

I Etude de fonctions:

Dérivations et variations

- ightharpoonup Pour déterminer les variations de f, on étudie le signe de f'(x).
- \implies Si $f'(x) \ge 0$ alors la fonction est croissante.
- \implies Si $f'(x) \le 0$ alors la fonction est décroissante.
- Quand on a une exponentielle dans l'expression d'une dérivée, on va chercher à la mettre en facteur puisque son signe est toujours positif.

Primitives

- Une fonction F est une primitive de f si F'(x) = f(x) pour toutes les valeurs de x de l'ensemble de définition.
- Soit a < b dans l'ensemble de définition de f:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

	Primitives	
Primitive	Fonction	Dérivée
kx	constante=k	0
$a\frac{t^2}{2}$	at	a
$a\frac{t^3}{3} + b\frac{t^2}{2}$	$at^2 + b$	2at
$t \ln(t) - t$	ln(t)	$\frac{1}{t}$
$\frac{1}{a} \times e^{at+b}$	e^{at+b}	ae^{at+b}
pas à connaître	$\ln(u(t))$	$\frac{u'(t)}{u(t)}$
pas à connaître	arctan(u(t))	$\frac{u'(t)}{1+u(t)^2}$
pas à connaître	$e^{u(t)}$	$u'(t)e^{u(t)}$
$\sin(t)$	$\cos(t)$	$-\sin(t)$
$-\cos(t)$	$\sin(t)$	$\cos(t)$
$\frac{1}{an}\sin(ant)$	$\cos(ant)$	$-an\sin(ant)$
$-\frac{1}{an}\cos(ant)$	sin(ant)	$an\cos(ant)$

II Transformation de Laplace

Soit f une fonction admettant une transformée de Laplace F

$$L(f(t)U(t)) = F(p) = \int_0^{+\infty} f(t)e^{-pt}dt$$

Y	Tableau	des transformées
	Formule	Transformée de Laplace $F(p)$
	U(t)	$\frac{1}{p}$
	tU(t)	$\frac{1}{p^2}$
	$t^n U(t)$	$\frac{n!}{p^{n+1}}$
	$e^{-at}U(t)$	$\frac{1}{p+a}$
	$\cos(\omega t)U(t)$	$\frac{p}{p^2+\omega^2}$
	$\sin(\omega t)U(t)$	$\frac{\omega}{p^2 + \omega^2}$
	$f(t-\tau)U(t-\tau)$	$e^{-p\tau}F(p)$
	$f(\alpha)U(t)$	$\frac{1}{\alpha}F\left(\frac{p}{\alpha}\right)$
	$f(t)e^{-at}U(t)$	F(p+a)
	$e^{-at}U(t)$	$\frac{1}{p+a}$
	f'(t)U(t)	$pF(p) - f(0^+)$
	f''(t)U(t)	$p^2F(p) - pf(0^+) - f'(0^+)$
	$\int_0^t f(x)U(x)dx$	$\frac{1}{p}F(p)$
	$(\alpha f(t) + g(t))U(t)$	$\alpha F(p) + G(p)$

Formule de dérivation

Si les fonctions considérées ont des limites dans les conditions indiquées, alors on a :

$$\lim_{p \to +\infty} pF(p) = \lim_{x \to 0^+} f(t)$$

$$\Rightarrow \lim_{p \to 0^+} pF(p) = \lim_{x \to +\infty} f(t)$$

Ce théorème permet de déterminer la limite de f en 0 ou en $+\infty$.

