Progetto di Controlli Automatici T, gruppo A Progetto Tipologia C - Traccia 1

Controllo del motore di un'automobile

Andrea Belano Gabriele Ceccolini Filippo Loddo Simone Merenda

2021/2022

Indice

0		Introduzione e specifiche			
	0.1	Dinamica del sistema	3		
1	Line	earizzazione del sistema	4		
	1.1	Dinamica in forma di stato	4		
	1.2	Ricerca coppia di equilibrio	Ą		
	1.3	Linearizzazione del sistema non lineare nell'equilibrio			
2	Fun	zione di trasferimento	6		
	2.1	Impostazione equazione di trasferimento	6		
	2.2	Calcolo di G(s)			
3	Mappatura delle specifiche				
	3.1	Specifiche da rispettare	7		
	3.2	Errore a regime	7		
	3.3	Sovraelongazione			
	3.4	Tempo di assestamento			
	3.5	Attenuazione deidisturbi di uscita			
	3.6	Attenuazione deidisturbi di misura			
4					
	4.1	Sintesi del regolatore statico	Ć		
	4.2	Sintesi del regolatore dinamico	Ć		
5	Tes	t del regolatore sul sistema linearizzato	10		
6	Tes	Test del regolatore sul sistema non lineare			

0 Introduzione e specifiche

Si consideri la modellazione di un motore a scoppio con una massa d'aria nel collettore di aspirazione del pistone pari a m(t) e una velocità angolare dell'albero di trasmissione pari a $\omega(t)$.

0.1 Dinamica del sistema

Consideriamo la dinamica del sistema composta dalle seguenti equazioni differenziali:

$$\dot{m} = \gamma_1 (1 - \cos(\beta \theta - \psi)) - \gamma_2 \omega m \tag{1a}$$

$$J\dot{\omega} = \delta_1 m - \delta_2 \omega - \delta_3 \omega^3 \tag{1b}$$

Dove:

- \bullet $\theta(t)$ rappresenta l'angolo di accelerazione
- $\gamma_1(1-\cos(\beta\theta-\psi))$ modella la caratteristica intrinseca della valvola.
- \bullet J rappresenta il momento d'inerzia equivalente del sistema automobile.
- $\delta_1 m$ descrive la coppia trasmessa all'albero motore.
- $\delta_2 \omega$, con modella l'attrito nel motore.
- $\delta_3 \omega^2$ descrive la resistenza dell'aria.

Con $\gamma_1, \gamma_2, \psi, J, \delta_1, \delta_2, \delta_3 \in R$.

Si suppone inoltre di potere misurare la velocità angolare dell'albero di trasmissione $\omega(t)$.

Figura 1: Schema illustrativo della dinamica del motore.

1 Linearizzazione del sistema

1.1 Dinamica in forma di stato

Per prima cosa si vuole portare il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{2a}$$

$$y = h(x, u). (2b)$$

Definiamo la variabile di stato come

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} m \\ \omega \end{pmatrix} \tag{3}$$

Imponiamo θ e ω rispettivamente come variabile d'ingresso e di uscita

$$\theta = u \tag{4a}$$

$$\omega = y \tag{4b}$$

La funzione di stato di f(x) si presenta nella forma

$$y(t) = h(x, u) = x_2(t)$$
(5b)

Notare come la funzione di uscita y(t) dipende solo da x_2 in quanto $y(t) = \omega(t)$.

1.2 Ricerca coppia di equilibrio

A questo punto partendo dal valore di equilibrio della pulsazione ω_e si deve trovare l'intera coppia di equilibrio (x_e, u_e) .

Per fare questo riscriviamo le equazioni (5) sostituendo x_2 con il corrispettivo equilibrio ω_e

$$x_{2e} = \omega_e = 10 \tag{6}$$

Similmente le costanti verranno sostituite con i valori indicati nella tabella

γ_1	0,5		
γ_2	0,1		
β	1,1		
ψ	0,02		
δ_1	5.10^4		
δ_2	0,1		
δ_3	0,01		
J	40		
ω_e	10		

Otteniamo quindi un sistema di due equazioni in due incognite (x_{1e}, u_e)

$$\begin{cases} 0.5(1 - \cos(1.1u_e - 0.02)) - 0.1x_{1e}10 = 0\\ \frac{50 \cdot 10^4}{40}x_{1e} - \frac{0.1}{40}10 - \frac{0.01}{40}10^2 = 0 \end{cases}$$
 (7)

