then
$$\triangle \varphi = 0.25 \times 10^6 (1 - i)$$

$$\Phi = \Sigma \triangle \varphi$$

--- III DESCRIPTION OF TESTS ---

First of all, an attempt was made to check the theoretical values by placing an ammeter directly in series with the field of the generator, and by means of an induction coil and a contact making device, causing a known number of sparks per second to pierce a thin piece of paper between the needle point and the metal plate below. Then, from this series of perforations, made as the needle swung to its final value, the current at definite intervals could be read. This device, however, proved a failure due to the inertia of the moving element of the ammeter index. It then became necessary to check the theoretical values entirely by the oscillograph. The generator and oscillograph were placed close together and the power drawn from the substation close at hand in order to make the line resistance inappreciable. The voltage impressed on the field of the machine was read just at the instant before closing the switch on the oscillograph. The resistance of the field and rheostat was measured. Then, from the voltage and resistance readings the current was calculated. Eight different oscillograms were taken; four with 110 volts and four with 220 volts impressed. The first oscillogram for each voltage was taken with the field resistance alone. Then, successively, for the 110 volt readings approximately 10, 20 and 30 ohms were included in the circuit; for the 220 volt readings, approximately 15, 30 and 60 ohms were included.

an attempt was made to discharge the field of its residual magnetism by reversing a current back and forth through the windings and gradually cutting in resistance until the current was brought down practically to zero. The data for the curve was then very carefully taken. A separate motor-generator set was run to supply the voltage to the motor which drove the generator under test. Another set was run to supply the voltages to the field of the generator. Both these voltages were kept constant. Speed tests also were constantly run on the generator whose saturation curve was being taken. From the voltage generated, and the constants of the machine, the flux was figured corresponding to any particular value of the field current.

Oscillogram No.I.

E Impressed = 101.8 Volts.

R Total = 59.8 W

E Max. = 1.7 Amp.

40 N F.M.T. Wave.

Oscillogram No.2.

E Imp. = 104.7 Volts.

R Total = 19.14 w

E Max. = 1515 Amp.

4-0 NI E.NI.P. Wave.

ling hit or dright great party

Oscillogram No.3.

E Imp. = 102.7 Volts.

R Total = 81.12 &

L Max. = 1.267 Amp.

40 N E.M.F. Ware.

Oscillogram No. 4. E. Imp. = 114 Volts. R'ictal = 96,91 co i Max. = 1.175 Amp.

V 40 N E. W. F. Wave.

Oscillogrum No.5. E Imp. = 238.3 Volts Trotal = 59.8 w L' Max. = 3.975 Amp.

€40 N E.M.F. Wave.

Oscillogram No.6: EImp. = 212.8 Volts TR Total = 75.3 cs i Max. = 2.825 Amp.

€40 N E.M.F. Wave

Oscillogram No.7

E Imp. = 216 Volts

R'Potal = 93.52 co

I Max. = 2.31 Amp.

640 N E.M.F Ware

Oscillogram No.8.

E' Imp. = 217 Volts.

R Total = 125 w.

i Max. = 1.735 Amp.

640 N E.M.F. Wave

Data From Oscillogram No. 1.

t sec.	i 	R ex.	R total	E imp.
.05	.190	0	59.8	101.8
.10	.280	17	п	17
.20	.440	11	ŦŦ	17
.40	.715	11	Ħ	17
.60	.950	11	TT	TT
.80	1.167	11	19	11
1.00	1.350	11	TT .	TT
1.20	1.485	11	17	11
1.40	1.565	11	11	17
1.60	1.630	11	TŤ	TŤ
1.80	1.665	Ħ	17	Ħ
2.00	1.682	11	Ħ	77
2.20	1.690	111	17	77
2.40	1.695	11	TT	TT
2.60	1.697	17	n	Ħ
2.80	1.700	77	11	11
3.00	1.700	17	π	п

Calculated Data, Oscillogram No. 1.

E = 101.8 Volts R = 59.8 ohms N = 6000 turns

Assume $\Delta t = 0.1$ sec.

