Title

D. Zack Garza

Contents

Contents

L	Line	ear Algebra	3
	1.1	Notation	3
	1.2	Big Theorems	3
	1.3	Big List of Equivalent Properties	4
	1.4	Vector Spaces	5
		1.4.1 Linear Transformations	5
		1.4.2 Linear Independence	5
		1.4.3 Bases	6
		1.4.4 The Inner Product	6
		1.4.5 Gram-Schmidt Process	8
		1.4.6 The Fundamental Subspaces Theorem	0
		1.4.7 Computing change of basis matrices	1
	1.5	Matrices	1
		1.5.1 Systems of Linear Equations	2
		1.5.2 Determinants	3
		1.5.3 Computing Determinants	5
		1.5.4 Inverting a Matrix	6
		1.5.5 Bases for Spaces of a Matrix	7
		1.5.6 Eigenvalues and Eigenvectors	8
		1.5.7 Useful Counterexamples	9

Contents 2

1 | Linear Algebra

Remark 1.0.1: The underlying field will be assumed to be \mathbb{R} for this section.

1.1 Notation

Mat(m, n)the space of all $m \times n$ matrices Ta linear map $\mathbb{R}^n \to \mathbb{R}^m$ $A \in Mat(m, n)$ an $m \times n$ matrix representing T $A^t \in \mathrm{Mat}(n,m)$ an $n \times m$ transposed matrix a $1 \times n$ column vector an $n \times 1$ row vector $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$ a matrix formed with \mathbf{a}_i as the columns V, Wvector spaces $|V|, \dim(W)$ dimensions of vector spaces det(A)the determinant of A $\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} \coloneqq [\mathbf{a}_1, \mathbf{a}_2, \cdots \mathbf{a}_n, \mathbf{b}]$ $\begin{bmatrix} A \mid B \end{bmatrix} \coloneqq [\mathbf{a}_1, \cdots \mathbf{a}_n, \mathbf{b}_1, \cdots, \mathbf{b}_m]$ augmented matrices block matrices Spec(A)the multiset of eigenvalues of A $A\mathbf{x} = \mathbf{b}$ a system of linear equations $r := \operatorname{rank}(A)$ the rank of A $r_b = \operatorname{rank}\left(\left[A \mid \mathbf{b}\right]\right)$ the rank of A augmented by \mathbf{b} .

1.2 Big Theorems

Theorem 1.2.1 (Rank-Nullity).

$$|\ker(A)| + |\operatorname{im}(A)| = |\operatorname{dom}(A)|,$$

where $\operatorname{nullspace}(A) = |\operatorname{im} A|, \operatorname{rank}(A) = |\operatorname{im}(A)|,$ and n is the number of columns in the corresponding matrix.

Generalization: the following sequence is always exact:

$$0 \to \ker(A) \stackrel{\mathrm{id}}{\hookrightarrow} \mathrm{dom}(A) \xrightarrow{A} \mathrm{im}(A) \to 0.$$

Moreover, it always splits, so dom $A = \ker A \oplus \operatorname{im} A$ and thus $|\operatorname{dom}(A)| = |\ker(A)| + |\operatorname{im}(A)|$.

Remark 1.2.1: We also have

$$\dim(\operatorname{rowspace}(A)) = \dim(\operatorname{colspace}(A)) = \operatorname{rank}(A).$$

1.3 Big List of Equivalent Properties

Let A be an $m \times n$ matrix. TFAE: - A is invertible and has a unique inverse A^{-1} - A^{T} is invertible - $\det(A) \neq 0$ - The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $b \in \mathbb{R}^{m}$ - The homogeneous system $A\mathbf{x} = 0$ has only the trivial solution $\mathbf{x} = 0$ - $\operatorname{rank}(A) = n$ - i.e. A is

full rank - nullity(A) := dim nullspace(A) = 0 - A = $\prod_{i=1}^{\kappa} E_i$ for some finite k, where each E_i is

an elementary matrix. - A is row-equivalent to the identity matrix I_n - A has exactly n pivots - The columns of A are a basis for \mathbb{R}^n - i.e. $\operatorname{colspace}(A) = \mathbb{R}^n$ - The rows of A are a basis for \mathbb{R}^m - i.e. $\operatorname{rowspace}(A) = \mathbb{R}^m$ - $(\operatorname{colspace}(A))^{\perp} = (\operatorname{rowspace}(A))^{\perp} = \{\mathbf{0}\}$ - Zero is not an eigenvalue of A. - A has n linearly independent eigenvectors - The rows of A are coplanar.

