Medida 1

Quer emo 5

$$\begin{cases}
2 & \times \in \mathbb{Q} \\
5 & \times \notin \mathbb{Q}
\end{cases}$$

$$\times \in [0,1]$$

$$Q \cap [0,1] = \{q_k : k \in \mathbb{N}\}$$

Hota que

for the será la vale será la mismo o será la mismo o será la mismo o será la para el límite? (Co)

en particular

for a f puer "pierd" cosa cuado naso

Funcioner Simpler

Para O < c < 1, sea $f: [0,1]
ightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} 2, & \text{si } 0 \le x \le c \\ 5, & \text{si } c < x \le 1. \end{cases}$$

2

 $\int_{0}^{1} f(x) dx = \int_{0}^{\infty} 2 dt + \int_{0}^{1} 5 dt$ $= 2 \cdot C + 5 \cdot (1 - C) = 2 \log [0, C] + 5 \log (C, 1]$ "medide de "medide de [0, C]" $\int_{0}^{1} f(x) dx = \int_{0}^{\infty} 2 dt + \int_{0}^{1} 5 dt$

Escribamos el intervalo [0,1] como una unión disjunta de dos conjuntos:

$$[{\rm O},{\bf 1}]=A\cup B\quad\text{, con }A\cap B=\emptyset.$$

Sea $f: [0,1] \to \mathbb{R}$ dada por

Análisis Avanzado

$$f(x) = \begin{cases} 2, & \text{si } x \in A \\ 5, & \text{si } x \in B. \end{cases}$$

(DEA: \$\int_{\text{f(1)}} dt = 2. \text{"medida do 1"} 4 5. \text{" medida do B'}

DM-ECEN-UBA

Tomemos $A = [0,1] \cap \mathbb{Q}$ y $B = [0,1] \setminus \mathbb{Q} = [0,1] \cap \mathbb{I}$. Sea $f : [0,1] \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 2, & \text{si } x \in \mathbb{Q}, \text{ o} \leq x \leq 1\\ 5, & \text{si } x \notin \mathbb{Q}, \text{ o} \leq x \leq 1. \end{cases}$$

 $\int_{0}^{1} \rho(A) dt = 2 \cdot median \left(\mathbb{R} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(B) \mathcal{E}_{0}(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(B) \mathcal{E}_{0}(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{0} \cap \mathcal{E}_{0}, 1 \right) + \int_{0}^{1} \rho(A) dA = 2 \cdot median \left(\mathbb{E}_{$

NECESITAMOS UNA NOCIÓN DE MEDION PARA
CONJ. RAROS.

Queremos definir una noción de medida para conjuntos que no sean necesariamente intervalos y que cumpla algunas propiedades *razonables*.

$$\mathcal{L}(A \cup B) = \mathcal{L}(A) + \mathcal{L}(B)$$
 si $A \cap B = \emptyset$

$$\mu(A \cup B) \leq \mu(A) + \mu(B)$$

$$A \subset \mathcal{B} \implies \mu(A) \leqslant \mu(B)$$

$$\mathcal{M}((a,b)) = b - a$$

$$M((a,b)) = b - a$$

$$A_1 \quad A_2 \quad A_3 \quad A_4$$

$$0 \quad 1/2 \quad 3/4 \quad 1$$

$$0 \quad 1/2 \quad 3/4 \quad 1$$

$$\mathcal{M}\left(\bigcup_{n=1}^{\infty}A_{n}\right) = \sum_{n=1}^{\infty}\mathcal{M}(A_{n})$$

Inveriente a traslación

$$M(A+c) = M(A)$$
 $\forall A$, $\forall c \in \mathbb{R}$
L que pode mor medir

Conjuntos Nulos

El primer paso es definir los conjuntos que "miden cero".

Todavía no tenemos una medida definida, pero podemos calcular longitudes de intervalos.

