优化理论与算法

第十一章 整数规划

郭加熠 助理教授

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

割平面法

为什么会引入整数变量

- ▶ 整数决策变量主要来源于对两类实际问题的建模:
 - ▶ "不可分割"的决策变量:如果变量表示的实际物体是不可以"分割"的,那么必须使用整数来建模;
 - ▶ 逻辑决策:整数变量用于描述"执行"(用 1 表示)和"不执行"(用 0 表示);

整数规划的应用领域

- ▶ 国际运筹学应用奖 Frenz Edelman Prize 自 2000 年以来,进入决赛的应用案例有 53% 使用了 (混合) 整数优化模型;
- ► 整数规划产生影响力的行业: 参考 https://smartech.gatech.edu/handle/1853/49829
 - ▶ 运输: 航空优化 (航班调度排班, 机场停机位优化, 航班恢复); 车辆道路寻优; 高铁地铁时刻表排班;
 - ▶ 供应链管理:海事库存路由管理;仓库库存管理;
 - ▶ 能源: 机组组合优化; 大规模电网调度;
 - ▶ 金融: 大规模投资组合优化;
 - ► 医疗健康: 医疗资源计划 (医生、手术室排班); 精准癌症治疗;

整数规划问题的分类

- ▶ 混合 (线性)整数规划问题: 目标函数,约束是关于决策变量的线性函数;同时存在整数决策变量和连续决策变量;
- ▶ 形式如下:

maximize
$$c^{\top}x + h^{\top}y$$
 subject to $Ax + Gy \leq b$, $x \in \mathbf{Z}_+^n, \ y \in \mathbf{R}_+^m$

- ▶ 如果不存在连续决策变量,则 称为(纯)线性整数规划;
- ► 在线性整数规划问题中,如果整数只是取值 0 或者 1,该问题被称作是 0-1整数规划问题;
- ▶ 目标函数或者约束中存在非线性函数,则该问题是非线性整数规划问题;

整数规划应用: 背包问题 (Knapsack Problem)

- ▶ 有一个体积为 b > 0 的背包;有n 个物品;每个物品的价值为 $c_k > 0$;每个物品的体积为 $a_k > 0$,k = 1, ..., n; (一般假设 $b \in \mathbf{Z}, c_k, a_k \in \mathbf{Z}, k = 1, ..., n$;)
- ▶ 问题:从 *n* 个物品里挑选一些放在背包里,如何挑选能使得价值最大?

整数规划应用: 背包问题 (Knapsack Problem)

- ▶ 有一个体积为 b > 0 的背包;有n 个物品;每个物品的价值为 $c_k > 0$;每个物品的体积为 $a_k > 0$,k = 1, ..., n; (一般假设 $b \in \mathbf{Z}, c_k, a_k \in \mathbf{Z}, k = 1, ..., n$;)
- ▶ 问题:从 n 个物品里挑选一些放在背包里,如何挑选能使得价值最大?
- ▶ 用 $x_k \in \{0,1\}$ 表示是否挑选第 k 件物品: 如果 $x_k = 1$, 第 k 件物品被选中; $x_k = 0$ 则没有选中;
- ▶ 该问题可以被建模为有"0-1" 决策变量的整数优化问题:

$$\begin{array}{ll} \underset{x_1,...,x_n}{\text{maximize}} & \sum_{k=1}^n \ c_k x_k \\ \\ \text{subject to} & \sum_{k=1}^n \ a_k x_k \leq b, \\ \\ & x_k \in \{0,1\}, \ k=1,\ldots,n. \end{array}$$

整数规划的难点: 枚举法

- ▶ 简单的枚举算法:考虑背包问题,要枚举出所有可行的解,计算 复杂度有多少?
- ▶ 使用一台具有 10 GHz 算力的超级计算机(每秒能评估 10¹⁰ 个整数解)求解背包问题;对不同规模问题的计算时间如下:

n	num. of solutions	Time Required
30	2^{30}	0.11 seconds
40	2^{40}	1.83 minutes
50	2^{50}	1.3 days
60	2^{60}	3.65 years
70	2^{70}	3741 years

▶ 求解背包问题的计算时间随着问题规模n的增长成指数增长;

整数规划的难点: 取整不一定有效

▶ 考虑下面这样一个整数规 划问题:

$$(P_1) \begin{tabular}{ll} {\sf maximize} & z=3x_1+10x_2 \\ {\sf subject to} & 2x_1+7x_2 \leq 14 \\ & x_1 \leq 6 \\ & x_1, x_2 \in {\bf Z}_+ \\ \end{tabular}$$

- ► 去除整数约束,可以得到一个近似问题;去掉整数约束的操作也被称作是"松弛"(Relax);
- ▶ 松弛后的问题是一个线性规划问题:

$$(ar{P}_1)$$
maximize $z=3x_1+10x_2$ subject to $2x_1+7x_2\leq 14$ $x_1\leq 6$ $x_1,x_2\in \mathbf{R}_+$

▶ 松弛问题的最优解: $(\bar{x}_1, \bar{x}_2) = (6, 0.285714);$ 最优值 z = 20.8671;

$$\begin{array}{ll} (\bar{P}_1) \ \underset{x_1,x_2}{\text{maximize}} & z=3x_1+10x_2\\ \\ \text{subject to} & 2x_1+7x_2 \leq 14\\ \\ & x_1 \leq 6\\ \\ & x_1,x_2 \in \mathbf{R}_+ \end{array}$$

- ▶ 松弛问题的最优解: $(\bar{x}_1, \bar{x}_2) = (6, 0.285714)$.
- ▶ 如果我们考虑将解向下取整 $(x_1,x_2) = (6,0)$,目标函数的值 是 z = 18.
- ▶ 如果我们考虑将解向上取整 $(x_1, x_2) = (6, 1)$,它不可行!
 - ▶ 问题 (P_1) 真正的最优解是 $(x_1^*, x_2^*) = (0, 2)$,而对应的最优 函数值是 $z^* = 20$ 。
 - ► 松弛后再取整的方法在这个问题 上是失效的!

