Calcolo Numerico - Appunti - v
1.2.0 $\,$

260236

ottobre 2025

Prefazione

Ogni sezione di teoria presente in questi appunti, è stata ricavata dalle seguenti risorse:

- Calcolo Scientifico: Esercizi e problemi risolti con MATLAB e Octave. [2]
- Slide del corso. [1]

Altro:

GitHub repository

Questi appunti sono una risorsa non ufficiale e non dovrebbero rimpiazzare il materiale del corso o di qualsiasi altro libro sul "calcolo numerico". Non sono stati creati per scopi commerciali. Ho creato questi appunti per aumentare la mia cultura e, forse, potrebbero essere utili a qualcuno.

Infine, uno studente dovrebbe scegliere il materiale fornito dal professore o dalla professoressa o dal libro del corso. Questi appunti possono in ogni caso essere un materiale utile.

Indice

1	Equ	uazioni non lineari	5
	1.1	Introduzione	5
	1.2	Il metodo di bisezione (o iterativo)	5
	1.3	Il metodo di Newton	9
		1.3.1 Come arrestare il metodo di Newton	10
	1.4	Il metodo delle secanti	11
	1.5	I sistemi di equazioni non lineari	12
	1.6	Iterazioni di punto fisso	14
2	Me	todi risolutivi per sistemi lineari e non lineari	18
	2.1	Metodi diretti per sistemi lineari	18
		2.1.1 Metodo delle sostituzioni in avanti e all'indietro	18
		2.1.2 Fattorizzazione LU: MEG e Cholesky	21
		2.1.3 La tecnica del pivoting	22
		2.1.4 Errori di arrotondamento nel MEG	23
		2.1.5 Il pivoting totale	27
		2.1.6 Il fill-in di una matrice	28
	2.2	Metodi iterativi per sistemi lineari	30
		2.2.1 Il metodo di Jacobi	32
		2.2.2 Il metodo di Gauss-Seidel	34
		2.2.3 Il metodo di Richardson	35
		2.2.4 Il metodo del Gradiente e del Gradiente Coniugato	37
	2.3	Metodi numerici per sistemi non lineari	41
		2.3.1 Introduzione	41
		2.3.2 Metodo di Newton	42
3	App	prossimazione di funzioni e di dati	45
	3.1	Interpolazione	45
	3.2	Interpolazione Lagrangiana	46
		3.2.1 Accuratezza (errore) nel caso di approssimazione di funzioni	48
		3.2.2 Convergenza dell'interpolatore Lagrangiano	49
	3.3	Interpolazione Lagrangiana composita	50
		3.3.1 Accuratezza (errore) e convergenza dell'interpolatore La-	
		grangiano composito	51
	3.4	Interpolazione sui nodi di Chebyshev	53
		3.4.1 Convergenza dell'interpolazione sui nodi di Chebyshev	54
		3.4.2 Generalizzazione dell'intervallo	55
	3.5	Interpolazione trigonometrica	56
		3.5.1 Trasformata Discreta di Fourier	58
		3.5.2 Fast Fourier Transform (FFT)	59
		3.5.3 Espressione Lagrangiana dell'interpolatore trigonometrico	59
		3.5.4 Fenomeno dell'aliasing e teorema di Shannon	61
	3.6	Il metodo dei minimi quadrati	62

4	Inte	egrazione numerica	64	
	4.1	Introduzione	64	
	4.2	Formula del punto medio composita	65	
	4.3	Formula dei trapezi composita	66	
	4.4	Formula di Simpson composita	67	
5	App	prossimazione numerica di ODE	68	
	5.1	Problema di Cauchy	68	
	5.2	Approssimazione di derivate	69	
	5.3	I metodi di Eulero in avanti e all'indietro	71	
		5.3.1 Assoluta stabilità	73	
		5.3.2 Problemi di Cauchy generali	75	
	5.4	Il metodo di Crank-Nicolson	76	
	5.5	Il metodo di Heun	77	
	5.6	Convergenza	78	
		5.6.1 Consistenza dei metodi di Eulero	79	
6	Lab	oratorio	81	
	6.1	Introduzione al linguaggio MATLAB	81	
		6.1.1 Esercizio	98	
	6.2	Zeri di funzione	99	
		6.2.1 Grafici di funzione	99	
	6.3	Risoluzione di Sistemi di Equazioni Lineari	103	
		6.3.1 Metodi diretti	103	
		6.3.2 Metodi iterativi	108	
		6.3.2.1 Metodo di Jacobi	108	
		6.3.2.2 Metodo di Gauss-Seidel	108	
		6.3.2.3 Esercizio	109	
		6.3.2.4 Metodo di Richardson	116	
		6.3.2.5 Precondizionamento	117	
		6.3.2.6 Metodo del gradiente	118	
		6.3.2.7 Esercizi su Richardson e gradiente	119	
	6.4	Sistema di equazioni non lineari	129	
		6.4.1 Metodo di Newton	129	
	6.5	Approssimazione di funzioni e di dati	132	
		6.5.1 Interpolazione Lagrangiana e Composita Lineare	132	
7	Esa	mi	137	
	7.1	$24/07/2025 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	137	
8	Don	nande Teoriche Frequenti	150	
Index				

1 Equazioni non lineari

1.1 Introduzione

Il calcolo degli zeri di una funzione f reale di variabile reale o delle radici dell'equazione f(x) = 0, è un problema assai ricorrente nel Calcolo Scientifico.

In generale, non è possibile approntare metodi numerici che calcolino gli zeri di una generica funzione in un numero finito di passi. I metodi numerici per la risoluzione di questo problema sono pertanto necessariamente iterativi. A partire da uno o più dati iniziali, scelti convenientemente, essi generano una successione di valori $x^{(k)}$ che, sotto opportune ipotesi, convergerà ad uno zero α della funzione f studiata.

1.2 Il metodo di bisezione (o iterativo)

Sia f una funzione continua in [a,b] tale che f(a) f(b) < 0. Per cui, vale il teorema degli zeri di una funzione continua, ossia f ammette almeno uno zero in (a,b).

Si supponga che ci sia un solo zero, indicato con α e nel caso in cui ce ne sia più di uno, individuare un intervallo tale che ne contenga solo uno.

Il **metodo di bisezione** (o **iterativo**) è una strategia che si suddivide nei seguenti passaggi:

- 1. Dimezzare l'intervallo di partenza;
- 2. Selezionare tra i due sotto-intervalli ottenuti quello nel quale f cambia di segno agli estremi;
- 3. Applicare ricorsivamente questa procedura all'ultimo intervallo selezionato.

Matematicamente parlando, dato $I^{(0)}=(a,b)$, e più in generale, $I^{(k)}$ il sotto-intervallo selezionato al passo k-esimo, si sceglie come $I^{(k+1)}$ il semi-intervallo di $I^{(k)}$ ai cui estremi f cambia di segno.

Questa procedura garantisce che ogni sotto-intervallo selezionato $I^{(k)}$ conterrà α . Questo poiché la successione $\{x^{(k)}\}$ dei punti medi dei sotto-intervalli $I^{(k)}$ dovrà ineluttabilmente convergere a α , in quanto la **lunghezza dei sotto-intervalli tende a** 0 per k che **tende all'infinito**.

Formalizziamo questa idea con un piccolo algoritmo. Ponendo:

$$a^{(0)} = a$$
, $b^{(0)} = b$, $I^{(0)} = \left(a^{(0)}, b^{(0)}\right)$, $x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2}$

Al passo $k \geq 1$ il metodo di bisezione calcolerà il semi-intervallo $I^{(k)} = (a^{(k)}, b^{(k)})$ dell'intervallo $I^{(k-1)} = (a^{(k-1)}, b^{(k-1)})$, nel seguente modo (si ricorda che α è lo zero che si sta cercando):

- 1. Calcolo $x^{(k-1)} = \frac{a^{(k-1)} + b^{(k-1)}}{2}$
- 2. Se $f(x^{(k-1)}) = 0$:
 - (a) Allora $\alpha = x^{(k-1)}$ e l'algoritmo <u>termina</u>.
- 3. Altrimenti, se $f\left(a^{(k-1)}\right) \cdot f\left(x^{(k-1)}\right) < 0$:
 - (a) Si pone $a^{(k)} = a^{(k-1)}$
 - (b) Si pone $b^{(k)} = x^{(k-1)}$
 - (c) Si incrementa k + 1 e si ripete ricorsivamente.
- 4. Altrimenti, se $f(x^{(k-1)}) \cdot f(b^{(k-1)}) < 0$:
 - (a) Si pone $a^{(k)} = x^{(k-1)}$
 - (b) Si pone $b^{(k)} = b^{(k-1)}$
 - (c) Si incrementa k+1 e si ripete ricorsivamente.

Esempio 1

Data la funzione $f(x) = x^2 - 1$, si parta da $a^{(0)} = -0.25$ e $b^{(0)} = 1.25$, e si applichi il metodo di bisezione:

- 1. Con $a^{(0)} = -0.25 \text{ e } b^{(0)} = 1.25$:
 - (a) Si calcola il punto medio:

$$x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2} = \frac{-0.25 + 1.25}{2} = 0.5$$

(b) Si calcola la funzione con il punto medio come parametro:

$$f(0.5) = 0.5^2 - 1 = -0.75$$

(c) Dato che la funzione nel punto medio non è uguale a zero, l'algoritmo deve continuare. Per farlo, bisogna sostituire il punto medio con uno dei due estremi. Per decidere quale dei due sostituire, è necessario capire in quale cambia valore la funzione. Si verifica inizialmente con $a^{(0)}$:

$$\begin{split} f\left(a^{(0)}\right)f\left(x^{(0)}\right) < 0 &= f\left(-0.25\right)f\left(0.5\right) < 0 \\ &= \left(-0.9375 \cdot -0.75\right) < 0 \\ &= 0.703125 \; \text{\textit{X}} \end{split}$$

(d) Si procede con l'algoritmo, provando adesso la $b^{(0)}$:

$$\begin{split} f\left(x^{(0)}\right) f\left(b^{(0)}\right) < 0 &= f\left(0.5\right) f\left(1.25\right) < 0 \\ &= \left(-0.75 \cdot 0.5625\right) < 0 \\ &= -0.421875 \, \checkmark \end{split}$$

- (e) Si pone $a^{(1)} = x^{(0)} = 0.5$
- (f) Si pone $b^{(1)} = b^{(0)} = 1.25$
- (g) Si incrementa k, k = k + 1 = 0 + 1 = 1
- 2. Con $a^{(1)} = 0.5$ e $b^{(1)} = 1.25$:
 - (a) Si calcola il punto medio:

$$x^{(1)} = \frac{a^{(1)} + b^{(1)}}{2} = \frac{0.5 + 1.25}{2} = 0.875$$

(b) Si calcola la funzione con il punto medio come parametro:

$$f(0.875) = 0.875^2 - 1 = -0.234375$$

(c) Dato che la funzione nel punto medio non è uguale a zero, l'algoritmo deve continuare:

$$\begin{split} f\left(a^{(1)}\right)f\left(x^{(1)}\right) < 0 &= f\left(0.5\right)f\left(-0.234375\right) < 0 \\ &= \left(-0.75 \cdot -0.945068359375\right) < 0 \\ &= 0.70880126953125 \; \text{\textit{X}} \end{split}$$

(d) Si procede con l'algoritmo:

$$\begin{split} f\left(x^{(1)}\right)f\left(b^{(1)}\right) < 0 &= f\left(-0.234375\right)f\left(1.25\right) < 0 \\ &= \left(-0.945068359375 \cdot 0.5625\right) < 0 \\ &= -0.5316009521484375 \checkmark \end{split}$$

- (e) Si pone $a^{(2)} = x^{(1)} = 0.875$
- (f) Si pone $b^{(2)} = b^{(1)} = 1.25$
- (g) Si incrementa k, k = k + 1 = 1 + 1 = 2

Si omettono i restanti calcoli per k=2, k=3, ma si lasciano qua di seguito i risultati:

- $I^{(2)} = (0.875, 1.25) e x^{(2)} = 1.0625$
- $I^{(3)} = (0.875, 1.0625) e x^{(2)} = 0.96875$

Nella seguente figura si possono vedere le iterazioni effettuate:

Iterazioni effettuate. [2]

Si noti che ogni intervallo $I^{(k)}$ contiene lo zero α . Inoltre, la successione $\left\{x^{(k)}\right\}$ converge necessariamente allo zero α in quanto ad ogni passo l'ampiezza $\left|I^{(k)}\right|=b^{(k)}-a^{(k)}$ dell'intervallo $I^{(k)}$ si dimezza.

Il valore $I^{(k)}$ può essere riassunto come:

$$\left|I^{(k)}\right| = \left(\frac{1}{2}\right)^k \cdot \left|I^{(0)}\right|$$

E di conseguenza l'errore al passo k può essere calcolato come:

$$\left|e^{(k)}\right| = \left|x^{(k)} - \alpha\right| < \frac{1}{2} \cdot \left|I^{(k)}\right| = \left(\frac{1}{2}\right)^{k+1} \cdot (b-a)$$

Inoltre, data una certa tolleranza ε , per garantire che l'errore al passo k sia minore della tolleranza data (ovvero, $\left|e^{(k)}\right| < \varepsilon$), basta applicare la seguente formula:

$$k_{\min} > \log_2\left(\frac{b-a}{\varepsilon}\right) - 1$$
 (1)

Dove k_{\min} rappresenta il numero \min di iterazioni prima di trovare un intero che soddisfi la disuguaglianza.

A Possibile svantaggio

Il metodo di bisezione non garantisce una riduzione monotona dell'errore, ma solo il dimezzamento dell'ampiezza dell'intervallo all'interno del quale si cerca lo zero. Infatti, non viene tenuto conto del reale andamento di f e questo può provocare il mancato coinvolgimento di approssimazioni di α accurate.

1.3 Il metodo di Newton

Il metodo di Newton sfrutta la funzione f maggiormente rispetto al metodo di bisezione, usando i suoi valori e la sua derivata.

Si ricorda che la retta tangente alla curva (x, f(x)) nel punto $x^{(k)}$ è:

$$y(x) = f\left(x^{(k)}\right) + f'\left(x^{(k)}\right)\left(x - x^{(k)}\right)$$

Cercando un $x^{(k+1)}$ tale che la retta tangente in quel punto sia uguale a zero $y(x^{(k+1)}) = 0$, allora si trova:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})} \qquad k \ge 0$$
 (2)

Purché la derivata prima nel punto $x^{(k)}$ sia diversa da zero, cioè $f'\left(x^{k}\right)\neq0$.

Questa equazione consente di calcolare una successione di valori $x^{(k)}$ a partire da un dato iniziale $x^{(0)}$. In altre parole, il **metodo di Newton calcola lo** zero di f sostituendo localmente a f la sua retta tangente.

A differenza del metodo di bisezione, tale **metodo converge allo zero in un solo passo quando la funzione** f è lineare, ovvero nella forma $f(x) = a_1x + a_0$.

A Limitazione

La convergenza del metodo di Newton <u>non</u> è garantita **per ogni scelta** di $x^{(0)}$, ma **soltanto** per valori di $x^{(0)}$ **sufficientemente vicini** ad α , ovvero **appartenenti ad un intorno** $I(\alpha)$ sufficientemente piccolo di α .

Alcune osservazioni a seguito anche di questa limitazione:

- A seguito di questa limitazione, risulta evidente che se $x^{(0)}$ è stato scelto opportunamente e se lo zero α è semplice $(f'(\alpha) \neq 0)$, allora il metodo converge.
- Nel caso in cui f è derivabile con continuità pari a due, allora si ottiene la seguente convergenza:

$$\lim_{k \to \infty} \frac{x^{(k+1)-\alpha}}{\left(x^{(k)} - \alpha\right)^2} = \frac{f''(\alpha)}{2f'(\alpha)}$$
(3)

Il significato è: se $f'(\alpha) \neq 0$ il metodo di Newton converge almeno quadraticamente o con **ordine 2**.

In parole povere, per k sufficientemente grande, l'errore al passo (k+1)-esimo si comporta come il quadrato dell'errore al passo k-esimo, moltiplicato per una costante indipendente da k.

• Se lo zero α ha molteplicità m maggiore di 1, ovverosia:

$$f'(\alpha) = 0, \dots, f^{(m-1)}(\alpha) = 0$$

Allora il metodo di Newton è ancora convergente, purché $x^{(0)}$ sia scelto opportunamente e $f'(x) \neq 0 \ \forall x \in I(\alpha) \setminus \{\alpha\}$. Tuttavia in questo caso l'ordine di convergenza è pari a 1. In tal caso, l'ordine 2 può essere ancora recuperato usando la seguente relazione al posto dell'equazione 2 ufficiale:

$$x^{(k+1)} = x^{(k)} - m \cdot \frac{f(x^{(k)})}{f'(x^{(k)})} \qquad k \ge 0$$
 (4)

Purché $f'(x^{(k)}) \neq 0$. Naturalmente, questo **metodo di Newton modificato** richiede una conoscenza a priori di m.

1.3.1 Come arrestare il metodo di Newton

Data una tolleranza fissa ε , esistono due tecniche applicabili per capire quando è necessario fermarsi ed evitare di continuare ad iterare:

• La differenza fra due iterate consecutive, il quale si arresta in corrispondenza del più piccolo intero k_{\min} per il quale:

$$\left| x^{(k_{\min})} - x^{(k_{\min} - 1)} \right| < \varepsilon \tag{5}$$

(test sull'incremento).

• Un'altra tecnica applicata anche per altri metodi iterativi è il **residuo** al passo k, il quale è definito come:

$$r^{(k)} = f\left(x^{(k)}\right)$$

Che è nullo quando $x^{(k)}$ è uno zero di f. In questo modo, il metodo viene arrestato alla prima iterata k_{\min} :

$$\left| r^{(k_{\min})} \right| = \left| f\left(x^{(k_{\min})} \right) \right| < \varepsilon$$
 (6)

Da notare che tale tecnica fornisce una stima accurata dell'errore solo quando |f'(x)| è circa pari a 1 in un intorno di I_{α} dello zero α cercato.

<u>Attenzione!</u> Se la derivata non è circa pari a 1 in un intorno dello zero cercato, la tecnica porterà:

- Ad una **sovrastima** dell'errore se $|f'(x)| \gg 1$ per $x \in I_{\alpha}$
- Ad una sottostima dell'errore se $|f'(x)| \ll 1$ per $x \in I_{\alpha}$

1.4 Il metodo delle secanti

Nel caso in cui la funzione f non sia nota, il metodo di Newton non può essere applicato. Per fortuna, arriva in soccorso il **metodo delle secanti**, il quale esegue una valutazione di $f'(x^{(k)})$ andando a sostituire quest'ultima con un rapporto incrementale calcolato su valori di f già noti.

Più formalmente, assegnati due punti $x^{(0)}$ e $x^{(1)}$, per $k \ge 1$ si calcola:

$$x^{(k+1)} = x^{(k)} - \left(\frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}\right)^{-1} \cdot f(x^{(k)})$$
 (7)

? Quando converge?

Il metodo delle secanti converge a seguito di certe condizioni:

- Converge ad α , se:
 - $-\alpha$ radice semplice¹;
 - $-I(\alpha)$ è un opportuno intorno di α ;
 - $-x^{(0)}$ e $x^{(1)}$ sono sufficientemente vicini ad α
 - $f'(x) \neq 0 \ \forall x \in I(\alpha) \setminus \{\alpha\}$
- Converge con ordine p super-lineare, se:
 - $-f \in \mathcal{C}^2(I(\alpha))$
 - $-f'(\alpha) \neq 0$

Ovvero, esiste una costante c > 0 tale che:

$$\left| x^{(k+1)} - \alpha \right| \le c \left| x^{(k)} - \alpha \right|^p \qquad p = \frac{1 + \sqrt{5}}{2} \approx 1.618 \dots$$
 (8)

- Convergenza lineare, se:
 - -Radice α è multipla.

Come succederebbe usando il metodo di Newton.

 $^{^{1}}f'(\alpha)\neq0$

1.5 I sistemi di equazioni non lineari

Di solito i metodi presentati nelle pagine precedenti vengono inseriti in dei sistemi. Nella realtà ci sono varie condizioni che influiscono sul sistema in analisi. È per questo motivo che si introducono i sistemi.

Si consideri un generale sistema di equazioni non lineari:

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

Dove f_1, \ldots, f_n sono funzioni non lineari. Si pongono i seguenti vettori:

- $\mathbf{f} \equiv (f_1, \dots, f_n)^T$
- $\mathbf{x} \equiv (x_1, \dots, x_n)^T$

Con l'obbiettivo di riscrivere il sistema in maniera più agevole:

$$\mathbf{f}\left(\mathbf{x}\right) = \mathbf{0}$$

Esempio 2: esempio di sistema non lineare

Un esempio banale di sistema non lineare:

$$\begin{cases} f_1(x_1, x_2) = x_1^2 + x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = \sin\left(\pi \frac{x_1}{2}\right) + x_2^3 = 0 \end{cases}$$

Prima di estendere i metodi di Newton e delle secanti si introduce la matrice Jacobiana.

Definizione 1: matrice Jacobiana

Senza entrare troppo nel gergo matematico (non è l'obbiettivo del corso), la matrice Jacobiana di una funzione è quella matrice i cui elementi sono le derivate parziali prime della funzione.

$$\mathbf{J_f} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$
(9)

Che può essere riscritto in modo più leggibile come:

$$(\mathbf{J_f})_{ij} \equiv \frac{\partial f_i}{\partial x_j} \qquad i, j = 1, \dots, n$$
 (10)

Dove rappresenta la derivata parziale della funzione f_i rispetto a x_i .

Il metodo di Newton e delle secanti può essere esteso sfruttando la matrice Jacobiana:

• Il **metodo di Newton** usando un sistema di equazioni non lineari diventa: dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$, per $k = 0, 1, \dots$, fino a convergenza

risolvere
$$\mathbf{J}_{\mathbf{f}}\left(\mathbf{x}^{(k)}\right) \boldsymbol{\delta}\mathbf{x}^{(k)} = -\mathbf{f}\left(\mathbf{x}^{(k)}\right)$$

porre $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \boldsymbol{\delta}\mathbf{x}^{(k)}$ (11)

Se ne deduce che venga richiesto ad ogni passo la soluzione di un sistema lineare di matrice $\mathbf{J_f}(\mathbf{x}^{(k)})$.

• Il metodo delle secanti usando un sistema di equazioni non lineari si basa sulla matrice Jacobiana e sul metodo di Broyden.

L'idea di base è sostituire le matrici Jacobiane $\mathbf{J_f}\left(\mathbf{x}^{(k)}\right)$ (per $k \geq 0$) con delle matrici chiamate \mathbf{B}_k , definite ricorsivamente a partire da una matrice \mathbf{B}_0 che sia una approssimazione di $\mathbf{J_f}\left(\mathbf{x}^{(0)}\right)$.

Dato $\mathbf{x}^{(0)} \in \mathbb{R}^n,$ data $\mathbf{B}_0 \in \mathbb{R}^{n \times n}$ per $k = 0, 1, \dots,$ fino a convergenza

risolvere
$$B_{k}\delta\mathbf{x}^{(k)} = -\mathbf{f}\left(\mathbf{x}^{(k)}\right)$$

porre $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta\mathbf{x}^{(k)}$
porre $\delta\mathbf{f}^{(k)} = \mathbf{f}\left(\mathbf{x}^{(k+1)}\right) - \mathbf{f}\left(\mathbf{x}^{(k)}\right)$
calcolare $B_{k+1} = B_{k} + \frac{\left(\delta\mathbf{f}^{(k)} - B_{k}\delta\mathbf{x}^{(k)}\right)\delta\mathbf{x}^{(k)^{T}}}{\delta\mathbf{x}^{(k)^{T}}\delta\mathbf{x}^{(k)}}$

$$(12)$$

Da notare che non si chiede alla successione $\{B_k\}$ così costruita di convergere alla vera matrice Jacobiana $\mathbf{J_f}(\alpha)$ (α è la radice del sistema); questo risultato non è garantito tuttavia.

1.6 Iterazioni di punto fisso

Esempio 3: esempio di introduzione

Con una calcolatrice si può facilmente verificare che applicando ripetutamente la funzione cos partendo dal numero 1 si genera la seguente successione di numeri reali:

$$x^{(1)} = \cos(1) = 0.54030230586814$$

 $x^{(2)} = \cos(x^{(1)}) = 0.85755321584639$
 \vdots
 $x^{(10)} = \cos(x^{(9)}) = 0.74423735490056$
 \vdots
 $x^{(20)} = \cos(x^{(19)}) = 0.73918439977149$

Che tende al valore $\alpha = 0.73908513$.

Con l'esempio di introduzione è possibile capire il punto fisso. Essendo per costruzione $x^{(k+1)} = \cos\left(x^{(k)}\right)$ per $k = 0, 1, \ldots$ (con $x^{(0)} = 1$), α è tale che $\cos\left(\alpha\right) = \alpha$. Quindi, α viene detto punto fisso della funzione coseno.

? Perché è interessante?

Se α è un punto fisso per il coseno, allora esso è uno zero della funzione $f(x) = x - \cos(x)$ ed il metodo appena proposto potrebbe essere usato per il calcolo degli zeri di f.

A Non tutte le funzioni hanno un punto fisso

Non tutte le funzioni ammettono punti fissi. Ad esempio, ripetendo l'esperimento dell'esempio con una funzione esponenziale a partire da $x^{(0)} = 1$, dopo soli 4 passi si giunge ad una situazione di *overflow* (figura 1, pagina 15).

Definizione 2

Data una funzione $\phi: [a, b] \to \mathbb{R}$, trovare $\alpha \in [a, b]$ tale che:

$$\alpha = \phi\left(\alpha\right)$$

Se tale α esiste, viene detto un **punto fisso** di ϕ e lo si può determinare come limite della seguente successione:

$$x^{(k+1)} = \phi\left(x^{(k)}\right) \qquad k \ge 0 \tag{13}$$

Dove $x^{(0)}$ è un dato iniziale. L'algoritmo viene chiamato iterazioni di punto fisso e la funzione ϕ è detta funzione di iterazione.

Dalla definizione, si deduce che l'esempio introduttivo è un algoritmo di iterazioni di punto fisso per la funzione $\phi\left(x\right)=\cos\left(x\right)$.

Figura 1: La funzione $\phi(x) = \cos(x)$ (sx) ammette un solo punto fisso, mentre la funzione $\phi(x) = e^x$ (dx) non ne ammette alcuno.

Figura 2: Rappresentazione delle prime iterazioni di punto fisso per due funzioni di iterazione. Le iterazioni convergono verso il punto fisso α (sx), mentre si allontanano da α (dx).

Definizione 3: quando una funzione ha un punto fisso?

Si consideri la successione (formula) 13 a pagina 14.

- 1. Si supponga che $\phi(x)$ sia continua nell'intervallo [a,b] e che $\phi(x) \in [a,b]$ per ogni $x \in [a,b]$; allora esiste almeno un punto fisso $\alpha \in [a,b]$.
- 2. Si supponga inoltre che esista un valore L minore di 1 tale per cui:

$$|\phi(x_1) - \phi(x_2)| \le L|x_1 - x_2|$$

Per ogni x_1, x_2 appartenente all'insieme [a, b]. Con tale supposizione, allora ϕ ha un **unico punto fisso** $\phi \in [a, b]$ e la successione definita nell'equazione 13 a pagina 14 converge a α , qualunque sia il dato iniziale $x^{(0)}$ in [a, b].

La supposizione scritta in precedenza può essere riassunta in un'equazione:

$$\exists L < 1 \ t.c. \ |\phi(x_1) - \phi(x_2)| \le L |x_1 - x_2| \quad \forall x_1, x_2 \in [a, b]$$
 (14)

Nella pratica è però spesso difficile delimitare a priori l'ampiezza dell'intervallo [a, b]; in tal caso è utile il seguente risultato di convergenza locale:

Teorema 1 (di Ostrowski). Sia α un punto fisso di una funzione ϕ continua e derivabile con continuità in un opportuno intorno \mathcal{J} di α . Se risulta $|\phi'(\alpha)| < 1$, allora esiste un $\delta > 0$ in corrispondenza del quale la successione $\{x^{(k)}\}$ converge ad α , per ogni $x^{(0)}$ tale che $|x^{(0)} - \alpha| < \delta$. Inoltre si ha:

$$\lim_{k \to \infty} \frac{x^{(k+1)} - \alpha}{x^{(k)} - \alpha} = \phi'(\alpha) \tag{15}$$

Dal teorema si deduce che le iterazioni di punto fisso convergono almeno linearmente cioè che, per k sufficientemente grande, l'errore del passo k+1 si comporta come l'errore al passo k moltiplicato per una costante, $\phi'(\alpha)$ nel teorema, indipendente da k ed il cui valore assoluto è minore di 1. Per questo motivo la costante viene chiamata **fattore di convergenza** e la convergenza sarà tanto più rapida quanto più piccola è tale costante.

Definizione 4: quando il metodo di punto fisso è convergente

Si suppongano valide le ipotesi del teorema di Ostrowski 1. Se, inoltre, ϕ è derivabile con continuità due volte e se:

$$\phi'(\alpha) = 0$$
 $\phi''(\alpha) \neq 0$

Allora il metodo di punto fisso (eq. 13) è convergente di ordine 2 e si ha:

$$\lim_{k \to \infty} \frac{x^{(k+1)} - \alpha}{\left(x^{(k)} - \alpha\right)^2} = \frac{1}{2} \phi''(\alpha) \tag{16}$$

Un'ultima osservazione interessante:

- Nel caso in cui $|\phi'(\alpha)| > 1$, se $x^{(k)}$ è sufficientemente vicino ad α , in modo tale che $|\phi'(x^{(k)})| > 1$, allora $|\alpha x^{(k+1)}| > |\alpha x^{(k)}|$, e non è possibile che la successione converga al punto fisso.
- Nel caso in cui $|\phi'(\alpha)| = 1$ non si può trarre alcuna conclusione perché potrebbero verificarsi sia la convergenza sia la divergenza, a seconda delle caratteristiche della funzione di punto fisso.

2 Metodi risolutivi per sistemi lineari e non lineari

2.1 Metodi diretti per sistemi lineari

2.1.1 Metodo delle sostituzioni in avanti e all'indietro

Perché sono importanti i metodi numerici?

Si consideri il seguente **sistema lineare**:

$$Ax = b$$

Dove:

- $A \in \mathbb{R}^{n \times n}$ di componenti a_{ij} e $b \in \mathbb{R}^n$ sono valori noti.
- $x \in \mathbb{R}^n$ è il vettore delle incognite.
- La costante n rappresenta il numero di equazioni lineari delle incognite x_j .

Con queste caratteristiche, è possibile rappresentare la i-esima equazione nel seguente modo:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ \to \ a_{1i} x_1 + a_{i2} x_2 + \dots + a_{in} x_n = b_i \qquad \forall i = 1, \dots, n$$

La soluzione esatta del sistema, chiamata formula di Cramer, è:

$$x_j = \frac{\det(A_j)}{\det(A)} \tag{17}$$

Con $A_j = |a_1 \dots a_{j-1} \ b \ a_{j+1} \dots a_n|$ e a_i le colonne di A. Ovviamente la soluzione **esiste ed è unica se il determinante** della matrice A è **diverso** da zero:

$$\det(A) \neq 0$$

Purtroppo questo metodo è **inutilizzabile** poiché il calcolo di un determinante richiede all'incirca n! (fattoriale di n) operazioni.

Risulta evidente che sia necessario uno studio approfondito di **metodi numerici** che si traducano in algoritmi efficienti da farli eseguire su calcolatori. Nelle seguenti pagine si introducono i primi due algoritmi "efficienti".

Definizione 1

Il seguente algoritmo rappresenta il **metodo delle sostituzioni in** avanti. Dati:

- $L\in\mathbb{R}^{n\times n}$ matrice triangolare inferiore non singolare (cioè con determinante diverso da zero $\det(L)\neq 0$)
- $\mathbf{b} \in \mathbb{R}^n$ vettore termine noto

La soluzione è data da $Lx = \mathbf{b}$ con $x \in \mathbb{R}^n$. Più in generale si ha:

$$x_{i} = \frac{b_{i} - \sum_{j=1}^{i=1} L_{ij} x_{j}}{L_{ii}}$$
(18)

Per comprendere meglio la definizione del metodo di sostituzioni in avanti, è possibile visualizzare in modo generale la matrice triangolare inferiore L (non singolare):

$$L_{n\times n} = \begin{bmatrix} L_{11} & 0 & 0 & 0 & 0 \\ & \ddots & 0 & 0 & 0 \\ & & \ddots & 0 & 0 \\ & & & \ddots & 0 & 0 \\ & & & & L_{ij} & & \ddots & 0 \\ & & & & & L_{nn} \end{bmatrix}$$

Dove ovviamente n è la grandezza della matrice quadrata. Dalla matrice, è possibile rappresentare le prime tre iterazioni, ovvero x_1 , x_2 e x_3 :

• La prima riga è:

$$x_1 = \frac{b_1}{L_{11}}$$

Si può scrivere anche in linea nel seguente modo: $L_{11}x_1=b_1$.

• La seconda riga:

$$x_2 = \frac{b_2 - (L_{21} \cdot x_1 + L_{22} \cdot x_2)}{L_{22}}^0$$

In cui x_1 è il risultato del punto precedente e x_2 è il risultato che attualmente si sta calcolando, quindi uguale a zero.

• La terza riga:

$$x_3 = \frac{b_3 - (L_{31} \cdot x_1 + L_{32} \cdot x_2 + L_{33} \cdot x_3)}{L_{33}}$$

Il **numero di operazioni** richieste dal metodo delle sostituzioni in avanti è dato da 1 sottrazione, i-1 moltiplicazioni, i-2 addizioni e 1 divisione:

$$\#op. = \sum_{i=1}^{n} (i-1) + (i-2) + 1 + 1 = \sum_{i=1}^{n} (2i-1) = n^{2}$$
 (19)

Per completezza si presenta anche il metodo delle sostituzioni all'indietro.

