Leçon: Gravitation

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

21 mai 2024

Niveau : CPGE

Prérequis : Cinénatique et dynamique d'un point matériel

: Référentiels galiléens

: Force d'inertie

Analogie avec la loi de Coulomb

	Gravitation	Électrostatique
Grandeur caractéristique	masse m	charge q
Force	$\vec{F} = -G \frac{m_1 m_2}{r^2} \vec{u}_r$	$\vec{F} = -\frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \vec{u}_r$
Constante caractéristique	-G	$\frac{1}{4\pi\epsilon_0}$
Lien entre le champ et la force	$\vec{F} = m_1 \vec{\mathcal{G}}$	$\vec{F} = q_1 \vec{E}(r)$
Expression du champ pour un corps ponctuel	$\vec{\mathcal{G}}(r) = -G\frac{m_2}{r^2}\vec{u}_r$	$\vec{\mathcal{E}}(r) = -\frac{1}{4\pi\epsilon_0} \frac{q_2}{r^2} \vec{u}_r$

Analogie avec la loi de Coulomb

	Gravitation	Électrostatique
Grandeur caractéristique	masse m	charge q
Force	$\vec{F} = -G \frac{m_1 m_2}{r^2} \vec{u}_r$	$\vec{F} = -\frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \vec{u}_r$
Constante caractéristique	-G	$\frac{1}{4\pi\epsilon_0}$
Lien entre le champ et la force	$\vec{F} = m_1 \vec{\mathcal{G}}$	$\vec{F} = q_1 \vec{E}(r)$
Expression du champ pour un corps ponctuel	$\vec{\mathcal{G}}(r) = -G\frac{m_2}{r^2}\vec{u}_r$	$\vec{\mathcal{E}}(r) = -\frac{1}{4\pi\epsilon_0} \frac{q_2}{r^2} \vec{u}_r$

•
$$G = 6.670 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-1}$$

•
$$|q| = e = 1.602 \times 10^{-19} \text{ C}$$

- masse du proton $m_p = 1.67262192 \times 10^{-27} \text{ kg}$
- masse de l'électron $m_e = 9.109382 \times 10^{-31} \text{ kg}$
- $\varepsilon_0 = 8.85418782 \times 10^{-12} \text{ F} \cdot \text{m}^{-1}$