Uso de Kinect para el entrenamiento de actividades físicas

TFG

Víctor Tobes Pérez Raúl Fernández Pérez

Departamento de Ingeniería del Software e Inteligencia Artificial Facultad de Informática Universidad Complutense de Madrid

Junio 2017

Documento maquetado con TeXIS v.1.0+.

Este documento está preparado para ser imprimido a doble cara.

Uso de Kinect para el entrenamiento de actividades físicas

 ${\it Informe\ t\'ecnico\ del\ departamento}$ Ingeniería del Software e Inteligencia Artificial IT/2009/3

 $Versi\'{o}n$ 1.0+

Departamento de Ingeniería del Software e Inteligencia Artificial Facultad de Informática Universidad Complutense de Madrid

Junio 2017

Copyright © Víctor Tobes Pérez y Raúl Fernández Pérez ISBN 978-84-692-7109-4

Agradecimientos

Resumen

Índice

Αg	grade	ecimientos	V
Re	sum	en	VII
1.	Intr	oducción	1
	1.1.	Introducción	1
2.	Esta	ado del arte	3
	2.1.	Captura de movimiento	3
	2.2.	Historia captura de movimiento	3
		2.2.1. Precursores	3
		2.2.2. Nacimiento de la captura de movimiento	4
	2.3.	Tecnología captura de movimiento	5
	Nota	as bibliográficas	5
3.	Sens	sor Kinect	7
	3.1.	Versiones de Kinect	7
		3.1.1. Kinect V1	7
		3.1.2. Kinect V2	7
4.	Mét	odos	9
	4.1.	Escenas	9
		4.1.1. Escena 1: Inicio	10
		4.1.2. Escena 2: Menú Principal	11
		4.1.3. Escena 3: Ayuda	11
		4.1.4. Escena 4: Créditos	11
		4.1.5. Escena 5: Entrenar	11
Ι	Ap	éndices	13
Α.	Así	se hizo	15

X	Índici
A.1. Introducción	1
Bibliografía	17

Índice de figuras

	4.1.	Diagrama	que ilustra	la lógica	del sistema													1(
--	------	----------	-------------	-----------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	----

Índice de Tablas

Capítulo 1

Introducción

1.1. Introducción

Capítulo 2

Estado del arte

2.1. Captura de movimiento

La captura de movimiento (abreviada Mocap, en inglés Motion Capture) es el proceso por el cual el movimiento, ya sea de objetos, animales o mayormente personas, se traslada a un modelo digital 3D.

En la actualidad, esta técnica llamada fotogrametría, se utiliza en la industria del cine y de los videojuegos, ya que facilita mucho la labor de los animadores al realizar un modelado mas realista. En el cine se utiliza como mecanismo para almacenar los movimientos realizados por los actores, y poder animar los modelos digitales de los diferentes personajes que tenga el film. En cambio, en el sector de los videojuegos se utiliza para naturalizar los movimientos de los personajes, de ese modo se obtiene una mayor sensación de realismo.Rodríguez-Esparragón y Domínguez Quintana Wikipedia.

2.2. Historia captura de movimiento

2.2.1. Precursores

Aristoteles (384-322 AC) podría ser considerado el primer biomecánico, escribió el libro "De Motu Animalium" (Movimiento de los animales). Él no solo veía los cuerpos de los animales como sistemas mecánicos, sino que perseguía la idea de como diferenciar la realización de un movimiento y como poderlo hacer realmente.

Leonardo da Vinci (1452-1519) trató de describir algunos mecanismos que utiliza el cuerpo humano para poder desplazarse, como un humano puede saltar, caminar, mantenerse de pie...

Eadweard Muybridge (seudónimo de Edward James Muggeridge) fué el primer fotógrafo capaz de diseccionar el movimiento humano y animal, a través de multiples cámaras tomando varias fotografias para captar instantes seguidos en el tiempo. Este experimento llamado .el caballo en movimiento",

mostrado en la figura "tal", utilizó esta técnica de fotografía.

COMENTARIO: meter figura

2.2.2. Nacimiento de la captura de movimiento

Con la aparicioón de la te?cnica de la rotoscopia se consegui?a naturalizar los movimientos de los personajes animados. Los estudios Walt Disney Pictures utilizaron la rotoscopia en 1937 en ?Blancanieves y los siete enanitos? para la animacio?n de los personajes del pri?ncipe y de Blancanieves. Esta te?cnica consiste en reemplazar los fotogramas de una grabacio?n real por dibujos calcados sobre cada fotograma (Figura 2.2)

En paralelo, los laboratorios de biomeca?nica comenzaban a utilizar ordenadores para analizar el movimiento humano. En la de?cada de los 80, Tom Calvert, profesor de kinesiologi?a y ciencias de la computacio?n en la universidad Simon Fraser, Canada?, incorporo? potencio?metros a un cuerpo y la salida la uso? para mover personajes animados por ordenador para estudios coreogra?ficos y asistencia cli?nica para pacientes con problemas de locomocio?n.

