

Problem A Simple Operations in Matrix

Matrix is a mathematical object which arranges data into a rectangular array of N rows and M columns. The rows are indexed from 1 to N, while the columns are indexed from 1 to M. Matrix is very powerful and extremely useful in many applications. In this problem, we are going to focus on two simple operations in matrix: row addition and column addition.

You are given a matrix of integers of N rows and M columns, and Q queries of the following format:

- row k val: add each element on the k-th row by val,
- col $k \ val$: add each element on the k-th column by val.

Your task is to output the following three numbers after all gueries have been performed:

- sum : the sum of all elements in the matrix,
- min : the value of the smallest element in the matrix,
- max : the value of the largest element in the matrix.

See the sample input for clarity.

Input

The first line contains two integers: N M (1 \leq N, M \leq 50) denoting the size of the matrix (number of rows and columns, respectively). The next N lines, each contains M integers: $A_{i,j}$ (-100 \leq $A_{i,j}$ \leq 100) denoting the matrix element at the i-th row and j-th column for 1 \leq i \leq N and 1 \leq j \leq M, respectively. The next line contains an integer: Q (0 \leq Q \leq 100) denoting the number of queries. The next Q lines, each contains a query in one of the following format:

- row $k \, val \, (1 \le k \le N; -100 \le val \le 100)$
- col $k \ val \ (1 \le k \le M; -100 \le val \le 100)$

Output

The output contains three integers (each separated by a single space) in a single line: sum min max, as described in the problem statement.

Sample Input	Output for Sample Input
3 4 1 1 1 1 1 1 1 1 1 1 1 1 2	18 -1 4
row 1 3 col 4 -2	

	122 -2 23
	122 2 20
10 10 10	
10 10 10	
10 10 10	
10 10 10	
5	
row 2 -5	
col 3 6	
col 1 -10	
row 4 7	
col 1 3	
2 3	57 -14 27
15 7 8	
31 1 14	
3	
row 2 -15	
col 1 10	
row 1 2	

Explanation for the 1st sample case

These are the matrices after each queries for the first sample.

			4 -2	col			13	row			al	niti
sum	2	4	4	4	4	4	4	4	1	1	1	1
min	-1	1	1	1	1	1	1	1	1	1	1	1
max	-1	1	1	1	1	1	1	1	1	1	1	1

Explanation for the 3rd sample case

These are the matrices after each queries for the third sample.

initi	ial		row 2 -15			row 2 -15 col 1 10					row	12						
15	7	8			15	7	8		25	7	8		27	9	10		sum	= 57
31	1	14			16	-14	-1		26	-14	-1		26	-14	-1		min	=-14
																	max	= 27