整数规划问题难点总结

- ▶ 大部分的整数规划问题都是 NP-complete 或者 NP-hard, 这意味着这些问题和"一般的组合优化问题"一样困难;
- ▶ 使用取整法得到的解可能是无效的 (非最优解或者不是可行解);
- ▶ 线性松弛的最优解和原问题的最优解可能相差很远(除了少数特殊情况);
- ▶ 一般求解整数规划问题会比线性规划问题困难得多;

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

割平面法

如何表达逻辑关系: 引入额外的 0-1 变量

在实际问题中, 总是存在一些逻辑关系, 为建模带来困难, 比如:

▶ 或者-或者(Either-or): 两个约束中至少有一个要成立:

或者
$$3x_1 + 2x_2 \le 18$$
 或者 $x_1 + 4x_2 \le 16$.

▶ 如果-那么(If-then):如果一个约束成立,则另一个成立:

如果
$$3x_1 + 2x_2 \le 18$$
 那么 $x_1 + 4x_2 \le 16$.

为了表达这些逻辑关系,我们需要引入额外的 0-1 变量,并且使用大M 法。

或者-或者

假设问题中的一个约束是:

或者
$$a_1^T x - b_1 \le 0$$
 或者 $a_2^T x - b_2 \le 0$. (1)

假设x属于一个紧集 \mathcal{X} 中,我们取一个足够大的常数M,使得

$$M \geq \max_{x \in \mathcal{X}} \left\{ a_1^\mathsf{T} x - b_1, a_2^\mathsf{T} x - b_2 \right\}.$$

同时引入一个 0-1 变量 $y \in \{0,1\}$:

▶ y = 0 表示第一个不等式成立; y = 1 表示第二个不等式成立。那么,约束(1)可以等价地表示为

$$a_1^T x - b_1 \le My$$

 $a_2^T x - b_2 \le M(1 - y)$
 $y \in \{0, 1\}.$

一般情形: N 个中至少有 K 个成立

给定 N 个不等式 $a_i^T x \leq b_i$, $i = 1, \dots, N$ 。问题的一个约束是

取一个足够大的常数 M,使 $M \ge \max_{1 \le i \le L} \max_{x \in \mathcal{X}} \left\{ a_i^T x - b_i \right\}$. 同时,我们引入 N 个 0-1 变量 $y_i \in \{0,1\}, i = 1, \dots, N$,

▶ $y_i = 1$ 表示第 i 个不等式成立,否则 $y_i = 0$, $i = 1, 2, \dots, N$.

那么,约束(2)可以等价地表示为

$$a_i^T x - b_i \le M(1 - y_i) \ \forall \ i = 1, 2, \dots, N$$

$$\sum_{i=1}^{N} y_i = K$$
 $y_i \in \{0, 1\} \ \forall \ i = 1, 2, \dots, N.$

(2)

示例:有限个可能取值的函数

考虑这样一种约束,一个给定的函数只能取 N 个给定的值,也就是说,

$$f(x) = d_1$$
, 或者 d_2 , · · · · ,或者 d_N . (3)

为了表达这个约束,引入一组 0-1 变量 $y_i \in \{0,1\}, i = 1, ..., N$: $y_i = 1$ 表示 $f(x) = d_i$,否则 $y_i = 0$ 。那么,约束(3)可表述为

$$f(x) = \sum_{i=1}^{N} d_i y_i$$
$$\sum_{i=1}^{N} y_i = 1$$
$$y_i \in \{0, 1\} \ \forall \ i = 1, 2, \dots, N.$$

如果-那么

假设问题中的一个约束是:

如果
$$a_1^T x - b_1 \le 0$$
 那么 $a_2^T x - b_2 \le 0$. (4)

 $M \ge \max_{x \in \mathcal{X}} \left\{ a_1^T x - b_1, a_2^T x - b_2 \right\}.$ 同时引入两个 0-1 变量 $y_1, y_2 \in \{0, 1\}$: $y_i = 1$ 表示第 i 个不等式成立,否则 $y_i = 0$ 。那么,约束(4)可以等价地表示为

假设 x 属于一个紧集 \mathcal{X} 中,我们取一个足够大的常数 M,使得

$$a_1^T x - b_1 \le M(1 - y_1)$$

 $a_2^T x - b_2 \le M(1 - y_2)$
 $y_2 \ge y_1$
 $y_1, y_2 \in \{0, 1\}.$

一般情形: 如果 N 个条件成立, 那么

假设问题中的一个约束是:

如果
$$a_i^T x \le b_i, i = 1, \dots, N$$
, 那么 $a_{N+1}^T x \le b_{N+1}$. (5)

