МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашняя работа №2-3 «Интегральное уравнение Фредгольма 2-го рода» Группа ФН11-51Б

Вариант 1

Студент: Авилов О.Д.

Преподаватель: Кутыркин В.А

Оценка:

Задание

Рассмотрим на квадрате $[a;b] \times [a;b]$ интегральное уравнение Фредгольма 2-го рода с симметричным, непрерывным и аналитически заданным ядром:

$$x(s) - \lambda \int_{a}^{b} K(s, \tau)x(\tau)d\tau = y(s), s \in [a; b]$$

$$\tag{1}$$

Используя дискретный аналог уравнения (1), индуцированный методом конечных сумм с квадратурными формулами прямоугольников (количество узлов в квадратурной формуле не менее 20), найти приближённое решение уравнения (1), которое имеет вид:

$$x(s) - \frac{1}{1 + \frac{n-45}{2}} \cdot \int_{0}^{\frac{N+7}{N}} K(s,\tau)x(\tau)d\tau = \frac{N+3}{N} (s^2 + \frac{n-53}{2}), s \in [0; \frac{N+7}{N}],$$

где N - номер студента в журнале, n - номер группы и

$$K(s,\tau) = \begin{cases} s \cdot \left(2\frac{N+7}{N} - \tau\right), & 0 \le s \le \tau; \\ \tau \cdot \left(2\frac{N+7}{N} - s\right), & \tau \le s \le \frac{N+7}{N}. \end{cases}$$

Найти ещё одно приближённое решение уравнения, имеющее вид частичной суммы ряда Фурье по ортонормированному базису из собственных функций интегрального оператора уравнения, используя три наименьшие по абсолютной величине характеристических числа интегрального оператора уравнения.

В узлах сетки сравнить значения приближённых решений по абсолютной величине, проиллюстрировав это сравнение на соответствующем графике.

Решение

$$N = 1, n = 51$$

1. Метод конечных сумм для решения интегрального уравнения Фредгольма 2-го рода с симметричным, непрерывным и аналитически заданным ядром

Для построения дискретного аналога, аппроксимирующего уравнение (1), зададим на квадрате $[a;b] \times [a;b]$ двумерную центрально-равномерную сетку $B \times A = \langle (s_i,\tau_i): s_i \in B, \tau_i \in A \rangle$ типа $n \times n$ шага (h,τ) . Следовательно, $B = \langle s_1,s_2,...,s_n \rangle$ и $A = \langle \tau_1,\tau_2,...,\tau_n \rangle$ центрально-равномерные сетки отрезка $[a;b] \times [a;b]$ с шагами $h = \frac{b-a}{n}$ и $\tau = \frac{b-a}{n}$, соответственно.

Составим центрально-равномерную с количеством узлов m=20.

Центрально-равномерная сетка:

$$A = B = \begin{pmatrix} 0.2 \\ 0.6 \\ 1.0 \\ 1.4 \\ 1.8 \\ 2.2 \\ 2.6 \\ 3.0 \\ 3.4 \\ 3.8 \\ 4.2 \\ 4.6 \\ 5.0 \\ 5.4 \\ 5.8 \\ 6.2 \\ 6.6 \\ 7.0 \\ 7.4 \\ 7.8 \end{pmatrix}$$

Составим матрицу $K(s, \tau)$:

```
3.16 \quad 3.08
                                    3.0
                                            2.92
                                                      2.84
                                                                      1.96
                                                                               1.88
                                                                                         1.8
                                                                                                 1.72
                                                                                                          1.64
                  3.08 9.24
                                                                               5.64
                                                                                                 5.16
                                    9.0
                                            8.76
                                                      8.52
                                                                      5.88
                                                                                         5.4
                                                                                                          4.92
                  3.0 9.0
2.92 8.76
2.84 8.52
                                   15.0
                                           14.6
                                                      14.2
                                                                      9.8
                                                                                9.4
                                                                                        9.0
                                                                                                 8.6
                                                                                                           8.2
                                  14.6
                                           20.44
                                                                    13.72
                                                                                        12.6
                                                     19.88
                                                                              13.16
                                                                                                12.04
                                                                                                         11.48
                                                              . . .
K(s,\tau) = \begin{cases} 2.92 & 8.76 \\ 2.84 & 8.52 \\ 2.76 & 8.28 \\ 2.68 & 8.04 \\ 2.6 & 7.8 \\ 2.52 & 7.56 \\ 2.44 & 7.32 \\ 2.36 & 7.08 \\ 2.28 & 6.84 \\ 2.2 & 6.6 \\ 2.12 & 6.36 \\ 2.04 & 6.12 \\ 1.96 & 5.88 \\ 1.88 & 5.64 \\ 1.8 & 5.4 \end{cases}
                                  14.2
                                          19.88
                                                     25.56
                                                                    17.64
                                                                              16.92
                                                                                        16.2
                                                                                                15.48
                                                                                                         14.76
                                                              . . .
                                  13.8
                                           19.32
                                                     24.84
                                                                    21.56
                                                                              20.68
                                                                                        19.8
                                                                                                18.92
                                                                                                         18.04
                                                              . . .
                                  13.4
                                          18.76
                                                     24.12
                                                                    25.48
                                                                              24.44
                                                                                        23.4
                                                                                                22.36
                                                                                                         21.32
                                   13.0
                                           18.2
                                                      23.4
                                                              . . .
                                                                     29.4
                                                                               28.2
                                                                                        27.0
                                                                                                25.8
                                                                                                          24.6
                                                                    33.32
                                  12.6
                                                                              31.96
                                                                                        30.6
                                          17.64
                                                     22.68
                                                                                                29.24
                                                                                                         27.88
                                  12.2
                                          17.08
                                                    21.96
                                                                    37.24
                                                                              35.72
                                                                                        34.2
                                                                                                32.68
                                                                                                         31.16
                                  11.8
                                          16.52
                                                    21.24
                                                                    41.16
                                                                              39.48
                                                                                       37.8
                                                                                                36.12
                                                              . . .
                                                                                                         34.44
                                  11.4
                                           15.96
                                                    20.52
                                                                    45.08
                                                                              43.24
                                                                                                39.56
                                                                                                         37.72
                                                                                       41.4
                                   11.0
                                            15.4
                                                     19.8
                                                                     49.0
                                                                               47.0
                                                                                        45.0
                                                                                                43.0
                                                                                                          41.0
                                                              . . .
                                  10.6
                                           14.84
                                                    19.08
                                                                    52.92
                                                                              50.76
                                                                                       48.6
                                                                                                46.44
                                                                                                         44.28
                                                              . . .
                 2.04 6.12
1.96 5.88
1.88 5.64
1.8 5.4
                                   10.2
                                           14.28
                                                     18.36
                                                             . . .
                                                                    56.84
                                                                              54.52
                                                                                        52.2
                                                                                                49.88
                                                                                                         47.56
                                    9.8
                                           13.72
                                                     17.64
                                                              . . .
                                                                    60.76
                                                                              58.28
                                                                                       55.8
                                                                                                53.32
                                                                                                         50.84
                                    9.4
                                           13.16
                                                     16.92
                                                                    58.28
                                                                              62.04
                                                                                        59.4
                                                                                                56.76
                                                                                                         54.12
                                                             . . .
                                    9.0
                                           12.6
                                                     16.2
                                                                     55.8
                                                                               59.4
                                                                                        63.0
                                                                                                60.2
                                                                                                          57.4
                   1.72
                           5.16
                                           12.04
                                                                    53.32
                                                                              56.76
                                                                                                63.64
                                    8.6
                                                    15.48
                                                             . . .
                                                                                        60.2
                                                                                                         60.68
                   1.64 \quad 4.92
                                    8.2
                                           11.48
                                                   14.76 \dots 50.84 \quad 54.12 \quad 57.4
                                                                                                60.68
                                                                                                         63.96
```

Решим СЛАУ:

$$\mathbf{F} \cdot \mathbf{x} = \mathbf{y}$$

где

$$\mathbf{x} = [x^1, ..., x^n), \mathbf{y} = [y^1, ..., y^n) \in \mathbb{R}^n, \mathbf{F} = (\delta^i_j - \lambda K^i_j \cdot h)^n_n = (f^i_j)^n_n \in L(\mathbb{R}, n)$$

Матрица F:

$$F = \begin{pmatrix} 0.684 & -0.308 & -0.3 & -0.292 & -0.284 & \dots & -0.196 & -0.188 & -0.18 & -0.172 & -0.164 \\ -0.308 & 0.076 & -0.9 & -0.876 & -0.852 & \dots & -0.588 & -0.564 & -0.54 & -0.516 & -0.492 \\ -0.3 & -0.9 & -0.5 & -1.46 & -1.42 & \dots & -0.98 & -0.94 & -0.9 & -0.86 & -0.82 \\ -0.292 & -0.876 & -1.46 & -1.044 & -1.988 & \dots & -1.372 & -1.316 & -1.26 & -1.204 & -1.148 \\ -0.284 & -0.852 & -1.42 & -1.988 & -1.556 & \dots & -1.764 & -1.692 & -1.62 & -1.548 & -1.476 \\ -0.276 & -0.828 & -1.38 & -1.932 & -2.484 & \dots & -2.156 & -2.068 & -1.98 & -1.892 & -1.804 \\ -0.268 & -0.804 & -1.34 & -1.876 & -2.412 & \dots & -2.548 & -2.444 & -2.34 & -2.236 & -2.132 \\ -0.26 & -0.78 & -1.3 & -1.82 & -2.34 & \dots & -2.94 & -2.82 & -2.7 & -2.58 & -2.46 \\ -0.252 & -0.756 & -1.26 & -1.764 & -2.268 & \dots & -3.332 & -3.196 & -3.06 & -2.924 & -2.788 \\ -0.244 & -0.732 & -1.22 & -1.708 & -2.196 & \dots & -3.724 & -3.572 & -3.42 & -3.268 & -3.116 \\ -0.236 & -0.708 & -1.18 & -1.652 & -2.124 & \dots & -4.116 & -3.948 & -3.78 & -3.612 & -3.444 \\ -0.228 & -0.684 & -1.14 & -1.596 & -2.052 & \dots & -4.508 & -4.324 & -4.14 & -3.956 & -3.772 \\ -0.22 & -0.66 & -1.1 & -1.54 & -1.98 & \dots & -4.9 & -4.7 & -4.5 & -4.3 & -4.1 \\ -0.212 & -0.636 & -1.06 & -1.484 & -1.908 & \dots & -5.292 & -5.076 & -4.86 & -4.644 & -4.428 \\ -0.204 & -0.612 & -1.02 & -1.428 & -1.836 & \dots & -5.684 & -5.452 & -5.22 & -4.988 & -4.756 \\ -0.196 & -0.588 & -0.98 & -1.372 & -1.764 & \dots & -5.076 & -5.828 & -5.58 & -5.332 & -5.084 \\ -0.188 & -0.564 & -0.94 & -1.316 & -1.692 & \dots & -5.828 & -5.594 & -5.3 & -6.02 & -5.74 \\ -0.172 & -0.516 & -0.86 & -1.204 & -1.548 & \dots & -5.332 & -5.676 & -6.02 & -5.364 & -6.068 \\ -0.164 & -0.492 & -0.82 & -1.148 & -1.476 & \dots & -5.084 & -5.412 & -5.74 & -6.068 & -5.396 \end{pmatrix}$$

Обратная матрица:

```
1.43656
                    0.39028
                              0.09423
                                        -0.2621
                                                       0.43195
                                                                  0.1894
                                                                           -0.1744
                                                                                     -0.4265
                                                  . . .
                                                                                     -1.0066
          0.39028
                    1.92107
                              0.22237
                                        -0.6186
                                                       1.01939
                                                                 0.44699
                                                                           -0.4115
                                                  . . .
          0.09423
                    0.22237
                               1.2082
                                        -0.5792
                                                  . . .
                                                       0.95443
                                                                 0.41851
                                                                           -0.3853
                                                                                     -0.9425
          -0.2621
                    -0.6186
                              -0.5792
                                        0.83091
                                                       0.27863
                                                                 0.12218
                                                                           -0.1125
                                                                                     -0.2751
          -0.4507
                    -1.0637
                              -0.9959
                                        -0.2907
                                                       -0.5755
                                                                 -0.2523
                                                                            0.2323
                                                                                     0.56828
                                                  . . .
          -0.3509
                    -0.828
                              -0.7753
                                        -0.2263
                                                       -1.0613
                                                                 -0.4654
                                                                            0.4284
                                                                                      1.04799
          -0.0264
                    -0.0624
                              -0.0584
                                        -0.0171
                                                       -0.8679
                                                                 -0.3806
                                                                           0.35032
                                                                                     0.85699
                                                  . . .
          0.31491
                    0.74318
                              0.69582
                                        0.20313
                                                       -0.119
                                                                 -0.0522
                                                                           0.04804
                                                                                     0.11752
                    1.07311
                              1.00472
                                        0.29331
                                                       0.70602
          0.45471
                                                                 0.30958
                                                                            -0.285
                                                                                     -0.6972
                                                  . . .
          0.3035
                    0.71625
                              0.67061
                                        0.19577
                                                        1.0792
                                                                 0.47322
                                                                           -0.4356
                                                                                     -1.0657
                                                  . . .
F^{-1} =
                    -0.099
          -0.042
                              -0.0927
                                        -0.0271
                                                       0.76169
                                                                 0.33399
                                                                           -0.3075
                                                                                     -0.7521
                                                  . . .
          -0.3606
                    -0.8509
                                                       -0.0433
                                                                 -0.019
                                                                           0.01748
                                                                                     0.04276
                              -0.7967
                                        -0.2326
          -0.4484
                    -1.0582
                              -0.9908
                                        -0.2892
                                                       -0.8206
                                                                                     0.81029
                                                                 -0.3598
                                                                           0.33123
                                                  . . .
          -0.2493
                    -0.5883
                                                       -1.0727
                                                                 -0.4704
                                                                           0.43299
                              -0.5508
                                        -0.1608
                                                                                      1.05923
                                                  . . .
          0.10939
                    0.25817
                              0.24171
                                        0.07056
                                                       -0.6383
                                                                 -0.2799
                                                                           0.25764
                                                                                     0.63027
                                                  . . .
          0.39804
                    0.93938
                              0.87952
                                        0.25676
                                                       0.20463
                                                                 0.08973
                                                                           -0.0826
                                                                                     -0.2021
          0.43195
                    1.01939
                              0.95443
                                        0.27863
                                                       1.91657
                                                                 0.40191
                                                                            -0.37
                                                                                     -0.9051
          0.1894
                    0.44699
                              0.41851
                                        0.12218
                                                       0.40191
                                                                 1.45687
                                                                           -0.4206
                                                                                     -1.0288
                                                  . . .
                    -0.4115
                              -0.3853
                                        -0.1125
                                                        -0.37
          -0.1744
                                                                 -0.4206
                                                                            0.798
                                                                                     -0.4941
                                                  . . .
          -0.4265
                    -1.0066
                                        -0.2751
                                                       -0.9051
                                                                           -0.4941
                                                                                      1.3568
                              -0.9425
                                                                 -1.0288
                                                  . . .
```

$$y = \begin{pmatrix}
-3.84 \\
-2.56 \\
0.0 \\
3.84 \\
8.96 \\
15.36 \\
23.04 \\
32.0 \\
42.24 \\
53.76 \\
66.56 \\
80.64 \\
96.0 \\
112.64 \\
130.56 \\
149.76 \\
170.24 \\
192.0 \\
215.04 \\
239.36 \end{pmatrix}$$

Получили приближённое решение:

$$\begin{pmatrix} -30.7449 \\ -63.5981 \\ -54.4684 \\ -9.199 \\ 43.2378 \\ 69.2824 \\ 52.26627 \\ 3.07972 \\ -46.7978 \\ -65.4448 \\ -40.9271 \\ 11.06397 \\ 57.25407 \\ 68.08157 \\ 36.61686 \\ -17.0026 \\ -58.4604 \\ -61.2236 \\ -23.5236 \\ 30.51147 \end{pmatrix}$$

2. Приближённое решение интегрального уравнения Фредгольма 2-го рода в виде частичной суммы ряда Фурье по ортонормированному базису из собственных функций интегрального оператора уравнения (используется три наименьшие по абсолютной величине характеристических числа интегрального оператора уравнения)

Найти специальное приближённое решение интегрального уравнения:

$$x(s) - \frac{1}{4} \cdot \int_{0}^{8} K(s, \tau)x(\tau)d\tau = 4(s^{2} - 1), s \in [0; 8]$$

$$K(s,\tau) = \begin{cases} s(16-\tau), & 0 \le s \le \tau; \\ \tau(16-s), & \tau \le s \le 16. \end{cases}$$

Решим однородное уравнение

$$\varphi(s) - \lambda \int_{0}^{8} K(s, \tau) \varphi(\tau) d\tau = 0$$

представим в виде:

$$\varphi(s) = \lambda(16 - s) \int_{0}^{s} \tau \varphi(\tau) d\tau + \lambda s \int_{s}^{8} (16 - \tau) \varphi(\tau) d\tau$$

Продифференцируем это равенство:

$$\varphi'(s) = -\lambda \int_{0}^{s} \tau \varphi(\tau) d\tau + \lambda \int_{s}^{8} (16 - \tau) \varphi(\tau) d\tau$$

Снова продифференцируем:

$$\varphi''(s) = -\lambda s \varphi(s) - \lambda (16 - s) \varphi(s) = -16\lambda \varphi(s)$$

