

THE BROADWAY SERIES OF ENGINEERING HANDBOOKS

MOTOR CAR MECHANISM

RV

W. E. DOMMETT, A.M.I.A.E.

WHITWORTH EXHIBITIONER, AUMIRALTY PRIZEMAN, LLCTURER IN ENGIALERING AT KINGSTON-ON-THANES TECHNICAL INSTITUTE, AUTHOR OF "PETROL ENGINE CONSTRUCTION AND DRAWING"

WITH 102 ILIUSTRATIONS

LONDON
S|COTT, GREENWOOD & SON
8 BROADWAY, LUDGATE, E.C.
1913
[All rights reserved]

PREFACE

When starting the Motor Car Engineering Class at Guildford Technical Institute the author got together some lecture notes which form the basis of the present book. It is intended a an Elementary Textbook for those students who want a general knowledge of motor car construction of the present day, and who intend to take the allied subjects of Mechanics, Mathematics, and Machine Design. Examples of types have been given, no attempt being made to an exhaustive study of every piece of apparatus put forward by the manufacturers for public approval and use.

The student is advised to make sketches, fully dimensioned, to supplement those in the book, and he could profitably refer to Volume IV. of this series on "Toothed Gearing" when reading chapters xv. and xvi. The necessarily brief reference to ignition matters in chapter ix, should be supplemented by a book dealing exclusively

with the subject, such as "Magneto and Electric Ignition" by W. Hilbert (Whittaker & Co.) The author desires to express his thanks to

The author desires to express his thanks to Humber Cars, Ltd., for the loan of blocks for the frontispiece, and Figs. 49, 77, 81, 85, 90; to S. Wolf & Co., Southwark St., E.C., for blocks for Figs. 52, 53, and also to the students who made the drawings for the remaining figures.

The author desires also to put on record his grateful appreciation of the work done by Mr. S. Batstone, A.M.I.E.E., in reading the manuscript and making valuable suggestions.

W. E. DOMMETT.

KINGSTON-ON-THAMES, 1913.

	CON	TEN	T _S					ĭ x ʻ
	CH A	PTE	: RX					
				٠.				³91
Air				31 3				91
Water Cooling . 3		. •		•	. 1	٠.		91
Thermo Syphon Circ	ulatı	on		. •	?			94
Radiators		•	•		•	•	•	95
Tube	•	•	٠,	•	•		•	95
(CHA	PTEI	X	١.				
TRACTION								98
Adhesive Power .								98
Tractive Force .								100
Resistance to Motion								101
Brakes								101
(CHA:	PTEF	X	11.				
FRAMES AND SPRINGS								103
Springs								106
Front Springs								109
Front Springs . Rear Springs, .			·			Ċ		108
Supplementary Spri	ngs							110
((HA	PTER	X	н.				•
FRONT AXLES, STEER	NG (BEAR						111
Wheel Mountings								113
Linkages							•	113
					·	•	•	
(CHA	PTEI	ł X	IV.				
CLUTCHES						, .		119
Multiple Disk Clute	hes							124
	CHA	PIE	кх	.v.		,		•
SPEED GEARS AND BE	AKE	١.						126
Epicyclic Geår .								180
Brakos	•)	•		•		•	130
Countershaft Brakes		•	•	- : (1	•	•	131•
	•	b	•	•	•	•	•	

x	contrni
	011 1 mmmm :

X ·	Č	GN.	r <u>v</u> n	T8					
	CF		rer	άv	I.				
THE BACK-AXLE, CA	DDAN	fu uB:	G Terr	Rani	ng R	'ADD	Тар	a MIN	PAG
	* .					, paoi		4 h w	18
Radius Rous	. '		٠.		-				18
Torque Rods				<u>.</u>		٠.			18
Chain Drive						•		Coy.	18
	СН	ÁPT	FR	XVI	ī.				
STEAM CARS .									14
Steam Generators									14
The Engine .							١.		1
	СН	A I'T	ER	XVI	II.				
OTHER TRANSMISSIO	s Si	STE:	MB						1
Friction Drive					-				1
Hydraulic Transr	-			•		•			1.
Petrol Electric Sy			Ċ		Ċ	Ċ		Ċ	1
Electric Transmis	ssion								1
Complete Electric	e Ins	talla	tion						1.
		AРР	ENI	OIX.					
CITY AND GUILDS SY	CLLAI	ers i	n Mo	TOR	CAR	Engi	NEFI	ING	1
	O	din	iry (irad	e.				
PETROL CAR .									1
Engines									1
Petrol									1
Carburation									1
Tractive Force									1
Carburetters									1
Speed Gears									1
Steering Gear	•					•			1
/II 4 1			•	٠.	•		•	•	1
Clutches .									1
Cooling .		•	1.	•	•			•	
				:	:		۴.	:	1

	contents.							· X1		
								PAGE		
Teansmission			3,81				,-,	. 162		
Chassis 0.			٥.					. 162		
ELECTRIC IGNITION	,		ō.	. ,	• J	٠,		. 162		
Ignition					. 1	٠.		. 162		
Electro-Magnetic			on					. 162		
Induction Coil								. 162		
		,		`				. 162		
Magneto-Ignition								. 162		
STEAM CARS .								. 162		
Steam Generator	•							. 162		
Burners and Fue		-						162		
Boiler Feed-Pum								. 162		
Automatic System	•							. 168		
Condensers .								. 168		
ELECTRIC CARRIAG	Es							. 168		
Motors .								. 16:		
Controllers .								. 169		
Transmission								. 168		
Cut-outs 4.								. 169		
GARAGE SYSTEMS								. 163		
MOTOR CAR ENGI	NFER	ING	Exas	di N A	TION	PAPE	н.	. 16		
TABLES-										
Logarithms								. 16		
Antilogarithms								. 17		
Trigonometrical								. 17		
Squares, Cubes,								. 17		
Areas and Circu				lirel	es .			. 18		
Metric Equivale							٠.	. 18		
Equivalent Valu	ues o					uch	٠.	.18		
Kilogrammes in							Mr	. 18		
				٠.				. 18		
Properties of Sa	itu ra	teu :	S remitt	•	•	-				

11.9 h.p. HUMBER CAR (without body).

CONTENTS.

	CHA	PTE	R I.				p	AGE
THE CAR							. *	1
(JHA	PTE	RП					
THE ENGINE								6
Cycle of Operations								7
The Four-stroke Cycl	e.							7
The Cylinder .								8
The Crank Case .								10
The Pistons								11
Connecting Rods .								15
Fly-wheels c .								18
Starting Handle and								18
Complete Engine.								20
•	CHA	PTE	RП	1.				
PROPERTIES OF GASES								21
Projected Area of the	e Pis	ton						20
	cH.	PTE	R P	v.				
BRAKE HORSE-POWER	ι, Ι	Dyna	мом	ET ER	, E	WPIRI	CAL	
FORMULA FOR I	lon	E PO	WER,	ANI) Mi	ECHA	SICS	
PROBLEMS .								35
Empirical Formula								32
Forces acting on the	Pist	on d	ue to	Acre	lerati	on of	the	
Reciprocating P	art3				,			38
Correction of the Inc	licat	or Di	iagra	m.				3
Energy Stored in th	e Fl	y-wh	eel.		•			3'
Exercise	7					٠.•		38
******		VII	i	-				

CONTENTS

CHAPTER V.

									AGE
VALVES: CONSTRUC	TION.	, Ari	RANGE	MEN	T, ANI	A C	TUATI	ON	3 9
Poppet Valves		,			•		. •		ay.
Arrangement									41
Poppet Valves' - Arrangement Cams									42
	· c	нл	TER	VI					
VALVES. SLEEVE.								RY	
Disk, Main P	ISTO	: Ac	HNG	AS A	VAL	V }			43
Sleeve Valves									49
Rotary Plug									52
Piston Valves									55
Disk Valves .									55
Valveless Engine	es.				•			٠	56
	(·	HAI	TER	VI	1.				
FUELS AND CARBU	RETI	EKS							60
Carburetters Symptoms			·		•		•		74
	C.	HAP	TER	VI	IJ.				
LUBRICATION AND	Lun	RICA:	rina :	-Yal	TEMS				76
Splash									
Pressure or Mee	hani	·a.l	•	•	•	•		•	
Combined Splas									
Lubricating Pur									
224477 (1447)			•	•		·	•		•••
	('HA	PTER	l IN	ζ.				
MAGNETOS AND A	CCUM	ra.1''	ors						H2
Cutting off Igni	tion								н7
Safety Spark Ga	ıp.			٠.	٠;				87
Contact Breaker	٠.		•						87
Cutting off Igni Safety Spark Ga Contact Breaker Locating Troubl Accumulators	68								88
Accumulators							٠.		89

MOTOR CAR MECHANISM.

CHAPTER I.

THE CAR.

Before going into details, a brief summary of the principal elements which constitute the modern motor car, and the manner in which they are arranged relative to one another will be given.

Let us assume that we are standing at the side of the car pictorially illustrated in the frontispiece, then the line drawings of the same car of which Fig. I gives a side elevation (the near side wheels being off), and Fig. 2 a plan (the dashboard being absent), can be more easily read and the following description more readily grasped. The drawings are those of an 11-9 Humber ears this example being chosen as representative of the best British practice.

The photo and figures represent what is technically known as the *chassis*, which can best be defined as a complete motor car less the body work.

Proceeding now to enumerate the parts, A is the frame work which is supported or mounted through springs s on the front and rear axles m, n, which are in turn supported by the wheels w. Upon this frame are the parcer plant, the transmission yearing, and controlling mechanism.

Fig. 1.—Side elevation, Humber chassis.

Fig. 2.—Plan of Humber chassis.

The car is fitted with an internal combustion engine E from which the energy for propelling the vehicle is obtained. This power is transmitted by a clutch F to a gear box G, and thence by a shalt H, and gearing enclosed in the casing K to cross shafts which drive the rear road wheels.

The clutch is fitted so that under circumstances which require it, such as when changing gear, the, engine can be disconnected from the transmission gearing. The gears in the box G are used for altering the ratio of the revolutions of the engine relative to the revolutions of the shaft H and road wheels, the necessity for this fitting arising from the fact that below certain speeds the power generated by an internal combustion engine falls off very rapidly. The gearing in the casing K is known as the differential or balance gearing, and it not only connects the shaft H to the shafts of the road wheels w, but also enables the power taken by and revolutions of the wheels to be automatically controlled when the car is proceeding along a curved track.

The engine and its component members, such as the magneto, carburetter, lubricator pump, water circulating pump, and fan, are housed under a cover L known as the "bonnet". This cover extends from the radiator M, which contains the cooling water for the engine E, to the dashboard N.

The direction in which the car is moving can be maintained or altered by means of a steering gear P which couples the hand wheel Q to the front wheels. Other controlling members required are a foot pedal R for manipulating the clutch, a foot pedal S for actuating the brake T which is on the driving shaft immediate.

ately in the rear of the gear box, a hand lever U which actuates the brake V attached to the rear road wheels. a hand lever W for altering the gears, and certain levels both hand and foot operated, which are coupled to various fitments of the engine. Although the description given is that of a very common type, there are of course instances of variation which are largely due . to the requirements arising from the character of the work the car is called on to perform. For example, in the heavier and higher-powered cars used for commercial purposes it is not infusual to find the differental and transverse shafts mounted on the gear box, the shafts being coupled by chain and sprocket gearing with the two rear road wheels. In another form and usually with lighter and lower-powered cars, the final transmission element comprises a single chain coupling the gear box shatting with the differential.

When other forms of power plant using steam or electricity are fitted the arrangement of parts may differ considerably from that described in connexion with the internal combustion engined car, but as the number of such cars is relatively small the chapters dealing with the details of parts will also include the arrangement of those parts.

CHAPTER II.

THE ENGINE.

An internal combustion engine is made up of a number of moving and stationary parts, in the former class being the piston, connecting rod, and valves; and in the latter, cylinder, crank case, and fuel-supplying and ignition devices. The net result of

these parts properly functioning together is the development of power in the rotating crank shaft which can be coupled up for yielding useful work.

A diagrammatic view of such an engine is given in Fig. 3, the cylinder A has a water jacket B and is (6)

mounted on the upper half of the crank case C. In the cylinder reciprocates a piston D which is coupled to the crank shaft E by a connecting rod F. An inlet valve H controls the passage of fuel from the induction pipe to the cylinder, and an exhaust valve I the flow of used gases from the cylinder. Upon the induction pipe is mounted the fuel-supplying device or carburetter G, and on the exhaust pipe a silencer K.

Cycle of Operations.—When a number of parts coact so that a certain set of operations are being continuously repeated, each set of operations is known as a "cycle," and the time taken to perform this cycle is known as the "period".

In the internal combustion engine a complete cycle may occur during every four strokes of the piston, or during only two. In the first case the cycle is known as the four stroke, or the "Otto," this latter being a name of the designer of the first really successful engine working on this principle. The other cycle is known only as the two-stroke cycle. An engine on the one-stroke cycle has been constructed, but its manufacture was not put on a commercial basis and no development in this direction of any merit has occurred since.

The Four-Stroke Cycle.—Assuming the piston D, Fig. 3, to be at the top of the cylinder and just starting to move down, that the exhaust valve is closed and that the inlet valve is open, as the piston move at draws in the charge of mixed fuel and air from the carburetter G and performs what is known as the suction stroke. At the bottom of the stroke the inlet valve H is closed. During the ensuing up stroke, the piston compresses the charge into a space at the top of the cylinder.

and performs the compression stroke. It may here be noted that when the free space above the piston is of minimum volume, this is called the "clerrance volume". When the piston arrives at the top of the compression stroke, the compressed naixture is fired by the sparking plug, and the resulting explosion forces down the piston which performs its power or explosion stroke. On the next up stroke, and the exhaust valve I being open, the burnt gases are forced out of the cylinder, the piston performing the exhaust stroke. The cycle of operations then starts again to proceed in like manner all the while the engine is acting properly.

The Cylinder. Made of close-grained cast iron, each cylinder is turned in a lathe and ground on its interior cylindrical surface so that it is extremely smooth and the same diameter all along part is however made slightly larger, so that the piston cannot wear the cylinder to leave a ridge, Valve pockets and a water jacket are also provided, as already shown in the cylinder outlined in Fig. 3. In some cases the combustion head is not cast in one with the rest of the eylinder, neither is it universal to form the outer walls of the water packet integral Among the advantages of a separate head, is the ease with which the piston head can be got at for cleaning. Another advantage is that the surface of the cylinder wall on the water jacket side can be turned, in consequence of which a more efficient cooling is obtained and a more uniform thickness of wall lessens the internal strains when warmed up ' '

A single cylinder casting is illustrated in Fig. 4.

from which some idea of the complexity and arrangement of the parts of the casting call be obtained.

In modern cars the engine usually has four cylinders which can be arranged in one of three ways:

(a) four separate cylinders, (b) cylinders cast in

Fig. 4. - Single-cylinder casting, with valves or one side,

pairs (c) all four cylinders in one casting, a method known as the monobloc. In deciding which system to adopt the designer has to consider a large number of points, for example when separate units are used any defect arising in one unit can be cheaply and easily remedied, whilst any defect in a monobloc

MUTUR CAR MECHANISM

ting means scrapping the whole log. This disantage does hot need so much consideration howr, now that the art of welding has been brought such a high pitch. If more than one type of tine is being made the same units can be used in wo-, four- or six-cylinder engine, the number of terns and tools used being reduced to a minimum. tinst this advantage is the fact that the weight. and overall length of such an engine are increased compared with the monobloc arrangement, unimportant point to consider is the number of e joints required, the arrangement of the piping. I also such matters as the number of bearings it lesired to support the crank shaft in At the end the chapter, in Fig. 11, the four-cylinder engine strated is made up from two sets of castings each taining a pair of cylinders.

The Crank Case. -This is usually of aluminium and med in two parts, of which the upper part is athed to the frame of the chassis or to a sub-frame, I carries the main crank shaft bearings, whilst the err part practically acts only as an oil container, ich is the case with the engine showd in Fig. 11. The upper part is suspended from the frame at ee points, so that it does not become distorted en the car is moving over uneven ground.

When plain bearings are used they are generally gun-metal or phosphor bronze and sometimes of with white metal or other anti-friction material, are is an advantage in lining the bearing in this pect that instead of the crink shuft seizing with sequent bad results to the origine when the ricating system fails, the lining itself melts and

warning is thereby given. In more recent-practice, ball bearings have been successfully employed, those

of the double row self-aligning type, such as the Skefko, being eminehtly satisfactory. will be soticed in the drawing of a journal bearing, the outer race is spherical with centre at the centre of the bearing and is common to both sets of balls.

An entirely different design. for which a good deal can be said, is that in which a barrelshaped casting is used, two circular end plates carrying the front and rear bearings.

The Pistons .-- Trunk pistons are used and generally Fig. 5.—Self-aligning ball made of cast iron, but some

bearing, Skefko.

makers now use pressed steel, with a consequent saving in weight. Not only is the weight reduced but the problem of balancing and inertia, to which attention has to be paid if one desires to produce a vibrationless engine, becomes much easier. The length is from one to one and a quarter times the diameter, and the thickness of the head about seven-hundredths. The tops are either concave, convex, or flat, the choice being governed by the volume of compression space required more than anything else, although it has been found that toncave tops are more liable to form a sooty deposit. Webs may be formed on the inner surface of the top of the head for assisting in . disting the heat, strongthening the head, and for ollecting and directing lubricating oil to the gudgeon in.

Under working conditions, the temperature of the p of the piston is higher than that of the notion

Fig. 6. Trunk piston.

that of the cylinder walls; it is therefore necessary to provide for unequal expansion, the method adopted consisting in tapering the piston above the gudgeon pin and making the smallest diameter less than

at of the cylinder by three-thousandths of an meh rinch of cylinder diameter.

In Fig. 6 is illustrated a flat-topped piston of diaster 31 inches. The head is 1 inch thick, the side ills above the gudgeon pin $\frac{1}{16}$ meh, and below a pin the walls taper to $\frac{1}{16}$ inch. In Fig. 11 the stons are shown with a domed top.

For the sake of lightness and more particularly use on racing cars, holes are drilled around the ver part or *skirt* of the piston and two rings only by be used. It is, however, customary to fit three four rings.

The rings are situated above the gudgeon pin as a

rule, but the lowest one is sometimes placed at the bottom of the skirt, which is made of greater thickness that the necessary groove can be turned in it. In order that the rings shall press evenly on the cylinder walls, they are turned eccentrically out of east-iros hollow cylinders, and about $\frac{1}{1000}$ inch large; a diagonal cut or slot is then made to give $\frac{1}{1000}$ inch play.

When assembling, care should be taken to see that these cuts or slots are not in one line or else leakage past the rings will take place. The leakage will be of two kinds, in the first place gas will pass down with a loss in compression and power, and secondly lubricating oil will be drawn up on the suction stroke and carbox deposits quickly appear on the piston and head of the cylinder. These deposits are not such good heat conductors as the metal piston, so that the temperature is higher on a dirty piston than it is on a clean one If the temperature is sufficiently high, the compressed charge may become ignited before the spark occurs at the plug. This prengiation, occurring as it does before the piston reaches the top of the compression stroke, may result in a broken connecting rod and a ty is ed crank shaft.

Two internal bosses are formed on the piston, one of which is shown in section in Fig. 5. These are drilled to take the hollow case-hardened steel gudgeon pin, upon which the small end of the connecting rod swings.

The gudgeon pin has a tendency to rotate and to, endwise movement which is overcome in a variety of ways. In one construction the bosses are tapped and

disting the heat, strengthening the head, and for illecting and directing lubricating oil to the gudgeon n.

Under working conditions, the temperature of the p of the piston is higher than that of the notion

Fig. 6. Trunk piston.

and also than that of the cylinder walls; it is therefore necessary to provide for inequal expansion, it he method adopted consisting in tapening the piston above the gudgeon pin and making the smallest diameter less than

at of the cylinder by three-thousandths of an meh rinch of cylinder diameter.

In Fig. 6 is illustrated a flat-topped piston of diater 3½ inches. The head is $\{$ inch thick, the side alls above the gudgeon pin $\frac{1}{16}$ inch, and below a pin the walls taper to $\frac{1}{16}$ inch. In Fig. 11 the stons are shown with a domed top.

For the sake of lightness and more particularly use on racing cars, holes are drilled around the ver part or *skirt* of the piston and two rings only ty be used. It is, however, customary to fit three four rings.

The rings are situated above the gudgeon pin as a

set-screws are used; in another form the pines tapered and driven into the bosses which have been correspondingly reamered out. A cheap and effective way consists in so placing one of the piston rings that it passes around the ends of the pin. In one other method, a tapered pin is screwed into and expands the split ends of the gudgeon pin.

Connecting Rods.—These are steel stampings of H form in cross-section, as this enables the weight and cost of manufacture to be kept low. The round rods of standard steam-engine practice have the advantage in that they may be drilled with a central longitudinal hole to provide a passage for lubricating oil where forced feed lubricating systems are employed. A very usual form of rod is shown in part sectional plan and elevation in Fig. 7, the small end A having a gun-metal bush B which is pinned to prevent it turning with the gudgeon pin. The big end has a cap D so that it can be coupled to the crank pin; and provision is made for easy adjustment and repair of the brasses E. The brasses are lined with white metal, and in general the remarks made on page 17 in connexion with main bearings hold true for the big end. Constructionally, the length of the connecting rod demands consideration only from the point of view of the hight of the completed engine; but the effect produced by using different lengths, as considered from the point of view of the mechanics of the problem, is not so simple. In ordinary practice the length of the rod runs to about 21 times the length of the stroke.

Owing to the disposition of the bearings so that the centres of the gudgeon pin and crank pin are not. disting the heat, strengthening the head, and for ollecting and directing lubricating oil to the gudgeon n.

Under working conditions, the temperature of the p of the piston is higher than that of the notton

Fig. 6. Trunk piston.

and also than that of the cylinder walls; it is therefore necessary to provide for inequal expansion, the method adopted consisting in tapering the piston above the gudgeon pin and making the smallest diameter less than

at of the cylinder by three-thousandths of an meh rinch of cylinder diameter.

In Fig. 6 is illustrated a flat-topped piston of diaster 3½ inches. The head is ¼ inch thick, the side alls above the gudgeon pin $\frac{1}{16}$ meh, and below a pin the walls taper to $\frac{1}{16}$ inch. In Fig. 11 the stons are shown with a domed top.

For the sake of lightness and more particularly use on racing cars, holes are drilled around the ver part or *skirt* of the piston and two rings only by be used. It is, however, customary to fit three four rings.

The rings are situated above the gudgeon pin as a

is secured thereto either by a flange and holts as in Fig. 11 or the end is tapered and a key used.

The shaft is formed from the solid, the journals and the pins being accurately ground to size; the pins and webs may be drilled with holes for the passage of lubricating oil. Chrome vanadium steel in which there is 1 per cent of chromium, 0.2 per cent of vanadium, and 0.25 per cent of carbon, or nickel swel in which there is 3.5 per cent of nickel and 0.3 per cent of carbon, are the steels most commonly used for crark shafts.

With single-throw crank shafts for single cylinders, weights are attached to that part of the web remote from the pin in order to balance the reciprocating parts. Balancing is also employed in two-throw crank shaft, and not infrequently the webs take the form of circular disks.

When designing the main bearings and crank pins, the product of the diameter by the length multiplied by 600 should be made equal to the maximum pres sure in lbs, the pin or bearing has to take. This product of length by diameter is known as the projected area. The length of a bearing is limited by the overall length of the engine and by the diameter of the shafting necessary to transmit the power, the calculation being compounded of these two factors. In practice the value for the diameter is equal to 0.8 signes the length. The bearing nearest to the fly wheel is usually made longer than the others owing to the extra stress put upon it by the varying effort of the fly-wheel. The size of the crank shaft can be determined by considering each part as a beam subjected to combined bending and twisting.

When the axis of the shaft is not in the vertical plane containing the centre lines of the cylinders, it is said to be "offset" or "desarre". The side thrust, during the explosion strok, of the piston on the cylinder wall is much less in this arrangement than in the ordinary arrangement, which one can prove when doing the exercises at the end of Chapter IV.

Fly-wheels.—The fly wheel is primarily used to render uniform and steady the rate of revolution of the rotating shaft; it stores up energy during the ex-

Fig. 10 - - Starting handle and supporting bracket

plosion stroke and yields it up during the other three strokes. The cast-iron rim is connected by arms or an annular disk with the boss or nave, and may form part of or carry the clutch. In some cases suitable vanes thereon act as pumps or tans to draw air through the radiator.

Starting Handle and, Apparatus.—The initial movement of the grank shaft which drives the valve and ignition gearing has to be effected by some external

means, and for this purpose a lever with ratchet con-

nexion to the crank shaft is fitted which is adapted to be manually operated. In Fig. 10 a form is shown

in which the handle is supported in a bracket bolted to the front of the crank case. Similar inclined surfaces on the handle and crank shaft are normally kept out of engagement by a spring. To start up, the handle is pressed forward until these surfaces engage and then revolved. In Fig. 11 the construction is somewhat different, an inclined slot on the handle co-acting with a pin through the shaft.

Latterly, power plant has been used as a starting apparatus, comprising spring-motors or electromotors coupled to the crank shaft. Compressed air or acetylene, with suitable distributors to the cylinders, is also used, and in this case the power is applied to the pistons.

Complete Engine. - When the various parts just referred to are assembled, the completed engine appears as in the elevation given in Fig. 11. One pair of cylinders is shown in outside elevation with the exhaust and inlet piping in place. A section through the cylinder piston, etc., and through one valve chamber is also given. Some of the features have already been pointed out, and others will be referred to in more detail as the points come up for consideration.

CHAPTER III.

PROPERTIES OF GASES.

The pressure, volume, and temperature of a given mass of gas are dependent upon each other, the relationship between these properties being expressible mathematically. Suppose a given mass of gas

Fig. 12 - Pressure-volume curves for a gas.

to have a constant temperature, then it is known that expansion or contraction of the gas is accompanied by a fall or rise in pressure obeying the law, known as Boyle's Law, P. V = K. where P is the pressure and V is the volume at any one instant.

(21)

The full curve, Fig. 12, tepresents graphically the changes in pressure and volume of a gas obeying this law, the graph being called an Isothermal Curve.

Consider the point A where the pressure equals 90 and the volume equals 1, the product equals 90. It will then be found that at another point, say B, the product will also be 90—actually the pressure is 15 and the volume is 6. Similarly for any other points on the curve.

Suppose that instead of the temperature remaining constant the total quantity of heat in a given mass of gas is constant, then the pressure and volume follow the Adiabatic Law, $P:V\hookrightarrow K$ where n=1:1. The dotted line shows the connexion between pressure and volume under these conditions for a gas which has a volume 3 when the pressure is 30.

Changes in volume consequent upon changes in temperature, the pressure being constant, follow the law, known as Charles' Law, $V_t = V_a/(1+ut)$, where V_t is the volume at temperature t^a and V_a at temperature O^a . The coefficient u equals $\frac{1}{4}\frac{1}{4}$, or $\frac{1}{2}\frac{1}{4}$, for the Fahrenheit and Centigrade scales of temperature measurements respectively, hence

$$\frac{(1+at) - (1+\frac{1}{161},t) \text{ or } (1+\frac{1}{27},t)}{\binom{461+t}{461} \text{ or } (\frac{273+t}{273})}$$

and the, values $273 \pm t$ or $461 \pm t$. There said to be Absolute Temperatures,

When only the mass of the gas is constant the preceding laws are combined into the form $\frac{P+V}{T}=K.$

A fairly satisfactory approximation to the actual conditions existing or the explosion and compression

strokes is expressed by the equation $P: Y^{1:3} = K$, K being a constant.

Above the piston there is always a certain amount of free space, the immunum value of which occurs when the crank is at its inner dead centre. This volume is known as the clearance or compression rolume. When the crank is at its outer dead centre, the space is of maximum value and equals the compression volume plus the volume swept out by the piston.

The ratio Maximum Volume the ratio of compression, the value of which is somewhere in the region of 500.

In a diagram showing the pressures in the cylinder of an engine working on the four-stroke cycle, OA and OB set off along the OX line of Fig. 13 represent these minimum and maximum volumes just referred If AB represents the stroke, as another way of stating the same case, then OA is the stroke equivalent of the compression volume, that is OA is equal to the compression volume divided by the cross-sectional area of the cylinder. At this stage it will be as well to note that the quantity of work performed by a machine is measured by the product of the force exerted into the distance through which the force If we can obtain the average pressure exerted by the explosion gases upon the piston, then by multiplying this average force by the length of the stroke we get the work performed during the explosion stroke. In a similar manner the work absorbed in compressing the gases can be obtained by finding the average pressure during the compression stroke and multiplying by the length of the stroke. The pressure of the gas in the cylinder during the four strokes of the cycle may be set out on a single

diagram, as in Fig. 13, pressures being marked off parallel to the line OY from the base line OA. Such a diagram is known as the *Theoretical Indicator Diagram*, and in the case shown the explosion pres-

sure has been taken as 270 lb. per square inch and the compression at 85 lb. per square inch.

To obtain the mean effective pressure divide the diagram into ten vertical divisions of equal width, draw the ten middle ordinates (shown dotted), add together these ordinates, ab, d, ef, gh, ij, kl, mn, op, qr, sl, and divide by ten. The value so obtained represents on the proper scale the mean effective pressure. For all practical purposes, the pressures existing on the exhaust and suction strokes may be neglected.

Fig. 14. -Pressure diagram for separate strokes.

Although one diagram will do, yet for the sake of charmess, and also for future use in connexion with torque diagrams, the pressure graph of Fig. 13 may be spread over the four strokes as in Fig. 14. The average pressure for the explosion and compression strokes should then be determined by the method of mid-ordinates as above. When the average explosion pressure is subtracted from the average explosion pressure, the mean effective pressure, say P lb., is obtained. The total pressure acting on the piston equals P A in which

P is the M.E.P. in lb. per square-inch and Λ is the projected area of the piston.

The distance through which this force is exerted is equal to the length of stroke L feet.

Hence the work done per cycle $= P \cdot A \cdot L$ foot lbs. Let E be the number of explosions per minute. Then the work done per minute $= P \cdot A \cdot L \cdot E$ foot lbs.

The horse-power is therefore $\frac{P,A,L,E}{33000}$... H,P,

If a planimeter is used to obtain the area of the

Fig. 15. Pressure on a domed piston.

diagram (Fig. 13) we get at once the value of the expression P. A. L. care being taken to remember the scales to which the separate factors have been plotted.

