Lecture 8: Linear Classifiers and More Model Validation

INFO 1998: Introduction to Machine Learning

Agenda

- 1. Perceptron
- 2. SVM
- 3. More Cross-Validation techniques

Linear Classifiers

Linear Classifiers

A linear classifier is a hyper plane that is used to classify our data points

A hyperplane is our decision boundary and our goal is to find the hyper plane that best classifies our data

Linearly Separable

In this example, we cannot partition our dataset into yellow and purple with a linear decision boundary. This means that our data is not linearly separable.

Outliers are frequently the reason a data set is not linearly separable.

This data set is not linearly separable because of an <u>outlier</u>

Perceptron Learning Algorithm

Goal: find a normal vector w that perfectly classifies all the points in our data set Algorithm:

Initialize classifier as some random hyperplane
While there exists a misclassified point x:

Tilt classifier slightly so that it classifies x correctly

(or, is a little closer to classifying x correctly)

End While

"Use your mistakes as your stepping stones"

Limitations of Perceptron

The training algorithm will never terminate if your training dataset is not linearly separable \cong

Is a great model to understand the intuition behind the training of a linear classifier: iteratively improve classifier by using misclassified points ©

SVM

Classify (+) and (-)

Which Hyperplane?

Optimal Hyperplane

Support Vector Machine

Maximal Margin Classifier

- We want to find a separating hyperplane
- Once we find candidates for the hyperplane, we try to maximize the margin, the normal distance from borderline points
 - Only Support Vectors matter

What if...

Which Decision Boundary is better?

Margins

Use cost function to penalize misclassified points

Choice of cost function makes margin "hard" vs. "soft"

Non-separable training sets

Use linear separation, but admit training errors.

Penalty of error: distance to hyperplane multiplied by error cost C.

Hard Margins

High penalty value

 The hyperplane can be dictated by a single outlier

Soft Margins

Used in non-linearly separable datasets

Allow for misclassification

 Can account for "dirty" boundaries

Misclassification Penalty C

Kernels

- You cannot linearly divide the 2 classes on the xy plane at right
- Introduce new feature, $z = x^2 + y^2$ (radial kernel)
- Map 2 dimensional data onto 3 dimensional data. Now a hyperplane is easy to find. (Imagine slicing a cone!)

Kernels

SVM has **MANY** Hyperparameters

SVM

C

The "penalty cost" for misclassifications (soft margins)

Gamma

How far the influence of a single training example reaches

Kernels

Method of transforming our data set

Finding the Best Hyper Parameters

Curse of Dimensionality

Our search space for the optimal hyper-parameters increases **exponentially** as the number of hyper parameters we are considering increases

Overview

Perceptron	SVM
 A very simple model Will perform poorly if data is not linearly separable 	 More complex model because we have to choose the "penalty cost" associated with misclassifications Can transform feature space by choosing a Kernel

Demo

Bias-Variance Tradeoff

In regression:

Want to predict y for a fixed test data point x

y is generated from the true model $y = f(x) + \epsilon$ (ϵ has zero mean and independent of everything else)

Estimate using some model \hat{f} : $\hat{y} = \hat{f}(x)$

Then:

test error =
$$\mathbb{E}(\hat{f}(x) - y)^2 = \underbrace{\left(\mathbb{E}\hat{f}(x) - f(x)\right)^2}_{\text{bias}^2} + \underbrace{\text{Var}(\hat{f}(x))}_{\text{variance}} + \underbrace{\text{Var}(\epsilon)}_{\text{irreducible error}}$$

Proof (not required, only for reference)

Suppose we have test set data: $y = f(x) + \mathcal{E}$. The test data y is random, since \mathcal{E} is random. The estimator f hat is also random, because it is fitted on random training data.

