Generalized/Global Abs-Linear Learning (GALL)

Andreas Griewank and Ángel Rojas

Humboldt University (Berlin) and Yachay Tech (Imbabura)

14.12.19, NeurIPS Vancouver

Outline

- 1 From Heavy to Savvy Ball search trajectory
- 2 Results in convex, homogeneous and prox-linear case
- Successive Piecewise Linearization
- 4 Mixed Binary Linear Optimization
- Generalized Abs-Linear Learning
- 6 Summary, Conclusions and Outlook

Folklore and Common Expectations in ML

- Nonsmoothness can be ignored except for step size choice.
- 2 Stochastic (mini-batch) sampling hides all the problems.
- 4 Higher dimensions make local minimizer less likely.
- Oifficulty is getting away from saddle points not minimizers.
- Precise location of (almost) global minimizer unimportant.
- Network architecture and stepsize selection can be tweaked.
- Convergence proofs only under "unrealistic assumptions".

Generalized Gradient Concepts

Notational Zoo (Subspecies in Euclidean and Lipschitzian Habitat):

Fréchet Derivative:
$$\nabla \varphi(x) \equiv \partial \varphi(x)/\partial x : \mathcal{D} \mapsto \mathbb{R}^n \cup \emptyset$$

Limiting Gradient:
$$\partial^L f(\mathring{x}) \equiv \overline{\lim}_{x \to \mathring{x}} \nabla \varphi(x) : \mathcal{D} \rightrightarrows \mathbb{R}^n$$

Clarke Gradient:
$$\partial \varphi(x) \equiv \mathbf{conv}(\partial^L \varphi(x)) : \mathcal{D} \rightrightarrows \mathbb{R}^n$$

Bouligand:
$$f'(x; \Delta x) \equiv \lim_{t \searrow 0} [\varphi(x + t\Delta x) - \varphi(x)]/t$$

:
$$\mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}$$

:
$$\mathcal{D} \mapsto \mathsf{PL}_h(\mathbb{R}^n)$$

Piecewise Linearization(PL):

$$\Delta \varphi(x; \Delta x) : \mathcal{D} \times \mathbb{R}^n \mapsto \mathbb{R}$$

:
$$\mathcal{D} \mapsto \mathsf{PL}(\mathbb{R}^n)$$

Moriarty Effect due to Rademacher ($C^{0,1} = W^{1,\infty}$):

Almost everywhere all concepts reduce to Fréchet, except PL!!

Lurking in the background: Prof. Moriarty

Filippov solutions of generalized steepest descent inclusion

The convexity and outer semi-continuity of subsets $\partial \varphi(x(t))$ imply that

$$-\dot{x}(t) \in \partial \varphi(x(t))$$
 from $x(0) = x_0 \in \mathbb{R}^n$

has (at least) one absolutely continuous Filippov solution trajectory x(t).

Heavy ball (Polyak, 1964)

$$-\ddot{x}(t) \in \partial \varphi(x(t))$$
 from $x(0) = x_0, -\dot{x}(0) \in \partial \varphi(x_0)$.

Picks up speed/momentum going downhill and slows down going uphill.

Savvy ball (Griewank, 1981)

$$\frac{d}{dt} \left[\frac{-\dot{x}(t)}{(\varphi(x(t))-c)^e} \right] \; \in \; \frac{e \, \partial \varphi(x(t))}{(\varphi(x(t))-c)^{e+1}} \; = \; \partial \left[\frac{-1}{(\varphi(x(t))-c)^e} \right] \; .$$

Can be rewritten as a first order system of a differential equation and an inclusion satisfying Fillipov \implies absolutely continuous $(x(t), \dot{x}(t))$ exists.

