

UNIVERSIDADE DE COIMBRA FACULDADE DE CIÊNCIAS E TECNOLOGIA

Departamento de Engenharia Informática

Pólo II - Pinhal de Marrocos, 3030 Coimbra - Portugal

Exame de Metodologias Experimentais em Informática

10 de janeiro de 2020	Tempo máximo: 2h:00m
Nome:	Nº:
Nota : Na resolução deste exame podem ser consultados eletrónico permitido é a calculadora, desde que esta não t	
Ponderações: 1) 15% 2) 15% 3) 15% 4a) 20%	4b) 10% 5) 15% 6) 10%
1) Uma companhia tem que decidir entre duas linguage natureza do projeto, o custo de manutenção de se decidiu efetuar uma experiência preliminar para ava relativamente ao tempo necessário para introduzir Descreva os vários elementos da experiência: Definicas diferentes variáveis independentes, hipóteses e experiência.	oftware é extremamente importante. A companhia aliar se existem diferenças entre as duas linguagens r modificações nos vários módulos do programa. ção do problema, variáveis, exemplos de níveis para

		ones de qu	C 70 % do s	pam que ci	nega à caix	ta de corre	no electronico.
resultados:	mpo que ca	ua aigofili	no uemoro	и рага ОГ	uchai CaU	a vetor, t	endo obtido os seguir
		Input 2	Input 3	Input 4	Input 5	Input 6	
Vetores	Input 1	mpat =					
Vetores ZeSort	2.70	4.22	2.89	1.72	0.45	1.69	
ZeSort QuickSort	2.70 4.45	4.22 2.82	1.69	3.48	3.63	3.27	tempo obtidas pelas d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d
ZeSort QuickSort Qual o interva	2.70 4.45 alo de confi	4.22 2.82 ança de 95	1.69 5% para a o	3.48	3.63	3.27	tempo obtidas pelos d

2) Em teste de hipóteses existem dois tipos de erros: Tipo I e Tipo II. Explique as diferenças entre estes dois tipos de erros e compare as consequências de cada um deles no contexto das seguintes hipóteses

relativamente ao desempenho de um detetor de spam em correio eletrónico:

4a) Complete a seguinte tabela *ANOVA* para 2 fatores (*Algoritmo* e *Programador*). Na coluna "Decisão" deve colocar a decisão a tomar relativamente à hipótese nula respetiva (*Rejeita H*₀ / *Não rejeita H*₀). Justifique a sua decisão e apresente todos os cálculos necessários. Assuma um nível de significância a 5%, que o tamanho da amostra para cada combinação de níveis dos dois fatores é 4 e que os pressupostos do teste são validados.

	SS	df	MS	F value	Decisão
Algoritmo	835.75	2			
Programador	1426.04	1			
Interaction	14.58				
Within	1270.25				
Total	3546.625				

4b) Depois da tabela preench	nida, qual deverá ser o próximo pass	o?	
4b) Depois da tabela preench	nida, qual deverá ser o próximo pass	0?	
4b) Depois da tabela preench	nida, qual deverá ser o próximo pass	0?	
4b) Depois da tabela preench	nida, qual deverá ser o próximo pass	o?	
4b) Depois da tabela preench	nida, qual deverá ser o próximo pass	o?	
4b) Depois da tabela preench	nida, qual deverá ser o próximo pass	o?	

5) Pretende investigar a relação entre o desempenho dos estudantes em exercícios de programação on-line durante o semestre e o seu desempenho académico em cursos de programação. Para esse efeito, recolheu o número de exercícios on-line de programação que foram resolvidos por cada estudante, assim como a sua classificação obtida no exame final numa disciplina introdutória de programação. Organizou os dados recolhidos na seguinte tabela de contingência.

		Classif	ficação
		Negativa	Positiva
Quantidade	0-100	23	30
de problemas resolvidos	100-200	24	23 30
resolvidos	200-300	13	25

Verifique se existe alguma relação entre a classificação obtida e a quantidade de problemas resolvidos recorrendo, para tal, a um teste de qui-quadrado para um nível de significância a 15%. Utilize os seguintes valores da distribuição de qui-quadrado para um nível de significância a 15%. Apresente todos os cálculos necessários.

Graus de liberdade	1	2	3	4	5	6	7
Valor da distribuição de qui-quadrado	2.072	3.794	5.317	6.745	8.115	9.446	10.748

"A special challenge	e in performing measu	urements is comin	ng up with approp	oriate metrics."	

6) Comente a seguinte frase, retirada do artigo de Dror G. Feitelson, "Experimental Computer Science: The

