CS-341 Lecture 16

March 30, 2001

Preregistration Starts Next Tuesday

• See www.cs.qc.edu for procedure to follow

PLA Properties

I inputs; *A* AND gates; *O* OR gates

- A*2*I+A*O fuses
 - -A*2*I fuses between inputs and ANDs
 - − *A***O* fuses between ANDs and ORs
- Fan-in of each AND is 2*I
- Fan-in of each OR is A
- Fan-out of each AND must be O or greater
- May be used to implement up to *O* functions of *I* variables, provided no more than *A* rows of the truth table have minterms in them.

PAL Properties

I inputs; A/O AND gates per OR gate; O OR gates

- A/O*O*2*I fuses
 - No fuses between AND and OR gates
- Fan-in of each AND is 2*I
- Fan-in of each OR is A/O
- Fan-out of each AND needs to be just one
- Can implement up to *O* functions of *I* variables, provided each function has no more than *A/O* minterms.

PROM Properties

I inputs; *O* outputs

- Inputs are addresses; Outputs are data
- There are always 2^I AND gates
 - No fuses between inputs and AND gates
 - The fan-in of each AND gate is I
- There are 2^{I} * O fuses between the AND gates and the OR gates
- Each AND gate must have a fan-out of O or greater
- Each OR gate has a fan-in of 2^{I}
- Can be used as a memory, or to implement up to O functions of I variables. No limit on the number of minterms

Combinational Building Blocks

- Decoder
 - n inputs, 2^n outputs
 - Exactly one output true at a time, telling what combination of inputs is true
- Multiplexer
 - n control inputs, 2^n data inputs, one output
 - "Connect" one input to the output
 - Can implement any function of n-1 variables
- Half/Full Adder
 - Two data inputs; sum and carry outputs
 - Full adder has carry in