Lecture 14:

Videos Unsupervised Learning

Administrative

- Everyone should be done with Assignment 3 now
- Milestone grades will go out soon

Last class

Segmentation

Spatial Transformer

Soft Attention

Videos

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 14 -

ConvNets for images

Feature-based approaches to Activity Recognition

Dense trajectories and motion boundary descriptors for action recognition Wang et al., 2013

Action Recognition with Improved Trajectories Wang and Schmid, 2013

(code available!)

Dense trajectories

Dense trajectories and motion boundary descriptors for action recognition *Wang et al., 2013*

detect feature points

track features with optical flow

extract HOG/HOF/MBH features in the (stabilized) coordinate system of each tracklet

Dense trajectories and motion boundary descriptors for action recognition *Wang et al., 2013*

detected feature points

[J. Shi and C. Tomasi, "Good features to track," CVPR 1994] [Ivan Laptev 2005]

Dense trajectories and motion boundary descriptors for action recognition Wang et al., 2013

track each keypoint using optical flow.

[G. Farnebäck, "Two-frame motion estimation based on polynomial expansion," 2003]

[T. Brox and J. Malik, "Large displacement optical flow: Descriptor matching in variational motion estimation," 2011]

Dense trajectories and motion boundary descriptors for action recognition *Wang et al., 2013*

Extract features in the local coordinate system of each tracklet.

Accumulate into histograms, separately according to multiple spatio-temporal layouts.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What if the input is now a small chunk of video? E.g. [227x227x3x15]?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What if the input is now a small chunk of video? E.g. [227x227x3x15]?

A: Extend the convolutional filters in time, perform spatio-temporal convolutions!

E.g. can have 11x11xT filters, where T = 2..15.

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convolution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

[3D Convolutional Neural Networks for Human Action Recognition, Ji et al., 2010]

Sequential Deep Learning for Human Action Recognition, Baccouche et al., 2011

spatio-temporal convolutions; worked best.

Learned filters on the first layer

1 million videos 487 sports classes

		D 0 1
Clip Hit@1	Video Hit@1	Video Hit@5
	55.3	####
41.1	59.3	77.7
42.4	60.0	78.5
30.0	49.9	72.8
38.1	56.0	77.2
38.9	57.7	76.8
40.7	59.3	78.7
41.9	60.9	80.2
41.4	63.9	82.4
	41.1 42.4 30.0 38.1 38.9 40.7 41.9	- 55.3 41.1 59.3 42.4 60.0 30.0 49.9 38.1 56.0 38.9 57.7 40.7 59.3 41.9 60.9

The motion information didn't add all that much...

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D convolution kernels are $3 \times 3 \times 3$ with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box. The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are $2 \times 2 \times 2$, except for pool1 is $1 \times 2 \times 2$. Each fully connected layer has 4096 output units.

3D VGGNet, basically.

[Learning Spatiotemporal Features with 3D Convolutional Networks, Tran et al. 2015]

(of VGGNet fame)

[Two-Stream Convolutional Networks for Action Recognition in Videos, Simonyan and Zisserman 2014]

[T. Brox and J. Malik, "Large displacement optical flow: Descriptor matching in variational motion estimation," 2011]

Spatial stream ConvNet	73.0%	40.5%
Temporal stream ConvNet	83.7%	54.6%
Two-stream model (fusion by averaging)	86.9%	58.0%
Two-stream model (fusion by SVM)	88.0%	59.4%

Two-stream version works much better than either alone.

[Two-Stream Convolutional Networks for Action Recognition in Videos, **Simonyan** and Zisserman 2014]

[T. Brox and J. Malik, "Large displacement optical flow: Descriptor matching in variational motion estimation," 2011]

All 3D ConvNets so far used local motion cues to get extra accuracy (e.g. half a second or so)

Q: what if the temporal dependencies of interest are much much longer? E.g. several seconds?

(This paper was way ahead of its time. Cited 65 times.)

