2007级

1、(1)已知函数 y 由方程 $\sin(x+y)-xy=0$ 确定,试计算微分 $\frac{dy}{dx}, \frac{d^2y}{dx^2}$.

(2) 已知函数 y 由方程 $e^{x+y} - \sin xy = 0$ 确定, 试计算微分 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

解: (1) 在方程 $\sin(x+y)-xy=0$ 两端同时对 x 进行微分,得:

$$(1+\frac{\mathrm{d}y}{\mathrm{d}x})\cos(x+y)-y-x\frac{\mathrm{d}y}{\mathrm{d}x}=0$$
, 可得: $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{y-\cos(x+y)}{\cos(x+y)-x}$

在方程 $(1+\frac{\mathrm{d}y}{\mathrm{d}x})\cos(x+y)-y-x\frac{\mathrm{d}y}{\mathrm{d}x}=0$ 两端再次同时对x进行微分,得:

$$-(1+\frac{dy}{dx})^{2}\sin(x+y)+\frac{d^{2}y}{dx^{2}}\cos(x+y)-\frac{dy}{dx}-\frac{dy}{dx}-x\frac{d^{2}y}{dx^{2}}=0, \quad 即为:$$

$$-(1+\frac{y-\cos(x+y)}{\cos(x+y)-x})^2\sin(x+y)+\frac{d^2y}{dx^2}\cos(x+y)-2\frac{y-\cos(x+y)}{\cos(x+y)-x}-x\frac{d^2y}{dx^2}=0$$

可得:
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{(y-x)^2 \sin(x+y)}{(\cos(x+y)-x)^3} + 2\frac{y-\cos(x+y)}{(\cos(x+y)-x)^2}.$$

(2) 在方程 $e^{x+y} - \sin xy = 0$ 两端同时对 x 进行微分,得:

$$(1+\frac{dy}{dx})e^{x+y}-(x\frac{dy}{dx}+y)\cos xy=0$$
, 可得: $\frac{dy}{dx}=\frac{e^{x+y}-y\cos xy}{x\cos xy-e^{x+y}}$

在方程 $(1+\frac{dy}{dx})e^{x+y}-(x\frac{dy}{dx}+y)\cos xy=0$ 两端再次同时对x进行微分,得:

$$\frac{d^{2}y}{dx^{2}}e^{x+y} + (1 + \frac{dy}{dx})^{2}e^{x+y} - (x\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx})\cos xy + (x\frac{dy}{dx} + y)^{2}\sin xy = 0, \quad \text{if } y_{3}$$

$$\frac{d^2y}{dx^2}e^{x+y} + \left(1 + \frac{e^{x+y} - y\cos xy}{x\cos xy - e^{x+y}}\right)^2e^{x+y} - \left(x\frac{d^2y}{dx^2} + 2\frac{e^{x+y} - y\cos xy}{x\cos xy - e^{x+y}}\right)\cos xy + \left(x\frac{e^{x+y} - y\cos xy}{x\cos xy - e^{x+y}} + y\right)^2\sin xy = 0$$

可得:
$$\frac{d^2y}{dx^2} = \frac{(x-y)^2\cos^2 xy}{x\cos xy - e^{x+y}}e^{x+y} + 2(y\cos xy - e^{x+y})\cos xy + \frac{(x-y)^2e^{2x+2y}}{x\cos xy - e^{x+y}}\sin xy.$$

2、设函数f(x)在区间(-1,1)上有定义,在x=0处有二阶导数且满足:

$$f(0) = \lim_{x \to 0} \frac{f(x)}{r} = 0, f''(0) = 1.$$
 $\Re \lim_{x \to 0} \frac{f(x - \sin x)}{r^6}$ 的值.

解: 由条件:
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = 0$$

故有:
$$\lim_{x\to 0} \frac{f(x-\sin x)}{x^6} \stackrel{L'H}{=} \lim_{x\to 0} \frac{(1-\cos)f'(x-\sin x)}{6x^5} = \lim_{x\to 0} \frac{f'(x-\sin x)}{12x^3} =$$

$$\lim_{x \to 0} \frac{(1 - \cos)f''(x - \sin x)}{36x^2} = \lim_{x \to 0} \frac{f''(x - \sin x)}{72} = \frac{f''(0)}{72} = \frac{1}{72}$$

- 3、已知方程 $x^n + n \ln(1+x) 1 = 0, n \in N_{\perp}$.求证:
 - (1) 对任意的 n, 此方程有唯一正实根;
- (2) 记(1) 中的正实根为 a_n ,则有 $\lim_{n\to\infty} a_n = 0$.

