Algorytmy i struktury danych

Zadanie 6, lista 1

Dawid Żywczak

6 kwietnia 2020

Na wejściu dostajemy ciąg $a_1, a_2, ..., a_n$ taki, że dla każdego i $a_i <= a_{i+1}$. Jedyna operacja jaką możemy na tym ciągu wykonywać, to usuwanie elementów a_i oraz a_j , gdy $2a_i \leq a_j$. Mamy skonstruować algorytm, obliczający ile conajwyżej par możemy usunąć. Problem ten rozwiążemy algorytmem zachłannym.

```
\begin{aligned} i &\leftarrow 1 \\ j &\leftarrow \left\lfloor \frac{n}{2} \right\rfloor + 1 \\ k &= 0 \\ \text{while } j &\leq n \text{ do} \\ \text{if } 2A[i] &\leq A[j] \text{ then} \\ & delete\_pair(a_i, a_j) \\ & k &\leftarrow k + 1 \\ & i &\leftarrow i + 1 \\ & \text{end if} \\ & j &\leftarrow j + 1 \\ \text{end while} \\ & \text{return } k \end{aligned}
```

Co my tak naprawdę robimy? Zachłannie szukamy pary dla elementów prawej części tablicy. Jeżeli się udaje, usuwamy daną parę i zwiększami nasz licznik usuniętych par o 1. Dlaczego to działa?

Załóżmy, że mamy rozwiązanie optymalne, nazwijmy je O, które usuwa k par. Chcę pokazać, że jesteśmy w stanie przekształcić rozwiązanie O na rozwiązanie produkowane przez powyższy algorytm. Jak to zrobić?

Lemat 1. Niech L i R będą zbiorami, takimi że dla dowolnej usuwanej pary (a_i, a_j) , $a_i \in L$, $a_j \in R$, zbiór L posiada k elementów, oraz indeksy elemntów w zbiorze R są $\leq \lfloor \frac{n}{2} \rfloor$. Chcemy też by zbiory L i R spełniały założenia zadania, tzn każdy element zbioru L jest mniejszy od najmniejszego elementu ze zbioru R.

Dowód. Jak to pokazać? Rozważmy przypadki!

1. Weźmy dowolne pary punktów, które możemy usunąć (a_i, a_{i1}) oraz (a_j, a_{j1}) , takie że $a_{i1} \leq a_j$. Wtedy pary (a_i, a_j) oraz (a_{i1}, a_{j1}) również możemy usunąć, a z tego wynika,

że możemy je ułożyć w wyżej opisany sposób.

- 2. Weźmy dowolny punkt a_i o indeksie mniejszym od k. Powinnien należeć do zbioru L, ale załóżmy, że tak nie jest. Weźmy najmniejszy punkt $a_j \in L$ o większym indeksie od i. Wtedy można punkt sparowany z nim sparować z naszym a_i , a punkt a_j sparować z parą kolejnego punktu i postępować w ten sposób tak długo, aż każdy punkt będzie miał pare.
- 3. A co jeśli w zbiorze R znajdują się jakieś elementy o indeksie mniejszym od m? Możemy je zamienić na elementy o większych indeksach $\geq m$ korzystając z własności naszego ciągu oraz faktu, że $k \leq m$.

Teraz wystarczy pokazać, że dla każdego elemntu wyżej zdefiniowanego zbioru L, nasz algorytm znajudje parę.

Dowód. Baza: Element a_1 zostanie sparowany z elementem ze zbioru R o najmniejszym indeksie, zatem znajdzie parę z najmniejszym elementem R. Krok: Weźmy dowolne $i \leq k$ i załóżmy, że znaleźliśmy pary dla wszystkich elemntów $a_1, a_2, ..., a_{i-1}$. Znalezione pary, to kolejne najmniejsze elementy ze zbioru R, zatem w szczególności są one $\geq a_m$. Wtedy punkt a_i znajdzie sobie parę z kojenym najmniejszym punktem, po parze punktu a_i , który spełni wymaganą nierówność. Taki punkt na pewno istnieje, bo możemy brać też elementy ze zbioru R.

Jaką mamy złożoność? Maksymalnie n razy sprawdzimy nasz warunek przechodząc całą tablicę, więc jest to O(n).