HYPOTHES IS TESTING

HYPOTHESIS TESTING

Hypothesis Testing is the application of statistical methods to real-world questions.

We start with an assumption, called the null hypothesis

We run an experiment to test this null hypothesis

HYPOTHESIS TESTING

- Based on the results of the experiment, we either reject or fail to reject the
 - null hypothesis
- If the null hypothesis is rejected, then we say the data supports another, mutually exclusive alternate hypothesis
- We never "PROVE" a hypothesis!

- How do we frame the question that forms our null hypothesis?
- At the start of the experiment, the null hypothesis is assumed to be true.
- If the data fails to support the null hypothesis, only then can

If testing something assumed to be true, the null hypothesis can reflect the assumption:

Claim: "Our product has an average shipping weight of 3.5kg."

Null hypothesis: average weight = 3.5kg

If testing a claim we want to be true, but can't assume, we test its opposite:

Claim: "This prep course

improves test scores."

Null hypothesis: old scores ≥ new scores

Alternate hypothesis: old scores < new scores

The null hypothesis should contain an equality $(=, \leq, \geq)$:

average shipping weight = H_0 : $\mu = 3.5$ The Skernate hypothesis should not have an equality (\neq ,<,>):

average shipping weight **#** 3.5kg

 H_1 : $\mu \neq 3.5$

The null hypothesis should contain an equality $(=, \leq, \geq)$:

old scores ≥ new

$$H_0: \mu_0 \ge \mu_1$$

The attempte hypothesis should not have an equality $(\neq, <, >)$:

old scores < new scores

$$H_1: \mu_0 < \mu_1$$

HYPOTHESIS TESTING

• So what lets us reject or fail to reject the null hypothesis?

HYPOTHESIS TESTING

- We run an experiment and record the result.
- Assuming our null hypothesis is valid, if the probability of observing these results is very small (inside of 0.05) then we reject the null hypothesis.
- Here 0.05 is our level of significance

 H_1 : $\leq null$

- The level of significance α is the area inside the tail(s) of our null hypothesis.
- If $\alpha = 0.05$ and the alternative hypothesis is less than the null, then the left-tail of our probability curve has an area of 0.05

- The level of significance α is the area inside the tail(s) of our null hypothesis.
- If $\alpha = 0.05$ and the alternative hypothesis is more than the null, then the right-tail of our probability curve has an area of 0.05

- The level of significance α is the area inside the tail(s) of our null hypothesis.
- If $\alpha=0.05$ and the alternative hypothesis is not equal to the null, then the two tails of our probability curve share an area of 0.05

 These areas establish our critical values or Z-scores:

TESTS OF MEAN VS.

- Each of Rese two types of tests has their own test statistic to calculate.
- Let's review the situation for each test before we work through some examples in the upcoming lectures.

TESTS OF MEAN VS.

PROPORTION

when we look to find an average, or specific value in a population we are dealing with means

Proportion

whenever we say something like "35%" or

"most" we are dealing with proportions

TEST STATISTICS

• When working with means:

$$Z = \frac{x_{115}}{\sqrt{n}} - \mu$$
 assumes we know the population standard deviation

• When working with proportions:

$$Z = \frac{p\xi -}{p p \cdot q} = \frac{p\xi -}{\sqrt{\frac{p^p(1-p)}{n}}}$$

HYPOTHESIS TESTING –

InPa-Vraditional Tess:T

- take the level of significance α
- use it to determine the critical value
- compare the test statistic to the critical value

In a P-value test:

- take the test statistic
- use it to determine the P-value
- compare the P-value to the level of significance α

HYPOTHESIS TESTING – P-Y-AL-UE-TEST

the null must go!"

low,

reject H_0

fail to reject H_{α}

"If the P-value is high, the null must fly!"

TESTING EXAMPLE EXERCISE #1

TESTING EXERCISE #1 - MEAN

- For this next example we'll work in the left-hand side of the probability distribution, with negative z-scores
- We'll show how to run the hypothesis test using the traditional method, and then with the P-value method

TESTING EXERCISE #1 - MEAN

- A company is looking to improve their website performance. $\mu = 3.125$ $\sigma = 0.700$
- Currently pages have a mean load time of 3.125 seconds, with a standard deviation of 0.700 seconds.
- They hire a consulting firm to improve load times.