Sequential Deep Learning for Human Action Recognition, Baccouche et al., 2011

LSTM way before it was cool

(This paper was way ahead of its time. Cited 65 times.)

Sequential Deep Learning for Human Action Recognition, Baccouche et al., 2011

[Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al., 2015]

[Beyond Short Snippets: Deep Networks for Video Classification, Ng et al., 2015]

Summary so far

We looked at two types of architectural patterns:

- 1. Model temporal motion locally (3D CONV)
- 2. Model temporal motion globally (LSTM / RNN)
- + Fusions of both approaches at the same time.

Summary so far

We looked at two types of architectural patterns:

- 1. Model temporal motion locally (3D CONV)
- 2. Model temporal motion globally (LSTM / RNN)
- + Fusions of both approaches at the same time.

There is another (cleaner) way!

Beautiful:

All neurons in the ConvNet are recurrent.

$$\begin{split} \mathbf{z}_t^l &= \sigma(\mathbf{W}_z^l * \mathbf{x}_t^l + \mathbf{U}_z^l * \mathbf{h}_{t-1}^l), \\ \mathbf{r}_t^l &= \sigma(\mathbf{W}_r^l * \mathbf{x}_t^l + \mathbf{U}_r^l * \mathbf{h}_{t-1}^l), \\ \tilde{\mathbf{h}}_t^l &= \tanh(\mathbf{W}^l * \mathbf{x}_t^l + \mathbf{U} * (\mathbf{r}_t^l \odot \mathbf{h}_{t-1}^l), \\ \mathbf{h}_t^l &= (1 - \mathbf{z}_t^l) \mathbf{h}_{t-1}^l + \mathbf{z}_t^l \tilde{\mathbf{h}}_t^l, \end{split}$$

Only requires (existing) 2D CONV routines. No need for 3D spatio-temporal CONV.

Normal ConvNet:

Recall: RNNs

$$h_t = f_W(h_{t-1}, x_t)$$

GRU

$$\mathbf{z}_{t} = \sigma(\mathbf{W}_{z}\mathbf{x}_{t} + \mathbf{U}_{z}\mathbf{h}_{t-1}),$$

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1}),$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1}))$$

$$\mathbf{h}_{t} = (1 - \mathbf{z}_{t})\mathbf{h}_{t-1} + \mathbf{z}_{t}\tilde{\mathbf{h}}_{t},$$

Vanilla RNN

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

LSTM
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \text{sigm} \\ \text{sigm} \\ \text{sigm} \\ \text{tanh} \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$
$$h_t^l = o \odot \tanh(c_t^l)$$

Recall: RNNs

$$h_t = f_W(h_{t-1}, x_t)$$

GRU

$$\mathbf{z}_{t} = \sigma(\mathbf{W}_{z}\mathbf{x}_{t} + \mathbf{U}_{z}\mathbf{h}_{t-1}),$$

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1}),$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1}))$$

$$\mathbf{h}_{t} = (1 - \mathbf{z}_{t})\mathbf{h}_{t-1} + \mathbf{z}_{t}\tilde{\mathbf{h}}_{t},$$

Matrix multiply

=> CONV

$$\begin{split} \mathbf{z}_t^l &= \sigma(\mathbf{W}_z^l * \mathbf{x}_t^l + \mathbf{U}_z^l * \mathbf{h}_{t-1}^l), \\ \mathbf{r}_t^l &= \sigma(\mathbf{W}_r^l * \mathbf{x}_t^l + \mathbf{U}_r^l * \mathbf{h}_{t-1}^l), \\ \tilde{\mathbf{h}}_t^l &= \tanh(\mathbf{W}^l * \mathbf{x}_t^l + \mathbf{U} * (\mathbf{r}_t^l \odot \mathbf{h}_{t-1}^l), \\ \mathbf{h}_t^l &= (1 - \mathbf{z}_t^l) \mathbf{h}_{t-1}^l + \mathbf{z}_t^l \tilde{\mathbf{h}}_t^l, \end{split}$$

i.e. we obtain:

Summary

- You think you need a Spatio-Temporal Fancy Video ConvNet
- STOP. Do you really?
- Okay fine: do you want to model:
 - <u>local motion?</u> (use 3D CONV), or
 - global motion? (use LSTM).
- Try out using Optical Flow in a second stream (can work better sometimes)
- Try out GRU-RCN! (imo best model)

Unsupervised Learning

Unsupervised Learning Overview

- Definitions
- Autoencoders
 - Vanilla
 - Variational
- Adversarial Networks

Supervised vs Unsupervised

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc

Supervised vs Unsupervised

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, generative models, etc.

