COURSEWORK PORTFOLIO 2

SANDBOX APPLICATION

KOLLI BHAVYA SRI

STUDENT ID: A00037677

1.NETWORK DIAGRAM

NOTE: I USE ADDITIONAL PC FOR CHECH AN APPLICATION SERVER FROM WEB BRWSER AND I ADDED A SWITCH FOR FUTURE ADDING PC AND SERVICES.

Steps:

Gateway Router:

- Router1>enable
- Router1#configure terminal
- Router1(config)#interface fastethernet 0/0
- Router1(config-if)# ip address 192.168.18.1 255.0.0.0
- Router1(config-if)#no shutdown
- Router1(config-if)#exit
- Router1(config)#interface serial 0/1
- Router1(config -if)#ip address 192.168.118.1 255.0.0.0
- Router1(config-if)#no shutdown
- Router1(config-if)#exit

DESKTOP (PC):

• Click the pc and open it go to the desktop>IP Configuration > change to static>set IP address.

- Set all PC for this.
- And ping 192.168.18.1

APPLICATION SERVER:

- Click the application server and open it go to the desktop > IP configuration>change to static>set IP address.
- Click the application server and open it go to the service > Click HTTP
 >Turn ON HTTP and HTTPS > add HTML page in application server.
- Same Top Image But change IP to 192.168.118.2
- Click the application server and open it go to the desktop > Web Browser >Type the IP address 192.168.18.2

2. IP ADDRESS TABLE

Device	Role	IP Adress	Subnet mask
Desktop VM	Management	192.168.18.2	255.255.255.0
(Ubuntu Desktop)			
Gateway Router	Internet Access	10.0.3.16	255.255.255.0
VM (enp0s3)			
(Ubuntu Server)			
Gateway Router	Subnet 01 –	192.168.18.1	255.255.255.0
VM (enp08)	internet Network		
Gateway Router	Subnet 02-	192.168.118.1	255.255.255.0
VM (enp0s9)	Internet Network		
(Ubuntu Server)			
Application	server	192.168.118.2	255.255.255.0
Server VM			
(Bitname)			

3. GIT PAGES LAB REPORT

Github Project link - https://bhavya-143.github.io/Bhavyasri-sandbox/
Github File Link - https://github.com/bhavya-143/Bhavyasri-sandbox.git

Configuration Steps:

You need to create three VM mechine's for this project.

- Download the virtual box and install in your PC.
- Download the three OS for project.
 - Ubuntu Desktop (.iso format) or our Desktop OS like (kali linux,windows)
 - Ubuntu server OS (.iso format).
 - Application server in Bitnami Wordpress(.ova format).

Add three OS in virtual box.

Ubuntu Server OS configuration steps:

Step 1: create a new virtual machine (VM) for ubuntu server

Open virtualbox.

Click on new to create a new virtual machine.

Name the VM

Select the type as linux and the version as ubuntu(64-bit).

Allocate memory (RAM) for the VM (e.g., 2048 MB or higher based on your system's capacity).

Choose to create a virtual hard bisk now and set a sufficient disk size(e.g., 10GB).

Click create.

Step 2 :configure the network interfaces

You need two network interface on the Ubuntu server VM to act as a router between the two subnets.

- Go to settings of your new VM.
- Select network.

Adapter 1: set to internal network (name it differently, e.g., intnet). This will be your subnet.

1.click the advanced tab and set the adapter type to PCnet- FAST or another supported type. Note: within the ubuntu server terminal, this card will typically have a network adapter name of enp0s8.

Adapter 2 : Enable this adapter and set it to another internal network (name it differently, e.g., intent 1).this will be for subnet 2 within the ubuntu server terminal, this card will typically have a network adapter name of enp0s9.

Adapter 3:set to NAT. Note:within the ubuntu server terminal, this card will typically have a network adapter name of enp0s3.its IP address will be assigned via DHCP. it will be used to provide access to the internet via the host computer.