Definizione 2

Il seguente algoritmo rappresenta il **metodo delle sostituzioni** all'indietro. Dati:

- $U \in \mathbb{R}^{n \times n}$ matrice triangolare superiore non singolare (cioè con determinante diverso da zero det $(U) \neq 0$)
- $\mathbf{b} \in \mathbb{R}^n$ vettore termine noto

La soluzione è data da $Ux = \mathbf{b}$ con $x \in \mathbb{R}^n$. Più in generale si ha:

$$x_{i} = \frac{b_{i} - \sum_{j=i+1}^{n} U_{ij} x_{j}}{U_{ii}}$$
(20)

Come per il metodo precedente, anche in questo caso è utile visualizzare la matrice generale:

$$U_{n\times n} = \begin{bmatrix} U_{11} & & & & \\ 0 & \ddots & & U_{ij} & \\ 0 & 0 & \ddots & & \\ 0 & 0 & 0 & \ddots & \\ 0 & 0 & 0 & 0 & U_{nn} \end{bmatrix}$$

Anche da questa matrice è possibile rappresentare le iterazioni:

• La prima riga è:

$$x_1 = \frac{b_1 - (U_{12} \cdot x_2 + U_{13} \cdot x_3 + U_{14} \cdot x_4)}{U_{11}}$$

• La seconda riga è:

$$x_2 = \frac{b_2 - (U_{23} \cdot x_3 + U_{24} \cdot x_4)}{U_{22}}$$

• La terza riga è:

$$x_3 = \frac{b_3 - (U_{34} \cdot x_4)}{U_{33}}$$

• L'ultima riga è:

$$x_4 = \frac{b_4}{U_{44}}$$

Si deduce ovviamente che l'ultima riga può essere generalizzata nel seguente modo:

$$x_n = \frac{b_n}{U_{nn}}$$

Infine, il **numero di operazioni** è il medesimo del metodo delle sostituzioni in avanti, quindi n^2 .

2.1.2 Fattorizzazione LU: MEG e Cholesky

Sia $A \in \mathbb{R}^{n \times n}$. Si supponga che esistano due opportune matrici L ed U, triangolare inferiore e superiore, rispettivamente, tali che:

$$A = LU \tag{21}$$

L'equazione viene chiamata fattorizzazione LU (o decomposizione LU) di A.

La fattorizzazione LU è stata introdotta poiché se A non è singolare (quindi il determinante è diverso da zero) tali matrici devono essere anch'esse non singolari; questo assicura che i loro elementi diagonali siano non nulli. Da questa osservazione, si ottiene un risultato interessante perché la risoluzione di Ax = b è equivalente alla risoluzione dei due seguenti sistemi triangolari:

$$Ly = b Ux = y (22)$$

Dove y rappresenta la soluzione dell'equazione 18 a pagina 19, ovvero la risoluzione del metodo delle sostituzioni in avanti. Analogamente, la x rappresenta la soluzione dell'equazione 20 a pagina 20, ovvero la risoluzione del metodo delle sostituzioni all'indietro.

? Chiaro, ma che algoritmi esistono per calcolare la fattorizzazione LU?

Esistono principalmente due algoritmi: il Metodo di Eliminazione di Gauss (MEG) e la Fattorizzazione di Cholesky.

• Senza entrare troppo nel dettaglio, la fattorizzazione LU viene chiamata anche fattorizzazione di Gauss poiché è dimostrato che è possibile applicare l'algoritmo di Gauss, ovvero il Metodo di Eliminazione di Gauss (MEG).

Il MEG è possibile applicarlo per alcuni tipi di matrici:

1. Le matrici a dominanza diagonale stretta. Una matrice è detta matrice a dominanza diagonale per righe se:

$$|a_{ii}| \ge \sum_{j=1 \land j \ne i}^{n} |a_{ij}|, \qquad i = 1, \dots, n$$
 (23)

Una matrice è detta matrice a dominanza diagonale per colonne se:

$$|a_{ii}| \ge \sum_{j=1 \land j \ne i}^{n} |a_{ji}|, \qquad i = 1, \dots, n$$
 (24)

Quando nelle precedenti disuguaglianze è possibile sostituire il segno \geq con quello > si può dire che la matrice A è a dominanza diagonale stretta.

2. Le matrici reali simmetriche²e definite positive³.

$$\forall \mathbf{x} \in \mathbb{R}^n \quad \text{con } \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$

 $^{^2 \}mathrm{Una}$ matrice è simmetrica se coincide con la sua matrice trasposta.

³Una matrice viene **definita positiva** se:

Il calcolo dei coefficienti dei fattori L ed U richiede circa $\frac{2n^3}{3}$ operazioni.

• Se la matrice A, cioè la matrice usata nella definizione, è simmetrica e definita positiva, è possibile trovare la fattorizzazione di Cholesky:

$$A = R^T R \tag{25}$$

Dove R è una matrice triangolare superiore con elementi positivi sulla diagonale. Inoltre, tale fattorizzazione è **unica**.

Il calcolo della matrice R richiede circa $\frac{n^3}{3}$ operazioni (cioè la metà di quelle richieste per calcolare le due matrici della fattorizzazione LU).

2.1.3 La tecnica del pivoting

Si introduce un metodo che consenta di portare a compimento il processo di fattorizzazione LU per una qualunque matrice A non simmetrica $(\det(A) \neq 0)$.

La tecnica si basa sulla **permutazione** (cioè sullo scambio) opportuno di righe della matrice di partenza A. Purtroppo non è noto a priori quali siano le righe che dovranno essere tra loro scambiate; tuttavia questa decisione può essere presa ad ogni passo durante il quale si generino elementi nulli.

Dato che lo scambio tra righe comporta un cambiamento del pivot, questa tecnica viene chiamata **pivoting per righe**. La fattorizzazione che si trova restituisce la matrice A di partenza a meno di una permutazione fra le righe. Precisamente:

$$PA = LU \tag{26}$$

Dove P è un'opportuna matrice di permutazione. Ovvero, è una matrice uguale all'identità all'inizio del processo di fattorizzazione e se durante l'applicazione le righe di A vengono scambiate, allora deve essere fatto uno scambio analogo sulle righe di P. Per cui, alla fine sarà necessario risolvere i seguenti sistemi triangolari:

$$L\mathbf{y} = P\mathbf{b} \qquad U\mathbf{x} = \mathbf{y} \tag{27}$$

Dove y rappresenta la soluzione dell'equazione 18 a pagina 19, ovvero la risoluzione del metodo delle sostituzioni in avanti. Analogamente, la x rappresenta la soluzione dell'equazione 20 a pagina 20, ovvero la risoluzione del metodo delle sostituzioni all'indietro.

2.1.4 Errori di arrotondamento nel MEG

Prima di introdurre l'errore di arrotondamento nel Metodo di Eliminazione di Gauss, è necessario capire il problema alla fonte.

In generale, un elaboratore memorizza i numeri nel seguente modo:

$$x = (-1)^{s} \cdot (0.a_{1}a_{2} \dots a_{t}) \cdot \beta^{e} = (-1)^{s} \cdot m \cdot \beta^{e-t} \quad \text{con } a_{1} \neq 0$$
 (28)

Dove:

- s è il **segno** e può essere uguale a 0 o 1.
- β è la base e può essere un numero intero positivo maggiore od uguale a
 2.
- m è la mantissa, un intero la cui lunghezza t è il numero massimo di cifre a_i (con $0 \le a_i \le \beta 1$) memorizzabili.
- $e \ e \ e'$ l'**esponente** ed e' un intero.

I numeri con un formato identico all'equazione 28 sono detti numeri floatingpoint normalizzati essendo variabile la posizione del punto decimale. Inoltre, le cifre $a_1a_2...a_p$ (con $p \leq t$) vengono generalmente chiamate le **prime** p **cifre** significative di x.

Si noti che la condizione $a_1 \neq 0$ nell'equazione 28 impedisce che lo stesso numero possa avere più rappresentazioni (per esempio $0.1 \cdot 10^0$ uguale a $0.01 \cdot 10^1$).

L'insieme \mathbb{F} è dunque l'**insieme dei numeri** *floating point* ed è completamente caratterizzato dalla base β , dal numero di cifre significative t e dall'intervallo (L,U) (con L<0 ed U>0) di variabilità dell'esponente e.

Sostituendo ad un numero reale $x \neq 0$ il suo rappresentante floating point fl(x) in \mathbb{F} , è inevitabile un **errore di arrotondamento** uguale a:

$$\frac{|x - fl(x)|}{|x|} \le \frac{1}{2} \epsilon_M \tag{29}$$

Dove:

- $\epsilon_M = \beta^{1-t}$ è la **epsilon macchina**, ovvero la distanza fra 1 ed il più piccolo numero *floating-point* maggiore di 1.
- |x| è l'errore relativo.
- |x fl(x)| è l'errore assoluto.
- Il numero $u = \frac{1}{2} \epsilon_M$ è l'unità di arrotondamento poiché rappresenta il massimo errore relativo che la macchina può commettere nella rappresentazione di un numero reale.

Date queste osservazioni, si possono ricavare anche il **più grande** ed il **più piccolo numero positivo** di \mathbb{F} :

$$x_{\min} = \beta^{L-1}$$
 $x_{\max} = \beta^{U} \cdot (1 - \beta^{-t})$

- Se un numero è minore del numero più piccolo positivo, allora si ha una situazione di underflow.
- Se un numero è maggiore del numero più grande positivo, allora si ha una situazione di overflow.

Quindi che cosa accade in una somma tra valori molto grandi?

Ottima domanda. Quando si sommano tra loro numeri che hanno all'incirca lo stesso module, ma segno opposto, il risultato della somma può essere assai impreciso e ci si riferisce a questa situazione con l'espressione cancellazione di cifre significative.

Risulta quindi necessario fare una distinzione. L'aritmetica (o la logica) utilizzata dal calcolatore viene chiamata **aritmetica floating-point** (quella spiegata fin ora); al contrario, l'**aritmetica esatta** si basa sulla effettuazione esatta delle operazioni elementari (quindi senza tener conto degli errori di arrotondamento) su operandi noti esattamente (e non attraverso la loro rappresentazione *floating-point*).

? Va bene, ma perché è importante considerare questo aspetto?

Nonostante gli errori di arrotondamento sono generalmente piccoli, se ripetuti all'interno di algoritmi lunghi e complessi, possono portare ad effetti catastrofici (vedi per esempio l'incidente del razzo Ariane 5).

Adesso si prova a definire in modo formale questo comportamento.

- Con e_a si identificano i tipi di errore che si manifestano a seguito di una serie di errori di arrotondamento.
- Con e_t si identifica l'errore di troncamento. Tali errori sono assenti soltanto in quei modelli matematici che sono già di dimensione finita (per esempio nella risoluzione di un sistema lineare).
- Con e_c si identifica l'errore computazionale, ovvero l'insieme degli errori e_a e e_t .

Indicando con x la soluzione esatta del modello matematico e con \widehat{x} la soluzione ottenuta al termine del processo numerico, allora l'errore computazionale assoluto sarà dunque:

$$e_c^{ass} = |x - \widehat{x}| \tag{30}$$

Nel caso in cui l'errore relativo fosse diverso da zero $(x \neq 0)$:

$$e_c^{rel} = \frac{|x - \widehat{x}|}{|x|} \tag{31}$$

E Relazione tra gli errori di arrotondamento e MEG

L'introduzione fatta nelle pagine precedenti è servita perché è possibile trovare errori di arrotondamento con il prodotto LU, la quale non ritorna esattamente la matrice A.

Come appena accennato, il prodotto LU produce un errore di arrotondamento. Esso può essere ridotto usando la tecnica del pivoting che consente di contenerlo.

Inoltre, quando si risolve numericamente il sistema lineare $A\mathbf{x} = \mathbf{b}$ si può trovare la soluzione esatta $\hat{\mathbf{x}}$ di un sistema perturbato della forma:

$$(\mathbf{A} + \delta \mathbf{A})\,\widehat{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b} \tag{32}$$

Dove δA e δb sono rispettivamente una matrice ed un vettore di perturbazione che dipendono dallo specifico metodo numerico impiegato nella risoluzione del sistema.

Usando le norme si ha:

$$\frac{||\mathbf{x} - \widehat{\mathbf{x}}||}{||\mathbf{x}||} \le \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \cdot \frac{||\delta \mathbf{b}||}{||\mathbf{b}||}$$
(33)

Dove l'errore relativo sulla soluzione dipende dall'errore relativo sui dati attraverso la seguente constante (> 1):

$$K(A) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \tag{34}$$

Essa viene chiamata numero di condizionamento (spettrale) della matrice A. Ovviamente, si ricorda che tale matrice A deve essere simmetrica e definita positiva.

Se la matrice A è una matrice simmetrica e definita positiva e δA una matrice non nulla simmetrica e definita positiva tale che $\lambda_{\max}(\delta A) < \delta_{\min}(A)$, allora vale:

$$\frac{||\mathbf{x} - \widehat{\mathbf{x}}||}{||\mathbf{x}||} \le \frac{K(A)}{1 - \frac{\lambda_{\max}(\delta A)}{\lambda_{\min}(A)}} \cdot \left(\frac{\lambda_{\max}(\delta A)}{\lambda_{\max}(A)} + \frac{||\delta \mathbf{b}||}{||\mathbf{b}||}\right)$$
(35)

Infine, se le matrici A e δA non sono simmetriche e definite positive e δA è tale che $||\delta A||_2 \cdot ||A^{-1}||_2 < 1$, vale la seguente stima:

$$\frac{||\mathbf{x} - \widehat{\mathbf{x}}||}{||\mathbf{x}||} \le \frac{K_2(A)}{1 - \frac{K_2(A) \cdot ||\delta \mathbf{A}||_2}{||\mathbf{A}||_2}} \cdot \left(\frac{||\delta \mathbf{A}||_2}{||\mathbf{A}||_2} + \frac{||\delta \mathbf{b}||}{||\mathbf{b}||}\right)$$
(36)

Essendo $\left|\left|\delta\mathbf{A}\right|\right|_2=\sqrt{\lambda_{\mathrm{max}}\left(A^TA\right)}$ e:

$$K_{2}\left(A\right) = \left|\left|\delta A\right|\right|_{2} \cdot \left|\left|\delta A^{-1}\right|\right|_{2} \tag{37}$$

Il numero di condizionamento in norma 2.

- Se K_2 (A) (o K (A)) è "piccolo" la matrice A viene detta ben condizionata ed a piccoli errori sui dati corrisponderanno errori dello stesso ordine di grandezza sulla soluzione.
- Se $K_2(A)$ (o K(A)) è "grande" la matrice A viene detta mal condizionata ed potrebbe accadere che a piccole perturbazioni sui dati corrispondano grandi errori sulla soluzione.

Infine, volendo l'equazione 33 può essere riscritta introducendo il **residuo r**:

$$\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}} \tag{38}$$

Chiaramente se $\hat{\mathbf{x}}$ fosse la soluzione esatta, il residuo sarebbe il vettore nullo.

L'efficacia del residuo dipende dalla grande del numero di condizionamento di A. Infatti, sempre dall'equazione 33 si ricava:

$$\frac{||\mathbf{x} - \widehat{\mathbf{x}}||}{||\mathbf{x}||} \le K_2(\mathbf{A}) \cdot \frac{||\mathbf{r}||}{||\mathbf{b}||}$$
(39)

- Se $K_2(A)$ è "piccolo" si avrebbe la **certezza che l'errore sarà piccolo** quando lo è il residuo.
- Se K_2 (A) è "grande" <u>non</u> si può avere la certezza che l'errore sarà piccolo quando lo è il residuo.

2.1.5 Il pivoting totale

Si opera un **pivoting totale** quando la ricerca del pivot è estesa alla sottomatrice $A^{(k)}$ costituita dagli elementi $a_{ij}^{(k)}$ con $i,j=k,\ldots,n$. A differenza della tecnica del pivoting introdotta nel capitolo 2.1.3 a pagina 22, il parziale prevede il **coinvolgimento delle righe e delle colonne**, e conduce alla costruzione di due matrici di permutazione, chiamate P e Q, una sulle righe, l'altra sulle colonne:

$$PAQ = LU (40)$$

Inoltre, la soluzione del sistema $A\mathbf{x} = \mathbf{b}$ è ottenuta attraverso la risoluzione di due sistemi triangolari e di una permutazione:

$$Ly = Pb$$
 $Ux^* = y$ $x = Qx^*$ (41)

Dal punto di vista **computazionale**, la tecnica del pivoting totale ha un **costo superiore rispetto a quello parziale** (capitolo 2.1.3 a pagina 22) in quanto ad ogni passo della fattorizzazione devono essere svolti molti più confronti. Tuttavia, può **apportare dei vantaggi in termini di risparmio di memoria e di stabilità**.

Quindi riassumendo:

? Come funziona?

Può essere visto come un pivoting parziale, ma in cui c'è un coinvolgimento anche delle colonne e non solo delle righe.

Svantaggi

Più costoso rispetto al pivoting parziale poiché opera su più fronti e quindi devono essere eseguiti più confronti.

✓ Vantaggi

Non sempre, ma spesso si possono ottenere risparmi di memoria e un'alta stabilità.

2.1.6 Il fill-in di una matrice

Un altro problema che è possibile riscontrare durante la fattorizzazione LU è il fill-in.

? Come si manifesta il fenomeno del fill-in?

Durante la fattorizzazione LU, non è certo che le matrici L ed U ottenute mantengano la struttura del corrispondente triangolo della matrice A iniziale. Al contrario, il processo di fattorizzazione tende generalmente a riempire le matrici L ed U. Tale fenomeno dipende fortemente dalla struttura e dal valore dei singoli elementi non nulli della matrice A.

Esempio 2

Un altro esempio di $\mathit{fill-in}$ su una generica matrice. In questo caso, gli elementi non nulli della prima riga e della prima colonna di A inducono un riempimento totale delle corrispondenti colonne in U e righe in L, rispettivamente, mentre gli elementi non nulli sopra e sotto le diagonali di A comportano un riempimento delle diagonali superiori di U ed inferiori di L comprese tra quella principale e quelle non nulle di A.

? Come risolvere il *fill-in*?

Per ovviare al problema del fill-in, si possono adottare tecniche di riordinamento che permutano righe e colonne della matrice prima di realizzare la fattorizzazione. Tuttavia, in alcuni casi la sola applicazione della tecnica di pivoting totale (paragrafo 2.1.5 pagina 27) consente di raggiungere lo stesso obiettivo.

Prima di introdurre un nuovo esempio, si forniscono due definizioni.

Definizione 3

Una matrice quadrata di dimensione n è detta **matrice sparsa** se ha un numero di elementi non nulli dell'ordine di n (e non di n^2).

Definizione 4

Si chiama ${\bf pattern}$ di una matrice sparsa l'insieme dei suoi elementi non nulli.

2.2 Metodi iterativi per sistemi lineari

Un **metodo iterativo** per la risoluzione del sistema lineare Ax = b con:

- $A \in \mathbb{R}^{n \times n}$
- $b \in \mathbb{R}^n$
- $x \in \mathbb{R}^n$
- $\det(A) \neq 0$

Consiste nel costruire una successione di vettori del tipo:

$$\left\{\mathbf{x}^{(k)}, \ k \ge 0\right\}$$

Di \mathbb{R}^n che **converge** alla soluzione esatta \mathbf{x} , ossia tale che:

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x} \tag{42}$$

Per un qualunque vettore iniziale $\mathbf{x}^{(0)} \in \mathbb{R}$, ossia la convergenza non deve dipendere dalla scelta di $\mathbf{x}^{(0)}$.

Inoltre, si definisce ricorsivamente:

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{g} \qquad k \ge 0 \tag{43}$$

Essendo:

- B una matrice opportuna (dipendente da A)
- g un vettore opportuno (dipendente da A e da b)

? E come si possono scegliere questi valori?

La scelta della matrice B e del vettore g è piuttosto semplice. Devono essere rispettate due proprietà:

• Condizione di consistenza. I valori devono garantire che:

$$\mathbf{x} = \mathbf{B}\mathbf{x} + \mathbf{g} \tag{44}$$

Essendo $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, necessariamente dovrà aversi $\mathbf{g} = (\mathbf{I} - \mathbf{B}) \, \mathbf{A}^{-1}\mathbf{b}$.

• Condizione di convergenza. Prima di dare la condizione, è necessario comprendere alcune cose. Prima di tutto, la seguente espressione:

$$\mathbf{e}^{(k)} = \mathbf{x} - \mathbf{x}^{(k)}$$

Viene identificata come l'errore al passo k. Adesso sottraendo l'equazione 43 dalla condizione di consistenza 44 si ottiene:

$$\mathbf{e}^{(k+1)} = \mathbf{B}\mathbf{e}^{(k)}$$

Per tale ragione B viene detta matrice di iterazione del metodo 43. E adesso, si presenta la condizione di convergenza: − La matrice B è simmetrica⁴ e definita positiva⁵, allora:

$$\left| \left| \mathbf{e}^{(k+1)} \right| \right| = \left| \left| \mathbf{B} \mathbf{e}^{(k)} \right| \right| \le \rho(\mathbf{B}) \left| \left| \mathbf{e}^{(k)} \right| \right| \qquad \forall k \ge 0$$
 (45)

Dove ρ (B) è il **raggio spettrale** di B ed è il massimo degli autovalori di B. Si tenga conto che nel caso di matrici simmetriche e definite positive esso coincide con il massimo autovalore.

- Iterando a ritroso il punto precedente, si ottiene:

$$\left\| \mathbf{e}^{(k)} \right\| \le \left[\rho(\mathbf{B}) \right]^k \left\| \mathbf{e}^{(0)} \right\| \qquad k \ge 0$$
 (46)

Si noti che se $\rho(B) < 1$, allora $\mathbf{e}^{(k)} \to \mathbf{0}$ per $k \to \infty$ per ogni possibile \mathbf{e}^0 (e, conseguentemente, per ogni $\mathbf{x}^{(0)}$).

In generale, la condizione sufficiente e necessaria di convergenza è la seguente.

Definizione 5: condizione sufficiente e necessaria di convergenza

Un metodo iterativo della forma dell'equazione 43, la cui matrice di iterazione B soddisfi la condizione di consistenza (eq. 44), è **convergente** per ogni $\mathbf{x}^{(0)}$ se e soltanto se $\rho(B) < 1$ (raggio spettrale minore di 1).

Inoltre, minore è ρ (B), minore è il numero di iterazioni necessarie per ridurre l'errore iniziale di un dato fattore.

? Perché introdurre i metodi iterativi?

L'esigenza di introdurre i metodi iterativi sorge nel momento in cui si ragiona sulla quantità di tempo spesa da un calcolatore per eseguire la fattorizzazione LU su matrici di grandi dimensioni. Difatti, con matrici con ordini di 10^7 , sono necessari circa 11 giorni.

 $^5\mathrm{Definizione}$ a pagina: 21

⁴Quindi corrisponde con la sua trasposta

2.2.1 Il metodo di Jacobi

Se i coefficienti diagonali della matrice A non sono nulli, allora:

$$D = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$$

Ovvero D è la matrice diagonale costruita a partire dagli elementi diagonali di A.

Il **metodo di Jacobi** corrisponde alla forma:

$$D\mathbf{x}^{(k+1)} = \mathbf{b} - (A - D)\mathbf{x}^{(k)} \qquad k \ge 0$$

Che per componenti assume la forma:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) \qquad i = 1, \dots, n$$
 (47)

Dove $k \ge 0$ e $\mathbf{x}^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}\right)^T$ è il vettore iniziale.

? Quando converge?

In due casi:

- 1. Se la matrice $A \in \mathbb{R}^{n \times n}$ è a dominanza diagonale stressa per righe⁶, allora il metodo di Jacobi converge.
- 2. Con la seguente definizione (si veda il paragrafo 2.2.2 per comprendere meglio le definizioni):

Definizione 6: convergenza di Jacobi e Gauss-Seidel

Se $A \in \mathbb{R}^{n \times n}$ è una matrice tridiagonale, quindi una matrice quadrata che al di fuori della diagonale principale e delle linee immediatamente al di sopra e al di sotto di essa (la prima sovradiagonale e la prima sottodiagonale), ha solo valori nulli. Un esempio

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \tag{48}$$

In senso non stretto:

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ij}| \tag{49}$$

⁶ In algebra lineare una matrice a dominanza diagonale stretta per righe o matrice diagonale dominante stretta per righe è una matrice quadrata $A \in \mathbb{C}^{n \times n}$ di ordine n i cui elementi diagonali sono maggiori (non stretta sarebbe maggiori o uguali) in valore assoluto della somma di tutti i restanti elementi della stessa riga in valore assoluto:

2 Metodi risolutivi per sistemi lineari e non lineari 2.2 Metodi iterativi per sistemi lineari

di amtrice tridiagonale:

$$\begin{bmatrix} 1 & 4 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Se tale matrice è non singolare, quindi $\det(A) \neq 0$, con valori della diagonale diversi da zero, allora i metodi di Jacobi e di Gauss-Seidel sono entrambi convergenti o entrambi divergenti.

 $\bullet\,$ Se convergono, la velocità dei metodi:

Gauss-Seidel \gg Jacobi

Precisamente il raggio spettrale della matrice di iterazione del metodo di Gauss-Seidel è il quadrato del raggio spettrale di quella del metodo di Jacobi.

HPC curiosity: è interessante notare che il metodo di Jacobi viene facilmente parallelizzato per aumentare le prestazioni di calcolo.

2.2.2 Il metodo di Gauss-Seidel

Con il metodo di Jacobi, ogni componente $x_i^{(k+1)}$ del nuovo vettore $\mathbf{x}^{(k+1)}$ viene calcolata indipendentemente dalle altre. Questa può essere la base di partenza per costruire un nuovo metodo più ottimizzato, poiché se per il calcolo di $x_i^{(k+1)}$ venissero usate le nuove componenti già disponibili $x_j^{(k+1)}$, $j=1,\ldots,i-1$, assieme con le vecchie $x_i^{(k)}$, $j\geq i$.

Supponendo che gli elementi della diagonale non siano nulli, per $k \geq 0$, il **metodo di Gauss-Seidel**:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right) \qquad i = 1, \dots, n$$
 (50)

HPC curiosity: a differenza di Jacobi, questo metodo non può essere parallelizzato, ma è necessario operare in modo sequenziale.

? Quando converge?

In tre casi:

- 1. Se la matrice $A \in \mathbb{R}^{n \times n}$ è a dominanza diagonale stressa per righe (vedi pag. 32), allora il metodo di Gauss-Seidel converge.
- 2. Se la matrice A è simmetrica (uguale alla sua trasposta) e definita positiva (vedi pag. 21), allora Gauss-Seidel converge.
- 3. Con la definizione di convergenza data per il metodo di Jacobi a pagina 32

Da notare: non esistono risultati generali che consentono di affermare che il metodo di Gauss-Seidel converga sempre più rapidamente di quello di Jacobi, a parte il caso della definizione a pagina 21.

2.2.3 Il metodo di Richardson

Una tecnica generale per costruire un metodo iterativo è basata sulla seguente decomposizione additiva (o splitting) della matrice A:

$$A = P - (P - A)$$

In cui P è un'opportuna matrice non singolare $(\det(P) \neq 0)$ chiamata **precondizionatore** di A. Di conseguenza:

$$P\mathbf{x} = (P - A)\mathbf{x} + \mathbf{b}$$

È un sistema purché si ponga:

$$B = P^{-1}(P - A) = I - P^{-1}A$$

 $\mathbf{g} = P^{-1}\mathbf{b}$

Questa identità suggerisce la definizione del seguente metodo iterativo:

$$P\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) = \mathbf{r}^{(k)} \qquad k \ge 0$$

In cui:

$$\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)} \tag{51}$$

Denota il vettore residuo alla k-esima iterazione. Una generalizzazione di questo metodo iterativo è

$$P\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) = \alpha_k \mathbf{r}^{(k)} \qquad k \ge 0$$
 (52)

Dove $\alpha_k \neq 0$ è un parametro che può cambiare ad ogni iterazione e che, a priori, servirà a migliorare le proprietà di convergenza della successione $\{\mathbf{x}^{(k)}\}$.

L'equazione 52 è nota come metodo di Richardson o metodo di Richardson dinamico; se $\alpha_k = \alpha$ per ogni $k \geq 0$ esso si dice metodo di Richardson stazionario.

Questo metodo richiede ad ogni passo di trovare il cosiddetto **residuo precondizionato** $\mathbf{z}^{(k)}$ dato dalla soluzione del sistema lineare:

$$P\mathbf{z}^{(k)} = \mathbf{r}^{(k)} \tag{53}$$

Quindi, la nuova iterata è definita da $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{z}^{(k)}$.

Per questa ragione la matrice P deve essere scelta in modo tale che il costo computazionale richiesto dalla risoluzione di 53 sia modesto (ogni matrice P diagonale, tridiagonale o triangolare andrebbe bene a questo scopo).

? Quando converge?

Per studiare la convergenza, si definisce la **norma dell'energia** associata alla matrice A:

$$||\mathbf{v}||_A = \sqrt{\mathbf{v}^T A \mathbf{v}} \qquad \forall \mathbf{v} \in \mathbb{R}^n$$
 (54)

E si definisce la seguente definizione.

Definizione 7

Sia $A \in \mathbb{R}^{n \times n}$.

Per ogni matrice non singolare (det $\neq 0$) $P \in \mathbb{R}^{n \times n}$ il **metodo di** Richardson stazionario converge se e solo se:

$$\left|\lambda_i\right|^2 < \frac{2}{\alpha} \operatorname{Re} \lambda_i \qquad \forall i = 1, \dots, n$$

In cui λ_i sono gli autovalori della matrice risultato di $P^{-1}A$.

In particolare, se gli autovalori della matrice risultato di $P^{-1}A$ sono reali, allora esso converge se e solo se:

$$0 < \alpha \lambda_i < 2 \qquad \forall i = 1, \dots, n$$

Se A e P sono entrambe simmetriche (quindi uguali alle loro rispettive trasposte) e definite positive (definizione pagina 21) il metodo di Richardson stazionario **converge per ogni possibile scelta di x**⁽⁰⁾ se e solo se:

$$0<\alpha<\frac{2}{\lambda_{\max}}$$

Dove λ_{\max} (che è maggiore di zero) è l'autovalore massimo della matrice risultato di $P^{-1}A$.

E ancora, il raggio spettrale $\rho(B_{\alpha})$ della matrice di iterazione $B_{\alpha} = I - \alpha P^{-1}A$ è il minimo quando $\alpha = \alpha_{\rm opt}$, dove:

$$\alpha_{\rm opt} = \frac{2}{\lambda_{\rm min} + \lambda_{\rm max}} \tag{55}$$

Dove ovviamente λ_{\min} è l'autovalore minimo della matrice risultato di $P^{-1}A$.

Infine, se $\alpha = \alpha_{\text{opt}}$, vale la seguente stima di convergenza:

$$\left\| \left| \mathbf{e}^{(k)} \right| \right\|_{A} \le \left(\frac{K \left(P^{-1} A \right) - 1}{K \left(P^{-1} A \right) + 1} \right)^{k} \left\| \left| \mathbf{e}^{(0)} \right| \right\|_{A} \qquad k \ge 0 \tag{56}$$

Si noti che la massima velocità di convergenza è data anche dal raggio spettrale:

$$\rho_{\text{opt}} = \frac{K(P^{-1}A) - 1}{K(P^{-1}A) + 1}$$
(57)

2.2.4 Il metodo del Gradiente e del Gradiente Coniugato

Si definisce la funzione $\Phi: \mathbb{R}^n \to \mathbb{R}$:

$$\Phi\left(\mathbf{x}\right) = \frac{1}{2}\mathbf{x}^{T}A\mathbf{x} - \mathbf{x}^{T}\mathbf{b} \tag{58}$$

Nel caso in cui la matrice A è simmetrica⁷ e definita positiva⁸, Φ è una funzione convessa, cioè tale che ogni per ogni $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ e per ogni $\alpha \in [0, 1]$ vale:

$$\Phi\left(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}\right) \le \alpha \Phi\left(\mathbf{x}\right) + (1 - \alpha)\Phi\left(\mathbf{y}\right) \tag{59}$$

Ed ammette un unico punto stazionario \mathbf{x}^* che è anche un **punto di minimo** locale ed assoluto. Quindi:

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \Phi(\mathbf{x}) \tag{60}$$

È l'unica soluzione dell'equazione:

$$\nabla \Phi \left(\mathbf{x} \right) = A\mathbf{x} - \mathbf{b} = \mathbf{0} \tag{61}$$

Risolvere il problema di minimo dell'equazione 60 equivale pertanto a risolvere il sistema lineare⁹.

Per un generico $\overline{\mathbf{x}} \in \mathbb{R}^n$ diverso da \mathbf{x}^* , $\nabla \Phi(\mathbf{x})$ è un vettore non nullo di \mathbb{R}^n che individua la direzione lungo cui avviene:

- La massima crescita di Φ ;
- Di conseguenza $-\nabla \Phi(\overline{\mathbf{x}})$ individua la direzione di **massima** <u>decrescita</u> di Φ a partire da $\overline{\mathbf{x}}$.

Inoltre, ricordando che il vettore residuo nel punto $\overline{\mathbf{x}}$ è $\overline{\mathbf{r}} = \mathbf{b} - A\overline{\mathbf{x}}$, grazie alla direzione lungo cui avviene la massima crescita 61, si ha che il **vettore residuo** è uguale a:

$$\overline{\mathbf{r}} = -\nabla \Phi\left(\overline{\mathbf{x}}\right) \tag{62}$$

Cioè il residuo individua una possibile direzione lungo cui muoversi per avvicinarsi al punto di minimo x^* .

In generale, un vettore d rappresenta una direzione di discesa per Φ nel punto $\overline{\mathbf{x}}$ se si verificano le seguenti condizioni:

$$\nabla \Phi \left(\overline{\mathbf{x}} \right) \neq \mathbf{0} \quad \Rightarrow \quad \mathbf{d}^{T} \nabla \Phi \left(\overline{\mathbf{x}} \right) < 0$$

$$\nabla \Phi \left(\overline{\mathbf{x}} \right) = \mathbf{0} \quad \Rightarrow \quad \mathbf{d} = \mathbf{0}$$
(63)

Il **residuo** è pertanto una **direzione di discesa**. È banale dire che quindi per **avvicinarsi al punto di minimo** ci si **muoverà lungo opportune direzioni di discesa**. I **metodi di discesa** sono definiti nel seguente modo.

⁷Quindi corrisponde con la sua trasposta

⁸Definizione a pagina: 21

⁹Il gradiente è un argomento del calcolo differenziale vettoriale e il vettore gradiente di una funzione scalare punta secondo la direzione di massima crescita della funzione stessa. Se si è un po' arrugginiti a riguardo, si può dare un'occhiata su Wikipedia o su YouMath

Definizione 8: metodi di discesa

Assegnato un vettore $\mathbf{x}^{(0)} \in \mathbb{R}^n$, per $k = 0, 1, \dots$ fino a convergenza:

- 1. Si determina una direzione di discesa $\mathbf{d}^{(k)} \in \mathbb{R}^n$
- 2. Si determina un passo $\alpha_k \in \mathbb{R}$
- 3. Si pone $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

② Ma quindi quale è la differenza tra Gradiente e Gradiente Coniugato?

