識別 一概念学習一

- カテゴリ特徴に対する「教師あり・識別」問題の定義
 - 。 問題設定
 - ullet 教師あり学習: $\{(oldsymbol{x}_i, y_i)\}$ $i=1,\ldots,N$
 - カテゴリ入力 → カテゴリ出力
 - クラスの概念を得ることが目的

・カテゴリ特徴

contact-lensesデータ

id	age	spectacle-prescrip	astigmatism	tear-prod-rate	contact-lenses
1	young	туоре	no	reduced	none
2	young	туоре	no	normal	soft
3	young	туоре	yes	reduced	none
4	young	туоре	yes	normal	hard
5	young	hypermetrope	no	reduced	none

```
- age ('young', 'pre-presbyopic', 'presbyopic')
- spectacle-prescrip ('myope', 'hypermetrope')
- astigmatism ('no', 'yes')
- tear-prod-rate ('reduced', 'normal')
- contact-lenses ('soft', 'hard', 'none') [class]
```

3.2 概念学習とバイアス

- 概念学習とは
 - 。 正解の概念を説明する特徴ベクトルの性質(論理式)を求めること
 - 。「softレンズを勧める」という概念の例
 - (乱視=あり) and (ドライアイ=なし) ⇒ soft
- 学習の方法
 - 。 初期の概念学習:学習対象の概念にバイアス(偏見)をかけて候補を絞り込む
 - FIND-Sアルゴリズム
 - 候補削除アルゴリズム
 - 。 決定木学習:探索方法にバイアスをかけて準最適解を探す

- FIND-Sアルゴリズム
 - 。 最も特殊な概念から始めて、正例を使って順次一般化する
 - 求める論理式を「リテラル(特徴名=値)のAND結合(∧)」に限定
 - すべての正例をカバーする論理式が得られれば終了
 - 正解概念の候補(仮説空間): 4 × 3 × 3 × 3 + 1 = 109

- FIND-Sアルゴリズム
 - 。 例:「コンタクトレンズの使用を勧めない」(none) の概念獲得

- 候補削除アルゴリズム
 - 。 FIND-Sに加えて、もっとも一般的な概念 <?,?,?,? >を負例をカバーしないように順次特殊化
 - 。 すべてのデータの処理が終わって、残った論理式集合が正解候補

- 候補削除アルゴリズム
 - 。 例:「コンタクトレンズの使用を勧めない」(none) の概念獲得

概念学習のバイアスを考える

- 初期の概念学習の問題点
 - 。 リテラルのOR結合(∨)が表現できないので、正解概念が仮説空間内に存在しないことが多い
 - 。 例)(年齢=若年 ∨ 年齢=老眼前期) が表現できない

概念学習のバイアスを考える

- 単純にOR結合を許す場合
 - 。 正解概念の候補数が増大する
 - \blacksquare 候補数: 2の「可能なすべての事例数」乗 $2^{24}=16777216$
 - 。 正例のOR結合が自明な解となり、未知事例に対して判定する根拠を持たない

解決策

- 。 仮説空間はOR結合を許し、探索方法にバイアスをかけて候補を限定
- 。 新たな問題設定
 - 上記の方法で見つかった候補が未知データに対しても適用可能な概念であるようなバイアスとは何か

決定木の学習

- 概念を決定木で表す
 - 。 ルートノードから始めて、特徴の値によって事例を分類する
 - 。 リーフに至れば分類は終了
- 決定木の要素と意味
 - 。 ノード(節):特徴
 - 。 エッジ(枝):値
 - 。 リーフ(葉):出力
- 決定木の論理表現
 - 。 エッジをたどることがAND結合
 - 。 同じ値のリーフが複数あることがORを表現

決定木の学習

■ 決定木の例

決定木とは

- 決定木の作り方
 - 1. ルートノードとする特徴を決める
 - 2. 分割後のデータができるだけ同一クラスが偏るように特徴を選択する
 - 。 特徴の値に基づいてデータを分割する
 - 3. すべてのデータが単一のクラスになればリーフとする
 - 4. そうでなければ、分割後のデータ集合に対して同様の操作を行う
 - 。 ただし、これまでに使用した特徴は選択しない

