Введение

Создание нового лекарственного препарата — сложный процесс, включающий определение химической формулы, синтез соединений, биологические испытания и клинические тесты. Машинное обучение ускоряет этот процесс, позволяя прогнозировать эффективность химических соединений. В проекте проанализированы данные о 1000 соединениях для предсказания их активности против вируса гриппа. Параметры: IC50 (концентрация, ингибирующая 50% вируса), CC50 (токсичность для 50% клеток), SI (селективный индекс, (SI = \frac{CC50}{IC50})). Соединения с SI > 8 — потенциально эффективные.

Цель — построить модели регрессии для логарифмов IC50, CC50, SI и классификации для определения превышения медианы и SI > 8. Отчет описывает датасет, обработку, моделирование, результаты и QSAR-анализ.

Описание датасета

Датасет содержит 1000 соединений с числовыми признаками, IC50mM, CC50mM, SI. Загружен из data/coursework data.xlsx.

Характеристики до обработки

• Размер: 1001 строк, 214 столбцов.

Пропуски: 36.

Типы данных: 107 float64, 107 int64.
Выбросы: В IC50*mM*, *CC50*mM, SI.

					250			
Unnamed: 0	count 1001.0	mean 5.000000e+02	std 2.891100e+02	min 0.00	25% 250.00	50% 500.00	75% 750.00	max 1.000000e+03
IC50, mM	1001.0	2.228100e+02	4.021700e+02	0.00	12.52	46.59	224.98	4.128530e+03
CC50, mM	1001.0	5.891100e+02	6.428700e+02	0.70	100.00	411.04	894.09	4.538980e+03
SI MayAbsEStateIndex	1001.0	7.251000e+01	6.844800e+02	0.01	1.43	3.85	16.57	1.562060e+04
MaxAbsEStateIndex MaxEStateIndex	1001.0 1001.0	1.083000e+01 1.083000e+01	3.310000e+00 3.310000e+00	2.32 2.32	9.25 9.25	12.18 12.18	13.17 13.17	1.593000e+01 1.593000e+01
MinAbsEStateIndex	1001.0	1.800000e-01	1.700000e-01	0.00	0.05	0.12	0.29	1.370000e+00
MinEStateIndex		-9.700000e-01	1.590000e+00	-6.99	-1.33	-0.42	0.06	1.370000e+00
qed SPS	1001.0 1001.0	5.800000e-01 2.949000e+01	2.100000e-01 1.274000e+01	0.06 9.42	0.44 18.49	0.63 29.29	0.74 38.75	9.500000e-01 6.027000e+01
MolWt	1001.0	3.482600e+02	1.269500e+02	110.16	264.32	315.46	409.28	9.047800e+01
HeavyAtomMolWt	1001.0	3.244700e+02	1.216900e+02	100.08	244.21	293.18	385.26	8.563900e+02
ExactMolWt	1001.0	3.479400e+02	1.268100e+02	110.07	264.14	315.22	408.17	9.042500e+02
NumValenceElectrons NumRadicalElectrons	1001.0 1001.0	1.321200e+02 0.000000e+00	4.670000e+01 0.000000e+00	42.00 0.00	102.00 0.00	120.00 0.00	152.00 0.00	3.500000e+02 0.000000e+00
MaxPartialCharge	998.0	2.400000e-01	1.300000e-01	-0.02	0.12	0.25	0.34	5.700000e-01
MinPartialCharge		-4.100000e-01	8.000000e-02	-0.74	-0.48	-0.39		-9.000000e-02
MaxAbsPartialCharge	998.0	4.200000e-01	7.000000e-02	0.09	0.36	0.43	0.48	7.400000e-01
MinAbsPartialCharge FpDensityMorgan1	998.0 1001.0	2.300000e-01 1.140000e+00	1.200000e-01 2.400000e-01	0.00 0.22	0.12 1.00	0.25 1.15	0.33 1.33	5.100000e-01 1.750000e+00
FpDensityMorgan2	1001.0	1.820000e+00	3.200000e-01	0.38	1.63	1.88	2.05	2.620000e+00
FpDensityMorgan3	1001.0	2.420000e+00	4.000000e-01	0.58	2.24	2.50	2.69	3.270000e+00
BCUT2D_MWHI	998.0 998.0	2.320000e+01	1.453000e+01	14.51	16.37	16.56	32.09	1.269100e+02
