

内藏 SPLC501 控制器图形液晶显示模组 使用手册

北京北阳电子技术有限公司

http://www.unsp.com.cn

目录

摘要	4
一、基本描述	4
二、特点	
三、尺寸图	5
四、电气参数	5
五、接口端管脚说明	6
六、驱动控制器介绍	6
6.1 SPLC501 特性	7
特点:	7
功能介绍	7
6.2 SPLC501 电气特性	
6.3 SPLC501 读/写操作时序	11
8080 系列 MPU 操作时序	
6800 系列 MPU 操作时序	12
串行接口时序	13
显示控制输出时序	
复位时序	
6.4 微控制器接口举例	15
8080 系列 MPU 连接	15
七、液晶显示模块指令系统	17
	17
	17
	18
7.5 读状态	
7.6 写显示数据	
7.7 读显示数据	
7.8 ADC 选择(Segment 方向选择)	
7.9 正向/反向显示	
7.10 全屏点亮/变暗 7.11LCD 偏压设置	
7.11 读/改/写	
7.13 结束	
7.14 复位	
7.14 复世	
7.16 上电控制设置	
7.17 V5 电压内部电阻调整设置	

7.18 电量(electronic Volume)设置模式	22
7.19 静态指示器	
7.20 页闪动	
7.21 驱动模式设置	
7.22 节电模式	
7.23 空命令	
八、液晶模块驱动程式介绍	
九、与 61 板结合使用	
十、 DEMO 板原理图	

http://www.unsp.com.cn

摘要

液晶目前在人们的生活中,应用越来越普遍,如我们较熟悉的手机的显示界面,电脑笔记本的显示器,并且现在刚刚推出液晶电视等,液晶屏的优点是显示界面清晰度高且功耗低。在此为大家介绍的是凌阳公司的一款 128*64 点阵的液晶模组,驱动芯片采用的是凌阳 SPLC501。该液晶模组接口简单,应用方便,且可以完成很多液晶特效功能。

一、基本描述

此液晶模组为 128*64 点阵, 面板采用 STN (Super Twisted Nematic) 超扭曲向列技术制成并且由 128 Segment 和 64 Common 组成, LCM 非常容易通过接口被访问。

二、特点

显示模式	黄色模式 STN 液晶
显示格式	128*64 点阵地图形液晶显示
输入数据	兼容 68/80 系列 MPU 数据输入
背光	黄绿色 LED
模块尺寸	72.8 (大×73.6 (宽)×9.5 (高)
	mm
视屏尺寸	58.84 (宽) ×35.79 (长) mm
点大小	0.42 (党) ×0.51 (长) mm
像素尺寸	0.46(宽)×0.56(长)) mm

http://www.unsp.com.cn

三、尺寸图

四、电气参数

参	<u></u> 数	符号	条件	最小	典型	最大	单位
工作电压	E	Vdd	-	3.3		5	V
输 入	High	Vih		0.7Vdd		Vdd	V
电压	Level			<i>)</i>			
	Low	Vil		Vss		0.3Vdd	
	Level						
工作耗电	1流	Idd	Vdd=3.3V Vlcd=9V Fscl = 0 Tamb = 25		1.5	2.0	mA
LCD 驱z	动电压	Vlcd	Bias=1/9	8. 7	9. 0	9. 3	V
LED 驱z	功电压	Vled			2.1		V
LED 耗	电流	Iled	Vled= 2.1V			84	mA

http://www.unsp.com.cn

五、接口端管脚说明

管脚名	说明
/CS1	片选,低有效
/RES	复位脚
A0	数据命令选择脚
R/W/WR	对于 6800 系列 MPU 的读/写信号
	对于 8080 系列 MPU 的写信号
EP/RD	对于 6800 系列 MPU 的时钟信号使能脚
	对于 8080 系列 MPU 的读信号
DB0	
DB1	
DB2	
DB3	8 位数据必线
DB4	
DB5	
DB6	
DB7	
VR	端口输出电压
C86	C86='H' 选择 6800MPU 系列
	C86='L' 选择 8080MPU 系列
Vdd	逻辑电源(3.3V~5V)
Vss	地 (0V)

