```
import pandas as pd
In [10]:
           a=[1,7,2]
           myvar=pd.Series(a,index=["x","y","z"])
           print(myvar)
           print(type(myvar))
           print(myvar[1])
           print(myvar["z"])
           print(myvar["y"])
          Х
               1
          У
               2
          Z
          dtype: int64
          <class 'pandas.core.series.Series'>
          2
          import pandas as pd
In [13]:
           a=[1.4,"2",3,4]
           myvar=pd.Series(a,index=["x","y","z","e"])
           print(myvar)
           print(type(myvar))
           print(myvar[1])
           print(myvar["z"])
           print(myvar["y"])
               1.4
          Х
                 2
          У
                 3
          Z
          dtype: object
          <class 'pandas.core.series.Series'>
          2
          3
          2
In [22]:
           import pandas as pd
           student_name=["Ram","Shyam","Radha","Geeta","Seeta"]
           marks=[50,60,60,80,90]
           myvar=pd.Series(marks,index=student_name,name="Students Result")
           print(myvar)
          Ram
                   50
          Shyam
                   60
          Radha
                   60
          Geeta
                   80
          Seeta
          Name: Students Result, dtype: int64
In [25]:
          import pandas as pd
           Calories={'day1':400,'day2':350,'day3':380}
           myvar=pd.Series(Calories,index=['day1','day2'])
           print(myvar)
          day1
                  400
          day2
                  350
          dtype: int64
In [40]:
           import pandas as pd
           marks={"Ram":55,"Shyam":80,"Radha":80}
```

```
marks_series=pd.Series(marks,name="student result")
           print(marks_series)
           marks_series.size
           marks_series.dtype
           marks_series.name
           marks_series.index
           marks_series.values
           marks_series.is_unique
          Ram
                   55
          Shyam
                   80
          Radha
                   80
          Name: student result, dtype: int64
Out[40]: False
In [67]:
           import pandas as pd
           subs=pd.read_csv("subs.csv", squeeze=True)
           print(subs)
           print(type(subs))
           subs.describe()
           subs.min()
           subs.max()
           subs.median()
           subs.sum()
           subs[subs<200].size - subs[subs>100].size
          0
                  48
          1
                  57
          2
                  40
          3
                  43
          4
                  44
          360
                 231
          361
                 226
          362
                 155
          363
                 144
          364
                 172
          Name: Subscribers gained, Length: 365, dtype: int64
          <class 'pandas.core.series.Series'>
Out[67]: 66
In [90]:
           import pandas as pd
           mv=pd.read csv("bollywood.csv",index col="movie",squeeze=True)
           print(mv)
           mv.head(10)
           mv.tail()
           mv[100:200]
           mv[-5:]
           mv[::2]
           mv[::-1]
           mv[0]
           mv["Uri: The Surgical Strike"]
          movie
          Uri: The Surgical Strike
                                                      Vicky Kaushal
          Battalion 609
                                                        Vicky Ahuja
          The Accidental Prime Minister (film)
                                                        Anupam Kher
          Why Cheat India
                                                       Emraan Hashmi
          Evening Shadows
                                                   Mona Ambegaonkar
          Hum Tumhare Hain Sanam
                                                     Shah Rukh Khan
          Aankhen (2002 film)
                                                   Amitabh Bachchan
          Saathiya (film)
                                                       Vivek Oberoi
          Company (film)
                                                         Ajay Devgn
```

```
Akshay Kumar
          Awara Paagal Deewana
          Name: lead, Length: 1500, dtype: object
          'Vicky Kaushal'
Out[90]:
          import pandas as pd
In [9]:
           mv=pd.read_csv("bollywood.csv",index_col="movie",squeeze=True)
           print(mv)
           print("2 States (2014 film)" in mv)
           print("Alia Bhatt" in mv.values)
           mv.index
          movie
          Uri: The Surgical Strike
                                                      Vicky Kaushal
          Battalion 609
                                                        Vicky Ahuja
          The Accidental Prime Minister (film)
                                                        Anupam Kher
          Why Cheat India
                                                      Emraan Hashmi
          Evening Shadows
                                                   Mona Ambegaonkar
                                                         . . .
          Hum Tumhare Hain Sanam
                                                     Shah Rukh Khan
          Aankhen (2002 film)
                                                   Amitabh Bachchan
          Saathiya (film)
                                                       Vivek Oberoi
          Company (film)
