Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерного проектирования Кафедра инженерной психологии и эргономики Учебная дисциплина «Управление информационными проектами»

Лабораторная работа №2 «Документирование требований»

Выполнил: Курбатский В. С.

гр. 210901

Проверила: Борисик М. М.

процесса приготовления пищи»

Проектная документация

Планирование разработки

Команда разработчиков

Первый вариант требований к разрабатываемому продукту

Предпосылки

Аудитория

Цель

Содержание

1	Общее положение	5	5
	1.1 Назначение	5	5
	1.2 Границы проекта	5	5
2	Общее описание	- ، ، ،	7
	2.1 Общий взгляд на продукт		7
	2.2 Классы и характеристики пользователей		7
	2.3 Операционная среда (языковая среда продукта, требования к ПО)	8	3
3	Функции системы	10)
	3.1 Сканирование кухни и последующий анализ	1()
	3.1.1 Описание	1()
	3.1.2 Функциональные требования	1()
	3.2 Интерактивные AR-инструкции	11	1
	3.2.1 Описание	11	1
	3.2.2 Функциональные требования		
	3.3 Подбор рецептов	11	1
	3.3.1 Описание	11	1
	3.3.2 Функциональные требования	12	2
	3.4 Управление прогрессом	12	2
	3.4.1 Описание	12	2
	3.4.2 Функциональные требования	12	2
	3.5 Безопасность кухни (обработка исключительных ситуаций)	13	3
	3.5.1 Описание		
	3.5.2 Функциональные требования	13	3
	3.6 Анализ питательной ценности		
	3.6.1 Описание		
	3.6.2 Функциональные требования	15	5
	3.7 Интеграция с кулинарными ресурсами	16	5
	3.7.1 Описание		
	3.7.2 Функциональные требования		
	3.8 Персонализация интерфейса		
	3.8.1 Описание	16	5
	3.8.2 Функциональные требования	16	5
	3.9 Кулинарные советы и рекомендации		
	3.9.1 Описание		
	3.9.2 Функциональные требования	17	7
	3.10 Социальное взаимодействие	17	7
	3.10.1 Описание		
	3.10.2 Функциональные требования	18	3
	3.11 Обратная связь и оценка		
	3.11.1 Описание	18	3

3.11.2 Функциональные требования	18
4 Требования к данным	19
4.1 Порядок оформления и предъявления заказчику результатов работы	19
4.2 Порядок внесения изменений в спецификацию	19
4.3 Отчеты	20
4.4 Получение, ценность, хранение и утилизация данных	21
5 Требования к внешним интерфейсам	22
5.1 Пользовательские интерфейсы	22
5.2 Дизайн	
6 Требования по интернационализации и локализации	24
Приложение А. Словарь терминов	25
• •	

1 Общее положение

1.1 Назначение

Настоящий документ является Спецификацией требований к программному обеспечению (СТПО) для продукта «CookAR: Система дополненной реальности для автоматизации процесса приготовления пищи».

Версия: 1.0 (Первая редакция).

Идентификация продукта:

- 1 Тип продукта мобильное приложение с поддержкой дополненной реальности (AR).
 - 2 Целевая платформа iOS (версия 14 и выше), Android (версия 10 и выше).
 - 3 Редакция: требования относятся к полной версии продукта 1.0.

Цели документа:

- определить функциональные и нефункциональные требования к системе;
- установить базовые принципы взаимодействия пользователя опродуктом;
- служить основой для разработки, тестирования и принятия решений о релизе.

Ключевое назначение продукта.

CookAR разработан для:

- автоматизации процесса готовки через интерактивные AR-инструкции;
- снижения кулинарных ошибок за счет контроля безопасности и анализа действий пользователя.

1.2 Границы проекта

Программное обеспечение.

CookAR — мобильное приложение, использующее технологии дополненной реальности (AR) для автоматизации и оптимизации процесса приготовления пищи. Его основное назначение — предоставление пользователям интерактивных инструкций, рекомендаций рецептов и контроля безопасности на кухне.

Связь с пользователями и корпоративными целями.

Для пользователей: продукт решает проблемы сложности поиска рецептов, нехватки кулинарного опыта и рисков, связанных с неправильным использованием оборудования и ингредиентов.

Для бизнеса:

- 1 Рыночная стратегия выход на рынок кулинарных приложений с уникальным AR-функционалом.
- 2 Монетизация планируется через премиум-подписку (расширенные рецепты, функционал).
- 3 Цель увеличение вовлеченности пользователей за счет интерактивности и снижения барьеров для начинающих поваров.

Границы продукта.

Включено в текущую версию (1.0):

- сканирование кухни и распознавание оборудования, ингредиентов;
- AR-инструкции с визуальными маркерами;
- базовая интеграция с внешними рецепт-платформами.

Исключено:

- управление умной кухонной техникой (IoT);
- офлайн-режим (требуется интернет для доступа к базам данных).

Стратегический образ продукта.

