METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 1 of 11

Gene	11			12			. 22			F-ratio	u	Gene score
	Z	Mean	SD	Z	Mean	S	z	Mean	SD) .	
Dopamine genes										·		
City Optimized Optimized	99	20.10	10.2	164	17.58	1.1	33	18.30	10.9	0.848	0.43	201 201
UKUZ SNP 199 IA Lit Optimized	5	15.93	10.3	120	19.30	10.2	5	17.51	4.1	1.560	0.21	020 021
Drubs one made Lit Optimized	152	17.68	11.2	157	18.34	11.0	27	19.16	9.6	0.495	0.63	202 002
UKD4 1 46 bp repeal Lit Optimized	26	19.00	10.9	162	17.98	10.5	118	17.86	11.6	0.223	080	005 200
DANS - unitable oute repeat Lit Optimized	74	18.63	11.4	k- -	19.15	11.3	151	17.38	10.6	0.881	0.41	220 120
UA/1 v repeat Lit Optimized	21	15.33	12.4	142	17.41	10.9	173	19.07	10.8	1.619	0.20	012 012
Serotonin genes HTT ⁴ (SLC6A4) promoter ins/del												
Optimized Optimized HTP1A SND C 1918C	35	16.20	10.9	129	19.11	10.9	91	18.28	11.3	1.953	0.14	022 021
In the Surf C-1910G Ind Optimized	82	19.00	10.61	177	17.31	11.4	11	19.89	10.1	1.683	610	022 102

Hard the first poor the first poor the first poor poor the first p

Hard Hard Start and

FIG. 1A-1

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 2 of 11

						5				n rofio		Cono coora
Gene	E Z	Mean	<u>S</u>	ZZ	Mean	SI VIZ	Mean	an SD	•	7-1 8 0	2.	Gelle solle
HTR1B (HTR1DB) SNP G861C		:										CUU
Lit Optimized	202	18.49	10.9	107	17.30	1.1	27	19.00	11.5	0.496	0.61	102
HTR1DA SNP T1350C Ind		10	<u> </u>	92	10 24	0 7	Ŋ			0.641	0.43	02-
Optimized HTR2A SNP T102C Mspl	007	<u>0</u> <u>0</u>		2	5. 5.	6.6	Pi	I	ı	- - - -	2	013
Lit Optimized	28	17.88	11.2	172	18.59	11.0	106	17.61	11.0	0.279	92.0	020
7D02 SNP G-> A Int 6Bs/l							ı					02-
Optimized	315	17.98	11.0	17	20.65	10.4	ا	ı	1	0.951	0.33	02-
Lit				Ċ	1	:	;	9	;	L C C	6	005
Optimized Noraninanhrina genes	6	19.00	10.4	8	17.73	10.8	99	19.28	11.5	0./05	0.485	707
DBH SNP Taq l												000
][[]	67	18 84	101	168	18 78	11	101	16.69	133	1.285	0.28	550 250
ADRAZA SNP promoter region Mspl		200	2	2	2	-	•		•			6,50
pul		7 40	7	00,	0 0	40.5	23	24 05	117	9	0.14	012 013
Optimized ADR42R del/ins	<u>8</u>	17.42	=	<u> </u>	0.0 0	0.0	7	CE:17	=	<u> </u>	<u>+</u>	7
bul						,	,	1	•		Č	102
Optimized	155	18.14	11.5	128	18.46	10.6	23	19.73	9.6	0.215	0.81	700
ADRA2C of dinucleotide repeat												202
Optimized	131	18.77	10.5	113	15.79	11.0	35	20.17	11.2	4,45	0.012	102
-				L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< <						

FIG. 1A-2

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 3 of 11

Gene	=			13			23			F-ratio	a	Gene score
	Z	Mean	S	Z	Mean SD	န	z	Mean	S		_	
NET (SLC6A2) SNP A1970G Mnil								:				130
Optimized	155	17.82	11.2	144	19.04	10.6	38	16.6	11.3	0.914	0.402	120
FWM1 SNP G-148A												012
Optimized	110	16.89	#	156	19.59	10.9	99	17.58	10.9	2.05	0.129	021
COM1 SNP val 158 met, G1947A, MallI Ind												210
Optimized	72	19.42	10.8	175	18.52	11.0	98	16.52	10.8	1.55	0.212	210
							أ					

