AD [HA] zum 6. 11. 2013

Arne Struck, Lars Thoms

19. November 2013

- 1. a) Es liegen k^l Blätter maximal in der l. Ebene. Von jedem Knoten gehen k Knoten ab, das führt zum folgenden: 0. Ebene (root): $1=k^0$, 1. Ebene: $k=k^1$, 2. Ebene: $k\cdot k=k^2$, 3. Ebene: $k\cdot k\cdot k=k^3$... l.Ebene: k^l
 - b) Der volle Baum hat $\sum_{i=0}^{l} k^i = \frac{k^{i+1}-1}{k-1} = \frac{k^i+k^i\cdot(k-1)}{k-1} = \frac{k^i-1}{k-1} + k^i$ Knoten, die Summe der Knoten aller Ebenen (eine volle Ebene bemisst sich, wie in a) dargestellt auf k^l).
 - Der vollständige Baum hat $\sum\limits_{i=0}^{l-1} k^i + c = \frac{k^i-1}{k-1} + k^i k^l + c \; | c \in \mathbb{N} : 1 \leq c \leq k^l$ Blätter. Der vollständige Baum ist bis zu seiner vorletzten Ebene maximal gefüllt, deswegen die Summe bis l-1, c repräsentiert die Anzahl der Blätter in der letzten Ebene, welche zwischen einem (sonst wäre der Baum voll und hätte l-1 Ebenen) und k^l (ein voller Baum ist vollständig) Blättern.
 - d)
 Der Baum hat n-1 Kanten, da jeder Knoten (bis auf den Wurzelknoten) eine Kante besitzt durch die er mit seinem Elternknoten verbunden ist.
- **2.** a)

Die Laufzeit kann wie folgt (für OrderX) hergeleitet werden, die Reihenfolge der prints

$$print(v)$$
 $\Theta(1)$

ist nicht relevant. OrderX(l) $O(\frac{k-1}{2})$

$$Order X(r)$$
 $O(\frac{k-1}{2})$

Das master-Theorem ist nun anwendbar,

$$\begin{split} T(k) &= 2T(\left\lceil\frac{k-1}{2}\right\rceil) + \mathcal{O}(k^0) \\ \text{Da } \log_2 2 &= 1 \text{ gilt, folgt } \mathcal{O}(k^1) \end{split}$$

b)
Die Laufzeiten sind bei gleicher Knotenzahl identische (wie in a) zu sehen, alle Algorithmen haben die gleiche Anzahl an Aufrufen, da nirgends abgebrochen wird, außer wenn keine Kindknoten verfügbar sind).

Order1:	N	A	О	Е	I	F	M	R	L	U	S	G	A	R	Т	Н
Order2:	I	Е	О	F	A	R	M	L	N	G	S	A	U	Т	R	Н
Order3:	I	Е	F	О	R	L	M	A	G	A	S	Т	Н	R	U	N

d) $\mbox{ Der LOVELYTREE nach Order 2:}$

Nach Level-Order: Order3: T | E | E | O | Y | R | E | L | V | L

e)
Ternärer Baum mit vorgegebener Befehlsreihenfolge:

Ausgabe: Order3: A | L | G | O | R | I | T | H | M | S | A | R | E | F | U | N |

$$\left(x \cdot \frac{\ln(n)}{\ln(x)}\right)' = \frac{\ln(n)}{\ln(x)} + \left(\frac{\ln(n)}{\ln(x)}\right)'$$

$$= \frac{\ln(n)}{\ln(x)} - \frac{\ln(n)\ln(x)'}{(\ln(x))^2}$$

$$= \frac{\ln(n)}{\ln(x)} - \frac{\ln(n)\ln(x)'}{(\ln(x))^2}$$

$$= \frac{\ln(n)}{\ln(x)} - \frac{\ln(n)}{x(\ln(x))^2}$$

$$= \frac{\ln(n)\ln(x)}{\ln(x)^2} - \frac{\ln(n)}{x(\ln(x))^2}$$

$$= \frac{\ln(n)\ln(x)}{\ln(x)^2} - \frac{\ln(n)}{x(\ln(x))^2}$$

$$= \frac{\ln(n)(\ln(x) - 1)}{\ln(x)^2}$$

Man sieht, dass einer der Faktoren im Zähler 0 sein muss, damit $\frac{\ln(n)(\ln(x)-1)}{\ln(x)^2}=0$ gilt. Da n beliebig, aber fest ist, ist die Frage, für welches x dies gilt. Wenn x=e gilt, dann folgt $\frac{\ln(n)(\ln(e)-1)}{\ln(e)^2}=\frac{0}{1}$

Da es sich um die einzige Extremstelle handelt, ist es das gesuchte Minimum.

b)

Wir wissen aus b), dass das ideale x=k=e gilt, da $k\in\mathbb{N}$ gilt und e näher an 3, als an 2 ist, ist k=3 die optimale Belegung für jedes n

c)

k=2 wird verwendet, weil die momentane Rechnerstrukturen, Binärstrukturen einfacher verarbeiten können.

