# Pressure Calibration Report STS Calibration Facility

SENSOR SERIAL NUMBER: 0914 CALIBRATION DATE: 05-FEB-2021

Mfg: SEABIRD Model: 09P CTD Prs s/n: 110547

C1= -4.347419E+4

C2= 9.519583E-2

C3= 1.217347E-2

D1=3.695368E-2

D2= 0.000000E+0

T1= 3.006841E+1

T2= -2.734151E-4

T3= 3.937442E-6

T4= 5.448912E-9

T5= 0.000000E+0

AD590M= 1.28789E-2

AD590B= -8.81353E+0

Slope = 1.00000000E+0

Offset = 0.00000000E+0

Calibration Standard: Mfg: FLUKE Model: P3125 s/n: 70856

t0=t1+t2\*td+t3\*td\*td+t4\*td\*td

w = 1-t0\*t0\*f\*f

Pressure = (0.6894759\*((c1+c2\*td+c3\*td\*td)\*w\*(1-(d1+d2\*td)\*w)-14.7)

| Sensor    |         | Sensor    | DWT-Sensor | DWT-Sensor |         |           |
|-----------|---------|-----------|------------|------------|---------|-----------|
| Output    | DWT     | New_Coefs | Prev_Coefs | NEW_Coefs  | PT-DegC | Bath_Temp |
| 33262.977 | 0.27    | 0.27      | 0.12       | -0.00      | -0.94   | -1.524    |
| 33593.871 | 600.32  | 600.26    | 0.17       | 0.06       | -0.93   | -1.523    |
| 33921.049 | 1200.33 | 1200.24   | 0.21       | 0.09       | -0.93   | -1.523    |
| 34137.163 | 1600.35 | 1600.23   | 0.24       | 0.12       | -0.93   | -1.523    |
| 34458.372 | 2200.39 | 2200.15   | 0.35       | 0.23       | -0.93   | -1.524    |
| 34670.629 | 2600.41 | 2600.16   | 0.37       | 0.25       | -0.93   | -1.523    |
| 34986.255 | 3200.43 | 3200.24   | 0.31       | 0.18       | -0.93   | -1.523    |
| 35505.006 | 4200.40 | 4200.27   | 0.28       | 0.13       | -0.93   | -1.523    |
| 36015.059 | 5200.40 | 5200.29   | 0.29       | 0.11       | -0.93   | -1.523    |
| 36516.815 | 6200.41 | 6200.36   | 0.26       | 0.05       | -0.93   | -1.523    |
| 36912.408 | 7000.37 | 7000.31   | 0.30       | 0.06       | -0.93   | -1.523    |
| 36516.889 | 6200.38 | 6200.51   | 0.08       | -0.13      | -0.93   | -1.523    |
| 36015.219 | 5200.41 | 5200.61   | -0.02      | -0.20      | -0.93   | -1.523    |
| 35505.191 | 4200.44 | 4200.63   | -0.04      | -0.19      | -0.93   | -1.523    |
| 34986.433 | 3200.44 | 3200.58   | -0.01      | -0.14      | -0.93   | -1.523    |
| 34670.827 | 2600.39 | 2600.54   | -0.03      | -0.15      | -0.94   | -1.523    |
| 34458.548 | 2200.37 | 2200.48   | 0.00       | -0.11      | -0.93   | -1.523    |
| 34137.296 | 1600.36 | 1600.48   | -0.00      | -0.12      | -0.94   | -1.523    |

