Estimating Non-Linear Models for Cost Prediction

11/24/24

Overall Objectives

The overall objective was to evaluate four non-linear models to accurately predict cost based on trade size and volatility. To achieve this, I estimated optimal parameters using a cross-validation procedure with an MAE metric, as further described below. Although I chose model "c" to compute the test estimates, the computed fit metrics were broadly similar, despite significantly different cost estimate profiles. I conclude that much more work is necessary before any model could be used with confidence. Additional data to reduce the apparent noise in realized costs would be helpful.

(a)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i^{0.5} + \epsilon_i$$

(b)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i + \epsilon_i$$

(c)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i^{0.5} + \beta_2 Volatility_i + \beta_3 Volatility_i \times TradeSize_i^{0.5} + \epsilon_i$$

(d) $Cost_i = \beta_0 + \beta_1 TradeSize_i + \beta_2 Volatility_i + \beta_3 Volatility_i \times TradeSize_i + \epsilon_i$

Note: the prompt pdf posed four specific questions. Explicit answers are provided on pages 14 and 15 of this report.

Data Overview: Representative records and Summary Statistics

Here are 15 representative records, as well as summary statistics for the training data.

- All of the variables have large outliers (discussed further in next slide)
- Many costs are counter-intuitively negative
- The data shows a wide range of volatility values; are these from different asset classes?

15	Representa	tive Records	
	cost	trade size	volatility
0	-0.002002	0.000028	0.224488
1	0.000282	0.000655	0.550203
2	0.000032	0.003754	0.008384
3	0.003431	0.008802	0.261364
4	0.000071	0.000009	0.144255
5	0.001303	0.000009	0.515849
6	-0.000982	0.000136	0.218863
7	0.003016	0.000068	0.392737
8	0.000367	0.000173	0.147871
9	0.000012	0.000002	0.018983
	-0.000196	0.000065	0.018521
11	-0.000158	0.000002	0.004598
	-0.000701	0.004718	0.315057
13	0.001093	0.000709	0.223830
14	-0.000721	0.000004	0.291277

Summary statistics for Training Data:								
-	cost	trade_size	volatility					
Mean	0.000236747	0.00322934	0.241378					
Std Dev	0.00421928	0.0788787	0.154408					
Skewness	0.998262	271.251	2.01745					
Kurtosis	40.7137	75596.3	12.391					
Min	-0.0769273	0	0.00185105					
1st Pctl	-0.0135892	1.1499e-06	0.00485286					
5th Pctl	-0.00485841	7.61e-06	0.026591					
25th Pctl	-0.000411617	8.03e-05	0.146602					
Median	9.83e-05	0.000445812	0.224421					
75th Pctl	0.000835473	0.00199041	0.314943					
95th Pctl	0.00554379	0.0125124	0.498245					
99th Pctl	0.0146182	0.0392148	0.731833					
99.9th Pctl	0.0302688	0.137957	1.33455					
Max	0.119837	22	2.13999					

Data Overview: Outliers

Here are sorts of the training data records by trade size, volatility, and the absolute value of cost. Outliers are extreme, especially for trade size and cost.

Top 15 Records Sorted by Trade Size:		Top 15 Records Sorted by Volatility:			Top 15 Records Sorted by Absolute Value of Cost:			
cost	trade_size	volatility	cost	trade size	volatility	cost	trade_size	volatility
36203 -0.024039	22.000000	0.207042	75214 -0.003657	0.000004	2.139991	1633 0.119837	0.000448	0.352330
38096 0.002872	1.307592	0.031515	64358 -0.003406	0.000004	2.129983	64858 0.103533	0.000978	0.261293
23356 0.000819	0.934156	0.010192	38158 0.002158	0.000123	2.111365	79110 0.086497	0.005532	0.167866
66824 -0.010162	0.766400	0.256823	29240 0.001085	0.000026	2.111365	67668 -0.076927	0.000385	0.266342
61360 0.000294	0.766400	0.256823	44542 0.000499	0.000021	2.096327	20110 0.072809	0.001017	1.975357
49259 0.000400	0.668038	0.075657	67003 -0.001132	0.000028	2.096327	44999 0.069998	0.000165	0.287348
75923 0.003050	0.646212	0.256235	54467 0.001745	0.000029	2.079454	2639 -0.067392	0.000255	0.266054
55562 0.000909	0.590456	0.329868	47212 0.001172	0.000070	2.062748	39887 0.066499	0.001030	0.366101
42312 -0.009434	0.552752	0.241997	26564 0.000023	0.000012	2.033972	13618 0.062075	0.005553	0.275115
57754 -0.005403	0.495919	0.195242	47761 -0.001843	0.000002	2.033972	12918 0.061849	0.000041	0.342883
44822 -0.008632	0.482540	0.153178	34264 0.000497	0.000545	2.033959	9598 0.061738	0.000444	0.275115
3120 -0.000970	0.482540	0.153178	27580 0.000006	0.000018	2.002058	39321 0.061128	0.003265	0.389240
41731 -0.000629	0.464671	0.210210	63351 -0.002346	0.000249	2.002058	70982 0.055106	0.000052	0.350297
13238 -0.002282	0.444112	0.214369	20110 0.072809	0.001017	1.975357	52409 -0.054187	0.005385	0.256189
37602 0.000695	0.438984	0.372122	43287 0.001387	0.000015	1.974118	52611 0.053254	0.022087	0.116808

