

Unsupervised Learning Motivation

- Unsupervised Learning:
 - Too much data: We need to save memory/computation.
 - Reduce the data to a more manageable amount
 - Don't understand the data
 - Exploratory data analysis
 - What underlying knowledge is there?
 - Discover patterns & trends
- Dimensionality Reduction (last week)
 - Focus on dimensions (columns)
- Clustering (this week)
 - Focus on instances (rows)

Overview

- Overview: What is clustering about?
- Clustering Algorithms
 - K-means
 - Hierarchical Clustering
 - (Density Estimation)
 - Gaussian Mixtures
- Further topics
 - Choosing the number of clusters
 - Advanced algorithms
- Some applications
 - ..besides marketing!

Clustering: Why do it? Market segmentation Teenagers, Mothers, Empty-nesters Targeted products/marketing for each "cluster" of customers Data-center organization Social network analysis (find recommended friends) Group articles on your website or blog Group websites on your aggregator T-shirts: Given height & weight in the population: How big should size of S, M, L be? Should you offer S, M, L or XS, S, M, L, XL?

Overview

- Overview: What is clustering about?
- Clustering Algorithms
 - K-means
 - Hierarchical Clustering
 - (Density Estimation)
 - Gaussian Mixtures
- Further topics
 - Choosing the number of clusters
 - Advanced algorithms
- Some applications
 - ..besides marketing!

+ K-Means Algorithm

- Input:
 - N point dataset, $D=\{x_1, x_2, ... x_n\}$,
 - Number of clusters K.
- Initialize randomly K centers Ctr₁,..,Ctr_k
- Repeat
 - For i=1:N
 - Labels_i=Cluster centroid closest to x_i
 - For k=1:K
 - Ctr_k = average of points assigned to k

+ Formalizing K-means

- Cost Function:
 - \blacksquare Find cluster centers $u_{1:k}$ and cluster assignments $c_{1:N}$ so as to minimize the sum squared distances of points from assigned clusters:

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

- Algorithm:
 - "E-step": Find cluster closest to each point (fix u, minimize for c)
 - "M-step": Find new center of each cluster (fix c, minimize for u)
- Aside:
 - We have seen algorithms with exact & gradient solutions to problems.
 - This is our first alternating minimization solution
 - An exact solution to each part of the problem given the other: Iterate

Formalizing K-means

- Cost Function:
 - lacktriangle Find cluster centers $u_{1:k}$ and cluster assignments $c_{1:N}$ so as to minimize the distance of each point from it's assigned cluster:

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

+

K-means Properties

- Recall the algorithm:
 - Repeat S times:
 - "E-step": Find cluster closest to each point (fix u, minimize for c)
 - "M-step": Find new center of each cluster (fix c, minimize for u)
- Computation time?
 - O(NK), Or O(NKDS) if dimension and iterations included
 - \blacksquare Fast relative to O(N^2), slow relative to O(N). (i.e., if large K)

+ K-means Properties

- Distance Metric
 - Typically use Euclidean
 - May or may not be appropriate depending on data.
 - May not be robust to outliers
 - What happens if you have categorical data?
 - use 1-of-N encoding

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

- Convergence:
 - It converges to a local minima only
 - => In practice repeat with many random initializations and pick the best
 - Different distances lead to changes in both steps!!

+ K-means: When it (doesn't) work

- Sensitive to data scaling
 - Renormalize in [0,1] or by standard deviation

Overview

- Overview: What is clustering about?
- Clustering Algorithms
 - K-means
 - Hierarchical Clustering
 - (Density Estimation)
 - Gaussian Mixtures
- Further topics
 - Choosing the number of clusters
 - Advanced algorithms
- Some applications
 - ..besides marketing!

⁺ Hierarchical Clustering

- Sometimes you want a tree of similarity rather than a flat clustering
 - (And K-means clusters discovered can be sensitive to chosen K)
- Output: A dendrogram (instead of cluster centers and assignments)

⁺ Hierarchical Clustering

Algorithm: Agglomerative (or Divisive)

- Start with one cluster per example
- Merge two nearest clusters
 - E.g., min, max, mean distance.
- Repeat until one cluster

+ Summary

- Clustering identifies typical groups.
- Need to understand the groups.
 - What do they have in common? Two options:
 - Manually examine elements of a cluster.
 - Use a supervised classifier!
 - 1. Use the cluster labels as a supervision for a classifer.
 - 2. Run the classifier, and examine the weights on each feature. The weights will say what is unique about each cluster.

+ Overview

- Overview: What is clustering about?
- Clustering Algorithms
 - K-means
 - Hierarchical Clustering
 - (Density Estimation)
 - Gaussian Mixtures
- Further topics
 - Choosing the number of clusters
 - Advanced algorithms
- Some applications
 - ..besides marketing!