                                                         Ajay Devgn
          Awara Paagal Deewana
                                                       Akshay Kumar
          Name: lead, Length: 1500, dtype: object
          True
          True
 Out[9]: Index(['Uri: The Surgical Strike', 'Battalion 609',
                 'The Accidental Prime Minister (film)', 'Why Cheat India',
                 'Evening Shadows', 'Soni (film)', 'Fraud Saiyaan', 'Bombairiya',
                 'Manikarnika: The Queen of Jhansi', 'Thackeray (film)',
                 'Raaz (2002 film)', 'Zameen (2003 film)', 'Waisa Bhi Hota Hai Part II',
                 'Devdas (2002 Hindi film)', 'Kaante', 'Hum Tumhare Hain Sanam',
                 'Aankhen (2002 film)', 'Saathiya (film)', 'Company (film)',
                 'Awara Paagal Deewana'],
                dtype='object', name='movie', length=1500)
           import pandas as pd
In [19]:
           mv=pd.read_csv("bollywood.csv",index_col="movie",squeeze=True)
           print(mv)
           print("2 States (2014 film)" in mv)
           print("Alia Bhatt" in mv.values)
           mv.value counts()
           num=mv.value_counts()
           num[num>20]
          movie
          Uri: The Surgical Strike
                                                      Vicky Kaushal
          Battalion 609
                                                        Vicky Ahuja
          The Accidental Prime Minister (film)
                                                        Anupam Kher
          Why Cheat India
                                                      Emraan Hashmi
          Evening Shadows
                                                   Mona Ambegaonkar
                                                         . . .
          Hum Tumhare Hain Sanam
                                                     Shah Rukh Khan
          Aankhen (2002 film)
                                                   Amitabh Bachchan
          Saathiya (film)
                                                       Vivek Oberoi
          Company (film)
                                                         Ajay Devgn
          Awara Paagal Deewana
                                                       Akshay Kumar
          Name: lead, Length: 1500, dtype: object
          True
          True
Out[19]: Akshay Kumar
                              48
          Amitabh Bachchan
                              45
                              38
          Ajay Devgn
```

```
Salman Khan
                               31
          Sanjay Dutt
                               26
          Shah Rukh Khan
                               22
          Emraan Hashmi
                               21
          Name: lead, dtype: int64
          import pandas as pd
In [33]:
           marks={"Ram":55,"Shyam":60,"Radha":70}
           m=pd.Series(marks,name='result')
           print(m)
                    55
          Ram
          Shyam
                    60
          Radha
                    70
          Name: result, dtype: int64
In [35]:
           dict(m)
Out[35]: {'Ram': 55, 'Shyam': 100, 'Radha': 70}
           list(m)
In [26]:
Out[26]: [55, 80, 80]
In [34]:
           # m[1]=100
           # print(m)
          Ram
                    55
          Shyam
                    100
          Radha
                    70
          Name: result, dtype: int64
In [52]:
           # m=100+m
           # print(m)
           100+m
           m
          Ram
                    255
Out[52]:
          Shyam
                    300
                    270
          Radha
          Name: result, dtype: int64
           m>=100
In [54]:
          Ram
                    True
Out[54]:
                   True
          Shyam
          Radha
                    True
          Name: result, dtype: bool
           import pandas as pd
In [61]:
           a=pd.Series([2,4,6,8,10])
           b=pd.Series([1,3,5,7,10])
           print(a+b)
          0
                3
          1
                7
          2
               11
               15
               20
          dtype: int64
In [57]:
           print(a-b)
          0
               1
          1
               1
          2
               1
          3
               1
```

```
0
           dtype: int64
           print(a*b)
In [58]:
           0
                  2
           1
                 12
           2
                 30
                 56
                100
          dtype: int64
In [59]: | print(a/b)
          0
                2.000000
           1
                1.333333
           2
                1.200000
           3
                1.142857
                1.000000
           dtype: float64
In [62]:
           print(a==b)
          0
                False
          1
                False
           2
                False
           3
                False
                 True
           dtype: bool
In [63]: print(a<b)</pre>
          0
                False
                False
          1
           2
                False
           3
                False
                False
           dtype: bool
In [64]:
           print(a>b)
          0
                 True
          1
                 True
           2
                 True
           3
                 True
                False
          dtype: bool
```

