МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Розрахункова робота

з дисципліни «Дискретна математика»

Виконала:

студент групи КН-114

Серкіз Людмила

Викладач:

Мельникова H.I.

Варіант 19

Завдання № 1

Виконати наступні операції над графами: 1) знайти доповнення до першого графу, 2) об'єднання графів, 3) кільцеву сумму G1 та G2 (G1+G2), 4) розмножити вершину у другому графі, 5) виділити підграф А - що скадається з 3-х вершин в G1 6) добуток графів.

1)Доповнення до першого графу

 $X=\{V_1,V_2,V_3,V_4,V_5,V_7\}$ $W=\{(V1V_3)(V1V4)(V2V3)(V2V5)(V2V7)$ $(V3V7)(V4V7)(V1V5)\}$

2)Обєднання графів

 $X=\{V_{1},V_{2},V_{3},V_{4},V_{5},V_{6},V_{7}\}$ $W=\{(V1V2)(V1V3)(V1V7)(V2V4)(V3V4)$ (V3V5)(V4V5)(V5V7)(V3V6)(V4V7) $(V6V7)\}$

3)Кільцева сума графів

 $X=\{V_1,V_2,V_3,V_4,V_5,V_6,V_7\}$ $W=\{(V1V3)(V1V7)(V3V5)(V3V6)$ $(V4V5)(V5V7)(V4V7)(V6V7)\}$

4)Розщеплення вершини V_7 на $V_{7(1)}$ та $V_{7(2)}$

$$\begin{split} X &= \{ v_1, v_2, v_3, v_4, v_5, v_6, v_{7(1)}, v_{7(2)} \} \\ W &= \{ (V1V2)(V1V3)(V2V4)(V3\\ V4)(V4V7(1))(V3V6)(V6V7(2))\\ (V7(1)V7(2)) \} \end{split}$$

5)1.Підграф А

2.Стягуємо V1 до V2

3.Стягуємо V5 до V7V1

6)Множення графів

Завдання № 2 Скласти таблицю суміжності для орграфа.

Таблиця суміжності

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
V1	0	1	0	0	0	0	1	1	0	0
V2	1	0	1	0	0	0	1	0	0	0
V3	0	1	0	1	0	0	0	0	1	0
V4	0	0	1	0	1	0	1	0	1	0
V5	0	0	0	1	0	1	1	0	0	0
V6	0	0	0	0	1	0	1	1	0	0
V7	1	1	0	1	1	1	0	1	1	0
V8	1	0	0	0	0	1	1	0	1	0
V9	0	0	1	1	0	0	1	1	0	1
V10	0	0	0	0	0	0	0	0	1	0

Завдання № 3
Для графа з другого завдання знайти діаметр.

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
V1	-	1	2	2	2	2	1	1	2	3
V2	1	-	1	2	3	2	1	2	2	3
V3	2	1	-	1	2	3	2	2	1	2
V4	2	2	1	-	1	2	1	2	1	2
V5	2	2	2	1	-	1	1	2	2	3
V6	2	2	3	2	1	-	1	1	2	3
V7	1	1	2	1	1	1	•	1	1	2
V8	1	2	2	2	2	1	1	ı	1	2
V9	2	2	1	1	2	2	1	1	-	1
V10	3	3	2	2	3	3	2	2	1	-