Step 3: install Ubuntu server

State the VM and select the Ubuntu server ISO as the boot disk.

Go through the installation process:

Set your time zone, keyboard layout, etc.

When asked, select the option to install OpenSSH server (to enable remote access later if needed).

Complete the installation, then reboot the VM.

Step 4: configure static lps on the network interfaces

After installation, you'll need to assign static IP addresses to both network interface(each in different subnets).

Log in to the Ubuntu server VM.

Edit the network configuration file:

Sudo nano/etc/netplan/00-installer-config.yaml

Type this code.

Save it (CTRL+X) type(yes) and enter.

Apply the network changes

- Sudo netplan apply
- Ip a

Step 5: enable IP forwording

To allow routing between the two subnets, you need to enable IP forwording.

Open the sysctl configuration file:

Sudo nano/etc/sysctl.conf

Uncomment the line (or add it if not present):

Net.ipv4.ip_forword=1

Apply the changes:

Sudo sysctl -p

Step 6: set up IP table for routing

You may also want to configure iptables to ensure packet are foeworded between the subnets.

Configured iptables to allows forwording:

- Sudo iptables -A FORWORD I enp0s3 -o enp0s8 -j ACCEPT
- Sudo iptables A FORWORD -I enp0s8 –o enp0s3 -j ACCEPT

To make the changes permanent, you can save the iptables rules:

- Sudo apt install iptables -persistent
- Sudo netfilter- persistent save
- Sudo netfilter- persistent reload

Ubuntu OS configuration Steps:

Step 1: installing Ubuntu Desktop in VM

To create a virtual machine and install a GUI -based OS from an ISO file

Launch virtual box

Click "New" to create a new machine

Fill in the details as requested so that the new machine is:

- Name "ubuntu desktop"
- The ISO name "ubuntu-24.04.1 desktop-amd64.iso" is selected
- The checkbox for "skip unattended installation" is checked.

Click "Next". Now ensure the machine has:

- o 2048mb of base memory
- Two processors

Click "next" create a virtual hard disk for the machine. This will need to be a minimum of 25GB

Click "next". Verify your settings are as above and click "finish".

Click "install ubuntu"

You need to create an ubuntu account and click a restart now.

Step 2: configure the network interfaces:

You need one network interfaces on the ubuntu desktop VM.

Go to setting of your new VM

Select Network.

Adapter1: set to interface network (name it differently, e.g., intnet).

Open ubuntu desktop in VM and login.

Go to setting >network>enp0s3 setting> IPV4 >IPV4 method change (manual)> Add address=192.168.18.2, add netmask= 255.255.255.0, add gateway =192. 168.18.1 click Apply.

BITNAMI WEB APPLICATION CONFIGURATION STEP:

To create a bitnami virtual machine using virtual box

Step 1: install bitnami application in VM.

Click "file" the "import application".

Navigate to the file name "bitnami -wordptress-6.3.1- r0 – dedian-11-amd64.ova"

Click "open".

Click" Next"

Click" finish"

Click "start" to launch the machine.

The first- time log in details is display on- screen. You will be required to reset the password on your first log in.

Close the bitnami.

Step 2: configure the network interface

Go to settinh of your new VM.

Select network.

Adapter 1:

set to interface network

Open bitnami application in VM and login.

Type the code

• Sudo nano/etc/network/interfaces

Auto enp0s3

face enp0s3 inet static

Address 192.168.118.2

Netmask 255.255.255.0

Gateway 192.168.118.1

- Save it (CTRL +X) type (yes) and enter.
- Sudo ifdown enp0s3 && sudo ifup enp0s3
- Sudo systemctl restart networking
- lpa

4.FUNCTION TEST RESULTS

Evidence that all VMs can communicate as per the design.

Ubuntu Server OS:

Network IP configuration For Ubuntu Server.