En la década de los 70, cuando empezaba a surgir la posibilidad de realizar animaciones de personajes por ordenador, se conseguía naturalizar los movimientos mediante técnicas clásicas de diseño, como la técnica de rotoscopia. Esta técnica consiste en reemplazar los frames de una grabación real por dibujos calcados cada frame.

Pero mientras, los laboratorios de biomecánica empezaban a usar los ordenadores como medio para analizar el movimiento humano. En la década de los 80, un profesor de kinesiología y ciencias de la computación en la universidad Simon Fraser (Canadá), incorporó potenciometros a un cuerpo y la salida la usó para generar personajes animados por ordenador, con el objetivo de ser utilizados por estudios coreográficos y asistencia clínica para ayudar a pacientes con problemas de locomoción.

A finales de los años 70, cuando se empezaba a hacer posible la animación de personajes por ordenador, los diseñadores comenzaron a usar las técnicas clásicas de diseño(como el rotoscopio). El rotoscopio era una técnica en la cual se utilizaban frames reales que se utilizaban como base para diseñar algo por encima, similar a calcar un folio por encima de otro que contiene lo que queremos copiar. Pero mientras, se empezaron a usar los ordenadores para analizar el movimiento humano, en estudios de biomecánica. Las técnicas y dispositivos usados en éstos empezaron a adoptarse en la comunidad de GC.

Al principio de los años 80 , Tom Calvert, un profesor de kinesiología y ciencias de la computación en la Simon Fraser University, adhirió potenciómetros a un cuerpo y usó la salida para generar personajes animados por ordenador con objeto de ser usado en estudios de coreografía y asistencia clí-

nica para pacientes con problemas de locomoción. Por ejemplo, para analizar la flexión de rodilla, creó una especie de exoesqueleto para cada pierna, cada uno de los cuales tenia adherido un potenciometro para analizar el grado de flexión. La señal analógica era digitalizada e introducida en un programa que hacía una simulación mediante una animación en el ordenador.

Poco despues, comienzan a salir los primeros sistemas de seguimiento visual como el Op-Eye y el SelSpot. A principios de los 80, tanto el MIT como el CGL del NYTC experimentaron con dispositivos de seguimiento visual aplicados en el cuerpo humano.

Estos sistemas normalmente usan pequeños marcadores adheridos al cuerpo(tanto LEDs parpadeantes como pequeños puntos reflectantes) y una serie de cámaras alrededor del espacio de maniobras. Una combinación de hardware especial y software distinguen los marcadores en el campo visual de cada cámara, y mediante comparación, calculan la posición tridimensional de cada marcador en cada instante.

La tecnología está limitada por la velocidad a la que los marcadores pueden ser rastreados(esto afecta al número de posiciones por segundo que pueden ser capturadas), por la oclusión de los marcadores por el cuerpo y por la resolución de las cámaras (específicamente por su capacidad para diferenciar distintos marcadores próximos). Los primeros sistemas podían rastrear sólo una docena de marcadores al mismo tiempo. Los sistemas más recientes pueden distinguir varias docenas. Los problemas de oclusión se pueden superar con el uso de más camaras, pero incluso con eso, los sistemas ópticos más modernos suelen requerir un post-procesamiento manual para recuperar trayectorias cuando un marcador se pierde de vista. Esto cambiará según los sistemas se vuelvan más sofisticados. El problema de la resolución está relacionado con varias variables, como el precio de la cámara, el campo de visión, y el espacio de movimientos. A mayor resolución requerida, mayor el precio de la cámara. La misma cámara puede dar una mejor resolución de movimiento si está enfocando un menor campo de visión, pero esto limita la capacidad de los movimientos a realizar. Por ello, casi todos los resultados de los sistemas de captura ópticos necesitan una post-producción para analizar, procesar y limpiar la información antes de ser utilizados.

