```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

#Import Cancer data from the Sklearn library
# Dataset can also be found here (http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29)

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']], columns = np.append(cancer['feature_names'], ['target']))

df_cancer.head()
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883

5 rows × 31 columns


```
df_cancer.shape
(569, 31)
```

df_cancer.columns

Let's plot out just the first 5 variables (features)
sns.pairplot(df_cancer, hue = 'target', vars = ['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg:
FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fdf307ca1d0>

plt.figure(figsize=(20,12))
sns.heatmap(df_cancer.corr(), annot=True)

```
contribation avac cubalate Avaccubalat at Av7fdf2A7QA1EAx
```

X = df_cancer.drop(['target'], axis = 1) # We drop our "target" feature and use all the remaining features in our dataframe to train
X.head()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883

5 rows × 30 columns


```
worst perimeter - 0.97 0.36 0.97 0.96 0.24 0.59 0.73 0.86 0.22 0.21 0.72 0.1 0.72 0.76 0.22 0.26 0.23 0.39 0.1 0.001 0.99 0.37 1 0.98 0.24 0.53 0.62 0.82 0.27 0.14 0.78
y = df_cancer['target']
y.head()
          0.0
     0
     1
          0.0
     2
          0.0
     3
          0.0
          0.0
     Name: target, dtype: float64
                     me me
                                   ott aci aci mr mr me me mr wo wo
                                                                                                      col col col col crist rist
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 20)
print ('The size of our training "X" (input features) is', X_train.shape)
print ('\n')
print ('The size of our testing "X" (input features) is', X_test.shape)
print ('\n')
print ('The size of our training "y" (output feature) is', y_train.shape)
print ('\n')
print ('The size of our testing "y" (output features) is', y_test.shape)
     The size of our training "X" (input features) is (455, 30)
     The size of our testing "X" (input features) is (114, 30)
     The size of our training "y" (output feature) is (455,)
     The size of our testing "y" (output features) is (114,)
```

▼ Support Vector Machine (SVM) Model

```
from sklearn.svm import SVC

svc_model = SVC()

svc_model.fit(X_train, y_train)

    SVC()

y_predict = svc_model.predict(X_test)
```

from sklearn.metrics import classification_report, confusion_matrix

confusion

	<pre>predicted_cancer</pre>	<pre>predicted_healthy</pre>	1
is_cancer	66	0	
is_healthy	8	40	

sns.heatmap(confusion, annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdf2f99cad0>

print(classification_report(y_test, y_predict))

	precision	recall	f1-score	support
0.0	1.00	0.83	0.91	48
1.0	0.89	1.00	0.94	66
accuracy			0.93	114
macro avg	0.95	0.92	0.93	114
weighted avg	0.94	0.93	0.93	114

X_train_min = X_train.min()
X_train_min

6.981000
10.380000
43.790000
143.500000
0.052630
0.019380
0.000000
0.000000
0.106000
0.049960
0.111500
0.360200
0.757000
6.802000
0.001713
0.002252
0.000000
0.000000
0.007882
0.000895
7.930000
12.490000
50.410000
185.200000
0.071170
0.027290
0.000000
0.000000
0.156500
0.055040

```
X_train_max = X_train.max()
X_train_max
```

mean radius	28.11000
mean texture	39.28000
mean perimeter	188.50000
mean area	2501.00000
mean smoothness	0.14470
mean compactness	0.34540
mean concavity	0.42680
mean concave points	0.20120
mean symmetry	0.30400
mean fractal dimension	0.09296
radius error	2.87300
texture error	4.88500
perimeter error	21.98000
area error	542.20000
smoothness error	0.03113
compactness error	0.13540
concavity error	0.39600
concave points error	0.05279
symmetry error	0.07895
fractal dimension error	0.02984
worst radius	36.04000
worst texture	49.54000
worst perimeter	251.20000
worst area	4254.00000
worst smoothness	0.22260
worst compactness	1.05800
worst concavity	1.25200
worst concave points	0.29100
worst symmetry	0.57740
worst fractal dimension	0.20750
dtype: float64	

X_train_range = (X_train_max- X_train_min)
X_train_range

mean radius	21.129000
mean texture	28.900000
mean perimeter	144.710000
mean area	2357.500000
mean smoothness	0.092070
mean compactness	0.326020
mean concavity	0.426800
mean concave points	0.201200
mean symmetry	0.198000
mean fractal dimension	0.043000
radius error	2.761500
texture error	4.524800
perimeter error	21.223000
area error	535.398000
smoothness error	0.029417
compactness error	0.133148
concavity error	0.396000
concave points error	0.052790
symmetry error	0.071068
fractal dimension error	0.028945
worst radius	28.110000
worst texture	37.050000
worst perimeter	200.790000
worst area	4068.800000
worst smoothness	0.151430
worst compactness	1.030710
worst concavity	1.252000
worst concave points	0.291000
worst symmetry	0.420900
worst fractal dimension	0.152460
dtype: float64	

X_train_scaled = (X_train - X_train_min)/(X_train_range)
X_train_scaled.head()

		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	di
	412	0.114345	0.391003	0.110290	0.053150	0.293907	0.126219	0.087512	0.025487	0.108081	С
	461	0.967343	0.549827	0.988943	1.000000	0.605735	0.550334	0.851687	0.839463	0.505556	С
	532	0.317052	0.205882	0.303849	0.183245	0.435973	0.163088	0.041050	0.093439	0.288384	С
X_tes X_tes svc_m	t_ran t_sca odel	· -	est - X_te cest - X_t	o 261620 st_min).max est_min)/X_ y_train)	* *	G U 460643	N 406E22	N 15N000	0 246074	0 215657	r
	SVC()										

→ SVM on Normalized data

y_predict = svc_model.predict(X_test_scaled)
cm = confusion_matrix(y_test, y_predict)

	<pre>predicted_cancer</pre>	<pre>predicted_healthy</pre>	
is_cancer	61	5	
is_healthy	0	48	

sns.heatmap(confusion,annot=True,fmt="d")

print(classification_report(y_test,y_predict))

	precision	recall	f1-score	support
0.0	0.91	1.00	0.95	48
1.0	1.00	0.92	0.96	66
accuracy			0.96	114
macro avg	0.95	0.96	0.96	114
weighted avg	0.96	0.96	0.96	114

✓ 0s completed at 1:44 AM

×