Potential theory for random matrices

Arno Kuijlaars

June 13, 2024

Lecture 1: exercises

Exercise 1.1. Prove that

$$|x-y| \le \sqrt{|x|^2 + 1} \sqrt{|y|^2 + 1}$$

holds for every $x, y \in \mathbb{C}$. This equality was used in the proof of the existence of the equilibrium measure.

Exercise 1.2. Let $\Sigma \subset \mathbb{R}$ be a closed interval and V an admissible external field on Σ with equilibrium measure μ_V .

- (a) Suppose V is a convex on Σ . Then prove that the support of μ_V is an interval.
- (b) Suppose $\Sigma = [0, \infty)$, V is differentiable on $(0, \infty)$ and $x \mapsto xV'(x)$ is increasing on $(0, \infty)$. Prove that the support of μ_V is an interval containing 0.

Exercise 1.3. Let $V: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be an admissible external field on \mathbb{R} that is even, i.e., V(-x) = V(x).

- (a) Show that the equilibrium measure μ_V is also even.
- (b) Let μ_V^* be the pushforward of μ_V under the quadratic map $x \mapsto x^2$. That is, μ_V^* is the probability measure on $[0, \infty)$ satisfying $\int f d\mu_V^* = \int f(x^2) d\mu_V(x)$ for every bounded continuous function f on $[0, \infty)$. Show that μ_V^* is the equilibrium measure in the external field $x \mapsto 2V(\sqrt{x})$ on $[0, \infty)$.
- (c) Suppose that $x \mapsto V(\sqrt{x})$ is convex. Show that the support of μ_V is either an interval [-a,a] with a>0, or a union of two intervals $[-b,-a] \cup [a,b]$ with 0 < a < b.

There are situations that give rise to equilibrium problems with a constraint. Here a constraint is a measure σ on a closed set Σ with $\int d\sigma > 1$. The set

$$\mathcal{P}^{\sigma} = \{ \mu \in \mathcal{P}(\Sigma) \mid \mu \leq \sigma \}.$$

contains all probability measures on Σ that are constrained by σ . The inequality $\mu \leq \sigma$ means that $\mu(B) \leq \sigma(B)$ for all Borel subsets B of Σ .

In a constrained equilibrium problem one looks for the minimizer of $I_V(\mu) = I(\mu) + \int V d\mu$ within $\mathcal{P}^{\sigma}(\Sigma)$.

Exercise 1.4. Let $\Sigma \subset \mathbb{C}$ be closed and let $V : \Sigma \to \mathbb{R} \cup \{+\infty\}$ be admissible. Let σ be a measure with $\int d\sigma > 1$ (it could be $+\infty$) and $\operatorname{supp}(\sigma) = \Sigma$, with the additional property that that there exist $\mu \in \mathcal{P}^{\sigma}(\Sigma)$ for which $I(\mu)$ and $I_V(\mu)$ are finite.

- (a) Prove that there is a unique minimizer of $I_V(\mu)$ within the class μ_V^{σ} . This is the equilibrium measure with external field V and constraint σ , and we denote it by μ_V^{σ} .
- (b) Show that

$$2U^{\mu_V^{\sigma}} + V(x) \le \ell$$
, for q.e. $x \in \text{supp}(\mu_V)$,
 $2U^{\mu_V^{\sigma}} + V(x) \ge \ell$, for q.e. $x \in \text{supp}(\sigma - \mu_V^{\sigma})$).

Exercise 1.5 (optional). Prove the following converse to Theorem 1.6. If a probability measure $\tilde{\mu} \in \mathcal{P}(\Sigma)$ and a constant \tilde{l} exist such that

$$2U^{\tilde{\mu}}(x) + V(x) \leq \tilde{\ell}, \quad \text{for } x \in \text{supp}(\tilde{\mu}),$$

$$2U^{\tilde{\mu}}(x) + V(x) \geq \tilde{\ell}, \quad \text{for q.e. } x \in \Sigma,$$

then $\tilde{\mu} = \mu_V$ and $\tilde{\ell} = \ell$.

Exercise 1.6 (optional). The external field $V: \mathbb{R} \to \mathbb{R}$, $x \mapsto V(x) = \log(x^2 + 1)$ is only weakly admissible. Its equilibrium measure μ_V has unbounded support.

(a) Show that the equilibrium measure μ_V has the Cauchy density

$$\frac{d\mu_V(x)}{dx} = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}.$$

Hint: compute its Stieltjes transform $\int \frac{d\mu_V(x)}{z-x}$ for $z\in\mathbb{C}\setminus\mathbb{R}$, by means of contour integration, and then verify that $2U^{\mu_V}+V$ is constant on \mathbb{R} from the general properties

$$\frac{d}{dx}U^{\mu}(x) = -\int \frac{d\mu(s)}{x-s}$$

with f denoting the Cauchy principal value, and

$$\lim_{\varepsilon \to 0+} \int \frac{d\mu(s)}{x \pm i\varepsilon - s} = \int \frac{d\mu(s)}{x - s} \mp \pi i \frac{d\mu}{dx}, \qquad x \in \mathbb{R},$$

(b) Can you compute the equilibrium measure in external field V with constraint $d\sigma = adx$ where a>0 is a given positive number?