References

- Abadie A (2005). Semiparametric difference-in-differences estimators. The Review of Economic Studies 72(1): 1-19.
- Abadie A, Chingos MM, West MR (2013). Endogenous Stratification in Randomized Experiments. NBER working paper no. 19742.
- Abadie A, Imbens GW (2006). Large sample properties of matched estimates for average treatment effects. *Econometrica* 74:235-267.
- Angrist JD, Imbens GW (1995). Two-stage least squares estimation of average causal effects in models with variable treatment intensity. *Journal of the American Statistical Association* 90:431-442.
- Angrist JD, Imbens GW, Rubin DB (1996). Identification of causal effects using instrumental variables. *Journal of the American Statistical Association* 91:444-455.
- Angrist JD, Krueger AB (1999). Empirical strategies in labor economics. In: Ashenfelter O, Card D, eds. *Handbook of Labor Economics 3A*, 1277-1366. Elsevier.
- Angrist JD, Pischke J-S (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press.
- Baiocchi M, Small D, Lorch S, Rosenbaum P (2010). Building a sttronger instrument in an observational study of perinatal care for premature infants. *Journal of the American Statistical Association* 105(492): 1285-1296.
- Baiocchi M, Cheng J, Small D (2014). Instrumental variable methods for causal inference. *Statistics in Medicine* 33: 2297-2340.
- Baker SG, Lindeman KS (1994). The paired availability design, a proposal for evaluating epidural analgesia during labor. *Statistics in Medicine* 13:2269-2278.
- Baker SG, Kramer BS, Lindeman KL (2016). Latent class instrumental variables. A clinical and biostatistical perspective. *Statistics in Medicine* 35:147-160.
- Balke A, Pearl J (1994). Probabilistic evaluation of counterfactual queries. In *Proceedings of the Twelfth National Conference on Artificial Intelligence*, Volume I, pp. 230-237.
- Balke A, Pearl J (1997). Bounds on treatment effects from studies with imperfect compliance. *Journal of the American Statistical Association* 92(439):1171-1176.
- Bang H, Robins JM (2005). Doubly robust estimation in missing data and causal inference models. *Biometrics* 61: 962-972 (errata in *Biometrics* 2008;64:650).
- Berkson J (1946). Limitations of the application of fourfold table analysis to hospital data. *Biometrics* 2: 47-53.

ii Causal Inference

Berkson J (1955). The statistical study of association between smoking and lung cancer. *Proceedings of the Staff Meetings of the Mayo Clinic* 30: 319-348.

- Blot WJ, Day NE (1979). Synergism and interaction: are they equivalent? [letter] American Journal of Epidemiology 110:99-100.
- Blyth CR (1972). On Simpson's paradox and the sure-thing principle. *Journal of the American Statistical Association* 67:364–66.
- Bonet B (2001). Instrumentality tests revisited. In: *Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence*. San Francisco, CA: Morgan Kaufmann Publishers, pp. 48-55.
- Bound J, Jaeger D, Baker R (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variables is weak. *Journal of the American Statistical Association* 90:443-450.
- Brown LD, Cai T, DasGupta A (2001). Interval estimation for a binomial proportion (with discussion). *Statistical Science* 16:101-133.
- Brookhart MA, Schneeweiss S (2007). Preference-based instrumental variable methods for the estimation of treatment effects: assessing validity and interpreting results. *International Journal of Biostatistics* 3:14.
- Brookhart MA, Rassen J, Schneeweiss S (2010). Instrumental variable methods in comparative safety and effectiveness research. *Pharmacoepidemiology and Drug Safety* 19:537-554.
- Buehler RJ (1982). Some ancillary statistics and their properties. Rejoinder. Journal of the American Statistical Association 77:593-594.
- Card D (1990). The Impact of the Mariel Boatlift on the Miami Labor Market. *Industrial and Labor Relations Review* 43(2):245-257.
- Card D (1995). Using geographic variation in college proximity to estimate the return to schooling. In: Christofides LN, Grant EK, Swidinsky R, eds. Aspects of labor market behavior: Essays in honour of John Vanderkamp. Toronto, Canada: University of Toronto Press.
- Casella G, Berger RL (2002). Statistical Inference, 2nd ed. Pacific Grove, CA: Duxbury Press.
- Cochran WG (1972). Observational Studies. In: Bancroft TA, ed. Statistical Papers in Honor of George W Snedecor. Iowa State University Press: 77-90
- Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL (1959). Smoking and lung cancer: Recent evidence and a discussion of some questions. *Journal of the National Cancer Institute* 22:173–203. Reprinted in *International Journal of Epidemiology* 2009; 38(5): 1175-1191.
- Cox DR (1958). *Planning of Experiments*. New York, NY: John Wiley and Sons.