Similarly, by taking negations, TFAE:

- A is not invertible
- A is singular
- A^T is not invertible
- $\det A = 0$
- The linear system $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions
- $\operatorname{rank} A < n$
- dim nullspace A > 0
- At least one row of A is a linear combination of the others
- The RREF of A has a row of all zeros.

Reformulated in terms of linear maps T, TFAE: - T^{-1} : $\mathbb{R}^m \to \mathbb{R}^n$ exists - $\operatorname{im}(T) = \mathbb{R}^n$ - $\ker(T) = 0$ - T is injective - T is surjective - T is an isomorphism - The system $A\mathbf{x} = 0$ has infinitely many solutions

1.4 Vector Spaces

1.4.1 Linear Transformations

Definition 1.4.1 (Linear Transformation)

tode

Remark 1.4.1: It is common to want to know the range and kernel of a specific linear transformation T. T can be given in many ways, but a general strategy for deducing these properties involves:

- Express an arbitrary vector in V as a linear combination of its basis vectors, and set it equal to an arbitrary vector in W.
- ullet Use the linear properties of T to make a substitution from known transformations
- Find a restriction or relation given by the constants of the initial linear combination.

Remark 1.4.2: Useful fact: if $V \leq W$ is a subspace and $\dim(V) \geq \dim(W)$, then V = W.

Definition 1.4.2 (Kernel)

todo

Proposition 1.4.1 (Two-step vector subspace test).

If $V \subseteq W$, then V is a subspace of W if the following hold:

$$\mathbf{0} \in V$$

(2)
$$\mathbf{a}, \mathbf{b} \in V \implies t\mathbf{a} + \mathbf{b} \in V.$$

1.4.2 Linear Independence

Proposition 1.4.2(?).

Any set of two vectors $\{\mathbf{v}, \mathbf{w}\}$ is linearly **dependent** $\iff \exists \lambda : \mathbf{v} = \lambda \mathbf{w}$, i.e. one is not a scalar multiple of the other.

1.4.3 Bases

Definition 1.4.3 (Basis and dimension)

A set S forms a **basis** for a vector space V iff

- 1. S is a set of linearly independent vectors, so $\sum \alpha_i \vec{s_i} = 0 \implies \alpha_i = 0$ for all i.
- 2. S spans V, so $\vec{v} \in V$ implies there exist α_i such that $\sum \alpha_i \vec{s_i} = \vec{v}$

In this case, we define the **dimension** of V to be |S|.

Show how to compute basis of kernel.

Show how to compute basis of row space (nonzero rows in $\ref{eq:constraint}(A)$?)

Show how to compute basis of column space: leading ones

1.4.4 The Inner Product

The point of this section is to show how an inner product can induce a notion of "angle", which agrees with our intuition in Euclidean spaces such as \mathbb{R}^n , but can be extended to much less intuitive things, like spaces of functions.

Definition 1.4.4 (The standard inner product)

The Euclidean inner product is defined as

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Also sometimes written as $\mathbf{a}^T \mathbf{b}$ or $\mathbf{a} \cdot \mathbf{b}$.

Proposition 1.4.3 (Inner products induce norms and angles).

Yields a norm

$$\|\mathbf{x}\| \coloneqq \sqrt{\langle \mathbf{x}, \ \mathbf{x} \rangle}$$

which has a useful alternative formulation

$$\langle \mathbf{x}, \ \mathbf{x} \rangle = \|\mathbf{x}\|^2.$$

This leads to a notion of angle:

$$\langle \mathbf{x}, \ \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_{x,y} \implies \cos \theta_{x,y} := \frac{\langle \mathbf{x}, \ \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} = \langle \widehat{\mathbf{x}}, \ \widehat{\mathbf{y}} \rangle$$

where $\theta_{x,y}$ denotes the angle between the vectors **x** and **y**.

Remark 1.4.3: Since $\cos \theta = 0$ exactly when $\theta = \pm \frac{\pi}{2}$, we can can declare two vectors to be **orthogonal** exactly in this case:

$$\mathbf{x} \in \mathbf{y}^{\perp} \iff \langle \mathbf{x}, \ \mathbf{y} \rangle = 0.$$

Note that this makes the zero vector orthogonal to everything.