Projected Area of the Piston.—It is the area of a circle of diameter equal, to that of the cylinder. Suppose, the head of the piston is convex and hemispherical, then the pressure is everywhere acting

normally or at right angles to the surface as indicated by arrows in the section shown in Fig. 15. The problem before us consists in finding out whether we are justified in saying that the total downward thrust

on the piston is P. A. A being $\equiv \frac{\pi d^2}{4}$. Nov consider a thin circular strip A of width w subtending an angle 2θ . The horizontal resolutes of the pressure on this strip balance one another, whilst the vertical resolutes P. $\cos\theta$ acting on an area $2\pi r$, w total up to P. $\cos\theta$, $2\pi r$, w. When projected on the circular section at the base of the head the strip under consideration has a width v^+ , w, $\cos\theta$, and a direct pressure thereon would equal P. $2\pi r$, v^+ = P. $2\pi r$, w, $\cos\theta$. Now this is the sum of the vertical resolutes of the forces on the strip A just considered. The summation of the whole of the resolutes is therefore equal to P. (The sum of the areas of all such circular strips as the one of width w^+) = P. (area of the circle of radius OB)

 $\frac{\Phi}{4}, \frac{\pi}{4}d^{*} = P/\Lambda$. Even of the head is irregular, as with pistons used on some two-stroke engines, the same notation holds good.

Instead of theorizing as to the pressures in the cylinder, an indicator may be used which automatically plots the actual pressures.

In the older forms, the diagram is marked on a card placed on a drum which is made to rotate in accordance with the linear movement of the piston. At the same time a pointer moves vertically corresponding to a rise or fall of pressure in the cylinder. The indicator is screwed into the cylinder whereby

the gases can act on a small piston which through linkwork actuates the pointer. Indicators of this kind have not proved very satisfactory for use with

Fig. 16. Hopkinson indicator,

petrol engines, and have been replaced by others involving optical principles.

Such an indicator is the Hopkinson, shown partly in section in Fig. 16. The block A is screwed into the ordinary indicator hole of the engine. A frame B fits over this block, sufficient clearance being left

to provide for unequal expansion. It is held up by a spring into engagement with the lower face of a nut C, a ball race being provided. This frame is positively connected by linkage to a reciprocating part of the engine and is thus oscillated about the axis of the block A. The piston F slides in a bore in the block A and at the top is provided with a hook G which rests on a spring D consisting of a flat strip of steel. The mirror H is clamped to a steel spindle I and is moved by the spring D through an intermediate spring K. The mirror is thus turned about the axis of the spindle I by an amount proportional to the pressure in the cylinder. A beam of light falling on the mirror when reflected thus receives the two movements necessary for producing a diagram. When the beam falls on a piece of photographing paper a permanent diagram is obtained.

The M.E.P. obtained from an indicator diagram of this character, when used in the formula $^{\bullet}$ H.P. = $\frac{P \cdot A \cdot L \cdot E}{33000}$, gives what is called the Indicated Horse-Power, or LH P

CHAPTER IV.

BRAKE HORSE-POWER, DYNAMOMETERS, EMPIRICAL FORMULA FOR HORSE-POWER, AND MECHANICS PROBLEMS.

The work done in overcoming friction of the moving parts of an engine when subtracted from the L.H.P. gives the useful work which can be obtained from the crank shaft. This work is directly measurable by means of an instrument or piece of apparatus called a dynamometer. As most of these act on the principle of absorbing the output by a brake, the useful power is referred to as the Brake Horse-Power, or briefly the B.H.P.

The fraction $\frac{B.H.P.}{I.H.P.} \approx \eta$ gives a value for the mechanical efficiency of the engine, a value which approximates to 0.85

Fig. 17 shows a very simple form of brake or absorption dynamometer suitable for use on small-powered engine. For high powers, the method of applying the external braking force requires some modification, and the brake blocks or rim of the pulley to which the brakes are applied are made hollow so that water may be supplied to take up the excess heat that is not radiated by the apparatus itself. Returning to the simple form, it will be observed that

the brake blocks are carried by a rope to the ends of which are applied two forces, P Ib. and W Ib. in the slape of a spring balance and b weight respectively. Suppose the diameter of the pulley to be D feet (if the rope is so thick that its centre is some distance from the rim then the distance D should be measured from A to B), and assume also that the number of revolutions is N per minute.

Fig. 17. Absorption dynamometer.

Then the B.H.P. $= \frac{\pi \cdot D \cdot X \cdot (W + P)}{33000}$, since a

force (W = P) is overcoming friction and acts through a distance π , D =N feet per minute

A handy form of Absorption Dynamometer is the Walker-Fan type, consisting of two arms adapted to be clamped to the power shaft and to which blades are fixed at predetermined distances from the centre of the shaft. The power is absorbed in overcoming the resistance of the air to the motion of the blades

as they are rotated by the shaft. The apparatus is calibrated or marked so that the B.H.P. can be read off at once.

At works testing a large number of engines every week, each engine is coupled to an electric machine the power of which is measured and recorded on a time sheet. By multiplying this power by the efficiency of the machine, say 98 per cent, the power of the engine under test is obtained.

Owing to fluctuations in the position of the recording lever or beam of light, the Torsion Meter now so extensively used on steam engines cannot be applied to internal combustion engines with a reasonable chance of getting an accurate or delicate reading.

Empirical Formula. The horse power can also be obtained from empirical formula based on previous experiments on other engines. The formula adopted by the Royal Automobile Club and the Treasury for taxation purposes is: H.P. = 0.4 , d', N. N being the number of cylinders, and d the diameter of the cylinders in inches. This also includes the assumption that the number of revolutions are 1000 per minute, and that the mean effective pressure is 67 lb. per square inch. Although not included in the formula, the stroke should be a factor, especially where modern long-stroke engines are concerned. Lanchester has modified the R.A.C. formula to include stroke, the equation taking the form H.P. = $k \cdot d^{1.5} \cdot s^{.5} \cdot N$. In passing, it should be noted that the equation is of the second order, as all formulæ must be in order to represent H.P. correctly.

Forces Asking one the Piston Due to Acceleration

of the Reciprovating Parts.—When estimating the weight w, of the reciprocating parts, half the weight of the connecting rod, which has a part reciprocating and part rotary motion, is added to the weight of the piston and its fittings which have a pure reciprocating motion. To find the value of the acceleration forces, two important laws of mechanics are used.

- (1) When a body of weight w is moved with an acceleration f the force required to effect this is $P = \frac{w \cdot f}{g}$.
 - (2) When a point moves with uniform velocity v

feet per second in a circle of radius r feet its radial acceleration is $\frac{r^2}{r}$ feet per second. Now at the two dead points, A, B, on the crank pin circle set cut in Fig. 18, the connecting rod may be considered its swinging about the gudgeon pin as centre, so that the crank pin has a momentary movement in two circles. In consequence, and in accordance with Law 2 above, it has an acceleration at A of $\frac{r^2}{r} - \frac{r^2}{l} = \frac{r^2}{r} \left(1 - \frac{1}{n}\right)$, and at B an acceleration of $\frac{r^2}{r} + \frac{r^2}{l} = \frac{r^2}{r} \left(1 + \frac{1}{n}\right)$ where n is the ratio of the

tength of the connecting rod to the radius of the crank pin circle. At the dead points these accelerations are also the value of the acceleration of the piston. When the connecting rod and crank are at right angles, the piston being a distance AC from its inner centre A, the acceleration is of no value.

If we use Law 1 above to obtain the total pressure and then we divide the pressure by the area of the piston, a stroke-pressure diagram, Fig. 19, can be

Fig. 19. - Acceleration-force diagram.

drawn as follows. At A make AM to represent on a proper scale the acceleration-force

$$\frac{w}{g} \cdot \frac{v}{\tau} \left(1 - \frac{1}{n} \right) : \frac{\pi}{4} \cdot d^2$$

at the inner dead centre, and at B make BN to represent the force $\frac{u}{g} \cdot \frac{v^2}{r} (1 + \frac{1}{n}) + \frac{\pi}{4} d^r$. Since the

forces are oppositely directed BN will have to be below the line AB if AM is above. Let C be the position of the piston when the rod and crank are at right angles. A circular are through MCN completes the diagram,

Correction of the Indicator Diagram.-Whilst

the piston is moving from A to C the acceleration forces are opposing the pressures exerted by the gases, and during the part of the stroke from C to B they act with the gas pressure. If, therefore, the acceleration diagram is superimposed on the incicator diagram the resultant pressure on the piston may be obtained.

We are now in a position to obtain a *Torque* or C rank Effort Diagram. Let the connecting rod NC, Fig. 20, be an angle ϕ to the line of centres

Fto 20,- Crank effort.

NO. P being the pressure on the piston, S the pressure along the rod, and Q the tangential force at the crank pin. Produce the rod to meet OF in T. and with centre N radius NC swing an arc to cut AB in C. Then AC gives the distance of the piston from the end of its stroke, and OT represents Q on the scale that OC represents P.

For those mathematically inclined, the proof of the above is as follows: $S \cdot \cos \phi = P$ and $S \cdot \cos \theta = Q$, hence $\frac{P}{Q} = \frac{\cos \phi}{\cos \theta} = \frac{\sin (TO)}{\sin TCO} = \frac{OC}{OT}$

Having thus obtained the tangential force Q on the crank pin for any position C¹ of the piston in relation to the resultant pressure P on the piston which is obtainable from the corrected indicator diagram, the torque is obtained by multiplying the

force Q by the aim OC of the lever, i.e. by constant,

When the torque is plotted on a "stroke" base the complete diagram for the four strokes for a single extinder will approximate to that sho vn in Fig. 21. For two or four or six cylinders a corresponding number of such diagrams are plotted to the same base and a compound curve drawn, due allowance being made for the fact that the explosion strokes are not coincident for the various cylinders.

The mean torque should be obtained by the method of middle ordinates. When plotted it cuts the curve at P and S, the shaded area PKS being the energy stored in the fly-wheel during the explosion. By deduction, P and S are positions of minimum and maximum speeds respectively. The dot and dash line represents the speed curve for the cycle.

Energy Stored in the Fly-wheel. Let M, m, and N be the maximum, minimum and mean revolutions of the fly-wheel per minute. Also assume the moment of inertia of the fly-wheel to be I.

Then
$$\frac{1}{2g} \left(\frac{2\pi}{6e}\right)^2 (M^2 + m^2) = 7$$
 of the energy of a cycle = area PKS.

If
$$\frac{M-m}{N}=k$$
, a constant known as \lim_{\bullet} Coefficient of Fluctuation of Speed, then the expression $(M^2-m^2)=(M-m)/(M+m)=k$, $N/(M+m)=2$, k , N^2 .

As a matter of interest if torque is the product of a tangential force by the distance from the axis at which it is acting then by multiplying the average

torque by 2π we get the work cone per revolution. If T is the mean torque in lb. feet, then work, per revolution equals 2π ; T took lb. and B.H.P. 2τ , T. n 33000

Exercise.—Using the preceding paragraphs as a guide, draw an indicator diagram such as would normally be obtained from a single-cylinder petrol engine working on the four-stroke cycle. Let the compression and maximum pressures be 85 and 270 lb, per square mich respectively. From this determine the crank effort diagram, assuming the diameter of the cylinder to be 4 inches, the stroke 5 inches, and length of connecting rod 10 inches. The weight of the piston and half the weight of the connecting rod equals 51 lb. Find the ratio of the maximum torque to the mean torque. Show how you would determine the energy it is necessary to store in the fly-wheel when the coefficient of fluctuation of speed is 5 per cent. Use general terms for such data as is necessary but not supplied with specific values above.

As a further exercise the student should obtain the maximum side thrust of the piston on the cylinder walls in the two cases—(1) of an ordinary engine, and (2) with the desaxé arrangement. Similarly the torque should be plotted and compared, the case of a 4-inch × 5-inch engine being used, with and without an offset of 3 inch. Compare also the torque of two 4-inch diameter engines A. B with 5- and 7-inch strokes respectively

CHAPTER V.

VALVES CONSTRUCTION, ARRANGEMENT, AND ACTUATION. •

The admission and exhaust of the gases to and from the cylinder of an engine operating on the four-stroke cycle are controlled by valves. Up to quite recently only one kind of valve was used by manufacturers, viz., the poppet or mushroom, but now other types have been taken up area extensive trials and much discussion. For practical purposes five heads are required in classifying the types as follows.

- 1. Poppet or mushroom.
- 2. Sleeve.
- 3. Rotary piston or plug.
- 4. Sliding piston.
- 5. Rotary disk

Poppet Valves. These have the form shown in Fig. 22, being constructed of steel, nickel steel, or pure nickel. The conical face is designed to engage a corresponding scating in the cylinder casting, the width of bearing surface being about ginner. The exhaust valve is subjected to very high temperatures, which may result in warping and in loss of efficiency. In this case also the head may become corroded and appears to be eaten away, a trouble known as "pitting". With the better steels now employed this does not occur so quickly. At one time cast-iron

(39)

heads fixed on steel stems had a slight vogue, as it

Fig. 22.—Poppet valve.

was found cast iron was better than steel in respect to concosion. The 'lower part of the stem is casehardened. 'At the bottom of the stem \. a slot is made through which passes a cotter B, adapted to hold a collar C. The lower end of the valve spring rests on this collar whilst the upper end takes against the cylinder casting. These springs which tend to keep the valve on its seat are arranged to exert a pressure of about 50 lb. when at full length and 80 lb. when compressed, The case with which the gases may pass the valves when open depends on the diameter and the lift. the case of the exhaust

valve it is found that the greater the diameter the greater the liability to warping; whereas if the available passage is obtained by increasing the lift then an increased chattering and noise results. It is customary to make the lift equal to one-fifth of the diameter, and to make the diameter of the stem equal to one-quarter of the smallest diameter of the valve seat.

Arrangement.—Six possible arrangements of the

valves on the cylinder are shown at A, B, C, D, E, F, in Fig. 23, the particular one adopted in a given case

being a compromise among the following features: (1) The number of joints to be made. (2) The faculties for grinding the seatings. (3) The best possible combustion. (4) Ease in clearing the ex-(5) The arrangement of gas and water (6) The position of the sparking plug. piping. The overall length of the cylinder. (8) The use of two or one camshafts. (9) Whether rockers or direct tappets are employed. (10) The required compression. The arrangement shown at E is the most extensively used, the cylinder being said to have a T-head. For commercial vehicles, the Thead, shown at F, is much used

When the camshaft is or camshafts are situated alongside the base of cylinder, the valves are actuated by cams and tappets, or by overhead tappets and rocker arms; and when the shaft is carried on top of the cylinder, the cams act direct or through rocker arms.

The cams may be formed integral with the shaft which is the more usual construction, or made separately; and in this case the cams are keyed to shafts of circular cross-section, or machined to slide on shafts which are squared or fluted. When the integral form is not used, it is possible to provide for an end-wise movement of the cam which is so constructed that it gives a variable lift to the valve.

Cams.—The valves are approximately open during one-half of an engine revolution (180) and closed during three-halves (540), and since the camshaft is driven at half the speed of the main shaft it follows that the cam has to act on the valve to open it over

a period of one quarter of a camenaft revolution, that is approximately 90°.

The angles referred to in the following paragraphs are main crank angles. A fairly average setting for the inlet valve is obtained by opening it about 10 late, that is after the piston has passed the inner dead centre and is moving down on its suction stroke, and

Fig. 24. - Method of setting out cams.

closing it 20 late. For the exhaust, the opening occurs 40 early, that is whilst the latter part of the explosion stroke is being performed and the closing about 40 late. From the time the exhaust valve begins to open until it closes the main crankshaft goes through an angle of 40 + 180 + 10 = 230, so that the camshaft moves through an angle of 116.

One method of setting out a cam consists in de-

scribing a circle MNP with centre O to represent the root circle of the cam. Draw radii MO, NO so that the angle MON = 115. An arc RST is then drawn with centre O and radius OR equal to OM plus an amount RM equal to the maximum lift of the valve as m Fig. 24. Since the valve cannot be lifted and lowered instantaneously, the root circle must pass gradually into the outer circle in the

Fig. 25.-Diagram of valve settings,

manner shown, from which it will be noticed that the valve is now open to its maximum extent over an angle COD.

A graphic representation of the valve settings with reference to the crank shaft can be given as in Fig. 25, in which the outer full crank-pin circle is cross-hatched to represent the opening of the inlet valve and the inner dotted circle to represent the opening of the exhaust valve. The direction of motion of the crank pin is represented by an arrow.

Some manufacturers give the openings with reference to the distance the piston has travelled from its extreme positions, in which case the diagram is as shown in Fig. 26.

Although there is considerable difference in the times of opening and closing valves on different engines, the main consideration for the designers is to get as large a charge into the cylinder and to get as much of the exhaust gases out from the cylinder during each cycle as possible. When the piston is at the bottom or top of its stroke it is moving very

Fig. 26. Diagram of valve settings,

slowly. Bearing this in mind we can understand why the inlet valve, for example, is closed late. On the down stroke the gases are drawn into the cylinder and acquire a momentum which allows them to flow into the cylinder even when the piston has begun its return stroke, there is therefore a greater charge than if the inlet valve had been shut at the dead centre. The ratio of compression is somewhat altered in consequence, but the final compression pressure is not appreciably altered because of the greater charge.

Again, the early opening of the exhaust does not

result in loss of power, as an examination of the theoretical torque diagram for the last part of the pressure stroke will show, whilst the higher pressure in the cylinder at the moment when the valve is opened and the longer time during which it is open lead to a more complete clearance of the exhaust and cooling of the cylinder.

A slight alteration of the cams on well-known engines has been known to increase the inileage per

Fig. 27.--Valve tappet and guide.

gallon by as much as 50 per cent, the inefficiency in these cases being due to using timings, which although excellent in practice for another engine, are not suitable for the engine with a different mean speed.

Another point to remember is that in no case does the cam act directly on the valve stem, an intermediate—tappet—being—used. The tappet may carry a roller, it may be spherical

ended, it may have a flat end or a second member is sometimes interposed between the cam and tappet.

These different shapes of contacting surface all demand different cam surfaces for corresponding valve movements.

A construction is given in Fig. 27 where the tappet A carries a roller B. The upper part can be adjusted as regards length by the two nuts C, D, the part C which contacts with the valve stem being

Fro. 28 Inlet cam for fast-running engine.

case-hardened. The guide E is held it the crank case F by dogs and is hollowed to receive a weak spring which tends to keep the roller on the eam. A fibre pad is sometimes let into the part C with the idea of minimizing noise.

The form of cam which gives good service for a fast-running engine is shown in Fig. 28. The dotted circle represents the virtual base circle of the cam,

for there is always some clearance between the tappet and valve stem, and consequently some lost motion. With such a cam the velocity of the inlet gases would be approximately constant.

Since the angular velocity of the crank can be taken as constant in a four-cylinder engine by plotting the valve openings against the crank angles as in Fig. 29, the quantity of change will be proportional to the area of the figure—the velocity of the gases being assumed constant.

In the case of variable gas velocity, the estimation of the velocity at a given instant is determined by multiplying the piston speed at that instant by the

cross-sectional area of the cylinder and dividing by the area of valve opening.

The cam shaft is driven off the main shaft by gear wheels, spur or helical, or by silent chain and sprocket gearing. In both cases, the timing can be upset by getting the wheels or sprocket out of their correct relationship, and attention to this point is very necessary when assembling.

The timing is usually marked on the fly-wheel and denotes the setting of the valves of the first cylinder.

As the valve seatings and cam surfaces wear, the former should be trued up with a cutting tool set in a holder like a hand drill, whilst the latter should be carefully ground back to the correct shape.

CHAPTER VI.

VALVES: SLEEVE, ROTARY PLUG, PISTON, ROTARY DISK, MAIN PISTON ACTING AS A VALVE.

In the days when poppet valves were the only form in use, they were generally noisy in action, consequently as more silent engines were demanded, alternative kinds, as well as improvements on the existing kind, were thought out by designers. The main difficulties to be contended with in the new types were those of lubrication and uneven expansion with its lack of gas tightness; and it will be seen that in most forms attention has been directed to proper water cooling, to isolating the valve from the direct action of the first part of the explosion, and to the keeping of the relative speed of the rubbing surfaces as low as possible.

Sleere Valres. The pioneer of this type is the Knight, which was made commercially successful by its adoption by the Daimler Company. The sleeves, A. B., with ports therein are employed. The pistor reciprocates in contact with the cylinder wall C. as indicated in Fig. 30. The cylinder has a detachable head H, and inlet and exhaust ports E and F respectively. The ports c, l, in the sleeve B, are at the same level, whilst the ports d, d, in the sleeve A.

(49)

are at different levels. By putting the cranks from which the sleeves are operated at an angle of about 70°, the ports ϵ , l, d, d, can be made to register with each other and with the cylinder ports E, F, so as to provide for the proper control of the working fluid. Grooves are formed on the sleeves for lubrication

Fig. 30,---Sleeve valve engine (kinght),

purposes. As usually designed the travel of the sleeves is about $\frac{1}{12}$ of the piston stroke; the width of the ports is equal to $\frac{1}{2}$ the travel, the thickness of the sleeves 3 to 4 mm., and the compression pressure is about 80 lb.

In the Argyll engine a single sleeve is used which

forms a close-fitting liner to the cylinder. A crank A, Fig. 31, pinned to a lug at the bottom of the sleeve and at right angles to its axis is driven by a rotating spur wheel B which moves the sleeve in

Fig. 31,--Sleeve valve engine (Perror),

such a manner that any point on it has an elliptical motion once every two revolutions of the main crank shaft. The wheel B rotates in a casing C which is bolted to the upper half of the crank case D. The crank pin A slides in and out of its socket and is utilized to pump lubricating oil to the ad-

jacent parts. The cylinder has six ports cut in the wall of its combustion chamber, of which three communicate with the induction pipe and three with the exhaust pipe. The sleeve itself has five ports, one acting in common with the induction and exhaust ports. The shape of the ports in the sleeve is shown in Fig. 31, those in the cylinder being of the same shape but inverted.

On a down stroke of the sleeve the exhaust ports are uncovered, and while the sleeve is rotating at the bottom of its travel the inlet ports are opened and remain so until the upper dead centre. At this position all the ports are closed and the ports in the sleeve are housed between the detachable head of the cylinder and extensions of the cylinder walls away from the effect of the explosion.

With all valve systems as already referred to in Chapter V, the time during which the valve ports are opened as well as their maximum area of valve opening has to be taken into account in gauging the effectiveness of the system. Looked at from this point of view, the Argyll system appears to be good, since the valve ports not only reach their maximum opening quickly but remain full open a correspondingly longer time. The sleeve itself has helical grooves which act as lubricating channels.

Rotary Plug.—Of the rotary plug type of valve it is proposed to deal with two kinds, those rotating on a horizontal axis and those rotating on a vertical axis.

The Darracq valve rotates on a horizontal axis in a casting on one side and near the top of the cylinder casting. This casting has a number of ports communicating with the induction pipe, the combustion

chambers and the exhaust pipe. The valve has four D-shaped sections one for each cylinder, in fact it is very like a Corliss valve. As shown in the sectional view in Fig. 32, the flat portion does not couple any

Fig. 32. -Rotary plug valve (Darracq).

of the three ports, but a small movement either way would couple the combustion chamber with the inlet or exhaust pipe. Although the arrangement is such that the piston at the upper extremity of the stroke covers the port in the cylinder and so protects the

valve from the force and heat of the explosion, yet in consequence of this construction the valve timing is not good.

The Itala rotary valve has a vertical axis and

Fig. 33 Rotary plug valve (Itala)

rotates in a cylindrical casting common to a pair of cylinders.

Ports in the valve A, Fig. 33, and in the two cylinders are adapted to register at the correct times for working on the four-stroke principle. Difficulties as to distortion due to irregular heating are overcome by water cooling the valve itself, the water entering

and leaving the valve through two concentric passages which rotate in glands directly over the valve. The valve rongs with which the valve is provided are fixed to the valve casing itself.

Piston Valves.—Of piston valves proper those used on the Hewitt engine are the best known. Although

1 a 34,---Hewitt piston valve

shown with inlet valve A and exhaust valve B on either side in Fig. 34, they can as a ranged on one side and driven by connecting rods off a common valve-erfunk shaft. Both valves reciprocate in a sindiffical castings which are ported and communicate with the inlet and exhaust pipes. In this engine, practically any desired valve setting can be obtained.

Disk Values. There are no engines with efficient

adisk valves. Either there is too great Ln area exposed to the explosion, or if part of the disk is masked there is unever expansion. A considerable amount of power also is required to drive them, so that the mechanical efficiency is rather low.

Valveless Engines. — Those engines in which the main pistons act as valves remain to be dealt with. These can be more accurately described as valveler, engines than those having valves of the types already described in this chapter. A practice has arisen among manufacturers of labelling all engines not employing poppet valves as valveless—this point should be noted by the student in his general reading in order to avoid confusion. As a class, it will be found that valveless engines operate on the two stroke cycle referred to on page 7.

In its elementary form, the cycle works out as follows: The mixture is drawn into the crank case on the upward stroke of the piston, and on the downward stroke the mixture is compressed therein. the cylinder itself and during the first part of the downward stroke, the firing and expansion of the gases takes place; toward the end of the stroke the piston uncovers the exhaust port and immediately after the inlet port. The fresh charge flows from the crank case and upon entering the cylinder is directed by a deflecting projection on the piston to the top of the cylinder away from the exhausting gases which it thus assists to expel. Upon the apward stroke and after both ports are covered, the charge is compressed. At the end of the stroke the cycle commences over again.

The only British car to which a two-stroke engine

is fitted is the Valueless made by Messis. Davide Brown of Huddersfield. The engine is of the U or Siphon type, with two cylinders as shown in Fig. 35. The exhaust ports are placed in the walls of one cylinder A, the inlet ports in the other cylinder B, and a common combustion space C connec s the two. Instead of a projection on the piston the

Fig. .5.-Valveless engine (two-stroke)

dividing wall W serves to separate the meoming charge from the exhaust. It will be observed that the exhaust from the eylinder B moves in the same direction as the new charge, there is therefore tess possibility of the two sets of gases mixing, with its resultant loss of unburnt gas in the exhaust and diluted mixture in the cylinder, than is the case with the single cylinder type wherein the exhaust

and new mixture have opposite directions of flow. The possibility of explosion in the crank case is also avoided by drawing are only into it and lecting the petrol mix with the air in the induction passage D.

Fig. 36, -Two stroke engine with differential piston.

A rotacy valve V controls the air, and a needle valve N the petrol.

The two connecting rods are attached at their big ends to two oppositely revolving disks on the rims of which are teeth which are in engagement. The shafts of both disks carry fly-wheels, so that the torque is very evenly transmitted.

The form which finds most favour in France is. shown diagrammatically in Fig. 36. The cylinder is enlarged as at A and a two-diameter or differential piston B is adapted to work therein. The upper part of the piston acts in the ordinary manner to uncover the inlet and exhaust ports I, E, respectively, whilst the annular part of the lower portion ar ws the charge into the space C on the down stroke, and on the up stroke forces it to the port I of an adjacent cylinder. The space C thus takes the place of the crank case in other constructions. The suction and preliminary compression of the charge is not dependent on the condition of the main bearings, and in this particular there is a marked advantage over the type employing the crank case. In going into the relative torque and efficiency of two- and four-stroke engines it must be remembered that a direct comparison is no at present really possible, since so hitle attention has been given to the former, but the performances of the few cars having the two-stroke engines certainly compare favourably with other cars.

CHAPTER VII.

FUELS AND CARBURETTERS.

ALL forms of energy are interconvertible, it is the function of the engine of a motor car to obtain or produce heat energy and convert it into mechanical energy. Actually an orbor a spirit is used by the engine, and burnt therein with air to produce the heat energy.

Paraffin is the lightest of the oils and petrol, benzol, benzine and alcohols are examples of spirits. In the matter of the convertibility of energy one heat unit (British Thermal Units, B.T.U) is equal to 771 ft. lb. of work. To convert heat umts into its equivalent value in ft. lb. it is therefore necessary to multiply by the value 774, which is usually denoted by the symbol J. If I lb of a fuel is completely burnt and a B.T. Units of heat are evolved in the process, then "r" is said to be the Caloritic Value of the fuel. Approximate values for alcohol, petrol and paraffin are 12, 19, and 23 respectively. When the fuel is not completely burnt the heat evolved is much less, so that it is desirable to test for complete combustion when experimenting or tuning up.

This involves a knowledge of chemistry. All substances are either simple substances, known as elements, or mixtures or combinations of the elements.

Among simple elements are carbon, hydrogen, oxygen, and iron, and these are generally denoted by their symbols. C. II; O and Fe, which represent unit volumes and also stand for the relative weights of equal volumes, these latter being 12, 1, 16 and 56 respectively. For example, if we wish to represent one volume of oxygen in combination with one rolume of hydrogen, we use the symbol OH and know that it also stands for a weight of oxygen, 16, combined with a weight of hydrogen, 1 unit. A symbol such as Fe₂O₁ represents a compound in which three volumes of non is combined with four volumes of oxygen; and the relative weights are —

Fe :
$$O : 3 \times (56) : 4 \times (16) = 3.375 : 1$$
.

Petrol is a spirit made up of various compounds of carbon and hydrogen belonging to a group with symbol G_aH_{1a} , the predominant compounds being hexane (C_bH_{1a}) and heptane (C_5H_b) .

An equation is given below which represents on the left and right-hand sides respectively the condition of attairs before and after perfect combustion of hexañe with oxygen.

2 vols
$$(C_i H_{11}) + 19$$
 vols, $(O_2) = 12$ vols, $(CO_2) = 14$ vols (H_i,O)

The products are carbon dioxide and water

Now 1 volume of oxygen is contained in $4\frac{1}{2}$ volumes of air, the other constituent of the mixture being introgen (N), so that when air is used $4\frac{1}{2} \times 19$ = 85 volumes are required, and the $3\frac{1}{2} \times 19$ volumes of N will be found free in the exhaust, and appears on both sides of the equation. It will be noticed that the proportion of hexage or noticed to air is as 2:85 approximately.

When imperfect combustion occurs as with an overrich mixture, the exhaust gases represented in the right-hand side of the equation will include carbon monoxide (CO), methane, (CH) or free carbon (C). Free oxygen (O) is present in the exhaust when the mixture is "weak," since there is not enough carbon to combine with all the oxygen in the air which enters the cylinder.

Paraffin approximates to decane $(C_{10}\Pi_{22})$, and the equation in this case is as follows.—

2 . $C_{10}H_{22}$ + 31 . O_{2} = 20 . CO_{2} + 22 . $H_{2}O_{3}$ so that the proportion of decame to air is as 2 : 31 × 44 or 1 : 70

Commercial benzol is about 90 per cent toluol, the formula for the latter being C_7 , H_8 . The proportion of air, determined as above, will be seen to be different from that for both petrol and paraffin. In consequence of this a carburetter which is suitable for use with one of these fuels may not act with one of the others without extensive adjustments and alterations.

The proportion of air required and the calorific value of a fuel are not the only properties to be considered in respect to its suitability for use in an internal combustion engine. The density, boiling point, range of distillation, flash point, as also the corrosive effect on the working parts, the safe limits of compression, and safety in handling, all demand attention. When an oil or spirit is heaved up, a temperature is reached at which the lighter vapours distil off and at successively higher temperatures the heavier vapours are given off. When the range is low, as with petrol, which is from 80 to 100 C.,

complete combustion can be more readily effected than with a spirit which commences to distil at 50°C, and continues up to 150°C. Below a point or temperature known as the "Flash Point" no combustible vapours emanate from the oil or spirit, so that the application of a naked light is not attended by combustion. At and above this point combustion would result, consequently the higher the flash point the greater the safety.