TESTING EXERCISE #1 - MEAN

- Management wants a 99% confidence level
- A sample run of 40 of the new pages has a mean load time of 2.875 seconds.
- Are these results statistically faster than before?

 $3.125 = \mu$ $0.700 = \sigma$ $0.01 = \alpha$ 40 = n $\tilde{x} = 2.875$

- 1. State the
 - $H_0: \mu \ge 3.125$
- 3. Set a level significance:

$$\alpha = 0.01$$

2. State the null hypothesis: alternative hypothesis:

$$H_1$$
: $\mu < 3.125$

4. Determine the test

TRADITIONAL METHOD:

5. Test Statistic:

$$Z = \frac{x_{15} - \mu}{\overline{\overline{c}} / \sqrt{40}} = 2.875 - 3.125$$

6. Critical Value:

$$z = -2.325$$

$$\mu = 3.125$$
 $\sigma = 0.700$
 $\alpha = 0.01$
 $n = 40$
 $x_{\text{Tb}} = 2.875$

$$Z = -2.259$$

 $z = -2.325$

TRADITIONAL METHOD:

7. Fail to Reject the Null

Hypothesis Since −2.259 >

-2.325, the

test statistic falls outside the rejection region

We can't say that the new web

$$\mu = 3.125$$

$$\sigma = 0.700$$

$$\alpha = 0.01$$

$$n = 40$$

$$x_{15} = 2.875$$

$$Z = -2.259$$

$$z = -2.325$$

P-VALUE METHOD:

5. Test Statistic:

$$Z = \frac{x_{15} - \mu}{\overline{\overline{o}}/\sqrt{\pi}} - 2.259_{0.7/\sqrt{40}}$$

6. P-Value:

z-table lookup on -2.26

P = 0.0119

 $\mu = 3.125$ $\sigma = 0.700$ $\alpha = 0.01$ n = 40 $x_{\text{Tb}} = 2.875$

$$Z = -2.259$$

 $P = 0.0119$

- P-VALUE METHOD:
- 7. Fail to Reject the Null

Hypothesis Since 0.0119 > 0.01, the

P-value is greater than the level of significance α

We can't say that the new web

$$\alpha = 0.01$$

$$n = 40$$

$$x_{11} = 2.875$$

$$Z = -2.259$$

$$P = 0.0119$$

TESTING EXAMPLE EXERCISE #2

TESTING EXERCISE #2 -

- RROCGETTE Company surveys 400 of their customers and finds that 58% of the sample are teenagers.
- Is it fair to say that most of the company's customers are teenagers?

- 1. Set the null hypothesis: $H_0: P \le 0.50$
- 2. Set the alternative hypothesis: $H_1: P > 0.50$
- 3. Calculate the test statistic:

$$Z = \frac{p\underline{\xi} - p}{\sqrt{\frac{p \cdot q}{n}}} \quad \frac{0.58 - 0.50 \quad 0.08}{\sqrt{\frac{0.50(1 - 0.50)}{400}}} \quad \frac{0.025}{0.025} = 3.2$$

- 4. PROPORTION 4. Set a significance level: $\alpha = 0.05$
- 5. Decide what type of tail is involved:

$$H_1$$
: $P > 0.50$ means a right-tail test

6. Look up the critical value:

$$Z = 1.645$$

Critical Value =

1.645 Test Statistic

$$= 3.2$$

7. Based on the sample, we reject the null hypothesis, and support the claim that most customers are teenagers.

matters! If we had started with a sample size of 40 instead of 400, our test statistic would have been only 1.01,

thred much would fail to reject hypothesis.

1.645 Test Statistic

Critical Value =

= 3.2

TYPE 1 AND TYPE 2 ERRORS

TYPE I AND TYPE II ERRORS

- Often in medical fields (and other scientific fields) hypothesis testing is used to test against results where the "truth" is already known.
- For example, testing a new diagnostic test for cancer for patients you have already succesfully diagnosed by other means.

- In this situation, you already know if the Null Hypothesis is True or False.
- In these situations where you already know the "truth", then you would know its possible to commit an error with your results.

- This type of analysis is common enough that these errors already have specific names:
- Type I Error
- Type II Error

 If we reject a null hypothesis that should have been supported, we've committed a

Type I Error

H₀: There is no fire

Pull the fire alarm, only to find out there really was no fire.

