Week 4

Relation on {A, B, C, D, E}

I. Ways to Represent Relations

- 1. Graphical representation given above
- 2. Matrix representation

	A	В	C	D	E
A	1	1	1	0	0
В	0	1	0	1	1
C	1	0	1	1	0
D	0	1	0	1	0
E	0	1	0	1	1

→ 1's in diagonal simply denote that everyone knows oneself.

Cartesian Product:

 \rightarrow cross product of A with itself = $A \times A$

3. Set Representation

 $R = \{(A,B), (A,C), (A,A), (B,D), (B,E), (B,B), (C,A), (C,D), (C,C), (D,B), (D,D), (E,B), (E,D), (E,E)\}$ $R \subseteq S \times S$, where $S = \{A,B,C,D,E\}$

Any subset of SxS is a relation on S. Any relation on S is a subset of SxS.

Examples:

a. $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. What is $A \times B$?

 $A \times B = \{(x,y) \mid x \in A, y \in B\}$ $= \{(1,a), (1,b), (1,c), (1,d), (2,a), (2,b), (2,c), (2,d), (3,a), (3,b), (3,c), (3,d)\}$

 $1A \times B1 = |A| + |B| \rightarrow coordinality$ = $3 \times 4 = 12$

b. Let S = {1,2,3,4,5,6}. A relation R on set S is defined as:

R= {(a,b) / a+b ≤ 4}

What are the elements of R?

a, b & S , a + b & 4

 \Rightarrow R = { (1,1), (1,2), (1,3), (2,1), (2,2), (3,1)}

dneams_

I. Number of Relations & Types of Relations

Number of possible relations on A = All possible subsets of $A \times A$

19. IA × Al = 25

All possible subsets of $A \times A = 2^{25}$

In general, if

S = {a,, a, a, a, ..., a,}

=> |S x S| = 11 x n = n2 elements

Total possible subsets of $S \times S =$ number of elements in power set of $S \times S$

= 2 n2

= Total no of possible relations on S

a. Reflexive Relation

If a relation contains all possible (x,x) for all values of x from A.

-> Relation C Ax A

A = {a., a2, a3, a4, ..., a, }

 $R = \{(a_1, a_2), (a_2, a_3), (a_3, a_3), \dots (a_{10}, a_{10})\}$

What would be the correct matrix representation?

→ For A = {1,2,3}

 $R = \{(1,1), (2,2), (3,3)\}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

S = {a, , a2 , a3 , ... an}

Q. What are the total no. of reflexive relations on S?

R S S X S

Not all subsets of SxS will be a valid reflexive relation.

$$\{(\alpha_1,\alpha_1), (\alpha_2,\alpha_2), (\alpha_3,\alpha_3), ..., (\alpha_n,\alpha_n)\}$$

n elements will definitely be there

Rest elements may or may not be there.

Number of ways in which we can include the rest = all possible relations which are reflexive.

Rest of elements = $n^2 - n$

 \rightarrow All possible ways to choose the rest of the elements = 2^{n^2-n}

= total number of reflexive relations

And shamp in a nx A 12 velo

1 x 1 1 - (1 + 18) - + conta

b. Symmetric Relation:

A relation R is symmetric, iff $(a,b) \in R \Rightarrow (b,a) \in R$

Matrix Representation:

Symmetric relations occur in situations where relationship is mutual. For e.g., A shakes hand w/ B, or A is a cousin of B.

Not a symmetric relation:

$$S = \{1, 2, 3, 4, ..., 10\}$$
 $(a, b) \in R \subseteq S \times S$ if a/b .

R is reflexive, but not symmetric.

* Parallel lines example is a potential exam question. Identify which relations does a given set of parallel lines fulfill.

What are the total possible symmetric relations on a given set 5 w/n elements?

Number of squares in diagonal & below = $\frac{n(n+1)}{2}$

Number of ways of filling up $\frac{n(n+1)}{2}$ places = $2^{\frac{n(n+1)}{2}} = 2^{\frac{n^2+n}{2}}$

Examples:

→ A = {1,2,3,4,5}, R ⊆ A×A.

 $R = \{(1,1), (1,4), (2,2), (2,3), (3,3), (3,1), (2,4), (5,5), (5,1)\}$

Is R a reflexive relation?

ary Yes

 $\Rightarrow R = \{(a,b) \mid a,b \in \mathbb{N}, b = a^2\}$

Is R reflexive?

 $\mathbb{R} = \{(1, 1), (2, 4), (3, 9), (4, 16), (5, 26), \dots\}$...

R = $\{(a,b) \mid a,b \in \mathbb{N}, a \cdot b = 14 \}$, Is R symmetric? R = $\{(1,14), (2,7), (7,2), (14,1) \}$

.. Yes, it is symmetric.

C. Transitive Relation:

example: A > B, B > C, then, A > C if $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$.

non-example: A shakes hands with B, B shakes hands w/ C.

d. Antisymmetric Relation Admit making many lander of the symmetric Relation

if $(a,b) \in R$, then $(b,a) \notin R$ unless a=b.

Examples of Transitive & Antisymmetric Relations

Consider a relation on the set of integers as $R = \{(a,b) | a+b = 0\}$

 $R = \{(0,0), (-1,1), (1,-1), (2,-2), (-2,2), \dots \}$

R is symmetric R is not transitive

 $R = \{(a,b) \mid \sin \alpha = \sin b\}$

sin 0 = 0, sin 1 = 0

(0, R) ER, (0, 2x) ER, (0, nx) ER

 $\sin \frac{\pi}{2} = 1$, $\sin \frac{3\pi}{2} = -1$, $(\frac{\pi}{2}, -\frac{3\pi}{2}) \neq R$

(6, c) ∈ R (a, b) E R

sin a = sin b sin b = sin c

=> R is transitive > Sin a = Sinc

R is reflexive & symmetric too. (check)

Consider a relation R on N.

