Высокотемпературные сверхпроводники (ВТСП)

- История открытия
- Особенности кристаллохимии
- Критические параметры ВТСП
- Методы получения объемных ВТСП
- Пути повышения критических характеристик
- Области применения ВТСП-материалов

Открытие ВТСП

Е.В.Антипов, С.Н.Путилин и др.: Нg-ВТСП

 $T_c \sim 4 + 130 \text{ K}$

"химическая"

J.G.Bednorz, K.A.Muller Nobel Prize 1987

ЭВОЛЮЦИЯ

 $T_c \sim 4 \text{ K}$

Жидкий Не, "плохой металл" Нд

Kamerling Onnes:

Лекция 12. ВТСП

Основные свойства

Эффект Джозефсона (туннелирование через диэлектрическую прослойку): сильная зависимость тока через джозефсоновский контакт от внешнего магнитного поля

Механизм сверхпроводимости

Концентрация носителей

Увеличение концентрации дырок - перенос заряда в СП плоскости — достижение оптимальной концентрации — максимальная $T_{\rm c}$

Смешанное состояние

Applied Magnetic Field

Поле (между первым и вторым критическим) частично проникает в образец в виде нитей Абрикосова. Центр вихря — нормальная фаза. При перемещении («плавлении») «вихревой решетки» возникает сопротивление (превышается значение критического тока).

Лекция 12. ВТСП

Несовершенства структуры (размер ~ длине когерентности 0.2 нм, Т, энергия пиннинга):

- -несверхпроводящие включения,
- -нанофлуктуации состава,
- -треки (нейтроны и пр.),
- -легирование Zn,
- -двойники, дислокации, микротрещины, малоугловые границы...

Лекция 12. ВТСП

Физическая фазовая диаграмма

Magnetization

$$M = \frac{\pi \int r^2 J(r) dr}{\pi R^2 d}$$

РЗЭ-бариевые купраты имеют высокие СП характеристики, обеспечивающие реальные перспективы их практического применения.

Determination of $J_c(B)$ from the loop width, $\Delta M(B_a)$

$$J_c = \frac{3d}{2R} \Delta M$$
(Bean model)

Conclusion: It works for $B_a \ge B_c$

Разориентация кристаллитов *даже* в плоскости СП плоскостей приводит к падению межкристаллитного тока на порядки величины.

Лекция 12. ВТСП

Типы границ

Модель	Описание	Преимущества и недостатки
Weak links (слабые связи)	Падение критического тока на границах разориентированных зерен керамики, или при наличии тонких диэлектрических прослоек, сквозь которые возможно «туннелирование» криттока	Описывается физической моделью «сверхпроводящего стекла», применима теория полевой зависимости падения криттока во внешнем магнитном поле для джосефсоновских контактов, хорошо применима для мелкокристаллических спеченных керамик
Tilt/twist boundary (поворотные и «перекрученные» границы)	Классификация высокоугловых границ на параллельные оси с (tilt boundary) и перпендикулярные оси с (twist boundary)	Основанна на значительной кристаллографической анизотропии 123 фазы и анизотропии ее физических свойств
"Brick-wall" (модель "кирпичной стены")	Для формирования высокого транспортного тока важное значение имеют поворотные границы, образующие максимальную поверхность контакта между кристаллитами	Структурный критерий - соразмерность длины когерентности с расстоянием между сверхпроводящими плоскостями, поэтому модель объясняет различия в значении криттоков для аксиальнотекстурированных ВТСП (особенно основе висмутовых материалов), однако не учитывает прохождение тока через высокоугловые границы вдоль плоскости аb
"Railway switch" (модель "железнодорожны х стрелок")	Протекание тока через межкристаллитные границы по плоскостям, вместе с током, проходящим через поворотные границы, связи формируют трехмерную сетку	Наиболее применима для висмут-содержащих сильнотекстурированных материалов
Модель площади "сильно связанных" участков, HABLE - high- angle-but-low- energy boundary	Величина криттока зависит от площади "сильно связанных" участков межкристаллитной границы, вероятность "сильной связи" между двумя взаимно ориентированными кристаллитами значительно выше, чем в случае их взаимной разориентации	Возможен рассчет суммарного протекающего криттока, основанный на учете вклада различных ансамблей кристаллитов с различной ориентацией зерен и энергии межкристаллитных границ, который коррелирует с экспериментальной визуализацией распределения криттока в различных ВТСП с помощью магнитооптических измерений

Материалы

Идеальная ВТСП-керамика: центры пиннинга в матрице + крупные зерна + чистые границы + взаимная ориентация зерен (двуосная)

Лекция 12. BTCÎI

Методы исследования

Многокомпонентность, многообразие фазовых превращений и пр. обуславливают необходимость использования комбинированных методов исследования структуры и свойств ВТСП.