Данная спецификация требований является частью долгосрочной стратегии развития CookAR. Последующие версии (2.0+) будут включать:

- расширенную интеграцию с ІоТ-устройствами;
- искусственный интеллект для генерации уникальных рецептов;
- реализацию всех описанных в разделе 3 функций;
- локализацию для новых регионов.

2 Общее описание

2.1 Общий взгляд на продукт

CookAR – новый продукт, разрабатываемый с нуля для рынка кулинарных приложений. Он не является частью существующего семейства продуктов, а представляет собой самостоятельное решение, ориентированное на начинающих и опытных пользователей, стремящихся оптимизировать свою кулинарную практику.

Ключевые особенности:

- 1 Интерактивные AR-инструкции. Пошаговые подсказки, визуально интегрированные в кухонное пространство, помогают пользователям ориентироваться в рецептах без отрыва от процесса готовки.
- 2 Персонализация. Система анализирует доступные ингредиенты и диетические предпочтения, предлагая рецепты, адаптированные под конкретные условия.
- 3 Безопасность. Режим контроля за потенциальными рисками (перегрев плиты, просроченные продукты) минимизирует опасные ситуации.

Позиционирование на рынке.

CookAR заполняет нишу между традиционными рецепт-приложениями и сложными кулинарными платформами. Его уникальность — в сочетании AR-технологий с практической пользой для повседневной готовки. Приложение может работать автономно, но поддерживает базовую интеграцию с популярными кулинарными ресурсами (например, импорт рецептов через API).

Ограничения:

- эффективность работы зависит от качества камеры устройства и освещения;
- для доступа к онлайн-базам рецептов требуется стабильное интернетсоединение.

2.2 Классы и характеристики пользователей

CookAR ориентирован на широкий круг пользователей, чьи потребности и навыки варьируются в зависимости от кулинарного опыта, целей и образа жизни.

Новички в готовке.

Пользователи с минимальным опытом приготовления пищи. Они нуждаются в постоянном руководстве, чтобы избежать ошибок. Их основные

потребности включают четкие пошаговые инструкции, визуальные подсказки для навигации по кухне и автоматический контроль за потенциальными рисками (например, перегревом или неправильными пропорциями). Приоритетом для них является простота интерфейса и минимизация сложных действий.

Опытные повара.

Профессионалы или кулинарные энтузиасты, ищущие новые идеи и сложные рецепты. Их ключевые потребности – доступ к уникальным блюдам, возможность кастомизации этапов готовки и расширенный анализ питательной Для гибкость интерфейса, ценности. них важна интеграция профессиональными (например, кухонными инструментами весами) И поддержка нестандартных ингредиентов.

Пользователи с диетическими ограничениями.

Люди с аллергиями, пищевыми непереносимостями или специфическими диетами (веганство, безглютеновое питание). Их основная потребность — фильтрация рецептов по аллергенам и автоматические предупреждения о несовместимых продуктах. Критически важны точность распознавания ингредиентов и актуальность данных о составе блюд.

Родители и занятые люди.

Пользователи, которые ценят время и безопасность. Они нуждаются в быстрых рецептах с минимальным количеством шагов, а также в контроле за опасными действиями (например, использованием острых предметов). Приоритетами для них являются удобные таймеры, режим «родительского контроля» и возможность сохранения избранных рецептов.

Привилегированные класс:

Операторы техподдержки. Отвечают за устранение технических сбоев и анализ пользовательской обратной связи. Имеют доступ к журналам ошибок и статистике использования.

2.3 Операционная среда (языковая среда продукта, требования к ПО)

CookAR поддерживает работу на мобильных устройствах и AR-очках, обеспечивая гибкий выбор для пользователей.

Аппаратные требования.

Для мобильных устройств минимальные требования включают iPhone 8 и новее (iOS) или Android-устройства с поддержкой ARCore (Samsung Galaxy S9+, Google Pixel 3+). Для улучшенного AR-опыта рекомендуются устройства с датчиками LiDAR или ToF (например, iPad Pro 2020+). AR-очки, совместимые с

системой, — это Apple Vision Pro (visionOS), Microsoft HoloLens 2 (Windows Mixed Reality) и Meta Quest Pro (Android-режим). Все устройства должны иметь камеру не менее 12 Мп, акселерометр, гироскоп и 3 ГБ ОЗУ.

Программное обеспечение.

На мобильных устройствах приложение работает под iOS 14+ с ARKit 4.0+ или Android 10+ с ARCore 1.25+. Для AR-очков требуются: visionOS 1.0+ (Apple Vision Pro), Windows 10/11 с Mixed Reality (HoloLens 2) или Android-совместимый режим (Meta Quest Pro). Дополнительные компоненты включают TensorFlow Lite для распознавания ингредиентов, Firebase для синхронизации данных и Unity Engine для рендеринга AR-элементов.

Языковая среда.

Интерфейс и голосовые подсказки поддерживают русский и английский языки. Для AR-очков текст и визуальные элементы адаптированы под поле зрения пользователя.

Географическое расположение.

