

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform

Hypothesis testing with GLR

Example: GLF for Binomial distribution

Summar

Hypothesis testing and decision rules

The Generalized Likelihood Ratio

Bruce M. Boghosian

Department of Mathematics

Tufts University

- The Generalized Likelihood Ratio (GLR)
- Example: GLR for uniform distribution
- 3 Hypothesis testing with GLR
- Example: GLR for Binomial distribution
- Summary

Generalized Likelihood Ratio (GLR)

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLI for Binomial distribution

ummarv

- Suppose $y_1, y_2, ..., y_n$ is random sample from the uniform pdf on $[0, \theta]$
- The parameter θ is unknown
- We wish to conduct a hypothesis test at level of significance α between the alternatives
 - \blacksquare $H_0: \theta = \theta_0$
 - $\blacksquare H_1: \theta < \theta_0$

Tuffs The sets ω and Ω

The Generalized Likelihood

- \blacksquare Define ω to be the set of parameter values possible under the constraints of H_0
- \blacksquare Define Ω to be the set of all unknown parameters
- In the example of the uniform distribution on $[0, \theta]$,

$$\bullet \ \omega = \{\theta \mid \theta = \theta_0\}$$

Note that $\omega \subset \Omega$

Maximizing likelihood over ω and Ω

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR

Example: GLF for uniform distribution

testing with

Example: GLI for Binomial distribution

Summar

Let L be the likelihood function which, in our example, is

$$L(\theta) = \prod_{j=1}^{n} f_{Y}(y_{j}; \theta) = \begin{cases} \left(\frac{1}{\theta}\right)^{n} & \text{if } y_{\text{max}} \leq \theta \\ 0 & \text{otherwise} \end{cases}$$

- lacksquare Maximize likelihood over all $heta\in\omega$, in other words $heta= heta_0$
 - This will be L evaluated at θ_0
- Maximize likelihood over all $\theta \in \Omega$.
 - This will be *L* evaluated at the maximum likelihood estimate

First example: GLR for uniform distribution

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLR for uniform distribution

Hypothesis testing with GLR

Example: GLI for Binomial distribution

Summary

■ Generalized Likelihood Ratio (GLR) is then defined to be

$$\lambda = \frac{\max_{\theta \in \omega} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$$

■ For our example, we have

$$\lambda = \frac{\max_{\theta \in \omega} L(\theta)}{\max_{\theta \in \Omega} L(\theta)} = \frac{\left(\frac{1}{\theta_0}\right)^n}{\left(\frac{1}{y_{\text{max}}}\right)^n} = \left(\frac{y_{\text{max}}}{\theta_0}\right)^n$$

- Note that λ will be positive, but always strictly ≤ 1 .
- Values of λ near one are compatible with H_0
- Values of λ near zero suggest that we reject H_0

General definition of Generalized Likelihood Ratio

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLR for uniform distribution

Hypothesis testing with GLR

Example: GLI for Binomial distribution

Summary

- Let y_1, y_2, \ldots, y_n be random sample from $f_Y(y; \theta_1, \ldots, \theta_k)$
- The GLR is defined to be

$$\lambda = \frac{\max_{\theta \in \omega} L(\theta_1, \dots, \theta_k)}{\max_{\theta \in \Omega} L(\theta_1, \dots, \theta_k)}$$

■ Note that the generalization to *k* parameters is, in principle, straightforward.

Hypothesis testing with the GLR

Bruce M. Boghosiar

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLF for Binomial distribution

ummary

- Recall that we have determined
 - Note that λ will be positive, but always strictly ≤ 1 .
 - Values of λ near one are compatible with H_0
 - Values of λ near zero suggest that we reject H_0
- GLR Test (GLRT) rejects H_0 whenever $0 < \lambda \le \lambda^*$
- Here λ^* is chosen to satisfy

$$P(0 < \Lambda \leq \lambda^* \mid H_0 \text{ is true}) = \alpha,$$

where Λ is the random variable associated with λ .

Note that if we knew $f_{\Lambda}(\lambda \mid H_0)$, then λ^* could be determined from

$$\alpha = \int_0^{\lambda^*} d\lambda \, f_{\Lambda}(\lambda \mid H_0)$$

Hypothesis testing with GLR (continued)

Bruce M. Boghosian

The Generalized

Example: GLR for uniform distribution

Hypothesis testing with GLR

Example: GLF for Binomial distribution

ummary

■ We would like to choose our cutoff so that

$$\alpha = \int_0^{\lambda^*} d\lambda \ f_{\Lambda}(\lambda \mid H_0)$$

- Unfortunately, the pdf $f_{\Lambda}(\lambda \mid H_0)$ may not be so easy to determine
- For the case of $\lambda = \left(\frac{y_{\text{max}}}{\theta_0}\right)^n$, we have

$$\begin{split} \alpha = & P\left(\Lambda \leq \lambda^* \mid H_0 \text{ is true}\right) \\ = & P\left[\left(\frac{Y_{\max}}{\theta_0}\right)^n \leq \lambda^* \mid H_0 \text{ is true}\right] \\ = & P\left(Y_{\max} \leq \theta_0 \sqrt[n]{\lambda^*} \mid H_0 \text{ is true}\right) \end{split}$$

Hypothesis testing with GLR (continued)

Bruce M. Boghosian

The Generalized Likelihood

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLF for Binomial distribution

