Practical Malware Analysis

Ch 14: Malware-Focused Network Signatures

Network Countermeasures

Common Network Countermeasures

- Filtering with firewalls and routers
 - By IP address, TCP and UDP ports
- DNS Servers
 - Resolve malicious domain names to an internal host (a sinkhole)
- Proxy servers
 - Can detect or prevent access to specific domains

Content-Based Countermeasures

- These devices can look at layer 7 data (deep packet inspection)
 - IDS (Intrusion Detection System)
 - IPS (Intrusion Prevention System)
 - Email proxy
 - Web proxy

Observing the Malware in Its Natural Habitat

- Before static or dynamic analysis
- Mine logs, alerts, and packet captures generated by malware in its original location

Advantages of Real Networks

- Live-captured data is the most accurate
 - Some malware detects lab environments
- Real traffic contains information about both ends, infected host and C&C server
- Passively monitoring traffic cannot be detected by the attacker
 - OPSEC (Operational Security)

Indications of Malicious Activity

Table 15-1. Sample Network Indicators of Malicious Activity

Information type	Indicator
Domain (with resolved IP address)	www.badsite.com (123.123.123.10)
IP address	123.64.64.64
GET request	GET /index.htm HTTP 1.1 Accept: */* User-Agent: Wefa7e Cache-Control: no

OPSEC

- Preventing adversaries from obtaining sensitive information
- Running malware at home may alert attackers
 - Who expected it to be run in a company

Ways an Attacker Can Identify Investigative Activity

- Send spear-phishing email with a link to a specific individual
 - Watch for access attempts outside the expected geographic area
- Design an exploit that logs infections
 - In a blog comment, Twitter, Pastebin, etc.
- Embed an unused domain in malware
 - Watch for attempts to resolve the domain

Safely Investigate an Attacker

Online

Indirection Tactics

- Proxy server, Tor, Web-based anonymizer
 - Not subtle-it's obvious that you are hiding
- Use a dedicated VM for research
 - Hide its location with a cellular or VPN connection
- Use an ephemeral cloud machine
 - Such as an Amazon E2C virtual machine

Search Engines

- Usually safe
- If the domain was previously unknown to the search engine, it may be crawled
- Clicking results still activates secondary links on the site
 - Even opening cached resources

Getting IP Address and Domain Information

P Blacklists	Geo
	P Blacklists

Figure 15-1. Types of information available about DNS domains and IP addresses

Command-Line v. Web-Based Lookups

- whois and dig can be used, but they will expose your IP address
- Websites that do the query for you provide anonymity
 - May give more information

DomainTools

- Historical DNS records
- Reverse IP lookups
- Reverse whois (lookup based on contact information metadata)

RobTex

- Finds
 multiple
 domain
 names that
 point to a
 single IP
 address
- Checks blacklists

BFK DNS Logger

- Gathers data with passive DNS monitoring
- Stealthy

Content-Based Network

Countermeasures

Intrusion Detection with Snort

- Rule-based detection, can use:
 - TCP or IP headers
 - Size of payload
 - Connection state (such as ESTABLISHED)
 - Layer 7 payload data

Snort Rule to Block HTTP Traffic by User-Agent

alert tcp \$HOME_NET any -> \$EXTERNAL_NET \$HTTP_PORTS (msg:"TROJAN Malicious User-Agent"; content:"|0d 0a|User-Agent\: Wefa7e"; classtype:trojan-activity; sid:2000001; rev:1;)

Keyword	Description
msg	The message to print with an alert or log entry
content	Searches for specific content in the packet payload (see the discussion following the table)
classtype	General category to which rule belongs
sid	Unique identifier for rules
rev	With std, uniquely identifies rule revisions

Taking a Deeper Look

- Running the malware several times shows these User-Agent strings
- Rules can be fine-tuned to capture the malware without false positives

We4b58	We7d7f	Wea4ee
We70d3	Wea508	We6853
We3d97	We8d3a	Web1a7
Wed0d1	We93d0	Wec697
We5186	We90d8	We9753
We3e18	We4e8f	We8f1a
Wead29	Wea76b	Wee716