Серверы размещены в AWS (Европа и Северная Америка) для минимизации задержек. Основные целевые регионы — США, ЕС, Беларусь и Россия, но приложение доступно глобально.

Совместимость.

Система интегрируется с кулинарными платформами (AllRecipes, Tasty) через REST API, позволяет публиковать AR-контент в Instagram и TikTok, а также синхронизируется с облачными сервисами (Firebase, Google Drive). Для AR-очков используются SDK: Apple Vision Pro, Microsoft Mixed Reality Toolkit.

Сетевые требования.

Базовый функционал (локальные рецепты) доступен офлайн. Для онлайнрежима (рендеринг AR в очках, доступ к базам) требуется скорость интернета от 10 Мбит/с и стабильное соединение.

3 Функции системы

3.1 Сканирование кухни и последующий анализ

3.1.1 Описание

Функция обеспечивает сканирование и распознавание кухонного пространства, техники и ингредиентов для формирования цифровой модели, которая используется другими модулями системы. Данная функция имеет высокий приоритет.

3.1.2 Функциональные требования

Система сканирует помещение.

Ожидаемые ошибки.

Ошибка: «Недостаточное освещение для сканирования».

Реакция:

- вывод уведомления: «Улучшите освещение для точного сканирования»;
- приостановка процесса до изменения условий.

Ошибка: «Невозможность идентифицировать ключевые зоны (плита, раковина)».

Реакция:

- предложение вручную отметить объекты на экране;
- использование шаблонов (например, «Наведите камеру на плиту»).

Система распознает рабочие зоны, утварь.

Ожидаемые ошибки.

Ошибка: «Не распознана рабочая поверхность».

Реакция:

- автоматическое выделение ближайшей плоской области как временной зоны;
 - запрос подтверждения: «Это ваша рабочая зона?».

Ошибка: «Не идентифицированы инструменты (нож, кастрюля)».

Реакция:

- рекомендация разместить объекты в поле зрения камеры;
- возможность добавить утварь вручную через интерфейс.

Система распознает ингредиенты.

Ожидаемые ошибки.

Ошибка: «Ингредиент не распознан» (например, из-за непрозрачной упаковки).

Реакция:

- запрос ввести название вручную или выбрать из списка;
- подсказка: «Уберите упаковку для сканирования».

Ошибка: Неверно определено количество продукта.

Реакция:

– визуальная шкала для ручной настройки объема.

3.2 Интерактивные AR-инструкции

3.2.1 Описание

Система проецирует визуальные подсказки (стрелки, подсветку) по ходу выполнения рецепта в реальном времени: AR-очки выводят информацию прямо в поле зрения. Рендеринг выполняется через Unity MARS, а трекинг рук – с помощью Google MediaPipe. Данная функция имеет высокий приоритет.

3.2.2 Функциональные требования

Система отображает пошаговые инструкции.

Ожидаемые ошибки.

Ошибка: «Перекрытие AR-элементов реальными объектами».

Реакция:

- динамическое изменение позиции подсказок;
- подсказка: «Освободите область перед камерой».

Система указывает необходимые ингредиенты и утварь.

Ожидаемые ошибки.

Ошибка: «Ингредиент не найден в зоне видимости».

Реакция:

- подсказка: «Проверьте холодильник или зону хранения»;
- альтернатива: предложение заменить ингредиент (если включена опция).

3.3 Подбор рецептов

3.3.1 Описание

Алгоритм рекомендует блюда на основе отсканированных ингредиентов и оборудования, учитывая время готовки, диетические ограничения и сложность. Интеграция с внешними базами (AllRecipes) через REST API и GraphQL позволяет расширять библиотеку. Данная функция имеет средний приоритет.

3.3.2 Функциональные требования

Система предлагает рецепты в зависимости от наличия ингредиентов, оборудования.

Ожидаемые ошибки.

Ошибка: «Недостаточно ингредиентов для любого рецепта».

Реакция:

- предложение: «Добавьте [продукт] для расширения вариантов»;
- отображение рецептов с частичным совпадением.

Система позволяет фильтровать рецепты по диетическим ограничениям, времени и сложности приготовления.

Ожидаемые ошибки.

Ошибка: «Нет рецептов, соответствующих фильтрам».

Реакция:

- расширение диапазона (например, «Показать рецепты до 45 минут»);
- сброс некритичных фильтров с согласия пользователя.

3.4 Управление прогрессом

3.4.1 Описание

Прогресс-бары и таймеры синхронизируются с AR-интерфейсом, отображая завершенные этапы. При пропуске шага система предлагает вернуться или скорректировать рецепт. WebSockets синхронизируют данные между устройствами, но многопользовательский режим (совместная готовка) не поддерживается. Данная функция имеет средний приоритет.

3.4.2 Функциональные требования

Система визуализирует прогресс выполнения рецепта с помощью шкал, таймеров.

Ожидаемые ошибки.

Ошибка: «Таймер не запущен (пользователь забыл активировать)».

Реакция:

- автозапуск при переходе к шагу, требующему времени;
- уведомление: «Таймер для запекания активирован автоматически».