R = {(n,n+1) | n ∈ N}

 $R = \{(1,2), (2,3), (3,4), \dots\}$

 $(1,2) \in \mathbb{R}, (2,3) \in \mathbb{R}, (1,3) \notin \mathbb{R}$

(1,2) ∈ R, (2,1) ∈ R

only antisymmetric.

in R a relience releasen ?

Antisymmetric is not same as not symmetric.

example, A = {1.2, 3.4, 5} $R = \{(1,2), (2,1), (3,4)\}$

R isn't symmetric because (3,4) ER but (4,3) & R R isn't antisymmetric because (1,2) ER & (2,1) ER.

Asymmetric - Graphical Representation /* Nothing here */

Asymmetric - Matrix Representation

Number of Antisymmetric Relations

You can fill up only one \triangle , other one automatically gets fixed. Total elements in the matrix = n2

Total elements in the matrix = n^2 Elements in the 1 half $\Delta = \frac{1}{2} (n^2 - n)$ no. of ele. in the diagonal

No. of ## ways to fill up a \D = \frac{1}{2} 2

No of ways to fill up the diagonal = 2"

... Total no. of antisymmetric relations = $2^{\frac{n^2-n}{2}} \cdot 2^n$

How many anti-symmetric relations on n elements?

no. of ways to fill up the diagonal =
$$2^n$$

no. of ways to fill up all the pairs = $3^{\frac{n^2+n}{2}}$

3 possibilities:

Total no. of antisymmetric relations = 3 2. 2"

Conditions for Relations to be Reflexive. Symmetric, Antisymmetric

- → Matrix condition for a reflexive relation: I ≤ M(R)

 Identity matrix → Matrix of relation R.
- → Matrix condition for a symmetric reation ⇒ M = M^T
 M ≠ M^T → not symmetric
 Colifferent from anti-symmetric)
- \rightarrow Condition for a relation to be antisymmetric: $M \cap M^{\intercal} \leq I$

e. Equivalence Relation

A relation which is all - reflexive, transitive & symmetric.

Consider the set $S = \{(a,b) \mid a,b \in N\}$ $S = N \times N$

$$R = \{(a,b), (c,d) \mid ad = bc \}$$
 or $\frac{a}{b} = \frac{c}{d}$

Is R is an equivalence relation?

- 1. $((a,b), (a,b)) \in R$: ab = ab
- 2. $((a,b), (c,d)) \in R$ $\Rightarrow bc = ad$ $((b^c, d), (a,b)) \in R$ $\Rightarrow ad = bc$
- 3. $((a,b), (c,d)) \in \mathbb{R}$ \Rightarrow $ad = bc \Rightarrow \frac{a}{b} = \frac{c}{d}$ $((c,d), (e,f)) \in \mathbb{R}$ \Rightarrow $de = cf \Rightarrow \frac{c}{d} = \frac{e}{f}$

:
$$\frac{1}{2} = \frac{1}{2} = \frac{$$

Hence, the relation is all reflexive, symetric & transitive, \Rightarrow R is an equivalence relation.

II. Partition

 $A = \{1, 2, 3, 4, 5, \dots, 99, 100\}$

R = {(a,b) | a,b | leave the same remainder when divided by 4} or a R b if a & b | leave the same remainder when divided by 4.

This relation classifies all the interrelated numbers into disjoint partitions.

Note: This is valid for any set A, even infinite sets.

example: a R b if a = b (mod 4)

 $a \equiv a \pmod{4}$ \longrightarrow reflexive

 $a \equiv b \pmod{4} \Rightarrow b \equiv a \pmod{4} \rightarrow symmetric$

 $a \equiv b \pmod{4}$, $b \equiv c \pmod{4}$

 \Rightarrow a = c (mod 4) \rightarrow transitive.

Thus, a R b is an equivalence relation.

a R b does induce a partition on the set A.

A = S, \cup S₂ \cup S₃ \cup S₄ \downarrow \downarrow \downarrow \downarrow 0 1 2 3 \leftarrow numbers leaving remainder =

Equivalence relation partitions a set into disjoint equivalent sets. $S_1 \cap S_2 \cap S_3 \cap S_4 \cap ... \cap S_k = \emptyset$ (for dividing by any number k)

Theorem: Given a set 5, and a relation R on S. If the relation is an equivalence relation, then the relation partitions the set into disjoint subsets. The converse is also true for this theorem.

If there's a group of 100 people and they've a property that if a friend's friend is one's friend, then these people will automatically divided into seperate clusters, whose within a cluster, everyone knows everyone. Think about it!

 $A = \{a_1, a_2, a_3, ..., a_n\}$

R on A is reflexive, symmetric de transitive. aRa aRb aRb, bRc

bRa aRc

a. Ra, => a. Ra. is true a2 Ra, = a2 Rais

 $S_1 = \{\alpha_1, \alpha_2, \alpha_{10}\} \cdots S_2$ of all haterals made subminioners traces, of greats, see I (d.o))

- A = S, US, U...US,
- S, n S2 n S3 n ... n S1 = \$
- Intersection of any two sets = ϕ

Converse of Theorem: If there is a partition of A. Make This to void for one set As even min

A = S, US, U S, U ... USk,

then an equivalence relation can be defined on A which induces the partition.

- numbers leaving removed -

which a clieby equipment broads arrange which about it

Torbbon .