III Séries de Fourier

Définitions

Dans le cas où f est une fonction périodique de période T, on pose :

- $\implies \omega = \frac{2\pi}{T}$: c'est ce qu'on appelle la pulsation
- $\implies S(f)(t)$, la série de Fourier associée à f:

$$a_0(f) + \sum_{n\geq 1}^{+\infty} a_n(f)\cos(n\omega t) + b_n(f)\sin(n\omega t)$$

f périodique de période T paire

valeur moyenne de f sur une période = $a_0(f) = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt$

pour
$$n \ge 1$$
, $a_n(f) = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega t) dt$
pour $n \ge 1$, $b_n(f) = 0$

f périodique de période T impaire

$$a_0(f) = 0$$

pour $n \ge 1$, $a_n(f) = 0$
pour $n \ge 1$, $b_n(f) = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega t) dt$

f périodique de période T sans parité apparente

 $a_0(f)=rac{1}{T}\int_a^{a+T}f(t)dt$ = valeur moyenne de f sur une période pour $n\geq 1$, $a_n(f)=rac{2}{T}\int_a^{a+T}f(t)\cos(n\omega t)dt$

pour
$$n \ge 1$$
, $b_n(f) = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt$

Théorème de Dirichlet

Sous de bonnes conditions, (on ne les vérifiera pas):

$$f(t) = S(f)(t)a_0(f) + \sum_{n\geq 1}^{+\infty} a_n(f)\cos(n\omega t) + b_n(f)\sin(n\omega t)$$

2TSELT Résumé

Egalités à connaître

$$\cos(0) = 1$$

$$\sin(0) = 0$$

$$\cos(2\pi n) = 1$$

$$\sin(2\pi n) = 0$$

$$\cos(\pi n) = \begin{cases} 1 & \text{si n est pair} \\ -1 & \text{si n est impair} \end{cases}$$

$$\sin\left(\frac{\pi}{2}\right) = 1$$

$$\sin\left(-\frac{\pi}{2}\right) = \sin\left(\frac{3\pi}{2}\right) = -1$$

Equations différentielles : premier ordre, méthode IV sans Laplace

Définitions

$$a(t)y'(t) + b(t)y(t) = s(t)$$
 (E)
 $a(t)y'(t) + b(t)y(t) = 0$ (E₀)

Ces deux équations ont du sens quand a(t) ne s'annule pas. (E) est l'équation que l'on cherche à résoudre et (E_0) est appelée équation homogène : on doit d'abord la résoudre pour trouver les solutions de (*E*).

une constante qui dépendra des conditions initiales données par l'énoncé.

Solutions particulières

Pour vérifier que h(t) est une solution particulière de (E) il faut calculer :

$$a(t)h'(t) + b(t)h(t)$$

et vérifier que cette somme est égale à s(t).

Il se peut que l'on nous demande de déterminer une solution constante de (*E*).

Cela arrive quand a(t) = a, b(t) = b et s(t) = s, c'est à dire des constantes. Dans ce cas, on pose $h(t) = \alpha$ donc h'(t) = 0, on sait que :

$$a \times h'(t) + b \times h(t) = s$$

$$\Leftrightarrow a \times 0 + b \times \alpha = s$$

$$\Leftrightarrow b \times \alpha = s$$

$$\Leftrightarrow \alpha = \frac{s}{b}$$

Solutions de (E)

Les solutions de (E) sont de la forme :

$$f(t) = Ke^{-\text{ une primitive de } \frac{b(t)}{a(t)}} + h(t)$$

avec K une constante dont la valeur dépend de la condition initiale et h(t) une solution particulière de (E).

Condition initiale

Pour trouver la solution f qui vérifie $f(x_0) = y_0$, on doit remplacer t par x_0 puis déterminer pour quelle valeur de K, on obtient y_0

V Equation différentielle du second ordre, méthode sans Laplace

Définitions

$$ay''(t) + by'(t) + cy(t) = s(t)$$
 (E)
 $ay''(t) + by'(t) + cy(t) = 0$ (E₀)

Ces deux équations ont du sens quand $a \neq 0$.

(E) est l'équation que l'on cherche à résoudre et (E_0) est appelée équation homogène : on doit d'abord la résoudre pour trouver les solutions de (E).

