Pontificia Universidad Católica de Chile y Universidad de Chile

Facultad de Matemáticas

Profesor: José Samper

Curso: Álgebra II

Fecha: 27 de agosto de 2025

Ayudante: José Cuevas Barrientos

Sigla: MPG3201

Norma y traza

1. Norma y traza

1. Sea k un cuerpo de característica p > 0. Para una extensión finita L/k, definimos su grado de separabilidad e inseparabilidad como $[L:k]_s := [L_{sep}:k]$ y $[L:k]_i = [L:L_{sep}]$.

a) Pruebe que si L/K/k es una torre de extensiones, entonces $[L:k]_s := [L:K]_s [K:k]_s$ y $[L:k]_i := [L:K]_i [K:k]_i.$

b) Sea $L_{\text{ins}} := \{ \alpha \in L : \alpha \text{ es puramente inseparable sobre } k \}$. Pruebe que $[L_{\text{ins}} : k] \leq [L : k]_i$.

c) Pruebe que si L es normal, entonces hay igualdad $[L_{ins}:k]=[L:k]_i$.

2. Sea K/k una extensión finita. Dado $\alpha \in K$, denotamos por $m_{\alpha}(x) := \alpha \cdot x$ que determina un endomorfismo $m_{\alpha} \colon K \to K$. Se definen la norma y la traza de α como

$$\operatorname{Nm}_{K/k}(\alpha) := \det(m_{\alpha}), \qquad \operatorname{Tr}_{K/k}(\alpha) := \operatorname{tr}(m_{\alpha}).$$

Pruebe que

 \odot

$$\operatorname{Nm}_{K/k}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha), \qquad \operatorname{Tr}_{K/k}(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha),$$

donde $\{\sigma_1, \ldots, \sigma_n\} = \operatorname{Hom}_k(K, k^{\operatorname{alg}})$. (Note que si K/k es de Galois, entonces $\operatorname{Hom}_k(K, k^{\operatorname{alg}}) =$ Gal(K/k).)

PISTA: Primero pruébelo para $K = k(\alpha)$, luego pruebe la transitividad de la traza y norma. \square

3. Pruebe que una extensión finita K/k es separable syss $(x,y) \mapsto \operatorname{Tr}_{K/k}(xy)$ es una forma bilineal no degenerada (i.e., si $\text{Tr}_{K/k}(\alpha x) = 0$ para todo x, entonces $\alpha = 0$).

2. Extensiones cíclicas

4. Una extensión K/k se dice *cíclica* si es finita, de Galois y Gal(K/k) es cíclico.

a) Pruebe que toda subextensión de una cíclica es cíclica.

En adelante, supondremos que K/k es cíclica con generador $\sigma \in Gal(K/k)$.

b) Pruebe que $\beta \in K$ tiene norma $\operatorname{Nm}_{K/k}(\beta) = 1$ syss existe $\alpha \in K$ tal que $\beta = \alpha/\sigma(\alpha)$.

c) Pruebe que si K/k tiene grado n y k posee una raíz n-ésima primitiva de la unidad ζ_n , entonces $K = k(\sqrt[n]{\gamma})$ para algún $\gamma \in k$.

5. Sea K/k una extensión cíclica de grado n y sea $\sigma \in \operatorname{Gal}(K/k)$ un generador.

a) Pruebe que $\beta \in K$ tiene traza $\operatorname{Tr}_{K/k}(\beta) = 0$ syss existe $\alpha \in K$ tal que $\beta = \alpha - \sigma(\alpha)$.

b) Pruebe que si car k=:p>0 y n=p, entonces $K=k(\alpha),$ donde α es raíz de un polinomio de la forma $\wp(x) - \gamma \in k[x]$ y donde $\wp(x) := x^p - x$ se denomina el endomorfismo de Artin-Schreier. Ocasionalmente se escribe « $\alpha = \wp^{-1}(\gamma)$ ».

