The 27th Annual ACM International Collegiate Programming Contest ASIA Regional - Taejon

Problem B Multiply Input: mult.in

" $6 \times 9 = 42$ " is not true for base 10, but is true for base 13. That is, $6_{(13)} \times 9_{(13)} = 42_{(13)}$ because $42_{(13)} = 4 \times 13^1 + 2 \times 13^0 = 54_{(10)}$.

You are to write a program which inputs three integers p, q, and r and determines the base B ($2 \le B \le 16$) for which $p \times q = r$. If there are many candidates for B, output the smallest one. For example, let p = 11, q = 11, and r = 121. Then we have $11_{(3)} \times 11_{(3)} = 121_{(3)}$ because $11_{(3)} = 1 \times 3^1 + 1 \times 3^0 = 4_{(10)}$ and $121_{(3)} = 1 \times 3^2 + 2 \times 3^1 + 1 \times 3^0 = 16_{(10)}$. For another base such as 10, we also have $11_{(10)} \times 11_{(10)} = 121_{(10)}$. In this case, your program should output 3 which is the smallest base. If there is no candidate for B, output 0.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of three integers p, q, and r in a line. All digits of p, q, and r are numeric digits and $1 \le p$, q, $r \le 1,000,000$.

Output

Print exactly one line for each test case. The line should contain one integer which is the smallest base for which $p \times q = r$. If there is no such base, your program should output 0.

(mult.in)	Output for the Sample Input
3	13
6 9 42	3
11 11 121	0
2 2 2	