When a gas is compressed the temperature rises, and the temperature may be such that if the gas is a mixture of a combustible spirit and an, self-ignition takes place, and in an engine could take place before the spark is produced at the sparking plug. This pre ignition occurs it different compression pressures for different fuels, and in order that it shall not occur under working conditions the highest designed compression for a petrol engine is about 95 lb, and tor an alcohol engine should be about 210 lb.

In the approximate equation for petrol, the ratio of petrol to air was 1–4.2.5. Now, with a weak mixture of say i=43 up to viich mixture of 1–42 and between these, combustion can be effected in an engine, whereas none takes place outside these proportions, that is the engine "mistnes". The variation of 1 volume of air (43–42) cor band with a mean volume of 42.5 (expressed as a perc of gent is 2.4) is small and calls for very delicate design of the carburetter or other apparatus supplying the mixture. A spirit in which the air range is 5 per cent would be much easier to deal with.

Carburetters. In the preceding paragraphs it has

been ascertained that the vaporized matter required a definite supply of air for its complete combustion. It is the function of a carburetter to supply to the engine, under all conditions, this correct proportion of air and gas. It has further to produce vaporization. In designing a carburetter to possess this function, the various properties of the fuel must be considered, and in addition it must be borne in mind.

Tio 37.- Simple carburetter

that the engine of a motor vehicle works under constantly varying loads due to the nature of the road surface, gradient, speed of the car, weight, and so on. The reason for noting these factors is that the engine, as will be seen later, draws in from the carburetter a mixture the quality of which varies with the speed, the load, etc., and this variation should be in accordance with the requirements of the engine.

Carburetters in general are possessed of two main

parts, one being the constant level reservoir or float chamber and the other the mixing chamber. In its elementary form the float chamber A, illustrated in Fig. 37, is supplied with fuel from a tank, either by gravity or under pressure, past the needle v lve B. A collar on the valve spindle contacts with two levers a, which in turn are moved by the sealed br.ss drum or float C When the liquid reaches a pre-determined height the float rises, and through the medium of the levers a positively moves the needle valve down on to its seat to cut off the supply. The reservoir A is in open communication with an upturned pipe M, into which is screwed a nipple E having a very small hole bored therein. Surrounding the nipple is a funnel-shaped member N, usually of copper, known as the choke-tube, the adjustment of the conical portion of which relative to the nipple determines the available annular area for the passage of air. The tube is so positioned that the cross section of minimum value is at the level of the top of the nipple as the induced air then moves with its maximum relocity at this position and more thoroughly mixes with and vaporizes the fuel. Between this tube and the induction pipe of the engine to which it is attached by a flange connexion or union nut, is the throttle valve R which determines the volume of mixture admitted to the cylinders, and which is operated by levers by the driver.

In considering the action of the carburetter, first suppose the throttle valve to be closed, and that the level of petrol in the nipple E is at the top. The pressure of air in the choke-tube will then be equal to that of the atmosphere with which it is in free communication.

Now assume the engine to be turned, either by hand or under power, and that the valve R is gradually opened, air will be drawn from the induction pipe and choke-tube on the suction stroke, so producing a fall of pressure around the jet, with the result that petrol and air is also drawn up. Above the petrol in the float-chamber the pressure is always atmospheric. The higher the speed of the engine, the lower the pressure in the neighbourhood of the nipple, and it is found that the proportion of petrol to air is greater.

The tendency should be the other way, as at the higher speeds the mixture can be slightly weaker. In order, therefore, to obtain the correct proportion the simple form of construction just described has to be modified, the modifications consisting in:—

- 1. The provision of valved extra-air inlets.
- 2. The use of multiple jets.
- 3. The provision of means for varying the area of the jet orifice.
- 4. The provision of means for altering the height of the choke-tube.

The extra-air inlets are placed in the induction pipes either between the engine and the throttle or between the throttle and the main air. In the former case by closing the throttle when the car is going down hill, and opening the extra-air inlets, air only is supplied to the cylinders for braking, with the result that the engine is cooled and the petrol is saved. In the latter case, the valve may be hand controlled or automatically controlled in accordance

with the suction of the engine or in accordance with the speed. A carburetter in which the suction effects the control is shown in Fig. 38, the under side of the piston A being in direct communication with the induction pipe B. This piston has a number of ports C which can co-act with ports D in the wall of the carburetter to allow air to pass to the pipe B. A light spring E of adjustable tension is fitted which tends to keep the valve in its upper and closed posi-

Fig. 38 .-- Carburetter with automatic extra-air inlet.

tion. The main supply of air enters at F and the choke-tube is formed by the interior walls of the carburetter. At low speeds, the suction a small and unable to overcome the spring E, so that the ports remain closed and a rich mixture is obtained. As the speed of the engine rises, the suction increases and the valve moves down against the spring, so that the ports C, D gradually register with each other and air is drawn in to dilute the rich mixture pessing into the choke-tube from the direction of the jet G.

In the second class are constructions which are nothing more than two or more plain carburetters in one casing, a small jet with its own choke-tibe which provides a rich mixture being used for starting and slow running, and the other jets, which give weaker mixtures, being brought into use in addition to or in place of the first jet for higher speeds and loads.

Fig. 39 .- Jet with variable orifice

There are forms in which the jets have a common choke-tube, the jets being opened up successively, as is also the air inlet.

The best known instance of a jet with a variable orifice is that used in the White A Poppe carburetter. The upper part of the jet tube is conical and is bored eccentrically as at A. A similarly bored cap C, Fig. 39, rests thereon. This cap forms part of a casting which acts as a throttle valve and

air inlot control. Any movement of the throttle lever, therefore, results in a movement of the cap. When the throttle is closed, the holes A and B are out of register and the effective area of the jet orifice is nil, but as the throttle is opened so the holes A and B get into alignment and the effective area increases in the proper proportions. In another form,

Fro, 40.-8 U carburetter (modified).

the variation in the jet orifice is obtained by using a tapered needle valve A, Fig. 40, which projects into the jet B. This valve is attached to a ben we or float C the interior of which is connected by a passage D with the induction pipe E. The varying suction of the engine on the bellows consequently moves the needle A in and out of the jet B and alters the effective area. By properly calibrating the valve, that is by experimenting and obtaining values for

different diameters as at AA, BB, CC, Fig. 41, the correct quantity of petrol can pass from the jet at all speeds.

In the actual carburetter, the jet and axis of the

Fig. 41.—Calibrated needle for jet of carburetter.

bellows are inclined at 45°, the claimed advantage of which is that variation in the height of the liquid level in the jet does not affect the proper working. The author saw some experiments with one of these S.U. carburetters which without adjustment gave equally good results on petrol, paraffin

and benzol. Between each trial the float chamber was emptied and the connexions with the fuels changed over. A dynamometer and a tachemometer, both of the direct-reading type, were used to give comparative results.

The inverse of the last-mentioned modification consists in making the choke-tube adjustable, in which case the annular opening or air passage immediately surrounding the jet can be altered. As the jet is of constant size a ready means of altering the richness of the mixture is obtained.

The mixing chamber is sometimes enclosed in a jacket through which is by-passed warm water from the cooling system or hot gases from the exhaust

pipe, the object being to warm up the mixture and assist in the vaporizing of the fuel. With the same object in view, the air intake has on some engines been placed in close proximity to the exhaust pipe.

In those engines with the valves on one side the practice has arisen of fitting the carburetter ca the

opposite side and casting the induction pipe integral with the cylinder casting in the manner illustrated in Fig. 42, so that it passes through the water jacket, between the pairs of cylinders; in this way condensation of the petrol vapour is avoided.

Fig. 42.—Induction pipe integral with cylinder casting.

The cylinders are off a White and Poppe engine.

A not unimportant feature in the smooth running of a multiple cylinder is the method of arranging the induction pipes so that each cylinder is equally fed with fuel. As far as possible the length of the path

Fig. 43.—Arrangement of induction pipes.

to each cylinder should be the same, an example of this is shown in Fig. 43, the branch I, of the induc-

tion pipe leading to the valve chamber common to the inlet valves A_1 , A_2 of the first two cylinders and the other branch I_2 to the valves A_3 , A_4 of the other two cylinders. A bad arrangement for a similar engine is shown in Fig. 44. A disturbing factor, the value of which cannot be readily determined, arises from the existence of periodic wave motions in the induction pipes. These motions have the effect of starving one or two cylinders, but the magnitude is not very great except at certain critical speeds of

Pro. 44.--A faulty arrangement of induction piping

and loads on the engine. To prevent these surgings and maintain an even suction in the induction pipe, spiral obstructions and chambers similar to the air chambers of water pumps have been tried.

When the petrol flows by gravity from the tank to the float chamber care must be taken as to the height of the tank relative to that of the carburetter on the chassis, as one has to remember that when the car is going up hill there is a tendency for the supply of petrol to be cut off, owing to the new relative position. For the same feason the float chamber and the mixing chamber should be set

crosswile on the chassis as there is then no liability to flooding or starving the jet when the car is not on the level.

If space under the bonnet is a consideration and the float chamber has to be placed in front of or behind the jet chamber, it should be placed if possible in front so that the level in the jet is raised when the car is climbing. If the jet level is lowered when the car is climbing the engine may

Fig. 45 -Petrol level in carburetter.

stop, which possibility is the reverse of desirable. In the arrangement with the float chamber in front and the car on the level, the petrol level in the float chamber and jet would be at A-A, Fig. 45. When going up hill, the level is shown by the fot and dash line C-C, Fig. 46; and for down-hill work by the level B-B. Even with the crosswise arrangement, if the car is left stationary on the camber of the road loss of petrol through the jet overflowing can occur.

Where the petrol does not flow by gravity to the

float chamber, the pressure of the exhaust or of air supplied by an air pump is utilized to force the petrol to the float chamber. These systems do away with the possibility of failure of supply when the car is on a gradient.

Symptoms.—Flooding, the term used to indicate leakage from the jet, can be caused by setting the jet too low in relation to the level in the float chamber, the remedy being to use a longer nipple or to itsert

Fig. 46.--Petrol levels on gradients.

a washer at the base of the existing nipple. A needle valve, in want of re-grinding, by imperfectly, closing on to its valve seat will allow leakage, and if the float, toggle levers, or valve rod get jammed in any way when the valve is off its seat a leakage will always occur. Beside this leakage, which may exist when a car is still, violent oscillations of the needle valve take place when a car is moving over a bumpy road or an engine is vibrating badly. In the running of the engine, a rich mixture will enter the cylinder, resulting in a tendency to overheating, and

a lack of accelerating power will manifest itself-when the throttle is opened quickly.

A rich mixture, not due to flooding, before it is cured, will call for the substitution of a nipple with a smaller orifice.

A weak mixture not infrequently is due to the presence of air finding its way into the induction pipe through badly made joints; and where an auxiliary spring-controlled air-inlet is used through the spring being too weak. The size of the jet orifice can be increased as one means of getting a normal mixture. With a very weak mixture, the charge burns slowly and may last until the inlet valve opens for a fresh charge to enter the cylinder, in which case the new charge is fired, the slight explosion passing down to the carburetter, a phenomenon known as "popping".

Irregular action of an engine, the ignition being perfect, is due either to spasmodic choking of the fuel supply, or due to "freezing". The latter can be cured by warming the air supply either by the exhaust gases or by the cure ating water.

Attention is now being directed to means other than the use of the suction of the engine for supplying the fuel, but with engines using spirits or light oils no success can as yet be recorded. With heavy oils, and in the larger engines used to the dispersionary work and marine propulsion, forced feed is successfully employed, and no doubt in time smaller engines will follow suit.

CHAPTER VIII.

LUBRICATION AND LUBRICATING SYSTEMS.

When one surface moves relatively to another friction occurs and the work done in overconting friction is changed into heat energy. In order to reduce the friction and the consequent wear in the moving parts, these parts are lubricated by maintaining a film of oil between them. So far as we are at present concerned with the lubrication of the engine and its accessories, the pairs of moving parts are (1) the piston and cylinder walls; (2) the small end of the connecting rod and the gudgeon pm; (3) the big end of the connecting rod and the crank pin; (4) the crank shaft journal and the main bearings; (5) the cam shaft and its bearings. (6) the driving shafts of the pumps and magneto and their bearings.

The systems employed whereby all these parts are effectually lubricated are three in number and comprise:—

- Splash.
- 2. Pressure or Mechanical.
- 3. Combined splash and pressure.

Splash.—This is the simplest and cheapest of the three systems. In this case the crank case is supplied with oil into which the big ends dip and throw the oil up on to the cylinder walls and interior of the

piston to the gudgeon pin. The oil which drains down is directed to the main bearings.

Sometimes the piston has ledges for collecting oil, which then passes through holes in the piston to the cylinder walls, in other cases a projection on the under side of the top of the piston collects the oil and directs it to a hole in the small end of the connecting rod whereby the gudgeon pin receives its lubricating oil.

Pio. 47, ... Piston with oil collectors.

Fig. 47 gives a construction of piston providing both these features. The oil drops from the project A and gets to the gudgeon pin through a hole in the small end. From the bottom of the leaves C oil passes through holes D in the piston walls B to the cylinder wall. This construction is rarely used now since light pistons are more important.

Owing to the fact that a considerable amount of oil gets past the piston rings into the upper part of the cylinder and is then burnt up, the oil in the crank case must be periodically replenished, this being usually effected by means of a hand-pump situated on the dashboard. The pump has a two-way cock which enables the oil to be drawn from a tank and forced into the crank case. The great disadvantage of this system is the lack of uniformity, the engine being probably over-lubricated at the time a fresh charge is put into the crank case, with accompanying smoky exhaust, and under-lubricated by the time a further charge is given.

Pressure or Mechanical.—In this system oil is forced to all the working parts by a pump, the oil being drawn from a sump in the lower part of the crank case and forced through a tell-tale or indicator on the dashboard to the main bearings, whence it passes through the crank shaft to the big ends, passing to the gudgeon pin and then to the cylinder walls from which it drips back into the sump. The method of carrying out the system varies, in some cases the connecting rod is drilled, in others the rod carries a small copper pipe for conveying the oil from the, big ends to the gudgeon pin; again, the crank shaft is hollow in some constructions whilst in others the shaft is drilled, the ends of the ducts being carefully plugged.

The advantages of the pressure system are: (a) the possibility of using smaller bearings; (b) the oilways are less liable to be choked or stopped; (c) regular, regulatable, small quantities of oil can be used, so that over-lubricating does not take place. The disadvantages are: (a) any failure of the system is liable to produce complete breakdown of the engine; (b) the viscosity of the oil and the pressure varies with the

temperature; and (c) the amount of oil getting to various parts depends on the condition of the main bearings; if the pressure is high enough to maintain a film of oil when the bearing is tight then too much is thrown off when the bearing is slack, and vice versa.

Combined Splash and Pressure.—Only the main bearings are supplied with oil under pressure, the oil passing freely from them to troughs into which scoops on the big ends dip and thus spray the cylinder walls and remaining parts. The troughs are kept full, so that a uniform lubrication is obtained, the overflow passing to the sump from which the pump obtains its supply. An improvement is obtained by coupling the lubricating regulating means to the throttle, so that the supply is approximately proportionate to the load. method consists in fitting the troughs with vertically moving weirs operated in common with the throttle, thereby regulating the depth of immersion of the A similar method consists in pivoting the troughs at one end, and raising or lowering the free end by rods also coupled to the throttle control lever. · A drain cock must be fitted to the bottom of the sump and a second cock can be used as an overflow.

This system is illustrated in Fig. 48. It will be noted that the leads to the main bearings are partly pipes and partly ducts in the supporting webs.

Lubricating Pumps.—Two main types are used, the geared pinion or Roots Blower, and the piston or plunger type.

The geared pimon type shown in Fig. 40 is driven by a vertical shaft and helical gearing from the cam

Fig. 48.—Lubrication system.

shaft, the pump being placed at the bottom of the sump. Ample provision for filtering the oil and as float indicator are provided. These pumps are very satisfactory when operating under small suction and in positions where they are always primed.

The cain-operated plunger pump, of which type

Fig. 50.—Cam-operated plunger pump for oil.

an example is given in Fig. 50, has a considerable vogue. The plunger A is hollow and contains a spring S which effects the outward and suction stroke. The cylinder and valve casing B are integral and bolted to the crank case C on a level with the cam shaft. The crank case is cast with ducts D which form the delivery passages to the main bearings. Ball suction and delivery valves are used.

CHAPTER IX.

MAGNETOS AND ACCUMULATORS.

THE charge of gases is fired electrically by a spark which is produced between the points of a sparking plug. At the present time the high-tension magneto is almost universally employed for obtaining the supply of electricity, although an additional source is obtained from an accumulator.

It is now proposed to briefly describe and indicate the functions of the main element of the magneto. One of these elements is the magnet which for the sake of convenience takes the form of a horse-shoe. It is made from special steel which combines the property of steel for retaining its magnetism or remaining "permanent," and that of soft iron which can be more highly magnetized but loses its magnetism more quickly. The magnet retains its magnetism as long as the armature, or a keeper of iron, connects up the north and south poles. By placing two or three magnets side by side, each of which is laminated, i.e. made up of thin strips, the complete magnet is less liable to become de-magnetized. Soft iron pole shoes which enclose the armature are bolted to the poles of the magnet.

The armsture is of **H** section, made up of thin sheets which are insulated from one another to pre(82)

vent cross-currents (or surgings) from existing, and are bolted to end plates which have spindles adapted to rotate in ball-hearings. The armature is trued up in a lathe so that the gap between it and the cylindrical surfaces of the pole shoes is as small as possible, about 100 inch. Upon the armature two sets of wire are wound, one, the primary, consists of two or three layers of silk insulated copper wires, and the other, the secondary, consists of about forty layers of much finer wire, superposed on the primary layers. The layers are insulated from each other.

A section showing the winding is given in Fig. 51. As the armature is rotated, the magnetic influence passing through the core of the armature varies in intensity from a maximum to a minimum twice per revolution, and this variation produces an

• electric current of small electro-motive force (E.M F.).

By suddenly breaking the primary circuit a very high E.M.F. is momentarily generated in the secondary circuit. Forming part of this circuit is the sparking plug. The air gap between the plug poles has a great electrical resistance and can only be bridged with a formation of a hot spark at the moment of the existence of the high E.M.F. If therefore the contact-breaking device of the primary circuit be mechanically operated at regularly recur-

ring intervals, then a spark will also be regularly produced. The "make and break" device or contact breaker is mounted on or driver, off the armature spindle.

The condenser is made up of tinfoil sheets insulated from each other, alternate sheets being earthed or connected to the primary winding. It is used to

obtain a more rapid and complete break. When the primary circuit is broken it would not ordinarily become instantaneously zero, but when a condenser is fitted the current is more rapidly absorbed in the tinfoil and a condition approaching an instantaneous break is obtained.

The secondary circuit is coupled to the spindle of a distributing device consisting of alternate metal

segments and insulating material, whereby in engines with more than one cylinder the sparking plug of each cylinder is connected up in its proper firing order.

The speed of the armature for three-cylinder motors should be three-quarters the speed of the crank shaft; for four-cylinder motors the armature

1910. 53.—Wiring dagram for four-cylinder engine. A, sparking plugs; B, distributor; C, switch; D, safety gap; E, condenser; F, contact breaker; G, primary circuit; H, secondary circuit; I, earth or frame circuit.

should be driven at the speed of the crank shaft; and with six-cylinder motors at one and a half times the speed of the crank shaft.

The U.H. magneto which is shown in Fig. 52 gives the parts, already referred to in their assembled positions, and in Fig. 53 we have the various details of wiring connexions batween the magneto, distributor, and plugs.

The following description of the magneto, the method of timing, and of locating troubles in magnetos has been supplied by Messrs. S. Wolf, & Co.

Assuming the magneto to be fitted with timing adjustment, first set the timing lever to full advance. by turning it round as far as it will go in the opposite direction to that of the armature's rotation. Turn the armature round in its proper direction, as indicated by the arrow, until the platinum contacts move apart; this brings the armature into the correct position for full advance of ignition. look through the openings in the distributor, plate 33, to see on which H.T. segment the distributor brush is; note the number of this segment, which corresponds with the number on the upper edge of the distributor plate, and connect the plugs of the cylinders by their cables to the magneto in the order in which they are to fire, so that the numbers on the upper edge of the distributor plate correspond with the numbers of the motor cylinders. Then that piston whose cylinder and plug are connected with the H.T. segment and distributor brush is put into its position of full advance ignition; the driving wheels are then put properly into gear and the toothed wheel is tightened up on the armature spindle.

The contact plugs of the distributor are then connected with the ignition plugs by well-insulated tubber cables of not less than 9 mm. diameter, and the short-circuiting terminal 27 is connected by a rubber-insulated cab'e of not less than 5 mm. diameter with a switch, one pole of which must be connected with the frame.

Regard must always be had to the direction of

rotation. If this is for right-hand drive (clockwise), the position of full advance ignition is that in which the armature is 1 mm, from the left-hand pole shoe. On the other hand, if the magneto is for left-hand drive (anti-clockwise), the position of full advance ignition is that in which the armature is 1 mm from the right-hand pole shoe, and in this position the gear wheel or coupling must be tightened up on the spindle, assuming the motor to have been set as above explained.

Cutting off, Ignition is effected by a switch. When the switch is open, the magneto is ready to work; when the switch is closed, the primary winding of the armature is short-circuited and the magneto is put out of operation.

Safety Spark Gap, 43.—This provides a path for the escape of the high tension current if the magneto should become accidentally disconnected from the plug, or if the electrodes of the plug should be too far apart. The magneto must not, however, be run for any length of time with the spark discharging across the gap.

Contact Breaker.—This consists of the interrupter 11 with platifrum points 11a, and the adjusting nut 11b.

The contact-breaking mechanism is subject to no wear, as there are no pivots, and all so aw threads that could give rise to defects by working loose are avoided.

To adjust the make and break, first slacken the contact-breaker fixing screw and draw the contact breaker out slightly. Then turn the notched adjusting nut 11b at the back of the contact breaker to-

wards the right or the left as required, by means of the spanner key, until the right amount of interruption is secured at the platinum contacts 11q.. After the contacts have been adjusted, tighten up the screw again.

Locating Troubles.—Irregular firing is generally due to there being too great a gap between the electrodes of the plug, assuming of course that the cable connexions are in order. The electrodes should not be more than 0.6 mm. apart, and this matter should be put right if necessary.

If the firing is still irregular or fails, proceed as follows to examine the magneto for proper action.

Disconnect the igniting plug cables from terminals 1, 2, 3, 4, and the switch cable from terminal 27, and by means of plug or clip contacts connect wires to terminals 1, 2, 3, 4, and place the ends of the wires close to the magnets, so as to form a spark gap of about 1 mm., the timing lever being set to full advance, i.e. in the end position opposite to that of the direction of rotation. Now run the magneto at not less than 60 revolutions per minute in the direction for which it is built. If sparks pass at the spark gaps by the terminals 1, 2, 3, 4, the magneto. is in order, and the trouble is in the plugs or in the switch or in their connecting cables. The part in which the trouble lies can easily be found by chang-On the other hand if no sparks pass at the spark gaps by the terminals 1, 2, 3, 4, the magneto requires attending to, and the platinum contacts 11a of the contact breaker 11, the carbon, brush holder 12, its brush and collector ring 5 should be cleaned with pure petrol. Also remove the distributor plate

33, and clean the contact segments. If, after these parts have been thoroughly cleansed with petrol, dried and properly replaced, the magneto still fails to work correctly, the winding is at fault. If it should be necessary to dismantle the magneto, proceed as follows: Remove the gear wheel or cor pling by means of a wheel-dismounting tool, and unscrew. the carbon brush holder 12. Then remove the cover 7 from the bearing, take out screw 10 and remove the contact breaker 11, unscrew the distributor plate 33, and remove the distributor gear Then unscrew the rear bearing and draw the armature 3 carefully out from the pole shoes. All the parts should then be carefully examined and cleaned. Owing to the design of the magnet frames it is not necessary to short-circuit the poles with an iron plate or bar when the armature is removed, but care should be taken that the magnet frame is not in the neighbourhood of masses of iron, as otherwise loss of magnetism occurs. To reassemble the parts, proceed in the reverse order to that described. The fixing screws of the bearing must be well tightened up. Before screwing in the carbon brush holder 12, see that the carbon brush moves easily in its socket, and also that the carbon brush or the switch terminal 27 on timing lever or cover 7 works easily, so that a good rubbing contact is ensured.

Accumulators. — Accumulators, or as they are sometimes called "Storage batteries" or "Secondary cells," have the power of storing electricity after having been charged therewith and of giving out such charge as may be required.

The lead accumulators comprise a number of grids

or plates containing in a pasty form either lead oxide (positive plates) or red lead (negative plates). These are placed in a celluloid cell and immersed in dilute sulphuric acid. The density of the solution is about 1.2. When completing the solution pure distilled water or acid should be added until a final solution is obtained of the required density. Each cell when fully charged is under a pressure of two volts, so that two are usually connected in series to give four volts. The rate of charging is about six amperes per square foot of positive plate surfage.

In order to convert the low voltage, or E.M.F. into the higher one necessary for ignition purposes, an induction coil is used. This comprises two sets of windings on an iron core similar to the windings on the armature of a magneto. The "make and break," condenser, and distributor when fitted are also similar. Most coils have a trembler blade fitment which operates in a manner analogous to an electric bell.

There is a second type of accumulator which has only recently been perfected. The plates are of nickle hydrate and iron oxide contained in a steel shell and immersed in a solution of caustic potash. These alkaline cells are stated to be capable of very rough mechanical and electrical treatment without being materially injured thereby. They can be discharged by short-circuiting across the terminals, or can be charged at ten times the normal rate of discharge and will not be affected, in which respect they are very much superior to the first type. They have, however, a working E.M.F. of only about 0.9 volts per cell.

CHAPTER X

COOLING SYSTEMS .

Or the heat which is generated in the cylinders, part passes away with the exhaust gases, part is converted into useful works, and the remainder, about 35 to 40 per cent, passes by radiation to the cylinder walls, from which it has to be carried away in order to prevent overheating.

Air.—With small-powered engines, radiating fins are east on the cylinders over which air passes and takes up the heat. The current of cooling air may be produced by the passage of the car through the atmosphere or may be induced by a fan. With small-powered cars this form of cooling is fairly efficient. The great objection to air cooling arises from the fact that when a car is climbing so that the engine is developing its maximum power and the speed of the car is low there is a tendency to overheating.

Water Cooling.—When water is used as the cooling medium, it is circulated through water jackets surrounding the cylinders, either by a pump or by thermo-syphonic action. The heat taken up by the water is dissipated by passing the water through a radiator. When a pump is used, it is situated near the bottom of the radiator, its delivery pipe passing to the bottom of the jackets. The water is pumped

from the bottom of the radiator through the jackets and thence by pipes to the top of the radiator. The pump is usually driven off the end of the cam shaft, or by skew or like gear from the timing gear. Fig. 54 is a diagrammatic sketch of such a system, the pump Λ has a delivery pipe B which branches

Fig. 54.—Water-cooling system.

to the pair of castings F. The pipe C goes to the top of the radiator D and is connected thereto by rubber or other flexible tubing. The radiator has a filling cap E and drain plug G.

There are six types of numns in more or less common use:—

(a) The Roots Blower or geared pinion such as

that illustrated in Fig. 49, Chapter VIII. The capacity of such a pump varies as the speed.

Feg. 55.-Centrifugal pump.

(b) The Centrifugal Pump as illustrated in end view and sectional front view in Fig 55. The

Fig. 56.-Eccentric disk pump.

capacity of this type of pump, after a certain speed

has been exceeded, varies approximately as the square of the speed.

- (c) The Eccentric Disk, with sliding piston. This type has been illustrated in Fig 56. The pistons are carried by a disk which is eccentrically mounted in the pump casing and are pressed by springs against the casing. The hollow part between the disk and casing is thus divided into two parts alternately connected with the suction and delivery orifices.
- (d) The Helical or Screw Pump. This has the advantage that if the pump stops working the system will automatically become thermo-syphonic.

Fig. 57.--Uptake pipe for monoblec engine.

(e) The Diaphragm Pump. This requires no gearing to drive it, a spring-controlled diaphragm-being operated by fluctuations of the exhaust pressure. No British car has been fitted with this form of pump.

Thermo Syphon Circulation.—When water is heated it expands and its density decreases, so that in a closed system warm water tends to flow upwardly and cold water downwardly. This physical fact has been put to practical use on cars. By connecting the upper part of the cylinders with the upper part of the radiator through large pipes, the warm water in the jackets rises to the radiator, is there cooled and sinks to the bottom, whence it passes to the bottom of the

cylinder jackets. The form of uptake for a monobloc engine is as shown in Fig. 57. It is secured to the casting by four study and nuts. The pipes must be large so as to impede the flow of water as little as possible. For the same reason any change in direction must not be abrupt but produced by gradual change.

It may be noted in passing, that it has been proposed to dispense with a radiator and cool the water by using air which is drawn by the water circuit injector action. •

Radiators.—There are two kinds of radiators:—

- 1. Honeycomb.
- 2. Tube.

In radiators of the first kind, the water is contained in thin cells, air being drawn through the honeycomblike spaces between the cells. A very large surface requiring the use of a smaller quantity of cooling water is the principal advantage, against which can be set the liability to leakage at the cell joints.

Tule —These comprise a lower and an upper tank connected by a number of vertical tubes similar to that shown in Fig. 54. When there are side tanks, the tubes are horizontal. The water flows through the tubes either in series or in parallel, the latter being the more usual arrangement. In the majority of cases, the tubes are provided with fins, which are soldered on or are pressed on, their function being to provide a larger cooling surface and assist in radiating the heat.

Usually the radiator is placed in front of the engine, but the practice is growing of placing it at the rear of the engine, immediately in front of the

dashboard, where it is less liable to damage due to collisions. This arrangement necessitates the complete closing in of the under part of the engine so that the induced air must go through the radiator. For the sake of rigidity the radiator is mounted on a special cross frame, the seating having leather, rubber, or wood cushions. To minimize the effects of frame distortion, a bah and socket connexion with the side members of the frame is not infrequently provided. As a further consequence of frame distortion and also because of the expansion of the water pipes under running conditions, the radiator has to be coupled to the pipes by rubber or other flexible tubing.

Fans as shown at H in Fig. 54 are fitted to ensure a draught of air passing through the radiator when the engine is running, although the car may be stationary, and to increase the cooling effect when the car is moving. Fans placed behind the radiator are being replaced by vanes fitted to the periphery of the flywheel, an arrangement which goes well with radiators fitted behind the engine.

In addition to having pipes with large bends for the purpose of obtaining an easy flow, the bends should also be arranged that there are no pockets, wherein air could accumulate and form air pockets, or in which steam could be produced. When the water is drained off, it is also essential that none is left in any elbows.

