11.04.2022, 02:22 lab

Imports

```
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from scipy import stats
```

Reading data

Out[]:		ID	Source	тмс	Severity	Start_Time	End_Time	Distance(mi)	Description	Stree
	0	A-1	MapQuest	201.0	3	2016-02- 08 05:46:00	2016-02- 08 11:00:00	0.01	Right lane blocked due to accident on I-70 Eas	I-70
	1	A-2	MapQuest	201.0	2	2016-02- 08 06:07:59	2016-02- 08 06:37:59	0.01	Accident on Brice Rd at Tussing Rd. Expect del	Brice Ro
	2	A-3	MapQuest	201.0	2	2016-02- 08 06:49:27	2016-02- 08 07:19:27	0.01	Accident on OH-32 State Route 32 Westbound at	State Route 37
	3	A-4	MapQuest	201.0	3	2016-02- 08 07:23:34	2016-02- 08 07:53:34	0.01	Accident on I-75 Southbound at Exits 52 52B US	I-75 !
	4	A-5	MapQuest	201.0	2	2016-02- 08 07:39:07	2016-02- 08 08:09:07	0.01	Accident on McEwen Rd at OH-725 Miamisburg Cen	Miamisburç Centervilli Ro
	•••									
	4995	A- 4996	MapQuest	201.0	2	2016-08- 01 11:35:41	2016-08- 01 12:05:41	0.00	Accident on Cold Springs Rd at Middletown Rd.	Colc Springs Rc
	4996	A- 4997	MapQuest	201.0	2	2016-08- 01 11:41:23	2016-08- 01 12:26:23	0.00	Accident on Travis Blvd at Holiday Ln.	Travis Blvo

11.04.2022, 02:22 lab

	ID	Source	TMC	Severity	Start_Time	End_Time	Distance(mi)	Description	Stree
4997	A- 4998	MapQuest	201.0	2	2016-08- 01 11:57:27	2016-08- 01 12:42:27	0.00	Accident on River Rd at Orchard Rd.	River Ro
4998	A- 4999	MapQuest	201.0	2	2016-08- 01 12:00:54	2016-08- 01 12:30:54	0.00	Accident on Marconi Ave at Bell St.	Bell S
4999	A- 5000	MapQuest	201.0	2	2016-08- 01 11:59:44	2016-08- 01 12:29:44	0.00	Accident on Madison Ave Westbound at I-80.	I-80 V

5000 rows × 37 columns

Out[]:		Severity	Visibility(mi)	Wind_Speed(mph)	Humidity(%)	Temperature(F)
	count	4519.000000	4519.000000	4519.000000	4519.000000	4519.000000
	mean	2.422439	9.469772	9.410246	51.027661	70.287586
	std	0.497574	1.850890	4.314188	23.749484	18.501633
	min	1.000000	0.200000	1.200000	8.000000	5.000000
	25%	2.000000	10.000000	5.800000	32.000000	61.000000
	50%	2.000000	10.000000	9.200000	50.000000	71.600000
	75%	3.000000	10.000000	11.500000	69.000000	82.900000
	max	4.000000	30.000000	31.100000	100.000000	106.000000

Functions

```
def momentum(arr, k: int):
    if k < 1:
        raise ValueError("K must be natural")
    sum = 0
    for elem in arr:</pre>
```

```
sum += elem ** k
    return sum / len(arr)
def mean_1d(arr):
    return momentum(arr, 1)
def mean_2d(arr_2d):
    res = []
    for arr_1d in arr_2d:
        res.append(mean_1d(arr_1d))
    return res
def cov(arr1, arr2):
    if len(arr1) != len(arr2):
        raise ValueError("Array lenghts must be same")
    mean1 = mean_1d(arr1)
    mean2 = mean_1d(arr2)
    sum = 0
    for i in range(len(arr1)):
        sum += (arr1[i] - mean1) * (arr2[i] - mean2)
    return sum / len(arr1)
def cov_matrix(arrs):
    result = np.zeros((arrs.shape[0], arrs.shape[0]))
    for i in range(arrs.shape[0]):
        for j in range(arrs.shape[0]):
            result[i, j] = cov(arrs[i], arrs[j])
    return result
def variance(arr):
    return momentum(arr, 2) - mean 1d(arr) ** 2
def corr(arr1, arr2):
    return cov(arr1, arr2) / (variance(arr1) * variance(arr2)) ** 0.5
def corr_matrix(arrs):
    result = np.zeros((arrs.shape[0], arrs.shape[0]))
    for i in range(arrs.shape[0]):
        for j in range(arrs.shape[0]):
            result[i, j] = corr(arrs[i], arrs[j])
    return result
```

