NE 255 Numerical Simulations in Radiation Transport Introduction to Monte Carlo

R. N. Slaybaugh

November 17, 2016

LEARNING OBJECTIVES

- Define Monte Carlo simulation
- 2 Justify the choice of Monte Carlo for radiation transport
- 3 Understand the mathematical validity of Monte Carlo for radiation
- Understand the major components of Monte Carlo methods transport

Figure 1: ATR reactor geometry

2 / 47

Notes derived from Jasmina Vujic and Paul Wilson

R. N. Slaybaugh NE 255 November 17, 2016

WHAT IS MONTE CARLO?

- The use of *random processes* to determine a *statistically-expected* solution to a problem
- Random processes can fulfill two roles:
 - Statistical approximation to mathematical equations
 - Statistical approximations to physical processes
- Construct a random process for a problem,
- Carry out a numerical simulation by N-fold sampling from a random # sequence

EVALUATE π BY RANDOM SAMPLING

- Area of square, $A_s = 4$
- Area of circle, $A_c = \pi$
- Fraction of random points in circle

$$p = \frac{A_c}{A_s} = \frac{\pi}{4}$$

- Random points = N
- Random points in circle = N_c , :

$$p = \frac{N_c}{N}; \quad \pi = \frac{4N_c}{N}$$

EVALUATE π BY RANDOM SAMPLING (MATH)

$$g(x) = \sqrt{1 - x^2}$$
 $G = \int_0^1 g(x)dx = \frac{\pi}{4}$

EVALUATE π BY RANDOM SAMPLING (MATH)

$$g(x) = \sqrt{1 - x^2}$$
 $G = \int_0^1 g(x) dx = \frac{\pi}{4}$

$$G = \int_0^1 g(x)dx = (1-0)\overline{g(x)}$$

Determine $\overline{g(x)}$ by random sampling:

for k = 1, ..., N, choose \hat{x}_k randomly on the interval (0, 1),

$$\overline{g(x)} \equiv \frac{1}{N} \sum_{k=1}^{N} g(\hat{x}_k) = \frac{1}{N} \sqrt{1 - \hat{x}_k^2}$$

EVALUATE π BY RANDOM SAMPLING (PHYSICS)

$$g(x) = \sqrt{1 - x^2}$$
 $G = \int_0^1 g(x) dx = \frac{\pi}{4}$

EVALUATE π BY RANDOM SAMPLING (PHYSICS)

$$g(x) = \sqrt{1 - x^2}$$
 $G = \int_0^1 g(x) dx = \frac{\pi}{4}$

$$G = \int_0^1 g(x)dx = \frac{\pi}{4}$$

G = area under curve,

= fraction of unit square under curve

for k = 1, ..., N, chose \hat{x}_k, \hat{y}_k randomly on the interval [0, 1], $m_N = \#$ of times in N trials that $\hat{x}_{\nu}^2 + \hat{y}_{\nu}^2 \leq 1$,

$$G = \frac{m_N}{N}$$

MANHATTAN PROJECT

- The first human engineered nuclear detonation, the Trinity Test in New Mexico.
- Active: 1942–1945
- Branch: U.S. Army Corps of Engineers
- Monte Carlo Pioneers:
 - Enrico Fermi,
 - Stanislaw Ulam,
 - John von Neumann,
 - Robert Richtmeyer,
 - Nicholas Metropolis

Figure 2: Oppenheimer, von Neumann, MANIAC

MANHATTAN PROJECT

- The first human engineered nuclear detonation, the Trinity Test in New Mexico.
- Active: 1942–1945
- Branch: U.S. Army Corps of Engineers
- Monte Carlo Pioneers:
 - Enrico Fermi,
 - · Stanislaw Ulam,
 - John von Neumann,
 - Robert Richtmeyer,
 - Nicholas Metropolis

Figure 2: Oppenheimer, von Neumann, MANIAC

Nicholas Metropolis, S. Ulam. "The Monte Carlo Method," Journal of the American Statistical Association, 44, No. 247, 335-341 (Sep. 1949).