Solution de (E_0)

Pour résoudre (E_0) , on résout l'équation second degré suivante :

$$ar^2 + br + c = 0$$
 (S)

On calcule le discriminant $\Delta = b^2 - 4ac$ et suivant la valeur de ce discriminant les solutions de (E_0) ne seront pas le mêmes :

Si $\Delta > 0$, (S) a deux solutions réelles distinctes :

$$r_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$r_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Résumé 6 Mars 2020

Les solutions de (E_0) sont de la forme $f_0(t) = Ae^{r_1t} + Be^{r_2t}$ avec $A, B \in \mathbb{R}$. \square Si $\Delta = 0$, (S) a une solution réelle double :

$$r_0 = -\frac{b}{2a}$$

Les solutions de (E_0) sont de la forme $f_0(t) = (At + B)e^{r_0t}$ avec $A, B \in \mathbb{R}$.

$$r_1 = \frac{-b + i\sqrt{|\Delta|}}{2a} = \alpha + i\beta$$
 $r_2 = \frac{-b - i\sqrt{|\Delta|}}{2a} = \alpha - i\beta$

Les solutions de (E_0) sont de la forme $f_0(t) = e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t))$ avec $A, B \in \mathbb{R}$.

Solutions particulières

Pour vérifier que h(t) est une solution particulière de (E) il faut calculer :

$$ah''(t) + bh'(t) + ch(t)$$

et vérifier que cette somme est égale à s(t).

Il se peut que l'on nous demande de déterminer une solution constante de (*E*).

Dans ce cas, on pose $h(t) = \alpha$ donc h'(t) = h''(t) = 0, on sait que :

$$a \times h''(t) + b \times h'(t) + ch(t) = s$$

$$\Leftrightarrow a \times 0 + b \times 0 + c \times \alpha = s$$

$$\Leftrightarrow c \times \alpha = s$$

$$\Leftrightarrow \alpha = \frac{s}{c}$$

Solutions de (E)

Les solutions de (E) sont de la forme :

$$f(t) = f_0(t) + h(t)$$

avec h(t) une solution particulière de (E) et $f_0(t)$ la solution de (E_0) .

Conditions initiales

Pour trouver la solution f qui vérifie $f(x_0) = y_1$ et $f'(x_0) = y_2$, on doit résoudre un système d'équations dont les inconnues sont les constantes A et B intervenant dans la détermination de la solution de (E_0) .

La première équation se trouve en remplaçant t par x_0 dans f(t) et en écrivant que le résultat est y_1 .

La seconde équation se trouve en dérivant f(t) puis en remplaçant t par x_0 dans f'(t) et en écrivant que le résultat est y_2 .

VI Equations différentielles du premier ordre, méthode avec Laplace

Résumé 7 Mars 2020

Méthode de résolution

On détermine la transformée de Laplace de l'équation ay'(t) + by(t) = s(t), de condition initiale $y(0^+) = y_0$ est :

$$a \left(pY(p) - y_0 \right) + bY(p) = S(p)$$

$$\Leftrightarrow Y(p) = \frac{S(p) + ay_0}{ap + b} \text{ avec S(p) transformée de Laplace de } s(t)$$

Il reste maintenant à trouver l'original de la fonction $\frac{S(p)+ay_0}{ap+b}$ en utilisant la décomposition donnée dans l'énoncée.

VII Equations différentielles du second ordre, méthode avec Laplace

Méthode de résolution

On détermine la transformée de Laplace de l'équation ay''(t) + by'(t) + cy(t) = s(t), de conditions initiales $y(0^+) = y_1$ et $y'(0^+) = y_2$ est :

$$a\left(p^2Y(p) - py_1 - y_2\right) + b\left(Y(p) - y_1\right) + cY(p) = S(p)$$

$$\Leftrightarrow Y(p) = \frac{S(p) + py_1 + y_2}{ap^2 + bp + c} \text{ avec S(p) transformée de Laplace de } s(t)$$

Il reste maintenant à trouver l'original de la fonction $\frac{S(p)+py_1+y_2}{ap^2+bp+c}$ en utilisant la décomposition donnée dans l'énoncée.

VIII Probabilités conditionnelles

Propriétés

Soit A et B deux événements.

