Exercice 1

─ Voir correction —

Calculer les intégrales suivantes :

a)
$$\int_0^1 (t^3 + 4t) dt$$

c)
$$\int_{2}^{0} \frac{1}{3+2x} \, \mathrm{d}x$$

e)
$$\int_{-1}^{0} 5u e^{u^2+2} du$$

b)
$$\int_{-3}^{4} e^{5u} du$$

d)
$$\int_0^2 \frac{e^{3t}}{6 + e^{3t}}$$

f)
$$\int_{-2}^{3} \cos(\pi x) \, \mathrm{d}x$$

Exercice 2

— Voir correction —

Calculer les intégrales suivantes :

a)
$$\int_{-2}^{2} |x| \times (x^2 + 1) \, \mathrm{d}x$$

c)
$$\int_0^2 \frac{1}{(u+1)^3} \, \mathrm{d}u$$

e)
$$\int_{-\pi}^{\pi} 2\cos t (\sin t)^4 dt$$

b)
$$\int_{1}^{2} \frac{8x+4}{(x^2+x)^2} dx$$

d)
$$\int_0^{\ln(3)} \frac{3e^{2x}}{\sqrt{1+e^{2x}}} dx$$

f)
$$\int_0^1 (6x^2 - 4x - 3) e^{-x^2} dx$$

Pour la dernière intégrale, on pourra chercher une primitive de la fonction à intégrer sous la forme $F(x) = (ax + b) e^{-x^2}$.

Exercice 3

— Voir correction —

On considère les intégrales $I = \int_0^1 \frac{e^x + 1}{e^x + 2} dx$ et $J = \int_0^1 \frac{1}{e^x + 2} dx$.

- 1) Calculer I + J et I J
- 2) En déduire les valeurs de I et J

Exercice 4

On considère la fonction $f: x \longmapsto \frac{e^{2x}}{e^x + 2}$.

- 1) Déterminer a et b tels que $f(x) = a e^x + \frac{b e^x}{e^x + 2}$ pour tout réel x.
- 2) En déduire $\int_{-1}^{0} f(x) dx$

- Exercice 5 — Voir correction -

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \int_0^n e^{-x^2} dx$. On ne cherchera pas à calculer u_n .

- 1) Montrer que (u_n) est croissante
- 2) Démontrer que pour tout réel $x \ge 0$, on a : $-x^2 \le -2x + 1$, puis $\mathrm{e}^{-x^2} \le \mathrm{e}^{-2x+1}$
- 3) En déduire que pour tout entier naturel n on a $u_n \leq \frac{e}{2}$
- 4) Démontrer que la suite u_n est convergente. On ne cherchera pas à calculer sa limite.

— Exercice 6 -

Voir correction —

Soit I_n définie pour tout $n \in \mathbb{N}$ par $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1) Sans chercher à calculer I_n , montrer que $\lim_{n\to +\infty} I_n=0$
- 2) Calculer $I_n + I_{n+1}$
- 3) Déterminer $\lim_{n\to+\infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$.

Exercice 7

Soient f la fonction définie et dérivable sur l'intervalle $[0; +\infty[$ par $f(x) = \frac{x}{e^x - x}$, et la suite (I_n) définie pour tout entier naturel n par $I_n = \int_0^n f(x) dx$. On ne cherchera pas à calculer la valeur exacte de I_n en fonction de n.

- 1) Étudier la fonction $x\mapsto \frac{x}{\mathrm{e}^x-x}$ sur $[0;+\infty[$ et en déduire son signe.
- 2) Montrer que la suite (I_n) est croissante
- 3) On admet que pour tout réel x de l'intervalle $[0; +\infty[$, $e^x x \ge \frac{e^x}{2}]$.
 - a) Montrer que, pour tout entier naturel $n, I_n \leq \int_0^n 2x e^{-x} dx$.
 - b) Soit H la fonction définie et dérivable sur $[0; +\infty[$ telle que $H(x) = (-x-1)e^{-x}$. Déterminer la fonction dérivée H' de la fonction H
 - c) En déduire que pour tout entier naturel $n, I_n \leq 2$
- 4) Montrer que la suite (I_n) est convergente. On ne demande pas la valeur de sa limite.

Voir correction -

Soient f et g deux fonctions continues sur un intervalle [a; b]. Montrer que

$$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \leq \left(\int_{a}^{b} (f(x))^{2} dx\right) \left(\int_{a}^{b} (g(x))^{2} dx\right)$$

Indication : considérer le signe de $\int_a^b (\lambda f(x) + g(x))^2 dx$ en fonction de λ .

- Exercice 9 -

Calculer la dérivée de $f: x \longmapsto \int_{-2}^{x^4} e^{-\sqrt{t}} dt$.

Indication : on pourra considérer une primitive F de $x \mapsto e^{-\sqrt{x}}$ sans chercher de formule explicite pour cette fonction.

* * Exercice 10 — Voir correction —

(Inégalité de Young) Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ une fonction dérivable et strictement croissante telle que f(0) = 0.

- 1) Pour tout x > 0, montrer que $\int_0^x f(t) dt + \int_0^{f(x)} f^{-1}(t) dt = xf(x)$
- 2) En déduire que $\forall a, b > 0$, $\int_0^a f(t) dt + \int_0^b f^{-1}(t) dt \ge ab$.

 \star \star \star Exercice 11 — Voir correction -

(D'après Oraux ENS 2019) Pour tout $x \in [0,1]$, on définit la suite $(f_n(x))_{n \in \mathbb{N}}$ de la manière suivante. On définit la function $f_0: x \in [0,1] \longrightarrow 1$ et pour tout $n \in \mathbb{N}, x \in [0,1],$

$$f_{n+1}(x) = 1 + \int_0^x f_n(t - t^2) dt$$

- 1) Déterminer les fonctions f_1 et f_2
- 2) Soit $x \in [0,1]$ fixé. Étudier le sens de variation de $(f_n(x))_{n \in \mathbb{N}}$.
- 3) Montrer que, pour tout $n \in \mathbb{N}^*$, pour tout $x \in [0,1]$, $1+x \le f_n(x) \le e^x$.
- 4) Montrer que, pour tout $x \in [0,1]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers une limite que l'on notera f(x).
- 5) Montrer que $\forall (x,y) \in [0,1]^2$, $|f(x) f(y)| \le e|x y|$
- 6) En déduire que la fonction $x \mapsto f(x)$ est continue sur [0,1].

Intégration par partie

, Ta

Exercice 12

— Voir correction –

Calculer les intégrales suivantes à l'aide d'une intégration par partie :

a)
$$\int_{0}^{1} (x+1) e^{x} dx$$

c)
$$\int_1^e x^3 \ln x \, dx$$

e)
$$\int_{1}^{e^{2}} \frac{\ln(t)}{t} dt$$

b)
$$\int_0^{\pi} x \sin x$$

d)
$$\int_0^{\ln 2} (x^2 + 3x) e^x$$

f)
$$\int_0^{\frac{\pi}{2}} e^{\theta} \sin \theta \, d\theta$$

Exercice 13

— Voir correction —

Calculer les intégrales suivantes à l'aide d'une intégration par partie :

a)
$$\int_{1}^{e} \ln x \, dx$$

b)
$$\int_{1}^{e} (\ln x)^2$$

c)
$$\int_0^1 \arctan(u) du$$

Exercice 14

— Voir correction —

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On pose $I_n = \int_a^b f(t) \sin(nt) dt$.