Risolvendo il sistema otteniamo i valori di equilibrio cercati

$$\begin{cases} x_{1e} = 0,00004 \\ u_e = 0,02968 \end{cases}$$
 (8)

In particolare l'equazione da cui si ricava la u_e

$$0, 5 - 0, 5\cos(1, 1u_e - 0, 02) - \frac{1}{25000} = 0$$
(9)

ha due radici, ingorando le ripetizioni successive, ha due radici, una in $u_e = 0,00668$ e l'altra in $u_e = 0,02968$. Scegliamo arbitrariamente la radice in $u_e = 0,02968$ in quanto nella linearizzazione è l'unica che dà un guadagno statico positivo.

$$(x_e, u_e) = ((x_{1e} = 0,00004, x_{2e} = 10), u_e = 0,02968))$$
(10)

1.3 Linearizzazione del sistema non lineare nell'equilibrio

Avendo trovato la coppia di equilibrio, procediamo nel linearizzare il sistema non lineare (2), così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{11a}$$

$$\delta y = C\delta x + D\delta u \tag{11b}$$

Per trovare $\delta \dot{x_e}$ si imposta l'equazione alle derivate parziali

$$\delta \dot{x_e} = \frac{\partial f}{\partial x_{u=(0,00004,10)}^{x=(0,00004,10)}} \delta x(t) + \frac{\partial f}{\partial u_{u=(0,00004,10)}^{x=(0,00004,10)}} \delta u(t)$$
(12)

Si calcola la Jacobiana $\frac{\partial f}{\partial x}$

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} -0, 1x_2 & -0, 1x_1 \\ 1250 & -0, 1/40 - 0, 02/40x_2 \end{pmatrix}$$
(13)

Ora calcolando la Jacobiana nell'equilibrio ottengo la matrice A_e

$$A_e = \frac{\partial f}{\partial x} \underset{u=0,02968}{x=(0,00004,10)} = \begin{pmatrix} -1 & 0\\ 1250 & -0,0075 \end{pmatrix}$$
(14)

Similmente si calcola la Jacobiana $\frac{\partial f}{\partial u}$

$$\frac{\partial f}{\partial u} = \begin{pmatrix} \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial u} \end{pmatrix} = \begin{pmatrix} 0, 55\sin(1, 1u - 0, 02) \\ 0 \end{pmatrix} \tag{15}$$

Calcolando la Jacobiana nell'equilibrio si ottiene la matrice B_e

$$B_e = \frac{\partial f}{\partial u}_{\substack{x = (0,00004,10) \\ u = 0.02968}} = \begin{pmatrix} 0,00696 \\ 0 \end{pmatrix}$$
 (16)

Similmente calcolo C_e

$$C_e = \frac{\partial h}{\partial x}_{\substack{x = (0,00004,10) \\ u = 0.02968}} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$
 (17)

La matrice D_e invece è nulla.

$$D_e = 0 \tag{18}$$

2 Funzione di trasferimento

2.1 Impostazione equazione di trasferimento

E' necessario calcolare la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che

$$\delta Y(s) = G(s)\delta U(s) \tag{19}$$

Ricordiamo che la funzione di trasferimento G(s) si può scrivere come

$$G(s) = C(sI - A)^{-1}B + D (20)$$

2.2 Calcolo di G(s)

Si sostituiscono alle matrici A B C e D le matrici calcolate in precedenza

$$G(s) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s+1 & 0.00004 \\ -1250 & s+0.0075 \end{pmatrix}^{-1} \begin{pmatrix} 0.00696 \\ 0 \end{pmatrix} =$$
 (21a)

$$= \frac{\begin{pmatrix} 0 & 1 \end{pmatrix} adj \begin{pmatrix} s+1 & 0.00004 \\ -1250 & s+0,0075 \end{pmatrix} \begin{pmatrix} 0,00696 \\ 0 \end{pmatrix}}{\det \begin{pmatrix} s+1 & 0.00004 \\ -1250 & s+0,0075 \end{pmatrix}}$$
(21b)

Si calcola il determinante al denominatore

$$\det\begin{pmatrix} s+1 & 0.00004\\ -1250 & s+0.0075 \end{pmatrix} = (s+1)(s+0.0075)$$
(21c)