BCUT2D_MWLOW BCUT2D_CHGHI	998.0	9.790000e+00 2.470000e+00	4.600000e-01 1.600000e-01	0.93 1.83	9.69 2.38	9.72 2.51	9.98 2.59	1.071000e+01 2.820000e+00
BCUT2D_CHGL0		-2.350000e+00	1.700000e-01	-2.72	-2.48	-2.36		-1.710000e+00
BCUT2D_LOGPHI	998.0	2.470000e+00	1.600000e-01	1.93	2.36	2.49	2.61	2.790000e+00
BCUT2D_LOGPLOW	998.0 998.0	-2.400000e+00	1.800000e-01	-2.79 4.65	-2.53 5.77	-2.40 5.94	-2.32 6.46	-1.650000e+00
BCUT2D_MRHI BCUT2D MRLOW		6.300000e+00 -7.000000e-02	1.090000e+00 2.500000e-01	-1.08	-0.16	-0.11	0.46	1.411000e+01 1.170000e+00
AvgIpc	1001.0	2.820000e+00	4.300000e-01	1.79	2.49	2.80	3.09	3.950000e+00
BalabanJ	1001.0	1.850000e+00	4.500000e-01	0.00	1.53	1.84	2.08	3.790000e+00
BertzCT Chi0	1001.0 1001.0	7.539900e+02 1.767000e+01	4.359100e+02 6.310000e+00	113.63 5.56	418.37 13.51	660.91 16.07	963.31 20.66	2.263930e+03 4.576000e+01
Chi0n	1001.0	1.452000e+01	5.180000e+00	4.11	11.24	13.30	16.35	3.599000e+01
Chi0v	1001.0	1.485000e+01	5.270000e+00	4.11	11.40	13.63	16.87	3.599000e+01
Chil	1001.0	1.173000e+01	4.430000e+00	3.86	8.79	10.43	13.88	2.980000e+01
Chiln Chilv	1001.0 1001.0	8.640000e+00 8.940000e+00	3.140000e+00 3.230000e+00	2.13 2.13	6.71 6.78	7.92 8.08	9.82 10.30	2.221000e+01 2.221000e+01
Chi2n	1001.0	7.320000e+00	2.740000e+00	1.30	5.55	6.74	8.61	2.018000e+01
Chi2v	1001.0	7.660000e+00	2.840000e+00	1.30	5.64	7.25	9.04	2.018000e+01
Chi3n	1001.0	5.620000e+00	2.460000e+00	0.75	4.09	5.13	6.66	1.648000e+01
Chi3v Chi4n	1001.0 1001.0	5.910000e+00 4.160000e+00	2.540000e+00 1.940000e+00	0.75 0.42	4.18 2.95	5.54 3.86	6.96 4.87	1.648000e+01 1.248000e+01
Chi4v	1001.0	4.400000e+00	2.020000e+00	0.42	3.08	4.08	5.19	1.248000e+01
HallKierAlpha		-1.890000e+00	1.380000e+00	-6.52	-2.85	-1.56	-0.79	2.700000e-01
Ipc	1001.0	4.831703e+10	1.255969e+12	107.11	18858.35	112366.73	4399307.31	3.951781e+13
Kappa1 Kappa2	1001.0 1001.0	1.702000e+01 6.380000e+00	6.370000e+00 3.000000e+00	4.54 1.34	12.77 4.37	15.66 5.67	19.49 7.53	4.691000e+01 2.037000e+01
Kappa3	1001.0	3.090000e+00	1.720000e+00	0.44	2.00	2.67	3.72	1.267000e+01
LabuteASA	1001.0	1.466800e+02	5.254000e+01	46.23	112.44	132.52	171.54	3.533300e+02
PEOE_VSA1 PEOE VSA10	1001.0 1001.0	1.263000e+01 8.060000e+00	1.159000e+01 1.261000e+01	0.00	5.32 0.00	9.84 5.69	14.95 11.51	1.189100e+02 1.079200e+02
PEOE_VSA11	1001.0	4.990000e+00	8.940000e+00	0.00	0.00	0.00	5.78	4.741000e+01
PE0E_VSA12	1001.0	3.410000e+00	5.460000e+00	0.00	0.00	0.00	5.91	2.951000e+01
PEOE_VSA13	1001.0	1.180000e+00	2.620000e+00	0.00	0.00	0.00		1.772000e+01
PEOE_VSA14 PEOE VSA2	1001.0 1001.0	3.380000e+00 5.970000e+00	7.280000e+00 5.870000e+00	0.00	0.00 0.00	0.00 4.79	5.97 9.59	1.135600e+02 3.419000e+01
PEOE_VSA3	1001.0	2.980000e+00	4.960000e+00	0.00	0.00	0.00	4.79	4.346000e+01
PE0E_VSA4	1001.0	2.950000e+00	6.720000e+00	0.00	0.00	0.00	0.00	4.461000e+01
PEOE_VSA5	1001.0	1.760000e+00	4.390000e+00	0.00	0.00	0.00	0.00	2.352000e+01
PEOE_VSA6 PEOE_VSA7	1001.0 1001.0	2.641000e+01 4.152000e+01	2.063000e+01 2.182000e+01	0.00	12.13 30.18	22.67 38.06	37.82 51.37	1.289000e+02 1.610600e+02
PEOE_VSA8	1001.0	1.649000e+01	1.080000e+01	0.00	6.92	17.02	23.17	5.228000e+01
PE0E_VSA9	1001.0	1.476000e+01	1.253000e+01	0.00	5.69	12.29	19.76	6.545000e+01
SMR_VSA1	1001.0	1.569000e+01	1.348000e+01	0.00	4.92	14.23	23.11	1.189100e+02
SMR_VSA10 SMR_VSA2	1001.0 1001.0	1.512000e+01 6.000000e-02	1.323000e+01 5.600000e-01	0.00	5.71 0.00	11.68 0.00	22.89 0.00	6.841000e+01 5.530000e+00
SMR_VSA3	1001.0	5.310000e+00	6.670000e+00	0.00	0.00	4.90	9.80	5.906000e+01
SMR_VSA4	1001.0	1.177000e+01	1.223000e+01	0.00	0.00	5.92	17.75	5.736000e+01
SMR_VSA5	1001.0	4.165000e+01	2.959000e+01	0.00	19.28	40.03	57.53	1.743700e+02
SMR_VSA6 SMR VSA7	1001.0 1001.0	1.347000e+01 3.770000e+01	1.623000e+01 3.172000e+01	0.00	0.00 11.65	7.11 34.89	18.41 64.72	1.047200e+02 1.329600e+02
SMR_VSA8	1001.0	0.000000e+00	0.000000e+00	0.00	0.00	0.00	0.00	0.000000e+00
SMR_VSA9	1001.0	5.730000e+00	1.097000e+01	0.00	0.00	0.00	5.75	5.750000e+01
SlogP_VSA1 SlogP VSA10	1001.0 1001.0	6.070000e+00 4.590000e+00	6.170000e+00 7.220000e+00	0.00	0.00 0.00	5.32 0.00	10.17 5.69	3.316000e+01 3.980000e+01
SlogP VSA11	1001.0	3.770000e+00	8.450000e+00	0.00	0.00	0.00	5.75	5.750000e+01
SlogP_VSA12	1001.0	4.070000e+00	7.950000e+00	0.00	0.00	0.00	7.60	4.588000e+01
SlogP_VSA2	1001.0	3.307000e+01	2.379000e+01	0.00	16.00	27.95	45.35	2.131400e+02
SlogP_VSA3 SlogP VSA4	1001.0 1001.0	8.220000e+00 1.194000e+01	7.720000e+00 1.098000e+01	0.00	4.74 0.00	6.18 11.33	12.35 16.75	4.355000e+01 5.226000e+01
SlogP_VSA5	1001.0	3.959000e+01	2.664000e+01	0.00	21.48	40.03	50.42	1.840800e+02
SlogP_VSA6	1001.0	3.084000e+01	2.518000e+01	0.00	9.98	28.55	48.53	1.267000e+02
SlogP_VSA7	1001.0	3.000000e-01	1.390000e+00	0.00	0.00	0.00	0.00	1.964000e+01
SlogP_VSA8 SlogP_VSA9	1001.0 1001.0	4.030000e+00 0.000000e+00	7.190000e+00 0.000000e+00	0.00	0.00	0.00 0.00	6.08 0.00	4.504000e+01 0.000000e+00
TPSA	1001.0	6.140000e+01	4.574000e+01	0.00	29.46	49.74	83.76	4.075000e+02
EState_VSA1	1001.0	1.246000e+01	1.876000e+01	0.00	0.00	5.60	18.12	1.874500e+02
EState_VSA10	1001.0	1.018000e+01	1.062000e+01	0.00	4.39	5.11	15.01	8.139000e+01
EState_VSA11 EState_VSA2	1001.0 1001.0	1.400000e-01 1.331000e+01	9.500000e-01 1.227000e+01	0.00	0.00 5.56	0.00 11.42	0.00 18.12	1.317000e+01 6.923000e+01
EState_VSA3	1001.0	1.633000e+01	1.388000e+01	0.00	5.92	12.18	22.25	9.326000e+01
EState_VSA4	1001.0	2.024000e+01	1.380000e+01	0.00	11.14	17.75	26.30	9.656000e+01
EState_VSA5	1001.0	1.907000e+01	2.247000e+01	0.00	5.56	12.68	25.68	2.703300e+02
EState_VSA6 EState_VSA7	1001.0 1001.0	1.149000e+01 1.395000e+01	1.364000e+01 1.992000e+01	0.00	0.00 0.00	6.21 4.90	19.06 24.27	6.224000e+01 1.268500e+02
EState_VSA7 EState_VSA8	1001.0	2.044000e+01	1.927000e+01	0.00	5.32	17.47	30.99	1.509500e+02
EState_VSA9	1001.0	8.890000e+00	8.480000e+00	0.00	4.42	5.73	13.89	5.661000e+01
VSA_EState1	1001.0	1.465000e+01	1.808000e+01	0.00	0.82	6.48	21.09	1.225900e+02
VSA_EState10 VSA_EState2	1001.0 1001.0	1.000000e+00 1.466000e+01	2.230000e+00 1.353000e+01	0.00 -0.59	0.00 3.91	0.00 12.48	0.00 22.74	1.555000e+01 6.730000e+01
VCA ECtate2	1001.0	0 1600000:00	1 5100000.01	1.26	0.00	2.40	12.00	1 5626000:02

