

Inspiring Excellence

Assignment 04

Name: Mehedi Hasan Rowdro

Student id: 24101226

Section: 03

Course code: CSE320

Course title: Data Communication

Semester: Spring 25

1.1 Period(T): The time a signal takes to complete a full cycle.
Unit: S
Equation: $T = 1 / f$
1.2 Wavelength(λ): The distance a signal travels in one period.
Unit: m
Equation: $\lambda = v / f$
1.3 Frequency(f): The number of full cycles in one second.
Unit: Hz
Equation: $f = 1 / T$
1.4 Amplitude: The intensity of a signal.
Unit: V(for electrical signal)
1.5 Phase: The position or condition of wave particle in a specific time.
Unit: Degree, radian
1.6 Bandwidth(B): The difference between the highest and the lowest frequencies of a
composite signal.
Unit: Hz, bps
Equation: B=f _{max} - f _{min}

1.7 Bit Rate: The number of bits sent per second.

Unit: bps

Equation: R=Number of bits / time

1.8 Bit Length: The distance one bit occupies in transmission medium.

Unit: m

Equation: Length=speed*time

1.9 Attenuation: The loss of energy in overcoming resistance of the medium.

Unit: dB

Equation: $A=10log_2(P_{in}/P_{out})$

1.10 Distortion: The change of shape or form of signal.

1.11 Noise: Mixing of extra signal other than the sender sent.

Unit: dB

1.12 Signal-to-noise ratio (SNR): The ratio of the signal power to the noise power.

Equation: SNR = (average signal power / average noise power)

1.13 Throughput: The actual measurement of how fast we can send data.

Unit: bps

1.14 Latency (Delay): The total time of the data completely reaching the destination.

Unit: S

Equation: Latency = propagation time + transmission time + queuing time + processing delay

1.15 Transmission time: The time between first bit's leaving and last bit's arriving.

Unit: S

Equation: Transmission time = (Message Size / Bandwidth)

1.16 Queueing time: The time needed for each intermediate or end device to hold the message before it can be processed.

Unit: S

1.17 Processing time: The time taken by a system (router, switch, etc.) to process a packet before forwarding it.

Unit: S

1.18 Propagation time: The time required for a bit to travel from the source to destination.

Unit: S

Equation: Propagation Time = (Distance / Propagation Speed)

1.19 Jitter: Different packets of data encountering different delays.

Unit: mS

1.20 Broadband transmission or modulation: Changing the digital signal to an analog signal for transmission.

Periodic vs Non-periodic

Periodic	Non-periodic
1. Follows a pattern within specific amount	1. Doesn't follow any pattern.
of time and complete cycle.	
2. Repeats that cycle in same amount of	2. Doesn't repeat any cycle.
time.	

Analog vs digital signals

Analog signals	digital signals
1. Is continuous.	1. Is discrete.
2. Example: Sounds made by human.	2. Data stored in computer in the form of 0s
	and 1s.

S1 1.	Statements Frequency and period are the inverse of each other.	True/False True
2.	Frequency is the rate of change with respect to wavelength.	False
3.	If a signal does not change at all, its frequency is one.	False
4.	If a signal changes instantaneously, its frequency is infinite.	True
5.	Phase describes the position of the waveform relative to time 0.	True
6.	The wavelength is the distance a simple signal can travel in one period.	True
7.	A complete sine wave in the time domain can be represented by one single spike in the frequency domain.	True
8.	If the composite signal is non-periodic, the decomposition gives a combination of sine waves with discrete frequencies.	False
9.	A composite signal is made of many simple sine waves.	True
10.	A complete sine wave in the time domain can be represented by one single spike in the frequency domain.	True
11.	A sine wave with a phase of 90° starts at time 0 with a peak amplitude. The amplitude is increasing.	False
12.	A sine wave with a phase of 180° is shifted to the left by a ½ cycle. However, note that the signal does not really exist before time 0.	True
13.	Bit rate is the same as bits-per-second.	True
14.	A vertical line in the time domain means a frequency of infinity (sudden change in time); a horizontal line in the time domain means a frequency of zero (no change in time).	True
15.	A digital signal is a composite analog signal with an infinite bandwidth.	True
16.	If we need to send bits faster, we need as less bandwidth as possible.	False

17.	If the available channel is a bandpass channel, we can send the digital signal directly to the channel.	False
18.	When a signal, simple or composite, travels through a medium, it loses some of its energy in overcoming the resistance of the medium.	True
19.	Increasing the levels of a signal increases the reliability of the system.	False
20.	The Shannon capacity gives us the upper limit; the Nyquist formula tells us how many signal levels we need.	True

the two contexts of bandwidth that we use in Networking are

- 1. Bandwidth in Hertz
- 2. Bandwidth in Bits per Seconds

5.
$$P_{A-T_1} = 600 - 120 \times 1 = 480 \text{ mW}$$
 $P_{T_1-5AT} = 2 \times 480 = 960 \text{ mW}$
 $P_{T_1-5AT} = 2 \times 480 = 960 \text{ mW}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$