- Efron B, Hinkley DV (1978). Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. *Biometrika* 65: 657-687.
- Danaei G, Robins JM, Hu FB, Manson J, Hernán MA (2016). Effect of weight loss on coronary heart disease and mortality in middle-aged or older women: sensitivity analysis for unmeasured confounding by undiagnosed disease. *Epidemiology* 27(2): 302-310.
- Davey Smith G, Ebrahim S (2004). Mendelian randomization: prospects, potentials, and limitations. *International Journal of Epidemiology* 33: 30-42.
- Dawid AP (1979). Conditional independence in statistical theory (with discussion). Journal of the Royal Statistical Society B 41:1-31.
- Dawid AP (2000). Causal inference without counterfactuals (with discussion). Journal of American Statistical Association 95: 407-424.
- Dawid AP (2002). Influence diagrams for causal modelling and inference. *International Statistical Review* 70: 161-189.
- Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with discussion). In: Green PJ, Hjort NL, Richardson S, eds. *Highly Structured Stochastic Systems*. New York, NY: Oxford University Press, pp. 45-65.
- de Finetti (1972). Probability, Induction, and Statistics. John Wiley & Sons.
- Deaton A (2010). Instruments, randomization, and learning about development. *Journal of Economic Literature* 48 424-455.
- Detels R, Muñoz A, McFarlane G, Kingsley LA, Margolick JB, Giorgi J, Schrager L, Phair J, for the Multicenter AIDS Cohorts Study (1998). JAMA 280(17): 1497-1503.
- Didelez V, Sheehan N (2007). Mendelian randomization as an instrumental variable approach to causal inference. Statistical Methods in Medical Research 16: 309-330.
- Ding P, VanderWeele TJ, Robins JM (2017). Instrumental variables as bias amplifiers with general outcome and confounding. *Biometrika* 104(2):291-302.
- Dorn HF (1953). Philosophy of inferences for retrospective studies. American Journal of Public Health 43: 677-83
- Dosemeci M, Wacholder S, Lubin JH (1990). Does nondifferential misclassification of exposure always bias a true effect toward the null value? *American Journal of Epidemiology* 132:746-748.
- Earle CC, Tsai JS, Gelber RD, Weinstein MC, Neumann PJ, Weeks JC (2001). Cancer in the elderly: instrumental variable and propensity analysis. *Journal of Clinical Oncology* 19(4): 1064-1070.
- Feinstein AR (1971). Clinical biostatistics. XI. Sources of 'chronology bias' in cohort statistics. Clinical Pharmacology and Therapeutics; 12(5): 864-79.

iv Causal Inference

Flanders WD (2006). On the relation of sufficient component cause models with potential (counterfactual) models. European Journal of Epidemiology 21: 847-853.

