What is claimed is:

1

2

I	1. A method of detecting a seizure, comprising
2	the steps of:
3	a) dividing a digitized waveform of an
4	electroencephalogram (EEG) recording into a plurality
5	of epochs each having a first predetermined duration;
6	(b) computing matching pursuit for a given
7	one of the epochs to obtain a plurality of seizure
8	atoms;
9	(c) describing the seizure atoms and the
10	given epoch with at least one neural network (NN) rule;
11	(d) applying connected-object clustering to
12	the epochs in a sliding window of a second
13	predetermined duration to obtain a clustering result;
14	and
15	(e) establishing a seizure point from the
16	clustering result.

2. The method of claim 1, further comprising the step of determining whether the seizure point is valid.

- The method of claim 1, further comprising the steps of repeating steps (b)-(e) and determining whether a succeeding seizure point is better than a preceding seizure point.
- 1 4. The method of claim 1, wherein the first 2 predetermined duration is less than the second 3 predetermined duration.
- The method of claim 4, wherein the first predetermined duration is about 2 seconds.
- 1 6. The method of claim 4, wherein the second predetermined duration is about 60 seconds.
- 7. The method of claim 1, further comprising the step of setting an initial time T=0 prior to the step of computing matching pursuit for the given epoch.

- 1 8. The method of claim 7, further comprising the 2 steps of determining whether unprocessed EEG data is 3 available at the time T, and causing a time delay of a 4 third predetermined duration if unprocessed EEG data is 5 unavailable at the time T.
 - 9. The method of claim 8, wherein the digital waveform is one of a plurality of waveforms forming a montage of the EEG recording, the method further comprising the steps of obtaining a subsequent waveform of the EEG recording and repeating steps (b)-(e) if unprocessed EEG data is available at the time T.
 - 10. The method of claim 9, further comprising the step of establishing a seizure event with a plurality of proximal seizure points from the waveforms of the montage.
- 1 11. The method of claim 10, further comprising 2 the step of determining whether the seizure event is 3 valid.

2

3

4

5

6

1

2

3

1		12.	The	method	of	clai	.m 11	, furt	her	compris	sing
2	the	step	of	notify	ing	a ı	user	that	, a	seizure	is
3	ident	cified	lif	the sei	zure	even	nt is	valid.	,		

- 1 13. The method of claim 12, further comprising 2 the step of saving the time T and a description of the 3 seizure.
- 1 14. The method of claim 11, further comprising 2 the steps of adding a time of the third predetermined 3 duration to the time T and shifting the sliding window 4 by the time of the third predetermined duration until 5 the EEG recording is finished.
- 1 15. The method of claim 14, wherein the third 2 predetermined duration is about 1 second.
- 1 16. A computer readable medium comprising a 2 plurality of instructions, which when executed by a 3 computer, cause the computer to perform the steps of:
- 4 (a) dividing a digitized waveform of an 5 electroencephalogram (EEG) recording into a plurality 6 of epochs each having a first predetermined duration;

7	(b) computing matching pursuit for a given
8	one of the epochs to obtain a plurality of seizure
9	atoms;
10	(c) describing the seizure atoms and the
11	given epoch with at least one neural network (NN) rule;
12	(d) applying connected-object clustering to
13	the epochs in a sliding window of a second
14	predetermined duration to obtain a clustering result;
15	and
16	(e) establishing a seizure point from the
17	clustering result.
1	17. The computer readable medium as set forth in
2	claim 16, further comprising instructions which cause
3	the computer to perform the step of determining whether
4	the seizure point is valid.
1	18. The computer readable medium as set forth in
2	claim 16, further comprising instructions which cause
3	the computer to perform the steps of:
4	repeating steps (b)-(e); and
5	determining whether a succeeding seizure
6	point is better than a preceding seizure point.

1	19. The computer readable medium as set forth in
2	claim 16, wherein the first predetermined duration is
3	less than the second predetermined duration.
1	20. The computer readable medium as set forth in
2	claim 19, wherein the first predetermined duration is
3	about 2 seconds.
1	21. The computer readable medium as set forth in
2	claim 19, wherein the second predetermined duration is
3	about 60 seconds.
1 .	22. The computer readable medium as set forth in
2	claim 16, further comprising instructions which cause
3	the computer to perform the step of setting an initial
4	time T=0 prior to the step of computing matching
5	pursuit for the given epoch.
1	23. The computer readable medium as set forth in
2	claim 22, further comprising instructions which cause
3	the computer to perform the steps of:
4	determining whether unprocessed EEG data is

available at the time T; and

5		ca	using	a	time	del	ay	of	a	third	predet	erm:	ined
7	duration	if	unpro	ce	ssed	EEG	da	ta	is	unava	ilable	at	the
8	time T.												

24. The computer readable medium as set forth in claim 23, wherein the digitized waveform is one of a plurality of waveforms of the EEG recording which includes a montage of multiple channels of simultaneous waveforms, the computer readable medium further comprising instructions which cause the computer to perform the steps of:

obtaining a subsequent waveform of the EEG recording; and

repeating steps (b)-(e) if unprocessed EEG data is available at the time T.