3.5 Безопасность кухни (обработка исключительных ситуаций)

3.5.1 Описание

Мониторинг температуры плиты через ИК-анализ и проверка сроков годности продуктов (сканирование QR-кодов) минимизируют риски. Алгоритмы OpenCV обнаруживают опасные действия (нож на краю стола), а база USDA предоставляет данные о составе. Продукты без маркировки (например, домашние консервы) не распознаются автоматически и требуют ручного распознавания. Данная функция имеет высокий приоритет.

3.5.2 Функциональные требования

Система предупреждает об исключительной ситуации, связанной с оборудованием (перегрев плиты и т.д.).

Ожидаемые ошибки.

Ошибка: «Ложное срабатывание» (например, пар от кастрюли).

Реакция:

– уточнение: «Это пар или дым? Отмените предупреждение, если всё в порядке».

Ошибка: «Высокая температура плиты без активности (риск возгорания)». Реакция:

- уведомление: «Плита перегрета. Уменьшите нагрев или выключите»;
- автоматическая активация звукового сигнала.

Система предупреждает об исключительной ситуации, связанной с ингредиентами (слишком большой объем добавленного ингредиента, потенциальный аллерген).

Ожидаемые ошибки.

Ошибка: «Превышен рекомендуемый объем ингредиента (например, 500 г соли вместо 50 г)».

Реакция:

- блокировка следующего шага до подтверждения: «Вы уверены в таком количестве? Это может испортить блюдо»;
 - расчет оптимальной дозы на основе рецепта.

Ошибка: «Обнаружен аллерген (например, арахис в блюде для пользователя с аллергией)».

Реакция:

- экстренное уведомление: «В рецепте содержится арахис! Замените его на [альтернатива]»;
 - подсветка опасного ингредиента в AR-интерфейсе.

Ошибка: «Несовместимые ингредиенты (например, молоко и морепродукты)».

Реакция:

– рекомендация: «Это сочетание может вызвать расстройство. Исключите [ингредиент]».

Система просит проверить сроки годности у продуктов, которые были распознаны как «потенциально подлежат списанию».

Ожидаемые ошибки.

Ошибка: «Продукт просрочен».

Реакция:

- предупреждение: «[Продукт] испорчен! Утилизируйте его и выберите замену»;
 - автоматическая подборка альтернатив из доступных ингредиентов.

Ошибка: «Не удалось распознать срок годности (например, повреждена этикетка)».

Реакция:

- запрос: «Введите срок годности [продукта] вручную»;
- подсказка: «Проверьте дату на упаковке или запах продукта».

Система сообщает о пропущенном шаге или ошибке в приготовлении.

Ожидаемые ошибки.

Ошибка: «Пропущен шаг (например, не добавлен основной ингредиент)». Реакция:

- блокировка перехода к следующему этапу: «Сначала выполните шаг 3: добавьте муку»;
 - AR-подсветка пропущенного объекта.

Ошибка: «Нарушена последовательность» (например, включение плиты до подготовки ингредиентов).

Реакция:

- предупреждение: «Сначала нарежьте овощи, затем включите плиту»;
- автоматическая пауза таймера до готовности ингредиентов.

3.6 Анализ питательной ценности

3.6.1 Описание

Динамический расчет БЖУ и других показателей учитывает замену ингредиентов (растительное масло \rightarrow оливковое) и корректирует данные при изменении порций. AR-диаграммы (D3.js) накладываются на тарелку, а

Nutritionix API обеспечивает точность. Экзотические продукты могут вызвать неточности. Данная функция имеет средний приоритет.

3.6.2 Функциональные требования

Система автоматически рассчитывает показатели из отсканированной информации.

Ожидаемые ошибки.

Ошибка: «Потеря данных об отсканированных ингредиентах».

Реакция:

- восстановление из резервной копии;
- запрос на повторное сканирование при необходимости.

Ошибка: «Некорректная работа алгоритма расчета».

Реакция:

– уведомление: «Расчеты временно недоступны. Используйте ручной ввод».

Система предлагает варианты снижения калорийности.

Ожидаемые ошибки.

Ошибка: «Нет подходящих низкокалорийных альтернатив в базе данных».

Реакция:

– рекомендация уменьшить порцию: «Сократите количество [ингредиент] на 30%».

Ошибка: «Альтернатива несовместима с диетой пользователя» (например, замена на орехи при аллергии).

Реакция:

- фильтрация предложений по профилю пользователя;
- уведомление: «Уточните диетические ограничения в настройках».

Система отображает результаты в AR-интерфейсе.

Ожидаемые ошибки.

Ошибка: «Наложение AR-элементов на критически важные зоны» (например, плиту).

Реакция:

- автоматическое смещение меток в безопасную область экрана;
- голосовая подсказка: «Данные перенесены в правый угол».

Система автоматически рассчитывает показатели выбранного рецепта.

Ожидаемые ошибки.

Ошибка: «Рецепт требует ингредиентов, не найденных при сканировании».

