AMENDMENT

Subject matter to be added is in bold and underlined.

Subject matter to be deleted is in bold and strikethrough.

In the Claims:

Please enter rewritten claims 1-8 and new claims 22-28 as follows.

Please withdraw 18-20 and cancel claims 9-16 and 21 without prejudice or disclaimer.

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound of Formula I:

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein;

M is a 3-10 membered carbocycle or a 4-10 membered heterocycle, consisting of: earbon atoms and 1-3 heteroatoms selected from O, S(O)_D, N, and NZ²;

ring M is substituted with 0-3 R^{1a} and 0-2 carbonyl groups, and there are 0-3 ring double bonds:

P is fused onto ring M and is a 5, 6, or 7 membered carbocycle or a 5, 6, or 7 membered heterocycle, consisting of: carbon atoms and 1-3 heteroatoms selected from O, S(O)_B, and N;

ring P is substituted with 0-3 R¹ⁿ and 0-2 carbonyl groups, and there are 0-3 ring double bonds;

alternatively, ring P is absent and P_4 is directly attached to ring M, provided that when ring P is absent, P_4 and M_4 are attached to the 1,2, 1,3, or 1,4 positions of ring M;

one of P₄ and M₄ is -Z-A-B and the other -G₄-G;

G is a group of formula IIa or Hb:

ring D, including the two atoms of Ring E to which it is attached, is a 5-6 membered ring consisting of: carbon atoms and 0-2 heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

ring D is substituted with 0-2 R and there are 0-3 ring double bonds;

E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, and pyridazinyl, and is substituted with 1-3 R;

alternatively, ring D is absent and ring E is selected from phenyl, pyridyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, triazolyl, thienyl, and thiazolyl, and ring E is substituted with 1-3 R;

alternatively, ring D is absent and ring E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, triazolyl, thienyl, and thiazolyl, and ring E is substituted with 1-R and with a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, wherein the 5-6 membered heterocycle is substituted with 0-2 carbonyls and 1-2 R and there are 0-3 ring double bonds;

R is selected from H, C₁₋₄ alkyl, F, Cl, Br, I, OH, OCH₃, OCH₂CH₃, OCH(CH₃)₂, and OCH₂CH₂CH₃, -CN, NH₂, NH(C₁₋₃ alkyl), N(C₁₋₃ alkyl)₂, C(=NH)NH₂, CH₂NH₂, CH₂NH(C₁₋₃ alkyl), CH₂N(C₁₋₃ alkyl)₂, CH₂CH₂NH₂, CH₂CH₂NH(C₁₋₃ alkyl), CH₂CH₂NH(C₁₋₃ alkyl)₂, C(=NR⁸)NR⁷R⁹, NHC(=NR⁸)NR⁷R⁹, ONHC(=NR⁸)NR⁷R⁹, NHC(=NR⁸)₄C(O)H, (CR⁸R⁹)₄C(O)R²e, (CR⁸R⁹)₄NR⁷R⁸,

(CR⁸R⁹)_tC(O)NR⁷R⁸, (CR⁸R⁹)_tNR⁷C(O)R⁷, (CR⁸R⁹)_tOR³, (CR⁸R⁹)_tS(O)_pNR⁷R⁸, (CR⁸R⁹)_tNR⁷S(O)_pR⁷, (CR⁸R⁹)_tSR³, (CR⁸R⁹)_tS(O)R³, (CR⁸R⁹)_tS(O)₂R³, and OCF₃;

alternatively, when 2 R groups are attached to adjacent atoms, they combine to form methylenedioxy or ethylenedioxy;

A is phenyl; selected from:

C₃₋₁₀ carbocycle substituted with 0-2 R⁴, and

5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_n and substituted with 0-2 R⁴;

$$Q^1$$
 Q^2 Q^2 Q^2 Q^3 Q^4

B is selected from and B₂; provided that Z and B are attached to different atoms on A and that the R^{4a} shown is other than OH;

 Q^1 and Q^2 are each N;

alternatively, one of Q^1 and Q^2 is CR^3 and R^{4a} is NR^2R^{2a} or $NR^{3a}B_1$, provided that when one of Q^1 and Q^2 is CR^3 , then this R^3 group optionally forms a ring with the R^2 group of R^{4a} , this ring is a 5-6 membered ring consisting of, in addition to the C-C-N shown, carbon atoms and from 0-1 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-1 R^5 ;

ring Q is a 5-8 membered ring consisting of, in addition to the Q^1 - CR^{4a} = Q^2 group shown, carbon atoms and 0-2 heteroatoms selected from N, O, and $S(O)_p$, and the ring is substituted with an additional 0-2 R^{4a} ;

 B_1 is selected from SO_2R^{3b} , $C(O)R^{3b}$, $SO_2NR^3R^{3b}$, $C(O)NR^3R^{3b}$, OR^2 , SR^2 , -CN, and NO_2 ;

B₂ is NR²R^{2d} or CR³R²R^{2d};

alternatively, $CR^3R^2R^{2d}$ forms a 5-8 membered ring consisting of: carbon atoms and 0-2 heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} ;

alternatively, NR^2R^{2d} forms a 5–8 membered ring consisting of: carbon atoms and 0–2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0–2 R^{4b} ;

alternatively, when B_1 is SO_2R^{3b} and B_2 is NR^2R^{2d} , R^{3b} and R^{2d} combine to form a 5-8 membered ring consisting of: carbon atoms and 0-2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} ;

alternatively, when B_1 is $C(O)R^{3b}$ and B_2 is NR^2R^{2d} , R^{3b} and R^{2d} combine to form a 5-8 membered ring consisting of: carbon atoms and 0-2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} ;

alternatively, when B_2 is NR^2R^{2d} , B_1 and R^{2d} combine to form a 5-8 membered ring consisting of: carbon atoms and 0-2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} and the R^2 group of NR^2R^{2d} , in addition to the groups recited below, is selected from SO_2R^{3b} , $C(O)R^{3b}$, and CN;

G₁ is absent or is selected from (CR³R³n)₁₋₅, (CR³R³n)₀₋₂CR³=CR³(CR³R³n)₀₋₂7, (CR³R³n)₀₋₂C=C(CR³R³n)₀₋₂, (CR³R³n)₀₋₂C=C(CR³R³n)₀₋₂, (CR³R³n)₀C(O)(CR³R³n)₀, (CR³R³n)₀C(O)(CR³R³n)₀, (CR³R³n)₀C(O)(CR³R³n)₀, (CR³R³n)₀C(CR³R³n)₀

(CR³R^{3a})_uS(O)NR^{3b}C(O)(CR³R^{3a})_w, (CR³R^{3a})_uC(O)NR^{3b}S(O)₂(CR³R^{3a})_w, and (CR³R^{3a})_uS(O)₂NR^{3b}C(O)NR^{3b}CR³R^{3a})_w, wherein u+w or u+u+w total 0, 1, 2, 3, or 4, and the right side of G₁ is attached to G, provided that G₁ does not form a N-S, NCH₂N, NCH₂O, or NCH₂S bond with either group to which it is attached;