- Flanders WD, Klein M, Darrow LA, Strickland MJ, Sarnat SE, Sarnat JA, Waller LA, Winquist A, Tolbert PE (2011). A Method for Detection of Residual Confounding in Time-series and Other ObservationalStudies. *Epidemiology* 22(1): 59-67.
- Fleming TR, Harrington DP (2005). Counting Processes and Survival Analysis, 2nd ed. New York: Wiley.
- Gelman A, Carlin JB, Stern HS, Rubin DB (2003). Bayesian Data Analysis, 2nd ed. Boca Raton, FL: Chapman & Hall/CRC.
- Glymour MM, Spiegelman D (2016). Evaluating public health interventions: 5. Causal inference in public health research-Do sex, race, and biological factors cause health outcomes? *American Journal of Public Health* 107(1): 81-85.
- Glymour MM, Tchetgen Tchetgen EJ, Robins JM (2012). Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. *American Journal of Epidemiology* 175: 332-339.
- Greenland S (1977). Response and follow-up bias in cohort studies. *American Journal of Epidemiology* 106(3):184-187.
- Greenland S (1987). Interpretation and choice of effect measures in epidemiologic analyses. *American Journal of Epidemiology* 125:761-768.
- Greenland S (1996a). Basic methods for sensitivity analysis of bias. *International Journal of Epidemiology* 25:1107-1116.
- Greenland S (1996b). Absence of confounding does not correspond to collapsibility of the rate ratio or rate difference. *Epidemiology* 7:498-501.
- Greenland S (2000). An introduction to instrumental variables for epidemiologists. *International Journal of Epidemiology* 29:722-729.
- Greenland S (2003). Quantifying biases in causal models: classical confounding versus collider-stratification bias. *Epidemiology* 14:300-306.
- Greenland S (2008). Introduction to regression modeling. In: Rothman KJ, Greenland S, Lash TL, eds. *Modern Epidemiology*, 3rd edition. Philadelphia, PA: Lippincott Williams & Wilkins, pp. 418-455.
- Greenland S (2009a). Bayesian perspectives for epidemiologic research. III. Bias analysis via missing-data methods. *International Journal of Epidemiology* 38:1662-1673.
- Greenland S (2009b). Relaxation penalties and priors for plausible modeling of nonidentified bias sources. *Statistical Science* 24:195-210.
- Greenland S, Brumback B (2002). An overview of relations among causal modelling methods. *International Journal of Epidemiology* 31:1030-1037.
- Greenland S, Lash TL (2008). Bias analysis. In: Rothman KJ, Greenland S, Lash TL, eds. *Modern Epidemiology*, 3rd edition. Philadelphia, PA: Lippincott Williams & Wilkins, pp. 345-380.

- Greenland S, Lash TL, Rothman KJ (2008). Concepts of interaction. In: Rothman KJ, Greenland S, Lash TL, eds. *Modern Epidemiology*, 3rd edition. Philadelphia, PA: Lippincott Williams & Wilkins, pp. 71-83.
- Greenland S, Robins JM (1986). Identifiability, exchangeability, and epidemiological confounding. *International Journal of Epidemiology* 15:413-19.
- Greenland S, Robins JM (1988). Conceptual problems in the definition and interpretation of attributable fractions. *American Journal of Epidemiology* 128:1185-1197.
- Greenland S, Robins JM (2009). Identifiability, exchangeability, and confounding revisited. *Epidemiologic Perspectives & Innovations* 6:4.
- Greenland S, Pearl J, Robins JM (1999). Causal diagrams for epidemiologic research. *Epidemiology* 10:37-48.
- Greenland S, Robins JM, Pearl J (1999). Confounding and collapsibility in causal inference. *Statistical Science* 14:29-46.
- Greenland S, Rothman KJ (2008). Introduction to stratified analysis. In: Rothman KJ, Greenland S, Lash TL, eds. *Modern Epidemiology*, 3rd edition. Philadelphia, PA: Lippincott Williams & Wilkins, pp. 258-282.
- Grieve AP (2003). The number needed to treat: a useful clinical measure or a case of the Emperor's new clothes? *Pharmaceutical Statistics* 2:87-102.
- Halloran ME, Struchiner CJ (1995). Causal inference in infectious diseases. *Epidemiology* 6: 142-151.
- Hastie TJ, Tibshirani RJ (1990). Generalized Additive Models. London: Chapman & Hall.
- Hansen BB (2008). The prognostic analogue of the propensity score. *Biometrika* 95(2): 481-488.
- Heckman JJ, Vytlacil EJ (1999). Local instrumental variables and latent variable models for identifying and bounding treatment effects. *Proceedings of the National Academy of Sciences USA* 96:4730-4734.
- Hernán MA (2010). The hazards of hazard ratios. Epidemiology 21(1):13-15.
- Hernán MA (2016). Does water kill? A call for less casual causal inferences. Annals of Epidemiology 26: 674-680.
- Hernán MA (2017). Selection bias without colliders. American Journal of Epidemiology 21(1):13-15.
- Hernán MA, Clayton D, Keiding N (2011). The Simpson's paradox unraveled. *International Journal of Epidemiology* 40:780-785.
- Hernán MA, Cole SR, Margolick JB, Cohen MH, Robins JM (2005). Structural accelerated failure time models for survival analysis in studies with time-varying treatments. *Pharmacoepidemiology and Drug Safety* 14(7):477-491.

