Capítulo 4

Análise de Resultados

4.1 Rede Elétrica

A necessidade de garantir a continuidade de crescimento ao mercado exige o funcionamento interligado dos sitemas elétricos de potência, os quais formam redes complexas, definida pela conexão de elementos ativos e passivos capazes de gerar e transportar energia elétrica. por geradores de energia elétrica, transformadores de tensão e linhas de transmissão.

A rede análisada compreende os municípios de Manaus, Presidente Figueiredo, Iranduba e Manacapuru. Os níveis de tensão analisados compreendem o intervalo de 500kV a 69kV.

4.2 Cenário dos Experimentos

O consumo de eletricidade proveniente da rede elétrica cresce a uma taxa média de 3,4%, inferior de 2,8% e superior de 4,1%, de acordo com o Placo Decenal de Expansão de Energia, estudo produzido pela ONS. A fim de avaliar o caso de estresse mais intenso ao sistema elétrico, a taxa de crescimento de consumo foi considerada. A análise propõe-se a ser bianual, o que implica em um aumento de 8,2% entre os anos destacados.

Tabela 4.1: Cargas bianuais.

Ano	Potência (MW)
2026	1.642,69
2028	1.777,39
2030	1.923.14
2032	2.080.83
2034	$2.251,\!46$
2036	2.436.08

4.3 Avaliação da Margem de Estabilidade de Tensão

4.3.1 Margem de Estabilidade Convencional

A margem de estabilidas de convencional é calculada considerando o ponto de máximo carregamento do sistema adequado ao valor mínimo seguro definido pelo ONS. A Fig. 4.1 apresenta o comportamento da rede sob estas condições.

$$PMC_{\text{sec}} = PMC \cdot (1 - 0.04)$$
 (4.1)

Na qual:

 PMC_{sec} = Ponto de máximo carregamento adequado à margem de segurança.

PMC = Ponto de máximo carregamento.

Em valores:

$$PMC_{\text{sec}} = 4187.97 \text{ MW}$$
 (4.2)

Esta análise é generalista ao ponto de não considerar condições de operação seguras sob a ótica da tensão elétrica, mas é útil para avaliar a quanto estresse a rede consegue ser submetida. Para a quantidade de eletropostos nula, tem-se os valores de margem para o incremento bianual de carga. O restante do eixo representa a quantidade de eletropostos alocados aleatoriamente em cada uma das barras do sistema. Os valores de potência dos eletropostos são advindos de uma combinação de três dos quatro valores possíveis que um eletroposto pode assumir. Em números:

$$P_{\text{etp}} = (114, 147, 180, 213) \text{ kW}$$
 (4.3)

Evolução da Margem de Estabilidade de Tensão Convencional com o Número de Eletropostos Através dos Anos

Figura 4.1: Evolução da Margem de Estabilidade de Tensão Convencional para Nível de Tensão de 138 kV com o Número de Eletropostos Através dos Anos.

Fonte: Do autor.

A graduação do mapa de calor adota tons azuis a medida que o valor médio da margem de estabilidade de tensão diminui e tons vermelhos a medida em que aumenta. É evidente que o passar dos anos, e subsequente aumento de carga do sistema, e o número de eletropostos alocados por barra tem um impacto negativo na grandeza avaliada.

4.3.2 138 kV

Esta análise submete o sistema inteiro ao ponto de máximo carregamento da barra mais fraca pertencente ao nível de tensão de 138kV. A referência de potência é retirada da barra número 10540. Em valores:

$$PMC_{138_{\text{esc}}} = PMC_{138} \cdot (1 - 0.04) \tag{4.4}$$

$$PMC_{138_{\text{egc}}} = 2.412,95 \text{ MW}$$
 (4.5)

Evolução da Margem de Estabilidade de Tensão Convencional para Nível de Tensão de 138kV com o Número de Eletropostos Através dos Anos

Figura 4.2: Evolução da Margem de Estabilidade de Tensão Convencional para Nível de Tensão de 138 kV com o Número de Eletropostos Através dos Anos.

Fonte: Do autor.

Através da avaliação da Fig. 4.2, é fácil notar que o sistema poderia sair da zona de segurança ainda em 2032, com nove eletropostos alocados por barra. Em 2034 a rede já não suportaria combinações das maiores potências de estações de carregamento elencadas. Em 2036 o sistema é completamente inábil de receber carga adicional.

4.3.3 69 kV

Esta análise submete o sistema inteiro ao ponto de máximo carregamento da barra mais fraca pertencente ao nível de tensão de 69kV. A referência de potência é retirada da barra número 10480. Em valores:

$$PMC_{69sec} = PMC_{69} \cdot (1 - 0.04) \tag{4.6}$$

$$PMC_{69_{\text{sec}}} = 1.943,50MW \tag{4.7}$$

Evolução da Margem de Estabilidade de Tensão Convencional para Nível de Tensão de 69kV com o Número de Eletropostos Através dos Anos

Figura 4.3: Evolução da Margem de Estabilidade de Tensão Convencional para Nível de Tensão de 69 kV com o Número de Eletropostos Através dos Anos.