六、驱动控制器介绍

此模组采用的驱动控制器是台湾凌阳科技的 SPLC501。SPLC501 液晶显示控制驱动器集行、列驱动器和控制器于一体,广泛应用于小规模液晶显示模块。

http://www.unsp.com.cn

6.1 SPLC501 特性

SPLC501单芯片液晶驱动,可以直接与其他微控制器接口总线相连。微控 制器可以将显示数据通过 8 位数据总线或者串行接口写到 SPLC501 的显存中。

特点:

- 1、内置 8580 位显示 RAM。RAM 中的一位数据控制液晶屏上的一个象素点的亮、 暗状态。"1"亮"0"暗。
 - 2、具有65行驱动输出和132列驱动输出
 - 3、可以直接与80系列和68系列微处理器相连。
 - 4、内置晶振电路,也可以外接晶振
 - 5、工作温度范围为-40摄氏度~+85摄氏度

功能介绍

SPLC501 功能原理图和管脚图分别见图 1 和图 2。

http://www.unsp.com.cn

Chip Size: 8290μm x 1720μm

图 2 SPLC501 管脚图

6.2 SPLC501 电气特性

绝对最大范围

参数	符号	范围	单位
电源电压 1	Vdd	-0.3 ~ 7	V
电源电压 2	Vss	$-7 \sim +0.3$ $-4 \sim +0.3$ $-3 \sim +0.3$	V
电源电压 3	V5 ,Vout	$-12\sim+0.3$	V
电源电压 4	V1,v2,V3,V4	V5~+0.3	V
输入电压	Vin	-0.3~Ydd+0.3	V
输出电压	Vo	-0.3~Vdd+0.3	
工作温度	Topr	$-40 \sim +80$	摄氏度
储存温度	Tstr	$-55 \sim +125$	摄氏度

电特性

参数符号	条件	最小	典型	最大	单位	应用脚
------	----	----	----	----	----	-----

电	参考	Vdd		2.7		3.3	V	Vdd
源电	电压			2.4		5.5		Vdd
压 1	工作 电压							
电源	参考 电压	Vss2		-3.3		-2.7	V	Vss2
电 压 2	工作电压	Vss2		-6.0		-1.8		Vss2
电源	参考 电压	V5		-12		-4.5	V	V5
电压	工作电压	V1, V2		4×V5		Vdd		V V2
3	工作电压	V3, V4		V5		0.6×V5		V3, V4
	医输入 医输入	Vihc Vilc		0.8×Vdd Vss		Vdd 02×Vdd	V	
高电	压输入 压输入	Vchc Vclc	Ich=0.5mA Icl=0.5mA	0.8×Vdd Vss		Vdd 0.2×Vdd	V	•
	漏电流 漏电流	Ili Ilo	Vin=Vdd Or Vss	-1.0 -3.0		1.0 3.0	uА	
无驱	动耗电	Issq		0.01		5	uA	
晶体 率	振荡频	Fosc		18	22	36	kHz	

http://www.unsp.com.cn

6.3 SPLC501 读/写操作时序

8080 系列 MPU 操作时序

时序特性 (Vdd=4.5-5.5V , TA=25 摄氏度):

∠> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ሎሎ ከተ።	かた 口	ka hit.	I I A	1.1.1+	24 /2.
参数	管脚	符号	条件	最小值	最大值	单位
地址保持	AOP	tAHB		0		ns
时间						
地址建立	AOP	tAWB		0		ns
时间						
系统周期	AOP	tCYC8		166		ns
时间						
控制低脉	WR	teelw		30		ns
冲 宽 度)			
(WR)						
控制低脉	RD	teelr		70		ns
冲 宽 度						
(RD)						
控制高脉	WR	techw		30		ns
冲 宽 度						
(WR)						
控制高脉	RD	techr		30		ns
冲 宽 度						
(RD)						

http://www.unsp.com.cn

数据建立	DB7-0	tDS8		30		ns
时间						
数据保持	DB7-0	tDH8		10		ns
时间						
数据读取	DB7-0	tACC8			70	ns
时间						
输出无效	DB7-0	tOH8	Cl=100pf	50	50	ns
时间						

6800 系列 MPU 操作时序

时序特性(Vdd=4.5-5.5V, TA=25 長氏度).

