

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Was kann man tun, wenn man ein Problem nicht effizient lösen kann?

Die Aufgabenstellung vereinfachen!

Approximationsalgorithmen

- Löse Problem nicht exakt, sondern nur approximativ
- Qualitätsgarantie in Abhängigkeit von optimaler Lösung
- Z.B.: jede berechnete Lösung ist nur doppelt so teuer, wie eine optimale Lösung

Heuristik

- Löse ein Problem nicht exakt
- Keine Qualitätsgarantie
- Können jedoch in der Praxis durchaus effizient sein

Approximationsalgorithmen

- Löse Problem nicht exakt, sondern nur approximativ
- Qualitätsgarantie in Abhängigkeit von optimaler Lösung
- Z.B.: jede berechnete Lösung ist nur doppelt so teuer, wie eine optimale Lösung

Beispiel (kürzeste Wege)

- Wir sind zufrieden mit Wegen, die maximal doppelt so lang sind, wie ein kürzester Weg
- Gilt dies für alle berechneten Wege, so haben wir einen 2-Approximationsalgorithmus

Definition (Approximationsalgorithmus)

Ein Algorithmus A für ein Optimierungsproblem heißt $\alpha(n)$ -Approximationsalgorithmus, wenn für jedes n und jede Eingabe der Größe n gilt, dass

$$\max\left\{\frac{C}{C^*}, \frac{C^*}{C}\right\} \le \alpha(n)$$

wobei \mathcal{C} die Kosten der von A berechneten Lösung für die gegebene Instanz bezeichnet und \mathcal{C}^* die Kosten einer optimalen Lösung

• $\alpha(n)$ heißt auch Approximationsfaktor

Knotenüberdeckung

Sei G = (V, E) ein ungerichteter Graph. Eine Menge $U \subseteq V$ heißt Knotenüberdeckung, wenn gilt, dass für jede Kante $(u, v) \in E$ mindestens einer der Endknoten u, v in U enthalten ist.

Problem minimale Knotenüberdeckung

- Gegeben ein Graph G = (V, E)
- Berechnen Sie eine Knotenüberdeckung U minimaler Größe |U|

Knotenüberdeckung

Sei G = (V, E) ein ungerichteter Graph. Eine Menge $U \subseteq V$ heißt Knotenüberdeckung, wenn gilt, dass für jede Kante $(u, v) \in E$ mindestens einer der Endknoten u, v in U enthalten ist.

Problem minimale Knotenüberdeckung

- Gegeben ein Graph G = (V, E)
- Berechnen Sie eine Knotenüberdeckung U minimaler Größe |U|

Knotenüberdeckung

Sei G = (V, E) ein ungerichteter Graph. Eine Menge $U \subseteq V$ heißt Knotenüberdeckung, wenn gilt, dass für jede Kante $(u, v) \in E$ mindestens einer der Endknoten u, v in U enthalten ist.

Problem minimale Knotenüberdeckung

- Gegeben ein Graph G = (V, E)
- Berechnen Sie eine Knotenüberdeckung U minimaler Größe |U|

Erste Idee

 Wähle immer Knoten mit maximalem Grad und entferne alle anliegenden Kanten

GreedyVertexCover1()

- 1. while $E \neq \emptyset$ do
- 2. wähle einen Knoten v mit maximalem Knotengrad
- 3. Entferne alle an v anliegenden Kanten aus E

Erste Frage

Ist der Algorithmus optimal?

Erste Frage

- Ist der Algorithmus optimal?
- Nein! Gegenbeispiel:

Erste Frage

- Ist der Algorithmus optimal?
- Nein! Gegenbeispiel:

Optimale Lösung hat Größe 3

Erste Frage

- Ist der Algorithmus optimal?
- Nein! Gegenbeispiel:

Die von GreedyVertexCover1 berechnete Lösung hat Größe 4

Zweite Frage

Hat der Algorithmus einen konstanten Approximationsfaktor?

Zweite Frage

- Hat der Algorithmus einen konstanten Approximationsfaktor?
- Nein!
- Wir entwickeln nun Konstruktion eines Gegenbeispiels

Zweite Frage

- Hat der Algorithmus einen konstanten Approximationsfaktor?
- Nein!
- Wir entwickeln nun Konstruktion eines Gegenbeispiels

Definition

- Ein Graph G = (V, E) heißt bipartit (oder 2-färbbar), wenn man V in zwei Mengen L und R partitionieren kann, so dass es keine Kante gibt, deren Endknoten beide in L oder beide in R liegen.
- Man schreibt auch häufig $G = (L \cup R, E)$, um die Partition direkt zu benennen.

Beobachtung

Sei $G = (L \cup R, E)$ ein bipartiter Graph. Dann ist L bzw. R eine gültige Knotenüberdeckung (die aber natürlich nicht unbedingt minimale Größe hat)

Beobachtung

Sei $G = (L \cup R, E)$ ein bipartiter Graph. Dann ist L bzw. R eine gültige Knotenüberdeckung (die aber natürlich nicht unbedingt minimale Größe hat)

Idee

- Wir konstruieren einen bipartiten Graph, bei dem |L| = r ist und $|R| = \Omega(r \log r)$. Trotzdem wählt der Algorithmus GreedyVertexCover1 die Knoten der Seite R aus
- Damit ist für $r \to \infty$ der Approximationsfaktor nicht durch eine Konstante beschränkt

