Math for Machine Learning

Week 3.1: Basic Differentiation and Vector Calculus

By: Samuel Deng

Logistics & Announcements

Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which require finding global minima.

Single-variable differentiation review. In single-variable differentiation, the <u>derivative</u> is still a 1×1 "matrix" mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can approach from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is <u>smooth</u> it has a <u>total derivative</u> (it is <u>differentiable</u>). In this case, the <u>directional derivative</u> and <u>partial derivative</u> is comes directly from the total derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear algebra. We provide a heuristic derivation of the OLS estimator again.

Lesson Overview

Big Picture: Least Squares

 $\lambda_1, \ldots, \lambda_d \geq 0$

$$\lambda_1, \ldots, \lambda_d > 0$$

Lesson Overview

Big Picture: Gradient Descent

A Motivation for Calculus Optimization

Optimization in single-variable calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

minimize
$$f(x)$$
 x
subject to $x \in \mathscr{C}$

Optimization in single-variable calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

minimize
$$f(x)$$
 x
subject to $x \in \mathscr{C}$

How do we know how to do this from single-variable calculus?

Optimization in single-variable calculus

Optimization in single-variable calculus

Ultimate goal: Find the *global minimum* of functions.

Intermediary goal: Find the local minima.

Optimization in single-variable calculus

Ultimate goal: Find the global minimum of functions.

Intermediary goal: Find the local minima.

Derivatives give us the direction of steepest descent!

Optimization in multi-variable calculus

Single-variable Differentiation Review of (some) single-variable calculus

Difference quotient

For a function $f: \mathbb{R} \to \mathbb{R}$, the <u>difference quotient</u> computes the slope between two points x and $x + \delta$:

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$

Difference quotient

For a function $f: \mathbb{R} \to \mathbb{R}$, the <u>difference quotient</u> computes the slope between two points x and $x + \delta$:

$$\frac{\delta y}{\delta x} := \frac{f(x+\delta) - f(x)}{\delta}$$

Throughout, δ denotes "change in the inputs." For any two points $x, y \in \mathbb{R}$, we can write $\delta = y - x$.

For a linear function, this is the slope everywhere.

Difference quotient

Example.
$$f(x) = -2x$$

Example.
$$f(x) = x^2 - 2x + 1$$

$$f: \mathbb{R} \to \mathbb{R}$$

$$\frac{\delta y}{\delta x} := \frac{f(x + \delta x) - f(x)}{\delta x}$$

Definition of the derivative

For a function $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$

if the limit exists.

In this lecture, we will assume that all functions are everywhere differentiable. Not always the case, e.g. f(x) = x.

We will also denote this as f'(x) or $\nabla f(x)$.

Important: The derivative is defined at a point!

Definition of the derivative

For a function $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$

if the limit exists.

Definition of the derivative

For a function $f: \mathbb{R} \to \mathbb{R}$, the <u>derivative</u> of f at the point x is the value

$$\frac{df}{dx} := \lim_{\delta \to 0} \frac{\delta x}{\delta y} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta},$$

if the limit exists.

In this lecture, we will assume that all functions are everywhere differentiable. Not always the case, e.g. f(x) = x.

We will also denote this as f'(x) or $\nabla f(x)$.

Important: The derivative is defined at a point!

Definition of the derivative

Example.
$$f(x) = -2x$$

Example.
$$f(x) = x^2 - 2x + 1$$

 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The derivative gives a good local, linear approximation to the change in f(x).

 $f: \mathbb{R} \to \mathbb{R}$

Get used to thinking, for all x that are "close" to x_0 :

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

We can always write the "target point" as $x = x_0 + \delta$.

$$\nabla f(x_0) \cdot \delta \approx f(x_0 + \delta) - f(x_0)$$

The derivative gives a good local, linear approximation to the change in f(x).

Review: basic derivative rules

Product rule:

$$\nabla (f(x)g(x)) = g(x) \nabla f(x) + f(x) \nabla g(x)$$

Quotient rule:

$$\nabla \left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\nabla f(x) - f(x)\nabla g(x)}{g(x)^2}$$

Sum rule:

$$\nabla (f(x) + g(x)) = \nabla f(x) + \nabla g(x)$$

Chain rule:

$$\nabla (g(f(x))) = \nabla (g \circ f)(x) = \nabla g(f(x)) \nabla f(x)$$

Linearity

Review from linear algebra

Linearity is the central property in linear algebra. Cooking is linear.

