

Université Mohammed Premier Oujda École Nationale des Sciences Filières : GI / Niveau : GI4

Module : Administration des systèmes informatiques

Administration Des Systèmes Informatiques

Rapport Tp7: Gestionnaire des volumes logiques LVM

Réalisé par :

Safae BOUNIETE

Année Universitaire: 2017/2018

Etape 2: Installation de gestionnaire LVM

- 1. Installation de LVM:
 - Récupérer le dossier à partir de site
 - Utiliser la commande tar avec les options pour le désarchiver : tar xzvf LVM2.2.02.168.tgz
 - Après avoir se déplacer dans le dossier LVM2, on lance :
 - La commande ./configure pour paramétrer l'installation, et installation des dépendances si nécessaire.
 - La commande **make**, qui fabrique les fichiers d'installation.
 - Commande make install qui installe les fichiers précédemment créés.

2. la commande Ismod | grep dm_*

Tout d'abord un module est un morceau de code permettant d'ajouter des fonctionnalités au noyau : pilotes de périphériques matériels, protocoles réseaux, etc...

Ismod: Pour afficher les modules actifs et qui contient « dm_* », mais cette commande ne retourne aucun module.

3. La commande **modprobe**.

modprobe: Pour charger les modules:

- dm_mod
- dm_mirror
- dm_snapshot

```
root@debian:/home/ensao/Téléchargements/LVM2.2.02.176# modprobe dm mod
root@debian:/home/ensao/Téléchargements/LVM2.2.02.176# modprobe dm mirror
root@debian:/home/ensao/Téléchargements/LVM2.2.02.176# modprobe dm snapshot
root@debian:/home/ensao/Téléchargements/LVM2.2.02.176# lsmod|grep dm *
dm snapshot
                       36864
dm bufio
                      24576 1 dm snapshot
                      24576 0
dm mirror
dm region hash
                      16384 1 dm mirror
                      20480
                             2 dm mirror, dm region hash
dm log
                      94208 4 dm_mirror,dm_log,dm_bufio,dm_snapshot
dm mod
```

Etape 2 : Création des partitions LVM

- 1. Se connecter en tant que «root» sur une console texte.
- Visualiser les disques durs de votre machine.
 La commande fdisk -I en Vérifiant qu'il y a quatre disques durs (sda, sdb, sdc et sdd).

```
Disque /dev/sda : 16 GiB, 17179869184 octets, 33554432 secteurs
Unités : secteur de 1 × 512 = 512 octets
Taille de secteur (logique / physique) : 512 octets / 512 octets
taille d'E/S (minimale / optimale) : 512 octets / 512 octets
Type d'étiquette de disque : dos
Identifiant de disque : 0x2d57dcbb
```

```
Disque /dev/sdb : 1 GiB, 1073741824 octets, 2097152 secteurs
Unités : secteur de 1 × 512 = 512 octets
Taille de secteur (logique / physique) : 512 octets / 512 octets
taille d'E/S (minimale / optimale) : 512 octets / 512 octets
```

```
Disque /dev/sdc : 2 GiB, 2147483648 octets, 4194304 secteurs
Unités : secteur de 1 × 512 = 512 octets
Taille de secteur (logique / physique) : 512 octets / 512 octets taille d'E/S (minimale / optimale) : 512 octets / 512 octets
```

```
Disque /dev/sdd : 3 GiB, 3221225472 octets, 6291456 secteurs
Unités : secteur de 1 × 512 = 512 octets
Taille de secteur (logique / physique) : 512 octets / 512 octets
taille d'E/S (minimale / optimale) : 512 octets / 512 octets
```

3. Lancer l'environnement de partitionnement fdisk sur le disque sdb.

En utilisant la commande fdisk /dev/sdb:

- **l'option n :** pour créer une nouvelle partition
- l'option p : pour créer une partition de type primitive
- **l'option t :** pour une partition de type 8e ce qui fait une partition lym
- **l'option w**: pour sauvegarder les modifications et sortir

