

09-25-00

ACD
RCN

PATENT

Attorney Docket No. 70.US2.REG
Date: September 22, 2000
Page 1

ASSISTANT COMMISSIONER FOR PATENTS
WASHINGTON, D.C. 20231

ATTENTION: BOX PATENT APPLICATION

Sir:

Transmitted herewith for filing is the patent application of
Inventor(s):

Name of First Inventor: **FRANCES YEN**

Residence Address: 11705 Tondino Ct. San Diego, CA 92131

Name of Second Inventor: **MARY RUTH ERICKSON**

Residence Address: 11146 Swanson Court, San Diego, CA 92131

Name of Third Inventor: **JOACHIM FRUEBIS**

Residence Address: 2025 Manchester Ave. Cardiff, CA 92007

Name of Fourth Inventor: **BERNARD BIHAIN**

Residence Address: 238 Pacific View Lane, Encinitas, CA 92024

For: **METHODS OF SCREENING FOR COMPOUNDS THAT MODULATE THE LSR-LEPTIN INTERACTION AND THEIR USE IN THE PREVENTION AND TREATMENT OF OBESITY-RELATED DISEASES**

Enclosed are:

- (X) Specification in 110 pages
- (X) 54 sheet(s) of drawing.
- (X) Sequence Listing in 73 pages
- (X) Sequence Listing in computer readable form
- (X) Sequence Submission Statement in 1 page
- (X) Certificate of Mailing By Express Mail in 1 page
- (X) Return prepaid postcard

CLAIMS AS FILED

FOR	NUMBER FILED	NUMBER EXTRA	RATE	FEE
Basic Fee			\$690	\$690
Total Claims	28 - 20 =	8 ×	\$18	\$144
Independent Claims	5 - 3 =	2 ×	\$78	\$156.

PATENT

Attorney Docket No. 70.US2.REG

Date: September 22, 2000

Page 2

If application contains any multiple dependent claims(s), then add	\$260	\$0
TOTAL FILING FEE	\$990	

(X) The Commissioner is hereby authorized to charge all fees which may be required, now or in the future, or credit any overpayment to Account No. **501181**. A duplicate copy of this sheet is enclosed.

(X) Please send correspondence to:

Heather L. Callahan, Ph.D
Genset Corporation
875 Prospect Street, Suite 206
La Jolla, CA 92037

Respectfully Submitted,,

Heather L. Callahan, Ph.D.
Registration No. 43,524
Agent of Record

Genset Corporation
1000 La Jolla Village Drive
La Jolla, CA 92037

Assistant Commissioner for Patents
Washington, D.C. 20231

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

Attorney Docket No. : 70.US2.REG

Applicant(s) : Yen, et al.

For : METHODS OF SCREENING FOR COMPOUNDS THAT MODULATE THE LSR-LEPTIN INTERACTION AND THEIR USE IN THE PREVENTION AND TREATMENT OF OBESITY-RELATED DISEASES.

Attorney : Heather L. Callahan

"Express Mail"

Mailing Label No. : EL549988022US

Date of Deposit : September 22, 2000

I hereby certify that the accompanying

Application transmittal form in 2 pages; Specification in 110 pages; 54 sheets of drawings; Sequence listing in 73 pages; Sequence listing in computer readable form; Sequence submission statement in 1 page; Return Prepaid Postcard

are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and are addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Tia E. de Langen
Tia E. de Langen

**METHODS OF SCREENING FOR COMPOUNDS THAT MODULATE THE LSR -LEPTIN
INTERACTION AND THEIR USE IN THE PREVENTION AND TREATMENT OF OBESITY-
RELATED DISEASES**

5

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 60/155,506 by Yen et al, entitled "Methods of screening for compounds that modulate the LSR-leptin interaction and their use in the prevention and treatment of obesity-related diseases", filed September 22, 1999, which is hereby incorporated by reference herein in its entirety including any figures, drawings or tables.

10

FIELD OF THE INVENTION

The present invention relates to the field of obesity research, in particular methods of screening for new compounds for the treatment of obesity and obesity-related diseases and disorders, as well as methods of treating obesity-related diseases and disorders. To this end, the characterization of the interaction between a new complex receptor polypeptide, LSR (Lipolysis Stimulated Receptor), and one of its ligands, leptin, is described. The obesity-related diseases or disorders envisaged to be treated by the methods of the invention include, but are not limited to, anorexia, hyperlipidemias, atherosclerosis, diabetes, hypertension and syndrome X. In addition, and more generally, the various pathologies associated with abnormalities in the metabolism of cytokines, may be treated by the methods of the invention.

0 5 10 15 20

BACKGROUND OF THE INVENTION

The following discussion is intended to facilitate the understanding of the invention, but is not intended nor admitted to be prior art to the invention.

Obesity is a public health problem that is serious, widespread, and increasing. In the United States, 20 percent of the population is obese; in Europe, a slightly lower percentage is obese (Friedman 25 (2000) *Nature* 404:632-634). Obesity is associated with increased risk of hypertension, cardiovascular disease, diabetes, and cancer as well as respiratory complications and osteoarthritis (Kopelman (2000) *Nature* 404:635-643). Even modest weight loss ameliorates these associated conditions.

While still acknowledging that lifestyle factors including environment, diet, age and exercise play a role in obesity, twin studies, analyses of familial aggregation, and adoption studies all indicate that obesity is largely the result of genetic factors (Barsh et al (2000) *Nature* 404:644-651). In agreement with these studies, is the fact that an increasing number of obesity-related genes are being identified. Some of the more extensively studied genes include those encoding leptin (*ob*) and its receptor (*db*), pro-opiomelanocortin (*Pomc*), melanocortin-4-receptor (*Mc4r*), agouti protein (*A^p*), carboxypeptidase E (*fat*), 5-hydroxytryptamine receptor 2C (*Htr2c*), nescent basic helix-loop-helix 2 (*Nhlh2*), prohormone convertase 1 (PCSK1), and tubby protein (*tubby*) (rev'd in Barsh et al (2000) *Nature* 404:644-651).

The gene encoding leptin, one of the most widely studied obesity genes, is involved in the mechanisms of satiety (rev'd in Schwartz et al (2000) *Nature* 404 :661-671). Leptin is a plasma protein of 16 kDa produced by adipocytes (Zhang et al ((1994) *Nature* 372:425-432). Mice with an autosomal recessive mutation in this gene (*ob/ob* mice) are obese and hyperphagic. Similarly, mice with an autosomal recessive 5 mutation of the leptin receptor (*db/db* mice, for example) are also obese (Campfield et al (1995) *Science* 269:546-549). Administration of leptin to *ob/ob*, but not *db/db*, mice corrects their relative hyperphagia and allows normalization of their weight (Weigle (1995) *J. Clin. Invest.* 96:2065-2070).

Leptin circulates in the body at levels proportional to body fat content(Considine et al (1996) *New Eng J Med* 334 :292-295) and enters the central nervous system (CNS) at levels proportional to the plasma 10 level (Schwartz et al (1996) *Nature Med* 2 :589-593). Leptin receptors are expressed by brain neurons involved in energy intake (Baskin et al (1999) *Diabetes* 48 :828-833; Cheung et al (1997) *Endocrinology* 138:4489-4492) and administration of leptin into the brain reduces food intake (Weigle (1995) *J. Clin. Invest.* 96:2065-2070 ; Campfield et al (1995) *Science* 269:546-549), whereas its deficiency increases food intake (Zhang et al (1994) *Nature* 372:425-432).

Despite this clear evidence of leptin's role as an adiposity signal, with only a few exceptions the 15 genes encoding leptin or its ob receptor have proved to be normal in obese human subjects (Kopelman et al (2000) *Nature* 404:635-643). Furthermore, and paradoxically, the plasma concentrations of leptin, are abnormally high in most obese human subjects (Considine et al (1996) *New Eng J Med* 334 :292-295).

SUMMARY OF THE INVENTION

The present invention results from a focusing of the research effort on the discovery of the mechanisms of leptin elimination. The most widely accepted working hypothesis is that the plasma levels of leptin are high in obese subjects because this hormone is produced by adipose tissue which is increased in obese subjects. In contrast, although not wishing to be limited by any particular theory, the inventors 20 postulated that the concentrations of leptin are increased in obese individuals because the clearance of this hormone is reduced. The resulting high levels of leptin cause a leptin resistance syndrome. Thus, the treatment of obese subjects should not be based on increasing leptin levels, but in normalizing leptin levels.

The lipolysis stimulated receptor (LSR) displays a high affinity for unmodified triglyceride-rich lipoproteins and is involved in the partitioning of dietary lipids among the liver, adipose tissue and 25 muscle. The instant invention stems *inter alia* from studies of the role of LSR in modulating obesity. As part of the instant invention, leptin and the leptin fragment described herein were found to diminish the postprandial lipemic response in *db^{pas}/db^{pas}* mice which lack the leptin OB receptor, thereby showing that leptin signaling can be independent of the OB receptor. Further, the instant invention stems from the discovery that leptin increases the activity of LSR, binds directly to LSR, and that leptin binding leads to 30 leptin degradation. Although not wishing to be bound by a particular theory, the link between leptin

signaling and LSR suggests the post-prandial lipemic response in db^{Pas}/db^{Pas} mice is modulated through this pathway.

In addition, the inventors have discovered that LSR is actually at least two receptors, one for triglyceride-rich lipoproteins, and one for leptin. The three subunits that make up LSR, α , β , and α' , actually combine in at least two ways: (1) α and β together make up the LSR receptor for triglyceride-rich lipoproteins, and (2) α' is a necessary part of the LSR receptor for leptin, that may include β as well. Thus, it is now clear that assays can be designed for identifying modulators or receptors/binding partners/signalling cascade members that are specific for the triglyceride-related activity of LSR or for the leptin-related activity of LSR or both.

Further, the invention features the discovery of a 22 amino acid region of human leptin that modulates LSR activity *in vitro* and *in vivo* in the same way as the intact human leptin, thus allowing the use of only this critical region in assays for modulators of the leptin-LSR interaction, and new leptin receptors and binding partners. The new leptin fragment can also be used in disease treatment since it is active in mice at a physiologically-relevant level. In addition, the homologous region from mouse leptin was found to inhibit LSR activity in the human system, and is thus an LSR antagonist of the invention as well as being a powerful tool for identifying further modulators (both inhibitory and stimulatory) of LSR activity.

In a preferred aspect, the invention features a leptin polypeptide fragment that modulates the activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of any one of the leptin polypeptide sequences set forth in Figure 13, wherein said at least 4 and not more than 50 contiguous amino acids comprise the leptin fragment central sequence. In preferred embodiments, the leptin polypeptide fragment comprises at least 10 but not more than 50, at least 20 but not more than 40, or at least 20 but not more than 30 contiguous amino acids.

Alternatively, the invention features a variant of a leptin polypeptide fragment that modulates the activity of LSR, consisting of a 22 contiguous amino acid sequence that is at least 75% identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13. In preferred embodiments, the variant of a leptin polypeptide fragment is 85% identical, or 95% identical to the leptin fragment variable region. Preferably the leptin fragments and variants are from human or mouse leptin.

In a second aspect, the invention features, a chimeric oligonucleotide, comprising at least 9 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16, wherein said at least 9 contiguous nucleotides comprise at least one amino acid codon selected from the group consisting of TTA, TTG, TCA, TCG, TAU, TAC, TGT, TGC, TGG, CAA, CAG, AGA, GAA, GAG, and GGA, and wherein a point mutation is present in said codon such that said codon is a stop codon. Alternatively, the chimeric oligonucleotide comprises at least 9

contiguous nucleotides of SEQ ID NO:1, wherein said at least 9 contiguous nucleotides comprise a single nucleotide polymorphism selected from the group consisting of A1 to A32.

In a third aspect, the invention features a zinc finger protein, comprising a DNA binding domain that binds specifically to 18 nucleotides of a sequence at least 50% homologous to SEQ ID NO:1,

5 wherein said 18 nucleotides comprise two fragments of 9 contiguous nucleotides, and wherein said fragments are separated by 0, 1, 2, or 3 nucleotides. In preferred embodiments, said sequence is at least 50% homologous to intronic sequences selected from the group consisting of 2357 to 3539, 3885 to 12162, 12283 to 15143, 15201 to 17764, 15912 to 19578, 19753 to 19898, 19959 to 20055, 20188 to 20328, and 20958 to 21046 of SEQ ID NO:1, preferably to residues 2357 to 3539 of SEQ ID NO:1, or 10 alternatively 5' untranslated regions such as the sequence 1 to 2356 of SEQ ID NO:1. In preferred embodiments, said protein further comprises a functional domain selected from the group consisting of a transcription repressor and a transcription initiator; preferably said repressor is a KRAB repressor and said initiator is a VP16 initiator. In other preferred embodiments, said protein further comprises a small molecule regulatory system, preferably said system is selected from the group consisting of a Tet system, RU486, and ecdysone.

15 In a fourth aspect, the invention features polynucleotides encoding the leptin polypeptide fragments and variants of the invention, or polynucleotides encoding a zinc finger protein of the invention.

20 In a fifth aspect, the invention features recombinant vectors comprising the polynucleotides encoding the leptin polypeptide fragments and variants of the invention, or polynucleotides or recombinant vectors encoding a zinc finger protein of the invention. In preferred embodiments, said vector is an adenovirus associated virus.

25 In a sixth aspect, the invention features recombinant cells comprising the polynucleotides and recombinant vectors encoding the leptin polypeptide fragments and variants of the invention, or polynucleotides and recombinant vectors encoding zinc finger proteins of the invention. In preferred embodiments, the recombinant cell comprising the polynucleotides and recombinant vectors encoding leptin fragments and variants and zinc finger polypeptides of the invention, are transfected with at least one LSR polypeptide comprising a sequence at least 75% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID 30 NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19. Preferably, said transfected cell is stably transfected. Preferably, said cell is selected from the group consisting of PLC, CHO-K1, Hep3B, Hepa 1-6, and HepG2.

35 In a seventh embodiment, the invention features a pharmaceutical composition comprising the leptin polypeptide fragments and variants of the invention, or polynucleotides or recombinant vectors encoding a zinc finger protein of the invention, or chimeroplasts of the invention.

In an eighth aspect, the invention features non-human mammals comprising polynucleotides and recombinant vectors encoding zinc finger proteins of the invention. Preferably, said vector is an adenovirus associated virus.

In a ninth aspect, the invention features a method of treating or preventing an obesity-related disease or disorder comprising providing to an individual in need of such treatment a pharmaceutical composition comprising the leptin polypeptide fragments and variants of the invention. Preferably, said disease is congenital generalized lipodystrophy. Alternatively, the patient is provided a chimeric oligonucleotide of the invention or a polynucleotide or recombinant vector encoding a zinc finger protein of the invention. Preferably, said providing comprises a liposome, and preferably said vector is an adenovirus associated virus. In preferred embodiments, the obesity related disease or disorder is selected from the group consisting of obesity, anorexia, cachexia, cardiac insufficiency, coronary insufficiency, stroke, hypertension, atheromatous disease, atherosclerosis, high blood pressure, non-insulin-dependent diabetes, hyperlipidemia, hyperuricemia, and Syndrome X. Preferably the individual is an animal, preferably a mammal, most preferably a human.

In a tenth aspect, the invention features a method of designing mimetics of a leptin fragment that modulates an activity of LSR, comprising: identifying critical interactions between one or more amino acids of said leptin fragment and LSR; designing potential mimetics to comprise said critical interactions; and testing said potential mimetics ability to modulate said activity as a means for designing said mimetics. Preferably, the leptin fragment consists of the leptin fragment variable region or the leptin fragment central sequence of any one of the leptin polypeptide sequences set forth in Figure 13. Alternatively, the leptin fragment is any one of the leptin fragments or variants of the invention. Preferably, the leptin fragment or variant is from human or mouse leptin. In preferred embodiments, the activity of LSR is selected from the group consisting of leptin binding, leptin uptake, leptin degradation, triglyceride binding, triglyceride uptake, and triglyceride degradation. Preferably the critical interactions are selected from the group consisting of hydrogen bonding, covalent bonding, Van der Waals forces, steric hindrances, and hydrophobic interactions, and are identified using assays selected from the group consisting of NMR, X-ray crystallography, and computer modeling.

In an eleventh aspect, the invention features a method of inhibiting the expression of at least one subunit of LSR, comprising providing to a cell a chimeric oligonucleotide of the invention that changes a amino acid codon to a stop codon. Preferably, the cell is selected from the group consisting of PLC, CHO-K1, HepG2, Hepa 1-6, and Hep3B. Alternatively the cell is in a mammal, preferably a mouse, more preferably in a human, and is provided using a liposome.

In a related aspect, the invention features a method of modulating the expression of at least one subunit of LSR, comprising providing to a cell a polynucleotide encoding a zinc finger protein of the invention. Preferably, said cell is selected from the group consisting of PLC, CHO-K1, HepG2, Hepa 1-

6, and Hep3B. Alternatively, said cell is in an animal, preferably a mammal, and preferably said mammal is a mouse or a human.

In a twelfth aspect, the invention features a method for selecting a compound useful for the treatment or prevention of an obesity-related disease or disorder, comprising: contacting a recombinant 5 cell comprising a polynucleotide or recombinant vector encoding a zinc finger protein of the invention, and that optionally further comprises at least one LSR polypeptide comprising a sequence at least 75% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19, with a candidate compound; and detecting a result selected from the group consisting of a 10 modulation of an activity of the Lipolysis Stimulated Receptor and modulation of expression of the Lipolysis Stimulated Receptor; as a means for selecting said compound useful for the treatment or prevention of said obesity-related disease or disorder. In preferred embodiments, said contacting is in the presence of a ligand of said Lipolysis Stimulated Receptor. Preferably, said ligand is selected from the 15 group consisting of cytokine, lipoprotein, free fatty acids, Apm1, and C1q. Most preferably said cytokine is leptin, or a leptin polypeptide fragment or variant of the invention. Alternatively said free fatty acid is oleate.

In preferred embodiments, said LSR activity is selected from the group consisting of binding of lipoproteins, uptake of lipoproteins, degradation of lipoproteins, binding of leptin, uptake of leptin, and degradation of leptin. Preferably said modulation is an increase in said activity, alternatively a decrease 20 in activity. In other preferred embodiments, said expression is on the surface of said cell, and preferably said detecting comprises FACS. Preferably, said detecting further comprises antibodies that bind specifically to said LSR, wherein said LSR comprises an amino acid sequence at least 75% homologous to at least one of the sequences selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ 25 ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19. Most preferably, said antibodies bind specifically to a region of said LSR selected from the group consisting of an amino terminus, a carboxy terminus, a splice site, a cytokine binding site, a fatty acid binding site, a clathrin binding site, an apoprotein ligand binding site, a LI/LL motif, a RSRS motif, and a hydrophobic region. Preferably, said cell is selected from the group consisting of PLC, CHO-K1, Hep3B, Hepa 1-6, and HepG2.

30 In other preferred embodiments, said candidate compound is selected from the group consisting of peptides, peptide libraries, non-peptide libraries, peptoids, fatty acids, lipoproteins, medicaments, antibodies, and small molecules. Preferably, said obesity-related diseases and disorders are selected from the group consisting of obesity, anorexia, cachexia, cardiac insufficiency, coronary insufficiency, stroke, hypertension, atheromatous disease, atherosclerosis, high blood pressure, non-insulin-dependent 35 diabetes, hyperlipidemia, hyperuricemia, and Syndrome X.

In a thirteenth aspect, the invention features a method of selecting for genes that modulate an activity of the Lipolysis Stimulated Receptor, comprising : providing a retroviral gene library to cells that express said Lipolysis Stimulated Receptor; contacting said cells with a ligand of said Lipolysis Stimulated Receptor ; detecting a change in said activity of the Lipolysis Stimulated Receptor as a means 5 for selecting for said genes. In preferred embodiments, said retroviral gene library comprises a cDNA library from tissues selected from the group consisting of liver and adipose. Preferably, said retroviral gene library further comprises a detectable marker protein selected from the group consisting of GFP, truncated CD2, and truncated CD4. In other preferred embodiments, the invention further comprises selecting said cells comprising the retroviral gene library for moderate expression of GFP; preferably 10 said selecting of cells is by FACS.

In other preferred embodiments, said ligand is selected from the group consisting of cytokine, lipoprotein, free fatty acids, Apm1, and C1q. Most preferably said cytokine is leptin, or a leptin polypeptide fragment or variant of the invention. Alternatively said free fatty acid is oleate.

In yet other preferred embodiments, preferably said detecting a change in said activity comprises 15 FACS. Preferably, said detecting further comprises antibodies that bind specifically to said LSR, wherein said LSR comprises an amino acid sequence at least 75% homologous to at least one of the sequences selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19. Most 20 preferably, said antibodies bind specifically to a region of said LSR selected from the group consisting of an amino terminus, a carboxy terminus, a splice site, a cytokine binding site, a fatty acid binding site, a clathrin binding site, an apoprotein ligand binding site, a LI/LL motif, a RSRS motif, and a hydrophobic region. Preferably, said cell is selected from the group consisting of PLC, CHO-K1, Hep3B, Hepa 1-6, and HepG2.

25

DETAILED DESCRIPTION OF THE INVENTION

LSR (Lipolysis Stimulated Receptor), which is described in PCT publication No WO 1B98/01257 (hereby incorporated by reference herein in its entirety including any figures, tables, or drawings), is expressed on the surface of hepatic cells, and is involved in the partitioning of dietary lipids between the liver and peripheral tissues, including muscles and adipose tissue. The *LSR* gene encodes, 30 by alternative splicing, three types of subunits, LSR α , LSR α' , and LSR β . The α' subunit specifically binds a cytokine, leptin, which activates LSR and is taken up and degraded. The invention is drawn *inter alia* to compounds that modulate the interaction between LSR and leptin useful in the treatment or prevention of obesity-related diseases and disorders.

Definitions

Before describing the invention in greater detail, the following definitions are set forth to illustrate and define the meaning and scope of the terms used to describe the invention herein.

As used interchangeably herein, the terms "oligonucleotides", and "polynucleotides" include 5 RNA, DNA, or RNA/DNA hybrid sequences of more than one nucleotide in either single chain or duplex form. The terms "nucleotide", "nucleotide sequence" and "nucleic acid" are used herein consistently with their use in the art, including to encompass "modified nucleotides" which comprise at least one modification, including by way of example and not limitation: (a) an alternative linking group, (b) an analogous form of purine, (c) an analogous form of pyrimidine, or (d) an analogous sugar. For examples 10 of analogous linking groups, purines, pyrimidines, and sugars see for example PCT publication No. WO 95/04064. The polynucleotide sequences of the invention may be prepared by any known method, including synthetic, recombinant, *ex vivo* generation, or a combination thereof, as well as utilizing any purification methods known in the art.

The terms polynucleotide construct, recombinant polynucleotide and recombinant polypeptide 15 are used herein consistently with their use in the art. The terms "upstream" and "downstream" are also used herein consistently with their use in the art. The terms "base paired" and "Watson & Crick base paired" are used interchangeably herein and consistently with their use in the art. Similarly, the terms "complementary", "complement thereof", "complement", "complementary polynucleotide", "complementary nucleic acid" and "complementary nucleotide sequence" are used interchangeably 20 herein and consistently with their use in the art.

The term "purified" is used herein to describe a polynucleotide or polynucleotide vector of the invention that has been separated from other compounds including, but not limited to, other nucleic acids, carbohydrates, lipids and proteins (such as the enzymes used in the synthesis of the polynucleotide). Purified can also refer to the separation of covalently closed polynucleotides from 25 linear polynucleotides, or vice versa, for example. A polynucleotide is substantially pure when at least about 50%, 60%, 75%, or 90% of a sample contains a single polynucleotide sequence. In some cases this involves a determination between conformations (linear versus covalently closed). A substantially pure polynucleotide typically comprises about 50, 60, 70, 80, 90, 95, 99% weight/weight of a nucleic acid sample. Polynucleotide purity or homogeneity may be indicated by a number of means well known in 30 the art, such as agarose or polyacrylamide gel electrophoresis of a sample, followed by visualizing a single polynucleotide band upon staining the gel. For certain purposes higher resolution can be provided by using HPLC or other means well known in the art.

Similarly, the term "purified" is used herein to describe a polypeptide of the invention that has been separated from other compounds including, but not limited to, nucleic acids, lipids, carbohydrates 35 and other proteins. In some preferred embodiments, a polypeptide is substantially pure when at least about 50%, 60%, 75%, 85%, 90%, or 95% of a sample exhibits a single polypeptide sequence. In some

preferred embodiments, a substantially pure polypeptide typically comprises about 50%, 60%, 70%, 80%, 90% 95%, or 99% weight/weight of a protein sample. Polypeptide purity or homogeneity is indicated by a number of methods well known in the art, such as agarose or polyacrylamide gel electrophoresis of a sample, followed by visualizing a single polypeptide band upon staining the gel. For 5 certain purposes higher resolution can be provided by using HPLC or other methods well known in the art.

Further, as used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly 10 contemplated. Alternatively, purification may be expressed as "at least" a percent purity relative to heterologous polynucleotides (DNA, RNA or both) or polypeptides. As a preferred embodiment, the polynucleotides or polypeptides of the present invention are at least; 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% pure relative to heterologous polynucleotides or 15 polypeptides. As a further preferred embodiment the polynucleotides or polypeptides have an "at least" purity ranging from any number, to the thousandth position, between 90% and 100% (e.g., at least 99.995% pure) relative to heterologous polynucleotides or polypeptides. Additionally, purity of the polynucleotides or polypeptides may be expressed as a percentage (as described above) relative to all materials and compounds other than the carrier solution. Each number, to the thousandth position, may be claimed as 20 individual species of purity.

The term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or DNA or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotide could be part of a vector and/or such polynucleotide or polypeptide could be part of 25 a composition, and still be isolated in that the vector or composition is not part of its natural environment.

Specifically excluded from the definition of "isolated" are: naturally occurring chromosomes (e.g., chromosome spreads), artificial chromosome libraries, genomic libraries, and cDNA libraries that exist either as an *in vitro* nucleic acid preparation or as a transfected/transformed host cell preparation, wherein 30 the host cells are either an *in vitro* heterogeneous preparation or plated as a heterogeneous population of single colonies. Also specifically excluded are the above libraries wherein a 5' EST makes up less than 5% of the number of nucleic acid inserts in the vector molecules. Further specifically excluded are whole cell genomic DNA or whole cell RNA preparations (including said whole cell preparations which are mechanically sheared or enzymatically digested). Further specifically excluded are the above whole cell 35 preparations as either an *in vitro* preparation or as a heterogeneous mixture separated by electrophoresis (including blot transfers of the same) wherein the polynucleotide of the invention have not been further

separated from the heterologous polynucleotides in the electrophoresis medium (e.g., further separating by excising a single band from a heterogeneous band population in an agarose gel or nylon blot).

The term “primer” denotes a specific oligonucleotide sequence which is complementary to a target nucleotide sequence and used to hybridize to the target nucleotide sequence. A primer serves as an initiation point for nucleotide polymerization catalyzed by DNA polymerase, RNA polymerase, or reverse transcriptase.

The term “probe” denotes a defined nucleic acid segment (or nucleotide analog segment, e.g., PNA as defined hereinbelow) which can be used to identify a specific polynucleotide sequence present in a sample, said nucleic acid segment comprising a nucleotide sequence complementary to the specific polynucleotide sequence to be identified.

The term “polypeptide” refers to a polymer of amino acids without regard to the length of the polymer. Thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not specify or exclude post-expression modifications of polypeptides. For example, polypeptides that include the covalent attachment of glycosyl groups, acetyl groups, phosphate groups, lipid groups and the like are expressly encompassed by the term polypeptide. Also included within the definition are polypeptides which contain one or more analogs of an amino acid (including, for example, non-naturally occurring amino acids, amino acids which only occur naturally in an unrelated biological system, modified amino acids from mammalian systems etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.

Without being limited by theory, the compounds/polypeptides of the invention are believed to treat “diseases involving the partitioning of dietary lipids between the liver and peripheral tissues”. The term “peripheral tissues” is meant to include muscle and adipose tissue. In preferred embodiments, the compounds/polypeptides of the invention partition the dietary lipids toward the muscle. In alternative preferred embodiments, the dietary lipids are partitioned toward the adipose tissue. In other preferred embodiments, the dietary lipids are partitioned toward the liver. In yet other preferred embodiments, the compounds/polypeptides of the invention increase or decrease the oxidation of dietary lipids, preferably free fatty acids (FFA) by the muscle. Dietary lipids include, but are not limited to triglycerides and free fatty acids.

Preferred diseases believed to involve the partitioning of dietary lipids include obesity and obesity-related diseases and disorders such as atherosclerosis, heart disease, insulin resistance, hypertension, stroke, Syndrome X, and Type II diabetes. Type II diabetes-related complications to be treated by the methods of the invention include microangiopathic lesions, ocular lesions, and renal lesions. Heart disease includes, but is not limited to, cardiac insufficiency, coronary insufficiency, and high blood pressure. Other obesity-related disorders to be treated by compounds of the invention include hyperlipidemia and hyperuricemia. Yet other obesity-related diseases or disorders of the invention

include cachexia, wasting, AIDS-related weight loss, neoplasia-related weight loss, anorexia, and bulimia.

The term “obesity” as used herein is defined in the WHO classifications of weight (Kopelman (2000) *Nature* 404:635-643). Underweight is less than 18.5 (thin); Healthy is 18.5-24.9 (normal); grade 5 1 overweight is 25.0-29.9 (overweight); grade 2 overweight is 30.0-39.0 (obesity); grade 3 overweight is greater than or equal to 40.0 BMI (morbid obesity). BMI is body mass index and is kg/m². Waist circumference can also be used to indicate a risk of metabolic complications where in men a circumference of greater than or equal to 94 cm indicates an increased risk, and greater than or equal to 102 cm indicates a substantially increased risk. Similarly for women, greater than or equal to 88 cm 10 indicates an increased risk, and greater than or equal to 88 cm indicates a substantially increased risk. The waist circumference is measured in cm at midpoint between lower border of ribs and upper border of the pelvis. Other measures of obesity include, but are not limited to, skinfold thickness which is a measurement in cm of skinfold thickness using calipers, and bioimpedance, which is based on the principle that lean mass conducts current better than fat mass because it is primarily an electrolyte solution; measurement of resistance to a weak current (impedance) applied across extremities provides 15 an estimate of body fat using an empirically derived equation.

The term “agent acting on the partitioning of dietary lipids between the liver and peripheral tissues” refers to a compound or polypeptide of the invention that modulates the partitioning of dietary lipids between the liver and the peripheral tissues as previously described. Preferably, the agent increases or decreases the oxidation of dietary lipids, preferably free fatty acids (FFA) by the muscle. 20 Preferably the agent decreases or increases the body weight of individuals or is used to treat or prevent an obesity-related disease or disorder such as atherosclerosis, heart disease, insulin resistance, hypertension, stroke, Syndrome X, and Type II diabetes. Type II diabetes-related complications to be treated by the methods of the invention include, but are not limited to, microangiopathic lesions, ocular lesions, and 25 renal lesions. Heart disease includes, but is not limited to, cardiac insufficiency, coronary insufficiency, and high blood pressure. Other obesity-related disorders to be treated by compounds of the invention include hyperlipidemia and hyperuricemia. Yet other obesity-related diseases or disorders of the invention include cachexia, wasting, AIDS-related weight loss, anorexia, and bulimia.

The terms “response to an agent acting on the partitioning of dietary lipids between the liver and 30 peripheral tissues ” refer to drug efficacy, including but not limited to, ability to metabolize a compound, to the ability to convert a pro-drug to an active drug, and to the pharmacokinetics (absorption, distribution, elimination) and the pharmacodynamics (receptor-related) of a drug in an individual.

The terms “side effects to an agent acting on the partitioning of dietary lipids between the liver and peripheral tissues ” refer to adverse effects of therapy resulting from extensions of the principal 35 pharmacological action of the drug or to idiosyncratic adverse reactions resulting from an interaction of the drug with unique host factors. “Side effects to an agent acting on the partitioning of dietary lipids

between the liver and peripheral tissues " can include, but are not limited to, adverse reactions such as dermatologic, hematologic or hepatologic toxicities and further includes gastric and intestinal ulceration, disturbance in platelet function, renal injury, nephritis, vasomotor rhinitis with profuse watery secretions, angioneurotic edema, generalized urticaria, and bronchial asthma to laryngeal edema and

5 bronchoconstriction, hypotension, and shock.

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides which are comprised of at least one binding domain, where an antibody binding domain is formed from the folding of variable domains of an antibody molecule to form three-dimensional binding spaces with an internal surface shape and charge distribution complementary to the features of an antigenic determinant of an 10 antigen, and that allows an immunological reaction with the antigen. Antibodies include recombinant proteins comprising the antibody binding domains, as well as fragments, including Fab, Fab', F(ab)2, and F(ab')2 fragments.

As used herein, an "antigenic determinant" is the portion of an antigen molecule, in this case an LSR polypeptide, that determines the specificity of the antigen-antibody reaction. An "epitope" refers to an antigenic determinant of a polypeptide. An epitope can comprise as few as 3 amino acids in a spatial conformation which is unique to the epitope. Generally an epitope consists of at least 6 such amino acids, and more usually at least 8-10 such amino acids. Methods for determining the amino acids which make up an epitope include x-ray crystallography, 2-dimensional nuclear magnetic resonance, and epitope mapping e.g. the Pepscan method described by H. Mario Geysen et al. 1984. Proc. Natl. Acad. Sci. U.S.A. 81:3998-4002; PCT Publication No. WO 84/03564; and PCT Publication No. WO 84/03506.

The term "compound" as used herein refers to molecules, either organic or inorganic, that can be tested for activity in an assay. Preferably, compounds have a low molecular weight of less than 500 kda, some compounds can have a molecular weight between 500 and 1500, other compounds may have a molecular weight of at least 1500 kda. In addition, compounds of interest preferably have a desired 25 activity at a low concentration, e.g. a compound that is active at a concentration of 1 ng/mL or less, is generally preferred over one that is active at 1 ng/mL to 100 ng/mL, or one that is active only at concentrations greater than 100 ng/mL. Examples of compounds to be tested in the assays herein include: peptides, peptide libraries, non-peptide libraries, antibodies, and peptoids.

The term "activity" as used herein refers to a measurable result of the interaction of molecules.

30 For example, some LSR activities include leptin binding, leptin uptake, leptin degradation, as well as triglyceride binding, triglyceride uptake, and triglyceride degradation. Some exemplary methods of measuring these activities are provided herein.

The term "modulate" as used herein refers to the ability of a compound to change an activity in some measurable way as compared to an appropriate control. As a result of the presence of compounds 35 in the assays, activities can increase (e.g. there could be increased levels of leptin binding), or "decrease" (e.g. there could be decreased levels of leptin binding) as compared to controls in the absence of these

compounds. Preferably, an increase in activity is at least 25%, more preferably at least 50%, most preferably at least 100% compared to the level of activity in the absence of the compound. Similarly, a decrease in activity is preferably at least 25%, more preferably at least 50%, most preferably at least 100% compared to the level of activity in the absence of the compound. A compound that increases a known activity is an “agonist”. One that decreases, or prevents, a known activity is an “antagonist”.

The term “monitoring” as used herein refers to any method in the art by which an activity can be measured. For each of the activities in the assays of the invention, exemplary methods are provided in the Examples section.

The term “providing” as used herein refers to any means of adding a compound or molecule to something known in the art. Examples of providing can include the use of pipets, pipettmen, syringes, needles, tubing, guns, etc. This can be manual or automated. It can include transfection by any mean or any other means of providing nucleic acids to dishes, cells, tissue, cell-free systems and can be *in vitro* or *in vivo*. Methods are provided in the Examples section as examples.

The term “LSR-related diseases and disorders” as used herein refers to any disease or disorder or condition comprising an aberrant functioning of LSR, or a subunit(s) of LSR, to include aberrant levels of expression of LSR, or a subunit(s) of LSR (either increased or decreased), aberrant activity of LSR (either increased or decreased), and aberrant interactions with ligands or binding partners (either increased or decreased). By “aberrant” is meant a change from the type, or level of activity seen in normal cells, tissues, or individuals, or seen previously in the cell, tissue, or individual prior to the onset of the illness.

The term “cosmetic treatments” is meant to include treatments with compounds or polypeptides of the invention that increase or decrease the body mass of an individual where the individual is not clinically obese or clinically thin. Thus, these individuals have a body mass index (BMI) below the cut-off for clinical obesity (*e.g.* below 25 kg/m²) and above the cut-off for clinical thinness (*e.g.* above 18.5 kg/m²). In addition, these individuals are preferably healthy (*e.g.* do not have an obesity-related disease or disorder of the invention). “Cosmetic treatments” are also meant to encompass, in some circumstances, more localized increases in adipose tissue, for example, gains or losses specifically around the waist or hips, or around the hips and thighs, for example. These localized gains or losses of adipose tissue can be identified by increases or decreases in waist or hip size, for example.

The term “preventing” as used herein refers to administering a compound prior to the onset of clinical symptoms of a disease or conditions so as to prevent a physical manifestation of aberrations associated with obesity or LSR.

The term “treating” as used herein refers to administering a compound after the onset of clinical symptoms.

The term “in need of treatment” as used herein refers to a judgment made by a caregiver (*e.g.* physician, nurse, nurse practitioner, etc in the case of humans; veterinarian in the case of animals,

including non-human mammals) that an individual or animal requires or will benefit from treatment.

This judgment is made based on a variety of factors that are in the realm of a care giver's expertise, but that include the knowledge that the individual or animal is ill, or will be ill, as the result of a condition that is treatable by the compounds of the invention.

5 The term "perceives a need for treatment" refers to a sub-clinical determination that an individual desires to reduce weight for cosmetic reasons as discussed under "cosmetic treatment" above. The term "perceives a need for treatment" in other embodiments can refer to the decision that an owner of an animal makes for cosmetic treatment of the animal.

The term "individual" as used herein refers to a mammal, including animals, preferably mice, 10 rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, most preferably humans.

The term "non-human animal" refers to any non-human vertebrate, birds and more usually mammals, preferably primates, animals such as swine, goats, sheep, donkeys, horses, cats, dogs, rabbits or rodents, more preferably rats or mice. Both the terms "animal" and "mammal" expressly embrace human subjects unless preceded with the term "non-human".

15 The terms "percentage of sequence identity" and "percentage homology" are used interchangeably herein to refer to comparisons among polynucleotides and polypeptides, and are determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or 20 deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Homology is evaluated using any of the variety of sequence comparison 25 algorithms and programs known in the art. Such algorithms and programs include, but are by no means limited to, TBLASTN, BLASTP, FASTA, TFASTA, and CLUSTALW (Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8):2444-2448; Altschul et al., 1990, J. Mol. Biol. . 215(3):403-410) Thompson et al., 1994, Nucleic Acids Res. 22(2):4673-4680; Higgins et al., 1996, Methods Enzymol. 266:383-402; Altschul et al., 1990, J. Mol. Biol. 215(3):403-410; Altschul et al., 1993, Nature Genetics 30 3:266-272). In a particularly preferred embodiment, protein and nucleic acid sequence homologies are evaluated using the Basic Local Alignment Search Tool ("BLAST") which is well known in the art (see e.g., Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. USA 87:2267-2268; Altschul et al., 1990, J. Mol. Biol. 215:403-410; Altschul et al., 1993, Nature Genetics 3:266-272; Altschul et al., 1997, Nuc. Acids Res. 25:3389-3402. In particular, five specific BLAST programs are used to perform the following task:

35 (1) BLASTP and BLAST3 compare an amino acid query sequence against a protein sequence database;

- (2) BLASTN compares a nucleotide query sequence against a nucleotide sequence database;
- (3) BLASTX compares the six-frame conceptual translation products of a query nucleotide sequence (both strands) against a protein sequence database;
- (4) TBLASTN compares a query protein sequence against a nucleotide sequence database

5 translated in all six reading frames (both strands); and

- (5) TBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.

The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as "high-scoring segment pairs," between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. High-scoring segment pairs are preferably identified (i.e., aligned) by means of a scoring matrix, many of which are known in the art. Preferably, the scoring matrix used is the BLOSUM62 matrix (Gonnet et al., 1992, *Science* 256:1443-1445; Henikoff and Henikoff, 1993, *Proteins* 17:49-61. Less preferably, the PAM or PAM250 matrices may also be used (see, e.g., Schwartz and Dayhoff, eds., 1978, *Matrices for Detecting Distance Relationships: Atlas of Protein Sequence and Structure*, Washington: National Biomedical Research Foundation). The BLAST programs evaluate the statistical significance of all high-scoring segment pairs identified, and preferably selects those segments which satisfy a user-specified threshold of significance, such as a user-specified percent homology. Preferably, the statistical significance of a high-scoring segment pair is evaluated using the statistical significance formula of Karlin (see, e.g., Karlin and Altschul, 1990, *Proc. Natl. Acad. Sci. USA* 87:2267-2268).

By way of example and not limitation, procedures using conditions of high stringency are as follows: Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65°C in buffer composed of 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 µg/mL denatured salmon sperm DNA. Filters are hybridized for 48 h at 65 °C, the preferred hybridization temperature, in prehybridization mixture containing 100 µg/mL denatured salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Alternatively, the hybridization step can be performed at 65 °C in the presence of SSC buffer, 1 x SSC corresponding to 0.15 M NaCl and 0.05 M Na citrate. Subsequently, filter washes can be done at 37 °C for 1 h in a solution containing 2 x SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA, followed by a wash in 0.1 X SSC at 50 °C for 45 min. Alternatively, filter washes can be performed in a solution containing 2 x SSC and 0.1% SDS, or 0.5 x SSC and 0.1% SDS, or 0.1 x SSC and 0.1% SDS at 68 °C for 15 minute intervals. Following the wash steps, the hybridized probes are detectable by autoradiography. Other conditions of high stringency that may be used are well known in the art (see, for example, Sambrook et al., 1989; and Ausubel et al., 1989, both of which are hereby incorporated by reference herein in their entirety).

35 These hybridization conditions are suitable for a nucleic acid molecule of about 20 nucleotides in length. A person of ordinary skill in the art will realize that the hybridization conditions described

above are to be adapted according to the length of the desired nucleic acid following techniques well known to the one skilled in the art. Suitable hybridization conditions may for example be adapted according to the teachings disclosed in the book of Hames and Higgins (1985) or in Sambrook et al.(1989).

5 Variants

It will be recognized by one of ordinary skill in the art that some amino acids of the polypeptide sequences of the present invention can be varied without significant effect on the structure or function of the protein; there will be critical amino acids in the polypeptide sequence that determine activity. Thus, the invention further includes variants of polypeptides. Such variants include polypeptide sequences with 10 one or more amino acid deletions, insertions, inversions, repeats, and substitutions either from natural mutations or human manipulation selected according to general rules known in the art so as to have little effect on activity. Guidance concerning how to make phenotypically silent amino acid substitutions is provided below.

There are two main approaches for studying the tolerance of an amino acid sequence to change (See, Bowie, J. U. et al. 1990). The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality.

These studies have revealed that proteins are surprisingly tolerant of amino acid substitutions and indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described by Bowie et al. (*supra*) and the references cited therein.

Typically seen as conservative substitutions are the replacements, one for another, among the 25 aliphatic amino acids Ala, Val, Leu and Phe; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe, Tyr. In addition, the following groups of amino acids generally represent equivalent changes: (1) Ala, Pro, Gly, Glu, Asp, Gln, Asn, Ser, Thr; (2) Cys, Ser, Tyr, Thr; (3) Val, Ile, Leu, Met, Ala, Phe; (4) Lys, Arg, His; (5) Phe, 30 Tyr, Trp, His.

Similarly, amino acids in polypeptide sequences of the invention that are essential for function can also be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (See, e.g., Cunningham et al. 1989). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for obesity-related activity using assays as described above. Of special interest are substitutions of charged amino acids with other charged or neutral amino acids that may produce proteins with highly desirable improved

characteristics, such as less aggregation. Aggregation may not only reduce activity but also be problematic when preparing pharmaceutical formulations, because aggregates can be immunogenic, (See, e.g., Pinckard, et al., 1967; Robbins, et al., 1987; and Cleland, et al., 1993).

Thus, the fragment, derivative, analog, or homolog of the polypeptide of the present invention

5 may be, for example: (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code: or (ii) one in which one or more of the amino acid residues includes a substituent group: or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for 10 example, polyethylene glycol): or (iv) one in which the additional amino acids are fused to the above form of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a pro-protein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

15 A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid substitutions. Also provided are polypeptides which comprise the 20 amino acid sequence of polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

Another specific embodiment of a modified polypeptide of the invention is a polypeptide that is 25 resistant to proteolysis, for example a polypeptide in which a -CONH- peptide bond is modified and replaced by one or more of the following: a (CH₂NH) reduced bond; a (NHCO) retro inverso bond; a (CH₂-O) methylene-oxy bond; a (CH₂-S) thiomethylene bond; a (CH₂CH₂) carba bond; a (CO-CH₂) cetomethylene bond; a (CHOH-CH₂) hydroxyethylene bond); a (N-N) bound; a E-alcene bond; or a -CH=CH- bond. Thus, the invention also encompasses a polypeptide or a fragment or a variant thereof in which at least one peptide bond has been modified as described above.

In addition, amino acids have chirality within the body of either L or D. In some embodiments it 30 is preferable to alter the chirality of the amino acids in the polypeptides of the invention in order to extend half-life within the body. Thus, in some embodiments, one or more of the amino acids are preferably in the L configuration. In other embodiments, one or more of the amino acids are preferably in the D configuration.

35 I. Leptin Polynucleotides of the Invention

Polynucleotides have been designed that encode a LSR-binding/activating/modulating portion of the leptin protein. This region was identified by a comparison of the human and murine amino acid sequences, and its activity was confirmed *in vitro* and *in vivo* (See Examples 1-8). The recombinant polynucleotide encoding the LSR-activating leptin fragment can be used in a variety of ways, including:

5 (1) to express the polypeptide in recombinant cells so as to be purified and used as described below, (2) to express the polypeptide in cells as part of an assay system to discover modulators of the leptin/LSR interaction, and (3) as part of a gene surgery where the fragment itself can be used in treatment and/or prevention of obesity-related diseases and disorders and modulating body mass.

The invention relates to the polynucleotides encoding a leptin polypeptide fragment described 10 in the Examples (7 & 8), and variants and fragments thereof as described herein in Leptin Polypeptides of the Invention (section II), as well as to variants and fragments of the polynucleotides that encode these polypeptides. Preferably, polynucleotides are purified, isolated and/or recombinant.

In other preferred embodiments, variants of the leptin polynucleotides encoding leptin 15 polypeptides as described herein in Leptin Polypeptides of the Invention are envisioned. Variants of polynucleotides, as the term is used herein, are polynucleotides whose sequence differs from a reference polynucleotide. A variant of a polynucleotide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally. Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, including those applied to polynucleotides, cells or organisms. Generally, differences are limited so that the 20 nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical.

Variants of leptin polynucleotides according to the invention may include, without being limited to, nucleotide sequences which are at least 90% (preferably at least 95%, more preferably at least 99%, and most preferably at least 99.5%) identical to a polynucleotide that encodes a leptin polypeptide of the 25 invention, or to any polynucleotide fragment of at least 8 (preferably at least 15, more preferably at least 25, and most preferably at least 45) consecutive nucleotides of a polynucleotide that encodes a polypeptide of the invention.

Nucleotide changes present in a variant polynucleotide are preferably silent, which means that they do not alter the amino acids encoded by the polynucleotide. However, nucleotide changes may also 30 result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence. The substitutions, deletions or additions may involve one or more nucleotides. Alterations in the leptin coding regions of the invention may produce conservative or non-conservative amino acid substitutions, deletions or additions in the encoded protein. Preferably, the nucleotide substitutions result in non-conservative amino acid changes and more preferably in 35 conservative amino acid changes in the encoded polypeptide.

In cases where the nucleotide substitutions result in one or more amino acid changes, preferred leptin polypeptides include those that retain the same activities and activity levels as the leptin polypeptide encoded by the reference polynucleotide sequence, as well as those where the level of one or more activities is increased, and alternatively where the level of one or more activities is decreased or 5 even absent. Leptin polypeptide activities of the invention are described herein in the Examples in more detail (1-8, 10 & 14), but include LSR binding leading to the uptake and degradation of leptin, as well as the upregulation of LSR receptors that bind, uptake and degrade triglycerides. Examples of assays to determine the presence or absence of specific leptin activities and the level of the activity(s) are also described herein.

10 By "retain the same activities" is meant that the activity measured using the polypeptide encoded by the variant leptin polynucleotide in assays is at least 75% (preferably at least 85%, more preferably at least 95%, most preferably at least 98%) and not more than 125% (preferably not more than 115%, more preferably not more than 105%, most preferably not more than 102%) of the activity measured using the leptin polypeptide encoded by the reference sequence.

15 By the activity being "increased" is meant that the activity measured using the polypeptide encoded by the variant leptin polynucleotide in assays is at least 125% (preferably at least 150%, more preferably at least 200%, most preferably at least 500%) of the activity measured using the leptin polypeptide encoded by the reference sequence.

20 By the activity being "decreased" is meant that the activity measured using the polypeptide encoded by the variant leptin polynucleotide in assays is not more than 75% (preferably not more than 50%, more preferably not more than 25%, most preferably not more than 10%) of the activity measured using the leptin polypeptide encoded by the reference sequence.

25 By the activity being "absent" is meant that the activity measured using the polypeptide encoded by the variant leptin polynucleotide in assays is less than 25%, alternatively less than 10% (preferably less than 5%, more preferably less than 2%, most preferably less than 1%) of the activity measured using the leptin polypeptide encoded by the reference sequence.

30 A polynucleotide fragment is a polynucleotide having a sequence that entirely is the same as part, but not all, of a given nucleotide sequence, preferably the nucleotide sequence encoding a leptin polypeptide that binds and activates LSR, and variants thereof as described above, and the complements of these polynucleotides. Such fragments may be "free-standing", *i.e.* not part of or fused to other polynucleotides, or they may be comprised within a single larger non-leptin polynucleotide of which they form a part or region. However, several fragments may be comprised within a single larger polynucleotide.

35 Optionally, such fragments may consist of a contiguous span that ranges in length from 8, 10, 12, 15, 18 or 20 to 25, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 nucleotides, or be

specified as being 12, 15, 18, 20, 25, 35, 40, 50, 60, 70, 80, 90, 10, 110, 120, 130, 140, or 150 nucleotides in length.

A preferred embodiment of the invention includes isolated, purified, or recombinant polynucleotides consisting of a contiguous span of at least 12, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80,

5 90, 100, 110, 120, 130, 140, or 150 nucleotides encoding a leptin polypeptide of the invention, or the complements thereof, wherein said contiguous span encodes a fragment of leptin that retains the same activities and activity levels as the leptin polypeptide encoded by the reference polynucleotide sequence, or encodes a fragment of leptin where the level of one or more activities is increased, or alternatively where the level of one or more activities is decreased or even absent as described above.

10 An additional preferred embodiment of the invention includes isolated, purified, or recombinant polynucleotides consisting of a contiguous span of 8 to 50 nucleotides of a leptin polypeptide of the invention, or their variants, or the complements thereof, wherein said contiguous span encodes a fragment of leptin that retains the same activities and activity levels as the leptin polypeptide encoded by the reference polynucleotide sequence, or encodes a fragment of leptin where the level of one or more activities is increased, or alternatively where the level of one or more activities is decreased or even absent as described above. Any of the above-described fragments may be comprised within a larger non-leptin polynucleotide fragment.

II. Leptin Polypeptide Fragments of the Invention

20 Leptin polypeptide fragments that bind/activate/modulate LSR have been identified (Examples 1-8). This region was identified by a comparison of the human and murine leptin amino acid sequences, and its activity confirmed *in vitro* and *in vivo* (See Examples 1-8). The advantages to having identified a leptin fragment responsible for leptin activity, include its use (1) as part of an assay system to discover leptin receptors and binding partners (in association with LSR for example), (2) as a lead molecule for 25 the design of other compounds able to modulate LSR activity, and (3) as part of a treatment and/or prevention for obesity-related diseases and disorders. Knowledge of specific polypeptides involved is especially useful since it allows its use in assay systems (rather than the entire protein) and keeps the cost down (easily synthesized). In addition, a peptide can be expected to easily crystallize in the correct conformation to allow structure-function studies to design other small molecule activators. Finally, use 30 of just the active portion in treatment should increase the chances of the peptide remaining active and potentially decreasing side-effects.

Furthermore, in the process of identifying the “active” portion of human leptin for human cells, a corresponding inhibitory portion of mouse leptin for human cells was identified. Comparisons between the two highly similar fragments will enable the identification of important residues for both increasing 35 the activity of LSR and inhibiting the activity of LSR. This will be useful both in competitive assays for

inhibitors and activators of LSR, and also for treatments in mammals and animals where inhibition of LSR is desired.

The invention relates to leptin polypeptides as well as to variants, fragments, analogs and derivatives of the leptin polypeptides described herein, including modified leptin polypeptides. Preferred 5 embodiments of the invention feature a leptin polypeptide that consists of a sequence described in Example 10, or variants, fragments, analogs, or derivatives thereof. Preferably the polypeptides are, purified, isolated and/or recombinant.

In other preferred embodiments, the invention features a leptin polypeptide fragment that modulates the activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of any 10 one of the leptin polypeptide sequences set forth in Figure 13, wherein said at least 4 and not more than 50 contiguous amino acids comprise the leptin fragment central sequence. By the « leptin fragment central sequence » as used herein is meant the four variable amino acids of the active leptin peptide identified in Example 10 by sequence comparisons and molecular modeling. These residues comprise ETLD (SEQ ID NO:40) and QKPE (SEQ ID NO:41) for the human and mouse sequences, respectively, 15 in Fig. 13. Preferably, the leptin polypeptide fragment comprises at least 10, but not more than 50, more preferably at least 15 but not more than 40, or at least 20 and not more than 40, or most prefereably at least at least 15 but not more than 30, or 20 but not more than 30 contiguous amino acids of any one of the leptin polypeptide sequences set forth in Figure 13, wherein said contiguous amino acids comprise the leptin polypeptide variable region. Preferably the leptin polypeptide fragment is human or mouse, 20 but most preferably human, or a derivative or variant thereof.

Variant leptin polypeptides of the invention may be 1) ones in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be one encoded by the genetic code, or 2) ones in which one or more of the amino acid residues includes a substituent group, or 3) ones in which a modified leptin polypeptide 25 is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or 4) ones in which the additional amino acids are fused to a modified leptin polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the modified leptin polypeptide or a pre-protein sequence. Such variants are deemed to be within the scope of those skilled in the art.

30 Amino acid changes present in a variant polypeptide may be non-conservative amino acid changes but more preferably are conservative amino acid changes. In cases where there are one or more amino acid changes, preferred leptin polypeptides include those that retain the same activities and activity levels as the reference leptin polypeptide sequence, as well as those where the level of one or more activities is increased, and alternatively where the level of one or more activities is decreased or 35 even absent. Assays for determining leptin polypeptide activities of the invention are described herein in the Examples (1-8 & 13) in more detail, but include LSR binding leading to the uptake and degradation

of leptin, as well as the upregulation of LSR receptors that bind, uptake and degrade triglyceride-rich lipoproteins. Examples of assays to determine the presence or absence of specific leptin activities and the level of the activity(s) are also described herein. Definitions of activities are provided in "Leptin Polynucleotides of the Invention" (section I).

5 In preferred embodiments, the invention features a variant of a leptin polypeptide fragment that modulates the activity of LSR, consisting of a 22 contiguous amino acid sequence that is at least 75% identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13. By the « leptin fragment variable region » as used herein is meant the region of 22 amino acids that is shaded in figure 13 for all the species in the alignment. Preferably, the 22 contiguous amino 10 acid sequence is at least 85% identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13, more preferably 90% identical, most preferably 95% identical and optionally 100% identical. Preferably the sequence is human or mouse, and most preferably human.

In yet other preferred embodiments, the invention features a variant of a leptin polypeptide 15 fragment that modulates the activity of LSR, consisting of a 22 contiguous amino acid sequence, wherein at least 16 of the 22 amino acids are identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13. Preferably, at least 18 of the 22 amino acids are identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13, more preferably 20 of the 22 are identical, most preferably all of the amino acids are identical. 20 Preferably the sequence is human or mouse, and most preferably human.

A polypeptide fragment is a polypeptide having a sequence that is entirely the same as part, but not all, of a given polypeptide sequence, preferably a polypeptide encoded by a leptin gene and variants thereof. Such fragments may be "free-standing", *i.e.* not part of or fused to other polypeptides, or they may be comprised within a single larger non-leptin polypeptide of which they form a part or region. 25 However, several fragments may be comprised within a single larger polypeptide. As representative examples of polypeptide fragments of the invention, there may be mentioned those which have from about 4, 5, 6, 7, 8, 9 or 10 to 15, 10 to 20, 15 to 40, or 30 to 55 amino acids long. Preferred are those fragments containing at least one amino acid substitution or deletion in a leptin polypeptide.

The present invention is particularly focused on a set of variant leptin polypeptides and the 30 fragments thereof. A preferred set of polypeptides of the invention include isolated, purified, or recombinant polypeptides comprising a contiguous span of at least 3 (preferably at least 6, more preferably at least 10, most preferably at least 15) amino acids of any of the leptin fragment variable regions of the sequences provided in Figure 13.

35 III. Zinc Finger Proteins of the Invention

Zinc finger proteins of the Cys2His2 type are malleable DNA binding proteins that can be designed to bind diverse sequences, and that typically contain 3 zinc finger domains. The inventors contemplate the use of any zinc finger protein engineered to bind the DNA of interest, specifically. Although six-fingered proteins have been described to target unique sites within the genome

5 (International Publication WO 98/54311, hereby incorporated herein by reference in its entirety including any figures, tables and drawings) proteins with different numbers of fingers that are engineered to bind specifically to the genome are also included in the invention. The six-fingered proteins described in WO 98/54311, bind two 9 contiguous base pair fragments (separated by 0, 1, 2, or 3 nucleotides) of DNA or RNA in a sequence specific fashion, and can be used to regulate gene 10 transcription. The zinc finger proteins of the invention also include those that are designed to bind sequences a greater distance apart and thereby confer greater specificity with fewer (or the same number, or more) "fingers". Methods for designing the zinc finger proteins of the invention, as well as for determining the sequences to which the zinc finger proteins bind, are described in International Publication WO 98/54311 entitled "Zinc Finger Protein Derivatives and Methods Therefor".

15 For one embodiment of the invention, zinc finger proteins have been designed that will bind to the 5' regulatory regions and selected introns of LSR and thereby inhibit or augment the transcription of endogenous LSR as described herein (Example 12). Exogenous LSR that is introduced into the cell without these regulatory regions or introns (cDNA) will be expressed normally. This can be useful *in vitro* both as a research tool to study the role of the various LSR components in leptin signaling and triglyceride-rich lipoprotein uptake and degradation, for example, and as part of an assay to discover 20 modulators of LSRlep and LSRtg activity. Therefore, in currently preferred embodiments, zinc finger proteins are not designed to bind to the exons of LSR. However, in circumstances where no endogenous nor exogenously-introduced LSR activity is desired in a cell, for example, zinc finger proteins designed to bind to LSR exons could be useful.

25 The invention features a zinc finger protein, comprising a DNA binding domain that binds specifically to 18 nucleotides of a sequence at least 50% homologous to SEQ ID NO:1, wherein said 18 nucleotides comprise two fragments of 9 contiguous nucleotides, and wherein said fragments are separated by 0, 1, 2, or 3 nucleotides. In preferred embodiments, the zinc finger protein binds to sequences that are at least 50% homologous to the sequence of the introns of SEQ ID NO:1. Preferably, the sequence is at least 50% 30 homologous to the sequence of the first intron of SEQ ID NO:1. In other preferred embodiments, the zinc finger protein binds specifically to 18 nucleotides of a sequence that is 75% identical, 80%, 85%, or 90% identical, or most preferably 99 to 100% identical to SEQ ID NO :1, the introns of SEQ ID NO :1, or preferably the first intron of SEQ ID NO :1.

In preferred embodiments of the invention, the zinc finger protein of the invention further comprises a 35 functional domain selected from the group consisting of a transcription repressor and a transcription initiator. These repressors and initiators can be any that are known in the art. Preferably, the repressor is a KRAB

repressor and the initiator is a VP16 initiator. In highly preferred embodiments, the protein further comprises a small molecule regulatory system that can be any known in the art; however, the system is preferably selected from the group consisting of a Tet system, RU486, and ecdysone.

It is envisioned that zinc finger proteins could be designed to bind to any 18 or more contiguous base

5 pairs of a sequence at least 50%, preferably 75%, more preferably 90%, most preferably 95% identical to the 5' regulatory region (for example, residues 1-2000 of SEQ ID NO:1) or any of the introns of LSR (for example, 2357 to 3539, 3885 to 12162, 12283 to 15143, 15201 to 17764, 15912 to 19578, 19753 to 19898, 19959 to 20055, 20188 to 20328, and 20958 to 21046 of SEQ ID NO:1), and more preferably residues 2357 to 3539 of SEQ ID NO:1. In particular, introns within 3,000 base pairs of the LSR start site are preferred, for example 10 introns 1 through 3.

Guidance is available for determining optimal base pair stretches for zinc finger protein binding, and for determining what zinc finger amino acids will bind to what DNA sequences (WO 98/54311).

This information has been used to design an algorithm for designing zinc finger proteins available from Sangamo BioSciences. However, as described in WO 98/54311, zinc finger proteins for binding a given piece of DNA can be identified by screening or “panning” libraries of zinc finger proteins with the DNA sequence. Zinc finger libraries can be made, for example, by randomly mutating genes encoding known zinc finger proteins (WO 98/54311). The effectiveness of the zinc finger protein identified by the panning procedure can then be assessed in the *E. coli* method described in WO 98/54311 (co-transfection of genes encoding the zinc finger protein and the gene of which the DNA sequence makes up a part). The effectiveness of the zinc finger protein for inhibiting LSR expression can be further tested using the assay systems described in the Examples (1-8); in particular the use of FACS following staining with an LSR specific antibody and quantitative PCR will be useful.

In preferred embodiments, addition of the zinc finger protein preferably inhibits LSR transcription completely, or inhibits LSR translation completely. By “inhibits transcription completely” is meant that the level of transcription following addition of the zinc finger protein is preferably below the level of detection by the assay used as compared to control cells. The assay used may be a Northern blot, or any other assay that measures RNA expression, such as quantitative PCR. Alternatively, the level of transcription of LSR may be significantly reduced. By “significantly reduced” is meant that the amount of RNA is preferably reduced at least 2-fold, more preferably at least 5-fold, and most preferably at least 10-fold compared to the level RNA prior to the addition of the zinc finger protein, or the level in control cells.

Similarly, by “inhibits translation completely” is meant that LSR protein is preferably below the level of detection by the assay used compared with control cells. The assay used may be a Western blot, or dot blot, or other type of immunoassay for example, or any other assay known in the art to be used to measure or detect the presence of proteins, such as FACS with fluorescent antibodies to LSR.

Alternatively, the level of translation of LSR may be significantly reduced. By “significantly reduced”

is meant the amount of protein present is preferably reduced at least 2-fold, more preferably at least 5-fold, most preferably at least 10-fold compared to the level of protein present prior to the addition of zinc finger protein, or in control cells.

Highly preferred sequences to be used for designing zinc finger proteins include, residues 1841

5 to 1860, 1880 to 1898, 1918 to 1945, 1951 to 1973, and 3362 to 3382 of human LSR (SEQ ID NO:1) and of the homologous regions in genes coding for LSR proteins of other species, preferably including mouse and rat LSR. The genomic sequences encoding LSR from other species can be identified by methods well-known in the art.

These zinc finger proteins can also be useful *in vivo* both as part of an assay system in animal

10 models to discover modulators of LSRlep (at least α' , may include β and/or α) and LSRtg (at least α , may include β and/or α') activity, as well as in gene surgery in which transcription of endogenous LSR is inhibited as part of the treatment for an obesity-related disease or disorder. This could be useful in a case where the LSR message was being over-expressed, or incorrectly expressed (mutated), for example. A potential therapy would include providing this zinc finger protein alone, in cases of simple over-expression, or in conjunction with other appropriate components of LSR if the cellular LSR was mutated. These proteins could be targeted to the appropriate cells (those with LSR) by using liposomes, for example, with leptin or another LSR binding protein in the liposome membrane.

In an alternative embodiment of the invention, zinc finger proteins are designed to bind to the 5' regulatory regions of LSR and thereby increase the transcription of endogenous LSR. Typically, within the 5' regulatory region of genes are promoters as well as other regulatory elements. Binding of zinc finger proteins to certain regions of the DNA may serve to facilitate binding of the initiation complex and thus transcription of the gene. For instance, where some unusual folding prevents access to the promoter region, if a zinc finger protein were to bind the DNA upstream such that the folding were prevented, then the promoter would have greater access and enhanced transcription should result.

20 25 Alternatively, it may be possible to design a zinc finger protein that binds the promoter region directly, thereby initiating transcription.

In these and other circumstances, zinc finger binding proteins designed to bind stretches of DNA in the 5' regulatory region as described above can be tested for their ability to enhance transcription of LSR. Thus, in preferred embodiments, addition of the zinc finger protein preferably significantly increases LSR transcription, or significantly increases LSR translation. By "significantly increases LSR transcription" is meant that the level of transcription following addition of the zinc finger protein is preferably increased at least 2-fold, more preferably at least 5-fold, and most preferably at least 10-fold compared to the level RNA prior to the addition of the zinc finger protein. The assay used may be a Northern blot, or any other assay that measures RNA expression. Alternatively, if the starting level of RNA transcription is below the level of detection by the assay used, "significantly increases LSR

transcription” may mean that the level of transcription of LSR may become detectable on the addition of the zinc finger binding protein.

Similarly, by “significantly increases LSR translation” is meant that the level of translation following addition of the zinc finger protein is preferably increased at least 2-fold, more preferably at 5 least 5-fold, and most preferably at least 10-fold compared to the level of translation prior to the addition of the zinc finger protein. The assay used may be a Western blot, or dot blot, or other type of immunoassay for example, or any other assay known in the art to be used to measure or detect the presence of proteins. Alternatively, if the starting level of LSR protein is below the level of detection by the assay used, “significantly increases LSR translation” may mean that LSR protein may become 10 detectable after the addition of the zinc finger binding protein.

These zinc finger proteins can be useful *in vivo* in gene surgery in which transcription of endogenous LSR is enhanced as part of the treatment for an obesity-related disease or disorder. This can be envisioned in a situation where higher levels of the LSR protein are thought to be advantageous for the patient clinically. For example, increased expression of LSR could be advantageous when the LSR gene is normal, but is expressed at lower than normal levels, or when it is expressed at normal levels, but does not function as efficiently as it should in clearing triglycerides from the bloodstream, or when some other abnormality results in abnormally high levels of triglycerides and an increased amount of LSR protein is necessary to clear them.

