### Examples

Gravimetric prospecting Forces applied to a unit mass The discrete Fourier transform

#### Linear functions

Systems of linear equations Linear functions Linearization

Matrix-matrix multiplication
Definition
Interpretations





 $\triangleright$   $x_j$  is excess density of voxel j



- $\triangleright$   $x_j$  is excess density of voxel j
- $\triangleright$   $y_i$  is gravity anomaly at location i



- $\triangleright$   $x_i$  is excess density of voxel j
- $\triangleright$   $y_i$  is gravity anomaly at location i
- lackbox  $\theta_{ij}$  is angle from location i to voxel j



- $\triangleright$   $x_j$  is excess density of voxel j
- $\triangleright$   $y_i$  is gravity anomaly at location i
- lacktriangleright  $\theta_{ij}$  is angle from location i to voxel j
- $ightharpoonup d_{ij}$  is distance from location i to voxel j



- $\triangleright$   $x_i$  is excess density of voxel j
- $\triangleright$   $y_i$  is gravity anomaly at location i
- lacktriangleright  $\theta_{ij}$  is angle from location i to voxel j
- $ightharpoonup d_{ij}$  is distance from location i to voxel j
- Newton's law of gravitation:

$$y_i = \sum_{i=1}^n \frac{G\cos(\theta_{ij})}{d_{ij}^2} x_j, \qquad i = 1, \dots, m$$

#### an example



#### estimated density with exact measurements



estimated density with noisy measurements ( $\pm 0.01\%$ )



Linear functions

#### estimated density with noisy measurements and regularization







unit mass initially at rest at the origin



- unit mass initially at rest at the origin
- ▶ force f(t) applied for  $0 \le t \le n$



- unit mass initially at rest at the origin
- ▶ force f(t) applied for  $0 \le t \le n$
- ▶  $f(t) = x_j$  for  $j 1 \le t < j$ , j = 1, ..., n



- unit mass initially at rest at the origin
- ▶ force f(t) applied for  $0 \le t \le n$
- ►  $f(t) = x_j$  for  $j 1 \le t < j$ , j = 1, ..., n
- final position:

$$y_1 = (n - \frac{1}{2})x_1 + (n - \frac{3}{2})x_2 + \cdots + \frac{1}{2}x_n$$



- unit mass initially at rest at the origin
- ▶ force f(t) applied for  $0 \le t \le n$
- ▶  $f(t) = x_j$  for  $j 1 \le t < j$ , j = 1, ..., n
- final position:

$$y_1 = (n - \frac{1}{2})x_1 + (n - \frac{3}{2})x_2 + \cdots + \frac{1}{2}x_n$$

▶ final velocity:

$$y_2 = x_1 + x_2 + \cdots + x_n$$

## A noisy signal

#### a sum of two sinusoids



# A noisy signal

a sum of two sinusoids corrupted by noise



# Approximate Fourier transform

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2\pi i f t} dt$$

# Approximate Fourier transform

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2\pi i f t} dt$$
  
 $\approx \int_{0}^{1} x(t)e^{-2\pi i f t} dt$ 

# Approximate Fourier transform

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2\pi i f t} dt$$

$$\approx \int_{0}^{1} x(t)e^{-2\pi i f t} dt$$

$$\approx \frac{1}{N} \sum_{n=0}^{N-1} x\left(\frac{n}{N}\right) e^{-2\pi i f n/N}$$

#### The discrete Fourier transform

define the discrete Fourier transform of a signal  $x_0, \ldots, x_{N-1}$ :

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}, \qquad k = 0, \dots, N-1$$

#### The discrete Fourier transform

define the discrete Fourier transform of a signal  $x_0, \ldots, x_{N-1}$ :

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}, \qquad k = 0, \dots, N-1$$

we can also express these equations as

$$X_0 = e^{-2\pi i(0)(0)/N} x_0 + \dots + e^{-2\pi i(0)(N-1)/N} x_{N-1}$$

$$\vdots$$

$$X_k = e^{-2\pi i(N-1)(0)/N} x_0 + \dots + e^{-2\pi i(N-1)(N-1)/N} x_{N-1}$$

## Filtering in the frequency domain

### DFT of the uncorrupted signal



# Filtering in the frequency domain

### DFT of the noisy signal



# Filtering in the frequency domain

## apply threshold filter



## The denoised signal

#### applying the inverse DFT gives



#### Examples

Gravimetric prospecting
Forces applied to a unit mass
The discrete Fourier transform