| Sensor<br>Output       | DWT                | Sensor<br>New Coefs | DWT-Sensor<br>Prev_Coefs | DWT-Sensor<br>NEW Coefs | PT-DegC        | Bath_Temp        |
|------------------------|--------------------|---------------------|--------------------------|-------------------------|----------------|------------------|
| 33921.159              | 1200.34            | 1200.45             | 0.01                     | -0.10                   | -0.94          | -1.523           |
| 33593.964              | 600.31             | 600.43              | -0.00                    | -0.12                   | -0.94          | -1.523           |
| 33265.090              | 0.27               | 0.26                | 0.23                     | 0.01                    | 6.71           | 6.484            |
| 33596.020              | 600.32             | 600.25              | 0.28                     | 0.07                    | 6.73           | 6.484            |
| 33923.231              | 1200.34            | 1200.22             | 0.33                     | 0.11                    | 6.75           | 6.484            |
| 34139.364              | 1600.36            | 1600.21             | 0.36                     | 0.15                    | 6.76           | 6.484            |
| 34460.652              | 2200.40            | 2200.22             | 0.40                     | 0.18                    | 6.78           | 6.484            |
| 34672.944              | 2600.42            | 2600.25             | 0.39                     | 0.16                    | 6.78           | 6.484            |
| 34988.582              | 3200.43            | 3200.29             | 0.38                     | 0.14                    | 6.81           | 6.484            |
| 35507.396              | 4200.43            | 4200.35             | 0.34                     | 0.08                    | 6.81           | 6.484            |
| 36017.495              | 5200.44            | 5200.35             | 0.38                     | 0.09                    | 6.83           | 6.484            |
| 36519.254              | 6200.42            | 6200.34             | 0.41                     | 0.08                    | 6.83           | 6.484            |
| 36914.833              | 7000.36            | 7000.17             | 0.55                     | 0.18                    | 6.86           | 6.484            |
| 36519.312              | 6200.42            | 6200.43             | 0.32                     | -0.01                   | 6.88           | 6.484            |
| 36017.652              | 5200.46            | 5200.64             | 0.11                     | -0.18                   | 6.89           | 6.484            |
| 35507.591              | 4200.45            | 4200.69             | 0.02                     | -0.24                   | 6.89           | 6.484            |
| 34988.776              | 3200.42            | 3200.62             | 0.04                     | -0.20                   | 6.89           | 6.484            |
| 34673.126              | 2600.40            | 2600.54             | 0.08                     | -0.14                   | 6.90           | 6.484            |
| 34460.851              | 2200.40            | 2200.53             | 0.09                     | -0.13                   | 6.91           | 6.484            |
| 34139.559              | 1600.36            | 1600.50             | 0.08                     | -0.13                   | 6.91           | 6.484            |
| 33923.409              | 1200.34            | 1200.47             | 0.08                     | -0.13                   | 6.93           | 6.484            |
| 33596.164              | 600.31             | 600.42              | 0.11                     | -0.11                   | 6.94           | 6.484            |
| 33267.148              | 0.27               | 0.25                | 0.20                     | 0.02                    | 17.27          | 16.489           |
| 33598.103              | 600.31             | 600.20              | 0.28                     | 0.11                    | 17.27          | 16.489           |
| 33925.365              | 1200.32            | 1200.19             | 0.31                     | 0.14                    | 17.27          | 16.489           |
| 34141.531              | 1600.35            | 1600.17             | 0.34                     | 0.17                    | 17.27          | 16.489           |
| 34462.869              | 2200.39            | 2200.20             | 0.35                     | 0.19                    | 17.27          | 16.489           |
| 34675.177              | 2600.40            | 2600.20             | 0.35                     | 0.20                    | 17.27          | 16.489           |
| 34990.902              | 3200.40            | 3200.33             | 0.23                     | 0.07                    | 17.27          | 16.490           |
| 34675.234              | 2600.38            | 2600.31             | 0.23                     | 0.07                    | 17.27          | 16.489           |
| 34990.870              | 3200.43            | 3200.27<br>4200.32  | 0.32                     | 0.16                    | 17.27          | 16.489<br>16.489 |
| 35509.760<br>36019.924 | 4200.39<br>5200.38 | 5200.32             | 0.24<br>0.25             | 0.07<br>0.07            | 17.27<br>17.28 | 16.489           |
| 36521.797              | 6200.40            | 6200.38             | 0.23                     | 0.07                    | 17.28          | 16.489           |
| 36020.065              | 5200.43            | 5200.59             | 0.22                     | -0.16                   | 17.28          | 16.490           |
| 35509.913              | 4200.40            | 4200.62             | -0.04                    | -0.21                   | 17.27          | 16.489           |
| 34991.029              | 3200.39            | 3200.57             | -0.02                    | -0.18                   | 17.27          | 16.489           |
| 34675.353              | 2600.38            | 2600.54             | 0.00                     | -0.16                   | 17.27          | 16.489           |
| 34463.035              | 2200.39            | 2200.51             | 0.04                     | -0.12                   | 17.27          | 16.489           |
| 34141.696              | 1600.36            | 1600.48             | 0.04                     | -0.13                   | 17.27          | 16.489           |
| 33925.527              | 1200.33            | 1200.49             | 0.01                     | -0.16                   | 17.27          | 16.489           |
| 33598.228              | 600.31             | 600.43              | 0.05                     | -0.12                   | 17.27          | 16.489           |
| 33268.160              | 0.27               | 0.15                | 0.26                     | 0.12                    | 28.87          | 28.000           |
| 33599.211              | 600.31             | 600.16              | 0.26                     | 0.15                    | 28.87          | 28.000           |
| 33926.523              | 1200.34            | 1200.11             | 0.31                     | 0.23                    | 28.87          | 28.000           |
| 34142.724              | 1600.36            | 1600.08             | 0.35                     | 0.28                    | 28.87          | 28.000           |

