Calculus Videos

Megan Martinez

March 10, 2017

Contents

Ι	Rate of change at a point	3
	Rate of change at a point	3
	Rate of change at a point	4
	Rate of change at a point	5
	Rate of change at a point	6
	Derivatives	7
	Derivatives	8
II	Curve Sketching	9
	Curve Sketching	9
	Curve Sketching	10
	Curve Sketching	11
	Curve Sketching	12
	Curve Sketching	13
	Curve Sketching	14
II	I The Power Rule	15
	The Power Rule	15
	The Power Rule	16
	Using Basic Derivative Rules	17
	Using Basic Derivative Rules	18
IJ	W More Derivative Rules	19
	More Derivative Rules	19
	The Chain Rule	20
	The Chain Rule	21
	The Chain Rule	22

Part I

Rate of change at a point Rate of change at a point

Introduction

On the next pages, you will watch videos and use interactives, and will then answer some questions about the video.

On the bottom of each screen you will see next and back buttons. Continue until the pages say stop, after the google form.

Rate of change at a point

 $Video:\ Approximating\ Instantaneous\ Rates\ of\ Change$

YouTube link: https://www.youtube.com/watch?v=M2Cpa3FxfUU

Rate of change at a point

 $Interactive:\ Approximating\ Instantaneous\ Rates\ of\ Change$

The embedded image on this page is currently broken and being fixed. In the meantime, please go to https://geogebra.org/m/afsEHCg4.

 ${\rm Geogebra\ link:\ https://geogebra.org/m/afsEHCg4}$

Rate of change at a point

 $Video:\ Over-\ and\ Under-estimates$

YouTube link: https://www.youtube.com/watch?v=1w9MxqF6JJc

Derivatives

Questions

 $Google\ Form\ link:\ https://docs.google.com/forms/d/e/1FAIpQLSfZUo0j1KZELVxCw75TgQg_XcUs181gvjseGsELIpsf98mGSw$

Derivatives

Stop

This is the end of the Rate of change at a point section.

Part II Curve Sketching Curve Sketching

Introduction

On the next page, you will watch a video on graphing derivative functions and will then answer some questions about the video.

Video

YouTube link: https://www.youtube.com/watch?v=XbiKMDjFc8w

Question

Try it out! What will the derivative of this function look like?

Answer

Should be something similar to:

Questions

 $Google\ Form\ link:\ \texttt{https://docs.google.com/forms/d/e/1FAIpQLSeJYFkuGEg8V7zBGTA-emOhijN-eXOb8U2-emOhijN-exOb8U2-emOhijN-emOhijN-exOb8U2-emOhijN-emOhijN-emOhijN-emOhijN-emOhijN-emOhijN-emOhijN-emOhijN-e$

Stop

This is the end of the curve sketching section.

Part III The Power Rule The Power Rule

Introduction

On the next pages, you will watch a video about the power rule and will then answer some questions about the video.

The Power Rule

Video: The Power Rule

YouTube link: https://www.youtube.com/watch?v=kTxhvyGOwGO

Using Basic Derivative Rules

Questions		

Google Form link: https://docs.google.com/forms/d/e/1FAIpQLScReDMv7yMqgBjb70KR79339J1qbxIkjw0EF9NDCZQupGBQ

Using Basic Derivative Rules

Stop

This is the end of the power rule section.

Part IV

More Derivative Rules More Derivative Rules

Introduction

On the next pages, you will watch two videos about the chain rule and will then answer some questions about the video.

- The goals of these videos are to explain when you would need to use the chain rule and how to use the chain rule to find derivatives
- You use the chain rule when you have two composed functions one function "inside" another, like f(g(x))
- To find the derivative, you do f'(g(x)) * g'(x)
- The reason for doing this is because the derivative of f doesnt just depend on x, but rather on the value of g(x). So when g(x) changes quickly, it affects how quickly f(g(x)) changes

The Chain Rule

 $Video:\ Introduction$

YouTube link: https://www.youtube.com/watch?v=GHlKQGhWSSA

The Chain Rule

Questions

 $Google\ Form\ link:\ \texttt{https://docs.google.com/forms/d/e/1FAIpQLSdV_TKpsDHqljRzJq-0Nm5gne6q4Xwh33URAGE} \ A$

The Chain Rule

Stop

This is the end of the chain rule section.