Resolução das Questões Discursivas dos ENADEs

Brian Mayer

26 de fevereiro de 2018

Resumo

Neste documento serão resolvidas as questões discursivas das provas de matemática a niveis de licenciatura e bacharelado do ENADE (Exame NAcional de Desempenho dos Estudantes) aplicadas pelo SINAES (SIstema Nacional de Avaliação da Educação Superior) dos anos de 1998 até 2014, a última prova aplicada até o presente para o interesse geral no desenvolvimento e treinamento matemático empregado neste trabalho. Os textos das questões não foram modificados, apenas rescritos e reformatados devido ao software utilizado neste documento, i.e. \LaTeX 2 ε . As soluções contidas neste documento são resultados da mistura entre a criatividade do autor e de uma pesquisa de internet.

Sumário

Ι	Co	nside	rações	[n	ic	ia	is											5
1	Intr	oduçã	O															6
2	Cor	nentár	ios Gera	is														8
II	P	rovas																9
3	EN.	ADE 1	998															10
	3.1	Questo	ŏes						 									10
		3.1.1	Questão	1					 									10
		3.1.2	Questão	2					 									10
		3.1.3	Questão	3					 									11
		3.1.4	Questão	4					 									11
		3.1.5	Questão	5					 									11
	3.2	Soluçõ	es						 									11
		3.2.1	Questão	1					 									11
		3.2.2	Questão	2					 									12
		3.2.3	Questão	3					 									12
		3.2.4	Questão	4														12
4	EN.	ADE 1	999															13
	4.1	Questo	ŏes						 									13
		4.1.1	Questão	1					 									13
		4.1.2	Questão	2					 									13
		4.1.3	Questão	3					 									14

		4.1.4	Questão	4.												14
		4.1.5	Questão	5.												14
	4.2	Soluçõ	es													15
		4.2.1	Questão	1.												15
		4.2.2	Questão	2 .												15
5	EN	ADE 2	000													16
J	5.1		ŏes													16
	0.1	5.1.1	Questão													16
		5.1.2	Questão													16
		5.1.3	Questão													16
		5.1.4	Questão													17
	5.2		es													17
		5.2.1	Questão													17
			•													
6	EN	ADE 2														18
	6.1	Questô	ŏes		•											18
		6.1.1	Questão													18
		6.1.2	Questão	2 .												18
		6.1.3	Questão	3.	•											18
		6.1.4	Questão	4.												19
		6.1.5	Questão	5.												19
	6.2	Soluçõ	es													19
		6.2.1	Questão	2 .												19
		6.2.2	Questão	3.												19
7	EN	ADE 2	002													20
	7.1	Questô	ŏes													20
		7.1.1	Questão													20
		7.1.2	Questão													20
		7.1.3	Questão													21
		7.1.4	Questão													21
		7.1.5	Questão													21
		7.1.6	Questão													22
	7.2	Soluçõ	es													22
		7.2.1	Questão	1.												22
		7.2.2	Questão	5.												23

8	ENA	ADE 2003	24
	8.1	Questões	24
		8.1.1 Questão 1	24
		8.1.2 Questão 2	24
		8.1.3 Questão 3	25
		8.1.4 Questão 4	25
		8.1.5 Questão 5	25
		8.1.6 Questão 6	26
	8.2	Soluções	26
		8.2.1 Questão 1	26
		8.2.2 Questão 2	27
		8.2.3 Questão 4	27
9	ENA	ADE 2005	28
	9.1	Questões	28
		9.1.1 Questão 1	28
	9.2	Soluções	28
		9.2.1 Questão 1	28
10	TO N.T.	A DE 2000	90
10		ADE 2008	30
	10.1	Questões	30
		10.1.1 Questão 1	30
	10.2	Soluções	30
		10.2.1 Questão 1	30
11	ENA	ADE 2011	32
	11.1	Questões	32
		11.1.1 Questão 1	32
		11.1.2 Questão 2	32
		11.1.3 Questão 3	33
	11.2	Soluções	33
		11.2.1 Questão 1	33
		11.2.2 Questão 2	34
		11.2.3 Questão 3	34

12	$\mathbf{EN}A$	ADE 2	014															36
	12.1	Questô	őes															36
		12.1.1	Questão	1														36
		12.1.2	Questão	2														36
		12.1.3	Questão	3														37
		12.1.4	Questão	4														38
		12.1.5	Questão	5														39
	12.2	Soluçõ	es															39

Parte I Considerações Iniciais

Introdução

Começando com o ENADE de 1998 que possui cinco (5) questões discursivas, aborda os temas de cálculo de áreas, soluções de equações diferenciais, demonstrações a respeito de convergência de sequências, integrais complexas e operações com anéis e corpos. No ENADE de 1999 temos cinco (5) questões, a primeira fazendo uma aplicação de equações diferenciais no crescimento de uma população, e pedindo uma solução analítica para a mesma, outra questão na área de cálculo pede o valor de uma integral complexa em um curva muito conhecida pela matemática, as demais perguntas são de álgebra e análise, onde os problemas de álgebra se concentraram no tópico de polinmios, na análise são abordados sequências, funções e campos vetoriais. O ENADE do ano 2000 possui quatro (4) questões centradas nos tópicos mais comumente estudados: integrais complexas, a equação de Laplace, convergência de séries e matrizes. Muito centralizado no quesito mecânico na solução dos problemas. O do ano 2001 trás cinco (5) questões, a maioria na área de álgebra, com tábuas de elementos de corpos, pergunta sobre algumas definições de espaços métricos e sobre funções, possui uma questão de aplicação de cálculo diferencial -na área de taxas de variação e volume- e uma questão sobre a exponencial complexa. No ENADE do ano de 2002 encontram-se seis (6) questões discursivas, abrangendo a maioria dos tópicos principais da Matemática, tais como, cálculo diferencial e integral, pedindo operações com derivadas, série de potências -com o teste da razão- e a solução de uma integral complexa, álgebra, aritmética, e geometria analítica e vetores. O ENADE do ano de 2003 possui também seis (6) questões, onde se deve escolher cinco (5) e resolvê-las, mas aqui estarão todas resolvidas, a primeira questão é de cálculo, onde se pede a resolução de uma integral dupla, as segunda, terceira e quarta questões, na área de álgebra, pedem construções de anéis, operações com matrizes e polinmios, a quinta questão novamente sobre cálculo, desta vez, aborda campos vetoriais e necessita de manipulações à respeito dos divergente, convergente e laplaciano, encerrando com conjecturas sobre sequências na sexta questão. No provão do ENADE 2005 a única questão aborda o tema de Cálculo, onde se deve verificar as condições de Cauchy-Riemann e realizar a solução de uma integral complexa. O ENADE 2008 apresenta apenas uma (1) questão sobre o tema de Análise Matemática, no que se diz respeito à diferenciação e propriedades de certas famílias de funções, tais como injetora e limitada. O ENADE 2011 contém três (3) questões: a primeira questão aborda o tema de Estatística, i.e. no cálculo de probabilidades, a segunda sequência, utilizando indução finita para demonstrar uma conjectura e a terceira questão abrange a área de Análise Matemática, onde primeiramente apresenta o teorema do valor intermediário e a posteriori o aplica nesse campo para resolver uma situação-problema na Corrida de São Silvestre de 2010. As três (3) questões do ENADE de 2014 abordam os temas de geometria analítica, matemática aplicada e equações Diofantinas, a primeira questão é sobre os efeitos visuais de uma transformação da computação gráfica, a segunda questão aborda o sistema de correção de palavras de editores de texto com álgebra, e a terceira pede para aplicar equações diofantinas a um problema do cotidiano.