 If we fail to reject a null hypothesis that should have been rejected we've committed a Type II Error

 H_0 : There is no fire

Don't pull the fire alarm, only to find there really is a fire.

 $\boldsymbol{H_0}$: Not pregnant

H₁: Are pregnant

Type I error (false positive)

Type II error (false negative)

STUDENT'S T-DISTRIBUTION

STUDENT'S T-DISTRIBUTION

- Developed by William Sealy Gossett while he was working at Guinness Brewery
- Published under the pseudonym "Student" as Guinness wouldn't let him use his name.
- Goal was to select the best barley from small samples, when the population standard deviation was

PURPOSE OF A T-TEST

- Using the t-table, the Student's t-test determines if there is a significant difference between two sets of data
- Due to variance and outliers, it's not enough just to compare mean values
- A t-test also considers sample variances

TYPES OF STUDENT'S T-TEST

• One-sample t-test Tests the null hypothesis that the population mean is equal to a specified value μ based on a sample mean $x\pi_5$

TYPES OF STUDENT'S T-TEST

• Independent two-sample t-test
Tests the null hypothesis that two
sample means x_{15_1} and x_{15_2} are
equal

TYPES OF STUDENT'S T-TEST

- Dependent, paired-sample t-test
 Used when the samples are dependent:
 - one sample has been tested twice (repeated measurements)
 - two samples have been matched or "paired"

ONE-SAMPLE STUDENT'S

• Calculate the t-statistic

$$t = \frac{x \Pi_5 - \mu}{s / \sqrt{n}}$$

 $x\pi_5$ = sample mean μ = population mean s = sample standard error n = sample size

ONE-SAMPLE STUDENT'S

• Compare to a t-score

$$t \leq t$$
 $n-1,\alpha$

```
t = t-statistic

t = n-1, \alpha

n-1, \alpha

t = chetice of freedom

\alpha = significance level
```


INDEPENDENT TWO-SAMPLE

The Earculation of the t-statistic differs slightly for the following scenarios:

- equal sample sizes, equal variance
- unequal sample sizes, equal variance
- equal or unequal sample sizes, unequal variance

INDEPENDENT TWO-SAMPLE

• Calculate the t-statistic

$$t = \frac{\text{signal difference in means}}{n\overline{\overline{o}} \text{ise sample variability}} \frac{x_1 - x_2}{\sqrt{\frac{1}{s^{12}} + \frac{1}{s^{2}} \frac{2}{n_0^{2}}}}$$

 $\overline{x_1}, \overline{x_2}$ = sample means s_1^2, s_2^2 = sample variances n_1, n_2 = sample sizes

INDEPENDENT TWO-SAMPLE

• Compare to a t-score

$$t \leq t_{df,\alpha}$$

```
t = t-statistic
       = t-critical
 \frac{df_{a}}{df} = \text{degrees of freedom}
```

 α = significance level

Since we have two, potentially unequal-sized samples with different variances, determining the degrees of freedom is a little more complicated.

DEGREES OF FREEDOM

• The Satterthwaite Formula:

$$df = \frac{\left(\frac{1}{2} + \frac{s_2^2}{n_1 n_2}\right)^2}{\frac{1}{n_1 - 1} n_1^{\left(\frac{1}{2}\right)^2} + \frac{1}{n_2 - 1} n_2^{\left(\frac{s_2^2}{2}\right)^2}}$$

DEGREES OF FREEDOM

The General Formula:

$$df = n_1 + n_2 - 2$$

STUDENT'S T-DISTRIBUTION

 t-Distributions have fatter tails than normal Z-Distributions

STUDENT'S T-DISTRIBUTION

• They approach a normal distribution as the degrees of freedom increase.

STUDENT'S T-DISTRIBUTION EXAMPLE EXERCISE

An auto manufacturer has two plants that produce the same car.

They are forced to close one of the plants.

- •The company wants to know if there's a
- •significant difference in production between

• the two plants.

