

动态规划 Dynamic Programming

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- 多阶段决策问题的例子
- ▶ 动态规划的基本概念

The Beginning - - KARL J. ÅSTRÖM

动态规划

13	Red-Black	Trees	308
**	KCU-DIACK	11003	200

- 13.1 Properties of red-black trees 308
- 13.2 Rotations 312
- 13.3 Insertion 315
- 13.4 Deletion 323

14 Augmenting Data Structures 339

- 14.1 Dynamic order statistics 339
- 14.2 How to augment a data structure
- 14.3 Interval trees 348

IV Advanced Design and Analysis Techniques

Introduction 357

15 Dynamic Programming 359

- 15.1 Rod cutting 360
- 15.2 Matrix-chain multiplication 370
- 15.3 Elements of dynamic programming 378
- 15.4 Longest common subsequence 390
- 15.5 Optimal binary search trees 397

16 Greedy Algorithms 414

- 16.1 An activity-selection problem 415
- 16.2 Elements of the greedy strategy 423
- 16.3 Huffman codes 428
- 16.4 Matroids and greedy methods 437
- 16.5 A task-scheduling problem as a matroid 443

Amortized Analysis 451

- 17.1 Aggregate analysis 452
- 17.2 The accounting method 456
- 17.3 The potential method 459
- 17.4 Dynamic tables 463

6.5 动态规划的连续形式 189 6.5.1 HJB方程 ······ 189

6.5.2 HJB 方程与最小值原理的

2 TO	
5.5章 最大值原理 130	
5.0 引育	6. 6
5.1 最小值原理 130	CARLING MOUTDOLTHEOL
5.2 Bang-Bang 控制 ······ 135	• 6.7
5.3 时间最优控制系统的性质 136	6.8
5.4 无阻尼运动的时间最优控制 139	参考
5.5 存在恢复力时无阻尼运动的时间	^{第7} 最优控制理论与应
最优控制 143	7.0
5.6 燃料最优控制系统的性质 147	7. 1
5.7 无阻尼运动的燃料最优控制 150	7.1
5.8 Simulink 用于 Bang-Bang 控制的	7.:
仿真 154	7. 2
5.8.1 无阻尼运动的时间最优控制	附录
的仿真	* 第 8
5.8.2 存在恢复力时无阻尼运动的	8. 0
时间最优控制的仿真 158	8, 1
5.8.3 无阻尼运动的燃料最优控制	8.2 ①机械工业出版社
的仿真 159	第9章 LUK 在电刀系统中的应用 226
5.9 小结161	9.0 引音226
习题161	9.1 记号 227
附录 5A 抽象空间 162	9.2 系统模型228
附录 5B 状态转移矩阵的一个性质 168	9.3 控制器设计230
附录 5C 系统模块等 169	9.4 试验结果 231
参考文献 170	9.5 小结 232
第6章 动态规划	参考文献 233
6.0 引言 171	第 10 章 最小值原理在登月软着陆
6.1 多段决策过程 172	中的应用 234
6.1.1 动态系统的特点 172	10.0 引言
6.1.2 多段决策 172	10.1 系统方程与性能度量
6.2 动态规划的基本思想 173	10.2 优化问题提法 236
6.3 用动态规划求解离散 LQR 问题 179	10.3 控制器设计 237
6.4 动态规划的上机计算步骤 181	10.3.1 在整个降落阶段, u = - α ····· 238
6.4.1 算法	10.3.2 在整个降落阶段, u = 0 240
6.4.2 插值 185	10.4 小结
6.4.3 程序框图 189	10.5 附记241
6.4.4 优缺点 189	10.0 PA No.

参考文献 ………………………… 242

鸣谢 244

Introduction to Reinforcement Learning with David Silver

Mastering the game of Go with deep neural networks and tree search

David Silver^{1*}, Aja Huang^{1*}, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifra¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Lecture 1: Introduction to Reinforcement Learning

Lecture 2: Markov Decision Processes

Lecture 3: Planning by Dynamic Programming

Lecture 4: Model-Free Prediction

Lecture 5: Model-Free Control

Lecture 6: Value Function Approximation

Lecture 7: Policy Gradient Methods

Lecture 8: Integrating Learning and Planning

Lecture 9: Exploration and Exploitation

Lecture 10: Case Study: RL in Classic Games

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

动态规划(Dynamic Programming, DP):

- ▶求解和时间有关的动态系统多阶段决策的有力工具
- ▶美国, Bellman, 1957
- > 也适用于与时间无关的静态系统最优决策

动态规划是一种求解最优决策问题的重要思想,而不是一种具体的算法

- ◆不能建立一个标准的DP算法流程,具体算法与问题结构有关
- ◆理论上, DP可以求解所有优化问题(离散、连续、无穷维)
- ◆很多重要应用问题由于采用了DP思想得以成功解决

多阶段决策问题

min
$$z = f(x)$$

 $s.t$ $x \in D, D \subset R^n$

动态规划是一种解 决最优决策问题的 **重要思想**,而不是 一种具体的算法

min
$$z = c^T x$$
 min $z = f(x)$ min $z = f(x)$
s.t. $A^{(1)}x \le b^{(1)}$ s.t. $A^{(1)}x = b^{(1)}$ s.t. $g_i(x) \le 0$
 $A^{(2)}x = b^{(2)}$ $x_i \in I$ $h_j(x) = 0$

多阶段决策问题:

决策的全过程依据**时间或空间**划分若干个联系的<mark>阶段。在各阶</mark>段中,人们都需要作出方案的决策,并且当一个阶段的决策之后,常常影响到下一个阶段的决策,从而影响整个过程的活动。

例2. 多阶段资源分配问题(时间离散、状态连续问题)。 某种资源,初始拥有量 x_0 ,投入A,B两种生产。以 y_0 投入A,

 x_0 - y_0 投入B,利润为 $g(y_0)$ + $h(x_0$ - $y_0)$ (g(0)=h(0)=0)。两种生产的资源回 收率分别为a,b ($a,b \in (0,1)$)。回收的资源再投入生产:

 $x_1 = ay_0 + b(x_0 - y_0)$,以 y_1 投入A, $x_1 - y_1$ 投入B,……,共重复生产n次,

如何安排各次的资源分配以使总利润最大?