#### Linear functions

Systems of linear equations Linear functions Linearization

Matrix-matrix multiplication Definition Interpretations

## Systems of linear equations

system of linear equations:

$$y_1 = A_{11} x_1 + \cdots + A_{1n} x_n$$
  
 $\vdots$   
 $y_m = A_{m1} x_1 + \cdots + A_{mn} x_n$ 

## Systems of linear equations

system of linear equations:

$$y_1 = A_{11} x_1 + \cdots + A_{1n} x_n$$
  
 $\vdots$   
 $y_m = A_{m1} x_1 + \cdots + A_{mn} x_n$ 

matrix representation:

$$y = Ax$$

## Systems of linear equations

system of linear equations:

$$y_1 = A_{11} x_1 + \cdots + A_{1n} x_n$$
  
 $\vdots$   
 $y_m = A_{m1} x_1 + \cdots + A_{mn} x_n$ 

matrix representation:

$$y = Ax$$

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \qquad A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

right side of system defines matrix-vector multiplication

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

 $\triangleright$   $y_i$  is the *i*th measurement (known)

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

- ▶ y<sub>i</sub> is the ith measurement (known)
- $\triangleright$   $x_j$  is the jth parameter (unknown)

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

- ▶ y<sub>i</sub> is the ith measurement (known)
- $\triangleright x_i$  is the *j*th parameter (unknown)
- ► *A<sub>ij</sub>* is the sensitivity of *i*th sensor to *j*th parameter

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

- y<sub>i</sub> is the ith measurement (known)
- $\triangleright x_i$  is the *j*th parameter (unknown)
- ► A<sub>ij</sub> is the sensitivity of *i*th sensor to *j*th parameter
- ▶ ith row of A associated with ith measurement

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

- ▶ y<sub>i</sub> is the ith measurement (known)
- $\triangleright$   $x_i$  is the *j*th parameter (unknown)
- $\triangleright$   $A_{ij}$  is the sensitivity of *i*th sensor to *j*th parameter
- ▶ *i*th row of *A* associated with *i*th measurement sample problems:
  - given y, find an x such that y = Ax

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

- ▶ y<sub>i</sub> is the ith measurement (known)
- $\triangleright$   $x_i$  is the *j*th parameter (unknown)
- ► A<sub>ij</sub> is the sensitivity of *i*th sensor to *j*th parameter
- ▶ *i*th row of *A* associated with *i*th measurement sample problems:
  - given y, find an x such that y = Ax
  - given y, find all x such that y = Ax

$$y_i = \sum_{j=1}^n A_{ij} x_j = A_{i*} x$$

- ▶ y<sub>i</sub> is the ith measurement (known)
- $\triangleright x_i$  is the *j*th parameter (unknown)
- ► A<sub>ij</sub> is the sensitivity of *i*th sensor to *j*th parameter
- ▶ *i*th row of *A* associated with *i*th measurement sample problems:
  - given y, find an x such that y = Ax
  - given y, find all x such that y = Ax
  - given y, find an x such that  $y \approx Ax$

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

x is the vector of inputs or design parameters (to be chosen)

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

- ► x is the vector of inputs or design parameters (to be chosen)
- ▶ *y* is the vector of outputs or results (given)

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

- x is the vector of inputs or design parameters (to be chosen)
- y is the vector of outputs or results (given)
- ▶  $A_{*j}$  is effect of *j*th input on vector of outputs

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

- x is the vector of inputs or design parameters (to be chosen)
- y is the vector of outputs or results (given)
- $ightharpoonup A_{*j}$  is effect of jth input on vector of outputs
- ▶ jth column of A associated with jth input

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

- x is the vector of inputs or design parameters (to be chosen)
- y is the vector of outputs or results (given)
- $ightharpoonup A_{*j}$  is effect of jth input on vector of outputs
- ▶ *j*th column of *A* associated with *j*th input sample problems:
  - imple problems.
  - given  $y_{des}$ , find an x such that  $Ax = y_{des}$