Unsupervised Learning

- Autoencoders
 - Traditional: feature learning
 - Variational: generate samples
- Generative Adversarial Networks: Generate samples

Originally: Linear + nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

Originally: Linear + nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN (upconv)

Encoder: 4-layer conv **Decoder**: 4-layer upconv

Originally: Linear + nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN (upconv)

Train for reconstruction with no labels!

Train for reconstruction with no labels!

Loss function (Softmax, etc)

Use encoder to initialize a supervised model

bird plane dog deer truck

Train for final task (sometimes with small data)

Fine-tune

jointly with classifier

encoder

Autoencoders: Greedy Training

In mid 2000s layer-wise pretraining with Restricted Boltzmann Machines (RBM) was common

Training deep nets was hard in 2006!

It is difficult to optimize the weights in nonlinear autoencoders that have multiple hidden layers (2–4). With large initial weights, autoencoders typically find poor local minima; with small initial weights, the gradients in the early layers are tiny, making it infeasible to train autoencoders with many hidden layers. If

Hinton and Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks", Science 2006

Autoencoders: Greedy Training

In mid 2000s layer-wise pretraining with Restricted Boltzmann Machines (RBM) was common

Training deep nets was hard in 2006!

It is difficult to optimize the weights in nonlinear autoencoders that have multiple hidden layers (2–4). With large initial weights, autoencoders typically find poor local minima; with small initial weights, the gradients in the early layers are tiny, making it infeasible to train autoencoders with many hidden layers. If

Not common anymore

With ReLU, proper initialization, batchnorm, Adam, etc easily train from scratch

Hinton and Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks", Science 2006

Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Can we generate images from an autoencoder?

A Bayesian spin on an autoencoder - lets us generate data!

Assume our data $\{x^{(i)}\}_{i=1}^N$ is generated like this:

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

A Bayesian spin on an autoencoder!

Assume our data $\{x^{(i)}\}_{i=1}^{N}$ is generated like this:

Intuition: x is an image, z gives class, orientation, attributes, etc

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

A Bayesian spin on an autoencoder!

Assume our data $\{x^{(i)}\}_{i=1}^N$ is generated like this:

Intuition: x is an image, z gives class, orientation, attributes, etc

Problem: Estimate θ without access to latent states (i)

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Prior: Assume $p_{\theta}(z)$ is a unit Gaussian

Prior: Assume $p_{\theta}(z)$ is a unit Gaussian

Conditional: Assume $p_{\theta}(x \mid z)$ is a diagonal Gaussian, predict mean and variance with neural net

Prior: Assume $p_{\theta}(z)$ is a unit Gaussian

Conditional: Assume $p_{\theta}(x \mid z)$ is a diagonal Gaussian, predict mean and variance with neural net

Mean and (diagonal) covariance of $p_{\theta}(x \mid z)$ Decoder network with parameters θ Latent state

Prior: Assume $p_{\theta}(z)$ is a unit Gaussian

Conditional: Assume $p_{\theta}(x \mid z)$ is a diagonal Gaussian, predict mean and variance with neural net

Kingma and Welling, ICLR 2014

Mean and (diagonal) covariance of $p_{\theta}(x \mid z)$ \sum_{X} Decoder network with parameters θ Fully-connected or Latent state upconvolutional

By Bayes Rule the posterior is:

$$p_{\theta}(z \mid x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(x)}$$

By Bayes Rule the posterior is:

$$p_{\theta}(z \mid x) = \frac{p_{\theta}(x \mid z) p_{\theta}(z)}{p_{\theta}(x)}$$

