Three common mistakes in statistics and how to avoid them

Elizabeth Pankratz, 26 March 2025

Something you won't be able to unsee

Taking the means of discrete ratings is very common—but a little strange!

Why Likert scale ratings aren't continuous numeric

Numbers on a Likert scale are just labels.

The mistake and how you'll avoid it

The mistake

How you'll avoid it

A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

A foundational stats mistake: Modelling categorical, ordinal data as if it were numeric.

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

The data: Students' anxiety ratings for "Going to ask my statistics teacher for individual help with material I am having difficulty understanding".


```
slice(anx, 45:50)
## # A tibble: 6 × 3
    unique_id gender
                               rating
##
                                <dbl>
     <chr>
               <chr>
## 1 7d28c303 Female/Woman
## 2 7d55383a Another Gender
                                    4
## 3 8116550a
               Female/Woman
                                    1
## 4 83491ff9
               Female/Woman
                                    2
## 5 8450f8ad
               Male/Man
## 6 876547d6
               Female/Woman
```

rating looks like numbers, and R treats it like numbers, as dbl.

So it's tempting to manipulate it like numbers.

```
mean(anx$rating)
## [1] 2.868054
```

Remember: We are smarter than R is

Store categorical variables as factors.

```
anx <- anx |>
mutate(rating = factor(rating))
```

Now it's impossible to incorrectly treat them as if they're numeric!

```
mean(anx$rating)
## [1] NA
```

The mistake and how you'll avoid it

The mistake

A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

A foundational stats mistake: Modelling categorical, ordinal data as if it were numeric.

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

How you'll avoid it

When a variable comes from a Likert scale, tell R it's categorical using factor().

What ordinal regression models do

Fit ordinal regression models with polr()

```
library(MASS)  # MASS contains the polr() function

anx_fit1 <- polr(
  rating ~ 1,  # intercept-only model, to start
  data = anx,
  Hess = TRUE, method = 'probit' # ask me in the Q+A!
)</pre>
```

```
summary(anx_fit1)
## Intercepts:
##
       Value
                Std. Error t value
## 1|2
        -0.8420
                            -53.7268
                  0.0157
## 2|3
        -0.1678
                            -12.1462
                  0.0138
## 3|4
         0.3833
                  0.0141
                             27.1512
## 4|5
         1.0339
                   0.0168
                             61.6193
```


How does a student's gender affect ratings for "Going to ask my statistics teacher for individual help with material I am having difficulty understanding"?

Don't flip the page until after the activity!

The mistake and how you'll avoid it

The mistake

A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

A foundational stats mistake: Modelling categorical, ordinal data as if it were numeric.

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

How you'll avoid it

When a variable comes from a Likert scale, tell R it's categorical using factor().

Apply and interpret ordinal regression models (e.g., polr() from MASS).

Are the effects of gender significant?

No *p*-values in the model summary.

But it's common practice to compare these t-values to a standard normal distribution.

Why don't significant p-values mean an effect exists?

Because we can also get significant p-values when there really is no effect.

No difference in the true population:

A possible random sample (n = 50 per group):

Coefficients:
Value Std. Error t value
groupGroup B -0.4479 0.2229 -2.009

So p is significant, but in the true population, Group A and Group B were identical!

The mistake and how you'll avoid it

The mistake	How you'll avoid it
A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.	When a variable comes from a Likert scale, tell R it's categorical using factor().
A foundational stats mistake: Modelling categorical, ordinal data as if it were numeric.	Apply and interpret ordinal regression models (e.g., polr() from MASS).
A foundational stats mistake: Interpreting a significant <i>p</i> -value as evidence that an effect exists in the real world.	Understand that significant <i>p</i> -values can arise even if no effect exists in the real world.

Some really nice resources

- Jamieson's (2004) paper Likert scales: How to (ab)use them.
- UCLA Statistical Methods and Data Analytics's web page Ordinal Logistic Regression.
- Kurz' (2021) blog post Notes on the Bayesian cumulative probit.
- Vasishth and Nicenboim's (2016) paper Statistical Methods for Linguistic Research: Foundational Ideas Part I.
- Gelman and Hill's (2007) book Data Analysis Using Regression and Multilevel/Hierarchical Models.

Plot on Slide 2 from

Reeder, P. A., Newport, E. L., & Aslin, R. N. (2017). Distributional learning of subcategories in an artificial grammar: Category generalization and subcategory restrictions. *Journal of Memory and Language*, 97, 17–29.

Data from

Terry, J., Ross, R. M., Nagy, T., Salgado, M., Garrido-Vásquez, P., Sarfo, J. O., Cooper, S., Buttner, A. C., Lima, T. J. S., Öztürk, İ., Akay, N., Santos, F. H., Artemenko, C., Copping, L. T., Elsherif, M. M., Milovanović, I., Cribbie, R. A., Drushlyak, M. G., Swainston, K., ... Field, A. P. (2023). Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset). *Journal of Open Psychology Data*, 11(1), 8.