Діаметр графа=3

Завдання № 4 Для графа з другого завдання виконати обхід дерева вглиб

	T	
Вершина	Номер	Вміст стеку
V1	1	V1
V2	2	V1,V2
V3	3	V1,V2,V3
V4	4	V1,V2,V3,V4
V5	5	V1,V2,V3,V4,V5
V6	6	V1,V2,V3,V4,V5,V6
V7	7	V1,V2,V3,V4,V5,V6,V7
V8	8	V1,V2,V3,V4,V5,V6,V7,V8
V9	9	V1,V2,V3,V4,V5,V6,V7,V8,V9
V10	10	V1,V2,V3,V4,V5,V6,V7,V8,V9,V1O
-	-	V1,V2,V3,V4,V5,V6,V7,V8,V9
-	-	V1,V2,V3,V4,V5,V6,V7,V8
-	-	V1,V2,V3,V4,V5,V6,V7
-	-	V1,V2,V3,V4,V5,V6
-	-	V1,V2,V3,V4,V5
-	-	V1,V2,V3,V4
_	-	V1,V2,V3
-	-	V1,V2
-	-	V1
-	-	Ø


```
#include<iostream>
using no
const int n=10;
int i,j;
bool *visited=new bool[n];
int graph[n][n]={{0,1,0,0,}
{1,0,1,0,}

     int graph[n][n]=\{\{0,1,0,0,0,0,1,1,0,0\},
                               {1,0,1,0,0,0,1,0,0,0},
                               {0,1,0,1,0,0,0,0,1,0},
                               {0,0,1,0,1,0,1,0,1,0},
                               {0,0,0,1,0,1,1,0,0,0},
{0,0,0,0,1,0,1,1,0,0},
                               \{1,1,0,1,1,1,0,1,1,0\},
                               {1,0,0,0,0,1,1,0,1,0},
{0,0,1,1,0,0,1,1,0,1},
                               {0,0,0,0,0,0,0,0,1,0}};
     void dfs(int s){
           int r;
cout<<s+1<<" ";
           visited[s]=true;
           for(r=0;r<=n;r++)
if((graph[s][r]!=0)&&(!visited[r])) dfs(r);</pre>
     }
void main( ){
           int st;
cout<<"Matritsa symizhnosti:"<<endl;</pre>
           for(i=0;i<n;i++){
visited[i]=false;
                 for(j=0;j<n;j++) cout<<" "<<graph[i][j];
cout<<endl;</pre>
```

```
} cout<<"start=>";
          cin>>st;
          bool*vis=new bool[n];
          cout<<"obxid:";
          dfs(st-1);
delete[]visited;
Matritsa symizhnosti:
 0 1 0 0 0 0 1 1 0 0
 1 0 1 0 0 0 1 0 0 0
 0 1 0 1 0 0 0 0 1 0
 0 0 1 0 1 0 1 0 1 0
 0 0 0 1 0 1 1 0 0 0
 0 0 0 0 1 0 1 1 0 0
 1 1 0 1 1 1 0 1 1 0
 1 0 0 0 0 1 1 0 1 0
 0 0 1 1 0 0 1 1 0 1
 0 0 0 0 0 0 0 0 1 0
start=>1
obxid:1 2 3 4 5 6 7 8 9 10
...Program finished with exit code 0
Press ENTER to exit console.
```

Завдання № 5

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Вага мінімального остового дерева=2+2+3+3+3+1+4+1+2+4=25 Програмна перевірка:

```
using namespace std;
    int main()
4 { int n,n0;
      cout<<"Enter the number of vertices: ";</pre>
      cin>>n;
cout<<"\nEnter the number of edges: " << endl;</pre>
    cin>>n0;
9 cout<<"\nnow\nenter the data in order: \nA(1) A(2) A(1)A(2)(weight of edges)\n";
10 int ** arr;</pre>
11 arr=new int*[n];
12 for(int i=0;i<n;i++){
        arr[i]=new int[n];
      for(int j=0;j<n;j++)
{ arr[i][j]=0;}</pre>
        int a1,a2,w;
         for(int i=0;i<n0;i++){</pre>
             cin>> a1 >> a2 >> w;
             arr[a1-1][a2-1]=w;
             arr[a2-1][a1-1]=w;
        int* mas;
        mas=new int[n];
      for(int i=0;i<n;i++){
mas[i]=0;}
mas[0]=1;
      int sum=0;
      cout<<"\n\n";</pre>
        for(int r=0,t=0;r!=(n-1);)
        { t=0;
           for(int i=0;i<n;i++){
                if(mas[i]!=0){
                       for(int j=0;j<n;j++){
                            if(arr[i][j]!=0){
                                 if(t==0){
                                     a1=i;
                                     a2=j;
                                     w=arr[i][j];
                                     t++;
                                 else{
                                      if(arr[i][j]<w){
                                          a1=i;
                                          a2=j;
                                          w=arr[i][j];
                                     }
                                 }
                            }
                       }
           sum+=w;
           cout<<"\nA("<<a1+1<<")->A("<<a2+1<<")="<<w;
           mas[a2]=a2+1;
           arr[a1][a2]=0;
           arr[a2][a1]=0;
           r=0;
```

```
for(int q=0;q<n;q++){
         if(mas[q]!=0){
r++;}
    }
for(int i=0;i<n;i++){</pre>
 if(mas[i]==0){a2=i;}
} for(int i=0,t=0;i<n;i++){
      if(arr[i][a2]!=0){
            if(t==0){
                 a1=i;
                 w=arr[i][a2];
            }
else{
                  if(arr[i][a2]<w){
                       a1=i;
                       w=arr[i][a2];
            }
      }
sum+=w;
cout<<"\nA("<<a1+1<<")->A("<<a2+1<<")="<<w;
cout<<"\n\nminimal weight:"<<sum;</pre>
 cout<<"\n\n\n";
 return 0;
```