解:
$$\left[\max_{x_k, y_k} \sum_{k=0}^{n-1} \left[g(y_k) + h(x_k - y_k) \right] \right]$$

$$s.t. x_{k+1} = a \cdot y_k + b \cdot (x_k - y_k);$$

$$k=0,1,\cdots,n-2$$

$$0 \le y_k \le x_k$$
;

$$k = 0, 1, \cdots, n-1$$

$$x_0 = C$$

决策收益:

状态转移示意图

思考: 阶段、状态、决策、 策略、无后效性?

多阶段决策问题分类

基本概念: 阶段、状态、决策、策略、无后效性

- ◆ 确定性/不确定性: 不含/含有随机因素
- ◆ 定期/不定期: 有多少个阶段事先已知/未知(或为无穷)
- ◆离散时间/连续时间:决策过程中的时间是离散/连续变化的
- ◆ 离散/连续/混合状态: 状态向量各分量是哪一类型的变量

各种组合下的问题在现实世界中均存在

例1(管道铺设)、例2(多阶段资源分配)、生产调度、排队系统、下棋、 工程项目管理、机器人控制、......

重点讨论确定性、离散时间问题

确定性定期离散时间问题

时间(阶段): t_0, t_1, \dots, t_N , 简记为 $0, 1, 2, \dots, N$

状态: $x_k: k=0,1,\cdots N$. $x_k \in \Omega_k \subset R^{n_k}$, Ω_k 为状态空间

不失一般性, 假定初始和最终阶段仅包含一个状态, 可以通过引入虚拟阶段及虚拟状态实现此转化

决策: $u_k: k = 0, 1, \dots N-1$. $u_k \in D_k(x_k) \subset R^{m_k}, D_k(x_k)$ 为决策空间

允许决策集合(决策空间)受当前状态影响

状态转移方程: $x_{k+1} = \phi(x_k, u_k, k)$; $k = 0, 1, \dots N-1$.

决策费用: $G(x_k, u_k, k)$; $k = 0, 1, \dots N-1$.

控制/决策目标: $\min \sum_{k=0}^{N-1} G(x_k, u_k, k)$.

建模关键:满足无后效性的阶段划分及状态定义

确定性定期离散时间问题

确定性定期离散时间多阶段决策问题基本模型

$$\sum_{k=0}^{N-1} G(x_k, u_k, k).$$
 决策目标 $s.t.$ $x_{k+1} = \phi(x_k, u_k, k);$ $k = 0, 1, \cdots N-1.$ 状态转移约束 $x_k \in \Omega_k \subset R^{n_k};$ $k = 0, 1, \cdots N.$ 状态空间约束 $u_k \in D_k(x_k) \subset R^{m_k};$ $k = 0, 1, \cdots N-1.$ 决策空间约束

思考:和一般非线性规划相比,有何结构特点?

建模关键:满足无后效性的阶段划分及状态定义

小结

- ▶ 两个问题都可以看成一个多阶段的决策问题
- 各个阶段决策的选取不是任意的,它依赖于当前面临的状态,又给以后的发展以影响
- 当各个阶段的决策确定之后,就组成了一个决策序列,也就决定了整个过程的一条活动路线
- 这种把一个问题变成一个前后关系具有链状态结构 的多阶段决策过程,也称为序贯决策过程

例:

例: 自动驾驶

Self-driving Uber Crash, in 2018

两个重要概念

- 无后效性(Markov性):某阶段的状态一旦确定,则此后过程的演变不再受此前各种状态及决策的影响,简单的说,就是"未来与过去无关"。无后效性是一个问题可以用动态规划求解的标志之一。
- ▶ 状态转移方程:第 / 你段到第 / 4 1 阶段的状态转移规律, 称为状态转移方程或状态转移函数。

状态转移图

旅行商问题(TSP)

有n个城市,一个推销员要从其中某一个城市出发, 唯一走遍所有的城市,再回到他出发的城市,求最 短的路线

0-1背包问题(Knapsack problem)

〉给定 n 种物品,物品 j 的重量为 w_j ,价格为 c_j ,在限定的总重量 W 内,我们如何选择,才能使得物品的总价格最高。

max

$$z = \sum_{j=0}^{n} c_{j} x_{j}$$

s.t.

$$\sum_{j=1}^{n} w_{j} \leq W$$

$$x_{j} \in \{0,1\}.j = 1,...,n$$

例: 最短路径问题

 $\min D(p)$ $p \in Path(S,T)$

汽车从S站出发,到T站终止,全程分为4段,如何选择路线使S->T时间最短? (图中数字为各段所需时间。)

第三阶段决策: E or F

最优: C->F->T(4)

最优: D->F->T(5)

第二阶段决策: C or D

第一阶段决策: A or B

最优决策: S->B->C->F->T (13)

特点

- ▶ 为找到S->T的最优路线,先找出各站到终点T的最 优路线。
 - · 表面上,多作了计算,但在迭代求解过程中,每一步只需 作很简单的计算。
- ▶ 最优决策S->B->C->F->T中,从任一点开始到T 的任一段,如C->F->T也是从C到T的最优决策。