MODERN ALGEBRA HW4

04/06/2021

Yosef Goren - 211515606

Gur Telem - 206631848

Given $\alpha = (93475)(713592) \in S_9$.

1.1. Calculate the order of α and its parity.

Proof. Let's write α as in c more comfortable form

And from here as disjoint cycles

$$\alpha = (147)(2539)$$

 $ord(\alpha) = [3, 4] = 12$

And the parity is odd because α is built of two cycles, one with even parity and the other with odd parity (3-cycle is even parity and 4-cycle is odd). Together they give an odd parity permutation.

1.2. Calculate the order of α^{22} .

Proof. We the that $ord(\alpha) = 12$ so $\alpha^{12} = e$. So

$$\alpha^{22} = \alpha^{12}\alpha^{10} = e\alpha^{10} = (147)^{10}(2539)^{10}$$

Tthe last one because the cycles are disjoint.

But $ord((147)) = 3 \land ord((2539)) = 4$. So

$$(147)^{10} = (147)^9 (147) = e^3 (147) = (147)$$

and

$$(2539)^{10} = (2539)^8 (2539)^2 = e^2 (2539)^2 = (2539)^2 = (23)(59)$$

And we get $\alpha^{22} = (147)(23)(59)$. And the order of that

$$ord\left(\alpha^{22}\right) = ord\left(\left(1\,4\,7\right)\left(2\,3\right)\left(5\,9\right)\right) = \left[3,2,2\right] = 6$$

1.3. Find $\beta \in S_9$ s.t. $\beta^5 = \alpha$.

Proof. We know that $(2539)^5 = (2539)$. So we only need to find a disjoin cycle for which the 5th exponent is (147).

For a 3-cycle, the order is 3. So the 5th exponent is the same as the 2nd exponent. So if we take (174) then we get $(174)^5 = (174)^2 = (147)$.

So we found

$$\beta = (2539)(174)$$

s.t.
$$\beta^5 = \alpha$$
.

2.1. Is the a cyclic subgroup of order 6 in S_5 ?

Proof. Yes, there is. Let's look at $\alpha = (123)(45)$. The [3,2] = 6 so $ord(\alpha) = 6$. Thus, $ord(\langle \alpha \rangle) = 6$.

2.2. Is the a cyclic subgroup of order 6 in A_7 ?

Proof. Yes, there is. Let's look at $\beta = (1\,2\,3)\,(4\,5)\,(6\,7)$. The permutation is even because it's made of two odd permutations and an even permutation.

Also, $ord(\beta) = 6$ because [3, 2, 2] = 6. So $ord(\langle \beta \rangle) = 6$ and it is A_7 because $\beta \in A_7$ (as we mentioned before) and A_7 is closed.

2.3. Find all the permutations $\tau \in S_6$ s.t. $\tau(12)(34)\tau^{-1} = (56)(13)$.

Proof. So we need to comply with $(\tau(1), \tau(2))(\tau(3), \tau(4)) = (56)(13) = (13)(56)$.

Let's look at the possible options (each column is an option):

And also

Or in a better form

At total 8 options.

Here's an example of the first two permutations in cyclic form (just to prove I know how you know)

$$(152643)$$

 $(1643)(25)$

2.4. Find all the permutations that are commutative in multiplication with (123) in S_5 .

Proof. Meaning
$$\tau (1\,2\,3) = (1\,2\,3)\,\tau \Longrightarrow \tau (1\,2\,3)\,\tau^{-1} = (1\,2\,3)$$
. So
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$$

Total 6 permutations.

3. Question

3.1. Given $N, K \subseteq G^{(1)}$. RTP: $N \cap K \subseteq G$.

Proof. Let $g \in G$ and $\alpha \in N \cap K$. RTP: $g\alpha g^{-1} \in N \cap K$:

Thus $\alpha \in N$ and $\alpha \in K$. From (1) we get that $g\alpha g^{-1} \in N$ as well as $g\alpha g^{-1} \in K$. Thus $g\alpha g^{-1} \in N \cap K$.

Let's also note that $N \cap K$ is a subgroup of G.

Q.E.D

3.2. Given $H \leq G$ and $N \subseteq G$. RTP: $N \cap H \subseteq H$.

Proof. Let $\alpha \in N \cap H$ (which is a subgroup of G).

So $\alpha \in N^{(1)}$ and $\alpha \in H^{(2)}$.

Let $h \in H$ permutation.

 $h \in G \ (H \leq G)$. From (1) we get that $h\alpha h^{-1} \in N$. But H is closed so $h\alpha h^{-1} \in H$. So $h\alpha h^{-1} \in N \cap H$.

And we got that $\forall h \in H \forall \alpha \in N \cap H : h\alpha h^{-1} \in N \cap H \text{ (meaning that } N \cap H \leq H).$

Q.E.D

3.3. Give an example for a group $G,H \leq G$ and $N \subseteq G$ but $N \cap H \not\supseteq G$.

Proof. For $G = S_3, H = \{(1\,2), e\} = \langle (1\,2) \rangle$ and $N = \{(1\,2), (1\,3), (2\,3), e\}$. It is clear that N is normal under G because it includes all the permutations of the form $(\bullet \bullet) \in G$. It's also clear that $H \leq G$. But $N \cap H = H$ for which $N \cap H \not \subseteq G$.

The latter is because H does **not** include all the permutations in G of the from $(\bullet \bullet)$.

And for example for $(23) \in G$, $(23) = (13) \notin H$.

 \mathbb{Q} .E.D

4. Question