Use decoder network =)
Gaussian =)
Intractible integral =(

By Bayes Rule the posterior is:

$$p_{\theta}(z \mid x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(x)}$$

Use decoder network =)
Gaussian =)
Intractible integral =(

Mean and (diagonal) covariance of **Encoder network** with parameters ϕ Data point

By Bayes Rule the posterior is:

$$p_{\theta}(z \mid x) = \frac{p_{\theta}(x \mid z) p_{\theta}(z)}{p_{\theta}(x)}$$

Use decoder network =)
Gaussian =)
Intractible integral =(

Approximate posterior with encoder network $q_{\phi}(z \mid x)$

Kingma and Welling, ICLR 2014

Mean and (diagonal) covariance of **Encoder network** with parameters ϕ Data point

By Bayes Rule the posterior is:

$$p_{\theta}(z \mid x) = \frac{p_{\theta}(x \mid z) p_{\theta}(z)}{p_{\theta}(x)}$$

Use decoder network =)
Gaussian =)
Intractible integral =(

Approximate posterior with encoder network $q_{\phi}(z \mid x)$

Kingma and Welling, ICLR 2014

Fully-connected covarion or convolutional q_{ϕ} Encoder network with parameters ϕ

Mean and (diagonal) covariance of $q_{\phi}(z \mid x)$

twork ters ϕ

Data point

Data point x

Variational Autoencoder

After network is trained:

Z

Sample from prior $p_{\theta}(z)$

Diagonal prior on **z** => After network is trained: independent latent variables 00000000000000 Generated XX Sample from $p_{\theta}(x \mid z)$ Decoder network Sample from prior $p_{\theta}(z)$

Variational Autoencoder: Math Maximum Likelihood?

$$\theta^* = \arg\max_{\theta} \prod_{i=1}^N p_{\theta}(x^{(i)})$$
 Maximize likelihood of dataset $\{x^{(i)}\}_{i=1}^N$

Kingma and Welling, ICLR 2014

Variational Autoencoder: Math Maximum Likelihood?

$$\begin{split} \theta^* &= \arg\max_{\theta} \prod_{i=1}^N p_{\theta}(x^{(i)}) \quad \text{Maximize likelihood of dataset } \left\{x^{(i)}\right\}_{i=1}^N \\ &= \arg\max_{\theta} \sum_{i=1}^N \log p_{\theta}(x^{(i)}) \quad \text{Maximize log-likelihood instead because sums are nicer} \end{split}$$

Kingma and Welling, ICLR 2014

Variational Autoencoder: Math Maximum Likelihood?

$$\begin{split} \theta^* &= \arg\max_{\theta} \prod_{i=1}^N p_{\theta}(x^{(i)}) \quad \text{Maximize likelihood of dataset } \left\{x^{(i)}\right\}_{i=1}^N \\ &= \arg\max_{\theta} \sum_{i=1}^N \log p_{\theta}(x^{(i)}) \quad \text{Maximize log-likelihood instead because sums are nicer} \end{split}$$

$$p_{\theta}(x^{(i)}) = \int p_{\theta}(x^{(i)}, z) dz$$
 Marginalize joint distribution

Kingma and Welling, ICLR 2014

Variational Autoencoder: Math Maximum Likelihood?

$$\begin{split} \theta^* &= \arg\max_{\theta} \prod_{i=1}^N p_{\theta}(x^{(i)}) \quad \text{Maximize likelihood of dataset } \left\{x^{(i)}\right\}_{i=1}^N \\ &= \arg\max_{\theta} \sum_{i=1}^N \log p_{\theta}(x^{(i)}) \quad \text{Maximize log-likelihood instead because sums are nicer} \end{split}$$

$$p_{ heta}(x^{(i)}) = \int p_{ heta}(x^{(i)},z)dz = \int p_{ heta}(x^{(i)}\mid z)p_{ heta}(z)dz$$
 Intractible integral =(