Num panorama geral percebemos o alto nível de matemática, não só na parte discursiva, as questões necessitam de muita análise e conhecimento sobre os principais teoremas dos assuntos abordados, tais como o teorema de Green, $\int_{\partial R} M dx + N dy = \int \int_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy \text{ para o cálculo de áreas em algumas questões e o teorema de de <math display="inline">Cauchy$ para a resolução das integrais complexas do tipo $\int_{C} \frac{f(z)}{z-z_{0}} dz \text{ -presentes em todos os provões-, o teorema de } Cayley-Hamilton \text{ para os processos envolvendo diagonalização e autovalores e autovetores, entre outras competências. Em todos os anos as questões abrangeram a maior parte da ementa de um curso de bacharelado, cumprindo com o objetivo da prova.$

Comentários Gerais

Parte II

Provas

ENADE 1998

3.1 Questões

3.1.1 Questão 1

Seja R uma região do plano que satisfaz as condições do Teorema de Green.

- (a) Mostre que a área de R é dada por $\frac{1}{2}\int_{\partial R}xdy-ydx$
- (b) Use o item (a) para calcular a área da elipse de equações $\{x = a\cos(\theta) y = b\sin(\theta) \text{ onde } a > 0 \text{ e } b > 0 \text{ são fixos, e } 0 \le \theta \le 2\pi \text{ (valor: 20,0 pontos)}$

Dados/Informações adicionais: Teorema de Green: Seja R uma região do plano com interior não vazio e cuja fronteira ∂R é formada por um número finito de curvas fechadas, simples, disjuntas e de classe C^1 por partes. Sejam L(x,y) e M(x,y) funções de classe C^1 em R. Então $\int \int_R \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right) dx dy = \int_{\partial R} L dx + M dy$

3.1.2 Questão 2

Resolva a equação diferencial $y''' - 4y'' + 4y' = e^x$, onde $y' = \frac{dy}{dx}$; $y'' = \frac{d^2y}{dx^2}$; $y''' = \frac{d^3y}{dx^3}$ (valor: 20,0 pontos)

3.1.3 Questão 3

Prove que se uma seqência de funções $f_n:D\to\mathbb{R},D\subset R$ converge uniformemente para $f:D\to\mathbb{R}$ e cada f_n é contínua no ponto $a\in D$, então f é contínua no ponto a.

Dados/Informações adicionais: Uma seqência de funções $f_n: D \to \mathbb{R}, D \subset R$ converge uniformemente para $f: D \to \mathbb{R}$ se para todo $\epsilon > 0$ dado existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \Longrightarrow |f_n(x) - f(x)| < \epsilon$ para todo $x \in D$. (valor: 20,0 pontos)

3.1.4 Questão 4

Seja $\gamma:[0,2\pi]\to\mathbb{C}$ a curva $\gamma(\theta)=e^{i\theta}.$ Calcule $\int_{\gamma}\frac{1}{z-z_0}dz$ nos seguintes casos:

(a)
$$z_0 = \frac{1}{2}(1+i)$$

(b)
$$z_0 = 2(1+i)$$
. (valor: 20,0 pontos)

3.1.5 Questão 5

Sejam α um número algébrico de grau n e $\beta = b_0 + b_1 \alpha + ... + b_{n-1} \alpha^{n-1}$ um elemento não nulo no corpo $\mathbb{Q}(\alpha)$, i.e., os coeficientes b_i são racionais, $0 \le i \le n-1$, e, pelo menos, um deles é diferente de zero.

- (a) Prove que $\frac{1}{\beta}$ é um polinmio em α .
- (a) Racionalize a fração $\frac{1}{2+\sqrt[3]{2}}$. (valor: 20,0 pontos)

3.2 Soluções

3.2.1 Questão 1

(a) A integral dada no enunciado nos fornece L(x,y)=-y e M(x,y)=x. Calculando $\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}$ obtemos: 2. Como foi dito que a função satisfaz as condições do Teorema de Green, então a integral $\frac{1}{2}\int_{\partial R}xdy-ydx=\frac{1}{2}\int\int_{R}2dxdy=\int\int_{R}dxdy$, que corresponde à área da região R.

(b) Temos então $\frac{1}{2} \int_{\partial R} x dy - y dx = \frac{1}{2} \int_{\partial R} a \cos(\theta) dy - b \sin(\theta) dx$. Mas $dy = b \cos(\theta) d\theta$ e $dx = -a \sin(\theta) d\theta$, então a integral se torna:

$$\frac{1}{2} \int_{\partial R} a \cos(\theta) b \cos(\theta) d\theta - b \sin(\theta) (-a \sin(\theta)) d\theta =$$

$$= \frac{ab}{2} \int_{\partial R} \cos^2(\theta) + \sin^2(\theta) d\theta = \frac{ab}{2} \int_0^{2\pi} d\theta = ab\pi$$

3.2.2 Questão 2

Fazendo a substituição: u(x) = y'(x) a equação diferencial assume a forma $u'' - 4u' + 4u = e^x$. A solução da equação característica é: $\lambda = 2$, portanto a solução da equação homogênea associada é $u(x) = c_1 e^{2x} + c_2 x e^{2x}$.

Pela equação não homogênea, uma aparente solução é $u(x) = e^x$. De fato: $e^x - 4e^x + 4e^x = e^x$, portanto pelo princípio da sobreposição uma solução da equação diferencial é $u(x) = c_0e^x + c_1e^{2x} + c_2xe^{2x}$. Mas u = y', então

$$y(x) = \int u(x)dx = \int c_0 e^x + c_1 e^{2x} + c_2 x e^{2x} dx$$

Portanto a solução da eq. diferencial é $y(x) = C_0 e^x + C_1 e^{2x} + C_2 x e^{2x} + C_3$.

3.2.3 Questão 3

Como a sequência de funções converge para f, então dado $\epsilon > 0$ existe $n_o \in \mathbb{N}$ tal que para $n > n_0$, $|f_n(x) - f(x)| < \epsilon$. Mas cada f_n é contínua no ponto a, ou seja, para $\delta > 0$, $|x - a| < \delta$ implica que $|f_n(x) - f_n(a)| < \epsilon$. Como $f_n(x)$ converge para f(x) então $|f(x) - f(a)| < \epsilon$, portanto f é contínua em a.

3.2.4 Questão 4

A curva em questão é a circunferência de raio 1, então:

(a) Como $z_0 = \frac{1}{2}(1+i)$ está dentro da curva γ , pois $|z_0| = \frac{\sqrt{2}}{2} < 1$, podemos usar o teorema de Cauchy para as integrais complexas, assim:

$$\int_{\gamma} \frac{1}{z - \frac{1}{2}(1+i)} dz = 2i\pi$$

(b) Como $z_0 = 2(1+i)$ está fora da curva γ , pois $|z_0| = 2\sqrt{2} > 1$, o valor da integral é zero.

