

Archive — Technical Training Autodesk Topobase Administrator

Disclaimers

This course was created for Autodesk Topobase 2009. The contents of this course are not intended for other versions of Autodesk Topobase.

We may make statements regarding planned or future development efforts for our existing or new products and services. These statements are not intended to be a promise or guarantee of future delivery of products, services or features but merely reflect our current plans, which may change. Purchasing decisions should not be made based upon reliance on these statements.

The Company assumes no obligation to update these forward-looking statements to reflect events that occur or circumstances that exist or change after the date on which they were made.

Autodesk*

Chapter Overview

- This chapter teaches you how to create a topology for nodes and lines in a network such as a water network.
- You will learn how to define templates and conditions for tracing.
- Then you will import data into the Topobase Water Module which has a data model with a pre-defined topology, feature classes and business rules to maintain the consistency of your data.
- Additionally, you will learn how to register Oracle views inside a Topobase document.

Utility Model

Chapter Objectives

By the end of this chapter, you will be able to:

- Create a Utility Model.
- Define stop conditions and cost functions for network analysis.
- Create Tracing templates.
- Validate the topology.
- Understand the process of data migration of Oracle data into the water data model.
- Register Oracle views as Topobase feature classes.

5.2 Understand the Utility Model

- The Topobase Utility model provides the basic network topology components that are used in the Water, Wastewater, Gas, and Electric modules.
- A network topology describes the relationships between elements in a network.

5.2 Understand the Utility Model +

8

5.2.1 Logical Topology Tables and Relations

5.2.2 Creating a Utility Model

- 1. Create a point and line feature class.
- 2. Create attribute tables.
- 3. Create the utility model.
- 4. Initialize the topology.

5.2.2 Creating a Utility Model +

Create the Utility Model

5.2.2 Creating a Utility Model ++

Create the Utility Model

5.2.2 Creating a Utility Model +++

Initialize the Topology

5.2.3 Conditions

- You can perform network analysis using two types of conditions:
 - Stop conditions
 - Cost functions

 To create a new condition, select the topology WA in the data model explorer. Right click Conditions and select Create Condition.

5.2.3 Conditions +

Tracing Condition
Create or edit a tracing condition with an SQL statement.
Tracing condition—
Name:
Stop on closed valve
Condition type:
Stop condition 💌
Comment:
✓ Condition is enabled
SOL statement
Select feature classes which will be used for the condition:
☐ Line ☐ Point ☐ Fitting ☐ Hydrant ☐ Pipe ☑ Valve
SQL statement for condition
Generate and edit SQL statement: Generate
case /* Point */ when &f_class_id=1 then (select case /* Valve */ when f_class_id_attr=5 then (select 1 from WA_VALVE where fid=wa_point.fid_attr and <condition>) else null end from WA_POINT wa_point where fid=&fid) else null end</condition>
Validate Assistant
OK Cancel Help

Tracing Condition	×
Create or edit a tracing condition with an SQL statement.	
Tracing condition	
Name:	
Add length	
Condition type:	
Cost function	
Comment:	
Condition is enabled	
SQL statement	
Select feature classes which will be used for the condition:	
✓ Line Point Fitting Hydrant Valve	
SQL statement for condition	
Generate and edit SQL statement:	
case /* Line */ when &f_class_id=2 then nvl((select length from WA_LINE where fid=&fid),0) else 0 end	
Validate Assistant	
OK Cancel Help	ے ا

5.2.4 Tracing Templates

- Network tracing is the process by which all connected elements (nodes and edges) are highlighted given a starting element for the trace, and if necessary, a stop condition.
- Types of tracing templates in the Topobase Administrator:
- Shortest path
- Minimum spanning tree
- Reachability
- Cycle detection
- Trace can be defined with three directions:
 - Forward
 - Backward
 - Both: Bi-directional

5.2.4 Tracing Templates +

5.2.5 Network Tracer

In the Topobase explorer, select **WA** under Topologies, **right-click** and select **Network Tracer.**

Shortest path result

5.2.6 Topology Checker

In the Topobase explorer, select **WA** under Topologies, **right-click**, and select **Topology Checker**.

