

Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference

Maxime Vandegar, Michael Kagan, Antoine Wehenkel, Gilles Louppe {maxime.vandegar, makagan}@slac.stanford.edu, {antoine.wehenkel, g.louppe}@uliege.be

arXiv:2011.05836

MOTIVATION

Aim to learn the *source distribution* $p(\mathbf{x})$ that has generated observations $\{\mathbf{y}_i\}_{i=1}^N$.

Applications: Ground Truth

NEURAL EMPIRICAL BAYES (NEB)

• Goal: build a model $q_{\theta}(\mathbf{x})$ of the source distribution, trained by maximizing the total logmarginal likelihood:

$$\log q_{\theta}(\mathbf{y}_i) = \log \int p(\mathbf{y}_i | \mathbf{x}) q_{\theta}(\mathbf{x}) d\mathbf{x}$$
$$= \log \mathbb{E}_{q_{\theta}} [p(\mathbf{y}_i | \mathbf{x})].$$

- Ill-posed inverse problem: relevant inductive bias can be embedded in the structure of $q_{\theta}(\mathbf{x})$.
- Likelihood-free inference: p(y|x) not known in closed-form, a surrogate model can be built with a density estimator (e.g. Normalizing Flow).

MONTE CARLO ESTIMATORS

Biased estimator

$$\mathcal{L}_K(\theta) = \log \frac{1}{K} \sum_{k=1}^K p(\mathbf{y}|\mathbf{x}_k), \ \mathbf{x}_k = \mathbf{G}_{\theta}(\boldsymbol{\epsilon}_k)$$
$$\boldsymbol{\epsilon}_k \sim p(\boldsymbol{\epsilon}).$$

- $\mathbb{E}\left[\mathcal{L}_{K+1}(\theta)\right] \geq \mathbb{E}\left[\mathcal{L}_{K}(\theta)\right]$.
- $\lim_{K\to\infty} \mathcal{L}_K(\theta) = \log p(\mathbf{y}).$

Unbiased estimator

$$\hat{\mathcal{L}}_K(\theta) = \mathcal{L}_K(\theta) + \eta(\theta),$$

where $\eta(\theta)$ is a random variable defined as

$$\eta(\theta) = \sum_{j=0}^{J} \frac{\mathcal{L}_{K+j+1}(\theta) - \mathcal{L}_{K+j}(\theta)}{P(\mathcal{J} \ge j)},$$

with $J \sim P(J)$ such that $P(\mathcal{J} \geq j) > 0, \forall j > 0$.

VARIATIONAL ESTIMATORS

ELBO estimator

If the source distribution model $G_{\theta}(\cdot)$ allows explicit evaluation of $q_{\theta}(\mathbf{x})$, variational estimators can be used.

$$\mathcal{L}^{\text{ELBO}}(\theta, \psi) = \log p(\mathbf{y}|\mathbf{x}) - q_{\psi}(\mathbf{x}|\mathbf{y}) + q_{\theta}(\mathbf{x}),$$
$$\mathbf{x} \sim q_{\psi}(\mathbf{x}|\mathbf{y}).$$

• $\mathbb{E}\left[\mathcal{L}^{\text{ELBO}}(\theta, \psi)\right] \leq \log p(\mathbf{y}).$

IWAEs estimator

$$\mathcal{L}_K^{\text{IW}}(\theta, \psi) = \log \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{y}|\mathbf{x}_k) q_{\theta}(\mathbf{x}_k)}{q_{\psi}(\mathbf{x}_k|\mathbf{y})}, \ \mathbf{x}_k \sim q_{\psi}(\mathbf{x}|\mathbf{y}).$$

- $\mathbb{E}\left[\mathcal{L}_{K+1}^{\mathrm{IW}}(\theta,\psi)\right] \geq \mathbb{E}\left[\mathcal{L}_{K}^{\mathrm{IW}}(\theta,\psi)\right].$
- $\lim_{K\to\infty} \mathcal{L}_K^{\mathrm{IW}}(\theta, \psi) = \log p(\mathbf{y}).$

SOURCE ESTIMATION

Figure 1: Source distributions $p(\mathbf{x})$ in blue against the estimated source distributions $q_{\theta}(\mathbf{x})$ in black.

