# **Transformer Design for a X-Ray Device**

high-frequency, high-voltage transformer that will be used in a X-Ray device Hüseyin YÜRÜK

# Transformer Design for a X-Ray Device

# Transformer Design for a X-Ray Device: high-frequency, high-voltage transformer that will be used in a X-Ray device

Hüseyin YÜRÜK

Publication date 11-Apr-2016 23:02:27 Copyright © 2016 Hyuruk

#### **Abstract**

In this report, it is supposed to design a high-frequency, high-voltage transformer that will be used in a X-Ray device. The transformer design will be given step by step.

# **Table of Contents**

| roduction                          |    |
|------------------------------------|----|
| re Selection                       |    |
| termine # of Turns                 | 5  |
| ndow Utilization & Cable Selection | 6  |
| sses                               |    |
| Copper Losses                      | 7  |
| Core Losses                        | 8  |
| Efficiency                         | 9  |
| ner Parameters                     | 11 |
| Mass                               |    |
| Magnetics                          | 11 |
| Price                              |    |
| mmary                              | 13 |

# **List of Tables**

|         |             |         | _           |        |
|---------|-------------|---------|-------------|--------|
| 71      | Transformer | Dacian  | Daramatare  | 13     |
| / . 1 . | Transformer | DUSIEII | 1 arameters | <br>13 |

# **Chapter 1. Introduction**

The specs of the transformer are as follows:

- \* Single Phase, High Frequency High Voltage Transformer
- \* Primary Winding Voltage ± 417 V (peak to peak 834 V for pulsing)
- \* Secondary Winding Voltage ± 12.5 kV (peak to peak 25 kV for pulsing)
- \* Rated Power 30 kW (for maximum 100 milisecond)
- \* Switching Frequency Minimum 100 kHz
- \* Ambient Temperature 0-40 °C

# **Chapter 2. Core Selection**

```
% In this code, it is supposed to design a high-frequency,
% high-voltage transformer that will be used in a X-Ray device.
%_____
% Huseyin YURUK
%-----
% Following design guide is used:
% Magnetics Ferrite Power Design 2013
%______
% Core Selection by WaAc product
% The power handling capacity of a transformer core can also be determined
% by its
% WaAc product, where Wa is the available core window area, and Ac is
% the effective
% core cross-sectional area.
% Area Product Distribution (WaAc)
% WaAc = (Po * Dcma) / (Kt * Bmax * f)
% WaAc = Product of window area and core area (cm4)
% Po = Power Out (watts)
% Dcma = Current Density (cir. mils/amp)
% Bmax = Flux Density (gauss)
% f = frequency (hertz)
% Kt = Topology constant (Full-bridge = 0.0014)
Po = 30 * 10^3;  % input parameter [W]
f = 100 * 10^3;
                 % input parameter [Hz]
Kt = 0.0014;
% for cir. mils to mm^2 see below link
% conversion see http://www.convertunits.com/from/mm%5E2/to/circular+mil
% 1mm^2 ~1973.5 cir. mils
J = 2.5;
                 % current density [A/mm^2]
Dcma = 1973.5 / J; % [cir. mils/A]
Bmax = 0.47 * 10^4; % P type core has the 0.47T max. flux density
WaAc = Po * Dcma / (Kt * Bmax * f); %[cm^4]
% core properties 49925UC
% selected core dimensions [mm]
% A dim = 101.6;
% B dim = 57.1;
% C dim = 25.4;
D_{\min} = 31.7;
% E dim = 50.8;
% radius_acoil = C_dim/2 + D_dim/2; % [mm]
% Vol_core = ((A_dim*2*B_dim*C_dim) - (2*D_dim*E_dim*C_dim)) * 10^-3; %[cm^3]
% Ac = 645 * 10^{-2}; % [cm<sup>2</sup>] Ae effective are for the choosen ferrite
% Wa = 2 * D_dim*E_dim * 10^-2; % available core window area [cm^2]
% core mass = 2*988*10^{-3};
                           %[kq]
% le_{dim} = 2*245;
                            %[mm] effective length core
% A1 = 6200;
                           %[nH/1T^2]
% mu r = 5000;
                           % [ - ]
% graph_core_loss_100deg = 350; %[mW/cm^3]
```

```
% graph_core_loss_40deg = graph_core_loss_100deg * 2; %[mW/cm^3]
% price core = 2*17.38;
                                % [$]
% core properties 48020EC
% selected core dimensions [mm]
A_dim = 80.0;
B \dim = 38.1;
C_{dim} = 19.8;
D_{dim} = 28.2;
E_{dim} = 59.1;
F_{dim} = 19.8;
M \dim = 19.65;
radius_acoil = F_dim/2 + M_dim/2; % [mm]
Vol_core = ((A_dim*2*B_dim*C_dim) - (2*2*D_dim*M_dim*C_dim)) * 10^-3; %[cm^3]
Ac = 645 * 10^{-2};
                            % [cm^2] Ae effective are for the choosen ferrite
Wa = 2 * 2 * D_{dim}*E_{dim} * 10^-2; % available core window area [cm^2]
core_mass = 2*357*10^-3;
                           %[kg]
le dim = 2*184;
                            %[mm] effective length core
Al = 5080;
                            %[nH/1T^2]
mu_r = 5000;
                            %[-]
graph_core_loss_100deg = 350; %[mW/cm^3]
graph_core_loss_40deg = graph_core_loss_100deg * 2; %[mW/cm^3]
price core = 2*17.38;
                             % [$]
```

