Analog Gauge Reading Using CNN Regression

Tel Aviv University | Captain's Eye

Guy Dahan

Introduction and Abstract

- The marine environment is complex and full of hazardous potential. Using AI and computer vision.
- dangerous situations with a variety of models.
- This project extend the company's ability adding an analog gauge reading ability

Methods

Light Custom UI

Training the Model

MSE Loss

Test and Save

weights.pt file and XML calibration

Challenges An analog gauge

installed onboard a ship cannot supply training images

The calibration process must be easy and quick specific and light UI for

Model must be light and optimized

Image editing

150 epochs

Objectives

Use synthetic data to create train, validation and test sets

Create a custom, calibration

Create a custom and optimized CNN model

1 image only

Pytorch CNN

custom model

Training And Validation

- A short calibration process includes cropping, marking the needle, fixing perspective and typing parameters
- Calibration XML is created at the end of the calibration

Synthetic Data

Train, Test and Validation sets - all created synthetically

Results

The model trains over 150 epochs using a custom architecture built with Pytorch

Conclusions

Reading the gauges using the synthetic data is feasible

The process is light and creates a quick reading framework ready for deployment

Future improvements: Augmentation, digital gauges reading

Architecture

GitHub

Demo

Captain's Eye recognizes and prevents