

Linear algebra

Exercise sheet 6 / Model solutions

1. Consider the matrices $A, M \in \mathbb{C}^{n \times n}$ and the *generalized eigenvalue problem*: find a pair $(\lambda, \boldsymbol{x}) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{\boldsymbol{0}\})$ such that

$$A\mathbf{x} = \lambda M\mathbf{x}.\tag{1}$$

- (a) Derive a polynomial equation that defines the *generalized eigenvalues* λ . How can the *generalized eigenvector* x corresponding to λ be defined?
- (b) Let

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $M = I$.

Find all solutions to (1) in this case.

(c) Let

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad M = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Find all solutions to (1) in this case.

Solution.

- (a) The definition is equivalent to $(\lambda M A)x = 0$, and hence we can define eigenvalues as the solutions to $\det(\lambda M A) = 0$. (Note that this makes sense as the left hand side cannot be the zero polynomial, as when $\lambda \to \infty$ it behaves like $\lambda^n \det M$ and $\det M \neq 0$. And of course $\det(\lambda M A)$ is a polynomial in λ .) Eigenvectors can be defined as nonzero vectors of $N(\lambda M A)$.
- (b) Using item (a), we seek for the roots of $\det(\lambda M A) = \lambda^2 4\lambda + 3 = (\lambda 1)(\lambda 3)$. This gives that the generalized eigenvalues are 1 and 3. Corresponding eigenvectors are $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ respectively.
- (c) Using item (a), we seek for the roots of $\det(\lambda M A) = 8\lambda^2 10\lambda + 3$. This gives that the generalized eigenvalues are 1/2 and 3/4. Corresponding eigenvectors are $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ respectively.

It's not a random conincidence that the eigenvectors in parts (b) and (c) are the same. This is due to the fact that the matrix M in part (c) is actually equal to A+I. So, assuming that λ and \boldsymbol{x} satisfy $A\boldsymbol{x}=\lambda M\boldsymbol{x}$ one may write this as $A\boldsymbol{x}=\lambda(A+I)\boldsymbol{x}$, which gives $(1-\lambda)A\boldsymbol{x}=\lambda\boldsymbol{x}$, and for $\lambda\neq 0$ (which indeed we have, in part (c)), this is equivalent to having $A\boldsymbol{x}=\frac{\lambda}{1-\lambda}\boldsymbol{x}$, which gives a corresponding eigenvalue (with the same eigenvector \boldsymbol{x}) for part (b).

2. Let

$$C = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$$

- (a) Compute the characteristic polynomial of C.
- (b) Consider the polynomial

$$p(x) = 2x^3 + 4x^2 + 6x + 8.$$

Using (a) find an eigenvalue problem that can be used to compute the roots of p.

Solution.

- (a) Expanding by the first column iteratively, one can find that the characteristic polynomial is $p_C(\lambda) = -\lambda^3 a_2\lambda^2 a_1\lambda a_0$.
- (b) Note that the roots of p are the same as those of $\frac{p}{-2}$. By item (a), we can compute the latter by finding the eigenvalues of

$$\begin{bmatrix} 0 & 0 & -4 \\ 1 & 0 & -3 \\ 0 & 1 & -2 \end{bmatrix}.$$

3. Compute the eigenvalues and eigenvectors for the matrices

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} 1 & -\sqrt{2} & 3 \\ 0 & -2 & 0 \\ 3 & \sqrt{2} & 1 \end{bmatrix}$$

In both cases, find the characteristic polynomial and determine the geometric and algebraic multiplicity for each eigenvalue.

Hint: Use the sub-determinat rule with respect to the middle row or column.

Solution. The algebraic and geometric multiplicity of an eigenvalue are defined as follows. Let λ be an eigenvalue of a matrix M.

- If λ is a root with multiplicity k of the characteristic polynomial fo M, then $m_a(\lambda) = k$ is the *algebraic multiplicity* of the eigenvalue λ .
- The geometric multiplicity $m_g(\lambda)$ of λ is the number of corresponding linearly independent eigenvectors, that is, the dimension of the eigenspace corresponding to λ .
- (a) Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

The characteristic polynomial of A is

$$det(A - \lambda I) = (1 - \lambda) det \begin{bmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(\lambda^2 - 2\lambda - 8)$$
$$= (1 - \lambda)(\lambda - 4)(\lambda + 2),$$

meaning that the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 4$ and $\lambda_3 = -2$. Let us then compute corresponding eigenvectors for them.

