AI & ML Course Quiz 1(Feb 5, 2024)

Time: 30 minutes

Instructions

- Answer all questions
- $\bullet\,$ See upload instructions in the form

Question:	1	2	3	Total
Points:	15	5	10	30
Score:				

Read Carefully: In the following we will use the following notations. (X,Y) be a random instance drawn from a distribution \mathcal{P} where $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

$$h: \mathcal{X} \subseteq \mathbb{R}^d \to \mathcal{Y}$$

will denote a classifier. For Binary classification we will use the following notation,

$$\mathcal{Y} = \{-1, 1\}, P_1(x) = P(X = x | Y = 1), P_2(x) = P(X = x | Y = -1), p_1 = P(Y = 1), p_2 = P(Y = -1).$$

For multicategory classification we will use the following notation

$$\mathcal{Y} = \{1, \dots, K\}, P_i(x) = P(X = x | Y = i), p_i = P(Y = i), i \in \{1, \dots, K\}.$$

I will denote the identity matrix, dimension will be clear from the context. $N(\mathbf{x}|\mu,C)$ is as defined in the class. For any $\mathbf{x} \in \mathbb{R}^d$, $\|\mathbf{x}\| = \sqrt{\sum_{i=1}^d x_i^2}$

1. Consider the problem of Binary Classification. We are given the following information

$$\mathcal{X} \subseteq \mathbb{R}^2, \ P_1(\mathbf{x}) = N(\mathbf{x}|\mu_1, \sigma^2 \mathbf{I}), \ P_2(\mathbf{x}) = N(\mathbf{x}|\mu_2, k\sigma^2 \mathbf{I}), \ \mu_1 = [a, a]^\top, \mu_2 = -\frac{1}{\sqrt{3}}\mu_1, p_1 = \frac{1}{k+1}$$

The values of σ^2 , k, a are unknown but it is given that they are all positive. It is claimed that the Bayes Classifer for this problem reduces to

$$h(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x})), f(\mathbf{x}) = ||\mathbf{x}||^2 + \mathbf{w}^{\top}\mathbf{x}$$

The value of $\|\mathbf{w}\| = \sqrt{2} + \sqrt{6}$. Based on the information provided, answer the following

- (a) (5 points) The value of k is
 - $\bigcirc \frac{4}{3} \bigcirc 1 \bigcirc \frac{1}{3} \bigcirc 0.75$
- (b) (5 points) The value of σ^2 is
 - $\bigcirc \frac{4}{3} \bigcirc 1 \bigcirc 0.75 \bigcirc 0.6$
- (c) (5 points) The value of a is
 - $\bigcirc 1.5 \bigcirc 3 \bigcirc \frac{2}{2} \bigcirc 1$
- 2. (5 points) For the above problem, instead of the Bayes classifier we wish to determine a linear classifier of the form

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x}).$$

where **w** is determined through Fisher Discriminant. The value of $\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$ is

$$\bigcirc \ [\tfrac{\sqrt{2}}{\sqrt{3}}, \tfrac{1}{\sqrt{3}}]^\top \quad \bigcirc \ [\tfrac{1}{\sqrt{3}}, \tfrac{\sqrt{2}}{\sqrt{3}}]^\top \quad \bigcirc \ [0.6, 0.8]^\top \quad \bigcirc \ [\tfrac{1}{\sqrt{2}}, \tfrac{1}{\sqrt{2}}]^\top$$

3. A hospital wants to design a Genome based therapy for an unknown Disease DISEASE. A set of 3 genes were identified to be candidates for therapy. Since the underlying biology is highly uncertain, the first step in the therapy is to understand if the identified genes can predict if a person is healthy or diseased.

Let $X \in \{0,1\}^3$ be a random vector denoting the expression levels of the three genes where X_i corresponds to the expression level of the *i*th gene. The random variable Y takes value 1 for DISEASE and -1 for Healthy. Let $\hat{Y}(X)$ be the prediction on a random instance of X. The loss incurred is $l(\hat{Y}(X), Y)$ where Y is the right label. It is given that

$$l(1,-1)=1, l(-1,1)=3, l(-1,-1)=l(1,1)=0$$
. Consider the predictor

$$\hat{Y}(X) = \begin{cases} 1 & log \frac{P(X=x|Y=1)}{P(X=x|Y=-1)} \ge 0\\ -1 & otherwise \end{cases}$$

It is assumed that

$$P(X = x|Y = y) = \prod_{i=1}^{3} P(X_i = x_i|Y = y)$$

Furthermore,

$$P(X_i = 1|Y = 1) = q_i^{(1)}, P(X_i = 1|Y = -1) = q_i^{(2)}, i \in \{1, 2, 3\}$$

It is given that $q^{(1)} = [\frac{1}{3}, \frac{1}{2}, \frac{3}{4}]^{\top}$ and $q^{(2)} = [\frac{1}{3}, \frac{1}{3}, \frac{1}{4}]^{\top}$ For what values of \mathbf{w}, p_1, p_2 does

$$\hat{Y}(\mathbf{x}) = sign(\mathbf{w}^{\top}\mathbf{x})$$

is the Bayes classifier.

- (a) (5 points) w is

 - $\bigcirc \ [0, log 1/4, log 1/2]^\top \quad \bigcirc \ [0, log 1.5, log 3]^\top \quad \bigcirc \ [0.75, 0, 0.5]^\top \quad \bigcirc \ [1, \frac{2}{3}, 3]^\top$

- (b) (3 points) p_1, p_2 is

- $\bigcirc \ p_1 = 0.75, p_2 = 0.25 \quad \bigcirc \ p_1 = .25, p_2 = 0.75 \quad \bigcirc \ p_1 = 0.2, p_2 = 0.8 \quad \bigcirc \ p_1 = 0.5, p_2 = 0.5$
- (c) (2 points) Let \mathbf{w}, p_1, p_2 be determined as above. Suppose l(-1, 1) = 1, with everything else remaining the same, find t such that

$$h(\mathbf{x}) = \operatorname{sign} (\mathbf{w}^{\top} \mathbf{x} - \log t)$$

- is the bayes classifier. \bigcirc $\frac{1}{2}$ \bigcirc 1 \bigcirc $\frac{1}{3}$ \bigcirc 2