Bacon, egg, cheese (on roll)	Bacon, egg, cheese (on bagel)	Lox sandwich	
1 egg	1 egg	0 egg	
1 slice of cheese	1 slice of cheese	0 slice of cheese	
1 slice bacon	1 slice bacon	0 slice bacon	
1 Kaiser roll	0 Kaiser roll	0 Kaiser roll	
0 cream cheese	0 cream cheese	1 cream cheese	
0 slices of lox	0 slices of lox	2 slices of lox	
0 bagel	1 bagel	1 bagel	

Linearity

Review from linear algebra

Linearity is the central property in linear algebra. A function ("transformation") $T: \mathbb{R}^d \to \mathbb{R}^n$ is **linear** if T satisfies these two properties for any two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$:

$$T(\mathbf{a} + \mathbf{b}) = T(\mathbf{a}) + T(\mathbf{b})$$

$$T(c\mathbf{a}) = cT(\mathbf{a})$$
 for any $c \in \mathbb{R}$.

Linearity

Review from linear algebra

Linearity is the central property in linear algebra. A function ("transformation") $T: \mathbb{R} \to \mathbb{R}$ is **linear** if T satisfies these two properties for any two vectors $a, b \in \mathbb{R}$:

$$T(a+b) = T(a) + T(b)$$

$$T(ca) = cT(a)$$
 for any $c \in \mathbb{R}$.

Linearity and differentiation

Why do we like linear transformations?

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Recall: T(x + y) = T(x) + T(y) and T(cx) = cT(x).

Derivative exploits the fact that, on small scales, things behave linearly!

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y. We like linear transformations!

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y. We like linear transformations!

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

Consider the function $f(x) = x^2$. The derivative of f at x = 1 is $\nabla f(1) = 2$.

The derivative is nothing more than a 1×1 matrix in single-variable differentiation: $\nabla f(1) = [2]$.

A goal of differential calculus, for us, is to replace nonlinear functions with linear approximations!

Linearity and differentiation

Calculate some examples of $\nabla f(1) \cdot (x-1)$.

Consider the function $f(x) = x^2$.

The derivative of f at x = 1 is $\nabla f(1) = 2$.

Linearity and differentiation

Calculate some examples of $\nabla f(1) \cdot (x-1)$.

Consider the function $f(x) = x^2$.

The derivative of f at x = 1 is $\nabla f(1) = 2$.

 $\nabla f(1)(2-1) = [2](2-1) = 2 \approx \text{change in } f(x) \text{ between } 1 \text{ and } 2$

Linearity and differentiation

Calculate some examples of $\nabla f(1) \cdot (x-1)$.

Consider the function $f(x) = x^2$.

The derivative of f at x = 1 is $\nabla f(1) = 2$.

 $\nabla f(1)(2-1) = [2](2-1) = 2 \approx \text{change in } f(x) \text{ between } 1 \text{ and } 2$

 $\nabla f(1)(1.5 - 1) = [2](1.5 - 1) = 1 \approx \text{change in } f(x) \text{ between } 1 \text{ and } 1.5$

Linearity and differentiation

Calculate some examples of $\nabla f(1) \cdot (x-1)$.

Consider the function $f(x) = x^2$.

The derivative of f at x = 1 is $\nabla f(1) = 2$.

 $\nabla f(1)(2-1) = [2](2-1) = 2 \approx \text{change in } f(x) \text{ between } 1 \text{ and } 2$

 $\nabla f(1)(1.5 - 1) = [2](1.5 - 1) = 1 \approx \text{change in } f(x) \text{ between } 1 \text{ and } 1.5$

 $\nabla f(1)(1.1 - 1) = [2](1.1 - 1) = 0.2 \approx \text{change in } f(x) \text{ between } 1 \text{ and } 1.1$

$$f(x)=x^2$$

Linearity and differentiation

The derivative is a linear transformation that maps changes in x to changes in y. We like linear transformations!

T: change in $x \rightarrow$ change in y

$$\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$$

The derivative is nothing more than a 1×1 matrix in single-variable differentiation.

