Sprawozdanie trzecie

Algorytmy grafowe

Piotr Tylczyński

20.04.2019

Spis

1	Rep	rezentacja grafu przez macierz sąsiedztwa	2
	1.1	Opis	2
	1.2	Złożonośc podstawowych operacji	2
		1.2.1 Sprawdzenie istnienia krawędzi	2
		1.2.2 Znalezienie wszystkich następników	2
	1.3	Sortowanie topologiczne	3
		1.3.1 Sorotowanie za pomocą algorytmu DFS	3
		1.3.2 Sortowanie za pomoca algorytmu BFS	3
2	Rer	rezentacja grafu przez listę krawędzi	4
	2.1	Opis	4
	2.2	Złożoność podstawowych operacji	4
		2.2.1 Sprawdzenie istnienia krawędzi	4
	2.3	Znalezienie wszytkich następników	4
	2.4	Sortowanie topologiczne	4
		2.4.1 Sortowanie za pomocą algorytmu DFS	5
		2.4.2 Sortowanie za pomocą algorytmu BFS	5
3	Rer	rezentacja grafu przez listę następników	6
	3.1	Opis	6
	3.2	Złożoność podstawowych operacji	6
		3.2.1 Sprawdzanie istnienia krawędzi	6
		3.2.2 Znalezienie wszystkich następników	6
	3.3	Sortowanie topologiczne	6
		3.3.1 Sortowanie za pomocą algorytmu DFS	7
		3.3.2 Sortowanie za pomocą algorytmu BFS	7
O	znac	enia	8

1 Reprezentacja grafu przez macierz sąsiedztwa

1.1 Opis

W tej reprezentacji G jest opisywany przez zero-jedynkową macierz o n kolumnach i n wierszach. W G istnieje łuk między wierzchołkami A i B, jeżeli istnieje jedynka w macierzy sąsiedztwa znajdująca się w A kolumnie i B wierszu.

1.2 Złożonośc podstawowych operacji

1.2.1 Sprawdzenie istnienia krawędzi

Posiada złożoność:

$$O(1) \tag{1}$$

Złozonośc jest stała, ponieważ sprawdzenie istnienia krawędzi sprowadza się do sprawdzenia, czy w odpowiednim miejscu macierzy znajduje się jedynka. Odczytanie pola elementu z tabeli posiada stałą złożoność czasową, więc i operacja sprawdzania istnienia krawędzi jest stała

1.2.2 Znalezienie wszystkich nastepników

Posiada złożność

$$O(n)$$
 (2)

Znalezienie nastepników w macierzy sąsiedztwa sprowadza sie od przejrzenia odpowiedniej kolumny w macierzy sąsiedztwa. Jak wiadomo macierz sąsiedztwa posiada dokładnie n elementów w kolumnie, a złożoność odczytania jednego elementu jest stała, więc odczytanie n elementów zajmie n czasu.

1.3 Sortowanie topologiczne

Macierz sąsiedztwa, sortowanie toopologiczne

1.3.1 Sorotowanie za pomocą algorytmu DFS

Charakteryzuje się złożonością:

ilość operacji szukania następników *
$$n = O(n) * n = O(n^2)$$
 (3)

1.3.2 Sortowanie za pomoca algorytmu BFS

Cechuje się złożonością:

ilość operacji szukania następników *
$$n = O(n) * n = O(n^2)$$
 (4)

2 Reprezentacja grafu przez listę krawędzi

2.1 Opis

G jest w takiej reprezentacji przechowywany jako lista par uporządkowanych. W G istnieje łuk z A od B wtedy i tylko wtedy, gdy istnieje dwójka (A,B), w liście krawędzi

2.2 Złożoność podstawowych operacji

2.2.1 Sprawdzenie istnienia krawędzi

Posiada złożonośc:

$$O(m)$$
 (5)

Wynika ona z potrzeby przejżenia całej listy w celu sprawdzenia czy istnieje w niej odpowiednia dwójka.

2.3 Znalezienie wszytkich następników

Posiada złożoność:

$$O(m)$$
 (6)

Tak jak w poprzednim przypadku wynika ona z potrzeby sprawdzenia całej listy w poszukiwaniu odpowiednich dwójek.

2.4 Sortowanie topologiczne

Lista krawędzi, sortowanie topologiczne

2.4.1 Sortowanie za pomocą algorytmu DFS

Cechuje się złożonością

$$O(n^3) (7)$$

która wynika z:

ilość operacji = ilośc operacji na poszukanie wszystkich następników * \boldsymbol{n}

$$\approx m * n$$
 (8)

W testownym przypdaku, czyli gdy nasycenie G wynosi 50% ilość krawędzi można wyrazić jako:

$$m = \frac{(n)(n-1)}{4} \tag{9}$$

Co po podstawieniu do równania 8 daje wynik:

ilość operacji
$$\approx \frac{(n)(n-1)}{4} * n \approx n^3$$
 (10)

2.4.2 Sortowanie za pomocą algorytmu BFS

Posiada złożonośc:

$$O(n^3) (11)$$

Powstała ona z:

ilość operacji = ilość operacji na znalezienie następników
$$*n$$
 (12)

Dalszy tok rozumowania jest taki sam

3 Reprezentacja grafu przez listę następników

3.1 Opis

G jest w takim przypadku przechowywany jako lista, której elementami są listy następników danego wierzchołka. W takim wierzchołku istnieje łuk z A do B jeżeli istnieje lista A, której elementem jest B

3.2 Złożoność podstawowych operacji

3.2.1 Sprawdzanie istnienia krawędzi

Taka operacja ma złożoność:

$$O(n) \tag{13}$$

co wynika z faktu, że należy przeszukać tylko jedną listę, jednak w najgorszym przypadku ta lista może składać się ze wszystkich wierzchołków G

3.2.2 Znalezienie wszystkich następników

Cechuje się złożonością:

$$O(n) \tag{14}$$

która jest spowodowana potrzebą przejrzenia odpowiedniej listy, która w najgorszym przypadku może zawierać wszystkie wierzchołki

3.3 Sortowanie topologiczne

Lista następników, sortowanie toopologiczne

3.3.1 Sortowanie za pomocą algorytmu DFS

$$O(n^2) (15)$$

powstaje one przez:

ilośc operacji \approx ilość operacji znalezienia nastepników * $n\approx n*n$

$$\approx n^2$$
 (16)

3.3.2 Sortowanie za pomocą algorytmu BFS

Cechuje się złożonością:

ilość operacji \approx ilość operacji szukania następników * $n\approx n*n$

$$\approx n^2$$
 (17)

Zastosowane oznaczenia

- ${\bf A}\,$ dowolny wierzchołek w G, różny od B. 2, 4, 6, 8
- **B** dowolny wierzchołek w G, różny od A. 2, 4, 6, 8
- ${\bf G}\,$ skierowany graf acykliczny, w którym wierzchołki są etykietowane kolejnymi liczbami naturalnymi zaczynając od 0. 2, 4–6, 8
- ${f m}$ ilość krawędzi w grafie. 8
- n ilość wierzchołków w grafie. 2, 8