Chapter 2

Algebra

2.1 Group Theory

Groups

Let G be a set :

- (1) A semigroup is a set with associative : a(bc) = (ab)c (an abelian semigroup if ab = ba).
- (2) A monoid is a semigroup with identity : ae = ea = a.
- (3) A group is a monoid with inverse : $a^{-1}a = aa^{-1} = e$.

Subgroups

$$H < G$$
 .
 \iff For any $a,b \in H$, one has
 $ab \in H$, $a^{-1} \in H$.

$$\iff$$
 For any $a,b \in H$, one has
 $a^{-1}b \in H$.

If $H \neq \{e\}$ or G, then it is a proper subgroup.

Proposition

- (1) For subgroups (or normal subgroups) $N_i < G$, $\bigcap_{i \in I} N_i$ is a subgroup (or normal subgroup) of G.
- (2) If H and K are subgroups of G, then $H \cup K$ is not subgroup generally. The subgroup $< H \cup K >= H + K$ is called generated by subgroups H, K.

Lagrange Theorem

Let G be a finite group, H < G be a subgroup of G, define $G/H = \{gH \mid g \in G\}$ (G/H is not a group generally) and $[G:H] = |G/H| = |G| \ / \ |H|$.

One has
$$|H|=|gH|=|g^2H|=\cdots=|g^mH|$$
 and $|G|=\sum\limits_{i=1}^m|g^iH|=m\cdot|H|=[G:H]\cdot|H|$. ($|gH|=|Hg|$ for any $g\in G$.)

Proposition

- (1) If K < H < G are three finite groups, then $[G:K] = [G:H] \cdot [H:K]$.
- (2) For two subgroups H < G , N < G , one has : HN = NH . $\iff HN < G$. ($HN = \{hn \mid h \in H, n \in N\}$ is not a group generally.)
- (3) For two finite subgroups H < G, N < G, $H \cap N$ is a subgroup of H and N, by the Lagrange Theorem one has,

$$\frac{|H|}{|H \cap N|} = m = [H : H \cap N] \text{ with } H = \coprod_{i=1}^{m} a_i(H \cap N)$$

where either $a_i N = a_j N$ or $a_i N \cap a_j N = \emptyset$, then $\frac{|HN|}{|N|} = m$, $\frac{|HN|}{|N|} = \frac{|H|}{|H \cap N|}$.

Normal subgroups

N is a normal subgroup of G , $N \triangleleft G$. $\iff \forall g \in G$, gN = Ng .

If N is a normal subgroup, G/N is not only a set but also a group, the identity is eN=N, the inverse of gN is $g^{-1}N$.

The smallest normal subgroup containing H (called normal closure of H)

Proposition

For a normal subgroup $N \lhd G$ and a subgroup K < G:

- (1) $N \triangleleft N + K$.
- (2) $N \triangleleft KN = N + K = NK$.
- (3) If $K \triangleleft G$ such that $N \cap K = \{e\}$, then nk = kn for all $k \in K$, $n \in N$.
- (4) If $N \subseteq K$, then K/N < G/N.

One has: K/N is normal. $\iff K$ is normal.

The first isomorphism theorem for groups

Let $f: G \longrightarrow G'$ be a homomorphism, then one has

$$G/\mathcal{K}er(f) \cong \mathcal{I}m(f)$$
, $\mathcal{K}er(f) \triangleleft G$, $\mathcal{I}m(f) < G$.

 $\mathcal{I}m(f)$ is not a normal subgroup in general.

One has
$$|G| = |\mathcal{I}m(f)| \cdot |\mathcal{K}er(f)|$$
, $|\mathcal{I}m(f)| \mid |G'|$.

The second isomorphism theorem for groups

Let $N \lhd G$, H < G , then one has

$$H \cap N \triangleleft H$$
 , $N \triangleleft HN$, $HN/N \cong H/(H \cap N)$.

HN is a group because N is a normal subgroup.

The third isomorphism theorem for groups

Let M, N be normal subgroups of G with $N \subseteq M$, then one has

$$N \triangleleft M$$
, $M/N \triangleleft G/N$, $(G/N)/(M/N) \cong (G/M)$.

Proposition

$$(1) \ N \lhd G \ . \iff \forall \ g \in G \ , \ gN = Ng \ .$$

$$\iff \forall \ g \in G \ , \ gNg^{-1} = N \ .$$

$$\iff \forall \ g \in G \ , \ n \in N \ , \ gng^{-1} \in N \ .$$

- (2) For an abelian group G, the subgroup of G is always a normal subgroup.
- (3) $\mathrm{SL}_n(\mathbb{R}) \triangleleft \mathrm{GL}_n(\mathbb{R})$, $\mathrm{GL}_n(\mathbb{R})/\mathrm{SL}_n(\mathbb{R}) \cong (\mathbb{R}^{\times}, \cdot)$.
- (4) For $n \in \mathbb{Z}$, one has $n\mathbb{Z} \triangleleft \mathbb{Z}$. The subgroup of a cyclic group is always a normal subgroup. For a finite cyclic group \mathbb{Z}_n and every m|n, one has a unique cyclic subgroup $<[\frac{n}{m}]>$ with order m.
- (5) The automorphism group $\operatorname{Aut}(C)$ of a cyclic group C is an abelian group. For an infinite cyclic group, $\operatorname{Aut}(C) \cong \mathbb{Z}_2$. For a finite cyclic group, $\operatorname{Aut}(C_n) \cong \mathbb{Z}_n^{\times} \cong \mathbb{Z}_{\varphi(n)}$. The order of the group \mathbb{Z}_n^{\times} is $\varphi(n)$ (the Euler- φ function).
- (6) The squares of the elements of \mathbb{Z}_4 are just 0 and 1, this concludes that the equation $a^2 + b^2 = 3c^2$ has no solution in \mathbb{N}^+ .
- (7) $G = \{z \in \mathbb{C} \mid z^n = 1, n \in \mathbb{Z}\}$ is a group under the multiplication but not a group under the addition.

Permutation groups

Define
$$S_{\Omega} = \operatorname{Perm}(\Omega) = \{ \sigma \mid \sigma : \Omega \longrightarrow \Omega \text{ is a bijection} \}$$
, (S_{Ω}, \circ) is a permutation group.
Take $\Omega = \{1, 2, \dots, n\}$, denote : $S_n = \operatorname{Perm}(\Omega) = \{ \sigma \mid \sigma : \{1, 2, \dots, n\} \longrightarrow \{1, 2, \dots, n\} \text{ is a bijection} \}$.

Any permutation in S_n is a unique product of disjoint cycles.

The order of a permutation is the least common multiple of the orders of disjoint cycles.

Proposition

- (1) For $n \geq 5$, A_n is a simple gruop.
- (2) For $n \geq 3$, A_n is generated by 3-cycles $\{(abc) \mid c \neq a, b\}$ where distinct $a, b \in \{1, 2, \dots, n\}$ have been given.

(3) For $n \geq 3$, if the normal subgroup $N \lhd A_n$ ($n \geq 3$) contains a 3-cycle, then $N = A_n$.

Direct products

For groups G_i , $i \in I$, define $\prod_i G_i = \{(g_1, \dots, g_n, \dots) \mid g_i \in G_i\}$ ($\sum_i G_i$ if the operation is additive) to be the direct product. Define the direct sum (or weak direct product) $\bigoplus_i G_i$ to be a subgroup of $\prod_i G_i$ where $\bigoplus_{i} G_i = \{(g_1, \cdots, g_n, \cdots) \mid g_i \in G_i , g_i = 0 \text{ almost everywhere} \}.$

Free groups

For a set X, the free group F(X) is a free object in (\mathbf{Gp}) on the set X, then for any $f: X \longrightarrow G$ mapping to any group G, the unique induced morphism $\widetilde{f}: F(X) \longrightarrow G$ makes the diagram commutes.

There is an at-first-glance paradoxical fact: the infinitely generated free group can be a subgroup of the finitely generated free group.

Every group is the homomorphism image of a free group.

Free abelian groups

An abelian group (using the additive notation for abelian groups) F is a free abelian group if one of the following equivalent conditions holds:

- (1) F has a nonempty basis X.
- (2) $F \cong \bigoplus_{i} \mathbb{Z} \left(\prod_{i=1}^{\infty} \mathbb{Z} \text{ is not free} \right)$. (3) F is a free object in (\mathbf{Ab}) .

For two bases X, X' of an abelian group, one has |X| = |X'| (also if infinite) which is the rank of F. Every abelian group $\langle X \mid R \rangle$ is the homomorphism image of a free abelian group of rank |X|.

Proposition

For a free abelian group F with basis $\{x_1, \cdots, x_n\}$ and a nonzero subgroup G < F, there exist positive integrals $d_1|d_2|\cdots|d_r$ with $r \leq n$ such that G is free abelian with basis $\{d_1x_1,\cdots,d_rx_r\}$.

Finitely generated abelian groups

Every finitely generated abelian group is isomorphic to a finite direct sum of cyclic groups in which the finite cyclic groups are with order d_1, \dots, d_r (called the invariant factors) such that $d_1|d_2|\dots|d_r$ ($d_1 > 1$).

Every finitely generated abelian group is isomorphic to a finite direct sum of cyclic groups of which is infinite or with order a power of a prime (called the elementary divisors).

These two finite direct sum compatible since $\mathbb{Z}_{pq} \cong \mathbb{Z}_q \oplus \mathbb{Z}_p$ (also $\mathbb{Z}_{pq}^{\times} \cong \mathbb{Z}_q^{\times} \oplus \mathbb{Z}_p^{\times}$) if (p,q) = 1.

Proposition

- (1) For a finitely generated abelian group with order n (or $p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$), it has a subgroup with order m (or p_i^x) for every m|n (or $x|k_i$).
- (2) For a finitely generated abelian group G, $G \cong \bigoplus_{i=1}^r \mathbb{Z}_{d_i} \oplus F$ where F is free abelian. $\mathrm{T}(G) = \bigoplus_{i=1}^r \mathbb{Z}_{d_i} \text{ is the torsion subgroup of } G \text{ . If } \mathrm{T}(G) = G \text{ , then } G \text{ is a torsion group. If } \mathrm{T}(G) = 0$ (the additive notation) , then G is torsion-free.
- (3) Finitely generated abelian groups $H \cong G$. $\iff G/T(G)$ has the same rank with H/T(H).