ENADE 1999

4.1 Questões

4.1.1 Questão 1

Um modelo clássico para o crescimento de uma população de determinada espécie está descrito a seguir. Indicando por y=y(t) o número de indivíduos desta espécie, o modelo admite que a taxa de crescimento relativo da população seja proporcional à diferença M-y(t), onde M>0 é uma constante. Isto conduz à equação diferencial $\frac{y'}{y}=k(M-y)$, onde k>0 é uma constante que depende da espécie. Com base no exposto:

- (a) resolva a equação diferencial acima; (valor: 10,0 pontos)
- (b) considere o modelo apresentado para o caso particular em que M=1000, k=1 e y(0)=250 e explique qualitativamente como se dá o crescimento da população correspondente, indicando os valores de t para os quais y(t) é crescente, e o valor limite de y(t) quando $t \to \infty$. (valor: 10,0 pontos)

4.1.2 Questão 2

Seja $\mathbb{Z}_3 = \bar{0}, \bar{1}, -\bar{1}$ o corpo de inteiros módulo 3 e $\mathbb{Z}_3[x]$ o anel de polinmios em x com coeficientes em \mathbb{Z}_3 .

- (a) Mostre que $x^2 + x 1$ é irredutível em $\mathbb{Z}_3[x]$. (valor: 10,0 pontos)
- (b) Mostre que o anel quociente $\mathbb{Z}_3[x]/x^2 + x 1$ é um corpo e que tem 9 elementos. (valor: 10,0 pontos)

4.1.3 Questão 3

Considere o subconjunto Γ do \mathbb{R}^2 dado pela equação $2(x^2+y^2)^2=25(x^2-y^2)$.

- (a) Para que valores de x existem v_x , vizinhança de x, e função diferenciável y=y(x) definida em v_x , satisfazendo $2(x^2+y(x)^2)^2=25(x^2-y(x)^2)$? Justifique. (valor: 10,0 pontos)
- (b) Obtenha a reta tangente a Γ no ponto (3, 1). (valor: 10,0 pontos)

4.1.4 Questão 4

Prove que se uma função $f:\mathbb{R}^n\to\mathbb{R}^n$ é contínua, então a imagem inversa $f^{-1}(V)$ de todo subconjunto aberto $V\subset\mathbb{R}^n$ é um subconjunto aberto de \mathbb{R}^n . (valor: 20,0 pontos)

Definição: Uma função $f: \mathbb{R}^n \to \mathbb{R}^n$ é contínua num ponto $a \in \mathbb{R}^n$ quando, para todo $\epsilon > 0$ existe d > 0 tal que $|x - a| < \delta \Longrightarrow |f(x) - f(a)| < \epsilon$.

4.1.5 Questão 5

Sejam $\vec{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$ um campo conservativo, $\phi: D \subset \mathbb{R}^n \to \mathbb{R}^n$ uma função potencial de \vec{F} e $\gamma: [a,b] \to D$ uma curva regular de classe C^1 .

- (a) Mostre que o trabalho realizado por \vec{F} sobre γ é dado por $\phi(\gamma(b)) \phi(\gamma(a))$. (valor: 10,0 pontos)
- (b) Calcule o trabalho realizado pelo campo $\vec{F}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ sobre a curva esboçada abaixo. (valor: 10,0 pontos)

Definições: Um campo vetorial $\vec{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$ diz-se conservativo (ou gradiente) se existe $\phi: D \to \mathbb{R}$, de classe C^1 , tal que $\vec{\nabla} \phi = \vec{F}$ em todo ponto de D. Uma tal ϕ chama-se função potencial. O trabalho realizado por um campo de vetores sobre uma curva $\gamma: [a,b] \to D$ é dado por $\int_a^b \vec{F}(\gamma(t)) \cdot \vec{\gamma}'(t) dt$.

4.2 Soluções

4.2.1 Questão 1

(a) Dividindo ambos lados por (M-y) e integrando em relação a t temos: $\int \frac{dy}{y(M-y)} = \int k dt.$ A integral da direita é simplesmente kt+c. Mas na da esquerda precisamos fazer decomposição em frações parciais. Então:

$$\frac{1}{y(M-y)} = \frac{A}{y} + \frac{B}{M-y} = \frac{(B-A)y + AM}{y(M-y)} \Longrightarrow \begin{cases} A & =\frac{1}{M}; \\ B-A & =0 \end{cases}$$

Portanto nossa solução para a decomposição é: $A = \frac{1}{M} = B$. Então nossa integral é:

$$\frac{1}{M} \int \frac{1}{y} + \frac{1}{M-y} dy = \frac{1}{M} \ln \left(\frac{y}{y-M} \right)$$

Assim nos reduzimos a: $\frac{1}{M}\ln\left(\frac{y}{y-M}\right)=kt+c \implies \frac{y}{y-M}=e^{Mkt+Mc}$, ou seja: $y=(y-M)(e^ce^{kt})^M=y(e^ce^{kt})^M-M(e^ce^{kt})^M$, então: $y((e^ce^{kt})^M-1)=M(e^ce^{kt})^M$, dividindo por $(e^ce^{kt})^M-1$ e chamando $e^{cM}=C$ e kM=K, finalmente temos:

$$y = \frac{MCe^{Kt}}{Ce^{Kt} - 1}$$

multiplicando esta última equação por e^{-Kt} para cancelarmos duas exponenciais, a equação assume a forma:

$$y = \frac{MC}{C - e^{-Kt}}$$

(b) Sendo M=1000 e k=1, nossa constante é K=1000, e a equação se torna

$$y = \frac{1000C}{C - e^{-1000t}}$$

o enunciado nos deu y(0)=250, então $250=\frac{1000C}{C-1}\Longrightarrow C=\frac{-5}{13}.$ Então nossa equação se torna:

$$y(t) = \frac{1000}{13e^{-1000t}/5 + 1}$$

A função é sempre crescente para valores positivos de t,e quando $t\rightarrow\infty,$ $y\rightarrow1000=M.$

4.2.2 Questão 2

(a) O polinmio x^2+x-1 é irredutível pois $\bar{1}^2+\bar{1}-1=\bar{1}\neq\bar{0}, \bar{0}^2+\bar{0}-1=\bar{2}\neq\bar{0}$ e $\bar{2}^2+\bar{2}-1=\bar{2}\neq\bar{0}$, logo não possui raízes, então é irredutível.

ENADE 2000

5.1 Questões

5.1.1 Questão 1

Seja γ um caminho no plano complexo, fechado, simples, suave (isto é, continuamente derivável) e que não passa por i nem por -i. Quais são os possíveis valores da integral $\int_{\gamma} \frac{dz}{1+z^2}$? (valor: 20,0 pontos)

5.1.2 Questão 2

Uma função $u:\mathbb{R}^2\to\mathbb{R}$, com derivadas contínuas até a 2^{a} ordem, é dita harmnica em \mathbb{R}^2 se satisfaz a Equação de Laplace:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 em \mathbb{R}^2

Mostre que se u e u^2 são harmnicas em \mathbb{R}^2 , então u é uma função constante. (valor: 20,0 pontos)

5.1.3 Questão 3

Seja $\{A_n\}, n \in \mathbb{N}$, uma seqência de números reais positivos e considere a série de funções de uma variável real t dada por $\sum_{n=0}^{\infty} (A_n)^t$. Suponha que tal série converge se $t=t_0 \in \mathbb{R}$. Prove que ela converge uniformemente no intervalo $[t_0, \infty[$. (valor: 20,0 pontos)

5.1.4 Questão 4

Sejam $A = \begin{pmatrix} 0 & -1 & 3 \\ 0 & 2 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ e n um inteiro positivo. Calcule A^n .

