М Р S Р Т Α 11 GGAGTCGACCCACGCGTCCGCAGGGCTGAGGAACC ATG TCT CCA TCC CCG ACC GCC CTC TTC TGT CTT 68 ٧ Р Α 0 S G Р GGG CTG TGT CTG GGG CGT GTG CCA GCG CAG AGT GGA CCG CTC CCC AAG CCC TCC CTC CAG 31 128 S ٧ Р Ε Κ Р Т R 51 GCT CTG CCC AGC TCC CTG GTG CCC CTG GAG AAG CCA GTG ACC CTC CGG TGC CAG GGA CCT 188 D Υ R Ε K S S S R Υ 0 0 71 CCG GGC GTG GAC CTG TAC CGC CTG GAG AAG CTG AGT TCC AGC AGG TAC CAG GAT CAG GCA 248 М K R S L Α G R Υ S Υ 91 GTC CTC TTC ATC CCG GCC ATG AAG AGA AGT CTG GCT GGA CGC TAC CGC TGC TCC TAC CAG 308 S Ρ S D 0 L Ε L ٧ Α Τ 111 AAC GGA AGC CTC TGG TCC CTG CCC AGC GAC CAG CTG GAG CTC GTT GCC ACG GGA GTT TTT 368 S Α 0 P G Р Α S S 131 GCC AAA CCC TCG CTC TCA GCC CAG CCC GGC CCG GCG GTG TCG TCA GGA GGG GAC GTA ACC 428 R Υ G F D Q F Α Υ 151 CTA CAG TGT CAG ACT CGG TAT GGC TTT GAC CAA TTT GCT CTG TAC AAG GAA GGG GAC CCT 488 Ε R R S F 171 GCG CCC TAC AAG AAT CCC GAG AGA TGG TAC CGG GCT AGT TTC CCC ATC ACG GTG ACC 548 S G T Υ R C Υ S F S S R 191 GCC GCC CAC AGC GGA ACC TAC CGA TGC TAC AGC TTC TCC AGC AGG GAC CCA TAC CTG TGG 608 S D P L Ε L ٧ ٧ Т G Τ S 211 TCG GCC CCC AGC CCC CTG GAG CTT GTG GTC ACA GGA ACC TCT GTG ACC CCC AGC CGG 668 Р T Ε S S Α Ε F S Ε Α Т Α 231 TTA CCA ACA GAA CCA CCT TCC TCG GTA GCA GAA TTC TCA GAA GCC ACC GCT GAA CTG ACC 728 F Τ Κ F T Τ E Т S R S Ι Т Т S 251 GTC TCA TTC ACA AAC AAA GTC TTC ACA ACT GAG ACT TCT AGG AGT ATC ACC ACC AGT CCA 788 Κ Ę G R Q Υ Υ Τ Κ 271 AAG GAG TCA GAC TCT CCA GCT GGT CCT GCC CGC CAG TAC TAC ACC AAG GGC AAC CTG GTC 848 G Ι Ι Ι Α G 291 CGG ATA TGC CTC GGG GCT GTG ATC CTA ATA ATC CTG GCG GGG TTT CTG GCA GAG GAC TGG 908 R Н R G R Α Q 311 CAC AGC CGG AGG AAG CGC CTG CGG CAC AGG GGC AGG GCT GTG CAG AGG CCG CTT CCG CCC 968

