1. Calculate the mean molecular weight for a pure hydrogen/helium mixture with X = 0.4, assuming the hydrogen and helium are both 50% ionized (i.e., $\mathcal{N}_i = 0.5 \times \mathbb{Z}_i$, where \mathcal{N}_i and \mathbb{Z}_i are defined in Handout 15).

Consider a sample of mass m. The mass of hydrogen in this sample is Xm = 0.4 m, and the mass of helium is therefore 0.6 m. The number of hydrogen atoms in the sample is $0.4 m/m_{\rm H}$, and the number of helium atoms is $0.6 m/4m_{\rm H} = 0.15 m/m_{\rm H}$ (assuming the mass of a helium atom is $\approx 4 m_{\rm H}$); hence, the total number of nuclei in the sample is $0.55 m/m_{\rm H}$.

At 50% ionization, each hydrogen atom is associated with half a free electron; and each helium atom is associated with one free electron. Hence, the total number of free electrons in the sample is $0.35 \, m/m_{\rm H}$.

Now counting nuclei and free electrons together, there are $0.9 \, m/m_{\rm H}$ particles in total. The mean mass per particle is therefore $0.9^{-1} m_{\rm H} = 1.11 \, m_{\rm H}$, and so the mean molecular weight is $\mu = 1.11$.

2. By combining equations [6.4] and [6.8], derive the dependence of temperature T on pressure P for an ideal gas undergoing an adiabatic change. Use this expression to prove equation [13.7].

Equation [6.4] gives the equation of state for an ideal gas,

$$P = \frac{\rho k_{\rm B} T}{\mu m_{\rm H}},$$

while equation [6.8] gives the relationship that holds between pressure and density during an adiabatic change,

$$P = K_{\rm ad} \rho^{\gamma}$$
.

Rewriting the EOS as

$$\rho = \frac{P\mu m_{\rm H}}{k_{\rm B}T},$$

and using this to eliminate ρ from the adiabatic relationship, leads to

$$P = K_{\rm ad} \left(\frac{P \mu m_{\rm H}}{k_{\rm B} T} \right)^{\gamma}$$
.

This can be rearranged to give the temperature as a function of pressure for an ideal gas undergoing an adiabatic change,

$$T = \frac{\mu m_{\rm H}}{k_{\rm B}} K_{\rm ad}^{1/\gamma} P^{(\gamma-1)/\gamma}.$$

Taking the natural log of this expression,

$$\ln T = \frac{\gamma - 1}{\gamma} \ln P + \frac{1}{\gamma} \ln K_{\text{ad}} + \ln \left(\frac{\mu m_{\text{H}}}{k_{\text{B}}}\right).$$

Differentiating with respect to ln *P* then leads to

$$\frac{\mathrm{dln}\,T}{\mathrm{dln}\,P} = \frac{\gamma - 1}{\gamma}.$$

4 points, with partial credit for progress toward the answer. (There are a number of different ways to approach the problem).

Since this only applies to adiabatic changes, it's more correctly written as

$$\left(\frac{\partial \ln T}{\partial \ln P}\right)_{ad} \equiv \nabla_{ad} = \frac{\gamma - 1}{\gamma},$$

which proves eqn. [13.7].

- 3. Consider a location within a star where the interior mass and luminosity are given by $m=0.3\,M_\odot$ and $\ell=5\,L_\odot$, respectively; the pressure and temperature are $P=10^{17}\,\mathrm{Ba}$ and $T=10^7\,\mathrm{K}$, respectively; and the opacity is $\kappa=1\,\mathrm{cm}^2\,\mathrm{g}^{-1}$.
 - Evaluate the radiative temperature gradient $\nabla_{\rm rad}$.
 - Assuming the stellar material behaves as an ideal gas with $\gamma=1.4$, evaluate the adiabatic temperature gradient $\nabla_{\rm ad}$.
 - By applying the algorithm given in Handout 14, explain why convection will occur at this location.
 - Assuming a convective efficiency $\varphi_{\text{conv}} = 0.5$, evaluate the dimensionless temperature gradient ∇_T at the location.
 - Evaluate the convective (ℓ_{conv}) and radiative (ℓ_{rad}) interior luminosities, in L_{\odot} .
 - The radiative temperature gradient ∇_{rad} is given by eqn. [12.7] as

$$\nabla_{\text{rad}} = \frac{3}{16\pi acG} \frac{\kappa \ell P}{mT^4}$$

Plugging in the supplied values gives $\nabla_{\rm rad} = 1.27$.

