ECE113: DSP

Homework 1

Due 04/09/2021, 11:59pm

Problem 1:

- 1.1 Classify the following signals according to whether they are (1) one- or multidimensional; (2) single or multichannel, (3) continuous time or discrete time, and
 - (4) analog or digital (in amplitude). Give a brief explanation.
 - (a) Closing prices of utility stocks on the New York Stock Exchange.
 - (b) A color movie.
 - (c) Position of the steering wheel of a car in motion relative to car's reference frame.
 - (d) Position of the steering wheel of a car in motion relative to ground reference frame.
 - (e) Weight and height measurements of a child taken every month.

Problem 2:

- 1.3 Determine whether or not each of the following signals is periodic. In case a signal is periodic, specify its fundamental period.
 - (a) $x_a(t) = 3\cos(5t + \pi/6)$
 - **(b)** $x(n) = 3\cos(5n + \pi/6)$
 - (c) $x(n) = 2 \exp[i(n/6 \pi)]$
 - (d) $x(n) = \cos(n/8)\cos(\pi n/8)$
 - (e) $x(n) = \cos(\pi n/2) \sin(\pi n/8) + 3\cos(\pi n/4 + \pi/3)$

Problem 3:

1.5 Consider the following analog sinusoidal signal:

$$x_a(t) = 3\sin(100\pi t)$$

- (a) Sketch the signal $x_a(t)$ for $0 \le t \le 30$ ms.
- (b) The signal $x_a(t)$ is sampled with a sampling rate $F_s = 300$ samples/s. Determine the frequency of the discrete-time signal $x(n) = x_a(nT)$, $T = 1/F_s$, and show that it is periodic.
- (c) Compute the sample values in one period of x(n). Sketch x(n) on the same diagram with $x_{\alpha}(t)$. What is the period of the discrete-time signal in milliseconds?
- (d) Can you find a sampling rate F_s such that the signal x(n) reaches its peak value of 3? What is the minimum F_s suitable for this task?

Problem 4:

2.1 A discrete-time signal x(n) is defined as

$$x(n) = \begin{cases} 1 + \frac{n}{3}, & -3 \le n \le -1\\ 1, & 0 \le n \le 3\\ 0, & \text{elsewhere} \end{cases}$$

- (a) Determine its values and sketch the signal x(n).
- (b) Sketch the signals that result if we:
 - (1) First fold x(n) and then delay the resulting signal by four samples.
 - (2) First delay x(n) by four samples and then fold the resulting signal.
- (c) Sketch the signal x(-n+4).
- (d) Compare the results in parts (b) and (c) and derive a rule for obtaining the signal x(-n+k) from x(n).
- (e) Can you express the signal x(n) in terms of signals $\delta(n)$ and u(n)?

Problem 5:

2.5 Show that the energy (power) of a real-valued energy (power) signal is equal to the sum of the energies (powers) of its even and odd components.

Problem 6:

2.10 The following input-output pairs have been observed during the operation of a time-invariant system:

$$x_{1}(n) = \{1, 0, 2\} \xrightarrow{T} y_{1}(n) = \{0, 1, 2\}$$

$$\uparrow \qquad \uparrow$$

$$x_{2}(n) = \{0, 0, 3\} \xrightarrow{T} y_{2}(n) = \{0, 1, 0, 2\}$$

$$\uparrow \qquad \uparrow$$

$$x_{3}(n) = \{0, 0, 0, 1\} \xrightarrow{T} y_{3}(n) = \{1, 2, 1\}$$

Can you draw any conclusions regarding the linearity of the system. What is the impulse response of the system?

Problem 7:

2.21 Compute the convolution y(n) = x(n) * h(n) of the following pairs of signals.

(a)
$$x(n) = a^n u(n)$$
, $h(n) = b^n u(n)$ when $a \neq b$ and when $a = b$

(b)
$$x(n) = \begin{cases} 1. & n = -2, 0, 1 \\ 2. & n = -1 \\ 0. & \text{elsewhere} \end{cases}$$

 $h(n) = \delta(n) - \delta(n-1) + \delta(n-4) + \delta(n-5)$

Problem 8:

2.23 Express the output y(n) of a linear time-invariant (LTI) system with impulse response h(n) in terms of its step response s(n)=h(n)*u(n) and the input x(n).

Problem 9:

- (a) Let x[n] and y[n] be real-valued sequences both of which are even-symmetric: x[n] = x[-n] and y[n] = y[-n]. Under these conditions, prove that $r_{xy}[\ell] = r_{yx}[\ell]$ for all ℓ .
- (b) Express the autocorrelation sequence $r_{zz}[\ell]$ for the complex-valued signal z[n] = x[n] + jy[n] where x[n] and y[n] are real-valued sequences, in terms of $r_{xx}[\ell]$, $r_{xy}[\ell]$, $r_{yx}[\ell]$, and $r_{yy}[\ell]$.

MATLAB Exercises:

Please submit your MATLAB script source code along with any necessary plots and discussion.

P2.8 The operation of signal dilation (or decimation or down-sampling) is defined by

$$y(n) = x(nM)$$

in which the sequence x(n) is down-sampled by an integer factor M. For example, if

$$x(n) = \{\dots, -2, 4, 3, -6, 5, -1, 8, \dots\}$$

then the down-sampled sequences by a factor 2 are given by

$$y(n) = \{\ldots, -2, \underset{\uparrow}{3}, 5, 8, \ldots\}$$

Develop a MATLAB function dnsample that has the form

```
function [y,m] = dnsample(x,n,M)
% Downsample sequence x(n) by a factor M to obtain y(m)
```

- to implement the above operation. Use the indexing mechanism of MATLAB with careful attention to the origin of the time axis n=0.
- 2. Generate $x(n) = \sin(0.125\pi n)$, $-50 \le n \le 50$. Decimate x(n) by a factor of 4 to generate y(n). Plot both x(n) and y(n) using subplot and comment on the results.
- 3. Repeat the above using $x(n) = \sin(0.5\pi n)$, $-50 \le n \le 50$. Qualitatively discuss the effect of down-sampling on signals.
- **P2.16** Let $x(n) = (0.8)^n u(n)$, $h(n) = (-0.9)^n u(n)$, and y(n) = h(n) * x(n). Use 3 columns and 1 row of subplots for the following parts.
 - Determine y(n) analytically. Plot first 51 samples of y(n) using the stem function.
 - 2. Truncate x(n) and h(n) to 26 samples. Use conv function to compute y(n). Plot y(n) using the stem function. Compare your results with those of part 1.
 - 3. Using the filter function, determine the first 51 samples of x(n) * h(n). Plot y(n) using the stem function. Compare your results with those of parts 1 and 2.