Реакция:

- уведомление: «Для точного расчета добавьте [ингредиент] или выберите замену»;
 - автоматическая подмена на аналоги из списка распознанных продуктов.

3.7 Интеграция с кулинарными ресурсами

3.7.1 Описание

Парсинг текстовых рецептов в JSON-формат и нормализация единиц измерения (чашки → граммы) расширяют базу. Scrapy обрабатывает веб-данные, а PostgreSQL хранит структурированную информацию. Видео-рецепты не поддерживаются. Данная функция имеет средний приоритет.

3.7.2 Функциональные требования

Система интегрируется с онлайн-ресурсами.

Ожидаемые ошибки.

Ошибка: «Нет подключения к интернету».

Реакция:

- подсказка «Проверьте соединение».

Система обновляет базу рецептов.

Ожидаемые ошибки.

Ошибка: «Нет подключения к интернету».

Реакция:

- кэширование последних доступных данных.

3.8 Персонализация интерфейса

3.8.1 Описание

Пользователи настраивают цветовую схему, форму, размер AR-маркеров и перемещают элементы интерфейса жестами. Данная функция имеет средний приоритет.

3.8.2 Функциональные требования

Система позволяет редактировать интерфейс.

Ожидаемые ошибки.

Ошибка: «Попытка пользователя взаимодействовать с элементом интерфейса не из режима редактирования».

Реакция:

– подсказка «Пока вы в режиме редактирования, эта функция недоступна».

Система сохраняет и применяет параметры.

Ожидаемые ошибки.

Ошибка: «Настройки не применяются из-за конфликта».

Реакция:

– сброс к стандартным параметрам с сохранением пользовательского выбора в черновик.

3.9 Кулинарные советы и рекомендации

3.9.1 Описание

Советы от ИИ в реальном времени корректируют технику нарезки через трекинг рук (MediaPipe) и предлагают замену ингредиентов. Интеграция с YouTube добавляет видео-уроки, но не заменяет профессиональное обучение. Данная функция имеет низкий приоритет.

3.9.2 Функциональные требования

Система предоставляет советы по приготовлению.

Ожидаемые ошибки.

Ошибка: «Совет нерелевантен» (например, предложение взбить яйца для супа).

Реакция:

– адаптация алгоритма на основе обратной связи (F11).

Система предлагает альтернативные ингредиенты.

Ожидаемые ошибки.

Ошибка: «Система предлагает ингредиент, отсутствующий на кухне».

Реакция:

- уведомление: «Выберите замену».

3.10 Социальное взаимодействие

3.10.1 Описание

Интеграция с соцсетями, последующая публикация AR-видео с анимированными эффектами и участие в челленджах (#CookARChallenge)

развивают сообщество. AWS Elemental обрабатывает контент, а WebRTC поддерживает виртуальные комнаты. Данная функция имеет низкий приоритет.

3.10.2 Функциональные требования

Система интегрируется с соцсетями.

Ожидаемые ошибки.

Ошибка: «Нет подключения к интернету».

Реакция:

- подсказка «Проверьте соединение».

Система создает визуальные истории с AR-эффектами.

Ожидаемые ошибки.

Ошибка: «Невозможно обработать AR-данные для экспорта».

Реакция:

- конвертация в упрощенный формат (GIF или изображение).

3.11 Обратная связь и оценка

3.11.1 Описание

Рейтинги рецептов (1-5 звезд) и анализ популярности по регионам улучшают систему. Пользователи отправляют скриншоты ошибок, а Jira Service Desk управляет отчетами. Исправления возможны только через обновления. Данная функция имеет низкий приоритет.

3.11.2 Функциональные требования

Система позволяет пользователям оценивать рецепты.

Ожидаемые ошибки.

Ошибка: «Не отправляется отзыв из-за сетевых проблем».

Реакция:

- автосохранение черновика и отправка при восстановлении связи.

Система собирает обратную связь для улучшения.

Ожидаемые ошибки.

Ошибка: «Нет подключения к интернету».

Реакция:

- подсказка «Проверьте соединение».

4 Требования к данным

4.1 Порядок оформления и предъявления заказчику результатов работы

Результаты работы по проекту CookAR предоставляются заказчику в соответствии с согласованным графиком и этапами разработки. Технические отчеты, включая спецификации и прототипы, оформляются в формате PDF с электронной подписью ответственного лица. Интерактивные AR-демо и макеты передаются через облачные платформы, такие как Google Drive или Figma, а исходный код и API-документация размещаются в защищенных репозиториях (GitHub, GitLab) с ограниченным доступом для заказчика (права на чтение).

Промежуточные результаты, включая отчеты о выполненной работе, актуальные версии прототипов и видеозаписи тестовых сценариев, предоставляются каждые две недели по завершении спринта. Финальная версия продукта сопровождается полным пакетом документации (СТПО, руководство пользователя, АРІ-спецификации), готовыми билдами для iOS, Android и ARочков, а также отчетами о тестировании (юнит-тесты, нагрузочные тесты, UX-анализ).

