Trabalho 2: Aprendizado de Máquina Augusto César Muniz Lopes

Tema Tipo 8: RBF aplicada à Regressão (Algoritmo totalmente supervisionado).

Dados Utilizados:

Utilizei da biblioteca *sklearn* para gerar aleatoriamente um *dataset*, utilizando a função *make_regression*, com 200 amostras, 4 features e um ruído de 0.1, como demonstrado na imagem a seguir:

```
# Gerar um dataset
X, y = make_regression(n_samples=200, n_features=4, noise=0.1, random_state=109)
```

Em sequência, usei uma função para normalizar os dados (*from sklearn.preprocessing import StandardScaler*), visto que em meus testes iniciais o erro estava resultando em alguns valores altos, o uso da normalização é demonstrado na imagem abaixo:

```
# Normalizar X e y
scaler_X = StandardScaler()
X = scaler_X.fit_transform(X)
scaler_y = StandardScaler()
y = scaler_y.fit_transform(y.reshape(-1, 1)).flatten()
```

Valores Iniciais:

*Observação: Vi em algumas literaturas, que uma das formas de determinar o melhor centro (*m*) seria utilizando o *K-Means*. Porém, como o enunciado do trabalho especifica claramente a restrição de não utilizar algoritmos como "*K-Means, clusterdata, ksdensity, k-NN, PCA*", optei por não aplicá-lo, mesmo que o foco do meu trabalho não seja sobre esse algoritmo.

Dada a observação, para os centros (*m*), utilizei uma função para gerar os valores aleatórios dentro das observações do *dataset* e escolhi de forma estática aquela que apresentou o menor erro ao final das iterações. Então, com os 12 neurônios (*H*) na camada oculta, *m* apresentou uma lista de 12 listas e 4 colunas (quatro features).

Para os pesos (*w*) escolhi uma abordagem semelhante a *m*, mas apenas gerando aleatoriamente valores próximos aos vistos no *dataset*.

Para o bias (w0) iniciei seu valor com zero.

Para o espalhamento (s) comecei com 0.5;

A taxa de aprendizado (n) com 0.1;

E o número de épocas (definida como *epoca* dentro do primeiro laço) como 100 (resultados melhores foram obtidos com um número maior de épocas, mas para evitar tempo de espera optei por deixar em 100 mesmo).

Configuração ideal

Com certeza existem configurações melhores para resultados mais precisos com o dataset, seja aplicando o *kmeans* para descobrir os centro ideais, ou utilizando da distância média para um melhor espalhamento, ou aumentando o número de neurônios na camada oculta, ou treinando com um número maior de épocas. No entanto, a seguir vou demonstrar algumas imagens comparando os valores dos *erros* encontrados no meu resultado ideal (encontrado manualmente em alguns testes), com alguns outros valores iniciais.

Meu Resultado ideal (dados e resultado nas duas imagens abaixo):

```
# Neuronios da camada oculta (H)
H = 12
m = [
    [0.69321602, -0.83645056, 0.46356806, 1.0588505],
    [0.83322947, 0.6626997, -0.14475505, 0.15257985],
    [-1.16554823, 0.20852695, -0.0820158, -0.5065535],
    [-1.03920593, 0.48854546, 0.75655635, -2.54265183],
    [-1.02496614, -0.85763018, -0.45610099, 0.33885959],
    [1.60826194, -0.42876896, 1.21270681, -0.01765857],
    [0.87782818, 0.0217352, 1.44171054, 0.23357005],
    [-0.70060563, 0.64368139, 1.24567399, -0.70215599],
    [-0.30198368, -0.80411294, 1.40516094, 0.38811918],
    [1.66519542, -1.00305709, -1.33229093, 0.81620114],
    [-0.59933721, -0.88871029, 2.70523491, -1.03686115],
    [0.22861962, -0.87257873, 0.25379815, -0.09882513]
#m = X[np.random.choice(len(X), H, replace=False)]
#print("m=>", m)
s = 0.5
# Pesos (w):
w = [-1.59088316, 0.5591758, 1.12198116, 0.62340975, 0.18093274, -0.70016163,
    0.83453995, 1.36510077, 0.66412175, 0.89119888, 0.61414482, 0.61751515]
\#w = np.random.uniform(-2, 2, H)
# Bias (w0)
bias = 0.01
# Taxa de aprendizado (n)
n = 0.1
# Erro em batelada
erro_b = []
#### TREINAMENTO
for epoca in range(100):
    predic = [] # Saida dos meus neuronios
```

Diminuindo a quantidade de neurônios para 10, há um pequeno aumento nos erros:

Trocando os valores dos centros (para 10 neurônios) também pode haver uma aumento nos erros como demonstrado na imagem a seguir:

```
m=> [[ 0.09783608  0.37484693 -1.00556513 -0.73321804]
 [ 0.25925735  0.51621824  0.44837574 -1.58008644]
 [ 1.85063781 -0.80043425 -0.21245015  0.9812979 ]
[-0.85295381 -2.21746724  0.86160896 -0.84490425]
[ 0.94792779  0.61603402  -0.29988726  -0.67531751]
 [ 0.05609479 -1.2295616 -0.48443025 0.53709501]
 [ 1.08923179  0.86322806  0.0921232  -1.69038105]
  0.77440525 -1.23373475 -0.18349778 -0.37237444]
 [ 0.16748128 -1.59106335  0.83002801 -0.20790154]]
*******************************
Erro em batelada 3.9842562429500576
***********************************
Erro quadratico medio: 0.16888759303669681
Erro quadratico relativo: 0.504206209270942
********************************
```

Trocando somente os pesos (12 neurônios e os pesos são aqueles apresentado inicialmente) também é possível notar um aumento nos valores dos erros.

Para um espalhamento menor com s = 0.2

Com uma taxa de aprendizado bem menor em 0.01 e o valor da época em 1000 temos (s continuou como 0.2 nesse teste):

Com os mesmos valores iniciais, modificando somente a época para 1000, temos uma melhoria significativa como observado abaixo:

*Valores usados para testar outros centros e pesos foram descobertos usando funções de escolha aleatória, ambas funções estão comentadas no código.

*Para comparar o valor previsto pelo modelo e o valor real, também foi comentado no código os prints que demonstram tais resultados como o da imagem abaixo

<<<<(55)>>>>> y_pred=> 0.5376557815753529 Resultado real (r)=> 0.5525407008255385