Créer une nouvelle partition

```
Commande (m pour l'aide) : n
Type de partition
   p primaire (0 primaire, 0 étendue, 4 libre)
   e étendue (conteneur pour partitions logiques)
Sélectionnez (p par défaut) : p
Numéro de partition (1-4, 1 par défaut) :
Premier secteur (2048-2097151, 2048 par défaut) :
Dernier secteur, +secteurs ou +taille{K,M,G,T,P} (2048-2097151, 2097151 par défaut) : +500M
Une nouvelle partition 1 de type « Linux » et de taille 500 MiB a été créée.
```

Changer e type de partition

```
Commande (m pour l'aide) : t
Numéro de partition (1,2, 2 par défaut) : 1
Type de partition (taper L pour afficher tous les types) : 8e
Type de partition « Linux » modifié en « Linux LVM ».
```

Créer une deuxième partition

```
Commande (m pour l'aide) : n
Type de partition

p primaire (1 primaire, 0 étendue, 3 libre)
e étendue (conteneur pour partitions logiques)
Sélectionnez (p par défaut) : p
Numéro de partition (2-4, 2 par défaut) :
Premier secteur (1026048-2097151, 1026048 par défaut) :
Dernier secteur, +secteurs ou +taille{K,M,G,T,P} (1026048-2097151, 2097151 par défaut) : +500M
```

Changer le type de partition

```
Commande (m pour l'aide) : t
Numéro de partition (1,2, 2 par défaut) :
Type de partition (taper L pour afficher tous les types) : 8e
Type de partition « Linux » modifié en « Linux LVM ».
```

La table des partitions

Périphérique	Amorçage	Début	Fin	Secteurs	Taille	Ιd	Туре
/dev/sdb1		2048	1026047	1024000	500M	8e	LVM Linux
/dev/sdb2		1026048	2050047	1024000	500M	8e	LVM Linux

4. Lancer l'environnement de partitionnement fdisk sur le disque sdc.

Le même principe que sdb.

Pé	riphérique	Amorçage	Début	Fin	Secteurs	Taille	Ιd	Туре
/d	ev/sdcl		2048	2099199	2097152	1G	8e	LVM Linux
/d	ev/sdc2		2099200	4194303	2095104	1023M	8e	LVM Linux

5. Lancer l'environnement de partitionnement fdisk sur le disque sdd. Créer deux nouvelles partitions de type Linux de 1,5Go.

Le même principe que sdb.

```
        Périphérique Amorçage
        Début
        Fin Secteurs
        Taille Id Type

        /dev/sdd1
        2048 3123199 3121152 1,5G 8e LVM Linux

        /dev/sdd2
        3123200 6291455 3168256 1,5G 8e LVM Linux
```

6. Lancer les commandes pvscan, vgscan et lvscan? Que remarquez-vous?

```
root@debian:/home/ensao# pvscan
No matching physical volumes found
root@debian:/home/ensao# lvscan
root@debian:/home/ensao# vgscan
Reading all physical volumes. This may take a while...
```

Ces derniers commandes ne marchent pas parce qu'on pas encore créer ni volume physique, ni groupe de volume ou logique volume.

Étape 4 : Création des volumes physique PV

- 1. Se connecter en tant que «root» sur une console texte.
- 2. Créez les PV des partitions crées précédemment dans l'énoncé 3.

Tout d'abord un volume physique est une partition qu'on va confier à LVM.(Tout ce qui était dans la partition sera effacé)

La commande pvcreate pour créer un volume physique.

```
root@debian:/home/ensao# pvcreate /dev/sdb1
Physical volume "/dev/sdb1" successfully created.
root@debian:/home/ensao# pvcreate /dev/sdd2
Physical volume "/dev/sdd2" successfully created.
root@debian:/home/ensao# pvcreate /dev/sdc1
Physical volume "/dev/sdc1" successfully created.
root@debian:/home/ensao# pvcreate /dev/sdc2
Physical volume "/dev/sdc2" successfully created.
root@debian:/home/ensao# pvcreate /dev/sdd1
Physical volume "/dev/sdd1" successfully created.
root@debian:/home/ensao# pvcreate /dev/sdd2
Physical volume "/dev/sdd2" successfully created.
root@debian:/home/ensao# successfully created.
```

