The method of maximum likelihood (MLE)

Definition:

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with probability distribution $f(x, \theta)$, and let $L(x, \theta) = \prod_{i=1}^n f(x_i, \theta)$ be the likelihood function of the sample. If $t = u(x_1, x_2, ..., x_n)$ is the value of θ that maximizes $L(x, \theta)$ then $T = U(X_1, X_2, ..., X_n)$ is the maximum likelihood estimator (MLE) of θ .

- To maximize $L(x, \theta)$ use $\frac{\partial}{\partial x} \{L(x, \theta)\} = 0$.
- Rather than maximizing the likelihood function it is usually easier to maximize its natural logarithm, since the results are the same. Note that logarithm is a monotonic function. Therefore for an iid sample,

$$L(\boldsymbol{x}, \theta) = \ln \left(\prod_{i=1}^{n} f(x_i, \theta) \right) = \sum_{i=1}^{n} \ln f(x, \theta)$$

Example 1. Find the MLE of the Poisson distribution with parameter λ .

Example 2. If $X_i \sim N(\mu, \sigma^2)$; i = 1, 2, ..., n. Find the MLE's of μ and σ^2 .

Example 3. Let X_1 , X_2 , ..., X_n be independent random variables each Bernoulli with probability of success θ . Find the MLE's of E(X) and V ar(X). The probability mass function of the Bernoulli distribution is

$$p(x, \theta) = \theta^{x}(1 - \theta)^{1-x}; x = 0, 1.$$