

Managing Flink operations at GO-JEK

GO-JEK?

ONE APP FOR ALL YOUR NEEDS

Established in 2010 as a motorcycle ridehailing phone-based service, GO-JEK has evolved into an on-demand provider of transport and other lifestyle services.

Agenda

- Resource Provisioning
- Resource Isolation
- Data Quality
- Monitoring
- Cluster Failovers
- Chaos and Load Testing

As data engineers, we look out for patterns in data usages and transformation and build tools, infrastructure, frameworks, and services.

SCALE AUTOMATION PRODUCT MINDSET

At GO-JEK, location is built into the fabric of all our products

2B +

GPS points per day

25M +

Booking events per day

3B +

API log events per day

Flink use cases at GO-JEK

Surge Pricing

API Health monitoring

Driver allocation monitoring

Fraud detection and more ...

Resource Provisioning

How do we create new clusters with increasing number of requests for more than 15 internal teams?

Challenges

Multiple cloud providers and DCs

Frequent need for cluster provisioning

Man-hour intensive and repetitive

Error-prone process

Architecture

Example

```
module "p_de_daggers_flink_playground" {
  source = "../../modules/flink/resource"
  cluster_name = "p-de-daggers-flink-playground"
  chef_role = "de_daggers_flink_playground"
  master_nodes = 3
  worker_nodes = 6
  chef_server = "${var.chef_server}"
  ssh_user = "${var.ssh_user}"
ssh_key = "${var.ssh_key}"
subnet = "${var.subnet}"
  zone = "asia-east1-b"
```


Impact

Provisioning time reduced by 90%

On the fly infra for load testing

Infrastructure As Code

Self-serve and no workflows

Resource Isolation

How do we isolate resources for security, resilience, and segregation for more than 15 internal teams?

Critical kafka topics handicapped by low priority scripts

Non-critical jobs wipe out resources of critical jobs

Extensive downtime due to issues in Kafka

Human errors

Isolation Architecture

Kafka input stream

Nature, time and transactional criticality, sensitivity and volume of data.

Flink clusters

Security concerns, team segregation, job loads and criticality which comes at the cost of handling large volume data replication and maintenance.

Kafka Clusters Management

Flink Clusters Management

Job Management

lagger sql query	Read more about Dagger SQL
SELECT TUMBLE_START(rowtime, INTE	RVAL '1' MINUTE) AS
window_start_time,	10100117-10101701007-05
TUMBLE_END(rowtime, INTERVAL	
CAST(S2Id(driver_location.latitude,	driver_location.longitude, 13) AS
BIGINT) AS s2_id,	
13 AS s2_id_level,	//
Advanced Options	^
Watermark interval in ms®	
60000	
Watermark delay in ms ①	
60000	
Table name in Influx®	
supply_aggregator_influx_6595	
Parallelism①	
3	

Data Quality

How do we manage quality of data for aggregation with more than 15 teams being responsible for producing data?

JSON weekly typed

Challenges

Errors during schema update

Bad deployment sequence of an incompatible schema change

No data for real-time actors

Protobuf - Strongly typed

Maintains version of the schema

Version locking per job

Allows to re-run a job with different schema

Upstream actors to have an `inadequate data points` behavior

Measures

Monitoring

How do we manage monitoring for multiple clusters across data-centers?

Failovers

How do we manage kafka input stream failover and flink cluster failover for multiple clusters?

Why need failover?

Kafka cluster down

Flink clusters down or in bad state

Kafka or Flink cluster migrate

Job migration for teams

Kafka Failover

Kafka Failover

Kafka Failover

Flink Failover

Flink Failover

Impact

Kafka input stream resiliency

Allocate jobs dynamically to clusters

Testing and upgradation becomes easy

Self-serve and no workflow

Chaos and load Testing

How do we build confidence in system behaviour through disaster simulation experiments?

LOKI for chaos engineering

Disaster simulation

Load testing

Reports

CLI interface

https://bit.ly/2NkGE9L

Architecture

Simulation

Simulate throughtput in flink jobs with kafka ingestion

Play chaos simulation on flink cluster or kafka cluster

Generate reports

Prepare playbook

```
. .
    "name": "esb-kafka-mirror-restlency-test-phase-3";
    "description": "Restlency test for ESB katka mirror phase 3',
             'name": "CASE 1",
             'blast_radius': "nainstream-perf",
             'type': "kafka".
             'data_disk_failure': 'true',
             'downtine": "28n"
             "blast radius": "nainstream-perf",
             "type": "kafka",
             'downtine": "18m'
             "topic": "GO_RIDE-booking-log",
             'proto schema': "com.gojek.esb.booking.BookingLogNessage'
             'topic": "GO_BIRD_COMBO-booking-log".
             "proto_schema": "com.gojek.esb.booking.BookingLogMessage"
             'proto_class_prefix': 'com.gojek.esb.booking.BookingLog'
```


Reports

Road Ahead

Flink on Kubernetes

Complex Event Processing

Data Enrichment

Let's talk!

Ravi Suhag

@ravi_suhag medium.com/@ravisuhag

Sumanth K N

medium.com/@kn.sumanth