vi Causal Inference

Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA (2002). Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. American Journal of Epidemiology 155:176-184.

- Hernán MA, Hernández-Díaz S, Robins JM (2004). A structural approach to selection bias. *Epidemiology* 15:615-625.
- Hernán MA, Hernández-Díaz S (2012). Beyond the intention to treat in comparative effectiveness research. *Clinical Trials*; 9(1):48-55.
- Hernán MA, Robins JM (2006). Estimating causal effects from epidemiological data. *Journal of Epidemiology and Community Health* 60: 578-586.
- Hernán MA, Robins JM (2006b). Instruments for causal inference: An epidemiologist's dream? *Epidemiology* 17(4): 360-372.
- Hernán MA, Robins JM (2016). Using big data to emulate a target trial when a randomized trial is not available. *American Journal of Epidemiology* 183(8):758-764.
- Hernán MA, Robins JM (2017). Per-protocol analyses of pragmatic trials. New England Journal of Medicine 377(14): 1391-1398.
- Hernán MA, Sauer BC, Hernández-Díaz S, Platt R, Shrier I (2016). Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses. *Journal of Clinical Epidemiology* 79: 70-75.
- Hernán MA, VanderWeele TJ (2011). Compound treatments and transportability of causal inference. *Epidemiology* 22:368-377.
- Holland PW (1986). Statistics and causal inference (with discussion). *Journal of the American Statistical Association* 81:945-961.
- Hoover DR, Muñoz A, He Y, Taylor JMG, Kingsley L, Chmiel JS, Saah A (1994). The effectiveness of interventions on incubation of AIDS as measured by secular increases within the population. *Statistics in Medicine* 13:2127-2139.
- Horvitz DG, Thompson DJ (1952). A generalization of sampling without replacement from a finite universe. *Journal of the American Statistical Association* 47:663-685.
- Hosmer DW, Lemeshow S, May S (2008). Applied Survival Analysis: Regression Modelling of Time to Event Data. Hoboken, NJ: Wiley.
- Hudgens MG, Halloran ME (2009). Towards causal inference with interference. *Journal of the American Statistical Association* 103:832-842.
- Hume D (1748). An Enquiry Concerning Human Understanding. Reprinted and edited 1993, Indianapolis/Cambridge: Hacket.
- Imbens GW, Angrist JD (1994). Identification and estimation of local average treatment effects. *Econometrica* 62:467-475.
- Imbens GW, Rubin DB (1997). Estimating outcome distributions for compliers in instrumental variables models. *Review of Economic Studies* 64:555-574.