I metodi del gradiente e del gradiente coniugato sono metodi di discesa che si differenziano nella scelta delle direzioni di discesa, mentre la scelta dei passi α_k è *comune* ad entrambi. Per cui, qua di seguito si esami la scelta dei passi, supponendo di aver già calcolato la nuova direzione $\mathbf{d}^{(k)}$.

La scelta del passo α_k è comune ad entrambi, quindi:

$$\alpha_k = \operatorname*{argmin}_{\alpha \in \mathbb{R}^n} \Phi\left(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}\right)$$
 (64)

Ovvero un passo α_k tale che $\Phi\left(\mathbf{x}^{(k+1)}\right)$ sia il **minimo** di Φ lungo la direzione $\mathbf{d}^{(k)}$ passante per $\mathbf{x}^{(k)}$.

Definizione metodo del gradiente

Adesso si può dare la definizione del Gradiente. Il **metodo del gradiente** è caratterizzato dalla scelta:

$$\mathbf{d}^{(k)} = \mathbf{r}^{(k)} = -\nabla \Phi\left(\mathbf{x}^{(k)}\right) \qquad k = 0, 1, \dots$$
 (65)

Quindi la direzione di discesa ad ogni passo k è la direzione opposta a quella del gradiente (come si vede dal meno davanti a ∇) della funzione Φ .

L'algoritmo del metodo del gradiente è: dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$, si definisce $\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$ e si calcola:

per
$$k = 0, 1, ...$$

$$\alpha_k = \frac{\left(\mathbf{r}^{(k)}\right)^T \mathbf{r}^{(k)}}{\left(\mathbf{r}^{(k)}\right)^T A \mathbf{r}^{(k)}}$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{r}^{(k)}$$

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{r}^{(k)}$$
(66)

Quando converge il metodo del gradiente?

Se $A \in \mathbb{R}^{n \times n}$ è simmetrica¹⁰ e definita positiva¹¹ il metodo del gradiente converge alla soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ per ogni dato iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^n$ e inoltre vale la seguente **stima dell'errore**:

$$\left\| \left| \mathbf{e}^{(k)} \right| \right\|_{A} \le \left(\frac{K(A) - 1}{K(A) + 1} \right)^{k} \left\| \left| \mathbf{e}^{(0)} \right| \right\|_{A} \qquad k \ge 0 \tag{67}$$

Dove $||\cdot||$ è la **norma dell'energia** definita a pagina 36 e K(A) è il numero di condizionamento (spettrale) della matrice A definito a pagina 25.

⚠ Ma si può fare di meglio! Ed ecco che arriva il metodo del gradiente coniugato...

È possibile costruire delle direzioni di discesa "migliori" al fine di **giungere** a convergenza in un numero di iterazioni inferiore rispetto a quelle del metodo del gradiente. Partendo dunque dal metodo del gradiente e sfruttando la definizione ricorsiva dei vettori $\mathbf{x}^{(k)}$, si può ottenere:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

$$= \mathbf{x}^{(k-1)} + \alpha_{k-1} \mathbf{d}^{(k-1)} + \alpha_k \mathbf{d}^{(k)}$$

$$= \dots$$

$$= \mathbf{x}^{(0)} + \sum_{j=0}^{k} \alpha_j \mathbf{d}^{(j)}$$

$$(68)$$

Si deduce che il vettore $(\mathbf{x}^{(k+1)} - \mathbf{x}^{(0)}) \in \mathbb{R}^n$ è una combinazione lineare delle direzioni di discesa $\{\mathbf{d}^{(j)}\}_{j=0}^k$.

Il metodo del gradiente coniugato costruisce un sistema di direzioni di discesa in \mathbb{R}^n che siano tutte linearmente indipendenti fra di loro (quindi $\left\{\mathbf{d}^{(k)}\right\}_{k=0}^{n-1}$ sarà una base di \mathbb{R}^n) e tali che i valori $\left\{\alpha_k\right\}_{k=0}^{n-1}$ siano proprio i coefficienti dello sviluppo di $\left(\mathbf{x}^* - \mathbf{x}^{(0)}\right)$ rispetto alla base $\left\{\mathbf{d}^{(k)}\right\}_{k=0}^{n-1}$. Questo comporta che l'n-simo termine $\mathbf{x}^{(n)}$ della successione (eq. 68) coincide con la soluzione esatta \mathbf{x}^* .

? Quando converge il metodo del gradiente coniugato?

Sia $A \in \mathbb{R}^{n \times n}$ una matrice simmetrica e definita positiva. Il metodo del gradiente coniugato per risolvere un sistema lineare **converge al più in** n **iterazioni** (in aritmetica esatta). Inoltre, il residuo $\mathbf{r}^{(k)}$ alla k-esima iterazione (con k < n) è ortogonale a $\mathbf{d}^{(j)}$ per $j = 0, \ldots, k-1$ e:

$$\left\| \left| \mathbf{e}^{(k)} \right| \right\|_{A} \le \frac{2c^{k}}{1 + c^{2k}} \left\| \left| \mathbf{e}^{(0)} \right| \right\|_{A} \tag{69}$$

¹⁰Quindi corrisponde con la sua trasposta

¹¹Definizione a pagina: 21

2 Metodi risolutivi per sistemi lineari e non lineari 2.2 Metodi iterativi per sistemi lineari

Con:

$$c = \frac{\sqrt{K(A)} - 1}{\sqrt{K(A)} + 1} \tag{70}$$

In aritmetica esatta il metodo del gradiente coniugato è pertanto un **metodo** diretto in quanto termina dopo un numero finito di iterazioni!

■ Il precondizionamento migliora il metodo del gradiente

Le iterazioni del metodo del gradiente, quando convergono alla soluzione esatta \mathbf{x}^* , sono caratterizzate da una **velocità di convergenza dipendente dal numero di condizionamento** della matrice A: **più grande è il numero di condizionamento di** A **e tanto più lenta sarà la convergenza**. Quindi, invece di risolvere il sistema lineare, si può risolvere il cosiddetto **sistema precondizionato** (equivalente):

$$P_L^{-1}AP_R^{-1}\widehat{\mathbf{x}} = P_L^{-1}\mathbf{b} \qquad \text{con } \widehat{\mathbf{x}} = P_R\mathbf{x}$$
 (71)

Dove P_L e P_R sono opportune matrici non singolari tali che:

1. La matrice:

$$P = P_L P_R \tag{72}$$

è detta **precondizionatore**, è simmetrica e definita positiva;

- 2. $K(P^{-1}A) \ll K(A)$
- 3. La risoluzione di sistemi lineari della forma:

$$P_L \mathbf{s} = \mathbf{t} \qquad P_R \mathbf{v} = \mathbf{w} \tag{73}$$

è computazionalmente molto meno costosa della risoluzione del sistema originario $A\mathbf{x} = \mathbf{b}$.

Se si sceglie P_R uguale alla matrice identità, la matrice $P = P_L$ è detta **precondizionatore sinistro**, ed il sistema precondizionato assume la forma:

$$P^{-1}A\mathbf{x} = P^{-1}\mathbf{b} \tag{74}$$

Analogamente, se P_L è la matrice identità, la matrice $P = P_R$ è detta **precondizionatore destro**, ed il sistema precondizionato assume la forma:

$$AP^{-1}\widehat{\mathbf{x}} = \mathbf{b} \qquad \operatorname{con} \widehat{\mathbf{x}} = P\mathbf{x} \tag{75}$$

Il metodo del gradiente precondizionato si ottiene applicando il metodo del gradiente al sistema precondizionato in cui si prenda $P_R = P_L^T$ e quindi $P_R^{-1} = P_L^{-T} \equiv \left(P_L^{-1}\right)^T$. Più precisamente, riscrivendo:

$$P_L^{-1}AP_L^{-T}P_L^T\mathbf{x} = P_L^{-1}\mathbf{b} \tag{76}$$

2.3 Metodi numerici per sistemi non lineari

2.3.1 Introduzione

Molto spesso i problemi ingegneristici sono *non lineari*. Per risolvere tali problemi in modo ottimale, si adotta l'approssimazione numerica, la quale porta a dover risolvere un **sistema di equazioni non lineari**.

In generale, si ha il seguente problema:

$$\mathbf{f}(\mathbf{x}) = \mathbf{0} \longleftrightarrow \begin{cases} f_1(x_1, \dots, x_j, \dots, x_n) = 0 \\ \dots \\ f_i(x_1, \dots, x_j, \dots, x_n) = 0 \\ \dots f_n(x_1, \dots, x_j, \dots, x_n) = 0 \end{cases}$$

Dove:

- $\mathbf{x} \in \mathbb{R}^n$ è il vettore delle incognite x_i
- $\bullet \ \mathbf{f}$ è una funzione del tipo $\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^n$
- $\bullet\,\,f_i$ sono funzioni che esprimono relazioni non lineari fra le incognite

Questo caso è un **problema poiché presenta due principali difficoltà** dal punto di vista numerico:

- 1. Si è di fronte ad un sistema, per cui non si hanno equazioni singole.
- 2. Inoltre, il sistema è **non lineare**, e questo significa che deve essere linearizzato per poterlo risolvere.

2.3.2 Metodo di Newton

Il metodo di newton per sistemi lineari era stato introdotto nel paragrafo 1.3 (pagina 9). Può essere riscritto in modo equivalente per sistemi non lineari nel seguente modo.

Se la funzione $f: \mathbb{R}^n \to \mathbb{R}$ con $n \geq 1$, è di classe $C^2(\mathbb{R}^n)$, e se è possibile calcolare le sue derivate prime e seconde, allora è possibile applicare il metodo di Newton all'equazione vettoriale $\mathbf{f}(\mathbf{x}) = \nabla f(\mathbf{x}) = \mathbf{0}$ per calcolare il punto di minimo \mathbf{x}^* .

Dunque, il metodo di Newton per sistemi non lineari si formula nel seguente modo. Dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$, per $k = 0, 1, \dots$ e fino a convergenza, si deve:

risolvere
$$\mathbf{H}\left(\mathbf{x}^{(k)}\right) \delta \mathbf{x}^{(k)} = -\nabla \mathbf{f}\left(\mathbf{x}^{(k)}\right)$$

ponendo $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$ (77)

È interessante notare che la matrice Hessiana utilizzata ne metodo di Newton è uguale alla matrice Jacobiana $J_{\mathbf{f}}(\mathbf{x}^{(k)})$ valutata nel punto $\mathbf{x}^{(k)}$.

Dato un punto $z \in \mathbb{R}^n$, si introduce la matrice Jacobiana relativa a \mathbf{f} :

$$J(\mathbf{z}) = \nabla \mathbf{f}(\mathbf{z}) \tag{78}$$

Di componenti:

$$j_{il} = \frac{\partial f_i(\mathbf{z})}{\partial x_l} \qquad i, l = 1, \dots, n$$
 (79)

Per ogni $\mathbf{x} \in \mathbb{R}^n$ si ha quindi $J(\mathbf{z}) \in \mathbb{R}^{n \times n}$. Avendo definito la matrice Jacobiana non singolare (determinante diverso da zero), si può riscrivere il metodo di Newton in modo alternativo nel seguente modo:

risolvere
$$J(\mathbf{x}^{(k)}) \delta \mathbf{x}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$$

ponendo $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$ (80)

₹ Algoritmo

Ad ogni iterazione k, il primo passo del metodo di Newton consiste nella risoluzione di un sistema lineare di dimensione n:

1. Risolvere il sistema lineare $n \times n$:

$$J\left(\mathbf{x}^{(k)}\right)\delta\mathbf{x}^{(k)} = -\mathbf{f}\left(\mathbf{x}^{(k)}\right)$$

Infatti J $(\mathbf{x}^{(k)})$ è una matrice non singolare di coefficienti noti:

$$\frac{\partial f_i\left(\mathbf{x}^{(k)}\right)}{\partial x_l}$$

 $E - f(\mathbf{x}^{(k)})$ è il termine noto.

- 2 Metodi risolutivi per sistemi lineari e non lineari 2.3 Metodi numerici per sistemi non lineari
 - 2. Una volta risolto il sistema lineare e ottenuto $\delta \mathbf{x}^{(k)}$, si aggiorna la variabile $\mathbf{x}^{(k+1)}$ mediante il secondo passo del metodo:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$$

Come detto, questo procedimento avviene ad ogni iterazione k!

Il metodo di Newton, può essere considerato un:

- Metodo locale se:
 - Esiste un $\delta > 0$
 - − È vera la condizione:

$$\left| \left| \alpha - \mathbf{x}^{(0)} \right| \right| < \delta$$

Per cui:

$$\lim_{k \to \infty} \left| \left| \alpha - \mathbf{x}^{(k)} \right| \right| = 0$$

- Metodo del secondo ordine se:
 - Newton converge
 - La matrice Jacobiana J è derivabile

Per cui:

$$\frac{\left|\left|\alpha - \mathbf{x}^{(k+1)}\right|\right|}{\left|\left|\alpha - \mathbf{x}^{(k)}\right|\right|^{2}} \le C$$

Si ricorda che α sono le radici di \mathbf{f} .

? Criteri d'arresto

Dato che il metodo di Newton è un metodo iterativo, è necessario introdurre opportuni criteri di arresto. Quindi:

• Criterio sul **residuo**:

$$\left\| \mathbf{f} \left(\mathbf{x}^{(k)} \right) \right\| < \varepsilon$$
 (81)

• Criterio sull'incremento:

$$\left| \left| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \right| \right| < \varepsilon \tag{82}$$

Scegliendo un'opportuna tolleranza ε .

Costi computazionali e varianti ottimizzate

Il metodo di Newton per sistemi non lineari, richiede come **costo computazionale**:

CPU TIME = # iterazioni ×
$$(C_{cos} + C_{sl})$$
 (83)

Dove:

- C_{cos} è il tempo necessario per costruire la matrice Jacobiana $J(\mathbf{x}^{(k)})$.
- C_{sl} è il tempo di risoluzione del corrispondente sistema lineare.

Si possono fare alcune osservazioni riguardo questo calcolo:

- La matrice Jacobiana $J(\mathbf{x}^{(k)})$ deve essere ricostruita ad ogni iterazione.
- Generalmente, il numero di iterazioni (# iterazioni) è molto basso poiché il metodo di Newton è di ordine 2.

In ogni caso, a causa di un tempo di processo alto nei casi di sistemi lineari con ordini maggiori, esistono due principali alternative:

1. **Aggiornamento Jacobiana ogni** p **iterazioni**. Dato un numero intero $p \geq 2$, l'idea è quella di aggiornare la matrice Jacobiana $J\left(\mathbf{x}^{(k)}\right)$ solo ogni p volte.

Così facendo, il tempo di costruzione della matrice Jacobiana C_{\cos} viene ridotto, dato che si riduce a p iterazioni.

In questo metodo, si definisce $C_{\rm cos-Newton}$ il tempo di costruzione della matrice Jacobiana che si avrebbe applicando il semplice metodo di Newton (e non tale variante!). E la variabile $C_{\rm cos}$ nella formula 83 diventa:

$$C_{\cos} = \frac{C_{\cos-\text{Newton}}}{p} \tag{84}$$

Ovviamente p sono il numero di iterazioni.

Infine, utilizzando la fattorizzazione LU per la risoluzione del sistema lineare, il costo della fattorizzazione della matrice Jacobiana $J\left(\mathbf{x}^{(k)}\right)$ è suddiviso su p iterazioni. Di fatto, ad ogni iterazione mediamente si ha un costo di:

$$\frac{2n^3}{3n}$$

Tuttavia, così facendo, il numero di iterazioni è nettamente maggiore a quello del secondo ordine. Un numero di iterazioni troppo elevato rischia di perdere la convergenza. Per questo motivo, si dovrebbe rispettare la seguente relazione:

#iterazioni ×
$$\frac{(C_{\cos} + C_{\rm sl})}{p}$$
 < #iterazioni × $(C_{\cos} + C_{\rm sl})$ (85)

2. **Inexact Newton**. L'idea è quella di sostituire ad ogni iterazione k la matrice Jacobiana $J(\mathbf{x}^k)$ con una sua approssimazione \tilde{J}^k che sia in generale facilmente costruibile e tale che il sistema lineare associato sia facilmente risolvibile.

Tale tecnica è un **metodo esatto**, quindi raggiunta la convergenza la soluzione è α (la parola *inexact* si riferisce alla matrice Jacobiana!).

3 Approssimazione di funzioni e di dati

3.1 Interpolazione

In molte applicazioni concrete si conosce una funzione solo attraverso i suoi valori in determinati punti. Si supponga di conoscere n+1 coppie di valori $\{x_i, y_i\}$ con $i=0,\ldots,n$, dove i punti x_i , tutti distinti, vengono chiamati **nodi**.

In tal caso, può apparire naturale richiedere che la funzione approssimante \tilde{f} soddisfi le seguenti uguaglianze:

$$\tilde{f}(x_i) = y_i \qquad i = 0, 1, \dots, n$$
 (86)

Una tale funzione \tilde{f} viene chiamata interpolatore dell'insieme di dati $\{y_i\}$ e le equazioni del tipo 86 sono le **condizioni di interpolazione**.

Esistono vari tipi di interpolatori:

• L'interpolatore polinomiale:

$$\tilde{f}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

• L'interpolatore trigonometrico:

$$\tilde{f}(x) = a_{-M}e^{-iMx} + \dots + a_0 + \dots + a_Me^{iMx}$$

Dove M è un intero pari a $\frac{n}{2}$ se n è pari, $\frac{(n+1)}{2}$ se n è dispari, e i è l'unità immaginaria.

• L'interpolatore razionale:

$$\tilde{f}(x) = \frac{a_0 + a_1 x + \dots + a_k x^k}{a_{k+1} + a_{k+2} x + \dots + a_{k+n+1} x^n}$$

3.2 Interpolazione Lagrangiana

L'interpolazione Lagrangiana è un'interpolazione di tipo polinomiale.

Definizione 1: interpolazione Lagrangiana

Per ogni insieme di coppie $\{x_i, y_i\}$, i = 0, ..., n, con i nodi x_i distinti fra loro, esiste un unico polinomio di grado minore od uguale a n, che viene indicato con \prod_n e viene chiamato **polinomio interpolatore** dei valori y_i nei nodi x_i , tale che:

$$\prod_{n} (x_i) = y_i \qquad i = 0, \dots, n$$
(87)

Quando i valori $\{y_i, i = 0, ..., n\}$, rappresentano i valori assunti da una funzione continua f (ovvero $y_i = f(x_i)$), \prod_n è detto **polinomio interpolatore** di f (in breve, interpolatore di f) e viene indicato con $\prod_n f$.

Quindi un *interpolatore* è una funzione che assume il valore dei dati in corrispondenza dei nodi x_i .

? Come ottenere il polinomio interpolatore?

Per ogni k compreso tra 0 e n si costruisce un polinomio di grado n, denotato $\varphi_k(x)$, il quale interpola i valori y_i tutti nulli fuorché quello per i=k per il quale $y_k=1$, ovvero:

$$\varphi_k \in \mathbb{P}_n \qquad \varphi_k(x_j) = \delta_{jk} = \begin{cases} 1 & \text{se } j = k \\ 0 & \text{altrimenti} \end{cases}$$

Dove δ_{jk} è il simbolo di Kronecker. Si può dunque definire la formula dei polinomi caratteristici di Lagrange $\varphi_k(x)$:

$$\varphi_k(x) = \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j} \qquad k = 0, \dots, n$$
 (88)

Che non è altro che:

$$\varphi_{k}(x) = \frac{(x - x_{0})(x - x_{1}) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1}) \cdots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \cdots (x - x_{n})}$$

Essi sono dati dal prodotto di n termini di primo grado, perciò sono dei **polinomi di grado** n.

Esempio 1: polinomi caratteristici di Lagrange

Si prenda:

 \bullet n=2

• $x_1 = 0$

• $x_0 = -1$

• $x_2 =$

I 3 polinomi caratteristici di Lagrange sono dati da:

$$\varphi_{0}(x) = \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} = \frac{1}{2}x(x-1)$$

$$\varphi_{1}(x) = \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} = -(x+1)(x-1)$$

$$\varphi_{2}(x) = \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})} = \frac{1}{2}x(x+1)$$

Come atteso, si nota che i 3 polinomi caratteristici di Lagrange sono dei polinomi di grado 2 e soddisfano la proprietà $\varphi_k(x_i) = \delta_{ik}$

Quanto detto finora, può essere generalizzato nel seguente modo:

$$\prod_{n} (x) = \sum_{j=0}^{n} y_{j} \varphi_{j} (x)$$
(89)

Proprietà interpolatore Lagrangiano

Le proprietà sono:

1. $\prod_{n}(x)$ è un **interpolatore**. Difatti, valutandolo per un generico nodo x_i , si ottiene:

$$\prod_{n} (x_{i}) = \sum_{j=0}^{n} y_{j} \varphi_{j} (x_{i}) = \sum_{j=0}^{n} y_{j} \delta_{ij} = y_{i}$$

- 2. $\prod_{n}(x)$ è un **polinomio di grado** n. Infatti, esso è dato dalla somma dei polinomi di grado n $y_{j}\varphi_{j}(x)$.
- 3. $\prod_n(x)$ è l'unico polinomio di grado m interpolante gli n+1 dati $(x_i,y_i),\,i=0,\ldots,n.$

Si supponga esista un altro interpolatore polinomiale di grado $n \psi_n(x)$ che interpola i dati $(x_i, y_i), i = 0, ..., n$. Si introduce il seguente polinomio di grado n:

$$D\left(x\right) = \prod_{n} \left(x\right) - \psi_{n}\left(x\right)$$

Allora vale il seguente risultato:

$$D(x_i) = \prod_{n} (x_i) - \psi_n(x_i) = 0 \qquad \forall i = 0, \dots, n$$

Di conseguenza, D(x) ha n+1 zeri. Essendo un polinomio di grado n, si deve avere $D(x) \equiv 0$, da cui segue l'unicità.

3.2.1 Accuratezza (errore) nel caso di approssimazione di funzioni

Si consideri il caso di approssimazione dei valori di una funzione f(x). Si ha dunque il seguente risultato.

Definizione 2: quantificazione dell'errore

Sia I un intervallo limitato, e si considerino n+1 nodi di interpolazione distinti $\{x_i, i=0,\ldots,n\}$ in I. Sia f derivabile con continuità fino all'ordine n+1 in I. Allora $\forall x \in I, \, \exists \xi_x \in I$ tale che:

$$E_n f(x) = f(x) - \prod_n f(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$
 (90)

In altre parole, la definizione rappresenta come si può quantificare l'errore che si commette sostituendo ad una funzione f il suo polinomio interpolatore $\prod_n f$ (in questo caso Lagrangiano).

Nel seguente grafico si può notare che la funzione $E_n f(x)$ si annulla in corrispondenza dei nodi x_i . Inoltre, è in generale diverso da zero lontano dai nodi, ovvero con $x \neq x_i$.

Nel caso di nodi equispaziati, vale la seguente **stima dell'errore massimo** dell'interpolatore Lagrangiano:

$$\max_{x \in I} |E_n f(x)| \le \frac{\left| \max_{x \in I} f^{(n+1)(x)} \right|}{4(n+1)} \cdot h^{n+1}$$
(91)

3.2.2 Convergenza dell'interpolatore Lagrangiano

All'aumento delle informazioni a disposizione (n + 1), idealmente si vorrebbe un **miglioramento dell'accuratezza di una funzione approssimante**. In particolare, si vorrebbe il seguente risultato:

$$\lim_{n\to\infty} \max_{x\in I} |E_n f(x)| = 0$$

Dall'equazione 91, a pagina 48, si può notare che il denominatore della frazione e il termine h^{n+1} tendono a zero quando n tende a infinito. Al contrario, il numeratore non è certo se sia limitato per n che tende a infinito.

Difatti, possono esistere casi in cui si ha:

$$\lim_{n \to \infty} \left| \max_{x \in I} f^{(n+1)}(x) \right| = \infty$$

Che portano a:

$$\lim_{n \to \infty} \max_{x \in I} |E_n f(x)| = \infty$$

Ovvero alla non convergenza dell'interpolatore Lagrangiano.

Esempio 2: fenomeno di Runge

Il fenomeno di Runge è un evento che si scatena quando l'interpolatore Lagrangiano non raggiunge la convergenza.

In particolare, in presenza di questo fenomeno, la funzione errore E_n presenta delle oscillazioni ai nodi estremi che crescono con il crescere di n

Un esempio di interpolatore $\prod_{12} f$ (in linea continua) calcolato su 13 nodi equispaziati nel caso della funzione di Runge (in linea tratteggiata):

$$f\left(x\right) = \frac{1}{\left(1 + x^2\right)}$$

3.3 Interpolazione Lagrangiana composita

Una miglioria che è possibile fare all'interpolazione Lagrangiana, è quella di introdurre un interpolatore continuo dato dall'unione di tanti interpolatori Lagrangiani di basso ordine, ovvero $k \ll n$.

Tali singoli interpolatori locali sono costruiti sugli intervalli disgiunti I_j ognuno composto da k+1 nodi e di lunghezza H=kh:

Tale interpolatore globale, chiamato interpolazione Lagrangiana composita, viene indicato con $\prod_k^H(x)$. Se si vuole enfatizzare che l'interpolatore è stato costruito per approssimare una certa funzione f, allora si utilizza la notazione $\prod_k^H f(x)$.

Esempio 3: interpolatore Lagrangiano composito lineare

Si consideri il caso k=1. La funzione rappresentata in linea continua è:

$$f(x) = x^{2} + \frac{10}{(\sin(x) + 1.2)}$$

Ed il suo interpolatore lineare composito rappresentato con la linea tratteggiata:

$$\prod_{1}^{H} f(x)$$
80
70
60
40
30
20
10
0-2
0
2
4
6
8

Vista la sua semplicità, questo interpolatore è molto utilizzato nelle applicazioni.

3.3.1 Accuratezza (errore) e convergenza dell'interpolatore Lagrangiano composito

A differenza dell'interpolazione Lagrangiana, all'aumentare del numero di informazioni n+1 che si hanno a disposizione, l'accuratezza dell'interpolatore Lagrangiano composito subisce un miglioramento.

All'aumentare del valore di n, verranno aumentati anche il numero di intervalli I_j su cui costruire gli interpolatori Lagrangiani locali, senza variare il gradi locale k che rimarrà costante. Questa tecnica riesce ad evitare il fenomeno di Runge, ovverosia che l'interpolatore Lagrangiano non raggiunge la convergenza.

Riguardo alla convergenza, si introduce l'errore puntuale:

$$E_k^H f(x) = f(x) - \prod_k^H f(x)$$
(92)

Il quale è dato dal massimo degli errori degli interpolatori Lagrangiani di grado k su ogni I_j . In caso di nodi equispaziati, si ottiene che la **stima dell'errore** dell'interpolatore Lagrangiano composito tende a zero nel caso in cui H tende a zero:

$$\max_{x \in I} |E_k^H f(x)| \leq \max_{j} \frac{\max_{x \in I_j} |f^{(k+1)}(x)|}{4(k+1)} \cdot h^{(k+1)}$$

$$\leq \frac{\max_{x \in I} |f^{(k+1)}(x)|}{4(k+1)} \cdot h^{(k+1)}$$
sostituendo $h \text{ con } \frac{H}{k}$

$$\leq \underbrace{\frac{\max_{x \in I} |f^{(k+1)}(x)|}{4(k+1)k^{(k+1)}}}_{\text{Indipendente da } H} \cdot H^{(k+1)}$$
(93)

Oltre ad un errore, questo dimostra la convergenza dell'interpolatore Lagrangiano composito.

$\mathbf{\mathfrak{g}}$ Se H e k sono importanti, come devono essere scelti?

Dipende dall'origine dei dati:

- Se i dati provengono da una funzione f(x) nota sull'intervallo [a,b] che genera $y_i = f(x_i)$ con $i = 0, \ldots, n$, allora:
 - Si **decide il valore di** k da utilizzare cercando di non superare il valore 3 per non incorrere nel fenomeno di Runge (non convergenza!);
 - Si sceglie il valore dell'ampiezza degli intervalli H in modo da avere l'errore desiderato in base alla stima dell'errore riportato nell'equazione 93;
 - Si partiziona l'intervallo [a, b] in intervallo di ampiezza H e su ognuno di essi si considerano k + 1 nodi.
- Se i dati provengono da misure, il numero di questi n+1 è fissato. Per cui le operazioni da fare possono essere una delle seguenti:
 - Un'interpolazione composita lineare:

$$k = 1 \qquad H = \frac{(b-a)}{n}$$

- Un'interpolazione composita quadratica:

$$k = 2 \qquad H = \frac{2(b-a)}{n}$$

3.4 Interpolazione sui nodi di Chebyshev

L'interpolazione Lagrangiana composita consente di evitare il fenomeno di Runge. Tuttavia, l'interpolazione Lagrangiana può essere modificata **posizionando** i nodi in precise posizioni che garantiscono la stabilità al crescere di n. Negli interpolatori presentati, tutti si basavano su nodi equispaziati. Nel seguente capitolo si mostrano i nodi di Chebyshev, ovvero un'ubicazione specifica dei nodi nello spazio.

? Solo il fenomeno di Runge può essere evitato?

La risposta chiaramente è no. L'applicazione di questa tecnica consente:

- Di utilizzare sempre con successo il polinomio interpolatore Lagrangiano di grado n.
- Di evitare la non convergenza, ovvero il fenomeno di Runge.

Nodi di Chebyshev

Si consideri il caso in cui il dominio sia [-1,1] e n+1 dati ubicati in corrispondenza delle seguenti ascisse:

$$\widehat{x}_i = -\cos\left(\frac{\pi i}{n}\right) \qquad i = 0, \dots, n$$
 (94)

Figura 3: Distribuzione dei nodi di Chebyshev nell'intervallo [-1,1].

Questi nodi di Chebyshev sono ottenuti come proiezioni sull'asse x di punti sulla circonferenza unitaria individuati da settori circolari ottenuti con lo stesso angolo $\frac{\pi}{n}$.

? E se viene applicato l'interpolatore Lagrangiano sui nodi di Chebyshev?

Come detto all'inizio, si può modificare direttamente l'interpolatore Lagrangiano. Quindi, si consideri l'interpolatore Lagrangiano di grado n costruito sui nodi di Chebyshev. Tale interpolatore si ottiene applicando le equazioni presentate

precedentemente, con l'unico vincolo di **prendere in considerazione** \hat{x}_i come nodi su cui costruire gli n polinomi caratteristici di Lagrange:

$$\widehat{\varphi}_{k}(x) = \prod_{j=0, j \neq k}^{n} \frac{x - \widehat{x}_{i}}{\widehat{x}_{k} - \widehat{x}_{i}}$$

$$\prod_{j=0}^{n} \widehat{y}_{j} \widehat{\varphi}_{j}(x)$$

$$(95)$$

La variabile $\prod_{n=1}^{C}(x)$ rappresenta l'interpolatore Lagrangiano sui nodi di Chebyshev. Si indica con la rappresentazione $\prod_{n=1}^{C}f(x)$ quando viene applicato a dati ottenuti dalla valutazione di una funzione f, ovvero f0, ovvero f1, f2, f3, f3, f4, f5, f6, f7, f8, f8, f9, f1, f2, f1, f1, f1, f2, f1, f2, f2, f3, f3, f3, f3, f3, f3, f3, f3, f4, f

3.4.1 Convergenza dell'interpolazione sui nodi di Chebyshev

<u>Teorema</u> 2. Si supponga che la funzione f(x) ammetta derivata continua fino all'ordine s+1 compreso, ovverosia $f \in C^{(s+1)}([-1,1])$.

Allora, si ha il seguente risultato di convergenza per l'interpolazione sui nodi di Chebyshev:

$$\max_{x \in [-1,1]} \left| f(x) - \prod_{n=1}^{C} f(x) \right| \le \tilde{C} \frac{1}{n^s}$$
(96)

 $Per\ un'opportuna\ costante\ C.$

Dal precedente teorema, si possono fare 3 osservazioni:

1. Se $s \ge 1$ allora si è sicuri che ci sarà **sempre convergenza**:

$$\lim_{n \to \infty} \max_{x \in [-1,1]} \left| f(x) - \prod_{n=1}^{C} f(x) \right| = 0$$

$$(97)$$

- 2. La velocità di convergenza aumenta all'aumentare di s.
- 3. <u>Se</u> il teorema è valido $\forall s > 0$, allora la **velocità di convergenza è** esponenziale. Questa è la migliore stima che è possibile ottenere, dato che è più veloce di qualsiasi altro $\frac{1}{n^s}$:

$$\max_{x \in [-1,1]} \left| f - \prod_{n}^{C} f(x) \right| \le \tilde{C}e^{-n} \tag{98}$$

3.4.2 Generalizzazione dell'intervallo

Nel caso in cui il dominio di interesse non sia più da [-1,1] (come viene utilizzato nelle precedenti equazioni), ma un intervallo generale [a,b], la "conversione" può avvenire mappando i nodi \widehat{x}_j da [-1,1] a [a,b]:

$$x = \psi(\widehat{x}) = \frac{a+b}{2} + \frac{b-a}{2}\,\widehat{x} \tag{99}$$

Applicando la generalizzazione dell'intervallo ai nodi di Chebyshev, si ottiene:

$$x_j^C = \psi(\widehat{x}_j) = \frac{a+b}{2} + \frac{b-a}{2}\,\widehat{x}_j \qquad j = 0, \dots, n$$
 (100)

Di conseguenza, il polinomio di Lagrange applicato sui nodi di Chebyshev in un intervallo generale diventa:

$$\varphi_k^C(x) = \prod_{j=0, j \neq k}^n \frac{x - x_j^C}{x_k^C - x_j^C}$$
(101)

3.5 Interpolazione trigonometrica

Nel caso di funzioni periodiche, ad esempio con periodo 2π e con $f(0) = f(2\pi)$, si ha il valore delle ascisse pari a:

$$x_j = \frac{2\pi j}{(n+1)} \qquad j = 0, \dots, n$$

In questo caso, l'interpolatore Lagrangiano non approssima in modo ottimale la funzione f lontana dai nodi, dato che è un polinomio di grado n (per cui in generale non periodico!).

Supponendo n pari e $M = \frac{n}{2}$, si può costruire l'interpolatore trigonometrico $\tilde{f}(x)$ come la combinazione lineare di seni e coseni:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{M} \left[a_k \cos(kx) + b_k \sin(kx) \right]$$
 (102)

Per opportuni coefficienti complessi incogniti a_k , per $k=0,\ldots,M$ e b_k per $k=1,\ldots,M$. Come si può vedere, la funzione periodica $\tilde{f}(x)$ è di periodo 2π caratterizzata da M+1 frequenze e coefficienti a_k e b_k con $k=0,\ldots,M$.

