Section 1.1 HW

$$\begin{pmatrix} 1 & 5 & 7 \\ -2 & -7 & -5 \end{pmatrix}$$

$$2R_1 + R_2 \rightarrow R_2$$

$$\begin{pmatrix}
1 & 5 & 7 \\
0 & 3 & 9
\end{pmatrix}$$

$$\frac{1}{3}$$
 R₂ \rightarrow R₂

$$\begin{pmatrix} 1 & 5 & 7 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & -8 \end{pmatrix}$$

$$X_1 = 7$$
 $X_2 = -8$ / ...

5.

$$\begin{pmatrix} 1 & -4 & 5 & 0 & 7 \\ 0 & 1 & -3 & 0 & 6 \end{pmatrix}$$

$$R_1 + 4R_2 \longrightarrow R_1$$

$$\begin{pmatrix}
1 & 0 & -7 & 0 & 31 \\
0 & 1 & -3 & 0 & 6 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -5
\end{pmatrix}$$

ं होसी । (त

$$\begin{pmatrix}
1 & 0 & -7 & 0 & 31 \\
0 & 1 & 0 & 0 & 12 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -5
\end{pmatrix}$$

Step #1: $R_1 + 4R_2 \rightarrow R_1$: Add Row 1 to 4 times Row 3 Step #2: $R_2 + 3R_3 \rightarrow R_2$:
Add Row 2 to 3 times Row 3 9. 0 1 -3 $0X_1 + 0X_2 + 0X_3 + 0X_4 = 4$ $0 \neq 4$ This system has no solution. $\chi_2 + 4\chi_3 = 4$ 11. $X_1 + 3X_2 + 3X_3 = -2$ $3X_1 + 7X_2 + 5X_3 = 6$ 3 -2 5 $R_3 - 3R_2 \rightarrow R_3$ -2 |2, 3/4 3/ -2 -4 $R_2 - 3R_1 \rightarrow R_2$

$$\begin{pmatrix}
0 & 1 & 4 & 4 \\
1 & 0 & -9 & -|4| \\
0 & -2 & -4 & |2|
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -9 & -14 \\
0 & 1 & 4 & 4 \\
0 & -2 & -4 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -9 & -14 \\
0 & -1 & 0 & 16 \\
0 & -2 & -4 & 12
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -9 & -|4| \\
0 & 1 & 0 & -|6| \\
0 & -2 & -4 & |2|
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -9 & -|4| \\
0 & 1 & 0 & -|6| \\
0 & 0 & -4 & -20
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 31 \\
0 & 1 & 0 & -6 \\
0 & 0 & -4 & -20
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 31 \\
0 & 1 & 0 & -6 \\
0 & 0 & 1 & 5
\end{pmatrix}$$

$$X_1 = 31$$

 $X_2 = -6$
 $X_3 = 5$

$$R_1 \iff R_2$$

$$2R_2 + R_3 \longrightarrow R_3$$

$$R_1 - \frac{9}{7}R_3 \rightarrow R_1$$

2.
$$\begin{pmatrix} 1 & -4 & 1 \\ 2 & -1 & -3 \\ -1 & -3 & 4 \end{pmatrix}$$
 $R_1 + R_3 \rightarrow R_3$
 $\begin{pmatrix} 1 & -4 & 1 \\ 2 & -1 & -3 \\ 0 & -7 & 5 \end{pmatrix}$
 $R_2 - 2R_1 \rightarrow R_2$
 $\begin{pmatrix} 1 & -4 & 1 \\ 0 & 7 & -5 \\ 0 & -7 & 5 \end{pmatrix}$
 $R_2 + R_3 \rightarrow R_3$
 $\begin{pmatrix} 1 & -4 & 1 \\ 0 & 7 & -5 \\ 0 & 0 & 0 \end{pmatrix}$
 $R_1 + \frac{4}{7}R_2 \rightarrow R_1$
 $\begin{pmatrix} 1 & 0 & -\frac{13}{7} \\ 0 & 7 & -5 \\ 0 & 0 & 0 \end{pmatrix}$
 $R_1 + \frac{4}{7}R_2 \rightarrow R_2$
 $\begin{pmatrix} 1 & 0 & -\frac{13}{7} \\ 0 & 7 & -5 \\ 0 & 0 & 0 \end{pmatrix}$

They have a Common Point of intersection:

 $\begin{pmatrix} 1 & 0 & -\frac{13}{7} \\ 0 & 1 & -\frac{5}{7} \\ 0 & 0 & 0 \end{pmatrix}$

They have a Common Point of intersection:

 $\begin{pmatrix} -\frac{13}{7} & -\frac{5}{7} \\ 7 & 7 \end{pmatrix} \leftarrow$

23. $\begin{pmatrix} 1 & h & 1 \\ 3 & 6 & 8 \end{pmatrix}$
 $\begin{pmatrix} 3R_1 - R_2 \rightarrow R_2 \\ 0 & 3h - 6 \end{pmatrix}$

	Matrix like this below is inconsistent: (1 h 4) (0 0 4)
	$3h-6=0$ $3h=6$ $h=2 \rightarrow inconsistent$
	To be consistent: (h = 2)
27.	True. For instance, addition, muttiplication, and row switch are reversible.
29.	False. Matrix dimensions: m x n rows columns
	10113 20/00/11/2
33.	True. Questions: (1) Do solutions exist? (2) Are solutions unique if they exist?
34.	True. Equivalent: Have same solution set.
39,	1st into 2nd: Swap Row 1 and Row 2
	2nd into 1st: Swap Row and Row 2