Sugestão: Use a Forma Cannica de Jordan ou o Teorema de Cayley-Hamilton. (valor: 20,0 pontos)

5.2 Soluções

5.2.1 Questão 2

Como u e u^2 são funções harmnicas, então:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

 \mathbf{e}

$$\frac{\partial^2}{\partial x^2}(u^2) + \frac{\partial^2}{\partial y^2}(u^2) = 0$$

como $\frac{\partial}{\partial x}(u^2) = 2u\frac{\partial u}{\partial x}$, derivando novamente: $\frac{\partial}{\partial x}\left(2u\frac{\partial u}{\partial x}\right) = 2\left(\frac{\partial u}{\partial x}\right)^2 + 2u\frac{\partial^2 u}{\partial x^2}$ e o mesmo acontece com a variável y, desse modo nossa equação de Laplace toma a forma:

$$\left(\frac{\partial u}{\partial x}\right)^2 + u\frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial u}{\partial y}\right)^2 + u\frac{\partial^2 u}{\partial y^2} = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 0$$

pois u é harmônica. Portanto $\frac{\partial u}{\partial x}=0$ e $\frac{\partial u}{\partial y}=0$. Resolvendo estas duas equações, temos: (i) $u(x,y)=c+\phi(y)$ e (ii) $u(x,y)=k+\psi(x)$, derivando a primeira em relação a y e a segunda em relação a x, obtemos: $\phi'(y)=0$ e $\psi'(x)=0$ respectivamente, o que indica que estas funções são constantes. Assim necessariamente $\phi(y)=k$ e $\psi(x)=c$ e temos a unica solução: u(x,y)=c+k=C

ENADE 2001

6.1 Questões

6.1.1 Questão 1

Sabendo-se que para todo número real θ tem-se que $e^{i\theta}=\cos(\theta)+i\sin(\theta)$, deduza as fórmulas

- (a) $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\alpha)$ (valor: 10,0 pontos)
- (b) $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$ (valor: 10,0 pontos)

6.1.2 Questão 2

Uma piscina, vazia no instante t = 0, é abastecida por uma bomba dágua cuja vazão no instante t (horas) é V(t) (metros cúbicos por hora).

- (a) Determine o volume da piscina sabendo que, se V(t) = 500, a piscina fica cheia em 5 horas. (valor: 5,0 pontos)
- (b) Determine em quanto tempo a piscina ficaria cheia se V(t)=50t. (valor: 15,0 pontos)

6.1.3 Questão 3

Sejam A uma matriz real 2×2 com autovalores $\frac{1}{2}$ e $\frac{1}{3}$ e \mathbf{v} um vetor de \mathbb{R}^2 .

- (a) A é diagonalizável? Justifique sua resposta. (valor: 5,0 pontos)
- (b) Considere a seqência $\mathbf{v}, A\mathbf{v}, A^2\mathbf{v}, A^3\mathbf{v}, ..., A^n\mathbf{v}, ...$ Prove que essa seqência é convergente. (valor: 15,0 pontos)

6.1.4 Questão 4

Sejam X e Y espaços métricos, $A \subset X$ e $f: X \to Y$ uma função.

- (a) Qual é o significado de A é aberto? (valor: 5,0 pontos)
- (b) Qual é o significado de A é fechado? (valor: 5,0 pontos)
- (c) Qual é o significado de f é contínua em X? (valor: 5,0 pontos)
- (d) Se $a \in Y$ e f é contínua em X, mostre que o conjunto solução da equação f(x) = a é fechado. (valor: 5,0 pontos)

6.1.5 Questão 5

O corpo \mathbb{Z}_2 dos inteiros módulo 2 é formado por dois elementos, 0 e 1, com as operações usuais de adição e multiplicação definidas pelas tábuas abaixo.

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

Considere em $\mathbb{Z}_2[x]$ isto é, no anel dos polinmios na indeterminada x cujos coeficientes pertencem a \mathbb{Z}_2 , o polinmio de grau 2, $q(x) = x^2 + x + 1$.

- (a) Mostre que q(x) não tem raízes em \mathbb{Z}_2 . (valor: 5,0 pontos)
- (b) q(x) sendo irredutível, sabe-se, pelo Teorema de Kronecker, que existem um corpo E, que é uma extensão de \mathbb{Z}_2 (ou seja, tal que \mathbb{Z}_2 é um subcorpo de E) e um elemento $\alpha \in E$ tal que $\alpha \notin \mathbb{Z}_2$ e $q(\alpha) = 0$. Determine o número mínimo de elementos que E pode ter e construa as tábuas de adição e de multiplicação em E. (valor: 15,0 pontos)

6.2 Soluções

6.2.1 Questão 2

- (a) $V = 500 \times 5 = 2500$ (metros cúbicos)
- (b) $2500 = \int_0^{t_1} 50t dt \longrightarrow 2500 = \frac{50t_1^2}{2}$, ou seja: $t_1 = 10$ (horas).

6.2.2 Questão 3

- (a) $q(0) = 1 \neq 0$ e $q(1) = 3 = 1 \neq 0$ portanto é irredutível.
- (b) o Conjunto E que se diz é \mathbb{Z}_2 extendido com as raízes de q(x), ou seja $\alpha = \frac{-1 \pm \sqrt{1-4}}{2}$

ENADE 2002

7.1 Questões

7.1.1 Questão 1

Sejam g e h funções deriváveis de $\mathbb R$ em $\mathbb R$ tais que $g(x)=h(x),\ h(x)=g(x),\ g(0)=0$ e h(0)=1.

- (a) Calcule a derivada de $h^2(x) g^2(x)$. (valor: 10,0 pontos)
- (a) Mostre que $h^2(x) g^2(x) = 1$, para todo x em \mathbb{R} . (valor: 10,0 pontos)

7.1.2 Questão 2

Em um espaço métrico M, com distância d, a bola aberta de raio r > 0 e centro $p \in M$ é o conjunto $B_r(p) = \{x \in M | d(x,p) < r\}$. Por definição, um conjunto $A \subset M$ é aberto se para qualquer ponto $p \in A$ existir $\epsilon > 0$ tal que $B_{\epsilon}(p) \subset A$.

- (a) Mostre que a união de uma família qualquer de conjuntos abertos é um conjunto aberto. (valor: 5,0 pontos)
- (b) Mostre que a interseção de uma família finita não vazia de conjuntos abertos é um conjunto aberto. (valor: 10,0 pontos)
- (c) Em \mathbb{R} , com a métrica usual, o conjunto $\{0\}$ não é aberto. Dê exemplo de uma família infinita de conjuntos abertos de R cuja interseção seja $\{0\}$. (valor: 5,0 pontos)

7.1.3 Questão 3

Seja A uma matriz quadrada de ordem n.

- (a) Defina autovalor de A. (valor: 5,0 pontos)
- (b) Se λ é um autovalor de A, mostre que 2λ é um autovalor de 2A. (valor: 5,0 pontos)
- (c) Se λ é um autovalor de A, mostre que λ^2 é um autovalor de A^2 . (valor: 10,0 pontos)

7.1.4 Questão 4

O complexo w é tal que a equação $z^2 - wz + (1 - i) = 0$ admite 1 + i como raiz.

