(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-206826

(43)公開日 平成6年(1994)7月26日

(51)Int.Cl.⁵

識別記号 庁内整理番号

A 6 1 K 35/74 ABD A 7431-4C

ABH A 7431-4C

FΙ

技術表示箇所

請求項の数1 OL (全 6 頁) 審査請求 有

(21)出願番号

特願平4-313268

(71)出願人 592242408

財団法人京都パストゥール研究所 京都市左京区田中門前町103番地の5

(22)出願日

平成 4年(1992)11月24日

(71)出願人 592242419

信和薬品株式会社

富山市新庄町237

(71)出願人 392008541

日東薬品工業株式会社

京都府京都市向日市上植野町南開35-3

(72)発明者 岸田 棡太郎

京都市右京区龍安寺衣笠下町35

(74)代理人 弁理士 杉本 勝徳 (外1名)

(54) 【発明の名称 】 免疫機能助長剤

(57)【要約】

【目的】毒性が少なく、インターフェロン産生を高めて 人の免疫機能を助長し、安全に感染症や腫瘍の治療や予 防を行うことができる免疫機能助長剤を提供することを 目的としている。

【構成】漬物などに由来するラクトバチルス・ブレービ ス(Lactobacillus brevis subsp. coagulans)菌を純粋 培養して凍結乾燥させた粉末を主成分として含ませるよ うにした。

【特許請求の範囲】

【請求項1】 ラクトバチルス・ブレービス菌粉末を含む 免疫機能助長剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、インターフェロン産生 を高めて人の免疫機能を助長する免疫機能助長剤に関す る。

[0002]

【従来の技術】インターフェロン(IFN)は、ウィル 10 スに接触した細胞(白血球や繊維芽細胞、Tリンパ球 等) から産生され、他の細胞をウィルスから守る作用を 持った物質であって、ウィルスの増殖阻止効果をもつ。 この I F N のうち、たとえば、 I F N α (α型インター フェロン) の産生能は、癌患者や糖尿病患者、前白血病 等の疾患で低下していることが報告され、易感染症との 相関が明らかにされている。

【0003】またIFNy(y型インターフェロン)の 産生能も担癌患者、低ガンマグロブリン症の患者で低下 し、自己免疫疾患である橋本病の患者で昂進しているこ 20 とが報告され、IFNγ産生能もまたIFNα産生能と は別のヒトの免疫機能を反映していることが明らかにさ れている。したがって、IFNα,γ産生能の測定は、 各個人固有の免疫能を反映する有効なパラメーターであ ると考えられる。

【0004】すなわち、このように免疫能を反映するい くつかのパラメーターが低下しているとき、それを上昇 させることは患者の病態や生活の質向上につながると考 えられる。そのため、免疫能を上げる方法として、IF られている。

【0005】特に、IFNの投与によれば、担癌患者の 状態とも相関していること言われているナチュラルキラ - (NK) 活性も、上昇することがよく知られている。· [0006]

【発明が解決しようとする課題】しかし、IFNやOK 432等の強力な免疫賦活剤を連続して使用すること は、体のホメオタシスの攪乱や、発熱、倦怠感等の副作 用をもたらす。そこで、IFNを直接投与するのではな く、人体内でインターフェロン産生を高めて免疫機能を 40 助長させる免疫機能助長剤(インターフェロン誘導剤) の研究が進められ、たとえば、この免疫機能助長剤とし て、二重鎖RNA、ビラン共重合体等の陰イオン性髙分 子や各種多糖体(特公平3-9882号公報等参照)が すでに提案されている。

【0007】しかし、これら公知の免疫機能助長剤は、 本来人体内に存在しないもので、大なり小なり毒性等が あり、インターフェロン産生を高めて感染症や腫瘍の治 療を行おうとすれば、その毒性等により副作用が起きる

が少なく、インターフェロン産生を高めて人の免疫機能 を助長し、安全に感染症や腫瘍の治療や予防を行うこと ができる免疫機能助長剤を提供することを目的としてい

[0008]