GENERAL PURPOSE MC CODES

- MCNP: developed at LANL, distributed via RSICC, http://rsicc.ornl.gov
- Geant4: developed by a large collaboration in the HEP community, http://geant4.web.cern.ch/geant4/
- EGSnrc: developed at NRC (Canada), http://www.irs.inms.nrc.ca/EGSnrc/EGSnrc.html
- SERPENT: Developed by Dr. Jaakko Leppanen, VTT, Finland, http://montecarlo.vtt.fi/
- Shift: developed at ORNL, distributed via RSICC, http://rsicc.ornl.gov
- Mercury: developed at LLNL, https://wci.llnl.gov/simulation/computer-codes/mercury

WHY/WHEN MONTE CARLO?

- Applications that are mathematically equivalent to integration over many dimensions
 - Analytic integration may be impossible
 - Deterministic numerical integration may be slow and/or require error prone approximations

WHY/WHEN MONTE CARLO?

- Applications that are mathematically equivalent to *integration over* many dimensions
 - Analytic integration may be impossible
 - Deterministic numerical integration may be slow and/or require error prone approximations
- However, statistically accurate results can require significant computer time
- Fortunately, Monte Carlo and parallel computing go well together
- and we also have Variance Reduction methods

Simulate many independent particles in a system

• Treat each physical process as a probabilistic process

Simulate many independent particles in a system

- Treat each physical process as a probabilistic process
- Randomly sample each process using an independent stream of random numbers

Simulate many independent particles in a system

- Treat each physical process as a probabilistic process
- Randomly sample each process using an independent stream of random numbers
- Follow each particle from birth until it no longer matters

Simulate many independent particles in a system

- Treat each physical process as a probabilistic process
- Randomly sample each process using an independent stream of random numbers
- Follow each particle from birth until it no longer matters
- Accumulate the contributions of each particle to find the statistically-expected mean behavior and variance

MATHEMATICAL VALIDITY

- Consider particles with a phase space describing position, \vec{r} , and velocity, \vec{v}
- A neutral particle can be transmitted from one position to another at a constant velocity

$$T(\vec{r}^{\,\prime} \to \vec{r}, \vec{v})$$

MATHEMATICAL VALIDITY

- Consider particles with a phase space describing position, \vec{r} , and velocity, \vec{v}
- A neutral particle can be transmitted from one position to another at a constant velocity

$$T(\vec{r}' \to \vec{r}, \vec{v})$$

 A particle can undergo a collision at a single position that changes its velocity

$$C(\vec{r}, \vec{v}' \to \vec{v})$$

CONTRIBUTIONS AFTER 0 COLLISIONS

Consider a particle born from a source described by

$$Q(\vec{r}', \vec{v}')$$

• This particle will contribute to the flux at (\vec{r}, \vec{v}) before any collisions

$$\psi_0(\vec{r}, \vec{v}) = \int_{\vec{r}'} Q(\vec{r}', \vec{v}') T(\vec{r}' \to \vec{r}, \vec{v}) d\vec{r}'$$

CONTRIBUTIONS AFTER 1 COLLISION

• The uncollided particles, $\psi_0(\vec{r}', \vec{v}')$, could undergo 1 collision and then be transmitted to the point (\vec{r}, \vec{v})

$$\psi_{1}(\vec{r}, \vec{v}) = \int_{\vec{r}'} \left[\underbrace{\int_{\vec{v}'} \psi_{0}(\vec{r}', \vec{v}') C(\vec{r}', \vec{v}' \to \vec{v}) d\vec{v}'}_{collision} \right] T(\vec{r}' \to \vec{r}, \vec{v}) d\vec{r}'$$

