Lecture 2: Evolutionary Search Operators

CSE5012: Evolutionary Computation and Its Applications

Xin Yao

CSE, SUSTech

20 Feb 2023

Summary of the Previous Lecture

- Why Natural Computation?
- What is Evolutionary Computation?
- Different Types of Evolutionary Algorithms
- Major Areas in Evolutionary Computation

Recall: Main Steps of Evolutionary Algorithms

- 1. Initialise the population at random
- 2. REPEAT
 - 2.1 Evaluate fitness of individuals in the population (μ is the population size)
 - 2.2 Compute the selection probability for each individual
 - 2.3 REPEAT
 - 2.3.1 Select two individuals as parents according to the probabilities in Step 2.2
 - 2.3.2 Crossover the two individuals in Step 2.3.1 with a crossover rate

 /* After this step, we have two individuals */
 - 2.3.3 Mutate the two individuals in Step 2.3.2 with a mutation rate
 - UNTIL we have obtained μ new individuals
 - 2.4 Use the μ new individuals to replace the previous population

UNTIL stopping criteria are met

/* Output the best individual in the population */

In this lecture, we will focus on the crossover and mutation operators.

Outline

Recombination/Crossover Operators

Recombination/Crossover Operators for Discrete Representation Recombination/Crossover Operators for Real-valued Representation

Mutation Operators

Mutation Operators for Discrete Representation Mutation Operators for Real-valued Representation

Summary of this Lecture

Outline of This Lecture

Recombination/Crossover Operators

Recombination/Crossover Operators for Discrete Representation Recombination/Crossover Operators for Real-valued Representation

Mutation Operators

Mutation Operators for Discrete Representation Mutation Operators for Real-valued Representation

Summary of this Lecture

Recombination/Crossover

- Pick up two parents to generate two offspring.
- Crossover rate: The probability of applying crossover.
- ► Aim to keep and recombine good building blocks of the parents. (But how do we know which part is good?)

Illustrative example of Lecture 1:

```
Parent 1 1 1 0 0 0

Parent 2 0 1 1 0 1

Offspring 1 1 1 0 0 1

Offspring 2 0 1 1 0 0
```

Recombination/Crossover Operators

- Recombination for discrete representation
 - ▶ One-point crossover / k-point crossover (k > 1)
 - Uniform crossover
 - **>** . . .

- Recombination for real-valued representation (mainly 2 categories):
 - Discrete recombination does not change actual (gene) values. Very similar to the crossover operators on binary strings.,
 - Intermediate recombination does change actual (gene) values.
 Usually based on some kind of average/mixture among multiple parents.

One-point Crossover

Example: choose a random crossover point at 3

k-point Crossover (k > 1)

Example: k = 2, choose two random crossover points at 3 and 6

Example: k = 3, choose three random crossover points at 3, 6, 8

Uniform Crossover

Example: at every point, generate a random number $\in [0,1]$ with crossover rate 0.5

Gene Index 1 2 3 4 5 6 7 8 9 10 Random 0.31 0.63 0.58 0.07 0.29 0.42 0.59 0.63 0.13 0.73

Multi-point Discrete Recombination

A Type of Discrete Recombination

- Similar to that for the binary representation.
- ► [Example] two parents with a random crossover point at 1:

Parent 1	1.0	2.4	8.0	7.6
Parent 2	0.2	1.1	1.6	3.4
Offspring 1	1.0	1.1	1.6	3.4
Offspring 2	0.2	2.4	8.0	7.6

Global Discrete Recombination

A Type of Discrete Recombination

- Similar to uniform crossover for the binary representation.
- ► On each dimension, randomly select a parent from the population and take its gene of the dimension.
- Selection on each dimension is independent.

Parent 1	1.0	2.4	8.0	7.6
Parent 2	0.2	1.1	1.6	3.4
Offspring	0.2	2.4	8.0	3.4

Intermediate Recombination

- Discrete Recombination does not change actual (gene) values.
- ightarrow Create new values using intermediate recombination (usually based on some kind of average/mixture among multiple parents).