Z is selected from a bond, (CR3R3e)1_4-, (CR3R3e)qO(CR3R3e)q15 $(CR^3R^{3e})_aNR^{3b}(CR^3R^{3e})_{a1}, (CR^3R^{3e})_aC(O)(CR^3R^{3e})_{a1}, (CR^3R^{3e})_aC(O)O(CR^3R^{3e})_{a1}$ $(CR^3R^{3e})_{a}OC(O)(CR^3R^{3e})_{a17}(CR^3R^{3e})_{a}C(O)NR^{3b}(CR^3R^{3e})_{a17}$ $(CR^3R^{3e})_{a}NR^{3b}C(O)(CR^3R^{3e})_{a1}, (CR^3R^{3e})_{a}OC(O)O(CR^3R^{3e})_{a1},$ $(CR^3R^{3e})_qOC(O)NR^{3b}(CR^3R^{3e})_{q1}, (CR^3R^{3e})_qNR^{3b}C(O)O(CR^3R^{3e})_{q1}, (CR^3R^{3e})_{q1}, (CR^3R^{3e})_{q2$ $(CR^3R^{3e})_aNR^{3b}C(O)NR^{3b}(CR^3R^{3e})_{a1}, (CR^3R^{3e})_aC(O)(CR^3R^{3e})_aC(O)(CR^3R^{3e})_{a1}, (CR^3R^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)(CR^{3e})_aC(O)$ $(CR^3R^{3e})_eNR^{3b}(CR^3R^{3e})_eC(O)NR^{3b}(CR^3R^{3e})_{e15}$ (CR3R3e)aNR3bC(O)(CR3R3e)aC(O)(CR3R3e)a15 $(CR^3R^{3e})_{\alpha}C(O)(CR^3R^{3e})_{\alpha}C(O)NR^{3b}(CR^3R^{3e})_{\alpha 17}$ (CR³R^{3e})_aNR^{3b}C(O)(CR³R^{3e})_aC(O)NR^{3b}(CR³R^{3e})_{a17}(CR³R^{3e})_{a17}(CR³R^{3e})_{a17} $(CR^3R^{3e})_{\alpha}S(O)(CR^3R^{3e})_{\alpha 1}, (CR^3R^{3e})_{\alpha}S(O)_2(CR^3R^{3e})_{\alpha 1},$ (CR3R3e)aSO2NR3b(CR3R3e)a17 (CR3R3e)aNR3bSO2(CR3R3e)a17 $(CR^3R^{3e})_aS(O)NR^{3b}C(O)(CR^3R^{3e})_{a1}$, $(CR^3R^{3e})_aC(O)NR^{3b}S(O)_2(CR^3R^{3e})_{a1}$, and $(CR^3R^{3e})_{e}NR^{3b}SO_2NR^{3b}(CR^3R^{3e})_{e1}$, wherein q+q1 or q+q1 total 0, 1, 2, 3, or 4, and the right side of Z is attached to A, provided that Z does not form a N-S, NCH₂N, NCH2O, or NCH2S bond with either group to which it is attached;

 Z^2 is selected from H, $S(O)_2NHR^{3b}$, $C(O)R^{3b}$, $C(O)NHR^{3b}$, $C(O)OR^{3f}$, $S(O)_2R^{3f}$, C_{1-6} alkyl substituted with 0-2 R^{1a} , C_{2-6} alkenyl substituted with 0-2 R^{1a} , C_{2-6} alkynyl substituted with 0-2 R^{1a} , C_{0-4} alkyl) C_{3-10} carbocycle substituted with 0-3 R^{1a} , and C_{0-4} alkyl) 5-10 membered heterocycle substituted with 0-3 R^{1a} and consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, N, and $S(O)_{n}$;

 R^{1a} , at each occurrence, is selected from H, $-(CR^3R^{3a})_r-R^{1b}$, $-(CR^3R^{3a})_r-CR^3R^{1b}R^{1b}$, $-(CR^3R^{3a})_r-O-(CR^3R^{3a})_r-R^{1b}$, $-(CR^3R^{3a})_r-NR^2-(CR^3R^{3a})_r-R^{1b}$,

 $-(CR^3R^{3a})_r - S(O)_p - (CR^3R^{3a})_r - R^{1b}, -(CR^3R^{3a})_r - CO_2 - (CR^3R^{3a})_r - R^{1b}, \\ -(CR^3R^{3a})_r - C(O)NR^2 - (CR^3R^{3a})_r - R^{1b}, -(CR^3R^{3a})_r - C(O) - (CR^3R^{3a})_r - R^{1b}, -C_{2-6} \\ \text{alkenylene-} R^{1b}, -C_{2-6} \text{ alkynylene-} R^{1b}, \text{ and } -(CR^3R^{3a})_r - C(=NR^{1b})NR^3R^{1b}, \text{ provided that } R^{1a} \\ \text{forms other than an N-halo, N-S, O-O, or N-CN bond;}$

alternatively, when two R^{1a} groups are attached to adjacent atoms, together with the atoms to which they are attached they form a 5-7 membered ring consisting of: earbon atoms and 0-2 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, this ring being substituted with 0-2 R^{4b} and 0-3 ring double bonds;

 R^{1b} is selected from H, C_{1-3} alkyl, F, Cl, Br, I, -CN, -NO₂, -CHO, $(CF_2)_rCF_3$, $(CR^3R^{3a})_rOR^2$, NR^2R^{2a} , $C(O)R^{2b}$, CO_2R^{2b} , $OC(O)R^2$, $CH(CH_2OR^2)_2$, $(CF_2)_rCO_2R^{2a}$, $S(O)_pR^{2b}$, $NR^2(CH_2)_rOR^2$, $C(=NR^{2c})NR^2R^{2a}$, $NR^2C(O)R^{2b}$, $NR^2C(O)NR^2R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $OC(O)NR^2R^{2a}$, $OC(O)NR^{2a}$, $OC(O)NR^{2a}$, $OC(O)NR^{2a}$, $OC(O)NR^{2a}$, $OC(O)NR^{$

 R^2 , at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b} , and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b} ;

 R^{2a} , at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b} , and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b} ;

alternatively, NR^2R^{2a} forms a 5 or 6 membered saturated, partially saturated, or unsaturated ring substituted with 0-2 R^{4b} and consisting of: carbon atoms, the nitrogen atom to which R^2 and R^{2a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

 R^{2b} , at each occurrence, is selected from CF₃, C₁₋₄ alkoxy substituted with 0-2 R^{4b} , C₁₋₆ alkyl substituted with 0-2 R^{4b} , -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b} , and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b} ;

 R^{2c} , at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy, C₁₋₆ alkyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b}, and -(CH₂)_r-5-10 membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

 R^{2d} , at each occurrence, is selected from H, CF₃, C₁₋₄ alkoxy substituted with 0-2 R^{4b} , C₁₋₆ alkyl substituted with 0-2 R^{4b} , -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-2 R^{4b} , and -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b} ;

R³, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, and phenyl;

R^{3a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, and phenyl;

alternatively, NR^3R^{3a} forms a 5 or 6 membered saturated, partially unsaturated, or unsaturated ring consisting of: carbon atoms, the nitrogen atom to which R^3 and R^{3a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

 R^{3b} , at each occurrence, is selected from H, CF₃, C₁₋₆ alkyl substituted with 0-2 R^{1a} , C₂₋₆ alkenyl substituted with 0-2 R^{1a} , -(C₀₋₄ alkyl)-5-10 membered carbocycle substituted with 0-3 R^{1a} , and -(C₀₋₄ alkyl)- 5-10 membered heterocycle substituted with 0-3 R^{1a} and consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p;

R^{3c}, at each occurrence, is selected from CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl, and phenyl;

 R^{3d} , at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C₁₋₄ alkyl-phenyl, and C(=O)R^{3c};

 R^{3e} , at each occurrence, is selected from H, SO_2NHR^3 , $SO_2NR^3R^3$, $C(O)R^3$, $C(O)NHR^3$, $C(O)OR^{3f}$, $S(O)R^{3f}$, $S(O)_2R^{3f}$, C_{1-6} alkyl substituted with 0-2 R^{1a} , C_{2-6} alkenyl substituted with 0-2 R^{1a} , C_{2-6} alkynyl substituted with 0-2 R^{1a} , C_{0-4} alkyl)-5-10 membered carbocycle substituted with 0-3 R^{1a} , and C_{0-4} alkyl)-5-10 membered heterocycle substituted with 0-3 R^{1a} and consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

 R^{3f} , at each occurrence, is selected from: C_{1-6} alkyl substituted with 0-2 R^{1a} , C_{2-6} alkenyl substituted with 0-2 R^{1a} , C_{2-6} alkynyl substituted with 0-2 R^{1a} , $(C_{0-4}$ alkyl)-5-10 membered carbocycle substituted with 0-3 R^{1a} , and $(C_{0-4}$ alkyl)-5-10 membered heterocycle substituted with 0-3 R^{1a} and consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

