Statistik - Regression

 In der Bivariaten Deskriptiven Statistik haben wir die Korrelation kennengelernt

•
$$r_{XY} = \frac{s_{XY}}{s_X s_Y} = \frac{2,5900}{0,1685*17,4929} = 0,8787$$

- Es liegt eine starke positive Korrelation vor, d.h. steigt die Größe, steigt auch das Gewicht
- Wir können etwas über den Zusammenhang zweier Größen sagen

Befragter	Größe X [m]	Gewicht Y [kg]
1	1,87	72
2	1,70	60
3	1,80	73
4	1,84	74
5	1,78	72
6	1,80	70
7	1,72	62
8	1,76	70
9	1,86	80
10	1,77	67

- Bisher können wir aber nichts über funktionale
 Zusammenhänge sagen, wir sind nicht in der Lage
 vorhersagen über das Gewicht zu machen, wenn wir die
 Größe einer Person kennen
- Diese Möglichkeit eröffnet uns die Regression
- Sie stellt uns eine Gleichung zur Verfügung
- Wir wissen, dass diese Gleichung auf Basis von Stichproben entwickelt wurde, und dass damit Fehlaussagen möglich sind

- Wir haben möglicherweise die Regression schon in Excel kennengelernt
- Über eine Trendlinie können wir uns eine Gleichung und ein Bestimmtheitsmaß \mathbb{R}^2 darstellen lassen

Entwicklung einer Regressionsgleichung

- Beschränkung auf den einfachsten Fall der Linearen Regression mit einer unabhängigen Variablen
- Mehr Komplexität ist aber möglich:
 - Multiple Lineare Regression: Mehrere unabhängige Variablen
 - Nicht-lineare Regression: Die abhängige Variable folgt einer anderen Gleichung als der Geradengleichung

- Lineare Regression: Die zugrunde liegende Funktion folgt einer Geradengleichung
- $\bullet \quad y = f(x) = a + b * x$
- y abhängige Variable
- x unabhängige Variable
- a Schnittpunkt mit der y-Achse

Regressionsgleichung

- $\hat{y}_i = a + b * x_i + \varepsilon$
- In der Realität wird die einfache Geradengleichung nicht exakt erfüllt, wir werden immer einen gewissen Fehler ε berücksichtigen
- Die Regressionsrechnung sucht nun eine Gleichung, die diesen Fehler minimiert
- In die endgültige Gleichung werden wir Werte x_i einsetzen können und eine Vorhersage für y_i erhalten

Regressionsgleichung

 Aus den vorliegenden Daten erhalten wir eine Punktewolke, in die wir eine Gerade so platzieren werden, dass der entstehende Fehler (Abweichung der einzelnen Punkte von

der Geraden) klein wird

Regressionsgleichung

 Residuum: Abstand der einzelnen Punkte von der Regressionsgeraden

Methode der kleinsten Fehlerquadrate

- Suche nach einer Geraden, die die Residuen aller Datenpunkte in Summe möglichst klein macht
- Quadrieren der einzelnen Fehler (Residuen) verhindert, dass sich positive und negative Werte gegenseitig auslöschen

Methode der kleinsten Fehlerquadrate

Die Minimierungsaufgabe

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = min$$

$$\sum_{i=1}^{n} (y_i - (a + b * x_i))^2 = min$$

Methode der kleinsten Fehlerquadrate

 Die Minimierungsaufgabe lauft nach einigem rechnen auf folgende Bestimmungsgleichungen für die Komponenten der Regressionsgleichung hinaus

$$b = \frac{cov_{x,y}}{s_x^2}$$

$$cov_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) * (y_i - \bar{y})}{n-1}$$

$$a = \bar{y} - b * \bar{x}$$

Methode der kleinsten Fehlerquadrate

$$cov_{x,y} = 0.2878$$

$$b = 91,1972$$

$$a = -93,2429$$

Regressionsgleichung

Die Regressionsgleichung

$$\hat{y}_i = -93,2429 + 91,1972 * x_i$$

- Mit dieser Gleichung kann jetzt eine Vorhersage gemacht werden, wenn die Größe bekannt ist (! Und man zu der Grundgesamtheit gehört, aus der diese Stichprobe gezogen wurde!)
- Vorhersagen sind übrigens nur im Bereich $[x_{min}, x_{max}]$ zulässig