Methodology

K-Fold Cross Validation

- Outliers detected earlier may have been due to errors in the data, or to significant noise. Regardless, this argues for use of a method that reduces the influence of extreme observations. There are several options but I chose use of an MAE metric (as opposed to the perhaps more common MSE metric) in the estimation since this purportedly reduces the influence of outliers.
- To further reduce noise, I used K-fold cross validation, a common AI technique. I used 100 folds, which generated 100 estimates for both the parameters of each model and the associated MAE.
- Using these empirical distributions, I simply took the average parameter value across all folds as my final parameter estimate for each model, and similarly for the MAEs.

Estimation Results: MAE Summary by Model

To my eye, the mean MAE as well as the percentiles are broadly similar across the four models. This suggests other criteria should be used to decide among the models. I elected to base my choice of model on the cost estimates that resulted from each of the models, as described on the pages that follow.

MAE Descriptive Statistics:								
	Model_a	Model_b	Model_c	Model_d				
Mean	0.00194972	0.00195738	0.00194607	0.0019571				
Std Dev	0.000146237	0.000152598	0.000146406	0.00015947				
Skewness	-0.196029	0.0273281	-0.190284	0.439901				
Kurtosis	0.663422	0.86455	0.679226	2.37691				
Min	0.00149957	0.00150324	0.00149835	0.00150184				
1st Pctl	0.0016065	0.00161237	0.0016031	0.00160576				
5th Pctl	0.00172661	0.00173563	0.00171862	0.00173144				
25th Pctl	0.00185468	0.00185906	0.00185034	0.00185464				
Median	0.00196288	0.00196653	0.00195891	0.00196436				
75th Pctl	0.0020296	0.0020338	0.00202626	0.00203309				
95th Pctl	0.00218329	0.00219919	0.00218441	0.00219659				
99th Pctl	0.00233402	0.00234439	0.00232645	0.00234528				
99.9th Pctl	0.00233674	0.00240225	0.00233887	0.00258058				
Max	0.00233704	0.00240867	0.00234025	0.00260673				

Estimation Results: Parameter and Cost Stats for Model (a)

The mean trade size in our training sample is 0.32%. The mean cost estimate is 1.36758 bps.

(a)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i^{0.5} + \epsilon_i$$

Parameter Descriptive Statistics:

rarameter	bescriptive sta	CISCICS.	Descriptive Statis	stics for Simulated Cos	ts (First 80,000 Rows):
	Model_a-beta0	Model_a-beta1		Model a	
Mean	2.84842e-05	0.00311749	Mean		
Std Dev	2.94743e-07	1.85779e-05	Std Dev	0.000136758	
Skewness	-0.216524	0.718681	Skewness	0.00014022	
Kurtosis	-0.484347	-0.183023	Kurtosis	17.1197	
Min	2.77773e-05	0.00308766	Min	1462.92	
1st Pctl	2.7866e-05	0.0030883	1st Pctl	2.84842e-05	
5th Pctl	2.79624e-05	0.0030933	5th Pctl	3.18272e-05	
25th Pctl	2.82737e-05	0.00310347	25th Pctl	3.70842e-05	
Median	2.85245e-05	0.00311428	Median	5.64201e-05	
75th Pctl	2.86444e-05	0.00313091	75th Pctl	9.43077e-05	
95th Pctl	2.89843e-05		95th Pctl	0.000167568	
99th Pctl	2.90378e-05		99th Pctl	0.000377203	
99.9th Pct			99.9th Pctl	0.000645832	
Max	2.90461e-05			0.0011864	
TIUX	2.554010 05	0.00317230	Max	0.0146508	•

Descriptive Ctatistics for Cimulated Costs (First 00 000 Days).

