Planche 1.

Question de cours. Montrer qu'une intersection finie d'ouverts est un ouvert ainsi qu'une union d'ouverts.

Exercice 1. Soit $E = C^0([0,1],\mathbb{R})$. On définit les normes $||.||_1, ||.||_2$ et $||.||_{\infty}$ par

$$||f||_{\infty} = \sup_{[0,1]} |f|, ||f||_{1} = \int_{0}^{1} |f|, ||f||_{2} = \sqrt{\int_{0}^{1} f^{2}}$$

Regarder si ces normes sont plus fines que d'autres ou si elles sont équivalentes.

Planche 2.

Question de cours. Soit $A \subset E$. Montrer que $\overset{\circ}{A}$ est un ouvert.

Exercice 1. On se place sur $\mathbb{R}[X]$. On pose

$$N_1(P) = \sup_{k \ge 0} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{[-1,1]} |P(t)|$$

Montrer que ce sont des normes. Sont elles équivalentes?

Planche 3.

Question de cours. Montrer que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \frac{1}{2n} + o(1/n)$$

Exercice 1. On note p_1 et p_2 les applications de \mathbb{R}^2 dans \mathbb{R} telles que $p_1(x,y)=x$ et $p_2(x,y)=y$.

- a) Soit O un ouvert de \mathbb{R}^2 , montrer que $p_1(O)$ et $p_2(O)$ sont des ouverts de \mathbb{R} .
- b) Soit F un fermé de \mathbb{R}^2 , est-ce que $p_1(F)$ et $p_2(F)$ sont des fermés de \mathbb{R} ?
- c) Soit F un fermé tel que $p_2(F)$ est borné. Montrer que $p_1(F)$ est fermé. Est-ce que $p_2(F)$ est fermé?

Solutions - Planche 1.

Exercice 1. Soit $f \in E$. On a

$$||f||_1 = \int_0^1 |f| \le ||f||_{\infty} \int_0^1 1 = ||f||_{\infty}$$

$$||f||_2 = \sqrt{\int_0^1 f^2} \le \sqrt{||f||_\infty^2} = ||f||_\infty$$

On va néanmoins montrer qu'il n'y a pas d'inégalité dans l'autre sens. Cherchons une fonction telle que $||f||_{\infty}$ est constante (disons 1) et telle que $||f||_1$ tende vers 0. C'est à dire que f doit atteindre la valeur 1 et en même temps son aire sous la courbe doit être quasi nulle. Prenons donc $f(x) = x^n$. On a bien

$$||x^n||_{\infty} = 1 \text{ et } ||x^n||_1 = \int_0^1 x^n = \frac{1}{n+1}$$

De même on a $||x^n||_2 = \sqrt{\int_0^1 x^{2n}} = \sqrt{\frac{1}{2n+1}} \to 0$ lorsque $n \to +\infty$. On en déduit que les normes $||.||_1$ et $||.||_2$ ne sont pas équivalentes à $||.||_{\infty}$.

Avec l'exemple précédent on peut même en déduire que $||.||_1$ et $||.||_2$ ne sont pas équivalentes. En effet si c'était le cas il exisiterait une constante C tel q

$$||.||_2 \le C||.||_1$$

Or en prenant x^n on obtiendrait $\frac{1}{\sqrt{2n+1}} \leq C \frac{1}{n+1}$. Donc $1 \leq C \frac{\sqrt{2n+1}}{n+1} \to 0$ lorsque $n \to +\infty$ ce qui est exclu.

Néanmoins par l'inégalité de Cauchy-Schwarz on a

$$||f||_1 = \int_0^1 1 \times |f| \le \sqrt{\int_0^1 1^2} \sqrt{\int_0^1 f^2} = ||f||_2$$

Solutions - Planche 2.

Exercice 1. Les deux applications sont positives et homogènes.

