Himpunan, Fungsi dan Logika

Mushthofa & Julio Adisantoso

Sets

- Group of objects represented as a unit
- May contain any type of object: numbers, symbols, other sets,...
 - Set membership: ∈
 - Non-membership: ∉
 - Subset: ⊆
 - Proper subset
 - Empty set: \emptyset
 - Infinite set contains infinitely many elements
 - E.g., set of integers {...-2, -1, 0, 1, 2,...}

Sets

- Common sets:
 - -N the set of natural numbers = $\{1,2,3,...\}$
 - $-\mathbf{Z}$ the set of integers = {...,-3,-2,-1,0,1,2,3,...}
 - Q the set of rational numbers = {0.25, 1/7, 0.3333..., etc.}
 - R the set of real numbers = {-2.4, sqrt(5), Pi, etc.}
- To denote the set of all objects of discourse (universal set) we use **U**.

Set Operations

Given two sets A and B, we can also define new sets by applying **set operations**:

■ The *intersection* of sets A and B is the set

 $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

■ The *union* of sets A and B is the set

 $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

■ The *difference* between two sets A and B is the set

 $A - B = \{x : x \in A \text{ and } x \notin B\}.$

Set Operations

• The complement of a set is defined as

$$A^C = U - A = \{x \mid x \notin A\}$$

 E.g., if U = N, and A = the set of all even natural numbers, then A^C = the set of all odd natural numbers.

Set Operations

• Set Operations obey the following laws

Empty set laws:

 $A \cap \emptyset = \emptyset$,

 $A \cup \emptyset = A$.

Idempotency laws:

 $A \cap A = A$

 $A \cup A = A$.

Commutative laws:

 $A \cap B = B \cap A$,

 $A \cup B = B \cup A$.

Set Operations

Associative laws:

$$A \cap (B \cap C) = (A \cap B) \cap C,$$

 $A \cup (B \cup C) = (A \cup B) \cup C.$

Distributive laws:

$$\begin{array}{lll} A\cap (B\cup C) & = & (A\cap B)\cup (A\cap C)\,,\\ A\cup (B\cap C) & = & (A\cup B)\cap (A\cup C)\,. \end{array}$$

Absorption laws:

$$A \cap (A \cup B) = A$$
,
 $A \cup (A \cap B) = A$.

DeMorgan's laws:

$$\begin{array}{rcl} A - (B \cap C) & = & (A - B) \cup (A - C) \; , \\ A - (B \cup C) & = & (A - B) \cap (A - C) \; . \end{array}$$

Set Operations

• Laws for complement

$$(A^C)^C = A$$

$$A^{C} \cap A = \emptyset$$

$$A^{C} \cup A = U$$

• Write De Morgan's Law for complement!

Pairwise Disjoint & Partition

• Two sets A and B are called pairwise disjoint if they share no common element, i.e.,

$$A \cap B = \emptyset$$

- A collection of sets, S_i 1 ≤ i ≤ n is called a partition of a set S, iff:
 - Each pair of sets in the collection are pairwise disjoint, i.e., $S_i \cap S_j = \emptyset$, if $i \neq j$
 - The Union of all the sets equals S

Cardinality

- Cardinality of a set is the number of (distinct) elements that the set has
 - Cardinality of A is denoted by |A| or card(A)

$$|\emptyset| = 0$$

 $|A| \ge 0$

 $|A \cup B| = |A| + |B| - |A \cap B|$

 $|A \cup B| \le |A| + |B|$

with equality if A and B are disjoint

Subsets, Proper Subsets

- The subset B of a set A is all sets such that
 - if $x \in B$ then $x \in A$
 - Denoted by $B \subseteq A$
- A proper subset B of A is a subset B of A such that $B \neq A$, denoted by $B \not O A$

 $\emptyset \subseteq A$ for any A| $B \le A$ | if $B \subseteq A$

Power Sets

- The Power set of a set A is the set of all subsets of A.
 - Denoted by 2^X
- E.g., A = {a, b, c}, then $2^{X} = \{\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}\}\}$
- What is the value of |2^x|?