raa ne ele	, , 111 20	风汉八	<u> </u>		
管脚	符号	条件	最小值	最大值	单位
AOP	tAHB		0		ns
AOP	tAWB		0		ns
DB7-0	tDS8	Cl=100pf	30		ns
DB7-0	tDH8	Cl=100pf	10		ns
DB7-0	tACC8			70	ns
DB7-0	tOH8		10	50	ns
	管脚 AOP AOP DB7-0 DB7-0	AOP tAHB AOP tAWB DB7-0 tDS8 DB7-0 tDH8 DB7-0 tACC8	管脚 符号 条件 AOP tAHB AOP tAWB DB7-0 tD88 Cl=100pf DB7-0 tACC8	管脚 符号 条件 最小值 AOP tAHB 0 AOP tAWB 0 DB7-0 tDS8 Cl=100pf 30 DB7-0 tDH8 Cl=100pf 10 DB7-0 tACC8 -	管脚 符号 条件 最小值 最大值 AOP tAHB 0 0 AOP tAWB 0 0 DB7-0 tDS8 Cl=100pf 30 DB7-0 tDH8 Cl=100pf 10 DB7-0 tACC8 70

http://www.unsp.com.cn

系统周期	AOP	tCYC8		166	ns
时间					
使能低脉	WR	tewlw		30	ns
冲 宽 度					
(WR)					
使能低脉	RD	tewlr		30	ns
冲 宽 度					
(RD)					
使能高脉	WR	tewhw		30	ns
冲 宽 度					
(WR)					
使能高脉	RD	tewhr	·	70	ns
冲 宽 度					
(RD)					

串行接口时序

时序特性(Vdd=4.5-5.5V, TA=25 摄火度):

H111 10 1T /	144 115 515	v y 111 1 1 1				
参数	管脚	符号	条件	最小值	最大值	单位
串行时钟	SCL	tSCYC		200		ns
周期						
SCL 高脉	SCL	tSHW		75		ns
冲宽度						
SCI 低脉	SCL	tSLW		75		ns
冲宽度						
地址建立	AOP	tSAS		50		ns
时间						

http://www.unsp.com.cn

地址保持 时间	AOP	tSAH	100	ns
数据建立时间	SI	tSDS	50	ns
数据保持时间	SI	tSDH	50	ns
CS-SCL 时间	CS	tCSS tCSH	100 100	ns

显示控制输出时序

时序特性(Vdd=4.5-5.5V, TA=25 摄氏度):

参数	管脚	符号	条件	典型	最大值	Ĺ	单位
FR 延迟时	FR	tDFR	Cl=50pf	10	40		ns
间							

复位时序

时序特性(Vdd=4.5-5.5V, TA=25 摄氏度):

参数	管脚	符号	条件	最小	最大值	单位
复位时间		tR			0.5	us
复位低脉 冲宽度	RES	tRW		0.5		us

http://www.unsp.com.cn

6.4 微控制器接口举例

SPLC501 可以连接 80×86 系列 MPU 和 68000 系列 MPU,如果采用串行连接方式可以使用更少的管脚完成。另外,通过使用更多的 SPLC501 可以加大液晶显示面积,这时就可以利用片选脚决定访问那颗 SPLC501。

8080 系列 MPU 连接

6800 系列 MPU 连接

利用串行接口连接

http://www.unsp.com.cn

16

LCM 结构图

http://www.unsp.com.cn

七、液晶显示模块指令系统

该类液晶显示模块共有 23 种显示指令,下面以与 68 系列 MPU 接口为例,分别介绍以下 23 种指令

7.1 显示开关指令

AOP	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Setting
0	1	0	1	0	1	0	1	1	1	1	Display ON
										0	Display OFF

当显示被打开或关闭时,系统进入节电模式。

7.2 显示起始行设置

这个指令设置了对应显示屏上首行的显示 RAM 行号。有规律的修改该行号,可以实现滚屏功能。

	174///	* ***									
AOP	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Line Address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
								Į.			↓
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

7.3 页地址设置

AOP	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Page Address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
								,	ļ		↓
							0	1	1	1	7
							1	0	0	0	8

http://www.unsp.com.cn

7.4 设置列地址

由上图可以看出显示 RAM 被分成 9 页每页 132 个字节,当设置了页地址和列地址后,就确定了显示 RAM 中的唯一单元,该单元由低到高各个数据位对应于显示屏上的某一列的 8 行数据位。