Sfruttando la nota formula di Eulero:

$$e^{ikx} = \cos(kx) + i\sin(kx)$$

L'interpolatore trigonometrico può essere riscritto in modo più compatto:

$$\tilde{f}(x) = \sum_{k=-M}^{M} c_k e^{ikx} \tag{103}$$

Inoltre, dall'equazione 102 i valori a_k, b_k con k = 0, ..., M sono:

$$\begin{cases} a_k = c_k + c_{-k} \\ b_k = i \left(c_k - c_{-k} \right) \end{cases}$$

E nell'interpolazione trigonometrica con Eulero 103 si ha:

$$\begin{cases} c_k = \frac{1}{2} (a_k - ib_k) \\ c_{-k} = \frac{1}{2} (a_k + ib_k) \end{cases}$$

Quindi, le funzioni interpolatrici trigonometriche $\tilde{f}(x)$ sono 2M+1=n+1 equazioni nelle n+1 incognite c_k .

La distanza (costante) fra due nodi $h = \frac{2\pi}{(n+1)}$ come:

$$x_j = jh$$
 $j = 0, \dots, n$

Si impone inoltre il **vincolo di interpolazione**:

$$\tilde{f}(x_j) = \sum_{k=-M}^{M} c_k e^{ikjh} = f(x_j) \qquad j = 0, \dots, n$$
 (104)

3 Approssimazione di funzioni e di dati 3.5 Interpolazione trigonometrica

A differenza dell'interpolazione Lagrangiana, i coefficienti della combinazione lineare c_k con $k=-M,\ldots,M$, sono incogniti. Si hanno di conseguenza n+1 equazioni nelle 2M+1=n+1 incognite c_k . Tale equazione è una base di partenza per le formule nei paragrafi successivi.

3.5.1 Trasformata Discreta di Fourier

Dato un intero $m \in [-M, M]$, si moltiplica all'equazione di base 104, a pagina 56, a sinistra e a destra per $e^{-imx_j} \Rightarrow e^{imjh}$ e si sommano su j:

$$\sum_{j=0}^{n} \sum_{k=-M}^{M} c_k e^{ikjh} e^{-imjh} = \sum_{j=0}^{n} f(x_j) e^{-imjh}$$
 (105)

In cui si può esporre una relazione esplicita fra i coefficienti e i valori noti della funzione $f(x_i)$:

$$c_m = \frac{1}{n+1} \sum_{j=0}^{n} f(x_j) e^{-imjh}$$
 $m = -M, \dots, M$ (106)

La funzione $f(x_j)$ viene chiamata Trasformata discreta di Fourier (DFT). Queste sono n+1 equazioni nelle incognite $f(x_j)$.

Parlando di DTF, è necessario introdurre anche lo **spazio fisico** e delle **frequenze**. Dati i vettori $\mathbf{c} \in \mathbb{R}^{n+1}$ di componenti c_k e $\mathbf{f} \in \mathbb{R}^{n+1}$ di componenti $f(x_j)$, è possibile riscrivere la trasformata di Fourier nello **spazio delle frequenze** k come:

$$c_k = \frac{1}{n+1} \sum_{j=0}^{n} f(x_j) e^{-ikjh}$$
 $k = -M, \dots, M$

E in forma matriciale nel seguente modo:

$$\mathbf{c} = T\mathbf{f} \tag{107}$$

Con la matrice T composta da elementi:

$$T_{kj} = \frac{1}{n+1}e^{-ikjh}$$

Nel caso in cui si vuole passare dallo **spazio delle frequenze** $f(x_j)$ allo **spazio fisico** c_k , si può usare il vincolo di interpolazione (eq. 104, pag. 56):

$$\tilde{f}(x_j) = \sum_{k=-M}^{M} c_k e^{ikjh} \qquad j = 0, \dots, n$$

E in forma matriciale nel seguente modo:

$$\mathbf{f} = T^{-1}\mathbf{c} \tag{108}$$

Con la matrice T^{-1} composta da elementi:

$$\left(T^{-1}\right)_{kj} = e^{ikjh}$$

La trasformazione dallo spazio delle frequenze allo spazio fisico è chiamata Trasformata Discreta di Fourier inversa (Inverse Discrete Fourier Transform, IDFT).

3.5.2 Fast Fourier Transform (FFT)

Il calcolo dei coefficienti c_k può essere fatto ancora più rapidamente utilizzato la Trasformata rapida di Fourier (Fast Fourier Transform, FFT).

Si consideri una generica matrice quadrata A di dimensione $(n+1) \times (n+1)$ e un vettore \mathbf{x} di dimensione n+1. È possibile calcolare la componente w_j del vettore $\mathbf{w} = A\mathbf{x}$ come:

$$w_j = \sum_{k=1}^n A_{jk} x_k \tag{109}$$

Nella FFT, la matrice T ha una struttura particolare chiamata di Toeplitz. Questo comporta che l'elemento w_j del vettore $\mathbf{w} = T\mathbf{x}$ è determinato solo dagli elementi della matrice T, ovverosia T_{km} (con j = km). Una struttura tipica della matrice è:

$$T = \frac{1}{n+1} \begin{bmatrix} e^{-ih} & e^{-2ih} & e^{-3ih} & \cdots & \cdots & e^{-nih} \\ e^{-2ih} & e^{-4ih} & e^{-6ih} & \cdots & \cdots & e^{-2nih} \\ e^{-3ih} & e^{-6ih} & e^{-9ih} & \cdots & \cdots & e^{-3nih} \\ \vdots & & \ddots & & \vdots \\ \vdots & & \ddots & & \vdots \\ e^{-nih} & e^{-2nih} & e^{-3nih} & \cdots & \cdots & e^{-n^2ih} \end{bmatrix}$$

Il **costo computazione** del vettore \mathbf{w} , a causa della forma particolare della matrice di Toeplitz, è uguale a $n \log_2 n$ operazioni.

3.5.3 Espressione Lagrangiana dell'interpolatore trigonometrico

L'interpolatore trigonometrico può essere scritto in forma Lagrangiana, ovvero con coefficienti nella combinazione lineare dati dal risultato dei vari $f(x_j)$, nel seguente modo:

$$\tilde{f}(x) = \sum_{i=0}^{n} f(x_i) \varphi_j^T(x)$$
(110)

Dove il polinomio φ non è altro che:

$$\varphi_i^T(x_k) = \delta_{ik} \tag{111}$$

? E in questo caso la convergenza?

La convergenza è possibile esprimerla tramite il seguente teorema.

<u>Teorema</u> 3. Si supponga che la funzione f(x) ammetta derivata continua e periodica di periodo 2π fino all'ordine s+1 compreso.

Allora, si ha il seguente risultato di convergenza per l'interpolatore trigonometrico in forma Lagrangiana:

$$\max_{x \in [0,2\pi]} \left| f(x) - \tilde{f}(x) \right| \le C \frac{1}{n^s} \tag{112}$$

Per un'opportuna costante C.

3 Approssimazione di funzioni e di dati 3.5 Interpolazione trigonometrica

Dal precedente teorema, se ne deriva che la convergenza è esponenziale qualora il precedente risultato valga per $\forall s>0.$

3.5.4 Fenomeno dell'aliasing e teorema di Shannon

Se il numero di dati n+1 non è sufficientemente elevato, l'interpolatore trigonometrico non è in grado di descrivere le frequenze k più alte. Questo problema viene chiamato fenomeno di aliasing.

Nel mondo reale, l'occhio umano campiona con una frequenza massima le informazioni luminose che provengono dal mondo esterno. Ma se tale campionamento non è sufficientemente frequente da catturare la frequenza massima del fenomeno esterno, allora l'immagine riprodotta dal cervello (che di fatto agisce in questo caso come un interpolatore trigonometrico) sarà caratterizzata da frequenze diverse (aliasing). E questo è anche il motivo per negli elicotteri si vedono le pale girare molto lentamente o addirittura in senso opposto.

In particolare, sia k_{\max} la frequenza massima della funzione f(x). Se $n \leq 2k_{\max}$, la frequenza massima dell'interpolatore trigonometrico $\tilde{f}(x)$ è minore di k_{\max} (aliasing).

Esempio 4: aliasing

Gli effetti dell'aliasing si possono vedere confrontando, per esempio, le seguenti due funzioni:

• In linea continua:

$$f(x) = \sin(x) + \sin(5x)$$

- Linea tratteggiata, l'interpolatore trigonometrico $\tilde{f}\left(x\right)$ con M=3

Quindi, il **teorema di Shannon** afferma che n deve essere:

$$n > 2k_{\text{max}} \tag{113}$$

3.6 Il metodo dei minimi quadrati

? Perché è necessario un altro metodo?

Al crescere del grado del polinomio dell'interpolazione di Lagrange, esso non garantisce una maggiore accuratezza nell'approssimazione di una funzione. Per aumentare l'accuratezza, è stato introdotto l'interpolazione Lagrangiana composita. Purtroppo, quest'ultima non è ottima per estrapolare informazioni da dati noti, ovvero per generare nuove valutazioni in punti che giacciono al di fuori dell'intervallo di interpolazione.

Quindi, i precedenti metodi esposti non sono ottimi:

- Interpolazione Lagrangiana: potrebbe soffrire del fenomeno di Runge, a causa del numero elevato di dati.
- Interpolazione Lagrangiana composita: terrebbe in conto solo gli ultimi k+1 dati, per cui non utilizzerebbe tutta la storia a disposizione e non darebbe un'espressione analiticamente semplice.
- Interpolazione su nodi Chebyshev: nella realtà è difficile da applicare poiché i dati a disposizione sono equispaziati.

Ragionamento per arrivare alla definizione del metodo

Si supponga di avere a disposizione un insieme di dati e ciascun elemento è formato da una coppia:

$$\{(x_i, y_i), i = 0, \dots, n\}$$

In cui gli y_i potrebbero essere i valori che una funzione assume nei nodi x_i : $q(x_i) = y_i$.

L'obbiettivo è cercare un polinomio globale di grado m (con $m \ge 1$) molto più basso rispetto a n ($m \ll n$). Tale polinomio ha l'obbiettivo di **minimizzare** lo scarto quadratico medio, ovverosia la somma dei quadrati degli errori nei nodi¹².

Dato lo spazio dei polinomi di grado m:

$$\mathbb{P}_{m} = \{ p_{m} : \mathbb{R} \to \mathbb{R} : p_{m}(x) = b_{0} + b_{1}x + \dots + b_{m}x^{m} \}$$

Allora, il (problema) metodo dei minimi quadrati consiste nel cercare il polinomio $q \in \mathbb{P}_m$ tale che:

$$\sum_{i=0}^{n} [y_i - q(x_i)]^2 \le \sum_{i=0}^{n} [y_i - p_m(x_i)]^2 \qquad \forall p_m \in \mathbb{P}_m$$
 (114)

Riscrivendo il polinomio q(x) come:

$$q(x) = a_0 + a_1 x + \dots + a_m x^m$$

 $^{^{12}{\}rm Si}$ ricorda che l'errore di un nodo è la distanza tra la funzione lineare e il suo corrispettivo interpolatore. A pagina 48 è possibile vederlo visivamente.

Dove i coefficienti a sono incogniti, è possibile riformulare il metodo dei minimi quadrati (eq. 114). Quindi determinare a_0, a_1, \ldots, a_m tali che:

$$\psi(a_0, a_1, \dots, a_m) = \min_{\{b_i, i=0, \dots, m\}} \psi(b_0, b_1, \dots, b_m)$$

Dove:

$$\psi(b_0, b_1, \dots, b_m) = \sum_{i=0}^{n} [y_i - (b_0 + b_1 x_i + \dots + b_m x_i^m)]^2$$

Nel caso in cui si abbia una **retta di regressione** (cioè m=1), il problema si riduce a:

$$\psi(b_0, b_1) = \sum_{i=0}^{n} \left[y_i^2 + b_0^2 + b_1^2 x_i^2 + 2b_0 b_1 x_i - 2b_0 y_i - 2b_1 x_i y_i \right]$$

Se ne ricava che il grafico della funzione ψ è un **paraboloide convesso** il cui punto di **minimo** (a_0, a_1) si trova imponendo le sue derivate parziali uguale a zero:

$$\frac{\partial \psi}{\partial b_0}(a_0, a_1) = 0$$
 $\frac{\partial \psi}{\partial b_1}(a_0, a_1) = 0$

Che equivale a risolvere il seguente sistema di 2 equazioni e incognite:

$$\sum_{i=0}^{n} [a_0 + a_1 x_i - y_i] = 0 \qquad \sum_{i=0}^{n} [a_0 x_i + a_1 x_i^2 - x_i y_i] = 0$$

Ponendo
$$D=(n+1)\sum_{i=0}^n x_i^2-\left(\sum_{i=0}^n x_i\right)^2,$$
 la soluzione è:

$$a_0 = \frac{1}{D} \left[\sum_{i=0}^n y_i \sum_{j=0}^n x_j^2 - \sum_{j=0}^n x_j \sum_{i=0}^n x_i y_i \right]$$

$$a_1 = \frac{1}{D} \left[(n+1) \sum_{i=0}^n x_i y_i - \sum_{j=0}^n x_j \sum_{i=0}^n y_i \right]$$

Il corrispondente polinomio:

$$q(x) = a_0 + a_1 x (115)$$

È noto come retta dei minimi quadrati, o retta di regressione.

A Attenzione

Da notare, anche se parzialmente scontato, che nel caso in cui m sia uguale a n (m=n), il problema si riduce all'interpolatore Lagrangiano.

4 Integrazione numerica

4.1 Introduzione

Alcuni problemi ingegneristici richiedono il calcolo di integrali, talvolta pure molto complessi. Non sempre si riesce a trovare in forma esplicita la primitiva di una funzione, anche nel caso in cui la si conosca, potrebbe essere difficile valutarla (come ad esempio $f(x) = \cos(4x)\cos(3\sin(x))$).

In tutti questi casi, è necessario utilizzare metodi numerici in gradi di restituire un valore approssimato della quantità di interesse, indipendentemente da quanto complessa sia la funzione da integrare o da differenziare. In questo capitolo, vengono presentati alcuni metodi per l'approssimazione numerica di integrali di funzioni, i quali vengono chiamate formule di quadratura.

Alcune notazioni e definizioni di introduzione

Si consideri l'integrale:

$$I(f) = \int_{a}^{b} f(x) dx$$
 (116)

Si suddivida l'intervallo [a,b] in M intervalli ${\cal I}_k$ di ampiezza costante $H\colon$

$$[x_{k-1}, x_k]$$
 $k = 1, \dots, M$ $x_k = a + kH$ $k = 0, \dots, M$

Si introduce inoltre su ogni intervallo i punti medi:

$$\overline{x}_k = \frac{x_{k-1} + x_k}{2}$$

Si consideri una **formula di quadratura** per il calcolo approssimato dell'integrale nell'equazione 116 e sia $I_H(f)$ il valore approssimato ottenuto.

La formula di quadratura è di ordine p se l'errore soddisfa la seguente stima:

$$E_H = |I(f) - I_H(f)| \le CH^p \tag{117}$$

Inoltre, la formula di quadratura ha grado di esattezza pari ad r se essa risulta esatta quando applicata ai polinomi di grado minore o uguale ad r, ovverosia se:

$$E_{H} = |I(f) - I_{H}(f)| = 0 \qquad \forall f \in \mathbb{P}^{r}(a, b)$$
(118)

4.2 Formula del punto medio composita

Data la proprietà di additività dell'integrale:

$$I(f) = \sum_{k=1}^{M} \int_{I_k} f(x) \, \mathrm{d}x$$

Si possono approssimare il valore dell'integrale su ogni intervallo e dopodiché sommare i contributi.

Per cui, l'idea del **punto medio composita** è quella di approssimare il valore dell'integrale della funzione:

$$\int_{I_{k}} f\left(x\right) \, \mathrm{d}x$$

Con l'area del rettangolo con altezza $f(\overline{x}_k)$:

Dato che l'altezza dei rettangoli è sempre pari ad H, si avrà la seguente approssimazione per $I\left(f\right)$:

$$I_{pm}(f) = H \sum_{k=1}^{M} f(\overline{x}_k)$$
(119)

Dove pm indica punto medio.

Inoltre, la stima dell'errore del punto medio composita è:

$$|I(f) - I_{pm}(f)| \le \max_{x} |f''(x)| \frac{b-a}{24} H^2$$
 (120)

Si possono fare due **osservazioni** interessanti su questa stima dell'errore:

- 1. La formula del punto medio composita è di ordine 2.
- 2. La formula del **punto medio composita** ha **grado di esattezza pari a 1**. Dato che è stata assunta la continuità della derivata seconda di f, allora f'' = 0 in ogni x se f è una retta, ovverosia con r = 1.

Dall'ultima osservazione, risulta chiaro che la formula del punto medio composita è esatta se applicata alle rette.

4.3 Formula dei trapezi composita

Data la proprietà di additività dell'integrale:

$$I(f) = \sum_{k=1}^{M} \int_{I_k} f(x) \, \mathrm{d}x$$

Si vuole approssimare l'area sottesa da f nell'intervallo I_k considerando il trapezio costruito sui punti x_{k-1} e x_k e sulle corrispondenti ordinate.

La formula dei trapezi composita è:

$$I_{tr}(f) = \frac{H}{2} \sum_{k=1}^{M} (f(x_{k-1}) + f(x_k))$$
 (121)

Per comodità di implementazione, è possibile riscriverla anche come:

$$I_{tr}(f) = \frac{H}{2}(f(a) + f(b)) + H\sum_{k=1}^{M-1} f(x_k)$$

Da notare che la formula dei trapezi composita equivale all'integrale esatto dell'interpolatore Lagrangiano composito di grado 1:

$$I_{tr}(f) = \int_{a}^{b} \left(\prod_{1}^{H} f(x) \right) dx$$
 (122)

Su ogni intervallo I_k si può considerare l'errore di interpolazione Lagrangiana.

La stima dell'errore per la formula dei trapezi composita è:

$$|I(f) - I_{tr}(f)| \le \frac{1}{12} \max_{x} |f''(x)| (b - a) H^2$$
 (123)

Si possono fare due **osservazioni** riguardo alla stima dell'errore:

- 1. La formula dei trapezi composita è di ordine 2.
- 2. La formula dei trapezi composita ha grado di esattezza pari a 1.

Da notare che sia grado che ordine sono uguali al punto medio composita. Per cui, è meglio scegliere questo metodo o il punto medio? La scelta risiede principalmente sull'avere a disposizione le coordinate dei punti medi o dei punti estremi degli intervalli.

4.4 Formula di Simpson composita

Data la proprietà di additività dell'integrale:

$$I(f) = \sum_{k=1}^{M} \int_{I_k} f(x) \, \mathrm{d}x$$

Si vuole approssimare l'area sottesa da f nell'intervallo I_k considerando l'area sottesa dalla parabola che interpola i punti x_{k-1} , \overline{x}_k e x_k .

Integrando tali parabole su ogni intervallo I_k , si ottiene la **formula di Simpson** composita:

$$I_{sim}(f) = \frac{H}{6} \sum_{k=1}^{M} (f(x_{k-1}) + 4f(\overline{x}_k) + f(x_k))$$
 (124)

L'area sottesa alla parabole interpolante è quella tratteggiata in grigio:

Da notare che per la costruzione della forma di Simpson composita equivale all'integrale esatto dell'interpolatore Lagrangiano composito di grado 2:

$$I_{sim}(f) = \int_{a}^{b} \prod_{1}^{H} f(x) dx$$
 (125)

Assumendo che f abbia la derivata quarta continua su [a, b], allora la **stima** dell'errore per la formula dei trapezi composita è:

$$|I(f) - I_{sim}(f)| \le \frac{b-a}{2880} \max_{x} |f^{(iv)}(x)| H^4$$
 (126)

Si possono fare due **osservazioni** riguardo alla stima dell'errore:

- 1. La formula di Simpson è di ordine 4.
- 2. La formula di Simpson ha grado di esattezza pari a 3.

Per cui, tale metodo integra i polinomi che sono globalmente di:

- Grado r = 1 (rette)
- Grado r = 2 (parabole)
- Grado r = 3 (cubiche)

5 Approssimazione numerica di ODE

5.1 Problema di Cauchy

Un'equazione differenziale ordinaria ammette in generale infinite soluzioni. Per fissarne una è necessario imporre una condizione che prescriva il valore assunto dalla soluzione in un punto dell'intervallo di integrazione. In questa sezione ci si occuperà della risoluzione dei **problemi di Cauchy**, ossia di problemi nella seguente forma.

Problema di Cauchy

Sia $I = [t_0, T]$ l'intervallo temporale di interesse. Trovare la funzione vettoriale $\mathbf{y}: I \to \mathbb{R}^n$ che soddisfa:

$$\begin{cases} \mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$
 (127)

Con $\mathbf{f}: I \times \mathbb{R}^n \to \mathbb{R}^n$ funzione vettoriale assegnata.

Problema di Cauchy scalare

Per semplicità, verrà considerato soltanto il **caso scalare**, ovvero in cui n=1, ma i metodi di approssimazione che verranno introdotti saranno facilmente estendibili e applicabili anche con n>1. Sia $I=[t_0,T]$ l'intervallo temporale di interesse. Trovare $y:I\subset\mathbb{R}\to\mathbb{R}$ tale che:

$$\begin{cases} y'(t) = f(t, y(t)) & \forall t \in I \\ y(t_0) = y_0 \end{cases}$$
(128)

Con $f: I \times \mathbb{R} \to \mathbb{R}$ funzione assegnata.

Definizione 1: esistenza e unicità della soluzione continua

Si supponga che la funzione f(t, y) sia:

- 1. Limitata e continua rispetto ad entrambi gli argomenti.
- 2. Lipschitziana rispetto al secondo argomento, ossia esista una costante L positiva (detta costante di Lipschitz) tale per cui:

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2| \quad \forall t \in I, \ \forall y_1, y_2 \in \mathbb{R}$$
 (129)

Allora la soluzione del problema di Cauchy esiste, è unica ed è di classe C^1 su I.

5.2 Approssimazione di derivate

Al fine di approssimare il problema di Cauchy, è necessario prima introdurre un altro problema: siano noti i valori $v(t_n)$ di una funzione v in corrispondenza di noti t_n , n = 0, ..., N, e si vuole approssimare i valori della sua derivata prima v'(t) negli stessi nodi.

Approssimazione in avanti della derivata prima

Partendo dallo sviluppo in serie di Taylor:

$$v(t_{n+1}) = v(t_n) + hv'(t_n) + \frac{h^2}{2}v''(t_n) + \frac{h^3}{6}v'''(t_n) + O(h^4)$$

E ricordando che una quantità è un $O(h^p)$ se vale:

$$\lim_{h \to 0} \frac{O\left(h^p\right)}{h^p} < +\infty$$

Ovverosia se va a 0 con la stessa velocità o più velocemente di h^p . Scrivendo la derivata $v'(t_n)$ come:

$$v'(t_n) = \frac{v(t_{n+1}) - v(t_n)}{h} - \underbrace{\frac{h}{2}v''(t_n) - \frac{h^2}{6}v'''(t_n) + O(h^3)}_{O(h)}$$

Questo consente di introdurre un'approssimazione in avanti della derivata prima:

$$D^{+}v(t_{n}) = \frac{v(t_{n+1}) - v(t_{n})}{h}$$
(130)

Il cui **errore** è dato da:

$$|v'(t_n) - D^+v(t_n)| = O(h)$$
 (131)

Approssimazione all'indietro della derivata prima

In modo analogo, considerando il seguente sviluppo di Taylor:

$$v(t_{n-1}) = v(t_n) + hv'(t_n) + \frac{h^2}{2}v''(t_n) + \frac{h^3}{6}v'''(t_n) + O(h^4)$$

Usando i passaggi analoghi a quelli di prima, si arriva all'**approssimazione** all'indietro della derivata prima

$$D^{-}v(t_{n}) = \frac{v(t_{n}) - v(t_{n-1})}{h}$$
(132)

Il cui **errore** è dato da:

$$\left|v'\left(t_{n}\right) - D^{-}v\left(t_{n}\right)\right| = O\left(h\right) \tag{133}$$

📕 Approssimazione centrata della derivata prima

Per completezza, si riporta anche l'approssimazione centrata della derivata prima:

$$D^{c}v(t_{n}) = \frac{v(t_{n+1}) - v(t_{n-1})}{2h}$$
(134)

E in questo caso l'**errore** commesso è:

$$|v'(t_n) - D^c v(t_n)| 0O(h^2)$$
 (135)

Infine, si evince che è un metodo di ordine 2.

? E riguardo a Cauchy?

L'approssimazione numerica del problema di Cauchy si suddivide in 4 passi:

1. Si suddivide l'intervallo temporale in nodi:

2. Si scrive il problema di Cauchy per il generico nodo t_n valido per ogni $n=1,\ldots,N=\frac{T}{h}$:

$$y'\left(t_{n}\right)=f\left(t_{n},y\left(t_{n}\right)\right)$$

- 3. Si sostituisce per ogni n a $y'(t_n)$ una delle approssimazioni presentate: in avanti (eq. 130), all'indietro (eq. 132) o centrata (eq. 134).
- 4. Si denota, per ogni n, con u_n la soluzione del nuovo problema approssimato ottenuto, la quale è una candidata per essere una buona approssimazione di $y(t_n)$.

La soluzione approssimata è composta in generale come:

$$\{u_0 = y_0, u_1, u_2, \dots, u_n\}$$

5.3 I metodi di Eulero in avanti e all'indietro

Dato il problema di Cauchy, esso vale per ogni t nell'intervallo I, quindi in particolare anche in t_n :

$$y'(t_n) = f(t_n, y(t_n))$$

Approssimando la derivata sinistra con l'approssimazione in avanti introdotta a pagina 69, si ottiene:

$$D^{+}y\left(t_{n}\right) = \frac{y\left(t_{n+1}\right) - y\left(t_{n}\right)}{h} \cong f\left(t_{n}, y\left(t_{n}\right)\right)$$

Da notare che l'espressione assomiglia ad un'uguaglianza poiché l'espressione a sinistra è un'approssimazione della derivata e di conseguenza della funzione f.

L'idea è quella di introdurre come soluzione numerica u_n con $n=1,\ldots,N$ la quale è una successione di valori che risolve in maniera esatta la precedente relazione.

$$\frac{y(t_{n+1}) - y(t_n)}{h} \quad \approxeq \quad f(t_n, y(t_n))$$

$$\downarrow$$

$$\frac{u_{n+1} - u_n}{h} \quad = \quad f(t_n, u_n)$$

Da qui si ricava comodamente il metodo di Eulero in avanti:

$$u_{n+1} = u_n + hf(t_n, u_n)$$
 $n = 0, \dots, N-1$ (136)

In maniera analoga, partendo dal problema di Cauchy:

$$y'(t_{n+1}) = f(t_{n+1}, y(t_{n+1}))$$

Approssimando la derivata a sinistra con l'approssimazione all'indietro introdotto a pagina 69, si ottiene:

$$D^{-}y(t_{n+1}) = \frac{y(t_{n+1}) - y(t_{n})}{h} \approx f(t_{n+1}, y(t_{n+1}))$$

Introducendo una soluzione numerica u_n con $n=1,\ldots,N$ la quale è una successione di valori che risolve in maniera esatta la precedente relazione.

$$\frac{y(t_{n+1}) - y(t_n)}{h} \approx f(t_{n+1}, y(t_{n+1}))$$

$$\downarrow$$

$$\frac{u_{n+1} - u_n}{h} = f(t_{n+1}, u_{n+1})$$

Da qui si ricava comodamente il metodo di Eulero all'indietro:

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$
 $n = 0, ..., N-1$ (137)

Perché il metodo di Eulero in avanti viene chiamato esplicito?

Per il metodo di Eulero in avanti, la condizione iniziale $u_0 = y_0$ è ben nota. Dopodiché, viene effettuato un **calcolo in sequenza**, ovverosia u_1 , u_2 , e così via. Tuttavia, <u>non</u> è un metodo iterativo poiché la soluzione è significativa per ogni n, essendo l'approssimazione della y a diversi istanti temporali.

Ovviamente i due metodi calcolano la nuova u_{n+1} in modo differente. Infatti, il metodo di Eulero in avanti calcola:

$$u_{n+1} = u_n + hf(t_n, u_n)$$

Il nuovo valore è calcolato in maniera esplicita. Difatti è sufficiente valutare la funzione f, anche se non lineare, per t_n , u_n ottenendo quindi un'espressione esplicita per il termine a destra. Questo è il motivo per cui il metodo di Eulero in avanti viene chiamato anche metodo di Eulero esplicito.

? Perché il metodo di Eulero all'indietro viene chiamato implicito?

Per il metodo di Eulero all'indietro:

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$

Non si ha un'espressione esplicita per il nuovo valore u_{n+1} perché quest'ultimo compare anche a destra dell'uguale!

Si pone come incognita $x = u_{n+1}$. Se la funzione f non è lineare rispetto a y, allora ad ogni passo temporale è necessario risolvere il **problema di ricerca degli zeri** della funzione:

$$g(x) = x - u_n - hf(t_{n+1}, x)$$
(138)

Se la funzione g(x) è derivabile, allora è necessario introdurre ad ogni istante temporale un metodo iterativo, come quello di Newton per esempio. In ogni caso, a causa del fatto che u_{n+1} non può in generale essere determinato per via esplicita, il metodo di Eulero all'indietro viene chiamato anche **metodo di Eulero implicito**.

In generale, si possono dividere i metodi numerici per le equazioni ordinarie in metodi espliciti, la cui soluzione al nuovo passo temporale è calcolata mediante un'espressione esplicita, e metodi impliciti che invece richiedono la soluzione di un'equazione non lineare.

5.3.1 Assoluta stabilità

? È stabile il metodo di Eulero?

Per discutere della stabilità, è necessario introdurre il concetto di **assoluta stabilità**. Un metodo numerico viene detto **assolutamente stabile** per un determinato valore di *h* maggiore di zero, se:

$$|u_{n+1}| \le C_{AS} |u_n| \qquad C_{AS} < 1$$
 (139)

O, equivalentemente, se si è su un intervallo illimitato:

$$\lim_{n \to +\infty} |u_n| = 0$$

Adesso si analizzano i metodi singolarmente.

Assoluta stabilità: metodo di Eulero in avanti

Dato il problema modello lineare:

$$\begin{cases} y'(t) = \lambda y(t) & \lambda < 0 \\ y(0) = 1 \end{cases}$$

La cui soluzione esatta è: $y\left(t\right)=e^{\lambda t}$. Applicando il metodo di Eulero in avanti, si ottiene:

$$u_{n+1} = u_n + h\lambda u_n = (1 + h\lambda) u_n \longrightarrow C_{AS} = |1 + h\lambda|$$

Da cui l'assoluta stabilità è garantita se:

$$C_{AS} < 1 \longrightarrow -1 < 1 + h\lambda < 1$$

Ovvero h deve rispettare la seguente condizione:

$$h\lambda > -2 \Rightarrow h < -\frac{2}{\lambda} \tag{140}$$

Da notare che $h\lambda < 0$ è sempre vera.

Esempio 1: stabilità metodo di Eulero in avanti

Data la soluzione di un problema con $\lambda = -1$, ottenuto con il metodo di Eulero in avanti, nella seguente figura si può vedere come:

 \bullet Linea tratteggiata: rappresentata $h=\frac{30}{14}.$ Quindi, essendo:

$$h<-rac{2}{\lambda}\Rightarrowrac{30}{14}<-rac{2}{-1}\Rightarrowrac{30}{14}<2$$
 X

La soluzione numerica oscilla e infine esplode.

• Linea continua: rappresentata $h = \frac{30}{16}$. Quindi, essendo:

$$\frac{30}{16} < 2$$
 🗸

La soluzione numerica oscilla ma non esplode. La sua oscillazione è dovuta al fatto che è molto vicina al limite 2.

• Linea tratto-punto: rappresentata $h = \frac{1}{2}$. Quindi, essendo:

$$\frac{1}{2} < 2$$

La soluzione numerica non oscilla.

Assoluta stabilità: metodo di Eulero all'indietro

Dato il solito problema modello lineare:

$$\begin{cases} y'(t) = \lambda y(t) & \lambda < 0 \\ y(0) = 1 \end{cases}$$

La cui soluzione esatta è: $y\left(t\right)=e^{\lambda t}.$ Applicando il metodo di Eulero all'indietro, si ottiene:

$$u_{n+1} = u_n + h\lambda u_{n+1} \to u_{n+1} = \frac{1}{1 - h\lambda} u_n \to C_{AS} = \left| \frac{1}{1 - h\lambda} \right|$$

In questo caso, l'assoluta stabilità è sempre garantita, poiché:

$$C_{AS} < 1 \quad \forall h$$

Quindi, per il metodo di Eulero all'indietro si può essere certi che è **incondizionatamente assolutamente stabile**.

5.3.2 Problemi di Cauchy generali

Il concetto di stabilità introdotto nel paragrafo precedente riguarda il *problema modello lineare*. Per cui, per i problemi di Cauchy, in generale, che stabilità si ha?

Un metodo numerico produce una soluzione stabile se a piccole perturbazioni sul dato iniziale si producono perturbazioni piccole e decrescenti per n crescente.

Notando che per il problema modello lineare si ha:

$$f(y) = \lambda y \rightarrow f'(y) = \lambda$$

Ha senso introdurre la stima dell'intervallo dei valori di h che garantiscono una soluzione stabile per il $metodo\ di\ Eulero\ in\ avanti$:

$$h < -\frac{2}{\overline{\lambda}}$$
 $\overline{\lambda} = -\max_{t,y} \left| \frac{\partial f}{\partial y} \right|$ $\frac{\partial f}{\partial y} < 0$ (141)

Essa rappresenta una situazione di cautela, la quale potrebbe essere molto restrittiva per il problema di Cauchy, ma sicuramente garantisce una soluzione numerica stabile.

In generale, vale la proprietà che un metodo numerico assolutamente stabile per il $problema\ modello\ lineare$ sotto una condizione su h (piccolo a sufficienza) produce una soluzione numerica stabile anche per il problema di Cauchy generico sotto la stessa condizione opportunatamente adattata.

5.4 Il metodo di Crank-Nicolson

Dato il problema di Cauchy:

$$\left\{ y'\left(t\right) = f\left(t, y\left(t\right)\right) \qquad \forall t \in Iy\left(t_0\right) = y_0 \right\}$$

Dal teorema fondamentale del calcolo integrale limitato all'intervallo $[t_n,t_{n+1}]$ si ottiene:

 $y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$

Adesso si applica una formula di quadratura a disposizione (punto medio composita, trapezi composita, Simpson composita) per approssimare l'integrale a destra dell'uguale e ottenere così un metodo di approssimazione per il problema di Cauchy.