R⁴, at each occurrence, is selected from H, =O, (CR³R^{3a})_rOR², F, Cl, Br, I, C₁₋₄ alkyl, (CR³R^{3a})_rCN, (CR³R^{3a})_rNO₂, (CR³R^{3a})_rNR²R^{2a}, (CR³R^{3a})_rC(O)R^{2e}, (CR³R^{3a})_rNR²C(O)R^{2e}, (CR³R^{3a})_rNR²C(O)NR²R^{2a}, (CR³R^{3a})_rNR²C(O)NR²R^{2a}, (CR³R^{3a})_rC(=NS(O)₂R⁵)NR²R^{2a}, (CR³R^{3a})_rNHC(=NR²)NR²R^{2a}, (CR³R^{3a})_rC(O)NHC(=NR²)NR²R^{2a}, (CR³R^{3a})_rNHC(=NR²)NR²R^{2a}, (CR³R^{3a})_rNR²SO₂NR²R^{2a}, (CR³R^{3a})_rNR²SO₂NR²R^{2a}, (CR³R^{3a})_rNR²SO₂C₁₋₄ alkyl, (CR³R^{3a})_rNR²SO₂R⁵, (CR³R^{3a})_rS(O)_pR^{5a}, (CR³R^{3a})_r(CF₂)_rCF₃, NHCH₂R^{1b}, OCH₂R^{1b}, SCH₂R^{1b}, NH(CH₂)₂(CH₂)_tR^{1b}, O(CH₂)₂(CH₂)_tR^{1b}, S(CH₂)₂(CH₂)_tR^{1b}, (CR³R^{3a})_r-5-6 membered carbocycle substituted with 0-1 R⁵, and a (CR³R^{3a})_r-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_B and substituted with 0-1 R⁵;

 R^{4a} , at each occurrence, is selected from H, $(CR^3R^{3a})_rOR^2$, $(CR^3R^{3a})_rF$, $(CR^3R^{3a})_rBr$, $(CR^3R^{3a})_rCl$, C_{1-4} alkyl, $(CR^3R^{3a})_rCN$, $(CR^3R^{3a})_rNO_2$, $(CR^3R^{3a})_rNR^2R^{2a}$, $(CR^3R^{3a})_rC(O)R^{2c}$, $(CR^3R^{3a})_rNR^2C(O)R^{2b}$, $(CR^3R^{3a})_rC(O)NR^2R^{2a}$, $(CR^3R^{3a})_rN=CHOR^3$, $(CR^3R^{3a})_rC(O)NH(CH_2)_2NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2C(O)NR^2R^{2a}$, $(CR^3R^{3a})_rC(=NR^2)NR^2R^{2a}$, $(CR^3R^{3a})_rNHC(=NR^2)NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2SO_2NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2SO_2NR^2R^{2a}$, $(CR^3R^{3a})_rNR^2SO_2-C_{1-4}$ alkyl, $(CR^3R^{3a})_rC(O)NHSO_2-C_{1-4}$ alkyl, $(CR^3R^{3a})NR^2SO_2R^5$, $(CR^3R^{3a})_rS(O)_pR^{5a}$, $(CR^3R^{3a})_r(CF_2)_rCF_3$, $(CR^3R^{3a})_r-5-6$ membered carbocycle substituted with 0-1 R^5 , and a $(CR^3R^{3a})_r-5-6$ membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R^5 ;

 $R^{4b}, \text{ at each occurrence, is selected from } H, =O, (CH_2)_rOR^3, (CH_2)_rF, (CH_2)_rCl, \\ (CH_2)_rBr, (CH_2)_rI, C_{1-4} \text{ alkyl, } (CH_2)_rCN, (CH_2)_rNO_2, (CH_2)_rNR^3R^{3a}, (CH_2)_rC(O)R^3, \\ (CH_2)_rC(O)OR^{3c}, (CH_2)_rNR^3C(O)R^{3a}, (CH_2)_r-C(O)NR^3R^{3a}, (CH_2)_rNR^3C(O)NR^3R^{3a}, \\ (CH_2)_r-C(=NR^3)NR^3R^{3a}, (CH_2)_rNR^3C(=NR^3)NR^3R^{3a}, (CH_2)_rSO_2NR^3R^{3a}, \\ (CH_2)_rNR^3SO_2NR^3R^{3a}, (CH_2)_rNR^3SO_2-C_{1-4} \text{ alkyl, } (CH_2)_rNR^3SO_2CF_3, (CH_2)_rNR^3SO_2-Phenyl, \\ (CH_2)_rS(O)_pCF_3, (CH_2)_rS(O)_p-C_{1-4} \text{ alkyl, } (CH_2)_rS(O)_p-Phenyl, \\ (CH_2)_r(CF_2)_rCF_3; \\ (CH_2)_r(CF_2)_rCF_3; \\ (CH_2)_rCF_3; \\ (CH$

 R^5 , at each occurrence, is selected from H, C_{1-6} alkyl, =O, $(CH_2)_rOR^3$, F, Cl, Br, I, -CN, NO₂, $(CH_2)_rNR^3R^{3a}$, $(CH_2)_rC(O)R^3$, $(CH_2)_rC(O)OR^{3c}$, $NR^3C(O)R^{3a}$, $C(O)NR^3R^{3a}$, $NR^3C(O)NR^3R^{3a}$, $CH(=NOR^{3d})$, $C(=NR^3)NR^3R^{3a}$, $NR^3C(=NR^3)NR^3R^{3a}$, $SO_2NR^3R^{3a}$, S

 R^{5a} , at each occurrence, is selected from C_{1-6} alkyl, $(CH_2)_rOR^3$, $(CH_2)_rNR^3R^{3a}$, $(CH_2)_rC(O)R^3$, $(CH_2)_rC(O)OR^{3c}$, $(CH_2)_rNR^3C(O)R^{3a}$, $(CH_2)_rC(O)NR^3R^{3a}$, $(CF_2)_rCF_3$, phenyl substituted with 0-2 R^6 , naphthyl substituted with 0-2 R^6 , and benzyl substituted with 0-2 R^6 , provided that R^{5a} does not form a S-N or $S(O)_p$ -C(O) bond;

 R^6 , at each occurrence, is selected from H, OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, -CN, NO₂, $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^{2b}$, $NR^2C(O)R^{2b}$, $NR^2C(O)NR^2R^{2a}$, $C(=NH)NH_2$, NHC(=NH)NH₂, SO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, and NR²SO₂C₁₋₄ alkyl;

 $R^{7}, at \ each \ occurrence, is \ selected \ from \ H, OH, C_{1-6} \ alkyl, C_{1-6} \ alkyl-C(O) \ , and \ phenyl-C_{1-4} \ alkyl-C(O) \ ;$

 R^8 , at each occurrence, is selected from H, C_{1-6} alkyl, and $(CH_2)_n$ -phenyl; alternatively, NR^7R^8 forms a 5-10 membered heterocyclic ring consisting of carbon atoms and 0-2 additional heteroatoms selected from the group consisting of N, O, and $S(O)_n$;

R⁹, at each occurrence, is selected from H, C_{1.6} alkyl, and (CH₂)_n-phenyl; n, at each occurrence, is selected from 0, 1, 2, and 3; p, at each occurrence, is selected from 0, 1, and 2; and, r, at each occurrence, is selected from 0, 1, 2, 3, 4, 5, and 6; and t, at each occurrence, is selected from 1, 2, 3, 4, 5, and 6; and t, at each occurrence, is selected from 0, 1, 2, and 3.

2. (Currently Amended) A compound according to Claim 1, wherein the compound is of Formula II:

#

or a stereoisomer or pharmaceutically acceptable salt thereof, wherein;

ring M, including P_1 , P_2 , M_1 , and M_2 , is a 5, 6, or 7 membered carbocycle or a 5, 6, or 7 membered heterocycle, consisting of: carbon atoms and 1-3 heteroatoms selected from O, $S(O)_0$, N, and NZ^2 ;

ring M is substituted with 0-2 R^{1a} and 0-2 carbonyl groups, and there are 0-3 ring double bonds:

ring P, including P_1 , P_2 , and P_3 , is a 5 or 6 membered aromatic or dihydroaromatic heterocycle, consisting of: carbon atoms and 1-3 heteroatoms selected from O, $S(O)_D$, and N;

ring P is substituted with 0-2 R^{1a}; one of P₄ and M₄ is -Z-A-B and the other -G₁-G;

G is a group of formula Ha or Hb:

ring D, including the two atoms of Ring E to which it is attached, is a 5-6 membered ring consisting of: carbon atoms and 0-2 heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

ring D is substituted with 0-2 R and there are 0-3 ring double bonds;

E is selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, and pyridazinyl, and is substituted with 1-3 R;

alternatively, ring D is absent, and ring E is selected from phenyl, pyridyl, pyrimidyl, and thienyl, and ring E is substituted with 1-3 R;

alternatively, ring D is absent, ring E is selected from phenyl, pyridyl, and thienyl, and ring E is substituted with 1 R and substituted with a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, wherein the 5-6 membered heterocycle is substituted with 0-2 carbonyl and 1-2 R and there are 0-3 ring double bonds;

