— CM50248 — 2017/2018 —

Visual Understanding 1

Dr Christian Richardt

Recap

Additive and subtractive primary colours (recap)

RGB – additive

Mixing lights e.g. LCD monitors

CMY – subtractive

Filters and paints e.g. printers

Digital image formation (recap)

 Rasterisation: convert a continuous or vector image representation to a rectangular sampled grid of pixels

- Rasterising vector graphics
 - e.g. Bresenham line drawing
- Sampling an analogue signal
 - e.g. in a digital camera
 - Digital cameras have a CCD or CMOS sensor with light sensitive elements, typically arranged in a "Bayer" pattern

Image storage (greyscale, recap)

- Digital images are arranged in memory in scanline order:
 - pixels from left to right within a row
 - rows from top to bottom

Image storage (colour)

Colour images are arranged in memory with rows of RGB pixels:

- In general, access pixel (x, y) at memory address $3 \times (y \times \text{width}[\text{in pixels}] + x)$
- Other possibilities:
 - indexed images, 4 values per pixel (RGBA: RGB and "alpha" for opacity)

Histograms

 Summarise distribution of intensities in an image

RGB histogram (Photoshop)

Linear filtering (convolution, recap)

- Slide a filter over the image to compute a new value for each pixel
 - Linearly combine pixel values
 within a window/neighbourhood
 - Weight of each neighbouring pixel defined by a kernel
- Convolution: general filtering approach that supports arbitrary kernels
- (We'll look at speeding it up later)

Morphological filtering (recap)

- Filtering of images using set theory
- Using a structuring element (set of pixel offsets),

e.g. $B = \{(-2, -2), (-1, -1), (0, 0), (1, 1), (2, 2)\}$

Input image

Erosion

Dilation

Opening

Closing

0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	0

line

0	0	1	0	0
0	1	1	1	0
1	1	1	1	1
0	1	1	1	0
0	0	1	0	0

disc/diamond

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

square

The Fourier Transform

Motivation

- Transformations are useful for analysing signals
 - Natural to analyse audio signals by decomposing into frequencies
 - Can also analyse images using frequencies in x- and y-directions
- Fourier transform represents signals in terms of their frequencies
- Applications:
 - Low- and high-pass filtering
 - Fast linear filtering using the convolution theorem
 - Removing structured noise
 - Image compression (JPEG)

Application: structured noise removal

Discard regions in spectrum associated with patterned noise

Spectrum

Edited Reconstructed image

Image difference

Complex numbers

- Extending the 1D number line to 2D complex plane: $z=a+bi\in\mathbb{C}$
 - Real part $\operatorname{Re}(z) = a \in \mathbb{R}$, imaginary part $\operatorname{Im}(z) = b \in \mathbb{R}$
 - Imaginary unit: $i^2 = -1$
- Complex conjugate: $\bar{z} = \text{Re}(z) \text{Im}(z) \cdot i = a bi$
- Polar form: $z = r \cdot e^{i\varphi}$
 - Radius $r \in \mathbb{R}$, argument (angle) $\varphi \in \mathbb{R}$
 - Complex conjugate: $\bar{z} = r \cdot e^{-i\varphi}$
- Magnitude: $|z|=\sqrt{z\bar{z}}=\sqrt{(a+bi)(a-bi)}$ $=\sqrt{a^2-b^2i^2}=\sqrt{a^2+b^2}$

Arithmetic with complex numbers

• Addition:
$$(a + bi) + (c + di) = (a + c) + (c + d) \cdot i$$

• Subtraction:
$$(a+bi)-(c+di)=(a-c)+(c-d)\cdot i$$

• Multiplication:
$$(a+bi)\cdot(c+di) = ac+adi+bci+bdi^2$$

= $(ac-bd)+(ad+bc)\cdot i$

- In polar form:
$$(r_1 e^{i\varphi_1}) \cdot (r_2 e^{i\varphi_2}) = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

$$\quad \text{Division: } \frac{a+bi}{c+di} = \frac{(a+bi)\cdot (c-di)}{(c+di)\cdot (c-di)} = \frac{ac-adi+cbi-bdi^2}{c^2-di^2}$$

- expand with with complex conjugate $= \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2} \cdot i$

Euler's formula

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

Describes complex numbers on the unit circle:

$$|e^{i\varphi}| = \sqrt{(\cos\varphi + i\sin\varphi)(\cos\varphi - i\sin\varphi)}$$
$$= \sqrt{\cos^2\varphi + \sin^2\varphi} = 1$$