Основные семейства ВТСП

Гомологи

-оптимальная концентрация заряда сверхпроводящих плоскостях, -оптимальное количество сверхпроводящих плоскостей.

Многие ВТСП фазы имеют гомологи («вставка» СП-плоскостей): -Y123, 247, 124,

-Bi2201, 2212, 2223,

-...

«123» (РЗЭ-бариевые купраты)

Кислород-дефицитная «трехблочная» структура перовскита

Фазовые диаграммы

Влияние рО₂ (У-Ва-Си-О)

Влияние РЗЭ (R-Ва-Си-О)

- -"Точечная фаза" R123 (R:Ba:Cu = 1:2:3, R = Y, Dy, Ho, Er, Yb, Lu)
- -Образование твердых растворов замещения $R_{1+x}Ba_{2-x}Cu_3O_z$ (R=La, (Pr), Nd, Sm, Eu, Gd),
- -Изменение типа фаз в трехфазных равновесиях (PrBaO₃ вместо Y₂BaCuO₅),
- -Отсутствие фазы R123 для R(IV) (Ce, ...)

Термическая стабильность

Стабилизация структуры: RO₈ (R=Nd, Sm, Eu, ...), BaO₁₀ Дестабилизация: YO₈

Надсолидусная область

- -сложность построения диаграмм
- -ошибки в определении поверхности ликвидуса
- -неравновесные состояния
- -... повышение эффективности разработки новых методов получения монокристаллов, толстых пленок и керамики

Образование твердого раствора

Контроль состава тв.фазы

Рост кристаллов

contamination-free crucible

C-L and L-P separated, C-P is absent solute transport and nucleation control

higher

211 phase

раствора в расплаве, зонная плавка

Крупные кристаллы Ta 2001 = IT 90 X=0 (air) X.Yao et al., Jpn.J.Appl.Phys., 36 (1997) L400 Temperature (K) X +1004.4°C Ba/Cu ratio 0.17-0.18 0.75 - 0.6in melt Nd, , Ba, Cu,O crystal "123" "336" "213" 350 kOhm*om Ohm*cm x=0.85 T; =1011.4°C Resistivity, x=0.43 x = 0.8 (air)Распределение температур 100 150 200 250 300 E.Goodilin et al., Physica C, 289 (1997) 37 Temperature, K и концентраций (рост по

Чохральскому) Лекция 12. ВТСП

Кислородная нестехиометрия (У123)

-определенная концентрация «дырок» (Cu(I)-Cu(II)/Cu(III)), проводимость + ВТСП -фазовый переход 2 рода (тетрагональная – ромбическая модификация), изменение теплоемкости, коэффициентов диффузии и пр.

Кислородная нестехиометрия

(твердый раствор)

Перитектический распад

HTSC =
$$S_1 + S_2 + L + O_2$$

 $C = K - \Phi + 2 - \alpha$

$$K = 4,..., \Phi = 4,..., pO_2 = const$$

Для определенного катионного состава (Y123

— точечная фаза, x=const для $Nd_{1+x}Ba_{2-x}Cu_3O_z$) температура перитектического распада будет постоянной (характеристической) величиной.

Твердофазный распад

Упорядоченная фаза – старение при пониженных температурах

Разупорядоченная фаза — упорядочение при повышенных температурах

Механизмы т/ф распада

Расплавные методы получения

 $\mathbf{BTC\Pi} = \mathbf{S} + \mathbf{L} + \mathbf{O_2} - \mathbf{Q}$: изменение T, pO_2 , состава L и дисперсности S Лекция 12. ВТСП

Эффекты «предыстории»

$$Y_2O_3+L_1=Y_2BaCuO_5+L_2=YBa_2Cu_3O_z$$

«Вспенивание» ВТСП при плавлении · $Cu(II)_{TB.\phi.} \to Cu(I)_{\kappa.\phi.}$

"Песвдомонокристаллы", 2°С/ч

Оптимальная микроструктура при оптимальных рО, и скорости охлаждения

Размеры частиц вторичных фаз –

важный фактор эволюции

«расплавных технологий»

получения ВТСП-материалов

Методы текстурирования

- -поля (концентрационные, температурные, магнитные)
- -затравки (одиночные или ориентированные)
- -эффекты подложки

Прогресс

Пленки R123

Керамик R123

Ленты Ві2223, R123/Ni

Контрольные вопросы (30 б.)

