CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 13 DICEMBRE 2016

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1. Dire per quali coppie $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ esistono quoziente e resto e come questi sono definiti (enunciare il relativo teorema).

Dato un campo F, dire per quali coppie $(f,g) \in F[x] \times F[x]$ esistono quoziente e resto e come questi sono definiti (enunciare il relativo teorema).

Determinare quoziente e resto nella divisione (in \mathbb{Z}) di a per b in ciascuno dei seguenti casi:

(i)
$$a = 15$$
, $b = 4$

(ii)
$$a = 15$$
, $b = -4$

(iii)
$$a = -15$$
, $b = 4$

(iv)
$$a = -15$$
, $b = -4$

Esercizio 2. Si consideri l'applicazione $\lambda \colon (f,g) \in \mathbb{Z}_7[x] \times \mathbb{Z}_7[x] \mapsto fg \in \mathbb{Z}_7[x]$ (cioè l'ordinaria moltiplicazione in $\mathbb{Z}_7[x]$).

- (i) λ è iniettiva? λ è suriettiva?
- (ii) Determinare i polinomi $h \in \mathbb{Z}_7[x]$ tali che $\lambda(\bar{5}, h) = x \bar{1}$ (a questo scopo risolvere, esplicitando tutti i passaggi, un'opportuna equazione congruenziale).
- (iii) Calcolare le antimmagini richieste, specificando per ciascuna se è finita o infinita e, se finita, quanti elementi ha:
 - (a) $A := \overleftarrow{\lambda}(\{\bar{0}\});$
 - (b) $B := \overleftarrow{\lambda}(\{x \overline{1}\});$
 - (c) $C_p := \overleftarrow{\lambda}(\{p\})$ per un generico polinomio p irriducibile in $\mathbb{Z}_7[x]$.
- (iv) Detto σ il nucleo di equivalenza di λ , descrivere $[(\bar{1}, x \bar{1})]_{\sigma}$.
- (v) Posto $K = \{s \in \mathbb{Z}_7[x] \mid s(\bar{1}) = \bar{0}\}, \text{ determinare } \overleftarrow{\lambda}(K).$

Esercizio 3. Nel monoide $(\mathbb{N}^{\mathbb{N}}, \circ)$ delle applicazioni di \mathbb{N} in \mathbb{N} (dove \circ è l'ordinaria operazione di composizione tra applicazioni) si consideri la parte

$$F = \{ f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ è biettiva e } f(1) = 1 \}.$$

- (i) Verificare che F è una parte chiusa di $(\mathbb{N}^{\mathbb{N}}, \circ)$.
- (ii) Rispetto all'operazione indotta, F è un gruppo?
- (iii) Dare un esempio di applicazione non identica $g \in F$ e costruirne l'inverso g^{-1} in (F, \circ) .
- (iv) Quante e quali sono le applicazioni $h \in F$ tali che: $(\forall x \in \mathbb{N} \setminus \{2,5\})(h(x) = x)$?

Esercizio 4. Per ogni $n \in \mathbb{N}^* \setminus \{1\}$, scritto n nella forma $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, dove $t \in \mathbb{N}^*$, p_1, p_2, \ldots, p_t sono primi positivi a due a due distinti tra loro e $\alpha_1, \alpha_2, \ldots, \alpha_t \in \mathbb{N}^*$, poniamo:

$$s(n) = p_1^{\alpha_1} + p_2^{\alpha_2} + \dots + p_t^{\alpha_t}$$

e definiamo la relazione d'ordine ρ in $\mathbb{N}^*\smallsetminus\{1\}$ ponendo, per ogni $a,b\in\mathbb{N}^*\smallsetminus\{1\},$

$$a \rho b \iff (a = b \vee s(a) < s(b)).$$

- (i) $(\mathbb{N}^* \setminus \{1\}, \rho)$ è totalmente ordinato?
- (ii) Si determinino in $(\mathbb{N}^* \setminus \{1\}, \rho)$ gli eventuali elementi minimali, massimali, minimo, massimo.
- (iii) Si descrivano in $(\mathbb{N}^* \setminus \{1\}, \rho)$ gli insiemi dei maggioranti e dei minoranti di $X := \{13, 36\}$, e si determinino, se esistono, inf X e sup X.
- (iv) $(\mathbb{N}^* \setminus \{1\}, \rho)$ è un reticolo?
- (v) Sia $S = \{2, 3, 9, 13, 14, 21, 27, 36\}$. Disegnare il diagramma di Hasse di (S, ρ) , decidere se (S, ρ) è un reticolo e, nel caso, se è distributivo, complementato, booleano.