Improving Personal Practice

Techniques of High Performing Software Developers

Jason A. Grafft, M.Ac. graf0096@umn.edu

Acknowledgements

- Mojca Konia, MD, PhD, MACM
- SimPORTAL Staff
- Chris Hafner, LAc
- Jesse Corry, MD
- League of Extraordinary Algorithms Meetup
- LambdaConf Speakers
- Abraham Sangha
- relationalAl

What We're Looking For

"[C]ausal relationships are *ontological*, describing objective physical constraints in our world, whereas probabilistic relationships are *epistemic*, reflecting what we know or believe about the world."

- Judea Pearl, Causality: Models, Reasoning and Inference (2nd, 2009)

Working Definition

High performance implies a statistical reliability that within information space (S) future performance (P) will closely resemble ideal performance (I) such that for $I,P\in S$

$$\mu_{I-P} = \mu_I - \mu_P \approx 0.0$$

$$\sigma_{I-P}^2 = \sigma_I^2 - \sigma_P^2 pprox 0.0$$

Information Space Model

Provider B

Work Context (Espinosa et al, 2007)

Neurophysiology

- Brain physically adapts to *stimuli*
- Specialization lowers (metabolic) demand of (stimuli) processing
- Automation trends toward the *mode* (of stimuli)

 $f: \operatorname{SocialMedia} o \operatorname{Garbage}$

Automation

- You may consider automation a "category view" of adaptive neurophysiologic specialization
- Fairly a "deep learning" process

 $f: ext{effort} > ext{minimum viable} o ext{effort} ee ext{minimum viable}$

Self Regulation

Barry J. Zimmerman. A social cognitive view of self-regulated academic learning. (1989). From Zimmerman Development and Adaptation of Expertise. . . (p707, 2006)

Single Consensus Finding

Social Ability $S \ggg$ General Mental Ability G, where \hat{a} represents the effect size of G and λ is total effect

$$\lambda = \hat{a} \cdot G \circ S$$

$$\hat{a}(S) = egin{cases} >0, & ext{when} \uparrow S \ \leq 0, & ext{when} \downarrow S \end{cases}$$

Improving Personal Practice

"[P]erformance is not a variable that is part of the system that can be directly influenced as with other parts of the system. It emerges when the variables work or interact together in an appropriate way, which entails that it must be reproduced continuously. [...] One cannot intervene into performance. One can intervene into the system, whose parts by working together, make performance emerge."

- Klaus D. Wittkuhn, *Understanding Performance Improvement* (2016)

Improving Personal Practice

"[P]erformance is not a variable that is part of the system that can be directly influenced as with other parts of the system. It emerges when the variables work or interact together in an appropriate way, which entails that it must be reproduced continuously. [...] One cannot intervene into performance. One can intervene into the system, whose parts by working together, make performance emerge."

- Klaus D. Wittkuhn, *Understanding Performance Improvement* (2016)

Key Points

- Performance patterns are "sticky"
- Self perception of self efficacy is a liability
- improvement $\perp t$ when $t \geq t_{min}$

High performers (v moderate)

Category

Requirements analysis and design
\$\psi\$ time on problem comprehension

Adequate problem representation early

Program comprehension and programming **Pursuit of abstract programming goals**

Cross-reference strategy

Testing and debugging Active search for problems

Knowledge Broader and more detailed knowledge base

Communication and cooperation Spend more time on communication and cooperation

§ - Sonnentag et al (2006)

Most Frequent (Sub)categories[§]

Skills

Individual Characteristics Expertise, Knowledge, and Performance

- Problem solving
 - Abstraction
 - Decomposition
 - Analytical thinking
 - Logical thinking
- Continuous learning
- Requirements
 - Good listener
 - Understand a customer
 - Effective nontechnical explanations
- Assess trade-offs

- Open-minded
- Team player
- Curious
- Patient
- Self-reflective

- General knowledge
- Task-specific knowledge
- Experience
- Decomposition
- Modularization
- Maintainability
- Clear structure
- Performance

§ - Baltes and Diehl (2018). Summarized by Jason A. Grafft

Generic Process (Wittkuhn, 2016)

- Define the performance in question
- Identify the variables that influence the performance
- Model the performance system in order to understand how these variables interrelate
- Identify gaps and opportunities in the performance system
- Identify possible interventions to close these gaps
- Look for economic interventions that have leverage and influence other variables beyond the targeted variable and yield a diffusion of effect
- Observe what is happening when you implement the intervention and take corrective action as needed

Generic Process (Wittkuhn, 2016)

G_n

- Define the performance in question
- Identify the variables that influence the performance
- Model the performance system in order to understand how these variables interrelate

$G_{\hat{n}}$

- Identify gaps and opportunities in the performance system
- Identify possible interventions to close these gaps
- Look for economic interventions that have leverage and influence other variables beyond the targeted variable and yield a diffusion of effect

Posterior Predictive Checks

Observe what is happening when you implement the intervention and take corrective action as needed

$\mathsf{Goal}_1 \colon \downarrow t \to \mathsf{Problem} \ \mathsf{Comprehension}$

 ${\it G}$ Goal

 V_0 Good Listener

 V_1 Understand a customer

 V_2 Effective nontechnical explanations

 V_3 Assess trade-offs

 V_4 General knowledge

 V_5 Task specific knowledge

 V_6 Analytical thinking

$G_{\hat{1}}: \downarrow t ightarrow Problem Comprehension$

 Λ \uparrow time at code reviews, meetings, ...