R is selected from H, C₁₋₄-alkyl, F, Cl, OH, OCH₃, OCH₂CH₃, and OCH(CH₃)₂,-CN, C(=NH)NH₂, C(=NH)NHOH, C(=NH)NHOCH₃, NH₂, NH(C₁₋₃-alkyl), N(C₁₋₃

alkyl)₂, CH₂NH₂, CH₂NH(C₁₋₃ alkyl), CH₂N(C₁₋₃ alkyl)₂, (CR⁸R⁹)_tNR⁷R⁸, CH₂C(O)NR⁷R⁸, S(O)_nNR⁷R⁸, CH₂S(O)_nNR⁷R⁸, SO₂R³, and OCF₃;

alternatively, when 2 R groups are attached to adjacent atoms, they combine to form methylenedioxy or ethylenedioxy;

A is selected from: C_{5-10} carbocycle substituted with 0-2 R⁴, and 5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_{D}$ and substituted with 0-2 R⁴;

$$Q^1$$
 Q^2 Q^2 Q^3 Q^4 Q^2 Q^3 Q^4

B is selected from and B₂; provided that Z and B are attached to different atoms on A and that the R^{4a} shown is other than OH;

 Q^1 and Q^2 are each N;

alternatively, one of Q^1 and Q^2 is CR^3 and R^{4a} is NR^2R^{2a} or $NR^{3a}B_1$, provided that when one of Q^1 and Q^2 is CR^3 , then this R^3 group optionally forms a ring with the R^2 group of R^{4a} , this ring is a 5-6 membered ring consisting of, in addition to the C-C-N shown, carbon atoms and from 0-1 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-1 R^5 ;

ring Q is a 5-6 membered ring consisting of, in addition to the Q^1 - CR^{4a} = Q^2 group shown, carbon atoms and 0-2 heteroatoms selected from N, O, and $S(O)_p$, and the ring is substituted with an additional 0-2 R^{4a} ;

 B_1 is selected from SO_2R^{3b} , $C(O)R^{3b}$, $SO_2NR^3R^{3b}$, $C(O)NR^3R^{3b}$, OR^2 , and -CN; B_2 is NR^2R^{2d} or $CR^3R^2R^{2d}$;

alternatively, $CR^3R^2R^{2d}$ forms a 5-6 membered ring consisting of: carbon atoms and 0-2 heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} ;

alternatively, NR^2R^{2d} forms a 5–6 membered ring consisting of: carbon atoms and 0–2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0–2 R^{4b} ;

alternatively, when B_2 is NR^2R^{2d} , B_1 and R^{2d} combine to form a 5-6 membered ring consisting of: carbon atoms and 0-2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} and the R^2 group of NR^2R^{2d} , in addition to the groups recited below, is selected from SO_2R^{3b} and $C(O)R^{3b}$;

Z is selected from a bond, CH₂, CH₂CH₂, CH₂O, OCH₂, C(O), NH, CH₂NH, NHCH₂, CH₂C(O), C(O)CH₂, C(O)NH, NHC(O), NHC(O)CH₂C(O)NH, S(O)₂, CH₂S(O)₂, S(O)₂(CH₂), SO₂NH, and NHSO₂, wherein the right side of Z is attached to A, provided that Z does not form a N-S, NCH₂N, NCH₂O, or NCH₂S bond with either group to which it is attached;

 Z^2 is selected from H, C_{1-4} alkyl, phenyl, benzyl, $C(O)R^{3b}$, $S(O)R^{3f}$, and $S(O)_2R^{3f}$;

 R^{1a} , at each occurrence, is selected from H, -(CH₂)_r-R^{1b}, -(CH(CH₃))_r-R^{1b}, -(C(CH₃)₂)_r-R^{1b}, -O-(CR³R^{3a})_r-R^{1b}, -NR²-(CR³R^{3a})_r-R^{1b}, and -S-(CR³R^{3a})_r-R^{1b}, provided that R^{1a} forms other than an N-halo, N-S, O-O, or N-CN bond;

alternatively, when two R^{1a} groups are attached to adjacent atoms, together with the atoms to which they are attached they form a 5-7 membered ring consisting of: carbon atoms and 0-2 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, this ring being substituted with 0-2 R^{4b} and 0-3 ring double bonds;

R^{1b} is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, F, Cl, Br, I, -CN, -CHO, CF₃, OR², NR²R^{2a}, C(O)R^{2b}, CO₂R^{2b}, OC(O)R², CO₂R^{2a}, S(O)_pR^{2b}, NR²(CH₂)_rOR², NR²C(O)R^{2b}, NR²C(O)NHR², NR²C(O)₂R^{2a}, OC(O)NR²R^{2a}, C(O)NR²(CH₂)_rOR², SO₂NR²R^{2a}, NR²SO₂R², C₅₋₆ carbocycle substituted with 0-2 R^{4b}, and 5-6 membered heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-2 R^{4b}, provided that R^{1b} forms other than an O-O, N-halo, N-S, or N-CN bond;

R², at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, C₅₋₆ carbocycle substituted with 0-2 R^{4b}, a -CH₂-C₅₋₆ carbocyclic group substituted with 0-2 R^{4b}, and 5-6

membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-2 R^{4b} ;

R^{2a}, at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, benzyl substituted with 0-2 R^{4b}, C₅₋₆ carbocycle substituted with 0-2 R^{4b}, and 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

alternatively, NR^2R^{2a} forms a 5 or 6 membered saturated, partially saturated, or unsaturated ring substituted with 0-2 R^{4b} and consisting of: carbon atoms, the nitrogen atom to which R^2 and R^{2a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₃CH₃, CH₂CH₃CH₃, C(CH₃)₃, benzyl substituted with 0-2 R^{4b}, C₅₋₆ carbocycle substituted with 0-2 R^{4b}, and 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

 R^{2c} , at each occurrence, is selected from CF₃, OH, C₁₋₄ alkoxy, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₃CH₃, CH₂CH₃CH₃, C(CH₃)₃, benzyl substituted with 0-2 R^{4b}, C₅₋₆ carbocycle substituted with 0-2 R^{4b}, and 5-6 membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

R^{2d}, at each occurrence, is selected from H, CF₃, C₁₋₄ alkoxy, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₃, CH₂CH₃,

R³, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, and phenyl;

R^{3a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, and phenyl;

alternatively, NR³R^{3a} forms a 5 or 6 membered saturated, partially unsaturated, or unsaturated ring consisting of: carbon atoms and the nitrogen atom to which R³ and R^{3a} are attached;

 R^{3b} , at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, -(C₀₋₁ alkyl)-5-6 membered carbocycle substituted with 0-1 R^{1a} , and -(C₀₋₁ alkyl)-5-6 membered heterocycle substituted with 0-1 R^{1a} and consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p;

R^{3c}, at each occurrence, is selected from CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl, and phenyl;

R^{3d}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂-phenyl, CH₂CH₂-phenyl, and C(=O)R^{3c};

 R^4 , at each occurrence, is selected from H, =O, OR^2 , CH_2OR^2 , $(CH_2)_2OR^2$, F, CI, Br, I, C_{1-4} alkyl, -CN, NO_2 , NR^2R^{2a} , $CH_2NR^2R^{2a}$, $(CH_2)_2NR^2R^{2a}$, $C(O)R^{2e}$, $NR^2C(O)R^{2b}$, $C(O)NR^2R^{2a}$, $SO_2NR^2R^{2a}$, $S(O)_pR^{5a}$, CF_3 , CF_2CF_3 , 5-6 membered carbocycle substituted with 0-1 R^5 , and a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-1 R^5 ;

R^{4a}, at each occurrence, is selected from H, CH₂OR², OR², C₁₋₄ alkyl, -CN, CH₂CN, NO₂, CH₂NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2c}, CH₂C(O)R^{2c}, NR²C(O)R^{2b}, (CH₂)_rC(O)NR²R^{2a}, NR²C(O)NR²R^{2a}, (CH₂)_rSO₂NR²R^{2a}, NR²SO₂NR²R^{2a}, NR²SO₂R⁵, (CH₂)_rS(O)_pR^{5a}, CH₂CF₃, CF₃, 5-6 membered carbocycle substituted with 0-1 R⁵, CH₂-5-6 membered carbocycle substituted with 0-1 R⁵, a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵, and a CH₂-5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R⁵;

