CCF ADL 2011 Beijing Aug. 27, 2011

Learning to Match

Hang Li Microsoft Research Asia

Talk Outline

- Introduction to Web Search
- Relevance Model (Matching Model)
- Query Term Mismatch
- Learning to Match
- Our Methods
 - Robust Similarity Function Learning Using Kernel Methods
 - Regularized Latent Semantic Indexing
 - Query Generation Using Log Linear Model
 - Query Rewriting Using Conditional Random Fields

Introduction to Web Search

Web Search is Part of Our Life

Web Users Heavily Rely on Search Engines

http://www.iprospect.com/premiumPDFs/iProspectSurveyComplete.pdf

Simple UI

Huge Data Center

Goal of Web Search

Effectiveness	Efficient	Easy to Use
Results are relevant	Response time is short	Good presentation
Results are comprehensive	Results are novel	Friendly user interface

Overview of Web Search Technologies

Overview of Web Search Technologies

General Web Search, Entity Search, Facet Search, Question Answering, Image Search

Ranking, Matching, Retrieval

Document Understanding, Query Understanding,

Crawling, Indexing, Result Presentation,

Anti-Spam

Classification, Clustering, Ranking,
Graph Learning, Tagging, Distributed Computing

Example of Web Search Architecture

Component Technologies for Web IR

- Relevance Ranking
- Importance Ranking
- Document Understanding
- Query Understanding
- User Understanding
- Crawling
- Indexing
- Search Result Presentation
- Anti-Spam
- Search Log Data Mining

Book by Croft et al.

http://www.search-engines-book.com/

Relevance Model (Matching Model)

Matching between Query and Document

Matching between Two Worlds

Vector Space Model (Salton 1975)

Probabilistic Model

Okapi or BM25

(Robertson and Walker 1994)

Language Mode

(Ponte and Croft 1998)

document = bag of words

$$d_{1} = w_{11}w_{12}\cdots w_{1l_{1}}$$

$$d_{2} = w_{21}w_{22}\cdots w_{2l_{2}}$$

$$\vdots$$

$$d_n = w_{n1} w_{n2} \cdots w_{nl_n}$$

$$q = w_{q1} w_{q2} \cdots w_{ql_q}$$

$$d_1 \sim P(q \mid d_1)$$

$$d_2 \sim P(q \mid d_2)$$

$$d_n \sim P(q \mid d_n)$$

Relevance Model as Similarity Function

Jun Xu, Hang Li, Chaoling Zhong AIRS 2010

IR Models as Similarity Functions (Similarity Functions)

IR Models Are Similarity Functions

VSM

- BM25
$$(q,d) = \langle \phi_Q^{VSM}(q), \phi_D^{VSM}(d) \rangle$$
, for all $w \in V$

$$\phi_Q^{VSM}(q)_w = tfidf(w,q) \text{ and } \phi_D^{VSM}(d)_w = tfidf(w,d)$$

BM25

$$- \text{ BM25}(q,d) = \langle \phi_Q^{BM25}(q), \phi_D^{BM25}(d) \rangle, \text{ for all } w \in V$$

$$\phi_Q^{BM25}(q)_w = \frac{(k_3+1) \times tf(w,q)}{k_3 + tf(w,q)}$$

$$\phi_D^{BM25}(d)_w = \text{IDF}(w) \cdot \frac{(k_1+1) \times tf(w,d)}{k_1 \left(1 - b + b \cdot \frac{len(d)}{avaDocLen}\right) + tf(w,d)}$$

LMIR

- LMIR
$$(q,d) = \left\langle \phi_Q^{LMIR}(q), \phi_D^{LMIR}(d) \right\rangle + len(q) \cdot \log \frac{\mu}{len(d) + \mu'}$$
 for all $w \in V$
$$\phi_Q^{LMIR}(q)_w = tf(w,q)$$

$$\phi_D^{LMIR}(d)_w = \log \left(1 + \frac{tf(w,d)}{\mu \cdot P(w)}\right)$$
, where $P(w)$ plays similar role as IDF in BM25

Relevance beyond Unigram

Extension of IR models

BM25

$$- \text{ BM25}(q,d) = \langle \phi_Q^{BM25}(q), \phi_D^{BM25}(d) \rangle, \text{ and for all } w \in V$$

$$\phi_Q^{BM25}(q)_w = \frac{(k_3+1) \times tf(w,q)}{k_3 + tf(w,q)}$$

$$\phi_D^{BM25}(d)_w = \text{IDF}(t) \cdot \frac{(k_1+1) \times tf(w,d)}{k_1 \left(1 - b + b \cdot \frac{len(d)}{avaDocLen}\right) + tf(w,d)}$$

