Limites, continuité et différentiabilité

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

1 Limites de fonctions

Exercice 1. Donner le domaine de définition et étudier la limite en l'origine des fonctions suivantes :

1.
$$f(x,y) = \frac{x^2 - 3y^2}{x^2 + y^2}$$

2.
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $\frac{xy}{x+y}$.

- 1. Étudier la limite à l'origine de la restriction de f à la droite d'équation y=ax.
- 2. Calculer la limite à l'origine de de la restriction de f à la parabole d'équation $x+y=x^2$ (faire un dessin!)
- 3. Montrer que f n'admet pas de limite à l'origine.

Exercice 3.* Montrer que la fonction $f(x,y) = \frac{xy+y^2}{\sqrt{x^2+y^2}}$ tend vers 0 quand (x,y) tend vers l'origine.

Exercice 4. Donner le domaine de définition et étudier la limite en a=(0,0) de la fonction $f(x,y)=\frac{\ln(1+xy)}{x^2+y^2}$.

Exercice 5.* Soit f la fonction définie sur le plan privé de la droite Δ d'équation y=x par la formule $f(x,y)=\frac{\sin(x)-\sin(y)}{x-y}$. Étudier la limite de f en tout point de Δ .

2 Continuité

Exercice 6. Étudier la continuité de la fonction $f(x,y) = \max\{x,y\}$. Indication : On pourra montrer que $\max\{a,b\} = \frac{1}{2}(a+b+|a-b|)$ pour tout $a,b \in \mathbb{R}$.

Exercice 7.* Montrer que la fonction définie par $f(x,y) = \frac{\sin(x+y)}{x+y}$ est continue sur son domaine de définition et qu'elle peut se prolonger par continuité à \mathbb{R}^2 tout entier.

HLMA410

3 Dérivées partielles

Exercice 8. Calculer les dérivées partielles d'ordre 1 des fonctions suivantes :

- 1. $f(x,y) = y^5 3xy$
- 2. $f(x,y) = x\cos(e^{xy})$ 3. $F(x,y) = \int_y^x \cos(e^t) dt$

Exercice 9.* Existence et calcul des dérivées partielles de la fonction f définie par $\operatorname{arccos}\left(1+(x-y)^2\right)$.

Exercice 10. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = (x^2 + y^2)^x$ pour $(x,y) \neq (0,0)$ et f(0,0) = 1.

- 1. La fonction f est-elle continue en (0,0)?
- 2. Déterminer les dérivées partielles de f en un point quelconque distinct de l'origine.
- 3. La fonction f admet-elle des dérivées partielles par rapport à x, à y en (0,0)?

Exercice 11. (Gaz parfait) Pour un gaz parfait, l'énergie interne ε s'écrit en fonction du volume spécifique τ et de l'entropie spécifique s comme

$$\varepsilon: \mathbb{R}^2 \to \mathbb{R}$$
$$(\tau, s) \mapsto \tau^{1-\gamma} e^{s/c_{\nu}}$$

où $\gamma > 1$ et $C_{\nu} > 0$ sont deux constantes.

- 1. Calculer la pression $P = -\frac{\partial \varepsilon}{\partial \tau}$ et la température $T = \frac{\partial \varepsilon}{\partial s}$ 2. Retrouver la loi des gaz parfaits : $\frac{P\tau}{T}$ est constant.

4 Différentiabilité

Exercice 12. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.

- 1. Montrer que f est continue sur \mathbb{R}^2 .
- 2. Montrer que f n'est pas différentiable en (0,0).

Exercice 13.* On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \begin{cases} \frac{x^2y}{x^2+|y|}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$.

- 1. Montrer que f est continue et différentiable en l'origine.
- 2. Étudier la différentiabilité de f au point (a,0), $a \neq 0$.

5 Applications de la différentiabilité

Exercice 14.* Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = \frac{x+y}{1+x^2+y^2}$.

HLMA410

- 1. Déterminer et représenter ses courbes de niveau.
- 2. Calculer les dérivées partielles premières.
- 3. Écrire l'équation du plan tangent à f en (0,0)

Exercice 15. Sachant que la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est différentiable et que f(2,5) = 6, $\frac{\partial f}{\partial x}(2,5) = 1$ et $\frac{\partial f}{\partial y}(2,5) = -1$. Donner une valeur approchée de f(2.2,4.9).

Exercice 16. Soit $\alpha > 0$ et a = (1, 2). On pose $f(x) = ||x - a||^{\alpha}$ pour tout $x \in \mathbb{R}^2$.

- 1. Représenter les courbes de niveau et le champ de gradient de f pour $\alpha=2$
- 2. Même question en $\alpha = 1$ en précisant bien le domaine de définition.

Exercice 17. Calculer le jacobien en tout point de \mathbb{R}^3 des applications suivantes :

- 1. $f(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$
- 2. $g(r, \varphi, \theta) = (r \cos \varphi \cos \theta, r \cos \varphi \sin \theta, r \sin \varphi)$