DIJITAL ELEKTRONIK DERS NOTLARI

Analog sinyal

 Sonsuz sayıda ara değer alabilen, devamlılık arz eden büyüklük, analog büyüklük olarak tanımlanır.

Dünyadaki çoğu büyüklük analogdur.

- Analog sinyal aslında yaşadığımız hayat demektir.
- Görme, işitme, tat alma, dokunma, koklama duyularımızın tümü analog algılama biçimlerine birer örnektir.
- Analog sinyal kesintisiz ve süreklidir.

- Bir amfiden çıkıp hoparlöre giden elektriksel ses sinyali ve
- hoparlörden çıkıp kulaklarımıza ulaşan akustik ses sinyali analog sinyal formundadır.

Dünyadaki çoğu büyüklük analogdur.

- Havanın sıcaklığı birdenbire örneğin 27°C'den 28°C'ye çıkmaz, bu iki derece arasında sonsuz sayıdaki bütün değerleri alarak değişir.
- Analog büyüklüklere diğer örnekler, zaman, basınç, uzaklık ve sestir.
- Bununla beraber dijital elektroniğin analog elektroniğe göre belirgin üstünlükleri vardır.

- En başta dijital bilgi analog bilgiden daha etkin, daha güvenli işlenebilir ve iletilebilir.
- Ayrıca bilginin saklanması gerektiğinde dijital bilgi çok kolay kayıt altına alınır.
- Örneğin müzik dijitalleştirildiğinde, çok daha kolay depolanıp büyük bir hassasiyetle yeniden üretilebilir ve analog biçime dönüştürülebilir.

Analog sinyal yumuşak geçişli ve devamlı iken dijital sinyal basamaklı ve kare şeklindedir.

SAYISAL BÜYÜKLÜK, SAYISAL SİNYAL, SAYISAL SİSTEM VE SAYISAL GÖSTERGE

- Yalnızca iki değer alabilen (var-yok, kapalı-açık, vb.) büyüklük, 'sayısal büyüklük' olarak isimlendirilir.
- Sayısal büyüklüğü göstermek için kullanılan 0 ve 1 rakamları 'sayısal sinyal (işaret)' olarak adlandırılır.
- Sayısal sinyalin aldığı değerler zıplayarak değişir.

a) Sayısal İşaret

b) Sayısal Sistem

c) Saynsal Gösterge

SAYISAL VE ANALOG TEKNİKLERİN KARŞILAŞTIRILMASI

- Sayısal sistemlerin tasarımı daha kolaydır.
- Sayısal sistemlerde bilgi saklaması kolaydır: Sayısal sistemlerde kullanılan yöntemlerle bilgilerin bir yere konması, onun alınması ve gerektiği kadar elde tutulması mümkündür.
- sayısal devrelerde daha çok sayıda devrenin birbiriyle irtibatı mümkündür.

- Sayısal devrelerde işlemler programlanabilir: Sayısal sistemleri tasarlamak, sistemdeki işlemler saklanabilen komutlar (program) tarafından kontrol edildiğinden kolaydır.
- Sayısal devreler gürültüden daha az etkilenir.
- Sayısal sistemlerde bir entegre içerisine daha fazla sayıda sayısal devre elemanı yerleştirilebilir.

sayısal sistemlerin dezavantajı

- Bütün bu avantajların yanında sayısal sistemlerin dezavantajı,
- günlük hayatımızda kullandığımız büyüklüklerin büyük bir kısmının analog olmasıdır.
- Bundan dolayıdır ki analog sinyalin dijitale çevrilmesi,
- İşleme tabi tutulmuş dijital bilgilerin ise dış dünyaya aktarılması için tekrar analoğa dönüştürülmesi gereklidir.

Analogdan dijitale ve dijitalden analoğa çevirme

- Dünyada, pek çok büyüklük analogdur, demiştik.
- Örneğin ısı, basınç, ağırlık gibi büyüklükler hep analog olarak değişirler.
- Bunlarda sadece 0 ve 1 gibi iki değer değil,
- minimum ile maksimum arasında çok geniş bir yelpazede çeşitli değerler söz konusudur.

- Bununla beraber; bilgi işleyen cihazlar (dijital sistemler, mikroişlemciler, bilgisayarlar) dijitaldir.
- Çünkü, dijital sistemler, bilgiyi daha güvenli, daha hızlı işler ve değerlendirir. Elde edilen bilginin tekrar dış dünyaya aktarılması da analog veya dijital biçimde olabilir.
- Bütün bu nedenlerle analog değerlerin dijitale, dijital değerlerin de analog değerlere çevrilmesi gerekir.

Analog sinyali dijitale, dijital sinyali ise analoğa çevirmek için ADC ve DAC kullanılır.

- ADC (Analog to Digital Converter) analog bir sinyali dijital sinyale çevirmeye yarayan ünitenin adıdır.
- DAC (Digital to Analog Converter) ise dijital sinyali analog sinyale çevirmeye yarayan ünitenin adıdır.

Bilgisayar ile ses sinyallerinin işlenmesi

Ses Kartı Bileşenleri

- Dijital Sinyal İşlemcisi
- Giriş sesleri için Analog-Dijital çevirici (ADC)
- Çıkış sesleri için Dijital-Analog çevirici (DAC)
- Veri depolaması için Flash bellek (eeprom)
- Harici müzik aygıtlarına bağlantı arayüzü
- Hoparlör, mikrofon, Line-In ve Line-Out
- Joystick, gamepad...

