國立中興大學附屬高級中學 113 學年度第 2 學期 第一次期中考 高一 數學 試題卷

命題教師: Derek 審題老師: Bao

班級: 座號: 姓名 試題共 四 頁,答案卡 一 張,答案卷 一 張

※答案卡請用 2B 鉛筆畫記,答案卷請用黑色或藍色原子筆作答,若資料遺漏導致無法判讀或批閱將扣成績五分。

第一部分:單選題(占16分)

說明:第1題至第4題,每題有5個選項,其中有一個是正確或最佳的選項,請將正確答案畫記在答案卡之「選擇(填)題答 案區」。每題答對,得4分;答錯或未作答者,該題以零分計算。

1. 將 1,2,3,4, ... 依照下列的規律依序排列,1 當 起始點,先往右移動一個單位標記為 2,然後往上移 動一個單位標記為 3,再往右移動一個單位標記為 4,然後往下移動一個單位標記為 5,再往右移動一個 單位標記為 6,然後往下移動一個單位標記為 7,再 往右移動一個單位標記為 8,然後再往上移動一個單 位標記為 9,重複以上動作後會得到如圖所示。 請問標記 552~555 的部分圖形為下列哪個選項?

2. 右表為國稅局 2014 至 2024 的賦稅收入一覽表。根據右表數據以及下表數值, 請問近 11 年來政府賦稅收入的平均成長率 (r),最接近下列哪一個選項?

r	4%	5%	6%	7%	8%	9%
$(1+r)^{10}$	1.480	1.629	1.791	1.967	2.159	2.367
$(1+r)^{11}$	1.539	1.710	1.898	2.105	2.332	2.580
$(1+r)^{12}$	1.601	1.796	2.012.	2.252	2.518	2.813

(1) 5.42% (2) 5.89% (3) 6.17% (4) 6.85% (5) 8.02%

年份	賦稅收入 (億元)
2014	18200
2015	19500
2016	20300
2017	21700
2018	23060
2019	24500
2020	26700
2021	28500
2022	30010
2023	32000
2024	35400

3. 右表為興大附中學生參加 114 學測的六筆考科數據,下表為阿皓本次 114 學測的 成績。二月二十五日一早看到成績簡訊,阿皓與班上及隔壁班的同學皆在討論比 較哪個科目考得比較好,若以校內成績來看,要比考得最好的科目,阿皓適合拿 哪個科目的成績出來與同學一較高下?

科目	國文	英文	數學 A	數學 B	社會	自然
級分	12	13	11	12	12	13

(1) 國文

(2) 英文

(3) 數學 A (4) 社會

(5) 自然

		1- 10: 14
科目	平均級分	標準差
國文	11.66	1.74
英文	10.55	2. 62
數學 A	8. 09	2. 72
數學 B	9. 75	2. 76
社會	11.06	2. 16
自然	11. 33	2. 1

4. Derek老師在分析興大附中 114 學測的數 A 考得如何,他從教務處的資料庫撈出 114 學測數據,下表是本次 114 學測本校數 A 的應考分數資料。本次應考數 A 人數 470 人,最低 2 級分,最高 15 級分。剛好任教班的三位小老師<u>阿呈、阿維、阿豪</u>來詢問Derek老師待會上課內容,三位看到老師在分析成績打算幫忙,Derek老師就請他們算最簡單的頂標、前標、均標分數,<u>阿呈</u>立刻回答頂標分數是 A 級分;接著<u>阿維</u>回答前標分數是 B 級分;最後<u>阿豪</u>回答均標分數是 C 級分,Derek老師一臉驚訝的看著,三位竟然可以秒答全對。請問這三位回答的序組 (C,B,A) 是下列何者?

