Routing Algorithms-

Routing Algorithms-

- Routing algorithms are meant for determining the routing of packets in a node.
- Routing algorithms are classified as-

Distance Vector Routing Algorithm-

Step-01:

- Each router prepares its routing table. By their local knowledge, each router knows about-
 - 1.All the routers present in the network
 - 2. Distance to its neighboring routers

Step-02:

- Each router exchanges its distance vector with its neighboring routers.
- Each router prepares a new routing table using the distance vectors it has obtained from its neighbors.
- This step is repeated for (n-2) times if there are n routers in the network.
- After this, routing tables converge / become stable.

Distance Vector Routing Example-

Consider-

There is a network consisting of 4 routers.

The weights are mentioned on the edges.

Weights could be distances or costs or delays.

Step-01:

- Each router prepares its routing table using its local knowledge.
- Routing table prepared by each router :

At Router A-

Destination	Distance	Next Hop
А	0	Α
В	2	В
С	∞	_
D	1	D

At Router B-

Destination	Distance	Next Hop
Α	2	Α
В	0	В
С	3	С
D	7	D

• At Router C-

Destination	Distance	Next Hop
Α	∞	_
В	3	В
С	0	С
D	11	D

• At Router D-

Destination	Distance	Next Hop
Α	1	А
В	7	В
С	11	С
D	0	D

Step-02:

- Each router exchanges its distance vector obtained in Step-01 with its neighbors.
- After exchanging the distance vectors, each router prepares a new routing table.

At Router A-

- Router A receives distance vectors from its neighbors B and D.
- Router A prepares a new routing table as-

From B

2

0

3

7

7

From D

11

0

Next hop Destination Distance Α 0 Α

В

С

D

 $Cost(A \rightarrow B) = 2$ $Cost(A \rightarrow D) = 1$ New Routing Table at Router A

- Cost of reaching destination B from router A = min { 2+0 , 1+7 } = 2 via B.
- Cost of reaching destination C from router A = min { 2+3 , 1+11 } = 5 via B.
- Cost of reaching destination D from router A = min { 2+7 , 1+0 } = 1 via D.

Thus, the new routing table at router A is-

Destination	Distance	Next Hop
Α	0	Α
В	2	В
С	5	В
D	1	D

At Router B-

- Router B receives distance vectors from its neighbors A, C and D.
- Router B prepares a new routing table as-

From A	From C	From D
0	lacksquare	1
2	3	7
∞	0	11
1	11	0
Cost (B→A) = 2	Cost (B→C) = 3	Cost (B→D) = 7

Destination	Distance	Next hop
Α		
В	0	В
С		
D		

New Routing Table at Router B

- Cost of reaching destination A from router B = $min \{ 2+0, 3+\infty, 7+1 \} = 2 via A.$
- Cost of reaching destination C from router B = $min \{ 2+\infty, 3+0, 7+11 \} = 3 via C.$
- Cost of reaching destination D from router B = min { 2+1 , 3+11 , 7+0 } = 3 via A.

Thus, the new routing table at router B is-

Destination	Distance	Next Hop
А	2	А
В	0	В
С	3	С
D	3	А

At Router C-

- Router C receives distance vectors from its neighbors B and D.
- Router C prepares a new routing table as-

Destination	Distance	Next hop
Α		
В		
С	0	С
D		

New Routing Table at Router C

- Cost of reaching destination A from router
 C = min { 3+2 , 11+1 } = 5 via B.
- Cost of reaching destination B from router
 C = min { 3+0 , 11+7 } = 3 via B.
- Cost of reaching destination D from router
 C = min { 3+7 , 11+0 } = 10 via B.

Thus, the new routing table at router C is-

Destination	Distance	Next Hop
А	5	В
В	3	В
С	0	С
D	10	В

At Router D-

- Router D receives distance vectors from its neighbors A, B and C.
- Router D prepares a new routing table as-

Destination	Distance	Next hop
Α		
В		
С		
D	0	D

New Routing Table at Router D

- Cost of reaching destination A from router
 D = min { 1+0 , 7+2 , 11+∞ } = 1 via A.
- Cost of reaching destination B from router
 D = min { 1+2 , 7+0 , 11+3 } = 3 via A.
- Cost of reaching destination C from router
 D = min { 1+∞ , 7+3 , 11+0 } = 10 via B.

Destination	Distance	Next Hop
Α	1	Α
В	3	Α
С	10	В
D	0	D

Step-03:

- Each router exchanges its distance vector obtained in Step-02 with its neighboring routers.
- After exchanging the distance vectors, each router prepares a new routing table.
- This is shown below-

At Router A-

- Router A receives distance vectors from its neighbors B and D.
- Router A prepares a new routing table as-

From B	From D
2	1
0	3
3	10
3	0
sost(A→B) = 2	Cost(A→D) =

Destination	Distance	Next hop
Α	0	Α
В		
С		
D		

New Routing Table at Router A

Destination	Distance	Next Hop
Α	0	Α
В	2	В
С	5	В
D	1	D

• Final B

Destination	Distance	Next Hop
Α	2	А
В	0	В
С	3	С
D	3	А

• Final c

Destination	Distance	Next Hop
Α	5	В
В	3	В
С	0	С
D	6	В

• Final D

Destination	Distance	Next Hop
А	1	Α
В	3	Α
С	6	А
D	0	D

In Distance Vector Routing,

- Only distance vectors are exchanged.
- "Next hop"values are not exchanged.
- This is because it results in exchanging the large amount of data which consumes more bandwidth.

- Distance Vector Routing suffers from count to infinity problem.
- Distance Vector Routing uses UDP at transport layer.