CONVEXITY OF SETS

CONVEX SETS

- \triangleright A set Ω is convex if given any two points $x, y \in \Omega$, and any $\theta \in [0, 1]$
- \triangleright we have $\theta x + (1 \theta)y \in \Omega$.

- >Simple rearrangements provide alternative definitions for line segments,
- ➤ and hence convexity:

$$\{\theta x + (1 - \theta)y : 0 \le \theta \le 1\} = \{\theta_1 x + \theta_2 y : \theta_i \ge 0, \theta_1 + \theta_2 = 1\}$$
$$= \{y + \theta(x - y) : 0 \le \theta \le 1\}.$$

 \triangleright Open ball: $B_{\epsilon}(x) = \{y: ||x - y|| < \epsilon\}$

$$ightharpoonup$$
Closed ball: $\overline{B_{\epsilon}(x)} = \{y : ||x - y|| \le \epsilon\}$

EXAMPLE

► Intersection of convex sets: $C_1 \cap C_2$

 \triangleright Sum of convex sets: $C_1 + C_2$

 \triangleright {Ax: x \in C \subseteq \mathbb{R}^n, A \in \mathbb{R}^{m \times n}}

- \triangleright A point $z \in \mathbb{R}^n$ is a convex combination of the points in $\{x_1, x_2, ..., x_m\} \subseteq \mathbb{R}^n$
- \triangleright if there exists scalars $\theta_1, \ldots, \theta_m$, such that

$$z = \sum_{i=1}^{m} \theta_i x_i, \sum_{i=1}^{m} \theta_i = 1 \text{ and } \theta_i \ge 0 \text{ for } i = 1, ..., m.$$

 \triangleright Let $\Omega \subset \mathbb{R}^n$,

$$\begin{aligned} & \text{conv}(\Omega) \\ &= \left\{ y \colon y = \sum_{i=1}^m \theta_i x_i \,, \qquad x_i \in \Omega, \qquad \sum_{i=1}^m \theta_i = 1 \text{ and } \theta_i \geq 0 \text{ for } i = 1, \dots, m \right\}. \end{aligned}$$

EXAMPLE ON CONVEX HULL

 \triangleright Let S be an arbitrary set in \mathbb{R}^n . If $x \in \text{conv}(S)$, then $x \in \text{conv}(x_1, x_2, ..., x_{n+1})$.

- \triangleright A convex polytope is a geometric object in \mathbb{R}^n that has flat sides and
- >described as the intersection of a finite number of half-spaces, or

> as the solution set to a matrix inequality

$$C = \{x: Ax \le b, A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m\}$$

For as the convex hull of a finite number of points.

- \triangleright A simplex in \mathbb{R}^n is a bounded convex polytope with nonempty interior
- \triangleright and exactly n + 1 vertices.

- >Applications in optimization
 - For the class of pattern search methods, convergence relies on the convex hull of the poll directions having a nonempty interior.
 - ➤ In model-based methods, good models rely on a well-poised sample set.

- \triangleright Let $Y = \{y_0, y_1, \dots, y_n\}$ be a set of n + 1 points in \mathbb{R}^n .
- Then the following are equivalent:
 - 1. Conv(Y) is a simplex.
 - 2. The set $\{(y_1 y_0), (y_2 y_0), \dots, (y_n y_0)\}$ is linearly independent.
 - 3. The matrix $L = [(y_1 y_0) (y_2 y_0) ... (y_n y_0)]$ is invertible.
 - 4. The matrix $L = [(y_1 y_0) (y_2 y_0) ... (y_n y_0)]$ satisfies $det(L) \neq 0$.
- ➤ If conv(Y) is not a simplex, then we sometimes say Y forms a degenerate simplex.
- Degenerate or almost degenerate sets cause challenges in optimization because they do not effectively span the entire space.

Suppose $Y = \{y_0, y_1, \dots, y_n\}$ forms a simplex in \mathbb{R}^n and

$$\triangleright L = [(y_1 - y_0) (y_2 - y_0) ... (y_n - y_0)].$$

Then volume of conv(Y) is given by

$$vol(conv(Y)) = \frac{|det(L)|}{n!}$$

For ease of writing, it is common to use vol(Y) = vol(conv(Y)).

Suppose $Y = \{y_0, y_1, \dots, y_n\}$ forms a simplex in \mathbb{R}^n .

Then diameter of conv(Y) is given by

$$\operatorname{diam}(\operatorname{conv}(Y)) = \max\{\|x_i - x_j\| : x_i \in Y, x_j \in Y\}$$

For ease of writing, it is common to use diam(Y) = diam(conv(Y)).

➤ Suppose $Y = \{y_0, y_1, ..., y_n\}$ forms a simplex in \mathbb{R}^n .