級分	2	3	4	5	6	7	8
人數	6	13	22	41	54	62	77
級分	9	10	11	12	13	14	15
人數	58	41	36	33	15	10	2

(1) (7,10,11)

(2) (7,11,12)

(3) (8,10,11)

(4) (8,10,12)

(5) (8,11,12)

頂標	成績位於第88百分位數的考生級分
前標	成績位於第75百分位數的考生級分
均標	成績位於第50百分位數的考生級分
後標	成績位於第25百分位數的考生級分
底標	成績位於第12百分位數的考生級分

第二部分:多選題(占24分)

說明:第5題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案 區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答 錯多於2個選項或所有選項均未作答者,該題以零分計算。

5. 學測成績 15 級分制的計算方式為:前 1% 學生平均原始得分除以 15,作為該科之級距。考生原始得分 0 分 得 0 級分,高於 0 分但低於或等於 1 個級距是 1 級分,高於 1 個級距但低於或等於 2 個級距是 2 級分,以此類推到 14 級分;原始得分高於 14 個級距,則為滿級分 15 級分。

學測成績 60 級分制的計算方式為:前 1% 學生平均原始得分除以 60,作為該科之級距。考生原始得分 0 分得 0 級分,高於 0 分但低於或等於 1 個級距是 1 級分,高於 1 個級距但低於或等於 2 個級距是 2 級分,以此類推到 59 級分;原始得分高於 59 個級距,則為滿級分 60 級分。

以學測成績 15 級分制來舉例說明,假設數A考科分數最高之前 1% 學生平均原始得分為 96 分,則級距為 96/15 = 6.4。考生如果原始得分為 0 分,則為 0 級分;考生如果原始得分高於 0 分,但低於或等於 6.4 分(1個級距),則為 1 級分;考生如果原始得分高於 6.4 分,但低於或等於 12.8 分(2個級距),則為 2 級分,以此類推 到 14 級分;考生如果原始得分高於 89.6 分(14個級距),則為滿級分 15 級分。

興大附中於 114 學測共有 505 人參加,下列針對學測某考科成績的敘述,哪些選項是正確的?

- (1) 假設全國前 1% 學生平均原始得分為 90 分,若阿萱考 68 分,則以 60 級分制計算可得 46 級分
- (2) 假設全國前 1% 學生平均原始得分為 90 分,且原始得分<u>阿萱比阿嘉</u>高 11 分,則以 60 級分制計算<u>阿萱</u>與 阿嘉可能同級分
- (3) 假設 A 班學生的原始成績用 60 級分制計算, A 班學測級分的中位數為 40 級分, 若改以 15 級分制計算, 則 A 班學測級分的中位數為 10 級分
- (4) 假設 A 班學生的原始成績用 15 級分制計算, A 班學測級分的平均為 8.5 級分, 若改以 60 級分制計算, A 班學測級分的平均為 34 級分
- (5) 假設 A 班學生的原始成績用 15 級分制計算, A 班學測級分的標準差為 P 級分, 若改以 60 級分制計算, A 班學測級分的標準差為 Q 級分,則 Q≥4P
- 6. 假設數據 $X: x_1, x_2, ..., x_n$, $Y: y_1, y_2, ..., y_n$,其平均為 $\mu_x \times \mu_y$,標準差為 $\sigma_x \times \sigma_y$,相關係數為 $r_{x,y}$ 。 數據 $P: p_1, p_2, ..., p_n$,Q: $q_1, q_2, ..., q_n$,其平均為 $\mu_p \times \mu_q$,標準差為 $\sigma_p \times \sigma_q$,相關係數為 $r_{p,q}$ 。 下列關於數據統計的相關敘述哪些是正確的?(以下選項的 i 皆為 i = 1,2,3,...,n 及 $\alpha \times \beta$ 皆為非 0 實數)
 - (1) 若 $y_i = \alpha x_i + \beta$,則 $\mu_y = \alpha \mu_x + \beta$
- (2) 若 $y_i = \alpha x_i + \beta$,則 $\sigma_v = \alpha \sigma_x$
- (3) 若 $y_i = \alpha x_i + \beta$,則 | $r_{x,y}$ | = 1
- (4) 若 $q_i = \frac{1}{\sigma_p}$ $p_i \frac{\mu_p}{\sigma_p}$,則 $\mu_p = 1$, $\sigma_p = 0$
- (5) 假設 Y 對 X 的迴歸直線為 $y = m_1 x + b_1$, Q 對 P 的迴歸直線為 $q = m_2 p + b_2$ 。 若 $m_1 > m_2 > 0$, 則 $r_{x,y} > r_{p,q}$ 。