Comentarios adicionales

Dado un anillo A, se suele denotar por $\mathbb{G}_a(A) = (A, +)$ al «grupo aditivo» del anillo y por $\mathbb{G}_m(A) :=$ (A^{\times},\cdot) al «grupo multiplicativo» (la notación se debe a que son ejemplos importantes en la teoría de grupos algebraicos). Los ejercicios $\frac{4b}{b}$ y $\frac{5a}{a}$ pueden reescribirse como que hay sucesiones exactas:

$$1 \longrightarrow \mathbb{G}_{m}(k) \longrightarrow \mathbb{G}_{m}(K) \xrightarrow{\alpha/\sigma(\alpha)} \mathbb{G}_{m}(K) \xrightarrow{\operatorname{Nm}_{K/k}} \mathbb{G}_{m}(k)$$
$$1 \longrightarrow \mathbb{G}_{a}(k) \longrightarrow \mathbb{G}_{a}(K) \xrightarrow{\alpha-\sigma(\alpha)} \mathbb{G}_{a}(K) \xrightarrow{\operatorname{Tr}_{K/k}} \mathbb{G}_{a}(k)$$

Las sucesiones exactas son de grupos abelianos, pero el lector podría preguntarse qué sucede con la acción del grupo de Galois $G := \operatorname{Gal}(K/k)$. Llamemos $g \in G$ al generador y supongamos que M es un grupo abeliano con acción compatible de G (i.e., h(m+n) = hm + hn para $h \in G$ y $m, n \in G$); entonces siempre tenemos el homomorfismo $m \mapsto m - gm$ y el homomorfismo $N : m \mapsto \sum_{h \in G} hm$. El lector puede verificar (es una suma telescópica) que N(m-gm) = 0 para todo m, de modo que podríamos definir $H^1(G, M) := \ker(N)/\operatorname{Img}(1-g)$ y, ahora, los ejercicios 4b y 5a dicen que $H^1(G, \mathbb{G}_m(K)) = H^1(G, \mathbb{G}_a(K)) = 0$. Este enunciado se conoce como el teorema 90 de Hilbert y esta es la formulación de Noether. Puede leer más al respecto en Weibel [2], §§6.3-6.4.

B. Dos pruebas pendientes

Dos demostraciones de la afirmación de la semana pasada:

DEMOSTRACIÓN: Recordemos que $K_{\rm ins}/k$ es simple pues K/k lo es, luego $K_{\rm ins}=k(\alpha^{p^{-h}})$ con $\alpha\in k\smallsetminus k^p$. Luego $x^{p^h}-\alpha$ sigue siendo irreducible en $K_{\rm sep}[x]$, ya que $\alpha^{1/p}\notin K_{\rm sep}$ pues es inseparable; así que

$$[K_{\text{ins}}:k] = p^h = [K_{\text{sep}}(\alpha^{p^{-h}}):K_{\text{sep}}] \le [K:K_{\text{sep}}].$$

Y otra directa:

DEMOSTRACIÓN: Sea $\alpha \in K$ un generador y sea $f(x) \in k[x]$ el polinomio minimal de α . Dada una subextensión $L \subseteq K$, sea $g(x) \in L[x]$ el polinomio minimal de α , sean $c_1, \ldots, c_r \in L$ los coeficientes de g, notemos que g es también minimal en $k(c_1, \ldots, c_r)$ y así $[K:L] = \deg g = [K:k(c_1, \ldots, c_r)]$, por lo que $L = k(c_1, \ldots, c_r)$. Así, hay a lo sumo, tantas subextensiones como divisores de f en K[x] y como f tiene grado n, en el mejor de los casos tenemos n factores lineales y, por tanto, hay un máximo de 2^n factores distintos.

Referencias

- 1. Lang, S. Algebra (Springer-Verlag New York, 2002).
- 2. Weibel, C. A. An introduction to homological algebra Cambridge Studies in Advanced Mathematics 38 (Cambridge University Press, 1994).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-2-alg/

¹El nombre se debe a que era 90^{ésimo} teorema en su libro *Die Theorie der algebraischen Zahlkörper* («teoría de cuerpos de números algebraicos»).