I Questions de cours

1 - Exercice 10 banque CCINP:

On pose $f_n(x) = (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x}$.

- a) Démontrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0;1].
- b) Calculer $\lim_{n \to +\infty} \int_0^1 (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x} dx$.
- 2 Exercice 12 banque CCINP :
- a) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de [a;b] dans \mathbb{R} .

On suppose que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a;b] vers une fonction f, et que, pour tout $n\in\mathbb{N}$, f_n est continue en x_0 , avec $x_0\in[a;b]$. Démontrer que f est continue en x_0 .

b) On pose : $\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ g_n(x) = x^n$.

La suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur [0;1]?

3 - Exercice 14 banque CCINP:

Soient a,b deux réels donnés avec a < b et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues sur [a;b], à valeurs réelles.

Démontrer que si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a;b] vers une fonction f, alors la suite $\left(\int_0^1 f_n(t) dt\right)_{n\in\mathbb{N}}$ converge vers $\int_0^1 f(t) dt$.

II Exercices axés sur le calcul

Exercice 1:

Soient $\alpha > 0$ et la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}^*, \ f_n : x \longmapsto x n^{\alpha} e^{-nx}$$

- 1 Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}^+ vers la fonction nulle.
- 2 Pour quelle(s) valeur(s) de α la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R}^+ ?

Exercice 2:

Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, on pose :

$$f_n(x) = \frac{n^3 x}{n^4 + x^4}$$

- 1 Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur $\mathbb R$ vers une fonction à préciser.
- 2 Que dire de $f_n(n)$? Que peut-on en conclure?
- 3 Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur tout intervalle du type [-a;a].

Exercice 3:

Pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$, on pose :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

- 1 Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ sur $[0;+\infty[$
- 2 Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$, on a $0 \le f_n(x) \le e^x$.
- 3 Soit a > 0. Montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0; a].
- 4 Calculer $\lim_{n\to+\infty}\int_0^1 \left(1+\frac{x}{n}\right)^n dx$ de deux manières différentes.
- 5 La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur $[0;+\infty[$?

III Exercices axés sur le raisonnement

Exercice 4:

Soient I un intervalle de \mathbb{R} et $(f_n)_{n\in\mathbb{N}}\in (\mathcal{F}(I,\mathbb{R}))^{\mathbb{N}}$ une suite de fonctions qui converge simplement sur \mathbb{R} vers f.

- 1 Montrer que si les fonctions f_n sont convexes, alors f est convexe.
- 2 Montrer que si les fonctions f_n sont bornées et que la convergence précédente est uniforme, alors f est bornée.

Exercice 5:

Pour tout $n \in \mathbb{N}$ et x > 0, on pose :

$$f_n(x) = \frac{nx^2e^{-nx}}{(1 - e^{-x})^2}$$

- 1 Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}}$ sur $]0;+\infty[$.
- 2 Préciser $\lim_{x\to 0^+} f_n(x)$. En déduire que $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur $]0;+\infty[$.
- 3 Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment [a;b] de $]0;+\infty[$.
- 4 Montrer que pour a > 0, la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur $[a; +\infty[$.

IV Exercices avec questions ouvertes

Exercice 6:

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues convergeant uniformément sur \mathbb{R} vers une fonction f et $(x_n)_{n\in\mathbb{N}}$ une suite de réels convergeant vers ℓ . La suite $(f_n(x_n))_{n\in\mathbb{N}}$ converge-t-elle vers $f(\ell)$?

Exercice 7:

Existe-t-il une suite de polynômes convergeant uniformément sur \mathbb{R} vers exp?