1

Control Systems

G V V Sharma*

		Contents		10	Oscilla	ator	2	
1	Signal 1	F low Graph Mason's Gain Formula	1		10.1 10.2	Introduction	2	
	1.1	Matrix Formula	1		Abstract—This manual is an introduction to			
2	Bode Plot		1			on GATE problems.Links to sample Py	thon	
	2.1	Introduction		codes are available in the text.				
	2.2	Example	2	Do	Download python codes using			
3	Second order System		2	svn co https://github.com/gadepall/school/trunk/				
	3.1	Damping	2	control/codes				
	3.2	Example	2					
4	Routh Hurwitz Criterion		2					
	4.1	Routh Array	2	1 Signal Flow Graph				
	4.2	Marginal Stability	2					
	4.3	Stability	2	1.1	Mason's	Gain Formula		
	4.4	Example	2	1.2	Matrix F	ormula		
5	State-Space Model		2			2 Bode Plot		
	5.1	Controllability and Observ-						
		ability	2	2.1	Introduct	ion		
	5.2	Second Order System	2	2 1 1	The cover	mutatia Dada mbasa mlat af		
	5.3	Example	_	2.1.1.	The asy	mptotic Bode phase plot of		
	5.4	Example	2		G(s)	$=\frac{k}{(s+0.1)(s+10)(s+p_1)} $ (2.1.	1 1)	
	5.5	Example	2		O (5)	$-(s+0.1)(s+10)(s+p_1)$	1.1)	
6	Nyquist	Plot	2			and p_1 both positive, is shown be value of p_1 .	low.	
7	Compe	nsators	2					
	7.1	Phase Lead	2		†			
	7.2	Example	2	0°	0.0	0.1 1 10 100 Ø		
8	Gain Margin		2	-45°				
	8.1	Introduction	2					
	8.2	Example	2	–135	0			
9	Phase Margin		2	-225	50			
de Carro	ı 41 :	'4 4 B		-270	:		_	
*T	ne autnor is v	with the Department of Electrical Enginee	rıng,					

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

Fig. 2.1.1

Solution: Bode phase plot for a transfer function having a single pole at p

$$\phi(\omega) = \begin{cases} 0 & 0 < \omega < \frac{p}{10} \\ -45 \times \left(\log\left(\frac{10\omega}{p}\right)\right) & \frac{p}{10} < \omega < 10p \\ -90 & 10p < \omega \end{cases}$$

$$(2.1.1.2)$$

Phase plot of the transfer function (2.1.1.1),

$$\phi(\omega) = \begin{cases} 0 & 0 < \omega < 0.01 \\ -90 - 45 \log(\omega) & 0.01 < \omega < 0.1 \\ -135 - 90 \log(\omega) & 0.1 < \omega < 10 \\ -180 - 45 \log(\omega) & 10 < \omega < 100 \\ -90 & 100 < \omega \end{cases}$$

$$(2.1.1.3)$$

phase plot by considering only 0.1 and 10 poles is

$$\phi(\omega) = \begin{cases} 0 & 0 < \omega < 0.01 \\ -90 - 45 \log(\omega) & 0.01 < \omega < 100 \\ -180 & 100 < \omega \end{cases}$$
(2.1.1.4)

By comparing 2.1.1.3 and 2.1.1.4, $\phi(\omega)$ remains same till 0.1 so,

$$\frac{p_1}{10} = 0.1 \qquad (2.1.1.5)$$

$$\implies p_1 = 1 \qquad (2.1.1.6)$$

the bode phase plots corresponding to the poles 0.1 and 10.

Fig. 2.1.1

2.1.2. Find the value of p_1 using phase of the transfer

function.

Solution:

$$\phi(\omega) = -\tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{10}\right) - \tan^{-1}\left(\frac{\omega}{p_1}\right)$$
(2.1.2.1)

From the plot,

$$-45^{\circ} = -\tan^{-1}\left(\frac{0.1}{0.1}\right) - \tan^{-1}\left(\frac{0.1}{10}\right) - \tan^{-1}\left(\frac{0.1}{p_1}\right)$$
(2.1.2.2)

 p_1 is approximately 1, i.e, for p_1 in 0.95 to 1.05 the ϕ is approximately equals to -45° . The following code plots Fig. 2.1.1

codes/ee18btech11037.py

- 2.2 Example
 - 3 Second order System
- 3.1 Damping
- 3.2 Example
 - 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 6 Nyquist Plot
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
 - 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example