【課題を解決するための手段】本発明にかかる免疫機能 助長剤は、このような目的を達成するために、ラクトバ チルス・ブレービス(Lactobacillus brevis subsp. coa gulans) 菌粉末を含んでいることを特徴としている。上 記構成において、ラクトバチルス・ブレービス菌粉末 は、特に限定されないが、たとえば、以下のようにして 製造することができる。

【0009】まず、種菌を下記成分のA~Cの培地に入 れ、25℃~35℃で100rpm の速度で攪拌しつつ1 8~40時間培養する。そして、培養液を濃縮するか、 遠心分離したのち、凍結乾燥して得ることができる。 培地(A)

	0	酵母エキス	0.	5 %
	2	ブドウ糖	1.	5 %
0	3	リン酸二水素カリウム	0.	5 %
	4	リン酸水素ナトリウム	2.	0 %
	⑤	塩化ナトリウム	0.	4 2 5 %
	6	水酸化ナトリウム	0.	0 3 7 5 %
	Ø	脱脂大豆抽出液	8.	7 5 %
	8	沈降炭酸カルシウム	0.	1 %

但し、①~⑦をまず水に加えて加温溶解し、さらに⑧を 加え、この液をpH6.8~7.0に調整した後、121 ℃で15分間高圧蒸気滅菌した。

【0010】なお、⑦の脱脂大豆抽出液は、塩酸で約 Nの投与やOK432等の強力な免疫賦活剤の利用が図 30 0.25Nにした水に脱脂大豆を入れ、ペプシンを加え て約37℃で40~48時間ときどき掻き混ぜながら放 置し、消化させる。消化後、水酸化ナトリウムを加え、 よく混合して中和する。その液を遠心分離した後、上澄 液をとり、脱脂大豆抽出液とした。

培地(B)

ポリヘプトン	0.	$5 \sim 1.0\%$
酵母エキス	0.	5~1. 0%
ブドウ糖	0.	5~1.0%
pH	6.	$5 \sim 7.0$
培地(C)		
酵母エキス	0.	5 5 %
ブドウ糖	1.	10%
ポリヘプトン	1.	25%
リン酸二水素ナトリウム	0.	0 2 5 %
リン酸一水素ナトリウム	0.	0 2 5 %
硫酸マグネシウム	0.	0 1 %
硫酸マンガン	0.	0005%
硫酸第一鉄	0.	0005%
На	6.	$5 \sim 7.0$
たむ 上記控象の種菌となる菌は	海物な	どの食品から

心配がある。本発明は、このような事情に鑑みて、毒性 50 なお、上記培養の種菌となる菌は、漬物などの食品から

3

採ることが好ましい。

【0011】因に、上記A~Cのいずれかの培地を用い、上記培養条件で培養すると、50 リットルの培養で、1 g 当たり 20 ~50 0 億個(2 × 10 ⁹ ~5 × 1 0 ¹⁰ 個/g)の菌末が 100 ~500 g 生産できる。また、このようにして得た菌末の人への投与方法は、特に限定されないが、たとえば、散剤、錠剤、カプセル剤、顆粒剤等にして経口投与することが好ましい。

【0012】因に、錠剤にする場合には、菌末を分散媒としてのLーグルタミン酸ナトリウム(10%)または脱脂粉乳(10%)、Lーグルタミン酸ナトリウム(1%)と、賦形剤としての乾燥バレイショ澱粉等と共に混合して製造することができる。

[0013]

【実施例】以下に、本発明の実施例を詳しく説明する。 (実施例1)酸茎漬から得た種菌を前述の培地(A)に 入れ、25℃~35℃で100rpmの速度で攪拌しつつ 30時間培養したのち、遠心分離機に培養液を入れて約10000rpm で遠心分離したのち、凍結乾燥して菌体(ラクトバチルス・ブレービスPK株)を得た。

【0014】得られた菌体は、乳酸菌(Lactobacillus)が有する以下(1)~(6)の項目に適合するとともに、表1に示すとおり、糖分解性もラクトバチルス・ブレービス菌とほぼ一致した。

