MATH 425b ASSIGNMENT 9 SPRING 2009 Prof. Alexander Due Friday April 22.

Rudin Chapter 10 # 2, 3b, 8 and:

(I) Let $\Phi: D \to \mathbb{R}^3$ be a 2-surface and let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be \mathcal{C}' . (We can think of f as a vector field.) Define a 2-form

$$\omega_f = f_1 \ dx_2 \wedge dx_3 + f_2 \ dx_1 \wedge dx_3 + f_3 \ dx_1 \wedge dx_2.$$

Assume Φ is one-to-one; for $p \in D$ the tangent space to Φ at $\Phi(p)$ is range($\Phi'(p)$), which is the linear span of $\Phi'(p)e_1$ and $\Phi'(p)e_2$. The normal vector at $\Phi(p)$ is the cross product $N(p) = \Phi'(p)e_1 \times \Phi'(p)e_2$. Show that

$$\int_{\Phi} \omega_f = \int_{D} f(\Phi(p)) \cdot N(p) \ dp.$$

What happens if the vector field "flows along the surface", that is, $f(\Phi(p))$ is in the tangent space at $\Phi(p)$ for all p?

(II) Let

$$\omega = (x_1x_2 + x_3^2) \ dx_4 \wedge dx_1 \wedge dx_2 - 3x_4 \ dx_4 \wedge dx_2 \wedge dx_1, \quad \omega' = x_3 \ dx_2 \wedge dx_1 + x_4^2 \ dx_3 \wedge dx_5$$

Calculate $\omega \wedge \omega'$ and $d\omega$ and give the standard presentation of each.

- (III) Let $\gamma:[c,d]\to\mathbb{R}^n$ be a 1-surface (i.e. a curve) and let ω be a 1-form in \mathbb{R}^n . Let φ be a \mathcal{C}' map of [a,b] into [c,d] with $\varphi'>0$, so that $\alpha=\gamma\circ\varphi$ defines a parametrization of γ . Show that $\int_{\gamma}\omega=\int_{\alpha}\omega$.
- (IV) Suppose the trace of γ is the intersection of the unit circle and the upper half plane, and $\omega = y \ dx$. Find a natural parametrization of γ and calculate $\int_{\gamma} y \ dx$.
- (V) Let Q be the unit square $[0,1] \times [0,1]$, define T on \mathbb{R}^2 by $T(u,v) = (u-v^2,u^2+v)$, and let A = T(Q).
 - (a) Sketch A, by computing the image under T of each of the 4 sides of Q.
 - (b) Show that T is 1-1 on Q.
 - (c) Calculate $\int_A x \ dx \ dy$.
- (VI) For $\mathbf{x} \in \mathbb{R}^3$, let $R(\mathbf{x})$ denote the distance from $\mathbf{x} = (x, y, z)$ to the x-axis. The moment of inertia of a body $A \subset \mathbb{R}^3$ about the x-axis is given by $\int_A R(\mathbf{x})^2 d\mathbf{x}$. Suppose f is a positive

continuous function on an interval [a, b] and A is the body obtained by rotating the region $0 \le y \le f(x)$ around the x-axis. Find the moment of inertia of such an A. Express your answer as a one-dimensional integral, where the integrand depends on f(x), like for example $\int \cos(f(x)) dx$ or $\int f(x)^2 dx$, with appropriate limits on the integral.

HINTS:

- (3)(b) This is similar to the proof done in lecture for 90-degree rotation.
- (8) We know $T\mathbf{x} = \mathbf{b} + A\mathbf{x}$ for some \mathbf{b}, A . T(0,0) = (1,1) tells you \mathbf{b} ; then you must find Ae_1 and Ae_2 to determine A.
- (V)(b) This is "brute force" calculation—no real tricks or short cuts. Suppose T(s,t) = T(u,v) with $(s,t), (u,v) \in Q$. Use the fact you can factor the difference of two squares, and the fact that all of s,t,u,v are nonnegative, to help you show that s=u,t=v.
 - (c) Change of variable.
- (VI) Figure out what change of variable makes this easier.