Multivariable Differentiation Review of multivariable notions of derivative

Scalar-valued vs. vector-valued functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is a <u>scalar-valued</u> multivariable function, $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a <u>vector-valued</u> multivariable function.

$$\mathbf{f}(\mathbf{x}_0) = (f_1(\mathbf{x}_0), ..., f_n(\mathbf{x}_0)).$$

But f is just made up of n scalar-valued functions.

Upshot: Just treat vector-valued functions as a collection of n scalar-valued functions, and deal with each coordinate individually.

Big picture: total, partial, and directional derivatives.

The <u>total derivative</u> (or just derivative) of \mathbf{f} at \mathbf{x}_0 is a linear transformation $D\mathbf{f}(\mathbf{x}_0): \mathbb{R}^d \to \mathbb{R}^n$.

The <u>gradient</u> of f at \mathbf{x}_0 is the vector $\nabla f(\mathbf{x}_0) \in \mathbb{R}^d$ associated with the total derivative of a scalar-valued $f: \mathbb{R}^d \to \mathbb{R}$.

The <u>Jacobian</u> of \mathbf{f} at \mathbf{x}_0 is the $n \times d$ matrix $\nabla \mathbf{f}(\mathbf{x}_0)$ associated with the total derivative of a vector-valued $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$.

The <u>directional derivative</u> of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v} \in \mathbb{R}^d$ is the derivative applied to \mathbf{v} : $\nabla \underbrace{\mathbf{f}(\mathbf{x}_0)}_{dv1} \underbrace{\mathbf{v}}_{dv1}$, via matrix-vector multiplication.

The <u>i'th partial derivative</u> of \mathbf{f} at \mathbf{x}_0 is the directional derivative in the unit basis direction $\mathbf{e}_i \in \mathbb{R}^n$.

Why is multivariable differentiation harder to pin down than single-variable differentiation?

In \mathbb{R} , there are only two directions from which we can approach x_0 (on a standard Cartesian plane, the "left" and the "right").

In \mathbb{R}^n , we can approach \mathbf{x}_0 from infinitely many directions!

Approach directions

Approach directions

Multivariable Differentiation Directional and partial derivatives

Directional and partial derivatives

For $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ and point \mathbf{x}_0 ...

The <u>directional derivative</u> is change in f when we approach x_0 from the direction defined by some vector v.

The <u>ith partial derivative</u> is change in \mathbf{f} when we approach \mathbf{x}_0 from the standard basis direction \mathbf{e}_i .

Directional derivative

Let $\mathbf{f}:\mathbb{R}^d\to\mathbb{R}^n$ be a function. The <u>directional derivative</u> of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v}\in\mathbb{R}^d$ is

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{v}) - \mathbf{f}(\mathbf{x}_0)}{\delta}.$$

Partial derivative

Let \mathbf{e}_i be the *i*th standard basis vector in \mathbb{R}^d .

The <u>ith partial derivative</u> of \mathbf{f} at \mathbf{x}_0 is the directional derivative in the direction \mathbf{e}_i , also written as:

$$\lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta}.$$

Partial derivative

The <u>ith partial derivative</u> of f at x_0 can also be written:

$$\frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{x}_0) := \lim_{\delta \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + \delta \mathbf{e}_i) - \mathbf{f}(\mathbf{x}_0)}{\delta} = \lim_{\delta \to 0} \frac{\mathbf{f}(x_{0,1}, \dots, x_{0,i} + \delta, \dots x_{0,n}) - \mathbf{f}(x_{0,1}, \dots, x_{0,i}, \dots, x_{0,n})}{\delta}$$

Mechanically: take the derivative of variable x_i while keeping all the others constant.

Example: $f(x, y) = x^3 + x^2y + y^2$

Example. Compute the partial derivatives of $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^3 + x^2y + y^2$. What are the partial derivatives at (1,2)?

Example: $f(x, y) = x^3 + x^2y + y^2$

Examples

Example. Compute the partial derivatives of $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x,y) = (x^2y,\cos y)$. What are the partial derivatives at (1,2)?

Multivariable Differentiation Total derivatives

Jacobian and gradient idea

The <u>gradient</u> is the vector in \mathbb{R}^d that contains the partial derivatives of $f: \mathbb{R}^d \to \mathbb{R}$ as each entry.

The <u>Jacobian</u> $n \times d$ matrix that contains the partial derivatives of $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^n$, collected column-by-column.

