Redressement non commandé

Redresseur monophasé- simple alternance-

Schéma de montage

Grandeurs caractéristiques

- Valeur moyenne de u $\mathbf{u}_{moy} = \frac{V.\sqrt{2}}{\pi}$
- Valeur efficace de $u: U = \frac{V.\sqrt{2}}{2}$
- Tension maximale supportée par la diode : $V_{Dmax} = V \cdot \sqrt{2}$

Redresseur monophasé- double alternance-

Schéma de montage PD2

Grandeurs caractéristiques

- Valeur moyenne de $u: \mathbf{u_{moy}} = \frac{2.V.\sqrt{2}}{\pi}$
- Valeur efficace de $u: \mathbf{U} = \mathbf{V}$
- Tension maximale supportée par la diode : $V_{Dmax} = V \cdot \sqrt{2}$

Schéma de montage P2

Grandeurs caractéristiques

- Valeur moyenne de $u: \mathbf{u_{moy}} = \frac{2.V.\sqrt{2}}{\pi}$
- Valeur efficace de $u : \mathbf{U} = \mathbf{V}$
- Tension maximale supportée par la diode : $V_{Dmax} = 2.V.\sqrt{2}$

Redresseur triphasé

Schéma de montage P3

1, 2 et 3 système triphasé équilibré

Grandeurs caractéristiques

• Valeur moyenne de u :

$$u_{moy} = \frac{3.\sqrt{3}.V.\sqrt{2}}{2.\pi}$$

• Tension maximale supportée par la diode :

$$V_{Dmax} = \sqrt{3}.V.\sqrt{2}$$

Schéma de montage PD3

1, 2 et 3 système triphasé équilibré

Grandeurs caractéristiques

• Valeur moyenne de u :

$$u_{moy} = \frac{3.\sqrt{3}.V.\sqrt{2}}{\pi}$$

• Tension maximale supportée par la diode :

$$v_{Dmax} = \sqrt{3}.V.\sqrt{2}$$

Redressement commandé monophasé

Pour amorcer un thyristor: il faut que la tension v_T soit positive et un courant de gâchette suffisant le temps que i_{AK} s'établisse. Le thyristor se comporte alors comme un interrupteur fermé.

Pour bloquer le thyristor : annuler le courant i_{AK} ou appliquer une tension v_T négative. Le thyristor se comporte alors comme un interrupteur ouvert.

Redresseur commandé - simple alternance-

Schéma de montage

α= l'angle de retard à l'amorçage

Grandeurs caractéristiques

• Valeur moyenne de u :

$$u_{moy} = \frac{V.\sqrt{2}}{\pi} \left(\frac{1+\cos\alpha}{2}\right)$$

• Valeur efficace de u .

$$U = \frac{V.\sqrt{2}}{2} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2}}$$

• Tension maximale supportée par le thyristor : $v_{Tmax} = V.\sqrt{2}$

Redresseur commandé - double alternance – pont mixte

Schéma de montage

α= l'angle de retard à l'amorçage

Grandeurs caractéristiques

• Valeur moyenne de u :

$$u_{moy} = \frac{2V.\sqrt{2}}{\pi} \left(\frac{1+\cos\alpha}{2}\right)$$

• Valeur efficace de u :

$$\boldsymbol{U} = \boldsymbol{V} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2}}$$

• Tension maximale supportée par le thyristor :

$$v_{Tmax} = v_{Dmax} = V.\sqrt{2}$$

Gradateur monophasé

Interrupteurs électroniques :

Il est constitué par deux thyristors tête-bêche. Pour les faibles puissances, les deux thyristors sont remplacés par un triac.

Commande par la phase

Schéma de montage

Grandeurs caractéristiques

- Valeur moyenne de la tension u :
 u_{moy} = 0 (tension alternative)
- Valeur efficace de la tension u

$$U = V\sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2}}$$

• Tension maximale supportée par les éléments

$$v_{Tmax} = V.\sqrt{2}$$

Commande par train d'ondes

Schéma de montage

Grandeurs caractéristiques

- Valeur moyenne de la tension u :
 Soit u_{moy} = 0 (tension alternative)
- Valeur efficace de la tension u

$$U = V.\sqrt{\alpha} \ avec \ \alpha = \frac{T_{ON}}{T_C}$$

• Tension maximale supportée par les éléments

$$v_{T1max} = v_{T2max} = V.\sqrt{2}$$

Gradateur triphasé

Groupement étoile de 3 gradateurs monophasés

Groupement étoile de 3 gradateurs monophasés

Onduleur autonome monophasé

Interrupteurs électroniques :

L'interrupteur peut être à transistor (ou thyristor si grande puissance), plus une diode de récupération (indispensable si la charge est inductive).

- **K** ouvert ↔ **T** bloque et **D** en inverse
- **K** fermé ↔ **T** commandé :
 - si i > 0 : **T** conduit
 - si i < 0 : **D** conduit

Commande symétrique

Onduleur en demi-pont à deux interrupteurs

Schéma de montage

Grandeurs caractéristiques

- Valeur moyenne de $u : \mathbf{u}_{moy} = \mathbf{0}$ (Tension alternative)
- Valeur efficace de $u: \mathbf{U} = \mathbf{V}$
- Tension maximale supportée par les interrupteurs :v₁ = 2. V

Onduleur en pont à quatre interrupteurs

Schéma de montage

Grandeurs caractéristiques

- Valeur moyenne de $u: \mathbf{u}_{moy} = \mathbf{0}$ (Tension alternative)
- Valeur efficace de $u: \mathbf{U} = \mathbf{V}$
- Tension maximale supportée par les interrupteurs : v₁ = V

Commande décalée

Onduleur en pont à quatre interrupteurs

Schéma de montage

Grandeurs caractéristiques

Valeur moyenne de $u : \mathbf{u}_{moy} = \mathbf{0}$ (Tension alternative)

Valeur efficace de $u: \mathbf{U} = \mathbf{V} \sqrt{1 - \frac{2t_0}{T}}$

Tension maximale supportée par les interrupteurs : $v_1 = V$

Commande par modulation de largeur d'impulsion : MLI

Onduleur en pont à quatre interrupteurs

Schéma de montage

Principe de commande MLI du bras $K_1 - K_2$

SI – ADC : Distribuer page 4/4 Classe : 2 STE