 $\log p_{\theta}(x^{(i)})$

Lecture 14 - 84 29 Feb 2016

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Bayes' Rule})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})} \frac{q_{\phi}(z|x^{(i)})}{q_{\phi}(z|x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z|x^{(i)})} \right] \quad (\text{Logarithms})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))$$

$$\mathcal{L}(x^{(i)}, \theta, \phi) \text{ "Elbow"}$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))}_{\geq 0} \right]$$

$$\stackrel{\mathcal{L}(x^{(i)}, \theta, \phi) \text{ "Flhow"}}{} \stackrel{\text{"Flhow"}}{} \geq 0$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \qquad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Logarithms})$$

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))}_{\geq 0} \right]}_{\geq 0}$$

$$\log p_{\theta}(x^{(i)}) \ge \mathcal{L}(x^{(i)}, \theta, \phi)$$

Variational lower bound (elbow)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \qquad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Logarithms})$$

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z))}_{N} + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))}_{N} \right]}_{\geq 0}$$

$$\log p_{\theta}(x^{(i)}) \ge \mathcal{L}(x^{(i)}, \theta, \phi)$$

 $\theta^*, \phi^* = \arg\max_{\theta, \phi} \sum_{i} \mathcal{L}(x^{(i)}, \theta, \phi)$

Variational lower bound (elbow)

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ \textbf{Reconstruct} \\ \textbf{the input} &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ \textbf{data} \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z))}_{\mathcal{D}(x^{(i)}, \theta, \phi)} + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))}_{\geq 0} \\ &\geq 0 \\ \log p_{\theta}(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi) \qquad \qquad \theta^{*}, \phi^{*} = \arg \max_{\theta, \phi} \sum_{i=1}^{N} \mathcal{L}(x^{(i)}, \theta, \phi) \end{split}$$

Variational lower bound (elbow)

Latent states should follow the prior

 $\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$ **Reconstruct**

$$=\mathbf{E}_z \left[\log rac{F_{ heta}(x)F_{ heta}(z)}{p_{ heta}(z\mid x^{(i)})}
ight]
onumber \ p_{ heta}(x^{(i)}\mid z)p_{ heta}(z)$$

The input
$$= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right]$$
 (Bayes' Rule)

data
$$= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right]$$
 (Multiply by constant)
$$= \mathbf{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_z \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] + \mathbf{E}_z \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right]$$
 (Logarithms)

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right]} - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z \mid x^{(i)}))}_{\geq 0} + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z \mid x^{(i)}))}_{\geq 0}$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
 "Elbow" $\log p_{ heta}(x^{(i)}) > \mathcal{L}(x^{(i)}, \theta, \phi)$

DW"
$$\theta^*, \phi^* = \arg\max_{\theta, \phi} \sum_{i=1}^N \mathcal{L}(x^{(i)}, \theta, \phi)$$

Latent states should follow the prior

 $\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$ **Reconstruct** the input $= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right]$ (Bayes' Rule) data

Sampling $= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right]$ (Multiply by constant) with reparam. $= \mathbf{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_z \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] + \mathbf{E}_z \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right]$ (Logarithms)

the input
$$= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right]$$

$$\left[egin{array}{c} x^{(i)} \ \hline x^{(i)} \ \end{array}
ight] = \left[egin{array}{c} z) p_{ heta}(z) \ q_{ heta} \ \end{array}
ight]$$

Sampling
$$= \mathbf{E}_z \left[\log \frac{p_{\theta}(z)}{p_{\theta}(z)} \right]$$

reparam.
$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithm trick)}$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z \mid x^{(i)})) \right] \quad \text{(Logarithm trick)}$$

log
$$p_{ heta}(x^{(i)}) \geq \mathcal{L}(x^{(i)}, heta, \phi)$$

$$\mathcal{L}(x^{(i)}, \theta, \phi)$$
 "Elbow"

$$\theta^*, \phi^* = \arg\max_{\theta, \phi} \sum_{i=1}^{N} \mathcal{L}(x^{(i)}, \theta, \phi)$$

$$, \sigma, \varphi$$

Variational lower bound (elbow)

