D-Modules Draft 1

Definitions, Theorems, Remarks, and Notable Examples Isaac Martin

Last compiled March 5, 2022

Contents

1	D-m	odules over Affine n-space	2
	1.1	Weyl Algebra	2
	1.2	Basic Properties of the Weyl Algebra	3

1 D-modules over Affine n-space

Here we cover the basic theory of modules over the Weyl algebra, or in other words, the theory of *D*-modules in the case where $X = \mathbb{A}^n_K$.

1.1 Weyl Algebra

Let *K* be a field of characteristic 0. We construct the Weyl algebra in two ways and prove that these constructions produce isomorphic rings.

Definition 1.1. Let K be a field of characteristic 0 and let $K[X] = K[x_1, ..., x_n] = \Gamma(X, \mathcal{O}_X)$ be the polynomial ring over K in n variables, and let $X = \mathbb{A}^n_K = \mathbb{A}^n$. Consider the algebra of K-linear operators $\operatorname{End}_K(K[X])$ and more specifically the operators $\hat{x_i}, \partial_j \in \operatorname{End}_K(K[X])$ for $1 \le i, j \le n$. These are defined

$$\hat{x_i}: K[X] \longrightarrow K[X], f \mapsto x_i \cdot f$$

and

$$\partial_j : K[X] \longrightarrow K[X], \ f \mapsto \frac{\partial f}{\partial x_j}.$$

These are both linear operators, and they satisfy the relation

$$[\partial_i, \hat{x}_i] = \partial_i \hat{x}_i - \hat{x}_i \partial_i = \delta_{ij}$$

where $\delta_{ij} = 1$ if i = j and is otherwise 0.

Since $K[\hat{x}] \cong K[x]$ as rings, we typically drop the hat notation and simply write x_i for $\hat{x_i}$. For any two operators $A, B \in \text{End}(R)$ we write [A, B] = AB - BA. The commutator is a K-bilinear map on End(R).

We can also write the Weyl algebra down as a quotient of a free algebra in 2n generators over K.

Definition 1.2. The free algebra $K\{x_1,...,x_{2n}\}$ in 2n generators is the set of K-linear combinations of words in $x_1,...,x_{2n}$. Multiplication is given by concatenation on monomials and then extended to arbitrary elements by the distributive property. We have a homomorphism

$$\phi: K\{x_1,...,x_{2n}\} \longrightarrow A_n$$

given by $x_i \mapsto x_i$ and $x_{i+n} \mapsto \partial_i$ for $1 \le i \le n$. Let J be the two-sided ideal of $K\{x_1,...,x_{2n}\}$ generated by $[x_{i+n},x_i]-1$ for $1 \le i \le n$. Each of these generators is mapped to zero in A_n by the relations in Definition (1.1), so $J \subseteq \ker \phi$. We therefore obtain a map $\hat{\phi}: Kx_1,...,x_{2n}/J \to A_n$ induced by ϕ .

Theorem 1.3. The map $\hat{\phi}$ is an isormorhism.

To summarize, in A_n ,

- x_i and x_j commute
- ∂_i and ∂_i commute
- $[\partial_i, x_j] = \delta_{ij}$, that is, ∂_i and x_j commute unless i = j.

Example 1.4. Given a polynomial $f \in K[x]$, we can think of f as an operator in $\operatorname{End}_K(K[x])$ by the map $x \mapsto \hat{x}$, and the operator f is simply given by multiplication by f. I claim that the commutator of f with ∂ satisfies the following relation: $[\partial, f] = f'$ where f' is the derivative of f. To see this, it suffices to show that $[\partial, x^n] = nx^{n-1}$ for $n \in \mathbb{Z}_{>0}$, since [-, -] is K-bilinear.

We show this by induction. The commutator relation $[\partial, x] = 1$ serves as the base case, so suppose $[\partial, x^k] = kx^{k-1}$ for $1 \le k \le n$. Then

$$\partial x^{n} = (\partial x)x^{n-1}$$

$$= (1 - x\partial)x^{n-1}$$

$$= x^{n-1} - x\partial x^{n-1}$$

$$= x^{n-1} - x \cdot (n-1)x^{n-2} = n \cdot x^{n-1},$$

giving us the result.

