

Public policies, economics, and operations research: a trident for resource scarcity and supply chain disruption

Xiaowei Hu Department of Industrial and Manufacturing Engineering

Introduction

The humanity has been facing an unprecedented challenge of resource scarcity, e.g., lack of water, food, essential medical supply, etc. (as illustrated above)

What are considered scarce resource?

- o Natural resources: crops, fisheries, wildlife, petroleum, metals minerals water etc.
- o Non-renewable resources: fossil fuels, etc
- o Short-term high-demand commodities: PPE during COVID-19 pandemic.

What can cause resource scarcity?

- o Growing population and demand
- o Climate change
- o Geopolitical shift, trade wars
- o Rising risk of crises such as pandemics

Methods

We adopt a game-theory and convex mathematical optimization approach.

o Game theory: provides strategic dynamics between competing firms [1]. E.g., playing chess.

Results

We develop a general scarce resource supply chain network with policy instruments featuring the following traits:

- ♦ multi-product; ♦ cross-sector; ♦ competition;
- multiple transportation modal

The unified fiscal-monetary policy administered

$$\alpha_0^i(x) + \sum_{g=1}^G \alpha_g^i(\delta_g^{in})$$

 $\alpha_0^i(.), \alpha_0^i(.)$: the fix

The equilibrium of the supply chain flow pattern satisfies: $\langle F(X^*), X - X^* \rangle \ge 0, \quad \forall X^* \in \mathcal{X}$

Where, X is a collection of flow pattern in the network, X* is the equilibrium, and F is the entry function (see paper [3] for details)

Algorithm: modified projection method [4]

Step 0. Initialization

Set $X^0 \in \mathcal{K}$. Set $\tau =: 1$ and select φ such that $0 < \varphi \le 1/L$, where Lis the Linschitz constant for function F

Step 1. Construction and computation

Compute $\bar{X}^{\tau-1} \in \mathcal{K}$ by solving the variational inequality sub-problem

$$(\bar{X}^{\tau-1} + \varphi F(X^{\tau-1}) - X^{\tau-1}, X - \bar{X}^{\tau-1}) \ge 0, \forall X \in K.$$

Step 2 Adaptation

Compute $X^{\tau} \in \mathcal{K}$ by solving the variational inequality sub-problem

$$\langle X^{\tau} + \varphi F(\bar{X}^{\tau-1}) - X^{\tau-1}, \ X - X^{\tau} \rangle > 0, \quad \forall X \in \mathcal{K}.$$

Step 3. Convergence verification

If $|X^{\tau} - X^{\tau-1}| \le \epsilon$, for $\epsilon > 0$, a pre-specified tolerance, then, stop; otherwise, set $\tau =: \tau + 1$ and go to step 1.

COVID-19 pandemic has caused a demand surge in PPE. Many healthcare facilities have had shortage of medical gloves due to the distressed supply chain.

Question 1: How would a producer-stimulus help the pandemic-induced distress in a medical glove supply chain?

Answer 1: A flat-rate incentive on both latex gloves producers will restore the supply shortage of latex gloves at the residential facilities.

Question 2: Who should the government incentivize, the rubber farmers or glove producers?

Answer 2: Incentivizing the rubber farmers will result a higher welfare efficiency, e.g., a \$1 incentive yields a \$0.8 welfare gain, comparing to

Application II:

Humanity depends on the earth's physical resource and natural system to survive and flourish. We examine a food-energy-water nexus on: the stimulus packages, wealth taxes, and carbon footprint.

Question: With ex ante knowledge, what if we tax the "rich" and incentivize the "poor"?

Answer: The social welfare will be undercut.

Conclusions

- o A producer incentive is more beneficial to suppliers; a resource-owner incentive is more beneficial to the society.
- o A flat-rate incentives is more effective than the one with brackets.
- o producer incentive can be a viable relief for supply chain distress caused by demand surge.
- o A mixed fiscal-monetary policy may result in a net loss of welfare.

Literature cited

V.U: gradient of utility function

- [1] Nash, J.F.. (1950). Equilibrium points in n-person games. Proceedings of the national academy of sciences, 36(1), pp.48-
- [2] Gabay, D. and Moulin, H. (1980). On the uniqueness and stability of Nash-equilibria in noncooperative games. In Applied stochastic control in econometrics and management science, pages 271-293. North-Holland Publ. Co., Amsterdam,
- [3] Hu, Xiaowei, Peng Li, and Jaejin Jang. (2021). Relief and Stimulus in A Cross-sector Multi-product Scarce Resource Supply Chain Network. arXiv preprint arXiv:2101.09373.
- [4] Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems. Ekonomika Matematicheskie Metody, 12:747-756.
- [5] 117th Congress. (2021) H.R.1319 American Rescue Plan

Acknowledgments

Jaejin Jang (advisor)

Department of Industrial and Manufacturing Engineering, UW-

Rutgers Business School

For further information

See the following paper for more details.

Hu, Xiaowei, Peng Li, and Jaejin Jang. "Relief and Stimulus in A Cross-sector Multi-product Scarce Resource Supply Chain Network." arXiv preprint arXiv:2101.09373 (2021).

Xiaowei Hu: hu8@uwm.edu