AOP	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	A7	A6	A5	A4	А3	A2	A1	A0	Column Address
0	1	0	0	0	0	1	Α7	A6	A5	A4	0	0	0	0	0	0	0	0	0
l						0	АЗ	A2	A1	A0	0	0	0	0	0	0	0	1	1
l											0	0	0	0	0	0	1	0	2
l															ļ				↓
l											1	0	0	0	0	0	0	0	130
											1	0	0	0	0	0	1	1	131

7.5 读状态

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

BUSY	当 BUSY 为 1 时,忙状态;当 BUSY 为 0 时,准备好状态,
ADC	表示行和列的关系
	ADC:1 正常输出 (n-131==SEGn), ADC:0 为反向输出 (131-n ==SEG n)
ON/OFF	表示液晶显示开和关
	0:显示打开,1:显示关闭
RESET	0: 正常工作状态, 1: 复位

7.6 写显示数据

这条指令可以将显示数据(8位)写到 RAM中,显示地址自动加一。

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	0				Write	data			

http://www.unsp.com.cn

7.7 读显示数据

这条指令从指定地址中读取显示数据,读取显示数据后,列地址自动加一。

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	1				Read	Data			

7.8 ADC 选择 (Segment 方向选择)

这条命令用于将 Segment 驱动输出反向。

									RWP	EP	
Setting	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	WR	RD	A0P
Normal	0	0	0	0	0	1	0	1	0	1	0
Reverse	1										

7.9 正向/反向显示

这条命令用于设置显示正向和反向。当执行该指令后、显示 RAM 中的内容不变。

											_
A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Setting
0	1	0	1	0	1	0	0	1	1	0	RAM Data 'H' LCD ON voltage (normal
										1	RAM Data 'L' LCD ON voltage (reverse)

7.10 全屏点亮/变暗

这条命令使所有的液晶点被点亮/变量,无论显示 RAM 中有任何数据。此命令优先于 正向/反向显示。当液晶处于显示关闭状态时,执行此命令将会自动进入节电状态。

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Setting
0	1	0	1	0	1	0	0	1	0	0	Normal display mode
										1	Display all points ON

http://www.unsp.com.cn

7.11LCD 偏压设置

这条命令用于液晶显示的偏压设置。

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Select Status SPLC501C
0	1	0	1	0	1	0	0	0	1	0	1/9 bias
										1	1/7 bias

7.12 读/改/写

这条指令用到两次结束命令,一旦写入此命令后,读显示数据命令不再修改列地址, 但是写显示数据命令还可以使列地址自动加一。当有结束命令输入时,列地址恢复到 读/改/写时的列地址。这个命令可用于光标显示。

	EP	RWP								
A0P	RD	WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	0	1	1	1	0	0	0	0	0

光标显示流程图:

http://www.unsp.com.cn

7.13 结束

这条指令用于结束读/改/写模式。

7.14 复位

这条指令初始化显示起始行、起始列地址、起始页地址、正常输出模式。结束读/改/写模式和测试模式。此命令不影响显示 RAM 中的数据。

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	0	1	1	1	0	0	0	1	0

7.15 正常输出模式选择

这条指令用于确定 COM 口扫描的方向:

	EP	RWP										Select Status
A0P	RD	WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		SPLC501C
0	1	0	1	1	0	0	0	*	*	*	Normal	COM0> COM63
							1				Reverse	COM63> COM0

http://www.unsp.com.cn

7.16 上电控制设置

A0P	EP — RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Selected Mode
0	1	0	0	0	1	0	1	0			Booster circuit: OFF
								1			Booster circuit: ON
									0		Voltage regulator circuit :OFF
									1		Voltage regulator circuit: ON
										0	Voltage follower circuit: OFF
										1	Voltage follower circuit: ON

7.17 V5 电压内部电阻调整设置

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Setting
0	1	0	0	0	1	0	0	0	0	0	Small
								0	0	1	
								0	1	0	
									1		↓
								1	1	0	
								1	1	1	Large

