試験問題		試験日	曜日	時限	担当者
科目名	数学 II	2012年7月27日	金	2	田崎

答えだけではなく、考え方や計算の筋道を簡潔に書くこと(単純な計算問題は答えだけでもいいが)。解答の順番は(0番以外)自由。解答用紙の裏面も使用してよい。試験後、答案を受け取りにくること。2013年1月を過ぎたら、答案を予告なく処分する。

- **0. これは冒頭に書くこと。**レポートの提出や修正の状況を書け(冒頭に何も記述がなければ、レポートは提出していないとみなす)。レポートは、返却済みのものも新規のものも、今日の答案にはさんで提出すること。
- **1.** m, α, t_0 を正の定数とする。一次元運動のニュートン方程式

$$m \frac{d^2}{dt^2} x(t) = \begin{cases} \alpha t, & 0 \le t \le t_0 \\ 0, & t > t_0 \end{cases}$$

- の一般解を求めよ。ただし、任意定数としてx(0)と $v(0) := \dot{x}(0)$ を使え。
- **2.** γ, α, ω を実定数とする。常微分方程式

$$\frac{d}{dt}x(t) = -\gamma x(t) + \alpha \sin(\omega t) \tag{1}$$

- の一般解を以下の手順にしたがって求めよ。
 - (a) $\alpha = 0$ とした斉次の常微分方程式の一般解を求めよ。
 - (b) 微分方程式 (1) の特解で $x_{ps}(t) = A \sin(\omega t) + B \cos(\omega t)$ と書けるものを求めよ (A, B) は求めるべき定数)。
 - (c) (a) と (b) での解を足して (1) の一般解を求めよ。任意定数を初期値 x(0) を用いて表わせ。
- **3.** α , β を正の定数とする。以下の常微分方程式の一般解を求めよ((a) では x(t) > 0、(b) では $x(t) > \beta$ とする)。任意定数として初期値 x(0) を使え。

(a)
$$\frac{dx(t)}{dt} = \frac{\alpha \cos(\beta t)}{x(t)}$$
 (b)
$$\frac{dx(t)}{dt} = -\alpha t x(t) \{x(t) - \beta\}$$
 (2)

4. α, β を定数とし、常微分方程式

$$\frac{dx(t)}{dt} = \alpha t x(t) + \beta t \exp\left[\frac{\alpha}{2}t^2\right]$$

- の一般解を次の手順(定数変化法)で求めよ。
 - (a) 解を $x(t) = C(t) \exp[(\alpha/2) t^2]$ という形に書き、C(t) が満たす微分方程式を求めよ。
 - (b) C(t) についての微分方程式の一般解を求め、もとの微分方程式の一般解を求めよ。任意定数は初期値 x(0) で表わせ。
- **5.** 3次元の (幾何) ベクトル $\mathbf{a} = (a_1, 0, 0), \mathbf{b} = (b_1, b_2, b_3), \mathbf{c} = (c_1, 0, 0)$ について、 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \ge \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ を計算し、両者が一般に一致するかどうかを調べよ。
- 6. 計算せよ。

(a)
$$\left(\sqrt{3} + 3i \quad 1 + \sqrt{3}i \quad 1 - 2\sqrt{3}i\right) \begin{pmatrix} 1 - \sqrt{3}i \\ 1 + \sqrt{3}i \\ 1 - \sqrt{3}i \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 2 & -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 & 3 \\ -1 & 4 & 2 \\ 1 & 6 & 3 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 2 & 1 \\ 5 & 9 & 2 \\ 6 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$
(d) $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} \gamma & \delta & \epsilon \end{pmatrix}$ (e) $\det \begin{bmatrix} \begin{pmatrix} 2 & 3 & -2 \\ 5 & -3 & -2 \\ 1 & 3 & 8 \end{pmatrix} \end{bmatrix}$

7. A,B, C を(複素数を成分にもつ)任意の $d \times d$ 行列とし、それぞれの i,j 成分を $a_{i,j}$, $b_{i,j}$, $c_{i,j}$ と書く。積 A B の i,j 成分をもとの行列の成分と和の記号を使って表わせ。また、(A B) C の i,j 成分をもとの行列の成分と和の記号を使って表わせ。 A (B C) についても同様の考察をし、等式

$$(AB)C = A(BC) \tag{3}$$

が成り立つことを証明せよ。