FICHE DE COURS 12

RÉSONANCE DES SYSTÈMES LINÉAIRES D'ORDRE 2

Ce que je dois être capable de faire après avoir appris mon cours

Décrire le montage expérimental d'un système masse-ressort vertical, freiné par frottements fluides et entrainé par un moteur au moyen d'une poulie et d'un fil
Décrire le montage expérimental d'un circuit RLC série alimenté par une source idéale de tension générant un signal sinusoïdal $\frac{1}{2}$
Établir, pour les deux cas précédents, les équations différentielles d'évolution vérifiées par :
\star d'une part la position de la masse et d'autre part la charge portée par le condensateur
\star d'une part la vitesse de la masse et d'autre part l'intensité traversant le condensateur
Utiliser la notation complexe pour établir les expressions du gain et du déphasage dans chacune des situations précédentes
Utiliser la représentation de Fresnel pour établir les expressions du gain et du déphasage dans chacune des situations précédentes
$Connaître \ les \ formes \ mathématiques \ canoniques \ de \ l'expression \ du \ gain \ pour \ les \ résonances \ en \ position/\ charge \ et \ vitesse/intensité.$
Étudier de manière asymptotique le gain et le déphasage en fonction de la fréquence d'excitation
Établir le tableau de variation du gain en fonction de la fréquence
Définir la notion de résonance
Définir la notion de bande-passante à -3 dB
Dans l'étude de la position ou de la charge, montrer qu'il y résonance si $Q > \frac{1}{\sqrt{2}}$ et caractériser celle-ci (fréquence
de résonance et gain à résonance)
Dans l'étude de la vitesse ou de l'intensité, caractériser la résonance (fréquence de résonance et gain à résonance) et établir l'expression de la largeur de la bande-passante à -3 dB
Associer l'acuité d'une résonance à la valeur élevée du facteur de qualité
Interpréter les courbes de gain et de déphasage pour remonter aux paramètres du système étudié

Les relations sur lesquelles je m'appuie pour développer mes calculs

$\hfill \square$ Résonance en position ou en charge

 \star Gain de la réponse :

$$G(x) = \frac{1}{\sqrt{(1-x^2)^2 + \left(\frac{x}{Q}\right)^2}} \quad \text{avec} \quad x = \frac{\omega}{\omega_0}$$

 \star Fréquence de résonance :

$$\omega_{\rm rés} = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$$

* Gain à la résonance :

$$G_{\text{r\'es}} = G_{\text{max}} = \frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}}$$

$\hfill \square$ Résonance en vitesse ou en intensité :

* Gain de la réponse :

$$G(x) = \frac{1}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}} \quad \text{avec} \quad x = \frac{\omega}{\omega_0}$$

 \star Fréquence de résonance :

$$\omega_{\mathrm{r\acute{e}s}} = \omega_0$$

★ Gain à la résonance :

$$G_{\text{r\'es}} = G_{\text{max}} = 1$$

 \star Bande-passante à -3 dB :

$$\Delta x = \frac{1}{Q}$$
 ou $\Delta \omega = \frac{\omega_0}{Q}$ ou $\Delta f = \frac{f_0}{Q}$

 $\hfill \square$ Bande-passante à -3dB :

$$G(\omega_c) = \frac{G_{\text{max}}}{\sqrt{2}}$$