# **DATA MINING PROJECT:** BATCH NO: B8

**ROLLNO:** 21481A0575

21481A05B4

22485A0511

21481A0587

# DATASET DESCRIPTION: LYMPHOGRAPHY DATASET

The Lymphography dataset is a classification dataset that has been widely studied in machine learning literature.

## **Objective:**

- The primary objective of this dataset is classification.
- Specifically, we aim to predict lymphography outcomes (class labels) based on the provided features.

# **Target Variable (Class Labels):**

- The target variable is denoted as **class**.
- It represents different lymphography outcomes.
- The possible class labels are:

**normal**: Indicates a normal lymphography result.

**metastases**: Suggests the presence of metastases.

malign lymph: Indicates malignant lymph nodes.

fibrosis: Represents fibrosis.

The **Lymphography** dataset comprises instances characterized by various features, including lymphatic state, blockage indicators, and lymph node properties. Its primary objective is classification, aiming to predict lymphography outcomes based on these features.

### **Data Quality:**

- Ensuring data quality is crucial for building accurate models.
- We should check for missing values, outliers, and inconsistencies.

#### **Dataset:**



#### PREPROCESSING:

Replacing the missing values with most frequent /Average values Normalize the features



#### **CLASSIFICATION:**

- 1.Decision Tree
- 2.Logistic Regression
- 3. Naive Bayes
- 4.SVM
- 5. Neural Networks

#### **TEST AND SCORE:**

#### Without preprocessing:



#### With preprocessing:



# Gain Ratio:

|   |    |                | # | Info. gain | Gain ratio | Gini  |
|---|----|----------------|---|------------|------------|-------|
|   | 1  | C changes_node | 4 | 0.402      | 0.246      | 0.186 |
|   | 2  | N no_nodes     |   | 0.264      | 0.137      | 0.129 |
|   | 3  | N lym_enlar    |   | 0.208      | 0.121      | 0.087 |
|   | 4  | C spec_forms   | 3 | 0.184      | 0.125      | 0.088 |
|   | 5  | C changes_stru | 8 | 0.179      | 0.071      | 0.063 |
|   | 6  | C bl_affere    | 2 | 0.174      | 0.175      | 0.101 |
|   | 7  | N lym_dimin    |   | 0.161      | 0.565      | 0.033 |
|   | 8  | C lymphatics   | 4 | 0.156      | 0.097      | 0.026 |
|   | 9  | C defect       | 4 | 0.148      | 0.087      | 0.042 |
|   | 10 | C changes_lym  | 3 | 0.146      | 0.122      | 0.031 |
|   | 11 | C regen        | 2 | 0.136      | 0.380      | 0.025 |
|   | 12 | C early_uptake | 2 | 0.134      | 0.153      | 0.065 |
| > | 13 | C by_pass      | 2 | 0.073      | 0.092      | 0.009 |
|   | 14 | C exclusion    | 2 | 0.066      | 0.089      | 0.020 |
|   | 15 | C dislocation  | 2 | 0.064      | 0.069      | 0.025 |
|   | 16 | C bl_lymph_s   | 2 | 0.040      | 0.145      | 0.007 |
|   | 17 | C bl_lymph_c   | 2 | 0.034      | 0.051      | 0.012 |
|   | 18 | C extravasates | 2 | 0.029      | 0.029      | 0.003 |

Hence change\_node is the root node

# **Decision Tree:**



#### **Confusion Matrix, Performance curve and Roc Analysis:**

#### **Before preprocessing:**







## **After Preprocessing:**







### **DATA WORKFLOW:**



## **OBSERVATIONS:**

- After preprocessing, it's great to see that the accuracy has increased.
- The accuracy of the model has significantly improved after preprocessing steps.
- Removing noise and irrelevant features may have contributed to the accuracy boost.
- After applying preprocessing techniques were effective in enhancing model performance.