 $\lambda_1 = 1$: Assuming $(A - 1I)\boldsymbol{x} = 0$ we get

$$\begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix} \boldsymbol{x} = 0,$$

which means that $x_3 = 0$ and $x_1 = 0$, so that

$$m{x} = egin{bmatrix} 0 \\ t \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}.$$

 $\lambda_2 = 4$: Assuming $(A - 4I)\boldsymbol{x} = 0$ we get

$$\begin{bmatrix} -3 & 0 & 3 \\ 0 & -3 & 0 \\ 3 & 0 & -3 \end{bmatrix} \boldsymbol{x} = 0,$$

which means that $x_2 = 0$ and $x_1 = x_3$, so that

$$m{x} = egin{bmatrix} t \ 0 \ t \end{bmatrix}, \quad t \in \mathbb{R}.$$

 $\lambda_3 = -2$: Assuming $(A + 2I)\boldsymbol{x} = 0$ we get

$$\begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix} \boldsymbol{x} = 0,$$

which means that $x_2 = 0$ and $x_1 = -x_3$, so that

$$oldsymbol{x} = egin{bmatrix} t \ 0 \ -t \end{bmatrix}, \quad t \in \mathbb{R}.$$

Each of the eigenvalues of A is a simple root of the characteristic polynomial, that is, the algebraic multiplicity is 1 for all eigenvalues of A. For each eigenvalue only one

linearly independent eigenvector was found, hence the geometric multiplicity is 1 for all eigenvalues of A.

Note. In general it holds $1 \leq m_g(\lambda) \leq m_a(\lambda)$, which implies that if the algebraic multiplicity of some eigenvalue is 1, then also its geometric multiplicity is necessarily 1.

(b) Let us now consider

$$B = \begin{bmatrix} 1 & -\sqrt{2} & 3 \\ 0 & -2 & 0 \\ 3 & \sqrt{2} & 1 \end{bmatrix}.$$

The characteristic polynomial of B is

$$\det(B - \lambda I) = (-2 - \lambda) \det \begin{bmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{bmatrix}$$
$$= -(2 + \lambda)((1 - \lambda)^2 - 9)$$
$$= -(\lambda + 2)^2(\lambda - 4),$$

so that the eigenvalues of A are $\lambda_1=4$ and $\lambda_2=-2$. Since $\lambda_1=4$ is a simple root, its algebraic multiplicity is 1. On the other hand $\lambda_2=-2$ is a double root, and its algebraic multiplicity is hence 2. Let's compute the eigenvectors corresponding to the eigenvalues.

 $\lambda_1 = 4$: Assuming $(B - 4I)\boldsymbol{x} = 0$ we get

$$\begin{bmatrix} -3 & -\sqrt{2} & 3 \\ 0 & -6 & 0 \\ 3 & \sqrt{2} & -3 \end{bmatrix} \boldsymbol{x} = 0,$$

which means that $-6x_2 = 0$ and $-3x_1 - \sqrt{2}x_2 + 3x_3 = 0$. Equivalently $x_2 = 0$ and $x_1 = x_3$, so that

$$m{x} = egin{bmatrix} t \ 0 \ t \end{bmatrix}, \quad t \in \mathbb{R}.$$

The eigenvalue λ_1 has one linearly independent eigenvector, that is, the geometric multiplicity is 1, in formulas $m_g(\lambda_1) = m_a(\lambda_1) = 1$.

 $\lambda_2 = -2$: Assuming $(B + 2I)\boldsymbol{x} = 0$ we get

$$\begin{bmatrix} 3 & -\sqrt{2} & 3 \\ 0 & 0 & 0 \\ 3 & \sqrt{2} & 3 \end{bmatrix} \boldsymbol{x} = 0,$$

or equivalently

$$\begin{bmatrix} 3 & -\sqrt{2} & 3 \\ 0 & 0 & 0 \\ 0 & 2\sqrt{2} & 0 \end{bmatrix} \boldsymbol{x} = 0,$$

so that $2\sqrt{2}x_2 = 0$ and $3x_1 - \sqrt{2}x_2 + 3x_3 = 0$. This means that $x_2 = 0$ and $x_1 = -x_3$, so that we get

$$m{x} = \begin{bmatrix} t \\ 0 \\ -t \end{bmatrix}, \quad t \in \mathbb{R}.$$

Also the eigenvalue λ_2 has only one linearly independent eigenvector, so that the geometric multiplicity of λ_2 is 1. So then we have $1 = m_g(\lambda_2) < m_a(\lambda_2) = 2$.

4. The Fibonacci sequence, $(F_n)_{n=1,2,...}$, is defined using the recursion

$$F_n = \begin{cases} 1, & n = 1, \\ 1, & n = 2, \\ F_{n-1} + F_{n-2}, & n > 2. \end{cases}$$

Let $x_n = [F_n, F_{n-1}]^T$, n = 2, 3, ...