Обработка датасета

Обработка в eda. ру:

- 1. Удалены дубликаты.
- 2. Переименованы столбцы: IC50 mM, CC50 mM, признаки feature i.
- 3. Выбросы обрезаны по IQR.
- 4. Пропуски заполнены медианой.
- 5. Значения ≤ 0 заменены на (10^{-6}).
- 6. Логарифмированы: log ic50, log cc50, log si.
- 7. Удалены коррелированные признаки (>0.8).
- 8. Удалены признаки с низкой дисперсией (<0.01).
- 9. Исключены NaN/бесконечные значения.

Ntor: data/processed_data.csv.

feature_0	count 1001.0	mean 5.000000e+02	std 2.891100e+02	min 0.00	25% 250.00	50% 500.00	75% 750.00	max 1.000000e+03
feature_4	1001.0	1.083000e+01	3.310000e+00	2.32	9.25	12.18	13.17	1.593000e+01
feature_6	1001.0	1.800000e-01	1.700000e-01	0.00	0.05	0.12	0.29	1.370000e+00
feature_7 feature 8	1001.0	-9.700000e-01 5.800000e-01	1.590000e+00 2.100000e-01	-6.99 0.06	-1.33 0.44	-0.42 0.63	0.06 0.74	1.370000e+00 9.500000e-01
feature_9	1001.0	2.949000e+01	1.274000e+01	9.42	18.49	29.29	38.75	6.027000e+01
feature_10	1001.0	3.482600e+02	1.269500e+02	110.16	264.32	315.46	409.28	9.047800e+02
feature_15 feature 19	1001.0 1001.0	2.400000e-01 1.140000e+00	1.300000e-01 2.400000e-01	-0.02 0.22	0.12 1.00	0.25 1.15	0.34 1.33	5.700000e-01 1.750000e+00
feature_22	1001.0	2.318000e+01	1.451000e+01	14.51	16.37	16.56	32.09	1.269100e+02
feature_23	1001.0	9.790000e+00 2.470000e+00	4.600000e-01	0.93	9.69	9.72	9.98	1.071000e+01 2.820000e+00
feature_24 feature_25	1001.0 1001.0	-2.350000e+00	1.600000e-01 1.700000e-01	1.83 -2.72	2.38 -2.48	2.51 -2.36	2.59 -2.24	-1.710000e+00
feature_29		-7.000000e-02	2.500000e-01	-1.08	-0.16	-0.11	0.06	1.170000e+00
feature_30	1001.0	2.820000e+00	4.300000e-01	1.79	2.49	2.80	3.09 2.08	3.950000e+00 3.790000e+00
feature_31 feature 46	1001.0 1001.0	1.850000e+00 4.831703e+10	4.500000e-01 1.255969e+12	0.00 107.11	1.53 18858.35	1.84 112366.73	4399307.31	3.951781e+13
feature_51	1001.0	1.263000e+01	1.159000e+01	0.00	5.32	9.84	14.95	1.189100e+02
feature_52	1001.0	8.060000e+00	1.261000e+01	0.00	0.00	5.69	11.51	1.079200e+02
feature_53 feature 54	1001.0 1001.0	4.990000e+00 3.410000e+00	8.940000e+00 5.460000e+00	0.00	0.00 0.00	0.00 0.00	5.78 5.91	4.741000e+01 2.951000e+01
feature_55	1001.0	1.180000e+00	2.620000e+00	0.00	0.00	0.00	0.00	1.772000e+01
feature_56 feature_57	1001.0 1001.0	3.380000e+00 5.970000e+00	7.280000e+00 5.870000e+00	0.00	0.00 0.00	0.00 4.79	5.97 9.59	1.135600e+02 3.419000e+01
feature 58	1001.0	2.980000e+00	4.960000e+00	0.00	0.00	0.00	4.79	4.346000e+01
feature_59	1001.0	2.950000e+00	6.720000e+00	0.00	0.00	0.00	0.00	4.461000e+01
feature_60 feature 61	1001.0 1001.0	1.760000e+00 2.641000e+01	4.390000e+00 2.063000e+01	0.00	0.00 12.13	0.00 22.67	0.00 37.82	2.352000e+01 1.289000e+02
feature 62	1001.0	4.152000e+01	2.182000e+01	0.00	30.18	38.06	51.37	1.610600e+02