In a further alternative embodiment of the invention, zinc finger proteins are designed to bind to 20 any sequence of 18 or more contiguous base pairs of LSR mRNA and thereby inhibit translation of LSR. In preferred embodiments, expression of all three forms of LSR are inhibited by the zinc finger protein. In an alternative embodiment, zinc finger proteins are designed to specifically inhibit expression of the LSR α , α' , or β subunit individually, or to inhibit both the LSR α and α' subunits. All three forms of LSR can be inhibited by zinc finger proteins targeted to mRNA fragments transcribed from exons one 25 through 3 and exon 6 to the end. The α subunit can be targeted with zinc finger proteins designed to bind in exon 4. The α' subunit can be targeted with zinc finger proteins designed to bind to the splice site between exon 3 and exon 5. The β subunit can be targeted with zinc finger proteins designed to bind to the splice site between exon 3 and exon 6. Both the α and α' subunits can be targeted with zinc finger proteins designed to bind to exon 5.

30 These zinc finger proteins would be useful for many of the uses previously described for zinc finger proteins binding to and inhibiting or increasing transcription of LSR DNA. Similarly the definitions for inhibiting or increasing LSR transcription and tests for the desired zinc finger proteins and methods for designing and making them would be as previously described. In addition, for all of the zinc fingers described, it should be remembered that the system can be further controlled by addition of 35 a small molecule control system (for example the Tet-responsive system, or RU486, or ecdysone) to the cell. This allows greater control/greater finesse for an *in vitro* assay system, in particular, but can be

used *in vivo* as well. The basic idea is to provide the zinc finger with part of the Tet system integrated upstream such that transcription of the zinc finger protein can be regulated by the addition of an outside element, for example Dox or Tc. These methods are well-known to those in the art.

5 IV. Polynucleotides Encoding Zinc Finger Polypeptides of the Invention

The invention also features polynucleotides that encode the zinc finger polypeptides of the invention described above. In one method of identifying the desired zinc finger polypeptides of the invention, libraries are screened (panned) for those clones expressing a zinc finger protein that binds to the desired nucleotide sequence. Frequently, multiple clones are identified that express zinc finger 10 proteins that bind to the nucleotide sequence. All the variant polynucleotides that code for the zinc finger polypeptide(s) that bind to the desired sequence are also part of the present invention.

Variants of polynucleotides, as the term is used here, are polynucleotides whose sequence differs from a reference polynucleotide; in this case a reference polynucleotide is the polynucleotide that is ultimately chosen to be used. Thus, the variant of the polynucleotide would frequently be the 15 result of mutagenesis techniques as described in WO 98/54311. Generally, differences are limited so that the nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical.

Nucleotide changes present in a variant polynucleotide are preferably silent, which means that they do not alter the amino acids encoded by the polynucleotide. However, nucleotide changes may also 20 result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence. The substitutions, deletions or additions may involve one or more nucleotides. Alterations in the zinc finger polypeptide coding regions of the invention may produce conservative or non-conservative amino acid substitutions, deletions or additions in the encoded protein. Preferably, the nucleotide substitutions result in non-conservative amino acid changes and more 25 preferably in conservative amino acid changes in the encoded polypeptide.

In cases where the nucleotide substitutions result in one or more amino acid changes, preferred zinc finger polypeptides include those that retain the same activities and activity levels as the zinc finger polypeptide encoded by the reference polynucleotide sequence, as well as those where the level of one or more activities is increased, and alternatively where the level of one or more activities is decreased or 30 even absent. Zinc finger polypeptide activities of the invention and methods for testing are described above.

A polynucleotide fragment is a polynucleotide having a sequence that entirely is the same as part, but not all, of a given nucleotide sequence, preferably the nucleotide sequence encoding a zinc finger polypeptide, and variants thereof, as described above, and the complements of these polynucleotides. 35 Such fragments may be “free-standing”, *i.e.* not part of or fused to other polynucleotides, or they may be comprised within a single larger polynucleotide of which they form a part or region. However, several

fragments may be comprised within a single larger polynucleotide. Optionally, such fragments may consist of a contiguous span that ranges in length from 8, 10, 12, 15, 18 or 20 to 25, 35, 40, 50, or 60 nucleotides, or be specified as being 12, 15, 18, 20, 25, 35, 40, 50, or 60 nucleotides in length.

5 V. Chimeric Oligonucleotides of the Invention

Chimeraplasty is a technique used to change the nucleotide sequence of DNA of cells and of animals (Science 285 :316-318 (1999)). It can be used to create or to correct mutations, usually point mutations, that have an effect on the protein coding sequence. The technique relies on hybrid molecules of DNA and RNA called chimeras that contain DNA with a mutation in its sequence (compared to the target sequence in the cell) flanked by RNA that perfectly mirrors the flanking target gene sequence. The target gene sequence is thought to be modified through the action of the cell's DNA repair machinery as a result of the pairing of the target DNA with the chimera containing the mutated sequence.

In the present invention, the advantages to using chimeraplasty to modify LSR include : (1) ease of creating cells lacking LSR polypeptides for use in assays or gene surgery; (2) specifically blocking production of the α subunit or the α and α' subunits for use in assays or in gene surgery; and (3) the ability to correct defects in the LSR gene in cells *in vitro* and *in vivo* for use in gene surgery.

Chimeraplasty has been shown to be effective for correcting (or creating) mutations in cells *in vitro* and *in vivo* in animals (Cole-Strauss, et al. Science 273 : 13861389 (1996) ; Alexeev and Yoon Nature Biotechnology 16 : 1343-1346 (1998) ; Kren et al Nature Medecine 4 : 285-290 (1998) ; Yoon et al Proc Natl. Acad. Sci. USA 93 : 2071-2076 (1996) ; Xiang et al J Mol Med 75 : 829-825 (1997), hereby incorporated by reference herein in their entirety including any figures, drawings, or tables). Chimeraplasty is particularly useful in cases of point mutations that need to be corrected to allow either expression or function of the protein.

Chimeraplasty apparently works through the cell's own DNA repair system to correct the targeted gene. Although the gene is not corrected in 100% of the cells following transfection *in vitro* or introduction into the animal *in vivo*, the genes in enough of the cells have been found to be changed to permit a clinically detectable change. This could, in fact, be beneficial in the LSR system where it is unlikely that you would ever want to completely prevent LSR expression. However, reduction in LSR expression might be advantageous in some obesity-related diseases and disorders. In particular, specific reduction in any one or more of the α , α' , or β subunits could be advantageous.

The invention features a chimeric oligonucleotide, comprising at least 9 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16, wherein said at least 9 contiguous nucleotides comprise at least one amino acid codon selected from the group consisting of TTA, TTG, TCA, TCG, TAU, TAC, TGT, TGC, TGG, CAA, CAG, AGA, GAA, GAG, and GGA, and wherein a point mutation is present in said codon such that said codon is a stop codon. In preferred embodiments, the sequence

is selected from the group consisting of Exon 1, Exon 4 and Exon 5 from SEQ ID NO : 1 and homologous sequences from mouse or rat, preferably mouse.

Another embodiment of the invention features chimeraplast LSR polynucleotides, where the polynucleotide comprises at least 7 (preferably at least 13, more preferably at least 25, most preferably at 5 least 35 nucleotides of the LSR gene (or its complement), and where the DNA portion of the chimera comprises a point mutation such that instead of coding for an amino acid, it now codes for a termination codon. Thus, substitutiton of this nucleotide for the nucleotide present in the endogenous LSR gene, results in a stop codon being created at the site. The other nucleotides present in both the DNA and RNA portions of the chimera are 100% complementary to the flanking regions of the endogenous LSR gene.

10 The DNA portion of the chimera is at least 3 consecutive nucleotides in length, preferably at least 5 consecutive nucleotides in length, optionally at least 7 or at least 11 nucleotides in length. The point mutation is preferably the middle nucleotide (n ; alternatively n+1, or n-1 ; less preferably n+2, or n-2 ; n+3, or n-3, etc.) of the DNA part of the chimera when the DNA portion has an odd number of nucleotides (AGnCT, AnGCT, AGCnT, for example), or the n+1 or n-1 positions (less preferably n+2, or 15 n-2 ; n+3, or n-3, etc.) when the sequence has an even number of nucleotides (AnCT, AcnT, for example). The RNA portion of the chimera is at least 4 consecutive nucleotides in length, preferably at least 10 consecutive nucleotides in length, more preferably at least 20 consecutive nucleotides in length, and most preferably at least 30 consecutive nucleotides in length. The RNA portion of the chimera flanks the DNA portion of the chimera, preferably with an equal number of nucleotides on each side of 20 the DNA sequence (x ; when the number on RNA residues is even), less preferably with x+1 on the upstream side and x-1 on the downstream side or alternatively x+1 on the downstream side and x-1 on the upstream side ; even less preferably with x+2 on the upstream side and x-2 on the downstream side or alternatively x+2 on the downstream side and x-2 on the upstream side, and so on. Similarly, when the number of RNA residues is odd, there are either x+1 on the upstream side and x-1 on the downstream 25 side or alternatively x+1 on the downstream side and x-1 on the upstream side of the DNA; less preferably there are x+2 on the upstream side and x-2 on the downstream side or alternatively x+2 on the downstream side and x-2 on the upstream side, and so on. In some cases, particularly when the point mutation is not in the center of the DNA part of the chimera, the number of residues of RNA flanking the DNA is preferably not equal on both sides. In some cases it is preferred that there are more RNA 30 residues on one side than the other so as to have the point mutation be located at the center of the chimera, or at least n+1 or n-1 from the center of the chimera, less preferably n+2, or n-2 from the center, etc. Sequences that encode stop codons include TAA, TAG, and TGA. Therefore, sequences encoding the amino acids leucine (TTA or TTG), serine (TCA or TCG), tyrosine (TAU or TAC), cysteine (TGT or 35 TGC), tryptophan (TGG), glutamine (CAA or CAG), arginine (AGA), glutamate (GAA or GAG), or glycine (GGA), for example, can be changed to one of the stop codons by a single polynucleotide exchange. The preferred stop codon is TGA. The exact design of the chimeras will depend on the

particular sequence to be mutated, but guidance has been given in the papers listed above and in the Examples herein. In general, however, the sequence should be at least 14 nucleotides in length (preferably 18, more preferably 25, most preferably 30) to ensure specificity to the desired sequence. Preferably, the amino acid to be mutated to a termination codon is located at the 5' end of the coding 5 sequence, preferably within the first exon, and preferably is the first amino acid that can be mutated in this way after the first ATG or most preferably the second ATG. Amino acids to be mutated to stop all LSR expression should not be selected from Exon 4 or Exon 5, since exon 4 is not present in the α' subunit, and neither Exon 4 nor Exon 5 is present in the β subunit. The success of a chimeroplast in preventing LSR expression can be tested using the techniques described herein, to include screens for the 10 presence of the mRNA by Northern blot, for example, and for the protein by Western blot, for example.

Alternatively, in some preferred embodiments it is preferable to stop expression of the LSR α subunit only. To do this, the amino acid to be mutated is preferably located in Exon 4 of LSR, since this Exon is not present in the α' or β subunits. In other preferred embodiments it is preferable to prevent expression of both α and α' subunits, but not the β subunit. To do this, the amino acid to be mutated is 15 preferably located in Exon 5 of LSR, since this exon is present in both α and α' subunits, but not the β subunit.

In another embodiment, the invention features chimeroplast LSR polynucleotides, where the polynucleotide comprises at least 7 (preferably at least 13, more preferably at least 25, most preferably at least 35 nucleotides of the LSR gene (or its complement), and where the DNA portion of the chimera 20 comprises one of the alleles of the single nucleotide polymorphisms (SNPs) described in U.S. Provisional Application No. 60/119, 592, entitled « Polymorphic Markers of the LSR Gene » by Blumenfeld, Bougueret, and Bihain, filed February 10, 1999 and previously incorporated by reference herein, and indicated in Table A. Preferably, the SNP's are selected from the group consisting of A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, 25 A25, A26, A27, A28, A29, A30, A31, AND A32. The SNPs may be in either coding or non-coding regions of the LSR gene. Some SNPs in the coding region result in amino acid changes that may affect the activity of LSR. However, the majority of the SNPs do not code for amino acid changes. These nucleotide changes can also modulate the activity of LSR in a variety of ways, for example by interfering 30 with the binding of a regulatory molecule that influences the splicing of the introns, particularly where there is differential splicing depending on the subunit to be expressed or by affecting the binding of promoters or the function of other regulatory sequences in the 5' and 3' regions of the gene. Changes in the expression of various subunits, or the levels of expression of LSR in general, can have profound effects on the obesity of patients.

VI. Recombinant Vectors of the Invention

The term “vector” is used herein to designate either a circular or a linear DNA or RNA molecule, that is either double-stranded or single-stranded, and that comprises at least one polynucleotide of interest that is sought to be transferred in a cell host or in a unicellular or multicellular host organism.

5 The present invention relates to recombinant vectors comprising any one of the polynucleotides described herein.

The present invention encompasses a family of recombinant vectors that comprise polynucleotides encoding leptin polypeptides of the invention, polynucleotides encoding zinc finger proteins of the invention, and chimeraplastic polynucleotides of the invention as described herein.

10 In a first preferred embodiment, a recombinant vector of the invention is used to amplify the inserted polynucleotide in a suitable cell host, this polynucleotide being amplified every time that the recombinant vector replicates. The inserted polynucleotide can be one that encodes leptin polypeptides of the invention or zinc finger polypeptides of the invention, or a chimeroplast polynucleotide.

A second preferred embodiment of the recombinant vectors according to the invention, consists 15 of expression vectors comprising either a polynucleotide encoding leptin polypeptides of the invention or zinc finger proteins of the invention, or both. Within certain embodiments, expression vectors are employed to express a leptin polypeptide of the invention, preferably a modified leptin polypeptide described in the present invention, which can be then purified and, for example, be used in screening assays or as a treatment for obesity-related diseases. In other embodiments, expression vectors are 20 employed to express a zinc finger protein of the invention, preferably one that inhibits LSR expression or expression of specific subunits of LSR as described in the present invention, which can be then purified and, for example, be used in screening assays or as a treatment for obesity-related diseases. In other embodiments, the expression vectors are used for constructing transgenic animals and also for gene surgery, in particular, expression vectors containing a polynucleotide encoding zinc finger proteins of the 25 invention.

Expression requires that appropriate signals are provided in the vectors, said signals including various regulatory elements, such as enhancers/promoters from both viral and mammalian sources, that drive expression of the genes of interest in host cells. Dominant drug selection markers for establishing permanent, stable, cell clones expressing the products are generally included in the expression vectors of 30 the invention, as they are elements that link expression of the drug selection markers to expression of the polypeptide.

More particularly, the present invention relates to expression vectors which include nucleic acids encoding a leptin polypeptide fragment of the invention, or a modified leptin polypeptide as described herein, or variants or fragments thereof, under the control of a regulatory sequence selected among the 35 leptin regulatory polynucleotides, or alternatively under the control of an exogenous regulatory sequence. The present also relates to expression vectors which include nucleic acids encoding a zinc finger

polypeptide of the invention, or a modified zinc finger polypeptide as described herein, or variants or fragments thereof, under the control of an exogenous regulatory sequence.

Consequently, preferred expression vectors of the invention are selected from the group consisting of : (a) a leptin regulatory sequence and driving the expression of a coding polynucleotide operably linked thereto; (b) a leptin polypeptide coding sequence of the invention, operably linked to regulatory sequences allowing its expression in a suitable cell host and/or host organism. Other preferred expression vectors of the invention comprise a zinc finger polypeptide coding sequence of the invention, operably linked to regulatory sequences allowing its expression in a suitable cell host and/or host organism.

Some of the elements which can be found in the vectors of the present invention are described in further detail in the following sections.

1) General features of the expression vectors of the invention :

A recombinant vector according to the invention comprises, but is not limited to, a YAC (Yeast Artificial Chromosome), a BAC (Bacterial Artificial Chromosome), a phage, a phagemid, a cosmid, a plasmid, or even a linear DNA molecule which may consist of a chromosomal, non-chromosomal, semi-synthetic or synthetic DNA. Such a recombinant vector can comprise a transcriptional unit comprising an assembly of :

(1) a genetic element or elements having a regulatory role in gene expression, for example promoters or enhancers. Enhancers are cis-acting elements of DNA, usually from about 10 to 300 bp in length that act on the promoter to increase the transcription.

(2) a structural or coding sequence which is transcribed into mRNA and eventually translated into a polypeptide, said structural or coding sequence being operably linked to the regulatory elements described in (1); and

(3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, when a recombinant protein is expressed without a leader or transport sequence, it may include a N-terminal residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

Generally, recombinant expression vectors will include origins of replication, selectable markers permitting transformation of the host cell, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably a leader sequence capable of directing secretion of the translated protein into the periplasmic space or the extracellular medium. In a specific embodiment wherein the vector is adapted for transfecting and expressing desired sequences in mammalian host cells, preferred vectors will comprise an origin of replication in the desired

host, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation sites, splice donor and acceptor sites, transcriptional termination sequences, and 5'-flanking non-transcribed sequences. DNA sequences derived from the SV40 viral genome, for example SV40 origin, early promoter, enhancer, splice and polyadenylation sites may be used to provide the required non-transcribed genetic elements.

5

2) Regulatory elements

Promoters

The suitable promoter regions used in the expression vectors according to the present invention
10 are chosen taking into account the cell host in which the heterologous gene has to be expressed. The particular promoter employed to control the expression of a nucleic acid sequence of interest is not believed to be important, so long as it is capable of directing the expression of the nucleic acid in the targeted cell. Thus, where a human cell is targeted, it is preferable to position the nucleic acid coding region adjacent to and under the control of a promoter that is capable of being expressed in a human cell,
15 such as, for example, a human or a viral promoter.

A suitable promoter may be heterologous with respect to the nucleic acid for which it controls the expression or alternatively can be endogenous to the native polynucleotide containing the coding sequence to be expressed. Additionally, the promoter is generally heterologous with respect to the recombinant vector sequences within which the construct promoter/coding sequence has been inserted.

20 Promoter regions can be selected from any desired gene using, for example, CAT (chloramphenicol transferase) vectors and more preferably pKK232-8 and pCM7 vectors. Preferred bacterial promoters are the LacI, LacZ, the T3 or T7 bacteriophage RNA polymerase promoters, the gpt, lambda PR, PL and trp promoters (EP 0036776), the polyhedrin promoter, or the p10 protein promoter from baculovirus (Kit Novagen) (Smith et al. (1983) *Mol. Cell. Biol.* 3:2156-2165.;
25 O'Reilly et al., 1992, Baculovirus expression vectors : a Laboratory Manual. W.H. Freeman and Co., New York the lambda PR promoter or also the trc promoter.

Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-L. Selection of a convenient vector and promoter is well within the level of ordinary skill in the art.

30 The choice of a promoter is well within the ability of a person skilled in the field of genetic engineering. For example, one may refer to the book of (Sambrook, J., Fritsch, E.F., and T. Maniatis. (1989), *Molecular Cloning: A Laboratory Manual*. 2ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York)or also to the procedures described by (Fuller S. A. et al. (1996) *Immunology in Current Protocols in Molecular Biology*, Ausubel et al., Eds, John Wiley & Sons, Inc., USA).

35

Other regulatory elements

Where a cDNA insert is employed, one will typically desire to include a polyadenylation signal to effect proper polyadenylation of the gene transcript. The nature of the polyadenylation signal is not believed to be crucial to the successful practice of the invention, and any such sequence may be

5 employed such as human growth hormone and SV40 polyadenylation signals. Also contemplated as an element of the expression cassette is a terminator. These elements can serve to enhance message levels and to minimize read through from the cassette into other sequences.

The vector containing the appropriate DNA sequence as described above, more preferably *LSR* gene inhibitory or activating polynucleotide, a polynucleotide encoding a leptin polypeptide or both of 10 them, can be utilized to transform an appropriate host to allow the expression of the desired polypeptide or polynucleotide.

3) Selectable markers

Such markers would confer an identifiable change to the cell permitting easy identification of 15 cells containing the expression construct. The selectable marker genes for selection of transformed host cells are preferably dihydrofolate reductase or zeocin, hygromycin or neomycin resistance for eukaryotic cell culture, TRP1 for *S. cerevisiae* or tetracycline, rifampicin or ampicillin resistance in *E. coli*, or levan saccharase for mycobacteria, this latter marker being a negative selection marker.

4) Preferred vectors

Bacterial vectors

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and a bacterial origin of replication derived from commercially available plasmids comprising genetic elements of pBR322 (ATCC 37017). Such commercial vectors include, for 25 example, pKK223-3 (Pharmacia, Uppsala, Sweden), and GEM1 (Promega Biotec, Madison, WI, USA).

Large numbers of other suitable vectors are known to those of skill in the art, and are commercially available, such as the following bacterial vectors : pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); pWLNEO, pSV2CAT, pOG44, pXT1, 30 pSG (Stratagene); pSVK3, pBPV, pMSG, pSVL (Pharmacia); pQE-30 (QIAexpress).

Baculovirus vectors

A suitable vector for the expression polypeptides of the invention is a baculovirus vector that can be propagated in insect cells and in insect cell lines. A specific suitable host vector system is the 35 pVL1392/1393 baculovirus transfer vector (Pharmingen) that is used to transfect the SF9 cell line (ATCC N°CRL 1711) which is derived from *Spodoptera frugiperda*.

Other suitable vectors for the expression of a leptin polypeptide in a baculovirus expression system include those described by (Chai H. et al. (1993), *Biotechnol. Appl. Biochem.* 18:259-273; Vlasak R. et al. (1983), *Eur. J. Biochem.* 135:123-126; Lenhard T. et al. (1996), *Gene.* 169:187-190).

5 Viral vectors

In one specific embodiment, the vector is derived from an adenovirus. Preferred adenovirus vectors according to the invention are those described by Feldman and Steg (1996) or Ohno et al. (1994). Another preferred recombinant adenovirus according to this specific embodiment of the present invention is the human adenovirus type 2 or 5 (Ad 2 or Ad 5) or an adenovirus of animal origin (French patent application N° FR-93.05954).

Retrovirus vectors and adeno-associated virus vectors are generally understood to be the recombinant gene delivery systems of choice for the transfer of exogenous polynucleotides *in vivo*, particularly to mammals, including humans. These vectors provide efficient delivery of genes into cells, and the transferred nucleic acids are stably integrated into the chromosomal DNA of the host.

15 Particularly preferred retroviruses for the preparation or construction of retroviral *in vitro* or *in vitro* gene delivery vehicles of the present invention include retroviruses selected from the group consisting of Mink-Cell Focus Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis virus and Rous Sarcoma virus. Particularly preferred Murine Leukemia Viruses include the 4070A and the 1504A viruses, Abelson (ATCC No VR-999), Friend (ATCC No VR-245), Gross (ATCC No VR-590), Rauscher (ATCC No VR-998) and Moloney Murine Leukemia Virus (ATCC No VR-190; PCT Application No WO 94/24298). Particularly preferred Rous Sarcoma Viruses include Bryan high titer (ATCC Nos VR-334, VR-657, VR-726, VR-659 and VR-728). Other preferred retroviral vectors are those described in Roth J.A. et al. (1996), *Nature Medicine.* 2(9):985-991 PCT Application No WO 93/25234, PCT Application No WO 94/ 06920, Roux et al., 1989, *Proc. Natl Acad. Sci. USA,* 86 : 9079 – 9083, Julian et al., 1992, *J. Gen. Virol.*, 73 : 3251 – 3255 Neda et al., 1991, *J. Biol. Chem.*, 266 : 14143 – 14146.

Yet another viral vector system that is contemplated by the invention consists of the adeno-associated virus (AAV). The adeno-associated virus is a naturally occurring defective virus that requires another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle (Muzyczka et al., 1992, *Curr. Topics in Micro. and Immunol.*, 158 : 97-129). It is also one of the few viruses that may integrate its DNA into non-dividing cells, and exhibits a high frequency of stable integration (Flotte et al., 1992, *Am. J. Respir. Cell Mol. Biol.*, 7:349-356; Samulski et al., 1989, *J. Virol.*, 63 : 3822-3828;

McLaughlin B.A. et al. (1996), *Am. J. Hum. Genet.* 59:561-569. One advantageous feature of AAV derives from its reduced efficacy for transducing primary cells relative to transformed cells.

5) Delivery of the recombinant vectors

In order to effect expression of the polynucleotides of the invention, these constructs must be delivered into a cell. This delivery may be accomplished *in vitro*, as in laboratory procedures for transforming cell lines, or *in vivo* or *ex vivo*, as in the treatment of certain disease states.

5 One mechanism is viral infection where the expression construct is encapsulated in an infectious viral particle.

Several non-viral methods for the transfer of polynucleotides into cultured mammalian cells are also contemplated by the present invention, and include, without being limited to, calcium phosphate precipitation (Graham et al. (1973), *Virology*. 52:456-457; Chen et al., 1987, *Mol. Cell. Biol.*, 7 : 2745-10 2752;), DEAE-dextran (Gopal, 1985, *Mol. Cell. Biol.*, 5 : 1188-1190 electroporation (Tur-Kaspa et al. (1986), *Mol. Cell. Biol.* 6:716-718; Potter et al., 1984, Proc Natl Acad Sci U S A. 81(22):7161-5) direct microinjection (Harland et al., 1985, *J. Cell. Biol.*, 101:1094-1095) DNA-loaded liposomes (Nicolau et al., 1982, *Biochim. Biophys. Acta*, 721:185-190; Fraley et al., 1979, Proc. Natl. Acad. Sci. USA, 76 : 15 3348-3352 and receptor-mediate transfection (Wu and Wu, 1987, *J. Biol. Chem.*, 262 : 4429-4432; Wu and Wu, 1988, *Biochemistry*, 27:887-892). Some of these techniques may be successfully adapted for *in vivo* or *ex vivo* use.

Once the expression polynucleotide has been delivered into the cell, it may be stably integrated into the genome of the recipient cell. This integration may be in the cognate location and orientation via homologous recombination (gene replacement) or it may be integrated in a random, non specific location (gene augmentation). In yet further embodiments, the nucleic acid may be stably maintained in the cell as a separate, episomal segment of DNA. Such nucleic acid segments or "episomes" encode sequences sufficient to permit maintenance and replication independent of or in synchronization with the host cell cycle.

One specific embodiment for a method for delivering a protein or peptide to the interior of a cell 25 of a vertebrate *in vivo* comprises the step of introducing a preparation comprising a physiologically acceptable carrier and a naked polynucleotide operatively coding for the polypeptide of interest into the interstitial space of a tissue comprising the cell, whereby the naked polynucleotide is taken up into the interior of the cell and has a physiological effect. This is particularly applicable for transfer *in vitro* but it may be applied to *in vivo* as well.

30 Compositions for use *in vitro* and *in vivo* comprising a "naked" polynucleotide are described in PCT application No. WO 90/11092 (Vical Inc.) and also in PCT application No. WO 95/11307 (Institut Pasteur, INSERM, Université d'Ottawa) as well as in the articles of Tacson et al. (1996) *Nature Medicine*. 2(8):888-892 and Huygen et al. (1996) *Nature Medicine*. 2(8):893-898.

In still another embodiment of the invention, the transfer of a naked polynucleotide of the 35 invention, including a polynucleotide construct of the invention, into cells may be proceeded with a particle bombardment (biolistic), said particles being DNA-coated microprojectiles accelerated to a high

velocity allowing them to pierce cell membranes and enter cells without killing them, such as described by Klein et al. (1987) *Nature*. 327:70-73.

In a further embodiment, the polynucleotide of the invention may be entrapped in a liposome (Ghosh and Bacchawat, 1991, *Targeting of liposomes to hepatocytes*, IN : *Liver Diseases, Targeted diagnosis and therapy using specific receptors and ligands*. Wu et al. Eds., Marcel Dekker, New York, pp. 87-104; Wong et al., 1980, *Gene*, 10 : 87-94; Nicolau C. et al. (1987), *Methods Enzymol.* 149:157-76). These liposomes may further be targeted to cells expressing LSR by incorporating leptin, triglycerides, Acrp30, or other known LSR ligands into the liposome membrane.

In a specific embodiment, the invention provides a composition for the *in vivo* production of a leptin polypeptide, or a zinc finger protein, described herein. It comprises a naked polynucleotide operatively coding for this polypeptide, in solution in a physiologically acceptable carrier, and suitable for introduction into a tissue to cause cells of the tissue to express the said polypeptide.

The amount of vector to be injected to the desired host organism varies according to the site of injection. As an indicative dose, it will be injected between 0,1 and 100 µg of the vector in an animal body, preferably a mammal body, for example a mouse body.

In another embodiment of the vector according to the invention, it may be introduced *in vitro* in a host cell, preferably in a host cell previously harvested from the animal to be treated and more preferably a somatic cell such as a muscle cell. In a subsequent step, the cell that has been transformed with the vector coding for the desired leptin polypeptide or the desired fragment thereof is reintroduced into the animal body in order to deliver the recombinant protein within the body either locally or systemically.

VI. Recombinant Cells of the Invention

The invention is in part based on the surprising and unexpected discovery that the different subunits of LSR interact to form at least two very different receptors : LSR-lep and LSR-tg. The LSR-lep receptor requires at least α' . In some embodiments a combination with β and/or α as well as α' is preferred. The LSR-tg receptor requires a combination of at least α and β . In some embodiments a combination with β and/or α as well as α' is preferred. Based on this novel and unexpected finding, it has become critical to engineer cells lacking endogenous LSR activity/expression (*e.g.* as a result of a classical knock-out, chimeroplasty, or zinc finger protein inhibition), and then to re-transfect the subunits of interest in various combinations and at various levels. This will allow not only the study of these receptors in isolation, but also the design of specific inhibitors for the different receptors, and the assessment of what genes may act to regulate or modulate the receptors, or to transmit the intracellular signals from or for each receptor. Although LSR-lep and LSR-tg have been identified, it is possible that other LSR receptors with other activities also exist and can be identified by these methods.

Recombinant cells have been designed that are useful in many situations, including : (1) the study of the role of the various LSR components in isolation and together with and without interference

from endogenous LSR, (2) as part of an assay system to discover modulators of the leptin/LSR interaction, for example, using known components of the LSR system (and in some cases no endogenous LSR components; see above), and (3) to produce various polypeptides of the invention (see above). To this end, in preferred embodiments, a recombinant cell is transiently, or preferably stably, transfected
5 with one or more LSR subunits selected from the group consisting of α , α' and β . Preferably, the two or more subunits are expressed in pairwise ratios to each other of from 1:1 to 1:5. For example, if α and β are present in a cell, cells with ratios of 1 :1, 1 :2, 1 :3, 1 :4, 1 :5, 5 :1, 4 :1, 3 :1, 2 :1, as well as 2 :3, 3 :2, 3 :4, 4 :3, 3 :5, 5 :3, 4 :5, and 5 :4, etc. are preferred. Similar ratios are desired for cells containing α' and β . When all three subunits are present, cells with all possible combinations of ratios are
10 preferred. These are most easily obtained by screening cells (wild-type, transfected, or knockout, for example) for their expression levels of the various subunits. Preferably, the one or more LSR components are α' and β , and preferably the recombinant cells are cultured PLC cells. However, the cells can be selected from any of the cells in the ATCC bank. The LSR polypeptides, the polynucleotides encoding LSR, and the vectors to transfer the polynucleotides encoding LSR between
15 cells and tissues have been described previously (US National phase application No. 09/269,939, hereby incorporated herein by reference in its entirety including any figures, drawings or tables).

Another object of the invention consists of host cells that have been transformed or transfected with one of the polynucleotides described herein, and more precisely a polynucleotide comprising: a polynucleotide encoding a leptin polypeptide of the invention, or a polynucleotide encoding a zinc finger protein of the invention. These polynucleotides can be present in the same cell or in a different cell, and can be present in cells transiently or stably transfected with any combination of the components of LSR.

In another embodiment, the invention features cells that lack expression of at least one of the LSR subunits. These can be cells identified by screening processes, but they are preferably recombinant cells that have had the gene for LSR knocked-out by traditional techniques well known in the art; a cell
25 in which a polynucleotide encoding a zinc finger protein of the invention has been transfected that either constitutively suppresses the expression of at least one subunit of LSR or whose suppression of LSR can be regulated by the Tet On/Off system, for example; or a cell in which the expression of at least one subunit of LSR has been inhibited as the result of the transfection of chimeric oligonucleotides of the invention.

The invention further features either transiently, or preferably stably, transfecting the LSR knockout cells (or zinc finger protein cells) in which expression of at least one, and in some cases all, of the endogenous LSR subunits has been inhibited (or eliminated), with at least one, preferably at least two, and alternatively three, of the LSR subunits and then selecting/screening for cells expressing the various ratios of subunits as described above. Preferably, β , α or α' alone are transfected, or
35 alternatively α' and β , or α and β together are transfected.

The invention includes host cells that are transformed (prokaryotic cells) or that are transfected (eukaryotic cells) with a recombinant vector such as any one of those described in « Recombinant Vectors of the Invention ».

Generally, a recombinant host cell of the invention comprises at least one of the polynucleotides 5 or the recombinant vectors of the invention which are described herein, but also includes those cells in which the gene for LSR has been knock-out by traditional recombinant techniques, zinc finger techniques, or using chimeraplast oligonucleotides.

Preferred host cells used as recipients for the recombinant vectors of the invention are the following :

10 a) Prokaryotic host cells : *Escherichia coli* strains (*i.e.* DH5- α strain), *Bacillus subtilis*, *Salmonella typhimurium*, and strains from species like *Pseudomonas*, *Streptomyces* and *Staphylococcus*, and

b) Eukaryotic host cells : HeLa cells (ATCC N°CCL2; N°CCL2.1; N°CCL2.2), Cv 1 cells (ATCC N°CCL70), COS cells (ATCC N°CRL1650; N°CRL1651), Sf-9 cells (ATCC N°CRL1711), 15 C127 cells (ATCC N° CRL-1804), 3T3 (ATCC N° CRL-6361), CHO (ATCC N° CCL-61), human kidney 293 (ATCC N° 45504; N° CRL-1573), BHK (ECACC N° 84100501; N° 84111301), PLC cells, HepG2, Hepa 1-6, and Hep3B.

The constructs in the host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.

20 Following transformation of a suitable host and growth of the host to an appropriate cell density, the selected promoter is induced by appropriate means, such as temperature shift or chemical induction, and cells are cultivated for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

25 Microbial cells employed in the expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known by the skilled artisan.

Further, according to the invention, these recombinant cells can be created *in vitro* or *in vivo* in an animal, preferably a mammal, most preferably selected from the group consisting of mice, rats, dogs, 30 pigs, sheep, cattle, and primates, not to include humans. Recombinant cells created *in vitro* can also be later surgically implanted in an animal, for example. Methods to create recombinant cells *in vivo* in animals are well-known in the art, and are specifically meant to include the techniques associated with chimeraplasty described herein and known in the art, whereby the chimeraplast oligonucleotides are provided to the cells in the animal by the use of liposomes, preferably liposomes that have targeting 35 molecules for cells containing LSR such as LSR binding proteins or ligands, such as apm1, C1q, or leptin, for example, in the membrane layer.

VIII. Assays for Identifying Modulators of LSR Activity

The surprising and unexpected discovery that the different subunits of LSR interact to form at least two very different receptors (LSR-lep and LSR-tg) with different activities has resulted in the necessity of designing novel assays to identify inhibitors for the different LSR receptors. In particular, these assays will preferably utilize the recombinant cells of the invention, that are engineered to lack endogenous LSR activity/expression (*e.g.* as a result of a classical knock-out, chimeroplasty, or zinc finger protein inhibition). These cells are then re-transfected with the subunits of interest in various combinations and at various levels. Preferred combinations include those that give rise to the LSR-lep receptor that requires at least α' , but may also include combination of α' and β , and the LSR-tg receptor that requires a combination of α and β . Other combinations (and the individual subunits) are also useful to look for other LSR receptor activities and as controls for the activity of compounds (or genes) selected in the other assays.

The invention features methods of screening for one or more compounds that modulate LSR activity in cells, that includes providing potential compounds to be tested to the cells, and where modulation of LSR activity indicates the one or more compounds. In some preferred embodiments, the potential compounds are compounds that have been molecularly designed based on the identified fragment of leptin that binds and activates LSR as described herein.

In a preferred embodiment, the invention features a method for selecting a compound useful for the treatment or prevention of an obesity-related disease or disorder, comprising: contacting a recombinant cell that comprises a zinc finger protein of the invention, or a recombinant vector comprising any of the zinc finger proteins of the invention with a candidate compound; and detecting a result selected from the group consisting of a modulation of an activity of the Lipolysis Stimulated Receptor and modulation of expression of the Lipolysis Stimulated Receptor; as a means for selecting said compound useful for the treatment or prevention of said obesity-related disease or disorder.

In preferred embodiments, said contacting is in the presence of a ligand of said Lipolysis Stimulated Receptor. Preferably, said ligand is selected from the group consisting of cytokine, lipoprotein, free fatty acid, adipoQ (Apm1 and Acrp30), and C1q, and more preferably said cytokine is leptin. Alternatively, said free fatty acid is oleate. In other preferred embodiments, said leptin is a leptin polypeptide fragment that modulates the activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of any one of the leptin polypeptide sequences set forth in Figure 13, wherein said at least 4 and not more than 50 contiguous amino acids comprise the leptin fragment central sequence. In other preferred embodiments, said leptin is a variant of a leptin polypeptide fragment that modulates the activity of LSR, consisting of a 22 contiguous amino acid sequence that is at least 75% identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13. Optionally, the leptin fragment is any leptin fragment of the invention described herein.

In other preferred embodiments of the invention, said activity is selected from the group consisting of binding of lipoproteins, uptake of lipoproteins, degradation of lipoproteins, binding of leptin, uptake of leptin, and degradation of leptin. Preferably, said modulation of LSR activity is an increase in said activity, and optionally a decrease in said activity. In other preferred embodiments, said expression is on the surface of said cell, and preferably said detecting comprises FACS, more preferably said detecting further comprises antibodies that bind specifically to said LSR, wherein said LSR comprises an amino acid sequence at least 75% homologous to at least one of the sequences selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19. In other preferred embodiments, said amino acid sequence is at least 80, 85, 90, 95, or 99 to 100% homologous to at least one of the sequences selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19. In other preferred embodiments, said antibodies bind specifically to a region of said LSR selected from the group consisting of an amino terminus, a carboxy terminus, a splice site, a cytokine binding site, a fatty acid binding site, a clathrin binding site, an apoprotein ligand binding site, a LI/LL motif, a RSRS motif, and a hydrophobic region. Preferably, said cell is selected from the group consisting of PLC, CHO-K1, Hep3B, and HepG2, although any cell expressing detectable levels of LSR can be used.

Antibodies to LSR and to the various regions of LSR have been extensively described previously in US National application 09/269,939, filed May 28, 1999 and its related PCT application, both are hereby incorporated herein by reference in their entirety including any figures, drawings or tables. In addition, specific antibodies to LSR are described in the Examples (1-8).

In preferred embodiments, said candidate compound is selected from the group consisting of peptides, peptide libraries, non-peptide libraries, peptoids, fatty acids, lipoproteins, medicaments, antibodies, and small molecules, and optionally can include leptin mimetics designed by methods of the invention. The compounds may be active *in vitro* or *in vivo*. The activity may be increased or decreased ; the compounds may be antagonists or agonists. Preferably, said obesity-related diseases and disorders are selected from the group consisting of obesity, anorexia, cachexia, cardiac insufficiency, coronary insufficiency, stroke, hypertension, atheromatous disease, atherosclerosis, high blood pressure, non-insulin-dependent diabetes, hyperlipidemia, and hyperuricemia. The compounds may also modulate body mass. Most preferably, the diseases include congenital generalized lipodystrophy.

In other highly preferred embodiments of the invention, the cells used in the above-described assays cells have been modified to express none, or a subset, of the LSR subunits. The recombinant cells containing zinc finger proteins of the invention are also transfected with at least one polynucleotide encoding a LSR polypeptide comprising a sequence at least 75% identical to an amino acid sequence selected from the group consisting of .SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ

ID NO:11, SEQ ID NO:17, SEQ ID NO:18, and SEQ ID NO:19. Preferably the LSR subunit is stably transfected. Preferably the cell is selected from the group consisting of PLC, CHO-K1, Hep3B, Hepa 1-6, and HepG2. However, other cells available from the ATCC, for example, may also be used. In addition, cells with the endogenous LSR gene « knocked out » by methods well-known in the art are 5 also expressly contemplated (as an option to the use of the zinc finger proteins of the invention, or to the use of the chimeraplasts of the invention.). Cells, preferably modified cells, are transfected with one or more LSR components that may include one, part, or all, of α' , α , and β , most preferably α' and β . Recombinant cells useful for assays to identify modulators of the leptin-LSR interaction include those described in the « Recombinant Cells of the Invention ». In particular, cells expressing a range of ratios 10 of the subunits are desired, including 1 :1, 1 :2, 1 :3, 1 :4, 1 :5, 5 :1, 4 :1, 3 :1, 2 :1, as well as 2 :3, 3 :2, 3 :4, 4 :3, 3 :5, 5 :3, 4 :5, and 5 :4, etc. for α' to β or α to β , or even α to α' , for example. In addition, the various combinations where all three subunits are present in a cell are also envisioned to be useful in assays for modulators of LSR activity.

In highly preferred embodiments of the invention, cells with endogenous LSR activity knocked-out and transfected with the α' alone, or α' and β LSR subunits together are used to screen for modulators of the LSR-leptin interaction. In other preferred embodiments, the α and β LSR subunits are used to screen for modulators of triglyceride-rich lipoprotein binding, uptake, and degradation. Cells with all three LSR subunits are useful to screen for modulators of the effect of leptin binding uptake and degradation on triglyceride-rich lipoprotein binding, uptake and degradation. Similarly, these cells 20 would be useful for screening molecules arising from the active leptin fragment molecular modeling described herein.

IX. Methods for Designing Leptin Polypeptide Fragment Mimetics

Following the discovery of the differential results of human and mouse leptin on human and 25 rodent LSR, the region of amino acid sequence sharing the least homology between the two homologs was identified and was found to stimulate rodent and human LSR activity differentially (Examples 1-8). Identification of the differences between these two highly similar peptides allows the design of small molecule activators or inhibitors of LSR. Methods of determining the differences are well known in the art and include, but are not limited to techniques such as molecular dynamic assays, X-ray 30 crystallography, and NMR. Previously, these kinds of techniques for creating inhibitors/activators of enzymes have been used successfully in the art. Potential small molecule activators/inhibitors designed or identified by these methods can be tested in the assays described herein. Those that function in these assays can then be tested for their effectiveness for treatment of obesity-related disorders and diseases, as described herein, for activity in modulating body mass, and for activity in treating congenital generalized 35 lipodystrophy (Example 14).

The invention features a method of designing mimetics of a leptin fragment that modulates an activity of LSR, comprising: identifying critical interactions between one or more amino acids of said leptin fragment and LSR; designing potential mimetics to comprise said critical interactions; and testing said potential mimetics ability to modulate said activity as a means for designing said

5 mimetics. By « designing mimetics » as used herein is meant comparing and combining known molecules to obtain a molecule that is able to mimic some or all of the activities modulated by leptin, or to preferentially increase or decrease some of the activities normally modulated by leptin. These activities include, but are not limited to those activities selected from the group consisting of leptin binding, leptin uptake, leptin degradation, triglyceride binding, triglyceride uptake, and triglyceride 10 degradation. The methods of comparing and combining use molecular modeling, X-Ray crystallography and other techniques well-known in the art to identify the critical interactions. These critical interactions include, but are not limited to those selected from the group consisting of hydrogen bonding, covalent bonding, Van der Waals forces, steric hindrances, and hydrophobic interactions. These critical interactions are identified using assays that include, but are not limited to, 15 those selected from the group consisting of NMR, X-ray crystallography, and computer modeling. Preferably the non-leptin compounds that are identified or designed by these means include, but are not limited to, small molecules (molecular weight <500, alternatively between 500 and 1000 MW, or >1,000 MW), peptides, peptide libraries, non-peptide molecules, non-peptide libraries and peptoids.

In preferred embodiments, the leptin fragment to be mimicked consists of the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13, preferably the human or mouse sequence, most preferably the human sequence. In other embodiments, the leptin fragment consists of the leptin fragment central sequence of any one of the leptin polypeptide sequences set forth in Figure 13, preferably the human or mouse sequence, most preferably the human sequence.

Methods of studying the structure of enzyme-substrate complexes are well known in the art. X-Ray crystallography allows the determination of the precise three-dimensional positions of most of the atoms in a protein molecule. To do this, a source of x-rays, a protein crystal, and a detector are needed. Obtaining the crystal is necessary because the techniques requires that all the molecules are precisely positioned. Methods to produce crystals are well-known in the art. X-rays going through the protein crystal are scattered by electrons, thus the amplitude of the wave scattered by an atom is proportional to its number of electrons. The scattered waves then recombine, either reinforcing one another on the film or cancelling each other out, depending on the atomic arrangement. From this information, the image is formed by applying a mathematical relation called a Fourier transform, and from here an electron-density map can be calculated, and then interpreted. The limiting resolution for a protein with a good crystal is typically 2 Å.

35 Two methods important for enzyme-ligand interactions include (1) the difference Fourier method, and (2) production of stable complexes. In the Fourier method, the enzyme is crystallized (in

this case LSR) and then the X-ray diffraction of the crystallized protein in solvent is compared with the X-ray diffraction of the crystallized protein in the presence of ligand (in this case the 22 amino acid leptin peptide). Provided that there are no drastic changes in the structure or packing of the protein when it binds the ligand, the structure of the complex can be solved by comparing the differences between the 5 diffraction patterns. This allows the electron density of the bound ligand and minor changes in the protein structure to be obtained without starting from scratch.

Alternatively, the X-ray diffraction pattern of a stably bound complex can be used to determine the protein-ligand interactions. Sometimes this is done using an inhibitor of the ligand, but can also be achieved under unreactive conditions such as : (1) weakly reactive conditions due to pH conditions, 10 ionic state, or very low temperature, (2) using a chemically modified protein or ligand in which important residues are modified, or (3) under conditions in which the equilibrium conditions are shifted.

X-ray crystallography can be complemented by nuclear magnetic resonance (NMR) spectroscopy, which can reveal the structure of macromolecules in solution. Certain atomic nuclei such as hydrogen are intrinsically magnetic. The spinning of the positively charged proton, generates a 15 magnetic moment. This moment can take either of two orientations when an external magnetic field is applied. The flow of electrons around a magnetic nucleus generates a small local magnetic field that opposes the external field. Under different environments the energy is absorbed at different resonance frequencies, an effect termed a chemical shift. Comparison of the shifts and spin-spin couplings, as well as the nuclear Overhauser effect (NOESY spectra) leads to the identification of pairs of protons that are less than 5A apart. Overlapping peaks in NOESY spectra can be further resolved by obtaining NMR 20 spectra of proteins labelled with ¹⁵N and ¹³C (multidimensional NMR spectroscopy). Typically highly concentrated solutions of proteins are required (1 mM or 15 mg/ml for a 15 kd protein) and the size is generally limited to 30 kd.

Molecular modelling by computer is also used extensively to augment, supplement and integrate 25 the information gained by X-Ray crystallography, NMR, EPR and other techniques. In particular, computer programs such as DOCK allow the prediction, identification, and three-D testing of inhibitors and activators of enzymes. This methodology has been used successfully previously to identify 30 inhibitors. Basically, using the information gained from X-ray crystallography, NMR, and direct modelling, computer programs can now predict the residues that are important for the ligand-protein interactions and can predict structures that can perform the same interactions and test compounds proposed to be able to perform the same interactions. Through this interplay, molecules can be designed and identified to activate LSR in the manner of the leptin peptide, or to inhibit this interaction. The advantages to designing a molecule in this way include the ability to use compounds that the body cannot 35 metabolize as rapidly as a peptide, that are less expensive to make, and that hopefully lack any unwanted leptin-associated side-effects.

X. Pharmaceutical Compositions of the Invention

The identified compounds can be administered to a mammal, including a human patient, alone or in pharmaceutical compositions where they are mixed with suitable carriers or excipient(s) at therapeutically effective doses to treat or ameliorate a variety of disorders associated with lipid metabolism. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms of obesity-related diseases or disorders as determined by the methods described herein. Thus, a therapeutically effective dosage of a leptin polypeptide fragment of the invention, or an antagonist or agonist of the leptin-LSR interaction, or a leptin fragment mimetic designed from molecular modeling studies, will be that dosage of the compound that is adequate to promote reduced or increased triglyceride-rich lipoprotein levels following a high-fat meal and that will promote weight loss or weight gain with continued periodic use or administration. Similarly, a therapeutically effective dosage of a chimeric oligonucleotide of the invention or a polynucleotide encoding a zinc finger protein of the invention will be that dosage of the compound that is adequate to increase or reduce triglyceride-rich lipoprotein levels following a high-fat meal and that will promote weight loss or weight gain with continued periodic use or administration. Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition.

Additional aspects of the invention feature the use of the compounds, chimeric oligonucleotides and zinc fingers, described throughout the application as modulators of LSR activity in the making of medicaments for the treatment of diseases and disorders described in the following section as well as throughout the application. These diseases or disorders include, but are not limited to, anorexia, cachexia, AIDS-related weight loss, neoplasia-related weight loss, or obesity-related atherosclerosis, obesity-related insulin resistance, obesity-related hypertension, microangiopathic lesions resulting from obesity-related Type II diabetes, ocular lesions caused by microangiopathy in obese individuals with Type II diabetes, and renal lesions caused by microangiopathy in obese individuals with Type II diabetes. Modulators of body mass are also expressly included, as are compounds (such as the leptin fragments of the invention) for treating congenital generalized lipodystrophy.

30 Routes of Administration.

Suitable routes of administration include oral, rectal, transmucosal, or intestinal administration, parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal or intraocular injections. A particularly useful method of administering compounds for promoting weight loss involves surgical implantation, for example 35 into the abdominal cavity of the recipient, of a device for delivering the compound over an extended period of time. Sustained release formulations of the invented medicaments particularly are contemplated.

Composition/Formulation

Pharmaceutical compositions and medicaments for use in accordance with the present invention may be formulated in a conventional manner using one or more physiologically acceptable carriers

5 comprising excipients and auxiliaries. Proper formulation is dependent upon the route of administration chosen.

Certain of the medicaments described herein will include a pharmaceutically acceptable carrier and at least one polypeptide that is a leptin polypeptide of the invention. In addition to medicaments that include leptin polypeptides of the invention, non-protein compounds designed based on molecular modeling 10 of the active leptin polypeptide of the invention also will find utility as modulators of LSR activity, both *in vitro* and *in vivo*. Further, antagonists and agonists of the leptin-LSR interaction, including leptin and/or triglyceride-rich lipoprotein binding, uptake and degradation will also find utility in modulating LSR activity and/or stimulating a reduction of plasma lipoproteins and/or promoting weight loss.

For injection, the agents of the invention may be formulated in aqueous solutions, preferably in 15 physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer such as a phosphate or bicarbonate buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

Pharmaceutical preparations that can be taken orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit 20 capsules can contain the active ingredients in admixture with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.

25 For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable gaseous propellant, *e.g.*, carbon dioxide. In the case of a pressurized aerosol the 30 dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, *e.g.*, gelatin, for use in an inhaler or insufflator, may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral administration by injection, *e.g.*, by bolus 35 injection or continuous infusion. Formulations for injection may be presented in unit dosage form, *e.g.*, in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms

as suspensions, solutions or emulsions in aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Aqueous suspensions may contain substances that increase the viscosity 5 of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Alternatively, the active ingredient may be in powder or lyophilized form for constitution with a suitable vehicle, such as sterile pyrogen-free water, before use.

10 In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly 15 soluble salt.

Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 20 days.

Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, 25 calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.

Effective Dosage.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein 30 the active ingredients are contained in an effective amount to achieve their intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

For any compound used in the method of the invention, the therapeutically effective dose can be 35 estimated initially from cell culture assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes or encompasses a concentration point or range shown

to effect enhanced or inhibited LSR activity in an *in vitro* system. Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50, (the dose lethal to 50% of the test population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD50 and ED50. Compounds that exhibit high therapeutic indices are preferred.

The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50, with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1).

Dosage amount and interval may be adjusted individually to provide plasma levels of the active compound which are sufficient to maintain the LSR modulating effects. Dosages necessary to achieve the LSR modulating effect will depend on individual characteristics and route of administration.

Dosage intervals can also be determined using the value for the minimum effective concentration. Compounds should be administered using a regimen that maintains plasma levels above the minimum effective concentration for 10-90% of the time, preferably between 30-90%; and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

A preferred dosage range for the amount of a leptin polypeptide of the invention, or compound designed based on its molecular modeling, or an antagonist or agonist of its activity with LSR, that can be administered on a daily or regular basis to achieve desired results, including a reduction in levels of circulating plasma triglyceride-rich lipoproteins, range from 0.1 - 50 mg/kg body mass. A more preferred dosage range is from 0.2 - 25 mg/kg. A still more preferred dosage range is from 1.0 - 20 mg/kg, while the most preferred range is from 2.0 - 10 mg/kg. Of course, these daily dosages can be delivered or administered in small amounts periodically during the course of a day.

35 XI. Methods of Preventing or Treating Obesity-related Diseases and Disorders

A method of preventing or treating obesity-related diseases and disorders comprising providing a patient in need of such treatment with a leptin polypeptide fragment or a leptin mimetic of the invention. Preferably, the leptin polypeptide fragment or mimetic modulates the activity of LSR, more preferably increases the activity of LSR, and optionally decreases the activity of LSR either *in vitro* or *in vivo*. Preferably the leptin polypeptide fragment or mimetic is provided to the patient in a pharmaceutical composition that is preferably taken orally. Preferably the patient is a mammal, and most preferably a human. In preferred embodiments, the obesity-related disease or disorder is selected from the group consisting of anorexia, cachexia, AIDS-related weight loss, neoplasia-related weight loss, or obesity-related atherosclerosis, obesity-related insulin resistance, obesity-related hypertension, microangiopathic lesions resulting from obesity-related Type II diabetes, ocular lesions caused by microangiopathy in obese individuals with Type II diabetes, and renal lesions caused by microangiopathy in obese individuals with Type II diabetes. Modulators of body mass (weight gain or loss) are also expressly included, as are compounds (such as the leptin fragments of the invention) for treating congenital generalized lipodystrophy.

Alternatively, the invention features a method of preventing or treating obesity-related diseases and disorders comprising providing a patient in need of such treatment with a compound identified by assays of the invention. Preferably these compounds antagonize or agonize the interaction of leptin and LSR. In other embodiments, the compounds are those created as a result of the molecular modeling of the active leptin polypeptide and are non-peptide mimetics that function in the same manner as the active leptin polypeptide of the invention. Preferably, the compound is provided to the patient in a pharmaceutical composition that is preferably taken orally. Preferably the patient is a mammal, and most preferably a human. In preferred embodiments, the obesity-related disease or disorder is selected from the group consisting of anorexia, cachexia, AIDS-related weight loss, neoplasia-related weight loss, or obesity-related atherosclerosis, obesity-related insulin resistance, obesity-related hypertension, microangiopathic lesions resulting from obesity-related Type II diabetes, ocular lesions caused by microangiopathy in obese individuals with Type II diabetes, and renal lesions caused by microangiopathy in obese individuals with Type II diabetes. Modulators of body mass are also expressly included, as are compounds (such as the leptin fragments of the invention) for treating congenital generalized lipodystrophy.

The invention also features a method for treating or preventing obesity-related diseases or disorders involving gene surgery. To this end, it is advantageous in some conditions to either express more or less LSR, or alternatively to express more or less of one or more LSR subunits. Using the methods described herein, it is possible to modulate the levels of expression of LSR, or of some LSR subunits using zinc finger polypeptides of the invention or chimeric oligonucleotides of the invention. Preferably, the zinc finger polypeptides are provided to an individual in need of such treatment by polynucleotides encoding the zinc finger polypeptides of the invention. Preferably the zinc finger

polynucleotides of the invention are present in a recombinant vector, preferably a retroviral vector, more preferably AAV. Preferably the chimeric oligonucleotides are provided to a patient in need of such treatment using liposomes. Preferably the liposomes are constructed such that molecules targeting the liposomes to cells containing LSR are present in the membrane. Preferably the molecules include leptin, 5 apm1, and C1q, for example. Alternatively they may have compounds that target them to the liver, such as glucose, for example, or alternatively to adipose tissue. Preferably the patient is a mammal and the obesity-related disease or disorder is selected from the group consisting of anorexia, cachexia, AIDS-related weight loss, neoplasia-related weight loss, or obesity-related atherosclerosis, obesity-related insulin resistance, obesity-related hypertension, microangiopathic lesions resulting from obesity-related 10 Type II diabetes, ocular lesions caused by microangiopathy in obese individuals with Type II diabetes, and renal lesions caused by microangiopathy in obese individuals with Type II diabetes. Modulators of body mass are also expressly included, as are compounds (such as the leptin fragments of the invention) for treating congenital generalized lipodystrophy.

Still another aspect of the invention relates to the use of chimeric oligonucleotides to specifically alter single nucleotide polymorphisms in a patient in need of such treatment. Single polymorphisms associated with the LSR gene and with obesity have been described in U.S. provisional application No. 60/119,592, entitled "Polymorphic Markers of the LSR gene" by Blumenfeld et al, filed February 10, 1999, which is hereby incorporated by reference herein in its entirety including any drawings, figures, or tables , and shown in Table A . In one embodiment, this medicament can be used for reducing food intake in obese individuals, reducing the levels of free fatty acids in obese individuals, decreasing the body weight of obese individuals, or treating an obesity related condition selected from the group consisting of obesity-related atherosclerosis, obesity-related insulin resistance, obesity-related hypertension, microangiopathic lesions resulting from obesity-related Type II diabetes, ocular lesions caused by microangiopathy in obese individuals with Type II diabetes, and renal lesions caused by 20 microangiopathy in obese individuals with Type II diabetes. Modulators of body mass are also expressly included, as are compounds (such as the leptin fragments of the invention) for treating congenital 25 obesity-related hypertension, microangiopathic lesions resulting from obesity-related Type II diabetes, ocular lesions caused by microangiopathy in obese individuals with Type II diabetes, and renal lesions caused by microangiopathy in obese individuals with Type II diabetes. Modulators of body mass are also expressly included, as are compounds (such as the leptin fragments of the invention) for treating congenital generalized lipodystrophy.

Table A

Biallelic Marker	Marker Name	Localization In LSR Gene	Polymorphism	Frequency Of Allele 2	AA Change	Marker Position
99-14410/373	A1	5' regulatory region	Allele 1: C Allele 2: T			373 of SEQ ID No 2
99-14424/353	A2	5' regulatory region	Allele 1: A Allele 2: G			353 of SEQ ID No 3
99-14418/322	A3	5' regulatory	Allele 1: A			322 of

		<i>region</i>	Allele 2: G			SEQ ID No 4
99-14417/126	A4	<i>5' regulatory region</i>	Allele 1: C Allele 2: T			126 of SEQ ID No 5
99-14417/334	A5	<i>5' regulatory region</i>	Allele 1: C Allele 2: T			334 of SEQ ID No 5
99-14415/106	A6	<i>5' regulatory region</i>	Allele 1: C Allele 2: T			106 of SEQ ID No 6
99-14413/250	A7	<i>5' regulatory region</i>	Allele 1: A Allele 2: C			250 of SEQ ID No 7
99-14413/383	A8	<i>5' regulatory region</i>	Allele 1: G Allele 2: T			383 of SEQ ID No 7
99-4575/226	A9	<i>5' regulatory region</i>	Allele 1: T Allele 2: C	25%		226 of SEQ ID No 8
9-19/148	A10	<i>5' regulatory region</i>	Allele 1: C Allele 2: T	15%		1243 of SEQ ID No 1
9-19/307	A11	<i>5' regulatory region</i>	Allele 1: A Allele 2: T	12%		1401 of SEQ ID No 1
9-19/442	A12	<i>5' regulatory region</i>	Allele 1: C Allele 2: Del C			1535 of SEQ ID No 1
9-20/187	A13	<i>5' regulatory region</i>	Allele 1: A Allele 2: C			1788 of SEQ ID No 1
9-1/308	A14	<i>Intron 1</i>	Allele 1: C Allele 2: G	24%		2391 of SEQ ID No 1
9-3/324	A15	<i>Exon 2</i>	Allele 1: C Allele 2: T	29%		3778 of SEQ ID No 1; 595 of SEQ ID Nos 13, 15, and 17
99-14419/424	A16	<i>Intron 2</i>	Allele 1: C Allele 2: A	22%		4498 of SEQ ID No 1
9-24/260	A17	<i>Intron 3</i>	Allele 1: A Allele 2: G	35%		15007 of SEQ ID No 1
9-24/486	A18	<i>Intron 4</i>	Allele 1: G Allele 2: A	15%		15233 of SEQ ID No 1
9-6/187	A19	<i>Exon 5</i>	Allele 1: C	1%		15826 of

			Allele 2: T			SEQ ID No 1; 940 of SEQ ID No 13; 883 of SEQ ID No 15
9-7/148	A20	<i>Intron 5</i>	Allele 1: G Allele 2: A	35%		19567 of SEQ ID No 1
9-7/325	A21	<i>Exon 6</i>	Allele 1: G Allele 2: A	14%	S→N	19744 of SEQ ID No 1; 1191 of SEQ ID No 13; 1134 of SEQ ID No 15; 987 of SEQ ID No 17
9-7/367	A22	<i>Intron 6</i>	Allele 1: A Allele 2: C			19786 of SEQ ID No 1
9-9/246	A23	<i>Exon 8</i>	Allele 1: C Allele 2: G	0.5%	P→R	20158 of SEQ ID No 1; 1362 of SEQ ID No 13; 1305 of SEQ ID No 15; 1158 of SEQ ID No 17
LSRX9-BM (17-1/240)	A24	<i>Exon 9</i>	Allele 1: AGG Allele 2: Del AGG	Del 26%	Del R	20595 of SEQ ID No 1; 1658 of SEQ ID No 13; 1601 of SEQ ID No 15; 1454 of SEQ ID No 17
LSRX10-BM	A25	<i>Exon 10</i>	Allele 1 : T Allele 2 : G			21108 of SEQ ID No 1; 2079 of

						SEQ ID No 13; 2022 of SEQ ID No 15; 1875 of SEQ ID No 17
99-4580/296	A26	<i>3' regulatory region</i>	Allele 1 : A Allele 2 : G	24%		296 of SEQ ID No 9
99-4567/424	A27	<i>3' regulatory region</i>	Allele 1 : C Allele 2 : T			424 of SEQ ID No 10
99-14420/477	A28	<i>3' regulatory region</i>	Allele 1 : G Allele 2 : T			477 of SEQ ID No 11
99-4582/62	A29	<i>3' regulatory region</i>	Allele 1 : A Allele 2 : G			62 of SEQ ID No 12
99-4582/359	A30	<i>3' regulatory region</i>	Allele 1 : G Allele 2 : T	24%		359 of SEQ ID No 12
17-2/297	A31	<i>5' regulatory region</i>	Allele 1 : C Allele 2 : G	48%		818 of SEQ ID No 1
9-19/256	A32	<i>5' regulatory region</i>	Allele 1 : A Allele 2 : G			1374 of SEQ ID No 1

XII: Methods for Selecting Genes that Modulate LSR Expression

Another aspect of the invention features a method for selecting for genes that modulate the expression of LSR. This method relies on the use of a retroviral vector to provide cells of choice (those that express LSR naturally or recombinantly, and in any combination of subunits and subunit levels) with genes of interest at a moderate level. By « a moderate level » is meant a level that is intermediary between high and low, as based on the level of expression of GFP. Neither high nor low expression is desired since low levels might result in undetectable effects on LSR activity and high levels might co-opt the use of the cell machinery such that LSR isn't made simply for this reason. These moderate levels are easily detected and selected for by FACS analysis as described in the Examples. This method also relies on the use of FACS to detect changes in the activity of LSR as judged by detecting the expression of LSR, or LSR subunits on the surface of the cells, or alternatively intracellularly as well. This can be done by using two antibodies that bind specifically to different regions of LSR, for example the 81B and 93A antibodies.

Thus, in a preferred embodiment, the invention features a method of selecting for genes that modulate an activity of the Lipolysis Stimulated Receptor, comprising : providing a retroviral gene

library to cells that express said Lipolysis Stimulated Receptor; contacting said cells with a ligand of said Lipolysis Stimulated Receptor ; and detecting a change in said activity of the Lipolysis Stimulated Receptor as a means for selecting for said genes. Preferably, said retroviral gene library comprises a cDNA library from tissues selected from the group consisting of liver, brain, muscle, and adipose, and
5 preferably further comprises a detectable marker protein selected from the group consisting of GFP, truncated CD2, and truncated CD4. In preferred embodiments, the method further comprises selecting said cells transfected with the retroviral vector for moderate expression of GFP. Preferably, said selecting of cells is by FACS.

In other preferred embodiments, said ligand is selected from the group consisting of cytokine,

10 free fatty acid, lipoprotein, adipoQ (Acrp30, Apm1), and C1q, and preferably said cytokine is leptin. Preferably said free fatty acid is oleate. More preferably, said leptin is a leptin polypeptide fragment that modulates the activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of any one of the leptin polypeptide sequences set forth in Figure 13, wherein said at least 4 and not more than 50 contiguous amino acids comprise the leptin fragment central sequence. Optionally, said leptin is a
15 variant of a leptin polypeptide fragment that modulates the activity of LSR, consisting of a 22 contiguous amino acid sequence that is at least 75% identical to the leptin fragment variable region of any one of the leptin polypeptide sequences set forth in Figure 13.

In other preferred embodiments, said detecting a change in said activity is by FACS, preferably said detecting further comprises fluorescent antibodies that bind specifically to said LSR, wherein said

20 LSR comprises an amino acid sequence at least 75% homologous to at least one of the sequences selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16. More preferably, said antibodies bind specifically to a region of said LSR selected from the group consisting of an amino terminus, a carboxy terminus, a splice site, a cytokine binding site, a fatty acid binding site, a clathrin
25 binding site, an apoprotein ligand binding site, a LI/LL motif, a RSRS motif, and a hydrophobic region.

Antibodies to LSR and to the various regions of LSR have been extensively described previously in US National application 09/269,939, filed May 28, 1999 and its related PCT application, both are hereby incorporated herein by reference in their entirety including any figures, drawings or tables. In addition, specific antibodies to LSR are described in the Examples (1-8).