- (a) Determine w. (valor: 5,0 pontos)
- (b) Determine a outra raiz da equação. (valor: 5,0 pontos)
- (c) Calcule a integral $\int_{\gamma} \frac{dz}{z^2 wz + (1-i)}$, sendo γ a circunferência descrita parametricamente por $\gamma(t) = \frac{1}{2}\cos(t) + i(\frac{1}{2}\sin(t) 1)$, $0 \le t \le 2\pi$. (valor: 10,0 pontos)

7.1.5 Questão 5

A série de potências a seguir define, no seu intervalo de convergência, uma função $g,\,g(x)=1-\frac{x^2}{2}+\frac{x^4}{4}-\ldots+(-1)^n\frac{x^{2n}}{2n}+\ldots$

- (a) Determine o raio de convergência r da série. Justifique. (valor: 5,0 pontos)
- (b) Expresse g'(x) como soma de uma série de potências, para |x| < r. (valor: 5,0 pontos)
- (c) Expresse g'(x), para |x| < r, em termos de funções elementares (polinomiais, trigonométricas, logarítmicas, exponenciais). (valor: 5,0 pontos)
- (d) Expresse g(x), para |x| < r, em termos de funções elementares. (valor: 5,0 pontos)

7.1.6 Questão 6

Uma fonte de luz localizada no ponto L = (0, -1, 0) ilumina a superfície dada, parametricamente, por $P(u, v) = (u + v, u^2, v)$.

- (a) Calcule o vetor normal à superfície, $\vec{N}(u, v)$, de forma que para u = v = 0 esse vetor seja (0, -1, 0). (valor: 5,0 pontos)
- (b) Trabalhando com os vetores \vec{N} e L-P, dê uma condição sobre u e v a fim de que o ponto P(u, v) seja iluminado pela luz em L. (valor: 15,0 pontos)

7.2 Soluções

7.2.1 Questão 1

- (a) $(h^2(x) g^2(x))' = 2hh' 2gg' = 2hg 2gh = 0$
- (b) Como $(h^2(x)-g^2(x))'=0$, temos que $h^2(x)-g^2(x)=k$. Mas h(0)=1 e g(0)=0 então: $1^2-0^2=1\Longrightarrow k=1$
- (a) $(1+i)^2 w(1+i) + (1-i) = 0 \Longrightarrow w = 1$
- (b) Como o enunciado disse que 1+i é raiz, então podemos rescrever a equação dada. Assim: $z^2-z+(1-i)=0$, por inspeção percebemos que a outra raiz é -i, pois $(-i)^2-(-i)+(1-i)=-1+i+(1-i)=0$.
- (c) $\int_{\gamma} \frac{dz}{z^2 wz + (1-i)} = \int_{\gamma} \frac{dz}{(z-1+i)(z+i)}, \text{ decompondo com frações parciais temos:}$

$$\frac{1}{(z-1+i)(z+i)} = \frac{a+bi}{(z-1+i)} + \frac{c+di}{(z+i)}$$

Onde obtemos: $\frac{(a+bi+c+di)z + (-b-c-d) + (c-b+a-d)i}{(z-1+i)(z+i)}.$

A qual gera o seguinte sistema:

$$\begin{cases} a+bi+c+di &= 0\\ b+c+d &= -1\\ c-b+a-d &= 0 \end{cases}$$

A primeira equação nos dá que a=-c e b=-d, substituindo na segunda equação temos: c=-1, logo, a=1. Portanto as constantes são: a=1, c=-1, nosso sistema agora é apenas a equação b+d=0 Portanto podemos fazer b=d=0. Assim as frações são $\frac{1}{z-1+i}-\frac{1}{z+i}$, e a

integral original torna-se $\int_{\gamma} \frac{1}{z-(1-i)} - \frac{1}{z+i} dz$. A circunferência γ pode ser rescrita como: $\gamma(t) = \frac{1}{2} [\cos(t) + i \sin(t)] - i$, desse modo percebemos que está centrada no ponto (0,-i) e possui raio 1/2. Como a primeira raiz está fora da curva, o valor da integral é zero. Então:

$$\int_{\gamma} \frac{1}{z - (1 - i)} - \frac{1}{z + i} dz = -\int_{\gamma} \frac{1}{z + i} dz = -2i\pi$$

7.2.2 Questão 5

(a) Pelo teste da razão temos:

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1} \frac{x^{2(n+1)}}{2(n+1)}}{(-1)^n \frac{x^{2n}}{2n}} \right| = \lim_{n \to \infty} \left| \frac{x^{2(n+1)}}{2(n+1)} \frac{2n}{x^{2n}} \right|.$$

Assim $\lim_{n\to\infty} \left|\frac{n}{n+1}x^2\right|$ onde percebemos que $|x^2|<1$, ou simplesmente |x|<1. Então o raio de convergencia r da série é: r<1.

- (b) Derivando: $g'(x) = -x + x^3 x^5 + \dots + (-1)^n x^{2n-1} + \dots$
- (c) Considere a série de Maclaurin da função $y = \ln(x+1)$, i. e. :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 - \dots$$

se utilizarmos x^2 no lugar de x, teríamos:

$$\frac{d}{dx}\ln(x^2+1) = \frac{2x}{x^2+1}$$

$$\frac{d^2}{dx^2}\ln(x^2+1) = \frac{2(x^2+1)-4x^2}{(x^2+1)^2}$$

$$= \frac{1-2x^2}{(x^2+1)^2}$$

ENADE 2003

8.1 Questões

8.1.1 Questão 1

Seja
$$I = \int_0^3 \int_{\sqrt{\frac{x}{3}}}^1 e^{y^3} dy dx$$
.

- (a) Esboce graficamente a região de integração. (valor: 5,0 pontos)
- (b) Inverta a ordem de integração. (valor: 10,0 pontos)
- (c) Calcule o valor de I. (valor: 5,0 pontos)

8.1.2 Questão 2

Seja \mathbb{Z}_{18} o anel dos inteiros módulo 18 e seja G o grupo multiplicativo dos elementos invertíveis de \mathbb{Z}_{18} .

- (a) Escreva todos os elementos do grupo G. (valor: 10,0 pontos)
- (b) Mostre que G é cíclico, calculando explicitamente um gerador, ou seja, mostre que existe $g \in G$ tal que todos os elementos de G são potências de g. (valor: 10,0 pontos)

8.1.3 Questão 3

- (a) Dada a matriz simétrica $A= \begin{pmatrix} 1 & 6 \\ 6 & 4 \end{pmatrix}$, escreva, em forma de polinmio f(x,y), a forma quadrática definida por A, isto é, calcule os coeficientes numéricos de $f(x,y)=v^tAv$, onde $v= \begin{pmatrix} x \\ y \end{pmatrix}$ e v^t significa v transposto. (valor: 5,0 pontos)
- (b) Encontre uma matriz invertível P tal que $P^tAP = D$, onde D é uma matriz diagonal. Para isto, basta tomar como P uma matriz que tenha por colunas um par de autovetores ortonormais de A. (valor: 10,0 pontos)
- (c) Na forma quadrática $f(x,y)=v^tAv$, faça uma transformação de coordenadas $v=P\tilde{v}$, sendo $\tilde{v}=\tilde{x}$, obtendo a forma quadrática diagonalizada, isto é, sem o termo em $\tilde{x}\tilde{y}$. (valor: 5,0 pontos)

8.1.4 Questão 4

Seja $p(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, com $n\geq 1$, um polinmio de coeficientes reais. Suponha que p'(x) divide p(x).