R. N. Slaybaugh NE 255 November 17, 2016 13/47

CONTRIBUTIONS AFTER k COLLISIONS

• Particles that have undergone k collisions, $\psi_k(\vec{r}', \vec{v}')$, could undergo another collision and then be transmitted to the point (\vec{r}, \vec{v})

$$\psi_{k+1}(\vec{r}, \vec{v}) = \underbrace{\int_{\vec{r}'} \left[\underbrace{\int_{\vec{v}'} \psi_k(\vec{r}', \vec{v}') C(\vec{r}', \vec{v}' \to \vec{v}) d\vec{v}'}_{transmission} \right] T(\vec{r}' \to \vec{r}, \vec{v}) d\vec{r}'}_{transmission}$$

R. N. Slavbaugh NE 255 November 17, 2016 14 / 47

COMBINE COLLISION AND TRANSMISSION KERNELS

$$\vec{p}=(\vec{r},\vec{v})$$
 and
$$R(\vec{p}'\to\vec{p})\equiv C(\vec{r}',\vec{v}'\to\vec{v})T(\vec{r}'\to\vec{r},\vec{v})$$

$$\psi_{k+1}(\vec{r}, \vec{v}) = \int_{\vec{p}_k} \psi_k(\vec{p}_k) R(\vec{p}_k \to \vec{p}_{k+1}) d\vec{p}_k$$

$$\psi_{k+1}(\vec{r}, \vec{v}) = \int_{\vec{p}_k} \left[\int_{\vec{p}_{k-1}} \psi_{k-1}(\vec{p}_{k-1}) R(\vec{p}_{k-1} \to \vec{p}_k) d\vec{p}_{k-1} \right] R(\vec{p}_k \to \vec{p}_{k+1}) d\vec{p}_k$$

...and so on ...

$$\psi_{k+1}(\vec{r}, \vec{v}) = \int_{\vec{p}_k} \int_{\vec{p}_{k-1}} \cdots \int_{\vec{p}_0} \psi_0(\vec{p}_0) R(\vec{p}_0 \to \vec{p}_1) d\vec{p}_0 \cdots$$
$$\psi_{k-1}(\vec{p}_{k-1}) R(\vec{p}_{k-1} \to \vec{p}_k) d\vec{p}_{k-1} R(\vec{p}_k \to \vec{p}_{k+1}) d\vec{p}_k$$

R. N. Slaybaugh NE 255 November 17, 2016

15 / 47

SUM OVER ALL COLLISIONS

$$\psi(\vec{p}) = \sum_{k=0}^{\infty} \psi_k(\vec{p})$$

Arriving at the *integral form* of the transport equation

$$\psi(\vec{r}, \vec{v}) = \int_{\vec{r}'} \left[\int_{\vec{v}'} \psi(\vec{r}', \vec{v}') C(\vec{r}', \vec{v}' \to \vec{v}) d\vec{v}' \right] T(\vec{r}' \to \vec{r}, \vec{v}) d\vec{r}'$$

2016 16/47

MATHEMATICAL VALIDITY

$$\Psi_k(\vec{p}) = \int \int \cdots \int \Psi_0(\vec{p}_0) R(\vec{p}_0 \to \vec{p}_1) R(\vec{p}_1 \to \vec{p}_2)$$
$$\cdots R(\vec{p}_{k-1} \to \vec{p}_k) d\vec{p}_0 d\vec{p}_1 \cdots d\vec{p}_{k-1}$$

- Integration over many variables
- Generate a "history" (sequence of states $\vec{p}_0, \vec{p}_1, \dots, \vec{p}_k$)
 - Randomly sample from source: $\Psi_0(\vec{p}_0)$
 - Randomly sample for each of *k* transitions: $R(\vec{p}_{k-1} \rightarrow \vec{p}_k)$

MATHEMATICAL VALIDITY

$$\Psi_k(\vec{p}) = \int \int \cdots \int \Psi_0(\vec{p}_0) R(\vec{p}_0 \to \vec{p}_1) R(\vec{p}_1 \to \vec{p}_2)$$
$$\cdots R(\vec{p}_{k-1} \to \vec{p}_k) d\vec{p}_0 d\vec{p}_1 \cdots d\vec{p}_{k-1}$$