 E_0 "Listening strategies" resource

 E_1 Solicit reviews from coworkers

 E_{2}^{T} Track number of communications to consensus understanding

 ${\it G}$ Goal

 V_0 Good Listener

 V_1 Understand a customer

 V_2 Effective nontechnical explanations

 V_3 Assess trade-offs

 V_4 General knowledge

 V_5 Task specific knowledge

 V_6 Analytical thinking

$G_{\hat{1}}: \downarrow t \rightarrow \mathsf{Problem} \ \mathsf{Comprehension}$

 Λ \uparrow time at code reviews, meetings, ...

 E_0 "Listening strategies" resource

 E_1 Solicit reviews from coworkers

 E_{2}^{T} Track number of communications to consensus understanding

 ${\it G}$ Goal

 V_0 Good Listener

 V_1 Understand a customer

 V_2 Effective nontechnical explanations

 V_3 Assess trade-offs

 V_4 General knowledge

 V_5 Task specific knowledge

 V_6 Analytical thinking

Posterior Predictive Checks

- \$\psi\$ in recommunications to mutual understanding
- \(\psi \) in "downstream" refactors

 G_2 : \uparrow FP Skills

G_2 : \uparrow FP Skills

Recursion Schemes unfolds (tear down a structure) algebra $f a \to Fix f \to a$ \Leftrightarrow coalgebra $f a \to a \to Fix f$

g eneralized (f w \rightarrow w f) \rightarrow (f (w a) \rightarrow β)	catamorphism fa → a prepromorphism* after applying a NatTrans	anamorphism a → f a postpromorphism* before applying a NatTrans	generalized $(m f \rightarrow f m) \rightarrow (\alpha \rightarrow f (m \beta))$
	(f a → a) → (f → f) paramorphism* with primitive recursion f (Fix f x a) → a	(a → f a) → (f → f) apomorphism* returning a branch or single level a → f (Fix f ∨ a)	
	zygo morphism* with a helper function (f b \rightarrow b) \rightarrow (f (b \times a) \rightarrow a)	g apo morphism $(b \rightarrow f b) \rightarrow (a \rightarrow f (b \lor a))$	
g histo morphism $(f h \rightarrow h f) \rightarrow (f (w a) \rightarrow a)$	histomorphism with prev. answers it has given f (w a) → a	futumorphism multiple levels at a time a → f (m a)	g futu morphism $(h f \rightarrow f h) \rightarrow (a \rightarrow f (m a))$

refolds (build up then tear down a structure)

ana; cata

synchromorphism **exo**morphism

mutumorphism

algebra g b → (f → g	ı) → coalgebra f a → a	. → b					
hylo	morphism	rphism					
c	ata; ana						
dyna morphism		codyna morphism		generalized apply the generalizations for both the relevant fold and unfold			
histo; ana	cata	cata; futu					
chron	the relevant lold and diffold						
h	sto; futu						
Elgot algebra	coElgot	coElgot algebra					
may short-circuit while buildin	g may short-cire	may short-circuit while tearing					
cata; $a \rightarrow b \lor f a$	a×gb-	$a \times g b \rightarrow b$; ana					
reunfolds (tear down then build up a structure)							
coalgebra $g \ b \to (a \to b) \to algebra \ f \ a \to Fix \ f \to Fix \ g$							
meta	g ener	alized					

combinations (combine two structures)

algebra $f \rightarrow Fix f \rightarrow Fix f \rightarrow a$

zippamorphism

mergamorphism ... which may fail to combine

 $(f(Fix f) \times f(Fix f)) \vee fa \rightarrow a$

These can be combined in various ways. For example, a "zygohistomorphic prepromorphism" combines the zygo, histo, and prepro aspects into a signature like $(f b \rightarrow b) \rightarrow (f \rightarrow f) \rightarrow (f (w (b \times a)) \rightarrow a) \rightarrow Fix f \rightarrow a$

apply ... both ... [un]fold

Stolen from Edward Kmett's http://comonad.com/reader/ 2009/recursion-schemes/

* This gives rise to a family of related recursion schemes, modeled in recursion-schemes with distributive law combinators

Refinement₂: Data61 ..., Applicative.hs, ...

```
G_2 Goal (Refinement)
V_0 ExactlyOne
V_{
m 1} List
V_2 Optional
V_3 ((->) t)
V_4 lift{2,3,4,0,1}
V_9 *>
V_{10} < \star
V_{11} sequence
V_{12} replicateA
V_{13} filtering
```