- Kalbfleisch and Prentice (2002). The Statistical Analysis of Failure Time Data. Hoboken, NJ: Wiley.
- Katan MB (1986). Apolipoprotein E isoforms, serum cholesterol, and cancer. *Lancet*, 1:507-508.
- Kosinski S, Stillwell D, Graepel T (2013). Private traits and attributes are predictable from digital records of human behavior. *Proceedings of the National Academy of Sciences* 110(15): 5802-5805.
- Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM (2006). Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. American Journal of Epidemiology 163(3): 262-270.
- Korn EL, Baumrind S (1998). Clinician preferences and the estimation of causal treatment differences. *Statistical Science* 13:209-235
- Laupacis A, Sackett DL, Roberts RS (1988). An assessment of clinically useful measures of the consequences of treatment. *New England Journal of Medicine* 318:1728-1733.
- Lauritzen SL, Dawid AP, Larsen BN, Leimer H-G (1990). Independence properties of directed Markov fields. *Networks* 20:491-505.
- Lash TL, Fox MP, Fink AK (2009). Applying Quantitative Bias Analysis to Epidemiologic Data. New York: Springer.
- Lewis D (1973). Counterfactuals. Oxford: Blackwell.
- Liang K-Y, Zeger SL (1986). Longitudinal data analysis using generalized linear models. *Biometrika* 73(1):13-22.
- Little RJ, D'Agostino R, Cohen ML, et al (2012). The prevention and treatment of missing data in clinical trials. New England Journal of Medicine 367(14): 1355-60.
- Mackie JL (1965). Causes and conditions. American Philosophical Quartely 2:245-264.
- MacClellan M, McNeil BJ, Newhouse JP (2004). Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. *JAMA* 272(11):859-866.
- Manski CF (1990). Nonparametric bounds on treatment effects. *American Economic Review* 80(2):319-323.
- Martens E, Pestman W, de Boer A, Belitser S, Klungel OH (2006). Instrumental variables: applications and limitations. *Epidemiology* 17(4):260-267.
- McCullagh P, Nelder JA (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall.
- McCulloch CE, Searle SE, Neuhaus JM (2008). Generalized, Linear, and Mixed Models, 2nd ed. New York, NY: Wiley.

viii Causal Inference

Meyer BD (1995). Natural and quasi-experiments in economics. *Journal of Business & Economic Statistics* 13(2):151-161.

- Miettinen OS (1973). Standardization of risk ratios. American Journal of Epidemiology 96:383-388.
- Miettinen OS (1982). Causal and preventive interdependence: elementary principles. Scandinavian Journal of Work, Environment & Health 8:159-168.
- Miettinen OS, Cook EF (1981). Confounding: Essence and detection. American Journal of Epidemiology 1981; 114:593-603.
- Molina J, Rotnitzky A, Sued M, Robins JM (2017) Multiple robustness in factorized likelihood models. *Biometrika* 104(3):561-581.
- Neyman J (1923). On the Application of Probability Theory to Agricultural Experiments: Essay on Principles, Section 9. Translated in *Statistical Science* 1990; 5:465-480.
- Ogburn EL, VanderWeele TJ (2012). On the nondifferential misclassification of a binary confounder. *Epidemiology*; 23(3):433-439.
- Page J (2005). Doubly Robust Estimation: Structural Nested Cumulative Failure Time Models, Sc.D. dissertation, Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA.
- Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granelli R, Davey Smith G, Didelez V (2011). Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American Journal of Epidemiology 173(12): 1392-1403.
- Pearl J (1995). Causal diagrams for empirical research. *Biometrika*; 82:669-710.
- Pearl J (2009). Causality: Models, Reasoning, and Inference, 2nd ed. New York: Cambridge University Press.
- Pearl J (2011). Understanding bias amplification. American Journal of Epidemiology 174(11):1223-1227.
- Pearl J, Robins JM (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In: *Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence*. Montreal, Canada, pp. 444-453.
- Pearson K, Lee A, Bramley-Moore L (1899). VI. Mathematical contributions to the Theory of Evolution.—VI. Genetic (Reproductive) selection: Inheritance of fertility in man, and of fecundity in thoroughbred horses. *Philosophical Transactions of the Royal Society of London, Series A* 192: 258-331.
- Picciotto S, Hernán MA, Page J, Young JG, Robins JM (2012). Structural nested cumulative failure time models for estimating the effects of interventions. *Journal of the American Statistical Association* 107(499):886-900.