- 分類能力の高い属性を決定する方法
 - 。 その属性を使った分類によって、なるべくきれいにクラスが分かれるように
 - 。 エントロピー: データ集合 D の乱雑さを表現

$$E(D) = -P_+ \log_2 P_+ - P_- \log_2 P_-$$

正例の割合:P₊, 負例の割合: P_−

- 情報獲得量
 - 。 特徴 a を用いた分割後のエントロピーの減少量

$$Gain(D,a) = E(D) - \sum_{Values(a)} rac{|D_v|}{|D|} E(D_v)$$

- 特徴 a が値 v を取るデータの集合: Dv
- Dv の要素数: |Dv|
- 。 情報獲得量の計算例
 - tear-prod(涙量): reduced(減少)12事例で全てnone、normal(正常)12事例でsoft5, hard4, none3

$$Gain(D, tear-prod) = E(D) - \frac{12}{24}(-\frac{5}{12}\log\frac{5}{12} - \frac{4}{12}\log\frac{4}{12} - \frac{3}{12}\log\frac{3}{12}) = 0.22$$

- ID3アルゴリズムのバイアス
 - 。 分類能力の高いノードをなるべく根の近くにもつ
 - 。 欲張り法で探索を行い,すべてのリーフが単一クラスの集合になれば終了

- なぜ小さな木の方がよいか
 - 。 オッカムの剃刀:「データに適合する最も単純な仮説を選べ」
 - 。 複雑な仮説
 - → 表現能力が高い
 - → データを説明できる木が作れる確率も高い
 - 。 単純な仮説
 - → 表現能力が低い
 - → 偶然にデータを説明できる木が作れる確率は著しく低い
 - → でも説明できた!
 - → 必然!

過学習を避ける

- 決定木学習における過学習の避け方
 - 。 学習過程で木の成長を止める
 - リーフに所属することができる最小データ数(または割合)を多くする
 - 木の段階の最大数を小さくする
 - 。 十分に成長させた後に枝刈り
 - Reduced error pruning
 - 学習用データを用いてできるだけ成長した木を作成する
 - 各枝について検証用データを用いて分類能力を測定し、多数決より性能が劣る枝を刈り取る
 - Minimal cost-complexity pruning
 - $\mathbf{R}_{\alpha}(T)$ (誤分類率とリーフ数の重み付き和)が最小となる木を探索

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

数値特徴に対する決定木

- CART (Classification and Regression Trees)
 - 。 必ず2つの子ノードを持つ2分木構造
 - 。 数値特徴はノードとして何度でも出現可能
 - 。 識別と回帰のいずれにも使える
 - 。 scikit-learnでは、DecisionTreeClassifier, DecisionTreeRegressor として実装されている

数値特徴に対する決定木

- ノードにおけるデータ分割
 - 。 カテゴリ特徴:特徴の値で分割
 - 。 数値特徴: 閾値との比較で分割
- 閾値θの決め方

Gain(D, humidity_{82.5}) =
$$0.94 - \frac{7}{14}$$
Entropy(D, < 82.5) - $\frac{7}{14}$ Entropy(D, \geq 82.5) = 0.152

数値特徴に対する決定木

- sklearn.tree.DecisionTreeClassifier の主なパラメータ
 - 。 criterion:情報獲得量の計算法
 - ジニ不純度
 - エントロピー
 - ジニ不純度のほうが最頻クラスの分離に少し偏る
 - max_depth:木の最大の深さ
 - 。 min_samples_split:ノードが分割可能な事例数の最小値
 - 。 ccp_alpha: 枝刈り後の木の複雑さを表すパラメータ

まとめ

- 初期の概念学習
 - 。 論理式の形式を制限することでバイアスを実現
 - 。 制限が強すぎてしばしば概念獲得に失敗する
- 決定木
 - 。 論理式の形式は自由にして、探索でバイアスを実現
 - 。 学習データの少しの変動で、得られる木がまったく異なることがある
 - 。 原理的には学習データに対して誤りのない識別器を実現できるので、過学習への対処が必要になる