Observando a Fig. 4.3 nota-se que o sistema poderia sair da zona de segurança logo em 2028, a depender dos valores de potência das estações, com quatro eletropostos alocados por barra. Em 2030 os valores mais otimistas de margem ainda estão muito próximas da instabilidade. Em 2032 o sistema é completamente inábil de receber carga adicional.

4.3.4 Margem de Estabilidade por Nível de Tensão

A análise dos valores da margem de estabilidade por nível de tensão visa determinar a grandeza alvo a partir do agrupamento de barras em um mesmo nível, mesmo que o alocamento de postos não faça tal distinção. O ponto de máximo carregamento passa a ser o valor de potência que garante a condição segura de tensão de operação.

4.3.4.1 138 kV

Figura 4.4: Evolução da Margem de Estabilidade de Tensão para Nível de Tensão de 138kV com o Número de Eletropostos Através dos Anos.

Fonte: Do autor.

A margem de estabilidade de tensão segue a tendência de diminuir com o passar dos anos e o aumento da quantidade de eletropostos alocados, como é possível enxergar na Fig. 4.4.

4.3.4.2 69 kV

A Fig. 4.5 mostra que o comportamento para 69 kV segue como esperado, mas registra os menores valores para as margens em comparação ao cenário anterior. O resultado não é surpreendente, visto que é neste nível de tensão que a barra com a menor potência limite para operacionabilidade está alocada.

Figura 4.5: Evolução da Margem de Estabilidade de Tensão para Nível de Tensão de 138kV com o Número de Eletropostos Através dos Anos.

4.3.5 Capacidade de Hospedagem dos Eletropostos

A capacidade de hospedagem do sistema baseia-se na quantidade de eletropostos possíveis de serem alocados no intervalo de potência disponível a partir do ponto de operação até o ponto de máximo carregamento considerado, que para esta análise, será o máximo PMC.

4.3.5.1 Capacidade de Hospedagem Convencional

Assim como a margem de estabilidade convencional, a capacidade de hospedagem convencional avalia a capacidade bruta de alocação de novas cargas, mesmo que a condição segura de operação não seja garantida. O eixo vertical, diferente das figuras anteriores, representa o número de barras nas quais os eletropostos seriam conectados.

Quantidade de Barras Aocadas

Evolução da Capacidade de Hospedagem Convencional com o Número de Barras Alocadas Através dos Anos

		COIII O INUII	nero de barras	s Alocadas Atr	aves dos Anos		
49	5226 5147	4955 4867	4658 4580	4333 4257	3984 3915	3611 3534	Valores
48	5233 5144	4948 4874	4681 4572	4333 4262	3979 3913	3606 3541	Médios
47	5228 5148	4966 4872	4652 4582	4334 4259	3980 3916	3606 3534	
46	5230 5148	4950 4872	4672 4579	4339 4247	3981 3915	3604 3535	
45	5224 5146	4955 4880	4648 4573	4329 4266	3980 3916	3606 3534	
44	5243	4947		4330	3982	3598	
43	5156 5238	4865 4953	4578 4656 4578	4258 4336 4254	3916 3983	3541 3606	5000
42	5137 5227	4876 4954		4343	3916 3987	3538 3604	3000
41	5149 5231	4878 4963	4570 4668	4253 4330	3917 3980	3540 3601	
40	5142 5235	4872 4962	4576 4658	4252 4333	3897 3982	3536 3608	
39	5145 5241	4875 4963	4582 4654	4262 4335	3914 3980	3539 3609	
38	5151 5234	4870 4957	4579 4647	4256 4333	3914 3980	3534 3599	
	5152 5231	4873 4959	4575 4656	4263 4331	3898 3997	3540 3605	
37	5148 5237	4871 4968	4583 4656	4254 4330	3910 3983	3530 3606	4800
36	5155 5239	4879 4956	4574 4650	4259 4333	3915 3984	3528 3603	
35	5147 5231	4872 4953	4583 4653	4253 4330	3914 3975	3531 3606	
34	5141	4878 4953	4582 4656	4255	3913 3984	3538 3610	
33	5140 5228	4958	4574 4652	4258	3912 3986	3534 3608	
32	5148 5229	4873 4954	4581 4656	4255	3914 3987	3524 3607	
31	5135 5238	4875 4954	4575 4660	4250 4328	3908 3982	3537 3601	4600
30	5151 5231	4861 4954	4578 4651	4263 4336	3913 3985	3542 3611	
29	5154	4872	4582	4252	3914	3527	
28	5236 5155	4956 4867	4650 4574	4337 4261	3981 3904	3609 3535	
27	5242 5144	4953 4875	4653 4576	4338 4259	3999 3907	3611 3538	
26	5234 5148	4951 4871	4653 4581	4343 4256	3988 3914	3599 3536	
25	5224 5148	4957 4874	4649 4582	4337 4254	3986 3908	3604 3539	4400
24	5223 5147	4957 4873	4651 4583	4334 4257	3984 3916	3605 3532	
, 23	5234 5142	4961 4881	4655 4581	4333 4261	3985 3912	3610 3528	
22	5238 5140	4960 4878	4664 4567	4339 4253	3983 3911	3608 3529	
21	5224 5150	4966 4873	4651 4577	4336 4253	3997 3913	3611 3527	

