

HCC/HCF4009UB HCC/HCF4010B

HEX BUFFER/CONVERTERS

4009UB-INVERTING TYPE 4010B-NON INVERTING TYPE

- CMOS TO DTL/TTL HEX CONVERTER
- HIGH-TO-LOW LEVEL LOGIC CONVERSION
- MULTIPLEXER: 1-TO-6 OR 6-TO-1
- HIGH"SINK" AND "SOURCE" CURRENT CA-PABILITY
- 5V, 10V AND 15V PARAMETRIC RATINGS
- MAXIMUM INPUT CURRENT OF 100 µA AT 18V OVER FULL
- PACKAGE AND TEMPERATURE RANGE; 100nA AT 18V AND 25°C
- 100% TESTED FOR QUIESCENT CURRENT AT 20V
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4009UB/4010B** (extended temperature range) and the **HCF4009UB/4010B** (intermediate temperature range) are monolithic integrated circuits available in 16-lead dual in line plastic or ceramic packages and plastic micropackage.

The HCC/HCF4009UB/4010B are inverting and

non-inverting Hex Buffer/Converters, respectively. Both devices can be used as CMOS to TTL or DTL logic-level converters, as current "sink" or "source" drivers or as multiplexer (1 to 6).

4049UB and **4050B** are prefered replacements for **4009UB** and **4010B**, respectively, in buffer applications.

PIN CONNECTIONS

September 1988 1/13

4009UB 4010B 4010B Voc GND Voc GND

SCHEMATIC DIAGRAM: COS/MOS TO DTL OR TTL CONVERTER (1 of 6 identical units)

Connect V_{CC} to DTL or TTL supply and V_{DD} to COS/MOS supply

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V V
Vi	Input Voltage	-0.5 to V _{DD} + 0.5	V
lı	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for Top = Full Package Temperature Range	100	mW
T _{op}	Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C
T_{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature: HCC Types	-55 to +125	°C
1	HCF Types	-40 to +85	°C

 $^{^{\}ast}$ All voltage values are referred to V_{SS} pin voltage.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

				Test Cond	ditios		Value							
Symbol	Parame	eter	Vı	Vo	lo	V_{DD}	TLC	ow * 25 °C				T _{HIGH} *		Unit
				(μA)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	1	
ΙL	Quiescent		0/5			5		1		0.02	1		30	
	Current	нсс	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/5			5		4		0.02	4		30	
		HCF	0/10			10		8		0.02	8		60	
		Types	0/15			15		16		0.02	16		120	
V _{OH}	Output High	<u> </u>	0/15			5	4.95	10	4.95	0.02	10	4.95	120	
V OH	Voltage	1	0/10			10	9.95		9.95			9.95		V
	ronago		0/15			15	14.95		14.95			14.95		•
1/	Output Low			+		5	14.95	0.05	14.95		0.05	14.95	0.05	
V_{OL}	Voltage		5/0					0.05			0.05		0.05	V
	Voltage		10/0			10		0.05			0.05		0.05	v
			15/0			15		0.05			0.05		0.05	
V_{IH}	Input High Voltage (40	OOLID)		0.5		5	4		4			4		V
	voltage (40	0906)		1		10	8		8			8		
				1.5		15	12.5		12.5			12.5		
V_{IH}	Input High	400)		4.5		5	3.5		3.5			3.5		.,
	Voltage (40	10B)		9		10	7		7			7		V
				13.5		15	11		11			11		
V_{IL}	Input Low			4.5		5		1			1		1	V
	Voltage (40	09UB)		9		10		2			2		2	
				13.5		15		2.5			2.5		2.5	
V_{IL}	Input Low			0.5		5		1.5			1.5		1.5	
	Voltage (40	10B)		1		10		3			3		3	V
				1.5		15		4			4		4	
I _{OH}	Output		0/5	2.5		5	-1		-0.8	-1.6		-0.58		
	Drive	HCC	0/5	4.6		5	-0.25		-0.2	-0.4		-0.15		
	Current	Types	0/10	9.5		10	-0.55		-0.45	-0.9		-0.33		
			0/15	13.5		15	-1.65		-1.5	-3		-1.1		mA
			0/5	2.5		5	-0.9		-0.8	-1.6		-0.65		
		HCF	0/5	4.6		5	-0.23		-0.2	-0.4		-0.18		
	T a a	0/10	9.5		10	-0.5		-0.45	-0.9		-0.38			
			0/15	13.5		15	-1.6		-1.5	-3		-1.25		
I _{OL}	Output		0/13	0.4		5	3.75		3	4		2.1		
IOL	Sink	HCC	0/3	0.4		10	10		8	10		5.6		
	Current	Types	0/10	1.5		15	30		24	36		16		~ Λ
			0/15	0.4		5			3	4				mA
		HCF					3.6					2.4		
		Types	0/10	0.5		10	0.96		8	10		6.4		
			0/15	1.5		15	40		24	36		1.9		
I _{IH} , I _{IL}	Input Leaka Current		0/18			18		±0.1		±10 ⁻⁵	±0.1		±1	μΑ
Cı	Input	4009UB		Any Inp	ut					15	22.6			
	Capacitance	e 4010B								5	7.5			pF

