Shortest Path Problem

Motion Planning

Dijkstra's Algorithm, 1959 -- O(m + n log n) Fredman & Tarjan, 1987 using Fibonacci heaps

Geometric Shortest Paths

Polygon

Polygonal Domain

Geometric Shortest Paths

Polygon

Polygonal Domain

elastic band solution

elastic band solution

elastic band solution (locally shortest)

Funnel Algorithm -- O(n) Guibas, Lee & Preparata, early '80's

multiple elastic band solutions

multiple elastic band solutions

homotopic shortest path problem (shrinking an elastic band)

homotopic shortest path problem (shrinking an elastic band)

reducing to a graph problem

- construct visibility graph
- apply Dijkstra's graph algorithm

$$O(m + n \log n) = O(n^2)$$

Pocchiola & Vegter, Riviere, '95

Continuous Dijkstra

Continuous Dijkstra - O(n log n) Mitchell, Hershberger & Suri, '93

the general problem

- NP-hard
- PSPACE algorithm, Canny '88
- approximation algorithms
- efficient algorithm for paths on polyhedral surfaces

the general problem

NP-hard -- Canny & Reif, 1987

even for the case of parallel floating triangles

there are good approximation algorithms

Shortest Path Problem on a Polyhedral Surface

the spider and the fly problem

Dudeney, The Canterbury Puzzles, 1958

the spider and the fly problem

the spider and the fly problem

paths on polyhedral surfaces

- -- O(n⁵) O'Rourke, Suri, Booth, '85
- -- $O(n^2)$ Chen, Han, '96
- -- O(n log²n) Kapoor, '99
- -- approximation algorithms

paths on polyhedral surfaces

paths on polyhedral surfaces

paths on polyhedral surfaces