When water freezes as it does at a temperature of or below 32° Fahrenheit, the ice which is formed has a volume which is 10 per cent greater than that of the original water. In expanding great force is exerted, sufficient to crack the water piping or cylinder jackets.

Suppose a car in a garage the temperature of which is likely in the winter to all below the freezing point, either the water has to be drained from the cooling system, or some substance must be added to it, such as glycerine or other antifreezing mixture, which has the property of lowering the freezing point. Such treatment is also desirable in cold climates such as Canada.

The following table was given in "The Autocar" some time ago, which shows the effect of different quantities of glycerine in this respect:—

Proportion of Olycerine	Freezing Point Fahrenheit.	Specific Gravity
10 per cent	280	1.027
30 ,,	15°	1.080
40 ,,	5°	1.100
50 .,	~ 5°	1.130

CHAPTER XI.

TRACTION.

Adhesive Power. If a wheel carrying a load W, Fig. 58, be rolled over the ground and k is the coefficient of friction between the wheel and the road, then the maximum tangential force which can be applied to the rim of the wheel is k. W. This force k. W = P is called the "adhesive power". The coefficient k is approximately equal to 0.6 for rubber and macadam.

Fig. 58.-Adhesive power,

In determining the adhesive power P for a given car the rear wheels B of which are driven, let W be total load on the wheels with the centre of gravity in the position shown in Fig. 59, then

$$P_{s} = 0.6 \cdot H = 6.6 \frac{a}{a+b} \cdot W.$$

Going up a hill, the disposition of the weight re(98)

lative to one wneels becomes altered. The diagram

Fig. 59,-Proportion of load on back wheels.

Fig. 60 gives the new values of a^1 for a and b^1 for b, so that the new adhesive power becomes

Fig. 60.—Car on gradient—forces involved.

$$P^1 = {}^{\cdot}6 \cdot \overline{M}^1 = {}^{\cdot}6 \frac{a^1}{a^1 + b^1} W = {}^{\cdot}6 \frac{a^1}{a^{1 + b}} W.$$

If a^{1} is greater than a when a car is proceeding

up hill then the adhesive power is greater, a valuable feature since the tractive force can be increased as will be seen later.

Tractive Force.—In order to make a car move a force has to be applied to the road wheels by the engine through the medium of genring sufficient to overcome the resistances to motion. This force must not exceed the adhesive power or the wheels will spin round without gripping. The factors concerned in determining the tractive effort are: (1) the torque of the engine; (2) the friction in the transmission mechanism; (3) the gear ratio between the engine and the back wheel; and (4) the diameter of the wheel.

Using the formula given in Chapter IV—

B.H.P. =
$$\frac{2\pi \cdot T \cdot n}{33000}$$

we get the torque = T = $\frac{\text{B.H.P.} \times 33000}{2\pi \cdot n}$.

On the top gear, which is usually direct, the transmission system absorbs about 8 per cent of the power, whereas on the other gears about 20 per cent is absorbed, so that 92 per cent and 80 per cent respectively of the engine power is available at the back axle. The gear ratio R equals the revolutions per minute of the engine divided by the revolutions of the road wheel, an average case being 3:85 to 1 for the top gear, for the second gear 6:0 to 1 for the first gear and 12 to 1 for the low gear.

Let T be the engine torque in lb. feet, R be the gear ratio, E the efficiency, W the weight in tons on the rear wheels, and D the diameter in feet of the road wheel. Let F be the tractive force in pounds per ton.

Then $\mathbf{F} = \mathbf{T} \times \mathbf{R}^{\bullet} \times \mathbf{E}$, but \mathbf{F} wast not exceed \mathbf{R}^{\bullet}

0.6 H, otherwise slipping will occur.

Resistance to Motion .- Now the resistance, which this tractive force has to overcome are three in number for a car travelling on the level road, to which has to be added a fourth factor when the car is on a gradient. The first factor is that of road resistance, which may be taken as equal to 40 lb. per ton weight. The second feature is that due to mechanical friction, which varies as the speed of the vehicle. The third is due to the air resistance, which is proportionate to the square of the speed and equals *0025 . A . V where V is the speed in miles per hour , and A is the projected area of the car in square feet. The fourth factor, that due to gradient, is equal to $\frac{\mathrm{W}}{x}$ where $\frac{1}{x}$ is the gradient, as illustrated in Fig. 60, and W is the weight of the car; this resistance can be obtained graphically as shown in the bottom part of the figure by finding the resolved part of the vertical force W in a direction parallel to the inclined road.

Brakes.—It would be as well to consider at this stage the mechanics of brakes since very similar calculations are required. Suppose a car of weight W lb. to be moving with a speed of v feet per second, its kinetic energy will be $\frac{Wv^2}{2g}$. If it is desired to bring the car to rest within a distance d feet by applying the brakes on the driving wheels, and using the maximum braking force of 0.6 H, where H is the load on the wheels, we get as energy absorbed

$$\int 0.6 \cdot 11 \cdot d = \frac{Wv^2}{2q}.$$

The hub brakes will take the braking power equally, the necessary maximum tangential force which should be applied to each brake rim being Diameter of wheel \times 2. It follows that the normal pressures of the braking surfaces against the brake drums is equal to this tangential force divided by u, u being the coefficient of friction, which pressure the cam actuating gear must be designed to give.

Question 1.—An engine is turning at 1200 revolutions per minute when propelling a egr at 35 miles per hour on top gear. If the road wheels are 32 inches in diameter, what is the gear ratio?

Question 2.—What H.P. is required to move a motor van weighing 3·5 tons at 12 m.p.h. along a level road, the tractive force to overcome all the resistances being 55 lb. per ton?

Question 3.—If the car in Q.2 were to climb a hill of gradient 1 in 13 at the same speed, what extra H.P. is required?

CHAPTER XII.

FRAMES AND SPRINGS.

The main frame upon which the engine transmission gear and body-work is mounted is itself carried by springs on the front and rear axles. Two side members Λ , shown in Fig. 61, and a number of cross members constitute this main frame. The shape is dependent on two factors, namely the load (this

Fig. 61,-Main frame of chassis,

includes not only the dead load but also the manner in which it is distributed), and the provision of ample facilities for the parts moving relatively thereto to perform their movements.

In order to comply with the latter condition the side members are inswept at the front to provide a good lock for the steering wheels, and not infrequently swept up over the back axle so that the (103)

movement of the back axle relative to the frame is possible whilst lat the same time the frame as a whole is kept low, and large diameter wheels may be used.

When heavy bodies are to be fitted, keeping the centre of gravity as low as possible must be remembered as an important feature in the design.

Since abrupt enanges in direction are a source of weakness it is usual to construct the members A at such positions C with webs which are either integral therewith or riveted thereto.

Looking at the side view of the frame, it will be seen that the depth of the members A is greatest

Fig. 62.—Trussed side member.

in the centre, the reason for this being that these members are acting as loaded beams and have been designed accordingly. A bending moment and shearing force diagram should be drawn whenever the necessary data is obtainable. The torsional forces to which the members A are also subjected is not inconsiderable, but their value is difficult to estimate, and the factor of safety used is large.

As an alternative to deepening the side members at the position of maximum bending, light girders may be employed as shown in Fig. 62, and where lightness is a consideration, holes are drilled along the neutral axis as indicated in dotted circles.

The ends B of the members A are extended to form the dumb irons to which the springs are

pivoted or shackled, and also for carrying the petrol tank in cases where the latter is attached to the rear of the frame.

Rolled channel steel sections, Fig. 63, are stronger

Fig. 63.—Section through rolled channel steel side member.

Fig. 64.—Pressed steel side member.

at the root than the usual pressed steel section, Fig. 64, now employed for side members. The resistance of the pressed steel section to torsion is therefore

Fig. 65.—Sections tubular side members.

not so great as the channel form, and argument has been forthcoming to show that this is in its favour since it can give and not break under these forces. Steel tubes, having a section as shown at A and B

'm Fig. 65, are not now used for side members except in 'very small and cheap cars but are used for cross members. Another section which is useful for constructional pur-

poses is of inverted ${\sf U}$ shape with flanges as shown in Fig. 66.

Cross members as shown are used to stiffen the frame, some of them being also made to act as supports for the radiator, engine, brake and clutch actuating pedals, gear-box, torque rods, and similar parts.

Considering, in the order set out, these cross members, the modern arrangement provides not so much for the support of the radiator but for the maintenance of a constant distance between the side members at this position.

Whether the engine is carried by cross members, by lugs or on a separate sub-frame, the suspension is usually on the three-point system. One method of putting this into practice consists in pivoting the front lug A, Fig. 67, to a cross piece ab and bolting the rear lugs CD to the cross piece ab. By so mounting the engine the crank case and other parts do not become strained when the main frame is distorted.

Springs.—As far as possible, the main frame is insulated from shocks likely to cause distortion. To

this end springs are interposed between the frame and the front and back axles respectively.

Mechanical and fluid springs have been used, the former being almost universal. Of the ordinary subdivision of mechanical springs into the spira. and the laminated types, only the latter need be considered.

Beside yielding to shock the springs have to absorb the energy and quickly damp the oscillations set up, and it is because laminated or leaf springs possess this property that they have been adopted.

Fig. 67. -- Three-point suspension.

Where n is the number of leaves forming a laminated spring,

w is the width of each leaf, and

t is the thickness.

Also L is the overall length of the spring, and c is a constant = 54000.

Then d the deflection in inches per ton load is given

by
$$d = \frac{L^5}{w \cdot t^3 \cdot n \cdot c}$$

and

W (the load in tons) = $\frac{w \cdot t^2 \cdot n \cdot c}{1 \cdot 1 \cdot 1}$.

The number of oscillations per minute is about 90 for the front springs and 110 for the back.

Front Springs.—These are almost invariably of the semi-elliptic variety illustrated in Fig. 68, the

Fig. 68,—Front spring, semi-elliptic.

leaves being bolted together at the centre C and to a plate A on the front axle B. The forward end is pivoted at D to the dumb iron E, and the rear end is attached to the side member G of the frame by means of a shackle F. The arrangement is such that the springs are situated immediately under the member G.

Fig. 69.—Rear spring, three-quarter elliptic.

Rear Springs.—Semi, three-quarter, and full elliptic are equally favoured, but in all cases the springs are situated outside the vertical plane of the side members. In the three-quarter set shown in

Fig. 69, the upper quarter is carried by a bracket A which is bolted to the frame B, and is connected by a shackle C to the rear end of the lower half. The forward end is shackled to a bracket D whilst at the centre it is secured to the plate on the rear axle casing.

In those cases where the springs are pivoted to the frame, it is usual to utilize the spring to transmit the tractive effort to the frame. When the rear half is so used, the spring is placed under tension, and if the front half is used the leaves are in compression.

An arrangement which is fairly common, consists in connecting the rear ends of the back springs when of the semi-elliptic type, by a transverse spring which is attached at its centre to the rear cross member of the frame.

The cantilever form of suspension comprises an inverted half-elliptic attached at the centre to the frame, one end being attached to the rear axle casing and the other, the inner end, connected by means of a shackle wish the trame.

A point to notice is that the shackles and pivots must be provided with grease lubricators, and means for greasing the leaves should be provided. In the case of the shackles, the attachm nt to the frame more often than not is by means of what is practically a universal joint, thus giving movement in two planes.

In addition to the main springs, two others are sometimes used. Buffers when fitted perform the function of taking the final movement of the springs relative to the frame in cases of excessive motions,

Supplementary springs, which take the form of spiral springs fitted in place of the rear shackles, really act to take the first part of the relative motion of compression and the last part of the return movement. These springs must on no account have a periodicity which is equal to, or any simple factor or multiple of, the time of oscillation of the main springs, otherwise sympathetic vibration will result and violent oscillation of the whole system occur.

Note.—A full B.M. and S.F. diagram for the side members is given in the "Automobile Engineer" for August, 1912.

CHAPTER XIII.

FRONT AXLES, STEERING GEAR.

The front axle is made of steel with a H-shaped cross-section.

In some forms the axle is straight as seen in front elevation, in others there is a dropped central portion to give the necessary clearance to the starting handle bracket, and in addition the ends are raised to allow for wheels of any desired large diameter to be used.

Fig. 70.- Front axle.

Such an axle is illustrated in Fig. 70. At the positions AB the upper flange is widened and suffered to provide an anchorage for the springs.

The ends are shaped to take the steering centres of the front wheels, two kinds being in general use: (1) an open fork as in Fig. 71; and (2) a solid end drilled to take the pivot piece as in Fig. 73.

Regarded from a mechanic's point of view, the front (111)

axle is a beam loaded at four points. The shearing force and bending moment diagram should be plotted out as in the case of the side members. In addition

Fig. 71.—Open-ended front axle and wheel mounting. • the front axle has stand twisting forces when the car is moving; the maximum amount of twist occurs

Fig. 72.—Solid ended front axle.

when one spring is under a maximum load and in its flattest condition, whilst simultaneously the other spring is under a reverse load due to a wheel being off the ground.

Wheel Mountings. The axles for the wheels are attached to members which are pivoted to the ends of the front axle, and are in consequence of two types depending upon the form of the axle ends, see Fig. 71,

Fig. 73.—Steering connexious,

in which the axle is provided with Slefko bearings for the wheel hub, and Fig. 72.

Linkages.—These members each have a projecting arm or steering lever C, Figs. 70 and 73, which are coupled together by a rod D. The off-side pivoting member is also provided with a second lever E which is coupled by a drag link F to the steering mechanism at the bottom of the steering column.

The general arrangement of the gear just described and operating on the Ackermann System is as shown in Fig. 73, the coupling rod being behind the front

Fig. 74.—Ball and socket joint.

axle, and the draglink horizontal and parallel to the main side member of the frame. The drag link is usually tubular and made with a ball and socket joint connexion to the link as in Fig.

74, whereas the coupling rod is connected to the steering levers by knuckle joints (Fig. 72).

In Fig. 75 is illustrated diagrammatically the wheels when the car is going straight ahead, and the

Fig. 75.—Diagram of action of steering gear.

front wheels are also shown dotted to represent a turning movement. The Instantaneous Centre (I.C.) of the car as a whole when it is turning should be on

the line produced through the back axle at some such point as X.

Suppose a rigid member such as a connecting rod to be moving so that at any given instant the direction of motion of points such as A and B be known. Let the directions be as shown. Draw lines AI, BI at right angles to these directions to meet in I (Fig. 76).

Fig. 76 —Instantaneous centre,

Consider the point A, its direction of motion is tangential to any circle passing through A and with centre on AI.

Similarly the point B for the instant under consideration could be moving on any circle passing through B and with centre in BI.

The whole rigid bar can therefore be considered as turning about a centre common to A and B, viz. I.

This centre is known as the Instantaneous Centre.

Similarly with a car. The radial line for the back wheels is always somewhere on the axis of the back axle. Consequently when the car is being turned the radial lines for the front wheels should intersect on the axis of the back axle, at the I.C. of the whole car.

Within certain limits this is obtainable by coupling the steering arm, so that on being produced they intersect on the back axle (the wheels being in the

straight ahead position). Actually they are made so that the intersection is on the middle line of the car and about 75 of the total distance between the two axles from the front axle.

A modified arrangement consists in mounting the coupling arms in guides, so that it has a sliding movement only.

In all cases the joints and pivoted members should be adequately lubricated, and furthermore, since they are all in the front of the car and near the ground, they should be covered up to prevent dirt getting to the working parts.

Between the steering wheel itself and the drag link, and carried in a casing mounted on the off-side main frame, is the actuating mechanism which has the property of "irreversibility"; that is to say, although the steering wheel can be moved to turn the front wheels, yet the front wheels cannot move the steering wheel under the action of road impact forces. This property is very valuable since the constantly varying road shocks are not felt by the driver.

The gearing is usually of the worm and sector type as in Fig. 77. The worm itself should be so mounted, either with ball bearings or with distance pieces, that lost motions due to wear can be readily taken up. In this connexion it may be as well to note that complete worm wheels are sometimes fitted instead of a sector, so that when one part wears the wheel can be turned about to give a fresh set of working teeth.

In a second type, a nut slides up and down on a screw. The nut is prevented from turning and is provided with lugs as in Fig. 78. One end of a pivoted lever is forked to engage the lugs, the other end having the usual ball and socket joint connexion with the drag link.

Returning to Fig. 77, it may be noted that the

steering rod is hollow and that through it pass the rods which operate the controlling levers of the carburetter and magneto. These rods are operated by levers moving over quadrants as shown in the plan of the steering wheel.

The method of mounting the steering box and column is clearly shown.

F10. 78.

Investigation of the problem of easy steering has conclusively shown among other things that the pivot axis of a front wheel when produced should pass through the point of contact of the wheel with the ground. When this construction is adopted there results a noticeable diminution in the effort required for steering, and there is also an increased longevity in the life of the tyres.

CHAPTER XIV.

CLUTCHES.

In the general arrangement shown in Figs. 1 and 2, the first member of the transmission system is the clutch, it being the connecting link between the engine and the gear box. A clutch is defined as follows: "A clutch is a mechanism for coupling or uncoupling together two shafts one or both of which is or are in motion". In the particular case we are considering the engine shaft would be the revolving shaft and the clutch shaft either stationary or revolving according to circumstances.

. The function of the clutch is to provide a means for uncoupling the primary shaft in the gear box from the engine shaft when changing gear, or under emergency conditions when stopping the car suddenly without stopping the engine, the gear lever not being in its neutral position.

In the majority of cases the clutch is bolted to, or is in part formed by the fly-wheel of the engine, the fow exceptions being found on cars where the fly-wheel is fitted in front of or in the middle of the engine.

Broadly classified, there are four types of clutches:

- 1. Cone.
 - (a) Direct.
 - (b) Inverted.

(119)

- 2. Disk.
 - (a) Single.
 - (b) Multiple.
- 3. Expanding coil or band.
- 4. Miscellaneous.

It is essential that there should be a sufficient gripping power at all speeds and under severe and sudden strains, there must be no undue wear and no tendency for it to work out of gear, engagement and disengagement should occur easily and without shock. If it is intended that the clutch shall be slipped indefinitely, then provision must be made for conveying away the heat which is generated as a consequence, the calculation of the quantity of heat evolved being easily made. The action of any clutch which falls under either of the first three classes set out above depends upon the friction between two surfaces which when brought into contact have a relative motion.

In its elementary form the direct cone type comprises a conical member attached to the engine shaft, a corresponding part, and a male cone on the transmission shaft adapted to be held in engagement with it by means of a spring and to be disengaged by a lever.

In Fig. 79 a section showing the rim of the male cone member is given with a view to calculating the thrust of the spring and its relation to the dimensions of the clutch.

Let T be the thrust of the spring.

u be the coefficient of friction.

r the mean radius.

 θ the half angle of the cone.

He the maximum horse-power to be transmitted at

n revolution per minute, and

P the normal pressure between the surfaces in contact.

Then, if there is no slipping,

$$\Pi = \frac{u \cdot P \cdot 2 \cdot \pi \cdot r \cdot n}{33000}$$

Now $\tan \theta = \sin \theta = \frac{1}{2}$ approx., so that P = 5 T. Consequently by substituting, we get an equation for T involving known or obtainable quantities.

In both the direct and inverted cone types, the male portion of aluminum or pressed steel is faced with leather whilst the female part is of cast iron. The engine shaft is prolonged to form a spigot which takes into a hole, with or without ball bearings, in the transmitting shaft, thus ensuring the argument of the two shafts. Care must be taken that the spigot bearing is well lubricated. One advantage of the inverted type, an example of which is given in Fig. 80, is that no dirt can fall upon the leather when the clutch is withdrawn, a further advantage is that it is easier to obtain a mechanism without

end thrust. Many devices have been tried in order to ensure easy engagement with the cone type. In one form small flat first-intention springs are fitted beneath the leather, in another form the female part is sectionally split and in some cases small rubber

Fig. 80.-Inverted cone clutch.

rollers are placed at intervals around the periphery of the leather.

A form of clutch-withdrawing mechanism which demands only a light pressure on the foot pedal is that shown in Fig. 81. It is the form used on the 11.9 h.p. Humber car. An open frame pivoted to one of the side members is coupled to the clutch and operated by the small part of the bell-cranked foot

pedal. This clutch has a light energying end piece so that it runs in oil, the leather being always in a prepared state. The pedal for operating the brake and the foot accelerator pedal are also shown. Many forms of joint provide for the sliding of

Fig. 81.—Clutch disengaging gear,

the clutch, that shown comprising four pins with curved bushes, which not only takes the drive but acts to some extent as a universal joint.

Only a few cars are fitted with single plate clutches, the best known being the De Dion and Phoenix, whereas the multiple type is commonly employed.

• Mültiple Disk Clutches.—Fig. 82 shows a Hele-Shaw clutch in which a number of disks made of phosphor-bronze are notched to engage keys on a casing bolted to the fly-wheel. Supported on a ball-bearing on the end of the crank shaft is a steel core B which is connected to the clutch shaft. This core

Fig. 82.—Hele-Shaw clutch.

has keys which engage notches in a number of steel plates, arranged alternatively to the phosphor-bronze plates. The plates run in oil, and to prevent them from sticking when the pressure is removed the outer plates are fitted with small flat springs which are in compression when the clutch is engaged. The plates are held together by a disk E under the

action of a spring F, the tension of the spring being adjustable through the cap G. The clutch shaft C has a coned brake P which prevents spinning" when gear changing.

Not a few multiple disk clutches are now made with cork insets in alternate plates, the design emanating from America.

An example of class 3 is the clutch of the Metallurgique in which the boss of the fly-wheel is formed like a brake drum and on the clutch shaft are carried expanding shoes, the friction faces being metal-to-metal. The coil clutch is based on the principle of a rope brake, the coil consisting of a lubricated steel band wound round a drum of cast iron or cast steel, the cross-section of the band not being uniform.

In the miscellaneous section may be included hydraulic clutches. In its elementary form the clutch comprises a pump and a water motor. The pump being driven by the engine and driving the motor which is connected with the rest of the transmission system. In some cases, as will be shown later, these hydraulic clutches are wariable speed gear mechanisms and replace the ordinary gear box and even the differential.

CHAPTER XV.

SPEED GEARS AND BRAKES.

It follows from the subject-matter in the chapter on Tractive Force that the power given to the road wheel must vary with varying conditions. Now since there is a definite maximum output from the engine it follows that if the force exerted is to be increased the rate at which it is applied must be decreased, and vice versa.

It must also be remembered that as the engine revolutions diminish so the power diminishes, and below certain speeds this falling off in power proceeds with increasing rapidity. In the joint circumstances the engine revolutions must be kept up in order to get a big output, and yet the revolutions of the driven part must be kept low, a gearing of some sort is then necessary.

There is also another reason for using a gearing in the transmission system, as an ordinary petrol engine is not reversible, and therefore if we want to reverse the ear, a reversing gear is necessary. In Chapter XVIII, dealing with other 'ransmission systems, we shall deal with gears other than mechanical, so that it is proposed to confine this chapter to mechanical gearing. These are practically divisible into three kinds:—

(126)

- 1. Spur gears with quadrant control.
- 2. Spur gears with gate control.
- 3. Spur gears in constant mesh, i.e., epicyclic but excluding the Riley System.

In cases 1 and 2 the shafts, both main and

Fig. 83.—Gear box (gate change).

secondary, should be kept as short as possible in order to reduce whip. The secondary shaft is sometimes known as the lay shaft. The bearings must be designed to prevent oil and grease from extruding, a large cover on the top of the gear box must be provided to facilitate inspection of the pinions, and a drain plug placed at the lowest part of the box.

When gate control is adopted as in the gear box

filustrated in Fig. 83, the operating lever has two movements, a sliding and a rocking movement, the design being such that the rod M, shown also in Fig. 84 at the root of the gear lever N, engages with

Fig. 84.—Speed lever and gate.

the striking bar K when the lever is free to move in the inner part IR of the gate, and with the bar L when the lever is in the outer are 2, 3. When either of the striking bars, or as they are sometimes called selector rods, is moved longitudinally, the forked arms thereon carry with them one or other of the gear wheels 2', 1' into engagement with the pinions 2, I on the lay shaft E, or the dog clutches

3, 3' engage to give a direct drive from the clutch shaft C to the universally jointed main-driving shaft D. The shafts C, D, E have ball-bearing mountings in the gear box A. Pinions 4, 4 couple the shaft C to the lay shaft.

In order that the reverse gear may not be put in operation inadvertently, the gear lever is prevented from moving into reverse R by a stop S until a suitable catch on the rod N is lifted.

The gears themselves are of case hardened nickel steel and the shafts for the sliding gears are either squared or castellated.

In Fig. 85 the gears and selector mechanism are clearly shown. The gear box has an extension

Fig. 85 Humber gear box.

thereon which serves for mounting the gerr lever and gate. At the rear of the box a brake drum is provided for an internal expanding brake. The forward end shows the flange on the shaft with the four holes for the bushes of the clutch shaft bolts referred to in Chapter XIV.

With quadrant-controlled gears, the lever oscil-

lates only in one plane, the sliding gears, permanently coupled thereto, being moved in order from first to second and second to third speed. Notches in the quadrant indicate when a gear is engaged. This control has the objection that the gears can be easily overrun and that the gear box has to be long with possible whippiness of the shafting.

Epicyclic Gear.—The mechanical principle underlying the epicyclic form of gear is dependent on the fact that the intermediate pinions, called planet pinions, are mounted on stub shafts carried by an arm or plate which is free to rotate on its axis or may be kept stationary by a brake, the two cases giving different speed reductions or reversal. These planet wheels gear with pinions on the driving and driven shafts.

When these shafts are positively locked together, the pinions and the easing rotate solidly. If the casing is braked then the drive is taken through the pinions as with an ordinary gear, and a speed reduction or reversal of the driven shaft is obtained.

Although the gears are always in mesh so that the act of changing gear can be performed silently, yet the gear itself on anything but the top is noisy. Another point which is not in its favour is that a thin oil must be used for lubricating the journals of the planet pinions, otherwise there is risk of the pinions seizing on their stub shafts. This oil has a habit of leaking along the shafting, and besides being an annoyance is wasteful and needs constant renewal.

Brakes .- Two sets are usually fitted, one at the

rear of the gear box on the countershaft, and a second set on the rear wheels. In the first case pedal actuation is employed, and in the second case, a hand lever acting through compensating mechanism is used. The hand lever is mounted on the side frame member upon which is also a rack. A pawl or catch on the lever is adapted to engage the rack whereby the brakes may be kept on.

Countershaft Brakes.—In Fig. 86 the braking surface comprises shoes freely pivoted at their centres to two arms, then selves pivoted to the cross-member

Fig. 86, - Countershaft brake.

of the frame. The free ends of the arms are coupled to the brake rod in such a manner that on depressing the brake pedal the ends are drawn together and the shoes are pressed evenly to the brake drum. Two set screws are used to prevent the shoes from reshing against the drum when the brake is off.

This form of brake belongs to the locomotive type. When the arms which are pivoted to the cross frame provide the brake surfaces, instead of the separate shoes, the brake is called a contracting band brake.

The essential requirements of any brake are: (1)

It must be reliable, (2) must be powerful enough to stop the car on a hill, (3) must be easy to put into action, (4) must keep cool, (5) must be able to prevent a car from forward and rearward movement, and (6) must not bind or grip.

Brakes of the contracting type do not fulfil condition (5).

For the rear-wheel brakes the expanding type is used. The internal surface of a drum bolted to the wheel is acted on by privated braking arms, AB, Fig. 87, which are opened out or expanded against the

Fig. 87. -Expanding brake on rear wheels,

action of a spring S by a cam C which is actuated by levers from the side lever. Although the acting surfaces were usually metallic yet recent practice sees the use of prepared asbestos D on the arms, which has the advantage of a higher coefficient of friction. The position of the brake drums and actuating levers are also given in Figs. 90a and 91.

CHAPTER XVI.

THE BACK AXLE, CARDAN SHAFT, RADIUS RODS, TORQUE RODS, ETC.

The back axle is in two parts which are mounted in a casing. The inner end of each shaft carries a bevel or spur purion, and the outer ends are formed with dogs, keys or similar clutches to convey the drive to the read wheels.

A mechanism called the differential is used which enables the two shafts and road wheels to rotate at different speeds when the car is moving in a curved path. The two gear wheels on the inner ends of the shafts engage the opposite sides of similar gear or planes wheels which are free to revolve on their own spindles. These spindles are carried by a casing which is bolted to the bevel or worm wheel which takes the drive from a beyel or worm on the rear Cardan shaft. This shaft thus connects the rear axle to the gear box. The differential box is very in ball or roller bearings in the main axle casing. When the par is proceeding in a straight line the box and gear wheels rotate solidly, but when the car is taking a curve, the planet wheels revolve in their axes so as to permiterelative movement of the driving wheels.

Since the driven wheel on the differential is moving (133)

relatively to the main frame owing to its spring suspension, and the end of driving shaft which projects rearwardly from the gear box has no relative motion, allowance must be made for changes in length and inclination of the cardan or propeller shaft which connects them. In general, at the gear-box end is a universal joint and at the differential end is a plunging joint. The construction of a plunging universal joint is as follows and is illustrated in Fig. 88. At

Fig. 88.

the end of the propeter shaft is a large hardened pin carrying a hardened steel block, which is free to rotate upon the pin. The outer sides of the block

are rounded, and slide in a couple of hardened parallel grooves formed in the torward tubular extension of the differential gear shaft. These grooves extend for a few inches, and the combination of pin, block, and grooves provides a universal joint that can slide to and fro.

The student should plot a diagram of angular velocities of the cardan shaft for a selected inclination of the shaft as compared with the uniformly rotating gear shaft.

The universal joint should be housed in and be formed with efficient lubricating means.

In the form of differential shown in Fig. 89 bevel drive is employed and Timken bearings used throughout, the differential being at the centre of the back axle so that the two parts of the axle are equal in length and the load on the casing is equal. The driving bevel itself overhangs its forward bearing. A section is given of the female part of a plunging joint of the kind pictorially shown in Fig. 88.

Fig. 89, -Differential gear.

By placing the differential out of the centre line, the bevel on the propeller shaft can be provided with an end bearing, but the easing is more complicated and the load is not equally distributed. A better construction is obtained as in Fig. 90, the driving bevel being suspended between two bearings. The

differential in this case is made up with spur pinions.

When a worm drive is employed, the worm is easily provided with an end bearing and with the central differential. On the score of efficiency and silence there is now very little to choose between bevel and worm drives. The same applies to the cost of production of the two forms.

Fig. 90 -Spur differential

It must the ordinary parallel serew type of worm, the Hindley or Lanchester worm is used which is concave to correspond with the worm wheel whereby more length of thread is in engagement.

There are nearly as many kinds of axle easing as there are cars, but the tendency is towards the use of a central casing to which is bolted two pressed steel conical sleeves. The sleeves are formed with seatings

for the springs, and the centre piece with an inspection door. Tie rods, as in Fig. 90a, or stiffening

Fig. 90a.- Humber back axle.

flanges are sometimes used to cope with the vertical and horizontal bending moments on the easing.

