Math 220A - Fall 2016 - Final Exam

Name:		
Student ID:		

Instructions:

Please print your name and student ID (if you know it).

There are 8 questions which are worth 80 points. You have 180 minutes to complete the test. .

Question	Score	Maximum	
1		10	
2		10	
3		10	
4		10	
5		10	
6		10	
7		10	
8		10	
Total		80	

Problem 1. [10 points.]

Consider the function $f(z) = ze^{3-z} - 1$. Show that f has exact one zero inside the disc $\Delta(0,1)$.

Problem 2. [10 points.]

Calculate the integral

$$\int_0^\infty \frac{dx}{x^{2n}+1}, \text{ for } n \ge 2.$$

Make sure you explain all the necessary estimates.

Problem 3. [10 points.]

Consider

$$f(z) = z^n + a_1 z^{n-1} + \ldots + a_n.$$

Show that there exists c with |c|=1 such that

$$|f(c)| \ge 1.$$

Problem 4. [10 points.]

Assume that f is entire and f(z) = f(z+1) such that $|f(z)| \le e^{|z|}$. Show that f is constant.

(i) Consider

$$g(z) = \frac{f(z) - f(0)}{\sin \pi z}.$$

 $g(z)=\frac{f(z)-f(0)}{\sin\pi z}.$ Show that g is periodic and that g can be extended to an entire function.

- (ii) By direct calculation, show that g is bounded in the strip $0 \le \text{Re } z \le 1$.
- (iii) Conclude from (ii) that g = 0 hence f is constant.

Problem 5. [10 points.]

Let $f(z) = \frac{P(z)}{Q(z)}$ be a rational function with deg $P \le \deg Q - 2$ such that Q has no zeros along the non-negative real axis. Show that

$$\int_0^\infty f(x) dx = -\sum_{a \in \mathbb{C} \setminus \mathbb{R}_{\geq 0}} \operatorname{Res}_{z=a}(f(z) \log z),$$

where for $z \in \mathbb{C} \setminus \mathbb{R}_{\geq 0}$ we set $\log z = \log r + i\theta$ and $\theta \in (0, 2\pi)$.

You may wish to integrate along a "keyhole" contour, consisting of two portions of two circles and two line segments, and avoiding the non-negative real axis.

Problem 6. [10 points.]

Let $a, b \neq 0$ be real numbers and let U be a connected open set. Let $f: U \to \mathbb{C}$ be a holomorphic function. Show that if $a \operatorname{Re} f + b \operatorname{Im} f$ is constant, then f is constant.

Problem 7. [10 points.]

Assume that $f:\mathbb{C}\to\mathbb{C}$ is entire. Show that $f(\mathbb{C})$ is dense in $\mathbb{C}.$

Problem 8. [10 points.]

Assume that f is continuous in the closed unit disc $\overline{\Delta}$ and holomorphic inside the unit disc Δ . Assume that

$$|f(z)| = 1$$
 for all $|z| = 1$.

- (i) If f is nonconstant, show that f must have a zero inside Δ .
- (ii) Show that if f has a unique simple zero at z=0 then $f(z)=\alpha z$.