University of Dhaka Department of Computer Science and Engineering

CSE-2205: Introduction to Mechatronics

Lec-2: Basics of Sensors and Transducers

Mechatronics: Electronic Control Systems in Mechanical Engineering by W. Bolton

Md. Ariful Islam
Assistant Professor
Dept. of Robotics and Mechatronics Engineering
University of Dhaka

Sensor

A sensor is a device that <u>detects and responds to physical stimuli</u> (such as light, heat, motion, pressure, etc.) and <u>converts that input into a signal</u> (often electrical) that <u>can be read or interpreted</u>.

1. Temperature Sensor

Example: Thermocouple

Function: Measures temperature <u>by generating a</u> <u>voltage</u> based on the <u>temperature difference</u> between two junctions.

2. Pressure Sensor

Example: Piezoelectric Pressure Sensor

Function: Measures pressure by converting <u>pressure changes into an electrical</u> <u>signal</u> using piezoelectric materials.

3. Light Sensor

Example: Photodiode

Function: <u>Detects light intensity</u> and converts it into a <u>current or voltage signal</u>.

4. Proximity Sensor

Example: Ultrasonic Sensor

Function: <u>Measures the distance</u> to an object by <u>emitting ultrasonic waves</u> and <u>detecting the time</u> taken for <u>the echo to return</u>.

5. Motion Sensor

Example: Passive Infrared (PIR) Sensor

Function: Detects motion by <u>measuring changes in</u> <u>infrared radiation</u> emitted <u>by objects</u> in its field of view.

6. Humidity Sensor

Example: Capacitive Humidity Sensor

Function: Measures humidity levels by <u>detecting changes</u> <u>in capacitanc</u>e caused by <u>moisture in the air</u>.

7. Acceleration Sensor

Example: MEMS* Accelerometer

Function: Measures acceleration forces <u>to detect motion</u> <u>or orientation changes</u>.

8. Gas Sensor

Example: MQ Gas Sensor

Function: Detects the <u>presence of specific gases</u> (like CO₂ methane) by measuring <u>changes in resistance</u>.

9. Flow Sensor

Example: Turbine Flow Sensor

Function: Measures the flow rate of liquids or gases by counting the rotation of a turbine.

Transducer

A transducer is a device that converts one form of energy into another. This conversion can be between various types of energy, such as electrical, mechanical, thermal, acoustic, or optical.

Examples of Transducer

1. Microphone:

Converts sound (acoustic energy) into an electrical signal.

2. Speaker:

Converts *electrical signals into sound* (acoustic energy).

3. Photodiode

Converts <u>light (optical energy) into an electrical signal.</u>

4. Piezoelectric Sensor

Converts <u>mechanical stress (mechanical energy) into an electrical signal</u>.

$$\sigma = \frac{F}{A}$$

Where:

 σ is stress

F is force

A is cross sectional area

$$\varepsilon = \frac{\Delta L}{L}$$

Where:

ε is the strain

ΔL is the change in length

L is the original length

Classification of Sensor / Transducer Sensor/Transducer Based on Based on energy processing and source functionality Active Analog Sensor/Transducer Sensor/Transducer Digital Passive Sensor/Transducer Sensor/Transducer **Smart** Sensor/Transducer

Types of Sensors based on energy source

1. Active Sensor

Active sensors <u>require an external power source</u> to operate and often <u>emit</u> <u>energy (such as light or sound)</u> to <u>detect changes</u> in the environment.

1.1 RADAR* Sensors:

<u>Emit radio waves</u> and detect objects by <u>analyzing the reflected signals</u>.

Used in <u>speed detection</u>, <u>weather monitoring</u>, <u>and aircraft navigation</u>.

1.2 LIDAR* Sensors:

<u>Emit laser beams</u> and <u>measure the reflection</u> to determine <u>distance</u> and <u>create</u> <u>3D maps</u>.

Used in *autonomous vehicles, surveying, and environmental monitoring*.

*Light Detection and Ranging

1.3 Ultrasonic Sensors:

<u>Emit high-frequency sound waves</u> and <u>measure the time</u> it takes for the <u>echo to return</u>.

Used in parking sensors, object detection, and distance measurement.

1.4 Infrared (IR) Sensors:

<u>Emit infrared light</u> and <u>detect the reflected signal</u> to determine the <u>presence of objects</u>.

Used in *motion detectors, remote controls, and night-vision equipment*.

Electromagnetic spectrum (Not for Exam)

2. Passive Sensor

Passive sensors <u>do not emit any energy</u> but <u>detect and measure existing</u> <u>environmental</u> energy or signals.

2.1 Temperature Sensors

Measure temperature <u>without emitting</u> <u>any energy</u>.

Examples include <u>thermistors and</u> <u>thermocouples</u>.

thermocouples

2.2 Photodiodes

Detect light intensity without emitting light.

Used in cameras, light meters, and optical communication.

2.3 Strain Gauges

Measure deformation (strain) in materials without emitting energy.

Used in structural health monitoring and weight measurement.

2.4 Magnetometers

Detect magnetic fields without emitting magnetic waves.

