

《高等数学(一)》习题解析

第七讲 数列极限的概念

朱健民 教授

主要内容回顾:

数列 $\{a_n\}$ 的散点图

数列的项 a_n 可以用平面上的点列 $(n,a_n)(n=1,2,\cdots)$ 来表示

主要内容回顾:

数列极限的" $\varepsilon - N$ "定义

对于数列 $\{a_n\}$,若存在常数a,对于任意给定的正数 ϵ ,均存在正整数N,当n > N时,恒有

$$|a_n - a| < \varepsilon$$

成立.则称数列 $\{a_n\}$ 存在极限(或收敛),常数a称为该数列的极限,记为

$$\lim_{n\to\infty}a_n=a\vec{\boxtimes} a_n\to a\ (n\to\infty) \quad .$$

简洁形式: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\dot{\exists} n > N$ 时, 恒有 $|a_n - a| < \varepsilon$.

主要内容回顾:

● 数列极限的几何解释

主要内容回顾:

● 数列极限的几何解释

主要内容回顾:

● 数列极限的几何解释

习题解析——判断题

1. 从集合的观点来看,数列可以看作是某一集合. (×)

【解析】集合元素互异、无序,数列项可以相同、有序

2.
$$\lim_{n \to +\infty} (-1)^n = \pm 1$$
. (\times)

【解析】数列极限唯一

3.
$$\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0$$
. ($\sqrt{\ }$)

N S TO P TO SERVICE VALUE OF THE PARTY OF TH

习题解析:第七讲数列极限的概念

4. $\lim_{n\to\infty} a_n = a''$ 等价于 " $\forall \varepsilon > 0$, $\{a_n\}$ 仅有有限项使得 $|a_n - a| \ge \varepsilon$." ($\sqrt{}$)

【解析】 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\dot{\exists} n > N$ 时 , 恒有 $|a_n - a| < \varepsilon$.

5. 若
$$\lim_{n\to\infty} |a_n| = |a|$$
 , 则 $\lim_{n\to\infty} a_n = a$. (×)

【解析】 例如 $a_n = (-1)^n$. $\lim_{n \to \infty} |a_n| = 0 \Rightarrow \lim_{n \to \infty} a_n = 0$ $\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} |a_n| = |a|$

6. 在数列极限的 $\varepsilon - N$ 定义中,正整数 $N = \varepsilon$ 的函数. (\times)

【解析】对每一个 ε 存在无穷多个满足定义要求的正整数N.

7. 用
$$\varepsilon - N$$
语言证明 $\lim_{n \to \infty} \frac{1}{n} = 0$ 时,对 $\forall \varepsilon > 0$,可取 $N = \left[\frac{1}{\varepsilon}\right] + 1$. ($\sqrt{}$)

【解析】当
$$n > N = \left[\frac{1}{\varepsilon}\right] + 1$$
时,有
$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \frac{1}{N} = \frac{1}{\left[\frac{1}{\varepsilon}\right] + 1} < \frac{1}{\frac{1}{\varepsilon}} = \varepsilon$$

8. 数列 $\{a_n\}$ 以a为极限的几何意义:对实数轴上点a的每一个邻域,在 $\{a_n\}$ 中最多只有有限项落在这个邻域之外. ($\sqrt{\ }$)

【解析】 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\dot{\exists} n > N$ 时 , 恒有 $|a_n - a| < \varepsilon$.

9. $\lim_{n\to\infty} a_n = a''$ 是指 "数列的项 a_n 随着n的增大越来越接近于a." (\times)

【解析】 极限的纯算术定义为极限的严格定义

10. " $\lim_{n\to\infty} a_n = a$ " 的等价说法是"对每一个正数 ε ,存在正整数N,当n>N 时,恒有 $|a_n-a|<2\varepsilon$." (\checkmark)

【解析】

11. $\lim_{n\to\infty}a_n\neq a''$ 的等价说法是 " $\exists \varepsilon_0>0$,对任意的 $N\in\mathbb{Z}^+$, $\exists n_0>N$,使得 $|a_{n_0}-a|\geq \varepsilon_0$."

【解析】 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\dot{\exists} n > N$ 时 , 恒有 $|a_n - a| < \varepsilon$.

12. 用 $\varepsilon - N$ 语言证明 $\lim_{n \to \infty} \frac{1}{n} = 0$ 时,对 $\forall \varepsilon > 0$,可取 $N = \left[\frac{1}{\varepsilon}\right]$. (\times)

【解析】这里的N不一定为正整数

习题解析——选择题

1. 下列数列中不存在极限的是(B).

(A)
$$\left\{\frac{1}{2n+(-1)^n}\right\}$$
 (B) $\left\{\sin(n\pi + \frac{\pi}{2})\right\}$

(C)
$$\{\sqrt{n+1} - \sqrt{n}\}\$$
 (D) $\{\cos(n\pi + \frac{\pi}{2})\}$

【解析】
$$\lim_{n \to \infty} \frac{1}{2n + (-1)^n} = 0 \quad \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$
$$\sin\left(n\pi + \frac{\pi}{2}\right) = (-1)^n \quad \cos\left(n\pi + \frac{\pi}{2}\right) = 0$$

2. 在用极限定义证明 $\lim_{n\to\infty}\frac{1}{n+1}=0$ 时,对于任意的正数 ε ,相应的正整数N可取为(\mathbb{C}).

$$(A) \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix}$$
 $(B) \begin{bmatrix} \frac{1}{2\varepsilon} \end{bmatrix}$ $(C) \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix} + 1$ $(D) \begin{bmatrix} \frac{1}{2\varepsilon} \end{bmatrix} + 1$

【解析】 A和B的答案不一定为正整数 ,对于D的答案 $N = \left[\frac{1}{2\varepsilon}\right] + 1$

取
$$\varepsilon = 0.1$$
,则 $N = \left[\frac{1}{0.2}\right] + 1 = 6$,对于 $n = 7 > N = 6$,有

$$\left|\frac{1}{n+1} - 0\right| = \frac{1}{n+1} = \frac{1}{8} > \frac{1}{10} = 0.1$$

所以不满足定义要求.

2. 在用极限定义证明 $\lim_{n\to\infty}\frac{1}{n+1}=0$ 时,对于任意的正数 ε ,相应的正 整数N可取为(C).

$$(A)$$
 $\left[\frac{1}{\varepsilon}\right]$

$$\left(\mathsf{B} \right) \left[\frac{1}{2\varepsilon} \right]$$

$$(A)\begin{bmatrix}\frac{1}{\varepsilon}\end{bmatrix}$$
 $(B)\begin{bmatrix}\frac{1}{2\varepsilon}\end{bmatrix}$ $(C)\begin{bmatrix}\frac{1}{\varepsilon}\end{bmatrix}+1$ $(D)\begin{bmatrix}\frac{1}{2\varepsilon}\end{bmatrix}+1$

$$\left(D \right) \left[\frac{1}{2\varepsilon} \right] + 1$$

【解析】

3. 在用极限定义证明 $\lim_{n\to\infty} \frac{1}{n+n^2} = 0$ 时,对 $|\frac{1}{n+n^2} - 0|$ 放大正确的

是(C).

(A)
$$\left| \frac{1}{n+n^2} - 0 \right| < \frac{1}{2n^2}$$
 (B) $\left| \frac{1}{n+n^2} - 0 \right| < 1$
(C) $\left| \frac{1}{n+n^2} - 0 \right| < \frac{1}{n}$ (D) $\left| \frac{1}{n+n^2} - 0 \right| < \frac{n+1}{n}$

【解析】 答案A不等式不成立,答案B和D为无效放大