Then E = i R =
$$\frac{N}{107}$$
 $\triangle \varphi$ = 101.8 - 59.8 i = 59.8 (1.702 - i)

$$\Delta \varphi = \frac{59.8 \times 10^7}{6000}$$
 (1.702 - i) = .09975 x 10⁶ (1.702 - i)

t	△ Ф	ΣΔΦ	i	(1.702 - i)	ΔΦ	ΣΔΦ	i
.1	.170	.170	.36	1.342	.1339	.1339	.31
.2	.1339	.268	.48	1.222	.1220	.2559	.47
.3	.1220	.378	.62	1.082	.1079	.3638	.60
.4	.1079	.472	.73	.972	.0969	.4607	.72
.5	.0969	.558	.85	.852	.0849	.5456	.83
.6	.0849	.630	.95	.752	.0750	.6206	.94
. 7	.0750	.696	1.07	.632	.0630	.6836	1.04
.8	.0630	.747	1.16	.542	.0540	.7376	1.13
.9	.0540	.792	1.25	.452	.0451	.7827	1.22
1.0	.0451	.828	1.33	.372	.0371	.8198	1.31
1.1	.0371	.857	1.41	.292	.0291	.8489	1.39
1.2	.0291	.878	1.48	.222	.0221	.8710	1.46
1.3	.0221	.893	1.53	.172	.0171	.8881	1.52
1.4	.0171	.905	1.58	.122	.0122	.9003	1.56
1.5	.0122	.913	1.61	.092	.0092	.9095	1.60
1.6	.0092	.919	1.63	.072	.0072	.9167	1.62
1.7	.0072	.924	1.66	.042	.0042	.9209	1.63
1.8	.0042	.925	1.67	.032	.0032	.9241	1.66
1.9	.0032	.927	1.68	.022	.0022	.9263	1.67

Data from Oscillogram No. 2.

t	i	R ex.	R total	E
.05	.199	9.34	69.14	104.7
.1	.290	11	TT .	17
.2	.447	11	11	17
.3	.579	11	11	17
.4	.706	17	18	17
.5	.815	17	11	17
.6	.912	17	11	17
.7	1.005	78	11	**
.8	1.080	19	17	79
.9	1.159	17	Ħ	17
1.0	1.231	11	Ħ	17
1.1	1.286	11	11	17
1.2	1.327	**	Ħ	77
1.3	1.373	11	17	77
1.4	1.404	77	tt	19
1.5	1.421	17	11	17
1.6	1.445	17	It	17
1.7	1.460	17	11	**
1.8	1.475	11	π	17
1.9	1.485	17	11	17
2.0	1.497	19	Ħ	17
2.1	1.520	n	11	19
2.2	1.511	77	11	18
2.3	1.515	π	19	rt

Calculated Data, Oscillogram No. 2.

E = 104.7 Volts R = 69.14 ohms N.= 6000 turns Assume \triangle t = 0.10 seconds.

Then, E - i R = $-\frac{N}{10^7}$ · $\triangle \varphi = 104.7 - 69.14$ i = 69.14 (1.514 - i) $\triangle \varphi = \frac{69.14 \times 10^7}{6000}$ (1.514 - i) = .1152 x 10⁶ (1.514 - i)

t	Δφ	ΣΔΦ	i	(1.514 - i)	ΔΦ	ΣΔφ	i
.1	.175	.175	.37	1.144	.1319	.1319	.30
.2	.1319	.264	.48	1.037	.1194	.2513	.46
.3	.1194	.371	.61	.904	.1043	.3556	.59
.4	.1043	.460	.72	.794	.0915	.4471	.70
.5	.0915	.539	.83	.684	.0788	.5259	.81
.6	.0788	.605	.92	.599	.0690	.5949	.90
.7	.0690	.664	1.01	.504	.0582	.6531	.99
.8	.0582	.711	1.08	.434	.0500	.7031	1.07
.9	.0500	.753	1.17	.344	.0396	.7427	1.14
1.0	.0396	.782	1.22	.294	.0339	.7766	1.21
1.1	.0339	.811	1.29	.224	.0258	.8024	1.27
1.2	.0258	.828	1.33	.184	.0212	.8236	1.32
1.3	.0212	.845	1.38	.134	.0154	.8390	1.37
1.4	.0154	.854	1.41	.104	.0120	.8510	1.39
1.5	.0120	.863	1.43	.084	.0097	.8607	1.42
1.6	.0097	.870	1.46	.054	.0062	.8669	1.45
1.7	.0062	.873	1.47	.044	.0051	.8720	1.46
1.8	.0051	.877	1.48	.034	.0039	.8759	1.48
1.9	.0039	.880	1.49	.024	.0028	.8787	1.49