It is useful to fix a basis for the Weyl algebra, but for arbitrary n, the notation becomes cumbersome. To remedy this, we use multi-indices. For $\alpha = (\alpha_1, ..., \alpha_n), \beta = (\beta_1, ..., \beta_n) \in \mathbb{N}^n$, we denote by $x^{\alpha} \partial^{\beta}$ the element $x_1^{\alpha_1}...x_n^{\alpha_n} \partial_1^{\beta_1}...\partial_n^{\beta_n} \in A_n$. As it turns out, the set of all elements of this form is a K-basis for A_n

Proposition 1.5. The set $\mathbf{B} = \{x^{\alpha} \partial^{\beta} \mid \alpha, \beta \in \mathbb{N}^n\}$ is a basis of A_n as a vector space over K. This is called the *canonical basis* of A_n and an operator $D \in A_n$ written as a linear combination of elements in \mathbf{B} is said to be in *canonical form*.

1.2 Basic Properties of the Weyl Algebra

Despite the noncommutative of A_n , one might be tempted to draw comparisons between the Weyl algebra and a ring of polynomials, especially given that A_n admits such a nice basis. In particular, one might wonder if A_n admits any meaningful graded structure. The answer turns out to be "sort of". The goal of this section is primarily to define and examine this approximation of a graded structure. To do this, we first define the *degree* of an element in A_n . We then notice that this fails to define a K[X]-grading for A_n and provide a workaround.

We also say some words about the ideal structure of A_n and the case in which char K = p > 0.

Definition 1.6. The *length* of a multindex $\alpha \in \mathbb{N}^n$ is denoted $|\alpha|$ and is defined

$$|\alpha| = |\alpha_1| + \ldots + |\alpha_n|.$$

Let *D* be an operator A_n . The *degree* of *D*, $\deg(D)$, is the largest length of the multi-indices $(\alpha, \beta) \in \mathbb{N}^n \times \mathbb{N}^n$ for which $x^{\alpha} \partial^{\beta}$ appears with non-zero coefficient in the canonical form of *D*. We define $\deg(0) = -\infty$.

It is important to remember that the definition of degree depends on the canonical basis for A_n . The degree of $x\partial$ can simply be read off as 2, but ∂x must first be written $x\partial + 1$ in order to see that $\deg(\partial x) = 2$.

The function deg : $A_n \to \mathbb{N}$ reproduces the multiplicative and additive structure of deg : $K[X] \to \mathbb{N}$:

Theorem 1.7. Let $D, D' \in A_n$.

$$(1) \deg(DD') = \deg(D) + \deg(D')$$

$$(2) \deg(D+D') \le \max\{\deg(D), \deg(D')\}$$

(3)
$$\deg[D, D'] \le \deg(D) + \deg(D') - 2$$
.

Note that equality holds in (2) when $\deg(D) \neq \deg(D')$ but that there is risk of cancellation otherwise, as is the case with rings of polynomials.

Proof: We refer to [Gieseker75] for the proof of (1) and (3) COMPLETE PROOF OF (3) MANUALLY.
$$\Box$$

One might expect a graded structure to naturally fall from this definition of degree. The issue, as always, is one of noncommutativity. The element $x_1 \partial_1$ ought to homogeneous, but it is the difference $\partial x - 1$ of two elements with non-equal degree. There is no way to define a collection of pairwise disjoint K[X]-submodules of A_n whose direct sum recovers A_n . Nonetheless, we can still find a collection of A_n submodules which resemble a grading on A_n . We will call this a *filtration* of A_n , and it turns out that this filtration will come with a natural associated graded K[X]-module whose properties will yield new information about A_n .

We first define arbitrary filtered rings and modules.

Definition 1.8. Let R be a K-algebra and M an R-module. A collection $\mathcal{F} = \{F_i\}_{i \geq 0}$ of K-vector spaces is said to be a *filtration* of R if

(i)
$$F_0 \subset F_1 \subset F_2 \subset ... \subset R$$

(ii)
$$R = \bigcup_{i>0} F_i$$

(iii)
$$F_i \cdot F_i \subseteq F_{i+j}$$
.

If *R* has a filtration it is called a *filtered algebra*. Similarly, if *R* is a filtered algebra, then a *filtration of M* is a family $\Gamma = \{\Gamma_0\}_{i>0}$ of *K*-vector spaces satisfying

(i)
$$\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq ... \subseteq M$$
,

(ii)
$$M = \bigcup_{i>0} \Gamma_i$$

(iii)
$$B_i\Gamma_j\subseteq\Gamma_{i+j}$$
.

Such a module is said to be *filtered*. In this section, we additionally adopt the convention that

(4) Γ_i is a finite-dimensional *K*-algebra for each $i \ge 0$,

which will become important in our discussion of dimension.