Köthe sequence spaces

(EXERCISES FOR LECTURE 11)

- **8.1.** Prove that every Köthe space $\lambda^{\nu}(I, P)$ is complete.
- **8.2.** Let P be a Köthe set on a set I, and let $\nu \in [1, +\infty]$.
- (a) Assume that $p_i > 0$ for all $p \in P$ and all $i \in I$. Construct a topological isomorphism between $\lambda^{\nu}(I, P)$ and the projective limit of a family of the Banach spaces $\ell^{\nu}(I)$ where the connecting maps of the projective system are diagonal operators.
- (b) Extend (a) to an arbitrary Köthe set P.
- **8.3.** Consider the Köthe set $P = \{p^{(1)}, p^{(2)}, \ldots\}$ on \mathbb{N} , where $p^{(m)} = (1, \ldots, 1, 0, 0, \ldots)$ (the first m entries are equal to 1, the other entries are 0).
- (a) Show that for every $\nu \in [1, +\infty]$ we have $\lambda^{\nu}(\mathbb{N}, P) = \mathbb{K}^{\mathbb{N}}$ topologically.
- (b) Extend (a) to the space \mathbb{K}^S , where S is an arbitrary set.
- **8.4.** Consider the Köthe set $P=\{p^{(1)},p^{(2)},\ldots\}$ on \mathbb{N} , where $p_k^{(m)}=k^m$. Show that for every $\nu\in[1,+\infty]$ we have $\lambda^{\nu}(\mathbb{N},P)=s$ topologically. (Recall that $\lambda^{\infty}(\mathbb{N},P)=s$ by definition, see Exercise sheet 2.)
- **8.5.** Consider the Köthe set $P = \{p^{(1)}, p^{(2)}, \ldots\}$ on $\mathbb{Z}_{\geq 0}$, where $p_k^{(m)} = m^k$. Show that for every $\nu \in [1, +\infty]$ there is a topological isomorphism $\lambda^{\nu}(\mathbb{Z}_{\geq 0}, P) \cong \mathscr{O}(\mathbb{C})$.
- **8.6.** Consider the Köthe set $P = \{p^{(1)}, p^{(2)}, \ldots\}$ on \mathbb{Z}^n , where $p_k^{(m)} = (1 + |k|)^m$. Show that for every $\nu \in [1, +\infty]$ we have $\lambda^{\nu}(\mathbb{Z}^n, P) = s(\mathbb{Z}^n)$ topologically. (We have $\lambda^{\infty}(\mathbb{Z}^n, P) = s(\mathbb{Z}^n)$ by definition, cf. Exercise sheet 2.)
- **8.7.** Given $R = (R_1, \ldots, R_n) \in (0, +\infty]^n$, define a Köthe set P on $\mathbb{Z}_{\geq 0}^n$ by letting

$$P = \{p^{(r)} : r = (r_1, \dots, r_n) \in (0, R_1) \times \dots \times (0, R_n)\},\$$

where $p_k^{(r)} = r_1^{k_1} \cdots r_n^{k_n}$ for $k = (k_1, \dots, k_n) \in \mathbb{Z}_{\geq 0}^n$. Show that for every $\nu \in [1, +\infty]$ there is a topological isomorphism $\lambda^{\nu}(\mathbb{Z}_{\geq 0}^n, P) \cong \mathcal{O}(\mathbb{D}_R^n)$, where $\mathbb{D}_R^n = \{z \in \mathbb{C}^n : |z_i| < R_i \ \forall i = 1, \dots, n\}$ is the open polydisk in \mathbb{C}^n of polyradius R.

8.8 (the Aizenberg-Mityagin theorem). An open set D in \mathbb{C}^n is a complete Reinhardt domain if for each $z=(z_1,\ldots,z_n)\in D$ and each $(\lambda_1,\ldots,\lambda_n)\in\mathbb{C}^n$ such that $|\lambda_i|\leqslant 1$ $(i=1,\ldots,n)$ we have $(\lambda_1z_1,\ldots,\lambda_nz_n)\in D$. Given a complete bounded Reinhardt domain D and $k=(k_1,\ldots,k_n)\in\mathbb{Z}^n_{\geqslant 0}$, let $b_k(D)=\sup_{z\in D}|z_1^{k_1}\cdots z_n^{k_n}|$. Define a Köthe set P on $\mathbb{Z}^n_{\geqslant 0}$ by letting

$$P = \{(b_k(D)s^{|k|})_{k \in \mathbb{Z}_{\geq 0}^n} : 0 < s < 1\}$$

where $|k| = k_1 + \dots + k_n$ for $k = (k_1, \dots, k_n) \in \mathbb{Z}_{\geq 0}^n$.