证明: (1) 令
$$f_n(x) = x^n + n \ln(1+x) - 1$$
,则有 $f'_n(x) = nx^{n-1} + \frac{n}{1+x} > 0$

故 $f_n(x)$ 在定义域上单调递增,又 $f_n(0) = -1 < 0$, $f_n(1) = n \ln 2 > 0$, 故由零点存在性定理结合函数的单调性知:对任意的 n,此方程有唯一正实根,且此根在区间(0.1)内.

(2) (证法一)来证明 a_n 从某项之后为单调递减数列,由 $f_n(x)$ 的单调性知,

只需对足够大的 n 去证明: $f_n(a_{n+1}) < 0$,即 $a_{n+1}^n + n \ln(1 + a_{n+1}) - 1 < 0$,

又
$$a_{n+1}^{n+1} + (1+n)\ln(1+a_{n+1}) - 1 = 0$$
,故只需证 $a_{n+1}^{n} - a_{n+1}^{n+1} - \ln(1+a_{n+1}) < 0$

考虑函数
$$g(x) = x^n - x^{n+1} - \ln(1+x)$$
, 有 $g'(x) = nx^{n-1} - (n+1)x^n - \frac{1}{1+x}$,

$$g''(x) = n(n-1)x^{n-2} - n(n+1)x^{n-1} + \frac{1}{(1+x)^2} = n(n+1)x^{n-2} \left[\frac{n-1}{n+1} - x\right] + \frac{1}{(1+x)^2}.$$

我们不难得知, 当
$$n$$
 足够大时, $f_n(1-\frac{2}{n+1}) > f_n(\frac{1}{3}) > 0$, 故 $1-\frac{2}{n+1} > a_n$.

故此时
$$g''(x) > 0$$
,则 $g'(x) < g'(\frac{n-1}{n+1}) = (\frac{n-1}{n+1})^{n-1} - \frac{n+1}{2n} < 0$, $g(x) < g(0) = 0$

故 a_n 为单调递减数列,从而由单调有界定理知 a_n 收敛,设极限为 $A \in [0,1]$,有:

 $A^n + n \ln(1+A) = A^{n+1} + (n+1) \ln(1+A)$ 成立,即 $A^n (1-A) - \ln(1+A) = 0$ 成立,由上面的讨论知只有 A=0,综上所述,命题得证.

(证法二) 我们现证明 $0 < a_n < e^{\frac{1}{n}} - 1 (n \in N_+)$, 这由 $f_n(x)$ 的单调性以及 $f_n(e^{\frac{1}{n}} - 1) = (e^{\frac{1}{n}} - 1)^n > 0$ 知其成立,故由夹挤定理, $\lim_{n \to \infty} a_n = 0$.

4、设函数 f(x)在区间[0,1]上连续,于(0,1)上可导,且满足 f(1)=1,求证:存在 $0 < \xi < \eta < 1$,使得: $f'(\eta) = \frac{\xi f'(\xi)}{2(1-\xi)}$.

证明: 先来证明存在 $0 < \xi < 1$,使得 $1 - f(\xi) = \frac{\xi f'(\xi)}{2}$. 令 $g(x) = \frac{x^2}{2} f(x)$, $h(x) = \frac{x^2}{2}$,

显然其都在在区间[0,1]上连续,于(0,1)上可导,故由 Cauchy 中值定理,存在 $0<\xi<1$,使:

$$\frac{g'(\xi)}{h'(\xi)} = \frac{g(1) - g(0)}{h(1) - h(0)} = 1 \; , \quad \text{If } 1 = \frac{\frac{\xi^2}{2} \, f'(\xi) + \xi f(\xi)}{\xi} = \frac{\xi}{2} \, f'(\xi) + f(\xi) \; , \quad \text{If } 1 - f(\xi) = \frac{\xi f'(\xi)}{2} \; .$$

又函数f(x)在区间[ξ ,1]上连续,于(ξ ,1)上可导,

故由 Lagrange 中值定理,存在 $\xi < \eta < 1$, 使得 $f'(\eta) = \frac{f(1) - f(\xi)}{1 - \xi} = \frac{1 - f(\xi)}{1 - \xi} = \frac{\xi f'(\xi)}{2(1 - \xi)}$.

2008级

1、求下列函数的一阶导数:

(1)
$$f(x) = \ln \frac{1-x^2}{1+x^2}$$
; (2) $f(x) = x^{x^x}(x>0)$;

(3) 隐函数 y = f(x) 由以下方程 $x^2y^2 + y = 1 + xe^y$ 确定.

解: (1)
$$f'(x) = (\ln \frac{1-x^2}{1+x^2})' = [\ln(1+x) + \ln(1-x) - \ln(1+x^2)]' = \frac{1}{1+x} - \frac{1}{1-x} - \frac{2x}{1+x^2}$$
.

