Práctica 1 Algoritmos paralelos

Peto Gutierrez Emmanuel

June 7, 2021

Los tiempos de ejecución se dan en microsegundos.

Hilos	Promedio	Prueba 1	Prueba 2	Prueba 3	Prueba 4	Prueba 5
1	3260610.8	2909366	3008953	3499814	3399712	3485209
2	1800342.2	1802146	1803782	1802388	1800056	1793339
4	1003428.2	1000947	1004894	1002809	1008122	1000369
6	1006349	1004090	985663	985174	1037144	1019674
8	994660.8	973975	1033171	987956	996128	982074
20	1008209	1004286	1008287	1006698	1013719	1008055
50	1021020.6	1019131	1019676	1027698	1022113	1016485
100	1030163.6	1032759	1032854	1029508	1027225	1028472

Table 1: Tabla de tiempos de ejecución. Primera ejecución.

Hilos	Promedio	Prueba 1	Prueba 2	Prueba 3	Prueba 4	Prueba 5
1	3149860.6	3141505	3138417	3168281	3136131	3164969
2	1668833.8	1714920	1653986	1645437	1642501	1687325
4	1446799.6	1426221	1386805	1414880	1491961	1514131
6	1406982	1423169	1421549	1428480	1367871	1393841
8	1412858.2	1392294	1428376	1353914	1418279	1471428
20	1448111.6	1471741	1464537	1430041	1412378	1461861
50	1457669.8	1481467	1479378	1407743	1480156	1439605
100	1475008.6	1489538	1496705	1466845	1477180	1444775

Table 2: Tabla de tiempos de ejecución. Segunda ejecución.

En el Cuadro 1 se muestran los tiempos de ejecución al calcular la suma de los primeros 10^9 números naturales de forma paralela. Al realizar las ejecuciones no se estaba ejecutando ningún otro proceso en el equipo (salvo por los del sistema operativo).

En el Cuadro 2 se muestran los tiempos al calcular la misma suma pero teniendo en ejecución el programa cod01.c.

Marca de equipo	Vaio
Sistema operativo	Ubuntu 20.04.2 LTS
Procesador	Intel Core i5-2450M
Generación	2
Núcleos	2
Mejor tiempo	$994660.8 \ \mu s$
nº hilos	8

Table 3: Información de la computadora.

El equipo donde se ejecutó el programa tiene 4 procesadores con 2 núcleos.

```
emmanuel@emmanuel-VPCSB45FL:~$ nproc --all
4
emmanuel@emmanuel-VPCSB45FL:~$ cat /proc/cpuinfo | grep "cpu cores"
cpu cores : 2
emmanuel@emmanuel-VPCSB45FL:~$
```

En el Cuadro 1 se puede observar que ejecutar el programa de forma secuencial toma $3.2~\rm s,$ ejecutarlo con $2~\rm hilos$ toma $1.8~\rm s$ y ejecutarlo con $4~\rm y$ $6~\rm hilos$ toma un poco más de $1~\rm s.$

El mejor tiempo se obtiene cuando se ejecuta el programa con 8 hilos, con un promedio de 994660.8 μ s (un poco menos de 1 s). Esto es porque se aprovechan los 8 núcleos disponibles.

Cuando se lanzan más de 8 hilos toma más tiempo en ejecutarse que con 8 porque el sistema operativo tiene que asignarle cierto tiempo de CPU a cada hilo hasta que se terminen de ejecutar, pero alternando las ejecuciones entre los procesadores disponibles. Es decir, cambiar de un hilo a otro hace que se pierda un poco de tiempo.

Dados los valores del Cuadro 2 se observa que con 1 o 2 hilos no se obtuvo una gran diferencia en el desempeño respecto al Cuadro 1. A partir de 4 hilos se observa que el tiempo de ejecución es mayor que en el Cuadro 1, obtieniendo un mínimo aproximado de 1.4 s. Esto se debe a que algunos procesadores están ocupados ejecutando el programa cod01.c.