Table des matières

ntroduction au rapport	2
aux de change US/Euro	3
Analyse primaire du jeu de données	3
Test de stationnarité	3
Transformation des données	3
Identification du modèle	4
Estimation des paramètres des différents modèles et tests de résidus	5
Prédictions	
$\mathbf{A}\mathbf{A}\mathbf{Q}$	6
annexe	7
Tableaux et figures	7

Introduction au rapport

Le présent rapport se veut être l'analyse de différentes séries chronologiques. Plus précisément, il a pour but de trouver le modèle qui s'ajuste le plus exactement à nos échantillons de données. En bref, le travail consiste à séparer nos bases de données en un échantillon entraînement qui sert à trouver un modèle et en un échantillon test qui sert à valider la précision du modèle retenu. Le travail est fait à partir de deux bases de données pour un total de cinq variables à modéliser. La première base de données, traitée au numéro 1, contient les données mensuelles du taux de change du dollar américain par rapport à l'euro de janvier 1999 à décembre 2016. La seconde base de données contient une série de statistiques de la SAAQ, soit le nombre d'accidents automobiles avec dommages corporels, le nombre de personnes accidentées, le nombre de demandes d'indemnités et le coût total de l'indemnisation (en dollar constant 2015) pour les années 1978 à 2015 inclusivement. Ces données seront traîtées au numéro 2. Afin d'alléger la lecture du présent rapport, les figures et les tableaux sont placés en annexe.

Taux de change US/Euro

Analyse primaire du jeu de données

Tout d'abord, nous observons, à la *Figure 1* en annexe, la série chronologique du taux de change américain/européen depuis janvier 1999 jusqu'à décembre 2016. Les données ont été collectées de façon quotidienne pour ensuite être transformées en taux mensuelles.

Grâce à une première analyse, on remarque sur le tableau de la fonction d'autocorrélation échantillonale qu'il y a une forte autocorrélation dans notre jeu de données et que celle-ci diminue lentement plus le lag augmente (voir *Figure 2*). On soupçonne donc fortement ce processus d'être non-stationnaire. Il n'est pas nécessaire de tracer le graphique de la fonction d'autocorrélation partielle puisqu'on doit d'abord stationnariser notre processus avant de réellement débuter notre analyse.

Test de stationnarité

Le test de stationnarité de Dickey-Fuller est alors effectué sur notre base de données. On remarque que, pour un ordre k=2 de processus auto-autoregressif tel que proposé par la fonction ar de R, notre processus est non stationnaire à un niveau de confiance de 5% avec une p-value très forte de 91.33%. On vérifie alors si une transformée Box-Cox est apppropriée à notre modèle avant de tester la stationnarité d'une première différentiation.

Transformation des données

Étant donné que les données sont positives, il est possible d'utiliser la transformée de Box-Cox afin de stabiliser notre processus. On rappelle que la famille des fonctions de puissance est définie de la façon suivante:

$$g(x) = \frac{x^{\lambda} - 1}{\lambda} \times 1_{\{\lambda \neq 0\}} + \ln(x) \times 1_{\{\lambda = 0\}}$$

 λ est donc déterminé en maximisant la fonction de log-vraisemblance de nos données fournie à la Figure 3.

On constate que $\lambda=0.1$ semble être l'estimé MLE situé au centre de l'intervalle de confiance 95%, soit]-0.5,0.7[. Puisque $\lambda=0$ est dans notre intervale de confiance, cette valeur du paramètre est également à considérer. Dans le cas où le processus serait à différencier une seule fois, la transformation logarithmique est particuliairement intéressante puisqu'elle permet de modéliser non pas le «prix» du taux de change, mais sont rendement comme il est usage de le faire dans le cas d'outils financiers. En effet, soit Y_t le prix d'un outil financier au temps t, le modèle logarithmique modélise le rendement de la façon suivante. 1 SI ON GARDE PLUS LOIN LE MODELE ARIMA(0,1,1) CELA REVIENS AU MODELE LOGNORMALE (A MENTIONNER)

$$Y_t = Y_{t-1}e^X$$

où X, le rendement continu mensuel, est la variable aléatoire à modéliser. Ainsi, suite à une première différentiation de notre modèle logarithmique, on obtient direction ce rendement. Soit,

$$\log\left(\frac{Y_t}{Y_{t-1}}\right) = X$$

On conserve alors cette transformation à condition que la première différenciation de notre processus soit stationnaire. Le graphique de cette transformation est affiché à la Figure 4.