Т R K S G G - Q D G G R 331 CTG CCG CCC CTC CCG CAG ACC CGG AAA TCA CAC GGG GGT CAG GAT GGA GGC CGA CAG GAT 1028 ٧ Н S R G C 340 GTT CAC AGC CGC GGG TTA TGT TCA TGA 1055 CCGCTGAACCCCAGGCACGGTCGTATCCAAGGGAGGGATCATGGCATGGGAGGCGACTCAAAGACTGGCGTGTGTGGAG 1134 CGTGGAAGCAGGAGGCCAGAGGCTACAGCTGTGGAAACGAGGCCATGCTGCCTCCTCGTGTTCCATCAGGGAGCCG 1213 AATATGGGCTCCAGACGGATCTCTAAGGTTCCCAGCTCTCAGGGTTGACTCTGTTCCATCCTCTGTGCAAAATCCTCCT 1450 GTGCTTCCCTTTGGCCCTCTGTGTCTGGTTTTCCCCAGAAACTCTCACCCTCACTCCCACTGCGGTC 1529 AGCACGTTGCCCGCTTCCCATTAGAAAACAAGATCAGCCTGTGCAACATGGTGAAACCTCATCTCTACCAACAA 1687 AACAAAAAAACACAAAAATTAGCCAGGTGTGGTGGTGCATCCCTATACTCCCAGCAACTCGGGGGGCTGAGGTGGGAGA 1766 ATGGCTTGAGCCTGGGAGGCAGAGGTTGCAGTGAGCTGAGATCACACCACTGCACTCTAGCTCGGGTGACGAAGCCTGA 1845 CCTTGTCTCAAAAAATACAGGGATGAATATGTCAATTACCCTGATTTGATCATAGCACGTTGTATACATGTACTGCAAT 1924 AAAAAAAAAAAAAGGGCGGCCGCTAGACTAGTCTAGAGAACA 2047

FIG.1B



MSPSPTALFCLGLCLGRVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLE KLSSSRYQDQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQP GPAVSSGGDVTLQCQTRYGFDQFALYKEGDPAPYKNPERWYRASFPIITVTAAHSGTYRC YSFSSRDPYLWSAPSDPLELVVTGTSVTPSRLPTEPPSSVAEFSEATAELTVSFTNKVFT TETSRSITTSPKESDSPAGPARQYYTKGNLVRICLGAVILIILAGFLAEDWHSRRKRLRH RGRAVQRPLPPLPPLPQTRKSHGGQDGGRQDVHSRGLCS

FIG.2

| inputs | ATGACGC         | 10<br>CCGCCCTCA          |                   | 30<br>FCTGCCTTGGG                | 40<br>GCTGAGTCTGG   | 50<br>GCCCCAGGAC              | 60<br>CCGCGTGCAG            | 70<br>GCAG   |
|--------|-----------------|--------------------------|-------------------|----------------------------------|---------------------|-------------------------------|-----------------------------|--------------|
|        | ATGTCTCC        | CATCCCCGA<br>10          | CCGCCCTCT<br>20   | :::: ::::::<br>FCTGTCTTGG6<br>30 | GCTGTGTCTGGG<br>40  | : : .: .:<br>GGCG-TGTGC<br>50 | : :: ::::<br>CAGCGCAG<br>60 | :<br>AGTG    |
| inputs | GGCCCTTC        | 80<br>CCCAAACC           |                   | 100<br>GGCTGAGCCAG               | GCTCTGTGAT          | 120<br>-CAGCTGGGG             | 130<br>GAGCCCCGTG           | ACCA         |
|        | GACCGCTC<br>70  | CCCAAGCC<br>80           |                   |                                  | AGCTCCCTGGT(        | GCCCCTGGAG<br>120             | AAGCCA-GTG<br>130           | ACCC         |
| _      |                 | CAGGGGAG                 |                   |                                  | GACTGGATAA          | 190<br>AGAGGGAAGC             | 200<br>CCAGAGCCCT           | TGGA         |
|        | TCCGGTGC<br>140 |                          |                   |                                  | GACCTGTA            | CCGC                          | 180                         | -AAG         |
|        |                 | 220<br>ACCCACTGO         |                   | 240<br>NACAAGGCCAG               | 250<br>GATTCTCCATCO | 260<br>CCATCCATGA             | 270<br>CAGAGCACCA           | TGCG         |
|        | CTGAGTT-<br>190 |                          |                   |                                  | CCTCTTCATCO<br>220  |                               | AGAGAAGTCT<br>240           | GGCT         |
|        |                 | 290<br>CCGCTGCC/         | 300<br>ACTATTACAG |                                  | 320<br>GCTGGTCAGAC  |                               | 340<br>CCCCTGGAGC           | TGGT         |
| 2      | GGACGCTA<br>50  | CCGCTGCT(<br>260         |                   |                                  | TCTGGTCCCTC<br>290  | GCCCAGCGAC<br>300             | CAGCTGGAGC<br>310           | TCGT         |
| inputs |                 |                          |                   | ACCCTCTCAGC                      | CCTGCCCAGC          |                               | 410<br>CCTCAGGGGG           | GAAT         |
|        | TGCCACGG        | :: ::<br>GAGTTTTT<br>330 | GCCAAACCCT<br>340 | CGCTCTCAGC<br>350                | CCAGCCCGGCC<br>360  | CCGCCGCTGTC<br>370            | CGTCAGGAGG<br>380           | GGAC         |
| inputs | 420<br>ATGACCCT | 430<br>CCGATGTG          | 440<br>GCTCACAGAA |                                  | 460<br>CATTTTGTTC1  | 470<br>GATGAAGGAA             | 480<br>AGGAGAACAC           | CAGC         |
|        | GTAACCCT<br>390 | ACAGTGTCA<br>400         |                   |                                  | CAATTTGCTCT<br>430  | GTACAAGGAA                    | \GG                         | <b>-</b>     |
| inputs |                 |                          | 510<br>CTCACAGCAG | 520<br>GCTCCACAGTG               | 530<br>GGGGGTTCCAG  |                               | 550<br>CCTGTGGGCC           | CCGT         |
|        | GG              | ::::::<br>ACCCTG<br>50   |                   |                                  | :<br>C              | GCCCTA<br>460                 |                             | -C <b>AA</b> |