Критериями приемки являются соответствие функционала требованиям настоящей спецификации, отсутствие критических багов (уровень Severity 1-2 в системе JIRA) и подтверждение заказчиком в течение пяти рабочих дней после получения материалов. Запросы на изменения оформляются через систему JIRA с тегом [Change Request], анализируются исполнителем в течение трех рабочих дней, после чего согласованные правки включаются в следующий спринт.

Для обеспечения конфиденциальности все материалы передаются через зашифрованные каналы связи (SSL, VPN), доступ К репозиториям ограничивается ІР-адресами заказчика, пользовательские a данные, используемые в тестах, предварительно анонимизируются. В случае задержки подтверждения результатов заказчиком свыше десяти рабочих дней без обоснования, материалы считаются принятыми автоматически.

4.2 Порядок внесения изменений в спецификацию

Изменения в спецификацию требований к ПО CookAR вносятся по инициативе заказчика, исполнителя или сторонних участников проекта после формального согласования. Для начала процесса инициатор направляет запрос через систему управления задачами (JIRA) с обязательным указанием причины изменения, ожидаемого эффекта и оценки влияния на текущие этапы разработки. Запрос рассматривается техническим комитетом, включающим представителей заказчика, разработчиков и тестировщиков, в течение 5 рабочих дней.

В случае одобрения изменения вносятся в документ с указанием версии, даты правки и авторства. Обновленная спецификация публикуется в корпоративном хранилище (Confluence), а все заинтересованные стороны уведомляются по электронной почте. Архив предыдущих версий сохраняется для аудита и отслеживания истории изменений. Если правка затрагивает утвержденные ранее функциональные требования, проводится повторное тестирование затронутых модулей, а результаты включаются в отчет для заказчика.

Критичные изменения, влияющие на сроки или бюджет, требуют подписания дополнительного соглашения к договору. Незначительные правки (исправление опечаток, уточнение формулировок) могут быть внесены исполнителем без согласования, но с обязательным уведомлением заказчика в течение трех рабочих дней. Все изменения регистрируются в журнале версий, доступном для просмотра всеми участниками проекта.

В спорных ситуациях приоритет имеют требования, зафиксированные в последней утвержденной версии спецификации. Изменения, нарушающие базовые цели проекта, отклоняются без рассмотрения.

4.3 Отчеты

Отчетность в рамках проекта CookAR формируется для обеспечения прозрачности процесса разработки и оперативного контроля со стороны заказчика. Основными типами отчетов являются еженедельные статусобновления, спринтовые обзоры и финальный отчет по завершении этапа. Еженедельные отчеты включают текущий прогресс по задачам, выявленные риски, метрики производительности системы и планируемые работы на следующую неделю. Данные автоматически собираются из JIRA и GitLab, дополняются комментариями команды и публикуются в Confluence каждую пятницу к 17:00 по московскому времени.

Спринтовые обзоры предоставляются по итогам двухнедельного цикла разработки и содержат детальный анализ выполненного функционала, результаты тестирования, обратную связь от пользователей (если проводились бета-тесты) и корректировки бэклога. Документ сопровождается демонстрацией рабочих прототипов в Unity Play или записями сессий AR-интерфейса. Финальный отчет, формируемый по завершении этапа (например, MVP или релиза), включает полную документацию, итоги нагрузочного тестирования, аудит безопасности и рекомендации по дальнейшему развитию продукта.

Все отчеты предоставляются в формате PDF с интерактивными гиперссылками на источники данных (дашборды Metabase, репозитории кода). Доступ к материалам ограничивается кругом лиц, указанных в NDA, а конфиденциальные данные (логи пользователей, API-ключи) маскируются. Заказчик вправе запросить дополнительные аналитические сводки, такие как

сравнение фактических и плановых сроков или ROI внедренных функций, которые готовятся в течение 3 рабочих дней после запроса. Утверждение отчетов осуществляется через электронную подпись в системе DocuSign, а возражения или уточнения оформляются как комментарии в Confluence с обязательным ответом ответственного лица в течение 24 часов.

4.4 Получение, ценность, хранение и утилизация данных

Данные в системе CookAR собираются через камеру устройства, датчики (LiDAR, гироскоп) и ручной ввод пользователя, включая сканирование ингредиентов, выбор рецептов и настройки профиля. Интеграция с внешними платформами (AllRecipes, Firebase) позволяет импортировать рецепты и обновлять базы, а AR-очки передают данные о взаимодействии пользователя с виртуальными элементами.

Ценность данных определяется их ролью в обеспечении безопасности и персонализации. Критически важными являются данные о расположении оборудования (плита, ножи), сроках годности продуктов и аллергенах, так как они напрямую влияют на предотвращение рисков. Вторичные данные, такие как предпочтения в рецептах или история готовки, используются для улучшения пользовательского опыта, но их потеря не нарушит базовый функционал.