DataFrame

```
import pandas as pd
In [76]:
           data={'calories':[400,350,380],'duration':[50,40,45]}
           df=pd.DataFrame(data,index=['day1','day2','day3'])
           print(df)
                calories duration
          day1
                     400
                                50
                     350
                                40
          day2
                                45
          day3
                     380
In [87]:
          df.loc['day1']
          calories
                      400
Out[87]:
          duration
                       50
          Name: day1, dtype: int64
          df.loc['day2']
In [86]:
```

```
Out[86]: calories
                        350
           duration
                        40
          Name: day2, dtype: int64
           df.iloc[0]#for the intergers only
In [88]:
Out[88]: calories
                       400
                        50
           duration
          Name: day1, dtype: int64
           # df['calories']
In [90]:
           df.calories
          day1
                   400
Out[90]:
          day2
                   350
          day3
                   380
          Name: calories, dtype: int64
           df['duration']
In [91]:
                   50
          day1
Out[91]:
          day2
                   40
          day3
                   45
          Name: duration, dtype: int64
           df.loc[['day1','day2']]
In [92]:
Out[92]:
                calories duration
                    400
                              50
           day1
           day2
                    350
                              40
           import pandas as pd
In [94]:
           data=pd.read_csv('auto-mpg.csv')
           print(data)
                 mpg cylinders displacement horsepower
                                                             weight acceleration
          0
                                                                              12.0
                18.0
                               8
                                          307.0
                                                        130
                                                               3504
                                                                              11.5
                15.0
                               8
                                          350.0
                                                               3693
          1
                                                        165
          2
                18.0
                               8
                                          318.0
                                                        150
                                                               3436
                                                                              11.0
          3
                16.0
                               8
                                                               3433
                                                                              12.0
                                          304.0
                                                        150
          4
                               8
                                                               3449
                17.0
                                          302.0
                                                        140
                                                                              10.5
                             . . .
                                            . . .
                                                                . . .
           393
                27.0
                               4
                                          140.0
                                                        86
                                                               2790
                                                                              15.6
          394
                44.0
                               4
                                           97.0
                                                        52
                                                               2130
                                                                              24.6
           395
                32.0
                               4
                                          135.0
                                                         84
                                                               2295
                                                                              11.6
          396
                28.0
                               4
                                          120.0
                                                        79
                                                               2625
                                                                              18.6
                                                                              19.4
          397
                31.0
                               4
                                          119.0
                                                         82
                                                               2720
                model year
                            origin
                                                        car name
          0
                                     chevrolet chevelle malibu
                        70
                                  1
                        70
          1
                                  1
                                              buick skylark 320
          2
                        70
                                  1
                                             plymouth satellite
                        70
          3
                                  1
                                                  amc rebel sst
          4
                        70
                                  1
                                                    ford torino
           393
                        82
                                  1
                                                ford mustang gl
           394
                        82
                                  2
                                                      vw pickup
           395
                        82
                                  1
                                                  dodge rampage
           396
                        82
                                  1
                                                    ford ranger
           397
                        82
                                  1
                                                     chevy s-10
           [398 rows x 9 columns]
```

```
In [96]:
```

