MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Problem 1: Building Blocks

The AC schematics for four amplifiers are shown below. For each of the amplifiers, find the midband voltage gain and the -3dB frequency using the open-circuit time-constant method. Assume $\beta=200,\ I_C=2.5 \mathrm{mA},\ c_\pi=50 \mathrm{pF},\ \mathrm{and}\ c_\mu=2 \mathrm{pF}.$ Neglect r_b and r_o .

(a) Common Emitter:

(b) Emitter Follower:

(c) Common Base:

(d) C-E with Emitter Degeneration:

Problem 2: Two-transistor OCTs

For the following CB-CE amplifier, assume $V_{BE}=0.6{\rm v},~\beta=200,~c_\pi=20{\rm pF},$ and $c_\mu=2{\rm pF}.$ Neglect r_b and $r_o.$

- (a) Calculate the midband voltage gain.
- (b) Find the -3dB frequency of the amplifier using the OCT method.

Problem 3: Emitter Coupled Pairs

For the two amplifiers shown below, find the midband voltage gain and the -3dB frequency. Why does one have more bandwidth than the other?

You may assume $V_{BE}=0.6 \text{v}, \ \beta=200, \ c_{\pi}=40 \text{pF}, \ c_{\mu}=4 \text{pF}, \ \text{and neglect} \ r_b \ \text{and} \ r_o.$

(a) Single-ended Differential Pair

(b) EF-CB

Problem 4: Buffered Diff Pair

For the amplifier shown below, use the following data: $I_s=0.5 {\rm fA},~\beta=200,~c_{\mu0}=0.5 {\rm pF},~c_{je}=4 {\rm pF},~{\rm and}~f_T=500 {\rm MHz}$ at $I_C=1 {\rm mA}$ and $V_{CB}=2.5 {\rm v}.~m=0.5$ and $\Psi_0=0.7 {\rm v}$ for all junctions. Neglect r_b and r_o .

- (a) Calculate the midband voltage gain.
- (b) Find the -3dB frequency of the amplifier using the OCT method.
- (c) Verify the above results in SPICE. Turn in your SPICE input file as well as a plot showing the high-frequency roll-off.

Problem 5: Cascode Cascades

Given the following AC schematics, find the midband gain and -3dB frequency using the OCT method for each amplifier. You may assume $\beta=200,$ $c_{\mu}=2 \mathrm{pF},$ $c_{je}=5 \mathrm{pF},$ and $\tau_{F}=250 \mathrm{ps}.$ Neglect r_{b} and $r_{o}.$