

Dual JK Positive Edge-Triggered Flip-Flop

The MC74AC109/74ACT109 consists of two high-speed completely independent transition clocked JK flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The JK design allows operation as a D flip-flop (refer to MC74AC74/74ACT74 data sheet) by connecting the J and K inputs together.

Asynchronous Inputs:

LOW input to Sp (Set) sets Q to HIGH level LOW input to Cp (Clear) sets Q to LOW level Clear and Set are independent of clock
Simultaneous LOW on Cp and Sp makes both Q and Q HIGH

- · Outputs Source/Sink 24 mA
- 'ACT109 Has TTL Compatible Inputs

PIN NAMES

J ₁ , J ₂ , \overline{K}_1 , \overline{K}_2
CP ₁ , CP ₂
C_{D1} , C_{D2}
S _{D1} , S _{D2} _
Q_1, Q_2, Q_1, Q_1

Data Inputs Clock Pulse Inputs Direct Clear Inputs Direct Set Inputs Outputs

MC74AC109 MC74ACT109

DUAL JK POSITIVE EDGE-TRIGGERED FLIP-FLOP

D SUFFIX CASE 751B-05 PLASTIC

LOGIC SYMBOL

TRUTH TABLE

	Inputs					puts
S _D	CD	СР	J	K	Q	Q
L	Н	Χ	Х	Х	Н	L
Н	L	Χ	Χ	Χ	L	Н
L	L	Χ	Χ	Χ	Н	Н
Н	Н	厶	L	L	L	Н
Н	Н	」	Н	L	То	gg <u>le</u>
Н	Н		L	Н	Q_0	Q ₀ -
Н	Н	」	Н	Н	Н	_L
Н	Н	L	Χ	Χ	Q_0	Q ₀ -

H = HIGH Voltage Level

L = LOW Voltage Level

_ LOW-to-HIGH Clock Transition

X = Immaterial

 $Q_0(\overline{Q}_0) = \text{Previous } Q_0(\overline{Q}_0) \text{ before}$

LOW-to-HIGH Transition of Clock

LOGIC DIAGRAM (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Sink/Source Current, per Pin	±50	mA
Icc	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
Vaa	Supply Voltage	′AC	2.0	5.0	6.0	V
VCC	Supply Voltage	'ACT	4.5	5.0	5.5	v
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0		Vcc	V
		V _{CC} @ 3.0 V		150		
t _r , t _f Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V		40		ns/V	
	The state of the s	V _{CC} @ 5.5 V		25		
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V		10		0/
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V		8.0		ns/V
TJ	Junction Temperature (PDIP)				140	°C
TA	Operating Ambient Temperature Range		-40	25	85	°C
IOH	Output Current — High				-24	mA
lOL	Output Current — Low				24	mA

^{1.} V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	V _{CC}	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VIL	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VOH	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA
VOL	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	ΙΟυΤ = 50 μΑ
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5	-	4.0	40	μΑ	V _{IN} = V _{CC} or GND

* All outputs loaded; thresholds on input associated with output under test. † Maximum test duration 2.0 ms, one output loaded at a time. Note: $I_{\mbox{IN}}$ and $I_{\mbox{CC}}$ @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V $_{\mbox{CC}}$.

AC CHARACTERISTICS (For Figures and Waveforms — See Section 3)

				74AC		74	AC		
Symbol Parameter		V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	125 150			100 125		MHz	3-3
^t PLH	Propagation <u>Delay</u> CP _n to Q _n or Q _n	3.3 5.0	4.0 2.5		13.5 10.0	3.5 2.0	16.0 10.5	ns	3-6
^t PHL	Propagation <u>Delay</u> CP _n to Q _n or Q _n	3.3 5.0	3.0 2.0		14.0 10.0	3.0 1.5	14.5 10.5	ns	3-6
^t PLH	Propag <u>ati</u> on Delay C _{Dn} or S _{Dn} to Q _n or Q _n	3.3 5.0	3.0 2.5		12.0 9.0	2.5 2.0	13.0 10.0	ns	3-6
^t PHL	Propagation Delay CD _n or S _{Dn} to Q _n or Q _n	3.3 5.0	3.0 2.0		12.0 9.5	3.0 2.0	13.5 10.5	ns	3-6