Viewing \mathbf{f} as a collection of n functions $\mathbf{f} = (f_1, ..., f_n)$, the Jacobian is also what we get by "stacking" all the gradients top-to-bottom in a matrix.

Gradient

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function. The <u>gradient</u> of f at \mathbf{x}_0 is the vector $\nabla f(\mathbf{x}_0) \in \mathbb{R}^d$ composed of all the partial derivatives of f at \mathbf{x}_0 :

$$\nabla f(\mathbf{x}_0) := \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}_0) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}_0) \end{bmatrix}$$

Gradient

Example. What's a formula for the gradient of $f(x, y) = x^3 + x^2y + y^2$?

Example: $f(x, y) = x^3 + x^2y + y^2$

Jacobian

Let $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ be a function. The <u>Jacobian</u> of \mathbf{f} at \mathbf{x}_0 is the $n \times d$ matrix composed of all the partial derivatives of \mathbf{f} at \mathbf{x}_0 :

$$\nabla \mathbf{f}(\mathbf{x}_0) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}_0) \end{bmatrix} = \begin{bmatrix} \leftarrow & \nabla f_1(\mathbf{x}_0)^\top & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & \nabla f_n(\mathbf{x}_0)^\top & \rightarrow \end{bmatrix}$$

Jacobian

Example. What's the Jacobian of $f(x, y) = (x^2y, \cos y)$?

"Local" to a Point

Definition of an open ball/neighborhood

Let $\mathbf{x} \in \mathbb{R}^d$ be a point. For some real value $\delta > 0$, the <u>open ball</u> or <u>neighborhood of radius</u> δ around \mathbf{x} is the set of all points:

$$B_{\delta}(\mathbf{x}) := \{ \mathbf{a} \in \mathbb{R}^d : ||\mathbf{x} - \mathbf{a}|| < \delta \}.$$

"Local" to a Point

Definition of an open ball/neighborhood

Example. Consider $\mathbf{x} = (1,1) \in \mathbb{R}^2$. What is the open ball of radius $\delta = 1$ around \mathbf{x} ?

"Local" to a Point

Definition of an open ball/neighborhood

Example. Consider $\mathbf{x} = (1,1) \in \mathbb{R}^2$. What is the open ball of radius $\delta = 1$ around \mathbf{x} ?

An open ball lets us approach x from all directions.

Total Derivative

The <u>total derivative</u> is the linear transformation that "best approximates" the *local* change in \mathbf{f} at a point \mathbf{x}_0 .

The total derivative, like the univariate derivative, takes "change in \mathbf{x} " and outputs "change in \mathbf{y} ."

Recall: $\nabla f(x_0)(x - x_0) \approx f(x) - f(x_0)$

Total Derivative

Let $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ be a function and let $\mathbf{x}_0 \in \mathbb{R}^d$ be a point. If there exists a linear transformation $D\mathbf{f}_{\mathbf{x}_0}: \mathbb{R}^d \to \mathbb{R}^n$ such that

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|_2} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$

then ${f f}$ is <u>differentiable</u> at ${f x}_0$ and has the unique (total) derivative $D{f f}_{{f x}_0}$.

As we get closer to \mathbf{x}_0 from any direction $\vec{\delta}$, the change $\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0)$ can be approximated by $D\mathbf{f}_{\mathbf{x}_0}$.

Total Derivative

Good news: in many cases, we don't have to deal with the clunky expression

$$\lim_{\vec{\delta} \to 0} \frac{1}{\|\vec{\delta}\|_2} \left(\left(\mathbf{f}(\mathbf{x}_0 + \vec{\delta}) - \mathbf{f}(\mathbf{x}_0) \right) - D\mathbf{f}_{\mathbf{x}_0}(\vec{\delta}) \right) = \mathbf{0},$$

because we can replace $D\mathbf{f}_{\mathbf{x}_0}$ by the Jacobian/gradient for all "nice" functions (the functions we usually care about)!

The "nice" functions is the class of <u>continuously differentiable</u> (<u>smooth</u>) functions.

Multivariable Differentiation Smoothness and consequences

Smoothness

A function $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is <u>continuously differentiable</u> if all of the partial derivatives of \mathbf{f} exist and are continuous.

AKA: \mathscr{C}^1 functions, and the collection of all such functions are the class \mathscr{C}^1 .

