CSC 449 Advanced Topics in Artificial Intelligence Exam 2

Christian Olson

November 2022

- (1) The discount factor is typically represented by γ not λ .
- (2) The exploration rate ϵ should be initialized as a parameter.
- (3) The policy for choosing a_1 should be the same ϵ -greedy policy .
- (4) The policy is usually typically represented by π not μ
- (5) **if** The current state is terminal **then** $y_t = 0$ **end if**

is not necessary as the terminal state is caught by

while Episode k is not finished **do** end while

and an update with $y_t = 0$ would update a state that is never actually visited.

- (6) The update did not consider the discount factor γ .
- (7) The update reward y_t was the *Q-learning* update $y_t = r_t + \max_a Q(s_{t+1}, a_{t+1})$ not the SARSA update $y_t = r_t + \gamma Q(s_{t+1}, a_{t+1})$.
- 2. a Expected SARSA removes effects of random action selection from Q-learning by considering the average of all possible next states. Like SARSA, this update learns the only the optimal policy making it on-policy. However, if the policy is is greedy and explores adding randomness back into the action selection, Expected SARSA inherits the behavior of Q-learning, learning from a policy other than the optimal policy (off-policy). For Expected SARSA to remain on-policy, the set of policies must be non-greedy policies which explore only according to the a non-random policy.
 - b One of the criteria for convergence is that all state action pairs are visited while learning. With a stationary policy, only one action will every be chosen at any one state. Therefore, SARSA will not explore the entire pairwise state-action space and will not converge as a result.

unless the environment is non-deterministic...