수학으로부터 **인류**를 **자유**롭게 하라

Free Humankind from Mathematics

Basic Algebra

Chap.12 Composite Functions

12.1 Arithmetic Operations of Functions

Arithmetic Operations

$$(f+g)(x) = f(x) + g(x) \qquad (f \times g)(x) = f(x) \times g(x)$$
$$(f-g)(x) = f(x) - g(x) \qquad (f \div g)(x) = f(x) \div g(x)$$
$$f, g \vdash \mathsf{H} = \mathsf{T} = \mathsf{T} = \mathsf{T}$$
$$f, g \vdash \mathsf{H} = \mathsf{T} = \mathsf{T}$$

ex.1) 다음 함수 f, g에 대해 f + g, f - g, $f \times g$, $f \div g$ 를 구하세요.

(1)
$$f(x) = x^2$$
, $g(x) = 2x$
 $\longrightarrow (f+g)(x) = f(x) + g(x) = x^2 + 2x$
 $(f-g)(x) = f(x) - g(x) = x^2 - 2x$
 $(f \times g)(x) = f(x) \times g(x) = 2x^3$
 $(f \div g)(x) = f(x) \div g(x) = \frac{1}{2}x$

(2)
$$f(x) = sin(x), g(x) = e^x$$

 $\longrightarrow (f+g)(x) = f(x) + g(x) = sin(x) + e^x$
 $(f-g)(x) = f(x) - g(x) = sin(x) - e^x$
 $(f \times g)(x) = f(x) \times g(x) = e^x sin(x)$
 $(f \div g)(x) = f(x) \div g(x) = e^{-x} sin(x)$

12.1 Arithmetic Operations of Functions

Terms in Functions

$$Sys\{\alpha x(t) + \beta y(t)\} = \alpha Sys\{x(t)\} + \beta Sys\{y(t)\}$$

$$\frac{d}{dx}\left[\alpha f(x) + \beta g(x)\right] = \alpha \frac{d}{dx}\left[f(x)\right] + \beta \frac{d}{dx}\left[g(x)\right]$$

$$\int \left[\alpha f(x) + \beta g(x)\right] dx = \alpha \int f(x) \, dx + \beta \int g(x) \, dx$$

$$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$$
$$\int_{-\infty}^{\infty} \left[\alpha f(t) + \beta g(t)\right] \cdot e^{-j\omega t} dt = \alpha \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt + \beta \int_{-\infty}^{\infty} g(t) \cdot e^{-j\omega t} dt$$

12.1 Arithmetic Operations of Functions

Domains

12.1 Arithmetic Operations of Functions

Domains

ex.1)
$$f(x) = \frac{1}{x}$$
, $g(x) = \ln(x)$ \longrightarrow $f(x) + g(x) = \frac{1}{x} + \ln(x)$ ex.3) $f(x) = x^2$, $g(x) = \frac{1}{x(x-1)}$

$$D_f = (-\infty,0) \cup (0,\infty)$$

$$D_g = (0,\infty)$$

$$D = D_f \cap D_g = \left[(-\infty,0) \cup (0,\infty) \right] \cap (0,\infty)$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right] \cup \left[(0,\infty) \cap (0,\infty) \right]$$

$$D = \left[(-\infty,0) \cap (0,\infty) \right]$$

ex.2)
$$f(x) = x$$
, $g(x) = sin(x)$
 $\longrightarrow D_f = D_g = \mathbb{R}$
 $\longrightarrow D = D_f \cap D_g = \mathbb{R}$

ex.3)
$$f(x) = x^2$$
, $g(x) = \frac{1}{x(x-1)}$
 $\longrightarrow D_f = \mathbb{R}, \ D_g = \mathbb{R} - \{0, 1\}$
 $\longrightarrow D = \mathbb{R} - \{0, 1\}$

ex.4)
$$f(x) = ln(x - 1), g(x) = ln(2 - x)$$

 $\longrightarrow D_f = (1, \infty), D_g = (-\infty, 2)$
 $\longrightarrow D = (-\infty, 2) \cap (1, \infty) = (1, 2)$

12.2 Composite Functions

Sets within Composite Functions

12.2 Composite Functions

Arithmetic Operations vs Compositions

$$f(x) = x^2$$
, $g(x) = log_2(x)$

$$f(x) + g(x) = x^2 + log_2(x)$$

$$g(f(x)) = log_2(f(x)) = log_2(x^2)$$

12.2 Composite Functions

ex.1)
$$f(x) = \frac{1}{x}$$
, $g(x) = e^x$, $h(x) = \sin(x)$

$$(1) (f \circ f)(x) \longrightarrow f(f(x)) = \frac{1}{f(x)} = x$$

(2)
$$(g \circ g)(x) \longrightarrow g(g(x)) = e^{g(x)} = e^{e^x}$$

(3)
$$(h \circ h)(x) \longrightarrow h(h(x)) = sin(h(x)) = sin(sin(x))$$

12.2 Composite Functions

ex.1)
$$f(x) = \frac{1}{x}$$
, $g(x) = e^x$, $h(x) = \sin(x)$

(4)
$$(f \circ g)(x)$$
 $\longrightarrow f(g(x)) = \frac{1}{g(x)} = \frac{1}{e^x} = e^{-x}$

(5)
$$(f \circ h)(x)$$
 $\longrightarrow f(h(x)) = \frac{1}{h(x)} = \frac{1}{\sin(x)} = \csc(x)$