30 In other preferred embodiments said cell is selected from the group consisting of PLC, CHO-K1, Hep3B, and HepG2. In some of these embodiments, said cell has had the endogenous LSR activity inhibited by either a traditional « knockout » of the gene encoding LSR, alternatively said cell has had the expression of endogenous LSR inhibited by transfection of a polynucleotide encoding a zinc finger protein of the invention, or by providing a chimeric oligonucleotide of the invention to the cell.

35 Other characteristics and advantages of the invention are described in the Brief Description of the Figures and the Examples. These are meant to be exemplary only, and not to limit the invention in any way.

Throughout this application, various publications, patents and published patent applications are cited. The disclosures of these publications, patents and published patent specifications referenced in this application are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

5

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A and 1B show the effect of leptin on postprandial plasma TG response in db/db and db^{Pas}/db^{Pas} mice. Overnight-fasted db/db (A), db^{Pas}/db^{Pas} (B) mice were gavage-fed a high-fat test meal and immediately injected intravenously (db/db) or intraperitoneally (db^{Pas}/db^{Pas}) with saline (open symbols) or 50 µg mouse recombinant leptin (closed symbols). At the indicated times, blood was collected from the tail (A) or orbital (B) vein, plasma was separated by centrifugation, and plasma TG concentrations were determined using an enzymatic kit. Each point represents the mean ± SEM (db/db: saline, n = 4, leptin, n = 3; db^{Pas}/db^{Pas}: saline, n = 6, leptin, n = 7). The average plasma lipid response in 10 15 20 25 30 control C57BL6 mice is shown as a dotted line in both A and B. In a separate experiment, shown as an inset for each strain of mice, overnight fasted db/db (●) or db^{Pas}/db^{Pas} (■) mice were gavage-fed the test meal and immediately injected intravenously with increasing concentrations of leptin. The plasma lipid response was then measured as in A and B. The area under the response curve (AUC) was then calculated using a triangulation method on Microsoft Excel between 0 and 4 hr (mg TG · h / mL).

Figure 2 shows ¹²⁵I-Leptin binding to partially purified rat LSR. Aliquots (72 µg) of partially purified rat liver LSR were separated on a 4%-12% SDS-gradient polyacrylamide gel, and transferred to nitrocellulose as described previously (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grossot J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). J Biol Chem 274, 13390-13398) a gel strip stained with Coomassie blue is shown in lane 1. The nitrocellulose strips were washed, blocked, and incubated with anti-rat LSR protein antiserum (1:1000 dilution)(lane 2), or with 200 ng/mL ¹²⁵I-leptin (lane 3). The strips were washed and bands were detected as described herein. Image analysis of lane 3 was performed 30 on a Phosphorimager (Molecular Dynamics).

Figures 3A, 3B, 3C, and 3D show the effect of LSR subunit transfection on leptin binding and degradation in CHO-K1 cells. For Fig. 3A, CHO-K1 cells were transfected with increasing concentrations of the α, (□), α' (■) or β (○) LSR plasmid, or vector alone (●) using Fugene transfection reagent. After 48 h, the cells were washed once in PBS and incubated at 37 °C for 2 h with 10 ng/mL of 35 ¹²⁵I-leptin in DMEM containing 0.2% (w/v) BSA, 2 mM CaCl₂ and 5 mM HEPES, pH 7.4 (Buffer A). The monolayers were washed and lysed with 0.1 N NaOH containing 0.24 mM EDTA, and the lysates

were counted. The results are shown as the amount of cell-associated ^{125}I -leptin. For Fig. 3B, lysates were prepared from CHO-K1 wild type, stable transfectants of vector or LSR α' subunit, and PLC, and separated on a 10% SDS-polyacrylamide gel under denaturing and reduced conditions. After transfer to nitrocellulose, Western blots were performed using anti-LSR 170 antibody (can also be done with the 5 human equivalent, 93A). Northern blots were done to detect LSR mRNA in CHO-K1 wild-type versus PLC. RT-PCR analysis was also done in CHO-K1 as compared to PLC. For Fig. 3C and 3D, confluent monolayers of stable-transfected cell lines expressing LSR α' subunit (■) or vector alone (●) were washed once in PBS and incubated at 37 °C for 2 h with increasing concentrations of ^{125}I -leptin in Buffer A. The amount of cell-associated (Fig. 3C) and degraded (Fig. 3D) ^{125}I -leptin was then measured as 10 described herein. Results are shown as the mean of triplicate determinations.

Figures 4A, 4B, 4C, and 4D show LSR binding and degradation of ^{125}I -leptin in human hepatocytes, and the effect of 81B anti-LSR antibody. For Fig. 4A, PLC cells were lysed (3-T175 cm² flasks per condition) and immunoprecipitated with irrelevant or 81B anti-serum. The 15 immunoprecipitates were washed, were separated on 10% SDS-polyacrylamide gels under nondenaturing conditions, and were transferred to nitrocellulose. Ligand blots using ^{125}I -leptin were then performed as described in Figure 2. For Fig. 4B, confluent monolayers of PLC cells were incubated at 37 °C for 30 min with 100 nM insulin, were washed, and then were incubated for 30 min at room temperature in the presence of anti-LSR peptide 81B antibody (■), or irrelevant (□) IgG. After this, the cells were 20 incubated at 37 °C for 2 h with increasing concentrations of ^{125}I -leptin in Buffer A. The monolayers were washed, and the amount of ^{125}I -leptin degraded was determined as described herein. Results are shown as the mean of duplicate (irrelevant IgG) or triplicate (anti-LSR peptide IgG) determinations. Fig. 4C is a schematic diagram of the motifs found from the predicted protein sequence of LSR α cDNA. A corresponding Kyte-Doolittle hydrophilicity plot (Lasergene, DNAsstar, Madison, WI) is shown underneath. For Fig. 4D, PLC cell aliquots were prepared and incubated with irrelevant, 93A or 81B 25 antibodies. After washing and incubation with goat-anti-rabbit FITC-conjugated antibody, the cells were fixed and analyzed by flow cytometry using a FACSCalibur (Becton Dickinson).

Figures 5A, 5B, 5C, and 5D show the stimulatory effect of leptin on LSR activity in PLC and suppression of this effect by 81B antibody. For Fig. 5A, 5B, and 5C, cultured PLC cells were incubated at 37 °C for 30 min with increasing concentrations of human recombinant leptin in Buffer A. After this, 30 0.5 mM oleate and 20 $\mu\text{g}/\text{mL}$ ^{125}I -LDL were added, and cells were further incubated at 37 °C for 2 h. Cells were washed, and the amount of oleate-induced ^{125}I -LDL bound (5A), internalized (5B) and 35 degraded (5C) were measured. For Fig. 5D, PLC cells were incubated at room temperature for 30 min with 200 $\mu\text{g}/\text{mL}$ anti-LSR peptide 81B or 170 antibody, followed by incubation at 37 °C for 30 min without (open bar) or with (hatched bar) 10 ng/mL human leptin. Oleate (0.5 mM) and ^{125}I -LDL (20 $\mu\text{g}/\text{mL}$) were added, and the monolayers were left at 37 °C for 3 h. After washing, the amount of ^{125}I -LDL binding was determined, and is shown here as the mean \pm SD of triplicate determinations.

Figures 6A, 6B, and 6C show the effect of leptin on ^{125}I -LDL and ^{125}I -chylomicron binding to LSR in primary cultures of rat hepatocytes. For Fig. 6A, primary cultures of rat hepatocytes (48 hours after plating) were incubated at 37 °C for 30 min in the absence (□) or presence (■) of 50 ng/mL leptin in Buffer A, followed by a 20 min incubation at 37 °C with 0.5 mM oleate. The cells were then washed 5 with ice-cold PBS, precooled for 10 min, and then incubated for 1 h at 4 °C with increasing concentrations of ^{125}I -LDL in Buffer A. Cells were washed, were lysed in 0.1 N NaOH and were counted for radioactivity. Results are shown as the mean of duplicate determinations. For Fig. 6B, primary cultures of rat hepatocytes were incubated at 37 °C for 30 min with or without 20 ng/mL leptin followed by incubation at 37 °C for 4 h with 6 μg protein/mL ^{125}I -chylomicrons in the absence or presence of 0.5 10 mM oleate in Buffer A. The cells were then washed and the ^{125}I -chylomicrons bound to the cell surface were released into the media by incubation with 10 mM suramin. The media was recovered and the radioactivity was measured. Results are shown as the mean \pm SD of six determinations. For Figure 6C, after incubation at 37 °C for 30 min with 50 ng/mL leptin, the cells were incubated at room temperature 15 for 30 min with 200 μg IgG/mL antibodies directed against rat LSR protein or irrelevant IgG. The amount of ^{125}I -chylomicrons bound was determined, and results are shown as means \pm SD of triplicate (irrelevant) or quadruplicate (anti-LSR) determinations.

Figures 7A and 7B show a comparison of the effect of human and mouse leptin on LSR activity in rat hepatocytes and on postprandial increase in plasma TG in db^{Pas}/db^{Pas} mice. For Fig. 7A, primary cultures of rat hepatocytes were incubated 30 min at 37 °C without (open bar) or with 10 ng/mL 20 recombinant human (solid bar) or mouse (hatched bar) leptin in Buffer A. Oleate (0.5 mM) and ^{125}I -LDL (20 $\mu\text{g}/\text{mL}$) were added and the cells were incubated 2 h at 37 °C. The media were removed and were analyzed for TCA-soluble degradation products. The mean of duplicate determinations is shown. For Fig. 7B, db^{Pas}/db^{Pas} mice were given a test meal as previously described, followed immediately by injection *i.p.* of saline (open bar, n = 4), human leptin (1 $\mu\text{g}/\text{animal}$; solid bar, n = 3) or mouse leptin 25 (0.25 $\mu\text{g}/\text{animal}$; hatched bar; n = 3). The data represent the difference in TG concentrations measured at t=0 and the average of the concentrations at 3 and 4 hours. Results are shown as mean \pm SEM.

Figures 8A and 8B show the effect of mouse or human leptin on LSR activity in primary cultures 30 of rat hepatocytes or a human liver cell line (PLC). Primary cultured rat hepatocytes were obtained commercially (In Vitro Tech). The PLC cell line was obtained from ATCC repository and maintained in culture. Rat hepatocytes 72 h after plating (8A) or confluent monolayers of PLC (8B) were incubated 30 min at 37 °C with 0 (closed bar) or 10 ng/mL of human (open bar) or mouse (hatched bar) recombinant leptin. Following this, 0.5 mM oleate and 20 $\mu\text{g}/\text{mL}$ ^{125}I -LDL were added and the cells were further incubated for 2 h at 37 °C. The cells were washed, and the amount of oleate-induced ^{125}I -LDL bound, internalized and degraded was measured as 35 described previously (Bihain, B.E., and Yen, F.T. (1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject

homozygous for familial hypercholesterolemia. *Biochemistry* 31, 4628-4636.. Results here are shown as % of control values obtained in the absence of leptin. Figure 9 shows the effect of mouse or human leptin peptide on LSR activity in PLC. Confluent PLC monolayers were incubated 30 min at 37 °C with increasing concentrations of mouse (■) or human (●) leptin peptide. Following this, 0.5 mM oleate and 20 µg/mL ¹²⁵I-LDL were added and the cells were further incubated for 2 h at 37 °C. The cells were washed, and the amount of oleate-induced ¹²⁵I-LDL bound and degraded was measured as described previously (Bihain, B.E., and Yen, F.T. (1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low density lipoproteins infibroblasts from a subject homozygous for familial hypercholesterolemia. *Biochemistry* 31, 4628-4636.

Figure 10 shows the effect of mouse or human leptin peptide on LSR activity in primary cultured rat hepatocytes. Cells were incubated 30 min at 37 °C with increasing concentrations of mouse (■) or human (●) leptin peptide. Following this, 0.5 mM oleate and 20 µg/mL ¹²⁵I-LDL were added and the cells were further incubated for 2 h at 37 °C. The cells were washed, and the amount of oleate-induced ¹²⁵I-LDL bound and degraded was measured as described previously (Bihain, B.E., and Yen, F.T. (1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject homozygous for familial hypercholesterolemia. *Biochemistry* 31, 4628-4636).

Figures 11A and 11B show the effect of mouse leptin (Fig. 11A) or leptin peptide (Fig. 11B) on postprandial plasma TG response in ob/ob mice. A single dose of 50 ng mouse leptin (A, ■), leptin peptide (B, ■), or a comparable volume of saline (□) was injected subcutaneously at t = 0 h (8:30 AM) directly following gavage of a high fat meal (0.5 mL). Postprandial triglyceridemia was measured as described previously. Each point represents the mean ± SEM (A: saline, n = 8, leptin, n = 7; leptin peptide: saline, n = 8, leptin, n = 8). The insert to figure 11B shows the effect of mouse leptin on LSR activity in primary cultures of rat hepatocytes. Primary cultures of rat hepatocytes were incubated 30 min at 37 °C with increasing concentrations of mouse leptin peptide. Oleate (0.5 mM) and ¹²⁵I-LDL (20 µg/mL) were added and the cells were incubated 2 h at 37 °C. After washing, the amount of ¹²⁵I-LDL bound to the cell surface was measured as described in the Examples section herein.

Figure 12 contains a Table that presents results showing the effect of test meal with and without leptin injection on postheparin lipolytic activity in db^{Pas}/db^{Pas} mice. Animals were gavaged with the test-meal and injected at the same time with 50 µg leptin or physiological saline as described previously (t = 0 h). After 1 h, the mice were injected with heparin and blood samples were taken at the peak of postprandial triglyceridemia (t = 2 h). Lipase activity was measured in the postheparin plasma as described in the Examples section herein,, and is reported here as the mean ± SEM (n = 3 animals for each condition; ns = not significant).

Figure 13 shows a multiple sequence alignment of leptin polypeptides from various species including: *Homo sapiens* (SEQ ID NO:32), *Mus musculus* (SEQ ID NO:34), *Rattus norvegicus* (SEQ ID NO:38), *Sus scrofa* (SEQ ID NO:39), *Bos Taurus* (SEQ ID NO:28), *Gallus gallus* (SEQ ID NO:30), *Ovis aries* (SEQ ID NO:35), *Canis familiaris* (SEQ ID NO:29), *Gorilla gorilla gorilla* (SEQ ID NO:31), 5 *Macaca mulatta* (SEQ ID NO:33), *Pan troglodytes* (SEQ ID NO:36), and *Pongo pygmaeus* (SEQ ID NO:37). Divergent residues (from the consensus sequence) are boxed. The 22 amino acid region of the exemplary active leptin peptide is shaded for all species in the alignment. Residues 10-13 of the shaded region make up the “leptin fragment central sequence”.

Figure 14 shows a schematic diagram of an exemplary retroviral vector. The vector pMX-IRES-GFP contains the murine Moloney virus LTR and a packaging signal (Onishi *et al.* Exp. Hematol. 24: 10 324-329 (1996)); the EMCV IRES is placed between the polylinker/stuffer and a cDNA encoding a selectable marker protein. Three exemplary marker proteins are GFP, murine CD2 and human CD4. The IRES sequence is indicated as a shaded box with an arrow indicating the direction of translation. The segment containing the bacterial origin of replication and ampicillin resistant gene is indicated by a black box. The stippled box represents sequence encoding the green fluorescent protein; alternatively it can contain the truncated CD2 or CD4 sequences. Open boxes with arrows indicate the viral LTR sequences. 15 The open box indicates a stuffer fragment containing multiple cloning sites.

Figure 15 shows a schematic of a plan to create truncated LSR constructs.

Figures 16A, 16B, and 16C show that the transfection of a truncated form of LSR (DN5 + 6) 20 increases ¹²⁵I-LDL binding (A), uptake (B) and degradation (C) in PLC cells in reference to protein concentration. All points are done in triplicate.

Figures 17A, 17B, and 17C show that the transfection of a truncated form of LSR (DN5+6) increases ¹²⁵I-LDL binding (A), uptake (B) and degradation (C) in PLC cells correcting for transfection efficiency using β-gal as a reference. All points are done in triplicate.

Figures 18A and 18B show graphs of the total LSR expression in mouse liver determined by 25 Quantitative PCR.

Figures 19A and 19B show graphs of the expression of LSR isotypes in mouse liver.

Figures 20A and 20 B show graphs of the relative levels of LSR isotype expression in mouse 30 liver.

Figure 21 shows a graph of total LSR expression in mouse brain determined by Quantitative PCR.

Figure 22 shows a graph of the expression of LSR isotypes in mouse brain.

Figure 23 shows a graph of the relative levels of LSR isotype expression in mouse brain.

Figures 24A, 24B, 24C, 24D, and 24E show the difference in LSR expression and activity in 2 35 cultured human hepatocyte cell lines. Figures 24A and 24B show graphs of LSR mRNA levels (24A) and cell surface expression (24B) in PLC (GG) and HepG2 (AG) cells by quantitative PCR and FACS,

respectively. Figures 24C, 24D, and 24E show graphs of the oleate-induced ^{125}I -LDL bound (A), internalized (B), and degraded (C) in confluent monolayers of PLC (■) and HepG2 (▲) that were incubated 3 h at 37 °C with the indicated concentrations of oleate and 20 $\mu\text{g/mL}$ ^{125}I -LDL. The cells were then washed and the amounts of ^{125}I -LDL bound, internalized and degraded were measured as

5 described previously.

Figure 25 shows a table of the characteristics of recombinant ZFPs directed toward LSR sequences. The first column is the identification number of the plasmid expressing a specifically engineered ZFP. The ZFP column represents different zinc finger “cassettes” designed to recognize the 9 bp regions of the target sequence. These “cassettes” have then been linked together (see WO 98/54311) 10 to create the ZFP for the final 18 bp target sequence listed in the final column. Sangamo determined the data on the fold activation and binding constant. The target sequences are located 5' to the translation start site in the mouse LSR gene sequence.

Figures 26A, 26B, 26C, 26D, 26E, 26F, 26G, 26H, 26I, 26J, 26K, 26L, 26M, 26N, 26O, 26P, 26Q, 26R, 26S, and 26T show schematics and nucleotide sequence of the LSR zinc finger plasmids 15 pSBS5182-NVF (26A), pSBS5183-NVF (26B), pSBS5185-NVF (26C), pSBS5186-NVF (26D), and pSBS5205-NVF (26E). The locations of the ampicillin gene (Amp), neomycin gene (Neo) CMV promoter NLS, ZFP, VP16, FLAG, bGHpA as well as various restriction sites are shown in the schematics.

Figure 27 shows a Northern Analysis of LSR zinc finger mRNA expression. Numbers are shown 20 as percent of control plasmid. Only the results from 48 hrs are shown.

Figure 28 shows a more detailed Northern analysis of LSR zinc finger mRNA expression. Numbers are shown as percent of control plasmid. Only the results from 48hrs are shown.

Figure 29 shows a quantitative PCR Analysis of Hepa1-6 cells transfected with ZFP-NVF constructs.

Figures 30A, 30B, 30C, 30D, 30E, and 30F show binding, uptake and degradation (BUD) data 25 from ZFPs. The following ZFP's were examined: 5185-NVF, 5186-NVF, and control plasmid VegF-NVF (a non related ZFP). Results are corrected for total protein in A-C and for β -gal in D-F.

Figure 31 shows a diagram of the coculture system. Endothelial cells are plated in the upper compartment on the filter and astrocytes in the lower compartment on the plastic of the Petri dish.

Figure 32 shows a diagram of transcytosis and permeability studies.

Figure 33 shows a graph of leptin transcytosis in BBB *in vitro* model. Cells were incubated with 30 ^{125}I -leptin alone (10,000 dpm/ng)(closed squares), with 1 $\mu\text{g/mL}$ unlabelled leptin (triangles), 50 $\mu\text{g/mL}$ MP (circles), 50 $\mu\text{g/mL}$ HP (open squares), or 2 mg/mL lactoferrin (asterisks).

Figure 34A and 34B show graphs of the effect of leptin, MP, HP, and lactoferrin on the 35 permeability of the EC monolayer. Sucrose (34A) and inulin (34B) permeability studies were performed in the absence (diamonds) or presence of 10 ng/mL leptin (squares), 5 $\mu\text{g/mL}$ leptin (triangles), 10

μg/mL leptin (crosses). The effect of peptides were also tested by the addition of 10 ng/mL leptin + 50 μg/mL mouse peptide (MP, circles) or 10 ng/mL leptin+50 μg/mL human peptide (HP, open squares) or 10 ng/mL leptin+2 mg/mL lactoferrin (lacto, asterisks).

Figures 35A and 35B show graphs of LSR activity and mRNA expression measured in PLC cells preincubated 24 h with leptin. In Figure 35A, PLC monolayers were incubated 24 h at 37 °C with (o) or without (n) 200 ng/mL human recombinant leptin. After washing with PBS, cells were incubated 30 min at 37 °C with increasing concentrations of human leptin, followed by a 2 h incubation at 37 °C with 0.8 mM oleate and 20 μg/mL ¹²⁵I-LDL. Cells were washed, and the amount of oleate-induced ¹²⁵I-LDL binding was measured as described previously. Results are shown as the mean of triplicate determinations. In Figure 35B, PLC monolayers were incubated 24 h at 37 °C with 0, 200, or 400 ng/mL human recombinant leptin. After washing with PBS, the cells were harvested. Total RNA was prepared from the cell pellets, and Northerns were performed to detect LSR mRNA, using GAPDH probe as loading control as described previously. Northern blots were scanned on the Phosphorimager (Molecular Dynamics, Sunnyvale, CA). Densitometric analysis of the images was performed using the software ImageQuant. Results are shown as the amount of LSR signal relative to that of GAPDH (mean ± SD, n = 3/condition).

EXAMPLES

The following Examples are provided for illustrative purposes and not as a means of limitation.

One of ordinary skill in the art would be able to design equivalent assays and methods based on the disclosure herein all of which form part of the instant invention.

GENERAL MATERIALS and METHODS

Materials

¹²⁵Na I was purchased from Amersham-Pharmacia (Piscataway, NJ; Les Ulis, France). Oleic acid, bovine serum albumin (A2153)(BSA), were obtained from Sigma (St. Louis, MO; St. Quentin Fallavier, France). Sodium heparin was purchased from Choay laboratories (Gentilly, France). Fugene was purchased from Roche Boehringer Mannheim (Indianapolis, IN), and Superfect from Qiagen (Valencia, CA). Zeocin was obtained from Invitrogen (Carlsbad, CA). Suramin was a gift from Bayer Pharmaceuticals (Puteaux, France). Enzymatic kits for the determination of TG and FFA were obtained from Roche-Boehringer Mannheim (Meylan, France) and WAKO (Richmond, VA; Unipath, Dardilly, France), respectively. Dulbecco's modified Eagle's medium (DMEM), trypsin, penicillin-streptomycin, glutamine, and fetal bovine serum (FBS) were purchased from Life Technologies, Inc (Grand Island, NY; Eragny, France). RIA kits for plasma leptin measurements were obtained from Linco (St. Louis, MO). Experiments in Figures 1 (*db/db* only), 2 and 6 were performed using recombinant mouse leptin prepared in the laboratory as described previously (Yen F.T., Masson M., Clossais-Besnard N.,

Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E.
(1999). *J Biol Chem* 274, 13390-13398).

The remainder of the experiments were performed using commercial preparations of recombinant
5 human or mouse leptin (Sigma and Calbiochem, Meudon, France). α_2 -Macroglobulin-methylamine was
a kind gift from Dr. D. Strickland (American Red Cross, Rockville, MD).

Animals

Male wild-type and C57BL/Ks *db/db* (*db*) mice were purchased from R. Janvier Breeding Center
10 (Le Genest St. Isle, France), while male *db^{pas}/db^{pas}* were kindly made available by Prof. J.L. Guenet
(Institut Pasteur, Paris, France). Female *ob/ob* mice were obtained from The Jackson Laboratory (Bar
Harbor, Maine). All animals were housed in an animal facility on a 12 h light/dark cycle and were
allowed water and rodent chow (No. 113, UAR, Epinay-sur-Orge, France) *ad libitum*. Mean body
weights at the time of the experiment for wild-type, *db/db*, *db^{pas}/db^{pas}*, and *ob/ob* mice were 27.8 ± 1.4 ,
15 33.8 ± 9 , 74.6 ± 11.4 g, and 49.4 ± 5.49 g, respectively. The research protocol was in accordance with
French Ministry of Agriculture, section of Health and Animal Protection and the established institutional
guidelines.

Cells

Primary cultures of rat hepatocytes were prepared as described previously (Yen, F.T., Mann,
C.J., Guermani, L.M., Hannouche, N.F., Hubert, N., Hornick, C.A., Bordeau, V.N., Agnani, G., and
Bihain, B.E. (1994). *Biochemistry* 33, 1172-1180). using overnight-fasted 150-200 g Sprague-Dawley
male rats (R. Janvier Breeding Center) or obtained commercially (InVitro Technologies, Baltimore, MD).
Cells were used in experiments 48 h after plating. The PLC liver hepatoma (CRL-8024) and Chinese
25 hamster ovary (CHO-K1, CRL 9618) cell lines were obtained from the ATCC repository (CRL-8024;
Manasass, VA). The PLC line was maintained in tissue culture with MEM containing 10% (v/v) FBS, 2
mM glutamine, sodium pyruvate, non-essential amino acids, 100 units/mL penicillin, and 100 units/mL
streptomycin. CHO-K1 cells were grown in Ham's-F12 containing 10% (v/v) FBS, 2 mM glutamine and
100 units/mL each of penicillin and streptomycin.

30 Anti-LSR antibodies and peptides

The preparation of antibodies directed against rat LSR protein, and anti-LSR peptide 170
antibodies was as described previously (Yen F.T., Masson M., Clossais-Besnard N., Andre P.,
Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol
Chem* 274, 13390-13398. Synthetic peptides 81B and 93A with sequences corresponding to
35 human LSR α residues 35-45 (FGRDARARRAQ) and 613-627 (EEAYYPPAPPPYSET),

respectively, were obtained commercially. Polyclonal antibodies directed against this synthetic peptide conjugated to KLH were prepared, and the IgG fraction was purified as described previously (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L. Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398.)

5 Synthetic peptides corresponding to residues 117-138 of mouse leptin (CSLPQTSGLQKPESLDGVLLEAS) as well as the corresponding fragment of human leptin were commercially prepared (Research Genetics, Huntsville, AL).

In Vivo Methods

10 Measurement of plasma lipid response in mice

Mice that were fasted for 2-3 hours were gavage-fed 300 μ L of a test meal consisting of 60% fat (37% saturated, 27% mono-, and 36% polyunsaturated fatty acids), 20% protein and 20% carbohydrate, and providing 56 kcal of energy/kg (1.5 g butter, 1.5 g sunflower oil, 2.5 g nonfat dry milk, 2.5 g sucrose and 3 ml water). Immediately after the meal, the animals were injected intravenously (*db/db*) or 15 intraperitoneally (*db^{pas}/db^{pas}*) with either 200 μ L physiological saline or 200 μ L of the same solution containing recombinant mouse leptin. At selected time intervals, 20 μ L of blood were collected from the orbital (*db^{pas}/db^{pas}*) or tail (*db/db*) vein into ice-cold microfuge tubes containing 4 mmol/L EDTA. Plasma was obtained by centrifugation at 2500 rpm for 20 min at 4 °C, and was frozen as aliquots at -80 °C before analysis. TG concentrations were determined using a commercially available enzymatic kit 20 with controls included in each assay (Precinorm L, Roche-Boehringer Mannheim; Lyotrol N, BioMérieux).

Measurement of postheparin lipolytic activity

Mice were gavage-fed and injected with leptin or control solutions as described above. At t = 1 25 h, the mice were injected subcutaneously with heparin (100 IU/kg body weight). At t = 2 h, the animals were bled and the plasma was immediately separated by centrifugation. Lipase activity was determined according to Iverius and Brunzell (1985) using 20% Lipoven (Fresenius France Pharma, Louviers, France) as the source of TG. The assay was performed using 25 μ L postheparin plasma in 0.15 M NaCl 30 (200 μ L total volume), and in the presence of 10 μ L heat-inactivated (56 °C, 30 min) human plasma as a source of apoC's. Before and at the end of the incubation, FFA concentrations were determined using an enzymatic kit.

Cell Culture Studies

Lipoprotein receptor studies

35 LSR activity was measured as the oleate-induced binding, uptake, and degradation of ¹²⁵I-low density lipoprotein (LDL) in cells following the method described in detail previously (,

B.E., and Yen, F.T. (1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject homozygous for familial hypercholesterolemia. *Biochemistry* 31, 4628-4636; Yen, F.T., Mann, C.J., Guermani, L.M. Hannouche, N.F., Hubert, N., Hornick, C.A., Bordeau, V.N., Agnani, G., and Bihain, B.E
5 (1994). *Biochemistry* 33, 1172-1180); Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398). Modifications of the standard protocols are described in the Brief Description of the Drawings.

10 Identification Of LSR Protein

Western blotting

Confluent monolayers of cells were washed in PBS, and lysed in 20 mM Tris containing 2 mM EDTA and 0.5 % (w/v) SDS and an protease inhibitors (0.1 mg/mL PMSF, 2 µg/mL leupeptin and 1.9 µg/mL aprotinin). The lysate was then separated on 10% SDS-PAGE under denaturing conditions. After transfer to nitrocellulose, the strips were probed with anti-LSR peptide anti-serum. Bands were revealed after incubations with secondary goat anti-rabbit IgG conjugated to alkaline phosphatase. After washing in PBS containing 0.5% (v/v) Tween 20, the bands were revealed by incubation with substrate.

Immunoprecipitation

Confluent monolayers of PLC cells were lysed in PBS containing 1% (w/v) Triton X-100, and then were incubated with the specified anti-LSR antibodies, as described previously (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398).

Immunoprecipitates were separated on 10% SDS-polyacrylamide gels under nondenaturing conditions, and then transferred onto nitrocellulose.

25 Ligand blotting

Partially purified rat LSR (240 kDa band complex) was obtained as described previously (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398.) The band was separated on non-denaturing 4-12% gradient SDS polyacrylamide gel, and was transferred to nitrocellulose by semi-dry transfer (Biorad, 18 V, 25 min). The nitrocellulose strip was incubated at room temperature with PBS containing 3% BSA, and then incubated at 37 °C for 1 h with 200 ng/mL 125I-leptin in PBS containing 0.2% BSA, pH 7.4. After six 10 min washes in PBS containing 0.5% TritonX-100, the strip was air-dried and exposed on a phosphor screen for analysis.

Preparation of lipoproteins

Human LDL ($1.025 < d < 1.055$ g/mL) were isolated by sequential ultracentrifugation of fresh plasma obtained from the local blood bank (Havel, R., and Kane, J.P. (1995). In *The Metabolic and Molecular Basis of Inherited Disease*, vol. II, Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D., eds. (New York, NY: McGraw-Hill, Inc), pp. 1841-1851.

Rat chylomicrons were prepared from overnight-fasted male Sprague-Dawley rats (300-400 g) given a high-fat liquid meal similar to that given to mice (2 mL per animal). After 45 min, the animals were anesthetized and catheters were inserted in the main abdominal lymph duct. Lymph was collected over 2 hours, and the chylomicrons were isolated. Contaminating albumin was removed by incubation for 30 min at room temperature with an equivalent volume of swollen Blue Sepharose CL-6B gel (Amersham Pharmacia Biotech) (Mann, C.J., Troussard, A.A., Yen, F.T., Hannouche, N., Najib, J., Fruchart, J.-C., Lotteau, V., André, P., and Bihain, B.E. (1997). *J. Biol. Chem.* 272, 31348-31354). All lipoproteins were stored in the dark at 4°C under N_2 and used within 2 weeks (LDL) or 3 days (chylomicrons) of their isolation

Radiolabelling

Lipoproteins were radioiodinated using Bilheimer's modification of the McFarlane's procedure (Bilheimer, D.W., et al. (1972). *Biochim. Biophys. Acta* 260, 212-221), and used no more than 1 week after radiolabeling. ^{125}I -LDL was filtered (0.2 μm , Gelman, Ann Arbor, MI) on the day of the experiment.

Leptin was iodinated using Iodobeads (Pierce) according to the manufacturer's instructions.

Cloning Of Full Length cDNA Human LSR

Human homologous sequences of rat LSR cDNA were found with 2 partially overlapping human genomic sequences (Genbank accession nos: AD000684 and AC002128). ESTs generated on the basis of these sequences were used to screen a human BAC library. A single clone was isolated and sequenced. Analysis of this sequence revealed several variations from the public sequence. A revised LSR sequence is currently available in Genbank (accession numbers TBA).

An 805 bp fragment was obtained by PCR amplification of human liver mRNA (Sense primer: 5' - CTACAACCCCTACGTCGAGT (SEQ ID NO:22), antisense primer: 5' - AGGCGGAGATGCCAGTCGT (SEQ ID NO:23)), and subcloned into the TA cloning vector (Invitrogen, Carlsbad, CA). The cloned insert was isolated by digestion with EcoR1, was purified (GenClean kit, Bio 101, Vista, CA), and the DNA was labeled with α - ^{33}P -dCTP (NEN, Boston, MA) using the random primers labeling system (Life Technologies). The labelled fragment was used to screen the cDNA library (Superscript, Life Technologies), from which we obtained a partial α' clone (clone 18251), lacking 161 bp of the 5' region.

The missing 5' region was obtained by PCR amplification (AmpliTaq, Promega, Madison, WI) from a first strand cDNA prepared from human liver total RNA (Clonetech, Palo Alto, CA)(both oligo dT and random primers were used). The primers for PCR were sense 5'CCTTGTCACGTCGTTACGCTC-3' (SEQ ID NO:24) and antisense 5'-

5 TCACAGCGTTGCCCTGCTT -3' (SEQ ID NO:25). The PCR was performed with annealing temperature of 65 °C and 35 cycles. The fragment was cloned into pGEMT-Easy Vector (Promega).

Fragments corresponding to the α forms and β were cloned into pGEMT-Easy Vector and then used to replace the appropriate region in the LSR α' clone. The full-length LSR α, α', and β clones were reconstructed in pTracer-CMV2 vector (Invitrogen) using EcoRI/Xba I.

10

PCR Analysis of Human LSR

Similarly to previous results with rat LSR (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). J Biol Chem 274, 13390-13398), two splice variants of LSR were detected by RT-PCR analysis of human hepatocyte cDNA. In Fig. 3B, sense and antisense primers were designed to yield three products, of which two were the splice variants. The primer sequences were: sense, 5'- TTACTGCTCCGTGGTCTCAGC- 3' (SEQ ID NO:26) and antisense, 5' AGCTACTCCTGTCAACGTCTCC – 3' (SEQ ID NO:27). Identities of each band were confirmed by sequencing.

20

Northern Blotting

Northern blots were performed as described previously using as a probe clone 18251 described above (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). J Biol Chem 274, 13390-13398).

25

In vitro translation

In vitro translation products were obtained using ³⁵S-methionine (Amersham) and the T7 coupled transcription/translation kit from Promega.

Transient Transfection Studies

30 CHO-K1 cells were plated at a density of 300,000 cells/36 mm dish the day before transfection. After 24 h, plasmid preincubated with Fugene transfection reagent was added to the cells, which were further incubated at 37 °C. Cells were used 48 h after transfection as described in the Brief Descriptioon of the Figures.

Stable Transfections

Stable transfectants were prepared from CHO-K1 cells using Superfect according to the manufacturer's instructions. After introduction of the plasmid into the cell with Superfect, the cells were grown in the presence of 750 µg/mL zeocin. After elimination of untransfected cells, the antibiotic concentration was reduced to 500 µg/mL. Clones were isolated using cloning cylinders, and maintained in tissue culture media containing 100 µg/mL zeocin.

FACS Analysis

Flow cytometry is a laser-based technology that is used to measure characteristics of biological particles. The underlying principle of flow cytometry is that light is scattered and fluorescence is emitted as light from the excitation source strikes the moving particles.

Assay 1 :PLC cell suspensions were obtained using non-enzymatic dissociation solution (Sigma), and then were incubated for 1 h at 4 °C with a 1:200 dilution of anti-LSR 81B or irrelevant anti-serum in PBS containing 1% (w/v) BSA. After washing twice with the same buffer, goat anti-rabbit FITC-conjugated antibody (Rockland, Gilbertsville, PA) was added to the cells, followed by a further incubation for 30 min at 4 °C. After washing, the cells were fixed in 2% formalin. Flow cytometry analysis was done on a FACSCalibur cytometer (Becton-Dickinson, Franklin Lakes, NJ).

Assay 2 : Cells are cultured in a T175 flasks according to manufacturer's instructions for 48 hours prior to analysis.

Cells are washed once with FACS buffer (1x PBS/2% FBS, filter sterilized), and manually scraped from the flask in 10 mLs of FACS buffer. The cell suspension is transferred to a 15 mL conical tube and centrifuged at 1200 rpm, 4 °C for 5 minutes. Supernatant is discarded and cells are resuspended in 10 mL FACS buffer chilled to 4 °C. A cell count is performed and the cell density adjusted with FACS buffer to a concentration of 1 x10⁶ cells/ mL. One milliliter of cell suspension was added to each well of a 48 well plate for analysis. Cells are centrifuged at 1200 rpm for 5 minutes at 4 °C. Plates are checked to ensure that cells are pelleted, the supernatant is removed and cells resuspended by running plate over a vortex mixer. One milliliter of FACS buffer is added to each well, followed by centrifugation at 1200 rpm for 5 minutes at 4 °C. This described cell washing was performed a total of 3 times.

Primary antibody, titered in screening experiments to determine proper working dilutions (for example 1:25, 1:50, 1:100, 1:200, 1:400, 1:500, 1:800, 1:1000, 1:2000, 1:4000, 1:5000, or 1:10000), is added to cells in a total volume of 50 µL FACS buffer. Plates are incubated for 1h at 4 °C protected from light. Following incubation, cells are washed 3 times as directed above. Appropriate secondary antibody, titered in screening experiments to determine proper working dilutions (for example 1:25, 1:50, 1:100, 1:200, 1:400, 1:500, 1:800, 1:1000, 1:2000, 1:4000, 1:5000, or 1:10000), is added to cells in a

total volume of 50 μL FACS buffer. Plates are incubated for 1h at 4 °C protected from light. Following incubation, cells are washed 3 times as directed above. Upon final wash, cells are resuspended in 500 μL FACS buffer and transferred to a FACS acquisition tube. Samples are placed on ice protected from light and analyzed within 1 hour.

5

Protein Determinations

Protein concentrations were determined using Markwell's modified Lowry procedure (1981) or BCA protein assay (Pierce Chemical Co, Rockford, IL) and BSA as standard.

10 Statistical Analysis

Results were analyzed using unpaired Student's t-test.

EXAMPLE 1: Effect of Leptin on Postprandial Plasma TG Response

Transient hypertriglyceridemia seen after administration of a test meal in two strains of obese mice with defects of the Ob-Receptor (OB-R) is shown in Figures 1A and 1B (open symbols). The db/db mice present a mutation of the Ob-Rb isoform, preventing signaling to the JAK and Stat system, while the db^{Pas}/db^{Pas} lack any leptin signaling capacity through the Ob-R. Similar to what is observed in most obese human subjects (Lewis, G.F., O'Meara, N.M., Soltys, P.A., Blackman, J.D., Iverius, P.H., Druetzler, A.F., Getz, G.S., and Polonsky, K.S. (1990) *J. Clin. Endocrinol. Metab.* **71**, 1041-1050; Vansant, G., Mertens, A., and Muls, E. (1999) *Intl. J. Obesity* **23**, 14-21) postprandial plasma lipid levels were elevated in both strains of obese mice when compared to lean controls (shown as dotted lines). A single bolus injection of 50 μg leptin at the time of the meal decreased the amplitude of the triglyceride response (Fig. 1A and 1B, closed symbols); this effect could not be attributed to a reduction in food intake since the meal was administered by intragastric cannulation.

25 A significant reduction of the area under the TG curve was observed with 250 ng of leptin per animal (Fig. 1A, 1B, insets). It can be estimated (average body weight of db^{Pas}/db^{Pas} , 74.6 ± 11.4 g; plasma volume 45 mL per kg) that this dose cannot cause more than a two-fold increase of the concentration of circulating leptin (86.7 ± 12.2 ng/mL) in db^{Pas}/db^{Pas} . Maximum effect of leptin was achieved with 500 ng per animal which decreased by > 80% and > 65% the area under the postprandial 30 TG curve in db/db and db^{Pas}/db^{Pas} , respectively. This dose of leptin (7 μg per kg body weight) is 15-fold lower than that used to achieve 30 to 40% reduction of food intake after peripheral administration of leptin (Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R., and Burn, P. (1995) *Science* **269**, 546-549; Halaas et al, 1995; Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and, J.M. (1995) *Science* **269**, 543-546; Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T., and Collins, F. (1995) *Science* **269**, 540-543). These 35

data establish that leptin can control the exogenous lipoprotein pathway and that this regulation occurs in db^{Pas}/db^{Pas} in spite of the complete defect of the Ob-R.

EXAMPLE 2: Leptin Binding to Rat LSR

5 The binding of leptin to LSR was tested using partially purified rat LSR multimeric complexes. Complexes separated by SDS electrophoresis (Fig. 2, lane 1) and transferred to nitrocellulose, bound 125 I-leptin (Fig. 2, lane 3). The same bands were recognized by polyclonal anti-rat LSR antibodies (Fig. 2, lane 2). The specificity of these antibodies has been described previously (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L.,
10 Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398).

EXAMPLE 3 : Effect of LSR Subunit Transfection

To determine which of the LSR subunits is responsible for leptin binding, CHO-K1 cells were transiently transfected with increasing concentrations of each of the 3 human LSR plasmids (Fig. 3A).
15 CHO-K1 cells were selected because they had the lowest level of endogenous LSR expression of the different cell lines tested. This level is far lower than that of a human hepatocyte cell line (PLC) used to systematically characterize human LSR activity (Fig. 3B). The data showed that only transfection with the LSR α' plasmid increased the binding of leptin to CHO-K1 cells (Fig. 3A). Leptin binding to CHO-K1 cells transfected with LSR β or α remained at levels similar to those seen with the vector alone.
20 Analysis of the expression of co-transfected green fluorescent protein (GFP) estimated transfection efficiency at $\pm 25\%$ for all 3 transiently transfected plasmids.

CHO-K1 cells stably expressing LSR α' were also obtained and were determined to have an increased 125 I-leptin binding and uptake (Fig. 3C). The apparent molecular mass of human LSR α' in stable CHO-K1 transfecant cells corresponded to that of the smallest LSR subunit (\sim 25 70 kDa) in PLC cells (Fig. 3B). Lineweaver-Burk transformation of leptin binding to CHO-K1 cells expressing LSR α' yielded an estimated Kd of 1.3 nM (Fig. 3C, inset), ~ 2 fold that of the Ob-R (Kd = 0.7 nM; Tartaglia et al, 1995). Leptin binding to LSR α' led to its internalization and proteolytic degradation consistent with this leptin binding reflecting a biologically relevant process (Fig. 3D).

30 Similar to what is observed in cells transfected with the Ob-Ra or Ob-Rb (Uotani, S., Bjørbaek, C., Tornøe, J., and Flier, J.S. (1999). *Diabetes* 48, 279-286.) the amount of 125 I-leptin degraded by CHO-K1 cells transfected with LSR α' represented only 16% of that bound and internalized by the cells. These rates of 125 I-leptin degradation are much lower than those observed with receptors mediating rapid endocytosis (Goldstein, J.L., Basu, S.K., Brown, M.S. (1983). 98, 241-260).
35 For instance, after 2 h incubation, the amount of 125 I-LDL degraded through LSR represents 4-5 times the amount bound to the cell surface (Bihain, B.E., and Yen, F.T. (1992). Although not intending to be

limited by any particular theory, the simplest explanation is that LSR α' lacks the di-leucine routing signal known to trigger rapid lysosomal delivery. The LSR α contains such a signal, consistent with previous observations that the α subunit is a critical element allowing LSR to function as lipoprotein receptor (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). J Biol Chem 274, 13390-13398).

Similar experiments are performed in the other stable cell lines expressing the subunits of LSR alone or in all combinations (see table, below). These cell lines are useful for screening small molecules or any potential agonist or antagonist for activity against either the leptin or triglyceride (or both) activity of LSR. In addition, they can be employed in receptor binding assays using FACS analysis or radiolabelled ligands to identify additional ligands of LSR.

LSR stable-transfected Cell Lines
CHO LSR alpha
CHO LSR alpha'
CHO LSR beta
CHO LSR alpha'/beta
CHO LSR alpha/beta
CHO LSR alpha/alpha'
CHO LSR alpha/alpha'/beta

EXAMPLE 4 : Effect of 81B anti-LSR Antibody on LSR Binding and Degradation of Leptin

To test whether in nontransfected cells leptin binds to LSR, PLC cell lysates were immunoprecipitated with an antibody directed against a synthetic peptide with a sequence identical to LSR residues 35-45 (81B). Ligand blotting showed that 125 I-leptin binds directly to the multimeric complexes (apparent molecular masses of 200 and 230 kDa) precipitated by the 81B antibody (Fig. 4A). These complexes are of a size similar to that of rat LSR multimeric complexes (Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). J Biol Chem 274, 13390-13398). Significant amounts of TCA-soluble chloroform-insoluble 125 I-leptin degradation products were found in the incubation media after 2 h incubation of PLC cells with increasing concentrations of 125 I-leptin (Fig. 4B, □). The dose response curve indicated that the process saturated for leptin concentrations ≥ 10 ng/mL (Fig. 4B). The amount of leptin degraded per mg of PLC cell protein is about half as much as that degraded by CHO-K1 LSR α' stable transfectants (Fig. 3D).

Chloroquine (50 µM) inhibited 125 I-leptin degradation by more than 60%, while increasing the amount of cell-associated 125 I-leptin (2-4 fold). This is consistent with 125 I-leptin degradation occurring in lysosomes after receptor-mediated endocytosis. The 81B antibody that immunoprecipitated LSR multimeric complexes had a profound inhibitory effect on leptin degradation in PLC cells (Fig. 4B, ■).

5 This effect was maximal with 10 ng/mL of leptin and 200 µg/mL of antibody and was partially competed off by increasing leptin concentrations at 20 ng/mL. Because immunoprecipitation data revealed no interaction of the 81B antibody with the Ob-R or any other protein (Fig. 4A), the inhibitory effect of this antibody on leptin degradation indicates that in cells of liver origin, the LSR is quantitatively the primary mechanism for leptin degradation. FACS analysis confirmed that the 81B anti-LSR antibody binds to
10 non-permeabilized PLC cells (Fig. 4D). This indicates that the amino-terminal is exposed on the cell surface.

Leptin binding to LSR does not require the presence of FFA and is inhibited by the 81B antibody directed towards the LSR sequence located near the amino terminal end

15 Immunoinhibition studies previously showed that the cluster of charged residues found at the carboxyl terminal end most likely represents the rat LSR lipoprotein binding site (Yen, F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398). Accordingly, LSR was classified as a type II membrane receptor. FACS analysis using the 170 antibody, directed towards a synthetic peptide with a sequence corresponding to that of LSR's carboxyl 20 terminal end, is consistent with this interpretation (Fig. 4D).

While not wishing to be limited by any theory, the observation that the 81B antibody inhibits leptin binding to LSR and binds to intact PLC cells (FACS analysis, Fig. 4D), suggests that LSR amino terminal ends are also exposed on the external side of the plasma membrane. LSR contains a typical 28 amino acid transmembrane spanning domain located between residues 259-286 (Fig. 4C). In addition, a 25 cluster consisting of 3 stretches of hydrophobic amino acids is located towards the amino terminal end. Each of these hydrophobic clusters is too short to allow crossing of the plasma membrane, but since the three hydrophobic elements are in close proximity with only two short hydrophilic separating clusters, a transmembrane spanning region could be constituted. In this case, the two separating hydrophilic domains would be oriented inwardly to minimize interaction with the hydrophobic moieties of the 30 phospholipid bilayers. According to this model, LSR α and α' could cross the plasma membrane twice, with both carboxyl and amino terminal ends protruding extracellularly. LSR β would be limited to a single crossing of the membrane.

EXAMPLE 5 : Effect of Leptin on LSR Activity

35 The effect of leptin on the activity of LSR with respect to its ability to bind, internalize and degrade lipoproteins was also studied. Leptin directly increased the oleate-induced LSR binding uptake

and degradation of ^{125}I -LDL in a dose-dependent manner (Fig. 5A, 5B, 5C). The effect was observed at leptin concentrations $\geq 10 \text{ ng/mL}$.

The specificity of leptin's stimulatory effect upon LSR was further established by the observation that leptin at concentrations of up to $2 \mu\text{g/mL}$ had no detectable effect on the degradation of LDL by the LDL-receptor nor on that of activated α_2 -macroglobulin, the preferred LRP ligand.

The stimulatory effect of leptin on LSR activity as a lipoprotein receptor was suppressed by the 81B antibody (Fig. 5D). The antibody 170 directed against a rat LSR sequence located towards the carboxyl terminal end was used as a control. Although the 170 antibody had an inhibitory effect on the oleate-induced ^{125}I -LDL binding in human PLC incubated without leptin, it did not prevent the leptin stimulatory effect on LSR activity (Fig. 5D).

The stimulatory effect of leptin on LSR activity as lipoprotein receptor was seen not only in cells of human origin, but also in rodent hepatocytes. A brief, 30 min, preincubation of rat hepatocytes with 20 ng/mL mouse recombinant leptin at 37°C increased oleate-induced ^{125}I -LDL binding to the cell surface in subsequent incubations at 4°C (Fig. 6A), indicating that this stimulatory effect of leptin occurred rapidly. Northern blots showed that this leptin treatment did not increase mRNA levels significantly. Further, inhibition of cell protein synthesis ($50 \mu\text{M}$ cycloheximide) did not suppress the stimulatory effect of leptin, while microfilament inhibitors ($50 \mu\text{M}$ cytochalasin B) reduced leptin stimulation by more than 80%. While not wishing to be limited by any particular theory, these results are consistent with the stimulatory effect of leptin on LSR activity resulting primarily from mobilization of a cryptic pool of receptors to the cell surface.

Figure 6B shows the additive stimulatory effect of leptin and oleate on the binding of chylomicrons to rat hepatocytes. This leptin and oleate-induced binding of chylomicrons to rat hepatocytes was suppressed by specific polyclonal anti-LSR antibodies (Fig. 6C). Thus, the stimulatory effect of leptin on LSR is not limited to LDL, but extends to TG-rich lipoproteins that are directly responsible for the transport of dietary lipid. The data show that physiological amounts of leptin acutely regulate the removal of dietary TG by the liver, and that *in vitro*, the same concentrations of leptin regulate LSR activity in hepatocytes while leaving that of other lipoprotein receptors unchanged.

The inhibition of the intestinal absorption of dietary lipids by leptin was also investigated. Overnight-fasted *ob/ob* mice were gavage-fed a high fat test meal. Immediately after the test meal (time = 0 h), the mice were injected intravenously with 200 μL saline containing either no supplement, 0.5 μg recombinant mouse leptin, 2.5 mg lactoferrin, or a mixture of 0.5 μg leptin and 2.5 mg lactoferrin. Blood samples were taken at 2 and 3 h after the test meal, and plasma TG concentrations were measured (see Table, below). Values for these 2 time points were pooled and are presented as means \pm SD of quadruplicate determinations obtained in 2 different animals for each condition (* $p < 0.02$ (saline versus leptin); $^1 p < 0.01$ saline versus lactoferrin; 2 NS (lactoferrin versus leptin + lactoferrin)).

Table

Effect of lactoferrin and/or leptin on the plasma lipid response of ob/ob mice

Plasma TG 2-3 hours after test meal (mg/mL)	
Saline	1.04 ± 0.08
Leptin	0.79 ± 0.1 *
Lactoferrin	2.02 ± 0.26 †
Leptin + Lactoferrin	1.96 ± 0.42 §

The amplitude of postprandial lipemia is determined by both the rate of intestinal lipid

5 absorption and the rate of lipid clearance. To distinguish between these two possible sites of leptin regulation, we used lactoferrin, a milk protein that inhibits the removal of dietary lipid by the liver (Huettinger ,M., Retzek, H., Eder, M. and Goldenberg, H. (1988). Clin. Biochem. 21,87-92). As shown in the Table, injection of lactoferrin in *ob/ob* mice caused a doubling of plasma TG measured during the postprandial stage. Further, leptin caused a decrease in postprandial plasma TG when injected without lactoferrin, but was unable to achieve a significant effect in mice simultaneously treated with lactoferrin. Although not wishing to be bound by a particular theory, this suggested that most of leptin's regulatory effect was due to stimulation of dietary lipid removal by the liver. Lactoferrin has been shown previously to be an inhibitor of LSR at the concentration used (Yen, F.T., Mann, C.J., Guermani, L.M., Hannouche, N.F., Hubert, N., Hornick, C.A., Bordeau, V.N., Agnani, G., and Bihain, B.E. (1994) Biochemistry 33, 10 1172-1180; Mann, C. J., Khallou, J., Chevreuil, O., Troussard, A.A., Guermani, L.M., Launay K., Delplanque, B., Yen, F.T., and Bihain, B.E. (1995) Biochemistry 34,10421-10431).

15 The effect of leptin injection on the activity of lipolytic enzymes that are involved in the hydrolysis of plasma TG was also examined. Injections of leptin (50 µg/animal) did not significantly modify lipase activity released in serum of *db^{Pas}/db^{Pas}* after heparin injections (Fig. 12). If anything, 20 leptin decreased, although not significantly, the lipase activity when compared to the effect of administering the test meal alone. These data ruled out the possibility that leptin regulates postprandial lipemia by directly controlling the activity of lipolytic enzymes.

EXAMPLE 6 : Comparison of the Effect of Human and Mouse Leptin

25 To establish a link between leptin control of postprandial lipemia in mice and its stimulation of LSR in cultured cells, the species specificity in the ability of mouse and human leptin to activate LSR in cultured cells was utilized. Mouse leptin was more efficient than human leptin in stimulating LSR-mediated LDL degradation in primary cultures of rat hepatocytes (Fig. 7A); binding and uptake of ¹²⁵I-LDL followed a pattern superimposable to that of ¹²⁵I-LDL degradation. Conversely, human leptin was 30 more efficient in stimulating LSR activity in human PLC cells than mouse leptin (Fig. 8B).

The effect of human (1 µg/animal) and mouse (0.25 µg/animal) leptin on plasma TG response of *db^{Pas}/db^{Pas}* mice was also compared. The data showed that human leptin slightly reduced the postprandial plasma TG response (Fig. 7B, closed bar), but the effect did not reach statistical significance. This is consistent with the relative inability of human leptin to stimulate rodent LSR activity in cultured cells

5 (Fig. 7A, closed bar). Mouse leptin injected at a 4-fold lower dose had a pronounced effect on postprandial plasma TG (Fig. 7B, hatched bar), consistent with its profound stimulatory effect on LSR in cultured cells (Fig. 7A, hatched bar). Thus, the effects of human and mouse leptin on postprandial TG response in obese mice paralleled their ability to stimulate LSR activity as lipoprotein receptor in cultured cells. Such species specificity has not been shown for the Ob-R.

10

EXAMPLE 7 : Differential Effect of Mouse and Human Leptin and Leptin Peptide in Cells

Species specificity has been observed with respect to leptin's ability to increase LSR activity in rodent or human liver cells (Fig. 8A and 8B). Mouse leptin increases LSR activity more in rat hepatocytes, and human leptin increases LSR activity more in human cells. In human cells the mouse leptin is inactive and almost approaches an inhibitory effect.

An internal segment of the leptin polypeptide that is near the carboxy terminus was found to differ significantly in different species (See shaded area in Fig. 13). The mouse and human sequence of this segment was synthesized as a 22-mer peptide and tested for activity in cells (Fig. 9 & 10). The human peptide was agonistic for LSR activity in human cells, while the mouse peptide was antagonist for LSR activity in human cells. Thus, the human leptin peptide has a complete signalling capacity in human cells (Fig. 9). In primary cultures of rat hepatocytes, both peptides increased oleate-induced LDL binding, though not to the same extent (at concentrations < 50 µg/mL). However, there was an inhibitory effect on oleate-induced LDL degradation, indicating that these peptides do not completely mimic the activity of leptin in the rat system (Fig. 10).

25

EXAMPLE 8 : Effect of Mouse Leptin or Leptin Peptide on the Post-prandial Response

The apparent Kd of LSR for leptin is in the same range as that of the Ob-receptor, suggesting that the regulation of LSR activity by leptin could represent a physiologically relevant process. To address this issue, the variation in plasma leptin concentration that occurs after administration of a test meal to normal mice was measured. Leptin concentrations of 1.9 ± 0.7 and 4.5 ± 0.2 ng/mL ($p<0.007$, $n=4$) were measured before and 2 h after the meal. However, in normal mice, the postprandial increase in plasma TG remained small and transient, even when massive amounts of dietary lipid were provided by intragastric cannulation. This reflects the fact that in normal mice, the rate of lipid clearance is adapted to that of intestinal absorption.

35 Imbalance of this system appears to occur only in obese mice. However, *db^{Pas}/db^{Pas}* mice are not a satisfactory model to test the physiological effect of leptin. The plasma leptin levels of these animals

are extremely high (86.7 ± 12.2 ng/mL) and furthermore, do not detectably vary after administration of a test meal. Two hours after the test meal, leptin concentrations were measured as 86.6 ± 18.9 ng/mL (NS, n=5). Therefore, *ob/ob* mice that lack leptin were used to test whether administration of a physiological dose of leptin modulates postprandial lipemia.

5 As seen in Fig. 11A, a single subcutaneous injection of 50 ng of leptin in *ob/ob* mice decreases the postprandial lipemic response. This injection caused a transient increase in plasma leptin concentrations up to 3.25 ± 0.03 ng/mL at 2 h; baseline values were recorded 4 h after injection. The dose of leptin that is needed to control postprandial lipemia in *ob/ob* mice is 5-10 fold lower than those used in leptin-resistant *db/db* mice. In *ob/ob* mice, the signaling effect of leptin could result either from
10 interaction with the Ob-receptor or the LSR.

A synthetic peptide with a sequence identical to that of mouse leptin between residues 117-138 was obtained and found to stimulate the oleate-induced binding of 125 I-LDL in primary cultures of rat hepatocytes (Fig. 11B, insert). Daily subcutaneous injections of 25 μ g of this synthetic leptin peptide to *ob/ob* mice had no effect on the food intake over a 12 day period (7.6 ± 0.4 g/day in *ob/ob* receiving saline and 6.7 ± 0.3 g/day in *ob/ob* receiving peptide; n = 4, NS). Daily injections of 25 μ g of mouse leptin caused a reduction of food intake to 4.7 ± 0.5 g/day (n = 3; p < 0.003 versus controls). Thus, the synthetic peptide that activates LSR *in vitro* does not influence food intake by activating the Ob-receptor. Injection of 50 ng of this synthetic peptide reduced the postprandial lipemic response in *ob/ob* mice (Fig. 11B).

20

EXAMPLE 9: Relevance to Disease States

The instant invention has shown that leptin regulates cellular functions in the absence of functional Ob-R. A myriad of peripheral regulatory effects of leptin have been identified and attributed to leptin signaling through the Ob-R, even when the targeted tissues lack the long isoform of the Ob-R, i.e., the sole isoform with a clearly established signaling capacity (Friedman, J.M., and Halaas, J.L. 25 (1998). *Nature* 395, 763-770). The characterization of a leptin receptor distinct from the Ob-R and controlling the entry of exogenous TG into the liver opens the possibility that leptin controls other aspects of cell metabolism independently of the Ob-R. Although not wishing to be limited to a particular theory, one hypothesis is that leptin resistance is due to desensitization of the signaling pathway through 30 which leptin binding to LSR leads to mobilization of the receptor to the cell surface.

Leptin regulation of the exogenous lipoprotein pathway opens new perspectives towards the understanding of the relationship between obesity, hypertriglyceridemia and cardiovascular disease. Indeed, accumulation in plasma of the residues of chylomicrons has been shown to increase the risk of cardiovascular disease due to the formation of atherosclerotic plaque (Karpe et al, 1998 *Atherosclerosis* 141, 307-314). Hypertriglyceridemia is also considered an independent predictor of cardiovascular disease in obese subjects with Type II diabetes (Feeman, 1998 *Ann. Intern. Med.* 128, 73-74).

By increasing the contribution of the liver to the removal of plasma TG, leptin prevents deposition of dietary lipid in adipose tissue in excess of their FFA-releasing capacity. Thus the liver plays a critical but underestimated role in the pathogeny of obesity.

5 EXAMPLE 10: Molecular Modeling of an Active Leptin Fragment of the Invention

The amino acid sequence for the human leptin fragment with activity is: NH₂-CHLPWASGLETLDSLGGVLEAS-COOH (SEQ ID NO:57; residues 117-138). The amino acid sequence of the mouse leptin fragment with inhibitory activity in the human system is: NH₂-CSLPQTSGLQKPESLDGVLEAS-COOH (SEQ ID NO:67).

10 A molecular dynamic assay (MD) was performed on both the human and the mouse 22aa peptides. MDs were performed under AMBER force field, in vacuo, with a dielectric constant proportional to 4r, a switched cutoff with inner radius of 10A and outer radius of 14A, a heating phase of 20ps from 0 to 300K by steps of 50K, and a production phase of 120ps at 300K. At the end of the 120ps MDs, both peptides have lost their short helical part, and have shrunk to a more compact conformation.

15 The main difference between the human and mouse 22aa peptides in the packed conformations is the presence of a residue with higher accessibility (namely L133, before the 2 Glycines of the end sequence LGGVLEAS) in the human 22aa peptide.

20 In order to decipher which amino acid is important among the 126-129 amino acid residues, which differ significantly between human and mouse, the following in-silico combinatorial mutational assay was performed.

Each residue in positions 126-129 of the 22aa human peptide (conformation extracted from the human leptin) was mutated, resulting in 16 mutated peptide models. Each model was minimized until reaching an rms gradient of 0.1 Kcal/mol (within the AMBER force field). Then, each minimized model was used as the starting conformation of ultra-short molecular dynamics (MD) assay (heating phase from 25 0K to 300K of 20ps, and production phase at 300K of 20ps, in vacuo, under the same conditions as described above). The final MD snapshots were re-minimized, and the corresponding energies are given in the following HTML table, as well as the sequence of the spontaneously formed alpha helices.

Energies of 16 Mutated Human 22aa Leptin Peptides

30	Central Sequence	LD	LE	PE	PD
	ET	-87.4	-79.3	-83.9	-69.3
		LDSLGG (SEQ ID NO:42)			TPDSL (SEQ ID NO:46)
35	QT	-66.0	-83.3	-68.0	-65.4
		GLQTLDSLG (SEQ ID NO:47)	GGVLE (SEQ ID NO:48)		TPDSLG (SEQ ID NO:49)

	EK	-82.5	-93.1	-92.2	-92.2
		SLGGVLEAS (SEQ ID NO:50)	PESLGG (SEQID NO:51)	PDSLGG (SEQ ID NO:52)	
5	QK	-83.3	-85.2	-90.2	-84.2
		LGGVLEA (SEQ ID NO:53)			

Left column: first 2 aa residues of the mutated ETLD (SEQ ID NO:40) human motif. First line: last 2aa residues of the mutated ETLD (SEQ ID NO:40) human motif. Information available in each cell: energy of the minimized 20ps snapshot (Kcal/mol), and alpha helix sequence if present in the 20ps snapshot. Peptides containing ETLD (SEQ ID NO:40; human motif) and QKPE (SEQ ID NO:41; mouse motif) are in italic.

Under these conditions, the EKLE (SEQ ID NO:43), EKPE (SEQ ID NO:44) and EKPD (SEQ ID NO:45) containing peptides are the most favorable ones and have an alpha helix. QKPE (SEQ ID NO:41; mouse motif) and ETLD (SEQ ID NO:40; human motif) containing peptides are the next favorable conformations, with an alpha helix for ETLD (SEQ ID NO:40). Since the residue composition of each peptide is different, both composition and conformation energies form part of the comparison, and not only conformation energies.

Other peptides of the invention that can be tested in the assays described herein or other comparable assays for LSR agonistic or antagonistic activity include the following :

Table

Human Leptin Peptide Fragments

Position	Sequence	SEQUENCE ID NUMBER
117-138	CHLPWASGLETLDSLGGVLEAS	SEQ ID NO:57
122-143	ASGLETDSLGGVLEASGYSTE	SEQ ID NO:60
127-148	TLDLGGVLEASGYSTEVVVALS	SEQ ID NO:62
132-153	GGVLEASGYSTEVVVALSRGQGS	SEQ ID NO:63
112-133	AFSKSCHLPWASGLETLDSLGG	SEQ ID NO:56
107-128	LLHVLAFSKSCHLPWASGLETL	SEQ ID NO:55
102-123	ENLRDLLHVLAWSKSCHLPWAS	SEQ ID NO:54
119-136	LPWASGLETLDSLGGVLE	SEQ ID NO:58
121-134	WASGLETLDSLGGV	SEQ ID NO:59
123-132	SGLETLDSLGS	SEQ ID NO:61

Table

Mouse Leptin Peptide Fragments

Position	Sequence	SEQUENCE ID NUMBER
117-138	CSLPQTSGLQKPESLDGVLEAS	SEQ ID NO:67
122-143	TSGLQKPESLDGVLEASLYSTE	SEQ ID NO:70
127-148	KPESLDGVLEASLYSTEVVALS	SEQ ID NO:72
132-153	DGVLEASLYSTEVVALSRLQGS	SEQ ID NO:73
112-133	AFSKCSLPQTSGLQKPESLDG	SEQ ID NO:66
107-128	LLHLLAFSKCSLPQTSGLQKP	SEQ ID NO:65
102-123	ENLRDLLLAFSKCSLPQTS	SEQ ID NO:64
119-136	LPQTSGLQKPESLDGVLE	SEQ ID NO:68
121-134	QTSGLQKPESLDGV	SEQ ID NO:69
123-132	SGLQKPESLD	SEQ ID NO:71

5 EXAMPLE 11: Inhibition of the Expression of Endogenous LSR Using Chimeraplasty

Chimeraplasty experiments to inhibit the expression of cellular LSR are designed based on publications by Cole-Strauss et al. (Science 273 :1386-1389 (1996)) and Alexeev and Yoon (Nature Biotech. 16 :1343-1346 (1998)). The following Example is exemplary only. Other sites in LSR can be targeted using the same approach to achieve either inhibition of expression, or to change base pairs to study the importance of various residues (both protein coding and within regulatory regions , intronic, or 5' or 3' to the coding region) for LSR functioning *in vitro* and *in vivo*. Similarly, chimeric oligonucleotides can be designed to modify LSR amino acids either in the coding or non-coding regions in experimental animals and for treatment of diseases in humans.