5.3 Data Migration into the Water Data Model

- Create workspace and document with water data model.
- 2. Extend water data model according to the data source.
- 3. Drop spatial indexes.
- Data migration with scripts.
- Re-create spatial indexes.
- 6. Update calculated attributes.
- 7. Initialize the topology.

5.3 Data Migration into the Water Data Model +

Naming conventions

- Topobase system tables have the prefix TB_<table_name>
- User feature classes are named with a prefix depending on the module:
 - Water: WA
 - Wastewater: WW_, etc.
- Domain tables are assigned the suffix _TBD
- Label feature calsses are named with a suffix _TBL
- Boolean values are defined as NUMBER(1) where 0=False and 1=True
- Attributes related to domain tables have a prefix ID_<domain_name>
- Attributes related to other feature classes or to attribute tables have a prefix FID_<table_name>
- Views are named with the prefix of the module plus _V_<table_name>

5.3.2 Extend Water Data Model According to the Data Source

Feature class matching and creation

 Find out if the water nodes in your source data can be represented by the existing water data model Point attribute tables.

5.3.2 Extend Water Data Model According to the Data Source +

Attribute matching and creation

 Compare the structure of the foreign schema tables with the structure of the water data model tables, and find out which attributes in the water data model correspond to attributes defined in your source tables.

ATWATER.WA_PIPE	SIMROSEWATER.WMAIN	Description
Attribute name	Attribute name	
name_number	main_name	Main name
pipe_length	pipe_length	Main length in meters
id_function	main_type	'M' water main line
		'H' hydrant lead
id_material	mat_code	Material code
date_installation	inst_date	Installation date
min_depth*	min_depth	Minimum depth in meters
max_depth*	max_depth	Maximum depth in meters

5.3.2 Extend Water Data Model According to the Data Source ++

Domains

 If there are attributes related to a domain, you will analyze which values of the domain match with the values of your table.

DIRECTION	Description	WA_DIRECTION_TBD.ID
L	Left	2
R	Right	3
Null	To be determined	1001

5.3.3 Drop Spatial Indexes

Drop spatial indexes in Line (WA_LINE) and Point (WA_POINT)

Autodesk

5.3.4 Insert Lines

Step 1. Add auxiliary column

	ATWATER.WA_PIPE					
FID	NAME_NUMBER		MAIN_ID			

SIMROSEWATER.WMAIN						
MAIN_ID GEOMETRY MAIN_NAME INST_DATE MAT_CODE						
8015		178B1	22/12/1987	CI		
8019		178C1	22/12/1987	CI		
10449		128A3	30/01/2004	GI		

ATWATER.WA_LINE						
FID	GEOM	F_CLASS_ID_ATTR	FID_ATTR	LENGTH	:	MAIN_ID

5.3.4 Insert Lines

Step 2. Insert attribute records into WA_PIPE

ATWATER.WA_PIPE						
FID	NAME_NUMBER	DATE_INSTALLATION	ID_MATERIAL		MAIN_ID	
129557	178B1	22/12/1987	12		8015	
129558	178C1	22/12/1987	12		8019	
129559	128A3	30/01/2004	25		10449	

SIMROSEWATER.WMAIN							
MAIN_ID GEOMETRY MAIN_NAME INST_DATE MAT_CODE							
8015		178B1	22/12/1987	CI			
8019		178C1	22/12/1987	CI			
10449		128A3	30/01/2004	GI			

ATWATER.WA_LINE						
FID	GEOM	F_CLASS_ID_ATTR	FID_ATTR	LENGTH	:	MAIN_ID

SQL:

INSERT INTO ATWATER.WA_PIPE

(main_id, name_number,date_installation, ...)

SELECT main_id, main_name, inst_date, ...)