- Using equation [13.7] with $\gamma = 1.4$, we obtain $\nabla_{ad} = 0.4/1.4 = 0.286$.
- Convection will occur at this location because $\nabla_{\rm rad} > \nabla_{\rm ad}$.
- With a convective efficiency $\varphi_{\rm conv} = 0.5$, we can apply eqn. [14.1] to obtain $\nabla_T = 0.778$
- Using eqn. [14.2], the convective luminosity evaluates to $\ell_{conv} = 0.388 \ \ell = 1.94 \ L_{\odot}$, while the radiative luminosity evaluates to $\ell_{rad} = 0.621 \ \ell = 3.06 \ L_{\odot}$.
- 4. The central temperature and density of ZAMS stars can be approximated over the stellar mass interval $0.1\,\mathrm{M}_\odot \lesssim M \lesssim 30\,\mathrm{M}_\odot$ by the fits

$$\log (T_{\rm c}/{\rm K}) \approx 7.10 + 0.38 (M/{\rm M}_{\odot}),$$

 $\log (\rho_{\rm c}/{\rm g \, cm^{-3}}) \approx 1.77 - 0.77 (M/{\rm M}_{\odot}).$

Derive corresponding expressions for the gas pressure $P_{\rm gas} \equiv P_{\rm ion} + P_{\rm e}$ (assuming an ideal gas with $\mu \approx 0.62$) and the radiation pressure $P_{\rm rad}$ at the center. At what stellar mass does radiation pressure begin to exceed gas pressure?

Assuming an ideal gas, the equation of state governing the gas pressure is

$$P_{\rm gas} = \frac{\rho k_{\rm B} T}{\mu m_{\rm H}}.$$

3 points for deriving dependence of T on P, **1 point** for using it to prove equation [13.7].

2 points for ∇_{rad} , **1 point** for ∇_{ad} , **1 point** for explaining why convection will occur, **1 point** for ∇_T , **2 points** for interior luminosities.

2 points for determining an expression for $P_{\text{gas,c}}$ as a function of stellar mass, **2 points** likewise for $P_{\text{rad,c}}$, **1 point** for finding stellar mass where $P_{\text{rad,c}} > P_{\text{gas,c}}$.

Taking the log of this expression, we obtain

$$\log\left(\frac{P_{\rm gas}}{\rm Ba}\right) = \log\left(\frac{\rho}{\rm g\,cm^{-3}}\right) + \log\left(\frac{T}{\rm K}\right) + \log\left(\frac{k_{\rm B}}{\mu m_{\rm H}} \frac{\rm K\,g\,cm^{-3}}{\rm Ba}\right).$$

Evaluating this expression at the center, and using the given approximations for T_c and ρ_c , this becomes

$$\log\left(\frac{P_{\rm gas,c}}{{
m Ba}}\right) \approx 16.99 - 0.39\left(\frac{M}{{
m M}_{\odot}}\right).$$

For the radiation pressure, the equation of state is

$$P_{\rm rad} = \frac{aT^4}{3}$$
.

Following the same procedure as with $P_{\rm gas}$, the resulting expression for the central value is

$$\log\left(\frac{P_{\rm rad,c}}{\rm Ba}\right) \approx 13.80 + 1.52\left(\frac{M}{\rm M_{\odot}}\right).$$

The different slopes of these relations mean that $P_{\rm rad}$ will exceed $P_{\rm gas}$ at large masses. To find the mass where it first begins to exceed, we can set the two pressures equal:

$$16.99 - 0.39 \left(\frac{M}{\rm M_{\odot}}\right) \approx 13.80 + 1.52 \left(\frac{M}{\rm M_{\odot}}\right).$$

Solving for the mass,

$$\frac{M}{\mathrm{M}_{\odot}} \approx 1.67.$$

Note: I made a mistake when writing this question — the (M/M_{\odot}) terms should have been $\log(M/\mathrm{M}_{\odot})$. With this error corrected, the switch-over mass is much higher, at $M \approx 10^{1.67} M_{\odot} = 46.8 \, \mathrm{M}_{\odot}$.

5. For a free electron gas in the completely degenerate limit, use your knowledge of the momentum distribution function $f_{\rm e}(p)$ to determine what fraction of the electrons have momenta less than half of the Fermi momentum $p_{\rm F}$, and what fraction have momenta more than double the Fermi momentum.

In the completely degenerate limit, the momentum distribution function for free electrons is

$$f_{\rm e}(p) = egin{cases} rac{8\pi p^2}{h^3} & p < p_{
m F}, \\ 0 & p > p_{
m F}. \end{cases}$$

where $p_{\rm F}$ is the Fermi momentum (see eqn. [16.8]). The number density of electrons with a momentum less than half $p_{\rm F}$ is

$$n(p < p_{\rm F}/2) = \int_0^{p_{\rm F}/2} f_{\rm e}(p) \, dp = \left[\frac{8\pi p^3}{3h^3} \right]_0^{p_{\rm F}/2} = \frac{\pi p_{\rm F}^3}{3h^3};$$

1 point for writing down momentum distribution function for degenerate limit, **2 points** for fraction less than half p_F , **1 point** for fraction greater than $2p_F$.

while the number density of all electrons is

$$n = \int_0^\infty f_{\rm e}(p) \, dp = \left[\frac{8\pi p^3}{3h^3} \right]_0^{p_{\rm F}} = \frac{8\pi p_{\rm F}^3}{3h^3}.$$

Therefore, the fraction of electrons with $p < p_F/2$ is 1/8.

Similarly, the number of electrons with momentum more than double $p_{\rm F}$ is

$$n(p > 2p_{\rm F}) = \int_{2p_{\rm F}}^{\infty} f_{\rm e}(p) \, dp = [0]_{2p_{\rm F}}^{\infty} = 0;$$

thus, the fraction of electrons with $p > 2p_{\rm F}$ is zero (this is because, in the completely degenerate limit, there are no electrons with momentum above $p_{\rm F}$).