Coding Assignment: Consistency Bound of the Perceptron Classifiers

Due 2014/10/22 23:59:59

1 Goal

Given three training datasets $\{(x^{(t)}, r^{(t)})\}_{t=1}^N$ of different N=10, 100, and 1000 respectively where $x^{(t)} \in \mathbb{R}$ is a scalar and $r^{(t)} \in \{1, -1\}$, your assignment is to 1) write the perceptron classifiers with three different lifting functions, $\Phi_1(x) = [x]$, $\Phi_2(x) = [x^2, x]$, and $\Phi_3(x) = [x^3, x^2, x]$, and 2) observe the gap between their generalization errors over the corresponding testing datasets $\{(x'^{(t)}, r'^{(t)})\}_{t=1}^M$ and the consistency bounds.

2 Steps

For each dataset and each lifting function:

- 1. Lift the input space to feature space.
- 2. Train a perceptron classifier $h := \underset{g(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b}{\operatorname{arg min}_{g(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b}} \Sigma_{t=1}^{N} 1(g(\Phi(\boldsymbol{x}^{(t)})) \neq r^{(t)})$ using the iterative training algorithm described below:
 - (a) Initiate the $\mathbf{w}^{(0)}$ and $b^{(0)}$ randomly to obtain $h^{(0)}$;
 - (b) At iteration $i = 0, 1, \dots$, predict the label of an example t using $h^{(i)}$:

$$y^{(t)} := \operatorname{sgn}(h^{(i)}(\Phi(\boldsymbol{x}^{(t)}))) = \operatorname{sgn}(\boldsymbol{w}^{(i)}\Phi(\boldsymbol{x}^{(t)}) + b^{(i)})$$

and obtain $h^{(i+1)}$ by:

$$m{w}^{(i+1)} = m{w}^{(i)} + \eta \sum_{t=1}^{N} (r^{(t)} - y^{(t)}) \Phi(m{x}^{(t)})$$

and

$$b^{(i+1)} = b^{(i)} + \eta \sum_{t=1}^{N} (r^{(t)} - y^{(t)})$$

for some small learning rate $\eta > 0$;

- (c) Repeate step (b) until either converagance $(\|\boldsymbol{w}^{(i+1)} \boldsymbol{w}^{(i)}\| < \epsilon)$ or the maximum iteration number (say 100) is reached.
- 3. Test your classifier using the provided corresponding testing dataset and get the generalization errors R[h]. You can't use any instances in the testing dataset when training your classifiers.
- 4. Given $\delta = 0.1$, plot the generalization error R[h] and its consistency bound:

$$R[h^*] + 2\sqrt{\frac{32}{N}\left(VC(\mathcal{H})\log\frac{Ne}{VC(\mathcal{H})} + \log\frac{4}{\delta}\right)}.$$

3 Datasets

The (x,r) pairs in the given datasets are generated using the following rules:

- 0.4N examples with label 1 in $\left[0,\frac{1}{9}\right]$ uniformly
- 0.5N examples with label -1 in $\left[\frac{1}{9}, \frac{2}{9}\right)$ uniformly
- 0.1N examples with label 1 in $[\frac{2}{9}, \frac{1}{3})$ uniformly

where N is the dataset size. Use the above clues to figure out $R[h^*]$.

4 Submission Requirements

- A report (README.*) containing:
 - 3 figures, one for each lifting function. In each figure, there should be two lines telling how the generalization error and consistency bound various as N becomes larger. The y-axis shows the values of errors and the x-axies shows the N in the 10, 100, 1000 order.
 - How you implement the classifier
 - * Discuss the figures mentioned above
 - * Anything else worth mentioning
- Pack all the above with your solutions to Assignment 2.