Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3215</u>	К работе допущен
Студент <u>Васильков Д.А., Лавренов Д.А.</u>	Работа выполнена
Преподаватель	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.06

Изучение электрических свойств сегнетоэлектриков

1. Цель работы.

- 1) Определение значений электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика.
- 2) Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
- 3) Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
- 4) Определение значений начальной и максимальной диэлектрической проницаемости
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерить и записать в протокол измерений в делениях шкалы экрана значения параметров D_s , E_s , D_r и E_c , которые соответствуют предельной петле гистерезиса.
 - 2) Для значений напряжения в диапазоне $5-17~{\rm B}$ с шагом в $\Delta U=2,0~{\rm B}$ и в диапазоне $0,4-5,0~{\rm B}$ с шагом в $\Delta U=0,6~{\rm B}$ измерить и записать координаты X и Y правой вершины петель гистерезиса.
 - 3) Рассчитать значения коэрцитивного поля E_c , электрической индукции в состоянии насыщения D_s и остаточной поляризации P_r . Оценить погрешность полученных результатов.
 - 4) Найти площадь предельной петли гистерезиса в делениях шкалы экрана по сделанной фотографии или эскизу. По найденным ранее значениям E_s и D_s в делениях шкалы оценить значение тангенса угла диэлектрических потерь.
 - 5) С помощью записанных в Таблице 1 значений коэффициентов усиления K_x и K_y заполнить колонки E и D, рассчитав значения напряжённости электрического поля и электрической индукции. Построить график зависимости D = D(E), отражающий ход основной кривой поляризации.
 - 6) Найти значения диэлектрической проницаемости сегнетоэлектрика для всех значений напряжённости электрического поля. Построить график зависимости $\varepsilon = \varepsilon(E)$.

- 7) С помощью экстраполяции полученной зависимости к нулевому значению напряжённости электрического поля найти значение начальной диэлектрической проницаемости $\varepsilon_{\text{нач}}$. Оценить величину его погрешности.
- 8) На графике $\varepsilon = \varepsilon(E)$ найти максимальное значение диэлектрической проницаемости $\varepsilon_{\text{макс}}$. Оценить величину его погрешности. Определить напряжённость E, которой соответствует $\varepsilon_{\text{макс}}$.
- 3. Объект исследования. Электрические свойства сегнетоэлектрика
- 4. Метод экспериментального исследования. Прямые и косвенные измерения.
- 5. Рабочие формулы и исходные данные.
 - 1) Электрическим момент молекул диэлектрика:

$$\overrightarrow{P_e} = q\overrightarrow{\ell}$$

2) Вектор поляризованности:

$$\vec{P} = \frac{\sum\limits_{\Delta V} \vec{P}_e}{\Delta V},$$

3) Вектор поляризованности у изотопных диэлектриков:

$$\vec{P} = \chi_e \varepsilon_0 \vec{E}.$$

4) Вектор электрического смещения:

$$\vec{D} = \vec{P} + \varepsilon_0 \vec{E},$$

5) Вектор электрического смещения у изотопных диэлектриков:

$$\vec{D} = \varepsilon \varepsilon_0 \vec{E}$$
,

6) Диэлектрические потери в конденсаторах оцениваются тангенсом угла потерь:

$$\operatorname{tg} \delta = \frac{R}{X_c},$$

7) Тангенс угла потерь есть величина, обратная добротности Q: tg δ = 1/Q , и для его определения может быть использовано выражен:

$$\operatorname{tg} \delta = \frac{1}{2\pi} \frac{\Delta W}{W},$$

8) Потери энергии, вызванные диэлектрическим гистерезисом:

$$\operatorname{tg} \delta = \frac{1}{2\pi} \frac{w_r}{w_0},$$

9) Объемная плотность энергии электрического поля:

$$w = \frac{\varepsilon \varepsilon_0 E^2}{2},$$

10)Один полный период величина диэлектрических потерь:

$$w_r = \oint DdE,$$

11) Максимальная плотность энергии электрического поля в кристалле:

$$w_0 = \frac{E_s D_s}{2},$$

12) Тангенс угла диэлектрических потерь в сегнетоэлектриках:

$$tg \, \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s}$$

13) Модуль вектора электрической индукции:

$$D = \frac{C_1}{S} \cdot U_{C_1} = \frac{C_1}{S} \cdot K_y Y$$

14) Связь *U* и *R*₁

$$U = U \frac{R_1}{R_1 + R_2}$$

15)Общее напряжение на конденсаторах:

$$U = U_{C_1} + U_{C_2} = \frac{q}{C_1} + \frac{q}{C_2} \approx \frac{q}{C_2} = U_{C_2}.$$

16) Напряженность электрического поля E:

$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d}$$

17)Остаточная поляризация:

$$P_r = D_r - \varepsilon_0 E_r = D_r$$

18) Диэлектрической проницаемости сегнетоэлектрика:

$$\varepsilon = \frac{D}{\varepsilon_0 E}$$

6 Измерительные приборы

о. Измерительные присоры.						
	№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
	1	ИСХ1 (измеритель статических характеристик)	Электрический	-4–4 дел	0,05 дел	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Общий вид лабораторной установки.

Рис. 2. Принципиальная схема установки.

Рис. 3. Внешний вид стенда С3-РМ02.

Рис. 4. Общий вид панели лицевой панели «ИСХ1».

- 1) графический дисплей;
- 2) кнопка выбора режима работы «F»;
- 3) кнопка выбора шкалы «Шкл.»;
- 4) кнопка запоминания оцифрованного сигнала «Стоп»;
- 5) кнопка выбора температурного режима «Темп»;
- 6) кнопка управления генератором «Генер.»;
- 7) кнопка выбора коэффициента отклонения «Кус»;
- 8) кнопка уменьшения выбранной величины «-»;
- 9) кнопка увеличения выбранной величины «+»;
- 10)кнопка выключателя «Сеть»;
- 11)выход генератора;
- 12)вход тока *I*;
- 13)вход напряжения U_1 ;
- 14) вход напряжения U_2 ;

Рис. 5. Экран дисплея «ИСХ1».

- 1) область общих установок: отображает режим работы прибора (строка «Режим»), шкалу развертки (строка «Шкала») и состояние стоп-кадр (строка «Стоп»);
- 2) область состояния входа I, входа U1 и входа U2: отображает коэффициенты отклонения каналов;
- 3) область состояния генератора: отображает амплитуду выходного сигнала генератора (строка «Ампл.») и форму выходного сигнала генератора (строка «Форма»);
- 4) область состояния терморегулятора: отображает текущую температуру образцов (строка «Текущ.»), требуемую температуру образцов (строка «Устан.») и индицирует работу нагревательного элемента (строка «Нагрев»).

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*). Таблица 1. Значения параметров установки.

			1 1		
R_1 , OM	R_2 , OM	\mathcal{C}_1 , мк Φ	\mathcal{C}_2 , мк Φ	<i>d</i> , м	<i>S</i> , м ²
47000	470000	1	0.01	0.0005	0.0005

Таблица 2. Зависимость диэлектрической проницаемости сегнетоэлектрика от напряженности электрического поля.

Nº	U,B	K_{χ} ,	K_{y} ,	Χ,	Υ,	Ε,	Ο,	ε,
		В/дел	В/дел	Дел	Дел	В/м	Кл/м ²	Ф/м
1	17	5	5	3	3	330000	0,03	10272,214
2	15	5	5	2	2,9	275000	0,029	11915,768
3	13	5	5	2,2	2,6	242000	0,026	12139,889
4	11	5	5	1,9	2,1	209000	0,021	11353,499
5	9	5	5	1,5	1,7	165000	0,017	11641,842
6	7	5	5	1,2	1,2	132000	0,012	10272,214
7	5	5	5	0,8	0,6	88000	0,006	7704,160
8	4,4	2	2	1,9	1,2	83600	0,0048	6487,714
9	3,8	2	2	1,6	0,8	70400	0,0032	5136,107
10	3,2	1	1	2,7	1,2	59400	0,0024	4565,428
11	2,6	1	1	2,2	0,8	48400	0,0016	3735,350
12	2,000	0,500	0,500	2,400	1,000	26400	0,0010	4280,089
13	1,400	0,500	0,500	2,300	0,600	25300	0,0006	2679,708
14	0,800	0,200	0,200	3,200	0,800	14080	0,0003	2568,053
15	0,200	0,050	0,050	3,000	0,500	3300	0,0001	1712,036