Indecomposable groups

An indecomposable group G is not $\{e\}$ or the direct product of two proper subgroups (a simple group is indecomposable but indecomposable group not must be simple).

Ascending chain condition

A group G is said to satisfy the ascending condition on subgroups (or normal subgroups) if for every chain of subgroups (or normal subgroups) $G_1 < G_2 < \cdots$, there is a k such that $G_k = G_{k+1} = \cdots$.

Descending chain condition

A group G is said to satisfy the descending condition on subgroups (or normal subgroups) if for every chain of subgroups (or normal subgroups) $G_1 > G_2 > \cdots$, there is a k such that $G_k = G_{k+1} = \cdots$.

Proposition

- (1) Every finite group satisfies both the ascending chain condition and the descending chain condition.
- (2) If a group G satisfies the ascending chain condition or the descending chain condition on normal subgroups, then G is the direct product of a finite number of indecomposable subgroups.

Normal endomorphisms

A endmorphism f of a group is called a normal endomorphism if $af(b)a^{-1} = f(aba^{-1})$ ($\mathcal{I}m(f)$ is a normal subgroup of G).

Proposition

- (1) Group G satisfies the ascending chain condition on normal subgroups and f is an endomorphism, then one has : $f \in Aut(G)$. $\iff f$ is an epimorphism.
- (2) Group G satisfies the descending chain condition on normal subgroups and f is a normal endomorphism, then one has : $f \in Aut(G)$. $\iff f$ is a monomorphism.

Fitting Theorem

Let G be a group satisfying both the ascending and descending chain conditions on normal subgroups, for the normal endomorphism f, there exists a k such that $G = \mathcal{I}m(f^k) \times \mathcal{K}er(f^k)$.

If G is indecomposable, then one has $Ker(f^k) = \{e\}$ or $Im(f^k) = \{e\}$. Thus $Im(f^k) = \{e\}$, f is nilpotent or $Ker(f^k) = \{e\} \iff f \in Aut(G)$.

Krull-Schmidt Theorem

Let G be a group satisfying both the ascending and descending chain conditions on normal subgroups, if $G = G_1 \times G_2 \times \cdots \times G_s$ and $G = H_1 \times H_2 \times \cdots \times H_t$ with each indecomposable G_i , H_i , then one has: s = t, $G_i \cong H_i$ after reindexing.

Lattice

One has $Q_8/<-1>\cong D_8/< a^2>$ (the double line component) , even through $< a^2>\cong <-1>$, Q_8 and D_8 are not isomorphic.

Group action

A group action of G on X is a function $\phi: G \times X \longrightarrow X$ such that $e \cdot x = x$, $(ab) \cdot x = a \cdot (bx)$. The kernel of this action is $Ker(\phi) = \{g \mid g \cdot x = x \text{ for all } x \in X\}$ (it is not normal in general.)

Orbit of x: Orb $(x) = \{x' \in X \mid x' = g \cdot x, g \in G\}$.

Stabilizer of $x: G_x = \{g \mid g \cdot x = x\}$, also called isotropy group, subgroup fixing x.

 $\begin{aligned} & \text{Translation}: \begin{cases} \text{a subgroup } H < G \text{ acts on } G \text{ by } h \cdot g = hg \text{ .} \\ \text{a subgroup } H < G \text{ acts on the set of cosets } \{g_i K\} \text{ by } h \cdot g_i K = hg_i K \text{ .} \end{cases} \\ & \text{Conjugation}: \begin{cases} \text{a subgroup } H < G \text{ acts on } G \text{ by } h \cdot g = hgh^{-1} \text{ .} \\ \text{a subgroup } H < G \text{ acts on the set of subgroups } \{K_i \mid K_i < G\} \text{ by } h \cdot K_i = hK_i h^{-1} \text{ .} \end{cases} \end{aligned}$

Proposition

- (1) If for all $x \in X$, the stabilizer $G_x = \{e\}$, then this group action is free. If there is an $x \in X$ such that the stabilizer $G_x \neq \{e\}$, then this group action is not free.
- (2) If $Ker(\phi) = \{e\}$, then this group action is faithful.
- (3) If $Ker(\phi) = G$, then this group action is trivial.
- (4) If there is only one orbit of X then this group action is transitive.
- (5) Either Orb(x) = Orb(x') or $Orb(x) \cap Orb(x') = \emptyset$.

Conjugation on elements

For conjugation

$$G \times G \longrightarrow G$$
, $h \cdot g = hgh^{-1}$,

the orbit Orb(x) of x is called the conjugate class of x,

the stabilizer G_x of x is called the centralizer of x denoted by $C_G(x)$,

the kernel of group action is called the center of G denoted by $C_G(X)$ and it is normal and abelian.

For conjugation

$$H \times G \longrightarrow G$$
, $h \cdot q = hqh^{-1}$,

the stabilizer H_x of x is called the centralizer of x in H denoted by $C_H(x)$,

the kernel of group action is called the centralizer of G in H denoted by $C_H(G)$ and it is normal and abelian.

One has

$$C_H(x) = C_G(x) \cap H$$
, $C_H(X) = C_G(X) \cap H$.

Structure of group

Consider the conjugation on elements :

Conjugacy classes in S_5

Partition of 5	Representative of conjugacy class
1, 1, 1, 1, 1	$\mathbb{1} = (1)(2)(3)(4)(5)$
1, 1, 1, 2	(45) = (1)(2)(3)(45)
1, 1, 3	(345) = (1)(2)(345)
1,4	(2345) = (1)(2345)
5	(12345)
1, 2, 2	(23)(45) = (1)(23)(45)
2,3	(12)(345) = (12(345))

The elements with same (disjoint) cycle type are conjugate.

Conjugations on subgroups

For conjugation

$$G \times \{ \text{subgroups of } G \} \longrightarrow \{ \text{subgroups of } G \} \ , \ h \cdot K = hKh^{-1} \ ,$$

the stabilizer of K is called the normalizer of K denoted by $N_G(K)$ (one has $N_G(G)=G$) .

For conjugation

$$H \times \{ \text{subgroups of } G \} \longrightarrow \{ \text{subgroups of } G \} \ , \ h \cdot K = hKh^{-1} \ ,$$

the stabilizer of K is called the normalizer of K in H denoted by $\mathcal{N}_H(K)$.

- (1) The subgroup K is normal in subgroup $N_G(K)$.
- (2) The subgroup K is normal in G . $\iff N_G(K) = G$.

Orbit-stabilizer Theorem

For a group action of G on X, take $x \in X$, then there is a bijection from G/G_x (not a group generally) to Orb(x), thus we have $|G| = |G_x| \cdot |Orb(x)|$ if G is finite.

Proposition

- (1) The number of the conjugacy classes (as a orbit of conjugation) of x is $[G:G_x] = [G:C_G(x)]$.
- (2) If $Orb(x_1), \dots, Orb(x_n)$ are distinct conjugacy classes of G, then $|G| = \sum_n [G:G_{x_i}] = \sum_n [G:C_G(x_i)]$.
- (3) The number of subgroups conjugate to K is $[G:N_G(K)]$.

Proposition

- (1) Every group action of G on X induces a homomorphism $G \longrightarrow S_X$ where S_X is the permutation group.
- (2) The conjugation on G for each g induces an automorphism $G \longrightarrow S_G$ called inner automorphism. And $\operatorname{Inn}(G) \cong G/C_G(G)$.

Cayley Theorem

For a group G, there is a monomorphism $G \longrightarrow S_G$.

Hence every group is isomorphic to a permutation group.

If |G| = n, then G is isomorphic to a subgroup of S_n .

Transitive permutation representations

For a subgroup H < G, take $\Omega = G/H = \{H, g_1 H, \cdots, g_n H\}$, the group action $g \cdot g_i H = g g_i H$ of G on G/H is transitive and it is called the permutation representation of G on the subgroup H and $\mathcal{K}er(\phi) = \bigcap_{g \in G} g H g^{-1}$.

Poincaré Argument

For a finite G , H < G and [G:H] = n , then $|G/\mathcal{K}er(\phi)| = |G/(\bigcap_{g \in G} gHg^{-1})|$ is a factor of (n!,|G|) .

One has $G/Ker(\phi) \cong \mathcal{I}m(\phi) < S_n$ by the Cayley Theorem.

If p is the smallest prime factor of |G|, then for subgroup H < G satisfying [G:H] = p, then $H \triangleleft G$.

Frattini Argument

For a group action G on X, if the subgroup N < G acts transitively on X, then one has $G = G_x N = \{gn \mid g \cdot x = x, n \in N\}$ for all $x \in X$.

Sylow Theorem

For a finite group G, if $|G| = p^n$ where p is prime, then G is a p-group. If $|G| = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}$ and H < G, $|H| |p_i^{n_i}$, then H is a p_i -subgroup.

- (1) The Sylow p_i -subgroup (the p_i -subgroup with order $p_i^{n_i}$) of G always exists.
- (2) Any two Sylow p_i -subgroups $P_1, P_2 \in \text{Syl}_p(G)$ are conjugate.
- (3) There are n_{p_i} Sylow p_i -subgroups in G and $n_{p_i} \mid |G|$, $n_{p_i} \equiv 1 \pmod{p_i}$.
- (4) There are $n(p_i^{k_i})$ subgroups which are p_i -subgroup in G and $n(p_i^{k_i}) \equiv 1 \pmod{p_i}$.

