RETAIL SALES ANALYSIS USING SQL

INTRODUCTION

Project Overview

This project demonstrates SQL techniques used by data analysts to explore, clean, and analyze retail sales data. The goal is to set up a retail sales database and extract meaningful business insights from the data.

PROBLEM STATEMENT

☐ Understanding Retail Sales Performance

Retail businesses generate large volumes of transactional data, which, when analyzed, can reveal valuable insights into customer behavior, sales trends, and product performance.

☐ Challenges:

- Identifying missing data and cleaning the dataset
- Understanding customer demographics and sales trends
- Extracting insights to optimize business decisions

BUSINESS REQUIREMENTS:

Write a SQL query to retrieve all columns for sales made on '2022-11-05
 Write a SQL query to retrieve all transactions where the category is 'Clothing' and the quantity sold is more than 10 in the month of Nov-2022
 Write a SQL query to calculate the total sales (total_sale) for each category.
 Write a SQL query to find the average age of customers who purchased items from the 'Beauty' category.
 Write a SQL query to find all transactions where the total_sale is greater than 1000.
 Write a SQL query to find the total number of transactions (transaction_id) made by each gender in each category.
 Write a SQL query to calculate the average sale for each month. Find out best selling month in each year
 Write a SQL query to find the top 5 customers based on the highest total sales
 Write a SQL query to find the number of unique customers who purchased items from each category.
 Write a SQL query to create each shift and number of orders (Example Morning <=12, Afternoon Between 12 & 17, Evening >17)

CREATING DATABASE

1 • CREATE DATABASE retail_sales_analysis

2

```
3 □ ○ CREATE TABLE retail_sales(
         transaction_id INT PRIMARY KEY,
 4
         sale_date DATE,
 5
         sale_time TIME,
 6
         customer_id INT,
         gender VARCHAR(10),
 8
 9
         age INT,
         category VARCHAR(50),
10
         quantity INT,
11
         price per unit DECIMAL(10,2),
12
         cogs DECIMAL(10,2),
13
         total sale DECIMAL(10,2)
14
15
```

CREATING TABLE

DATA EXPLORATION

```
3 -- 1. Total Sales
4 · SELECT
      COUNT(*)
  FROM
      retail_sales
  Result Grid
      COUNT(*)
     1987
```

DATA EXPLORATION

```
9 -- 2. Total Unique Customers

10 SELECT

11 COUNT(DISTINCT customer_id) AS Total_Unique_Cust

12 FROM

13 retail_sales
```


DATA EXPLORATION

```
-- 3. Total Distinct Categories

SELECT

DISTINCT category AS Total_Unique_Cust

FROM

retail_sales
```


BUSINESS REQUIREMENTS

Q.I Write a SQL query to retrieve all columns for sales made on '2022-II-05

```
6 SELECT
7 *
8 FROM
9 retail_sales
10 WHERE
11 sale_date = '2022-11-05'
```


Q.2 Write a SQL query to retrieve all transactions where the category is 'clothing' and the quantity sold is more than 10 in the month of nov-2022

Q.3 Write a SQL query to calculate the total sales (total_sale) for each category.

SELECT

category,
SUM(total_sale) AS net_sales,
COUNT(*) AS total_order

FROM

retail_sales

GROUP BY 1

Q.4 Write a SQL query to find the average age of customers who purchased items from the 'beauty' category.

SELECT

ROUND(AVG(age), 2) AS avg_age

FROM

retail_sales

WHERE

category = 'Beauty'

Q.5 Write a SQL query to find all transactions where the total_sale is greater than 1000.