• Using $\sin(-\varphi) = -\sin\varphi$ and $\cos(-\varphi) = \cos\varphi$, we obtain:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2} \qquad \sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

Even and odd functions

- A function is
 - even if f(-x) = f(x)
 - odd if f(-x) = -f(x)
- Examples:
 - even: $f(x) = \cos x$
 - odd: $f(x) = \sin x$

- Properties:
 - If f, g are even, then fg is even
 - If f, g are odd, then fg is even
 - If f is even and g is odd, fg is odd
 - If g is odd, then $\int_{-a}^{a} g(x) dx = 0$ for a > 0
 - If g is even, then $\int_{-a}^{a} g(x) dx = 2 \int_{0}^{a} g(x) dx$
- For any function f:

$$f(x) = f_{\text{even}}(x) + f_{\text{odd}}(x)$$
$$f_{\text{even}}(x) = \frac{f(x) + f(-x)}{2}$$
$$f_{\text{odd}}(x) = \frac{f(x) - f(-x)}{2}$$

Fourier transform

• The **Fourier transform** of a function $f: \mathbb{R} \to \mathbb{R}$ is given by:

$$F(\omega) = \mathcal{F}[f](\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

• The inverse Fourier transform restores f from F:

$$f(x) = \mathcal{F}^{-1}[F](\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

- Note the similarity between the Fourier transform and its inverse.
- We use $F(\omega)$ and $\mathcal{F}[f](\omega)$ interchangeably to refer to the representation of f(x) in the frequency (or Fourier) domain.

Fourier transform example: box function

$$f(x) = \begin{cases} 1 & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{-i\omega x}}{-i\omega} \right]_{-1}^{1}$$

$$=\frac{e^{-i\omega}-e^{i\omega}}{-i\omega\sqrt{2\pi}}=\frac{-2i\sin(\omega)}{-i\omega\sqrt{2\pi}}$$

$$= \sqrt{\frac{2}{\pi}} \frac{\sin(\omega)}{\omega} = \sqrt{\frac{2}{\pi}} \operatorname{sinc}(\omega)$$

Properties of the Fourier transform

Linearity: for constants a and b, and functions f and g:

$$\mathcal{F}[af + bg](\omega) = a\mathcal{F}[f](\omega) + b\mathcal{F}[g](\omega)$$

• Shifting: for a constant a, if g(x) = f(x - a) then:

$$\mathcal{F}[g](\omega) = e^{-ia\omega} \mathcal{F}[f](\omega)$$

• Modulation: for a constant a, if $g(x) = e^{iax} f(x - a)$ then:

$$\mathcal{F}[g](\omega) = \mathcal{F}[f](\omega - a)$$

• Scaling: for a constant a, if g(x) = f(ax), then:

$$\mathcal{F}[g](\omega) = \frac{1}{|a|} \mathcal{F}[f] \left(\frac{\omega}{a}\right)$$

Properties of the Fourier transform

- If f is even and real-valued, then F is even and real-valued.
- If f is odd and real-valued, then F is odd and purely imaginary.
- Differentiation: $\mathcal{F}\bigg[\frac{df}{dx}\bigg](\omega) = i\omega\mathcal{F}[f](\omega)$ $\mathcal{F}\bigg[\frac{d^nf}{dx^n}\bigg](\omega) = (i\omega)^n\mathcal{F}[f](\omega)$
- Taking the derivative in the spatial domain multiplies the Fourier transform with the frequency:
 - higher frequencies are amplified, such as noise
 - Lower frequencies are attenuated

Convolution visualised

• The convolution f * g of two functions f and g is given by:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) dy$$

Convolution theorem

• The convolution f * g of two functions f and g is given by:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) dy$$

- Convolution theorem: $\mathcal{F}[f*g](\omega) = \sqrt{2\pi}\mathcal{F}[f](\omega)\cdot\mathcal{F}[g](\omega)$
 - Convolution becomes multiplication in the Fourier domain
 - Afterwards, transform results back to spatial domain
- As we will see, this can save a lot of time for convolutions with large kernels
- Reciprocal convolution theorem: $\mathcal{F}[f \cdot g](\omega) = \sqrt{2\pi}\mathcal{F}[f](\omega) * \mathcal{F}[g](\omega)$

Discrete Fourier transform (DFT)

- Discrete analogue to the continuous Fourier transform
 - deals with finite sampled signals, such as audio, images
 - N values decomposed into N frequency components
- Discrete Fourier transform (DFT):

$$F[k] = \sum_{n=0}^{N-1} f[n]e^{-2\pi i nk/N} \qquad (k = 0, 1, \dots, N-1)$$

Inverse discrete Fourier transform:

$$f[n] = \frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{2\pi i n k/N} \qquad (n = 0, 1, \dots, N-1)$$

