CS4402: Constraint Programming

Week 4, Lecture 2: Constraint Modelling – Thinking Abstractly (5)

With thanks to Alan Frisch

Nesting Inside Sets

Nesting Inside Sets

- Being asked to find a set of some other object is common, so it is worth considering how to model this type of problem.
- Now we must choose how to model the outer type (e.g. explicit vs occurrence model of sets) as well as the inner.

Nested Sets

Consider the following simple problem class:

- Given m, n.
- Find a cardinality-m set of sets of n digits such that ...
- From what we have seen so far, we have three possibilities:
 - I. An occurrence representation.
 - 2. Outer: Explicit. Inner: Occurrence.
 - 3. Outer: Explicit. Inner: Explicit.

Nesting Inside Sets: Occurrence

• Recall the occurrence representation of a fixed-cardinality set of digits:

	0	1	2	3	4	5	6	7	8	9
U	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1

 We have an index per possible element of the set.

Nesting Inside Sets: Occurrence

Can we take the same approach here?

- Given m, n.
- Find a cardinality-m set of sets of n digits such that...

Introduce an array indexed by the possible sets of n digits!

{1, 2, 3}	{1, 2, 4}	{1, 2, 5}	(assuming n = 3)
0,1	0,1	0,1	

This is often not feasible.

Typically, when dealing with nesting the outer layers are represented **explicitly**.

Nesting Inside Sets: Outer Explicit

 Recall the explicit representation of a fixedcardinality set of digits:

E	1	2	3	4	n
-	09	09	09	09	 09

- Similarly to the sequence example, we extend the dimension of **E** according to the representation we choose for the inner set.
- We're also going to have to be careful to make sure the elements of the outer set are distinct.

Nesting Inside Sets: Explicit/Occurrence

- Given m, n.
- Find a cardinality-m set of sets of n digits such that...
- Let's consider an occurrence representation for the inner sets.

But what about symmetry?

EO	1	2	 m
0	0,1	0,1	0,1
1	0,1	0,1	0,1
2	0,1	0,1	0,1
9	0,1	0,1	0,1

Constraints:

- Sum(col i of EO) = n
 (forAll i in 1..m)
- Scalar-prod(col i of EO, col j of EO) ≠ n
 (forAll {i, j} in 1..m)

Modelling alldiff on cols here.8

Nesting Inside Sets: Explicit/Occurrence

- Given m, n.
- Find a cardinality-m set of sets of n digits such that...
- Let's consider an occurrence representation for the inner sets.

EO	1	2	 m
0	0,1	0,1	0,1
1	0,1	0,1	0,1
2	0,1	0,1	0,1
9	0,1	0,1	0,1

Constraints:

- Sum(col i of EO) = n
 (forAll i in I..m)
- col i of EO <_{lex} col i+1 of EO)
 (forAll i in 1..m-1)

Nesting Inside Sets: Explicit/Explicit

- Given m, n.
- Find a cardinality-m set of sets of n digits such that...
- Let's consider an occurrence representation for the inner sets.

EE	1	2	 m
1	09	09	09
2	09	09	09
3	09	09	09
n	09	09	09

Constraints:

- AllDiff on each column.
- col i of EE <_{lex} col i+1 of EE)
 (forAll i in 1..m-1)
- More symmetry?

Nesting Inside Sets: Explicit/Explicit

- Given m, n.
- Find a cardinality-m set of sets of n digits such that...
- Let's consider an occurrence representation for the inner sets.

EE	1	2	 m
1	09	09	09
2	09	09	09
3	09	09	09
n	09	09	09

Constraints:

- AllDiff on each column.
- col i of EE <_{lex} col i+1 of EE)
 (forAll i in 1..m-1)
- More symmetry? Yes: ascending order within each column

Relations as Sets of Tuples

- Last time we looked at a couple of ways of modelling relations.
- We can also view relations as sets of tuples.
- Recall our example:
 - Find a relation R between sets
 A = {1, 2, 3} and B = {2, 3, 4} such that...
- What happens when we try and model this from the perspective of a set of tuples?

Relations as Sets of Tuples: Occurrence

 We have an array indexed by the possible tuples:

<1,2>	<1,3>	<1,4>	
0,1	0,1	0,1	

 Basically same as the occurrence representation we came up with directly:

			В	
		2	3	4
	1	0,1	0,1	0,1
Α	2	0,1	0,1	0,1
	3	0,1	0,1	0,1

Relations as Sets of Tuples: Explicit

- Find a relation R between sets
 A = {1, 2, 3} and B = {2, 3, 4} such that...
- Maximum number of tuples is 9. Invoke our bounded-cardinality set pattern:

	1	3	4	5	
1	13	13	13	13	
2	24	24	24	24	

What about **symmetry**?

The Social Golfers Problem

The Social Golfers Problem

- In a golf club there are a number of golfers who wish to play together in g groups of size s.
- Find a schedule of play for w weeks such that no pair of golfers play together more than once.

The Social Golfers Problem: Modelling

- In each week, we need to **partition** the golfers into groups.
 - A partition is a set of sets. No pair of inner sets have an element in common.
- What about the weeks?
 - A sequence? But what does the order matter?
 - A set.

 So we can think of the problem as finding a set of partitions.