There are two ATG codons in human LSR. The second ATG corresponds to the ATGs present in mouse and rat LSR. The first ATG is used as the start site for at least some of the forms at least some of the time, since the N-terminal antibody 81B is specific for this region of the LSR protein (See other Examples). Therefore, chimeric oligonucleotides were designed for the region after the first ATG and before the second ATG, and the region after the second ATG.

The first step was to identify regions of LSR where changing a single base pair results in the creation of a stop codon. Although there are three stop codons, TAG (amber), TAA (ochre) and TGA (stop), TGA is preferred for giving a complete stop (complete inhibition of LSR expression). Two regions were identified (one after the first ATG and one after the second ATG) where changing a single base pair would result in a TGA stop codon, and chimeric oligonucleotides were designed for the appropriate sequences (Fig. 9). Chimeric oligonucleotides are designed such that they will basically

form a double-stranded sequence with two sets of 4T's at the bends and a GC-clamp (typically 5 bases in length) at one end and the mutated sequence and its wild-type complement forming the main part of the double-stranded part (typically 25 bases in length). Flanking the mutated sequence (typically 5 DNA bases) is 2'- o-methyl RNA sequence (typically 10 bases on either side).

5 Primers and probes were also designed for these regions for use in an allelic discrimination assay (PE Applied Biosystems, «Allelic Discrimination Using 5' Nuclease Assays» www2.perkin-elmer.com/ab/apply/dr/dra1b4.html hereby incorporated by reference herein in its entirety including any drawings, figures, or tables). The use of flourogenic probes in a 5' nuclease assay combines PCR amplification and allele detection into a single step. Hybridization probes for the endogenous and mutant forms of the allele are included in the PCR amplification reaction. The hybridization probes are cleaved by the 5' nuclease activity of Taq DNA polymerase only if the probe's target sequence is being amplified. By using a flourogenic probe, cleavage of the probe can be detected without post-PCR processing. The flourogenic probe comprises an oligonucleotide labeled with both a fluorescent reporter dye (typically 5') and a quencher dye (typically 3'). In the intact probe, the proximity of the quencher reduces the fluorescent signal from the reporter dye. Cleavage liberates the reporter dye allowing an increase in its fluorescent activity. The essence of the technique is that it can detect single nucleotide mismatches since these interfere with the ability of Taq DNA polymerase to cleave the probe.

10 Probe placement is dictated by the location of the polymorphism. Generally, the polymorphic site should be near the center of the probe, since mismatches at the ends are not typically as disruptive to hybridization. A separate probe is synthesized for each allele, and each is labeled differently (FAM and TET or JOE, for example). The main criterion for probe selection is that it be long enough to hybridize at the annealing/extension temperature used in the PCR amplification. Calculation of the annealing/extension temperature is routine for those of ordinary skill in the art. Typically a probe Tm (melting temperature) of 65-67 C works well at an annealing temperature of 60-62 C. Therefore, the length of each probe is typically adjusted so that both probes have an estimated Tm of 65-67 C. In addition, there can be no G at the 5' end, since a G adjacent to the reporter dye quenches fluorescence somewhat even after cleavage. The probes can be for either strand; the strand with more C's than G's generally performs better in the 5'nuclease assay.

15 Primers are chosen based primarily of estimated Tms as well as small amplicon size. Primers with Tms of 58-60 C (approximately 5 C below the probe Tm) generally work well at annealing/extension temperatures of 60-62 C. Generally, primers that are unstable at their 3' ends are preferred, as this seems to reduce non-specific priming. Therefore, primers with only one to two Gs and Cs within the last 5 nucleotides of the 3' end are preferred. In addition, primers should be placed as close as possible to the probe location without overlapping the probes. This generally results in amplicons of less than 100 bp, which is advantageous for PCR amplification success.

First ATG:

Chimeric oligonucleotides. DNA is in capital letters; 2' o-methyl RNA is in small letters; mutated base is underlined:

5' – ATGCAACAGGACGGACTTGGAGTAGTTTcuacuccaagTCAGTccuguugcauGC CG TT

5 TCGCGC – 3' (SEQ ID NO:74)

Allelic Discrimination Assay:

Forward Primer: TGTCCACGTCGTTACGCTC (SEQ ID NO:75)

Reverse Primer: TCCCAC TTCCGTTCCCTTGT C (SEQ ID NO:76)

Probes (endogenous/mutant): 3' – CCTACTCCAAGTC(C /A)GTCCTGTTGCATT–5'
10 (SEQ ID NO:77)

Second ATG:

Chimeric oligonucleotides. DNA is in capital letters; 2' o-methyl RNA is in small letters; mutated base is underlined):

15 5' – GACCCTGCCCTGTACCTACCTACCAGATGTTTcaucugguagGTTCAgggcagggu GCG
CGTTTT - 3' (SEQ ID NO:78)

Allelic Discrimination Assay:

Forward Primer: GTGGTGATCCTCTTCCAGCCT (SEQ ID NO:79)

Reverse Primer: CCAGATGACGATGGGTG C (SEQ ID NO:80)

20 Probes (endogenous/mutant): 5' - ACCCTGCCCTG(T/A)CCTACCAGATGAC – 3' (SEQ ID
NO:81)

The chimeric oligonucleotides are also made fluorescently labeled to allow tests for transfection efficiency.

25 Following synthesis of the chimeric oligonucleotides and the primers and probes for the allelic discrimination assay, the fluorescein-labeled chimeric oligonucleotides are transfected into PLC cells using standard methodology (other Examples), and the transfection efficiency determined by fluorescence. The proportion of cells that are fluorescent (successful transfection) is compared with the total number of cells by techniques that are standard in the art. If the transfection efficiency is low, 30 various parameters of the transfection methodology may be modified to increase the transfection efficiency. These parameters are well-known in the art.

Following a successful transfection of the fluorescently-labeled chimeric oligonucleotides, the unlabeled chimeric oligonucleotides are transfected into PLC cells, and the cells are sorted using FACS (fluorescent activated cell sorter) after labeling cells with a first anti-LSR antibody followed by a 35 fluorescently-labeled second antibody that binds the first antibody using methods standard in the art. The first antibody can be the N-terminal specific 81B antibody to sort cells for LSR expression following mutation of the site after the first ATG, but needs to be a more C-terminal specific antibody (such as the 170 antibody (to mouse carboxy terminus) or 93A (to same region of human carboxy terminus)) to sort

cells for LSR expression tested for creation of the stop codon and expression of LSR expression following mutation of the site after the second ATG.

The cells in both groups with the lower LSR expression are collected to enrich for cells with the stop codon in at least one of the copies of LSR. The cells are then cultured and checked for the presence 5 of the stop codon mutations using allelic discrimination. An exemplary reaction set-up and procedure is as follows :

	<u>REAGENT</u>	FINAL CONC.	(μ L)
	10X TaqMan Buffer A	1X	2.5
	25 mM MgCl ₂	5 mM	5
10	dATP	200 μ M	0.5
	dCTP	200 μ M	0.5
	dGTP	200 μ M	0.5
	dUTP	400 μ M	0.5
	AmpliTaq Gold (5 U/ μ L)	1 U	0.2
15	AmpErase UNG (1 U/ μ L)	0.25 U	0.25
	DEPC H ₂ O		2.55
	TOTAL VOLUME		12.5 μ L

The primer concentrations can vary from 100 nM to 300 nM. Probe concentrations can vary from 50 nM to 200 nM. Template concentrations can vary from 0.1-100 ng/reaction.

20 STEPS

1. 50 C for 2 min.
2. 95 C for 10 min.
3. 95 C for 15 sec.
4. 58 to 65 C for one min.
- 25 5. hold at 4 C

Repeat steps 3 & 4 for 40 cycles.

Following testing, the cells are retransfected with the chimeric oligonucleotides and again sorted for LSR expression using FACS. The cells that are expressing the lowest amounts of LSR (or none) are selected, cultured to form a homogeneous population, and rechecked using allelic discrimination to

30 identify cell clones that no longer express LSR. These cells can then be used in assays to study the role of the various LSR subunits and the interaction of compounds with particular subunits, as well as for screening for modulators of specific LSR activities (modulated by the different subunits, for example).

In addition, the above-described techniques can be used on other cells, (including those in the ATCC databank and in animals or humans) to create other kinds of cells lacking LSR activity. As well as the

35 uses as a research and compound screening tool, the technique is also useful for treatment of diseases related to obesity *in vivo*.

Chimeric oligonucleotides were also designed to specifically inhibit either the α subunit of LSR, or both the α and the α' subunits of LSR, by targeting either Exon 4 or Exon 5, specifically.

Exon 4

Chimeric oligonucleotides. DNA is in capital letters; 2' o-methyl RNA is in small letters; mutated base 5 is underlined):

5' –TGGCTGAGCTCTTACCTGGTTTCATT~~T~~tgaaaaccagGTCAGagtcagccAGCGCGTT
TTCGCGC - 3' (SEQ ID NO:82)

Allelic Discrimination Assay:

Forward Primer: GAGCTCATCGTCCTGGGAG (SEQ ID NO:83)

10 Reverse Primer: AGTCTTCTATGGGCCCGC (SEQ ID NO:84)

Probes (endogenous/mutant): 3' CACCGACTCGAGA(A/C)TGGACCAAAAGTC 5' (SEQ ID NO:85)

Exon 5

15 Chimeric oligonucleotides. DNA is in capital letters; 2' o-methyl RNA is in small letters; mutated base is underlined):

5' – GGTTGTGGTATGCCTGGCTGCCTTCTTTgaaggcagccAGTCAtaccacaaccGCGCGT
TTTCGCGC - 3' (SEQ ID NO:86)

Allelic Discrimination Assay:

20 Forward Primer: ACGCAGAGCTCATCGTCCTT (SEQ ID NO:87)

Reverse Primer: GATGCCAGGAGGAGGAAGA (SEQ ID NO:88)

Probes (endogenous/mutant): 3' – CAACACCATA(G/T)GACCGACGGAA – 5' (SEQ ID NO:89)

25 For both, use FAM as the dye for the endogenous nucleotide (A and G, respectively), and JOE as the dye for the changed nucleotide (C and T, respectively).

EXAMPLE 12: Use of Zinc Finger Polypeptides for LSR Modulation

A method for specifically binding DNA of choice and repressing or initiating its transcription has 30 been described recently in WO 98/54311. The repression or initiation can be constitutive in the presence of the vector carrying the zinc finger, or it can be placed under the control of a small molecule switch, for example the TET system, where the expression of the repressor/initiator-bound zinc finger can be regulated. This is especially important in systems where complete absence of a gene at certain developmental stages, for example, is lethal, or where its overexpression is toxic (Massie B, Couture F, 35 Lamoureux L, Mosser DD, Guilbault C, Jolicoeur P, Belanger F, Langelier Y Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. J Virol 1998 Mar;72(3):2289-96 hereby incorporated by reference herein in its entirety including any figures, tables, or drawings).

Zinc finger polypeptides are designed to specifically bind to LSR genomic DNA, and then are linked with the KRAB repressor to inhibit LSR expression. Sequences identified for use in making the zinc finger polypeptides are :

1936 to 1927 of SEQ ID NO :1 TAG GGG TGA GCG GCG GGG (SEQ ID NO:91)

5 1947 to 1936 of SEQ ID NO :1 GAG GGC TGG NNN TAG GGG TGA (SEQ ID NO:92)

1946 to 1936 of SEQ ID NO :1 AGG GCT GGG NN TAG GGG TGA (SEQ ID NO:93)

1956 to 1947 of SEQ ID NO :1 GTG GGA GCC GAG GGC TGG (SEQ ID NO:94)

1956 to 1946 of SEQ ID NO :1 GTG GGA GCC N AGG GCT GGG (SEQ ID NO:95)

2304 to 2295 of SEQ ID NO :1 GCG GCG GCC GGG TGG GAG (SEQ ID NO:96)

10 1778 to 1787 of SEQ ID NO :1 TTG GCC GGA GCA GAT GGG (SEQ ID NO:97)

1787 to 1798 of SEQ ID NO :1 GCA GAT GGG NN CCG GAA GGG (SEQ ID NO:98):

1946 to 1934 of SEQ ID NO :1 AGG GCT GGG NNN AGG GGT GAG (SEQ ID NO:99)

1934 to 1922 of SEQ ID NO :1 AGG GGT GAG NNN CGG GGA GGG (SEQ ID NO:100)

1740 to 1749 of SEQ ID NO :1 AAG TGG GTC TCG GTT GCA (SEQ ID NO:101)

15 The sequences to be bound by zinc finger polypeptides are provided to Sangamo, where the actual zinc finger proteins are synthesized and are linked to the KRAB domain, a transcription repressor (Pengue G, Calabro V, Bartoli PC, Pagliuca A, Lania L Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res 1994 Aug 11;22(15):2908-14) hereby incorporated by reference herein in its entirety including any figures, tables, or drawings), are synthesized. The DNA binding domain can also be linked to transcription initiators (such as VP16 ; Proceedings of the National Academy of Sciences USA 94 :5525 (1997) hereby incorporated by reference herein in its entirety including any figures, tables, or drawings) or a small molecule switch system, that is used to turn on or off the zinc finger protein linked to the repressor or initiator. Examples of small molecule switches that are effective in cells and in animals include, the Tet system, RU486, and ecdysone.

The zinc finger proteins are delivered as plasmids suitable for transfection into cells using standard techniques (Fugene, is a method of choice). The cells used include, but are not limited to, the human cell lines HepG2, PLC, Hep3B, C3A, and 293 and the mouse cell lines taoBpRcl, BpRcl, and Hepa1-6. All cells are available from ATCC. Following transient transfection, the cells are tested for LSR expression and activity using standard techniques described in this application, that may include FACS analysis to look for LSR expression on the cell surface, quantitative PCR to look at whether the message is being made, and various binding, uptake and degradation experiments to study LSR activity.

Following a determination of which zinc finger proteins are the most effective in inhibiting LSR expression, stably transfected cell lines are created, using the techniques described in this application.

35 These cell lines are used to then study the activity of the subunits of LSR separately and in combination by co-transfected them into the cells either stably or transiently, or by turning on and off endogenous

LSR genes. These cell lines are the basis of assays for agonists and antagonists of LSR generally and the subunits separately and in any combination.

The zinc finger proteins are also provided as part of a supernatant associated virus, or retroviral adenovirus (for example adeno-associated viral (AAV)). These are effective gene transfer vectors for
5 use in cells or in animals, as well as humans. Upon receipt, the AAV supernatant is amplified using techniques well-known in the art and examples are described in Xiao et al. J. Virology 72 :2224-2232 (1998), hereby incorporated by reference herein in its entirety including any figures, tables or drawings) and can include the use of helper plasmids as described in Collaco *et al* (Gene (1999) 238:397-405, hereby incorporated by reference herein in its entirety including any figures, tables or drawings).
10 Following amplification, the supernatant is used to infect cells or preferably mice using standard techniques in the art some examples of which are provided by Snyder *et al*. (Nature Medicine 5 :64-69 (1999) and Teramoto *et al*. J. Virol. 72 :8904-8912 (1998), both of which are hereby incorporated by reference herein in their entirety including any figures, tables, or drawings.

Following infection, the cells are tested as described above ; the mice are tested for effects on
15 fasting and post-prandial levels of triglycerides, free fatty acids, cholesterol, leptin, glucose, insulin, and adipoQ (Acrp30, Apm1) as well as fragments thereof, for example, before and after feedings as described herein. Similarly to plasmids, constructs in AAV gene transfer vectors can be co-infected. Thus, mice or cells can be co-infected with constructs containing cDNA encoding the α , α' , or β subunits either alone or in combination to study their role *in vivo* and to test the effects of agonists/antagonists on specific
20 subunits, or subunit combinations, in animals or cells.

LSR Zinc Finger Proteins

Sangamo's Universal GeneTools technology platform enables the rational design and rapid generation of highly specific ZFP transcription factors that can selectively recognize and
25 regulate/modulate transcription of any target gene or DNA sequence. Expression of the ZFP's as fusions to activation (herpes simplex virus VP16) or repression (Kruppel-associated box A domain / KRAB-A) domains allows transcription to be specifically up or down modulated within cells. Figure 25 contains a table with a summary of the five sets of plasmids encoding ZFPs targeted to the LSR gene. Each set contains the ZFP target sequence fused to the VP16 domain (N VF), or the KRAB-A domain (N KF). The
30 sequences for the N VF versions of these plasmids are listed in Figure 26. These engineered ZFP's are being used for the functional analysis of LSR in both cell-based assays and in animal models.

Cell Based Assays:

To determine the effect of these engineered on LSR expression, mouse hepatocytes were
35 transfected and assayed for LSR mRNA by Northern analysis. Hepa1-6 cells transfected with ZFP-NVF constructs, were harvested 24 and 48 hours post transfection for total RNA isolation (Qiagen RNeasy

mini kit). Standard protocols were followed for Northern gels and blotting. Blots were probed with the full length mouse LSR alpha cDNA (EcoRI fragment from pTracer clone) and G3PDH DNA (Clontech). Probes were prepared using Prime-IT II random primer labeling kit (Stratagene) and ^{32}P dCTP. Quantitation of the Northern bands was done using Gel-Pro software.

5 Figure 27 shows an analysis of all 5 candidate ZFPs linked to VP16. Only 2 of these plasmids, 5185 and 5186, exhibited any increase in expression, 6% and 16%, respectively, at 48 hours post-transfection. Since this increase was not very large, a more detailed analysis of these 2 ZFPs by Northern and QPCR was used to confirm the up-regulation of LSR by 5185 and 5186.

10 Hepa1-6 cells transfected with ZFP-NVF constructs in triplicate, were harvested 24 and 48 hours post transfection for total RNA isolation (Qiagen RNeasy mini kit). Standard protocols were followed for Northern gels and blotting. Blots were probed with the full length mouse LSR alpha cDNA (EcoRI fragment from pTracer clone) and G3PDH DNA (Clontech). Probes were prepared using Prime-IT II random primer labeling kit (Stratagene) and ^{32}P dCTP. Quantitation of the Northern bands was done using Gel-Pro software. The results show an average of 28% mRNA increase with 5186 and a 24% increase with 5185 (Fig. 28). It should be noted that there was no significant increase in LSR mRNA on either Northern at the 24-hour time point.

15 Since the Northern analysis is not quite as sensitive as QPCR, the transcriptional increase was confirmed using QPCR. Cells were harvested 48 hours post transfection for Total RNA isolation (Ambion RNaqueous Kit). RNA was then reverse transcribed to generate cDNA for PCR analysis. 20 Primer and Probe sets directed toward the mouse LSR and control GAPDH sequences were used to quantitate levels of transcription in ZFP transfected cells. As shown in Figure 29, QPCR results indicate a 41% increase in LSR transcription when Hepa 1-6 cells are transfected with ZFP plasmid 5186-NVF and a 30% increase with ZFP plasmid 5185-NVF. These results indicate that both 5185 and 5186 plasmids were functioning in cells.

25 Binding-Uptake-Degradation (BUD) studies were used to assay the ability of these plasmids to increase the cells ability to process ^{125}I -LDL. Cultures of Hepa1-6 mouse hepatocytes were transfected with ZFP's plasmids 24 hrs after plating. Cells were transfected with 1 μg plasmid/well in a 6well plate, using Lipofectamine (Gibco BRL) according to manufacturer's instructions. Forty-eight hours post transfection, Oleate-induced ^{125}I -LDL binding, uptake, and degradation was measured as described herein.

30 Results of the BUD studies indicate increased binding and uptake of labeled LDL when Hepa1-6 cells are transfected with ZFP's 5186-NVF and 5185-NVF when compared to control transfected cells. The data in figure 30 have been corrected either for total protein (30A-30C) or for β -gal (30D-30F), which is a crude measure of the transfection efficiency. BUD data supports a role for ZFP 5186-NVF and 5185-NVF in the transcriptional activation of LSR and confirms a corresponding increase in functional activity.

The increase in LDL binding and uptake suggests an increase in expression of LSR at the cell surface. To prove this, cells transfected with the ZFPs were analyzed by Flow cytometry (FACs) Analysis. FACs analysis (described above) allows for direct estimation of the proportion of positive cells in a population, as well as an indirect measure of the level of receptor on the cell surface (mean fluorescence intensity).

Hepa1-6 cells were transfected with ZFP-NVF constructs 5186 and 5185, along with control plasmids. Forty-eight hours post transfection, cells were analyzed for cell surface expression of LSR in the presence/absence of Leptin (20 ng/mL). Staining of Hepa1-6 cells involved incubation with primary antibodies, generated in rabbits against mouse LSR NH₂ terminal sequence CPDRASAIQ, or mouse COOH terminal sequence EEGHYPPAPPYSET, followed by detection with a fluorescent-labeled secondary antibody against IgG rabbit (Sigma).

Results indicate that in the presence of Leptin, Hepa1-6 transfected with plasmid 5185-NVF had a 50% increase in the level of LSR on the cell surface when compared to controls. While cells transfected with 5186-NVF had a 35% increase in LSR at the cell surface. These findings support a functional role for ZFP 5185-NVF and 5186-NVF in the transcriptional up-regulation of LSR and concomitant increase of LSR on the cell surface.

Analogous experiments are used to assess the efficacy of ZFP-NKFs for repressing LSR transcription.

EXAMPLE 13: Retroviral Library Screening by FACS

In order to identify more genes involved in the regulation of LSR and in ligand signaling through LSR (leptin, C1q, AdipoQ (Acrp30, Apm1), triglyceride-rich lipoproteins, etc) a retroviral library screening assay has been designed. In its most basic form, cells expressing LSR (PLC or HepG2, for example) are transfected with a retroviral library. Following sorting for expression of a marker protein, the cells are treated with a LSR ligand (leptin, for example) and assayed for LSR expression by FACS following staining with an antibody to LSR. Cells of interest, are those that either express more LSR or less LSR than is expressed following leptin stimulation of the same cells without the retroviral library.

The assay takes advantage of a retroviral vector developed by Lodish at the Whitehead Institute for Biomedical Research that takes advantage of the spectrum of expression levels of cloned cDNAs while simultaneously maintaining the high efficiency of retroviral gene transfer. The vectors employ an encephalomyocarditis virus IRES (Jang *et al*. *J. Virol.* 62 :2636-2643 (1988)), followed by a quantitative selection marker, such as green fluorescent protein (GFP) or a cell surface marker protein, that are detectable by intrinsic fluorescence or by staining live cells with a fluorescent antibody, respectively (Fig. 14). Because expression of the two reading frames is strongly correlated , FACS sorting based on the GFP or cell surface marker protein can be used to sort the cells for those cells expressing the

unknown protein at a desired level-high, low, or moderate. For the proposed assay, the cells would preferentially be sorted for moderate expression, to allow a detectable, but not overwhelming effect.

The individual members of the gene library are placed upstream of the IRES (Fig. 14). Genes of interest for screening for their effect on LSR expression on the cell surface include cDNA libraries from liver or adipose cells. Cells expressing LSR (such as Hep3B, HepG2, PLC) would be transfected by the library using standard techniques so as to achieve approximately 1 clone (gene) per cell. The cells would then be screened, and those with moderate expression of GFP would be selected for. Cells where endogenous LSR expression has been knocked out either by traditional methods, or using the Sangamo (zinc finger proteins) or chimeroplasty techniques described herein could also be used by co-transfected various subunits of LSR (from 1-3 and any combination thereof), or in cells stably expressing recombinant LSR subunits, or combinations.

In the GLUT 4 system, described by Lodish (Whitehead), the GLUT4 gene was linked to 7 *c-myc* epitope tags and then GFP fused in frame at the carboxy terminus. This allows the quantity of the gene to be studied in the cell compartment where it is sequestered by comparing overall fluorescence with the GFP to cell surface fluorescence with anti-*myc* antibodies. A similar assay is envisioned for LSR where LSR could be fused to GFP (in this case the library would have to be linked to CD2 or CD4). Alternatively, the amount of LSR sequestered in a cellular compartment could be determined using the 81B antibody, for example, and the amount of LSR on the cell surface could be determined using the 93A antibody, for example.

Once infected cells expressing moderate amounts of GFP are obtained, the cells can be treated with leptin, for example, (or any other LSR ligand of interest) and the difference in LSR levels in the compartment versus the cell surface, or simply on the cell surface can be determined by FACS (after antibody staining). Populations that have decreased LSR or increased LSR levels could be selected for. Optionally, the cells could be re-selected and then the retroviral DNA from the cells PCR'd and sequenced. Samples that appeared to be interesting by homologies or locations, for example, could then be cloned and re-transfected for further study. This would allow the other genes that interact with this system to be discovered. The genes are likely to encode proteins whose modulation could have a direct impact on the regulation of obesity.

30 EXAMPLE 14: Effect of the Leptin Peptide in Mice with Congenital Lipodystrophy

Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by a paucity of adipose tissue which is evident at birth and is accompanied by a severe resistance to insulin, leading to hyperinsulinemia, hyperglycaemia, and enlarged fatty liver (Seip *et al* Acta Pediatr Supp. 413 :2-28 (1996)). Leptin has been shown to reverse insulin resistance and diabetes mellitus in mice with congenital lipodystrophy (Shimomura *et al*.Nature 401 :73-76 (1999) hereby incorporated by reference herein in its entirety including any figures, tables, or drawings). These mice have extremely

low levels of leptin in plasma. However, the authors do not link the effect of leptin with LSR. The instant invention includes the use of the the leptin peptides of the invention for treatment of lipodystrophy and for use in this mouse model.

Leptin peptide will be provided to transgenic mice expressing SREBP-1c436 in adipose tissue

5 under the control of the adipocyte-specific aP2 promoter/enhancer (Shimomura *et al.* Genes Dev. 12 :3182-3194 (1998)). The levels used are similar to those described for the *ob/ob* mice herein, a range around 50 ng per mouse. Leptin is provided daily for 12 days, either by injection, or using micro-osmotic pumps. Plasma glucose will be measured using a glucose (Trinder)-100 kit, plasma insulin by an anti-rat insulin radioimmunoassay (linco), and plasma leptin and triglyceride by standard methods described 10 previously. A similar experiment is performed where the food intake is restricted to a level that is consumed completely by all animals.

Example 15 : Effect of Truncated Human LSR on Binding, Uptake & Degradation of LDL

15 Truncated forms of the LSR receptor were made and tested for their ability to function as either dominant positive (*i.e.* increase the activity of the receptor) or dominant negative proteins (*i.e.* interfere with the activity of the receptor), when over-expressed in cultured cells.

Materials:

-Human LSR cDNAs α , α' and β from constructs made in pTracer CMV2.
20 -pcDNA/HisMax vector from Invitrogen
-Appropriate restriction enzymes, T4 DNA polymerase I and Klenow, and T4 DNA ligase.
-Standard cloning procedures from "Molecular Cloning" by Sambrook *et al.*
-Follow construct plan (Figure 15).

Method of Cloning & Testing.

25 1. Digest Human LSR plasmids with enzymes of interest under appropriate conditions. Separate the appropriate insert fragment from the vector using agarose gel electrophoresis and Qiaquick gel extraction columns. Note: For constructs 1, 2, 3, 4a, 5, and 6 pTracerCMV2 LSR α was used as the source for the insert. For construct 4b, pTracerCMV2 LSR α' was used as the source for the insert. For 4c, pTracerCMV2 LSR β was used as the source for the insert.
30 2. Digest the pcDNA/HisMax vector in the appropriate reading frame with the enzymes of interest. Purify using agarose gel electrophoresis and Qiaquick gel extraction columns.
3. If necessary, treat insert fragments with Klenow DNA polymerase or T4 DNA polymerase I to blunt 3' overhangs. Purify DNA from the reaction using Qiaquick PCR purification kit.
4. Ligate inserts into vector according to Sambrook *et al.* using a 3-5 M excess of insert to vector.
35 5. Transform plasmids into competent *E. coli* – XL1blue from Stratagene. Follow manufacturer's instructions.
6. Isolate colonies with correct plasmids by either PCR or Qiagen miniprep analysis.

7. Verify correct clones by having them sequenced to ensure that they are in the proper reading frame and that there are no amino acid changes.
8. Grow and harvest DNA from large-scale cultures using Qiagen endotoxin free maxi preps.
9. Analyze constructs by transfecting them into human cells and assaying LDL binding using the standard BUD protocol.
5

BUD Assay Materials:

- DNA from LSR truncated constructs at approximately 1 mg/mL.
- Lipofectamine Plus transfection reagent – Life Technologies Cat. No 10964-013
- 10 -PLC cells plated at 0.3×10^6 cells/well in a 6 well plate.
 - ^{125}I -LDL
 - 10 mM suramin (70 mL PBS per 1 g suramin)
 - 100 mM oleate in isopropanol, freshly prepared from a 400 mM stock solution
 - DMEM (without CaCl_2) containing 0.2% (w/v) BSA, 5 mM Hepes, 2 mM CaCl_2 , pH 7.5, and 3.7 g/L NaHCO₃ (this media should be prepared before the experiment, stored at 4°C, and used for up to 1 week)
 - PBS, pH 7.4
 - PBS containing 0.2 % (w/v) BSA
 - 0.1 N NaOH containing 0.24 mM EDTA
- 15
- 20

BUD Assay Methods:

1. Cells (adherent) in 6-well plates seeded at 3×10^5 cells 3 days prior to the BUD.
 - Transfect the cells using lipofectamine plus reagent, according to the manufacturer's instructions, the day after the cells are seeded. Confluence should be between 50-80% when transfected.
 - Let cells go about 48 hrs (2 days) after transfection before BUD analysis.
- 25 2. Wash cells once with PBS (room temperature), 2 mL/well
3. Add DMEM/0.2% BSA (950 μL)
4. Add oleate, (0 to 1 mM oleate, e.g. 0, 0.1 mM 0.2 mM, 0.5 mM, 0.8 mM and 1 mL, from 100 mM stock)
 - never exceed 10 μL isopropanol per mL DMEM
- 30 5. It is necessary to include wells with no oleate as a control for background. This control allows one to calculate the amount of oleate-induced ^{125}I -LDL metabolized.
6. Add appropriate concentration of ^{125}I -LDL to each well (50 μL of each dilution).
- 35 7. Incubate cells for 90 min to 4 hours at 37 °C in a CO₂ incubator. In these experiments, 3 hrs was the incubation time.
7. Transfer media from wells into 5 mL polycarbonate tubes. Store at 4 °C overnight for degradation analysis (see below).

8. Wash cells at 4 °C (on ice):

- Wash 2 times consecutively with ice-cold PBS/0.2% BSA
- Wash once with ice-cold PBS/0.2% BSA
- Wash 2 times consecutively with ice-cold PBS

5 9. Add 1 mL/ well 10 mM suramin and incubate at 4 °C for 1 hour.

10. Remove suramin into gamma counter tubes, and count for radioactivity. This represents the amount of ¹²⁵I-LDL bound to the cell surface.

11. Add 0.1 N NaOH/0.24 mM EDTA (1mL/well) and incubate at room temperature for a minimum of 30 min. to lyse the cells.

10 12. Recover the cell lysates into gamma counter tubes and count for radioactivity. This represents the amount of ¹²⁵I-LDL internalized. Alternatively, the suramin step may be omitted (LSR as leptin receptor) and the cells lysed immediately after washing. This would represent the amount of cell-associated ¹²⁵I-LDL or ¹²⁵I- leptin.

13. After cell lysates have been counted, determine the protein concentration per mL so that data can be reported as ng ¹²⁵I-LDL bound/mg of total protein. Protein is determined using the BCA assay from Pierce according to the manufacturer's instructions. Alternatively, data can be corrected for β-Gal units by transfecting extra wells and collecting them for the β-Gal assay at the time the BUD is done. For this protocol, see β-Gal protocol, below.

20 Degradation of ¹²⁵I-LDL

1.) After leaving overnight at 4 °C, add 1 mL ice-cold 40% TCA to the pre-cooled media.
Do not Vortex.

2.) Incubate 1 hour at 4 °C.

3.) Centrifuge at 3000 rpm (Beckman Allegra centrifuge), 30 min @ 4 °C. (If the precipitate is floating, it is necessary to break the air-water interface by gently shaking the tubes before pelletting.

25 4.) Transfer 1 mL supernatant to 5 mL glass tubes.

5.) Add 40 μL 30% H₂O₂ and vortex briefly.

6.) Add 1 mL chloroform and vortex briefly. Let tubes sit for 15 minutes to allow separation of the 2 phases.

30 7.) Transfer 0.5 mL to gamma counter tubes, and count for radioactivity.

8.) For the calculation of the amount degraded, the dilution factor is 4.16. Corresponding plates without cells serve as controls to define the level of the background.

B-gal Assay

35 1). Transfect cells with test construct + 1/8th the amount of β-gal expressing plasmid.

- 2). Harvest cells in lysis buffer (250 µL/well of a 6 well plate). Pull through a syringe several times before transferring into an eppendorf tube.
- 3). Freeze cells at -80 °C until ready to perform the assay.
- 4). Thaw cells of interest and spin at 14K in a microfuge at 4 °C for 5 min.
5. Transfer 10 µL of each lysate to a clear PP 96 well plate:

Example

	1	2	3	4	5	6	7	8	9	10	11	12
A	Blank 10 µL	Blank 10 µL	empty	Sample 2 10 µL	Sample 2 10 µL	Sample 2 10 µL	Etc ...					
B	Control *100 µL	Control *100 µL	empty	Sample 3 10 µL	Sample 3 10 µL	Sample 3 10 µL						
C	Sample 1 10 µL	Sample 1 10 µL	Sample 1 10 µL	Sample 4 10 µL	Sample 4 10 µL	Sample 4 10 µL						

* Control = reference standard #Blank = reaction buffer only

- 6). Add Fluo-Reporter β-gal substrate (Molecular Probes cat #F-2905) to β -gal reaction buffer. (275 µL CUG substrate [component A] to 9.73 mL of reaction buffer) NOTE: need 10 mL for a 96 well plate, but if you don't use it all it can be stored at -20 °C for at least 6 months.
- 7). Add 100 µL of Reaction buffer with substrate to each well.
- 8). Incubate at room temp. for 30 min.
- 9). Add 50 µL of stop mix (0.2 M Na₂CO₃)
- 10). Read on Cytoflour plate reader with excitation at 360 and emission at 460. Gain should be set around 30.

β-gal reaction buffer: [Final]

0.5 M NaPhosphate pH 7.3	40 mL	0.1M
1 M MgCl ₂	0.2 mL	1 mM
14.3 M β-mercaptoethanol	629 µL	45 mM
ddH ₂ O	159.171 mL	200 mL

Lysis Buffer: [Final]

Buffer II	9.875 mL	
100 % TritonX100	100 µL	1%
400 mM DTT	25 µL	1 mM

20 Buffer II [Final]

1 M Tris-Ac pH 7.8	50 mL	100 mM
1 M MgAc	5 mL	10 mM
0.5 M EDTA	1 mL	1 mM

ddH ₂ O	439 mL	500 mL
--------------------	--------	--------

Results of BUD Assay:

Addition of the C-terminal portion of LSR increased ¹²⁵I-LDL binding (a), uptake (b) and degradation (c) in PLC cells (Fig. 16). ¹²⁵I-LDL degradation is increased almost 2 fold at 0.5 mM oleate.

5 Data in this experiment is corrected for protein only. The transfection efficiency was not monitored. All points were done in triplicate. In a separate experiment, addition of the C-terminal portion of LSR also increased ¹²⁵I-LDL binding (a), uptake (b) and degradation (c) in PLC cells (Fig. 17). ¹²⁵I-LDL degradation was increased 2-3 fold at 0.5mM oleate. Data in this experiment was corrected for transfection efficiency only. All points are in triplicate.

10 The C-terminal portion of LSR from AA353 to 650 (the last AA) as well as the C-terminal portion from AA 353 to 541 are able to increase the binding, uptake and degradation of ¹²⁵I labelled LDL *in vitro* (Figures 16 & 17). The increase is on the order of 2-3 fold for all 3 measurements when corrected for transfection effeciency using the β-Gal reporter as a carrier in the test DNA. The increase in LDL metabolism is still on the order of 2 fold when data are corrected for total protein, depending on 15 the oleate concentration. These constructs can be cloned into a vector to allow expression and testing *in vivo* for this dominant positive effect in animals using methods well known to those in the art.

Example 16 : LSR Gene Expression in Liver and Brain of Lean and Obese Mice

LSR gene expression was determined by quantitative PCR (QPCR) in liver and brain tissue of 7 different mouse models: normal and high fat diet-fed C57BL/6J mice (C57), C57BL6/J ob/ob (ob/ob), C57BLK/S, C57BLK/S db/db (db/db), NZB and NZO mice. The normal diet was obtained from Harlan Teklad (Teklad Certified LM-485 mouse/rat 7011C), the high fat diet, also called cafeteria diet was from Research Diets (D12331, Rat Diet 58 kcal % fat and sucrose). The cause of obesity in the different models is high fat diet in the obese C57 mice, leptin deficiency in ob/ob mice, deficiency in functional 25 leptin receptor in db/db mice. The cause of obesity in the NZO mouse is currently unknown (Lit 1-3). C57BLK/S and NZB mice are both lean and were used as controls since they represent the corresponding background strain of db/db and NZO mice, respectively.

The qPCR results for the different LSR levels in the livers of different mouse strains are supported by immunohistochemistry result using methods well-known to persons of ordinary skill in the 30 art.

Reverse Transcriptase – Polymerase Chain Reaction

Liver and whole brain were isolated from mice following perfusion with ice-cold saline containing 10 mM EDTA. Tissues were stored in RNAlater (Ambion, Austin) at 4 °C for 1 day and then at -20 °C. Liver total RNA was isolated using RNAqueous (Ambion, Austin) following the 35 manufacturer's protocol. The amount of RNA was determined by absorption at 260 nm. The quality of

the isolated RNA was verified by the ratio 260/280nm (between 1.9 and 2.1 is good) and by denaturing agarose gel electrophoresis.

RNA was reverse transcribed to cDNA using oligo dT plus an LSR specific primer and Superscript II (Gibco BRL) according to manufacturer's instructions. The LSR specific primer is in 5 exon 6 of the LSR gene (5'ACGCATGGGAATCATGGC; SEQ ID NO:90). Plasmids containing mouse LSR- $\alpha/\alpha'/\beta$ sequence were obtained by cloning RT-PCR products produced from mouse liver total RNA into pGEM-T easy (Promega). The sequence of the plasmid was confirmed by cycle sequencing on a ABI Prism 377 DNA Sequencer.

Quantitative PCR was performed on a ABI Prism 7700 Sequence Detection System using 10 TaqMan technology (PE Biosystems). TaqMan assay primers and probes were designed using Primer Express software (PE Biosystems) and were synthesized by Genset, La Jolla. Each probe was double labeled with the fluorescent reporter dye 6-carboxyfluorescein (FAM) covalently linked to the 5' end of the probe and the quencher dye 6-carboxytetramethylrhodamine (TAMRA) attached to the 3' end. Uracil-N-glycosylase technology (PE Biosystems) was used to prevent contamination with PCR product.

15 PCR was performed using the following reagent concentrations : 25 mM MgCl₂, dNTPs at 200 μ M, except for dUTP at 400 μ M, 1 U of AmpliTaq Gold, 0.25 U AmpErase UNG. Primers were added at 300 nM and probes at 200 nM concentration. The forward and reverse GAPDH and LSR primers used are shown in Table 1. PCR reaction conditions were 50 °C for 2 minutes, 95 °C for 10 minutes, followed by 40 cycles at 95 °C for 15 seconds and 1 minute at 60 °C. PCR was performed in 96 well reaction plates with optical caps and fluorescence was continuously followed for each reaction. cDNA corresponding to 15 ng of total RNA were used per PCR reaction.

20 Quantification of LSR expression was obtained using a standard curve of the corresponding LSR plasmid covering a concentration range between 5×10^{-6} and 5×10^{-10} M (approximately 10^6 to 10^2 copies). A standard curve of mouse (C56BL/6J) total liver RNA between 200 and 0.1 ng RNA was used 25 to determine relative levels of GAPDH expression. Amplification plots were analyzed using SDS software (PE Biosystems).

Table 1

30 PCR primers and probes used to determine the expression level of mouse GAPDH and mouse LSR isoforms.

Target Gene	Forward Primer	Reverse Primer	Probe
GAPDH	AACGACCCCTTCATTGA CCTC	CTTCCCATTCTCGGCCTT G	ACTCACGGCAAATTCAACGGC ACAG
LSR complete	GGCAGGAGAATCACCAT CACA	GATCTGGGCTGAGACC ACG	TGCTGGCCTGACCTTCGAGCA GAC
LSR alpha	GCCCTTGGAAAGATTGGC TCT	ATGCTTGGCACACCTGA GGT	CCAGTGCTGTCCCCACACCTGC T

LSR alpha'	ACCAGGGCAGGAGAAT CACC	GGAGGAAGAAGAGGAG GCTTG	AGCTCATTGTCTTGATTGGCT CTTTGTG
LSR beta	TTGTCCTTGTATGCTG CTGG	CAGGAGAGAGGTGGGT ATAGATGC	AGCAGCCACCTCAGGTGTGCC AA

Quantification by TaqMan technology is based on determining the threshold cycle of amplification, which was determined for each unknown sample and for the standard dilutions using 0.1 fluorescence units as a threshold (maximum fluorescence > 1.5). The amount of unknown cDNA was calculated using the corresponding standard curve. LSR expression was given as absolute copy numbers and also normalized for GAPDH expression (by dividing the determined absolute copy number by the relative level of GAPDH for each individual animal). Each determination was done in triplicate and was repeated at least once; very similar results (SD<5%) were obtained.

All data were confirmed by standard Northern analysis. 16µg total RNA was pooled from 4 mice per group and tissue and analyzed by Northern. Although this type of analysis is semi-quantitative at best and LSR isoforms can not be differentiated, relative levels of gene expression show the same trends as measured by QPCR.

Results

LSR Expression in Liver

15

Table 1

LSR gene expression in liver of lean and obese mice (copy numbers in 15ng total liver RNA)

		LSR-alpha	LSR-alpha'	LSR-beta	LSR (sum of isoforms)	GAPDH	LSR total
C57 normal	ave	93966	110334	18454	222754	2.8	281654
	SEM	21760	16682	2790	39779	0.4	83220
	ave	42.2%	49.5%	8.3%			
	SEM	2.5%	2.4%	0.3%			
C57 obese	ave	82814	44084	17280	144177	6.0	161206
	SEM	12274	8073	2344	22521	1.7	21161
	ave	57.4%	30.6%	12.0%			
	SEM	1.2%	1.3%	0.4%			
C57 ob/ob	ave	49898	51056	21126	122079	9.1	120026
	SEM	5928	10469	1758	15113	1.0	32474
	ave	40.9%	41.8%	17.3%			
	SEM	0.7%	4.2%	3.9%			
C57BLK/S	ave	49029	68379	41340	158749	3.9	163060
	SEM	3862	3721	2043	5903	0.4	94537
	ave	30.9%	43.1%	26.0%			
	SEM	1.3%	1.6%	1.8%			
C57BLK/S db/db	ave	30625	48504	18683	97811	9.2	79745

PATENT 70.US2.REG						
	SEM 1953	12021	3123	10819	1.0	26413
	ave 31.3%	49.6%	19.1%			
	SEM 1.7%	7.0%	5.4%			
NZB normal	ave 98455	387287	54079	539822	3.1	588656
	SEM 4446	13253	6740	21241	0.7	27993
	ave 18.2%	71.7%	10.0%			
	SEM 0.6%	0.8%	0.9%			
NZO obese	ave 57497	225574	23377	306448	1.8	333271
	SEM 4595	11767	1091	15948	0.3	11416
	ave 18.8%	73.6%	7.6%			
	SEM 0.9%	1.1%	0.2%			

LSR Expression in Brain of Lean and Obese mice

Table 2

LSR gene expression in brain of lean and obese mice (copy numbers in 15ng total liver RNA)

		LSR-alpha	LSR-alpha'	LSR-beta	LSR (sum of isoforms)	GAPDH	LSR total
C57 normal	ave 1192	6443	7731	15365		36.2	10653
	SEM 155	1512	443	1717		3.0	1933
	ave 7.8%	41.9%	50.3%				
	SEM 0.5%	6.0%	6.3%				
C57 obese	ave 1496	10472	7418	19387		20.8	14118
	SEM 155	1295	716	1998		5.7	805
	ave 7.7%	54.0%	38.3%				
	SEM 0.5%	1.9%	2.2%				
C57 ob/ob	ave 1293	6502	6158	13954		34.2	14034
	SEM 190	797	475	863		5.2	1939
	ave 9.3%	46.6%	44.1%				
	SEM 1.0%	3.4%	4.4%				
C57BLK/S	ave 1918	5585	6456	13958		26.7	10458
	SEM 206	354	1024	1087		5.3	980
	ave 13.7%	40.0%	46.3%				
	SEM 1.7%	2.8%	4.2%				
C57BLK/S db/db	ave 1834	5195	8189	15217		35.0	10912
	SEM 199	297	789	1117		4.5	670
	ave 12.0%	34.1%	53.8%				
	SEM 0.7%	2.0%	1.4%				
NZB normal	ave 654	1019	5463	7135		17.0	4430
	SEM 159	321	929	1051		4.7	926
	ave 9.2%	14.3%	76.6%				
	SEM 1.7%	5.1%	6.8%				
NZO obese	ave 168	320	2715	3202		13.4	1446
	SEM 112	52	37	1638		4.5	1008
	ave 5.2%	10.0%	84.8%				
	SEM 12.9%	5.6%	16.8%				

LSR expression in the liver of obese animals is significantly lower than in lean control animals (Fig. 18). In general, the expression of LSR in brain tissue is much lower than in liver. However, unlike in liver, obesity does not cause further downregulation (Fig. 21).

No significant differences in isotype patterns were found in liver samples from the different 5 mouse models. LSR alpha and alpha' contribute equally and account for almost all of the total LSR expression. LSR beta contributes only a small percentage (Fig. 19 and Fig. 20).

In contrast, LSR alpha' and beta are the major contributors to overall LSR expression in brain, accounting in equal proportions for about 90% of total LSR message. No significant levels of LSR alpha were seen in any of the studied models (Fig. 22 and Fig. 23).

10 The downregulation of LSR seems to be strongly associated with obesity independent of the cause of obesity (dietary as well as different genetic defects are the causes in the used models). One might expect that upregulation of liver LSR expression in obese individuals would be beneficial.

NZB and NZO Mice

15 LSR expression in liver tissue of NZB mice is 2-fold higher than in normal C57 mice. Obesity (in the NZO) again leads to strong downregulation, however, this level is still significantly higher than in other obese mice (Fig. 18). In contrast, LSR expression in the brain of NZB and even more so in brain tissue of NZO, is significantly lower than in the other 5 models (Fig. 21).

Distribution of LSR isotypes in NZB and NZO mice was very different from the previously 20 described 5 models. The dramatic increase in liver LSR expression seen in NZB (and in NZO) mice was found to be mainly LSR alpha'. This form accounted for 80% of total LSR (Fig. 19 and Fig. 20). The complete opposite was seen in brain tissue. NZB mice have very low expression of LSR alpha and alpha' with LSR beta being the dominant isoform. This picture is even more pronounced in NZO mice. Brain LSR in these animals is almost exclusively LSR beta and some animals had virtually no alpha or 25 alpha' expression (Fig. 22 and Fig. 23).

The fact that NZO mice respond to intracerebroventricular injection of leptin but not to peripheral injection (Halaas JL, et al., Proc.Natl.Acad.Sci. USA, 94, 8878-8883, 1997) suggests a transport defect. Since LSR alpha' has been shown to bind leptin, and since LSR alpha' levels are 30 reduced in NZO mice, the implication is that the genetic defect in NZO mice causing obesity might be deficiency in brain LSR alpha' expression resulting in non-functioning leptin transport across the blood brain barrier. This conclusion is further supported by the discovery that some NZO mice that do not become obese have LSR alpha' expressed at significant levels in brain.

Example 17 : Effect of a Ser → Asn substitution on LSR activity in human hepatocytes

Previously, we described a frequent (allele frequency 12%) G → A mutation of cDNA base pair 1088 (LSR exon 6), which results in a Ser → Asn mutation at amino acid position 363, presumably in the extra-cellular domain of the receptor.

In a group of 34 obese adolescent girls, this coding mutation significantly increased fasting and postprandial plasma triglyceride response to a high fat test meal. In a larger population of 154 obese adolescent girls, the same coding mutation significantly and selectively influenced fasting plasma triglyceride levels and increased 3.5 fold the risk of hypertriglyceridemia. This data suggested that LSR plays a significant role in the clearance of triglyceride-rich lipoproteins. Interestingly, even individuals heterozygous at this locus showed the effect.

10 An *in vitro* model was obtained after sequence analysis of LSR in 2 cell lines, PLC and HepG2, revealed that PLC cells are homozygous for the G allele, while HepG2 cells are heterozygous, having both the G and A allele.

Methods:

The oleate-induced ^{125}I -LDL binding, uptake and degradation was measured in HepG2 and PLC according to the method described previously (Bihain, B.E., and Yen, F.T.

(1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject homozygous for familial hypercholesterolemia.

Biochemistry 31, 4628-4636.). Briefly, confluent monolayers of cells were washed once in phosphate buffered saline (PBS), and then incubated 3 h at 37 °C with increasing concentrations of oleate (as indicated) and 20 µg/mL ^{125}I -LDL. At the end of the incubation, cells were placed on ice and washed twice with PBS containing 0.2% BSA, once with the same buffer, and then twice with PBS alone. The amounts of ^{125}I -LDL bound, internalized and degraded were then measured according to the method of Bihain, B.E., and Yen, F.T. (1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject homozygous for familial hypercholesterolemia. Biochemistry 31, 4628-4636.

Results:

The PLC cell line displayed a much greater capacity to bind, internalize and degrade ^{125}I -LDL in the presence of increasing concentrations of oleate, as compared to the HepG2 cell line (Fig. 24). This is most marked in the degradation. The decrease in degradation observed with > 0.5 mM oleate concentrations is thought to be due to the accumulation of oleate as triglycerides in the cells. This increase in lipid in the cells decreases proteolytic degradation at the lysosomal level.

Quantitative PCR and facs data indicates that LSR expression is almost 50% higher in HepG2 cells than in PLC cells. This would be consistent with the notion of compensation for the lower activity of the receptor in the cells.

These *in vitro* data suggest that a person with a G/G genotype (hence Ser) would display a greater ability to clear triglycerides during the postprandial stage as compared to one with a G/A genotype. Since we have postulated a rate-limiting role of LSR in the removal of dietary lipid, these data could explain the significant association found between low postprandial triglyceride levels and G/G genotype. In contrast to G/G homozygotes, G/A heterozygotes with lower LSR activity would have a lesser capacity of removing dietary lipid, thus increasing their time in the circulation. This would in turn cause a change in the partitioning of lipid between the liver and the adipose tissue, leading to a greater deposition of fat in the adipose tissue.

This example indicates the potential use of this polymorphism, as a marker to detect people with a propensity towards obesity. It also supports the hypothesis that LSR is a potential pharmaceutical target for the development of compounds aimed at targeting lipids away from the adipose tissue and towards the liver.

Example 18: Leptin Transport through the Blood Brain Barrier

Human leptin transport through the blood-brain barrier (BBB) is studied using an *in vitro* model (Dehouck, et al J Neurochem 54:1798-801, 1990 hereby incorporated herein by reference in its entirety including any figures, tables, or drawings). This model closely mimics the *in vivo* situation with regard to the selective passage of nutrients and drugs through the cerebro-vascular endothelium. The presence of tight junctions that prevent non-specific diffusion, the expression of specific receptors such as LDL receptor and transferrin receptor, and the expression of P-glycoprotein in brain capillary endothelial cells *in vitro* demonstrates that this model is a useful system to study the selective transport through the BBB. Briefly, this model consists of a co-culture of bovine brain capillary endothelial cells (ECs) and rat astrocytes (Figure 31). The astrocytes are seeded on the plastic of a six-well dish and grown for 3 weeks. A collagen-coated filter is then set in each dish and bovine ECs are plated on the upper-side of the filter. ECs form a confluent monolayer in 5 days and they are used for experiments after 16 days of coculture with astrocytes.

Methods

Leptin transcytosis: Experiments were performed on brain capillary endothelial cells in coculture with astrocytes for 16 days. On the day of the experiment, ECs were transferred to a clean 6-well plate containing 2 mL of Ringer-Hepes buffer (*see*, Fig. 32). At time 0, 1 mL Ringer Hepes containing ^{125}I -leptin was placed in the upper compartment. After 30, 60, 120, or 180 min incubation at 37 °C on a rocking platform, the insert was transferred into another well of a six-well plate to minimize the possible passage of substances from the lower to the upper compartment. At the end of the experiment, the amount of radioactivity of each well was counted. The transcytosis was performed over 3 h with 1) 10 ng/mL ^{125}I -leptin (10,000 dpm/ng), 2) 10ng/mL ^{125}I -leptin + 1 $\mu\text{g}/\text{mL}$ of cold leptin, 3) 10 ng/mL ^{125}I -leptin.

leptin + 50 µg/mL peptides or 4) 10 ng/mL ¹²⁵I-leptin + 2 mg/mL lactoferrin. The synthetic peptides studied include the human (HP) and mouse (MP) leptin peptide fragments : CHLPWASGLETLDSLGGVLEAS (SEQ ID NO:57) and CSLPQTSGLQKPESLDGVLEAS (SEQ ID NO:67), respectively.

5 Sucrose and inulin permeability studies: The [¹⁴C]-sucrose (342Da) and [³H]-inulin (57000 Da) are hydrosoluble molecules which pass through the BBB through non-receptor mediated processes. The transport is nonspecific and primarily through tight junctions. These serve as markers for the integrity of the BBB and hence toxicity of the added compounds on the cerebral endothelium.

10 After 16 days of coculture, permeability studies were performed as described in Figure 32. On the day of the experiment, ECs were transferred to a new 6-well plate containing 2 mL of Ringer-Hepes. At time 0, 1 mL Ringer Hepes containing [¹⁴C]-sucrose, [³H]-inulin and cold leptin were placed in the upper compartment. Sucrose and inulin permeability studies were performed in the presence of 10 ng/mL leptin, 5 µg/mL leptin, 10 µg/mL leptin or without leptin as a control. The effect of peptides was also tested by the addition of 10 ng/mL leptin+50 µg/mL mouse peptide (MP), 10 ng/mL leptin+50 µg/mL human peptide (HP), or 10 ng/mL leptin+2 mg/mL lactoferrin (lacto). At the end of the experiment, an aliquot from each well was placed in a scintillation vial, and radioactivity was determined.

15 The transport of molecules through the endothelial monolayer was determined for each time point as % passage: % passage of radiolabelled molecule through the endothelium: dpm found in the lower compartment at a time point divided by the initial dpm found in the upper compartment: % transport at 30min = (lower dpm t30 / upper dpm)*100

Results

20 Figure 33 shows an increased transport of radiolabelled leptin over time through the endothelium monolayer after 16 days of coculture. The addition of unlabelled leptin reduced the amount of leptin by approximately 30%, indicating that there is a specific component involved in the transport of leptin across the EC monolayer. A higher concentration of unlabelled leptin is needed to decrease the effect of nonspecific processes. The specific component involved in leptin transport is associated with the complete differentiation and formation of the BBB.

25 Lactoferrin, an inhibitor of LSR, significantly inhibited the amount of leptin transported. The mouse leptin peptide fragment had no significant effect on leptin transport. However, the addition of human leptin peptide fragment caused a significant increase in the amount of leptin transcytosis. This same peptide fragment increases LSR activity in human hepatocytes.

30 The integrity of the BBB was tested using sucrose and inulin (Figure 34A and 34B). It is clear that the integrity of the BBB was not significantly compromised by the addition of leptin, the peptides, or

lactoferrin. Hence, we can conclude that the transcytosis measured in Figure 33 represents active processes, and is not due to disintegration of the EC monolayer.

Thus the invention is drawn to inhibitors and activators of LSR as a means for controlling the transport of leptin across the blood brain barrier. Agents directed towards activation or inhibition of brain 5 LSR regulate leptin transport into the CNS where it acts as satiety factor.

While preferred embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made by one skilled in the art without departing from the spirit and scope of the invention.

10 Example 19: Effect of Longterm Exposure to High Levels of Leptin on LSR Activity

Human liver cells preincubated with 200 ng/mL human recombinant leptin for 24 h had a markedly reduced LSR activity (Fig. 35A, □), as compared to those not preincubated with leptin (Fig. 35A, ■). Leptin retained its ability to acutely increase oleate-induced ^{125}I -LDL binding to LSR in a subsequent short incubation (Fig. 35A, □). However, the maximal stimulatory effect was reduced by about 50%, and was achieved only with higher leptin concentrations (100 ng/mL). In hepatocytes preincubated for 24 h with high doses of leptin (200-400 ng/mL), a 25-35% decrease of hepatocyte LSR mRNA relative to GAPDH was observed, as compared to control cells (Fig. 35B).

Although not wishing to be limited by any particular theory, these data suggest that the consistently elevated leptin levels in *db/db* mice cause a decrease in LSR expression, as well as cause a reduction in leptin's ability to acutely stimulate the receptor. This, and the fact that plasma leptin did not increase in *db^{pas}/db^{pas}* after the test meal could explain the massively-elevated postprandial lipemic response observed in this strain. However, because leptin signaling to LSR proceeds independent of the Ob-R, acute increase in plasma leptin concentrations obtained with injection of 500-50,000 ng of leptin in *db/db* mice could accelerate the removal of lipid by activating LSR.

Based on these observations, it is likely that 1) the reduced LSR activity, caused by the constantly high levels of circulating leptin, and 2) the lack of increase in plasma leptin levels during the postprandial stage, contribute to elevated postprandial plasma TG levels in *db/db*. It should be noted that the dose of leptin regulating postprandial lipemia in *ob/ob* is \sim 500 fold lower than those typically used to reduce food intake (2). In *db/db* mice, leptin doses 10 fold greater than those used in *ob/ob* mice were needed to achieve maximal regulation of postprandial lipemia. Thus, the regulation of postprandial lipemia in *db/db* mice appears partially leptin-resistant, despite the fact that leptin signaling effect occurs independently of the Ob-R.

REFERENCES

35 Aalto-Setala, K., Fisher, E.A., Chen, X., Chajek-Shaul, T., Hayek, T., Zechner, R., Walsh, A., Ramakrishnan, R., Ginsberg, H.N., and Breslow, J.L. (1992). *J Clin Invest.* 90, 1889-1900.

Alexeev and Yoon (Nature Biotech. 16 :1343-1346 (1998).
Beisiegel, U., Weber, W., Ihrke, G., Herz, J., and Stanley, K.K. (1989). Nature 341, 162-164.
Bihain, B.E., and Yen, F.T. (1992). Free fatty acids activate a high-affinity saturable pathway for degradation of low-density lipoproteins in fibroblasts from a subject homozygous for familial hypercholesterolemia. Biochemistry 31, 4628-4636.
5 Bihain, B.E., Deckelbaum, R.J., Yen,F.T., Gleeson, A.M., Carpentier, Y.A., Witte, L.D. (1989) J. Biol. Chem. 264, 17316-17321.
Bihain, B.E., and Yen, F.T. (1998). Curr .Opin. Lipidol. 9, 221-224. Bilheimer, D.W..
Eisenberg, S., and Levy, R.I. (1972). Biochim. Biophys. Acta 260, 212-221.
10 Bilheimer, D.W., Eisenberg, S., and Levy, R.I. (1972). The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim. Biophys. Acta 260, 212-221.
Breslow, J.L. (1985). Adv Exp Med Biol 183,121-124.
Brown, M.S. and Goldstein, J.L. (1986). Science 232, 34-47.
Bruce, C., Chouinard, R.A. Jr., and Tall, A.R. (1998). Annu. Rev. Nutr. 18,297-330.
15 Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R. and Burn, P. (1995). Science 269, 546-549.
Chai H. et al. (1993), *Biotechnol. Appl. Biochem.*18:259-273.
Charron, M.J., Katz, E.B., and Olson, A.L. (1999). J. Biol. Chem. 274, 3253-3256.
20 Chen et al., 1987, Mol. Cell. Biol., 7 : 2745-2752.
Cherif, D., Julier, C., Delattre, O., Derré, J., Lathrop, G.M., and Berger, R. (1990). Proc. Natl. Acad. Sci. USA 87, 6639-6643.
Cole-Strauss et al. (Science 273 :1386-1389 (1996).
25 Cooper, A.D. (1997). *J. Lipid Res.* 38,2173-2192.
Costet, P., Legendre, C., More, J., Edgar, A., Galtier, P., and Pineau, T. (1998). J. Biol. Chem. 273, 29577-29585.
Dehouck, et al *J Neurochem* 54:1798-801, 1990.
Everhart, J.E., Lombardero, M., Lake, J.R., Wiesner, R.H., Zetterman, R.K., and Hoofnagle, J.H. (1998).
30 Liver Transpl. Surg. 4,285-296.
Feeman, W.E., Jr. (1998) Ann. Intern. Med. 128, 73-74.
Friedman, JM (2000) Nature 404:632-634).
35 Friedman, J.M., and Halaas, J.L. (1998). Nature 395, 763-770.
Fuller S. A. et al. (1996) *Immunology in Current Protocols in Molecular Biology*, Ausubel et al., Eds,
John Wiley & Sons, Inc., USA
Ghosh and Bacchawat, 1991, *Targeting of liposomes to hepatocytes*, IN : *Liver Diseases, Targeted diagnosis and therapy using specific receptors and ligands*. Wu et al. Eds., Marcel Dekker,
New York, pp. 87-104.

Ginsberg,, H.N., Le, N.A., Goldberg, I.J., Gibson, J.C., Rubinstein, A., Wang-Iverson, P., Norum, R., and Brown, W.V. (1986). *J. Clin. Invest.* 78, 1287-1295.

Goldberg, I.J. (1996). *J. Lipid Res.* 37, 693-707.

Goldstein, J.L., Basu, S.K., Brown, M.S. (1983). *98*, 241-260.

5 Goldstein, J.L., Hobbs, H.H., and Brown, M.S. (1995). In *The Metabolic and Molecular Basis of Inherited Disease*, vol. II, Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D., eds. (New York, NY: McGraw-Hill, Inc), pp. 1981-2030.

Gopal, 1985, *Mol. Cell. Biol.*, 5 : 1188-1190

Graham et al. (1973), *Virology*. 52:456-457.

10 Guven, S., El-Bershawi, A., Sonnenberg, G.E., Wilson, C.R., Hoffmann, R.G., Krakower, G.R., and Kisseebah, A.H. (1999). *Diabetes* 48, 347-352.

Halaas, J.L., Gajiwala, K.S., Maffei, M., Cohen, S.L., Chait, B.T., Rabinowitz, D., Lallone, R.L., Burley, S.K., and Friedman, J.M 1995. *Science* 269, 543-546.

15 Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM; Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. *Proc.Natl.Acad.Sci. USA*, 94, 8878-8883, 1997

Halaas JL, et al., *Proc.Natl.Acad.Sci. USA*, 94, 8878-8883, 1997.

Havel, P.J. (1998). *Am. J. Clin. Nutr.* 67, 355-356.

Havel, R.J., Eder, H.A. and Bragdon, J.H. (1955). *J. Clin. Invest.* 34,1345-1353.

20 Havel, R., and Kane, J.P. (1995). In *The Metabolic and Molecular Basis of Inherited Disease*, vol. II, Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D., eds. (New York, NY: McGraw-Hill, Inc), pp. 1841-1851.

Huygen et al. (1996) *Nature Medicine*. 2(8):893-898.

Huettinger ,M., Retzek, H., Eder, M. and Goldenberg, H. (1988). *Clin. Biochem.* 21,87-92.

25 Igel M, Becker W, Herberg L, Jost HG; Hyperleptinemia, Leptin Resistance, and Polymorphic Leptin Receptor in the New Zealand Obese Mouse. *Endocrinology*, 138, 4234-4239, 1997.

Ito, Y., Azrolan, N., O'Connell, A., Walsh, A., Breslow, J.L. (1990). *Science* 249, 790-793.

Iverius P.H., and Brunzell, J.D. (1985). *Am. J. Physiol.* 249,E107-E114

Johnson, C.P., Gallagher-Lepak, S., Zhu, Y.R., Porth, C., Kelber, S., Roza, A.M., and Adams, M.B.

30 (1993). *Transplantation* 56,822-827.

Jang et al. *J. Virol.* 62 :2636-2643 (1988).

Jong, M.C., Hofker, M.H., and Havekes, L.M. (1999). *Arterioscler. Thromb. Vasc. Biol.* 19, 472-484.

Kandror, K.V., Stephens, J.M., and Pilch, P.F. (1995). *J. Cell Biol.* 129, 999-1006.

Karpe, F., de Faire, U., Mercuri, M., Bond, M.G., Hellenius, M.L., and Hamsten, A. (1998)

35 *Atherosclerosis* 141, 307-314 .

Kersten, S., Seydoux, J., Peters, J.M., Gonzalez, F.J., Desvergne, B., and Wahli, W. (1999). *J. Clin. Invest.* 103, 1489-1498.

Klein et al. (1987) *Nature*. 327:70-73.

Komaromy, M.C., Schotz, M.C. (1987). *Proc. Natl. Acad. Sci. USA* 84, 1526-1529.

5 Kopelman et al. (2000) *Nature* 404:635-643.

Lenhard T. et al. (1996), *Gene*. 169:187-190.

Levitt, R.C., Liu, Z., Nouri, N., Meyers, D.A., Brandriff, B., and Mohrenweiser, H.M. (1995). *Cytogenet. Cell Genet.* 69, 211-214.

Lewis, G.F., O'Meara, N.M., Soltys, P.A., Blackman, J.D., Iverius, P.H., Druetzler, A.F., Getz, G.S., and 10 Polonsky, K.S. (1990) *J. Clin. Endocrinol. Metab.* 71, 1041-1050.

Li, C., Ioffe, E., Fidahusein, N., Connolly, E., and Friedman, J.M. (1998). *J. Biol. Chem.* 273, 10078-10082.

15 Liu Q, Segal DJ, Ghiara JB, Barbas CF 3rd Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. *Proc Natl Acad Sci U S A* 1997 May 27;94(11):5525-30.

Mann, C.J., Khalou, J., Chevreuil, O., Troussard, A.A., Guermani, L.M., Launay, K., Delplanque, B., Yen, F.T., and Bihain, B.E. (1995). *Biochemistry* 34,10421-10431.

Mann, C.J., Troussard, A.A., Yen, F.T., Hannouche, N., Najib, J., Fruchart, J.-C., Lotteau, V., André, P., and Bihain, B.E. (1997). *J. Biol. Chem.* 272, 31348-31354.

Markwell, M.A.K., Haas, S.M., Rolbert, N.E. and Bieber, L.L. (1981). *Methods Enzymol.* 20 72,296-30

Massie B, Couture F, Lamoureux L, Mosser DD, Guilbault C, Jolicoeur P, Belanger F, Langelier Y Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. *J Virol* 1998 Mar;72(3):2289-96.

Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Hecht, R., Winters, D., Boone, T., and Collins, F. 25 (1995) *Science* 269, 540-543.

Pengue G, Calabro V, Bartoli PC, Pagliuca A, Lania L Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. *Nucleic Acids Res* 1994 Aug 11;22(15):2908-14.

Perusse, L., Chagnon, Y.C., Weisnagel, J., and Bouchard, C. (1999). *Obes. Res.* 7,111-29.

30 Picard, F., Richard, D., Huang, Q, and Deshaies, Y. (1998). *Int. J. Obes. Relat. Metab. Disord.* 22, 1088-1095.

Rohlmann ,A., Gotthardt, M., Hammer, R.E., and Herz, J. (1998). *J Clin Invest* 101, 689-695.

Romana, S.P., Tachdjian, G., Druart, L., Cohen, D., Berger, R., and Cherif D. (1993). *Eur. J. Hum. Genet.* 1, 245-251.

35 Roth J.A. et al. (1996), *Nature Medicine*. 2(9):985-991.

Sambrook, J., Fritsch, E.F., and T. Maniatis. (1989), *Molecular Cloning: A Laboratory Manual*. 2ed.
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

Seip *et al* Acta Pediatr Supp. 413 :2-28 (1996).

Shimabukuro, M., Koyama, K., Chen, G., Wang, M.-Y., Trieu, F., Lee, Y., Newgard, C.B., and Unger,
5 R.H. (1997). Proc. Natl. Acad. Sci. USA 94,4637-4641.

Shimomura *et al*. Genes Dev. 12 :3182-3194 (1998)

Shimomura *et al*.Nature 401 :73-76 (1999).

Silver, D.L., Jiang, X.C., and Tall, A.R. (1999). J. Biol. Chem. 274, 4140-4146.

Sinha, M.K., Opentanova, I., Ohannesian, J.P., Kolaczynski, J.W., Heiman, M.L., Hale, J., Becker, G.W.,
10 Bowsher, R.R., Stephens, T.W., and Caro, J.F. (1996). *J. Clin. Invest.* 98,1277-1282.

Smith *et al*. (1983) *Mol. Cell. Biol.* 3:2156-2165.

Snyder *et al*. (Nature Medicine 5 :64-69 (1999).

Strickland, D.K., Ashcom, J.D., Williams, S., Burgess, W.H., Migliorini, M., and Argraves, W.S. (1990).
J. Biol. Chem. 265, 17401-17404.

15 Tacson *et al*. (1996) *Nature Medicine*. 2(8):888-892.

Tartaglia, L.A. (1997). J. Biol. Chem. 272,6093-6096.

Teramoto *et al*. J. Virol. 72 :8904-8912 (1998)

Tur-Kaspa *et al*. (1986), *Mol. Cell. Biol.* 6:716-718.

Uotani, S., Bjørbaek, C., Tornøe, J., and Flier, J.S. (1999). Diabetes 48, 279-286.

20 Van Heek, M., Mullins, D.E., Wirth, M.A., Graziano, M.P., Fawzi, A.B., Compton, D.S., France, C.F.,
Hoos, L.M., Casale, R.L., Sybertz, E.J., Strader, C.D., and Davis, H.R., Jr. (1996). Horm.
Metabl. Res. 28, 635-658.

Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD,
Davis HR; Diet-induced obese mice develop peripheral, but not central, resistance to leptin.
25 J.Clin.Invest., 99, 385-390, 1997.

Vansant, G., Mertens, A., and Muls, E. (1999) *Intl. J. Obesity* 23, 14-21.

Virkamäki, A., Ueki, K., and Kahn, C.R. (1999). J. Clin. Invest. 103, 931-943.

Vlasak R. *et al*. (1983), *Eur. J. Biochem.* 135:123-126.

Wang, D., and Sul, H.S. (1997). J. Biol. Chem. 272, 26367-26374..
30

Wang, J.L., Chinookoswong, N., Scully, S., Qi, M., and Shi, Z.Q. (1999). Endocrinology 140, 2117-
2124.

Ware, C. F., Sanser, S., and Alison, E. (1998). In *The Cytokine Handbook*, Thomson, A., ed. (San
Diego, California: Academic Press), pp. 549-592.

35 Weigle, D.S., Duell, P.B., Connor, W.E., Steiner, R.A., Soules, M.R., and Kuijper, J.L. (1997). Clin.
Endocrinol. Metab. 82,561-565.

Willnow, T.E., Sheng, Z., Ishibashi, S., and Herz, J. (1994). *Science* 264, 1471-1474.

Wong et al., 1980, *Gene*, 10 : 87-94.

Wu et al. Eds., Marcel Dekker, New York, pp. 87-104.

Xiao et al. (*J. Virology* 72 :2224-2232 (1998).

5 Yen, F.T., Mann, C.J., Guermani, L.M., Hannouche, N.F., Hubert, N., Hornick, C.A., Bordeau, V.N., Agnani, G., and Bihain, B.E. (1994). *Biochemistry* 33, 1172-1180.

Yen F.T., Masson M., Clossais-Besnard N., Andre P., Grosset J.M., Bougueret L., Dumas J.B., Guerassimenko, O., and Bihain B.E. (1999). *J Biol Chem* 274, 13390-13398.

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). *Nature* 372, 425-432.

卷之三

What is claimed is :

CLAIMS

1. A leptin polypeptide fragment that modulates an activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of a polypeptide sequence selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, wherein said at least 4 and not more than 50 contiguous amino acids include the leptin fragment central sequence.
- 10 2. A polynucleotide encoding said leptin fragment of claim 1, or the complement of a polynucleotide encoding said leptin fragment of claim 1.
- 15 3. A recombinant vector comprising said polynucleotide of claim 2.
4. A recombinant cell comprising said polynucleotide of claim 2.
5. A pharmaceutical composition comprising said leptin fragment of claim 1 and a pharmaceutically acceptable diluent.
- 20 6. A method of preventing or treating an obesity-related disease or disorder comprising providing to an individual in need of such treatment said pharmaceutical composition of claim 5.
- 25 7. The method of claim 6, wherein said obesity-related disease or disorder is selected from the group consisting of obesity, anorexia, cachexia, cardiac insufficiency, coronary insufficiency, stroke, hypertension, atheromatous disease, atherosclerosis, high blood pressure, non-insulin-dependent diabetes, hyperlipidemia, hyperuricemia, congenital lipodystrophy, and Syndrome X.
- 30 8. A method of designing mimetics of a leptin fragment that modulates an activity of LSR, comprising:
 - (a) identifying critical interactions between one or more amino acids of said leptin fragment of claim 1 and LSR;
 - 35 (b) designing potential mimetics to comprise said critical interactions; and

(c) testing said potential mimetics abilities to modulate said activity as a means for designing said mimetics.

5 9. A chimeric oligonucleotide, comprising at least 9 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16, wherein said at least 9 contiguous nucleotides comprise at least one amino acid codon selected from the group consisting of TTA, TTG, TCA, TCG, TAU, TAC, TGT, TGC, TGG, CAA, CAG, AGA, GAA, GAG, and GGA, and wherein a point mutation is present in said codon such that said codon is a stop codon.

10 10. A method of inhibiting the expression of at least one subunit of LSR, comprising providing to a cell said oligonucleotide of claim 9.

15 11. A method of treating or preventing an obesity-related disease or disorder comprising providing to an individual in need of such treatment said oligonucleotide of claim 9.

20 12. A chimeric oligonucleotide, comprising at least 9 contiguous nucleotides of SEQ ID NO:1, wherein said at least 9 contiguous nucleotides comprise a single nucleotide polymorphism selected from the group consisting of A1 to A32.

25 13. A method of treating or preventing an obesity-related disease or disorder comprising providing to an individual in need of such treatment said oligonucleotide of claim 12.

30 14. A zinc finger protein, comprising a DNA binding domain that binds specifically to 18 nucleotides of a sequence at least 50% homologous to SEQ ID NO:1, wherein said 18 nucleotides comprise two fragments of 9 contiguous nucleotides, and wherein said fragments are separated by 0, 1, 2, or 3 nucleotides.

35 15. A polynucleotide encoding said protein of claim 14.

 16. A recombinant vector comprising said polynucleotide of claim 15.

 17. A method of treating or preventing an obesity-related disease or disorder comprising providing to an individual in need of such treatment said vector of claim 16.

18. A non-human mammal comprising said polynucleotide of claim 15.

19. A method of modulating the expression of at least one subunit of LSR, comprising providing to a cell said polynucleotide of claim 15 or a fragment of an LSR polynucleotide selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, and SEQ ID NO:16.

5

20. A method of treating or preventing an obesity-related disease or disorder comprising providing to an individual in need of such treatment said polynucleotide of claim 15.

10

21. A recombinant cell comprising said polynucleotide of claim 15.

15

22. A method for selecting a compound useful for the treatment or prevention of an obesity-related disease or disorder, comprising:

(a) contacting said recombinant cell of claim 21 with a candidate compound; and

(b) detecting a result selected from the group consisting of a modulation of an activity of the Lipolysis Stimulated Receptor and modulation of expression of the Lipolysis Stimulated Receptor; as a means for

20

(c) selecting said compound useful for the treatment or prevention of said obesity-related disease or disorder.

25

23. The method of claim 22, wherein said contacting further comprises a leptin polypeptide fragment that modulates an activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of a polypeptide sequence selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, wherein said at least 4 and not more than 50 contiguous amino acids include the leptin fragment central sequence.

30

24. The recombinant cell of claim 21, wherein said recombinant cell is transfected with at least one LSR polypeptide comprising a sequence at least 75% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:17, SEQ

35

ID NO:18, and SEQ ID NO:19.

25. A method for selecting a compound useful for the treatment or prevention of an obesity-related disease or disorder, comprising:

(a) contacting said recombinant cell of claim 24 with a candidate compound; and

(b) detecting a result selected from the group consisting of a modulation of an activity of the Lipolysis Stimulated Receptor and modulation of expression of the Lipolysis Stimulated Receptor; as a means for

5 (c) selecting said compound useful for the treatment or prevention of said obesity-related disease or disorder.

10 26. The method of claim 25, wherein said contacting further comprises a leptin polypeptide fragment that modulates an activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of a polypeptide sequence selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, wherein said at least 4 and not more than 50 contiguous amino acids include the leptin fragment central sequence.

15 27. A method of selecting for genes that modulate an activity of the Lipolysis Stimulated Receptor, comprising :

20 (a) providing a retroviral gene library to cells that express said Lipolysis Stimulated Receptor;

(b) contacting said cells with a ligand of said Lipolysis Stimulated Receptor ;

(c) detecting a change in said activity of the Lipolysis Stimulated Receptor as a means for selecting for said genes.

25 28. The method of claim 27, wherein said ligand is a leptin polypeptide fragment that modulates an activity of LSR, comprising at least 4, but not more than 50 contiguous amino acids of a polypeptide sequence selected from the group consisting of SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, wherein said at least 4 and not more than 50 contiguous amino acids include the leptin fragment central sequence.

30

ABSTRACT

The present invention is drawn to methods of screening for new compounds for the treatment of obesity and obesity-related diseases and disorders, as well as methods of treating obesity-related diseases and disorders, based on the discovery of the role of the leptin-LSR interaction in obesity.

5

Figure 1

Figure 2

A. Transient transfection**B. Western****PCR****C. α' stable transfection: ^{125}I -leptin binding****D. α' stable transfection: ^{125}I -leptin degradation****Figure 3**

Figure 4

Figure 5

Figure 6

7A. Rat hepatocytes

7B. *db^{Pas}*/*db^{Pas}* postprandial plasma TG

Figure 7

Figure 8

9.A Binding

9.B Degradation

9/54

Figure 9

10.B Degradation

Figure 10

Effect of mouse leptin (A) or leptin peptide (B) on postprandial plasma TG response in ob/ob mice.

Figure 11

Effect of test meal with and without leptin injection on postheparin lipolytic activity in db^{Pas}/db^{Pas} mice

Postheparin lipolytic activities in db^{Pas}/db^{Pas} ($\mu\text{mol FFA/ml/h}$)	
No high-fat test meal	11.7 ± 2.4
High-fat test meal	19.5 ± 9.2 ns
High-fat test meal + 50 μg leptin	12.2 ± 2.7 ns

ns = not significant).

Figure 12

Figure 13 shows a complex phylogenetic tree diagram with many nodes and labels. The labels include scientific names and their corresponding taxonomic ranks. Some labels are in bold or italicized. The tree structure is dense and spans across the page.

Figure 13

Figure 14

Plan for creation of truncated forms of LSR

Figure 15

Figure 16

Figure 17

18/54

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Table**Characteristics of recombinant ZFPs directed toward LSR sequences.**

ID#	ZFP	Fold Activation	Kd (nM)	Target Sequence
5182	2B-1A	21.5	0.10	AAGGTCTGCCatGGTGCAGAC (SEQ ID NO:102)
5183	4A-3A	8.7	0.05	GTGGGAGGCCcgGGGGCTGGGA (SEQ ID NO:103)
5185	6A-5A	8.4	0.02	TGGGGTTGGCGGGGGGG (SEQ ID NO:104)
5186	8A-7B	6.5	0.02	CCGGGAGTGcgCAGGGGGTA (SEQ ID NO:105)
5205	1A-7B	29.7	0.30	GTGGCTGCACAAGGTGCC (SEQ ID NO:106)

Figure 25

Figure 26A

Figure 26B

Figure 26C

Figure 26D

Bpu10I
Bpu11I
Bpu12I
Bpu13I
Bpu14I
Bpu15I
Bpu16I
Bpu17I
Bpu18I
Bpu19I
Bpu20I
Bpu21I
Bpu22I
Bpu23I
Bpu24I
Bpu25I
Bpu26I
Bpu27I
Bpu28I
Bpu29I
Bpu30I
Bpu31I
Bpu32I
Bpu33I
Bpu34I
Bpu35I
Bpu36I
Bpu37I
Bpu38I
Bpu39I
Bpu40I
Bpu41I
Bpu42I
Bpu43I
Bpu44I
Bpu45I
Bpu46I
Bpu47I
Bpu48I
Bpu49I
Bpu50I
Bpu51I
Bpu52I
Bpu53I
Bpu54I
Bpu55I
Bpu56I
Bpu57I
Bpu58I
Bpu59I
Bpu60I
Bpu61I
Bpu62I
Bpu63I
Bpu64I
Bpu65I
Bpu66I
Bpu67I
Bpu68I
Bpu69I
Bpu70I
Bpu71I
Bpu72I
Bpu73I
Bpu74I
Bpu75I
Bpu76I
Bpu77I
Bpu78I
Bpu79I
Bpu80I
Bpu81I
Bpu82I
Bpu83I
Bpu84I
Bpu85I
Bpu86I
Bpu87I
Bpu88I
Bpu89I
Bpu90I
Bpu91I
Bpu92I
Bpu93I
Bpu94I
Bpu95I
Bpu96I
Bpu97I
Bpu98I
Bpu99I
Bpu100I

Figure 26E

LOCUS pSBS5182-N 6319 bp DNA CIRCULAR SYN
 DEFINITION Ligation of 5182 into NVF (KpnI, BamHI)
 ACCESSION pSBS5182-N
 REFERENCE 1 (bases 1 to 6319)
 FEATURES Location/Qualifiers
 CDS 956..1003
 /gene="NLS"
 /product="Nuclear Localization Signal"
 CDS 1004..1597
 /gene="ZFP"
 /product="LSR 2B-1A"
 CDS 1598..1840
 /gene="VP16"
 /product="VP16 activation domain"
 CDS 1841..1867
 /gene="FLAG"
 /product="FLAG epitope"
 CDS 3064..3947
 /gene="Neo"
 /product="neomycin resistance"
 CDS complement (5321..6181)
 /gene="Amp "
 /product="Ampcillin resistance"

BASE COUNT 1451 a 1683 c 1651 g 1534 t
 ORIGIN

```

  1 GACGGATCGG GAGATCTCCC GATCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
  61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGC
  121 CGAGCAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAACCTGC
  181 TTAGGGTAG GCGTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATAACG CGTTGACATT
  241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
  301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
  361 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCAATA GGGACTTTCC
  421 ATTGACGTCA ATGGGTGGAC TATTTCACGGT AAACGTCCCCA CTTGGCAGTA CATCAAGTGT
  481 ATCATATGCC AAGTACGCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
  541 ATGCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTC
  601 TCGCTATTAC CATGGTGATG CGGTTTGCG AGTACATCAA TGGGCGTGGA TAGCGGTTTG
  661 ACTCACGGGG ATTCCAAGT CTCCACCCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
  721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGCG
  781 GTAGGGCTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
  841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
  901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
  961 CCCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
  1021 CTGCCACATC CAGGGCTGTG GTAAAGTTA CGCGCACCGC TCCAACCTGA CCCGCCACCT
  1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
  1141 CACCCAGTCC GCGCACCTGA CCCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTGCG
  1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGAT GTCCCCACAC CTGTCGGCC ACATCAAGAC
  1261 CCACCAAGAAC AAGAAGGGTG GATCTGGTGA TGGTGGCCGT CGCGGTGCCG GTTCTGGCAA
  1321 GAAGAAGCAG CACATCTGCC ACATCCAGGG CTGTGGTAAA GTTACGGCG AGCGCGGGCGA
  1381 CCTGACCCGC CACCTGCGCT GGCACACCGG CGAGAGGCCT TTCATGTGTA CATGGTCCTA
  1441 CTGTGGTAAA CGCTTCACCG ACCCGGGCGC CCTGGTGCAGC CACAAGCGTA CCCACACCAGG
  
```

Figure 26F

1501 TGAGAAGAAA TTTGCTTGTG CGGAATGTCC GAAGCGCTTC ATGCCTCGC ACAACCTGAC
 1561 CCAGCACATC AAGACCCACC AGAACAAAGAA GGGTGGATCC GCCCCCCCAGA CCGATGTCAG
 1621 CCTGGGGGAC GAGCTCCACT TAGACGGCGA GGACGTGGCG ATGGCGCATG CCGACGCGCT
 1681 AGACGATTTC GATCTGGACA TGTGAAAAA CGGGGATTCC CCGGGGCCGG GATTTACCCC
 1741 CCACGACTCC GCCCCCTACG GCGCTCTGGA TATGGCCGGC TTCAAGTTTG AGCAGATGTT
 1801 TACCGATGCC CTTGGAATTG ACGAGTACGG TGGGGCAGC GACTACAAGG ACGACGATGA
 1861 CAAGTAAGCT TCTCGAGTCT AGAGGGCCCG TTTAAACCCG CTGATCAGCC TCGACTGTGC
 1921 CTTCTAGTTG CCAGCCATCT GTTGTGCGC CCTCCCCCGT GCCTTCTTGC ACCCTGGAAG
 1981 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGAT TGTCTGAGTA
 2041 GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG
 2101 ACAATAGCAG GCATGCTGG GATGGGGTGG GCTCTATGGC TTCTGAGGCG GAAAGAACCA
 2161 GCTGGGGCTC TAGGGGGTAT CCCCACCGCG CCGTAGCGG CGCATTAAAGC GCGGCCGGGTG
 2221 TGGTGGTTAC GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG
 2281 CTTCTTCCC TTCCCTTCTC GCCACGTTCG CCGGCTTCC CCGTCAAGCT CTAAATCGGG
 2341 GCATCCCTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCAAA AAACTTGATT
 2401 AGGGTGTGTT TTACCGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCG CTTTGACGT
 2461 TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC TGGAAACAACA CTCAACCCCA
 2521 TCTCGGTCTA TTCTTTGAT TTATAAGGGG TTTTGGGGAT TTGCGGCTAT TGGTTAAAAA
 2581 ATGAGCTGAT TTAACAAAAA TTTAACCGCA ATTAACTCTG TGGAAATGTGT GTCAGTTAGG
 2641 GTGTGAAAG TCCCCAGGGT CCCCCAGGCAG GCAGAAAGTAT GCAAAGCATG CATCTCAATT
 2701 AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAAGT ATGCAAAGCA
 2761 TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCCTAAC TCCGCCATC CGCCCCCTAA
 2821 CTCCGCCAG TTCCGCCCAT TCTCCGCCCT ATGGCTGACT AATTTTTTTT ATTTATGCAG
 2881 AGGCCGAGGC CGGCTCTGCC TCTGAGCTAT TCCAGAAAGTA GTGAGGAGGC TTTTTTGGAG
 2941 GCCTAGGCTT TTGCAAAAG CTCGGGGAG CTTGTATATC CATTTCGGA TCTGATCAAG
 3001 AGACAGGATG AGGATCGTT CGCATGATTG AACAAAGATGG ATTGCAACGCA GGTCTCCGG
 3061 CCGCTTGGGT GGAGAGGCTA TTGCGCTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG
 3121 ATGCCCGGT GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTGTC AAGACCGACC
 3181 TGTCCGGTCC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG CTGGCCACGA
 3241 CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA AGCGGGAAAGG GACTGGCTGC
 3301 TATTGGCGA AGTGGCCGGG CAGGATCTCC TGTCACTCTCA CCTTGCTCCT GCCGAGAAAG
 3361 TATCCATCAT GGCGTATGCA ATGCCCGGC TGCATACGCT TGATCCGGCT ACCTGCCCAT
 3421 TCGACCAACCA AGCGAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGCTTGT
 3481 TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCGAA CTGTTCGCCA
 3541 GGCTCAAGGC GCGCATGCC GACGGCGAGG ATCTCGTCGT GACCCATGGC GATGCCGTGCT
 3601 TGCGAATAT CATGGTGGAA AATGGCCGCT TTCTGGATT CATCGACTGT GGCCGGCTGG
 3661 GTGTGGCGGA CCGCTATCAG GACATAGCGT TGGCTACCCG TGATATTGCT GAAGAGCTTG
 3721 GCGGCGAATG GGCTGACCGC TTCCCTCGTGC TTACGGGTAT CGCCGCTCCC GATTGCGAGC
 3781 GCATCGCTT CTATCGCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG GTTCGAAAT
 3841 GACCGACCAA GCGACGCCA ACCTGCCATC ACAGAGATTT GATTCCACCG CCGCCTCTA
 3901 TGAAAGGTTG GGCTTGGAA TCGTTTCCG GGACGCCGGC TGGATGATCC TCCAGCGCGG
 3961 GGATCTCATG CTGGAGTTCT TCGCCACCC CAACTTGTT ATTGCACTT ATAATGGTTA
 4021 CAAATAAACG AATAGCATCA CAAATTTCAC AAATAAAAGCA TTTTTTCAC TGCATTCTAG
 4081 TTGTGGTTG TCCAAACTCA TCAATGATC TTATCATGTC TGTATACCGT CGACCTCTAG
 4141 CTAGAGCTTG GCGTAATCAT GGTCACTAGCT GTTTCCTGTG TGAAATTGTT ATCCGCTCAC
 4201 AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG CCTAATGAGT
 4261 GAGCTAACTC ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG GAAACCTGTC
 4321 GTGCCAGCTG CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGCG
 4381 CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT

Figure 26G

4441 ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA
 4501 GAACATGTGA GCAAAAGGC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC
 4561 GTTTTTCAT AGGCTCCGC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG
 4621 GTGGCGAAC CCGACAGGAC TATAAAGATA CCAGGCCTTT CCCCTGGAA GCTCCCTCGT
 4681 GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG
 4741 AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTGGTGT AGGTGTTCG
 4801 CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG
 4861 TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC
 4921 TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG
 4981 GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT
 5041 TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAA CAAACACCG CTGGTAGCGG
 5101 TGGTTTTTT GTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC
 5161 TTTGATCTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATT
 5221 GGTCATGAGA TTATCAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTT
 5281 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG
 5341 TGAGGCACCT ATCTCAGCGA TCTGTCATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT
 5401 CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC
 5461 GCGAGACCCA CGCTCACCGG CTCCAGATT ATCAGCAATA AACCAAGCCAG CCGGAAGGGC
 5521 CGAGCGCAGA AGTGGTCTG CAACTTATC CGCCTCCAT CAGCTTATTA ATTGTTGCCG
 5581 GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTGCGC AACGTTGTTG CCATTGCTAC
 5641 AGGCATCGTG GTGTCACGCT CGTCGTTGG TATGGCTTC TTCAGCTCCG GTTCCCAACG
 5701 ATCAAGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC
 5761 TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTATCA CTCATGGTTA TGGCAGCACT
 5821 GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC
 5881 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTGCC CGCGTCAAT
 5941 ACGGGATAAT ACCCGGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTT
 6001 TTCGGGGCGA AACTCTCAA GGATCTTACG GCTGTTGAGA TCCAGTTCGA TGTAACCCAC
 6061 TCGTGCACCC AACTGATCTT CAGCATCTT TACTTTCACC AGCGTTCTG GGTGAGCAAA
 6121 AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGAAAT GTTGAATACT
 6181 CATACTCTTC CTTTTCAAT ATTATTGAAG CATTATCAG GTTATTGTC TCATGAGCGG
 6241 ATACATATTG GAATGTATTG AGAAAATAA ACAAAATAGGG GTTCCCGCACA CATTTCGGG
 6301 AAAAGTGCCA CCTGACGTC

//

Figure 26H

34/54

LOCUS pSBS5183-N 6319 bp DNA CIRCULAR SYN
 DEFINITION Ligation of 5183 into NVF (KpnI, BamHI)
 ACCESSION pSBS5183-N
 REFERENCE 1 (bases 1 to 6319)
 FEATURES Location/Qualifiers
 CDS 956..1003
 /gene="NLS"
 /product="Nuclear Localization Signal"
 CDS 1004..1597
 /gene="ZFP"
 /product="LSR 4A-3A"
 CDS 1598..1840
 /gene="VP16"
 /product="VP16 activation domain"
 CDS 1841..1867
 /gene="FLAG"
 /product="FLAG epitope"
 CDS 3064..3947
 /gene="Neo"
 /product="neomycin resistance"
 CDS complement (5321..6181)
 /gene="Amp "
 /product="Ampicillin resistance"
 BASE COUNT 1446 a 1683 c 1655 g 1535 t
 ORIGIN

 1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
 61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
 121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAACATCTGC
 181 TTAGGGTAG GCGTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATAACG CGTTGACATT
 241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGTC ATTAGTTCAT AGCCCATATA
 301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
 361 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCCATAGT AACGCAATA GGGACTTTCC
 421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AACTGCCCCA CTTGGCAGTA CATCAAGTGT
 481 ATCATATGCC AAGTACGCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
 541 ATGCCAGTA CATGACCTTA TGGGACTTTCTA CTACTTGGCA GTACATCTAC GTATTAGTCA
 601 TCGCTATTAC CATGGTGTATC CGGTTTTGGC AGTACATCAA TGGGCGTGG TAGCGGTTTG
 661 ACTCACGGGG ATTTCGAAGT CTCCACCCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
 721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGG
 781 GTAGGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCA
 841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
 901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCC CCACCATGGC
 961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
 1021 CTGCCACATC CAGGGCTGTG GTAAAGTTA CGGCCAGTCC GGCCACCTGG CCCGCCACCT
 1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
 1141 CACCACCTCC GGGGAGCTGG TGCGCACAA GCGTACCCAC ACCGGTGAGA AGAAATTG
 1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG TTCCGACAC CTGTCCCGTC ACATCAAGAC
 1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGTGGCCGT CGCGGTGGCG GTTCTGGCAA
 1321 GAAGAAGCAG CACATCTGCC ACATCCAGGG CTGTGGTAAA GTTTACGGCG AGCGCGGCGA
 1381 CCTGACCCGC CACCTGCGCT GGCACACCGG CGAGAGGCCT TTCATGTGTA CATGGTCCTA

Figure 26I

1441 CTGTGCTAAA CGCTTCACCC AGCGCGCCCA CCTGGAGCGC CACAAGCGTA CCCACACCGG
 1501 TGAGAAGAAA TTGCTTGTGCGGAAATGTC CGGAATGTC GAAGCGCTTC ATGCCTCCG ACGCCCTGAC
 1561 CCGCCACATC AAGACCCACC AGAACAGAA GGGTGGATCC GCCCCCCCGA CCGATGTCAG
 1621 CCTGGGGGAC GAGCTCCACT TAGACGGCGA GGACGTGGCG ATGGCGCATG CCGACGCGCT
 1681 AGACGATTTC GATCTGGACA TGTTGGGGA CGGGGATTCC CGGGGGCCGG GATTTACCCC
 1741 CCACGACTCC GCCCCCTACG GCGCTCTGGA TATGGCCGGC TTTCGAGTTTG ACCAGATGTT
 1801 TACCGATGCC CTTGGAATTG ACGAGTAGGG TGGGGGCAGC GACTACAAGG ACGACGATGA
 1861 CAAGTAAGCT TCTCGAGTCT AGAGGGCCCG TTTAAACCCG CTGATCAGCC TCGACTGTGC
 1921 CTTCTAGTTG CCAGCCATCT GTTGTGCGC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG
 1981 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA
 2041 GGTGTCATTC TATTCTGGG GGTGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG
 2101 ACAATAGCAG GCATGCTGG GATGCGGTGG GCTCTATGGC TTCTGAGGCG GAAAGAACCA
 2161 GCTGGGGCTC TAGGGGGTAT CCCCACGCGC CCTGTAGCGG CGCATTAAAGC GCGGCGGGTG
 2221 TGGTGGTTAC GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCCTTCG
 2281 CTTTCTTCCC TTCCCTTCTC GCCACGTTCG CCGGCTTCC CCGTCAAGCT CTAAATCGGG
 2341 GCATCCCTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCAAA AAACTTGATT
 2401 AGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGTAGAGAC GGTTTTGCGC CCTTTGACGT
 2461 TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC TGGAAACAACA CTCAACCCCTA
 2521 TCTCGGCTCA TTCTTTGAT TTATAAGGG TTTGGGGAT TTCGGCCTAT TGGTTAAAAAA
 2581 ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTAAATTCTG TGGAAATGTGT GTCAGTTAGG
 2641 GTGTGGAAG TCCCCAGGCT CCCCAGGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT
 2701 AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA
 2761 TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCCTAAC TCCGCCATC CGGCCCTAA
 2821 CTCCGCCAG TTCCGCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTT ATTATGCGAG
 2881 AGGCCGAGGC CGCCTCTGCC TCTGAGCTAT TCCAGAAGTA GTGAGGAGGC TTTTTGGAG
 2941 GCCTAGGCTT TTGCAAAAAG CTCCCCGGAG CTITGTATATC CATTTCGGA TCTGATCAAG
 3001 AGACAGGATG AGGATCGTTT CGCATGATTG ACAAGATGG ATTGCACGCA GGTTCTCCGG
 3061 CCGCTTGGGT GGAGAGGCTA TTCCGGTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG
 3121 ATGCCGCCGT GTTCCGGCTG TCAGCGCAGG GCGGCCGGT TCTTTTGTC AAGACCGACC
 3181 TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG CTGGCCACGA
 3241 CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA AGCGGGAAGG GACTGGCTGC
 3301 TATTGGCGA AGTGCCTGGGG CAGGATCTCC TGTCATCTCA CTTGCTCCT GCCGAGAAAG
 3361 TATCCATCAT GGCTGATGCA ATGCAGCGGC TGCATACGCT TGATCCGGCT ACCTGCCAT
 3421 TCGACCACCA AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGCTTGG
 3481 TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA CTGTTGCCA
 3541 GGCTCAAGGC GCGCATGCC GACGGCGAGG ATCTCGTCGT GACCCATGGC GATGCCCTGCT
 3601 TGCGAATAT CATGGTGGAA AATGGCCGCT TTCTGGATT CATGACTGT GGCCGGCTGG
 3661 GTGTGGCGGA CCGCTATCAG GACATAGCGT TGGCTACCCG TGATATTGCT GAAGAGCTTG
 3721 CGGGCGAATG GGCTGACCGC TTCTCGTGC TTACGGTAT CGCCGCTCCC GATTGCGAGC
 3781 GCATGCCCTT CTATGCGCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG GTTCGAAAT
 3841 GACCGACCAA GCGACGCCCA ACCTGCCATC ACGAGATTTC GATTCCACCG CCGCCTTCTA
 3901 TGAAAGTTG GGCTTCGGAA TCGTTTCCG GGACGCCGG TGGATGATCC TCCAGCGCGG
 3961 GGATCTCATG CTGGAGTTCT TCGCCCCACCC CAACTTGTCTT ATTGCAGCTT ATAATGGTTA
 4021 CAAATAAACG AATAGCATCA CAAATTTCAC AAATAAAAGCA TTTTTTTCAC TGCATTCTAG
 4081 TTGTGGTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGTATACCGT CGACCTCTAG
 4141 CTAGAGCTTG GCGTAATCAT GGTCTAGCT GTTCTCTGTG TGAAATTGTT ATCCGCTCAC
 4201 AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGTG CTTAATGAGT
 4261 GAGCTAATC ACATTAATTG CGTTGCGCTC ACTGCCGCT TTCCAGTCGG GAAACCTGTC
 4321 GTGCCAGCTG CATTAAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTGCG GTATTGGCG
 4381 CTCTTCGCT TCCCTCGCTCA CTGACTCGCT GCGCTCGTC GTTCGGCTGC GGCGAGCGGT
 4441 ATCAGCTCAC TCAAAGGCAG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA

Figure 26J

4501 GAACATGTGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC
 4561 GTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG
 4621 GTGGCGAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCCTGGAA GCTCCCTCGT
 4681 GCGCTCTCCT GTTCCGACCC TGCCGTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG
 4741 AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTCGGTGT AGGTCGTTCG
 4801 CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCCTGCG CCTTATCCGG
 4861 TAACTATCGT CTTGAGTCCA ACCCGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC
 4921 TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG
 4981 GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT
 5041 TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG
 5101 TGGTTTTTTT GTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC
 5161 TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATT
 5221 GGTCATGAGA TTATCAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTTT
 5281 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG
 5341 TGAGGCACCT ATCTCAGCGA TCTGCTTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT
 5401 CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC
 5461 GCGAGACCCA CGCTCACCGG CTCCAGATT ATCAGCAATA AACCAGCCAG CCGGAAGGGC
 5521 CGAGCGCAGA AGTGGCTCTG CAACTTATC CGCCTCCATC CAGTCTATT ATTGTTGCCG
 5581 GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCCT AACGTTGTTG CCATTGCTAC
 5641 AGGCATCGT GTGTCACGCT CGTCGTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG
 5701 ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC
 5761 TCCGATCGTT GTCAAGAGTA AGTTGCCGC AGTGTATCA CTCATGGTTA TGGCAGCACT
 5821 GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC
 5881 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGCGTCAAT
 5941 ACGGGATAAT ACCCGGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTT
 6001 TTGGGGCGA AACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC
 6061 TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA
 6121 AACAGGAAGG CAAAATGCCG CAAAAAAGGG ATAAGGGCG ACACGGAAAT GTTGAATACT
 6181 CATACTCTTC CTTTTCAAT ATTATTGAAG CATTATCAG GGTTATTGTC TCATGAGCGG
 6241 ATACATATTT GAATGTATT AGAAAAATAA ACAAAATAGGG GTTCCCGCGCA CATTTCACCG
 6301 AAAAGTGCCA CCTGACGTC

Figure 26K

LOCUS pSBS5185-N 6295 bp DNA CIRCULAR SYN
 DEFINITION Ligation of 5185 into NVF (KpnI, BamHI)
 ACCESSION pSBS5185-N
 REFERENCE 1 (bases 1 to 6295)
 FEATURES Location/Qualifiers
 CDS 956..1003
 /gene="NLS"
 /product="Nuclear Localization Signal"
 CDS 1004..1573
 /gene="ZFP"
 /product="LSR 6A-5A"
 CDS 1574..1816
 /gene="VP16"
 /product="VP16 activation domain"
 CDS 1817..1843
 /gene="FLAG"
 /product="FLAG epitope"
 CDS 3040..3923
 /gene="Neo"
 /product="neomycin resistance"
 CDS complement (5297..6157)
 /gene="Amp "
 /product="Ampcillin resistance"
 BASE COUNT 1452 a 1682 c 1635 g 1526 t
 ORIGIN

 1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTGCACTCT CAGTACAATC TGCTCTGATG
 61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
 121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC
 181 TTAGGGTTAG GCGTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATAACG CGTTGACATT
 241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
 301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
 361 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCATAA GGGACTTTCC
 421 ATTGACGTCA ATGGGTGGAC TATTTCAGGT AAACGTGCCA CTTGGCAGTA CATCAAGTGT
 481 ATCATATGCC AAGTACGCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
 541 ATGCCAGTA CATGACCTTA TGGGACTTTT CTACTTGGCA GTACATCTAC GTATTAGTCA
 601 TCGCTATTAC CATGGTGTATG CGGTTTGCG AGTACATCAA TGGGCGTGGA TAGCGGTTTG
 661 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
 721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGCG
 781 GTAGGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
 841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
 901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
 961 CCCCAAGAAG AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
 1021 CTGCCACATC CAGGGCTGTG GTAAAGTTA CGGCCGCTCC GACCACCTGG CCCGCCACCT
 1081 GCGCTGGCAC ACCGGCGAGA GGCCTTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
 1141 CACCCGCTCC GACGAGCTGC AGCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTGCG
 1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG CTCCGACGAG CGCAAGCGCC ACATCAAGAC
 1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGCAAGAAG AAGCAGCACA TCTGCCACAT
 1321 CCAGGGCTGT GGTAAAGTTT ACGGCCGCTC CGACCACTCG ACCACCCACC TGCGCTGGCA
 1381 CACCGGGCAG AGGCCTTCA TGTGTACATG GTCCTACTGT GGTAAACGCT TCACCCGCTC

Figure 26L

38/54

1441 CGACCACCTG ACCCGCCACA AGCGTACCCA CACCGGTGAG AAGAAATTG CTTGTCCGGA
1501 ATGTCCGAAG CGCTTCATGC GCTCCGACCA CCTGACCACC CACATCAAGA CCCACCAGAA
1561 CAAGAAGGGT GGATCCGCC CCCCACCGA TGTCAGCCTG GGGGACGAGC TCCACTTAGA
1621 CGGCGAGGAC GTGGCGATGG CGCATGCCGA CGCGCTAGAC GATTCGATC TGGACATGTT
1681 GGGGGACGGG GATTCCCCGG GGCGGGATT TACCCCCCAC GACTCCGCCC CCTACGGCGC
1741 TCTGGATATG GCCGGCTTCG AGTTTACG AATGTTTACG GATGCCCTTG GAATTGACGA
1801 GTACGGGGG GGCAGCGACT ACAAGGACGA CGATGACAAG TAAGCTTCTC GAGTCTAGAG
1861 GGCCCCTTA AACCCGCTGA TCAGCCTCGA CTGTGCCTTC TAGTTGCCAG CCATCTGTTG
1921 TTTGCCCTC CCCCGTGCCT TCCTTGACCC TGGAAAGGTGC CACTCCACT GTCCTTCC
1981 AATAAAATGA GGAAATTGCA TCGCATTGTC TGAGTAGGTG TCATTCTATT CTGGGGGGTG
2041 GGGTGGGGCA GGACAGCAAG GGGGAGGATT GGGAAAGACAA TAGCAGGCAT GCTGGGGATG
2101 CGGTGGGCTC TATGGCTTCT GAGGCGGAAA GAACCAGCTG GGGCTCTAGG GGGTATCCCC
2161 ACGGCCCTG TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT GTTACCGCAGC AGCGTACCG
2221 CTACACTTGC CAGGCCCTA GCGCCCGCTC CTTCGCTTT CTTCCTTCC TTTCTGCCA
2281 CGTTGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGCAT CCCTTAGGG TTCCGATTAA
2341 GTGCTTACG GCACCTCGAC CCCAAAAAAC TTGATTAGGG TGATGGTCA CGTAGTGGC
2401 CATGCCCTG ATAGACGGTT TTTGCCCTT TGACGTTGGA GTCCACGTTT TTTAATAGTG
2461 GACTCTGTT CCAAACGTGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTTAT
2521 AAGGGATTTT GGGGATTTCG GCCTATTGGT TAAAAAAATGA GCTGATTTAA CAAAATTTA
2581 ACGCGAATTA ATTCTGTGGA ATGTGTGTCA GTTACGGGTGT GGAAAGTCCC CAGGCTCCCC
2641 AGGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCAGG TGTGGAAAGT
2701 CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAACATGCA TCTCAATTAG TCAGCAACCA
2761 TAGTCCCGCC CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC
2821 CGCCCCATGG CTGACTAATT TTTTTTATTT ATGCAGAGGG CGAGGCCGCC TCTGCCTCTG
2881 AGCTATTCCA GAAGTAGTGA GGAGGCTTTT TTGGAGGCC AGGCTTTGC AAAAAGCTCC
2941 CGGGAGCTG TATATCCATT TTGCGATCTG ATCAAGAGAC AGGATGAGGA TCGTTTCGCA
3001 TGATTGAACA AGATGGATTG CACGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTG
3061 GCTATGACTG GGCAACAACAG ACAATCGGCT GCTCTGATGC CGCCGTGTT CGGCTGTCAG
3121 CGCAGGGGCC CCCGGTTCTT TTTGTCAGAA CGCACCTGTC CGGTGCCCTG AATGAACATGC
3181 AGGACGAGGC AGCGCGGCTA TCGTGGCTGG CCACGACGGG CGTTCTTGC GCAGCTGTGC
3241 TCGACGTTGT CACTGAAGCG GGAAGGGACT GGCTGCTATT GGGCGAAGTG CCGGGGCCAGG
3301 ATCTCCTGTC ATCTCACCTT GCTCCTGCCG AGAAAGTATC CATCATGGCT GATGCAATGC
3361 GGCAGCTGCA TACGCTTGAT CCGGCTACCT GCCCATTGCA CCACCAAGCG AACATCGCA
3421 TCGAGCGAGC ACCTACTCGG ATGGAAGCCG GTCTGTCGA TCAGGATGAT CTGGACGAAAG
3481 AGCATCAGGG GCTCGCGCCA GCCGAACCTGT TCGCCAGGCT CAAGGCGCGC ATGCCCGACG
3541 GCGAGGATCT CGTCGTGACC CATGGCGATG CCTGCTTGC GAATATCATG GTGGAAAATG
3601 GCGCTTTTC TGGATTTCATC GACTGTGGCC GGCTGGGTGT GGCAGGACGC TATCAGGACA
3661 TAGCGTTGGC TACCCGTGAT ATTGCTGAAG AGCTTGGCG CGAATGGGCT GACCGCTTCC
3721 TCGTGCTTTA CGGTATCGCC GCTCCCGATT CGCAGCGCAT CGCCTTCTAT CGCCTTCTTG
3781 ACGAGTTCTT CTGAGCGGGG CTCTGGGGTT CGAAATGACC GACCAAGCGA CGCCCAACCT
3841 GCCATCACGA GATTCGATT CCACCGCCGC CTTCTATGAA AGGTTGGGCT TCGGAATCGT
3901 TTTCCGGGAC GCCGGCTGGA TGATCCTCCA GCGCGGGGAT CTCATGCTGG AGTTCTTCG
3961 CCACCCCAAC TTGTTTATTG CAGCTTATAA TGTTTACAAA TAAAGCAATA GCATCACAAA
4021 TTTCACAAAT AAAGCATTTC TTTCACTGCA TTCTAGTTGT GGTTGTCCA AACTCATCAA
4081 TGTATCTTAT CATGTCTGTA TACCGTCGAC CTCTAGCTAG AGCTTGGCGT AATCATGGTC
4141 ATAGCTGTTT CCTGCTGTGAA ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG
4201 AAGCATAAAAG TGAAAGCCT GGGGTGCCCTA ATGAGTGTGAGC TAACTCACAT TAATTGCGTT
4261 GCGCTCACTG CCCGCTTCC AGTCGGAAA CCTGCTGTGC CAGCTGCATT AATGAATCGG
4321 CCAACGCGCG GGGAGAGGGCG GTTTGCGTAT TGGCGCTCT TCCGCTTCC CGCTCACTGA
4381 CTCGCTGCGC TCGGTGTTT GGCTGCGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT
4441 ACGGTTATCC ACAGAACAGC GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA

Figure 26M

4501 AAAGGCCAGG AACCGTAAAA AGGCCGCAGT GCTGGCGTT TTCCATAGGC TCCGCC
 4561 TGACGAGCAT CACAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCGA CAGGACTATA
 4621 AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCTGTTC CGACCCCTGCC
 4681 GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCATGCTC
 4741 ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGCT GTGTGCACGA
 4801 ACCCCCCGTT CAGCCCGACC GCTGCCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC
 4861 GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG
 4921 GTATGTAGGC GGTGCTACAG AGTTCTGAA GTGGTGGCCT AACTACGGCT AACTAGAAG
 4981 GACAGTATTT GGTATCTCGC CTCTGCTGAA GCCAGTTACC TTGGAAAAA GAGTTGGTAG
 5041 CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTGTTT GCAAGCAGCA
 5101 GATTACGCGC AGAAAAAAAG GATCTAAGA AGATCCTTTG ATCTTTCTA CGGGGTCTGA
 5161 CGCTCAGTGG AACGAAAAC CACGTTAAGG GATTTGGTC ATGAGATTAT CAAAAGGAT
 5221 CTTCACCTAG ATCCTTTAA ATTAAAAATG AAGTTTAAA TCAATCTAAA GTATATATGA
 5281 GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG
 5341 TCTATTTCGT TCATCCATAG TTGCTGACT CCCCGTCGT TAGATAACTA CGATACGGGA
 5401 GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC
 5461 AGATTATCA GCAATAAACCG AGCCAGCCGG AAGGGCCCGAG CGCAGAAGTG GTCCTGCAAC
 5521 TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCGGGGAA GCTAGAGTAA GTAGTTCGCC
 5581 AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC
 5641 GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC
 5701 CATGTTGTGC AAAAAGCGG TTAGCTCCTT CGGTCCCTCCG ATCGTTGTCA GAAGTAAGTT
 5761 GGCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC
 5821 ATCCGTAAGA TGCTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG
 5881 TATGCGCGA CCGAGTTGCT CTTGCCCCGGC GTCAATACGG GATAATACCG CGCCACATAG
 5941 CAGAACTTTA AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT
 6001 CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAAC GATCTTCAGC
 6061 ATCTTTACT TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGAAA
 6121 AAAGGGAAATA AGGGCGACAC GGAAATGTIG AATACTCATA CTCTCCTTT TTCAATATTA
 6181 TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTGAAT GTATTAGAA
 6241 AAATAAACAA ATAGGGGTTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG ACGTC

//

Figure 26N

LOCUS pSBS5186-N 6319 bp DNA CIRCULAR SYN
 DEFINITION Ligation of 5186 into NVF (KpnI, BamHI)
 ACCESSION pSBS5186-N
 REFERENCE 1 (bases 1 to 6319)
 FEATURES Location/Qualifiers
 CDS 956..1003
 /gene="NLS"
 /product="Nuclear Localization Signal"
 CDS 1004..1597
 /gene="ZFP"
 /product="LSR 8A-7B"
 CDS 1598..1840
 /gene="VP16"
 /product="VP16 activation domain"
 CDS 1841..1867
 /gene="FLAG"
 /product="FLAG epitope"
 CDS 3064..3947
 /gene="Neo"
 /product="neomycin resistance"
 CDS complement (5321..6181)
 /gene="Amp "
 /product="Ampicillin resistance"
 BASE COUNT 1449 a 1687 c 1651 g 1532 t
 ORIGIN

 1 GACGGATCGG GAGATCTCCC GATCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
 61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTGTGTGTT GGAGGTCGCT GAGTAGTGCG
 121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAACATCGC
 181 TTAGGGTTAG GCGTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATAACG CGTTGACATT
 241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGTC ATTAGTTCAT AGCCCATATA
 301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
 361 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
 421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACGTGCCA CTTGGCAGTA CATCAAGTGT
 481 ATCATATGCC AAGTACGCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
 541 ATGCCAGTA CATGACCTTA TGGGACTTTCT CTACTTGGCA GTACATCTAC GTATTAGTCA
 601 TCGCTTATTAC CATGGTGATG CGGTTTGCG AGTACATCAA TGGGCGTGGGA TAGCGGTTTG
 661 ACTCACGGGG ATTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
 721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGC
 781 GTAGGGCTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCA
 841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
 901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGAA TTCGCTAGCG CCACCATGGC
 961 CCCCAAGAAC AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAAGA AGCAGCACAT
 1021 CTGCCACATC CAGGGCTGTG GTAAAGTTA CGGCCAGTCC GGCGCCCTGA CCCGCCACCT
 1081 GCGCTGGCAC ACCGGCGAGA GGCCTTCAT GTGTACATGG TCCTACTGTG GTAAACGCTT
 1141 CACCCGCTCC GACCACCTGA CCCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTG
 1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG CTCCGACAAC CTGCGCGAGC ACAACAAGAC
 1261 CCACCAAGAAC AAGAAGGGTG GATCTGGTGA TGGTGGCCGT CGCGGTGGCG GTTCTGGCAA
 1321 GAAGAACGAG CACATCTGCC ACATCCAGGG CTGTGGTAAA GTTACGGCC GCTCCTCCGC

Figure 26O

1381 CCTGACCCGC CACCTGCGCT GGCACACCGG CGAGAGGCCT TTCATGTGTA CATGGTCCTA
 1441 CTGTGGTAAA CGCTTCACCC AGCGGCCCA CCTGGAGCGC CACAAGCGTA CCCACACCGG
 1501 TGAGAAAGAAA TTTGCTTGTC CGGAATGTCC GAAGCGCTTC ATGCGCTCCG ACACCCTGCG
 1561 CGAGCACATC AAGACCCACC AGAACAAAGAA GGTTGGATCC GCCCCCCCAGA CCGATGTCA
 1621 CCTGGGGGAC GAGCTCCACT TAGACGGCGA GGACGTGGCG ATGGCGCATG CCGACGCGCT
 1681 AGACGATTTC GATCTGGACA TGTGAAAAA CGGGGATTCC CGGGGGCCGG GATTTACCCC
 1741 CCACGACTCC GCCCCCCTACG GCGCTCTGGA TATGGCCGGC TTGAGTTTG AGCAGATGTT
 1801 TACCGATGCC CTTGGAATTG ACGAGTACGG TGGGGGCAGC GACTACAAGG ACGACGATGA
 1861 CAAGTAAGCT TCTCGAGTCT AGAGGGCCCG TTTAAACCCG CTGATCAGCC TCGACTGTGC
 1921 CTTCTAGTTG CCAGCCATCT GTTGTGCCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG
 1981 GTGCCACTCC CACTGTCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA
 2041 GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG
 2101 ACAATAGCAG GCATGCTGG GATGCGGTGG GCTCTATGGC TTCTGAGGCG GAAAGAACCA
 2161 GCTGGGGCTC TAGGGGGTAT CCCCCACGCGC CCTGTAGCGG CGCATTAAAGC GCGGGGGGTG
 2221 TGGTGGTTAC GGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTCG
 2281 CTTTCTTCCC TTCCCTTCTC GCCACGTTG CCGGCTTTCC CCGTCAAGCT CAAATCAGG
 2341 GCATCCCTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCAAA AAACTTGATT
 2401 AGGGTGATGG TTACAGTAGT GGGCCATCGC CCTGTAGAGAC GGTTTTTCGC CTTTGACGT
 2461 TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC TGGAAACAACA CTCAACCCCA
 2521 TCTCGGTCTA TTCTTTGAT TTATAAGGG TTTTGGGGAT TTGGCCCTAT TGGTTAAAAAA
 2581 ATGAGCTGAT TTAACAAAAAA TTTAACGCGA ATTAATTCTG TGGAAATGTGT GTCAGTTAGG
 2641 GTGTGGAAAG TCCCCAGGCT CCCCAGGCG GCGAGAAGTAT GCAAAGCATG CATCTCAATT
 2701 AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA
 2761 TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCTAAAC TCCGCCATC CCGCCCTAA
 2821 CTCCGCCAG TTCCGCCAT TCTCCGGGG ATGGCTGACT AATTTTTTT ATTATATGAG
 2881 AGGCCGAGGC CGCCTCTGCC TCTGAGCTAT TCCAGAGTA GTGAGGAGG TTTTTGGAG
 2941 GCCTAGGCTT TTGCAAAAG CTCCCCGGAG CTGTATATC CATTTCGGA TCTGATCAAG
 3001 AGACAGGATG AGGATCGTT CGCATGATTG ACAAGAGTGG ATTGCACGCA GGTTCTCCGG
 3061 CCGCTTGGGT GGAGAGGCTA TTGGCTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG
 3121 ATGCCGCCGT GTTCCGGCTG TCAGGCCAGG GGCGCCCGGT TCTTTTGTC AAGACCGACC
 3181 TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG CTGGCCACGA
 3241 CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA AGCGGGAAAGG GACTGGCTGC
 3301 TATTGGCGA AGTGGCGGGG CAGGATCTCC TGTCATCTCA CCTTGCTCCT GCCGAGAAAG
 3361 TATCCATCAT GGCTGATGCA ATGCGGCCGC TGCACTACGCT TGATCCGGCT ACCTGCCAT
 3421 TCGACCACCA AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGTCTTG
 3481 TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA CTGTTCGCCA
 3541 GGCTCAAGGC CGCAGTGCCTC GACGGCGAGG ATCTCGTCGT GACCCATGGC GATGCCCTGCT
 3601 TGCCGAATAT CATGGTGGAA AATGGCCGCT TTTCTGGATT CATCGACTGT GGCCGGCTGG
 3661 GTGTGGCGGA CCGCTATCAG GACATAGCGT TGCTACCCG TGATATTGCT GAAGAGCTTG
 3721 GCGGCGAATG GGCTGACCGC TTCTCGTGC TTACGGTAT CGCCGCTCCC GATTGCGCAGC
 3781 GCATCGCCTT CTATCGCCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG GGTTGAAAT
 3841 GACCGACCAA GCGACGCCA ACCTGCCATC ACGAGATTT GATTCCACCG CCGCCTCTCA
 3901 TGAAAGGTTG GGCTTGGAA TCGTTTCCG GGACGCCGG TGGATGATCC TCCAGCGGG
 3961 GGATCTCATG CTGGAGTTCT TCGCCCACCC CAACTTGTGTT ATTGCAGCTT ATAATGGTTA
 4021 CAAATAAACG AATAGCATCA CAAATTTCAC AAAATAAGCA TTTTTTCAC TGCATTCTAG
 4081 TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGTATACCGT CGACCTCTAG
 4141 CTAGAGCTTG GCGTAATCAT GGTCTAGCT GTTCTCTGTG TGAAATTGTT ATCCGCTCAC
 4201 AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG CCTAATGAGT
 4261 GAGCTAACTC ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG GAAACCTGTC
 4321 GTGCCAGCTG CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTGC GTATTGGGCG

Figure 26P

4381 CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT
 4441 ATCAGCTCAC TCAAAGGC GG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA
 4501 GAACATGTGA GC AAAAAGGC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC
 4561 GTTTTCCAT AGGCTCCGCCC CCCCTGACGA GCATCACAAA AATGACGCT CAAGTCAGAG
 4621 GTGGCGAAC CCGACAGGAC TATAAAGATA CCAGGC GTT CCCCCCTGGAA GCTCCCTCGT
 4681 GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCCTTC TCCCTTCGGG
 4741 AAGCGTGGCG CTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG
 4801 CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG
 4861 TAACTATCGT CTTGAGTCCA ACCCGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC
 4921 TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGC GG GTGCT ACAGAGTTCT TGAAGTGGTG
 4981 GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT
 5041 TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAA CAAACCACCG CTGGTAGCGG
 5101 TGGTTTTTTT GTTGCAAGC AGCAGATTAC CGCAGAAAA AAAGGATCTC AAGAAGATCC
 5161 TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT
 5221 GGT CATGAGA TTATCAAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTTT
 5281 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG
 5341 TGAGGCACCT ATCTCAGCGA TCTGTCATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT
 5401 CGTGTAGATA ACTACGATAAC GGGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC
 5461 GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCGCCAG CCGGAAGGGC
 5521 CGAGCGCAGA AGTGGTCTG CAACTTTATC CGCCTCCATC CAGTCTATT ATTGTTGCCG
 5581 GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CATTGCTAC
 5641 AGGCATCGTG GTGTCACGCT CGTCGTTGG TATGGCTTC TTCAGCTCCG GTTCCCAACG
 5701 ATCAAGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC
 5761 TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTATCA CTCATGGTTA TGGCAGCACT
 5821 GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC
 5881 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTGCC CGGC GTCAAT
 5941 ACGGGATAAT ACCCGGCCAC ATAGCAGAAC TTAAAAGTG CTCATCATTG GAAAACGTTT
 6001 TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC
 6061 TCGTGCACCC AACTGATCTT CAGCATCTT TACTTTCAC C AGCGTTCTG GGTGAGCAAA
 6121 AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGAAAT GTTGAATACT
 6181 CATACTCTTC CTTTTCAAT ATTATTGAAG CATTATCAG GGTTATTGTC TCATGAGCGG
 6241 ATACATATTT GAATGTATTT AGAAAATAA ACAAAATAGGG GTTCCCGC AATTCCCCG
 6301 AAAAGTGCCA CCTGACGTC

//

Figure 26Q

LOCUS pSBS5205-N 6295 bp DNA CIRCULAR SYN
 DEFINITION Ligation of 5205 into NVF (KpnI, BamHI)
 ACCESSION pSBS5205-N
 REFERENCE 1 (bases 1 to 6295)
 FEATURES Location/Qualifiers
 CDS 956..1003
 /gene="NLS"
 /product="Nuclear Localization Signal"
 CDS 1004..1573
 /gene="ZFP"
 /product="LSR 1A-7B"
 CDS 1574..1816
 /gene="VP16"
 /product="VP16 activation domain"
 CDS 1817..1843
 /gene="FLAG"
 /product="FLAG epitope"
 CDS 3040..3923
 /gene="Neo"
 /product="neomycin resistance"
 CDS complement (5297..6157)
 /gene="Amp "
 /product="Ampicillin resistance"
 BASE COUNT 1448 a 1677 c 1643 g 1527 t
 ORIGIN

 1 GACGGATCGG GAGATCTCCC GATCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG
 61 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG
 121 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAACATCGC
 181 TTAGGGTTAG GCGTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATAACG CGTTGACATT
 241 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
 301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
 361 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC
 421 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAAC TGCCCCA CTTGGCAGTA CATCAAGTGT
 481 ATCATATGCC AAGTACGCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT
 541 ATGCCAGTA CATGACCTTA TGGGACTTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
 601 TCGCTATTAC CATGGTGTATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG
 661 ACTCACGGGG ATTTCAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC
 721 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATGACG CAAATGGCG
 781 GTAGGGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA
 841 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACATAG GGAGACCCAA GCTGGCTAGC
 901 GTTTAAACTT AAGCTGATCC ACTAGTCCAG TGTGGTGGAA TTCGCTAGCG CCACCATGGC
 961 CCCCAAGAAC AAGAGGAAGG TGGGAATCCA TGGGGTACCG GGCAAGAACAG ACAGCACAT
 1021 CTGCCACATC CAGGGCTGTG GTAAAGTTA CGGCGAGCGC GGCGACCTGA CCCGCCACCT
 1081 GCGCTGGCAC ACCGGCGAGA GGCCTTICAT GTGTACATGG TCCTACTGTG GTAAACGCTT
 1141 CACCGACCCG GGCCTTCTGG TGCGCCACAA GCGTACCCAC ACCGGTGAGA AGAAATTGCG
 1201 TTGTCCGGAA TGTCCGAAGC GCTTCATGCG CTCCGACAAC CTGACCCAGC ACATCAAGAG
 1261 CCACCAGAAC AAGAAGGGTG GATCTGGTGA TGGCAAGAAC AAGCAGCACA TCTGCCACAT
 1321 CCAGGGCTGT GGTAAAGTTT ACGGCCAGTC CGGCACCCCTG ACCCGCCACC TGCGCTGGCA

Figure 26R

1381 CACCGGCGAG AGGCCTTCA TGTGTACATG GTCCTACTGT GGTAAACGCT TCACCCAGTC
 1441 CTCCGACCTG CAGCGCCACA AGCGTACCCA CACCGGTGAG AAGAAATTG CTTGTCCCGA
 1501 ATGTCCGAAG CGCTTCATGC GCTCCGACGC CCTGGCCCGC CACATCAAGA CCCACCAGAA
 1561 CAAGAAGGGT GGATCCGCC CCCCAGCGA TGTCAGCCTG GGGGACGAGC TCCACTTAGA
 1621 CGGCGAGGAC GTGGCGATGG CGCATGCCGA CGCGCTAGAC GATTCGATC TGGACATGTT
 1681 GGGGGACGGG GATTCCCCGG GGCCGGGATT TACCCCCCAC GACTCCGCC CCTACGGCGC
 1741 TCTGGATATG GCCGGCTTCG AGTTTGAGCA GATGTTTACG GATGCCCTG GAATTGACGA
 1801 GTACGGTGGG GGCAGCGACT ACAAGGACGA CGATGACAAG TAAGCTTCTC GAGTCTAGAG
 1861 GGCCCGTTA AACCCGCTGA TCAGCCTCGA CTGTGCCCTC TAGTTGCCAG CCATCTGTTG
 1921 TTTGCCCTC CCCCCTGCCT TCCTTGACCC TGGAAAGGTGC CACTCCCACT GTCCTTCC
 1981 AATAAAATGA GGAAATTGCGA TCGCATTGTC TGAGTAGGTG TCATTCTATT CTGGGGGGTG
 2041 GGGTGGGGCA GGACAGCAAG GGGGAGGATT GGGAAAGACAA TAGCAGGCAT GCTGGGGATG
 2101 CGGTGGGCTC TATGGCTTCT GAGGCGGAAA GAACCAGCTG GGGCTCTAGG GGGTATCCCC
 2161 ACGCGCCCTG TAGCGGCGCA TTAAGCGCGG CCGGGTGTGGT GGTTACGCGC AGCGTGACCG
 2221 CTACACTTGC CAGCGCCCTA GCGCCCGCTC CTTTCGCTTT CTTCCCTTCC TTTCTCGCCA
 2281 CGTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGCAT CCCTTTAGGG TTCCGATTAA
 2341 GTGCTTACG GCACCTCGAC CCCAAAAAAC TTGATTAGGG TGATGGTTCA CGTAGTGGGC
 2401 CATCGCCCTG ATAGACGGTT TTTGCCCTT TGACGTTGGA GTCCACGTTTC TTTAATAGTG
 2461 GACTCTGTT CCAAACCTGGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTAT
 2521 AAGGGATTTT GGGGATTTCG GCCTATTGGT TAAAAAAATGA GCTGATTAA CAAAAAATTAA
 2581 ACGCGAATTA ATTCTGTGGA ATGTGTGTCA GTTAGGGTGT GGAAAGTCCC CAGGCTCCCC
 2641 AGGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCAGG TGTGGAAAGT
 2701 CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA
 2761 TAGTCCCGCC CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC
 2821 CGCCCCATGG CTGACTAATT TTTTTTATTAT ATGCAGAGGC CGAGGCCGCC TCTGCCTCTG
 2881 AGCTATTCCA GAAGTAGTGA GGAGGTTTT TTGGAGGCCT AGGCTTTGCA AAAAAGCTCC
 2941 CGGGAGCTTG TATATCCATT TTCGGATCTG ATCAAGAGAC AGGATGAGGA TCGTTTCGCA
 3001 TGATTGAACA AGATGGATTG CACCGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTG
 3061 GCTATGACTG GCCACAACAG ACAATCGGCT GCTCTGTGTC CGCCGTGTT CGGCTGTCA
 3121 CGCAGGGGCG CCCGGTTCTT TTTGTCAGA CCGACCTGTC CGGTGCCCTG AATGAACTGC
 3181 AGGACGAGGC AGCGCGGCTA TCGTGGCTGG CCACGACGGG CGTTCTTGC GCAGCTGTGC
 3241 TCGACGTTGT CACTGAAGCG GGAAGGGACT GGCTGCTATT GGGCGAAGTG CCGGGGCAGG
 3301 ATCTCCTGTC ATCTCACCTT GCTCCTGCCG AGAAAGTATC CATCATGGCT GATGCAATGC
 3361 GGCAGCTGCA TACGCTTGAT CCGGCTACCT GCCCATTGCA CCACCAAGCG AAACATCGCA
 3421 TCGAGCGAGC ACGTACTCGG ATGGAAGCCG GTCTTGTGCA TCAGGATGAT CTGGACGAAG
 3481 AGCATCAGGG GCTCGCGCCA GCCGAACGTG TCGCCAGGCT CAAGGCGCGC ATGCCCGACG
 3541 GCGAGGATCT CGTCGTGACC CATGGCGATG CCTGCTTGC GAATATCATG GTGGAAAATG
 3601 GCCGCTTTTC TGGATTCTAT GACTGTGGCC GGCTGGGTGT GGCGGACCGC TATCAGGACA
 3661 TAGCGTTGGC TACCCGTGAT ATTGCTGAAG AGCTTGGCG CGAATGGGCT GACCGCTTCC
 3721 TCGTCTTCA CGGTATCGCC GCTCCCGATT CGCAGCGCAT CGCCTCTAT CGCCTCTTG
 3781 ACGAGTTCTT CTGAGCGGGG CTCTGGGGTT CGAAATGACC GACCAAGCGA CGCCCAACCT
 3841 GCCATCACGA GATTCGATT CCACCGCCGC CTCTATGAA AGGTTGGCT TCGGAATCGT
 3901 TTTCCGGGAC GCCGGCTGGA TGATCCTCCA GCGCGGGGAT CTCATGCTGG AGTTCTTCG
 3961 CCACCCCAAC TTGTTTATTG CAGCTTATAA TGTTACAAA TAAAGCAATA GCATCACAAA
 4021 TTTCACAAAT AAAGCATTTT TTTCACTGCA TTCTAGTTGT GGTTTGTCCA AACTCATCAA
 4081 TGTATCTTAT CATGTCTGTA TACCGTCGAC CTCTAGCTAG AGCTTGGCGT AATCATGGTC
 4141 ATAGCTGTT CCTGTGTGAA ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG
 4201 AAGCATAAAAG TGAAAGCCT GGGGTGCCCTA ATGAGTGAGC TAACTCACAT TAATTGCGT
 4261 GCGCTCACTG CCCGCTTCC AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG
 4321 CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCCTCT CGCTCACTGA

Figure 26S

4381 CTCGCTGCGC TCGGTCGTTG GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGC GGTAAT
 4441 ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA
 4501 AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTT TTCCATAGGC TCCGCC
 4561 TGACGAGCAT CACAAAAATC GACCGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA
 4621 AAGATACCAG GCGTTCCCC CTGGAAGCTC CCTCGTGC CG TCTCCTGTT CGACCCGCC
 4681 GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC GTGGCGCTT CTCAATGCTC
 4741 ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTCGCTCC AAGCTGGCT GTGTGCACGA
 4801 ACCCCCCGTT CAGCCCGACC GCTGCCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC
 4861 GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG
 4921 GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG
 4981 GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGAAAAA GAGTTGGTAG
 5041 CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGTTTTTTGTTT GCAAGCAGCA
 5101 GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTG ATCTTTCTA CGGGGTCTGA
 5161 CGCTCAGTGG AACGAAAAGT CACGTTAAGG GATTTGGTC ATGAGATTAT CAAAAGGAT
 5221 CTTCACCTAG ATCCTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA
 5281 GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG
 5341 TCTATTTCGT TCATCCATAG TTGCCTGACT CCCCGTCTG TAGATAACTA CGATAACGGGA
 5401 GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC
 5461 AGATTTATCA GCAATAAAAC AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC
 5521 TTTATCCGCC TCCATCCAGT CTATTAAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTGCC
 5581 AGTTAAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC
 5641 GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC
 5701 CATGTTGTGC AAAAAGCGG TTAGCTCCTT CGGTCCCTCCG ATCGTTGTCA GAAGTAAGTT
 5761 GGCCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC
 5821 ATCCGTAAGA TGCTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG
 5881 TATGCCCGA CCGAGTTGCT CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG
 5941 CAGAACTTTA AAAGTGCTCA TCATTGGAAA ACGTTCTCG GGGCGAAAAC TCTCAAGGAT
 6001 CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC
 6061 ATCTTTACT TTCACCCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAATGCCGAAA
 6121 AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA CTCTTCCTT TTCAATATTA
 6181 TTGAAGCATT TATCAGGGTT ATTGCTCTAT GAGCGGATAC ATATTGAAT GTATTTAGAA
 6241 AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG ACGTC

//

Figure 26T

Figure 27

Figure 28

Figure 29

30.A

30.B

30.C

30.D

30.E

30.F

Figure 30

Figure 31

Figure 32

Figure 33

34A

34B

Figure 34

54/54

Figure 35

PATENT
70.US2.REG

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Jc658 U.S. PTO
09/668558
09/22/00

Applicant : Yen, Frances, et al
Appl. No. : To be assigned
Filed : Herewith
For : METHODS OF SCREENING FOR COMPOUNDS THAT
MODULATE THE LSR-LEPTIN INTERACTION AND THEIR USE IN
THE PREVENTION AND TREATMENT OF OBESITY-RELATED
DISEASES

SEQUENCE SUBMISSION STATEMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

Dear Sir:

A copy of the Sequence Listing in computer readable form as required by 37 C.F.R.
§ 1.821(e) is submitted herewith.

