

Universidade Tecnológica Federal do Paraná – UTFPR

CN24NB – Cálculo Numérico Profa. Dra. Fernanda Paula

Lista de Exercícios

Interpolação e Ajuste de Curvas

Exercício 1) Para a função dada, seja $x_0 = 0$, $x_1 = 0.6$ e $x_2 = 0.9$. Construa polinômios de grau $n \le 2$, para aproximar f(0.45), encontre o valor do erro verdadeiro, em seguida, determine um limitante para o erro.

$$a)f(x) = cos(x)$$

$$b)f(x) = ln(x+1)$$

Exercício 2) Seja a tabela

X	0.9	1.0	1.3	1.8	2.0	2.2
f(x)	-0.105	0.000	0.262	0.588	0.693	0.788

- a) Estime o valor de f(1.4), usando polinômio interpolador de grau 2.
- b) Faça uma estimativa para o erro.

Exercício 3) Uma empresa apresenta os seguintes lucros em função das vendas:

Número de peças vendidas (milhares)	1	2	3	4	5
Lucro (milhares em euros)	11.2	15.3	17.1	16.9	15.0

Sabendo que o lucro previsto era de 13 mil euros, indique uma aproximação do número de peças que foi necessário vender para atingir esse lucro.

Exercício 4) A seguinte tabela informa o número de carros que passam por um determinado pedágio em um determinado dia:

Horário	10:00	10:30	11:00	11:30	12:00	12:30
Número (em mil)	2.69	1.64	1.09	1.04	1.49	2.44

- a) Faça uma estimativa do número de carros que passariam pelo pedágio às 11:10 e às 12:15, usando uma interpolação linear para encontrar o P(x) que estima o número de carros em função do tempo.
- b) Agora, faça a mesma estimativa, mas utilizando uma parábola como polinômio interpolador. Utilize o método de Lagrange.

Exercício 5) Na fabricação de determinadas cerâmicas é muito importante saber as condições de temperatura em que o produto foi assado no forno. Como não é possível medir a temperatura do forno a todo instante, ela é medida em intervalos periódicos de tempos e esses dados são interpolados

Horário	7:00	10:00	13:00	16:00	19:00	21:00
Temperatura (10 ² °C)	2.32	2.51	2.63	2.55	2.41	2.28

para o instante em que cada peça foi "queimada" a fim de se conhecer a temperatura do forno nesse instante. Em um dia de funcionamento do forno, os seguintes dados foram coletados:

- a) Construa a tabela de diferenças divididas para esses pontos.
- b) Estime a temperatura do forno às 14:30 usando a forma de Newton para apenas dois pontos.
- c) Faça essa estimativa novamente, desta vez usando polinômio de grau 2.

Exercício 6) Dada a tabela abaixo

X	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8
e^x	11.02	13.46	16.44	20.08	24.53	29.96	36.59	44.70

- a) Calcule $e^{3.1}$ usando um polinômio de interpolação sobre três pontos.
- b) Dê um limitante para o erro cometido.

Exercício 7) A tabela abaixo apresenta a inflação bimestral medida pelo INPC no ano de 2000.

Tabela 1: My caption

bimestre	janeiro	fevereiro	março	maio	junho
inflação(%)	0.75	0.64	0,24	2.94	0.37

- a) Estime qual foi a inflação em abril, utilizando um polinômio interpolador de grau $n \leq 2$.
- b) Calcule o erro da estimativa anterior.
- c) Podemos garantir que a inflação semestral foi menor que 6% ? d) Determine a inflação do mês de julho, usando um polinômio de grau $n \leq 2$.