Deliberation Networks: Sequence Generation Beyond One-Pass Decoding

Yingce Xia₁, Fei Tian₂, Lijun Wu₃, Jianxin Lin₁, Tao Qin₂, Nenghai Yu₁, Tie-Yan Liu₂

1University of Science and Technology of China, Hefei, China

2Microsoft Research, Beijing, China

3Sun Yat-sen University, Guangzhou, China

Speaker: AntNLP-Chenrui Li

Outline

- 1.Introduction
- 2. Motivation
- 3.Framewrok
- 4.Application
- 5.Conclusion

Introduction

Standard Encoder-Decoder Model

Decoder

Task: NMT, Dialog System, Question Generation, Summarization Generation...

Motivation

reading behavior

writing behavior

looking forward

looking forward and back

Deliberation: leveraging the global information with both looking forward and back in sequence decoding.

Framework

Deliberation Network

Encoder

$$h_i = RNN(x_i, h_{i-1})$$

First-Pass Decoder

$$egin{aligned} \hat{s}_j &= RNN([\hat{y}_{j-1}; ctx_e], \hat{s}_{j-1}) \ ctx_e &= \sum_{i=1}^{T_x} lpha_i h_i \ lpha_i &\propto exp(v_lpha^T tanh(W_{att,h}^c h_i + W_{att,\hat{s}}^c \hat{s}_{j-1})) \quad orall i \in [T_x] \ P &= sofmtmax(Linear([\hat{s}_j; cte_x; y_{j-1}])) \ \hat{y}_j \ ext{is sampled out from } P \end{aligned}$$

Second-Pass Decoder

$$egin{aligned} s_t &= RNN([y_{t-1};ctx_e^{'};ctx_c],s_{t-1})\ ctx_c &= \sum_{j=1}^{T_{\hat{y}}}eta_j[\hat{s}_j;\hat{y}_j]\ eta_j &\propto exp(v_{eta}^Ttanh(W_{att,\hat{sy}}^d[\hat{s}_j;\hat{y}_j]+W_{att,s}^ds_{t-1})) \quad orall j \in [T_{\hat{y}}]\ P_2 &= softmax(Linear([s_t;ctx_e^{'};ctx_c;y_{t-1}]))\ y_t ext{ is sampled out from } P_2 \end{aligned}$$

Algorithm

$$\begin{split} & maximize \frac{1}{n} \sum \mathcal{J}(x,y;\theta_{e},\theta_{1};\theta_{2}) \\ & \mathcal{J}(x,y;\theta_{e},\theta_{1},\theta_{2}) = \log \sum_{y' \in \mathcal{Y}} P(y|y',E(x;\theta_{e});\theta_{2}) P(y'|E(x;\theta_{e});\theta_{1}) \\ & \nabla_{\theta_{1}} \mathcal{J}(x,y;\theta_{e},\theta_{1},\theta_{2}) = \frac{\sum_{y' \in \mathcal{Y}} P(y|y',E(x;\theta_{e});\theta_{2}) \nabla_{\theta_{1}} P(y'|E(x;\theta_{e});\theta_{1})}{\sum_{y' \in \mathcal{Y}} P(y|y',E(x;\theta_{e});\theta_{2}) P(y'|E(x;\theta_{e});\theta_{1})}, \end{split}$$

According to Jensen's inequality: f(E[x]) > E[f(x)], concavity

$$\tilde{\mathcal{J}}(x, y; \theta_e, \theta_1, \theta_2) = \sum_{y' \in \mathcal{Y}} P(y'|E(x; \theta_e); \theta_1) \log P(y|y', E(x; \theta_e); \theta_2)$$

$$\mathcal{J}(x, y; \theta_e, \theta_1, \theta_2) \ge \tilde{\mathcal{J}}(x, y; \theta_e, \theta_1, \theta_2)$$