| Sensor    | DWT     | Sensor    | DWT-Sensor | DWT-Sensor | PT-DegC | Bath_Temp |
|-----------|---------|-----------|------------|------------|---------|-----------|
| Output    |         | New_Coefs | Prev_Coefs | NEW_Coefs_ |         |           |
| 34464.126 | 2200.37 | 2200.10   | 0.32       | 0.27       | 28.87   | 28.000    |
| 34676.481 | 2600.38 | 2600.11   | 0.29       | 0.26       | 28.87   | 28.000    |
| 34992.232 | 3200.42 | 3200.17   | 0.26       | 0.25       | 28.87   | 28.000    |
| 35511.255 | 4200.43 | 4200.28   | 0.13       | 0.14       | 28.87   | 28.000    |
| 36021.545 | 5200.40 | 5200.33   | 0.04       | 0.07       | 28.88   | 28.000    |
| 36523.496 | 6200.35 | 6200.36   | -0.05      | -0.01      | 28.88   | 28.000    |
| 36021.659 | 5200.43 | 5200.56   | -0.17      | -0.13      | 28.87   | 27.999    |
| 35511.424 | 4200.44 | 4200.61   | -0.19      | -0.17      | 28.87   | 28.000    |
| 34992.457 | 3200.41 | 3200.60   | -0.18      | -0.19      | 28.87   | 28.000    |
| 34676.719 | 2600.38 | 2600.57   | -0.16      | -0.18      | 28.87   | 28.000    |
| 34464.373 | 2200.37 | 2200.56   | -0.15      | -0.19      | 28.87   | 27.999    |
| 34142.980 | 1600.36 | 1600.55   | -0.13      | -0.19      | 28.87   | 27.999    |
| 33926.777 | 1200.34 | 1200.58   | -0.16      | -0.24      | 28.87   | 28.000    |
| 33599.463 | 600.31  | 600.62    | -0.19      | -0.30      | 28.87   | 28.000    |
| 33268.316 | 0.27    | 0.43      | -0.03      | -0.17      | 28.87   | 27.999    |





# Temperature Calibration Report STS Calibration Facility

SENSOR SERIAL NUMBER: 2309 CALIBRATION DATE: 02-Feb-2021

Mfg: SEABIRD Model: 03
Previous cal: 22-Aug-18
Calibration Tech: JRB

| ITS-90_COEFFICIENTS | IPTS-68_COEFFICIENTS<br>ITS-T90 |              |
|---------------------|---------------------------------|--------------|
| g = 4.35766978E-3   | a = 4.35786799E-3               |              |
| h = 6.44842157E-4   | b = 6.45053483E-4               |              |
| i = 2.41461092E-5   | c = 2.41788429E-5               |              |
| j = 2.32316822E-6   | d = 2.32475796E-6               |              |
| f0 = 1000.0         | Slope = 1.0                     | Offset = 0.0 |

 $\label{eq:Calibration Standard: Mfg: Isotech Model: MicroK100 s/n: 291088-2 \\ Temperature ITS-90 = 1/{g+h[ln(f0/f)]+i[ln2(f0/f)]+j[ln3(f0/f)]} - 273.15 (°C) \\ Temperature IPTS-68 = 1/{a+b[ln(f0/f)]+c[ln2(f0/f)]+d[ln3(f0/f)]} - 273.15 (°C) \\ Temperature IPTS-68 = 1/{a+b[ln(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]} - 273.15 (°C) \\ Temperature IPTS-68 = 1/{a+b[ln(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3$ 

