CSCI 466: Networks

Review

Reese Pearsall Fall 2023

*All images are stolen from the internet

Announcements

Wireshark Lab 4 due tonight

Final Exam on Friday

Wireshark Lab 5 (course evaluation) and PA5 due next Wednesday (12/13)

Remember to submit a repo link to D2L

Final Exam Structure

No notes allowed 10% of your grade Please show up

Part I. OSI Model

For each layer

- Name the layer (Ex. Network Layer)
- Provide a primary responsibility/functionality (Ex. Forwarding and Routing)
- Provide the unit of data that is being transmitted (Ex. Datagram)

Part II. Question 2

 Won't tell you the exact question, but it will require your knowledge of how the internet works and how two hosts communicate with each other

Application Layer

The layer which **interacts directly with applications** and provide necessary protocols and services for web applications. Specifies the shared commination protocol(s) that will be used by hosts in a communication protocol

HyperText Transfer Protocol (HTTP)- protocol that dictates the transmitting of hypermedia documents, such as HTML and other webpage objects

Uniform Resource Locator (URL)- Addressing scheme for web objects

scheme://domain:port/path_to_object?query_string

http://cs.montana.edu/pearsall/classes/fall2022/466/main.html

- GET: Download resource
 HEAD: Get resource metadata
 POST: Upload form contents
 PUT: Upload object to URL
 DELETE: Delete object from URL
- ☐ Informational Responses (100s)
- Successful Responses (200s)
- Redirection messages (300s)
- ☐ Client error response (400s)
- ☐ Server error response (500s)

Domain Name System (DNS) is a distributed,
 hierarchical database used for mapping
 hostnames to IP address

Prior to creating a TCP connection and sending an HTTP request, we first need to issue a DNS request!

(Built on UDP, lookups happen on port 53)

Transport Layer - Provides host-to-host, reliable data transfer, and dictates the flow of data

Multiplexing is the process of gathering chunks from sockets, encapsulating chunks with header information, and passing the segment into the network layer

Demultiplexing is the receiving segments from the transport layer and delivering the segment to the correct socket.

Provides host-to-host, reliable data transfer, and dictates the flow of data

User Datagram Prot. (UDP)

Unreliable data transfer

- Connection-less
 - Don't know if receiver is present
- No flow control
 - Overflow at receiver possible
- No congestion control
 - Sender can overload the network
- No guarantees on
 - End-to-end delay
 - Throughput
 - Security

Transmission Control Prot. (TCP)

Reliable stream transport

- Connection-oriented
 - Establishes receiver presence
- Flow control
 - Sender won't overwhelm receive
- Congestion control
 - Senders won't overload network
- No guarantees on
 - End-to-end delay
 - Throughput
 - Security

"Self-Clocking"

Network Layer

Provides Routing and Forwarding Functionality

Our segments from the transport layer are now encapsulated into network layer datagrams

IP Addresses are assigned here

IPv4

IPv4: 32-bit addresses (decimal) **192.149.252.76**

Data Plane

Forwarding: move packets from router's input to appropriate router output

Address range	Interface (output link)
128.11.52.0 - 128.11.52.255	1
153.90.2.0 - 153.90.2.255	2
153.90.2.87 – 153.90.2.89	3

Address range	Interface (output link)
11001000 00010111 00010*** *******	1
11001000 00010111 00011000 *******	2
11001000 00010111 00011*** ******	3
otherwise	4

Network Layer

Provides Routing and Forwarding Functionality

Our segments from the transport layer are now encapsulated into network layer datagrams

Control Plane

Routing: determine route taken by packets from source to destination

OSPF is a link-state protocol that uses flooding of link-state information and Dijkstra's least-cost algorithm

→ Used for routing within an AS

Border Gateway Protocol (BGP)

is used for exchanging routing information *between* AS

AS₁

An **autonomous system** is a group of routers that are under the same administrative control

MSU

COMCAST

Dynamic Host Configuration Protocol (DHCP) is a **plug-and-play**, client-server protocol that allows a host to obtain an IP address automatically

When a host is automatically assigned an IP address, it might keep that one forever, or the IP addresses can be temporary

(more common)

NAT is a translation of multiple private IP addresses to one single public IP address

- Hides details of inner home network from outside world
- All incoming traffic will have same public IP, all outgoing will have same public IP

Link Layer

The link layer is responsible for the actual node-to-node delivery of data and ensure error-free transmission of information (handles a variety of mediums)

MAC (Media Access Control) Addresses

- function: used 'locally" to get frame from one interface to another physically-connected interface (**same network**, in IP-addressing sense)
- 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable

Address Resolution Protocol (ARP)

