

Figure 1

Restriction Endonuclease Map of Plasmid pT2137

Figure 2
rV-MUC-1 Vector Schematic

Figure 3

Restriction Endonuclease Map of Plasmid pT8016

Figure 4

Generation of rV-CEA(6D)/TRICOM Recombinant Vaccinia

Virus

Figure 5

Restriction Endonuclease Map of Plasmid pT2187

Figure 6

Generation of rF-CEA(6D)/TRICOM Recombinant Fowlpox

Virus

1	ATGACACCGG	GCACCCAGTC	TCCTTTCTTC	CTGCTGCTGC	TCCTCACAGT	GCTTACAGTT
61	GTTACGGGTT	CTGGTCATGC	AAGCTCTACC	CCAGGTGGAG	AAAAGGAGAC	TTCGGCTACC
121	CAGAGAAGTT	CAGTGCCCAG	CTCTACTGAG	AAGAATGCTG	TGAGTATGAC	AAGCTCCGTA
181	CTCTCCAGCC	ACAGCCCCGG	TTCAGGCTCC	TCCACCACTC	AGGGACAGGA	TGTCACTCTG
241	GCCCCGGCCA	CGGAACCAGC	TTCAGGTTCA	GCTGCCTTGT	GGGGACAGGA	TGTCACCTCG
301	GTACCAGTTA	CTAGACCAGC	TTTAGGTAGC	ACAGCACCTC	CTGCTCATGG	AGTAACTAGT
361	GCTCCTGATA	CTCGTCCAGC	TCCTGGCAGT	ACTGCACCAC	CGGCACATGG	CGTAACATCA
421	GCACCTGATA	CAAGACCTGC	ACCTGGATCT	ACAGCGCCGC	CTGCGCACGG	AGTGACATCG
481	GCGCCCGATA	CGCGCCCCGC	TCCCGGTAGC	ACCGCACCGC	CCGCCCACGG	TGTTACAAGT
541	GCACCCGATA	CCCGGCCGGC	ACCCGGAAGT	ACCGCTCCAC	CTGCACACGG	GGTCACAAGC
601	GCGCCAGACA	CTCGACCTGC	GCCAGGGTCG	ACTGCCCCTC	CGGCGCATGG	TGTGACCTCA
661	GCTCCTGACA	CAAGGCCAGC	CCCAGCTAGC	ACTCTGGTGC	ACAACGGCAC	CTCTGCCAGG
721	GCTACCACAA	CCCCAGCCAG	CAAGAGCACT	CCATTCTCAA	TTCCCAGCCA	CCACTCTGAT
781	ACTCCTACCA	CCCTTGCCAG	CCATAGCACC	AAGACTGATG	CCAGTAGCAC	TCACCATAGC
841	AÇGGTACCTC	CTCTCACCTC	CTCCAATCAC	AGCACTTCTC	CCCAGTTGTC	TACTGGGGTC
901	TCTTTCTTTT	TCCTGTCTTT	TCACATTTCA	AACCTCCAGT	TTAATTCCTC	TCTGGAAGAT
[.] 961	CCCAGCACCG	ACTACTACCA	AGAGCTGCAG	AGAGACATTT	CTGAAATGTT	TTTGCAGATT
1021	TATAAACAAG	GGGGTTTTCT	GGGCCTCTCC	AATATTAAGT	TCAGGCCAGG	ATCTGTGGTG
1081	GTACAATTGA	CTCTGGCCTT	CCGAGAAGGT	ACCATCAATG	TCCACGACGT	GGAGACACAG
1141	TTCAATCAGT	ATAAAACGGA	AGCAGCCTCT	CGATATAACC	TGACGATCTC	AGACGTCAGC
1201	GTGAGTGATG	TGCCATTTCC.	TTTCTCTGCC	CAGTCTGGGG	CTGGGGTGCC	AGGCTGGGGC
1261	ATCGCGCTGC	TGGTGCTGGT	CTGTGTTCTG	GTTGCGCTGG	CCATTGTCTA	TCTCATTGCC
1321		GTCAGTGCCG				
1381		ATCCTATGÅG				
	CCTAGCAGTA					TGGCAGCAGC
1501	CTCTCTTACA	CAAACCCAGC	AGTGGCAGCC	ACTTCTGCCA	ACTTGTAG	

