

Deep Learning: An Overview

Odysseas Pentakalos, Ph.D. CTO, SYSNET International, Inc.

Overview

- Motivation for why should you care
- Inspiration and history of artificial neural networks
- Feedforward neural networks
- Deep Networks in Computer Vision
- Deep Networks for Sequence Processing

Short bio

- Education in Electrical Engineering and Computer Science
- CTO at SYSNET International, Inc.
- Specializing in Health Information Technology

What is Artificial Intelligence

John McCarty coined the term in 1956

Merriam-Webster defines artificial intelligence this way:

- A branch of computer science dealing with the simulation of intelligent behavior in computers.
- The capability of a machine to imitate intelligent human behavior.

What is Deep Learning?

Deep Learning Applications

There are now countless applications of Deep Learning:

- Self-Driving Cars
- News Aggregation and News Fraud Detection
- Medical Diagnosis of images
- Natural Language Processing
- Financial Fraud Detection

Self-Driving Cars

- Uses various sensors to navigate to destination

Self Driving Cars (cont.)

Sensor data need to be interpreted and appropriate actions must be taken

Sorin Grigorescu, et al, "A Survey of Deep Learning Techniques for Autonomous Driving", https://arxiv.org/abs/1910.07738

News Aggregation

- Analyse news sources, group them into categories and assess

their veracity

Medical Image Diagnosis

Machine learning can assist in many aspects of medical imaging from acquisition, to interpretation, and to diagnosis.

BRAIN KIDNEY PROSTATE SPINE

Inspired by the Brain

Why not try and simulate the brain if we are trying to build intelligence

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function

Artificial Neuron

Simplified version of a biological neuron

$$y_k = arphi \left(\sum_{j=0}^m w_{kj} x_j
ight)$$

Sigmoid function

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}.$$

https://en.wikipedia.org/wiki/Artificial_neuron

Linear Separability

Single layer neural networks can only provide linear separation

Feedforward Neural Networks

We can increase the capacity of the network by increasing the number of layers

Transformation of Input Space

The hidden layers allow you to transform the input space into a higher dimensional space where linear separation is possible

How do we train multi-layered networks?

Gradient Descent Algorithm with backpropagation (chain rule)

for
$$j = 1$$
 to $j = N$

$$w_j := w_j + \alpha \frac{\partial J(\vec{W})}{\partial w_j}$$

Deep Learning in Computer Vision

Aspects of Learning that are unique to Computer Vision

- Images can be large and require too many weights

- Basic features repeat throughout the image in different

locations

Inspired by the brain again

Our brains process visual information in successive layers of increasing complexity

Features of an image

Convolutional Neural Networks

Define filters to apply across the image to evaluate presence at a given

location

1st Layer Filters

Deconvolutional Networks Matthew D. Zeiler, Dilip Kirshnan, Graham W. Taylor, and Rob Fergus CVPR 2010 (June 13-18, 2010)

2nd Layer Filters

Deconvolutional Networks Matthew D. Zeiler, Dilip Kirshnan, Graham W. Taylor, and Rob Fergus CVPR 2010 (June 13-18, 2010)

3rd Layer Filters

Deconvolutional Networks Matthew D. Zeiler, Dilip Kirshnan, Graham W. Taylor, and Rob Fergus CVPR 2010 (June 13-18, 2010)

AlexNet Convolutional Neural Network

What about applications with State?

How about other problems that involve sequences?

The Unreasonable Effectiveness of Recurrent Neural Networks, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Networks

Output depends on current input but also current state

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Deep Learning for NLP

How do we represent sentences as numerical vectors?

Conclusion

Questions?

