

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO GRADO EN INGENIERÍA AEROESPACIAL

TRABAJO FIN DE GRADO

Diseño Preliminar de una Aeronave de Ala Rotatoria

AUTOR: Jaime JIMÉNEZ GONZÁLEZ

ESPECIALIDAD: Vehículos Aeroespaciales

COTUTOR: Nombre APELLIDOS

TUTOR DEL TRABAJO: Álvaro CUERVA TEJERO

Julio de 2019

Introducción

Como bien es sabido, el desarrollo de una nueva aeronave partiendo de 0 es un trabajo tremendamente complejo que supondría en la industria unos costes desmesurados. Por ello, en este Trabajo de Fin de Grado se plasmará el desarrollo de un diseño preliminar empleando para ello un análisis de vehículos semejantes ya existentes.

La aeronave a desarrollar será un UAV de un MTOW de 450kg de peso, por lo que será fundamental desarrollar una pequeña base de datos de aeronaves similares para poder obtener un primer diseño. En este capítulo se tratarán, además de los objetivos del trabajo, las bases de la mecánica de vuelo de las aeronaves de ala rotatoria de forma sencilla.

1.1. Objetivos del Trabajo

El objetivo principal de este trabajo es generar un diseño preliminar de una aeronave no tripulada de ala rotatoria de un peso máximo al despegue de 450kg. Este diseño, realizado mediante un estudio de aeronaves similares, será después validado por un análisis de sus actuaciones a partir del equilibrado de la misma. Es justo aquí donde se verá reflejada la originalidad del trabajo, a la hora de elegir las actuaciones a analizar.

La validación se llevará a cabo además de forma paralela a una optimización de características de la aeronave, como pueda ser el alcance o la autonomía, en función de otros parámetros de la misma.

Es importante también definir la misión de la aeronave a diseñar, ya que en función de esta optimizaremos unos parámetros u otros y exigiremos unos mínimos a las actuaciones de la misma.

1.2. Uso de las Aeronaves no Tripuladas

Las aeronaves no tripuladas (*UAV Unmanned Aerial Vehicle*) están fuertemente ligadas a la aviación militar, siendo esta industria la responsable principal de su desarrollo a lo largo de su historia. Aunque anteriormente se dieron casos de *UAVs*, como son los globos con los que el ejercito austriaco bombardeó Venecia en 1849, las primeras aeronaves no tripuladas como las conocemos hoy se desarrollaron durante la Primera Guerra Mundial por parte de los Estados Unidos.

A día de hoy, y aunque el desarrollo de la tecnología ha sido gracias a la industria militar, más concretamente a la industria militar de Estados Unidos, su uso se ha extendido más allá de esta. Ya no se trata de instrumentos de guerra ni de un artículo de lujo, sino que existen una gran variedad de aeronaves que cumplen distintas funciones fuera de la aviación militar, sino como parte de la aviación comercial civil (como puedan ser las aeronaves radio control cuyo mando puede ser un *smartphone* personal).

Algunos de estos usos son los siguientes:

- Fotografía y grabación aérea, tanto profesional como recreativa.
- Control de daños en zonas afectadas por desastres.
- Transporte de mercancías.
- Seguimiento y predicción de fenómenos atmosféricos (tornados, tormentas, etc.)
- Control y patrulla de fronteras
- Inspecciones en zonas de difícil acceso (o imposible).
- Entretenimiento

Por otro lado siguen creciendo los usos militares;

■ Combate aéreo

5

- Supervisión y control
- Balizas de objetivos

Estos son solo algunos de los usos de los *UAVs*, pero la lista crece continuamente.

Pese al fuerte desarrollo civil, el principal gasto mundial en aeronaves no tripuladas viene del sector militar, motivado también por el gasto que conllevan los programas militares y los costes de las aeronaves (en 2011, el coste del programa MQ-1 *Predator* era de 2,38 mil millones de dólares [DAF, 2011], mientras que el coste de una unidad del mismo se sitúa en 4,03 millones de dólares [USSOCOM, 2011]). Se espera un gasto global de 70 mil millones de dólares en aeronaves no tripuladas para 2020 [Sachs, 2016]

Sin embargo, el sector cuyo crecimiento se espera sea mayor es el civil. Según datos de BI Intelligence, se espera un crecimiento del 19 % en el mercado civil frente a un 5 % en el militar para el período 20015-2020. Esto se debe principalmente al incremento en la variedad de operaciones que los *UAVs* son capaces de realizar y a su implementación en las empresas. Debido a este crecimiento, se espera también la creación de 100.000 puestos de trabajo solo en Estados Unidos para 2025 [AUVSI, 2013].

1.3. Mecánica del Vuelo de un Helicóptero

A modo de introducción para el lector, se hará un resumen breve de la mecánica del vuelo de un helicóptero. Si se desea profundizar en el tema o resolver cualquier duda que pudiese surgir durante la lectura, se recomienda acudir a Cuerva et al. [2013] donde se desarrolla de forma mas exhaustiva y completa.

1.3.1. Sistemas de referencia

En la física es muy importante definir correctamente los sistemas de referencia que se emplean en la resolución de cada problema ya que las variables tendrán una forma u otra en función de en cual se definan. En el caso de un helicóptero, los sistemas de referencia principales son 4, a saber:

- Ejes tierra $[O_T; x_T, y_T, z_T]$
- Ejes cuerpo [O; x, y, x]
- Ejes árbol $[A; x_A, y_A, z_A]$
- Ejes pala $[E; x_b, y_b, z_b]$

El sistema de ejes tierra es aquel con origen $[O_T]$ en la superficie terrestre, z_T apuntando en la dirección de la gravedad y x_T e y_T pertenecientes al plano tangente a la superficie terrestre y formando un triedro a derechas. En este sistema, la posición del helicóptero queda definida por ${\bf r}^O$, siendo este el vector posición

Figura 1.1: Representación de los ángulos de Euler, Guiñada, Cabeceo y Balanceo del centro de masas del helicóptero respecto al punto de referencia \mathcal{O}_T .

El sistema de ejes cuerpo se define como el triedro a derechas con origen O en el centro de masas de la aeronave y x y z en el plano central, con x dirigido hacia hacia adelante y z hacia abajo en una condición de vuelo normal. La importancia de este sistema radica en los ángulos de Euler, que son los ángulos que forman sus ejes con los ejes tierra, siendo estos:

- lacksquare Guiñada Ψ
- Cabeceo ⊖
- Balanceo Φ

Estos ángulos se pueden definir como el giro del sistema de ejes cuerpo respecto al de ejes tierra, partiendo de una condición de paralelismo entre ambos, respecto a los ejes z, y y x respectivamente. Para facilitar la comprensión del lector se ha añadido el esquema 1.1 que representan dichos ángulos.

El sistema de ejes árbol tiene su centro A en la intersección del eje del rotor con el plano del rotor y sus ejes forman un triedro a derechas orientándose z_A

hacia el lado opuesto al fuselaje y x hacia la parte trasera del helicóptero, perteneciendo al plano del rotor.

Por último, el sistema de ejes pala tiene su origen E en la articulación de la pala. La dirección de x_b es radial hacia la punta de la pala y la de y_b es normal a ella, siendo z_b tal que el triedro $[x_b, y_b, z_b]$ sea a derechas.

Se puede apreciar que de estos 4 sistemas, los mas relevantes para el estudio serán los de ejes tierra y cuerpo, que sirven para describir la mecánica del vuelo de la aeronave, mientras que los ejes árbol y pala se reservan para el estudio aislado de la física del rotor y de las palas.

Una vez definidos los sistemas de referencias se pueden empezar a plantear las ecuaciones.

1.3.2. Ecuaciones del equilibrio

Las primeras ecuaciones a considerar son las de fuerzas y momentos, siendo estas:

$$\mathbf{F}^{ex} + M\mathbf{g} = \frac{\mathrm{d}(M\mathbf{V})}{\mathrm{d}t} = M\left(\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t}\right)_C + M(\boldsymbol{\omega} \wedge \mathbf{V})$$
 (1.1)

$$\mathbf{M}^{ex} = \frac{\mathrm{d}([\mathbf{I}]\boldsymbol{\omega})}{\mathrm{d}t} = [\mathbf{I}] \left(\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t}\right)_C + \boldsymbol{\omega} \wedge [\mathbf{I}]\boldsymbol{\omega}$$
(1.2)

Donde $\mathbf{V}(t)$ es una velocidad de vuelo cualquiera y $\boldsymbol{\omega}(t)$ la velocidad de giro de los ejes cuerpo respecto a los ejes tierra con con \mathbf{F}^{ex} y \mathbf{M}^{ex} las fuerzas y mo-

mentos externos que actúan sobre el centro de gravedad del helicóptero (salvo el peso), $[\mathbf{I}]$ el tensor de inercia del vehículo, M su masa y \mathbf{g} el vector aceleración de la gravedad. El subíndice C indica derivadas en ejes cuerpo, tal y como aparece en Cuerva et al. [2013]. Se han considerado M e $[\mathbf{I}]$ constantes aunque en realidad no es así debido al consumo de combustible, pero se puede considerar que en el tiempo característico de una maniobra (segundos) el cambio es despreciable.

