

WORLD HAPPINESS REPORT 2023

Analysis of Country Happiness Prediction Using Machine Learning

THE RESULT

World Happiness Report 2023

```
Social
          per support
                         expectancy
        0.792
                 0.969
                             71.150
                                        0.961
       10.962
                 0.954
                             71.250
                                        0.934
                                                     0.134
       10.896
                 0.983
                             72.050
                                        0.936
                                                     0.211
  11 10.639
                 0.943
                             72.697
                                        0.809
                                                     -0.023
/.346
                 0.930
                             71.550
       10.942
                                        0.887
                                                     0.213
7.322
       10.883
                 0.939
                             72.150
                                        0.948
7.229
       11.088
                 0.943
                             71.500
                                        0.947
 156 11.164
                 0.920
                             72.900
                                        0.89
   3 11.660
                 0.879
                             71.675
                 0.952
                    rta = data.drop(columns=irrelevant_columns, axis=1)
                    ata = data.dropna()
                    fian_ladder_score = data['Ladder score'].median()
                     ta['Happiness_Label'] = np.where(data['Ladder score'] >= median_ladder_score,
                    = data.drop(['Ladder score', 'Happiness_Label'], axis=1)
                   y = data['Happiness_Label']
                  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r
                     'al = RandomFores*
```


EXPLORATORY DATA ANALYSIS (EDA)

EXPLORATORY DATA ANALYSIS (EDA)

· 0	df.loc[df.duplicated()]																			
Đ	Cou	ntry Ladder name score		upperwhisker	lowerwhisken	Logged GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	enerosity	Perceptions of corruption	Ladder score in Dystopia	Explained by: Log GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	make life	e Explain	y: Perception	ns of	
√ 0s [67]	df.des	cribe()																		
£		Ladder score	Standard error of ladder score	upperwhisker	lowerwhisker	Logged GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perceptions of corruption	Ladder score in Dystopia	Explained by: Log GDP per capita	Explained by: Social support	by: nearthy	Explained by: Freedom to make life choices	Explained by: Generosity	Explained by: Perceptions of corruption	Dystopia + residual	=
	count	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	1.360000e+02	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	136.000000	
	mean	5.544441	0.064515	5.670772	5.418015	9.455191	0.798632	64.967632	0.788081	0.023566	0.724588	1.778000e+00	1.408919	1.155088	0.366176	0.540912	0.149088	0.146478	1.777838	
	std	1.142841	0.022996	1.120442	1.166522	1.210107	0.129597	5.750390	0.112498	0.141604	0.177353	2.897251e-15	0.433969	0.327263	0.156691	0.149671	0.075993	0.127009	0.504390	
	min	1.859000	0.029000	1.923000	1.795000	5.527000	0.341000	51.530000	0.382000	-0.254000	0.146000	1.778000e+00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.110000	
	25%	4.702500	0.046750	4.939750	4.492250	8.587250	0.721000	60.648500	0.726250	-0.071000	0.666000	1.778000e+00	1.097750	0.959750	0.248500	0.458750	0.098500	0.059750	1.555250	
	50%	5.693500	0.060000	5.824000	5.550500	9.574500	0.826500	65.837500	0.801000	0.002000	0.772500	1.778000e+00	1.451500	1.225500	0.389500	0.557500	0.137500	0.112000	1.848500	
	75%	6.342500	0.076250	6.452000	6.244750	10.540250	0.896000	69.412500	0.874750	0.117500	0.846000	1.778000e+00	1.798000	1.401250	0.487500	0.656750	0.199250	0.188250	2.078750	
	max	7.804000	0.147000	7.875000	7.733000	11.660000	0.983000	77.280000	0.961000	0.531000	0.929000	1.778000e+00	2.200000	1.620000	0.702000	0.772000	0.422000	0.561000	2.955000	