Ed ecco che nasce il **metodo di Crank-Nicolson (CN)** applicando la formula dei trapezi composita (par. 4.3, pag. 66) considerando solo un intervallo $[t_n, t_{n+1}]$:

$$u_{n+1} = u_n + \frac{h}{2} \left(f(t_n, u_n) + f(t_{n+1}, u_{n+1}) \right)$$
(142)

Esso è un **metodo implicito** e richiede ad ogni passo n di determinare la radice della funzione:

$$g(x) = x - \frac{h}{2}f(t_{n+1}, x) - u_n - \frac{h}{2}f(t_n, u_n)$$

Riguardo l'assoluta stabilità, si ha:

$$u_{n+1} = u_n + \frac{h\lambda}{2} (u_n + u_{n+1}) \rightarrow u_{n+1} = \frac{2 + h\lambda}{2 - h\lambda} u_n$$

Di conseguenza si ottiene:

$$C_{AS} = \left| \frac{2 + h\lambda}{2 - h\lambda} \right|$$

Che è sempre minore di 1. Per cui il metodo di Crank-Nicolson è **incondizio**natamente assolutamente stabile.

5.5 Il metodo di Heun

Partendo dal metodo di Crank-Nicolson introdotto nel paragrafo 5.4 a pagina 76:

$$u_{n+1} = u_n + \frac{h}{2} \left(f(t_n, u_n) + f(t_{n+1}, u_{n+1}) \right)$$

E al posto della variabile u_{n+1} a destra si introduce la sua approssimazione ottenuta con il metodo di Eulero in avanti, si ottiene il metodo di Heun:

$$u_{n+1} = u_n + \frac{h}{2} \left(f(t_n, u_n) + f(t_{n+1}, u_n + hf(t_n, u_n)) \right)$$
 (143)

Esso è un metodo esplicito con condizione di assoluta stabilità uguale a quella del metodo di Eulero in avanti (si veda a pagina 73 l'assoluta stabilità di tale metodo).

5.6 Convergenza

Per discutere l'accuratezza della soluzione numerica trovata da ciascun metodo introdotto per determinati valori di h, è necessario introdurre la definizione di **convergenza**:

$$|y(t_n) - u_n| = O(h)$$
 $n = 0, ..., N$ (144)

$$\begin{array}{c|c}
h \\
\hline
[t_0] & t_n & t_{n+1} & T
\end{array}$$

Modificando la convergenza appena introdotta (eq. 144), essa rappresenta la stima dell'errore di convergenza:

$$|y(t_n) - u_n| = O(h^p)$$
 $n = 0, ..., N$ (145)

Inoltre si dice che il **metodo numerico è di ordine** p. È interessante notare che all'aumentare di p, la velocità di convergenza aumenta.

Utilizzando λ del coefficiente del problema modello lineare, oppure:

$$\overline{\lambda} = -\max_{t,y} \left| \frac{\partial f}{\partial y} \right| \qquad \operatorname{con} \frac{\partial f}{\partial y} < 0$$

Nella tabella 1 sono riassunti i metodi introdotti in questo capitolo.

Metodo	Espl./Impl.	Convergenza	Assoluta stabilità
Eulero in avanti	Esplicito	$O\left(h ight)$	$h < -\frac{2}{\lambda}$
Eulero all'indietro	Implicito	$O\left(h\right)$	Sempre garantita
Crank-Nicolson	Implicito	$O\left(h^2\right)$	Sempre garantita
Heun	Esplicito	$O\left(h^2\right)$	$h < -\frac{2}{\lambda}$

Tabella 1: Proprietà di convergenza e stabilità dei metodi per approssimare le ODE.

5.6.1 Consistenza dei metodi di Eulero

Innanzitutto si introduce l'errore di troncamento locale τ_n , il quale si commette introducendo la soluzione esatta y nello schema numerico. Per il metodo di Eulero in avanti si ha:

$$\tau_{n} = \left| f(t_{n}, y(t_{n})) - \frac{y(t_{n+1}) - y(t_{n})}{h} \right|$$
 (146)

E per il metodo di Eulero all'indietro si ha:

$$\tau_n = \left| f(t_{n+1}, y(t_{n+1})) - \frac{y(t_{n+1}) - y(t_n)}{h} \right|$$
 (147)

Un metodo numerico è **consistente** se vale:

$$\lim_{h \to 0} \tau_n = 0 \qquad \forall n \tag{148}$$

Inoltre, se vale:

$$\tau_n = O\left(h^p\right) \qquad \forall n \tag{149}$$

Si dice che l'**ordine di consistenza è** p. Riguardo i *metodi di Eulero*, essi sono **consistenti del primo ordine**.

Si noti che l'errore di troncamento locale τ_n non è l'errore necessario per verificare la convergenza: $|y(t_n) - u_n|$. L'errore:

$$e_n = |y\left(t_n\right) - u_n|$$

È dato da due contributi:

- L'errore e_n^1 è dovuto localmente al metodo numerico, ottenuto partendo dalla vera soluzione $y(t_{n-1})$.
- L'errore e_n^2 è dovuto alla propagazione degli errori commessi agli istanti precedenti

Riguardo al **metodo di Eulero in avanti** l'**errore** è dato da:

• Primo contributo dovuto localmente al metodo numerico:

$$e_n^1 = |y(t_n) - y(t_{n-1}) - hf(t_{n-1}, y(t_{n-1}))| = h\tau_{n-1}$$
(150)

Da notare che il primo errore, a meno di un fattore h, è dato dall'errore di troncamento locale. Questo evidenzia come la **consistenza da sola non basti per avere la convergenza**.

• Secondo contributo dovuto alla propagazione degli errori:

$$e_n^* = |u_n^* - u_n| \tag{151}$$

Supponendo che valga la condizione di assoluta stabilità con $\overline{\lambda} = -\lambda_{\text{max}}$:

$$h < \frac{2}{\lambda_{\max}}$$

Dunque si ha:

$$|e_{n}| \leq |e_{n}^{1}| + |e_{n}^{2}| \leq h\tau_{n-1} + |e_{n-1}|$$

$$\downarrow \qquad (152)$$

$$|e_{n}| \leq nhO(h) = (t_{n} - t_{0})O(h)$$

Il metodo di Eulero in avanti è dunque convergente e del primo ordine. Lo stesso risultato vale anche per il metodo di Eulero all'indietro. In generale, è possibile affermare che, per un metodo convergente, l'ordine di convergenza è uguale all'ordine di consistenza.

La convergenza è una proprietà della soluzione numerica (o meglio all'errore), per n fissato, in ogni nodo e facendo tendere h a 0. Invece, l'assoluta stabilità analizza il comportamento della soluzione numerica per h fissato e al crescere di n.

In generale, i metodi espliciti (come Eulero in avanti e Heun) garantiscono l'assoluta stabilità solo per un valore di h piccolo. I metodi impliciti godono invece di ottime proprietà di assoluta stabilità; spesso questa è incondizionata (come per Eulero all'indietro e Crank-Nicolson).

6 Laboratorio

6.1 Introduzione al linguaggio MATLAB

L'introduzione al linguaggio di programmazione MATLAB sarà molto rapido. Si assume dunque che l'interfaccia grafica sia familiare e che concetti base di programmazione (per esempio "che cos'è una variabile?") siano ben noti.

In MATLAB, l'assegnazione di scalari a delle variabili è classica, quindi si utilizza il simbolo uguale: a = 1 (assegnazione del valore 1 alla variabile a). Inoltre, il linguaggio è case sensitive, di conseguenza la variabile a è diversa dalla variabile A. Alcuni comandi utili e generali:

- help nome-comando, per avere informazioni in più riguardo al comando nome-comando;
- clear nome-variabile, per rimuovere la variabile nome-variabile dalla memoria. Se non viene inserito il nome-variabile, vengono rimosse tutte le variabili dalla memoria.
- who, per visualizzare le variabili attualmente in memoria.
- clc, per ripulire la Command Window.

Argomento	Pagina
Well-known variables	Pag. 81
Cambiare il formato delle variabili: format	Pag. 82
Assegnamento di vettori e matrici	Pag. 83
Operazioni su vettori e matrici	Pag. 86
Funzioni intrinseche per vettori e matrici	Pag. 90
Funzioni matematiche elementari	Pag. 95
Funzioni per definire vettori o matrici particolari	Pag. 96

Tabella 2: Argomenti trattati.

Well-known variables

Esistono alcune variabili che sono ben note e hanno valori prestabiliti. Tra le più importanti:

- \bullet pi, che rappresenta il π e MATLAB gli assegna il valore 3.1416
- i, che rappresenta l'unità immaginaria e MATLAB gli assegna il valore 0.0000 + 1.0000i
- eps, che rappresenta il più piccolo valore rappresentabile nel calcolatore (PC) attualmente in uso. Solitamente, eps ritorna il valore 2.2204e-16.

Questo tipo di variabili possono essere ridefinite, ma <u>non</u> è una good practice.

Cambiare il formato delle variabili: format

Il comando format è utilizzato per cambiare il formato con cui sono rappresentate le variabili. MATLAB <u>non</u> cambia la precisione della variabile (quindi non si ottiene una precisione maggiore dopo la virgola), ma modifica soltanto la rappresentazione. Di default MATLAB utilizza una rappresentazione di tipo short. Tra i più utilizzati (di default pi è uguale a 3.1416):

- default per reimpostare la rappresentazione di default.
- Decimale:
 - short, rappresentazione a 5 cifre:

```
1 >> format short
2 >> pi
3
4 ans =
5 3.1416
```

- long, rappresentazione a 15 cifre:

```
1 >> format long
2 >> pi
3
4 ans =
5 3.141592653589793
```

- Floating point:
 - short e, rappresentazione a 5 cifre floating point:

```
1 >> format short e
2 >> pi
3
4 ans =
5 3.1416e+00
```

- long e, rappresentazione a 15 cifre floating point:

```
1 >> format long e

2 >> pi

3

4 ans =

5 3.141592653589793e+00
```

Altri formati si possono trovare nella documentazione ufficiale.

Assegnamento di vettori e matrici

• Vettore riga, si può creare utilizzando uno spazio tra i valori o una virgola ,:

• Vettore colonna, si crea usando il punto e virgola ;:

Talvolta può essere utile la generazione automatica di un vettore riga (sono ammessi anche i valori negativi e con la virgola ovviamente):

• Vettore riga generato linearmente, si crea usando i due punti e specificando il valore di inizio e il valore di fine:

```
1 >> a = [1 : 4]
2 3 a = 4 1 2 3 4
```

• Vettore riga generato usando un passo, si crea usando i due punti e specificando (in ordine) il valore di inizio, il "salto", e il valore di fine. Nel caso in cui il salto sia troppo grande e si superi il valore di fine, MATLAB prenderà il primo valore ammissibile:

```
>> % Generazione con passo 1
  >> a = [1 : 1 : 4]
4
5
  >> % Generazione con passo 2
8 >> a = [1 : 2 : 5]
10
             3
11
>> % Generazion con passo 2 (fine non raggiunta)
_{14} >> a = [1 : 2 : 6]
16 a =
       1
            .3
17
>> % ... ma cambiando l'upper bound
```

```
20 >> a = [1 : 2 : 7]
21
22 a =
23 1 3 5 7
```

- Vettore riga generato con valori uniformemente distanziati, si crea usando la funzione linspace, la quale accetta tre parametri:
 - x1, valore di partenza.
 - x2, valore di fine.
 - n, numero di valori da generare; se non specificato, di default è 100;
 se il valore inserito è zero o minore, viene creato un vettore vuoto.

Le matrici possono essere create a mano o usando la combinazione delle tecniche viste in precedenza:

• Matrice, le righe si creano usando gli spazi e le colonne si creano usando il punto e virgola:

```
>> a = [1 2 3 4; 5 6 7 8; 9 10 11 12]
  a =
3
              2
                    3
                           4
              6
                    7
       5
             10
                   11
                          12
  >> a = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]
10
              2
                    3
                           4
       1
11
12
       5
              6
                    7
                           8
             10
```

• Matrice creata usando la generazione lineare dei vettori, si possono utilizzare le tecniche precedenti e i punti e virgola:

```
1 >> % Usando a = [x : y]
2 >> a = [1 : 4; 5 : 8; 9 : 12]

3 4
5 6 7 8
7 9 10 11 12
```

```
9 >> % Usando a = [x : y : z]
>> a = [1 : 2 : 7; 9 : 2 : 15; 17 : 2 : 23]
11 a =
12
           3 5 7
11 13 15
13
      9
14
     17
            19
                  21
                        23
15
16
17 >> % Usando linspace
18 >> a = [linspace(1, 4, 4); linspace(5, 8, 4); linspace(9, 12,
     4)]
19
20 a =
                3
7
       1
            2
                        4
21
22 5
            6
                        8
9 10 11
                      12
```

Operazioni su vettori e matrici

• Trasposizione, la classica operazione eseguita con le matrici o vettori, si esegue con la keyword 'oppure usando la funzione transpose:

```
_{1} >> a = [1 2 3 4]
       1
                   3
4
6 >> a'
8 ans =
9
10
11
        3
12
13
14 >> transpose(a)
15
16 ans =
17
        2
18
19
        3
20
```

- Somma e sottrazione
 - Tra vettore e scalare:

- Tra vettore e matrice:

```
_1 >> a = [1 2 3 4]
3 a =
     1 2 3 4
4
_{6} >> b = [1 2 3 4; 5 6 7 8; 9 10 11 12]
8 b =
           2
      1
9
                7
           6 7
10 11
      5
9
10
                      8
11
                      12
12
13 >> a + b
14
15 ans =
```

```
16 2 4 6 8

    17
    6
    8
    10
    12

    18
    10
    12
    14
    16

19
20 >> a - b
21
22 ans =
23 0
              0
                     0
       -4
              -4
                     -4
                            -4
24
25 -8
            -8
                     -8
                            -8
```

- Tra matrice e scalare:

```
>> b = [1 2 3 4; 5 6 7 8; 9 10 11 12]
3 b =
         2
              3 4
7 8
     1
4
          6
     5
6
    9
          10
             11
                   12
8 >> b + 1
9
10 ans =
11 2 3
12 6 7
13 10 11
         3 4 5
               8
                    9
                 13
              12
14
15 >> b - 1
16
17 ans =
18 0 1
19 4 5
              2
                    3
                6
                    7
20 8 9 10
                   11
```

- Tra matrice e matrice:

```
1 >> b = [1 2 3 4; 5 6 7 8; 9 10 11 12]
2
3 b =
     1 2 3 4
5 6 7 8
9 10 11 12
5
6
8 >> c = [13 14 15 16; 17 18 19 20; 21 22 23 24]
10 c =
11 13
12 17
                15
19
           14
                       16
12
           18
                       20
   21 22 23
                       24
13
14
15 >> b + c
16
17 ans =
   14 16
22 24
                 18
                      20
18
                      28
19
                  26
   30 32 34
                       36
20
21
22 >> b - c
24 ans =
25 -12 -12 -12 -12
26 -12 -12 -12 -12
27 -12 -12 -12 -12
```

• Prodotto

- Prodotto matriciale:

```
>> b = [1 2 3 4; 5 6 7 8; 9 10 11 12]
3 b =
              2
                     3
                           4
        1
4
              6
                     7
5
        5
                           8
             10
                    11
                          12
8 >> c = [13 14 15; 16 17 18; 19 20 21; 22 23 24]
10 C =
11
       13
             14
                    15
      16
             17
                    18
12
13
      19
             20
                    21
14
      22
             23
                    24
15
16 >> b * c
17
18 ans =
19
    190
            200
                   210
     470
            496
                   522
20
     750
            792
                  834
```

 Prodotto punto per punto, in MATLAB è possibile moltiplicare ogni cella di una matrice (o vettore) per la corrispettiva cella della matrice (o vettore) moltiplicata. La keyword utilizzata è .*:

```
>> b = [1 2 3 4; 5 6 7 8; 9 10 11 12]
3 b =
             2
                    3
                          4
4
       1
       5
             6
                   7
                          8
             10
                   11
                         12
6
8 >> c = [13 14 15 16; 17 18 19 20; 21 22 23 24]
9
10 c =
      13
             14
                   15
                         16
11
12
      17
             18
                   19
                         20
13
      21
             22
                   23
                         24
14
15 >> b .* c
16
17 ans =
      13
            28
                  45
                         64
      85
           108
                  133
                        160
19
20
     189
           220
                  253
                        288
22 >> d = [1 2 3 4]
23
24 d =
      1
             2
                    3
                          4
25
27 >> b .* d
28
   1
             4
                    9
                         16
30
31
       5
             12
                   21
                         32
32 9
             20
                   33
```

• Potenza

- Potenza matriciale:

```
1 >> b = [1 2 3; 4 5 6; 7 8 9]
3 b =
       1
             2
                   3
4
       4
             5
                   6
8 >> b^2
10 ans =
            36
                  42
11
      30
      66
            81
                 96
12
     102 126 150
```

 Potenza punto per punto, come per il prodotto, è possibile elevare al quadrato ogni valore della matrice (o vettore):

```
>> b = [1 2 3; 4 5 6; 7 8 9]
       1
             2
                   3
       4
             5
                   6
  >> b.^2
10 ans =
11
      1
             4
                   9
      16
            25
                  36
12
13 49
            64
```

Funzioni intrinseche per vettori e matrici

Qua di seguito si elencano le funzioni più importanti da utilizzare per i vettori e le matrici.

• size, restituisce la dimensione del vettore o della matrice nel formato *righe colonne*. Specificando anche un valore (o vettore) come parametro, la funzione restituisce la dimensione (un vettore contenente le dimensioni richieste) nella "dimensione" richiesta:

```
>> a = [1 2 3 4]
  >> size(a)
9
10
11 >> size(a, 2)
12 ans =
13
14
15
>> b = [1 2 3; 4 5 6; 7 8 9]
17
18 b =
               2
19
        1
                     3
20
        7
               8
21
22
23 >> size(b)
24
25 ans =
               3
26
28
  >> size(b, [2, 3])
29
30 ans =
31
```

• length, restituisce la lunghezza del vettore e per le matrici restituisce il numero degli elementi per ogni riga:

```
_{1} >> a = [1 2 3 4]
2
3
                     3
  >> length(a)
9
10
>> b = [1 2 3 4 5 6; 7 8 9 10 11 12]
12
13 b =
                                  5
              2
14
              8
                     9
                          10
                                 11
                                        12
        7
15
```

```
17 >> length(b)

18

19 ans =

20 6
```

• max, min, calcolano rispettivamente il massimo e il minimo valore delle componenti di un vettore; per le matrici viene presa in considerazione ogni colonna e calcolato il massimo o minimo:

```
>> a = [1234]
                      3
  >> max(a)
10
11
  >> min(a)
12
13 ans =
14
15
  >> b = [7 1 1 4; 2 3 9 10; 8 1 7 1]
17
18
  ans =
19
        2
               3
                      9
                            10
20
21
        8
               1
                             1
22
  >> max(b)
23
24
25
        8
                            10
26
27
28 >> min(b)
29
30 ans =
```

• sum, prod, calcola rispettivamente la somma e il prodotto degli elementi che compongono il vettore; nel caso di una matrice, viene presa in considerazione ogni colonna e calcolata la somma o il prodotto. Inoltre, i due comandi possono prendere un argomento in più per eseguire il calcolo in una dimensione specifica (cosa sensata con le matrici):

```
>> b = [7 1 1 4; 2 3 9 10; 8 1 7 1]
17
18 b =
19
        2
               3
                     9
                           10
20
21
22
23 >> sum(b) % per colonne
24
25
  ans =
               5
       17
                    17
26
27
28 >> sum(b, 2) % per righe
30 ans =
       13
31
32
       24
       17
33
34
35 >> prod(b)
36
37
   112
                    63
                           40
```

• norm, la norma di un vettore o di una matrice. Passando un vettore o un matrice, viene calcolata di default la norma euclidea (norma 2):

$$||\mathbf{v}||_2 = \sqrt{\sum_{i=2}^{\mathtt{length}(\mathbf{v})\mathbf{v}_i^2}}$$

Passando un valore aggiuntivo, esso rappresenterà l'ordine della norma:

$$\left|\left|\mathbf{v}
ight|\right|_{n} = \left(\sum_{i=2}^{\mathtt{length}(\mathbf{v})\left|\mathbf{v}_{i}
ight|^{n}}
ight)^{rac{1}{n}}$$

Infine, con inf viene calcolata la norma infinito:

$$\left|\left|\mathbf{v}\right|\right|_{\infty} = \max_{1 \leq i \leq \mathtt{length(v)}} \left|\mathbf{v}_i\right|$$

```
18 ans =
19 4.641588833612779e+00
21 >> norm(a, inf)
22
23 ans =
24
25
26 >> b = [7 1 1 4; 2 3 9 10; 8 1 7 1]
27
28 b =
  b = 7 1 1 2 2 3 9 10 1 7 1
29
30
31
32
33 >> norm(b, 2)
35 ans =
    1.711222312384884e+01
36
37
38 >> norm(b, inf)
39
40 ans =
41 24
```

• abs, rappresenta il valore assoluto e restituisce il vettore o matrice dopo aver applicato il valore assoluto a ciascun elemento:

```
_{1} >> a = [-1 -2 -3 -4]
3 a =
4 -1 -2 -3 -4
6 >> abs(a)
8 ans =
9 1 2 3 4
^{11} >> b = [7 1 1 -4; 2 3 -9 10; 8 1 -7 1]
12 b =
13
      14
16
17
18 >> abs(b)
19
20 ans =
21 7 1 1
22 2 3 9
23 8 1 7
                     4
                     10
```

• diag, estrae la diagonale di una matrice esistente, oppure ne crea una con i valori dati come input. Inoltre, può creare una matrice con la diagonale spostata a seconda del valore dato (si veda l'esempio):

```
>> b = [7 1 1 4; 2 3 9 10; 8 1 7 1]
  b =
              1
                           4
        2
                           10
        8
                           1
8 >> diag(b)
10 ans =
11
        3
13
14
15 >> diag(b, 1)
16
17 ans =
18
       1
        9
19
20
        1
21
22 >> diag(b, -1)
23
24 ans =
25
26
        2
27
        1
29 >> diag([1 2 3])
30
31 ans =
        1
              0
32
33
        0
              2
                     0
        0
              0
                     3
35
36 >> diag([1 2 3], -1)
37
38 ans =
        0
              0
                     0
                            0
39
              0
                     0
                            0
        1
40
              2
                     0
                            0
        0
41
              0
        0
                     3
                            0
```

Funzioni matematiche elementari

Qua di seguito una lista di alcune funzioni matematiche elementari. Gli esempi e la sintassi non verranno mostrati poiché è sempre la medesima:

funzione (parametro)

Funzione	Comando
Radice quadrata	sqrt
Esponenziale	exp
Logaritmo Naturale	log
Logaritmo In Base 2	log2
Logaritmo In Base 10	log10
Seno	sin
Arcoseno	asin
Coseno	cos
Arcocoseno	acos
Tangente	tan

Tabella 3: Funzioni matematiche elementari.

Iterazione con il ciclo for

In MATLAB il ciclo for viene eseguito con la seguente sintassi.

```
for index = values
statements
end
```

Di seguito si riporta un ciclo for che itera sulla diagonale secondaria di una matrice:

```
1 >> b = [7 1 1 4; 2 3 9 10; 8 1 7 1]
2
3
       2
             3
                 9
                         10
8 >> res = []
9
10 res =
11
        []
12
13 >> for i = 1 : size(b, 1)
      res(i) = b(i, size(b, 1) - i + 1);
14
15 end
16
17 >> res
18
19 res =
```

Funzioni per definire vettori o matrici particolari

In queste pagine vengono presentate alcuni funzioni utili che consentono di creare matrici o vettori "particolari".

• Vettore/Matrice nulla, con la funzione zeros è possibile creare una matrice o un vettore di tutti zeri. I parametri ammessi corrispondono alla dimensione del vettore o matrice:

```
>> zeros(1, 4)
2
3
                               0
  >> zeros(4, 1)
  ans =
         0
         0
10
11
         0
12
         0
13
_{14} \gg zeros(4, 4)
15
16 ans =
17
        0
                0
                       0
                               0
         0
                0
                        0
                               0
18
19
         0
                0
                        0
                               0
         0
                0
```

• Vettore unario/Matrice unaria, con la funzione ones è possibile creare una matrice o un vettore di tutti uni. I parametri ammessi corrispondono alla dimensione del vettore o matrice:

```
>> ones(1, 4)
  >> ones(4, 1)
        1
10
        1
11
        1
12
13
14 >> ones(4, 4)
15
16 ans =
        1
                1
17
                              1
        1
                1
                       1
                              1
18
19
                1
                       1
                              1
20
        1
```

• Matrice identità, con la funzione eye è possibile creare una matrice identità. I parametri ammessi corrispondono alla dimensione del vettore o matrice:

```
1 >> eye(3)
  ans =
         1
                 0
                        0
                        0
                1
         0
                        1
  >> eye(2, 3)
10
                0
                        0
         1
11
12
         0
                1
                        0
13
^{14} >> eye(1, 4)
15
16 ans =
                0
17
        1
                        0
```

• Matrice/Vettore riga di numeri casuali interi e non, con il comando rand si genera una matrice di numeri casuali nell'intervallo [0,1] con la virgola, mentre con il comando randi si genera una matrice di numeri casuali interi (primo parametro deve essere specificato il range dei valori):

```
1 >> rand(3, 5)
                           0.9340
      0.9157
                 0.6557
                                      0.7431
                                                 0.1712
4
                                                 0.7060
                 0.0357
      0.7922
                           0.6787
                                      0.3922
      0.9595
                 0.8491
                            0.7577
                                      0.6555
                                                 0.0318
  >> % Matrice di valori interi random da 1 a 5
  >> randi([1, 5], 3, 4)
9
10
11 ans =
       2
              5
                    5
                          2
12
              4
                          4
13
       1
                    1
                    3
                          4
14
15
>> % Errore! L'intervallo e' sbagliato
>> randi([-1, -50], 3, 4)
18 Error using randi
19 First input must be a positive scalar integer value IMAX, or
      two integer values [IMIN IMAX] with IMIN less than or
      equal to IMAX.
20
  >> randi([-50, -1], 3, 4)
21
22
23 ans =
     -41
            -18
                  -37
                         -42
24
25
     -26
            -15
                  -17
                         -45
  -28
           -13
                 -18
                        -26
26
```

6.1.1 Esercizio

Creare una funzione (file) chiamato mat_hilbert.m che fornisca la matrice di Hilbert avente una generica dimensione n. Ogni cella della matrice di Hilbert deve rispettare la seguente condizione:

$$a_{ij} = \frac{1}{i+j-1}$$

Dopo aver creato la funzione, utilizzare la funzione nativa di MATLAB hilb, per verificare il risultato ottenuto.

Soluzione

Il codice non ha bisogno di grandi spiegazioni. Vi è un controllo iniziale per verificare l'argomento inserito dall'utente e successivamente due cicli for per popolare la matrice:

```
function hilbert_matrix = mat_hilbert(n)

if n < 0
    error("n can't be 0 or less than zero")

end

hilbert_matrix = zeros(n);

for i = 1 : n
    for j = 1 : n
    hilbert_matrix(i, j) = 1 / (i + j - 1);
    end

end

end</pre>
```

Il risultato:

```
nat_hilbert(5)
  ans =
3
      1.0000
                0.5000
                         0.3333
                                     0.2500
                                                0.2000
      0.5000
                0.3333
                         0.2500
                                     0.2000
                                                0.1667
                           0.2000
      0.3333
                0.2500
                                      0.1667
                                                0.1429
      0.2500
                 0.2000
                           0.1667
                                      0.1429
                                                0.1250
      0.2000
                 0.1667
                           0.1429
                                      0.1250
                                                0.1111
9
10
11 hilb(5)
12
13 ans =
14
                                                0.2000
      1.0000
                0.5000
                           0.3333
                                      0.2500
15
      0.5000
                0.3333
                           0.2500
                                      0.2000
                                                0.1667
16
      0.3333
                 0.2500
                           0.2000
                                      0.1667
                                                0.1429
17
18
      0.2500
                 0.2000
                           0.1667
                                      0.1429
                                                0.1250
      0.2000
               0.1667
                           0.1429
                                      0.1250
                                                0.1111
19
```

6.2 Zeri di funzione

6.2.1 Grafici di funzione

In MATLAB una funzione $f\left(x\right)$ viene memorizzata come un vettore. In particolare, il vettore y ottenuto valutando f nel vettore delle ascisse x. Per cui la rappresentazione della funzione $f\left(x\right)$ è di fatto la rappresentazione del vettore y contro il vettore x.

Per introdurre i concetti di funzione e grafici di funzione, si presentano qua di seguito alcuni esempi di caso d'uso.

Definire le seguenti variabili:

- x: vettore di estremi 0 e 10 con passo 0.1
- $y = e^x + 1$

Il vettore delle ascisse x può essere costruito banalmente con il seguente costrutto:

```
x = [0 : 0.1 : 10];
```

Per quanto riguarda la **funzione**, si utilizza la keyword per indicare che f ha come input un valore (x) e rappresenta la funzione $\exp(x)+1$. In questo caso, la funzione si dice anonima. Per dichiarare funzioni esplicite, si rimanda alla documentazione ufficiale.

```
f = Q(x) \exp(x) + 1
```

Una volta definita una **funzione**, per **valutarla in uno o più punti**, si utilizzerà banalmente la sintassi matematica:

```
f(2)

ans =

4

8.3891

f(0:3)

ans =

10

11

2.0000

3.7183

8.3891

21.0855
```

Da notare che se l'argomento è un vettore, allora il risultato sarà un vettore della medesima lunghezza del vettore dato in input.

Utilizzando le variabili precedentemente definite, disegnare il grafico della funzione $y = e^x + 1$ nell'intervallo [0, 10].

Per disegnare il grafico si utilizza il comando plot. Di default questa funzione disegna i valori in un piano cartesiano usando segmenti rettilinei (retta spezzata):

```
y = f(x);
plot(x, y)
```


Per evitare che MATLAB sovrascriva la figura nella finestra aperta, è possibile numerarle usando la funzione figure (e.g. figure(1); plot(x,y); figure(2); plot(0:3, 0:3)).

La funzione plot accetta determinati valori per modificare il grafico finale. Nella documentazione ufficiale è possibile trovare l'intera lista e alcuni esempi. Scrivendo plot(x, f(x), 'linewidth', 2), il parametro 'linewidth' consente di definire lo spessore delle curve. Il valore che viene specificato in questo caso è 2 e il risultato:

Usando il comando hold on per fare un confronto tra i vari grafici e invocando di nuovo la funzione plot ma con parametri differenti, si ottiene:

```
1 figure(1)
2 plot(x, f(x), 'linewidth', 2)
3 hold on
4 plot(x, -f(x), 'r', 'linewidth', 2)
```


Disegnare il grafico in scala semi-logaritmica (logaritmica solo per le ordinate) della funzione $y=e^x$ nell'intervallo [0,10]. È possibile prevedere come sarà il grafico in scala semi-logaritmica della funzione $y=e^{2x}$? Verificare la risposta tracciando sulla medesima finestra le due funzioni utilizzando colori diversi per i due grafici.

Per disegnare il grafico in scala semi-logaritmica (logaritmica sulle ordinate) si utilizza il comando semilogy e si aggiunge anche la griglia:

```
semilogy(x, exp(x), 'linewidth', 2)
grid on
```


È una retta poiché $\log_{10}(y) = \log_{10}(e^x) = x \log_{10}(e)$.

- Il comando semilogy è l'equivalente di plot ma traccia un grafico con l'asse delle ordinate in scala logaritmica.
- Il comando semiloga traccia un grafico con l'asse delle ascisse logaritmico.
- Il comando loglog traccia un grafico in cui entrambi gli assi sono in scala logaritmica.

Passando alla risoluzione dell'esercizio, dato che $\log_{10} (e^{2x}) = 2x \log_{10} (e)$, disegnando in scala semi-logaritmica la funzione $y = e^{2x}$, si otterrà una retta con pendenza doppia rispetto alla retta precedentemente disegnata.

```
hold on
semilogy(x, exp(2 * x), 'r', 'linewidth', 2)
% oppure in un solo comando senza usare hold on
% semilogy(x, exp(x), 'b', x, exp(2*x), 'r', 'linewidth', 2)
title('Grafico di exp(x) e di exp(2x)')
xlabel('Scala lineare')
ylabel('Scala logaritmica')
grid on
legend('exp(x)', 'exp(2*x)', 'Location', 'NorthWest')
```


Il comando legend attribuisce alle curve disegnate da plot le stringhe di testo che gli vengono passate. Attenzione che alcune stringhe, come 'Location' e 'NorthWest', vengono interpretate dalla funzione come comandi veri e propri. In questo caso si chiede di inserire una legenda in alto a sinistra.

6.3 Risoluzione di Sistemi di Equazioni Lineari

6.3.1 Metodi diretti

Si consideri la matrice di dimensione $n \times n$:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & -1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \end{bmatrix}$$

E **b** il vettore di dimensione n:

$$\mathbf{b} = [2, 0, 0, \dots, 0]^T$$

1. Si ponga n=20 e si assegnino in MATLAB la matrice A e il vettore dei termini noti **b**.

```
n = 20;
2 % crea il vettore colonna composto da soli uno
3 R = ones(n, 1);
4 % crea una matrice di valori negativi (-1)
5 % sulla diagonale principale
6 % e sommala alla matrice creata come:
7 % - vettore R specificando il range per evitare
8 % una matrice troppo grande;
9 % - -1 per indicare un livello sotto la diagonale principale:
10 A = -diag(R) + diag(R(1:n-1), -1);
11 % si riempi la prima riga della matrice A di uni
12 A(1, :) = 1;
13 % si crea un altro vettore di zeri
14 b = zeros(n, 1);
15 % e si sostituisce il primo valore con un 2
16 b(1) = 2;
```

La funzione diag ha un parametro particolare, vedi la documentazione.

 Si calcoli la fattorizzazione LU della matrice A, mediante la funzione MA-TLAB 1u. Verificare che la tecnica del pivoting non è stata usata in questo caso.

```
% la funzione lu puo' essere utilizzata nel seguente modo
[L, U, P] = lu(A);
% in cui L ed U sono la fattorizzazione,
% mentre la matrice P indica la matrice permutazione.
% quest'ultima potrebbe avere delle permutazioni sulle righe
% dovute alla tecnica del pivoting.
% per controllare si puo' procedere controllando manualmente,
% quindi stampando la matrice P e controllare che sia
% una matrice identita',
% oppure invocare la funzione eye e verificare che siano
% uguali con un if statement
if P == eye(n)
disp('pivoting effettuato!');
end
```

Si veda a pagina 22 la spiegazione della matrice di permutazione.