Proposition

- (1) B is a p-subgroup of finite group G, for a Sylow p-subgroup P, if BP = PB, then B < P.
- (2) For the intersection of all the Sylow p-subgroups P_i of finite group G, denote $O_p(G) = \bigcap_i P_i$. $O_p(G)$ is the largest normal p-subgroup of G which means any normal p-subgroup is in $O_p(G)$. Moreover, $O_p(G)$ char G.
- (3) If P is the only one subgroup with order n, then $P \lhd G$. If $P \in \mathrm{Syl}_p(G)$ and $P \lhd G$, then $n_p = 1$ and P char G.
- (4) For a finite p-group G, M is the largest subgroup of G, then [G:M]=p and $M \triangleleft G$.
- (5) For a finite p-group G with |G| > 1, the order of centre $|C_G(G)| > 1$.
- (6) The subgroups, quotient groups and diret products of solvable groups are still solvable. The finite p-group is solvable.
- (7) For the prime p, q, the group G with order pq or p^2q is solvable.

Characteristic subgroups

For any automorphism $\alpha \in \operatorname{Aut}(G)$, if for a subgroup H, one has $\alpha(H) \subseteq H$, then H is a characteristic subgroup of G, denoted by H char G. In particular, for every $\alpha \in \operatorname{Inn}(G)$, if $\alpha(H) \subseteq H$, then $H \triangleleft G$.

If H char K , K char G , then H char G . If H char K , $K\lhd G$, then $H\lhd G$. But $H\lhd K$, $K\lhd G$ do not imply $H\lhd G$.

Trivially $\{e\}$, G and $C_G(G)$ are characteristic subgroups of G, if the only characteristic subgroups of G are $\{e\}$ and G, then G is a characteristic simple group.

N/C Theorem

Let K < G, then $N_G(K)/C_G(K)$ is isomorphic to a subgroup of Aut(K).

Composition series

 $\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_{r-1} \triangleleft G_r = G$ is called a composition series of G where G_i/G_{i+1} is simple called the composition factor of G.

Jordan-Hölder Theorem

Suppose there are two composition series of G, $\{e\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_r = G$ and $\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_s = G$, then r = s and the composition factors are isomorphic with the other.

Proposition

Let G be a finite group, then:

G is solvable.

- ← The composition factors are all cyclic group with prime order.
- ← The composition factors are all Abelian.

Semi-products

For a normal subgroup N and a subgroup K of G, if $N \cap K = \{e\}$, then one can construct a semi-product $N \rtimes_f K$ with $|G| = |N \rtimes_f K|$ by :

considering the conjugation of K on the set N, $f: K \times N \longrightarrow N$ induces an automorphism $f: K \longrightarrow \operatorname{Aut}(N)$ given by $k \cdot h = khk^{-1} = f(k)(h)$,

the multiplication is $(h_1, k_1)(h_2, k_2) = (h_1(k_1 \cdot h_2), k_1 k_2) = (h_1(k_1 h_2 k_1^{-1}), k_1 k_2)$.

Hölder Theorem

Let $n, m \geq 2$, G is the extension of $N \cong \mathbb{Z}_n$ by $K \cong \mathbb{Z}_m$. $\iff G = \langle a, b \mid a^n = 1, b^m = a^t, ba^r = ab \rangle$ where $r^m \equiv 1 \pmod{n}$, $t(r-1) \equiv 0 \pmod{n}$.

Groups with order 30

 $|G| = 30 = 2 \cdot 3 \cdot 5$. If G is Abelian, then $G \cong \mathbb{Z}_{30}$.

By the Sylow theorem:

The number of Sylow 2-subgroups in G is 1, 3, 5, 15. The number of Sylow 3-subgroups in G is 1, 10. The number of Sylow 5-subgroups in G is 1, 6.

For $P \in \mathrm{Syl}_3(G)$, $Q \in \mathrm{Syl}_5(G)$, if they are neither normal, then there are 20 nonidentity elements with order 3 and 24 nonidentity elements with order 5, this makes a contradiction.

Then one of P , Q must be normal.

One has P char PQ and Q char PQ , since $PQ\lhd G$, then $P\lhd G$ and $Q\lhd G$.

One has $P \times Q \cong \mathbb{Z}_{15}$ is normal in G.

 $G \cong \mathbb{Z}_{15} \rtimes_f \mathbb{Z}_2$ where $f : \mathbb{Z}_2 \longrightarrow \operatorname{Aut}(\mathbb{Z}_{15}) \cong \operatorname{Aut}(\mathbb{Z}_5) \times \operatorname{Aut}(\mathbb{Z}_3)$.

Considering the element with order 2 in $\operatorname{Aut}(\mathbb{Z}_5) \times \operatorname{Aut}(\mathbb{Z}_3)$, there are three elements :

$$\begin{cases} a \longmapsto a^{-1} \\ b \longmapsto b \end{cases}, \begin{cases} a \longmapsto a \\ b \longmapsto b^{-1} \end{cases}, \begin{cases} a \longmapsto a^{-1} \\ b \longmapsto b^{-1} \end{cases} \text{ described as three automorphisms on } \mathbb{Z}_{15} \ .$$

(1) For
$$k \in \mathbb{Z}_2$$
, $kak^{-1} = k \cdot a = a^{-1} = a^4$, $G = \langle a, k \mid a^5 = 1, k^2 = 1, ak = ka^4 \rangle \times \mathbb{Z}_3 = D_{10} \times \mathbb{Z}_3$.

(2) For
$$k \in \mathbb{Z}_2$$
, $kbk^{-1} = k \cdot b = b^{-1} = b^2$, $G = \langle b, k \mid b^3 = 1, k^2 = 1, bk = kb^2 \rangle \times \mathbb{Z}_5 = D_6 \times \mathbb{Z}_5$.

(3) For
$$k \in \mathbb{Z}_2$$
, $n \in \mathbb{Z}_{15}$, $knk^{-1} = n^{-1} = n^{14}$, $G = \langle n, k \mid n^{15} = 1, k^2 = 1, nk = kn^{14} \rangle = D_{30}$.

2.2 Rings and Ideals

Rings

$$(R, +, \cdot) \text{ is a ring} \iff \begin{cases} (a+b) + c = a + (b+c) \\ a+0 = 0 + a = a \\ a+(-a) = (-a) + a = 0 \\ a+b = b+a \end{cases} \text{ and } \begin{cases} (ab)c = a(bc) \\ (a+b) \cdot c = ac+bc \\ a \cdot (b+c) = ab+ac \end{cases}$$

Suppose (I, +) is a subgroup of (R, +), (I, +) < (R, +),

if $\forall a \in I$, $r \in R$, one has $ar \in I$, $ra \in I$, then I is a ideal of ring $(R, +, \cdot)$, denoted by $I \triangleleft R$.

 $\forall x \in (R, +, \cdot)$, $xR = \{xr \mid r \in R\}$ is a ideal of R, called principal ideal, denote $xR = \langle x \rangle$. If every ideal of ring R is a principal ideal, then R is a PIR (principal ideal ring).

Ring homomorphisms

$$f:R\longrightarrow S \text{ is a ring homomorphism.} \iff \begin{cases} \text{As Abelian group}: \ f(r_1+r_2)=f(r_1)+f(r_2) \ , \ f(0_r)=0_s \\ \\ \text{With multiplication}: \ f(r_1\cdot r_2)=f(r_1)\cdot f(r_2) \\ \\ \text{If } R \text{ has identity } \mathbbm{1}_r: f(\mathbbm{1}_r)=\mathbbm{1}_s \end{cases}$$

If S is a subring of R , then for $s_1,s_2\in S$, $s_1\cdot s_2$, $\,s_1+s_2$, $\,s_1-s_2\in S$.

If R has identity $\mathbbm{1}$, then for the subring S, $\mathbbm{1} \in S$.

Proposition

- (1) The polynomial ring $\mathbb{F}[x]$ is a domain and also a principal ideal domain.
- (2) For any $p_1(x), \dots, p_n(x) \in \mathbb{F}[x]$, the ideal $\langle p_1(x), \dots, p_n(x) \rangle = \{r_1 \cdot p_1 + \dots + r_n \cdot p_n \mid r_i \in R\} = \langle \gcd(p_1(x), \dots, p_n(x)) \rangle$.
- (3) $u \in R$ is a unit. \iff exist $u^{-1} \in R$ such that $u \cdot u^{-1} = \mathbb{1}$. \iff < u >= R.
- (4) a and b are associate. \iff exist a unit $u \in R$, such that a = ub. \iff < a > = < b >.
- (5) r divides $s : \iff s = xr : \iff r \mid s : \iff \langle s \rangle \subseteq \langle r \rangle$.

If x is not a unit , then $\langle s \rangle \subsetneq \langle r \rangle$.

Characteristic of ring

For a ring R with $\mathbbm{1}$, if c is the minimum positive integer (or c=0) such that $c \cdot \mathbbm{1} = 0$, then c is the characteristic of R. If F is a field, then the characteristic c is either 0 or a prime p.

From rings to fields

In a commutative ring with identity,

if $p \neq 0, \mathbbm{1}$ is a prime element, then $p \mid a \cdot b \Longrightarrow p \mid a \text{ or } p \mid b$.

if c=ab is an irreducible element, then $a=\mathbbm{1}$ or $b=\mathbbm{1}$.

Ring with zero divisor : the matrices ring $M_n(\mathbb{R})$.

Division ring : the quaternions ring $\mathbb H$ where

$$\mathbb{H} = \{a + bi + cj + dk \mid i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j\} .$$

Integral domain: $\mathbb{Z}[\sqrt{-3}]$ where $4=2\cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})$ and $2,1+\sqrt{-3},1-\sqrt{-3}$ are irreducible.

UFD: the polonomial ring on integrals $\mathbb{Z}[x]$, it is not a PID.

- (1) For ideals $I \lhd R$ and $J \lhd R$, $I+J=\{i+j \mid i \in I \ , \ j \in J\}$ is an ideal and $I+J=< I \cup J>$.
- (2) For ideals $I \triangleleft R$ and $J \triangleleft R$, $I \cap J$ is also an ideal, but IJ is not an ideal in general.
- (3) For ideals $I \triangleleft R$ and $J \triangleleft R$, if $I \subseteq J$, then $I/J = \{i \mid iJ \subseteq I\}$ is an ideal.

