

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, D.C. 20231
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/345,238	06/30/1999	SCOTT SHAOBING CHEN	Y0999-172	9988

7590 03/07/2003

KEVIN M MASON
RYAN, MASON & LEWIS, LLP
1300 POST ROAD, SUITE 205
FAIRFIELD, CT 06430

[REDACTED] EXAMINER

HAN, QI

[REDACTED] ART UNIT [REDACTED] PAPER NUMBER

2654

DATE MAILED: 03/07/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	09/345,238	CHEN ET AL.
	Examiner	Art Unit
	Qi Han	2654

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on ____.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-35 is/are pending in the application.
- 4a) Of the above claim(s) ____ is/are withdrawn from consideration.
- 5) Claim(s) ____ is/are allowed.
- 6) Claim(s) 1-35 is/are rejected.
- 7) Claim(s) ____ is/are objected to.
- 8) Claim(s) ____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on ____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
- 11) The proposed drawing correction filed on ____ is: a) approved b) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
- 12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. ____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.
- 14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
- a) The translation of the foreign language provisional application has been received.
- 15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

- | | |
|--|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) Paper No(s). ____. |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449) Paper No(s) ____. | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Response to Amendment

1. This communication is responsive to the applicant's amendment dated 12/31/2002.

Response to Arguments

2. Applicant's arguments filed on 12/31/2002 have been fully considered.

It is reminded that the serial number, the group unit and examiner name on the top of page 1 in the amendment are not correct, although the content of the amendment is correct.

The examiner withdraws the disclosure objections a), e) and d), as required by applicant, because the applicant made the correction and/or explanation.

Regarding the disclosure objections b) and c) about technical terms, the applicant argues that "applicants submit that each of these terms, symbols or parameters are very well understood by a person of ordinary skill in the art" (amendment: page 2, paragraph 7), so that the applicant does not further explain or define **what the terms are**. However, the examiner has a different view of "very well understood by a person of ordinary skill in the art", for the technical terms. In addition, the applicant's evidences for well-known terms in the art, are not persuasive, because two of them come from one of the inventor and the other two come from the same company with the related work group. The examiner will remain the objections.

The examiner withdraws the drawing objections a) and b), as required by applicant, because the applicants made the correction or explanation.

3. Regarding prior art rejections, the applicant's arguments argues that: (amendment: page 3, paragraph 6 through page 4, paragraph 3)

"Applicants submit that while Chen does disclose segmenting an audio stream into homogeneous regions and clustering speech, segments into homogeneous clusters, the audio stream is first segmented and then clustered. A full reading of Chen indicates that Chen assumes that the process starts with a segmented audio stream. In particular, Section 3.3, second paragraph, indicates that the segmented data is provided by a third party, namely, the National Institute of Standards and Technology (NIST). Thus, it would be impossible for the "clustering of homogeneous segments from said audio source" to occur in Chen "substantially concurrently with said identifying step," as required by each of the independent claims of the present invention.

As further evidence that the clustering in Chen is performed only after the audio stream has been segmented, Section 4.1 indicates that each segment is compared to all other segments before clustering is finalized. In addition, Section 4.2, first paragraph indicates that the data set consists of an audio file that has been "hand-segmented into 824 short segments."

Thus, Chen does not disclose or suggest a "method of tracking a speaker in an audio source, said method comprising the steps of identifying potential segment boundaries in said audio source; and clustering homogeneous segments from said audio source substantially concurrently with said identifying step," as required by independent claims 1, 16, 30, 31, 32 and 33 of the present invention. Similarly, independent claims 23, 34 and 35 require that the segmentation and clustering are performed on the "same pass" through said audio source.

Dependent Claims 2 through 15, 17 through 22 and 24 through 29 were rejected under 35 U.S.C. §§ 102 or 103 as being unpatentable over Chen, alone or in combination with well known prior art. Claims 2 through 15, 17 through 22 and 24 through 29 are dependent on Claims 1, 16 or 23, respectively, and are therefore patentably distinguished over Chen, alone or in combination with well known prior art. because of their dependency from amended independent Claims 1, 16 or 23 for the reasons set forth above, as well

as other elements these claims adds in combination to their base claim.” (amendment, page 3, paragraph 6 through page 4, paragraph 3).