3. Scrivere una funzione MATLAB fwsub.m che, dati in ingresso una matrice triangolare inferiore $L \in \mathbb{R}^{n \times n}$ e un vettore $\mathbf{f} \in \mathbb{R}^n$ restituisca in uscita il vettore \mathbf{x} , soluzione del sistema $L\mathbf{x} = \mathbf{f}$, calcolata mediante l'algoritmo della sostituzione in avanti (forward substitution). L'intestazione della funzione sarà ad esempio: $[\mathbf{x}] = fwsub(L, \mathbf{f})$.

Analogamente, scrivere la funzione bksub.m che implementi l'algoritmo della sostituzione all'indietro (backward substitution) per matrici triangolari superiori (U). Per controllare che le matrici L e U passate a fwsub.m e bksub.m siano effettivamente triangolari, è possibile utilizzare i comandi MATLAB triu e tril che, data una matrice, estraggono rispettivamente la matrice triangolare superiore e la matrice triangolare inferiore.

Per creare una funzione, in MATLAB viene utilizzata la seguente sintassi:

```
function output_params = function_name(input_params)
% Statements
end
```

Introdotta la sintassi, si introduce il codice della funzione fwsub.m:

```
1 % si dichiara la funzione fwsub, che ha come input A e b
2 % e restituisce come output x
3 function x = fwsub(A,b)
       % ~ algoritmo di sostituzione in avanti ~
      % A: matrice quadrata triangolare inferiore
      % b: termine noto
      % x: soluzione del sistema Ax=b
      % si controlla che la matrice sia quadrata e
      % per farlo si calcola le dimensioni di b
11
      n = length(b);
       \% se il numero di righe (size(A,1)) della matrice A
13
      % o se il numero di colonne (size(A,2)) della matrice A
14
      \% sono diverse da n, allora le dimensioni non sono ammesse
      if (size(A, 1) ~= n || size(A, 2) ~= n)
16
           error("Dimensioni non ammesse");
17
       end
18
19
      \% inoltre si controlla che la matrice sia una matrice
20
      % triangolare inferiore;
      % si utilizza la funzione tril per ottenere la
22
23
      % matrice triangolare inferiore
      if (A ~= tril(A))
24
           error("La matrice non e' triangolare inferiore");
25
26
27
      \mbox{\ensuremath{\%}} infine, si controllare che la matrice sia NON singolare,
28
       % ovvero che il determinante deve essere diverso da zero
29
      if (det(A) == 0)
30
31
           error("La matrice e' singolare");
32
33
      % adesso l'algoritmo puo' iniziare;
34
35
       % si inizializza una matrice risultato, ovvero x,
      \% nella quale verranno salvati i risultati
36
      x = zeros(n,1);
      % si applica la formula della sostituzione in avanti,
38
      % prima per la posizione (1,1)
39
      x(1) = b(1) / A(1,1);
40
      \% e dopodiche' per tutte le posizioni della matrice
```

```
for i = 2:n

x(i) = (b(i) - A(i, 1:i-1) * x(1:i-1)) / A(i,i);

end
```

Analogamente, si presenta il codice della funzione bksub.m:

```
1 % la funzione bksub avra, la stessa signature della funzione
2 % fwsub, ma la formula chiaramente sara' differente
g function x = bksub(A, b)
      % ~ algoritmo di sostituzione all'indietro ~
      % A: matrice quadrata triangolare superiore
      % b: termine noto
      % x: soluzione del sistema Ax = b
      % 1. si esegue lo stesso controllo della funzione
10
           fwsub, si verifica che A sia quadrata
      n = length(b);
13
      if (size(A, 1) ~= n || size(A, 2) ~= n)
          error("Dimensioni non ammesse");
14
16
      % 2. si controlla che sia effettivamente una
17
           matrice triangolare superiore,
18
           usando questa volta la funzione triu
19
      if (A ~= triu(A))
20
          error("La matrice non e' triangolare superiore");
21
22
23
24
      % 3. l'ultimo controllo riguarda la "non singolarita'"
           ovvero, determinante diverso da zero
25
26
         (\det(A) == 0)
          error("La matrice e' singolare");
27
28
29
      \% 4. si parte con l'algoritmo e per farlo si inizia
30
31
           con l'ultima posizione;
      %
           ovviamente si inizializza la matrice risultato
32
      x = zeros(n,1);
33
      x(n) = b(n) / A(n,n);
34
      \% 5. si ricorda la sintassi del for statement
35
36
           initVal : step : endVal
           l'indice parte con un valore uguale a initVal,
37
           incrementa o decrementa a seconda dello step,
38
39
           termina quando raggiunge la condizione endVal
      for i = n-1 : -1 : 1
40
41
          x(i) = (b(i) - A(i, i+1:n) * x(i+1:n)) / A(i,i);
```

4. Risolvere numericamente, utilizzando le funzioni fwsub.m e bksub.m implementate al punto precedente, i due sistemi triangolari necessari per ottenere la soluzione del sistema di partenza $A\mathbf{x} = \mathbf{b}$ mediante la fattorizzazione LU.

Si utilizza la tecnica del pivoting e l'equazione 27 a pagina 22:

```
y = fwsub(L, P*b);
x = bksub(U, y);
```

5. Si calcoli la norma 2 dell'errore relativo

$$||\mathbf{err_{rel}}|| = \frac{||\mathbf{x} - \widehat{\mathbf{x}}||}{||\mathbf{x}||}$$

E la norma 2 del residuo normalizzata:

$$||\mathbf{r}|| = \frac{||\mathbf{b} - A\widehat{\mathbf{x}}||}{||\mathbf{b}||}$$

Sapendo che la soluzione esatta è il vettore di componenti:

$$\mathbf{x}(i) = \frac{2}{n}$$
 $i = 1, \dots, n$

Si commenti il risultato ottenuto basandosi sul valore del numero di condizionamento della matrice A (si utilizzino i comandi norm e cond).

Il comando norm è stato spiegato a pagina 92.

6. Si ripeta il punto precedente per n=10,20,40,80,160. Si rappresentino su un grafico in scala semi-logaritmica gli andamenti dell'errore relativo, del residuo normalizzato (si usa dire residuo normalizzato per la norma normalizzata del residuo) e del numero di condizionamento in funzione di n. Commentare il grafico ottenuto.

```
% si crea il vettore n
_{2} N = [10 20 40 80 160];
3 % e si inizializzano le variabili
_{4} K = [];
5 err_rel = [];
6 r_nor = [];
8 % per ogni n, si applicano i pezzi di codice precedenti
9 \text{ for } n = N
      R = ones(n, 1);
10
       A = -diag(R) + diag(R(1:n-1), -1);
A(1, :) = 1;
11
12
14
       b = zeros(n, 1);
       b(1) = 2;
15
16
       [L, U, P] = lu(A);
17
18
       y = fwsub(L, P*b);
19
20
       x_1 = bksub(U, y);
21
       x_ex = 2 / n * ones(n, 1);
22
       err_rel = [err_rel; norm(x_ex - x_1) / norm(x_ex)];
23
      r_nor = [r_nor; norm(b - A*x_1) / norm(b)];
```

```
K = [K; cond(A)];
end

K Semilog plot (y-axis has log scale)
semilogy(N, err_rel, '-s', N, r_nor, '-o', N, K, '-x')
legend('errore rel.', 'residuo norm.', 'n. di condizionamento')
xlabel('dimensione n')
ylabel('err, r, K')
grid on
```

La seguente figura mostra l'andamento dell'errore relativo, del residuo normalizzato e del numero di condizionamento in funzione di n, in scala semi-logaritmica. Si noti che sia il residuo normalizzato sia l'errore relativo sono molto piccoli, dall'ordine di 10^{-16} , conseguenza del fatto che il numero di condizionamento $K\left(A\right)$ è in questo caso relativamente piccolo.

Figura 4: Andamento dell'errore relativo, del residuo normalizzato e del numero di condizionamento in funzione di n.

6.3.2 Metodi iterativi

I metodi iterativi stazionari sono considerati in genere nella seguente forma:

$$\mathbf{x}^{(k+1)} = B\mathbf{x}^{(k)} + \mathbf{f} \qquad k > 0$$

Dove B è detta matrice di iterazione. B e \mathbf{f} identificano il metodo.

6.3.2.1 Metodo di Jacobi

Si consideri la matrice diagonale D degli elementi diagonali di A. Tale matrice è facilmente invertibile, se gli $a_{ii} \neq 0, i = 1, ..., n$, in quanto:

$$D = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix} \Longrightarrow D^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \frac{1}{a_{nn}} \end{pmatrix}$$

E il metodo può essere scritto direttamente in forma matriciale:

$$\mathbf{x}^{(0)}$$
 assegnato
$$\mathbf{x}^{(k+1)} = B_J \mathbf{x}^{(k)} + \mathbf{f}_J$$

Dove $B_J=I-D^{-1}A=D^{-1}\left(D-A\right)$ è la matrice di iterazione di Jacobi e $\mathbf{f}_J=D^{-1}\mathbf{b}$

6.3.2.2 Metodo di Gauss-Seidel

Questo metodo si differenza dal metodo di Jacobi per il fatto che considera, oltre alla matrice D, anche le due matrici -E e -F triangolari superiore e inferiore della matrice A, ovvero:

$$-E = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ \vdots & a_{32} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ a_{n1} & a_{n2} & \cdots & a_{nn-1} & 0 \end{bmatrix} \qquad -F = \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & a_{n-1n} \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Dunque, il seguente algoritmo o le seguenti istruzioni:

$$\mathbf{x}^{(0)}$$
 assegnato
$$\mathbf{x}^{(k+1)} = B_{GS}\mathbf{x}^{(k)} + \mathbf{f}_{GS}$$

Dove $B_{GS}=(D-E)^{-1}F$ è la matrice d'iterazione di Gauss-Seidel e $\mathbf{f}_{GS}=(D-E)^{-1}\mathbf{b}.$

6.3.2.3 Esercizio

Si considerino la matrice:

$$A = \begin{bmatrix} 9 & -3 & 1 \\ -3 & 9 & -3 & 1 \\ 1 & -3 & 9 & -3 & 1 \\ & 1 & -3 & 9 & -3 & 1 \\ & 1 & -3 & 9 & -3 & 1 \\ & & 1 & -3 & 9 & -3 \\ & & & 1 & -3 & 9 \end{bmatrix}$$

E il termine noto:

$$\mathbf{b} = \begin{bmatrix} 7 & 4 & 5 & 5 & 5 & 4 & 7 \end{bmatrix}^T$$

1. Costruire la matrice A (utilizzando i comandi Matlab diag e ones) e determinare il numero di elementi non nulli tramite il comando nnz. La matrice A è a dominanza diagonale per righe? È simmetrica e definita positiva?

È stato richiesto di utilizzare i comandi diag e ones per costruire la matrice A. Quindi per farlo, si controlla rapidamente la documentazione dei due comandi:

```
1 >> help ones
   ones - Create array of all ones
       This MATLAB function returns the scalar 1.
       Svntax
         X = ones
         X = ones(n)
         X = ones(sz1,...,szN)
         X = ones(sz)
10
         X = ones(___, typename)
11
12
         X = ones(___,'like',p)
13
      Input Arguments
14
        n - Size of square matrix
15
           integer value
16
17
         \mathtt{sz1}\,\text{,}\ldots\text{,}\mathtt{szN}\,\text{ - Size of each dimension}
          two or more integer values
18
         sz - Output size
19
          row vector of integer values
20
         typename - Output class
21
           'double' (default) | 'single' | 'logical' | 'int8' | '
22
       uint8' | ...
         p - Prototype
23
24
           variable
25
26 >> help diag
   diag - Create diagonal matrix or get diagonal elements of
27
       matrix
       This MATLAB function returns a square diagonal matrix with
28
        the elements
       of vector v on the main diagonal.
29
30
       Syntax
31
         D = diag(v)
D = diag(v,k)
32
33
```

```
34
         x = diag(A)
35
         x = diag(A,k)
36
37
38
       Input Arguments
         v - Diagonal elements
39
40
           vector
         A - Input matrix
41
42
           matrix
43
         k - Diagonal number
44
           integer
```

Adesso si osservi la matrice A. È possibile notare che la diagonale principale ha tutti i valori uguale a 9, mentre sopra e sotto la diagonale principale, altre due diagonali con valore pari a -3 e allo stesso modo due diagonali con valore uguale a 1.

Usando entrambi i comandi, si può giungere al seguente risultato parziale:

```
>> diag(9*ones(1, n)) + diag(-3*ones(1,n-1), 1) + diag(1*ones
      (1,n-2), 2)
3 ans =
           0
                  9
                        -3
                                      0
                                             0
           0
                  0
                         9
                               -3
                                      1
                                             0
                                                    0
           0
                  0
                         0
                               9
                                      -3
                                             1
                                                    0
                               0
           0
                  0
                         0
                                      9
                                             -3
                                                    1
           0
                  0
                         0
                                0
                                      0
                                             9
                                                    -3
```

Ed eseguendo con la stessa logica anche sotto la diagonale principale, si ottiene la matrice A richiesta:

```
n = 7;
A = diag(9*ones(1, n)) + ... % diagonale principale

diag(-3*ones(1,n-1), 1) + diag(-3*ones(1,n-1), -1) + ...

diag(1*ones(1,n-2), 2) + diag(1*ones(1,n-2), -2)
   % ans =
6
   %
              9
                                                    0
                      -3
                                           0
9
   %
             -3
                       9
                                -3
                                          1
                                                    0
                                                              0
                                                                       0
   %
                                 9
10
              1
                       -3
                                          -3
11 %
              0
                                -3
                                         9
                                                   -3
                                                             1
                                                                       0
                       1
12 %
              0
                       0
                                1
                                         -3
                                                   9
                                                             -3
                                                                       1
   %
                                                             9
              0
                       0
                                 0
                                          1
                                                   -3
                                                                      -3
13
   %
14
              0
                       0
                                 0
                                           0
                                                   1
                                                             -3
```

Il numero di elementi non nulli si calcola con il comando nnz:

```
1 >> help nnz
2  nnz - Number of nonzero matrix elements
3  This MATLAB function returns the number of nonzero elements in matrix X.
4  Syntax
6  N = nnz(X)
7  Input Arguments
9  X - Input matrix
```

```
10 matrix
11
12 >> nnz(A)
13
14 ans =
15
16 29
```

E infine, per confermare che la matrice sia a dominanza diagonale per righe, simmetrica e definita positiva:

```
% applicando la definizione
3 A = diag(9*ones(1, n)) + ... \% diagonale principale
       diag(-3*ones(1,n-1), 1) + diag(-3*ones(1,n-1), -1) + ...
diag(1*ones(1,n-2), 2) + diag(1*ones(1,n-2), -2);
  A_diag = diag(abs(A));
  A_{no\_diag} = diag(-3*ones(1,n-1), 1) + ...
                diag(-3*ones(1,n-1), -1) + ...
diag(1*ones(1,n-2), 2) + diag(1*ones(1,n-2), -2);
10 % definizione:
11 % https://it.wikipedia.org/wiki/Matrice_a_diagonale_dominante
_{12} for index = n
       if not(A_diag(index) >= sum(abs(A_no_diag(index:index, 1:n
13
14
           error ("La matrice non e' a diagonale dominante")
15
16 end
17
18 % oppure in modo piu' rapido:
if (2 * abs(diag(A)) - sum(abs(A), 2) > 0)
20
       disp("La matrice e' a diagonale dominante")
21 end
23 % una matrice e' simmetrica se e' uguale alla sua transposta
24 if not(A == transpose(A))
       disp("La matrice non e' simmetrica")
25
26 end
27
28 % il metodo piu' efficiente per controllare se una matrice
_{\rm 29} % e' simmetrica e definita positiva, e' con l'utilizzo
30 % della fattorizzazione di Cholesky
31 % (studiata nella parte di teoria)
32 % source: https://rb.gy/uko7gs
33 try chol(A);
       disp("La matrice e' simmetrica e definita positiva")
34
35 catch ME
       error("La matrice non e' simmetrica definita positiva")
36
37 end
```

2. Si calcolino le matrici di iterazione:

$$B_J = D^{-1} (D - A)$$

 $B_{GS} = (D - E)^{-1} F$

Associate rispettivamente ai metodi di Jacobi e Gauss-Seidel e i relativi raggi spettrali. La condizione necessaria e sufficiente per la convergenza del metodo iterativo è soddisfatta in entrambi i casi?

Le matrici di iterazione dei due metodi si calcolano a partire dalla definizione:

```
1 D = diag(diag(A));
2 Bj = D\(D-A);  % matrice di iterazione di Jacobi
3
4 E=-tril(A,-1);
5 F=-triu(A,1);
6 Bgs=(D-E)\F; % matrice di iterazione di Gauss-Seidel
7
8 rho_j = max(abs(eig(Bj)))
9 rho_gs = max(abs(eig(Bgs)))
```

Si noti l'istruzione D = diag(diag(A)); il comando interno estrae la diagonale principale di A, restituendo un vettore, il quale viene elaborato dal comando più esterno che crea una seconda matrice quadrata identica alla dimensione di A ma con solo la diagonale principale.

Dal calcolo del raggio spettrale delle matrici si può concludere che in questo caso entrambi i metodi convergono, in quanto l'autovalore massimo risulta in modulo strettamente minore di 1. Si osservi che il raggio spettrale della matrice di iterazione del metodo di Gauss-Seidel è più basso di quello della matrice del metodo di Jacobi.

3. Scrivere la funzione Matlab che implementi il metodo di Jacobi inversione matriciale per il sistema lineare $A\mathbf{x} = \mathbf{b}$. L'intestazione della funzione sarà la seguente:

$$[x,k] = jacobi(A,b,x0,toll,nmax).$$

Il processo iterativo si arresta quando:

$$\frac{\left|\left|\mathbf{r}^{(k)}\right|\right|}{\left|\left|\mathbf{b}\right|\right|} \leq \mathtt{toll}$$

(criterio d'arresto del residuo normalizzato).

```
function [x,k] = jacobi(A,b,x0,toll,nmax)
  % Metodo di Jacobi
3
4 %
5 % A: matrice del sistema
  % b: termine noto
  % x0: vettore iniziale
  % toll: tolleranza sul residuo normalizzato
    nmax: massimo numero di iterazioni
11 % x: soluzione ottenuta
  % k: numero di iterazioni effettuate
12
13
n = size(b,1);
_{16} % Controlliamo che la matrice A sia quadrata e che,
17 % insieme al guess iniziale x0,
18 % abbia dimensioni compatibili con b.
if ((size(A,1) ~= n) || (size(A,2) ~= n) || (size(x0,1) ~= n))
20
    error('Dimensioni incompatibili')
21 end
23 % Controlliamo che la matrice A non abbia elementi
24 % diagonali nulli.
25 if (prod(diag(A)) == 0)
```

```
error('res_normore: elementi diagonali nulli')
28
29 % Estraiamo la matrice D da A e calcoliamo la matrice
30 % d'iterazione e il termine noto g
31 D = diag(diag(A));
32 Bj = eye(n) - D \setminus A;
g = D \ ;
34
35 %Inizializziamo x come x0, calcoliamo il residuo
36 % e l'res_normore normalizzato
37 x = x0;
38 r = b - A*x;
39 res_norm = norm(r) / norm(b);
41 % Inizializziamo l'indice d'iterazione
42 k = 0;
while (res_norm > toll && k < nmax)</pre>
45
      k = k + 1;
46
      % Calcoliamo il nuovo x
47
      x=Bj*x+g;
49
      % Calcoliamo residuo e res_normore
50
51
      r = b - A*x;
      res_norm = norm(r)/norm(b);
52
53
  end
```

4. Scrivere una funzione Matlab che implementi il metodo di Gauss-Seidel inversione *matriciale* per il sistema lineare $A\mathbf{x} = \mathbf{b}$. L'intestazione della funzione sarà la seguente:

$$[x,k] = gs(A,b,x0,toll,nmax).$$

```
function [x,k]=gs(A,b,x0,toll,nmax)
3 % Metodo di Gauss-Seidel
4 %
5 % A: matrice del sistema
_{6} % b: termine noto
7 % x0: vettore iniziale
  % toll: tolleranza sul residuo normalizzato
  % nmax: massimo numero di iterazioni
10 %
11 % x: soluzione ottenuta
12 % k: numero di iterazioni effettuate
13
n = size(b,1);
15
16 % Controlliamo che la matrice A sia quadrata e che,
17 % insieme al guess iniziale x0,
18 % abbia dimensioni compatibili con b.
19 if (( size(A,1)~=n) || (size(A,2)~=n) || (size(x0,1)~= n) )
   error('dimensioni incompatibili')
20
21 end
23 % Controlliamo che la matrice A non abbia
24 % elementi diagonali nulli.
25 if (prod(diag(A)) == 0)
error('errore: elementi diagonali nulli')
```

```
27 end
_{\rm 29} % Decomponiamo la matrice in D,E e F,
30 % e calcoliamo la matrice d'iterazione e il termine g
D=diag(diag(A));
32 E=-tril(A,-1);
33 F=-triu(A,1);
34 Bgs = (D-E) \setminus F;
g = (D-E) \setminus b;
37 % Inizializziamo x come x0, calcoliamo il residuo
38 % e l'errore normalizzato
39 x = x0;
_{40} r = b - A * x;
41 err = norm(r) / norm(b);
42
43 % Inizializziamo l'indice d'iterazione
44 k = 0;
45
46 while ( err > toll && k < nmax )
   k = k + 1;
47
48
49
    % Calcoliamo il nuovo x
    x = Bgs * x + g;
50
51
52
    % Calcoliamo residuo e errore
    r = b - A*x;
53
54
    err = norm(r)/norm(b);
```

5. Costruire il termine noto **b**. Utilizzando le funzioni costruite nei punti 3 e 4, risolvere il sistema A**x** = **b** ponendo $x^{(0)} = [0, 0, ..., 0]^T$, toll = 10^{-6} e nmax = 1000. Confrontare il numero di iterazioni necessarie per arrivare a convergenza per i due metodi e commentare i risultati ottenuti.

Il metodo di Gauss-Seidel converge più velocemente alla soluzione esatta in accordo con il corrispondente raggio spettrale che è più basso di quello della matrice del metodo di Jacobi.

```
b = transpose([7 4 5 5 5 4 7]);
_{2} toll = 1e-6;
3 \times 0 = zeros(n, 1);
4 \text{ nmax} = 1000;
[xJ, kJ] = jacobi(A, b, x0, toll, nmax);
7 [xGS, kGS] = gs(A, b, x0, toll, nmax);
10 x J
11 k.I
12 xGS
13 kGS
14
15 % xJ =
16 %
17 %
        1.0000
       1.0000
18 %
       1.0000
19 %
20 %
21 %
       1.0000
22 % 1.0000
```

```
23 % 1.0000
24 %
25 %
26 % kJ =
27 %
28 % 49
29 %
30 %
31 % xGS =
32 %
33 % 1.0000
34 % 1.0000
35 % 1.0000
36 % 1.0000
37 % 1.0000
38 % 1.0000
39 % 1.0000
40 %
41 %
42 % kGS =
43 %
44 % 12
```

6.3.2.4 Metodo di Richardson

Il metodo di Richardson stazionario è basato sulla seguente legge. Dati $\mathbf{x}^{(0)}$ e $\alpha \in \mathbb{R}$ si calcola:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{r}^{(k)} \qquad k > 0 \tag{153}$$

Dove $\alpha \neq 0$ è un parametro costante per ogni iterazione. Questo metodo richiede, ad ogni passo k, di calcolare il residuo $\mathbf{r}^{(k)}$ definito come:

$$\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$$

Il metodo di Richardson stazionario converge solo per $0 < \alpha < \frac{2}{\lambda_{\max}}$, in cui λ_{\max} è il massimo degli autovalori della matrice A. Inoltre, è possibile calcolare un valore di α ottimale che massimizza la velocità di convergenza. Questo valore è dato da:

$$\alpha_{\rm opt} = \frac{2}{\lambda_{\rm min} + \lambda_{\rm max}}$$

In cui λ_{\min} è il minimo degli autovalori della matrice A. Per questo valore, la velocità di convergenza è data da:

$$\rho_{\text{opt}} = \frac{K(A) - 1}{K(A) + 1}$$

Dove K(A) è il numero di condizionamento, definito anche come:

$$K(A) = ||A^{-1}|| \cdot ||A||$$

Dove $||\cdot||$ è una opportuna norma introdotta per la matrice. Vale sempre $K(A) \geq 1$. Se la matrice A è simmetrica e definita positiva, utilizzando la sua norma 2, vale:

$$K\left(A\right) = \left|\left|A^{-1}\right|\right|_2 \cdot \left|\left|A\right|\right|_2 = \frac{\lambda_{\max}}{\lambda_{\min}}$$

Si noti che, dalla sua definizione, il metodo di Richardson (eq. 153) può essere riscritto nella seguente forma (utilizzando la definizione di \mathbf{r}):

$$\mathbf{x}^{(k+1)} = (I - \alpha A)\mathbf{x}^{(k)} + \alpha \mathbf{b} \qquad k \ge 0$$
 (154)

Segue che il metodo di Richardson è un metodo iterativo caratterizzato dalla matrice di iterazione $B_{\alpha} = I - \alpha A$ e da $\mathbf{f} = \alpha \mathbf{b}$.

6.3.2.5 Precondizionamento

Il numero di condizionamento di una matrice governa il rapporto tra l'errore relativo commesso dalla soluzione numerica nella risoluzione di un sistema lineare e il corrispondente residuo normalizzata, alla iterata k:

$$\frac{\left|\left|\mathbf{x}^{(k)} - \mathbf{x}\right|\right|}{\left|\left|\mathbf{x}^{(k)}\right|\right|} \le K(A) \frac{\left|\left|\mathbf{r}^{(k)}\right|\right|}{\left|\left|\mathbf{b}\right|\right|}$$

Dove:

- $\mathbf{x}^{(k)}$ è la soluzione numerica
- $\mathbf{r}^{(k)}$ è il residuo, ovvero $\mathbf{b} A\mathbf{x}^{(k)}$
- \bullet \mathbf{x} è la soluzione esatta del sistema lineare

Inoltre, nel caso del metodo di Richardson, si ottiene:

$$\left\| \mathbf{e}^{(k+1)} \right\| \le \frac{K(A) - 1}{K(A) + 1} \cdot \left\| \mathbf{e}^{(k)} \right\|$$

Come migliore stima ottenibile usando $\alpha_{\rm opt}$.

Per problemi ben condizionati (K(A) non molto più grande di 1), la soluzione del problema con piccoli residui non differisce molto dalla soluzione del problema originale; al contrario, in problemi con la matrice mal condizionata $(K(A) \gg 1)$ a piccoli residui possono corrispondere grandi errori e la convergenza è molto lenta.

L'idea del precondizionamento consiste nel cercare di ridurre il numero di condizionamento della matrice del sistema, pre-moltiplicandola per una matrice P^{-1} (P è chiamata precondizionatore). Si ottiene così il sistema equivalente:

$$P^{-1}A\mathbf{x}^{(k)} = P^{-1}\mathbf{b}$$

Ovviamente il precondizionatore è efficace se $K\left(P^{-1}A\right)\ll K\left(A\right)$ e se la soluzione del sistema lineare in P che sorge ad ogni iterazione non è troppo onerosa. La prima proprietà è solitamente verificata quando $P^{-1}\approx A^{-1}$, cioè quando P e A hanno uno spettro simile, ma dovendo tener conto della seconda condizione è opportuno scegliere P con una struttura speciale che mantenga basso il costo computazionale (ad esempio diagonale o triangolare).

Ad esempio, nel caso di Richardson, per alleviare la dipendenza della convergenza ottimale dal numero di condizionamento, si introduce la tecnica di precondizionamento, che consiste nel sostituire A con $P^{-1}A$. Questo metodo richiede, ad ogni iterata, di trovare il cosiddetto residuo precondizionato $\mathbf{z}^{(k)}$ dato dalla soluzione del sistema lineare:

$$P\mathbf{z}^{(k)} = \mathbf{r}^{(k)} \tag{155}$$

Di conseguenza, la nuova iterata è definita da $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{z}^{(k)}$. Si noti che la matrice P, oltre ad essere non singolare (determinante diverso da zero),

simmetrica (coincide con la sua trasposta) e definita positiva, deve essere scelta in modo tale che il costo computazionale richiesto dalla risoluzione del sistema (eq. 155) sia basso. Per il caso precondizionato, valgono i precedenti risultati su $\alpha_{\rm opt}$ e $\rho_{\rm opt}$ a patto che si considerino gli autovalori di $P^{-1}A$ invece di quelli di A.

6.3.2.6 Metodo del gradiente

È possibile generalizzare il metodo di Richardson precondizionato tramite l'introduzione di un parametro di accelerazione dinamico α_k :

$$P\left(\mathbf{x}^{(k+1)-\mathbf{x}^{(k)}}\right) = \alpha_k \mathbf{r}^{(k)} \qquad k \ge 0, \ \alpha_k \ne 0$$

Con P il precondizionatore. Lo scopo dell'utilizzo di α_k è quello di poter calcolare facilmente il parametro di accelerazione evitando il calcolo (spesso oneroso) degli autovalori di A come per $\alpha_{\rm opt}$. Questo metodo è detto metodo di Richardson dinamico. Se α_k è scelto in modo ottimale, allora il metodo è detto del gradiente se P=I, oppure del gradiente precondizionato se $P\neq I$.

A partire dal metodo di Richardson, è possibile ottenere i metodi del gradiente (P = I) e del gradiente precondizionato $(P \neq I)$ tramite l'aggiunta del parametro α_k : dato $\mathbf{x}^{(0)}$ assegnato, si ponga $\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$ e per $k = 0, 1, \dots$

$$P\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$$

$$\alpha_k = \frac{\left(\mathbf{z}^{(k)}\right)^T \mathbf{r}^{(k)}}{\left(\mathbf{z}^{(k)}\right)^T A \mathbf{z}^{(k)}}$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{z}^{(k)}$$

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} + \alpha_k A \mathbf{z}^{(k)}$$
(156)

6.3.2.7 Esercizi su Richardson e gradiente

Si considerino la matrice:

$$A = \begin{bmatrix} 9 & -3 & 1 \\ -3 & 9 & -3 & 1 \\ 1 & -3 & 9 & -3 & 1 \\ & 1 & -3 & 9 & -3 & 1 \\ & & 1 & -3 & 9 & -3 & 1 \\ & & & 1 & -3 & 9 & -3 \\ & & & & 1 & -3 & 9 \end{bmatrix}$$

E il termine noto:

$$\mathbf{b} = \begin{bmatrix} 7 & 4 & 5 & 5 & 5 & 4 & 7 \end{bmatrix}^T$$

1. Costruire la matrice A (utilizzando i comandi Matlab diag e ones).

```
A = diag(9*ones(1, n)) + ... % diagonale principale

diag(-3*ones(1,n-1), 1) + diag(-3*ones(1,n-1), -1) + ...

diag(1*ones(1,n-2), 2) + diag(1*ones(1,n-2), -2)
 6 % ans =
8 %
             9
                    -3
                              1
9 %
            -3
                     9
                             -3
                                     1
                                              0
                                                       0
                                                                0
10 %
                            9
                                     9
                                             -3
                                                                0
11 %
             0
                     1
                            -3
                                                       1
                                             9
12 %
             0
                     0
                            1
                                     -3
                                                       -3
                                                                1
13 %
             0
                     0
                             0
                                     1
                                              -3
                                                       9
                                                               -3
                         0
14 %
             0
                   0
                                     0 1
```

2. Calcolare l'intervallo di valori di α per cui il metodo di Richardson stazionario non precondizionato converge. Determinare il valore ottimale di α per avere massima velocità di convergenza.

```
1 % calcolo di eigenvalues e eigenvectors
2 % V: right eigenvectors (matrice quadrata)
_3 % D: eigenvalues (matrice diagonale)
 _{4} [V,D] = eig(A);
6 % si ottiene l'autovalore massimo
7 lambda_max = max(diag(D))
8 % lambda_max =
9 %
10 %
        16.0403
11
12 % il limite (suppenendo lambda_min = 0)
13 Lim = 2/lambda_max
14 % Lim =
15 %
16 %
         0.1247
17
18 % si calcola infine alpha opt
19 lambda_min = min(diag(D))
20 alpha_opt = 2/(lambda_min+lambda_max)
21 % lambda_min =
22 %
23 %
         4.9042
24 %
```

3. Scrivere una funzione Matlab che implementi il metodo di Richardson stazionario non precondizionato per il sistema lineare A**x** = **b**. I parametri in ingresso richiesti dalla funzione sono la matrice A, il termine noto **b**, il guess iniziale $\mathbf{x}^{(0)}$, il coefficiente α , la tolleranza per il criterio d'arresto toll e il numero massimo di iterazioni ammesse nmax. La funzione restituisce la soluzione numerica \mathbf{x} e il numero di iterazioni effettuate k.

L'intestazione della funzione sarà la seguente:

Il processo iterativo si arresta quando:

$$\frac{\left|\left|\mathbf{r}^{(k)}\right|\right|}{\left|\left|\mathbf{b}\right|\right|} \leq \mathtt{toll}$$

(criterio d'arresto del residuo normalizzato).

```
function [x, k, err] = richardson(A, b, x0, alpha, toll, nmax)
  % Metodo di Richardson stazionario
3
5 % A: matrice del sistema
6 % b: termine noto
  % x0: vettore iniziale
  % alpha: coefficiente di Richardson
  % toll: tolleranza sul residuo normalizzato
10
  % nmax: massimo numero di iterazioni
11 %
12 % x: soluzione ottenuta
13 % it: numero di iterazioni effettuate
14
n = size(b,1);
16 k = 0;
17
if ((size(A,1) ~= n) || (size(A,2) ~= n) || (size(x0,1) ~= n))
19
   error('Dimensioni incompatibili')
20 end
21
22 x = x0;
_{23} r = b - A*x;
24 errk = norm(r) / norm(b);
25 err = errk;
while (errk > toll && k < nmax)</pre>
      k = k + 1;
28
      x = x + alpha*r;
29
      r = b - A*x;
30
      errk = norm(r)/norm(b);
31
32
      err = [err; errk];
33 end
```

4. Costruire il termine noto **b**. Utilizzando la funzione scritta al punto precedente, determinare la soluzione del sistema lineare A**x** = **b**, con A data dal punto 1.