Data From Oscillogram No. 3.

t 	i	R ex.	R total	E imp.
.05	.19	21.32	81.12	102.7
.10	.281	79	17	19
.2	.434	17	n	11
.4	.660	17	n	17
.6	.805	17	n	17
.8	.968	11	11	11
1.0	1.070	n	19	п
1.2	1.132	79	17	77
1.4	1.177	77	77	36
1.6	1.205	79	19	79
1.8	1.222	77	77	77
2.0	1.240	77	17	17
2.2	1.250	n	18	FT
2.4	1.260	11	n	77
2.6	1.260	n	17	19
2.8	1.267	11	11	77
3.0	1.267	77	17	n

(1.265 - i)

Calculated Data, Oscillogram No. 3.

E = 102.7 Volts R	= 81.12 ohms	N = 6000	turns
Assum	$e \triangle t = 0.1 $	seconds	
Then, E - i R = $\frac{N}{107}$	· △ φ = 102.7 ·	- 81.12 i =	8 1.12 (1.265
$\triangle \varphi = \frac{81.12 \times 10^7}{6000}$	1.265 - i) =	.1352 x 10 ⁶	(1.265 - i)

t	△ P	ΣΔΦ	i	(1.265 - i)	△ Φ	ΣΔΦ	1
.1	.171	.171	.36	.905	.1223	.1223	.28
.2	.1223	.245	.46	.805	.1087	.2310	.43
.3	.1087	.340	.57	.695	.0939	.3249	.56
.4	.0939	.419	.67	.595	.0804	.4053	.65
.5	.0804	.486	.76	.505	.0682	.4735	.74
.6	.0682	.542	.83	.435	.0587	.5322	.82
.7	.0587	.591	.90	.365	.0493	.5815	.88
.8	.0493	.631	.95	.315	.0426	.6241	.94
.9	.0426	.667	1.02	.245	.0331	.6572	1.00
1.0	.0331	.690	1.05	.215	.0291	.6863	1.04
1.1	.0291	.715	1.10	.165	.0223	.7086	1.08
1.2	.0223	.731	1.12	.145	.0196	.7282	1.12
1.3	.0196	.748	1.16	.105	.0142	.7424	1.14
1.4	.0142	.757	1.18	.085	.0115	.7539	1.17
1.5	.0115	.765	1.19	.075	.0101	.7640	1.18
1.6	.0101	.774	1.21	.055	.0074	.7714	1.20
1.7	.0074	.779	1.22	.045	.0061	.7775	1.21
1.8	.0061	.784	1.23	.035	.0047	.7822	1.22
1.9	.0047	.787	1.24	.025	.0034	.7856	1.23

		a Lagrandia				1,741	
	100 0				13.3	T -	26 -
1.9	10000000			0 - 4 - 1 - 1			
	1 7 7 7 6	1 7 1					
18_ Current - Am							
1.8 Current - Am	peres.					-	
CARLE DO LES LA	14 1 1			2011 201	-10		
1.7	4:99 - III 8			0.00			7 · · · · · · · · · · · · · · · · · · ·
	0.00	Albertan Inc	(1)	4-1-1-1	21, 9		
					0.0		
1.6		along the local					
						11-	
1.5							
1.4							
N. J. W. L. T. T. M. S.							
7.3							
				2 2 2		+ =	
1.2			HEIL		L		
1.1							
		00 # 00 00 00 00 00 00 00 00 00 00 00 00					
1.0							
7.0							
			4 T.				
0.9		Curre	ent Tir	ne Cur	ves.		
		Curre	ent Tir	ne Cur Oscillogri	ves.	5	
0.9		Curre	ent Tir from (ne Cur Oscillogra	ves.	3	
		Curve	from C	Oscillogra Calculat	ions.	5	
0.9		Curve	from C	Oscillogra Calculat	ions.	3	
0.9		Curve Curve E	from C from C Impres	Oscillogra Calculationsed = 1	am No.: ions.	້ອ.	
0.9		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9		Curve Curve E.	from C from C Impres Total:	Oscillogra Calculationsed = 1	on No.	້ຮ. ມ	
0.9		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.7 0.6		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5 0.4		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5		Curve Curve E.	from C from C Impres Total:	Oscillogra alculat sed = 1 81.12 (on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5 0.4		Curve Curve F.	from C from C Impres Total: Maxim	Oscillogra alculat sed = 1 = 81.12 (num = 1.1	on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5 0.4		Curve Curve F.	from C from C Impres Total:	ds.	on No.	້ຮ. ມ	
0.9 0.8 0.7 0.6 0.5	/.0	Curve Curve F.	from C from C Impres Total: Maxim	Oscillogra alculat sed = 1 = 81.12 (num = 1.1	on No.	້ຮ. ມ	