取一个足够大的常数 M,使 $M \ge \max_{1 \le i \le N+1} \max_{x \in \mathcal{X}} \left\{ a_i^T x - b_i \right\}$. 同时,我们引入 N+1 个 0-1 变量 $y_i \in \{0,1\}, i=1,\cdots,N,$: $y_i = 1$ 表示第 i 个不等式成立,否则 $y_i = 0$, $i=1,2,\cdots,N+1$. 那么,约束(5)可表示为

$$a_i^T x - b_i \le M(1 - y_i) \ \forall \ i = 1, 2, \dots, N + 1$$

$$y_{N+1} \ge \sum_{i=1}^{N} y_i - N + 1$$

$$y_i \in \{0, 1\} \ \forall \ i = 1, 2, \dots, N + 1.$$

应用: 固定成本问题

假设某个产品在第 t 期的

- ▶ 单位生产成本为 p_t;
- ▶ 固定生产成本为 ft。

用 x_t 表示第 t 期的计划生产量,则第 t 期的总的生产成本为

$$f_t(x_t) = \begin{cases} p_t x_t + f_t & \text{if } x_t > 0 \\ 0 & \text{if } x_t = 0 \end{cases}$$

这是一个分段线性函数,引人 0-1 变量 $y_t \in \{0,1\}$:

$$y_t = \begin{cases} 1 & \text{if } x_t > 0 \\ 0 & \text{if } x_t = 0 \end{cases}$$

于是, 第 t 期的总的生产成本为

$$f_t(x_t) = p_t x_t + f_t y_t.$$

取足够大的 M,使得 $M \ge x_t$, $t = 1, 2, \ldots$,考虑这个约束

$$x_t \leq My_t$$

它保证了

- ▶ 如果 $x_t > 0$, 则 $y_t = 1$;
- ▶ 如果 $x_t = 0$, 则 $y_t = 0$ or 1;
- ▶ 我们的目标是最小化生产成本, 所以 $x_t = 0$ 时 $y_t = 0$ 自然成立。

两个 0-1 变量的乘积的线性化

考虑一个函数

$$f(x,y) = x \cdot y$$
 其中 $x, y \in \{0,1\}.$

f(x,y) 是一个非线性函数,但我们可以将其线性化。首先,引入额外的整数变量 z:

$$z = x \cdot y \iff \begin{cases} z \in \{0, 1\}, \\ z \le x, \\ z \le y, \\ z \ge x + y - 1. \end{cases}$$
 (6)

那么, $f(x,y) = x \cdot y$ 可以等价表示为 f(x,y) = z, 并且 z 满足(6)。

多个 0-1 变量的乘积的线性化

考虑一个更一般的函数

$$f(x) = \prod_{i=1}^{n} x_i$$
 其中 $x_i \in \{0, 1\}, i = 1, 2, \dots, n.$

f(x) 同样可以被线性化,因为

$$z = \prod_{i=1}^{n} x_i \iff \begin{cases} z \in \{0, 1\}, \\ z \leq x_i, i = 1, 2, \cdots, n, \\ z \geq \sum_{i=1}^{n} x_i - n + 1. \end{cases}$$
 (7)

那么, $f(x) = \prod_{i=1}^{n} x_i$ 可以等价表示为 f(x,y) = z, 并且 z 满足(7)。

0-1 变量和连续变量乘积的线性化

考虑一个函数

$$f(x,y) = x \cdot y$$
 其中 $x \in \{0,1\}, y \in \mathbf{R}$.

f(x,y) 是一个非线性函数,但我们可以将其线性化。 假设 y 非负有界,也就是说 $y \in [0, C]$,引入额外的连续变量 z:

$$z = x \cdot y \iff \begin{cases} z \in [0, C], \\ z \le Cx, \\ z \le y, \\ z \ge y + C(x - 1). \end{cases}$$
 (8)

 $f(x,y) = x \cdot y$ 可以表示为 f(x,y) = z, 并且 z 满足(8)。 如果 $y \in [-C, C]$, 让 $\widetilde{y} = y + C$, 而 $f(x,y) = x \cdot \widetilde{y} - Cx$ 。

多个 0-1 变量和一个连续变量乘积的线性化

考虑一个更一般的函数

$$f(x,y) = y \cdot \prod_{i=1}^{n} x_i$$
 其中 $y \in \mathbf{R}, x_i \in \{0,1\}, i = 1, 2, \dots, n.$

假设 $y \in [0, C]$, 引入额外的连续变量 z:

$$z = y \cdot \prod_{i=1}^{n} x_{i} \iff \begin{cases} z \in [0, C], \\ z \leq Cx_{i}, i = 1, 2, \cdots, n, \\ z \leq y, \\ z \geq y + C\left(\sum_{i=1}^{n} x_{i} - n\right). \end{cases}$$
(9)

$$f(x,y) = y \cdot \prod_{i=1}^{n} x_i$$
 可以等价表示为 $f(x,y) = z$, 并且 z 满足(9)。
假设 $y \in [-C, C]$, 让 $\widetilde{y} = y + C$, 而 $f(x,y) = \widetilde{y} \cdot \prod_{i=1}^{n} x_i - C \cdot \prod_{i=1}^{n} x_i$.

