1 HP97

HP0

SSM

The Filter of Hodrick and Prescott (1997, HP-Filter) can be expressed as an SSM following a UC model structure as:

$$y_t = y_t^* + y_t^c \tag{1a}$$

$$\Delta^2 y_t^* = \varepsilon_{1t} \tag{1b} \quad \text{HPOb}$$

$$y_t^c = \phi \varepsilon_{2t},$$
 (1c) HPOc

where y_t is (generally 100 times) the log of GDP, and ε_{1t} and ε_{2t} are N(0,1). The standard deviation ϕ is the (square root of the) smoothing parameter, generally set to 40, implying a value of ' λ ' of 1600.

2 Shock recovery SSM

2.1 SSM with lagged states

Kurz's (2018) SSM has the following general from:

Measurement:
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$
 (2a) ssm1

State:
$$X_t = AX_{t-1} + C\varepsilon_t$$
, (2b) ssm2

where $\varepsilon_t \sim MN(0, I_m)$, D_1 , D_2 , A, R are C are conformable system matrices, Z_t the observed variable and X_t the latent state variable.

2.2 HP97 SSM for shock recovery

To assess recovery, re-write the model in (1) in 'shock recovery' State Space Form (SSF). That is, collect all observables in Z_t and all shocks (and other state variables) in X_t to yield:

$$\Delta^{2} y_{t} = \Delta^{2} y_{t}^{*} + \Delta^{2} y_{t}^{c}$$

$$= \varepsilon_{1t} + \phi \Delta^{2} \varepsilon_{2t}$$

$$= \varepsilon_{1t} + \phi \varepsilon_{2t} - 2\phi \varepsilon_{2t-1} + \phi \varepsilon_{2t-2},$$
(3) z

where $\Delta^2 y_t = Z_t$ is the only observed variable.

The Measurement and State equations corresponding to (3) are:

Measurement :
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$

= $\varepsilon_{1t} + \phi \varepsilon_{2t} - 2\phi \varepsilon_{2t-1} + \phi \varepsilon_{2t-2}$ (4a)

$$Z_{t} = \underbrace{\begin{bmatrix} 1 & \phi & 0 \end{bmatrix}}_{D_{1}} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{2t-1} \end{bmatrix}}_{X_{t}} + \underbrace{\begin{bmatrix} 0 & -2\phi & \phi \end{bmatrix}}_{D_{2}} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \end{bmatrix}}_{X_{t-1}} + \underbrace{\begin{bmatrix} 0 & 0 \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}}_{R}$$
(4b)

State: $X_t = AX_{t-1} + C\varepsilon_t$,

$$\underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{2t-1} \end{bmatrix}}_{X_t} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \end{bmatrix}}_{X_{t-1}} + \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}}_{\varepsilon_{t}}.$$
(4c)