- 1. Какие СП фазы имеют критические температуры выше температур кипения (1) жидкого гелия, (2) жидкого водорода, (3) жидкого азота? Какой из хладогенов более дешев, безопасен и имеет более высокую теплоемкость?
- 2. Каковы основные признаки перехода в сверхпроводящее состояние?
- 3. Какие существуют «электронные» ВТСП? Почему носители заряда в сверхпроводящем состоянии не могут быть фермионами? Что является носителями заряда в $YBa_2Cu_3O_7$ выше и ниже критической температуры?
- 4. Способствует ли максимально возможное окисление фазы $YBa_2Cu_3O_{6.5}$ достижению максимальной температуры перехода в СП состояние и почему?
- 5. Что такое СП 1 и 2 рода? Нарисуйте схему строения вихря Абрикосова, обозначив (1) нормальную фазу, (2) лондоновскую глубину проникновения, (3) длину когерентности, (4) квант магнитного потока.
- 6. Как несверхпроводящие фазы с размером, значительно превышающим длину когерентности, могут способствовать пиннингу магнитного потока? Какие известны приемы увеличения внутризереннего критического тока (включая пиннинг)?
- 7. С чем связана анизотропия физических (сверхпроводящих) свойств ВТСП? Почему двуосное текстурирование улучшает критический ток и какие это должны быть оси (почему?)?
- 8. Объясните формулу (микроструктурные особенности) «идеальной ВТСП-керамики», связав это с фундаментальными свойствами ВТСП.
- 9. Какие общие структурные мотивы характерны для ВТСП фаз? Что такое структуры срастания и гомологи?
- 10. Почему твердые растворы $R_{1+x}Ba_{2-x}Cu_3O_z$ существуют только для РЗЭ подгруппы церия? Почему температуры плавления $RBa_2Cu_3O_z$ возрастают с ростом радиуса РЗЭ?

Контрольные вопросы (продолжение)

- 11. Рассмотрите системы/поля $YBa_2Cu_3O_z+O_2$, $YBa_2Cu_3O_z=Y_2BaCuO_5+L+O_2$, $R_{1+x}Ba_{2-x}Cu_3O_z+O_2$, $R_{1+x}Ba_{2-x}Cu_3O_z+L$, $R_{1+x}Ba_{2-x}Cu_3O_z+CuO=R_2CuO_4+L+O_2$. Каково число компонентов в этих системах (и какие они)? Сколькими степенями свободы обладают эти системы при pO_2 =const (и какие они)? Почему обычно считается, что температура перитектического распада «фиксирована» и ей отвечает на кривой ДТА резкий пик?
- 12. Опишите кратко основные методы получения монокристаллов, керамики и пленок ВТСП (не больше 1 стр.).
- 13. Почему при твердофазном распаде $NdBa_2Cu_3O_z$ образуется состояние с нанофлуктуациями состава, а не термодинамически равновесная смесь $Nd_{1.05}Ba_{1.95}Cu_3O_z$ и $BaCuO_2$?
- 14. Почему происходит увеличение пористости при плавлении ВТСП-материалов? Предложите способы, как можно избежать этого явления.
- 15. Какие существуют основные методы текстурирования ВТСП-материалов? Почему «затравки» обеспечивают образование монокристаллических областей вокруг себя? Почему градиент магнитного поля приводит к текстуре? Почему к направленному росту кристаллитов приводит градиент температуры?
- 16. Приведите примеры (возможного) практического использования ВТСП. Какое из ВТСП устройств в медицине использует эффект Джозефсона для измерения биополей? Какие материалы используются для создания силовых кабелей и постоянных магнитов?

Литература

- 1. *Ю.Д.Третьяков, Е.А.Гудилин.* Химические принципы получения металлоксидных сверхпроводников, Успехи Химии, 2000, т.69, н.1, с.3-40.
- 2. А.М.Абакумов, Е.В.Антипов, Л.М.Ковба, Е.М.Копнин, С.Н.Путилин, Р.В.Шпанченко. Успехи Химии, 64, 769 (1995)
- 3. *М.Г.Мнеян*, Сверхпроводники в современном мире, М.Просвещение, 1991, 69 с.
- 4. Высокотемпературные сверхпроводники. (Под ред. Д.Нелсона, М.Уиттинхема, Т.Джорджа), Мир, Москва, 1988
- 5. ЖВХО им.Д.И. Менделеева, 34, 436-536 (1989)
- 6. Физические свойства высокотемпературных сверхпроводников. (Под ред. Д.М.Гинзберга). Мир, Москва, 1990
- 7. Высокотемпературная сверхпроводимость. Фундаментальные и прикладные исследования. Вып. 1. (Под ред. А.А. Киселева), Машиностроение, Ленинград, 1990
- 8. Дж.Блейкмор. Физика твердого тела. Мир, Москва, 1988, С.325
- 9. И.Е.Аршакян, Н.Н.Олейников, Ю.Д.Третьяков. *Неорган. материалы.* 30, 824 (1994)