Die Konstruktion

Sei $L = \{1, ..., r\}$ eine Menge mit r Knoten

18

Approximationsalgorithmen

Die Konstruktion

- Sei $L = \{1, ..., r\}$ eine Menge mit r Knoten
- Wir wählen nun eine Menge R(2) mit $\lfloor |L|/2 \rfloor$ Knoten
- Der j-te Knoten aus R(2) wird mit Knoten 2j 1 und 2j verbunden

19

Approximationsalgorithmen

Die Konstruktion

- Sei $L = \{1, ..., r\}$ eine Menge mit r Knoten
- Im i-ten Schritt wählen wir Menge R(i) mit $\lfloor |L|/i \rfloor$ Knoten
- Der j-te Knoten aus R(i) wird mit Knoten i(j-1)+1,...,ij verbunden

Die Konstruktion

- Sei $L = \{1, ..., r\}$ eine Menge mit r Knoten
- Im i-ten Schritt wählen wir Menge R(i) mit $\lfloor |L|/i \rfloor$ Knoten
- Der j-te Knoten aus R(i) wird mit Knoten i(j-1)+1,...,ij verbunden

Die Konstruktion

- Sei $L = \{1, ..., r\}$ eine Menge mit r Knoten
- Im i-ten Schritt wählen wir Menge R(i) mit $\lfloor |L|/i \rfloor$ Knoten
- Der j-te Knoten aus R(i) wird mit Knoten i(j-1)+1,...,ij verbunden

Die Konstruktion

- Sei $L = \{1, ..., r\}$ eine Menge mit r Knoten
- Im i-ten Schritt wählen wir Menge R(i) mit $\lfloor |L|/i \rfloor$ Knoten
- Der j-te Knoten aus R(i) wird mit Knoten i(j-1)+1,...,ij verbunden

Was macht der Algorithmus?

Was macht der Algorithmus?

Was macht der Algorithmus?

Was macht der Algorithmus?

Was macht der Algorithmus?

Was macht der Algorithmus?

Was macht der Algorithmus?

• Der Algorithmus wählt alle Knoten aus $R = \bigcup R(i)$

Was macht der Algorithmus?

Wie groß kann R werden?

Was macht der Algorithmus?

Wie groß kann R werden?

$$|R| = \sum_{i=2}^{r} \left\lfloor \frac{|L|}{i} \right\rfloor \ge \sum_{i=2}^{r} \frac{|L|}{2i} = \frac{1}{2} \cdot \sum_{i=2}^{r} \frac{r}{i} = \frac{r}{2} \cdot \sum_{i=2}^{r} \frac{1}{i} \ge \frac{r}{2} (\ln r - 1) = \mathbf{\Omega}(r \ln r)$$

Was macht der Algorithmus?

Wie groß kann R werden?

$$|R| = \sum_{i=2}^{r} \left| \frac{|L|}{i} \right| \ge \sum_{i=2}^{r} \frac{|L|}{2i} = \frac{1}{2} \cdot \sum_{i=2}^{r} \frac{r}{i} = \frac{r}{2} \cdot \sum_{i=2}^{r} \frac{1}{i} \ge \frac{r}{2} (\ln r - 1) = \mathbf{\Omega}(r \ln r)$$

Damit ist das Approximationsverhältnis nicht konstant

Was macht der Algorithmus?

Wie groß kann R werden?

$$|R| = \sum_{i=2}^{r} \left| \frac{|L|}{i} \right| \ge \sum_{i=2}^{r} \frac{|L|}{2i} = \frac{1}{2} \cdot \sum_{i=2}^{r} \frac{r}{i} = \frac{r}{2} \cdot \sum_{i=2}^{r} \frac{1}{i} \ge \frac{r}{2} (\ln r - 1) = \mathbf{\Omega}(r \ln r)$$

- Damit ist das Approximationsverhältnis nicht konstant
- (Man kann zeigen, dass es für Graphen mit n Knoten $O(\log n)$ ist)

Was macht der Algorithmus?

Wie groß kann R werden?

$$|R| = \sum_{i=2}^{r} \left\lfloor \frac{|L|}{i} \right\rfloor \ge \sum_{i=2}^{r} \frac{|L|}{2i} = \frac{1}{2} \cdot \sum_{i=2}^{r} \frac{r}{i} = \frac{r}{2} \cdot \sum_{i=2}^{r} \frac{1}{i} \ge \frac{r}{2} (\ln r - 1) = \mathbf{\Omega}(r \ln r)$$

- Damit ist das Approximationsverhältnis nicht konstant
- (Man kann zeigen, dass es für Graphen mit n Knoten $O(\log n)$ ist)

Können wir einen besseren Algorithmus entwickeln?

 Wähle immer beide Endpunkte einer zufälligen Kante und entferne alle anliegenden Kanten

Können wir einen besseren Algorithmus entwickeln?