Daily production over the same 10 days is as

follows:

Plant A	Plant B
1184	1136
1203	1178
1219	1212
1238	1193
1243	1226
1204	1154
1269	1230
1256	1222
1156	1161
1248	1148

First compare sample means

 $x \square_A - x \square_B = 1222 - 1186 = 36$ From this sample, it looks like Plant A produces 36 more

cars per day than Plant B

1	Plant A	Plant B				
	1184	1136				
	1203	1178				
	1219	1212				
S	1238	1193				
	1243	1226				
	1204	1154				
ke	1269	1230				
	1256	1222				
	1156	1161				
	1248	1148				
	x_A^-	$\overline{X_B}$				
Mean	1222	1186				

STUDENT'S T-TEST

EXAMPLE

Is 36 more cars enough to say that the plants are

$$H_0: X \leq X$$

different?

$$H_1: X_A > X_B$$

one-tailed test

1	Plant A	Plant B
	1184	1136
	1203	1178
	1219	1212
	1238	1193
	1243	1226
	1204	1154
	1269	1230
	1256	1222
	1156	1161
	1248	1148
	$\overline{X_A}$	$\overline{X_B}$
Mean	1222	1186

(10+10-2) = 18 degrees of freedom

Compute the variance

Α	(x-1222)	(x-1222) ²
1184	-38	1444
1203	-19	361
1219	-3	9
1238	16	256
1243	21	441
1204	-18	324
1269	47	2209
1256	34	1156
1156	-66	4356
1248	26	676
		11232

₂ 2_	$\Sigma(x -$	$)^2$
3 –	$\overline{x}\Pi_n = 1$	

Σ(x-1222) ²	11232
Σ(x-1222) ² 9	1248

1	Plant A	Plant B
	1184	1136
	1203	1178
	1219	1212
	1238	1193
	1243	1226
	1204	1154
	1269	1230
	1256	1222
	1156	1161
	1248	1148
	$\overline{X_A}$	$\overline{X_B}$
Mean	1222	1186
Variance	1248	1246

Compute the t-value

$$= \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$= \frac{36}{\sqrt{\frac{1248}{10} + \frac{1346}{10}}} = \frac{36}{15.792}$$

	1	10
=	1.	
	◢.	

1	Plant A	Plant B
	1184	1136
	1203	1178
	1219	1212
	1238	1193
	1243	1226
	1204	1154
	1269	1230
	1256	1222
	1156	1161
	1248	1148
	$\overline{X_A}$	$\overline{X_B}$
Mean	1222	1186
Variance	1248	1246

Look up our critical value from a

t-table

a one-tailed test

95% confidence

18 degrees of freedom

cum. prob	t .90	<i>t</i> .95	t .975	t .99	t .995
one-tail	0.10	0.05	0.025	0.01	0.005
two-tails	0.20	0.10	0.05	0.02	0.01
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861

critical value = 1.734

Compare our t-value (2.28) to the critical value (1.734):

2.28 > 1.734

since our computed t-value is greater than the critical value, we reject the null hypothesis.

Plant A	Plant B
1184	1136
1203	1178
1219	1212
1238	1193
1243	1226
1204	1154
1269	1230
1256	1222
1156	1161
1248	1148

We believe with 95% confidence that Plant A produces more cars per day than Plant B.

We decide to close Plant B.

STUDENT'S T-TEST WITH

EXCEL

1	A	В	C	D	E	F	G	Н	1	J	K
1	t-Test: Two-Sample Assuming Unequal Variances										
2											
3		Variable 1	Variable 2	Data A	nalysis					?	×
4	Mean	1186	1222		<u>A</u> nalysis Tools					ок	
5	Variance	1246	1248								
6	Observations	10	10		Fourier Analysis Histogram				^	Cancel	
7	Hypothesized Mean Difference	0		Movin	g Average					Calife	
8	df	18			m Number Ge	neration				<u>H</u> elp	
9	t Stat	-2.279577051			Rank and Percentile Regression						
10	P(T<=t) one-tail	0.017522528		Samp	_						
11	t Critical one-tail	1.734063607			Paired Two Sa Two-Sample						
12	P(T<=t) two-tail	0.035045056					equal Variance	5	Y		
13	t Critical two-tail	2.10092204									
14											

STUDENT'S T-TEST WITH

```
>>> from scipy.stats import ttest_ind
>>> a = [1184, 1203, 1219, ... 1248]
>>> b = [1136, 1178, 1212, ... 1148]
>>> ttest_ind(a,b).statistic
2.2795770510504845
```

0.017522528133638322

>>> ttest ind(a,b).pvalue/2

NEXT UP: ANOVA