T68 = 1.00024 \* T90 (-2 to -35 Deg C)

| SBE3<br>Freq | SPRT<br>ITS-T90 | SBE3<br>ITS-T90 | SPRT-SBE3<br>OLD Coefs | SPRT-SBE3<br>NEW Coefs |
|--------------|-----------------|-----------------|------------------------|------------------------|
| 2975.5870    | -1.4260         | -1.4261         | 0.00265                | 0.00009                |
| 3147.1972    | 1.0788          | 1.0789          | 0.00238                | -0.00009               |
| 3399.3413    | 4.5854          | 4.5856          | 0.00226                | -0.00011               |
| 3665.8671    | 8.0939          | 8.0939          | 0.00234                | 0.00004                |
| 3947.2597    | 11.6048         | 11.6047         | 0.00238                | 0.00012                |
| 4242.8745    | 15.1060         | 15.1060         | 0.00233                | 0.00008                |
| 4554.7523    | 18.6173         | 18.6174         | 0.00216                | -0.00009               |
| 4882.4355    | 22.1289         | 22.1290         | 0.00220                | -0.00007               |
| 5225.9295    | 25.6375         | 25.6375         | 0.00223                | -0.00005               |
| 5586.0060    | 29.1476         | 29.1475         | 0.00243                | 0.00012                |
| 5963.0718    | 32.6596         | 32.6596         | 0.00228                | -0.00004               |



# Temperature Calibration Report STS Calibration Facility

SENSOR SERIAL NUMBER: 2380 CALIBRATION DATE: 02-Feb-2021

Mfg: SEABIRD Model: 03 Previous cal: 01-Oct-19 Calibration Tech: JRB

| ITS-90_COEFFICIENTS | IPTS-68_COEFFICIENTS<br>ITS-T90 |              |
|---------------------|---------------------------------|--------------|
| g = 4.34100532E-3   | a = 4.34119811E-3               |              |
| h = 6.41789424E-4   | b = 6.41998534E-4               |              |
| i = 2.37299874E-5   | c = 2.37624492E-5               |              |
| j = 2.23207901E-6   | d = 2.23365599E-6               |              |
| f0 = 1000.0         | Slope = 1.0                     | Offset = 0.0 |

 $\label{eq:Calibration Standard: Mfg: Isotech Model: MicroK100 s/n: 291088-2 \\ Temperature ITS-90 = 1/{g+h[ln(f0/f)]+i[ln2(f0/f)]+j[ln3(f0/f)]} - 273.15 (°C) \\ Temperature IPTS-68 = 1/{a+b[ln(f0/f)]+c[ln2(f0/f)]+d[ln3(f0/f)]} - 273.15 (°C) \\ Temperature IPTS-68 = 1/{a+b[ln(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]} - 273.15 (°C) \\ Temperature IPTS-68 = 1/{a+b[ln(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3(f0/f)]+d[ln3$ 

T68 = 1.00024 \* T90 (-2 to -35 Deg C)

| SBE3<br>Freq | SPRT<br>ITS-T90 | SBE3<br>ITS-T90 | SPRT-SBE3<br>OLD Coefs | SPRT-SBE3<br>NEW Coefs |
|--------------|-----------------|-----------------|------------------------|------------------------|
| 2908.1745    | -1.4260         | -1.4261         | 0.00050                | 0.00008                |
| 3076.3906    | 1.0788          | 1.0789          | 0.00033                | -0.00006               |
| 3323.6099    | 4.5854          | 4.5856          | 0.00024                | -0.00013               |
| 3584.9964    | 8.0939          | 8.0939          | 0.00035                | 0.00001                |
| 3861.0310    | 11.6048         | 11.6047         | 0.00047                | 0.00015                |
| 4151.1088    | 15.1060         | 15.1060         | 0.00030                | 0.00001                |
| 4457.2075    | 18.6173         | 18.6173         | 0.00024                | -0.00004               |
| 4778.9118    | 22.1289         | 22.1289         | 0.00031                | 0.00006                |
| 5116.2600    | 25.6375         | 25.6376         | 0.00009                | -0.00015               |
| 5469.9675    | 29.1476         | 29.1476         | 0.00027                | 0.00005                |
| 5840.4566    | 32.6596         | 32.6596         | 0.00021                | 0.00002                |