GreedyVertexCover2(*G*)

- 1. $C \leftarrow \emptyset$
- 2. $E' \leftarrow E(G)$
- 3. while $E' \neq \emptyset$ do
- 4. Sei (u, v) beliebige Kante aus E'
- 5. $C \leftarrow C \cup \{u, v\}$
- 6. Entferne aus E' jede Kante, die an u oder v anliegt
- 7. return C

Laufzeit: $\mathbf{O}(|V| + |E|)$

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

Beweis

 Die von GreedyVertexCover2 berechnete Menge C ist eine Knotenüberdeckung, da die while-Schleife solange durchlaufen wird, bis alle Kanten überdeckt sind

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Die von GreedyVertexCover2 berechnete Menge C ist eine Knotenüberdeckung, da die while-Schleife solange durchlaufen wird, bis alle Kanten überdeckt sind
- Sei A die Menge der Kanten, die in Zeile 4 ausgewählt wurden

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Die von GreedyVertexCover2 berechnete Menge C ist eine Knotenüberdeckung, da die while-Schleife solange durchlaufen wird, bis alle Kanten überdeckt sind
- Sei A die Menge der Kanten, die in Zeile 4 ausgewählt wurden
- Die Endpunkte der Kanten aus A sind disjunkt, da nach der Auswahl einer Kante alle an den Endpunkten anliegende Kanten gelöscht werden

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Die von GreedyVertexCover2 berechnete Menge C ist eine Knotenüberdeckung, da die while-Schleife solange durchlaufen wird, bis alle Kanten überdeckt sind
- Sei A die Menge der Kanten, die in Zeile 4 ausgewählt wurden
- Die Endpunkte der Kanten aus A sind disjunkt, da nach der Auswahl einer Kante alle an den Endpunkten anliegende Kanten gelöscht werden
- Es gilt somit |C| = 2|A|

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Die von GreedyVertexCover2 berechnete Menge C ist eine Knotenüberdeckung, da die while-Schleife solange durchlaufen wird, bis alle Kanten überdeckt sind
- Sei A die Menge der Kanten, die in Zeile 4 ausgewählt wurden
- Die Endpunkte der Kanten aus A sind disjunkt, da nach der Auswahl einer Kante alle an den Endpunkten anliegende Kanten gelöscht werden
- Es gilt somit |C| = 2|A|
- Jede Knotenüberdeckung (insbesondere eine optimale Überdeckung C*) muss die Kanten aus A überdecken und somit mindestens einen Endpunkt 42 jeder Kante enthalten

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Die von GreedyVertexCover2 berechnete Menge C ist eine Knotenüberdeckung, da die while-Schleife solange durchlaufen wird, bis alle Kanten überdeckt sind
- Sei A die Menge der Kanten, die in Zeile 4 ausgewählt wurden
- Die Endpunkte der Kanten aus A sind disjunkt, da nach der Auswahl einer Kante alle an den Endpunkten anliegende Kanten gelöscht werden
- Es gilt somit |C| = 2|A|
- Jede Knotenüberdeckung (insbesondere eine optimale Überdeckung C^*) muss die Kanten aus A überdecken und somit mindestens einen Endpunkt 43 jeder Kante enthalten

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

Beweis

• Da keine zwei Kanten aus A einen gemeinsamen Endpunkt haben, liegt kein Knoten aus der Überdeckung C^* an mehr als einer Kante aus A an

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Da keine zwei Kanten aus A einen gemeinsamen Endpunkt haben, liegt kein Knoten aus der Überdeckung C^* an mehr als einer Kante aus A an
- Somit gilt $|A| \le |C^*|$ und damit folgt $|C| \le 2 |C^*|$

Satz 77

GreedyVertexCover2 ist ein 2-Approximationsalgorithmus für das Knotenüberdeckungsproblem.

- Da keine zwei Kanten aus A einen gemeinsamen Endpunkt haben, liegt kein Knoten aus der Überdeckung C^* an mehr als einer Kante aus A an
- Somit gilt $|A| \le |C^*|$ und damit folgt $|C| \le 2 |C^*|$

Travelling Salesman Problem (TSP)

- Sei G = (V, E) ein ungerichteter vollständiger Graph mit positiven Kantengewichten w(u, v) für alle $(u, v) \in E$; o.B.d.A. $V = \{1, ... n\}$
- Gesucht ist eine Reihenfolge $\pi(1), ..., \pi(n)$ der Knoten aus V, so dass die Länge der Rundreise $\pi(1), ..., \pi(n), \pi(1)$ minimiert wird
- Die Länge der Rundreise ist dabei gegeben durch

$$\sum_{i=1}^{n} w(\pi(i), \pi(i+1 \bmod n))$$

Travelling Salesman Problem (TSP) mit Dreiecksungleichung

- Sei G = (V, E) ein ungerichteter vollständiger Graph mit positiven Kantengewichten w(u, v) für alle $(u, v) \in E$; o.B.d.A. $V = \{1, ... n\}$
- Gesucht ist eine Reihenfolge $\pi(1), ..., \pi(n)$ der Knoten aus V, so dass die Länge der Rundreise $\pi(1), ..., \pi(n), \pi(1)$ minimiert wird
- Die Länge der Rundreise ist dabei gegeben durch

$$\sum_{i=1}^{n} w(\pi(i), \pi(i+1 \bmod n))$$
 Dreiecksungleichung

• Für je drei Knoten u, v, x gilt $w(u, x) \le w(u, v) + w(v, x)$

Beispiel:

Finde eine möglichst kurze Rundreise durch alle deutschen Bundeshauptstädte.