- 1) À l'aide d'une intégration par partie, montrer que $I_n = u_n + \frac{1}{n}J_n$ où u_n est une suite qui tend vers 0 et $J_n = \int_a^b f'(t)\cos(nt) dt$
- 2) Montrer que la suite (J_n) est bornée.
- 3) En déduire $\lim_{n\to+\infty} I_n$.

*

Exercice 15

— Voir correction —

On pose pour tout $n \in \mathbb{N}^*$, $I_n = \int_0^1 u^n e^u du$.

- 1) Montrer que $\lim_{n \to +\infty} I_n = 0$
- 2) Pour tout $n \in \mathbb{N}^*$, déterminer une relation de récurrence entre I_n et I_{n+1} .
- 3) Trouver un équivalent simple de I_n lorsque l'entier n tend vers l'infini.

*

Exercice 16 —

Voir correction -

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que f(a)=f(b)=0. Soit $M=\sup_{t\in[a,b]}|f'(t)|$, c'est à dire un réel tel que $\forall t\in[a,b], |f'(t)|\leq M$.

- 1) Montrer que $\left| \int_a^b f(t) \, \mathrm{d}t \right| \le \frac{(b-a)^2}{4} M$
- 2) Déterminer dans quel(s) cas l'égalité précédente est une égalité.

Changement de variables

....**:**...

Exercice 17

Voir correction —

Calculer les intégrales suivantes à l'aide du changement de variable indiqué :

1)
$$\int_0^1 \frac{2t \ln(t^2 + 1)}{t^2 + 1} dt$$
, $u = t^2 + 1$

3)
$$\int_{1/8}^{1/3} \frac{\mathrm{d}t}{t\sqrt{t^2+t}}, \quad u = \frac{1}{t}$$

2)
$$\int_{1}^{8} \frac{\mathrm{d}t}{\sqrt[3]{t+t}}$$
, $u = \sqrt[3]{t} = t^{1/3}$

4)
$$\int_0^1 \frac{dt}{e^t + e^{-t}}, \quad u = e^t$$

Exercice 18 ———— Voir correction —

Soit T>0 un réel et soit f une fonction périodique de période T sur \mathbb{R} . Montrer que pour tout $(a,b)\in\mathbb{R}^2$,

$$\int_a^{a+T} f(x) \, \mathrm{d}x = \int_b^{b+T} f(x) \, \mathrm{d}x$$

Exercice 19 ———— Voir correction -

1) À l'aide du changement de variable $u = \frac{\pi}{2} - t$, démontrer que

$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} dt = \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)}$$

2) En déduire que $\int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} = \frac{\pi}{4}$, puis en déduire la valeur de $\int_0^1 \frac{\mathrm{d}x}{\sqrt{1 - x^2} + x}$ Indication: on pour utiliser le changement de variable $x = \sin(t)$

Pour tout $n \in \mathbb{N}$, on pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$, appelée intégrale de Wallis.

Le but de cet exercice est d'étudier la suite $(W_n)_{n\in\mathbb{N}}$ où

- 1) Calculer W_0 et W_1 .
- 2) Montrer que (W_n) converge.
- 3) En posant $t = \frac{\pi}{2} x$, montrer que pour tout $n \in \mathbb{N}$, $W_n = \int_{1}^{\frac{\pi}{2}} \cos^n(t) dt$
- 4) En déduire W_2 .
- 5) À l'aide d'une intégration par partie, montrer que pour tout $n \in \mathbb{N}$, $W_{n+2} = \frac{n+1}{n+2}W_n$.
- 6) En déduire que pour tout $n \in \mathbb{N}$, $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.
- 7) Montrer que $\lim_{n \to +\infty} W_n = 0$, $\lim_{n \to +\infty} \frac{W_n}{W_{n+1}} = 1$, et $\lim_{n \to +\infty} \sqrt{n} W_n = \sqrt{\frac{\pi}{2}}$.
- 8) Montrer que pour tout $n \in \mathbb{N}$, $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$

Sommes de Riemann

Exercice 21 — Voir correction —

- 1) À l'aide du changement de variable $\sin(t) = x$, montrer que $\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1+\cos(2t)}{2} \, \mathrm{d}t$
- 2) En déduire la valeur de $\lim_{n\to+\infty} \sum_{k=1}^{n} \frac{\sqrt{n^2-k^2}}{n^2}$

Exercice 22 -

Voir correction —

- 1) Calculer $\int_{0}^{1} \ln(1+x) dx$
- 2) En déduire, à l'aide d'une somme de Riemann, la limite de (u_n) définie pour tout entier $n \ge 1$ par $u_n = \left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}$

Correction des exercice

Correction de l'exercice 1 :

a)

$$\int_0^1 (t^3 + 4t) dt = \left[\frac{t^4}{4} + 2t^2 \right]_0^1$$
$$= \frac{1}{4} + 2$$
$$= \frac{9}{4}$$

b)

$$\int_{-3}^{4} e^{5u} du = \left[\frac{e^{5u}}{5} \right]_{-3}^{4}$$

$$= \frac{e^{5\times 4}}{5} - \frac{e^{-5\times 3}}{5}$$

$$= \frac{e^{20} - e^{-15}}{5}$$

$$= \frac{e^{35} - 1}{5 e^{15}}$$

c) La dérivée de $x\mapsto \ln(3+2x)$ est $x\mapsto \frac{2}{3+2x}$ donc une primitive de $x\mapsto \frac{1}{3+2x}$ est $x\mapsto \frac{1}{2}\ln(3+2x)$

$$\int_{2}^{0} \frac{1}{3+2x} dx = \left[\frac{1}{2} \ln(3+2x) \right]_{2}^{0}$$

$$= \frac{1}{2} \ln(3+2\times0) - \frac{1}{2} \ln(3+2\times2)$$

$$= \frac{1}{2} (\ln(3) - \ln(7))$$

$$= \frac{1}{2} \ln\left(\frac{3}{7}\right)$$

d) La dérivée de $t\mapsto \ln(6+\mathrm{e}^{3t})$ est $t\mapsto \frac{3\,\mathrm{e}^{3t}}{6+\mathrm{e}^{3t}}$ donc une primitive de $t\mapsto \frac{\mathrm{e}^{3t}}{6+\mathrm{e}^{3t}}$ est $t\mapsto \frac{1}{3}\ln(6+\mathrm{e}^{3t})$

$$\int_0^2 \frac{e^{3t}}{6 + e^{3t}} dt = \left[\frac{1}{3} \ln(6 + e^{3t}) \right]_0^2$$
$$= \frac{1}{3} (\ln(6 + e^6) - \ln(6 + e^0))$$
$$= \frac{1}{3} \ln\left(\frac{6 + e^6}{7}\right)$$

e) La dérivée de $u \mapsto e^{u^2+2}$ est $u \mapsto 2u e^{u^2+2}$, donc une primitive de $u \mapsto 5u e^{u^2+2}$ est $u \mapsto \frac{5}{2} e^{u^2+2}$.

$$\int_{-1}^{0} 5u e^{u^2 + 2} du = \left[\frac{5}{2} e^{u^2 + 2} \right]_{-1}^{0}$$
$$= \frac{5}{2} (e^2 - e^3)$$

f)

$$\int_{-2}^{3} \cos(\pi x) = \left[\frac{1}{\pi} \sin(\pi x)\right]_{-2}^{3}$$
$$= \frac{1}{\pi} (\sin(3\pi) - \sin(-2\pi))$$
$$= 0$$

Correction de l'exercice 2 :

a)

$$\int_{-2}^{2} |x|(x^{2}+1) dx = \int_{-2}^{0} |x|(x^{2}+1) dx + \int_{0}^{2} |x|(x^{2}+1) dx$$
$$= \int_{0}^{0} (-x(x^{2}+1)) dx + \int_{0}^{2} x(x^{2}+1) dx$$

d'après la relation de Chasles

car sur l'intervalle [-2,0] on a |x|=-x et sur l'intervalle [0,2] on a |x|=x.