Denote $\tilde{\mathcal{J}}(x, y; \theta_e, \theta_1, \theta_2)$ as \tilde{J} . The gradients of \tilde{J} w.r.t its parameters are:

$$\nabla_{\theta_1} \tilde{\mathcal{J}} = \sum_{y' \in \mathcal{Y}} P(y'|E(x;\theta_e);\theta_1) \underbrace{\log P(y|y',E(x;\theta_e);\theta_2) \nabla_{\theta_1} \log P(y'|E(x;\theta_e);\theta_1)}_{G_1};$$

$$\nabla_{\theta_2} \tilde{\mathcal{J}} = \sum_{y' \in \mathcal{Y}} P(y'|E(x;\theta_e);\theta_1) \underbrace{\nabla_{\theta_2} \log P(y|y',E(x;\theta_e);\theta_2)}_{G_2};$$

$$\nabla_{\theta_e} \tilde{\mathcal{J}} = \sum_{y' \in \mathcal{V}} P(y'|E(x;\theta_e);\theta_1) G_e(x,y,y';\theta_e,\theta_1,\theta_2)$$
, where G_e is defined as follows:

$$G_e = \nabla_{\theta_e} \log P(y|y', E(x; \theta_e); \theta_2) + \log P(y|y', E(x; \theta_e); \theta_2) \nabla_{\theta_e} \log P(y'|E(x; \theta_e); \theta_1)$$

Application

NMT

Shallowd Models

setting:(1)encoder,decoders are all GRU with one hidden layer (2)deliberation's encoder and decoder are initialized by the pretrained NMT model.

Table 1: BLEU scores of En→Fr translation

Algorithm	$\mathcal{M}_{\mathrm{base}}$	$\mathcal{M}_{ ext{dec} imes 2}$	$\mathcal{M}_{\text{reviewer} \times 4}$	$\mathcal{M}_{ ext{delib}}$
BLEU	29.97	30.40	30.76	31.67

dataset: WMT'14

Table 2: BLEU scores of Zh→En translation

Algorithm	NIST04	NIST05	NIST06	NIST08
$\mathcal{M}_{ ext{base}}$	34.96	34.57	32.74	26.21
$\mathcal{M}_{ ext{delib}}$	36.90	35.57	33.90	27.13

training set: LDC

validation set: NIST2003

test set: NIST2004, NIST2005, NIST2006, NIST2008

Deep Model

setting: encoder, decoders are all 4-layer LSTMs with residual connections.

Table 4: Comparison between deliberation network and different deep NMT systems (En→Fr).

System	Configurations	BLEU
GNMT [31]	Stacked LSTM (8-layer encoder + 8 layer decoder) + RL finetune	39.92
FairSeq [4]	Convolution (15-layer) encoder and (15-layer) decoder	40.51
Transformer [26]	Self-Attention + 6-layer encoder + 6-layer decoder	41.0
	Stack LSTM (4-layer encoder and 4-layer decoder)	39.51
this work	Stack 4-layer NMT + Dual Learning	40.53
	Stack 4-layer NMT + Dual Learning + Deliberation Network	41.50

Dual Learning

Instance Analysis

[Source] Aiji shuo, zhongdong heping xieyi yuqi jiang you yige xinde jiagou.

[Reference] Egypt says a new framework is expected to come into being for the Middle East peace agreement.

[Base] egypt 's middle east peace agreement is expected to have a new framework, he said.

[First-pass] egypt 's middle east peace agreement is expected to have a new framework, egypt said.

[Second-pass] egypt says the middle east peace agreement is expected to have a new framework.

[Source] Nuowei dashiguan zhichu, "shuangfang jiang taolun ruhe gaijin luoshi tinghuo xieyi, zhe yeshi san nian lai shuangfang shouci zai ruci gao de cengji shang jinxing mianduimian tanpan" [Reference] The Norwegian embassy pointed out that, "Both sides will discuss how to improve the implementation of the cease-fire agreement, which is the first time for both sides to have face-to-face negotiations at such a high level."

[Base] ", which is the first time for the two countries to conduct face-to-face talks on the basis of a high level of three years, " it said.

[First-pass] ", which is the first time for the two countries to conduct face-to-face talks on the basis of a high level of three years," the norwegian embassy said in a statement.

[Second-pass] ", which is the first time in three years for the two countries to conduct face-to-face talks at such high level, " the norwegian embassy said.

Text Summarization

Table 5: ROUGE-{1, 2, L} scores of text summarization

Algorithm	ROUGE-1	ROUGE-2	ROUGE-L
$\mathcal{M}_{ ext{base}}$	27.45	10.51	26.07
$\mathcal{M}_{\mathrm{dec} imes 2}$	27.93	11.09	26.50
$\mathcal{M}_{\text{reviewer} \times 4}$	28.26	11.25	27.28
$\mathcal{M}_{ ext{delib}}$	30.90	12.21	29.09

dataset: Gigaword Corpus

Conclusion

This work proposed deliberation networks with a second-pass decoder.