- Integration over many variables
- Generate a "history" (sequence of states $\vec{p}_0, \vec{p}_1, \dots, \vec{p}_k$)
 - Randomly sample from source: $\Psi_0(\vec{p}_0)$
 - Randomly sample for each of *k* transitions: $R(\vec{p}_{k-1} \rightarrow \vec{p}_k)$
- Average for result *A* by averaging of *M* histories

$$\langle A \rangle = \int A(\vec{p}) \Psi(\vec{p}) d\vec{p} = \frac{1}{M} \sum_{m=1}^{M} \left[\sum_{k=1}^{\infty} A(\vec{p}_{k,m}) \Psi(\vec{p}_{k,m}) \right]$$

17/47

CAN MODEL VERY COMPLEX THINGS

TRISO Fuel Particles:

- Fission product gases trapped within coatings
 - Coatings remain intact, even with high T & burnup

Fuel concept is same for block or pebble bed

18/47

(From General Atomics)

Accurate & explicit modeling at multiple levels

• **PDFs**: the physical/mathematical system must be described by a set of pdfs.

- **PDFs**: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.

- **PDFs**: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.
- **Sampling rule**: prescription for sampling the pdf (given having random #s)

- **PDFs**: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.
- **Sampling rule**: prescription for sampling the pdf (given having random #s)
- **Scoring**: the outcomes must be accumulated/<u>tallied</u> for quantities of interest

- **PDFs**: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.
- **Sampling rule**: prescription for sampling the pdf (given having random #s)
- **Scoring**: the outcomes must be accumulated/<u>tallied</u> for quantities of interest
- **Error estimation**: an estimate of the statistical error (<u>variance</u>) of the solution

- PDFs: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.
- Sampling rule: prescription for sampling the pdf (given having random #s)
- **Scoring**: the outcomes must be accumulated/tallied for quantities of interest
- Error estimation: an estimate of the statistical error (variance) of the solution
- Variance Reduction: methods for reducing the variance and computation time simultaneously

- **PDFs**: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.
- **Sampling rule**: prescription for sampling the pdf (given having random #s)
- **Scoring**: the outcomes must be accumulated/<u>tallied</u> for quantities of interest
- Error estimation: an estimate of the statistical error (<u>variance</u>) of the solution
- Variance Reduction: methods for reducing the variance and computation time simultaneously
- Parallelization: efficient use of computers

R. N. Slaybaugh NE 255 November 17, 2016 1

BASIC EVENT-BASED ALGORITHM

LET'S GET STARTED WITH

- Physics as Probability
- 2 Definitions: PDF & CDF
- 3 Motivation & Goal of Random Sampling
- Basic Random Sampling Techniques
 - Direct Discrete Sampling
 - Direct Continuous Sampling
 - Rejection Sampling

Notes derived from Jasmina Vujic and Paul Wilson

LEARNING OBJECTIVES

- 1 Provide examples of probabilistic representations of physics
- 2 Distinguish between a PDF and CDF
- 3 Distinguish between a discrete PDF (CDF) and a continuous PDF (CDF)
- ① Describe the goal of random sampling
- **5** Identify and implement the best random sampling technique for a given distribution

PHYSICS AS PROBABILITY

Various physical phenomena can be represented by probability distributions

- Photon emission energy
 - Each possible energy has a different probability (intensity)

PHYSICS AS PROBABILITY

Various physical phenomena can be represented by probability distributions

- Photon emission energy
 - Each possible energy has a different probability (intensity)
- Scattering cross-sections
 - Each possible scattering angle has a different probability as a function of the energy

PHYSICS AS PROBABILITY

Various physical phenomena can be represented by probability distributions

- Photon emission energy
 - Each possible energy has a different probability (intensity)
- Scattering cross-sections
 - Each possible scattering angle has a different probability as a function of the energy
- Transmission through a medium
 - Probability of reaching a particular position depends on the cross-section