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	object
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	object
d+vn	oc. float64(2)	in+64(4) objo	c+(2)

dtypes: float64(3), int64(4), object(2)

memory usage: 28.1+ KB

In [101...

data.head(10)

Out[101..

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
5	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215	4312	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl

In [102...

data.loc[15]

Out[102... r

mpg	22
cylinders	6
displacement	198
horsepower	95
weight	2833
acceleration	15.5
model year	70
origin	1
car name	plymouth duster

Name: 15, dtype: object

In [103...

data.loc[5:15]

Out[103...

••	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
5	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215	4312	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170	3563	10.0	70	1	dodge challenger se
11	14.0	8	340.0	160	3609	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150	3761	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225	3086	10.0	70	1	buick estate wagon (sw)
14	24.0	4	113.0	95	2372	15.0	70	3	toyota corona mark ii
15	22.0	6	198.0	95	2833	15.5	70	1	plymouth duster

In [104...

data.iloc[5:15]

Out[104...

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
5	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215	4312	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170	3563	10.0	70	1	dodge challenger se

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
11	14.0	8	340.0	160	3609	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150	3761	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225	3086	10.0	70	1	buick estate wagon (sw)
14	24.0	4	113.0	95	2372	15.0	70	3	toyota corona mark ii

In [107... data['mpg'].loc[4]

Out[107... 17.0

In [114... data.shape[1]

Out[114... 9

In [115... data.describe()

Out[115...

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

In [118...

data.describe(include='all')

import numpy as np

data.describe(include=[np.number])

Out[118...

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

In [124... data.describe(exclude=[np.number])

Out[124...

	horsepower	car name
count	398	398
unique	94	305
top	150	ford pinto
freq	22	6

In [129... data.describe(percentiles=[.30,.45,.60])

Out[129...

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
30%	18.000000	4.000000	112.000000	2301.000000	14.200000	73.000000	1.000000
45%	21.065000	4.000000	140.000000	2670.650000	15.000000	75.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
60%	25.000000	6.000000	200.000000	3085.200000	16.000000	77.000000	1.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

In [134... data[['mpg','cylinders']].describe()

Out[134...

	mpg	cylinders
count	398.000000	398.000000
mean	23.514573	5.454774
std	7.815984	1.701004
min	9.000000	3.000000
25%	17.500000	4.000000
50%	23.000000	4.000000
75%	29.000000	8.000000
max	46.600000	8.000000

In [135... data[0:2].describe()

Out[135...

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	2.00000	2.0	2.000000	2.000000	2.000000	2.0	2.0
mean	16.50000	8.0	328.500000	3598.500000	11.750000	70.0	1.0
std	2.12132	0.0	30.405592	133.643182	0.353553	0.0	0.0
min	15.00000	8.0	307.000000	3504.000000	11.500000	70.0	1.0

	mpg	cylinders	displacement	weight	acceleration	model year	origin
25%	15.75000	8.0	317.750000	3551.250000	11.625000	70.0	1.0
50%	16.50000	8.0	328.500000	3598.500000	11.750000	70.0	1.0
75%	17.25000	8.0	339.250000	3645.750000	11.875000	70.0	1.0
max	18.00000	8.0	350.000000	3693.000000	12.000000	70.0	1.0

In [136... data.loc[0:2].describe()

Out[136...

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	3.000000	3.0	3.000000	3.000000	3.00	3.0	3.0
mean	17.000000	8.0	325.000000	3544.333333	11.50	70.0	1.0
std	1.732051	0.0	22.338308	133.162808	0.50	0.0	0.0
min	15.000000	8.0	307.000000	3436.000000	11.00	70.0	1.0
25%	16.500000	8.0	312.500000	3470.000000	11.25	70.0	1.0
50%	18.000000	8.0	318.000000	3504.000000	11.50	70.0	1.0
75%	18.000000	8.0	334.000000	3598.500000	11.75	70.0	1.0
max	18.000000	8.0	350.000000	3693.000000	12.00	70.0	1.0

In [137... data.corr()

Out[137...

	mpg	cylinders	displacement	weight	acceleration	model year	origin
mpg	1.000000	-0.775396	-0.804203	-0.831741	0.420289	0.579267	0.563450
cylinders	-0.775396	1.000000	0.950721	0.896017	-0.505419	-0.348746	-0.562543
displacement	-0.804203	0.950721	1.000000	0.932824	-0.543684	-0.370164	-0.609409
weight	-0.831741	0.896017	0.932824	1.000000	-0.417457	-0.306564	-0.581024
acceleration	0.420289	-0.505419	-0.543684	-0.417457	1.000000	0.288137	0.205873
model year	0.579267	-0.348746	-0.370164	-0.306564	0.288137	1.000000	0.180662
origin	0.563450	-0.562543	-0.609409	-0.581024	0.205873	0.180662	1.000000

In [147...

