Lecture #13 Tuesday, November 1, 2016 12:14 PM

$$x \sim Geom(p) := (1-p)^{x-1} \cdot p$$

 $x \sim Geom(0.1) := (0.8)^{x-1} \cdot 0.2$

×	o (x) F(x)		
1 0	.260 0.2	00	
2 0	0.160 0.3	60	
-	1.128		
4 10).102		
\	0.082		
	0.066		
7	0.052		
8	0.042		
9	0.034		
10	0,027		
1 (0.021		
12	0.017		
13	0.014		
14	0.011		
15	0.668		
16	0.007		
	200.0		
ા જ	0.005		
(9	0.004		
20	0.003		
2 1	0.002		
22	100,0		
23	0.001		
24	0.601		
25	0.001		
26	0,000	.499	
		l	
	•	I	

Maryle [w] a

$$X \sim \text{Geom } (p) := (1-p)^{x-1} p$$

$$E[x] : \sum_{x \in Spp[p]} x p(x)$$

$$= \sum_{x=1}^{\infty} x (1-p)^{x-1} = p \sum_{y=0}^{\infty} (y+1)(1-p)^{y}$$

$$= p \left(\sum_{y=0}^{\infty} y (1-p)^{y} + \sum_{y=0}^{\infty} (1-p)^{y}\right)$$

$$= p \left(\sum_{y=0}^{\infty} y (1-p)^{y} + \frac{1}{p}\right) = \sum_{y=0}^{\infty} y (1-p)^{y} p + 1$$

$$= (1-p) \sum_{y=0}^{\infty} y (1-p)^{y-1} p + 1$$

$$M : (1-p) M + 1 = 2 M = M - pM + 1$$

$$M : \frac{1}{p}$$

$$\alpha[F] = \int_{\mathbb{R}} f(x) dx = 17$$

"percentile" if measured as a %

point where CDF is greater than P

then 0,95

If 1	Distribution Type/r.v type
E[x] = Median[x]	"Symmetric" skew right
E[x] > Median[x] E[x] < Median[x]	skew left
If one mode	uninodal
E[x] = Melian[x] = Mode[x]	symmetric valmodal

$$X_1 \dots X_n \sim \begin{cases} \frac{1}{2} & \text{if } & \text{if$$

Export 35:1
$$E(x) = $35 - (\frac{1}{38}) + (-91)(\frac{36}{38})$$

 $\times \sim \begin{cases} 35 & \text{up} & \frac{1}{38} \\ -91 & \text{up} & \frac{37}{38} \end{cases}$

$$\chi \sim \begin{cases} 1 & \text{if } \frac{11}{38} \\ -1 & \text{if } \frac{26}{38} \end{cases} \in [x] : (2) \left(\frac{12}{38}\right) + (-1) \left(\frac{26}{38}\right) = -10.053$$

What is my expected bill for since,

$$B = $0.40/min \cdot W \sim \begin{cases} $12.50 \text{ up } 0.7 \end{cases}$$

Fu. so up 0.3