Generally: \mathscr{C}^p for some $p \geq 1$ are the <u>p-times continuously differentiable</u> functions.

Smoothness

Theorem (Sufficient criterion for differentiability). If $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is a \mathscr{C}^1 function, then \mathbf{f} is differentiable, and its total derivative is equal to its Jacobian matrix.

Directional derivatives from total derivative

Theorem (Computing directional derivatives). If $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ is differentiable with $n \times d$ Jacobian matrix $\nabla \mathbf{f}(\mathbf{x}_0)$, the directional derivative of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v} \in \mathbb{R}^d$ is given by the matrix-vector product:

$$\frac{\nabla \mathbf{f}(\mathbf{x}_0)}{n \times d} \underbrace{\mathbf{v}}_{d \times 1}.$$

Remember from our linear algebra lectures: multiplying a vector by a matrix is applying a *linear transformation* to that vector!

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^d$. If $\mathbf{v} \in \mathbb{R}^d$ is a *unit* vector making angle θ with the gradient $\nabla f(\mathbf{x}_0)$, then:

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{v} = \|\nabla f(\mathbf{x}_0)\| \cos \theta.$$

Gradient is the direction of steepest ascent at the rate $\|\nabla f(\mathbf{x}_0)\|!$

Example: $f(x, y) = (1/2)x^3y$

Big picture: how do all these objects connect?

The total derivative is a linear transformation that maps "changes in inputs" to "changes in outputs."

When we apply a total derivative to a vector, think of mapping the "change" represented by that vector to a "change" in output space.

The <u>partial derivative</u> tells us how our function changes in each basis vector direction. The <u>directional derivative</u> tells us change in any direction.

For all the "smooth" <u>continuously differentiable</u> functions we care about, the total derivative is given by the <u>Jacobian</u> matrix (the <u>gradient</u> for scalar-valued functions).

Applying the Jacobian/gradient to a vector is the same as matrix-vector multiplication!

Big picture: how do all these objects connect?

 \mathscr{C}^1 function \Longrightarrow total derivative = Jacobian/gradient

⇒ all directional/partial derivatives from matrix-vector product!

$$\nabla \mathbf{f}(\mathbf{x}_0)\mathbf{v}$$
 for Jacobian ($\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$)

$$\nabla f(\mathbf{x}_0)^\mathsf{T} \mathbf{v}$$
 for gradient $(f: \mathbb{R}^d \to \mathbb{R})$

Example: $f(x, y) = x^3 + x^2y + y^2$

Multivariable Differentiation The Hessian and the "Second Derivative"

Hessian matrix

The <u>Hessian</u> is the "second derivative" for scalar-valued multivariable functions. It is a matrix. For *really* smooth functions, it is symmetric.

The Hessian contains the local "second-order" information, or *curvature* of the function. It describes how "bowl-shaped" the function is around a point.

Note: The Hessian is only defined for scalar-valued functions $f: \mathbb{R}^n \to \mathbb{R}$.

Hessian matrix for $f: \mathbb{R}^2 \to \mathbb{R}$

The <u>Hessian</u> matrix for $f: \mathbb{R}^2 \to \mathbb{R}$ is the 2×2 matrix of all second-order partial derivatives:

$$\nabla^2 f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

 $\frac{\partial^2 f}{\partial x_i^2}$ is the second partial derivative of f with respect to x_i .

 $\frac{\partial^2 f}{\partial x_i \partial x_j}$ is the partial derivative from differentiating w.r.t. x_j first and then differentiating w.r.t. x_i .

Hessian matrix for $f: \mathbb{R}^n \to \mathbb{R}$

The <u>Hessian</u> matrix for $f: \mathbb{R}^n \to \mathbb{R}$ is the $n \times n$ matrix of all second-order partial derivatives.

Equality of mixed partials

Theorem (Equality of mixed partials). If $f: \mathbb{R}^n \to \mathbb{R}$ is a *twice continuously differentiable* function (i.e., in class \mathscr{C}^2), then, for all pairs (i,j):

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

This means that for \mathscr{C}^2 functions, the Hessian is a symmetric matrix.

 \mathscr{C}^2 , the class of <u>twice continuously differentiable</u> functions, is the collection of all functions whose second-order partial derivatives all exist and are continuous.