Definición

Decimos que $A \subset \mathbb{R}$ es un conjunto nulo si para todo $\varepsilon > 0$ existen contables intervalos abiertos $(U_n)_{n \in I}$ tales que

$$A\subset \bigcup_{n\in J}U_n$$
 y $\sum_{n\in J} \mathrm{long}(U_n)$

$$A = \{ 20 \}.$$

$$dadv \ \ 270, \qquad U_1 = (7 - 8/3, 70 + 8/3)$$

$$A \subset U_1 \qquad long(U_1) = \frac{28}{3} \angle 8$$

Ejemplo

- 1. Todo conjunto finito es nulo.
- 2. Todo conjunto numerable es nulo.
- 3. Unión numerable de conjuntos nulos es nulo.

$$A = \{x_{1}, x_{21}, x_{3}, x_{4}\}$$

$$A = \{x_{1}, x_{21}, x_{3}, x_{4}\}$$

$$A = \{x_{1}, x_{21}, x_{3}, x_{4}\}$$

$$A = \{x_{1}, x_{21}, x_{21}, x_{31}, x_{4}\}$$

$$A = \{x_{1}, x_{21}, x_{21}, x_{21}, x_{21}, x_{21}, x_{21}\}$$

$$A = \{x_{1}, x_{21}, x_{21}, x_{21}, x_{21}, x_{21}, x_{21}\}$$

$$A = \{x_{1}, x_{21}, x_{21},$$

049: EXIGIBN CONTUNTOS NULOS

NO NUMERABLES

(EL CONT. DE CANTOR).

O - álgebras

Definición

Sea X un conjunto y \mathcal{A} una familia de subconjuntos de X (o sea, $\mathcal{A} \subset \mathcal{P}(X)$). Decimos que \mathcal{A} es una σ -álgebra si $X \in \mathcal{A}$ y es cerrada por complementos (respecto a X), uniones numerables e intersecciones numerables.

A $c \neq J$ $X \cdot A \in \mathcal{A}$. Em pand, $\emptyset \in \mathcal{A}$. $X \in \mathcal{A} \quad \emptyset = X \cdot X.$ $A_{m} \in \mathcal{A} \quad \forall m.$ $= \int_{-\infty}^{\infty} U A_{m} \quad c \neq J.$ $A_{m} \in \mathcal{A} \quad \bigcup_{m} A_{m} \in \mathcal{A}.$ $= \int_{-\infty}^{\infty} J J d + J \int_{-\infty}^{\infty} J d + J \int_{-\infty}$

Algebra generada

· INTERVANOS ABIERTOS] = COMB CEMENTOS, UNIONEZ NUM.

Definición

La σ -álgebra \mathcal{M} generada por los intervalos abiertos y los conjuntos nulos de \mathbb{R} es la σ -álgebra de de conjuntos medibles Lebesgue.

Si I es un intervalo, $\mathcal{M}(I)$ es la σ -algebra de subconjuntos medibles Lebesgue de I.

QUEREMOS MEDIR LOS A
$$\in$$
 M .

A \mapsto $M(A) \in [0, +\infty]$

(Khe!

M: $M \longrightarrow [0, +\infty]$

Teorema (existencia de la medida de Lebesgue)

Existe una única función μ de $\mathcal M$ en $[\mathbf 0,+\infty]$ tal que

- Si A = (a, b), entonces $\mu(A) = b a$.
- Si $A_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$, entonces

$$\mu\big(\bigcup_{n\in\mathbb{N}}A_n\big)\leq \sum_{n\in\mathbb{N}}\mu(A_n).$$

Si los A_n son disjuntos dos a dos, entonces

$$\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n).$$

$$\int_{\text{unioner e intersectioner}} \mu(A_n)$$

• Si $A \in \mathcal{M}$, entonces

Importante $\mu(A) = \inf\{\mu(U) : A \subset U, U \text{ abierto}\}.$ Regularidad

Teorema

Sea $\mu: \mathcal{M} \to [0, +\infty]$ la medida de Lebesgue dada por el teorema anterior. Entonces, μ satisface las siguientes propiedades.

- Si $A, B \in \mathcal{M}$ cumplen que $A \subset B$, entonces $\mu(A) \leq \mu(B)$. Monotonia
- Si $A \subset \mathbb{R}$ es un conjunto nulo, entonces $A \in \mathcal{M}$ y $\mu(A) = 0$. Recíprocamente, si $A \in \mathcal{M}$ es tal que $\mu(A) = 0$, entonces A es un conjunto nulo.
- Dados $A \in \mathcal{M}$ y $c \in \mathbb{R}$, se tiene que $A + c \in \mathcal{M}$ y $\mu(A + c) = \mu(A)$.

Invariante por Travlación" $A+c = \{a+c : a \in A\}$

Probot:
$$\mu(\phi) = 0$$