feature_63	1001.0	1.649000e+01	1.080000e+01	0.00	6.92	17.02	23.17	5.228000e+01
feature_64 feature 66	1001.0 1001.0	1.476000e+01 1.512000e+01	1.253000e+01 1.323000e+01	0.00	5.69 5.71	12.29 11.68	19.76 22.89	6.545000e+01 6.841000e+01
feature_67	1001.0	6.000000e-02	5.600000e-01	0.00	0.00	0.00	0.00	5.530000e+00
feature_68	1001.0	5.310000e+00	6.670000e+00	0.00	0.00	4.90	9.80	5.906000e+01
feature_69	1001.0	1.177000e+01	1.223000e+01	0.00	0.00	5.92	17.75	5.736000e+01
feature_70 feature 71	1001.0 1001.0	4.165000e+01 1.347000e+01	2.959000e+01 1.623000e+01	0.00	19.28 0.00	40.03 7.11	57.53 18.41	1.743700e+02 1.047200e+02
feature_74	1001.0	5.730000e+00	1.097000e+01	0.00	0.00	0.00	5.75	5.750000e+01
feature_75	1001.0	6.070000e+00	6.170000e+00	0.00	0.00	5.32	10.17	3.316000e+01
feature_78 feature 79	1001.0 1001.0	4.070000e+00 3.307000e+01	7.950000e+00 2.379000e+01	0.00	0.00 16.00	0.00 27.95	7.60 45.35	4.588000e+01 2.131400e+02
feature_80	1001.0	8.220000e+00	7.720000e+00	0.00	4.74	6.18	12.35	4.355000e+01
feature_84	1001.0	3.000000e-01	1.390000e+00	0.00	0.00	0.00	0.00	1.964000e+01
feature_85 feature_90	1001.0 1001.0	4.030000e+00 1.400000e-01	7.190000e+00 9.500000e-01	0.00	0.00 0.00	0.00 0.00	6.08 0.00	4.504000e+01 1.317000e+01
feature 91	1001.0	1.331000e+01	1.227000e+01	0.00	5.56	11.42	18.12	6.923000e+01
feature_92	1001.0	1.633000e+01	1.388000e+01	0.00	5.92	12.18	22.25	9.326000e+01
feature_93	1001.0	2.024000e+01	1.380000e+01 2.247000e+01	0.00	11.14 5.56	17.75	26.30	9.656000e+01
feature_94 feature 95	1001.0 1001.0	1.907000e+01 1.149000e+01	1.364000e+01	0.00	0.00	12.68 6.21	25.68 19.06	2.703300e+02 6.224000e+01
feature_96	1001.0	1.395000e+01	1.992000e+01	0.00	0.00	4.90	24.27	1.268500e+02
feature_97	1001.0	2.044000e+01	1.927000e+01	0.00	5.32	17.47	30.99	1.509500e+02
feature_98 feature_99	1001.0 1001.0	8.890000e+00 1.465000e+01	8.480000e+00 1.808000e+01	0.00	4.42 0.82	5.73 6.48	13.89 21.09	5.661000e+01 1.225900e+02
feature_101	1001.0	1.466000e+01	1.353000e+01	-0.59	3.91	12.48	22.74	6.730000e+01
feature_102	1001.0	9.160000e+00	1.519000e+01	-1.26 -4.58	0.00	3.86	12.00	1.563600e+02
feature_103 feature 104	1001.0 1001.0	2.170000e+00 2.000000e-02	2.910000e+00 2.560000e+00	-20.30	0.19 -0.84	1.95 0.63	4.15 1.44	1.236000e+01 6.580000e+00
feature_106	1001.0	3.230000e+00	5.340000e+00	-33.09	0.09	3.61	5.89	3.392000e+01
feature_107	1001.0	5.410000e+00	5.710000e+00	-2.21	1.30	4.24	7.61	3.698000e+01
feature_108 feature 114	1001.0 1001.0	5.600000e-01 8.600000e-01	1.680000e+00 1.040000e+00	-7.68 0.00	0.00 0.00	0.00 1.00	0.00 2.00	1.018000e+01 6.000000e+00
feature_115	1001.0	2.090000e+00	1.360000e+00	0.00	1.00	2.00	3.00	7.000000e+00
feature_117	1001.0	5.100000e-01	7.300000e-01	0.00	0.00	0.00	1.00	5.000000e+00
feature_124 feature_126	1001.0 1001.0	5.300000e-01 3.560000e+00	8.000000e-01 1.570000e+00	0.00	0.00 2.00	0.00 3.00	1.00 4.00	6.000000e+00 9.000000e+00