Radicals of ideals

For an ideal $J \triangleleft R$, the radical of J is :

$$\sqrt{J} = \{ f \mid f \in R , f^k \in J \text{ for some } k \in \mathbb{N} \} ,$$

and it is also an ideal.

For an ideal J, if $\sqrt{J} = J$, then J is a radical ideal. Trivially, the radical of an ideal is a redical ideal.

Reduced rings

The ideal $\sqrt{0} = \{a \mid a^k = 0 \text{ for some } k\}$ is called nilradical of R, the element in $\sqrt{0}$ is called nilpotent. If $\sqrt{0} = 0$ (the zero ideal is radical), then R is a reduced ring.

Proposition

- (1) The ideal $I \triangleleft R$ is radical. $\iff R/I$ is reduced.
- (2) For two ideals I and J, one has $IJ \subseteq I \cap J$ and $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- (3) Two ideals $I \triangleleft R$, $J \triangleleft R$ are called coprime if I + J = R, then one has $IJ = I \cap J$.
- (4) If I_1, \dots, I_n are pairwise coprime, then one has $I_1 \dots I_n = I_1 \cap \dots \cap I_n$.

The Chinese Remainder Theorem

For ideals I_1, \dots, I_n of R, there is a homomorphism $f: R \longrightarrow R/I_1 \times \dots \times R/I_n$, $a \longmapsto (a_1, \dots, a_n)$, then one has:

- (1) f is injective. $\iff I_1 \cap \cdots \cap I_n = 0$.
- (2) f is surjective. $\iff I_1, \dots, I_n$ are pairwise coprime which means $I_i + I_j = R$ for $i \neq j$.

Prime ideals

 $P \lhd R$ is an ideal with $P \neq R$, for any $a,b \in R$, if $ab \in P$ implies $a \in P$ or $b \in P$, then P is called a prime ideal.

The set of all the prime ideals of R is called the prime spectrum of R, denoted by $\operatorname{Spec}(R)$.

Maximal ideals

If the only one ideal containing M is R itself where $M \lhd R$ and $M \neq R$, then M is called a maximal ideal. The set of all the maximal ideals of R is called the maximal spectrum of R, denoted by $\operatorname{MaxSpec}(R)$.

Proposition

- (1) For a ring R with identity, one has: R/M is a field. $\iff M$ is a maximal ideal.
- (2) For a ring R with identity, one has: R/I is an integral domain. $\iff I$ is a prime ideal.
- (3) For a commutative ring R with identity, every maximal ideal of R is a prime ideal, every prime ideal of R is a radical ideal.
- (4) For a PID (principal ideal domain) R, the nonzero prime ideal is a maximal ideal.
- (5) For ideals $I \subseteq J$ of a ring R, one has: J is radical, prime or radical in R. $\iff J/I$ is radical, prime or radical in R/I.

Contractions and extensions of rings

Let $f: R \longrightarrow R'$ be a ring homomorphism.

- (1) For $I \triangleleft R'$, the inverse image $f^{-1}(I)$ is an ideal of R called the inverse image ideal of I or the contraction of I by f.
- (2) For $I \triangleleft R$, the ideal $\langle f(I) \rangle$ generated by f(I) is an ideal of R' called the image ideal of I or the extension of I of f, also written as $f(I) \cdot R'$.

Localizations of rings

A set $S \subseteq R$ is called multiplicatively closed if $\mathbb{1} \in S$ and $ab \in S$ for all $a, b \in S$.

For a multiplicatively closed set S, define an equivalent relation on $R \times S$ by $(r,s) \sim (r',s')$ if there is a $u \in S$ such that u(rs'-r's)=0. Denote this class by $(r,s)=\frac{r}{s}$, $S^{-1}R=\{\frac{r}{s}\mid r\in R,\ s\in S\}$ is called the localization of R at S.

Hilbert's Basis Theorem

If R is a Noeitherian ring, then so is the polynomial ring R[x].

2.3 Galois Theory

Proposition

- (1) For the finite field $\mathbb{F}_p = \mathbb{Z}_p$, the characteristic of \mathbb{F}_p is p .
- (2) The integral domain $\mathbb{F}_p[x]$ of polynomials with coefficient \mathbb{F}_p has characteristic p .
- (3) For a field F, the polynomial ring F[x] is an integral domain, the field

$$F(x) = \{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in F[x], g(x) \neq 0 \}$$

is called the field of rational functions.

Trivially, $F \subseteq F(x)$ is a subfield of F(x).

(4) For a field homomorphism $f: F \longrightarrow F'$, if f is not injective, then it must be 0.

Pime subfields

The subfield generated by $\mathbbm{1}$ is the smallest subfield of F containing $\mathbbm{1}$.

The prime subfield of field F is the subfield generated by $\mathbbm{1}$.

If char F=0, then it is \mathbb{Q} . If char F=p, then it is (isomorphic to) \mathbb{F}_p .

Extension fields

If F is a subfield of K, then K is an extension field of F (F is called the base field), this extension is denoted by K/F. Trivailly, every field F is an extension field of its prime subfield.

For extension K/F, K is a vector space over field F, the dimension is denoted by [K:F]. The extension is finite if and only if [K:F] is finite. For K/E and E/F one has [K:F] = [K:E][E:F].

Simple extensions

For extension K/F, for $\alpha, \beta, \dots \in K$, the smallest field containing both F and $\alpha, \beta, \dots \in K$ is denoted by $F(\alpha, \beta, \dots)$.

For a single element $\alpha \in K$, $F(\alpha)$ is celled a simple extension (field) of F (also can think of $F[\alpha]$ a simple extension of F as a domain). α is celled a primitive element for this extension.

Eisenstien Argument

For
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Q}(x)$$
:

if there is a prime p such that $p \nmid a_n$, $p \mid a_{n-1}, \dots, a_1$, $p^2 \nmid a_0$, then f(x) is irreducible in $\mathbb{Q}(x)$.

Algebraic and transcendental elements

Suppose there is an extension K/F. If $u \in K$ could be a root of some nonzero $p(x) \in F[x]$, then u is an algebraic element over F. Otherwise, u is a transcendental element over F.

Proposition

Suppose there is an extension K/F:

If $u \in K$ is a transcendental element over F, then one has $K(u) \cong K(x)$.

If $u \in K$ is an algebraic element over F, then :

- (1) F(u) = F[u].
- (2) $\{1, u, \dots, u^{n-1}\}$ is a basis of the vector space F(u) over field F.
- (3) [F(u):F] = n.
- (4) $F(u) \cong F[x]/\langle p(x) \rangle$ where $p(x) \in F[x]$ is an irreducible monic polynomial of degree n, which is uniquely determined by p(u) = 0 and f(u) = 0 for all p(x)|f(x) in F[x].

The irreducible monic polynomial in (4) is called the minimum polynomial of u, its degree deg p(x) = [F(u):F] = n.

Isomorphisms between simple extensions

For a field isomorphism $f: F \longrightarrow F'$, u is an element of an extension of F, v is an element of an extension of F'.

- (1) u is transcendental over F, v is transcendental over F'.
- (2) u is a root of an irreducible polynomial $p(x) \in F[x]$, $f: p(x) \longmapsto p'(x)$, v is a root of an irreducible polynomial $p(x) \in F[x]$.

(u is algebraic over F , v is algebraic over F' .)

Then one has: either (1) or (2) implies $F(u) \cong F'(v)$ given by $u \longmapsto v$.

Proposition

If F is a field and $p(x) \in F[x]$ a polynomial of degree n. Then there is a simple extension F(u) of F such that :

- (1) u is a root of p(x).
- (2) $[F(u):F] \leq n$.
- (3) p(x) is irreducible. $\Longrightarrow F(u)$ is unique up to an isomorphism which is identity on F.
- (4) p(x) is irreducible. \iff [F(u):F]=n.

Algebraic extensions

If K/F is a finite extension, then K is finitely generated and algebraic (all elements are algebraic) over F. For $\alpha, \beta, \dots \in K$, $F(\alpha, \beta, \dots)$ is an algebraic extension of F if α, β, \dots are all algebraic over F.

If K/E and E/F are algebraic, then K/F is algebraic.

If $\alpha, \beta, \dots \in K$ are exactly all the algebraic elements over F in K, then the set $\{\alpha, \beta, \dots\}$ is the subfield of K (this subfield is algebraic over F).

F-homomorphism

For a field homomorphism $f: K \longrightarrow E$ between two extensions K/F, E/F of F, if f is not 0, it must be injective, then $f: \mathbb{1}_K \longmapsto \mathbb{1}_E$ (they are both $\mathbb{1}_F$).

```
If f:K\longrightarrow E is a field homomorphism, then one has : f:K\longrightarrow E is a F-module homomorphism. \iff f|_F=\mathbbm{1}_F.
```

If a field homomorphism $f: K \longrightarrow E$ is also a F-module homomorphism (it satisfies $f|_F = \mathbbm{1}_F$), then $f: K \longrightarrow E$ is called a F-homomorphism. If K = E, f is an field automorphism, then $f: K \longrightarrow E$ is called a F-automorphism. All the F-automorphism of K form the Galois group of K over F, denoted by $\operatorname{Aut}_F(K)$.

Proposition

- (1) For an extension K/F and a polynomial $p(x) \in F[x]$, if $u \in K$ is a root of p(x) and $f: K \longrightarrow K$ is a K-homomorphism, then f(u) is also a root of p(x).
- (2) For an extension K/F , E is an intermediate field, $F\subseteq E\subseteq K$, $H<{\rm Aut}_F(K)$ is a subgroup, one has :

```
the fixed field H' = \{k \mid f(k) = k, f \in H, k \in K\} of H is an intermediate field, F \subseteq H' \subseteq K, E' = \operatorname{Aut}_E(K) = \{f \mid f \in \operatorname{Aut}_F(K), f|_E = \mathbbm{1}_E\} is a subgroup of Galois group \operatorname{Aut}_F(K).
```

- (3) If the fixed field of $\operatorname{Aut}_F(K)$ is F and $F\subseteq K$, then K/F is celled a Galois extension of F, K is Galois over F.
- (4) $\mathbb C$ is Galois over $\mathbb R$, $\mathbb Q(\sqrt{3})$ is Galois over $\mathbb Q$. If F is an infinite field, then the simple extension F(x) is Galois over F.