#### 응응응응응

Using the equation shown above, the WaAc product is calculated.

```
WaAc = 35.9909 [cm^4]
```

Then the Area Product Distribution (WaAc) Chart is used to select the appropriate core.

From the Magnetics Ferrite Catalog (2013) E core is selected. The detail are given below.



U cores are ideal for power transformer applications. The long legs of U core support low leakage inductance designs and facilitate superior voltage isolation.

Typical applications for E cores include differential mode, power and telecom indubroadband, power, converter and inverter transformers.



|               |               | MAGNETIC DATA          |                         |                |                |              |            |                     | HARDWARE     |           |
|---------------|---------------|------------------------|-------------------------|----------------|----------------|--------------|------------|---------------------|--------------|-----------|
| TYPE/SIZE     | ORDERING CODE | l <sub>。</sub><br>(mm) | A <sub>o</sub><br>(mm²) | A min<br>(mm²) | V <sub>o</sub> | Wa<br>3) (cn |            | eight<br>s per set) | Bobbins      | Clips     |
| L / L/ LO/ 1/ | 0_1/22020     | 107                    | 000                     | 000            | 30,00          | 13           |            | .50                 | *            |           |
| E 80/38/20    | 0_48020EC     | 184                    | 392                     | 392            | 72,30          | 0 31         | .6         | 357                 | $\checkmark$ |           |
| F 100 /F0 /07 | A 40000FC     | ^71                    | 700                     | /00            | 202.2          | 00           | ,          |                     |              |           |
|               |               | DIMENSIONS (mm)        |                         |                |                |              |            |                     |              |           |
| TYPE/SIZE     | ORDERING CODE | Α                      | В                       | C              | D              | E            | F          |                     | L            | M         |
| E 80/38/20    | 0_48020EC     | 80.0 ± 1.6             | 38.1 ± 0.3              | 19.8 ± 0.4     | 28.2 ± 0.3     | 59.1 min     | 19.8 ± 0.4 | 11.3                | 25 nom       | 19.45 min |

# **Chapter 3. Determine # of Turns**

```
% The calculation of primary and secondary turns
% and the wire size selection
% Np = Vp * 10^8 / (4 * B * Ac * f)
% Ns = (Vs / Vp) * Np
% Ip = Pin / Vp_rms
% Is = Po / Vs_rms
% where
% Np = number of turns on the primary
% Ns = number of turns on the secondary
% Ip = primary current
% Is = secondary current
% Ac = core area in cm^2
Vin = 417;
                      % input parameter
Vout = 12.5 * 10^3;
                    % input parameter
Vp_peak = Vin * 4 / pi(); % 1st harmonic peak value
B = 0.2 * 10^4;
                        % operating B value
n_{eff} = 0.98;
                         % 98% efficiency assumed
Vs_rms = Vs_peak / sqrt(2); % rms value
Np = Vp_peak * 10^8 / (4*B*Ac*f);
Ns = (Vs_rms / Vp_rms) * Np;
Pin = Po / n_eff;
Ip = Pin / Vp_rms;
Is = Po / Vs_rms;
응응응응응
Using the equation shown above, the Np, Ns, Ip, Is are calculated.
Np = 10.2896
              take Np as 10
Ns = 308.4398
               take Ns as 308
Ip = 81.5387
Is = 2.6657
```