Результати:

```
Enter the number of vertices: 11
                                                A(1)->A(4)=2
Enter the number of edges:
                                                A(4)->A(6)=2
18
                                                A(1)->A(3)=3
                                                A(6)->A(10)=3
enter the data in order:
                                                A(10)->A(11)=3
A(1) A(2) A(1)A(2) (weight of edges)
                                                A(11)->A(9)=1
 2 4
 3 3
                                                A(1) -> A(2) = 4
 4 2
                                                A(2)->A(7)=1
 5 2
 7 1
                                                A(2)->A(5)=2
3 5 6
                                                A(6)->A(8)=4
3 6 7
 6 2
 7 4
                                               minimal weight:25
 8 7
 9 5
 8 4
 10 3
 9 4
 10 5
 11 7
                                                ...Program finished with exit code 0
9 11 1
10 11 3
                                                Press ENTER to exit console.
```

Завдання № 6

Розв'язати задачу комівояжера для повного 8-ми вершинного графа методом «іди у найближчий», матриця вагів якого має вигляд:

	1	2	3	4	5	6	7	8
1	90	2	2	2	2	3	2	2
2	2	00	5	1	2	3	2	4
3	2	5	5 ∞	6	6	5	1	5
4	2	1	6 5 1 5	90	6	6	6	6
5	2	2	6	6	90	5	1	5
6	3	3	5	6	5	00	2	1
7	2	2	1	6	1	2	90	5
8	2	4	5	6	5	1	5	90

Варіант розвязування 1

	1	3	2,4	5	6	7	8
1	∞	2	2	2	3	2	2
3	2	∞	6	6	5	1	5
2,4	2	6	8	6	6	6	6
5	2	6	6	∞	5	1	5
6	3	5	6	5	∞	2	1
7	2	1	6	1	2	8	5
8	2	5	6	5	1	5	8

	3	2,4,1	5	6	7	8
3	8	6	6	5	1	5
2,4,1	6	∞	6	6	6	6
5	6	6	∞	5	1	5
6	5	6	5	∞	2	1
7	1	6	1	2	∞	5
8	5	6	5	1	5	8

	2,4,1,3	5	6	7	8
2,4,1,3	8	6	6	6	6
5	6	8	5	1	5
6	6	5	∞	2	1
7	6	1	2	∞	5
8	6	5	1	5	8

	2,4,1,3,5	6	7	8
2,4,1,3,5	8	6	6	6
6	6	∞	2	1
7	6	2	∞	5
8	6	1	5	∞

	2,4,1,3,5,6	7	8
2,4,1,3,5,6	∞	6	6
7	6	8	5
8	6	5	∞

	2,4,1,3,5,6,7	8
2,4,1,3,5,6,7	∞	6
8	6	8

	1	2	3	4	5	6	7	8
1	8	2	2	2	2	3	2	2
2	2	∞	5	1	2	3	2	4
3	2	5	8	6	6	5	1	5
4	2	1	6	∞	6	6	6	6
5	2	2	6	6	∞	5	1	5
6	3	3	5	6	5	∞	2	1
7	2	2	1	6	1	2	∞	5
8	2	4	5	6	5	1	5	∞