Data From Oscillogram No. 4.

t	i	R ex.	R total	E
.05	.199	37.11	96.91	114
.10	.281	17	77	Ħ
.20	.443	17	99	17
.40	.652	11	19	19
.60	.805	19	79	11
.80	.923	17	17	77
1.00	1.013	77	77	**
1.20	1.068	11	ŤŤ	11
1.40	1.104	11	ŤŤ	77
1.60	1.131	11	11	77
1.80	1.149	77	77	77
2.00	1.154	19	11	**
2.20	1.165	77	17	17
2.40	1.168	17	17	77
2.60	1.172	11	11	17
2.80	1.175	17	77	11
3.00	1.175	*1	19	12

Calculated Data. Oscillogram No. 4.

Calculated Data, Oscillogram No. 4.											
E = 114 Volts R = 96.91 ohms N = 6000 turns											
Assume \triangle t = 0.1 seconds											
Then, E - i R = $\frac{N}{107}$ $\triangle \phi = 114 - 96.91 i = 96.91 (1.176 - i)$											
Δ	60	00	(1.176	- i) = .1615	X 10, (1	.170 - 1)					
t	△ •	$\Sigma \triangle \Phi$	i	(1.176 - i)	Δ Φ	ΣΔΦ	i				
.1	.190		.38	.796	.1285	.1285	.29				
.2	.1285	.257	.47	.706	.1140	.2425	.46				
.3	.1140	.357	.59	.586	.0946	.3371	.57				
.4	.0946	.432	.68	.496	.0800	.4171	.67				
.5	.0800	.497	.77	.406	.0655	.4826	.75				
.6	.0655	.548	.83	.346	.0559	.5385	.82				
.7	.0559	.594	.90	.276	.0446	.5831	.89				
.8	.0446	.628	.95	.226	.0365	.6196	.94				
.9	.0365	.656	1.00	.176	.0284	.6480	.98				
1.0	.0284	.676	1.03	.146	.0236	.6716	1.02				
1.1	.0236	.695	1.06	.116	.0187	.6903	1.05				
1.2	.0187	.7 09	1.09	.086	.0139	.7042	1.08				
1.3	.0139	.718	1.11	.066	.0107	.7149	1.09				
1.4	.0107	.726	1.12	.056	.0090	.7239	1.11				
1.5	.0090	.733	1.13	.046	.0074	.7313	1.12				
1.6	.0074	.739	1.14	.036	.0058	.7371	1.13				
1.7	.0058	.743	1.15	.026	.0042	.7413	1.14				
1.8	.0042	.745	1.155	.021	.0034	.7447	1.15				

1.9 .0034 .748 1.160 .016 .0026 .7473 1.16

Data From Oscillogram No. 5.

t sec.	i 	R ex.	R total	imp.
.05	.439	0	59.8	238.3
.10	.732	77	n	ŧŧ
.20	1.215	19	79	78
.40	2.260	79	79	11
.60	3.200	19	77	19
.80	3.788	17	17	19
.90	3.892	19	19	77
1.00	3.953	19	79	19
1.2	3.975	**	19	72
1.4	3.975	11	Ϋ́	77
1.6	TŶ	77	19	79
1.8	79	19	78	77
0.8	77	19	19	11
2.2	79	19	11	17
2.4	17	19	99	17
2.6	79	PT	**	19
2.8	19	**	19	19
3.0	79	19	17	17

