with $\mu_j \geq 0$, and if $u_j > 0$ then $\mu_j = 0$, for j = 1, ..., n. Equivalently, there exists a vector $\lambda \in \mathbb{R}^m$ such that

$$(\nabla J_u)_j + (A^j)^{\top} \lambda \quad \begin{cases} = 0 & \text{if } u_j > 0 \\ \ge 0 & \text{if } u_j = 0, \end{cases}$$

where A^j is the jth column of A. If the function J is convex, then the above conditions are also sufficient for J to have a minimum at $u \in U$.

Yet another special case that arises frequently in practice is the minimization problem involving the affine equality constraints Ax = b, where A is an $m \times n$ matrix, with no restriction on x. Reviewing the proof of Proposition 50.8, we obtain the following proposition.

Proposition 50.9. If U is given by

$$U = \{ x \in \Omega \mid Ax = b \},\$$

where Ω is an open convex subset of \mathbb{R}^n and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist some vector $\lambda \in \mathbb{R}^m$ such that

$$\nabla J_u + A^{\top} \lambda = 0.$$

Equivalently, there exists a vector $\lambda \in \mathbb{R}^m$ such that

$$(\nabla J_u)_j + (A^j)^\top \lambda = 0,$$

where A^j is the jth column of A. If the function J is convex, then the above conditions are also sufficient for J to have a minimum at $u \in U$.

Observe that in Proposition 50.9, the λ_i are just standard Lagrange multipliers, with no restriction of positivity. Thus, Proposition 50.9 is a slight generalization of Theorem 40.2 that requires A to have rank m, but in the case of equational affine constraints, this assumption is unnecessary.

Here is an application of Proposition 50.9 to the *interior point method* in linear programming.

Example 50.4. In linear programming, the interior point method using a central path uses a logarithmic barrier function to keep the solutions $x \in \mathbb{R}^n$ of the equation Ax = b away from boundaries by forcing x > 0, which means that $x_i > 0$ for all i; see Matousek and Gardner [123] (Section 7.2). Write

$$\mathbb{R}_{++}^n = \{ x \in \mathbb{R}^n \mid x_i > 0, \ i = 1, \dots, n \}.$$

Observe that \mathbb{R}^n_{++} is open and convex. For any $\mu > 0$, we define the function f_{μ} defined on \mathbb{R}^n_{++} by

$$f_{\mu}(x) = c^{\top} x + \mu \sum_{i=1}^{n} \ln x_i,$$