Sea-Bird Scientific 13431 NE 20<sup>th</sup> Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 3399 SBE 4 CONDUCTIVITY CALIBRATION DATA CALIBRATION DATE: 25-Nov-20 PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

#### **COEFFICIENTS:**

i = -2.27347443e-003j = 2.57836284e-004

| BATH TEMP | <b>BATH SAL</b> | BATH COND | INSTRUMENT   | INSTRUMENT | RESIDUAL |
|-----------|-----------------|-----------|--------------|------------|----------|
| (° C)     | (PSU)           | (S/m)     | OUTPUT (kHz) | COND (S/m) | (S/m)    |
| 0.0000    | 0.0000          | 0.00000   | 2.57534      | 0.00000    | 0.00000  |
| -1.0000   | 34.7650         | 2.80083   | 5.03961      | 2.80082    | -0.00001 |
| 1.0000    | 34.7630         | 2.97184   | 5.15198      | 2.97186    | 0.00002  |
| 15.0000   | 34.7550         | 4.26489   | 5.93250      | 4.26484    | -0.00005 |
| 18.5000   | 34.7466         | 4.61012   | 6.12400      | 4.61015    | 0.00003  |
| 29.0000   | 34.7247         | 5.68900   | 6.68668      | 5.68902    | 0.00002  |
| 32.5000   | 34.6927         | 6.05687   | 6.86785      | 6.05685    | -0.00002 |

f = Instrument Output (kHz)

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$ 

Conductivity (S/m) =  $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$ 

Residual (Siemens/meter) = instrument conductivity - bath conductivity



Sea-Bird Scientific 13431 NE 20<sup>th</sup> Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 1880 SBE 4 CONDUCTIVITY CALIBRATION DATA CALIBRATION DATE: 04-Dec-20 PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

#### **COEFFICIENTS:**

i = -5.86292632e-004j = 5.45468975e-005

| BATH TEMP<br>(° C) | BATH SAL<br>(PSU) | BATH COND<br>(S/m) | INSTRUMENT<br>OUTPUT (kHz) | INSTRUMENT<br>COND (S/m) | RESIDUAL<br>(S/m) |
|--------------------|-------------------|--------------------|----------------------------|--------------------------|-------------------|
| 0.0000             | 0.0000            | 0.00000            | 2.86531                    | 0.00000                  | 0.00000           |
| -1.0000            | 34.7034           | 2.79633            | 8.13117                    | 2.79632                  | -0.00001          |
|                    |                   |                    |                            |                          |                   |
| 1.0000             | 34.7028           | 2.96719            | 8.34539                    | 2.96721                  | 0.00002           |
| 15.0000            | 34.7013           | 4.25900            | 9.81212                    | 4.25894                  | -0.00005          |
| 18.5000            | 34.6979           | 4.60435            | 10.16784                   | 4.60440                  | 0.00005           |
| 29.0000            | 34.6895           | 5.68388            | 11.20490                   | 5.68388                  | -0.00001          |
| 32.5000            | 34.6740           | 6.05398            | 11.53820                   | 6.05381                  | -0.00017          |

f = Instrument Output (kHz)

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$ 

Conductivity (S/m) =  $(g + h * f^2 + i * f^3 + j * f^4) / 10 (1 + \delta * t + \epsilon * p)$ 

Residual (Siemens/meter) = instrument conductivity - bath conductivity





## SEA-BIRD ELECTRONICS, INC. 13431 NE 20th St. Bellevue, Washington 98005 USA

Phone: (425) 643-9866 Fax: (425) 643-9954 www.seabird.com

|                      | Report                                 | RMA Numbe           | r 879  | 926  | 38.                                   |
|----------------------|----------------------------------------|---------------------|--------|------|---------------------------------------|
| Customer In          | formation:                             |                     |        |      |                                       |
| Company              | Scripps Institute of Oceanography      |                     |        | Date | 3/16/2016                             |
| Contact<br>PO Number | Carl Mattson TBD                       |                     |        |      |                                       |
| Serial Numb          |                                        |                     | *      |      |                                       |
| Problems Fo          | ound:                                  |                     |        |      |                                       |
|                      | ls 10-18 VDC -Test pump cable.         |                     |        |      |                                       |
| Services Pe          | formed:                                |                     |        |      |                                       |
| 1 Porformed          | initial diagnostic evaluation.         |                     |        |      | - a                                   |
| i. Fellolliled       |                                        |                     |        |      |                                       |
|                      | internal inspection and O-ring and thr | ust washer replacem | ients. |      |                                       |
| 2. Performed         | internal inspection and O-ring and thr | ust wasner replacem | ients. |      |                                       |
| 2. Performed         | hydrostatic pressure test.             | ust wasner replacem | ents.  | e y  | · · · · · · · · · · · · · · · · · · · |