$$= \int_{-2}^{0} (-x^3 - x) dx + \int_{0}^{2} (x^3 + x) dx$$

$$= \left[-\frac{x^4}{4} - \frac{x^2}{2} \right]_{-2}^{0} + \left[\frac{x^4}{4} + \frac{x^2}{2} \right]_{0}^{2}$$

$$= -\left(-\frac{(-2)^4}{4} - \frac{(-2)^2}{2} \right) + \frac{2^4}{4} + \frac{2^2}{2}$$

$$= 12$$

b) La dérivée de $x\mapsto \frac{1}{x^2+x}$ est $x\mapsto -\frac{2x+1}{(x^2+x)^2}$

$$\int_{1}^{2} \frac{8x+4}{(x^{2}+x)^{2}} dx = \left[\frac{-4}{x^{2}+x}\right]_{1}^{2}$$

$$= \frac{-4}{2^{2}+2} - \frac{-4}{1^{2}+1}$$

$$= \frac{-2}{3} + 2$$

$$= \frac{4}{3}$$

c) La dérivée de $u \mapsto \frac{1}{(u+1)^2} = (u+1)^{-2}$ est $u \mapsto -2(u+1)^{-3} = \frac{-2}{(u+1)^3}$.

$$\int_0^2 \frac{1}{(u+1)^3} du = \left[\frac{-1}{2} \times \frac{1}{(u+1)^2} \right]_0^2$$

$$= \frac{1}{2} \left(\frac{1}{(0+1)^2} - \frac{1}{(2+1)^2} \right)$$

$$= \frac{1}{2} \times \frac{8}{9}$$

$$= \frac{4}{9}$$

d) La dérivée de $x \mapsto \sqrt{1 + e^{2x}}$ est $x \mapsto \frac{2e^{2x}}{2\sqrt{1 + e^{2x}}} = \frac{e^{2x}}{\sqrt{1 + e^{2x}}}$.

On a donc

$$\int_0^{\ln(3)} \frac{3e^{2x}}{\sqrt{1+e^{2x}}} dx = \left[3\sqrt{1+e^{2x}}\right]_0^{\ln(3)}$$

$$= 3(\sqrt{1+e^{2\ln(3)}} - \sqrt{1+e^0})$$

$$= 3(\sqrt{1+3^2} - \sqrt{1+1})$$

$$= 3\sqrt{10} - 3\sqrt{2}$$

e)

$$\int_{-\pi}^{\pi} 2\cos t (\sin t)^4 dt = \left[\frac{2(\sin t)^5}{5} \right]_{-\pi}^{\pi}$$
$$= \frac{2}{5} ((\sin \pi)^5 - (\sin(-\pi))^5)$$
$$= 0$$

f) On suite l'indication de l'énoncé, et on cherche une primitive de $f: x \mapsto (6x^2 - 4x - 3) e^{-x^2}$ sous la forme $F: x \mapsto (ax + b) e^{-x^2}$.

Soient a et b deux réels, et soit $F: x \longmapsto (ax+b) e^{-x^2}$. F est dérivable sur $\mathbb R$ et

$$F'(x) = a e^{-x^2} - 2x(ax + b) e^{-x^2}$$
$$= (-2ax^2 - 2bx + a) e^{-x^2}$$

Par identification des coefficients, F est une primitive de f si $\begin{cases} -2a &= 6 \\ -2b &= -4 \\ a &= -3 \end{cases}$, ce qui est vrai avec a = -3 et b = 2.

Ainsi, $F: x \longmapsto (-3x+2)e^{-x^2}$ est une primitive de f. On a donc

$$\int_0^1 (6x^2 - 4x - 3) e^{-x^2} dx = \left[(-3x + 2) e^{-x^2} \right]_0^1$$
$$= -e^{-1} - 2 e^0$$
$$= -e^{-1} - 2$$

Correction de l'exercice 3:

1) On a d'une part:

$$I + J = \int_0^1 \frac{e^x + 1}{e^x + 2} dx + \int_0^1 \frac{1}{e^x + 2} dx$$

$$= \int_0^1 \left(\frac{e^x + 1}{e^x + 2} + \frac{1}{e^x + 2} \right) dx$$

$$= \int_0^1 \frac{e^x + 2}{e^x + 2} dx$$

$$= \int_0^1 1 dx$$

$$= 1$$

car on intègre sur le même intervalle

et d'autre part :

$$I - J = \int_0^1 \left(\frac{e^x + 1}{e^x + 2} - \frac{1}{e^x + 2}\right) dx$$
$$= \int_0^1 \frac{e^x}{e^x + 2} dx$$
$$= \left[\ln(e^x + 2)\right]_0^1$$
$$= \ln(e + 2) - \ln(3)$$
$$= \ln\left(\frac{e + 2}{3}\right)$$

2) On résout le système
$$\left\{ \begin{array}{lcl} I+J & = & 1 \\ I-J & = & \ln\left(\frac{\mathrm{e}+3}{3}\right) \end{array} \right.$$

$$\begin{cases} I+J &= 1\\ I-J &= \ln\left(\frac{\mathrm{e}^2+2}{3}\right) \end{cases} \iff \begin{cases} 2I &= 1+\ln\left(\frac{\mathrm{e}+2}{3}\right)\\ 2J &= 1-\ln\left(\frac{\mathrm{e}+2}{3}\right) \end{cases}$$

$$\iff \begin{cases} I &= \frac{1}{2}\left(1+\ln\left(\frac{\mathrm{e}+2}{3}\right)\right)\\ J &= \frac{1}{2}\left(1-\ln\left(\frac{\mathrm{e}+2}{3}\right)\right) \end{cases}$$

Correction de l'exercice 4:

1) Soient a et b deux réels. On a

$$a e^{x} + \frac{b e^{x}}{e^{x} + 2} = \frac{a e^{x}(e^{x} + 2) + b e^{x}}{e^{x} + 2}$$
$$= \frac{a e^{2x} + (2a + b) e^{x}}{e^{x} + 2}$$

donc une condition suffisante pour avoir $f(x) = a e^x + \frac{b e^x}{e^x + 2}$ est que a et b soient solution du système $\begin{cases} a = 1 \\ 2a + b = 0 \end{cases}$ par identification des coefficients.

$$\begin{cases} a = 1 \\ 2a + b = 0 \end{cases} \iff \begin{cases} a = 1 \\ b = -2 \end{cases}$$

$$\operatorname{donc} f(x) = e^x - \frac{2 e^x}{e^x + 2}.$$

2)

$$\int_{-1}^{0} f(x) dx = \int_{-1}^{0} \left(e^{x} - \frac{2 e^{x}}{e^{x} + 2} \right) dx$$

$$= \left[e^{x} - 2 \ln(e^{x} + 2) \right]_{-1}^{0}$$

$$= \left(e^{0} - 2 \ln(e^{0} + 2) \right) - \left(e^{-1} - 2 \ln(e^{-1} + 2) \right)$$

$$= 1 - 2 \ln(3) - e^{-1} + 2 \ln(e^{-1} + 2)$$

$$= 2 \ln\left(\frac{e^{-1} + 2}{3} \right) + 1 - e^{-1}$$

$$= 2 \ln\left(\frac{1 + 2 e}{3 e} \right) + 1 - e^{-1}$$

d'après la question précédente

$$= 2\ln(1+2e) - \ln(9) - 2 + 1 - e^{-1}$$
$$= 2\ln(1+2e) - \ln(9) - 1 - e^{-1}$$

Correction de l'exercice 5 :

1) Pour tout entier naturel n, on a

$$u_{n+1} - u_n = \int_0^{n+1} e^{-x^2} dx - \int_0^n e^{-x^2} dx$$
$$= \int_n^{n+1} e^{-x^2} dx$$

Or,
$$\forall x \in [n, n+1], \ e^{-x^2} > 0 \ donc \int_{x}^{x} e^{-x^2} dx > 0.$$

On en déduit que la suite (u_n) est strictement croissante.

