

Page: 0/22

CUSTOMER APPROVAL SHEET

С	ompany Name	
	MODEL	A050VW01 V2
	CUSTOMER	Title :
	APPROVED	Name :
	APPROVAL FOR SPECIFICAT	· · · —
		TIONS AND ES SAMPLE (Spec. Ver)
	APPROVAL FOR SPECIFICAT	TIONS AND CS SAMPLE (Spec. Ver)
	CUSTOMER REMARK:	

AUO PM:

P/N: <u>97.05A07.200</u>

Comment:

Doc. version: 0.0

Total pages: 22

Date: 2008/11/21

Product Specification 5.0" COLOR TET-LCD MODULE

MODEL NAME: A050VW01 V2

< □ >Preliminary Specification

< >Final Specification

Note: The content of this specification is subject to change.

© 2008 AU Optronics All Rights Reserved, Do Not Copy.

Version:	0.0
----------	-----

Page: 1/22

Record of Revision

Version	Revise Date	Page	Content
0.0	2008/11/21		First draft.

Page: 2/22

Contents

Α.	General Information	3
В.	Outline Dimension	4
	1. TFT-LCD Module – Front View	4
	2. TFT-LCD Module – Rear View	5
C.	Electrical Specifications	6
	1. TFT LCD Panel Pin Assignment	6
	2. Absolute Maximum Ratings	7
	3. Electrical DC Characteristics	7
	4. Electrical AC Characteristics	9
	5. Power On/Off Characteristics	10
D.	Optical Specification	11
E.	Touch Screen Panel Specifications	14
	1. FPC Pin Assignment	14
	2. Electrical Characteristics	14
	3. Mechanical Characteristics	15
	4. Life Test Condition	15
	5. Attention	16
F.	Reliability Test Items	17
G.	Packing and Marking	20
	1. Packing Form	20
	2. Module/Panel Label Information	21
	3. Carton Label Information	21
н.	Precautions	22

Page: 3/22

A. General Information

This product is for PND and MID applications.

NO.	ltem	Unit	Specification	Remark
1	Screen Size	inch	5.0(Diagonal)	
2	Display Resolution	dot	800RGB(H)×480(V)	
3	Overall Dimension	mm	119.6(H) × 76.5(V) × 5.85(T)	Note 1
4	Active Area	mm	108.0(H)×64.8(V)	
5	Pixel Pitch	mm	0.045(H)×0.135(V)	
6	Color Configuration		R. G. B. Stripe	Note 2
7	Color Depth		16.7M Colors	Note 3
8	NTSC Ratio	%	50	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	TBD	
12	Panel Power Consumption	W	TBD	Note 4
13	Backlight Power Consumption	mW	640	
14	Viewing direction		6 o'clock (gray inversion)	

Note 1: Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: The full color display depends on 24-bit data signal (pin 5~28).

Note 4: Please refer to Electrical Characteristics chapter.

Page: 4/22

B. Outline Dimension

1. TFT-LCD Module – Front View

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/22

2. TFT-LCD Module - Rear View

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 6/22

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

Recommended connector: FI-JH30S-HF10

Pin No. Symbol		Туре	Description	Remark
1	GND	Р	Power gounding	
2	VDD	Р	Power supply, typical 3.3V.	
3	VDD	Р	Power supply, typical 3.3V.	
4	VDD	Р	Power supply, typical 3.3V.	
5	NC	-	Not connected	
6	NC	-	Not connected	
7	NC	-	Not connected	
8	RA-	I	Negative LVDS differential data input	
9	RA+	Ι	Positive LVDS differential data input	
10	GND	Р	Ground for digital circuit	
11	RB-	Ι	Negative LVDS differential data input	
12	RB+	Ι	Positive LVDS differential data input	
13	GND	Р	Power grounding	
14	RC-	I	Negative LVDS differential data input	
15	RC+	Ι	Positive LVDS differential data input	
16	GND	Р	Ground for digital circuit	
17	CLKIN-	I	Negative LVDS differential clock input	
18	CLKIN+	I	Positive LVDS differential clock input	
19	GND	Р	Power grounding	
20	GND	Р	Power grounding	
21	VLED	Ι	LED driver power supply, typical 3.3V.	
22	VLED	I	LED driver power supply, typical 3.3V.	
23	GND	Р	Ground for digital circuit	
24	EN_LED	I	LED On/Off control	
25	PWM_ Dimming	I	LED brightness dimming control	
26	GND	Р	Power grounding	
27	TP_R	I/O	T/P right electrode (R)	

Page: 7/22

28	TP_B	I/O	T/P bottom electrode (B)	
29	TP_L	I/O	T/P left electrode (L)	
30	TP_U	I/O	T/P top electrode (U)	

Note 1: I: Input; O: Output; P: Power.

Note 2: For correct power on sequence please refer to section 5 "Power On/Off Sequence"

Note 3: LVDS data mapping

2. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Power voltage	VDD	GND=0	-0.3	4	٧	Note 1
Input signal voltage	Data	GND=0	-0.3	VDD+0.3	٧	Digital signal

Note 1: Functional operation should be restricted under ambient temperature (25°C).