3. Afficher les informations concernant les volumes physiques crées.

La commande **pvscan** :

Cette commande affiche les volumes physiques créer aves des informations sur

leurs:

-type : lvm2 -taille : 500 MiB

La commande pvdislay:

```
--- NEW Physical volume ---
PV Name
                     /dev/sdd1
VG Name
PV Size
                     <1,49 GiB
Allocatable
                      N0
PE Size
                      0
Total PE
                      0
Free PE
                     0
Allocated PE
                     gaW0RG-evaP-JucB-Pn1K-wSaU-ci4T-hkkE7H
PV UUID
"/dev/sdd2" is a new physical volume of "1,51 GiB"
```

Cette commande affiche aussi des informations sur les volumes physiques mais avec plus de détails.

La commande pvdisplay -s:

```
root@debian:/home/ensao# pvdisplay -s
Device "/dev/sdb1" has a capacity of 500,00 MiB
Device "/dev/sdb2" has a capacity of 500,00 MiB
Device "/dev/sdc1" has a capacity of 1,00 GiB
Device "/dev/sdc2" has a capacity of 1023,00 MiB
Device "/dev/sdd1" has a capacity of <1,49 GiB
Device "/dev/sdd2" has a capacity of 1,51 GiB
```

Affiche les informations sur les volumes physiques.

4. Que remarquez-vous?

On remarque que les commandes suivantes permettent d'afficher des informations sur les volumes physiques qu'on a créé.

Etape 5 : Création des volumes groupes VG

1. Créez un VG appelé «VGO» contenant les PVs des partitions sdb1 et sdc2.

La commande vgcreate :

Un groupe de volume est un ensemble des volumes physiques.

```
root@debian:/home/ensao# vgcreate VGO /dev/sdb1 /dev/sdc2
Volume group "VGO" succ<u>e</u>ssfully created
```

2. Afficher les informations concernant le volume groupe crée.

Les informations sur les groupes de volumes existants

La commande **vgscan** :

```
root@debian:/home/ensao# vgscan
Reading all physical volumes. This may take a while...
Found volume group "VGO" using metadata type lvm2
```

La commande vgdislay:

```
root@debian:/home/ensao# vgdisplay
 --- Volume group ---
 VG Name
                       VG0
 System ID
 Format
                       lvm2
 Metadata Areas
 Metadata Sequence No 1
                     read/write
 VG Access
 VG Status
                      resizable
 MAX LV
 Cur LV
                       0
                       0
 Open LV
 Max PV
                       0
                       2
 Cur PV
 Act PV
                       2
 VG Size
                      1,48 GiB
 PE Size
                      4,00 MiB
 Total PE
                       379
                     0 / 0
379 / 1,48 GiB
 Alloc PE / Size
Free PE / Size
 VG UUID
                      4yKbPI-yFph-S13c-22mo-MTa1-saqT-oxtueA
```

La commande vgdisplay -s:

```
root@debian:/home/ensao# vgdisplay -s
"VGO" 1,48 GiB [0 used / 1,48 GiB free]
```

3. Créez un VG appelé «VG1» contenant les PVs des partitions sdb2 et sdd1.

La commande vgcreate :

```
root@debian:/home/ensao# vgcreate VG1 /dev/sdd1 /dev/sdb2
Volume group "VG1" successfully created
```

4. Afficher les informations concernant le volume groupe crée.

La commande vgscan:

```
root@debian: #home/ensao# vgscan
Reading all physical volumes. This may take a while...
Found volume group "VG1" using metadata type lvm2
Found volume group "VG0" using metadata type lvm2
```

La commande vgdislay:

```
--- Volume group ---
                     VG0
VG Name
System ID
                     lvm2
Format
Metadata Areas
                     2
Metadata Sequence No 1
VG Access
                    read/write
VG Stat∏us
                     resizable
MAX LV
                     0
Cur LV
                     0
Open LV
                     0
Max PV
                     0
Cur PV
                      2
Act PV
                     2
VG Size
                     1,48 GiB
PE Size
                     4,00 MiB
Total PE
                     379
Alloc PE / Size
                     0 / 0
Free PE / Size
                    379 / 1,48 GiB
                     4yKbPI-yFph-S13c-22mo-MTa1-saqT-oxtueA
VG UUID
```