ApproxTSP(G, w)

- 1. Berechne minimalen Spannbaum *T* von *G*
- 2. Sei π die Liste der Knoten von G in der Reihenfolge eines Preorder-Tree-Walk von einem beliebigen Knoten v
- 3. return π

Laufzeit

• $O(|E|\log|E|)$ für die Spannbaumberechnung

ApproxTSP(G, w)

- 1. Berechne minimalen Spannbaum T von G
- 2. Sei π die Liste der Knoten von G in der Reihenfolge eines Preorder-Tree-Walk von einem beliebigen Knoten v
- 3. return π

Preorder-Tree-Walk

- Besucht rekursiv alle Knoten von T und gibt jeden Knoten sofort aus, wenn er besucht wird
- Dann erst finden die rekursiven Aufrufe für die Kinder statt

Traversierung eines Binärbaums mit Tiefensuche

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Preorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- $2. \qquad \text{Ausgabe key}[x]$
- 3. Preorder-Tree-Walk(lc[x])
- 4. Preorder-Tree-Walk(rc[x])

Postorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Postorder-Tree-Walk(lc[x])
- 3. Postorder-Tree-Walk(rc[x])
- 4. Ausgabe key[x]

Frage: Welche Traversierung erzeugt a,b,c,d,e,f?

Satz 78

Algorithmus ApproxTSP ist ein 2-Approximationsalgorithmus für das Travelling Salesman Problem mit Dreiecksungleichung.

Beweis

• Sei H^* eine optimale Rundreise und bezeichne $w(H^*)$ ihre Kosten

Satz 78

Algorithmus ApproxTSP ist ein 2-Approximationsalgorithmus für das Travelling Salesman Problem mit Dreiecksungleichung.

- Sei H^* eine optimale Rundreise und bezeichne $w(H^*)$ ihre Kosten
- Z.z.: $w(H) \le 2 \cdot w(H^*)$, wobei H die von ApproxTSP zurückgegebene Rundreise ist und w(H) ihre Kosten bezeichnet

Satz 78

Algorithmus ApproxTSP ist ein 2-Approximationsalgorithmus für das Travelling Salesman Problem mit Dreiecksungleichung.

- Sei H^* eine optimale Rundreise und bezeichne $w(H^*)$ ihre Kosten
- Z.z.: $w(H) \le 2 \cdot w(H^*)$, wobei H die von ApproxTSP zurückgegebene Rundreise ist und w(H) ihre Kosten bezeichnet
- Sei T ein min. Spannbaum und w(T) seine Kosten

Satz 78

Algorithmus ApproxTSP ist ein 2-Approximationsalgorithmus für das Travelling Salesman Problem mit Dreiecksungleichung.

- Sei H^* eine optimale Rundreise und bezeichne $w(H^*)$ ihre Kosten
- Z.z.: $w(H) \le 2 \cdot w(H^*)$, wobei H die von ApproxTSP zurückgegebene Rundreise ist und w(H) ihre Kosten bezeichnet
- Sei T ein min. Spannbaum und w(T) seine Kosten
- Es gilt $w(T) \le w(H^*)$, da man durch Löschen einer Kante aus H^* einen Spannbaum bekommen kann. Dieser hat Gewicht mind. w(T)

Satz 78

Algorithmus ApproxTSP ist ein 2-Approximationsalgorithmus für das Travelling Salesman Problem mit Dreiecksungleichung.

- Sei H^* eine optimale Rundreise und bezeichne $w(H^*)$ ihre Kosten
- Z.z.: $w(H) \le 2 \cdot w(H^*)$, wobei H die von ApproxTSP zurückgegebene Rundreise ist und w(H) ihre Kosten bezeichnet
- Sei T ein min. Spannbaum und w(T) seine Kosten
- Es gilt $w(T) \le w(H^*)$, da man durch Löschen einer Kante aus H^* einen Spannbaum bekommen kann. Dieser hat Gewicht mind. w(T)

Beweis

 Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt

In unserem Beispiel:

a, b, c, d, e, d, f, d, c, g, h, i, j, k, j, i, h, g, c, b, a

Beweis

 Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt

Da der FullWalk F jede Kante von T genau zweimal durchquert, gilt w(F) = 2 w(T), wobei w(F) die Kosten des FullWalks bezeichnet

Beweis

 Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt

Da der FullWalk F jede Kante von T genau zweimal durchquert, gilt w(F) = 2 w(T), wobei w(F) die Kosten des FullWalks bezeichnet

• Also folgt $w(F) \le 2 w(H^*)$

- Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt
- Da der FullWalk F jede Kante von T genau zweimal durchquert, gilt w(F) = 2 w(T), wobei w(F) die Kosten des FullWalks bezeichnet
- Also folgt $w(F) \le 2 w(H^*)$
- F ist jedoch keine Rundreise (und nicht die von ApproxTSP berechnete Ausgabe)

- Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt
- Da der FullWalk F jede Kante von T genau zweimal durchquert, gilt w(F) = 2 w(T), wobei w(F) die Kosten des FullWalks bezeichnet
- Also folgt $w(F) \le 2 w(H^*)$
- F ist jedoch keine Rundreise (und nicht die von ApproxTSP berechnete Ausgabe)
- Wir formen nun F in diese Ausgabe um, ohne die Kosten zu erhöhen

- Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt
- Da der FullWalk F jede Kante von T genau zweimal durchquert, gilt w(F) = 2 w(T), wobei w(F) die Kosten des FullWalks bezeichnet
- Also folgt $w(F) \le 2 w(H^*)$
- F ist jedoch keine Rundreise (und nicht die von ApproxTSP berechnete Ausgabe)
- Wir formen nun F in diese Ausgabe um, ohne die Kosten zu erhöhen
- Beobachtung: Aufgrund der Dreiecksungleichung können wir den Besuch eines Knotens aus F löschen, ohne die Kosten der Rundreise zu erhöhen (wird v zwischen u und x gelöscht, so werden die Kanten (u, v) und (v, x) durch (u, x) ersetzt)

