Seminar III: R/Bioconductor GeneR

Amhed Missael Vargas Velazquez avargas@lcg.unam.mx

September 25, 2009

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

Authors
 L. Cottret, A. Lucas, E. Marrakchi, O. Rogier, V. Lefort, P. Durosay, A. Viari, C. Thermes; Y. d'Aubenton-Carafa.

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

- Authors
 L. Cottret, A. Lucas, E. Marrakchi, O. Rogier, V. Lefort, P. Durosay, A. Viari, C. Thermes; Y. d'Aubenton-Carafa.
- MaintainerY. d'Aubenton-Carafa

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

- Authors
 L. Cottret, A. Lucas, E. Marrakchi, O. Rogier, V. Lefort, P. Durosay, A. Viari, C. Thermes; Y. d'Aubenton-Carafa.
- MaintainerY. d'Aubenton-Carafa
- ▶ I think that Y. d'Aubenton-Carafa, entered the proyect at the end :)

GeneR is a very useful package which contains some functions for the manipulation of genetic data. It's similar to Biostrings¹, However, GeneR contains more functions and it used for different things. In addition, it is related to GeneRfold² package that allows the use of Vienna RNA library within R, meaning, tools for the prediction and comparison of RNA secondary structures.³ You can install the GeneR package in R using:

- > source("http://bioconductor.org/biocLite.R")
- > biocLite("GeneR")

¹Biostrings was showed in the previous class by Isaac

 $^{^2\}mbox{A}$ package created by Y. d'Aubenton-Carafa, A. Lucas; C. Thermes, the same creator as the GeneR package XD

³It's an excellent package to talk about, and it is also interesting and easy to use.

 Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.
- Handling sequences The usual copy-paste of parts of sequences or other manipulations can be performed by functions using vectors of strands and positions.

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.
- Handling sequences The usual copy-paste of parts of sequences or other manipulations can be performed by functions using vectors of strands and positions.
- Analyzing sequences To count oligo-nucleotides by mono, di or tri, to look for exact word positions or to shuffle sequences.

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.
- Handling sequences The usual copy-paste of parts of sequences or other manipulations can be performed by functions using vectors of strands and positions.
- Analyzing sequences To count oligo-nucleotides by mono, di or tri, to look for exact word positions or to shuffle sequences.
- Manipulation of regions on a chromosome Tools to easily compute any subregions (intergenic regions, exons or more sophisticated regions), without an exhaustive texture on a whole chromosome.

Performing bioinformatic jobs Functions related to genetic and structural aspects of the sequences: ORF localization, translation, or RNA secondary structure determination⁴.

⁴with extention of GeneR: GeneRfold package

Working with sequences I

⁵ I create a random sequence for the samples

```
> library(GeneR)
```

$$>$$
 seq <- randomSeq(prob = $c(0.2, 0.3, 0.2, 0.3)$, letters =

$$+ c("T", "C", "A", "G"), n = 30)$$

Insert a poly A into the end of the sequence

⁵So sorry my friends, but this is a brief drescription of the GeneR, so im not going to explain each function. ; p

Compute the reverse complementary

- > strComp(seq)

Count di-nucleotides⁶

> strCompoSeq(seq, wsize = 2)

TT TC TA TG TX CT CC CA CG CX AT AC
[1,] 0.1 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0 0.05 0

GG GX XT XC XA XG XX
[1,] 0.05 0 0 0 0 0

Translate the sequence string to a protein

- > strTranslate(seq)
- [1] "ETEAPLASFTKKK"

⁶It can be in groups from 1 to 15

Doing big jobs

Most of the functions in the GeneR package use buffers.

Why use buffers

Doing big jobs

Most of the functions in the GeneR package use buffers.

- Why use buffers
- ▶ To work on large sequences (i.e. a whole chromosome).

Doing big jobs

Most of the functions in the GeneR package use buffers.

- Why use buffers
- To work on large sequences (i.e. a whole chromosome).
- ▶ In addition, you can buffer fasta sequences from Ncbi

Buffering the complete genome of Nanoarchaeum equitans⁷ from Ncbi.

```
> seqNcbi("NC_005213", file = "toto.seq", submotif = TRUE
+ , type = "fasta")
[1] 1
```

> readFasta("toto.seq")

[1] 0

Size of the genome.

> sizeSeq()

[1] 490885

Looking for motifs⁸.

> exactWord("ACTGA", seqno = 0, case.sensitive = TRUE)

[[1]]								
[1]	4925	6632	8764	12958	13693	18925	18940	1964
[11]	26758	31518	32702	33170	44284	44344	45825	4757
[21]	60992	69216	78148	97864	101865	107694	113767	12416
[31]	161255	165544	167140	167199	168805	172205	172462	17872
[41]	194550	201175	209660	216070	219809	227793	246409	24759
[51]	257148	262271	269888	273945	282269	294376	297681	30163
[61]	325389	330027	331853	332483	336450	355967	360722	36446
[71]	375564	384219	384256	384869	387519	389579	390623	39423
[81]	411202	411597	414553	419521	421865	422699	432651	44732
[91]	468659	478141	478817	490088	490136			

⁷One of the most little genomes, i don't wanna break my computer

⁸Also, there is a function named getOrfs, that is supposed used to know where find Open Reading Frames, however, is not working:

DNA TO RNA

> dnaToRna()

[1] 0

Or writing our new RNA file

- > writeFasta(seqno = 0, file = "Nan_rna.fa", name =
- + "MyRNA", comment = "RNA generated by DNA
- + of Nanoarchaeum equitans", append = TRUE)

[1] 1

You must remember, any function that uses the buffer, changes the content of the buffer.

We changed our DNA, so that if we use a getSeq you will see RNA

- > getSeq(seqno = 0, from = 1, to = 30)
- [1] "UCUCGCAGAGUUCUUUUUUUUUUUAACAAA"

You might prefer to change the number of the buffer for anything that you might do.

We already see in one of our class, how is constitute a bacterial genome...

So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:

We already see in one of our class, how is constitute a bacterial genome...

So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:

The size

We already see in one of our class, how is constitute a bacterial genome...

So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:

- ► The size
- The GC content.

We already see in one of our class, how is constitute a bacterial genome...

So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:

- ► The size
- ▶ The GC content
- A GC Skew of the genome

Buffering the sequence

```
> seqNcbi("NC_007761", file = "Retli.seq", submotif =
+ TRUE, type = "fasta")
[1] 1
```

> readFasta("Retli.seq")

[1] 0

The size

> sizeSeq()

[1] 4381608

The GC content

> GCcontent()

pgc N

G 0.6127221 0

For the GC skew, i create a object with the size for sectionate the genome

```
> size <- sizeSeq()</pre>
```

And now we use the function densityProfile

```
> dens <- densityProfile(ori = 398328 * (1:11), from = 1,
+ to = size, seqno = 0, fun = seqSkew, nbinL = 24, nbinR</pre>
```

At last, we plot :)

GC skew

GeneR has great tools:

- GeneR has great tools:
- ▶ To find a region in the genome

- GeneR has great tools:
- ▶ To find a region in the genome
- ▶ To manipulate sequences

- GeneR has great tools:
- To find a region in the genome
- To manipulate sequences
- To do large jobs As we see Gene R has the potential to be an excellent tool for conducting bioinformatics.

That's All Folks

I encourage you to explore the Help Options of this package and to use them, they're user - friendly and fun XD .