 $R^{4b}, \text{ at each occurrence, is selected from } H, =O, OR^3, CH_2OR^3, F, Cl, CH_3,\\ CH_2CH_3, CH_2CH_2CH_3, CH(CH_3)_2, CH_2CH_2CH_2CH_3, CH_2CH(CH_3)_2, CH(CH_3)CH_2CH_3,\\ C(CH_3)_3, -CN, NO_2, NR^3R^{3a}, CH_2NR^3R^{3a}, C(O)R^3, CH_2C(O)R^3, C(O)OR^{3c},\\ CH_2C(O)OR^{3c}, NR^3C(O)R^{3a}, CH_2NR^3C(O)R^{3a}, C(O)NR^3R^{3a}, CH_2C(O)NR^3R^{3a},\\ NR^3C(O)NR^3R^{3a}, CH_2NR^3C(O)NR^3R^{3a}, C(=NR^3)NR^3R^{3a}, CH_2C(=NR^3)NR^3R^{3a},\\ NR^3C(=NR^3)NR^3R^{3a}, CH_2NR^3C(=NR^3)NR^3R^{3a}, SO_2NR^3R^{3a}, CH_2SO_2NR^3R^{3a},\\ NR^3SO_2NR^3R^{3a}, CH_2NR^3SO_2NR^3R^{3a}, NR^3SO_2-C_{1-4} \text{ alkyl}, CH_2NR^3SO_2-C_{1-4} \text{ alkyl},\\ NR^3SO_2CF_3, CH_2NR^3SO_2CF_3, NR^3SO_2-phenyl, CH_2NR^3SO_2-phenyl, S(O)_pCF_3,\\ CH_2S(O)_pCF_3, S(O)_p-C_{1-4} \text{ alkyl}, CH_2S(O)_p-C_{1-4} \text{ alkyl}, S(O)_p-phenyl, CH_2S(O)_p-phenyl,\\ CF_3, \text{ and } CH_2CF_3;\\ \end{aligned}$

 R^5 , at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂, CH(CH₃)CH₂CH₃, C(CH₃)₃, OR³, CH₂OR³, F, Cl, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, CH₂C(O)R³, C(O)OR^{3c}, CH₂C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, NR³C(O)NR³R^{3a}, CH(=NOR^{3d}), C(=NR³)NR³R^{3a}, NR³SO₂NR³R^{3a}, NR³SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂CF₃, NR³SO₂-phenyl, S(O)_pCF₃, S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, CF₃, phenyl substituted with 0-2 R⁶, naphthyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶; and

 $R^{6}, \text{ at each occurrence, is selected from H, OH, OR}^{2}, F, Cl, CH_{3}, CH_{2}CH_{3}, \\ CH_{2}CH_{2}CH_{3}, CH(CH_{3})_{2}, CH_{2}CH_{2}CH_{2}CH_{3}, CH_{2}CH(CH_{3})_{2}, CH(CH_{3})CH_{2}CH_{3}, C(CH_{3})_{3}, \\ CN, NO_{2}, NR^{2}R^{2a}, CH_{2}NR^{2}R^{2a}, C(O)R^{2b}, CH_{2}C(O)R^{2b}, NR^{2}C(O)R^{2b}, NR^{2}C(O)NR^{2}R^{2a}, \\ C(=NH)NH_{2}, NHC(=NH)NH_{2}, SO_{2}NR^{2}R^{2a}, NR^{2}SO_{2}NR^{2}R^{2a}, \text{ and } NR^{2}SO_{2}C_{1-4} \text{ alkyl}.$

3. (Currently Amended) A compound according to Claim 2, wherein wherein: ring M is substituted with 0-2 R^{1a} and is selected from the group:

ring P, including P₁, P₂, P₃, and P₄ is selected from group:

one of P4 and M4 is -Z A-B and the other -G1-G;

G is selected from the group: phenyl, 4-ethyl-phenyl,

2,5-bis aminomethyl-phenyl, 2-amido-4-methoxy-phenyl, 2-amido-5-chloro-phenyl,

2-amido-phenyl, 2-aminomethyl-3-fluoro-phenyl, 2-aminomethyl-3-methoxy-phenyl,

2-aminomethyl-4-fluoro-phenyl, 2-aminomethyl-4-methoxy-phenyl,

2-aminomethyl-5-fluoro-phenyl 2-aminomethyl-5-methoxy-phenyl,

2-aminomethyl-6-fluoro-phenyl, 2-aminomethyl-phenyl, 2-amino-pyrid-4-yl, 2-aminosulfonyl-4-methoxy-phenyl, 2-aminosulfonyl-phenyl, 2-hydroxy-4-methoxy-phenyl, 2-methylsulfonyl-phenyl, 3-(N,N-dimethylamino) 4 chloro-phenyl, 3 (N,N-dimethylamino) phenyl, 3-(N-hvdroxy-amidino)-phenyl, 3-(N-methoxy-amidino)-phenyl, 3-(N-methylamino)-4-chloro-phenyl, 3-(N-methylamino)-phenyl, 3-amidino-phenyl, 3-amido-6-hydroxy-phenyl, 3-amido-phenyl, 3-amino-4-chloro-phenyl, 3-aminomethyl-phenyl, 3-amino-phenyl, 3-chloro-4-fluoro-phenyl, 3-chloro-phenyl, 3-hydroxy-4-methoxy-phenyl, 4-(N,N-dimethylamino) 5-chloro thien-2-yl, 4-(N-methylamino)-5-chloro-thien-2-yl, 4-amino-5-chloro-thien-2-yl, 4-amino-pyrid-2-yl, 4-chloro-3-fluoro-phenyl, 4-chloro-phenyl, 4-chloro-pyrid-2-yl, 4-methoxy-2-methylsulfonyl-phenyl, 4-methoxy-phenyl, 2-methoxy-pyridyl-5-yl, 5 (N,N-dimethylamino) 4-chloro-thien-2-yl, 5-(N-methylamino) 4-chloro-thien-2-yl, 5-amino-4-chloro-thien-2-vl, 5-chloro-2-aminosulfonyl-phenyl, 5-chloro-2-methylsulfonyl-phenyl, 5-chloro-pyrid-2-yl, 5-chloro-thien-2-yl, 6-amino-5-chloro-pyrid-2-yl, 6-amino-pyrid-2-yl,

 $G_1 \text{ is absent or is selected from } (CR^3R^{3a})_{1-3}, CR^3 = CR^3;$ $(CR^3R^{3a})_{u}C(\Theta)(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{u}\Theta(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{u}NR^{3b}(CR^3R^{3a})_{w_{7}}$ $(CR^3R^{3a})_{u}C(\Theta)NR^{3b}(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{u}NR^{3b}C(\Theta)(CR^3R^{3a})_{w_{7}}$ $(CR^3R^{3a})_{u}NR^{3b}C(\Theta)(CR^3R^{3a})_{u}C(\Theta)NR^{3b}(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{u}S(CR^3R^{3a})_{w_{7}}$ $(CR^3R^{3a})_{u}S(\Theta)(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{u}S(\Theta)_{2}(CR^3R^{3a})_{w_{7}}$ $(CR^3R^{3a})_{u}S(\Theta)NR^{3b}(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{u}NR^{3b}S(\Theta)_{2}(CR^3R^{3a})_{w_{7}}$ and $(CR^3R^{3a})_{u}S(\Theta)_{2}NR^{3b}(CR^3R^{3a})_{w_{7}}(CR^3R^{3a})_{w_{7}}$ wherein u+w or u+u+w total 0, 1, or 2, wherein the right side of G_1 is attached to G_2 provided that G_1 does not form a N-S, NCH₂N, NCH₂O, or NCH₂S bond with either group to which it is attached;

A is selected from one of the following carbocyclic and heterocyclic groups which are substituted with 0-2 R⁴; cyclohexyl, phenyl, piperidinyl, piperazinyl, pyridyl, pyrimidyl, furanyl, morpholinyl, thienyl, pyrrolyl, pyrrolidinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, benzofuranyl, benzothiofuranyl, indolinyl, indolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzisothiazolyl, and isoindazolyl;