Note 2: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

3. Electrical DC Characteristics

a. Typical Operation Condition (AGND = GND = 0V)

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Power supply	VDD	3.1	3.3	3.5	٧	
Power supply	VLED	3.1	3.3	3.5	V	
Input high voltage	VIH	0.7*VDD	-	VDD	٧	
Input low voltage	VIL	0	-	0.8	٧	

Page: 8/22

b. Current Consumption (AGND=GND=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Input Current for	I _{VDD}	VDD=3.3V	-	90	110	MΑ	Note 1, 2
VDD	I _{VDD} (STANDBY)	VDD=3.3V	-	10	50	uA	Note 3

Note 1: Test Condition is under typical Electrical DC and AC characteristics.

Note 2: Test pattern is the following picture (color bar).

Note 3: In standby mode, all digital signals are stopped. Ex. DCLK, DE ...etc.

c. Backlight Driving Conditions

The backlight (LED module, Note 1) is suggested to drive by constant current with typical value.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Current	١ _L	-	20	22	mA	Note 1
Power	P_L	1	640	792	mW	
LED Life Time	L _L	10,000			Hr	Note 2, 3

Note 1: LED backlight is two parallel strings and one LED for each string is as below figure. Suggest drive by 20mA for each LED string.

Note 2: Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25°C and LED lightbar current = 20 mA.

Note 3: If it uses larger LED lightbar voltage/ current more than 20mA, it maybe decreases the LED lifetime.

Page: 9/22

4. Electrical AC Characteristics

a. Timing Diagram

1. Vertical Timing of Input

2. Horizontal Timing of Input

c. Timing Parameters

Symbol	Min	Тур	Max	Unit				
1/t _{DCLK}	-	30	50	MHz				
1/th	-	32.33	-	KHz				
1/tv	-	61.58	-	Hz				
Horizontal Signal								
th	880	928	1100	DCLK				
thd	-	800	-	DCLK				
thb	80	128	300	DCLK				
·		·						
tv	500	525	680	Н				
tvd	-	480	-	Н				
tvb	20	45	200	Н				
	1/t _{DCLK} 1/th 1/tv th thd thb	1/t _{DCLK} - 1/th - 1/tv - th 880 thd - thb 80 tv 500 tvd -	1/t _{DCLK} - 30 1/th - 32.33 1/tv - 61.58 th 880 928 thd - 800 thb 80 128 tv 500 525 tvd - 480	1/t _{DCLK} - 30 50 1/th - 32.33 - 1/tv - 61.58 - th 880 928 1100 thd - 800 - thb 80 128 300 tv 500 525 680 tvd - 480 -				

Page: 10/22

5. Power On/Off Characteristics

a. Recommended Power On Sequence

The LCD adopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

Power on sequence: $VDD \rightarrow LVDS \text{ signal} \rightarrow LED \text{ ON}$

T1≤20 ms, T2≥50 ms, T3 ≥ 200 ms

b. Recommended Power Off Sequence

Power off sequence: LED Off→LVDS Signal→ VDD.

Page: 11/22

D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time								
Rise		Tr	θ=0°		15	20	ms	Note 3
Fall		Tf	0 0		20	25	ms	
Contrast ratio		CR	At optimized viewing angle	250	300			Note 4
	Тор				45			Note 5
Viewing Angle	Bottom		CR⊒10		55		deg.	
Viewing Angle	Left		CRUIU		60			
	Right				60			
Brightness		Y _L	θ=0°	TBD	250		cd/m ²	Note 6
	White	Х	θ=0°	0.26	0.31	0.36		
		Y	θ=0°	0.28	0.33	0.38		
	D-4	Х	θ=0°	0.585	0.635	0.685		
Chramatiait.	Red	Y	θ=0°	0.300	0.350	0.400		
Chromaticity	Green -	Х	θ=0°	0.285	0.335	0.385		
		Y	θ=0°	0.485	0.535	0.585		
	Blue	Х	θ=0°	0.095	0.145	0.195		
		Υ	θ=0°	0.050	0.100	0.150		
Uniformity		ΔY_L	%	70	75		%	Note 7

Note 1: Measured under Ambient temperature =25 $^{\circ}$ C, and LED lightbar current I_L = 20mA in the dark room.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Page: 12/22

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4.Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = Photo detector output when LCD is at "White" status
Photo detector output when LCD is at "Black" status

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 7: Luminance Uniformity of these 9 points is defined as below:

Page: 13/22

Uniformity = $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$

Page: 14/22

E. Touch Screen Panel Specifications

1. FPC Pin Assignment

Pin No.	Symbol	I/O	Description	
1	X1	I/O	Touch panel right electrode (R)	
2	Y2	I/O	Touch panel bottom electrode (B)	
3	X2	I/O	Touch panel left electrode (L)	
4	Y1	I/O	Touch panel top electrode (U)	

2. Electrical Characteristics

ltem		Min.	Тур	Max.	Unit	Remark
Rate DC Voltage				7	٧	
Resistance	X (Film)	300		1100	Ω	At connector
	Y (Glass)	100		700	2.2	
Linearity		-1.5%		1.5%		Note 1
Response Time				30	ms	
Insulation Resistance		20			$M\Omega$	DC 25V

Note 1: Measurement condition of Linearity: difference between actual voltage & theoretical voltage is an error at any points. Linearity is the value of the max. error voltage divided by voltage difference on active area.