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \ 2x^2y^2 \ xy\right).$$

Is ${\bf f}$ smooth (i.e. in \mathscr{C}^1)? How about \mathscr{C}^2 ? What does that tell us?

Wrap-up example

Consider the function $\mathbf{f}:\mathbb{R}^2\to\mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \ 2x^2y^2 \ xy\right).$$

What's the formula for the Jacobian of f?

What's the *formula for* the gradient of $f_1(x,y) = \frac{1}{2}x^3y$? What is the Jacobian/gradient at $\mathbf{x}_0 = (1,2)$?

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \ 2x^2y^2 \ xy\right).$$

What's the total derivative of \mathbf{f} at $\mathbf{x}_0 = (1,0)$?

Wrap-up example

Consider the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{f}(x,y) := \left(\frac{1}{2}x^3y \ 2x^2y^2 \ xy\right).$$

What's the directional derivative of \mathbf{f} at \mathbf{x}_0 in the direction $\mathbf{v} = (1,1)$?

How about in the direction e_1 ?

Multivariable Differentiation Common Derivative Rules

Basic derivative rules

Same as single-variable differentiation rules, but we need to "type-check" dimensions.

Let
$$\frac{\partial}{\partial \mathbf{x}}$$
 be the differentiation "operator."

Derivatives of $\mathbf{f}: \mathbb{R}^d \to \mathbb{R}^n$ from reasoning about each scalar-valued f_1, \ldots, f_n .

Sum Rule

For $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$:

$$\frac{\partial}{\partial \mathbf{x}} (f(\mathbf{x}) + g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}} + \frac{\partial g}{\partial \mathbf{x}}$$

Product Rule

For $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}$:

$$\frac{\partial}{\partial \mathbf{x}} (f(\mathbf{x})g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}} g(\mathbf{x}) + f(\mathbf{x}) \frac{\partial g}{\partial \mathbf{x}}$$

Chain Rule

For $f: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$:

$$\frac{\partial}{\partial \mathbf{x}} (g \circ f)(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} g(f(\mathbf{x})) = \frac{\partial g}{\partial f} \frac{\partial f}{\partial \mathbf{x}}$$

Example of chain rule

Example. Let $g: \mathbb{R}^2 \to \mathbb{R}$ be defined as $g(y_1, y_2) = y_1^2 + 2y_2$. Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as $\mathbf{f}(x_1, x_2) := \left(\sin(x_1) + \cos(x_2) \mid x_1 x_2^3\right)$.

We can also write this as:

$$g(\mathbf{f}(\mathbf{x})) = (g \circ \mathbf{f})(x_1, x_2) = (\sin(x_1) + \cos(x_2))^2 + 2(x_1x_2^3)$$

What is
$$\frac{\partial (g \circ \mathbf{f})}{\partial \mathbf{x}}$$
?

Example of chain rule

$$g(\mathbf{f}(\mathbf{x})) = (g \circ \mathbf{f})(x_1, x_2) = (\sin(x_1) + \cos(x_2))^2 + 2(x_1x_2^3)$$

"Matrix Calculus"

Useful identities in machine learning

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}$$

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}$$

More in *The Matrix Cookbook* (Petersen and Pederson, 2012).

"Matrix Calculus"

Example

Why
$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$
?

Why do we get
$$\frac{\partial \mathbf{a}^\mathsf{T} \mathbf{x}}{\partial \mathbf{x}}$$
 "for free?"

Least Squares Optimization Perspective

Regression Setup

Observed: Matrix of *training samples* $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training labels* $\mathbf{y} \in \mathbb{R}^d$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\mathsf{T} & \rightarrow \\ \vdots & & \vdots \\ \leftarrow & \mathbf{x}_n^\mathsf{T} & \rightarrow \end{bmatrix}.$$

<u>Unknown:</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$.

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

Regression Setup

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \dots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$X\hat{w} = \hat{y} \approx y$$
.

To find $\hat{\mathbf{w}}$, we follow the *principle of least squares*.

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Least Squares OLS Theorem

Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Least Squares OLS Theorem

Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

What if we consider this as an optimization problem instead?

Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

What if we consider this as an optimization problem instead?

$$f: \mathbb{R}^d \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Least Squares Optimization Problem

$$f: \mathbb{R}^d \to \mathbb{R}$$
$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Least Squares Objective

Before, we called this the <u>squared error</u> or <u>sum of squared residuals</u>...

$$f: \mathbb{R}^d \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

We can also consider this the *objective function* of an optimization problem: the <u>least squares objective</u>.