 $^{^{\}star}$ Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

				74AC	74AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF Typ Guaranteed				Fig. No.
					d Minimum		
t _S	Set-u <u>p</u> Time, HIGH or LOW J _n or K _n to CP _n	3.3 5.0		6.5 4.5	7.5 5.0	ns	3-9
t _h	Hold $\underline{\text{Ti}}$ me, HIGH or LOW J_n or K_n to CP_n	3.3 5.0		0 0.5	0 0.5	ns	3-9
t _W	Pulse <u>Wi</u> dth _ CP _{n or} C _{Dn} or S _{Dn}	3.3 5.0		4.0 3.5	4.5 3.5	ns	3-6
^t rec	Recovery Time C _{Dn} or S _{Dn} to CP	3.3 5.0		0 0	0 0	ns	3-9

 $^{^*}$ Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			744	CT	74ACT		
Symbol	Parameter	V _{CC}	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VOH	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -24 mA I _{OH} -24 mA
VOL	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	ΙΟυΤ = 50 μΑ
		4.5 5.5		0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 24 mA 1 _{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND
∆ICCT	Additional Max. I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			-75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5		4.0	40	μΑ	V _{IN} = V _{CC} or GND

 $^{^{\}star}$ All outputs loaded; thresholds on input associated with output under test.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms — See Section 3)

				74ACT		74ACT			
Symbol	Parameter	V _{CC} * (V)	V _{CC} * T _A = +25°C (V) C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.	
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	5.0	145			125		MHz	3-3
^t PLH	Propagation <u>Delay</u> CP _n to Q _n or Q _n	5.0	4.0		11.0	3.5	13.0	ns	3-6
tPHL	Propagation <u>Delay</u> CP _n to Q _n or Q _n	5.0	3.0		10.0	2.5	11.5	ns	3-6
^t PLH	Propag <u>ati</u> on Delay C _{Dn} or S _{Dn} to Q _n or Q _n	5.0	2.5		9.5	2.0	10.5	ns	3-6
tPHL	Propagation Delay C _{Dn} or S _{Dn} to Q _n or Q _n	5.0	2.5		10.0	2.0	11.5	ns	3-6

^{*} Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

AC OPERATING REQUIREMENTS

				74ACT	74ACT		
Symbol	Parameter	V _{CC} *	T _A = +25°C C _L = 50 pF		$ \begin{array}{lll} T_{\text{A}} = +25^{\circ}\text{C} & T_{\text{A}} = -40^{\circ}\text{C} \\ C_{\text{L}} = 50 \text{ pF} & \text{to } +85^{\circ}\text{C} \\ C_{\text{L}} = 50 \text{ pF} \end{array} $		Fig. No.
			Тур	Guarantee	d Minimum		
t _S	Set-up_Time, HIGH or LOW J _n or K _n to CP _n	5.0		2.0	2.5	ns	3-9
^t h	Hold <u>Ti</u> me, HIGH or LOW J _n or K _n to CP _n	5.0		2.0	2.0	ns	3-9
t _W	Pulse Width _ CP _{n or} C _{Dn} or S _{Dn}	5.0		5.0	6.0	ns	3-6
t _{rec}	Recovery Time C _{Dn} or S _{Dn} to CP	5.0		0	0	ns	3-9

^{*} Voltage Range 5.0 V is 5.0 V ±0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	35	pF	V _{CC} = 5.0 V

OUTLINE DIMENSIONS

N SUFFIX PLASTIC DIP PACKAGE CASE 648-08 -A-ISSUE R В -T- SEATING **D** 16 PL 0.25 (0.010) M T A M \oplus

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Η	0.050	BSC	1.27	BSC
7	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
М	0°	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in not convey any license under its patent rights nor the rights of others. Motoroia products are not designed, interded to under a duminized in use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motoroia product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motoroia products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motoroia and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and una registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