In response to applicant's argument (relating claim 1) that the prior art “in particular, Section 3.3, second paragraph, indicates that the segmented data is provided by a third party (NIST)”, “thus, it would be impossible for the 'clustering of homogeneous segments from said audio source' to occur in Chen 'substantially concurrently with said identifying step'” (amendment: page 3, paragraph 6), the examiner respectfully disagrees with applicant. In fact, the prior art (Chen) uses the third party segmented data only for the performance comparison and evaluation purpose (Chen: Section 3.3, paragraph 2). The prior art cites that “**our segmentation algorithm can successfully detect acoustic changes**” (Chen: abstract) and that “we first examine whether our **detected change points** were true” (Chen: Section 3.3, paragraph 3), which clearly suggest that Chen not only employ its own segmenting mechanism but also is capable of combining with clustering substantially concurrently for further identifying process. The third party segmented data is only one of source data for testing or comparing. In addition, a person of ordinary skill in the art would understand that, even in a substantially concurrent situation, it is an inherent nature that the data steam is first segmented (may be in partial, such as a change point found), then clustered.

In response to applicant's argument that “the clustering in Chen is performed only after the audio stream has been segmented, Section 4.1 indicates that each segment is compared to all other segments before clustering is finalized” and “Section 4.2, first paragraph indicates that the data set consists of an audio file that has been ‘hand-segmented into 824 short segments.’” (amendment: page 3, paragraph 7), and that Chen does not disclose or suggest the limitation as

the claimed (amendment: page 4, paragraph 2), the examiner has a different view from the applicant. In fact, Chen did not mean or suggest that the clustering can **only** be performed after all data segmented. In contrast, Chen cites that “it is also clear that our criterion can be applied to top-down methods” (Chen: Section 4.1, paragraph 4), which suggests that **clustering does not need a completely segmented data**, so that a clustering process may combine with a segmenting process together **substantially concurrently**. For example, a clustering step can be inserted in the segmentation loop, in Chen, Section 3.2, paragraph 1. In addition, in Chen’s disclosure, both segmenting and clustering algorithms are based on the BIC algorithm, and equations (2), (3), and (8) themselves have no limitation for combining segmenting and clustering, so that the prior art **is capable of** combining segmenting and clustering processes **substantially concurrently**, which satisfies the limitation of the claimed.

As stated above, the examiner believes that the applicant's arguments are not persuasive.

Specification

4. The disclosure is objected to because of the following informalities:
 - b) On page 2, line 9, “homogeneous segments” is not clearly defined. Appropriate correction or explanation is required.
 - c) On page 2, line 22, “a single full covariance Guassian” is not clearly defined or explained. Appropriate correction or explanation is required.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

5. Claims 1-5, 8, 10-14, 16-19, 21-26 and 28-35 are rejected under 35 U.S.C. 102(b) as being anticipated by Chen et al. (“speaker, Environment and Channel Change Detection and Cluster via the Bayesian Information Criterion,” proceedings of the DARPA broadcast news transcription and understanding workshop, Lansdowne, VA, Feb 8-11, 1998) hereinafter referenced as Chen.

Regarding **claim 1**, Chen discloses speaker, Environment and Channel Change Detection and Cluster via the Bayesian Information Criterion for segmenting the audio stream into homogeneous region according to speaker identity, environmental condition and channel condition and clustering speech segments into homogeneous clusters according to speaker identity, environmental condition and channel (page 1, paragraph 2), which is read on the claimed “a method of tracking a speaker in an audio source, said method comprising the steps of: identifying potential segment boundaries in said audio source; and clustering homogeneous segments from said audio source substantially concurrently with said identifying step.”

Regarding **claim 2**, Chen discloses everything claimed, as applied above (see claim 1). Chen further discloses that decision for detecting changes in speaker identity is based on the Bayesian Information Criterion (BIC) (page 2, paragraph 4), which is read on the claimed”

wherein said identifying step identifies segment boundaries using a BIC model-selection criterion.”

Regarding **claim 3**, Chen discloses everything claimed, as applied above (see claim 2). Chen further assumes that the sequence of cepstral vectors is drawn from an independent multivariate Gaussian process and there is at most one changing point in the Gaussian process (page 3, paragraphs 4-5), and discloses that the hypothesis testing is viewed as a problem of model selection from two models: one models the data as two Gaussians; the other models the data as just one Gaussian (page 4, paragraph 2), which is read on the claimed “wherein a first model assumes there is no boundary in a portion of said audio source and a second model assumes there is a boundary in said portion of said audio source.”

Regarding **claim 4**, Chen discloses everything claimed, as applied above (see claim 2). Chen further discloses a combination of two equations: the maximum likelihood ratio (page 3, equation (2)) and the difference between the BIC values of the two models (page 4, equation (3)), which is inherently equivalent to the equation as claimed.

