Nome:	 							_ Nº de estudante:
~ # >***		W .	-	14		 £011	 in	

Análise e Transformação de Dados

	Exame	e da Época Recurs	60
	1 de Julho de 2019		Duração: 2h
	Exame com consulta restrita a qua	atro páginas A4 de apontamer	ntos (manuscritas).
	Não é permitido o uso de meios el		
	Qualquer tentativa de fraude conc	duzirá à anulação da prova pa	ra todos os intervenientes.
	Perguntas de escolha múltipla: as	respostas erradas subtraem :	25% da cotação da pergunta.
1.	Considere um sinal periódico de temp	oo contínuo $x(t)$, de período T	$r_0 = 0.1s$, cujas componentes não
	nulas da respetiva Série de Fourier c	omplexa são:	
	$c_{-6} = -3$ $c_{-1} = 2$	$c_0 = 1$ $c_1 = 2$	<i>c</i> ₆ = -3
	a) (6%) Quais as frequências angula	ares (em <i>rad/s</i>) presentes no s	sinal $x(t)$?
	☐ 0, 20 e 120 <i>rad/s</i>	\square 0, 0.2 π e π rad/s	🛛 0, 20π e 120π <i>rad/s</i>
	\Box 0, 20 e 60 rad/s	☐ 0, 0.2 e 0.6 <i>rad/s</i>	☐ Nenhuma das opções.
	b) (6%) Analise, justificadamente, a	paridade de $x(t)$.	
	É par porque todos os	coeficientes são re	ais puros.
			$N=20$ amostras por período T_0 ,
	garante a reconstrução de x(t) se	- .	
. •	2 AU TO=0,1 A NTA (=) 0,1 = 20TS (=) Ta=\frac{1}{200}	Teorema de Nggruist WS>2 Wman	sim, garunte a reconsteução una vez que se cumple o
	$= \frac{1}{12} = \frac{1}{200} = \frac{1}{12} = \frac{1}{200} = \frac{1}$	400 T > 2×180 T	Teorema de Nygnuist
	V .	40011 2 24011	leorema de Nygnust
	/ ₂ = 2 tr f2 (=) W 2 > 2 π × 200(=) W 2 = 400π		
2.	Considere o sinal de tempo discreto	$x[n] = -2\delta[n+1] + \delta[n-2] + 4$	$\delta[n-4]+9\delta[n-6]$.
	a) (6%) Determine os parâmetros <i>a</i>	e <i>b</i> da transformação linear <i>n</i>	a = am - b que aplicada no sinal
	x[n] resulta no sinal $y[n] = (n-1)$	u(n+2)-u(n-2).	
	\square $a=2;b=2$ \square $a=-2;b=2$	·	
	$\square \ a=-0.5; b=-0.5 \qquad \square \ a=2; b=$	-2 □ Nenhu	ma das opções

Nome:	Nº de estudante:

b) (6%) Diga, justificadamente, qual a relação entre os valores da energia dos sinais x[n] e y[n].

$$E\{n[n]\}^2 = \sum_{n=-\infty}^{+\infty} |n[n]|^2 = (-a)^2 + 1^2 + 9^2 = 102$$

$$E\{y[n]\}^2 = \sum_{n=-\infty}^{+\infty} |y[n]|^2 = 9^2 + 9^2 + 1^2 = 98$$
A energia de y[n] é menor que a de n[n] porque y[n] renelte de uma comprena o de n[n], onde houve perda de amostras.

- 3. Considere que a resposta a impulso de um router, que recebe x[n] e despacha y[n] pacotes em cada instante n, é dada por $h[n] = 0.8 \times 0.5^{(n-2)} u[n-2]$, considerando condições iniciais nulas.
 - a) (6%) Diga, justificadamente, com base em h[n] se o sistema router é um sistema estável e

• O ristema é caudal, pois
$$h \ln J = 0$$
, $n < 2$
• O ristema é estável porque

 $t_{\infty} = \frac{1}{h \ln J} = \frac{1}{2} \frac{1}{h \ln J} = 0.8 \stackrel{t}{=} 0.5 \stackrel{(n-a)}{=} 0.5$

roma é limitada.

b) (6%) Considerando que os pacotes recebidos são expressos por $x[n] = 20u[n] - 10\delta[n-1]$, quantos pacotes são despachados pelo router até ao instante n= 4, inclusive?

