

Face Reconstruction from Voice using Generative Adversarial Networks

Yandong Wen, Rita Singh, Bhiksha Raj Carnegie Mellon University

Introduction

> A New Task

Given an audio clip spoken by an unseen person, we picture a face image that has as many associations as possible with the speaker, in terms of identity.

- make-up, expression, hair style, pose, etc.
- age, gender, ethnicity, etc.

> Is it possible?

- Skeletal and articulator structure of the face govern the shapes, sizes, and acoustic properties of the vocal tract that produces voice. []
- The same genetic physical and environmental influences that affect the development of the face also affect the voice. []
- Demographic factors influence both voice and face.

Challenges

- It may not be able to entirely disambiguate all the face-related factors from the voice.
- It is unknown a priori exactly what features of the voice encode information about any given facial feature.
- It may not be sufficient for estimating a face image using the information containing in a single audio clip

> Contributions

- Introduce a new task of generating faces from voice in voice profiling.
- Propose a simple but effective framework based on generative adversarial networks.
- Propose to quantitatively evaluate the generated faces by using a cross-modal matching task.

The proposed framework

- The voice-face correspondence is based on subject rather than sample.
- Paired voices and faces data are NOT required in each minibatch.

Dataset

	Train	Validation	Test	total
# of speech segments	113,322	14,182	21,850	149,354
# of face images	106,584	12,533	20,455	139,572
# of subjects	924	112	189	1,225

Table1. Statistics of the Voxceleb1 dataset

Qualitative Results

Figure 1. Each row shows the generated faces using one of the four noise audio segments with different durations.

Qualitative Results (cont.)

(a) 1s (b) 2s (c) 3s (d) 5s (e) 10s

(f) Reference images

Figure 2. (a)-(e) The generated face images from regular speech recordings with different durations. (f) The reference face images

Figure 3. More examples with different genders and ages.

Quantitative Results

	unstratified group (ACC. %) (train / test)	stratified group by gender (ACC. %) (train / test)
SVHF	- / 81.00	- / 65.20
DIMNets-I	- / 83.45	- / 70.91
DIMNets-G	- / 72.90	- / 50.32
ours	96.83/76.07	93.98 / 59.69

Table 2. The voice to face matching accuracies.

Our results are given by replacing the probe voice embeddings by the embeddings of the generated face.