- Ein FullWalk gibt die Knoten bei jedem ersten Besuch aus und auch immer, wenn der Algorithmus zu ihnen zurückkehrt
- Da der FullWalk F jede Kante von T genau zweimal durchquert, gilt w(F) = 2 w(T), wobei w(F) die Kosten des FullWalks bezeichnet
- Also folgt $w(F) \le 2 w(H^*)$
- F ist jedoch keine Rundreise (und nicht die von ApproxTSP berechnete Ausgabe)
- Wir formen nun F in diese Ausgabe um, ohne die Kosten zu erhöhen
- <u>Beobachtung:</u> Aufgrund der Dreiecksungleichung können wir den Besuch eines Knotens aus F löschen, ohne die Kosten der Rundreise zu erhöhen (wird v zwischen u und x gelöscht, so werden die Kanten (u, v) und (v, x) durch (u, x) ersetzt)

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, d, f, d, c, g, h, i, j, k, j, i, h, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, d, c, g, h, i, j, k, j, i, h, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, c, g, h, i, j, k, j, i, h, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, g, h, i, j, k, j, i, h, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, g, h, i, j, k, i, h, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, g, h, i, j, k, h, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, g, h, i, j, k, g, c, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, g, h, i, j, k, b, a

Beweis

 Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen

In unserem Beispiel:

a, b, c, d, e, f, g, h, i, j, k, a

- Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen
- Wir erhalten dieselbe Rundreise wie bei Preorder-Tree-Walk

- Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen
- Wir erhalten dieselbe Rundreise wie bei Preorder-Tree-Walk
- Da diese nur durch "abkürzen" von F zu Stande gekommen ist, gilt $w(H) \le w(F)$

- Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen
- Wir erhalten dieselbe Rundreise wie bei Preorder-Tree-Walk
- Da diese nur durch "abkürzen" von F zu Stande gekommen ist, gilt $w(H) \le w(F)$
- Somit folgt $w(H) \le w(F) \le 2 w(H^*)$

Beweis

- Auf diese Weise k\u00f6nnen wir alle Besuche au\u00dfer den ersten aus unserer Liste entfernen
- Wir erhalten dieselbe Rundreise wie bei Preorder-Tree-Walk
- Da diese nur durch "abkürzen" von F zu Stande gekommen ist, gilt $w(H) \le w(F)$
- Somit folgt $w(H) \le w(F) \le 2 w(H^*)$

Zusammenfassung:

ApproxTSP berechnet in $O(|E| \log |E|)$ Zeit eine 2-Approximation

Last Balanzierung

- m identische Maschinen {1,..,m}
- n Aufgabe {1, ..., n}
- Aufgabe j hat Länge t(j)
- Problem: Platziere die Aufgaben auf den Maschinen, so dass diese möglichst "balanciert" sind
- Sei A(i) die Menge der Aufgaben auf Maschine i
- Sei $T(i) = \sum_{j \in A(i)} t(j)$
- Makespan: max T(i)
- Präzises Problem : Minimiere Makespan

Frage: Was ist der minimale Makespan von n = 5 Aufgaben der Länge 1,2,3,4,5 auf m = 3 Maschinen?

Gieriger Ansatz:

- verteile die Aufgaben der Reihe nach
- wähle immer eine Maschine mit kleinster Belastung

GreedyLoadBalancing

- 1. Setze $T(i) \leftarrow 0$ und $A(i) \leftarrow \emptyset$ für alle Maschinen $i \in \{1, ..., m\}$
- **2**. **for** j = 1 **to** n **do**
- 3. Sei M(i) eine Maschine mit $T(i) = \min_{k \in \{1,...,m\}} T(k)$
- 4. Weise Aufgabe *j* Maschine *i* zu
- 5. $A(i) \leftarrow A(i) \cup \{j\}$
- 6. $T(i) \leftarrow T(i) + t(j)$

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2 - 1/m.

Beweis

Eingabe: m (m - 1) Aufgaben der Länge 1 und eine Aufgabe der Länge m

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2 - 1/m.

Beweis

- Eingabe: m (m 1) Aufgaben der Länge 1 und eine Aufgabe der Länge m
- Optimale Lösung:
- Die Aufgabe der Länge m wird einer Maschine zugeteilt
- Die anderen Aufgaben werden gleichmäßig auf die übrigen m-1 Maschinen verteilt; resultierender Makespan: m

Maschine 1:

Maschine 2:

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2-1/m.

Beweis

- Eingabe: m (m 1) Aufgaben der Länge 1 und eine Aufgabe der Länge m
- Optimale Lösung:
- Die Aufgabe der Länge m wird einer Maschine zugeteilt
- Die anderen Aufgaben werden gleichmäßig auf die übrigen m-1 Maschinen verteilt; resultierender Makespan: m

Maschine 1:

Maschine 2:

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2-1/m.

Beweis

GreedyLoadBalancing verteilt zunächst die kurzen Aufgaben gleichmäßig

Maschine 1:

Maschine 2:

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2 - 1/m.

Beweis

- GreedyLoadBalancing verteilt zunächst die kurzen Aufgaben gleichmäßig
- Danach wird die lange Aufgabe zugewiesen

Maschine 1:

Maschine 2:

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2 - 1/m.

Beweis

- GreedyLoadBalancing verteilt zunächst die kurzen Aufgaben gleichmäßig
- Danach wird die lange Aufgabe zugewiesen
- Makespan: 2m-1

Maschine 1:

Maschine 2:

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2-1/m.

