Church-Turing These Een nieuw paradijs

Pieter van Engelen

Radboud Universiteit Nijmegen

03-06-2022; Fontys, Sittard

De tijd

De protagonisten

De situatie

Entscheidungsproblem Berekenbaarheidsmodellen De kracht van berekenbaarheid

De these

Voorbij de these

Hypercomputation Quantum computing

Radboud Universiteit Nijmegen

De These

Every effectively calculable function is computable

Church (1936), Turing (1937)

De protagonisten

Alonzo Church (1903 - 1995) Princeton University, USA

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus
- Eerste-orde predicaat-logica is onbeslisbaar
- Peano-arithmetiek is onbeslisbaar

De protagonisten

Alan Turing (1912 - 1954) Cambridge & Manchester

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker
- Marathonloper

De protagonisten

Stephen Kleene (1909-1994)

??? (1897 - 1954)

Das Entscheidungsproblem

Das Entscheidungsproblem

Vind een algoritme waarmee de waarheid van een uitspraak in de eerste orde predikaatlogica vast te stellen is.

(D. Hilbert & W. Ackermann, 1928, Grundzüge der theoretischen Logik)

Entscheidungsproblem

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

Voorbeelden:

$$\forall_{n \in \mathbb{N}} \exists_{m \in \mathbb{N}} [m > n]$$

$$\forall_{p,q \in \mathbb{Q}} \exists_{r \in \mathbb{Q}} [p < r < q]$$

$$\exists_x [P(x) \land \forall_y \forall_{y'} [P(y) \land P(y') \to y = y']]$$

Entscheidungsproblem

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Algoritme wat gegeven een uitspraak roept of die uitspraak WAAR of ONWAAR is.

Probleem:

Wat is een algoritme?

Wat is een algoritme??

• Grootste-gemene-deler van Euclides

Wat is een algoritme??

- Grootste-gemene-deler van Euclides
- Zeef van Eratosthenes

Wat is een algoritme??

- Grootste-gemene-deler van Euclides
- Zeef van Eratosthenes
- Gauss-eliminatie

Probleem: Nog geen formele definitie van een algoritme.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

n 🍀

Wat is een algoritme

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

• Turing machines

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

- Turing machines
- Recursietheorie

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

- Turing machines
- Recursietheorie
- λ -calculus

n 🍀

De λ -calculus (*Church 1932*)

De programma's

$$x,y,\ldots\in\Lambda\ \, \text{(Variabelen)}$$

$$M,N\in\Lambda\Rightarrow MN\in\Lambda\ \, \text{(Applicatie)}$$

$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda\ \, \text{(Abstractie)}$$

- $\lambda x.x$
- *λxy.x*
- $\lambda pqr.pr(qr)$
- $(\lambda x.xx)A$
- $\lambda x.y$
- $\lambda fx.f(f(f(x))) \equiv \lceil 3 \rceil$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \rightarrow_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \to_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \to_{\beta} (\lambda xy.x)(\lambda x.xx))\lambda x.x \to_{\beta} \lambda x.xx$$

Recursietheorie (Kleene 1935)

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\ldots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\ldots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

$$f(\vec{x},0) = g(\vec{x}) \qquad \qquad \text{0-geval}$$

$$f(\vec{x},n+1) = h(\vec{x},y,f(\vec{x},y)) \qquad \qquad \text{Recursieve geval}$$

μ -recursie

$$f(\vec{x}) = \mu y [g(\vec{x}, y) = 0]$$
 "De kleinste y zodat $g(\vec{x}, y) = 0$ "

Recursietheorie (Kleene 1935)

Voorbeelden

$$\mathcal{P}(0) = 0$$
 $\min(x, 0) = x$ $\mathcal{P}(n+1) = n$ $\min(x, y+1) = \mathcal{P}(\min(x, y))$

$$f(n) = \mu y[2y = n \vee 2y + 1 = n]$$

• Een eindig alfabet s_0, s_1, \ldots, s_n

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m

n 🍇

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m
- Een potentieel oneindige tape voor de symbolen

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m
- Een potentieel oneindige tape voor de symbolen
- De acties: L, R, s_i .