BM25_Kernel

- BM25 $_{-}$ Kernel $(q, d) = \sum_{t} BM25 _{-}$ Kernel $_{t}(q, d)$ where t is dependence type
- $\text{ BM25 _}Kernel_t(q,d) = \left< \phi_{Q,t}^{BM25}(q), \phi_{D,t}^{BM25}(d) \right>, \text{ and for all } x \in V_t$ $\phi_{Q,t}^{BM25}(q)_x = \frac{(k_3+1) \times f_t(x,q)}{k_3 + f_t(x,q)}$ $\phi_{D,t}^{BM25}(d)_x = \text{IDF}_t(x) \cdot \frac{(k_1+1) \times f_t(x,d)}{k_1 \left(1 b + b \cdot \frac{f_t(d)}{avaDocLen_t}\right) + f_t(x,d)}$

Similarity Function

- Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathfrak{R}$
 - Definition: $k(x, x') = \langle \phi(x), \phi(x') \rangle$, where $\phi: \mathcal{X} \to \mathcal{H}$
 - Given k_1 and k_2 are kernels, create new kernels: αk , where $\alpha \geq 0$; $k_1 + k_2$; $k_1 \cdot k_2$
- Similarity function: $k: \mathcal{X} \times \mathcal{Y} \to \Re$
 - Definition: $k(x,y) = \langle \phi(x), \phi'(y) \rangle$, where $\phi: \mathcal{X} \to \mathcal{H}$ and $\phi': \mathcal{Y} \to \mathcal{H}$
 - Given k_1 and k_2 are similarity functions, create new similarity functions:

$$\alpha k$$
, where $\alpha \in \Re$; $k_1 + k_2$; $k_1 \cdot k_2$

Kernel vs Similarity Function

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$

$$k(x, y) = \langle \phi(x), \phi'(y) \rangle$$

Query Document Mismatch

Same Search Intent Different Query Representations Example = "Distance between Sun and Earth"

- "how far" earth sun
- "how far" sun
- "how far" sun earth
- average distance earth sun
- average distance from earth to sun
- average distance from the earth to the sun
- distance between earth& sun
- distance between earth and sun
- distance between earth and the sun

- distance from earth to the sun
- distance from sun to earth
- distance from sun to the earth
- distance from the earth to the sun
- distance from the sun to earth
- distance from the sun to the earth
- distance of earth from sun
- distance between earth sun

- how far away is the sun from earth
- how far away is the sun from the earth
- how far earth from sun
- how far earth is from the sun
- how far from earth is the sun
- how far from earth to sun
- how far from the earth to the sun
- distance between sun and earth

Same Search Intent, Different Query Representations Example = "Youtube"

•	yutube	yuotube	yuo tube
•	ytube	youtubr	yu tube
•	youtubo	youtuber	youtubecom
•	youtube om	youtube music videos	youtube videos
•	youtube	youtube com	youtube co
•	youtub com	you tube music videos	yout tube
•	youtub	you tube com yourtube	your tube
•	you tube	you tub	you tube video clips
•	you tube videos	www you tube com	wwww youtube com
•	www youtube	www youtube com	www youtube co
•	yotube	www you tube	www utube com
•	ww youtube com	www utube	www u tube
•	utube videos	utube com	utube
•	u tube com	utub	u tube videos
•	u tube	my tube	toutube
•	outube	our tube	toutube

Examples of Term Mismatch

- Query → Document
- swimming pool schedule = pool schedule
- seattle best hotel = seattle best hotels
- natural logarithm transformation = logarithm transformation
- china kong ≠ china hong kong
- why are windows so expensive ≠ why are macs so expensive

Different Levels of Semantic Matching

Query Understanding (Online)

Keyphrase Identification in Query

[michael I. jordan: **Keyphrase**] [berkeley: **Attribute**]: *academic*

[michael jordan: Keyphrase]

[berkeley: Attribute]: academic Structure

Query Topic Identification

michael I. jordan berkeley: *academic* michael jordan berkeley: *academic*

Topic

Similar Query Finding

michael I. jordan berkeley michael jordan berkeley

Spelling Error Correction

michael jordan berkeley

Sense

michael jordan berkele

Document Understanding (Offline)