FIGURE 7

SEQUENCE OF wMUC-1(6), SEQ. ID. NO: 1

MTPGTQSPFFLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAV SMTSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAALWGQDVTSVPVTRPAL GSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAH GVTSAPDTRPAPASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHST KTDASSTHHSTVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTD YYQELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTLAFREGTINVHDVE TQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVA LAIVYLIALAVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDR SPYEKVSAGNGGSSLSYTNPAVAATSANL

FIGURE 8

AMINO ACID SEQUENCE OF wMUC-1(6), SEQ. ID. NO: 2

. 1	ATGGAGTCT	CCTCGGCCCC	TCCCCACAGA	TGGTGCATCC	CCTGGCAGAG	GCTCCTGCTC
61	ACAGCCTCAC	TTCTAACCTT	CTGGAACCCG	CCCACCACTG	CCAAGCTCAC	TATTGAATCC
121	ACGCCGTTCE	ATGTCGCAGA	GGGGAAGGAG	GTGCTTCTAC	TTGTCCACAA	TCTGCCCCAG
181	CATCTTTTTC	GCTACAGCTG	GTACAAAGGT	GAAAGAGTGG	ATGGCAACCG	TCAAATTATA
241	GGATATGTAA	TAGGAACTCA	ACAAGCTACC	CCAGGGCCCG	CATACAGTGG	TCGAGAGATA
301	ATATACCCCA	ATGCATCCCT	GCTGATCCAG	AACATCATCC	AGAATGACAC	AGGATTCTAC
361	ACCCTACACO	TCATAAAGTC	AGATCTTGTG	AATGAAGAAG	CAACTGGCCA	GTTCCGGGTA
421	TACCCGGAAC	TCCCTAAGCC	TTCTATTAGC	TCCAATAATA	GTAAGCCTGT	CGAAGACAAA
481	GATGCCGTCG	CTTTTACATG	CGAGCCCGAA	ACTCAAGACG	CAACATATCT	CTGGTGGGTG
541	AACAACCAGT	CCCTGCCTGT	GTCCCCTAGA	CTCCAACTCA	GCAACGGAAA	TAGAACTCTG
601	·ACCCTGTTTA	ACGTGACCAG	GAACGACACA	GCAAGCTACA	AATGCGAAAC	CCAAAATCCA.
661	GTCAGCGCCA	GGAGGTCTGA	TTCAGTGATT	CTCAACGTGC	TTTACGGACC	CGATGCTCCT.
721	ACAATCAGCC	CTCTAAACAC	AAGCTATAGA	TCAGGGGAAA	ATCTGAATCT	GAGCTGTCAT
781	GCCGCTAGCA	ATCCTCCCGC	CCAATACAGC	TGGTTTGTCA	ATGGCACTTT	CCAACAGTCC
/ 841	ACCCAGGAAC	. TGTTCATTCC	CAATATTACC	GTGAACAATA	GTGGATCCTA	CACGTGCCAA
901	GCTCACAATA	GCGACACCGG	ACTCAACCGC	ACAACCGTGA	CGACGATTAC	CGTGTATGAG
961	CCACCAAAAC	CATTCATAAC	TAGTAACAAT	TCTAACCCAG	TTGAGGATGA	GGACGCAGTT
1021	GCATTAACTT	GTGAGCCAGA	GATTCAAAAT	ACCACTTATT	TATGGTGGGT	CAATAACCAA
1081	AGTTTGCCGG	TTAGCCCACG	CTTGCAGTTG	TCTAATGATA	ACCGCACATT	GACACTCCTG
1141	TCCGTTACTC	GCAATGATGT	AGGACCTTAT	GAGTGTGGCA	TTCAGAATGA	ATTATCCGTT
1201	GATCACTCCG	ACCCTGTTAT	CCTTAATGTT	TTGTATGGCC	CAGACGACCC	AACTATATCT
1261	CCATCATACA	CCTACTACCG	TCCCGGCGTG	AACTTGAGCC	TTTCTTGCCA	TGCAGCATCC
1321	AACCCCCCTG	CACAGTACTC	CTGGCTGATT		TTCAGCAGCA	
1381	TTATTTATAA	GCAACATAAC	TGAGAAGAAC	AGCGGACTCT	ATACTTGCCA.	GGCCAATAAC
1441	TCAGCCAGTG	GTCACAGCAG	GACTACAGTT	AAAACAATAA	CTGTTTCCGC	GGAGCTGCCC
1501	AAGCCCTCCA	TCTCCAGCAA	CAACTCCAAA	CCCGTGGAGG	ACAAGGATGC	TGTGGCCTTC
1561	ACCTGTGAAC	CTGAGGCTCA	GAACACAACC	TACCTGTGGT	GGGTAAATGG	TCAGAGCCTC
1621	CCAGTCAGTC	CCAGGCTGCA	GCTGTCCAAT	GGCAACAGGA	CCCTCACTCT	ATTCAATGTC
1681	ACAAGAAATG	ACGCAAGAGC	CTATGTATGT	GGAATCCAGA	ACTCAGTGAG	TGCAAACCGC
1741	AGTGACCCAG	TCACCCTGGA	TGTCCTCTAT	GGGCCGGACA	CCCCCATCAT	TTCCCCCCCA
1801	GACTCGTCTT	ACCTTTCGGG	AGCGGACCTC	AACCTCTCCT	GCCACTCGGC	CTCTAACCCA
1861	TCCCCGCAGT	ATTCTTGGCG	TATCAATGGG	ATACCGCAGC	AACACACACA	AGTTCTCTTT
1921	ATCGCCAAAA	TCACGCCAAA	TAATAACGGG	ACCTATGCCT	GTTTTGTCTC	TAACTTGGCT
1981	ACTGGCCGCA	ATAATTCCAT	AGTCAAGAGC	ATCACAGTCT	CTGCATCTGG	AACTTUTUUT
	GGTCTCTCAG	CTGGGGCCAC	TGTCGGCATC	ATGATTGGAG	TGCTGGTTGG	GGTTGCTCTG
2101	ATATAG				•	