Fundamental Theorem of Galois Theory

For a finite Galois extension K/F, there is an one-to-one correspondence between all intermediate fields of this extension and all subgroups of Galois group $\operatorname{Aut}_F(K)$ such that :

- (1) $[Aut_E(K) : Aut_{E'}(K)] = [E' : E]$.
- (2) E' is Galois over E . \iff $\operatorname{Aut}_E(K) \lhd \operatorname{Aut}_{E'}(K)$. (Thus K is Galois over every E .)

$$\{e\} = \operatorname{Aut}_{K}(K) \longrightarrow K$$

$$\operatorname{Aut}_{E'}(K) \longrightarrow E'$$

$$\operatorname{Aut}_{E}(K) \longrightarrow E$$

$$\operatorname{Aut}_{F}(K) \longrightarrow F$$

Splitting fields

For a field F, $f(x) = u_0(u_1 - x) \cdots (u_n - x)$ is called a splitting polynomial in F[x] where $u_i \in F$. $K = F(u_1, \dots, u_n)$ where $u_i \in F$ are all roots of f(x) in K is called a splitting field of the splitting polynomial $f(x) \in F[x]$.

Algebraic closures

A field K is algebraically closed.

- \iff There is no algebraic extension of K except itself.
- \iff Every nonconstant polynomial in K[x] has a root in K.
- \iff Every nonconstant polynomial in K[x] is splitting over K.
- \iff Every nonconstant irreducible polynomial in K[x] has degree 1.
- \iff There is a subfield $F \subseteq K$ such that K is algebraic over F and every polynomial $f(x) \in F[x]$ is splitting in K[x].

Proposition

- (1) The splitting fields of same polynomials over F are F-isomorphism. Thus every field F has a unique algebraic closure up to F-isomorphism.
- (2) For a field isomorphism $\sigma: F \longrightarrow F'$, $S = \{f_i\}$ are polynomials in F[x], $S' = \{\sigma(f_i)\}$ are polynomials in F'[x]:
 - if K is a splitting field over F of S, K' is a splitting field over F' of S', then one has $K \cong K'$.

Separable and normal extensions

For an irreducible polynomial $f(x) \in F[x]$, in a splitting field of F if every root of f(x) is a simple root, then f(x) is separable.

For an algebraic extension K/F, the element $u \in K$ is separable if its minimum polynomial is separable, if all the elements in K are separable, then K/F is a separable extension.

For an algebraic extension K/F, if every irreducible polynomial $f(x) \in F[x]$ that has a root in K is splitting in K[x], then K/F is a normal extension.

Proposition

- (1) Every algebraic extension of an infinite field F is separable.
- (2) The algebraic extension K/F is Galois over F.
 - $\iff K/F$ is separable and K is a splitting field over F of some polynomials in F[x].
 - \iff K is a splitting field over F of some separable polynomials in F[x].
- (3) The algebraic extension K/F is normal over F.
 - \iff K is a splitting field over F of some polynomials in F[x].
 - \iff If \overline{F} is an algebraic closure of F and $F\subseteq K\subseteq \overline{F}$, then for F-homomorphism $f:K\longrightarrow \overline{F}$, one has $\mathcal{I}m(f)=K$.
- (4) For the algebraic extension K/F:

K/F is Galois. $\iff K/F$ is separable and normal.

K is infinite:

K/F is Galois. $\iff K/F$ is normal.

Normal closures

For an algebraic extension K/F, N is a normal closure of K, then:

- (1) N is normal over F .
- (2) No proper subfield of N containing K is normal over F.
- (3) If K/F is separable, then N/F is Galois.
- (4) [N:F] is finite. \iff [K:F] is finite.
- (5) N is unique up to K-isomorphism.

Galois groups of polynomials

For a field F and a splitting polynomial $f(x) \in F[x]$ with splitting field K, the group $\mathrm{Aut}_F(K)$ is the Galois group of f(x).

For a Galois group $\operatorname{Aut}_F(K)$ of irreducible polynomial $f(x) \in F[x]$, one has :

- (1) $\operatorname{Aut}_F(K)$ is isomorphic to a subgroup of S_n .
- (2) If f(x) is separable of degree n, then $n||\operatorname{Aut}_F(K)|$ and $\operatorname{Aut}_F(K)$ is isomorphic to a transitive subgroup of S_n .

Discriminants of polynomials

For a field with char $F \neq 2$, a polynomial $f(x) \in F[x]$ of degree n with n distinct roots u_1, \dots, u_n in a splitting field, the discriminant of f(x) is $D = \Delta^2 = (\prod_{i < j} (u_i - u_j))^2$.

Both Δ and D are in this splitting field.

For each $\sigma \in \operatorname{Aut}_F(K) < S_n$:

 σ is even. $\iff \sigma(\Delta) = \Delta$.

 σ is odd. $\iff \sigma(\Delta) = -\Delta$.

Proposition

- (1) $f(x) \in F[x]$ is an irreducible polynomial of degree 2 with Galois group $\operatorname{Aut}_F(K)$. If f(x) is separable, then $\operatorname{Aut}_F(K) \cong \mathbb{Z}_2$. otherwise, $\operatorname{Aut}_F(K) = \{e\}$.
- (2) $f(x) \in F[x]$ is an irreducible and separable polynomial of degree 3 with Galois group $\operatorname{Aut}_F(K)$. $\operatorname{Aut}_F(K)$ is either A_3 or S_3 . If $\operatorname{char} F \neq 2$, then: $\operatorname{Aut}_F(K) \cong A_3$. $\iff D(f)$ is the square of an element in F.
- (3) For a field F with char $F \neq 2,3$, if $f(x) = x^3 + bx^2 + cx + d \in F[x]$ has three distinct roots in slitting field, then $g(x) = f(x \frac{1}{3}b)$ has the form $x^3 + px + q$ and $D(f) = -4p^3 27q^2$.
- (4) For an $f(x) \in \mathbb{Q}[x]$ of degree prime p, if f(x) has precisely two roots in \mathbb{C} , then the Galois group $\operatorname{Aut}_{\mathbb{Q}}(K)$ of f(x) is isomorphic to S_p .
- (5) $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\zeta))$ is the Galois group of $x^n 1$. Then $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \varphi(n)$ and $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\zeta)) \cong \mathbb{Z}_n^{\times}$.

Galois Theorem

Char F = 0, K is the splitting field of $f(x) \in F[x]$, then : f(x) is solvable. \iff Aut_F(K) is solvable.

2.4Homological Algebra

Modules over ring R

An Abelian group (M, +) is a left R-module over a ring R, then $\forall (r, m) \in R \times M$, $rm \in M$.

An Abelian group (M,+) is a right R-module over a ring R, then $\forall (m,r) \in M \times R$, $mr \in M$.

M satisfies the module distributivity and the module associativity,

 $\forall r, s \in R, m, n \in M$:

Module distributivity :
$$\begin{cases} (r+s)m = rm + sm \\ r(m+n) = rm + rn \end{cases}$$
 Module associativity :
$$\begin{cases} r(sm) = (rs)m \\ 1m = m \end{cases}$$

Module associativity:
$$\begin{cases} r(sm) = (rs)m \\ 1m = m \end{cases}$$

 $f: M \longrightarrow N$ is an R-module homomorphism, if for any $r \in R$, $m_1, m_2 \in M$ one has:

$$f(r \cdot m) = r \cdot f(m)$$
, $f(m_1 + m_2) = f(m_1) + f(m_2)$.

Proposition

- (1) A module over a field \mathbb{F} is a vector space, a vector space is an \mathbb{F} -module. A module over \mathbb{Z} is an Abelian group, an Abelian group is a \mathbb{Z} -module.
- (2) Let R, S be rings, suppose M is an S-module, $\psi: R \longrightarrow S$ is a ring homomorphism. If $\forall m \in M$, $r \in R$, one has $rm = \psi(r)m$, then M is also an R-module.
- (3) Let M be an R-module, as groups N is a subgroup of M. If $\forall r \in R$, $n \in N$, one has $rn \in N$, then N is a submodule of M, denoted by N < M.
- (4) For module homomorphism $f: M \longrightarrow M'$, one has Ker(f) < M, $\mathcal{I}m(f) < M'$.
- (5) The annihilator of element $r \in R$ is $\operatorname{Ann}_R(r) = \{a \mid a \in R, ar = 0\}$, it is an ideal of ring R.
- (6) $RX = \{r_1x_1 + \cdots + r_nx_n \mid r_i \in R, x_i \in X\}$ is a submodule generated by X, denoted by (X) = RX. It is the minimal submodule containing the set X .
- (7) If $\operatorname{Ann}_R(r) \neq 0$, then r is a torsion element of ring R.

If R is an integral domain, then all the torsion elements T(M) is a submodule of M, called the torsion submodule.

If T(M) = M, then M is a torsion module.

If T(M) = 0, then M is a torsion-free module.

If M = (x), then M is a cyclic module.

If N is a submodule of an R-module M , then $M/N = \{m+N \mid m \in M\}$ is a quotient module.

- (9) For an Abelian group A, let $\operatorname{End}(A) = \{f : A \longrightarrow A\}$ be the homomorphism ring of A, then A is an $\operatorname{End}(A)$ -module.
- (10) For an R-module M, there is a natural module homomorphism $\varphi_r: M \longrightarrow M$, $m \longmapsto rm$ which induces a ring homomorphism $\psi: R \longrightarrow \operatorname{End}(M)$, $r \longmapsto \varphi_r$.

 Thus M is also an $\operatorname{End}(M)$ -module.

