Name: Tarik Reyhan	Section:
Signature:	EEE 313 Fall 2013
Solutions	

Bilkent University
Department of Electrical and Electronics Engineering
EEE 313 Electronic Circuit Design

Midterm 2

4 December 2013, 18:00 (4 questions, 120 minutes)

- This is a **closed book**, closed notes exam. No cheat sheet allowed.
- All cell-phones should be completely turned off.
- Use a calculator for numerical computations. Carry at least 4 significant digits during calculations. Your final answer should be at least 3 significant digits.
- Be sure to write the **units** of all numerical results.
- Show all work clearly.
- Please put your **final answer** for each part inside a box for easy identification. Do not give multiple answers, they will not be graded.
- Do not remove the **staple** from the exam sheets or separate pages of the exam. All extra pages must be stamped to your exam.
- You may leave the exam room when you are done. However, please do not leave during the **last five minutes** of the exam.
- At the end of the exam, please stay seated unitl all exam papers are collected.

Please do not write below this line

1. 25 pts.	
2. 20 pts.	
3. 30 pts.	
4. 25 pts.	
Total 100 pts.	

- 1) (25 points) Find the states of the BJT transistors at the circuits given below $(\beta=100, V_{BE_{ON}}=0.6 \text{ Volts}, V_{CE_{ONSAT}}=0.6 \text{ Volts})$:
 - a) (6 points)

$$L_{E} = \frac{3 - 0.6}{24000} = \frac{2 - 4}{2400} = \frac{3 - 0.6}{2400} = \frac{3 - 0.6}{24000} = \frac{3 -$$

b) (6 points)

$$|200 \times 0.01 = |200 = |2V|$$
 $|V_c| = |2 - 12| = 0V|$ but

 $|V_B = bV| \Rightarrow |V_{CB}| |3|$ forward brased

 $|V_B = bV| \Rightarrow |V_{CB}| |3|$ forward brased

 $|V_{CESH}| = |0.4V| \Rightarrow |V_{CESH}| = |0.00|$
 $|V_{CESH}| =$

$$V_{CESHT} = 0.4V \Rightarrow I_{CESHT} = 1200$$

$$T_{B} = 10 - 9.6666 = 3.33 \times 10^{4} = 333 \text{ mA}$$

$$F_{B} = 3.33 \times 10^{4} \times 100 = 3.33 \times 10^{2} = 33.3 \times 10^{2} = 33.3$$

c) (7 points)

d) (6 points)

$$I_F = \frac{6-0.6}{200} = \frac{5.4}{200} = 27mA =$$

$$I_{F} = \frac{6 - 0.6}{200} = \frac{5.4}{200} = 27mA \Rightarrow$$

$$I_{B} = I_{F} - I_{C} = 27 - 10 = 17mA$$

$$B I_{B} = 17 \times 100 = 1700 \text{ } I_{C} = 10mA$$

$$\Rightarrow) SAT$$

2. (20 points) The transistor in the common-emitter circuit shown below has the following parameters:

 β =100, $V_{BE_{ON}} = 0.7 \text{ Volts}$, $V_{CE_{ONSAT}} = 0.4 \text{ Volts}$

Please find the state and the bias (voltages and currents) of the transistor for:

- a) (10 points) Rc=300 Ω ,
- b) (10 points) Rc=1200 Ω

$$\frac{a-)}{\frac{3000}{101} + 600} = I_E = \frac{5.3}{629.7} = 8.416 \text{ mA}$$

$$V_{CE} = 12V - 8.416 \times 10^3 (800 + 300) = 12 - 7.575$$

= 4-425 => EA.

