RStatsbook

Andreas Busjahn

2023-03-07

Table of contents

Preface					3
1	Introduction				4
2					
	2.1	Setup			5
	2.2	Impor	rt / Preparation		6
	2.3	Graph	hical exploration		6
	2.4	Linear	r Models		11
		2.4.1	Linear regression		11
		2.4.2	ANOVA		16
		2.4.3	LM with continuous AND categorical IV		22
		2.4.4	Model exploration with package performance		30
3	Sun	nmary			32
References					33

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 + 1

[1] 2

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

2 Intro to Im

In this script, linear models (including linear regression and ANOVA) will be introduced. Output is not optimized for word, but rather for interactive use.

2.1 Setup

All packages necessary will be invoked by p_load. Packages with only a single function call or potential for name conflicts can be unload, this way we still checked for their existence and installed them if need be.

2.2 Import / Preparation

Data are read from an SPSS file. Numeric column Passage is mutated into a factor as Passage_F, this is necessary for group comparisons in ANOVA. The call to here() expands the path to a file from the project directory to the full system path.

re-encoding from CP1252

2.3 Graphical exploration

First impression of the data will be attempted by grouped boxplot, followed by interaction plots, both as basic and ggplot with variations.

```
ggplot(rawdata,aes(Passage_F,Growth, fill=Treatment))+
  geom_boxplot(coef=3)
```



```
with(rawdata, interaction.plot(
    x.factor=Passage, trace.factor=Treatment, response=Growth,
    ylim = c(90, 160), lty = c(1,3,12), lwd = 5,
    ylab = "Growth", xlab = "Passage",
    trace.label = "Treatment"))
```



```
# p1<-ggplot(rawdata,aes(x=Passage,y=Growth))+
# stat_summary(geom='line',fun='mean',aes(color=Treatment))+
# stat_summary(geom='line',fun='mean')
p1<-ggplot(rawdata,aes(x=Passage,y=Growth))+
    stat_summary(geom='line',fun='mean',aes(color=Treatment))+
    stat_summary(aes(color=Treatment))+
    ylab('Growth \u00b1 SEM')
p1</pre>
```

No summary function supplied, defaulting to `mean_se()`


```
p1+geom_smooth(method='lm',color='black',se=F)+
    geom_smooth(method='lm',aes(color=Treatment),se=F)
```

```
No summary function supplied, defaulting to `mean_se()` `geom_smooth()` using formula = 'y ~ x' `geom_smooth()` using formula = 'y ~ x'
```



```
ggplot(rawdata,aes(x=Passage,y=Growth))+
  stat_summary(geom='line',fun='mean')+
  geom_smooth(method='lm')+
  facet_grid(cols = vars(Treatment), margins=T)
```

`geom_smooth()` using formula = 'y ~ x'

2.4 Linear Models

2.4.1 Linear regression

We will analyse the relation between independent variable (IV) Passage and dependent variable (DV) Growth.

2.4.1.1 Graphical exploration

```
ggplot(rawdata,aes(Passage,Growth))+
  geom_point()+
  geom_smooth(method=lm)
```

[`]geom_smooth()` using formula = 'y ~ x'


```
ggplot(rawdata,aes(Passage,Growth))+
  geom_point()+
  scale_x_continuous(breaks=seq(0,10,1))+
  geom_smooth(linewidth=2)+
  geom_smooth(method=lm,se=F,color='red')
```

```
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
```


2.4.1.2 Modelling

This takes 2 steps, building the model and computing p-values.

A tibble: 2 x 5

```
estimate std.error statistic
  term
                                              p.value
  <chr>
                 <dbl>
                            <dbl>
                                      <dbl>
                                                <dbl>
                            1.63
                                      74.2 1.77e-219
1 (Intercept)
                121.
2 Passage
                  2.93
                           0.418
                                       7.00 1.26e- 11
  # computation of SSQs and p-values, use this!
  (anova_out<-anova(regressionOut))</pre>
Analysis of Variance Table
Response: Growth
           Df Sum Sq Mean Sq F value
                                         Pr(>F)
                8996 8996.2 49.022 1.257e-11 ***
Passage
Residuals 358 65698
                       183.5
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  anova_out$`Pr(>F)` #|> na.omit()
[1] 1.257266e-11
                           NA
  tidy(anova_out)
# A tibble: 2 x 6
                   sumsq meansq statistic
                                             p.value
  term
               df
                                               <dbl>
  <chr>
            <int>
                   <dbl>
                          <dbl>
                                     <dbl>
                1 8996.
                          8996.
                                      49.0 1.26e-11
1 Passage
2 Residuals
              358 65698.
                           184.
                                      NA
                                           NA
  # summary(regressionOut)
  # str(regressionOut)
```