Direct sums of modules

 M_1 and M_2 are R-module, the direct sum $M_1 \oplus M_2 = \{(m_1, m_2) \mid m_1 \in M_1, m_2 \in M_2\}$ is an R-module,

$$\text{which induces a canonical map} \left\{ \begin{aligned} \tau_1: M_1 &\longrightarrow M_1 \oplus M_2, m_1 \mapsto (m_1, 0) \\ \tau_2: M_2 &\longrightarrow M_1 \oplus M_2, m_2 \mapsto (0, m_2) \\ \pi_1: M_1 \oplus M_2 &\longrightarrow M_1, (m_1, m_2) \mapsto m_1 \\ \pi_2: M_1 \oplus M_2 &\longrightarrow M_2, (m_1, m_2) \mapsto m_2 \end{aligned} \right.$$

and an exact (also split) sequence $0\longrightarrow M_1\xrightarrow{\tau_1}M_1\oplus M_2\xrightarrow{\pi_2}M_2\longrightarrow 0$.

Proposition

- (1) Let $f: N \longrightarrow M$, $\widetilde{f}: M \longrightarrow N$ be R-module homomorphisms, if $\widetilde{f} \circ f = \mathbbm{1}_N$, then f is injective called split monomorphism, \widetilde{f} is surjective called split epimorphism, and one has $M = \mathcal{I}m(f) \oplus \mathcal{K}er(\widetilde{f})$.
- (2) An exact sequence $0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$ is split.
 - \iff The monomorphism f is a split monomorphism.
 - \iff Exist an epimorphism $\widetilde{f}:M\longrightarrow M_1$, such that $\widetilde{f}\circ f=\mathbbm{1}_{M_1}$.
 - \iff The epimorphism g is a split epimorphism.
 - \iff Exist a monomorphism $\widetilde{g}:M_2\longrightarrow M$, such that $g\circ\widetilde{g}=\mathbbm{1}_{M_2}$.
 - $\iff \mathcal{I}m(f) = \mathcal{K}er(g)$ is a direct summand of M (M_1 is not the direct summand generally).
 - \iff Every homomorphism $h: M_1 \longrightarrow N$ factors through f.
 - $\ \Longleftrightarrow$ Every homomorphism $h:N\longrightarrow M_2$ factors through g .

(3) An exact sequence $0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$ is split.

 \Longrightarrow If $\mathcal T$ is an additive functor, then

$$0 \longrightarrow \mathcal{T}(M_1) \xrightarrow{\mathcal{T}(f)} \mathcal{T}(M) \xrightarrow{\mathcal{T}(g)} \mathcal{T}(M_2) \longrightarrow 0$$
 is also exact and split.

Projective modules and injective modules

For any monomorphism $f:M_1\longrightarrow M$ and any homomorphism $h:M_1\longrightarrow N$, if there exists $\widetilde{h}:M\longrightarrow N$ such that $h=\widetilde{h}\circ f$, then N is an injective module.

For any epimorphism $g: M \longrightarrow M_2$ and any homomorphism $h: N \longrightarrow M_2$, if there exists $\widetilde{h}: N \longrightarrow M$ such that $h = g \circ \widetilde{h}$, then N is a projective module.

Proposition

(1) If a co-cone (N, h, \widetilde{h}) of monomorphism $f: M_1 \longrightarrow M$ satisfies the universal property, then N is a colimit and an injective module.

If a cone (N, h, h) of epimorphism $g: M \longrightarrow M_2$ satisfies the universal property, then N is a limit and a projective module.

(2) An R-module J is an injective module.

 \iff The contravariant functor $\operatorname{Hom}_R(-,J)$ is exact.

 \iff If J is a submodule of M, then there is a $K\subseteq M$ such that $J\oplus K=M$.

(3) An R-module P is a projective module.

 \iff The covariant functor $\operatorname{Hom}_R(P,-)$ is exact.

 \iff If there is another module K such that $P \oplus K$ is a free module, then P is a projective module.

Flat modules

Flat modules include free modules, projective modules and torsion-free modules over a PID .

An R-module F is flat. \iff The covariant functor $\otimes_R F$ or $F \otimes_R$ is exact.

Resolutions of modules

To be continuous...

Module homomorphisms

For module homomorphisms $f:M\longrightarrow M'$, $g,h:K\longrightarrow M$, $g',h':M'\longrightarrow K'$, we have

$$K \xrightarrow{g,h} M \xrightarrow{f} M' \xrightarrow{g',h'} K'$$

and an exact sequence

$$0 \longrightarrow \mathcal{K}er(f) \xrightarrow{i} M \xrightarrow{f} M' \xrightarrow{j} \mathcal{C}oker(f) \longrightarrow 0$$
.

f is injective.

$$\iff \mathcal{K}er(f) = 0$$
.

$$\iff 0 \longrightarrow M \xrightarrow{f} M' \xrightarrow{j} Coker(f) \longrightarrow 0$$
 is exact.

$$\iff$$
 If $f \circ g = f \circ h$, then $g = h$ (left cancellation).

$$\iff$$
 If $f\circ g=0$, then $g=0$.

f is surjective.

$$\iff \mathcal{I}m(f) = M'$$

$$\iff 0 \longrightarrow \mathcal{K}er(f) \xrightarrow{i} M \xrightarrow{f} M' \longrightarrow 0$$
 is exact.

$$\iff$$
 If $g'\circ f=h'\circ f$, then $g'=h'$ (right cancellation) .

$$\iff$$
 If $g' \circ f = 0$, then $g' = 0$.

Decomposition Theorem

Let $f: M \longrightarrow M'$ and $g: M \longrightarrow N$ be R-module homomorphisms.

If $g: M \longrightarrow N$ is surjective and $\mathcal{K}er(g) \subseteq \mathcal{K}er(f)$,

then one has a unique $h: N \longrightarrow M'$ such that $f = h \circ g$ and $\mathcal{K}er(h) = g(\mathcal{K}er(f))$, $\mathcal{I}m(h) = \mathcal{I}m(f)$.

That means any R-module homomorphism f factors through a epimorphism $g: M \longrightarrow N$ which satisfies $\mathcal{K}er(g) \subseteq \mathcal{K}er(f)$.

If $h: N \longrightarrow M'$ is injective and $\mathcal{I}m(f) \subseteq \mathcal{I}m(h)$,

then one has a unique $g: M \longrightarrow N$ such that $f = h \circ h$ and $\mathcal{K}er(f) = \mathcal{K}er(g)$, $(\mathcal{I}m(g)) = h^{-1}(\mathcal{I}m(f))$.

That means any R-module homomorphism f factors through a monomorphism $h: N \longrightarrow M'$ which satisfies $\mathcal{I}m(f) \subseteq \mathcal{I}m(h)$.

Fundamental Theorem of Module Homomorphisms

- (1) $f: M \longrightarrow M'$ is an epimorphism, then $M/\mathcal{K}er(f) \cong M'$. Let N be a submodule of M, and $Ker(f) \subseteq N$, then $M/N \cong M'/f(N)$.
- (2) K, N are submodules of M, $K \subseteq N$, then $M/N \cong (M/K)/(N/K)$.
- (3) K, N are submodules of M, then $(N+K)/K \cong ((N+K)\cap N)/(K\cap N) = N/(K\cap N)$.

Proposition

Let M_1, M_2, \cdots, M_n are submodules of M, $M = \sum_n M_i$, then these following are equivalent: (1) $M_1 \oplus \cdots \oplus M_n \cong M$, $(m_1, \cdots, m_n) \longmapsto m_1 + \cdots + m_n$.

- (2) The representation of the 0 in M is unique.
- (3) The representation of any elements in M is unique.
- (4) For any i, $M_i \cap (M_1 + \cdots + \hat{M}_i + \cdots + M_n) = 0$.

Free modules

Let M be an R-module, for a linearly independent set $B\subseteq M$, if every $m\in M$ is the unique linear combination of the elements $b_i\in B$, then M is free R-module (with the basis B).

Proposition

- (1) If R is a field, then all R-modules (linear space) are free modules.
- (2) Free Z-module is precisely the free Abelian group.
- (3) M is free R-module. $\iff M = \bigoplus_{i \in I} M_i = \bigoplus_{i \in I} (b_i)$, where $M_i = (b_i)$ is the cyclic submodule of M and for every i, $M_i \cong R$.
- (4) If R is a commutative ring with $\mathbbm{1}$, M is a finitely generated free R-module, then any basis of M has the same number of elements.

Noetherian rings

Let R be a ring, if all the ideals are finitely generated, then R is a Noetherian ring.

Let R-module M be finitely generated, but generally its submodule is not finitely generated necessarily. If R is a Noetherian ring, then its submodule is finitely generated definitely.

Finitely generated modules on a PID (principal ideal domain)

- (1) The submodule of a finitely generated PID-module M is also finitely generated.
- (2) The submodule of a finitely generated free PID-module M is also free and their rank are not bigger than r(M).
- (3) If M is a finitely generated PID-module, then one has: M is free. \iff M is torsion-free.
- (4) If T(M) is the torsion submodule of a finitely generated PID-module M, then the quotient module M/T(M) is a free module.
- (5) For a finitely generated PID-module there is always a decomposition

$$M = T(M) \oplus F \cong T(M) \oplus M/T(M)$$
.

Exact sequences

There is a sequence of Abelian groups (modules) $A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3$.

