Bickhoff's HSP Thm and related stuff

Def. It I functional signature, an identity (over t) is t-sunt. of the form:

$$\forall x_1 \dots \forall x_N S(x_1, \dots, x_N) = t(x_1, \dots, x_N)$$
. (Sit T-tesms)

So
$$t^{A} = s^{A}$$
 iff $A \models \forall \bar{n} \ s(\bar{n}) = t(\bar{n})$.

Birkhoff's Thucern (6.5.1). Let A, B T-algebras. TFAE:

- (1) Every identity that holds in B holds in A.
- (2) A E HSP(B).
- If A, B ove finite con add:
- (3) A E HSPfin (B).

(2) A E HSP(B). If A, B finite: (3) A & HSP fin (B) If A,B finite I can be chosen to be fin. $proof. (2) \Rightarrow (1): \checkmark$ proof. (2) \Rightarrow (1): \vee (1) \Rightarrow (2) Choose by enough indux set I s.t. there is injective map $c: A \rightarrow B$ $\forall \overline{a} \in A^n \text{ injective}, \forall \overline{b} \in B^n \exists i e \overline{I} : (c(a_i)_{i_1}, c(a_n)_{i_i}) = \overline{b}.$ (*) Let $C \subseteq B^{T}$ subalgebra gen. by C(A). So $C = f(c(\overline{a})) : n \in \mathbb{N}, \overline{a} \in A^{n} \text{ inj.}, t$ \overline{t} -tesm} Define $\mu: C \to A$, $t(c(\bar{a})) \mapsto t(\bar{a})$ (t \bar{c} -tesm, $\bar{a} \in A^n$ inj.). μ well-diffind: If $s(c(\bar{n})) = \xi(c(\bar{n}))$, by $(*): s^B = t^B$, so $s^A = t^A$ in posticular s(a) = t(a). Charly pr sujective T-homen, , co A & HSP(B).

Birkhoff's Thucum TFAE:

(1) Every identity that holds in B holds in A.

aeAn ing.

beBn

ne M }

Take: I={ [a, b):

Corollary. A dan ob T-structures is a variety iff it is aniomalited by a set of identities over T.

tt. V vosicty ; find Ber: HSP(B) = V.

Theorem (6.9.2.8[1]) Let & any signature. A dan of &-structures is closed under products, substructures and homomorphic images iff it is assion. By a set of sent of the form: You repair.

Theorem. (Cos 9.5.10 [1]) Let L any signature. A clan K of L-struct. is assistant by a set of L-surtenus iff it is closed under ultrapoducts, isomosphic copies and ultrapots (Ae K if some ultrapower of A lies in K). A = B iff $A^T/U \cong B^T/U$

Faisler-Sheldh

[1] Hodel Theory - Hodges

Let A, B τ -algebras. The map, the natural homeon. $Clo(B) \rightarrow Clo(A)$ $Clo(B) \rightarrow Clo(A)$, $t \mapsto t$ (t some τ -term)

is well defined iff for all T-terms s,t: s = t = s = t .

Thm. (6.5.10.) A, B T-algebras. TFAE:

- (1) The natural hornom. (10(B) -> Clo(A) enists.
- (2) All identities that hold in B also hold in A.
- (3) A & HSP (B).

If A, B are finite we can add:

(4) A E HSP Fin (B).

(6.5.11). C, D op. closer. There is sujective hom. D \rightarrow C its there we also how A, B in same signature with A \in HSP(B) and Cb(A) = C, Cb(B) = D. If \Rightarrow : Take signature D to build A, B. Apply 6.5.10; \Leftarrow : Apply 6.5.10.

A(n) (abstract) dons is a multirocted structure

$$C = \left(\begin{array}{c} C^{(2)}, C^{(2)}, \dots \end{array} \right) \left(\begin{array}{c} P_i \\ P_i \end{array} \right)_{1 \le i \le k}, \left(\begin{array}{c} comp_k \\ P_k \end{array} \right)_{k \in \mathbb{Z}} \right)$$

$$const. symbols$$

$$s.t. \cdot k \circ (p_1^k, ..., p_k^k) = k$$

$$\cdot p_1^k \circ (b_1, ..., b_k) = ki$$

$$\cdot (k \circ (b_1, ..., b_k)) \circ (b_1, ..., b_k) = k \circ (b_1 \circ (b_1, ..., b_k), ..., b_k)$$

Every speration done can be interpreted to be a clone in a straight forward way.

