Automate

• Recapitulare, Exemple, Aplicatii

- Translatoare
- Masini Turing

Automat finit: model fizic

Automat finit: model matematic

• Un automat finit este un ansamblu

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q alfabetul starilor
- Σ alfabet de intrare

- $q_0 \in Q$ stare initialã
- F ⊆ Q multimea stãrilor finale

Automat push-down (APD)

Automat push-down (APD)

$$M = (Q, \Sigma, \Gamma, \delta, q_o, Z_o, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- Γ alfabetul memoriei stivă;
- $q_0 \in Q$ stare iniţială;
- $Z_0 \in \Gamma$ simbolul de start al memoriei stivă;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Qx(\Sigma \cup \{\epsilon\})x\Gamma \rightarrow \mathcal{P}_{\mathcal{O}}(Qx\Gamma^*)$ funcția de tranziție
 - are ca valori submulţimi finite din QxΓ* (posibil multimea vida)

Transformarea acceptarii dupa criteriul stivei vide in acceptare dupa criteriul starii finale

Fie: M – APD care accepta L dupa criteriul stivei vide Dorim sa construim M' care accepta L dupa criteriul starii finale

M' – contine tot ce contine M, dar mai adaugam:

- q_{nou} o noua stare initiala
- q_f o noua starea finala
- Z_{nou} noul simbol initial al stivei

Adaugam si tranzitiile corespunzatoare noilor stari, asa cum este schitat mai jos:

In mod analog se poate face transformarea acceptarii dupa criteriul starii finale in acceptare dupa criteriul stivei vide.

Translator finit

$$M = (Q, \Sigma, D, \delta, q_o, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- D alfabetul de iesire;
- $q_0 \in Q$ stare iniţială;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Qx(\Sigma \cup \{\epsilon\}) \rightarrow P_0(Q \times D^*)$ multimea partilor finite

banda de intrare a1 a2 a3 $\mathbf{a}_{\mathbf{n}}$ cap de directie de deplasare citire UC stari cap de scriere banda de iesire

Translator finit

Translator finit

Exemplu:

$$\begin{split} M &= (\ Q, \qquad \Sigma, \quad D, \quad \delta, \quad \ q_o, \quad F \) \\ M &= (\{q_0, q_1\}, \quad \{a\}, \{b\} \ , \quad \delta \ , \quad \ q_0 \ , \quad \{q_1\} \) \\ \delta(q_0, a) &= \{q_1, \{b\}\} \\ d(q_1, \epsilon) &= \{q_1, \{b\}\} \end{split}$$

Translatarea definita de M:

$$T(M) = \{(x,y) | x \in \Sigma^*, y \in D^*, (q_0,x,\varepsilon) | -* (q,\varepsilon,y), q \in F \}$$

Alte automate

In literatura mai gasim:

(intre multe alte tipuri)

 Automatele Mealy: la fiecare tranzitie se produce un simbol de ieşire.

 Automatele Moore: fiecarei stari (intrare intr-o stare) i se asociaza un simbol de ieşire.

1/9/2024

Translator push-down

$$M = (Q, \Sigma, \Gamma, D, \delta, q_0, Z_0, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- Γ alfabetul memoriei stivă;
- D alfabetul de iesire;
- q₀∈Q stare iniţială;
- $Z_0 \in \Gamma$ simbolul de start al memoriei stivă;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_0(Q \times \Gamma^* \times D^*)$

multimea partilor finite

banda de intrare $\mathbf{a}_{\mathbf{n}}$ cap de directie de deplasare citire varful stivei **Translator** UC push-down stari **Z0** cap de stiva scriere

banda de iesire

Translator push-down

$$M = (Q, \Sigma, \Gamma, D, \delta, q_0, Z_0, F)$$

$$Q = \{q\} \qquad \qquad \delta \ (q, a, E) = \{(q, \epsilon, a)\} \\ \Sigma = \{a, +, *\} \qquad \qquad \delta \ (q, +, E) = \{(q, EE +, \epsilon)\} \\ \Gamma = \{E, +, *\} \qquad \qquad \delta \ (q, *, E) = \{(q, EE +, \epsilon)\} \\ D = \{a, +, *\} \qquad \qquad \delta \ (q, \epsilon, +) = \{(q, EE +, \epsilon)\} \\ Q = q \qquad \qquad \delta \ (q, \epsilon, +) = \{(q, \epsilon, +)\} \\ Z_0 = E \qquad \qquad \delta \ (q, \epsilon, *) = \{(q, \epsilon, *)\}$$

Considerand criteriul stivei vide, descrieti translatarea pe care acesta o defineste.

... am lucrat si cu alte translatoare

Vezi: LL(1) LR(*)

Ne reamintim: Analizorul LL(1)

- Automat: (α, β, Π)
 - banda de intrare: α
 - stiva β (stiva de lucru)
 - banda de iesire $\Pi =>$ sirul regulilor de productie
- config. initiala: $(w\$, S\$, \epsilon)$
- config. finala: $(\$, \$, \Pi)$
- tranzitii
 - push $(\mathbf{a}\mathbf{x}\$, \mathbf{A}\boldsymbol{\beta}, \boldsymbol{\Pi})$ $(\mathbf{a}\mathbf{x}\$, \alpha\boldsymbol{\beta}, \boldsymbol{\Pi}\mathbf{i})$ dc.: $\mathbf{M}(\mathbf{A}, \mathbf{a}) = (\alpha, \mathbf{i})$
 - pop $(\mathbf{a}\mathbf{x}\$, \mathbf{a}\beta, \Pi)$ $-(\mathbf{x}\$, \beta, \Pi)$
 - acc $(\$,\$,\Pi)$ \longrightarrow acc
 - err in celelalte cazuri

