

ROBOTICS AND INTELLIGENCE SYSTEMS

Undergraduate course (Spring 2020)

Nguyen Do Van, PhD

Part of the Lecture

- Robotics
 - Autonomous control
 - Mechanism, planning and navigation
 - Sensoring
- Autonomous Robots
 - Robot Mechanism
 - Navigation
 - Sensor-driven
- Intelligent Robots
 - Intelligent systems
 - Learning Robots

ROBOTICS

A Brief History of Robotics

- Mechanical Automata
 - Ancient Greece & Egypt
 - Water powered for ceremonies
 - 14th 19th century Europe
 - Clockwork driven for entertainment
- Motor driven Robots
 - 1928: First motor driven automata
 - 1961: Unimate
 - First industrial robot
 - 1967: Shakey
 - Autonomous mobile research robot
 - 1969: Stanford Arm
 - Dextrous, electric motor driven robot arm

Maillardet's Automaton

Unimate

Robot Accessories

Actuators:

- Actuators are the muscles of the manipulators.
- Common types: servomotors, stepper motors, pneumatic cylinders.

• Sensors:

- Sensors are used to collect information about the internal state of the robot or to communicate with the outside environment.
- Robots are often equipped with external sensory devices: vision system, touch, tactile, sound, balancing sensors, GPS ...

• Controller:

- The controller receives data from the computer,
- Controls the motions of the actuator and coordinates these motions with the sensory feedback information.

Actuator

- Servomotors
 - Precise control of angular position
 - Sensor for feedback
- Stepper motor
 - DC electric motor divides full rotation into number of equal steps
- Pneumatic cylinder (air cylinder)
 - Produces liner movement

Proximity Sensors

- Proximity sensors: measure the distance or location of objects in the environment.
 - Infrared sensors: measure the amount of infrared light the object reflects back to the robot
 - Ultrasonic sensors (sonars): measure the time that an ultrasonic signal takes until it returns to the robot
 - Laser range finders:
 - measuring either the time a laser beam to be reflected back to the robot
 - where the laser hits the object

Vision and Depth Sensors

- Computer Vision
- Depth Sensors:
 - Stereo vision systems provide complete location information using triangulation

- However, computer vision is very complex
 - Correspondence problem makes stereo vision even more difficult

Controllers

Phidgets Servo 1-Motor Controller

Arduino Uno R3 Microcontroller

Pixhawk flight controller

AUTONOMOUS ROBOTS

Autonomous Robots

- The control of autonomous robots involves a number of subtasks
 - Understanding and modeling of the mechanism
 - Kinematics, Dynamics, and Odometry
 - Reliable control of the actuators
 - Closed-loop control
 - Generation of task-specific motions
 - Path planning
 - Integration of sensors
 - Selection and interfacing of various types of sensors
 - Coping with noise and uncertainty
 - Filtering of sensor noise and actuator uncertainty
 - Creation of flexible control policies
 - Control has to deal with new situations

Traditional Industrial Robots

- Traditional industrial robot control uses robot arms and largely pre-computed motions
 - Programming using "teach box"
 - Repetitive tasks
 - High speed
 - Few sensing operations
 - High precision movements
 - Pre-planned trajectories and task policies
 - No interaction with humans

Autonomous Robot Control

- To control robots to perform tasks autonomously a number of tasks have to be addressed:
 - Modeling of robot mechanisms
 - Kinematics, Dynamics
 - Robot sensor selection
 - Active and passive proximity sensors
 - Low-level control of actuators
 - Closed-loop control
 - Control architectures
 - Traditional planning architectures
 - Behavior-based control architectures
 - Hybrid architectures

Modeling the Robot Mechanism

- Forward kinematics describes how the robots joint angle configurations translate to locations in the world
- Inverse kinematics computes the joint angle configuration necessary to reach a particular point in space.
- Jacobians calculate how the speed and configuration of the actuators translate into velocity of the robot

Robot Navigation

- Path planning addresses the task of computing a trajectory for the robot such that it reaches the desired goal without colliding with obstacles
 - Optimal paths are hard to compute in particular for robots that can not move in arbitrary directions (i.e. nonholonomic robots)
 - Shortest distance paths can be dangerous since they always graze obstacles

Paths for robot arms have to take into account the entire robot (not only the end

effector)

Sensor-Driven Robot Control

- To accurately achieve a task in an intelligent environment, a robot has to be able to react dynamically to changes ion its surrounding
 - Robots need sensors to perceive the environment
 - Most robots use a set of different sensors
 - Different sensors serve different purposes
 - Information from sensors has to be integrated into the control of the robot

INTELLIGENT ROBOTS

Problems

- Traditional programming techniques: lack key capabilities necessary in intelligent environments
 - Only limited on-line sensing
 - No incorporation of uncertainty
 - No interaction with humans
 - Reliance on perfect task information
 - Complete re-programming for new tasks

What are Systems?