Combining Dynamic and Static

Analysis Techniques

Two Objectives of Deeper Analysis

- Full coverage of functionality
 - Provide new inputs to drive the malware down unused paths
 - Using iNetSim or custom scripts
- Understanding functionality, including inputs and outputs
 - Static analysis finds where and how content is generated
 - Dynamic analysis confirms the expected behavior

Danger of Overanalysis

Analysis level	Description
Surface analysis	An analysis of initial indicators, equivalent to sandbox output
Communication method coverage	An understanding of the code for each type of communication technique
Operational replication	The ability to create a tool that allows for full operation of the malware (a server-based controller, for example)
Code coverage	An understanding of every block of code

Hiding in Plain Sight

- Attackers mimic existing protocols
 - Often HTTP, HTTPS, and DNS
 - HTTP for beaconing (request for instructions)
 - HTTPS hides the nature and intent of communications
 - Information can be transmitted in DNS requests
 - For example, in long domain names

GETs

 Used to send a command prompt followed by a directory listing

GET /world.html HTTP/1.1

User-Agent: %^&NQvtmw3eVhTfEBnzVw/aniIqQB6qQgTvmxJzVhjqJMjcHtEhI97n9+yy+duq+h3b0RFzThrfE9AkK90YIt6bIM7JUQJdViJaTx+q+h3dm8jJ8qfG+ezm/C3tnQgvVx/eECBZT87NTR/fU

QkxmgcGLq

Cache-Control: no-cache

GET /world.html HTTP/1.1

Cache-Control: no-cache

User Agents

- Early malware used strange User-Agent strings
- This made it easy to block
- Valid user agent:

```
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C; .NET4.0E)
```

3 Possible User Agents

 Malware alternates between these to defeat detection

```
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2)
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; .NET CLR 1.1.4322)
```

Attackers Use Existing Infrastructure

 Botnet commands concealed in source code of a Web page

Leveraging Client-initiated Beaconing

- Hosts behind NATs or proxy servers have a concealed IP address
- Makes it difficult for attackers to know which bot is phoning home
- Beacon identifies host with an unique identifier
 - Such as an encoded string with basic information about the host

Understanding Surrounding Code

Malware beacon

```
GET /1011961917758115116101584810210210256565356 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache
```

URIs

```
/1011961917758115116101584810210210256565356 (actual traffic)
/14586205865810997108584848485355525551
/7911554172581099710858484848535654100102
/2332511561845810997108584848485357985255
```

Table 15-5. Windows Networking APIs

WinSock API	WinINet API	COM interface
WSAStartup	InternetOpen	URLDownloadToFile
getaddrinfo	InternetConnect	CoInitialize
socket	InternetOpenURL	CoCreateInstance

	Internetopen	
getaddrinfo	InternetConnect	CoInitialize
socket	InternetOpenURL	CoCreateInstance

getaddrinfo	InternetConnect	CoInitialize
socket	InternetOpenURL	CoCreateInstance
connect	InternetReadFile	Navigate
send	InternetWriteFile	
recv	HTTPOpenRequest	
WSAGetLastError	HTTPQueryInfo	

socket	InternetOpenURL	CoCreateInstance
connect	InternetReadFile	Navigate
send	InternetWriteFile	
recv	HTTPOpenRequest	
WSAGetLastError	HTTPQueryInfo	

HTTPSendRequest

Example Malware

- Uses InternetOpen and HTTPOpenRequest
- URI is generated from calls to
 - -GetTickCount, Random,
 gethostbyname

Sources of Network Content

- Random data
- Data from networking libraries
 - Such as the GET created from a call to HTTPSendRequest
- Hard-coded data
- Data about the host and its configuration
 - Hostname, current time, CPU speed
- Data received from other sources
 - Remote server, file system, keystrokes

Hard-Coded vs. Ephemeral Data

- Malware using lower-level networking APIs such as Winsock
 - Requires more manually-generated content to mimic common traffic
 - More hard-coded data
 - Likely the author makes a mistake that leaves a signature in the network traffic
 - May misspell a word like Mozilla