B is selected from
$$Q$$
 and Q ; provided that Z and B are

attached to different atoms on A and that the R^{4a} shown is other than OH;

ring Q is a 5-6 membered ring consisting of, in addition to the N-CR^{4a}=N group shown, carbon atoms and 0-2 heteroatoms selected from N, O, and $S(O)_p$, and the ring is substituted with an additional 0-2 R^{4a};

B₁ is selected from SO₂R^{3b} and OR²;
B₂ is NR²R^{2d};

alternatively, NR^2R^{2d} forms a 5-6 membered ring consisting of: carbon atoms and 0-2 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} ;

alternatively, B_1 and R^{2d} combine to form a 5-6 membered ring consisting of: earbon atoms and 0-1 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} and the R^2 group of NR^2R^{2d} , in addition to the groups recited below, can be SO_2R^{3b} ;

R^{1a} is selected from H, R^{1b}, CH(CH₃)R^{1b}, C(CH₃)₂R^{1b}, CH₂R^{1b}, and CH₂CH₂R^{1b}, provided that R^{1a} forms other than an N-halo, N-S, or N-CN bond;

alternatively, when two R^{1a} groups are attached to adjacent atoms, together with the atoms to which they are attached they form a 5-6 membered ring consisting of: earbon atoms and 0-2 heteroatoms selected from the group consisting of N, O, and $S(O)_{a}$, this ring being substituted with 0-2 R^{4b} and 0-3 ring double bonds;

R^{1b} is selected from H, CH₃, CH₂CH₃, F, Cl, Br, -CN, -CHO, CF₃, OR², NR²R^{2a}, C(O)R^{2b}, CO₂R^{2b}, OC(O)R², CO₂R^{2a}, S(O)_pR^{2b}, NR²(CH₂)_rOR², NR²C(O)R^{2b}, C(O)NR²R^{2a}, SO₂NR²R^{2a}, NR²SO₂R², phenyl substituted with 0-2 R^{4b}, and 5-6 membered aromatic heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-2 R^{4b}, provided that R^{1b} forms other than an O-O, N-halo, N-S, or N-CN bond;

R², at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, phenyl substituted with 0-2 R^{4b}, a benzyl substituted with 0-2 R^{4b}, and a 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_D and substituted with 0-2 R^{4b};

R^{2a}, at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl substituted with 0-2 R^{4b}, phenyl substituted with 0-2 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_D and substituted with 0-2 R^{4b};

alternatively, NR^2R^{2a} forms a 5 or 6 membered saturated, partially saturated, or unsaturated ring substituted with 0-2 R^{4b} and consisting of: carbon atoms, the nitrogen atom to which R^2 and R^{2a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

R^{2b}, at each occurrence, is selected from CF₃, C₁₋₄ alkoxy, CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₃, CH(CH₃)₂, benzyl substituted with 0-2 R^{4b}, phenyl substituted with 0-2 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{4b};

R^{2c}, at each occurrence, is selected from CF₃, OH, OCH₃, OCH₂CH₃,
OCH₂CH₂CH₃, OCH(CH₃)₂, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl substituted
with 0-2 R^{4b}, phenyl substituted with 0-2 R^{4b}, and 5-6 membered aromatic heterocycle
containing from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and
substituted with 0-2 R^{4b};

R^{3b}, at each occurrence, is selected from H, CF₃, CH₃, CH₂CH₃, CH₂CH₃, and CH(CH₃)₂;

R⁴, at each occurrence, is selected from H, CH₂OR², (CH₂)₂OR², OR², F, Cl, Br, I, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₃)₂, CH(CH₃)₂, CH(CH₃)₂, CH₂CH₂CH₃, C(CH₃)₃, CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, (CH₂)₂NR²R^{2a}, CH₂NR²R^{2a}, CH₃, and CF₂CF₃;

 R^{4a} , at each occurrence, is selected from H, OR^2 , CH_2OR^2 , CH_3 , CH_2CH_3 , CH_2CH_3 , $CH_2CH_2CH_3$, $CH_2CH_2CH_3$, $CH_2CH_2CH_3$, CH_2CH_3 , CH_3 , CH

 $R^{4b}, \text{ at each occurrence, is selected from } H, =O, OR^3, CH_2OR^3, F, Cl, CH_3, \\ CH_2CH_3, CH_2CH_2CH_3, CH(CH_3)_2, -CN, NO_2, NR^3R^{3a}, CH_2NR^3R^{3a}, C(O)R^3, \\ CH_2C(O)R^3, C(O)OR^{3c}, CH_2C(O)OR^{3c}, NR^3C(O)R^{3a}, CH_2NR^3C(O)R^{3a}, C(O)NR^3R^{3a}, \\ CH_2C(O)NR^3R^{3a}, SO_2NR^3R^{3a}, CH_2SO_2NR^3R^{3a}, NR^3SO_2-C_{1-4} \text{ alkyl, } CH_2NR^3SO_2-C_{1-4} \text{ alkyl, } NR^3SO_2-\text{phenyl, } CH_2NR^3SO_2-\text{phenyl, } S(O)_pCF_3, CH_2S(O)_pCF_3, S(O)_p-C_{1-4} \text{ alkyl, } CH_2S(O)_p-C_{1-4} \text{ alkyl, } S(O)_p-\text{phenyl, } CH_2S(O)_p-\text{phenyl, } CH_2S(O)_$

R⁵, at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, OR³, CH₂OR³, F, Cl, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, CH₂C(O)R³, C(O)OR^{3c}, CH₂C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, SO₂NR³R^{3a}, CF₃, phenyl substituted with 0-2 R⁶, naphthyl substituted with 0-2 R⁶, and benzyl substituted with 0-2 R⁶; and

 R^6 , at each occurrence, is selected from H, OH, OR², F, Cl, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b}, CH₂C(O)R^{2b}, NR²C(O)R^{2b}, SO₂NR²R^{2a}, and NR²SO₂C₁₋₄ alkyl.

4. (Currently Amended) A compound according to Claim 3, wherein: ring M is substituted with 0-2 R¹ⁿ and is selected from the group:

ring P, including P₁, P₂, P₃, and P₄ is selected from group:

one of P4 and M4 is -A B and the other -G;

G is selected from the group: 2-amido-4-methoxy-phenyl, 2-amido-phenyl,

- 2-aminomethyl-3-fluoro-phenyl, 2-aminomethyl-4-fluoro-phenyl,
- 2-aminomethyl-4-methoxy-phenyl, 2-aminomethyl-5-fluoro-phenyl,
- 2-aminomethyl-5-methoxy-phenyl, 2-aminomethyl-6-fluoro-phenyl,
- 2-aminomethyl-phenyl, 2-amino-pyrid-4-yl, 2-aminosulfonyl-4-methoxy-phenyl,
- 2-aminosulfonyl-phenyl, 2-methylsulfonyl-phenyl,
- 3-(N,N-dimethylamino) 4-chloro-phenyl, 3-(N,N-dimethylamino)-phenyl,

3-(N-methylamino) 4-chloro-phenyl, 3-(N-methylamino) phenyl, 3-amido-phenyl, 3-amino-4-chloro-phenyl, 3-aminomethyl-phenyl, 3-amino-phenyl, 3-chloro-phenyl, 4-(N,N-dimethylamino) 5-chloro-thien-2-yl, 4-(N-methylamino) 5-chloro-thien-2-yl, 4-amino-5-chloro-thien-2-yl, 4-chloro-phenyl, 4-methoxy-2-methylsulfonyl-phenyl, 4-methoxy-phenyl, 5-(N,N-dimethylamino) 4-chloro-thien-2-yl, 5-(N-methylamino) 4-chloro-thien-2-yl, 5-amino-4-chloro-thien-2-yl, 5-chloro-pyrid-2-yl, 5-chloro-thien-2-yl, 6-amino-5-chloro-pyrid-2-yl, 3-midino-phenyl,

G₁ is absent or is selected from CH₂, CH₂CH₂, CH₂O, OCH₂, NH, CH₂NH, NHCH₂, CH₂C(O), C(O)CH₂, C(O)NH, NHC(O), CH₂S(O)₂, S(O)₂(CH₂), SO₂NH, and NHSO₂, wherein the right side of G₁ is attached to G, provided that G₁ does not form a N-S, NCH₂N, NCH₂O, or NCH₂S bond with either group to which it is attached;