Refinement $\hat{2}$: Data61 ..., Applicative.hs, ...

```
recurse
E_0 foldRight
E_1 map
V_{4^st} lift_n
G_2 Goal (Refinement)
V_0 ExactlyOne
V_{
m 1} List
V_2 Optional
V_3 ((->) t)
V_9 *>
V_{10} <*
V_{11} sequence
V_{12} replicateA
V_{13} filtering
```


Refinement $\hat{2}$: Data61 ..., Applicative.hs, ...

```
recurse
E_0 foldRight
E_1 map
V_{4^st} lift_n
G_2 Goal (Refinement)
V_0 ExactlyOne
V_{
m 1} List
V_2 Optional
V_3 ((->) t)
V_9 *>
V_{10} <*
V_{11} sequence
V_{12} replicateA
```

 V_{13} filtering

Posterior Predictive Checks

- ↓ per attempt, to stability
 - Time spent per function
 - Number of external resources used per function

G_3 : $\uparrow t o$ Communication \land Cooperation

- G_3 Goal
- V_0 Open-minded
- V_1 Broader and more detailed knowledge base
- V_2 Curious
- V_3 Patient
- V_4 Self-reflective
- V_5 Experience
- $V_6\,$ Team player
- V_7 Good listener

$\mathsf{G}_{\hat{\mathbf{3}}} \colon {\uparrow} \; t \to \mathsf{Communication} \land \mathsf{Cooperation}$

 Λ 2×month ightarrow Coach/Counselor/Mentor

 E_0 Journal

 E_1^{4} hours of in-person, structured socializing per month

 G_3 Goal

 V_0 Open-minded

 $V_1 \begin{tabular}{l} {
m Broader and more detailed} \ {
m knowledge base} \end{tabular}$

 V_2 Curious

 V_3 Patient

 V_4 Self-reflective

 V_5 Experience

 V_6 Team player

 V_7 Good listener

$\mathsf{G}_{\hat{\mathbf{3}}} \colon {\uparrow} \ t o \mathsf{Cooperation}$

 Λ 2×month \to Coach/Counselor/Mentor

 E_0 Journal

 $E_1^{\ \ 4}$ hours of in-person, structured socializing per month

 G_3 Goal

 V_0 Open-minded

 V_1 Broader and more detailed knowledge base

 V_2 Curious

 V_3 Patient

 V_4 Self-reflective

 V_5 Experience

 V_6 Team player

 V_7 Good listener

Posterior Predictive Checks

- \$\psi\$ in anxiety/distraction/... round related activities
- \$\psi\$ in dissonant behaviors

High Performers

High Performers

- Are characterized by statistical regularity of *outcome* in a particular environment
- Model their practice as one of social efficacy reinforced by knowledge and technical ability

High Performers

- Are characterized by statistical regularity of *outcome* in a particular environment
- Model their practice as one of social efficacy reinforced by knowledge and technical ability

High Performance

High Performers

- Are characterized by statistical regularity of *outcome* in a particular environment
- Model their practice as one of social efficacy reinforced by knowledge and technical ability

High Performance

- Is bound to a domain because it is well-attenuated to the needs of that environment
- Is "sticky"
- May be automated, and social reinforcement is especially helpful

Personal Practice

Personal Practice

- Is the result of automation behaviors
- Is modifiable of our own effort

Personal Practice

- Is the result of automation behaviors
- Is modifiable of our own effort

Performance Improvement

Personal Practice

- Is the result of automation behaviors
- Is modifiable of our own effort

Performance Improvement

- Is the side effect of a dynamic process
- Depends on mutable combinations and interactions we may influence

References

Baltes, Sebastian, and Diehl, Stephan (view online)

Towards a Theory of Software Development Expertise

Espinosa, J. Alberto, Slaughter, Sandra A., Kraut, Robert E., and Herbsleb, James D. (view online

Familiarity, Complexity, and Team Performance in Geographically Distributed Software Development

Hill, Nicole M, and Schneider, Walter

Brain Changes in the Development of Expertise: Neuroanatomical and Neurophysiological Evidence about Skill-Based Adaptations

Pearl, Judea

Causality: Models, Reasoning and Inference

Persson, Roger, Cleal, Bryan, Jakobsen, Mette Øllgaard, Villadsen, Ebbe, and Andersen, Lars L. (view online)

The Relationship Between Self-Efficacy and Help Evasion

Singh, Param Vir, Tan, Yong, and Youn, Nara (view online)

A Hidden Markov Model of Developer Learning Dynamics in Open Source Software Projects

Sonnentag, Sabine, Nelson, Cornelia, and Volmer, Judith

Expertise in Software Design

Verbeke, Willem J., Belschak, Frank D., Bakker, Arnold B., and Dietz, Bart (view online)

When Intelligence Is (Dys)Functional for Achieving Sales Performance

Wittkuhn, Klaus D. (view online)

Understanding Performance Improvement

Zimmerman, Barry J.

Development and Adaptation of Expertise: The Role of Self-Regulatory Processes and Beliefs

Thank You!

Crookston Duluth Morris Rochester Twin Cities