What is Data Science?

- General Definition: Processes and systems to extract knowledge or insights from data, either structured or unstructured. (Wikipedia)
- For the purposes of this course: Managing, analyzing, and visualizing data in support of the Machine Learning workflow.
- But what is Machine Learning?

What is Machine Learning?

Artificial Intelligence machines that improve their predictions by learning from large amounts of input data.

- Main idea: Learning = estimating underlying function f by mapping data attributes to some target value
- Training set: A set of labeled examples (x, f(x)) where x is the input variables and the label f(x) is the observed target truth
- Goal: Given a training set, find approximation f of f that best generalizes, or predicts, labels for new examples
 - "Best" is measured by some quality measure
 - Example: error rate, sum squared error

- Main idea: Learning = estimating underlying function f by mapping data attributes to some target value
- Training set: A set of labeled examples (x, f(x)) where x is the input variables and the label f(x) is the observed target truth
- Goal: Given a training set, find approximation f of f that best generalizes, or predicts, labels for new examples
 - · "Best" is measured by some quality measure
 - · Example: error rate, sum squared error

П

- Main idea: Learning = estimating underlying function f by mapping data attributes to some target value
- Training set: A set of labeled examples (x, f(x)) where x is the input variables and the label f(x) is the observed target truth
- Goal: Given a training set, find approximation f of f that best generalizes, or predicts, labels for new examples
 - · "Best" is measured by some quality measure
 - Example: error rate, sum squared error

- Main idea: Learning = estimating underlying function f by mapping data attributes to some target value
- Training set: A set of labeled examples (x, f(x)) where x is the input variables and the label f(x) is the observed target truth
- Goal: Given a training set, find approximation f of f that best generalizes, or predicts, labels for new examples
 - · "Best" is measured by some quality measure
 - · Example: error rate, sum squared error

Why Machine Learning?

Difficulty in writing some programs

- Too complex (facial recognition)
- Too much data (stock market predictions)
- Information only available dynamically (recommendation system)

Use of data for improvement

Humans are used to improving based on experience (data)

A lot of data is available

- Product recommendations
- Fraud detection
- Facial recognition
- Language understanding
-

Why Machine Learning?

Difficulty in writing some programs

- · Too complex (facial recognition)
- Too much data (stock market predictions)
- Information only available dynamically (recommendation system)

Use of data for improvement

· Humans are used to improving based on experience (data)

A lot of data is available

- · Product recommendations
- · Fraud detection
- · Facial recognition
- · Language understanding

•

A 2019 Annual State Lances on the Alliness All terms on the

Types of Machine Learning

Supervised Learning

Semi-supervised Learning

Reinforcement Learning

Unsupervised Learning

Data Matters

- Unleash the business value in data collected
- Prepare you to do data science projects and to implement production systems
- Predict future events based on past data leading to proactive change than reactive

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Data Science and ML Workflow

\$275 Ansey We Servey, Inc. or in Affiliate, All rights reserved.

Important Concepts

- Dataset
- · Training set versus test set
- Feature = attribute = independent variable = predictor

Important Concepts

• Label = target = outcome = class = dependent variable = response

Dimensionality = number of features

Model selection

Learning with feedback provided

Supervised learning

A "teacher" provides training examples, each with the correct label.

Image	Label
	Earth
	Not Earth
	Not Earth
	Earth

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Learning with feedback provided

Supervised learning

A "teacher" provides training examples, each with the correct label.

Image	Label
8	Earth
	Not Earth
2	Not Earth
©	Earth

\$2,7075 Proson Not Services, Inc. or 61 Millions All rights reserved.

Other types of ML

Unsupervised learning

- Correct label not available for training examples; must find patterns in data (e.g., using clustering)
 - Example: Grouping customers according to what books and movies they like

Other types of ML

Reinforcement learning

- Not told what action is correct, but given some reward or penalty after each action in a sequence
 - · Example: Learning how to play soccer

\$1,500 keeps his Leven, in, or a Milan Mayro ment

Data quality

- · Consistency of the data
- · Accuracy of the data
- Noisy data
- Missing data
- · Outliers in the data
- Bias
- Variance, etc.

Data quality

- · Consistency of the data
- Accuracy of the data
- Noisy data
- · Missing data
- · Outliers in the data
- · Bias
- · Variance, etc.