Tal y como se aprecia en (1.1) y en (1.2), el vector de estado $\mathbf{x}(t)$ del sistema incluye las componentes de $\mathbf{V}(t)$ y $\boldsymbol{\omega}(t)$ en ejes cuerpo así como los ángulos de Euler Θ , Ψ y Φ . Por otro lado, las magnitudes \mathbf{F}^{ex} y \mathbf{M}^{ex} pueden expresarse como funciones de las componentes del vector estado $\mathbf{x}(t)$ y sus derivadas $\mathrm{d}\mathbf{x}(t)/\mathrm{d}t$, aunque también dependen de las magnitudes de control, agrupadas en el vector de control $\mathbf{u}(t)$ cuyas componentes son los ángulos de paso colectivo del rotor principal, paso cíclico longitudinal, paso cíclico lateral y paso colectivo del rotor antipar $\theta_0(t)$, $\theta_{1S}(t)$, $\theta_{1C}(t)$ y $\theta_T(t)$. Cabe indicar que $\boldsymbol{\omega}(t)$ y los ángulos de Euler no son independientes, sino que están ligados por la relación cinemática

$$\omega(t) = \omega_x \mathbf{i} + \omega_y \mathbf{j} + \omega_z \mathbf{k} = \frac{\mathrm{d}\Psi}{\mathrm{d}t} \mathbf{k}_T + \frac{\mathrm{d}\Theta}{\mathrm{d}t} \mathbf{j}_{T1} + \frac{\mathrm{d}\Phi}{\mathrm{d}t} \mathbf{i}_T$$
(1.3)

Y expresando el último término de la ecuación (1.3) en ejes cuerpo, la ligadura cinemática se puede expresar con las siguientes ecuaciones

$$\boldsymbol{\omega}(t) = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -\sin\Theta \\ \cos\Phi & 0 & \sin\Phi\cos\Theta \\ -\sin\Phi & 0 & \cos\Phi\cos\Theta \end{bmatrix} \begin{bmatrix} d\Theta/dt \\ d\Phi/dt \\ d\Psi/dt \end{bmatrix}$$
(1.4)

Por tanto, las ecuaciones (1.1), (1.2) y (1.4) junto con las condiciones iniciales del vector estado $\mathbf{x}_0 = \mathbf{x}(0)$ permiten conocer la evolución temporal del vector

estado $\mathbf{x}(t)$ en función del vector de control $\mathbf{u}(t)$. En particular, conocidas las componentes del vector velocidad, se define el vector posición centro de masas tal que

$$\mathbf{r}^{\mathcal{O}}(t) = \int_0^t \mathbf{V}(t) dt \tag{1.5}$$

donde $\mathbf{V}(t)$ está expresada en ejes tierra (u_T,v_T,w_T) . La trayectoria por tanto queda definida por el ángulo que forma el vector velocidad con la horizontal, γ_T y el ángulo que forma con el plano vertical $y_T=0$, β_T , llamados respectivamente ángulo de inclinación de la trayectoria y ángulo de desviación lateral de la trayectoria, los cuales son

$$\gamma_T = \arctan \frac{-w_T}{\sqrt{u_T^2 + v_T^2}} \tag{1.6}$$

У

$$\beta_T = \arctan \frac{v_T}{u_T} \tag{1.7}$$

siendo γ_T positiva en vuelo ascendente, por ser entonces w_T negativo por la definición de los ejes tierra.

1.3.3. Acciones externas sobre el fuselaje

Las acciones externas \mathbf{F}^{ex} son un sumatorio de distintas componentes con distinto origen:

- lacktriangle El rotor principal transmite al fuselaje la fuerza lacktriangle y el momento en A, lacktriangle
- El rotor antipar transmite al fuselaje la fuerza \mathbf{F}^{ra} y el momento en A_a (equivalente a A en el rotor principal), \mathbf{M}^{ra}

- Las acciones aerodinámicas sobre el fuselaje se pueden modelizar como la fuerza \mathbf{F}^f y el momento \mathbf{M}^f sobre el punto de referencia O_f
- Las acciones aerodinámicas sobre los estabilizadores se pueden modelizar como las fuerzas \mathbf{F}^{eh} y \mathbf{F}^{ev} , y los momentos \mathbf{M}^{eh} y \mathbf{M}^{ev} sobre los puntos de referencia E_h y E_v de las superficies de control

pudiendo expresarse por tanto las fuerzas externas como

$$\mathbf{F}^{ex} = \mathbf{F}^{rp} + \mathbf{F}^{f} + \mathbf{F}^{ra} + \mathbf{F}^{eh} + \mathbf{F}^{ev}$$
 (1.8)

y los momentos externos como

$$\mathbf{M}^{ex} = \mathbf{M}^{rp} + \mathbf{M}^{f} + \mathbf{M}^{ra} + \mathbf{M}^{eh} + \mathbf{M}^{ev} +$$

$$+ \mathbf{OA} \times \mathbf{F}^{rp} + \mathbf{OO}_{f} \times \mathbf{F}^{f} + \mathbf{OA}_{a} \times \mathbf{F}^{ra} +$$

$$+ \mathbf{OE}_{h} \times \mathbf{F}^{eh} + \mathbf{OE}_{v} \times \mathbf{F}^{ev}$$

$$(1.9)$$

Se puede observar que tanto las componentes de \mathbf{F}^{ex} como de \mathbf{M}^{ex} son de carácter aerodinámico, generadas por el rotor principal, el antipar, el fuselaje y las superficies estabilizadoras. Por tanto, será necesario modelizar estos elementos para poder realizar las simulaciones necesarias para el proyecto.

1.3.4. Vuelo Equilibrado

Debido a la enorme complejidad de los cálculos anteriores y lo innecesario de su implementación para cumplir los objetivos de este proyecto que son el cálculo de las actuaciones de un vehículo, se trabajará con un modelo simplificado, el del vuelo equilibrado. Esto supone asumir que la resultante de las fuerzas externas que actúan sobre la aeronave es nula, lo que simplifica los cálculos sin afectar de forma relevante los resultados de las actuaciones prescindiendo de los cálculos para la estabilidad dinámica del sistema. Esto supone además que:

- La aceleración es nula, por lo que la velocidad de desplazamiento de la aeronave $\mathbf{V}(t)$ es constante.
- lacksquare La aeronave no sufre cambios de actitud por lo que $oldsymbol{\omega}(t)=0$

Aplicando esto, las ecuaciones (1.1) y (1.2) se convierten en

$$\mathbf{F}^{ex} + M\mathbf{g} = 0 \tag{1.10}$$

$$\mathbf{M}^{ex} = 0 \tag{1.11}$$

y la ligadura cinemática de la velocidad angular desaparece al volverse esta nula, por lo que el sistema se reduce a 10 incógnitas, el vector de estado de equilibrio $\mathbf{x}_e(u_e,v_e,w_e,\Theta_e,\Phi_e,\Psi_e)$ y las del vector de control de equilibrio $\mathbf{u}_e(\theta_{0e},\theta_{1Se},\theta_{1Ce},\theta_{Te})$ y 6 ecuaciones. Al resolver el problema aeromecánico (fuera del alcance de este documento), aparecen otras 3 ecuaciones:

$$\beta_0 = \beta_0(\theta_0, \theta_{1S}, \theta_{1C}, \mu_{xA}, \mu_{yA}, \mu_{zA}) \tag{1.12}$$

$$\beta_{1C} = \beta_0(\theta_0, \theta_{1S}, \theta_{1C}, \mu_{xA}, \mu_{yA}, \mu_{zA}) \tag{1.13}$$

$$\beta_{1S} = \beta_0(\theta_0, \theta_{1S}, \theta_{1C}, \mu_{xA}, \mu_{yA}, \mu_{zA}) \tag{1.14}$$

donde se ha denominado μ_{xA} , μ_{yA} y μ_{zA} a las componentes de la velocidad adimensionalizada con ΩR , lo que deja un total de 9 ecuaciones con 13 incógnitas.

Su resolución requeriría conocer de antemano 4 parámetros, pero si se le presta la debida atención al sistema (1.10)-(1.14), en todo el mismo no aparece el ángulo de guiñada Ψ_e , por lo que la resolución no depende de el, y solo restaría conocer 3 variables del vector de estado o control para resolver el sistema, quedando el sistema reducido a

$$F_x(\mathbf{x}_e^*, \mathbf{u}_e) - Mg\sin\Theta_e = 0 \tag{1.15}$$

$$F_{\nu}(\mathbf{x}_{e}^{*}, \mathbf{u}_{e}) + Mg\cos\Theta_{e}\sin\Phi_{e} = 0 \tag{1.16}$$

$$F_z(\mathbf{x}_e^*, \mathbf{u}_e) + Mg\cos\Theta_e\cos\Phi_e = 0 \tag{1.17}$$

$$M_z(\mathbf{x}_e^*, \mathbf{u}_e) = 0 \tag{1.18}$$

$$M_u(\mathbf{x}_e^*, \mathbf{u}_e) = 0 \tag{1.19}$$

$$M_x(\mathbf{x}_e^*, \mathbf{u}_e) = 0 \tag{1.20}$$

donde \mathbf{x}_e^* es el vector de estado sin incluir la velocidad angular ni el ángulo de guiñada [Cuerva et al., 2013].

1.4. Cálculo de Potencias

1.5. HEROES

Para el cálculo de las actuaciones de la aeronave se empleará *HEROES*. *HE-ROES* es una herramienta de MATLAB desarrollada en conjunto por profesores y alumnos de la Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio de la Universidad Politécnica de Madrid, principalmente del departamento de Aeronaves y Vehículos Espaciales.

Esta herramienta permite un cálculo rápido del equilibrado de un helicóptero (entre otras muchas funciones). Es muy importante saber distinguir en esta herramienta cuáles son las variables de entrada del problema y las de salida. Esto que en primera instancia puede parecer sencillo, requiere un nivel de comprensión alto de la mecánica del vuelo de un helicóptero.

Para el caso del equilibrado, las variables de entrada principales serán el modelo de atmósfera y la altura, el modelo del vehículo y las condiciones de vuelo del mismo. HEROES, con los datos aportados, generará un modelo adimensional y resolverá las ecuaciones del equilibrado para después dimensionalizar los resultados. Estos resultados son las variables de salida, y entre muchas otras se encuentran las potencias de los rotores, las fuerzas y momentos aerodinámicos y los controles del helicóptero.

1.6. Descripción del Proyecto

Esto deja claro las características necesarias para la aeronave;

- Una carga de pago máxima lo más alta posible, de manera que resulte eficiente y no sean necesarios múltiples vuelos diarios para un mismo despliegue salvo casos excepcionales.
- Una velocidad de crucero buena, de manera que el tiempo que la aeronave esta en vuelo sea el mínimo posible, para evitar así la intercepción. Además también servirá para transportar suministros médicos en caso de emergencia.
- Un alcance de unos 400 Km, se manera que pueda abastecer a distancias de alrededor de 200 Km. Es importante que la aeronave pueda realizar el trayecto de ida y vuelta sin repostar, ya que ello obligaría a disponer de combustible en las zonas a abastecer, lo que no es conveniente para la misión. También hay que tener en cuenta que la mitad del trayecto se realizará con la máxima carga de pago la mayoría de las ocasiones, pero la otra mitad la aeronave no tendrá en la mayoría de los casos carga alguna (será posible enviar de vuelta a las bases principales pequeñas cargas en caso de necesidad).
- Un techo de vuelo suficiente para dificultar su intercepción, ya que la aeronave no contará con un blindaje militar para priorizar otras características.

Como se observa, apenas se han definido numéricamente estas características, ya que en una primera aproximación no se conoce con exactitud la misión, por

lo que todos estos parámetros se intentarán maximizar durante el diseño para obtener unas actuaciones lo mejores posible y que la aeronave pueda ser útil en un rango más amplio de situaciones.