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3$$
 is an exact sequence. $\iff \mathcal{K}er(f_2) = \mathcal{I}m(f_1) \implies f_2 \circ f_1 = 0$

$$\cdots \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow \cdots \text{ is a complex.} \iff f_2 \circ f_1 = 0 \ .$$

The sequence
$$0 \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow 0$$

 is exact at $A_1 : \iff f_1$ is injective.
 is exact at $A_2 : \iff \mathcal{K}er(f_2) = \mathcal{I}m(f_1) \Longrightarrow f_2 \circ f_1 = 0$
 is exact at $A_3 : \iff f_2$ is surjective.

then this sequence is exact at A_1 , A_2 , A_3 .

$$0 \longrightarrow \operatorname{Hom}(B,A_1) \xrightarrow{\operatorname{Hom}(B,f_1)} \operatorname{Hom}(B,A_2) \xrightarrow{\operatorname{Hom}(B,f_2)} \operatorname{Hom}(B,A_3) \longrightarrow 0 \text{ is also a sequence of Abelian}$$

groups, where
$$\text{Hom}(B, A_i) = \{ \varphi_i \mid \varphi_i : B \longrightarrow A_i \}$$

and
$$\operatorname{Hom}(B, f_1) = f_1 \circ , \operatorname{Hom}(B, f_1)(\varphi_1) = f_1 \circ \varphi_1 \in \operatorname{Hom}(B, A_2) ,$$

which is
$$0 \longrightarrow \varphi_1 \xrightarrow{f_1 \circ} \varphi_2 \xrightarrow{f_2 \circ} \varphi_3 \longrightarrow 0$$
.

$$0 \longleftarrow \operatorname{Hom}(A_1,B) \xleftarrow{\operatorname{Hom}(f_1,B)} \operatorname{Hom}(A_2,B) \xleftarrow{\operatorname{Hom}(f_2,B)} \operatorname{Hom}(A_3,B) \longleftarrow 0 \text{ is also a sequence of Abelian}$$

groups, where
$$\text{Hom}(A_i, B) = \{ \psi_i \mid \psi_i : B \longleftarrow A_i \}$$

and
$$\operatorname{Hom}(f_1,B) = \circ f_1$$
, $\operatorname{Hom}(f_1,B)(\psi_2) = \psi_2 \circ f_1 \in \operatorname{Hom}(A_1,B)$,

which is
$$0 \longleftarrow \psi_1 \stackrel{\circ f_1}{\longleftarrow} \psi_2 \stackrel{\circ f_2}{\longleftarrow} \psi_3 \longleftarrow 0$$
.

Proposition

(1) For $f \in \text{Hom}(M, N)$, these sequences are exact:

$$0 \longrightarrow \mathcal{K}er(f) \xrightarrow{i} M \xrightarrow{j} \mathcal{C}oker(f) \longrightarrow 0$$

$$0 \longrightarrow \mathcal{K}er(f) \stackrel{i}{\longrightarrow} M \stackrel{f}{\longrightarrow} N \stackrel{j}{\longrightarrow} \mathcal{C}oker(f) \longrightarrow 0$$

(2) For an exact sequence of Abelian groups(modules) $A_1 \xrightarrow{f} A_2 \xrightarrow{g} A_3$, $\mathcal{K}er(f)$ and $\mathcal{I}m(g)$ are submodules of A_1 and A_3 respectively, then:

This diagram commutes.

 \iff these sequences are also exact:

$$A_1 \xrightarrow{j} \mathcal{K}er(f) \longrightarrow 0 \ , \ 0 \longrightarrow \mathcal{I}m(g) \xrightarrow{i} A_3 \ , \ 0 \longrightarrow \mathcal{K}er(f) \longrightarrow A_2 \longrightarrow \mathcal{I}m(g) \longrightarrow 0 \ .$$

(3)
$$0 \longrightarrow A \longrightarrow B \longrightarrow 0$$
 is exact. $\Longrightarrow A \cong B$
 $0 \longrightarrow A \longrightarrow 0$ is exact. $\Longrightarrow A = 0$

(4) If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ is exact, then f is surjective $\iff h$ is injective.

(5) If
$$\cdots \longrightarrow A_n \xrightarrow{f_n} B_n \longrightarrow C_n \longrightarrow A_{n-1} \xrightarrow{f_{n-1}} B_{n-1} \longrightarrow \cdots$$
 is exact, then $A_n \cong B_n \Longrightarrow C_n = 0$.

Short free resolutions

A is an Abelian group, then there exists a short free resolution of this free module A which is a short exact sequence $0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$ and K, F are free Abelian groups.

For an Abelian group A, let F be the free Abelian group with the basis A (F is generated by A), and K is the kernel of map $F \longrightarrow A$.

Thus the short free resolution of A is $0 \longrightarrow K \xrightarrow{i} F \longrightarrow A \longrightarrow 0$

If
$$0 \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow 0$$
 is exact, then

$$0 \longrightarrow \operatorname{Hom}(B, A_1) \xrightarrow{\operatorname{Hom}(f_1)} \operatorname{Hom}(B, A_2) \xrightarrow{\operatorname{Hom}(f_2)} \operatorname{Hom}(B, A_3) \longrightarrow 0$$

is exact at $\operatorname{Hom}(B,A_1)$ and $\operatorname{Hom}(B,A_2)$ for any Abelian group B ,

which means Hom(B, -) is a left exact functor,

$$0 \longrightarrow \operatorname{Hom}(B, A_1) \xrightarrow{\operatorname{Hom}(B, f_1)} \operatorname{Hom}(B, A_2) \xrightarrow{\operatorname{Hom}(B, f_2)} \operatorname{Hom}(B, A_3) \text{ is exact.}$$
 proof:

(1) $\text{Hom}(B, f_1)$ is injective:

For any $f_1 \circ \varphi_1 = f_1 \circ \psi_1 \in \mathcal{I}m(\operatorname{Hom}(B, f_1))$, one always has $\varphi_1 = \psi_1$ because f_1 is injective. $\Longrightarrow \operatorname{Hom}(B, f_1)$ is injective.

(2) $Ker(Hom(B, f_2)) = \mathcal{I}m(Hom(B, f_1))$:

$$Ker(Hom(B, f_2)) \subseteq Im(Hom(B, f_1))$$
:

For
$$\varphi_2 \in \mathcal{K}er(\operatorname{Hom}(B, f_2))$$
, $f_2 \circ \varphi_2 = 0 \Longrightarrow \mathcal{I}m(\varphi_2) \subseteq \mathcal{K}er(f_2) = \mathcal{I}m(f_1)$

Because f_1 is injective, there exists $h: B \longrightarrow A_1$ such that $\varphi_2 = f_1 \circ h$, then $\varphi_2 \in \mathcal{I}m(\operatorname{Hom}(B, f_1))$.

 $\mathcal{I}m(\operatorname{Hom}(B, f_1)) \subseteq \mathcal{K}er(\operatorname{Hom}(B, f_2))$:

for
$$\varphi_2 \in \mathcal{I}m(\operatorname{Hom}(B, f_1))$$
, $\varphi_2 = f_1 \circ h$,

because $f_2 \circ f_1 = 0$, g = 0,

then $\varphi_2 \in \mathcal{K}er(\text{Hom}(B, f_2))$.

If
$$0 \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow 0$$
 is exact, then

$$0 \longleftarrow \operatorname{Hom}(A_1, B) \xleftarrow{\operatorname{Hom}(f_1, B)} \operatorname{Hom}(A_2, B) \xleftarrow{\operatorname{Hom}(f_2, B)} \operatorname{Hom}(A_3, B) \longleftarrow 0$$

is exact at $Hom(A_2, B)$ and $Hom(A_3, B)$ for any Abelian group B,

which means Hom(-,B) (contravariant Hom functor) is also a left exact functor,

$$\operatorname{Hom}(A_1,B) \xleftarrow{\operatorname{Hom}(f_1,B)} \operatorname{Hom}(A_2,B) \xleftarrow{\operatorname{Hom}(f_2,B)} \operatorname{Hom}(A_3,B) \longleftarrow 0 \text{ is exact.}$$

 $0 \longrightarrow \operatorname{Hom}(A_3, B) \xrightarrow{\operatorname{Hom}(f_2, B)} \operatorname{Hom}(A_2, B) \xrightarrow{\operatorname{Hom}(f_1, B)} \operatorname{Hom}(A_1, B)$ is exact. proof:

(1) $\operatorname{Hom}(f_2, B)$ is injective:

For any $\varphi_3 \circ f_2 = \psi_3 \circ f_2 \in \text{Hom}(A_2, B)$, one always has $\varphi_3 = \psi_3$ because f_2 is surjective. \Longrightarrow Hom (f_2, B) is injective.

(2) $Ker(Hom(f_1, B)) = \mathcal{I}m(Hom(f_2, B))$:

 $Ker(Hom(f_1, B)) \subseteq Im(Hom(f_2, B))$:

For $\psi_2 \in \mathcal{K}er(\operatorname{Hom}(f_1, B))$, $\psi_2 \circ f_1 = 0 \Longrightarrow \mathcal{K}er(f_2) = \mathcal{I}m(f_1) \subseteq \mathcal{K}er(\psi_2)$

Because f_2 is surjective, there exists $h: A_3 \longrightarrow B$ such that $\psi_2 = h \circ f_2$,

then $\psi_2 \in \mathcal{I}m(\operatorname{Hom}(f_2, B))$.

 $\mathcal{I}m(\operatorname{Hom}(f_2,B)) \subseteq \mathcal{K}er(\operatorname{Hom}(f_1,B))$:

For $\psi_2 \in \mathcal{I}m(\operatorname{Hom}(f_2, B))$, $\psi_2 = h \circ f_2$,

because $f_2 \circ f_1 = 0$, $\psi_2 \circ f_1 = 0$,

then $\psi_2 \in \mathcal{K}er(\mathrm{Hom}(f_1, B))$.

If
$$0 \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow 0$$
 is exact, then

$$A_1\otimes B\xrightarrow{f_1\otimes \mathbbm{1}_B}A_2\otimes B\xrightarrow{f_2\otimes \mathbbm{1}_B}A_3\otimes B\longrightarrow 0 \text{ is exact for any Abelian group }B\ ,$$

which means $\otimes B$ (and $B\otimes$ as well) is a right exact functor, proof:

(1) $f_2 \otimes \mathbb{1}_B$ is surjective:

 f_2 is surjective.