- Die Regressionsgleichung ist entwickelt
- Offen ist aber die Frage, wie gut die Gleichung unsere Daten wiederspiegelt
- Auch die Vorhersagegüte hängt von der Qualität der Gleichung ab
- Ein erstes Signal liefert uns ein Streudiagramm mit der Regressionsgeraden

Vorhersagegüte

 Die Vorhersagegüte unserer Regressionsgleichung wird bestimmt durch die Abstände der Datenpunkte von der Regressionsgeraden

- Zur Bestimmung der Vorhersagegüte nutzen wir Varianzen
- s_y^2 Gesamtvarianz: Quadrierte Abweichung aller Werte vom Mittelwert
- $s_{\hat{y}}^2$ Regressionsvarianz: Quadrierte Abweichung aller vorhergesagten Werte vom Mittelwert
- $s_{y^*}^2$ Fehlervarianz: Quadrierte Abweichung aller Werte vom vorhergesagten Wert

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$$

$$s_{\hat{y}}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$s_{y^*}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\hat{y}_i - y_i^*)^2$$

$$s_y^2 = 34,0000$$

$$s_{\hat{y}}^2 = 26,2445$$

$$s_{y^*}^2 = 7,7555$$

Vorhersagegüte

Teststatistik: Quotient aus Regressionsvarianz und Fehlervarianz

$$F = \frac{s_{\hat{y}}^2}{s_{y^*}^2}$$

Für ein gutes Regressionsmodell sollte der Wert über F > 1 gelten

Der Wert ist aber nur mit weiteren Modellen vergleichbar

Vorhersagegüte

$$F = \frac{26,2445}{7,7555} = 3,39$$

Für ein gutes Regressionsmodell sollte der Wert über F > 1 gelten

Der Wert ist aber nur mit weiteren Modellen vergleichbar

- Besser interpretierbar ist der Determinationskoeffizient R²
- Quotient aus Regressionsvarianz und Gesamtvarianz
- Entspricht dem quadrierten Korrelationskoeffizient

•
$$R^2 = \frac{s_{\widehat{y}}^2}{s_y^2} = r^2 = \frac{26,2445}{34,0000} = 0,7718$$

Voraussetzungen für die lineare Regression

- Mindestens intervallskalierte unabhängige Variable
- Mindestens intervallskalierte abhängige Variable
- Linearer Zusammenhang muss gegeben sein
- Wenige Ausreißer

Hypothesen für Faktoren, Wechselwirkungen und Konstanten

- H₀ Das untersuchte Element ist keine wichtige Größe in der Regressionsgleichung
- H₁ Das untersuchte Element ist signifikant wichtig in der Regressionsgleichung

Beispiel:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -93.24 31.39 -2.971 0.017854 *

Größe 91.20 17.53 5.203 0.000819 ***
```

p-Werte $< \alpha$: Konstante (Intercept) und Faktor (Größe) sind signifikant wichtig

Hypothesen für die Modellgüte

- H₀ Das Modell beschreibt nicht die vorliegenden Daten, die Regressionsgleichung ist keine gute Beschreibung der Daten
- H₁ Das Modell beschreibt die vorliegenden Daten signifikant, die Regressionsgleichung ist eine gute Beschreibung der Daten

Beispiel:

F-statistic: 27.07 on 1 and 8 DF, p-value: 0.0008193

p-Wert $< \alpha$: Das Modell beschreibt die Daten signifikant

```
Call:lm(formula = Gewicht ~ Größe, data = Dataset)
Residuals:
   Min 10 Median 30
                               Max
-5.2958 -1.5062 -0.7359 2.5739 3.6162
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -93.24 31.39 -2.971 0.017854 *
            91.20 17.53 5.203 0.000819 ***
Größe
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.954 on 8 degrees of freedom
Multiple R-squared: 0.7719, Adjusted R-squared: 0.7434
F-statistic: 27.07 on 1 and 8 DF, p-value: 0.0008193
Wir finden unsere Werte wieder!
```

```
F-statistic: 27.07 on 1 and 8 DF, p-value: 0.0008193
```

 p-Wert < 0,05 Das Modell liefert einen signifikanten Erklärungsbeitrag

Multiple R-squared: 0.7719, Adjusted R-squared: 0.7434

- Determinationsquotient R²: wieviel Prozent der Varianz der abhängigen Variable (hier: Gewicht) wird erklärt
- Je höher desto besser
- Der korrigierte R² (Adjusted R-squared) spielt in der einfachen linearen Regression keine Rolle (wichtig in multiplen linearen Regression)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -93.24 31.39 -2.971 0.017854 *
Größe 91.20 17.53 5.203 0.000819 ***
```