Latent states should follow

 $\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$ **Reconstruct** the input $= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right]$ (Bayes' Rule)

the prior **Everything is**

Gaussian,

Sampling $= \mathbf{E}_z \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right]$ (Multiply by constant) closed form solution! with reparam. $= \mathbf{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_z \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_z \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right]$ (Logarithms)

 $= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z \mid x^{(i)})) \right]$

reparam. trick

 $\log p_{\theta}(x^{(i)}) \ge \mathcal{L}(x^{(i)}, \theta, \phi)$

 $\mathcal{L}(x^{(i)}, \theta, \phi)$

 $\theta^*, \phi^* = \arg\max_{\theta, \phi} \sum \mathcal{L}(x^{(i)}, \theta, \phi)$

Variational lower bound (elbow)

Autoencoder Overview

- Traditional Autoencoders
 - Try to reconstruct input
 - Used to learn features, initialize supervised model
 - Not used much anymore
- Variational Autoencoders
 - Bayesian meets deep learning
 - Sample from model to generate images

Can we generate images with less math?

Random noise

Z

Can we generate images with less math?

Can we generate images with less math?

Can we generate images with less math?

Can we generate images with less math? Real or fake? Train generator and discriminator jointly **Discriminator** After training, easy to generate images Fake image Real image Generator Fake examples: from generator Random noise Real examples: from dataset

Generated samples

Nearest neighbor from training set

Goodfellow et al, "Generative Adversarial Nets", NIPS 2014

Generated samples (CIFAR-10)

Nearest neighbor from training set

Goodfellow et al, "Generative Adversarial Nets", NIPS 2014

Generative Adversarial Nets: Multiscale

Denton et al, "Deep generative image models using a Laplacian pyramid of adversarial networks", NIPS 2015

Generative Adversarial Nets: Multiscale

Denton et al, "Deep generative image models using a Laplacian pyramid of adversarial networks", NIPS 2015

Generative Adversarial Nets: Multiscale

Denton et al, "Deep generative image models using a Laplacian pyramid of adversarial networks", NIPS 2015

Denton et al, "Deep generative image models using a Laplacian pyramid of adversarial networks", NIPS 2015

Denton et al, "Deep generative image models using a Laplacian pyramid of adversarial networks", NIPS 2015

Denton et al, "Deep generative image models using a Laplacian pyramid of adversarial networks", NIPS 2015

Denton et al, NIPS 2015

Train separate model per-class on CIFAR-10

Denton et al, NIPS 2015

Generator is an upsampling network with fractionally-strided convolutions Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Samples from the model look amazing!

Radford et al. **ICLR 2016**

Interpolating between random points in laten space

Radford et al, ICLR 2016

Radford et al, ICLR 2016

Glasses man No glasses man No glasses woman Radford et al. **ICLR 2016**

Glasses man

No glasses woman

Dosovitskiy and Brox, "Generating Images with Perceptual Similarity Metrics based on Deep Networks", arXiv 2016

Dosovitskiy and Brox, "Generating

Images with Perceptual Similarity Metrics based on Deep Networks", arXiv 2016

Dosovitskiy and Brox, "Generating Images with Perceptual Similarity Metrics based on Deep Networks", arXiv 2016

Pretrained AlexNet

Dosovitskiy and Brox, "Generating Images with Perceptual Similarity Metrics based on Deep Networks", arXiv 2016

Dosovitskiy and Brox, "Generating Images with Perceptual Similarity Metrics based on Deep Networks", arXiv 2016

Dosovitskiy and Brox, "Generating Images with Perceptual Similarity Metrics based on Deep Networks", arXiv 2016

Samples from the model, trained on ImageNet

Recap

- Videos
- Unsupervised learning
 - Autoencoders: Traditional / variational
 - Generative Adversarial Networks
- Next time: Guest lecture from Jeff Dean