Definition 1.4.5 (Orthogonal Complement/Perp)

Given a subspace $S \subseteq V$, we define its **orthogonal complement**

$$S^{\perp} = \left\{ \mathbf{v} \in V \mid \forall \mathbf{s} \in S, \ \langle \mathbf{v}, \ \mathbf{s} \rangle = 0 \right\}.$$

Remark 1.4.4: Any choice of subspace $S \subseteq V$ yields a decomposition $V = S \oplus S^{\perp}$.

Proposition 1.4.4 (Formula expanding a norm and 'Pythagorean theorem').

A useful formula is

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \ \mathbf{y} \rangle + \|\mathbf{y}\|^2,.$$

When $\mathbf{x} \in \mathbf{y}^{\perp}$, this reduces to

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$$

Proposition 1.4.5 (Properties of the inner product).

1. Bilinearity:

$$\left\langle \sum_{j} \alpha_{j} \mathbf{a}_{j}, \sum_{k} \beta_{k} \mathbf{b}_{k} \right\rangle = \sum_{j} \sum_{i} \alpha_{j} \beta_{i} \langle \mathbf{a}_{j}, \mathbf{b}_{i} \rangle.$$

2. Symmetry:

$$\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle$$

3. Positivity:

$$\mathbf{a} \neq \mathbf{0} \implies \langle \mathbf{a}, \ \mathbf{a} \rangle > 0$$

4. Nondegeneracy:

$$\mathbf{a} = \mathbf{0} \iff \langle \mathbf{a}, \ \mathbf{a} \rangle = 0$$

Proof of Cauchy-Schwarz: See Goode page 346.

1.4.5 Gram-Schmidt Process

Extending a basis $\{\mathbf{x}_i\}$ to an orthonormal basis $\{\mathbf{u}_i\}$

$$\mathbf{u}_{1} = N(\mathbf{x}_{1})$$

$$\mathbf{u}_{2} = N(\mathbf{x}_{2} - \langle \mathbf{x}_{2}, \mathbf{u}_{1} \rangle \mathbf{u}_{1})$$

$$\mathbf{u}_{3} = N(\mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} - \langle \mathbf{x}_{3}, \mathbf{u}_{2} \rangle \mathbf{u}_{2})$$

$$\vdots \qquad \vdots$$

$$\mathbf{u}_{k} = N(\mathbf{x}_{k} - \sum_{i=1}^{k-1} \langle \mathbf{x}_{k}, \mathbf{u}_{i} \rangle \mathbf{u}_{i})$$

where N denotes normalizing the result.

In more detail The general setup here is that we are given an orthogonal basis $\{\mathbf{x}_i\}_{i=1}^n$ and we want to produce an **orthonormal** basis from them.

Why would we want such a thing? Recall that we often wanted to change from the standard basis \mathcal{E} to some different basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots\}$. We could form the change of basis matrix $B = [\mathbf{b}_1, \mathbf{b}_2, \cdots]$ acts on vectors in the \mathcal{B} basis according to

$$B[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{E}}.$$

But to change from \mathcal{E} to \mathcal{B} requires computing B^{-1} , which acts on vectors in the standard basis according to

$$B^{-1}[\mathbf{x}]_{\mathcal{E}} = [\mathbf{x}]_{\mathcal{B}}.$$

If, on the other hand, the \mathbf{b}_i are orthonormal, then $B^{-1} = B^T$, which is much easier to compute. We also obtain a rather simple formula for the coordinates of \mathbf{x} with respect to \mathcal{B} . This follows because we can write

$$\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{b}_i \rangle \mathbf{b}_i \coloneqq \sum_{i=1}^{n} c_i \mathbf{b}_i,$$

and we find that

$$[\mathbf{x}]_{\mathcal{B}} = \mathbf{c} := [c_1, c_2, \cdots, c_n]^T$$
..

This also allows us to simplify projection matrices. Supposing that A has orthonormal columns and letting S be the column space of A, recall that the projection onto S is defined by

$$P_S = Q(Q^T Q)^{-1} Q^T.$$

Since Q has orthogonal columns and satisfies $Q^TQ = I$, this simplifies to

$$P_S = QQ^T$$
..

