Capítulo IV

Ordenação Topológica

Teste à Aciclicidade (num grafo orientado)

Ordenação Topológica

Dado um grafo G = (V, A), orientado e acíclico, uma ordenação topológica de G é uma permutação de V tal que:

$$\forall (x,y) \in A$$
 x precede y.

Exemplo (1)

Ordenação: IP

Ordenação: IP POO

Exemplo (2)

Ordenação: IP POO AED

(ADA)

Ordenação: IP POO AED LAP (uma das alternativas)

Exemplo (3)

(ICL)

ADA

Ordenação: IP POO AED LAP ICL (uma das alternativas)

(ADA)

Ordenação: IP POO AED LAP ICL ADA

Número de Antecessores

LAP	2	1	1	0			
ICL	1	1	1	1	0		
AED	2	1	0				
ADA	1	1	1	0	0	0	
IP	0						
POO	1	0					
Permutação:	ΙP	POO	AED	LAP	ICL	ADA	

Ordenação Topológica (1) (Topological Sorting)

```
Node[] topologicalSort( Digraph graph )
  Node[] permutation = new Node[ graph.numNodes() ];
  int permSize = 0;
  Bag<Node> ready = new BagIn...<Node>(?);
  int[] inDegree = new int[ graph.numNodes() ];
  for every Node v in graph.nodes()
     inDegree[v] = graph.inDegree(v);
     if (inDegree[v] == 0)
        ready.add(v);
```

Ordenação Topológica (2)

```
do {
      Node node = ready.remove();
      permutation[permSize++] = node;
      for every Node v in graph.outAdjacentNodes(node)
        inDegree[v]——;
        if (inDegree[v] == 0)
            ready.add(v);
while ( !ready.isEmpty() );
return permutation;
```

Complexidades

(se add, remove e is Empty de Bag forem $\Theta(1)$)

Implementação Ordenação Topológica do (grafo orientado e acíclico) Grafo (V,A) $\Theta(|V|^2)$ Vetor de Listas $\Theta(|V|+|A|)$

ready.size() $\leq |V|$

Teste à Aciclicidade (1)

(Acyclicity Checking)

```
boolean isAcyclic( Digraph graph )
  int numProcNodes = 0;
   Bag<Node> ready = new BagIn...<Node>(?);
  int[] inDegree = new int[ graph.numNodes() ];
  for every Node v in graph.nodes()
     inDegree[v] = graph.inDegree(v);
     if (inDegree[v] == 0)
        ready.add(v);
```

Teste à Aciclicidade (2)

```
while ( !ready.isEmpty() )
  Node node = ready.remove();
  numProcNodes++;
  for every Node v in graph.outAdjacentNodes(node)
     inDegree[v]——;
     if (inDegree[v] == 0)
        ready.add(v);
return numProcNodes == graph.numNodes();
```

Complexidades

(se add, remove e is Empty de Bag forem $\Theta(1)$)

Implementação do (grafo orientado) Grafo
$$(V,A)$$
 $O(|V|^2)$ Vetor de Listas $O(|V|+|A|)$

ready.size() $\leq |V|$