$$Y_s = 3,2$$
 дел $Y_c = 0,9$ дел $Y_r = 1,5$ дел $X_s = 3$ дел $D_s = \frac{C_1}{S} \cdot K_y Y = 32$ мКл/м² $E_s = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d} = 330000$ В/м $E_c = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d} = 99000$ Кл/м² $P_r = D_r - \varepsilon_0 E_r = D_r = \frac{C_1}{S} \cdot K_y Y = 0,015$ Кл/м²

```
Python
import numpy as np
from numpy.polynomial.polynomial import Polynomial

# Исходные данные
x1 = np.array([2, 1, 0.5, 0, -0.7, -1.2, -1.9, -2.8])
y1 = np.array([3, 2.5, 2, 1.5, 0, -1, -2, -3])
x2 = np.array([2.8, 2, 1.6, 1.4, 1, 0.8, 0, -0.5, -1, -2, -3])
y2 = np.array([3, 2.2, 2, 1, 1.8, 0, -1.4, -2, -2.3, -2.9, -3.1])

# Вычисляем коэффициенты полиномиальной регрессии
coeff1 = np.polyfit(x1, y1, 4)
coeff2 = np.polyfit(x2, y2, 4)

# Создаем полином с полученными коэффициентами
p1 = Polynomial(coeff1[::-1])
p2 = Polynomial(coeff2[::-1])

print("Полином для верхней части:", p1, "\n")
print("Полином для нижней части:", p2, "\n")
```

$$\begin{split} p_1(x) &= 0.0149x^4 - 0.0732x^3 - 0.2964x^2 + 1.6032x + 1.3129 \\ p_2(x) &= -0.0223x^4 - 0.074x^3 + 0.3115x^2 + 1.6463x - 1.1381 \\ S_0 &= \oint Y dX \approx \int\limits_{-3}^3 p_1(x) dx - \int\limits_{-3}^3 p_2(x) dx = 3.99048 + 3.3891 = 7.3896 \ \mathrm{де} \pi^2 \end{split}$$

$$\operatorname{tg}\delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s} = \frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_s E_s \pi} = 0,245 \ \mathrm{pag}$$

Пример расчетов для таблицы 2:

$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d} = 330000 \text{ B/m}$$
 $D = \frac{C_1}{S} \cdot U_{C_1} = 0.03 \text{ Кл/m}^2$

$$\varepsilon = \frac{D}{\varepsilon_0 E} = 10272,214 \,\Phi/\text{M}$$

$$\varepsilon_{\text{HaY}} = \int_{33}^{3300} p(x)dx = 0.019 \text{ kP/m}$$
 $\varepsilon_{\text{MAKC}} = 12139,889 \text{ P/M}$

9. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\begin{split} & \Delta E = \sqrt{\left(\frac{R_1 + R_2}{R_1} \cdot \frac{K_x}{d} \cdot \frac{2}{3} \Delta X\right)^2 + \left(-\frac{R_2 K_x X}{R_1^2 d} \Delta R_1\right)^2 + \left(\frac{K_x X}{R_1 d} \Delta R_2\right)^2 + \left(-\frac{(R_1 + R_2) K_x X}{R_1 d^2} \Delta d\right)^2} = \\ & = \frac{K_x X}{R_1 d} \sqrt{\left(\frac{2}{3} \frac{R_1 + R_2}{X} \Delta X\right)^2 + \left(\frac{R_2}{R_1} \Delta R_1\right)^2 + \Delta R_2^2 + \left(\frac{R_1 + R_2}{d} \Delta d\right)^2} = 16,536 \text{ kB/m} \\ & \Delta D = \sqrt{\left(\frac{C_1}{S} \cdot K_y \cdot \frac{2}{3} \Delta Y\right)^2 + \left(\frac{K_y Y}{S} \Delta C_1\right)^2 + \left(-\frac{C_1}{S^2} \cdot K_y Y \Delta S\right)^2} = \\ & = \frac{K_y Y C_1}{S} \sqrt{\left(\frac{2\Delta Y}{3Y}\right)^2 + \left(\frac{\Delta C_1}{C_1}\right)^2 + \left(\frac{\Delta S}{S}\right)^2} = 4,538 \text{ mKp.}/m^2 \\ & \Delta \varepsilon = \sqrt{\left(-\frac{D}{\varepsilon_0 E^2} \Delta E\right)^2 + \left(\frac{1}{\varepsilon_0 E} \Delta D\right)^2} = \frac{1}{\varepsilon_0 E} \sqrt{\frac{D^2}{E^2} \Delta E^2 + \Delta D^2} = 1,616 \text{ kp/m} \\ & \Delta P_r = \sqrt{\left(\frac{R_1 + R_2}{R_1} \cdot \frac{K_x}{d} \cdot \frac{2}{3} \Delta X\right)^2 + \left(-\frac{R_2 K_x X}{R_1^2 d} \Delta R_1\right)^2 + \left(\frac{K_x X}{R_1 d} \Delta R_2\right)^2 + \left(-\frac{(R_1 + R_2) K_x X}{R_1 d^2} \Delta d\right)^2} = \\ & = \frac{K_x X}{R_1 d} \sqrt{\left(\frac{2}{3} \frac{R_1 + R_2}{X} \Delta X\right)^2 + \left(\frac{R_2}{R_1} \Delta R_1\right)^2 + \Delta R_2^2 + \left(\frac{R_1 + R_2}{d} \Delta d\right)^2} = 2,147 \text{ mB/m} \\ \Delta T \\ & = \sqrt{\left(\frac{\partial T}{\partial D_s} \Delta D_s\right)^2 + \left(\frac{\partial T}{\partial E_s} \Delta E_s\right)^2 + \left(\frac{\partial T}{\partial S} \Delta S\right)^2 + \left(\frac{\partial T}{\partial R_1} \Delta R_1\right)^2 + \left(\frac{\partial T}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial T}{\partial C_1} \Delta C_1\right)^2 + \left(\frac{\partial T}{\partial S_0} \Delta S_0\right)^2} \\ & = 0,064 \text{ pag} \end{split}$$

10. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Предельная петля гистерезиса.

График 2. Зависимость D от E.

График 3. Зависимость ε от E.

11. Окончательные результаты.

$$D_S = 32 \pm 4,538 \text{ мКл/м}^2$$

 $P_r = 15 \pm 2,147 \text{ мКл/м}^2$
 $E_c = 330 \pm 16,536 \text{ кВ/м}$
 $\text{tg } \delta = 0,245 \pm 0,064 \text{ рад}$
 $\varepsilon_{\text{нач}} = 0,019 \pm 1,616 \text{ кФ/м}$
 $\varepsilon_{\text{макс}} = 12,139 \pm 1,616 \text{ кФ/м}$

12. Выводы и анализ результатов работы.

Зависимость электрической индукции (смещения) от напряжённости электрического поля в сегнетоэлектрике нелинейная: сначала функция медленно растёт, затем её рост ускоряется, а потом плавно начинает замедляться.

Диэлектрическая проницаемость так же зависит нелинейно от напряжённости – сначала с ростом напряжённости растёт и диэлектрическая проницаемость, но в какойто момент она достигает своего максимального значения и далее медленно убывает.

13. Замечания преподавателя (<i>исправления</i> , <i>вызванные замечаниями преподавателя</i> , <i>также помещают в этот пункт</i>).