Math-45-Krauel-F20

Assignment Math45-Module-03-Exercises due 09/17/2020 at 11:59pm PDT

We have $y = Cx^2$ is a 1-parameter family of solutions for the differential equation y'x - 2y = 0. Which of the following is a solution for the initial value problem consisting of the differential equation y'x - 2y = 0 and initial condition y(2) = 12.

- A. $y = 12x^2$
- B. $y = 3x^2$
- C. $y = Cx^2$
- D. $y = 2x^2$

Solution:

SOLUTION:

The correct answer is B.

Correct Answers:

- B
- 2. (1 point) Consider the initial value problem

$$2ty' = 4y$$
, $y(-2) = 4$.

Find the value of the constant C and the exponent r so that $y = Ct^r$ is the solution of this initial value problem. y =______ help (formulas)

Solution: The answer is $y = 1t^2$.

Correct Answers:

• 1*t^2

- 3. (1 point) Suppose $y' = f(x,y) = \frac{xy}{\cos(x)}$.
- (1) $\frac{\partial f}{\partial y} =$ _____ help (formulas)
- (2) Since the function f(x, y) is
- Choose
- continuous
- not continuous

at the point (0,0), the partial derivative $\frac{\partial f}{\partial y}$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- Choose
- exists
- does not exist

and is

- Choose
- continuous

• not continuous

at and near the point (0,0), the solution to y' = f(x,y)

- Choose
- exists and is unique
- does not exist

near
$$y(0) = 0$$

Correct Answers:

- x*cos(x)/([cos(x)]^2)
- continuous
- exists
- continuous
- exists and is unique

4. (1 point) For the differential equations $\frac{dy}{dx} = \sqrt{y^2 - 16}$ does the existence/uniqueness theorem guarantee that there is a solution to this equation through the point

$$\boxed{?} 1. (-1,4)?$$

$$\boxed{?}$$
2. $(-4,19)$?

 $\boxed{?}$ 4. (3,-4)?

Note: To answer this question, compute the partial derivative of $f(x,y) = \sqrt{y^2 - 16}$ with respect to y and check if f(x,y) and $\frac{\partial f}{\partial y}$ exists at the given points. If they do, then the conditions of the theorem are satisfied at the given points.

Correct Answers:

- FALSE
- TRUE
- TRUE
- FALSE

5. (1 point)

Enter a value for π

Correct Answers:

• 3.14159

1