- 7. 設有 10 筆二維數據資料 (x_1, y_1) 、 (x_2, y_2) 、…、 (x_{10}, y_{10}) ,已知 $x_1 + x_2 + \dots + x_{10} = 60$, $y_1 + y_2 + \dots + y_{10} = 50$,X 與 Y 的相關係數為 0.9,且 y 對 x 的迴歸直線通過點 (4,1)。令 $x_i' = \frac{x_i 6}{\sigma_x}$, $y_i' = \frac{y_i 5}{\sigma_y}$,其中 i = 1,2,
 - ...,10。若 σ_x 、 σ_v 分別為 X 數據與 Y 數據之標準差,則下列選項哪些是正確的?
 - (1) y 對 x 的迴歸直線斜率為 2
- (2) 數據 (x_1, y_1) 在直線 y = 2x 7 上
- (3) $(x_1')^2 + (x_2')^2 + \dots + (x_{10}')^2 = 1$
- (4) y' 對 x' 的迴歸直線斜率為 0.9
- (5) Y 數據的標準差大於 X 數據的標準差

第三部分:選填題(占48分)

說明:1.第A至H題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-35)

- 2. 第 A 題到第 H 題答對得 6 分,答錯不倒扣,該題未完全答對不給分。
- A. 設 $< a_n >$ 為等差數列,且 $S_n = a_1 + a_2 + \dots + a_n$ 。已知 $a_{11} = 70$, $a_1 + a_2 + a_3 = 831$,則 S_n 的最大值為
 - 8 9 10 11 ...
- B. 某數列 $< b_n >$ 共有 25 項,且滿足 $S_n = b_1 + b_2 + \dots + b_n = 3n^2 n$ 。若刪去某項 b_k 後,剩下的 24 項算術平均數 為 71,則刪除的 $b_k = 12$ ① ① ① ① ④

C. 已知數列 $< a_n >$ 满足 $a_1 = 3$ 及 $a_n = a_{n-1} + 3n + 2^{n-2}$, $n \ge 2$,則 $a_{13} = 10$ ① ① ① ② 。

- D. 等差數列 1, 2, 3, ..., 28, 29 的標準差為 \sqrt{a} , 求整數 a = 19 20 。
- E. 阿善的班導因大家這次學測數A考得不錯,班導打算發獎學金給班上的每位同學。這次全班最高有 15 級分,最低有 8 級分,全班學測數A的算術平均數為 12 級分,標準差為 2 級分,本次要發放的獎學金依照每個人的學測級分來計算,計算公式為 $y_i = 2x_i^2 75$,即每位同學的學測級分 (x_i) 平方後再乘以 2 倍,最後再減掉 75,得到最終的數值就是獎學金 (y_i) 。此時班導請阿善計算平均每位同學要發多少獎學金,阿善回答這次獎學金 (y_i) 的算術平均數為 ② ② ② 元。

F. 四數 $a \cdot b \cdot c \cdot d$ 為公比是整數的等比數列,且滿足 a+d=-52,b+c=12,則 ac-bd=24 25 26 27 。

G. 某學期有 100 位同學報名重補修課程,經系統顯示每位同學報名費的算術平均數為 700 元,標準差為 x 元,後來發現繳費資料有誤,<u>阿豐</u>需繳交 800 元卻輸入成 500 元,<u>阿寬</u>需繳交 700 元卻輸入成 1000 元,若更正後系統顯示的標準差為 y 元,試問 $x^2-y^2=$ ② ② ③ ③ ③ ③ 。

H. 已知某數列 $< a_n >$ 的前 n 項和 $S_n = 2a_n - 2025$,則 $\frac{S_{20}}{S_{10}}$ 的值為 $\frac{32}{3}$ $\frac{33}{3}$ $\frac{34}{3}$ $\frac{35}{3}$ 。