Arithmetic Recombination

A Commonly Used Intermediate Recombination Operator

- Given
 - ▶ d is the individual/chromosome length,
 - ightharpoonup two parents \mathbf{x}_1 and \mathbf{x}_2 , and
 - **a weight** $\alpha \in [0,1]$:

Offspring
$$1: x'_{i} = \alpha x_{1i} + (1 - \alpha)x_{2i}, i \in \{1, ..., d\}$$

Offspring $2: x''_{i} = \alpha x_{2i} + (1 - \alpha)x_{1i}, i \in \{1, ..., d\}$

▶ If $\alpha = 0.5$, the two offspring/children are identical.

Arithmetic Recombination

Example] two parents with $\alpha = 0.4$

$$\begin{array}{lll} 0.4*1.0+(1-0.4)*0.2=0.52, & 0.4*0.2+(1-0.4)*1.0=0.68 \\ 0.4*2.4+(1-0.4)*1.1=1.62, & 0.4*1.1+(1-0.4)*2.4=1.88 \\ 0.4*0.8+(1-0.4)*1.6=1.28, & 0.4*1.6+(1-0.4)*0.8=1.12 \\ 0.4*7.6+(1-0.4)*3.4=5.08, & 0.4*3.4+(1-0.4)*7.6=5.92 \end{array}$$

Simple Arithmetic Recombination

Combining Arithmetic Recombination with One-Point Recombination

- Given
 - ightharpoonup two parents \mathbf{x}_1 and \mathbf{x}_2 ,
 - ightharpoonup a weight $\alpha \in [0,1]$, and
 - **a** randomly selected point *k*:

Offspring 1:
$$x'_{i} = x_{1i}, i \in \{1, ..., k\}$$

 $x'_{i} = \alpha x_{1i} + (1 - \alpha) x_{2i}, i \in \{k + 1, ..., d\}$
Offspring 2: $x''_{i} = x_{2i}, i \in \{1, ..., k\}$
 $x''_{i} = \alpha x_{2i} + (1 - \alpha) x_{1i}, i \in \{k + 1, ..., d\}$

▶ If $\alpha = 0.5$, the part after the k^{th} gene of the two offspring are identical.

Simple Arithmetic Recombination

Example 1] two parents with $\alpha = 0.4$ and a random point 1

Example 2] two parents with $\alpha = 0.5$ and a random point 2

Parent 1	1.0	2.4	0.8	7.6
Parent 2	0.2	1.1	1.6	3.4
Offspring 1	1.0	2.4	1.2	5.5
Offspring 2	0.2	1.1	1.2	5.5

Single Arithmetic Recombination

- Given
 - ightharpoonup two parents \mathbf{x}_1 and \mathbf{x}_2 ,
 - ightharpoonup a weight $\alpha \in [0,1]$, and
 - **a** randomly selected point *k*:

$$Offspring 1: \qquad x_i' = x_{1i}, \quad i \in \{1, \dots, d\} \text{ and } i \neq k$$

$$x_k' = \alpha x_{1k} + (1 - \alpha) x_{2k}$$

$$Offspring 2: \qquad x_i'' = x_{2i}, \quad i \in \{1, \dots, d\} \text{ and } i \neq k$$

$$x_k'' = \alpha x_{2k} + (1 - \alpha) x_{1k}$$

Single Arithmetic Recombination

- Given
 - ightharpoonup two parents \mathbf{x}_1 and \mathbf{x}_2 ,
 - \blacktriangleright a weight $\alpha \in [0,1]$, and
 - **a** randomly selected point *k*:

$$Off spring \ 1: \qquad x_i' = x_{1i}, \quad i \in \{1, \dots, d\} \ \text{and} \ i \neq k$$

$$x_k' = \alpha x_{1k} + (1 - \alpha) x_{2k}$$

$$Off spring \ 2: \qquad x_i'' = x_{2i}, \quad i \in \{1, \dots, d\} \ \text{and} \ i \neq k$$

$$x_k'' = \alpha x_{2k} + (1 - \alpha) x_{1k}$$

ightharpoonup [Example] two parents with lpha=0.4 and a random point 1

Other Recombination Operators for Real-valued Representation I

Heuristic Recombination Assume x_2 is no worse than x_1 .

$$\mathbf{x}' = \alpha(\mathbf{x_2} - \mathbf{x_1}) + \mathbf{x_2},$$

where α is a uniformly distributed random number $\in [0,1]$.

