The Normal Curve,
Standardization and z Scores

Chapter 6

Freakanomics!

• Go go go!

The Bell Curve is Born (1769)

De Moivre - Bernoulli - De Morgan

A Modern Normal Curve

Remember: unimodal, symmetric

Development of a Normal Curve: Sample of 5

Development of a Normal Curve: Sample of 30

Development of a Normal Curve: Sample of 140

Central Limit Theorem

- As the sample size increases, the shape of the distribution becomes more like the normal curve.
- Can you think of variables that might be normally distributed?
 - Think about it: Can nominal (categorical) variables be normally distributed?

- Let's say we wanted to compare our student scores on the old GRE (800 point scale) to the new GRE (170 point scale)
- Standardization: allows comparisons by creating a common shared distribution
 - Also allows us to create percentiles (p-values!)

- Normal curve = standardized
 - z distribution (draw it)
 - z scores
 - Comparing z scores
 - Percentiles are p values.
 - Different ways to think about p.

- Z-distribution normal distribution of standardized scores
- Also called standard normal distribution

- So what are z-scores?
 - Number of standard deviations away from the mean of a particular score
 - Can be positive or negative
 - Positive = above mean
 - Negative = below mean

$$z = \frac{(X - \mu)}{\sigma}$$

Tip! Make yourself a symbols chart!

The z Distribution

- Z-distribution
 - -Mean = 0
 - Standard deviation = 1

Examples

- Be sure you can do the following:
 - 1. Find a z score
 - 2. Find a raw score (x)
 - 3. Compare scores
 - 4. Find a percent above
 - 5. Find a percent below
 - 6. Find a percent between
 - 7. Given percent find a z
 - 8. Given percent find a raw score

Transforming Raw Scores to z Scores

- Step 1: Subtract the mean of the population from the raw score
- Step 2: Divide by the standard deviation of the population

$$z = \frac{(X - \mu)}{\sigma}$$

Transforming z Scores into Raw Scores

- Step 1: Multiply the z score by the standard deviation of the population
- Step 2: Add the mean of the population to this product

$$X = z\sigma + \mu$$

Using z Scores to Make Comparisons

 If you know your score on an exam, and a friend's score on an exam, you can convert to z scores to determine who did better and by how much.

 z scores are standardized, so they can be compared!

Comparing Apples and Oranges

 If we can standardize the raw scores on two different scales, converting both scores to z scores, we can then compare the scores directly.

Transforming z Scores into Percentiles

- z scores tell you where a value fits into a normal distribution.
- Based on the normal distribution, there are rules about where scores with a z value will fall, and how it will relate to a percentile rank.
- You can use the area under the normal curve to calculate percentiles for any score.

The Normal Curve and Percentages

Called the 34–14 rule

TABLE 7-1. Excerpt from the z Table

The z table provides the percentage of scores between the mean and a given z value. The full table includes positive z statistics from 0.00 to 4.50. The negative z statistics are not included because all we have to do is change the sign from positive to negative. The percentage between the mean and a positive z statistic is identical to the percentage between the mean and the negative version of that z statistic. Remember, the normal curve is symmetric: one side always mirrors the other.

Z	% Between Mean and z	
·		
0.97	33.40	
0.98	33.65	
0.99	33.89	
1.00	34.13	
1.01	34.38	
1.02	34.61	

Remember R

- Only the positive numbers are on the table
 - The z distribution is normal, so we don't need the negatives (it's symmetric).
- However, tables are dumb when we have a program that will calculate for us!

Sketching the Normal Curve

- The benefits of sketching the normal curve:
 - Stays clear in memory; minimizes errors
 - Practical reference
 - Condenses the information
 - Allows you to make sure the R information you are getting seems right.

R Curves

- To get a *p* value from a z score:
 - pnorm(z, lower.tail = F)
 - lower.tail depends on what you want (options are T or F)

Calculating the Percentage Above a Positive z Score

Example 4

Calculating the Percentile for a Positive z Score

Example 5

Calculating the Percentage Above a Negative z Score

Example 4

Calculating the Percentile for a Negative z Score

Example 5

Calculating the Percentage at Least as Extreme as Our z Score

Example 6 (ish)

R Curves

- To get a z score from a p value:
- qnorm(p, lower.tail = F)
 - lower.tail depends on what you want (options are T or F)

Calculating a Score from a Percentile

Example 7 and 8

Creating a Distribution of Scores

These distributions were obtained by drawing from the same population.

Creating a Distribution of Means

A severely skewed distribution of scores in a population

The Mathematical Magic of Large Samples

A less severely skewed distribution of means using samples of 2 from the same population

A normal distribution of means using samples of 25 from the same population

Distribution Bunnies!

https://youtu.be/jvoxEYmQHNM

The Central Limit Theorem

- Distribution of sample means is normally distributed even when the population from which it was drawn is not normal!
- A distribution of means is less variable than a distribution of individual scores.
 - (meaning SD is smaller, but we don't call it SD)

Most of statistics is based on making beer better. Which is why it's awesome!

Distribution of Means

- Mean of the distribution tends to be the mean of the population.
- Standard deviation of the distribution tends to be less than the standard deviation of the population.
 - The standard error: standard deviation of the distribution of means

$$\sigma_{M} = \frac{\sigma}{\sqrt{N}}$$

Using the Appropriate Measure of Spread

TABLE 6-2. PARAMETERS FOR DISTRIBUTIONS OF SCORES VERSUS MEANS

When we determine the parameters of a distribution, we must consider whether the distribution is composed of means or scores.

DISTRIBUTION	SYMBOL FOR MEAN	SYMBOL FOR SPREAD	NAME FOR SPREAD
Scores	μ	σ	Standard deviation
Means	μ_{M}	σ_{M}	Standard error

Z statistic for Distribution of Means

- When you use a distribution of means, you tweak how you calculate z!
- Calculation of percentages stays the same.

$$z = M - \mu M$$
 σM

The Normal Curve and Catching Cheaters

>This pattern is an indication that researchers might be manipulating their analyses to push their z statistics beyond the cutoffs.