- (a) Show that for every $\nu \in [1, +\infty]$ there is a topological isomorphism $\lambda^{\nu}(\mathbb{Z}_{\geq 0}^n, P) \cong \mathscr{O}(D)$.
- (b) Show that, if $D = \mathbb{D}_R^n$ is the open polydisk of polyradius R, then (a) yields the result of Exercise 8.7.
- (c) Give an explicit form of (a) in the case where $D = \mathbb{B}_R^n = \{z \in \mathbb{C}^n : \sum |z_i|^2 < R^2\}$ is the open ball of radius R.
- **8.9.** Given $z \in \mathbb{C}$, construct a topological isomorphism $\mathscr{O}_z \cong \lambda^{\nu}(\mathbb{Z}_{\geq 0}, P)$, where P is a suitable Köthe set on $\mathbb{Z}_{\geq 0}$, and where $\nu \in [1, +\infty]$ is arbitrary. As a corollary, \mathscr{O}_z is complete. (*Hint:* see Exercise 6.17 (a).)

8.10. Consider the vector space of tempered sequences

$$X = \Big\{ x = (x_n) \in \mathbb{K}^{\mathbb{N}} : \sup_{n \in \mathbb{N}} |x_n| n^{-k} < \infty \text{ for some } k \in \mathbb{N} \Big\}.$$

We equip X with the locally convex inductive limit topology of the sequence $(X_k)_{k\in\mathbb{N}}$ of Banach spaces, where

$$X_k = \left\{ x = (x_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}} : ||x||_k = \sup_{n \in \mathbb{N}} |x_n| n^{-k} < \infty \right\}$$

and the connecting maps $X_k \to X_\ell$ $(k \leq \ell)$ are the tautological inclusions.

(a) Let s' denote the strong dual of the space s of rapidly decreasing sequences. Show that the map

$$s' \to X$$
, $F \mapsto (x_n(F) = F(e_n))_{n \in \mathbb{N}}$,

is a topological isomorphism (here e_n is the sequence with 1 in the nth slot, 0 elsewhere).

(b) Let P denote the family of all nonnegative sequences from s. Show that, for each $\nu \in [1, +\infty]$, we have $X = \lambda^{\nu}(\mathbb{N}, P)$ topologically.

8.11. Consider the vector space

$$X = \Big\{ x = (x_n) \in \mathbb{C}^{\mathbb{Z}_{\geqslant 0}} : \sup_{n \in \mathbb{N}} |x_n| r^{-n} < \infty \text{ for some } r > 0 \Big\}.$$

We equip X with the locally convex inductive limit topology of the family $(X_r)_{r>0}$ of Banach spaces, where

$$X_r = \left\{ x = (x_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{Z}_{\geqslant 0}} : ||x||_r = \sup_{n \in \mathbb{N}} |x_n| r^{-n} < \infty \right\}$$

and the connecting maps $X_r \to X_s$ $(r \geqslant s)$ are the tautological inclusions.

(a) Let $\mathcal{O}(\mathbb{D})'$ denote the strong dual of the space $\mathcal{O}(\mathbb{D})$ of holomorphic functions on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that the map

$$\mathscr{O}(\mathbb{D})' \to X, \quad F \mapsto (x_n(F) = F(z^n/n!))_{n \in \mathbb{Z}_{\geqslant 0}},$$

is a topological isomorphism.

(b) Let P denote the family of all nonnegative sequences $p = (p_n)_{n \ge 0}$ such that the sequence $(p_n r^n)$ is bounded for all $r \in (0,1)$ (equivalently, such that the power series $\sum_n p_n z^n$ converges in \mathbb{D}). Show that, for each $\nu \in [1, +\infty]$, we have $X = \lambda^{\nu}(\mathbb{Z}_{\ge 0}, P)$ topologically.