- (1) グラム陽性の桿菌である。
- (2) 培地中の炭酸カルシウムに溶解する。
- としてのL-グルタミン酸ナトリウム(10%)または 10 【0015】(3) 培地中のブドウ糖より乳酸を生成脱脂粉乳(10%)、L-グルタミン酸ナトリウム(1 する。
 - (4) 硝酸塩還元能は陰性である。
 - (5) ゼラチン分解性は陰性である。
 - (6) カゼイン分解性は陰性である。

[0016]

【表1】

6

•	·			0	
	108	2 回目		1回目	20目
Arabinose	+	+	Cellobiose	-	_
Xylose	+	+	Lactose	_	
Rhamnose	_		Trehalose	-	_
Sorbose	-	_	Melibiose	±	+
Ribose	±	+	Raffinose		
Glucose	+	+	Melezitose	-	
(gas)	+	+	Starch pH		_
Mannose	_		Mannitol		
Fructose	+	+	Sorbitol	_	_
Galactose	+	+	Esculin pH		_
Sucrose	-	-	Salicin		
Maltose	+	+	Amygdalin		_

【0017】次に、上記で得た菌体に乾燥バレイショ澱 粉を加え、きんすうが108~109個になるように調 製し、さらに賦形剤として無水乳糖を加えて、1粒25 Omgの錠剤を得た。そして、健康な25才~65才の男 性4名、女性6名のボランティアに上記で得た錠剤を1 日6粒、菌数にして3×108 個を4週間連続して投与 するとともに、投与前、投与後2週間目、投与後4週間 生、ナチュラルキラー活性(NK活性)および2-5A (2′5′オリゴアデニル酸)酵素活性を測定し、その 結果を表2および表3に示した。

【0018】なお、IFNα産生およびIFNγ産生 は、以下のようにして測定用サンプルを作製し、FL (ヒト羊膜由来) 細胞、シンドビス ウィルス (Sindob is virus) を用いた50%CPE(細胞変性効果)抑制 目にそれぞれ血液を採取して IFN_{α} 産生、 IFN_{γ} 産 50 によるバイオアッセイ法により測定した。

7

(IFN α 測定用サンプル) 患者よりヘパリン採血した血液を全血法によるIFN誘導のための処理をしたのち、この血液をそのままスピッツ管 2ml 分取し、最終的に500HA/ml となるようにHVJ (センダイ・ウィルス (Sendai virus))を添加し、37で20時間培養後、3000rpm で遠心分離し、その上澄みを回収し、 $1FN\alpha$ 測定用サンプルとした。

【0019】 ($1FN\gamma$ 測定用サンプル) $IFN\alpha$ 測定用サンプルの場合と同様にして採血した血液をイーグルMEM培地で4倍に希釈後、 25μ g/mlとなるようにPHA-P(sigma社製フォトへムアグリチニン(Photohemagglutinin)) を入れ48時間、37%にて培養し、この培養液を遠心分離した上澄みを回収し、 $IFN\gamma$ 測定用サンプルとした。

【0020】また、NK細胞活性の測定は、ヘパリン採*

*血後の血液をFicoll-paque比重遠心法により末梢血単核 球を分離し、エフェクター細胞とした。標的細胞にはCr ⁵¹をラベルしたK562細胞を用い、E(エフェクター 細胞(effector cell))/T(標的細胞(target cell))比20:1で混合し、定法にしたがって細胞障害 活性を測定した。

【0021】さらに、2-5 A酵素活性の測定は、無刺激の末梢血からは測定できないので、今回は $IFN\alpha$ 産生能測定のためにHVJ(センダイ・ウィルス(Sendai virus))刺激 20 時間後の検体を測定した。測定は 2-5 A合成酵素活性測定用ラジオイムノアッセイキット(栄研化学社製)を用い、血漿中の2-5 A酵素活性を測定した。

[0022]

