

Complex Network Systems

Random graph model

Ilche Georgievski

2019/2020 Winter Why should we use network models?

Can we expect that there would be fine wine left once the guests are gone?

What is a random graph model?

Erdős and Rényi random graph

- G(n, m): undirected graph with n nodes and randomly chosen m edges among them
- G(n, p): take the complete graph and associate a unique uniform probability p of existence to all edges

Random graph model procedure

- Start with n isolated nodes
- Select a node pair and generate a random number between 0 and I
 - If the number exceeds p, connect the selected node pair with a link
 - Otherwise, leave them disconnected
- Repeat the second step for each of the n(n-1)/2 node pairs

Erdős-Rényi graph

Do n and p uniquely determine the graph?

$$n = 12$$
$$p = \frac{1}{6}$$

$$\bar{k} = p(n-1)$$

$$\bar{k} = 1.83$$

Erdős-Rényi graph

$$p = 0.03$$

 $n = 100$

Degree sequence

What is the degree sequence?

{2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5}

$$C_2 = 2$$

 $C_3 = 6$
 $C_4 = 2$
 $C_5 = 2$

Does a degree sequence uniquely specify a graph?

Degree distribution

$$p(k) = \frac{C_k}{n}$$

$$\{\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}\}$$
 degree distribution

Degree distribution

in real networks

$$P(k) = {\binom{n-1}{k}} p^{k} (1-p)^{n-1-k}$$

 $P(k) = e^{-\bar{k}} \frac{\bar{k}^k}{k!}$

Binomial distribution

Poisson distribution

How big are the differences between the node degrees in a particular realisation of a random network?
Can high degree nodes coexist with small degree nodes?

Social network as a random network

- Typical person knows about 1000 individuals on a first name basis
 - $-\bar{k} \approx 1000$
 - $-n \approx 7 \times 10^9$
 - $-k_{max} = 1185$
 - $-k_{min} = 816$
 - $-\sigma_k = 31.62 \text{ for } \bar{k} = 1000$
- Typical person has between 968 and 1032 friends
- All individuals are expected to have a comparable number of friends

In a large random network, the degree of most nodes is in the narrow vicinity of \overline{k}

Real networks are not Poisson

How does this transition happen?

Evolution of G(n, p)

Evolution of G(n, p)

Probability (p)	0.0	0.045	0.095	1.0
Average degree	0.0	0.6667	1.1667	11.0
Diameter	0	3	6	1
Giant component size	0	3	7	66
Average shortest path length	0.0	1.6667	2.7142	1.0

Evolution of G(n, p)

p = 0

From David Gleich, Purdue University

Do real networks satisfy the criteria for the existence of a giant component? Will this giant component contain all nodes for $ar k>\ln n$, or will there still be some disconnected nodes and components?

Real networks are supercritical

Network	n	L	\overline{k}	$\ln n$
Internet	192,244	609,066	6.34	12.17
Power Grid	4,941	6,594	2.67	8.51
Science Collaboration	23,133	94,437	8.08	10.05
Actor Network	702,388	29,397,908	83.71	13.46
Protein Interactions	2,018	2,930	2.90	7.61

Real networks are supercritical

Clustering coefficient of G(n, p)

Local clustering coefficient

Global clustering coefficient

Is this mirroring the clustering coefficient of real networks?

Summary

- Real networks are not random
- Degree to which random networks describe or not real systems can be decided using
 - Degree distribution
 - Random networks have binomial distribution
 - Poisson distribution does not capture degree distribution of real networks
 - Connectedness
 - Giant component for $\bar{k}=1$
 - Most real networks are not fragmented
 - Average path length
 - Accounts for the emergence of the small-world phenomenon
 - Clustering coefficient
 - In random networks, independent of a node's degree and depends on the system size
 - In real networks, it decreases with a node's degree and is largely independent of the system size
- Small-world phenomenon is the only property reasonably explained by the random network model

If real networks are not random, why do we study the random network model?

Exercise

Create three random networks (G(n, p)) with n = 250 using NetworkX.

- a) Plot the networks
- b) Give a table with measurements of the following properties:
 - Average degree
 - Average shortest path length
 - Number of connected components
 - Clustering coefficient
- c) For which probability is the average degree ~ 1 ? What is the size of the Giant component at the phase transition?

Sources

- Leskovec, J. Analysis of Networks, CS224W, Stanford University (2018), http://web.stanford.edu/class/cs224w/
- Mateos, G. Degrees, Power Laws and Popularity, University of Rochester, 2018.
- Zafarani, R., Abbasi, M.A. and Liu, H. Social Media Mining: An Introduction, Cambridge University Press, 2014.
- Barabási, A. Network Science, http://networksciencebook.com