^{1.} WEISHAUS, Abraham, SOA Exam MFE Models for Financial Economics 10th Edition.

Suite à une première différenciation, on effectue à nouveau le test augmenté de Dickey-Fuller. On remarque cette fois que, avec un processus autorégressif d'ordre 1 tel que suggéré par la fonction ar, on ne peut rejetter l'hypothèse de stationnarité avec un p-value inférieur à 1%. Ainsi, tel que mentionné précédement, la transformation logarithmique est conservée. Le graphique de la première différenciation du logarithme de la série chronologique à l'étude se trouve à la Figure 5.

Identification du modèle

Maintenant que la série est stationnaire, on peut en identifier le modèle. La première différenciation du logarithme du taux de change US/Euro est dorénavent notre modèle de base. On fera ainsi référence à ce modèle par défaut.

On observe les fonctions d'autocorrélation et d'autocorrélation partielle affichées aux Figure 6 et Figure 7 de cette série. On remarque que la fonction d'autocorrélation suggère fortement un modèle à moyenne mobile d'ordre 1, soit IMA(1,1) pour notre modèle tansformé alors que la fonction d'autocorrélation partielle suggère un modèle autorégressif d'ordre 1, soit ARI(1,1). On testera alors également le modèle ARIMA(1,1,1) qui est suggéré par la combinaison de ces graphiques.

On observe ensuite la fonction d'autocorrélation étendue afin de voir si ce test à un autre modèle à proposer. Le tableau de la fonction EACF est à la Table I. On observe d'abord de ce tableau que le modèle IMA(1,1) est suggéré pour la différenciation de notre modèle transformé initial. On peut également chercher à savoir si la valeur du o en ARMA(0,1) et du x en ARMA(1,1) sont significativement différent de leur valeurs inverses (x pour le o et vice versa), sans quoi le modèle ARIMA(1,1,1) serait également suggeré par le tableau EACF. Cependant, comme il fut déjà décidé d'évaluer la pertinance du modèle ARIMA(1,1,1) suite à l'analyse des fonction d'autocorrélation et d'autocorrélation partielle, il n'est pas nécessaire de test la pertiance de ce modèle selon le EACF.

Le dernier test effectué pour ajuster un modèle à notre série chronologique est le test du BIC. Le tableau du BIC est tracé à la Table II propose un modèle ARI(1,1). L'ordre maximal de moyenne mobile pour ce test a été établi à 1, sans quoi la fonction armasubsets permettant de tracer le tableau du BIC retourne des avertissements de forte dépendance linéaire entre les paramètres. On étudiera ainsi les quatre modèles proposés par les tests précédents qui peuvent être résumé de la façon suivante;

Résumé						
Tests et tableaux	Modèles suggérés					
ACF	IMA(1,1)					
	ARIMA(1,1,1)					
PACF	ARI(1,1)					
	ARIMA(1,1,1)					
EACF	IMA(1,1)					
BIC	ARI(1,1)					

On teste alors les modèles ARI(1,1), IMA(1,1) et ARIMA(1,1,1) qui sont développé, dans l'ordre, des façons suivantes.

$$W_t - \mu = \phi(W_{t-1} - \mu) + e_t \tag{1}$$

$$W_t - \mu = e_t - \theta e_{t-1} \tag{2}$$

$$W_t - \mu = e_t - \theta e_{t-1}$$

$$W_t - \mu = \phi(W_{t-1} - \mu) + e_t - \theta e_{t-1}$$
(2)

οù

$$W_t = \nabla \ln(Y_t)$$

et e_t est un bruit blanc et μ la moyenne de la série chronologique non-centrée. Il est ici important de noter que les paramètres estimés $\hat{\theta}$ et $\hat{\phi}$ ne seront pas les mêmes dans les trois modèles et devront donc être estimés pour chacun d'entre eux.

