СОДЕРЖАНИЕ

1	СПЕКТРАЛЬНО-РАЗНОСТНОЕ МОДЕЛИРОВАНИЕ		
	РАСПРОСТРАНЕНИЯ СЕЙСМИЧЕСКИХ ВОЛН В УПРУГИХ		
	CPE	ДАХ	
	1.1	Постановка задачи	
	1.2	Метод решения	
		1.2.1 Спектрально-разностный метод	
		1.2.2 Фильтрация (+аппроксимация)	
2	ПРО	ОГРАММНАЯ РЕАЛИЗАЦИЯ	
	2.1	Последовательный алгоритм	
	2.2	Параллельный алгоритм	
	2.3	Адаптация и оптимизация под архитектуры	
3	CPA	ВНЕНИЕ С КОНЕЧНО-РАЗНОСТНЫМ МЕТОДОМ	
	3.1	Точность решения	
	3.2	Время работы ПО	
3A	КЛЮ	ОЧЕНИЕ	1
БV	тып	ОГРАФИЧЕСКИЙ СПИСОК	1

ВВЕДЕНИЕ

Исследование процесса распространения упругих волн в неоднородных средах широко используется при вибросейсмическом мониторинге различных геологических объектов. В связи с большими масштабами реальных задач и необходимостью решать обратную задачу геофизики, через решения набора прямых задач, возникает необходимость разработки экономичных с точки зрения используемой памяти и времени вычислений параллельных алгоритмов и программ, позволяющих с приемлемой точностью моделировать распространение упругих волн в неоднородных средах.

Спектральные методы являются альтернативными по отношению к стандартным конечно- разностным схемам для расчета сейсмических полей. Важным достоинством спектральных методов является высокая скорость сходимости, если решение обладает высокой степенью гладкости. Это позволяет получить хорошую точность взяв всего две-три пространственные гармоники на минимальную длину волны, что значительно меньше, чем при применении конечно-разностного метода второго порядка точности. Таким образом, можно получить экономию памяти ЭВМ в сочетании с высокой точностью вычислений.

В работе рассматривается 2D спектрально-разностный метод, основанный на объединении конечно-разностного метода по вертикальной координате и конечного преобразования Фурье по горизонтальной переменной. Возникающие при этом суммы типа свертки вычисляются с помощью БПФ. При использовании такого подхода для сред с разрывными параметрами возникает явление Гиббса, которое можно устранить, предварительно фильтруя и сглаживая разрывные функции таким образом, что бы получить решение сравнимое с конечно-разностным.

Таким образом, целью работы является разработка спектральноразностного параллельного алгоритма и программы на его основе для моделирования распространения упругих волн в 2D неоднородных слоистых средах с разрывными параметрами и исследование качества и времени решения по сравнению с конечно-разностным решением аналогичной задачи.

Задачами работы являются: 1) подбор фильтра и интерполяционного полинома для сглаживания разрывных параметров слоистой среды таким об-

разом, что бы получить поле качественно сравнимое с результатом конечно-разностного решения; 2) разработка и оптимизация параллельного программного обеспечения, реализующего спектрально- разностный метод и эффективно использующего современную вычислительную архитектуру; 3) исследование времени работы и масштабируемости разработанного ПО в сравнении с уже имеющимися программами, реализующими конечно-разностную схему Верье.

Работа предполагает оригинальное развитие известного спектральноразностного подхода на основе конечного преобразования Фурье к моделированию упругих волн в неоднородных средах, который может стать альтернативой стандартным конечно- разностным схемам. Отдельно отметим практическую значимость разработки таких подходов в связи с развитием программируемых логических схем (ПЛИС), выполняющих БПФ за минимальное время.

1 СПЕКТРАЛЬНО-РАЗНОСТНОЕ МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ СЕЙСМИЧЕСКИХ ВОЛН В УПРУГИХ СРЕДАХ

1.1 Постановка задачи

todo

1.2 Метод решения

todo

1.2.1 Спектрально-разностный метод

todo

1.2.2 Фильтрация (+аппроксимация)

2 ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

2.1 Последовательный алгоритм

todo

2.2 Параллельный алгоритм

todo

2.3 Адаптация и оптимизация под архитектуры

3 СРАВНЕНИЕ С КОНЕЧНО-РАЗНОСТНЫМ МЕТОДОМ

3.1 Точность решения

todo

3.2 Время работы ПО

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Каталог программных продуктов семейства Intel [Электронный ресурс] // Intel Россия URL: https://intel.com (дата обращения: 25.04.2020)