Principle of Inclusion-Exclusion

• Simple form

$$|A \cup B| = |A| + |B| - |A \cap B|$$

· General form

$$\left|A_{1} \cup ... \cup A_{n}\right| = \left|A_{1}\right| + ... + \left|A_{n}\right| - \left|A_{1} \cap A_{2}\right| - ... + \left|A_{1} \cap A_{2} \cap A_{3}\right| + ... + (-1)^{n+1} \left|A_{1} \cap ... A_{n}\right|$$

Problems

- 1. Prove that : $R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$
- 2. Determine the number of natural numbers 1 to 1000, which are not divisible by 2, 3 and 5
- 3. Let S = {1,2,...,100}. Determine the cardinality of the largest subset T of S such that $X \in I \Longrightarrow 2X \notin I$

Generalize and formalize into an algorithm!

Cartesian Product and Relations

Cartesian product builds a set consisting of ordered pairs of elements from two or more existing sets.

$$X \times Y = \{[x, y] \mid x \in X \text{ and } y \in Y\}$$

A binary relation on sets X and Y is a subset of $X \times Y$.

An **n-ary relation** on sets $X_1, X_2, ..., X_n$ is a subset of $X_1 \times X_2 \times ... \times X_n$

What is the cardinality of $X \times Y$?

Relations

- If $(a,b) \in R$, we write aRb
- A relation is **reflexive** iff for any *a*, *aRa*
- A relation is **symmetric** iff $aRb \Rightarrow bRa$
- A relation is **transitive** iff aRb and $bRc \Rightarrow aRc$
- A relation which is reflexive, symmetric and transitive is called the equivalence relation

Problem

- 1. Which ones are reflexive, symmetric or transitive?
 - <, >, ≤, ≠, =, = (mod), ⊆, divisor of, has common divisor
 - Child of, brother of, knows, friend of, ancestor of, likes, married to
- 2. Which ones are equivalence relation?
- 3. Is it true: symmetric + transitive → reflexive?

Functions

A **function** from a set X to a set Y is a mapping of elements of X to elements of Y such that each element of X maps to exactly one element of Y.

 $f:X\to Y$

X is the **domain** of *f*.

The **range** of $f: X \to Y$ is the set $\{y \in Y \mid y = f(x) \text{ for some } x \in X\}$.

A **total function** *f* from X to Y is a binary relation on

X × Y such that

- i. For each $x \in X$ there is a $y \in Y$ such that $[x, y] \in f$.
- ii. If $[x, y] \in f$ and $[x, z] \in f$, then y = z.

Functions

- A function is surjective iff its range is its codomain
- A function is **injective** iff $a \neq b \Rightarrow f(a) \neq f(b)$
- A function that is both surjective and injective is called bijective
- If a function f is bijective, it has an inverse, denoted by f⁻¹, such that whenever f(a) = b, f⁻¹(b) = a

Problem

- 1. Create a bijective function from **N** (the set of natural numbers) to the set of all odd natural numbers!
- 2. Create a bijective function from NxN to N and determine its inverse!

Logika

- Logika proposional: komponen dasar = proposisi
- Bernilai benar (1) atau salah (0)
- Pernyataan kompleks disusun dari beberapa proposisi dan operator
- Makna (semantik) sebuah pernyataan kompleks adalah sebuah fungsi dari semantik masingmasing proposisi komponen penyusunnya dan operator-operator yg digunakan

