Total No	o. of Questions: 8]	SEAT No. :		
P313	[6002] 202	[Total No. of Pages : 2		
	[6003]-393 T.E. (E&TC Engineering	*)		
ELECTROMAGNETIC FIELD THEORY				
(2019 Pattern) (Semester-I) (304182)				
TT! 0				
	[V2 Hours] Sons to the candidates:	[Max. Marks : 70		
<i>1)</i>	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q	2.8.		
2)	Figures to the right indicate full marks.			
3)	Assume suitable data, if necessary.			
<i>4</i>)	Use of a Calculator is allowed.	200		
5)	Neat diagrams must be drawn wherever necessary.			
Q1) a)	Derive the Poisson's and Laplace's equation	n from Gauss's Law. State		
	Laplace's equation in three co-ordinate syste	m [10]		
b)	Derive an boundary expression for dielectric-	dielectric medium [8]		
		1		
	OR			
Q2) a)	For a parallel plate capacitor, area of plate A	A=12cm ² , spacing between		
	plate d = 5mm separated by dielectric of e	$\epsilon_r = 12$, connected to 40 V		
	battery find:	[8]		
	i) Capacitance	(
	ii) E			
	iii) D			
1.	iv) Energy stored in capacitor			
b)	Derive an boundary expression for an interf			
	medium with permeability μ_1 and μ_2	[10]		
	V	00, 10.		
Q3) a)	State and Explain Displacement Current I			
	Current. Explain Physical Significance of dis			
b)	Write a Short note on Faradays' Law and Le	nz's law [8]		
		06,		
	OR O'	3		
Q4) a)	State and Prove Poynting Theorem	[8]		
b)	Write Maxwell equation for free space in point			
		[8]		
	Ø. V	P.T.O.		
	*.			

Q 5)	a)	Explain Snell's law of refraction. Derive the same. [10])]	
	b)	Explain reflection of Uniform Plane wave [8	;]	
		ŎR		
00	-)	Define dende of a house in the constant of a second	_	
Q6)	a)	Define depth of penetration, Derive the expression for depth of penetration		
	1. \	tion for good conductor. [8		
	b)	Define [10	ני	
		i) Phase velocity		
		ii) Group Velocity		
		iii) Propogation Constant		
		iv) Intrinsic impendence		
		v) Wavelength		
07)				
Q 7)	a)	Explain different distortions of transmission lines? What is mean b	•	
	1 \ \	distortion less line and explain the condition of distortion less lines? [8		
	b) \	A lossy dielectric is characterized by $\epsilon_r = 2.5 \ \mu_r = 4 \text{ and } 6 = 10^3 \text{ pc}$		
		ohm.m at frequency 10 MHz find [10)]	
		i) attenuatin Constantii) Phase constant		
		iii) Velocity of Propagation		
		iv) Wavelength and		
		v) Intrinsic impendence	3	
			3	
		OR		
Q 8)	a)	Derive relation between Primary constant and secondary constant of	of	
		transmission line [8	3]	
	b)	A 50 ohm transmission line is terminated in a load $Z_0 = 25 + j50 \Omega$. Th	ie	
		length of transmission line is 3.3 lambada Find the following using smit		
		chart [10)]	
		i) VSWR		
		ii) Reflection coefficient		
		iii) Input impedance		
		i) VSWRii) Reflection coefficientiii) Input impedanceiv) input admittance.		
		6.		
[600	3]-3	2		