E la matrice aggiunta

$$adj \begin{pmatrix} s+1 & 0.00004 \\ -1250 & s+0.0075 \end{pmatrix} = \begin{pmatrix} s+0.0075 & 1250 \\ 0.00004 & s+1 \end{pmatrix}^{T} = \begin{pmatrix} s+0.0075 & -0.00004 \\ 1250 & s+1 \end{pmatrix}$$
(21d)

Possiamo quindi riscrivere G(s) come

$$G(s) = \frac{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s+0,0075 & 0.00004 \\ 1250 & s+1 \end{pmatrix} \begin{pmatrix} 0,00696 \\ 0 \end{pmatrix}}{s^2+1,0075s+0.0125} =$$
(21e)

$$= \frac{\left(1250 \quad s+1\right) \left(\begin{matrix} 0,00696\\ 0 \end{matrix}\right)}{s^2 + 1,0075s + 0.0125} = \tag{21f}$$

$$=\frac{8,695}{s^2+1,0075s+0.0125}=\tag{21g}$$

Moltiplico numeratore e denominatore per 5 e ottengo la forma finale di G(s)

$$G(s) = \frac{695}{(1.005s + 1)(80s + 1)}$$
 (21h)

3 Mappatura delle specifiche

3.1 Specifiche da rispettare

Il regolatore deve rispettare le seguenti specifiche:

- 1. Errore a regime $|e_{\infty}| \le e^* = 0.1$ in risposta al gradino $w(t) = 15 \cdot 1(t)$
- 2. Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 35^{\circ}$.
- 3. Il sistema può accettare una sovraelongazione percentuale al massimo dell'1% : $S\% \le 1\%$.
- 4. Il tempo di assestamento all' $\epsilon\% = 5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon} = 0.05s$.
- 5. Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.075], deve essere abbattutto di almeno 45 dB.
- 6. Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[5 \cdot 10^3, 5 \cdot 10^6]$, deve essere abbattutto di almeno 45 dB.

3.2 Errore a regime

Per la specifica sull'errore a regime, in risposta ad un gradino $w(t) = W \cdot 1(t)$ questo è dato da $\lim_{s\to 0} \frac{Ws^g}{s^g+u}$.

Nel caso del sistema linearizzato questo vale $\frac{W}{1+\mu}=\frac{15}{1+695}=0.022<0.1$ per cui la specifica è già rispettata.

3.3 Sovraelongazione

Per la specifica sulla sovraelongazione, per l'approssimazione a poli dominanti della funzione di sensitività complementare si ha che, essendo $S\%=100e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}}$, per avere una sovraelongazione percentuale inferiore all'1% bisogna fare in modo che $\xi^*\geq 83$, da cui $M_f=100\xi^*=83$, molto maggiore del vincolo dato precedentemente.

3.4 Tempo di assestamento

Il tempo di assestamento, sempre per l'approssimazione a poli dominanti, è dato da $T_{a,5} \approx 3/\xi \omega_n$ per cui si ottiene $\omega_n \geq 72$

3.5 Attenuazione deidisturbi di uscita

La trasformata della compoenente dell'uscita causata dai disturbi di uscita è data da $Y_d(s) = S(s)D(s)$. Essendo $|S(j\omega)|_{dB} \leq -45dB$ e dato che $|S(j\omega)|_{dB} \approx -|L(j\omega)|_{dB}$ a basse frequenze, segue che $|L(j\omega)|_{dB} \geq 45dB$ per $\omega \leq \omega_{dmax}$.

3.6 Attenuazione deidisturbi di misura

La trasformata della compoenente dell'uscita causata dai disturbi di misura è data da $Y_n(s) = -F(s)N(s)$.

Essendo $|F(j\omega)|_{dB} \le -45dB$ e dato che $F(s) \approx |L(jw)|$ ad alte frequenze, segue che $|L(jw)|_{dB} \le -45dB$ per $\omega \ge \omega_{nmin}$.

4 Sintesi del regolatore

Diagramma di bode del sistema non regolato

Dal diagramma di bode del sistema si nota che la quasi totalità delle specifiche non è rispettata, ad eccezione della specifica sull'attenuazione dei disturbi di misura.