- Richardson TS, Robins JM (2010). Analysis of the binary instrumental variable model. In: Dechter R, Geffner H, Halpern JY, eds. *Heuristics*, *Probability and Causality: A Tribute to Judea Pearl*. College Publications, UK.
- Richardson TS, Robins JM (2014). ACE bounds; SEMs with equilibrium conditions. *Statistical Science* 29(3):363-366.
- Richardson TS, Evans RJ, Robins JM (2010). Transparent parametrizations of models for potential outcomes. In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, eds. *Bayesian Statistics 9*. Oxford University Press.
- Richardson TS, Robins JM (2013). Single world intervention graphs (SWIGs):

 A unification of counterfactual and graphical approaches to causality.

 Working Paper Number 128. Available at http://www.csss.washington.edu/Papers/
- Robins JM (1986). A new approach to causal Inference in mortality studies with sustained exposure periods -Application to control of the healthy worker survivor effect. *Mathematical Modelling* 7:1393-1512 (errata appeared in *Computers and Mathematics with Applications* 1987;14:917-921).
- Robins JM (1987). Addendum to "A new approach to causal inference in mortality studies with sustained exposure periods -Application to control of the healthy worker survivor effect". Computers and Mathematics with Applications 14 (9-12):923-945 (errata appeared in Computers and Mathematics with Applications 1987;18:477).
- Robins JM (1988). Confidence intervals for causal parameters. Statistics in Medicine 7:773-785.
- Robins JM (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In: Sechrest L, Freeman H, Mulley A, eds. *Health Services Research Methodology: A Focus on AIDS*. NCHRS, U.S. Public Health Service; 113-159.
- Robins JM. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. *Communications in Statistics* 23:2379-2412.
- Robins JM (1997a). Causal Inference from Complex Longitudinal Data. Latent Variable Modeling and Applications to Causality. Berkane M, ed. New York, NY: Springer Verlag, pp. 69-117.
- Robins JM (1997b). Structural nested failure time models. In: Survival Analysis, Andersen PK, Keiding N, Section Editors. *The Encyclopedia of Biostatistics*, Armitage P, Colton T (eds). Chichester, UK: John Wiley & Sons, 1997; 4372-4389.
- Robins JM (1998). Marginal structural models. 1997 Proceedings of the Section on Bayesian Statistical Science. Alexandria, Virginia: American Statistical Association, 1-10.
- Robins JM (1999). Marginal structural models versus structural nested models as tools for causal inference. In: Halloran E, Berry D. Statistical Models in Epidemiology: The Environment and Clinical Trials. New York, Springer-Verlag: 95-134.

x Causal Inference

Robins JM (2003). Semantics of causal DAG models and the identification of direct and indirect effects. In: Green P, Hjort NL, Richardson S, eds. *Highly Structured Stochastic Systems*. New York: Oxford University Press; p. 70-81.

- Robins JM (2000). Robust estimation in sequentially ignorable missing data and causal inference models. 1999 Proceedings of the Section on Bayesian Statistical Science. Alexandria, Virginia: American Statistical Association, pp. 6-10.
- Robins JM, Greenland S (1989). Estimability and estimation of excess and etiologic fraction. *Statistics in Medicine* 8:845-859.
- Robins JM, Greenland S (2000). Comment on "Causal inference without counterfactuals." *Journal of the American Statistical Association* 95:477-82.
- Robins JM, Hernán MA, Rotnitzky A (2007). Effect modification by timevarying covariates. *American Journal of Epidemiology* 166:994-1002.
- Robins JM, Morgenstern H (1987). The foundations of confounding in epidemiology. Computers & Mathematics with Applications 14(9-12); 869-916.
- Robins JM, Richardson TS (2011). Alternative graphical causal models and the identification of direct effects. In: Causality and Psychopathology: Finding the Determinants of Disorders and Their Cures. P. Shrout, ed. New York, NY: Oxford University Press.
- Robins JM, Ritov Y (1997). Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semiparametric models. *Statistics in Medicine* 17:285-319.
- Robins JM, Rotnitzky A, Scharfstein D (1999). Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: *Statistical Models in Epidemiology: The Environment and Clinical Trials*. Halloran ME, Berry D, eds. New York, NY: Springer-Verlag, pp. 1-92.
- Robins JM, Weissman M (2016). Counterfactual causation and streetlamps. What is to be done?. *International Journal of Epidemiology* 45(6):1830-1835.
- Rosenbaum PR (1987). Model-based direct adjustment. Journal of the American Statistical Association 82:387-394.
- Rosenbaum PR (2007). Interference between units in randomized experiments. *Journal of the American Statistical Association* 102:191-200.
- Rosenbaum PR (2002). Observational Studies, 2nd edition. New York, NY: Springer-Verlag.
- Rosenbaum PR, Rubin DB (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika* 70:41-55.
- Rothman KJ (1976). Causes. American Journal of Epidemiology 104:587-592.