FROM SIMROSEWATER.WMAIN;

5.3.4 Insert Lines

Step 3. Insert geometry into WA_LINE

FID	NAME_NUMBER	DATE_INSTALLATION	ID_MATERIAL	 MAIN_ID
129557	178B1	22/12/1987	12	8015
129558	178C1	22/12/1987	12	8019
129559	128A3	30/01/2004	25	10449

ATWATER.WA_LINE						
FID	GEOM	F_CLASS_ID_ATTR	FID_ATTR	LENGTH		MAIN_ID
200345		30				8015
200346		30				8019
200347		30				10449

SQL:

INSERT INTO ATWATER.WA LINE

(main_id, geom, f_class_id_attr)

SELECT main_id, geometry, 30

FROM SIMROSEWATER.WMAIN;

ATWATER.TB_DICTIONARY						
F_CLASS_ID	F_CLASS_ID F_CLASS_NAME					
30	WA_PIPE					

utodesk

5.3.4 Insert Lines

Step 4. Create indexes

ATWATER.WA_PIPE				
FID	NAME_NUMBER	DATE_INSTALLATION	ID_MATERIAL	 MAIN_ID
129557	178B1	22/12/1987	12	8015
129558	178C1	22/12/1987	12	8019
129559	128A3	30/01/2004	25	10449

SIMROSEWATER.WMAIN					
MAIN_ID	GEOMETRY	MAIN_NAME	INST_DATE	MAT_CODE	:
8015		178B1	22/12/1987	CI	
8019		178C1	22/12/1987	CI	
10449		128A3	30/01/2004	GI	

ATWATER.WA_LINE						
FID	GEOM	LENGTH	:	MAIN_ID		
200345		30				8015
200346		30				8019
200347		30				10449

SQL:

CREATE INDEX wa_pipe_main_idx ON WA_PIPE(main_id); CREATE INDEX wa_line_main_idx ON WA_LINE(main_id);

5.3.4 Insert Lines

Step 5. Update relation between WA_LINE & WA_PIPE

ATWATER.WA_PIPE					
FID	NAME_NUMBER	DATE_INSTALLATION	ID_MATERIAL		MAIN_ID
129557	178B1	22/12/1987	12		8015
129558	178C1	22/12/1987	12		8019
129559	128A3	30/01/2004	25		10449

SIMROSEWATER.WMAIN						
MAIN_ID GEOMETRY MAIN_NAME INST_DATE MAT_CODE						
8015		178B1	22/12/1987	CI		
8019		178C1	22/12/1987	CI		
10449		128A3	30/01/2004	GI		

ATWATER.WA_LINE						
FID	GEOM	F_CLASS_ID_ATTR	FID_ATTR	LENGTH		MAIN_ID
200345		30	129557			8015
200346		30	129558			8019
200347		30	129559			10449

SQL:

UPDATE WA_LINE a

SET fid_attr =

(SELECT b.fid

FROM WA PIPE b

WHERE b.main_id = a.main_id)

Autodesk

5.3.4 Insert Points

Step 1. Add auxiliary column

		ATWATER.WA_HYDRANT	
FID	NAME_NUMBER	ID_HYDRANT_COLOR_RATE	 HYDRANT_ID

SIMROSEWATER.HYDRANT					
HYDRANT_ID	GEOMETRY	HYDRANT_NAME	COLOR_RATE	:	
2903	Ø	H0008	В		
4017	<u></u>	H0015	0		
2915	Ø	H0018	G		

	ATWATER.WA_POINT						
FID	GEOM		HYDRANT_ID				

5.3.4 Insert Points

Step 2. Insert attribute records into WA_HYDRANT

		ATWATER.WA_HYDRANT	
FID	NAME_NUMBER	ID_HYDRANT_COLOR_RATE	 HYDRANT_ID
250101	H0008	5	2903
250102	H0015	3	4017
250103	H0018	4	2915

SIMROSEWATER.HYDRANT						
HYDRANT_ID	GEOMETRY	HYDRANT_NAME	COLOR_RATE			
2903	Ø	H0008	В			
4017	<u></u>	H0015	0			
2915	₩.	H0018	G			

	ATWATER.WA_POINT						
FID	GEOM	:	HYDRANT_ID				

SQL:

INSERT INTO ATWATER.WA_HYDRANT

(hydrant_id, name_number, id_hydrant_color_rate)

SELECT hydrant_id, hydrant_name, DECODE(color_rate,'R',2,'O',3,'G',4,'B',5,1)

FROM SIMROSEWATER.HYDRANT;