(2) (解法一)
$$f'(x) = (x^{x^x})' = (e^{x^x \ln x})' = (e^{e^{x \ln x} \ln x})' = (e^{x \ln x} \ln x)' e^{e^{x \ln x} \ln x} =$$

$$(e^{x \ln x} \ln x)' e^{e^{x \ln x} \ln x} = \left[\frac{e^{x \ln x}}{x} + (e^{x \ln x})' \ln x\right] e^{e^{x \ln x} \ln x} = \left[\frac{e^{x \ln x}}{x} + (x \ln x)' e^{x \ln x} \ln x\right] e^{e^{x \ln x} \ln x} = \frac{1}{x} e^{x \ln x} \ln x$$

$$\left[\frac{e^{x \ln x}}{x} + (1 + \ln x)e^{x \ln x} \ln x\right] e^{e^{x \ln x} \ln x} = \left(\frac{1}{x} + \ln x + \ln x \ln x\right) x^{x} x^{x^{x}} = \left(1 + x \ln x + x \ln^{2} x\right) x^{x^{x} + x - 1}.$$

(解法二) 有 $\ln f(x) = x^x \ln x$, $\ln \ln f(x) = x \ln x + \ln \ln x$, 对方程两端求导, 得:

$$f'(x) = \frac{1}{f(x)} \frac{1}{\ln f(x)} = \ln x + 1 + \frac{1}{x \ln x}, \quad \text{iff } f'(x) = (\ln x + 1 + \frac{1}{x \ln x})x^x \ln x \cdot x^{x^x} = (\ln^2 x + \ln x + \frac{1}{x})x^{x^x - x}.$$

(3) 在方程两端同时对
$$x$$
 求导,得: $2xy^2 + 2x^2y\frac{dy}{dx} + \frac{dy}{dx} = e^y + xe^y\frac{dy}{dx}$.

故可得:
$$\frac{dy}{dx} = \frac{e^y - 2xy^2}{2x^2y + 1 - xe^y}$$
.

2、按要求计算下列函数的高阶导数:

(1)
$$x = a(t - \sin t), y = a(1 - \cos t), \quad \Re \frac{d^2 y}{dx^2};$$

(2)
$$y = (2x^2 + 1)\sin x$$
, $\Re y^{(10)}$.

解:
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{\frac{dx}{dt}} = a \sin t \cdot \frac{1}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$
.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}(\frac{\mathrm{d}y}{\mathrm{d}x})}{\mathrm{d}x} = \frac{\mathrm{d}(\frac{\mathrm{d}y}{\mathrm{d}x})}{\mathrm{d}t} \cdot \frac{1}{\mathrm{d}t} = \frac{\cos t(1-\cos t) - \sin t \sin t}{(1-\cos t)^2} \cdot \frac{1}{a(1-\cos t)} = \frac{\cos t - 1}{a(1-\cos t)^3} = -\frac{1}{a(1-\cos t)^2}.$$

3、已知数集
$$E = \{\sin \frac{2n+1}{2}\pi + e^{-n}; n = 1,2,...\}$$
,求 $\sup E$ 的值和 $\inf E$ 的值以及数列

$$x_n = \sin \frac{2n+1}{2} \pi + e^{-n}$$
的上,下极限.

解:
$$x_n = \sin \frac{2n+1}{2}\pi + e^{-n} = \begin{cases} -1 + e^{-n}, & n = 2k+1 \\ 1 + e^{-n}, & n = 2k \end{cases}$$
 $(k \in \mathbb{N})$,

不难知其最大值为 $x_2=1+\frac{1}{e^2}$,故 $\sup E=1+\frac{1}{e^2}$.我们来证明 $\inf E$ 的值为 $^{-1}$.

首先显然 $\inf E$ 的值不大于 0,若 $\inf E = c \in (-1,0)$,则由 $\lim_{n \to \infty} e^{-n} = 0$,知:

对 $\varepsilon = c + 1 > 0$, 存在 $e^{-N} < 1 + c$, 即 $e^{-N} - 1 < c$, 与 inf E 是下界矛盾! 故 inf E = -1. 由定义知: $\overline{\lim_{n \to \infty}} x_n = 1$, $\underline{\lim_{n \to \infty}} x_n = \frac{1}{e} - 1$.

4、设 $a > 1, x_1 = \sqrt{a}, x_{n+1} = \sqrt{ax_n}, n = 1, 2, ...$,试证明:数列 $\{x_n\}$ 收敛,并求出 $\lim_{n \to \infty} x_n$.

证明: 用归纳法易证对任意正整数 n, $1 < x_n < a$, 由此可得 $\frac{x_{n+1}}{x_n} = \sqrt{\frac{a}{x_n}} > 1 (n \in N_+)$.

即数列 $\{x_n\}$ 单调递增,从而数列 $\{x_n\}$ 单调有界,故其极限存在,设为 $A \in [1,a]$.