【表2】

	IFNα産生		IU∕æ£	I F N z	产産生	IU/ 👊	
	0	2 W後	4 W後	0	2 W後	4 W後	
КU 女	5518	9545	9884	84	145	358	
	100. 0	173. 0	179. 1	100. 0	172. 6	426. 2	
UY 女	6457	10784	21986	323	338	705	
	100. 0	167. 0	340. 5	100. 0	104. 6	218. 3	
AK 女	5254	15073	10584	424	402	353	
	100. 0	286. 9	201. 4	100. 0	94. 8	83. 3	
ҮН 女	7243	4162	5712	243	185	309	
	100. 0	57. 5	78.9	100. 0	76. 1	127. 2	
TU 男	5208	5511	6141	506	960	270	
	100. 0	105. 8	117. 9	100. 0	189. 7	53. 4	
TS 男	7240	12693	9999	234	110	110	
	100. 0	175. 3	138.1	100. 0	47. 0	47. 0	
TO 男	6495	7229	10617	69	60	137	
	100. 0	111. 3	163. 5	100. 0	87. 0	198. 6	
YN 女	4418	9083	4416	75	31	62	
	100. 0	205. 6	100. 0	100. 0	41. 3	82. 7	
AH 女	3168	7345	10320	32	87	98	
	100. 0	231.8	325. B	100. 0	271. 2	306. 3	
M S 男	11620	22075	9939	126	12	41	
	100. 0	190. 0	85. 5	100. 0	9. 5	32. 5	
平均	6262. 1	10350	9959. B	211. 6	233	244. 3	
	100. 0	165. 3	159. 0	100. 0	110.1	112. 8	

[0023]

【表3】

	N K 活性 %			2 — 5 A活性 pmol/m2			
	0	2 W後	4 W後	0	2 W後	- 4 W後	
KU 女	26	50	47	29. 4	32. 0	22. 1	
	100. 0	192. 3	180. 8	100. 0	108. 8	75. 2	
UY 女	43	62	59	49. 3	41. 5	45. 9	
	100. 0	144. 2	137. 2	100. 0	84. 2	93. 1	
AK 女	42	33	42	10. 0	61.0	45. 2	
	100. 0	78. 6	100. 0	100. 0	610.0	452. 0	
YH 女	42	51	51	10. 0	22. 6	66. 3	
	100. 0	121. 4	121. 4	100. 0	226. 0	663. 0	
TU 男	24	30	31	22, 8	48. 4	45. 0	
	100. 0	125. 0	129. 2	100. 0	212. 3	197. 4	
TS男	33	89	36	84. 9	102. 5	119. 8	
	100. 0	269. 7	109. 1	100. 0	120. 7	141. 1	
TO 男	53	62	63	47. 5	61. 8	103. 2	
	100. 0	117. 0	118. 9	100. 0	130. 1	217. 3	
YN 女	36 100. 0	44 122. 2		54. 8 100. 0	323.5 590.3	792. 4 1446. (
AH 女	42 100. 0	79 188. 1	1	45. 0 100. 0	1	118. 264.	
M S 男	54 100. 0	79 146. 3	t	84. 0 100. 0		108. 129.	
平均	39. 5 100. 0	57. 9 146. 6	į.	43. 8 100. 0	t .	75. 171.	

【0024】 表 2 および表 3 から、個人差はあるものの、上記で得た菌粉末を投与すると、I FN α 産生、I FN γ 産生、NK活性、2-5 A酵素活性に対しても向上させる効果があることが明確である。なお、下記血液検査パラメーターについて投与後の各人の変化を調べたが、各人とも特に基準値からずれるような大きな変動は認められなかった。勿論投与後 I FN α 産生能が低下した個体についても同様に変動は認められなかった。

[0025]

【発明の効果】本発明にかかる免疫機能助長剤は、以上のように、投与することで人体内のIFNα産生、IFNγ産生、NK活性、2-5A活性を高め、免疫機能を助長することができる。しかも、従来、人体内にも存在する乳酸菌の一種を用いることで副作用もない。

【0026】したがって、安全に感染症や腫瘍の治療と予防を行うことができる。