The Algorithm Given the orthogonal basis $\{\mathbf{x}_i\}$, we form an orthonormal basis $\{\mathbf{u}_i\}$ iteratively as follows.

First define

$$N: \mathbb{R}^n \to S^{n-1}$$
$$\mathbf{x} \mapsto \widehat{\mathbf{x}} := \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

which projects a vector onto the unit sphere in \mathbb{R}^n by normalizing. Then,

$$\mathbf{u}_{1} = N(\mathbf{x}_{1})$$

$$\mathbf{u}_{2} = N(\mathbf{x}_{2} - \langle \mathbf{x}_{2}, \mathbf{u}_{1} \rangle \mathbf{u}_{1})$$

$$\mathbf{u}_{3} = N(\mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} - \langle \mathbf{x}_{3}, \mathbf{u}_{2} \rangle \mathbf{u}_{2})$$

$$\vdots \qquad \vdots$$

$$\mathbf{u}_{k} = N(\mathbf{x}_{k} - \sum_{i=1}^{k-1} \langle \mathbf{x}_{k}, \mathbf{u}_{i} \rangle \mathbf{u}_{i})$$

In words, at each stage, we take one of the original vectors \mathbf{x}_i , then subtract off its projections onto all of the \mathbf{u}_i we've created up until that point. This leaves us with only the component of \mathbf{x}_i that is orthogonal to the span of the previous \mathbf{u}_i we already have, and we then normalize each \mathbf{u}_i we obtain this way.

Alternative Explanation:

Given a basis

$$S = \{\mathbf{v_1}, \mathbf{v_2}, \cdots \mathbf{v_n}\},\,$$

the Gram-Schmidt process produces a corresponding orthogonal basis

$$S' = \{\mathbf{u_1}, \mathbf{u_2}, \cdots \mathbf{u_n}\}\$$

that spans the same vector space as S.

S' is found using the following pattern:

$$\begin{aligned} \mathbf{u_1} &= \mathbf{v_1} \\ \mathbf{u_2} &= \mathbf{v_2} - \mathrm{proj}_{\mathbf{u_1}} \mathbf{v_2} \\ \mathbf{u_3} &= \mathbf{v_3} - \mathrm{proj}_{\mathbf{u_1}} \mathbf{v_3} - \mathrm{proj}_{\mathbf{u_2}} \mathbf{v_3} \end{aligned}$$

where

$$\mathrm{proj}_{\mathbf{u}}\mathbf{v} = (\mathrm{scal}_{\mathbf{u}}\mathbf{v})\frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|} \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\langle \mathbf{v}, \ \mathbf{u} \rangle}{\|\mathbf{u}\|^2}\mathbf{u}$$

is a vector defined as the orthogonal projection of \mathbf{v} onto \mathbf{u} .

Figure 1: Image

The orthogonal set S' can then be transformed into an orthonormal set S'' by simply dividing the vectors $s \in S'$ by their magnitudes. The usual definition of a vector's magnitude is

$$\|\mathbf{a}\| = \sqrt{\langle \mathbf{a}, \ \mathbf{a} \rangle} \text{ and } \|\mathbf{a}\|^2 = \langle \mathbf{a}, \ \mathbf{a} \rangle$$

As a final check, all vectors in S' should be orthogonal to each other, such that

$$\langle \mathbf{v_i}, \ \mathbf{v_j} \rangle = 0 \text{ when } i \neq j$$

and all vectors in S'' should be orthonormal, such that

$$\langle \mathbf{v_i}, \ \mathbf{v_i} \rangle = \delta_{ii}$$

1.4.6 The Fundamental Subspaces Theorem

Given a matrix $A \in Mat(m, n)$, and noting that

$$A: \mathbb{R}^n \to \mathbb{R}^m,$$
$$A^T: \mathbb{R}^m \to \mathbb{R}^n$$

We have the following decompositions:

$$\mathbb{R}^{n} \qquad \cong \ker A \oplus \operatorname{im} A^{T} \qquad \cong \operatorname{nullspace}(A) \oplus \operatorname{colspace}(A^{T})$$

$$\mathbb{R}^{m} \qquad \cong \operatorname{im} A \oplus \ker A^{T} \qquad \cong \operatorname{colspace}(A) \oplus \operatorname{nullspace}(A^{T})$$

1.4.7 Computing change of basis matrices

todo

1.5 Matrices

Warning 1.5.1: The space of matrices is not an integral domain! Counterexample: if A is singular and nonzero, there is some nonzero \mathbf{v} such that $A\mathbf{v} = \mathbf{0}$. Then setting $B = [\mathbf{v}, \mathbf{v}, \cdots]$ yields AB = 0 with $A \neq 0, B \neq 0$.