### Sea-Bird Electronics, Inc.

13431 NE 20<sup>th</sup> St. Bellevue, Washington 98005 USA www.seabird.com

Fax: (425) 643-9954

High pressure is

Email: seabird@seabird.com

Phone: (425) 643-9866

### **Pressure Test Certificate**

Test Date: 04/14/16 Description: SBE-5T Submersible Pump

#### **Sensor Information:**

Model Number: 5T

Serial Number: 8690

#### **Pressure Test Protocol:**

Low Pressure Test: 40 PSI Held For: 15 Minutes

High Pressure Test: **10000** PSI Held For: **15** Minutes

Passed Test: Yes

Tested By: nd

generally equal to the maximum depth rating of the instrument

**Typical Test Profile** 



Sea-Bird Scientific 13431 NE 20<sup>th</sup> Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 0255 CALIBRATION DATE: 13-Nov-20

#### SBE 43 OXYGEN CALIBRATION DATA

COEFFICIENTS: A = -4.1544e-003 NOMINAL DYNAMIC COEFFICIENTS
Soc = 0.4735 B = 1.9043e-004 D1 = 1.92634e-4 H1 = -3.300000e-2
Voffset = -0.5091 C = -2.8141e-006 D2 = -4.64803e-2 H2 = 5.00000e+3
Tau20 = 1.56 E nominal = 0.036 H3 = 1.45000e+3

| BATH          | BATH              | BATH           | INSTRUMENT     | INSTRUMENT    | RESIDUAL |
|---------------|-------------------|----------------|----------------|---------------|----------|
| OXYGEN (ml/l) | TEMPERATURE (° C) | SALINITY (PSU) | OUTPUT (volts) | OXYGEN (ml/l) | (ml/l)   |
| 1.06          | 2.00              | 0.00           | 0.742          | 1.06          | -0.00    |
| 1.07          | 6.00              | 0.00           | 0.772          | 1.06          | -0.00    |
| 1.08          | 12.00             | 0.00           | 0.819          | 1.08          | -0.00    |
| 1.09          | 20.00             | 0.00           | 0.882          | 1.09          | 0.00     |
| 1.10          | 26.00             | 0.00           | 0.931          | 1.10          | 0.00     |
| 1.10          | 30.00             | 0.00           | 0.964          | 1.10          | 0.00     |
| 3.77          | 2.00              | 0.00           | 1.338          | 3.77          | -0.00    |
| 3.77          | 30.00             | 0.00           | 2.062          | 3.78          | 0.00     |
| 3.78          | 6.00              | 0.00           | 1.443          | 3.78          | 0.00     |
| 3.79          | 12.00             | 0.00           | 1.599          | 3.79          | -0.00    |
| 3.79          | 26.00             | 0.00           | 1.962          | 3.79          | 0.00     |
| 3.79          | 20.00             | 0.00           | 1.807          | 3.79          | 0.00     |
| 6.53          | 2.00              | 0.00           | 1.945          | 6.53          | -0.00    |
| 6.56          | 6.00              | 0.00           | 2.132          | 6.57          | 0.00     |
| 6.58          | 30.00             | 0.00           | 3.214          | 6.58          | -0.00    |
| 6.58          | 12.00             | 0.00           | 2.403          | 6.58          | -0.00    |
| 6.60          | 20.00             | 0.00           | 2.767          | 6.60          | -0.00    |
| 6.63          | 26.00             | 0.00           | 3.049          | 6.63          | 0.00     |

V = instrument output (volts); T = temperature (°C); S = salinity (PSU); K = temperature (°K)

Oxsol(T,S) = oxygen saturation (ml/l); P = pressure (dbar)

Oxygen (ml/l) = Soc \* (V + Voffset) \* (1.0 + A \* T + B \*  $T^2$  + C \*  $T^3$ ) \* Oxsol(T,S) \* exp(E \* P / K)

Residual (ml/l) = instrument oxygen - bath oxygen



## CALIBRATION CERTIFICATE

NAME

: RINKO III

MODEL .

