多媒體資訊概論 (2010) 期末考題

請另以答案卷作答,總分100,考試時間120分鐘

1. (10%)下表為 A,B,C,D,E,F,G,H 八個符號出現的次數,如以固定長度編碼,各符號平均編碼長度為 3 bits,如使用 Huffman Coding,請問(1)各符號平均編碼長度為多少 bits? (2)此時壓縮率為多少? 兩小題皆計算至小數第二位即可。

Symbols	A	В	С	D	Е	F	G	Н
Counts	1	1	2	4	8	16	32	64

Ans:

Symbols	A	В	C	D	Е	F	G	Н
Counts	1	1	2	4	8	16	32	64
Code	1111111	1111110	111110	11110	1110	110	10	0
bits	7*1	7*1	6*2	5*4	4*8	3*16	2*32	1*64

- (1) (#bits) / (#symbols) = 254/128 = 1.98
- (2) 3/(254/128) = 1.51 ,or, 1.52
- 2. (15%) 考慮一組 DM 編碼解碼器(CODEC),給定其量化後的差值 $\stackrel{\sim}{e}$ 為 $\{-2, +2\}$,已知 系統設定由 $f_0=f_0=10$ 開始,陸續接收到的訊號如下表 f_i 所列,回答以下小題時,提示所給的數字不必再列出。
 - (a) 請計算 b_6 到 b_{10} 的 bit-stream (b_i =0 if $\overset{\sim}{e_i}$ = -2; b_i =1, otherwise);
 - (b) DM 編碼的好處是即使不進一步縮壓,它仍是很有效率的二值位元串流,缺點是除非取樣更密集,否則誤差值偏高,請計算還原之後 $_{6}^{\kappa}$ 到 $_{10}^{\kappa}$ 的數列;
 - (c) 請計算數列 \tilde{f}_1 (不是 \tilde{f}_6)到 \tilde{f}_{10} 在編碼還原之後的失真度均方差(MSE);

i	0	1	2	3	4	5	6	7	8	9	10
f_i	10	15	11	10	9	5	7	5	8	8	11
f_i	\times	10	12	10	8	10	8	6	4	6	8
~ e _i		+2	-2	-2	+2	-2	-2	-2	+2	+2	+2
b _i		1	0	0	1	0	0	0	1	1	1
~ f _i	10	12	10	8	10	8	6	4	6	8	10

Error 3 1 2 1 3 1 1 2 0 1

MSE = (9+1+4+1+9+1+1+4+0+1)/10 = 3.1

3. (20%) 使用 LZW 編碼法,已知字元集共有 $\{A,B,C\}$ 其對應代號為 $\{1,2,3\}$,試求接收 訊號 1,2,4,3,6,8,4 解碼後的字串。

k	Entry/ Output	Code	String
		1	A
		2	В
		3	C
1	A		
2	В	4	AB
4	AB	5	ВА
3	С	6	ABC
6	ABC	7	CA
8	ABCA	8	ABCA
4	AB	9	ABCAA
	1 2 4 3 6 8	1 A 2 B 4 AB 3 C 6 ABC 8 ABCA	1 2 3 1 2 3 1 A 2 B 4 4 AB 5 3 C 6 6 ABC 7 8 ABCA 8

Ans:

A B AB C ABC ABCA AB (15%) || (3+2 %)

4. (15%) 下列為 JPEG 編碼中 DC 及 AC 頻道 Entropy Coding 的對應表(只列出部分), 及第一個 8×8 Block 的循序位元流, 請據此計算左上角關於 DC, AC1~AC14 的數值。

DC Table

Size	Code
1	01
2	11
3	101

AC Table

(RL, Size)	Code
(0,2)	01
(0,3)	100
(2,2)	1110
(2,4)	110
(4,1)	1011

Bitstream:

DC	AC1				X	
AC2	AC4			\times		
AC3			\times			
		\times				
	\times					
\times						

ANS

3	7	0	12	2
-4	0	0	0	\times
2	0	0	\times	
0	-1	\times		
0	\times			

5. (24%) 使用頻譜選擇的漸進模式顯示一個 JPEG 圖像檔,並查量化表暫時還原出某個 8 x 8 Block 其 DC, AC1, AC2, 三個頻譜值各為 40, 20, -10, 此時所顯示各圖點之中,主對角線(f_{0,0}, f_{1,1}, f_{2,2}, ..., f_{7,7})上的數值如何? 參照以下 Cosine 函數表,可取

 $\sqrt{2} = 1.4$,計算結果取到小數第一位,誤差 ± 0.5 之內皆可。

k	1	3	5	7	9	11	13	15
cos(kπ/16)	0.9	0.8	0.5	0.2	-0.2	-0.5	-0.8	-0.9

$$f(i,j) = \sum_{u=0}^{7} \sum_{v=0}^{7} \frac{C(u)C(v)}{4} \cos(\frac{(2i+1)u\pi}{16}) \cos(\frac{(2j+1)v\pi}{16}) F(u,v)$$

$$f(0,0) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{2}\cos(\frac{(1)0\pi}{16})\cos(\frac{(1)1\pi}{16})F(0,1) + \frac{\sqrt{2}}{2}\cos(\frac{(1)1\pi}{16})\cos(\frac{(1)0\pi}{16})F(1,0)$$

$$f(0,0) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(1)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(1)\pi}{16})F(1,0) = 6.6$$

$$f(1,1) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(3)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(3)\pi}{16})F(1,0) = 6.4$$

$$f(2,2) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(5)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(5)\pi}{16})F(1,0) = 5.9$$

$$f(3,3) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(7)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(7)\pi}{16})F(1,0) = 5.4$$

$$f(4,4) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(9)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(9)\pi}{16})F(1,0) = 4.7$$

$$f(5,5) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(11)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(11)\pi}{16})F(1,0) = 4.1$$

$$f(6,6) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(13)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(13)\pi}{16})F(1,0) = 3.6$$

$$f(7,7) = \frac{1}{8}F(0,0) + \frac{\sqrt{2}}{8}\cos(\frac{(15)\pi}{16})F(0,1) + \frac{\sqrt{2}}{8}\cos(\frac{(15)\pi}{16})F(1,0) = 3.4$$

6. (16%)下左圖為前一張參考圖像(reference frame),中圖為移動補償編碼後的差值圖,右圖為移動向量 MV 的範例,(1) 如果標定的 MB 區塊 MV=(2,3),請還原這區塊的圖值;(2)如果擴大搜尋條件,令 P=7(即上下左右皆可位移 7 格),我們可以找到更好的移動補償效果,此時 MV=? MAD=?

1	1	1	1	1	1	1	1	1	1
1	2	2	2	2	2	2	2	2	2
1	2	3	3	3	3	3	3	3	3
1	2	3	4	4	4	4	4	4	4
1	2	3	4	5	5	5	5	5	5
1	2	3	4	5	6	6	6	6	6
1	2	3	4	5	6	7	7	7	7
1	2	3	4	5	6	7	8	8	8

0	1	1	0	0	-1	1	0	0	-1
0	1	0	0	0	1	1	0	0	1
0	0	1	0	1	1	1	0	0	-1
0	1	1	0	0	1	0	0	1	1
0	1	1	0	0	1	1	0	0	-1
0	1	1	0	1	0	1	0	0	1
0	1	0	0	-1	1	1	0	0	1
0	1	1	0	0	0	1	0	0	1

範例: MV=(-1,-2)

Ans:

(2)
$$MV = (2,4)$$
 $MAD = 0$