Variáveis e métodos estáticos

PROF. ME. HÉLIO ESPERIDIÃO

Variáveis e métodos estáticos

Pertencem à classe e não a uma instância.

Isso quer dizer que eles podem ser utilizados sem ter que instanciar a classe.

As variáveis estáticas são compartilhadas por todos os objetos.

Exemplo

```
package javaapplication1;

public class JavaApplication1 {
    public static void main(String[] args) {
        // TODO code application logic here
        int z = ExemploEstatico.somarInteiros(50, 10);
        System.out.println(z);
        ExemploEstatico.CONTADOR++;
        System.out.println(ExemploEstatico.CONTADOR);
    }
}
```

Não é necessário instanciar para usar métodos e atributos estáticos

Exercícios: Utilize atributos e métodos estáticos

Crie uma classe "Matemática" esta deve possuir atributos estáticos com as constantes matemáticas abaixo.

Construa métodos estáticos para calcular seno, cos, tg. Estes métodos devem receber como parâmetro o ângulo desejado. Lembro que a classe Math possui tais métodos, mas utiliza como parâmetro apenas graus em radiados.

Crie métodos estáticos para calcular a área de todas as figuras matemáticas básicas em 2d e 3d.

Crie métodos estáticos para calcular a o perímetro de todas as figuras geométricas básicas.

Crie um método que possibilite contar quantas vezes a classe foi utilizada.

Nome	Fórmula	Figura
Quadrado	L x L = L ²	L
Retângulo	bxh	b h
Losango	bxh	h b
Triângulo	<u>b x h</u>	h h
Pentágono É equivalente à 5 vezes a área de um triângulo de base <u>b e</u> altura h	$5 \times \frac{b \times h}{2}$	b b
Hexágono É equivalente à 6 vezes a área de um triângulo de base b e altura h	$6 \times \frac{b \times h}{2}$	h
Circunferência	$\pi \times r^2$	r

$\pi \cong 3,141593$	logπ ≅ 0,497149
$\pi/2 \cong 1,570796$	ℓ n2 \cong 0,693147
1 rad ≅ 57,29578°	ℓ n3 \cong 1,098612
$1^{\circ} \cong 0.017453 \text{ rad}$	$\gamma \cong 0,577215$
e ≅ 2,718282	$\sqrt{e} \cong 1,648721$
$e^2 \cong 7,389056$	$\sqrt{\pi} \cong 1,772453$
1/e ≅ 0,367879	$\sqrt{2} \cong 1{,}414213$
$e^{\pi} \cong 23,140692$	$\sqrt{3} \cong 1,732050$
$\log 2 \cong 0.301029$	Ø ≅ 1,618033
loge ≅ 0,434294	$\Gamma(1/2) \cong \sqrt{\pi}$

Figura	Esquema	№ de caras	A rea
Tetrædro	\triangle	4 caras, triángulos equiláteros	$A = a^2 \cdot \sqrt{3}$
Octaedro		8 caras, triángulos equiláteros	$A = 2 \cdot a^2 \cdot \sqrt{3}$
Cubo		6 caras, cuadrados	A = 6 a²
Dodecaedro	apolema	12 caras, pentágonos regulares	A = 30 · a · ap.
lcosaedro		20 caras, triángulos equiláteros	$A = 5 \cdot a^2 \cdot \sqrt{3}$

Figura Geométrica	Perímetro	
cuadrado a a	a + a + a + a = 4a	
rectángulo a b b	a + a + b + b = 2a + 2b	
triángulo b h c	a+b+c	
rombo a a a	a + a + a + a = 4a	
paralelogramo b	a + a + b + b = 2a + 2b	
trapecio china	a+b+c+d	
poligono regular a a a	n = número de lados del polígono a + a + a + = n • a n veces	
circunferencia y circulo	$\pi \approx 3.14$ $2 \pi r$	

Exercícios: Utilize atributos e métodos estáticos

2 – Crie a classe MRU (Movimento Retilíneo Uniforme) esta classe deve resolver as formulas de MRU.

3 - MRUV (Movimento Retilíneo Uniformemente Variado)