Simplex Recombination Randomly select a group (> 2) of parents. Assume x_b is the best individual and x_w is the worst in the group. Compute the centroid, c, of the group without x_w . Let the following x' replace x_w .

$$\mathbf{x'} = \mathbf{c} + (\mathbf{x_b} - \mathbf{x_w}).$$

Other Recombination Operators for Real-valued Representation II

Geometric Recombination Can be generalised to multiple parents.

$$\mathbf{x}' = (\sqrt{x_{11}x_{21}}, \sqrt{x_{12}x_{22}}, \dots)$$

Quadratic Recombination Let $x_{i,j}$ be the j-th component of the vectors \mathbf{x}_i , $\forall i \in \{1,2,3\}, j \in \{1,\cdots,d\}$, where d is the dimensionality. We approximate the position of P_4 using the quadratic interpolation method as follow:

$$x_{4,j} = \frac{1}{2} \cdot \frac{(x_{2,j}^2 - x_{3,j}^2)f(\mathbf{x}_1) + (x_{3,j}^2 - x_{1,j}^2)f(\mathbf{x}_2) + (x_{1,j}^2 - x_{2,j}^2)f(\mathbf{x}_3)}{(x_{2,j} - x_{3,j})f(\mathbf{x}_1) + (x_{3,j} - x_{1,j})f(\mathbf{x}_2) + (x_{1,j} - x_{2,j})f(\mathbf{x}_3)}.$$

What Does Quadratic Recombination Mean?

$$x_{4,j} = \frac{1}{2} \cdot \frac{(x_{2,j}^2 - x_{3,j}^2)f(\mathbf{x}_1) + (x_{3,j}^2 - x_{1,j}^2)f(\mathbf{x}_2) + (x_{1,j}^2 - x_{2,j}^2)f(\mathbf{x}_3)}{(x_{2,j} - x_{3,j})f(\mathbf{x}_1) + (x_{3,j} - x_{1,j})f(\mathbf{x}_2) + (x_{1,j} - x_{2,j})f(\mathbf{x}_3)}.$$

Note that we are minimising "fitness" here.

Outline of This Lecture

Recombination/Crossover Operators

Recombination/Crossover Operators for Discrete Representation Recombination/Crossover Operators for Real-valued Representation

Mutation Operators

Mutation Operators for Discrete Representation Mutation Operators for Real-valued Representation

Summary of this Lecture

Mutation

- Change values of gene(s) at random.
- Mutation rate: Note the difference between per bit (gene) and per chromosome (individual) mutation rates.
- Be careful with the randomised part when implementing.

Illustrative example of Lecture 1:

Mutation Operators

- ► For discrete representation:
 - Bit-flipping
 - Random bit assignment
 - Swap mutation
 - ► Inverse mutation
 - **...**

- ► For real-valued representation (mainly two categories):
 - Uniform mutation
 - Nonuniform mutation

Bit-flipping

One-bit flipping / One-bit mutation: Flip one of the bits uniformly at random, e.g.,

```
Gene index 1 2 3 4 5 6 7 8 9 10 Random index 3 Before mutation 0 1 0 1 0 1 1 0 1 1 1 After mutation 0 1 1 1 0 1 1 1 0 1 1
```

Multi-bit flipping: Select multiple bits and flip their values, e.g.,

Bitwise mutation

At every point, generate a random number $\in [0,1]$ with mutation rate p (usually p=1/d)

Random mutation

- Extension of bit-flipping: binary representation → integer representation.
- Example:
 - ▶ An integer representation with values $\in \{0, 1, 2, 3, 4\}$
 - At every point, generate a random number $\in [0, 1]$ with mutation rate 0.1, mutate to another possible value uniformly at random.

Gene index 1 2 3 4 5 6 7 8 9 10
Random for selecting gene 0.03 0.31 0.07 0.58 0.79 0.52 0.19 0.13 0.93 0.23
Random for selecting value 0.21 - 0.72 - - - - - - - - - -

 Before mutation
 0
 1
 3
 2
 0
 1
 2
 2
 4
 1

 After mutation
 1
 1
 2
 2
 0
 1
 2
 2
 4
 1

[Exercises]

1. Search by yourself to find out what is random bit assignment?

2. Implement one-bit flipping and bitwise mutation, then compare them using the objective function of Lab 1.

Swap mutation

Swap the values of two genes selected uniformly at random.