				THE STATE OF THE S
				- 32 -
3.8			11-11	- 52 -
			H#- 1	13 16
3.6 Current-Amp	eres.		1 -4 5	
3.4			retember of the	
			771 8	
3.2				
				1110
3.0				
	/			
2.8	27127 - 1			
2.6				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			
24	Time	-Current	Curre.	
	- Curve	from Oscii	logram No.	5.
2.2	\mathcal{E}	Impressed	= 238.3 Vol	ts
	72	Total = 59.	8 Ohms.	
2.0	Ľ	Maximum =	3.975 Amps	
		ne		
1.8				
			() \	
1.6				
1.4				
1.2				
1.0				
0.8				
0.\$				
04				
b.z	أكرا لللاعاظها		7-1-1	44 2
	Tim	e - Seconds.	(317)	111
0.5	1.0	1.5	2.0	.5
LLG E E Z I N CO , CH CAGO.	41		ω	

Data From Oscillogram No. 6.

t sec.	i	R ex.	R total	E

.05	.439	15.5	75.3	212.8
.1	-690	77	11	11
.2	1.067	11	17	17
.3	1.403	11	79	11
.4	1.758	17	11	19
.5	2.070	11	11	97
.6	2.323	77	11	17
.7	2.490	FF	**	17
.8	2.615	17	17	11
.9	2.720	**	tf	11
1.0	2.785	**	17	11
1.1	2.800	11	11	17
1.2	2.808	10	17	18
1.3	2.825	11	**	11
1.4	2.825	11	11	77
1.5	2.825	11	11	19

Calculated Data. Oscillogram No. 6.

varouration bava, oborreogram no. o.								
E = 212.8 volts R = 75.3 ohms N = 6000 turns								
Assume \triangle t = .05 seconds								
Then,	E - i	R =	N	Δ φ = 212.8 -	75.3 =	75.3 (2.8	313 - i)	
$\triangle \Phi$	= 1515-	6000	¥- (2.8	313 - i) = .06	28 x 10°	(2.813 •	- 1)	
t	△ P	ΣΔ φ	i	(2.813 - 1)	Δ φ	医公安	i	
.05	.1768	.1768	.37	2.443	.1535	.1535	.33	
.10	.1535	.307	.53	2.283	.1434	.2969	.52	
.15	.1434	.440	.69	2.123	.1334	.4303	.68	
.20	.1334	.564	.86	1.953	.1228	.5531	.84	
.25	.1228	.676	1.03	1.783	.1120	.6651	1.01	
.30	.1120	.777	1.22	1.593	.1001	.7652	1.19	
.35	.1001	.865	1.44	1.373	.0862	.8514	1.39	
.40	.0862	.938	1.72	1.083	.0687	.9201	1.66	
.45	.0687	.989	1.97	.843	.0530	.9731	1.88	
.50	.0530	1.026	2.18	.633	.0398	1.0129	2.09	
.55	.0398	1.053	2.36	.453	.0285	1.0414	2.27	
.60	.0285	1.069	2.49	.323	.0203	1.0617	2.42	
.65	.0203	1.082	2.57	.243	.0153	1.0770	2.52	
.70	.0153	1.092	2.64	.173	.0109	1.0880	2.60	
.75	.0109	1.099	2.71	.103	.0065	1.095	2.67	
.80	.0065	1.102	2.73	.083	.0052	1.1002	2.72	

.053

.033

.023

.0033

.0021

.0014

1.1035 2.74

1.1056 2.75

1.1070 2.78

.85 .0052 1.105 2.76

.95 .0021 1.108 2.79

2.78

.90 .0033 1.107

3.8			1777		- 35 -
10 44 4 100 100 100 100 100 100			The said of the said	ii ii ii	
3.6 Current-Amperes			Refusers a		
				4 - 4	
3.4					
3.2					
3.4					
3.0					
2.8					
2.6		2991919191			
24					
2.2					
	;	#206 16061 #265 2665 #110 76087 #200 61227 #110 76087 #200 61227			
	<u> </u>	**************************************		<u> </u>	
2.0	Tim	e - Cur.	rent C	urres.	
2.0	Tim -Curve	e - Cur. Taken fi	rent Com Osci	urres.	No.6.
2.0	- Curve	Taken fi	rom Osci	urres. llogram	1 No.6.
	-Curve -Calcula	Taken fi ted C	om Osci urve.	illogram	
/-8	-Curve -Calcula E	Taken fi ted C. Impres	om Osci urve. sed = z	illogram	
	-Curve -Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8	-Curve -Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8	- Curve - Calcula E 7	Taken fi ted C. Impres	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.6	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.6	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.8 1.6 1.4 1.2	- Curve - Calcula E 7	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi	illogram	ts.
1.6 1.4 1.2 1.0 0.6	- Curre - Calcula F 77 i	Take m. fi ted. C. Impres Total = Triaxim	om Osci urve. sed = 2 75.3 Voi um = 2	illogram	ts.
1.6 1.4 1.2 1.0 0.4	- Curre - Calcula F 77 i	Taken fi ted C. Impres Total =	om Osci urve. sed = 2 75.3 Voi um = 2	illogram	ts.