对 $x_{n+1} = \sqrt{ax_n}$ 同取极限,有 $A = \sqrt{aA}$,得 A = a.

5、求证: 对任意
$$(x,y) \in R^2$$
, $\frac{e^x + e^y}{2} \le e^{\frac{x+y}{2}}$.

证明: 先证明 $f(x) = e^x \in R$ 上的下凸函数,这由 $f''(x) = e^x > 0$ 是易知的.

从而
$$f(\frac{x+y}{2}) = f[\frac{1}{2}x + (1-\frac{1}{2})y] \ge \frac{1}{2}f(x) + (1-\frac{1}{2})f(y) = \frac{f(x)+f(y)}{2}.$$

6、设函数 f(x)在区间[0,1]上连续,于(0,1)上恒正而可导,且满足 f(0)=0.求证:存在 $0 < \xi < 1$,使得: $\frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{2f(1-\xi)}$.

证明: 令函数 $g(x) = f^2(x)f(1-x)$,则函数 g(x)在区间[0,1]上连续,于(0,1)上可导,故由 Lagrange 中值定理,知存在 $0 < \xi < 1$,使得:

$$0 = \frac{g(1) - g(0)}{1 - 0} = g'(\xi) = 2f(\xi)f'(\xi)f(1 - \xi) - f^2(\xi)f'(1 - \xi), \quad X f(\xi) > 0$$

故有
$$2f'(\xi)f(1-\xi) = f(\xi)f'(1-\xi)$$
,即 $\frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{2f(1-\xi)}$.

2009 级

1、求下列极限:

(1)
$$\lim_{n\to\infty} \frac{\sum_{k=1}^{n} \sqrt{1+\frac{k}{n}}}{n}$$
; (2) $\lim_{x\to+\infty} \frac{\sqrt{x}+\sqrt{x}+\sqrt{x}}{\sqrt{2x+1}}$; (3) $\lim_{x\to0} \frac{e^{x} \sin x - x(1+x)}{x^{3}}$.

解: (1) 已知, 对任意正整数
$$n$$
, $\sqrt[n]{1+\frac{1}{n}} = \frac{\sum_{k=1}^{n} \sqrt[n]{1+\frac{1}{n}}}{n} < \frac{\sum_{k=1}^{n} \sqrt[n]{1+\frac{k}{n}}}{n} < \frac{\sum_{k=1}^{n} \sqrt[n]{2}}{n} = \sqrt[n]{2}$.

而
$$\lim_{n\to\infty} \sqrt[n]{1+\frac{1}{n}} = 1$$
, $\lim_{n\to\infty} \sqrt[n]{2} = 1$, 故由夹挤定理 $\lim_{n\to\infty} \frac{\displaystyle\sum_{k=1}^n \sqrt[n]{1+\frac{k}{n}}}{n} = 1$.

(2)
$$\lim_{x \to +\infty} \frac{\sqrt{x} + \sqrt{x + \sqrt{x}}}{\sqrt{2x + 1}} = \lim_{x \to +\infty} \frac{\sqrt{1} + \sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{2 + \frac{1}{x}}} = \frac{\lim_{x \to +\infty} \sqrt{1} + \sqrt{1 + \frac{1}{\sqrt{x}}}}{\lim_{x \to +\infty} \sqrt{2 + \frac{1}{x}}} = \sqrt{2}.$$

2、已知数列 $\{x_n\}$ 为正数数列,n > 1.求证: $(x_1 + x_2 + \dots + x_n)^n \le n^{n-1}(x_1^n + x_2^n + \dots + x_n^n)$.

证明: 即为证明
$$\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^n \le \frac{x_1^n + x_2^n + \dots + x_n^n}{n}$$

考虑函数 $f(x) = x^n$, 有 $f''(x) = n(n-1)x^{n-2}$, 故 f''(x) > 0 在 x > 0 时恒成立.

$$f(x) = x^n$$
为 R+上的下凸函数,故有: $f(\frac{x_1 + x_2 + \dots + x_n}{n}) \le \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$

成立,即
$$\left(\frac{x_1+x_2+\ldots\ldots+x_n}{n}\right)^n \le \frac{x_1^n+x_2^n+\ldots\ldots+x_n^n}{n}$$
成立.

3、已知函数 f(x)在 x=1 附近可导,且 f(x) > 0, f'(1) = 1 .又 $\lim_{x \to 0} \frac{\ln f(1+x) - \ln 2}{x} = A$ 存在,求实数 A 的值.

解: 即
$$\ln \frac{f(1+x)}{2}$$
 是不比 x 高阶的无穷小,则有 $\ln \frac{f(1)}{2} = 0$,得 $f(1) = 2$.

