Weekly Status Report - Niles Guo Oct 29, 2017

This week's activity:

- 1. Went through the MML exercise with Tim and filled out the MML1 and 2 sections of the rubric. I will walk through this with Jay this week.
- 2. Incorporating the feedback from you and Jay on the paper outline. I plan to have a new draft tomorrow uploaded onto Asana.
- 3. Read both of Linling's paper with Ignacio on her optimization models.

MML1/2 Rubric:

Level	Activities	Output
MML1	- Problem statement	Problem statement: Overall objective is to
	- System boundary defined	design an efficient wastewater management
	- Input/output parameters	system for shell gas production in the Marcellus
	defined	region.
	- Key system constraints	
	defined	System boundary:
		- Gas production and gas revenue (through
		drilling and production schedules) are treated as
		constants and not modeled explicitly.
		- Only air emission is used to model human
		health/environmental impact. Water
		contamination, noise pollution, or other
		community impacts are not modeled here.
		- Both onsite and centralized water treatment
		options are considered.
		- Water disposal is included in the analysis.
		- Water transport, in terms of both volume and
		options, are modeled.
		- Different onsite water storage options are
		modeled.
		- Only considering the Marcellus region.
		Global Parameters:
		- Fracking schedule
		- Case study setup (locations of well-pads,
		centralized treatment facility, storage options,
		freshwater sources etc.)
		- Available waste water treatment technologies and their specifications

- Marginal human health impact parameters associated with each activity. - Freshwater demand - Waste water production - Transportation layout and options **Key Input Parameters:** - Selection of freshwater source - Selection and sizing of water storage - Variable cost parameters - Selection of waste water treatment options - Selection of transportation options - Amount of reuse of waste water - Objective weighting Key Output Parameters: - Water management financial cost - Human health impact cost Key Constraints: Mass balance constraints (water volume) - Regulatory constraints (water disposal option? Water reuse?) - Operator constraints (quality of water for reuse?) - Transportation constraints (trucking rates, piping connection, pipe size) MML2 - Key objective functions Key Objective Functions: defined - Relevance and viability of 1. For a set fracking schedule and set production schedule, the objective is to minimize waste the study water financial cost. 2. For a set fracking schedule and set production schedule, the objective is to minimize human health and environment impact cost. 3. For a set fracking schedule and set production schedule, the objective is to maximize re-use of waste water/minimize the use of freshwater.

Issues/Agenda for next meeting

1. No meeting this week, but I will schedule some time with Jay to walk through the MML 1 and 2 rubric and get his feedback. Once that's done we can start moving to the MML3 activities and start building out some of the submodules.

Next week's activity:

- 1. Iterate through the paper outline.
- 2. Start working on the MML3 activities based on feedback from Jay.