- (a) Prove que o quociente $q(x) = \frac{p(x)}{p'(x)}$ é da forma $q(x) = \frac{1}{n}(x x_0), x_0 \in \mathbb{R}$. (valor: 5.0 pontos)
- (b) Encontre todos os polinmios p(x) que satisfazem essa condição, resolvendo a equação diferencial q(x)p'(x) p(x) = 0. (valor: 15,0 pontos)

8.1.5 Questão 5

Dado um conjunto aberto $U \subset \mathbb{R}^3$ e um campo de vetores $X = (X_1, X_2, X_3) : U \to \mathbb{R}^3$ diferenciável, o divergente de X é definido por

$$divX = \frac{\partial X_1}{\partial x} + \frac{\partial X_2}{\partial y} + \frac{\partial X_3}{\partial z}$$

Para uma função de classe C^2 , $f: U \to \mathbb{R}^3$ o laplaciano de f é definido por

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

(a) Se $f:U\to\mathbb{R}$ é diferenciável e $X:U\to\mathbb{R}^3$ é um campo de vetores diferenciável, mostre que

$$div(fX) = f \ div(X) + \nabla f \cdot X,$$

sendo ∇f o gradiente de f e $\nabla f \cdot X$ o produto interno entre ∇f e X. (valor: 5,0 pontos)

- (b) Se $f: U \to \mathbb{R}$ é de classe C^2 , mostre que $div(f\nabla f) = f\Delta f + ||\nabla f||^2$, sendo $||\cdot||$ a norma euclidiana. (valor: 5,0 pontos)
- (c) Se $U=B=\{x\in\mathbb{R}^3:||x||<1\}$ e $f:\bar{B}\to\mathbb{R}$ é de classe C^3 tal que f(x)>0 para qualquer $x\neq 0,$ $div(f\nabla f)=5f$ e $||\nabla f||^2=2f,$ calcule

$$\int_{S} \frac{\partial f}{\partial N} dS,$$

onde \bar{B} é o fecho de B, S é a fronteira de B, N é a norma unitária exterior a $S, \frac{\partial f}{\partial N}$ é a derivada direcional de f na direção de N e dS é o elemento de área de S. (valor: 10,0 pontos)

8.1.6 Questão 6

Considere a função real f definida, para $x \ge 0$, por $f(x) = \sqrt{2x}$.

- (a) Prove que se 0 < x < 2, então x < f(x) < 2. (valor: 5,0 pontos)
- (b) Prove que é convergente a seqência definida recursivamente por
 - 1. $a_1 = \sqrt{2}$
 - 2. $a_{n+1} = f(a_n)$, para todo $n \ge 1$

(valor: 5,0 pontos)

(c) Calcule $\lim_{n\to\infty} a_n$ (valor: 10,0 pontos)

8.2 Soluções

8.2.1 Questão 1

(b)
$$I = \int_0^3 \int_{\sqrt{\frac{x}{3}}}^1 e^{y^3} dy dx = \int_0^1 \int_0^{3y^2} e^{y^3} dx dy$$

(c)
$$I = \int_0^1 \int_0^{3y^2} e^{y^3} dx dy = \int_0^1 3y^2 e^{y^3} dy = e - 1$$

8.2.2 Questão 2

(a) $G = \{1, 5, 7, 11, 13\}$

8.2.3 Questão 4

(a) Temos que $p'(x) = nx^{n-1} + a_{n-1}(n-1)x^{n-2} + ... + a_1$. Como p'(x) divide p(x) então q(x) deve ser de grau um. Portando $q(x) = k(x - x_0)$.

O teorema fundamental da divisão nos dá: q(x)p'(x) = p(x), assim $k(x - x_0)[nx^{n-1} + a_{n-1}(n-1)x^{n-2} + ... + a_1] = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$. Multiplicando o primeiro termo da esquerda temos $knx^n = x^n$, portanto $k = \frac{1}{n}$. Logo $q(x) = \frac{1}{n}(x - x_0)$.

(b) Multiplicando a equação diferencial dada no enunciado por $\frac{1}{q(x)}$ obtemos:

$$p'(x) - \frac{p(x)}{q(x)} = 0$$

então $\frac{p'}{p} = \frac{n}{x - x_0} \Longrightarrow \ln(p) = n \ln(x - x_0) + c$, portanto $p(x) = k(x - x_0)^n$.

ENADE 2005

9.1 Questões

9.1.1 Questão 1

A respeito de funções de variável complexa, resolva os itens que se seguem.

- (a) Escreva a função complexa $f(z)=f(x+iy)=z^2-3z+5$ na forma f(z)=u(x,y)+iv(x,y) e verifique as equações de Cauchy-Riemann para essa função. (valor: 4,0 pontos)
- (b) Sabendo que $g(z)=\frac{1}{(z^2+1)(z+1)^2}=-\frac{1}{4(z-i)}-\frac{1}{4(z+i)}+\frac{1}{2(z+1)^2}+\frac{1}{2(z+1)},$ calcule a integral complexa: $\int_{|z|=2}\frac{z^2}{(z^2+1)(z+1)^2}dz.$ (valor: 6,0 pontos)

9.2 Soluções

9.2.1 Questão 1

(a) Fazendo z=x+yi temos: $f(z)=(x+yi)^2-3(x+yi)+5$, ou seja: $f(z)=(5-3x+x^2-y^2)+(2xy-3y)i$. Daqui temos que $u(x,y)=5-3x+x^2-y^2$ e v(x,y)=2xy-3y; As condições de Cauchy-Riemann são: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ e $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$. Portanto teremos: $\frac{\partial u}{\partial x}=2x-3$ e $\frac{\partial v}{\partial y}=2x-3$, onde vemos $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$, e $\frac{\partial v}{\partial x}=2y$, $-\frac{\partial u}{\partial y}=2y$, portanto a função satisfaz as condições citadas.

(b) Usando a sugestão dada no enunciado vemos que as singularidades -1,-i,i estão contidas na curva fechada C:|z|=2, assim podemos usar o teorema de Cauchy, i. e. $\int_C \frac{f(z)}{(z-a)^{n+1}} dz = \frac{2i\pi}{n!} f^{(n)}(a).$ Multiplicando a função g(z) por z^2 temos a função desejada na integração, assim $f(z)=z^2$ e:

$$\int_{|z|=2} \frac{z^2}{(z^2+1)(z+1)^2} dz$$

$$= 2i\pi \left(-\frac{(i)^2}{4} - \frac{(-i)^2}{4} + \frac{2(-1)}{2} + \frac{(-1)^2}{2} \right)$$

$$= \frac{i\pi}{2} + \frac{i\pi}{2} - 2i\pi + i\pi = 0$$

ENADE 2008

10.1 Questões

10.1.1 Questão 1

Considere uma função derivável $f: \mathbb{R} \to \mathbb{R}$ que satisfaz à seguinte condição:

Para qualquer número real $k \neq 0$, a função $g_k(x)$ definida por $g_k(x) = x - kf(x)$ não é injetora.

Com base nessa propriedade, faça o que se pede nos itens a seguir e transcreva suas respostas para o Caderno de Respostas, nos locais devidamente indicados.

- (a) Mostre que, se $g'_k(x_0) = 0$ para algum $k \neq 0$, então $f'(x_0) = \frac{1}{k}$ (valor: 3,0 pontos).
- (b) Mostre que, para cada $k \in \mathbb{R}$ não-nulo, existem números α_k e β_k tais que $g_k(\alpha_k) = g_k(\beta_k)$. Além disso, justifique que, para todo $k \in \mathbb{R}$ não-nulo, existe um número θ_k tal que $g'_k(\theta_k) = 0$. (valor: 3,0 pontos).
- (c) Mostre que a função derivada de primeira ordem f' não é limitada. (valor: 4,0 pontos).