Comparison

```
In [ ]:
         res1 = np.mean(df)
         res2 = mean_2d(df.values.T)
         print(f"Theirs: {res1}")
         print(f"Ours {res2}")
         np.allclose(res1, res2, atol=0.0001)
        Theirs: Severity
                                     2.422439
        Visibility(mi)
                             9.469772
        Wind_Speed(mph)
                            9.410246
        Humidity(%)
                            51.027661
        Temperature(F)
                            70.287586
        dtype: float64
        Ours [2.422438592608984, 9.469772073467581, 9.410245629564091, 51.027660986944014, 7
        0.28758574905973]
        True
Out[ ]:
In [ ]:
         res1 = np.cov(df["Severity"].values, df["Visibility(mi)"].values)[0][1]
```

```
res2 = cov(df["Severity"].values, df["Visibility(mi)"].values)
         print(f"Theirs: {res1}")
         print(f"Ours {res2}")
         np.allclose(res1, res2, atol=0.0001)
        Theirs: 0.03829241074599107
        Ours 0.038283937098997294
        True
Out[ ]:
In [ ]:
         res1 = np.cov(df.T)
         res2 = cov_matrix(df.values.T)
         print(f"Theirs: {res1}")
         print(f"Ours {res2}")
         np.allclose(res1, res2, atol=0.12)
        Theirs: [[ 2.47579621e-01 3.82924107e-02 1.79756771e-01 4.48914382e-01
          -1.04471269e-01]
         [ 3.82924107e-02 3.42579258e+00 4.35475775e-01 -1.78702792e+01
           1.56500651e+01]
         [ 1.79756771e-01 4.35475775e-01 1.86122213e+01 -3.45145655e+00
          -1.40489713e+00]
         [ 4.48914382e-01 -1.78702792e+01 -3.45145655e+00 5.64037969e+02
          -3.71785181e+02]
         [-1.04471269e-01 1.56500651e+01 -1.40489713e+00 -3.71785181e+02
           3.42310441e+02]]
        Ours [[ 2.47524834e-01 3.82839371e-02 1.79716993e-01 4.48815042e-01
          -1.04448151e-01]
         [ 3.82839371e-02 3.42503449e+00 4.35379410e-01 -1.78663247e+01
           1.56466020e+01]
         [ 1.79716993e-01 4.35379410e-01 1.86081026e+01 -3.45069279e+00
          -1.40458624e+00]
         [ 4.48815042e-01 -1.78663247e+01 -3.45069279e+00 5.63913154e+02
          -3.71702910e+02]
         [-1.04448151e-01 1.56466020e+01 -1.40458624e+00 -3.71702910e+02
           3.42234692e+02]]
        True
Out[]:
In [ ]:
         res1 = np.corrcoef(df.T)
         res2 = corr_matrix(df.values.T)
         print(f"Theirs: {res1}")
         print(f"Ours {res2}")
         np.allclose(res1, res2, atol=0.0001)
                               0.04157907 0.08373918 0.03798848 -0.01134826]
        Theirs: [[ 1.
         [ 0.04157907 1.
                                   0.05453614 -0.40653378 0.45700983]
         [ 0.08373918  0.05453614  1.
                                              -0.03368598 -0.01760092]
         [ 0.03798848 -0.40653378 -0.03368598 1.
                                                           -0.84611196]
         [-0.01134826  0.45700983  -0.01760092  -0.84611196  1.
        Ours [[ 1.
                            0.04157907 0.08373918 0.03798848 -0.01134826]
         [ 0.04157907 1.
                                   0.05453614 -0.40653378 0.45700983]
         [ 0.08373918  0.05453614  1.
                                              -0.03368598 -0.01760092]
         [ 0.03798848 -0.40653378 -0.03368598 1.
                                                          -0.84611196]
         [-0.01134826  0.45700983  -0.01760092  -0.84611196  1.
                                                                     11
        True
Out[ ]:
```

Graphs

```
In [ ]: sns.pairplot(df, diag_kind="kde")
```


По графикам видно, что практически все аварии произошли при небольшой видимости (<10 миль), влажность имеет обратную зависимость от температуры, есть небольшая прямая зависимость между температурой и скоростью ветра

11.04.2022, 02:22 lab

Out[]: <seaborn.axisgrid.PairGrid at 0x7fea4fdc6b50>

Лежачие полицейские и знаки "тупик" не сильно помогают в уменьшении серьезности аварий. В местах, где расположены знаки "Уступи дорогу" и на круговых перекрёстках серьезность аварий не очень высокая. Самые серьезные аварии происходят на транспортных развязках

In []:		