feature_127	1001.0	3.440000e+00	2.140000e+00	-5.75	2.45	3.42	4.53	1.282000e+01
feature_129	1001.0	6.000000e-02	2.300000e-01	0.00	0.00	0.00	0.00	1.000000e+00
feature_132 feature 135	1001.0 1001.0	1.000000e-02 4.000000e-02	1.300000e-01 1.900000e-01	0.00	0.00 0.00	0.00 0.00	0.00 0.00	2.000000e+00 1.000000e+00
feature_136	1001.0	1.900000e-01	7.700000e-01	0.00	0.00	0.00	0.00	8.000000e+00
feature_141	1001.0	4.000000e-02	2.000000e-01	0.00	0.00	0.00	0.00	1.000000e+00
feature_143 feature_145	1001.0 1001.0	1.600000e-01 3.900000e-01	4.400000e-01 6.000000e-01	0.00	0.00	0.00 0.00	0.00 1.00	2.000000e+00 3.000000e+00
feature_146	1001.0	1.300000e-01	3.400000e-01	0.00	0.00	0.00	0.00	2.000000e+00
feature_148	1001.0	7.000000e-02	3.000000e-01	0.00	0.00	0.00	0.00	2.000000e+00
feature_149 feature 153	1001.0 1001.0	8.000000e-02 1.000000e-02	2.900000e-01 1.100000e-01	0.00	0.00	0.00 0.00	0.00 0.00	2.000000e+00 1.000000e+00
feature_155	1001.0	3.300000e-01	8.000000e-01	0.00	0.00	0.00	0.00	8.000000e+00
feature_156	1001.0	3.400000e-01	7.000000e-01	0.00	0.00	0.00	0.00	4.000000e+00
feature_158 feature 159	1001.0 1001.0	3.000000e-01 1.600000e-01	6.600000e-01 4.200000e-01	0.00	0.00 0.00	0.00 0.00	0.00 0.00	4.000000e+00 3.000000e+00
feature_165	1001.0	1.450000e+00	1.430000e+00	0.00	0.00	1.00	2.00	7.000000e+00
feature_169	1001.0	2.200000e-01	4.800000e-01	0.00	0.00	0.00	0.00	4.000000e+00
feature_170 feature_171	1001.0 1001.0	1.010000e+00 5.000000e-02	1.410000e+00 2.300000e-01	0.00	0.00	1.00 0.00	1.00 0.00	8.000000e+00 2.000000e+00
feature_171	1001.0	7.000000e-02	2.500000e-01	0.00	0.00	0.00	0.00	2.000000e+00
feature_176	1001.0	5.000000e-02	2.200000e-01	0.00	0.00	0.00	0.00	1.000000e+00
feature_177	1001.0	3.000000e-02	1.600000e-01	0.00	0.00	0.00	0.00	1.000000e+00
feature_180 feature_183	1001.0 1001.0	1.900000e-01 4.000000e-02	5.100000e-01 2.300000e-01	0.00	0.00	0.00 0.00	0.00 0.00	3.000000e+00 2.000000e+00
feature_184	1001.0	2.700000e-01	7.300000e-01	0.00	0.00	0.00	0.00	4.000000e+00
feature_185	1001.0	8.000000e-02	3.700000e-01	0.00	0.00	0.00	0.00	2.000000e+00
feature_187 feature_188	1001.0 1001.0	3.000000e-02 1.000000e-02	1.600000e-01 1.100000e-01	0.00	0.00	0.00 0.00	0.00 0.00	1.000000e+00 1.000000e+00
feature_192	1001.0	1.000000e-02	1.000000e-01	0.00	0.00	0.00	0.00	2.000000e+00
feature_193	1001.0	1.800000e-01	4.800000e-01	0.00	0.00	0.00	0.00	4.000000e+00
feature_198 feature 199	1001.0 1001.0	6.000000e-02 2.000000e-02	2.700000e-01 2.200000e-01	0.00	0.00	0.00 0.00	0.00 0.00	2.000000e+00 6.000000e+00
feature_200	1001.0	2.000000e-02	1.500000e-01	0.00	0.00	0.00	0.00	1.000000e+00
feature_202	1001.0	3.000000e-02	1.700000e-01	0.00	0.00	0.00	0.00	1.000000e+00
feature_203	1001.0	5.000000e-02	3.000000e-01	0.00	0.00	0.00	0.00	4.000000e+00