Then from the previous slide "MSE = bias^2 + variance" for unknown quantity θ and its random estimator θ hat, we have:

$$\mathbb{E}(\hat{f}(x) - y)^{2}$$

$$= \mathbb{E}\left[\mathbb{E}\left[(\hat{f}(x) - y)^{2} | y\right]\right]$$

$$= \mathbb{E}\left[\left(\mathbb{E}\hat{f}(x) - y\right)^{2} + \text{Var}(\hat{f}(x))\right]$$

$$= \mathbb{E}\left(\mathbb{E}\hat{f}(x) - f(x) - \epsilon\right)^{2} + \text{Var}(\hat{f}(x))$$

$$= \mathbb{E}\left(\mathbb{E}\hat{f}(x) - f(x)\right)^{2} + 2\mathbb{E}\left[\left(\mathbb{E}\hat{f}(x) - f(x)\right)\epsilon\right] + \mathbb{E}\epsilon^{2} + \text{Var}(\hat{f}(x))$$

(For some part of this lecture material, credit goes to Professor Damek Davis, Cornell ORIE department.)

Bias-Variance Tradeoff

$$\underbrace{\mathbb{E}(\hat{f}(x) - y)^{2}}_{\text{test error}} = \underbrace{\left(\mathbb{E}\hat{f}(x) - f(x)\right)^{2}}_{\text{bias}^{2}} + \underbrace{\text{Var}(\hat{f}(x))}_{\text{variance}} + \underbrace{\text{Var}(\epsilon)}_{\text{irreducible error}}$$

Less flexible model:

$$\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

bias high, variance low

More flexible model:

$$\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 + \hat{\beta}_3 x^3$$

bias low, variance high

More Validation Techniques

Review: Regression vs. Classification

Regression

- Predict Continuous Data
- "On average, how wrong are we?"

Classification

- Predict Discrete or Categorical data
- "How many points do we get wrong?"

Numbers

Continuous

Underfitting

Underfitting means we have <u>high bias</u> and <u>low variance</u>.

- Lack of relevant variables/factor
- Imposing limiting assumptions
 - Linearity
 - Assumptions on distribution
 - Wrong values for parameters

Overfitting

Overfitting means we have <u>low bias</u> and <u>high variance</u>.

- Model fits too well to specific cases
- Model is over-sensitive to sample-specific noise
- Model introduces too many variables/complexities than needed

Bias-Variance Tradeoff

When evaluating the models we are using, one property that we would often refer to is the bias-variance tradeoff.

Bias-variance tradeoff is the property of a set of predictive models where:

- Models with higher flexibility would typically have lower bias and higher variance;
- Models with lower flexibility would typically have higher bias and lower variance.

The graph gives a visualization on the outcomes of different bias and variance if we are doing experiment of throwing darts.

Fig. 1 Graphical illustration of bias and variance.

Graph source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Bias-Variance Tradeoff

Say:

- \triangleright θ is an unknown quantity we want to estimate
- \triangleright $\hat{\theta}$ is an estimator of θ (computed from data, random)

The mean squared error (MSE) decomposes as:

$$\underbrace{\mathbb{E}(\hat{\theta} - \theta)^{2}}_{\text{MSE}} = \underbrace{\left(\mathbb{E}\hat{\theta} - \theta\right)^{2}}_{\text{bias}^{2}} + \underbrace{\text{Var}(\hat{\theta})}_{\text{variance}}$$

$$MSE = bias^2 + variance$$

Leave-P-out

Let **D** be our whole dataset

Choose a P

For every combination of **P** points in **D**:

Use a train/test split with those **P** points as test, the rest as train

Leave-P-out: different from K-fold!

Let's say **D** has a size of 4. There are four data points: *a, b, c,* and *d*. K-fold:

- K = 2.
- Each fold has a size of 2: {*a*,*b*} and {*c*,*d*}
- So, we only have 2 possible test sets: {a,b} and {c,d}

Leave-P-out:

- P = 2.
- We have 6 possible test sets: {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, and {c,d}

Leave-P-out

Pros:

- Dependable (not random)
- Representative checks all combinations

Cons:

- Slow!
 - Runtime <u>increases</u> with larger datasets
 - Runtime <u>explodes</u> with larger P

Monte Carlo CV

- Getting accuracy 1 time doesn't tell us much
- Getting accuracy 2 times tells us a bit
- Getting accuracy 3 times tells us a bit more
- ...
- Getting accuracy N times might be good enough!

