Lect 7: Stop word-Stemming -Lemmatization

Dr. Subrat Kumar Nayak Associate Professor Dept. of CSE, ITER, SOADU

Stop Words

- Sometimes, some extremely common words which would appear to be of little value in helping select documents matching a user need are excluded from the vocabulary entirely. These words are called *stop words*.
- The general strategy for determining a stop list is to sort the terms by *collection* frequency and then to take the most frequent terms.
- Often hand-filtered for their semantic content relative to the domain of the documents being indexed, as a *stop list*, the members of which are then discarded during indexing.

```
a an and are as at be by for from has he in is it its of on that the to was were will with
```

- ► Figure 2.5 A stop list of 25 semantically non-selective words which are common in Reuters-RCV1.
- Using a stop list significantly reduces the number of postings that a system has to store.

Stop Words

- And a lot of the time not indexing stop words does little harm: keyword searches with terms like the and by don't seem very useful.
- **■** However, this is not true for phrase searches.

Example:

- The phrase query "President of the United States", which contains two stop words, is more precise than President AND "United States".
- The meaning of flights to London is likely to be lost if the word to is stopped out.
- Some special query types are disproportionately affected. Some song titles and well known pieces of verse consist entirely of words that are commonly on stop lists.

Example: To be or not to be, Let It Be, I don't want to be, . . .

Stop Words

- With a stop list, you exclude from the dictionary entirely the commonest words. Intuition:
- They have little semantic content: *the, a, and, to, be*
- There are a lot of them: ~30% of postings for top 30 words
- But the trend is away from doing this:
- Good compression techniques (IIR 5) means the space for including stop words in a system is very small
- Good query optimization techniques (IIR 7) mean you pay little at query time for including stop words.
- You need them for:
- Phrase queries: "King of Denmark"

Lemmatization

- Reduce inflectional/variant forms to base form
- **■** E.g.,
 - ightharpoonup am, are, is ightharpoonup be
 - ightharpoonup car, cars, cars' ightharpoonup car
- lacktriangle the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization implies doing "proper" reduction to dictionary headword form (the lemma)

Stemming

- Reduce terms to their "roots" before indexing
- "Stemming" suggests crude affix chopping
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Porter's algorithm

- Commonest algorithm for stemming English
 - Results suggest it's at least as good as other stemming options
- Conventions + 5 phases of reductions
 - phases applied sequentially
 - each phase consists of a set of commands
 - sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.

Typical rules in Porter

- \blacksquare sses \rightarrow ss
- ightharpoonup ies \rightarrow i
- \blacksquare ational \rightarrow ate
- \blacksquare tional \rightarrow tion

Rule			Example		
SSES	\rightarrow	SS	caresses	\rightarrow	caress
IES	\rightarrow	1	ponies	\rightarrow	poni
SS	\rightarrow	SS	caress	\rightarrow	caress
S	\rightarrow		cats	\rightarrow	cat

- Weight of word sensitive rules
- (m>1) EMENT \rightarrow (m: length of rest word before ement)
 - ightharpoonup replacement ightharpoonup replacement
 - ightharpoonup cement \rightarrow cement

Other stemmers

- Other stemmers exist:
 - Lovins stemmer
 - http://www.comp.lancs.ac.uk/computing/research/stemming/general/lov ins.htm
 - Single-pass, longest suffix removal (about 250 rules)
 - Paice/Husk stemmer
 - Snowball
- Full morphological analysis (lemmatization)
 - At most modest benefits for retrieval

Three stemmers: A comparison

- Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation
- Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a picture of express that is more biolog transpar and access to interpret
- Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th individu gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres
- Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

Language-specificity

- The above methods embody transformations that are
 - Language-specific, and often
 - Application-specific
- These are "plug-in" addenda to the indexing process
- Both open source and commercial plug-ins are available for handling these

Does stemming help?

- English: very mixed results. Helps recall for some queries but harms precision on others
 - E.g., operative (dentistry) ⇒ oper
 - operational(research)=> oper
 - operating(systems)=> oper
- Definitely useful for Spanish, German, Finnish, ...
 - 30% performance gains for Finnish!

