第3回模試テロ

- 【1】(1) $x=\frac{\sqrt{2}-1}{2}$ のとき, $4x^4-4x^3+3x^2-2x+1$ の値を求めよ.
 - $\log_{10} 2 = 0.3010, \log_{10} 3 = 0.4771$ とする. 45^{54} の桁数を求めよ.
- 【2】 \triangle OAB において、OA = 3、OB = 2、 \angle AOB = θ (0 < θ < π) とする. 0 < t < 1 を満たす実数の定数 t に対して、辺 OA を t: (1 -t) に内分する点を C、辺 OB の中点を D、線分 AD と線分 BC の交点を P とする.
 - (1) $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$ とする. \overrightarrow{OP} を $t, \overrightarrow{a}, \overrightarrow{b}$ を用いて表せ.
 - (2) 任意の θ に対して \overrightarrow{OP} と \overrightarrow{AB} が垂直にならないような t の値の範囲を求めよ.
- 【3】(1) 以下の数列の初項から第n 項までの和を求めよ.

$$1 \cdot 3, \ 3 \cdot 3^2, \ 5 \cdot 3^3, \ \cdots$$
, $(2n-1) \cdot 3^n$

(2) 以下の数列の初項から第n 項までの和を求めよ.

$$1 \cdot 3, \ 4 \cdot 3^2, \ 9 \cdot 3^3, \ \cdots \ , \ n^2 \cdot 3^n$$

- 【4】 放物線 $C: y=x^2$ 上に、2点 $A(\alpha, \alpha^2)$, $B(\beta, \beta^2)$ をとる. ただし、 $\alpha \neq \beta$ とする. 点 A における C の接線を l,点 B における C の接線を m とする.
 - (1) 直線 l, m の交点の座標を α, β を用いて表せ.
 - (2) 直線 l, m が直交するとき, $\alpha\beta$ の値を求めよ.
 - (3) 直線 l, m が直交するとき、その交点の軌跡を求めよ.
- 【5】 $\sqrt{n^2+5n}$ が整数になるような自然数 n をすべて求めよ.