A is selected from cyclohexyl, phenyl, pyridyl, and pyrimidyl, and is substituted with 0-2 R⁴;

$$\mathbb{R}^{4a}$$

B is selected from and B₂; provided that Z and B are attached to different atoms on A and that the R^{4a} shown is other than OH;

ring Q is a 5-6 membered ring consisting of, in addition to the N-CR^{4a}=N group shown, carbon atoms and 0-1 heteroatoms selected from N, O, and $S(O)_p$, and the ring is substituted with an additional 0-2 R^{4a};

 B_1 is selected from SO_2R^{3b} and OR^2 ;

B₂ is NR²R^{2d};

alternatively, NR^2R^{2d} forms a 5–6 membered ring consisting of: carbon atoms and 0–1 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0–1 R^{4b} :

alternatively, B_1 and R^{2d} combine to form a 5 membered ring consisting of: carbon atoms and 0-1 additional heteroatoms selected from N, O, and $S(O)_p$, and this ring is substituted with 0-2 R^{4b} and the R^2 group of NR^2R^{2d} , in addition to the groups recited below, can be SO_2R^{3b} ;

R^{1a}, at each occurrence, is selected from H, R^{1b}, CH(CH₃)R^{1b}, C(CH₃)₂R^{1b}, and CH₂R^{1b}, provided that R^{1a} forms other than an N-halo, N-S, or N-CN bond;

 R^{1b} is selected from CH_3 , CH_2CH_3 , F, Cl, Br, -CN, CF_3 , OR^2 , NR^2R^{2a} , $C(O)R^{2b}$, CO_2R^{2b} , CO_2R^{2a} , $S(O)_pR^{2b}$, $C(O)NR^2R^{2a}$, $SO_2NR^2R^{2a}$, $SO_2NR^2R^{2a}$, SO_2R^2 , and 5-6 membered aromatic heterocycle consisting of carbon atoms and from 1-4 heteroatoms selected from the

group consisting of N, O, and S(O)_p, and substituted with 0-2 R^{4b}, provided that R^{1b} forms other than an O-O, N-halo, N-S, or N-CN bond;

R², at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, phenyl substituted with 0-1 R^{4b}, benzyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R^{4b};

R^{2a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl substituted with 0-1 R^{4b}, phenyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_D and substituted with 0-1 R^{4b};

alternatively, NR^2R^{2a} forms a 5 or 6 membered saturated, partially saturated, or unsaturated ring substituted with 0-1 R^{4b} and consisting of: carbon atoms, the nitrogen atom to which R^2 and R^{2a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

R^{2b}, at each occurrence, is selected from OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH(CH₃)₂, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl substituted with 0-1 R^{4b}, phenyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R^{4b};

R^{2c}, at each occurrence, is selected from OH, OCH₃, OCH₂CH₃, OCH₂CH₂CH₃, OCH(CH₃)₂, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, benzyl substituted with 0-1 R^{4b}, phenyl substituted with 0-1 R^{4b}, and 5-6 membered aromatic heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R^{4b};

R^{2d}, at each occurrence, is selected from H, CH₃, CH₂CH₃, OCH₃, and benzyl; R^{3b}, at each occurrence, is selected from H and CH₃;

R⁴, at each occurrence, is selected from OH, OR², CH₂OR², (CH₂)₂OR², F, Br,
Cl, I, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, CH₂CH₂CH₂CH₃, CH₂CH(CH₃)₂,
CH(CH₃)CH₂CH₄, C(CH₃)₃, NR²R^{2a}, CH₂NR²R^{2a}, (CH₂)₂NR²R^{2a}, CF₃, and CF₂CF₃;

R^{4a}, at each occurrence, is selected from H, OR², CH₂OR², CH₃, CH₂CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂CH₂CH₂CH₃, CH₂CH₂CH₃, CH₂CH₃, CH₂CH₃

 R^{4b} , at each occurrence, is selected from H, =O, OR³, CH₂OR³, F, Cl, CH₃, CH₂CH₃, CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, SO₂NR³R^{3a}, NR³SO₂-C₁₋₄ alkyl, NR³SO₂-phenyl, S(O)_p-C₁₋₄ alkyl, S(O)_p-phenyl, and CF₃;

 R^5 , at each occurrence, is selected from H, =O, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, OR³, NR³R^{3a}, C(O)R³, NR³C(O)R^{3a}, C(O)NR³R^{3a}, SO₂NR³R^{3a}, and phenyl substituted with 0-2 R⁶; and,

 R^6 , at each occurrence, is selected from H, OH, OR², F, Cl, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, -CN, NO₂, NR²R^{2a}, CH₂NR²R^{2a}, C(O)R^{2b}, CH₂C(O)R^{2b}, NR²C(O)R^{2b}, and SO₂NR²R^{2a}.

5. (Currently Amended) A compound according to Claim 4, wherein: ring M is substituted with 0-1 R¹ⁿ and is selected from the group:

ring P, including P₁, P₂, P₃, and P₄ is selected from group:

one of P4 and M4 is -A-B and the other -G;

G is selected from: 2-amido-4-methoxy-phenyl, 2-amido-phenyl,

- 2-aminomethyl-3-fluoro-phenyl, 2-aminomethyl-4-fluoro-phenyl,
- 2-aminomethyl-5-fluoro-phenyl, 2-aminomethyl-6-fluoro-phenyl,
- 2-aminomethyl-phenyl, 2-amino-pyrid-4-yl, 2-aminosulfonyl-4-methoxy-phenyl,
- 2-aminosulfonyl-phenyl, 3-amido-phenyl, 3-amino-4-chloro-phenyl,
- 3-aminomethyl-phenyl, 3-chloro-phenyl, 4-chloro-phenyl, 4-methoxy-phenyl,
- 5-chloro-pyrid-2-yl, 5-chloro-thien-2-yl, 6-amino-5-chloro-pyrid-2-yl,
- 6-amino-pyrid-2-yl, 3-midino-phenyl,

A is selected from the group: cyclohexyl, piperidinyl, phenyl, 2-pyridyl, 3-pyridyl, 2-pyrimidyl, 2-Cl-phenyl, 3-Cl-phenyl, 2-F-phenyl, 3-F-phenyl, 2-methylphenyl, 2-aminophenyl, and 2-methoxyphenyl;

B, provided that Z and B are attached to different atoms on A and that the R^{4a} shown

alternatively, NR²R^{2d} combine to form a ring selected from morpholine, piperazine, piperidine, and pyrrolidine;

R^{1a}, at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH₂F, CH₂Cl, Br, CH₂Br, -CN, CH₂CN, CF₃, CH₂CF₃, OCH₃, CH₂OH, C(CH₃)₂OH, CH₂OCH₃, NH₂, CH₂NH₂, NHCH₃, CH₂NHCH₃, N(CH₃)₂, CH₂N(CH₃)₂, CO₂H, COCH₃, CO₂CH₃, CH₂CO₂CH₃, SCH₃, CH₂SCH₃, S(O)CH₃, CH₂S(O)CH₃, S(O)₂CH₃, CH₂S(O)₂CH₃, C(O)NH₂, CH₂C(O)NH₂, SO₂NH₂, CH₂SO₂NH₂, NHSO₂CH₃, CH₂NHSO₂CH₃, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridin-2-yl-N-oxide, pyridin-3-yl-N-oxide, pyridin-4-yl-N-oxide, imidazol-1-yl, CH₂-imidazol-1-yl, 4-methyl-oxazol-2-yl, 4-N,N-dimethylaminomethyl-oxazol-2-yl, 1,2,3,4-tetrazol-1-yl, 1,2,3,4-tetrazol-5-yl, CH₂-1,2,3,4-tetrazol-1-yl, and CH₂-1,2,3,4-tetrazol-5-yl, provided that R^{1a} forms other than an N-halo, N-S, or N-CN bond;

R², at each occurrence, is selected from H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, phenyl substituted with 0-1 R^{4b}, benzyl substituted with 0-1 R^{4b}, and 5 membered aromatic heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-1 R^{4b};

R^{2a}, at each occurrence, is selected from H, CH₃, and CH₂CH₃;

alternatively, NR^2R^{2a} forms a 5 or 6 membered saturated, partially saturated, or unsaturated ring substituted with 0-1 R^{4b} and consisting of: carbon atoms, the nitrogen atom to which R^2 and R^{2a} are attached, and 0-1 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$;

R^{2b}, at each occurrence, is selected from OCH₃, OCH₂CH₃, CH₃, and CH₂CH₃; R^{2c}, at each occurrence, is selected from OH, OCH₃, OCH₂CH₃, CH₃, and CH₂CH₃; R^{2d}, at each occurrence, is selected from H, CH₂, CH₂CH₂, and OCH₂;

R^{4a}, at each occurrence, is selected from H, OCH₃, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, NR²R^{2a}, NR²C(O)R^{2b}, NR²SO₂R⁵, phenyl, 2-oxo-pyrrolidinyl, and 2-oxo-piperidinyl;

R^{4b}, at each occurrence, is selected from H, =O, OR³, CH₂OR³, F, Cl, CH₃, CH₂CH₃, NR³R^{3a}, CH₂NR³R^{3a}, C(O)R³, C(O)OR^{3c}, NR³C(O)R^{3a}, C(O)NR³R^{3a}, SO₂NR³R^{3a}, NR³SO₂-phenyl, S(O)₂CH₃, S(O)₂-phenyl, and CF₃; and R⁵, at each occurrence, is selected from CH₃ and CH₂CH₃.

