CMSC828T Vision, Planning And Control In Aerial Robotics

MOTION PLANNING

Topics Covered

- Topic Introductions
 - Necessity of planning
 - Challenges in planning
- Motion Planning Concepts
 - Geometric Modelling
 - Half space representations
 - Configuration Spaces
 - C-obstacle, C-free

- Planning in Discrete Spaces
 - Graph Search
 - DFS, BFS
 - Dijkstra's Algorithm
 - A* Algorithm
- Planning in Continuous Spaces
 - PRM
 - RRT

Course Bibliography

- Main Text
 - LaValle, Steven M. *Planning Algorithms*. Cambridge University Press, 2006. http://planning.cs.uiuc.edu/
 - Reference Texts
 - Thrun, Sebastian, et al. *Probabilistic Robotics. Vol. 1.* Cambridge, MIT press, 2005.
 - Choset, Howie, et al. Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT press, 2005.

Planning for Robotics

- How did we get here?
 - Was in Location A a while ago.
 - Decided to go to class (good job!)
 - Found out the classroom, a.k.a. Location B
 - Planned the trip from A to B
 - There were obstacles along the way, avoided them (successfully, I hope)
 - Probably used a map (new students, welcome)

Planning for Robotics

- Planning, then, is selecting a certain sequence of actions to meet a certain goal. The previous example talks about Path Planning but planning is obviously not limited only to that.
 - The sequence of actions must:
 - Be hierarchical
 - Take contingency into account
 - Ensure cost-reward tradeoff is done optimally

Planning for Robotics

- As mentioned previously, planning can (and must) be done for several applications, including but not limited to:
 - Task planning
 - Path planning
 - Trajectory planning
 - Foot placement planning
 - Grasp planning
 - and many, many more...

Challenges in Planning for Robotics

- Not an easy task, to create and execute a robot plan.
- Execution time + length optimization of collision-free path or trajectory
- Search space complexity
- Terrain interaction complexity
- Dynamic obstacles, unpredictable environment
- Robot dynamics, high-speed robots

Geometric Modelling

- Why geometric modelling?
 - Need to produce motion plan of robot's collision-free motions to the goal
 - Identify locations/points where robot can go without collision, capture motion of robot within environment
- Accurate model of robot and obstacles required to create plan

Geometric Modelling

- Robot $A(q) \subseteq W$ and obstacles $O \subset W$ usually positioned in a workspace $W = \mathbb{R}^2$ or $W = \mathbb{R}^3$
- Here, q is the configuration of the robot and, along with obstacles, are closed subsets of W
- These geometric representations must be computationally efficient without loss in detail.

Polygonal Models: Half-space Representation

- Solid representation of convex polygon O as Boolean combination of half-plane primitives
- $H_i = \{(x, y) \in W | f_i(x, y) \le 0\}$

$$O=H_1\cap H_2\cap\cdots\cap H_n$$

Configuration Space

- A complete specification of the position of every point in the system - configuration
- The space of all such configurations is the C-Space or Configuration Space
- The basic task of motion planning is to find a path from q_I to q_G in C_{free} . The entire blob is

$$C = C_{free} \cup C_{obs}$$

Configuration Space

- For a robot with k degrees of freedom, the C-space is a coordinate system with one dimension per degree of freedom.
- In C-space, a robot pose is simplified into a POINT and an obstacle is a COMPLEX SHAPE
- Thus, we transform the problem from Cartesian to Configuration space, solve it and bring it back.

Rigid robot translating in 2-D Workspace

Robot translating + rotating in 2-D workspace

Minkowski Sum and Difference

- The **Minkowski Sum** of two sets A and B is denoted by $A \oplus B = \{a + b | a \in A, b \in B\}$
- The **Minkowski Difference** of two sets A and B is denoted by $A \ominus B = \{a b | a \in A, b \in B\}$
- The **Minkowski Sum of Convex Polygons** of two convex polygons, P and Q having m and n vertices, respectively, is a convex polygon $P \oplus Q$ having m+n vertices.

Convexity of Sets

A set *S* is convex *if and only if* every line segment connecting two points in *S* is contained within *S*

Obstacle in Workspace to C-Space

- If P is an obstacle in the workspace, and M is a moving object (the robot, say) then the C-Space obstacle corresponding to P is given by P → M
- $QO_i = \{q \in Q | R(q) \cap WO_i \neq \emptyset\}$
 - Q is 2D configuration space
 - W is Workspace
 - R is robot

Star Algorithm

- Determines sliding contact of robot around obstacle, and order of sliding operations.
- Choose one direction, CW or CCW, and remain consistent.
- Fix robot normals to point inwards, obstacle normals pointing outwards.
- Pick start angle and proceed according to direction.

C-Free

- Successfully constructed obstacle representation in C-space, but none for free space.
- Remember, C-space dimensions increases very fast; 3-space corresponds to 6D for rigid body, further articulation adds even more dimensions.
- Obviously, cannot have explicit representation of free space for high degree of freedom robots (manipulators, for example)
- What is the solution?
- APRROXIMATE or RANDOMIZE

C-Free: APRROXIMATE or RANDOMIZE

- Approximate the free space using regular subdivision.
 - Convert to grid, maybe.
 - Pick only "complete" cells in grid.
- Randomize the robot in free space by sampling and checking pose in C-space
- Tradeoff between performance and completeness

C-Free: APPROXIMATE or RANDOMIZE

Cell Decomposition

Probabilistic Roadmaps

Completeness of Planning Algorithms

Complete

- If solution exists, finds it; else reports failure.
- Geometry based planners

Semi-complete

If solution exists, finds it; else may run forever.

Resolution Complete

- If solution exists, finds it; else reports solution not found for specified resolution
- Grid- or Interval- based planners

Probabilistic Complete

- If solutions exists, probability that it will be found tends to 1, as the number of search iteration tends to infinity.
- Sampling-based planners

References

- Steven M. Lavalle
 - http://planning.cs.uiuc.edu
 - http://msl.cs.uiuc.edu/~lavalle/icra12/
- Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha
 - http://www.cs.cmu.edu/~motionplanning/lecture/lecture.html
- http://courses.csail.mit.edu/6.141/spring2010/pub/lectures/
- http://www.eng.utah.edu/~cs6370/Lectures/
- http://robotics.caltech.edu/~jwb/courses/ME132/handouts/
- Prof. Krishnanand Kaipa's lecture notes
 - ENPM808C Planning for Autonomous Robots

References

- https://www2.cs.arizona.edu/classes/cs437/fall11/
- http://www.cs.wustl.edu/~pless/546/lectures/lecMinkSum.html