Integrated Form

$$v(t) = \frac{\dot{x}(t)}{[\varphi(x(t)) - c]^e} \in \frac{\dot{x}_0}{[\varphi(x_0) - c]^e} - e \int_0^t \frac{\partial \varphi(x(\tau)) d\tau}{[\varphi(x(\tau)) - c]^{e+1}}.$$

Second order Form

$$\ddot{x}(t) \in -\left[I - rac{\dot{x}(t)\,\dot{x}(t)^{ op}}{\|\dot{x}(t)\|^2}
ight]rac{\left[e\,\partialarphi(x(t))
ight]}{\left[arphi(x(t))-c
ight]} \quad ext{with} \quad \|\dot{x}(0)\| = 1 \; .$$

- Idea: Adjustment of current search direction $\dot{x}(t)$ towards a negative gradient direction $-\partial \varphi(x(t))$.
- The closer the current function value $\varphi(x(t))$ is to the target level c, the more rapidly the direction is adjusted.
- If φ convex, $\varphi(\mathring{x}) \leq c$ and $e \leq 1$ the trajectory reaches the level set.
- On degree (1/e) homogeneous objectives, local minimizers below c are accepted and local minimizers above the target level are passed by.

Fig. 1. Search trajectories with target c=0 and sensitivity $e\in\{0.4,0.5,0.67\}$ on the objective function $f=(x_1^2+x_2^2)/200+1-\cos x_1\cos(x_2/\sqrt{2})$. Initial point (40, -35). Global minimum at origin marked by +.

Fig. 2. Search trajectories with sensitivity e = 0.5 and target $c \in \{-0.4, 0, 0.4\}$ on the objective function $f = (x_1^2 + x_2^2)/200 + 1 - \cos x_1 \cos(x_2/\sqrt{2})$. Initial point (35, -30). Global minimum at origin marked by +.

Closed form solution on prox-linear function

Lemma(A.G. 1977 & A.R. 2019). For $\varphi(x) = b + g^{\top}x + \frac{q}{2}||x||_2^2$

$$\ddot{x}(t) = -\left[I - \dot{x}(t)\ \dot{x}(t)^{\top}\right] \frac{\nabla \varphi(x(t))}{\left[\varphi(x(t)) - c\right]}$$

yields momentum like

$$x(t) = x_0 + \frac{\sin(\omega t)}{\omega}\dot{x}_0 + \frac{1 - \cos(\omega t)}{\omega^2}\ddot{x}_0 \approx x_0 + t\dot{x}_0 - \frac{t^2g}{2(\varphi_0 - c)}$$

and

$$\varphi(x(t)) = \varphi_0 + \left[(g + qx_0)^\top \dot{x}_0 \right] \frac{\sin(\omega t)}{\omega} + \left[q - \omega^2 (\varphi_0 - c) \right] \frac{(1 - \cos(\omega t))}{\omega^2}$$

where

$$\ddot{x}_0 = -\left[I - \dot{x}_0 \dot{x}_0^{\top}\right] \frac{\left(g + q x_0\right)}{\left(\varphi_0 - c\right)} \quad \text{and} \quad \omega = \|\ddot{x}_0\|.$$

Piecewise-Linearization Approach

• Every function $\varphi(x)$ that is abs-normal, i.e. evaluated by a sequence of smooth elemental functions and piecewise linear elements like abs, min, max can be approximated near a reference point \mathring{x} by a piecewise-linear function $\Delta \varphi(\mathring{x}; \Delta x)$ s.t.

$$|\varphi(\mathring{x} + \Delta x) - \varphi(\mathring{x}) - \Delta \varphi(\mathring{x}; \Delta x)| \le \frac{q}{2} ||\Delta x||^2$$

② The function $y = \Delta \varphi(\mathring{x}; x - \mathring{x})$ can be represented in Abs-Linear form

$$z = d + Zx + Mz + L|z|$$

$$y = \mu + a^{T}x + b^{T}z + c^{T}|z|$$

where M and L are strictly lower triangular matrices s.t. z = z(x).