Page: 15/22

3. Mechanical Characteristics

Item	Min.	Max.	Unit	Remark
Hardness of Surface	3		Н	JIS K-5600
Operation Force (Pen or Finger)	80		gf	Note 1, 2

Note 1: Within "active area", but not near the active area boundary and on the dot-spacer.

Note 2: Operation force measurement is under test condition as figure below.

4. Life Test Condition

ltem	Min.	Max.	Unit	Remark
Notes Life	10 ⁵		lines	Note 1, 2
Input Life	10 ⁶		times	Note 1, 3

Note 1: Notes Life test condition (by pen): slide on central 2/3 of active area and use R 0.8mm polyacecal pen, input force: 250gf, frequency: 60mm/sec. Sliding from A to B complete 1 time. shown as figure 2.

Note 2: Input Life test condition (by finger): test position on active area center and use R8.0mm silicon rubber (hardness 60°), test force: 250gf, frequency: 2times/sec. shown as figure.

Page: 16/22

5. Attention

Please pay attention for below matters at mounting design of touch panel of LCD module.

- 1) In order to avoid the incorrect or abnormal input, please design the casing opening area out of the touch panel area. Suggest casing opening area shown as mechanical drawing. Suggest the gap between casing and touch panel surface at least 0.5 mm to avoid incorrect input.
- 2) Cushion area must not contact with active area. Suggest cushion area shown as mechanical drawing.
- 3) Use elastic or non-conductive material to enclosure touch panel.
- 4) Do not bond film of touch panel with casing.
- 5) The touch panel edge is conductive. Do not touch it with any conductive part after mounting.

- 6) If user wants to cleaning touch panel by air gun, pressure 2kg/cm² below is suggested. Not to blow glass from FPC site to prevent FPC peeled off.
- 7) Do not put a heavy shock or stress on touch panel and film surface. Ex. Don't lift the panel by the vacuum nozzle.
- 8) Do not lift LCD module by FPC.
- 9) Please use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning. Do not use any organic solvent, acid or alkali liquor.
- 10) Do not pile touch panel. Do not put heavy goods on touch panel.

Page: 17/22

F. Reliability Test Items

No.	Test items	Conditions	Remark	
1	High Temperature Storage	Ta= 70□	240Hrs	
2	Low Temperature Storage	Ta= -20□	240Hrs	
3	High Ttemperature Operation	Tp= 60□	240Hrs	
4	Low Temperature Operation	Ta= -10□	240Hrs	
5	High Temperature & High Humidity	Tp= 40 □. 90% RH	240Hrs	Operation
6	Heat Shock	-25□~70□, 50 cycle,	2Hrs/cycle	Non-operation
7	Electrostatic Discharge	Contact = ± 4 kV, class B Air = ± 8 kV, class B		Note 5
8	Vibration	Frequency range : 10~55Hz Stoke : 1.5mm Sweep : 10Hz~55Hz~10Hz 2 hours for each direction of X,Y,Z		Non-operation JIS C7021, A-10 condition A : 15 minutes
9	Mechanical Shock	100G . 6ms, ±X,±Y,±Z 3 times for each direction		Non-operation JIS C7021, A-7 condition C
10	Vibration (With Carton)	Random vibration: 0.015G ² /Hz from 5~200Hz –6dB/Octave from 200~500Hz		IEC 68-34
11	Drop (With Carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces		
12	Pressure 5kgf, 5sec		c	Note 6

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Note 4: temperature and relative humidity range is shown in the figure below

Page: 18/22

Note 5 : All test techniques follow IEC6100-4-2 standard.

Test Condition		Note
Pattern		
Procedure And Set-up	Contact Discharge: 330Ω, 150pF, 1sec, 5 point, 10times/point Air Discharge: 330Ω, 150pF, 1sec, 5 point, 10times/point	
Criteria	B – Some performance degradation allowed. No data lost. Self-recoverable hardware failure.	

Page: 19/22

function check is OK.(no guarantee LC mura · LC bubble)

Page: 20/22

G. Packing and Marking

1. Packing Form

Page: 21/22

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

LAUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

Week Code, the production week when the product is finished at its production process

Example:

501M06ZL06123456781Z05:

Product Manufacturing Week Code: WK50

Product Version: Version 1

Product Manufactuing Factory: M06

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton -Date from 01 to 31

►Date from 01 to 31 •Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

− A.D. γear, ranging from 1~9 and 0. The single digit code reprents the last number of the γear

Refer to the drawing of packing format for the location and size of the carton label.

Page: 22/22

H. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.