

ML1350 Monolithic IF Amplifier

Legacy Device: Motorola MC1350

The ML1350 is an integrated circuit featuring wide range AGC for use as a linear IF amplifier in AM radio, shortwave, TV and instrumentation.

• Power Gain: 50 dB Typ at 45 MHz

50 dB Typ at 58 MHz

• AGC Range: 60 dB Min, DC to 45 MHz

 Nearly Constant Input & Output Admittance over the Entire AGC Range

• Y21 Constant (-3.0 dB) to 90 MHz

Low Reverse Transfer Admittance: << 1.0 μmho Typical

• 12 V Operation, Single-Polarity Power Supply

• Operating Temperature Range $T_A = 0^\circ$ to $+75^\circ$ C

Note: See ML1490 Similar Function

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+18	Vdc
Output Supply Voltage	V ₁ , V ₈	+18	Vdc
AGC Supply Voltage	VAGC	V+	Vdc
Differential Input Voltage	V _{in}	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above 25°C	P _D	625 5.0	mW mW/°C
Operating Temperature Range	T _A	0 to +75	°C

Note: Lansdale lead free (**Pb**) product, as it becomes available, will be identified by a part number prefix change from **ML** to **MLE**.

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V^+ = +12 \ Vdc, \ T_A = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$

Characteristics		Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.0 V) (Figure 1)		60	68	_	dB
Power Gain (Pin 5 grounded via a 5.1 k Ω resistor) $f = 58 \text{ MHz}, \text{ BW} = 4.5 \text{ MHz} \qquad \text{See Figure 6(a)}$ $f = 45 \text{ MHz}, \text{ BW} = 4.5 \text{ MHz} \qquad \text{See Figure 6(a)}, \text{ (b)}$ $f = 10.7 \text{ MHz}, \text{ BW} = 350 \text{ kHz} \qquad \text{See Figure 7}$ $f = 455 \text{ kHz}, \text{ BW} = 20 \text{ kHz}$	Ap	- 46 - -	48 50 58 62	- - - -	dB
Maximum Differential Voltage Swing 0 dB AGC -30 dB AGC	Vo	_ _	20 8.0	- -	V _{pp}
Output Stage Current (Pins 1 and 8)	l ₁ + l ₈	-	5.6	-	mA
Total Supply Current (Pins 1, 2 and 8)	IS	-	14	17	mAdc
Power Dissipation	PD	_	168	204	mW

DESIGN PARAMETERS, Typical Values (V⁺ = +12 Vdc, T_A = +25 $^{\circ}$ C, unless otherwise noted.)

		Frequency				
Parameter	Symbol	455 kHz	10.7 MHz	45 MHz	58 MHz	Unit
Single–Ended Input Admittance	911 b11	0.31 0.022	0.36 0.50	0.39 2.30	0.5 2.75	mmho
Input Admittance Variations with AGC (0 dB to 60 dB)	Δg ₁₁ Δb ₁₁	_ _	_ _	60 0	_ _	μmho
Differential Output Admittance	922 b ₂₂	4.0 3.0	4.4 110	30 390	60 510	μmho
Output Admittance Variations with AGC (0 dB to 60 dB)	Δg ₂₂ Δb ₂₂	_ _	- -	4.0 90	- -	μmho
Reverse Transfer Admittance (Magnitude)	y ₁₂	< < 1.0	< < 1.0	< < 1.0	< < 1.0	μmho
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (-30 dB AGC)	y ₂₁ < y21 < y21	160 -5.0 -3.0	160 -20 -18	200 -80 -69	180 -105 -90	mmho Degrees Degrees
Single–Ended Input Capacitance	C _{in}	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	CO	1.2	1.2	1.3	1.6	pF

Figure 2. Typical Gain Reduction

Figure 3. Noise Figure versus Gain Reduction

GENERAL OPERATING INFORMATION

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single—ended or differentially (for AC) with identical results. Terminals 4 and 6 may be driven from a transformer, but a DC path from either terminal to ground is not permitted.

Figure 4. Circuit Schematic

AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center—tapped tuning coil to Pins 1 and 8. The 12 V supply (V+) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15 V supply (V++) is used, because the base voltage on the output amplifier varies with AGC bias.

Figure 5. Frequency Response Curve (45 MHz and 58 MHz)

Figure 6. Power Gain, AGC and Noise Figure Test Circuits

*Connect to ground for maximum power gain test.

All power supply chokes (Lp), are self–resonant at input frequency. Lp \geq 20 k Ω . See Figure 5 for Frequency Response Curve.

L1 @ 45 MHz = 7 1/4 Turns on a 1/4" coil form @ 58 MHz = 6 Turns on a 1/4" coil form

T1 Primary Winding = 18 Turns on a 1/4" coil form, center-tapped, #25 AWG Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz

= 1 Turn @ 58 MHz

Slug = Carbonyl E or J

(b) Alternate 45 MHz

L1	Ferrite Core 14 Turns 28 S.W.G.	
C1	5–25 pF	
C2	5–25 pF	
C3	5–25 pF	

	45 MHz		58 MHz	
L1	0.4 μΗ	Q ≥ 100	0.3 μΗ	Q ≥ 100
T1	1.3 μH to 3.4 μH	Q ≥ 100 @ 2.0 μH	1.2 μH to 3.8 μH	Q ≥ 100 @ 2.0 μH
C1	50 pF to 160 pF		8.0 p	F to 60 pF
C2	8.0 pF to 60 pF		3.0 p	F to 35 pF

Legacy Applications Information

Figure 7. Power Gain and AGC Test Circuit (455 kHz and 10.7 MHz)

Frequency		
455 kHz	10.7 MHz	
_	80–450 pF	
_	5.0–80 pF	
0.05 μF	0.001 μF	
0.05 μF	0.05 μF	
0.001 μF	36 pF	
0.05 μF	0.05 μF	
0.05 μF	0.05 μF	
_	4.6 μF	
Note 1	Note 2	
	- 455 kHz - 0.05 μF 0.05 μF 0.05 μF 0.05 μF	

NOTES: 1. Primary: 120 μH (center–tapped)
Q_U = 140 at 455 kHz

Primary: Secondary turns ratio ≈ 13

2. Primary: 6.0 μH

Primary winding = 24 turns #36 AWG

(close-wound on 1/4" dia. form)

Core = Carbonyl E or J

Secondary winding = 1-1/2 turns #36 AWG, 1/4" dia.

(wound over center-tap)

Figure 8. Single-Ended Input Admittance

Figure 9. Forward Transfer Admittance

Figure 10. Differential Output Admittance

Figure 11. Differential Output Voltage

Figure 12. Typical application of a AM Modulator using ML1350

OUTLINE DIMENSIONS

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.