Análisis de Semejantes

Tal y como se ha reflejado en la introducción, el proceso a seguir para optener un diseño preliminar, será el análisis de semejantes. Este análisis consiste en crear una base de datos de aeronaves ya existentes, cuyas características sean similares a las que podría tener la nuestra, de manera que mediante un análisis estadístico se pueda obtener una primera aproximación de algunas características de nuestra aeronave.

2.1. Estudio de Aeronaves de Referencia

Dado que el objetivo es el diseño de un helicóptero no tripulado de 450 Kg de *MTOW*, los vehículos a analizar serán helicópteros de una masa similar, en torno a 400-500 kg, pero al no existir una cantidad suficiente dentro de este margen, se ha decidido ampliar este. En las tablas 2.1 y 2.2 se encuentran los helicópteros seleccionados para el análisis

MODELO	MTOW[kg]	d[m]	Ω [rad/s]	b	b_a	$h_{max}[m]$	$V_{max}[{\sf km/h}]$
SA-200 Weasel	70	2,07	167,55	2	6	3100	167
Yamaha R-50	90	3,07	88,6	2	2	300	VACÍO
R-350	150	3,5	82,86	3	2	2500	120
SD 150 Hero	150	3,5	105,14	3	2	4000	90
APID 55	160	3,3	54,54	2	2	3000	90
APID 60	180	3,3	90,97	2	2	3000	110
Camcopter S100	200	3,4	130,73	2	2	5500	222
Pelícano	200	3,3	81,22	2	2	3600	180
DP 5X Wasp	227	3,2	127,33	4	4	4100	160

Tabla 2.1: Valores de diferentes parámetros de las aeronaves empleadas para el análisis de semejantes cuyos valores de velocidad de giro del rotor principal han sido publicados.

MODELO	MTOW[kg]	d[m]	b	b_a	$h_{max}[m]$	$V_{max}[{ m km/h}]$
Scout B1-100	77	3,2	2	2	VACÍO	VACÍO
Neo S300	85	3	3	2	VACÍO	VACÍO
Skeldar V-200	235	4,6	2	2	3500	140
Tanan EADS	300	5	2	2	4000	150
SVU-200	360	4,92	4	2	4200	209
Cicare 7B	430	6,28	2	2	3000	194
Robinson R-22	622	7,67	2	2	4267	188
VSR700	680	7,2	3	7	3600	187
Brantly B-2	757	7,24	3	2	3290	161
Schweizer 300	930	8,2	3	2	4300	176

Tabla 2.2: Valores de diferentes parámetros de las aeronaves empleadas para el análisis de semejantes cuyos valores de velocidad de giro del rotor principal no han sido publicados.

Figura 2.1: Relación entre los diámetros de las palas de los helicópteros y sus MTOW junto a su línea de tendencia.

Una vez se ha obtenido la selección de aeronaves semejantes, se procede a realizar un análisis estadístico de las distintas características de los mismos para obtener unos primeros valores de diseño. Al ser la característica más definitoria de la aeronave el peso máximo al despegue, se observará la evolución de los distintos parámetros con el MTOW. En este capítulo se pueden observar las gráficas que se obtienen del análisis anterior para cada parámetro, incluyendo una línea de tendencia que nos permita obtener una primera aproximación en el diseño. Cabe indicar que se han omitido, en las gráficas correspondientes, aquellos vehículos cuyas características no eran conocidas, sin eliminarlos del resto de ellas. Las líneas de tendencia se han generado usando una aproximación lineal, lo cual puede llevar a una mala aproximación dependiendo de los datos.

Como se puede observar, muchos helicópteros comparten características aunque sus pesos sean muy distintos, y algunas líneas de tendencia se alejan considerablemente de los valores promedio para la zona que corresponde a 450 kg.

Figura 2.2: Relación entre las velocidades de giro del rotor de los helicópteros y sus MTOW junto a su línea de tendencia.

Figura 2.3: Relación entre el número de palas del rotor principal de los helicópteros y sus MTOW junto a su línea de tendencia.

Figura 2.4: Relación entre el número de palas del rotor antipar de los helicópteros y sus MTOW junto a su línea de tendencia.

Figura 2.5: Relación entre las autonomías de los helicópteros y sus MTOW junto a su línea de tendencia.

Figura 2.6: Relación entre las velocidades máximas de avance de los helicópteros y sus MTOW junto a su línea de tendencia.

Esto se debe principalmente a la falta de datos de referencia, los pocos desarrollos que se han dado de aeronaves de ala rotatoria en el entorno de pesos dado dificultan en gran medida la verificación de nuestro modelo al no existir una norma de diseño en la que basarnos. Los desarrollos han sido dispersos, así que los parámetros iniciales de diseño no se basarán únicamente en los valores de tendencia obtenidos. Algunos valores de referencia serán los siguientes:

- *d*: 5,5 m
- **■** *b*: 2
- *b_a*: 2
- *t_e*: 4.5 horas
- V_{max} : 190 m/s

Queda patente que en algunos casos, se han aproximado los valores omitiendo

las líneas de tendencia, usando en su lugar los valores de los helicópteros cuyos MTOW son más próximos al de la aeronave a diseñar. La autonomía y velocidad máxima no son parámetros de diseño, sino que podrán usarse como referencia para comparar con los valores de la aeronave a diseñar para comprobar si se aproxima a los diseños actuales o no. La velocidad de giro del rotor principal si sería un parámetro de diseño, pero debido a la falta de datos para hacer un cálculo estadístico, más adelante planteará un método para calcularla.

Desarrollo de un Helicóptero Semilla a Partir de un Helicóptero Base

Comenzar el desarrollo del vehículo desde el principio supondría un esfuerzo y trabajo innecesarios, por lo que lo ideal es la obtención de un helicóptero semilla, un modelo que sirva de primera aproximación sobre el que trabajar y hacer modificaciones. Este helicóptero semilla se obtendrá mediante una adimensionalización de las características de un vehículo real y posterior dimensionalización empleando los parámetros que deba poseer el nuevo vehículo.

Todo este proceso se describirá a lo largo de este capítulo de manera que una vez terminado se tengan los datos necesarios para poder comenzar a realizar simulaciones de vuelo.

3.1. Descripción Helicóptero Base

El primer paso es elegir un modelo que sirva de base para nuestros cálculos y permita obtener un primer diseño lo mas cercano posible al resultado que se desee. Los requisitos de esta aeronave serán que resulte semejante al diseño que se busca, de manera que pueda reescalarse según las necesidades. Para este proyecto se ha escogido el Bölkow Bo 105, un helicóptero utilitario monorrotor, cuyas características se exponen a continuación. Cabe indicar que todos los parámetros definidos conformarán una estructura en MATLAB que se empleará en los cálculos.

3.1.1. Rotor Principal del Bo 105

Los parámetros necesarios para definir el rotor principal de un helicóptero incluyen datos geométricos, aerodinámicos y de inercia. Los correspondientes al Bo 105 se encuentran recogidos en la tabla 3.1. Para simplificar los cálculos, la pala se modeliza como sólido rígido, unida al rotor por un muelle de constante k_{β} . Además el tensor de inercia de la pala se ha modelizado de la siguiente manera.

$$[I_B] = \begin{bmatrix} I_{\beta} & 0 & 0 \\ 0 & I_{\theta} & 0 \\ 0 & 0 & I_{\zeta} \end{bmatrix}$$
(3.1)

Radio de las palas (R)	4.91 m
Excentricidad (e)	0 m
Número de palas (b)	4
Torsión lineal de los perfiles (θ_1)	-0.14
Pendiente de la curva de sustentación (α)	$6.113 \; { m rad}^{-1}$
	0.0074
Parámetros de la polar $(\delta_0,\delta_1,\delta_2)$	$0.00961~{ m rad}^{-1}$
	$0.29395~{ m rad}^{-2}$
Velocidad de giro del rotor (Ω)	44.4 rad/s
Cuerda del perfil (c)	6.113 m
Momento de inercia de la pala en batimiento (I_{eta})	$231.7~\mathrm{kgm}^2$
Momento de inercia de la pala en paso $(I_{ heta})$	$7~{ m kgm}^2$
Momento de inercia de la pala en arrastre (I_{ζ})	$238.7~\mathrm{kgm}^2$
Posición del centro de gravedad de la pala (x_{GB})	2.445 m
Masa de la pala (m_b)	40.2 kg
Rigidez en batimiento (k_{eta})	113330 Nm/rad

Tabla 3.1: Valores de diferentes parámetros del rotor principal de la aeronave Bölkow Bo 105.

3.1.2. Rotor Antipar del Bo 105

Los parámetros necesarios para definir el rotor antipar de un helicóptero son los mismos que definen el rotor principal, y pueden encontrarse en la tabla 3.2. Las mismas consideraciones aplicadas al rotor principal a la hora de modelizarlo se aplican al rotor antipar. Además se considera que la masa de la pala se encuentra uniformemente distribuida a lo largo de la envergadura de la misma y que la unión resulta infinitamente rígida en batimiento.

3.1.3. Fuselaje del Bo 105

Los parámetros mas relevantes del fuselaje serán aquellos necesarios para la adimensionalización de las fuerzas y momentos sobre el mismo, es decir, las

Radio de las palas (R)	0.95 m
Excentricidad (e)	0 m
Número de palas (b)	2
Torsión lineal de los perfiles (θ_1)	0
Pendiente de la curva de sustentación (α)	$5.7 \mathrm{rad}^{-1}$
	0.008
Parámetros de la polar $(\delta_0,\delta_1,\delta_2)$	$0.0096~{ m rad}^{-1}$
	$0.294 \; { m rad}^{-2}$
Velocidad de giro del rotor (Ω)	232.4779 rad/s
Cuerda del perfil (c)	0.18 m
Momento de inercia de la pala en batimiento (I_{eta})	$1.805~\mathrm{kgm}^2$
Momento de inercia de la pala en paso $(I_{ heta})$	$0.0648~\mathrm{kgm}^2$
Momento de inercia de la pala en arrastre (I_{ζ})	$1.8698~\mathrm{kgm}^2$
Posición del centro de gravedad de la pala (X_{GB})	0.475 m
Masa de la pala (m_b)	6 <i>kg</i>
Rigidez en batimiento (I_{eta})	$10^{100}~\mathrm{Nm/rad}$

Tabla 3.2: Valores de diferentes parámetros del rotor antipar de la aeronave Bölkow Bo 105.

superficies de referencia y la longitud del fuselaje l_f . Estos datos se recogen en la tabla 3.3.

