Check Answer!

19. For the translational mechanical system of <u>Figure P2.7</u>, find the transfer function, $X_1(s)/F(s)$. [Section: 2.5]

FIGURE P2.7

SS 20. Find the transfer function, $G(s) = X_2(s)/F(s)$, for the translational mechanical network shown in <u>Figure P2.8</u>. [Section: 2.5]

FIGURE P2.8

Check Answer!

21. Find the transfer function, $G(s) = X_2(s)/F(s)$, for the system shown in Figure P2.9 [Section: 2.5]

22. Find the transfer function, $X_3(s)/F(s)$, for each system shown in <u>Figure P2.10</u>. [Section: 2.5]

FIGURE P2.10

23. Write, but do not solve, the equations of motion for the translational mechanical system shown in <u>Figure P2.11</u>. [<u>Section:</u> <u>2.5</u>]

FIGURE P2.11

- **24.** For the unexcited (no external force applied) system of <u>Figure P2.12</u>, do the following:
 - a. Write the differential equation that describes the system.
 - **b.** Assuming initial conditions $x(0) = x_0$ and $\dot{x}(0) = x_1$, write a Laplace transform expression for X(s).
 - **c.** Find x(t) by obtaining the inverse Laplace transform from the result in Part **c**.
 - **d.** What will be the oscillation frequency in Hz for this system?

25. For each of the rotational mechanical systems shown in <u>Figure P2.13</u>, write, but do not solve, the equations of motion. [<u>Section: 2.6</u>]

FIGURE P2.13

26. Calculate the transfer function $G(s) = \theta_2(s)/T(s)$ for the stystem of <u>Figure P2.14</u>. [Section: 2.6]

27. For the rotational mechanical system with gears shown in Figure P2.15, find the transfer function, $G(s) = \theta_3(s)/T(s)$. The gears have inertia and bearing friction as shown. [Section: 2.7]

FIGURE P2.15

28. For the rotational system shown in <u>Figure P2.16</u>, find the transfer function, $G(s) = \theta_2(s)/T(s)$. [Section: 2.7]

Check Answer!

29. Obtain the transfer function, $G(s) = \theta_2(s)/T(s)$, for the system of <u>Figure P2.17</u>. [Section: 2.7]

FIGURE P2.17

30. For the rotational system of <u>Figure P2.18</u>, find the transfer function, $G(s) = \theta_2(s)/T(s)$. [Section: 2.7]

31. For the rotational system shown in <u>Figure P2.19</u>, find the transfer function, $G(s) = \theta_L(s)/T(s)$. [Section: 2.7]

FIGURE P2.19

32. Given the rotational system shown in <u>Figure P2.20</u>, find the transfer function, $G(s) = \theta_6(s)/\theta_1(s)$. [Section: 2.7]

FIGURE P2.20