- d) Da der Wurzelknoten des jeweiligen Max-Heaps das größte Kind darstellt, ist der Aufwand für einmal vertauschen 1. Allerdings wird durch das Vertauschen im Max-Heap die Max-Heap-Eigenschaft gestört und muss wieder hergestellt werden. Dies dauert im worst-case $\frac{k}{2}$ Schritte. Es treten allerdings nicht nur Veränderungen im Max-Heap des Elternknotens auf, sondern auch in dem des (ehemaligen) Kindknotens und dem des Elternknotens des Elternknotens. Auch diese müssten wieder Heapified werden. Da für einen Binär-Heap mit k Elementen $2\lceil \log_2(k) \rceil \cdot 2$ und es 3 zu verändernde Max-Heaps existieren gilt folgt: $k \cdot 3 \cdot (\lceil \log_2(k) \rceil + 2) + 1$ für die notwendige Schrittzahl.
- e)
 Es sind 2 Vertauschungen vom Originalbaum weg notwendig:

Es ist eine Vertauschung vom Originalbaum notwendig:

f) Wir wissen, dass ein k-närer Baum $\lceil k \log_k(n) \rceil$ Schritte benötigt, daraus folgt folgender Beweis:

Beh.:

 $\forall n \in \mathbb{N} \text{ gilt: } \lceil 3\log_3(n) \rceil \leq \lceil 2\log_2(n) \rceil$

I.Anf.:

 $\lceil 3\log_3(1) \rceil = 0 = \lceil 2\log_2(1) \rceil$

I.A.:

Die Behauptung gilt für ein bestimmtes, aber frei wählbares $n \in \mathbb{N}$

```
I.S.: (z.z.: \lceil 3\log_3(n+1) \rceil \le \lceil 2\log_2(n+1) \rceil)

\lceil 3\log_3(n+1) \rceil = \lceil 3\frac{\ln(n+1)}{\ln(3)} \rceil
= \lceil \ln(n+1)\frac{3}{\ln(3)} \rceil \le \lceil \ln(n+1)\frac{2}{\ln(2)} \rceil
= \lceil 2\frac{\ln(n+1)}{\ln(2)} \rceil
= \lceil 2\log_2(n+1) \rceil
Damit ist die Behauptung bewiesen \square
```

4. a)

```
\begin{array}{c} \operatorname{merge}(22579,1248) \\ 1 \circ \operatorname{merge}(22579,248) \\ 12 \circ \operatorname{merge}(2579,248) \\ 122 \circ \operatorname{merge}(579,248) \\ 1222 \circ \operatorname{merge}(579,48) \\ 12224 \circ \operatorname{merge}(579,8) \\ 122245 \circ \operatorname{merge}(79,8) \\ 1222457 \circ \operatorname{merge}(9,8) \\ 12224578 \circ \operatorname{merge}(9,[]) \\ 122245789 \end{array}
```

b) Input(splitted): 6 7 8 3 4 2 9 1

c) Die erste Möglichkeit ist in merge $x[1] \leq y[1]$ zu $x[1] \geq y[1]$ abzuändern, wie folgt dargestellt:

```
function \operatorname{MERGE}(x[1..k],y[1..l])

if k=0 then
	return y[1..l]

end if

if l=0 then
	return x[1..k]

end if

if x[1] \geq y[1] then
	return x[1] \circ \operatorname{MERGE}(x[2..k],y[1..l])

else
	return y[1] \circ \operatorname{MERGE}(x[1..k],y[2..l])

end if

end function
```

Oder man stellt die Ausführung der Konkatenation in merge um, wie im Folgenden:

5. a)

Man nutzt einen Stack, um den Queue-Eingang (in) und einen um den Queue-Ausgang (out) zu simulieren. Soll ein Element(e) in die Queue eingefügt werden, wird einfach einmal push auf dem Eingang-Stack ausgeführt. Soll nun ein Element aus der Schlange entfernt werden, wird der Eingang-Stack komplett auf den Ausgang-Stapel umgestapelt (sie liegen hier also in reverser Reihenfolge vor), daraufhin wird das oberste Element gepullt. Als Abschluss wird der Ausgang-Stapel zurück auf den Eingang-Stapel umgestapelt. Auf diese Weise ist das First-in-First-Out- Prinzip erfüllt. Die worst-case-Laufzeit beträgt für Dequeue() $\mathcal{O}(n)$, die von Enqueue() beträgt $\mathcal{O}(1)$.

```
function Enqueue(e)
in.push(e)
end function
function Dequeue
while !in.isEmpty() do
out.push(in.pop)
end while
out.pull()
while !out.isEmpty() do
in.push(out.pop)
end while
end function
```

b)

Die worst-case-Laufzeit der Folge von n Operationen ist $n \cdot k$, wobei k den Betrag der Menge der Elemente auf den Stacks darstellt. Die worst-case-Laufzeit ist ein ewiges hintereinanderausführen von Dequeue() (so lange k groß genug ist). Damit liegt T_n in $\mathcal{O}(n)$, die amortisierte Laufzeit berechnet sich dann wie folgt: $\frac{n \cdot k}{n} = k$. k ist zwar keine Konstante (da sie durch Dequeue verringert wird), aber selbst wenn man k als eine solche auffasst liegt die amortisierte Laufzeit in $\mathcal{O}(1)$.