Properties of the discrete Fourier transform

• Periodicity: F[k] is periodic with period N since

$$F[k+N] = \sum_{n=0}^{N-1} f[n] e^{-2\pi i n(k+N)/N} = \sum_{n=0}^{N-1} f[n] e^{-2\pi i nk/N} = F[k]$$
$$\left(e^{-2\pi i n(k+N)/N} = e^{-2\pi i nk/N} e^{-2\pi i n} = e^{-2\pi i nk/N}\right)$$

- Cyclical convolution: $(f * g)[n] = \sum_{m=0}^{N-1} f[m]g[n-m]$
- Convolution theorem: the DFT of f*g is $F[k]\cdot G[k]$

Fast Fourier transform (FFT)

- Naïve computation of DFT is expensive: $\mathcal{O}(N^2)$ complexity
- Compute N Fourier coefficients:
 - N (complex-valued) multiplications
 - N–1 (complex-valued) additions

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-2\pi i nk/N}$$

$$= f[0] + f[1] e^{-2\pi i k/N} + \dots + f[N-1] e^{-2\pi i k(N-1)/N}$$

- For example, an image with 1 megapixel resolution ($N\!=\!10^6$) would require $\mathcal{O}(N^2)\!=\!\mathcal{O}(10^{12})$ arithmetic operations
- Fast Fourier Transform (FFT) has $\mathcal{O}(N\log_2 N)$ complexity [Gauss 1805, Cooley & Tukey 1965]
 - much faster than $\mathcal{O}(N^2)$
 - e.g. $\mathcal{O}(10^6 \log_2 10^6) \approx \mathcal{O}(2 \cdot 10^7)$ for $N = 10^6$

Fast Fourier transform (FFT)

- Key insight: divide and conquer
 - Split an input of size N into two inputs of size N/2 each
 - Repeat until inputs of size 1 is reached
 - This is has $\mathcal{O}(\log N)$ complexity: need this many levels of nesting
- Advantages:
 - Very efficient: $\mathcal{O}(N \log_2 N)$
 - Implemented in many libraries (e.g. FFTW used by MATLAB)
- Disadvantages:
 - Requires inputs of size $N=2^k$, so input may need padding

Discrete Fourier transform (DFT) in 2D

- Fourier techniques can be generalised to n-D functions, e.g. for 2D:
 - Discrete Fourier transform in 2D:

$$F[k,j] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[n,m] e^{-2\pi i(kn/N + jm/M)}$$

$$(j = 0, 1, ..., M-1; k = 0, 1, ..., N-1)$$

Discrete inverse Fourier transform in 2D:

$$f[n,m] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F[k,j] e^{2\pi i (kn/N + jm/M)}$$

$$(n = 0, 1, ..., N-1; m = 0, 1, ..., M-1)$$

Colour images: transform each channel independently

2D sinusoids

Low-pass filter

- passes signals with frequencies lower than a threshold
 - Removes fine details and hence blurs an image
- Example using hard cut-off in frequency space:
 - Ringing artefacts in image space
- Better low-pass filter: Gaussian blur
 - Removes ringing artefacts

Input image

High-pass filter

- passes signals with frequencies higher than a threshold
 - Removes low frequencies (~overall shape)
 - get edge image
- Example using hard cut-off in frequency space:
 - Ringing artefacts in image space
- Better high-pass filter:1–Gaussian blur
 - Removes ringing artefacts

Input image

Structured noise removal

Discard regions in spectrum associated with patterned noise

Input image

Spectrum

Edited

Image difference

Reconstructed image

nages by Fred Wein

Discrete cosine transform (DCT)

- Recall that the Fourier transform of an even, real-valued signal is even and real-valued (no imaginary part)
 - Audio signals and images are real-valued
 - Can make them even by reflection around n=0 or even n=-0.5
 - This cancels out the purely imaginary, sine-related terms
- DCTs are equivalent to DFTs of roughly twice the length
- input and/or output data shifted by half a sample in some variants
- Used for audio compression in MP3, image compression in JPEG

Application of the DCT in JPEG

- Discrete cosine transform is applied to 8×8 pixel blocks
- DCT coefficients are quantised (rounded) depending on frequency

$$\text{FYI: } F[k_1,k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1,n_2] \cos \left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2} \right) k_1 \right] \cos \left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2} \right) k_2 \right]$$

Questions?