- 2) Pour tout réel x, $x^2 2x + 1 = (x 1)^2 \ge 0$, donc $-x^2 \le -2x + 1$. La fonction exponentielle étant croissante sur \mathbb{R} , on en déduit que $e^{-x^2} \le e^{-2x+1}$.
- 3) Pour tout entier naturel n, on a

$$\begin{split} u_n &= \int_0^n \mathrm{e}^{-x^2} \, \mathrm{d}x \\ &\leq \int_0^n \mathrm{e}^{-2x+1} \, \mathrm{d}x \qquad \qquad \mathrm{car} \ \forall x \in [0,n], \ \mathrm{e}^{-x^2} \leq \mathrm{e}^{-2x+1} \ \mathrm{d'après} \ \mathrm{la} \ \mathrm{question} \ \mathrm{pr\'ec\'edente}. \\ &\leq \left[-\frac{1}{2} \, \mathrm{e}^{-2x+1} \right]_0^n \\ &\leq \frac{-\mathrm{e}^{-2n+1}}{2} - \left(-\frac{\mathrm{e}}{2} \right) \\ &\leq \frac{\mathrm{e}}{2} - \frac{\mathrm{e}^{-2n+1}}{2} \\ &\leq \frac{\mathrm{e}}{2} \qquad \qquad \mathrm{car} \ \forall n \in \mathbb{N}, \ \frac{\mathrm{e}^{-2n+1}}{2} > 0 \end{split}$$

4) La suite (u_n) est croissante d'après la question 1 et majorée par $\frac{e}{2}$ d'après la question 3, on en déduit donc que (u_n) converge.

Correction de l'exercice 6 :

1) Pour tout $x \in [0,1]$, $1+x \ge 1$ donc $\frac{1}{1+x} \le 1$. On en déduit que $\forall x \in [0,1], \forall n \in \mathbb{N}, \ \frac{x^n}{1+x} \le x^n$. Ainsi,

$$\forall n \in \mathbb{N}, \ I_n \le \int_0^1 x^n \, \mathrm{d}x$$
$$\le \left[\frac{x^{n+1}}{n+1}\right]_0^1$$
$$\le \frac{1}{n+1}$$

De plus, pour tout $x \in [0,1]$, $\frac{x^n}{1+x} \ge 0$ donc $I_n \ge 0$ comme intégrale d'une fonction positive.

Finalement, comme $\lim_{n\to+\infty}\frac{1}{n+1}=0$, on en déduit par encadrement que $\lim_{n\to+\infty}I_n=0$.

2) Pour tout entier n, on a

$$I_n + I_{n+1} = \int_0^1 \frac{x^n}{1+x} \, dx + \int_0^1 \frac{x^{n+1}}{1+x} \, dx$$

$$= \int_0^1 \left(\frac{x^n}{1+x} + \frac{x^{n+1}}{1+x} \right) dx$$

$$= \int_0^1 \frac{x^n + x^{n+1}}{1+x} \, dx$$

$$= \int_0^1 x^n \frac{1+x}{1+x} \, dx$$

$$= \int_0^1 x^n \, dx$$

$$= \frac{1}{n+1}$$

car on intègre sur le même intervalle

3) Pour tout $n \in \mathbb{N}^*$, posons $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$.

D'après la question précédente, on a pour tout $n \in \mathbb{N}$, $I_{n+1} = \frac{1}{n+1} - I_n$. On a donc

$$I_{1} = 1 - I_{0}$$

$$I_{2} = \frac{1}{2} - I_{1}$$

$$= \frac{1}{2} - 1 + I_{0}$$

$$I_{3} = \frac{1}{3} - I_{2}$$

$$= \frac{1}{3} - \frac{1}{2} + 1 - I_{0}$$

$$I_{4} = \frac{1}{4} - I_{3}$$

$$= \frac{1}{4} - \frac{1}{3} + \frac{1}{2} - 1 + I_{0}$$

$$\vdots$$

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $S_n = I_0 + (-1)^{n+1}I_n$.

- Initialisation : $S_1 = \frac{(-1)^2}{1} = 1$ d'une part, et d'autre part $I_0 + (-1)^{1+1}I_1 = I_0 + I_1 = 1$ d'après la question 2.
- **Hérédité**: Supposons que la relation soit vraie pour un certain entier $n \in N^*$.

Alors $S_n = I_0 + (-1)^{n+1} I_n$.

En ajoutant $\frac{(-1)^{n+2}}{n+1}$ de chaque côté, on obtient

$$\frac{(-1)^{n+2}}{n+1} + \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = I_0 + (-1)^{n+1} I_n + \frac{(-1)^{n+2}}{n+1}$$

$$S_{n+1} = I_0 + (-1)^n (-I_n + \frac{(-1)^2}{n+1})$$

$$S_{n+1} = I_0 + (-1)^n I_{n+1}$$

$$S_{n+1} = I_0 + (-1)^{n+2} I_{n+1}$$

donc la relation est vraie au rang n+1.

— Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $S_n = I_0 + (-1)^{n+1}I_n$.

De plus, on a
$$I_0 = \int_0^1 \frac{x^0}{1+x} dx = \int_0^1 \frac{1}{1+x} dx = [\ln(1+x)]_0^1 = \ln(2).$$

Comme $\lim_{n\to+\infty}I_n=0$ d'après la question 1, on en déduit que S_n converge et $\lim_{n\to+\infty}S_n=I_0=\ln(2)$.

Correction de l'exercice 7 :

1) On admet que f est définie sur $[0, +\infty[$, elle est donc dérivable comme quotient de fonctions dérivables et

$$f'(x) = \frac{e^x - x - x(e^x - 1)}{(e^x - x)^2}$$
$$= \frac{e^x (1 - x)}{(e^x - x)^2}$$

Pour tout $x \in [0; +\infty[$, $e^x > 0$ et $(e^x - x)^2 \ge 0$ donc f'(x) est du même signe que 1 - x.

De plus, f(0) = 0 et $f(x) \underset{x \to +\infty}{\sim} \frac{\hat{x}}{e^x}$ donc $\lim_{x \to +\infty} f(x) = 0$ par croissance comparée.

On en déduit le tableau de variations suivant :

x	0		1		$+\infty$
f'(x)		+	0	_	
f	0 -		$\rightarrow \frac{1}{e-1}$		→ 0

ainsi, $\forall x \in [0, +\infty[, f(x) \ge 0.$

2) Pour tout entier naturel n,

$$I_{n+1} - I_n = \int_0^{n+1} f(x) dx - \int_0^n f(x) dx$$
$$= \int_n^{n+1} f(x) dx$$
$$> 0$$

car $\forall x \in [n, n+1], f(x) \ge 0$ d'après la question précédente.

La suite (I_n) est donc croissante.