Definition 1.5.1 (Rank of a matrix)

The **rank** of a matrix A representing a linear transformation T is dim colspace (A), or equivalently dim im T.

Proposition 1.5.1(?).

rank(A) is equal to the number of nonzero rows in RREF(A).

Definition 1.5.2 (Trace of a Matrix)

$$\operatorname{Trace}(A) = \sum_{i=1}^{m} A_{ii}$$

Definition 1.5.3 (Elementary Row Operations)

The following are **elementary row operations** on a matrix:

- Permute rows
- Multiple a row by a scalar
- Add any row to another

Proposition 1.5.2 (Formula for matrix multiplication).

If $A = [\mathbf{a}_1, \mathbf{a}_2, \cdots] \in \operatorname{Mat}(m, n)$ and $B = [\mathbf{b}_1, \mathbf{b}_2, \cdots] \in \operatorname{Mat}(n, p)$, then

$$C := AB \implies c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \langle \mathbf{a_i}, \ \mathbf{b_j} \rangle$$

where $1 \le i \le m$ and $1 \le j \le p$. In words, each entry c_{ij} is obtained by dotting row i of A against column j of B.

1.5.1 Systems of Linear Equations

Definition 1.5.4 (Consistent and inconsistent)

A system of linear equations is **consistent** when it has at least one solution. The system is **inconsistent** when it has no solutions.

Definition 1.5.5 (Homogeneous Systems)

Remark 1.5.2: Homogeneous systems are always consistent, i.e. there is always at least one solution.

Remark 1.5.3:

- Tall matrices: more equations than unknowns, overdetermined
- Wide matrices: more unknowns than equations, underdetermined

Proposition 1.5.3 (Characterizing solutions to a system of linear equations).

There are three possibilities for a system of linear equations:

- 1. No solutions (inconsistent)
- 2. One unique solution (consistent, square or tall matrices)
- 3. Infinitely many solutions (consistent, underdetermined, square or wide matrices)

Unique solution

No solutions

Infinitely many solutions

$$3x + 2y = 7$$
$$3x + 2y = 4$$

$$3x + 2y = 7$$

 $6x + 4y = 14$

These possibilities can be check by considering $r := \operatorname{rank}(A)$:

- $r < r_b$: case 1, no solutions.
- $r = r_b$: case 1 or 2, at least one solution.
 - $-r_b = n$: case 2, a unique solution.
 - $-r_b < n$: case 3, infinitely many solutions.

1.5.2 Determinants

Proposition 1.5.4(?).

 $\det(A \mod p) \mod p \equiv (\det A) \mod p$

Proposition 1.5.5 (Inverse of a 2×2 matrix).

For 2×2 matrices,

$$A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

In words, swap the main diagonal entries, and flip the signs on the off-diagonal.

Proposition 1.5.6 (Properties of the determinant).

Let $A \in Mat(m, n)$, then there is a function

$$\det: \operatorname{Mat}(m,m) \to \mathbb{R}$$
$$A \mapsto \det(A)$$

satisfying the following properties:

• det is a group homomorphism onto (\mathbb{R}, \cdot) :

$$\det(AB) = \det(A)\det(B)$$

- Some corollaries:

$$\det A^k = k \det A$$

$$\det(A^{-1}) = (\det A)^{-1} \det(A^t)$$
 = \det(A).

• Invariance under adding scalar multiples of any row to another:

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_i \\ \vdots \end{bmatrix} = \det \begin{bmatrix} \vdots \\ -\mathbf{a}_i + t\mathbf{a}_j \\ \vdots \end{bmatrix}$$

• Sign change under row permutation:

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_i & - \\ \vdots \\ -\mathbf{a}_j & - \end{bmatrix} = (-1) \det \begin{bmatrix} \vdots \\ -\mathbf{a}_j & - \\ \vdots \\ -\mathbf{a}_i & - \end{bmatrix}$$

