Première partie

Équations diophantiennes du 1^{er} degré $a \cdot x + b \cdot y = c$. Autres exemples d'équations diophantiennes.

Déf 1 On appelle équation diophantienne à n inconnues, une équation du type $P(Y_1,...,Y_n)=0$ avec

 $P \in \mathbb{Z}[X_1...X_n]$. On cherche les solutions dans

Équations diophantiennes linéaires

$$\{a = 2c = 3d = 5$$

Équations diophantiennes du 1^{er} degré à 2 inconnues $a \cdot x + b \cdot y = c$ (*1).

fgfgfggf

Prop 1 On appelle équation diophantienne à n inconnues, une équation du type $P(Y_1,...,Y_n) = 0$ Une condition nécessaire et suffisanted'existence d'au moins 1 solution de (*1) est pgcd(a,b) divise c.

Théorème de Bezout a,b sont 2 entiers. a et b sont premiers entre eux ssi il existe $(u,v) \in \mathbb{Z}$

Prop 2

Méthodes de résolution

Systèmes d'équations diophantiennes linéaires

Soit $(m,n) \in \mathbb{Z}$

- 1. Résoudre le système (S) : $\begin{cases} 7x 6y = 12 \\ 5x + 3y = 11 \end{cases}$ 2. Résoudre le système (S) : $\begin{cases} 7x 6y = 12 \\ 5x + 3y = 11 \end{cases}$

- II Équations diophantiennes et décomposition en facteurs premiers
- III Équations diophantiennes et corps de nombres quadratiques

Équation de Fermat pour n=3

IV Équations diophantiennes et fractions continues

https://linuxconfig.org

^{1.} Written by Peter MOUEZA