 $\textbf{ 0} \quad [d,Z,M,L,\mu,a,b,c] \text{ can be generated automatically by Algorithmic Piecewise Differentiation, which allows the computational handling of } \Delta\varphi \text{ in and between the polyhedra}$

$$P_{\sigma} = closure\{x \in \mathbb{R}^n; sgn(z(x)) = \sigma\}$$
 for $\sigma \in \{-1, +1\}^s$

(a) Tangent mode linearization

SALMIN defined by iteration

$$x_{k+1} = \underset{\Delta x}{\operatorname{arglocmin}} \{ \Delta \varphi(x_k; \Delta x) + \frac{q_k}{2} \|\Delta x\|^2 \}$$
 (1)

where $q_k > 0$ is adjusted such that eventually $q_k \ge q$ in region of interest. Has cluster points x_* that are first order minimal minimal (FOM) i.e.

$$\Delta \varphi(x_*, \Delta x) \geq 0$$
 for $\Delta x \approx 0$.

Drawback: Requires computation and factorization of active Jacobians.

Coordinate Global Descent CGD

f(w;x) is PL w.r.t. x but $\varphi(w)$ is only multi-piecewise linear w.r.t. w, i.e.

$$\varphi(x+te_j) \equiv \varphi(x) + \Delta \varphi(x+te_j)$$
 for $t \in \mathbb{R}$.

Along any such coordinate bi-direction we can perform a global univariate minimization efficiently. Cluster points x_* of such alternating coordinate searches seem not even even Clarke stationary, i.e. $0 \in \partial \varphi(x_*)$.

Figure 1: Decimal digits gained by 4 methods on single layer regression problem.

SALGO-SAVVY algorithm

- Form piecewise linearization $\Delta \varphi$ of objective φ at the current iterate \mathring{x} and estimate the proximal coefficient q, set $x_0 = \mathring{x}$,
- ② Select the initial tangent \dot{x}_0 and $\sigma = \text{sgn}(z(x_0))$.
- **3** Compute and follow circular segment x(t) in P_{σ} .
- ① Determine minimal t_* where $\varphi(x(t_*)) = c$ or $x_* = x(t_*)$ lies on the boundary of P_σ with some $P_{\tilde{\sigma}}$.
- If $\varphi(x_*) \leq c$ then lower c and goto step (2) // restart inner loop xor goto step (1) with $\mathring{x} = x_*$ and adjusted q // continue outer loop xor terminate optimization if user "happy" or resources exceeded.
- **1** Else, set $x_0 = x_*$, $\dot{x}_0 = \dot{x}(t_*)$, $\sigma = \tilde{\sigma}$ and continue with step (3).

Many other heuristic strategies for retargeting and restarting possible.!!!!

Savvy Ball Path

Figure 2: Reached value 0.591576 whereas target level 0.519984 unreachable.

SAVVY on MNIST, n = 784, m = 10, d = 60000

Resulting accuracy of one layer model with smooth-max activation and cross entropy loss on test set of 10000 images is the "optimal" 92%.

Mixed Binary Linear Optimization

Consider a piecewise linear optimization problem in Abs-Linear-Form

$$\operatorname{\mathsf{Min}} a^{\top}\!x + b^{\top}\!z + c^{\top}\!\Sigma z \quad s.t. \quad z = Z\!x + M\!z + L\!\Sigma z \quad \text{and} \quad \Sigma z \geq 0$$

where $\sigma \in \{-1,1\}^n$ and $\Sigma = \text{diag}(\sigma)$ are binary variables.

This (MIBLOP) can be (MILOP), provided $|z|_{\infty} \leq \gamma$ yielding

$$\min_{x,z,w,\sigma} \quad \left(a^{\top} x + b^{\top} z + c^{\top} h + \frac{q}{2} ||x||^2 \right) \quad s.t. \quad z = Zx + Mz + Lh \;, \quad (2)$$
$$-h \le z \le h \quad \text{and} \quad h + \gamma(\sigma - e) \le z \le -h + \gamma(\sigma + e),$$

Quote by Fischetti and Jo (2018)

"Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study": PL models are unfortunately not suited for training.