7.18 电量(electronic Volume)设置模式

这条命令用于调整显示屏的亮度。此命令用到双字节: 个是设置为电量设置模式,另一个是设置电量寄存器设置模式。

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	0	1	0	0	0	0	0	0	1

A0P	EP RD	RWP — WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	V5
0	1	0	*	*	0	0	0	0	0	1	Small
0	1	0	*	*	0	0	0	0	1	0	
0	1	0	*	*	0	0	0	0	1	1	
						,	Į.				1
0	1	0	*	*	1	1	1	1	1	0	
0	1	0	*	*	1	1	1	1	1	1	Large

流程如下:

http://www.unsp.com.cn

7.19 静态指示器

这条命令用于控制静态驱动指示器显示。为双字节命令。 静态指示器开/关

静态指示器寄存器设置状态

A	_	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Static Indicator
()	1	0	*	*	*	*	*	*	0	0	OFF
ı				*	*	*	*	*	*	0	1	ON (blinking at approximately 0.5 second intervals)
ı				*	*	*	*	*	*	1	0	ON (blinking at approximately one second intervals)
				*	*	*	*	*	*	1	1	ON (constantly on)

7.20 页闪动

页闪动模式设置

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	0	1	0	1	0	0	1	0	1

页闪动寄存器设置

http://www.unsp.com.cn

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Blinking Page
0	1	0	1	0	0	0	0	0	0	0	PAGE 7 blink
			0	1	0	0	0	0	0	0	PAGE 6 blink
			0	0	1	0	0	0	0	0	PAGE 5 blink
			0	0	0	0	0	0	0	1	PAGE 0 blink

设置流程图:

7.22 节电模式

当在显示关闭时,设置全屏点亮,则进入节电状态。节电模式有两种状态一个是睡眠

http://www.unsp.com.cn

模式另一个是备用模式。当静态指示器关闭时,进入睡眠模式。当静态指示器打开时,进入备用模式。在睡眠模式和备用模式时,显示数据保存操作模式时的数据。在这种模式时,MPU 可以访问显示 RAM。

睡眠模式:

在此模式下,除了 MPU 访问显示 RAM 外,停止所有的液晶显示操作。晶振、液晶上电和液晶驱动电路全部暂停。

备用模式:

在此模式下,液晶上电和液晶驱动电路暂停,晶振继续振荡。在备用模式下,有复位命令时,系统进入睡眠模式。

7.23 空命令

A0P	EP RD	RWP WR	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	0	1	1 .	1	_ 0 _	0	0	1	1

八、液晶模块驱动程式介绍

硬件连接图,见九部分的硬件连接图。

1、液晶模组初始化

// Function Name: F_InitialLCD

// Description: Initial LCD for display.