# Chapter 4. Window Utilization & Cable Selection

```
% Approximately primary and secondary wire size are can be calculated
% as follows:
% Ku * Wa = Np*Awp + Ns*Aws
% Ku is fill factor
% Ku = s1*s2*s3*s4
% s1: wire isulation, conductor area/wire area
% s2: fill factor, wound area/usable window area
% s3: effective window, usable window area/window area
% s4: insulation factor, sable window area/usable window area + insulation
% Note that at 100Khz to minimize skin effect AWG26 is used
% for more details see below link
% http://coefs.uncc.edu/mnoras/files/2013/03/
% Transformer-and-Inductor-Design-Handbook_Chapter_4.pdf
% assume
% Np*Awp = 1.1 * Ns*Aws (to allow for losses)
% for AWG26 @100kHz
s1 = 0.79;
s2 = 0.61;
s3 = 0.6;
s4 = 1;
Ku = s1*s2*s3*s4;
Aws = Ku * Wa * 10^2 / (2.1 * Ns); % [mm^2]
Awp = 1.1 * Ns * Aws / Np;
         %requirred wire size for choosen current density
Awp_req = Ip / J;
Aws_req = Is / J;
응응응응응
Due to 100Khz operation to minimize skin effect AWG26 cable size is used.
By regarding the window utilization factor Ku which is calculated as Ku = 0.2891,
allowable wire area
for primary side is Awp = 98.1255 [mm<sup>2</sup>]
for secondary side is Aws = 2.9759 [mm^2]
From the choosen current density J = 2.5000 [A/mm^2] , requirred wire size
for primary side Awp_req = 32.6155
for secondary side Aws_req = 1.0663
```

# Chapter 5. Losses

#### **Table of Contents**

| Copper Losses | 7 |
|---------------|---|
| Core Losses   | 8 |
| Efficiency    | Λ |

## **Copper Losses**

```
% copper losses will be calculated
% length of one turn coil will be calculated as follow
% primary and secondary window area assumed equal
% radius of the coil, radius_acoil = C/2 + D/2; [mm]
% length of the coil, length_acoil = 2 * pi * radius_acoil
% where C, D see dimensions
% total coil length:
% for primary side Np * length_acoil * 10^-3
% for secondary side Ns * length_acoil * 10^-3
Icarry_cap_AWG26 = 0.361;
                               %[A] current rate for the AWG26 size cable
area AWG26 = 0.129;
                               % [mm^2]
ohm_AWG26 = 0.13386;
                               % [Ohm/m]
Icarry_cap_AWG26_J = J * area_AWG26; % [A] current rate by considering J value
length_acoil = 2 * pi()* radius_acoil; % [mm]
% primary side loss calculation
Nstrand_pri = ceil(Ip / Icarry_cap_AWG26); % number of AWG26 size cable
tot_length_coil_pri = round(Np) * length_acoil * 10^-3; % [m]
res_coil_pri = ohm_AWG26 * tot_length_coil_pri / Nstrand_pri;
loss_coil_pri = Ip^2 * res_coil_pri;
                                         % [W]
% secondary side loss calculation
Nstrand_sec = ceil(Is / Icarry_cap_AWG26); % number of AWG26 size cable
tot_length_coil_sec = round(Ns) * length_acoil * 10^-3; % [m]
res_coil_sec = ohm_AWG26 * tot_length_coil_sec / Nstrand_sec; % [ohm]
loss_coil_sec = Is^2 * res_coil_sec;
tot_loss_copper = loss_coil_pri + loss_coil_sec;
응응응응응
```