| inputs      | GAACCCCAGC                              | CACAGGTGGA                     | AGGTTCACAT(                                   | GCTATTACTA                           | TTATATGAAC                 | 610<br>ACCCCCCAGGT<br>:::::                     | 620<br>FGTGGTCCCAC<br>::<br>CAT             |
|-------------|-----------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------|----------------------------|-------------------------------------------------|---------------------------------------------|
| inputs      | 630<br>CCCAGTGACO                       | 640<br>CCCTGGAGAT<br>::<br>GCC | 180<br>650<br>ITCTGCCCTC <i>I</i>             | 490<br>660<br>AGGCGTGTCTA            | 670<br>AGGAAGCCCT(         | 500                                             | 690<br>CTGCAGGGCC                           |
| inputs      | 700<br>CTGTCCTGGC                       | 710<br>CCCTGGGCAG<br>: . :     | 720<br>GAGCCTGACCC<br>:::::<br>GAACCTA<br>530 | 730<br>CTCCAGTGTGG<br>::::<br>CCGATG | 740<br>GCTCTGATGT          | 750<br>CGGCTACGACA<br>::::.:<br>CTACAGC-<br>540 | 760<br>\GATTTGTTCT<br>::::<br>TTCT<br>550   |
| inputs      | GTATAAGGAG                              | GGGGAACGTG                     | GACTTCCTCCA                                   | AGCGCCCTGG                           | CCAGCAGCCC                 | 820<br>CAGGCTGGGCT                              | 830<br>CTCCCAGGCC                           |
| inputs      | 840<br>AACTTCACCC                       | 850<br>TGGGCCCTGT              | 860<br>GAGCCCCTCC                             | 870<br>CACGGGGGC                     | 880<br>CAGTACAGGTO         |                                                 | 900<br>CACAACCTCT                           |
| inputs      | CCTCCGAGTG<br>:::                       | GTCGGCCCCC                     | AGCGACCCC<br>AGCGACCCCC                       | TGAACATCCT                           | GATGGCAGGA                 | 960<br>ACAGATCTATG<br>:.::<br>TGTG<br>600       | ACACCGTCTC                                  |
| inputs      | 980<br>CCTGTCAGCA                       | 990 1<br>CAGCCGGGCC            | 000 1<br>CCACAGTGGC                           | CTCAGGAGAG                           | AACGTGACCC<br>:::<br>····· | 030 1                                           | GTCATGGTGG                                  |
| 1<br>inputs | L050 1<br>CAGTTTGACA                    | СТТТССТТСТ                     | GACCAAAGAA                                    | GGGGCAGCCC                           | ATCCCCCACT<br>.:::<br>TTCC | GCGTCTGAGA                                      | 110<br>TCAATGTACG<br>.::<br>TCG             |
| inputs      | .120 1<br>GAGCTCATAA<br>:<br>GTA<br>660 | GTACCAGGCT                     | GAATTCCCCA                                    | TGAGTCCTGT                           | GACCTCAGCC                 | CACGCGGGGA                                      | 180<br>CCTACAGGTG<br>::.: .<br>ACTGA<br>690 |





