

- 인공지능(Artificial Intelligence)
- 머신러닝(Machine Learning)
- 딥러닝(Deep Learning)
- Convolutional Neural Network
- Recurrent Neural Network
- 토론:인간과인공지능

인공지능을 단순화해서 생각해봅시다.

Cat

입력이 주어지면

출력을 내보낸다.

입력이 주어지면, 출력을 내보낸다. 우리 이런 걸 어디서 봤죠?

함수 (Functions)

System, Filter 라고도 불립니다.

더 쉽게는 초등학교 때 배운

수수께끼 상자

인공지능 별 거 아니죠? 무서울 것 없습니다.

근데 와 갑자기 무서워 졌을까요?

원의 넓이를 구하는 함수는?

$$A = \pi r^2$$

수학적으로 표현할 수 없었던 복잡한 인간의 두뇌를 데이터를 기반으로 흉내내다.

쫄지말자 딥러닝

- 인공지능(Artificial Intelligence)
- 머신러닝(Machine Learning)
- 딥러닝(Deep Learning)
- Convolutional Neural Network
- Recurrent Neural Network
- 토론:인간과인공지능

인공지능? 머신러닝?

머신러닝은 또 뭘까요?

러닝(Learning) = 학습 → Adaptation/Update

머신러닝의 세가지 타입

Supervised Learning

- 정답이 주어진다.
- (비교적)문제풀이가 쉽다

Unsupervised Learning

미지수 2개, 방정식 1개 풀 수 있나요?

 XY-X-Y+1=0,

 X와 y를 구하라.

이것은 풀수 있나요?

(x, y는 자연수)

좋은 조건이 주어지거나 잘 찍는 수 밖에…

 특정 조건이 있을 때만 정답이 주어질 수 있다.
 기본적으로 문제풀이가 어렵다.

Reward

Reinforcement Learning

- (정답이 아닌) reward가 주어진다.

쫄지말자 딥러닝

- 인공지능(Artificial Intelligence)
- 머신러닝(Machine Learning)
- 딥러닝(Deep Learning)
- Convolutional Neural Network
- Recurrent Neural Network
- 토론:인간과인공지능

Artistic Style

Image Question and Answering

B

Question

Image Generation

Deep Reinforcement Learning: Game

Human-level control through deep reinforcement learning

Reinforcement Learning: UAV Control

딥러닝? 머신러닝?

답러닝을 이해하기 위해서는 인공신경망을 알아야 한다.

이제부터 조금 어려워집니다. 딥러닝이 원래 진입장벽이 있어요.

뉴런과 인공뉴런

Schematic Diagram of a Neural Network

Hidden Units

Flow of Activation

Input Units

다른 머신러닝 기법들과의 차이점 2:

Nonlinear function의 Nonlinear function의 Nonlinear function …

엄청 복잡한 함수 (인공지능)을 만들 수 있다.

다층 레이어 (Multiple Layer)

Hidden layer가 2개이상인 NN를 Deep Learning이라고 부른다.

오~ 그러면 레이어가 많을수록 높은 지능의 인공지능을 (복잡한 함수를) 만들 수 있겠는데!!!

레이어 100개 만들 수 있을까요?

쉽지 않습니다.

(1) Overfitting(2) Vanishing Gradient

Neural Network이 나온지 오래되었지만, 그동안 이걸 풀지 못해서 암흑기에.. 그러나, 이 두가지 문제를 해결하면서 딥러닝의 중흥기가 시작됨.

차근차근 알아봅시다

(1) Overfitting

Overfitting 이란?

연습문제는 엄청 잘 푸는데

집넓이를 가지고 집값을 맞추는 인공지능(=함수) 시험만 보면 망함

오히려 집값이 떨어짐

High bias (underfit)

"Just right"

High variance (overfit)

Overfitting은 왜 생길까?

(1) 풀어야 되는 문제는 간단한데, 모델이 너무 복잡…

2차함수면 충분한데 5차함수로 모델링을 했다면?

Overfitting은 왜 생길까?

(2) 주어진 데이터는 몇 개 없는데, 모델이 너무 복잡…

Big Data

딥러닝은 모델이 엄청 복잡하다. 수백만개의 파라미터…

Overfitting이 일어나기 쉽다. 어떻게 하면 좋을까???

Dropout

랜덤하게 뉴런을 끊음으로써, 모델을 단순하게 만든다.

차근차근 알아봅시다

(2) Vanishing Gradient

(Deep) Learning을 하기 위해서는 여자저차해서 미분을 이용합니다.

학습되는 양 = 미분값 * 출력값

(2) 대부분의 영역에서 미분 값이 0에 가깝다 → Vanishing Gradient

ReLU의 등장

Long Short Term Memory

