# Predicting Terror Attacks? A Network Story

Enea Figini, Axel Nilsson, Nicolas Bollier, Elias Le Boudec Team 29

January 17, 2019

## 1 Introduction

# 2 Exploring the Data

## 2.1 Relationships Dataset



Figure 1: *Graphs analysed in the project* 

# 3 Data Quality

#### 3.1 Terror Attacks Dataset

Multiple issues regarding data quality have been found in this dataset:

**Broadness** The dataset comprises attacks ranging from 1969 to 1950 and spanning the entire globe. Simple and relevant explanations for the graph formation or properties are not likely to be found, since the mechanisms behind two different attacks can be entirely different.

**Structure** Half of the nodes are isolated, hence the topological information they carry in the graph is very limited. What is more, because of the transitivity relation described ??????, connected components are in most of the cases complete, hence isotropic.

**Reliability** Errors have been found in the data. For example nodes Djibouti\_-Youth\_Movement\_19900927 and Armed\_Islamic\_Group\_19950711 have been connected, whereas the first attack took place in Djibouti [?] and the second one in Paris [?]. Hence algorithms using the data must tolerate some error in order to avoid overfitting.

#### 4 Predictions

Table 1: Prediction accuracy for different node distance weightings

| Weighting        |                                                                       | Best skewness $\zeta$ | Accuracy |
|------------------|-----------------------------------------------------------------------|-----------------------|----------|
| Gaussian:        | $w = e^{-d^2/\zeta} - e^{-1/\zeta}$                                   | 0.01                  | 50.5%    |
| Log-Exponential: | $w = e^{-d} \log \left( \frac{1+\zeta}{d+\zeta} \right)$              | 0.1                   | 50 %     |
| Linear:          | w = 1 - d                                                             | N.A.                  | 47%      |
| Square:          | $w = \begin{cases} 1 & d < \zeta \\ 0 & \text{otherwise} \end{cases}$ | 0.1                   | 43 %     |

### 5 Conclusion