Lit, references for literature-based gene scoring; Ind, gene scoring based on our studies of an independent set of subjects; SNP, single nucleotide polymorphism. 1DRD4: 11=any<4; 12=4/4; 22=any>4. 22=any>4. 22=any>4. 22=any>4. 22=any>4. 48/148; 12=het; 22=non 148/non 148. 3DAT1: 11=non 10/non 10; 12= 10/non 10; 22=10/10. 4HTT: 11=SS; 12=SL; 22=LL.

5HTR1DA, TDO2 since there were only 2 22s, they were combined with the 12s. 6ADRA2C:11= <183/<183; 12=het; 22=183/183

FIG. 1A-3

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 4 of 11

Gene	9	11 6 Mean	S.D.	% Me	1 <u>2</u> ean S.E	õ.	% М	22 ean S.D.		F-ratio	p	Gene Score
Other N	<u>leurotra</u>	ansmitter	Genes									
HTR6 S	SNP (S	hinkai et	al. 1998)									
ADHD	2.8	12.33	9.7	27.1	18.26	10.3	70.0	18.66	11.2	1.44	.23	012
ODD		3.0	2.3		3.91	3.1		3.64	3.2	.44	.64	021
CD		2.11	1.5		3.65	2.6		3.17	2.6	2.05	.13	022
GABRE	33 dinu	cleotide r	epeat (M	utiranç	gura et a	al. 199)2)a					
ADHD	38.0	18.99	10.8	47.9	17.48	11.1	14.1	19.69	10.9	1.05	.35	102
ODD		3.57	3.1		3.55	3.2		4.47	3.1	1.67	.18	002
CD		3.01	2.2		2.97	2.4		2.91	2.4	.089	.91	200
GABBR	21 dinuc	cleotide r	epeat (un	publis	shed)b							
ADHD	9.5	17.5	11.7	27.0	19.1	11.7	63.5	18.2	10.5	.28	.752	020
ODD		3.54	3.7		3.66	3.1		3.72	3.1	.047	.953	012
CD		3.45	2.6		2.72	2.2		3.02	2.4	1.24	.291	201
CNR1 (Cannal	oinoid 1 r	eceptor)	(Daws	on 199	5)C						
ADHD	10.6	19.35	10.9	44.7	18.25	11.0	44.7	18.13	10.9	.174	.83	200
ODD		4.67	3.1		3.54	3.1		3.56	3.2	1.89	.15	200
CD		3.09	2.2		2.90	2.3		3.03	2.4	.146	.86	202
CHRNA	4 (Cho	linergic, ı	nicotinic,	alpha	4) (Wei	land, S	Steinleir	1996) ^d				
ADHD	8.0	22.19	9.2 3	6.2	18.90	10.8	55.8	17.19	11.2	2.35	.096	210
ODD		5.07	3.0		3.59	3.0		3.55	3.2	2.74	.065	200
CD		3.11	2.1		2.93	2.3		2.99	2.4	.071	.930	200