Хранение данных реализовано с учетом их категории. Критические данные шифруются (AES-256) и хранятся в распределенных облачных хранилищах (AWS S3) с ежедневным резервным копированием. Пользовательские настройки и AR-сессии сохраняются локально на устройстве для обеспечения офлайндоступа, а временные файлы (кеш изображений) автоматически очищаются каждые 72 часа. Доступ к облачным данным ограничивается двухфакторной аутентификацией и IP-фильтрацией.

Утилизация данных проводится политикой В соответствии конфиденциальности. Пользователи могут запросить полное удаление своих данных через раздел настроек, что инициирует очистку из всех систем в течение 30 дней. Автоматическая утилизация неактивных профилей (более 12 месяцев без входа) выполняется с предварительным уведомлением по электронной почте. с безопасностью (журналы связанные перегрева, анонимизируются и хранятся 5 лет для аудита, после чего уничтожаются методом физического разрушения носителей.

5 Требования к внешним интерфейсам

5.1 Пользовательские интерфейсы

Пользовательские интерфейсы CookAR спроектированы ДЛЯ максимальной интуитивности и адаптивности, обеспечивая бесшовное взаимодействие в дополненной реальности. Основной интерфейс представлен AR-элементами, накладываемыми на реальное кухонное пространство через очки дополненной реальности. На стартовом экране пользователь видит прозрачное меню с опциями: выбор рецепта, доступ к сохраненным блюдам, настройки безопасности и персонализация. При запуске рецепта AR-инструкции отображаются в виде контекстных подсказок: стрелки указывают на нужные ингредиенты, подсветка выделяет приготовления, таймеры зоны интегрируются в виртуальные элементы рядом с плитой или духовкой.

Обработка ошибок реализована через контекстные подсказки: при неправильном действии (например, добавление избыточного объема ингредиента) система подсвечивает проблемную зону, предлагает корректирующие шаги или автоматически адаптирует рецепт.

Все элементы рендерятся с частотой не менее 60 FPS для предотвращения дискомфорта, а задержка ввода не превышает 100 мс.

Дизайн интерфейсов утверждается через A/B-тестирование с участием фокус-групп, а финальные макеты согласуются с заказчиком в Figma перед интеграцией в продукт.

5.2 Дизайн

Дизайн интерфейсов CookAR базируется на принципах минимализма, функциональности и адаптивности, обеспечивая визуальную ясность даже в условиях динамичной кухонной среды. Основная цветовая палитра сочетает нейтральные тона (серый, белый) с акцентами теплых оттенков (оранжевый, зеленый) выделения критически ДЛЯ важных элементов, таких предупреждения или активные шаги рецепта. Шрифты выбираются с учетом читаемости в AR-среде: Sans-serif (Roboto, San Francisco) с увеличенным межбуквенным интервалом и минимальным кеглем 14pt для текстовых подсказок. Иконки и пиктограммы соответствуют стандартам Material Design и Guidelines, Apple Human Interface обеспечивая кроссплатформенную консистентность.

Анимации используются умеренно, чтобы не перегружать пользователя: плавные переходы между шагами рецепта, микровзаимодействия (например, подрагивание ингредиента при неправильном выборе) и динамическое масштабирование AR-элементов при изменении дистанции.

Соответствие брендингу поддерживается через использование фирменных градиентов (например, переход от оранжевого к желтому для кнопок «Далее») и логотипа в углу экрана. Консистентность элементов (кнопки, поля ввода, через Figma Design проверяется System, где компоненты унифицированы для повторного использования. Для пользователей ограниченными возможностями предусмотрены альтернативные темы с высококонтрастными цветами, режим «Темная кухня» (инверсия для работы в условиях низкой освещенности) и голосовые подсказки, дублирующие текстовые инструкции.

Тестирование дизайна проводится через А/В-тесты с фокус-группами, где оценивается скорость восприятия информации, удобство навигации и эмоциональная реакция. Итерации дорабатываются на основе фидбэка, а финальные макеты утверждаются заказчиком в Adobe XD с интерактивными прототипами. Все элементы соответствуют стандарту WCAG 2.1 (уровень АА), гарантируя доступность для слабовидящих и пользователей с моторными нарушениями.

Графические ресурсы (иконки, шрифты, текстуры) лицензируются для коммерческого использования, а исходные файлы дизайна хранятся в облачном хранилище с контролем версий (Figma Community). Изменения в стилистике согласуются с бренд-буком проекта и вносятся только через централизованную систему дизайн-токенов.

6 Требования по интернационализации и локализации

Интернационализация системы CookAR обеспечивает базовую готовность продукта к адаптации под различные языки и региональные стандарты. Все текстовые элементы интерфейса, включая АR-подсказки, голосовые команды и уведомления, отделены от кода и хранятся в формате XLIFF для упрощения перевода. Кодировка UTF-8 гарантирует корректное отображение символов, включая диакритические знаки и иероглифы. Динамические данные (дата, время, единицы измерения) форматируются через интегрированные библиотеки ІСИ (International Components for Unicode), ЧТО позволяет автоматически адаптировать их под региональные настройки устройства (например, метрическая система для Европы и имперская для США).