Used in *compasses, smartphones, and metal detectors*.

Types of Sensors based on their signal processing and functionality

1. Analog Sensor

An analog sensor <u>produces a continuous output signal</u> (usually voltage or current) that is directly proportional to the measured physical quantity. The output is a continuous signal that <u>varies over time</u>.

Example: A temperature sensor that outputs a voltage that changes

continuously with temperature changes.

2. Digital Sensor

A digital sensor <u>provides a discrete output signal</u>, typically in binary form (0s and 1s). It <u>converts the analog signal into a digital signal</u> that can be easily read and <u>processed by digital systems</u>, such as microcontrollers or computers.

Example: A digital temperature sensor that outputs a temperature reading as a binary number.

3. Smart Sensor

A smart sensor includes <u>additional processing capabilities</u> beyond basic sensing. It typically combines <u>sensing</u>, <u>signal conditioning</u>, <u>and data processing</u> within the same unit. Smart sensors can perform functions such as self-calibration, self-diagnostics, and data communication.

Example: A smart temperature sensor that not only measures temperature but also *processes the data, calibrates itself, and communicates* the temperature

reading *over a network*.

3.1 Key features of smart sensors:

Integrated Signal Processing:

Perform data processing tasks such as *filtering, amplification, and noise reduction* within the sensor itself.

Self-Calibration:

Automatically <u>calibrate themselves to maintain accuracy</u> over time without external intervention.

Self-Diagnostics:

<u>Monitor their own performance and health</u>, detecting and reporting any faults or malfunctions.

Data Storage:

Include memory to <u>store measurement data, calibration information</u>, and other relevant data.

Communication Capabilities:

<u>Transmit data to other devices</u> or systems using <u>communication protocols</u> like Bluetooth, Wi-Fi, Zigbee, or other wireless

Efficiency:

<u>Optimize power consumption</u> for longer battery life or reduced energy usage in energy-constrained applications.

Advanced Algorithms:

Implement complex algorithms for tasks such as <u>pattern recognition, machine</u> <u>learning, or predictive analysis</u>.

Multiple Sensing Modalities:

Integrate multiple sensing elements to measure different types of physical phenomena (e.g., <u>temperature, pressure, humidity</u>) within a <u>single device</u>.

Compact Size and Integration:

Combine sensing, processing, and communication components <u>into a compact</u> <u>and integrated package</u>, making them suitable for a wide range of applications.

Adaptability:

<u>Adjust to changing environmental conditions</u> or application requirements in real-time.

Enhanced Security:

<u>Implement security features</u> to protect data integrity and privacy, ensuring secure communication and data handling.

User-Friendly Interfaces:

<u>Provide easy-to-use interfaces for configuration, monitoring, and data retrieval</u>, often through mobile apps or web dashboards.

4. Static Characteristics of Sensor

The static characteristics of a sensor refer to its <u>behavior and performance</u> under specific static or <u>steady-state conditions</u>.

4.1 Range

The limits within which the *input can vary*.

For example, a temperature sensor might have a range of -10°C to 100°C, meaning it can measure temperatures within this range.

4.2 Span

Span = Maximum Value - Minimum Value

The <u>maximum value of the input minus the minimum value</u>. In the case of the temperature sensor, the span would be 100°C - (-10°C) = 110°C .

Problem: A temperature sensor has a range of -40°C to 80°C. If the current temperature is 20°C, what percentage of the full range is this temperature?

Span = 80°C - (-40°C) = 120°C
Percentage of range =
$$\frac{20-(-40)}{120} \times 100$$

Percentage of range = $\frac{60}{120} \times 100 = 50$

Problem: A temperature sensor operates within the range -50°C to 150°C. If the sensor is currently reading 75°C, how much of the total span (in °C) has been covered?

Span =
$$150^{\circ}$$
C - (- 50° C) = 200° C
Covered span = 75° C - (- 50° C) = 75° C + 50° C = 125° C

Problem 1: A pressure sensor has a range of 50 kPa to 500 kPa. What is the span of the sensor?

Problem 2: A humidity sensor has a range of 0% to 100%. If the sensor reads 60%, what fraction of the full range does this value represent?

Problem 3: A displacement sensor has a range of 0 cm to 10 cm. If the sensor is reading a displacement of 7.5 cm, what percentage of the range has been covered?

Problem 4: A strain gauge pressure transducer has a range from 200 Pa to 6000 Pa. If the transducer measures 3500 Pa, what fraction of the range is this reading? Express the answer as a percentage.

Problem 5: A temperature sensor has a minimum measurable value of -20°C and a maximum measurable value of 80°C. What is the span of this sensor?

Problem 6: A pressure transducer has a range from 150 psi to 1200 psi. Calculate the span.

Problem 7: A flow sensor operates between 2 liters/min and 15 liters/min. What is the span for this flow sensor?

4.3 Error

Error = Measured Value - True Value

The <u>difference</u> between the <u>measured value and the true value</u> of the quantity being measured.

For instance, if a <u>thermometer reads 25°C</u> when the <u>actual temperature is 24°C</u>, the <u>error is +1°C</u>. If the actual temperature were 26°C, the error would be -1°C.

