Weakly-supervised 3D Semantic Scene Reconstruction

Alexander Baumann, Sophia Wagner

Agenda

- 1. Recap
- 2. Results
- 3. Integration of Shape prior into full pipeline
 - a. pretrained Shape Prior
 - b. Shape retrieval
- 4. Outlook
- 5. References

1. Recap

Weakly-supervised semantic scene reconstruction

- Input: Point cloud scan of a 3D indoor scene
- Output: Semantic instance meshes of 3D objects

Extract the features directly from the point cloud without voxelizing the scene

1. Recap

2. Results - Shape prior

ShapeNet Data preparation

- sampling point clouds from 3D object meshes using farthest point sampling
- sampling query points near the object surface and uniformly in a hypercube and calculate their Signed Distance Values

2. Results - Shape prior

• Implementation of the Shape Prior using the following loss:

Training of the Shape Prior

2. Results - Shape prior

Creating 3D instance meshes from the Signed Distance Function

3. Integration of Shape prior into full pipeline - pretrained Shape prior

- Use the pretrained encoder & decoder of the shape prior for predicting the SDF
- Input point cloud looks significantly different to the input point cloud from the ShapeNet data

8

3. Integration of Shape prior into full pipeline - pretrained Shape prior

3. Integration of Shape prior into full pipeline - pretrained Shape prior

Category	table	chair	bookshelf	sofa	trash bin	cabinet	display	bathtub	Avg
loU (RevealNet [1])	17.43	29.61	18.05	28.73	17.90	20.78	18.68	12.64	20.48
loU (RfD-Net [2]) (best)	19.22	37.05	35.14	46.73	36.92	49.25	39.28	32.55	37.02
IoU (Ours)	12.72	15.31	14.14	19.01	26.23	29.81	12.52	17.46	18.40

3. Integration of Shape prior into full pipeline - Shape retrieval

- Freeze only the pretrained decoder for predicting the SDF from a shape embedding
- Extract the shape embedding via ResPointNet (trainable)
- Retrieval of shape embeddings between the detected objects in Scannet scene and the corresponding ShapeNet category

3. Integration of Shape prior into full pipeline - Shape retrieval

Using a triplet loss from [3]:

$$L_{ret} = \max \left(\|z_i - \tilde{z}_i^+\|_2^2 - \|z_i - \tilde{z}_i^-\|_2^2 + 0.5, 0 \right)$$

 z_i : extracted shape embedding of object with predicted semantic class x

 \tilde{z}_i^+ : mean of shape embeddings of class x from ShapeNet data

 \tilde{z}_i : mean of shape embeddings of class $y \neq x$ from ShapeNet data

4. Outlook

- Train shape retrieval method
- Improve Shape Prior
- Compare our results to state-of-the-art results

5. References

[1]: Hou, Ji, Angela Dai, and Matthias Nießner. "Revealnet: Seeing behind objects in rgb-d scans." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

[2]: Nie, Yinyu, et al. "Rfd-net: Point scene understanding by semantic instance reconstruction." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

[3]: Gümeli, Can, Angela Dai, and Matthias Nießner. "ROCA: Robust CAD Model Retrieval and Alignment from a Single Image." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.