Единицы измерения ингредиентов конвертируются автоматически (граммы в унции), а даты отображаются в форматах, привычных для локали (DD/MM/YYYY для EC, MM/DD/YYYY для США).

Техническая реализация поддерживает «горячую» замену языков без перезапуска приложения. Локализованные ресурсы хранятся в облачном хранилище (AWS S3) с версионностью, что позволяет оперативно вносить правки. Для тестирования локализации используются эмуляторы региональных настроек и привлечение носителей языка из целевых аудиторий. Обратная связь по переводам и культурным неточностям собирается через встроенную форму в приложении и учитывается в ежеквартальных обновлениях.

Критически важные элементы, такие как предупреждения о безопасности или аллергенах, дублируются на языке системы и английском в качестве резервного варианта. Локализация AR-контента (например, виртуальные этикетки) обеспечивается через отдельные слои рендеринга, которые подгружаются в зависимости от выбранного языка. Для регионов с ограниченным доступом к интернету предусмотрена офлайн-локализация, где базовые переводы хранятся в кэше устройства.

Локализация новых языков инициируется на основе анализа рынка и запросов пользователей. Процесс согласуется с заказчиком, а финальные версии проходят аудит на соответствие стандартам ISO 9241 (эргономика) и ISO 3166 (коды стран и регионов).

Приложение А. Словарь терминов

А/В-тестирование — Сравнение двух версий продукта для выбора лучшей.

API — Интерфейс для взаимодействия программ (например, подключение к соцсетям).

AWS Elemental – Сервис Amazon для обработки видео и потоковой передачи.

БЖУ – Белки, жиры, углеводы — основные компоненты питания.

Бэклог – Список задач, которые предстоит выполнить команде.

GDPR – Европейский закон о защите персональных данных.

Дашборд Metabase – Визуальная панель с аналитикой и статистикой.

Двухфакторная аутентификация — Двойная проверка личности (пароль + SMS).

Интернационализация — Подготовка продукта для адаптации под разные языки и регионы.

Интерфейс — Внешний вид и элементы управления, через которые пользователь взаимодействует с системой.

ІоТ-устройства – Умные устройства, подключенные к интернету (например, умные плиты).

IP-фильтрация — Ограничение доступа к системе по IP-адресам.

ИК-анализ — Использование инфракрасного излучения для измерения температуры или распознавания объектов.

JSON-формат – Текстовый формат для структурированного хранения данных.

Покализация — Адаптация продукта под язык, культуру и стандарты конкретного региона.

Монетизация – Способ заработка на продукте (подписки, реклама).

Нагрузочные тесты – Проверка производительности системы при высокой нагрузке.

Облачные хранилища — Онлайн-сервисы для хранения файлов (AWS S3, Google Drive).

Операционная среда – Программное и аппаратное окружение, необходимое для работы приложения (например, iOS, Android).

Парсинг – Автоматический сбор данных с веб-сайтов.

Персонализация — Настройка функций или дизайна под предпочтения пользователя (цвета, шрифты).

 $\Pi O - \Pi$ рограммное обеспечение — набор программ и инструкций для работы устройства.

PostgreSQL – Реляционная база данных для хранения структурированной информации.

Рендеринг – Процесс создания изображения (например, AR-элементов).

Репозиторий – Хранилище кода (например, GitHub).

Scrapy – Инструмент для парсинга веб-страниц.

Спринтовые обзоры — Итоги этапа разработки с демонстрацией функционала.

Трекинг рук (MediaPipe) – Технология отслеживания движений рук в реальном времени.

Уровень Severity – Степень серьезности ошибки (например, критическая, незначительная).

UX-анализ – Исследование удобства интерфейса для пользователей.

WebRTC — Технология для видеосвязи и передачи данных в реальном времени.

Челлендж (соцсетей) — Соревнование или задание, которое пользователи выполняют и публикуют в соцсетях.

Эмулятор — Программа, имитирующая работу другого устройства (например, смартфона).

AR (*Augmented Reality*) – Технология, накладывающая цифровые элементы (текст, изображения) на реальный мир через камеру или очки.

ARCore – Платформа Google для разработки AR-приложений на Android.

D3.js — Библиотека для создания интерактивных графиков и диаграмм.

Firebase – Облачная платформа Google для хранения данных и аутентификации.

GraphQL – Язык запросов для точного получения нужных данных из API.

Google MediaPipe — Библиотека для обработки видео и распознавания объектов (например, рук).

Jira Service Desk — Система для управления запросами пользователей и ошибками.

Nutritionix API – Сервис с информацией о питательной ценности продуктов.

REST API — Стандарт для обмена данными между приложениями через HTTP-запросы.

TensorFlow Lite – Упрощенная версия библиотеки машинного обучения для мобильных устройств.

Unity Engine – Движок для создания игр и AR-приложений.

Unity MARS – Инструмент Unity для разработки адаптивных AR-приложений.

Unity Play – Сервис для тестирования AR-приложений на мобильных устройствах.

WebSockets – Протокол для обмена данными в реальном времени (чаты, уведомления).