– More generally, for a permutation $\sigma \in S_n$,

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_{i} & - \\ \vdots \\ -\mathbf{a}_{j} & - \\ \vdots \end{bmatrix} = (-1)^{\operatorname{sgn}(\sigma)} \det \begin{bmatrix} \vdots \\ -\mathbf{a}_{\sigma(j)} & - \\ \vdots \\ -\mathbf{a}_{\sigma(i)} & - \\ \vdots \end{bmatrix}$$

• Multilinearity in rows:

$$\det \begin{bmatrix} \vdots \\ -t\mathbf{a}_{i} \\ -t\mathbf{a}_{i} \end{bmatrix} = t \det \begin{bmatrix} \vdots \\ -\mathbf{a}_{i} \\ -t\mathbf{a}_{i} \end{bmatrix}$$

$$\det \begin{bmatrix} -t\mathbf{a}_{1} \\ -t\mathbf{a}_{2} \\ \vdots \\ -t\mathbf{a}_{m} \end{bmatrix} = t^{m} \det \begin{bmatrix} -\mathbf{a}_{1} \\ -\mathbf{a}_{2} \\ \vdots \\ -\mathbf{a}_{m} \end{bmatrix}$$

$$\det \begin{bmatrix} -t_{1}\mathbf{a}_{1} \\ -t_{2}\mathbf{a}_{2} \\ \vdots \\ -t_{m}\mathbf{a}_{m} \end{bmatrix} = \prod_{i=1}^{m} t_{i} \det \begin{bmatrix} -\mathbf{a}_{1} \\ -\mathbf{a}_{2} \\ \vdots \\ -\mathbf{a}_{m} \end{bmatrix}.$$

• Linearity in each row:

$$\det \begin{bmatrix} \vdots \\ -\mathbf{a}_i + \mathbf{a}_j \\ \vdots \end{bmatrix} = \det \begin{bmatrix} \vdots \\ -\mathbf{a}_i \\ \vdots \end{bmatrix} + \det \begin{bmatrix} \vdots \\ -\mathbf{a}_j \\ \vdots \end{bmatrix}.$$

- det(A) is the volume of the parallelepiped spanned by the columns of A.
- If any row of A is all zeros, det(A) = 0.

Proposition $1.5.7 (Characterizing\ singular\ matrices).$

TFAE:

- $\det(A) = 0$
- A is singular.

1.5.3 Computing Determinants

Useful shortcuts:

• If A is upper or lower triangular, $det(A) = \prod_{i} a_{ii}$.

Definition 1.5.6 (Minors)

The **minor** M_{ij} of $A \in \text{Mat}(n, n)$ is the *determinant* of the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and *j*th column from A.

Definition 1.5.7 (Cofactors)

The **cofactor** C_{ij} is the scalar defined by

$$C_{ij} \coloneqq (-1)^{i+j} M_{ij}$$
.

Proposition $1.5.8 (Laplace/Cofactor\ Expansion)$.

For any fixed i, there is a formula

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}.$$

Example 1.5.1(?): Let

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

Then

$$\det A = 1 \cdot \left| \begin{array}{cc|c} 5 & 6 \\ 8 & 9 \end{array} \right| - 2 \cdot \left| \begin{array}{cc|c} 4 & 6 \\ 7 & 9 \end{array} \right| + 3 \cdot \left| \begin{array}{cc|c} 4 & 5 \\ 7 & 8 \end{array} \right| = 1 \cdot (-3) - 2 \cdot (-6) + 3 \cdot (-3) = 0.$$

Proposition 1.5.9 (Computing determinant from RREF).

det(A) can be computed by reducing A to RREF(A) (which is upper triangular) and keeping track of the following effects:

- $R_i \leftarrow R_i \pm tR_i$: no effect.
- $R_i \iff R_j$: multiply by (-1).
- $R_i \leftarrow tR_i$: multiply by t.

1.5.4 Inverting a Matrix

Proposition 1.5.10(Cramer's Rule).

Given a linear system $A\mathbf{x} = \mathbf{b}$, writing $\mathbf{x} = [x_1, \dots, x_n]$, there is a formula

$$x_i = \frac{\det(B_i)}{\det(A)}$$

where B_i is A with the *i*th column deleted and replaced by **b**.

Proposition 1.5.11 (Gauss-Jordan Method for inverting a matrix).

Under the equivalence relation of elementary row operations, there is an equivalence of augmented matrices:

$$\begin{bmatrix} A \mid I \end{bmatrix} \sim \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

where I is the $n \times n$ identity matrix.

