Department of Mathematics School of Advanced Sciences MAT 1011 – Calculus for Engineers (MATLAB)

Experiment 2–B

Laplace transforms, Inverse Laplace transforms

The Laplace Transform of a function f(t) is defined as

$$F(s) = L[f(t)] = \int_0^\infty e^{-st} f(t)dt$$
, provided the integral exists.

MATLAB Syntax used:

Command	Purpose
<pre>x=input('prompt')</pre>	Displays the text in prompt and waits for the user to input a value and press the Enter key. The user can enter expressions and can use variables in the workspace.
laplace(f)	To find the Laplace transform of a scalar symbol f with default independent variable t. The default return is a function of s.
laplace(f,w)	Returns the Laplace transform of f in symbol w instead of the default s.
laplace(f,x,w)	Assumes f as a function of the symbolic variable x and returns the Laplace transform as a function of w.
ilaplace(F)	To find the inverse Laplace transform of the scalar symbolic object F with default independent variable s. The default return is a function of t.
ilaplace(F,x)	Returns the inverse Laplace transform of the function F as a function of x instead of the default t.
ilaplace(F,w,x)	Assumes F as a function of the symbolic variable w and returns the inverse Laplace transform of F as a function of x.
heaviside(t-a)	To input the heaviside's unit step function $H(t-a)$.
dirac(t-a)	To input the dirac delta function $\delta(t-a)$.

Example 1. The following MATLAB code finds the Laplace transform of a function f(t)

```
clear all
clc
syms t
f=input('Enter the function of t: ');
F=laplace(f);
disp('Laplace transform of f(t) = ');
disp(F);
```

Input:

Enter the function of $t: t^2$

Output:

Laplace transform of f(t) =2/s^3

Example 2. The following MATLAB code finds the Laplace transform of f(t) in terms of w.

```
clear all
clc
syms t w
f=input('Enter the function of t: ');
F=laplace(f,w);
disp('Laplace transform of f(t) = ');
disp(F);
```

Input:

Enter the function of t: sin(t)

Output:

```
Laplace transform of f(t) = 1/(w^2 + 1)
```

Example 3. The following MATLAB code finds the Laplace transform of x^3e^{-3x} in terms of w.

```
clear all
clc
syms x w
f=input('Enter the function of x: ');
F=laplace(f,x,w);
disp('Laplace transform of f(t) = ');
disp(F);
```

Input:

Enter the function of x: $x^3*exp(-3*x)$

Output:

```
Laplace transform of f(t) = 6/(w + 3)^4
```

Example 4: The following MATLAB code computes the Laplace Transform of

$$f(t) = \begin{cases} t^2, & 0 < t < 2 \\ t - 1, & 2 < t < 3 \\ 7, & t > 3 \end{cases}$$

```
clear all
clc
syms t
f=input('Enter the function of t: ');
F=laplace(f);
F=simplify(F);
disp('Laplace transform of f(t) = ');
disp(F);
```

Input:

```
Enter the function of t: t^2 (heaviside(t)-heaviside(t-2))+ (t-1)* (heaviside(t-2)-heaviside(t-3))+7*heaviside(t-3)
```

Output:

```
Laplace transform of f(t) = -(\exp(-3*s)*(s-2*\exp(3*s)+2*\exp(s)+3*s^2*\exp(s)+3*s*\exp(s)-5*s^2))/s^3
```

```
Example 5. The following MATLAB code computes the inverse Laplace transform of F(s).
```

```
clear all
clc
syms s
F=input('Enter the function of s: ');
f=ilaplace(F);
disp('f(t) = ');
disp(f);
```

Input:

Enter the function of s: $6/(s^3+2*s^2-s-2)$

Ouput:

$$f(t) = 2 \exp(-2 t) - 3 \exp(-t) + \exp(t)$$

Example 6. Write MATLAB commands to find the following:

- (i) $L[\delta(t)]$ (ii) $L[\delta(t-a)]$ (iii) $L[\delta(t-a)\sin(t)]$

Solution:

Output:

syms t a F=laplace(dirac(t-a))

Output:

F =piecewise(a < 0, 0, 0 <= a, exp(-a*s))

(iii)

syms t a F=laplace(dirac(t-a)*sin(t))

Output:

F =

piecewise (a<0,0,0<=a,exp(-a*s)*sin(a))

Example 7. Write MATLAB commands to find (i) $L^{-1} \left[\frac{s}{s-a} \right]$ (ii) $L^{-1} \left[\frac{se^{-s} + ae^{-2s}}{s^2 + a^2} \right]$

(i)

syms s a f=ilaplace(s/(s-a))

Output

f=

dirac(t) + a*exp(a*t)

$$f = ilaplace((s*exp(-s)+a*exp(-2*s))/(s^2+a^2))$$

Output

$$f =$$

heaviside
$$(t-1)*\cos(a*(t-1))+\sin(a*(t-2))*heaviside(t-2)$$

Exercise.

1. Find the Laplace transforms of the following functions:

(i)
$$f(t) = 1 + 2\sqrt{t} + \frac{3}{\sqrt{t}}$$

(ii)
$$f(t) = \begin{cases} \sin t & ; \quad 0 \le t \le \pi \\ 0 & ; \quad \pi \le t \le 2\pi \end{cases}$$

(iii)
$$f(t) = \sin^3 t$$

(iv)
$$f(t) = \sin 2t \sin 3t$$

$$(v) f(t) = e^{-t} \sin^2 t$$

(vi)
$$f(t) = \frac{\cos 2t - \cos 3t}{t}$$

2. Find the inverse Laplace transforms of the following functions:

(i)
$$F(s) = \frac{6}{s^2 + 2s - 8}$$

(ii)
$$F(s) = \frac{4s+5}{(s-1)^2(s+2)}$$

(iii)
$$F(s) = \frac{s^2 + 2s - 4}{(s^2 + 2s + 5)(s^2 + 2s + 2)}$$

*_*_*