La commande **vgdisplay - s**:

```
root@debian:/home/ensao# vgdisplay -s

"VG1" <1,97 GiB [0 used / <1,97 GiB free]

"VG0" 1,48 GiB [0 _ used / 1,48 GiB free]
```

Etape 6 : Création des volumes logiques LV

1. Créez dans «VG0», le volume logique LV «LV0» de taille maximale (en gros).

La commande **Ivcreate –L** +1,48G **–n** LV0 VG0

- L: pour déterminer l'espace du volume logique...on utilise –l si on ne veut pas écraser les données déjà existants dans la partition.
- **n**: Le nom du volume logique

```
root@debian:/home/ensao# lvcreate -L +1,48G -n LV0 VG0
Rounding up size to full physical extent 1,48 GiB
Logical volume "LV0" created.
```

2. Afficher les informations concernant le volume logique crée.

La commande lvscan:

```
root@debian:/home/ensao# lvscan
ACTIVE '/dev/VG0/LV0' [1,48 GiB] inherit
```

La commande lvdislay:

```
root@debian:/home/ensao# lvdisplay
 --- Logical volume ---
 LV Path
                         /dev/VG0/LV0
 LV Name
                         LV0
 VG Name
                         VG0
 LV UUID
                         Ra78MP-GX9S-hoD0-Gz0g-29oC-2k6b-gpAJSZ
 LV Write Access
                         read/write
 LV Creation host, time debian, 2017-12-05 23:56:14 +0100
                         available
 LV Status
 # open
 LV Size
                         1,48 GiB
 Current LE
                         379
 Seaments
                         2
 Allocation
                         inherit
 Read ahead sectors
                         auto
 - currently set to
                         256
 Block device
                         254:0
```

La commande **lvdisplay –s**:

```
root@debian:/home/ensao# lvdisplay -s
lvdisplay : option invalide -- 's'
Error during parsing of_command line.
```

3. Formatez «LVO» en EXT4. (Utilisation : la commande mkfs.ext4).

4. Créer un répertoire «/mnt/lv0».

La commande :mkdir -p /mnt/lv0

5. Montez le volume logique LV0 dans le répertoire «/mnt/lv0». (Utilisation : la commande mount avec les options adéquates).

```
root@debian:/home/ensao# mkdir -p /mnt/lv0
root@debian:/home/ensao# mount /dev/VG0/LV0 /mnt/lv0
```

6. Visualiser les statistiques d'utilisation des blocs de données. (Utilisation : la commande df).

Rapport Tp7: Gestionnaire des volumes logiques LVM

root@debian:/home/ensao# df						
Sys. de fichiers	blocs de 1K	Utilisé	Disponible	Uti%	Monté sur	
udev	635776	0	635776	0%	/dev	
tmpfs	128916	776	128140	1%	/run	
/dev∱sdal	15157208	4781336	9586216	34%	/	
tmpfs	5120	4	5116	1%	/run/lock	
tmpfs	519560	0	519560	0%	/run/shm	
cgroup	12	0	12	0%	/sys/fs/cgroup	
tmpfs	128912	16	128896	1%	/run/user/117	
tmpfs	128912	20	128892	1%	/run/user/1000	
/dev/mapper/VG0-LV0	1495184	4560	1396624	1%	/mnt/lv0	

Le dossier est bien monté dans /mnt/lv0

7. Créer un fichier «ls.out» contenant le résultat de la commande ls -lR / dans le répertoire «/mnt/lv0».

```
root@debian:/home/ensao# ls -Rl / > /mnt/lv0/ls.out
```

8. Calculez un checksum de contrôle de fichier «ls.out» au moyen de la commande «md5sum --binary». Notez les valeurs résultats.

```
root@debian:/home/ensao# md5sum --binary /mnt/lv0/ls.out
2767d1fcbbf5ad787355e2904adf5423 */mnt/lv0/ls.out
```

Il s'agit du CRC du fichier.