10.2 Soluções

10.2.1 Questão 1

(a) Derivando a função definida no item (a): $g_k'(x)=1-kf'(x)$. Fazendo $g_k'(x)=0$ temos: 0=1-kf'(x), ou seja: $f'(x_0)=\frac{1}{k}$, para um certo x_0

- (b) Como o exercício nos diz que a função $g_k(x)$ não é injetora, essa definição implica que existem α e β , diferentes, tais que: $g_k(\alpha) = g_k(\beta)$, mas como a mudança do valor de k gera novas funções injetoras, é cmodo escrever $g_k(\alpha_k) = g_k(\beta_k)$ para mostrar tal fato; Usando o resultado do item (a), temos que se $g_k'(\theta_k) = 0$ então $f'(\theta_k) = \frac{1}{k}$, portanto para cada valor de $k \neq 0$ temos uma função $g_k'(\theta_k) = 0$
- (c) A função f'não é limitada pois a função 1/x, para $x \neq 0$ não é limitada.

ENADE 2011

11.1 Questões

11.1.1 Questão 1

Em um prédio de 8 andares, 5 pessoas aguardam o elevador no andar térreo. Considere que elas entrarão no elevador e sairão, de maneira aleatória, nos andares de 1 a 8.

Com base nessa situação, faça o que se pede nos itens a seguir, apresentando o procedimento de cálculo utilizado na sua resolução.

- (a) Calcule a probabilidade de essas pessoas descerem em andares diferentes. (valor: 6,0 pontos).
- (b) Calcule a probabilidade de duas ou mais pessoas descerem em um mesmo andar. (valor: 4,0 pontos).

11.1.2 Questão 2

Considere a sequência numérica definida por

$$\begin{cases} a_1=a;\\ a_{n+1}=\frac{4a_n}{2+a_n^2}, & \text{para } n\geq 1. \end{cases}$$

Use o princípio de indução finita e mostre que $a_n < \sqrt{2}$, para todo número natural $n \ge 1$ e para $0 < a < \sqrt{2}$, seguindo os passos indicados nos itens a seguir:

- (a) escreva a hipótese e a tese da propriedade a ser demonstrada; (valor: 1,0 ponto)
- (b) mostre que $s = \frac{4a}{2+a^2} > 0$, para todo a > 0; (valor: 1,0 ponto)
- (c) prove que $s^2 < 2$, para todo $0 < a < \sqrt{2}$; (valor: 3,0 pontos)
- (d) mostre que $0 < s < \sqrt{2}$; (valor: 2,0 pontos)
- (e) suponha que $a_n < \sqrt{2}$ e prove que $a_{n+1} < 2$; (valor: 1,0 ponto)
- (f) conclua a prova por indução. (valor: 2,0 pontos)

11.1.3 Questão 3

O Teorema do Valor Intermediário é uma proposição muito importante da análise matemática, com inúmeras aplicações teóricas e práticas. Uma demonstração analítica desse teorema foi feita pelo matemático Bernard Bolzano [1781 1848]. Nesse contexto, faça o que se pede nos itens a seguir:

- (a) Enuncie o Teorema do Valor Intermediário para funções reais de uma variável real; (valor: 2,0 pontos)
- (b) Resolva a seguinte situação-problema.
 - O vencedor da corrida de São Silvestre-2010 foi o brasileiro Mailson Gomes dos Santos, que fez o percurso de 15 km em 44 min e 7 seg. Prove que, em pelo menos dois momentos distintos da corrida, a velocidade instantânea de Mailson era de 5 metros por segundo. (valor: 4,0 pontos)
- (c) Descreva uma situação real que pode ser modelada por meio de uma função contínua f, definida em um intervalo [a,b], relacionando duas grandezas x e y, tal que existe $k \in (a,b)$ com $f(x) \neq f(k)$, para todo $x \in (a,b), x \neq k$. Justifique sua resposta. (valor: 4,0 pontos)

11.2 Soluções

11.2.1 Questão 1

(a) Considerando que as pessoas escolhem de forma aleatória o andar que desejam ir, cada uma das pessoas têm 8 possibilidades, totalizando, pelo princípio multiplicativo 8⁵ situações diferentes, mas as que todas as pessoas saem em andares diferentes ocorrem do seguinte modo: a primeira tem 8 escolhas, a segunda apenas 7, pois não pode sair no mesmo andar da primeira, a terceira 6, a quarta 5 e a quinta 4, ou seja são 8.7.6.5.4 casos favoráveis. Portanto a probabilidade deles ocorrerem é

$$P_1 = \frac{8.7.6.5.4}{8^5} = \frac{7.6.5.4}{8^4} = \frac{7.5.3}{8^3} = \frac{105}{512}$$

(b) A probabilidade de mais de uma pessoa descerem num mesmo andar é a probabilidade complementar do item anterior, ou seja:

$$P_2 = 1 - P_1 = 1 - \frac{105}{512} = \frac{407}{512}$$

11.2.2 Questão 2

- (a) Hipótese do Princípio da Indução: $a_1=a;\ a_{n+1}=\frac{4a_n}{2+a_n^2},$ paran ≥ 1 e $0< a<\sqrt{2}$ e a tese é: $a_n<\sqrt{2}, \forall n\geq 1$
- (b) Se $s=\frac{4a}{2+a^2}$ e pela hipótese de indução a>0, então 4a>0 e $2+a^2>0,$ portanto s>0
- (c) Como $s = \frac{4a}{2+a^2}$ temos que:

$$s^2 = \frac{16a^2}{(2+a^2)^2} = \frac{16a^2}{4+4a^2+a^4} = \frac{16a^2}{(a^2-2)^2+8a^2} < \frac{16a^2}{8a^2} = 2$$

portanto provamos que $s^2 < 2$.

- (d) Temos que s é sempre positiva e $0 < s^2 < 2,$ portanto se extrairmos a raiz quadrada obtemos: $0 < s < \sqrt{2}$
- (e) Como temos $a_n < \sqrt{2}$ e $s = \frac{4a}{2+a^2} < \sqrt{2}, \forall a, a < \sqrt{2}, \text{ logo: } a_{n+1} = \frac{4a_n}{2+a_n^2} < \sqrt{2} < 2$
- (f) Para n=1 temos: $a_2=s<\sqrt{2}$, é valida a hipótese. E como foi mostrado no item anterior: $a_{n+1}=\frac{4a_n}{2+a_n^2}<\sqrt{2}$, assim concluímos a indução.

11.2.3 Questão 3

- (a) Se f é uma função contínua em um intervalo [a,b], então o Teorema do Valor Intermediário diz que para todo $f(a) \le k \le f(b)$ existe um número $c \in (a,b)$ tal que: f(k) = c.
- (b) Considerando que a velocidade do corredor brasileiro possa ser expressa por uma função contínua, 15(km)=15000(m) e como ele percorreu este percurso em 44(min)=2640(s) e 7(seg), ou seja 2647(seg), sua velocidade média foi $v_m=\frac{15000}{2647}\approx 5, 6(m/s)$. Como os corredores iniciam a corrida parados, temos que $v_0=0$ e considerando que ele tenha parado no instante que terminou a corrida, temos $v_{2647}=0$. Pelo teorema enunciado existe

um único momento t em que $v_t=5,6(m/s)$, mas como 5<5,6 e $v_0=v_{2647}=0$, então existem pelo menos dois instantes a e b, por exemplo, em que a velocidade foi 5(m/s).