故
$$A = \lim_{x \to 0} \frac{\ln f(1+x) - \ln 2}{x} = \lim_{x \to 0} \frac{f'(1+x)}{f(1+x)} = \frac{f'(1)}{f(1)} = \frac{1}{2}.$$

4 、设函数 f(x)在区间 [0,a]上可导,且 $|f''(x)| \le M$.又 f(x)满足条件:f(a)f(0) > 0, $f(a)f(\frac{a}{2})$ < 0.求证: $|f'(0)| + |f'(a)| \le Ma$.

证明:由条件,函数 $f(0)f(\frac{a}{2})<0$.故由零点存在性定理,函数f(x)在区间 $(0,\frac{a}{2})$ 和 $(\frac{a}{2},a)$ 上分别有一个零点m,n.故由Rolle定理,存在区间[m,n]上的一点t,使得f'(t)=0.

而由 Taylor 展开式,有: $f'(0) = f'(t) + tf''(\eta_1) = tf''(\eta_1), f'(a) = f'(t) + (a-t)f''(\eta_2) = (a-t)f''(\eta_2)$. 故 $|f'(0)| + |f'(a)| = |tf''(\eta_1)| + |(a-t)f''(\eta_1)| \le Ma$ (其中 $\eta_1 \in (0,t), \eta_2 \in (t,a)$).

2010级

1、求以下极限: (1)
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin mx}{\sin nx} (m, n \in N_+)$$
; (2) $\lim_{x \to 0} \frac{\ln \tan ax}{\ln \tan bx} (a, b \in R^+)$.

解: (1)
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin mx}{\sin nx} = \lim_{x \to 0} (-1)^{m-n} \frac{\sin mx}{\sin nx} = (-1)^{m-n} \frac{m}{n}$$
.

(2)
$$\lim_{x \to 0} \frac{\ln \tan ax}{\ln \tan bx} = \lim_{x \to 0} \frac{a \sec^2 ax \tan bx}{b \sec^2 bx \tan ax} = \lim_{x \to 0} \frac{a \tan bx}{b \tan ax} = 1.$$

2、已知数列
$$\{x_n\}$$
为正数数列, $n>1$.求证: $\sum_{k=1}^n x_k \ln x_k \ge (\sum_{k=1}^n x_k) \ln \frac{\sum_{k=1}^n x_k}{n}$.

证明: 即证明
$$\frac{\sum_{k=1}^{n} x_k \ln x_k}{n} \ge \left(\frac{\sum_{k=1}^{n} x_k}{n}\right) \ln \frac{\sum_{k=1}^{n} x_k}{n}$$
.

考虑函数 $f(x) = x \ln x(x > 0)$,知有 $f''(x) = \frac{1}{x} > 0$,故其为下凸函数,故有:

$$\frac{\sum_{k=1}^{n} f(x_k)}{n} \ge f(\frac{\sum_{k=1}^{n} x_k}{n}), \quad \exists \prod_{k=1}^{n} x_k \ln x_k \ge (\frac{\sum_{k=1}^{n} x_k}{n}) \ln \frac{\sum_{k=1}^{n} x_k}{n}.$$

3、设在函数 f(x)区间[0,1]上连续,在区间(0,1)内可导,f(0)=0. 求证:在区间(0,1)内存在一点 ξ ,使得 $\xi'(\xi)$ +3 $f(\xi)$ = $f'(\xi)$.

证明: 考虑 $g(x) = 3(x-1)f^{\frac{1}{3}}(x)$,其在区间[0,1]上连续,在区间(0,1)内可导,故由 Rolle 定理,

在区间(0,1)内存在一点
$$\xi$$
 ,使得: $(\xi-1)f'(\xi)f^{-\frac{2}{3}}(\xi)+3f^{\frac{1}{3}}(\xi)=g'(\xi)=0$,即 $(\xi-1)f'(\xi)+3f(\xi)=0$,即 $\xi f'(\xi)+3f(\xi)=f'(\xi)$.

4、设函数f(x)在区间(a,b)上连续,且 $\lim_{x\to a^-} f(x) = \lim_{x\to b^+} f(x) = +\infty$,试证明: f(x)在区间(a,b)内必可取得最小值.

证明: 由
$$\lim_{x\to a^-} f(x) = \lim_{x\to b^+} f(x) = +\infty$$
,知存在 $x_1 \in [a, \frac{a+b}{2}]$ 使得 $x_1 > x > a$ 时,总有

$$f(x) > f(\frac{a+b}{2})$$
; 存在 $x_2 \in [\frac{a+b}{2}, b]$ 使得 $b > x > x_2$ 时, 总有 $f(x) > f(\frac{a+b}{2})$.