例子: 两个有限可能取值函数的乘积

▶ 考虑两个只能取有限个给定值的函数,

$$f(x) = \sum_{i=1}^{N} d_i y_i, \quad \sum_{i=1}^{N} y_i = 1, \quad y_i \in \{0, 1\} \ \forall \ i = 1, 2, \dots, N;$$
$$g(x) = \sum_{j=1}^{M} c_j z_j, \quad \sum_{j=1}^{M} z_j = 1, \quad z_j \in \{0, 1\} \ \forall \ j = 1, 2, \dots, M.$$

▶ 那么,两个函数的乘积

$$f(x)g(x) = \sum_{i=1}^{N} \sum_{j=1}^{M} d_i c_j \cdot y_i z_j$$

例子: 两个有限可能取值函数的乘积

ightharpoonup 虽然 f(x)g(x) 不再是线性的,我们可以将它等价地表述为

$$f(x)g(x) = \sum_{i=1}^{N} \sum_{j=1}^{M} d_i c_j \cdot w_{ij},$$

$$w_{ij} \leq y_i,$$

$$w_{ij} \leq z_j,$$

$$w_{ij} \geq y_i + z_j - 1.$$

$$\sum_{i=1}^{N} y_i = 1, \sum_{j=1}^{M} z_j = 1,$$

$$y_i, z_j, w_{ij} \in \{0, 1\} \ \forall \ i, j.$$

应用:分段线性函数的表达

一种商品的价格结构如下:前 100 件的价格为每件 10 美元,之后 200 件的价格为每件 9 美元,再之后 200 件的价格为每件 6 美元。假设最多可以购买 500 件。令x表示购买的件数,f(x)表示购买x件对应的总价。

f(x) 可以显式地写成

$$f(x) = \begin{cases} 10x & \text{if } 0 \le x \le 100 \\ 100 + 9x & \text{if } 100 \le x \le 300 \\ 1000 + 6x & \text{if } 300 \le x \le 500 \end{cases}$$

应用:分段线性函数的表达

如何表达这个分段线性函数?首先,引入三个额外的0-1变量:

- ▶ $w_1 = 1$ 表示 $0 \le x \le 100$, 否则 $w_1 = 0$
- ▶ $w_2 = 1$ 表示 $100 \le x \le 300$, 否则 $w_2 = 0$
- ▶ $w_3 = 1$ 表示 $300 \le x \le 500$, 否则 $w_3 = 0$

这样, f(x) 可以写成

$$f(x) = 10xw_1 + (100 + 9x)w_2 + (1000 + 6x)w_3$$

同时, w_1, w_2, w_3 满足约束: $w_1 + w_2 + w_3 = 1$, $w_i \in \{0, 1\} \ \forall \ i = 1, 2, 3$

$$0 \le xw_1 \le 100w_1$$
, $100w_2 \le xw_2 \le 300w_2$, $300w_3 \le xw_3 \le 500w_3$

- ▶ 第二个约束保证了,如果 \times 在第 i 个区间,则 $w_i = 0$ 对于 $j \neq i$;
- ▶ 结合第一个约束,如果 x 在第 i 个区间,则有 $w_i = 1$ 。

应用:分段线性函数的表达

进一步线性化,引入三个新的连续变量:

$$x_1 = xw_1, \quad x_2 = xw_2, \quad x_3 = xw_3.$$

于是, f(x) 可以写成

$$f(x) = 10x_1 + (100w_2 + 9x_2) + (1000w_3 + 6x_3)$$

同时, $w_1, w_2, w_3, x_1, x_2, x_3$ 满足约束:

$$w_1 + w_2 + w_3 = 1$$
, $w_i \in \{0, 1\} \ \forall \ i = 1, 2, 3$
 $0 \le x_1 \le 100w_1$, $100w_2 \le x_2 \le 300w_2$, $300w_3 \le x_3 \le 500w_3$
 $x = x_1 + x_2 + x_3$

最大值算符

取有限个元素的最大值是建模中常见的运算(出现在目标函数或者出现 在约束中)。考虑如下运算:

$$z = \max_{i \in \mathbb{I}} \{x_i\}$$
 for $\mathbb{I} := \{1, 2, \dots, n\}$ (10)

引入一组 0-1 变量 $y_i \in \{0,1\}, i = 1, ..., n$, 上述运算(10) 可表示为

$$z \geq x_i, \forall i \in \mathbb{I},$$

$$z \le x_i + M \cdot y_i, \ \forall \ i \in \mathbb{I}, \tag{11}$$

$$\sum_{i\in\mathbb{I}} y_i \le n-1. \tag{12}$$

当运算 (10) 出现在目标函数,并且是取极小值 $\min z$,则在上述等价变换中无需引入 $\{y_i\}$ 以及约束 (11) 和 (12).

最小值算符

取有限个元素的最小值:

$$z = \min_{i \in \mathbb{I}} \{x_i\} \quad \text{for } \mathbb{I} := \{1, 2, \dots, n\}$$
 (13)

引入变量 0-1 变量 $y_i \in \{0,1\}, i=1,\ldots,n$, 上述运算 (13) 可表示为

$$z \leq x_i, \forall i \in \mathbb{I},$$

$$z \ge x_i - M \cdot y_i, \ \forall \ i \in \mathbb{I}, \tag{14}$$

$$\sum_{i\in\mathbb{I}}y_i\leq n-1. \tag{15}$$

当运算 (13) 出现在目标函数,并且是取极大值 $\max z$,则在上述等价变换中无需引入 $\{y_i\}$ 以及约束 (14) 和 (15).

