

Some Applications of Trigonometry Ex 12.1 Q40 Answer:

Let AB be the building of height h. P Observes that the fire is at an angle of 60° to the road and Q observes that the fire is at an angle of 45° to the road.

Let QA = x, AP = y. And $\angle BPA = 60^{\circ}$, $\angle BQA = 45^{\circ}$, given PQ = 20.

Here, clearly $\angle APB > \angle AQB$

$$\Rightarrow \angle ABP < \angle ABQ$$

$$\Rightarrow$$
 $AP < AQ$

So station ${\it P}$ is near to the building. Hence station ${\it P}$ must send its team.

We sketch the following figure

So we use trigonometric ratios.

In ΔPAB

$$\tan P = \frac{AB}{AP}$$
$$\Rightarrow \tan 60^{\circ} = \frac{h}{y}$$

$$\Rightarrow \sqrt{3} = \frac{h}{y}$$

$$\Rightarrow h = \sqrt{3}y$$

Again in ΔQAB ,

$$\Rightarrow \tan Q = \frac{AB}{QA}$$

$$\Rightarrow$$
 $\tan 45^\circ = \frac{h}{x}$

$$\Rightarrow$$
 1 = $\frac{h}{}$

$$\Rightarrow$$
 $x = h$

Now,

$$\begin{aligned} x + y &= 20 \\ \Rightarrow h + y &= 20 \\ \Rightarrow \sqrt{3}y + y &= 20 \\ \Rightarrow y &= \frac{20}{(\sqrt{3} + 1)} = 10(\sqrt{3} - 1) \end{aligned}$$

Hence, the team from station P will have to travel $10(\sqrt{3}-1)$ km.

Some Applications of Trigonometry Ex 12.1 Q41

Answer:

Let H be the height of the cliff CE. And a man is standing on the ships at the height of 10 meter above from the water level. Let AB = 10, BC = x, AD = BC, AB = DC, DE = h. $\angle ACB = 30^{\circ}$ and $\angle DAE = 45^{\circ}$

We have to find H and x

The corresponding figure is as follows

 $\ln \Delta ABC$

$$\Rightarrow \tan C = \frac{AB}{BC}$$

$$\Rightarrow \tan^{2} 0^{\circ} = 10$$

$$\Rightarrow \tan 30^\circ = \frac{10}{x}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{10}{x}$$

$$\Rightarrow$$
 $x = 10\sqrt{3}$

Again in ΔDAE .

$$\Rightarrow \qquad \tan A = \frac{DE}{AD}$$

$$\Rightarrow$$
 $\tan 45^\circ = \frac{h}{x}$

$$\Rightarrow$$
 $1 = \frac{7}{3}$

$$\Rightarrow$$
 $x = h$

$$\Rightarrow x = 10\sqrt{3}$$

Therefore H = h + 10

$$\Rightarrow H = 10\sqrt{3} + 10$$

$$\Rightarrow$$
 $H = 10(\sqrt{3} + 1)$

$$\Rightarrow H = 27.32$$

Hence the required distance is $10\sqrt{3}$ m. and height is 27.32 m.

Some Applications of Trigonometry Ex 12.1 Q42

Let H be height of hill CE and a man is standing on a ships at the height of 8meter above from the water level. Let AB=8, BC=x, AD=BC, AB=DC, DE=h. $\angle ACB=30^{\circ}$, and $\angle DAE=60^{\circ}$ We have to find x and H

The corresponding figure is as follows

 $\ln \Delta ABC$

$$\Rightarrow \tan 30 = \frac{8}{x}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{8}{x}$$

$$\Rightarrow$$
 $x = 8\sqrt{3}$

Again in ΔDAE ,

$$\Rightarrow \tan 60^\circ = \frac{h}{x}$$

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow h = x\sqrt{3}$$

$$\Rightarrow h = 24$$
Therefore $H = h + 8$

$$\Rightarrow H = 24 + 8$$

 \Rightarrow H=32Hence the required distance is $\boxed{8\sqrt{3}}$ m and height is $\boxed{32}$ m.

******* END *******