2.4.1.3 Adjusting

To take out the variance due to Passage effects, we can use the residuals and shift them to the original mean:

`geom_smooth()` using formula = 'y ~ x'


```
lm(growthAdj~Passage,data=rawdata) |> tidy()
```

2.4.2 ANOVA

In the linear regression, we had Passage as a continuous IV, estimating a global 'universal' effect supposed to be constant. Now we look at Passage_F and model a discrete IV, allowing for specific effects, and thereby comparing means between groups.

2.4.2.1 Graphical exploration

```
ggplot(rawdata,aes(x = Passage_F, y = Growth))+
  geom_boxplot(outlier.alpha = 0)+
  geom_beeswarm(alpha=.5)+
  scale_y_continuous(breaks=seq(0,1000,10))
```



```
ggplot(rawdata,aes(x = Passage_F, y = Growth))+
  geom_violin(draw_quantiles = c(.25,.5,.75))+
  geom_beeswarm(alpha=.5)
```


2.4.2.2 Modelling

(AnovaOut<-lm(Growth~Passage_F, data=rawdata))

Call:

lm(formula = Growth ~ Passage_F, data = rawdata)

Coefficients:

(Intercept) Passage_F2 Passage_F3 Passage_F4 Passage_F5 Passage_F6 125.440 -1.467 5.824 6.801 8.156 14.520

tidy(AnovaOut)

A tibble: 6 x 5

term estimate std.error statistic p.value <chr>> <dbl> <dbl> <dbl> <dbl> 1 (Intercept) 125. 1.74 71.9 2.20e-213 2 Passage_F2 -1.472.47 -0.595 5.52e- 1

```
3 Passage_F3
                  5.82
                             2.47
                                      2.36
                                            1.87e-
                                                     2
4 Passage_F4
                  6.80
                             2.47
                                                     3
                                      2.76
                                            6.11e-
5 Passage_F5
                  8.16
                             2.47
                                      3.31
                                            1.04e-
                                                     3
6 Passage_F6
                  14.5
                             2.47
                                      5.89 9.03e-
  # summary(AnovaOut)
  (t <- anova(AnovaOut))</pre>
Analysis of Variance Table
Response: Growth
           Df Sum Sq Mean Sq F value
                                         Pr(>F)
              10134 2026.71 11.113 5.852e-10 ***
Residuals 354
               64561 182.38
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  t$`Pr(>F)`
[1] 5.851856e-10
                            NA
  tidy(t)
# A tibble: 2 x 6
  term
                   sumsq meansq statistic
               df
                                             p.value
  <chr>
                   <dbl>
                           <dbl>
                                     <dbl>
                                                <dbl>
            <int>
1 Passage_F
                5 10134.
                           2027.
                                      11.1 5.85e-10
2 Residuals
              354 64561.
                            182.
                                      NA
                                           NA
```

2.4.2.3 Post-hoc analyses

The p-value from our model only tests the global Null hypothesis of no differences between any group (all means are the same / all groups come from the same population). Post-hoc tests are used to figure out which groups are different. Those tests need to take multiple testing into account. Try to limit selection of tests!

```
# possible in a loop, but nominal p
  t.test(rawdata$Growth[which(rawdata$Passage==1)],
         rawdata$Growth[which(rawdata$Passage==2)],
         var.equal = T)
    Two Sample t-test
data: rawdata$Growth[which(rawdata$Passage == 1)] and rawdata$Growth[which(rawdata$Passage =
t = 0.60679, df = 118, p-value = 0.5452
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.321297 6.255936
sample estimates:
mean of x mean of y
 125.4396 123.9723
  # all pairwise group combinations
  pt_out<-pairwise.t.test(x=rawdata$Growth,</pre>
                          g=rawdata$Passage_F,
                          p.adjust.method='none')
  pt_out
    Pairwise comparisons using t tests with pooled SD
data: rawdata$Growth and rawdata$Passage_F
                  3
                                  5
2 0.55215 -
3 0.01871 0.00331 -
4 0.00611 0.00088 0.69214 -
5 0.00104 0.00011 0.34487 0.58296 -
6 9e-09 3e-10 0.00048 0.00189 0.01025
P value adjustment method: none
  pairwise.t.test(x=rawdata$Growth,g=rawdata$Passage,
                  p.adjust.method='fdr')
```