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

分支定界法介绍 分支定界算法求解二元整数规划 分支定界算法求解一般整数规划 分支定界算法中的启发式策略

割平面法

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

分支定界法介绍

分支定界算法求解二元整数规划 分支定界算法求解一般整数规划 分支定界算法中的启发式策略

割平面法

分支定界法介绍

- ▶ 分支定界算法 (Branch and Bound Method) 采用"分而治之 (Divide and Conquer)"的思想,将原问题分解为子问题求解;通过比较"下界"和当前可行解提供的"上界"来减小穷举所有解的可能性。
- ▶ 考虑如下问题:

$$(P) \ z^* = \min_{x} \ \big\{ \ c^T x \mid x \in S \big\}.$$

▶ 分而治之的理念:将问题 (P)分解为一系列更小规模的问题。

分支定界算法: 隐式枚举

性质: 可行集分解与上下界 考虑问题 (P), 令 S 的分解为 $S = S_1 \cup S_2 ... \cup S_N$; 令第 $k \in \{1,...,N\}$ 个子问题的最优值为, $z^k = \min \{ c^\top x \mid x \in S_k \}$, 则下面结论成立:

- (a) 原问题的最优值为 $z^* = \min_{k=1,...,N} z^k$;
- (b) 令 \bar{z}^k 和 \underline{z}^k 为第 k 个子问题最优值的上界和下界;则 $\bar{z} = \min_{k=1,...,N} \bar{z}^k$ 是原问题最优值的上界; $\underline{z} = \min_{k=1,...,N} \underline{z}^k$ 是原问题最优值的下界。

分而治之 (Divide and Conquer)

- ▶ 考虑例子: $S = \{0, 1\}^3$, 存在一个分解 $S_0 = \{x \in S | x_1 = 0\}$ 和 $S_1 = \{x \in S | x_1 = 1\}$.
- ► S_0 可以被进一步分解为 $S_{00} = \{x \in S | x_1 = 0, x_2 = 0\}$ 和 $S_{01} = \{x \in S | x_1 = 0, x_2 = 1\}.$

分支定界算法

分支定界算法有三个基本步骤 (以原问题为最大化目标函数为例): 分支为选择一个尚未解决的子问题,并将其分为一系列更小的子问题; 定界求解一个子问题最优值的下界:例如使用连续松弛; 剪支对该子问题停止进一步分支。剪支通常使用如下三个准则:

- ▶ 当子问题不可行 (Infeasible);
- ▶ 当前子问题找到一个整数最优解,对比更新当前最好的解;
- ▶ 当前子问题找到一个分数最优解,与当前最优值比较决定是否剪 支或分支。

景

整数规划介绍与难点

整数规划的建模

分支定界算法

分支定界法介绍

分支定界算法求解二元整数规划 分支定界算法求解一般整数规划 分支定界算法中的启发式策略

割平面法

分支定界算法求解二元整数规划例子: 0-1 背包问题

考虑如下 0-1 背包问题 (最小化形式):

$$\label{eq:subject} \begin{array}{ll} \min & -8x_1 - 11x_2 - 6x_3 - 4x_4 \\ \\ \text{subject to} & 5x_1 + 7x_2 + 4x_3 + 3x_4 \leq 14 \\ \\ & x \in \{0,1\}^4. \end{array}$$

- ▶ 线性松弛解是 x = (1, 1, 0.5, 0),其最优值为 -22,该解并不是整数解;
- ▶ 选择 x₃ 来分支(因为它是非整数变量);
- ▶ 进一步的子问题分别为 $x_3 = 0$ 和 $x_3 = 1$;

例子: 0-1 背包问题

▶ 搜索树为

- ▶ 两个子问题的线性松弛解是
 - ▶ (P_1) : $x_3 = 0$, 最优解为 x = (1, 1, 0, 0.667), 最优值为 -21.67;
 - ▶ (P_2) : $x_3 = 1$, 最优解为 x = (1, 0.714, 1, 0), 最优值为 -21.85.
- ▶ 此时可知最优值不小于 -21.85 (应该 ≥ -21)。
- ▶ 由于仍然没有任何可行的整数解;将选择一个子问题并在其中一个变量上进行分支(可以选择(P₂)子问题);

例子: 0-1 背包问题

选择 $x_3 = 1$ 的节点,并且对 x_2 进行分支。搜索树为

两个子问题的线性松弛解是

- ▶ (P_3) : $x_3 = 1$, $x_2 = 0$, 最优解为 x = (1, 0, 1, 1), 最优值为 -18;
- ▶ (P_4) : $x_3 = 1$, $x_2 = 1$, 最优解为 x = (0.6, 1, 1, 0), 最优值为 -21.8.

例子: 0-1 背包问题

选择 $x_3 = 1$, $x_2 = 0$ 的节点,并且对 x_1 进行分支。搜索树为

- ▶ (P5): $x_3 = 1$, $x_2 = 0$, $x_1 = 0$, 最优解为 x = (0, 1, 1, 1), 最优值为-21;
- ► (P6): $x_3 = 1$, $x_2 = 1$, $x_1 = 1$, 无可行解。

最优解为 $x^* = (0, 1, 1, 1)$ 。原最大 化问题的最优值为 21。

$$(P_5)$$
: (P_6) : $x_3 = 1, x_2 = 1, x_1 = 0$ $x_3 = 1, x_2 = 1, x_1 = 1$ infeasible

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

分支定界法介绍 分支定界算法求解二元整数规划

分支定界算法求解一般整数规划

分支定界算法中的启发式策略

割平而法

分支定界求解一般整数优化问题

针对"0-1" 二元整数变量的分支定界算法可推广到一般整数优化问题;