- Assemblages of parts with structure, connectivity, and behavior
- Modules that relate to each other
- Interacting entities with common goals
- Objects with defined boundaries within some environment
- Objects that respond to inputs from externalities
- Objects that create outputs to externalities

Intelligent System

- Systems that
 - Perform useful functions driven by desired goals and current knowledge
 - Emulate biological and cognitive processes
 - Process information to achieve objectives
 - Learn by example or from experience
 - Adapt functions to a changing environment
- Learning: Data + Insight -> Knowledge

Requirements for Robots in Intelligent Environments

- Human-Robot Interfaces
 - Use of robots in smart homes can not require extensive user training
 - Commands to robots should be natural for inhabitants
- Autonomy and Adaptation
 - Robots have to be capable of achieving task objectives without human input
 - Robots have to be able to make and execute their own decisions based on sensor information
 - Robots have to be able to adjust to changes in the environment

Human-Robot Interaction

- Personal service robot
 - Controlled and used by untrained users
 - Intuitive, easy to use interface
 - Interface has to "filter" user input
 - Receive only intermittent commands
 - Robot requires autonomous capabilities
 - User commands can be at various levels of complexity
 - Control system merges instructions and autonomous operation
 - Interact with a variety of humans
 - Humans have to feel "comfortable" around robots
 - Robots have to communicate intentions in a natural way

Command Input

- Graphical programming interfaces
 - Users construct policies form elemental blocks
 - Requires substantial understanding of the robot
- Deictic (pointing) interfaces
 - Humans point at desired targets in the world or
 - Target specification on a computer screen
 - How to interpret human gestures ?
- Voice recognition
 - Humans instruct the robot verbally
 - Problems:
 - Speech recognition is very difficult
 - Robot actions corresponding to words has to be defined

Robot-Human Interaction

- He robot has to be able to communicate its intentions to the human
 - Output has to be easy to understand by humans
 - Robot has to be able to encode its intention
 - Interface has to keep human's attention without annoying her
- Robot communication devices:
 - Easy to understand computer screens
 - Speech synthesis
 - Robot "gestures"

Adaptation and Learning for Robots

- Intelligent Environments are non-stationary and change frequently, requiring robots to adapt
 - Adaptation to changes in the environment
 - Learning to address changes in inhabitant preferences
- Robots in intelligent environments can frequently not be pre-programmed
 - The environment is unknown
 - The list of tasks that the robot should perform might not be known beforehand
 - Different users have different preferences

Adaptation and Learning In Autonomous Robots

- Learning to interpret sensor information
 - Recognizing objects in the environment is difficult
 - Sensors provide prohibitively large amounts of data
 - Programming of all required objects is generally not possible
- Learning new strategies and tasks
 - New tasks have to be learned on-line in the home
 - Different inhabitants require new strategies even for existing tasks
- Adaptation of existing control policies
 - User preferences can change dynamically
 - Changes in the environment have to be reflected

Learning Approaches for Robot Systems

- Supervised learning by teaching
 - Robots can learn from direct feedback from the user that indicates the correct strategy
 - The robot learns the exact strategy provided by the user
- Learning from demonstration (Imitation)
 - Robots learn by observing a human or a robot perform the required task
 - The robot has to be able to "understand" what it observes and map it onto its own capabilities
- Learning by exploration
 - Robots can learn autonomously by trying different actions and observing their results
 - The robot learns a strategy that optimizes reward

Learning Sensory Patterns

- Learning to Identify Objects
 - How can a particular object be recognized?
 - Programming recognition strategies is difficult because we do not fully understand how we perform recognition
 - Learning techniques permit the robot system to form its own recognition strategy
 - Supervised learning can be used by giving the robot a set of pictures and the corresponding classification
 - Neural networks
 - Decision trees

Learning Task Strategies by Experimentation

- Autonomous robots have to be able to learn new tasks even without input from the user
 - Learning to perform a task in order to optimize the reward the robot obtains (Reinforcement Learning)
 - Reward has to be provided either by the user or the environment
 - Intermittent user feedback
 - Generic rewards indicating unsafe or inconvenient actions or occurrences
 - The robot has to explore its actions to determine what their effects are
 - Actions change the state of the environment
 - Actions achieve different amounts of reward
 - During learning the robot has to maintain a level of safety

Example: Reinforcement Learning in a Hybrid Architecture

- Policy Acquisition Layer
 - Learning tasks without supervision
- Abstract Plan Layer
 - Learning a system model
 - Basic state space compression
- Reactive Behavior Layer
 - Initial competence and reactivity

Example Task: Learning to Walk

Conclusion

- Robot Systems in these environments need particular capabilities:
 - Autonomous control systems
 - Simple and natural human-robot interface
 - Adaptive and learning capabilities
 - Robots have to maintain safety during operation
- Task:
 - Controlling program
 - Learning to understand environment and human interaction
 - Learning to act (advanced)