Longitud del fuselaje (l_f)		
Superficie en planta del fuselaje (S_p)	$7.5~\mathrm{m}^2$	
Superficie lateral del fuselaje (S_l)	8.3 m^2	
Factor de interferencia del rotor principal sobre el fuselaje (k_f)	1	

Tabla 3.3: Valores de los parámetros del fuselaje de la aeronave Bölkow Bo 105.

La formulación de los coeficientes de fuerzas y momentos es la siguiente:

$$K_x^f = \frac{-580.6 - 454\alpha_f + 6.2\alpha_f^2 + 4648.9\alpha_f^3}{\frac{1}{2}\rho V_f^2 S_p}$$
(3.2)

$$K_y^f = \frac{-6.9 - 2399\beta_f - 1.7\beta_f^2 + 12.7\beta_f^3}{\frac{1}{2}\rho V_f^2 S_l}$$
 (3.3)

$$K_z^f = \frac{-51.1 - 1202\alpha_f + 1515.7\alpha_f^2 - 64.2\alpha_f^3}{\frac{1}{2}\rho V_f^2 S_p}$$
(3.4)

$$K_{M_r}^f = 0$$
 (3.5)

$$K_{M_y}^f = \frac{-1191.8 + 12752\alpha_f + 8201.3\alpha_f^2 - 5796.7\alpha_f^3}{\frac{1}{2}\rho V_f^2 S_p l_f}$$
(3.6)

$$K_{M_z}^f = \frac{-10028\beta_f}{\frac{1}{2}\rho V_f^2 S_l l_f} \tag{3.7}$$

3.1.4. Estabilizadores del Bo 105

Los parámetros que definen a los estabilizadores vertical y horizontal se encuentran recogidos en la tabla 3.4. Se puede observar que son datos similares a los que tendrían las alas de un avión, obviando los controles e hipersustentadores, ya que aerodinámicamente funcionan de la misma manera, solo que las fuerzas que generan ayudan a aumentar la estabilidad de la aeronave o reducir la potencia del rotor antipar, entre otras funciones. Se han hecho las consideraciones de que no tienen estrechamiento, son rectos y están formados por un único perfil, motivo por el que el número de parámetros es tan reducido. En el caso del estabilizador horizontal, este se divide en dos partes, por lo que la superficie corresponde únicamente a la mitad del mismo

Cuerda del estabilizador vertical (c_{ev})	0.3 m
Superficie del estabilizador vertical (S_{ev})	0.805 m^2
Ángulo de calado del estabilizador vertical $(heta_{ev})$	0.0812 rad
Cuerda del estabilizador horizontal (c_{ev})	0.4 m
Superficie del estabilizador horizontal/2 (S_{ev})	0.4015 m^2
Ángulo de calado del estabilizador horizontal $(heta_{ev})$	0.0698 rad

Tabla 3.4: Valores de diferentes parámetros de los estabilizadores vertical y horizontal de la aeronave Bölkow Bo 105. La superficie del estabilizador horizontal corresponde a la mitad ya que el mismo esta dividido en 2 partes.

3.1.5. Geometría del Bo 105

Es importante conocer las características geométricas del modelo ya que en base a ella se calcularán, entre otros parámetros, los momentos sobre la aeronave, muy importantes para calcular el equilibrado de la misma. Dichas características se recogen en la tabla 3.5 y se han representado en la figura ?? una esquematización de las mismas para ayudar a su comprensión.

3.1.6. Inercia del Bo 105

Para finalizar con la descripción del modelo del helicóptero, la tabla 3.6 refleja los datos acerca de la inercia del mismo.

Con este modelo y los parámetros iniciales se generará un modelo inicial que se denominará "Helicóptero semillaz que se empleará en las simulaciones para comprobar su desempeño y optimizarlo según las necesidades.

Posición longitudinal del centro de masas respecto a O_f (x_{CG})	0.1577 m
Posición lateral del centro de masas respecto a $O_f(y_{CG})$	0 m
Posición vertical del centro de masas respecto a $O_f\left(z_{CG} ight)$	0 m
Inclinación del eje del árbol respecto al plano xz (ε_x)	0 rad
Inclinación del eje del árbol respecto al plano yz $(arepsilon_y)$	-0.523 rad
Componente x del vector $O_f S$ (l_s)	0 m
Componente y del vector $O_f S$ (d_s)	0 m
Longitud del árbol, desde S hasta A (h)	1.48 m
Inclinación del rotor antipar $(heta_{ra})$	0 rad
Componente x del vector $oldsymbol{O_f A_a}\left(l_{ra} ight)$	-5.9226 m
Componente y del vector $oldsymbol{O_f} oldsymbol{A_a} \left(d_{ra} ight)$	-0.3 m
Componente z del vector $oldsymbol{O_f A_a}\left(h_{ra} ight)$	-1.6426 m
Ángulo de orientación del estabilizador vertical (γ_{ev})	$\pi/2$ rad
Componente x del vector $oldsymbol{O_fE_v}\left(l_{ev} ight)$	-5.3386 m
Componente y del vector $oldsymbol{O_fE_v}\left(d_{ev} ight)$	0 m
Componente z del vector $oldsymbol{O_f E_v}\left(h_{ev} ight)$	-0.86 m
Ángulo de orientación del estabilizador horizontal (dcha.) $(\gamma_{eh,d})$	0 rad
Componente x del vector $oldsymbol{O_f E_h}$ parte dcha. $(l_{eh,d})$	-4.4826 m
Componente y del vector $oldsymbol{O_f E_h}$ parte dcha. $(d_{eh,d})$	0.969 m
Componente z del vector $oldsymbol{O_fE_h}$ parte dcha. $(h_{eh,d})$	0 m
Ángulo de orientación del estabilizador horizontal (izqda.) $(\gamma_{eh,i})$	0 rad
Componente x del vector $oldsymbol{O_f E_h}$ parte izqda. $(l_{eh,i})$	-4.4826 m
Componente y del vector $oldsymbol{O_fE_h}$ parte izqda. $(d_{eh,i})$	-0.969 m
Componente z del vector $oldsymbol{O_f} oldsymbol{E_h}$ parte izqda. $(h_{eh,i})$	0 m

Tabla 3.5: Valores de diferentes parámetros geométricos de la aeronave Bölkow Bo 105.

Peso del helicóptero (W)	21560 N
Momento de inercia del eje x (I_x)	$1433~\mathrm{kg}\cdot\mathrm{m}^2$
Momento de inercia del eje $y(I_y)$	$4973~\mathrm{kg}\cdot\mathrm{m}^2$
Momento de inercia del eje z (I_z)	4099 kg \cdot m 2
Producto de inercia xy (I_{xy})	$0\;kg\!\cdot\!m^2$
Producto de inercia xz (I_{xz})	$660~{ m kg}{ m \cdot m}^2$
Producto de inercia yz (I_{yz})	$0\;kg\!\cdot\!m^2$

Tabla 3.6: Valores de inercia de la aeronave Bölkow Bo 105.

3.2. Adimensionalización del Modelo

Una vez esta definido el helicóptero base, es necesario realizar una adimensionalización del modelo para poder obtener luego un modelo válido para el diseño requerido.

En Cuerva et al. [2013] se habla de dos posibles adimensionalizaciones en el ámbito de los helicópteros, cada cual con una velocidad característica:

- Primera forma adimensional: se emplea la velocidad inducida dada por la teoría de la cantidad de movimiento en vuelo a punto fijo, v_{i0} .
- Segunda forma adimensional: se emplea la velocidad en punta de pala, ΩR , con Ω la velocidad de giro del rotor y R el radio del mismo. Usar esta velocidad como velocidad de referencia permite definir magnitudes características de fuerza, par y potencia.

Debido a la existencia de parámetros de fuerza, par y potencia en el modelo del Bölkow Bo 105, resulta conveniente emplear la segunda forma adimensional, lo que define las siguientes magnitudes de fuerza, par y potencia:

- Tracción unitaria: $T_u = \rho S(\Omega R)^2$, donde $S = \pi R^2$
- Par unitario: $Q_u = \rho SR(\Omega R)^2$
- Potencia unitaria: $P_u = \rho S(\Omega R)^3$

Estas magnitudes permiten a su vez definir los coeficientes de tracción, $C_T=\frac{T}{T_u}$, y de potencia o par, $C_Q=C_P=\frac{Q}{Q_u}=\frac{P}{P_u}$.

Una vez definida la formulación adimensional a usar, solo resta adimensionalizar cada una de las estructuras definidas en el apartado anterior.

3.2.1. Rotores Principal y Antipar

Adimensionalizar los parámetros correspondientes a ambos rotores requiere el uso de magnitudes características de longitud y velocidad, que serán el radio del rotor y la velocidad en punta de pala, pero además el modelo computacional de HEROES requerirá de los parámetros atmosféricos a nivel del mar (H=0) de gravedad, g, densidad, ρ , viscosidad dinámica del fluido y velocidad del sonido.