As required by 37 C.F.R. § 1.821(f), the data on the enclosed disk is identical to the
Sequence Listing in the application filed herewith.

Respectfully submitted,

Dated: 9-22-00

By: Tia E. de Langen
Tia E. de Langen
Paralegal
Genset Corporation
875 Prospect Street
Suite #206
La Jolla, CA 92037
(858) 551-3000

SEQUENCE LISTING

<110> Yen, Frances
Erickson, Mary Ruth
Fruebis, Joachim
Bihain, Bernard

<120> Methods Of Screening For Compounds That Modulate the
LSR-Leptin Interaction and Their Use in the Prevention
and Treatment of Obesity-Related Diseases

<130> 70.US2.REG

<150> 60/155,506
<151> 1999-09-22

<160> 106

<170> Patent.pm

<210> 1
<211> 23187
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> 2001..2356
<223> exon1

<220>
<221> exon
<222> 3540..3884
<223> exon2

<220>
<221> exon
<222> 12163..12282
<223> exon3

<220>
<221> exon
<222> 15144..15200
<223> exon4

<220>
<221> exon
<222> 15765..15911
<223> exon5

<220>
<221> exon
<222> 19579..19752
<223> exon6

<220>
<221> exon
<222> 19899..19958
<223> exon7

<220>

<221> exon
<222> 20056..20187
<223> exon8

<220>
<221> exon
<222> 20329..20957
<223> exon9

<220>
<221> exon
<222> 21047..21187
<223> exon10

<220>
<221> polyA_signal
<222> 21168..21173
<223> AATAAA

<220>
<221> misc_feature
<222> 1..2000
<223> potential 5' regulatory region

<220>
<221> misc_feature
<222> 22324..23187
<223> homology with USF2 gene in ref: embl Y07661

<220>
<221> primer_bind
<222> 523..544
<223> upstream amplification primer 17-2

<220>
<221> primer_bind
<222> 1047..1068
<223> downstream amplification primer 17-2 , complement

<220>
<221> primer_bind
<222> 946..963
<223> upstream amplification primer 99-4576

<220>
<221> primer_bind
<222> 1385..1402
<223> downstream amplification primer 99-4576 , complement

<220>
<221> primer_bind
<222> 1096..1115
<223> upstream amplification primer 9-19

<220>
<221> primer_bind
<222> 1616..1635
<223> downstream amplification primer 9-19 , complement

<220>
<221> primer_bind
<222> 1602..1621
<223> upstream amplification primer 9-20

<220>
<221> primer_bind
<222> 2074..2093
<223> downstream amplification primer 9-20 , complement

<220>
<221> primer_bind
<222> 2036..2053
<223> upstream amplification primer 99-4557

<220>
<221> primer_bind
<222> 2563..2580
<223> downstream amplification primer 99-4557 , complement

<220>
<221> primer_bind
<222> 2084..2102
<223> upstream amplification primer 9-1

<220>
<221> primer_bind
<222> 2483..2500
<223> downstream amplification primer 9-1 , complement

<220>
<221> primer_bind
<222> 2470..2489
<223> upstream amplification primer 9-21 , complement

<220>
<221> primer_bind
<222> 2062..2081
<223> downstream amplification primer 9-21

<220>
<221> primer_bind
<222> 3455..3474
<223> upstream amplification primer 9-3

<220>
<221> primer_bind
<222> 3882..3901
<223> downstream amplification primer 9-3 , complement

<220>
<221> primer_bind
<222> 3775..3792
<223> upstream amplification primer 99-4558

<220>
<221> primer_bind
<222> 4336..4356
<223> downstream amplification primer 99-4558 , complement

<220>
<221> primer_bind
<222> 4902..4920
<223> upstream amplification primer 99-14419 , complement

<220>
<221> primer_bind

<222> 4444..4463
<223> downstream amplification primer 99-14419

<220>
<221> primer_bind
<222> 6638..6655
<223> upstream amplification primer 99-4577

<220>
<221> primer_bind
<222> 7072..7089
<223> downstream amplification primer 99-4577 , complement

<220>
<221> primer_bind
<222> 7995..8012
<223> upstream amplification primer 99-4559

<220>
<221> primer_bind
<222> 8576..8593
<223> downstream amplification primer 99-4559 , complement

<220>
<221> primer_bind
<222> 9622..9639
<223> upstream amplification primer 99-3148

<220>
<221> primer_bind
<222> 10023..10040
<223> downstream amplification primer 99-3148 , complement

<220>
<221> primer_bind
<222> 9964..9981
<223> upstream amplification primer 99-4560

<220>
<221> primer_bind
<222> 10546..10563
<223> downstream amplification primer 99-4560 , complement

<220>
<221> primer_bind
<222> 10996..11015
<223> upstream amplification primer 99-14411 , complement

<220>
<221> primer_bind
<222> 10492..10512
<223> downstream amplification primer 99-14411

<220>
<221> primer_bind
<222> 11972..11990
<223> upstream amplification primer 99-4561

<220>
<221> primer_bind
<222> 12481..12501
<223> downstream amplification primer 99-4561 , complement

```
<220>
<221> primer_bind
<222> 12005..12023
<223> upstream amplification primer 9-4

<220>
<221> primer_bind
<222> 12417..12436
<223> downstream amplification primer 9-4 , complement

<220>
<221> primer_bind
<222> 14102..14119
<223> upstream amplification primer 99-4562

<220>
<221> primer_bind
<222> 14543..14563
<223> downstream amplification primer 99-4562 , complement

<220>
<221> primer_bind
<222> 14431..14448
<223> upstream amplification primer 99-3149

<220>
<221> primer_bind
<222> 14848..14865
<223> downstream amplification primer 99-3149 , complement

<220>
<221> primer_bind
<222> 14748..14767
<223> upstream amplification primer 9-22

<220>
<221> primer_bind
<222> 15198..15218
<223> downstream amplification primer 9-22 , complement

<220>
<221> primer_bind
<222> 14748..14767
<223> upstream amplification primer 9-24

<220>
<221> primer_bind
<222> 15333..15351
<223> downstream amplification primer 9-24 , complement

<220>
<221> primer_bind
<222> 15002..15019
<223> upstream amplification primer 9-5

<220>
<221> primer_bind
<222> 15333..15351
<223> downstream amplification primer 9-5 , complement

<220>
<221> primer_bind
<222> 15640..15657
```

<223> upstream amplification primer 9-6

<220>

<221> primer_bind

<222> 16072..16089

<223> downstream amplification primer 9-6 , complement

<220>

<221> primer_bind

<222> 15800..15817

<223> upstream amplification primer 99-4563

<220>

<221> primer_bind

<222> 16179..16199

<223> downstream amplification primer 99-4563 , complement

<220>

<221> primer_bind

<222> 19295..19312

<223> upstream amplification primer 99-3150

<220>

<221> primer_bind

<222> 19729..19746

<223> downstream amplification primer 99-3150 , complement

<220>

<221> primer_bind

<222> 19420..19438

<223> upstream amplification primer 9-7

<220>

<221> primer_bind

<222> 19824..19841

<223> downstream amplification primer 9-7 , complement

<220>

<221> primer_bind

<222> 19798..19815

<223> upstream amplification primer 9-8

<220>

<221> primer_bind

<222> 20137..20155

<223> downstream amplification primer 9-8 , complement

<220>

<221> primer_bind

<222> 19913..19931

<223> upstream amplification primer 9-9

<220>

<221> primer_bind

<222> 20329..20346

<223> downstream amplification primer 9-9 , complement

<220>

<221> primer_bind

<222> 20139..20157

<223> upstream amplification primer 99-4564

<220>

<221> primer_bind
<222> 20582..20599
<223> downstream amplification primer 99-4564 , complement

<220>
<221> primer_bind
<222> 20238..20256
<223> upstream amplification primer 9-10

<220>
<221> primer_bind
<222> 20645..20662
<223> downstream amplification primer 9-10 , complement

<220>
<221> primer_bind
<222> 20410..20424
<223> upstream amplification primer 9-26

<220>
<221> primer_bind
<222> 20690..20706
<223> downstream amplification primer 9-26 , complement

<220>
<221> primer_bind
<222> 20569..20588
<223> upstream amplification primer 9-23

<220>
<221> primer_bind
<222> 21243..21262
<223> downstream amplification primer 9-23 , complement

<220>
<221> primer_bind
<222> 20583..20604
<223> upstream amplification primer 9-11

<220>
<221> primer_bind
<222> 21015..21034
<223> downstream amplification primer 9-11 , complement

<220>
<221> primer_bind
<222> 20584..20601
<223> upstream amplification primer 99-15285 , complement

<220>
<221> primer_bind
<222> 20139..20158
<223> downstream amplification primer 99-15285

<220>
<221> primer_bind
<222> 20642..20659
<223> upstream amplification primer 99-15287 , complement

<220>
<221> primer_bind
<222> 20207..20227
<223> downstream amplification primer 99-15287

<220>
<221> primer_bind
<222> 20691..20709
<223> upstream amplification primer 99-15286 , complement

<220>
<221> primer_bind
<222> 20238..20257
<223> downstream amplification primer 99-15286

<220>
<221> primer_bind
<222> 20943..20960
<223> upstream amplification primer 9-2

<220>
<221> primer_bind
<222> 21295..21312
<223> downstream amplification primer 9-2 , complement

<220>
<221> primer_bind
<222> 21013..21031
<223> upstream amplification primer 99-15284 , complement

<220>
<221> primer_bind
<222> 20582..20602
<223> downstream amplification primer 99-15284

<220>
<221> primer_bind
<222> 21019..21038
<223> upstream amplification primer 99-14407 , complement

<220>
<221> primer_bind
<222> 20571..20589
<223> downstream amplification primer 99-14407

<220>
<221> primer_bind
<222> 21079..21097
<223> upstream amplification primer 99-15283 , complement

<220>
<221> primer_bind
<222> 20638..20655
<223> downstream amplification primer 99-15283

<220>
<221> primer_bind
<222> 21013..21032
<223> upstream amplification primer LSRi9f15s

<220>
<221> primer_bind
<222> 21195..21214
<223> downstream amplification primer LSRi10r14s , complement

<220>
<221> primer_bind

<222> 20354..20372
<223> upstream amplification primer LSRx9f13s

<220>
<221> primer_bind
<222> 20570..20591
<223> upstream amplification primer LSRx9f14s

<220>
<221> primer_bind
<222> 20811..20832
<223> downstream amplification primer LSRx9r13s , complement

<220>
<221> allele
<222> 818
<223> 17-2-297 : polymorphic base G or C

<220>
<221> allele
<222> 1243
<223> 9-19-148 : polymorphic base C or T

<220>
<221> allele
<222> 1374
<223> 9-19-256 : polymorphic base A or G

<220>
<221> allele
<222> 1401
<223> 9-19-307 : polymorphic base A or T

<220>
<221> allele
<222> 1535
<223> 9-19-442 : polymorphic base deletion of C

<220>
<221> allele
<222> 1788
<223> 9-20-187 : polymorphic base A or C

<220>
<221> allele
<222> 2391
<223> 9-1-308 : polymorphic base G or C

<220>
<221> allele
<222> 3778
<223> 9-3-324 : polymorphic base C or T

<220>
<221> allele
<222> 4498
<223> 99-14419-424 : polymorphic base T or G

<220>
<221> allele
<222> 15007
<223> 9-24-260 : polymorphic base A or G

<220>
<221> allele
<222> 15233
<223> 9-24-486 : polymorphic base A or G

<220>
<221> allele
<222> 15826
<223> 9-6-187 : polymorphic base C or T

<220>
<221> allele
<222> 19567
<223> 9-7-148 : polymorphic base A or G

<220>
<221> allele
<222> 19744
<223> 9-7-325 : polymorphic base A or G

<220>
<221> allele
<222> 19786
<223> 9-7-367 : polymorphic base A or C

<220>
<221> allele
<222> 20158
<223> 9-9-246 : polymorphic base G or C

<220>
<221> allele
<222> 20595
<223> LSRX9-BM (17-1-240) : polymorphic base deletion of AGG

<220>
<221> allele
<222> 21108
<223> LSRX10-BM : polymorphic base T or G

<220>
<221> allele
<222> 606
<223> potential polymorphic base C or T

<220>
<221> allele
<222> 5141
<223> potential polymorphic base insertion of G

<220>
<221> allele
<222> 7428
<223> potential polymorphic base insertion of C

<220>
<221> allele
<222> 8394
<223> potential polymorphic base C or G

<220>
<221> allele
<222> 8704

<223> potential polymorphic base T or C

<220>

<221> allele

<222> 9028

<223> potential polymorphic base G or A

<220>

<221> allele

<222> 9950

<223> potential polymorphic base deletion of GAATGAAA

<220>

<221> allele

<222> 9977

<223> potential polymorphic base T or C

<220>

<221> allele

<222> 10021

<223> potential polymorphic base A or G

<220>

<221> allele

<222> 11878

<223> potential polymorphic base C or T

<220>

<221> allele

<222> 19040

<223> potential polymorphic base deletion of G

<220>

<221> allele

<222> 21363

<223> potential polymorphic base A or G

<220>

<221> allele

<222> 21449

<223> potential polymorphic base C or T

<220>

<221> allele

<222> 21451

<223> potential polymorphic base G or C

<220>

<221> allele

<222> 21454

<223> potential polymorphic base A or G

<220>

<221> allele

<222> 21455

<223> potential polymorphic base G or A

<220>

<221> allele

<222> 21569

<223> potential polymorphic base T or A

<220>

<221> allele
<222> 21683
<223> potential polymorphic base deletion of C

<220>
<221> allele
<222> 21694
<223> potential polymorphic base insertion of T

<220>
<221> allele
<222> 21728
<223> potential polymorphic base deletion of G

<220>
<221> misc_binding
<222> 799..817
<223> 17-2-297.mis1

<220>
<221> misc_binding
<222> 819..837
<223> complement 17-2-297.mis2

<220>
<221> misc_binding
<222> 1224..1242
<223> 9-19-148.mis1

<220>
<221> misc_binding
<222> 1244..1262
<223> complement 9-19-148.mis2

<220>
<221> misc_binding
<222> 1330..1373
<223> 9-19-256.mis1

<220>
<221> misc_binding
<222> 1375..1393
<223> complement 9-19-256.mis2

<220>
<221> misc_binding
<222> 1382..1400
<223> 9-19-307.mis1

<220>
<221> misc_binding
<222> 1402..1420
<223> complement 9-19-307.mis2

<220>
<221> misc_binding
<222> 1516..1534
<223> 9-19-442.mis1

<220>
<221> misc_binding
<222> 1769..1787
<223> 9-20-187.mis1

<220>
<221> misc_binding
<222> 1789..1807
<223> complement 9-20-187.mis2

<220>
<221> misc_binding
<222> 2372..2390
<223> 9-1-308.mis1

<220>
<221> misc_binding
<222> 2392..2410
<223> complement 9-1-308.mis2

<220>
<221> misc_binding
<222> 3759..3777
<223> 9-3-324.mis1

<220>
<221> misc_binding
<222> 3779..3797
<223> complement 9-3-324.mis2

<220>
<221> misc_binding
<222> 4979..4997
<223> 99-14419-424.mis2

<220>
<221> misc_binding
<222> 4999..5017
<223> complement 99-14419-424.mis1

<220>
<221> misc_binding
<222> 14988..15006
<223> 9-24-260.mis1

<220>
<221> misc_binding
<222> 15008..15026
<223> complement 9-24-260.mis2

<220>
<221> misc_binding
<222> 15214..15232
<223> 9-24-486.mis1

<220>
<221> misc_binding
<222> 15234..15252
<223> complement 9-24-486.mis2

<220>
<221> misc_binding
<222> 15807..15825
<223> 9-6-187.mis1

<220>
<221> misc_binding

<222> 15827..15845
<223> complement 9-6-187.mis2

<220>
<221> misc_binding
<222> 19548..19566
<223> 9-7-148.mis1

<220>
<221> misc_binding
<222> 19568..19586
<223> complement 9-7-148.mis2

<220>
<221> misc_binding
<222> 19725..19743
<223> 9-7-325.mis1

<220>
<221> misc_binding
<222> 19745..19763
<223> complement 9-7-325.mis2

<220>
<221> misc_binding
<222> 19767..19785
<223> 9-7-367.mis1

<220>
<221> misc_binding
<222> 19787..19805
<223> complement 9-7-367.mis2

<220>
<221> misc_binding
<222> 20139..20157
<223> 9-9-246.mis1

<220>
<221> misc_binding
<222> 20159..20177
<223> complement 9-9-246.mis2

<220>
<221> misc_binding
<222> 20576..20594
<223> LSRX9-BM.mis1(17-1-240)

<220>
<221> misc_binding
<222> 20596..20614
<223> complement LSRX9-BM.mis2(17-1-240)

<220>
<221> misc_binding
<222> 21089..21107
<223> LSRX10-BM.mis1

<220>
<221> misc_binding
<222> 21109..21127
<223> complement LSRX10-BM.mis2

```
<220>
<221> misc_binding
<222> 587..605
<223> potentialsite606.mis1 potential

<220>
<221> misc_binding
<222> 607..625
<223> complement potentialsite606.mis2 potential

<220>
<221> misc_binding
<222> 5122..5140
<223> potentialsite5141.mis1 potential

<220>
<221> misc_binding
<222> 5142..5160
<223> complement potentialsite5141.mis2 potential

<220>
<221> misc_binding
<222> 7409..7427
<223> potentialsite7428.mis1 potential

<220>
<221> misc_binding
<222> 7429..7447
<223> complement potentialsite7428.mis2 potential

<220>
<221> misc_binding
<222> 8375..8393
<223> potentialsite8394.mis1 potential

<220>
<221> misc_binding
<222> 8395..8413
<223> complement potentialsite8394.mis2 potential

<220>
<221> misc_binding
<222> 8685..8703
<223> potentialsite8704.mis1 potential

<220>
<221> misc_binding
<222> 8705..8723
<223> complement potentialsite8704.mis2 potential

<220>
<221> misc_binding
<222> 9009..9027
<223> potentialsite9028.mis1 potential

<220>
<221> misc_binding
<222> 9029..9047
<223> complement potentialsite9028.mis2 potential

<220>
<221> misc_binding
<222> 9931..9949
```

<223> potentialsite9950.mis1 potential
<220>
<221> misc_binding
<222> 9951..9969
<223> complement potentialsite9950.mis2 potential

<220>
<221> misc_binding
<222> 9958..9976
<223> potentialsite9977.mis1 potential

<220>
<221> misc_binding
<222> 9978..9996
<223> complement potentialsite9977.mis2 potential

<220>
<221> misc_binding
<222> 10002..10020
<223> potentialsite10021.mis1 potential

<220>
<221> misc_binding
<222> 10022..10040
<223> complement potentialsite10021.mis2 potential

<220>
<221> misc_binding
<222> 11859..11877
<223> potentialsite11878.mis1 potential

<220>
<221> misc_binding
<222> 11879..11897
<223> complement potentialsite11878.mis2 potential

<220>
<221> misc_binding
<222> 19021..19039
<223> potentialsite19040.mis1 potential

<220>
<221> misc_binding
<222> 19041..19059
<223> complement potentialsite19040.mis2 potential

<220>
<221> misc_binding
<222> 21344..21362
<223> potentialsite21363.mis1 potential

<220>
<221> misc_binding
<222> 21364..21382
<223> complement potentialsite21363.mis2 potential

<220>
<221> misc_binding
<222> 21430..21448
<223> potentialsite21449.mis1 potential

<220>

<221> misc_binding
<222> 21450..21468
<223> complement potentialsite21449.mis2 potential

<220>
<221> misc_binding
<222> 21432..21450
<223> potentialsite21451.mis1 potential

<220>
<221> misc_binding
<222> 21452..21470
<223> complement potentialsite21451.mis2 potential

<220>
<221> misc_binding
<222> 21435..21453
<223> potentialsite21454.mis1 potential

<220>
<221> misc_binding
<222> 21455..21473
<223> complement potentialsite21454.mis2 potential

<220>
<221> misc_binding
<222> 21436..21454
<223> potentialsite21455.mis1 potential

<220>
<221> misc_binding
<222> 21456..21474
<223> complement potentialsite21455.mis2 potential

<220>
<221> misc_binding
<222> 21550..21568
<223> potentialsite21569.mis1 potential

<220>
<221> misc_binding
<222> 21570..21588
<223> complement potentialsite21569.mis2 potential

<220>
<221> misc_binding
<222> 21664..21682
<223> potentialsite21683.mis1 potential

<220>
<221> misc_binding
<222> 21684..21702
<223> complement potentialsite21683.mis2 potential

<220>
<221> misc_binding
<222> 21675..21693
<223> potentialsite21694.mis1 potential

<220>
<221> misc_binding
<222> 21695..21713
<223> complement potentialsite21694.mis2 potential

```

<220>
<221> misc_binding
<222> 21709..21727
<223> potentialsite21728.mis1 potential

<220>
<221> misc_binding
<222> 21729..21747
<223> complement potentialsite21728.mis2 potential

<220>
<221> misc_feature
<222> 22113,22122,22227,22264,22268
<223> n=a, g, c or t

<400> 1
ccataatcaa gaaaatggat aataagttt ggtggggatg tggagaaaatt ggaatcctcc      60
gtgcattgct ggtgggaatg tacaatagt cagtcatgg ggaaaacagt ttggcagttc      120
ctcaaaaggt taaaaataga actaccaagt caccaggaa ttccatttctt aggcatatat      180
tcaaaaagaaa tgaaagcaga tatttgata ccagtgttca cagctgcact atttacaata      240
gtcaaaaaggta agaaaacaacc taggtccatc cacaatgaa tggataaata aaacgttagca      300
tatacataca atggtacact agtccgctgt aaaaagaaaat tttgatctta ctgcgtgcta      360
catggcttcg acatactaca acatggatgg accttggaaa cattatttctt tggaaataa      420
actagacaca ggacaaatgt tagacgattc cacttatatg aggcacctag aatgggcaat      480
ttggtaagca aagtagaata gaaattacta ggggcacagg tagcaggaa tggggagtt      540
ctgttaatg gtacacaggt ttatgttgg gatgatggaa cagtttgggg gataaaagagt      600
ggtgacttgtt acacgacatt gtgaatatac ttaatgccac tgaattttac acttgaagt      660
gttaaagcga taaatattat agtttgcata ttttatcata aaaatatttt tttaaacgat      720
gaagggacgt gaacggggtt aaattttata aaaagtggcc agggaaagggtg tcactgcaat      780
gggtgcctac aggaggagga agatcatgtg gacatctscg ggaagggtgt tctggcagag      840
ggagtagcac gggcgatggc tctgaggact gtgagaagta tagttggaaa cagcgaggag      900
gccagggtgt ccgaagctga gtaagccaga gagagtggga ggaggtgaga taagaggggg      960
aaggtcagtt tctgctgaga gtgaggagga gcacaggag ggctgtgagc aggtggacgt      1020
gatctggctt gagtttaac agggccagta gaacaaagca cgcctggta cggaaaccag      1080
ccactggcca gttggcaacc tgggggagtc taacgcgagg aagcgcggc ggttccccca      1140
ggatgcgctt tccctcgccg ccacctggag acagcagagt cacgcggcagc gtcgcgcagg      1200
ctgatcgccg cgccgcgccc cgcgcctcg ggccagggtt ctygttccgg gaattcctaa      1260
gcggaaaccg gtcccaagcc cgcgccttc gtcggggccc ttaagagcc agaatttccg      1320
gagggctgac cccgggctag ggatgcccag gggccgaacc acaagttggg aacrggtgg      1380
ggaggtggcg aaaacttccg wagtggatt ccaactttt ctggccctga ttccccttgg      1440
gcateccctga gggggcagag ctcccttcc gggacttta gagggttctt caggtcatct      1500
aactgggaga cacaggaggc cccaagcgc ccccttccac ccgttccgg ggaaccccg      1560
tggaaagtgg aagtcagggc gccaccaaca agccttccc agccaggact ttgcttagac      1620
tcgctccctcc cggcaggcgc cacctaggcg gtcacatcg cagccgggaa gagggtttt      1680
ggcaggggagg gaacagggtgc gcggcgggac ccgccttcc tcaacagggt aatcgctcca      1740
agtgggtctc ggttgcattgg atctcggtgc gttgggttgc gccggagmag atggggccg      1800
gaagggacct gtggcccgca ggcgcctcc cagcggggca gtcacttgg tccggccctg      1860
ggggacggag cgcacacttgg tcagccact tccggggagg gaggcagagg aaccctccc      1920
cgccgcctac ccataagccc agccctcgcc tccaccctt gtgtacctgg gccgaaccat      1980
tcaccggagc ggcacgggg tggagtgtgg ctggaggac cgcgggggt caagcacctt      2040
tctcccccatt atctgaaagc atgcctttt tccacgtcg ttagctcat taaaacttcc      2100
agaatgcaac aggacggact tggagtaggg acaaggaacg gaagtggaa ggggaggagc      2160
gtgcacccct cttggccctt gtgcgcggc cgccccctaa ggtactttgg aaggacgcgc      2220
cgggccagac ggcgccttcc ggcgcgtat ggcgttgg cggcggggct ctccagaggg      2280
ctgggcctcc acccgccgc cgcaggccgg gacgcggctg tcttcgtgt gcttcgtt      2340
agcaccttgtt gcacagggtac ggggcacggg gcctctgacg ctgcgaaacg scggaggaa      2400
ctgttagaggg ggttggatgg agttggaggc ggcgggaaagc gggaaaggccc ggtctcagag      2460
gctggaccc tccgatcccc tgggttgg gcgatctgtt ggcgcgggaa gtgagagggaa      2520
ttccccat ttttgcggggaa ggcgccttcc cgcggggctt tggaaatag caggaagt      2580
aactccctgg acggtgagac cccggagccgc agggagaatg gaacttttgg tggggaggaa      2640
gtgaaagacc gcccgcgttc tgggaaaaga aaagccgggaa tggacttgg ggcgcacccgg      2700
ggatttctaa gttttggagt aacggggaga gggcacgggaa gggctggatc agacgcttcc      2760

```

tagagggaca	gagacgaagg	aacaatgcct	aggcctcgaa	tgggtgtggg	actggggact	2820
ccccatcccc	cgcaccccac	ccacctcccc	cgggctccgg	attatacgtg	cgtaaagagtc	2880
tggtggtatg	gatttacgg	cttgaaaaccg	acttctgctg	gcaggcttc	acctggatgg	2940
gatattttgg	tggtgatgag	gtctttcccg	agacactttt	ggtcagtca	tttgaatga	3000
cttttagagta	gggtgagggt	gtgggaggct	gatggagata	tttgtggggc	tttagtccc	3060
ccatggcaaa	gcagttcagg	caaacaactc	catggtttc	cctccaaatt	caaaggccc	3120
cgggttaacct	ggaatccttc	gtagtcggtt	ttgaagtggg	gccttggcg	ctggggcat	3180
caacatggcc	atctgggctt	gcctgcccag	gccacacaga	ggcccttgt	tgtgggtgaa	3240
tggcaaaggg	aagaggggac	tggtgtggtt	cagaggccac	aggctggaa	gagggatggc	3300
ggcgagttcc	aagaaaactg	gccgtgtcac	cgtgcacctg	ccacttcagc	ccacagggtc	3360
tataaaatgg	gcatgattat	cgtggctacc	tcactggtcc	tggcaattaa	ggaacaatgt	3420
gtgccaggca	ctctgtaaac	cacatacttgc	cgagtgtcaa	gctggtgaca	ggtggcggtc	3480
ctgttgaagc	acctccctga	gctcacagca	acccttgcgt	tctcttcct	tgccctcagc	3540
tcctgccagg	gccccatccagg	tgaccgtgtc	caaccctac	cacgtggta	tctcttcca	3600
gcctgtgacc	ctgcccgtta	cctaccagat	gacctcgacc	cccacgcaac	ccatcgcat	3660
ctggaaagttac	aagtctttct	gcccggaccg	catcgccat	gccttcctcc	cgccacggt	3720
cgacaaccag	ctcaatgccc	agctggcagc	cggaaaccca	ggctacaacc	cctacgttyg	3780
gtgccaggac	agcgtgcgca	ccgtcagggt	cgtggccacc	aaggcaggca	acgctgtgac	3840
cctgggagat	tactaccagg	gccggaggat	taccatcacc	ggaagtatgt	tggcaggggc	3900
agggggatga	ggctgggctt	gcccgggtgg	tggactggc	gtccttgc	gggacctgga	3960
gtccccatct	gaaagcttct	gagtgcagat	gtctgaaagg	accattgaag	ggagcaattc	4020
tttttttttt	tttttttgaa	gatggagtct	tgtcttcggac	tccaggctgg	agtgcagtgg	4080
tgcgatctca	gctcaactgca	acctccaccc	cccaggttca	agcaattctc	ttgcctcagc	4140
ctcccgagta	gctgggactc	caggtgcgtg	ccaccacgcc	cagttatattt	ttgtattttt	4200
agtagagatg	gggtttcacc	atgttggcca	ggctggtctc	aaactcctga	cctcaaattga	4260
tctgcccggcc	ttggcctcgc	aaagtgtga	gagacaccat	accacgccta	aagggagcga	4320
ttctatttcta	ctatttttcc	ttctgtcta	ccttccattt	ttaattttaa	taacgaagat	4380
tttttgagta	cctgtcatat	accaggtgct	gttctgggctc	ctggaaatac	agctgttaac	4440
aaaatcatca	aaccacttcc	ctcgtggagc	ccacattgca	gtgagagaga	caaacackac	4500
acacactctc	aagtccctga	agataaagaa	aactggtaa	cggagagaaag	aggccagggt	4560
ttgttctata	atcattaata	acacgagcag	taagaagtaa	aatttatcta	agtaacaact	4620
tataaagggt	ctactgtgt	ctaagctctc	atccaggttc	ccaaggatta	actcagacca	4680
cacagtaatt	gaatagattc	tatcatgtc	atcttacaga	ggcccagaga	gagaagggt	4740
cttgcctagt	gtcatagctg	gtaacggggc	tggatttcta	actcagccac	tttgggtctc	4800
gtggccaagc	tcctaattccc	tttgctgccc	tagggtggtc	cgcagaggac	tcacagagga	4860
gatggcagga	gtgaactgca	ggggcaagag	agcttaatgg	agaaagcctg	tgacatgcca	4920
ggaactgcac	acatattctc	ccattgagtc	ctctcctctca	ccctcctgac	agctgaggca	4980
cagagagggtt	accttgcata	aatgggtgca	taggaagtca	aagtcgtgg	ctggggtttg	5040
aacccaggca	gccctgagaa	ccttgcattt	tttttttgag	acggagtc	gtctgtcg	5100
ccaggctgga	gtgcagtggc	gggatctcg	ctcaactgca	gctccgcctc	ccgggttcc	5160
gccatttctcc	tgccctcagcc	tcccaagtag	ctgggactac	aggccccgc	cactacgcct	5220
ggctaatttt	ttgtattttt	agtagagacg	gggttcacc	gttttagccg	ggatggtctc	5280
gatctctga	cctcgtgatc	cgcggccctc	ggcctcccaa	agtgcgtgg	ttacaggcg	5340
gagccaccgc	gcccggcccc	ttgttcttaa	ctgtatgtct	gcctcctgt	aggatgtgccc	5400
tgttggact	aagtaagggg	cagtcatca	ttcatttatt	tggtatttt	caagcatcg	5460
ctatgtgtcg	ttggtgctgg	ggatagaggt	gattgggatg	gctgaagttt	ctgtcgtaa	5520
ggagatgaca	ttctgggtgg	gtgagactgg	cagtaataaa	gcagataaaag	aaagagttat	5580
agaatttcaa	agtctgggca	cggtggctca	cgtctgtat	ctcagactt	ttggaggcc	5640
aggtgggtgg	atcacctgag	gtcaggagtt	ccagaccagc	ctggccaaca	ttgtgaaacc	5700
ccgtctctac	aaaaataaca	aagattagcc	aggcatggt	gcacatgcct	gtatccca	5760
ctactcagga	ggctgaggca	tgagaatcgc	ttgaacccag	gaggcagagg	ttgcagtgt	5820
ctgagatcgc	accactgtac	tgcagtctgg	gcccacagat	gagactctgt	ctcaaaaaaa	5880
aaaaaaaaaa	aaaagactcc	gtcaaggtat	aagaatgtca	gagactacta	agtgttgca	5940
agaaaataac	accaggctgg	gtgcattggc	tcatgcctgt	aaatttcagc	actttggag	6000
gccaaggcag	gaggatcact	tgagcttgg	agtttggagac	cagcctggac	aacaaaatga	6060
gaccggatgt	ctacaaaaat	tttaaaaaatt	taaaaattag	ctgggcatgg	ttggcatgtc	6120
ctgtggccc	ggctgctcag	gaggctgagg	tgggaggatt	gcttgggctt	gagaggctaa	6180
ggcttcagtg	agtcatgatc	gtgccactgc	attccagct	gggtgacaga	gtgagaccct	6240
gtcttggaaat	gaaaagaaaa	taggtgggc	gcagtggctc	acacctgtaa	tcccgact	6300
ttgggaggcc	gaggtgggtg	gatcacctga	ggtcaggaga	tcgagaccag	cctggccaa	6360
atggtggaaat	cccatctcta	ctaaaaatac	aaaatttgc	cgggcgtgg	gttggggcgcc	6420
tgtaatccca	gctactcggt	aggctgaggc	aggagaatcg	cttgaacctg	ggagggcgaa	6480
gttgcgggtgc	gccaagatttgc	cgccactgca	ctctagcctg	ggaaacagtg	agactccgtc	6540

ttaaaaaaaaaa	aagaaaaaaag	aaaatagcac	tgggtgatgt	gctacatgga	atgacttggg	6600
ctgtgaatat	gattgagga	gggcctggc	ctgggccta	cagaacctag	aaggcagaga	6660
ggaaggggag	ggcaggggtg	ccagggatga	aggctcacgt	acctcatgtc	ttagtgtgt	6720
ttcaactgtct	taaacaagaa	tttaaagtg	ggcatgggc	agagcggga	agggagcata	6780
cctttgcaga	ccccaaagaag	ccaggaactg	gagcacattc	tgctagagga	tcgatggaa	6840
gcaggggtcc	aggggctgag	cctatgtcag	tcctgttca	gaggaggcac	caggcttgct	6900
tgccctgaat	ttctgtggc	agtcagcca	tgagcatcct	actgttattt	agtcacagg	6960
gctgcttagg	ccccctcctc	tctaaccag	ggattgtgcc	tgcctggacc	aggcgtgact	7020
gctaagcttc	tgccaggaca	agccaaatac	tgagggtgct	tcctctgctg	gacgcaaaag	7080
tccaggatga	ccccccagc	tctgtctcg	ggaaggggccc	ctgcatgctc	caggggcctc	7140
acaggccctgg	gtctttcaaa	ccaccccccac	ctgggcctgt	gtttgatcaa	ggccctgagt	7200
gtaaacatcc	attgtgtgt	tcctttcagg	aatcccaata	gccataggag	cttcctctgt	7260
ttcagcttgc	aggatggga	aaagtgact	ccccgtgtg	ttccttaggt	cacccactgt	7320
gctgggggtt	ttctgtgtt	gttgggggg	ttctgttgcc	caggctggag	tgcaagtggg	7380
caatctcagc	tcactgcaac	ctctgcctcg	caagttcaag	tgatttccc	gcctcagcc	7440
cctgagtagc	tgggattaca	ggtcacacc	accacacctg	gctaattttt	gtatctttt	7500
ggttagagatg	ggatttcgccc	atgttgccca	ggtggctc	aaactcctga	cctcaggtga	7560
tctgcctgccc	ttggcctccc	aaagttctgg	gattacagat	gtgagccacc	atgcccggcc	7620
tatcctgttt	tcaaaagtga	aaatagtcct	ggataaggta	gaaggctgtc	cactccaggc	7680
atccctccgg	tccgggtggct	cattccctgc	tttgccttc	catgcttgg	gtatggacc	7740
agcacctgg	caggaggccc	tggtccacct	cctcgggctc	cttggggtcc	aagtgcffff	7800
acctccagct	gcactgcagc	agagagccca	tgggacctct	gaaatcatga	aggtcacctt	7860
tgccgtgttat	aaagaaggaa	ccagaggtt	gagatgtgg	ggaggcctgg	ctgctgttcc	7920
cactggagac	ctggcatctt	ctcccccggc	taaaacaatg	aaagcagtgc	tcagcccgga	7980
tgagatcacg	gccagcccaa	gaccaggaac	aggtacgccc	ctgcaggaag	aagggtgtcc	8040
cagaccttag	gatggatcaa	aagaaggccgg	aaaactatata	tttttgtgag	ttttgaaaat	8100
gtcagacagg	tcaaaacaaa	cacagtggg	tccagcctcg	gcctacaaga	tgccagattt	8160
caacccctgg	cctatatgt	ctgtttggca	tggcaggccgg	ttcctgtcca	cctcttttgt	8220
ttatagcagg	gaccagctct	tgagctccag	tgttgaagag	gcacggtcag	ggtctgtatct	8280
gaagacactg	gtggctcatg	cctgtatcc	cagcacttca	ggaggcccgg	gcaggaggt	8340
tgcttgagga	caggagctgg	gagaccoagcc	tgggcaacac	agtggacccc	agacactaca	8400
aaaaaaataaa	tttagcgggg	catgtggca	caccctgtca	ctctggagat	ggtttttttttt	8460
cttggcgccta	ggagttcgaa	gctgcagtga	cccatgtatcg	caccactgca	ctccagccctg	8520
ggcgcaccaag	ctaggccctc	tcaaaaaaaga	tacaggtgg	aaaatgtgg	acgaagaggg	8580
cattgtggca	aacctgggg	tttaggagaa	cctagtttttgg	aattctatga	ggattcaatg	8640
aaagaatgtg	tgttagagggg	cccagcacat	agtaagagct	caataaacgg	tgggggctag	8700
gggtgggtggc	tcatgcctgt	aatcccagca	cttggggagg	ctgaggcagg	ttgatcactt	8760
gagccctgg	gttcaagatc	aacctggaca	acaaagcaag	atcccatctc	aaaattaaaa	8820
aacaacacca	acaacaaaaaa	aacagttgg	tagatgcctg	atcattaggg	taagtctgt	8880
cctcaacccc	ttcacatctg	ctctgaaggt	caccatatcc	ggaaggcctc	cctggcctcc	8940
ttgtttaaaa	tggcacagcc	cccactccac	gcctggcact	ctctgtgtc	cctgattcgt	9000
tttctccata	cagcttatct	ttgtctggta	tgtgacatag	ttaacatttt	atatttgtct	9060
ttctttccata	gttagaatct	gaactctaga	agggcaaggg	caaggattt	taactcaaaag	9120
attccgggct	taggcctctt	ttatattctt	gattttgagg	ttaattaaga	gctcaggcct	9180
agcgaggtgg	ctcatgcctg	gaatcccagc	actttgggg	gcccaggccgg	gcagatcact	9240
tgaggtcagg	agttccagac	ctgcctggcc	aacacagtga	aaaactctgc	tctactaaaa	9300
atacaaaaaat	tagccagtt	tgttggcagg	cgcctataat	cccagctact	caagaggctg	9360
aggcaggaga	atcgcttga	cccaggaggc	agaggctgca	gtgagccaag	atcggtccac	9420
tgcactccag	cctgggcaac	agagcgagac	tccatctcaa	aaaaaaaaaa	aaaattaaga	9480
gctcaaagag	tttggggca	taggcagcag	aatgagaaaa	gtttaca	tagtttaat	9540
gacaataaaag	tcattataga	ttaacataaa	taaaataacct	tttatgaaaa	aaataatcat	9600
tttctgaaat	cagacaaaaac	attgtgtat	agaaggtggc	atgtttttt	ttttttgcaaa	9660
gtctccgaag	cctggctgg	tagaagagcc	tggcttctca	gagctgttcc	agtctgttgt	9720
gatatctatt	gtatgtcagc	tagcctctgg	aaaactccac	agtttagtatt	gttggggaaa	9780
taactttgac	ctcaggatct	cctgaaaaacg	tcttggggaa	ccccagggtc	tagaggctgc	9840
agtttgagaa	ctgttgctgt	ggtatcccag	gtgtctcaaa	tactgcctag	aacataggtg	9900
gtactcagta	attattgttg	aaggatgaat	gaatgaatga	atgaatgaat	gaaagaaaaga	9960
aatgtgtctt	tgaatctagc	catgtgccc	gaatgtatgag	acagatgaca	aaagctaaagg	10020
gacttttagca	tgaggagagg	gggttcgttt	cttttttttt	tttttttttt	tgagatggag	10080
tctcaactcta	ctgcccaggc	tagatgcag	tggtgcaatc	tcagctact	gcaatctctg	10140
cctcctgagt	tcaagcaatt	ctcctgcctc	agcctccagg	gtagctggga	ctacaggtgc	10200
gtgccaccat	gcctagctaa	ttttttacat	ttttggtaga	gatgggggtt	taccatgttg	10260
gccgggctgg	tctggaaactc	ctgacccaa	gtgatccacc	tgctcagcc	tcccaaagtg	10320

ttaggattac	aggtgtgagc	caccatgtcc	ggccaagagg	gtgttcattt	ctgctccttg	10380
ccaggtattg	tgtcaggcac	tggggaccca	gcagtggctg	agacagacag	ggctctgcct	10440
cacggagccc	acatttcac	caggcaaagg	atggtcggcc	cctaagctgg	gagataagac	10500
ttcagcatgt	gggtggggga	gccgtggag	aagcccagcc	cacaggggga	cagtgc当地	10560
ctagaaccaa	ggcgatggca	ggggtgaggc	tggcacggta	gctagagacc	acgtcgtgcc	10620
aaggccctt	gggaccatgg	gactatggga	ccttagggaa	ggcgtctgga	atgctgttagc	10680
cagacactgt	tgcaaggagg	attttctgt	agacatgagg	ccttccttat	gaagaaaagca	10740
agggttctt	cattcctggg	ggtgccaggt	gctgtggact	gcagcacgcg	tgggtgctgc	10800
cgtcacagag	ctgtcatgca	ggagggcgc	gcgtccttgg	gaaggtggca	ggcaggtcag	10860
gctaggagga	aagaggccgg	gaagctgagg	gcatttcctg	cccgagatgc	ccaatgttagc	10920
ctacttcgt	ccccagtggc	ttaaggcaga	gttgccttgg	aggtgccttg	gtcccacccct	10980
ggtgaaaggc	tgaaggatt	taattagtgc	ctgagaagca	gagagggaaac	aggatgtgc	11040
aaaacactt	gatggatggt	agagtaaca	ggtccttgc	ctgcagctgc	ttcagacaag	11100
agcgtcccc	agccctgggc	ctgaccttgg	atgtggggat	ggaaggggag	ggggaggaac	11160
caaggcaactg	ggagggtaag	tctctctc	ccacatagac	acacccactc	cttatgggt	11220
cctgggcac	tcctggtacc	tagaatctgg	cctgtttatc	tccacaccca	tccctgggt	11280
ctacactagg	ccctgtgggt	ggcagttcac	atcaggggag	ttctgacttt	ggctctgaga	11340
ggtggtttag	agatggctgt	aagttgagaa	gcacagactg	ctgggtgtgg	tggttcacgc	11400
ctgtaatccc	agactttgg	gaggctgagg	tgggggttgg	tcacctgagg	tctggagttc	11460
aaaaccaact	tggtcaacat	ggcggaaactc	catctctact	aaaaatgc当地	aaattagcca	11520
ggtgtgggtt	caggtgccta	taatcccagg	tacatggggag	gctgaggcgag	gagaatcgct	11580
tgaatctggg	aggcgaagat	tgttagtgc	cgagattatg	tcgcaccatt	gcatgccagc	11640
ctgggcaaca	agagtgaaac	tccgattca	acaaaacaaaa	aaaaaaagct	gggcatgggt	11700
gagtgctgt	agtccatact	actcagggtgg	gaggattgt	tgagttccagg	aggttgaagt	11760
tgcagtgggc	tataattaca	ccactgca	ccagccagg	ccacagatg	agaccctgtc	11820
tctaaagaaa	aaaaaaaaaa	aacaacctca	ggctccggagg	gcaccattac	tgctctacac	11880
tgaagagctg	tgcagctttt	ccagaccg	aatgtcatcc	acaaaacaga	agtgataatg	11940
gtcctgcctc	acagacttct	tgcagtagtc	caggtgttta	gaacgggggt	taaaaggccg	12000
tgtcccttgc	gttagaatct	ttgcataatgc	attgtatcat	ctgcagcctg	cccagccac	12060
tgcttggccc	ctccctgggt	tgctgggaag	gggtctttgg	ccctccagg	gttaggtgcc	12120
ccagcctcca	agggtccctc	acgcctttc	atcccgactc	agatgtgc当地	ctgacctttg	12180
accagacggc	gtggggggac	agtgggtgt	attactgtc	cgtggctc当地	gcccaggacc	12240
tccaggggaa	caatgaggcc	tacgcagagc	tcatgtcc	tggtgagtg	gcttgoggaa	12300
ggggaggcat	ggcccttcc	tttgcgcgt	tctgttctgt	ctgccttccc	ctgtgtccgc	12360
cctctgcctc	ccagcttacc	ctctgggtc	tgtgcgcctg	tctgtctcc	cccaggctc	12420
gccagtcact	taggctcccc	tgtgccttgc	accccaggca	gggaccactg	gcccacagtg	12480
cctccaatca	cccaagccaa	actaagagaa	gagtggagac	aattggagac	tctgccttt	12540
caaagtctca	tttttaaaaa	aaatccagac	ttggggtcc	ggtgccgt	ttcatgcctg	12600
taatccagc	actttgggag	gccgaggcg	gttgatcact	tgaggccagg	agttcgagac	12660
tagcctggcc	aacgtggcaa	aatccctct	ctataaaaaaa	tataaaagcc	aggcgtgggt	12720
gtgcacatgc	ctgtaatccc	agttactcag	aaggctgagg	catgaggatt	gttgaacct	12780
gggaggcaga	ggatgcagta	agccaaagatc	aagccactgc	actccagct	gggcgacaga	12840
gtgagactct	gtccaaaaaaa	aaaaaaaatc	cagacgtgg	cagactccat	gggcgactgaa	12900
tgaggacagt	tgtatgtgt	caaataatgc	ccaccttcttgc	ctacatcccc	aggcctctat	12960
ctcaccggag	tccctcgcca	aagcacagcg	gttttgcgt	gtgcctgt	gggatggcgc	13020
tgcacggc	acacactgtg	taagtttgc	tgcagctgaa	acgaagccga	ttccagacac	13080
ccagggcag	ggcgggggt	ccgtgtgg	gggaggcctc	tttgtttag	ggggatgttg	13140
ccatcgccca	ggtgccctgc	tgtaaagccaa	cacatgggt	ttgttatgc	atgtgtctgc	13200
catgagtgat	gcccgtggc	tgtacactgc	catcttca	tgtgtgaatg	agcacgtgac	13260
tgggggtac	ttgggctgca	agacagagtt	catgtgtgg	ggatgaaaca	ctgtcaccag	13320
tgaccaggaa	acctctgcct	gttctcggt	aaaatgcacc	atttgcatca	gcagttccca	13380
aaattagtct	ccaggtctat	ttacactcta	aaacattatc	gagggtctcc	aagagcttt	13440
gtttgtttct	gtgggtttt	tgtctatctg	ttgcttaaca	tattaggaat	taaaatgggg	13500
agattttcc	ttttttttt	tttttttgc	gatggagtct	cgttctgt	cccgaggctgg	13560
agtgcagtgg	ctcgatctcg	gctcactgca	agcttcac	cctgggttca	cgccattctc	13620
ctgcctcagc	ctcccaagta	gctggacta	caggcaccc	ccaccacacc	cggtcttaatt	13680
tttttgcatt	tttagtagag	actgggttcc	accatgttag	ccaggatgg	ctcgatctcc	13740
tgacctcg	atccacccac	ctgggcctcc	caaagtgc当地	ggattacagg	catgagccac	13800
tgcccgccct	taaaatgggg	agattttca	agcccaagat	acacaaggaa	gactgggca	13860
catggcaaga	ccctgactct	acaaaaaaatt	ttaaaattaa	ccaggatgg	tggcatgcac	13920
ctgtgagccc	agcttcttg	gaggctgagg	caggagtatc	gctgcaccc	aggaggtcaa	13980
ggctgcagt	agccatgact	atgctactgc	actctagcat	gagtgacaga	gaccctggct	14040
caagaaacac	aaacacacac	acacacacac	acacgcata	agtccattag	gcatcaggc	14100

0
1
2
3
4
5
6
7
8
9
=

gatgtatggca tcagggagcc tggaaaactc tactggacat tcatggaga acaagtgaaa 14160
aaggcaaata acatcttagt gttattctaa aatttcttct tttggccttg tgacaggac 14220
cacgccttga gagctgtgac tgacatgcct ctgtcctgtt gcgagggcct atagtgc当地 14280
gtgc当地gagc tctggggagg gcttcgtggg tgagagctg ggcctgtgg ggc当地ctc当地 14340
acacaacact ggtggggctc agagctccag gggcactcga gggaaagacaa gaaccggctc 14400
tgagatgc当地 gaatgtgaca gtgc当地gagt agagatggag accttgggg tccc当地aacc 14460
aggactgcat atgactttca tatgtggta ttttgc当地 catgggccc ttcc当地gittt 14520
aaaaaaaaatg tggattatg ttgtc当地aaa aatttaacca tttcagccag gtgtgggac local 14580
tggtc当地gatt tgtaaagtaa aatttaacca tttcagccag gtgtgggac local 14640
agccctagct acttacccca gaggctgagg tggaggatc gcctgagccc acgaggctg 14700
agctgc当地gagc agccatgatc acacccctgc actccagact gggc当地acaga gctgagatcc 14760
tatttgc当地 ggc当地taggtc cctgtgc当地 ctggacagg acatccstat caccgtgg 14820
ggagccctt ggggtgctaa gacctatgaa tgagggaaac tt当地gggccc caagctgagg 14880
tagaggc当地tca agaaccctt gggatttgc当地 tt当地gggccc ctggc当地aa cacagggtg 14940
ttatgcaatg ggagtttctt acctataagc acccacatgt gggc当地gggagg agggtaggag 15000
ccatgc当地ta gggcttgc当地 cccagcccc ttcc当地gccc agggc当地acacc tt当地cacttgg 15060
ccagccttgg gctgggctt cggggggc当地 acagccttgg ctggc当地tgg ccagc当地aa 15120
ctgttcttctt tt当地gggccc caggaggac ct当地gggggg gctgagctt tacctgg 15180
tcaggc当地ggg cccatagaag gtacgggggg tgatgc当地 gttgggccc tc当地gggagctc 15240
ccatacatca cctactgctt ctgactctag tt当地atccc ct当地cccact aaaccctg 15300
caactgtggac cc当地tactaa cctggc当地ga ct当地gggctt gaggcatcta gtggc当地tgg 15360
gctgggccc当地 ggctaggctg ggctgaggag agcctgggg gcaaggccagg gctctgtg 15420
tggcacctgc ggtgctctt ggggtg 15480
ggggctg 15540
acctggggg 15600
cccagccct 15660
tcgtccccga cctc当地gtg 15720
tccctcc 15780
tgtggatgc ctggc当地tgc当地 15840
ctgccc当地cac acttgc当地tgc当地 15900
ccccgaggcc 15960
aagggaagga 16020
aatttagcca 16080
ttccctccaac 16140
atacatg 16200
taaaaaatg 16260
taaaaaacc 16320
ggccaaagacg 16380
aaacc 16440
tcccagctac 16500
agtggatgc当地 16560
aa 16620
actacatg 16680
ttaagca 16740
tccaggc 16800
aa 16860
aa 16920
catgtg 16980
ttgccc 17040
atgggattac 17100
tttggagac 17160
ctgcaac 17220
cctac 17280
ttaagca 17340
ttaagca 17400
tgtct 17460
agatg 17520
acagag 17580
tgctc 17640
agctg 17700
agtgg 17760
gacc 17820
tgtgc 17880

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

caggtggaga	gctgaggcct	gcttgacacc	ttcctgctca	gaagcccagt	gagcagtttc	17940
cctccctagg	gctcagtgtc	atccccata	aaatggggct	tatggcagag	ctcaccacac	18000
tgggtgcattc	tggggatttg	gcgagctcat	gtgcacacca	tttagcatgg	ggcccaacct	18060
atataaaaata	ttctacgtct	gtcagctgct	gggcactgcc	actatcagcc	tcaagtgtga	18120
ctgagggaca	ggcaccagt	cagaccctg	gtgcacacag	agtgacccca	gagaagcagc	18180
cttccctctc	tgaatctgt	ttcctctgt	taggtcctga	cttcatgggt	tgttgttagc	18240
attaaggaag	tgcgtggcta	attttatagt	cattgaagtc	agtgggtgtc	aacctggttc	18300
ctcaaaggat	cactccctg	aaaaaaattcc	actgctccct	ggaggcattat	gcaggccatc	18360
ccatccctc	cctcttgtt	tgttcagctg	acagttttt	gctcagtgag	taagtgttag	18420
gtccatttca	cagatgggct	gcaaccaagt	ttgcagtgaa	cccactaaga	ccagagctag	18480
ggccaggact	aatgtctgt	cccaatgcca	cattccctg	tccccacacc	acatttcctc	18540
catccggaga	ccctgttacc	ccaaacccagg	gccccattaa	ctccctggca	gaggccctgt	18600
tacatctgt	gctgccacag	cctccggcca	cccttcagga	ggcagcaggt	cccaactgctg	18660
atgataaagt	tgcaggctgc	ctgagctaat	gaaggggctt	cctctaggct	gtgcacttag	18720
tcttctgtct	ccaaacccaaa	tcagaggtga	ggcacccctct	ctggggccat	ctctctcctc	18780
cattttcctg	ttgggggtccc	agggaggaag	ccacttgct	agggcccagg	aattttgcaa	18840
gcctcttgcc	ctagggagga	aggaagggg	gaggatctta	ccttgaactg	tcaagcctag	18900
agcctggtgg	ggcaggcaga	aatgggtgca	gttccatgagt	tagaaacact	agaggagaca	18960
ctttgctgct	tggccggggc	aggcaagttt	atccccagg	ctccctggccac	tgcatctcaa	19020
tctggaaggt	gaccagggtgg	ggcaggaccc	acgtctccca	gatgactcat	tttttctaga	19080
acaggggctt	ggctgcca	gaggatactt	gatttcggct	tgtgggaca	gtgggtggacc	19140
cagcatctgg	gttttatata	aagggcagct	ttgttgcctt	gtaaacacac	agaccatggg	19200
tggccacttc	ttccagtaag	ttagctgggg	agttggaagt	ttaggtaaaa	ccttttgatt	19260
gacaaatgtt	ggcgaattac	catgctgtt	aatgaaacat	tgttctgcca	ccctggggct	19320
gtgggtgcct	gggtgcaccc	tctgaaaaat	cacacaggaa	gtgggggtgg	gtctctgtga	19380
agctgggtgc	ccccagcctc	agggatgctg	cagaaatgga	atgaggacca	acagggactc	19440
agatgtccaa	ggaagctcta	cagcggagag	gacggcttgg	gaaggagggtc	caggccagg	19500
tccctccgga	acccaatggg	tatgggcag	cctggctcct	gcctcatccc	ccttctcctg	19560
ttgatrrtgt	cctcacagt	tatgccccc	gcaaagcagc	cacccatgg	gttcccagca	19620
tttatgcccc	cagcacctat	gcccacctgt	ctcccgccaa	gaccggccccc	ccaccagcta	19680
tgattcccat	ggggcctgcc	tacaacgggt	accctggagg	ataccctgga	gacggttgaca	19740
ggartagctc	aggtgaggcc	gggggaagca	ggaacagctg	gtggggmgtgt	gtggggcatc	19800
tggacactga	ggggcagggg	cttggaaaggaa	gagtgtctt	ggagccgagg	aggggctctg	19860
ctcctggtgc	gcccgcactg	acagccactc	tcccccagct	ggtggccaag	gtccctatgt	19920
acccctgctt	cgggacacgg	acagcagtgt	ggcctctgg	gagaatccat	cgtcccgaa	19980
ttggatgtgc	ctgtaaaggaa	gaggggtggg	ccaggatcca	tcctccaaa	ccgaccacca	20040
ccccccctgtc	cctagaagtc	cgcagtggct	acaggattca	ggccagccag	caggacgact	20100
ccatgcgggt	cctgtactac	atggagaagg	agctggccaa	cttcgaccct	tctcgacstg	20160
cccccccccag	tggccgtgt	gagcggggta	agcaggagcc	ttggggctt	agggctttt	20220
aggtgggggg	gtgaaacatg	tctccctgtat	acctggccga	gggactctt	gtgaaacacc	20280
tggacccccc	gctcctccag	cagtcaatgt	caccccccctt	ccctgcagcc	atgagtgaag	20340
tcacccccc	ccacgaggac	gactggcgat	ctcgcccttc	ccggggccct	gccctcaccc	20400
cgatccggga	tgaggagtgg	ggtggccact	ccccccggag	tcccagggg	tgggaccagg	20460
agccccccag	ggagcaggca	ggcggggggct	ggcggggccag	gccccccccc	gcccgctccg	20520
tggacccccc	ggacgaccc	accccgccga	gacccgcccga	gtcaggggagc	aggtctccca	20580
cgagtaatgg	tgggaggaga	agccgggcct	acatgcccc	gcccggccgc	agccgggacg	20640
acctctatga	ccaagacgac	tcgaggact	tcccacgctc	ccgggacccc	cactacgacg	20700
acttcaggctc	tcgggagcgc	cctccctggcc	accccgagtc	ccaccaccac	cgtaccgggg	20760
accctcgcc	caacggctcc	aggtccgggg	accccccata	tgtatggcg	ctactggagg	20820
aggctgtgag	gaagaagggg	tcggaggaga	ggaggagac	ccacaaggag	gaggaggaag	20880
aggcctacta	cccgcccccg	ccgccccccgt	actcggagac	cgactcgcag	gcgtcccgag	20940
agcgcaggct	caagaagggt	agggccgccc	tccctggcg	ccagaccg	cctggggccc	21000
cagccgtcc	ccgcggctca	tacccttctt	tctttctccc	ttgcagaact	tggccctgtag	21060
tcggaaagt	ttagtcgtct	gatctgacgt	tttctacgt	gcttttgkat	tttttttttt	21120
aatttgaagg	aacactgtat	aagccctgcc	atacccttcc	cgagtctaat	aaaacgtata	21180
atcacaagct	ctggagagaa	ccatttgttc	ggccgcgcgc	ggcgggggac	cggggctgt	21240
cccgtatgc	tctgtaaagc	gccgcgtccc	gggggcaccc	gagtccgggg	ccggggaggaa	21300
gagaccaggc	ctggcccccgc	ccgcgcggc	ggccgcggcc	ggagaacgt	ccccgcgcag	21360
ccaccggcc	cctgcgtgc	cgccccggcc	ccgcccaggc	gtgcgcac	gccccggccc	21420
tccgccttc	cgcaccgcag	gctggccgc	gggagcgcgc	gcccgcct	ctccccctcc	21480
agcccatccc	ccccagcccc	ccaccgaccc	actttactgt	ctccaaactc	gggcagccca	21540
cctggccccc	gacgacccca	gcccctgctc	cggttacccc	gacgttccat	ccagacccgc	21600
gtttcaccag	ggcgccgcgc	ggcgaccc	cgccccggcg	agccccgggc	tgcgcgcgc	21660

ccgccccgcccc ccggagacag acagcgcgcg cgctcccgaa ccgcctcccc ccagcgcgcg 21720
 tccgccccgg gctcgccgcg ccgcgcgcgc gcgcgcgcgc cgcgcgcgc tcaagtaaag 21780
 gagaaaaaaa aaaaggggga aaaatagaaa gcccggcgaa ctgcagcagc gatccgcgc 21840
 cggactgggc caagccggc ggcggccgcg cgagccggcg atccaggga ctggcggcg 21900
 ccagccaggg cggccgtgt tcaaaaaaaaaa aagtgcgcgc ggcggcggt gtcaggaa 21960
 ggaggccctga gggccgcgtg cagcggcgaa gcagctgggt gggctggggg cggccgcgc 22020
 gcgtcccgga gcctcggggc gcccggagcc ggcggcgaa cggaggcgaa ggccggcg 22080
 gctgcagcgg ctgcaggagc ggcggcggt gcnccggcg cnccggcatc tcctccctac 22140
 atgaccac ttttgcctcc cgtgatcagc gcgagccgt cccgtatctc ctccgtcccc 22200
 tcctgcgcgc cggcgtgagc gcccggncgc gggggcccccc cggccgcgc cccctcccc 22260
 tccntccntc ccctccctc ccctccccc cggcccccgc gccccccccc ccccccgc 22320
 ccccatggac atgcgtggacc cgggtctggaa tccctgtcc tcggccaccg ctgctccgc 22380
 cggccaggtaa gatccccggc cggccgtgc ccccgccccc cggcccccgc cccggcccc 22440
 cggcctgcag gccccggcgcc ccatgatccc gagcggccgc gggcccccgt caaaatggag 22500
 gccgcggcgcc cgggggggac ctggcgccctc ccgcggcccg ccccccgcct cggccgcgc 22560
 cccggcccta ggcgcggccg ggtgggactg gggccctgca gctggcgcg ggggggggg 22620
 cgcggggcgcc ggcgcgtg accctgtcc ctccctgtcc cctggcagcc acgacaagg 22680
 accccggcgcc gaggaggcgcc tcgagctgca ggaagggttag tgcttgccgg gccggccgc 22740
 cccggggagg gctggggggcg ctcggcgccg ccctgaccgt gccccgaccc tcctcgcccc 22800
 caggcgggga cggcccgagga gcgaggagc agacagccgt ggcacatcacc agcgtccagc 22860
 aggccggcggt cggcgaccac aacatccagt accagttccg cacagagaca aatggaggac 22920
 aggtgagcgg cggccgcga gagcgaacgg gccccggggc gggccgcgc ggaaggctcg 22980
 gacctggccc cagcgccggc ctgcggcgtc tgccggccccc tgcagggtgac ataccgcgt 23040
 gtccagggtga ctgatggtca gtcggacggc caggccgaca cagctggcgc cgtcagcgtc 23100
 gtgtccaccg ctgccttcgc gggggggcag caggctgtga cccaggtggg tgtggacggg 23160
 gcagcccccgc gccccggcccc cggcgatc 23187