Методология

Модели и метрики

Модели: Random Forest, XGBoost, LightGBM, Gradient Boosting, Linear/Logistic Regression, Voting.

- **Регрессия**: MSE, R², MAE.
- Классификация: Accuracy, F1, Precision, Recall, ROCAUC, PRAUC.

Подготовка данных

80/20 разделение, StandardScaler, SMOTE при дисбалансе >10%, Optuna (50 испытаний).

Визуализации

Матрицы ошибок, ROC-кривые, важность признаков, предсказания.

Результаты

Регрессия

log_cc50 (regression_log_cc50.csv)

Model	MSE	R2	MAE
RF	1.154	0.476	0.762
XGB	1.201	0.455	0.764

Model	MSE	R2	MAE
LGB	1.24	0.437	0.79
GB	1.142	0.482	0.783
LR	1.493	0.322	0.944
Voting	1.099	0.501	0.749

Лучшая модель: Voting (R²=0.501, MSE=1.099, MAE=0.749).

Рекомендации для log_cc50

Для log_cc50 R² приемлемый (0.501). Можно улучшить:

- Провести дополнительную настройку гиперпараметров.
- Добавить новые признаки через feature engineering.

log_ic50 (regression log ic50.csv)

Model	MSE	R2	MAE
RF	1.667	0.476	0.991
XGB	1.747	0.451	1.045
LGB	1.689	0.469	1.022
GB	1.911	0.399	1.095
LR	2.391	0.248	1.256
Voting	1.802	0.433	1.042

Лучшая модель: RF (R²=0.476, MSE=1.667, MAE=0.991).

Рекомендации для log_ic50

Для log_ic50 R² низкий (0.476). Рекомендуется:

- Проверить данные на выбросы с помощью Isolation Forest.
- Применить SMOTE для балансировки данных, если наблюдается дисбаланс.
- Рассмотреть РСА для снижения размерности признаков.
- Использовать более сложные модели, например, Stacking Regressor.

log_si (regression_log_si.csv)

Model	MSE	R2	MAE
RF	0.883	0.261	0.757

Model	MSE	R2	MAE
XGB	0.962	0.195	0.789
LGB	0.911	0.238	0.762
GB	0.932	0.22	0.79
LR	1.13	0.055	0.869
Voting	0.926	0.226	0.749

Лучшая модель: RF (R²=0.261, MSE=0.883, MAE=0.757).

Рекомендации для log_si

Для log_si R² низкий (0.261). Рекомендуется:

- Проверить данные на выбросы с помощью Isolation Forest.
- Применить SMOTE для балансировки данных, если наблюдается дисбаланс.
- Рассмотреть РСА для снижения размерности признаков.
- Использовать более сложные модели, например, Stacking Regressor.

Классификация

IC50_median (classification_ic50_median.csv)

Model	Accuracy	F1	Precision	Recall	ROC_AUC	PR_AUC
RF	0.731	0.74	0.72	0.762	0.777	0.732
XGB	0.706	0.715	0.698	0.733	0.76	0.716
LGB	0.746	0.754	0.736	0.772	0.776	0.713
GB	0.726	0.732	0.721	0.743	0.762	0.737
LR	0.667	0.676	0.66	0.693	0.736	0.727
Voting	0.726	0.739	0.709	0.772	0.783	0.741

Лучшая модель: LGB (F1=0.754, Accuracy=0.746, Precision=0.736, Recall=0.772, ROC AUC=0.776).

Рекомендации для IC50_median

Для IC50_median метрики приемлемые (F1=0.754, Precision=0.736, Recall=0.772). Можно улучшить:

- Провести дополнительную настройку гиперпараметров.
- Проверить важность признаков для исключения лишних.

CC50_median (classification_cc50_median.csv)

Model	Accuracy	F1	Precision	Recall	ROC_AUC	PR_AUC
RF	0.761	0.767	0.752	0.782	0.852	0.858
XGB	0.741	0.764	0.706	0.832	0.826	0.812
LGB	0.741	0.75	0.729	0.772	0.836	0.836
GB	0.766	0.771	0.76	0.782	0.872	0.871
LR	0.746	0.763	0.719	0.812	0.838	0.838
Voting	0.776	0.785	0.759	0.812	0.875	0.869

Лучшая модель: Voting (F1=0.785, Accuracy=0.776, Precision=0.759, Recall=0.812, ROC_AUC=0.875).

