A Topography of Climate Change Research

Max Callaghan

with Jan Minx, Piers Forster

January 26, 2019

Figure: Portrait of map-makers, Gerardus Mercator and Jodocus Hondius (Jodocus Hondius) source: Wikipedia Commons

• The IPCC has a cartographic role at the science policy interface (Edenhofer and Minx, 2014; Edenhofer and Kowarsch, 2015)

Figure: Portrait of map-makers, Gerardus Mercator and Jodocus Hondius (Jodocus Hondius) source: Wikipedia Commons

- The IPCC has a cartographic role at the science policy interface (Edenhofer and Minx, 2014; Edenhofer and Kowarsch, 2015)
- It is much studied in STS (Hulme and Mahony, 2010)

Figure: Portrait of map-makers, Gerardus Mercator and Jodocus Hondius (Jodocus Hondius) source: Wikipedia Commons

- The IPCC has a cartographic role at the science policy interface (Edenhofer and Minx, 2014; Edenhofer and Kowarsch, 2015)
- It is much studied in STS (Hulme and Mahony, 2010)
- A topography is a description of a landscape

Figure: Portrait of map-makers, Gerardus Mercator and Jodocus Hondius (Jodocus Hondius) source: Wikipedia Commons

- The IPCC has a cartographic role at the science policy interface (Edenhofer and Minx, 2014; Edenhofer and Kowarsch, 2015)
- It is much studied in STS (Hulme and Mahony, 2010)
- A topography is a description of a landscape
- Topics (from the Greek "topos", place) can describe the features of a body of text

Outline

Motivation

2 Methods

Results

Motivation

Methods

Results

A challenge for

- Global environmental assessments
- Our understanding of global environmental assessments
- Evidence synthesis more generally

Figure: Articles on climate change in the Web of Science

The IPCC in the age of Big Literature

 We entrust the IPCC with providing a comprehensive and transparent assessment of the literature

- We entrust the IPCC with providing a comprehensive and transparent assessment of the literature
- Although IPCC reports cite ever greater numbers of papers, this number decreases in proportion to the number of papers in literature

Assessment Period

Figure: (Minx et al., 2017)

• The social sciences are seen as under-represented in IPCC reports

Embed the social sciences in climate policy

insights into controversial social and behavioural issues.

Figure: (David G. Victor, 2015)

- The social sciences are seen as under-represented in IPCC reports
- (Bjurström and Polk, 2011) are often cited as evidence of this under-representation, e.g. as demonstrating "a powerful bias to the natural sicences in the construction of 'IPCC knowledge' " Hulme and Mahony (2010)

Embed the social sciences in climate policy

insights into controversial social and behavioural issues

Figure: (David G. Victor, 2015)

- The social sciences are seen as under-represented in IPCC reports
- (Bjurström and Polk, 2011) are often cited as evidence of this under-representation, e.g. as demonstrating "a powerful bias to the natural sicences in the construction of 'IPCC knowledge'" Hulme and Mahony (2010)
- The evidence is simply the relative shares of the different disciplines in IPCC citations

Embed the social sciences in climate policy

insights into controversial social and behavioural issues.

Figure: (David G. Victor, 2015)

The Age of Climate Solutions?

Demand for solutions is increasing

Figure: (Kowarsch et al., 2017)

The Age of Climate Solutions?

- Demand for solutions is increasing
- We know little about the supply of solutions in the literature

Figure: (Kowarsch et al., 2017)

Motivation

Methods

Results

9/21

Max Callaghan (MCC) Big Literature January 26, 2019

10/21

To understand the representation of social science and solutions relevant knowledge in IPCC reports, we look at journal classification and document abstracts

Data:

400,000 papers on climate change from the Web of Science (query following Grieneisen and Zhang (2011)), matched with 70,000 IPCC citations (Using Doc2Vec)

Topic modelling:

We use topic modelling (with NMF (Lee and Seung, 1999)) to understand the thematic content of papers

Topographic mapping:

We project the documents' topical locations into 2 dimensions using t-SNE (van der Maaten and Hinton, 2008)

Measuring representation:

We compare the proportions of categories of documents in the whole of the literature with the subset of the literature that is cited by the IPCC