- Een eindig alfabet s_0, s_1, \ldots, s_n
- Een eindig aantal toestanden q_0, q_1, \ldots, q_m
- Een potentieel oneindige tape voor de symbolen
- De acties: L, R, s_i .
- Een eindige lijst van instructies

Voorbeeldinstructies

- $q_0 0 R q_1$ Wanneer er in toestand q_0 een 0 op de tape staat, zet een stap naar rechts en ga in toestand q_1 .
- q_4 **10** q_8 Wanneer er in toestand q_4 een **1** op de tape staat, vervang de **0** door een **1** en ga in toestand q_8 .

De equivalentie

$$\lambda - {\sf definieerbaar} \overset{({\sf Turing \ 1937})}{\Longrightarrow} {\sf Turing \ berekenbaar}$$

Turing berekenbaar
$$\stackrel{\text{(Turing 1937)}}{\Longrightarrow} \mu - \text{recursief}$$

$$\mu - \text{recursief} \overset{(\text{Kleene 1936})}{\Longrightarrow} \lambda - \text{definieerbaar}$$

De equivalentie

De uitspraken:

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\Gamma}n^{\gamma} = {^{\Gamma}}m^{\gamma}$
- Er bestaat een μ -recursieve functie ϕ zdd $f(n) = m \Leftrightarrow \phi(n) = m$
- Er bestaat een T.M. zdd $f(n) = m \Leftrightarrow \mathsf{T.M.}_f \text{ geeft bij invoer } \ulcorner n \urcorner \text{ uitvoer } \ulcorner m \urcorner$

zijn synoniem met elkaar.

lets met oneindigheid

Probleem:

Een algoritme kan eindeloos lang doorgaan, zonder een 'antwoord' te geven.

```
\begin{array}{ll} \lambda\text{-calculus} & (\lambda x.xx)(\lambda x.xx) \\ \text{Recursietheorie} & f(n) = \mu y[y < 0] \\ \text{Turing machine} & \{q_0\mathbf{00}q_1, q_1\mathbf{00}q_0\} \end{array}
```


lets met oneindigheid

Probleem:

Een algoritme kan eindeloos lang doorgaan, zonder een 'antwoord' te geven.

Oplossing:

Schrijf een algoritme wat van een gegeven algoritme P bepaalt of deze bij gegeven invoer n een antwoord geeft.

lets met oneindigheid

Probleem:

Een algoritme kan eindeloos lang doorgaan, zonder een 'antwoord' te geven.

Oplossing:

Schrijf een algoritme wat van een gegeven algoritme P bepaalt of deze bij gegeven invoer n een antwoord geeft.

Computer says no...

Theorem (Halting Problem)

Er bestaat geen algoritme wat bepaalt of een gegeven algoritme P stopt bij gegeven invoer n.

Proof.

Stel dat er een algoritme H bestaat (*), wat aan de voorwaarden voldoet. Maak een nieuw algoritme H' op de volgende manier:

$$H'(n) = \begin{cases} \uparrow & \text{als } H(P, n) = 1\\ 1 & \text{als } H(P, n) \uparrow \end{cases}$$

Beschouw nu H(H'(n)). Wanneer H oneindig draait, is H' gedefinieerd, maar dan zou H juist niet oneindig moeten draaien. Tegenspraak. We geven de aanname (*) de schuld.

Entscheidungsproblem

Feit: Er zijn overaftelbaar veel onoplosbare problemen

en 🌄

Entscheidungsproblem

Feit: Er zijn overaftelbaar veel onoplosbare problemen Nog zo

een: Het is *niet* beslisbaar om van een gegeven programma P te zeggen of het uitvoer x geeft.

Entscheidungsproblem

Feit: Er zijn overaftelbaar veel onoplosbare problemen Nog zo

een: Het is *niet* beslisbaar om van een gegeven programma P te zeggen of het uitvoer x geeft. **Gevolg:** Het *Entscheidungsproblem*

is niet oplosbaar.

Universaliteits principe

Every effectively calculable function is computable
Church (1936), Turing (1937)
Elke uitrekenbare functie is berekenbaar

Hypercomputation

Oracle machines
Infinite state
Transfiniete recursie

Quantum computing

Church Turing Deutsch Wat doet quantum computing

Tragiek in het paradijs

De protagonisten

Stephen Kleene (1909-1994)

??? (1897 - 1954)

De protagonisten

Stephen Kleene (1909-1994)

Emil Post (1897 - 1954)