FIG. 1B-1

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 5 of 11

NMDAR1	(Rupp	et al. 1	997) Hpa II :	SNP							
ADHD	44.2	17.31	10.7 45.7	19.31	11.0	10.1	18.56	11.3	1.19	.303	021
ODD		3.79*	3.1	3.79*	3.1		4.84	3.1	2.93	.054	002
CD		2.83	2.3	3.07	2.3		3.28	2.7	.649	.523	012
ADORA2	4 (ader	nosine 2	A receptor)	(Deckei	rt et al.	1996) C	C 108 T R	sa I.			
ADHD	33.2	19.95	10.4 44.7	17.57	11.0	22.0	18.97	10.8	1.48	.229	201
ODD		4.04	3.3	3.41	3.1		4.02	3.1	1.52	.219	202
CD		3.39	2.5	2.82	2.1		2.83	2.4	2.04	.131	200
GRIN2B (glutam	ate iono	otropic, NMD	OA 2B re	ceptor) T/G (S	SNP datal	base V	VIAF-1	189).	
ADHD	20.9	17.94	10.6 52.3	19.35	10.6	26.8	18.10	11.1	.582	.559	021
ODD		3.03*	3.0	4.15	3.1		3.50	3.1	3.22	.041	021
CD		2.36*	2.0	3.28	2.4		2.98	2.3	3.59	.029	021
NOS3 (nit	ric oxic	le synth	ase 3) (War	ng et al.	1996)						
ADHD	67.5	18.50	10.9 25.0	18.60	10.6	7.5	17.12	11.6	.186	.830	220
ODD		3.72	3.1	3.87	3.3		3.29	3.1	.311	.733	120
CD		3.00	2.3	3.12	2.2		2.33	1.9	1.08	.339	120
Opoids											
PENK (pro	enkep	halin) (\	Weber, May	1990; C	Coming	s et al.	1999a) ^e				
ADHD	32.1	18.71	10.4 47.4	18.02	11.3	20.6	18.25	11.0	.053	.948	201
ODD		3.75	3.2	3.75	3.2		3.48	3.1	.255	.775	220
CD		3.03	2.4	3.00	2.4		2.92	2.2	.041	.959	220

FIG. 1B-2

<i>MME</i> (enk	ephalin	ase) (se	e Meth	nods) ^f .								
ADHD	33.9	19.44	11.0	50.9	17.34	10.9	15.2	19.53	10.9	1.26	.284	202
ODD		3.98	3.2	25	3.44	3.1		3.95	3.0	1.00	.369	202
CD		3.10	2.4		2.81	2.3		3.32	2.4	1.08	.340	202
ANPEP (ai	minope	ptidase	N) (Wa	att, Will	ard 199	0) and	see Me	ethods, /	A 257 (3		
ADHD	27.7	•	, ,		18.37	•	20.8	17.60		.398	.672	210
ODD		3.65	3.1		3.95			3.30	3.2	.945	.389	120
CD		3.12	2.4		3.05	2.4		2.42	2.0	1.96	.142	210
NAT1 (N-a	cetyl tra	ansferas	e) T 1	088 A (Dietz et	al. 199	97; Com	ings et	al. 200	10)		
ADHD	5.7	21.50	9.5	34.7	19.00	11.2	59.6	17.86	10.8	1.11	.329	210
ODD		4.94	3.7		3.51	3.2		3.68	3.1	1.58	.207	200
CD		4.11	2.8		3.00	2.3		2.88	2.2	2.26	.106	210
Hormones	and ne	uropept	ides									
ESR1 (estr	ogen '	1 recept	tor) din	ucleoti	de repe	at (del	Senno	et al. 19	92; Co	mings (et al. 19	999).
ADHD	27.3	19.08	12.0	41.2	17.52	10.6	31.5	18.90	10.3	.673	.511	201
ODD		3.82	3.4		3.56	3.0		3.86	3.0	.293	.746	202
CD		3.26	2.6		2.53*	2.0		3.33	2.5	4.09	.017	202
CYP19 (are	omatas	e cytoch	rome	P - 450) dinucl	eotide	repeat	(Polvme	ropoul	os et al	. 1991b))g
ADHD '		16.88					-		·		.122	-
ODD		3.50			3.33			4.11		2.16	.116	102
CD		3.07			2.52*			3.37		4.61	.011	102
- -						_		 ,				

