CS308 Compiler Principles

Introduction to LLVM

Introduction to LLVM

- LLVM: Low Level Virtual Machine
- a collection of :
 - modular and reusable compiler
 - toolchain technologies
- sub-projects of LLVM:
 - The LLVM Core libraries
 - Clang
 - LLDB
 - compiler-rt

— ...

How to install LLVM

document:

http://llvm.org/docs/GettingStarted.html

Steps:

- \$svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm (may need to install subversion:\$sudo apt-get install subversion)
- \$cd Ilvm/tools
- \$svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
- \$cd llvm/projects
- \$svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt
- + \$mkdir build
- \$cd build
- ../Ilvm/configure
- make

LLVM instruction

- A kind of IR (Intermediate Representation)
- Website document:
 - http://llvm.org/docs/LangRef.html
- Some useful instructions:
 - Operator:

```
mul, sdiv, srem, add, sub, shl...
```

– Memory operation:

```
load, store...
```

– Branch operation:

```
icmp, br, ret...
```


Generate LLVM IR by clang

- Clang :an C/C++/Objective-C compiler
- used like GCC; faster than GCC
- build c source into LLVM instructions:
 - \$clang -emit-llvm test.c -S -o test.ll
- run LLVM instructions:
 - \$IIi test.II
- *.||:
 - need to be generated in project 2

Generate LLVM IR(con't)

- Special functions in project2 :
 - read() -> scanf()
 - write() -> printf()
- You can compile these two origin functions by clang to see how to read and write!

Resources

- Other compiler course:
 - Stanford:

http://web.stanford.edu/class/cs143/

- UCB:

http://www-inst.eecs.berkeley.edu/~cs164/archives.html

- CMU:

https://www.cs.cmu.edu/~fp/courses/15411-f13/