BF19.71

April 17, 2024

1 Mekanik II, problem 19.71

The 2 kg sphere A is moving toward the right at 4 m/s when it strikes the end of the 5 kg slender bar B. Immediately after the impact, the sphere A is moving toward the right at 1 m/s. What is the angular velocity of the bar after the impact?

Vi inför följande beteckningar: stavens längd L=1 m, massorna $m_A=2$ kg, $m_B=5$ kg samt bollen As hastigheter före och efter stöt $v_A^f=4$ m/s, $v_A^e=1$ m/s.

Dessutom använder vi ett koordinatsystem med x åt höger, y nedåt och z in i figuren.

2 Lösning:

2.1 Fysikaliska samband

När bollen A träffar staven B sker en stöt. Vid stöt bevaras inte energin (förutom elastiska stötar). Eftersom staven B sitter fast i O kommer det uppkomma en stor kraft F mellan stav och upphängning i O och därför kan inte rörelsemängden för systemet A+B antas bevaras.

Däremot kan vi anta att rörelsemängdsmomentet för A+B bevaras med avseende på O då den stora men okända kraften F inte bidrar till något kraftmoment med avseende på O.

2.2 Rörelsemängdsmoment

Om vi gör en stötapproximation enligt resonemanget ovan så kan vi sätta att rörelsemängdsmomentet före stöten (med avseende på O) bara kommer från rörelsen för A och ges av.

$$\mathbf{H}_O^f = \mathbf{r}_{AB} \times (m_A \mathbf{v}_A^f = L\hat{y} \times (m_A v_A^f \hat{x}) = -m_A v_A^f L\hat{z}.$$
 (I)

Direkt efter stöten fortsätter A åt höger men med lägre hastighet och B har börjat rotera med vinkelhastigheten ω vilket ger det sammanlagda rörelsemängdsmomentet

$$\mathbf{H}_{O}^{e} = \mathbf{r}_{AB} \times (m_{A}\mathbf{v}_{A}^{e} + \frac{m_{B}L^{2}}{3}\omega(-\hat{z}) = -m_{A}v_{A}^{r}L\hat{z} - \frac{m_{B}L^{2}}{3}\omega\hat{z}.$$
 (II)

2.3 Beräkning

Sätter vi in rörelsemängdsmomenten i (I) och (II) som lika fås (på skalär form)

$$m_A v_A^f L = m_A v_A^e L - \frac{m_B L^2}{3} \omega$$

Eftersom det är ω som efterfrågas kan den lösas ut som

$$\omega = m_A L (v_A^f - v_A^e) \frac{3}{m_B L^2} = \frac{3m_A}{m_B L} (v_A^f - v_A^e)$$

Med insatta värden fås då $\omega=3.6~\mathrm{rad/s}$

2.4 Svar

Vinkelhastigheten ω för staven direkt efter stöten blir ω =3.6 rad/s.