- 3) a) On admet que $\forall x \in [0; +\infty[$, $e^x x \ge \frac{e^x}{2}$. On a donc $\forall x \in [0; +\infty[$, $\frac{1}{e^x x} \le \frac{2}{e^x} = 2e^{-x}$ donc $\frac{x}{e^x x} \le 2xe^{-x}$. Ainsi, pour tout $n \in \mathbb{N}$, $I_n \le \int_0^n 2xe^{-x} dx$ par croissance de l'intégrale.
 - b) H est dérivable sur $[0; +\infty[$ comme produit de fonctions dérivables et $H'(x) = -e^{-x} (-x-1)e^{-x} = xe^{-x}$.
 - c) On déduit de la question précédente que 2H est une primitive de $x\mapsto 2x\,\mathrm{e}^{-x},$ donc

$$\int_0^n 2x e^{-x} = \left[2(-x - 1) e^{-x} \right]_0^n$$

$$= 2(-n - 1) e^{-n} + 2$$

$$\leq 2 \qquad \text{car } \forall n \in \mathbb{N}, \ 2(-n - 1) e^{-n} \leq 0$$

ainsi, pour tout $n \in \mathbb{N}$, $I_n \leq \int_0^n 2x e^{-x} dx \leq 2$

d) (I_n) est croissante d'après la question 2 et (I_n) est majorée par 2 d'après la question 3.c, on en déduit donc que (I_n) converge.

Correction de l'exercice 8 : On étudie la fonction $\varphi: \lambda \longmapsto \int_a^b (\lambda f(x) + g(x))^2 dx$.

Pour tout $x \in [a, b]$, $(\lambda f(x) + g(x))^2 \ge 0$, donc $\varphi(x) \ge 0$. De plus,

$$\forall \lambda \in \mathbb{R}, \ \varphi(\lambda) = \int_a^b (\lambda^2 (f(x))^2 + 2\lambda f(x) g(x) + (g(x))^2) \, \mathrm{d}x$$

$$= \lambda^2 \int_a^b (f(x))^2 \, \mathrm{d}x + 2\lambda \int_a^b f(x) g(x) \, \mathrm{d}x + \int_a^b (g(x))^2 \, \mathrm{d}x \qquad \text{par linéarité de l'intégrale}$$

On en déduit que φ est une fonction polynôme de degré 2 qui est toujours positive d'après la première remarque. Ainsi, le discriminant de φ est nécessairement négatif (ou nul). On a donc

$$4\left(\int_{a}^{b} f(x)g(x)\right)^{2} - 4\int_{a}^{b} (f(x))^{2} dx \int_{a}^{b} (g(x))^{2} \le 0$$

$$4\left(\int_{a}^{b} f(x)g(x)\right)^{2} \le 4\int_{a}^{b} (f(x))^{2} dx \int_{a}^{b} (g(x))^{2} dx$$

$$\left(\int_{a}^{b} f(x)g(x)\right)^{2} \le \int_{a}^{b} (f(x))^{2} dx \int_{a}^{b} (g(x))^{2} dx$$

d'où le résultat demandé.

Correction de l'exercice 9 : $t \mapsto e^{-\sqrt{t}}$ est une fonction continue donc elle admet une primitive. Pour tout $x \in \mathbb{R}$, on a

$$f(x) = \int_{x^2}^{x^4} e^{-\sqrt{t}} dt$$
$$= F(x^4) - F(x^2)$$

où F est une primitive de $x \mapsto e^{-\sqrt{x}}$.

Ainsi, f est dérivable sur \mathbb{R} comme différence de composée de fonctions dérivables sur \mathbb{R} , et

$$\forall x \in \mathbb{R}, \ f'(x) = 4x^3 F'(x^4) - 2xF'(x^2)$$
$$= 4x^3 e^{-\sqrt{x^4}} - 2x e^{-\sqrt{x^2}}$$
$$= 4x^3 e^{-|x|^2} - 2x e^{-|x|}$$

Correction de l'exercice 10 :

1) Dans la figure ci-dessous, on représenta la fonction f. L'intégrale $\int_0^x f(t) \, dt$ est colorée en bleu et l'intégrale $\int_0^{f(x)} f^{-1}(t) \, dt$ est colorée en vert. En effet, la courbe de f^{-1} s'obtient par symétrie axiale par rapport à la droite y=x, et cette dernière intégrale est donc l'aire entre la courbe de f et l'axe des ordonnées. La somme de ces deux aires est alors égale à celle du rectangle de côté x et f(x).

Pour démontrer ce résultat par le calcul, on pose pour tout $x \ge 0$, $\varphi(x) = \int_0^x f(t) dt + \int_0^{f(x)} f^{-1}(t) dt - xf(x)$.

D'après le théorème fondamental, $x \mapsto \int_0^x f(t) dt$ est dérivable et sa dérivée est $x \mapsto f(x)$.

De plus, f est continue (car dérivable) et strictement croissante, donc elle admet une bijection réciproque continue $f^{-1}: f(\mathbb{R}^+) \to \mathbb{R}^+$. De plus, puisque f est croissante et que f(0) = 0, on en déduit que $\forall x \in \mathbb{R}^+, f(x) \geq 0$.

$$\forall x \ge 0, \ \int_0^f (x)f^{-1}(t) \, dt = F(f(x)) - F(0)$$

où F est une primitive de f^{-1} . La dérivée de $x \mapsto \int_0^{f(x)} f^{-1}(t) dt$ est donc $x \mapsto f'(x)F'(f(x)) = f'(x)f^{-1}(f(x)) = xf'(x)$.

Enfin, $x \mapsto xf(x)$ est dérivable et sa dérivée est f(x) + xf'(x).

On en déduit que φ est dérivable sur $[0; +\infty[$ et que

$$\forall x \ge 0, F'(x) = f(x) + xf'(x) - x - xf'(x) = 0$$

Ainsi, φ est constante sur $[0; +\infty[$, et comme $F(0) = \int_0^0 f(t) dt + \int_0^{f(0)} f^{-1}(t) dt - 0 = 0$ car f(0) = 0 d'après l'énoncé, on en déduit que F est constante égale à 0, d'où l'égalité voulue.

2) Soit $(a, b) \in]0, +\infty[^2]$.

Reprenons la figure de la question 1 pour des valeurs de a et b quelconque :

On comprend pour quoi la somme des deux intégrales excède l'aire du rectangle d'aire $a\times b.$

On raisonne par disjonction de cas selon que $b \ge f(a)$ ou b < f(a).

≥ Supposons que $b \ge f(a)$ (cas représenté sur la figure ci-dessus). Alors, $\forall t \ge f(a)$, $f^{-1}(t) \ge a$ car f^{-1} est croissante. Alors, $\int_0^b f^{-1}(t) dt \ge \int_0^{f(a)} f^{-1}(t) dt + \int_{f(a)}^b a dt$.

$$\int_0^a f(t) \, \mathrm{d}t + \int_0^b f^{-1}(t) \, \mathrm{d}t \ge \int_0^a f(t) \, \mathrm{d}t + \int_0^{f(a)} f^{-1}(t) \, \mathrm{d}t + a(b - f(a))$$

$$\geq af(a) + a(b - f(a))$$

 $\geq ab$

d'après la question précédente

 \triangleright Supposons que $b \le f(a)$. Alors, $\forall t \ge f^{-1}(b), \ f(t) \ge b$ car f est croissante. On a donc

$$\int_{0}^{a} f(t) dt + \int_{0}^{b} f(t) dt = \int_{0}^{f^{-1}(b)} f(t) dt + \int_{f^{-1}(b)}^{a} f(t) dt + \int_{0}^{b} f(t) dt$$

$$\geq \int_{0}^{f^{-1}(b)} f(t) dt + \int_{f^{-1}(b)}^{a} b dt + \int_{0}^{b} f^{-1}(t) dt$$

$$\geq \int_{0}^{f^{-1}(b)} f(t) dt + \int_{0}^{b} f^{-1}(t) dt + b(a - f^{-1}(b))$$

$$\geq f^{-1}(b) f(f^{-1}(b) + b(a - f^{-1}(b))$$

$$\geq bf^{-1}(b) + ab - bf^{-1}(b)$$
d'après la question précédente

Correction de l'exercice 11:

1) Pour tout $t \in [0, 1]$, $f_0(t - t^2) = 1$ Pour tout $x \in [0, 1]$, $f_1(x) = 1 + \int_0^x f_0(t - t^2) dt = 1 + \int_0^x 1 dt = 1 + x$ Pour tout $x \in [0, 1]$,

$$f_2(x) = 1 + \int_0^x f_1(t - t^2) dt$$
$$= 1 + \int_0^x (1 + t - t^2) dt$$
$$= 1 + \left[t + \frac{t^2}{2} - \frac{t^3}{3}\right]_0^x$$
$$= 1 + x + \frac{x^2}{2} - \frac{x^3}{3}$$

2) Pour tout entier $n, f_n \geq 0$ entraı̂ne $f'_{n+1} \geq 0$ donc f_{n+1} croissante. Si f_{n+1} est croissante, comme $f_{n+1}(0) = 1$ on en déduit que f_{n+1} est positive. Puisque $f_0 \geq 0$ on en déduit par récurrence immédiate que pour tout $n \in \mathbb{N}$, f_n est croissante et positive.

Soit $x \in [0,1]$ fixé. D'après la question précédente, on conjecture que la suite $(f_n(x))_{n \in \mathbb{N}}$ est croissante. Montrons par récurrence que pour tout entier n on a $\forall x \in [0,1], f_{n+1}(x) - f_n(x) \ge 0$

- **Initialisation**: $\forall x \in [0, 1], f_1(x) f_0(x) = 1 + x 1 = x \ge 0.$
- **Hérédité :** Supposons que $\forall x \in [0,1], \ f_{n+1}(x) f_n(x) \ge 0.$ Alors,

$$\forall x \in [0, 1], \ f_{n+2}(x) - f_{n+1}(x) = \left(1 + \int_0^x f_{n+1}(t - t^2) dt\right) - \left(1 + \int_0^x f_n(t - t^2) dt\right)$$
$$= \int_0^x (f_{n+1}(t - t^2) - f_n(t - t^2)) dt$$
$$> 0$$

car $\forall t \in [0,1], f_{n+1}(t-t^2) - f_n(t-t^2) \ge 0$ par hypothèse de récurrence

— Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $\forall x \in [0,1]$, $f_{n+1}(x) - f_n(x) \ge 0$. On en déduit que quel que soit $x \in [0,1]$ fixé, la suite $(f_n(x))_{n \in \mathbb{N}}$ est croissante.

- 3) On raisonne par récurrence, on note pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n) : \forall x \in [0,1], 1+x \leq f_n(x) \leq e^x$.
 - **Initialisation :** On a déjà montré que $\forall x \in [0,1], f_1(x) = 1 + x \ge 1 + x$, et on sait que $\forall x \in \mathbb{R}$, $e^x \ge 1 + x$ (par étude de la fonction $g: x \mapsto e^x x 1$ par exemple).

Ainsi, $\mathcal{P}(1)$ est vraie.

— **Hérédité**: Supposons que $\mathcal{P}(n)$ soit vrai pour un certain rang $n \in \mathbb{N}^*$.

Alors, $\forall x \in [0, 1], 1 + x \le f_n(x) \le e^x$.

On a donc, $\forall t \in [0, 1], 1 + t - t^2 \le f_n(t - t^2) \le e^{t - t^2}$.

Le polynôme $t-t^2$ a deux racines, 0 et 1, on en déduit ses variations :

t	0	$\frac{1}{2}$	1
$t-t^2$	0 —	$\frac{1}{4}$	→ 0

Ainsi, on a déjà $\forall t \in [0,1], 1 \leq f_n(t-t^2)$. On en déduit que $\forall x \in [0,1], 1 + \int_0^x f_n(t-t^2) dt \geq 1 + \int_0^x 1 dt \geq 1 + x$.

Ainsi, $f_{n+1}(x) \ge 1 + x$.

Pour démontrer l'autre inégalité, on utilise le fait que $\forall t \in [0,1], t-t^2 \leq t$ donc $e^{t-t^2} \leq e^t$. En intégrant l'inégalité $f_n(t-t^2) \leq e^{t-t^2}$ sur [0,x], on obtient

$$\int_0^x f_n(t - t^2) \le \int_0^x e^t dt \le e^x - e^0$$

Ainsi, $f_{n+1}(x) = 1 + \int_0^x f_n(t - t^2) dt \le 1 + e^x - 1 \le e^x$.

- Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $\forall x \in [0,1], 1+x \leq f_n(x) \leq e^x$.
- 4) Pour un réel x fixé, la suite $(f_n(x))_{n\in\mathbb{N}}$ est croissante d'après la question 2 et majorée par e^x , donc cette suite converge. On note f(x) la limite.
- 5) Par récurrence immédiate, pour tout entier $n,\,f_n$ est dérivable.

D'après le théorème fondamental, $\forall x \in [0,1], \ f'_{n+1}(x) = f_n(x-x^2) \le e^{x-x^2} \le e^x \le e \text{ car } x \in [0,1].$

Ainsi, e est un majorant de $|f'_{n+1}(x)|$ sur [0,1]. Soient $(x,y) \in [0,1]^2$, d'après l'inégalité des accroissements finis on a $|f_{n+1}(x) - f_{n+1}(y)| \le e|x-y|$

Puisque les suites $(f_{n+1}(x))_{n\in\mathbb{N}}$ et $(f_{n+1}(y))_{n\in\mathbb{N}}$ convergent respectivement vers f(x) et f(y), on en déduit par passage à la limite que $|f(x) - f(y)| \le e|x - y|$.

6) Montrons que pour tout $a \in [0,1]$, $\lim_{x \to a} f(x) = f(a)$.

Soit donc $a \in [0,1]$ fixé et soit $\varepsilon > 0$.

Pour tout $x \in [0, 1], |f(x) - f(a)| \le e|x - a|$.

On pose $\mu = \frac{1}{2} e^{-1} \varepsilon$. Alors pour tout $x \in]a - \mu, a + \mu[$,

$$|f(x) - f(a)| \le e |x - a|$$

$$\le e \times \frac{1}{2} e^{-1} \varepsilon$$

$$\le \frac{1}{2} \varepsilon$$

On a donc montré que $\lim_{x\to a} f(x) = f(a)$, donc f est continue en a. Le raisonnement ci-dessus étant valable quel que soit $a \in [0,1]$, f est finalement continue sur [0,1].

