Mixed models workshop

Max Joseph

01/14/2015

Getting files

```
github.com/mbjoseph/hierarchical_models
Download as zipped folder
or
```

 ${\tt git\ clone\ git@github.com/mbjoseph/hierarchical_models}$

Overview

- 1. Why bother?
- 2. Random intercept models
- 3. Random slope and intercept models
- 4. Other resources

Why bother?

{"mixed model" OR "mixed models" OR "mixed modeling"} AND {ecolog* OR evol*}

Why bother?

- increasing use
- broader scope of inference

Why bother?

- increasing use
- broader scope of inference
- improved estimates

Scenario

Estimate group means α_j with data y_{ij} from J groups Tragically unequal sample sizes

Overly optimistic ANOVA

Choose between two models

1. Grand mean/total pooling: $\bar{Y}_{..}$

$$\mu_1 = \mu_2 = \dots = \mu_K$$

Overly optimistic ANOVA

Choose between two models

- 1. Grand mean: $\bar{Y}_{..}$
- 2. Indep. means/no pooling: $\bar{Y}_{j.}$

Overly optimistic ANOVA

```
anova(mod1, mod2)
```

```
## Analysis of Variance Table

##

## Model 1: Y ~ 1

## Model 2: Y ~ 1 + factor(id)

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 186 966.22

## 2 167 727.53 19 238.69 2.8837 0.0001443 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.5
```

What's the deal with small sample sizes n_j ?

Overfitting much?

High parameter to data ratio for small n_j

What else?

Is there an option better than $\bar{y}_{j.}$?

Oddly, yes! When we have > 2 groups (see Stein's paradox)

Conceptualizing a better estimate

Which estimates do we trust least?

What information can improve those estimates?

A better estimate

Mixture of sample and grand mean:

$$\hat{\alpha}_j = \lambda_j \bar{y}_{j.} + (1 - \lambda_j) \bar{y}_{..}$$

$$0 < \lambda < 1$$

A better estimate

Mixture of sample and grand mean:

$$\hat{\alpha}_j = \lambda_j \bar{y}_{j.} + (1 - \lambda_j) \bar{y}_{..}$$

$$0 < \lambda < 1$$

Compromise b/t:

total pooling $(H_0: \lambda = 0)$ & no pooling $(H_A: \lambda = 1)$

Hierarchical models

Random effects impose shrinkage!

$$y_{ij} \sim Normal(\alpha_j, \sigma_y)$$

$$\alpha_j \sim \textit{Normal}(\mu_\alpha, \sigma_\alpha)$$

Hierarchical models

$$y_{ij} \sim Normal(\alpha_j, \sigma_y)$$

$$\alpha_j \sim \mathsf{Normal}(\mu_\alpha, \sigma_\alpha)$$

Amt shrinkage: - information in group j (e.g. n_j) - variance attributable to groups

$$\frac{\sigma_{\alpha}}{\sigma_{\alpha} + \sigma_{y}}$$

Connection to ANOVA

$$y_{ij} \sim Normal(\alpha_j, \sigma_y)$$

$$\alpha_j \sim \textit{Normal}(\mu_\alpha, \sigma_\alpha)$$

$$0 < \sigma_{\alpha} < \infty$$

Compromise b/t - Total pooling: $\sigma_{lpha}=0$

▶ No pooling: $\sigma_{\alpha} = \infty$

Synonyms

- "partial pooling"
- "semi-pooling"
- "hierarchical pooling"
- "shrinkage"
- "borrowing information"
- "borrowing strength (of information)"

Demo

shrinkage.R

Recap

Random effects impose partial pooling

$$y_{ij} \sim Normal(\alpha_j, \sigma_y)$$

$$\alpha_j \sim \mathsf{Normal}(\mu_\alpha, \sigma_\alpha)$$

 $*see\ nba_freethrows.R\ for\ a\ real-world\ example$

Aside

Scope of inference: Observed sites or groups $j\in 1,...,J$ and Unobserved sites or groups $j\in J+1,...$ see prediction.R for more

Mixed effects

Combination of fixed *and* random effects e.g. let's say we study Alot blood parasites

Questions & sampling scenario

Do large-bodied Alots have more blood parasites?

Random sample of n_j individuals at each of J sites.

Demo

Alot example

Other resources

Mixed Effects Models and Extensions in Ecology with R (2009). Zuur, Ieno, Walker, Saveliev and Smith. Springer.

lme4: Mixed-effects modeling with R (2010). Bates, Douglas. Springer.

Generalized linear mixed models: a practical guide for ecology and evolution (2009). Benjamin M. Bolker, et al. TREE.