11/21

	AR1	AR2	AR3	AR4	AR5	AR6
Years	1986-1989	1990-1994	1995-2000	2001-2006	2007-2013	2014-
Documents	1,167	8,539	21,716	38,750	134,413	201,606
Unique words	2,000	12,480	23,346	34,637	71,867	94,746
New words	change (560)	oil (287)	downscaling (217)	sres (234)	biochar (1,791)	mmms (313)
	climate (428)	deltac (283)	degreesc (187)	petm (95)	redd (1,113)	cop21 (234)
	co2 (318)	whole (256)	ncep (130)	amf (88)	cmip5 (679)	c3n4 (214)
	climatic (289)	tax (254)	fco (107)	sf5cf3 (86)	cmip3 (587)	sdg (187)
	model (288)	landscape (249)	pfc (98)	clc (81)	mofs (299)	zika (182)
	atmospheric (281)	alternative (243)	otcs (98)	embankment (81)	sdm (297)	ndcs (168)
	effect (280)	availability (242)	dtr (95)	cwd (79)	mof (275)	indc (164)
	global (224)	life (239)	nee (89)	etm (75)	biochars (252)	indcs (134)

Table: Growth in climate change literature

Data from WoS Core Collection, query following Grieneisen and Zhang (2011)

Approach - What is the matter?

 Topic modelling (Blei et al., 2012) describes a suite of algorithms to discover the latent semantic content of documents

 $V_{i\mu}$ is a term frequency-inverse document frequency matrix of stemmed terms

$$V_{i\mu} \approx (WH)_{i\mu} = \sum_{a=1}^{r} W_{ia} H_{a\mu}$$

V is approximated by the product of W and H

V: 8769 x 3495

W: 8769 x 50

 Topic modelling (Blei et al., 2012) describes a suite of algorithms to discover the latent semantic content of documents

 NMF (Lee and Seung, 1999) is a dimensionality reduction technique that can be used for topic modelling

12/21

 Topic modelling (Blei et al., 2012) describes a suite of algorithms to discover the latent semantic content of documents

- NMF (Lee and Seung, 1999) is a dimensionality reduction technique that can be used for topic modelling
- Topics are distributions of words. They describe documents.

 $V_{i\mu}$ is a term frequency-inverse document frequency matrix of stemmed terms

$$V_{i\mu} \approx (WH)_{i\mu} = \sum_{a=1}^{r} W_{ia} H_{a\mu}$$

V is approximated by the product of W and H

W: 8769 x 50

 Topic modelling (Blei et al., 2012) describes a suite of algorithms to

 NMF (Lee and Seung, 1999) is a dimensionality reduction technique

Topics are distributions of words.

of documents

discover the latent semantic content

 V_{iu} is a term frequency-inverse document frequency matrix of stemmed terms

$$V_{i\mu} \approx (WH)_{i\mu} = \sum_{a=1}^{r} W_{ia} H_{a\mu}$$

V is approximated by the product of W and H

V: 8769 x 3495

that can be used for topic modelling

• A document's topic scores describe its association with each topic

W: 8769 x 50

Doc Topic Example

Motivation

Methods

Results

A Topography of Climate Change Literature

 We use t-distributed stochastic neighbour embedding (van der Maaten and Hinton, 2008) to reduce documents' topic vectors to 2 dimensions

A Topography of Climate Change Literature

- We use t-distributed stochastic neighbour embedding (van der Maaten and Hinton, 2008) to reduce documents' topic vectors to 2 dimensions
- Each dot is a document, and documents with similar topic vectors are close together in the 2-dimensional space

A Topography of Climate Change Literature

- We use t-distributed stochastic neighbour embedding (van der Maaten and Hinton, 2008) to reduce documents' topic vectors to 2 dimensions
- Each dot is a document, and documents with similar topic vectors are close together in the 2-dimensional space
- We can see the preponderance of natural sciences, and the greater or lesser clustering of disciplines in certain topic areas

17 / 21

 The social sciences were under-represented in AR3, but by AR5 are over-represented

The Social Sciences are No Longer Under-Represented in IPCC reports

17 / 21

- The social sciences were under-represented in AR3, but by AR5 are over-represented
- The share of natural science documents in IPCC citations is similar to the share in the wider literature

Discipline

The Social Sciences are No Longer Under-Represented in IPCC reports

- The social sciences were under-represented in AR3, but by AR5 are over-represented
- The share of natural science documents in IPCC citations is similar to the share in the wider literature
- Agricultural sciences and engineering & technology are under-represented

 The physical science of climate change is older and better covered

- The physical science of climate change is older and better covered
- Topics on "solutions" (although rather technical than policy) are newer and under-represented