Automatul LL(1) ca translator push-down (modificat)

Translatorul push-down modificat este:

[Moldovan]

```
M = (\{q\}, \Sigma, \Gamma, D, \delta, q, S, \emptyset)
```

 Σ - alfabet de intrare și este același cu alfabetul Σ din G;

D – alfabet de ieşire, $D = \{1, 2, ..., m\}$

 $i \in D$ reprezintă nr. de ordine al producțiilor din P, $i: A \rightarrow \alpha$, i=1,m

 Γ - alfabetul memoriei push-down $\Gamma = N \cup \Sigma$

q - starea internă (stare inițială)

S-simbolul de start în memoria push-down, $S \in \Gamma$

 δ – funcția de tranziție modificată

$$\delta: \Sigma \times \Gamma \to P(\Gamma^* \times (D \cup \{\varepsilon\}) \times \{0,1\})$$
$$\delta(a,a) = \{(\varepsilon,\varepsilon,1)\} \quad \forall a \in \Sigma$$
$$\delta(a,a) = \{(x,i,0)\}, a \in \Sigma \quad A$$

 $\delta(a,A) = \{(x,i,0)\}, a \in \Sigma, A \in N$

 $dacă (\exists)i: A \rightarrow x \ si \ dacă \ a \in \varphi(x), sau$

 $dac\check{a} \ \varepsilon \in \varphi(x) \Longrightarrow a \in \varphi(A)$

În celelalte cazuri $\delta(.,.) = \emptyset$

1 : semnifică înaintarea benzii cu o poziție;

0 : semnifică staționarea benzii.

Limbajul acceptat se defineste dupa criteriul stivei vide.

Masini Turing

- infinita
- finita la stanga
- ...

Masini Turing

O miscare a masinii Turing consta din:

- se schimba starea
- se inlocuieste simbolul curent de pe banda de intrare
- capul citire/scriere se muta cu o pozitie la stanga sau la dreapta

Masina Turing cu banda infinita

O masina Turing este: $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$

- Q multime finita de stari
- Γ multimea simbolurilor benzii
- # un simbol din Γ , numit simbolul blanc
- Σ o submultime a lui Γ -{#}
- δ este functia de tranzitie

δ:
$$Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$$

- q₀ starea initiala
- $F \subset Q$ multimea starilor finale

Masina Turing cu banda infinita

• configuratie $\alpha_1 \neq \alpha_2 \qquad \alpha_1 \alpha_2 \in \Gamma^*, \text{ separate de capul de citire}$ pana la cel mai din stanga/dreapta simbol ne-blank

tranzitie

$$\begin{aligned} &(p,Y,L) \in \delta(q,X_i) \\ & X_1 X_2 ... X_{i-1} q X_i X_{i+1} ... X_n \mid -X_1 X_2 ... X_{i-2} p X_{i-1} Y X_{i+1} ... X_n \\ &(p,Y,R) \in \delta(q,X_i) \\ & X_1 X_2 ... X_{i-1} q X_i X_{i+1} ... X_n \mid -X_1 X_2 ... X_{i-1} Y p X_{i+1} ... X_n \end{aligned}$$

• limbaj acceptat $\{ \mathbf{w} \in \Sigma^* \mid \mathbf{q}_0 \mathbf{w} \mid \mathbf{\alpha}_1 \mathbf{q} \alpha_2 , \mathbf{q} \in \mathbf{F}, \alpha_1 \alpha_2 \in \Gamma^* \}$

Exemplu: masina Turing

Functia de tranzitie

0011?

	Σ		$\Gamma - \Sigma$			
	0	1	X	Y	#	
q_0	(q_1,X,R)			(q ₃ ,Y,R)		0
q_1	$(q_1,0,R)$	(q ₂ ,Y,L)		(q_1,Y,R)		0
q_2	(q ₂ ,0,L)		(q_0,X,R)	(q ₂ ,Y,L)		0
q_3				(q ₃ ,Y,R)	(q ₄ ,# ,R)	0
q_4						1

Masini Turing

• Masina Turing cu o singura banda

versus Masina Turing cu mai multe benzi
O mașină Turing cu k benzi
nu este mai puternică decât o mașină Turing standard

Maşină Turing deterministă (MTD)

versus maşină Turing nedeterministă (MTND)
Cele două sunt computațional echivalente,
adică orice MTND se poate transforma într-o MTD
(și invers).

Masini Turing

Teza lui Church

- Logicianul Alonzo Church a emis ipoteza că maşina Turing este modelul cel mai general de calcul care poate fi propus.
 - maşina Turing este la fel de puternică ca orice alt model de calcul
 - nu înseamnă că poate calcula la fel de repede ca orice alt model de calcul, ci că poate calcula aceleași lucruri
- Acest enunţ nu este demonstrabil în sens matematic.

Dacă avem un model de calcul, putem defini precis ce înțelegem prin complexitate:

- **Timpul** de calcul pentru un şir dat la intrare: este numărul de mutări făcut de maşina Turing înainte de a intra în starea ``terminat";
- **Spațiul** consumat pentru un șir de intrare: este numărul de căsuțe de pe bandă pe care algoritmul le folosește în timpul execuției sale.

Potrivirea sirurilor de caractere (pattern matching) folosind AF

Exercitiu:

Gasiti subsecventa:

ACACAGA

in textul:

ACACACAGA