- 4. A função de transferência de um sistema é $G(z) = \frac{(1-1.1z^{-1})(1+1.4z^{-1})z^{-3}}{(1+0.2z^{-1})(1-(2-0.4k)z^{-1})}, k \in \mathbb{R}$.
 - a) (8%) Determine os zeros e os pólos (em função de k) do sistema e para que intervalo de valores de k o sistema é estável.

$$6(2) = \frac{(1-1,12^{-1})(1-1,nz^{-1})z^{-3}}{(1+0,0z^{-1})(1-(z-0,nk)z^{-1})} \times \frac{z^{5}}{z^{5}} = \frac{(z-1,1)(z-1,n)}{z^{3}(z+0,2)(z-(z-0,nk))}$$
Para que o ristema rija estável
$$k \text{ tem de estar no requirte intervalo}: |z-0,nk|<1 (=> -1 < z-0,nk < 1 (=> -1 < z-0,nk < 1 (=> -1 < z-0,nk < 3 (=> z,3 < k < z-3,8 k < z-3,8 k < z-3,8 k < z-3,8 t < z-3$$

b) (6%) Considerando k = 3 e condições iniciais nulas, determine para que valor tende a saída do sistema, y[n], em regime estacionário, em resposta à entrada $x[n] = 2\delta[n-1] - 4u[n-3]$?

$$G(z) = \frac{(1-1,1z^{-4})(1+1,nz^{-4})z^{3}}{(1+0,z^{-4})(1-0,8z^{-4})}$$

$$= \lim_{z \to 1} \frac{(1-z^{-4})(1-2,2z^{-4})(1-0,8z^{-4})}{(1+0,2z^{-4})(1-0,8z^{-4})} \times (2z^{-4} - nz^{-3})$$

$$= \lim_{z \to 1} \frac{2(1-z^{-4})(1+1,nz^{-4})(1+1,nz^{-4})z^{-3}}{(1+0,2z^{-4})(1-0,8z^{-4})} \times (2z^{-4} - nz^{-3})$$

$$= \lim_{z \to 1} \frac{2(1-z^{-4})(1+1,nz^{-4})(1+1,nz^{-4})z^{-3}}{(1+0,2z^{-4})(1-0,8z^{-4})} \times (2z^{-4} - nz^{-3})$$

$$= \lim_{z \to 1} \frac{2(1-z^{-4})(1-2,2z^{-$$

Nome:	Nº de estudante:

5. Considere que a Transformada de Fourier (FT) de um sinal x(t) é dada por (com ω em rad/s):

$$X_{FT}(\omega) = \begin{cases} 0, & \omega < -40\pi \ \forall \ \omega > 40\pi \\ 8|\omega|, & -40\pi \le \omega \le 40\pi \end{cases}$$

a) (6%) Escolhendo uma frequência de amostragem fs = 50Hz, diga, justificadamente, se é possível reconstruir sem *aliasing* o sinal x(t) a partir do correspondente sinal amostrado, x[n]?

b) (6%) Sabendo que a Transformada Discreta de Fourier (DFT) do sinal x[n] tem uma periodicidade N = 200, determine os valores de $X_{DFT}[m]$ para m = 0, 1, 2.

c) (6%) Nas condições da alínea anterior, aplicando ao sinal x(t) um filtro ideal do tipo passabaixo, com frequências de corte $\omega_c=1.1\pi\ rad/s$, quais as frequências angulares Ω presentes no sinal que resulta da amostragem de x(t) à frequência de amostragem fs=50Hz?