If the wheels are mounted on the axle casing, Fig. 91, the driving shafts only transmit the power

Fig. 91.--Wheel rotating on axle casing.

but do not support the load. The complete axle with this arrangement is said to be of the "full-floating type". • This illustration also gives some

idea of the method of mounting the brake drum and brake operating leven.

Radius Rods.—These are employed to maintain the back axle always at right angles to the main side frames under all conditions of springing and tractive effort, and for this purpose are usually fitted parallel to the side members and are attached to the axle casing at one end and to the side members or to one of the cross members. More often than not, the springs act as radius rods, being pivoted at one end to the frame.

Torque Rods.—The driving and braking strains upon the axle casing, although sometimes taken up by the springs, should be taken by rods or their equivalent designed for that purpose. In some cases the rods can effectively act in the dual capacity of torque and radius rods, a construction which allows this comprising a V-shaped frame pivoted to a cross member at the apex of the V and attached to the axle casing by U brackets.

In a form which is increasing in favour, the propeller shaft is enclosed in a tubular casing, the forward end of which is carried by the cross member upon which the rear end of the gear box is suppended. The centre of this universal-joint suspension of said be in line with the main universal joint of the propeller if it is to function properly.

In another form which is light and effective, a V frame or "banjo" frame is placed in a vertical plane, the large end is attached to the axle casing at the top and bottom, and at the smaller end is a spring suspended from a cross member as in Fig. 92.

Chain Drive.—In a few commercial and in tour-

BACK AXLE, CARDAN SHAFT, ETC. 139

ing cars for the colonies and other countries where a high clearance is desirable; the differential and

Fig. 92. "Banjo" torque member.

cross shafts are mounted in the gear box, the outer ends of the shafts having sprockets which drive by chain to sprockets on the road wheels.

CHAPTER XVII.

STEAM CARS.

An examination of the chassis of a steam car reveals quite clearly the essential differences between it and the chassis of a car fitted with a petrol engine. The additions comprise a water tank, a water pump, a steam generator, and a fuel pump. The parts which do not appear are the magneto, the carburetter, the clutch, gear box and sometimes the cardan shaft. The frame, front axle, steering gear and back axle are practically common to both types of car.

The steam engine has been neatly described as an external combustion engine, it is consequently necessary for us to deal with the engine and the external mechanism producing the power gases, viz, the steam generator. Steam is produced from water by heating it to such a temperature that it vaporizes, the temperature being dependent upon the superposed presser. Under atmospheric pressure such as is the case with water in a kettle, this temperature is 212 Fahr., under 100 lb of pressure 328 Fahr., and for 200 lb., 380 Fahr. A complete table of pressures and temperatures is given in the Appendix. If the steam is further or simultaneously heated to a higher temperature and the pressure is maintained, the steam is said to be superheated.

Superheated steam is a perfect gas, and obeys the known laws of gases, it can therefore be depended upon to realize its calculated powers.

Steam Generators.—There are three main types of generators or boilers.—

- Fire tube.
- 2. Water tube.
- 3. Flash or semi-flash.

In Fire Tube boilers, the water is contained in a tank fitted internally with tubes through which pass the heating gases. This type is only used in commercial wagons of the tractor type and then only to a very limited extent.

In Water Tube boilers the water circulates inside the tubes and the heating gases surround the outside, the tubes always containing some water. Auxiliary fittings comprise a feed-water heater, that is a vessel in which the water before it enters the boiler is warmed by live or exhaust steam or by the waste heating gases. In addition to that a superheater may be used, that is a vessel into which is passed the steam generated in the main boiler and which is placed in the path of the heating gases where the temperature is highest. The steam in the superheater is in free communication with that in the boiler, so that the pressure is the same.

Flash generators are really a particular case of water-tube boilers, in which the tubes serve not only for the production of steam but simultaneously act as superheaters. This type of generator is the one most commonly found on touring cars. In order that this double function of the tubes may occur, the water is fed to the tubes which are red-hot in

small quantities where it is immediately converted into steam and superheated. The tubes at the same time lose fleat and get dull and the steam passes to the engine. By the time the next charge of water is forced into the tubes the latter have been warmed to their red-hot state.

In flash boilers as used on motor cars, solid cold-drawn steel tubing capable of standing a pressure of 6000 lb. per square inch is formed into flat coils, a number of such flat coils of sections being placed one above the other, coupled together, and placed in, a casing or shell. By using these sections renewals can be easily and cheaply effected. Water is supplied to the boiler either by a power-driven pump or by compressed air, a small air pump driven off the main engine being used in the latter case. A hand-operated water pump is fitted so that the initial supply can be obtained before the engine is started.

The heating means comprise a burner situated at the bottom of the easing and having a large number of holes therein, from which the vaporized fuel issues and at which it is burnt. The paraflin or, petrol is supplied to the burner in adjustable quantities, the adjustment being effected by a hand lever. This means that the quantity of heat produced and therefore that the amount of steam generated are in consequence under the direct control of the driver.

It passes to the burner via a vaporizing coil tube, that is a warm tube in which a preliminary heating of the fuel takes place with the object of properly vaporizing it. In connexion with the vaporizer there is an induction tube, through which the neces-

sary air is drawn, and where the air is also subjected to a preliminary heating.

When first lighting up, this vaporizing coil is warmed by a small bursen which is put out of use as soon as the main burner is sufficiently warm.

A small burner with its own air supply is fitted, and is known as the "pilot light". Its function is to maintain the pressure when the car is idle and no steam is being used; it has to supply enough heat to balence the losses by radiation from the boiler and its fittings.

A generator of the fire-tube type, and as made for car work, comprises a steel shell which is bound with steel wire under tension and to which top and bottom plates are welded. The upper and lower plates are drilled to take half-inch flue tubes, about five hundred tubes with a heating surface of approximately seventy square feet being required for a tenhorse-power set. The burner is of the type wherein the vaporized fuel issues from a large number of orifices, and in which a small supplementary pilot flame serves as a stand-by when the car is stationary. As far as possible all the controls are automatic in action, three being the usual number previded.

These are: (1) An automatic valve which cuts off the supply of fuel to the main burner when the steam pressure reaches a certain pre-determined value, normally about 600 lb. per square inch; (2) a safety valve which opens at about 700 lb.; and (3) a fusible plug which is fitted in the boiler shell and melts when the level of water gets too low, owing to the temperature of the generator shell rising above the fusion point of the plug. The escaping steam acts as a warning.

In one form of apparatus the automatic control of the fuel valve is obtained by mounting it so that the needie valve or valve spindle is coupled, to or rests on a copper disphragm. Steam is led to the space

Fig. 93, -Simple single-acting steam engine,

atogve the diaphragm and a small spiral spring is fitted beneath it, the diaphragm thus moves up or down as the steam pressure falls below or rises above that due to the spring and carries with it the valve.

The water is carried to the boiler by pumps, a by-pass being fitted between the pumps and the generator, the valve of which is under the control of the driver.

The gauge glass which indicates the height of water in the boiler is placed in sight of the driver who closes the by-pass or opens it according to whether the boiler is in need of water or not, that is when the fevel is low or high. The steam generated passes to a coil of tubing at the bottom of the generator and immediately above the main burner where it becomes superheated before passing to the engine.

The Engine.—Before discussing the types of engines, it will be useful to consider the action of steam in the simplest type and to study the indicator diagram thereot. Imagine a single cylinder A. Fig. 93, with a piston B and an admission valve C and exhaust valve D. Suppose the piston B to be at the inner dead centre, high pressure steam is admitted through the valve C. When the piston has moved that of its stroke, steam is "cut off" by closing the valve C, and for the rest of the stroke the steam already in the cylinder expands and acts with diminishing pressure upon the piston. The expansion follows the law $P, V^* = C$, where P is the pressure and V is the volume of the sternand the constant n is unity. Just before the end or the stroke, the pressure is released by opening the valve D, the exhaust pipe E communicating direct with the atmosphere or with a condenser. piston now moves back and expels the steam which remains approximately at atmospheric pressure or the pressure in the condenser, until about 10 of 'the'stroke has been performed when the valve D is closed and the remaining steam is compressed.

The diagram for such a single acting engine is shown in Fig. 94, the dotted line representing the atmospheric line. A and B being the ends of the stroke and C the position of the cut off.

OA is a measure of the free space above the piston when at its inner centre.

Fro. 94.- Theoretical indicator diagram for single acting non-condensing steam engine

The ratio of the volume OB to the volume OC is known as the ratio of expansion, the diagram is plotted for a maximum pressure of 300 lb, per square inch absolute, that is 300 l117 = 285.3 lb, by gauge. When corrected for mervia and a crank effort diagram is plotted, the evenness of the torque as compared with that obtained from a petrol engine of like power is most marked

Where this single-acting type of engine has been

used, three cylinders are provided, the pistons of which act on cranks at 120°. The valves are of the mushroom or poppet type and are actuated by canssimilar to those in the ordinary petrol engines. In this case, the position at which the steam is cut off, commonly called The Cut-off, may be varied by sliding the cam on its shaft, the cam surface being of a suitable profile. Valve caps, H, F, and a screwed plug acting as a cylinder cover G are generally used as in Fig. 93.

Fro. 95 -Double-acting steam engine.

A second class of car engine which is used approximates to the normal type of steam engine. By closing both ends of the cylinder and supplying steam thereto the engine becomes double acting. The valves employed are of two kinds, one form is that known as the D-shaped such as is shown at M in Fig. 95, the complete drawing representing a double-acting engine. The cylinder has two covers H G, the latter having a stuffing box I through which the rod F of the piston E passes. The end of the rod outside the

cylinder is connected to a cross-head which is in turn coupled to the crank by a connecting rod. A stuffing tox J is also provided on the valve or steam chest A through which the valve rod (the position of which is indicated by a dotted NN line) passes. The rod is connected by an eccentric rod with the strap of an eccentric on the main crank shaft.

Some idea of how a D-valve controls the passage of steam from the valve chest A to the cylinder B

Fig. 96, -- Eccentric sheave and strap,

and from the cylinder to the exhaust C should now be obtained. We will first consider what is happening in the left-hand part of the cylinder. With the piston at its inner dead centre and the valve in the position shown, steam is able to get into the cylinder by the port a. The corresponding position for the eccentric is as shown in Fig. 96. The angle MON is known as the "Angle of Advance," and the distance between the centre of the crank shaft and the centre P of the eccentric is the "Virtual crank radius" of the eccentric—equal to the half travel of the valve.

The dotted line OR represents the position of the main crank. The amount of port opening l is called the "lead" of the valve. As the piston moves to the right, the valve also moves to the right, reaches its extreme right position and then returns until the port a is covered and the steam is cut off. The valve continues to move to the left and the piston to the right, until eventually the port a and exhaust c are in communication with each other via the hollow part E of the valve—this, the position of "release," occurs just before the end of the stroke. During the major portion of the return stroke, the ports a, c, are

Fig. 97 Valve in mid position.

connected, the valve having travelled to its extreme left position and returned some distance on its movement to the right. Just before the end of the exhaust stroke the valve shuts off the port a from the exhaust, and the steam remaining in the cylinder is compressed to act as a "cushion" to the pistor. Practically at about 15° of crank angle before the inner dead centre, the port is opened to steam and the cycle of operations starts over again. The same cycle is taking place on the outer end of the cylinder as the valve controls the steam port b in the same manner as it does the port a but with a "phase"

difference, that is it is half a revolution behind the inner end.

The valve in its mid position overlaps the steam and exhaust ports by amounts *db*, *cd*, Fig. 97, which are known respectively as the "outside Fip" and "inside lap".

Another type of valve which is sometimes used is the Piston Valve of which one form is shown in Fig. 98. The two end parts A, B act as controls of

Fig. 98.—Piston valve.

the ports leading to the cylinder. These ports extend as annular passages around the inner surface of the cylindrical steam chest. The valve rod is attached to the boss C which is carried by

three or four webs from the walls of the valve.

The ordinary method of actuating these valves consists in employing an eccentric and link motion such as is illustrated in Fig. 99. When the link ab is in the position shown, the valve which is coupled by the rod C to a block e moves as though coupled to the eccentric λ and the valve is set for forward running. If the link is thrown over by the rod E so that the part b is in line with the valve rod C, then the eccentric λ is alone actuating the valve and the eccentric λ is idly moving the end a of the link. At the same time the valve will be placed in a new position relative to the piston and the crank shaft will be forated in the opposite direction for reverse running. When the link is in the mid position, the

two eccentries neutralize one another for the ends ab will be moved equally and in opposite directions, consequently the block c which is at the centre does not receive any motion. Under these circumstances even with the throttle valve full open no movement of the shaft takes place. Intermediate positions of the link vary the resultant effect of the eccentrics upon the valve over a range from full power ahead to full astern.

Where the complete expansion cannot be conveni-

Pro. 99 - Link motion,

ently utilized in one cylinder, two or more may be used, the exhaust of the H.P. (high pressure) cylinder being admitted to the L.P. (low pressure) cylinder to complete its expansion. On one engine of this type, a valve is fitted which enally the L.P. cylinder to act as a H.P. cylinder under circumstances in which more power is required than normal, as when starting a car or when going up hill.

The power obtainable from a steam engine can be regulated by the quantity and pressure of steam generated, and the engine can be stopped or started at will, so that a clutch and gear box are not necessary on a steam car. As compared with a petrol car the weight of the steam generator is balanced by the absence of these other parts.

In contradistinction to the petrol engine which has to be enclosed in a heat-extracting medium, the cylinder of a steam engine has to be lagged with ashestos or the like which prevents heat from radiating away.

A splendid arrangement of the engine on the chassis which gives high efficiency, consists in coupling the crank shaft direct to the main spur pinion of the differential, any relative movement of the engine and chassis which it is necessary to provide for being obtained by mounting the engine on a frame which at one end is attached to the back axle casing and at the other is hung by straps of other flexible suspension from the chassis.

CHAPTER XVIII.

OTHER TRANSMISSION SYSTEMS.

Friction Drive.—This system differs from the usual one in that the clutch and change speed gear are replaced by a single mechanism. Cheapness in first cost is the main advantage. Its disadvantages are that a positive drive is not always obtainable and

Fig. 100

slip when it does occur appears just when it is not wanted.

A diagrammatic view of a friction drive gear is shown in Fig. 100 in which the engine shaft \(\chi\) carries a disk B. A cross shaft D, mounted either ligidly in the side frames H or slidably under the action of (153)

springs, has leved to it a disk C, which contacts with the engine disk B and can be moved by levers E, F. The shaft D also carries a sprocket wheel G whence a chain takes the drive to a sprocket on the differential.

Let N be the number of revolutions per minute of the shaft Λ_{γ}

and n be the number of revolutions per minute of the shaft \mathbf{D}_n

also D be the diameter of the disk C in feet,

and d the distance in feet of the point of contact of the disks from the axis of the shaft Λ .

Then π , D , $\binom{n}{60}$ = velocity in feet per second of the rim of the disk C.

and π , d, $\binom{N}{60}$ —velocity in feet per second of the circle of contact on B.

If there is no slip,

Then
$$\pi$$
, D $\binom{n}{60} = \pi$, $d \binom{N}{60}$
or D, $n = d$, N,

It follows therefore, and taking D and $\overset{\circ}{N}$ is constants, that as the disk C is moved along its shaft so that d varies from zero to a maximum, then its rate \bullet of revolution increases proportionately from zero to a maximum.

When the torque, T lb feet of the engine shaft is constant, the pressure at the contact circle varies inversely with the distance D, and in general terms equals \hat{p} such that p, d = T.

In order that this torque shall be fully transmitted to the disk G, the latter must be pressed against the disk B, by a pressure P lb. = μ , $p = \mu^{-1}_{-d}$ where μ is the coefficient of friction for the two surfaces. P must therefore be greatest when d is smallest and when μ is smallest, i.e., when the our is climbing a hill or being started up. The attempts to regulate the pressure P as required in the above manner have resulted in complicated mechanisms which do away with the simplicity of the system. Further, these attempts have not been brought to a successful issue.

Another point which arises from the thickness of the disk C is that, although all points on its periphery have a constant speed for any given position of the disk, yet the inner and outer circles of contact have different speeds, so that there must be some slip and consequent wear, which necessitates renewals, and perpetual adjustment of the levers and shafts keeping the disks in contact.

Hydraulic Transmissions. Replacing the clutch, gear box cardan shaft (or chain and sprockets) and also the differential, this system cannot be passed by without comment. Apparatus similar to that proposed for cars has already been successfully employ d in other engineering spheres; and now is beginning to make its mark in a practical way or Potor Car Engineering.

The Manly System is being fitted to commercial vehicles in the United States, the Charron Motor Company have run one of their gears 30,000 miles, and showed a chassis fitted with it at the Olympia, 1912, and the Hele-Shaw-Leigh-Martineau system has given satisfaction on the cars so fitted

Briefly the apparatus includes a pump driven by an internal combustion engine and supplying liquid under pressure to liquid pressure engines which drive the cross shafts of the driving wheels. The liquid used is generally oil, and the variatious in speeds and neutral are obtained by one or two control rods. In all the successful forms the torque transmitted has been maintained practically constant.

Tests made show on an average an efficiency of 85 per cent or thereabouts, the variables being: (1) the size of the apparatus: (2) the gitio of the number of revolutions of the prime mover to the number of revolutions of the driven shafts; and (3) the load. It has been found that under continuous load the temperature of the oil does not rise above about 150° Fahr.

The gear fitted to Charron cars is that invented

Fig. 16a .- Lentz hydraulic system.

and designed by Dr. Lehtz, a diagram being given in Fig. 101.

Situated in the position ordinarily occupied by the differential casing, is a casting bond to take three rotary slid-

ing-vane pumps

m, n, o, o different capacities and two sets of rotary engines R, S, and R^1, S^1 . The pumps are driven by

the shaft Λ which is coupled to the engine shaft, and the engines R, S, R¹, S¹, drive the wheel shafts W, W¹ respectively.

In the neutral position a valve is opened which by-passes the delivery from the pumps back to the suction side, consequently the engines R, S, R¹, S¹, do not rotate and the car remains stationary. When the by-pass valve is closed, further power, speed and braking control is obtained by cutting out one or two of the pumps or one or other of the engines from the oil circuit. The engines R and R¹ are supplied in common from the pumps, as are also the engines S and S¹ with the result that a differential action is automatically set up should one road wheel encounter a greater resistance than the other.

Just as an example of control assume the capacities of the engines R, R¹ to be half of the capacities of the engines S, S¹ respectively, and that the total capacities of the four engines R, R¹ and S, S¹ equal $\frac{1}{12}$ the total capacity of the pumps m, n, o.

Suppose all the pumps fording all the engines. Then since the capacities are as 1:12 the revolutions of the shaft Λ to shafts W, W¹ will be as 1:12. Now suppose the engines R, R¹ cut out, the crapacities of pumps to engines will be as $\frac{1}{2}:12$ and the revolutions as 18:1. Or again if the coyorities of the pumps m, n, n, are $\frac{1}{6},\frac{1}{3}$, and $\frac{1}{2}$ of their total, then with the pump n feeding all the engines the capacity ratio is $1:\frac{1}{3}$ (12), as 1:4 and the velocity ratio 4:1.

Using oil as the power-liquid tends to diminish wear of the parts. The difficulty of keeping the glands tight is considerable owner to the high liquid

pressures reached and has been in some measure the reason for these gears not being commercialized earlier.

In the Hele-Shaw-Marsineau and also Manly gears the control consists in varying the stroke of the pumps and so their capacity. Usually the pumps and engines are of the radial type, but in one form of the Hele-Shaw the pumps are parallel to the shaft and the plungers are driven by a swash-plate mechanism.

By varying the inclination of this plate to the shalt the stroke of the pumps is varied.

Hydraulic transmission gears are certainly worthy of more attention than is at present bestowed upon them.

Petrol Electric System —The petrol motor in this system is coupled to a machine which is capable of acting as a dynamo or motor according to requirements.

Accumulators are carried which supply extra power when needed, and they may be used for starting. They are charged during the time that the power required for propulsion is lower than the maximum power of the petrol engine, such as when the car is going up hill.

Electric Transmission.—The power is in this case wholly supplied by a petrol engine which drives a dynamo the current from which goes to motors placed on the shafts of the driving wheels. Accumulators may or may not be used in addition.

Complete Electric Installation. In this system, accumulators form the source of power, from which it is taken by electric motors. The batteries are

charged at a power station when necessary. In this connexion it would appear that the alkaline type of accumulator will be of great value, since it can be so rapidly charged without injury.

The restricted radius of action has been against the electric vehicle, but with the power to run for say six hours and then be able to re-charge in one hour, and also because the alkaline form provides a battery of greater capacity for a given weight, the electric car should gradually come into favour.

With more electric cars on the road it will be possible to arrange with power stations for a system of interchangeable units, the recharging can then be performed at the convenience of the engineer when his load is light and the car-owner can proceed without waste of time.

The simplicity of control and the reliability of electric motors is all in favour of the electric car.

APPENDIX.

CITY AND GUILDS SYLLABUS IN MOTOR GAR ENGINEERING.

ORDINARY GRADE.

Perron Cyr. -- Enques. -- General construction of Internal Combustion Engines The Otto Cycle. Two stroke Cycle. Puricular construction of a Petrol Motor Engine Details of joints. The water circulation.

Petrel. Source, distillation, density, and calorific value.

Carburation. Explosive mixture of petrol vapour and hir Compression, and its effect car explosive mixture.

*Horse-power of Petrol Motors Difficulty of measuring indicated horse power accurately. Brake horse-power. Mechanical efficiency. Theoretical indicator diagram of a Petrol Motor. General explanation of the terms adiabatic and isothermal compression, adiabatic and isothermal compression. Firing by compression, Lamits 6, compression ratio. Balancing and torque crank efforts agrams.

Tractive Force,—General considerations of •ro) 1, side slip, wind resistance, and gradients.

Carburetters. - General principle of the action of a Carburetter and description of the various forms in

Speed twars.—Shding egear, epicyche, variable speed gears, chain and belt change speeds, hydraulic transmission.

Steering General descriptions of.

Clutches.—Cone, slipping aisk, Hele-Shaw, Jenatsy.

Cooling,—Air cooling, water cooling, radiators, circulating pumps, order of circulation.

Lubrication.—Methods of lubrication and appropriate lubricants.

Readjustments. Grinding and setting valves, timing ignition, testing for faults in ignition system.

Transmission. Chain drive, live-axle, tilt or lift of "Cardan" shaft.

Chassis. — Wheel base, forms of car frames, underframes, springs and brakes.

ELECTRIC IGNITION.— Primary Batteries and Small Accumulators used in connexion with Ignition Apparatus

 Iquition, --High and low tension sparks, effect of pressure on spark gap

essure on spark gap

Electro Magnetic Induction. Brief explanation.

Induction Coil. Construction of trembler and non-trembler coils and theory of working. (*Lodge coil." and B.spark.)

Wiring. Of one or more cylinders, high and low tension distribution. (Note: Students should be encouraged to use coloured peneils when drawing diagrams of coils, magnetos and ignition systems; say, red for low tension leads, blue or green for high, and black for constructional parts.)

Magneto-Ignation. General description of method and apparatus.

Steam Cars. -- Engines. General description of ordinary types.

Steam Generators, -- Multitubular, flash and semiflash boilers.

Burners and Fuels.— Coke, crude petroleum, paraffin, petroleum spirit. Calorific values. Construction of burners suitable for liquid fuel.

Boiler Feed-Pumps.—Gear driven, steam driven, and auxiliary hand pumps, with their connexions and injectors.

Automatic Systems.—Automatic regulation of feed water and fuel.

• Condensers. General description of condensers and the object of their use.

Electric Carriages.—Lead Acarmulators.—Construction of plates for various makes of cells, chemical changes which take place, connecting up cells, duration of charges, current per square foot of plate, densities of acid, efficiencies of batteries actual, and theoretically possible, energy capacity per unit weight of plate, how to tell when battery is charged and how to ascertain the remaining charge. General description of various types of batteries.

Motors.—Series, Shunt.

Controllers. --Various methods of control. Electric brakes, impracticability of re-charging cells when descending bills.

Transmission. - Helical gear, etc., use of two motors to avoid differential

Cut outs. - Quick break pedal switches, fuses.

Garage Systems. For housing and tending electric carriages, cost of running, weight of vehicle, speed, care required, radius of action, removing and replacing batteries.

Advantages and disadvanteges of electric compared with internal combustion motors.

MOTAR CAR ENGINEERING EXAMINATION PAPER

1. Show a complete wring diagram for an ordinary four-cylinder vertical engine fitted with duplicate ignition (battery and H.T. magneto). If possible, use different coloured pencils or inks for wires carrying high and low tension currents. (48 marks.)

2. A single-cylinder car with the engine under the body has about 7 feet of H.T. lead from the plug to the coil on the dash. If the insulation of this wire

gradually perishes, what are the first symptoms you expect? Describe how, when these symptoms are observed, you would proceed to locate the fault exactly, and prove it to be due to a leak in the H.T. wire and nothing else. What other defects would give similar symptoms? (42.)

3. Given a new 4-volt ignition accumulator or lead secondary battery (without any printed instructions) to fill with acid and charge for use, state what acid you would use, how you would dilute it, and to what density. If you find there are two negative plates and one positive plate each measuring 5 thehes by 4 inches in each cell, what charging current would you give, and for how long? (42)

4. Sketch carefully a section of a well designed cheap piston, showing rings, gudgeon, small end of connecting rod and bush—Indicate with arrows the materials of which the parts are constructed—(42.)

5. A car fitted with live axle and two universal joints in the propeller drive has a torque rod 4 feet long to prevent the axle case from rotating; the car weighs 1 ton, and is climbing a hill of 1 in 7. Calculate the force (due to gradient only, neglecting road resistance, etc.) which the forward end of the torque rod exerts on its support. Tyres 810 by 90 (25-4 mm = 1 mch) (42)

6. Draw a modern locomotive type foot brake suitable for the ear described in question 5. Show method of adjustment and means for preverling tubbing and rattling (42.)

7. Represent the motion of the crank pm by a circle about 3 inches diameter, and indicate the direction of rotation with an arrow. Mark on this circle, for an ordinary four-stroke cycle engue, the dead centres and the positions of the crank pin when the inlet and exhaust valves should open and close, and when the magneto spark should occur for fully advanced and retarded ignition. Give the angle in degrees of each point from the nearest dead centre. (42.)

- 8. Carefully draw two curves indicating the relation between pressure and volume when the engine piston is on its compression stroke. One curve should show the rise in pressure when the engine is pulled over compression very slowly by hand (isothermal compression), the second curve should represent the result of sudden compression (adiabatic). Insert a few figures of pressures and volumes if possible. (42.)
 - . 9. Sketch two kinds of boilers in use on steam motor road vehicles. Give the working pressures and blow-off pressures and approximate diameters and lengths of boiler tubes in each case. Name a manufacturer of each type. (42)

Ordinary Grade.

All candidates must attempt. Questions 1 and 2 and not more than we others.

- 1. Describe briefly the construction of any small car with which you may be familiar, taking each organ in turn, giving its situation and the type to which, it belongs, also no ag any special or good features. (50 marks.)
- 2. Supposing the ignition gear in the car described in Question 1 to be in perfect working ε der but that you cannot get the engine to start, now would you systematically set about to locate the fault before attempting to put it right or ε alter any adjustments? (40.)
- 3. Sketch, in section, a good design of clutch and fly wheel, showing the clutch pedal. State briefly what are its good features. (40.)
- 4. What horse-power is required to move a motor delivery van, weighing 31 tons, at 12 miles per hour along a level road, the necessary tractive force to overcome road resistance being 45 lb. per ton? (40.)

- 5. State precisely what materials are generally used for constructing the following car parts:—Engine cylinders, crank shaft, balls in the ball searings, core or centre part of magneto armature, ordinary spirking plug points. What is the white netal made of which is commonly used for lining oig end bearings? (40.)
 - 6. Answer either of the following .-
 - (a) Suppose you have a 3-ampère hour 4 volt accumulator to be recharged, show in a diagram the necessary connexions and apparatus for recharging, using any source of current supply you like. State what current you would give, for now long you would charge and how you would regulate the current.

 αr

(b) Draw just a line diagram showing the wiring for a non-trembler coil ignition system, for a motor cycle with a 4-volt battery.

If the coil takes 3 ampères, what is its resistance in ohms? (40.)

7. Show the construction of a trembler ignition will by a sketch, taking care to make the connexions quite clear, preferably with coloured pencils or inks, stating which terminal has to be connected to the sparking plug and which to the battery, etc. (50.)

8. Represent, diagrammatically, a low tension magneto, and show the connexions to a 4-cylinder engine. Show the make and break mechanic action one of the cylinders, and state the relative speed of the armature to the crank shaft. (40.)

9. Sketch a liquid fuel burner, and show the tank und necessary pipe connexions, etc., for a steam car. State the fuel used and how it is forced to the burner. (40.)

10. What are the chief necessary electrical parts in an electric carriage? Why are electric cars not more countout used for country work? (40.)

TABLES.
Logarithms.