Pairwise comparisons using t tests with pooled SD

```
data: rawdata$Growth and rawdata$Passage
```

P value adjustment method: fdr

Pairwise comparisons using t tests with pooled SD

data: rawdata\$Growth and rawdata\$Passage

```
1 2 3 4 5
2 1.0000 - - - - - - -
3 0.2807 0.0497 - - - -
4 0.0917 0.0133 1.0000 - -
5 0.0155 0.0017 1.0000 1.0000 -
6 1.4e-07 4.5e-09 0.0071 0.0283 0.1538
```

P value adjustment method: bonferroni

```
# comparison against reference group 1
pt_out$p.value[,1]
```

```
2 3 4 5 6
5.521460e-01 1.871115e-02 6.110172e-03 1.036173e-03 9.031123e-09
```

```
# comparison against reference group 6
  pt_out$p.value[5,]
           1
                        2
                                     3
9.031123e-09 3.001066e-10 4.757018e-04 1.889098e-03 1.025037e-02
  # comparison for selection
  c(pt_out$p.value[1,1],pt_out$p.value[3,2],
    pt_out$p.value[5,1])
[1] 5.521460e-01 8.842382e-04 9.031123e-09
  # comparison against next level
  diag(pt_out$p.value)
[1] 0.55214600 0.00331248 0.69214393 0.58295615 0.01025037
  # adjusting for multiple testing for selected comparisons
  p.adjust(diag(pt_out$p.value),method='fdr')
[1] 0.69214393 0.01656240 0.69214393 0.69214393 0.02562592
  formatP(p.adjust(pt_out$p.value[,1],method='fdr'))
[1] "0.552" "0.023" "0.010" "0.003" "0.001"
```

2.4.3 LM with continuous AND categorical IV

Traditionally you may thing of regression **OR** ANOVA, but they are no different and can be combined. This is called a general linear model. Multivariable models may contain interactions between independent variables V IV1*IV2.

2.4.3.1 Graphical exploration

```
p0 <- ggplot(rawdata,aes(Treatment,Growth))+
    geom_boxplot()
p1 <- ggplot(rawdata,aes(Treatment,Growth, color=Passage_F))+
    geom_boxplot()
p2 <- ggplot(rawdata,aes(color=Treatment,Growth, x=Passage_F))+
    geom_boxplot()
p3 <- ggplot(rawdata,aes(Treatment,Growth))+
    geom_boxplot()+
    facet_wrap(facets = vars(Passage_F), labeller='label_both')
# from patchwork
    (p1+p2)/p3</pre>
```


2.4.3.2 Modelling

Models with (*) and without (+) interaction are build and tested.

```
lmOut_interaction<-lm(Growth~Passage*Treatment,data=rawdata)
Anova(lmOut_interaction,type = 3)</pre>
```

Anova Table (Type III tests)

```
Response: Growth
                  Sum Sq Df
                               F value
                                          Pr(>F)
(Intercept)
                  285160
                         1 2448.5613 < 2.2e-16 ***
                               23.3855 1.981e-06 ***
Passage
                    2723 1
Treatment
                    5635
                               24.1924 1.419e-10 ***
Passage:Treatment
                    335
                          2 1.4376
                                         0.2389
Residuals
                   41227 354
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  lmOut_additive<-lm(Growth~Passage+Treatment,data=rawdata)</pre>
  Anova(lmOut_additive,type=2)
Anova Table (Type II tests)
Response: Growth
          Sum Sq Df F value
                               Pr(>F)
                   1 77.058 < 2.2e-16 ***
Passage
           8996
Treatment 24137 2 103.372 < 2.2e-16 ***
Residuals 41562 356
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  # for comparison, here is the univariable model
  lmOut_uni<-lm(Growth~Treatment, data=rawdata)</pre>
  aOut <- Anova (lmOut_uni, type=3)
  a_uni <- anova(lmOut_uni)</pre>
  a_uni$`Pr(>F)`
[1] 5.549803e-31
                           NA
```

