Data in R

Sean Hellingman ©

Data Visualization and Manipulation through Scripting (ADSC1010) shellingman@tru.ca

Fall 2024

Topics

- Introduction
- Types of Data
- Importing Data

- Exporting Data
- Exercises and References

Introduction

- It is very important to understand the different types (classes) of data in R.
- There are different rules and operators that apply to different data types.
 - Can't use + to add two characters together.
- There are six basic types of data in R.

1. Numeric

- Numeric data are numbers that contain a decimal.
- They can technically be whole numbers also.
- Example: Num.Object <- 5.25

2. Integers

- Integers are data that do not contain a decimal.
- Example: Int.Object <- 5

3. Logical

- Logical (Boolean) data take on the value of either TRUE or FALSE.
- Another type of logical data called NA represents missing data.
- We will discuss a bit more about missing data later.

4. Character

- Character data are used to represent strings.
- Character strings are something like a word or multiple words.
- Characters can be ordered and turned into factors.

5. Complex

- The complex data type is used to specify purely imaginary values in R.
- The suffix i is used to denote the imaginary part.
- We will not be working with this data type in this course.

6. Raw

- The raw data type data type specifies values as raw bytes.
- Can use charToRaw() to convert character data to raw data.
- Can use rawToChar() to convert raw data to character data.
- We will not be working with this data type in this course.

Example 1

- Use the class() function in R to determine the class of the following objects:
 - V1 <- 3.14
 - V2 <- "3.14"
 - V3 <- "Thompson Rivers University"
 - V4 <- TRUE
 - V5 <- "TRUE"
 - V6 <- NA

Logical Tests for Class

- Can use is.[classOfData]() to test if an object is a specific class.
- Examples:
 - is.numeric() returns TRUE if the object is numeric.
 - is.character() returns TRUE if the object is a character.
 - is.logical() returns TRUE if the object is logical.

Converting Between Classes

- Can use as.[classOfData]() to convert (coerce) an object to a specific class.
- Examples:
 - as.numeric() converts the object to numeric.
 - as.character() converts the object to a character.
- Be careful you might end up with some unexpected results by doing this.

Logical Tests & Coercion Functions

Туре	Logical Test	Coercing
Character	is.character	as.character
Numeric	is.numeric	as.numeric
Logical	is.logical	as.logical
Factor	is.factor	as.factor
Complex	is.complex	as.complex

Example 2

- In R, run the following code:
 - V1 <- 3.14
 - is.character(V1)
 - is.numeric(V1)
 - V1.Char <- as.character(V1)
 - V1.Char
 - is.numeric(V1.Char)
 - V1.num <- as.numeric(V1.Char)
- What happens?

Types of Data

Importing and Exporting Data

Importing Data

- Most of the datasets you will work with come from outside of R.
- There are example dataset that are built into R packages.
- Import from saved files or spreadsheets (Typically CSV files).
- Can also import data directly from the internet (stock data).

Importing Data from R Packages

- Some R packages have built in datasets that are downloaded when the package is.
- To load a datset from an exising R package:
 - Load the package in R using library(package_name)
 - ② load the dataset using data("package_name")

Example 3

- Load the MASS package in R.
- Load the birthwt dataset from the MASS package.
- Spend a bit of time familiarising yourself with the data.

Importing Data from CSV Files

- The read.csv() command can read CSV files.
 - data <- read.csv("filename.csv", header = TRUE) or data <- read.csv("filename.csv") if your CSV file has a header.
 - data <- read.csv("filename.csv", header = FALSE)
 if your CSV file doesn't have a header.
- Note that we did not specify the file location
 - This only works if the CSV file is stored in the Working Directory.
 - If the file is not in the Working Directory, need to specify the file location.
 - Or change Working Directory to the file location using setwd("file path") first.

Example 4

- Download the Football22.csv dataset from moodle.
- Save the file in an appropriate location to work with.
- Set the proper working directory in R Studio.
- Import the dataset into your R markdown environment.

Importing Other Data Types

- R can also read data from other file types, such as:
 - read.fwf() reads fixed-width records.
 - read.table() reads tabular data files.
 - MySQL database.
 - R can also read Tabular or CSV data from the Web.
 - Or read data from HTML tables.
- More information available in the An introduction to R (1) textbook or online.

Importing Yahoo Finance Data

- Use the quantmod package to get data from Yahoo Finance.
 - Load the package: library(quantmod)
 - Select your symbols: vecOfSymbs = c("AAPL", "MSFT")
 - Run the getSymbols() function on selected dates.
 - getSymbols(vecOfSymbs, source = "yahoo", from =
 "1999-12-31", to = "2000-02-01")

Example 5

• Import the Apple (AAPL) and Microsoft (MSFT) Yahoo Finance data from 2012-12-31 to 2013-12-31.

Exporting R Data

- You can directly save R data objects within your working directory.
 - To save data: save(data1, file = "data.RData")
 - This is less computationally demanding than writing a new CSV file.
 - Remember: R will save the data to your working directory.

Writing a New CSV File

To save a matrix or data frame in a file using the CSV format:

```
write.csv(data, file="filename", row.names=FALSE)
or
```

```
write.csv(data, file="filename", row.names=TRUE)
```

- Generally, we will use the second option as our variables will usually have names.
- Note: the *readr* package is required for this.

Example 6

- Use the subset() function to create a dataframe with only La Liga teams from the *Football22.csv* dataset.
 - Football22_LaLiga <- subset(Football22,Football22\$League == "La Liga")
- Use the write.csv() to create a new CSV for the La Liga data.
- Use the save() to save the La Liga data as R data.
- Navigate to the file on your computer and notice the differences.

Other Ways to Export Data

- There are other ways to export data:
 - write.table()
 - fwrite() from the read.table package
 - write_tsv() for tab delimited files

Exercise 1

• What do you expect from each of the following? Execute and confirm.

```
• is.integer(44L)
```

- is.integer(44)
- is.integer(as.integer(44))
- as.integer(is.integer(44))
- is.integer(as.integer(is.integer(44)))
- is.integer(as.numeric(is.integer(44)))
- is.integer(44.2L)

Exercise 2

• What do you expect from each of the following? Execute and confirm.

```
• is.logical(TRUE)
```

- is.logical("TRUE")
- as.numeric(TRUE)
- is.numeric(as.numeric(TRUE))
- is.integer(as.numeric(TRUE))
- as.logical(as.numeric(FALSE))
- as.numeric("Go Canucks Go")
- is.numeric(as.numeric("Go Canucks Go"))

Exercise 3

- Load the Boston dataset from the MASS package in R.
- Familiarise yourself with the data, is there anything interesting?
- Practice changing directories and saving the data in different formats.
 - Feel free to delete the saved data after the exercise.

References & Resources

- Douglas, A., Roos, D., Mancini, F., Couto, A., & Lusseau, D. (2023). An introduction to R. Retrieved from https://intro2r.com/
 - https://www.r-bloggers.com/2021/09/r-data-types/
 - https://cran.r-project.org/web/packages/MASS/MASS.pdf