Machine Learning Homework Report

PM2.5 Predict

學號:r05922145 系級:資工碩二 姓名:郁錦濤

請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- (1)抽全部 9 小時内的污染源 feature 的一次項(加 bias)
- (2)抽全部 9 小時内 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設爲 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

model	training data RMSE	kaggle public RMSE	kaggle private RMSE
(1)	5.698564	7.53453	5.39402
(2)	6.226667	7.85510	5.87430

解答:

模型 (1) 抽取全部 9 小時内的污染源 feature 的一次項 (m bias),共有 12*(480-9)=5652 筆測資,每筆測資則有 18*9=162 個 feature。

模型 (2) 抽取全部 9 小時内的 pm2.5 的一次項 $(m \ bias)$,共有 12*(480-9)=5652 筆測資,每筆測資則有 9 個 feature \circ

模型 (1) 抽取的 feature 比較多,所以在 RMSE 表現上好於模型 (2) ,但是計算速度很慢於模型 (2) 。相反,模型 (2) 抽取的 feature 比較少,雖然在 RMSE 的表現上比模型 (1) 差,但是計算速度比較快。

根據兩種模型的對比,發現選取特徵較多的模型一般比選取模型較少的 performance 更好。但也不是一定的,我的模型只選取 18 類 feature 中的 10 類,最後的效果比選取全部 feature 的模型還要好。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

model	(1)Training	(1) Public	(1) Private	(2)Training	(2) Public	(2)Private
	RMSE	RMSE	RMSE	RMSE	RMSE	RMSE
前9小時	5.698564	7.53453	5.39402	6.226667	7.85510	5.87430
前5小時	5.823100	7.71000	5.39192	6.340770	8.08842	6.03934

解答:

將 feature 從抽前 9 小時改成抽前 5 小時,這樣每個測資的 feature 數會由原來的 162 個減少到 90 個,這樣造成的結果是 public set 和 private set 的 RMSE 會變大,也就是 performance 不好。

但是在抽取前 9 小時和前 5 小時的全部 feature 的兩種模型中,抽取前 5 小時全部 feature 模型的 public set 的 RMSE 雖然沒有前 9 個小時的模型好,但是在 private set 的 RMSE 則好於抽取前 9 個小時的模型。這說明,在某些情況下,選取特定的 feature 會有更好的 performance,每個 feature 的權重是不一樣的。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖解答:

My Model:

λ=	0.1	0.01	0.001	0.0001	0
Train RMSE:	5.687335	5.682595	5.682388	5.682372	5.682370
Public RMSE:	6.50708	6.49006	6.48836	6.48820	6.48818
Private RMSE:	5.18226	5.16634	5.16522	5.16512	5.16510

Model(1):

λ=	0.1	0.01	0.001	0.0001	0
Train RMSE:	5.701145	5.698791	5.698584	5.698564	5.698562
Public RMSE:	7.55890	7.53694	7.53475	7.53453	7.53450
Private RMSE:	5.39984	5.39458	5.39407	5.39402	5.39401

Model(2):

λ=	0.1	0.01	0.001	0.0001	0
Train RMSE:	6.230814	6.227074	6.226704	6.226667	6.226663
Public RMSE:	7.87279	7.85685	7.85526	7.85510	7.85508
Private RMSE:	5.88383	5.87516	5.87437	5.87430	5.87429

從測資中可以看出,lamda 對於模型(1)和(2)的兩種 feature 選取的一次方的模型最後 public RMSE和 private RMSE 結果影響不大,對於我的二次模型,當 lamda取 0.1 和 0.01 時,private RMSE 會從 5.18226 降至 5.16634。

分析如下。由於 regularization 所添加的是 lamd*w²,這個對於選取 feature 的一次方的模型 performace 是不明顯的。但是對於有選取 feature 的二次方的模型 是有幫助的,能夠降低 RMSE,當 lamda 越小時,RMSE 表現更好。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 爲一向量 x^n ,其標註(label)爲一存量 y^n ,模型參數爲一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)爲。若將所有訓練資料的特徵值以矩陣 $X=[x^1 \ X^2 \ ...$

 \mathbf{x}^{N}]T表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^{1} \ \mathbf{y}^{2} \ \dots \ \mathbf{y}^{N}]$ T表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^{T}\mathbf{X}$ 爲 invertible)

- $(a)(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$

解答:選擇(c)。

理由:

在取出特徵後,我們的預測結果爲 Xw,因此我們想找到 w 使 $(y-Xw)^T$ (y-Xw) 最小(也 就是讓我們定義的 loss function 最小),將 loss function 對 w 做偏微分後得到 $-2X^T(y-Xw)$ 。令其等於 0,得到 $w=(X^TX)^{-1}X^Ty$ 。