Correction de l'exercice 12:

a)

$$\int_0^1 (x+1) e^x dx = [(x+1) e^x]_0^1 - \int_0^1 e^x dx$$

$$= 2e - 1 - [e^{x}]_{0}^{1}$$

$$= 2e - 1 - e + 1$$

$$= e$$

b)

$$\int_0^{\pi} x \sin x = [-x \cos x]_0^{\pi} - \int_0^{\pi} -\cos x \, dx$$
$$= -\pi(-1) + 0 + [\sin x]_0^{\pi}$$
$$= \pi$$

c)

$$\int_{1}^{e} x^{3} \ln(x) dx = \left[\frac{x^{4}}{4} \ln(x) \right] - \int_{1}^{e} \frac{x^{4}}{4} \times \frac{1}{x} dx$$

$$= \frac{e^{4}}{4} \ln(e) - \frac{e^{4}}{4} \ln(1) - \int_{1}^{e} \frac{x^{3}}{4} dx$$

$$= \frac{e^{4}}{4} - \left[\frac{x^{4}}{16} \right]_{1}^{e}$$

$$= \frac{e^{4}}{4} - \frac{e^{4}}{16} + \frac{1}{16}$$

$$= \frac{3 e^{4} + 1}{16}$$

d)

$$\int_0^{\ln(2)} (x^2 + 3x) e^x = \left[(x^2 + 3x) e^x \right]_0^{\ln(2)} - \int_0^{\ln(2)} (2x + 3) e^x dx$$

$$= ((\ln(2))^2 + 3\ln(2)) e^{\ln(2)} - 0 - \left[(2x + 3) e^x \right]_0^{\ln(2)} - \int_0^{\ln(2)} 2 e^x dx$$

$$= 2(\ln(2))^2 + 6\ln(2) - (2(2\ln(2) + 3) - 3) + \left[2 e^x \right]_0^{\ln(2)}$$

$$= 2(\ln(2))^2 + 6\ln(2) - 4\ln(2) - 6 + 3 + 4 - 2$$

$$= 2(\ln(2))^2 + 2\ln(2) - 1$$

e)

$$\int_{1}^{e^{2}} \frac{\ln(t)}{t} dt = \left[(\ln(t))^{2} \right]_{1}^{e^{2}} - \int_{1}^{e^{2}} \frac{\ln(t)}{t} dt$$

$$2 \int_{1}^{e^{2}} \frac{\ln(t)}{t} = (\ln(e^{2}))^{2} - (\ln(1))^{2}$$

$$\int_{1}^{e^{2}} \frac{\ln(t)}{t} dt = \frac{(\ln(e^{2}))^{2}}{2} = 2$$

f)

$$\begin{split} \int_0^{\frac{\pi}{2}} e^{\theta} \sin \theta \, d\theta &= \left[-e^{\theta} \cos \theta \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -e^{\theta} \cos \theta \, d\theta \\ &= -e^{\frac{\pi}{2}} \cos(\frac{\pi}{2}) - (-1\cos(0)) + \left[e^{\theta} \sin \theta \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} e^{\theta} \sin \theta \, d\theta \end{split}$$

$$2\int_0^{\frac{\pi}{2}} e^{\theta} \sin \theta \, d\theta = 1 + e^{\frac{\pi}{2}} \sin(\pi/2) - 0$$

donc
$$\int_0^{\frac{\pi}{2}} e^{\theta} \sin \theta \, d\theta = \frac{1}{2} \left(1 + e^{\frac{\pi}{2}} \right)$$

Correction de l'exercice 13:

1)

$$\int_{1}^{e} \ln x \, dx = \int_{1}^{e} 1 \times \ln x \, dx$$
$$= \left[x \ln(x) \right]_{1}^{e} - \int_{1}^{e} \frac{x}{x} \, dx$$
$$= e - 0 - (e - 1)$$
$$= 1$$

TD 16: Intégration

2)

$$\int_{1}^{e} (\ln(x))^{2} = \left[x(\ln(x))^{2} \right]_{1}^{e} - \int_{1}^{e} 2x \ln x \times \frac{1}{x} dx$$

$$= e - 0 - \int_{1}^{e} 2 \ln(x)$$

$$= e - 2[x \ln x - x]_{1}^{e}$$

$$= e - 2(e - e - (0 - 1))$$

$$= e - 2$$

3)

$$\int_0^1 \arctan(u) \, du = \left[u \arctan u \right]_0^1 - \int_0^1 \frac{u}{1+u^2} \, du$$

$$= \arctan(1) - \left[\frac{1}{2} \ln(1+u^2) \right]_0^1$$

$$= \frac{\pi}{4} - \frac{1}{2} \ln(2)$$

Correction de l'exercice 14:

1) Par intégration par partie, comme f est \mathcal{C}^1 , on a

$$I_n = \left[-\frac{1}{n} f(t) \cos(nt) \right]_a^b + \int_a^b \frac{1}{n} f'(t) \cos(nt) dt$$
$$= \frac{f(a) \cos(na) - f(b) \cos(nb)}{n} + \frac{1}{n} J_n$$

Il ne reste plus qu'à montrer que la suite (u_n) définie par $u_n = \frac{f(a)\cos(na) - f(b)\cos(nb)}{1}$ tend vers 0.

f est continue sur [a,b]. Une fonction continue sur un segment est bornée. Il existe un réel M tel que pour tout $x \in [a,b]$, $|f(x)| \leq M$. De plus, $\forall x \in [a, b], |\cos(nx)| \leq 1$.

On en déduit que $|f(a)\cos(na) - f(b)\cos(nb)| \le |f(a)| \times |\cos(na)| + |f(b)| \times |\cos(nb)| \le 2M$

Ainsi, pour tout $n \in \mathbb{N}$, $|u_n| \leq \frac{2M}{n}$ donc $u_n \xrightarrow[n \to \infty]{} 0$.

2) f est \mathcal{C}^1 sur [a,b] donc f' est continue sur [a,b]. Une fonction continue sur un segment est bornée donc il existe $Q \in \mathbb{R}$ tel que $\forall x \in [a, b], |f'(x)| \leq Q.$

Alors,

$$|J_n| = \left| \int_a^b f'(t) \cos(nt) \, dt \right|$$

$$\leq \int_a^b |f'(t) \cos(nt)| \, dt$$

$$\leq \int_a^b M \, dt$$

 $\operatorname{car} \forall n \in \mathbb{N}, \forall t \in [a, b], |\cos(nt)| \leq 1.$

$$\leq M(b-a)$$

Donc $|J_n|$ est majoré par M(b-a) donc J_n est bornée.

3) Comme J_n est bornée on en déduit que $\lim_{n\to+\infty}\frac{1}{n}J_n=0$ donc que $\lim_{n\to+\infty}I_n=0$ par somme de limites.

Correction de l'exercice 15:

- 1) $\forall n \in \mathbb{N}, \forall u \in [0, 1], \ 0 \le u^n e^u \le u^n e \text{ donc } 0 \le I_n \le e \int_0^1 u^n du = e \left[\frac{u^{n+1}}{n+1}\right]_0^1 = \frac{e}{n+1}.$ Or $\lim_{n \to +\infty} \frac{e}{n+1} = 0$ donc $\lim_{n \to +\infty} I_n = 0.$
- 2) Par intégration par partie, pour tout entier naturel n on a

$$I_n = \left[\frac{u^{n+1} e^u}{n+1}\right]_0^1 - \int_0^1 \frac{u^{n+1} e^u}{n+1} du$$
$$= \frac{e}{n+1} - \frac{1}{n+1} I_{n+1}$$

3) D'après la question précédente, $(n+1)I_n = e - I_{n+1}$ et $I_{n+1} \xrightarrow[n \to +\infty]{} 0$ donc $\lim_{n \to +\infty} (n+1)I_n = e$. Ainsi, $I_n \underset{n \to \infty}{\sim} \frac{e}{n+1} \underset{n \to \infty}{\sim} \frac{e}{n}$.