Si ponga $\mathbf{x}^{(0)} = \begin{bmatrix} 0,0,\dots,0 \end{bmatrix}^T$, toll = 10^{-6} e nmax = 1000. Si verifichi sperimentalmente che il metodo di Richardson stazionario non precondizionato converge solo se α appartiene all'intervallo trovato nel punto 2. In particolare, si scelga un α al di fuori dell'intervallo e si verifichi che il metodo diverge. Si provi, inoltre, sperimentalmente, che per $\alpha_{\rm opt}$ il metodo converge più velocemente. In particolare, si scelga un α nell'intervallo di convergenza e si osservi il numero di iterazioni per aggiungere a convergenza è maggiore di quello ottenuto utilizzando $\alpha_{\rm opt}$.

```
1 % calcolo della transposta
b = transpose([7 4 5 5 5 4 7]);
4 % si pongono i dati richiesti
5 \times 0 = zeros(n,1);
6 \text{ toll} = 1e-6;
7 nmax = 1000;
9 % si utilizza prima un alpha fuori dal limite del punto 2
10 alpha = 2;
11 [xR1,kR1] = richardson(A,b,x0,alpha,toll,nmax)
12 % xR1 =
13 %
14 %
       -Inf
15 %
       Inf
16 %
       -Inf
17 %
       Inf
18 %
      -Inf
19
        Inf
20 %
      -Inf
21 %
22 %
23 % kR1 =
24 %
25 %
        208
26
27 % adesso ci si avvicina al valore alpha
28 alpha = 0.11;
29 [xR2,kR2] = richardson(A,b,x0,alpha,toll,nmax)
30 \% xR2 =
31 %
32 %
         1.0000
33 %
        1.0000
        1.0000
34 %
35
        1.0000
36 %
        1.0000
37 %
        1.0000
         1.0000
38
39 %
40 %
_{41} % kR2 =
42 %
43 %
         45
44
_{45} % e infine si utilizza alpha opt per verificare
46 % che sia il migliore
47 [xR3,kR3] = richardson(A,b,x0,alpha_opt,toll,nmax)
48 % xR3 =
49 %
        1.0000
50 %
         1.0000
52 % 1.0000
```

Adesso si passa al gradiente. Si consideri il problema lineare $A\mathbf{x} = \mathbf{b}$, dove la matrice $A \in \mathbb{R}^{n \times n}$ è pentadiagonale:

$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & -1 & -1 & 4 & -1 & -1 \\ & & & & -1 & -1 & 4 & -1 \\ & & & & & -1 & -1 & 4 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \\ \vdots \\ 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$$

Si vuole risolvere tale problema con il metodo del gradiente, soddisfando una tolleranza di 10^{-5} per il criterio relativo al residuo normalizzato, a partire dal vettore iniziale $\mathbf{x}_0 = \left[0, \dots, 0\right]^T$.

1. Costruire la matrice A con n = 50, il termine noto \mathbf{b} ed il vettore soluzione iniziale \mathbf{x}_0 . La matrice A è simmetrica e definita positiva? Se ne calcoli il numero di condizionamento, senza utilizzare il comando cond di Matlab.

```
n = 50;
A = diag(4*ones(n,1)) + ...
      diag(-ones(n-1,1),-1) + ....
      diag(-ones(n-1,1),1) + ...
       diag(-ones(n-2,1),-2) + ...
       diag(-ones(n-2,1),2);
7 % si visualizza la sparsity pattern della matrice
8 spy(A)
9 % si costruiscono i restanti vettori
b = 0.2*ones(n, 1);
x0 = zeros(n, 1);
12
_{13} % si controlla se e' simmetrica e definita positiva
14 % sfruttando la velocita' della fattorizzazione di Cholensky
15 try chol(A);
      disp("La matrice e' simmetrica definita positiva")
17 catch ME
      disp("La matrice non e' simmetrica definita positiva")
18
19 end
20 \text{ eigA} = \text{eig}(A);
_{21} KA = _{max}(eigA)/min(eigA)
_{22} % KA =
23 %
24 % 336.2412
```


2. Si scriva una funzione che implementi il metodo del gradiente e la si usi per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$. L'intestazione della funzione sarà ad esempio:

Dove err è il vettore contenente il residuo normalizzato ad ogni iterazione.

```
1 function [xn, iter, err] = graddyn (A, b, x0, nmax, tol)
3 % Metodo del gradiente per sistemi lineari
5 % Parametri di ingresso:
6 %
     A Matrice del sistema
7 %
      b
             Termine noto
8 %
     x0
             Vettore iniziale
9 %
     nmax Numero massimo di iterazioni
  %
10
      tol
             Tolleranza sul test d'arresto
11 %
12 % Parametri in uscita
13 %
     xn
             Vettore soluzione
     iter Iterazioni effettuate
14 %
15 %
     err
            Vettore contenente gli errori relativi sul residuo
16
17 [n, m] = size (A);
18 if not(n == m)
  error ('matrice non quadrata')
19
20 end
22 iter = 0;
23 \text{ xn} = zeros(n,1);
24
25 % Iterazioni
bnrm2 = norm (b);
27 r = b - A * x0;
28 errk = norm (r) / bnrm2;
29 err = errk;
```

```
30 \text{ xn} = \text{x0};
32 while (errk > tol) && (iter < nmax)
33
    z = r;
      transpose_z = transpose(z);
34
      alpha = transpose_z*r / (transpose_z*A*z);
35
36
      xn = xn + alpha * r;
      r = (eye(n)-alpha*A)*r;
37
      errk = norm (r) / bnrm2;
38
39
      err = [err errk];
        xv = xn;
40 %
      iter = iter + 1;
41
42 end
43
44 if (iter == nmax)
      fprintf('Il metodo graddyn non converge in %d iterazioni \
45
      n', iter);
```

3. Utilizzare la funzione scritta al punto precedente per determinare la soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$.

```
1 % si impostano i valori
2 toll = 1e-5;
3 nmax = 10000;
4
5 % inizia il timer
6 tic
7 % si invoca il metodo del gradiente
8 [xGD, iterGD, errGD] = graddyn(A, b, x0, nmax, toll);
9 % si salva il tempo finale di esecuzione
10 timeGD=toc;
```

4. A partire dal graddyn.m, si scriva una funzione gradprec.m che implementi il metodo del gradiente precondizionato. L'intestazione della funzione sarà ad esempio:

Si risolva il sistema lineare $A\mathbf{x}=\mathbf{b}$ applicando il metodo del gradiente precondizionato con il precondizionatore:

$$P = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

```
function [xn, iter, err] = gradprec (A, b, P, x0, nmax, tol)

% Metodo del gradiente precondizionato

% %
Parametri di ingresso:
% A Matrice del sistema
% b Termine noto
% % P Precondizionatore
% x0 Vettore iniziale
```

```
10 % nmax Numero massimo di iterazioni
11 %
    tol Tolleranza sul test d'arresto
12 %
13 % Parametri in uscita
    xn Vettore soluzione
14 %
      iter Iterazioni effettuate
15 %
16 %
      err
             Vettore contenente gli errori relativi sul residuo
17
18 [n, m] = size (A);
19 if not(n == m)
error ('matrice non quadrata')
21 end
22
23 iter = 0;
xn = zeros(n,1);
25
26 % Iterazioni
bnrm2 = norm (b);
r = b - A * x0;
29 errk = norm (r) / bnrm2;
30 err = errk;
31 xv = x0;
while (errk > tol) && (iter < nmax)</pre>
     z = P \ r:
34
35
      transpose_z = transpose(z);
      alpha = transpose_z*r / (transpose_z*A*z);
36
37
     xn = xv + alpha * z;
      r = r-alpha*A*z;
38
      errk = norm (r) / bnrm2;
39
      err = [err errk];
40
      xv = xn;
41
      iter = iter + 1;
42
43 end
44
45 if (iter == nmax)
      fprintf('Il metodo gradprec non converge in %d iterazioni
46
      \n', iter);
47 end
P = diag(2*ones(n,1)) - ...
      diag(ones(n-1,1),-1) - ...
      diag(ones(n-1,1),1);
3
5 tic
6 [xPG, iterPG, errPG] = gradprec(A, b, P, x0, nmax, toll);
7 timePG=toc;
```

5. Disegnare su un grafico l'andamento del residuo normalizzato:

$$\frac{\left|\left|\mathbf{r}^{(k)}\right|\right|}{\left|\left|\mathbf{b}\right|\right|}$$

In funzione delle iterazioni k nei due casi (gradiente e gradiente precondizionato), e confrontare le curve ottenute.

```
1 figure
2 semilogy(...
3     [0:iterGD], ...
4     errGD, ...
5     'b-', ...
```

```
[0:iterPG], ...
errPG, ...

'g-', ...
'Linewidth', ...

2 ...

11 )

grid on
axis([0 200 0 4])

**xlabel('n iter')
ylabel('errore residuo')
legend('Gradiente', 'Gradiente Precondizionato')
```


6. A partire da richardson.m, si scriva una funzione richprec.m che implementi il metodo di Richardson precondizionato. L'intestazione della funzione sarà ad esempio:

```
[x, iter, err] = richprec(A, b, P, alpha, x0, nmax, toll)
```

Si risolva il sistema lineare $A\mathbf{x}=\mathbf{b}$ applicando il metodo di Richardson precondizionato utilizzando la relativa α_{opt} e il precondizionatore P implementato al punto 4.

```
function [x, it, err] = richprec(A,b,P, alpha, x0,nmax, toll)
3 % Metodo di Richardson stazionario precondizionato
4 %
5
    A: matrice del sistema
6 % b: termine noto
7 % P: precondizionatore
  % x0: vettore iniziale
  % alpha: coefficiente di Richardson
9
10 % toll: tolleranza sul residuo normalizzato
  % nmax: massimo numero di iterazioni
11
12 %
13 % x: soluzione ottenuta
14 % it: numero di iterazioni effettuate
_{15} % err: vettore contenente gli errori relativi sul residuo
16
17
```

toll);

6 timeRP=toc;

```
n = size(b,1);
19 if ( ...
           not(size(A,1) == size (A,2)) || ...
not(size(A,1) == n) || ...
20
21
           not(size(x0,1) == n) \mid \mid \dots
22
           not(size (P,2) == n) || ...
23
           not(size(P,1) == n) \dots
24
25 )
       error('Dimesioni incompatibili')
26
27 end
28
29 it = 0;
30 x = x0;
r = b - A*x;
32 errk = norm(r)/norm(b);
33 err = errk;
34
35 % loop
36 while (it < nmax && errk > toll)
      it = it + 1;
37
      z = P \setminus r;
38
      x = x + alpha*z;
39
      r = b - A*x;
40
       errk = norm(r)/norm(b);
41
       err = [err; errk];
42
1 lambda_minRP = min(eig(P\A));
2 lambda_maxRP = max(eig(P\A));
3 alpha_optRP = 2/(lambda_maxRP + lambda_minRP);
[ xRP, iterRP, errRP] = richprec(A, b, P, alpha_optRP, x0, nmax
```

7. Si risolva il sistema lineare $A\mathbf{x} = \mathbf{b}$ con il metodo di Richardson. Disegnare su un grafico l'andamento del residuo normalizzato:

$$\frac{\left|\left|\mathbf{r}^{(k)}\right|\right|}{\left|\left|\mathbf{b}\right|\right|}$$

In funzione delle iterazioni k nei due casi (Richardson e Richardson precondizionato), e confrontare le curve ottenute.

```
lambda_minR = min(eig(A));
lambda_maxR = max(eig(A));
alpha_optR = 2/(lambda_maxR + lambda_minR);

tic
[xR, iterR, errR] = richardson(A, b, x0, alpha_optR, toll, nmax);
timeR=toc;

figure
semilogy([0:iterR], errR, 'b-', [0:iterRP], errRP, 'g-', 'Linewidth', 1.2)
grid on
axis([0 100 0 4])
xlabel('n iter')
ylabel('errore residuo')
legend('Richardson', 'Richardson Precondizionato')
```


6.4 Sistema di equazioni non lineari

6.4.1 Metodo di Newton

Si consideri il problema della ricerca degli zeri del sistema non lineare $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, dove $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$. Definendo:

•
$$\mathbf{x} = (x_1, \dots, x_n)^T$$

•
$$\mathbf{f} = (f_1, \dots, f_n)^T$$
 con f_1, \dots, f_n funzioni $\mathbb{R}^n \to \mathbb{R}$

Il problema si può riscrivere nel seguente modo:

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ f_2(x_1, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n) = 0 \end{cases}$$

Il metodo di Newton per sistemi non lineari è il seguente. Dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$, per $k \geq 0$:

1. Risolvere il sistema lineare:

$$J\left(\mathbf{x}^{k}\right)\delta\mathbf{x}^{(k)} = -\mathbf{f}\left(\mathbf{x}^{(k)}\right)$$

2. Ponendo:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$$

Dove, per un generico punto \mathbf{y} , $J(\mathbf{y})$ è la matrice Jacobiana della funzione \mathbf{f} e consiste in una matrice $\mathbb{R}^n \times \mathbb{R}^n$ le cui componenti sono:

$$J_{il}(\mathbf{y}) = \frac{\partial f_i(\mathbf{y})}{\partial y_l}$$
 $i, l = 1, \dots, n$

Si osservi che:

- 1. L'applicazione del metodo di Newton richiede ad ogni iterazione la soluzione di un sistema lineare con matrice $A^{(k)} = J(\mathbf{x}^{(k)})$.
- 2. È possibile dimostrare che se:
 - (a) $\mathbf{x}^{(0)}$ è "sufficientemente" vicino alla soluzione α
 - (b) $J(\mathbf{x}^{(k)})$ è una matrice non singolare con $k = 0, 1, \dots$

Allora il metodo di Newton converge con ordine 2.

Si consideri il sistema non lineare seguente la cui incognite è il vettore $\mathbf{x} = [x_1, x_2]$:

$$\begin{cases} -x_1 + e^{3x_2} = 1\\ -x_1 + x_1 x_2^2 = -2 \end{cases}$$

1. Scrivere Il sistema non lineare sotto la forma:

$$\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x})]^T = \mathbf{0}$$

Rappresentare \mathbf{f} mediante una funzione Matlab di tipo anonymous function che, ricevuto in input un vettore colonna di 2 elementi, restituisce un vettore colonna di 2 elementi contenente la valutazione di $\mathbf{f}(\mathbf{x})$. Analogamente, calcolare la matrice Jacobiana $J(\mathbf{x})$ di $\mathbf{f}(\mathbf{x})$ e scrivere la anonymous function che restituisca tale matrice.

Dunque, il sistema da risolvere è:

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} -x_1 + e^{3x_2} - 1 \\ -x_1 + x_1 x_2^2 + 2 \end{bmatrix} = \mathbf{0}$$

Dove $\mathbf{x} = [x_1, x_2]^T$. La matrice Jacobiana è la seguente:

$$J\left(\mathbf{x}\right) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} -1 & 3e^{3x_2} \\ -1 + x_2^2 & 2x_1x_2 \end{bmatrix}$$

Si introduce il vettore \mathbf{f} e la matrice J utilizzando i seguenti comandi:

```
1 % il comando @ e' usato per creare funzioni
2 f = @(x)[-x(1)+exp(3*x(2))-1; -x(1)+x(1)*x(2)^2+2];
3 J = @(x)[-1 3*exp(3*x(2)); -1+x(2)^2 2*x(1)*x(2)];
```

2. Implementare il metodo di Newton per sistemi. L'intestazione della funzione sarà ad esempio:

```
[xvect, it] = newtonsys(fun, Jf, x0, toll, nmax)
```

Con ovvio significato dei parametri di ingresso e di uscita. Si utilizzi un criterio d'arresto basato sulla norma della differenza tra due iterate successive.

Suggerimento: si utilizzi il comando \ per la risoluzione dei sistemi lineari.

```
16 %
17 % xvect
                Vett. contenente tutte le iterate calcolate
18 %
                (l'ultima componente e' la soluzione)
19 % it
                Iterazioni effettuate
20
21 it = 0;
22 err = toll+1;
23 \text{ xvect} = x0;
24 %
while it < nmax && err >= toll
     f0 = fun(x0);
26
      Jf0 = Jf(x0);
27
28
      dx = -Jf0\f0; \% -Jf(x0)\fun(x0)
      x1 = x0 + dx;
29
      xvect = [xvect x1];
      it = it + 1;
31
      err = norm(dx);
32
      x0 = x1;
33
34 end
35
36
37 if it == nmax
38
      disp('errore - non converge')
39 end
40
41 fprintf('Numero di Iterazioni: %d \n', it);
42 n = length(x0);
43 for i = 1:n
      fprintf('x(%d) = %12.8f\n', i , xvect(i,end));
44
45 end
```

3. Utilizzare la funzione scritta al punto precedente per calcolare la soluzione del sitema non lineare proposto. Utilizzare una tolleranza di toll = 1e-6, un vettore iniziale x0 = [1;0]. Fornire il risultato e il numero di iterazioni effettuate.

Si utilizza la funzione come richiesto.

```
toll=1e-6;
2 x0=[1;0];
3 Nmax=1000;
4
5 [x,iter] = newtonsys(f,J,x0,toll,Nmax);
6 % Numero di Iterazioni: 6
7 % x(1) = 2.39901359
8 % x(2) = 0.40782842
```

6.5 Approssimazione di funzioni e di dati

6.5.1 Interpolazione Lagrangiana e Composita Lineare

Esercizio 1

Si valuti il problema dell'approssimazione della funzione di Runge:

$$f\left(x\right) = \frac{1}{1+x^2}$$

Mediante un'interpolazione polinomiale di Lagrange nell'intervallo I = [-5, 5]. Si costruiscano i polinomi interpolanti $\prod_n f$ e dell'errore $E_n f(x) = |f(x) - \prod_n f(x)|$ e si calcoli $||E_n f||_{\infty}$:

$$||E_n f||_{\infty} = \max_{x \in [-5,5]} \left| f(x) - \prod_n f(x) \right|$$

Si costruisce il polinomio interpolante $\prod_n f(x)$ di grado n=5, 10 della funzione f considerando nodi equispaziati sull'intervallo I. Per ciascun valore di n si vuole rappresentare graficamente $\prod_n f(x)$ e l'errore $E_n f(x) = |f(x) - \prod_n f(x)|$.

1. Si definisce la funzione di Runge.

```
1 \text{ fun } = \mathbb{Q}(x) \ 1 \ ./ \ (1 + x \ .^2);
```

2. Si memorizzano gli estremi dell'intervallo I nelle variabili a,b e il vettore contenente le ascisse degli n+1 nodi equispaziati.

```
1 % grado del polinomio interpolante
2 n = 5;
3 a = -5;
4 b = 5;
5 % nodi equispaziati
6 x_nod = linspace(a, b, n+1);
```

3. Si procede valutando la funzione in corrispondenza dei nodi.

```
f_nod = fun(x_nod);
```

4. Si realizza il polinomio interpolante utilizzando le funzioni polyfit e polyval.

```
1 P = polyfit(x_nod, f_nod, n)
2 % P =
3 %
4 %     0.0000     0.0019     -0.0000     -0.0692     -0.0000     0.5673
5 x_dis = a : 0.01 : b;
6 poly_dis = polyval(P, x_dis);
```

5. Si visualizza il grafico della funzione e del polinomio interpolante $\prod_n f$ nell'intervallo I.

```
f_dis = fun(x_dis);
plot(x_dis, f_dis, 'm', x_dis, poly_dis, 'g', 'linewidth', 2)
title('Interpolazione con nodi equispaziati')
legend('f(x)', '\Pi f(x)')
```


6. Infine si studia l'andamento dell'errore $E_{n}f\left(x\right)$ e lo si rappresenta graficamente.

```
err_dis = abs(poly_dis - f_dis);
plot(x_dis, err_dis, 'm')
title('Errore di interpolazione nodi equispaziati')
```


Esercizio 2

Nella tabella sotto riportata vengono elencati i risultati di un esperimento eseguito per individuare il legame tra lo sforzo σ e la relativa deformazione ε di un campione di un tessuto biologico.

test	σ [MPa]	ε [cm/cm]
1	0.00	0.00
2	0.06	0.08
3	0.14	0.14
4	0.25	0.20
5	0.31	0.23
6	0.47	0.25
7	0.60	0.28
8	0.70	0.29

A partire da questi dati si vuole stimare, utilizzando opportune tecniche di interpolazione, la deformazione ε del tessuto in corrispondenza dei valori di sforzo per cui non si ha a disposizione un dato sperimentale. A tal fine, si considerino le seguenti funzioni interpolanti:

- Interpolazione polinomiale di Lagrange (polyfit e polyval);
- Interpolazione polinomiale composita lineare (interp1);

In particolare, a partire dal codice assegnato si vuole:

- 1. Rappresentare graficamente le singole funzioni interpolanti a confronto con i dati sperimentali;
- 2. Confrontare in un unico grafico i dati sperimentali con tutte le funzioni interpolanti;
- 3. Valutare, per ogni interpolante, la deformazione ε in corrispondenza di $\sigma=0.40$ MPa e $\sigma=0.75$ MPa;
- 4. Commentare i risultati ottenuti.

La soluzione:

1. Si definiscono in MATLAB i vettori componenti i dati sperimentali sigma (per lo sforzo σ) ed epsilon (per la deformazione ε).

```
sigma = [0 0.06 0.14 0.25 0.31 0.47 0.60 0.70];
epsilon = [0 0.08 0.14 0.20 0.23 0.25 0.28 0.29];
```

2. In figura viene riportato il grafico dei dati sperimentali, ottenuto con le seguenti istruzioni.

```
figure(1)
axes('FontSize', 12)
plot(sigma, epsilon, 'ko', 'LineWidth', 2)
title('Dati sperimentali')
xlabel('Sforzo')
ylabel('Deformazione')
```


3. L'interpolazione polinomiale di Lagrange viene realizzata mediante le funzioni MATLAB polyfit e polyval. Si ricorda che il numero di punti corrispondenti ai dati sperimentali determina (per definizione) il grado del polinomio di Lagrange, pari al numero di punti meno uno. Per disegnare il polinomio interpolatore di Lagrange si eseguono i seguenti comandi:

7 Esami

$7.1 \quad 24/07/2025$

Esercizio 1

Si consideri la matrice $A \in \mathbb{R}^{n \times n}$ ed il vettore $\mathbf{b} \in \mathbb{R}^n$ tali che:

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \vdots & -1 & 2 & -1 \\ 0 & 0 & \cdots & 0 & -1 & 2 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ \vdots \\ -1 \\ -1 \end{bmatrix}$$

1. Utilizzando gli opportuni comandi Matlab, si costruiscano la matrice A ed il vettore \mathbf{b} per n=7. Utilizzando il comando \si risolva il sistema lineare $A\mathbf{x} = \mathbf{b}$. Riportare \mathbf{x} e tutti i comandi Matlab usati.

Solutione

```
% dimensione di n
n = 7;
% creiamo un vettore di 1 e aggiungiamo 1
A = diag(ones(n,1)+1) + ... % diag. principale
diag(ones(n-1,1)-2, 1) + ... % diag. sopra principale
diag(ones(n-1,1)-2, -1); % diag. sotto principale
% creiamo vettore b
b = -ones(n,1);
% calcola soluzione di x
x = A\b;
```

Il vettore x produce il seguente risultato:

$$\mathbf{x} = \begin{bmatrix} -3.5 \\ -6 \\ -7.5 \\ -8 \\ -7.5 \\ -6 \\ -3.5 \end{bmatrix}$$

- 2. Elencare e discutere:
 - (a) Le condizioni sufficienti per la convergenza del metodo di Gauss-Seidel.
 - (b) Le condizioni necessarie e sufficienti per la convergenza del metodo di Gauss-Seidel.

Data B_{GS} la matrice di iterazione di Gauss-Seidel, dimostrare che $\|B_{GS}\| < 1$ implica la convergenza.

Soluzione. Le condizioni sufficienti per la convergenza del metodo di Gauss-Seidel sono 3:

7 Esami $7.1 ext{ } 24/07/2025$

• La matrice A deve essere a dominanza diagonale stretta per righe:

$$|a_{ii}| > \sum_{i \neq i} |a_{ij}| \quad \forall i$$

• La matrice A deve essere simmetrica definita positiva (SPD):

$$\mathbf{x}^T A \mathbf{x} > 0 \quad \forall \mathbf{x} \neq 0$$

• La matrice A deve essere una Matrice di classe M (M-Matrice) non singolare. Ovvero una matrice con diagonale positiva e elementi extradiagonali (non sulla diagonale) non positivi.

L'unica condizione necessarie e sufficiente per la convergenza è quando il raggio spettrale della matrice di iterazione B_{GS} è minore di uno:

convergenza
$$\iff \rho(B_{GS}) < 1$$

Dimostrazione ($||B_{GS}|| < 1$ implica la convergenza). Il metodo di Gauss-Seidel si scrive

$$x^{(k+1)} = B_{GS}x^{(k)} + c$$

Definendo l'errore $e^{(k)} = x^{(k)} - x^*$, si ha

$$e^{(k+1)} = B_{GS}e^{(k)} \quad \Rightarrow \quad e^{(k)} = B_{GS}^k e^{(0)}$$

Se $||B_{GS}|| < 1$, allora:

$$||e^{(k)}|| \le ||B_{GS}||^k ||e^{(0)}|| \to 0,$$

Per $k \to \infty$. Quindi $x^{(k)} \to x^*$: il metodo converge. QED

3. Verificare se la matrice A soddisfa le condizioni precedenti riportate. Motivare le risposte e riportare i comandi utilizzati.

Soluzione.

```
first_cond = false;
  for row = 1:n
      first_cond = abs(A(row, row)) > (abs(sum(A(row, 1:n))) -
      abs(A(row, row)));
      if first_cond == 0
          disp("La matrice NON e' a dominanza diagonale stretta
      per righe")
          break
  end
8
10
      disp("La matrice e' a dominanza diagonale stretta per
12
13
14 \% dimostrare che e' simmetrica e definita positiva
second_cond = issymmetric(A) && all(eig(A) > 0);
16 if second_cond
      disp("La matrice e' simmetrica definita positiva")
18 else
```

```
disp("La matrice NON e' simmetrica definita positiva")
20 end
21
22 % dimostrare che e' una M-Matrice non singolare
23 % 1. Extradiagonali non positivi
n = size(A, 1);
25 % creiamo la matrice con solo la diagonale principale
26 % diag(diag(A)) e sottraiamo alla matrice A la diagonale
^{27} % principale per ottenere la matrice con solo le
28 % extradiagonali
offdiag = A - diag(diag(A));
_{30} % verifichiamo che tutte le extradiagonali siano <= 0
31 first_m_cond = all(offdiag(:) <= 0);</pre>
32 if first_m_cond == false
      disp("La matrice NON e' una M-matrice: extradiagonali
      positive")
34 end
35 % 2. Diagonale principale positiva
second_m_cond = all(diag(A) > 0);
37 if second_m_cond == false
      disp("La matrice NON e' una M-matrice: diagonale
      principale non positiva")
39 end
40 % 3. A e' non singolare, cioe' rango(A) = n
41 % si ricorda che una matrice e' singolare se det(A) = 0
42 % e che rango(A) = n se e solo se det(A) != 0
43 % perche' il determinante e' il prodotto degli autovalori
_{44} % e una matrice e' singolare se ha almeno un autovalore nullo
45 third_m_cond = (rank(A) == n);
46 if third_m_cond == false
      disp("La matrice NON e' una M-matrice: matrice singolare")
47
48 end
49
50 if first_m_cond && second_m_cond && third_m_cond
      disp("La matrice e' una M-matrice non singolare")
51
52 end
```

Come risultato finale, si ottiene che la matrice A rispetta le 3 condizioni sufficienti per convergere usando il metodo di Gauss-Seidel.

4. Usando la funzione gs.m si risolva il sistema lineare Ax = b con il metodo iterativo di Gauss-Seidel per $x^{(0)} = (0,0,0,0,0,0,0)^T$, tolleranza $tol = 10^{-7}$ e massimo numero di iterazioni $N_{\text{max}} = 700$. Indicata con x_{GS} la soluzione ottenuta approssimata ottenuta, si riportino: il numero di iterazioni effettuate, l'errore $||x_{GS} - x||$ e tutti i comandi Matlab utilizzati.

Soluzione.

Output:

```
Soluzione con Gauss-Seidel:

-3.5000
-6.0000
-7.5000
-8.0000
-7.5000
-6.0000
-7.5000
-6.0000
-3.5000

Numero di iterazioni:
1 103

Errore tra soluzione esatta e soluzione con Gauss-Seidel:
1.4486e-06
```

5. Si riportino il valore del parametro α che massimizza la velocità di convergenza del metodo di Richardson stazionario ed il corrispondente raggio spettrale della matrice di iterazione.

Soluzione. Da definizione, il parametro $\alpha_{\rm opt}$ che massimizza la velocità di convergenza del metodo di Richardson è:

$$\alpha_{\rm opt} = \frac{2}{\lambda_{\rm min}(A) + \lambda_{\rm max}(A)}$$

Dove λ rappresenta il vettore degli autovalori della matrice A. Invece, il raggio spettrale della matrice di iterazione corrispondente al parametro $\alpha_{\rm opt}$ é:

$$\rho\left(I - \alpha_{\mathrm{opt}}A\right) = \frac{\lambda_{\mathrm{max}}(A) - \lambda_{\mathrm{min}}(A)}{\lambda_{\mathrm{max}}(A) + \lambda_{\mathrm{min}}(A)}$$

Implementato quanto detto su MATLAB, il codice è:

```
eigen_values = eig(A);
lambda_min = min(eigen_values);
lambda_max = max(eigen_values);
alpha_opt = 2 / (lambda_min + lambda_max);
disp("Parametro alpha che massimizza la velocita' di convergenza: " + alpha_opt)

rho = (lambda_max - lambda_min) / (lambda_max + lambda_min);
disp("Raggio spettrale del metodo di Richardson: " + rho);
```

Output:

```
Alpha che massimizza la velocita' di convergenza: 0.5
Raggio spettrale del metodo di Richardson: 0.92388
```

6. Si ripeta il punto 4 usando la funzione richardson.m per applicare il metodo iterativo di Richardson stazionario alla soluzione del sistema lineare con parametro $\alpha_{\rm opt}$ calcolato al punto precedente. Si riportino la soluzione approssimata ottenuta ed il numero di iterazioni effettuate. Sulla base dei risultati ottenuti quale dei due metodi converge più velocemente?

Soluzione. Al punto 4, il metodo di iterazione aveva le seguenti caratteristiche:

```
• x^{(0)} = (0, 0, 0, 0, 0, 0, 0)^T
```

- $tol = 10^{-7}$
- $N_{\text{max}} = 700$

Quindi, il codice MATLAB:

Output:

```
Soluzione con Richardson:

-3.5000
-6.0000
-7.5000
-8.0000
-7.5000
-6.0000
-3.5000

Numero di iterazioni: 203
Errore tra soluzione esatta e soluzione con Richardson: 1.7286
e-06
```

Il metodo di Gauss-Seidel ha impiegato la metà del numero di iterazioni rispetto al metodo di Richardson (103 contro 203), dimostrando che il metodo di iterazione che converge più rapidamente è Gauss-Seidel.

Esercizio 2

Sia $f(x) = \log(5x^2+1)$ definita nell'intervallo I = [-2, 2]. Si vuole approssimare f con un polinomio interpolante $\Pi_n f$ di grado n su n+1 nodi x_i definiti su I. Siano inoltre $\{\overline{x}_j, j=1,\ldots,701\}$ 701 punti equispaziati su I (estremi inclusi), per il calcolo dell'errore di interpolazione.

Remark 1

Prima di continuare con l'esercizio, è importante ricordare e capire il testo.

- Cosa si intende con "approssimare f con un polinomio interpolante $\prod_n f$ di grado n su n+1 nodi x_i definiti su I"? Vuol dire che:
 - Si scelgono n+1 **nodi** (cioè punti distinti nell'intervallo I=[-2,2]), chiamiamoli x_0,x_1,\ldots,x_n .
 - Si calcolano i valori della funzione in quei nodi: $f(x_0), f(x_1), \ldots, f(x_n)$.
 - Esiste ed è unico un polinomio di grado al più n che "passa" per tutti questi punti, ovvero:

$$\Pi_n f(x_i) = f(x_i), \quad i = 0, 1, \dots, n$$

Questo polinomio si chiama Polinomio Interpolante di f nei nodi dati.

Quindi, in altre parole, $\Pi_n f$ non è altro che una funzione polinomiale che coincide con f in un insieme finito di punti, ed è usata per approssimare f anche altrove nell'intervallo.

Nota: si dice "polinomio interpolante" perché il polinomio interpola la funzione, ovvero prende esattamente gli stessi valori della funzione f in un insieme finito di punti (i nodi di interpolazione) e "si inserisce" fra questi valori, passando per essi. Inoltre, interpolare non significa approssimare. Interpolare vuol dire costruire una funzione (nel nostro caso un polinomio) che coincide **esattamente** con f in punti scelti (i nodi), e la approssima negli altri.

- Perché vengono dati 701 punti equispaziati? Questi punti $\{\bar{x}_j\}$ non sono nodi di interpolazione. Servono, invece, come **griglia di** controllo:
 - In ciascun punto \bar{x}_i si calcola il valore esatto $f(\bar{x}_i)$.
 - Poi si calcola il valore approssimato usando il polinomio interpolante $\Pi_n f(\bar{x}_i)$.
 - La differenza:

$$E\left(\bar{x}_{i}\right) = f\left(\bar{x}_{i}\right) - \Pi_{n} f\left(\bar{x}_{i}\right)$$

è l'Errore di Interpolazione in quel punto.

Avendo tanti punti equispaziati (701 è un numero grande, quindi la griglia è fitta), si può stimare bene **quanto e come il polinomio** interpolante si discosta da f su tutto l'intervallo [-2,2]. Chiaramente, più punti vengono usati per testare, più accurata sarà la stima della norma del massimo dell'errore:

$$||f - \Pi_n f||_{\infty} \approx \max_{1 \le j \le 701} |f(\bar{x}_j) - \Pi_n f(\bar{x}_j)|$$

• Cos'è l'errore di interpolazione? Teoricamente, per una funzione $f \in C^{n+1}$, vale la formula:

$$f(x) - \Pi_n f(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

Dove $\xi(x)$ è un punto (non noto) nell'intervallo. Questo indica che l'errore dipende:

- 1. Dalla derivata (n+1)-esima di f (quanto f è "curva");
- 2. E dal termine $\prod (x x_i)$ che cresce con n e con la scelta dei nodi.

Nella pratica, non potendo conoscere $\xi(x)$, si calcola l'errore numericamente sui 701 punti equispaziati.

Quindi, per riassumere: interpolazione significa costruire un polinomio che "passa" per i valori noti di f in n+1 nodi. L'errore di interpolazione è la differenza $f(x) - \Pi_n f(x)$, stimata sui 701 punti equispaziati. Quei punti servono solo come "griglia di test" per misurare quanto il polinomio approssima bene la funzione sull'intero intervallo.