Golfers: Representing the Outer set

- We have seen explicit and occurrence representations of sets.
- The set contains complex objects (partitions).
- Indexing an array by the possible partitions of golfers doesn't seem appealing.
- So let's try an explicit model:

1	2	3	4	 W
?	?	?	?	?

Golfers: The Partitions

- In each week we want to partition the golfers into g groups of size s.
- That is, a set of cardinality g of sets of cardinality s.
- As per the previous discussion, probably sensible to represent the outer set explicitly.
- The inner set could be occurrence or explicit. Here we'll talk about an explicit/explicit representation.

Golfers: The Partitions

• Let n = number of golfers = g * s.

A Week		Group Size				
		1	2		S	
	1	1 n	1 n		1 n	
	2	1 n	1 n		1 n	
Groups	3	1 n	1 n		1 n	
	g	1 n	1 n		1 n	

Since a week is a partition, what can we say about the elements of **week**?

What about **symmetry**?

A set of Partitions of Golfers

• If we put **week** into each slot of our set representation, we obtain a 3d array:

NB $n = g \times s$ is no of golfers

We can **order the weeks** lexicographically to counter the equivalence of assignments obtained by permuting the weeks.

A set of Partitions of Golfers

 Need to ensure no pair of golfers meet more than once.

NB $n = g \times s$ is no of golfers

Equivalently: size of intersection of each pair of groups is at most I. Invoking our intersection pattern:

Sum of switches is at most I (one)

Social Golfers

 Solution to the instance with 3 groups (size 3) over 3 weeks:

		3 weeks	
	[1, 2, 3]	[1, 4, 7]	[1, 5, 9]
3 groups, size 3	[4,5,6]	[2,5,8]	[2,6,7]
	[7,8,9]	[3,6,9]	[3,4,8]

We've missed a symmetry! Can you spot it?

Nesting Summary

- Modelling problems involving nested combinatorial objects can be quite tricky.
- Using the patterns we've been looking at can help you to do it systematically.
- It can also help in spotting equivalence
 classes of assignments as you introduce them.
 - Which can be substantially cheaper than trying to detect symmetry after the fact.

Viewpoints Redux

Viewpoints

- Fundamental to the formulation of any constraint model is the selection of a viewpoint:
 - A set of decision variables and domains sufficient to characterise the problem.
- From this choice, the rest of the model (l.e. the constraints) follows.

Viewpoint Selection

- We have seen that selecting a good viewpoint is essential:
 - Make the wrong choice and writing down the constraints can be very awkward, probably leading to poor solving behaviour.
- What if a viewpoint makes expressing some of the constraints easy?
 - Might want to keep this viewpoint and use auxiliary variables to express the remaining constraints.

Auxiliary Variables

- Each variable in a CSP represents a choice that must be made to solve the problem being modelled.
- But by definition the original viewpoint is sufficient to represent all the choices in the original problem.
- These extra variables are **auxiliary** in the sense that they are not needed to characterise the problem.

Viewpoint (some constraints expressed in terms of these variables)

Auxiliary Variables (remaining constraints)

Channelling Constraints

- The choices that the auxiliary variables represent are also represented by the original viewpoint.
- We must make sure that the two sets of variables are consistent.
 - Channelling constraints:

Viewpoint (some constraints expressed in terms of these variables)

Auxiliary Variables Example

Steel Mill Slab Design

Decision Variables: The Order Matrix

		Orders			
		а	b	С	d
Slabs	1	0	0	1	1
	2	0	1	0	0
	3	1	0	0	0
	4	0	0	0	0

Can you see the symmetry?

What kind of abstract variable does this matrix represent?

Auxiliary Variables: The Colour Matrix

		Colours			
		red	green	blue	orange
	1	0	0	1	1
Slabs	2	0	1	0	0
	3	1	0	0	0
	4	0	0	0	0

Channelling constraints?

What kind of abstract variable does this matrix represent?

Auxiliary Variables: The Colour Matrix

		Colours			
		red	green	blue	orange
Slabs	1	0	0	1	1
	2	0	1	0	0
	3	1	0	0	0
	4	0	0	0	0

If Orders[i,j] = I Then Colours[colour_of(i), j] = I

Example 3 b d е Orange Red Green Blue Brown

Solution

$$s_1 = 4, s_2 = 3, s_3 = 3, s_4 = 3, s_i = 0 (5 \le i \le 9)$$

	o _a	o _b	O _C	o_{d}	O _e	Of	o _g	o_{h}	O _i
1	0	0	0	0	0	0	1	1	1
2	1	0	1	0	0	0	0	0	0
3	0	1	0	0	0	0	0	0	0
4	0	0	0	1	1	1	0	0	0
	0	0	0	0	0	0	0	0	0

	Red	Green	Blue	Orange	Brown
1	0	0	0	1	1
2	1	1	0	0	0
3	0	1	0	0	0
4	0	0	1	1	0
	0	0	0	0	0

Auxiliary Variables Example

Golomb Ruler

Golomb Ruler: Example

All Inter-tick Distances are Distinct

- This description immediately suggests the use of an all-different constraint.
- But all-different works on variables, not on pairs of variables.
- Solution?

Distance Variables

- Introduce an auxiliary variable per distance.
- Channelling constraint: dij = T[i] T[j]
- Distinct distances: alldifferent(dij)

Distance Variables

• A solution when n = 4.