Estimation Results: Parameter and Cost Stats for Model (b)

The mean trade size in our training sample is 0.32%. The mean cost estimate is 1.06992 bps.

(b)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i + \epsilon_i$$

Parameter Descriptive Statistics:

Mean Std Dev Skewness Kurtosis Min 1st Pctl 5th Pctl 25th Pctl	Model_b-beta0 9.04203e-05 9.83486e-07 -8.43669 77.0354 8.11188e-05 8.96478e-05 8.99397e-05 9.03144e-05	Model_b-beta1 0.00513173 0.000699042 9.56292 91.2593 0.00483764 0.00489928 0.00491034 0.00504051
Median	9.04785e-05	0.00506421
75th Pctl	9.07583e-05 9.09879e-05	0.00509945 0.00524212
95th Pctl 99th Pctl	9.10115e-05	0.00555969
99.9th Pctl	9.1133e-05	0.0113735
Max	9.11465e-05	0.0120195

Descriptive Statistics for Simulated Costs (First 80,000 Rows):

	Model b
Mean	0.000106992
Std Dev	0.000404784
Skewness	271.251
Kurtosis	75596.3
Min	9.04203e-05
1st Pctl	9.04262e-05
5th Pctl	9.04594e-05
25th Pctl	9.08324e-05
Median	9.27081e-05
75th Pctl	0.000100635
95th Pctl	0.000154631
99th Pctl	0.00029166
99.9th Pctl	0.000798378
Max	0.112988

Estimation Results: Parameter and Cost Stats for Model (c)

The mean trade size in our training sample is 0.32%. The mean volatility is 24.1%. The mean cost estimate is 1.65777 bps.

(c)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i^{0.5} + \beta_2 Volatility_i + \beta_3 Volatility_i \times TradeSize_i^{0.5} + \epsilon_i$$

Parameter	Descriptive	Statistics:			Descriptive Statistics for	Simulated Costs	(First 80	,000 Rows):
	Model_c-beta0	Model_c-beta1	Model_c-beta2	Model_c-beta3		Model c		
Mean	2.34391e-05	0.000684954	-4.6069e-06	0.0159254	Mean	0.000165777		
Std Dev	3.72812e-07	1.66885e-05	2.18086e-06	0.000148416	Std Dev	0.000198432		
Skewness	-0.414752	-0.0180413	0.608437	-0.26876	Skewness	14,9532		
Kurtosis	-0.293138	-0.97179	0.0563102	-0.687664	Kurtosis	1015.28		
Min	2.25201e-05	0.000657888	-8.51722e-06	0.015595	Min	2.03017e-05		
1st Pctl	2.25371e-05	0.000658187	-8.17602e-06	0.0155978	1st Pctl	2.46644e-05		
5th Pctl	2.27276e-05	0.000659298	-7.61049e-06	0.0156591	5th Pctl	3.16809e-05		
25th Pctl	2.32102e-05	0.000673982	-6.40445e-06	0.015824	25th Pctl	5.72524e-05		
Median	2.35017e-05	0.000685162	-4.89973e-06	0.0159407	Median	0.000105352		
75th Pctl	2.36928e-05	0.000699672	-2.99741e-06	0.0160505	75th Pctl	0.000207402		
95th Pctl	2.39616e-05	0.000709482	-6.08976e-07	0.0161201	95th Pctl	0.000486655		
99th Pctl	2.41353e-05	0.000714893	1.08306e-06	0.0161773	99th Pctl	0.000842002		
99.9th Pctl	2.42298e-05	0.000723844	2.17176e-06	0.0162191	99.9th Pct	0.0019865		
Max	2.42403e-05	0.000724838	2.29272e-06	0.0162238	Max	0.0187006		0

Estimation Results: Parameter and Cost Stats for Model (d)

The mean trade size in our training sample is 0.32%. The mean volatility is 24.1%. The mean cost estimate is 1.25044 bps.