Example:

 Before mutation
 1
 2
 3
 4
 5
 6
 7

 After mutation
 1
 2
 6
 4
 5
 3
 7

Inversion mutation

- ► Invert the order of a subset of string.
- Example:

Before mutation 1 2 3 4 After mutation 1 2 3

Uniform Mutation

► Similar to uniform mutation for the binary representation:

$$x_i' = UniformRandom(LowerBound_i, UpperBound_i), \forall i \in \{1, \dots, d\}$$

- Potential problem: possibility of diverging too much from an already good solution.
- ► [Example] One parent with mutation rate 0.1 and random numbers generated as follows:

 Before mutation
 1.0
 2.4
 0.8
 7.6

 After mutation
 0.3
 2.4
 0.8
 4.5

Nonuniform Mutation

Usually, new value = current value + random perturbation (Δ), i.e.,

$$x_i' = x_i + \Delta, \ \forall i \in \{1, \dots, d\} \ \text{and} \ LB_i \le x_i' \le UB_i,$$

where Δ is sampled from a distribution with 0 mean, and a given standard deviation (σ), also called mutation step-size.

Main differences compared to the uniform mutation presented previously:

- Nonuniform.
- ► + A random perturbation, instead of generating a totally new value.

Question

Why the perturbation is sampled from a distribution with 0 mean not a mean < 0 or > 0?

Nonuniform Mutation (continued)

$$x_i' = x_i + \Delta, \ \forall i \in \{1, \dots, d\} \ \text{and} \ LB_i \leq x_i' \leq UB_i,$$

- ► Perturbation applied with probability 1 per gene.
- Different perturbation techniques:
 - Differ in the distribution:
 - ▶ Gaussian distribution: $\Delta \sim \mathcal{N}(0, \sigma^2)$
 - **Cauchy distribution:** $\Delta \sim \mathcal{C}(0,t)$
 - \rightarrow A "fatter" tail. \rightarrow higher probability of generating larger values.
 - **Differ in how** σ is updated:
 - Self-adaptive: demonstrated to be successful for real-valued, binary and integer search space. → More in the next lecture.
- ▶ Curtailing the resulting value to locate in $[LB_i, UB_i]$, if not.

Normal Distribution and Cauchy Distribution

PDF of Gaussian:
$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

PDF of Cauchy:
$$f(x;x_0,t)=\frac{1}{\pi t\left[1+\left(\frac{x-x_0}{t}\right)^2\right]}=\frac{1}{\pi t}\left[\frac{t^2}{(x-x_0)^2+t^2}\right]$$
, where t is the scale parameter which specifies the half-width at half-maximum.

Outline of This Lecture

Recombination/Crossover Operators

Recombination/Crossover Operators for Discrete Representation Recombination/Crossover Operators for Real-valued Representation

Mutation Operators

Mutation Operators for Discrete Representation Mutation Operators for Real-valued Representation

Summary of this Lecture

Summary

- 1. Evolutionary algorithms vary in the
 - representation,
 - search operators (crossover operators and mutation operators)
 - and selection schemes.

- 2. (THIS LECTURE) crossover operators and mutation operators for discrete and real-valued representations.
- Different problems require different search operators and selection schemes.
 There is no universally best one.

We will learn selection schemes in the next lecture.

Essential Reading for This Lecture

1. X. Yao, "Evolutionary computation: A gentle introduction," In *Evolutionary Optimization*, R. Sarker, M. Mohammadian and X. Yao (eds.), Chapter 2, pp.27-53, Kluwer Academic Publishers, Boston, 2002. (ISBN 0-7923-7654-4) https://link.springer.com/chapter/10.1007/0-306-48041-7_2 (You can download the pdf through VPN of our university)

2. H. G.Beyer & H. P. Schwefel, "Evolution strategies-A comprehensive introduction". *Natural Computing*, 1(1), 3-52, 2002.

Essential Reading for Next Lecture

 T. Bäck, D. B. Fogel, and Z. Michalewicz (eds.), Handbook of Evolutionary Computation, IOP Publ. Co. & Oxford University Press, 1997. Part C. (The part of selection schemes.)

2. X. Yao, Y. Liu and G. Lin, "Evolutionary programming made faster," IEEE Transactions on Evolutionary Computation, 3(2):82-102, July 1999. https://www.cs.bham.ac.uk/~xin/papers/published_tec_jul99.pdf (You can also visit IEEEXplore and download the pdf through VPN of our university)