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

- x is the vector of inputs or design parameters (to be chosen)
- y is the vector of outputs or results (given)
- $ightharpoonup A_{*j}$  is effect of jth input on vector of outputs
- ▶ jth column of A associated with jth input

## sample problems:

- given  $y_{des}$ , find an x such that  $Ax = y_{des}$
- given  $y_{des}$ , find all x such that  $Ax = y_{des}$

$$y = \sum_{j=1}^{n} x_j A_{*j}$$

- ► x is the vector of inputs or design parameters (to be chosen)
- y is the vector of outputs or results (given)
- $ightharpoonup A_{*j}$  is effect of jth input on vector of outputs
- ▶ jth column of A associated with jth input

#### sample problems:

- given  $y_{des}$ , find an x such that  $Ax = y_{des}$
- given  $y_{des}$ , find all x such that  $Ax = y_{des}$
- given  $y_{des}$ , find the "smallest" x such that  $Ax = y_{des}$

▶ jth standard basis vector in  $\mathbb{R}^n$  is vector  $e_i \in \mathbb{R}^n$  such that

$$(e_j)_i = \delta_{ij} = \begin{cases} 1 & i = j, \\ 0 & \text{otherwise} \end{cases}$$

▶ jth standard basis vector in  $\mathbb{R}^n$  is vector  $e_j \in \mathbb{R}^n$  such that

$$(e_j)_i = \delta_{ij} = egin{cases} 1 & i = j, \ 0 & ext{otherwise} \end{cases}$$

lacksquare  $\delta_{ij}$  (Kronecker delta) often useful in formulating problems

▶ jth standard basis vector in  $\mathbb{R}^n$  is vector  $e_j \in \mathbb{R}^n$  such that

$$(e_j)_i = \delta_{ij} = \begin{cases} 1 & i = j, \\ 0 & \text{otherwise} \end{cases}$$

- $ightharpoonup \delta_{ij}$  (Kronecker delta) often useful in formulating problems
- standard basis vectors extract slices of a matrix:

$$Ae_j = A_{*j}, \qquad e_i^\mathsf{T} A = A_{i*}, \qquad e_i^\mathsf{T} Ae_j = A_{ij}$$

▶ jth standard basis vector in  $\mathbb{R}^n$  is vector  $e_i \in \mathbb{R}^n$  such that

$$(e_j)_i = \delta_{ij} = \begin{cases} 1 & i = j, \\ 0 & \text{otherwise} \end{cases}$$

- lacktriangleright  $\delta_{ij}$  (Kronecker delta) often useful in formulating problems
- standard basis vectors extract slices of a matrix:

$$Ae_j = A_{*j}, \qquad e_i^\mathsf{T} A = A_{i*}, \qquad e_i^\mathsf{T} Ae_j = A_{ij}$$

MATLAB: sparse(j,1,1,n,1)

#### Linear functions

a function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is *linear* if it is

## Linear functions

- a function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is *linear* if it is
  - ▶ additive: f(x + y) = f(x) + f(y) for all  $x, y \in \mathbb{R}^n$

#### Linear functions

- a function  $f: \mathbb{R}^n \to \mathbb{R}^m$  is *linear* if it is
  - ▶ additive: f(x + y) = f(x) + f(y) for all  $x, y \in \mathbb{R}^n$
  - ▶ homogeneous:  $f(\alpha x) = \alpha f(x)$  for all  $\alpha \in \mathbb{R}$  and  $x \in \mathbb{R}^n$

# Superposition principle



# Superposition principle



# Superposition principle



# Matrix multiplication function

- ▶ if f(x) = Ax for some matrix  $A \in \mathbb{R}^{m \times n}$ ,
  - ▶ then  $f: \mathbb{R}^n \to \mathbb{R}^m$  is linear

# Matrix multiplication function

- ▶ if f(x) = Ax for some matrix  $A \in \mathbb{R}^{m \times n}$ ,
  - ▶ then  $f: \mathbb{R}^n \to \mathbb{R}^m$  is linear
- ▶ conversely: if  $f: \mathbb{R}^n \to \mathbb{R}^m$  is linear,
  - ▶ then there is a matrix  $A \in \mathbb{R}^{m \times n}$  such that f(x) = Ax
  - the matrix A is unique

