

遨游"视"界 做你所想 Explore World, Do What You Want

文娱大脑的内容及用户理解浅谈--Cognitive Framework在QOE里应用

阿里巴巴大文娱 蔡龙军 (牧己) 2019.8.23-24

遨游"视"界 做你所想 Explore World, Do What You Want

2019.12.13-14

出品: Pive Vide⊙Stack 音视频技术社区

成为讲师: speaker@livevideostack.com

成为志愿者: volunteer@livevideostack.com

赞助、商务合作: <u>kathy@livevideostack.com</u>

Agenda

- 内容质量(QOE)
 - 内容越来越多&圈层分众分化是大势所趋
 - 复杂&没有完整衡量理论基础
- 内容认知框架(Cognitive Framework for QOE)
 - 基础认知进展介绍
- 内容认知框架应用及QOE优化
 - 基于流量结果的内容受众预测
 - 基于行为动作的内容质量挖掘
 - 基于用户情绪的内容质量检测

这个夏天的一半属于你们

年度剧集 NO1

经典款

男性高知群体

年度综艺 NO1

内容的趋势思考: 多, 从商业驱动到消费驱动

内容蓬勃发展,过剩生产,分级消费

分层、分级消费:90后30了,物联网/AI时代播放技术更多样

从全民爆款

这世界很酷

圈层爆款

困难及思考

内容特点

① 内容具有动态的不确定性和复杂性

低风险,确定性

商业需要

啥是爆款

VS

谁喜欢啥, 咋办 (5WH)

•••••

流行 社会 文化 人性 基因

② 平台内容吞吐量大

③ 长视频有 "延迟满足" 特性

④ 长视频属于信息非完备问题

内容的复杂性决定了量化的困难

长安的一些数据

故事:延迟满足&信息不完备 技术: NLP/CV/语音的语义理解 & KG 非群演800-1000人

群演300-1500人

筹备7个月,拍摄217天

涉及工种极多的复杂系统工程 技术:不确定性问题的衡量&计算 专业技能 VS 流量商业价值 技术:用户理解+心理学

遨游"视"界 做你所想 Explore World, Do What You Want

高级感: 这个时代, 大家都很难

甄嬛传的宁嫔啊 00:04:34 檀琪你敢对你老公这么横! 00:04:34

研究完《长安十二时辰》的望楼系统,我魔怔了_36氪

00:04:34

婢女是甄嬛传里养虎那个么

易烊千玺的发簪为啥是这个方向

唐朝的大数据平台 - 大案牍术

悬 爱 好

历 史 爱

视 剧 爱

内容创作

多种多样用户

内容认知框架(Cognitive Framework)

基础研究

雌雄脑回路不一样

雌性线虫

雄性线虫

1000个神经元,7000个连接,人有百亿计!

• 大数据下心理学的基础研究

- 布鲁德曼分区(Brodmann)分区系统
 - 52个分区

- 语言机制
- 布洛卡区
 - 形成语言
 - 损伤导致"表达性失语症"
- 韦尼克区
 - 分辨语音,形成语义
 - 损伤导致"接受性失语症"
- 角回
 - 视觉和听觉通道、视觉记忆
 - 损伤导致"失读症"

- 脑损伤研究法
 - 传统方法
 - 有损伤

- ▶ 脑电图 (EEG) /脑电皮层图
 - (EcoG)
 - ✓ 高时间分辨率
 - ✓ 低空间分辨率

- **≻ 脑磁图 (EEG)**
 - ✓ 高时间分辨率
 - ✓ 低空间分辨率

➤ 正电子发射断层扫描 (PET)

- ✓ 低时间分辨率
- ✓ 高空间分辨率cm

fMRI: 何为"爆"款

遨游"视"界 做你所想 Explore World, Do What You Want

功能项: Hb血红 BOLD血氧水平依赖度 结构像: H原

定位精度: 1mm 时间分辨率: 1s

情感相关反应区

遨游"视"界 做你所想 Explore World, Do What You Want

边缘系统的杏仁核 和海马激活

枕叶激活可能与刺激以视觉形式传入 有关,也可能与感 受恐惧时的视觉调 整有关

视觉: 从好不好看开始, 世界杯球员颜值最高与颜值最低

排名1-5

排名710-715

热门球员(前)女友/太太颜值排行

(1-10)

特拉普 (德国) / 伊莎贝尔-古 特拉(维密超模):9

埃尔南德斯 (墨西哥) / 莱迪: 8

贝赫拉米 (瑞士) /埃雷娜: 9

伊瓜因 (阿根廷) /卢西亚娜 8

罗伊斯 (德国) /斯嘉丽: 9

博格巴 (法国) /Chantel Jeffries, 8

卡塞米罗/Anna Mariana Casemiro: 8

伊涅斯塔 (西班牙) /安娜·奥尔蒂斯, 8

奥乔亚 (墨西哥) / Karla Mora: 8

c·罗纳尔多(葡萄牙)/乔治娜·罗德里格斯, 8

明星基础视觉特征

根据相关人脸图片,识别人物性别、人种、颜值信

方法(基于Attention/selection多任务学习):

颜值分布label: 1-5分, 60人打分均值 亚洲男 亚洲女 欧美女 欧美男 颜值分布 颜值分布 颜值分布 颜值分布 亚洲男、亚洲女 欧美男、欧美女 人种分类 logit Soft-attention, Face 特征提取 Inception V1 主干网络 根据人种分类结 果加权颜值计算