- Rothman KJ, Greenland S (1998). *Modern Epidemiology*, 2nd edition. Philadelphia, PA: Lippincott Williams and Wilkins.
- Rothman KJ, Greenland S, Walker AM (1980). Concepts of interaction. American Journal of Epidemiology 112:467-470.
- Rothman KJ, Greenland S, Poole C, Lash TL (2008). Causation and Causal Inference. In: Rothman KJ, Greenland S, Lash TL, eds. *Modern Epidemiology*, 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins.
- Rubin DB (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology* 56:688-701.
- Rubin DB (1976). Inference and missing data (with discussion). *Biometrika* 63:581-592.
- Rubin DB (1978). Bayesian inference for causal effects: The role of randomization. *Annals of Statistics* 6:34-58.
- Rubin DB (1980). Discussion of "Randomized analysis of experimental data: the Fisher randomization test" by Basu D. *Journal of the American Statistical Association* 75:591-593.
- Samuels ML (1981). Matching and design efficiency in epidemiological studies. *Biometrika* 68:577-588.
- Saracci R (1980). Interaction and synergism. American Journal of Epidemiology 112:465-466.
- Sato T, Matsuyama Y (2003). Marginal structural models as a tool for standardization. *Epidemiology* 14:680-686.
- Schisterman EF, Cole SR, Platt RW (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. *Epidemiology* 20(4): 488-95.
- Schwartz S, Gatto NM, Campbell UB (2016). Causal identification: a charge of epidemiology in danger of marginalization. *Annals of Epidemiology* 26(10):669-673.
- Simpson EH (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Series B 13:238-241.
- Smith GCS, Pell JP (2003). Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials. *British Medical Journal* 327:1459-1461.
- Sobel ME (2006). What do randomized studies of housing mobility demonstrate? *Journal of the American Statistical Association* 101: 1398-1407.
- Sommer A, Zeger SL (1991). On estimating efficacy from clinical trials. Statistics in Epidemiology 10:45-52.
- Spirtes P, Glymour C, Scheines R (2000). Causation, Prediction and Search, 2nd ed. Cambridge, MA: MIT Press.
- Stalnaker RC (1968). A theory of conditionals. In Rescher N, ed. *Studies in Logical Theory*. Oxford: Blackwell. Reprinted in Jackson F, ed. *Conditionals*. Oxford: Oxford University Press, 1991.

xii Causal Inference

Stuart EA (2010). Matching methods for causal inference. Statistical Science 25, 1-21.