(6)
$$(g \circ h)(x) \longrightarrow g(h(x)) = e^{h(x)} = e^{\sin(x)}$$

(7)
$$(g \circ f)(x) \longrightarrow g(f(x)) = e^{f(x)} = e^{\frac{1}{x}}$$

(8)
$$(h \circ f)(x) \longrightarrow h(f(x)) = sin(f(x)) = sin(\frac{1}{x})$$

(9)
$$(h \circ g)(x) \longrightarrow h(g(x)) = sin(g(x)) = sin(e^x)$$

12.2 Composite Functions

ex.1)
$$f(x) = \frac{1}{x}$$
, $g(x) = e^x$, $h(x) = \sin(x)$

(10)
$$(f \circ g \circ h)(x)$$
 $\longrightarrow f(g(h(x))) = \frac{1}{g(h(x))} = \frac{1}{e^{h(x)}} = \frac{1}{e^{sin(x)}} = e^{-sin(x)}$

$$(11) (g \circ h \circ f)(x) \longrightarrow g(h(f(x))) = e^{h(f(x))} = e^{\sin(f(x))} = e^{\sin(\frac{1}{x})}$$

(12)
$$(h \circ f \circ g)(x)$$
 $\longrightarrow h(f(g(x))) = sin(f(g(x))) = sin\left(\frac{1}{g(x)}\right) = sin\left(\frac{1}{e^x}\right) = sin\left(e^{-x}\right)$

12.3 Decomposing Composite Functions

Internal Variables

12.3 Decomposing Composite Functions

Decomposing Composite Functions

ex.1)
$$y = log_2(x^2)$$

 $u = f(x) = x^2$
 $g(u) = log_2(u)$

$$x \longrightarrow f$$

$$= log_2(u) = log_2(x^2)$$

$$u = x^2$$

ex.2)
$$y = ln\left(\frac{1}{x^2}\right) + 10$$
$$u = f(x) = \frac{1}{x^2}$$
$$v = g(u) = ln(u)$$
$$y = h(v) = v + 10$$

$$x \longrightarrow f$$

$$u = \frac{1}{x^2}$$

$$v = ln(u) = ln\left(\frac{1}{x^2}\right)$$

$$v = ln(u) = ln\left(\frac{1}{x^2}\right)$$

12.3 Decomposing Composite Functions

Decomposing Composite Functions

ex.3)
$$y = \sigma(x) = \frac{1}{1 + e^{-x}}$$

 $u_1 = f_1(x) = -x$
 $u_2 = f_2(u_1) = e^{u_1} = e^{-x}$
 $u_3 = f_3(u_2) = 1 + u_2 = 1 + e^{-x}$
 $y = f_4(u_3) = \frac{1}{u_3} = \frac{1}{1 + e^{-x}}$

12.4 Domains, Co-mains of Composite Functions

Domains of Composite Functions

step.1)
$$D_f, R_f, D_g, R_g$$

step.2)
$$I = R_f \cap D_g$$

step.3)
$$D_{g \circ f}$$

step.4)
$$R_{g \circ f}$$

12.4 Domains, Co-mains of Composite Functions

Examples

ex.1)
$$y = ln(x^2 + 4)$$

step.1) $u = f(x) = x^2 + 4$ $y = g(u) = ln(u)$
 $D_f = (-\infty, \infty)$ $D_g = (0, \infty)$
 $R_f = [4, \infty)$ $R_g = (-\infty, \infty)$
step.2) $I = R_f \cap D_g = [4, \infty)$
step.3) $4 \le x^2 + 4 \longrightarrow D_{g \circ f} = (-\infty, \infty)$
step.4) $4 \le u \longrightarrow ln(4) \le ln(u)$

 $\longrightarrow R_{g \circ f} = [ln(4), \infty)$

12.4 Domains, Co-mains of Composite Functions

ex.2)
$$y = ln(x^2 - 4)$$

step.1) $u = f(x) = x^2 - 4$ $y = g(u) = ln(u)$
 $D_f = (-\infty, \infty)$ $D_g = (0, \infty)$
 $R_f = [-4, \infty)$ $R_g = (-\infty, \infty)$
step.2) $I = R_f \cap D_g = (0, \infty)$
step.3) $x^2 - 4 > 0 \longrightarrow D_{g \circ f} = (-\infty, -2) \cup (2, \infty)$
step.4) $u > 0 \longrightarrow ln(u) > -\infty$
 $\longrightarrow R_{g \circ f} = (-\infty, \infty)$

12.4 Domains, Co-mains of Composite Functions

ex.3)
$$y = ln\left(\frac{2}{2x^2 + 1} - 1\right)$$

step.1) $u = f(x) = \frac{2}{2x^2 + 1}$ $y = g(u) = ln(u - 1)$
 $D_f = (-\infty, \infty)$ $D_g = (1, \infty)$
 $R_f = (0, 2]$ $R_g = (-\infty, \infty)$
step.2) $I = R_f \cap D_g = (1, 2]$
step.3) $1 < \frac{2}{2x^2 + 1} \le 2 \longrightarrow -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$
 $\longrightarrow D_{g \circ f} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

step.4)
$$1 < u \le 2 \longrightarrow -\infty < ln(u-1) \le 0$$
 $\longrightarrow R_{g \circ f} = (-\infty, 0]$

CLOSING

Basic Algebra

Chap.12 Composite Functions