假设子问题线性松弛解为 $x = (x_1, x_2, \dots, x_n)$ 中至少有一个非整数分量

(否则找到了可行解);假设这个非这整数变量为 x_i ;

可以将子问题分为: $x_i \leq \lfloor x_i \rfloor$ 和 $x_i \geq \lceil x_i \rceil$ 两个子问题;

若存在多个非整数变量,需要分支的变量可根据如下规则选择:

$$i^* = \arg\max_{j \in N^*} \left\{ \min \left(x_j - \lfloor x_j \rfloor, \lceil x_j \rceil - x_j \right) \right\}$$

其中, $N^* \subset \{1, 2, 3, ..., n\}$ 表示松弛解为非整数的集合;

例子:一般整数规划

考虑如下问题:

$$(P_0) \quad \min \quad -5x_1-4x_2$$
 subject to
$$x_1+x_2 \leq 5$$

$$10x_1+6x_2 \leq 45$$

$$x_1,x_2 \in \mathbb{Z}_+$$

松弛问题: 令 $x_1, x_2 \in \mathbb{R}_+$; 求解线性规划问题; 最优值为 $z^* = -95/4$; 最优解为 $(x_1, x_2) = (15/4, 5/4)$ 因为 $x_1 = 15/4$,且 3 < 15/4 < 4,生成两个分支(即两个子问题) $x_1 < 3$ 和 $x_1 > 4$:

- ▶ 子问题 (P_1): 初始约束加上约束 $x_1 \le 3$;
- ▶ 子问题 (P_2): 初始约束加上约束 $x_1 \ge 4$;

线性松弛子问题 (P1)

▶ 线性松弛子问题 (P₁) 为:

$$\begin{array}{ll} (P_1) & \min & -5x_1-4x_2\\ \\ \text{subject to} & x_1+x_2 \leq 5\\ \\ & 10x_1+6x_2 \leq 45\\ \\ & x_1 \leq 3\\ \\ & x_1,x_2 \in \mathbb{R}_+ \end{array}$$

- ▶ 当前节点无需继续分支(整数解,已找到该子问题的最优解)。

线性松弛子问题 (P_2)

$$\begin{array}{ll} (P_2) & \min & -5x_1-4x_2\\ \\ \text{subject to} & x_1+x_2 \leq 5\\ \\ & 10x_1+6x_2 \leq 45\\ \\ & x_1 \geq 4\\ \\ & x_1,x_2 \in \mathbb{R}_+ \end{array}$$

- ▶ 最优值为 $z^* = -70/3$, 最优解为 $(x_1^*, x_2^*) = (4, 5/6)$;
- ▶ 当前节点需要继续分支(因为该子问题的最优解 -70/3 小于目前的最优整数解 -23);
- ▶ 为子问题 (P_2) 创建分支: 因为 $x_2 = 5/6$, 生成两个分支 $x_2 \le 0$ 和 $x_2 \ge 1$.

线性松弛子问题 (P3)

▶ 线性松弛子问题 (*P*₃) 为:

$$(P_3) \ \, \min \ \, -5x_1-4x_2 \\ \mbox{subject to} \ \, x_1+x_2 \leq 5 \\ \mbox{} 10x_1+6x_2 \leq 45 \\ \mbox{} x_1 \geq 4 \\ \mbox{} x_2 \leq 0 \\ \mbox{} x_1,x_2 \in \mathbb{R}_+ \\ \mbox{} \end{tabular}$$

Root:
$$z^* = -95/4$$

$$(x_1, x_2) = (15/4, 5/4)$$

$$(P_1): x_1 \le 3$$

$$z^* = -23$$

$$(P_2): x_1 \ge 4$$

$$z^* = -70/3$$

$$(P_3): x_2 \le 0$$

$$z^* = -45/2$$

$$(P_4): x_2 \ge 1$$

- ▶ 最优值为 $z^* = -45/2$, 最优解为 $(x_1^*, x_2^*) = (9/2, 0)$;
- ▶ 当前节点无需继续分支,因为 $z = -45/2 = -22.5 > z^* = -23.$

线性松弛子问题 (P_4)

$$\begin{array}{lll} & \min & -5x_1 - 4x_2 \\ & \text{subject to} & x_1 + x_2 \leq 5 \\ & & 10x_1 + 6x_2 \leq 45 \\ & & x_1 \geq 4 \\ & & x_2 \geq 1 \\ & & x_1, x_2 \in \mathbb{R}_+ \end{array} \qquad \begin{array}{ll} & \text{Root:} z^* = -95/4 \\ & (x_1, x_2) = (15/4, 5/4) \\ & (P_1): \ x_1 \leq 3 \\ & z^* = -23 \end{array} \qquad \begin{array}{ll} & (P_2): \ x_1 \geq 4 \\ & z^* = -70/3 \end{array}$$

- ▶ 该子问题无可行解,因此当前节点无需继续分支;
- ▶ 因为没有需要继续分支的子问题,所以最优解为 $(x_1^*, x_2^*) = (3, 2)$,最优值为 $z^* = -23$.

