

20000节点数仓集群 在大型商业银行的落地实践

建信金科

基础技术中心 陈晓新

目录

02 龙趺MPP技术架构和带来的应用革新

03 基于龙趺MPP的大数据未来技术展望

龙趺MPP DB

龙趺MPP DB——新一代云原生数据仓库产品

其他数据库、存储等合作公司

超高的查询性能 标准SQL支持 完善的生态系统

龙趺 MPP DB

云计算弹性

无限的计算存储能力 动态伸缩 故障自动恢复

全数据共享

计算和存储分离 一份数据全局使用 超高资源利用率

龙趺MPP DB 运行现状	集群规模	数据量	表数量/对象数	负载情况
	20000+节点	18PB	百万/千万	每天运行作业数达到百万级别,SQL数 千万级别

数据集成数据整合 批量计算

模型训练 数据挖掘

报表展示即席查询 指标运算

龙趺MPP DB

计算存储分离, 数据充分共享

百PB级数据,并 发能力线性扩展

金融级高可用 准0-RPO容灾

动态扩容、升级,智能运维

恒丰银行

9套计算集群 80+台物理机 规划数据量500TB 北京银保监会

3套计算集群 1+64;1+64;1+128 存储数据量150TB+ 进出口银行

24台物理机 规划数据量100TB

国家开发银行

24台物理机 规划数据量100TB 云南政务

河北政务

O1 基于龙趺MPP的超大规模数据仓库建设

目录

02 龙趺MPP技术架构和带来的应用革新

03 基于龙趺MPP的大数据未来技术展望

基于传统MPP的数据仓库建设问题

传统物理机/虚拟机架构,运维 管控难度大

数据孤岛

▶ 应用烟囱式设计,一个应用搭建 一个独立集群,导致严重数据孤 岛

数据冗余

每个集群都存储大量冗余数据, 服务器资源消耗严重 成本高,使用难! 传统MPP数据库已 经无法支撑大型银 行的大数据建设和 发展!!

资源损耗

➤ 集群间大量数据复制,消耗大量 网络、ETL乃至人力资源

龙趺MPP DB核心架构

- ▶ 存算分离统一存储,实现全集群数据共享,消除数据冗余和数据孤岛,减少数据冗余和服务器资源30%以上。
- ► 无状态计算层, 计算和并发能力 线性扩展, 实现从100节点到 20000节点的规模扩展
- ➤ 云原生架构设计,实现一键集群 创建、启停、升级、扩缩容、故 障自愈等功能,运维效率提升10 倍以上

龙趺MPP DB——管理控制台

权限管理

▶ 多租户/用户管理

集群生命周期管理

▶ 创建、删除、扩缩容、升级、启动、停止

IaaS资源交互和调度

基础设施资源调度,包括计算、存储和网络资源等

自动化/智能化运维

- ▶ 自动化安装部署
- ▶ 监控、告警
- ▶ 故障自愈

龙趺MPP DB——元数据服务

调度层

- ▶ 服务发现和监控
- ▶ 负载均衡

无状态服务层

▶ 服务层由一组服务节点组成,每个服务节点 其实是无状态的服务进程,负责接收和处理 计算集群的元数据请求;

元数据持久存储层

元数据持久化存储层,存储数据字典、统计信息、文件映射等信息

龙趺MPP DB——无状态计算层

资源灵活分配

- ▶ 按需创建、删除、扩缩容
- 集群间资源完全隔离
- 作业可在不同集群建灵活调配
- 并发能力线性扩展

缓存服务

- ➤ 本地SSD作为缓存介质
- ▶ 元数据缓存
- ▶ 用户数据缓存

龙趺MPP DB——共享存储层

使用对象存储作为数据持久化存储

- ▶ 支持100亿文件对象,200PB以上数据
- ▶ 使用标准Restful API, 支持高并发访问
- > 99.99%以上的可用性
- > 99.99999999%以上的数据持久性

