2. Energy Transfers and Energy Resources

4.1 (units)

- kilogram (kg)
- joule (J)
- meter (m)
- meter per second (m/s)
- meter per second squared (m/s^2)
- Newton (N)
- second (s)
- watt (W)

4.2

Energy Stores:

- chemical
- kinetic
- gravitational
- elastic
- thermal
- magnetic
- electrostatic
- nuclear

Energy transfers

- mechanically
- electrically
- by heating
- by radiation (light & sound)

4.3

conservation of energy

Energy Can Neither Be Created Nor Destroyed, only transferred

Efficiency = (useful energy output)/(total energy output) x 100

4.5

Sankey diagram

Flow Refugees from the Syrian Civil War

4.6

Thermal energy transfers

- conduction (contact only with solids)
- convection (circulation in fluids)

• radiation (waves)

4.7

Convection in everyday

- fridge
- kettles

4.8

4.10

Insulation allows reduction of unwanted energy transfer

4.11

work done = force x (distance moved)
$W = F \times d$
4.12
Work done = energy transferred
4.13
(gravitational potential energy) = mass x (gravitational field strength) x height
4.14
Kinetic energy = 1/2 x mass x speed ^2
$KE = 1/2 \times m \times v^2$
4.15
Gravitational potential energy is inversely proportional to kinetic energy
4.16
Power is the rate of transfer of energy or the rate of doing work
4.17
power = (work done)/(time taken)
P = W/t
4.18
Forms of electricity of generation:
• wind
• water
geothermal resources

• solar heating systems

- solar cells
- fossil fuels
- nuclear power

4.19

advantage and disadvantage of large scale electricity production from renewable and non-renewable resources