3. (30 points) At the circuit given above: β =74, $V_{BE_{ON}} = 0.7$ Volts, $V_{CE_{ONSAT}} = 0.3$ Volts, C_1 and C_2 are very large

Please answer the following:

- a) (6 points) Find the DC bias of the transistor,
- b) (6 points) Draw the AC equivalent circuit,
- c) (6 points) Find the gain of the circuit defined as Vo/Vin
- d) (6 points) Find the input impedance (between points A and B),
- e) (6 points) Find the output impedance (between points Cand D) by taking the source as only Vin.

$$a - \frac{12}{2} - 0.7 = 15000 \, \Box_B + 75 \times 2000 \, \Box_g = (5000 + 150000) \, \Box_g$$

$$\Rightarrow \Box_B = \frac{5.3}{165000} = 3.21 \times 10^{3} \text{ A} = 32.1 \, \mu\text{ A}$$

$$\Box_E = 75 \times \Box_B = 2.41 \, \text{mA} , \, \Box_C = 74 \times \Box_B = 2.38 \, \text{mA}$$

$$V_{CE} = 12V - 2.41 \times 10^{3} \times 2000 - 2.38 \times 10^{3} \times 10000$$

$$= (2 - 7.2 = 4.8V) \Rightarrow F - A - \frac{266 \, \text{mV}}{32.1 \times 10^{3} \, \text{mA}} = 828.72$$

$$b - \frac{152}{32.1 \times 10^{3} \, \text{mA}} = 828.72$$

$$b - \frac{152}{32.1 \times 10^{3} \, \text{mA}} = \frac{328.72}{32.1 \times 10^{3} \, \text{mA}} = \frac{328.72}{32.1 \times 10^{3} \, \text{mA}}$$

$$C-) 20001150 = \frac{2000 \times 50}{200} = 68.78 \times 10001150 = \frac{2000 \times 50}{200} = 68.78 \times 100011449 = \frac{487.2}{1800011449} = \frac{3454 \times 100011449}{3454 + 1500} = 0.697$$

$$0 = 99 \cdot \frac{48.78 \times 75}{48.78 \times 75 + 828.70} = 9,0.815$$

$$0 = 99 \cdot \frac{48.78 \times 75}{48.78 \times 75 + 828.70} = 9,0.815$$

4. (20 points) At the BJT circuit given above: β =100, $V_{BE_{ON}} = 0.8$ Volts, $V_{CE_{ONSAT}} = 0.2$ Volts, C_1 , C_2 and C_3 are very large:

The desired characteristics of the amplifier are: R_{in} =550 Ω , R_o =1000 Ω , Voltage gain A_v =100 defined as Vo/Vin Please note that R_{in} is between A and B, R_o is between C and D.

Please design the circuit to have the desired characteristics (i.e., find the values of R_c , R_e , and R_L)

Folktrons

$$R_0 = R_c = |00000$$

$$R_{10} = 5500 = (13200/2)/V = 610000/V = 9$$

$$V_{11} = \frac{6600 \times 550}{6600 \times 550} = |0000| = \frac{\beta}{9m} = \frac{\beta VT}{Icq} = 9$$

$$I_{cq} = \frac{\beta VT}{600} = \frac{100 \times 21.6}{600} = \frac{\beta}{9m} = \frac{\beta VT}{Icq} = 9$$

$$V_{TH} = \frac{12}{2} = \frac{6V}{2} = \frac{100 \times 21.6}{600} = \frac{13200}{2} = \frac{610000}{6100} = \frac{1}{3} = \frac{12}{3} = \frac{12}{$$

$$R_{E2} = \frac{5.2 - 0.2926}{4477 \times 10^3} = 1095, 97 = 10962$$

Checking the FAstale

$$V_{CE} = 12V - 4-477 \times 10^{3} \times 1096 - 4-43 \times 10^{3} \times 1000$$

$$= 2-6626 \quad F_{-}A_{-}$$

Drawing the A.C. equivalent circuit

$$A_{V} = \frac{g_{0}}{g_{fn}} = g_{m} (1000/R_{L}) = 100$$

$$g_{m} = \frac{\beta}{VI} = \frac{100}{600} = \frac{1}{6} = 0.16668$$

$$\Rightarrow R = \frac{1000 \times 600}{1000 - 600} = \frac{600.000}{400} = 15000$$
to check