# Matrix multiplication function

- if f(x) = Ax for some matrix  $A \in \mathbb{R}^{m \times n}$ ,
  - ▶ then  $f: \mathbb{R}^n \to \mathbb{R}^m$  is linear
- ▶ conversely: if  $f: \mathbb{R}^n \to \mathbb{R}^m$  is linear,
  - ▶ then there is a matrix  $A \in \mathbb{R}^{m \times n}$  such that f(x) = Ax
  - the matrix A is unique
- matrix is concrete representation of abstract linear function

if 
$$f:\mathbb{R}^n \to \mathbb{R}^m$$
 is differentiable at  $x_0 \in \mathbb{R}^n$ , then 
$$f(x) \text{ is very near } f(x_0) + Df(x_0)(x-x_0)$$

if 
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 is differentiable at  $x_0 \in \mathbb{R}^n$ , then

$$f(x)$$
 is very near  $f(x_0) + Df(x_0)(x - x_0)$ 

whenever

$$x$$
 is near  $x_0$ 

if  $f: \mathbb{R}^n \to \mathbb{R}^m$  is differentiable at  $x_0 \in \mathbb{R}^n$ , then

$$f(x)$$
 is very near  $f(x_0) + Df(x_0)(x - x_0)$ 

whenever

$$x$$
 is near  $x_0$ 

where

$$\left[Df(x_0)\right]_{ij} = \left.\frac{\partial f_i}{\partial x_j}\right|_{x=x_0}$$

is the derivative (Jacobian) matrix

define the deviations

$$\delta x = x - x_0,$$
  
$$\delta y = f(x) - f(x_0)$$

define the deviations

$$\delta x = x - x_0,$$
  
$$\delta y = f(x) - f(x_0)$$

small deviations are (approximately) related by a linear function:

$$\delta y\approx Df(x_0)\delta x$$





 $\triangleright$  (x, y) is an unknown location in the plane



- $\triangleright$  (x, y) is an unknown location in the plane
- $(p_i, q_i)$  are known locations of beacons for  $i = 1, \ldots, n$



- $\triangleright$  (x, y) is an unknown location in the plane
- $(p_i, q_i)$  are known locations of beacons for  $i = 1, \ldots, n$
- measure distance  $\rho_i$  between (x, y) and beacon i

▶  $\rho \in \mathbb{R}^4$  is a nonlinear function of  $(x, y) \in \mathbb{R}^2$ :

$$\rho_i(x,y) = \sqrt{(x-p_i)^2 + (y-q_i)^2}$$

▶  $\rho \in \mathbb{R}^4$  is a nonlinear function of  $(x, y) \in \mathbb{R}^2$ :

$$\rho_i(x,y) = \sqrt{(x-p_i)^2 + (y-q_i)^2}$$

linearize around  $(x_0, y_0)$ :

$$\delta \rho pprox A \begin{bmatrix} \delta x \\ \delta y \end{bmatrix},$$

where

$$A_{i1} = \frac{x_0 - p_i}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}},$$

$$A_{i2} = \frac{y_0 - q_i}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}$$

#### Examples

Gravimetric prospecting Forces applied to a unit mass The discrete Fourier transform

#### Linear functions

Systems of linear equations Linear functions Linearization

#### Matrix-matrix multiplication Definition Interpretations

▶ suppose  $A \in \mathbb{R}^{m \times p}$  and  $B \in \mathbb{R}^{p \times n}$ 

- ▶ suppose  $A \in \mathbb{R}^{m \times p}$  and  $B \in \mathbb{R}^{p \times n}$
- matrices represent linear functions
  - $f: \mathbb{R}^p \to \mathbb{R}^m$  such that f(z) = Az
  - $g: \mathbb{R}^n \to \mathbb{R}^p$  such that g(x) = Bx