Take the average of those **N** times

Monte Carlo CV

- Need to use new, random train/test split each time
 - If you use the same train/test split each time, you're not getting any new information!
- Pros:
 - easy to implement
 - easy to make faster/slower by changing number of iterations
- Cons:
 - random -> train/test splits not guaranteed to be representative of dataset
 - o harder to calculate how many iterations you need

The Bootstrap

What if we don't have enough data?

- Use bootstrap datasets to approximate the test error
- Sample with replacement from the original training dataset (with n samples) to generate bootstrap datasets of size n
 - Some data points may appear more than once in the generated data
 - Some data points may not appear
- Estimate of test error = average error among bootstrap datasets

Pipeline of the Bootstrap

Algorithm 1 Estimating prediction error via the bootstrap

- 1: **Input**: dataset $\{(x_i, y_i)\}_{i=1}^n$, loss function ℓ .
- 2: **for** $b = 1, 2, \dots, B$ **do**
- 3: generate set S_b by sampling n items with replacement from $\{(x_i, y_i)\}_{i=1}^n$.
- 4: form prediction \hat{f}^b by fitting the logistic regression model with training data \mathcal{S}_b .
- 5: compute $\widehat{\text{err}}_b := \frac{1}{n} \sum_{i=1}^n \ell(y_i, \hat{f}^b(x_i))$
- 6: end for
- 7: **return** $\widehat{\text{err}}_{\text{boot}} := \frac{1}{B} \sum_{b=1}^{B} \widehat{\text{err}}_{b}$
- Does this give very good estimate of the prediction error?
- If no, why not? Does it underestimate or overestimate the prediction error?

Pipeline of the Bootstrap

No.

Since the bootstrap is sampling with replacement for B validation folds, each fold would have significant overlap with the original data used for training. Approximately, **2/3** of the training data would appear in each validation fold.

This leads to significant **underestimation** of the prediction error.

❖ Why 2/3?

Proof

Suppose there are n samples (yi, xi) in the training set data, then for each of the bootstrap validation fold b, every sample has probability 1/n of being selected into b. The probability of each data sample (yi, xi) not being in fold b is (1 - 1/n), respectively.

Probability of avoid selecting all n data points in fold b: (1 - 1/n)^n.

When n gets large, we have this probability converges to 1/e.

(Why this converges? Probably should review Calc I, or see:

https://math.stackexchange.com/questions/882741/limit-of-1-x-nn-when-n-tends-to-infinity.)

Therefore, the fraction of overlapping data points in each fold is (1-1/e), which is about 2/3.

How we fix the problem

- Requires some thoughts when generating validation set, especially for real-world complex data.
- Can partly fix this problem by only using predictions for those observations that did not (by chance) occur in the current bootstrap sample.
- But the method gets complicated.

Bootstrap vs. k-fold

In K-fold validation, each of the K folds is distinct from the other (K - 1) folds used for training: there is **no overlap**.

This is crucial for its success in estimating prediction error.

Why we still use bootstrap

- Bootstrap allows us to use a computer to mimic the process of obtaining new data sets.
- Can be used to quantify the uncertainty associated with a given estimator or statistical learning method.
- Provides an estimate of the standard error of a coefficient, or a confidence interval for that coefficient.
 - i.e., the variability of the model!

Bagging (Bootstrap Aggregating)

What if we don't have enough data?

- Bagging is a common technique that builds on Bootstrapping
- Main Idea: Do Bootstrapping a bunch and make a classifier for each bootstrap, then majority prediction wins.
- Many weak learners aggregated typically outperform a single learner over the entire set, and overfits less.
 - Principle behind Random Forests

Demo

Measures of overfitting

- Compare *train* accuracy with *test* accuracy!
- Method 1: Generalization error
 - (Generalization error) = (test error) (train error)
 - Error introduced from trying to generalize to new data
- Method 2: Prediction variation
 - VAR(predictions for a specific point x)
 - How much do predictions change for point x, based on the training data?

Reminder: don't mix up error and accuracy! They're nearly equivalent measures, but confusing them in your code can cause problems

Coming Up

- Assignment 8: Due before next class
- Next Lecture: Applications of Unsupervised Learning