How URI is Generated

<4 random bytes>:<first three bytes of hostname>:<time from
GetTickCount as a hexadecimal number>

Identifying and Leveraging the Encoding Steps

<4 random byt	es>	:	<first 3="" bytes="" hostname="" of=""></first>	:	<time from<br="">GetTickCount></time>
0x91, 0x56, 0x	CD, 0x56	:	"m", "a", "l"	:	00057473
0x91, 0x56, 0x	CD, 0x56	0х3А	0x6D, 0x61, 0x6C	0x3A	0x30, 0x30, 0x30, 0x35, 0x37, 0x34, 0x37, 0x33
1458620586 58		58	10997108	58	4848485355525551
(([1-9] 1[0-9] 5]){0,1}[0-9])	2[0- [4}	58	[0-9]{6,9}	58	(4[89] 5[0- 7] 9[789] 10[012]){8}

Creating a Signature

- Avoid excessive complexity
 - Slows down the IDS
- Include enough detail to eliminate false positives

```
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"TROJAN Malicious Beacon "; content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)"; content:"Accept: * / *"; uricontent:"58"; content:!"|0d0a|referer:"; nocase; pcre:"/GET \/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8} HTTP/"; classtype:trojan-activity; sid:2000002; rev:1;)
```

Analyzing the Parsing Routines

 Malware strings and the Web page comments both include the string adsrv?

```
<!-- adsrv?bG9uZ3NsZWVw -->
```

- Parser looks for 3 elements
- <!-
- text
- -->

Table 15-7. Sample Malwar	e Commands

Base64 translation

superlongsleep

connect:www.example.com:88

shortsleep

Command example

Sleep for 1 hour longsleep bG9uZ3NsZWVw

c2hvcnRzbGVlcA==

Operation

c3VwZXJsb25nc2xlZXA=

run:www.example.com/fast.exe cnVuOnd3dy5leGFtcGxlLmNvbS9mYXN0LmV4ZQ== Download and execute a binary

Y29ubmVjdDp3d3cuZXhhbXBsZSSjb2060DA=

Sleep for 24 hours

Sleep for 1 minute

on the local system

a reverse shell

Use a custom protocol to establish

Possible Signatures

- The five possible commands
- These will work, but any change in the malware will evade them

```
<!-- adsrv?bG9uZ3NsZWVw -->
<!-- adsrv?c3VwZXJsb25nc2xlZXA= -->
<!-- adsrv?c2hvcnRzbGVlcA== -->
<!-- adsrv?cnVu
<!-- adsrv?Y29ubmVj
```

Targeting Multiple Elements

- These are more general
- The first one accepts any Base64 in a comment with the adsrv prefix

```
pcre:"/<!-- adsrv\?([a-zA-Z0-9+\/=]{4})+ -->/"
content:"<!-- "; content:"bG9uZ3NsZWVw -->"; within:100;
content:"<!-- "; content:"c3VwZXJsb25nc2xlZXA= -->"; within:100;
content:"<!-- "; content:"c2hvcnRzbGVlcA== -->"; within:100;
content:"<!-- "; content:"cnVu"; within:100; content: "-->"; within:100;
content:"<!-- "; content:"Y29ubmVj"; within:100; content:"-->"; within:100;
```

Making General Signatures

Target 1: User-Agent string, Accept string, no referrer

Target 2: Specific URI, no referrer

- Demo: capture GET in Wireshark
- User-Agent and Accept always appear together for normal browser traffic

Understanding the Attacker's

Perspective

Rules of Thumb

- Focus on elements of the protocol that are part of both end points
 - Look for elements that use code on both the client and server
 - It will be hard for the attacker to change them both

Rules of Thumb

- Focus on elements of the protocol known to be part of a key
 - Such as a User-Agent that identifies bot traffic
 - Again, it would require updating both ends to change
- Identify elements of the protocol that are not immediately apparent in traffic
 - This will be less likely to be used by other, sloppy, defenders who leak info to the attacker