import pandas as pd $\textbf{import} \ \texttt{matplotlib.pyplot} \ \textbf{as} \ \texttt{plt}$ pd.plotting.scatter_matrix(data,figsize=[15,15],marker='v',alpha=0.5,diagonal='kde') plt.show()

import pandas as pd
from pandas.plotting import parallel_coordinates

pll=parallel_coordinates(data,'displacement',cols=['acceleration','mpg'],color=['red


```
import pandas as pd
from pandas.plotting import parallel_coordinates

pll=parallel_coordinates(data,'cylinders',cols=['acceleration','mpg'],color=['red','
```


cross tabulation

```
In [6]:
              import pandas as pd
              data=pd.read_csv('auto-mpg.csv')
              pd.crosstab(data['cylinders'],data['model year'],rownames=['cylinders'],colnames
Out[6]: model year 70 71 72 73 74 75 76 77 78 79 80 81 82
           cylinders
                 3
                       13
                                  15
                                      12
                                          15
                                                 17
                                                     12
                                                        25
                                       0
                                                                 0
                                                                 3
                          13 20
                                       6
                                                    10
```

Data Cleaning

```
"Expenses": [42000,43000,np.nan,np.nan,38000,39000,42000,np.nan
            print(sale_data)
                                           Expenses
                   Name region
                                    Sales
           0
               klillian
                            NaN
                                   5000.0
                                             42000.0
                                             43000.0
           1
                   Emma North
                                  52000.0
           2
                  Sofia
                          East
                                      NaN
                                                 NaN
           3
                 Markus
                            NaN
                                      NaN
                                                 NaN
           4
                 Edward
                           West 42000.0
                                             38000.0
           5
                 Thomas
                           West 72000.0
                                             39000.0
           6
                  Etham South 49000.0
                                             42000.0
           7
                    NaN
                            NaN
                                      NaN
                                                 NaN
           8
                   Arun
                           West 67000.0
                                             39000.0
           9
                  Anika
                           East 66000.0
                                             50000.0
           10
                    Paw
                          south 67000.0
                                             45000.0
                        1
           Name
Out[13]:
                        3
           region
                        3
           Sales
           Expenses
                        3
           dtype: int64
In [14]:
           sale_data.isna().sum()
           Name
                        1
Out[14]:
           region
                        3
           Sales
                        3
           Expenses
                        3
           dtype: int64
           sale_data.dropna()
In [15]:
Out[15]:
                                Sales Expenses
                Name region
            1
                Emma
                        North
                              52000.0
                                        43000.0
            4
               Edward
                        West 42000.0
                                        38000.0
            5
               Thomas
                              72000.0
                                        39000.0
                        West
            6
                Etham
                        South
                              49000.0
                                        42000.0
            8
                 Arun
                        West 67000.0
                                        39000.0
            9
                              66000.0
                 Anika
                         East
                                        50000.0
           10
                  Paw
                        south 67000.0
                                        45000.0
In [17]:
            sale_data
Out[17]:
                       region
                Name
                                Sales
                                      Expenses
            0
                klillian
                         NaN
                                5000.0
                                        42000.0
            1
                Emma
                        North
                              52000.0
                                        43000.0
            2
                 Sofia
                                           NaN
                         East
                                 NaN
            3
               Markus
                         NaN
                                 NaN
                                           NaN
               Edward
                         West 42000.0
                                        38000.0
            5
               Thomas
                         West
                              72000.0
                                        39000.0
            6
                Etham
                        South
                              49000.0
                                        42000.0
            7
                 NaN
                         NaN
                                 NaN
                                           NaN
```

"Sales": [5000,52000,np.nan,np.nan,42000,72000,49000,np.nan,670

	Name	region	Sales	Expenses
8	Arun	West	67000.0	39000.0
9	Anika	East	66000.0	50000.0
10	Paw	south	67000.0	45000.0

In [20]: sale_data.dropna(thresh=1)

Out[20]:		Name	region	Sales	Expenses
	0	klillian	NaN	5000.0	42000.0
	1	Emma	North	52000.0	43000.0
	2	Sofia	East	NaN	NaN
	3	Markus	NaN	NaN	NaN
	4	Edward	West	42000.0	38000.0
	5	Thomas	West	72000.0	39000.0
	6	Etham	South	49000.0	42000.0
	8	Arun	West	67000.0	39000.0
	9	Anika	East	66000.0	50000.0
	10	Paw	south	67000.0	45000.0

In [21]: sale_data.dropna(how='any')