PROBABILITY DENSITY FUNCTIONS

All variables, x, have a Probability Density Function (PDF), p(x), with the following characteristics:

Continuous

$$p\left\{a \le x \le b\right\} = \int_a^b p(x)dx$$

$$p(x) \ge 0$$

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

<u>Discrete</u>

$$p(x = x_k) = p_k \equiv p(x_k)$$
$$k = 1, \dots, N$$

$$p_k \geq 0$$

$$\sum_{k=1}^{N} p_k = 1$$

CUMULATIVE DISTRIBUTION FUNCTIONS

All PDFs, p(x), have an associated Cumulative Distribution Function (CDF), P(x), with the following properties:

Continuous

Discrete

$$P\{x' \le x\} = P(x) = \int_{-\infty}^{x} p(x')dx' \qquad P\{x' \le x\} = P_k \equiv P(x_k) = \sum_{j=1}^{k} p_j$$

$$k = 1, \dots, N$$

$$P(-\infty) = 0, \quad P(\infty) = 1$$

$$0 \le P(x) \le 1$$

$$\frac{dP(x)}{dx} \ge 0$$

$$P\{x' \le x\} = P_k \equiv P(x_k) = \sum_{j=1}^{k} p_j$$

$$p_0 = 0, \quad P_N = 1$$

$$0 \le P_k \le 1$$

$$P_k \ge P_{k-1}$$

R. N. Slaybaugh NE 255 November 17, 2016

26/47

R. N. Slaybaugh NE 255 November 17, 2016 27 / 47

28/47

R. N. Slaybaugh NE 255 November 17, 2016

29/47

WHY RANDOM SAMPLING

Various physical phenomena can be represented by probabilistic distributions

- The known probability distribution represents the *collective* behavior
- We need to know the behavior at *each* single event
- We need to <u>recreate</u> the collective behavior after <u>many</u> events

RANDOM SAMPLING PURPOSE

Use a random process to select a single value with the following requirements

- Each sample should be independent from other samples
- The PDF formed from a large number of samples should converge to the initial PDF
- Recover the full resolution of the initial PDF

SAMPLING TECHNIQUES

Random sampling uses uniformly distributed random variables to choose a value for a variable according to its probability density function

- *Basic* sampling techniques
 - Direct discrete sampling
 - Continuous discrete sampling
 - Rejection sampling

SAMPLING TECHNIQUES

Random sampling uses <u>uniformly distributed random variables</u> to choose a value for a variable according to its probability density function

- *Basic* sampling techniques
 - Direct discrete sampling
 - Continuous discrete sampling
 - · Rejection sampling
- Advanced sampling techniques
 - Histogram
 - Piecewise linear
 - Alias sampling
 - Advanced continuous PDFs

UNIFORMLY-DISTRIBUTED RANDOM VARIABLE

- Standard notation
 - Single random variable: ξ
 - Pair of random variables: (ξ, η)
- PDF for random variables:

$$p(\xi) = \begin{cases} 1 & 0 \le \xi < 1 \\ 0 & \text{otherwise} \end{cases}$$

R. N. Slaybaugh NE 255 November 17, 2016 33 / 47

Sampling Procedure

- Generate ξ
- Determine *k* such that $P_{k-1} \le \xi \le P_k$
- Return $x = x_k$

Sampling Procedure

- Generate ξ
- Determine *k* such that $P_{k-1} \le \xi \le P_k$
- Return $x = x_k$

Consider the CDF

• Requires a table search on P_k

R. N. Slaybaugh

- Linear search requires O(N) time
- Binary search requires $O(\log_2 N)$ time

- Requires a table search on P_k
 - Linear search requires O(N) time
 - Binary search requires $O(\log_2 N)$ time
- Special case: Uniform discrete PDF
 - $p_k = 1/N$
 - $P_k = k/N$
 - $k = \lfloor 1 + N\xi \rfloor$ (floor function)

