Code No: 133BJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 **NETWORK ANALYSIS** (Common to ECE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	What is an Ideal transformer?	[2]
b)	Discuss the dot convention between magnetically coupled coils.	[3]
c)	What is resonance? Explain.	[2]
d)	What is the significance of power factor?	[3]
e)	Explain the significance of average value.	[2]
f)	What are the Laplace transform of step and exponential functions?	[3]
g)	Define poles and zeros in a transfer function.	[2]
h)	What is a driving point in transfer function? Explain.	[3]
i)	Write the Properties of LC Networks.	[2]
j)	State Foster's Reactance theorem.	[3]

PART-B

(50 Marks)

- 2.a) Clearly explain the following:
 - i) Self inductance (L)
 - ii) Mutual inductance (M)
 - An Iron ring of mean length 50 cms has an air gap of 1 mm and a winding of b) 200 turns. If the relative permeability of the Iron is 400, when a current of 1 Amp flows in the winding, determine the flux density Neglect leakage and fringing.

[5+5]

3. Define and explain the following with an example: [10]

- a) Oriented Graph
- b) Tree of a Graph
- c) Tie set and a basic Tie set
- d) Cut set and a basic Cut set.
- 4.a) R-C series circuit is suddenly excited from a step voltage V. Derive an expression for the current as a function of time and draw the graph current Vs Time.
 - An inductive coil of Resistance R and inductance L is connected in parallel with a b) capacitor C. Derive the expressions for resonant frequency and Q factor. [5+5]

OR

- 5. A series RLC circuit is connected across a variable frequency supply and has R = 12 ohms, L = 1mH and C = 1000pF. Calculate
 - a) Resonant frequency,
 - b) Q factor and
 - c) Half power frequencies. Derive the formulae used.

[2+2+6]

- 6.a) Derive expression for R.M.S and average value of a sinusoidal alternating quantity. [5+5]
 - b) A pure inductance of 5 mH carries a current of the wave form shown in figure 1. Sketch the waveform of V(t) and P(t). Determine the average value of power.

Figure: 1 OR

- 7.a) A capacitor of 100 μF is connected across 200 V, 50 Hz, Single phase supply. Calculate: i) The reactance of the capacitor ii) RMS value of the current iii) The maximum value of the current.
 - b) When an impulse voltage is impressed across R-C circuit, derive an expression for its current response. [5+5]
- 8.a) Determine the 'h' parameters of the network shown in figure 2.

Figure: 2

b) Define Z and Y parameters of a two port network and determine the relationship between the above parameters. [5+5]

OR

- 9. Explain clearly the following terms:
 - a) Propagation constant and characteristic impedance
 - b) Attenuation constant.

[5+5]

- 10.a) What is a high pass filter? In what respects it is different from a low pass filter?
 - b) Derive the equations to find the inductances and capacitances of a constant K high pass filter. [5+5]

OR

- 11.a) Explain the variation of Attenuation, phase shift and characteristic impedance of Band pass filter.
 - b) Draw the circuit diagram for T and π sections of composite filter.

[5+5]