2.3. Tecnología captura de movimiento

Captura de movimientos óptica

Captura de movimientos en vídeo o Markerless , LUZ ESTRUCTURADA de kinect

Captura de movimientos inercial

Capítulo 3

Sensor Kinect

- 3.1. Versiones de Kinect
- 3.1.1. Kinect V1

Características

Video: 640x480 @30 fps

3.1.2. Kinect V2

COMENTARIO: Enlaces sobre las caracteristicas de Kinect

 $https://msdn.microsoft.com/library/jj131033.aspx \\ https://msdn.microsoft.com/library/dn782025.aspx \\ https://developer.microsoft.com/es-es/windows/kinect/hardware$

Capítulo 4

Métodos

4.1. Escenas

En Unity, como se ha mencionado anteriormente, las escenas contienen los objetos del juego. Se pueden usar para crear un menú principal, animaciones, niveles, etc. En cada escena se ha creado un entorno diferenciado para cada una de las necesidades dadas.

Este entorno está pensado para ser utilizado por el alumno para que pueda aprender a realizar diferentes movimientos de capoeira sin la necesidad de que esté presente un profesor. El entrenamiento consiste en imitar una serie de movimientos, los cuales han sido previamente grabados por varios expertos en el arte marcial. El entrenamiento virtual se desarrolla acorde al nivel que posea el alumno, ya sea principiante, aprendiz o avanzado, de este modo, el alumno va aprendiendo a realizar los movimientos de forma progresiva.

Gracias a que el sistema compara frame a frame la posición del alumno con la del profesor virtual, este podrá realizar un análisis de las transiciones en las que está cometiendo algún error. Tras finalizar el movimiento, el asistente mostrará una animación de acierto en el caso de que el movimiento se haya realizado de forma correcta, o una animación de fracaso en el caso de que se produzca algún error en la ejecución del movimiento. Tras de sí, el análisis mostrará un esqueleto de las partes del cuerpo que tienen que ser corregidas en color rojo y en color verde las que deben permanecer invariantes, a demás, se mostrará una serie de indicaciones en forma de texto para que el alumno pueda corregir la posición de una forma mas efectiva.

Tras realizar una abstracción del flujo de ejecución que realiza el entrenador virtual entre las diferentes escenas, se muestra el diagrama de la lógica del sistema.

Figura 4.1: Diagrama que ilustra la lógica del sistema

4.1.1. Escena 1: Inicio

Se trata de la escena inicial del juego. Presenta una interfaz de tipo UI, la cual contiene el nombre de la aplicación y una breve descripción. A demás se muestran los 3 emblemas de las diferentes organizaciones presentes, como son la UCM, FDI y Abadá-Capoeira.

4.1. Escenas 11

4.1.2. Escena 2: Menú Principal

Tras pulsar el botón de inicio en la anterior escena, pasamos al menú principal, en el cual se puede decidir si se quiere empezar a entrenar, visualizar una ayuda sobre como utilizar la aplicación, los créditos o volver a la escena de inicio.

4.1.3. Escena 3: Ayuda

Esta escena muestra varios mensajes de ayuda en los que se explica detalladamente el funcionamiento de la aplicación, además, de como obtener un mayor rendimiento, ya que serán necesarias una pequeñas pautas para su utilización. También se resolverán las diferentes dudas que le puedan surgir al alumno.

4.1.4. Escena 4: Créditos

Al igual que en la escena de ayuda, solo se podrá acceder desde el menú principal. Se muestra los créditos sobre los desarrolladores, organismos implicados, agradecimientos y las licencias utilizadas en el TFG.

4.1.5. Escena 5: Entrenar

Tras seleccionar el tipo de usuario que utilizará la aplicación en la escena anterior, se desplegarán dos secciones diferentes.

4.1.5.1. Profesor

En el caso de que se trate del profesor, se podrá acceder a la funcionalidad añadida de la grabación de movimientos. La aplicación viene definida con 8 movimientos de capoeira capturados con la escuela Abadá-Capoeira. Por lo tanto el profesor podrá añadir los movimientos que crear oportunos para la correcta evolución del alumno, ya que cuando realicé un movimiento de forma correcta, este será completado y así se mostrará en el listado de movimientos acorde al nivel seleccionado previamente.

4.1.5.2. Alumno

Parte I Apéndices

Apéndice A

Así se hizo...

..

RESUMEN: ...

A.1. Introducción

...

Bibliografía

Y así, del mucho leer y del poco dormir, se le secó el celebro de manera que vino a perder el juicio.

Miguel de Cervantes Saavedra

RODRÍGUEZ-ESPARRAGÓN, D. y DOMÍNGUEZ QUINTANA, L. Solución de bajo coste de captura de movimiento basada en kinect. ????

Wikipedia. Captura de movimiento — wikipedia, la enciclopedia libre. 2016. [Internet; descargado 20-marzo-2017].

-¿Qué te parece desto, Sancho? - Dijo Don Quijote - Bien podrán los encantadores quitarme la ventura, pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced.
-No es menester firmarla - dijo Don Quijote-,
sino solamente poner mi rúbrica.

Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes