

CS 553 CRYPTOGRAPHY

Lecture 7
More on Differential
Cryptanalysis

Instructor
Dr. Dhiman Saha

Image Source: Google

Leaderboard

Group	Time of Submission	Points Awarded
KS KeySentinels	August 23, 12:22 AM	10
PlainCiphers	August 23, 12:25 AM	7
SDFSM19VNV9QTFo=	August 23, 12:27 AM	5
UVU Caesar	August 23, 12:31 AM	3
CRYpto	August 23, 12:33 AM	1
Keybreakers	August 23, 12:46 AM	-
2/39	August 23, 12:57 AM	-
PCRCEHTCTCSR	August 23, 01:10 AM	-
Random_Lavarands	August 23, 01:41 AM	-
Atipho	August 23, 03:52 AM	-
RSA	-	-
PhD Group	-	-
MIS Group	=	-

- ▶ Initialize counters $T_i = 0$, one for each possible key k_2 .
- ► For each message/ciphertext pair do
 - ▶ For each guess i for k_2 do
 - ► Compute $v_0' \oplus v_1'$
 - ▶ If $v_0' \oplus v_1' = d$ increase counter T_i
- Assume that the right key k_2 corresponds to the highest counter.
- ▶ What about the complexity of recovering each k_i

u_0	$u_1 = u_0 \oplus f$	$v_0 = S[u_0]$	$v_1 = S[u_1]$	$v_0 \oplus v_1$
0	f	6	b	d
1	е	4	9	d
2	d	С	a	6
3	С	5	8	d
4	b	0	d	d
5	a	7	3	4
6	9	2	f	d
7	8	е	1	f
8	7	1	е	f
9	6	f	2	d
a	5	3	7	4
b	4	d	0	d
С	3	8	5	d
d	2	a	C	6
е	1	9	4	d
f	0	b	6	d

in \out	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
a	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-
С	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
е	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2

Recall the interpretation

Point to Ponder

Point to Ponder

$$k_0 \xrightarrow{k_1} \xrightarrow{k_2} \xrightarrow{k_3} \xrightarrow{k_3} \xrightarrow{m \longrightarrow \bigoplus} u \longrightarrow s \longrightarrow v \longrightarrow s \longrightarrow x \longrightarrow \bigoplus y \longrightarrow s \longrightarrow z \longrightarrow \bigoplus c$$

Hint

Two Round Characteristic

$$f \xrightarrow{S} d \xrightarrow{S} c$$

$$k_0 \xrightarrow{k_1} \xrightarrow{k_2} \xrightarrow{k_3} \xrightarrow{m} \xrightarrow{w} u \xrightarrow{s} v \xrightarrow{w} \xrightarrow{s} x \xrightarrow{w} y \xrightarrow{s} z \xrightarrow{w} c$$

Hint

Two Round Characteristic

$$f \xrightarrow{S} d \xrightarrow{S} c$$

▶
$$\Pr\left[f \xrightarrow{S} d\right] = \frac{10}{16}$$
 and $\Pr\left[d \xrightarrow{S} c\right] = \frac{6}{16}$

$$k_0 \xrightarrow{k_0} w \xrightarrow{k_1} w \xrightarrow{k_2} w \xrightarrow{k_3} w \xrightarrow{k_3}$$

Hint

Two Round Characteristic

$$f \xrightarrow{S} d \xrightarrow{S} c$$

▶
$$\Pr\left[f \xrightarrow{S} d\right] = \frac{10}{16}$$
 and $\Pr\left[d \xrightarrow{S} c\right] = \frac{6}{16}$

Assumption

Characteristics are independent 🛆

$$\Pr\left[f \xrightarrow{S} d \xrightarrow{S} c\right] = \frac{10}{16} \times \frac{6}{16} = \frac{15}{64}$$

Any Guess about Sypher004

What does it look like?

Point to Ponder

- ► Till now there was no **permutation** layer
- ► So we did not have to consider its effect

Notion of Active Sboxes

Note

No permutation in last round. Why?

For Reference

in \out	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
a	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-
C	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
е	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2

Is there a strategy to construct these?

► What did we follow just now? △

May not be the best thing to do

- ► The effects of P-layer come into consideration
- Minimization of number of active Shox-es

▶ Note how each active Sbox contributes to the probability of the multi-round characteristics

Is there a strategy to construct these?

► What did we follow just now? △

Local Optimum

Greedy approach

May not be the best thing to do

- ► The effects of P-layer come into consideration
- Minimization of number of active Shox-es

▶ Note how each active Sbox contributes to the probability of the multi-round characteristics

Is there a strategy to construct these?

► What did we follow just now? △

Local Optimum

Greedy approach

May not be the best thing to do

- ► The effects of P-layer come into consideration
- Minimization of number of active Sbox-es

▶ Note how each active Sbox contributes to the probability of the multi-round characteristics

Let Us take A Non-Greedy Approach

in \out	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
a	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-
С	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
е	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2

Look at $2 \rightarrow 2$ transition

Example
$$\rightarrow p = \left(\frac{6}{16}\right)^2$$

Input Diff. \rightarrow (0, 0, 2, 0)

Putting things in perspective

$$p = \frac{10}{16} \times \left(\frac{6}{16}\right)^3$$

$$p = \left(\frac{6}{16}\right)^2$$

DC of Sypher004

The Attack

- ► Get 4-round characteristic
- ► Find conforming message pairs △

Why 4-rounds?

- Recall previous attacks
- Partial decryption (go backwards)
- Last round will be inverted by guessing (part of) k_5
- ► To verify expected difference as per 4-round characteristic

► For the current characteristic, $p = \left(\frac{6}{16}\right)^4 \approx 0.02$

Whats the catch?

Probability of any given difference occurring at random is $\frac{1}{16} \approx 0.06 > 0.02$

- ► Implications?
- ► Ineffective distinguisher!

- No good answer, specially for large block sizes.
- Recent results on using Mixed Integer Linear

► For the current characteristic, $p = \left(\frac{6}{16}\right)^4 \approx 0.02$

Whats the catch?

Probability of any given difference occurring at random is $\frac{1}{16} \approx 0.06 > 0.02$

- ► Implications?
- ► Ineffective distinguisher!

- No good answer, specially for large block sizes.
- Recent results on using Mixed Integer Linear

► For the current characteristic, $p = \left(\frac{6}{16}\right)^4 \approx 0.02$

Whats the catch?

Probability of any given difference occurring at random is $\frac{1}{16} \approx 0.06 > 0.02$

- ► Implications?
- ► Ineffective distinguisher!

How to find a better one?

- No good answer, specially for large block sizes.
- Recent results on using Mixed Integer Linear Programming (MILP)

- $k_0 = 5b92$
- $k_1 = 064b$
- $k_2 = 1e03$
- ► $k_3 = a55f$
- $ightharpoonup k_4 = ecbd$
- ► $k_5 = 7ca5$

- |Message pairs| = 2^{16} : $\Delta = (0, 0, 2, 0)$
- ► Conforming message pairs found = 1300
- ► Conforming means? △
- \blacktriangleright After **every round** difference is (0,0,2,0)
- ► Computed probability $\frac{1300}{2^{16}} \approx 0.02$
- Matches expected probability

Home Work Problem

Can also be verified across other randomly chosen key sets.

4-round Characteristic

- $k_0 = 5b92$
- $k_1 = 064b$
- $k_2 = 1e03$
- ► $k_3 = a55f$
- $ightharpoonup k_4 = ecbd$
- ► $k_5 = 7ca5$

- |Message pairs| = 2^{16} : $\Delta = (0, 0, 2, 0)$
- ► Conforming message pairs found = 1300
- ► Conforming means? △
- \blacktriangleright After every round difference is (0,0,2,0)
- ► Computed probability $\frac{1300}{216} \approx 0.02$
- Matches expected probability

Home Work Problem

Can also be verified across other randomly chosen key sets.

Two optimization techniques

Differentials Filtering

Characteristic

Differential

 $(0,0,2,0) \xrightarrow{R} (0,0,2,0) \xrightarrow{R} \cdots (0,0,2,0)$

 $(0,0,2,0) \xrightarrow{R} ? \xrightarrow{R} ? \cdots ? \xrightarrow{R} (0,0,2,0)$

Characteristic

Differential

 $(0,0,2,0) \xrightarrow{R} (0,0,2,0) \xrightarrow{R} \cdots (0,0,2,0)$

 $(0,0,2,0) \xrightarrow{R} ? \xrightarrow{R} ? \cdots ? \xrightarrow{R} (0,0,2,0)$

$$(0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0).$$

But it also contains at least three other possible characteristics. They are

$$(0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,0,2) \xrightarrow{\mathscr{R}} (0,0,0,1) \xrightarrow{\mathscr{R}} (0,0,1,0) \xrightarrow{\mathscr{R}} (0,0,2,0),$$

$$(0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,0,2) \xrightarrow{\mathscr{R}} (0,0,1,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0), \text{ and } (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,0,2) \xrightarrow{\mathscr{R}} (0,0,1,0) \xrightarrow{\mathscr{R}} (0,0,2,0).$$

Idea of filtering

Lets look at the possibilities of the last round

Are all ciphertexts usable for us?

- ► Filtering?
- Note: For $(0,0,2,0) \rightarrow (0,0,2,0)$, 12-bits in the difference of cipher-texts must be zero
- ► What about remaining 4-bits?
- ► We again look at the Sbox

 $(0,0,2,0) \xrightarrow{R} ? \xrightarrow{R} ? \cdots ? \xrightarrow{R} (0,0,2,0)$

Idea of filtering

Lets look at the possibilities of the last round

Are all ciphertexts usable for us?

- Filtering?
- Note: For $(0,0,2,0) \to (0,0,2,0)$, 12-bits in the difference of cipher-texts must be zero
- ► What about remaining 4-bits?
- We again look at the Sbox

 $(0,0,2,0) \xrightarrow{R} ? \xrightarrow{R} ? \cdots ? \xrightarrow{R} (0,0,2,0)$

in \ out	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16			-	-	-	-	-	-			-	-	-	-	
1	-	_	6	-	-	-	-	2	-	2	_	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
6	-	-	2	-	4	-	-	2	2	-	2	2	2	-	-	-
7	-	-	-	-	-	4	4	-	2	2	2	2	-	-	-	-
8	-	-	-	-	-	2	-	2	4	-	-	4	-	2	-	2
9	-	2	-	-	-	2	2	2	-	4	2	-	-	-	-	2
а	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-
С	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
е	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2

- ► Any other transition from 2 is impossible ▲
- Message pairs leading to ciphertext pairs giving differences other than $\{1, 2, 9, a\}$ in the third nibble can be discarded