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

分支定界法介绍 分支定界算法求解二元整数规划

分支定界算法求解一般整数规划

分支定界算法中的启发式策略

割平面法

分支定界算法中的启发式策略: 松弛问题的求解算法

本节提出的方法主要针对线性整数规划问题;

算法选择: 线性规划问题可以使用内点法或单纯形算法求解:

- ► 子节点的求解一般可以采用"热启动"策略,即利用父节点解的信息来加速求解;
- ▶ 子节点更适合使用单纯形算法求解松弛问题;
- ▶ 在根节点一般采用内点法求解;

选择哪个节点进行探索?

- ▶ 分支定界法的一个关键部分是选择下一个要处理的子问题的策略。
- ▶ 目标: (1) 最小化整体求解时间; (2) 快速找到一个好的可行解。
- ▶ 一些常用的搜索策略:
 - ▶ 最优优先 (Best First)
 - ► 深度优先 (Depth First)
 - ► 混合策略 (Hybrid Strategies)

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

割平面法

凸包和有效不等式 Gomory 割平面法

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

割平面法

凸包和有效不等式

Gomory 割平面法

有效不等式

有效不等式: 对于整数规划,不消除任何可行整数解的约束都称为有效 不等式

max
$$z = 3x + 4y$$

s.t. $5x + 8y \le 24$
 $x, y \ge 0$ 且为整数

- ▶ 考虑 x ≤ 5 是否为有效不等式
- ▶ 考虑 x ≤ 4 是否为有效不等式

有效不等式: 例子

- ▶ 有效不等式也被称为切割平面 (cutting plane) 或切割 (cut)
- ► **目的**:希望能够消除部分松弛线性规划可行区域

凸包

整数规划可行域的凸包:包含所有整数解的最小线性规划可行域

凸包与有效不等式

- $\Rightarrow S = \{ x \in \mathbf{Z}_+^n | Ax \le b \}$
- ► IP 问题:

min
$$\{c^T x | x \in S\}$$
 等价于

$$\min \{c^T x | x \in conv(S)\}$$

- ▶ 凸包 conv(S) 可以表示为 $conv(S) = \{x \in \mathbb{R}_+^n | \tilde{A}x \leq \tilde{b} \}$
- ► 需要大量的不等式来描述 conv(S)。
- ▶ 凸包可以由有效不等式构成。

例: 考虑集合 $X = \{x \in \{0,1\}^5 \mid 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \le -2\}$

证明 $x_2 + x_4 \ge 1$ 和 $x_1 \le x_2$ 是 X 的有效不等式

寻找更好下界的方法

- **▶ 尝试找到完整的凸包**(几乎不可能)
 - ▶ 约束太多
 - ▶ 约束太难找到
- ▶ 找到凸包中有用约束(非常难)
 - ▶ 有效消除线性规划最优解时
 - ▶ 当可以做到时,效果很好(例如旅行商问题,等等)
 - ▶ 通常,太难做到
- ▶ 找到有用的有效不等式(可行,但需要技巧)
 - ▶ 在实际中非常广泛使用
 - ▶ 一个很好的求解方法

目录

整数规划介绍与难点

整数规划的建模

分支定界算法

割平面法

凸包和有效不等式

Gomory 割平面法

Gomory 切割

Gomory 切割是为整数规划添加有效不等式的通用方法

- ▶ Gomory 切割对于提供有效不等式非常有用。
- ► Gomory 切割可以从 LP 松弛的最优表的单个约束中获得的。
- ▶ 假设这里所有变量都必须是整数值。

例 1: 所有左侧系数都在 0 和 1 之间。

$$.2x_1 + .3x_2 + .3x_3 + .5x_4 + x_5 = 1.8$$
 (1)

有效不等式 (忽略 x5 的贡献):

$$.2x_1 + .3x_2 + .3x_3 + .5x_4 \ge .8$$
 (2)

Gomory 切割: 一般情况

例 2: 一般情况

$$1.2x_1 - 1.3x_2 - 2.4x_3 + 11.8x_4 + x_5 = 2.9$$
 (1)

向下取整(注意负数):

$$x_1 - 2x_2 - 3x_3 + 11x_4 + x_5 \le 2 \quad (2)$$

有效不等式: 从 (1) 减去 (2):

$$.2x_1 + .7x_2 + .6x_3 + .8x_4 \ge .9 \quad (3)$$

有效不等式的系数是:

- ▶ (1) 的小数部分
- ▶ 非负数

另一个 Gomory 切割例子

$$x_1 - 2.9x_2 - 3.4x_3 + 2.7x_4 = 2.7$$
 (1)

向下取整

$$x_1 - 3x_2 - 4x_3 + 2x_4 \le 2 \quad (2)$$

然后从 (1) 减去 (2) 得到 Gomory 切割

$$.1x_2 + .6x_3 + .7x_4 \ge .7$$
 (3)

注意: 负系数也会向下取整。

Gomory 切割练习

$$1.6x_1 -4.7x_2 +3.2x_3 -1.4x_4 +x_5 = 9.4$$

Gomory 切割是什么?