Estimation des paramètres des différents modèles et tests de résidus

On estime alors les valeurs des différents paramètres selon la méthode du maximum de vraisemblance à l'aide de la fonction arima. Les résultats se trouvent à la $Table\ III$.

On peut alors faire l'analyse de nos résidus pour faire notre choix parmi nos trois modèles. Les résidus standardisés de ces trois modèles sont tracés à la Figure 8. On remarque d'abord que ces trois courbes se superposent et ne peuvent donc pas être utilisées pour sélectionner un modèle. De plus, on remarque de ce graphique que les valeurs de résidus supérieures à 2 en valeur absolue sont relativement fréquentes ce qui nous poussent à questionner la théorie selon laquelle les résidus suivent une loi normale. En effet, dans le cas des résidus normaux, les valeurs supérieurs à 2 en valeur absolue devrait ce que matérialiser dans environ 2.28% des cas. La fréquence observée est nettement supérieur.

On regarde ensuite les histogrammes et les graphiques QQ aux $Table\ IV$ et $Figure\ 9$ des résidus. On remarque que les trois histogrammes semblent tracer avec efficacité la cloche de la loi normal. De plus, on remarque des trois graphiques QQ, que les résidus observés sont en tout point simiaire à leur valeur théorique en cas de normalité. Ces deux test semblent donc justifier la distribution normale des résidus de nos trois modèles.

On effectue alors, pour tenter de départager nos modèles, un dernier test, soit le test de Shapiro-Wilk évaluant le dégré de corrélation entre les quantiles des résidus standardisés et la loi normale standard. L'hypothèse nulle étant que la distribution des résidus suit une loi normale, on confirme, avec des p-values respectives de 0.3247, 0.2846 et 0.3051, que les résidus engendrés par les modèles IMA(1,1), ARI(1,1) et ARIMA(1,1,1) sont tous normalement distribués pour un test à un niveau de confiance α de 5%.

On cherche également un modèle dont les résidus sont indépendants, sans quoi on ne retrouve pas un bruit blanc. On effectue alors le run-test sur nos modèles pour tester l'indépendance entre les résidus. Comme l'hypothèse nulle est que les résidus sont indépendants, on conclut à un niveau de confiane de $\alpha = 5\%$ qu'on ne peut rejetter l'hypothèse nulle si la p-value est supérieur à 5%. On trouve alors, pour les modèles IMA(1,1), ARI(1,1) et ARIMA(1,1,1) des valeurs respectives de 0.81, 0.399 et 0.793 pour les p-value de leur run-tests. Ainsi, aucun de ces modèles rejettent l'hypothèse de normalité.

On effectue un dernier test sur nos modèles afin de les départager. Le test de Ljung-Box à pour hypothèse nul que le modèle testé sur notre série chronologique est approprié. On remarque des *Figure 10* à *Figure 12* que les p-values des trois modèle ne permettent pas de rejetter l'hypothèse nulle. Les trois modèles sont donc, selon ce test, appropriés pour modéliser la série chronologique à l'étude.

On se trouve ainsi dans l'impossibilité de départager nos modèles à l'aide de l'étude de leurs résidus en plus de voir tous ces modèles être jugés appropriés selon le test de Ljung-Box. On choisit alors de conserver le modèle IMA(1,1) parce qu'il est simple, parce que la valeur maximale de sa fonction de vraisemblance est la plus élevée et parce que la valeur du test AIC est la plus faible selon la $Table\ III$. De plus, ce modèle nous permet de retrouver un modèle de loi lognormale pour modéliser le taux US/Euro qui est un modèle fortement utilisé dans le monde de la mathématique financière.