<210> 2

<211> 2158

<212> DNA

<213> Homo sapiens

<220>

<221> allele

<222> 595

<223> 9-3-324 : polymorphic base C or T

<220>

<221> allele

<222> 940

<223> 9-6-187 : polymorphic base C or T

<220>

<221> allele

<222> 1191

<223> 9-7-325 : polymorphic base A or G

<220>

<221> allele

<222> 1362

<223> 9-9-246 : polymorphic base G or C

<220>

<221> allele

<222> 1658

<223> LSRX9f13-BM : polymorphic base deletion of AGG

<220>

<221> allele

<222> 2079

<223> LSRX9f14-BM : polymorphic base T or G

<400> 2

tggagtgtgg ctoggaggac cgccgggggt caagcacctt tctccccat atctgaaagc	60
atgcctttg tccacgtcgt ttacgctcat taaaacttcc aga atg caa cag gac	115
Met Gln Gln Asp	
1	
gga ctt gga gta ggg aca agg aac gga agt ggg aag ggg agg agc gtg	163
Gly Leu Gly Val Gly Thr Arg Asn Gly Ser Gly Lys Gly Arg Ser Val	
5 10 15 20	
cac ccc tcc tgg cct tgg tgc gcg ccg cgc ccc cta agg tac ttt gga	211
His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro Leu Arg Tyr Phe Gly	
25 30 35	
agg gac gcg cgg gcc aga cgc gcc cag acg gcc gcg atg gcg ctg ttg	259
Arg Asp Ala Arg Ala Arg Ala Gln Thr Ala Ala Met Ala Leu Leu	
40 45 50	
gcc ggc ggg ctc tcc aga ggg ctg ggc tcc cac ccg gcc gca ggc	307
Ala Gly Leu Ser Arg Gly Leu Gly Ser His Pro Ala Ala Gly	
55 60 65	
cgg gac gcg gtc gtc ttc gtg tgg ctt ctg ctt agc acc tgg tgc aca	355
Arg Asp Ala Val Val Phe Val Trp Leu Leu Ser Thr Trp Cys Thr	
70 75 80	
gct cct gcc agg gcc atc cag gtg acc gtg tcc aac ccc tac cac gtg	403
Ala Pro Ala Arg Ala Ile Gln Val Thr Val Ser Asn Pro Tyr His Val	
85 90 95 100	
gtg atc ctc ttc cag cct gtg acc ctg ccc tgt acc tac cag atg acc	451
Val Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr Tyr Gln Met Thr	
105 110 115	
tcg acc ccc acg caa ccc atc gtc atc tgg aag tac aag tct ttc tgc	499
Ser Thr Pro Thr Gln Pro Ile Val Ile Trp Lys Tyr Lys Ser Phe Cys	
120 125 130	
cgg gac gcg atc gcc gat gcc ttc tcc ccg gcc agc gtc gac aac cag	547
Arg Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser Val Asp Asn Gln	
135 140 145	
ctc aat gcc cag gca gcc ggg aac cca ggc tac aac ccc tac gty	595
Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr Asn Pro Tyr Val	
150 155 160	
gag tgc cag gac agc gtg cgc acc gtc agg gtc gtg gcc acc aag cag	643
Glu Cys Gln Asp Ser Val Arg Thr Val Arg Val Val Ala Thr Lys Gln	
165 170 175 180	
ggc aac gct gtg acc ctg gga gat tac tac cag ggc cgg agg att acc	691
Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg Ile Thr	
185 190 195	
atc acc gga aat gct gac ctg acc ttt gac cag acg gcg tgg ggg gac	739
Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr Ala Trp Gly Asp	
200 205 210	
agt ggt gtg tat tac tgc tcc gtg gtc tca gcc cag gac ctc cag ggg	787
Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Gln Gly	
215 220 225	
aac aat gag gcc tac gca gag ctc atc gtc ctt ggg agg acc tca ggg	835
Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Gly Arg Thr Ser Gly	
230 235 240	
gtg gct gag ctc tta cct ggt ttt cag gcg ggg ccc ata gaa gac tgg	883
Val Ala Glu Leu Leu Pro Gly Phe Gln Ala Gly Pro Ile Glu Asp Trp	
245 250 255 260	
ctc ttc gtg gtt gtg gta tgc ctg gct gcc ttc ctc atc ttc ctc ctc	931
Leu Phe Val Val Val Cys Leu Ala Ala Phe Leu Ile Phe Leu Leu	
265 270 275	
ctg ggc aty tgc tgg tgc cag tgc ccg cac act tgc tgc tac	979
Leu Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr Cys Cys Cys Tyr	
280 285 290	
gtc agg tgc ccc tgc tgc cca gac aag tgc tgc tgc ccc gag gcc ctg	1027
Val Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Cys Pro Glu Ala Leu	
295 300 305	
tat gcc gcc ggc aaa gca gcc acc tca ggt gtt ccc agc att tat gcc	1075
Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala	

310 ccc agc acc tat gcc cac ctg tct ccc gcc aag acc cca ccc cca cca Pro Ser Thr Tyr Ala His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro 325 330 gct atg att ccc atg ggc cct gcc tac aac ggg tac cct gga gga tac Ala Met Ile Pro Met Gly Pro Ala Tyr Asn Gly Tyr Pro Gly Gly Tyr 345 350 355 cct gga gac gtt gac agg art agc tca gct ggt ggc caa ggc tcc tat Pro Gly Asp Val Asp Arg Xaa Ser Ser Ala Gly Gly Gln Gly Ser Tyr 360 365 370 gta ccc ctg ctt cg gac acg gac agt gtg gcc tct gaa gtc cgc Val Pro Leu Leu Arg Asp Thr Asp Ser Ser Val Ala Ser Glu Val Arg 375 380 385 agt ggc tac agg att cag gcc agc cag cag gac tcc atg cgg gtc Ser Gly Tyr Arg Ile Gln Ala Ser Gln Gln Asp Asp Ser Met Arg Val 390 395 400 ctg tac tac atg gag aag gag ctg gcc aac ttc gac cct tct cga cst Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Xaa 405 410 415 420 ggc ccc ccc agt ggc cgt gtg gag cgg gcc atg agt gaa gtc acc tcc Gly Pro Pro Ser Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser 425 430 435 ctc cac gag gac tgg cga tct cgg cct tcc cgg ggc cct gcc ctc Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro Ala Leu 440 445 450 acc ccg atc cgg gat gag gag tgg ggt ggc cac tcc ccc cgg agt ccc Thr Pro Ile Arg Asp Glu Glu Trp Gly Gly His Ser Pro Arg Ser Pro 455 460 465 agg gga tgg gac cag gag ccc gcc agg gag cag gca ggc ggg ggc tgg Arg Gly Trp Asp Gln Glu Pro Ala Arg Glu Gln Ala Gly Gly Trp 470 475 480 cg gcc agg cgg ccc cgg gcc cgc tcc gtg gac gcc ctg gac gac ctc Arg Ala Arg Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Leu 485 490 495 500 acc ccg ccg agc acc gcc gag tca ggg agc agg tct ccc acg agt aat Thr Pro Pro Ser Thr Ala Glu Ser Gly Ser Arg Ser Pro Thr Ser Asn 505 510 515 ggt ggg aga agc cgg gcc tac atg ccc ccg cgg agc cgc agc cgg gac Gly Gly Arg Ser Arg Ala Tyr Met Pro Pro Arg Ser Arg Ser Arg Asp 520 525 530 gac ctc tat gac caa gac gac tcg agg gac ttc cca cgc tcc cgg gac Asp Leu Tyr Asp Gln Asp Asp Ser Arg Asp Pro Arg Ser Arg Asp 535 540 545 ccc cac tac gac gac ttc agg tct cgg gag cgc cct cct gcc gac ccc Pro His Tyr Asp Asp Phe Arg Ser Arg Glu Arg Pro Pro Ala Asp Pro 550 555 560 agg tcc cac cac cac cgt acc cgg gac cct cgg gac aac ggc tcc agg Arg Ser His His His Arg Thr Arg Asp Pro Arg Asp Asn Gly Ser Arg 565 570 575 580 tcc ggg gac ctc ccc tat gat ggg cgg cta ctg gag gag gct gtg agg Ser Gly Asp Leu Pro Tyr Asp Gly Arg Leu Leu Glu Glu Ala Val Arg 585 590 595 aag aag ggg tcg gag gag agg aga ccc cac aag gag gag gag gaa Lys Lys Gly Ser Glu Glu Arg Arg Pro His Lys Glu Glu Glu Glu 600 605 610 gag gcc tac tac ccg ccc gcg ccg ccc ccg tac tcg gag acc gac tcg Glu Ala Tyr Tyr Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp Ser 615 620 625 cag gcg tcc cga gag cgc agg ctc aag aag aac ttg gcc ctg agt cgg Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser Arg 630 635 640 gaa agt tta gtc gtc tga tctgacgttt tctacgtagc ttttgkattt Glu Ser Leu Val Val *	315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700
--	---

645 650
 ttttttttaa tttgaaggaa cactgatgaa gccctgccat acccctcccg agtctaataa 2143
 aacgtataat caca 2158

<210> 3
 <211> 649
 <212> PRT
 <213> Homo sapiens

<220>
 <221> VARIANT
 <222> 363
 <223> 9-7-325 : polymorphic amino acid Ser or Asn

<220>
 <221> VARIANT
 <222> 420
 <223> 9-9-246 : polymorphic amino acid Pro or Arg

<220>
 <221> VARIANT
 <222> 519
 <223> LSRX9f13-BM : polymorphic amino acid deletion of Arg

<400> 3
 Met Gln Gln Asp Gly Leu Gly Val Gly Thr Arg Asn Gly Ser Gly Lys
 1 5 10 15
 Gly Arg Ser Val His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro Leu
 20 25 30
 Arg Tyr Phe Gly Arg Asp Ala Arg Ala Arg Arg Ala Gln Thr Ala Ala
 35 40 45
 Met Ala Leu Leu Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser His Pro
 50 55 60
 Ala Ala Ala Gly Arg Asp Ala Val Val Phe Val Trp Leu Leu Ser
 65 70 75 80
 Thr Trp Cys Thr Ala Pro Ala Arg Ala Ile Gln Val Thr Val Ser Asn
 85 90 95
 Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr
 100 105 110
 Tyr Gln Met Thr Ser Thr Pro Thr Gln Pro Ile Val Ile Trp Lys Tyr
 115 120 125
 Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser
 130 135 140
 Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr
 145 150 155 160
 Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg Val Val
 165 170 175
 Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly
 180 185 190
 Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr
 195 200 205
 Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln
 210 215 220
 Asp Leu Gln Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Gly
 225 230 235 240
 Arg Thr Ser Gly Val Ala Glu Leu Leu Pro Gly Phe Gln Ala Gly Pro
 245 250 255
 Ile Glu Asp Trp Leu Phe Val Val Val Cys Leu Ala Ala Phe Leu
 260 265 270
 Ile Phe Leu Leu Leu Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr
 275 280 285
 Cys Cys Cys Tyr Val Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Cys
 290 295 300

Pro Glu Ala Leu Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro
 305 310 315 320
 Ser Ile Tyr Ala Pro Ser Thr Tyr Ala His Leu Ser Pro Ala Lys Thr
 325 330 335
 Pro Pro Pro Ala Met Ile Pro Met Gly Pro Ala Tyr Asn Gly Tyr
 340 345 350
 Pro Gly Gly Tyr Pro Gly Asp Val Asp Arg Ser Ser Ala Gly Gly
 355 360 365
 Gln Gly Ser Tyr Val Pro Leu Leu Arg Asp Thr Asp Ser Ser Val Ala
 370 375 380
 Ser Glu Val Arg Ser Gly Tyr Arg Ile Gln Ala Ser Gln Gln Asp Asp
 385 390 395 400
 Ser Met Arg Val Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp
 405 410 415
 Pro Ser Arg Pro Gly Pro Pro Ser Gly Arg Val Glu Arg Ala Met Ser
 420 425 430
 Glu Val Thr Ser Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg
 435 440 445
 Gly Pro Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp Gly Gly His Ser
 450 455 460
 Pro Arg Ser Pro Arg Gly Trp Asp Gln Glu Pro Ala Arg Glu Gln Ala
 465 470 475 480
 Gly Gly Gly Trp Arg Ala Arg Arg Pro Arg Ala Arg Ser Val Asp Ala
 485 490 495
 Leu Asp Asp Leu Thr Pro Pro Ser Thr Ala Glu Ser Gly Ser Arg Ser
 500 505 510
 Pro Thr Ser Asn Gly Gly Arg Ser Arg Ala Tyr Met Pro Pro Arg Ser
 515 520 525
 Arg Ser Arg Asp Asp Leu Tyr Asp Gln Asp Asp Ser Arg Asp Phe Pro
 530 535 540
 Arg Ser Arg Asp Pro His Tyr Asp Asp Phe Arg Ser Arg Glu Arg Pro
 545 550 555 560
 Pro Ala Asp Pro Arg Ser His His His Arg Thr Arg Asp Pro Arg Asp
 565 570 575
 Asn Gly Ser Arg Ser Gly Asp Leu Pro Tyr Asp Gly Arg Leu Leu Glu
 580 585 590
 Glu Ala Val Arg Lys Lys Gly Ser Glu Glu Arg Arg Arg Pro His Lys
 595 600 605
 Glu Glu Glu Glu Ala Tyr Tyr Pro Pro Ala Pro Pro Pro Tyr Ser
 610 615 620
 Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu
 625 630 635 640
 Ala Leu Ser Arg Glu Ser Leu Val Val
 645

<210> 4
 <211> 2101

<212> DNA

<213> Homo sapiens

<220>
 <221> allele
 <222> 595
 <223> 9-3-324 : polymorphic base C or T

<220>
 <221> allele
 <222> 883
 <223> 9-6-187 : polymorphic base C or T

<220>
 <221> allele
 <222> 1134

<223> 9-7-325 : polymorphic base A or G

<220>
<221> allele
<222> 1305
<223> 9-9-24

```
<220>
<221> allele
<222> 1601
<223> LSRX9f13-BM : polymorphic base deletion of AGG
```

```
<220>
<221> allele
<222> 2022
<223> LSRX9f14-BM : polymorphic base T or G
```

1
gga ctt gga gta ggg aca agg aac gga agt ggg aag ggg agg agc gtg 163
Gly Leu Gly Val Gly Thr Arg Asn Gly Ser Gly Lys Gly Arg Ser Val

5	10	15	20	
cac ccc tcc tgg cct tgg tgc gcg ccg cgc ccc cta agg tac ttt gga				211
His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro Leu Arg Tyr Phe Gly				

25	30	35	
agg gac gcg cgg gcc aga cgc gcc cag acg gcc gcg atg gcg ctg ttg			259
Arg Asp Ala Arg Ala Arg Arg Ala Gln Thr Ala Ala Met Ala Leu Leu			

```

Arg Asp Ala Arg Ala Arg Arg Met Ile Val
        40          45          50
gcc ggc ggg ctc tcc aga ggg ctg ggc tcc cac ccg gcc gcc gca ggc      307
Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser His Pro Ala Ala Ala Gly

```

Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser His Pro Ala Ala Ala Gly
 55 60 65
 cgg gac gcg gtc gtc ttc gtg tgg ctt ctg ctt agc acc tgg tgc aca 355
 - - - - - Val Val Val Val Val Thr Ile Ile Ile Ser Thr Thr Cys Thr

Arg Asp Ala Val Val Phe Val Trp Leu Leu Leu Ser Thr Trp Cys Thr
 70 75 80
 gct cct gcc agg gcc atc cag gtg acc gtg tcc aac ccc tac cac gtg 403

Ala Pro Ala Arg Ala Ile Gln Val Thr Val Ser Asn Pro Tyr His Val			
85	90	95	100
gtg atc ctc ttc cag cct gtg acc ctg ccc tgt acc tac cag atg acc			451

Val Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr Tyr Gln Met Thr	105 110 115
tcg acc ccc acg caa ccc atc gtc atc tgg aag tac aag tct ttc tgc	499

Ser Thr Pro Thr Gln Pro Ile Val Ile Trp Lys Tyr Lys Ser Phe Cys
 120 125 130
 cgg gac cgc atc acc gat acc ttc tcc ccg acc aac qtc qac aac caq 547

Arg Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser Val Asp Asn Gln
 135 140 145
 cta aat ggg gag cta gca ggg aac cca ggc tac aac ccc tac gty 595

gag tgc cag gac agc gtg cgc acc gtc agg gtc gtg gcc acc aag cag 643
 Glu Cys Gln Asp Ser Val Arg Thr Val Arg Val Val Ala Thr Lys Gln
 165 170 175 180

ggc aac gct gtg acc ctg gga gat tac tac cag ggc cg^g agg att acc
Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg Ile Thr
185 190 195

atc acc gga aat gct gac ctg acc ttt gac cag acg gcg tgg ggg gac 739
Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr Ala Trp Gly Asp
200 205 210

agt ggt gtg tat tac tgc tcc gtg gtc tca gcc cag gac ctc cag ggg 787
 Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Gln Gly

aac aat gag gcc tac gca gag ctc atc gtc ctt gac tgg ctc ttc gtg	215	220	225	835
Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Asp Trp Leu Phe Val				
230	235	240		
gtt gta tgc ctg gct gcc ttc ctc atc ttc ctc ctc ctg ggc aty				883
Val Val Val Cys Leu Ala Ala Phe Leu Ile Phe Leu Leu Leu Gly Ile				
245	250	255	260	
tgc tgg tgc cag tgc tgc ccg cac act tgc tgc tgc tac gtc agg tgc				931
Cys Trp Cys Gln Cys Cys Pro His Thr Cys Cys Tyr Val Arg Cys				
265	270	275		
ccc tgc tgc cca gac aag tgc tgc tgc ccc gag gcc ctg tat gcc gcc				979
Pro Cys Cys Pro Asp Lys Cys Cys Pro Glu Ala Leu Tyr Ala Ala				
280	285	290		
ggc aaa gca gcc acc tca ggt gtt ccc agc att tat gcc ccc agc acc				1027
Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro Ser Thr				
295	300	305		
tat gcc cac ctg tct ccc gcc aag acc cca ccc cca gct atg att				1075
Tyr Ala His Leu Ser Pro Ala Lys Thr Pro Pro Pro Ala Met Ile				
310	315	320		
ccc atg ggc cct gcc tac aac ggg tac cct gga gga tac cct gga gac				1123
Pro Met Gly Pro Ala Tyr Asn Gly Tyr Pro Gly Gly Tyr Pro Gly Asp				
325	330	335	340	
gtt gac agg art agc tca gct ggt ggc caa ggc tcc tat gta ccc ctg				1171
Val Asp Arg Xaa Ser Ser Ala Gly Gly Gln Gly Ser Tyr Val Pro Leu				
345	350	355		
ctt cggt gac acg gac agc agt gtg gcc tct gaa gtc cgc agt ggc tac				1219
Leu Arg Asp Thr Asp Ser Ser Val Ala Ser Glu Val Arg Ser Gly Tyr				
360	365	370		
agg att cag gcc agc cag cag gac gac tcc atg cgg gtc ctg tac tac				1267
Arg Ile Gln Ala Ser Gln Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr				
375	380	385		
atg gag aag gag ctg gcc aac ttc gac cct tct cga cst ggc ccc ccc				1315
Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Xaa Gly Pro Pro				
390	395	400		
agt ggc cgt gtg gag cgg gcc atg agt gaa gtc acc tcc ctc cac gag				1363
Ser Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu His Glu				
405	410	415	420	
gac gac tgg cga tct cgg cct tcc cgg ggc cct gcc ctc acc ccg atc				1411
Asp Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro Ala Leu Thr Pro Ile				
425	430	435		
cgg gat gag gag tgg ggt ggc cac tcc ccc cgg agt ccc agg gga tgg				1459
Arg Asp Glu Glu Trp Gly Gly His Ser Pro Arg Ser Pro Arg Gly Trp				
440	445	450		
gac cag gag ccc gcc agg gag cag gca ggc ggg ggc tgg cgg gcc agg				1507
Asp Gln Glu Pro Ala Arg Glu Gln Ala Gly Gly Trp Arg Ala Arg				
455	460	465		
cgg ccc cgg gcc cgc tcc gtg gac gcc ctg gac gac ctc acc ccg ccg				1555
Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Leu Thr Pro Pro				
470	475	480		
agc acc gcc gag tca ggg agc agg tct ccc acg agt aat ggt ggg aga				1603
Ser Thr Ala Glu Ser Gly Ser Arg Ser Pro Thr Ser Asn Gly Gly Arg				
485	490	495	500	
agc cgg gcc tac atg ccc ccg cgg agc cgc agc cgg gac gac ctc tat				1651
Ser Arg Ala Tyr Met Pro Pro Arg Ser Arg Ser Arg Asp Asp Leu Tyr				
505	510	515		
gac caa gac gac tcg agg gac ttc cca cgc tcc cgg gac ccc cac tac				1699
Asp Gln Asp Asp Ser Arg Asp Phe Pro Arg Ser Arg Asp Pro His Tyr				
520	525	530		
gac gac ttc agg tct ccg gag cgc cct cct gcc gac ccc agg tcc cac				1747
Asp Asp Phe Arg Ser Arg Glu Arg Pro Pro Ala Asp Pro Arg Ser His				
535	540	545		
cac cac cgt acc ccg gac cct ccg gac aac ggc tcc agg tcc ggg gac				1795
His His Arg Thr Arg Asp Pro Arg Asp Asn Gly Ser Arg Ser Gly Asp				

550	555	560	
ctc ccc tat gat ggg cg	cta ctg gag gag qct gtg agg aag aag ggg		1843
Leu Pro Tyr Asp Gly Arg	Leu Leu Glu Glu Ala Val Arg Lys Lys Gly		
565	570	575	580
tcg gag gag agg agg aga ccc cac aag gag gag gag gaa gag gcc tac			1891
Ser Glu Glu Arg Arg Pro His Lys Glu Glu Glu Glu Ala Tyr			
585	590	595	
tac ccg ccc gcg ccg ccc ccg tac tcg gag acc gac tcg cag gcg tcc			1939
Tyr Pro Pro Ala Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser			
600	605	610	
cga gag cgc agg ctc aag aag aac ttg gcc ctg agt cgg gaa agt tta			1987
Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser Leu			
615	620	625	
gtc gtc tga tctgacgttt tctacgttagc ttttgkattt ttttttttaa			2036
Val Val *			
630			
tttgaaggaa cactgatgaa gccctgccat acccctcccg agtctaataa aacgtataat			2096
cacaa			2101
<210> 5			
<211> 630			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> VARIANT			
<222> 344			
<223> 9-7-325 : polymorphic amino acid Ser or Asn			
<220>			
<221> VARIANT			
<222> 401			
<223> 9-9-246 : polymorphic amino acid Pro or Arg			
<220>			
<221> VARIANT			
<222> 500			
<223> LSRX9f13-BM : polymorphic amino acid deletion of Arg			
<400> 5			
Met Gln Gln Asp Gly Leu Gly Val Gly Thr Arg Asn Gly Ser Gly Lys			
1 5 10 15			
Gly Arg Ser Val His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro Leu			
20 25 30			
Arg Tyr Phe Gly Arg Asp Ala Arg Ala Arg Arg Ala Gln Thr Ala Ala			
35 40 45			
Met Ala Leu Leu Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser His Pro			
50 55 60			
Ala Ala Ala Gly Arg Asp Ala Val Val Phe Val Trp Leu Leu Ser			
65 70 75 80			
Thr Trp Cys Thr Ala Pro Ala Arg Ala Ile Gln Val Thr Val Ser Asn			
85 90 95			
Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr			
100 105 110			
Tyr Gln Met Thr Ser Thr Pro Thr Gln Pro Ile Val Ile Trp Lys Tyr			
115 120 125			
Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser			
130 135 140			
Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr			
145 150 155 160			
Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg Val Val			
165 170 175			
Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly			

	180	185	190
Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr			
195	200	205	
Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln			
210	215	220	
Asp Leu Gln Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Asp			
225	230	235	240
Trp Leu Phe Val Val Val Cys Leu Ala Ala Phe Leu Ile Phe Leu			
245	250	255	
Leu Leu Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr Cys Cys Cys			
260	265	270	
Tyr Val Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Cys Pro Glu Ala			
275	280	285	
Leu Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr			
290	295	300	
Ala Pro Ser Thr Tyr Ala His Leu Ser Pro Ala Lys Thr Pro Pro Pro			
305	310	315	320
Pro Ala Met Ile Pro Met Gly Pro Ala Tyr Asn Gly Tyr Pro Gly Gly			
325	330	335	
Tyr Pro Gly Asp Val Asp Arg Ser Ser Ala Gly Gly Gln Gly Ser			
340	345	350	
Tyr Val Pro Leu Leu Arg Asp Thr Asp Ser Ser Val Ala Ser Glu Val			
355	360	365	
Arg Ser Gly Tyr Arg Ile Gln Ala Ser Gln Gln Asp Asp Ser Met Arg			
370	375	380	
Val Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg			
385	390	395	400
Pro Gly Pro Pro Ser Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr			
405	410	415	
Ser Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro Ala			
420	425	430	
Leu Thr Pro Ile Arg Asp Glu Glu Trp Gly Gly His Ser Pro Arg Ser			
435	440	445	
Pro Arg Gly Trp Asp Gln Glu Pro Ala Arg Glu Gln Ala Gly Gly			
450	455	460	
Trp Arg Ala Arg Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp			
465	470	475	480
Leu Thr Pro Pro Ser Thr Ala Glu Ser Gly Ser Arg Ser Pro Thr Ser			
485	490	495	
Asn Gly Gly Arg Ser Arg Ala Tyr Met Pro Pro Arg Ser Arg Ser Arg			
500	505	510	
Asp Asp Leu Tyr Asp Gln Asp Asp Ser Arg Asp Phe Pro Arg Ser Arg			
515	520	525	
Asp Pro His Tyr Asp Asp Phe Arg Ser Arg Glu Arg Pro Pro Ala Asp			
530	535	540	
Pro Arg Ser His His His Arg Thr Arg Asp Pro Arg Asp Asn Gly Ser			
545	550	555	560
Arg Ser Gly Asp Leu Pro Tyr Asp Gly Arg Leu Leu Glu Glu Ala Val			
565	570	575	
Arg Lys Lys Gly Ser Glu Glu Arg Arg Pro His Lys Glu Glu Glu			
580	585	590	
Glu Glu Ala Tyr Tyr Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp			
595	600	605	
Ser Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser			
610	615	620	
Arg Glu Ser Leu Val Val			
625	630		

<210> 6

<211> 1954

<212> DNA

<213> Homo sapiens

<220>
 <221> allele
 <222> 595
 <223> 9-3-324 : polymorphic base C or T

<220>
 <221> allele
 <222> 987
 <223> 9-7-325 : polymorphic base A or G

<220>
 <221> allele
 <222> 1158
 <223> 9-9-246 : polymorphic base G or C

<220>
 <221> allele
 <222> 1454
 <223> LSRX9f13-BM : polymorphic base deletion of AGG

<220>
 <221> allele
 <222> 1875
 <223> LSRX9f14-BM : polymorphic base T or G

<400> 6

tggagtgtgg	ctcggaggac	cgcggcggt	caagcacctt	tctcccccatt	atctgaaagc	60
atgccttttg	tccacgtcgt	ttacgctcat	taaaaacttcc	aga atg caa cag gac		115
				Met Gln Gln Asp		
				1		
gga ctt gga gta ggg aca agg aac gga agt	ggg aag ggg agg agc gtg					163
Gly Leu Gly Val Gly Thr Arg Asn Gly Ser	Gly Lys Gly Arg Ser Val					
5 10 15 20						
cac ccc tcc tgg cct tgg tgc gcg ccg ccc	ctc aag tac ttt gga					211
His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro	Leu Arg Tyr Phe Gly					
25 30 35						
agg gac gcg cgg gcc aga cgc gcc cag gcc	gctg ctg ttg					259
Arg Asp Ala Arg Ala Arg Arg Ala Gln Thr	Ala Ala Met Ala Leu Leu					
40 45 50						
gcc ggc ggg ctc tcc aga ggg ctg ggc tcc	cac ccg gcc gca ggc					307
Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser	His Pro Ala Ala Gly					
55 60 65						
cgg gac gcg gtc gtc ttc gtg tgg ctt ctg	acc acc tgg tgc aca					355
Arg Asp Ala Val Val Phe Val Trp Leu Leu	Ser Thr Trp Cys Thr					
70 75 80						
gct cct gcc agg gcc atc cag gtg acc gtg	tcc aac ccc tac cac	gtg				403
Ala Pro Ala Arg Ala Ile Gln Val Thr Val	Ser Asn Pro Tyr His	Val				
85 90 95 100						
gtg atc ctc ttc cag cct gtg acc ctg ccc	tgt acc tac cag atg	acc				451
Val Ile Leu Phe Gln Pro Val Thr Leu Pro	Cys Thr Tyr Gln Met	Thr				
105 110 115						
tcg acc ccc acg caa ccc atc gtc atc	tgg aag tac aag tct	ttc tgc				499
Ser Thr Pro Thr Gln Pro Ile Val Ile Trp	Lys Tyr Lys Ser Phe	Cys				
120 125 130						
cgg gac cgc atc gcc gat gcc ttc tcc	ccg gcc agc gtc gac	aac cag				547
Arg Asp Arg Ile Ala Asp Ala Phe Ser	Pro Ala Ser Val Asp	Asn Gln				
135 140 145						
ctc aat gcc cag ctg gca gcc ggg aac cca	ggc tac aac ccc tac	gtg				595
Leu Asn Ala Gln Leu Ala Gly Asn Pro	Gly Tyr Asn Pro Tyr	Val				
150 155 160						
gag tgc cag gac agc gtg cgc acc gtc	agg gtc gtg gcc acc	aag cag				643
Glu Cys Gln Asp Ser Val Arg Thr Val	Arg Val Val Ala Thr	Lys Gln				
165 170 175 180						

ggc aac gct gtg acc ctg gga gat tac tac cag ggc cg	agg att acc	691
Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg Ile Thr		
185	190	195
atc acc gga aat gct gac ctg acc ttt gac cag acg gcg tgg ggg gac		739
Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr Ala Trp Gly Asp		
200	205	210
agt ggt gtg tat tac tgc tcc gtg gtc tca gcc cag gac ctc cag ggg		787
Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Gln Gly		
215	220	225
aac aat gag gcc tac gca gag ctc atc gtc ctt gtg tat gcc gcc ggc		835
Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Val Tyr Ala Ala Gly		
230	235	240
aaa gca gcc acc tca ggt gtt ccc agc att tat gcc ccc agc acc tat		883
Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro Ser Thr Tyr		
245	250	255
260		
gcc cac ctg tct ccc gcc aag acc cca ccc cca gct atg att ccc		931
Ala His Leu Ser Pro Ala Lys Thr Pro Pro Pro Ala Met Ile Pro		
265	270	275
atg ggc cct gcc tac aac ggg tac cct gga gga tac cct gga gac gtt		979
Met Gly Pro Ala Tyr Asn Gly Tyr Pro Gly Gly Tyr Pro Gly Asp Val		
280	285	290
gac agg art agc tca gct ggt ggc caa ggc tcc tat gta ccc ctg ctt		1027
Asp Arg Xaa Ser Ser Ala Gly Gly Gln Gly Ser Tyr Val Pro Leu Leu		
295	300	305
310		
cgg gac acg gac agc agt gtg gcc tct gaa gtc cgc agt ggc tac agg		1075
Arg Asp Thr Asp Ser Ser Val Ala Ser Glu Val Arg Ser Gly Tyr Arg		
315	320	
att cag gcc agc cag cag gac tcc atg cgg gtc ctg tac tac atg		1123
Ile Gln Ala Ser Gln Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr Met		
325	330	335
340		
gag aag gag ctg gcc aac ttc gac cct tct cga cst ggc ccc ccc agt		1171
Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Xaa Gly Pro Pro Ser		
345	350	355
360		
ggc cgt gtg gag cgg gcc atg agt gaa gtc acc tcc ctc cac gag gac		1219
Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu His Glu Asp		
365	370	
375		
gac tgg cga tct cgg cct tcc cgg ggc cct gcc ctc acc ccg atc cgg		1267
Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro Ala Leu Thr Pro Ile Arg		
380	385	
390		
gat gag gag tgg ggt ggc cac tcc ccc cgg agt ccc agg gga tgg gac		1315
Asp Glu Glu Trp Gly Gly His Ser Pro Arg Ser Pro Arg Gly Trp Asp		
395	400	
405		
cag gag ccc gcc agg gag cag gca ggc ggg ggc tgg cgg gcc agg cgg		1363
Gln Glu Pro Ala Arg Glu Gln Ala Gly Gly Trp Arg Ala Arg Arg		
410	415	420
425		
ccc cgg gcc cgc tcc gtg gac gcc ctg gac gac ctc acc ccg ccg agc		1411
Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Leu Thr Pro Pro Ser		
430		
440		
acc gcc gag tca ggg agc agg tct ccc acg agt aat ggt ggg aga agc		1459
Thr Ala Glu Ser Gly Ser Arg Ser Pro Thr Ser Asn Gly Arg Ser		
445	450	
455		
cgg gcc tac atg ccc ccg cgg agc cgc agc cgg gac gac ctc tat gac		1507
Arg Ala Tyr Met Pro Pro Arg Ser Arg Ser Arg Asp Asp Leu Tyr Asp		
460	465	
470		
caa gac gac tcg agg gac ttc cca cgc tcc cgg gac ccc cac tac gac		1555
Gln Asp Asp Ser Arg Asp Phe Pro Arg Ser Arg Asp Pro His Tyr Asp		
475	480	
485		
gac ttc agg tct cgg gag cgc cct cct gcc gac ccc agg tcc cac cac		1603
Asp Phe Arg Ser Arg Glu Arg Pro Pro Ala Asp Pro Arg Ser His His		
490	495	500
505		
cac cgt acc cgg gac cct cgg gac aac ggc tcc agg tcc ggg gac ctc		1651
His Arg Thr Arg Asp Pro Arg Asp Asn Gly Ser Arg Ser Gly Asp Leu		
510	515	

ccc tat gat ggg cg ^g cta ctg gag gag gct gtg agg aag aag ggg tcg Pro Tyr Asp Gly Arg Leu Leu Glu Glu Ala Val Arg Lys Lys Gly Ser	1699
520 525 530	
gag gag agg aga ccc cac aag gag gag gag gaa gag gcc tac tac Glu Glu Arg Arg Pro His Lys Glu Glu Glu Glu Ala Tyr Tyr	1747
535 540 545	
ccg ccc gc ^g ccg ccc ccg tac tcg gag acc gac tcg cag gc ^g tcc cga Pro Pro Ala Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser Arg	1795
550 555 560	
gag cgc agg ctc aag aag aac ttg gcc ctg agt cg ^g gaa agt tta gtc Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser Leu Val	1843
565 570 575 580	
gtc tga tctgacgttt tctacgttagc ttttgkattt tttttttaa tttgaaggaa Val *	1899
cactgatgaa gccctgccat acccctcccg agtctaataa aacgtataat caca	1954

<210> 7
<211> 581
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> 295
<223> 9-7-325 : polymorphic amino acid Ser or Asn

<220>
<221> VARIANT
<222> 352
<223> 9-9-246 : polymorphic amino acid Pro or Arg

<220>
<221> VARIANT
<222> 451
<223> LSRX9f13-BM : polymorphic amino acid deletion of Arg

Met Gln Gln Asp Gly Leu Gly Val Gly Thr Arg Asn Gly Ser Gly Lys	
1 5 10 15	
Gly Arg Ser Val His Pro Ser Trp Pro Trp Cys Ala Pro Arg Pro Leu	
20 25 30	
Arg Tyr Phe Gly Arg Asp Ala Arg Ala Arg Arg Ala Gln Thr Ala Ala	
35 40 45	
Met Ala Leu Leu Ala Gly Gly Leu Ser Arg Gly Leu Gly Ser His Pro	
50 55 60	
Ala Ala Ala Gly Arg Asp Ala Val Val Phe Val Trp Leu Leu Ser	
65 70 75 80	
Thr Trp Cys Thr Ala Pro Ala Arg Ala Ile Gln Val Thr Val Ser Asn	
85 90 95	
Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr	
100 105 110	
Tyr Gln Met Thr Ser Thr Pro Thr Gln Pro Ile Val Ile Trp Lys Tyr	
115 120 125	
Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser	
130 135 140	
Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr	
145 150 155 160	
Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg Val Val	
165 170 175	
Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly	
180 185 190	
Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Leu Thr Phe Asp Gln Thr	
195 200 205	

Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln
 210 215 220
 Asp Leu Gln Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Val
 225 230 235 240
 Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala
 245 250 255
 Pro Ser Thr Tyr Ala His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro
 260 265 270
 Ala Met Ile Pro Met Gly Pro Ala Tyr Asn Gly Tyr Pro Gly Gly Tyr
 275 280 285
 Pro Gly Asp Val Asp Arg Ser Ser Ser Ala Gly Gly Gln Gly Ser Tyr
 290 295 300
 Val Pro Leu Leu Arg Asp Thr Asp Ser Ser Val Ala Ser Glu Val Arg
 305 310 315 320
 Ser Gly Tyr Arg Ile Gln Ala Ser Gln Gln Asp Asp Ser Met Arg Val
 325 330 335
 Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Pro
 340 345 350
 Gly Pro Pro Ser Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser
 355 360 365
 Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Gly Pro Ala Leu
 370 375 380
 Thr Pro Ile Arg Asp Glu Glu Trp Gly Gly His Ser Pro Arg Ser Pro
 385 390 395 400
 Arg Gly Trp Asp Gln Glu Pro Ala Arg Glu Gln Ala Gly Gly Trp
 405 410 415
 Arg Ala Arg Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Leu
 420 425 430
 Thr Pro Pro Ser Thr Ala Glu Ser Gly Ser Arg Ser Pro Thr Ser Asn
 435 440 445
 Gly Gly Arg Ser Arg Ala Tyr Met Pro Pro Arg Ser Arg Ser Arg Asp
 450 455 460
 Asp Leu Tyr Asp Gln Asp Asp Ser Arg Asp Phe Pro Arg Ser Arg Asp
 465 470 475 480
 Pro His Tyr Asp Asp Phe Arg Ser Arg Glu Arg Pro Pro Ala Asp Pro
 485 490 495
 Arg Ser His His His Arg Thr Arg Asp Pro Arg Asp Asn Gly Ser Arg
 500 505 510
 Ser Gly Asp Leu Pro Tyr Asp Gly Arg Leu Leu Glu Glu Ala Val Arg
 515 520 525
 Lys Lys Gly Ser Glu Glu Arg Arg Arg Pro His Lys Glu Glu Glu Glu
 530 535 540
 Glu Ala Tyr Tyr Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp Ser
 545 550 555 560
 Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu Ser Arg
 565 570 575
 Glu Ser Leu Val Val
 580

<210> 8
<211> 2097

<212> DNA

<213> Ratt

<400> 8
accgactc

acgttcacc aggccatggc tccccggaaa ggcggaaaggcc cggatccggc ccggggcc
 tttatgggtt agaactcctc cagagccccg gaaaaaggac ttggaaatagg ggccgggacgg
 agcacgcacc cttctccggc ttggttctcg ccgcgcggcc tactctcgaa atacttggga
 ggggacgcgc gggcaccgtc gctgctagac gggccgcg atg gcg ccg gcg gcc ggc
Met Ala Pro Ala Ala Gly
1 5

60
120
180
235

	10	15	20	
tgt ctc ttt ctc atc att ttc tgc cca gac cct gcc agt gcc atc cag				331
Cys Leu Phe Leu Ile Ile Phe Cys Pro Asp Pro Ala Ser Ala Ile Gln				
25	30	35		
gtg act gtg tct gac ccc tac cac gta gtg atc ctg ttc cag cca gtg				379
Val Thr Val Ser Asp Pro Tyr His Val Val Ile Leu Phe Gln Pro Val				
40	45	50		
acc ctg ccc tgc acc tat cag atg agc aac act ctc aca gtc ccc atc				427
Thr Leu Pro Cys Thr Tyr Gln Met Ser Asn Thr Leu Thr Val Pro Ile				
55	60	65	70	
gtg atc tgg aag tac aag tca ttc tgc cgg gac cgt att gcc gat gcc				475
Val Ile Trp Lys Tyr Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala				
75	80	85		
ttc tct cct gcc agt gtg gac aac cag cta aat gcc cag ttg gca gct				523
Phe Ser Pro Ala Ser Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala				
90	95	100		
ggc aac ccc ggc tac aac ccc tat gtg gag tgc cag gac agt gta cgc				571
Gly Asn Pro Gly Tyr Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg				
105	110	115		
act gtc agg gtg gtg gcc acc aaa cag ggc aat gcg gtg acc ctg gga				619
Thr Val Arg Val Val Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly				
120	125	130		
gac tac tac caa ggc agg agg atc acc ata aca gga aat gct gac ctg				667
Asp Tyr Tyr Gln Gly Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Leu				
135	140	145	150	
acc ttc gag cag aca gcc tgg gga gac agt gga gtg tat tac tgc tct				715
Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser				
155	160	165		
gtg gtc tcg gcc caa gat ctg gat gga aac aac gag gcg tac gca gag				763
Val Val Ser Ala Gln Asp Leu Asp Gly Asn Asn Glu Ala Tyr Ala Glu				
170	175	180		
ctc atc gtc ctt ggc agg acc tca gag gcc cct gag ctc cta cct ggt				811
Leu Ile Val Leu Gly Arg Thr Ser Glu Ala Pro Glu Leu Leu Pro Gly				
185	190	195		
ttt cgg gcg ggg ccc ttg gaa gat tgg ctc ttt gtg gtc gtc gtc tgc				859
Phe Arg Ala Gly Pro Leu Glu Asp Trp Leu Phe Val Val Val Val Cys				
200	205	210		
ctg gcg agc ctc ctc ttc ctc ctc ctg ggc atc tgc tgg tgc cag				907
Leu Ala Ser Leu Leu Leu Phe Leu Leu Leu Gly Ile Cys Trp Cys Gln				
215	220	225	230	
tgc tgt cct cac acc tgc tgc tat gtc cga tgt ccc tgc tgc cca				955
Cys Cys Pro His Thr Cys Cys Tyr Val Arg Cys Pro Cys Cys Pro				
235	240	245		
gac aag tgc tgt tgc cct gag gct ctt tat gct gct ggc aaa gca gcc				1003
Asp Lys Cys Cys Pro Glu Ala Leu Tyr Ala Ala Gly Lys Ala Ala				
250	255	260		
acc tca ggt gtc ccg agc atc tat gcc ccc agc atc tat acc cac ctc				1051
Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro Ser Ile Tyr Thr His Leu				
265	270	275		
tca cct gcc aag acc cca cca cct ccg cct gcc atg att ccc atg ggc				1099
Ser Pro Ala Lys Thr Pro Pro Pro Pro Ala Met Ile Pro Met Gly				
280	285	290		
cct ccc tat ggg tac cct gga gac ttt gac aga cat agc tca gtt ggt				1147
Pro Pro Tyr Gly Tyr Pro Gly Asp Phe Asp Arg His Ser Ser Val Gly				
295	300	305	310	
ggc cac agc tcc caa gta ccc ctg ctg cgt gac gtg gat ggc agt gta				1195
Gly His Ser Ser Gln Val Pro Leu Leu Arg Asp Val Asp Gly Ser Val				
315	320	325		
tct tca gaa gta cga agt ggc tac agg atc cag gct aac cag caa gat				1243
Ser Ser Glu Val Arg Ser Gly Tyr Arg Ile Gln Ala Asn Gln Asp				
330	335	340		
gac tcc atg agg gtc cta tac tat atg gag aaa gag cta gcc aac ttt				1291
Asp Ser Met Arg Val Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe				

345	350	355	
gac cct tcc cga cct ggc cct ccc aat ggc aga gtg gaa cg ^g gcc atg			1339
Asp Pro Ser Arg Pro Gly Pro Pro Asn Gly Arg Val Glu Arg Ala Met			
360	365	370	
agt gaa gta acc tcc ctc cat gaa gat gac tgg cga tcg agg cct tcc			1387
Ser Glu Val Thr Ser Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser			
375	380	385	390
agg gct cct gcc ctc acc ccc atc agg gat gag gag tgg aat cgc cac			1435
Arg Ala Pro Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp Asn Arg His			
395	400	405	
tcc cca cag agt ccc aga aca tgg gag cag gaa ccc ctt caa gaa caa			1483
Ser Pro Gln Ser Pro Arg Thr Trp Glu Gln Glu Pro Leu Gln Glu Gln			
410	415	420	
cca agg ggt ggt tgg ggg tct gga cgc cct cgg gcc cgc tct gtg gat			1531
Pro Arg Gly Gly Trp Gly Ser Gly Arg Pro Arg Ala Arg Ser Val Asp			
425	430	435	
gct cta gat gat atc aac cgg cct ggc tcc act gaa tca gga cgg tct			1579
Ala Leu Asp Asp Ile Asn Arg Pro Gly Ser Thr Glu Ser Gly Arg Ser			
440	445	450	
tct ccc cca agt agt gga cgg aga gga cgg gcc tat gca cct cca aga			1627
Ser Pro Pro Ser Ser Gly Arg Arg Gly Arg Ala Tyr Ala Pro Pro Arg			
455	460	465	470
agt cgc agc cgg gat gac ctc tat gac ccg gac gat cct agg gac ttg			1675
Ser Arg Ser Arg Asp Asp Leu Tyr Asp Pro Asp Asp Pro Arg Asp Leu			
475	480	485	
cca cat tcc cga gat ccc cac tat tat gac gac atc agg tct aga gat			1723
Pro His Ser Arg Asp Pro His Tyr Tyr Asp Asp Ile Arg Ser Arg Asp			
490	495	500	
cca cgt gct gac ccc aga tcc cgt cag cga tcc cga gat cct cgg gat			1771
Pro Arg Ala Asp Pro Arg Ser Arg Gln Arg Ser Arg Asp Pro Arg Asp			
505	510	515	
gct ggc ttc agg tca agg gac cct cag tat gat ggg cga cta tta gaa			1819
Ala Gly Phe Arg Ser Arg Asp Pro Gln Tyr Asp Gly Arg Leu Leu Glu			
520	525	530	
gag gct tta aag aaa aag ggg tcg ggc gag aga agg agg gtt tac agg			1867
Glu Ala Leu Lys Lys Gly Ser Gly Glu Arg Arg Arg Val Tyr Arg			
535	540	545	550
gag gaa gaa gag gaa gag gag ggc caa tac ccc cca gca cct cca cct			1915
Glu Glu Glu Glu Glu Gly Gln Tyr Pro Pro Ala Pro Pro Pro			
555	560	565	
tac tca gag act gac tcg cag gcc tca cgg gag agg ctg aaa aag			1963
Tyr Ser Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys			
570	575	580	
aat ttg gcc ctg agt cgg gaa agt tta gtc gtc tga tccacgtttt			2009
Asn Leu Ala Leu Ser Arg Glu Ser Leu Val Val *			
585	590		
gtatgttagct ttgtacttt ttttttaatt ggaatcaata ttgatgaaac ttcaagccta			2069
ataaaaatgtc taatcacaaaa aaaaaaaaa			2097

<210> 9
<211> 593
<212> PRT
<213> Rattus norvegicus

<400> 9
Met Ala Pro Ala Ala Gly Ala Cys Ala Gly Ala Pro Asp Ser His Pro
1 5 10 15
Ala Thr Val Val Phe Val Cys Leu Phe Leu Ile Ile Phe Cys Pro Asp
20 25 30
Pro Ala Ser Ala Ile Gln Val Thr Val Ser Asp Pro Tyr His Val Val
35 40 45
Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr Tyr Gln Met Ser Asn
50 55 60

Thr Leu Thr Val Pro Ile Val Ile Trp Lys Tyr Lys Ser Phe Cys Arg
 65 70 75 80
 Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser Val Asp Asn Gln Leu
 85 90 95
 Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr Asn Pro Tyr Val Glu
 100 105 110
 Cys Gln Asp Ser Val Arg Thr Val Arg Val Val Ala Thr Lys Gln Gly
 115 120 125
 Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg Ile Thr Ile
 130 135 140
 Thr Gly Asn Ala Asp Leu Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser
 145 150 155 160
 Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Asp Gly Asn
 165 170 175
 Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Gly Arg Thr Ser Glu Ala
 180 185 190
 Pro Glu Leu Leu Pro Gly Phe Arg Ala Gly Pro Leu Glu Asp Trp Leu
 195 200 205
 Phe Val Val Val Cys Leu Ala Ser Leu Leu Leu Phe Leu Leu Leu
 210 215 220
 Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr Cys Cys Cys Tyr Val
 225 230 235 240
 Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Pro Glu Ala Leu Tyr
 245 250 255
 Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro
 260 265 270
 Ser Ile Tyr Thr His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro
 275 280 285
 Ala Met Ile Pro Met Gly Pro Pro Tyr Gly Tyr Pro Gly Asp Phe Asp
 290 295 300
 Arg His Ser Ser Val Gly Gly His Ser Ser Gln Val Pro Leu Leu Arg
 305 310 315 320
 Asp Val Asp Gly Ser Val Ser Ser Glu Val Arg Ser Gly Tyr Arg Ile
 325 330 335
 Gln Ala Asn Gln Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr Met Glu
 340 345 350
 Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Pro Gly Pro Pro Asn Gly
 355 360 365
 Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu His Glu Asp Asp
 370 375 380
 Trp Arg Ser Arg Pro Ser Arg Ala Pro Ala Leu Thr Pro Ile Arg Asp
 385 390 395 400
 Glu Glu Trp Asn Arg His Ser Pro Gln Ser Pro Arg Thr Trp Glu Gln
 405 410 415
 Glu Pro Leu Gln Glu Gln Pro Arg Gly Gly Trp Gly Ser Gly Arg Pro
 420 425 430
 Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Ile Asn Arg Pro Gly Ser
 435 440 445
 Thr Glu Ser Gly Arg Ser Ser Pro Pro Ser Ser Gly Arg Arg Gly Arg
 450 455 460
 Ala Tyr Ala Pro Pro Arg Ser Arg Ser Arg Asp Asp Leu Tyr Asp Pro
 465 470 475 480
 Asp Asp Pro Arg Asp Leu Pro His Ser Arg Asp Pro His Tyr Tyr Asp
 485 490 495
 Asp Ile Arg Ser Arg Asp Pro Arg Ala Asp Pro Arg Ser Arg Gln Arg
 500 505 510
 Ser Arg Asp Pro Arg Asp Ala Gly Phe Arg Ser Arg Asp Pro Gln Tyr
 515 520 525
 Asp Gly Arg Leu Leu Glu Glu Ala Leu Lys Lys Gly Ser Gly Glu
 530 535 540
 Arg Arg Arg Val Tyr Arg Glu Glu Glu Glu Glu Gly Gln Tyr
 545 550 555 560
 Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser Arg

565	570	575	
Glu Arg Arg Leu Lys Lys Asn Leu Ala	Ser Arg Glu Ser	Leu Val	
580	585	590	
Val			
<210> 10			
<211> 2040			
<212> DNA			
<213> Rattus norvegicus			
<400> 10			
accgctcacc aggtcagttg tccccggaaa gccgaaggca tgagttcgc ccaagttctt		60	
tttatgggtt agaactcctc cagagcgggg gaaaaaggac ttggaatagg ggccggacgg		120	
agcacgcacc ctcttcggcc ttggttctcg ccgcggcccc tactctcggg atacttggga		180	
ggggacgcgc gggcaccgtc gctgctagac ggcgcgcg atg gcg ccg gcg gcc ggc		235	
Met Ala Pro Ala Ala Gly			
1	5		
gcg tgt gct ggg gcg cct gac tcc cac cca gct acc gtg gtc ttc gtg		283	
Ala Cys Ala Gly Ala Pro Asp Ser His Pro Ala Thr Val Val Phe Val			
10	15	20	
tgt ctc ttt ctc atc att ttc tgc cca gac cct gcc agt gcc atc cag		331	
Cys Leu Phe Leu Ile Ile Phe Cys Pro Asp Pro Ala Ser Ala Gln			
25	30	35	
gtg act gtg tct gac ccc tac cac gta gtg atc ctg ttc cag cca gtg		379	
Val Thr Val Ser Asp Pro Tyr His Val Val Ile Leu Phe Gln Pro Val			
40	45	50	
acc ctg ccc tgc acc tat cag agc aac act ctc aca gtc ccc atc		427	
Thr Leu Pro Cys Thr Tyr Gln Met Ser Asn Thr Leu Thr Val Pro Ile			
55	60	65	70
gtg atc tgg aag tac aag tca ttc tgc cgg gac cgt att gcc gat gcc		475	
Val Ile Trp Lys Tyr Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala			
75	80	85	
ttc tct cct gcc agt gtg gac aac cag cta aat gcc cag ttg gca gct		523	
Phe Ser Pro Ala Ser Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala			
90	95	100	
ggc aac ccc ggc tac aac ccc tat gtg gag tgc cag gac agt gta cgc		571	
Gly Asn Pro Gly Tyr Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg			
105	110	115	
act gtc agg gtg gtg gcc acc aaa cag ggc aat gcg gtg acc ctg gga		619	
Thr Val Arg Val Val Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly			
120	125	130	
gac tac tac caa ggc agg agg atc acc ata aca gga aat gct gac ctg		667	
Asp Tyr Tyr Gln Gly Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Leu			
135	140	145	150
acc ttc gag cag aca gcc tgg gga gac agt gga gtg tat tac tgc tct		715	
Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser			
155	160	165	
gtg gtc tcg gcc caa gat ctg gat gga aac aac gag gcg tac gca gag		763	
Val Val Ser Ala Gln Asp Leu Asp Gly Asn Asn Glu Ala Tyr Ala Glu			
170	175	180	
ctc atc gtc ctt gat tgg ctc ttt gtg gtc gtg gtc tgc ctg gcg agc		811	
Leu Ile Val Leu Asp Trp Leu Phe Val Val Val Cys Leu Ala Ser			
185	190	195	
ctc ctc ctc ctc ctc ctg ggc atc tgc tgg tgc cag tgc tgt cct		859	
Leu Leu Leu Phe Leu Leu Gly Ile Cys Trp Cys Gln Cys Cys Pro			
200	205	210	
cac acc tgc tgc tgc tat gtc cga tgt ccc tgc tgc cca gac aag tgc		907	
His Thr Cys Cys Cys Tyr Val Arg Cys Pro Cys Cys Pro Asp Lys Cys			
215	220	225	230
tgt tgc cct gag gct ctt tat gct gct ggc aaa gca gcc acc tca ggt		955	
Cys Cys Pro Glu Ala Leu Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly			
235	240	245	
gtc ccg agc atc tat gcc ccc agc atc tat acc cac ctc tca cct gcc		1003	

Val	Pro	Ser	Ile	Tyr	Ala	Pro	Ser	Ile	Tyr	Thr	His	Leu	Ser	Pro	Ala	
			250			255				260						
aag	acc	cca	cca	cct	ccg	cct	gcc	atg	att	ccc	atg	ggc	cct	ccc	tat	1051
Lys	Thr	Pro	Pro	Pro	Pro	Pro	Ala	Met	Ile	Pro	Met	Gly	Pro	Pro	Tyr	
			265			270				275						
ggg	tac	cct	gga	gac	ttt	gac	aga	cat	agc	tca	gtt	ggt	ggc	cac	agc	1099
Gly	Tyr	Pro	Gly	Asp	Phe	Asp	Arg	His	Ser	Ser	Val	Gly	Gly	His	Ser	
			280			285				290						
tcc	caa	gta	ccc	ctg	ctg	cgt	gac	gtg	gat	ggc	agt	gta	tct	tca	gaa	1147
Ser	Gln	Val	Pro	Leu	Leu	Arg	Asp	Val	Asp	Gly	Ser	Val	Ser	Ser	Glu	
			295			300			305			310				
gta	cga	agt	ggc	tac	agg	atc	cag	gct	aac	cag	caa	gat	gac	tcc	atg	1195
Val	Arg	Ser	Gly	Tyr	Arg	Ile	Gln	Ala	Asn	Gln	Gln	Asp	Asp	Ser	Met	
			315			320			325							
agg	gtc	cta	tac	tat	atg	gag	aaa	gag	cta	gcc	aac	ttt	gac	cct	tcc	1243
Arg	Val	Leu	Tyr	Tyr	Met	Glu	Lys	Glu	Leu	Ala	Asn	Phe	Asp	Pro	Ser	
			330			335			340							
cga	cct	ggc	cct	ccc	aat	ggc	aga	gtg	gaa	cgg	gcc	atg	agt	gaa	gta	1291
Arg	Pro	Gly	Pro	Pro	Asn	Gly	Arg	Val	Glu	Arg	Ala	Met	Ser	Glu	Val	
			345			350			355							
acc	tcc	ctc	cat	gaa	gat	gac	tgg	cga	tgc	agg	cct	tcc	agg	gct	cct	1339
Thr	Ser	Leu	His	Glu	Asp	Asp	Trp	Arg	Ser	Arg	Pro	Ser	Arg	Ala	Pro	
			360			365			370							
gcc	ctc	acc	ccc	atc	agg	gat	gag	gag	tgg	aat	cgc	cac	tcc	cca	cag	1387
Ala	Leu	Thr	Pro	Ile	Arg	Asp	Glu	Glu	Trp	Asn	Arg	His	Ser	Pro	Gln	
			375			380			385			390				
agt	ccc	aga	aca	tgg	gag	cag	gaa	ccc	ctt	caa	gaa	caa	cca	agg	ggt	1435
Ser	Pro	Arg	Thr	Trp	Glu	Gln	Glu	Pro	Leu	Gln	Glu	Gln	Pro	Arg	Gly	
			395			400			405							
ggt	tgg	ggg	tct	gga	cgc	cct	cg	gcc	cgc	tct	gtg	gat	gct	cta	gat	1483
Gly	Trp	Gly	Arg	Pro	Arg	Ala	Arg	Ser	Val	Asp	Ala	Leu	Asp			
			410			415			420							
gat	atc	aac	ccg	cct	ggc	tcc	act	gaa	tca	gga	cgg	tct	tct	ccc	cca	1531
Asp	Ile	Asn	Arg	Pro	Gly	Ser	Thr	Glu	Ser	Gly	Arg	Ser	Ser	Pro	Pro	
			425			430			435							
agt	agt	gga	cgg	aga	gga	cgg	gcc	tat	gca	cct	cca	aga	agt	cgc	agc	1579
Ser	Ser	Gly	Arg	Arg	Gly	Arg	Ala	Tyr	Ala	Pro	Pro	Arg	Ser	Arg	Ser	
			440			445			450							
cg	gat	gac	ctc	tat	gac	ccg	gac	gat	cct	agg	gac	ttg	cca	cat	tcc	1627
Arg	Asp	Asp	Leu	Tyr	Asp	Pro	Asp	Asp	Pro	Arg	Asp	Leu	Pro	His	Ser	
			455			460			465			470				
cga	gat	ccc	cac	tat	tat	gac	gac	atc	agg	tct	aga	gat	cca	cgt	gct	1675
Arg	Asp	Pro	His	Tyr	Tyr	Asp	Asp	Ile	Arg	Ser	Arg	Asp	Pro	Arg	Ala	
			475			480			485							
gac	ccc	aga	tcc	cgt	cag	cga	tcc	cga	gat	cct	cg	gat	gct	ggc	tcc	1723
Asp	Pro	Arg	Ser	Gln	Arg	Ser	Arg	Asp	Pro	Arg	Asp	Ala	Gly	Phe		
			490			495			500							
agg	tca	agg	gac	cct	cag	tat	gat	ggg	cga	cta	tta	gaa	gag	gct	tta	1771
Arg	Ser	Arg	Asp	Pro	Gln	Tyr	Asp	Gly	Arg	Leu	Leu	Glu	Glu	Ala	Leu	
			505			510			515							
aag	aaa	aag	ggg	tcg	ggc	gag	aga	agg	agg	gtt	tac	agg	gag	gaa	gaa	1819
Lys	Lys	Lys	Gly	Ser	Gly	Glu	Arg	Arg	Arg	Val	Tyr	Arg	Glu	Glu	Glu	
			520			525			530							
gag	gaa	gag	ggc	caa	tac	ccc	cca	gca	cct	cca	cct	tac	tca	gag		1867
Glu	Glu	Glu	Glu	Gly	Gly	Gln	Tyr	Pro	Pro	Ala	Pro	Pro	Tyr	Ser	Glu	
			535			540			545			550				
act	gac	tcg	cag	gcc	tca	cg	gag	agg	agg	ctg	aaa	aag	aat	ttg	gcc	1915
Thr	Asp	Ser	Gln	Ala	Ser	Arg	Glu	Arg	Arg	Leu	Lys	Lys	Asn	Leu	Ala	
			555			560			565							
ctg	agt	cg	gaa	agt	tta	gtc	gtc	tga	tccacgtttt	gtatgttagct						1962
Leu	Ser	Arg	Glu	Ser	Leu	Val	Val	*								
			570			575										
tttgtacttt	tttttaatt	ggaatcaata	ttgatgaaac	ttcaagccta	ataaaatgtc											2022

taatcacaaa aaaaaaaaa

2040

<210> 11
<211> 574
<212> PRT
<213> Rattus norvegicus

<400> 11
Met Ala Pro Ala Ala Gly Ala Cys Ala Gly Ala Pro Asp Ser His Pro
1 5 10 15
Ala Thr Val Val Phe Val Cys Leu Phe Leu Ile Ile Phe Cys Pro Asp
20 25 30
Pro Ala Ser Ala Ile Gln Val Thr Val Ser Asp Pro Tyr His Val Val
35 40 45
Ile Leu Phe Gln Pro Val Thr Leu Pro Cys Thr Tyr Gln Met Ser Asn
50 55 60
Thr Leu Thr Val Pro Ile Val Ile Trp Lys Tyr Lys Ser Phe Cys Arg
65 70 75 80
Asp Arg Ile Ala Asp Ala Phe Ser Pro Ala Ser Val Asp Asn Gln Leu
85 90 95
Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr Asn Pro Tyr Val Glu
100 105 110
Cys Gln Asp Ser Val Arg Thr Val Arg Val Val Ala Thr Lys Gln Gly
115 120 125
Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg Ile Thr Ile
130 135 140
Thr Gly Asn Ala Asp Leu Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser
145 150 155 160
Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Asp Gly Asn
165 170 175
Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Asp Trp Leu Phe Val Val
180 185 190
Val Val Cys Leu Ala Ser Leu Leu Leu Phe Leu Leu Gly Ile Cys
195 200 205
Trp Cys Gln Cys Cys Pro His Thr Cys Cys Cys Tyr Val Arg Cys Pro
210 215 220
Cys Cys Pro Asp Lys Cys Cys Cys Pro Glu Ala Leu Tyr Ala Ala Gly
225 230 235 240
Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro Ser Ile Tyr
245 250 255
Thr His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro Ala Met Ile
260 265 270
Pro Met Gly Pro Pro Tyr Gly Tyr Pro Gly Asp Phe Asp Arg His Ser
275 280 285
Ser Val Gly Gly His Ser Ser Gln Val Pro Leu Leu Arg Asp Val Asp
290 295 300
Gly Ser Val Ser Ser Glu Val Arg Ser Gly Tyr Arg Ile Gln Ala Asn
305 310 315 320
Gln Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr Met Glu Lys Glu Leu
325 330 335
Ala Asn Phe Asp Pro Ser Arg Pro Gly Pro Pro Asn Gly Arg Val Glu
340 345 350
Arg Ala Met Ser Glu Val Thr Ser Leu His Glu Asp Asp Trp Arg Ser
355 360 365
Arg Pro Ser Arg Ala Pro Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp
370 375 380
Asn Arg His Ser Pro Gln Ser Pro Arg Thr Trp Glu Gln Glu Pro Leu
385 390 395 400
Gln Glu Gln Pro Arg Gly Gly Trp Gly Ser Gly Arg Pro Arg Ala Arg
405 410 415
Ser Val Asp Ala Leu Asp Asp Ile Asn Arg Pro Gly Ser Thr Glu Ser
420 425 430
Gly Arg Ser Ser Pro Pro Ser Ser Gly Arg Arg Gly Arg Ala Tyr Ala

435	440	445
Pro Pro Arg Ser Arg Ser Arg Asp Asp Leu Tyr Asp Pro	Asp Asp Pro	Asp Pro
450	455	460
Arg Asp Leu Pro His Ser Arg Asp Pro His Tyr Tyr Asp Asp Ile Arg		
465	470	475
Ser Arg Asp Pro Ala Asp Pro Arg Ser Arg Gln Arg Ser Arg Asp		480
485	490	495
Pro Arg Asp Ala Gly Phe Arg Ser Arg Asp Pro Gln Tyr Asp Gly Arg		
500	505	510
Leu Leu Glu Glu Ala Leu Lys Lys Gly Ser Gly Glu Arg Arg Arg		
515	520	525
Val Tyr Arg Glu Glu Glu Glu Glu Gly Gln Tyr Pro Pro Ala		
530	535	540
Pro Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg		
545	550	555
Leu Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser Leu Val Val		560
565	570	