考虑闭区间 $[x_1,x_2]$,函数f(x)在此区间连续,故有闭区间上连续函数的最值定理知其在此区

间存在一点 x_0 , 满足: $f(x) \ge f(x_0)$, $\forall x \in [x_1, x_2]$. 而易知 $f(x) \ge f(x_0)$, $\forall x \in (a, b) - [x_1, x_2]$.

故 $f(x) \ge f(x_0), \forall x \in (a,b)$, 即 f(x)在区间(a,b)内取得最小值.

5、设函数 f(x)在 x_0 的某邻域有 n-1 阶导数,在 x_0 处有 n 阶导数,并且 $f^{(k)}(x_0)=0$, $(k=1,2,...,n-1), \quad f^{(n)}(x_0)\neq 0.$ 求证:

- (1) 当 n 为偶数时, f(x)有极值;
- (2) 当n 为奇数时,f(x)在点 x_0 处无极值.

证明: 由条件及 Taylor 展开式, 在 x0 的某邻域有 $f(x) = f(x_0) + (x - x_0)^n o(1)$, $o(1) \neq 0$.

故在此邻域内有 $f(x) - f(x_0) = (x - x_0)^n o(1)$, 不妨设 o(1) > 0.

- (1) 此时在 x_0 的邻域中, $f(x) f(x_0) = (x x_0)^n o(1) > 0$ 总成立,即 $f(x) > f(x_0)$ 总成立,故 x_0 为 f(x)的一个极小值点.
- (2) 此时在 x_0 的左邻域中, $f(x)-f(x_0)=(x-x_0)^n o(1)<0$ 成立;此时在 x_0 的右邻域中, $f(x)-f(x_0)=(x-x_0)^n o(1)>0$ 成立,故 x_0 不为 f(x)的一个极值点.
- 6、设函数f(x)在R上有定义,且f'(0)存在,且 $f(2x) = 2f(x) + x^2$,求函数f(x)的表达式.

解: 由条件 $f(2x) - (\sqrt{2}x)^2 = 2[f(x) - (\frac{\sqrt{2}}{2}x)^2]$.故若设 $g(x) = f(x) - \frac{\sqrt{2}}{2}x^2$,则: g'(0) 存在,且 g(2x) = 2g(x).由此易知,g(0) = 2g(0),从而 g(0) = 0.

故有
$$g(x) = 2^n g(\frac{x}{2^n}) = \frac{g(\frac{x}{2^n}) - 0}{\frac{1}{2^n} - 0} = \lim_{n \to \infty} \frac{g(\frac{x}{2^n}) - 0}{\frac{1}{2^n} - 0} = \lim_{h \to 0} \frac{g(h) - g(0)}{h - 0} = g'(0).$$

又
$$g(0) = 0$$
,故 $g(x) = g'(0) = 0$,故 $f(x) = \frac{\sqrt{2}}{2}x^2$.

2011 级

1 求极限 $\lim_{n\to\infty} (1+a_n^2)^{\frac{2}{a_n}}$, 其中 $a_n \neq 0 (n \in N_+)$, 且 $\lim_{n\to\infty} a_n = 0$.

解:
$$\lim_{n\to\infty} (1+a_n^2)^{\frac{2}{a_n}} = e^{\lim_{n\to\infty} \ln(1+a_n^2)^{\frac{2}{a_n}}} = e^{\lim_{n\to\infty} \frac{2}{a_n} \ln(1+a_n^2)} = e^{\lim_{n\to\infty} \frac{2}{a_n} a_n^2} = e^{\lim_{n\to\infty} 2a_n} = e^0 = 1$$

2、求下列极限: (1)
$$\lim_{x\to 0} \frac{3^x - \cos x + \ln(1+x)}{\sin x}$$
; (2) $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$.

$$\Re: \quad (1) \quad \lim_{x \to 0} \frac{3^x - \cos x + \ln(1+x)}{\sin x} = \lim_{x \to 0} \frac{3^x \ln 3 + \sin x + \frac{1}{1+x}}{\cos x} = \ln 3 + 1.$$

$$(2) \lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4} = \lim_{x \to 0} \frac{\cos(x - \frac{x^3}{6} + o(x^4)) - \cos x}{x^4} = \lim_{x \to 0} \frac{1 - \frac{1}{2}(x - \frac{x^3}{6} + o(x^4))^2 - 1 + \frac{1}{2}x^2}{x^4}$$

$$= \lim_{x \to 0} \frac{-\frac{1}{2}(x^2 - \frac{x^4}{3} + o(x^4)) + \frac{1}{2}x^2}{x^4} = \lim_{x \to 0} \frac{\frac{x^4}{6} + o(x^4)}{x^4} = \frac{1}{6}.$$

3、按要求求下列函数的导数:

(1) 一阶导数, 函数
$$f(x) = e^x \sin 2x + \left(1 + \frac{1}{x^2}\right)^{x^2}$$
;

- (2) 20 阶导数, 函数 $f(x) = x^2 e^{ax}, a > 0$;
- (3) 2011 阶导数,函数 $f(x) = x^3 \ln x$;
- (4) 一阶和二阶导数,函数 f(x) 由参数方程 $x = t \arctan t$, $y = \ln(1 t^2)$ 来确定.