明星基础视觉特

撞脸与相似明星选角

明星长相分布 (t-sne)

帅哥鲜肉

中年大叔

明星视频曝光分析框架

当前数值测试结果 (人工标定测试)

	Tracklet识别	单帧图片识别
mAPprecision	93%	88.3%
mARecall	88%	67%

人物 2

- 1.openPose/DeepLabV3修改版可以在侧脸等诸多情况下检测到人物
- 2. KM匹配算法,可将侧脸人物通过下一帧信息可识别

理解视频内容

- <人物>,穿着<服装风格>,在<场景>,<感情>地<行为>

e.g. <孙红雷>穿着<嘻哈的衣服>在<广场>上<快乐>地<跳舞

- 应用场景
 - 选角:人物特定风格检索,表演风格评估
 - 人设分析

- 自底而上
 - 人物识别:采用人物曝光分析框架(进行中) 在轿车
 - 服装风格: human parsing + 服装语义空间(进行中宁
 - 场景识别: Places365 场景识别(进行中)
 - 情感识别:表情识别(进行中)
 - 动作识别: openPose, 骨骼点检测(进行中)

开车

北京

2019

认知框架的应用及QOE优化

内容创作理解 - IP/剧本分析

• 人物互动关联 & 人物社团关系: 快速定位剧情人物关系设定

内容创作理解 - IP/剧本分析

北京 2019

张小敬

李泌

遨游"视"界 做你所想 Explore World, Do What You Want

15%

10%

- 人物出场分布&出镜率—快速定位角色场次、判断角色戏份
- · 各场次 & 全局人物热词—判断各场次和全剧的核心线索,人物设定

李必

檀棋 5% 龙波 4% 姚汝能 3% 徐宾 3% 圣人 3% 鱼肠 3% 元载 2% 贺知章 2% 李林甫 2% 崔器 2% 闻染 2% 曹破延 2% 太子 2% 高力士 2% 王韫秀 2% 伊斯 2% 吉温 岑参 1%

基于VA的情感模型

业内通用的情感模型:

Valence: 情绪正负向。-1 到 +1 之间,-1 表示负向情感,如悲伤,+1表示正向情感,如高兴

Arousal: 情绪的强烈程度。-1表示情绪最不强烈, 如困乏平静,+1表示轻度最强烈, 如激动兴奋。

多模态的VA识别模型

内容创作理解 – 成片分析

演员出镜率benchmark & 出镜率打分—判断剧集成片角色出镜合理性

题材-出镜率benchmark

遨游"视"界 做你所想 Explore World, Do What You Want

景别运用 & 镜头节奏打分—判断剧集拍摄节奏合理性

人物性格理解

长安十二时辰(2019)

北京遇上西雅图 (2013)

羞羞的铁拳 (2017)

情绪曲线

北京 遨游"视"界 做你所想 2019 Explore World, Do What You Want

正面

长安十二时辰 (2019)

反贪风暴 (2004)

北京遇上西雅图 (2013)

羞羞的铁拳 (2017)

反面

正面

巨面

正面

反正

正面

情感识别:图片表情识别:

• 改进模型 (Reduced Xception with Margin Loss)

- ▶输入: 引入人脸关键点densemap
 - ✔原理:精确判断人脸表情需重点关注五官如眼睛,鼻子,嘴的区 域信息
 - ✓ 关键点检测模型 (MTCNN)
 ✓ Densemap 计算 $I^{(i,j) = \max_{k=1}^{K} e^{-\frac{(i-x_k)^2 + (j-y_k)^2}{2*\sigma^2}}$

I(i,j)为densmap 在像素i,j 处的强度, x_k , y_k 关键点k的坐标, $k \in \{1,2,...,K\}$

情感识别:图片表情识别 2019

- 模型提升 (Reduced Xception with Margin Loss)
 - ➤ Reduced Xception*
 - ✓使用可分离卷积 (deepwise 卷积 + pointwise 卷积)
 - ✓ Entry flow, middle flow, exit flow 各缩减至2层卷积

➤SVM Margin Loss Layer**

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{n=1}^{N} \max(1 - w^{T} x_{n} t_{n}, 0)$$

 $\min_{\substack{w,\xi_n}} \frac{1}{2} w^T w + C \sum_{n=1}^N \xi_n,$ s.t. $w^T x_n t_n \ge 1 - \xi_n \ \forall n$ $\xi_n \ge 0 \ \forall n$

 $x_n \in \mathbb{R}^D$ 表示上一层输出, $t_n \in \{-1,1\}$ 为分类标签,w表示本层参数

^{*}Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[J]. 2016:1800-1807

^{**} Yichuan Tang, Deep Learning using Linear Support Vector Machines, ICML 2013

采制阶段: 预测能力建设

行业现状:不信、统计分析、简单模型

准确率92%

准确率90%+

准确率90%

准确率92%

2019

总结

在强人工智能尚遥远的情形下,如何结合机器AI和人工经验是个永恒的主题,

- ▶如何更好的结合符号学派智能和链接学派的智能是非常重要的,决策引擎的建设,包括结合人工逻辑规则和可学习数据AI,不确定性分析框架和经久不衰的贝叶斯因果决策,以及神经元化的混合智能计算框架。
- ▶量化的心理学研究也越来越重要了,如何结合大数据应用价值非常大

Thank you

