1. n=16, S=0.24, $\overline{X}=13.82$, M=14, $\infty=0.05$. $H_0: M=14$ $H_0: M<14$ $Reject H_0: f$ $\overline{X}_{obs} < M_0 - t_{g,m} \frac{S}{\sqrt{n}} \Leftrightarrow \overline{X}_{obs} < 14 - 1.753 \frac{0.24}{\sqrt{16}}$ $\Leftrightarrow \overline{X}_{obs} < 13.89482$ When $\overline{X}_{gs} = 13.82$. $\Rightarrow reject H_0$.

製品 3105年031 数據析

2. $\mu=45$, n=9 $\overline{X}=49-2$, S=3.5, $\alpha=0.05$. Ho: $\mu=45$ v.s. $H_a: \mu \neq 45$. Reject Ho if $\overline{X}_{obs} < \mu_0 - t_{8,ons} \frac{S}{in}$ or $\overline{X}_{obs} > \mu_0 + t_{8,ons} \frac{S}{\sqrt{n}}$ $\Leftrightarrow \overline{X}_{obs} < 45 - 2.306 \frac{3.5}{\sqrt{9}}$ or $\overline{X}_{obs} > 45 + 2.306 \frac{3.5}{\sqrt{9}}$ $\Leftrightarrow \overline{X}_{obs} < 42.31$ or $\overline{X}_{obs} > 47.69$ When $\overline{X}_{obs} = 49.2 \Rightarrow \text{reject Ho}_{obs}$

X = (0.95 + 1.02 + 1.0] + 0.98)/4 = 0.99 $S = \left[(0.99 - 0.95)^{\frac{1}{2}} + (1.02 - 0.99)^{\frac{1}{2}} + (0.99 - 0.98)^{\frac{1}{2}} \right]^{\frac{1}{2}} = 0.0316$ $\left[M - t_{n1}, \frac{S}{\sqrt{n}}, \mu + t_{n1}, \frac{S}{\sqrt{n}} \right] = \left[1 - t_{3,0.05}, \frac{0.0316}{4}, 1 + t_{3,0.05}, \frac{0.0316}{4} \right]$ $= \left[1 - 0.0503 \right], 1 + 0.0503 \right] = \left[0.93969, 1.0403 \right]$

b) Ho:
$$M = 1$$
 Ha: $M \ge 1$

Reject $\forall \{0\}$ if $M_0 \ge 1$ $\mathbb{Z}_{4,5} - t_{m_1, \frac{1}{2}} \frac{S}{J_m}$, $\overline{X}_{4,5} + t_{m_1, \frac{1}{2}} \frac{S}{J_m}$]

When $\overline{X}_{4,5} = 0.7$ \Rightarrow $|\mathbf{e}[0.9] = 0.05031$, 0.9 $|\mathbf{e}[0.9] = 0.05031$]

 $\Rightarrow fai[reject $\forall \{0\}$
 $\Rightarrow fai[reject {\forall \{0\}}$
 $\Rightarrow fai[reject$$

$$[32-t_{33,3-633},\frac{0.31}{659},3.2+t_{31,6-035},\frac{631}{654}]=[3.2-2.069,\frac{0.3391}{\sqrt{24}},3.2+2.069,\frac{0.3391}{\sqrt{24}}]$$

$$=[3.0568,3.3432]$$

5.

a. t-distribution., because when
$$6^2$$
 is know $\frac{\overline{X}-M_0}{6/J_n} \sim N(0,1)$

when 8^2 is unknow $\frac{\overline{X}-M_0}{8/J_n} \sim \overline{I}_{n-1}$

b.

p-value = 2p (
$$T_{19} > |\frac{x_{4k} - M_0}{5/\sqrt{n}}|$$
)

= 2p ($T_{19} > |\frac{19.5 - 15}{5.9 \sqrt{20}}|$)

= 2p ($T_{19} > |.8949$) $\in (0.05, 0.1)$

Since p-value > x = 0.05, ne fail to reject Hox

Ho: M=15, $H_a: M<15$.

P-value = $P(T_{19} > \frac{17.5-15}{5.9\sqrt{550}}) = P(T_{19} > 1.8949) \in (0.025, 0.05)$ Since the P-value $\in (0.025, 0.05) < 0.05$, we reject $H_0: fH_a: M<15$ So We fail reject $H_0: fH_a: M>15$

e Ho: M=15, Ha: M>15 P-value = P(Tig > 1.895) & (0.025, 0.05) < d=0.05, Ne reject Ho if Ha: M>15 So We fail reject Ho if Ha: N≤15