解: (1)
$$f'(x) = e^x \sin 2x + 2e^x \cos 2x + 2x \left[\ln(1 + \frac{1}{x^2}) - \frac{1}{1 + x^2}\right] (1 + \frac{1}{x^2})^{x^2}$$
.

(2) 由 Leibniz 定理
$$f^{(20)}(x) = (x^2 e^{ax})^{(20)} = \sum_{k=0}^{20} C_{20}^k (x^2)^{(k)} (e^{ax})^{(20-k)} =$$

$$C_{20}^{0}(x^{2})(e^{ax})^{(20)} + C_{20}^{1}(x^{2})^{(1)}(e^{ax})^{(19)} + C_{20}^{2}(x^{2})^{(2)}(e^{ax})^{(18)} =$$

$$a^{20}x^2e^{ax} + 40a^{19}xe^{ax} + 280a^{18}e^{ax}$$
.

(3) 由 Leibniz 定理
$$f^{(2011)}(x) = (x^3 \ln x)^{(2011)} = \sum_{k=0}^{2011} C_{2011}^k (x^3)^{(k)} (\ln x)^{(2011-k)} =$$

$$C_{2011}^0(x^3)(\ln x)^{(2011)} + C_{2011}^1(x^3)^{(1)}(\ln x)^{(2010)} + C_{2011}^2(x^3)^{(2)}(\ln x)^{(2009)} + C_{2011}^3(x^3)^{(3)}(\ln x)^{(2008)} =$$

$$\frac{1}{2011!x^{2008}} - \frac{6022}{2010!x^{2008}} + \frac{12126330}{2009!x^{2008}} - \frac{8120598990}{2008!x^{2008}} \, .$$

(4) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{2t}{t^2 - 1} \cdot \frac{1}{1 - \frac{1}{1 + t^2}} = \frac{2(1 + t^2)}{t(t^2 - 1)}.$

$$\frac{d^2y}{dx^2} = \frac{d(\frac{dy}{dx})}{dx} = \frac{d(\frac{dy}{dx})}{dt} \cdot \frac{1}{\frac{dx}{dt}} = \frac{4t^2(t^2 - 1) - 2(3t^2 - 1)(1 + t^2)}{t^2(t^2 - 1)^2} \cdot \frac{1}{1 - \frac{1}{1 + t^2}} = \frac{4t^2(t^2 - 1)(1 + t^2) - 2(3t^2 - 1)(1 + t^2)^2}{t^4(t^2 - 1)^2}.$$

4、已知
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 的导函数在 $x=0$ 处连续,确定 α 的取值范围.

解: 即极限
$$\lim_{x\to 0} \frac{x^{\alpha} \sin \frac{1}{x} - 0}{x - 0} = \lim_{x\to 0} x^{\alpha-1} \sin \frac{1}{x}$$
 存在(函数 $f(x)$ 在 0 处可导),且由连续性其值 应 等于 $\lim_{x\to 0} f'_{x\neq 0}(x) = \lim_{x\to 0} (\alpha x^{\alpha-1} \sin \frac{1}{x} - x^{\alpha-2} \cos \frac{1}{x})$. 由 $\lim_{x\to 0} x^{\alpha-1} \sin \frac{1}{x}$ 存在知 $\alpha > 1$,此时 $\lim_{x\to 0} x^{\alpha-1} \sin \frac{1}{x} = 0$,故应有 $\lim_{x\to 0} x^{\alpha-2} \cos \frac{1}{x} = 0$,则应满足 $\alpha > 2$,综上应有 $\alpha > 2$.

- 5、设函数 f(x) 在区间[$a,+\infty$) 可导,且 $f'(x) \ge c > 0$ (c 为常数),求证:
- $(1) \lim_{x\to +\infty} f(x) = +\infty;$
- (2) f(x)在区间 $[a,+\infty)$ 有最小值.

证明: (1) 由条件: 当
$$x>0$$
 时, $\int [f'(x)-c]dx \ge 0$,即 $f(x) \ge cx+C$,故 $\lim_{x\to +\infty} f(x) = +\infty$.

(2) 由
$$\lim_{x\to +\infty} f(x) = +\infty$$
,知存在 $\xi > a$ 使得任意 $\xi > a$, $f(x) > f(\xi)$

又在闭区间[a, ξ]内,函数 f(x) 连续,故由闭区间内连续函数的最值定理知,存在一点 x_0 ,使得: $f(x) \ge f(x_0)$, $\forall x \in [a,\xi]$,而又 $f(x) > f(\xi) \ge f(x_0)$, $\forall x \in (\xi,+\infty)$,故有:

 $f(x) \ge f(x_0), \forall x \in [a,+\infty)$,即 f(x) 在区间 $[a,+\infty)$ 有最小值.