Beweis

- GreedyLoadBalancing verteilt zunächst die kurzen Aufgaben gleichmäßig
- Danach wird die lange Aufgabe zugewiesen
- Makespan: 2m-1

Maschine 1:

Maschine 2:

Satz 79

Algorithmus GreedyLoadBalancing hat ein Approximationsverhältnis von mindestens 2-1/m.

Beweis

Damit ist das Approximationsverhältnis mindestens (2m-1)/m = 2 - 1/m.

Beobachtung 80

Für jede Probleminstanz ist der optimale Makespan mindestens

$$T^* = \frac{1}{m} \sum_{j=1}^n t(j)$$

Begründung: Bestenfalls können wir die Aufgaben genau auf die m Maschinen aufteilen und jede Maschine hat Last Gesamtlast/Anzahl Maschinen

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

Beweis

 Sei i* die Maschine, die maximale Last in der vom Algorithmus berechneten Zuteilung erhält

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

- Sei i^* die Maschine, die maximale Last in der vom Algorithmus berechneten Zuteilung erhält
- Sei j^* die Aufgabe, die Maschine i^* als letzte zugewiesen wurde

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

- Sei i^* die Maschine, die maximale Last in der vom Algorithmus berechneten Zuteilung erhält
- Sei j^* die Aufgabe, die Maschine i^* als letzte zugewiesen wurde
- Es gilt: $T(k) \ge T(i^*) t(j^*)$ für alle Maschinen k, da zum Zeitpunkt der Zuweisung von j^* , $T(i^*)$ Minimum der T(k) war

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

- Sei i^* die Maschine, die maximale Last in der vom Algorithmus berechneten Zuteilung erhält
- Sei j^* die Aufgabe, die Maschine i^* als letzte zugewiesen wurde
- Es gilt: $T(k) \ge T(i^*) t(j^*)$ für alle Maschinen k, da zum Zeitpunkt der Zuweisung von j^* , $T(i^*)$ Minimum der T(k) war
- Somit folgt für die Kosten Opt einer optimalen Zuweisung:

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

- Sei i^* die Maschine, die maximale Last in der vom Algorithmus berechneten Zuteilung erhält
- Sei j^* die Aufgabe, die Maschine i^* als letzte zugewiesen wurde
- Es gilt: $T(k) \ge T(i^*) t(j^*)$ für alle Maschinen k, da zum Zeitpunkt der Zuweisung von j^* , $T(i^*)$ Minimum der T(k) war
- Somit folgt für die Kosten Opt einer optimalen Zuweisung:

Opt
$$\geq \frac{1}{m} \sum_{k=1}^{m} T(k) \geq T(i^*) - t(j^*)$$

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

- Sei i* die Maschine, die maximale Last in der vom Algorithmus berechneten Zuteilung erhält
- Sei j^* die Aufgabe, die Maschine i^* als letzte zugewiesen wurde
- Es gilt: $T(k) \ge T(i^*) t(j^*)$ für alle Maschinen k, da zum Zeitpunkt der Zuweisung von j^* , $T(i^*)$ Minimum der T(k) war
- Somit folgt für die Kosten Opt einer optimalen Zuweisung:

Opt
$$\geq \frac{1}{m} \sum_{k=1}^{m} T(k) \geq T(i^*) - t(j^*)$$

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

Beweis

• Außerdem gilt sicher Opt $\geq t(j^*)$

Satz 81

Algorithmus GreedyLoadBalancing ist ein 2-Approximationsalgorithmus für das Lastbalancierungsproblem.

- Außerdem gilt sicher Opt $\geq t(j^*)$
- Es folgt

$$T(i^*) = (T(i^*) - t(j^*)) + t(j^*) \le 2 \cdot \text{Opt}$$

Das (diskrete) k-Center Clustering Problem

- Gegeben: Menge P von n Punkten in der Ebene
- Gesucht: Menge $C \subseteq P$ von k Zentren, so dass die maximale Distanz der Punkte zum nächstgelegenen Zentrum, d.h. $\cos t(P,C) = \max_{x \in P} d(p,C) \text{ minimiert wird, wobei}$
- dist $(p, C) = \min_{q \in C} \operatorname{dist}(p, q)$ und
- dist(p, q) bezeichnet den Abstand (Euklidische Distanz) von p und q

Beispiel

Beispiel

Alternative Formulierung

Finde k Scheiben mit Zentrum aus P, die alle Punkte abdecken und deren Maximaler Radius minimiert wird.

Typische Anwendung

- Punkte symbolisieren Städte
- Will Mobilfunkmasten mit möglichst geringer Leistung aufstellen, so dass alle Städte versorgt sind

Allgemeiner

- Punkte (typischerweise in h\u00f6heren Dimensionen) sind "Beschreibungen von Objekten"
- Will Objekte in Gruppen von ähnlichen Objekten unterteilen

Ein Gedankenexperiment

- Nehmen wir an, wir kennen die Kosten r einer optimalen Lösung, d.h. wir wissen, dass man mit Scheiben mit Radius r und Zentrum aus P die Punkte abdecken kann
- Wir werden zeigen, dass wir dann einen einfachen 2-Approximationsalgorithmus finden können