SELECT

*

FROM

WHERE

total_sale > 1000

transaction_id	sale_date	sale_time	customer_id	gender	age	category	quantity	price_per_unit	cogs	total_sale
13	2023-02-08	17:43:00	106	Male	22	Electronics	3	500.00	245.00	1500.00
15	2022-07-01	11:50:00	75	Female	42	Electronics	4	500.00	210.00	2000.00
16	2022-06-25	10:33:00	82	Male	19	Clothing	3	500.00	180.00	1500.00
31	2023-12-31	17:47:00	3	Male	44	Electronics	4	300.00	129.00	1200.00
46	2022-11-08	17:50:00	54	Female	20	Electronics	4	300.00	84.00	1200.00
47	2022-10-22	17:22:00	96	Female	40	Beauty	3	500.00	600.00	1500.00
54	2022-10-20	10:17:00	142	Female	38	Electronics	3	500.00	200.00	1500.00
58	2023-09-16	19:18:00	53	Male	18	Clothing	4	300.00	75.00	1200.00
65	2022-12-11	20:03:00	84	Male	51	Electronics	4	500.00	160.00	2000.00
67	2023-08-19	20:19:00	119	Female	48	Beauty	4	300.00	129.00	1200.00
72	2023-12-06	19:19:00	5	Female	20	Electronics	4	500.00	195.00	2000.00
74	2023-10-05	19:50:00	56	Female	18	Beauty	4	500.00	205.00	2000.00
78	2023-02-17	21:08:00	68	Female	47	Clothing	3	500.00	265.00	1500.00
89	2023-12-30	21:15:00	117	Female	55	Electronics	4	500.00	590.00	2000.00
93	2022-01-25	20:52:00	148	Female	35	Beauty	4	500.00	140.00	2000.00
99	2023-11-19	15:12:00	71	Female	50	Electronics	4	300.00	132.00	1200.00
107	2022-10-06	09:18:00	75	Female	21	Clothing	4	300.00	78.00	1200.00
109	2023-09-06	19:57:00	94	Female	34	Electronics	4	500.00	560.00	2000.00

Q.6 Write a SQL query to find the total number of transactions (transaction_id) made by each gender in each category.

SELECT category, gender, COUNT(*) AS total_transactions FROM retail_sales GROUP BY 1 , 2

ORDER BY 3

Re	Result Grid				
	category	gender	total_transactions		
)	Beauty	Male	281		
	Beauty	Female	330		
	Electronics	Female	335		
	Electronics	Male	343		
	Clothing	Female	347		
	Clothing	Male	351		

Q.7 Write a SQL query to calculate the average sale for each month. Find out best selling month in each year

```
) WITH ranked_sales AS (
     SELECT
         EXTRACT(YEAR FROM sale_date) AS year,
         EXTRACT(MONTH FROM sale_date) AS month,
         AVG(total_sale) AS avg_sale,
         RANK() OVER (PARTITION BY EXTRACT(YEAR FROM sale_date)
         ORDER BY AVG(total_sale) DESC)
         AS rank_value
     FROM retail_sales
     GROUP BY year, month
 SELECT
     year,
     month,
     avg_sale
 FROM ranked_sales
 WHERE rank_value = 1;
```

Result Grid Filter Rows:					
	year	month	avg_sale		
•	2022	7	541.341463		
	2023	2	535.531915		

Q.8 Write a SQL query to find the top 5 customers based on the highest total sales

```
customer_id, SUM(total_sale) AS net_sales
FROM
    retail_sales
GROUP BY 1
ORDER BY 2 DESC
LIMIT 5
```

Re	sult Grid 📗	Filter Rows:
	customer_id	net_sales
•	3	38440.00
	1	30750.00
	5	30405.00
	2	25295.00
	4	23580.00

Q.9 Write a SQL query to find the number of unique customers who purchased items from each category.

```
SELECT
    category, COUNT(DISTINCT customer_id) AS unique_customers
FROM
    retail_sales
GROUP BY 1
```


Q.10 Write a SQL query to create each shift and number of orders (Example Morning <= 12, Afternoon Between 12 & 17, Evening > 17)

```
WITH hourly_sale

AS

(

SELECT *,

CASE

WHEN EXTRACT(HOUR FROM sale_time) < 12 THEN 'Morning'

WHEN EXTRACT(HOUR FROM sale_time) BETWEEN 12 AND 17 THEN 'Afternoon'

ELSE 'Evening'

END as shift

FROM retail_sales
)

SELECT

shift,

COUNT(*) as total_orders

FROM hourly_sale

GROUP BY shift
```


CONCLUSION

Key Takeaways

- SQL is powerful for retail data analysis
- Data cleaning improves analysis accuracy
- Business insights help optimize sales & customer strategy

Next Steps:

- Automate SQL queries for continuous reporting
- ◆ Build a Power BI/Excel dashboard for better visualization

THANK YOU