/ _																			Т. 🔻	T T	수 전 때	٠,
· ·		head(10)																				
2		Country name		Standard error of ladder score	upperwhisker	lowerwhisker	Logged GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity .	Ladder score in Dystopia	Explained by: Log GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Explained by: Freedom to make life choices	by:	Explained by: Perceptions of corruption		Latitude	: Longitude	e (1)
	0	Finland	7.804	0.036	7.875	7.733	10.792	0.969	71.150	0.961	-0.019	1.778	1.888	1.585	0.535	0.772	0.126	0.535	2.363	63.246778	25.920916	5
	1	Denmark	7.586	0.041	7.667	7.506	10.962	0.954	71.250	0.934	0.134	1.778	1.949	1.548	0.537	0.734	0.208	0.525	2.084	55.670249	10.333328	3
	2	Iceland	7.530	0.049	7.625	7.434	10.896	0.983	72.050	0.936	0.211	1.778	1.926	1.620	0.559	0.738	0.250	0.187	2.250	64.984182	-18.105901	
	3	Israel	7.473	0.032	7.535	7.411	10.639	0.943	72.697	0.809	-0.023	1.778	1.833	1.521	0.577	0.569	0.124	0.158	2.691	31.394800	34.633583	3
	4	Netherlands	7.403	0.029	7.460	7.346	10.942	0.930	71.550	0.887	0.213	1.778	1.942	1.488	0.545	0.672	0.251	0.394	2.110	52.243498	5.634323	3
	5	Sweden	7.395	0.037	7.468	7.322	10.883	0.939	72.150	0.948	0.165	1.778	1.921	1.510	0.562	0.754	0.225	0.520	1.903	59.674971	14.520858	3
	6	Norway	7.315	0.044	7.402	7.229	11.088	0.943	71.500	0.947	0.141	1.778	1.994	1.521	0.544	0.752	0.212	0.463	1.829	64.573154	11.528036	5
	7	Switzerland	7.240	0.043	7.324	7.156	11.164	0.920	72.900	0.891	0.027	1.778	2.022	1.463	0.582	0.678	0.151	0.475	1.870	46.798562	8.231974	4
	8	Luxembourg	7.228	0.069	7.363	7.093	11.660	0.879	71.675	0.915	0.024	1.778	2.200	1.357	0.549	0.710	0.149	0.418	1.845	49.611277	6.129799	Э
	9	New Zealand	7.123	0.038	7.198	7.048	10.662	0.952	70.350	0.887	0.175	1.778	1.842	1.544	0.513	0.672	0.230	0.471	1.852	-41.500083	172.834408	3
	10 r	ows × 21 colum	ns																			

MODEL MACHINE LEARNING (Random Forest Classifier)

```
# Menentukan target berdasarkan Ladder score median
    median ladder score = data['Ladder score'].median()
    data['Happiness_Label'] = np.where(data['Ladder score'] >= median_ladder_score,
                              1, 0)# 1 untuk bahagia, 0 untuk tidak bahagia
    # Drop kolom target dari fitur
    X = data.drop(['Ladder score', 'Happiness_Label'], axis=1)
    y = data['Happiness Label']
    # Train-test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
                                     random_state=42)
    # Model training
    model = RandomForestClassifier(random_state=42)
    model.fit(X_train, y_train)
    # Prediction
    y_pred = model.predict(X_test)
    print("\nAccuracy Score:", accuracy_score(y_test, y_pred))
    print("\nClassification Report:\n", classification_report(y_test, y_pred))
∓
    Accuracy Score: 0.8571428571428571
    Classification Report:
                               recall f1-score support
                   precision
                      0.78
                                          0.78
                                0.78
                                          0.86
                                                      28
        accuracy
                                0.84
                                          0.84
                                                      28
                      0.84
        macro avg
    weighted avg
```


MODEL MACHINE LEARNING (Random Forest Classifier)

THE CONCLUSION

After analyzing the dataset from the World Happiness Report 2023, the conclusions are as follows:

- 1.Logged GDP per capita: This is the most significant factor in predicting happiness, indicating that economic well-being is a key element.
- 2. Social support: Social support from communities or societies has a substantial impact on a country's happiness.
- 3. Healthy life expectancy: As the third most important factor, it highlights that a healthy life expectancy is a significant indicator of happiness.

These findings provide insights that a country's happiness is heavily influenced by a combination of economic, social, and health factors. This data can serve as a foundation for developing better public policies.

```
expectancy
                  0.969
                              71.150
        0.792
                                         0.961
                  0.954
       10.962
                              71.250
                                         0.934
                                                      0.134
       10.896
                  0.983
                              72.050
                                         0.936
                                                      0.211
  i11
      10.639
                  0.943
                              72.697
                                         0.809
                                                      -0.023
       10.942
                  0.930
                              71.550
                                         0.887
                                                      0.213
       10.883
                  0.939
                              72.150
                                         0.948
                  0.943
                                         0.947
7.229
      11.088
                              71.500
                  0.920
                              72.900
 156 11.164
   3 11.660
                    /ta = data.drop(columns=irrelevant_columns, axis=1)
                    ata = data.dropna()
                     Menentukan target berdasarkan Ladder score median
                     lian_ladder_score = data['Ladder score'].median()
                     ta['Happiness_Label'] = np.where(data['Ladder score'] >= median_ladder_score,
                     Drop kolom target dari fitur
                    = data.drop(['Ladder score', 'Happiness Label'], axis=1)
                   y = data['Happiness Label']
                   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r
                     'al = RandomFores*
```


THANKYOU

Read More