Then normalised volume of conv(Y) is given by

$$von(conv(Y)) = \frac{vol(Y)}{(diam(Y))^n} = vol\left(\frac{Y}{diam(Y)}\right)$$

For ease of writing, it is common to use von(Y) = von(conv(Y)).

EXAMPLES ON VOL(Y), VON(Y)

$$\mathbb{Y}^1 = \{[0,0]^\top, [1,0]^\top, [0,1]^\top\}.$$

$$\operatorname{vol}(\mathbb{Y}^1) = \frac{1}{2}, \quad \operatorname{diam}(\mathbb{Y}^1) = \sqrt{2}, \quad \operatorname{von}(\mathbb{Y}^1) = \frac{1}{4}.$$

EXAMPLES ON VOL(Y), VON(Y)

$$\mathbb{Y}^2 = \{[0,0]^\top, [2,0]^\top, [0,2]^\top\}.$$

$$\operatorname{vol}(\mathbb{Y}^2) = 2$$
, $\operatorname{diam}(\mathbb{Y}^2) = 2\sqrt{2}$, $\operatorname{von}(\mathbb{Y}^2) = \frac{1}{4}$.

 \overline{T}

EXAMPLES ON VOL(Y), VON(Y)

$$\mathbb{Y}^4 = \{[0,0]^\top, [1,0]^\top, [1/2,1]^\top\}.$$

W3

$$vol(\mathbb{Y}^4) = \frac{1}{2}, \quad diam(\mathbb{Y}^4) = \sqrt{1.25}, \quad von(\mathbb{Y}^4) = \frac{2}{5}.$$

- Suppose $Y = \{y_0, y_1, \dots, y_n\}$ forms a simplex in \mathbb{R}^n .
- Then approximate diameter of conv(Y) is given by

$$\overline{\operatorname{diam}}(\operatorname{conv}(Y)) = \max\{\|x_i - x_0\| : x_i \in Y, x_0 \in Y\}$$

- For ease of writing, it is common to use $\overline{\text{diam}}(Y) = \overline{\text{diam}}(\text{conv}(Y))$.
- ➤ Using triangle inequality:

$$\overline{\text{diam}}(Y) \leq \text{diam}(Y) \leq 2\overline{\text{diam}}(Y)$$

▶Convex combination

➤ Affine combination

▶Conic combination:

► Linear combinations

SOME TOPOLOGICAL RESULTS ON CONVEX SETS

SOME TOPOLOGICAL RESULTS ON CONVEX SETS

- Let S be a convex set in \mathbb{R}^n with a nonempty interior. Let $x_1 \in cl(S)$ and $x_2 \in int(S)$.
- Then $\lambda x_1 + (1 \lambda)x_2 \in int(S)$ for each $\lambda \in (0,1)$.

➤ Visualization:

WEIERSTRASS'S THEOREM

Existence of a minimizing solution for an optimization problem:

 $ightharpoonup ar{x}$ is a minimizing solution for the problem $\min\{f(x): x \in S\}$, provided that $\bar{x} \in S$ and $f(\bar{x}) \leq f(x)$ for all $x \in S$.

 $\succ \alpha = \inf\{f(x): x \in S\}$, if α is the greatest lower bound of f on S.

 \triangleright Let S be a nonempty, compact set, and let f: S $\rightarrow \mathbb{R}$ be continuous on S.

Then the problem $min\{f(x): x \in S\}$ attains its minimum; that is, there exists a minimizing solution to this problem.

SEPARATION OF CONVEX SETS

HYPERPLANE AND HALF SPACES

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

HYPERPLANE AND HALF SPACES

Hyperplane and corresponding half-spaces:

The hyperplane can be written in reference to a normal vector p of the form:

$$H = \{x : p'x = \alpha\}$$

 \triangleright Alternatively, the hyperplane can be written in reference to a point \bar{x} in H

$$H = \{x : p'(x - \bar{x}) = 0\}.$$

CLOSEST-POINT THEOREM

- ► Let S be a nonempty closed convex set in \mathbb{R}^n and $y \notin S$.
- \triangleright Then, there exists a unique point $\bar{x} \in S$ with minimum distance from y.
- Furthermore, \bar{x} is the minimizing point if and only if $(y \bar{x})'(x \bar{x}) \le 0$ for each $x \in S$.

SEPARATION OF A CONVEX SET AND A POINT

► Let S be a nonempty closed convex set in \mathbb{R}^n and $y \notin S$.

Then, there exists a nonzero vector p and a scalar a such that $p'y > \alpha$ and $p'x \le \alpha$ for each $x \in S$.