Document Topic Identification

Keyphrase Identification

Tokenization

Michael Jordan is Professor in the Department of Electrical Engineering

[Michael Jordan/M. Jordan] is [Professor] in the [Department/Dept.] of [Electrical Engineering/EE]: academic

Topic

[Michael Jordan/M. Jordan: Keyphrase] is [Professor] in the [Department/Dept.] of [Electrical Engineering/EE]

Structure

[Michael Jordan] is [Professor] in the [Department] of [Electrical Engineering]

Term

Online Semantic Matching

Matching can be conducted at different levels

Related Work

- Studied in long history of IR
- Query expansion, pseudo relevance feedback
- Latent Semantic Indexing, Probabilistic Latent
 Semantic Indexing, Latent Dirichlet Allocation

•

Learning to Match

Four Ways to Match

Learning to Match

Learning matching function

$$f_{M}(q,d)$$

- Using training data $(q_1, d_1), \dots, (q_N, d_N)$
- Using prior knowledge or other data M

Challenges in Matching

- How to incorporate prior knowledge or other data into model
- Scale is very large

Matching Problem: Matrix Data View

	d1	d2	d3			dn
q1			1			
q1						1
q1				4		
7,-						
		1			5	
qm						

Matching Problem: Space View

Matching Problem: String Data View

Examples of Matching Models

• Similarity Learning
$$f_{M}(q,d) = f(q,d) + \sum_{i} k_{Q}(q,q_{i}) k_{D}(d,d_{i}) f(q_{i},d_{i})$$
 • Topic Modeling

$$f_{M}(q, d) = \sum_{k} u(q, k)v(k, d)$$
• String Transformation

$$f_{M}(q, d) = f(q, d) + \sum_{i} k_{T}(q, q_{i}) k_{T}(d, d_{i}) f(q_{i}, d_{i})$$

Matching vs Ranking

	Matching	Ranking
Prediction	Matching score between query and document	List of documents
Model	f(q, d)	f(q,d1), f(q,d2), f(q,dn)
Loss Function	Single query document pair	List of documents with respect to query
Challenge	Mismatch	Correct ranking on top

Matching between Heterogeneous Data is Everywhere

- Matching between user and product (collaborative filtering)
- Matching between text and image (image annotation)
- Matching between people (dating)
- Matching between languages (machine translation)

Our Methods of Learning to Match

Three Approaches of Learning to Match

- Similarity Learning → Word sense level
- Topic Modeling → Topic level
- String Transformation → Structure level

Summary of Our Technologies

	Technologies	Current Status
Term matching	Key n-gram learning	ongoing
Term matching	Relevance model as similarity function	AIRS'10 best paper
Sense matching	Robust relevance model	JMLR, WWW'11 poster
Sense matching	Query similarity learning	WSDM'11
Sense matching	CRF model for candidate selection	SIGIR'08
Sense matching	Log linear model for candidate generation	ACL'11
Sense matching	Projection to latent structure	ongoing
Topic matching	Scalable and efficient topic modeling	SIGIR'11

Robust Similarity Function Learning Using Kernel Methods

Wei Wu, Hang Li, Jun Xu, Satoshi Oyama, JMLR 2011

Dealing with Mismatch with Re-Ranking - Our Approach = Online Learning of Kernel Methods

Mapping to Space of Query Document Pairs - Using Kernel Methods

Similarity Learning

- Similarity Function : $k(x,y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}$
- Input
 - Training data $S = \{(x_i, y_i), t_i\}_{1 \le i \le N}$
- Output
 - Similarity Function
- Optimization

Similarity Learning Using Kernel Methods

- Assumption
 - Space of similarity functions is RKHS generated by positive-definite kernel k: $(\mathcal{X} \times \mathcal{Y}) \times (\mathcal{X} \times \mathcal{Y})$
- Optimization

$$\min_{k \in \mathcal{K}} \frac{1}{N} \sum_{i=1}^{N} l(k(x_i, y_i), t_i) + \frac{\lambda}{2} ||k||_{\mathcal{K}}^{2}$$

- Solution
 - By representer theorem $k^*(x,y) = \sum_{i=1}^N \alpha_i \bar{k}((x_i,y_i),(x,y))$

$$\bar{k}\big((x,y),(x',y')\big) = g(x,y)k_{\mathcal{X}}(x,x')k_{\mathcal{Y}}(y,y')g(x',y')$$