25. The computer readable medium as set forth in claim 24, further comprising instructions which cause the computer to perform the step of establishing a seizure event with a plurality of proximal seizure points from the waveforms of the montage.

1	26. The computer readable medium as set forth in
2	claim 25, further comprising instructions which cause
3	the computer to perform the step of determining whether
4	the seizure event is valid.

- 27. The computer readable medium as set forth in claim 26, further comprising instructions which cause the computer to perform the step of notifying a user that a seizure is identified if the seizure event is valid.
- 28. The computer readable medium as set forth in claim 27, further comprising instructions which cause the computer to perform the step of saving the time T and a description of the seizure.
- 1 29. The computer readable medium as set forth in 2 claim 26, further comprising instructions which cause 3 the computer to perform the steps of:
- adding a time of the third predetermined

 duration to the time T; and
- shifting the sliding window by the time of the third predetermined duration until the EEG recording is finished.

2

3

5

1

2

1	30.	The comp	uter	readab	ole	medium	as	set	forth	in
2 .	claim 29,	wherein	the	third	pr	edeterm:	ined	l dur	ation	is
3	about 1 s	econd.		•						

- 31. An article of manufacture, including a computer readable medium having computer readable program code means embodied therein for detecting a seizure, the computer readable program code means in the article of manufacture comprising:
 - (a) computer readable program code means for dividing a digitized waveform of an electroencephalogram (EEG) recording into a plurality of epochs each having a first predetermined duration;
 - (b) computer readable program code means for computing matching pursuit for a given one of the epochs to obtain a plurality of seizure atoms;
 - (c) computer readable program code means for describing the seizure atoms and the given epoch with at least one neural network (NN) rule;
- (d) computer readable program code means for applying connected-object clustering to the epochs in a sliding window of a second predetermined duration to obtain a clustering result; and

20	(e) computer readable program code means for
21	establishing a seizure point from the clustering
22	result.
1	32. The article of manufacture as set forth in
2	claim 31, wherein the computer readable program code
3	means further comprises computer readable program code
4	means for determining whether the seizure point is
5	valid.
1	33. The article of manufacture as set forth in
2	claim 31, wherein the computer readable program code
3	means further comprises:
4	computer readable program code means for
5	repeating steps performed by computer readable program
6	code means (b)-(e); and
7	computer readable program code means for
8	determining whether a succeeding seizure point is
9	better than a preceding seizure point.

1 34. The article of manufacture as set forth in 2 claim 31, wherein the first predetermined duration is 3 less than the second predetermined duration.

1	35. The article of manufacture as set forth	in
2	claim 34, wherein the first predetermined duration	is
3	about 2 seconds.	
1	36. The article of manufacture as set forth	in
2	claim 34, wherein the second predetermined duration	is
3	about 60 seconds.	
1	37. The article of manufacture as set forth	in
	\cdot	

- claim 31, wherein the computer readable program code means further comprises computer readable program code means for setting an initial time T=0 prior to computing matching pursuit for the given epoch.
- 1 38. The article of manufacture as set forth in 2 claim 37, wherein the computer readable program code 3 means further comprises:
- computer readable program code means for determining whether unprocessed EEG data is available at the time T; and
- computer readable program code means for time delay of a third predetermined duration if unprocessed EEG data is unavailable at the time T.

3

1	39. The article of manufacture as set forth in
2	claim 38, wherein the digitized waveform is one of a
3	plurality of waveforms of the EEG recording which
4	includes a montage of multiple channels of simultaneous
5	waveforms, and wherein the computer readable program
6	code means further comprises:
7	computer readable program code means for
8	obtaining a subsequent waveform of the EEG recording;
9	and
10	computer readable program code means for
11	repeating steps performed by computer readable program

40. The article of manufacture as set forth in claim 39, wherein the computer readable program code means further comprises computer readable program code means for establishing a seizure event with a plurality of proximal seizure points from the waveforms of the montage.

code means (b)-(e) if unprocessed EEG data is available

12

13

1

2

3

at the time T.

1 41. The article of manufacture as set forth in 2 claim 40, wherein the computer readable program code 3 means further comprises computer readable program code 4 means for determining whether the seizure event is 5 valid.

- 42. The article of manufacture as set forth in claim 41, wherein the computer readable program code means further comprises computer readable program code means for notifying a user that a seizure is identified if the seizure event is valid.
- 1 43. The article of manufacture as set forth in 2 claim 42, wherein the computer readable program code 3 means further comprises computer readable program code 4 means for saving the time T and a description of the 5 seizure.
- 1 44. The article of manufacture as set forth in 2 claim 41, wherein the computer readable program code 3 means further comprises:
- computer readable program code means for adding the time of the third predetermined duration to the time T; and

1

2

3

4

033788.0003.UTL1 PATENT

7		comp	uter. re	eadable	pr	ogram	cod	le	means	for
8	shifting	the s	sliding	window	ру	the	time	of	the	third
9	predeterm	ined	duration	on unti	.1	the	EEG	rec	ordir	ng is
10	finished.							•		

1 45. The article of manufacture as set forth in 2 claim 44, wherein the third predetermined duration is 3 about 1 second.