HYPERPLANES AND SEPARATION OF TWO SETS

➤ Various types of separation:

Strong separation

 π

HYPERPLANES AND SEPARATION OF TWO SETS

The hyperplane H(p, b) which separates sets X and Y in \mathbb{R}^n

 \triangleright if for all $x \in X$ and $y \in Y$, we have $p'x \le b \le p'y$.

MORE ON SEPARATION OF A CONVEX SET AND A POINT

Let S be a nonempty set, and let $y \notin cl(conv(S))$. Then there exists a strongly separating hyperplane for S and y.

- There exists a hyperplane that strictly separates S and y.
- There exists a vector p such that $p'y > \sup\{p'x : x \in S\}$.
- There exists a vector p such that $p'y < \inf\{p'x : x \in S\}$

FARKAS'S THEOREM

For given A, b, exactly one of the following statements is true:

 \triangleright there exists an x with $Ax = b, x \ge 0$,

There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

π

GEOMETRIC INTERPRETATION OF FARKAS' THEOREM

assume A is $m \times n$ with columns a_i

first alternative

$$b = \sum_{i=1}^{n} x_i a_i, \quad x_i \ge 0, \quad i = 1, \dots, n$$

b is in the cone generated by the columns of A

second alternative

$$y^T a_i \ge 0, \quad i = 1, \dots, m, \qquad y^T b < 0$$

the hyperplane $y^Tz=0$ separates b from a_1,\ldots,a_m

Let A be an $m \times n$ matrix and c be an *n*-vector. Then exactly one of the following two systems has a solution:

System 1: $Ax \le 0$ and $c^t x > 0$ for some $x \in \mathbb{R}^n$.

System 2: $A^t y = c$ and $y \ge 0$ for some $y \in R^m$.

Suppose that System 2 has a solution; that is, there exists $y \ge 0$ such that $A^t y = c$. Let x be such that $Ax \le 0$. Then $c^t x = y^t Ax \le 0$. Hence, System 1 has no solution. Now suppose that System 2 has no solution. Form the set $S = \{x : x = A^t y, y \ge 0\}$. Note that S is a closed convex set and that $c \notin S$. By Theorem

24-02-2020 TO 02-3-2020

SUPPORTING HYPERPLANE

- ► Let S be a nonempty set in \mathbb{R}^n , and let $\bar{x} \in \partial S$.
- A hyperplane $H = \{x : p'(x \bar{x}) = 0\}$ is called a supporting hyperplane of S at \bar{x} if either $S \subseteq H^+$, that is, $p'(x \bar{x}) \le 0$ for each $x \in S$,
- For else, $S \subseteq H^-$, that is, $p'(x \bar{x}) \le 0$ for each $x \in S$.

 \triangleright If, in addition, S ∉ H, H is called a proper supporting hyperplane of S at \bar{x} .

EXAMPLE ON SUPPORTING HYPERPLANE

CONES AND POLARITY

CONES AND POLARITY

 \triangleright Polar cone: Let S be a nonempty set in \mathbb{R}^n . Then the polar cone of S is given by {p: p'x≤0 for all x∈S}.

TANGENT CONE AND NORMAL CONES

Normal cone: Let S be a nonempty set in \mathbb{R}^n . Then the normal cone of S at $x \in S$ is given by $\{p: p'(y-x) \le 0 \text{ for all } y \in S\}$.

Tangent cone: Let S be a nonempty set in \mathbb{R}^n . Then the feasible direction cone of S at $x \in S$ is given by $\{d: \exists \epsilon > 0 \text{ s.t.} x + \epsilon d \in S\}$.

Extreme point:

- Let S be a nonempty convex set in \mathbb{R}^n . A vector $x \in S$ is called an extreme point of S
- \triangleright if $x = \lambda x_1 + (1 \lambda)$ with $x_1, x_2 \in S$, and $\lambda \in (0,1)$ implies that $x = x_1 = x_2$.

Direction:

- \triangleright Let S be a nonempty, closed convex set in \mathbb{R}^n .
- \triangleright A nonzero vector d in \mathbb{R}^n is called a direction, or a recession direction, of S
- \triangleright if for each $x \in S$, $x + \lambda d \in S$ for all $\lambda \ge 0$.

Let C be a nonempty closed convex set.

 \triangleright The recession cone R_C is a closed convex cone.

 \triangleright A vector y belongs to R_C if and only if there exists a vector $x \in C$ such that $x + \alpha y \in C$ for all $\alpha \ge 0$.

 $\geq R_C$ contains a nonzero direction if and only if C is unbounded.

 \triangleright The recession cones of C and ri(C) are equal.

- Let S be a nonempty convex set in \mathbb{R}^n . A direction d is called an extreme direction of S
- Fif $d = \lambda d_1 + (1 \lambda)d_2$ with d_1, d_2 , are two different directions and $\lambda \in (0,1)$ implies that $d = d_1 = d_2$.