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \text{probabilit\'e de B sachant A}$$

 $P(A \cap B) = P_A(B) \times P(A)$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Deux événements A et B sont indépendants si et seulement si $P(A \cap B) = P(A) \times P(B)$.

IX Loi binomiale

Propriétés

On dit qu'une variable aléatoire X suit une loi binomiale de paramètre n et p si :

 \implies X compte le nombre de succès d'une répétition de n épreuves de Bernouilli car deux issues.

Ces issues sont indépendantes : soit l'énoncé le dit explicitement, soit cette indépendance est due au tirage avec remise.

Les épreuves de Bernouilli ont toute le même paramètre p.

L'espérance de X est alors $n \times p$: c'est le nombre moyen sur n lancers de l'apparition du caractère étudié.

Calculs

Les calculs se feront systématiquement à la calculatrice :

1. P(X = k).

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra D : Binomiale Ddp.

Le nombre d'essai sera n, la probabilité de succès *p* et la valeur de *X* sera k.

2. $P(X \le k)$.

Sur la TI, on fera 5: Probabilités, 5: Distributions, puis dans le menu des distributions, on prendra E: Binomiale FdR. Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera 0 et la borne sup sera k.

3. $P(X \ge k)$.

Sur la TI, on fera 5: Probabilités, 5: Distributions, puis dans le menu des distributions, on prendra E: Binomiale FdR. Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera k et la borne sup sera n.

4. $P(i \le X \le j)$.

Sur la TI, on fera 5: Probabilitées, 5: Distributions, puis dans le menu des distributions, on prendra E: Binomiale FdR. Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera i et la borne sup sera j.

X Loi de Poisson:

Propriétés

On associe cette loi à des événements qui se produisent rarement. Elle est associée à un paramètre : λ .

Son espérance sera : λ .

On écrira $X \sim \mathcal{P}(\lambda)$.

Calculs

Les calculs se feront systématiquement à la calculatrice :

1. P(X = k).

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra H : Poisson Ddp.

Résumé 9 Mars 2020

Le nombre d'essai sera n, la probabilité de succès p et la valeur de X sera k.

2. $P(X \le k)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera 0 et la borne sup sera k.

3. $P(X \ge k)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera k et la borne sup sera 1000.

4. $P(i \le X \le j)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions , puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera i et la borne sup sera j.

Approximation de la loi binomiale

Sous de bonnes conditions, (que nous ne vérifirons pas), on peut approcher une loi $X \sim \mathcal{B}(n, p)$ par une loi de Poisson de paramètre $\lambda = n \times p$.

XI Loi normale

Propriétés

Pour une loi normale $N(\mu, \sigma)$, on a :

- 1. μ qui est la moyenne
- **2.** σ qui est l'écart-type.
- **3.** $P(X \le \mu) = P(X \ge \mu) = 0.5$.

Calculs

Pour $t, u \in \mathbb{R}$:

- 1. $P(X \le t)$ se calcule avec normalFDR, borne inf = -10^9 et borne sup t.
- **2.** $P(X \ge t)$ se calcule avec normalFDR, borne inf = t et borne sup 10^9 .
- **3.** $P(u \le X \le t)$ se calcule avec normalFDR, lower=u et upper=t.
- **4.** $P(\mu h \le Y \le \mu + h) = t \Leftrightarrow 2P(Y \le \mu + h) 1 = t \Leftrightarrow P(Y \le \mu + h) = \frac{1+t}{2}$, on trouve la valeur de $\mu + h$ en utilisant InverseNormale pour les TI: surface, c'est $\frac{1+t}{2}$.

Pour accéder à normalFDR, on fera les mêmes manipulations que dans le cas de la loi binomiale mais en choisissant les menus de la loi normale.

Calculs

Une loi binomiale $\mathcal{B}(n; p)$ peut être approchée par une loi normale de moyenne $n \times p$ et d'écart-type $\sqrt{n \times p \times (1-p)}$.