(a) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that

$$\boldsymbol{x}_n = A\boldsymbol{x}_{n-1}, \qquad n > 2.$$

(b) Let $X\in\mathbb{R}^{2\times 2}$ and the diagonal matrix $\Lambda\in\mathbb{R}^{2\times 2}$ be such that $A=X\Lambda X^{-1}$. Show that

$$\boldsymbol{x}_n = X\Lambda^{n-2}X^{-1}\boldsymbol{x}_2, \qquad n \ge 2.$$

Compute X and Λ in Matlab using [X,L] = eig(A). Compute also F_{10}, F_{20} and F_{30} .

Solution. When k > 2, for some matrix A we have $x_n = Ax_{n-1}$ if and only if

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix} = \begin{bmatrix} a_{11}F_{n-1} + a_{12}F_{n-2} \\ a_{21}F_{n-1} + a_{22}F_{n-2} \end{bmatrix},$$

if and only if

$$\begin{cases} F_n = a_{11}F_{n-1} + a_{12}F_{n-2} \\ F_{n-1} = a_{21}F_{n-1} + a_{22}F_{n-2}. \end{cases}$$

By definition of F_n , the first equation in the system holds when $a_{11} = 1$ and $a_{12} = 1$, and the second equation holds when $a_{21} = 1$ and $a_{22} = 0$. So the matrix we are looking for is

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

The matrix A has factorization $A = X\Lambda X^{-1}$, where X contains the eigenvectors of A as columns, and Λ contains the eigenvalues of A on the diagonal. By using the equality

 $\boldsymbol{x}_n = A\boldsymbol{x}_{n-1}$ recursively and the factorization of A, we get

$$\mathbf{x}_{n} = A\mathbf{x}_{n-1} = AA\mathbf{x}_{n-2} = AAA\mathbf{x}_{n-3} = \dots = A^{n-2}\mathbf{x}_{2}$$

$$= (X\Lambda X^{-1})^{n-2}\mathbf{x}_{2}$$

$$= \underbrace{(X\Lambda X^{-1})(X\Lambda X^{-1})\dots(X\Lambda X^{-1})}_{n-2 \text{ copies}} \mathbf{x}_{2}$$

$$= X\Lambda^{n-2}X^{-1}\mathbf{x}_{2}.$$

The eigenvalues of A and their corresponding eigenvectors are

$$\lambda_1 = \frac{1}{2}(1 + \sqrt{5}), \qquad \mathbf{x}_1 = \begin{bmatrix} \frac{1}{2}(1 + \sqrt{5}) \\ 1 \end{bmatrix},$$

$$\lambda_2 = \frac{1}{2}(1 - \sqrt{5}), \qquad \mathbf{x}_2 = \begin{bmatrix} \frac{1}{2}(1 - \sqrt{5}) \\ 1 \end{bmatrix}.$$

That is,

$$X = \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix} \quad \text{ and } \quad \Lambda = \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & 0 \\ 0 & \frac{1}{2}(1-\sqrt{5}) \end{bmatrix}$$

Let us then compute the asked values of F_n using the above matrices and equalities (and the computer), remembering that $\boldsymbol{x}_n = \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}$.

$$\begin{bmatrix} F_{10} \\ F_9 \end{bmatrix} = \boldsymbol{x}_{10} = X\Lambda^8 X^{-1} \boldsymbol{x}_2
= \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (\frac{1}{2}(1+\sqrt{5}))^8 & 0 \\ 0 & (\frac{1}{2}(1-\sqrt{5}))^8 \end{bmatrix} \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
= \begin{bmatrix} 55 \\ 34 \end{bmatrix}$$

$$\begin{bmatrix} F_{20} \\ F_{19} \end{bmatrix} = \boldsymbol{x}_{20} = X\Lambda^{18}X^{-1}\boldsymbol{x}_{2}
= \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (\frac{1}{2}(1+\sqrt{5}))^{18} & 0 \\ 0 & (\frac{1}{2}(1-\sqrt{5}))^{18} \end{bmatrix} \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
= \begin{bmatrix} 6765 \\ 4181 \end{bmatrix}$$

$$\begin{bmatrix} F_{30} \\ F_{29} \end{bmatrix} = \boldsymbol{x}_{30} = X\Lambda^{28}X^{-1}\boldsymbol{x}_{2}
= \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (\frac{1}{2}(1+\sqrt{5}))^{28} & 0 \\ 0 & (\frac{1}{2}(1-\sqrt{5}))^{28} \end{bmatrix} \begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
= \begin{bmatrix} 832040 \\ 514229 \end{bmatrix}$$

We find then $F_{10}=55,\,F_{20}=6765$ and $F_{30}=832040.$