Introduction to Probability and Statistics

Jerome Dumortier

Introduction to Probability and Statistics

Jerome Dumortier

17 August 2023

to Probability and Statistics Jerome Dumortier

Introduction

Risk and Uncertainty in Everyday Life

Grades:

- Uncertainty surrounding class grade during a semester
- Association of probabilities with each grade

Fire station calls:

- Number and location of calls
- Number of fire trucks and other vehicles required

Two outcomes does not mean a 50% chance for each to happen:

- Success of a free throw by Stephen Curry
- Flight delay due to fog

Do You Know When You Were Hooked? Netflix Does:

- Recording of all activities, e.g., browsing, pausing, rewinding
- 75% of viewings are based on recommendations by Netflix

Introduction to Probability and Statistics

Dumortier

Some Examples of Statistics in the News I

Election outcomes

- 2016 U.S. Presidential Election
 - FiveThirtyEight forecast of Donald Trump winning: 28.6%
 - Cognitive biases versus data as an explanation
- 2002 French Presidential Election
 - Two-stage election
 - Final round: Jacques Chirac (82.2%) and Jean-Marie Le Pen (17.8%)

Evolution of the stock market

• Importance of correlation among stocks and mutual funds

Path of hurricane Sandy

Dumortier

Scottish Ministers' Widows' Fund

Preceding work

- Edmond Halley's (same as comet) life tables for the city of Breslau (today Wrocław) in 1693
- Detailed work on birth and death by age

Insurance fund calculations in 1744 by Alexander Webster and Robert Wallace:

- Payments to widows and heirs after death of ministers
- Required information: Number of clergymen, deaths per year, life expectancy of surviving family, time of remarriage, etc.
- Calculation of annual payments into the fund

Fund balance (in pound sterling) in 1765:

• Estimated: 58,348

Actual: 58,347

Introduction to Probability and Statistics

Dumortier

Probability, Statistics, and Regression Analysis

Probability:

- Providing means for modeling populations, experiments, and any other random phenomena
- Probability distributions: How do we model random outcomes?
- Foundation for statistics

Statistics:

- Learning something about the population based on a sample
- Confidence intervals and hypothesis testing

Regression analysis:

- Mathematical relationship among variables
- Example: Price of a used car as a function of mileage

Difference between probability and statistics: Bucket example

to Probability and Statistics Jerome Dumortier

Introduction

Difference between Population and Statistic

Population:

 A population is the collection of all possible individuals, entities, objects, or measurements of interest for a particular investigation. A sample is any portion or subset of the population. A parameter characterizes the population and is usually unknown (forever).

Sample:

• A statistic is any measurable characteristic of a sample. Statistical analysis utilizes statistics from representative samples to infer the parameters of an entire population.

Using a sample rather than the population:

- Cost considerations
- Possible destruction of observation units (e.g., mileage of tires)
- Unfeasible to study all units of observations

Variables

Qualitative variables:

- Non-numeric, e.g., gender, political affiliation, state of residence
- Can be transformed into numerical value, i.e., "dummy variables" in regression analysis

Quantitative variables:

• Numeric, e.g, age, income, GPA, number of kids

Quantitative variables can be either:

- Discrete: Take two close values and there is no value in between, e.g., number of people in a class
- Continuous: Take two close values and there is always (!) a value in between,
 e.g., weight of a people

Jerome Dumortier

Levels of Variable Measurements

Nominal:

- Categories, e.g., eye color, gender, religious affiliation, mode of transportation to O'Neill IUPUI
- No natural ordering

Ordinal:

- Categories, e.g., level of happiness, Homeland Security Advisory System
- Natural ordering, i.e., data can be ordered

Interval:

- Intervals between levels are equally spaces and differences between variables have a meaning
- Examples: Income, GPA, etc.
- Most commonly used in this class.