R2DATO

A framework for GNSS-based solutions performance analysis in an ERTMS context

J. Marais

Q. Mayolle, M. Fasquelle

V. Tardif, E. Chéneau-Grehalle

GNSS PERFORMANCE

By Elizabeth Howell published 14 days ago

New GPS 'circle spoofing' moves ship locations thousands of miles

May 26, 2020 - By Dana Goward

Est. reading time: 2 minutes

CONTEXT

Progresses in GNSS-based solution introduction in rail applications – R2DATO

Solution development

Perf. evaluation

Safety demos

Certification

HOW TO SIMULATE GNSS ALONG A RAILWAY LINE?

The simulation chain linking space & rail

satellite signals

Propagation channel

Receiver processing

Integration in OB unit

Use in ERTMS

24/10/2024

.

HOW TO SIMULATE GNSS ALONG A RAILWAY LINE?

The need: use of real(istic) railway errors

OBJECTIVE

To provide an end-to-end chain capable of simulating and evaluating realistic GNSS reception conditions function of time and all along a railway line

A TWO-STEP METHODOLOGY

- 1. Data-driven characterization of the reception environment
- 2. Error modelling for each type of environment

WHAT IS THE AVAILABLE INFORMATION?

Using GNSS Raw measurements (RINEX)

Dimension of the problem ↗

Medium

Low order

statistical moments

- Delays Iono
- Delays Tropo

• Multi-

frequencies

Large

High order

statistical

moments

 Multiconstellations

Primary classes

- Buildings
- Tree
- Open-sky
- Bridge

Secondary classes

- train-station,
- mixed_tree_open
- mixed_tree_build
- mixed_build_open

WHAT IS THE AVAILABLE INFORMATION?

Using public sources

WHAT IS THE AVAILABLE INFORMATION?

After the labelling process (CLUG dataset)

Majority of mixed classes

- Simple model (Multiclass Logistic Regression):
 - Linear model
 - Easy to interpret
 - Lower performance

$$p_i = \frac{1}{1 + e^{\beta x_i + \beta_0}}$$

- Complex model (XGBoost)
 - Boosting methods based on tree classifier
 - Hard to interpret
 - No assumption of linearity

MACHINE LEARNING

Confusion-matrices (medium dataset ~ low dim)

Linear Model Accuracy = 0.73 Non-Linear Model Accuracy = 0.95

MACHINE LEARNING

Confusion matrices (large dataset ~ high dim)

Linear Model

Accuracy = 0.92

But <u>no</u> confidence about predictions at future times

Non-Linear Model Accuracy = 0.99

ERROR MODELING

Some insights (GPS L1)

Need of Robust Gaussian approaches (ex: *Minimum Covariance Determinant*)

SOME FEEDBACK ON THE PROBLEM

On the environment choice

- ➤ Multiple choices depending on the source of information
- ➤ Little work done on the temporal variability

On the machine learning aspect

- ➤ Strong correlations between observations (environments = "groups")
- ➤ How to prevent the model to learn the spatial information ???

YOUR CONTACTS

Juliette MARAIS Uni. Gustave Eiffel

Railenium

Juliette.marais@univ-eiffel.fr

Quentin.mayolle@railenium.eu

Quentin MAYOLLE