Etape 7 : Extension d'un volume logique LV

2. Démonter le volume logique «LV0»

```
root@debian:/home/ensao# umount /dev/VG0/LV0
```

3. Vérifier que la cohérence de «LVO». (Utilisation : la commande e2fsck).

```
root@debian:/home/ensao# e2fcsk /dev/VG0/LV0
bash: e2fcsk : commande introuvable
root@debian:/home/ensao# e2fsck /dev/VG0/LV0
e2fsck 1.43.4 (31-Jan-2017)
/dev/VG0/LV0 : propre, 12/97152 fichiers, 17220/388096 blocs
```

5. Faire une extension de «VGO» par les volumes physiques des partitions sdc1 et sdd2. (Utilisation : la commande vgextend).

```
root@debian:/home/ensao# vgextend VGO /dev/sdc1 /dev/sdd2
Volume group "VGO" successfully extended
root@debian:/home/ensao# vgscan
Reading all physical volumes. This may take a while...
Found volume group "VG1" using metadata type lvm2
Found volume group "VGO" using metadata type lvm2
root@debian:/home/ensao# vgdisplay -s
"VG1" <1,97 GiB [0 used / <1,97 GiB free]
"VGO" 3,98 GiB [1,48 GiB used / 2,50 GiB free]
root@debian:/home/ensao# ■
```

On remarque que le volume des deux partitions est ajouté au groupe de volume VGO.

Rapport Tp7: Gestionnaire des volumes logiques LVM

6. Agrandir le volume logique «LVO» par l'ajout de la taille des partitions sdc1 et sdd2. (Utilisation : la commande lvextend).

```
root@debian:/home/ensao# lvextend /dev/VG0/LV0 /dev/sdd2 /dev/sdc1
 Size of logical volume VGO/LVO changed from 1,48 GiB (379 extents) to 3,98 GiB
(1020 extents).
 Logical volume VGO/LVO successfully resized.
root@debian:/home/ensao# lvdisplay
 --- Logical volume ---
                         /dev/VG0/LV0
 LV Path
 LV Name
                        LV0
                        VG0
 VG Name
                        Ra78MP-GX9S-hoD0-Gz0q-29oC-2k6b-gpAJSZ
 LV UUID
 LV Write Access
                        read/write
```

10. Agrandir le système de fichiers de LV «LVO». (Utilisation : la commande resize2fs).

```
rĎot@debian:/home/ensao# resize2fs /dev/VG0/LV0
resize2fs 1.43.4 (31-Jan-2017)
SVP exécutez « e2fsck -f /dev/VG0/LV0 » d'abord.
```

- 11. Remonter «LVO» dans «/mnt/lvO».
- 12. Regarder de nouveau les statistiques d'utilisation des blocs de données. Cela a-t-il changé. (Utilisation : la commande df -h).

```
root@debian:/home/ensao# df -h
Sys. de fichiers Taille Utilisé Dispo Uti% Monté sur
udev
                   621M
                              0 621M
                                        0% /dev
tmpfs
                   126M
                           776K 126M
                                        1% /run
/dev/sdal
                    15G
                           4,6G
                                 9,2G
                                       34% /
tmpfs
                   5,0M
                           4,0K 5,0M
                                        1% /run/lock
                                 508M
                                        0% /run/shm
tmpfs
                   508M
                              0
                                         0% /sys/fs/cgroup
cgroup
                    12K
                              0
                                  12K
                                        1% /run/user/117
                                 126M
tmpfs
                   126M
                            16K
                            20K 126M
                                        1% /run/user/1000
tmpfs
                   126M
```

- 13. Vérifiez que le fichier «ls.out» est resté dans le répertoire.
- 14. Recalculez un checksum de contrôle de fichier «ls.out» au moyen de la commande «md5sum -- binary».

```
root@debian:/home/ensao# md5sum --binary /mnt/lv0/ls.out
2767d1fcbbf5ad787355e2904adf5423 */mnt/lv0/ls.out
```

15. Que remarquez-vous concernant le checksum de l'énoncé précédent et cet énoncé ?

Il n'a pas changé