Figura 4.6: Evolução da Capacidade de Hospedagem Convencional com o Número de Barras Alocadas Através dos Anos.

Na Fig. 4.6 fica evidente que, quando analisado de maneira isolada, o número de barras alocadas tem pouca influência na capacidade de hospedagem. Por outro lado, é notável a diminuição da capacidade ao longo dos anos. Apesar dessa tendência, é importante ressaltar que os valores alcançados ainda são consideráveis.

4.3.6 Capacidade de Hospedagem para Condição de Operação Segura

Desta vez, o limite de potência para a operação segura passa a ser o ponto máximo de carregamento de cada uma das barras. O cálculo é feito a partir da iteração entre todas as barras e inclusão de sucessivos valores de potência possíveis dos eletropostos, de maneira aleatória.

					Condição de O s Através dos <i>F</i>		
49	794 764	516 490	216 198	0 0	0 0	0 0	Valores Médios
48	1785 763	1517 491	1213 198	0 0	0 0	0 0	Picalos
47	1853 762	1576 492	1288 198	0 0	0	0 0	4000
46	1861 758	1513 491	1215 199	0 0	0 0	0 0	
45	1865 761	1580 486	1279 197	0 0	0 0	0 0	
44	1845 764	1924 492	1306 197	0 0	0 0	0 0	
43	2181 762	1591 491	1296 198	0 0	0 0	0 0	
42	1875 762	1599 490	1309 198	0 0	0 0	0 0	
41	1883 762	1597 488	1292 198	0 0	0 0	0 0	3500
40	1860 762	1609 490	1594 200	0 0	0 0	0 0	
39	229 4 759	1604 491	1311 199	0 0	0 0	0 0	
38	2180 757	1902 491	1600 198	0 0	0 0	0 0	
37	2277 757	1898 492	1625 200	0 0	0 0	0 0	
36	2270 762	1894 490	1600 198	0 0	0 0	0 0	
35	2182 762	1905 491	1610 198	0 0	0 0	0 0	3000
34	2164 762	1907 491	1729 197	0 0	0 0	0 0	
33	2182 764	1905 490	1741 198	0 0	0 0	0 0	
32	2277 761	1993 494	1708 198	0 0	0 0	0 0	
31	2283 764	2451 491	1744 197	0 0	0 0	0 0	
30	2309 757	1908 492	1699 199	0 0	0 0	0 0	2500
29	2315 765	1998 492	2155 199	0 0	0 0	0 0	
28	2320 762	2038 488	2181 197	0 0	0 0	0 0	

Figura 4.7: Evolução da Capacidade de Hospegadem para Condição de Operação Segura com o Número de Eletropostos Através dos Anos.

Pela Fig. 4.7 vê-se que a resposta do sistema às condições de análise é interesente e demonstra sua fragilidade. Em 2032 o sistema já não é capaz de receber nenhuma estação de carregamento. Isso acontece pois no ano mencionado, o ponto de operação inicial já é maior que o potência limite de determinada barra do sistema, por isso a impossibilidade de receber novas estações.

4.3.7 Considerações Finais

O crescimento anual de consumo de energia elétrica acarreta um aumento de carga a qual a rede elétrica de Manaus e suas adjacências imediatas é submetida. Essse aumento de consumo afeta o comportamento do sistema elétrico, à medida em que mais consumidores, residenciais, comerciais ou industriais, elevam a demanda por energia.

Aumentar a carga na rede elétrica significa deslocar o ponto de operação do sistema e apróximá-lo do ponto de máximo carregamento, causando diminuição nos valores de margem de estabilidade, que são os níveis de segurança que garantem que a rede elétrica possa lidar com flutuações e contingências imprevistas.

A amplificação do consumo impacta a potência disponível para a alocação de outros recursos, como postos de carregamento de carros elétricos, alvo desta pesquisa. Portanto, o crescimento do consumo de energia elétrica não apenas afeta a estabilidade do sistema elétrico, mas também influencia a capacidade de expandir e acomodar novas tecnologias.