In [29]:

```
import pandas as pd
import os

df = pd.read_csv("Data_.csv")
```

In [30]:

lf=df lf

Out[30]:

	Signal_Strength	Interference	Error_Rate	Synchronization	Optimization
0	Low	Low	Low	S	No
1	Low	Low	High	0	Yes
2	Low	Medium	Low	S	No
3	Low	Medium	Medium	0	Yes
4	Low	High	High	0	Yes
5	Low	High	High	S	Yes
6	Low	High	Medium	S	Yes
7	Low	High	Low	S	No
8	Low	Medium	High	S	Yes
9	Medium	Low	Medium	S	No
10	Medium	Low	Low	0	Yes
11	Medium	Medium	High	S	Yes
12	Medium	Medium	High	0	Yes
13	Medium	Low	Low	S	No
14	Medium	High	Low	0	Yes
15	Medium	High	Low	S	No
16	Medium	Medium	Medium	S	No
17	Medium	High	High	0	Yes
18	Medium	High	Medium	S	Yes
19	High	Low	Low	0	No
20	High	Low	Low	S	No
21	High	Medium	Medium	S	No
22	High	Medium	High	S	No
23	High	High	High	0	Yes
24	High	High	Medium	S	No
25	High	Low	High	S	No
26	High	Medium	High	0	Yes
27	High	Medium	Low	0	No
28	High	Medium	Low	S	No

In [31]:

```
lf['Signal_Strength']=lf['Signal_Strength'].map({'Low':0,'Medium':1,'High':2})
lf['Interference']= lf['Interference'].map({'Low':0,'Medium':1,'High':2})
lf['Error_Rate']= lf['Error_Rate'].map({'Low':0,'Medium':1,'High':2})
lf['Synchronization']= lf['Synchronization'].map({'O':0,'S':1})
lf['Optimization']= lf['Optimization'].map({'Yes':0,'No':1})
```

In [32]:

print (lf)

0/2020	wsc_arbot				
0.0	Signal_Strength	Interference	Error_Rate	Synchronization	Optimizati
on 0	0	0	0	1	
1 1	0	0	2	0	
0 2	0	1	0	1	
1					
3 0	0	1	1	0	
4 0	0	2	2	0	
5	0	2	2	1	
0 6	0	2	1	1	
0 7	0	2	0	1	
1					
8 0	0	1	2	1	
9 1	1	0	1	1	
10	1	0	0	0	
0 11	1	1	2	1	
0 12	1	1	2	0	
0					
13 1	1	0	0	1	
14 0	1	2	0	0	
15	1	2	0	1	
1 16	1	1	1	1	
1 17	1	2	2	0	
0					
18 0	1	2	1	1	
19 1	2	0	0	0	
20	2	0	0	1	
1 21	2	1	1	1	
1 22	2	1	2	1	
1					
23 0	2	2	2	0	
24 1	2	2	1	1	
25	2	0	2	1	
1 26	2	1	2	0	
0 27	2	1	0	0	
1					
28 1	2	1	0	1	

In [36]:

```
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
from sklearn.model_selection import train_test_split # Import train_test_split function
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculatio
from sklearn.datasets import load iris
from sklearn import tree
from matplotlib import pyplot as plt
import graphviz
from graphviz import Source
Feature_Columns=['Signal_Strength','Interference','Error_Rate','Synchronization']
X= lf[Feature Columns]
Y= lf['Optimization']
X_Train, X_Test, Y_Train, Y_Test= train_test_split(X, Y, test_size=0.1)
print("Training Set")
print (X Train)
print("Testing Set")
print (X Test)
clf = DecisionTreeClassifier()
train tree= clf.fit(X Train,Y Train)
fig=plt.figure(figsize=(24,24))
tree.plot tree(clf, feature names=Feature Columns, filled=True)
fig.savefig('InitialAttempt.png')
#dot data = tree.export graphviz(clf, out file=None, feature names=Feature Columns,fill
ed=True)
#graph = graphviz.Source(dot_data)
#graph.render("Latest", view = True)
y pred = clf.predict(X Test)
print("Accuracy:", metrics.accuracy_score(Y_Test, y_pred))
```

Training Set				
	Signal_Strength	Interference	Error_Rate	Synchronization
24	2	2	1	1
6	0	2	1	1
0	0	0	0	1
27	2	1	0	0
11	1	1	2	1
28	2	1	0	1
2	0	1	0	1
14	1	2	0	0
13	1	0	0	1
10	1	0	0	0
22	2	1	2	1
19	2	0	0	0
26	2	1	2	0
20	2	0	0	1
3	0	1	1	0
7	0	2	0	1
17	1	2	2	0
25	2	0	2	1
9	1	0	1	1
23	2	2	2	0
15	1	2	0	1
5	0	2	2	1
18	1	2	1	1
16	1	1	1	1
21	2	1	1	1
12	1	1	2	0
Testing Set				
	Signal_Strength	Interference	Error_Rate	Synchronization
4	0	2	2	0
1	0	0	2	0

	Signal_Strength	Interference	Error_Rate	Synchronization
4	0	2	2	0
1	0	0	2	0
8	0	1	2	1

Accuracy: 1.0

In [107]:

```
d = {'Signal_Strength': [0],'Interference': [0], 'Error_Rate': [2], 'Synchronization' :
[0]}
print(clf.predict(pd.DataFrame(data = d)))
```

[0]

In []: