Construct a turbine blade profile and **calculate its area** using the following points:

Points on the pressure side

Р	1	2	3	4	5	6
У	4.0276	4.127	3.650	2.717	1.452	-0.0232
Z	0.3262	0.821	1.315	1.809	2.303	2.7976

Points on the suction side

S	1	2	3	4	5	6
У	4.2404	5.156	4.775	3.515	1.791	0.0207
Z	0.0107	0.5972	1.183	1.770	2.356	2.9431

Connect the points on the pressure side and suction side using Spline (**20** points for each side). Construct the arcs at the leading and trailing edges using the equations shown below:

For the leading edge arc, use the following equation (6 points):

$$z = 0.1970(1 - \cos \phi)$$
 $y = 4.1763 + 0.1970\sin \phi$ $-131^{\circ} \le \phi \le 19^{\circ}$

For the trailing edge arc, use the following equation (6 points):

$$z = 2.9460 - 0.0760(1 - \cos \phi)$$
 $y = 0.0760\sin\phi$ $-162.2^{\circ} \le \phi \le 15.8^{\circ}$

The area can be calculated by numerically integrating the two areas below the suction and pressure side. Use the trapezoidal method (MATLAB built-in function: **trapz**) for integration. Hint: You may need to **sort** those points