\*->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
+ vtL+C+ + v y + k ++ r++ +
hT268 41 EKPVTLRCQGP------PGVDLY-RLEK1SSS-------RYQDQ-- 70

anlsegrfsissltLtissvekeDsGtYtCvv<-\*
++L i +++ +G Y+C
hT268 71 --------AVLFIPAMKRSLAGRYRCSY 90

## FIG.5A

\*->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
G++vtL+C+++ + ++ y k+g++ + y+++
hT268 127 GGDVTLQCQTR---YGFDQFALY-KEGDpAP----YKNPERWYR-- 162

anlsegrfsissltLtissvekeDsGtYtCvv<-\*
++++i++v++ sGtY+C
hT268 163 ------ASFPIITVTAAHSGTYRCYS 182

FIG.5B

| GAGT     | CGAC     | CCAC     | GCGT     | CCGC     | ттсс     | CTGC     | CTTGG             | CCAC     | CATAG    | CTCA     | AGGAC    | TGG      | TTG      | CAGA     |          |          |          | P<br>CCA G |                  | 4<br>74              |
|----------|----------|----------|----------|----------|----------|----------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|------------------|----------------------|
|          |          | T<br>ACT |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 24<br>134            |
| P<br>CCA | L<br>CTC | P<br>CCC | K<br>AAG | P<br>CCT | S<br>TCC | L<br>CTC | Q<br>CAG          | A<br>GCT | Q<br>CAG | P<br>CCC | S<br>AGT | S<br>TCC | L<br>CTG | V<br>GTA | P<br>CCC | L<br>CTG | G<br>GGT | Q<br>CAG   | S<br>TCA         | 44<br>194            |
|          |          | L<br>CTG |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 64<br>254            |
| P<br>CCG | e<br>Gag | K<br>AAG | Y<br>TAT | e<br>gaa | D<br>Gat | Q<br>CAA | D<br>GAC          | F        | L<br>CTC | F<br>TTC | I<br>ATT | P<br>CCA | T<br>ACC | M<br>ATG | e<br>gaa | r<br>Aga | S<br>AGT | n<br>aat   | A<br>GCT         | 84<br>314            |
| G<br>GGA | R<br>CGG | Y<br>TAT | R<br>CGA | C<br>TGC | S<br>TCT | Y<br>TAT | Q<br>CAG          | N<br>AAT | G<br>GGG | S<br>AGT | H<br>CAC | W<br>TGG | S<br>TCT | L<br>CTC | P<br>CCA | S<br>AGT | D<br>GAC | Q<br>CAG   | CTT              | 104<br>374           |
|          |          | I        |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 124<br>434           |
|          |          | Q<br>CAA |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 144<br>494           |
|          |          | Y<br>TAC |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 164<br>554           |
|          |          | P<br>CCC |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 184<br>614           |
|          |          | S<br>TCA |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 204<br>674           |
| G<br>GGA | L<br>CTC | S<br>TCT | A<br>GCC | T<br>ACT | P        | s<br>Agc | Q<br>C <b>A</b> G | V<br>GTA | P        | T<br>ACG | E<br>GAA | E<br>GAA | S<br>TCA | F        | P<br>CCT | V<br>GTG | T<br>ACA | E<br>GAA   | S<br>TCC         | 224<br>734           |
| S<br>TCC | r<br>Agg |          |          |          |          | L<br>TTA |                   |          |          |          |          |          |          |          |          |          |          | M<br>ATG   | n<br>aat         | 244<br>794           |
|          |          | A<br>GCC |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            | A<br>GCC         | 264<br>854           |
|          |          | N<br>AAT |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          | G<br>GGG   |                  | 284<br>914           |
|          |          |          |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            | Q<br>C <b>AA</b> |                      |
|          |          | L<br>CTA |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 314<br>1004          |
|          |          |          |          |          |          |          |                   |          |          |          |          |          |          |          |          |          |          |            |                  | 1083<br>1162<br>1163 |



MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRL EKLKPEKYEDQDFLFIPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAH PSSAVPQGRDVTLKCQSPYSFDEFVLYKEGDTGPYKRPEKWYRANFPIITVTAAHSGTYR CYSFSSSSPYLWSAPSDPLVLVVTGLSATPSQVPTEESFPVTESSRRPSILPTNKISTTE KPMNITASPEGLSPPIGFAHQHYAKGNLVRICLGATIIIILLGLLAEDWHSRKKCLQHRM RALQRPLPPLPLA

FIG.7

|        |                    | LO                    | 20                         | 30                   | 40                                      | 50                  | 60                                     | 70              |
|--------|--------------------|-----------------------|----------------------------|----------------------|-----------------------------------------|---------------------|----------------------------------------|-----------------|
| inputs | A I GACGCC         | GCCCTCA               | ACAGCCC                    | TGCTCTGCCTTG         | GGCTGAGTC                               | TGGGCCCCAG          | GACCCGCGTG                             | CAGGCAG         |
|        | ATGTCTCCA          | ::: :::<br>AGCC - TCA | :: ::<br>\CCC-             | .:: :::<br>ACTTTCTT- | ::::<br>CTCTAT                          |                     |                                        |                 |
|        |                    | .0                    |                            | 20                   | 30                                      | • • • • • • • • •   | ••••••                                 |                 |
|        |                    |                       |                            |                      |                                         |                     |                                        |                 |
|        |                    | 80                    | 90                         | 100                  | 110                                     | 120                 | 130                                    | 140             |
| inputs | GGCCCTTCC          | CCAAACC               | CACCCT                     | CTGGGCTGAGCC         | AGGCTCTGT                               | SATCAGCTGG          | GGGAGCCCCG                             | TGACCAT         |
|        |                    |                       |                            | :::::::<br>TCCCCTC   | ::::                                    |                     |                                        |                 |
|        |                    |                       |                            | -TGGGCTG             | 40                                      | ATACTGC             |                                        |                 |
|        |                    |                       |                            |                      | 40                                      |                     |                                        |                 |
|        | 15                 | 0                     | 160                        | 170                  | 180                                     | 190                 | 200                                    | 210             |
| inputs | CTGGTGTCA          | GGGGAGC               | CTGGAG                     | GCCCAGGAGTAC         | CGACTGGATA                              | VAAGAGGGAA          | GCCCAGAGCC                             | CTTGGAC         |
|        |                    |                       |                            | :.:.:.:              | •                                       |                     |                                        |                 |
|        |                    |                       | *                          | AAGTGATC             | C                                       |                     |                                        |                 |
|        |                    |                       |                            | 50                   |                                         | 60                  |                                        | 70              |
|        | 22                 | 0                     | 230                        | 240                  | 250                                     | 260                 | 270                                    | 280             |
| inputs | AGAAATAAC          | CCACTGG               | AACCCAA                    | AGAACAAGGCCA(        | GATTCTCCAT                              | CCCATCCAT           | Z70<br>GACAGAGCAC                      | CATGCGG         |
|        | :                  | :::::                 | :::                        | ::::                 | ::.:                                    | ::: ::::            | •                                      |                 |
|        | C                  | CCACT                 | CCC                        | ·CAAG                | · CCTT                                  | CCC-TCCAG           | G                                      | • • • • • •     |
|        |                    |                       | 80                         |                      |                                         | 90                  |                                        |                 |
|        | 29                 | 0                     | 300                        | 310                  | 320                                     | 330                 | 240                                    | 250             |
