

Lecture 7-2: Ensemble Learning Bagging

Pilsung Kang
School of Industrial Management Engineering
Korea University

• K-fold data split

		1				
X(I)	y(1)		y(1)		X(I)	
X(2)	y(2)		y(2)		X(2)	
X(3)	y(3)		y(3)	= f /	X(3)	1
•	•		•	— 1 ₁ (•	
•	-			•		<i>-</i>
X(k-2)	y(k-2)		y(k-2)		X(k-2)	
X(k-I)	y(k-1)		y(k-1)		X(k-I)	
X(k)	y(k)		y(k)		X(k)	
	X(2) X(3) • • • • • X(k-2) X(k-1)	X(2) y(2) X(3) y(3) X(k-2) y(k-2) X(k-1) y(k-1)	X(2) y(2) X(3) y(3)	$X(2)$ $y(2)$ $y(3)$ $y(3)$ \vdots \vdots \vdots $y(k-2)$ $y(k-1)$ $y(k-1)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• K-fold data split

X(I)	y(I)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	= f $/$	X(3)	1
•	•	•	- '2(•	
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-1)	y(k-1)	y(k-1)		X(k-I)	
X(k)	y(k)	y(k)		X(k)	

• K-fold data split

X(I)	y(I)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	- f /	X(3)	1
•	•	•	-13(•	•
• X(k-2)	y(k-2)	y(k-2)		• X(k-2)	
X(k-1)	y(k-1)	y(k-1)		X(k-1)	
X(k)	y(k)	y(k)		X(k)	

• K-fold data split

X(I)	y(1)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	_f /	X(3)	1
•	•	•		•	
	•				
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-2) X(k-1)	y(k-2) y(k-1)	y(k-2) y(k-1)		X(k-2) X(k-1)	

• K-fold data split

X(I)	y(1)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	= f	X(3)	1
•	•	•	- 'k(•	
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-I)	y(k-1)	y(k-1)		X(k-I)	
X(k)	y(k)	y(k)		X(k)	

- K-fold data split
 - ✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks
- Final output

$$\hat{y} = \delta \Big(f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_{k-1}(\mathbf{x}), f_k(\mathbf{x}) \Big)$$

 $\checkmark \delta(\cdot)$: An aggregation function of individual outputs (ex: simple average)

Breiman (1996)

• Main Idea

- ✓ Each member of the ensemble is constructed from a different training dataset
- ✓ Each dataset is generated by sampling from the total N data examples, choosing N items uniformly at random with replacement
- ✓ Each dataset sample is known as a bootstrap

Original Date	ascc
χl	yl
x^2	y ²
x^3	y ³
× ⁴	y ⁴
x ⁵	y ⁵
x ⁶	y ⁶
x ⁷	y ⁷
x ₈	y 8
x ⁹	y ⁹
x ¹⁰	y 10

Original Dataset

Bootstrap	I
x ³	y ³
x ⁶	y ⁶
x ²	y ²
x ¹⁰	y 10
x ⁸	λ_8
x ⁷	y ⁷
x ⁷	y ⁷
x^3	y ³
x ²	y ²
x ⁷	y ⁷

Bootsti ap 2				
x ⁷	y ⁷			
x ^l	yl			
x ¹⁰	y ¹⁰			
×I	yl			
x ⁸	y ⁸			
x ⁶	y ⁶			
x^2	y ²			
x ⁶	y ⁶			
× ⁴	y ⁴			
x ⁹	y ⁹			

Rootstrap 2

Bootstrap	В
x ⁹	y ⁹
x ⁵	y ⁵
× ²	y ²
x ⁴	y ⁴
x ⁷	y ⁷
× ²	y ²
x ⁵	y ⁵
x ¹⁰	y 10
x ⁸	y 8
× ²	y ²

Poststrop P

Bagging with Decision Tree

- Result Aggregating
 - √ For classification problem
 - Majority voting

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\sum_{j=1}^{n} \delta(\hat{y}_j = i), \quad i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	1	$\sum_{i=1}^{n} c_i(x_i)$
0.75	Model 2	0.92	I	$\sum \delta(\hat{y}_j = 0) = 4$
0.88	Model 3	0.87	1	j=1
0.91	Model 4	0.34	0	
0.77	Model 5	0.41	0	$\sum_{i=1}^{n} a_i(x_i)$
0.65	Model 6	0.84	1	$\sum \delta(\hat{y}_j = 1) = 6$
0.95	Model 7	0.14	0	$\overline{j=1}$
0.82	Model 8	0.32	0	
0.78	Model 9	0.98	I	$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57		

- Result Aggregating
 - √ For classification problem
 - Weighted voting (weight = training accuracy of individual models)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{\sum_{j=1}^{n} (TrnAcc_{j}) \cdot \delta(\hat{y}_{j} = i)}{\sum_{j=1}^{n} (TrnAcc_{j})}, \quad i \in \{0, 1\} \right)$$

			•	
Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	I	$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 0)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$
0.75	Model 2	0.92	I	$\frac{1}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$
0.88	Model 3	0.87	I	J
0.91	Model 4	0.34	0	
0.77	Model 5	0.41	0	$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 1)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.576$
0.65	Model 6	0.84		$\frac{1}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.570$
0.95	Model 7	0.14	0	·
0.82	Model 8	0.32	0	_^ 1
0.78	Model 9	0.98	I	$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57		H

Result Aggregating

0.83

√ For classification problem

Model 10

Weighted voting (weight = predicted probability for each class)

0.57

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} P(y=i), \quad i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	l	$\frac{1}{n}\sum_{i=1}^{n}P(u=0)=0.375$
0.75 0.88	Model 2 Model 3	0.92	1	$\frac{1}{n}\sum_{j=1}^{n}P(y=0)=0.375$
0.91	Model 4	0.34	0	$_{f 1}$ n
0.77	Model 5	0.41	0	$\frac{1}{n}\sum_{j=1}^{n}P(y=1)=0.625$
0.65	Model 6	0.84	I	$n \stackrel{\textstyle \searrow}{\underset{i=1}{\overset{1}{\sim}}} (g - 1)$ 0.020
0.95	Model 7	0.14	0	J-1
0.82	Model 8	0.32	0	^ 1
0.78	Model 9	0.98	I	$\hat{y}_{Ensemble} = 1$

- Result Aggregating: Stacking
 - ✓ Use another prediction model to aggregate the results
 - Input: Predictions made by ensemble members
 - Target: Actual true label

- Result Aggregating: Stacking
 - √ The winner of KDD-cup 2015
 - MOOC dropout prediction

Bagging: Algorithm

Algorithm 1 Bagging Input: Required ensemble size TInput: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$ for t = 1 to T do Build a dataset S_t , by sampling N items, randomly with replacement from S. Train a model h_t using S_t , and add it to the ensemble.

end for

For a new testing point (x', y'),

If model outputs are continuous, combine them by averaging.

If model outputs are class labels, combine them by voting.

Bagging: Illustration

Aggregation examples

- Out of bag error (OOB Error)
 - ✓ Use the training instances that are not sampled for validation

Bagged Trees vs. Single Tree