Least Squares Objective in R

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \implies f(w) = \|w\mathbf{x} - \mathbf{y}\|^2$$

Least Squares Objective in R

Consider the dataset $\mathbf{x} = (1, -1)$ and $\mathbf{y} = (3, -3)$, where n = 2, d = 1. $f(w) = \|w\mathbf{x} - \mathbf{y}\|^2$

Least Squares Objective in R

Consider the dataset
$$\mathbf{x} = (1, -1)$$
 and $\mathbf{y} = (3, -3)$, where $n = 2$, $d = 1$.
$$f(w) = \|w\mathbf{x} - \mathbf{y}\|^2$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Consider the dataset
$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, where $n=2, d=2$.
$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Consider the dataset
$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, where $n = 2$, $d = 2$.

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Consider the dataset
$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, where $n=2$, $d=2$.
$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Consider the dataset
$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, where $n = 2$, $d = 2$.
$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Least Squares OLS from Optimization

Theorem (Ordinary Least Squares). Let $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Least Squares OLS from Optimization

Theorem (Full rank and eigenvalues). Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square matrix with all real eigenvalues $\lambda_1, ..., \lambda_d \in \mathbb{R}$.

$$rank(\mathbf{A}) = d \iff \lambda_i > 0 \text{ for all } i \in [d].$$

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^2 - 4w + 1?$$

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^2 - 4w + 1?$$

First derivative test. Take the derivative f'(w) and set equal to 0 to find candidates for optima, \hat{w} .

Review: How did we optimize in 1D?

Recall from single variable calculus: how did we optimize a function like:

$$f(w) = 4w^2 - 4w + 1?$$

First derivative test. Take the derivative f'(w) and set equal to 0 to find candidates for optima, \hat{w} .

Second derivative test. Check $f''(\hat{w}) > 0$ for minimum; check $f''(\hat{w}) < 0$ for maximum.

Least Squares OLS from Optimization

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Least Squares OLS from Optimization

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2}$$
$$= (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$= \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

Quadratic Forms

Review

A function $f: \mathbb{R}^2 \to \mathbb{R}$ is a *quadratic form* if it is a polynomial with terms of all degree two:

$$f(x) = ax^2 + 2bxy + cy^2.$$

We can rewrite this in matrix form:

$$f(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$

Least Squares OLS from Optimization

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

This is a quadratic function, with the quadratic form:

$$\mathbf{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w}$$

Positive Semidefinite (PSD) Matrices Review

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is positive semidefinite (PSD) if...

there exists $\mathbf{X} \in \mathbb{R}^{n \times d}$ such that $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$.

 \uparrow

all eigenvalues of **A** are nonnegative: $\lambda_1 \geq 0, \ldots, \lambda_d \geq 0$.

 \downarrow

 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{R}^d$.

Least Squares OLS from Optimization

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

This is a quadratic function, with the quadratic form:

$$\mathbf{w}^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w}$$

We know that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is PSD.

Least Squares OLS from Optimization

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the function $f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Expand the squared norm:

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

This is a quadratic function, with the quadratic form:

$$\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}$$

Even better: $\operatorname{rank}(\mathbf{X}) = d$, so $\operatorname{rank}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d$ and therefore $\lambda_1, \ldots, \lambda_d > 0$ and $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite!

"Matrix Calculus"

Useful identities in machine learning

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}$$

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}$$

More in *The Matrix Cookbook* (Petersen and Pederson, 2012).

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{x}$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{x}$$

$$\nabla_{\mathbf{w}}(2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}) = 2\mathbf{X}^{\mathsf{T}}\mathbf{y} \text{ because } \frac{\partial \mathbf{a}^{\mathsf{T}}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{x}$$

$$\nabla_{\mathbf{w}}(2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}) = 2\mathbf{X}^{\mathsf{T}}\mathbf{y} \text{ because } \frac{\partial \mathbf{a}^{\mathsf{T}}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} = 0$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \nabla_{\mathbf{w}} (\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}) - \nabla_{\mathbf{w}} (2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + \nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} \text{ (sum rule)}$$

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} \text{ because } \frac{\partial \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}}{\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{x}$$

$$\nabla_{\mathbf{w}}(2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}) = 2\mathbf{X}^{\mathsf{T}}\mathbf{y} \text{ because } \frac{\partial \mathbf{a}^{\mathsf{T}}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

$$\nabla_{\mathbf{w}} \mathbf{y}^{\mathsf{T}} \mathbf{y} = 0$$

$$\Longrightarrow \nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

We have again obtained the <u>normal equations</u>!