Al adimensionalizar la estructura del helicóptero base se obtendrán para cada rotor estructuras con los siguientes parámetros:

- Número de palas: b
- Solidez del rotor: $\sigma = \frac{c \cdot b}{\pi \cdot R}$
- Parámetros de la polar: δ_0 , $delta_1$ y δ_2
- Coeficiente de sustentación de los perfiles: c_l
- Torsión lineal de los perfiles: θ_1
- Excentricidad adimensional: e/R
- \bullet $\varepsilon_R = \frac{m_b \cdot R \cdot x_{GB}}{I_{\beta}}$
- lacksquare "Gravedad adimensional"= $rac{g}{\Omega^2 R}$
- Rigidez en batimiento adimensional: $K_{\beta} = \frac{k_{\beta}}{\rho \pi R^2 (\Omega R)^2 R}$

- Frecuencia natural adimensional no amortiguada en batimiento: $\lambda_{\beta} = 1 + \frac{x_{GB} \cdot m_b \cdot e}{I_{\beta}} + \frac{k_{\beta}}{I_{\beta} \cdot \Omega^2}$
- lacksquare Número de Lock: $\gamma = rac{
 ho c_0 c R^4}{I_{eta}}$
- Número de rigidez: $S_{\beta} = \frac{8(\lambda_{\beta}^2 1)}{\gamma}$
- ullet Relación adimensional $I_{ heta}/I_{eta}$
- Relación adimensional I_{ζ}/I_{β}
- Posición adimensional del centro de gravedad de la pala: $X_{GB} = x_{GB}/R$
- lacksquare Parámetro $\mu_p = rac{m_b}{
 ho \pi R^3}$
- Número de Reynolds: Re
- lacksquare Número de Mach: $M=rac{\Omega R}{v_{sound}}$

Además de estos parámetros, en la estructura del helicóptero adimensional (la correspondiente al helicóptero completo, no a la de los rotores) aparecerán también los siguientes parámetros:

- res: $\frac{\Omega_a}{\Omega}$
- Relación de velocidades angula- Relación de fuerzas $\frac{(\Omega_a R_a)^2 R_a^2}{(\Omega R)^2 R^3}$
- Relación de velocidades: $\frac{\Omega_a R_a}{\Omega R}$ Relación de momentos $\frac{(\Omega_a R_a)^2 R_a^2}{(\Omega R)^2 R^3}$

3.2.2. **Fuselaje**

Al estar la estructura del fuselaje compuesta únicamente por características físicas y coeficientes aerodinámicos, solo es necesario definir las adimensionalizaciones para los primeros, pues los segundos ya lo están. Dichas adimensionalizaciones quedarían de la siguiente forma:

- Longitud del fuselaje: l_f/R
- Superficie en planta del fuselaje: • Superficie lateral del fuselaje: $rac{S_l}{\pi R^2}$

Aunque no es un coeficiente aerodinámico, el factor de interferencia del rotor principal con el fuselaje, k_f , ya es adimensional por lo que no es necesario trabajarlo.

3.2.3. **Estabilizadores Vertical y Horizontal**

El caso de los estabilizadores es similar al del fuselaje, únicamente será necesario indicar las adimensionalizaciones de las características físicas ya que el resto son parámetros adimensionales, los cuales quedaría de la siguiente forma:

Estabilizador vertical

Cuerda del perfil adimensional: c_{ev}/R

Superficie adimensional: $\frac{S_{ev}}{\pi R^2}$

Estabilizador horizontal

Cuerda del perfil adimensional: c_{eh}/R

Superficie adimensional: $\frac{S_{eh}}{\pi R^2}$

3.2.4. Geometría e Inercia del Helicóptero

En lo que respecta a la geometría, la adimensionalización resulta tan simple como emplear el radio del rotor R para todos los parámetros.

Por otro lado, al adimensionalizar los parámetros de inercia quedarán como se indica a continuación:

- lacktriangle Coeficiente de peso: $C_w = \frac{W}{T_u}$
- \bullet Parámetro adimensional $\gamma_x = \frac{\rho \pi R^5}{I_x}$
- \blacksquare Parámetro adimensional $\gamma_y = \frac{\rho \pi R^5}{I_y}$
- \blacksquare Parámetro adimensional $\gamma_z = \frac{\rho \pi R^5}{I_z}$
- lacktriangle Relación adimensional $rac{I_x}{I_y}$
 - lacktriangle Relación adimensional $rac{I_z}{I_y}$
 - lacktriangle Relación adimensional $rac{I_{xy}}{I_y}$
 - lacktriangle Relación adimensional $rac{I_{xz}}{I_y}$
 - lacktriangle Relación adimensional $rac{I_{yz}}{I_y}$

Con todos estos datos y los parámetros de diseño radio del rotor, velocidad de giro de rotor, numero de palas del rotor principal y antipar y peso del nuevo helicóptero, se puede obtener un modelo completo para el nuevo diseño.

3.3. Limitaciones a la Velocidad de Giro del Rotor Principal

Aunque se han calculado estadísticamente los parámetros que definen en una primera aproximación el vehículo a diseñar, debido a la falta de datos reales y a la dispersión de los existentes, es probable que el modelo no resulte realista y no pueda llegar a funcionar correctamente en una situación real fuera de la simulación. El parámetro del que menos información se dispone es de la velocidad de giro de los rotores de los modelos de las base de datos, por lo que conviene encontrar un valor que pueda resultar mejor. Para ello se ha empleado un concepto físico importante como es el Mach crítico M_{crit} en la punta de pala.

La limitación en la velocidad de giro del rotor viene dada por la aparición de efectos supersónicos en las puntas de las palas del mismo. Estos efectos, como puedan ser ondas de choque, empeoran el comportamiento de las palas, pueden hacerlas entrar en pérdida e incluso provocar daños estructurales debido a cargas elevadas. Por esto es común establecer un límite conocido como M_{crit} basado en la velocidad ΩR , es decir, la velocidad de avance de las puntas de las palas. Este límite suele ser del orden de 0,4 para vuelo estacionario y 0,8 para vuelo en avance, para poder dar un valor lo más óptimo posible, se ha realizado una simulación de vuelo estacionario de un vehículo con las características obtenidas estadísticamente, a excepción de la velocidad de giro del rotor principal y del radio del mismo, que se han variado en la simulación para poder obtener el mejor valor posiblede estos parámetros.

La gráfica 3.1 representa la superficie que da un valor de potencia de la aeronave para cada Ω y R del rotor. Con esto es posible observar los valores

Figura 3.1: Consumo de Potencia de la aeronave en función de la velocidad de giro del rotor y el radio del mismo.

Figura 3.2: Consumo de Potencia de la aeronave en función de la velocidad de giro del rotor y el radio del mismo junto a la línea de las potencias mínimas para cada configuración concreta de Ω y la limitación de Ω a causa del M_{crit} (0,4).

mínimos de potencia, lo que nos permite elegir unos valores de Ω y R que optimicen la potencia necesaria. Sin embargo, al añadir la limitación del M_{crit} las opciones de configuración disponibles se ven reducidas a aquellas que la cumplan. La gráfica 3.2 representa la superficie de la gráfica 3.1 sobre el plano ΩR y encima la anterior limitación junto con una línea que representa las potencias mínimas absolutas para cada configuración de Ω . Aunque estas líneas no se crucen, para los valores más bajos de Ω se encuentran suficientemente cerca como para pensar que las potencias necesarias son lo suficientemente bajas. Se observa claramente que los valores de potencia necesaria se reducen con Ω y con el aumento de radio, por lo que en primera instancia el menor valor dado, quedando automáticamente definido el radio del rotor.

- Velocidad de giro del rotor principal $\Omega = 45 \; rad/s$
- Radio del rotor principal $R=3.0248 \ m$

3.4. Helicóptero Semilla

Con este helicoptero semilla se pueden realizar unas primeras simulaciones de vuelo para comprobar si es válido y, en caso contrario, modificar el diseño para alcanzar unos resultados mejores. Su obtención se consigue empleando la herramienta *HEROES*, que primero adimensionalizará el helicóptero base ya definido en el capítulo, para despues dimensionar un nuevo modelo usando para ello los parámetros que hemos obtenido. Los resultados se recogen en las tablas 3.7, 3.8, 3.9, 3.10, 3.11 y 3.12. Cabe indicar que se exponen los mismos datos que del Bölkow Bo 105 para poder realizar una comparación rápida de ambos modelos. Además se han conservado todas las consideraciones hechas a la hora

Radio de las palas (R)	3.0248 m
Excentricidad (e)	0 <i>m</i>
Número de palas (b)	2
Torsión lineal de los perfiles $(heta_1)$	-0.14
Pendiente de la curva de sustentación (α)	$6.113 \ rad^{-1}$
	0.0074
Parámetros de la polar $(\delta_0, \delta_1, \delta_2)$	$0.0096 \ rad^{-1}$
	$0.294 \ rad^{-2}$
Velocidad de giro del rotor (Ω)	45 <i>rad/s</i>
Cuerda del perfil (c)	0.3327 m
Momento de inercia de la pala en batimiento (I_{eta})	41.1204 kgm^2
Momento de inercia de la pala en paso $(I_{ heta})$	01.2423 kgm^2
Momento de inercia de la pala en arrastre (I_{ζ})	42.3627 kgm^2
Posición del centro de gravedad de la pala (x_{GB})	1.5063 m
Masa de la pala (m_b)	18.7982 kg
Rigidez en batimiento (k_{eta})	10330 <i>Nm/rad</i>

Tabla 3.7: Valores de diferentes parámetros del rotor principal del helicóptero semilla.

de modelizar el helicóptero base, así como las ecuaciones que permiten calcular los coeficientes adimensionales de fuerzas y momentos aerodinámicos.

Se observa claramente en los resultados que el proceso de generación del modelo del helicóptero semilla ha sido correcto, estando todas sus magnitudes dimensionalizadas acorde a los requisitos de diseño, especialmente la masa y el tamaño, que son significativamente diferentes al helicóptero base. También se observa que hay parámetros que se han mantenido iguales en ambos diseños. Estos parámetros son, por ejemplo, los ángulos de calado de las palas o la pendiente de la curva de sustentación de las palas. Todas estas características son los parámetros adimensionales de diseño, y no dependen del tamaño del vehículo sino de elecciones de diseño como puedan ser los perfiles que se utilicen en las palas del rotor.

Radio de las palas (R)	0.5853 m
Excentricidad (e)	0 m
Número de palas (b)	2
Torsión lineal de los perfiles $(heta_1)$	0
Pendiente de la curva de sustentación (α)	5.7 rad ⁻¹
	0.008
Parámetros de la polar $(\delta_0, \delta_1, \delta_2)$	$0.0096 \ rad^{-1}$
	$0.294 \ rad^{-2}$
Velocidad de giro del rotor (Ω)	235.6194 <i>rad/s</i>
Cuerda del perfil (c)	0.1109 m
Momento de inercia de la pala en batimiento (I_{eta})	$0.1602 \ kgm^2$
Momento de inercia de la pala en paso $(I_{ heta})$	$0.0058 \ kgm^2$
Momento de inercia de la pala en arrastre (I_{ζ})	$0.1659 \ kgm^2$
Posición del centro de gravedad de la pala (X_{GB})	0.2926 m
Masa de la pala (m_b)	1.4029 kg
Rigidez en batimiento (I_{eta})	$9.1151^{98} \ Nm/rad$

Tabla 3.8: Valores de diferentes parámetros del rotor antipar del helicóptero semilla.

Longitud del fuselaje (l_f)	5.2734 m
Superficie en planta del fuselaje (S_p)	$2.8464 \ m^2$
Superficie lateral del fuselaje (S_l)	3.1501
Factor de interferencia del rotor principal sobre el fuselaje (k_f)	1

Tabla 3.9: Valores de los parámetros del fuselaje dehelicóptero semilla.

