Искать общее решение данной системы уравнений бессмысленно с точки зрения исследования на устойчивость, так как система сводится к автономному уравнению $\ddot{x}(t) - \sin(x(t)) = 0$ и в результате его решения возникает интеграл

$$\int \frac{dt}{\sqrt{A-\cos(t)}},$$

который нельзя для всякого A выразить в элементарных функциях. Найдём траектории этой системы. $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{-\sin x}{y}$. $2y\frac{dy}{dx} = -2\sin x$. $y^2 = C + 2\cos x$. $y^2=2(\cos x+C-1)$. При C<0 траектории не определены; при $C\geqslant 2$ представляют собой неограниченные кривые, и одна из таковых показана на рисунке пунктирной линией. Оба случая не представляют интереса.

Итак, с этого момента при данных обозначениях будем рассматривать траектории $y = \pm \sqrt{2(\cos x + C - 1)}$ при 0 < C < 2. Они представляют собой замкнутые кривые. Направления траекторий показаны на рисунке. По ним видно, нулевое решение $\Phi(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ задаёт особую точку $\begin{cases} x = 0 \\ y = 0 \end{cases}$ фазовой плоскости, относящуюся к типу "центр"

Покажем, что нулевое решение устойчиво, используя следующий вспомогательный факт.

Для $x \in (0,2]$ выполняется неравенство $\arccos(1-x) < 3\sqrt{x}$.

Доказательство. Функция $f(x)=3\sqrt{x}-\arccos(1-x)$ определена на $x\in[0;2]$ и имеет производную $f'(x)=\frac{3}{2\sqrt{x}}-\frac{1}{\sqrt{1-(1-x)^2}}.$ Приравняв её к нулю, находим

единственную стационарную точку $x_0=\frac{14}{9}$. Поскольку до неё производная положительная, а после неё — отрицательная, это — точка максимума. Следовательно, минимальное значение достигается в одном из концов отрезка. При этом g(0)=0 и $g(2)=3\sqrt{2}-\pi>0$. Следовательно, $g(x)\geqslant 0$, причём равенство достигается только при x=0. Неравенство доказано.

На всякой кривой $y^2=2(\cos x+C-1)$ точка $\begin{cases} x=x(t)\\y=y(t) \end{cases}$ удалена от начала координат на расстояние $\rho(t)=\rho\left(x(t)\right)=\sqrt{x^2+y^2}=\sqrt{x^2+2(\cos x+C-1)}.$ $\frac{d}{dx}\rho=0$ только при x=0, при x>0 производная положительна, а сама функция $\rho(x)$ чётная. Следовательно, максимальное значение будет достигаться в границах $x=\pm \arccos(1-C)$ области определения функций $y=\pm\sqrt{2(\cos x+C-1)}$; минимальное достигается при x=0:

$$\rho_{\max} = \rho_{\max}(C) = \rho\left(\arccos(1-C)\right) = \arccos(1-C); \quad \rho_{\min} = \rho_{\min}(C) = \rho(0) = \sqrt{2C}.$$

Зафиксируем $\varepsilon>0$. Чтобы начальная точка не попала на неограниченную кривую, необходимо потребовать, чтобы выполнялось C<2. Поскольку $\rho_{\max}(C)==\arccos(1-C)\leqslant\pi$, положим $\delta=\min\left(\frac{\sqrt{2}}{3}\varepsilon;\frac{\pi}{2}\right)$. Имеем для всех $t\geqslant t_0=0$

$$|X(t) - \Phi(t)| = \sqrt{x^2(t) + y^2(t)}$$
 $|X(t_0) - \Phi(t_0)| = \sqrt{x^2(0) + y^2(0)}$.

Пусть
$$\sqrt{x^2(0)+y^2(0)}<\delta$$
. Тогда $\delta>\sqrt{x^2(0)+y^2(0)}\geqslant \rho_{\min}(C)=\sqrt{2C}$ и $C<\frac{\delta^2}{2}$.

Наконец, принимая во внимание обозначенный вспомогательный факт и то, что функция $g(x) = \arccos(1-x)$ строго возрастает, имеем для всех $t \geqslant t_0$

$$\sqrt{x^2(t) + y^2(t)} \leqslant \rho_{\max}(C) = \arccos(1 - C) < \arccos\left(1 - \frac{\delta^2}{2}\right) < 3\sqrt{\frac{\delta^2}{2}} = \frac{3}{\sqrt{2}}\delta \leqslant \varepsilon.$$

Таким образом, по определению нулевое решение устойчиво, хотя и не асимптотически, так как кривые замкнуты и точки на них стремиться к центру координат фазовой плоскости не могут.