Idee

- Wir nutzen Existenz von Lösung C* mit Radius (Kosten) r
- Betrachte Punkt $p \in P$
- Dann gibt es Zentrum $c^* \in C^*$ mit $dist(p, c^*) \le r$
- Nehmen wir nun p als Zentrum anstelle von c^* und verdoppeln wir den Radius, so decken wir jeden Punkt q ab, der von c^* mit Radius r abgedeckt wurde, d.h.
- für jedes $q \in P$ mit $\operatorname{dist}(q, c^*) \le r$ gilt $\operatorname{dist}(p, q) \le \operatorname{dist}(p, c^*) + \operatorname{dist}(c^*, q) \le 2r$

Idee

- Wir nutzen Existenz von Lösung C^* mit Radius (Kosten) r
- Betrachte Punkt $p \in P$
- Dann gibt es Zentrum $c^* \in C^*$ mit $dist(p, c^*) \le r$
- Nehmen wir nun p als Zentrum anstelle von c^* und verdoppeln wir den Radius, so decken wir jeden Punkt q ab, der von c^* mit Radius r abgedeckt wurde, d.h.
- für jedes $q \in P$ mit $dist(q, c^*) \le r$ gilt $dist(p, q) \le dist(p, c^*) + dist(c^*, q) \le 2r$

k-Center1(P, k)

- 1. $C \leftarrow \emptyset$; $P' \leftarrow P$
- 2. while $P' \neq \emptyset$ do
- 3. Wähle beliebigen Punkt $p \in P'$
- 4. $C \leftarrow C \cup \{p\}$
- 5. Lösche alle Punkte aus P' mit Distanz höchstens 2r von p
- 6. if $|C| \le k$ then return C
- 7. else return "Es gibt keine Menge von k Zentren mit Radius r"

k-Center1(P, k)

- 1. $C \leftarrow \emptyset$; $P' \leftarrow P$
- 2. while $P' \neq \emptyset$ do
- 3. Wähle beliebigen Punkt $p \in P'$
- 4. $C \leftarrow C \cup \{p\}$
- 5. Lösche alle Punkte aus P' mit Distanz höchstens 2r von p
- 6. if $|C| \le k$ then return C
- 7. else return "Es gibt keine Menge von k Zentren mit Radius r"

Offensichtlich gilt

Jede Menge von k Zentren, die der Algorithmus zurückgibt, hat Kosten $\leq 2r$.

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

Beweis (durch Widerspruch)

• Annahme: Es gibt C^* mit $cost(P, C^*) \le r$ und $|C^*| \le k$ und |C| > k.

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Annahme: Es gibt C^* mit $cost(P, C^*) \le r$ und $|C^*| \le k$ und |C| > k.
- Sei C die Menge der Zentren, die k-Center1 auswählt

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Annahme: Es gibt C^* mit $cost(P, C^*) \le r$ und $|C^*| \le k$ und |C| > k.
- Sei C die Menge der Zentren, die k-Center1 auswählt
- Da $C \subseteq P$ gibt es für jedes $p \in C$ (mindestens) ein $c^* \in C^*$ mit $dist(p, c^*) \leq r$
- Wir nennen c^* nah zu p

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Annahme: Es gibt C^* mit $cost(P, C^*) \le r$ und $|C^*| \le k$ und |C| > k.
- Sei C die Menge der Zentren, die k-Center1 auswählt
- Da $C \subseteq P$ gibt es für jedes $p \in C$ (mindestens) ein $c^* \in C^*$ mit $dist(p, c^*) \leq r$
- Wir nennen c* nah zu p
- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein (Beweis später)

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Annahme: Es gibt C^* mit $cost(P, C^*) \le r$ und $|C^*| \le k$ und |C| > k.
- Sei C die Menge der Zentren, die k-Center1 auswählt
- Da $C \subseteq P$ gibt es für jedes $p \in C$ (mindestens) ein $c^* \in C^*$ mit $dist(p, c^*) \leq r$
- Wir nennen c^* nah zu p
- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein (Beweis später)
- Damit folgt: $|C^*| \ge |C|$ und somit Widerspruch zu $|C^*| \le k$ und und |C| > k.

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Annahme: Es gibt C^* mit $cost(P, C^*) \le r$ und $|C^*| \le k$ und |C| > k.
- Sei C die Menge der Zentren, die k-Center1 auswählt
- Da $C \subseteq P$ gibt es für jedes $p \in C$ (mindestens) ein $c^* \in C^*$ mit dist $(p, c^*) \le r$
- Wir nennen c^* nah zu p
- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein (Beweis später)
- Damit folgt: $|C^*| \ge |C|$ und somit Widerspruch zu $|C^*| \le k$ und und |C| > k.

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein
- Beweis der Behauptung:

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein
- Beweis der Behauptung:
- Alle Paare von Zentren p,q aus C haben Abstand > 2r

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein
- Beweis der Behauptung:
- Alle Paare von Zentren p,q aus C haben Abstand > 2r
- Wäre nun für ein Zentrum c^* dist $(p, c^*) \le r$ und dist $(q, c^*) \le r$, so würde dist $(p, q) \le \text{dist}(p, c^*) + \text{dist}(c^*, q) = \text{dist}(p, c^*) + \text{dist}(c^*, q) \le 2r$ gelten. Widerspruch!

Lemma 82

Wenn Algorithmus k-Center1 mehr als k Zentren auswählt, dann gilt für jede Menge $C^* \subseteq P$ von k Zentren, dass $cost(P, C^*) > r$ ist.