		1	2	4	5	6	3,7	8
1		8	2	2	2	3	2	2
2	-	2	∞	1	2	3	2	4
4	ļ	2	1	∞	6	6	6	6
5		2	2	6	∞	5	1	5
6	Ć	3	3	6	5	∞	2	1
3,	7	2	2	6	1	2	∞	5
8	3	2	4	6	5	1	5	~

	1	2	4	6	3,7,5	8
1	8	2	2	3	2	2
2	2	∞	1	3	2	4
4	2	1	8	6	6	6
6	3	3	6	∞	2	1
3,7,5	2	2	6	2	∞	5
8	2	4	6	1	5	∞

	2	4	6	3,7,5,1	8
2	8	1	3	2	4
4	1	8	6	6	6
6	3	6	∞	2	1
3,7,5,1	2	6	2	∞	5
8	4	6	1	5	8

	4	6	3,7,5,1,2	8
4	8	6	6	6
6	6	∞	2	1
3,7,5,1,2	6	2	∞	5
8	6	1	5	8

	4	3,7,5,1,2,6	8
4	8	6	6
3,7,5,1,2,6	6	∞	5
8	6	5	8

	4	3,7,5,1,2,6,8
4	8	6
3,7,5,1,2,6,8	6	∞

Варіант 3

	1	2	3	4	5	7	6,8
1	8	2	2	2	2	2	2
2	2	∞	5	1	2	2	4
3	2	5	∞	6	6	1	5
4	2	1	6	∞	6	6	6
5	2	2	6	6	∞	1	5
7	2	2	1	6	1	∞	5
6,8	2	4	5	6	5	5	~

	2	3	4	5	7	6,8,1
2	8	5	1	2	2	4
3	5	∞	6	6	1	5
4	1	6	∞	6	6	6
5	2	6	6	∞	1	5
7	2	1	6	1	∞	5
6,8,1	4	5	6	5	5	∞

	3	4	5	7	6,8,1,2
3	8	6	6	1	5
4	6	∞	6	6	6
5	6	6	∞	1	5
7	1	6	1	∞	5
6,8,1,2	5	6	5	5	∞

	4	5	7	6,8,1,2,3
4	∞	6	6	6
5	6	∞	1	5
7	6	1	∞	5
6,8,1,2,3	6	5	5	8

	4	7	6,8,1,2,3,5
4	∞	6	6
7	6	∞	5
6,8,1,2,3,5	6	5	∞

	4	6,8,1,2,3,5,7
4	∞	6
6,8,1,2,3,5,7	6	∞

Завдання № 7

За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин V_0 і V^* .

S(V0,V*)=4+2+1+1+1+1+3+3+6=22

```
minDist = v;}
   return minDist;}
void printPath(int j)
{if (pred[j] =
   printPath(pred[j]);
cout << "X" << j+1</pre>
void dijkstra(int c[40][40])
      int start;
cout << "Enter
cin >> start;
       for (int i = 0; i < n; i++) {
  pred[0] = -1;
  dist[i] = 10000;
       visited[i] = false; }
dist[start-1] = 0;
for (int count = 0; count < n - 1; count++) {</pre>
           int u = minDistance();
          if (!visited[v] && c[u][v] &&
    dist[u] + c[u][v] < dist[v]) {
    pred[v] = u;
    dist[v] = dist[u] + c[u][v];} }
cout << "The least way is: ";
cout << dist[29] << endl;
cout << "The way is: ";
cout << "X1 -> ";
    printPath(20);
        printPath(29);
           cout << "The end!)" << endl;}</pre>
 int main()
 {
    int c[40][40];
createGraph(c);
     dijkstra(c);
 return 0;
```

