

Branden Fitelson

Kim on the Unconfirmability of Disjunctive Laws

fitelson.org

Werview Kim's Argument Two Bayesian Criticisms A Bayesian Reply? Historical Epilogue Reference

• Here is the full argumentative passage from Kim [8]:

...inductive projection of generalizations ... with disjunctive antecedents would sanction a cheap, and illegitimate, confirmation procedure. For assume that "All Fs are G" is a law that has been confirmed by the observation of appropriately numerous positive instances, things that are both F and G. But these are also positive instances of the generalization "All things that are F or H are G", for any H you please. So, if you in general permit projection of generalizations with a disjunctive antecedent, this latter generalization is also well confirmed. But "All things that are F or H are G" logically implies "All Hs are G". Any statement implied by a well confirmed statement must itself be well confirmed. So "All Hs are G" is well confirmed – in fact, it is confirmed by the observation of Fs that are Gs!

Overview

Overview

Kim's Argument
Overview

Kim's Argument
First Pass (original presentation)
Second Pass (precise reconstruction)

Two Criticisms — from a Bayesian Perspective
Two False Instantial Confirmation-Theoretic Principles

A Possible Bayesian Reply?
Exploiting an Ambiguity in Bayesian Confirmation Theory?

Historical Epilogue
Kim's Argument Against a Hempelian Backdrop

Overview	Kim's Argument Two Bayesian Criticisms A Bay ○ O	esian Reply? Historical Epilo O	ogue References
1	$Fa \& Ga \text{ confirms } (\forall x)(Fx \supset Gx).$		Ass (CP)
2	If E confirms H and $H \models H'$, then H	confirms H' .	(SCC)
3	$Fa \& Ga \text{ confirms } (\forall x)[(Fx \lor Ha)]$	$f(x)\supset Gx$].	Ass (RAA)
4	$Fa \& Ga \text{ confirms } (\forall x)(Hx \supset G)$	x).	2, 3, Logic
5	Fa & Ga does not confirm $(\forall x)$	$Hx\supset Gx$).	1, Intuition
6	Fa & Ga does not confirm $(\forall x)[(Fa \otimes Ga \otimes Ga \otimes Ga)]$	$x \vee Hx) \supset Gx$].	3-5, RAA
7	$(1) \Rightarrow (6)$		1-6, CP
 The logic here is rather circuitous. But, the idea seems to be that — assuming (1) holds — [(5) must also hold; and, therefore?] (6) must be true [here, (SCC) is <i>presupposed</i>]. From the point of view of modern Bayesian confirmation theory, however, (SCC) is false and neither (5) nor (6) need be true — <i>even if</i> (1) is true. Next, I will explain why 			
Branden F	itelson Kim on the Unconfirmability of D	isjunctive Laws	fitelson.org

Two Bayesian Criticisms • In contemporary Bayesian theory, confirmation is a ternary relation, between evidence E, hypothesis H, and background corpus K. Depending on K, positive instances may or may not raise the probability of universal claims [4], [5], [9].

- Here's a K relative to which Fa & Ga raises the probability of $(\forall x)(Fx\supset Gx), (\forall x)(Hx\supset Gx), (\forall x)[(Fx\vee Hx)\supset Gx].$
- (K) Exactly one of the following two propositions is true: (p) there are 1000 FGs, no FGs, 1000 HGs, no HGs, no *FH*s, and a million other things, or (*q*) there are 100 *FG*s, 1 $F\bar{G}$, 100 HGs, 1 $H\bar{G}$, no FHs, and a million other things.
- $E \stackrel{\text{def}}{=} Fa \& Ga$. $Pr(E \mid p \& K) = \frac{1000}{1002000} > \frac{100}{1000200} = Pr(E \mid q \& K)$.
- This is a case in which (1) is true but (5) and (6) are both false. Kim's argument also presupposes (SCC) [(2)], which is also not true (in Bayesian CT). Here is a counterexample.
- Let $E \stackrel{\text{def}}{=}$ card c is black, $H \stackrel{\text{def}}{=}$ card c is the $A \spadesuit$, and $H' \stackrel{\text{def}}{=}$ card c is *some* ace. Assume (K) that c is sampled at random from a standard deck. For modern Bayesians, this refutes (SCC).