- 6、已知函数 $f(x) = \cos x$.求证:
- (1) 存在区间(0,1)上的常数 c, 使得 f(c) = c;
- (2) 对任意一个在区间(0,1)上的 x_1 . 令 $x_{n+1} = f(x_n), (n \in N_+)$.

那么,存在 $q \in (0,1)$,使得: $|x_{n+1} - c| \le q |x_n - c|$, $(n \in N_+)$;

 $(3) \lim_{n\to\infty} x_n = c.$

证明: (1) 研究函数 $g(x) = \cos x - x$,有 $g'(x) = -\sin - 1 < 0$,又 $g(0)g(1) = 1 \cdot (\cos 1 - 1) < 0$,故存在区间(0,1)上的唯一常数 c,使得 f(c) = c.

(2) 对任意正整数
$$n$$
,有: $|x_{n+1}-c| = \cos x_n - \cos c = 2 |\sin \frac{x_n+c}{2} \sin \frac{x_n-c}{2}| \le \sin \frac{x_n+c}{2} |x_n-c| \le \sin \frac{1+c}{2} |x_n-c|$. 而 $\sin \frac{1+c}{2} < \sin 1 < 1$,故命题得证.

(3)
$$\pm$$
 (2) $\lim_{n\to\infty} |x_n-c| = \lim_{n\to\infty} q^{n-1} |x_1-c| = 0$, $\lim_{n\to\infty} x_n = c$.

7、已知函数 f(x)在区间 [a,b]上连续且三阶可微, 求证: 存在 $\xi \in (a,b)$,

使得:
$$f(b) = f(a) + \frac{(b-a)}{2} [f'(a) + f'(b)] - \frac{(b-a)^3}{12} f'''(\xi).$$

证明: 考虑函数 $g_1(x) = f(a) - f(x) + \frac{1}{2}(x - a)[f'(a) + f'(x)], h_1(x) = \frac{1}{12}(x - a)^3$,则函数 $g_1(x)$ 和函数 $h_1(x)$ 在区间[a,b]上都连续且可微,故由 Cauchy 中值定理,存在 $a < \eta < b$,使得:

$$\frac{g_1'(\eta)}{h_1'(\eta)} = \frac{f(a) - f(b) + \frac{1}{2}(b - a)[f'(a) + f'(b)] - 0}{\frac{1}{12}(b - a)^3 - 0} = \frac{f(a) - f(b) + \frac{1}{2}(b - a)[f'(a) + f'(b)]}{\frac{1}{12}(b - a)^3}.$$

$$\mathbb{E}^{\parallel} \frac{-f(\eta) + \frac{1}{2}[f'(a) + f'(\eta_1)] + \frac{1}{2}(\eta - a)f''(\eta)}{\frac{1}{4}(\eta - a)^2} = \frac{f(a) - f(b) + \frac{1}{2}(b - a)[f'(a) + f'(b)]}{\frac{1}{12}(b - a)^3}.$$

考虑函数 $g_2(x) = -f(x) + \frac{1}{2}[f'(a) + f'(x)] + \frac{1}{2}(x-a)f''(x)$, $h_2(x) = \frac{1}{4}(x-a)^2$,则函数 $g_2(x)$ 和函数 $h_2(x)$ 在区间[a,b]上都连续且可微,故由 Cauchy 中值定理,存在 $a < \xi < \eta$,使得:

$$\frac{g_2'(\xi)}{h_2'(\xi)} = \frac{-f(\eta) + \frac{1}{2}[f'(a) + f'(\eta_1)] + \frac{1}{2}(\eta - a)f''(\eta) - 0}{\frac{1}{4}(\eta - a)^2 - 0} = \frac{-f(\eta) + \frac{1}{2}[f'(a) + f'(\eta_1)] + \frac{1}{2}(\eta - a)f''(\eta)}{\frac{1}{4}(\eta - a)^2}.$$

$$f'''(\xi) = \frac{\frac{1}{2}(\xi - a)f'''(\xi)}{\frac{1}{2}(\xi - a)} = \frac{-f(\eta) + \frac{1}{2}[f'(a) + f'(\eta_1)] + \frac{1}{2}(\eta - a)f''(\eta)}{\frac{1}{4}(\eta - a)^2}.$$

故
$$f'''(\xi) = \frac{f(a) - f(b) + \frac{1}{2}(b - a)[f'(a) + f'(b)]}{\frac{1}{12}(b - a)^3}$$
, 其中 $a < \xi < b$. 易知原命题得证.