Operator dasar

Nama Operator	Pola	Notasi	Istilah Inggris
Negasi	"Tidak benar adanya bahwa p."	$\neg p$	not
Konjungsi	" $p \operatorname{dan} q$."	$p \wedge q$	and
Disjungsi inklusif	"p atau q."	$p \lor q$	or
Disjungsi eksklusif	" p atau q (tapi tidak keduanya)."	$p\oplus q$	xor
Implikasi	"Jika p , maka q ."	$p \rightarrow q$	implies

p	q	$\neg p$	$\neg q$	$p \wedge q$	$p \lor q$	$p\oplus q$	$p \rightarrow q$
В	В	S	S	В	В	S	В
В	\mathbf{S}	\mathbf{S}	В	\mathbf{S}	В	В	\mathbf{S}
\mathbf{S}	В	В	\mathbf{S}	\mathbf{S}	В	В	В
\mathbf{S}	\mathbf{S}	В	В	\mathbf{S}	S	\mathbf{S}	В

Problem

 Buatlah Tabel kebenaran untuk setiap pernyataan berikut

$$p \land \neg q$$

$$\neg (p \lor \neg q)$$

$$p \to (q \lor \neg p)$$

$$(p \land \neg q) \to \neg r$$

Validity, Contradiction, Satisfiability

- A proposition is valid iff in every model, it is true
- A proposition is a contradiction iff in every model, it is false
- A proposition is said to be satisfiable iff in some model, it is true

Equivalensi

- A proposition P are equivalent to Q iff for every model in the truth table, the truth value of P is equal to the truth value of Q
- E.g., $\neg p \lor q \equiv p \to q$
- $P \equiv Q$ iff $P \leftrightarrow Q$ is valid

 $\neg (p \land q) \equiv \neg p \lor \neg q$

Equivalences

```
\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```

Problem

- 1. Misalkan diketahui proposisi-proposisi berikut:
 - p = Andi memacu motornya lebih dari 100 km/jam
 - q = Andi kena tilang

Nyatakan pernyataan-pernyataan berikut sebagai proposisi dalam p dan q

- Andi memacu motornya maksimal 100 km/jam
- Andi memacu motornya lebih dari 100 km per jam, tapi dia tidak ditilang.

Problem

- Andi akan ditilang jika dia memacu motornya lebih dari 100 km per jam.
- Jika Andi tidak memacu motornya lebih dari 100 km per jam, maka dia tidak ditilang.
- Memacu motor lebih dari 100 km per jam adalah syarat cukup untuk ditilang bagi Andi.
- Andi ditilang, tapi dia tidak memacu motornya lebih dari 100 km per jam.
- Kapanpun Andi ditilang, dia memacu motornya lebih dari 100 km per jam.

Problem

- Empat buah kartu dapat ditulis sebuah huruf atau sebuah angka pada masing-masing sisinya
- Di atas meja terdapat empat kartu, masingmasing bertuliskan "1", "A", "2" dan "Z".
- Saya berkata: "Jika sisi sebuah kartu bertuliskan angka genap, maka di sisi lainnya pasti bertuliskan huruf vokal"
- Kartu yang mana di antara keempat kartu di meja yang perlu Anda balik untuk memeriksa kebenaran pernyataan saya?

Inference

- Standard Inference method: Ponens, Tollens and Syllogism
- Ponens:

p-	$\rightarrow q$	
p		
$\therefore q$		

Tollens

• Contrapositive inference

$$p \rightarrow q$$

$$\neg q$$

$$\vdots \neg p$$

Syllogism

• Transitive inference

$$p \to q$$

$$q \to r$$

$$\vdots p \to r$$

General Entailment

- A set of propositions K entails a proposition P, denoted K ⊨ P iff
- For every model for which K is true, P is also trueE.g.,

$$K = \{ p \lor q, q \to r \}$$
$$P = \{ \neg p \to r \}$$

Prove it!

Predicate logic (FOL)

Components of FOL

```
\begin{array}{lll} \text{Constants} & KingJohn, \ 2, \ UCB, \dots \\ \text{Predicates} & Brother, \ >, \dots \\ \text{Functions} & Sqrt, \ LeftLegOf, \dots \\ \text{Variables} & x, \ y, \ a, \ b, \dots \\ \text{Connectives} & \land \ \lor \ \lnot \ \Rightarrow \ \Leftrightarrow \\ \text{Equality} & = \\ \text{Quantifiers} & \forall \ \exists \end{array}
```

Universal Quantification