Learning Robust BM25

- BM25 =
- Kernel

$$\bar{k}((q,d),(q',d')) = k_{BM25}(q,d)k_Q(q,q')k_D(d,d')k_{BM25}(q',d')$$

Solution (called Robust BM25)

$$k_{RBM25}(q,d) = k_{BM25}(q,d) \cdot \sum_{i=1}^{N} \alpha_i k_Q(q,q_i) k_D(d,d_i) k_{BM25}(q_i,d_i)$$

Deal with term mismatch

Regularized Latent Semantic Indexing

Quan Wang, Jun Xu, Hang Li, Nick Craswell, SIGIR 2011

Topic Modeling Our Approach = Regularized Latent Semantic Indexing

Regularized Latent Semantic Indexing

Regularized Latent Semantic Indexing

- L1 on topics and L2 on documents
- L1 leads to sparse topics, a topic only contains a small number of words
- L2 leads to accurate modeling
- Formulation is simple
- Easy to scale up

Scalability Comparison

algorithm	max dataset applied (#docs; #words)	# topics	# processors used
PLDA and PLDA+ (by Google)	Wiki-200T (2,112,618; 200,000)	1000	2,048
AD-LDA (by UCI)	NY Times (300,000; 102,660)	200	16
RLSI	B01 (1,562,807; 7,014,881) Wikipedia (3,239,884; 1,689,193) Bing News (1,028,070; 940,702)		16 single machine!

Regularized Topics

AP dataset, topic compactness: 0.0075

OPEC	Africa	contra	school	Noriega		firef	ight	plane	e Sat	urday	Iran		senate	
oil	South	Sandinista	student	Panama	Panama			crash	n coa	stal	Iranian		Reagan	
cent	African	rebel	teacher	Panama	nian	fore	st	flight	esti	mate	Iraq		billion	
barrel	Angola	Nicaragua	educatio	n Delval		park	(air	wes	stern	hostag	ge	budget	
price	apartheid	Nicaraguan	college	canal		blaze		airlin	e Mir	sch Iraqi			trade	
drug	soviet	aid	court	Jackson	perd	percent		ent	nuclear	Bus	h	Isr	ael	
cocaine	Afghanist	an virus	senate	Dukaki	billio	on	Kore	a	soviet	Dul	kaki	Pa	lestinian	
traffick	Afghan	infect	Reagan	democrat	rate		prote	est	treaty	can	npaign	Isr	aeli	
test	Gorbache	ev test	house	delegate	0	0		orean mis		Qua	ayle Ar		Arab	
enforce	Pakistan	patient	state	percent	trad	e	Chur	1	weapon Bents		ntsen	PLO		

Optimization

```
Algorithm 2 Update U
                     Require: \mathbf{D} \in \mathbb{R}^{M \times N}, \mathbf{V} \in \mathbb{R}^{K \times N}
                       1: S \leftarrow VV^T
                      2: \mathbf{R} \leftarrow \mathbf{D}\mathbf{V}^T
                       3: for m = 1 : M do
                                                                               docs
                             \bar{u}_m \leftarrow 0
                                                                               processed
                             repeat
                                                                               in parallel
                             for k = 1 : K do
                      6:
processed
                                      w_{mk} \leftarrow r_{mk} - \sum_{l \neq k} s_{kl} u_{ml}
in parallel
                                  end for
                      9:
                               until convergence
                     10:
                     11: end for
                     12: return U
```

words

```
Algorithm 3 Update V
Require: \mathbf{D} \in \mathbb{R}^{M \times N}, \mathbf{U} \in \mathbb{R}^{M \times K}
 1: \Sigma \leftarrow (\mathbf{U}^T\mathbf{U} + \theta \mathbf{I})^{-1}
 2: \Phi \leftarrow \mathbf{U}^T \mathbf{D}
 3: for n = 1 : N do
 4: v_n \leftarrow \Sigma \phi_n, where \phi_n is the n^{th} column
 5: end for
 6: return V
```

Scaling up on MapReduce

Query Generation Using Log Linear Model

Ziqi Wang, Gu Xu, Hang Li, Ming Zhang ACL 2011

Candidate Generation in Spelling Correction Our Approach = Log Linear Model

Candidate Generation in Spelling Error Correction

Learning

Training Data

Rule **Extraction**

Model Learning

Model

$$(W_m^1, W_c^1)$$

$$(W_m^2, W_c^2)$$

$$(w_m^3, w_c^3)$$

 $(P(W_c, R(W_m, W_c) \mid W_m))$

log linear model

weight

rule

Rule Extraction

Edit-distance based alignment:

Misspelled:
$$^{\wedge}$$
 n i c o s o o f t $^{\xi}$ $^{\psi}$ $^{$

Basic substitution rules:

$$n \rightarrow m, \phi \rightarrow r$$

Contextual substitution rules

$$^n \rightarrow ^m, ni \rightarrow mi, ^ni \rightarrow ^mi, c \rightarrow cr, ...$$

Log Linear Model

Weight of rule

Model

| IVIOGE|
$$P(w_{c}, R(w_{m}, w_{c}) | w_{m}) = \frac{\exp(\sum_{r \in R(w_{m}, w_{c})} \lambda_{r})}{\sum_{(w'_{c}, R(w_{m}, w'_{c})) \in Z(w_{m})} \exp(\sum_{o \in R(w_{m}, w'_{c})} \lambda_{o})}$$

Set of rules rewrite w_m to w_c

All pairs of word w'_c and rule set R(w_m,w'_c)

$$\forall \lambda_r \leq 0$$

Non-positive constraint, to improve efficiency in retrieval, Natural assumption

Candidate Generation

$$rank(w_c \mid w_m) = \max_{R(w_m, w_c)} \left(\sum_{r \in R(w_m, w_c)} \lambda_r \right)$$

Model Learning

Objective function

$$\lambda^* = \arg\max_{\lambda} \sum_{i} \max_{R(w_m^i, w_c^i)} \log P(w_c^i, R(w_m^i, w_c^i) \mid w_m^i)$$
Take max over transformations

- Algorithm
 - Constrained Quasi Newton Method (BFGS)

Retrieval

Misspelled word

Finding all matching rules

Find best candidates

Top k candidates

$$W_{\it m}$$

$$\alpha_1 \rightarrow \beta_1$$
, λ_1

$$\alpha_2 \rightarrow \beta_2$$
, λ_2

$$\alpha_3 \rightarrow \beta_3$$
, λ_3

. . .

$$W_{c,1}$$

$$W_{c,2}$$

$$W_{c,3}$$

• • •

Trie Tree (dictionary)

Aho Corasick Tree

Index all the α 's in the rules on the AC tree

 β are stored in an associated list

Retrieval with Dynamic Programming

- Traverse trie tree
 - Match the next position of w_m
 - Apply a rule at the current position of w_m
- Two pruning strategies
 - If the sum of weights is smaller than the smallest weight in the top k list, prune the branch
 - two search branches merge,
 prune the smaller branch

Query Rewriting Using Conditional Random Fields

Jiafeng Guo, Gu Xu, Hang Li, Xueqi Cheng SIGIR 2008

Candidate Selection in Spelling Error Correction Our Approach = Conditional Random Fields

Candidate Selection in Spelling Error Correction

Candidate Selection Problem

$$y^* = \arg \max_{\boldsymbol{y}} \Pr(\boldsymbol{y}|\boldsymbol{x})$$

"ideal" query word sequence

original query word sequence

Conditional Random Fields for Candidate Selection

Introducing Refinement Operations

$$\Pr(\mathbf{y}, \mathbf{o}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{i=1}^{n} \phi(y_{i-1}, y_i) \phi(y_i, o_i, \mathbf{x})$$

Operations

Spelling: insertion, deletion, substitution, transposition, ... Word Stemming: +s/-s, +es/-es, +ed/-ed, +ing/-ing, ...

Query Refinement Using Conditional Random Fields

IR Matching (Relevance) Models

	Probabilistic Approach	Non Probabilistic Approach
Term Matching (unigram)	BM25[Robertson], LM4IR [Zhai][Ponte & Croft]	Vector Space Model [Salton]
Term Matching (n-gram)	MRF[Metzler & Croft]	Similarity Function [Xu & Li]
Topic Matching	PLSI[Hoffman], LDA[Blei et al]	LSI[Deerwester et al], RLSI[Xu et al]

IR Matching (Relevance) Models

	Probabilistic Approach	Non Probabilistic Approach
Sense Matching (synonym)		Rocchio [Rocchio], Kernel Method [Wu et al]
Sense Matching (spelling)	Generative model [Brill & Moore], Log linear model [Wang et al], CRF [Guo et al]	
Structure Matching	Translation Model [Berger & Lafferty]	

Summary

Summary

- Introduction to Web Search
- Relevance Model (Matching Model)
- Query Term Mismatch
- Learning to Match
- Our Methods
 - Robust Similarity Function Learning Using Kernel Methods
 - Regularized Latent Semantic Indexing
 - Query Generation Using Log Linear Model
 - Query Rewriting Using Conditional Random Fields

Thank You!

hangli@microsoft.com