- Can only be used if CDF can be inverted
- Direct solution of $P(x) = \xi$
- Sampling Procedure:

Generate ξ , Determine $x = P^{-1}(\xi)$

- Can only be used if CDF can be inverted
- Direct solution of $P(x) = \xi$
- Sampling Procedure:

Generate ξ , Determine $x = P^{-1}(\xi)$

- Can only be used if CDF can be inverted
- Direct solution of $P(x) = \xi$
- Sampling Procedure:

Generate ξ , Determine $x = P^{-1}(\xi)$

- Advantages:
 - Straightforward math & coding
- Disadvantages:
 - Can involve computationally slow functions
 - Not always possible to invert P(x)

NORMALIZATION

- Random sampling depends on shape and not on magnitude
- Normalization for formal definition of PDF/CDF required

$$g(t)dt = e^{-\lambda t}dt , \quad t > 0$$

NORMALIZATION

- Random sampling depends on shape and not on magnitude
- Normalization for formal definition of PDF/CDF required

$$g(t)dt = e^{-\lambda t}dt, \quad t > 0$$

$$G(t) = \int_{-\infty}^{t} g(t')dt' = \int_{0}^{t} g(t')dt' = \left[-\frac{e^{-\lambda t'}}{\lambda} \right]_{0}^{t} = \frac{1}{\lambda} (1 - e^{-\lambda t})$$

$$G(\infty) = \frac{1}{\lambda}$$

NORMALIZATION

- Random sampling depends on shape and not on magnitude
- Normalization for formal definition of PDF/CDF required

$$g(t)dt = e^{-\lambda t}dt, \quad t > 0$$

$$G(t) = \int_{-\infty}^{t} g(t')dt' = \int_{0}^{t} g(t')dt' = \left[-\frac{e^{-\lambda t'}}{\lambda} \right]_{0}^{t} = \frac{1}{\lambda} (1 - e^{-\lambda t})$$

$$G(\infty) = \frac{1}{\lambda}$$

$$p(t) = \lambda g(t) = \lambda e^{-\lambda t}, \quad t > 0$$

$$P(t) = \int_{-\infty}^{t} p(t')dt' = \int_{0}^{t} \lambda f(t')dt' = \left[e^{-\lambda t'}\right]_{0}^{t} = 1 - e^{-\lambda t}$$

$$P(\infty) = 1$$

$$g(x)dx = Cdx \quad a \le x < b$$

$$g(x)dx = Cdx \quad a \le x < b$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = C \int_{a}^{x} dx' = C[x']_{a}^{x} = C(x - a)$$

$$G(\infty) = G(b) = C(b - a)$$

$$g(x)dx = Cdx \quad a \le x < b$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = C \int_{a}^{x} dx' = C[x']_{a}^{x} = C(x - a)$$

$$G(\infty) = G(b) = C(b - a)$$

$$p(x) = \frac{g(x)}{G(\infty)} = \frac{C}{C(b-a)} = \frac{1}{b-a} \quad a \le x < b$$

$$g(x)dx = Cdx \quad a \le x < b$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = C \int_{a}^{x} dx' = C[x']_{a}^{x} = C(x - a)$$

$$G(\infty) = G(b) = C(b - a)$$

$$p(x) = \frac{g(x)}{G(\infty)} = \frac{C}{C(b-a)} = \frac{1}{b-a} \quad a \le x < b$$

$$P(x) = \int_{-\infty}^{x} p(x')dx' = \frac{1}{b-a} \int_{a}^{x} dx' = \frac{x-a}{b-a}$$

$$x = P^{-1}(\xi) = \xi(b - a) + a$$

$$g(x)dx = mx dx$$
 $0 \le x < 1$

$$g(x)dx = mx \, dx \qquad 0 \le x < 1$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = \int_{0}^{x} mx'dx' = \frac{m}{2} \left[x'^{2}\right]_{0}^{x} = \frac{m}{2}x^{2}$$