存储访问优化

- ▶ 多桶存储
- ▶ 列存+压缩

龙趺MPP DB——丰富的外部计算引擎连接器

龙趺MPP DB——银行级安全可控

数据仓库/数据湖

龙趺MPP DB

龙趺MPP DB核心技术总结

架构云原生

融合云计算,架构 上实现了存储、计 算、元数据分离, 摆脱了传统MPP数 据库的各种架构限 制和制约。

计算存储分离

共享统一的元数据 和数据存储, 以增 加计算集群的方式, 横向扩展集群并发 计算能力,突破传 统MPP并发限制。

应用松耦合

数据库资源和应用 解耦,根据计算集 群的工作负载,和 变化的应用需求, 灵活、动态调配计 算集群。

分析多样化

在MPP并行计算架 构上,集成GIS、 Python等组件, 支 持SQL分析、机器 学习、时空分析等 多种分析形式。

Pythor

秒级扩缩容

数据保存在共享存 储上,使用一致性 Hash 分布方案, 避免新增/减少节 点数据迁移。

I ML

Node N

自愈高可用

计算集群节点无状 态,数据保存在共 享存储上,没有 Mirror 节点, 实现 分钟级新节点恢复。

湖仓一体化

统一数据存储,形 成企业级数据视图。 统一元数据管理, 严格事务一致性, 以融合架构支持湖、 仓平台建设

技术自主可控

自主开发: 支持鲲 鹏、海光服务器, 麒麟等国产化操作 系统, 平台软件实 现自主可控。

(结构化、半/非结构化) 数据形态

ETL 批量&流处理

JSON , XML , Graph

IoT Data

Voice, Video, Image

Geo Spatial, Time Series

外部表&连接器

SQL

Driver

Node 1

Parser

Optimizer

Global Scheduler

General Runtime Engine

Local Scheduler

Parser

Optimizer

General Runtime Engine

Node 2

Parser

Optimizer Distributed Cache

Local Scheduler

SQL, R, Python, Java, C...

BI/Analytic/ML ...

数据源

(DB, Hadoop, OSS, File,

传统MPP应用解决方案

龙趺MPP DB应用解决方案

- ▶ 完全消除复制作业,减少作业压力20%以上;
- ▶ 消除数据冗余,减少数据存储30%,节省硬件资源30%以上;
- ▶ 缩短数据使用链路,平均作业完成时间减少1-3小时

	传统MPP	龙趺MPP DB
数据复制	大量集群间数 据复制	完全消除数据 复制
数据冗余	大量冗余数据	无数据冗余
资源灵活 调配	计算和存储资 源固定	根据应用需求, 实施分配和调 整应用资源
作业动态 调度	每个集群运行 作业基本固定, 无法动态调整	作业可以根据 负载需求,在 不同集群间动 态调整
扩展能力	不超过1000个 节点	轻松突破 10000节点以 上

基于龙趺MPP DB的湖仓一体解决方案

- 数据湖和数据仓库共存的两层混合架构,两者定位不同,各司其职,通过龙趺MPP外布表和连接器集成;
- 数据湖管理各种形态的业务原始数据,一方面为数据仓库提供数据,另一方面支撑数据科学实验和实时查询分析场景;
- 数据仓库打破业务条线,从分析角度整合数据,累积历史,支撑固定报表、灵活查询等传统BI分析,以及部分数据科学实验需求。

- 湖仓一体的融合架构,数据以ORC格式统一存储在共享存储,实现湖仓业务数据和元数据真正融合;
- Spark执行数据计算处理后,将数据按约定的格式写入到共享存储中,同时更新MPP的元数据信息,MPP直接使用写入数据。Spark通过相应的连接器,直接访问MPP写入的数据,不需要重新加载,直接进行机器学习:
- 湖仓一体平台同时支撑所有业务场景。

目录

02 龙趺MPP技术架构和带来的应用革新

03 基于龙趺MPP的大数据未来技术展望

未来技术规划

- ▶ 基于龙趺MPP DB,我们实现了超大规模数仓建设,资源线性扩展;实现了计算与存储分离,数据不冗余;实现了云原生架构,一键式部署一键式运维。
- ▶ 那么展望未来大数据技术发展,我们希望大数据计算与存储技术,能够提供什么样的能力?

安全可靠,服务不中断,数据不丢失

能够高效接入、存储、管理和计算不同类型、不同格式的数据

具备或者能够集成多样的计 算能力,满足不同场景的应 用需求 多维度资源弹性伸缩,多租户负载管控,全场景故障隔 离和自动恢复

- ①具备跨区域的高可用部署和灾备恢复能力,数据多区域多版本存储,服务不中断数据不丢失;
- ②多租户管理能力, 元数据服务具备负 载管控、故障隔离 的能力,全资源多 维度服务弹性伸缩;
- 3 存储和管理结构化 /半结构化/非结构 化数据,涵盖主流 开放式存储格式和 数据湖格式;
- 4 外部计算引擎能够并行高效的查询和使用龙趺MPP的数据,并将结果存回库内;
- 5接入丰富外部数据源,利用龙趺MPP计算能力满足外部数据计算乃至联邦计算的需求;
- 6对外能够提供SQL、 AI、图、时序、流 等计算能力,全面 覆盖上层大数据应 用需求。

让金融科技尽其所能 thanks