A DFT resulta da amostraçam da DTFT

Hero passa-baixo passam as frequencias <1,1
$$\pi$$
 rad/s, logo

 $X_{DFT}[K]=X_{DTFT}(K_{NT_2})=X_{DTFT}(K_{NT_2})=X_{DTFT}(K_{NT_2})$
 $K=X_{NT_2}(1,1\pi)K_{NT_2}(1,1$

- 6. Considere um sinal de tempo discreto não estacionário que resultou da amostragem de um sinal áudio de tempo contínuo a uma frequência de amostragem fs=2KHz. Pretendendo-se localizar temporalmente a ocorrência de duas notas musicais, o Ré (294Hz) e o Lá (440Hz), aplicou-se a DFT por janelas (STFT) com uma dimensão temporal de 100ms e sem sobreposição.
 - a) (6%) Em cada janela, a que índice m da transformada $X_{DFT}[m]$ corresponde a nota musical Lá?

$$\square$$
 $m = 11$ \square $m = 22$ \square $m = 44$ \square $m = 88$ \square Nenhuma das opções

b) (8%) Determine a expressão do sinal x[n] na 1ª janela, supondo que é estacionário nessa janela e sabendo que é caracterizado por $X_{DFT}[4] = -X_{DFT}[-4] = -200j$ e $X_{DFT}[9] = X_{DFT}[-9] = -400$.

Nome:	Nº de estudante:

7. (8%) Dado um sinal de tempo discreto, x[n], obtido com uma frequência de amostragem $f_s = 1KHz$,

considere a decomposição de nível 3, apresentada na figura, resultante da aplicação da Transformada de Wavelet Discreta (DWT) com a wavelet da família Daubechies de ordem 9.

Efetue a caracterização tempofrequência do sinal x[n] a partir da reconstrução do sinal com base nos coeficientes a_3 e d_3 , preenchendo a seguinte tabela:

n	0-499 0,55	500-999 oßa	1000 – 1499 _{0,52}	1500 -1999 <i>0,5,</i>
A partir de d3 :	$f \in [62/5]$, 125 [Hz, $C = 1$			$f \in [62,5], 125$ [Hz, $C = 1$
A partir de a3 :	$f = 0 \text{ Hz, C} = \underline{2}$ $f = 0.5^{-26} \text{Hz, C} = \underline{1}$	f = 0.5 Hz, $C = 1$	f = <u>O</u> Hz, C= <u>1</u>	f = <u>O</u> Hz, C= <u>2</u>

8. (4%) A análise de séries temporais envolve, normalmente, um processo de decomposição da série em componentes e na obtenção de um modelo que permita fazer a previsão de valores futuros da série. Diga em que diferem os métodos AR e ARMA para a obtenção desse modelo.

Os modelos AR são + rivoples e focum na regressão dos valores parsados va ririe, enquento os modelos ARMA comhinam AR com a média móvel para cupturar tunto a dependência linear quant podrões nos droques destrios pasados.

Nome: Nº de estudante: ___

Rascunho

ens

K x Wo , para K = -6, -1,0,1,6

opções todas positivas ent: 1×wo = 20 Trad/s

R[n]=-28[n+4] + 8[n-2]+78[n-4]+98[n-6]

a) y[n]z(n-4)2 (m[n+2]-m[n-2])

valores não nulos para n={-2,-1,0,13

$$\begin{cases} y[-2] = n[a - b] |_{m=-a} = n[6] \\ y[-1] = n[a - b] |_{m=-1} = n[4] \end{cases} = n[6] \begin{cases} -a - b = 6 \\ -a - b = n \end{cases} \begin{cases} b = -6 - 2a \\ -a + 6 + 2a = 4 \end{cases} \begin{cases} b = -a - 2a \\ -a + 6 + 2a = 4 \end{cases}$$

$$\iint = \frac{A}{\Delta +} (=) \iint = \frac{f_{\Delta}}{N} (=)$$

$$\iint = \frac{A \cos (=)}{200} (=) \iint = 10 \text{ Hz}$$

$$M = \frac{h_{10}}{\Delta 0} (=) m = h_{1}$$

Nome:	Nº de estudante:
	

Rascunho

Nome:	Nº de estudante:

Rascunho

Nome:	Nº de estudante:
	

Rascunho