														Í				,	ı
	0	I	2	3	4	5	9	7	∞	6	ı	7	٣	4	2	9	7	6 8	6
01	0000	0043	9800	7.77 7.77 7.77	0170						7		13	11		ş	30	7.	3
						0212	(12.53	0294	0.334	0334 0374 4 8	+		2	16	50	55 TG	Ž,	33	37
I	0414	0453	2640	0.531	0.569						+	I.	27	5	<u>.</u>	23	57	31 35	33.
						2000	0645	9682 - 0719	0719	0755	+	t -	11	15	13	;; ;;	ş	30	33
12	07:12	7,18	70	0000	0.03	6960					×	ŧ-	11	<u>+</u>	X	2.1	٠,	7	33
_							1001	1332	1072	11045	÷	ı –	Ξ	, † 1	<u>.</u>	ķ		<u>ن</u> .	31
13	11.39	1173	1206	1239	1271						≈	۱~	2	냞	16,	50	33	,97	8
						200	7::2	1367	1:3:43	11:30	n	1-	Ξ	2	Ξ	5:	3;	55	3
14	1 ## 1	1 1342	1523	1553						•	30	·c	:	77	1.5	<u>x</u>	77	77	ž,
					1521	161	=======================================	1673	1703	1732	።	æ	5.	감	17	11	3	.; ;;	ž
1.5	1761	1790	7	177	17.	1300.5					••	÷	æ.	11	<u>†</u>	12	Š	3	ŝ
,							1931	1959	17.5	2 014	::	٠:	1.	Ξ	‡	2	5	31	25
16	# 0.7	25.52	20:02	2122	417						n	17	7.	17	1,1	<u></u> Ξ	5,	31	7
	_					5115	1055	2227	22.73	5777	::		γ.	2	::	::	7		٠. تن
17	2.304	2.330	2355	7	2405	2 1.30					r	17	I.	Ξ	::	15	7,		÷.
							1712	7	1004	25.55	71	17	t -	Ξ,	끍	1		ু: দু	3
18	2553	2577	2601	2601 - 2627	495					"	71	17	ı	3 7.	1:	Ť	2	Ξ;	4
4.						2672	2692	41.7	27.12	2765	71	17	1-	σ.	Π,	1	2	ጟ	5
10	ズルしつ	2777	3,5	17.77	1177						?1	+	1-	z.	Ξ,	4	Ξ	3.	욹
`	_					2.00	50.5	2945	5965	5683	71	++	÷	I.	11	33	5	<u></u> ;	61
8	3010	3035	30.74	307.5	30308	2112	31.39	3160	7	3201	?1	-	ے	X.	11	13	::	11	5
21	3222	32.43	3.563	17.	3304	3323	3.545	53.55	333.5	1045	?1	•	÷	T.	Ξ	21	7	16	7
22		_	3.15	? -:	3505	3522	3.541	3500	3579	3500	31	+	ت	ı.	Ξ	2	Ħ	ř	ü
23		3636	36.7	367.4	3692		3729	37.47	3766	72.5	31		Œ,	i-	5 .	1	33	15	17
ï		9	1	\$	ナレッス	3/35	3906	3.127	3945	33.62	÷	*	٠:	t -	5 .	Ξ	2	14	16
					-													,	

1	- 1	_	_		_	_	_	_				_	_														
	Ξ.	3	-	# :	٦, ټ	Ξ,	끔	15	2	11	1	٠	7 .	2	2 5	2	3	σ.	5.	s.	ġ.	•	7	7	2	œ	X
•	# 19	5 5	3 3	1	1	Ξ:	Ξ	1	2	9	Ξ,	2) -	: ۵	2 0		.	x	x,	x	x	X.	'n	٠ ١٠	- 1-	٠,	· 1
	1	7 =	1:	7 9	⊋ :;	≘.	Ξ	s.	æ.	Ξ.	٠.	,	0 2	6 2	c a	<i>r.</i>	ĸ	ı -	1-	ı-	ı-	Į.			: :c		
2	2 '	2 3	• =	D =	a. ;	٠, ١	X.	Z.	x	z.		1.	- 1	- 1	•		۵				٠ '	, 					
		· · •/	5.9		٠,	•											_	_	_	•	-	_	_			•-	47
_			•	•	- (-	•	-	9	æ	:	-	2 4	2	٠,٠	•	•	1.3	٠:	٠.	::	٠,	٠.	٠,:		4	
1-	: 1	- ::			= ;	۰	œ	٠:	٠:	•	٠:	1	•		- :	+ -	+	7	+	-	-	-	4	. +	,	-	35
10	• 1		, ru	-	+ -	+	+	+	4		+	-	r o		2 00	. :	rc '	:::	90	n	::	::	::	20		~-	
20	: :	000	: ::	9 20	: :	r. :	ic.	æ	n:	::	:1	•	1:	1:	1 7	, ,	-1	21	21	21	-1	٠.	~	-		٠.	
:	. :	12	:	١-	•		_	_	-	-	-	-	٠.	-	٠.	- ,	_	_	-	_		_	_	-	_	_	-
233	3		5	1		3	ž.	21	2	X 21	5.1	50	. :	? 2		2 1	5		13	13	2!	ſ.	?!	**	•	_	(-
=	4	-	=	-	: =	7	?	:: :		,	13	1	Ĺ	,			=	į	3	뀰	3	Ξ	-53	7	3	<u> </u>	1997
5	7	9	7	: 3	! ;	7	+ :	=	ς.	Ξ	Ξ.	7		. 2	:		_	۱:	-	٠.	m	Ξ.	71	7	_	- 21	_
7	1581	7	4	+	2		Ę:	7	ć,	7	÷		i	í	ž		=	3	53	Ξ	=	3	Ē	5	7	5	ě
9	1265	7	::	-	ž			7	7	7	Ä	565	1	1				3	3	Ξ.	2	3.		7.	X	₩.	70.50
																											(-
ş	15.49	7	15.	17	Z			-		-	<u>.</u>	Ę	12	ž	165	3		=	ŝi.	÷	Ξ	¥	Š	Ē	ž	÷	#
																											7
Ę	4232	55	#2	ŝ	7	3		7		2	Ė	핥	=	Ŷ	ŝ	į	- 5	7	7		, ,	7	Œ	15	17	¥,	3
7.	÷	<u>.</u>	77		_	_		_	_	<u>:</u>	_	-	17	17	16	-	-	2 :	= :	2 :	_	=	=	9	2	9	5
-0#	4216	13.7	:: ::	ž	7	3	Ξ		1		Ξ	=======================================	ž	ŧ	3	1	i			3 (: :	=	€,	7	7	₩.	7
_	=	^,	,	•	-	,-				? '	-	•	٠.	'n	17	1.5	4	: :	= :	ė u	:	٠	3	÷.	څ	3	٦,
4031	ŝ	8	Ē	ž.	7	3	É		1	:	, ,	5	717	÷	:	::	3		9 4	2 3	1	= :	Ξ.	=	5. 7.	Š	اڍ
-	÷			- -	_		17	17	•	` '	٠,		10	ijĊ	ij	Ē	=	: :	= =	: :	: :	÷ :	3	3	: څ	3	=
401	ž	Ξ,	=	3	ž	3	100	=	3		? !	ž	Ë	5	£	5	7		3 1		-	7 3	÷ :		9	5, 1	=
																						:	÷ :	ē :	<u>'</u>	2	=
3997	2	Ξ.	ž	٠ : ا	Z.	ž	13	3	ž	:	9	3	<u>+</u>	ş.	21	2	ž	=	4	=	3			3 5	ī.	7 .	<u>z</u>
			_			_	_		_			-	_		_									•	7	•	3
5.	<u>.</u>	# 3	7	Ξ,	7	T.	12	2	15	=		8 3	21 (2	=	7.7	X	:	1:3	13	?	,	5:	; :	3 3	1 ,	2
8979	-	* -	+	7	7	7	Ķ	:51	.0	k	1	3 3	8 1	õ	?	3	5	3	3	5	:	3	وَ وَ	2			-
25	8	r°	9	Ş	ಜ್ಞ	31	3	3	2	, ,	3	2	37	38	39	9	1	2	2	3.3	. 4	2 4	16	٠,٥	0 0	2 5	5
_	_	-	-	-	-			_	-	_	_	_	_	_	Ť	_		_`			_		<u>, '</u>	`	7. 4	, ,	_"[

	_		_				_	_										4.							
-	0	x	ı-	2	-	-	1-	1-	-	7	9	ဘ	9	æ	T:	9	9	ထ	÷	9	9	ıO	ij	b	2
H	œ	! ~	۲,	9	9	9	9	÷	::	တ	œ	:0	÷	÷	1.	ث.،	ن:	ن.	÷	٠	'n.	٠.	ıΦ	b	10
1	7	9	9	9	æ,				ij	13	1.	10	ij	ı;	10	٠.	ن.,	,:	4	-	4	+	4	4	4
	ø	÷	ŗĊ	10	٠.	,:	1.5	٠.	4	4	7	4	4	+	+	. +	#	+	+	+	+	7	T,	4	₹1
	Ŋ	÷	4	4	+	-	, -	4	4	7	+	7	35	313	œ	35	:::	æ	÷	33	ಌ	30	ຄ	63	30
١	_	ا ~	~	~	~		•	~	~	~	~	~	~	ac 4	~	່ ກ່	 •~	~	~	~1	~1	 	~	<u></u>	٠,٠
	~	~	~~	~	~	~.	~	~	~1	~	~	~	~:	~		?I	 -#	~	~	~	٠.		٠.	٠.	A.
			~			~1	•	•••		••	_	٠.		٠.		_	_	••	_		_	•		_	_
		- 1	_						_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	21	10	=	::	-	_	-	_	-	-	1-	-	10	21	=	7	=	21	10		1-	_	9	
;	6	113	123	73.		717	::	3	2.2	111	7%	791	ž.	ĝ	7	ž Ž	3	£	χ χ	ŧ	5.5	X.56	Ě	Ĩ	H74
omtinue.	œ	12	555	308	XXX	99+	::	613	69.	191	333	014	075	× +0.	1 = 2	$\frac{x}{x}$	4.5	315	376	433	900	199	621	681	3739
																		•	•						
7	7	-	51	::	Ĉ	1-	13	Ë	9-	1	Ę	1.	5.	ã	7	7.17	?	ź	Ÿ	7.	7	12	2	ž	7
LOGARITHAS. —	9	7126	7210	7202	7372	7451	755X	1091	97.97	7752	74.55	17.00	7966	2037	XIO.	5,17	7553.7	2553	£363	x 456	エナエ	5,70%	609%	2662	1227
1,50		-	-		_	_	_	-	_	_	_	_	-	-	-	-	-	-	-	_		<u> </u>		_	-
-	5	Ξ	?	31	7	7	13	13	Ξ	[-	7	Ĺ	Ē	ž	ž	<u> 2</u>	ż	ž	ź	7	7	7	3	ž	71 X
	4	7110	7193	727.5	73.56	7435	7513	575	1992	17:37	212	22.2	7952	177	5.7.0% 2.0%	1357	1555	こんごと	1557	117	917	1537	8.597	1657	8716
	1															5 7									
	,	7	7	7	13	1-	ï÷	1-	1-	-	1-	1-	7-	7	7	7	ŝ,	ž	ž	ž	Ž	*	77		
	2	7093	7177	72.59	7340	1413	261-2	1371	76.45	7723	7796	7	7537	1007	にらえ	7	1.500	サレジャ	X.55.X	<u>=</u>	3	8525	C.X.C.X	2645	x10#
		-		•	-											3:1x									
	-	_	_	-	_	_	-	-		-	_	-	-	-	_	-	-	-	-	-	_	-	-	-	
	٥	7076	7160	7243	73.24	7071	747	7559	1634	7709	37	16.03	1924	7993	300	55.	419.5	8261	8325	7387	17:17	8513	8573	8633	8692
		ĭ	, 2	5	32	5 %	36	3,	,œ	. 65	8	,19	62	63	, 3	-04	8	5	8	8	3	71	72	73	7.2

_			_	_		_																		
ō	ı,	÷	٠٠,	'n	.0	3.5	ċ	٠.	•	40	a C	+	4	+		7	٠,	Ŧ	•	7	,7	4	+	₹
٥	ٺ	+	44	٠,	- 11	*	#	٦,	7	40	; - -	4	7	7	+	-#	-#	4	7	<u>'</u> -#	-	7	+	က
₩.	4	7	4	7	7	+	#	4	ę,	*]+	30	92	æ	30	333	æ	n,	,3	æ	æ	n	33	က
ຄ	79	30	n	n	3.5	÷	30	æ	æ	300	30	æ	æ	æ	ກາ	m	20	30	œ	35	33	က	æ	m
₩,	m	30	30	æ	**	35	÷	œ	er:	35	. 270	ÇÌ	çΊ	ÇÌ	21	c,	٦ì	ÇÌ	?1	31	٠:	31	33	?7
≎ 1	ان ناد	গা	∵ 1	دا	٦ı		 	e i	Ç1	٠ 1°	21	Ç1	٠ì	 ?1	ان 1	ر در	ان •	31	÷1	•	21	٦ì	21	~1
10.0	21	Ç1	ئ ات	21	21	Ç1	۴ı	٠. د	21	÷1	; ;	_	_	_	_	-	_	_	_	_	_	_	_	-
1	_	181	_	_	-	-	_	-	_	_	_	_	_	-	-	7	_		_	_	_	_	_	7
-	_	-	_	_	23	_	7	_	_	_	1	=	=	c	=	=	=	=	E	Ξ	=	=	c	=
2	6	10	_	10	5.	30	÷	X.	5:	10	Ξ	Ξ	Э.	7.	•	30	c	1-	35	Υ.	200	x.	31	9
ž.	Z.	8	5.	303	9079	913	Ë	55	3	3.5	585	Ŧ	245	3.5	300	:963	£.	31	125	<u>7</u>	2	S:	6	666
15	7	10	3	50	1074	7	9	25	7	13	ź	33.	オ	33	7	X 20	22	倉	ž	7	5.5	033	<u>`</u>	Ξ.
						_																		
15.7x	T. 77	<u>₹</u>	98	015	39	13.	175	55	527	330	2	1 30	624	528	576	624	5	117	203	5.07	41.7	S.	7	34
																						-		
17.	3442	25,5	14.5	500	1083	111	17	즲	7.7	1327	1.37.5	152	17.	5523	57.1	613	99	5	523	30.50	25.50	Ŧ	533	983
-	-		_	-	_	_	_		-	-	_	-	-	-	_	-	-	_	_	_	-	_	-	-
17.	£ 27	55.57	7	505	£.5.	11.5	197	125	597	932	33,0	24.5	5976	200	15,00	911	:00:	E	E	3	178	37.	1934	X 250
_	-		-	-			-	_	_	_	_	-	_	_		_	_	_	_	-	-	_	-	-
17.	T T	T T	5	ž,	30.53	3.5	3.	35	3	Ē.	336	=	974	951	926	96	36.	025	97.5	979	785	88.55 88.55	86.65 86.65	166
4		şi	Ľ	32	1.7	=	7	9	X	ŝ	3	Ξ	3	3	17	13	31	3	17	=	36	7	9	65
á	Ï,	Ï	ž	7	2106	7	-	<u>?!</u>	3.	30	;Ë	Ŧ.	=	3	3	3	₹.	96	5.	5.	Ž.	7 5.	Ġ.	š:
62	50	92	35	7	2106	3	÷	Ξ	53	#	13	<u>::</u>	55	504	55.5	3	11	# 55	1+,	ž	3.5	11	. 3	1
																				_				
962	77	17.7	927	346	9036	000	143	1196	576	505	350	403	1550	3	1547	595	24.3	3	7346	전 건	12.77	25	917	1961
_	-	-	-	_	-	<u> </u>	_	-	-	-		_			-	-	-	-		_	_		_	-
×751	XXCX	8865	8951	370%	- E	9083	9138	9191	9243	1676	3345	939.5	9445	† 6 † 6	9542	155	2633	9685	9731	9776	9853	8936	21.33	9666
15	9	7	.00	0	8	.9	Ŋ	~	4	. 20	Q	7	.00	ø	Q	=	63	3	4	•	9	7	œ	-6
7	7	_	_		00	80	٣	8	8	8	æ	8	8	80	; O	0	0	0	0	0		0	0	9

	١	١				ا					١		l	1		ł	ı	١	ľ
z 1	0			r	4	S	•	7	00	6	_	0	m	4	2	0	^	×	6
1002	1002		Ξ	3	1003	1012	101	1016	5.	1051	=	=	_	-	_		31	3)	? 1
1026 1028	1028	_	Ξ	9	1033	1035	133	10.10	1042	1045	9	=	_	-	_	Т	21	دن	121
1050 1052	1052		Ξ	.7	10.57	1059	1062	1991	1067	1067	=	=	-	-	-	Н	31	? 1	31
1074 1076	1076		9	Ξ.	30.5	=======================================	10%	1080	1001	100	=	=		-	-	_	?1	٥ı	וה
1095 1102	1105		Ξ	=	1107	1100	=	==	=	115	Ξ	_	_	-		ıن	21	٦ì	?1
1122 1125 1127 113	1127	_	Ξ	=	1132	1135	113	= +=	11 4:3	11 15	=		-	-	-	31	101	ار ا	.71
11.53	11.53	_	Ξ	:=	1173	1163	1164	116.7	116:	1172	=	-	-		-	וה	21	÷	33
711 711	7.11	_	7.	~	9	7	1191	1134	1197	1199	=	-	-	-	-	٦I	21	٥١	ç)
1205 1208	1205	_	131	_	1213	1216	1214	555	1225	1227	2	_	_	-	-	?1	?1	Ç1	က
12.55 12.36	12.36	_	153	-	1242	1247	1247	15.5	1253	1234	=	_	-	-	-	ان	?I	Ç1	::
	1265	_	951	,	1271	1274	1270	1279	1225	15.85	i=				_	21	31	21	35
12:41 12:04	1201		-	1-	505:	1303	1:34.45	1:30%	1313	1.31.5	=	_	_	Н	٦ı	?1	21	ر اد	33
1.321 1.324	1:324	_	::	١	13.30	1:34	13.37	1340	1.543	1346	=	_	-	~	÷1	31	3 1	3 1	n:
1352 1355	1355	_	13.5		1.36.1	1.365	-::6;	1371	1.57	1:377	=	-	-	~	?!	٦ì	71	÷	30
13-1 13-1	- 22	_	<u></u>	_	::::	9.2	1 100	1 #1.3	1 +0.2	1	=	_	-	-	?1	î۱	٦ì	æ	33
_	111.		7	21	1126	1429	757	14:35	11:35	74	2	-	_	-	71	21	ខា	325	30
1449 1452	1452		=	17	153	1462	1 1656	1 14.3	1475	1176	=	7	_		÷1	اد:	21	æ	
- 9- 9-	- 9	_	-	=	14:43	11.4:	150	1:20.3	1361	1510	=	_	_	-	÷1	?1	31	æ	ā.
1517 1521	1521	_	-	_	1552	15:31	1333	153	1145	1545	=	_	_	_	?1	ÇÌ	71		30
1552	1556 1	Ξ	; <u>;</u>	=	1563	1367	1570	157	715	1581	=	_	-	,	٠ī	'n	n	17:	က
1585 1789 1592 1786	1502		=	ؿ	1600	1603	1607	161	161	1617	0	_	_	_	÷ι	ان:	373	78	- <u>:</u> -
1626 1629	1629		Ξ	:	1633	= = =	1644	<u>4</u>	16.72	16:56	=	7	-	?1	:1	21	32	m	:::
1663 1667	1067		2	11	1675	1673	1683	179	1690	1694	0	_	-	21	. 1	?1	æ	m	er.
1698 1702 1706 171	1706		Ξ	Ξ	1714	71:1	1722	1726	1730	1734	0	_	-	31	Ċ1	?ì	æ	•: •:	7
1742 1745	1746		13	5	1754	1758	1762	1766	1770	1774	0	-	~ −1	ÇĮ,	ÇÌ	ÇI	30	æ	#
	•	•									,								

CHIMPIPALITY

च किस से के स	मा मी मामाँ कि कि का कर्णा	ပ ကြ လက်က ကြာ ကြာက ကောက္က
್ರಾಕ್ ಬರಬರ ್ಕ್ ಸ್ಕ್ರಿಸ್ ಕ	⊕म मामियाचा च मिनाचा।	e 10 10 10 10 10 10 10 1
00 00 30 3C 3C	10 10 10 10 11 11 11 11 11 11 11 11 11 1	, , , , , , , , , , , , , , , , , , ,
ರಿಗಿ <mark>ಬೆರೆ ಬರಬರ</mark> ುಗ	್ಯ ಜಯನಿಯ ಬರಬಾಯ ಬ್ಯಾಪ್ತಾನ	x न¦ननर्नन¦न निचनम्।
ବଧୁବାହାବାଗ	. 50 150 150 150 150 150 150 150 150 150	и и и у и и и и и 4 4 4
ବା ବାବାବାବା	ରା ବାବାନାବାର ବୋବାବାର ଆଧାର ପ୍ରାୟନ ସ	21 21 21 21 22 22 22 22 22 22
,-	പെടുപ്പോ വരാത്തി	ରା,ତା ତାତାତାତାତାତାତାତା
00000	0000000000	
SIX HIST	15'400485555	2 8
8.8888	222222222	8 15 15 15 15 15 15 15 15 15 15 15 15 15
####	8 9868 7847	2000 2000 2000 2000 2000 2000 2000 200
		· · ·
5 4 3 8 3	* Enenge 522	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 7 7 5 5 5	ត្តភាពស៊ីនីនាតិភា	ស៊ី ស៊ី ស៊ីស៊ីស៊ីស៊ី ស៊ី ស៊ីស៊ីគីគី
38.55	252575352	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
돌맞충점	4 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4	25.53 25.54 25.55 25.55 25.55 36.55 36.55 36.55 36.55
5 5 5 5 5 5	2012	2525 2525 2525 2525 2525 2525 2525 252
•		1
E 27.58	200 200 200 200 200 200 200 200 200 200	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	•	
7 7 E E	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2552 2552 2552 2552 2552 2552 2552 255
		- 1
5 Z Z Z Z Z	2 2 2 2 2 2 2 2 2 2 2 2	90974 90974 90974 90974 90974 90974 90974 90974
7 5 2 2 2 5 6	음부 등 중 중 중 유 수 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	2512 2512 2510 2510 2510 2510 2510 2510
1 X X 3 5 5		9 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	38736 33 34 33 36 36 38	8 6 4 4 4 4 4 4 6 4 4 4 4

-	- 1			_		-	_							-		_		_		-			_	_	-	-
1	6	ţ	ι-,	ļ-,	t-	١-,	t-	,œ	œ	x	X1,	·c	æ.	σ.	ت ,	G .	, ဘ	2	2	2	2	П	Ξ	X,	11	Ξ,
•	∞	9	9	9	9	9	ι-	1-	(~	-1	t-	1-	L	Z.	Ŧ	x	æ	∵	6	œ,	c .	7.	3	9	2	20
	7	,C	٤.	÷	9	.0,	9	÷	÷	ထ	9	œ	1-	ı -	٠,-	1-	μ-	į~	Œ,	X,	X	X.	20	6.	6	ರ್.
1	0	4	ıc	÷	ij	ij	نب	ıĊ	ij	ij	٠.	.e.	S	9	œ	9	÷	Ç	1-	1-4	•	L~	-1	۱-	7.	x. `
	2	+	+	7	-	+	+	4	7	+	1.	17	17	ı.	ıc.	17	٠.	٥٠٠	'n	÷	÷	9	÷	÷.	2	9
í	-	_	; ;	~	~		, 	,	20	-	-	-	i -#			-	·	-	-	, -	,	١.	l _{io}	١.		
	7		<u> </u>	•••		•••		_	···		•			,							_	•••		···		
			-	-1				1				1		··				-,-			70	·	, ,	-T		-T
	~	_	15	74	71	71	اد≛ا	171	71	74	71	١٠٠	71	71	71	71	171	71	71	71	71	וה	71	71	373	ano.
	1	Ξ	Ξ	_	Ξ	_	_	_	_	_	_	_	Ξ	_	_	_	_	-	_	_	_	_	_	_	ī	_
	6	22.3	304	381	159	270	622	707	159	Ž	516	130	12	25.5	355	157	4560	667	17	TE	Š	117	236	358	183	910
nen		 																								
ontinued.	×	22.	3	137	345		195	6.0	Z.	5	:36:5	Ë	115	춫	3.4	=======================================	44	25	Ë	ž	ž.	3	2.7	33.46	1	ő
ã.																										
Ĭ	7	7.	7.	36.	3113	352	Ē		1111	7	39.5	$\frac{1}{2}$	=======================================	23.33	33	ž	5335	Ξ	133	Ĵ	2	35	177	333	17	Ž.
ž																										
Ē	9	3	33	33	343	351	12	· ·	37.5	17.00	11.	1	=======================================	3	13.2	7	4753	#63	11	7	9.	200	5	535	7	200
20	_	-	_	_	_	-	-	-	_	_	-	_	_	_		-	-	_	_	-	_	-	_	-		
ANTIROGARITHMS	s	313	32.7	33.5	342	5.50	经	1000	37.5	7	£.	=	=======================================	2	=======================================	Ξ	F119	462	12	4	5	50.5	7.17	530	543	5.55
7	-	<u>:21</u>	įφ	3)	=	Ξ.	_	-	Ş	15	÷	7.	_	15	12	Ę	7	::	-	=	77	T.	-	1	=	÷
	4	313	350	333.4	3.45	3 45				7.	35	=	Ξ	2	3	. -	10.7	9	2	× +	53	3	1	25	14:	55.
		-	z	-	اد	=	;::	1:5	=	Z.	1-	5	21	2	2	:2	2	:-:	٥	5.	21		1-1	7	20	=
	٣	ž	?	333	3.4	3.4		ŝ	3.7	ř	339	Ę	7	=	ă	1.5	7	=	-	7	÷	Ş	-	3	34.	13
		1	-	17	=	33	:2	7	::	€.	7	:2:	35	Ţ	ş	13	177	21	€.	ĭ	20	13	?	2	3	~
	7	3177			3.	34	3555	÷	17	7	£	5.	=	Ê	2	Ŷ	Í	÷	\$	Ĭ,	5	Š	22		53	
		9	===	9	.2	::	9	:	7	=	₫.	12	ç	Z	æ	13	!-	7	7	1-	2	25	5	<u> </u>	9	ž
	-	31,	á	7	33	3	::	3	1.	7	7	*	Ę	=	3	1	111	1	Ŷ	17	\$	Ę	- 17	:	100	5:508
	-	23	1:5	=	7.	1.5	2		13	3	95	17	1	2	:	5	1167	1.7	11	Ŷ	3		15	Œ	202	95
	ľ	31	2	30	6	*	1,0	ź	7.	7	υ. 1		įΨ	É	1 2	: ==	7	45	9	1	7	90	li.			16
	ľ	00	, ,	2	, ,	32	5 6	3.8	3.6	38	SC	38	9	29	29	29	9	8	0.0	,89	8	70	1	12	12	<u>14.</u>
		i *	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•			•	•		•		-

75 5628 5636 5644 5662 5662 5648 5664 5662 5662 5648 5744 5774 5784 5774 5774 5784 5774 5774 5784 5774 5784 5774 5784 5774 5784 5775 1 8 4 5 7 8 9 10 11 8 4 5 7 8 9 10 11 8 10 11 8 10 11 8 10 11 8 10 11 8 10 11 13 14 10 11 8 10 11 11 11 11 11 11 11 11 11 11 12 1 4 5 7 9 10 11 13 13 13 13 13 14 13 14 14 14 14 14 14 14 14 14 14		
5628 5636 5644 5602 5673 5689 5715 5729 5744 1 3 4 5 7 8 9 5874 5708 5734 5870 5843 5843 5843 5844 5970 5811 5811 3 4 5 7 8 9 1 1 6 6 8 4 5 7 8 9 1 1 1 8 4 5 7 8 9 1 1 1 8 4 5 7 8 9 1		L 2 7 2 2 2 2 2
5628 5636 5644 5602 5673 5689 5714 5728 5744 1 8 4 5 7 8 6026 5718 5734 5876 5821 5873 5874 5876 1 8 4 5 7 8 6026 6026 6037 5976 5870 5871 5871 5871 1 8 4 5 7 8 1 616 6130 6034 6057 6047 6048 6057 6047 6048 1 3 4 6 7 8 1 616 6130 6134 6237 6387 6427 6421 1 3 4 6 7 8 1 6160 6134 6136 6334 6387 6412 6427 6421 1 8 1 9 1 9 1 9 1 9 1 9 <		0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5628 5636 5644 5662 5675 5689 9702 5715 5724 5860 5821 5834 5845 5861 3875 1 3 4 5 5884 5784 5705 5843 5870 5845 5861 3875 1 3 4 5 7 6039 6039 6039 6039 6039 6039 6039 6031 1 8 4 6 7 6166 6189 6639 6639 6639 6639 6639 6639 6639 6639 6731 7 6431 6731 7 6431 6731 7 6431 6731 6741 6742 6422 6674 6603 6831		
5628 5636 5644 5662 5675 5689 9702 5715 5724 5860 5821 5834 5845 5861 3875 1 3 4 5 5884 5784 5705 5843 5870 5845 5861 3875 1 3 4 5 7 6039 6039 6039 6039 6039 6039 6039 6031 1 8 4 6 7 6166 6189 6639 6639 6639 6639 6639 6639 6639 6639 6731 7 6431 6731 7 6431 6731 7 6431 6731 6741 6742 6422 6674 6603 6831		2222222
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th>to lotte to a x x x x x x x x x x x x x x x x x x</th><th>2000</th></th<>	to lotte to a x x x x x x x x x x x x x x x x x x	2000
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th>10 10 10 00 00 00 00 1-1-1-1-1-1-1-1-1-1</th><th></th></th<>	10 10 10 00 00 00 00 1-1-1-1-1-1-1-1-1-1	
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th>***************</th><th></th></th<>	***************	
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th>20 00 00 00 00 00 00 00 00 00 00 00 00 0</th><th>4566666666</th></th<>	20 00 00 00 00 00 00 00 00 00 00 00 00 0	4566666666
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th></th><th>3,3,0,0,0,0,0,0,0</th></th<>		3,3,0,0,0,0,0,0,0
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th># 12 12 12 12 14 12 15 15 15 15 15 15 15 15 15 15 15 15 15</th><th>ଅକ୍ଷ୍ୟ ଅବସ୍ଥ</th></th<>	# 12 12 12 12 14 12 15 15 15 15 15 15 15 15 15 15 15 15 15	ଅକ୍ଷ୍ୟ ଅବସ୍ଥ
5628 5686 5644 5602 5675 5689 6774 5774 5878 5871 5715 5778 5881 <th< th=""><th>後 美国共和国 建甘草草 医甲基酚 医</th><th>84 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th></th<>	後 美国共和国 建甘草草 医甲基酚 医	84 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
5628 5636 5644 5662 5673 5684 5673 5884 5673 5884 5684 5684 5684 5684 5687 5884 5687 5884 5687 5884 5687 5884 5687 5884 5687 5884 5687 5884 5687 5887 5887 5889 5688 6688 6689 <th< th=""><th>25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>200 x 001-#</th></th<>	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 x 001-#
5628 5636 5644 5662 5673 5684 5673 5884 5673 5884 5684 5684 5684 5684 5687 5884 5687 5884 5687 5884 5687 5884 5687 5884 5687 5884 5687 5884 5687 5887 5887 5889 5688 6688 6689 <th< th=""><th>医多种性性 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基</th><th>25.00 05.00</th></th<>	医多种性性 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	25.00 05.00
5628 5686 5644 5602 5675 5689 6794 5754 5708 5781 5794 5808 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 5891 68	- EEEE 375 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################
5628 5636 5644 5662 5653 5684 5754 5708 5784 5794 5808 5821 6026 6639 6638 6637 6637 6837 6026 6730 6194 6204 6223 6237 6156 6730 6194 6204 6223 6237 6157 6824 6838 6338 6384 6838 6607 6627 6637 6637 6637 6637 6637 6607 6622 6637 6637 6637 6638 6838 6639 6607 6627 6637 6637 6637 6637 6637 6637 6607 6627 6637 6637 6637 6637 6637 6637 6607 6627 6637 6637 6637 6637 673 7740 7740 762 763 774 7747 7740 7740 7740	첫 동리리의 마리를 보는 아이들이 되는	79969353
5628 5636 5644 5662 5653 5684 5754 5708 5784 5794 5808 5821 6026 6639 6638 6637 6637 6837 6026 6730 6194 6204 6223 6237 6156 6730 6194 6204 6223 6237 6157 6824 6838 6338 6384 6838 6607 6627 6637 6637 6637 6637 6637 6607 6622 6637 6637 6637 6638 6838 6639 6607 6627 6637 6637 6637 6637 6637 6637 6607 6627 6637 6637 6637 6637 6637 6637 6607 6627 6637 6637 6637 6637 673 7740 7740 762 763 774 7747 7740 7740 7740	25 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 3 3 3 3
5628 5636 5644 5662 5675 5754 5708 571 579 580 6280 6318 571 579 580 6020 6030 6031 602 602 6156 6130 6134 620 622 6176 6179 6181 633 633 6176 6170 6184 633 633 6171 6174 6184 633 603 6171 6174 6184 630 691 6171 6174 6184 683 693 6171 6174 6184 680 691 607 707 700 714 718 707 700 714 718 718 702 700 710 719 719 702 770 710 710 770 703 770 770 770 870 841 <th>Same of the same o</th> <th>* * * * * * * * * * * * * * * * * * * *</th>	Same of the same o	* * * * * * * * * * * * * * * * * * * *
5628 5636 5644 5662 5675 5754 5708 571 579 580 6280 6318 571 579 580 6020 6030 6031 602 602 6156 6130 6134 620 622 6176 6179 6181 633 633 6176 6170 6184 633 633 6171 6174 6184 633 603 6171 6174 6184 630 691 6171 6174 6184 683 693 6171 6174 6184 680 691 607 707 700 714 718 707 700 714 718 718 702 700 710 719 719 702 770 710 710 770 703 770 770 770 870 841 <th>88.55</th> <th>86 12 6 10 14 15 15 15 15 15 15 15 15 15 15 15 15 15</th>	88.55	86 12 6 10 14 15 15 15 15 15 15 15 15 15 15 15 15 15
5628 5686 5644 5692 5754 5718 5784 579 5884 53002 589 653 653 6026 6639 6639 6639 663 663 6166 6180 6194 620 663 <t< th=""><th>E E # T # I A P X # A I C - A F + I A</th><th>2745555</th></t<>	E E # T # I A P X # A I C - A F + I A	2745555
5628 5686 5644 5692 5754 5718 5784 579 5884 53002 589 653 653 6026 6639 6639 6639 663 663 6166 6180 6194 620 663 <t< th=""><th>S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th></t<>	S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5628 5636 5644 5784 5784 5788 5784 5788 5784 5788 5784 5788 5784 5788 5784 5788 5784 5788 5784	20世紀を日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	000 4 7 5 5 5 5
5628 5636 5644 5784 5784 5788 5784 5788 5784 5788 5784 5788 5784 5788 5784 5788 5784 5788 5784	g 美国国际政治国际支票部的 医医性切迹	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5628 5636 55754 5636 5026 6536 5026 6536 5156 6536 5157 652 502 652 502 652 503 652 503 652 503 652 503 652 503 652 503 652 503 653 503 653 50	물론 등 등 등 등 다 다 다 다 다 등 등 등 등 등 등 등 등	5 II S 4 5 1 5 + 1 -
5628 5636 55754 5636 5026 6536 5026 6536 5156 6536 5157 652 502 652 502 652 503 652 503 652 503 652 503 652 503 652 503 652 503 653 503 653 50	· 뜻 즉 김목자의 대통원론 의왕 교육하여 한	E385
9628 955 955 955 955 955 955 955 955 955 95	636 636 636 636 637 637 637 637 637 637	공용 왕 대경인의
26	大学 ははははない 大学 からない はんしゅう かんしゅう	2 k 4 m 3 k 6 c 5
2. 12. 12. 12. 12. 12. 12. 12. 12. 12. 1	2000 2000 2000 2000 2000 2000 2000 200	19 2 8 8 8 2
<u>ににたため、一般の、後、後、後、後、後、後、後、後、後、後、後、後、後、後、後、後、後、後、後</u>	No come in a method of the first to the firs	落在 監監監管部
	<u> </u>	82 8 8 8 8

TREGONOMETRICAL FUNCTIONS.