| inputs | GGAGATACC          | GCTGCCA               | CTATTAC                    | CAGCTCTGCAGG         | CTGGTCAGAG                              | CCCAGCGAC           | 340<br>CCCCTGG∆GC                      | 350             |
|        | :                  | :.:::                 |                            |                      | :::.                                    | :::::::::           | :::::::::::::::::::::::::::::::::::::: | .:              |
|        | C                  | TCAGCC-               |                            |                      | CAGTT                                   | CCCTG-GTA           | CCCCTGGGTC                             | 4G              |
|        | 1                  | 00                    |                            |                      | 11                                      | 0 :                 | 120                                    |                 |
|        | 36                 | n                     | 370                        | 380                  | 200                                     | 400                 | 410                                    | 400             |
| inputs | GACAGGATT          | CTACAACA              | AAACCCA                    | CCCTCTCAGCCC         | JGCCC<br>TGCCC∆GCC                      | 400<br>CTGTGGTGG    | 410<br>CCTCACCCCC                      | 420             |
| •      | .::: ::            | :.:                   |                            |                      |                                         |                     |                                        |                 |
|        | -TCAGTT/           | ATTC                  |                            |                      | • • • • • • • • • • • • • • • • • • • • | -TGAGGTG-(          |                                        |                 |
|        | 130                |                       |                            |                      |                                         | 40                  | 150                                    |                 |
|        | A*                 | 20                    | 440                        | 450                  |                                         |                     |                                        |                 |
| inputs | 4.<br>ΔΓΓΓΤΓΓ - Ω/ | SU<br>NTCTCCCT        | <del>44</del> 0<br>ГСАСАСА | 450                  | 460                                     | 470                 | 480                                    |                 |
| mpacs  | :::::::::          | :::::                 | ICACAGA                    | AGGGATATCACC         | AIIIIGIIC                               | IGAIGAAGGA<br>      | VAGGAGAACA(                            | CAGCTC          |
|        | CCTCCAGA           | ATGTGG                |                            | ATTTATATCGCC         | TGGAGAAAC                               | <br>ГGAAA - <i></i> |                                        |                 |
|        | 160                |                       |                            |                      |                                         | 190                 |                                        |                 |
| 49     | n r                | ١٥.                   | <b>510</b>                 | 500                  |                                         |                     |                                        |                 |
|        |                    | )0<br>Yegacto         |                            | 520<br>GCTCCACAGTGG  | 530                                     | 540                 | 550                                    | 000701          |
| pucs   | :::::              |                       |                            | GCTCCACAGTGG<br>:::  |                                         |                     |                                        |                 |
|        | CCGGA              | GA                    |                            | AGTAT                | GAAGATCAAG                              | ACTTTC              | ::<br>TCTT                             | : . :<br>-CATT- |
|        |                    |                       |                            | 200                  | 210                                     | 220<br>220          |                                        | O/TII-          |

FIG. 8A



FIG.8B





FIG. 8D



|          |            |                                                  | 100 | EKYEDQ | 71 |
|----------|------------|--------------------------------------------------|-----|--------|----|
| mT268 7: | <b>7</b> 2 | anlsegrfsissltLtissvekeDsGtYt<br>L i + e++++G Y+ | +C  | 91     |    |

## FIG.10A

|       | *-  | >GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek                          |
|-------|-----|---------------------------------------------------------------------------|
| mT268 | 128 | G +vtL C++ ++ y k+g++ + Y+r+e + GRDVTLKCQSPYSFDEFVLY-KEGDtGPYKRPEKW-Y 162 |
|       |     | anlsegrfsissltLtissvekeDsGtYtCvv<-*                                       |
|       |     | + ++i++v++ sGtY+C                                                         |
| mT268 | 163 | RA NFPIITVTAAHSGTYRCYS 183                                                |

