

Model Improvements

Practical Machine Learning (with R)

UC Berkeley Spring 2016

Topics

- Administrativa
 - Role Call
 - Assignments due to github
- Review/Expectations
 - Readings
 - Previous Lecture
- New Topics

REVIEW AND EXPECTATIONS

RESAMPLING METHODS

Get more accurate estimation of a statistic/value by resampling methods

→ Improves function estimate

Model Performance Evaluation

- Understand model performance metrics
- How they are calculated ...

Classification

- Metrics: Accuracy, Kappa
- Graphical
 - caret::
 confusionMatrix
 - pROC::ROC

Regression

- RMSE, MAE, etc.
- Graphical
 - Histogram of errors
 - $y vs \hat{y}$ scatterplot

Decision Trees

- All about splitting
 - Different variants
 have different rules
 for evaluating the
 splits
- Tree = Ruleset = Partition of Space
 - Node = Rule = "box" (contiguous region of space)

TREE VARIANTS

There are many tree variants

- Tweaks
 - change how splits are determined
 - when to stop growing the tree
 - how the node value is determined

RULES

 As derived from trees often have repeated conditions

```
NumCarbon > 3.777 &
SurfaceAreal > 0.978 &
SurfaceAreal > 8.404 &
FP009 <= 0.5 &
FP075 <= 0.5 &
NumRotBonds > 1.498 &
NumRotBonds > 1.701
```

M5rules, C4.5Rules

Rules and their conditions live on their own, conditions can be adjusted to help bias-variance trade-off

MISSING DATA

- Missing values in predictors are common
- A split determines which observations go to the LHS and RHS. How to Handle Nas?

- ⇒ NA_Categorical
 - Treat as separate category

- NA (in general)
 - Use Surrogate Splits

SURROGATE SPLITS

- Tree is built ignoring missing data
 - Any record with incomplete data (response or predictor) is rejected -or-
 - Missing data is not used for split-point determinations
- Variables are often collinear → splits are similar and send variables down the same path.
 - Choose a surrogate (variable) split that best approximates the chosen split (accuracy)
 - Very often this is also a good split

REVIEW AND EXPECTATION

Understand Recursive Partitioning:

- intrinsically how recursive partitioning models work; how splits are determined; what splitting accomplishes
- how model tuning parameters control for bias variance trade-offs
- what Cp is and how to use it to prune trees to the proper size

Tree Method Advantages

⇒ List em

REVIEW AND EXPECTATION

Use rpart and/or ctree

 Build Recursive Partitioning Models using rpart

- Prune trees to statistically relevant size
- Plot rpart trees using
 - party::as.party
 - map.tree::drawtree

UNDERSTAND CARET

- Use the caret package and the train function to build models
- Understand the difference between using caret and building models manually. What caret provides.
- Control how models are built using the train & trainControl functions
- How to extract the final model
- How to plot the tuning parameters, performance curves

QUESTIONS

IMPROVING MODELS

TREE DISADVANTAGES

• List em

Tree Disadvantages

- Model instability (sensitive to data)
 - Derives from each subsequent split is dependent on prior splits
- Less than optimal predictive performance
 - Rectangular regions
- Limited number of outcome values <= number of terminal nodes
- Intra-node high and low values not fit well

- Selection bias toward predictors with higher number of distinct values
- Tuning parameter, C_p
- Splits of correlated variables ambiguous
- Treatment of missing values

TWO BIG IDEAS

- Wisdom of the crowds
 It is better to make estimates from multiple models (ensembles) than individual models
 - Better predictions
 - Lower variance for the same model
- It is better to slowly approach your solution than arrive at an answer directly.
 - More accurate solutions

Tree Enhancement: M5

- Wisdom of the Crowd!
- Having one value represent the entirety of the node leaves information in the node.
- Function in the node is a simple average
- Use something better
 - M5 put linear models in nodes of trees

M5 Tree Enhancement (cont.)