1. Fissando n=10, costruire il polinomio interpolante $\Pi_{10}f$ su nodi equispaziati (estremi inclusi) e calcolare il massimo dell'errore di approssimazione sui punti $\{\bar{x}_j\}_{j=1,\dots,701}$. Riportare il risultato ottenuto e i comandi MATLAB usati.

Soluzione

```
1  % funzione
2  f = @(x) log(5*x.^2 + 1); % funzione da approssimare
3
4  % griglia di controllo x_j
5  xj = linspace(-2, 2, 701);
6
7  % grado del polinomio
8  n = 10;
9
10  % nodi
11  xn = linspace(-2, 2, n + 1);
12  % polinomio interpolante di grado n sui nodi xn
14  Pf = polyfit(xn, f(xn), n);
15  % massimo errore di approssimazione
16  err = max(abs(f(xj) - polyval(Pf, xj)));
```

```
disp('Massimo errore di approssimazione');
disp(err);
```

Output:

```
Massimo errore di approssimazione 0.9989
```

Escludendo la parte di setup, la quale non ha bisogno di spiegazioni approfondite, nella parte di calcolo effettivo, si lasciano alcune osservazioni:

• Comando polyfit:

```
Pf = polyfit(xn, f(xn), n);
```

In una sola invocazione, esegue due compiti:

- (a) Prende i **nodi** xn e i valori della funzione f(xn);
- (b) Calcola i coefficienti del **polinomio interpolante** di grado *n* che passa esattamente per quei punti.

Ovviamente, si potrebbe costruire a mano con la formula di Lagrange o Newton, ma MATLAB fornisce già un API. Il risultato di questa chiamata, è un vettore riga Pf con i coefficienti del polinomio in forma classica:

$$p(x) = Pf(1) x^{n} + Pf(2) x^{n-1} + \dots + Pf(n) x + Pf(n+1)$$

• Comando polyval:

```
polyval(Pf, xj)
```

Valuta il polinomio definito da Pf nei punti xj. Quindi sta calcolando $\Pi_{10}f(\bar{x}_i)$ per i 701 punti equispaziati nell'intervallo.

- A questo punto, si hanno due vettori:
 - f(xj) per i valori veri della funzione in 701 punti.
 - polyval(Pf, xj) per i valori del polinomio interpolante negli stessi 701 punti.

Per calcolare l'errore, dobbiamo fare la differenza tra i valori veri e quelli interpolati:

```
f(xj) - polyval(Pf, xj)
```

Il quale è il **vettore degli error puntuali** $E(\bar{x}_j)$. Infine, prendiamo il **massimo in valore assoluto** di questi errori, ovvero la norma infinito dell'errore di interpolazione.

2. Ripetere il punto precedente usando i nodi di Chebyshev (estremi inclusi) nell'intervallo I. Indicando con $\Pi_{10}^C f$ l'interpolante corrispondente, riportare il massimo dell'errore di approssimazione sui punti $\{\overline{x}_j\}_{j=1,\dots,701}$ e i comandi Matlab usati.

Remark 2

Alcune osservazioni:

- Perché introdurre i nodi di Chebyshev? Se si scelgono i nodi equispaziati, come è stato fatto nell'esercizio precedente, l'errore di interpolazione può diventare molto grande per funzioni un po' oscillanti, soprattutto vicino agli estremi (Fenomeno di Runge). Per ridurre questo problema, si usano i nodi di Chebyshev, che non sono equispaziati: sono più densi agli estremi e più radi al centro.
- I nodi di Chebyshev di ordine n+1 (quindi per un polinomio di grado n) in un intervallo generico [a,b] sono:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cdot \cos\left(\frac{2k+1}{2(n+1)} \cdot \pi\right), \quad k = 0, 1, \dots, n$$

Noti anche come **nodi di Chebyshev di prima specie**. Per esempio, con [a, b] = [-1, 1] diventano semplicemente:

$$x_k = \cdot \cos\left(\frac{2k+1}{2(n+1)}\pi\right)$$

Attenzione, questi nodi sono usati nel caso in cui gli estremi **non** siano inclusi.

- Differenza tra i nodi equispaziati e i nodi di Chebyshev:
 - Equispaziati: uniformi su [a, b]
 - Chebyshev: più concentrati agli estremi, quindi si riducono al minimo l'effetto di oscillazioni indesiderate, e quindi garantiscono che l'errore massimo teorico sia quasi ottimale.
- Con i **nodi di Chebyshev di seconda specie**, gli estremi vengono presi in considerazione:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cdot \cos\left(\frac{k}{n} \cdot \pi\right), \quad k = 0, \dots, n$$

Quindi $x_0 = a e x_n = b$.

Soluzione. Il codice è identico al precedente ma differisce soltanto come si costruisce il vettore x:

```
1  % estremi intervallo
2  a = -2;  b = 2;
3  k = 0:n;
4
5  % nodi di Chebyshev (seconda specie, estremi inclusi)
6  xnC = (a+b)/2 + (b-a)/2 * cos(k/n * pi);
7  % se fosse stato di prima specie:
8  % xnC = (a+b)/2 + (b-a)/2 * cos((2*k+1)/(2*(n+1)) * pi);
9
```

```
10 % polinomio interpolante di grado n sui nodi di Chebyshev
11 PfC = polyfit(xnC, f(xnC), n);
12 % massimo errore di approssimazione
13 erC = max(abs(f(xj) - polyval(PfC, xj)));
14 disp('Massimo errore di approssimazione con nodi di Chebyshev');
15 disp(erC);
```

Risultato:

```
1 Massimo errore di approssimazione con nodi di Chebyshev
2 0.060307
```

3. Rappresentare in un unico grafico: la funzione f(x), i polinomi $\Pi_{10}f$ e Π_{10}^Cf . Caricare l'immagine generata in formato png con opportuna legenda.

Solutione

```
figure;
hold on;
plot(xj, f(xj), 'r', 'DisplayName', 'funzione originale');
plot(xj, polyval(Pf, xj), '-b', 'DisplayName', 'interp con nodi equispaziati');
plot(xj, polyval(PfC, xj), '-g', 'DisplayName', 'interp con nodi di Chebyshev');
legend show;
title('Confronto tra funzione e polinomi interpolanti');
xlabel('x');
ylabel('y');
grid on;
hold off;
```


4. Costruire il polinomio interpolante su nodi di Chebyshev al variare di n=10,20,30,40. Calcolare l'errore di interpolazione sui 701 punti \overline{x}_j e riportare in notazione esponenziale il vettore degli errori al variare di n. Quale andamento si osserva?

Solutione

```
minVal = 10;
2 \text{ maxVal} = 40;
3 step = 10;
  errors = zeros(1, 5);
6 for n = minVal:step:maxVal
      k = 0:n;
      xnC = (a+b)/2 + (b-a)/2 * cos(k/n * pi);
      PfC = polyfit(xnC, f(xnC), n);
       erC = max(abs(f(xj) - polyval(PfC, xj)));
10
       errors(n/step) = erC;
11
12 end
13
disp('Errori al variare di n:');
disp(errors);
```

Risultato:

```
1 Errori al variare di n:
2 0.060307 0.004226 0.0003243 2.7112e-05
```

Si può osservare una decrescita esponenziale dell'errore al variare di n.

5. Si introduca l'interpolante di Lagrange composito Π_k^H con $k \geq 1$ definendo con precisione la notazione utilizzata. A partire dalla stima di convergenza dell'interpolatore Lagrangiano, si deduca la stima dell'errore di interpolazione composita in funzione di H ed k.

Remark 3

L'interpolazione di Lagrange è un approccio diverso al problema dell'interpolazione.

- Interpolante di Lagrange classico. Si costruisce un unico polinomio $\Pi_n f$ di grado n che interpola f in n+1 nodi su tutto l'intervallo [a,b]. Ma in questo caso, se n diventa grande, si hanno oscillazioni (Fenomeno di Runge), instabilità numerica, costo alto.
- Interpolante di Lagrange composito. L'idea è di non usare un unico polinomio di alto grado, ma tanti polinomi di basso grado costruiti pezzo per pezzo su sottointervalli.
 - Si divide l'intervallo [a, b] in M sottointervalli di ampiezza massima $H = \max |x_{i+1} x_i|$.
 - Su ogni sottointervallo si costruisce un **polinomio interpolante di grado** k (con k + 1 nodi per sottointervallo).

- L'interpolante composito $\Pi_k^H f$ è la funzione "a tratti" che, su ogni sottointervallo, coincide con il polinomio interpolante locale.
- Convergenza e stima dell'errore. Per l'interpolazione di Lagrange su un singolo intervallo, è noto che (se $f \in C^{k+1}$):

$$|f(x) - \Pi_k f(x)| \le C h^{k+1}, \quad h = \text{ampiezza dell'intervallo}$$

Per la versione composita:

- Ogni sottointervallo ha ampiezza $\leq H$;
- L'errore su ciascun pezzo è $\mathcal{O}(H^{k+1})$;
- Quindi l'errore globale dell'interpolante composito Π_k^H è anch'esso:

$$||f - \Pi_k^H f||_{\infty} \le C H^{k+1}$$

Soluzione. Sia I = [a, b] un intervallo e sia data una **partizione** (o griglia):

$$\mathcal{T}_H = a = x_0 < x_1 < \dots < x_M = b, \qquad I_i = [x_i, x_{i+1}], \ j = 0, \dots, M-1$$

Con passo massimo:

$$H := \max_{0 \le j \le M-1} h_j, \qquad h_j := x_{j+1} - x_j$$

Fissato un **grado** $k \geq 1$, su ciascun sottointervallo I_j , si scelgono k+1 **nodi locali** $\left\{x_j^{(i)}\right\}_{i=0}^k \subset I_j$ (ad es. equispaziati in I_j) e si definisce $\Pi_k^H f$ a **tratti** come il **polinomio di Lagrange** di grado k che interpola f nei nodi di I_j :

$$\left(\Pi_{k}^{H}f\right)|_{I_{j}} := \Pi_{k}\left(f|_{I_{j}}\right) \quad \text{con} \quad \left(\Pi_{k}f\right)\left(x_{j}^{(i)}\right) = f\left(x_{j}^{(i)}\right), \ i = 0, \dots, k$$

Stima dell'errore. Si assuma $f \in C^{k+1}([a,b])$. Sulla singola cella I_j di ampiezza h_j la classica stima dell'errore dell'interpolazione di Lagrange di grado k:

$$||f - \Pi_k f||_{L^{\infty}(I_j)} \le C h_j^{k+1} ||f^{(k+1)}||_{L^{\infty}(I_j)}$$

Con C indipendente da h_j (deriva dalla formula dell'errore con $\prod (x - x_i)$). Prendendo il massimo su tutte le celle e usando $h_j \leq H$:

$$\|f - \Pi_k^H f\|_{L^{\infty}([a,b])} \le C H^{k+1} \|f^{(k+1)}\|_{L^{\infty}([a,b])}$$

Ossia **ordine** (k+1) in H.

Caso k = 1, lineare composito. In particolare, se $f \in C^2$ e si usando k = 1 e nodi agli estremi di ogni I_j , vale:

$$||f - \Pi_1^H f||_{\infty} \le \frac{H^2}{8} ||f''||_{\infty}$$

Che mostra esplicitamente l'ordine 2 in H. Spiegazione dettagliata e suggerimenti per ricordare questa formula si trovano a pagina 153.

8 Domande Teoriche Frequenti

In questa sezione sono raccolte le domande di teoria più ricorrenti, emerse durante le lezioni, le esercitazioni e le prove d'esame. L'obiettivo è fornire un "compendio" sintetico e mirato, che permetta di:

- Avere un quadro immediato dei concetti fondamentali,
- Ripassare rapidamente i punti teorici più importanti,
- Orientarsi sulle domande che più spesso vengono utilizzate per verificare la comprensione.

Questa raccolta non sostituisce lo studio completo dei materiali, ma rappresenta una guida veloce per fissare e richiamare alla memoria i temi principali.

- ? Elencare e discutere:
 - 1. Le condizioni sufficienti per la convergenza del metodo di Gauss-Seidel.
 - 2. Le condizioni necessarie e sufficienti per la convergenza del metodo di Gauss-Seidel.

Data B_{GS} la matrice di iterazione di Gauss-Seidel, dimostrare che $||B_{GS}|| < 1$ implica la convergenza.

- **⊘** Soluzione. Le condizioni sufficienti per la convergenza del metodo di Gauss-Seidel sono 3:
 - La matrice A deve essere a dominanza diagonale stretta per righe:

$$|a_{ii}| > \sum_{i \neq i} |a_{ij}| \quad \forall i$$

- La matrice A deve essere simmetrica definita positiva (SPD):

$$\mathbf{x}^T A \mathbf{x} > 0 \quad \forall \mathbf{x} \neq 0$$

 La matrice A deve essere una Matrice di classe M (M-Matrice) non singolare. Ovvero una matrice con diagonale positiva e elementi extradiagonali (non sulla diagonale) non positivi.

L'unica condizione necessarie e sufficiente per la convergenza è quando il raggio spettrale della matrice di iterazione B_{GS} è minore di uno:

convergenza
$$\iff \rho(B_{GS}) < 1$$

Dimostrazione ($||B_{GS}|| < 1$ implica la convergenza). Il metodo di Gauss-Seidel si scrive

$$x^{(k+1)} = B_{GS}x^{(k)} + c$$

Definendo l'errore $e^{(k)}=x^{(k)}-x^*$, dove x^* rappresenta la soluzione esatta del sistema lineare che Gauss-Seidel cerca di raggiungere, e $x^{(k)}$ l'approssimazione della soluzione al passo k, si ha

$$e^{(k+1)} = B_{GS}e^{(k)} \quad \Rightarrow \quad e^{(k)} = B_{GS}^k e^{(0)}$$

Se $||B_{GS}|| < 1$, allora:

$$||e^{(k)}|| \le ||B_{GS}||^k ||e^{(0)}|| \to 0,$$

Per $k \to \infty$. Quindi $x^{(k)} \to x^*$: il metodo converge.

QED

Deepening: Spiegazione della Dimostrazione

L'idea principale della dimostrazione è: l'errore ad ogni passo viene moltiplicato da una matrice; se questa matrice "schiaccia" tutti i vettori di almeno un fattore q < 1, allora l'errore cala geometricamente $\to 0$.

- Passo 0: Dal sistema Ax = b all'iterazione. Per Gauss-Seidel si scrive (con A = D + L + U):

$$x^{(k+1)} = B_{GS} x^{(k)} + c$$

 $B_{GS} = -(D+L)^{-1}U$
 $c = (D+L)^{-1}b$

Questa è una **iterazione a punto fisso** $x^{(k+1)} = T(x^{(k)})$ con $T(x) = B_{GS}x + c$. Si ricorda che l'iterazione a punto fisso è un metodo iterativo per risolvere $A\mathbf{x} = \mathbf{b}$ che si può sempre scrivere nella forma $x^{(x+1)} = T(x^{(k)})$, dove T è una funzione; se esiste una x^* tale che $T(x^*) = x^*$, allora x^* si chiama punto fisso di T.

Nel caso Gauss-Seidel, si ha:

$$x^{(k+1)} = B_{GS}x^{(k)} + c$$

Quindi $T(x) = B_{GS}x^{(k)} + c$. Il punto fisso x^* soddisfa:

$$x^* = B_{GS}x^* + C$$

Cioè proprio il sistema originale Ax = b.

– Passo 1: Errore che si propaga. Sia x^* la soluzione (il punto fisso): soddisfa $x^* = B_{GS}x^* + c$. Definiamo l'errore $e^{(k)} = x(k) - x^*$. Sottraendo le due relazioni:

$$e^{(k+1)} = B_{GS}e^{(k)}$$

Quindi l'errore al passo successivo è semplicemente B_{GS} per l'errore attuale.

- Passo 2: Usiamo una norma "coerente". Prendiamo una norma matriciale indotta (coerente con una norma vettoriale), cioè una per cui vale: $||Av|| \le ||A|| ||v||$. Applicandola:

$$\|e^{(k+1)}\| = \|B_{GS}e^{(k)}\| \le \|B_{GS}\| \|e^{(k)}\|$$

Iterando:

$$\left\| e^{(k)} \right\| \le \left\| B_{GS} \right\|^k \left\| e^{(0)} \right\|$$

- Passo 3: Conclusione (contrazione geometrica). Se $||B_{GS}|| = q < 1$, allora $q^k \to 0$. Dunque $||e^{(k)}|| \to 0$ e quindi $x^{(k)} \to x^*$. Questo è tutto. L'ipotesi $||B_{GS}|| < 1$ garantisce convergenza da qualunque $x^{(0)}$.
- Si introduca l'interpolante di Lagrange composito Π_k^H con $k \geq 1$ definendo con precisione la notazione utilizzata. A partire dalla stima di convergenza dell'interpolatore Lagrangiano, si deduca la stima dell'errore di interpolazione composita in funzione di H ed k.
 - **Soluzione.** Sia I = [a, b] un intervallo e sia data una **partizione** (o griglia):

$$\mathcal{T}_H = a = x_0 < x_1 < \dots < x_M = b, \qquad I_j = [x_j, x_{j+1}], \ j = 0, \dots, M-1$$

Con passo massimo:

$$H := \max_{0 \le j \le M-1} h_j, \qquad h_j := x_{j+1} - x_j$$

Fissato un **grado** $k \geq 1$, su ciascun sottointervallo I_j , si scelgono k+1 **nodi locali** $\left\{x_j^{(i)}\right\}_{i=0}^k \subset I_j$ (ad es. equispaziati in I_j) e si definisce $\Pi_k^H f$ a **tratti** come il **polinomio di Lagrange** di grado k che interpola f nei nodi di I_j :

$$\left(\Pi_{k}^{H}f\right)|_{I_{j}} := \Pi_{k}\left(f|_{I_{j}}\right) \quad \text{con} \quad \left(\Pi_{k}f\right)\left(x_{j}^{(i)}\right) = f\left(x_{j}^{(i)}\right), \ i = 0, \dots, k$$

Stima dell'errore. Si assuma $f \in C^{k+1}([a,b])$. Sulla singola cella I_j di ampiezza h_j la classica stima dell'errore dell'interpolazione di Lagrange di grado k:

$$||f - \Pi_k f||_{L^{\infty}(I_j)} \le C h_j^{k+1} ||f^{(k+1)}||_{L^{\infty}(I_i)}$$

Con C indipendente da h_j (deriva dalla formula dell'errore con $\prod (x - x_i)$). Prendendo il massimo su tutte le celle e usando $h_j \leq H$:

$$\|f - \Pi_k^H f\|_{L^{\infty}([a,b])} \le C H^{k+1} \|f^{(k+1)}\|_{L^{\infty}([a,b])}$$

Ossia **ordine** (k+1) in H.

Caso k = 1, lineare composito. In particolare, se $f \in C^2$ e si usando k = 1 e nodi agli estremi di ogni I_j , vale:

$$||f - \Pi_1^H f||_{\infty} \le \frac{H^2}{8} ||f''||_{\infty}$$

Che mostra esplicitamente l'ordine 2 in H.

Key Takeaways: Interpolazione di Lagrange composita

Per ricordare:

- Schema per l'interpolante di Lagrange composito:
 - 1. Partizione dell'intervallo. Sia [a,b] un intervallo suddiviso in sottointervalli $I_j = [x_j, x_{j+1}]$ con passo massimo $H_{\max_j h_j}$ con $h_j = x_{j+1} x_j$.
 - **?** Cosa si intende con "partizione dell'intervallo"? Si considera un intervallo globale [a, b]. Per costruire un interpolante **composito**, non lo si tratta tutto in una volta, ma viene diviso in pezzi più piccoli:

$$a = x_0 < x_1 < x_2 < \dots < x_M = b$$

I piccoli intervalli $[x_j, x_{j+1}]$ si chiamano **sottointervalli** o **celle**. Essi vengono indicati più formalmente come:

$$I_j = [x_j, x_{j+1}], \quad j = 0, 1, \dots, M-1$$

? Cosa rappresenta h_j ? La lunghezza del sottointervallo I_j (ovvero la lunghezza della cella j-esima):

$$h_j = x_{j+1} - x_j$$

Ovviamente, se tutti gli x_j fossero equispaziati, allora h_j sarebbe costante. In generale può variare da un intervallo all'altro.

? Cos'è il "passo massimo"? Si definisce:

$$H = \max_{0 \le j \le M - 1} h_j$$

Ovvero, tra tutte le celle nell'intervallo, si considera quella più lunga. Serve come **misura della finezza della partizione**: più H è piccolo, più la griglia è fitta. L'errore dell'interpolazione composita dipenderà proprio da H.

Quindi, in altre parole, si divide l'intervallo in "pezzi", dove I_j rappresenta ogni piccolo intervallo; l'ampiezza di ogni intervallo è dato da h_j , e il sottointervallo più grande (il "peggiore"), entra nella stime dell'errore.

2. Locale. Fissato un grado $k \geq 1$, su ogni I_j , si sceglie k+1 nodi (es. equispaziati) e si definisce $(\Pi_k^H f)|_{I_j}$ come il **polinomio di Lagrange di grado** k che interpola f in quei nodi.

- **?** L'idea "locale". L'intervallo "grande" scelto all'inizio [a,b] è stato diviso in sottointervalli $I_j = [x_j, x_{j+1}]$. A questo punto, invece di costruire un unico polinomio globale, si inizia intanto con i pezzi: su ogni sottointervallo I_j si costruisce un piccolo polinomio interpolante.
- **?** Grado k e nodi locai. Si fissa un grado del polinomio, in questo caso $k \geq 1$ come suggerito dal testo. Su ciascun sottointervallo I_j si scelgono k+1 nodi (solitamente equispaziati, ma non è obbligatorio). Per esempio:
 - · k = 1, i due estremi: $\{x_j, x_{j+1}\}$
 - · k = 2, estremi e punto medio: $\left\{x_j, x_{j+\frac{1}{2}}, x_{j+1}\right\}$
 - $\cdot k = 3$, estremi e due punti:

$$\left\{x_j, x_{j+\frac{1}{3}}, x_{j+\frac{2}{3}}, x_{j+1}\right\}$$

? Polinomio di Lagrange locale. Su questi k+1 nodi si costruisce il polinomio di Lagrange di grado k che interpola f (la funzione). Si indica quindi il polinomio locale con:

$$\left(\Pi_k^H f\right)|_{I_i} \in \mathbb{P}_k$$

Ovvero appartiene allo spazio dei polinomi di grado $\leq k$ e soddisfa:

$$\left(\Pi_k^H f\right)\left(x_j^{(i)}\right) = f\left(x_j^{(i)}\right) \quad i = 0, \dots, k$$

Quindi, con locale si intende che per ogni sotto intervallo I_j si costruisce un polinomio di Lagrange di grado k che interpola la funzione in k+1 nodi scelti in quel sotto intervallo. In altre parole, si dice locale, perchè si divide l'intervallo in tanti sotto intervalli I_j , e su ciascuno si costruisce un polinomio di grado k che interpola solo i nodi interni a quel sotto intervallo.

3. Globale. L'interpolante di Lagrange composito:

$$\Pi_k^H f \in X_h^k := \{ v \in C^0([a, b]) : v|_{I_i} \in \mathbb{P}_k \forall j \}$$

? L'idea "globale". Finora è stato visto la costruzione locale: su ciascun sottointervallo I_j un polinomio di Lagrange di grado k. Ora si mette insieme tutti questi polinomi locali per formare una funzione definita su tutto l'intervallo [a,b]. Questa funzione è l'interpolante di Lagrange composito $\Pi_k^H f$.

? Spazio funzionale X_h^k . La notazione:

$$X_h^k := \left\{ v \in C^0 \left([a, b] \right) : v|_{I_i} \in \mathbb{P}_k \quad \forall j \right\}$$

Vuol dire:

- · $C^0([a,b])$: le funzioni sono continue su tutto l'intervallo [a,b] (non ci sono salti agli estremi delle celle).
- $v|_{I_j} \in \mathbb{P}_k$: la restrizione di v a ciascun sottointervallo I_j è un polinomio di grado $\leq k$. In parole semplici, su ogni cella, la funzione è un polinomio di grado k.
- · $\forall j$: questo vale per tutti i sottointervalli I_j .

Quindi X_h^k è lo spazio di tutte le funzioni continue su [a,b] che, su ogni sottointervallo I_j , sono polinomi di grado $\leq k$. L'interpolante composito $\Pi_k^H f$ appartiene a questo spazio, perchè costruito proprio in questo modo.

- **?** L'interpolante composito. Per come è stata costruita, l'interpolante $\Pi_k^H f$ apparitene a X_h^k , dato che:
 - · Su ogni sottointervallo I_j , è un polinomio di grado k (quindi la restrizione è in \mathbb{P}_k);
 - \cdot Ed è continuo sugli estremi (tutti i polinomi locali coincidono col valore di f sui nodi condivisi).

- Stima dell'errore

1. Locale. Su I_i , ampiezza h_i , per $f \in C^{k+1}(I_i)$:

$$||f - \Pi_k f||_{L^{\infty}(I_j)} \le C_k h_j^{k+1} ||f^{(k+1)}||_{L^{\infty}(I_j)}$$

Dalla formula classica dell'errore di Lagrange.

? Che cosa si vuole stimare? A questo punto, si ha la funzione originale f e il suo polinomio interpolante composito $\Pi_k f$ su un sottointervallo $I_j = [x_j, x_{j+1}]$. Si vuole stimare quanto si discostano su quell'intervallo, ovvero l'errore di interpolazione:

$$f(x) - \Pi_k f(x)$$

Questo passaggio è fondamentale per capire la qualità dell'approssimazione.

Formula dell'errore (caso generale). Se $f \in C^{k+1}(I_j)$, ovvero f è sufficientemente liscia (derivabile fino a ordine k+1), allora esiste un punto

 $\xi(x) \in I_j$ tale che:

$$f(x) - \Pi_k f(x) = \frac{f^{(k+1)}(\xi_x)}{(k+1)!} \prod_{i=0}^k (x - x_i)$$

Dove:

- · x_0, \ldots, x_k sono i nodi usati nell'interpolazione su I_i ;
- · ξ_x è un punto (non noto) in I_j che dipende da x.
- $\cdot \ k+1$ è il numero di nodi, quindi il grado del polinomio più uno.
- · (k+1)! è il fattoriale di k+1.
- · $f^{(k+1)}(\xi_x)$ è la derivata di ordine k+1 di f valutata in ξ_x .
- · $\prod_{i=0}^{k} (x-x_i)$ è il prodotto di tutti i termini $(x-x_i)$, che misura la distanza di x dai nodi.

Quindi, l'errore dipende da due fattori:

- (a) La derivata di ordine k+1 di f, che misura la "curvatura" della funzione.
- (b) Il prodotto $\prod (x x_i)$, che misura quanto x è lontano dai nodi, ovvero quanto l'interpolante può discostarsi dalla funzione.
- **Quanto vale quel prodotto?** Se i nodi stanno in $I_j = [x_j, x_{j+1}]$, allora ogni fattore $(x x_i)$ è al massimo grande quanto la lunghezza dell'intervallo:

$$|x - x_i| \le h_j = x_{j+1} - x_j$$

Quindi, il prodotto di tutti i fattori è al massimo:

$$\left| \prod_{i=0}^{k} (x - x_i) \right| \le h_j^{k+1}$$

Dove C_k è una costante che dipende solo da k, ovvero da come sono scelti i nodi (es. se sono equispaziati, se sono di Chebyshev, etc.).

? Risultato finale. Mettendo tutto insieme:

$$|f(x) - \Pi_k f(x)| \le C_k h_j^{k+1} \max_{y \in I_j} \left\| f^{(k+1)}(y) \right\|$$

Se si prende il massimo su $x \in I_j$, si ottiene la stima dell'errore in norma infinito su I_j :

$$||f - \Pi_k f||_{L^{\infty}(I_j)} \le C_k h_j^{k+1} ||f^{(k+1)}||_{L^{\infty}(I_j)}$$

In altre parole, l'errore **decresce come una potenza** h_j^{k+1} , quando il sottointervallo si restringe. L'ordine di convergenza è k+1: più alto è il grado del polinomio (k), più velocemente l'errore decresce al restringersi dell'intervallo $(h_j \to 0)$. Infine, la costante C_k dipende solo da come sono scelti i nodi (es. equispaziati, Chebyshev, etc.), ovvero dal grado e dalla posizione dei nodi, non da h_j .

2. Globale. Poichè $h_i \leq H$ per tutti j, si ottiene:

$$\|f - \Pi_k^H f\|_{L^{\infty}([a,b])} \le C_k H^{k+1} \|f^{(k+1)}\|_{L^{\infty}([a,b])}$$

Quindi ordine k + 1 in H.

? Da locale a globale. Finora è stata vista la stima dell'errore su un singolo sottointervallo I_i :

$$||f - \Pi_k f||_{L^{\infty}(I_j)} \le C_k h_j^{k+1} ||f^{(k+1)}||_{L^{\infty}(I_j)}$$

Cioè su ogni cella si sa quanto è grande l'errore. Tuttavia l'obiettivo è stimare l'errore su tutto l'intervallo [a,b]. Esso si ottiene prendendo il massimo su tutte le celle (sottointervalli):

$$||f - \Pi_k^H f||_{L^{\infty}([a,b])} \le \max_{0 < j < M-1} ||f - \Pi_k f||_{L^{\infty}(I_j)}$$

? Uso del passo massimo H. Dato che ogni $h_j \leq H$, si può sostituire h_j con H nella stima dell'errore:

$$||f - \Pi_k f||_{L^{\infty}(I_j)} \le C_k H^{k+1} ||f^{(k+1)}||_{L^{\infty}(I_j)}$$

Prendendo il massimo su tutte le celle:

$$\|f - \Pi_k^H f\|_{L^{\infty}([a,b])} \le C_k H^{k+1} \max_{0 \le j \le M-1} \|f^{(k+1)}\|_{L^{\infty}(I_j)}$$

La dipendenza dall'ampiezza massimo H mostra che raffinando la partizione (riducendo H), l'errore decresce. L'ordine di convergenza è k+1: se si usa un polinomio lineare (k=1), l'errore decresce come H^2 $(\mathcal{O}(H^2))$; se si usa un polinomio quadratico (k=2), l'errore decresce come H^3 $(\mathcal{O}(H^3))$, e così via. Infine, la costante C_k dipende solo da come sono scelti i nodi (es. equispaziati, Chebyshev, etc.), ovvero dal grado e dalla posizione dei nodi, non da H.

In altre parole, dall'ultima equazione, ne consegue che l'interpolante di Lagrange composito converge alla funzione originale al crescere della finezza della partizione (ovvero al diminuire di H), con un ordine di convergenza che dipende dal grado del polinomio usato in ogni sottointervallo.

Riferimenti bibliografici

- [1] Dede' Luca Fresca Stefania, Botti Michele. Calcolo numerico. Slides from the "Ingegneria Informatica" bachelor's degree course on Politecnico di Milano, 2024.
- [2] A. Quarteroni, F. Saleri, and P. Gervasio. Calcolo Scientifico: Esercizi e problemi risolti con MATLAB e Octave. UNITEXT. Springer Milan, 2017.

\mathbf{Index}

Symbols	11
p super-lineare	11
\mathbf{A}	
Aggiornamento Jacobiana ogni p iterazioni	44
algoritmo del metodo del gradiente	38
approssimazione all'indietro della derivata prima	69
approssimazione centrata della derivata prima	70
approssimazione in avanti della derivata prima	69
aritmetica esatta	24
aritmetica floating-point	24
assoluta stabilità	73
В	
ben condizionata	26
~	
C	2.4
cancellazione di cifre significative	24
consistente	79
convergenza dell'interpolatore Lagrangiano composito	51
convergenza per l'interpolatore trigonometrico in forma Lagrangiana	59
convergenza per l'interpolazione sui nodi di Chebyshev	54
D	
decomposizione additiva	35
definita positiva	21
differenza fra due iterate consecutive	10
direzione di discesa per Φ	37
E	
epsilon macchina	23
errore assoluto	23
errore computazionale	24
errore computazionale assoluto	$\frac{1}{24}$
errore di arrotondamento	23
Errore di Interpolazione	142
errore di troncamento	24
errore di troncamento locale τ_n	79
errore relativo	23
F	
fattore di convergenza	16
fattorizzazione di Cholesky	22
fattorizzazione LU	21
fenomeno di aliasing	61
Fenomeno di Runge	145, 147
fenomeno di Runge	49
fill-in	28
floating-point normalizzati	23

	Index
formula di Cramer	18
formula di Simpson composita	67
formule di quadratura	64
funzione di iterazione	14
G	
generalizzazione dell'intervallo ai nodi di Chebyshev	55
I	
Inexact Newton	44
interpolatore	45
interpolatore Lagrangiano sui nodi di Chebyshev	54
interpolatore polinomiale	45
interpolatore razionale	45
interpolatore trigonomentrico in forma Lagrangiana	59
interpolatore trigonometrico	45
interpolatore trigonometrico $\tilde{f}(x)$	56
interpolazione composita lineare	52
interpolazione composita quadratica	52
interpolazione Lagrangiana composita	50
iterazioni di punto fisso	14
\mathbf{M}	
mal condizionata	26
matrice a dominanza diagonale per colonne	21
matrice a dominanza diagonale per righe	21
matrice a dominanza diagonale stretta per righe	32
matrice di iterazione	30
matrice di permutazione	22
matrice diagonale dominante stretta per righe	32
matrice Jacobiana	12
matrice sparsa	29
matrice tridiagonale	32
matrici a dominanza diagonale stretta	21
metodi di discesa	37
metodi espliciti	72
metodi impliciti	72
metodo dei minimi quadrati	62
metodo del gradiente	38
metodo del gradiente coniugato	39
metodo del gradiente precondizionato	40
metodo delle secanti	11
metodo delle sostituzioni all'indietro	20
metodo delle sostituzioni in avanti	19
metodo di bisezione	5
metodo di Crank-Nicolson (CN) Metodo di Eliminazione di Cauca (MEC)	76
Metodo di Eliminazione di Gauss (MEG)	21
metodo di Eulero all'indietro	71 72
metodo di Eulero esplicito metodo di Eulero implicito	72
metodo di Eulero implicito	12

Index

	Index
stima dell'errore per la formula dei trapezi composita	66, 67
\mathbf{T}	
teorema di Ostrowski	16
teorema di Shannon	61
trapezi composita	66
Trasformata discreta di Fourier (DFT)	58
Trasformata Discreta di Fourier inversa (Inverse Discrete Fourier Tr	ansform,
$\overline{\mathrm{IDFT}}$	58
Trasformata rapida di Fourier (Fast Fourier Transform, FFT)	59
U	
underflow	24
unità di arrotondamento	23