Copper loss calculation of the primary and secondary side is given above. Total loss of the copper is calculated as 9.4193

| AWG        | Diameter<br>[inches]                | Diameter<br>[mm] | Area<br>[mm²] | Resistance<br>[Ohms / 1000 ft] | Resistance<br>[Ohms / km] | Max Current<br>[Amperes] | Max Frequency<br>for 100% skin depth |  |
|------------|-------------------------------------|------------------|---------------|--------------------------------|---------------------------|--------------------------|--------------------------------------|--|
| 0000 (4/0) | 0.46                                | 11.684           | 107           | 0.049                          | 0.16072                   | 302                      | 125 Hz                               |  |
| 000 (3/0)  | 0.4096                              | 10.40384         | 85            | 0.0618                         | 0.202704                  | 239                      | 160 Hz                               |  |
| 00 (2/0)   | 0.3648                              | 9.26592          | 67.4          | 0.0779                         | 0.255512                  | 190                      | 200 Hz                               |  |
| 0 (1/0)    | 0.3249                              | 8.25246          | 53.5          | 0.0983                         | 0.322424                  | 150                      | 250 Hz                               |  |
| 1          | 0.2893                              | 7.34822          | 42.4          | 0.1239                         | 0.406392                  | 119                      | 325 Hz                               |  |
| 2          | 0.2576                              | 6.54304          | 33.6          | 0.1563                         | 0.512664                  | 94                       | 410 Hz                               |  |
| 3          | 0.2294                              | 5.82676          | 26.7          | 0.197                          | 0.64616                   | 75                       | 500 Hz                               |  |
| 4          | 0.2043                              | 5.18922          | 21.2          | 0.2485                         | 0.81508                   | 60                       | 650 Hz                               |  |
| 5          | 0.1819                              | 4.62026          | 16.8          | 0.3133                         | 1.027624                  | 47                       | 810 Hz                               |  |
| 6          | 0.162                               | 4.1148           | 13.3          | 0.3951                         | 1.295928                  | 37                       | 1100 Hz                              |  |
| 7          | 0.1443                              | 3.66522          | 10.5          | 0.4982                         | 1.634096                  | 30                       | 1300 Hz                              |  |
| 8          | 0.1285                              | 3.2639           | 8.37          | 0.6282                         | 2.060496                  | 24                       | 1650 Hz                              |  |
| 9          | 0.1144                              | 2.90576          | 6.63          | 0.7921                         | 2.598088                  | 19                       | 2050 Hz                              |  |
| 10         | 0.1019                              | 2.58826          | 5.26          | 0.9989                         | 3.276392                  | 15                       | 2600 Hz                              |  |
| 11         | 0.0907                              | 2.30378          | 4.17          | 1.26                           | 4.1328                    | 12                       | 3200 Hz                              |  |
| 12         | 0.0808                              | 2.05232          | 3.31          | 1.588                          | 5.20864                   | 9.3                      | 4150 Hz                              |  |
| 13         | 0.072                               | 1.8288           | 2.62          | 2.003                          | 6.56984                   | 7.4                      | 5300 Hz                              |  |
| 14         | 0.0641                              | 1.62814          | 2.08          | 2.525                          | 8.282                     | 5.9                      | 6700 Hz                              |  |
| 15         | 0.0571                              | 1.45034          | 1.65          | 3.184                          | 10.44352                  | 4.7                      | 8250 Hz                              |  |
| 16         | 0.0508                              | 1.29032          | 1.31          | 4.016                          | 13.17248                  | 3.7                      | 11 k Hz                              |  |
| 17         | 0.0453                              | 1.15062          | 1.04          | 5.064                          | 16.60992                  | 2.9                      | 13 k Hz                              |  |
| 18         | 0.0403                              | 1.02362          | 0.823         | 6.385                          | 20.9428                   | 2.3                      | 17 kHz                               |  |
| 19         | 0.0359 0.91186 0.653 8.051 26.40728 |                  | 1.8           | 21 kHz                         |                           |                          |                                      |  |
| 20         | 0.032                               | 0.8128           | 0.518         | 10.15                          | 33.292                    | 1.5                      | 27 kHz                               |  |
| 21         | 0.0285                              | 0.7239           | 0.41          | 12.8                           | 41.984                    | 1.2                      | 33 kHz                               |  |
| 22         | 0.0254                              | 0.64516          | 0.326         | 16.14                          | 52.9392                   | 0.92                     | 42 kHz                               |  |
| 23         | 0.0226                              | 0.57404          | 0.258         | 20.36                          | 66.7808                   | 0.729                    | 53 kHz                               |  |
| 24         | 0.0201                              | 0.51054          | 0.205         | 25.67                          | 84.1976                   | 0.577                    | 68 kHz                               |  |
| 25         | 0.0179                              | 0.45466          | 0.162         | 32.37                          | 106.1736                  | 0.457                    | 85 kHz                               |  |
| 26         | 0.0159                              | 0.40386          | 0.129         | 40.81                          | 133.8568                  | 0.361                    | 107 kHz                              |  |
| 27         | 0.0142                              | 0.36068          | 0.102         | 51.47                          | 168.8216                  | 0.288                    | 130 kHz                              |  |
| 28         | 0.0126                              | 0.32004          | 0.081         | 64.9                           | 212.872                   | 0.226                    | 170 kHz                              |  |
| 29         | 0.0113                              | 0.28702          | 0.0642        | 81.83                          | 268.4024                  | 0.182                    | 210 kHz                              |  |
| 30         | 0.01                                | 0.254            | 0.0509        | 103.2                          | 338.496                   | 0.142                    | 270 kHz                              |  |
| 31         | 0.0089                              | 0.22606          | 0.0404        | 130.1                          | 426.728                   | 0.113                    | 340 kHz                              |  |
| 32         | 0.008                               | 0.2032           | 0.032         | 164.1                          | 538.248                   | 0.091                    | 430 kHz                              |  |
| 33         | 0.0071                              | 0.18034          | 0.0254        | 206.9                          | 678.632                   | 0.072                    | 540 kHz                              |  |
| 34         | 0.0063                              | 0.16002          | 0.0201        | 260.9                          | 855.752                   | 0.056                    | 690 kHz                              |  |