+ K-means: When it (doesn't) work Works if: Clusters are spherical Clusters are well separated Clusters are of similar volumes Clusters have same number of points Issue: Hard assignments Motivate: Mixture of Gaussians algorithm

4

+ Probability & Density Estimation 1

Three common probability distributions

- Binary variables: Bernoulli
 - x is 1,0 (Heads or Tails).

$$p(x;u) = u^{x}(1-u)^{(1-x)}$$

■ u (probability of Heads) from 0 to 1.

$$p(\mathbf{x};\mathbf{u}) = \prod u_i^{x_i}$$

- Categorical variables: Multinomialx is 1-of-K encoding.
 - ui (probability of outcome i) from 0 to 1. ui's sum to 1.
- Continuous variables: Gaussian
 - x is real vector. u is a real vector. S is a matrix.

$$p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp \left(-\frac{1}{2} (\mathbf{x} - \mathbf{u})^T S^{-1} (\mathbf{x} - \mathbf{u}) \right)$$

Probability & Density Estimation 2

- Generative Perspective:
 - Distributions tell us what data to expect according to specified parameters
 - E.g., Biased coin (u=3/4).

Expect H,H,H,T

■ E.g., Mean & var of fish length

- Density Estimation:
 - Ask what probability distribution was responsible for specified data?

+ Probability & Density Estimation 3

- Density Estimation:
 - Ask what probability distribution was responsible for specified data?

■ There are simple exact solutions for the best estimates of binary, categorical, and Gaussian distributions given data

Probability & Density Estimation 4

- Density Estimation:
 - Ask what probability distribution was responsible for specified data?
 - There are simple exact solutions for the best estimates of binary, categorical, and Gaussian distributions given data

$$p(x;u) = u^{x}(1-u)^{(1-x)}$$
 $u = \frac{1}{N} \sum_{i} x_{i}$

$$p(\mathbf{x}; \mathbf{u}) = \mathbf{u}^{x} (1 - \mathbf{u})^{(1 - x)} \qquad \mathbf{u} = \frac{1}{N} \sum_{i} x_{i}$$

$$p(\mathbf{x}; \mathbf{u}) = \prod_{k} u_{k}^{x_{k}} \qquad \mathbf{u}_{k} = \frac{\sum_{i} x_{ik}}{\sum_{k} x_{ik}} = \frac{N_{k}}{N}$$

$$p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T S^{-1}(\mathbf{x} - \mathbf{u})\right) \longrightarrow \mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \quad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u})(\mathbf{x} - \mathbf{u})^T$$

Back to GMMs

K-means: When it (doesn't) work

- Works if:
 - Clusters are spherical
 - Clusters are well separated
 - Clusters are of similar volumes
 - Clusters have same number of points
- Issue:
 - Hard assignments
- K-means won't work for data like this:
- Motivate:

Mixture of Gaussians algorithm

Gaussian Mixture Models

- Tough data
 - K-means has problems
 - Single Gaussian doesn't fit it well

$$p(\mathbf{x}) = \sum_{k} \pi_{k} N(\mathbf{x}; \mathbf{u}_{k}, S_{k})$$

- GMM solution:
 - Explain as: Weighted sum of K Gaussian densities

Gaussian Mixture Models

- GMM clustering:
 - Explain as: Weighted sum of K Gaussian densities $p(\mathbf{x}) = \sum_{i} \pi_{k} N(\mathbf{x}; \mathbf{u}_{k}, S_{k})$
- Example problem and solution

■ ... But what algorithm can obtain these solutions?

Gaussian Mixture Models: Solution

Optimization Criteria: Maximum Likelihood

$$L(D; \boldsymbol{\pi}, \mathbf{u}, S) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(\mathbf{x}_i; \mathbf{u}_k, S_k)$$

- Solution?
 - If we knew which points belong to which clusters, we know how to fit Gaussians (Density Estimation: Gaussian)
 - If we knew which points belong to which cluster, we know the relative size of each (Density Estimation: Multinomial)
 - If we knew the Gaussians, we could find out which points belonged to which clusters (Bayes Theorem)

■ Optimization Criteria: Maximum Likelihood

$$L(D; \boldsymbol{\pi}, \mathbf{u}, S) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(\mathbf{x}_i; \mathbf{u}_k, S_k)$$

- EM Algorithm Solution
 - E: Given Gaussians, infer how likely each point to each cluster.
 - M: Given soft assignments, update Gaussians and cluster prior.

+ GMM: Limitations

- Converges to local optima only
 - Can also do multiple restarts and pick the best
- Picking K is still an issue
- Cost O(NKD²)
 - Data requirements >> O(D) due to covariance matrix
 - (Estimating the shape information of each)

+ GMM versus K-Means

K-means

IX-IIICa

- Algorithm:

 For i=1:N
 - c_i=Index of the cluster centroid closest to x_i
- For k=1:K
 - u_k = average of points assigned to k

GMM

Algorithm:

- For i = 1 : N
 - Probability p(k|x_i) of belonging to each cluster k
- For k=1:K
 - Fit the Gaussian $N(u_k, S_k)$ given probabilities $p(k|x_i)$
 - Fit the cluster prior p(k) given probabilities p(k|x).