- ▶ suppose  $A \in \mathbb{R}^{m \times p}$  and  $B \in \mathbb{R}^{p \times n}$
- matrices represent linear functions
  - $f: \mathbb{R}^p \to \mathbb{R}^m$  such that f(z) = Az
  - $g: \mathbb{R}^n \to \mathbb{R}^p$  such that g(x) = Bx
- ▶ define matrix product AB as matrix representation of  $f \circ g$

$$\blacktriangleright \text{ let } z = g(x) \text{ and } y = f(z)$$

- definition of matrix-vector multiplication:

$$y_i = \sum_{k=1}^{p} A_{ik} z_k, \qquad z_k = \sum_{j=1}^{n} B_{kj} x_j$$

- definition of matrix-vector multiplication:

$$y_i = \sum_{k=1}^{p} A_{ik} z_k, \qquad z_k = \sum_{j=1}^{n} B_{kj} x_j$$

combining these expressions gives

$$y_i = \sum_{k=1}^{p} A_{ik} \left( \sum_{j=1}^{n} B_{kj} x_j \right) = \sum_{j=1}^{n} \left( \sum_{k=1}^{p} A_{ik} B_{kj} \right) x_j$$

- definition of matrix-vector multiplication:

$$y_i = \sum_{k=1}^{p} A_{ik} z_k, \qquad z_k = \sum_{j=1}^{n} B_{kj} x_j$$

combining these expressions gives

$$y_i = \sum_{k=1}^p A_{ik} \left( \sum_{j=1}^n B_{kj} x_j \right) = \sum_{j=1}^n \left( \sum_{k=1}^p A_{ik} B_{kj} \right) x_j$$

therefore,

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$$

#### Entries of matrix product

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i*} B_{*j}$$

#### Entries of matrix product

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i*} B_{*j}$$

entries of AB are inner products of rows of A, columns of B

#### Entries of matrix product

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i*} B_{*j}$$

- entries of AB are inner products of rows of A, columns of B
- $\blacktriangleright$  (i,j) entry is inner product of *i*th row of *A*, *j*th column of *B*

$$(AB)_{i*} = \sum_{k=1}^{p} A_{ik} B_{k*} = A_{i*} B$$

$$(AB)_{i*} = \sum_{k=1}^{p} A_{ik} B_{k*} = A_{i*} B$$

rows of AB are linear combinations of rows of B

$$(AB)_{i*} = \sum_{k=1}^{p} A_{ik} B_{k*} = A_{i*} B$$

- rows of AB are linear combinations of rows of B
- ith row of A gives coefficients for ith row of AB

$$(AB)_{i*} = \sum_{k=1}^{p} A_{ik} B_{k*} = A_{i*} B$$

- rows of AB are linear combinations of rows of B
- ith row of A gives coefficients for ith row of AB
- ▶ ith row of AB is ith row of A times B

$$(AB)_{i*} = \sum_{k=1}^{p} A_{ik} B_{k*} = A_{i*} B$$

- rows of AB are linear combinations of rows of B
- ith row of A gives coefficients for ith row of AB
- ▶ ith row of AB is ith row of A times B
- blending measurements

$$(AB)_{*j} = \sum_{k=1}^{p} A_{*k} B_{kj} = AB_{*j}$$

$$(AB)_{*j} = \sum_{k=1}^{p} A_{*k} B_{kj} = AB_{*j}$$

columns of AB are linear combinations of columns of A

$$(AB)_{*j} = \sum_{k=1}^{p} A_{*k} B_{kj} = AB_{*j}$$

- columns of AB are linear combinations of columns of A
- ▶ jth column of B gives coefficients for jth column of AB

$$(AB)_{*j} = \sum_{k=1}^{p} A_{*k} B_{kj} = AB_{*j}$$

- columns of AB are linear combinations of columns of A
- ▶ jth column of B gives coefficients for jth column of AB
- ▶ jth column of AB is A times jth column of B

$$(AB)_{*j} = \sum_{k=1}^{p} A_{*k} B_{kj} = AB_{*j}$$

- columns of AB are linear combinations of columns of A
- ▶ jth column of B gives coefficients for jth column of AB
- ▶ jth column of AB is A times jth column of B
- effects of secondary inputs

# Signal flow



#### Signal flow



▶  $A_{ik}B_{kj}$  is gain from input  $x_i$  to output  $y_j$  through  $z_k$ 

#### Signal flow



- ▶  $A_{ik}B_{kj}$  is gain from input  $x_i$  to output  $y_i$  through  $z_k$
- $(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$  is total gain from input  $x_i$  to output  $y_j$