Fundamentals of Optimization

Introduction

Pham Quang Dung

dungpq@soict.hust.edu.vn
Department of Computer Science

Content

- Optimization problems
- Optimization problem classification
- Applications
- Topics

Optimization problems

- Maximize or minimize some function relative to some set (range of choices)
- The function represents the quality of the choice, indicating which is the "best"
- Example
 - A shipper need to find the shortest route to deliver packages to customers 1, 2, ..., N

Notations

- $x \in \mathbb{R}^n$: vector of decision variables $x_{i,j} = 1, 2, ..., n$
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- g_i: Rⁿ → R is the constraint function defining restriction on x, i = 1, 2, ..., m

minimize f(x) over $x = (x_1, x_2, ..., x_n) \in X \subset \mathbb{R}^n$ satisfying a property P:

$$g_i(x) \le b_i$$
, $i = 1, 2, ..., s$
 $g_i(x) = d_i$, $i = s + 1, 2, ..., m$

Examples

min
$$f(x) = 3x_1 - 5x_2 + 10x_3$$

 $x_1 + x_2 + x_3 \le 10$
 $2x_1 + 4x_2 - 5x_3 = 9$ (Linear Program)
 $x_1, x_2 \in \mathbb{R}^+, x_3 \in \mathbb{Z}$

min
$$f(x) = 4x_1^2 + 3x_2^2 - 7x_1 x_3$$

 $x_1 + x_2^3 + 4x_3 \le 10$
 $2x_1^2 + 4x_2 - 5x_3 = 7$ (Nonlinear Program)
 $x_1, x_2 \in \mathbb{R}^+, x_3 \in \mathbb{Z}$

Solving optimization problems

- General optimization problems
 - Very difficult to solve
- Some special cases
 - Linear programming
 - Least square problem
 - Some shortest path problems on networks
 - Etc.

Classification

- Linear Programming (LP): f and g_i are linear
- Nonlinear Programming (NLP): some function f, g_i are nonlinear
- Continuous optimization: f and g_i are continuous on an open set containing X, X is closed and convex
- Integer Programming (IP): $X \subseteq \{0,1\}^n$ or $X \subseteq Z^n$
- Constrained optimization: m > 0, $X \subset \mathbb{R}^n$
- Unconstrained optimization: m = 0, $X = R^n$

Applications

- Production Planning
- Routing in transportation
- Scheduling
- Assignment
- Packing
- Time Tabling
- Network designs
- Machine learning

Agriculture Production Planning

SKU	Chart	Demand
*		10000
		25000
		32000
		42500

Construction Planning

Planning

Task	Duration	Predecessors
1	30	6
2	20	1,4,8
3	15	6
4	25	5,6
5	20	1,6
6	45	
7	40	2,8
8	30	3,4

How to make a plan for delivering goods to customers

How to make a plan for delivering goods to customers

Logistics

How to pick items in a very large warehouse?

Assignment

How to assign tasks to workers in an optimal way

4		6		8
2	6		7	
	5			6
		1	4	
			6	3

Time tabling

How to assign classes into slots of the timetable

Monday	Tuesday	Wednesday	Thursday	Friday
Data structure & Algorithms, TC-305	Programmin g, D9-302 -305 Indamenta Itimization, Machine	Statistics, B1-203	Technical writing, B1- 202	Networkings , B1-404
Fundamenta I of optimization,			Java advanced, B1-204	Image processing, D6-303
B1-402		Software engineering, D5-102	Operating systems, D9-101	

Machine learning

Prediction

X	Y
43	45
44	46
45	45
46	48
47	47
48	51
49	49
50	?

Computer vision

Demo example with or-tools

$$f(x) = 2x_1 + 4x_2 - x_3 \rightarrow \min$$

$$4x_1 - x_2 + 2x_3 \le 7$$

$$x_1 + x_2 + x_3 = 5$$

$$3x_1 + x_2 - 2x_3 \le 10$$

$$x_1, x_2 \in \mathbb{R}, x_1, x_2 \ge 2,$$

$$x_3 \in \mathbb{Z}, 0 \le x_3 \le 10$$

Demo example with or-tools

```
from ortools.linear solver import pywraplp
solver = pywraplp.Solver.CreateSolver('DEMO','CBC')
INF = solver.infinity()
x1 = solver.NumVar(2, INF, 'x1')
x2 = solver.NumVar(2, INF, 'x2')
x3 = solver.IntVar(0, 10, 'x3')
c1 = solver.Constraint(-INF, 7)
c1.SetCoefficient(x1,4)
c1.SetCoefficient(x2,-1)
c1.SetCoefficient(x3,2)
c2 = solver.Constraint(5,5)
c2.SetCoefficient(x1,1)
c2.SetCoefficient(x2,1)
c2.SetCoefficient(x3,1)
```

Demo example with or-tools

```
c3 = solver.Constraint(-INF, 10)
c3.SetCoefficient(x1,3)
c3.SetCoefficient(x2,1)
c3.SetCoefficient(x3,-2)
obj = solver.Objective()
obj.SetCoefficient(x1,2)
obj.SetCoefficient(x2,4)
obj.SetCoefficient(x3,-1)
result status = solver.Solve()
assert result status == pywraplp.Solver.OPTIMAL
print('Optimal objective value = %f' % solver.Objective().Value())
print('x1 = ',x1.solution value(),'x2 = ',x2.solution value(),'x3 =
',x3.solution value())
```