Multiarmed bandits Thompson Sampling team

Общая постановка задачи многоруких бандитов

Агент взаимодействует с окружением, выбирая действия (руки) из множества доступных

Каждое действие приносит случайную награду с неизвестным распределением

Цель агента — максимизировать суммарную награду за определённое количество шагов, балансируя между исследованием (сбор информации о распределениях) и эксплуатацией (использование текущих знаний для максимизации награды)

Основная метрика — regret (разница между наградой оптимального действия и выбранного действия)

Неконтекстные бандиты

Особенности:

- > Нет дополнительной информации (контекста) перед выбором действия
- Каждое действие имеет фиксированное, но неизвестное распределение наград

Примеры алгоритмов:

- > ε-greedy
- > UCB
- > Thompson Sampling

Формально:

- > На каждом шаге t агент выбирает действие a_t из N вариантов
- > Награда r_t выбирается из распределения с математическим ожиданием μ_{a_t}
- > Оптимальное действие: $a^* = argmax_a\mu_a$
- > Regret на шаге $t: \Delta t = \mu_{a*} \mu_{a*}$
- > Цель: минимизировать $R(T) = \sum \Delta_t$, $t \in [1, T]$

Контекстные бандиты

Особенности:

- > Перед выбором действия агент получает контекст — вектор признаков, влияющий на награду
- Распределение наград зависит от контекста (например, линейно)
- > Контекст может быть адаптивным (зависит от предыдущих действий агента)

Примеры алгоритмов:

- > LinUCB
- > LinTS

Формально:

> Ha шaгe t:

Агент получает контекстные векторы $\{bi(t)\} \in Rd, i \in [1, N]$ для каждого действия

Ожидаемая награда действия $i: E[r_i(t)] = b_i(t) \tau \mu$, где $\mu \in R_d$ - неизвестный параметр

Агент выбирает действие at, получает награду rat(t)

- > Regret: $\Delta t = maxi(bi(t)\tau \mu) bat(t)\tau \mu$
- > Цель: минимизировать R(T) = ∑Δt, t ∈ [1, T]

Сравнение алгоритмов

Epsilon-Greedy-Constant

Arms selection frequency histogram at $\varepsilon = 0.13$

Epsilon-Greedy-Constant

Exploration rate through past 100 iterations

Num of unoptimal arms through past 100 iterations

Epsilon-Greedy-Constant

Cumulative regret

Convergence rate

Value-Difference-Based-Epsilon

Selection at each iteration

Arms selection frequency histogram

Value-Difference-Based-Epsilon

Exploration rate through past 50 iterations

Num of unoptimal arms through past 50 iterations

Value-Difference-Based-Epsilon

SoftMax

Selection at each iteration

Arms selection frequency histogram

SoftMax

Exploration rate through past 100 iterations Num of unoptimal arms through past 100 iterations

SoftMax

Cumulative regret

Convergence rate

Upper Confidence Bound

Arms selection frequency histogram

Upper Confidence Bound

Exploration rate through past 100 iterations

Num of unoptimal arms through past 100 iterations

Upper Confidence Bound

Cumulative regret

Convergence rate

Selection at each iteration

Arms selection frequency histogram

Exploration rate through past 50 iterations

Num of unoptimal arms through past 50 iterations

Cumulative regret

Convergence rate

Модификации TS

Algorithm 1 Online stochastic gradient descent with Thompson Sampling (SGD-TS)

```
Input: T, K, \tau, \alpha.
  1: Randomly choose a_t \in [K] and record X_t, Y_t for
      t \in [\tau].
  2: Calculate the maximum-likelihood estimator \hat{\theta}_{\tau} by
      solving \sum_{t=1}^{\tau} (Y_t - \mu(X_t^T \theta)) X_t = 0.
  3: Maintain convex set C = \{\theta : \|\theta - \hat{\theta}_{\tau}\| \le 2\}.
  4: \tilde{\theta}_0 \leftarrow \hat{\theta}_{\tau}.
  5: for t = \tau + 1 to T do
          if t\%\tau = 1 then
           j \leftarrow \lfloor (t-1)/\tau \rfloor and \eta_i = \frac{1}{\alpha i}.
              Calculate \nabla l_{i,\tau} defined in Equation 3
             Update \tilde{\theta}_j \leftarrow \prod_{\mathcal{C}} \left( \tilde{\theta}_{j-1} - \eta_j \nabla l_{j,\tau}(\tilde{\theta}_{j-1}) \right).
              Compute \bar{\theta}_j = \frac{1}{j} \sum_{q=1}^{j} \tilde{\theta}_q.
Compute A_j defined in Equation 5.
10:
11:
              Draw \theta_i^{\text{TS}} \sim \mathcal{N}(\bar{\theta}_i, A_i).
12:
          end if
13:
          Pull arm a_t \leftarrow \operatorname{argmax}_{a \in [K]} \mu(x_{t,a}^T \theta_i^{TS}) and ob-
           serve reward Y_t.
15: end for
```

Online Stochastic Gradient Descent and Thompson Sampling

Algorithm 1 BootstrapLinTS for partially observable delayed feedback

```
Input: n_{\text{prior}}, D_{\text{max}}, T, d, K.
 1: Data D_0 = ()
 2: for n = 1, ..., T do
 3:
         Update data D_n with observed conversions
 4:
         for j = 1, \ldots, n_{\text{prior}} do
              Sample prior \vartheta_i and x_i uniformly over [0,1]^d
 5:
              Normalise sampled \vartheta_i and x_i
 6:
              Sample prior reward from Bernoulli(\vartheta_i \cdot x_i)
              Sample delays uniformly over [0, D_{\text{max}}]
 8:
 9:
         end for
         Concatenate n_{\text{prior}} times and rewards with D_n
10:
         Sample with replacement n + n_{prior} data points
11:
         Estimate \hat{S}(t,x) and \hat{p}_1(x) via EM
12:
         Observe current contexts x_A, A = 1, \dots, K
13:
14:
         for A = 1, \ldots, K do
              Calculate probability (1 - \hat{S}(T, x_A))\hat{p}_1(x_A)
15:
16:
         end for
         Select arm \operatorname{argmax}_{i}(1-\hat{S}(T,x_A))\hat{p}_{1}(x_A)
17:
18: end for
```

Bootstrapped Thompson Sampling

Linear Thompson Sampling (LinTS)

Algorithm 1 Thompson Sampling for Contextual bandits

```
Set B = I_d, \hat{\mu} = 0_d, f = 0_d.
for all t = 1, 2, ..., do
   Sample \tilde{\mu}(t) from distribution \mathcal{N}(\hat{\mu}, v^2 B^{-1}).
   Play arm a(t) := \arg \max_i b_i(t)^T \tilde{\mu}(t), and observe
   reward r_t.
   Update B = B + b_{a(t)}(t)b_{a(t)}(t)^{T}, f = f +
   b_{a(t)}(t)r_t, \, \hat{\mu} = B^{-1}f.
end for
```

Exploration rate through past 100 iterations
Num of unoptimal arms through past 100 iterations

Mushroom dataset

Exploration rate through past 100 iterations Num of unoptimal arms through past 100 iterations

Iris dataset

Exploration rate through past 100 iterations Num of unoptimal arms through past 100 iterations

Breast cancer dataset

Breast cancer dataset

SGD-TS

GTS на всём датасете GTS сходится, но медленно (Mushroom dataset)