Alternation at Towari 2 is approximately the same

 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$
 $P_{A-T_1} = 10 \log_{10} \left(\frac{480}{600}\right) \approx -0.969 \text{ dB}$

6. (i) c = 2 B log 1 (021x1) = 01x000 = 1x0000 of 550/ => B = 7 887828.1811 HZ = 81.0x3 (ii) C = 64 - (64x0.2) = 51.2 kbps = 51200 bps $\left(\frac{x}{500}\right)_{ij}$ and or $=\frac{x}{x^{1+100}}$ B = 64×10 Hz

Transmission delay = $\frac{\text{size}}{B} = \frac{15 \times 80 \times 8}{64 \times 10^3} = 0.15 \text{ S}$ B = 64×10 Hz

Transmission delay = $\frac{\text{size}}{B} = \frac{15 \times 80 \times 8}{64 \times 10^3} = 0.15 \text{ S}$ B = 7 Transmission delay = $\frac{\text{size}}{B} = \frac{15 \times 80 \times 8}{64 \times 10^3} = 0.15 \text{ S}$) pal 01+ (300) or fol 01 + 10.8 + 1000 - = = 0 PT.1 - < 40648 0 - (104.0) 01801 + (40.0) 016

Baseband	Broadband
1. Baseband transmission means sending a	1. Broadband transmission or modulation
digital signal over a channel without	means changing the digital signal to an
changing the digital signal to an analog	analog signal for transmission.
signal.	
2. Baseband transmission requires that we	2. Broadband transmission or modulation
have a low-pass channel, a channel with	uses a bandpass channel with a bandwidth
a bandwidth that starts from zero.	that does not start from zero.

Answer to the Question No. 08

9. Signal at
$$6 \text{ km} = 20 - (3 \times 6) = 2 \text{ W}$$

Amplified signal = $2 \times 15 = 30 \text{ W}$

Signal at $10 \text{ km} = 30 - (3 \times 4) = 18 \text{ W}$

Attenuation = $10 \log_{10} \frac{20}{18} = 0.46 \text{ dB}$

Answer to the Question No. 10

Answer to the Question No. 12

13. (i)
$$T = \omega n s = \omega \times 10^{9} s$$

25. (i) $T = \omega n s = \omega \times 10^{9} s$

25. (ii) Distortion. The storting of sin wave is distorted Cshifted).

21. (11) Distortion. The storting of sin wave is distorted Cshifted).

Answer to the Question No. 14

14.

Bit rate,
$$C = \frac{1}{2}B \log_2(1 + SNR)$$

= $5 \times 10^9 \log_2(1 + \frac{36}{800 \times 10^3})$

($\frac{1}{2} \log 10 = \frac{2}{2} \times \frac{1}{2} \times \frac{1$

Latency = Transmission Delay + Propagation Delay +

$$= \frac{192000}{5 \times 10^6} + \frac{8000 \times 10^3}{2.8 \times 10^8} +$$

$$\approx 0.067 $ 9.8$$

16. Power A to B

=
$$5.7 \text{ MW}$$

Power BtoC

At B = $2 \times 5.7 = 11.4 \text{ MW}$

Cto D $2 \times 100 \times 10^{-3}$

= $6 \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 10^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 100^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 100^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 100^{-3}$

At B = $6 \times 10^{-3} \times 100 \times 100^{-3}$

At B = $6 \times 10^{-3} \times 100^{-3}$

17.

$$SNR_{dB} = 10 \log_{10} SNR$$
 $\Rightarrow 37 = 10 \log_{10} SNR$
 $\Rightarrow SNR = 5011.87 = 35i2.6$
 $\Rightarrow SNR = 5011.87 = 35i2.6$
 $\Rightarrow 54.5 \times 10^{3} \times \log_{2}(1 + SNR)$
 $= 55311.4 \text{ bps}$
 $c = 28 \log_{2} L$
 $\Rightarrow L \approx 71$

18. (i)
$$B = 13 \times 10^{6} - 800 \times 10^{3} = 12.2 \text{ MHz}$$

Data reate = $\frac{108 \times 10^{3} \times 8}{8 \times 60 \times 60} = 30 \text{ Mbps}$

Voltage level = $2^{30/2 \times 12.2} = 3$

(ii) $C = 8 \log_{10} (1 + 8NR)$

= 12.2 $\log_{10} (1 + \frac{20}{1})$

= 53.6 Mbps

19. (i) Data reate =
$$\frac{\text{Size}}{\text{Time}}$$
 $\frac{\text{Size}}{\text{Time}}$ $\frac{\text{Size}}{\text{Time}}$ $\frac{\text{Size}}{\text{Time}}$ $\frac{\text{Size}}{\text{Size}}$ $\frac{\text{Size}}{\text{Size}}$