- \implies For any $a_3 \in A_2$, there is a $a_2 \in A_2$ such that $f_2(a_2) = a_3 \in A_3$.
- \implies For any $a_3 \otimes b \in A_2 \otimes B$, there is a $a_2 \otimes b \in A_2 \otimes B$ such that $f_2 \otimes \mathbb{1}_B(a_2 \otimes b) = a_3 \otimes b \in A_3 \otimes B$.
- $\Longrightarrow f_2 \otimes \mathbb{1}_B$ is surjective.
- (2) $\operatorname{Ker}(f_2 \otimes \mathbb{1}_B) = \operatorname{Im}(f_1 \otimes \mathbb{1}_B)$:

$$\mathcal{I}m(f_1 \otimes \mathbb{1}_B) \subseteq \mathcal{K}er(f_2 \otimes \mathbb{1}_B)$$
:

$$(f_2 \otimes \mathbb{1}_B) \circ (f_1 \otimes \mathbb{1}_B) = (f_2 \circ f_1) \otimes \mathbb{1}_B = 0$$

$$\Longrightarrow \mathcal{I}m(f_1 \otimes \mathbb{1}_B) \subseteq \mathcal{K}er(f_2 \otimes \mathbb{1}_B)$$

$$Ker(f_2 \otimes \mathbb{1}_B) = \mathcal{I}m(f_1 \otimes \mathbb{1}_B)$$
:

Take $h: A_2 \otimes B/\mathcal{I}m(f_1 \otimes \mathbb{1}_B) \longrightarrow A_3 \otimes B$, $a_2 \otimes b + \mathcal{I}m(f_1 \otimes \mathbb{1}_B) \longmapsto f_2(a_2) \otimes b$ such that $f_2 \otimes \mathbb{1}_B = h \circ p$ For $a_3 \in A_3$ there are $a_2 \in A_2$ and $a'_2 \in A_2$ such that $f_2(a_2) = f_2(a'_2) = a_3$.

$$\implies a_2 - a_2' \in \mathcal{K}er(f_2) = \mathcal{I}m(f_1)$$

- \implies There is $a_1 \in A_1$ such that $f_1(a_1) = a_2 a_2'$.
- \implies For $b \in B$, $f_1 \otimes \mathbb{1}_B(a_1 \otimes b) = (a_2 a_2') \otimes b = a_2 \otimes b a_2' \otimes b \in \mathcal{I}m(f_1 \otimes \mathbb{1}_B)$.
- \implies There is well defined bilinear map $\varphi:(a_3,b)\longmapsto a_2\otimes b+\mathcal{I}m(f_1\otimes \mathbb{1}_B)$ such that $f_2(a_2)=a_3$.

By the universal property, there is:

$$j: A_3 \otimes B \longrightarrow A_2 \otimes B/\mathcal{I}m(f_1 \otimes \mathbb{1}_B)$$
, $a_2 \otimes b + \mathcal{I}m(f_1 \otimes \mathbb{1}_B)$ such that $f_2(a_2) = a_3$.

Then
$$j = h^{-1}$$
, $A_3 \otimes B \cong A_2 \otimes B/\mathcal{I}m(f_1 \otimes \mathbb{1}_B)$.

$$\Longrightarrow \mathcal{I}m(f_1 \otimes \mathbb{1}_B) = \mathcal{K}er(p) = \mathcal{K}er(h \circ p) = \mathcal{K}er(f_2 \otimes \mathbb{1}_B)$$

2.5 Representation Theory

Representations of groups

Suppose V is a vector space over field F, a linear representation of G is a homomorphism $f:G\longrightarrow \operatorname{End}(V)$. For $n\in N^+$, a matrix representation of G is a homomorphism $f:G\longrightarrow \operatorname{GL}_n(F)$. By fixing a basis of V, one has $\operatorname{End}(V)\cong\operatorname{GL}_n(F)$.

A linear or matrix representation is faithful if it is injective.

Group rings

Given a group G, a group ring of G over F is a set of such element $\sum_{g \in G} \alpha_g g$ where $\alpha_g \in F$, denoted by FG. The operators are : $\alpha_g g + \beta_g g = (\alpha_g + \beta_g)g$, $(\alpha_g g)(\beta_h h) = (\alpha_g \beta_h)(gh)$.

FG is a commutative ring. \iff G is an Abelian gorup.

By identifying $F = F\{e\}$, $G = \{1_F\}G$, FG is a vector space with elements in G as a basis.

FG-modules

For a linear representation $f: G \longrightarrow \operatorname{End}(V)$, V can be an FG-module by : $(\alpha g)v = \alpha f(g)v$, $(\alpha g)(\beta h)v = (\alpha \beta)(gh)v = (\alpha \beta)f(g)f(h)v$ where $f \in \operatorname{End}(V)$. FG-submodules are precisely G-stable subspaces of V.

There is a bijective correspondence between FG-module V and representation $f: G \longrightarrow \operatorname{End}(V)$. We say the module V affords the linear representation $f: G \longrightarrow \operatorname{End}(V)$.

Equivalent representations

Given two linear representation $f:G\longrightarrow \operatorname{End}(V)$, $f:G\longrightarrow \operatorname{End}(W)$, let $T:V\longrightarrow W$ be isomorphism of two vector spaces over F (also isomorphism as FG-modules), then these two representations are equivalent.

Given two matrix representation $f: G \longrightarrow \mathrm{GL}_n(F)$, $g: G \longrightarrow \mathrm{GL}_n(F)$, if there is a fixed invertible matrix P such that $f(g) = P^{-1}g(g)P$ for all $g \in G$, then these two representations are equivalent.

Completely reducible modules

If module M has no proper submodule, then it is simple or irreducible.

For a decomposable module $M=M_1\oplus M_2\oplus \cdots$, if every M_i is simple, then M is a completely reducible module.

For a completely reducible module M one has: $M = M_1 \oplus M_2 \oplus \cdots \iff M = M_1 + M_2 + \cdots$.

A representation is irreducible, reducible, indecomposable, decomposable or completely reducible if the FG-module affording it is irreducible, reducible, indecomposable, decomposable or completely reducible.

Schur Lemma

For two irreducible modules V and W, every nonzero element in $\operatorname{Hom}(V,W)$ has inverse.

Maschke Thorem

Let G be a finite group, F be a field with char $F \nmid |G|$.

For any FG-module V and submodule $U \subseteq V$, one has submodule $W \subseteq V$ such that $V = U \oplus W$ (every submodule is a direct summand).

Proposition

- (1) An FG-module V is finitely generated. \iff V is finitely dimensional.
- (2) Let G be a finite group, F be a field with char $F \nmid |G|$, then: Every finitely generated FG-module is completely reducible.
- \iff Every finitely dimensional FG-module is completely reducible.
- (2) Let G be a finite group, F be a field with char $F \nmid |G|$, then one can fix a basis of V such that the matrix representation f(q) has the form

$$\begin{pmatrix}
f_1(g) & & & \\
& f_2(g) & & \\
& & & \ddots & \\
& & & f_n(g)
\end{pmatrix}$$

for every $g \in G$.

Wedderburn Theorem

For a nonzero ring R with $\mathbb{1}$ (not commutative necessarily), then:

Every R-module is projective.

- \iff Every R-module is injective.
- \iff Every R-module is completely reducible.
- \iff As a left R-module, $R=I_1\oplus\cdots\oplus I_n$ where $I_i=Re_i$ is a left simple ideal. And $e_ie_j=0$ if $i\neq j$, $e_i^2=e_i$, $\sum\limits_{i=1}^n e_i=\mathbbm{1}$.

 \iff As a ring, $R = R_1 \times \cdots \times R_n$ where R_i is a two-sided ideal of R and $R_i \cong M_{n_i}(F)$ with elements all have inverse.

Characters of representations

A function $f: G \longrightarrow F$ such that $f(g^{-1}hg) = f(h)$ for $g, h \in G$ is called a class function.

Suppose $f:G\longrightarrow \mathrm{End}(V)\cong \mathrm{GL}_n(\mathbb{C})$ is a representation of G afforded by the FG-module V, the function $\chi: G \longrightarrow F$, $g \longmapsto tr(f(g))$ is called the character of f. The character is irreducible or reducible according to the representation is irreducible or reducible.

- (1) Some representations are equivalent. \iff they have same character.
- (2) The character χ of representation is a class function.
- (3) $\chi(e)$ is the degree of representation f .

Hermitian inner products

For two class functions θ and ψ , define the Hermitian inner product $(\theta, \psi) = \frac{1}{|G|} \sum_{g \in G} \theta(g) \overline{\psi(g)}$.

Then for $a,b\in\mathbb{C}$ one has : $(a\theta_1+b\theta_2,\psi)=a(\theta_1,\psi)+b(\theta_2,\psi)$, $(\theta,a\psi_1+b\psi_2)=\overline{a}(\theta,\psi_1)+\overline{b}(\theta,\psi_2)$, $(\theta,\psi)=\overline{(\psi,\theta)}$.

The First Orthogonality Relation of Group Characters

Let G be a finite group, χ_1, \cdots, χ_r be the irreducible characters of G over $\mathbb C$, then one has $(\chi_i, \chi_j) = \delta^i_j$. These irreducible characters are a basis of the class functions space, that is for any character θ , one has $\theta = \sum_{i=1}^r (\theta, \chi_i) \chi_i$.

The Second Orthogonality Relation of Group Characters

For any
$$x, y \in G$$
, $\sum_{i=1}^r \chi_i(x) \overline{\chi_i(y)} = \begin{cases} |C_G(x)| & \text{if } x \text{ and } y \text{ are conjugate in } G \\ 0 & \text{otherwise} \end{cases}$

The norm of class functions

For any class function on G , denote $||\theta||=\sqrt{(\theta,\theta)}$ to be the norm of θ .

For
$$\theta = \sum \alpha_i \chi_i$$
, $||\theta|| = \sqrt{\sum \alpha_i^2}$.

 $||\theta||=1$. \Longleftrightarrow The character is irreducible.

For conjugate classes C_1, \dots, C_r with lenth d_1, \dots, d_r and representation f_1, \dots, f_r , the value $\theta(f_i)\overline{\psi(f_i)}$ appears d_i times in (θ, ψ) , thus

$$(\theta, \psi) = \frac{1}{|G|} \sum_{i=1}^{r} d_i \theta(f_i) \overline{\psi(f_i)} .$$

The norm is given by $||\theta||^2 = (\theta, \theta) = \frac{1}{|G|} \sum_{i=1}^r d_i |\theta(f_i)|^2$.