Рекомендации для CC50_median

Для CC50_median метрики приемлемые (F1=0.785, Precision=0.759, Recall=0.812). Можно улучшить:

- Провести дополнительную настройку гиперпараметров.
- Проверить важность признаков для исключения лишних.

SI_median (classification si median.csv)

Model	Accuracy	F1	Precision	Recall	ROC_AUC	PR_AUC
RF	0.642	0.609	0.667	0.56	0.685	0.693
XGB	0.657	0.635	0.674	0.6	0.691	0.702
LGB	0.637	0.622	0.645	0.6	0.683	0.693
GB	0.662	0.634	0.686	0.59	0.678	0.686
LR	0.612	0.625	0.602	0.65	0.649	0.667
Voting	0.657	0.642	0.667	0.62	0.693	0.694

Лучшая модель: Voting (F1=0.642, Accuracy=0.657, Precision=0.667, Recall=0.62, ROC_AUC=0.693).

Рекомендации для SI_median

Для SI_median низкие метрики (F1=0.642, Precision=0.667, Recall=0.620). Рекомендуется:

- Использовать SMOTE для балансировки классов.
- Применить Grid Search для более точной настройки гиперпараметров.
- Рассмотреть Stacking для улучшения классификации.

SI > 8 (classification si 8.csv)

Model	Accuracy	F1	Precision	Recall
RF	0.756	0.847	0.764	0.951
XGB	0.736	0.835	0.753	0.937
LGB	0.736	0.834	0.756	0.93
GB	0.731	0.832	0.749	0.937
LR	0.736	0.839	0.742	0.965
Voting	0.701	0.804	0.755	0.86

Лучшая модель: RF (F1=0.847, Accuracy=0.756, Precision=0.764, Recall=0.951).

Рекомендации для SI > 8

Для SI > 8 метрики приемлемые (F1=0.847, Precision=0.764, Recall=0.951). Можно улучшить:

- Провести дополнительную настройку гиперпараметров.
- Проверить важность признаков для исключения лишних.

F1 (0.847) для log_si высокий, но возможна дальнейшая оптимизация с использованием SHAP-анализа.

Анализ и QSAR-рекомендации

Общий анализ

• Регрессия:

- Voting лучшая для log cc50 (R2=0.501).
- ∘ RF **лучшая для** log ic50 (**R**²=0.476).
- ∘ RF **лучшая для** log si (R²=0.261).
- Низкий R² для log si (0.261) указывает на сложность предсказания SI.

• Классификация:

- ∘ LGB лучшая для IC50 median (F1=0.754).
- Voting лучшая для СС50 median (F1=0.785).
- Voting лучшая для SI median (F1=0.642).
- \circ RF лучшая для SI > 8 (F1=0.847).
- Высокий F1 (0.847) для SI > 8 указывает на хорошую способность модели выявлять эффективные соединения.

• Важность признаков:

• Графики (feature_importance_*.png) выявляют ключевые характеристики, влияющие на IC50, CC50 и SI.

QSAR-анализ

- 1. **Неэффективные соединения**: Высокий IC50, SI < 8. Используйте IC50_median и SI > 8 для их идентификации.
- 2. **Эффективные соединения**: Низкий IC50, высокий SI > 8. Модель для SI > 8 (F1=0.849) наиболее точна для их выявления.
- 3. Опасные соединения: Низкий СС50. Модель для CC50_median (F1=0.785) помогает их идентифицировать.

Рекомендации

- Использовать SMOTE для улучшения классификации SI > 8, особенно для повышения Recall.
- Применить Stacking Regressor для повышения R² в регрессии log si.
- Добавить SHAP-анализ для интерпретации важности признаков.
- Провести внешнюю валидацию моделей на новых данных.
- Рассмотреть добавление 3D-дескрипторов для улучшения предсказательной способности.

Заключение

Проект успешно проанализировал 1000 соединений, выявив ключевые признаки, влияющие на активность против вируса гриппа. Модели классификации для SI > 8 (F1=0.849) и $CC50_median$ (F1=0.785) показали высокую точность. Регрессия для log_cc50 (R²=0.501) и log_ic50 (R²=0.475) демонстрирует умеренную предсказательную способность, но для log_si (R²=0.226) требуется оптимизация. Визуализации и результаты полезны для оптимизации соединений. Рекомендуется внешняя валидация и добавление 3D-дескрипторов.