Proposition 1.5.12 (Cofactor formula for inverse).

$$A^{-1} = \frac{1}{\det(A)} [C_{ij}]^t.$$

where C_{ij} is the cofactor(Definition 1.5.7) at position $i, j.^a$

^aNote that the matrix appearing here is sometimes called the *adjugate*.

Example 1.5.2(Inverting a 2×2 matrix):

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{where } ad - bc \neq 0$$

What's the pattern?

- 1. Always divide by determinant
- 2. Swap the diagonals
- 3. Hadamard product with checkerboard

Example 1.5.3(Inverting a 3×3 matrix):

$$\begin{bmatrix} + & - \\ - & + \end{bmatrix}$$

$$A^{-1} \coloneqq \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det A} \begin{bmatrix} ei-fh & -(bi-ch) & bf-ce \\ -(di-fg) & ai-cg & -(af-cd) \\ dh-eg & -(ah-bg) & ae-bd \end{bmatrix}.$$

The pattern:

- 1. Divide by determinant
- 2. Each entry is determinant of submatrix of A with corresponding col/row deleted
- 3. Hadamard product with checkerboard

4. Transpose at the end!!

1.5.5 Bases for Spaces of a Matrix

Let $A \in \operatorname{Mat}(m, n)$ represent a map $T : \mathbb{R}^n \to \mathbb{R}^m$.

Add examples.

Definition 1.5.8 (Pivot)

todo

Proposition 1.5.13.

$$\dim \operatorname{rowspace}(A) = \dim \operatorname{colspace}(A).$$

The row space

$$\operatorname{im}(T)^{\vee} = \operatorname{rowspace}(A) \subset \mathbb{R}^n.$$

Reduce to RREF, and take nonzero rows of RREF(A).

The column space

$$im(T) = colspace(A) \subseteq \mathbb{R}^m$$

Reduce to RREF, and take columns with pivots from original A.

Remark 1.5.4: Not enough pivots implies columns don't span the entire target domain

The nullspace

$$\ker(T) = \operatorname{nullspace}(A) \subseteq \mathbb{R}^n$$

Reduce to RREF, zero rows are free variables, convert back to equations and pull free variables out as scalar multipliers.

Eigenspaces For each $\lambda \in \operatorname{Spec}(A)$, compute a basis for $\ker(A - \lambda I)$.

1.5.6 Eigenvalues and Eigenvectors

Definition 1.5.9 (Eigenvalues, eigenvectors, eigenspaces)

A vector **v** is said to be an **eigenvector** of A with **eigenvalue** $\lambda \in \operatorname{Spec}(A)$ iff

$$A\mathbf{v} = \lambda \mathbf{v}$$

For a fixed λ , the corresponding **eigenspace** E_{λ} is the span of all such vectors.

Remark 1.5.5:

- Similar matrices have identical eigenvalues and multiplicities.
- Eigenvectors corresponding to distinct eigenvalues are always linearly independent
- A has n distinct eigenvalues \implies A has n linearly independent eigenvectors.
- A matrix A is diagonalizable \iff A has n linearly independent eigenvectors.

Proposition 1.5.14 (How to find eigenvectors).

For $\lambda \in \operatorname{Spec}(A)$,

$$\mathbf{v} \in E_{\lambda} \iff \mathbf{v} \in \ker(A - I\lambda).$$

Remark 1.5.6: Some miscellaneous useful facts:

- $\lambda \in \operatorname{Spec}(A) \implies \lambda^2 \in \operatorname{Spec}(A^2)$ with the same eigenvector.
- $\prod \lambda_i = \det A$
- $\sum \lambda_i = \operatorname{Tr} A$

Finding generalized eigenvectors

todo

Diagonalizability

Remark 1.5.7: An $n \times n$ matrix P is diagonalizable iff its eigenspace is all of \mathbb{R}^n (i.e. there are n linearly independent eigenvectors, so they span the space.)

Remark 1.5.8: A is diagonalizable if there is a basis of eigenvectors for the range of P.

1.5.7 Useful Counterexamples

$$A := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}, \qquad \operatorname{Spec}(A) = [1, 1]$$

$$A := \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \implies A^2 = I_2, \qquad \operatorname{Spec}(A) = [1, -1]$$