- Behauptung: Kein c^* kann nah zu zwei $p \in C$ sein
- Beweis der Behauptung:
- Alle Paare von Zentren p,q aus C haben Abstand > 2r
- Wäre nun für ein Zentrum c^* dist $(p,c^*) \le r$ und dist $(q,c^*) \le r$, so würde dist $(p,q) \le \text{dist}(p,c^*) + \text{dist}(c^*,q) = \text{dist}(p,c^*) + \text{dist}(c^*,q) \le 2r$ gelten. Widerspruch!

Was, wenn wir r nicht kennen?

- Wir wissen nicht, welche Punkte Distanz größer als 2r von den bisher ausgewählten Zentren haben
- Idee: Wähle immer den am weitesten entfernten Punkt, d.h. der dist(p, C) maximiert
- Gibt es einen Punkt mit dist(p, C) > 2r, dann ist es dieser

k-Center2(P, k)

- 1. Wähle beliebigen Punkt $p \in P$ und setze $C \leftarrow \{p\}$
- 3. while $|\mathcal{C}| < k \text{ do}$
- 3. Wähle Punkt $p \in P$, der dist(p, C) maximiert
- 4. $C \leftarrow C \cup \{p\}$
- 5. return C

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

Beweis

Zunächst zur Laufzeit:

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Zunächst zur Laufzeit:
- Um den Algorithmus in $\mathbf{O}(nk)$ Zeit zu implementieren, müssen wir jeden Schleifendurchlauf in $\mathbf{O}(n)$ Zeit erledigen können. Dazu speichern wir uns für jeden Punkt p den Wert $\mathrm{dist}(p,C)$.

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Zunächst zur Laufzeit:
- Um den Algorithmus in $\mathbf{0}(nk)$ Zeit zu implementieren, müssen wir jeden Schleifendurchlauf in $\mathbf{0}(n)$ Zeit erledigen können. Dazu speichern wir uns für jeden Punkt p den Wert $\mathrm{dist}(p,\mathcal{C})$.
- Wird nun ein neues Zentrum c in C eingefügt, so müssen wir nur für jeden Punkt überprüfen, ob dist(p,c) < dist(p,C) ist und ggf. dist(p,C) aktualisieren. Dies geht insgesamt in $\mathbf{O}(n)$ Zeit.

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Zunächst zur Laufzeit:
- Um den Algorithmus in $\mathbf{0}(nk)$ Zeit zu implementieren, müssen wir jeden Schleifendurchlauf in $\mathbf{0}(n)$ Zeit erledigen können. Dazu speichern wir uns für jeden Punkt p den Wert $\mathrm{dist}(p,\mathcal{C})$.
- Wird nun ein neues Zentrum c in C eingefügt, so müssen wir nur für jeden Punkt überprüfen, ob dist(p,c) < dist(p,C) ist und ggf. dist(p,C) aktualisieren. Dies geht insgesamt in $\mathbf{O}(n)$ Zeit.

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

Beweis

• Wir bezeichnen nun mit r die Kosten einer optimalen Lösung C^* . Annahme: Algorithmus liefert Menge C mit Kosten > 2r.

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Wir bezeichnen nun mit r die Kosten einer optimalen Lösung C^* . Annahme: Algorithmus liefert Menge C mit Kosten > 2r.
- Dann gibt es einen Punkt p mit dist(p, C) > 2r.

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Wir bezeichnen nun mit r die Kosten einer optimalen Lösung C^* . Annahme: Algorithmus liefert Menge C mit Kosten > 2r.
- Dann gibt es einen Punkt p mit dist(p, C) > 2r.
- Da der Algorithmus immer den Punkt auswählt, der maximalen Abstand zu den bisher ausgewählten Zentren hat, haben alle ausgewählten Zentren Abstand > 2r zur den bisher ausgewählten Zentren

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Wir bezeichnen nun mit r die Kosten einer optimalen Lösung C^* . Annahme: Algorithmus liefert Menge C mit Kosten > 2r.
- Dann gibt es einen Punkt p mit dist(p, C) > 2r.
- Da der Algorithmus immer den Punkt auswählt, der maximalen Abstand zu den bisher ausgewählten Zentren hat, haben alle ausgewählten Zentren Abstand > 2r zur den bisher ausgewählten Zentren
- Somit würde Algorithmus k-Center1 auf dieser Eingabe mehr als k Zentren zurückgeben. Damit gilt nach Lemma 82 $cost(P, C^*) > r$. Widerspruch!

Satz 83

Algorithmus k-Center2 ist ein 2-Approximationsalgorithmus für das diskrete k-Center Clustering Problem. Algorithmus k-Center2 kann mit Laufzeit $\mathbf{0}(nk)$ implementiert werden.

- Wir bezeichnen nun mit r die Kosten einer optimalen Lösung C^* . Annahme: Algorithmus liefert Menge C mit Kosten > 2r.
- Dann gibt es einen Punkt p mit dist(p, C) > 2r.
- Da der Algorithmus immer den Punkt auswählt, der maximalen Abstand zu den bisher ausgewählten Zentren hat, haben alle ausgewählten Zentren Abstand > 2r zur den bisher ausgewählten Zentren
- Somit würde Algorithmus k-Center1 auf dieser Eingabe mehr als k Zentren zurückgeben. Damit gilt nach Lemma 82 $cost(P, C^*) > r$. Widerspruch!

Zusammenfassung & Kommentare

- Man kann viele Probleme approximativ schneller lösen als exakt (für die drei Beispiele sind keine Algorithmen mit Laufzeit $\mathbf{O}(n^c)$ für eine Konstante c bekannt)
- Gierige Algorithmen sind häufig Approximationsalgorithmen