Total No. of Questions : 8]	SEAT No. :
P2560	[Total No. of Pages : 2

M. E. (VLSI and Embedded Systems) (Semester - I) Digital CMOS Design (2013 Pattern)

Time: 3 Hours [Max. Marks: 50]
Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume Suitable data if necessary.
- Q1) a) Draw cross section of CMOS Inverter layout. Also draw metal, poly silicon connection diagram as top view. Show all the dimensions in terms of λ .
 - b) With the help of model of MOSFET, explore different capacitors. Give the expressions for capacitors in various regions. Which are the dominant capacitors and in which region are they developed? [5]
- Q2) a) What are the types of technology scaling? What are merits and constraints? Explain in brief. [5]
 - b) What are wiring parasitics? Explore each in detail. How to minimize these? [5]
- Q3) a) Certain logic has 40 MOSFETs and each has leakage of 1 pA. If the logic operates at 2.5V, 1 GHz with load of 10 pF; compute total power dissipation.[4]
 - b) With the help of suitable schematic, explain RC delay model. [4]
 - c) What is short circuit dissipation? How to minimize it? [2]

Q4)	a)	Derive the expression for Power delay product. What is the significa of PDP?	nce [4]
	b)	What is need of logical efforts? Explain with suitable example.	[4]
	c)	Explain in brief delay in multistage logic networks.	[2]
Q5)	a)	Explore voltage transfer characteristics of CMOS inverter. Give expression for propagation delay.	the [4]
	b)	Design CMOS logic for $Y = ABC + DE + FGHI$. Compute active a on chip.	area [4]
	c)	What are the merits and demerits of transmission gate?	[2]
Q6)	a)	With suitable schematic, explain D-latch using transmission gate.	[4]
	b)	Draw FSM diagram and write HDL code for 4 bit ring counter.	[4]
	c)	Why is CMOS NAND preferred over NOR gate?	[2]
Q7)	a)	Explain NORA logic with suitable example.	[4]
	b)	What is ratioed logic circuit? Why is it needed?	[4]
	c)	Draw and explain sense amplifier circuit.	[2]
Q8)	a)	Explore domino logic with appropriate example.	[4]
	b)	Write note on high speed designs.	[4]

• • •

[2]

c) List the materials used for performance improvement.