Prediction by PL functions in ANF

For $x \in \mathbb{R}^n \mapsto y \in \mathbb{R}^m$

Continuous PL function \iff Hinged NN \iff Abs-Linear-Form .

Numb. of Layers $\ell \ge \nu = \text{Switching Depth} = \text{nilpotency of } (I - M)^{-1}L$.

$$z = c + Zx + Mz + L|z| \in \mathbb{R}^{s}$$

 $y = b + Jx + Nz \in \mathbb{R}^{m}$

- where $M, L \in \mathbb{R}^{s \times s}$ are strictly lower triangular to yield z = z(x).

- **1** ALFs with $\nu \leq \bar{\nu}$ form infinite dimensional linear space of $C^{0,1}(\mathbb{R}^n)$.
- **3** ALFs can be successively abs-linearized with respect to w = [c, Z, M, L, b, J, N] for learning=fitting.

Structured Piecewise linearization (PL) w.r.t. weight vector

Given a reference point $\mathring{w} = [\mathring{c}, \mathring{Z}, \mathring{M}, \mathring{L}, \mathring{b}, \mathring{J}, \mathring{N}]$ we have Taylor like

$$\tilde{z} = \dot{z} + \Delta z(\dot{w}; w - \dot{w})$$
 for x fixed

where \tilde{z} can be calculated directly from Abs-Linear-Form

$$\tilde{z} = \left[c + Zx + \Delta M \mathring{z} + \Delta L |\mathring{z}|\right] + \mathring{M} \tilde{z} + \mathring{L} |\tilde{z}|$$

with $\Delta M = M - \mathring{M}$, $\Delta L = L - \mathring{L}$. The discrepancy is bounded by

$$\|\tilde{z} - z\|_{\infty} \le \frac{q}{2} \|\Delta M, \Delta L\|_F^2$$
.

Explicit upper bound on q can be given but seems too conservative.

Reverse Mode AD \equiv Back Propagation yields at *=2 OPS(\tilde{z})

$$\left[\bar{c},\bar{Z},\bar{M},\bar{L},\bar{b},\bar{J},\bar{N}\right] \equiv \frac{\partial \left(\bar{z}^{\top}\tilde{z}\right)}{\partial \left[c,Z,\Delta M,\Delta L,b,J,N\right]} \; .$$

Objective for successive linearizations for model sizes 3,4,5,

Simplex Iterations by Gurobi

Regression on Griewank in 2 dimensions, 50 training data, 8 testing data over 5 successive piecewise linearizations.

S	#w	var.	1	2	3	4	5
3	21	471	303810	353703	1716277	581060	681025
4	31	631	1129639	263007	1015447	1339147	1068608
5	43	793	1153345	22793377	22895320	21241422	16513124

For s=5 there were 250 equality and 1000 inequality constraints, both linear.

Conclusion:

Nice try - but !!!

Question:

Are we overlooking any structure that could/should be exploited?

Potential contributions

- SALMIN generates cluster points that are first oder minimal.
- Analytically savvy ball reaches target level in convex case.
- Savvy ball can climb away from undesirable local minimizers.
- Successive PL allows exact integration of Savvy Ball and application of Mixed Binary Linear Optimization (Gurobi).
- Though costly MIBLOP may provide reference solutions.
- Stepsize chosen automatically via kinks and angle bound.
- Abs-Linear-Learning generalizes hinged Neural Nets.

Improvements and Developments

- Refine targeting and restarting strategy for SB.
- Matrix based implementation for HPC with GPU.
- Exploitation of low-rank updates in polyhedral transition.
- Mini-batch version in stochastic gradient fashion.
- Oheck global optimality of MIBLOP cluster points.
- Piecewise linearize "loss"-function (e.g. sparsemax).
- Adaptively enforce sparsity in Abs-Linear-Learning.

Muchas Gracias por su Atención !!