Ping Ubuntu Server to Ubuntu Desktop Using IP address 192.168.18.2.

```
bhavyasri@bhavyasri:~$ ping 192.168.18.2

PING 192.168.18.2 (192.168.18.2) 56(84) bytes of data.

64 bytes from 192.168.18.2: icmp_seq=1 ttl=64 time=1.41 ms

64 bytes from 192.168.18.2: icmp_seq=2 ttl=64 time=1.39 ms

64 bytes from 192.168.18.2: icmp_seq=3 ttl=64 time=1.32 ms

64 bytes from 192.168.18.2: icmp_seq=4 ttl=64 time=1.50 ms

64 bytes from 192.168.18.2: icmp_seq=5 ttl=64 time=1.19 ms

C64 bytes from 192.168.18.2: icmp_seq=6 ttl=64 time=1.26 ms

^C

--- 192.168.18.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5013ms

rtt min/avg/max/mdev = 1.190/1.346/1.501/0.102 ms
```

Ping Ubuntu Server to Bitnami Application Server Using IP address 192.168.118.2.

```
bhavyasri@bhavyasri:~$ ping 192.168.118.2

PING 192.168.118.2 (192.168.118.2) 56(84) bytes of data.

64 bytes from 192.168.118.2: icmp_seq=1 ttl=64 time=1.75 ms

64 bytes from 192.168.118.2: icmp_seq=2 ttl=64 time=1.59 ms

64 bytes from 192.168.118.2: icmp_seq=3 ttl=64 time=1.47 ms

64 bytes from 192.168.118.2: icmp_seq=4 ttl=64 time=1.08 ms

64 bytes from 192.168.118.2: icmp_seq=5 ttl=64 time=1.25 ms

^C

--- 192.168.118.2 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4012ms

rtt min/avg/max/mdev = 1.078/1.427/1.752/0.239 ms

bhavyasri@bhavyasri:~$
```

Ubuntu Desktop OS:

Network IP configuration For Ubuntu Desktop.

Ping Ubuntu Desktop to Ubuntu Server Using IP address 192.168.18.1.

Bitnami Application Server:

Network IP configuration For Bitnami Application Server.

```
bitnami@debian: $\( \) ip a

1: lo: \( \) LOOPBACK, UP, LOWER_UP \> \) mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6::1/128 scope host noprefixroute

valid_lft forever preferred_lft forever

2: enp0s3: \( \) CBROADCAST, MULTICAST, UP, LOWER_UP \> \) mtu 1500 qdisc fq_codel state UP group default qlen

00

link/ether 08:00:27:14:58:fe brd ff:ff:ff:ff
inet 192.168.118.2/24 brd 192.168.118.255 scope global enp0s3

valid_lft forever preferred_lft forever
inet6 fe80:a00:27ff:fe14:58fe/64 scope link

valid_lft forever preferred_lft forever
bitnami@debian: $\( \)
```

Ping Bitnami Application Server to Ubuntu Server Using IP address 192.168.118.1.

```
bitnami@debian: $\(^\$\) ping 192.168.118.1

PING 192.168.118.1 (192.168.118.1) 56(84) bytes of data.

64 bytes from 192.168.118.1: icmp_seq=1 ttl=64 time=3.41 ms

64 bytes from 192.168.118.1: icmp_seq=2 ttl=64 time=0.947 ms

64 bytes from 192.168.118.1: icmp_seq=3 ttl=64 time=1.97 ms

64 bytes from 192.168.118.1: icmp_seq=4 ttl=64 time=1.69 ms

64 bytes from 192.168.118.1: icmp_seq=5 ttl=64 time=1.33 ms

^C

--- 192.168.118.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4015ms

rtt min/avg/max/mdev = 0.947/1.868/3.412/0.844 ms

bitnami@debian: $\(^\$\)
```

The Demo Video Youtube link - https://youtu.be/cVlimRIDabl