Il faut bien comprendre la signification du terme approcher dans ce contexte, il faudra prendre en compte la correction de continuité.

Pour $X \sim \mathcal{B}(n, p)$ et $Y \sim N(n \times p; \sqrt{n \times p \times (1 - p)})$:

- P(X = k) ne sera pas approximé par P(Y = k), qui est nul, mais par $P(k 0.5 \le Y \le k + 0.5)$
- $P(i \le X \le j)$ sera approximé par $P(i-0,5 \le Y \le j+0.5)$
- $P(X \ge i)$ sera approximé par $P(Y \ge i 0, 5)$.
- $P(X \le i)$ sera approximé par $P(Y \le i + 0.5)$.

Dans les exercices, on demandera surtout de donner les paramètres de la loi normale par laquelle on pourra approcher la loi binomiale.

XII Nombres complexes:

Convention

Dans les sujets de BTS, le nombre complexe i sera noté j: on a donc $j^2 = -1$.

Forme algébrique

Un nombre z appartient à l'ensemble des nombres complexes $\mathbb C$ s'il s'écrit de la façon suivante :

$$z = a + i \times b$$
 avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$

Cette représentation de z est appelé écriture algébrique de z :

- \implies le nombre a est appelé partie réelle de z.
- \implies le nombre b est appelé partie imaginaire de z.

Conjugué d'un nombre complexe

On appelle conjugué du nombre complexe $z = a + i \times b$ le nombre complexe noté \bar{z} qui s'écrit $\bar{z} = a - ib$.

vante:

$$|z| = \sqrt{a^2 + b^2}$$

$$\cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}}$$

$$\sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$$

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

La dernière écriture s'appelle forme trigonométrique de z.

Rappels

La fonction $\tan(\theta)$ est définie sur l'intervalle $]-\frac{\pi}{2};\frac{\pi}{2}[$ et elle est y est strictement croissante de $-\infty$ à $+\infty$.

On peut la définir sur d'autre intervalle mais elle perdra les propriétés qu'elles partagent avec la fonction suivante :

Propriétés de arctan

La fonction $\arctan(x)$ est définie sur \mathbb{R} et elle y est strictement croissante de $-\frac{\pi}{2}$ à $\frac{\pi}{2}$, elle vérifie les propriétés suivantes :

$$tan(arctan(x)) = x \text{ pour } x \in \mathbb{R}$$

 $arctan(tan(x)) = x \text{ pour } x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$

Expression de θ

ightharpoonup Pour a > 0:

$$\theta = \arctan\left(\frac{b}{a}\right)$$

 \implies Pour a < 0:

$$\theta = \arctan\left(\frac{b}{a}\right) + \pi$$

si b = 0 Dans cas, le nombre complexe est un imaginaire pur : son argument est $\frac{\pi}{2}$ si b > 0 et $-\frac{\pi}{2}$ si b > 0.

Forme exponentielle

La fonction exponentielle dont nous avons déjà parlée a des propriétés semblables aux fonctions puissances vues au collège. En dédurie les simplifications des expressions suivantes :

$$\implies e^x \times e^y$$

$$\Rightarrow \frac{1}{n!}$$

$$\implies \frac{e^x}{e^y}$$

On s'est rendu compte d'un lien entre les propriétés des fonctions trigonométriques et celle de l'exponentielle qui amènent à poser :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Généralisation

$$|z_1 \times z_2| = |z_1| \times |z_2|$$

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

$$\arg(z_1 \times z_2) = \arg(z_1) + \arg(z_2)$$

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$$

Logarithme

La fonction logarithme notée $\overline{\ln(x)}$ ou la fonction logarithme décimal notée $\frac{\ln(x)}{\ln(10)}$ présente les mêmes propriétés que l'argument d'un nombre complexe. En déduire la fin des égalités suivantes :

$$\implies \ln(a \times b) = \ln(a) + \ln(b)$$

$$\implies \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$\implies \ln(a^n) = n \ln(a)$$