MATHEMATICS

SECTION A

January 11, 2024

1 Matrices

1. A is a square matrix with |A| = 4. Then find the value of |A. (adjA).

2. For the matrix $A = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$. Find (A + A') and verify that it is a symmetric matrix.

3. Using elementary row transformations, find the inverse of the matrix $\begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}$.

4. Using matrices, solve the following system of linear equations:

$$x + 2y - 3z = -4$$
$$2x + 3y + 2z = 2$$
$$3x - 3y - 4z = 11$$

5. Using properties of determinants, find the value of k if $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix} = k |x^3+y^3|$.

2 probability

6. In a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

7. The probabilities of solving a specific problem independently by A and B are $\frac{1}{3}$ and $\frac{1}{5}$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.

8. There are three coins. One is a coin having tails on both faces, another is a biased coin that comes up tails 70% of the time and the third is an unbiased coin. One of the coins is chosen at random and tossed, it shows tail. Find the probability that it was a coin with tail on both the faces.

3 Algebra

9. Prove that:

$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$

1

4 vector

- 10. Find the vector equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) 4 = 0$, $\vec{r} \cdot (2\hat{i} + \hat{j} \hat{k}) + 5 = 0$ and which is perpendicular to the plane $\vec{r} \cdot (5\hat{i} + 3\hat{j} 6\hat{k}) + 8 = 0$.
- 11. Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line $\vec{r} = (-2\hat{i} + 3\hat{j})\lambda(2\hat{i} 3\hat{j} + 6\hat{k})$. Also, find the distance between these two lines.
- 12. Find the value of **x** such that the four points with position vectors, $\mathbf{A}(3\hat{i}+2\hat{j}+\hat{k})$, $\mathbf{B}(4\hat{i}+x\hat{j}+5\hat{k})$, $\mathbf{C}(4\hat{i}+2\hat{j}-2\hat{k})$, $\mathbf{D}(6\hat{i}+5\hat{j}-\hat{k})$ are coplanar.
- 13. Find the vector equation of the plane determined by the points $\mathbf{A}(3, -1, 2)$, $\mathbf{B}(5, 2, 4)$ and $\mathbf{C}(-1, -1, 6)$. Hence, find the distance of the plane, thus obtained, from the origin.
- 14. Find the coordinates of the foot of the perpendicular **Q** drawn from P(3, 2, 1) to the plane 2x y + z + 1 = 0. Also, find the distance **PQ** and the image of the point **P** treating this plane as a mirror.

5 Differentiation

- 15. A ladder 13m long is leaning against a vertical wall. The bottom of the ladder is dragged away from the wall along the ground at the rate of 2cm/sec. How fast is the height on the wall decreasing when the foot of the ladder is 5m away from the wall?
- 16. If $y = (\log x)^x + x^{\log x}$, find $\frac{dy}{dx}$.
- 17. If $x = \sin t$, $y = \sin pt$, prove that $(1 x^2) \frac{d^2y}{dx^2} x \frac{dy}{dx} + p^2y = 0$.
- 18. Differentiate

$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right)$$

with respect to $\cos^{-1} x^2$.

19. Form the differential equation representing the family of curves $y = A \sin x$, by eliminating the arbitrary constant A.

6 Integration

- 20. Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$, given that y = 1 when x = 0.
- 21. Solve the differential equation $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that y = 1 when x = 0.
- 22. Prove that $\int_0^a f(x) dx = \int_0^a f(a-x) dx$, and hence evaluate $\int_0^1 x^2 (1-x)^n dx$.

7 Linear forms

- 23. Using integration, find the area of the region bounded by the parabola $y^2 = 4x$ and the circle $4x^2 + 4y^2 = 9$.
- 24. Using the method of integration, find the area of the region bounded by the lines 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0.
- 25. Using integration, find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -2 and x = 1.
- 26. Using integration, find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.

8 Functions

- 27. Let $A = R \{2\}$ and $B = R \{1\}$. If $f : A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, show that f is one-one and onto. Hence, find f^{-1} .
- 28. Show that the relation *S* in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $S = \{(a, b) : a, b \in Z, a b \text{ is divisible by 3}\}$ is an equivalence relation.

9 Optimization

- 29. A dietician wishes to mix two types of food in such a way that the vitamin contents of the mixture contains at least 8 units of vitamin *A* and 10 units of vitamin *C*. Food *I* contains 2 units/kg of vitamin *A* and 1 unit/kg of vitamin *C*. It costs ₹50 per kg to produce food *II*. Food *II* contains 1 unit/kg of vitamin *A* and 2 units/kg of vitamin *C* and it costs ₹70 per kg to produce food *II*. Formulate this problem as a LPP to minimise the cost of a mixture that will produce the required diet. Also find the minimum cost.
- 30. A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of \P 35 per package of nuts and \P 14 per package of bolts. How many packages of each should be produced each day so as to maximise his profit, if he operates each machine for atmost 12 hours a day? Convert it into an LPP and solve graphically.