

Chelysher's Inequality
$$X$$

$$P_{n}[|X-\mu|^{2}c] \leq \frac{Van(X)}{c^{2}}$$

$$Y = (X-\mu)^{2} \geq 0$$

$$P_{n}[Y \geq c^{2}] \leq \frac{E[Y]}{c^{2}} \leftarrow Marlov$$

$$\Rightarrow P_{n}[|X-\mu| \geq c] \leq \frac{Var(X)}{c^{2}}$$

CS 70 Fall 2021

Discrete Mathematics and Probability Theory

Probabilistic Bounds

 $X \leq 10$

A random variable X has variance Var(X) = 9 and expectation $\mathbb{E}[X] = 2$. Furthermore, the value of X is never greater than 10. Given this information, provide either a proof or a counterexample for the following statements.

(a)
$$\mathbb{E}[X^{2}] = 13$$
.
 $Var(X) = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$
 $\Rightarrow Q = \mathbb{E}[X^{2}] - Y$
 $\Rightarrow \mathbb{E}[X^{2}] = 13$.
(b) $\mathbb{P}[X = 2] > 0$.
 $Pn[X = \mathbb{E}[X]] > 0$
 $Pn[X = \mathbb{E}[X]] > 0$
 $Pn[X = 2] = \mathbb{P}[X \le 2]$.
 $Pn[X \ge 2] = \mathbb{P}[X \le 2]$.
 $Pn[X \ge 0.9] = 0.9$
 $Pn[X \ge 0.9] = 0.0$
(d) $\mathbb{P}[X \le 1] \le 8/9$. $X \le 10$

$$\frac{(2 \ge 6) \le 9/16.}{|0 - 2|} = \frac{8}{|0 - 2|} = \frac{10 - 10 - 10}{|0 - 2|} = \frac{8}{|0 - 2|} = \frac{10 - 10 - 10}{|0 - 2|} = \frac{10 - 10}{|0 - 2|} = \frac$$

2 Working with the Law of Large Numbers

(a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

3 Continuous Computations

Let *X* be a continuous random variable whose PDF is cx^3 (for some constant *c*) in the range $0 \le x \le 1$, and is 0 outside this range.

CS 70, Fall 2021, DIS 12B 2

(a) Find c.

(b) Find the CDF of *X*.

(c) Find $\mathbb{E}(X)$.

CS 70, Fall 2021, DIS 12B 3