// Input: None
// Output: None
// Destroy: r1,r2;


```
// Used:
                   r1,r2;
// Stacks:
                2;
//=====
F_InitialLCD:.PROC
        M LCD Reset Command;
                                        //Reset LCD
        M_LCD_Command_Nop;
                                            //Nop
        M_LCD_Solomon_Freq;
                                            //Set Scan Frequency
        call F LCD Power Set;
                                            //Set Power
        M LCD Display On;
                                            //Display on
.IFDEF REVERSEDISPLAY
        M LCD Common Reverse;
        M LCD ADC Reverse;
.ENDIF
        r1=0;
        M_Set_LCD_Page_No;
                                            //Page No. = 0
        r1=0;
        M_Set_LCD_Start_Line;
                                           //Start line = 0
        R1 = 0x0000;
                                       //Column address
        CALL
                  F_Set_LCD_Column_Addr;
        M_LCD_ALL_On;
                                           //
        M_LCD_Normal_Display;
                                           //Normal
        RETF;
        .ENDP
2、液晶上电设置程序
                    F LCD Power Set
// Function Name:
// Description:
                    Set power.
// Input:
                   None
// Output:
                    None
// Destroy:
                    r1;
// Used:
                    r1;
// Stacks:
                2;
F_LCD_Power_Set:
                    .PROC
        R1=0xA2;
                                   // 1/9 bias
        CALL F LCD Command Send;
        R1=0x25;
                                   // Contrast
                                        // V5 RATIO 5 FOR 1/9 BIAS
        CALL F_LCD_Command_Send;
        R1=0x81;
                                // ELECTRONIC VOLUME MODE
```



```
CALL F_LCD_Command_Send;
                                 // MS Column : A
        R1=0x0A;
        [LCDLighting] = r1;
        CALL F_LCD_Command_Send;
                                 // Set driving mode register
        R1=0xD2;
        CALL F_LCD_Command_Send;
        R1=0x00;
                                 // LS Column: 0
        CALL F LCD Command Send;
                                 // REGULATOR on
        R1=0x2C;
        CALL F_LCD_Command_Send;
                                 // +FOLLOWER oFF
        R1=0x2E;
        CALL F LCD Command Send;
        R1=0x2F;
                                 // +FOLLOWER oFF
        CALL F_LCD_Command_Send;
        RETF;
        .ENDP
3、清屏程序
// Function Name: F_Clr_LCD
// Description:
                    Clear all things on LCD.
// Input:
                None
// Output:
                    None
// Destroy:
                    r1,r4;
// Used:
                r1,r4;
// Stacks:
                4;
F_Clr_LCD: .PROC
             r1=0;
L_Fill_Page_Loop:
             push r1 to [sp];
             M_Set_LCD_Page_No
                                             //Page No. = 0
        R1 = 0x0000;
                                         //Column address (00H ~ 63H)
        CALL F Set LCD Column Addr;
                                         //Column Addr. = 0
        r4 = 0x0084;
                                     //Max. column address +1
L Fill Column Loop:
                                    //Write data
        r1 = 0x00;
        CALL F_LCD_Data_Send;
        R4 = 0x0001;
                                         //Next column address
        JNZ L Fill Column Loop;
                                         //End Page ?
```



```
pop r1 from [sp];
        R1 += 0x0001;
        CMP R1,0x0008;
                                    //Next page address
        JNE L_Fill_Page_Loop;
        RETF
        .ENDP
4、列地址设置
// Function Name: F_Set_LCD_Column_Addr
// Description:
                    Set Column.
// Input:
                r1
// Output:
                    None
// Destroy:
                    r1,r4;
// Used:
                r1,r4;
// Stacks:
                2;
F_Set_LCD_Column_Addr: .PROC
.IFDEF REVERSEDISPLAY
            r1 += 4;
.ENDIF
                                 //Store temporarily
        push r1 to [sp];
        R1 = R1 LSR 4;
        R1 &= 0x000F;
                                 //Isolate MS 4-bits
                                 //Set column addre
        R1 = 0x10;
                                                  : Most significant 4 bits
        CALL F LCD Command Send;
        pop r1 from [sp];
        R1 = r1 & 0x000F;
                                  VIsolate LS 4-bits
        R1 = 0x00;
                                 //Set column address : Least significant 4 bits
        CALL F_LCD_Command_Send;
        RETF;
        .ENDP
5、复位命令设置
M LCD Reset Command: .MACRO
        r1=0xE2;
                                        //Reset
        CALL F LCD Command Send;
        .ENDM
    6、空命令设置
M_LCD_Command_Nop: .MACRO
        R1=0xE3;
                                        //Nop
```



```
CALL F_LCD_Command_Send;
       .ENDM
7、COM 和 SEGMENT 设置
M_LCD_Solomon_Freq:
                      .MACRO
//
        R1=0x0AC0;
                                    //COMs output : Normal
       R1=0xC8;
                                   //COMs output : Inverse
       CALL F LCD Command Send;
//
        R1=0x0AA1;
                                        //SEGs output : Normal
       R1=0xA0;
                                    //SEGs output : Inverse
       CALL F LCD Command Send;
       .ENDM
   8、显示打开设置
M_LCD_Display_On: .MACRO
       R1=0xAF;
       CALL F_LCD_Command_Send;
       .ENDM
9、全屏显示设置
M LCD ALL On:
                  .MACRO
       R1=0xA5;
                             //All points of
       CALL F LCD Command Send;
       .ENDM
10、正向设置
M LCD Normal Display: .MACRO
       R1=0xA4;
                             //Normal display
       CALL F_LCD_Command
       .ENDM
11、页地址设置
M_Set_LCD_Page_No:.MACRO
       R1 = 0xB0;
                           //Set Page No. (0\sim7)
       CALL F_LCD_Command_Send;
       .ENDM
12、显示起始行设置
M_Set_LCD_Start_Line:
                      .MACRO
       R1 = 0x40;
                           //Set start line (00D \sim 63D)
       CALL F LCD Command Send;
```