Data From Oscillogram No. 7.

t sec.	i	R ex.	R total	E imp.
.05	.410	33.72	93.52	216
.1	.640	17	77	77
.2	.995	11	17	tf
.3	1.276	17	11	11
.4	1.549	TT .	71	ff
.5	1.778	11	19	77
.6	1.945	19	17	11
.7	2.070	19	17	71
.8	2.153	19	19	17
.9	2.220	11	19	11
1.0	2.260	17	79	11
1.1	2.300	11	17	17
1.2	2.31	77	17	17
1.3	2.31	77	79	11
1.4	2.31	11	TT .	11
1.5	2.31	11	79	19

Calculated Data, Oscillogram No. 7.

E = 216 volts $R = 93.52 ohms$ $N = 6000 turns$							
E	- i R	- N 5 + 1	· △ ♥	= 216 - 93.	52 i = 93	.52 (2.3	1 - i)
△ •	5 x			1 - i) = .0			
Z Y		6000	(2)	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,
t	Δ Φ	SAP	i (:	2.31 - i)	Δ Ψ	EAP	i
.05	.180	.180	.37	1.94	.1513	.1513	.33
.10	.1513	.303	.53	1.78	.1389	.2902	.52
.15	.1389	.429	.68	1.63	.1272	.4174	.67
.20	.1272	.545	.83	1.48	.1155	.5329	.82
.25	.1155	.648	.98	1.33	.1038	.6367	.96
.30	.1038	.740	1.14	1.17	.0912	.7279	1.12
.35	.0912	.819	1.31	1.00	.0779	.8058	1.28
.40	.0779	.884	1.50	.81	.0632	.8690	1.46
.45	.0632	.932	1.69	.62	.0483	.9173	1.63
.50	.0483	.966	1.85	.46	.0359	.9532	1.79
.55	.0359	.989	1.97	.34	.0265	.9797	1.92
.60	.0265	1.006	2.06	.25	.0195	.9992	2.02
.65	.0195	1.019	2.14	.17	.0133	1.0125	2.10
.70	.0133	1.026	2.18	.13	.0101	1.0226	2.16
.75	.0101	1.033	2.22	.08	.0062	1.0288	2.20
.80	.0062	1.035	2.25	.06	.0047	1.0335	2.23
.85	.0047	1.038	2.26	.05	.0039	1.0374	2.25
.90	.0039	1.041	2.28	.03	.0023	1.0397	2.27
.95	.0023	1.042	2.29	.02	.0016	1.0413	2.28
1.00	.0016	1.043	2.30	.01	.0008	1.0421	2.29

Commence of the commence of th					
3.8			11 3 11 3		- 38 -
				100	1111
- 1 0 + 0					J
3.6 Current-Am	Deres				
3.4			E1		0111-
101 111111					444
3.2					
3.0					
2.8					
2.6					
1 2 3 1 1 1 2 30					
2.4					
Δτ					
	1.1.1.1			+	1 1,1
2.2					
2.0					
2.0					
	77	meCurren	t Curves		
2.0		me Curren	t Curves	767	
1.8	Curve	me Curren	t Curves	1 No. 7.	
	- Curve	e from Ca	icillogram Iculatio	1 No. 7.	
1.8	- Curve	e from Ca	icillogram Iculatio	1 No. 7.	
1.8	— Curve — Curve	me Curren from Os from Ca Impressed Maximun	cillogram Iculatio 1 = 216 V	n No. 7. ns.	
1.6	— Curve — Curve	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximum	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2. 1.0	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2 1.0	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2. 1.0	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2 1.0 0.8 0.4	— Curve — Curve E	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2 1.0	Curve Curve F C	e from Ose e from Ca Impressed Maximun Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2 1.0 0.8 0.4	Curve Curve F C	e from Os e from Ca Impressed Maximun	cillogram culatio = 216 V = 93.52	n No. 7. ns olts. 2 Ohms.	
1.6 1.4 1.2 1.0 0.8	Curve Curve F C	e from Ose e from Ca Impressed Maximun Maximun	ds.	n No. 7. ns olts. 2 Ohms.	5