										_					_											_	-
		•	386	ŝ	ý.		36		*	, K	?! æ	81	9¥.	50	œ.	1-1-	9. E	15	17.	73	55	٤,	2.	69	e9.	67.	99
•		•	1:210	1.5533	-1-5359	1.5184	1.5010	1.4-85	1.4661	1.44%6	1.4312	1.4187	1.8963	1.877.	1.3614	1.3439	1.3265	1.3090	1.2915	1.2741	1.2566	1.2392	1.2217	1.2043	1.1868.	1.1694	1-1519
			1-414	1.402	1.349	1.377	1364	1.351	1.332	1:325	1.312	1-595	1.286	1.272	1-259	1 445	1.231	1218	1.204	1.190	1.176	1.161	1.117	1.133	1.118	1.104	1.089
	Costlier.		-	x 5000;	filli.	9766	9266-	2000	QF 66-	-0.025	60665	といれの・	7,75	.9816	1272	1174	.6203	6096	.9613	-9563	-9511	-9455	1080	.9336	.9272	-9205	9135
	Co-tangent		×	57-2900	27.6.30.3	19:0811	14:3007	11.4301	9-51 34	£:F#1.7	7.1154	5 3133	546713	9411.0	4.7046	1.3315	7010.	3-7321	サレスナ・5	3.2709	13.0777	2-9042	2.747.5	- 2.6051	2:47:31	2.3559	3.3460
	T mg-0,*		Ξ	.0173	6480	-0524	6690-	17.7	10:01	.155	1400	<u> </u>	1763	1161.	2126	-5309	-2493	9679	1977	-3057	-3249	-3143	3640	3439	040	4245	4452
	ži.		=	0175	6480	-0.523	÷690÷	2128 0	101:	.1219	-1395	1564	-17.36	79:1	2079	0.5.5.	6147	7. X. C. C. C.	.27.36	1202	6606	3256	0748	+ ×0.25	-3746	2068	4067
	Chord.		=	17	1000	55.0	010	-	01.	661.	107	151	121.	65	500	966.		196	×1.6.	.296	-313	333	11:	17:		668.	-416
1 miles	<u> </u>	R.r-h in-	=	.0112	61810	1050	75.90	10 m	101.	.100.1	9581	157	17.17	0.61	1606	69000	2443	x107	7 -2793	1966	3145	-3316	:3491	3665	0775	¥10f.	4189
-		Delie	٦	, -	· •	1 25		٠ ،٠	· · · ·	-1-	· 7.	. s.	Ξ	. =	12		, 1	- 2	: :	1	Z	2	ş		6	8	24

	l				Γ.			•		66									59 · 46	54 45	in, Degrees,	Angle.
•					٠		•			6696					1	i	•		•		R. Jams	:
1.675	1.060	 1.045 	1.030	1.015	1.000	586	07.0	F26.	686	876	x08.	Si	χ. -	, x 5.1	i.	3. 3.1 3.1	\tilde{x}_{13}	161.	181	.165	!	Chord.
:906:	8868	.×910	2222	37746	.×6560	21.0%	277	1X35X	0022	×10.5	000%	9851.	37. T	1777.	0.565	75577	1872	.7314	SET 1:	1707		Sing
2-1445	2.0503	1.9626	1.8807	1.8040	15321	1.06.43	1.6003	1.5399	1-4826	1-1583	1.3764	1 3270	1 - 27,93	1-2349	1.1918	1.1504	1-1106	1-0724	1.0355	1-0000		Tangent.
4663	1181.	·#0915	.5317	-5543	+225	6009.	65.249	T679.	67.45	-7002	7265	9827.	25 E	750%	16838	8698	F006-	-9325	10:30	1-0000		Co-tangent
-4226	1. 1.3×1.	.4540	1695	x+x+.	5000	0010	.5299	9440	5592	38.	ソレスい	x To::	1157	-6293	-645	(156)	I699.	6850	2+69.	.7071		Cosme.
÷	1	***	fx†.	-501	NI6	17:4	10.0	50.00	17.17.	109.	x[9	-635	-651	.668	÷	004	717	.733	642-	.765		
-4363	×85.4.	4712	1887	.5061	.5236	.5411	L'ACC.	.5760	5984	.61(9	.6283	£5+9·	-6632	LOX4.	·69×1	.7156	.7337	.750.	1,292.	e P		
25	97	27	25	53	30		35	33	34	3	36	17	X X	68	.9	41	5	43	+	4:5	•	

TABLE OF SQUARES, CUBES, Frc.

No.	Square.	Cube	Squa.e C	ibe No.	Square.	Cube.	Square Cube
i	1	1	Root. Re	6	36	216	Root. Root.
1.1	i -	_	1		55-21		2 1495 1·8171 2·4698 1·8272-
1.2			1.0955 1.00		28:44	238 328	
1.3	1.69		1.14021.09		39-69	250.047	
1.1	1.96		1.18821.1		10.90		2.5298 1.8566
1.5			1.2247 1.1-		42.25		2.5495 1.8663
1.6			1:2649 1:10		13.56	$287 \cdot 496$	2.569 1.8758
1.7			[1:3038]1:19		44.89		2.5884 1 48852
1.8			1.3.16 1.2		16.24		2.6077 1.8945
$\frac{1.9}{2}$	3.61		1:37841:23		47.61		2.6268 1.9033
2.1		8 9 163	1-4142 1-23		49 50:41	313	2.6458 1.9129
2.2	4.84		1:4832 1:36		51:84		2:6646 1:922 2:68:6 1:931
2.3	5.29		1:5166 1:3:		53.29		2.7019 1.9399
2.4	5.76		1.5492 1.33		54.76		2.7203.1.9487
$2 \cdot 5$	6.25		1.5811113		56.25		2:7386:1 9574
3.6	6.76	17.576	1 6125 1 37	7.6	57.76		2:7568 1:9661
2.7			1.6432 1 39		59.29		2:77491 9747
3.8	7.81		$1.67331 \cdot 40$		60.84	474 559	$2.79281 \cdot 98321$
5.9	8-11		1 7029 1 4:		62/11		$2.8107 \cdot 1.9916$.
3	9	27	1.7321 1.44		64	512	2.82812 *
3.1	9·61 10·24		1 7607 1-13		65:61	-31-141	
	10.89		1:7889 1:47 1:8166 1:48		67:21		2.8636 2.0165
	11.56		1:8439 1 50		68-89 70:56		2 581 2:0247 . 2:8983 2:0328
	12.25		1:8708 1:51		73 25		2:8083 2:0328 2:91\$5 2:0408) ;
	12.96		1 8974 1 50		73 96		2:9326 2:0488
3.7	13.69		1.9235 1.54		75 69		2.9496 2.0567
3.8	14-14	54.872	1.94941 56	605 N.A	77 11		2.9665 2.0646
_	15.21	59.319	$1.97481 \cdot 57$	41 8:9	79.21		2 9833 2-0724)
4	16		2 1.58		12 m	729	3 - 2.0801
	16:81		2.0249 1.60		45.41		3-61662-0878
	17·64 18·49		2.0494 1.61		84.61		3 0332 2:0954
	19:36		2 0736 1.62		86:49	804 357	3.0496 2.1029
	20.25		2·0976 1·63 2 1213 1·65		88 36 90 25		3:06 5 0 2 1345 5
	21.16		2 1213 130 2 1448 1 66		92:16		3 0822 2·1179 3·0984 2·1253
			2.16801.67		94.09		3:1145 2:1327
			$2 \cdot 1909 \cdot 1 \cdot 68$		96-04		3 1305 2:14
1.9			2.2136 1.69		98:01		3-1464 2-1472
.5	25	125	2.2361 1.71	10	100		3-1623 2-1544
			2-2583 1-72		102:01	1030·30ù	3.178 2.1616
			2-2804 1-73			1061-208	3.1937.2.1687
			2.3022 1.74				3.2094 2.1757
			2-3238 1-75				3-2249 2-1828
			2:3452 1:76				3-2404 2-1897
			2·3664 1·77 2·3875 1·78				3-2558[2-1967]
			2·3875 1·78 2·4083 1·79				3·2711[2·2036] 3·2863[2·2104]
			2·4065 1·75 2·429 - 1·80				3·2863[2·2104] 3·3015[2·2172]
- "				110	En in	12.09 (12.0)	0 0010/2 2112

TABLE OF SQUARES, ETC.—Continued.

17 . 1	- the transfer to
- No. Square. Cube. Square Cube	No. Square. Cube. Square Cube
11 121 1381 Root. Root.	Lioot. Koot.
11-1 123-21 1367-631 3-3317 2-2307	16 256 4096 1 2.5198
14-2 125-44 1406-928 3-3 466 2-2571	16·1 259·21 1473·281 4·0125 2·5251
111 3 127 6911442-8973 36155 3444	16:2 262:44 4251:528 4:0249 2:5303
[14.4] 129.96[1481.544;3-97639oone]	16·3 265·69 1330;747 1·0373 2·5355
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11°6 13 1°56 1560-896 304050 5.0697	16·6 275·56 4574·296 1·743 2·5509
144:71 1360 89 160 1 6 13 3 4905 p. 970 p	10°71 278'8911657-163' Checkler Free 1
11.8 139.24 1643.032 3.4351 2.2766	10°8 282°24° 7741 639 (mooda.com)
$11.9 \ 141.61 \ 1685.159 \ 3.4496 \ 2.2831$	16.9 285.61 4826.8094.111 2.5662
12 J44 1728 3 611 2 2891	17 (289) 11913 (1.1921) 71 (1.
12·1 146·41 1771·561 3·485 2·2957	17.11 292.4115000.911[1.1959] 1.5709
$\begin{array}{c} 12 \cdot 2 \cdot 148 \cdot 8 \bullet 1815 \cdot 848 \cdot 3 \cdot 492 \cdot 9 \cdot 3021 \\ 12 \cdot 3 \cdot 151 \cdot 29 \cdot 1860 \cdot 867 \cdot 3 \cdot 5071 \cdot 2 \cdot 3084 \end{array}$	17.2. 295.845088-148 to 1479 a. vo to 1
12·4 163·76 1906 6243 \$214 2·3146	Tr 31 299:29/5177:71714:150:do.50:e9 1
12·5 156·25 1953·125 3·53552·3298	17 1: 382 75 5268 021 1:171 35 : 5019 :
12.5 158.76,2000.3763.5196 2.327	17:5 306:25 5859:375 4:1838 2:5962
- [12·7] 161·29(2018/383/3·5637 occord	17.6 309-76-5451-776-4-1952/2-6012
12:8/163:84/2097-159 3-5777 a.ggar I	17 7 313·29/5545·233(4·2071/2·6061)
1209 166 11 21 46 689 3 59 17 9 3 453	$\begin{array}{c} 17.8 \ 316 \ 84,5689 \cdot 752, 4 \cdot 219 \ \left[9 \cdot 6)11 \right] \\ 17 \cdot 9 \ 320 \cdot 41,5735 \cdot 339 \ 4 \cdot 2308 \cdot 2 \cdot 6159 \end{array}$
145 169 19197 Seatationerical	18 324 5832 4:2426.2:6207
-1134'1716199480913349459594	18 1 327 61 5929 7 11 1 25 1 12 62 62 66
18:2 171:242299:0683:63322:06.3	18/2/331/24/6028/568 4/9661 9 6304 C
18:3 176:89 2352:637 3 6169 2:3693	18°3 334°896198 487 1:97796.cgco [
18:4 179:562406:1043:66062:3752 13:5 182:252460:3753:67422:3811	18/4-338/56/6999-5014-0805/o.ca 1
10 01 1 2 20 7 100 01 10 01 15 5 3811	1855 342 25 6331 (225) (23015) 36 (19)
20 21 20 2010 100 9 09 (9 3.98)	18.6 340.96.6434.856.4.319slo.mag.b
	18-7 319-69 6559-203 4-3218 2-6543
18:9/193:212685:619/5:7983/9:4614	18 8 355 44 6644 6724 3359 2 659
14 196 2711 3.71179 10.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14:1-198 81:2803:2213:755 Det150	19 361 6859 135892-6684 11 364 81.6967-871 437042-6731
1 14°2: 201 64 2863 (2883) 7683io. to re l	19 2 368 64 7077 888 1 3818 2 6777
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 3 372 49 7189 057(1 3039)9 (29)1
	1994 - 570° 56 7301°384 4 464° 56 4876 .
1 1 2 3 210 2 7 90 to .059 3 8040 5 1989 1	19·5 380·25 741 (-875 1-4) (** *********************************
	19:6-384:16,7529:536[1:427292:6962]
	19:7 388:09 7945 37 4:4385 2:7008
14.9: 222.01.3307.9493 sc9. 657 b	19:8 392:04.7 (62), 95 1 1497 2:7053
15 225 3375 • 3.873 9.1669	19:9, 396:01/7880:59, 4:1609/2:7099 20 , 400 , 8000 , 4:479; 2:7144
$-15^{\circ}1[228^{\circ}01[3442^{\circ}951[3(8859)9(4717)]]$.	20 400 8000 4+4724 2+7144 20+1 404-01 8120-601 4+483.3-2+7189
15·2 231·043511·8083·89879·1771 1.	20.2 408.018242-4084-1944;2-7284
15·3[234·09]3581·577[4·9115]9·1895[1.	20:3 112:09 8365-427 1:5055 2:7279
15.4 287.16 3652.264 3 9243 2-4879 y	## 116 16 8489 664(1.5166)
29 0 220 20 0120 0100 010 2 1033 2	20:5: 420:253615:12編4・巻277/5・7366 [
22 A 2 YO OO 01 20 110 2 24 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2	30.0, 454.36[8741-816]4.5387[5.7418]
15 0 240 40 3000 000 3 3020 2 5004	99.71 428.49 8869.743 4.5497 9.7457
18.0 283 04 3844 312 3 97 49 2 5093 2	20.8, 432.64,8998.912,4.5607,2.7509
-2 -1 -2 01 40 m 0 (2) 2.246 15 2.2146 1 5	0.9: 436-81 919 - 200 1.571clo. 5545

TABLE OF SQUARES, RTc.—Convinued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No Square. Cube.	Square Cube Root. Root.	No. Square.	Cube,	Square Root,	Cube Root.
$\begin{array}{c} 21.1 \\ 445.21 \\ 9398.6314.693512.7638 \\ 21.2 \\ 449.44 \\ 9528.128.4 \\ 604312.7676 \\ 21.3 \\ 458.69 \\ 9663.597,4-615.2 \\ 2.772 \\ 21.4 \\ 457.96 \\ 9800.344.4-626 \\ 2.7763 \\ 21.5 \\ 462.25 \\ 9938.375,4-6368.2 \\ 7806 \\ 2.763 \\ 21.6 \\ 466.561.0077.696.64647612.7849 \\ 21.7 \\ 470.810218.313.4-6386.2 \\ 7806 \\ 21.9 \\ 479.61 \\ 10503.459.4-6797.2.7978 \\ 22.1 \\ 484 \\ 10648 \\ 4-6904.2.8021 \\ 22.1 \\ 488.41 \\ 10793.861.4-70812.28417 \\ 22.2 \\ 491.84 \\ 1094.841.048.4-7117.2.8105 \\ 22.2 \\ 492.84 \\ 1094.048.4-7117.2.8105 \\ 22.2 \\ 497.29 \\ 11080.567.4-7221.2.8117 \\ 22.3 \\ 497.29 \\ 11080.567.4-7221.2.8117 \\ 27.3 \\ 715.29 \\ 2031.648.3-215.4-3006.285.8-3018 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.2 \\ 718.24 \\ 1990.2.5115.2058.8-3087 \\ 27.3 \\ 715.29 \\ 2031.648.7-5.2249 \\ 30111 \\ 27.4 \\ 75.6 \\ 75.6 \\ 25.2 \\ 2070.6875.5-2348 \\ 30147 \\ 27.4 \\ 75.6 \\ 75.6 \\ 25.2 \\ 2070.6875.5-2386 \\ 30221 \\ 27.6 \\ 75.6 \\ 25.2 \\ 2070.6875.5-2386 \\ 30221 \\ 27.6 \\ 75.6 \\ 25.2 \\ 2070.6875.5-2386 \\ 30221 \\ 27.6 \\ 301.76 \\ 2070.6576 \\ 2070$	21 441 9261		26 676	17576 +		
$\begin{array}{c} 21\cdot 2 \\ 449\cdot 44 \\ 9528\cdot 128\cdot 4 \cdot 6043 \\ 2 \cdot 767 \\ 21\cdot 3 \\ 453\cdot 69 \\ 9663\cdot 597_4\cdot 6152\cdot 2 \cdot 772 \\ 26\cdot 3 \\ 591_5\cdot 691\cdot 8191\cdot 447_5\cdot 1284_2\cdot 9788_2 \\ 21\cdot 4 \\ 457\cdot 90 \\ 9603\cdot 843_4\cdot 626_2\cdot 2 \cdot 776_2 \\ 26\cdot 46\cdot 969\cdot 18191\cdot 447_5\cdot 1284_2\cdot 9788_2 \\ 21\cdot 5 \\ 462\cdot 25_1 \\ 9938\cdot 375_1\cdot 6368\cdot 2 \cdot 786_6 \\ 26\cdot 5 \\ 702\cdot 25_1 \\ 1860\cdot 25_2 \\ 1961_7 \\ 470\cdot 89_1 \\ 10218\cdot 313_4\cdot 6586_2\cdot 7893_2 \\ 26\cdot 7 \\ 712\cdot 89_1 \\ 1903_4\cdot 163_5\cdot 165_2\cdot 2988_2 \\ 26\cdot 7 \\ 712\cdot 89_1 \\ 1903_4\cdot 163_5\cdot 165_2\cdot 2988_2 \\ 26\cdot 7 \\ 712\cdot 89_1 \\ 1903_4\cdot 163_5\cdot 165_2\cdot 2988_2 \\ 26\cdot 7 \\ 712\cdot 89_1 \\ 1903_4\cdot 163_5\cdot 165_2\cdot 2988_2 \\ 26\cdot 7 \\ 712\cdot 89_1 \\ 1903_4\cdot 163_5\cdot 165_2\cdot 2988_2 \\ 26\cdot 7 \\ 712\cdot 89_1 \\ 1903_4\cdot 163_5\cdot 165_2\cdot 2988_2 \\ 26\cdot 7 \\ 712\cdot 29_1 \\ 19683_1 \\ 51962_2 \\ 291_2 \\ 488\cdot 41_1079_3\cdot 861_4\cdot 7011_2\cdot 8063_2 \\ 27\cdot 1_2 \\ 739_1 \\ 291_2 \\ 492\cdot 84_1094_1\cdot 048_1\cdot 7117_2\cdot 8105_2 \\ 27\cdot 1_2 \\ 739_1 \\ 27\cdot 1_2 \\ 27\cdot 1_$						
$\begin{array}{c} 21.4 \ 457 \cdot 96 \ $						
$\begin{array}{c} 21.4 \ 457 \cdot 96 \ $	21.3 453.69 9663.59	4.6152 2.772	26.3 691.69	18191-447	5.1284	2.9738
$\begin{array}{c} 21.6 \\ 466.56 \\ 10077.696 \\ k.64762.7849 \\ 21.7 \\ 470.89 \\ 10218.313,46586 \\ 2.7893 \\ 20.7 \\ 1712.89 \\ 19034.163\\ 1562 \\ 2.9888 \\ 21.9 \\ 475.24 \\ 10360.235 \\ 669.2.7935 \\ 22.9 \\ 444 \\ 10648 \\ 4.6904 \\ 2.8021 \\ 22.1 \\ 488.41 \\ 10793.861 \\ 4.7011 \\ 2.8063 \\ 2.701 \\ 2.22 \\ 492.84 \\ 10941.048 \\ 4.7117 \\ 2.8105 \\ 2.803 \\ 2.71 \\ 2.73 \\ 745.29 \\ 20346.41 \\ 1.905.288 \\ 1.9688 \\ 3.19628 \\ 3.0087 \\ 2.71 \\ 3.73 \\ 4.71 \\ 1.906.288 \\ 1.9688 \\ 3.19628 \\ 3.0087 \\ 2.72 \\ 3.984 \\ 2.01 \\ 3.92.84 \\ 1.92.84 \\ 1.93.82 \\ 1.9488 \\ 1.9488 \\ 1.9488 \\ 1.9488 \\ 1.96$	21.4 457.96 9800.34	4.626 2.7763				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21:5 462:25 9938:37	4.6368 2 7806				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.6 466.56 10077.690	3.6476i2·7849				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.7 470.89 10218.31	1,4+6586"2+7898				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c} 22 \cdot 1 \cdot 488 \cdot 41 \cdot 10703 \cdot 861 \cdot 4 \cdot 7011 \cdot 2 \cdot 8063 \\ 22 \cdot 2 \cdot 492 \cdot 84 \cdot 10941 \cdot 048 \cdot 4 \cdot 7117 \cdot 2 \cdot 8105 \\ 22 \cdot 3 \cdot 497 \cdot 20 \cdot 11089 \cdot 567 \cdot 4 \cdot 7223 \cdot 2 \cdot 8117 \\ 22 \cdot 4 \cdot 501 \cdot 76 \cdot 11239 \cdot 424 \cdot 4 \cdot 7329 \cdot 2 \cdot 8189 \\ 22 \cdot 5 \cdot 506 \cdot 25 \cdot 11390 \cdot 625 \cdot 4 \cdot 7484 \cdot 2 \cdot 8231 \\ 22 \cdot 6 \cdot 506 \cdot 25 \cdot 11390 \cdot 625 \cdot 4 \cdot 7484 \cdot 2 \cdot 8231 \\ 22 \cdot 6 \cdot 510 \cdot 76 \cdot 11543 \cdot 176 \cdot 4 \cdot 7539 \cdot 2 \cdot 8273 \\ 27 \cdot 6 \cdot 761 \cdot 76 \cdot 21024 \cdot 576 \cdot 5 \cdot 2536 \cdot 3 \cdot 0221 \\ \end{array}$	1					
$\begin{array}{c} 22.2, 492.84 \underline{10941.0484.71172.8105} \\ 22.3, 497.29 \underline{11089.5674.72232.8117} \\ 22.4, 501.76 \underline{11239.4244.73292.8189} \\ 22.5, 506.25 \underline{11890.6254.74342.8231} \\ 22.6, 506.76 \underline{11543.1764.75392.8278} \\ 27.6, 756.25 \underline{20796.8755.2344} \\ 3.0144 \underline{20.2376.766.255.20796.8755.2344} \\ 3.0144 \underline{20.2376.766.255.20796.8755.2346} \\ 3.0146 \underline{20.2376.256.256} \\ 3.0221 \underline{20.2376.256} \\ 3$						
$\begin{array}{c} 22.3, 497\cdot 29\overline{}11089\cdot 567+7223 2\cdot 8147\\ 22\cdot 4 501\cdot 76 11239\cdot 424 4\cdot 7329 2\cdot 8189\\ 22\cdot 5 506\cdot 25 11390\cdot 625 4\cdot 7434 2\cdot 8231\\ 22\cdot 6 506\cdot 25 11390\cdot 625 4\cdot 7434 2\cdot 8231\\ 22\cdot 6 510\cdot 76 11543\cdot 176 4\cdot 7539 2\cdot 8278\\ 27\cdot 6 761\cdot 76 21024\cdot 576\cdot 5\cdot 25868\cdot 0221\\ \end{array}$						
$\begin{array}{c} 22.4 \ 501.76 \ 11239 \cdot 4244 \cdot 7329 \ 2 \cdot 8189 \ 27 \cdot 4 \ 750 \cdot 76 \ 20570 \cdot 824 \ 5 \cdot 2345 \ 3 \cdot 0147 \ 22 \cdot 5 \ 506 \cdot 25 \ 11390 \cdot 625 \ 4 \cdot 7434 \ 2 \cdot 8231 \ 27 \cdot 5 \ 756 \cdot 25 \ 20796 \cdot 875 \ 5 \cdot 244 \ 3 \cdot 0184 \ 22 \cdot 6 \ 510 \cdot 76 \ 11543 \cdot 176 \ 4 \cdot 7539 \ 2 \cdot 8273 \ 27 \cdot 6 \ 761 \cdot 76 \ 21024 \cdot 576 \ 5 \cdot 2536 \ 3 \cdot 0221 \ 3 \cdot 6 \$						
$\begin{array}{c} 22 \cdot 5 \cdot 506 \cdot 25 \cdot 11390 \cdot 625 \cdot 4 \cdot 743 \mathring{4} \cdot 2 \cdot 8231 27 \cdot 5 756 \cdot 25 \cdot 20796 \cdot 875 \cdot 5 \cdot 244 3 \cdot 0184 \\ 22 \cdot 6 \cdot 510 \cdot 76 \cdot 11543 \cdot 176 \cdot 4 \cdot 7539 \cdot 2 \cdot 8273 27 \cdot 6 761 \cdot 76 \cdot 21024 \cdot 576 \cdot 5 \cdot 2536 3 \cdot 0221 \end{array}$						
22·6 510·76 11543·176 4·7539 2·8273 27·6 761·76 21024·576 5·2536 3·0221						
- 37.1, 010.79 11091,009 4 1041 5 cold [5] (101.75 -1000 500.0,70010 050)						
22·8 519·84 11852·352 4 7749 2·8356 27·8 772·84 21481·952 5·2726 3·0298						
22.9 524.41 12008.989 4.7854 2.8397 27.9 778.41 21717.639 5.282 3.038						
23 529 12167 4:7958 2:8438 28 784 :21952 5:2915 3:0366						
28-1 533-61 12326-391 1-8062 2-8479 28-1 789-61 22188-041 5-35093-0402						
23:2 538:24 12487:168 4:8166 2:8521 28:2 795:24 22425:768 5:81048:0488						
23-3 542-89 12649-337 1-827 2-8562 28-3 800-89 22665-187 5-8198 3-0474						
23:4 547:56 12812:904 4:8373 2:8603 28:4 806:56 22906:304 5:3292 3:051						
28·5 552·25 12977·875 4·8477 2·8643 28·5, 812·26 231 49·125 5·3385 3·0546			28.5, 812.26	28149-125	5-3385	340546
28·6 556·96 13144·256 1·858 2·8684 28·6 817·96 28398·656 5·3479 3·0581			$28.6^{\circ}817.96$	28398-656	5.3479	3.0581
_28·7 561·69 13312·053 1·8683 2·8724 28·7 823·69 23639·903 5·3572 3·0617			28.7 823.69	23639-903	5.3572	3.0617
- 23-8 566-44 13481-272 1-8785 2-8765 28-8 829-44 23887-872 5-3666 3-0 652						
- 28·9 571·21 13651·919 1·8888 2·8805 28·9 835·21 24137·569.5·8759 8· 0688	28·9 571·21 13651·91					
.24 576 13824 1·899 2·8845 29 841 24389 5·8852 3·0728						
24-1 580-81 13997-521 4-9092 2-8885 29-1,846-81 24642-171 5-8944 3-0758						
24-2 585-64 14172-488 1-9193 2-8925 29-2; 852-64 24897-088 5-1037 3-0794						
24·3 590·49 14348·907 4·9295 2·8965 29·3 858·49 25153·757 5·4129 8·0829			29-3 858-19	25153.757	2 1129	3.0829
24-4 595-36 14526-784 4-9396 2-9004 29-3 864-36 25412-184 5-42229-6864			29.3.861.36	20412:184	9.4555	0.00
24.5 600.25 14706.125 4.9497 2.9044 29.5 870.25 25672.375 5.4314 8.0899						
$\begin{array}{c} 24 \cdot 6 \cdot 605 \cdot 1614886 \cdot 9364 \cdot 95982 \cdot 9083 \\ 24 \cdot 7 \cdot 610 \cdot 091506 \cdot 92234 \cdot 96992 \cdot 9123 \\ 29 \cdot 7 \cdot 882 \cdot 0926198 \cdot 0735 \cdot 44985 \cdot 0968 \end{array}$						
-24·7 610·09[15069·223 4·9699 2·9123 [29·7] 882·09[26198·073 5·4498]8·0968 -24·8 615·64 15252·992 4·9799 2·9162 [29·8] 888·04 26463·592 5·4589]3 ·1008						
[24-9 620-01 15438+249 4-9899 2-9201 29-9 894-01 26780-899 5-4681 3-1088						
25 625 15625 5 2 9240 30 900 27300 5 4772 3 1075						
25-1.630-01 15813-251.5-01 2-9279 30-1 906-01-27270-901,5-4863 8-1107						
25·2 635·04 16003·008 5·02 2·9318 30·2 912·04 27548·608 5·4954 8·1141						
25-8 640-09 16294-277 5-0299 2-9357 30-3 918-09 27818-127 5-5045 3-1176						
25.4 645.16 16387.064.5.0398 2.9395 30.4 924.16 28094.464 5.5186 8.121						
25.5 650.23/16581-375 5.0498;2-9434 30.5 930.25 28372-623 5.5226 5.1244						
25·6 655·36 16777·216 5·0596 2·9472 30·6 936·36 28652·616 5·5817 8·1278			30.6 936.36	28652-616	5.5817	3.1278
25·7 660·49 16974·593 5·0695 2·9511 30·7 942·49 28934·448 5·5407 3·1812	25.7 660.49 16974.59	3 5.0695 2.9511				
25·8 665·64 17173·512 5·0794 2·9549 30·8 948·64 29218·112 5·549 7 3·1846						
25-9 670-81 17373-979,5-0892 2-9587 30-9 954-81 29508-629 5-5587 3-188	25.9 670.81 17373.97	9,5-0892'2-9587	30.9 954.81	29508-629	5.5587	8-188

TABLE OF SQUARES, ETC .- Continued.

