Design and Analysis of Algorithms Graphs 3: Depth-First Search

Daniel Shannon April 21st, 2022

3.4.2

Claim: A directed graph has a cycle *if and only if* its DFS reveals a back edge.

Proof:

Consider a directed graph with two nodes, A and B ($A \rightarrow B \rightarrow A...$), in a cycle. Base Case: If we execute a DFS from node N=0 (node A), we will explore node B. Since the only other option is A, which has been marked as explored, we will create a back edge to include the cycle. If we start exploring at N=1 (node B), A will be marked as explored, and by the same logic we will create a back edge to include the cycle from $B \Rightarrow A$. Here we can see the cyclic nature of back edges from $A \rightarrow B$ and $B \rightarrow A$ regardless of the starting node.

3.4.4

Claim: A directed graph has a cycle *if and only if* its DFS reveals a back edge. If a directed graph has a cycle, that meas the DFS tree will have a back edge.

Proof:

Consider the same graph $A \to B \to A$ Base Case: A graph was explored from N=0 (node A) to generate a DFS tree that has the structure $A \to B$...A with a back edge from $B \to A$. This is cyclic in nature. Now consider a DFS tree generated from N=1 (node B) with the structure $B \to A$ and a back edge to from $B \to A$. We can see that a DFS tree generated from a cyclic graph is reproducible regardless of the starting node.

3.4.6

Find the sources, sinks, and all possible linearizations.

- 1. Sources B
- 2. Sinks E,F
- 3. Linearizations

$$B \to A \to D \to C \to E$$

$$B \to D \to A \to C \to E$$

$$\begin{array}{c} B \rightarrow A \rightarrow D \rightarrow C \rightarrow F \\ B \rightarrow D \rightarrow A \rightarrow C \rightarrow F \end{array}$$