Так как $\lambda = \frac{1}{4}$:

$$\varphi''(s) + 4\varphi(s) = 0$$

Определим граничные условия:

$$\varphi(0) = 0$$

$$\varphi(8) = 8\lambda \int_{0}^{8} \tau \varphi(\tau) d\tau
\varphi'(8) = -\lambda \int_{0}^{8} \tau \varphi(\tau) d\tau$$

$$\Rightarrow \varphi(8) + 8\varphi'(8) = 0$$

Получаем краевую задачу:

$$\begin{cases} \varphi''(s) + 4\varphi(s) = 0\\ \varphi(0) = 0\\ \varphi(8) + 8\varphi'(8) = 0 \end{cases}$$

3) Так как $\lambda > 0$. Общее решение имеет вид $\varphi(s) = C_1 \cdot \cos(4\sqrt{\lambda}s) + C_2 \cdot \sin(4\sqrt{\lambda}s)$. Подставляем граничные условия:

$$\begin{cases} \varphi(0) = C_1 = 0; \\ \varphi(8) + 8\varphi'(8) = C_2(\sin(32\sqrt{\lambda}) + 32\sqrt{\lambda}\cos(32\sqrt{\lambda}) = 0 \end{cases}$$

Для нетривиального решения:

$$\sin(32\sqrt{\lambda}) + 32\sqrt{\lambda}\cos(32\sqrt{\lambda}) = 0$$
$$32\sqrt{\lambda} = -tg(32\sqrt{\lambda})$$

Найдём первые три корня этого равенства(найдено с помощью WolframAlpha):

$$\lambda_1 = 0,00402$$
 $\lambda_2 = 0,02357$
 $\lambda_3 = 0,06217$

При $\lambda=\lambda_i, i=\overline{0,2}$ система краевых условий принимает вид:

$$\begin{cases} C_1 = 0; \\ 0 \cdot C_2 = 0 \end{cases}$$

Она имеет бесконечное множество ненулевых решений:

$$\begin{cases} C_1 = 0; \\ C_2 = C \end{cases}$$

Возьмем C = 1, тогда собственные функции имеют вид:

$$\varphi_i(s) = \sin(4\lambda_i \cdot s)$$

Приступим к поиску α_n в разложении f в ряд Фурье по ортонормированной системе $\varphi_i(s)$:

$$f = \alpha_0 \varphi_0 + \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + u$$

$$f = \alpha_0 \sin(0.25359) + \alpha_1 (0.61415s) + \alpha_2 (0.99733s) + u$$

$$\alpha_0 = \frac{\int_{8}^{8} f \cdot \varphi_0 ds}{\int_{0}^{8} \varphi_0 \cdot \varphi_0 ds} = 127.3109$$

$$\alpha_1 = \frac{\int_{8}^{8} f \cdot \varphi_1 ds}{\int_{0}^{8} \varphi_1 \cdot \varphi_1 ds} = -67.868$$

$$\alpha_2 = \frac{\int_{8}^{8} f \cdot \varphi_2 ds}{\int_{0}^{8} \varphi_2 \cdot \varphi_2 ds} = 20.2341$$

Таким образом, приближённое решение:

$$x = 4(s^2 - 1) + \frac{1}{4}(-517.5646\sin(0.25359s) + 299.7354\sin(0.61415s) - 107.7239\sin(0.99733s))$$

Узел	Метод конечных сумм(1 часть)	Приближённое(2 часть)	Погрешность
0.2	-30.7449	-6.5551	24.18985
0.6	-63.5981	-10.3511	53.24702
1.0	-54.4684	-11.9036	42.56486
1.4	-9.199	-10.8823	1.68334
1.8	43.2378	-7.3628	50.60056
2.2	69.2824	-1.8745	71.15685
2.6	52.26627	4.64085	47.62542
3.0	3.07972	10.95851	7.87879
3.4	-46.7978	15.76926	62.56711
3.8	-65.4448	17.91567	83.36046
4.2	-40.9271	16.62864	57.55571
4.6	11.06397	11.72420	0.66022
5.0	57.25407	3.72566	53.52842
5.4	68.08157	-6.1131	74.19464
5.8	36.61686	-15.8926	52.50948
6.2	-17.0026	-23.2547	6.25203
6.6	-58.4604	-25.6471	32.81331
7.0	-61.2236	-20.6325	40.59111
7.4	-23.5236	-6.1960	17.32758
7.8	30.51147	18.98897	11.52249

Максимальное значение абсолютной погрешности составляет 83.3605

Вывод: В ходе лабораторной работы было решено уравнение Фредгольма 2-го рода методом конечных сумм и в виде частичной суммы ряда Фурье по ортонормированному базису из собственных функций интегрального оператора уравнения. Графики приближённых решений не совпали ввиду большого шага сетки, а также (по моему мнению) получившихся очень маленьких значений характеристических чисел.