: ARO-CAV

SERIAL No.

: 0296

Parameter

: Temperature

Dissolved Oxygen

### Temperature Calibration Certificate

Model

ARO-CAV

Serial No.

0296

Date

April 07, 2017

Location

Production Section

Method

Calibration equation is determined from third order regression of samples of the

reference temperature against instrument voltages. Samples are taken at

approximately 3, 10, 17, 24, and 31 °C.

1. Equation

Instrument temperature[°C] = A+B  $\times$  V+C  $\times$  V<sup>2</sup>+D  $\times$  V<sup>3</sup>

V: Instrument voltage[V]

2. Coefficients

-5.305905e+00 A =

+1.666857e+01

-2.142681e+00 C =

+4.582805e-01 D =

3. Calibration results

| Reference<br>temperature<br>[°C] | Instrument<br>voltage<br>[V] | Instrument<br>temperature<br>[°C] | Residual<br>error<br>[°C] | Acceptance<br>[°C] | OK/NG |
|----------------------------------|------------------------------|-----------------------------------|---------------------------|--------------------|-------|
| 2.437                            | 0.49243                      | 2.437                             | .0.000                    | ±0.020             | OK    |
| 10.737                           | 1.07715                      | 10.735                            | -0.002                    | ±0.020             | OK    |
| 17.463                           | 1.57825                      | 17.466                            | 0.003                     | ±0.020             | OK    |
| 24.123                           | 2.07288                      | 24.121                            | -0.002                    | ±0.020             | OK    |
| 31.105                           | 2.56635                      | 31.105                            | 0.000                     | ±0.020             | OK    |

#### 4. Verification

Criteria of iudgement Residual error of the instrument temperature at arbitrary point is within the

| Judgement                        | acceptance value                  | G.                        |                    |           |
|----------------------------------|-----------------------------------|---------------------------|--------------------|-----------|
| Reference<br>temperature<br>[°C] | Instrument<br>temperature<br>[°C] | Residual<br>error<br>[°C] | Acceptance<br>[°C] | Judgement |
| 20.068                           | 20.086                            | 0.018                     | ±0.020             | Passed    |

Examined R Kashida

Approved a. Fukuoka

### Dissolved Oxygen Calibration Certificate

Model

ARO-CAV

Serial No.

0296

Date

April 10, 2017

Location

Production Section

Method

Calibration is performed with the nitrogen gas (zero) and the oxygen saturated

water (span) kept by air bubbling.

Film No.

164312BA

1. Equation

 $DO[\%] = G+H \times P'$ 

Here, P'[%] consists of the coefficients A-F determined by the initial calibration.

2. Coefficients

A = -4.524084e+01 E = +4.000000e-03

B = +1.449377e+02 F= +6.250000e-05

C =-3.051590e-01

+0.000000e+00 G =

+1.065300e-02 D =

H=

+1.000000e+00

3. Verification

Criteria of

Residual error of the instrument DO at arbitrary point is within the acceptance

judgement

value. The test is performed 3 times.

Acceptance: ±0.5% of full scale

#### Test for DO 0 %

|     | Test co             | ondition            | Instrument | Residual     | Acceptance | Judgement |
|-----|---------------------|---------------------|------------|--------------|------------|-----------|
|     | Atm. pressure [hPa] | Reference DO<br>[%] | DO<br>[%]  | error<br>[%] | [%]        |           |
| 1st | 1015.7              | 0.00                | 0.02       | 0.02         | ±1.00      | Passed    |
| 2nd | 1015.7              | 0.00                | 0.02       | 0.02         | ±1.00      | Passed    |
| 3rd | 1015.7              | 0.00                | 0.02       | 0.02         | ±1.00      | Passed    |