- Größe und Signifikanz der Regressionskoeffizienten
- Intercept: Die Konstante a in der Gleichung
- Größe: Die unabhängige Variable
- Für beide wird ein p-Wert angegeben
- p<α: Wert ist signifikant (verbleibt im Modell)

Erweiterung der linearen Regression auf die multiple lineare Regression

- Bisher gehen wir von <u>einer</u> unabhängigen Variablen (x) aus, die unser Problem beschreibt
- Was passiert, wenn mehrere unabhängige Variablen (x_i) das Problem beschreiben?
- Beispiel: Beispiel_Regression.xlsx
- Neben der abhängigen Variablen Gewicht gibt es zwei unabhängige Variablen Größe und Schuhgröße

Frage: Können wir mit den beiden unabhängigen Variablen Größe bzw. Schuhgröße jeweils das Gewicht darstellen?

Zwei Berechnungen der linearen Regression

Größe als unabhängige Variable

Signifikantes Modell (p < α = 5%), dass aber nicht viel Streuung erklärt (R^2 < 50%)

Schuhgröße als unabhängige Variable

Signifikantes Modell (p < a = 5%), deutlich besseres Modell ($R^2 > 50\%; F_{Schuhgröße} > F_{Größe}$)

- Was passiert, wenn wir beide unabhängigen Variablen gleichzeitig in der Regressionsrechnung verwenden?
- Wir benötigen eine neue Regressionsgleichung:
- $\hat{y}_i = a + b_1 * x_{i,1} + b_2 * x_{i,2} + \dots + b_p * x_{i,p} + \varepsilon$
- Auch diese Gleichung lässt sich mit der Methode der kleinsten Fehlerquadrate lösen, auf eine Herleitung wird hier aber verzichtet

- Schuhgröße und Größe als unabhängige Variablen
- Wir wechseln von

Lineare Regression... zu Lineares Regressionsmodell...


```
Residuals:
   Min 10 Median 30 Max
-8.1694 -4.4693 -0.9884 3.5260 19.4014
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -104.1928 25.0535 -4.159 0.000379 ***
Schuhgröße 6.5396 1.0711 6.105 0.00000315 ***
Größe -0.5156 0.2978 -1.731 0.096787.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.825 on 23 degrees of freedom
Multiple R-squared: 0.8083, Adjusted R-squared: 0.7917
F-statistic: 48.5 on 2 and 23 DF, p-value: 0.00000005615
```

Signifikantes Modell (p < α = 5%)

- Das neue Modell ist signifikant (p < α = 5%) und erklärt einen Großteil der Streuung (ca. 80%)
- Der F-Wert sinkt aber im Vergleich zum einfachen Modell (nur Schuhgröße) deutlich ab

$$F_{Schuhgr\"{o}\&e} = 86,78 > F_{Schuhgr\"{o}\&e+Gr\"{o}\&e} = 48,5$$

• Die unabhängige Variable Größe ist im Modell nicht signifikant! ($p < \alpha = 5\%$)

 Zusätzlich können jetzt noch Wechselwirkungen der beteiligten unabhängigen Faktoren berücksichtigt werden


```
Residuals:
   Min 10 Median 30 Max
-8.7201 -4.5812 0.4169 3.8348 18.5759
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept) -422.30324 306.94812 -1.376 0.1827
Schuhgröße 14.23581 7.47833 1.904 0.0701.
Größe
               1.31126 1.78187 0.736 0.4696
Schuhgröße:Größe -0.04405 0.04237 -1.040 0.3097
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.813 on 22 degrees of freedom
Multiple R-squared: 0.8173, Adjusted R-squared: 0.7924
F-statistic: 32.81 on 3 and 22 DF, p-value: 0.0000000267
```

- Das neue Modell mit Wechselwirkung ist signifikant (p < α = 5%) und erklärt einen Großteil der Streuung (ca. 82%)
- Der F-Wert sinkt aber im Vergleich zum Modell ohne Wechselwirkung weiter ab
- Unabhängige Variablen und Wechselwirkung sind im Modell nicht mehr signifikant!
- Nicht einmal die Schuhgröße ist noch signifikant, der Wechsel zu diesem Modell kann nicht empfohlen werden