Tae Eun Kim Autumn 2020

Below are some practice problems covering eigenvalue and singular value decompositions.

Problem 1.

(Checking Understanding – EVD and SVD)

(True/False) Circle T if the statement is ALWAYS true; circle F otherwise.

- (a) (T/F) Given a square matrix $A \in \mathbb{R}^{n \times n}$, we can always find an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that AV = VD.
- (b) (T / F) If $A \in \mathbb{R}^{5 \times 5}$ has 5 distinct eigenvalues, then A has an EVD.
- (c) (T / F) If $A \in \mathbb{R}^{5 \times 5}$ has 3 distinct eigenvalues, then A does not have an EVD.
- (d) (T / F) A square matrix $A \in \mathbb{R}^{m \times m}$ with $\det(A) = 0$ does not have an SVD.
- (e) (T / F) A rank deficient matrix $A \in \mathbb{R}^{m \times n}$ has an SVD.
- (f) (T/F) Let $A \in \mathbb{R}^{m \times n}$. Then $B = AA^{\mathrm{T}} \in \mathbb{R}^{m \times m}$ is a diagonalizable matrix.

Let $A \in \mathbb{R}^{n \times n}$ has an EVD $A = VDV^{-1}$ and suppose that all its eigenvalues are either positive or negative ones. Show that $A^2 = I$.

Note. To gain a geometric intuition about this problem, think about the eigenvalue decomposition of a Householder reflector $H = I - 2uu^{T}$.

Calculate the singular values of

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ -1 & -1 \end{bmatrix}$$

by solving a 2×2 eigenvalue problem.

Let $A \in \mathbb{R}^{n \times n}$. Show that

- (a) A and A^{T} have the same singular values.
- (b) $||A||_2 = ||A^{\mathsf{T}}||_2$.

Problem 5.

(Rayleigh Quotient)

Let

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 0 \end{bmatrix}.$$

and define a function $R_A: \mathbb{R}^2 \to \mathbb{R}$ by

$$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\mathrm{T}} A \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}.$$

- (a) Write out $R_A(\mathbf{x})$ explicitly as a function of x_1 and x_2 .
- (b) Find $R_A(\mathbf{x})$ for $x_1 = 1, x_2 = 2$.
- (c) Confirm that $\mathbf{x} = (1,2)^{\mathrm{T}}$ is an eigenvector of A, whose corresponding eigenvalue is equal to the value computed in part (b).

Note. The map R_A constructed above is known as the *Rayleigh quotient*. As confirmed in part (c), this map is known to send an eigenvector of A to its associated eigenvalue. Below are some more exercise problems related to this map.

- 1. Find the gradient vector $\nabla R_A(\mathbf{x})$.
- 2. Show that the gradient vector is zero when $x_1 = 1$, $x_2 = 2$.