#### Test for DO 100 %

|     |               | Test condition      |                  |           | Residual     | Acceptance |           |
|-----|---------------|---------------------|------------------|-----------|--------------|------------|-----------|
|     | Water T. [°C] | Atm. pressure [hPa] | Reference DO [%] | DO<br>[%] | error<br>[%] | - [%]      | Judgement |
| 1st | 25.1          | 1015.0              | 100.18           | 99.89     | -0.29        | ±1.00      | Passed    |
| 2nd | 25.1          | 1015.0              | 100.18           | 99.94     | -0.24        | ±1.00      | Passed    |
| 3rd | 25.1          | 1014.9              | 100.17           | 99.95     | -0.22        | ±1.00      | Passed    |

Examined

M. TAKEISHI a. Fukuoka Approved

# Temperature Calibration Report STS Calibration Facility

SENSOR SERIAL NUMBER: 0105 CALIBRATION DATE: 09-Feb-2021

Mfg: SEABIRD Model: 35 Previous cal: 04-Mar-19 Calibration Tech: CAL

#### **ITS-90\_COEFFICIENTS**

a0 = 5.975308880E-3

a1 = -1.681244320E-3

a2 = 2.377301998E-4

a3 = -1.302239067E-5

a4 = 2.723298781E-7

Slope = 1.000000 Offset = 0.000000

Calibration Standard: Mfg: Isotech Model: MicroK100 s/n: 291088-2

Calibration Standard: Mfg: Isotech Model: MicroK100 s/n: 291088-2

Temperature ITS-90 =  $1/{a0+a1[ln(f)]+a2[ln2(f)]+a3[ln3(f)]+a4[ln4(f))} - 273.15$  (°C)

| SBE35<br>Count | SPRT<br>ITS-T90 | SBE35<br>ITS-T90 | SPRT-SBE35<br>OLD_Coefs | SPRT-SBE35<br>NEW_Coefs |
|----------------|-----------------|------------------|-------------------------|-------------------------|
| 921017.6404    | -1.4262         | -1.4261          | -0.00023                | -0.00009                |
| 823597.3265    | 1.0788          | 1.0786           | 0.00020                 | 0.00018                 |
| 705820.0404    | 4.5853          | 4.5853           | 0.00012                 | -0.00001                |
| 606424.7522    | 8.0935          | 8.0936           | 0.00005                 | -0.00010                |
| 522375.2763    | 11.6031         | 11.6032          | 0.00006                 | -0.00005                |
| 451318.4282    | 15.1050         | 15.1049          | 0.00009                 | 0.00006                 |
| 390785.6089    | 18.6176         | 18.6176          | -0.00003                | 0.00003                 |
| 339309.7652    | 22.1272         | 22.1272          | -0.00007                | 0.00006                 |
| 295375.1636    | 25.6377         | 25.6377          | -0.00023                | -0.00007                |
| 257804.2798    | 29.1473         | 29.1473          | -0.00016                | -0.00003                |
| 225560.7487    | 32.6597         | 32.6596          | 0.00000                 | 0.00003                 |
|                |                 |                  |                         |                         |





(541) 929-5650 Fax (541) 929-5277 www.sea-birdscientific.com

### **C-Star Calibration**

| Date       | August 9, 2019            | S/N#       | CST-1803DR    |                     | Pathlength | 25 cm |
|------------|---------------------------|------------|---------------|---------------------|------------|-------|
|            |                           |            | Analog output | Digital output      |            |       |
| $V_{dark}$ |                           |            | 0.014 V       | 0 counts            |            |       |
| $V_{air}$  |                           |            | 4.795 V       | <b>15714</b> counts |            |       |
| $V_{ref}$  |                           |            | 4.699 V       | 15400 counts        |            |       |
| Temp       | erature of calibration wa | ter        |               |                     | 24.7       | °C    |
| Ambie      | ent temperature during ca | alibration |               |                     | 21.8       | °C    |

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x, in meters):  $Tr = e^{-cx}$ 

To determine beam transmittance:  $Tr = (V_{sig} - V_{dark}) / (V_{ref} - V_{dark})$ 

To determine beam attenuation coefficient: c = -1/x \* In (Tr)

**V**<sub>dark</sub> Meter output with the beam blocked. This is the offset.

**V**<sub>air</sub> Meter output in air with a clear beam path.

**V**<sub>ref</sub> Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain V<sub>ref</sub>.

Ambient temperature: meter temperature in air during the calibration.

**V**<sub>sig</sub> Measured signal output of meter.