- Protocol used to map IP address to MAC addresses
- Very commonly used, as we need the MAC address of each host in our path
- Broadcast sent on all interfaces

(Wi-fi = wifi frame)

Ethernet: Dominant wired LAN technology

Routers will forward frames leaving the LAN

Local Area Network

Network Security

Confidentiality- Making sure that only the sender and receiver can read the message (encryption)

Authentication- Making sure that you are communicating with the person you think you are (encryption + hashing)

Integrity- Making sure the message does not get tampered with during transmission (hashing)

Key:

Message

S = Shared secret

All this is implemented in TLS/SSL at the Session + Presentation Layer

Public Key Cryptography

Application Layer

Provides protocols for sending and receiving data between services and web applications (HTTP)

Messages

Application Layer

Provides protocols for sending and receiving data between services and web applications (HTTP)

Messages

Presentation Layer

Encoding, Compressing, and Encrypting Data

Messages

Application Layer

Provides protocols for sending and receiving data between services and web applications (HTTP)

Messages

Presentation Layer

Encoding, Compressing, and Encrypting Data

Messages

Session Layer

Authentication. Manages, monitors, "sessions" between endpoints

Messages

Application Layer	Provides protocols for sending and receiving data between services and web applications (HTTP)	Messages
Presentation Layer	Encoding, Compressing, and Encrypting Data	Messages
Session Layer	Authentication. Manages, monitors, "sessions" between endpoints	Messages
Transport Layer	Provides host-to-host, reliable data transfer , and dictates the flow of data	Segments

Application Layer	Provides protocols for sending and receiving data between services and web applications (HTTP)	Messages
Presentation Layer	Encoding, Compressing, and Encrypting Data	Messages
Session Layer	Authentication. Manages, monitors, "sessions" between endpoints	Messages
Transport Layer	Provides host-to-host, reliable data transfer, and dictates the flow of data	Segments
Network Laver	Forwarding and Routing of Data. Logical Addressing	Datagrams

Application Layer	Provides protocols for sending and receiving data between services and web applications (HTTP)	Messages
Presentation Layer	Encoding, Compressing, and Encrypting Data	Messages
Session Layer	Authentication. Manages, monitors, "sessions" between endpoints	Messages
Transport Layer	Provides host-to-host, reliable data transfer, and dictates the flow of data	Segments
Network Layer	Forwarding and Routing of Data. Logical Addressing	Datagrams
Data Link Layer	Handles the formatting and <i>physical</i> addressing of the data before transmitting bits	Frames

Application Layer	Provides protocols for sending and receiving data between services and web applications (HTTP)	Messages
Presentation Layer	Encoding, Compressing, and Encrypting Data	Messages
Session Layer	Authentication. Manages, monitors, "sessions" between endpoints	Messages
Transport Layer	Provides host-to-host, reliable data transfer, and dictates the flow of data	Segments
Network Layer	Forwarding and Routing of Data. Logical Addressing	Datagrams
Data Link Layer	Handles the formatting and <i>physical</i> addressing of the data before transmitting bits	Frames
Physical Layer	Transmits bits into physical signals over some medium	Bits

Provides protocols for sending data **Application Layer** Messages between services and web This is what you need to memorize Messages **Presentation Layer** Messages **Session Layer Segments Transport Layer** Data. Logical Addressing **Network La Datagrams Frames Data Link Layer** erore transmitting bits **Physical Layer** Transmits bits into physical signals over some medium **Bits**

Application Layer

A

Away

Presentation Layer

Penguin

Pizza

Session Layer

Said

Sausage

Transport Layer

That

Throw

Network Layer

Nobody

Not

Data Link Layer

Drinks

Do

Physical Layer

Pepsi

Please

Course Outcomes

By the end of this course, students should be be able to:

- List the network layers and explain their function in end-to-end communications
- Explain different network architectures and tradeoffs in the design decisions
- Explain the functions of various Network protocols (HTTP, DNS, TCP/IP, FTP, etc)
 - Design and implement network application
 - · Analyze network traffic
 - Measure network performance

• Explore security issues in networks and understand important defense mechanisms

Any Questions?

Thank You!

Thank you for your patience, flexibility, and kindness ©

I know things were not perfect, but I am happy with how things went

I hope you enjoyed this class, and I hope the stuff you learned will be helpful in your career. With most devices connected to the internet, its important to understand these basic networks concepts!

I will be teaching 232 and 132 next semester

Reese Pearsall (He/Him)
Instructor at Montana State University
Bozeman, Montana, United States · Contact info

Connect with me on LinkedIn!

If I can be of assistance to you for anything in the future, please let me know!

Congrats to those that are graduating next weekend! I hope you find a job that you love!