5.193 inflexion

DESCRIPTION LINKS AUTOMATON

Origin N. Beldiceanu

Constraint inflexion(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var-dvar)

Restrictions $N \ge 0$

 $N \le \max(0, |VARIABLES| - 2)$ required(VARIABLES, var)

 ${\tt N}$ is equal to the number of times that the following conjunctions of constraints hold:

- X_i CTR $X_{i+1} \wedge X_i \neq X_{i+1}$,
- $X_{i+1} = X_{i+2} \wedge \cdots \wedge X_{j-2} = X_{j-1}$,
- $X_{j-1} \neq X_j \wedge X_{j-1} \neg CTR X_j$.

where X_k is the k^{th} item of the VARIABLES collection and $1 \le i, i+2 \le j, j \le n$ and CTR is < or >.

Example

Purpose

$$\begin{array}{c} (3, \langle 1, 1, 4, 8, 8, 2, 7, 1 \rangle) \\ (0, \langle 1, 1, 4, 4, 6, 6, 7, 9 \rangle) \\ (7, \langle 1, 0, 2, 0, 7, 2, 7, 1, 2 \rangle) \end{array}$$

The first inflexion constraint holds since the sequence $1\ 1\ 4\ 8\ 8\ 2\ 7\ 1$ contains three inflexions peaks that respectively correspond to values $8,\ 2$ and 7.

All solutions

Figure 5.446 gives all solutions to the following non ground instance of the inflexion constraint: $\mathbb{N} \in \{0,2\}$, $\mathbb{V}_1 = 2$, $\mathbb{V}_2 \in [2,3]$, $\mathbb{V}_3 \in [1,2]$, $\mathbb{V}_4 \in [1,2]$, $\mathbb{V}_5 = 3$, inflexion(\mathbb{N} , $\langle \mathbb{V}_1, \mathbb{V}_2, \mathbb{V}_3, \mathbb{V}_4, \mathbb{V}_5 \rangle$).

Typical

```
\begin{array}{l} {\tt N} > 0 \\ {\tt |VARIABLES|} > 2 \\ {\tt range}({\tt VARIABLES.var}) > 1 \end{array}
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Functional dependency: N determined by VARIABLES.

Usage

Useful for constraining the number of inflexions of a sequence of domain variables.

Figure 5.445: Illustration of the first example of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 1, 4, 8, 8, 2, 7, 1 and its three inflexions in red, two peaks and one valley ($\mathbb{N}=3$)

```
① (\mathbf{0}, \langle 2, 2, 2, 2, 3 \rangle)
② (\mathbf{2}, \langle 2, 3, 1, 1, 3 \rangle)
③ (\mathbf{2}, \langle 2, 3, 1, 2, 3 \rangle)
④ (\mathbf{2}, \langle 2, 3, 2, 1, 3 \rangle)
⑤ (\mathbf{2}, \langle 2, 3, 2, 2, 3 \rangle)
```

Figure 5.446: All solutions corresponding to the non ground example of the inflexion constraint of the **All solutions** slot where each inflexion (i.e. peak or valley) is coloured in orange or cyan

Remark

Since the arity of the arc constraint is not fixed, the inflexion constraint cannot be currently described with the graph-based representation. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for inflexion: domains 0..n

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	9	36	135	498	1841	6856	25731
	1	-	28	320	2588	18494	125284	828120
	2	-	-	170	3348	44058	492320	5069970
	3	-	-	-	1342	40446	778936	12341184
	4	-	-	-	-	12810	549152	14547186
	5	-	-	-	-	-	144604	8354520
	6	-	-	-	-	-	-	1880010

Solution count for inflexion: domains 0..n

Parameter value as fraction of length

Solution density for inflexion

See also

common keyword: global_contiguity, min_dist_between_inflexion, peak
valley(sequence).

Keywords

characteristic of a constraint: automaton, automaton with counters, automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

Cond. implications

 $\begin{array}{l} \bullet \ \, \text{inflexion(N,VARIABLES)} \\ \, \text{with} \ \, \text{N} > 0 \\ \, \text{implies atleast_nvalue(NVAL,VARIABLES)} \\ \, \text{when} \ \, \text{NVAL} = 2. \end{array}$

$$\begin{split} \bullet & \texttt{inflexion}(\texttt{N}, \texttt{VARIABLES}) \\ & \text{with } & \texttt{valley}(\texttt{VARIABLES}.\texttt{var}) = 0 \\ & \textbf{implies } & \texttt{peak}(\texttt{N}, \texttt{VARIABLES}). \end{split}$$

• inflexion(N, VARIABLES)
with peak(VARIABLES.var) = 0
implies valley(N, VARIABLES).

Automaton

Figure 5.447 depicts the automaton associated with the inflexion constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1}$ \Leftrightarrow $S_i = 0$) \wedge (VAR $_i$ = VAR $_{i+1}$ \Leftrightarrow $S_i = 1$) \wedge (VAR $_i$ > VAR $_{i+1}$ \Leftrightarrow $S_i = 2$).

STATES SEMANTICS s: stationary mode i: increasing mode $(< \{ < | = \}^*)$ $(< \{ < | = \}^*)$ $(> \{ > \}^*)$ $(> \{ > \}^*)$ $(> \{ > | = \}^*)$ $(> \{ > \}^*)$ (>

Figure 5.447: Automaton of the inflexion constraint (state s means that we are in *stationary* mode, state i means that we are in *increasing* mode, state j means that we are in *decreasing* mode, a new inflexion is detected each time we switch from increasing to decreasing mode – or conversely from decreasing to increasing mode – and the counter C is incremented accordingly)

Figure 5.448: Hypergraph of the reformulation corresponding to the automaton of the inflexion constraint

Glue matrix where \overrightarrow{C} and \overleftarrow{C} resp. represent the counter value C at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES.

Figure 5.449: Glue matrix associated with the automaton of the inflexion constraint

Figure 5.450: Illustrating the use of the state pair (j,j) of the glue matrix for linking N with the counters variables obtained after reading the prefix 1,1,4,8,8,2 and corresponding suffix 2,7,1 of the sequence 1,1,4,8,8,2,7,1; note that the suffix 2,7,1 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i=0) and the evolution (for i>0) of the state of the automaton and its counter C upon reading the prefix 1,1,4,8,8,2 (resp. the reverse suffix 1,7,2).