<210> 12

<211> 1893

<212> DNA

<213> Rattus norvegicus

<400> 12		
accgctcacc aggtcagttg tccccggaaa gccgaaggca tgagttcgc ccaagttctt		60
tttatgggtt agaactcctc cagagcgaaa gaaaaaggac ttggatattt ggccggacgg		120
agcacgcacc ctctccggcc ttggttctcg ccgcgcgggg tactctcgaa atacttgggg		180
ggggacgcgc gggcaccgac gctgctagac gggcgcg atg gcg ccg gcg gcc ggc		235
Met Ala Pro Ala Ala Gly		
1	5	
gcg tgt gct ggg gcg cct gac tcc cac cca gct acc gtg gtc ttc gtg		283
Ala Cys Ala Gly Ala Pro Asp Ser His Pro Ala Thr Val Val Phe Val		
10	15	20
tgt ctc ttt ctc atc att ttc tgc cca gac cct gcc agt gcc atc cag		331
Cys Leu Phe Leu Ile Ile Phe Cys Pro Asp Pro Ala Ser Ala Ile Gln		
25	30	35
gtg act gtg tct gac ccc tac cac gta gtg atc ctg ttc cag cca gtg		379
Val Thr Val Ser Asp Pro Tyr His Val Val Ile Leu Phe Gln Pro Val		
40	45	50
acc ctg ccc tgc acc tat cag atg agc aac act ctc aca gtc ccc atc		427
Thr Leu Pro Cys Thr Tyr Gln Met Ser Asn Thr Leu Thr Val Pro Ile		
55	60	65
gtg atc tgg aag tac aag tca ttc tgc cggt gac cgt att gcc gat gcc		475
Val Ile Trp Lys Tyr Lys Ser Phe Cys Arg Asp Arg Ile Ala Asp Ala		
75	80	85
ttc tct cct gcc agt gtg gac aac cag cta aat gcc cag ttg gca gct		523
Phe Ser Pro Ala Ser Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala		
90	95	100
ggc aac ccc ggc tac aac ccc tat gtg gag tgc cag gac agt gta cgc		571
Gly Asn Pro Gly Tyr Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg		
105	110	115
act gtc agg gtg gtg gcc acc aaa cag ggc aat gcg gtg acc ctg gga		619
Thr Val Arg Val Val Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly		
120	125	130
gac tac tac caa ggc agg agg atc acc ata aca gga aat gct gac ctg		667
Asp Tyr Tyr Gln Gly Arg Arg Ile Thr Ile Thr Gly Asn Ala Asp Ile		
135	140	145
acc ttc gag cag aca gcc tgg gga gac agt gga gtg tat tac tgc tct		715
Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser		
155	160	165
gtg gtc tcg gcc caa gat ctg gat gga aac aac gag gcg tac gca gag		763
Val Val Ser Ala Gln Asp Leu Asp Gly Asn Asn Glu Ala Tyr Ala Glu		
170	175	180

ctc atc gtc ctt tat gct gct ggc aaa gca gcc acc tca ggt gtc	811
Leu Ile Val Leu Val Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val	
185 190 195	
ccg agc atc tat gcc ccc agc atc tat acc cac ctc tca cct gcc aag	859
Pro Ser Ile Tyr Ala Pro Ser Ile Tyr Thr His Leu Ser Pro Ala Lys	
200 205 210	
acc cca cca cct ccg cct gcc atg att ccc atg ggc cct ccc tat ggg	907
Thr Pro Pro Pro Pro Ala Met Ile Pro Met Gly Pro Pro Tyr Gly	
215 220 225 230	
tac cct gga gac ttt gac aga cat agc tca gtt ggt ggc cac agc tcc	955
Tyr Pro Gly Asp Phe Asp Arg His Ser Ser Val Gly Gly His Ser Ser	
235 240 245	
caa gta ccc ctg ctg cgt gac gtg gat ggc agt gta tct tca gaa gta	1003
Gln Val Pro Leu Leu Arg Asp Val Asp Gly Ser Val Ser Ser Glu Val	
250 255 260	
cga agt ggc tac agg atc cag gct aac cag caa gat gac tcc atg agg	1051
Arg Ser Gly Tyr Arg Ile Gln Ala Asn Gln Gln Asp Asp Ser Met Arg	
265 270 275	
gtc cta tac tat atg gag aaa gag cta gcc aac ttt gac cct tcc cga	1099
Val Leu Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg	
280 285 290	
cct ggc cct ccc aat ggc aga gtg gaa cgg gcc atg agt gaa gta acc	1147
Pro Gly Pro Pro Asn Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr	
295 300 305 310	
tcc ctc cat gaa gat gac tgg cga tcg agg cct tcc agg gct cct gcc	1195
Ser Leu His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Ala Pro Ala	
315 320 325	
ctc acc ccc atc agg gat gag gag tgg aat cgc cac tcc cca cag agt	1243
Leu Thr Pro Ile Arg Asp Glu Glu Trp Asn Arg His Ser Pro Gln Ser	
330 335 340	
ccc aga aca tgg gag cag gaa ccc ctt caa gaa caa cca agg ggt ggt	1291
Pro Arg Thr Trp Glu Gln Glu Pro Leu Gln Glu Gln Pro Arg Gly Gly	
345 350 355	
tgg ggg tct gga cgc cct cgg gcc cgc tct gtg gat gct cta gat gat	1339
Trp Gly Ser Gly Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp	
360 365 370	
atc aac cgg cct ggc tcc act gaa tca gga cgg tct tct ccc cca agt	1387
Ile Asn Arg Pro Gly Ser Thr Glu Ser Gly Arg Ser Ser Pro Pro Ser	
375 380 385 390	
agt gga cgg aga gga cgg gcc tat gca cct cca aga agt cgc agc cgg	1435
Ser Gly Arg Arg Gly Arg Ala Tyr Ala Pro Pro Arg Ser Arg Ser Arg	
395 400 405	
gat gac ctc tat gac ccg gac gat cct agg gac ttg cca cat tcc cga	1483
Asp Asp Leu Tyr Asp Pro Asp Asp Pro Arg Asp Leu Pro His Ser Arg	
410 415 420	
gat ccc cac tat tat gac gac atc agg tct aga gat cca cgt gct gac	1531
Asp Pro His Tyr Tyr Asp Asp Ile Arg Ser Arg Asp Pro Arg Ala Asp	
425 430 435	
ccc aga tcc cgt cag cga tcc cga gat cct cgg gat gct ggc ttc agg	1579
Pro Arg Ser Arg Gln Arg Ser Arg Asp Pro Arg Asp Ala Gly Phe Arg	
440 445 450	
tca agg gac cct cag tat gat ggg cga cta tta gaa gag gct tta aag	1627
Ser Arg Asp Pro Gln Tyr Asp Gly Arg Leu Leu Glu Glu Ala Leu Lys	
455 460 465 470	
aaa aag ggg tcg ggc gag aga agg agg gtt tac agg gag gaa gaa gag	1675
Lys Lys Gly Ser Gly Glu Arg Arg Val Tyr Arg Glu Glu Glu Glu	
475 480 485	
gaa gag gag ggc caa tac ccc cca gca cct cca cct tac tca gag act	1723
Glu Glu Glu Gly Gln Tyr Pro Pro Ala Pro Pro Tyr Ser Glu Thr	
490 495 500	
gac tcg cag gcc tca cgg gag agg agg ctg aaa aag aat ttg gcc ctg	1771
Asp Ser Gln Ala Ser Arg Glu Arg Arg Leu Lys Lys Asn Leu Ala Leu	
505 510 515	

agt	cgg	gaa	agt	tta	gtc	gtc	tga	tccacgtttt	gtatgttagct	tttgtacttt	1825					
Ser	Arg	Glu	Ser	Leu	Val	Val	*									
520		525														
tttttttaattt	ggaatcaata	tttatgaaac	ttcaaggctta	ataaaaatgtc	taatcacaaa					1885						
aaaaaaaaaa										1893						
<210>	13															
<211>	525															
<212>	PRT															
<213>	Rattus	norvegicus														
<400>	13															
Met	Ala	Pro	Ala	Ala	Gly	Ala	Cys	Ala	Gly	Ala	Pro	Asp	Ser	His	Pro	
1				5				10				15				
Ala	Thr	Val	Val	Phe	Val	Cys	Leu	Phe	Leu	Ile	Ile	Phe	Cys	Pro	Asp	
				20				25				30				
Pro	Ala	Ser	Ala	Ile	Gln	Val	Thr	Val	Ser	Asp	Pro	Tyr	His	Val	Val	
				35				40				45				
Ile	Leu	Phe	Gln	Pro	Val	Thr	Leu	Pro	Cys	Thr	Tyr	Gln	Met	Ser	Asn	
				50				55				60				
Thr	Leu	Thr	Val	Pro	Ile	Val	Ile	Trp	Lys	Tyr	Lys	Ser	Phe	Cys	Arg	
				65				70				75			80	
Asp	Arg	Ile	Ala	Asp	Ala	Phe	Ser	Pro	Ala	Ser	Val	Asp	Asn	Gln	Leu	
				85				90				95				
Asn	Ala	Gln	Leu	Ala	Ala	Gly	Asn	Pro	Gly	Tyr	Asn	Pro	Tyr	Val	Glu	
				100				105				110				
Cys	Gln	Asp	Ser	Val	Arg	Thr	Val	Arg	Val	Val	Ala	Thr	Lys	Gln	Gly	
				115				120				125				
Asn	Ala	Val	Thr	Leu	Gly	Asp	Tyr	Tyr	Gln	Gly	Arg	Arg	Ile	Thr	Ile	
				130				135				140				
Thr	Gly	Asn	Ala	Asp	Leu	Thr	Phe	Glu	Gln	Thr	Ala	Trp	Gly	Asp	Ser	
				145				150				155			160	
Gly	Val	Tyr	Tyr	Cys	Ser	Val	Val	Ser	Ala	Gln	Asp	Leu	Asp	Gly	Asn	
				165				170				175				
Asn	Glu	Ala	Tyr	Ala	Glu	Leu	Ile	Val	Leu	Val	Tyr	Ala	Ala	Gly	Lys	
				180				185				190				
Ala	Ala	Thr	Ser	Gly	Val	Pro	Ser	Ile	Tyr	Ala	Pro	Ser	Ile	Tyr	Thr	
				195				200				205				
His	Leu	Ser	Pro	Ala	Lys	Thr	Pro	Pro	Pro	Pro	Ala	Met	Ile	Pro		
				210				215				220				
Met	Gly	Pro	Pro	Tyr	Gly	Tyr	Pro	Gly	Asp	Phe	Asp	Arg	His	Ser	Ser	
				225				230				235			240	
Val	Gly	Gly	His	Ser	Ser	Gln	Val	Pro	Leu	Leu	Arg	Asp	Val	Asp	Gly	
				245				250				255				
Ser	Val	Ser	Ser	Glu	Val	Arg	Ser	Gly	Tyr	Arg	Ile	Gln	Ala	Asn	Gln	
				260				265				270				
Gln	Asp	Asp	Ser	Met	Arg	Val	Leu	Tyr	Tyr	Met	Glu	Lys	Glu	Leu	Ala	
				275				280				285				
Asn	Phe	Asp	Pro	Ser	Arg	Pro	Gly	Pro	Pro	Asn	Gly	Arg	Val	Glu	Arg	
				290				295				300				
Ala	Met	Ser	Glu	Val	Thr	Ser	Leu	His	Glu	Asp	Asp	Trp	Arg	Ser	Arg	
				305				310				315			320	
Pro	Ser	Arg	Ala	Pro	Ala	Leu	Thr	Pro	Ile	Arg	Asp	Glu	Glu	Trp	Asn	
				325				330				335				
Arg	His	Ser	Pro	Gln	Ser	Pro	Arg	Thr	Trp	Glu	Gln	Glu	Pro	Leu	Gln	
				340				345				350				
Glu	Gln	Pro	Arg	Gly	Gly	Trp	Gly	Ser	Gly	Arg	Pro	Arg	Ala	Arg	Ser	
				355				360				365				
Val	Asp	Ala	Leu	Asp	Asp	Ile	Asn	Arg	Pro	Gly	Ser	Thr	Glu	Ser	Gly	
				370				375				380				
Arg	Ser	Ser	Pro	Pro	Ser	Ser	Gly	Arg	Arg	Gly	Arg	Ala	Tyr	Ala	Pro	
				385				390				395			400	
Pro	Arg	Ser	Arg	Ser	Arg	Asp	Asp	Leu	Tyr	Asp	Pro	Asp	Asp	Pro	Arg	

405	410	415
Asp Leu Pro His Ser Arg Asp Pro His Tyr Tyr Asp Asp Ile Arg Ser		
420	425	430
Arg Asp Pro Arg Ala Asp Pro Arg Ser Arg Gln Arg Ser Arg Asp Pro		
435	440	445
Arg Asp Ala Gly Phe Arg Ser Arg Asp Pro Gln Tyr Asp Gly Arg Leu		
450	455	460
Leu Glu Glu Ala Leu Lys Lys Gly Ser Gly Glu Arg Arg Arg Val		
465	470	475
Tyr Arg Glu Glu Glu Glu Gly Gln Tyr Pro Pro Ala Pro		
485	490	495
Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg Leu		
500	505	510
Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser Leu Val Val		
515	520	525

<210> 14
<211> 1886
<212> DNA
<213> Mus musculus

<400> 14	52		
gcaccgtcgc tgctagacgg ccgcg atg gcg ccg gcg gcc agc gcg tgt gct			
Met Ala Pro Ala Ala Ser Ala Cys Ala			
1	5		
ggg gcg cct ggc tcc cac ccg gcc acc acg atc ttc gtg tgt ctt ttt			
Gly Ala Pro Gly Ser His Pro Ala Thr Thr Ile Phe Val Cys Leu Phe			
10	15	25	
ctc atc att tac tgc cca gac cgt gcc agt gcc atc cag gtg acc gtg			
Leu Ile Ile Tyr Cys Pro Asp Arg Ala Ser Ala Ile Gln Val Thr Val			
30	35	40	
cct gac ccc tac cac gta gtg atc ctg ttc cag cca gtg aca cta cac			
Pro Asp Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu His			
45	50	55	
tgc acc tac cag atg agc aat acc ctc aca gcc cct atc gtg atc tgg			
Cys Thr Tyr Gln Met Ser Asn Thr Leu Thr Ala Pro Ile Val Ile Trp			
60	65	70	
aag tat aag tcg ttc tgt cgg gac cgt gtt gcc gac gcc ttc tcc cct			
Lys Tyr Lys Ser Phe Cys Arg Asp Arg Val Ala Asp Ala Phe Ser Pro			
75	80	85	
gcc agc gtg gac aac cag ctc aac gcc cag ctg gcg gct ggc aac ccc			
Ala Ser Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro			
90	95	100	105
ggc tac aac ccc tat gtg gag tgc cag gac agc gta cgc act gtc agg			
Gly Tyr Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg			
110	115	120	
gtg gtg gcc acc aaa cag ggc aat gct gtg acc ctg gga gac tac tac			
Val Val Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr			
125	130	135	
cag ggc agg aga atc acc atc aca gga aat gct ggc ctg acc ttc gag			
Gln Gly Arg Arg Ile Thr Ile Thr Gly Asn Ala Gly Leu Thr Phe Glu			
140	145	150	
cag acg gcc tgg gga gac agt gga gtg tat tac tgc tcc gtg gtc tca			
Gln Thr Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser			
155	160	165	
gcc caa gat ctg gat ggg aac aac gag gcg tac gca gag ctc att gtc			
Ala Gln Asp Leu Asp Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val			
170	175	180	185
ctt ggc agg acc tca gaa gcc cct gag ctc cta cct ggt ttt cg ^g gcg			
Leu Gly Arg Thr Ser Glu Ala Pro Glu Leu Leu Pro Gly Phe Arg Ala			
190	195	200	
ggg ccc ttg gaa gat tgg ctc ttt gtg gtc gtg gtc ctg gca agc			
Gly Pro Leu Glu Asp Trp Leu Phe Val Val Val Cys Leu Ala Ser			
676			

<p style="text-align: center;">540</p> <p>gaa gaa gag gag ggc cac tat ccc cca gca cct cgg cct tac tct Glu Glu Glu Glu Gly His Tyr Pro Pro Ala Pro Pro Pro Tyr Ser 555 560 565</p> <p>gag act gac tcg cag gcc tcg agg gag cgg agg atg aaa aag aat ttg Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg Met Lys Lys Asn Leu 570 575 580 585</p> <p>gcc ctg agt cgg gaa agt tta gtc gtc tga tcccacgttt tgttatgttag Ala Leu Ser Arg Glu Ser Leu Val Val *</p> <p style="text-align: center;">590 595</p> <p>cttttatact ttttaatttg gaatatttgat gaaactcttc accaaggccta ataaaa</p>	<p style="text-align: center;">545</p> <p style="text-align: right;">550</p> <p style="text-align: right;">1732</p>	
<p><210> 15</p> <p><211> 1829</p> <p><212> DNA</p> <p><213> Mus musculus</p>		
<p><400> 15</p>		
<p>gcaccgtcgc tgctagacgg ccgcgc atg gcg ccg gcg gcc agc gcg tgt gct Met Ala Pro Ala Ala Ser Ala Cys Ala 1 5</p>		52
<p>ggg gcg cct ggc tcc cac ccg gcc acc acg atc ttc gtg tgt ctt ttt Gly Ala Pro Gly Ser His Pro Ala Thr Thr Ile Phe Val Cys Leu Phe 10 15 20 25</p>		100
<p>ctc atc att tac tgc cca gac cgt gcc agt gcc atc cag gtg acc gtg Leu Ile Tyr Cys Pro Asp Arg Ala Ser Ala Ile Gln Val Thr Val 30 35 40</p>		148
<p>cct gac ccc tac cac gta gtg atc ctg ttc cag cca gtg aca cta cac Pro Asp Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu His 45 50 55</p>		196
<p>tgc acc tac cag atg agc aat acc ctc aca gcc cct atc gtg atc tgg Cys Thr Tyr Gln Met Ser Asn Thr Leu Thr Ala Pro Ile Val Ile Trp 60 65 70</p>		244
<p>aag tat aag tcg ttc tgt cgg gac cgt gtt gcc gac gcc ttc tcc cct Lys Tyr Lys Ser Phe Cys Arg Asp Arg Val Ala Asp Ala Phe Ser Pro 75 80 85</p>		292
<p>gcc agc gtg gac aac cag ctc aac gcc cag ctg gcg gct ggc aac ccc Ala Ser Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro 90 95 100 105</p>		340
<p>ggc tac aac ccc tat gtg gag tgc cag gac agc gta cgc act gtc agg Gly Tyr Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg 110 115 120</p>		388
<p>gtg gtg gcc acc aaa cag ggc aat gct gtg acc ctg gga gac tac tac Val Val Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr 125 130 135</p>		436
<p>cag ggc agg aga atc acc atc aca gga aat gct ggc ctg acc ttc gag Gln Gly Arg Arg Ile Thr Ile Thr Gly Asn Ala Gly Leu Thr Phe Glu 140 145 150</p>		484
<p>cag acg gcc tgg gga gac agt gga gtg tat tac tgc tcc gtg gtc tca Gln Thr Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser 155 160 165</p>		532
<p>gcc caa gat ctg gat ggg aac aac gag gcg tac gca gag ctc att gtc Ala Gln Asp Leu Asp Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val 170 175 180 185</p>		580
<p>ctt gat tgg ctc ttt gtg gtc gtg gtc tgc ctg gca agc ctc ctc ttc Leu Asp Trp Leu Phe Val Val Val Cys Leu Ala Ser Leu Leu Phe 190 195 200</p>		628
<p>ttc ctc ctc ctg ggc atc tgc tgg tgc cag tgc tgt ccc cac acc tgc Phe Leu Leu Leu Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr Cys 205 210 215</p>		676
<p>tgc tgc tat gtc aga tgt ccc tgc tgc cca gac aag tgc tgt tgc cct Cys Cys Tyr Val Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Cys Pro 220 225 230</p>		724

gag gcc ctt tat gct gct ggc aaa gca gcc acc tca ggt gtg cca agc	772
Glu Ala Leu Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser	
235 240 245	
atc tat gcc ccc agc atc tat acc cac ctc tct cct gcc aag act ccg	820
Ile Tyr Ala Pro Ser Ile Tyr Thr His Leu Ser Pro Ala Lys Thr Pro	
250 255 260 265	
cca cct ccg cct gcc atg att ccc atg cgt cct ccc tat ggg tac cct	868
Pro Pro Pro Pro Ala Met Ile Pro Met Arg Pro Pro Tyr Gly Tyr Pro	
270 275 280	
gga gac ttt gac agg acc agc tca gtt ggt ggc cac agc tcc cag gtg	916
Gly Asp Phe Asp Arg Thr Ser Ser Val Gly Gly His Ser Ser Gln Val	
285 290 295	
ccc ctg ctg cgt gaa gtg gat ggg agc gta tct tca gaa gta cga agt	964
Pro Leu Leu Arg Glu Val Asp Gly Ser Val Ser Ser Glu Val Arg Ser	
300 305 310	
ggc tac agg atc cag gct aac cag caa gat gac tcc atg agg gtc cta	1012
Gly Tyr Arg Ile Gln Ala Asn Gln Gln Asp Asp Ser Met Arg Val Leu	
315 320 325	
tac tat atg gag aag gag cta gcc aac ttc gat cct tcc cgg cct ggc	1060
Tyr Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Pro Gly	
330 335 340 345	
cct ccc aat ggc cga gtg gaa cgg gcc atg agt gaa gta acc tcc ctc	1108
Pro Pro Asn Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu	
350 355 360	
cat gaa gat gac tgg cga tct cgg cct tcc agg gct cct gcc ctc aca	1156
His Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Ala Pro Ala Leu Thr	
365 370 375	
ccc atc agg gat gag gag tgg aat cgc cac tcc cct cgg agt ccc aga	1204
Pro Ile Arg Asp Glu Glu Trp Asn Arg His Ser Pro Arg Ser Pro Arg	
380 385 390	
aca tgg gag cag gaa ccc ctt caa gaa cag cca agg ggt ggt tgg ggg	1252
Thr Trp Glu Gln Glu Pro Leu Gln Glu Gln Pro Arg Gly Gly Trp Gly	
395 400 405	
tct ggg cgg cct cgg gcc cgc tct gtg gat gct cta gat gac atc aac	1300
Ser Gly Arg Pro Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Ile Asn	
410 415 420 425	
cgg cct ggc tcc act gaa tca gga agg tct tct ccc cca agt agt gga	1348
Arg Pro Gly Ser Thr Glu Ser Gly Arg Ser Ser Pro Pro Ser Ser Gly	
430 435 440	
cgg aga ggg cgg gcc tat gca cct ccg aga agt cgc agc cgg gat gac	1396
Arg Arg Gly Arg Ala Tyr Ala Pro Pro Arg Ser Arg Arg Asp Asp	
445 450 455	
ctc tat gac ccc gac gat cct aga gac ttg cca cat tcc cga gat ccc	1444
Leu Tyr Asp Pro Asp Asp Pro Arg Asp Leu Pro His Ser Arg Asp Pro	
460 465 470	
cac tat tat gat gat ttg agg tct agg gat cca cgt gct gac ccc aga	1492
His Tyr Tyr Asp Asp Leu Arg Ser Arg Asp Pro Arg Ala Asp Pro Arg	
475 480 485	
tcc cgt cag cga tcc cac gat cct cgg gat gct ggc ttc agg tca cgg	1540
Ser Arg Gln Arg Ser His Asp Pro Arg Asp Ala Gly Phe Arg Ser Arg	
490 495 500 505	
gac cct cag tat gat ggg cga ctc tta gaa gag gct tta aag aaa aaa	1588
Asp Pro Gln Tyr Asp Gly Arg Leu Leu Glu Glu Ala Leu Lys Lys Lys	
510 515 520	
ggg gct ggg gag aga aga cgc gtt tac agg gag gaa gaa gaa gaa gaa	1636
Gly Ala Gly Glu Arg Arg Arg Val Tyr Arg Glu Glu Glu Glu Glu Glu	
525 530 535	
gag gag ggc cac tat ccc cca gca cct ccg cct tac tct gag act gac	1684
Glu Glu Gly His Tyr Pro Pro Ala Pro Pro Tyr Ser Glu Thr Asp	
540 545 550	
tcg cag gcc tcg agg gag cgg agg atg aaa aag aat ttg gcc ctg agt	1732
Ser Gln Ala Ser Arg Glu Arg Arg Met Lys Lys Asn Leu Ala Leu Ser	
555 560 565	

cg gaa agt tta gtc gtc tga tcccacgtt ttttatgtat cttttatact 1783
 Arg Glu Ser Leu Val Val *
 570 575
 ttttaattt gaatattgtat gaaactcttc accaaggccta ataaaa 1829

<210> 16
 <211> 1682
 <212> DNA
 <213> Mus musculus

<400> 16
 gcaccgtcg tcgttagacgg ccgcg atg gcg ccg gcg gcc agc gcg tgt gct 52
 Met Ala Pro Ala Ala Ser Ala Cys Ala
 1 5
 ggg gcg cct ggc tcc cac ccg gcc acc acg atc ttc gtg tgt ctt ttt 100
 Gly Ala Pro Gly Ser His Pro Ala Thr Thr Ile Phe Val Cys Leu Phe
 10 15 20 25
 ctc atc att tac tgc cca gac cgt gcc agt gcc atc cag gtg acc gtg 148
 Leu Ile Ile Tyr Cys Pro Asp Arg Ala Ser Ala Ile Gln Val Thr Val
 30 35 40
 cct gac ccc tac cac gta gtg atc ctg ttc cag cca gtg aca cta cac 196
 Pro Asp Pro Tyr His Val Val Ile Leu Phe Gln Pro Val Thr Leu His
 45 50 55
 tgc acc tac cag atg agc aat acc ctc aca gcc cct atc gtg atc tgg 244
 Cys Thr Tyr Gln Met Ser Asn Thr Leu Thr Ala Pro Ile Val Ile Trp
 60 65 70
 aag tat aag tcg ttc tgt cgg gac cgt gtt gcc gac gcc ttc tcc cct 292
 Lys Tyr Lys Ser Phe Cys Arg Asp Arg Val Ala Asp Ala Phe Ser Pro
 75 80 85
 gcc agc gtg gac aac cag ctc aac gcc cag ctg gcg gct ggc aac ccc 340
 Ala Ser Val Asp Asn Gln Leu Asn Ala Gln Leu Ala Ala Gly Asn Pro
 90 95 100 105
 ggc tac aac ccc tat gtg gag tgc cag gac agc gta cgc act gtc agg 388
 Gly Tyr Asn Pro Tyr Val Glu Cys Gln Asp Ser Val Arg Thr Val Arg
 110 115 120
 gtg gtg gcc acc aaa cag ggc aat gct gtg acc ctg gga gac tac tac 436
 Val Val Ala Thr Lys Gln Gly Asn Ala Val Thr Leu Gly Asp Tyr Tyr
 125 130 135
 cag ggc agg aga atc acc atc aca gga aat gct ggc ctg acc ttc gag 484
 Gln Gly Arg Arg Ile Thr Ile Thr Gly Asn Ala Gly Leu Thr Phe Glu
 140 145 150
 cag acg gcc tgg gga gac agt gga gtg tat tac tgc tcc gtg gtc tca 532
 Gln Thr Ala Trp Gly Asp Ser Gly Val Tyr Tyr Cys Ser Val Val Ser
 155 160 165
 gcc caa gat ctg gat ggg aac aac gag gcg tac gca gag ctc att gtc 580
 Ala Gln Asp Leu Asp Gly Asn Asn Glu Ala Tyr Ala Glu Leu Ile Val
 170 175 180 185
 ctt gtt tat gct gct ggc aaa gca gcc acc tca ggt gtg cca agc atc 628
 Leu Val Tyr Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile
 190 195 200
 tat gcc ccc agc atc tat acc cac ctc tct cct gcc aag act ccg cca 676
 Tyr Ala Pro Ser Ile Tyr Thr His Leu Ser Pro Ala Lys Thr Pro Pro
 205 210 215
 cct ccg cct gcc atg att ccc atg cgt cct ccc tat ggg tac cct gga 724
 Pro Pro Pro Ala Met Ile Pro Met Arg Pro Pro Tyr Gly Tyr Pro Gly
 220 225 230
 gac ttt gac agg acc agc tca gtt ggt ggc cac agc tcc cag gtg ccc 772
 Asp Phe Asp Arg Thr Ser Ser Val Gly Gly His Ser Ser Gln Val Pro
 235 240 245
 ctg ctg cgt gaa gtg gat ggg agc gta tct tca gaa gta cga agt ggc 820
 Leu Leu Arg Glu Val Asp Gly Ser Val Ser Ser Glu Val Arg Ser Gly
 250 255 260 265
 tac agg atc cag gct aac cag caa gat gac tcc atg agg gtc cta tac 868

Tyr Arg Ile Gln Ala Asn Gln Gln Asp Asp Ser Met Arg Val Leu Tyr			
270	275	280	
tat atg gag aag gag cta gcc aac ttc gat cct tcc cgg cct ggc cct			916
Tyr Met Glu Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Pro Gly Pro			
285	290	295	
ccc aat ggc cga gtg gaa cggttcc acc tcc ctc cat			964
Pro Asn Gly Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu His			
300	305	310	
gaa gat gac tgg cga tct cgg cct tcc agg gct cct gcc ctc aca ccc			1012
Glu Asp Asp Trp Arg Ser Arg Pro Ser Arg Ala Pro Ala Leu Thr Pro			
315	320	325	
atc agg gat gag gag tgg aat cgc cac tcc cct cgg agt ccc aga aca			1060
Ile Arg Asp Glu Glu Trp Asn Arg His Ser Pro Arg Ser Pro Arg Thr			
330	335	340	345
tgg gag cag gaa ccc ctt caa gaa cag cca agg ggt ggt tgg ggg tct			1108
Trp Glu Gln Glu Pro Leu Gln Glu Gln Pro Arg Gly Gly Trp Gly Ser			
350	355	360	
ggg cgg cct cgg gcc cgc tct gtg gat gct cta gat gac atc aac cgg			1156
Gly Arg Pro Ala Arg Ser Val Asp Ala Leu Asp Asp Ile Asn Arg			
365	370	375	
cct ggc tcc act gaa tca gga agg tct tct ccc cca agt agt gga cgg			1204
Pro Gly Ser Thr Glu Ser Gly Arg Ser Ser Pro Pro Ser Ser Gly Arg			
380	385	390	
aga ggg cgg gcc tat gca cct ccg aga agt cgc agc cgg gat gac ctc			1252
Arg Gly Arg Ala Tyr Ala Pro Pro Arg Ser Arg Ser Arg Asp Asp Leu			
395	400	405	
tat gac ccc gac gat cct aga gac ttg cca cat tcc cga gat ccc cac			1300
Tyr Asp Pro Asp Asp Pro Arg Asp Leu Pro His Ser Arg Asp Pro His			
410	415	420	425
tat tat gat gat ttg agg tct agg gat cca cgt gct gac ccc aga tcc			1348
Tyr Tyr Asp Asp Leu Arg Ser Arg Asp Pro Arg Ala Asp Pro Arg Ser			
430	435	440	
cgt cag cga tcc cac gat cct cgg gat gct ggc ttc agg tca cgg gac			1396
Arg Gln Arg Ser His Asp Pro Arg Asp Ala Gly Phe Arg Ser Arg Asp			
445	450	455	
cct cag tat gat ggg cga ctc tta gaa gag gct tta aag aaa aaa ggg			1444
Pro Gln Tyr Asp Gly Arg Leu Leu Glu Glu Ala Leu Lys Lys Lys Gly			
460	465	470	
gct ggg gag aga aga cgc gtt tac agg gag gaa gaa gaa gaa gag			1492
Ala Gly Glu Arg Arg Arg Val Tyr Arg Glu Glu Glu Glu Glu Glu			
475	480	485	
gag ggc cac tat ccc cca gca cct ccg cct tac tct gag act gac tcg			1540
Glu Gly His Tyr Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp Ser			
490	495	500	505
cag gcc tcg agg gag cgg agg atg aaa aag aat ttg gcc ctg agt cgg			1588
Gln Ala Ser Arg Glu Arg Arg Met Lys Lys Asn Leu Ala Leu Ser Arg			
510	515	520	
gaa agt tta gtc gtc tga tccccacgttt tgttatgttag cttttataact			1636
Glu Ser Leu Val Val *			
525			
tttttaattt gatatattttt gaaaactttt accaaggctt ataaaaa			1682

<210> 17
<211> 594
<212> PRT
<213> Mus musculus

<400> 17
Met Ala Pro Ala Ala Ser Ala Cys Ala Gly Ala Pro Gly Ser His Pro
1 5 10 15
Ala Thr Thr Ile Phe Val Cys Leu Phe Leu Ile Ile Tyr Cys Pro Asp
20 25 30
Arg Ala Ser Ala Ile Gln Val Thr Val Pro Asp Pro Tyr His Val Val

35	40	45
Ile Leu Phe Gln Pro Val Thr	Leu His Cys Thr Tyr	Gln Met Ser Asn
50	55	60
Thr Leu Thr Ala Pro Ile Val Ile Trp Lys Tyr	Lys Ser Phe Cys Arg	
65	70	75
Asp Arg Val Ala Asp Ala Phe Ser Pro Ala Ser Val Asp Asn Gln Leu		
85	90	95
Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr Asn Pro	Tyr Val Glu	
100	105	110
Cys Gln Asp Ser Val Arg Thr Val Arg Val Val Ala Thr	Lys Gln Gly	
115	120	125
Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg	Ile Thr Ile	
130	135	140
Thr Gly Asn Ala Gly Leu Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser		
145	150	155
Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Asp Gly Asn		
165	170	175
Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Gly Arg Thr Ser Glu Ala		
180	185	190
Pro Glu Leu Leu Pro Gly Phe Arg Ala Gly Pro Leu Glu Asp Trp Ieu		
195	200	205
Phe Val Val Val Cys Leu Ala Ser Leu Leu Phe Phe Leu Leu Leu		
210	215	220
Gly Ile Cys Trp Cys Gln Cys Cys Pro His Thr Cys Cys Cys Tyr Val		
225	230	235
Arg Cys Pro Cys Cys Pro Asp Lys Cys Cys Cys Pro Glu Ala Leu Tyr		
245	250	255
Ala Ala Gly Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro		
260	265	270
Ser Ile Tyr Thr His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro		
275	280	285
Ala Met Ile Pro Met Arg Pro Pro Tyr Gly Tyr Pro Gly Asp Phe Asp		
290	295	300
Arg Thr Ser Ser Val Gly Gly His Ser Ser Gln Val Pro Leu Leu Arg		
305	310	315
Glu Val Asp Gly Ser Val Ser Ser Glu Val Arg Ser Gly Tyr Arg Ile		
325	330	335
Gln Ala Asn Gln Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr Met Glu		
340	345	350
Lys Glu Leu Ala Asn Phe Asp Pro Ser Arg Pro Gly Pro Pro Asn Gly		
355	360	365
Arg Val Glu Arg Ala Met Ser Glu Val Thr Ser Leu His Glu Asp Asp		
370	375	380
Trp Arg Ser Arg Pro Ser Arg Ala Pro Ala Leu Thr Pro Ile Arg Asp		
385	390	395
Glu Glu Trp Asn Arg His Ser Pro Arg Ser Pro Arg Thr Trp Glu Gln		
405	410	415
Glu Pro Leu Gln Glu Gln Pro Arg Gly Gly Trp Gly Ser Gly Arg Pro		
420	425	430
Arg Ala Arg Ser Val Asp Ala Leu Asp Asp Ile Asn Arg Pro Gly Ser		
435	440	445
Thr Glu Ser Gly Arg Ser Ser Pro Pro Ser Ser Gly Arg Arg Gly Arg		
450	455	460
Ala Tyr Ala Pro Pro Arg Ser Arg Ser Arg Asp Asp Leu Tyr Asp Pro		
465	470	475
Asp Asp Pro Arg Asp Leu Pro His Ser Arg Asp Pro His Tyr Tyr Asp		
485	490	495
Asp Leu Arg Ser Arg Asp Pro Arg Ala Asp Pro Arg Ser Arg Gln Arg		
500	505	510
Ser His Asp Pro Arg Asp Ala Gly Phe Arg Ser Arg Asp Pro Gln Tyr		
515	520	525
Asp Gly Arg Leu Leu Glu Glu Ala Leu Lys Lys Lys Gly Ala Gly Glu		
530	535	540

Arg Arg Arg Val Tyr Arg Glu Glu Glu Glu Glu Glu Gly His
 545 550 555 560
 Tyr Pro Pro Ala Pro Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser
 565 570 575
 Arg Glu Arg Arg Met Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser Leu
 580 585 590
 Val Val

 <210> 18
 <211> 575
 <212> PRT
 <213> Mus musculus

 <400> 18
 Met Ala Pro Ala Ala Ser Ala Cys Ala Gly Ala Pro Gly Ser His Pro
 1 5 10 15
 Ala Thr Thr Ile Phe Val Cys Leu Phe Leu Ile Ile Tyr Cys Pro Asp
 20 25 30
 Arg Ala Ser Ala Ile Gln Val Thr Val Pro Asp Pro Tyr His Val Val
 35 40 45
 Ile Leu Phe Gln Pro Val Thr Leu His Cys Thr Tyr Gln Met Ser Asn
 50 55 60
 Thr Leu Thr Ala Pro Ile Val Ile Trp Lys Tyr Lys Ser Phe Cys Arg
 65 70 75 80
 Asp Arg Val Ala Asp Ala Phe Ser Pro Ala Ser Val Asp Asn Gln Leu
 85 90 95
 Asn Ala Gln Leu Ala Ala Gly Asn Pro Gly Tyr Asn Pro Tyr Val Glu
 100 105 110
 Cys Gln Asp Ser Val Arg Thr Val Arg Val Val Ala Thr Lys Gln Gly
 115 120 125
 Asn Ala Val Thr Leu Gly Asp Tyr Tyr Gln Gly Arg Arg Ile Thr Ile
 130 135 140
 Thr Gly Asn Ala Gly Leu Thr Phe Glu Gln Thr Ala Trp Gly Asp Ser
 145 150 155 160
 Gly Val Tyr Tyr Cys Ser Val Val Ser Ala Gln Asp Leu Asp Gly Asn
 165 170 175
 Asn Glu Ala Tyr Ala Glu Leu Ile Val Leu Asp Trp Leu Phe Val Val
 180 185 190
 Val Val Cys Leu Ala Ser Leu Leu Phe Phe Leu Leu Gly Ile Cys
 195 200 205
 Trp Cys Gln Cys Cys Pro His Thr Cys Cys Cys Tyr Val Arg Cys Pro
 210 215 220
 Cys Cys Pro Asp Lys Cys Cys Cys Pro Glu Ala Leu Tyr Ala Ala Gly
 225 230 235 240
 Lys Ala Ala Thr Ser Gly Val Pro Ser Ile Tyr Ala Pro Ser Ile Tyr
 245 250 255
 Thr His Leu Ser Pro Ala Lys Thr Pro Pro Pro Pro Ala Met Ile
 260 265 270
 Pro Met Arg Pro Pro Tyr Gly Tyr Pro Gly Asp Phe Asp Arg Thr Ser
 275 280 285
 Ser Val Gly Gly His Ser Ser Gln Val Pro Leu Leu Arg Glu Val Asp
 290 295 300
 Gly Ser Val Ser Ser Glu Val Arg Ser Gly Tyr Arg Ile Gln Ala Asn
 305 310 315 320
 Gln Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr Met Glu Lys Glu Leu
 325 330 335
 Ala Asn Phe Asp Pro Ser Arg Pro Gly Pro Pro Asn Gly Arg Val Glu
 340 345 350
 Arg Ala Met Ser Glu Val Thr Ser Leu His Glu Asp Asp Trp Arg Ser
 355 360 365
 Arg Pro Ser Arg Ala Pro Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp
 370 375 380
 Asn Arg His Ser Pro Arg Ser Pro Arg Thr Trp Glu Gln Glu Pro Leu

385	390	395	400												
Gln	Glu	Gln	Pro	Arg	Gly	Gly	Trp	Gly	Ser	Gly	Arg	Pro	Arg	Ala	Arg
405															415
Ser	Val	Asp	Ala	Leu	Asp	Asp	Ile	Asn	Arg	Pro	Gly	Ser	Thr	Glu	Ser
420															430
Gly	Arg	Ser	Ser	Pro	Pro	Ser	Ser	Gly	Arg	Arg	Gly	Arg	Ala	Tyr	Ala
435															445
Pro	Pro	Arg	Ser	Ser	Arg	Asp	Asp	Leu	Tyr	Asp	Pro	Asp	Asp	Pro	
450															460
Arg	Asp	Leu	Pro	His	Ser	Arg	Asp	Pro	His	Tyr	Tyr	Asp	Asp	Leu	Arg
465															480
Ser	Arg	Asp	Pro	Arg	Ala	Asp	Pro	Arg	Ser	Arg	Gln	Arg	Ser	His	Asp
485															495
Pro	Arg	Asp	Ala	Gly	Phe	Arg	Ser	Arg	Asp	Pro	Gln	Tyr	Asp	Gly	Arg
500															510
Leu	Leu	Glu	Glu	Ala	Leu	Lys	Lys	Gly	Ala	Gly	Glu	Arg	Arg	Arg	
515															525
Val	Tyr	Arg	Glu	Gly	His	Tyr	Pro	Pro							
530															540
Ala	Pro	Pro	Pro	Tyr	Ser	Glu	Thr	Asp	Ser	Gln	Ala	Ser	Arg	Glu	Arg
545															560
Arg	Met	Lys	Lys	Asn	Leu	Ala	Leu	Ser	Arg	Glu	Ser	Leu	Val	Val	
565															575

<210> 19
<211> 526
<212> PRT
<213> Mus musculus

<400> 19															
Met	Ala	Pro	Ala	Ala	Ser	Ala	Cys	Ala	Gly	Ala	Pro	Gly	Ser	His	Pro
1															15
Ala	Thr	Thr	Ile	Phe	Val	Cys	Leu	Phe	Leu	Ile	Ile	Tyr	Cys	Pro	Asp
															30
Arg	Ala	Ser	Ala	Ile	Gln	Val	Thr	Val	Pro	Asp	Pro	Tyr	His	Val	Val
															45
Ile	Leu	Phe	Gln	Pro	Val	Thr	Leu	His	Cys	Thr	Tyr	Gln	Met	Ser	Asn
															60
Thr	Leu	Thr	Ala	Pro	Ile	Val	Ile	Trp	Lys	Tyr	Lys	Ser	Phe	Cys	Arg
															80
Asp	Arg	Val	Ala	Asp	Ala	Phe	Ser	Pro	Ala	Ser	Val	Asp	Asn	Gln	Leu
															95
Asn	Ala	Gln	Leu	Ala	Ala	Gly	Asn	Pro	Gly	Tyr	Asn	Pro	Tyr	Val	Glu
															110
Cys	Gln	Asp	Ser	Val	Arg	Thr	Val	Arg	Val	Val	Ala	Thr	Lys	Gln	Gly
															125
Asn	Ala	Val	Thr	Leu	Gly	Asp	Tyr	Tyr	Gln	Gly	Arg	Arg	Ile	Thr	Ile
															140
Thr	Gly	Asn	Ala	Gly	Leu	Thr	Phe	Glu	Gln	Thr	Ala	Trp	Gly	Asp	Ser
															160
Gly	Val	Tyr	Tyr	Cys	Ser	Val	Val	Ser	Ala	Gln	Asp	Leu	Asp	Gly	Asn
															175
Asn	Glu	Ala	Tyr	Ala	Glu	Leu	Ile	Val	Leu	Val	Tyr	Ala	Ala	Gly	Lys
															190
Ala	Ala	Thr	Ser	Gly	Val	Pro	Ser	Ile	Tyr	Ala	Pro	Ser	Ile	Tyr	Thr
															205
His	Leu	Ser	Pro	Ala	Lys	Thr	Pro	Pro	Pro	Pro	Ala	Met	Ile	Pro	
															220
Met	Arg	Pro	Pro	Tyr	Gly	Tyr	Pro	Gly	Asp	Phe	Asp	Arg	Thr	Ser	Ser
															240
Val	Gly	Gly	His	Ser	Ser	Gln	Val	Pro	Leu	Leu	Arg	Glu	Val	Asp	Gly
															255
Ser	Val	Ser	Ser	Glu	Val	Arg	Ser	Gly	Tyr	Arg	Ile	Gln	Ala	Asn	Gln

260	265	270
Gln Asp Asp Ser Met Arg Val Leu Tyr Tyr Met Glu Lys Glu Leu Ala		
275	280	285
Asn Phe Asp Pro Ser Arg Pro Gly Pro Pro Asn Gly Arg Val Glu Arg		
290	295	300
Ala Met Ser Glu Val Thr Ser Leu His Glu Asp Asp Trp Arg Ser Arg		
305	310	315
Pro Ser Arg Ala Pro Ala Leu Thr Pro Ile Arg Asp Glu Glu Trp Asn		
325	330	335
Arg His Ser Pro Arg Ser Pro Arg Thr Trp Glu Gln Glu Pro Leu Gln		
340	345	350
Glu Gln Pro Arg Gly Gly Trp Gly Ser Gly Arg Pro Arg Ala Arg Ser		
355	360	365
Val Asp Ala Leu Asp Asp Ile Asn Arg Pro Gly Ser Thr Glu Ser Gly		
370	375	380
Arg Ser Ser Pro Pro Ser Ser Gly Arg Arg Gly Arg Ala Tyr Ala Pro		
385	390	395
Pro Arg Ser Arg Ser Arg Asp Asp Leu Tyr Asp Pro Asp Asp Pro Arg		
405	410	415
Asp Leu Pro His Ser Arg Asp Pro His Tyr Tyr Asp Asp Leu Arg Ser		
420	425	430
Arg Asp Pro Arg Ala Asp Pro Arg Ser Arg Gln Arg Ser His Asp Pro		
435	440	445
Arg Asp Ala Gly Phe Arg Ser Arg Asp Pro Gln Tyr Asp Gly Arg Leu		
450	455	460
Leu Glu Glu Ala Leu Lys Lys Lys Gly Ala Gly Glu Arg Arg Arg Val		
465	470	475
Tyr Arg Glu Glu Glu Glu Glu Glu Gly His Tyr Pro Pro Ala		
485	490	495
Pro Pro Pro Tyr Ser Glu Thr Asp Ser Gln Ala Ser Arg Glu Arg Arg		
500	505	510
Met Lys Lys Asn Leu Ala Leu Ser Arg Glu Ser Leu Val Val		
515	520	525

<210> 20
<211> 18
<212> DNA
<213> Homo Sapiens

<220>
<221> misc_binding
<222> 1..18
<223> sequencing oligonucleotide PrimerPU

<400> 20
tgtaaaacga cggccagt

18

<210> 21
<211> 18
<212> DNA
<213> Homo Sapiens

<220>
<221> misc_binding
<222> 1..18
<223> sequencing oligonucleotide PrimerRP

<400> 21
cagggaaacag ctatgacc

18

<210> 22
<211> 20
<212> DNA

<213> Artificial Sequence
<220>
<223> oligonucleotide sense primer

<400> 22
ctacaacccc tacgtcgagt 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide anti sense primer

<400> 23
aggcggagat cggcagtcgt 20

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide sense primer

<400> 24
cctttgtcca cgtcgttac gctc 24

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide anti sense primer

<400> 25
tcacagcggt gccctgcttg 20

<210> 26
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide sense primer

<400> 26
ttactgctcc gtggtctcag c 21

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide anti sense primer

<400> 27
agctactcct gtcaacgtct cc 22

<210> 28
 <211> 167
 <212> PRT
 <213> Bos taurus

<400> 28
 Met Arg Cys Gly Pro Leu Tyr Arg Phe Leu Trp Leu Trp Pro Tyr Leu
 1 5 10 15
 Ser Tyr Val Glu Ala Val Pro Ile Arg Lys Val Gln Asp Asp Thr Lys
 20 25 30
 Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr
 35 40 45
 Gln Ser Val Ser Ser Lys Gln Arg Val Thr Gly Leu Asp Phe Ile Pro
 50 55 60
 Gly Leu His Pro Leu Leu Ser Lys Met Asp Gln Thr Leu Ala
 65 70 75 80
 Ile Tyr Gln Gln Ile Leu Thr Ser Leu Pro Ser Arg Asn Val Val Gln
 85 90 95
 Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala
 100 105 110
 Ala Ser Lys Ser Cys Pro Leu Pro Gln Val Arg Ala Leu Glu Ser Leu
 115 120 125
 Glu Ser Leu Gly Val Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val
 130 135 140
 Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Arg Gln
 145 150 155 160
 Leu Asp Leu Ser Pro Gly Cys
 165

<210> 29
 <211> 146
 <212> PRT
 <213> Canis familiaris

<400> 29
 Val Pro Ile Arg Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr
 1 5 10 15
 Ile Val Ala Arg Ile Asn Asp Ile Ser His Thr Gln Ser Val Ser Ser
 20 25 30
 Lys Gln Arg Val Ala Gly Leu Asp Phe Ile Pro Gly Leu Gln Pro Val
 35 40 45
 Leu Ser Leu Ser Arg Met Asp Gln Thr Leu Ala Ile Tyr Gln Gln Ile
 50 55 60
 Leu Asn Ser Leu His Ser Arg Asn Val Val Gln Ile Ser Asn Asp Leu
 65 70 75 80
 Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala Ser Ser Lys Ser Cys
 85 90 95
 Pro Leu Pro Arg Ala Arg Gly Leu Glu Thr Phe Glu Ser Leu Gly Gly
 100 105 110
 Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val Val Ala Leu Ser Arg
 115 120 125
 Leu Gln Ala Ala Leu Gln Asp Met Leu Arg Arg Leu Asp Leu Ser Pro
 130 135 140
 Gly Cys
 145

<210> 30
 <211> 163
 <212> PRT
 <213> Gallus gallus

<400> 30
 Met Cys Trp Arg Pro Leu Cys Arg Leu Trp Ser Tyr Leu Val Tyr Val

1 5 10 15
 Gln Ala Val Pro Cys Gln Ile Phe Gln Asp Asp Thr Lys Thr Leu Ile
 20 25 30
 Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr Ser Val Ser
 35 40 45
 Ala Lys Gln Arg Val Thr Gly Leu Asp Phe Ile Pro Gly Leu His Pro
 50 55 60
 Ile Leu Ser Leu Ser Lys Met Asp Gln Thr Leu Ala Val Tyr Gln Gln
 65 70 75 80
 Val Leu Thr Ser Leu Pro Ser Gln Asn Val Leu Gln Ile Ala Asn Asp
 85 90 95
 Leu Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala Phe Ser Lys Ser
 100 105 110
 Cys Ser Leu Pro Gln Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp
 115 120 125
 Gly Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val Val Ala Leu Ser
 130 135 140
 Arg Leu Gln Gly Ser Leu Gln Asp Ile Leu Gln Gln Leu Asp Ile Ser
 145 150 155 160
 Pro Glu Cys

<210> 31

<211> 146

<212> PRT

<213> Gorilla gorilla

<400> 31

Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr
 1 5 10 15
 Ile Val Thr Arg Ile Ser Asp Ile Ser His Thr Gln Ser Val Ser Ser
 20 25 30
 Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro Gly Leu His Pro Ile
 35 40 45
 Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala Val Tyr Gln Ile
 50 55 60
 Leu Thr Ser Met Pro Ser Arg Asn Met Ile Gln Ile Ser Asn Asp Leu
 65 70 75 80
 Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys
 85 90 95
 His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly
 100 105 110
 Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg
 115 120 125
 Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro
 130 135 140
 Gly Cys
 145

<210> 32

<211> 167

<212> PRT

<213> Homo sapiens

<400> 32

Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu
 1 5 10 15
 Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys
 20 25 30
 Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr
 35 40 45
 Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro
 50 55 60
 Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala

65	70	75	80
Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser Arg Asn Val Ile Gln			
85	90	95	
Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala			
100	105	110	
Phe Ser Lys Ser Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu			
115	120	125	
Asp Ser Leu Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val			
130	135	140	
Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln			
145	150	155	160
Leu Asp Leu Ser Pro Gly Cys			
165			

<210> 33
<211> 167
<212> PRT
<213> Macaca mulatta

<400> 33			
Met Tyr Trp Arg Thr Leu Trp Gly Phe Leu Trp Leu Trp Pro Tyr Leu			
1	5	10	15
Phe Tyr Ile Gln Ala Val Pro Ile Gln Lys Val Gln Ser Asp Thr Lys			
20	25	30	
Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr			
35	40	45	
Gln Ser Val Ser Ser Lys Gln Arg Val Thr Gly Leu Asp Phe Ile Pro			
50	55	60	
Gly Leu His Pro Val Leu Thr Leu Ser Gln Met Asp Gln Thr Leu Ala			
65	70	75	80
Ile Tyr Gln Gln Ile Leu Ile Asn Leu Pro Ser Arg Asn Val Ile Gln			
85	90	95	
Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala			
100	105	110	
Phe Ser Lys Ser Cys His Leu Pro Leu Ala Ser Gly Leu Glu Thr Leu			
115	120	125	
Glu Ser Leu Gly Asp Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val			
130	135	140	
Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln			
145	150	155	160
Leu Asp Leu Ser Pro Gly Cys			
165			

<210> 34
<211> 167
<212> PRT
<213> Mus musculus

<400> 34			
Met Cys Trp Arg Pro Leu Cys Arg Phe Leu Trp Leu Trp Ser Tyr Leu			
1	5	10	15
Ser Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys			
20	25	30	
Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr			
35	40	45	
Gln Ser Val Ser Ala Lys Gln Arg Val Thr Gly Leu Asp Phe Ile Pro			
50	55	60	
Gly Leu His Pro Ile Leu Ser Leu Ser Lys Met Asp Gln Thr Leu Ala			
65	70	75	80
Val Tyr Gln Gln Val Leu Thr Ser Leu Pro Ser Gln Asn Val Leu Gln			
85	90	95	
Ile Ala Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala			
100	105	110	

Phe Ser Lys Ser Cys Ser Leu Pro Gln Thr Ser Gly Leu Gln Lys Pro
115 120 125
Glu Ser Leu Asp Gly Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val
130 135 140
Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Ile Leu Gln Gin
145 150 155 160
Leu Asp Val Ser Pro Glu Cys
165

<210> 35
<211> 146
<212> PRT
<213> Ovus aries

<400> 35
Val Pro Ile Arg Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr
1 5 10 15
Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr Gln Ser Val Ser Ser
20 25 30
Lys Gln Arg Val Thr Gly Leu Asp Phe Ile Pro Gly Leu His Pro Leu
35 40 45
Leu Ser Leu Ser Lys Met Asp Gln Thr Leu Ala Ile Tyr Gln Gln Ile
50 55 60
Leu Ala Ser Leu Pro Ser Arg Asn Val Ile Gln Ile Ser Asn Asp Leu
65 70 75 80
Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala Ala Ser Lys Ser Cys
85 90 95
Pro Leu Pro Gln Val Arg Ala Leu Glu Ser Leu Glu Ser Leu Gly Val
100 105 110
Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val Val Ala Leu Ser Arg
115 120 125
Leu Gln Gly Ser Leu Gln Asp Met Leu Arg Gln Leu Asp Leu Ser Pro
130 135 140
Gly Cys
145

<210> 36
<211> 146
<212> PRT
<213> Pan troglodytes

<400> 36
Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr
1 5 10 15
Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr Gln Ser Val Ser Ser
20 25 30
Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro Gly Leu His Pro Ile
35 40 45
Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala Val Tyr Gln Gln Ile
50 55 60
Leu Thr Ser Met Pro Ser Arg Asn Met Ile Gln Ile Ser Asn Asp Leu
65 70 75 80
Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys
85 90 95
His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly
100 105 110
Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg
115 120 125
Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro
130 135 140
Gly Cys
145

<210> 37
<211> 146
<212> PRT
<213> Pongo pygmaeus

<400> 37
Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr
1 5 10 15
Val Ile Thr Arg Ile Asn Asp Ile Ser His Thr Gln Ser Val Ser Ser
20 25 30
Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro Gly Leu His Pro Ile
35 40 45
Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala Val Tyr Gln Gln Ile
50 55 60
Leu Thr Ser Met Pro Ser Arg Asn Val Ile Gln Ile Ser Asn Asp Leu
65 70 75 80
Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys
85 90 95
His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu Asp Arg Leu Gly Gly
100 105 110
Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg
115 120 125
Leu Gln Arg Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro
130 135 140
Gly Cys
145

<210> 38
<211> 167
<212> PRT
<213> Rattus norvegicus

<400> 38
Met Cys Trp Arg Pro Leu Cys Arg Phe Leu Trp Leu Trp Ser Tyr Leu
1 5 10 15
Ser Tyr Val Gln Ala Val Pro Ile His Lys Val Gln Asp Asp Thr Lys
20 25 30
Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr
35 40 45
Gln Ser Val Ser Ala Arg Gln Arg Val Thr Gly Leu Asp Phe Ile Pro
50 55 60
Gly Leu His Pro Ile Leu Ser Leu Ser Lys Met Asp Gln Thr Leu Ala
65 70 75 80
Val Tyr Gln Gln Ile Leu Thr Ser Leu Pro Ser Gln Asn Val Leu Gln
85 90 95
Ile Ala His Asp Leu Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala
100 105 110
Phe Ser Lys Ser Cys Ser Leu Pro Gln Thr Arg Gly Leu Gln Lys Pro
115 120 125
Glu Ser Leu Asp Gly Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val
130 135 140
Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Ile Leu Gln Gln
145 150 155 160
Leu Asp Leu Ser Pro Glu Cys
165

<210> 39
<211> 167
<212> PRT
<213> Sus scrofa

<400> 39
Met Arg Cys Gly Pro Leu Cys Arg Phe Leu Trp Leu Trp Pro Tyr Leu

1	5	10	15												
Ser	Tyr	Val	Glu	Ala	Val	Pro	Ile	Trp	Arg	Val	Gln	Asp	Asp	Thr	Lys
			20					25						30	
Thr	Leu	Ile	Lys	Thr	Ile	Val	Thr	Arg	Ile	Ser	Asp	Ile	Ser	His	Met
			35				40						45		
Gln	Ser	Val	Ser	Ser	Lys	Gln	Arg	Val	Thr	Gly	Leu	Asp	Phe	Ile	Pro
			50			55						60			
Gly	Leu	His	Pro	Val	Leu	Ser	Leu	Ser	Lys	Met	Asp	Gln	Thr	Leu	Ala
	65				70				75				80		
Ile	Tyr	Gln	Gln	Ile	Leu	Thr	Ser	Leu	Pro	Ser	Arg	Asn	Val	Ile	Gln
					85				90				95		
Ile	Ser	Asn	Asp	Leu	Glu	Asn	Leu	Arg	Asp	Leu	Leu	His	Leu	Leu	Ala
					100			105				110			
Ser	Ser	Lys	Ser	Cys	Pro	Leu	Pro	Gln	Ala	Arg	Ala	Leu	Glu	Thr	Leu
		115				120				125					
Glu	Ser	Leu	Gly	Gly	Val	Leu	Glu	Ala	Ser	Leu	Tyr	Ser	Thr	Glu	Val
		130				135				140					
Val	Ala	Leu	Ser	Arg	Leu	Gln	Gly	Ala	Leu	Gln	Asp	Met	Leu	Arg	Gln
	145				150					155				160	
Leu	Asp	Leu	Ser	Pro	Gly	Cys									
					165										

<210> 40
<211> 4
<212> PRT
<213> Homo sapiens

<400> 40
Glu Thr Leu Asp
1

<210> 41
<211> 4
<212> PRT
<213> Mus musculus

<400> 41
Gln Lys Pro Glu
1

<210> 42
<211> 6
<212> PRT
<213> Homo sapiens

<400> 42
Leu Asp Ser Leu Gly Gly
1 5

<210> 43
<211> 4
<212> PRT
<213> Homo sapiens

<400> 43
Glu Lys Leu Glu
1

<210> 44
<211> 4
<212> PRT
<213> Homo sapiens

<400> 44
Glu Lys Pro Glu
1

<210> 45
<211> 4
<212> PRT
<213> Homo sapiens

<400> 45
Glu Lys Pro Asp
1

<210> 46
<211> 5
<212> PRT
<213> Homo sapiens

<400> 46
Thr Pro Asp Ser Leu
1 5

<210> 47
<211> 9
<212> PRT
<213> Homo sapiens

<400> 47
Gly Leu Gln Thr Leu Asp Ser Leu Gly
1 5

<210> 48
<211> 5
<212> PRT
<213> Homo sapiens

<400> 48
Gly Gly Val Leu Glu
1 5

<210> 49
<211> 6
<212> PRT
<213> Homo sapiens

<400> 49
Thr Pro Asp Ser Leu Gly
1 5

<210> 50
<211> 9
<212> PRT
<213> Homo sapiens

<400> 50
Ser Leu Gly Gly Val Leu Glu Ala Ser
1 5

<210> 51
<211> 6
<212> PRT
<213> Homo sapiens

<400> 51
Pro Glu Ser Leu Gly Gly
1 5

<210> 52
<211> 6
<212> PRT
<213> Homo sapiens

<400> 52
Pro Asp Ser Leu Gly Gly
1 5

<210> 53
<211> 7
<212> PRT
<213> Homo sapiens

<400> 53
Leu Gly Gly Val Leu Glu Ala
1 5

<210> 54
<211> 22
<212> PRT
<213> Homo sapiens

<400> 54
Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys
1 5 10 15
His Leu Pro Trp Ala Ser
20

<210> 55
<211> 22
<212> PRT
<213> Homo sapiens

<400> 55
Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro Trp Ala
1 5 10 15
Ser Gly Leu Glu Thr Leu
20

<210> 56
<211> 22
<212> PRT
<213> Homo sapiens

<400> 56
Ala Phe Ser Lys Ser Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr
1 5 10 15
Leu Asp Ser Leu Gly Gly
20

<210> 57
<211> 22
<212> PRT
<213> Homo sapiens

<400> 57
Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly
1 5 10 15

Gly Val Leu Glu Ala Ser
20

<210> 58
<211> 18
<212> PRT
<213> Homo sapiens

<400> 58
Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly Val
1 5 10 15
Leu Glu

<210> 59
<211> 14
<212> PRT
<213> Homo sapiens

<400> 59
Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly Val
1 5 10

<210> 60
<211> 21
<212> PRT
<213> Homo sapiens

<400> 60
Ala Ser Gly Leu Glu Thr Asp Ser Leu Gly Gly Val Leu Glu Ala Ser
1 5 10 15
Gly Tyr Ser Thr Glu
20

<210> 61
<211> 10
<212> PRT
<213> Homo sapiens

<400> 61
Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly
1 5 10

<210> 62
<211> 22
<212> PRT
<213> Homo sapiens

<400> 62
Thr Leu Asp Ser Leu Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr
1 5 10 15
Glu Val Val Ala Leu Ser
20

<210> 63
<211> 22
<212> PRT
<213> Homo sapiens

<400> 63
Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu
1 5 10 15
Ser Arg Gly Gln Gly Ser
20

<210> 64

<211> 22

<212> PRT

<213> Mus musculus

<400> 64

Glu Asn Leu Arg Asp Leu Leu His Leu Leu Ala Phe Ser Lys Ser Cys
1 5 10 15
Ser Leu Pro Gln Thr Ser
20

<210> 65

<211> 22

<212> PRT

<213> Mus musculus

<400> 65

Leu Leu His Leu Leu Ala Phe Ser Lys Ser Cys Ser Leu Pro Gln Thr
1 5 10 15
Ser Gly Leu Gln Lys Pro
20

<210> 66

<211> 22

<212> PRT

<213> Mus musculus

<400> 66

Ala Phe Ser Lys Ser Cys Ser Leu Pro Gln Thr Ser Gly Leu Gln Lys
1 5 10 15
Pro Glu Ser Leu Asp Gly
20

<210> 67

<211> 22

<212> PRT

<213> Mus musculus

<400> 67

Cys Ser Leu Pro Gln Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp
1 5 10 15
Gly Val Leu Glu Ala Ser
20

<210> 68

<211> 18

<212> PRT

<213> Mus musculus

<400> 68

Leu Pro Gln Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp Gly Val
1 5 10 15
Leu Glu

<210> 69

<211> 14

<212> PRT

<213> Mus musculus

<400> 69

Gln Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp Gly Val
1 5 10

<210> 70
<211> 22
<212> PRT
<213> Mus musculus

<400> 70
Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp Gly Val Leu Glu Ala
1 5 10 15
Ser Leu Tyr Ser Thr Glu
20

<210> 71
<211> 10
<212> PRT
<213> Mus musculus

<400> 71
Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp
1 5 10

<210> 72
<211> 22
<212> PRT
<213> Mus musculus

<400> 72
Lys Pro Glu Ser Leu Asp Gly Val Leu Glu Ala Ser Leu Tyr Ser Thr
1 5 10 15
Glu Val Val Ala Leu Ser
20

<210> 73
<211> 22
<212> PRT
<213> Mus musculus

<400> 73
Asp Gly Val Leu Glu Ala Ser Leu Tyr Ser Thr Glu Val Val Ala Leu
1 5 10 15
Ser Arg Leu Gln Gly Ser
20

<210> 74
<211> 67
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Chimeric oligonucleotides

<400> 74
atgcaacacagg acggacttgg agtagtttc uacuccaagt cagtcuguu gcaugcgcgt 60
ttcgcgc 67

<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Forward Primer

<400> 75		
tgtccacgtc gtttacgctc		20
<210> 76		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Reverse Primer		
<400> 76		
tcccacttcc gttccttgtc		20
<210> 77		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Probes endogenous/mutant		
<400> 77		
cctactccaa gtcmtgtcctg ttgcatt		27
<210> 78		
<211> 67		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Chimeric oligonucleotides		
<400> 78		
gaccctgccc tgtacacctacc taccagatgt tttcaucugg uaggttcagg gcagggucgc		60
gcgtttt		67
<210> 79		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Forward Primer		
<400> 79		
gtgggtatcc tcttccagcc t		21
<210> 80		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Reverse Primer		
<400> 80		
ccagatgacg atgggttgc		19
<210> 81		
<211> 25		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> oligonucleotide Probes endogenous/mutant		
<400> 81		25
accctgcacct gwcttaccag atgac		
<210> 82		
<211> 68		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Chimeric oligonucleotides		
<400> 82		60
tggctgagct cttacctggc tttcatttt gaaaaccagg tcagagctca gccagcgct		68
tttcgcgc		
<210> 83		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Forward Primer		
<400> 83		20
gagctcatcg tccttggag		
<210> 84		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Reverse Primer		
<400> 84		19
agtcttctat gggccccgc		
<210> 85		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Probes endogenous/mutant		
<400> 85		27
caccgactcg agamtggacc aaaagtc		
<210> 86		
<211> 68		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Chimeric oligonucleotides		
<400> 86		60
ggttgtggta tgcctggctg cttttttt aaggcagcca gtcataccac aaccgcgcgt		68
tttcgcgc		

<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Forward Primer

<400> 87
acgcagagct catcgccctt 20

<210> 88
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Reverse Primer

<400> 88
gatgccagg aggaggaaga 20

<210> 89
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Probes endogenous/mutant

<400> 89
caacaccata ckgaccgacg gaa 23

<210> 90
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide mouse LSR specific primer

<400> 90
acgcattggga atcatggc 18

<210> 91
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Zinc finger nucleotides of SEQID1

<400> 91
taggggtgag cggcgaaaa 18

<210> 92
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide Zinc finger nucleotides of SEQID1

<220>		
<221> misc_feature		
<222> 10..12		
<223> n=a, g, c or t		
<400> 92	21	
gagggctggn nntaggggtg a		
<210> 93		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Zinc finger nucleotides of SEQID1		
<220>		
<221> misc_feature		
<222> 10..11		
<223> n=a, g, c or t		
<400> 93	20	
agggctgggn nttaggggtga		
<210> 94		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Zinc finger nucleotides of SEQID1		
<400> 94	18	
gtgggagccg agggctgg		
<210> 95		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Zinc finger nucleotides of SEQID1		
<220>		
<221> misc_feature		
<222> 10		
<223> n=a, g, c or t		
<400> 95	19	
gtgggagccn agggctggg		
<210> 96		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> oligonucleotide Zinc finger nucleotides of SEQID1		
<400> 96	18	
gcggcggccg ggtgggag		

ESTIMATE OF THE NUMBER OF NUCLEOTIDES IN THE ZINC FINGER

<210> 97 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	
<223> oligonucleotide Zinc finger nucleotides of SEQID1	
<400> 97 ttggccggag cagatggg	18
<210> 98 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> oligonucleotide Zinc finger nucleotides of SEQID1	
<220>	
<221> misc_feature <222> 10..11 <223> n=a, g, c or t	
<400> 98 gcagatgggn ncggaaaggg	20
<210> 99 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	
<223> oligonucleotide Zinc finger nucleotides of SEQID1	
<220>	
<221> misc_feature <222> 10..12 <223> n=a, g, c or t	
<400> 99 aggcctgggn nnagggggtga g	21
<210> 100 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	
<223> oligonucleotide Zinc finger nucleotides of SEQID1	
<220>	
<221> misc_feature <222> 10..12 <223> n=a, g, c or t	
<400> 100 agggggtgagn nnccggggagg g	21
<210> 101 <211> 18 <212> DNA <213> Artificial Sequence	

<pre> <220> <223> oligonucleotide Zinc finger nuclotides of SEQID1 <400> 101 aagtgggtct cggttgca </pre>	18
<pre> <210> 102 <211> 21 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> oligonucleotide zinc finger LSR sequences </pre>	
<pre> <400> 102 aaggtcgcct atggtgac a </pre>	21
<pre> <210> 103 <211> 20 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> oligonucleotide zinc finger LSR sequences </pre>	
<pre> <400> 103 gtgggagccc gggggcttgg </pre>	20
<pre> <210> 104 <211> 18 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> oligonucleotide zinc finger LSR sequences </pre>	
<pre> <400> 104 tgggggttggg cggcgaaaa </pre>	18
<pre> <210> 105 <211> 20 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> oligonucleotide zinc finger LSR sequences </pre>	
<pre> <400> 105 ccgggaatgc gcagggggtt </pre>	20
<pre> <210> 106 <211> 19 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> oligonucleotide zinc finger LSR sequences </pre>	
<pre> <400> 106 gtggctgcac aaggtaaaaa </pre>	19