FIGURE 9

DNA SEQUENCE OF wCEA(6D), SEQ. ID. NO: 3

nsnpvededavaltcepeiqnttylwwvnnqslpvsprlqlsndnrtltllsvtrndvgpy ecgiqnelsvdhsdpvilnvlygpddptispsytyyrpgvnlslschaasnppaqyswlid gniqqhtqelfisniteknsglytcqannsasghsrttvktitvsaelpkpsissnnskpv edkdavaftcepeaqnttylwwvngqslpvsprlqlsngnrtltlfnvtrndarayv cgiqnsvsanrsdpvtldvlygpdtpiisppdssylsganlnlschsasnpspqyswrin gipqqhtqvlfiakitpnnngtyacfvsnlatgrnnsivksitvsasgtspglsagatvg imigvlvgvali

FIGURE 10

AMINO ACID SEQUENCE OF HUMAN wCEA(6D), SEQ. ID. NO: 4

PANVAC-F Plasmids pT1154 and pT8150

FIGURE 11

PCT/US2004/037810

FIGURE 12

GENERATION OF PANVAC-V RECOMBINANT VACCINIA

VIRÚS

FIGURE 13
RESTRICTION ENDONUCLEASE MAP OF PLASMID PT1153

Figure 14

Derivation of Parental Virus TBC-vTRICOM

FIGURE 15: NEW BREAST CANCER CASES PROJECTED FOR 2004

Stage	%	New Cases	5-yr survival	Treatment Options
0	.47%	36,965	100%	-Lumpectomy and radiation -Simple mastectomy
_	40%	976,98	%86	-Lumpectomy and radiation -Simple mastectomy -If >1cm adjuvant chemo or hormone therapy
= .	31%	67,406	%88-92	-Surgery and adjuvant systematic therapy (radiation, chemo, tamoxifen)
=	%9	13,046	decreasive mou	-Surgery and adjuvant systematic therapy (radiation, chemo, tamoxifen) -Neoadjuvant chemotherapy before surgery
≥	%6	6,523	3 16% Median Survival 2.2 Yr.	-Systematic hormonal therapy and Cytotoxic chemotherapy -Immunotherapy with Herceptin -Palliative radiation or surgery
Stage Unknown	3%	6,523		·