第四部分:混合題(占12分)

說明:請將每題答案書寫在答案卷上,未在答案卷上作答者不予計分。

設數列 $< a_n >$ 満足 $a_1 = \frac{2}{3}$, $a_n = \frac{3a_{n-1} - 1}{4a_{n-1} - 1}$ $(n \ge 2)$ 。

- 2. 推測數列 $< a_n >$ 的一般項通式。(填充題, 2分)
- 3. 請利用數學歸納法,驗證第2題的推測結果。(證明題,8分)

<試題結束,請記得檢查,並將答案塗在答案卡上以及書寫在答案卷上,祝考試順利>

◎参考公式

一維數據 $X: x_1, x_2, \dots, x_n$,

算術平均數
$$\mu_X = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$$

標準差
$$\sigma_X = \sqrt{\frac{1}{n}[(x_1 - \mu_X)^2 + (x_2 - \mu_X)^2 + \dots + (x_n - \mu_X)^2]} = \sqrt{\frac{1}{n}[(x_1^2 + x_2^2 + \dots + x_n^2) - n\mu_X^2]}$$

二維數據 (X, Y): $(X_1, y_1), (X_2, y_2), \dots, (X_n, y_n)$

相關係數
$$r_{X,Y} = \frac{(x_1 - \mu_X)(y_1 - \mu_Y) + (x_2 - \mu_X)(y_2 - \mu_Y) + \dots + (x_n - \mu_X)(y_n - \mu_Y)}{n\sigma_X\sigma_Y}$$

迴歸直線 (最適合直線) 方程式 $y-\mu_Y=r_{X,Y}\frac{\sigma_Y}{\sigma_X}(x-\mu_X)$

國立中興大學附屬高級中學 113 學年度第2 學期第一次期中考 高一數學 答案卷

班級:一年____班 座號:_____ 姓名:_____ 混合題得分:_____

第四部分:混合題(占 12 分)	
說明:請使用黑色或藍色原子筆做答。 1.第1題,請將答案填入空格。(填充題,2分,全對才給分) 2.第2題,請將答案填入空格。(填充題,2分) 3.第3題,請將證明過程書寫清晰於框內,本題共8分。	
設數列 $< a_n >$ 滿足 $a_1 = \frac{2}{3}$, $a_n = \frac{3a_{n-1} - 1}{4a_{n-1} - 1}$ $(n \ge 2)$ 。	
 請計算 a₂、a₃、a₄,求序組 (a₂,a₃,a₄)。 	
$(a_2, a_3, a_4) = ($,) 。
$2.$ 推測數列 $< a_n >$ 的一般項通式。	
$a_n = \underline{\hspace{1cm}}$	
3. 請利用數學歸納法,驗證第2題的推測結果。	

國立中興大學附屬高級中學 113 學年度 第2 學期第一次期中考 高一數學試題

參考答案 敬請指正

單選題

1.	2.	3.	3.
5	4	3	4

多選題

5.		6.	7.
	1 2	1 3	1 4 5

填充題

A.	B.	C.	D.
2107	146	4368	70
E.	F.	G.	H.
221	-288	1200	1025

混合題

1.
$$(a_2, a_3, a_4) = (\frac{3}{5}, \frac{4}{7}, \frac{5}{9})$$

$$2. \quad a_n = \frac{n+1}{2n+1} \, \cdot$$

3.

1° 當
$$n=1$$
 時, $a_1 = \frac{2}{3}$, $a_1 = \frac{1+1}{2\cdot 1+1} = \frac{2}{3}$,兩式相等,成立。 (2分)

2° 假設
$$n = k$$
 時成立,即 $a_k = \frac{k+1}{2k+1}$ 。 (2分)

則
$$n = k + 1$$
 時, $a_{k+1} = \frac{3a_k - 1}{4a_k - 1} = \frac{3 \cdot \frac{k+1}{2k+1} - 1}{4 \cdot \frac{k+1}{2k+1} - 1}$ (2分)

 3° 由數學歸納法得知,對所有的正整數 n,本命題成立。 (1分)