Data From Oscillogram No. 8.

t sec.	i	R ex.	R total	E imp.
.05	.397	65.2	126.0	217
.10	.585	**	11	17
.20	.877	18	11	17
.30	1.090	19	77	17
.40	1.255	19	rt	27
.50	1.402	17	11	79
.60	1.507	19	11	77
.70	1.590	17	11	ΤŶ
.80	1.640	17	17	11
1.00	1.695	27	17	17
1.20	1.715	11	17	77
1.40	1.730	ŧτ	17	17
1.60	1.735	77	n	17
1.80	1.735	Ħ	17	17
2.00	1.735	19	11	77

Calculated Data, Oscillogram No. 8.

E = 21	7 volts	R	= 125	ohms	N = 6000 tu	rns	
		Assum	e \triangle t	= .05 sec	onds		
Then,	E - i	$R = -\frac{1}{5}$	N x 107.		- 125 i = 1	.25 (1.735	5 - i)
	125 x	.5 x 10	7	775 +)	= .1042 x 10	6 (2 775	4 \
△ Ф :	6	000	- = (I	.705 - 1)	= .1042 X 10	(1.700	- 1)
t	ΔΦ	ΣΔΦ	i	(1.735 -	i) _ φ	ZAP	i
.05	.181	.181	.38	1.355	.1413	.1413	.32
.10	.1413	.283	.51	1.225	.1276	.2689	.48
.15	.1276	.396	.64	1.095	.1141	.3830	.62
.20	.1141	.497	.77	.965	.1006	.4836	.75
.25	.1006	.584	.89	.845	.0880	.5716	.87
.30	.0880	.660	ממ.1	.735	.0766	.6482	.98
.35	.0766	.725	1.12	.615	.0642	.7124	1.09
.40	.0642	.777 '	1.21	.521	.0542	.7666	1.19
.45	.0542	.821	1.31	.425	.0443	.8109	1.29
.50	.0443	.855	1.41	.325	.0339	.8448	1.38
.55	.0339	.879	1.48	.255	.0266	.8714	1.46
.60	.0266	.898	1.55	.185	.0193	.8907	1.52
.65	.0193	.910	1.60	.135	.0141	.9048	1.56
.70	.0141	.919	1.63	.105	.0109	.9157	1.62
.75	.0109	.927	1.67	.065	.0068	.9225	1.65
.80	.0068	.929	1.68	.055	.0057	.9282	1.67
.85	.0057	.934	1.70	.035	.0036	.9318	1.68
.90	.0036	.935	1.71	.025	.0026	.9344	1.70
.95	.0026	.937	1.72	.015	.0016	.9360	1.71

--- VI DATA AND CALCULATIONS ---

It will be noticed that the theoretical and experimental curves for 110 volts impressed correspond very closely while the curves for 220 volts impressed diverge considerably. It will also be noticed, however, for the 110 volt curves, that as the resistance becomes less making the inductance figure more strongly that the curves deviate farther apart. The same thing is seen to be true even in a more marked degree in the case of the 220 volt curves. As the resistance becomes less the curves deviate farther and farther apart. would seem to indicate that the error lies in the inductance. Furthermore, as has been shown before, the line resistance is inappreciable and the rheostat resistance, in each case and the field resistance were all measured carefully and averaged and, furthermore, the same error appears to creep into every case, all of which goes to show that the resistance is not in error to any appreciable degree. Again, the greatest deviation comes on the lower part of the curves where the resistance is less appreciable and where the inductance figures in a greater degree. At this point the theoretical curves fall below the experimental. That is, over this part of the theoretical curves, the successive values of the current are too low, which seems to indicate that the saturation curve, as actually determined, is too high; due probably to a small amount of residual magnetism in the field of the machine. The attempt to discharge the field before taking the saturation curve data was, in all

probability, not entirely fruitful of results.

