## Project Apollo

### Why

- Ventilators need oxygen! (typical FiO2 0.3 ... 1)
- Oxygen generation is a big problem in developing countries.
  - No established infrastructure.
  - Oxygen bottles are expensive
- People are already looking at alternative (local) ways for producing oxygen

#### What it is

- Goal of the Apollo prototype = enabling people around the world to build the prototype ASAP
- Focus = Simplicity and speed of build
  - Open source, off-the-shelf materials
  - Very low cost (aspirational target = \$100 for 5 liters/min @ 90%)
- Final goal = Enable people to iterate and publish their own designs in the community

### How to build it

- Follow the published build <u>documentation</u>
- Buy/source the materials (check out the <u>BOM</u>)
- Build the prototype
- Validate O2 concentration and flow. Use a **good** reference O2 and flow sensor for calibration
- Think about risk analysis and assessment: template for Apollo-derived design
- Document and iterate your own design. Publish your findings to the community!

### **Collaborations**

• Helpful Engineering, Oxikit, Public Invention, Quick2space.org, Microsoft Garage

### **Documentation**

http://project-apollo.org









## Project Apollo – latest progress

#### Next version

- Focused on safety, user experience and maintainability
- O2 compatible materials in the oxygen path
- Dedicated PCB controller board, sensor integration, valve operational sensing
  - 3" TFT touch screen for diagnostic messages, medical-grade buzzer
  - Auto-tuning (valve timing, auto-adjusts to changes in compressed air input pressure)

#### Status

- Mechanical design
  - Focus on FDA approval and manufacturing
  - Please see project "Oxygen Concentrator" from Public Invention (@Ben Coombs)
- Software prototypes for Apollo v4 working
  - Simulation software
    - "device in the loop' optimization strategies tested and delivering close to theoretical
  - Can control Apollo for O2 generation and basic optimization
  - WiFi and Bluetooth integration TBD
- Hardware design
  - Sensor selection Sensors for pressure, humidity, temperature selected and tested
  - Valve board schematic in review, PCB in progress
  - Controller board schematic in review, PCB in progress
  - Sensor board schematic in progress, PCB in progress (inspired from Apollo v3)

# Prototyping effort – electronics, software









### Mechanical Design





- Runs off 24V power supply and a compressed air source.
- Built in air filtration to produce medical grade air.
- Rugged plastic body with handles and wheels.
- Durable aluminium pressure vessels.
- Reliable, long-life parts that are easy to service.



https://github.com/Publnv/oxygen-concentrator

### Conclusion

- Apollo
  - Open source oxygen concentrator with focus on low-cost
  - When Apollo v4 comes out we encourage everyone to build one!
- Please visit us at
  - http://project-Apollo.org
    - Github for designs, PCBs and software
  - http://HelpfulEngineering.org
    - Slack channel = #project-oxygen-concentrator



