### SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH TRƯ**ỜNG THPT BÁCH VIỆT**

Đề thi chính thức Đề thi có ..01.. trang

### ĐỀ KIỂM TRA HỌC KỲ I LỚP 11 NĂM HỌC 2015 - 2016 Môn thị: VÂT LÝ

Thời gian làm bài: 45 phút (không kể thời gian giao đề) Ngày thi 09/12/2015

PHẦN CHUNG: (7 điểm)

Câu 1: (2 điểm)

Nêu bản chất của dòng điện trong kim loại. Viết công thức mô tả sự phụ thuộc của điện trở suất theo nhiệt độ, ghi chú đơn vị

Câu 2: (2,5 điểm)

Phát biểu và viết công thức của định luật Jun-Lenxo.

Áp dụng: Một bàn là điện được sử dụng với hiệu điện thế 200 V thì dòng điện chạy qua bàn là có cường độ là 1,5 A. Tính nhiệt lượng mà bàn là tỏa ra trong 1 giờ 30 phút?

Câu 3: (1,5 điểm)

Định nghĩa cường độ dòng điện, công thức, đơn vị.

Câu 4: (1 điểm)

Bộ nguồn gồm 10 pin giống hệt nhau mắc nối tiếp. Mỗi pin có suất điện động e=1,2V và điện trở trong là r=0,2  $\Omega$ . Tính suất điện động và điện trở trong của bộ nguồn đó.

PHẦN RIÊNG: (3 điểm)

Câu 5A: (3 điểm)

Nhóm 3:

Cho mạch điện gồm nguồn điện E = 10V,  $r = 2\Omega$ .

 $R_1=R_3=6\Omega$ ,  $R_2=3\Omega$ . Tính:

a/Cường độ dòng điện trong mạch chính.

b/Hiệu điện thế giữa hai đầu nguồn điện.



## Câu 5B: (3 điểm)

### Nhóm 1 và Nhóm 2:

 $E=12V,~r=2\Omega,~R_1\!\!=\!\!4\Omega,~R_3=6\Omega,~$  Đèn có điện trở  $R_2$  và trên đèn ghi: (3V - 3W). Bình điện phân có điện trở  $R_4=4\Omega$  và điện phân dung dịch AgNO3 với dương cực tan. Tính:

a/Cường độ dòng điện trong mạch chính. b/Hiệu điện thế giữa hai đầu nguồn điện. c/Tính khối lượng bạc giải phóng khỏi Catot trong 32 phút 10 giây?



| HÉT |
|-----|
|     |

- Thí sinh không được sử dụng tài liệu
- Giám thị không giải thích gì thêm

| Họ và tên học sinh:    | Số báo danh:          |
|------------------------|-----------------------|
| Chữ ký của giám thi 1: | Chữ ký của giám thị 2 |

- YÊU CÂU:

  Đề thi như mẫu trên.
  Sử dụng phông chữ Times New Roman, mã Unicode, co chữ 13.

## SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỎ CHÍ MINH **TRƯỜNG THPT BÁCH VIỆT**

## HƯỚNG DẪN CHẨM THI MÔN VẬT LÝ KIỂM TRA HỌC KỲ I LỚP 11 NĂM HỌC 2015 – 2016

ĐỀ THI CHÍNH THỰC

 $(Bån\ Hướng\ d\~an\ chấm\ thi\ gồm\ 01\ trang)$ 

| Câu             | Nội dung                                                         | Điểm |
|-----------------|------------------------------------------------------------------|------|
| <u>Câu 1</u> :  | Dòng điện trong kim loại là dòng chuyển dời có hướng của các (e) | 1    |
| 2 điểm          | tự do dưới tác dụng của điện trường.                             |      |
|                 | $\rho = \rho_o.[1 + \alpha(t - t_o)]$                            |      |
|                 | ρ điện trở suất ở t                                              |      |
|                 | $\rho_o$ điện trở suất ở $t_o$ ° c                               | 1    |
|                 | $\alpha$ hệ số nhiệt điện trở (K <sup>-1</sup> )                 |      |
| <u>Câu 2</u> :  | Nhiệt lượng tỏ ra ở một dây dẫn tỉ lệ thuận với điện trở của dây | 1    |
| 2,5 điểm        | dẫn, với bình phương cường độ dòng điện và thời gian dòng điện   |      |
|                 | chạy qua vật dẫn đó.                                             | 0.5  |
|                 | $Q = I^2 Rt$                                                     | 0,5  |
|                 | Q: nhiệt lượng tỏa ra (J)                                        |      |
|                 | I: cường độ dòng điện (A)                                        |      |
|                 | R: điện trở $(\Omega)$                                           |      |
|                 | t: thời gian (s)                                                 |      |
|                 | Áp dung: $t=1h30p=5400(s)$<br>Q= $I^2Rt$                         | 1    |
|                 | = UIt= 200*1,5*5400=1620000 J                                    | 1    |
|                 | - OII- 200°1,5°5400-1020000 J                                    |      |
| <u>Câu 3:</u>   | Cường độ dòng điện là đại lượng đặc trưng cho tác dụng mạnh      | 1    |
| 1,5 điểm        | yếu của dòng điện. Nó được xác định bằng thương số của điện      |      |
|                 | lượng Δq dịch chuyển qua tiết diện thẳng của vật dẫn trong       |      |
|                 | khoảng thời gian Δt và khoảng thời gian đó.                      |      |
|                 | $I = \Delta q / \Delta t$                                        | 0,5  |
|                 | I: cường độ dòng điện (A)                                        |      |
|                 | Δq: Đi=ện lượng (C)                                              |      |
|                 | Δt: khoảng thời gian (s).                                        |      |
| <u>Câu 4</u> :  | E=1,2V; $r=0,2\Omega$                                            |      |
| 1điểm           | $E_b=10*E=1,2*10=12V$                                            | 0,5  |
|                 | $r_b=10*r=10*0,2=2\Omega$                                        | 0,5  |
| <u>Câu 5A</u> : | $a/R_{23} = (R_2 * R_3)/(R_2 + R_3) = 2\Omega$                   | 1    |
| 3 điểm          | $R = R_1 + R_{23} = 8\Omega$                                     |      |
|                 | I=E/(R+r)=1 (A)                                                  |      |
|                 |                                                                  | 0.7  |
|                 | b/U = E-Ir = 8V                                                  | 0,5  |
|                 | $c/I_{dm}=2A$ , $R_D=3\Omega$ .                                  |      |
|                 | $C/I_{dm}-2A$ , $N_D-322$ .                                      | 0,5  |
|                 | $R_{D3} = (R_D * R_3) / (R_D + R_3) = 2\Omega$                   | 0,5  |
|                 | N-93- (N-9) N-3// (N-9-N-3)-2-2-2                                |      |
|                 |                                                                  |      |
|                 |                                                                  |      |

|                           | $\begin{split} R = & R_1 + R_{\mathrm{D}3} = \! 8\Omega \\ I = & E \! / (R + r) = 1 \ (A) \\ I = & I_1 = & I_{\mathrm{D}3} = 1A \\ U_{\mathrm{D}3} = & U_{\mathrm{D}} = & U_{3} = & I_{d3} * R_{d3} = 2V \\ I_{\mathrm{D}} = & 2/3A \\ V i I_{\mathrm{D}} < & I_{dm} \ n \hat{e} n \ d \hat{e} n \ s \acute{a} ng \ y \acute{e} u  . \end{split}$ | 1   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <u>Câu 5B</u> :<br>3 điểm | a/ $I_{dm}$ =1A, $R_d$ = 3 $\Omega$ .<br>$R_{23}$ = $R_{23}$ = $(R_2*R_3)/(R_2+R_3)$ = 2 $\Omega$<br>$R$ = $R_1$ + $R_{23}$ + $R_4$ =10 $\Omega$<br>I= $E/(R+r)$ = 1A                                                                                                                                                                             | 0,5 |
|                           | b/ U=E-Ir=10V                                                                                                                                                                                                                                                                                                                                     | 0,5 |
|                           | $ c/I = I_1 = I_{23} = I_4 = 1A $ $ t = 32p10s = 1930(s). $ $ m = 1/F*A/n*I*t = (1/96500)*(108/1)*1*1930 = 2,16(g) $                                                                                                                                                                                                                              | 1   |

# --- **H**ÉT ---

# YÊU CÂU:

- Bảng hướng dẫn chấm thi như mẫu trên.
  Sử dụng phông chữ Times New Roman, mã Unicode, co chữ 13.