- The physical science of climate change is older and better covered
- Topics on "solutions" (although rather technical than policy) are newer and under-represented
- Newer WGII topics are better covered than newer WGIII topics

 Technical solutions topics in WGIII contain little social science research and are under-represented

 \bullet Lack of social science knowledge in IPCC \neq IPCC natural science bias

- ullet Lack of social science knowledge in IPCC eq IPCC natural science bias
- If there is a lack, we need to produce more social science knowledge, particularly on technical solutions

- ullet Lack of social science knowledge in IPCC eq IPCC natural science bias
- If there is a lack, we need to produce more social science knowledge, particularly on technical solutions
- There is a vast technical literature on solutions which is relatively untapped

- \bullet Lack of social science knowledge in IPCC \neq IPCC natural science bias
- If there is a lack, we need to produce more social science knowledge, particularly on technical solutions
- There is a vast technical literature on solutions which is relatively untapped

But,

 Literature here is not all relevant climate knowledge (only WoS, only directly on climate change)

- ullet Lack of social science knowledge in IPCC eq IPCC natural science bias
- If there is a lack, we need to produce more social science knowledge, particularly on technical solutions
- There is a vast technical literature on solutions which is relatively untapped

But,

- Literature here is not all relevant climate knowledge (only WoS, only directly on climate change)
- Relative representation of different parts of the literature is job of IPCC to decide, not a computer

- ullet Lack of social science knowledge in IPCC eq IPCC natural science bias
- If there is a lack, we need to produce more social science knowledge, particularly on technical solutions
- There is a vast technical literature on solutions which is relatively untapped

But.

- Literature here is not all relevant climate knowledge (only WoS, only directly on climate change)
- Relative representation of different parts of the literature is job of IPCC to decide, not a computer

Nevertheless.

 Computer assisted methods can help the IPCC make its decisions on how to represent the literature from a more solid basis, and efficiently point to areas of growth or of under-representation

- ullet Lack of social science knowledge in IPCC eq IPCC natural science bias
- If there is a lack, we need to produce more social science knowledge, particularly on technical solutions
- There is a vast technical literature on solutions which is relatively untapped

A Topography of Climate Change Research

https://dx.doi.org/10.1038/s41558-019-0684-5

callaghan@mcc-berlin.net

But.

- Literature here is not all relevant climate knowledge (only WoS, only directly on climate change)
- Relative representation of different parts of the literature is job of IPCC to decide, not a computer

Nevertheless.

 Computer assisted methods can help the IPCC make its decisions on how to represent the literature from a more solid basis, and efficiently point to areas of growth or of under-representation

Bibliography

- Bjurström, A. and Polk, M. (2011). Physical and economic bias in climate change research: A scientometric study of IPCC Third Assessment Report. Climatic Change, 108(1):1–22.
- Blei, D., Carin, L., and Dunson, D. (2012). Probabilistic topic models. Communications of the ACM, 55(4):77-84.
- David G. Victor (2015). Embed the social sciences in climate policy David Victor. Nature, 520:7–9.
- Edenhofer, O. and Kowarsch, M. (2015). Cartography of pathways: A new model for environmental policy assessments. *Environmental Science and Policy*, 51:56–64.
- Edenhofer, O. and Minx, J. (2014). Mapmakers and navigators, facts and values. Science, 345(6192):37-38.
- Grieneisen, M. and Zhang, M. (2011). The Current Status of Climate Change Research. Nature Climate Change, 1:72-73.
- Hulme, M. and Mahony, M. (2010). Climate change: What do we know about the IPCC? Progress in Physical Geography, 34(5):705-718.
- Kowarsch, M., Jabbour, J., Flachsland, C., Kok, M. T. J., Watson, R., Haas, P. M., Minx, J. C., Alcamo, J., Garard, J., Riousset, P., Pintér, L., Langford, C., Yamineva, Y., von Stechow, C., O'Reilly, J., and Edenhofer, O. (2017). A road map for global environmental assessments. *Nature Climate Change*, 7(6):379–382.
- Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-91.
- Minx, J. C., Callaghan, M., Lamb, W. F., Garard, J., and Edenhofer, O. (2017). Learning about climate change solutions in the IPCC and beyond. *Environmental Science & Policy*.
- van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine Learning Research, 9:2579-2605.

Max Callaghan (MCC) Big Literature January 26, 2019 21/21

n Topics

MCC *

September

