

GHS Series

Graphene Hall Effect Magnetic Field Sensors

Features:

- Extremely high sensitivity
- Very wide magnetic field range
- Unrivaled temperature range
- Extremely low power operation
- Ultra-low noise performance
- Exceptionally high measurement resolution

Description:

Paragraf's GHS series delivers the unique properties of graphene into magnetic field sensing applications. Utilising the inherently low noise characteristics of this two-dimensional material, the GHS series delivers outstanding field resolution without signal conditioning, whilst introducing new properties such as a negligible planar Hall effect and all-round robustness leading to unsurpassed operational temperatures and magnetic field ranges.

The GHS Series of analogue sensors is designed to provide very high-performance measurement, sensing and control for scientific research, healthcare, aerospace, industrial and automotive applications. This includes for example:

- Precision magnetic field measurement
- Accurate field gradient mapping and alignment
- High sensitivity current and power measurement
- High precision position, rotation and speed sensing
- Low power continuous monitoring

Benefits:

The GHS sensor series delivers to an extraordinary range of application demands. Paragraf can tailor the sensors to meet custom application requirements. Benefits to be exploited include:

- Operation under extremes of temperature < 1.5 K to > 423 K
- Resolution of incredibly small ($< \mu T$) magnetic field changes over large field ranges (> 9 T)
- Operation down to 10 nA, saving power and representing a tiny 5 pW heat dissipation
- Negligible planar Hall effect, aiding precise instrument positioning w.r.t. field direction
- Highly robust, enabling a tolerance to supply voltages > 200 V

To discuss specific requirements, contact hallsensors@paragraf.com

Performance Characteristics: GHS-02AT-LCC20

Parameter	Symbol	Value (typical)	Unit	Notes
Open Circuit Sensitivity @25°C	S	1400	V/AT	Increases with reducing temperature
Spectral Noise Density	SD	0.8	μT/VHz	Measured at 10-100 kHz, 2 V peak, 0.5 T
Linearity of Hall Voltage	F∟	0.5	%	-1 to 1 T
Planar Hall Effect	H_{PL}	<10	μV	I=I _N , 0.7 T
Operating Temperature	Тор	-40 <t<sub>op< +80</t<sub>	°C	Performance guaranteed within this range. Operation at 1.5 K demonstrated
Maximum recommended field	B_{max}	+/- 2T	Т	Performance guaranteed within this range. Operation to > 9 T demonstrated
Open Circuit Hall Voltage	V_{H}	140	mV	I=I _N and B=1 T
Offset Voltage	V_{R0}	8	mV	Typ. offset voltage I=I _N and B=0 T
		0.6	mV	Min. offset voltage at I=I _N and B=0 T
		34	mV	Max. offset voltage at I=I _N and B=0 T
Temp. coeff. offset voltage V _{RO}	V_{R0dmax}	<40	μV/K	Measured between 20-30 °C
Nominal Supply Current	I _N	0.1	mA	Device can be operated down to I=10 nA
Maximum Supply Voltage	V_{max}	25	V	
Maximum Supply Current	I_{max}	1	mA	
Supply Side Internal Resistance	R _{IN}	25	kΩ	B=0 T
Hall Side Internal Resistance	R _{out}	25	kΩ	B=0 T

Packaging Information: 20-pin LCC Ni-free package

	Pin	Notes	
V _{IN} +	1 or 11	Input voltage (V _{IN}) can be supplied with either	
V _{IN-}	11 or 1	polarity	
V _H +	6 or 16	Hall voltage (V _H) polarity	
V _H -	16 or 6	will depend on V _{IN} polarity and field polarity	

To discuss specific requirements, contact hallsensors@paragraf.com