Out[21]:	Name	region	Sales	Expenses
1	l Emma	North	52000.0	43000.0
4	! Edward	West	42000.0	38000.0
5	5 Thomas	West	72000.0	39000.0
•	5 Etham	South	49000.0	42000.0
8	3 Arun	West	67000.0	39000.0
g	A nika	East	66000.0	50000.0
10	P aw	south	67000.0	45000.0

In [22]: sale_data.dropna(how='all')

Out[22]:		Name	region	Sales	Expenses
	0	klillian	NaN	5000.0	42000.0
	1	Emma	North	52000.0	43000.0
	2	Sofia	East	NaN	NaN
	3	Markus	NaN	NaN	NaN
	4	Edward	West	42000.0	38000.0
	5	Thomas	West	72000.0	39000.0
	6	Etham	South	49000.0	42000.0

```
        Name
        region
        Sales
        Expenses

        8
        Arun
        West
        67000.0
        39000.0

        9
        Anika
        East
        66000.0
        50000.0

        10
        Paw
        south
        67000.0
        45000.0
```

```
In [28]: sale_data.dropna(subset['Sales','Expenses'])
```

NameError: name 'subset' is not defined

```
In [29]: sale_data.dropna(axis=1)
```

Out[29]:

0

1

2

3

4

5

6

7

8

9

10

In [30]: sale_data

Out[30]:		Name	region	Sales	Expenses
	0	klillian	NaN	5000.0	42000.0
	1	Emma	North	52000.0	43000.0
	2	Sofia	East	NaN	NaN
	3	Markus	NaN	NaN	NaN
	4	Edward	West	42000.0	38000.0
	5	Thomas	West	72000.0	39000.0
	6	Etham	South	49000.0	42000.0
	7	NaN	NaN	NaN	NaN
	8	Arun	West	67000.0	39000.0
	9	Anika	East	66000.0	50000.0
	10	Paw	south	67000.0	45000.0

```
sale_data.dropna(inplace=True)
In [35]:
            sale_data
Out[35]:
                Name region
                                 Sales Expenses
                        North 52000.0
            1
                Emma
                                        43000.0
               Edward
                         West
                              42000.0
                                        38000.0
            5
               Thomas
                              72000.0
                                        39000.0
                         West
            6
                Etham
                        South
                              49000.0
                                        42000.0
            8
                 Arun
                         West 67000.0
                                        39000.0
            9
                 Anika
                         East
                              66000.0
                                        50000.0
           10
                  Paw
                        south 67000.0
                                        45000.0
In [36]:
            sale_data.dropna(thresh=1,inplace=True)
            sale_data
Out[36]:
                Name
                       region
                                 Sales Expenses
            1
                              52000.0
                                        43000.0
                Emma
                        North
               Edward
                         West 42000.0
                                        38000.0
            5
               Thomas
                         West
                              72000.0
                                        39000.0
            6
                Etham
                        South
                              49000.0
                                        42000.0
            8
                 Arun
                         West
                              67000.0
                                        39000.0
            9
                 Anika
                         East
                              66000.0
                                        50000.0
           10
                        south 67000.0
                  Paw
                                        45000.0
In [37]:
            import numpy as np
            import pandas as pd
            sale_data=pd.DataFrame({"Name":["klillian","Emma","Sofia","Markus","Edward","Thomas"
                                    "region":[np.nan,"North","East",np.nan,"West","West","South",n
                                    "Sales":[5000,52000,np.nan,np.nan,42000,72000,49000,np.nan,670
                                    "Expenses": [42000,43000,np.nan,np.nan,38000,39000,42000,np.nan
            print(sale_data)
                                    Sales
                   Name region
                                            Expenses
           0
               klillian
                                   5000.0
                                             42000.0
                            NaN
                          North
                                  52000.0
                                             43000.0
           1
                   Emma
           2
                  Sofia
                           East
                                      NaN
                                                 NaN
           3
                 Markus
                            NaN
                                      NaN
                                                 NaN
           4
                 Edward
                           West
                                  42000.0
                                             38000.0
           5
                                  72000.0
                 Thomas
                           West
                                             39000.0
                                             42000.0
           6
                                  49000.0
                  Etham
                          South
           7
                     NaN
                            NaN
                                      NaN
                                                 NaN
           8
                   Arun