Obtaining normal equations from linear algebra

Because $\hat{y} - y$ is perpendicular to span(col(X)), we obtain the *normal* equations:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Obtaining normal equations from optimization

Because the gradient is

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y},$$

setting it equal to $\mathbf{0}$, we obtain the *normal* equations:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

OLS from Optimization

$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Because $rank(\mathbf{X}) = d$, we know $rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d$ and $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible. Solve the normal equations to get a *candidate* for the minimizer:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Least Squares OLS from Optimization

Objective:
$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Gradient:
$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}$$
.

Candidate minimizer: $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$.

OLS from Optimization

Objective:
$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Gradient:
$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}$$
.

Candidate minimizer: $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$.

"Second derivative test." Take the Hessian of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}.$$

OLS from Optimization

Objective:
$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2 \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Gradient:
$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}$$
.

Candidate minimizer: $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$.

"Second derivative test." Take the Hessian of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$rank(\mathbf{X}) = d \implies rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \implies \lambda_1, ..., \lambda_d > 0$$

 \Longrightarrow $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite!

PSD and PD Quadratic Forms

"Proof by graph"

 $\lambda_1, \dots, \lambda_d \geq 0$

$$\lambda_1, \ldots, \lambda_d > 0$$

Showing $\hat{\mathbf{w}}$ is the minimizer from linear algebra

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Showing $\hat{\mathbf{w}}$ is the minimizer from optimization

Because the Hessian of $f(\mathbf{w})$ is

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X},$$

and we assumed $\operatorname{rank}(\mathbf{X}) = d$, the matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ must be positive definite, and $f(\mathbf{w})$ therefore has a "positive" second derivative (Hessian).

Least Squares OLS Theorem

Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Gradient Descent Preview of the Algorithm

Multivariable Differentiation

Gradient as direction of steepest ascent

Theorem (Gradient and direction of steepest ascent). Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^d$. If $\mathbf{v} \in \mathbb{R}^d$ is a *unit* vector making angle θ with the gradient $\nabla f(\mathbf{x}_0)$, then:

$$\nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{v} = \|\nabla f(\mathbf{x}_0)\| \cos \theta.$$

Gradient is the direction of steepest ascent at the rate $\|\nabla f(\mathbf{x}_0)\|!$

Gradient Descent

Algorithm

Input: Function $f: \mathbb{R}^n \to \mathbb{R}$. Initial point $\mathbf{x}_0 \in \mathbb{R}^n$. Step size $\eta \in \mathbb{R}$.

For t = 1, 2, 3, ...

Compute: $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} - \eta \nabla f(\mathbf{x}_{t-1})$.

If $\nabla f(\mathbf{x}_t) = 0$ or $\mathbf{x}_t - \mathbf{x}_{t-1}$ is sufficiently small, then return $f(\mathbf{x}_t)$.

Gradient Descent

Preview

Gradient Descent

Preview

x1-axis = x2-axis = f(x1, x2)-axis descent start

Lesson Overview

Motivation for differential calculus. We ultimately want to solve optimization problems, which require finding global minima.

Single-variable differentiation review. In single-variable differentiation, the <u>derivative</u> is still a 1×1 "matrix" mapping change in input to change in output.

Multivariable differentiation. Derivatives in multiple variables become harder because we can approach from an infinite number of directions, not just two.

Total, directional, and partial derivatives. When a function is <u>smooth</u> it has a <u>total derivative</u> (it is <u>differentiable</u>). In this case, the <u>directional derivative</u> and <u>partial derivative</u> is comes directly from the total derivative (Jacobian/gradient).

OLS: Optimization Perspective. We can solve OLS using differential calculus instead of linear algebra. We provide a heuristic derivation of the OLS estimator again.

Lesson Overview

Big Picture: Least Squares

 $\lambda_1, \ldots, \lambda_d \geq 0$

$$\lambda_1, \ldots, \lambda_d > 0$$

Lesson Overview

Big Picture: Gradient Descent