(d)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i + \beta_2 Volatility_i + \beta_3 Volatility_i \times TradeSize_i + \epsilon_i$$

Parameter	Descriptive St	.atistics:			bescriptive statistics for	Sillutated Costs	(11150 00,000 ROWS).
	Model_d-beta0	Model_d-beta1	Model_d-beta2	Model_d-beta3	1	Model_d	
Mean	5.46985e-05	0.000410851	0.000177881	0.0399718	Mean	0.000125044	
Std Dev	5.30144e-07	7.74791e-05	3.53244e-06	0.00557056	Std Dev	0.00068716	
Skewness	-5.781	-8.59895	-5.33082	9.35278	Skewness	268.934	
Kurtosis	46.175	80.5088	40.8954	88.4171	Kurtosis	74726	
Min	5.0264e-05	-0.000329254	0.000149166	0.037023	Min	5.50477e-05	
1st Pctl	5.39747e-05	0.000350677	0.000173408	0.0374345	1st Pctl	5.61288e-05	
5th Pctl	5.42861e-05	0.000395337	0.000174826	0.0382282	5th Pctl	6.12257e-05	
25th Pctl	5.44806e-05	0.000412103	0.000176343	0.0389974	25th Pctl	8.74623e-05	
Median	5.47891e-05	0.000416975	0.00017855	0.0392794	Median	0.000105624	
75th Pctl	5.49123e-05	0.000419341	0.000179792	0.0397175	75th Pctl	0.000131478	
95th Pctl	5.52347e-05	0.000439204	0.000181153	0.0413592	95th Pctl	0.000215369	
99th Pctl	5.53324e-05	0.00048643	0.000181758	0.0455761	99th Pctl	0.000408383	
99.9th Pctl	5.53501e-05	0.000571765	0.000182146	0.0895534	99.9th Pctl	0.0015705	
Max	5.5352e-05	0.000581247	0.000182189	0.0944398	Max	0.191198	
							10

Descriptive Statistics for Simulated Costs (First 80,000 Rows):

Estimation Results: Scatter plots

The scatter plots show the forecasted vs actual cost for each model.

Estimation Results: Illustrative Costs Distributions

The plots illustrate costs for a range of sizes (1st to 99th percentile) and select volatilities (1st, 25th, 50th, 75th and 99th percentiles).

Which model should I choose?

While none stand out, and our results argue primarily for more research, if forced I would choose (c) as the most suitable.

- It achieved the lowest MAE (though all four models were very close).
- It yields the largest costs for large trades with high volatility, which seems prudent.

(c)
$$Cost_i = \beta_0 + \beta_1 TradeSize_i^{0.5} + \beta_2 Volatility_i + \beta_3 Volatility_i \times TradeSize_i^{0.5} + \epsilon_i$$

Prompt Questions 1 and 2

1) Which value of p (0.5 or 1.0) fits the data better? How would you quantify the difference between the two?

Models (a) and (c) have p set to 0.5, and their MAEs are consistently lower than those of (b) and (d), which have p set to 1. Therefore, according to our chosen metric, they better fit the data.

(2) Is including volatility in the model helpful? If so, how would you quantify the improvement?

Including volatility in the model (in (c) and (d)) appears to have a negligible (though slightly positive) effect on MAE. Therefore including volatility in the model is helpful, albeit only very marginally.

Prompt Questions 3 and 4

3) Using one of the above four models, or any model of your choosing, predict Cost values for the test set. Describe your modeling process. For example, explain how you chose this model and detail any preprocessing or other modeling steps and decisions. How confident are you in its predictions?

My estimation methodology is as previously described. While our results do not appear to be on average unreasonable, we believe more research is required before we could confidently recommended one of the model. In particular, more data would be helpful.

4) Are there additional models, techniques, or data you would like to try if you had more time and access to data?

- 1. The dominant feature of the data is that cost is measured with significant noise in the form of market moves. Removing contemporaneous market moves for the duration of each trade would be helpful.
- 2. Are data from different asset classes? Separating them might be helpful.
- 3. Presumably bid / offer could be measured directly because it is observable. This could help refine cost estimates.
- 4. Should some gross outliers (e.g., a record with a trade size of 22x ADV) be removed?
- 5. Consider using other error metrics (e.g., MSE)