2.4.3.3 Post-hoc analyses

For multivariable models, pairwise.t.test() is not appropriate, Dunnet or Tukey tests (depending on hypothesis) are typical solutions.

```
summary(glht(model=lmOut_additive,linfct=mcp(Treatment='Dunnett')))
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Contrasts
Fit: lm(formula = Growth ~ Passage + Treatment, data = rawdata)
Linear Hypotheses:
                       Estimate Std. Error t value Pr(>|t|)
AngII - Control == 0
                         10.409
                                     1.395 7.462
                                                     <1e-10 ***
Whatever - Control == 0
                         20.052
                                     1.395 14.375
                                                     <1e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
  summary(glht(model=lmOut_additive,linfct=mcp(Treatment='Tukey')))
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lm(formula = Growth ~ Passage + Treatment, data = rawdata)
Linear Hypotheses:
                       Estimate Std. Error t value Pr(>|t|)
AngII - Control == 0
                         10.409
                                    1.395 7.462 <1e-10 ***
Whatever - Control == 0 20.052
                                    1.395 14.375
                                                     <1e-10 ***
Whatever - AngII == 0
                          9.643
                                     1.395 6.913
                                                     <1e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
  DescTools::DunnettTest(Growth~Passage_F,data=rawdata)
```

```
Dunnett's test for comparing several treatments with a control :
    95% family-wise confidence level
$`1`
         diff
                 lwr.ci
                           upr.ci
                                     pval
2-1 -1.467320 -7.6899251 4.755285 0.9648
3-1 5.824059 -0.3985468 12.046664 0.0750 .
4-1 6.801105 0.5784996 13.023710 0.0263 *
5-1 8.156143 1.9335375 14.378748 0.0047 **
6-1 14.520106 8.2975011 20.742712 4.8e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  pairwise.t.test(rawdata$Growth,rawdata$Treatment,p.adjust.method = 'n')
    Pairwise comparisons using t tests with pooled SD
data: rawdata$Growth and rawdata$Treatment
         Control AngII
AngII
         5.1e-11 -
Whatever < 2e-16 1.0e-09
P value adjustment method: none
  mean(rawdata$Growth[which(rawdata$Passage==1 &
                              rawdata$Treatment=='Control')])
[1] 116.4531
  aOut$'Pr(>F)'
[1] 2.909117e-279 5.549803e-31
                                          NA
```

```
aOut$`Sum Sq`
[1] 1754742.53
                24136.66
                           50557.95
  summary(lmOut_additive)
Call:
lm(formula = Growth ~ Passage + Treatment, data = rawdata)
Residuals:
            1Q Median
                            3Q
   \mathtt{Min}
                                   Max
-32.407 -7.793 -0.281 7.255 32.283
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                             1.5280 72.432 < 2e-16 ***
(Intercept)
                 110.6802
                  2.9271
                              0.3334 8.778 < 2e-16 ***
Passage
                              1.3949 7.462 6.59e-13 ***
TreatmentAngII
                 10.4089
                              1.3949 14.375 < 2e-16 ***
TreatmentWhatever 20.0520
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.8 on 356 degrees of freedom
Multiple R-squared: 0.4436, Adjusted R-squared: 0.4389
F-statistic: 94.6 on 3 and 356 DF, p-value: < 2.2e-16
  (result<-tibble(predictor=rownames(aOut),</pre>
                      p=formatP(aOut$'Pr(>F)',ndigits=5)))
# A tibble: 3 x 2
 predictor
             р
 <chr>
             <chr>
1 (Intercept) "0.00001"
2 Treatment "0.00001"
3 Residuals
             " NA"
```

broom::tidy(aOut)

A tibble: 3 x 5

term df statistic sumsq p.value <chr> <dbl> <dbl> <dbl> <dbl> 1 (Intercept) 1754743. 12391. 2.91e-279 1 2 Treatment 24137. 2 85.2 5.55e- 31 3 Residuals 50558. 357 NA NA

2.4.4 Model exploration with package performance

```
# x11() #interactive only!

# from package performance
check_model(lmOut_additive)
```


3 Summary

In summary, this book has no content whatsoever.

1 + 1

[1] 2

References

Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.