+ GMM versus K-Means

K-means

r-Illeans

- All clusters same size
- All clusters spherical
- Clusters are sharply peaked
- Hard assign points to clusters
- Optimize:

Assumptions

Sum Squared Dist of points to clusters

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

GMM

Assumptions

- \blacksquare Cluster k of size Π_k
- Clusters of shape S
- Clusters have spread S
- Soft assign points to clusters
- Optimize:
 - Log-likelihood of data

$$L_{GMM}(D; \boldsymbol{\pi}, \mathbf{u}, S) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(\mathbf{x}_i; \mathbf{u}_k, S_k)$$

F GMM versus K-Means

K-means

- Pick K is non-trivial
- Only local optimization
- Cost:
 - CPU: O(NKD)

GMM

- Pick K is non-trivial
- Only local optimization
- Cost:
 - CPU: O(NKD²):
 - Data: >> O(D)

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

$$L_{GMM}(D; \boldsymbol{\pi}, \mathbf{u}, S) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(\mathbf{x}_i; \mathbf{u}_k, S_k)$$

+ Overview

- Overview: What is clustering about?
- Clustering Algorithms
 - K-means
 - Hierarchical Clustering
 - (Density Estimation)
 - Gaussian Mixtures
- Further topics
 - Choosing the number of clusters
 - Advanced algorithms
- Some applications
 - ..besides marketing!

Choosing Number of Clusters For K-means and GMM

- 1. Elbow Method
 - \blacksquare Plot $E_{\text{KM/GMM}}$ as a function of k, and choose the elbow point.

- 2. Present results to end users see what they prefer
 - Broader or more specialized groups

Choosing Number of Clusters For K-means and GMM

- ■3. Cross-validation
 - For K = 1...Large
 - Learn GMM/KM clusters on a train set.
 - Evaluate Quality(K) = quality on validation set.
 - Pick K with the highest validation set quality.

Choosing Number of Clusters For K-means and GMM

- 4. BIC/AIC Criterion
 - (ML people: An approximation to the integration required in the Bayesian model selection)
 - Adds a penalty to the cost that penalises more complex models.
 - P: Number of parameters in model. N: Number of data points.
 - Evaluate modified cost E^K_{BIC} for many values of K.
 - Pick the K with best cost

$$E^{K}_{BIC} = E^{K} - \frac{p}{2} \log N$$

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

$$E_{KM}(D, c_{1:N}, \mu_{1:K}) = \sum_{i=1}^{N} (x_i - \mu_{c_i})^2$$

$$E_{GMM}(D; \pi, \mathbf{u}, S) = -\log \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(\mathbf{x}_i; \mathbf{u}_k, S_k)$$

Overview

- Overview: What is clustering about?
- Clustering Algorithms
 - K-means
 - Hierarchical Clustering
 - (Density Estimation)
 - Gaussian Mixtures
- Further topics
 - Choosing the number of clusters
 - Advanced algorithms
- Some applications
 - ..besides marketing!

+ Applications: Bioinformatics

- Clustering of Gene Activity from Microarrays
 - Input: Gene activations
 - Output: Gene clusters
 - Discover which genes activate at the same time (appeared in the same cluster)
 - => Help discover relation between functions of dissimilar genes

+ Applications: Bioinformatics for Evolutionary Biology

- Hierarchical Clustering of Genes:
 - Input: Genes of different species
 - Output: Dendrogram relating the genes
 - => Reveals evolutionary history

Applications: News Summarisation

- Clustering News articles:
 - Input: One news article per row (E.g., as bag of words)
 - Output: Clusters of similar news articles.
- Application:
 - Get an overview of today's news by one article in each cluster.
 - No redundancy in stories

+ Application: Video Summarisation **EECS** Research ©

- Context:
 - Very many surveillance cameras recording long periods of video.
 - Exhaustively watching all is too time-consuming.
 - Want to get an overview of what happened during the hour/day/week
- Clustering
 - Input: Video frames/clips
 - Output: A category of every frame/clip

Application: Video Summarisation **EECS** Research ©

- Video Summarisation
 - A few clips quickly summarise the typical events
 - Everything else during the day is "more of the same"

+ Applications: Recommendations (Content-based)

- Input:
 - Descriptions for each product
- Output:
 - Clusters of similar products
- Application:
 - Use discovered product similarity to choose a similar product to recommend

+ You should know

- The idea and motivations for clustering
- Be able to sketch algorithms for:
 - K-means, hierarchical clustering, GMM
- Limitations of each algorithm
- Assess which of these algorithm would be suitable for a given problem