4.1 Sintesi del regolatore statico

Si progetta innanzitutto il regolatore statico in modo da rispettare i vincoli su attenuazione dei disturbi di uscita e sull'errore a regime. In questo caso essendo la specifica sull'errore a regime già rispettata basta inseirre un regolatore statico senza poli e con guadagno statico $\mu_s = 1, 6$, sufficiente a far rispettare la specifica sull'attenuazione dei didturbi di uscita.

Diagramma di bode con regolatore statico

4.2 Sintesi del regolatore dinamico

A questo punto si nota che il sistema è in uno scenario di tipo B in quanto non esistono frequenze di passaggio dell'asse a 0 dB tali che il vincolo sul margine di fase sia rispettato.

È necessario quindi progettare una rete di anticipo, facendo attenzione a non avere un aumento di guadagno tale che il vincono sull'attenuazione dei disturbi di misura non sia più rispettato. La funzione di trasferimento di una rete di anticipo è la seguente

$$R_d(s) = \frac{1+\tau s}{1+\alpha \tau s} \tag{22}$$

Dove α e τ sono dati da

$$M_R^* = 10^{-\frac{|G_e(j\omega_e^*)|dB}{20}} \tag{23a}$$

$$\varphi_R^* = M_f^* - 180^\circ - arg(G_e(j\omega_c^*))$$
 (23b)

$$\tau = \frac{M_R^* - \cos \varphi_R^*}{\omega_c^* \sin \varphi_R^*} \tag{23c}$$

$$\alpha \tau = \frac{\cos \varphi_R^* - 1/M_R^*}{\omega_c^* \sin \varphi_R^*} \tag{23d}$$

Facendo attenzione che

$$\cos \varphi_R^* > 1/M_R^* \tag{23e}$$

Scegliendo la pulsazione di passaggio $\omega_c^*=120$ si riesce a rispettare il vincolo sul margine di fase rimanendo sotto la soglia data dal vincolo sull'attenuazione dei disturbi di misura.

Diagramma di bode finale

5 Test del regolatore sul sistema linearizzato

Andando a testare il sistema in risposta ad un gradino $w(t) = 0.5 \cdot 1(t)$, si vede che i vincoli su tempo di assestamento e sovraelongazione percentuale sono effettivamente rispettati.

Risposta al gradino

Inoltre, con $n(t) = \sum_{k=1}^4 0.1 \cdot \sin{(5 \cdot 10^3 kt)}$ e $d(t) = \sum_{k=1}^4 0.3 \cdot \sin{(0.01875 kt)}$, sia disturbi di uscita che di misura sono sufficientemente attenutati.

Disturbo uscita

Disturbo misura

6 Test del regolatore sul sistema non lineare

Per testare il regolatore sul sistema non lineare questo è stato ricostruito in Simulink. Essendo l'uscita del regolatore $\delta u(t)$ ed essendo

$$u(t) = u_e + \delta u(t) \tag{24}$$

Per utilizzare il regolatore sul sistema non lineare è necessario aggiungere alla sua uscita u_e .

Modello simulink

Ricostruzione del sistema non lineare

Testando il sistema in retroazione senza disturbi di uscita e di misura e con segnale di riferimento nullo questo rimane stabile all'equilibrio.

Uscita del sistema con riferimento nullo e senza disturbi

Tuttavia, se vengono inseriti i disturbi, il sistema si discosta rapidamente dall'equilibrio.

Evoluzione del sistema non lineare in presenza di disturbi

Anche rimuovendo i disturbi e inserendo un riferimento a gradino, si vede che gli unici che il sistema riesce a seguire sono quelli con un'ampiezza $\leq 6.82 \cdot 10^-6$.

Risposte a gradini di ampiezza crescente del sistema non lineare

Infine, il sistema retroazionato risulta asintoticamente stabile intorno all'equilibrio $\omega_e = 10$ solo se la differenza Δx_0 tra stato iniziale e stato di equilibrio è tale che $\Delta x_0 \in [-6, 82 \cdot 10^{-6}, 7, 97 \cdot 10^{-6}]$.

Evoluzioni del sistema intorno all'equilibrio ω_e

La così bassa tolleranza a discostamenti dall'equilibrio è probabilmente dovuta ad equilibri non previsti che vanno a catturare l'uscita quando si allontana anche solo di poco dall'equilibrio. Si vede infatti, nel caso della risposa ad un gradino, che l'uscita, quando l'ampiezza è superiore dell'ampiezza massima consentita, questa converge sempre ad una certa $\omega \approx 305$.