1.
$$x_1 - 4x_2 + 3x_3 - x_4 + x_5 \le 9$$

2.
$$x_1 - 5x_2 + 3x_3 - 2x_4 + x_5 \le 9$$

3.
$$.6x_1 - .7x_2 + .2x_3 - .4x_4 \ge .4$$

4.
$$.6x_1 + .3x_2 + .2x_3 + .6x_4 \ge .4$$

5. 以上都不是

Gomory 割平面法: Chvátal-Gomory 过程

- ▶ 问题:
 - ▶ 如何找到好的或有用的有效不等式?
 - ▶ 如何利用有效不等式解决整数规划问题?
- ▶ 对有效不等式应用 Chvátal-Gomory 方法,

$$X=\{x\in \mathrm{Z}^n_+\ |\ Ax\leq b\}\,,\ \not\boxplus \pitchfork\ A=(A_1,\dots,A_n)$$

- (i) 替代: $\sum_{j=1}^{n} \mu^{\mathsf{T}} A_j x_j \leq \mu^{\mathsf{T}} b$, $\mu \geq 0$
- (ii) 取整: $\sum_{j=1}^{n} \lfloor \mu^T A_j \rfloor x_j \leq \mu^T b$
- (iii) 有效不等式: $\sum_{j=1}^{n} \lfloor \mu^T A_j \rfloor x_j \leq \lfloor \mu^T b \rfloor$

构成 X 凸包的每个有效不等式可以通过执行有限次 Chvátal-Gomory 过程得到

整数规划的 Gomory 割平面法

▶ 整数规划问题:

$$\min \{c^T x \mid x \in \mathbf{Z}_+^n, Ax = b\}.$$

- ▶ 直接从单纯性表中创建有效不等式(割平面)。
- ▶ 给定 LP (最优的) 基 B, IP 可以写作

minimize
$$c_B^TA_B^{-1}b+\sum_{j\in N}\bar{c}_jx_j$$
 subject to
$$(x_B)_i+\sum_{j\in N}\bar{a}_{ij}x_j=\bar{b}_i,\quad i=1,2,...m$$

$$x_i\in \mathbf{Z}_+^1,\ j=1,2,...n$$

65 / 74

 $\bar{z} > 0$: $c N \bar{b} > 0$: 1

为什么存在 Gomory 切割

- ▶ 如果最终表中的右侧是整数,则基本可行解是整数,我们已经解决了线性规划。
- ▶ 否则,右侧存在一个非整数。
- ▶ 如果此约束左侧的所有系数都是整数,则无法满足约束,该问题不可行。
- ▶ 因此, 左侧存在至少有一个或多个分数系数。
- ► 所有这些都是非基本变量的系数,用于 Gomory 切割时,至少消除当前分数解。

例 1: Gomory 割平面法

▶ 例 1: 考虑如下问题

$$\begin{array}{ll} \text{minimize} & -5x_1-8x_2\\ \\ \text{subject to} & x_1+x_2 \leq 6\\ \\ & 5x_1+9x_2 \leq 45\\ \\ & x_1,x_2 \in \mathbf{Z}_+ \end{array}$$

▶ 最优单纯形表

	x_1	x_2	<i>X</i> ₃	x_4	Ь
В	0	0	1.25	0.75	41.25
x_1	1	0	2.25	-0.25	2.25
<i>x</i> ₂	0	1	-1.25	0.25	3.75

▶ 表中第二行的 Gomory 割为:

▶ 最优单纯形表

	x_1	x_2	<i>x</i> ₃	x_4	Ь
В	0	0	1.25	0.75	41.25
x_1	1	0	2.25	-0.25	2.25
x_2	0	1	-1.25	0.25	3.75

▶ 表中第二行的 Gomory 割为:

$$0.75x_3 + 0.25x_4 \ge 0.75$$

▶ 由于 $x_3 = 6 - (x_1 + x_2)$,且 $x_4 = 45 - (5x_1 + 9x_2)$,Gomory 割等价于

$$2x_1 + 3x_2 \le 15$$

▶ 修改后的可行集为

- ▶ 分式最优解 x = (2.35, 3.75) 不在割平面上,所以从新的可行域移除了。
- ▶ 修改后的可行域的边界点是整数。

▶ 例题 2

minimize
$$-4x_1+x_2$$
 subject to
$$7x_1-2x_2\leq 14$$

$$x_2\leq 3$$

$$2x_1-2x_2\leq 3$$

$$x_1,x_2\in \mathbf{Z}_+$$

▶ 最优单纯性表:

x_1	x_2	x_3	x_4	<i>X</i> ₅	b
0	0	$\frac{4}{7}$	$\frac{1}{7}$	0	$-\frac{59}{7}$
1	0	$\frac{1}{7}$	$\frac{2}{7}$	0	$\frac{20}{7}$
0	1	0	1	0	3
0	0	$-\frac{2}{7}$	$\frac{10}{7}$	1	$\frac{23}{7}$

表中第一行对应的 Gomory 割为:

$$\frac{1}{7}x_3 + \frac{2}{7}x_4 \ge \frac{6}{7}.$$

▶ 再次优化:

x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	Ь
0	0	0	0	$\frac{1}{2}$	3	$-\frac{15}{2}$
1	0	0	0	0	1	2
0	1	0	0	$-\frac{1}{2}$	1	$\frac{1}{2}$
0	0	1	0	-1	-5	1
0	0	0	1	$\frac{1}{2}$	6	$\frac{5}{2}$

表中第二行对应的 Gomory 割为:

$$\frac{1}{2}x_5 \geq \frac{1}{2}.$$

▶ 重新优化:

x_1	x_2	<i>X</i> ₃	x_4	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	Ь
0	0	0	0	0	3	1	-7
1	0	0	0	0	1	0	2
0	1	0	0	0	1	-1	1
0	0	1	0	0	-5	-2	2
0	0	0	1	0	6	1	2
0	0	0	0	1	0	-1	1

完成! 最优解为 $x^* = (2,1)$.