## Example 11

 $\triangle ABC$  is a right isosceles triangle with  $\angle ACB = 90^\circ$  and AC = BC.



Point D is the midpoints on sides  $AB.DE \perp DF$ . Points E, F are on sides AC and BC, respectively. Show that DE = DF.

Solution: Draw CD, the median of triangle ABC. Since CD is the median, by

Theorem 1.3, CD = AD = BD.  $\angle ACD = 45^{\circ}. \angle B = 45^{\circ}.$ 

$$\angle BDF + \angle FDC = 90^{\circ}.$$

$$\angle FDC + \angle CDE = 90^{\circ}.$$

$$\angle BDF = \angle CDE = \alpha.$$

$$\angle ACD = \angle ECD = \angle B = 45^{\circ}.$$



 $\triangle CED \cong \triangle BFD$ . Thus DE = DF.