                           West
                                  67000.0
                                             39000.0
           9
                                  66000.0
                  Anika
                                             50000.0
                           East
                                  67000.0
           10
                     Paw
                          south
                                             45000.0
           sale data.fillna(0)
In [40]:
Out[40]:
                Name region
                                 Sales Expenses
            0
                klillian
                            0
                                5000.0
                                        42000.0
            1
                Emma
                        North 52000.0
                                        43000.0
```

```
Name region
                                Sales Expenses
            2
                                  0.0
                                            0.0
                 Sofia
                         East
            3
               Markus
                            0
                                  0.0
                                            0.0
                         West 42000.0
                                        38000.0
               Edward
                         West 72000.0
            5
               Thomas
                                        39000.0
            6
                Etham
                        South
                              49000.0
                                        42000.0
            7
                    0
                            0
                                  0.0
                                            0.0
            8
                         West 67000.0
                                        39000.0
                 Arun
            9
                              66000.0
                                        50000.0
                 Anika
                         East
           10
                        south 67000.0
                                        45000.0
                  Paw
            sale_data['Sales'].fillna(4000)
In [42]:
          0
                  5000.0
Out[42]:
           1
                 52000.0
           2
                  4000.0
           3
                  4000.0
           4
                 42000.0
           5
                 72000.0
           6
                 49000.0
           7
                  4000.0
           8
                 67000.0
           9
                 66000.0
           10
                 67000.0
           Name: Sales, dtype: float64
           sale_data['Sales'].fillna(sale_data['Sales'].mean())
In [45]:
           0
                  5000.0
Out[45]:
                 52000.0
           1
           2
                 52500.0
           3
                 52500.0
           4
                 42000.0
           5
                 72000.0
           6
                 49000.0
           7
                 52500.0
           8
                 67000.0
           9
                 66000.0
           10
                 67000.0
           Name: Sales, dtype: float64
In [46]:
           sale_data['Sales'].fillna(sale_data['Sales'].median())
                  5000.0
Out[46]:
           0
           1
                 52000.0
           2
                 59000.0
           3
                 59000.0
           4
                 42000.0
           5
                 72000.0
           6
                 49000.0
           7
                 59000.0
           8
                 67000.0
           9
                 66000.0
                 67000.0
           Name: Sales, dtype: float64
            import pandas as pd
In [51]:
            data=pd.read_csv('auto-mpg.csv')
            data.info()
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 398 entries, 0 to 397 Data columns (total 9 columns):
> # Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	object
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	object
d+vn	oc. float64(2)	in+64(4) objo	c+(2)

dtypes: float64(3), int64(4), object(2)

memory usage: 28.1+ KB

In [53]:

data[data['horsepower']=='?']

Out[53]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
32	25.0	4	98.0	?	2046	19.0	71	1	ford pinto
126	21.0	6	200.0	?	2875	17.0	74	1	ford maverick
330	40.9	4	85.0	?	1835	17.3	80	2	renault lecar deluxe
336	23.6	4	140.0	?	2905	14.3	80	1	ford mustang cobra
354	34.5	4	100.0	?	2320	15.8	81	2	renault 18i
374	23.0	4	151.0	?	3035	20.5	82	1	amc concord dl

In [58]: data[data['horsepower']!='?']

Out[58]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
•••									
393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
									gl
394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10

392 rows × 9 columns

```
In [57]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	mpg	398 non-null	float64			
1	cylinders	398 non-null	int64			
2	displacement	398 non-null	float64			
3	horsepower	398 non-null	object			
4	weight	398 non-null	int64			
5	acceleration	398 non-null	float64			
6	model year	398 non-null	int64			
7	origin	398 non-null	int64			
8	car name	398 non-null	object			
dtypes: float64(3), int64(4), object(2)						

memory usage: 28.1+ KB

import pandas as pd
data=pd.read_csv('auto-mpg.csv')

data.tail()

Out	[52]	

In [52]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10

In []: data.drop('mpg',axis=1)

```
import pandas as pd
dataset=pd.read_csv('auto-mpg.csv')
def find_outliers(ds,col):
    quart1=ds[col].quabtile(0.25)
    quart2=
```