Cuerda del estabilizador vertical (c_{ev})	0.1848 <i>m</i>
Superficie del estabilizador vertical (S_{ev})	$0.3055 \ m^2$
Ángulo de calado del estabilizador vertical $(heta_{ev})$	0.0812 rad
Cuerda del estabilizador horizontal (c_{ev})	0.2464 m
Superficie del estabilizador horizontal/2 (S_{ev})	$0.1524 \ m^2$
Ángulo de calado del estabilizador horizontal $(heta_{ev})$	0.0698 rad

Tabla 3.10: Valores de diferentes parámetros de los estabilizadores vertical y horizontal del helicóptero semilla. La superficie del estabilizador horizontal corresponde a la mitad ya que el mismo esta dividido en 2 partes al haber usado como base el Bölkow Bo 105.

Posición longitudinal del centro de masas respecto a $O_f\left(x_{CG}\right)$	0.0972 m
Posición lateral del centro de masas respecto a $O_f\left(y_{CG}\right)$	0 m
Posición vertical del centro de masas respecto a $O_f\left(z_{CG} ight)$	0 m
Inclinación del eje del árbol respecto al plano xz (ε_x)	0 rad
Inclinación del eje del árbol respecto al plano yz (ε_y)	-0.523 rad
Componente x del vector $O_f S$ (l_s)	0 m
Componente y del vector $O_f S$ (d_s)	0 m
Longitud del árbol, desde S hasta A (h)	0.9118 m
Inclinación del rotor antipar $(heta_{ra})$	0 rad
Componente x del vector $oldsymbol{O_f} oldsymbol{A_a} \ (l_{ra})$	-3.6487 m
Componente y del vector $oldsymbol{O_f} oldsymbol{A_a} \left(d_{ra} ight)$	-0.1848 m
Componente z del vector $oldsymbol{O_f} oldsymbol{A_a} \left(h_{ra} \right)$	-1.0596 m
Ángulo de orientación del estabilizador vertical (γ_{ev})	$\pi/2$ rad
Componente x del vector $oldsymbol{O_fE_v}\left(l_{ev} ight)$	-3.2889 m
Componente y del vector $oldsymbol{O_fE_v}\left(d_{ev} ight)$	0 m
Componente z del vector $oldsymbol{O_f E_v}\left(h_{ev} ight)$	-0.5298 m
Ángulo de orientación del estabilizador horizontal (dcha.) $(\gamma_{eh,d})$	0 rad
Componente x del vector $oldsymbol{O_f} oldsymbol{E_h}$ parte dcha. $(l_{eh,d})$	-2.7615 m
Componente y del vector $oldsymbol{O_f E_h}$ parte dcha. $(d_{eh,d})$	0.597 m
Componente z del vector $oldsymbol{O_fE_h}$ parte dcha. $(h_{eh,d})$	0 m
Ángulo de orientación del estabilizador horizontal (izqda.) $(\gamma_{eh,i})$	0 rad
Componente x del vector $oldsymbol{O_f E_h}$ parte izqda. $(l_{eh,i})$	-2.7615 m
Componente y del vector $oldsymbol{O_fE_h}$ parte izqda. $(d_{eh,i})$	-0.597 m
Componente z del vector $oldsymbol{O_f} oldsymbol{E_h}$ parte izqda. $(h_{eh,i})$	0 m

Tabla 3.11: Valores de diferentes parámetros geométricos de la aeronave Bölkow Bo 105.

Peso del helicóptero (W)	4413 N
Momento de inercia del eje x (I_x)	127.1591 $kg \cdot m^2$
Momento de inercia del eje y (I_y)	441.2856 $kg \cdot m^2$
Momento de inercia del eje z (I_z)	363.7301 $kg \cdot m^2$
Producto de inercia xy (I_{xy})	$0 kg \cdot m^2$
Producto de inercia xz (I_{xz})	58.566 $kg \cdot m^2$
Producto de inercia yz (I_{yz})	$0 kg \cdot m^2$

Tabla 3.12: Valores de inercia del helicóptero semilla.

3.5. Modelización de la Carga de Pago

La modelización realizada al DroneHE supone que la totalidad de equipos necesarios para el vuelo, incluyendo ordenadores y sistemas de comunicación e incluso combustible, ya están embarcados, pero aún falta la carga de pago, que en un helicóptero de vigilancia será una cámara o un sistema de cámaras.

Los dispositivos de vigilancia suelen ir situados en la parte externa del fuselaje, en el suelo del mismo, lo que hace necesario un análisis aerodinámico del mismo para poder realizar una correcta aproximación de las consecuencias reales de montar dicho sistema. Sin embargo, no se disponen de datos suficientes para hacer dichos cálculos, por lo que se optará por una modelización más sencilla que consista únicamente en una variación másica y de inercia del modelo.

Lo primero es seleccionar el equipo a embarcar, y para ello se presentan varias opciones:

Trakka Systems SWE-200 LE

Especificaciones técnicas

■ Diámetro: 200 mm

Peso: 8 kg

■ Requerimientos de potencia: 22-30 VDC, 250 W

Trakka Systems TC-300

Especificaciones técnicas

■ Diámetro: 300 mm

■ Peso: 19 kg

■ Requerimientos de potencia: 22-36 V, 100-320 W

AVT CM202A

Especificaciones técnicas

■ Diámetro: 295 mm

■ Peso: 3.5 kg

■ Requerimientos de potencia: 55-100 W

Estos son solo algunos ejemplos de los sistemas existentes que muestran la enorme variedad de estos, tanto en tamaño y peso como en especificaciones, aunque estas últimas no son objeto de estudio.

Con estos datos se pueden modelizar diferentes cargas que permitan simular diversas condiciones, en el trabajo se emplearán unas esferas de masa y radio los siguientes:

- Carga 1: Masa de 4 kg y radio de 150 mm
- Carga 2: Masa de 10 kg y radio de 100 mm
- Carga 3: Masa de 20 kg y radio de 150 mm

En la tabla 3.13 se recogen las características másicas y de inercia de las cargas que han de implementarse en el helicóptero.

4/10/20 kg
0.15/0.1/0.15 m
$0.036/0.04/0.18 \text{ kg}\cdot\text{m}^2$
$0.036/0.04/0.18 \text{ kg}\cdot\text{m}^2$
$0.036/0.04/0.18 \text{ kg}\cdot\text{m}^2$
0 kg·m²
$0~{ m kg}{ m \cdot m}^2$
$0~{ m kg}{ m \cdot m}^2$
4/10/20·9.81 N

Tabla 3.13: Valores másicos y de inercia de las diversas cargas de pago que se implementarán en la aeronave.

3.6. Integración de la Carga de Pago

A la hora de integrar la carga de pago, es muy importante conocer la posición de la misma respecto al centro de masas del helicóptero. Para comprobar que posición puede resultar más favorable, en la tabla 3.14 se indica un rango de posiciones que se comprobarán en simulaciones posteriores para hallar una posición optima. La posición según el eje z será fija ya que se situará en el suelo del fuselaje en todo momento.

Posición longitudinal de la carga de pago respecto a $O_f\left(l_x ight)$	[-0.65 1.35] m
Posición transversal de la carga de pago respecto a $O_f\left(l_y ight)$	[-0.35 0.35] m
Posición vertical del suelo del fuselaje (l_z)	0.6678 m

Tabla 3.14: Posición de la carga de pago en el fuselaje.

Vuelo Horizontal

Las condiciones para el vuelo rectilíneo son sencillas, la velocidad vertical ha de ser nula mientras que la horizontal no. Con estas condiciones y a nivel del mar se pueden obtener las gráficas 4.1, 4.2, 4.3 y 4.4, que ofrecen una primera aproximación del rendimiento de la aeronave. De ellas se puede obtener que el valor de potencia total mínimo es de 27,307 kW, y se da para una velocidad de vuelo de 28.73 m/s. Para calcular la velocidad máxima de avance es necesario obtener características del motor, el cual no se ha decidido, por lo que, para tener unos valores orientativos, se ha optado por emplear los datos del motor que monta el Cicaré 7B, un helicóptero de peso similar al vehículo a diseñar. El motor en cuestión es el ROTAX 912 ULS, un motor de 4 tiempos y 4 cilindros, con un consumo especifico de 285 g/kW· h a una potencia máxima continua de 58 kW a 5500 rpm [ROTAX, 2007]. Con esta limitación reflejada en la gráfica 4.1 se puede observar que el motor, cuya potencia máxima continua disponible es de 58 kW, permite volar a velocidades de hasta casi 70 m/s en estas condiciones.

Figura 4.1: Consumo de Potencia de la aeronave en función de la velocidad de vuelo a nivel del mar para vuelo horizontal y limitación por potencia máxima continua disponible.

Figura 4.2: Ángulos de control de la aeronave en función de la velocidad de vuelo a nivel del mar para vuelo horizontal.

Figura 4.3: Ángulos de Euler de la aeronave en función de la velocidad de vuelo a nivel del mar para vuelo horizontal.

Figura 4.4: Consumo de Potencia de los rotores principal y antipar en función de la velocidad de vuelo a nivel del mar para vuelo horizontal.

4.1. Autonomía de Vuelo

Con estos datos se puede hacer una estimación de la autonomía del vehículo. Para poder obtener el consumo específico del motor en las condiciones de vuelo de máxima autonomía, se emplea el modelo recogido en Cuerva et al. [2013], que modeliza el consumo en función de la potencia necesaria para el vuelo.

$$c_e(P) = \frac{c_{e,P_{max}}}{1 + \frac{K_m}{c_{e,P_{max}}} (1 - \frac{P_{max}}{P(t)})}$$
(4.1)

Donde c_e es el consumo específico al régimen de vuelo considerado, $c_{e,P_{max}}$ el consumo específico del motor en régimen de funcionamiento de máxima potencia, P_{max} la potencia máxima continua capaz de ofrecer el motor y P la potencia necesaria para el vuelo considerado. K_m es un parámetro que mide la eficiencia del motor, que en motores muy eficientes es del orden de $8.33\cdot10^{-9}~{\rm kg/W\cdot s}$ (0.03 kg/kW·h). Además se suponen unas cargas de combustible del 9 % del MTOW del vehículo.