,		•	T OF ENGULI	ES, EI	U	muen.		
N	o. Square.	Cube.	Square Cu Root. Ro		. Square.	Cube.	Square Root.	Cube Root.
31	961 9	29791	B-5678 3:14		1296	46656		
81	1 967 21	30080.231	5.5767 3.14			17045·881	6.0000	3.3019
81	2 978.44	30371 328	5.5857 3.14	81 36	2 1310-44	47437.928	6.0166	9.00
.81	3 979.69	30664-297	5.5946.3.15		31317-69	47832-147	0.0040	9.9111
31.	4 985.96	30959:144	5.6035 3.15	48 36	4:1324-96	48228.544	6.0220	9.9111
81	5 992.25	31255.875	5.61243.15		5/1332-25	48627.125	6:0415	9.8171
81		31557-496	5.6213 3.16	15136	6 1339 56	49027-896	0408	3.3000
31.	7 1004 89	31855-013	5.6302 3.16	48136	7 1346-89	49430-863	6.0581	3-2020
81.	8 •011 24	32157-432	5.6391 3.16	71 36-	81351-24	19836-032	6.0668	3.3060
31.	9 1017.61	32461.759	5:648 3:17	15 36.	9 1361-61:	50243-409	6.0745	3.3900
32		32768	5 6569 3 17	18 37			6.0828	
82.	1 1030 41	33076-161	.5·6 <mark>6</mark> 563·17	81 37.		51061-811		3.3352
82.	2 1036·84	33386-248	5.67453.18	14 37.	2 1083-84	51478-848	6.0992	3.3382
32.	3 1043 29	33698-267	,5 ≰ 833 3∙18	47 37·	3 1391 29	51895-117	6.1074	3.3419
32.	4 1049 76	34012-224	5-6921 3-18	8 37.	4-1 9 98-76,	52313-624	6.1156	3.3449
82	5 1056-25	34328-125	5.7008 3.19	13 37 ·	5-1406+25,	$52734 \cdot 375$	6.1237	3.3479
82	6 1062 76	34645.976	5.7096 3.19	45 379	6 1413 76	53157:376	6.1319	3.3501
32	7 1069-29	84965-783	5.7183 3.19	$78 37^{\circ}$	7 1421-29]	53582-633	6.14	3:3531
32	8/1075-84	35287-552	5.7271 3.20		H 1428-84	$54010 \cdot 152$	6.1482	3.3561
			5.73583.20		9 1436 41	54 139-939	6.1563	3.359
- 33			5.7446 3.20			54872	6.1614	3.362
33.	1:1095-61	36264-691	5.7532 3.21		1 1451 61	55306 341	6.1725	3.3649
			5.76193.21		2 1 159 24	55742-968	$6 \cdot 1806$	3.3679
			5.7706 3.21		3 1466 89	56181 887	6·1887	3.3708
			5-7792 3-220		1 1474 56	56623-104	6.1968	3.3737
			5·7879 3·22:		1482.25	57066 625	6.2048	3.8767
20.	7/1126 (0)	07903'U00. 94070.759	5·7965 3·226 5·8051 3·236		1 189 96	57512-456	5.2129	3.3796
			5·8137 3·23:		1497.69	57960-603 (5.2209	
			5·8223 3·23((1-)()-)'11-	$58411 \cdot 072 $		3.3854
			5·831 3·230			58863-869		3.3883
	,		5·8395 3·24:			59319		3912
			5 8 18 3·240			50236·288 (3941
			5 ◆ 566 3·249			0698·457·0		397
			5:8651 3:252		1559-366	1162-9846	0.700 lo	3999
			5.8736 3.255	4 39.5	1560.256	1629 875:6	2 0.00	1050
			5-8821 3-258		1568-166	2099-136	20003	1090
84.7	1204 09	11781-923	5·8906 3·261	7 39.7	1576:05	257 773	30083	.1114
84.8	1211.04	42144-192	5·8991 3·264	8 39.8	1584.046	3044 792 0	30873	.4140
6.2 ∙9	1218.01	12508-549]	5-9076 3-267	9 39-9	1592.016	$3521 \cdot 1996$	31663	.4171
35	1225	12875	5·9161 3·271	1 40			39463	
35.1	1232 01 4	13243-551	5·9245 3·274		1608-01/6	4481 2016	33253	4228
			5·933 3·277	3 40.2	1616-04/6	4964.8086	34043	·4256
			94143.280	4 40.3	1624 096	5450 827 6	34823	4285
			·9498 3·283	5 40.4	1632-16/6	5939-2646	3561 3	4313
			9582 3-286			$6430 \cdot 125 6$		
			9666 3 289		1648.366	$6923 \cdot 4166$	3718 3	437
			9749 3-292	140.7	1656 496	$7419 \cdot 1436$	·3796 3·	4898
			9863 3 295	H 40.8	1564.646	7911-8126	3875 3	4426
100.0	1284.81 4	nz68.2795	9917 3-298	9140.9	1672.81[6	8417-9296	B953 3	4454

Table of Squares, Etc.—Continued.

,				. h				'		7777
' N	o	Square.	Cubs	Square Root		No	'quare	Cube.	Square Root.	
41		1681	68921 6		34482	ia-)	9116	97836	6.7428	
			69426·531					07079-11	16.7897	
			69984-528						28 6 7971	
			70441-997							
			70957-911						14 6.8118	
			71473:375							
			$71991 \cdot 296$							
11	.7	2738·89	72511.713	6.4575	3.4677	46.7	2180.89	101847-50	63 6-8337	3.6011
			73034 632							
11	9	1755-61	$73560 \cdot 059$					103161.70		
4.		1764	74088		3:176			103823		3.6088
			74618:461							
			75151-148							
			75686 967							
			76225-021							
			76765-627							
			77308 770 77851 18							
			78402 752							
			78953-589							3.6317
4;		1849	79507		3.5034		2304	110592		3.6342
			80062-991							
			80621 568							
			81182 737							
1.	} · [1883-56	881746·50	16 5474	3:5142	1 1	2342.56	113379-9	016957	346448
			82312:87							
			! K5RK -R 24							
			183453/45:							
			84027/67:							
			84604-519							
14		(1936	85181		3.5303		2401	117649	* 7 ~1 7.0071	3.6593
			85766-121 86350/889							
			56338:30° 56938:30°							
			; 87528:38							
			88121-12							
			38871G 530							
			(8931', 623							
-,1	1.	2007-0	89915:399	26-693.	3:5516	19 ·s	2480 04	123505 9	927-0569	3.6791
1	4 - 9	32016-0	190518-849	16 700	3 5543	193	(2490.01	1249514	$99.7 \cdot 064$	3 6816
4	.,	2025	91485	6:7083	23-5569	50	2500	125000		13.684
			191733/85				.2601	132651		13.7084
			1 923 15-40				2704	140008		13.7325
			992959-67				2809	118877		13.7568
			6,93576456				2916	157464		53.7798
			5 94 2 96-37			55	3025	166375		23.803
			694818·81				3136	175616		33.8259
			9 95443·99 4 96071·91				3249	485193 495112		8.3.8485 83.8709
			1 96702·57				3481	205379		13.898
14	٠,	J 2100'5	1 90107.91	40.110	61.440	4,,,	baret	(20001)	11 001	70 000

APPENDIX.

Table of Squares, Etc.—Continued.

No. Square. Cube.	Square Cube Root. Root.	No. Square	•Cube Square Root.	Cube Root,
60 3600 216006 61 3721 226981 62 3844 288328 63 3969 250047 64 6096 262141 65 4225 274625 66 4356 287436 67 4189 300763 68 4824 313006 70 4761 328509 70 4900 313000 71 5041 377911 72 5184 373218 73 5829 389017 74 5176 405221 75 5625 42187, 76 5776 38876	7-716 3-9149 7-8102 3-9365 7-874 3-9579 7-9373 3-9791	80 6400 81 6561 82 6724 83 6889 84 7056 85 7225 86 7396 87 7569 88 7714 90 8100 91 8281 92 8461 93 8649 94 8836 95 9025	512000 8-9443 531441 9 551368 9-0554 571787 9-1104 592704 9-1652 614125 9-2195 658503 9-3274 658503 9-3274 674969 9-484 729000 9-4868 753571 9-5394 778688 9-597 784367 9-6137 830584 9-6954 884736 9-748 884736 9-748 814736 9-748	4-3089 4-3247 4-3447 4-3621 4-395 4-395 4-3968 4-414 4-481 4-4647 4-4647 4-4644 4-5144 4-5144 4-51468 4-5158
78 6084 474552	8-8318 1-2727 8-8882 1-2908	98 9604	941192 9-8995 970299 9-9499	4.6104

Areas and Circumferences of Circles, up to p in. Deameter (Areancing by 32nds and 16ths).

}		1				-		
D	ıa.	Cirgim.	A'rea.	100	Circum,	Secon !	ING	Cucum. Area.
1						7 TI Ga	1/ia.	Circum. Area.
1					!		l	. •
312		0981	-00077	13	1:3197	1.4848		
1 32	116			ii.	1.516	1.6229		11.584 10.679
1 2	1 6	2915		14	4.7121			11.781 11.044
1 ""	Į	3927			19087	1.7671		11:977 11:416
1 22		1908		17.		U9175	35	12:173 11:793
1 32	r'a	.589	02761	12	5.1051	2.0739	Ric.	12:369 12:177
379	1 4.	6872	0376	117	5:3011	2.2365	1	12.566 17.566
1 22	ł	.7851			5 1978	2:4052	- 1 1	12.762 12:962
1 82	1	-8835	0621	1].,	5-6941	2.59	4 %	12:959 13:364
1 3 2	Å.	9817	0767	11 '	5.8905	2.7611	416	13:155 13:772
1 3 4	1 6	1.0799	0107	$\frac{1}{2}$	6.0868	2.9183	4+	13:351 14:186
1 32	a d	1.1781	1104		6.2832	3.1416	10	13.547 .14.606
13	А	1.2762	1296	21	6.4795	3.3410	13	13.744 15.033
1 32	16		1503	21	6-6759		4,7	13.94 15.465
110	1 6	1.1726	1505	$\frac{2}{3}$	6.8722	3.7584		€ 4·137 [15·904]
12	4	1.5708.	·1963	21	7 0686	3.976	4,%	14:333 16:349
13	2	1.6689		2	7 2649	1.2	1,	14.529 56.8
1 3 2	٠, ;	1.7771	2185	25	7.4612	4 4302	411	11.725 17.257
12	1 1-1	1.8653	2768	골.	7:6576	l'tititi 1	14	11.922 17.72
, 32	41	1:0035	3068	21	7:854	1 9057	11.	15:119 18:19
7]	4	2.0616	3382	~ 1 .	C OOO.		12	15:315 18:665
6.2	11	2.1598		~ ~		5:4119	11:	15:511 19:147
7.3	16	2.255		211	5.443		j.	15:708 19:635
5.2	i k	2:3562	·4057 ·1117	27		5:9395	5_{16}	15/901/20:129
1 13	4	2.4543	4793		8.5357		27	16.1 20.629
1 12	121	2.5525	5185	21		6.4918	σ_{i}	16:296 C1:135
1.7	1 1-1	2.6507	5591	- 1		6.7772	57	16.493 21.647
1 22	ž ;	2.7489	6013	3 '		7.0656	5 , 6	16:689 22:166
137	٠;	2.847	615	3/1		7:3662	540	16-886 29-69
1 32	12		6903	37		7.6699	5,	17:082 23:221
: : 44	16	30131	737			7.9798		17:278 23:758
1 32	i		2551			8-2957		17 474 24 301
1,10	ŧ		·8866			8.618		17:671 24:85
116	1					8-9462		17:867 25:406
1,3	1	3.73061	994			9.2807		18 064 25 967
						96211		1'**251 :26*535
$\frac{1}{4}$	İ	3.927 I				1.968		18.457 27.108
-16	- 1	4-12331	3553	34 1	1.388 16):32	518	18:653 27:688
		1,					ç	'

•
- 4
10ras.
H
VANCING
ADVA
CIRCLES
ď
REAS

MaiC	r 🏲	· -	• •	≀ ຄ •	•	+ 1	? :	اء	-	x c	· 7	2	7	읩	33	F1	1.5	9	•	3	<u> </u>	7 5	• •	=	13	77 (67 C
þ	-6361	9.8859	6.6059	11.0 (50	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1000010	10001	XZ1.9.79	8910-55	76.0770	09.010.00	on the co						224.318						876-685				480 955 . 2
9	.5026	2.5446	6-1575	•	٠.				T 1827.77		_						_			-		•	•					
		3,1		_				٠.	_	•	_		109-359	_		_	196.067	221-671	いては、文十つ	07.776	200.702	2.02.02.2		373.953	1000	9 00	105. FFF	199.702
10	x Fx 8.	t.			17.3401	07.5176	337.07.2		0000.04		2000		10.7013	126.677	117-411	200-117	193-593	219-040	246-057	374-646	108.70%	336.538	Coce Cree	369.887	201:101	101 103	101.101	#07.53# #125.319#
ą.	72827	2.0106	5.3093	10-1787	16-6190	146201	34-91-90	11.00.71	1700.75	7.3 33.0	17.5.2%		57.0.0						•	•	• • •	•	•	366-136				
Areas.	1963	1.7671	1.30c.	9-6211	15:9043	93.7.583	33-1831	171	1275.95		**C:-0:-0%		100.00	×11.221	14.3-1.39			-		E07.753		•		363-051 3			101.171	-
Ar • ÷			4.5239	9-07/12	15-2053	6606.66	39-1699	13.00%	37.17.00	69-3979	7275.77	020.601	070.70	120.103	920.7+1			7	•	265-905	•	•		359-681 3	394.049			
÷	·0706	1.3273	1.1517	X-5530	14.5220	•				57-11292	83.3230	170:00		02000		900.00				263-022		323-655			390-571 3			
₹ ¹	0314	. 1303	3.4013	×-0+5+	13-4544	21-2372	30-1907	40, 7151	52.8102	66-476	x1-7130	1005.80	700.41							•	_	320-474 3			-	•	159-961 4	
	K700.	:0503	3.4636	9140.7	13.2025	20-428-02	79-5247	39-5920	51.5300	65.0389	*0.11*6	96.7691	000-11	37:17						1 0%		417-309 3	-		383-597 3	419-097		
0.	0	46x).	3.1416	-0.86	12-3064	19-6350	28.2744	3444.48	50-2656	63-6174	78.5400	95-0334	13:007	60.7.60	_	-						314.160 3				415-476 4		
maiQ	0	⊣ (ST :		4	.ت.	÷,	<u>-</u>	œ	6	0.	-		•		H 10				7.	٠.	20					24 4	•

METRIC EQUIVALENTS.

1 centimetre		0.3937 (0)
1 sq. centimetre		0·1550 sq. in.
1 cub, centimetre .		0.0610 cub. 1p.
1 kilogram		2:205 lb, e
1 kilogram-metre		86:82 mlb.
1 centimetre per sec		0:0328 ft, per sec.
1 gram per sq. centimetre .		
1 gram per cub, centimetre	-	62:42 lb, per cub. ft.
Acceleration due to gravity		32·2 it. per \$ee.
,,	_	981.4 centimetres per sec.
1 in		2:54 centimetres.
1 sq. in		6:511 sq. centimetres,
I eub. m		16:38 cub. centimetres.
1 lb. (avoirdipois)		·1536 kilogram,
Ift. per sec		30:48 centimetres per sec.
1 lb. per sq. m		69:34 grams per sq.centimetre.
1 lb. per cub. m		27,616 grams per cub. centi-
1 lb. per cub. ft	,	metre, 0.016022 gram per cub, centi- metre.
1 in,-lb	-	1152 gram-centimetres.

Equivalent Values of Millimetres and Inches.

Milli- metres.	Inches,	Milli- metres	In hes	Milli- metres	Inches	Milli- metres.	Inches,
r	.0394	27	1.0630	53	2.0866	79	3.1103
2	.0787	28	1:1024	54	2.1260	80	3.1496
3	.1181	29	1.1117	550	2.1654	81	3.1890
1	1575	30	1:1811		2.2017	82	3-2281
5	1968	31	1.2205	57	2.2441	83	3.2677
6	.2362	32	1.2598	58	2.2835	84 .	3.3071
7	$\cdot 2756$	33	1.2992	59	2.3228	85	3 · 8 465
8	$\cdot 3150$	34	1.3386	60	2.3622	86	3.3859
9	3543	35	1.3780	61	2.4016	87	$3 \cdot 4252$
10	-3937	36	1.4173	62	2.1110	88	3.4646
11	1331	37	1.4567	63	2.4803	89 ,	3.5040
12	.4724	38	1.4961		2.5197	90 .	$3 \cdot 5433$
13	.5118	39	1.5354	65	2.5591	91 .	3.5827
1 🛊	.5512	40	1.5748		2.5984	92 .	8.6221
15	-5906	11	1.6142		2.6378		3.6614
16	-6299	42	1.6536		2.6772		3.7008
17	6693		1.6929	69	2.7166		3.7402
184	.7087	11	1.7323	70	2.7559		3.7796
19	$\cdot 7480$	15	4.7717	71	2.7953		3 8189
20	.7874	46	18110	72	2.8347		3.8583
21	.8568	47	1.8504	7:3	2.8740		8.8977
. 2%	.8661	• 4×	1.8898	74	2.9134	100	3.9370
23	.9055	49	1.9291	75	2.9528		
24	.9445	50	1.9685		2.9922		11 .1. ==
25	.9843	51	2.0079	77	3.0315	1 decry	netre.)
26	1.0236	52	2.0473	78	3.0709		
					İ		

KILOGRAMMES IN POUNDS,

Kīlos,	Pounds.	Kılos	Pounds.	Kilos.	Pounds .	Kilos.	Pounds.
1	2.205	26	57-320	51	112-436	76	167 - 551
2	4.409	27	59.525	52	114-640	77	169.756
3	6.614	28	61.729		116.845	78	171.966
4	8.818		63.934		119.049	79	174.165
5	11.023	30	66.139		121.254	80	176.370
6	13.228		68.343		123-459	81	178.574
7	15.432	32	70.548	57	125.663	82	180.779
×	17.637	33	72.752		127.868	.83	182-983
9	19.842		74.957		130.073	4 ×1	185.118
10	22.046		77.162		$132 \cdot 277$	85	187.393
11	24.251	36	$79 \cdot 366$		134.482	86	189.597
12	26.455	37	81.571	62	136-486	87	191.802
13	28.660	38	83.776		138-891	88	194.010
14	30.865	39	85.380		141.096	89	190.511
15	33.069	40	88·185	65	143:300	90	198.416
16	85.274	- 11	90.389	66	145.505	91	200.620
17	37.479	12	92.594		147.710	92	202.825
18	39.683	43	94.799	68	149.914	93	205.030
19	11.888	44	97.003	69	352-119	94	207.234
20	44.092	4.5	99.208	70 .	154.323	95	209.439
21	46.297	46	101.413	71	156.528	96	211.644
22	48.502	17	$103 \cdot 617$	72	158.733	97	218.848
23	50.706	48	105.822	73	160.937	98	216.053
21	52.911	49	108.026	74	$163 \cdot 142$	- 99	218-275
25	55.115	50	110.231	75 :	165.347	100	220.462

Table of Properties of Saturated Steam.

olute Pressure per sapin,	Borling Point.	Weight of 1 cub, it, of Steam.	1b. o Stea
	1	# · *	
Pounds.	Deg. Falu.	Pounds,	Cub, teet
14.7	212.0	.0380	26.86
15	213.1	.0387	25.85
20	228.0	.0507	19.72
60	292.7	.1425	7.01
65	298	.1538	6.49
70	302.9	·1648	6.07
75	307.5	.1759	5.68
80	312.0	.1869	5.35
85	316.1	.1980	5.05
150	358:3	·3377	2.96
155	361.0	-3484	2.87
1 60	364.3	.3590	2.79
165	366.0	-3695	2.71
170	368-2	.3798	2.63
175	370.8	-3899	2.56
180	$372 \cdot 9$	·4009	2.49
185	$375 \cdot 3$	4117	2.43
190	377.5	.4222	2.37
195	$379 \cdot 7$.1327	2.31
200	36 81-7	.4431	2.26
210	.386	.4634	2.16
220	389-9	.1842	2.06
2 30	393.8	.5052	1.98
240	$397 \cdot 5$.5248	1.90
250	401.1	.5464	1983
260	404.5	.5669	1.76
270	407.9	·586×	1.70
280	411.2	·6081	3-64
290	414.4	6273	1.59
300	417.5	.6486	1.54

INDEX.

Carburetters --Arrangement of, on car, 73, ACCELERATION forces due to . reciprocating parts, 33, Automatic extra-air type, Accumulators, 89 90. 66, 67 Ackermann steering, 14, 115, Simple form and function 116. of, 61. Actuating gear for pomps, see Symptoms, 74, 75. Variable jet, 68. Punnes. · Adhesive power, see Traction. Centifrugal pumps, see Pumps. Adiabatic law, 22. Chain drive, 139. Armatures, see Magnetos. Charging accumulators, see Axle, stub, see Wheel mount-Accumulators. ings. Charles law, 22. Chassis, definition of, 1 Choke tube, see Carburetters. Clearance or compression В volume, 23. Clutches -BACK axle, 132, 136, 137. Cone, 119, Ball and socket joints 114. Hydraulie, see Hydraulie Ball bearings, engine, 11. gears. Bearings, main, 17. Inverted cone, 119-121. — big end, 15-17. Springs, 120, 121. - projected area of, see Pro-Corf clutch, 125 jected area Compression pressures, 63. Benzol, See Fuel. ratio oi, 23. Bevel driving gear, 135-137. Condenser, see Magnetos Boilers, see Steam generators Cene clutches, see Clutches. Boyle's law, 21. Connecting rods, 15. Brakes, 429, 131, 432, 133, Contact breaker, ser Mag-•187. uctos. Braking forces, 101. Controlling mechanism, L Buffers, sec Springs. Cooling systems, air, 91. Burners, see Vaporizers. water, 92, 94. Countershaft bra es, Ac Brakes. Crank effort, see Torque, "b. C — cases, 11. pms, 17. CALORIFIC value of fuel, 60. slfafts, 16. Cut off, see Steam engines. Cam shafts, 42. and Cycle of operations, see En-Cams, construction of, setting out, 43-47. gines.

Frame-

Cylinders-Construction of, 8, 9, 10, 19, 57, 71, 72, 92, 96. With detathable heads, 50.

Darraco engme, see Valves. Detachable heads, see Cylmders. Differential, 133, 134. - bevel, 135, 137. - spur, 136. Disk clutches, 124, 125. Distributors, see Magnetos. Drag link, see Steering gear. Dynamometer, absorption, 31.

Ettings, 111. Force diagram, note on, 110. Main, 103, 106. Subsidiary, 196. Freezing point-Mixture water and glycerine. 97. Water, 96. Friction drive, 153, 155.

Front axle, 111. Front springs, see Springs. Fuels -Chemistry of, 60, 61,

Flash point, 63. Heating value of, 60, 61, Fusible pl.g, see Steam generators.

Е

ECCENTRIC, 118. Electric transmission systems, 158, 159. Engines -Construction, 9, 19, 20. Cycle of operation, 7. Darracq, see Valves. Four-stroke cycle, 7. Knight. Perrot, Two-stroke cycle, 56. Valveless, 57, 58, 59, Epicyclic gear, 130. Exhaust pipes, see Cylinders. Expanding brakes, see Brakes.

Fans, 19, 92, 96. Feed water heaters, 141. generators. generators. sceburetters. Float ng axle, see Back axle. Fly-wheel, 18, 37, 96.

G

GASES, properties of, 21-28. - control of, see Valve settings. - quantity of, and velocity of. 48. Cate change, 127, 128, 129. Gears and gear boxes, 125. Gear levers, 127, 128, 129. Gudgeon pm, 13.

н

HEAT, radiating, see Cooling systems, radiators, pumps. Heat valves, see Fuelo. Hele-Shaw clutch, see Disk clutches. Helical pump, see Pumps. Hewitt pistou valve engines. see Valves. Fire tube boilers, see Steam Hindley worm, see Wormdriving gear. Flash generators, see Steam Hopkinson indicator, see Indicators, optical. Car- Horse-power, indicated, 29. — 1 гаке, 30. formulæ, 32. Hydraulic gear, 125, 155, 158. I

Ignition, see Magneton accomulators.
Indicator diagrams, 24, 25, 146.
Indicators, optical, 28.
Induction pipe, see Cylinders.
Instantaneous centre, 114, 115.
Inverted cone clutches, see Clutches.
Irreversible gearing, 117.
Isothermal law, 22.
Itala engines, see Valves.

J

Joint knuckle, see Knuckle joint.
— universal, see Universal joint.

K

Knigh sleeve valve, sec-Valves. Knuckle joints, 112, 113, 114.

L

LANCHESTER WORM, see Worm driving gear. Lay slatt, 127. Leather cone clutch. Clutches. Levers brake, see Brakes. -engine control se e Steering Pistonscolumn. - gear, see Gear levers. Link motion, see Valve gear, Steam engine. Load on wheels, see Traction. Locomotive brakes, see Brakes. Lubrication ... Combined splash and pressure, 79. Object of, 77. Pressure, 78. Pumps for, see Pumps. Splash, 77.

M

Magnetos— Armature, 82, 83 Condensei, 84, 85. Contact breaker, 84, 85, 87 Distributor, 84, 85, 86, Locating troubles, 88, 89 Magneto, 82. Spark gap, 20, 87. Timing, 88. . Wiring diagram, 85. Mixing chamber, see Carburetters. Mixture, see Carburetters. Multiple disk clutches, see Disk clutches. Must.com valves, see Valves.

0

OIL sump, see Lubrication.

P

Paraffin, see Fuels. Pedals, brake, 123, 132, 133. elutch, 123, 132, 133. Permanent magnets, see Magnet. Petrol, see Fuels. Pilot burner, see Vaporizer. Pin gudgeon, see Gudgeon pin. Pipes, see Cylinders. Assembling, 13. Construction, 11, 77. Valves, see Valves. Plate Disk clutches clutches. Plug valves, see Valves. Plunging joint, see Universal ioint. Poppet valves, see Valves. Power plant, 1. Pressure, indicating, see Indicator diagrams. mean, effective 25.

Projected area, bearings, 17. -- pistons, 26. Pumps-Centrifugal, 23. . Diaphragm, 94: Eccentric disk, 93. Geared pinion, 79, 80. Helical, 94

Piston or plunger, 81.

ism, see Gears and gear boxes; gear levers.

R

Radiators, 92, 95. Radius rods, 138. Ratio of compression, 23. Rear springs, see Springs. Resistances to motion, 101. Roots blower, see Pumps (geared pimon). Rotary disk, see Valves. - valve, see Valves.

SAFETY valve, 113.

Screw and nut gear, 117, 118. pumps, see Pumps. Selector rods, see Gate change, Sleeve valves, see Valves, Sliding piston valves, see Valves. Spark gap, see Magnetos. Speed gears, see Gears and gear boxes." Springs-Anchorage, see Frames. Buffers, 109. Formula, 107, 111, 113. Front, 108, 112, 113. Rear, 108, 112, 113. Supplementary, 110. Springs clutch, see Clutches.

Starting handles, 18. . Steam engine, 144, 151. - generators, 141, 144. - properties of, 140; Steering arms, see Steering gear. ---- column, 2, 3, 113, 116, 118. — gear, 112, 113, 122, 123. Stub axle, see Wheel mount-Superhented stram, 140. Supplementary springs, see Springs. QUADRANT change mechan- Suspension three-point, see Three-peart suspension.

Т

THERMO syphon cooling, see Cooling systems, Three-point suspension, 107. Throttle valvesaction of, 66. Tuning, see Valve settings, magnetos. Torque- -Diagram, 36. Obtaining by calculation, 35. graphically, 35, 37. Torque members, 109, 138. Traction, adhesive power, 98, 99, 1co. Transmission gearing, 1.

U

Universal joints, 123, 129, 134.

VALVE gear, esteam engine, 148, 151. '. - setting, 44, 45, 48. Valveless, see Engines.

Valves-

Arrangement, 41.
Cams, for, see Cams,
Quides, 46.
Pistons, 55.
Poppets, 33, 40.
Rotary plug, 53.
Seatings, 39.
Sleeve, 49.
Springs, 40.
Tappets, 46.
Vaporizor, 142.

·w·

WATER paper, see Cylinders.
Weston clutch, see Disk clutches.
Wheel mounting, 111, 112, 113, 137.
Wiring diagram, see Magnetos.
Work, definition of, 29.
Worm and ector ge ur, see
Irrevesible gearing.
driving gear, 136.

For Motor-Car Engineers

TOOTHED GEARING

G. T. WHITE, B.Sc., (LOND.)

Narrow Crown 8vo (Pocket Size)
220 Pages. 135 Illustrations
200 Pages. 135 Illustrations

Price 3s. 6d. net. (Post Free, 3s. 9d. Home; 4s. Abroad)

Contents sent post free on application to the Publishers

SCOTT, GREENWOOD & SON 8 Broadway, Ludgate, London, E.C.