On regarde, pour finaliser le choix de modèle, la question de l'overfiting. Comme le modèle ARIMA(1,1,1) a déjà été testé, il suffit ici d'obeserver le comportement du modèle IMA(1,2). On remarque de la Table III que le paramètre θ_1 du modèle IMA(1,2) est très près du paramètre θ du modèle IMA(1,1) en plus d'avoir un

paramètre θ_2 avoisinant 0. On peut alors écarter ce modèle. Le modèle IMA(1,1) est donc celui avec lequel les prédictions seront effectuées.

Prédictions

On peut alors effectuer les prédictions des taux de changes US/Euro des mois de l'année 2017 grâce au modèle suivant.

$$\nabla \ln(Y_t) = e_t - 0.3118e_{t-1}$$

SAAQ

Annexe

Tableaux et figures

Figure 1. Taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.

 $\textbf{Figure 2.} \ \ \textbf{Fonction d'autocorr\'elation \'echantillonales du taux de change US/Euro. Le lag \'etant exprim\'e en ann\'es. \\$

Figure 3. Fonction du logarithme de vraissemblance de la transformée de Box-Cox de la série chronologique du taux de change US/Euro.

Figure 4. Logarithme du taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.

Figure 5. Première différentiation du logarithme du taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.

 $\textbf{Figure 6.} \ \ \textbf{Fonction d'autocorrélation de la première différentiation du logarithme du taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.$

Figure 7. Fonction d'autocorrélation partielle de la première différentiation du logarithme du taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.

```
## AR/MA
     0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 x o o o o
## 1 x x o o o
              0
## 2 x o o o o
              0
## 3 x x x x o o
## 4 x x o x o
              0
## 5 x o x x o o o
## 6 x x x x o o o o
                            0
                                  0
## 7 x x x x x x o o o o o
                               0
                                 0
```

Table I. Tableau de la fonction EACF de la première différentiation du logarithme du taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.

Table II. Tableau de la fonction BIC de la première différentiation du logarithme du taux de change US/Euro mensuelle de janvier 1999 à décembre 2015.

Modèles	Paramètres	Valeurs estimés	AIC	Logarithme du max
				de vraisemblance
IMA(1,1)	μ	0	-1010	506
	heta	0.3118		
ARI(1,1)	μ	0	-1009	505
	ϕ	0.2933		
ARIMA(1,1,1)	μ	0	-1008	506
	heta	0.2635		
	ϕ	0.0557		

Table III. Tableau des valeurs estimées des différents coefficients obtenus de la fonction *arima* pour les trois modèles à l'étude du logarithme du taux de change US/Euro.

Figure 8. Superposition des graphiques des résidus standardisés des modèles ARI(1,1), IMA(1,1) et ARIMA(1,1,1) du logarithme du taux de change US/Euro.

 $\textbf{Table IV.} \ \ \text{Histogramme des résidus standardisés des modèles étuidés du logarithme du taux de change US/Euro.}$

Figure 9. Graphiques QQ des modèles étuidés du logarithme du taux de change US/Euro.

Figure 10. Graphiques des résidus standardisés, de l'autocorrélation des résidus et des p-values du test de Ljung-Box du modèle IMA(1,1) pour le logarithme du taux de change US/Euro.

 $\textbf{Figure 11.} \ \ \text{Graphiques des résidus standardisés, de l'autocorrélation des résidus et des p-values du test de Ljung-Box du modèle <math>\ \ \text{ARI}(1,1)$ pour le logarithme du taux de change $\ \ \ \ \text{US/Euro.}$

Figure 12. Graphiques des résidus standardisés, de l'autocorrélation des résidus et des p-values du test de Ljung-Box du modèle ARIMA(1,1,1) pour le logarithme du taux de change US/Euro.