Branden Fitelson

Kim on the Unconfirmability of Disjunctive Laws

fitelson.org

Historical Epilogue

- I suspect Kim is implicitly working in a rather Hempelian framework. Similar arguments appear there [7], [6], [2], [3].
- On Hempel's theory [7], there is another way of getting to Kim's "paradoxical conclusion," which goes as follows [2].
 - (i) Observations of *G*s confirm $(\forall x)Gx$. $[(\forall x)[(Px \lor \sim Px) \supset Gx]]$
 - (ii) Observations of FGs are observations of Gs.
 - (iii) $(\forall x)Gx$ entails $(\forall x)(Hx \supset Gx)$.
 - (iv) \therefore Observations of FGs confirm $(\forall x)(Hx \supset Gx)$.
- As I explain in [2], the move from (i)-(iii) to (iv) invidiously presupposes both (SCC) and the even more problematic: (M) If $\lceil \phi a \rceil$ confirms H, then $\lceil \phi a \& \psi a \rceil$ confirms H.
- (M) is false for both c_i and c_f . The historical role of (M) in confirmation theory has not been well appreciated [2], [3].
- From an "objectual" standpoint in which "observations" or "things" confirm statements — (M) can *sound* reasonable.
- But, from a *propositional* standpoint in which *statements* confirm statements — (M) is a non-starter. Confirmation is properly understood as propositional, not objectual [3].

- Carnap [1] distinguished 2 kinds of Bayesian confirmation:
 - **Firmness.** E confirms f H relative to K iff $Pr(H \mid E \& K) > t$. [typically, with $t > \frac{1}{2}$]

A Bayesian Reply?

- Increase in Firmness. E confirms H relative to K iff Pr(H | E & K) > Pr(H | K).
- Confirmation *f* is "being (absolutely) *well*-confirmed by *E* and everything else you know", but confirmation, is "being (incrementally) confirmed (to some degree) by E alone."
- Kim does talk about being "well-confirmed" in this argument. And, (SCC) is implied by confirmation f.
- Unfortunately, while confirmation f fixes the (SCC) problem, it won't completely save Kim's argument, for two reasons:
 - $\exists K$ such that all of $(\forall x)(Fx \supset Gx)$, $(\forall x)(Hx \supset Gx)$, and $(\forall x)[(Fx \lor Hx) \supset Gx]$ are well-confirmed by Fa & Ga & K.
 - Kim's final flourish wouldn't follow anyhow for c_f , since "H is well-confirmed by *everything* one knows (*E* & *K*)" does *not* imply "H is well-confirmed by part of what one knows (E)".

Branden Fitelson

Kim on the Unconfirmability of Disjunctive Laws

fitelson.org

References

- [1] R. Carnap, Logical foundations of probability, Second Edition, University of Chicago Press, 1962.
 - [2] B. Fitelson, *The paradox of confirmation*, Philosophy Compass (B. Weatherson and C. Callender, eds.), Blacwkell, 2005. URL: http://fitelson.org/ravens.htm.
 - [3] _____, Goodman's 'New Riddle', manuscript, 2006. URL: http://fitelson.org/grue.pdf.
 - [4] I.J. Good, The white shoe is a red herring, BJPS, 1967.
 - [5] _____, The white shoe qua red herring is pink, BJPS, 1968.
 - [6] N. Goodman, Fact, Fiction, and Forecast, Harvard, 1955.
 - [7] C. Hempel, Studies in the logic of confirmation, Mind, 1945.
 - [8] J. Kim, Multiple realization and the metaphysics of reduction, Philosophy and Phenomenological Research, 1992.
 - [9] P. Maher, *Probability captures the logic of scientific* confirmation, in Contemporary Debates in the Philosophy of Science (C. Hitchcock, ed.), Blackwell, 2004.