A homomorphism $\psi: C \rightarrow D$ of Honor is a collection of maps $(\psi_1, \psi_2, ...)$ such that:

- $\varphi_k : C^{(k)} \longrightarrow D^{(k)}$
- $\cdot \ A^{k}(b_{j}^{!}) = b_{j}^{!}$
- · 4 (f · (2, ..., 2,)) = 4 (f) · (4, (2,) ..., 4 (4,))

An iromorphism $\psi: \mathbb{C} \to \mathbb{D}$ is a homom. s.t. there is a homom. $\psi: \mathbb{D} \to \mathbb{C}$ with $\psi \circ \psi = \mathrm{id}_{\mathbb{C}}$, $\psi \circ \psi = \mathrm{id}_{\mathbb{D}}$.

<u>Remark</u> (Cayley's Than.) Every chone is isomosphic to an operation danc. Pb. Given chone C, let $X = T_i C^{(i)}$ for $f \in C^{(k)}$ define: $\varphi(f): X^k \to X, \quad (c_1, ..., c_k) \mapsto (f \circ (c_1(i), ..., c_k(i)))_i$

Easy to check that $\psi: C \to O_X$, $\xi \mapsto \psi(\xi)$ isomorph. onto its image. []

Given τ -algebra A, and identity $\forall \bar{x} \ s(\bar{x}) = t(\bar{x})$, want to express.

$$A \models \forall \bar{a} \ s(\bar{n}) = t(\bar{n})$$

wring the multisorted structure (10(A). $\psi(x_1,x_2)$

Example. Let $f, g \in T$: $A \models \forall x_1 \forall x_2 f(x_1, x_2) = g(x_2, x_1)$

 $(2c(A) + f^{A} \circ (p_{1}^{2}, p_{2}^{2}) = g^{A} \circ (p_{2}^{2}, p_{1}^{2}).$

$$\psi^{\dagger}(f^{\Lambda}, g^{\Lambda})$$

Generally: If $\psi(x_1,...,x_n) := S(x_1,...,x_n) = t(x_1,...,x_n)$ eq. of T-terms in which $f_1,...,f_k \in T$ appear three is close formula $\psi^{\dagger}(z_1,...,z_k)$ s.f.

$$A \models A^{\underline{w}} \wedge (\underline{w}) \iff C^{\underline{w}}(A) \models \Lambda_{\downarrow}(L_{\downarrow}^{\underline{w}}, ..., L_{\downarrow}^{\underline{w}})$$

Deb. An operation chone C staisfier a set of identities Σ over some signature τ , it there is τ -algebra $A \models \Sigma$ with $Clo(A) \subseteq C$.

Lemma (6.5.13). Let C operation chane over finite domain, Σ set S identities over Σ . S satisfies Σ iff it satisfies every finite Σ subset of Σ .

Given done C durate by CER the subclone gen. by C'''u C''.

Fact: If C_3D closes with $C^{(k)}$ finite for all k, s.t. $C_{\leq k} \cong D_{\leq k}$ then $C \cong D$.

pt: For every k thuse are only finitely many isos: $\mathbb{C}_{\leq k} \to \mathbb{D}_{\leq k}$ (bonstant true on follows: • Vertices on large k are isos: $\mathbb{C}_{\leq k} \to \mathbb{D}_{\leq k}$ • $\tilde{\sigma}: \mathbb{C}_{\leq k+1} \to \mathbb{D}_{\leq k+1}$ is child of $\sigma: \mathbb{C}_{\leq k} \to \mathbb{D}_{\leq k}$, if $\tilde{\sigma}|_{\leq k} = \sigma$.

This is infinite tree with finite branching $\Rightarrow \exists \text{ infinite path, i.e. iso. } C \rightarrow D.$