The Final \mathcal{EL} -Completion Rules

```
\top-rule: Add \top to any individual.
```

- \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.
- \sqcap -rule 2: If d has C and D assigned, assign also $C \sqcap D$ to d.
- \exists -rule 1: If d has $\exists r.C$ assigned:
 - 1. If there is an element e with initial concept \underline{C} assigned, make e the r-successor of d.
 - 2. Otherwise, add a new r-successor to d, and assign to it as initial concept \underline{C} .
- \exists -rule 2: If d has an r-successor with C assigned, add $\exists r.C$ to d.
- \sqsubseteq -rule: If d has C assigned and $C \sqsubseteq D \in \mathcal{T}$, then also assign D to d

The \mathcal{EL} -Completion Algorithm

Decide whether $\mathcal{O} \models C_0 \sqsubseteq D_0$

- 1. Start with initial element d_0 , assign to C_0 to it as initial concept
- 2. Set changed := true
- 3. While changed = true:
 - 3.1 Set changed := false
 - 3.2 For every element d in the current interpretation:
 - 3.2.1 Apply all the rules on d in all possible ways so that only concepts from the input get assigned
 - 3.2.2 If a new element was added or a new concept assigned, set changed = **true**
- 4. If D_0 was assigned to d_0 , return YES, otherwise return NO

Concepts from the input: occur, possibly nested, explicitly in \mathcal{O} , C_0 or D_0

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, C \sqsubseteq \exists r. \exists t. B, A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r.C \sqsubseteq \exists s.\exists t.B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r.C \sqsubseteq \exists s.\exists t.B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r.C \sqsubseteq \exists s. \exists t.B \}$$

 $C \sqsubseteq \exists r. \exists t. B$,

We want to decide whether $\mathcal{O} \models A \sqcap \exists r.B \sqsubseteq \exists t.A$

NO