```
\forall \langle variables \rangle \ \langle sentence \rangle Everyone at Berkeley is smart: \forall x \ At(x, Berkeley) \Rightarrow Smart(x) \forall x \ P \ \text{is true in a model } m \ \text{iff } P \ \text{is true with } x \ \text{being} each possible object in the model  \begin{aligned} & \textbf{Roughly} \ \text{speaking, equivalent to the conjunction of instantiations of } P \\ & \quad (At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)) \\ & \quad \land (At(Richard, Berkeley) \Rightarrow Smart(Richard)) \\ & \quad \land (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)) \\ & \quad \land \dots \end{aligned}
```

Universal Quantification

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with \forall :

 $\forall x \ At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Existential Quantification

 $\exists \langle variables \rangle \langle sentence \rangle$

Someone at Stanford is smart:

 $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

```
(At(KingJohn, Stanford) \land Smart(KingJohn))
 \lor (At(Richard, Stanford) \land Smart(Richard))
 \lor (At(Stanford, Stanford) \land Smart(Stanford))
 \lor \dots
```

Quantification contd.

	. 0	
Pernyataan	Kapan benar?	Kapan salah?
$\forall x.P(x)$	P(x) benar untuk setiap x	Ada x sehingga $P(x)$ salah
$\exists x. P(x)$	Ada x sehingga $P(x)$ benar	Untuk semua $x P(x)$ salah
$\forall x. \forall y. P(x,y)$	Untuk setiap pasang x dan y ,	Ada setidaknya sepasang x dan
$\forall y. \forall x. P(x,y)$	P(x,y) benar	y sehingga $P(x,y)$ salah
$\forall x. \exists y. P(x,y)$	Untuk setiap x , ada setidaknya	Ada setidaknya satu x , sehingga
	satu y sehingga $P(x,y)$ benar	P(x,y) salah, apapun y
$\exists x. \forall y. P(x,y)$	Ada setidaknya satu x , sehingga	Untuk semua x , selalu ada y se-
	P(x,y) selalu benar, apapun y	hingga $P(x, y)$ salah
$\exists x. \exists y. P(x,y)$	Ada sepasang x dan y sehingga	Untuk setiap pasang x dan y ,
$\exists y. \exists x. P(x,y)$	P(x,y) benar	P(x,y) salah

Examples

- Example
 - Constants = {Andi, Budi, Cici, Erna}
 - Predicates/Relations = {like/2, knows/2, male/1, female/2}
 - Variabels = $\{x, y, ...\}$
- Sentences

```
like(Andi, Cici) \quad \forall x, knows(Andi, x) \quad \forall x, like(x, Andi)
```

 $\exists x, knows(Andi, x) \ \forall y \exists x, like(y, x) \ \neg female(Andi)$

Quantifiers contd.

```
\forall x \ \forall y \ \text{ is the same as } \forall y \ \forall x \ \text{ (why??)} \exists x \ \exists y \ \text{ is the same as } \exists y \ \exists x \ \text{ (why??)} \exists x \ \forall y \ \text{ is not the same as } \forall y \ \exists x \exists x \ \forall y \ Loves(x,y) "There is a person who loves everyone in the world" \forall y \ \exists x \ Loves(x,y) "Everyone in the world is loved by at least one person" \text{Quantifier duality: each can be expressed using the other} \forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream) \exists x \ Likes(x, Broccoli) \qquad \neg \forall x \ \neg Likes(x, Broccoli)
```

Problems

- 1. Tentukan negasi dari masing-masing pernyataan ini
 - Semua orang yang sukses pasti rajin atau beruntung
 - Ada orang yang jika tidak tidur maka pada siang harinya tidak merasa mengantuk
 - $\quad \forall x (p(x) \lor q(x)) \to \neg r(x)$
 - $\forall x \exists y, [p(x, y) \rightarrow (q(x, x) \lor r(y, x))]$