Lo siguiente es decidir un modelo de cálculo de la autonomía, ya que no se dispone de datos suficientes para hacer unos cálculos exactos,ni estos son necesarios en una fase de diseño preliminar. La hipótesis básica es considerar las masa del vehículo constante durante el vuelo, cosa que no es así por el consumo del propio combustible, pero simplificará los cálculos en gran medida. Para los cálculos se empleará el método del equilibrado del helicóptero, que permite incluir gran cantidad de información en los cálculos y por tanto aumentar la fiabilidad de estos. Como se desarrollará a continuación, la complejidad de este método reside en el propio equilibrado del helicóptero, que permitirá obtener el valor de potencia requerido para el vuelo, a partir del cual el cálculo de la autonomía

resulta trivial.

En Filippone [2006] se expone un método para calcular la autonomía de forma sencilla empleando para ello la potencia (calculada mediante el equilibrado) del vuelo y el consumo específico (calculado mediante la ecuación 4.6). Se define la autonomía específica E_s

$$E_s = \frac{\partial t}{\partial m} = \frac{1}{\dot{m}_f} = \frac{1}{P \cdot c_e(P)} \tag{4.2}$$

y con la hipótesis de masa constante solo es necesario resolver el equilibrado para una velocidad ya que

$$\frac{\partial P}{\partial t} = 0 \to P = cte \tag{4.3}$$

que al introducir en la ecuación 4.1 se obtiene que

$$P = cte \to c_e = cte \tag{4.4}$$

y por tanto

$$E_s = \frac{1}{P \cdot c_e} = cte \tag{4.5}$$

Una vez obtenido el valor de la autonomía especifica, el calculo de la autonomía resulta sencillo

$$t_e = E_s \cdot \Delta m = E_s \cdot MFM = \frac{MFM}{c_e \cdot P} \tag{4.6}$$

Donde t_e es la autonomía, MFM es la masa máxima de combustible, C_e es el consumo específico y P_e la potencia en el régimen de de vuelo. La tabla 4.1 recoge los datos necesarios para el cálculo de la autonomía máxima y el valor de esta.

A modo de comprobación, se han calculado las autonomías correspondientes

Variable	Valor
Potencia para máxima autonomía $(P_{min,t_{e,max}})$	27.307 kW
Velocidad en régimen de máxima autonomía (V)	28.73 m/s
Consumo específico en régimen de máxima autonomía $(c_{e,t_{e,max}})$	$8.98 \cdot 10^{-}08 \text{ kg/W} \cdot \text{s}$
Máxima autonomía $(t_{e,max})$	4.588 h

Tabla 4.1: Valores de inercia del helicóptero semilla.

Figura 4.5: Autonomía de la aeronave en función de la velocidad de vuelo a nivel del mar para vuelo horizontal.

a distintas velocidades de vuelo en la gráfica 4.5. Se puede observar que su forma resulta muy similar a la de la gráfica 4.1 pero invirtiéndola según el eje x. Esto se debe a que la autonomía no depende de otro parámetro de vuelo que no sea la potencia consumida, por lo que la evolución de la potencia necesaria será inversa a la evolución de la autonomía de vuelo, siendo el mínimo de potencia necesaria el máximo de autonomía.

4.2. Fuerzas y Momentos Sobre los Elementos de la Cola

En futuras fases de diseño será necesario definir el diseño estructural y los materiales con los que se construirá la aeronave, por lo que puede ser interesante realizar un análisis de las fuerzas que deberán soportar algunos elementos para tener una idea aproximada de las cargas que pueden aparecer en servicio.

De entre estas cargas, las que aparecen en los elementos de la cola son muy importantes, ya que los momentos flectores inducidos por estas cargas en la propia cola pueden ser grandes debido a la longitud de esta, y habrá que diseñarla de tal manera que las posibles deformaciones que aparezcan en funcionamiento no interfieran en el mismo.

Las figuras 4.6 y 4.7 representan los valores de las fuerzas que aparecen en el rotor antipar y estabilizadores vertical y horizontal para cada velocidad de vuelo considerada. Solo se representas las cargas que tienen algún valor de interés, por ejemplo, las cargas en el eje y que se den en el estabilizador horizontal serán despreciables y no serán relevantes a la hora de calcular las cargas sobre la cola.

Se puede observar en la gráfica 4.6 que las cargas sobre el rotor antipar cambian de signo, es decir, de sentido, a partir de ciertas velocidades. Esta evolución puede resultar extraña, pero el motivo se puede observar en la gráfica 4.6. Como ocurriría con un ala, el estabilizador vertical genera una carga en el eje y que aumenta con la velocidad de vuelo. Esta carga ayuda a reducir la potencia necesaria en el rotor antipar para bajas velocidades ya que ayuda a compensar el momento de giro que provoca el rotor principal. Sin embargo, estas cargas, para

Figura 4.6: Fuerzas sobre el rotor antipar a distintas velocidades de vuelo a nivel del mar según los ejes cuerpo y y z.

Figura 4.7: Fuerzas sobre los estabilizadores (a) vertical y (b) horizontal a distintas velocidades de vuelo a nivel del mar. Las fuerzas que se representan son horizontales (eje y cuerpo) para el estabilizador vertical y verticales (eje z cuerpo) para el estabilizador vertical.

velocidades altas, superan a las necesarias para compensar dicho momento, y el antipar debe pasar a compensar la carga sobre el estabilizador vertical. Además, aunque su origen no es aerodinámico, el propio peso del rotor antipar supondrá una carga de valor constante que también se ha de tener en cuenta.

En lo que respecta al estabilizador horizontal, a bajas velocidades genera una carga ascendente que ayuda a la estabilidad longitudinal del sistema. A altas velocidades (mayores a 50 m/s) las cargas se vuelven descendentes. Esto puede deberse a un fallo del modelo, que en situaciones límite no sea capaz de obtener buenas aproximaciones, aunque en una situación real en avance, la estela del rotor principal puede incidir sobre el estabilizador horizontal y generar cargas descendentes.

Queda por tanto claro que a mayor velocidad de vuelo las cargas serán mayores, llegando hasta cargas de 300 N que la cola tendrá que soportar en vuelo a punto fijo (debidas al rotor antipar), pero mayores para vuelos a altas velocidades (400 N para vuelos a 60 m/s).

4.2.1. Variación de las Cargas en la Cola con el Ángulo de Ataque α_f

Estas simulaciones se han realizado suponiendo ángulos de ataque del fuselaje nulos, por lo que puede resultar interesante ver como evolucionan las cargas sobre los estabilizadores con el ángulo de ataque α_0 y el ángulo de resbalamiento β_f . La gráfica 4.8 representa la variación más significativa de las cargas en los estabilizadores, las cargas sobre el estabilizador horizontal. Se aprecia que su comportamiento es el de un perfil aerodinámico, incluso se aprecia un comporta-

Figura 4.8: Fuerzas verticales (eje z cuerpo) sobre el estabilizador horizontal a distintos ángulos de ataque a nivel del mar para una velocidad de vuelo de 28 m/s.

miento prácticamente lineal con el ángulo de ataque. Todo esto implica que si se desean reducir las cargas en la cola, conviene volar a pequeños ángulos de ataque negativos, lo que, como se representa en la figura 4.9, conlleva un aumento de la potencia necesaria y por tanto del consumo a la par que una reducción de la autonomía de vuelo.

En estas circunstancias reducir el ángulo de ataque no resulta interesante, apenas variamos las cargas a costa de reducir la autonomía, pero si consideramos un vuelo con un ángulo de ataque $\alpha_f=0.025$ rad la autonomía se incrementa hasta las 5 horas y 20 minutos. Los resultados de estos cálculos se pueden encontrar en la tabla 4.2.

Figura 4.9: Potencia necesaria para un vuelo horizontal a distintos ángulos de ataque a nivel del mar para una velocidad de vuelo de 28 m/s.

Variable	Valor
Ángulo de ataque del fuselaje $(lpha_f)$	0.025 rad
Velocidad de vuelo (V)	28.73 m/s
Potencia necesaria (PM)	22.155 kW
Consumo específico (c_e)	9.54·10 [−] 08 kg/W·s
Autonomía $(t_{e,max})$	5.3231 h

Tabla 4.2: Parámetros relacionados con el cálculo de la autonomía del helicóptero en las condiciones de vuelo horizontal a 28.73 m/s con ángulo de ataque de 0.025 rad.

4.2.2. Variación de las Cargas en la Cola con el Ángulo de Resbalamiento β_f

De manera análoga a lo hecho con el ángulo de ataque, se han calculado las variaciones de las cargas en los elementos de la cola con el ángulo de resbalamiento β_f . El caso del estabilizador vertical recuerda al del estabilizador horizontal del apartado anterior pero de forma inversa, la carga varía de forma casi lineal con el ángulo de resbalamiento, a mayor ángulo, menor carga (figura 4.11). Como se ha dicho anteriormente, el estabilizador vertical ayuda a reducir la potencia necesaria para el rotor antipar, por lo que esta reducción hace necesario un nuevo cálculo de las cargas sobre el mismo. Dicho cálculo se refleja en la gráfica 4.10 y en ella se observa la tendencia esperada, las cargas aumentan con β_f , pero para comprobar si las cargas totales son menores o mayores, se ha representado en la gráfica 4.12 que indica la variación total de las cargas horizontales debidas a estos elementos respecto a las cargas para ángulo de resbalamiento nulo. Esta gráfica deja claro que en lo que respecta a las cargas sobre la cola lo mas favorable es volar a ángulo de resbalamiento ligeramente positivo.

Para comprobar si puede resultar más eficiente volar con ángulo de resbalamiento no nulo, se ha vuelto a simular el mismo vuelo que al principio del capítulo para varios valores del ángulo de resbalamiento y los resultados de las potencias necesarias se han plasmado en la gráfica 4.13 donde se observa que la potencia necesaria para el vuelo disminuye según aumenta el ángulo de resbalamiento.

Todo esto indica en un primer momento que resulta mas favorable, tanto para reducir cargas como potencia necesaria, volar a pequeños ángulos de resbalamiento.

Figura 4.10: Fuerzas horizontales (eje y cuerpo) sobre el rotor antipar a distintos ángulos de resbalamiento a nivel del mar para un vuelo horizontal a 28 m/s.

Figura 4.11: Fuerzas horizontales (eje y) sobre el estabilizador vertical a ángulos de resbalamiento a nivel del mar para un vuelo horizontal a 28 m/s.

Figura 4.12: Variación de la fuerza horizontal (eje y cuerpo) sobre la cola debida al estabilizador vertical y el rotor antipar a distintos ángulos de resbalamiento respecto a ángulo nulo a nivel del mar para un vuelo horizontal a 28 m/s.