//Disab

Technology for Easy Living

http://www.unsp.com.cn

.ENDM

```
13、Com 反向设置
M_LCD_Common_Reverse:
                           .MACRO
        R1 = 0xC0;
                             //commom reverse display
        CALL F_LCD_Command_Send;
       .ENDM
    14、ADC 反向设置
M LCD ADC Reverse:
                       .MACRO
                             //Seg reverse diaplay
        R1 = 0xA1;
        CALL F LCD Command Send;
        .ENDM
15、显示模式设置
M_LCD_DisplayMode_Reverse: .MACRO
        R1 = 0xA7;
        CALL F_LCD_Command_Send;
        .ENDM
16、写命令
// Function Name: F_LCD_Command_Send
// Description:
                   Send command data through simulate port.
// Input:
               None
// Output:
                   None
// Destroy:
                   r1,r2;
// Used:
               r1,r2;
// Stacks:
               0;
.PUBLIC F_LCD_Command_Send
.PUBLIC F_LCD_Command_Send;
F_LCD_Command_Send:
                                                              //117cycle
_F_LCD_Command_Send: .PROC
.IFDEF Use68000Port
       //68000 interface
                   r2=B USBOperation+B EPPin;
Read and USB operation
                                   //6
           r1=[P PortControl Buf];
                                   //9
           r1&=0xFFFF-B_AOP_Data-B_RWPPin-B_LCDOperation;
                                                                  //6
           r2|=r1;
                                   //3
```

31

Technology for Easy Living

```
[P_PortControl_Data]=r2;//9
                                                        //change control pin
             r2^=B EPPin;
                                       //6
             [P_PortControl_Data]=r2;//9
                                                        //latch the data
             retf;
             //8080 interface
             r2=B USBOperation+B RDPin;
                                               //Disable Read and USB operation
                                       //6
             r1=[P PortControl Buf];
                                      //9
             r1&=0xFFFF-B AOP Data-B WRPin-B LCDOperation;
                                                                         //6
             r2|=r1;
                                               //3
                                           //9
             [P_PortControl_Data]=r2;
             r2^=B WRPin;
                                               //6
                                           //9
             [P_PortControl_Data]=r2;
             retf;
                                           //12
.ENDIF
             .ENDP
    17、写数据
// Function Name: F LCD Data Send
// Description:
                     Send display data through simula
// Input:
                 None
// Output:
                     None
// Destroy:
                     r1,r2;
// Used:
                 r1,r2;
// Stacks:
                 0;
.PUBLIC F_LCD_Data_Send;
.PUBLIC _F_LCD_Data_Send;
F LCD Data Send:
                                                                 //117cycle
_F_LCD_Data_Send: .PROC
        //68000 interface
r2=B_USBOperation+B_EPPin+B_AOP_Data;
                                             //Disable Read and USB operation
             r1=[P PortControl Buf];
```


http://www.unsp.com.cn

r1&=0xFFFF-B_RWPPin-B_LCDOperation;

r2|=r1;

[P_PortControl_Data]=r2; //change control pin

r2^=B_EPPin;

[P PortControl Data]=r2; //latch data

retf;

.ENDP

九、与61板结合使用

范 例 已 经 包 在 IDE184 下 , 路 径 为 unSPIDE184/SPCE061A/Example/model_Exa/LCD501_Characer。 ▲

【目的】

- 1、了解 SPLC501 的使用方法及相关函数
- 2、学习利用 SPLC501 显示字符

【设备】

1)装有 μ'nSP™ IDE 仿真环境的 PC 机一台。 2)61 板和液晶模组各一套。

【步骤】

- 1)根据硬件连接图连接好硬件。(实验箱默认的 LCD 连接方式)
- 2)将μ'nSP™ IDE 打开后,建立一个新工程。
- 3)在该项目的源文件夹(SOURCE FILES)下建立一个新的《语言文件。
- 4)编写程序代码。
- 5)编译程序,软件调试。
- 6)注意观察 LCD 的现象

http://www.unsp.com.cn

【硬件连接图】

http://www.unsp.com.cn

【程序流程图】

【液晶显示界面图】

http://www.unsp.com.cn

十、 DEMO 板原理图