Soit $P \in \mathbb{R}[X]$ tel que $N_1(P) = 0$. Alors $P^{(k)}(0) = 0$ pour tout k. Or si on note a_k les coefficients du polynôme, alors $P^{(k)}(0) = k!a_k$ pour tout k. Donc $a_k = 0$ pour tout k et P est nul.

Soit $P \in \mathbb{R}[X]$ tel que $N_2(P) = 0$. Alors P(x) = 0 pour tout $x \in [-1, 1]$ et P admet une infinité de zéros. Donc P est nul.

Reste à montrer les inégalités triangulaires. Soit P et Q deux polynômes. Comme $|P^{(k)}(0)| + Q^{(k)}(0)| \le |P^{(k)}(0)| + |Q^{(k)}(0)|$ pour tout k, alors $N_1(P+Q) \le N_1(P) + N_1(Q)$. On en déduit que N_1 est une norme.

De même $|P(x) + Q(x)| \le |P(x)| + |Q(x)| \le N_2(P) + N_2(Q)$ pour tout $x \in [-1, 1]$. Donc $N_2(P+Q) \le N_2(P) + N_2(Q)$. On en déduit que N_2 est une norme.

A priori de grandes variations en 0 ne devrait pas influer sur la norme infinie du polynôme. On s'attend donc à ce que les normes ne soient pas équivalentes. On considère alors $P(X) = X^n$. Alors $N_2(P) = 1$. Par contre $N_1(P) = n!$. Ainsi les normes ne sont pas équivalentes.

Solutions - Planche 3.

Exercice 1.

a) Soit O un ouvert de \mathbb{R}^2 . Soit $x \in p_1(0)$. Alors il existe $y \in \mathbb{R}$ tel que $(x,y) \in O$. Or O est ouvert. Il existe donc r > 0 tel que $B((x,y),r) \subset O$. Montrons que $B(x,r) \subset p_1(O)$. Soit $z \in B(x,r)$. Alors $z = p_1(z,0)$. Or $(z,0) \in B((x,y),r)$. Donc $z \in p_1(O)$. On en déduit que $B(x,r) \subset p_1(O)$ et que $p_1(O)$ est ouvert.

De même $p_2(O)$ est ouvert.

- b) Considèrons $F = \{(x,y) \in \mathbb{R}^2 : xy = 1\}$. Il s'agit d'une hyperbole. Remarquons que ses projections $p_1(F)$ et $p_2(F)$ valent \mathbb{R}^* qui n'est pas ouvert. Montrons donc que F est fermé. Soit $((x_n,y_n)_{n\geq 0}$ une suite de points de F qui converge vers $(x,y) \in \mathbb{R}^2$. Montrons que $(x,y) \in F$. Or $x_ny_n = 1$ pour tout n. Donc par passage à la limite xy = 1. Ainsi F est fermé et le résultat annoncé est faux.
- c) Soit (x_n) une suite de $p_1(F)$ qui converge vers $x \in \mathbb{R}$. Alors il existe (y_n) une suite de \mathbb{R} telle que $(x_n, y_n) \in F$ pour tout n. Donc (y_n) est une suite de $p_2(F)$. Or $p_2(F)$ est borné. Donc par le théorème de Bolzano-Weierstrass, il existe une sous suite $(y_{\varphi(n)})$ de (y_n) qui converge vers $y \in \mathbb{R}$. Donc $(x_{\varphi(n)}, y_{\varphi(n)})$ converge vers (x, y). Or il s'agit d'une suite de F qui est fermé. Donc $(x, y) \in F$. Donc $x \in p_1(F)$.

Par contre $p_2(F)$ n'est toujours pas forcément bornée. Pour le voir on peut considérer le graphe de la fonction $\tan(x)$ sur $]-\pi/2,\pi/2[$. La projection sur les ordonnées est \mathbb{R} et est fermée tandis que les abscisses c'est $]-\pi/2,\pi/2[$ qui est ouvert.