Результати

```
Enter the number of vertices: 30
                                           Enter the length from x13 to x19: 5
Enter size of (n*m): 65
                                           Enter the length from x14 to x15: 1
Enter the length from x1 to x2: 6
                                           Enter the length from x14 to x20: 7
Enter the length from x1 to x7: 4
                                           Enter the length from x15 to x16: 2
Enter the length from x2 to x3: 1
                                           Enter the length from x15 to x21: 1
Enter the length from x2 to x8:8
                                           Enter the length from x16 to x17: 3
Enter the length from x3 to x4: 1
                                           Enter the length from x16 to x22: 4
Enter the length from x3 to x9: 3
                                           Enter the length from x17 to x18: 7
Enter the length from x4 to x5: 3
                                           Enter the length from x17 to x23: 2
Enter the length from x4 to x10: 1
                                           Enter the length from x18 to x19: 0
Enter the length from x5 to x6: 3
                                           Enter the length from x18 to x24: 8
Enter the length from x5 to x11:5
                                           Enter the length from x19 to x20: 7
Enter the length from x6 to x7: 0
                                           Enter the length from x19 to x25: 8
Enter the length from x6 to x12: 7
                                           Enter the length from x20 to x21: 3
Enter the length from x7 to x8: 2
                                           Enter the length from x20 to x26: 2
Enter the length from x7 to x13: 5
                                           Enter the length from x21 to x22: 1
Enter the length from x8 to x9: 1
                                           Enter the length from x21 to x27: 1
Enter the length from x8 to x14: 1
                                           Enter the length from x22 to x23: 8
Enter the length from x9 to x10: 4
                                           Enter the length from x22 to x28: 3
Enter the length from x9 to x15: 3
                                           Enter the length from x23 to x24: 5
Enter the length from x10 to x11: 2
                                           Enter the length from x23 to x29: 3
Enter the length from x10 to x16: 4
                                           Enter the length from x24 to x25: 0
Enter the length from x11 to x12: 4
                                           Enter the length from x24 to x30: 7
                                           Enter the length from x25 to x26: 4
Enter the length from x11 to x17: 1
Enter the length from x12 to x13: 0
                                           Enter the length from x26 to x27: 7
                                           Enter the length from x27 to x28: 3
Enter the length from x12 to x18: 7
Enter the length from x13 to x14: 7
                                           Enter the length from x28 to x29: 3
```

```
Enter the length from x29 to x30: 6

Enter the first node: 1

The least way is: 22

The way is: X1 -> X7 -> X8 -> X14 -> X15 -> X21 -> X27 -> X28 -> X29 -> X30 -> The end!)

...Program finished with exit code 0

Press ENTER to exit console.
```

Завдання № 8

Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

Алгоритм Флері

Починаємо з вершини 1, що належить V і кожен раз викреслюємо пройдене ребро


```
return true;}
int edc(){
     int count=0;
for(int i=0;i<NODE;i++)
for(int j=i;j<NODE;j++)
if(tg[i][j]) count++;</pre>
}void fleri(int s){
     static int edge=edc();
     for(int v=0;v<NODE;v++){
     if(tg[s][v]){
          tg[s][v]=tg[v][s]=0;
               edge--;
               fleri(v);
     }}}
int main(){
     for(int i=0;i<NODE;i++)
     for(int j=0;j<NODE;j++)
tg[i][j]=graph[i][j];
fleri(FSV());
```

```
6=>2 2=>1 1=>0 0=>12 12=>9 9=>1 1=>8 8=>5 5=>6 6=>3 3=>2 2=>4 4=>6 6=>8 8=>7 7=>2 2=>9 9=>8 8=>10 10=>9 10=>11 11=>
12
...Program finished with exit code 0
Press ENTER to exit console.
```

Алгоритм на основі циклів

Ейлерів цикл - це об'єднання всіх простих циклів графа.

Завдання №9

Спростити формули (привести їх до скороченої ДНФ).

19.
$$\overline{\overline{xy}}(x\overline{y}z\vee\overline{x}y)$$

1) XY 2) XYZ 3) XY 4) XYZVXY 5) XY(XYZVXY)

X	У	Z	¬у	¬x	1	2	3	4	5	6
0	0	0	1	1	1	0	0	0	0	1
0	0	1	1	1	1	0	0	0	0	1
0	1	0	0	1	1	0	1	1	1	0
1	0	0	1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	0	1	1	0
0	1	1	0	1	1	0	1	1	1	0
1	1	0	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	0	1

Карта Карно:

X\YZ	00	01	11	10
0	1	1	0	0
1	1	0	1	1

Мінімізуємо ф-цію:

$$\overline{XY} \vee XY \vee X\overline{Z}$$