Summary

From last page

$$\begin{split} \alpha &= P\left(Y_{\max} \leq \theta_0 \sqrt[n]{\lambda^*} \mid H_0 \text{ is true}\right) \\ &= F_{Y_{\max}}\left(\theta_0 \sqrt[n]{\lambda^*}\right) \\ &= \left[F_Y\left(\theta_0 \sqrt[n]{\lambda^*}\right)\right]^n \\ &= \left(\frac{\theta_0 \sqrt[n]{\lambda^*}}{\theta_0}\right)^n \\ &= \lambda^* \end{split}$$

• So reject H_0 if $\lambda \leq \lambda^* = \alpha$, or equivalently $y_{\max} \leq \theta_0 \sqrt[n]{\alpha}$

Second example: Binomial distribution

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLR for Binomial distribution

Summary

- Bernoulli trial $p_X(k;p) = p^k(1-p)^{1-k}$
- Likelihood is

$$L(p) = \prod_{j}^{n} p^{k_{j}} (1-p)^{1-k_{j}} = p^{k} (1-p)^{n-k}$$

where $k = \sum_{j=1}^{n} k_{j}$.

- Log likelihood ln $L(p) = k \ln p + (n k) \ln(1 p)$
- Max likelihood $0 = \frac{d}{dp} \ln L(p) = \frac{k}{p} \frac{n-k}{1-p}$ so $p_e = \frac{k}{n}$
- Max likelihood estimator $\hat{p}(\vec{X}) = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X}$

Bruce M. Boghosiar

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLR for Binomial distribution

ummary

■ Test
$$H_0: p = p_0$$
 versus $H_1: p \neq p_0$

$$= \max_{p \in \omega} L(p) = L(p_0) = p_0^k (1 - p_0)^{n-k}$$

$$lacksquare$$
 $\max_{p\in\Omega}L(p)=L(\hat{p})=\left(rac{k}{n}
ight)^k(1-rac{k}{n})^{n-k}$

GLR is then

$$\lambda = \frac{\max_{p \in \omega} L(p)}{\max_{p \in \Omega} L(p)} = \frac{p_0^k (1 - p_0)^{n - k}}{\binom{k/n}{k} (1 - k/n)^{n - k}} = \left(\frac{p_0}{k/n}\right)^k \left(\frac{1 - p_0}{1 - k/n}\right)^{n - k}$$

Example for n = 200 and $p_0 = 0.6$ (so $np_0 = 120$):

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLR for Binomial distribution

iummarv

Demand that

$$\alpha = \operatorname{\mathsf{Prob}}\left(\lambda < \lambda^*\right) = \operatorname{\mathsf{Prob}}\left(\left(\frac{\rho_0}{^{k/n}}\right)^k \left(\frac{1-\rho_0}{1-^{k/n}}\right)^{n-k} < \lambda^*\right)$$

- Given p_0 , work out correspondence between λ^* and α .
- **Ex.:** For n = 200 and $p_0 = 0.60$, and taking $\lambda^* = 0.25$
 - Reject H_0 if $\lambda < \lambda^*$
 - Reject H_0 if $k \le 108$ or $k \ge 132$

$$\alpha = \sum_{k=0}^{108} {200 \choose k} (0.6)^k (1 - 0.6)^{200 - k}$$

$$+ \sum_{k=132}^{200} {200 \choose k} (0.6)^k (1 - 0.6)^{200 - k} = 0.0972$$

■ About 90% confidence we will not reject H_0 if it is true.

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLR for Binomial distribution

Summary

Ex.: For n = 200 and $p_0 = 0.60$, and taking $\lambda^* = 0.15$

- Reject H_0 if $\lambda < \lambda^*$
- Reject H_0 if $k \le 106$ or $k \ge 134$

$$\alpha = \sum_{k=0}^{106} {200 \choose k} (0.6)^k (1 - 0.6)^{200 - k}$$

$$+ \sum_{k=134}^{200} {200 \choose k} (0.6)^k (1 - 0.6)^{200 - k} = 0.0513$$

■ About 95% confidence we will not reject H_0 if it is true.

Bruce M. Boghosian

The Generalized Likelihood Ratio (GLR)

Example: GLF for uniform distribution

Hypothesis testing with GLR

Example: GLR for Binomial distribution

Summarv

Ex.: For n = 200 and $p_0 = 0.60$, and taking $\lambda^* = 0.0369$

- Reject H_0 if $\lambda < \lambda^*$
- Reject H_0 if $k \le 102$ or $k \ge 139$

$$\alpha = \sum_{k=0}^{102} {200 \choose k} (0.6)^k (1 - 0.6)^{200 - k}$$

$$+ \sum_{k=139}^{200} {200 \choose k} (0.6)^k (1 - 0.6)^{200 - k} = 0.00913$$

■ About 99% confidence we will not reject H_0 if it is true.

Example: GLR for Binomial

- **Ex.:** For n=200 and $p_0=0.60$, plot α versus λ^*
- Smaller α results from smaller thresholds λ^* .
- Discrete "steps" due to discreteness of r.v. $k \in \mathbb{Z}$.

Tufts Summary

Summary

- We introduced and defined Generalized Likelihood Ratio
- We demonstrated how to use GLR for hypothesis testing
 - For uniform distribution
 - For binomial distribution
- Reject H_0 when $\lambda < \lambda^*$.
- Hence smaller λ^* mean smaller α , and greater confidence against rejecting H_0 if it is true.