### **Core Losses**

```
% core losses will be calculated as follows
% volume of the core:
% Volume = ((A*2B*C) - (2D*E*C)) * 10^-3 [cm^3]
% core loss mW/cm^3 will be determined
% @operating B, @operating f, @operating temperature

core_loss = Vol_core * graph_core_loss_40deg * 10^-3; %[W]
%%%%%
```

Core loss calculation is given above, the result is 53.7696





# **Efficiency**

% efficiency will be calculate as follows

```
% neff = 100 * Po / (Po + Total_Loss) [%]
% Total loss includes copper and core losses

tot_loss = core_loss + tot_loss_copper; %[W]
neff_res = 100* Po / (Po + tot_loss); %[%]
%%%%%%
```

Efficiency of the transformer is calculated as above and the result is 99.7898.

# **Chapter 6. Other Parameters**

#### **Table of Contents**

| Mass      | 11 |
|-----------|----|
| Magnetics | 11 |
| Price     |    |

#### **Mass**

Mass of the transformer is calculated as above and the result is 1.3907 kg.

## **Magnetics**

## **Price**

```
% core and copper price is calculated as follows
price_copper = 4.7; %[$/kg]
tot_price_copper = (copper_mass_pri + copper_mass_sec) * price_copper; %[$]
price_trans = tot_price_copper + price_core; %[$]
%%%%%%
Transformer cost (only copper and core are included) is approximately 37.9406$.
```

# **Chapter 7. Summary**

**Table 7.1. Transformer Design Parameters** 

| Parameters                                         | Values     |
|----------------------------------------------------|------------|
| WaAc, area product distribution [cm <sup>4</sup> ] | 35.9909    |
| B, magnetic (operating) flux density [Tesla]       | 0.2000     |
| Np, # of primary turns [-]                         | 10         |
| Ns, # of secondary turns [-]                       | 308        |
| Ip, primary rms current [A]                        | 81.5387    |
| Is, secondary rms current [A]                      | 2.6657     |
| Rpri, resistance of primary side [Ohm]             | 7.3407e-04 |
| Rsec, resistance of secondary side [Ohm]           | 0.6387     |
| copper loss [W]                                    | 9.4193     |
| core loss [W]                                      | 53.7696    |
| efficiency [%]                                     | 99.7898    |
| copper mass [kg]                                   | 0.6475     |
| core mass [kg]                                     | 0.7140     |
| Lm, magnetizing inductance [mH]                    | 1.1013     |
| H, magnetic field intensity [A]                    | 31.8310    |
| copper price [\$]                                  | 3.1806     |
| core price [\$]                                    | 34.7600    |