- **De-biasing** can give substantial improvements when the number of Monte Carlo samples *K* is small. Little impact when *K* is large.
- Source distribution $q_{\theta}(\mathbf{x})$ learned with NEB can approximate $p(\mathbf{x})$ well in toy and collider physics experiments.

Regenerated distributions in y-space are indistinguishable from the observed distributions.

• Inductive bias in the density estimator, e.g. introducing symmetries / bounds / smoothness, leads to considerable improvements.

y-space	K	\mathcal{L}_K	$\hat{\mathcal{L}}_K$
SLCP	10	$0.82_{\pm 0.01}$	$0.65_{\pm 0.04}$
	1024	$0.53_{\pm 0.01}$	$0.52_{\pm 0.01}$
Two-moons	10	$0.69_{\pm 0.02}$	$0.56_{\pm 0.02}$
	1024	$0.52_{\pm 0.01}$	$0.53_{\pm 0.01}$
Inverse kinematics	10	$0.80_{\pm 0.13}$	$0.67_{\pm 0.08}$
	1024	$0.66_{\pm 0.03}$	$0.62_{\pm 0.03}$

	$\mathcal{L}^{ ext{ELBO}}$	$\mathcal{L}_{128}^{ ext{IW}}$	\mathcal{L}_{1024}
x -space	$0.99_{\pm 0.02}$	$0.63_{\pm 0.06}$	$0.57_{\pm 0.05}$
y -space	$0.87_{\pm 0.08}$	$0.51_{\pm 0.01}$	$0.50_{\pm 0.01}$

x -space	$\mathcal{L}^{ ext{ELBO}}$	$\mathcal{L}_{128}^{ ext{IW}}$	\mathcal{L}_{1024}
Unconstrained	$0.75_{\pm 0.00}$	$0.75_{\pm 0.00}$	$0.55_{\pm 0.02}$
Constrained	$0.51_{\pm 0.01}$	$0.50_{\pm 0.01}$	$0.51_{\pm 0.02}$

Metric: the ROC AUC of a classifier trained to discriminate between $p(\mathbf{x})$ and $q_{\theta}(\mathbf{x})$ (**x**-space) as well as between $p(\mathbf{y})$ and $\int p(\mathbf{y}|\mathbf{x})q_{\theta}(\mathbf{x})d\mathbf{x}$ (**y**-space). The closer to 0.5, the better.

POSTERIOR INFERENCE

Once learned, $q_{\theta}(\mathbf{x})$ enables posterior inference with $p(\mathbf{y}|\mathbf{x})$. Using rejection sampling is efficient as $\mathbf{G}_{\theta}(\cdot)$ allows efficient parallel sampling.

Figure 2: The exact posterior distribution in blue against its approximation in black obtained with $q_{\theta}(\mathbf{x})$ and a surrogate of $p(\mathbf{y}|\mathbf{x})$ using rejection sampling. The generating source data \mathbf{x}^* are shown in red.

TAKE HOME MESSAGES

Neural Empirical Bayes learns data-informed priors / source distributions that successfully recover ground truths in a variety of experiments. NEB further enables posterior inference.

Source estimation and posterior inference can be performed efficiently without running a simulator at inference time.

The biased Monte Carlo estimator performs well while being computationally efficient.

Inductive bias helps mitigate the ill-posed nature of problems, and is easily introduced in the models.

REFERENCES

- [1] Thomas Mc Cauley. Display of a event observed in the CMS detector in which a Higgs boson decays to bottom quarks. CMS Collection., Oct 2018.
- [2] Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. International Conference on Learning Representations, 2014.
- [3] Yuri Burda, Roger B. Grosse, and Ruslan Salakhut- dinov. Importance weighted autoencoders. CoRR, abs/1509.00519, 2016.
- [4] Yixin Wang, Andrew C. Miller, and David M. Blei. Comment: Variational autoencoders as empirical bayes. Statist. Sci., 34(2):229–233, 05 2019.