Regarding **claim 5**, Chen discloses everything claimed, as applied above (see claim 1). Chen further discloses that an algorithm sequentially detect the changing points in the Gaussian process and suggests that the algorithm starts with a small window and then extends the window size in each detecting loop (page 6, paragraph 1). It is also inherently true that the smaller the window size, the more unlikely the segment boundary occurs. This is read on the claimed “identifying step considers a smaller window size, n, of samples in areas where a segment boundary is unlikely to occur.”

Regarding **claim 8**, Chen discloses everything claimed, as applied above (see claim 2).

Chen further suggests not to use the change point detected in new process window (page 6, paragraph 1), which is read on the claimed “BIC model selection test is not performed at the border of each window of samples.”

Regarding **claim 10**, Chen discloses everything claimed, as applied above (see claim 1).

Chen further discloses to apply the BIC criterion in clustering (page 8, paragraph 2), which is read on the claimed “clustering step is performed using a BIC model-selection criterion.”

Regarding **claim 11**, Chen discloses everything claimed, as applied above (see claim 10).

Chen further discloses that in the hierarchical clustering two nodes can be merged only if the merging increases the BIC value (abstract, also see page 9, paragraph 3) that suggests the two models used in identifying step are also applied in clustering step, which is read on the claimed “wherein a first model assumes that two segments or clusters should be merged, and a second model assumes that said two segments or clusters should be maintained independently.”

Regarding **claim 12**, Chen discloses everything claimed, as applied above (see claim 11).

Chen further discloses that the two nodes should not merger if an equation (8) (page 9, paragraph 4) is negative, which is read on the claimed “merging said two clusters if a difference in BIC values for each of said models is positive.”

Regarding **claim 13**, Chen discloses everything claimed, as applied above (see claim 1).

Chen further discloses that using M segments and k clusters (page 8, paragraphs 2 and 3) successively merge two nearest nodes in clustering step and generate a new cluster set S' from previous set S (page 9, paragraph 3), which is read on the claimed “clustering step is performed using K previously identified clusters and M segments to be clustered.”

Regarding **claim 14**, Chen discloses everything claimed, as applied above (see claim 1).

Chen further suggests to assign s as an identifier for a new cluster from two previous nodes or clusters s1 and s2 after each merging (page 9, paragraph 3), which is read on the claimed “the step of assigning a cluster identifier to each of said clusters.” In addition, it is inherently true that an index of data structure employed for clustering task can be always used as a cluster identifier in software and/or firmware based process.

Regarding **claim 16**, the rejection bases on the same reason as applied above (see claim 1) because Chen discloses the same method for both “segments from said audio source corresponding to the same speaker” and “homogeneous segments”. In addition, the applicant points out that “humongous segments” are “generally corresponding to the same speaker” (abstract).

Regarding **claim 17**, Chen discloses everything claimed, as applied above (see claim 16). Chen further discloses that decision for detecting changes in speaker identity is based on the Bayesian Information Criterion (BIC) (page 2, paragraph 4), which is read on the claimed “wherein said identifying step identifies segment boundaries using a BIC model-selection criterion.”

Regarding **claim 18**, Chen discloses everything claimed, as applied above (see claim 17). Chen further assumes that the sequence of cepstral vectors is draw from an independent multivariate Gaussian process and there is at most one changing point in the Gaussian process (page 3, paragraphs 4-5), and discloses that the hypothesis testing is view as a problem of model selection from two models: one models the data as two Gaussians; the other models the data as just one Gaussian (page 4, paragraph 2), which is read on the claimed “wherein a first model

assumes there is no boundary in a portion of said audio source and a second model assumes there is a boundary in said portion of said audio source.”

Regarding **claim 19**, Chen discloses everything claimed, as applied above (see claim 16). Chen further discloses that an algorithm sequentially detect the changing points in the Gaussian process and suggests that the algorithm starts with a small window and then extends the window size in each detecting loop (page 6, paragraph 1). It is also inherently true that the smaller the window size, the more unlikely the segment boundary occurs. This is read on the claimed “identifying step considers a smaller window size, n, of samples in areas where a segment boundary is unlikely to occur.”