5.3.4 Insert Points

Step 3. Insert geometry into WA_POINT

		ATWATER.WA_HYDRANT	
FID	NAME_NUMBER	ID_HYDRANT_COLOR_RATE	 HYDRANT_ID
250101	H0008	5	2903
250102	H0015	3	4017
250103	H0018	4	2915

ATWATER.WA_POINT							
FID	GEOM	F_CLASS_ID_ATTR	FID_ATTR		HYDRANT_ID		
300215	Ø	21			2903		
300216	\rightarrow	21			4017		
300217	N.	21			2915		

SQL:

INSERT INTO ATWATER.WA_POINT

(hydrant_id, geom, f_class_id_attr)

SELECT hydrant_id, geometry, 21

FROM SIMROSEWATER.HYDRANT;

ATWATER.TB_DICTIONARY				
F_CLASS_ID	F_CLASS_NAME			
21	WA_HYDRANT			

Autodesk

5.3.4 Insert Points

Step 4. Create indexes

	ATWATER.WA_HYDRANT						
FID	NAME_NUMBER	ID_HYDRANT_COLOR_RATE		HYDRANT_ID			
250101	H0008	5		2903			
250102	H0015	3		4017			
250103	H0018	4		2915			

SIMROSEWATER.HYDRANT						
HYDRANT_ID	GEOMETRY	HYDRANT_NAME	COLOR_RATE			
2903	Ø	H0008	В			
4017	<u></u> → □	H0015	0			
2915	Ø	H0018	G			

ATWATER.WA_POINT							
FID	FID GEOM F_CLASS_ID_ATTR FID_ATTR						
300215	Ø	21			2903		
300216	\rightarrow	21			4017		
300217	₩	21			2915		

SQL:

CREATE INDEX wa_hydrant_idx ON WA_HYDRANT(hydrant_id);
CREATE INDEX wa_point_hydrant_idx ON WA_POINT(hydrant_id);

5.3.4 Insert Points

Step 5. Update relation WA_POINT & WA_HYDRANT

FID	NAME_NUMBER	ID_HYDRANT_COLOR_RATE	 HYDRANT_ID
250101	H0008	5	2903
250102	H0015	3	4017
250103	H0018	4	2915

SIMROSEWATER.HYDRANT								
HYDRANT_ID	GEOMETRY	HYDRANT_NAME	COLOR_RATE					
2903	Ø	H0008	В					
4017	<u></u>	H0015	0					
2915	₩	H0018	G					

ATWATER.WA_POINT						
FID	GEOM	F_CLASS_ID_ATTR	FID_ATTR		HYDRANT_ID	
300215	Ø	21	250101		2903	
300216	•	21	250102		4017	
300217	NO.	21	250103		2915	

SQL:

UPDATE wa_point a

SET fid_attr =(SELECT b.fid

FROM WA_HYDRANT b

WHERE b.hydrant_id = a. hydrant_id)

WHERE f_class_id_attr=21;

5.3.5 Re-create Spatial Indexes

5.3.6 Update Calculated Attributes

- The length of the line is calculated by a client-side feature.
- When you inserted the lines in to the Line feature class, the rule was not triggered.
- There is an option in the Administrator to populate the length of the line.
- Select the Line feature class, right-click, and select
 Update Length Attribute.

5.3.7 Initialize the Topology

- In the Data Model Administrator, select Topologies > WA and right-click.
- Select **Properties** in the shortcut menu.

- Click OK.
- Navigate to the shortcut menu again and then select Initialize Topology.

5.4 Creating a Feature Class from a View

 Topobase Administrator allows you to include Oracle views in Topobase documents so you can use them as feature classes.


```
CREATE OR REPLACE VIEW WA_V_VALVE
          (fid, geom, orientation, id_valve_status)
AS
          SELECT p.fid, p.geom, p.orientation, v.id_valve_status
          FROM WA_POINT p, WA_VALVE v
          WHERE p.fid_attr = v.fid
/
```

5.4 Creating a Feature Class from a View +

5.6 Chapter Summary

You should now be able to:

- Create a Utility Model.
- Define stop conditions and cost functions for network analysis.
- Create Tracing templates.
- Validate the topology.
- Understand the process of data migration of Oracle data into the water data model.
- Register Oracle views as Topobase feature classes.

Autodesk