Lecture #2: Introduction to Optimisation and Constraint-Satisfaction Problems

COMP3608 - Intelligent Systems Inzamam Rahaman

Objectives of this lecture

- Many Al problems are either framed as optimisation or constraint satisfaction or use such techniques
- We need to understand these techniques and the underlying concepts before we proceed

Outline

- 1. What is Optimization?
 - 1. Important Definitions
- 2. Categories of optimisation
 - 1. Unconstrained vs constrained
 - 2. Continuous vs Discrete
- 3. Optimisation process
- 4. Problem conversion and relaxation
- 5. Gradient Descent
- 6. Backtracking

- We are constantly confronted by optimisation problems
 - Given a road network, how do I get from my start point to intended end point the quickest or cheapest?
 - How many hours should I devote to studying different courses to maximise my semester GPA?
 - How should different airline crews be scheduled to maximise profits while simultaneously minimising crew fatigue and staying in accord with labour laws and transportation regulations?

- We are constantly confronted by optimisation problems
 - Given a road network, how do I get from my start point to intended end point the quickest or cheapest?
 - How many hours should I devote to studying different courses to maximise my semester GPA?
 - How should different airline crews be scheduled to maximise profits while simultaneously minimising crew fatigue and staying in accord with labour laws and transportation regulations?
- In the above, we want to make decisions that maximise or minimise some performance measure

Optimisation is a fundamental activity that "intelligent" systems must perform

- In the field of optimisation, we are concerned with getting through to the heart of a problem to get an idea about the performance measure to minimise or maximise and what decisions are available to us
- We then formulate this measure mathematically as a function or as a set of functions
- And characterise the limitations on our decisions

$$\min f(x)$$
 subject to
$$x \in \mathcal{X}$$
 or
$$\max f(x)$$
 subject to
$$x \in \mathcal{X}$$

Decision (Design) Variable

From a feasible set, we want to choose a design variable that minimises (or maximises) a function

Decision (Design) Variable

From a feasible set, we want to choose a design variable that minimises (or maximises) a function

Objective function is sometimes also called profit, reward, or utility function

A note on Objective functions

- We can minimise or maximise any function whose domain is a set with a partial ordering defined on it
- But, in real cases, we tend to only have functions with a scalar real number output
- Will assume that this is the range of our objective function from here on out

Definitions

- Suppose $x^* \in \mathcal{X}$ is the design point where the minimum (maximum) value of f(x) occurs. We say that x^* is a minimiser (maximiser) of f(x).
- Moreover, we can say

$$x^* = \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \text{ or } x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} f(x)$$

• x^* is the solution to optimisation problem

Example

- Consider $\min 2x^2 3x + 1$ subject to $x \in \mathbb{R}$
- What is x^* and $f(x^*)$?

Definitions

Gradient

- Note that the derivative gives the gradient or slope of the tangent to the curve
- This means, that at an optimum, local or global, the derivative is 0
- Hence, we can use the derivative to solve for the optimum point
 - Can use the second order derivative to determine if maximum or minimum

Gradient

- Easy right!
- Note that we can't use this in every case
 - Some functions are not continuously differentiable over the feasible set :(
 - Gradient has no analytical solution :(
 - Gradient is expensive to compute :((Automatic differentiation can help us with this to some extent though)
- Will encounter many such cases in Al
 - Will learn how to cope
 - Gradient Descent (1st order method) no analytical solution
 - Metaheuristics (0th order methods) expensive or non-existent gradient
 - 2nd order methods (Newton-Raphson, qausi-Newton methods) also exist, but are expensive and not used that much in AI (yet)

Optimisation = search

- A common theme in my optimisation algorithms is that they are essentially searching for the optimal design point
- This is important to keep in mind when we look at metaheuristics next class!

Optimisation Problem Conversion

- Some algorithms are designed to solve minimisation problems, other to solve maximisation
- We can "convert" between the two formulations by negating the objective or cost function
- The solutions of the original and the derived problem are the same!
 - Imagine reflecting a graph on the y axis

$$\underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) = x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} - f(x)$$

Optimisation Problem Conversion

 Same thing applies if we add a constant, we shift the function up or down, but the solution point remains the same

$$\underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) = x^* = \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) + c, c \in \mathbb{R}$$

Classes of optimisation problem

- There are many ways to classify optimisation problems, e.g. convex opimtization, linear, integer, mixed-integer, etc...
- We shall focus on differentiating optimisation problems across two dimensions:
 - Unconstrained vs constrained
 - Continuous vs Discrete (Combinatorical)

Unconstrained vs Constrained

- Recall the "subject to" portion of the optimisation problem formulation
- We refer to a design point as being an element of a feasible set or feasible region
- So far $\mathcal{X} = \text{dom}(f)$, but often times $\mathcal{X} \subset \text{dom}(f)$
 - The former is unconstrained, the latter is constrained

Unconstrained vs constrained - Example

 $min 2x^2 + 4$

subject to

 $x \in \mathbb{R}$

Unconstrained vs constrained - Example

 $\min 2x^2 + 4$

subject to

$$-6 \le x \le 4$$

$$x \in \mathbb{R}$$

Unconstrained vs constrained - Example

 $\min 2x^2 + 4$

subject to

$$-6 \le x \le 4$$

$$x \in \mathbb{R}$$

Constraint-Satisfaction Problems

- Sometimes we don't care about the value of the objective function or have no such functions
- But we do have constraints
- We call such instances a CSP
- Examples:
 - Graph colouring
 - Halls' marriage problem
 - n-Queens Problem
- MiniZinc is great at these!