(c) Qualquer situação problema que pode ser modelada por uma função injetora.

ENADE 2014

12.1 Questões

12.1.1 Questão 1

Os principais efeitos visuais da computação gráfica vistos em uma tela são resultados de aplicações de transformações lineares. Translação, rotação, redimensionamento e alteração de cores são apenas alguns exemplos.

Considere que uma tela é cortada por dois eixos, x e y, ortogonais entre si, formando um sistema de coordenadas com origem no centro da tela. Suponha que, nessa tela plana, existe a imagem de uma elipse com eixo maior de tamanho 4, paralelo ao eixo x, e cujos focos têm coordenadas (-1,2) e (1,2). Considere T um operador linear definido em \mathbb{R}^2 .

De acordo com as informações acima, faça o que se pede nos itens a seguir, apresentando os cálculos utilizados na sua resolução.

- (a) Mostre que o ponto $(0, 2 + \sqrt{3})$ pertence à elipse. (valor: 3,0 pontos)
- (b) Suponha que, em cada ponto da tela, seja aplicado o operador linear T(x,y) = (x+y,-2x+4y). Quais serão as coordenadas dos focos da elipse após a aplicação de T? (valor: 3,0 pontos)
- (c) Calcule os autovalores do operador linear T(x,y)=(x+y,-2x+4y). (valor: 4,0 pontos)

12.1.2 Questão 2

O número de ouro é conhecido há mais de dois mil anos, sendo encontrado nas artes, nas pirâmides do Egito e na natureza. Para construir o número de ouro

apenas com o auxílio de uma régua não graduada e de um compasso, utilizase o seguinte procedimento: dado um segmento AB qualquer, marca-se o seu ponto médio; constrói-se o segmento BC perpendicular a AB e com a metade do comprimento de AB; marca-se o ponto E sobre a hipotenusa do triângulo ABC, tal que \overline{EC} e \overline{BC} sejam iguais; e determina-se o ponto D no segmento AB tal que \overline{AD} e \overline{AE} sejam iguais. Com esse procedimento, o ponto D divide o segmento AB na razão áurea.

A partir da construção geométrica do número de ouro e considerando x como o comprimento do segmento AB, faça o que se pede nos itens a seguir, apresentando os cálculos utilizados na sua resolução.

- (a) Determine o comprimento do segmento AC em função de x. (valor: 4,0 pontos)
- (b) Determine o comprimento do segmento AD em função de x. (valor: 4,0 pontos)
- (c) Determine o número de ouro dado pelo quociente $\frac{\overline{AB}}{\overline{AD}}$. (valor: 2,0 pontos)

12.1.3 Questão 3

A Torre de Hanói foi inventada por Edouard Lucas em 1883. Há uma história sobre a Torre, imaginada pelo próprio Lucas:

No começo dos tempos, Deus criou a Torre de Brahma, que contém três pinos de diamante e colocou no primeiro pino 64 discos de ouro maciço. Deus, então, chamou seus sacerdotes e ordenou-lhes que transferissem todos os discos para o terceiro pino, segundo certas regras. Os sacerdotes, então, obedeceram e comçaram o seu trabalho, dia e noite. Quando eles terminassem, a torre de Brahma iria ruir e o mundo acabaria.

Esse é um dos quebra-cabeças matemáticos mais populares, que consiste de n discos com um furo em seu centro e de tamanhos diferentes e de uma base com três pinos na posição vertical onde são colocados os discos. O jogo mais simples é constituido de três pinos mas e quantidade pode variar, deixando o jogo mais difícil à medida que o número de discos aumenta. Os discos formam

uma torre onde todos são colocados em um dos pinos em ordem decrescente de tamanho. O objetivo do quebra-cabeça é transferir toda a torre de discos para um dos outros pinos, que estão inicialmente vazios, de modo que cada movimento é feito somente com um disco, nunca havendo um disco maior sobre um disco menor, como mostra a figura acima.

Considerando uma torre de Hanói de 3 pinos, faça o que se pede nos itens a seguir.

- (a) Ao planejar uma aula de matemática utilizando-se a Torre de Hanói, quais seriam os objetivos a serem alcançados de acordo com os Parâmetros Curriculares Nacionais e o que se espera com o uso de jogos no processo de ensino-aprendizagem? (valor: 3,0 pontos)
- (b) Cite três conceitos matemáticos de Educação Básica que podem ser explorados em sala de aula utilizando-se a Torre de Hanói? (valor: 3,0 pontos)
- (c) Obtenha uma fórmula para o número mínimo de movimentos necessários para resolver a Torre de Hanói com discos. Justifique a sua resposta. (valor: 4,0 pontos)

12.1.4 Questão 4

Atualmente, a maioria dos editores de texto oferece o recurso de correção ortográfica. Esse recurso consiste em destacas, entre as palavras digitadas, aquelas com possíveis erros de grafia. Por exemplo, quando se digita a palavra "caza", o recurso de correção destaca essa palavra, pois a palavra "caza" não existe na língua portuguesa. Também é comum o recurso de correção ortográfica sugerir uma outra palavra para substituir a palavra incorreta.

A sugestão de quais palavras podem substituir a palavra incorreta é feita com uma medida da distância entre a palavra incorreta e as palavras que constam no dicionário do editor de texto. Existem diversas maneiras de medir a distância entre duas palavras. Uma delas é a denominada Distância de Hamming, na qual a medida da distância entre duas palavras x e y, em suas respectivas posições. Mais formalmente, se $x = x_1x_2x_3\dots x_n$ e $y = y_1y_2y_3\dots y_n$ são palavras em que x_i e y_i são letras do alfabeto, para $i = 1, 2, 3, \dots, n$, então $d(x, y) = \#(\{i : x_i \neq y_i, \text{ com } i = 1, 2, 3, \dots n\})$, em que $\#(\{3\}) = 1$, já que elas diferem apenas na terceira letra.

A partir dessas informações, faça o que se pede nos itens a seguir.

- (a) Mostre que a Distância de Hamming é uma métrica no conjunto das palavras com letras. (valor: 5,0 pontos)
- (b) Mostre que o conjunto das palavras com letras, munido da Distância de Hamming, é um espaço métrico discreto. (valor: 5,0 pontos)

12.1.5 Questão 5

Uma equação diofantina linear nas incógnitas x e y é uma equação da forma ax + by = c, em que a, b e c são inteiros, e as únicas soluções (x_0, y_0) que interessam são aquelas em que $x_0, y_0 \in \mathbb{Z}$.

Nesse contexto, considere que os ingressos de um cinema custam R\$ 9,00 para estudantes e R\$ 15,00 para o público geral, e que, em certo dia, durante determinado período, a arrecadação nas bilheterias desse cinema foi R\$ 246,00.

A partir das informações acima, faça o que se pede nos itens a seguir.

- (a) Obtenha ema equação diofantina linear que modele a situação acima, indicando o significado das incógnitas. (valor: 3,0 pontos)
- (b) Quantas e quais são as soluções do problema descrito no item (a)? (valor: 7,0 pontos)

12.2 Soluções