Greed is bad

 linear models are built on the residuals of the tree model.

Models are recursive

BAGGING MODELS

• Brieman:

"Bagging is a general approach that uses bootstrapping in conjunction with any regression (or classification) model to construct an ensemble."

- 1 for i = 1 to m do
- 2 Generate a bootstrap sample of the original data
- 3 Train an unpruned tree model on this sample
- 4 end

$$\hat{y} = \frac{\sum_{i} \hat{y}_{i}}{m}$$

BAGGING NOTES

- Lowers variance
 - Increases stability
 - Has less effect on lower variance models (e.g. linear models)
 - More effect on weak learners

- Disadvantages
 - Computational cost → but parallelizable
 - Reduces Interpretability

RANDOM FOREST

- Wisdom of the Crowds: Bagging
- Greed is bad: consider subset of predictors at each split

```
Select the number of models to build, m
for i = 1 to m do
Generate a bootstrap sample of the original data
Train a tree model on this sample
for each split do
Randomly select k (< P) of the original predictors</li>
Select the best predictor among the k predictors and partition the data
end
Use typical tree model stopping criteria to determine when a tree is complete (but do not prune)
end
```

TUNING PARAMETER

m_{try}: number of predictors to use at each split

- regression 1/3rd of number predictors
- classification sqrt(number of predictors)

Skuhn: "Starting with five values of k that are somewhat evenly spaced across the range from 2 to P".

ADVANTAGES

- No overfitting
- More trees better (limited by computation time/power only)
- In caret, parameters are considered independently
- Because each learner is selected independently of all previous learners, Random Forests is robust to a noisy response
- Computationally efficient -- each tree built on subset of predictors at each split.
- Use any tree variants as "base learner": CART, ctree, etc

BOOSTING

- Single models work;
 - Multiple models work better
- Idea is simple:
 - Fit first model:

$$\hat{y}_1 \sim f_1(x)$$

• Fit errors/residuals: $\hat{y}_2 = f_2(y - \hat{y}_1)$

$$\hat{y}_2 = f_2(y - \hat{y}_1)$$

$$= f_2(y - f_1(x))$$

$$= f_2(x)$$

Iterate:

$$\hat{y}_i = (y - \hat{y}_{i-1}) \sim f_i(x)$$

• Predict:

$$\hat{y} \sim \sum_{i} f_i(x)$$

BOOSTING NOTES

- Additive models
- Works best with "weak learners"
 - i.e. ungreedy, low bias, low variance
 - Any Most models with a tuning parameter can be a weak learner
 - Trees are excellent weak learners
 - Weak → "restricted depth"
- Residuals or errors define a gradient
- Interpreted as forward step-wise regression with exponential loss

SIMPLE GRADIENT BOOSTING

- 1 Select tree depth, D, and number of iterations, K
- 2 Compute the average response, \overline{y} , and use this as the initial predicted value for each sample
- 3 for k = 1 to K do
- 4 Compute the residual, the difference between the observed value and the *current* predicted value, for each sample
- 5 Fit a regression tree of depth, D, using the residuals as the response
- 6 Predict each sample using the regression tree fit in the previous step
- Update the predicted value of each sample by adding the previous iteration's predicted value to the predicted value generated in the previous step
- 8 end

Simple Gradient Boosting – Comparison To Random Forest

Similarities

Differences

STOCHASTIC GRADIENT BOOSTING

- Gradient Boosting Susceptible to Overfitting
 - Apply "regularization/shrinkage"
 - Use λ ("Learning Rate")
 Rather than add the entirety of the residuals, add a fraction of the residuals at each iteration.

$$\hat{y} \sim \lambda \sum_{i} f_{i}(x)$$
 $0 < \lambda \le 1$

- Small values for λ (~0.01) work best
- $\lambda \sim 1$ /computational time ~ 1 /storage time
- Use bagging, as well
 - Bagging Fraction: a sample of data in each loop iteration

APPENDIX