$$G(\infty) = G(1) = \frac{m}{2}$$

$$g(x)dx = mx \, dx \qquad 0 \le x < 1$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = \int_{0}^{x} mx'dx' = \frac{m}{2} \left[x'^{2}\right]_{0}^{x} = \frac{m}{2}x^{2}$$

$$G(\infty) = G(1) = \frac{m}{2}$$

$$p(x) = \frac{mx}{\frac{m}{2}} = 2x \qquad 0 \le x < 1$$

$$g(x)dx = mx \, dx \qquad 0 \le x < 1$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = \int_{0}^{x} mx'dx' = \frac{m}{2} \left[x'^{2}\right]_{0}^{x} = \frac{m}{2}x^{2}$$

$$G(\infty) = G(1) = \frac{m}{2}$$

$$p(x) = \frac{mx}{\frac{m}{2}} = 2x \qquad 0 \le x < 1$$

$$P(x) = \int_{-\infty}^{x} p(x')dx' = \int_{0}^{x} 2x'dx' = \left[x'^{2}\right]_{0}^{x} = x^{2}$$

$$x = P^{-1}(\xi) = \sqrt{\xi} \qquad \text{Independent of } m$$

SHIFTED LINE

$$g(x)dx = m(x - a) dx a \le x < b$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = \int_{a}^{x} m(x' - a)dx' = \frac{m}{2} [(x' - a)^{2}]_{0}^{x} = \frac{m}{2} (x - a)^{2}$$

$$G(\infty) = G(1) = \frac{m}{2} (b - a)^{2}$$

$$p(x) = \frac{m(x-a)}{\frac{m}{2}(b-a)^2} = 2\frac{x-a}{(b-a)^2} \qquad a \le x < b$$

$$P(x) = \int_{-\infty}^{x} p(x')dx' = \frac{1}{(b-a)^2} \int_{a}^{x} 2(x'-a)dx' = \frac{(x-a)^2}{(b-a)^2}$$

$$x = P^{-1}(\xi) = \sqrt{\xi}(b-a) + a$$
 Independent of m

- Many CDFs cannot be inverted
 - e.g. Klien-Nishina cross-section

- Many CDFs cannot be inverted
 - e.g. Klien-Nishina cross-section
- Use an approach that is more graphical
 - Select a point in a 2-D domain
 - Determine whether that point is above or below the PDF
 - Keep those that are below
 - Start over if above

- Select a bounding function, g(x), such that
 - $g(x) \ge p(x)$ for all x
 - g(x) is easy to sample
- Simplest choice is g(x) = C
- May not be best choice

- Select a bounding function, g(x), such that
 - $g(x) \ge p(x)$ for all x
 - g(x) is easy to sample
- Simplest choice is g(x) = C
- May not be best choice
- Generate pair of random variables, (ξ, η)
 - $x' = G^{-1}(\xi)$
 - If $\eta < p(x')/g(x')$, accept x'
 - Else, reject *x'*

R. N. Slaybaugh NE 255 November 17, 2016 45 / 47

45/47

R. N. Slaybaugh NE 255 November 17, 2016 45 / 47

45/47

45/47 R. N. Slaybaugh NE 255 November 17, 2016 45 / 47

NE 255 November 17, 2016 45 / 47

45/47

- Advantages
 - Computationally simple
 - Always works

- Advantages
 - Computationally simple
 - Always works
- Disadvantages
 - Will be inefficient if shapes of g(x) and p(x) are not similar

Efficiency =
$$\frac{\int p(x)dx}{\int g(x)dx}$$

• Physics can be represented probabilistically

- Physics can be represented probabilistically
- We can create PDFs and from those generate CDFs

- Physics can be represented probabilistically
- We can create PDFs and from those generate CDFs
- These can be either continuous or discrete

- Physics can be represented probabilistically
- We can create PDFs and from those generate CDFs
- These can be either continuous or discrete
- We learned some basic ways to use random numbers to sample from these distributions to simulate physics