Problem 1: A temperature sensor shows a reading of 45°C, but the actual temperature is 50°C. What is the error?

Problem 2: A pressure gauge reads 180 psi, while the actual pressure is 175 psi. Calculate the error.

Problem 3: A flow meter measures 12 liters/min, but the true flow rate is 10 liters/min. What is the error in the measurement?

Problem 4: A distance sensor records a value of 5.5 meters, but the actual distance is 5.0 meters. Determine the error.

Problem 5: A speedometer shows 60 km/h, but the actual speed is 58 km/h. Calculate the error.

Problem 6: A thermometer measures -10°C, but the true temperature is -8°C. What is the error in the measurement?

4.4 Accuracy

Accuracy refers to <u>how close a measured value</u> is to the <u>true or accepted value</u> of the quantity being measured.

It indicates the *reliability or correctness* of the measurement.

Problem: A pressure sensor has an accuracy of ±2%. If the true pressure is 500 psi*, what is the range of possible measured values for the sensor?

Accuracy range = 2% of 500 psi = $0.02 \times 500 = 10$ psi

So, the range is 500 psi \pm 10 psi \pm 490 psi to 510 psi

^{*}Pound-force per square inch

Problem 1:

A thermometer has an accuracy of $\pm 1^{\circ}$ C. If the actual temperature is 30°C, what is the range within which the thermometer's reading might fall?

Problem 2:

A scale has an accuracy of ±0.5 kg. If the actual weight is 75 kg, what are the possible upper and lower limits of the scale's reading?

Problem 3:

A voltmeter has an accuracy of ±1.5%. If the true voltage is 220 V, calculate the possible range of values the voltmeter might display.

Problem 4:

A flow meter has an accuracy of ±0.05 liters/min. If the actual flow rate is 10 liters/min, what range of readings would the flow meter give?

4.5 Precision

Precision refers to the <u>degree of consistency and repeatability</u> of measurements. It describes the <u>ability</u> of a measurement system <u>to reproduce the same result multiple times</u> under the <u>same conditions</u>.

Problem: A laboratory balance has a precision of ±0.01 grams. If you measure the same object 5 times and get the following readings: 5.01 g, 5.00 g, 5.02 g, 5.01 g, and 5.00 g, calculate the range of the measurements. Is the precision maintained?

Solution: The range of the measurements is from 5.00 g to 5.02 g.

Precision range: ± 0.01 g, so all the measurements should lie within 5.00 g \pm 0.01 g (i.e., 4.99 g to 5.01 g). Since some measurements (e.g., 5.02 g) fall outside this range, the precision is not maintained.

35

Low Accuracy, Low Precision

Low Accuracy, High Precision

High Accuracy, High Precision

Problem 1:

A voltmeter has a precision of ±0.5 V. If you measure the same voltage five times and get values like 12.1 V, 12.2 V, 12.0 V, 12.1 V, and 12.2 V, is the voltmeter maintaining its precision?

Problem 2:

A thermometer has a precision of ±0.1°C. After measuring the temperature of water several times, you record the following values: 37.1°C, 37.2°C, 37.2°C, 37.0°C, and 37.1°C. Does the thermometer show good precision?

Problem 3:

A pressure gauge with a precision of ±1 psi is used to measure pressure multiple times, with the following readings: 150 psi, 151 psi, 149 psi, 150 psi, and 151 psi. What is the precision range, and is it maintained in these readings?

Problem 4:

A flow meter has a precision of ±0.02 liters/min. If repeated measurements of the same flow rate give 8.10 liters/min, 8.11 liters/min, 8.12 liters/min, and 8.10 liters/min, does the flow meter show good precision?

4.6 Sensitivity

The relationship indicating <u>how much output there</u> is <u>per unit input</u>.

Sensitivity =
$$\frac{\Delta \text{Output}}{\Delta \text{Input}}$$

For example, a strain gauge might have a sensitivity of 2 mV/V, meaning it produces a <u>2-millivolt change in output voltage</u> per volt change in input.

Problem 1:

A pressure sensor has a sensitivity of 0.5 mV/kPa. If the pressure applied to the sensor changes from 50 kPa to 100 kPa, calculate the change in output voltage.

$$\Delta V = {
m Sensitivity} imes \Delta {
m Pressure} = 0.5\,{
m mV/kPa} imes (100-50)\,{
m kPa} = 0.5 imes 50 = 25\,{
m mV}$$

Problem 2:

A temperature sensor has a sensitivity of **10 mV/°C**. If the sensor output changes by **30 mV**, how much has the temperature changed?

Problem 3:

A strain gauge has a sensitivity of **2 mV/V**. If an input voltage of **5V** is applied, what is the change in output voltage?

Problem 4:

A light sensor has a sensitivity of **0.8 mV/lux**. If the light intensity increases by **200 lux**, calculate the increase in sensor output.

Problem 5:

A force sensor has a sensitivity of **1.5 mV/N**. If the output voltage increases by **9 mV**, what is the applied force?

39