- Swanson SA, Hernán MA (2013). How to report instrumental variables analyses (suggestions welcome). *Epidemiology* 24(3): 370-374.
- Swanson SA, Hernán MA (2014). Think globally, act globally: An epidemiologist's perspective on instrumental variable estimation. *Statistical Science* 29(3): 371-374.
- Swanson SA, Miller M, Robins JM, Hernán MA (2015a). Definition and evaluation of the monotonicity condition for preference-based instruments. *Epidemiology* 26:414-420.
- Swanson SA, Miller M, Robins JM, Hernán MA (2015b). Selecting on treatment: a pervasive form of bias in instrumental variable analysis. *American Journal of Epidemiology* 181(3):191-197.
- Swanson SA, Holme Ø, Løberg M, Kalager M, Bretthauer M, Hoff G, Aas E, Hernán MA (2015c). Bounding the per-protocol effect in randomized trials: an application to colorectal cancer screening. *Trials* 16:541.
- Swanson SA, Hernán MA, Miller M, Robins JM, Richardson T (2018). Partial identification of the average treatment effect using instrumental variables: Review of methods for binary instruments, treatments, and outcomes. *Journal of the American Statistical Association* 113(522):933-947.
- Tchetgen Tchetgen EJ, Rotnitzky A (2011). Double-robust estimation of an exposure-outcome odds ratio adjusting for confounding in cohort and case-control studies. *Statistics in Medicine* 30(4):335-47.
- Tchetgen Tchetgen EJ, Stefan W, Vansteelandt S, Martinussen T, Glymour M (2015). Instrumental variable estimation in a survival context. *Epidemiology* 26(3): 402-410.
- Thistlewaite D, Campbell D (1960). Regression-discontinuity analysis: An alternative to the ex-post facto experiment. *Journal of Educational Psychology* 51:309-317.
- Toh SW, Hernán MA (2008). Causal inference from longitudinal studies with baseline randomization. *International Journal of Biostatistics* 4: Article 22.
- van der Laan MJ, Gruber S (2012). Targeted minimum loss based estimation of causal effects of multiple time point interventions. *International Journal of Biostatistics* 8(1): Article 9.
- VanderWeele TJ (2009). On the distinction between interaction and effect modification. *Epidemiology* 20:863-871.
- VanderWeele TJ (2009). Concerning the consistency assumption in causal inference. *Epidemiology* 20:880-883.
- VanderWeele TJ (2010). Empirical tests for compositional epistasis. *Nature Reviews Genetics* 11:166.
- VanderWeele TJ, Hernán MA (2006). From counterfactuals to sufficient component causes and vice versa. European Journal of Epidemiology 21:855-858.

- VanderWeele TJ, Robins JM (2007a). The identification of synergism in the sufficient-component-cause framework. *Epidemiology* 18:329-339.
- VanderWeele TJ, Robins JM (2007b). Four types of effect modification. A classification based on directed acyclic graphs. *Epidemiology* 18; 561-568.
- VanderWeele TJ, Robins JM (2007c). Directed acyclic graphs, sufficient causes, and the properties of conditioning on a common effect. *American Journal of Epidemiology* 166; 1096-1104.
- VanderWeele TJ, Hernán MA, Robins JM (2008). Causal directed acyclic graphs and the direction of unmeasured confounding bias. *Epidemiology* 19:720-728.
- VanderWeele TJ, Robins JM (2008). Empirical and counterfactual conditions for sufficient cause interactions. *Biometrika* 95:49-61.
- VanderWeele TJ, Hernán MA (2009). Results on differential and dependent measurement error of the exposure and the outcome using signed directed acyclic graphs. *American Journal of Epidemiology* 175(12):1303-1310.
- VanderWeele TJ, Shpitser I (2013). On the definition of a confounder. *Annals of Statistics* 41(1): 196-2.
- VanderWeele TJ, Hernán MA. Causal inference under multiple versions of treatment. *Journal of Causal Inference* 2013; 1(1):1-20.
- VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P (2014). Methodological challenges in Mendelian randomization. *Epidemiology* 25(3):427-435.
- Vansteelandt S, Goetghebeur E (2003). Causal inference with generalized structural mean models. *Journal of the Royal Statistical Society Series B* 65;817-835.
- Wald A (1940). The fitting of straight lines if both variables are subject to error. Annals of Mathematical Statistics 11:284-300.
- Walker AM (1991). Observation and Inference: An Introduction to the Methods of Epidemiology. Newton Lower Falls, MA: Epidemiology Resources, Inc.
- Wasserman L (2004). All of Statistics: A Concise Course in Statistical Inference. New York, NY: Springer.
- Weinberg CR, Umbach DM, Greenland S (1994). When will nondifferential misclassification of an exposure preserve the direction of a trend? *American Journal of Epidemiology* 140:565-571.
- Yule GU (1903). Notes on the theory of association of attributes in statistics. Biometrika 2:121-134.