Regarding **claim 21**, Chen discloses everything claimed, as applied above (see claim 16). Chen further discloses to apply the BIC criterion in clustering (page 8, paragraph 2). Moreover, Chen discloses that in the hierarchical clustering two nodes can be merged only if the merging increases the BIC value (abstract, also see page 9, paragraph 3) that suggests the two models used in identifying step are also applied in clustering step, which is read on the claimed “clustering step is performed using a BIC model-selection criterion, where a first model assumes that two segments or clusters should be merged, and a second model assumes that said two segments or clusters should be maintained independently.”

Regarding **claim 22**, Chen discloses everything claimed, as applied above (see claim 16). Chen further discloses that using M segments and k clusters (page 8, paragraphs 2 and 3) successively merge two nearest nodes in clustering step and generate a new cluster set S' from previous set S (page 9, paragraph 3), which is read on the claimed “clustering step is performed using K previously identified clusters and M segments to be clustered.”

Regarding **claim 23**, the rejection bases on the same reason as applied above (see claim 16) because the same method in Chen's disclosure can also be applied for claim 23 "the steps of: identifying potential segment boundaries during a pass through said audio source; and clustering segments from said audio source corresponding to the same speaker."

Regarding **claim 24**, Chen discloses everything claimed, as applied above (see claim 23). Chen further discloses that decision for detecting changes in speaker identity is based on the Bayesian Information Criterion (BIC) (page 2, paragraph 4), which is read on the claimed "said identifying step identifies segment boundaries using a BIC model-selection criterion."

Regarding **claim 25**, Chen discloses everything claimed, as applied above (see claim 24). Chen further assumes that the sequence of cepstral vectors is draw from an independent multivariate Gaussian process and there is at most one changing point in the Gaussian process (page 3, paragraphs 4-5), and discloses that the hypothesis testing is view as a problem of model selection from two models: one models the data as two Gaussians; the other models the data as just one Gaussian (page 4, paragraph 2), which is read on the claimed "wherein a first model assumes there is no boundary in a portion of said audio source and a second model assumes there is a boundary in said portion of said audio source."

Regarding **claim 26**, Chen discloses everything claimed, as applied above (see claim 23). Chen further discloses that an algorithm sequentially detect the changing points in the Gaussian process and suggests that the algorithm starts with a small window and then extends the window size in each detecting loop (page 6, paragraph 1). It is also inherently true that the smaller the window size, the more unlikely the segment boundary occurs. This is read on the claimed

“identifying step considers a smaller window size, n, of samples in areas where a segment boundary is unlikely to occur.”

Regarding **claim 28**, Chen discloses everything claimed, as applied above (see claim 23). Chen further discloses to apply the BIC criterion in clustering (page 8, paragraph 2). Moreover, Chen discloses that in the hierarchical clustering two nodes can be merged only if the merging increases the BIC value (abstract, also see page 9, paragraph 3) that suggests the two models used in identifying step are also applied in clustering step, which is read on the claimed “clustering step is performed using a BIC model-selection criterion, where a first model assumes that two segments or clusters should be merged, and a second model assumes that said two segments or clusters should be maintained independently.”

Regarding **claim 29**, Chen discloses everything claimed, as applied above (see claim 23). Chen further discloses that using M segments and k clusters (page 8, paragraphs 2 and 3) successively merge two nearest nodes in clustering step and generate a new cluster set S' from previous set S (page 9, paragraph 3), which is read on the claimed “clustering step is performed using K previously identified clusters and M segments to be clustered.”

Regarding **claim 30**, it discloses an apparatus, which corresponds to the method of claim 1; the apparatus is inherent in that it simply provides structure for the functionality found in claim 1.

Regarding **claim 31**, it discloses an article of manufacture, which corresponds to the method of claim 1; the article of manufacture is inherent in that it simply provides structure and implementation for the functionality found in claim 1.

Regarding **claim 32**, it discloses an apparatus, which corresponds to the method of claim 16; the apparatus is inherent in that it simply provides structure for the functionality found in claim 16.

Regarding **claim 33**, it discloses an article of manufacture, which corresponds to the method of claim 16; the article of manufacture is inherent in that it simply provides structure and implementation for the functionality found in claim 16.

Regarding **claim 34**, it discloses an apparatus, which corresponds to the method of claim 23; the apparatus is inherent in that it simply provides structure for the functionality found in claim 23.

Regarding **claim 35**, it discloses an article of manufacture, which corresponds to the method of claim 23; the article of manufacture is inherent in that it simply provides structure and implementation for the functionality found in claim 23.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. Claims 6-7 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chen in view of well known prior art (MPEP 2144.03).