Figura 4.13: Variación de la potencia necesaria para el vuelo horizontal a nivel del mar a distintas velocidades y ángulos de resbalamiento.

Figura 4.14: Fuerzas verticales (eje z cuerpo) sobre el estabilizador horizontal a ángulos de resbalamiento a nivel del mar para un vuelo horizontal a 28 m/s.

Respecto al estabilizador horizontal, la gráfica 4.14 muestra que las variaciones de las cargas verticales son de 1 N como máximo, por lo que queda claro que resulta indiferente a la hora de decidir si conviene volar a un ángulo de resbalamiento u otro.

4.3. Posibles Cambios en el Diseño

Hecho un análisis de los parámetros de vuelo en distintas condiciones para el vuelo horizontal, es hora de comprobar el efecto de algunos parámetros de diseño en el vuelo. Para ello se mostrarán gráficas similares a las anteriores del mismo capítulo para diferentes valores de diferentes características de la aeronave.

Figura 4.15: Consumo de Potencia de la aeronave en función de la velocidad de vuelo a nivel del mar para vuelo horizontal y limitación por potencia máxima continua disponible.

4.3.1. Rigidez en Batimiento k_{β}

Un parámetro que puede ser interesante cambiar es la rigidez de las palas en batimiento. HEROES calcula un valor suponiendo que se quiere mantener una rigidez similar a la del rotor del helicóptero base, es decir, el Bölkow Bo 105. Para comprobar su efecto, se ha decidido variar su valor base (denominado como $k_{\beta0}$ en las gráficas) entre el 70 % y el 130 % (tabla 4.3) de su valor. Los resultados de esta simulación se han reflejado en las gráficas 4.15, $\ref{eq:controller}$? y 4.17.

	7231.08
	8780.6
k_{eta} (Nm/rad)	10330.12
	11879.64
	13429.15

Tabla 4.3: Valores de la rigidez en batimiento de las palas usados en la simulación, en orden ascendente de valor. El valor central es el valor que HEROES ha otorgado al modelo de forma automática.

Figura 4.16: Ángulos de control de la aeronave en función de la velocidad de vuelo a nivel del mar para vuelo horizontal y diferentes valores de k_{β} .

Figura 4.17: Fuerzas (en ejes cuerpo) sobre el rotor principal en función de la velocidad de vuelo a nivel del mar para vuelo horizontal y diferentes valores de k_{β} .

Lo primero que se observa es que los cambios no son excesivamente llamativos, pero existen. En el caso de la potencia necesaria para el vuelo se observa en 4.15 que a bajas velocidades de vuelo los resultados no dependen de k_{eta} , pero según aumenta la velocidad también lo hacen las diferencias en los resultados. Independientemente del valor de la velocidad, los resultados para una rigidez de batimiento mayor son mas favorables, es decir, la potencia necesaria para el vuelo es menor. Sin embargo, este resultado no tiene en cuenta que como consecuencia de llevar a cabo este cambio en un modelo real, las cargas sobre las palas aumentan y por tanto se han de realizar cambios también en el rotor y las palas, lo cual puede suponer aumentos de masa y de coste. En la gráfica 4.18 se han representado el caso de máxima rigidez en batimiento anterior junto a un caso con un aumento de masa de pala de un 20 % (tabla 4.4), lo que equivaldría a cambiar el material de fabricación de las palas para dotarlas de mayor rigidez (sin tener en cuenta posibles cambios de masa en el propio rotor). De estos resultados se observa que el aumento de masa contrarresta el efecto del aumento de rigidez, por lo que será necesario un análisis mas exhaustivo de los materiales disponibles, costes y necesidades de la aeronave para poder tomar una decisión acerca de aumentar la rigidez del rotor.

Masa de pala original	18.798 kg
Masa de pala 20 % mayor	22.558 kg

Tabla 4.4: Valores de las masas de las palas original y aumentado un 20 % suponiendo un cambio de material en su fabricación.

En cuanto al resto de resultados, se puede observar en 4.16 que el paso colectivo se mantiene prácticamente constante con k_{β} , por lo que los únicos cambios que se observan son en los ángulos de paso cíclico lateral y longitudinal. En ambos casos el aumento de la rigidez lleva acompañado una disminución de los ángulos de paso cíclico que en el caso del longitudinal se observa que

Figura 4.18: Potencia necesaria para un vuelo horizontal a nivel del mar a distintas velocidades de vuelo para un helicóptero de rigidez en batimiento k_{β} =13429.15 Nm/rad y masas de pala original y un 20 % mayor.

la diferencia entre los valores máximo y mínimo de k_{β} de la simulación supone alrededor de 0.005 rad, mientras que en el lateral las diferencias alcanzan valores de entre 0.01 y 0.012 rad. Estos cambios de menos de un grado son asumibles por lo que no supondría ningún problema a la hora de variar la rigidez en batimiento del rotor principal.

Donde se observan cambios mayores es en las cargas que aparecen en el rotor principal (gráfica 4.17). Lo primero que se observa es que las cargas verticales y laterales no solo no aumentan, sino que disminuyen. Las cargas verticales sufren una variación pequeña, que aumenta con la velocidad, pero esta variación llega a valores de unos 50 N a velocidades de alrededor de 40 m/s, lo que comparado con los valores de alrededor de 4475 N a los que están sometidos lo diferentes modelos a esas velocidades resulta despreciable.

En el caso de las fuerzas laterales las variaciones máximas se dan para bajas

velocidades de vuelo, llegando a valores de 30 N, que a 40 m/s se ven reducidas a apenas 10 N de diferencia. Pese a que estas variaciones sean menores a las que aparecen las fuerzas verticales, su valor relativo es mucho mayor ya que los valores de las cargas son de alrededor de 100 N a velocidades muy bajas y de 35 N a 40 m/s. Esto supone una disminución importante de las cargas, al menos en el eje lateral.

Sin embargo, las cargas más críticas serían las que aparecen en el eje longitudinal del helicóptero, cuyas variaciones máximas entre las distintas configuraciones son de hasta 60 N, llegando a cargas máximas un 25 % mayores que las esperadas en el modelo original. Además el modelo más rígido sufre cargas del orden de 70 N para velocidades de vuelo en las que el modelo menos rígido no sufre ninguna carga. Estos cambios por tanto harían necesario un análisis de la estructura del rotor para comprobar si pudiese soportar las nuevas cargas o si por el contrario, conviene reducir la rigidez y con ello las cargas para reducir costes o peso.

Vuelo en Espiral

Igual que se ha hecho en el capítulo anterior con el vuelo horizontal, este capítulo pretende abordar el estado del helicóptero durante un vuelo en espiral ascendente con ángulo de asiento de la velocidad γ_T =5°. Lo primero que salta a la vista en la gráfica 5.1 es la reducción de la velocidad de avance máxima a la que se puede volar, siendo esta 42.37 m/s, lo que supone una reducción de casi 30 m/s respecto al vuelo horizontal, lo que se debe a la necesidad de invertir una parte importante de la potencia en conseguir una velocidad vertical. Dicha velocidad vertical se ha representado en la gráfica 5.3. Al ser el ángulo de asiento de la velocidad constante, la velocidad de ascenso varía de forma casi lineal con la velocidad de avance.

Los ángulos de control se han reflejado en gráfica 5.4, y si la comparamos con la gráfica 4.2 del vuelo horizontal se puede apreciar que mientras el ángulo de paso cíclico lateral θ_{1C} sigue una evolución similar, el ángulo de paso colectivo θ_0 aumenta de forma significativa. Esto se debe al incremento de sustentación necesario para poder elevar la aeronave. Por otra parte, se ve como el ángulo de

Figura 5.1: Consumo de Potencia de la aeronave en función de la velocidad de vuelo horizontal (eje x) a nivel del mar para vuelo en espiral ascendente con $\gamma_T = 5^\circ$. La línea roja representa el valor de la potencia máxima continua que puede proporcionar el motor.

Figura 5.2: Consumo de Potencia de los rotores principal y antipar en función de la velocidad de vuelo horizontal (eje x) a nivel del mar para vuelo en espiral ascendente con $\gamma_T = 5^{\circ}$.

Figura 5.3: Velocidad vertical de la aeronave en función de la velocidad de vuelo horizontal (eje x) a nivel del mar para vuelo en espiral ascendente con $\gamma_T = 5^\circ$.

Figura 5.4: Ángulos de control de la aeronave en función de la velocidad de vuelo horizontal (eje x) a nivel del mar para vuelo en espiral ascendente con γ_T =5°.

Figura 5.5: Ángulos de Euler de la aeronave en función de la velocidad de vuelo horizontal (eje x) a nivel del mar para vuelo en espiral ascendente con γ_T =5°.

paso longitudinal θ_{1S} disminuye, ya que la sustentación ha de tener una mayor componente vertical para no solo compensar el peso de la aeronave sino poder elevarla a su vez.

En lo que respecta a los ángulos de Euler, el cambio también resulta lógico. En la gráfica 4.3 del capítulo anterior se observa que con la velocidad, apenas cambia el balanceo, mientras que el cabeceo disminuye, pero en la gráfica 5.5 par el vuelo en espiral ocurre algo muy distinto. El ángulo de cabeceo apenas apenas cambia mientras que el ángulo de balanceo aumenta con la velocidad. Si se mantiene constante la curvatura de la espiral, según aumenta la velocidad de avance la aceleración normal necesaria para mantener la trayectoria aumenta, de ahí el origen de ese incremento en el ángulo de balanceo.

Bibliografía

AUVSI. The economic impact of unmanned aircraft systems integration in the united states. https://www.auvsi.org/our-impact/economic-report, 2013.

Álvaro Cuerva et al. *Teoría de los Helicópteros*. Garceta, 2013.

DAF. Department of the air force fiscal year 2011 budget estimates. http://www.saffm.hq.af.mil/shared/media/document/AFD-100128-072.pdf, 2011.

Antonio Filippone. Flight Performance of Fixed and Rtary Wing Aircraft. Elsevier, 2006.

ROTAX. Manual del usuario de los motores rotax tipo 912. http://www.aviasport.com/rotax/Documentacion_4T/Manuales/Spanish/Manual_Usuario_912_Rev_0.pdf, 2007.

Goldman Sachs. Drones, reporting for work. https://www.goldmansachs.com/insights/technology-driving-innovation/drones/, 2016.

USSOCOM. Exhibit r-2, rdt&e budget item justification. https:

//apps.dtic.mil/descriptivesum/Y2012/Other/stamped/0305219BB_
7_PB_2012.pdf, 2011.