FIG. 1B-3

SHBP (se	ex horn	none bir	nding p	orotein)	(Xu,Li 1	998)						
ADHD	59.8	18.39	11.2	35.2	18.38	10.4	5.0	17.44	11.4	.057	.944	220
ODD		3.61	3.1		3.76	3.1		3.50	3.1	.108	.897	120
CD		2.85	2.3		3.11	2.3		3.06	1.8	.465	.628	021
CRH (cor	ticoste	rioid rele	easing	hormo	ne) (<i>Xn</i>	n I, G	enome	Databas	e)			
ADHD	89.8	18.25	11.1	8.6	18.78	8.8	1.5	25.00	7.9	1.189	.285	012
ODD		3.66	3.2		3.71	2.8		5.60	3.2	.972	.380	012
CD		2.96	2.4		3.10	2.1		3.80	3.3	.370	.691	012
OXTR (ox	ytocin	recepto	r) (Lia	o et al.	1996) s	ilent C	:->T in	exon 3				
ADHD	47.1	18.48	10.5	44.3	1 8.0	11.5	8.7	20.11	10.7	.431	.650	102
ODD		3.59	3.1		3.65	3.2		4.39	2.8	.776	.461	012
CD		2.77	2.3		3.14	2.3		3.14	2.4	1.06	.347	022
CCK C-45	5 T(Ishi	guro et	al. 199	99)								
ADHD	77.0	18.57	10.8	20.4	17.66	11.0	2.2	19.71	14.3	.227	.797	102
ODD		3.83	3.2		3.30	2.9		3.00	3.0	.909	.404	210
CD		3.04	2.4		2.71	2.2		3.14	2.3	.555	.574	102
INS (Hoba	an,Kels	ey 1991	l; Gad	e-Anda	avolu et	al. 199	9)					
ADHD	58.6	18.04	10.8	36.7	18.47	11.1	4.7	19.46	11.2	.147	.863	012
ODD		3.68	3.2		3.70	3.1		3.66	3.6	.0014	.998	120
CD		2.95	2.3		2.98	2.4		3.47	1.6	.334	.716	002
CD8 (Poly	merop	oulos et	al. 19	91a)h								
ADHD	23.2	17.5	11.3	44.3	18.54	10.9	32.5	18.42	10.9	.122	.885	021
ODD		3.31	3.2		4.09	3.2		3.44	3.0	1.95	.143	021
CD		2.53	2.1		3.27	2.5		2.92	2.1	2.44	.088	021

FIG. 1B-4

INFG (Wu, Comings 1998)

ADHD	21.8 18.22	10.9 58.3	18.17	10.9	27.9	18.82	10.8	.109	.896	102
ODD	3.78	2.97	3.69	3.2		3.60	3.2	.068	.934	210
CD	3.11	2.4	3.01	2.4		2.82	2.0	.333	.717	210

PSI (Scott et al. 1996)

ADHD	36.0 17.78	11.1	48.0	18.56	10.6	15.2	18.19	11.6	.215	.806	021
ODD	3.44	3.3		3.92	3.1		3.57	3.1	.828	.438	021
CD	2.59	2.1		3.18	2.4		3.30	2.5	2.68	.069	012

^{*}Significantly lower than highest value by tukey test at α = .05.

- a 11 = <188/<188, 12 = het. 22 = =188/=188
- b 11 = =10/=10, 12 = het. 22=>10/>10
- c 11 = <5/<5 12=het. 22 = =5/=5
- d 11 = =131/=131 12 = het. 22 = >131/>131
- e 11 = =178/=178 12 = het. 22 = >178/>178
- f 11 = a-c/a-c 12 = het. 22 = d-g/d-g
- 9 11 = <4/<4 12 = het. 22 = =4/=4

FIG. 1B-5

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 9 of 11

Trait	r	r ²	adjusted r ²	F	р	# genes
ADHD	.466	.217	.16	3.82	<.0001	22
ODD	.443	.196	.14	3.58	<.0001	20
CD	.451	.203	.15	3.94	<.0001	19

FIG. 2

FIG. 3A

FIG. 3B

FIG. 3C

David E. Comings METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION OF DEFICIT HYPERACTIVITY DISORDER Serial No. 09/825,922 Sheet 11 of 11

 \mathbf{Q}