

Schicker Zaun

Jeder weiss, dass Balázs den schicksten Zaun in der ganzen Stadt hat. Er besteht aus N schicken rechteckigen Latten, die eng beisammen auf dem Boden stehen. Die i-te Latte hat eine ganzzahlige Höhe h_i und eine ganzzahlige Breite w_i .

Wir suchen nach schicken Rechtecken auf diesem schicken Zaun.

Ein Rechteck ist schick, wenn

- seine Seiten entweder horizontal oder vertikal sind und ganzzahlige Längen haben,
- sein Abstand zum Boden ganzzahlig ist,
- sein Abstand zur linken Seite der ersten Latte ganzzahlig ist und
- es komplett auf den Zaunlatten liegt.

Wie viele schicke Rechtecke gibt es?

Da diese Zahl sehr gross werden kann, sind wir an ihr nur modulo $10^9 + 7$ interessiert.

Eingabe

Die erste Zeile enthält N, die Anzahl Latten.

Die zweite Zeile enthält N Ganzzahlen, die i-te Zahl ist h_i .

Die dritte Zeile enthält N Ganzzahlen, die i-te Zahl ist w_i .

Ausgabe

Gib eine einzige Ganzzahl aus, die Anzahl schicker Rechtecke modulo $10^9 + 7$.

Beispiele

Eingabe	Ausgabe
2	12
1 2	
1 2	

1

v2

Erklärung

Es gibt 5 schicke Rechtecke der Form:	
Es gibt 3 schicke Rechtecke der Form:	
Es gibt 1 schickes Rechteck der Form:	
Es gibt 2 schicke Rechtecke der Form:	
Es gibt 1 schickes Rechteck der Form:	

Limits

 $1 \le N \le 10^5$ $1 \le h_i, w_i \le 10^9$

Zeitlimit: 0.1 s

Speicherlimit: 32 MiB

${\bf Bewertung}$

Teilaufgabe	Punkte	Limits
1	0	Beispieltestfall.
2	12	$N \leq 50$ und $h_i \leq 50$ und $w_i = 1$ für alle i .
3	13	$h_i = 1$ oder $h_i = 2$ für alle i .
4	15	Alle h_i sind gleich.
5	15	$h_i \le h_{i+1}$ für alle $i \le N-1$.
6	18	$N \le 1000.$
7	27	Keine weiteren Beschränkungen.

2

v2