Continuous vs Discrete

- The characteristics of the objective function's domain impacts the methods we can use greatly
- Continuous real numbers, real vectors, real matrices
- Discrete integers, integer vectors, integer matrices
- Many algorithms exploit continuity. So discrete optimisation is more difficult:(
 - Integer linear programming is in the class NP

Let's formulate a problem!

 Wyndor Glass Ltd. produces two products A and B. A makes \$2000 of profit per unit, and B makes \$3000 of profit per unit. There are three plants that manufacture three different components that are used to manufacture A and B. Plant 1 can only operate for 10 hours per day. Plant 2 can only operate for 6 hours a day. Plant 3 can only operate for 15 hours a day. Each unit requires different amounts of a plants services. These are summarised in the following table

Let's formulate a problem

Plant\Time Needed	Product A	Product B
Plant 1	2	3
Plant 2	1	0.3
Plant 3	2	1.5

Problem Conversion

- Sometimes we can convert an
 - Constrained version to an unconstrained version
 - Discrete problem to a continuous problem
 - to approximate a solution
- · Sometimes with provable guarantees:D
 - Won't look at the guarantees much

Constrained to unconstrained

- Some methods we will look at will have different ways to dealing with converting constrained to unconstrained
- But in general, we can use penalty methods
- Basic idea:
 - Keep count of the number of constraints violated
 - multiply by some penalty factor
 - add to cost (minimisation problem) or subtract from objective (maximisation problem)

Gradient Descent (and friends)

- Iterative method for minimisation of convex functions using gradient
- Many improvements, but will look at simple variation for now
- Start and random answer and iteratively refine answer until convergence criteria (usually number of iterations (called epochs) is met)
- Used when solving for root of gradient is not feasible or possible
- The basis of many machine learning algorithms

Gradient Descent

- Core idea: gradient of tangent gives us direction of steepest ascent
- Core idea: negation of gradient, should give us direction of steepest descent

$$f(x) = \frac{1}{2}x^2 + 3$$

$$f(x) = \frac{1}{2}x^2 + 3$$

Gradient Descent

- Choose random point, say x = 10, and a step size $\alpha = 1$
- Compute gradient at point, f'(x)

$$f'(10) = 10$$

• Move in the direction opposite to f'(x) scaled by α

$$-\alpha f'(10) = 10$$

Compute new point

$$\cdot x = 10 - 10 = 0$$

Gradient Descent Algorithm

```
function gd(f, f', \alpha , lo=100, hi=100):
    x = uniform_random(lo, hi)
    gradt = f'(x)
    while not converged:
        x = x - \alpha f'(x)
    return x
```

Gradient Descent - Step Size or Learning Rate

- The step size, α , also called the learning rate can have impact on convergence
- Too large an α , we don't converge
- Too small an α , we converge slowly

Gradient Descent

- Large learning rates cause us to jump to far
- We can miss the optimal point and end up moving away from it or bounce around it
- Some modifications of gradient descent adjust the learning rate depending on the progress of the algorithm
 - AdaGrad, ADAM, RMSProp, etc...

Gradient Descent - Vectors or Multivariate

- Gradient Descent is trivially extensible to multivariable or vector cases?
- Just use partial derivative or vector derivate instead!
- Will see examples in the lab using PyTorch and by hand

Backtracking

- Can be used to solve CSPs
- Suppose that we start in state, S_0 that is in accord with our constraints but incomplete. We need to take m actions or make m decisions to reach S_m such that we find S_m that obeys our constraints
- We have an action set A, |A| = n of actions that we can take. Our actions are labeled $a_1, a_2, ..., a_n$

Backtracking

- Suppose that we take action a_1 , and this leads us into state S_1 . S_1 is a valid state. We now need to move onto S_2
- Suppose that we try all actions and all possible S_3 s are invalid
- What do we do?

Backtracking

- · No!
- We assume then that S_2 was a bad-turn or dead-end.
- So we **backtrack** to S_1 and start from where we left of in our action set a_1 . We now consider a_2 . And repeat until we either reach a valid S_m and report success or backtrack to S_0 , exhaust all of our actions and report failure

Backtracking - N Queens

- Consider an $n \times n$ chessboard.
- We want to find a way to place n queens on it such that no queen can attack any other queen
- Remember, that in chess, a queen can move diagonally, horizontally, or vertically any number of squares

MiniZinc

- MiniZinc is a DSL for solving optimisation problems
- Allows us to move between mathematical formulation and working code easily
- Will use for CSP and for some optimisation problems
- Will look at it in lab next week

```
enum DISH;
int: capacity;
array[DISH] of int: satisf;
array[DISH] of int: size;
array[DISH] of var int: amt;
constraint forall(i in DISH)(amt[i] >= 0);
constraint sum(i in DISH)(size[i] * amt[i]) <= capacity;</pre>
solve maximize sum(i in DISH)(satisf[i] * amt[i]);
output ["AMOUNT = ", show(amt), "\n"];
```