6. (Currently Amended) A compound according to Claim 5, wherein the compound is selected from:

P4 is -G;

M_4 -is-A-B;

G is selected from:

A is selected from:

$$B$$
 B B B B B B B

B is selected from:

7. (Currently Amended) A compound according to Claim 6, wherein the compound is selected from:

A-B is selected from:

8. (Currently Amended) A compound according to Claim 1, wherein the compound is selected from the group:

6-[4-(5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1-(4-methoxy-phenyl)-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

1-(4-methoxy-phenyl)-6-[4-(2-methyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

6-[4-(2-ethyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1-(4-methoxy-phenyl)-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

6-[4-(2-isopropyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1-(4-methoxy-phenyl)-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

1-(4-methoxy-phenyl)-6-[4-(2-phenyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

6-[4-(2-amino-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1-(4-methoxy-phenyl)-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

N-({4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-methylamino-methylene)-methanesulfonamide;

N-(amino-{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl}-methylene)-methanesulfonamide;

N-(dimethylamino-{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-methylene)-methanesulfonamide;

 $\frac{N \ ((ethyl-methyl-amino) - \{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl\}-methylene)-}{methanesulfonamide;}$

 $\frac{N-(\{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl\}-piperidin-1-yl-methylene)-methanesulfonamide;}{}$

N ({4 [1 (4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl}-morpholin-4-yl-methylene)-methanesulfonamide;

N ((benzyl-methyl-amino) {4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-methylene)-methanesulfonamide;

6-[4-(dimethylamino-methanesulfonylimino-methyl)-phenyl]-1-(4-methoxy-phenyl)-7-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxylic acid amide;

6-[4 (methanesulfonylimino-pyrrolidin-1-yl-methyl)-phenyl]-1-(4-methoxy-phenyl)-7-oxo-4,5,6,7 tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxylic acid amide;

N ({4 [3 cyano-1 (4 methoxy phenyl) 7 oxo-1,4,5,7 tetrahydro-pyrazolo[3,4-c|pyridin-6 yl] phenyl}-dimethylamino-methylene) methanesulfonamide;

N-(dimethylamino-{4-[1-(4-methoxy-phenyl)-3-methyl-7-oxo-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-methylene)-methanesulfonamide;

N-({4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl}-pyrrolidin-1-yl-methylene)-methanesulfonamide;
N-({4-[3-isopropenyl-1-(4-methoxy-phenyl)-7-oxo-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl}-pyrrolidin-1-yl-methylene)-methanesulfonamide;

N-(1-{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-1,4,5,6-tetrahydro-pyrimidin-2-yl)-methanesulfonamide;

(1-{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-1,4,5,6-tetrahydro-pyrimidin-2-yl)-carbamic acid methyl ester;

N-(1-{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-1,4,5,6-tetrahydro-pyrimidin-2-yl)-acetamide;

1-(4-methoxy-phenyl)-6-{4-[2-(2-oxo-piperidin-1-yl)-5,6-dihydro-4H-pyrimidin-1-yl]-phenyl}-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

1-(4-methoxy-phenyl)-6-{4-[2-(2-oxo-pyrrolidin-1-yl)-5,6-dihydro-4H-pyrimidin-1-yl]-phenyl}-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

1-(4-methoxy-phenyl)-6-[4-(2-methyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-cyano-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;

6-[4-(2-amino-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1-(4-methoxy-phenyl)-7-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carbonitrile;

N-(1-{4-[3-cyano-1-(4-methoxy-phenyl)-7-oxo-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-1,4,5,6-tetrahydro-pyrimidin-2-yl)-methanesulfonamide;

N-(1-{4-[3-cyano-1-(4-methoxy-phenyl)-7-oxo-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-1,4,5,6-tetrahydro-pyrimidin-2-yl)-N-methyl-methanesulfonamide;

N-(1-{4-[3-cyano-1-(4-methoxy-phenyl)-7-oxo-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-1,4,5,6-tetrahydro-pyrimidin-2-yl)-acetamide;

6-[4-(2-methoxy-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1-(4-methoxy-phenyl)-7-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carbonitrile;

- 6-[4-(5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-methanesulfonyl-1-(4-methoxy-phenyl)-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 3-methanesulfonyl-1-(4-methoxy-phenyl)-6-[4-(2-methyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 6-[4-(2-isopropyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-methanesulfonyl-1-(4-methoxy-phenyl)-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 3-methanesulfonyl-1-(4-methoxy-phenyl)-6-[4-(2-phenyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 6-[4-(2-amino-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-methanesulfonyl-1-(4-methoxy-phenyl)-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 3-methanesulfonyl-1-(4-methoxy-phenyl)-6-{4-[2-(2-oxo-piperidin-1-yl)-5,6-dihydro-4H-pyrimidin-1-yl]-phenyl}-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 6-[4-(5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-isopropoxy-1-(4-methoxy-phenyl)-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 3-{6-[4-(2-amino-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-methanesulfonyl-7-oxo-4,5,6,7-tetrahydro-pyrazolo[3,4-c]pyridin-1-yl}-benzamide;
- 3-{3-methanesulfonyl-6-[4-(2-methyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-7-oxo-4,5,6,7-tetrahydro-pyrazolo[3,4-c]pyridin-1-yl}-benzamide;
- 1-(3-chloro-phenyl)-6-[4-(2-methyl-5,6-dihydro-4H-pyrimidin-1-yl)-phenyl]-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- N-(diethylamino-{4-[1-(4-methoxy-phenyl) 7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-e]pyridin-6-yl]-phenyl}-methylene)-methanesulfonamide;
- 1-(4-methoxy-phenyl)-6-[4-(1-methyl-4,5-dihydro-1H-imidazol-2-yl)-phenyl]-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-e]pyridin-7-one;
- 6-[4-(4,5-dihydro-1H-imidazol-2-yl)-phenyl]-1-(4-methoxy-phenyl)-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one;
- 6-[4-(1-methanesulfonyl-4,5-dihydro-1H-imidazol-2-yl)-phenyl]-1-(4-methoxy-phenyl)-3-trifluoromethyl-1,4,5,6-tetrahydro-pyrazolo[3,4-c]pyridin-7-one; and
- 2-{4-[1-(4-methoxy-phenyl)-7-oxo-3-trifluoromethyl-1,4,5,7-tetrahydro-pyrazolo[3,4-c]pyridin-6-yl]-phenyl}-4,5-dihydro-imidazole-1-carboxylic acid ethyl ester; or a pharmaceutically acceptable salt form thereof.

9-16. (Canceled)

17. (Original) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt form thereof.

- 18. (Withdrawn) A method for treating a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt form thereof.
- 19. (Withdrawn) A method according to Claim 18, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 20. (Withdrawn) A method according to Claim 18, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.

21. (Canceled)

22. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 2 or a pharmaceutically acceptable salt form thereof.

- 23. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 3 or a pharmaceutically acceptable salt form thereof.
- 24. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 4 or a pharmaceutically acceptable salt form thereof.
- 25. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 5 or a pharmaceutically acceptable salt form thereof.
- 26. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 6 or a pharmaceutically acceptable salt form thereof.
- 27. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 7 or a pharmaceutically acceptable salt form thereof.
- 28. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 8 or a pharmaceutically acceptable salt form thereof.