ф.			_		_
Фа	M	и	л	и	Я

1. Выберите верные утверждения:

Nº	Задание	Ответ
а	Любой случайный оракул стойкий к нахождению коллизий	
	второго рода	
b	Любая стойкая к коллизиям второго рода хэш-функция является	
	стойкой к коллизиям первого рода	
С	Любая стойкая к коллизиям второго рода хэш-функция является	
	стойкой односторонней хэш-функцией	
d	Любой стойкий МАС с фиксированным ключом и сверх-	
	полиномиальной областью определения даёт стойкую к	
	коллизиям хэш-функцию	
е	На любую хэш-функцию на (M,T) возможна теоретическая атака	
	сложностью $O\left(\sqrt{ T }\right)$	
f	Атака на стойкость хэш-функции в модели случайного оракула	
	даёт атаку в модели односторонней хэш-функции	
g	Атака на стойкость к коллизиям второго рода для некоторой хэш-	
	функции даёт атаку на случайный оракул для данной функции.	
h	Отправка хэш-значения для некоторой величины по открытому	
	каналу гарантирует, что противник не сможет восстановить	
	данную величину. (используется хэш-функция, стойкая к	
	коллизиям второго рода)	
	Не заполнять!	/8

2. Рассмотри следующие функции сжатия

$$f_1 = AES(y, x) \oplus y$$

 $f_2 = AES(x, x) \oplus y$

Задача – найти 4 различные пары $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$:

$$f_1(x_1, y_1) = f_1(x_2, y_2)$$

 $f_2(x_3, y_3) = f_2(x_4, y_4)$

Необходимо вывести в виде формулы получение этих пар и представить ответ в виде hexстроки.

	Ответ
	Доп. Листы.
Не заполнять!	/4

3. Пусть H_1 и H_2 — стойкие к коллизиям хэш-функции на $M \to \{0,1\}^{256}$. Доказать, что $H_2(H_1(m))$ — стойкая к коллизиям хэш-функция. Доказать от противного — предположить, что $H_2(H_1(*))$ не стойкая к коллизиям.

	Ответ
Не заполнять!	/2

4. Пусть $H: M \to T$ — стойкая к коллизиям хэш-функция. Какая их описанных хэш-функций является стойкой? Формально докажите или опровергните стойкость.

Nº	Задание	Ответ
а	$H'(m) = H(m) \oplus H(m \oplus 1^{ m })$	
b	$H'(m) = H(m) \oplus H(m)$	
С	H'(m) = H(m) H(m)	
d	$H'(m) = H(m) \oplus H(0)$	
е	H'(m) = H(m) H(0)	
f	H'(m) = H(H(H(m)))	
g	H'(m) = H(0)	
h	H'(m) = HMAC(m, m)	
	Не заполнять!	/8

5. Докажите утверждения ниже

Пусть $H: M \to T$ – случайный оракул. |M| > |T|. Какова сложность нахождения тройной коллизии, т.е. трех различных величин $x,y,z \in M: H(x) = H(y) = H(z)$? (ответ + его вывод на доп. Листах)

	Ответ
Не заполнять!	/4

6. Почитать что такое дерево Меркла (Merkle tree), просмотра и осознание картинки на последней странице дз – достаточно.

Пусть имеется N=647 различных файлов. Ответе на вопросы ниже.

Nº	Задание	Ответ
а	Какова высота дерева меркла для вычисления хэш-значения,	
	обеспечивающего целостность всех файлов?	
b	Какое количество хэшей необходимо пересчитать, при замене	
	одного из файлов?	
С	Какое минимальное количество хэшей необходимо пересчитать	
	при замене 4-х файлов?	
d	Какое максимальное количество хэшей необходимо пересчитать	
	при замене 4-х файлов?	
е	Какое количество хэшей необходимо вычислить при построении	
	дерева?	
f	Сколько узлов хэш значений отвечает за целостность одного	
	файла?	
g	За целостность какого количество файлов отвечает корневой	
	узел?	
h	Предположим необходимо переслать один из файлов.	
	Предполагая, что получатель знает только значение корня дерева	
	(и может проверить только его) Меркла, какое минимальное	
	количество узлов дерева необходимо переслать вместе с файлом,	
	для осуществления проверки файла получателем? (authentication	
	path)	
	Не заполнять!	/8

Merkel's Tree

Merkle Tree