^{*} T_{LOW} = -55 °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} = 5 V, 2 V min. with V_{DD} = 10 V, 2.5 V min. with V_{DD} = 15 V

^{*} T_{HIGH} = +125 °C for **HCC** device: +85 °C for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Tes	t Condit	ions	Value			Unit		
Syllibol	raiailletei	V _{DD} (V)	V _I (V)	Vcc (V)	Min.	Тур.	Max.	Oilit		
tplH	Propagation Delay Time	5	5	5		70	140			
	(4009UB)	10	10	10		40	80	ns		
		10	10	5		35	70			
		15	15	15		30	60			
		15	15	5		30	60			
t _{PLH}	Propagation Delay Time	5	5	5		100	200			
	(4010B)	10	10	10		50	100			
		10	10	5		50	100	ns		
		15	15	15		35	70			
		15	15	5		35	70			
t _{PHL} I	Propagation Delay Time	5	5	5		30	60			
	(4009UB)	10	10	10		20	40	ns		
		10	10	5		15	30			
		15	15	15		15	30			
		15	15	5		10	20			
t _{PHL}	Propagation Delay Time	5	5	5		65	130			
	(4010B)	10	10	10		35	70	1		
		10	10	5		30	70	ns		
		15	15	15		25	50			
		15	15	5		20	40			
t _{TLH}	Transition Time	5	5	5		150	350			
		10	10	10		75	150	ns		
		15	15	15		55	110			
t _{THL}	Transition Time	5	5	5		35	70			
		10	10	10		20	40	ns		
		15	15	15		15	30			

Minimum and Maximum Voltage Transfer Characteristics for 4009UB

Typical Voltage Transfer Characteristics As a Function of Temperature for 4009UB

Minimum and Maximum Voltage Transfer Characteristics for 4010B

Minimum and Maximum Voltage Transfer Characteristics for 4010B

Typical Output Los (sink) Current Characteristics

Minimum and Maximum Voltage Transfer Characteristics for 4010B

Typical Voltage Transfer Characteristics As a Function of Temperature for 4010B

Minimum output Low (sink) Current Characteristics

Typical Output High (source) Current Characteristics

Typical Low to High Propagation Delay Time vs Load Capacitance for 4009UB

Typical Low to High Propagation Delay Time vs Load Capacitance for 4010B

Minimum output High (source) Current Characteristics

Typical High to Low Propagation Delay Time vs Load Capacitance for 4009UB

typical High to Low Propagation Delay Time vs Load Capacitance for 4010B

Typical Low to High Transition Time vs Load Capacitance

Typical High to Low Transition Time vs Load Capacitance

Typical Dissipation Characteristics

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.