Regarding **claim 6**, Chen discloses everything claimed, as applied above (see claim 5). Chen further cites that by expanding the window, the final decision of a change point is made

based on as much data points as possible (page 6, paragraph 2). But, Chen fails to specifically disclose to increase small window size in slow manner and increase larger window size in a faster manner. However, the examiner takes official notice of the fact that it was well known in the art to adjust increase rate based on data size processed.

Therefore, it would have been obvious to one of ordinary skill in the art at time the invention was made to modify Chen by specifically providing an adjustable increase rate base on processed window size, for the purpose of reducing processing time.

Regarding **claim 7**, Chen and well-known prior art disclose everything claimed, as applied above (see claim 6). Chen further discloses that the window size $[a=t+1, b=a+1]=1$ is reinitialized after detecting a segment boundary (page 6, paragraph 1), which is read on the claimed “window size, n, is initialized to a minimum value after a segment boundary is detected.”

Regarding **claim 9**, Chen discloses everything claimed, as applied above (see claim 2). But, Chen fails to specifically disclose that “BIC model selection test is not performed when the window size, n, exceeds a predefined threshold.” However, the examiner takes official notice of the fact that it was well known in the art to stop a process when it exceeds a predefined threshold.

Therefore, it would have been obvious to one of ordinary skill in the art at time the invention was made to modify Chen by specifically providing a predefined threshold and a test condition for the purpose of preventing a process from over sizing.

Regarding **claim 20**, Chen discloses everything claimed, as applied above (see claim 17). But, Chen fails to specifically disclose that “wherein said BIC model selection test is not

performed where the detection of a boundary is unlikely to occur.” However, the examiner takes official notice of the fact that it was well known in the art to skip certain portion of data for processing, because the portion has very small chance to be hit.

Therefore, it would have been obvious to one of ordinary skill in the art at time the invention was made to modify Chen by specifically providing a skipping mechanism for those data that unlikely have a boundary for detection, for the purpose of increasing efficiency and reducing processing time.

Regarding **claim 27**, Chen discloses everything claimed, as applied above (see claim 26). But, Chen fails to specifically disclose that “wherein said BIC model selection test is not performed where the detection of a boundary is unlikely to occur.” However, the examiner takes official notice of the fact that it was well known in the art to skip certain portion of data for processing, because the portion has very small chance to be hit.

Therefore, it would have been obvious to one of ordinary skill in the art at time the invention was made to modify Chen by specifically providing a skipping mechanism for those data that unlikely have a boundary for detection, for the purpose of increasing efficiency and reducing processing time.

7. Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over Chen in view of *5,930,748 ✓* Kleider et al. (USPN ~~5,157,763~~), hereinafter referenced as Kleider.

Regarding **claim 15**, Chen discloses everything claimed, as applied above (see claim 1). But, Chen fails to specifically disclose “processing said audio source with a speaker identification engine to assign a speaker name to each of said cluster.” However, the examiner

contends that the concept of providing an identified speaker cluster with a speaker name was well known, as taught by Kleider.

In the same field of endeavor, Kleider discloses a speaker identification system and method. Kleider employs a speaker identification metric (226) (Fig. 2) in that each element is associated with one particular speaker in the speaker model data 213 (Fig. 2) (column 6, lines 25-32). Kleider further suggests that the information of the speaker model data may include speaker name (column 6, line 44).

Therefore, it would have been obvious to one of ordinary skill in the art at time the invention was made to modify Chen by specifically providing a speaker identification mechanism to associate a speaker cluster identifier with a speaker name, as taught by Kleider, for the purpose of using a common identifier in a speaker identification system.

Conclusion

8. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however,

will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

9. Any response to this office action should be mailed to:

Commissioner of Patents and Trademarks, Washington D.C. 20231
or faxed to:

(703)-872-9314

Hand-delivered responses should be brought to:

Crystal Park II, 2121 Crystal Drive, Arlington, VA. Sixth Floor (Receptionist).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Qi Han whose telephone numbers is (703) 305-5631. The examiner can normally be reached on Monday through Thursday from 8:00 a.m. to 5:30 p.m. and Friday from 8:00 a.m. to 12:00 a.m.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Marsha Banks-Harold, can be reached on (703) 305-4379.

Any inquiry of a general nature of relating to the status of this application or proceeding should be directed to the Technology Center 2600 Customer Service Office whose telephone number is (703) 306-0377.

Marsha D. Banks-Harold

MARSHA D. BANKS-HAROLD
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2600

QH/qh
March 3, 2003