FIG.10B

|        |                                                                               | 10            | 20            | 30              | 40         | 50              | 60         |        |  |
|--------|-------------------------------------------------------------------------------|---------------|---------------|-----------------|------------|-----------------|------------|--------|--|
| inputs | MSPSPT                                                                        | ALFCLGLCI     | _GRV-PAQSGI   | PLPKPSLQALP     |            |                 |            | SRYQD  |  |
|        | :::                                                                           |               | <u>:</u> :::: |                 |            | .::::::::       |            | .:.:   |  |
|        | MSPASP                                                                        |               |               | PLPKPSLQAQP     |            |                 |            |        |  |
|        |                                                                               | 10            | 20            | 30              | . •        | 50              | 60         | 70     |  |
|        | <u>'0</u>                                                                     | 80            | 90            | 100             | 110        | 120             | 130        |        |  |
| inputs | QAVLFI                                                                        | PAMKRSLA      | GRYRCSYQNG:   | SLWSLPSDQLE     | LVATGVFAKP | SLSAQPGPAV      | SSGGDVTLQC | :QTRYG |  |
|        | :.:::                                                                         | : .: :: :     |               |                 |            |                 |            | :. :.  |  |
|        | QDFLFI                                                                        |               |               | SHWSLPSDQLE     |            |                 |            |        |  |
|        |                                                                               | 80            |               | 100             |            | 120             | 130        | 140    |  |
| 14     |                                                                               | 150           | 160           | 170             | 180        | 190             | 200        |        |  |
| inputs | inputs FDQFALYKEGDPAPYKNPERWYRASFPIITVTAAMSGTYRCYSFSSRDPYLWSAPSDPLELVVTGTSVTP |               |               |                 |            |                 |            |        |  |
|        |                                                                               |               |               |                 |            |                 |            |        |  |
|        | FDEFVL                                                                        |               |               | NFPIITVTAAH     |            |                 |            |        |  |
|        |                                                                               | 150           | 160           | 170             | 180        | 190             | 200        | 210    |  |
| 21     |                                                                               | 220           | 230           | 240             | 250        | 260             | 270 ♥      |        |  |
| inputs | SRLPTE                                                                        | PPSSVAEF:     | SEATAELTVSI   | FTNKVFTTETS     | RSITISPKES | DSPAGPARQY      | YIKGNLVRIC | CLGAVI |  |
|        | ::::                                                                          | :.:           | : .:          | :::. ::: .      |            | : : : : :       |            |        |  |
|        | 2017 IF                                                                       |               |               | -TNKISTTEKP     |            |                 |            | LGAII  |  |
|        |                                                                               | 220           | 230           | 240             | 250        | 260             | 270        |        |  |
| 28     | 20                                                                            | 290           | 300           | 310             | 320        | 330             |            |        |  |
|        |                                                                               |               |               | AVQRPLPPLPP     |            |                 | סטו ככ     |        |  |
| присъ  | LIILAC                                                                        | II LALDWI 13: | · · · · · ·   |                 | ·          | iquddinqu vi iS | Nulco      |        |  |
|        | IIIIIG                                                                        | LI AFDWHSI    | SKKU UHBMBI   | <br>ALQRPLPPLP- | <br>ΙΔ     |                 |            |        |  |
|        | 280                                                                           | 290           | 300           | 310             | LI         |                 |            |        |  |
|        | 200                                                                           | 250           | 000           | 010             |            |                 |            |        |  |

FIG.11



FIG.12





FIG.14A



FIG.14B



FIG.14C



FIG.14D













Docket No.: 7853-211-999 Serial No.: 09/610,118 Inventor(s): BUSFIELD et al. Title: "GLYCOPROTEIN VI AND USES THEREOF"



FIG.19



FIG.20

## EFFET DES MONOCLONAUX SUR LA LIAISON GPVI-Fc/CONVULXINE



FIG.21



FIG.22



FIG. 23A





FIG.24







FIG.25C



FIG.25D



DATA .017

200

100

101

102

104

scFv4

FIG.25F







FIG.251





FIG. 26

