UNIVERSIDAD DE LA FRONTERA FACULTAD DE INGENIERÍA Y CIENCIAS	
SEGUNDO CONTROL FÍSICA II (ICF-190)	MIERCOLES 13 DE MAYO DE 2015

PAUTA		
NOMBRE Y CARRERA	PUNTAJE	NOTA

La figura muestra un circuito de capacitores. Cada capacitor tiene una capacidad C_0 . La fuente entrega una diferencia de potencial V_0 .

(2)	2	Calcule la energía potencial almacenada en el capacitor C ₃ . Exprésela en términos de V ₀ y C ₀ .
		Veg = V1234 = V4 = V0
		(0.5)
		Qzzy = Czzy . V = 2Cz Vo
		$Q_{234} = C_{234} \cdot V_0 = \frac{2C_0V_0}{3} = Q_2 = Q_{34}$
		$V_{34} = \frac{Q_{34}}{C_{34}} = \frac{2G_0V_0/3}{2C_0}$ $V_{34} = \frac{V_0}{3} = V_3 = V_4$ (0.5)
		C ₃₄ 2 C _o 3
		$\Rightarrow U_3 = 1 C_3 V_3^2 = 1 C (V_3)^2$
		$\Rightarrow U_3 = \frac{1}{2}C_3V_3^2 = \frac{1}{2}C_0\left(\frac{V_0}{3}\right)^2 = \frac{1}{2}C_0\frac{V_0^2}{9}$
		(1.0)
		L) CV3
		$) \bigcup_{3} = \frac{C_{0} \vee_{0}^{2}}{18}$
(2)	3	Después que los capacitores se cargan, se desconecta la batería y se introduce un dieléctrico de constante
		dieléctrica κ en cada uno de los capacitores. Calcule la relación U _i /U _f , entre las energías almacenadas en todo el sistema antes de introducir los dieléctricos y después de introducirlos.
		Consileria equipola la cala de introducia los dialordicos
		Capacitancia equivalente antes de introducir los dielectricos
-		C _i = <u>56</u>
		c I la la diolockica
		Capacitancia equivalente despoi de introducir los dielectricos
		$C_{\xi} = \times \frac{5C_0}{3} \tag{0.5}$
		A) do so le le le le constitution de la le
		Al desconectar la bateria, Q permanece constante (0.5)
		Qi = 560 = Qt
		UislQ:
		Uf = 2 Qf V / Cf Ci 5Co/3
		•