

Design and Analysis of Algorithms I

Asymptotic Analysis

Big-Oh: Basic Examples

Example #1

<u>Claim</u>: if $T(n) = a_k n^k + ... + a_1 n + a_0$ then

$$T(n) = O(n^k)$$

Proof: Choose $n_0 = 1$ and $c = |a_k| + |a_{k-1}| + ... + |a_1| + |a_0|$

Need to show that $\forall n \geq 1, T(n) \leq c \cdot n^k$

We have, for every $n \geq 1$,

$$T(n) \le |a_k| n^k + \dots + |a_1| n + |a_0|$$

 $\le |a_k| n^k + \dots + |a_1| n^k + |a_0| n^k$
 $= c \cdot n^k$

Tim Roughgarden

Example #2

Claim: for every $k \ge 1$, n^k is not $O(n^{k-1})$

<u>Proof</u>: by contradiction. Suppose $n^k = O(n^{k-1})$ Then there exist constants c, n_0 such that

$$n^k \le c \cdot n^{k-1} \quad \forall n \ge n_0$$

But then [cancelling n^{k-1} from both sides]:

$$n \le c \quad \forall n \ge n_0$$

Which is clearly False [contradiction].