Correction de l'exercice 16

1) f est de classe \mathcal{C}^1 et M est un majorant de |f'(t)| sur [a,b]. D'après l'inégalité des accroissements finis, pour tout $t \in [a,b]$ on a $|f(t)-f(a)| \leq M|t-a|$ et $|f(b)-f(t)| \leq M|b-t|$ donc $|f(t)| \leq M(t-a)$ et $|f(t)| \leq M(b-t)$. Le problème est symétrique par rapport à $\frac{a+b}{2}$, on sépare l'intégrale en deux :

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| = \left| \int_{a}^{\frac{a+b}{2}} f(t) \, \mathrm{d}t + \int_{\frac{a+b}{2}}^{b} f(t) \, \mathrm{d}t \right|$$

$$\leq \left| \int_{a}^{\frac{a+b}{2}} f(t) \, \mathrm{d}t \right| + \left| \int_{\frac{a+b}{2}}^{b} f(t) \, \mathrm{d}t \right|$$

$$\leq \int_{a}^{\frac{a+b}{2}} |f(t)| \, \mathrm{d}t + \int_{\frac{a+b}{2}}^{b} |f(t)| \, \mathrm{d}t$$

$$\leq \int_{a}^{\frac{a+b}{2}} M(t-a) \, \mathrm{d}t + \int_{\frac{a+b}{2}}^{b} M(b-t) \, \mathrm{d}t$$

$$\leq M \left[\frac{(t-a)^{2}}{2} \right]_{a}^{\frac{a+b}{2}} - M \left[\frac{(b-t)^{2}}{2} \right]_{\frac{a+b}{2}}^{b}$$

$$\leq \frac{M}{2} \left(\left(\frac{a+b}{2} - a \right)^{2} \right) + \frac{M}{2} \left(b - \frac{a+b}{2} \right)^{2}$$

$$\leq \frac{M}{2} \left(\frac{(b-a)^2}{4} + \frac{(b-a)^2}{4} \right)$$
$$\leq \frac{M(b-a)^2}{4}$$

2) L'inégalité précédente est une égalité si et seulement si chacune des inégalité utilisées sont des égalités. Ainsi, pour tout $t \in [a, \frac{a+b}{2}], |f(t)| = M(t-a)$ et pour tout $t \in [\frac{a+b}{2}, b], |f(t)| = M(b-t)$. On a donc $\forall t \in [a, \frac{a+b}{2}], |f(t)|^2 = M^2(t-a)^2$ et $\forall t \in [\frac{a+b}{2}, b], |f(t)|^2 = M^2(b-t)^2$. Or f^2 est dérivable comme carré d'une fonction dérivable. Sur $[a, \frac{a+b}{2}]$ on a $f'(t) = 2M^2(t-a)$ et sur $[\frac{a+b}{2}, b]$ on a $f'(t) = -2M^2(b-t)$. Ainsi, $f'(\frac{a+b}{2}) = 2M^2\frac{b-a}{2} = -2M^2\frac{b-a}{2}$, ce qui n'est possible que si M = 0, donc f est la fonction nulle.

Correction de l'exercice 17:

1)
$$u = t^2 + 1 \iff t = \sqrt{u - 1}$$

 $du = 2t dt$

$$\int_0^1 \frac{2t \ln(t^2 + 1)}{t^2 + 1} dt = \int_{0^2 + 1}^{1^2 + 1} \frac{\ln(u)}{u} du$$
$$= \left[\frac{(\ln(u))^2}{2} \right]_1^2$$
$$= \frac{(\ln(2))^2}{2}$$

2)
$$u = t^{1/3} \iff t = u^3$$

 $du = \frac{1}{3}t^{-2/3} dt = \frac{1}{3(\sqrt[3]{t})^2} dt \text{ donc } dt = 3u^2 du.$

$$\int_{1}^{8} \frac{dt}{\sqrt[3]{t} + t} = \int_{\sqrt[3]{1}}^{\sqrt[3]{8}} \frac{3u^{2} du}{u + u^{3}}$$

$$= \int_{1}^{2} \frac{3u}{1 + u^{2}} du$$

$$= \left[\frac{3}{2} \ln(1 + u^{2}) \right]_{1}^{2}$$

$$= \frac{3}{2} \ln(5) - \frac{3}{2} \ln(2)$$

$$= \frac{3}{2} \ln\left(\frac{5}{2}\right)$$

3)
$$u = \frac{1}{t} \iff t = \frac{1}{u}$$

$$du = -\frac{1}{t^2} dt = -u^2 dt \text{ donc } dt = -\frac{du}{u^2}.$$

$$\int_{1/8}^{1/3} \frac{dt}{t\sqrt{t^2 + t}} = \int_2^1 \frac{u}{\sqrt{\frac{1}{u^2} + \frac{1}{u}}} \times \left(-\frac{du}{u^2}\right)$$

$$= \int_3^8 \frac{-du}{u\sqrt{\frac{1}{u^2} + \frac{1}{u}}}$$

$$= \int_3^8 \frac{du}{\sqrt{1 + u}}$$

$$= \left[2\sqrt{1 + u}\right]_2^8$$

$$= 2\sqrt{9} - 2\sqrt{4}$$
$$= 2$$

4)
$$u = e^t$$

 $du = e^t dt = u dt donc dt = \frac{du}{u}$

$$\int_0^{\ln(\sqrt{3})} \frac{\mathrm{d}t}{\mathrm{e}^t + \mathrm{e}^{-t}} = \int_1^{\sqrt{3}} \frac{\mathrm{d}u}{u\left(u + \frac{1}{u}\right)}$$

$$= \int_1^{\sqrt{3}} \frac{\mathrm{d}u}{u^2 + 1}$$

$$= \arctan(\sqrt{3}) - \arctan(1)$$

$$= \frac{\pi}{3} - \frac{\pi}{4}$$

$$= \frac{\pi}{12}$$

Correction de l'exercice 18 : D'après la relation de Chasles,

$$\int_{a}^{a+T} f(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{b}^{b+T} f(x) \, \mathrm{d}x + \int_{b+T}^{a+T} f(x) \, \mathrm{d}x$$

$$= \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{b}^{b+T} f(x) \, \mathrm{d}x + \int_{b}^{a} f(u+T) \, \mathrm{d}u \qquad \text{en posant } u = x - T, \, \mathrm{d}u = \mathrm{d}x$$

$$= \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{b}^{b+T} f(x) \, \mathrm{d}x + \int_{b}^{a} f(u) \, \mathrm{d}u \qquad \text{car } f \text{ est } T\text{-p\'eriodique}$$

$$= int_{b}^{b+T} f(x) \, \mathrm{d}x + \int_{a}^{a} f(x) \, \mathrm{d}x \qquad \text{d'apr\`es la relation de Chasles}$$

$$= \int_{b}^{b+T} f(x) \, \mathrm{d}x$$

Correction de l'exercice 19:

1) On pose $u = \frac{\pi}{2} - t$ donc du = -dt. Ainsi on a

$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} = \int_{\frac{\pi}{2}}^0 \frac{-\cos\left(\frac{\pi}{2} - u\right)}{\sin\left(\frac{\pi}{2} - u\right) + \cos\left(\frac{\pi}{2} - u\right)} du$$
$$= \int_0^{\frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} - u\right)}{\sin\left(\frac{\pi}{2} - u\right) + \cos\left(\frac{\pi}{2} - u\right)} du$$
$$= \int_0^{\frac{\pi}{2}} \frac{\sin(u)}{\cos u + \sin u} du$$

par application des formules de trigonométrie.

2) On en déduit que $2 \times \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t + \cos t} dt = \int_0^{\frac{\pi}{2}} \frac{\cos t + \sin t}{\sin t + \cos t} = \int_0^{\frac{\pi}{2}} 1 dt = \frac{\pi}{2}$, d'où $\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t + \cos t} dt = \frac{\pi}{4}$. En posant $x = \sin t$, on a $dx = \cos t dt$ et $\cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - x^2}$ sur l'intervalle $[0, \frac{\pi}{2}]$. Ainsi,

$$\int_0^{\frac{\pi}{2}} \frac{\cos t \, dt}{\sin t + \cos t} = \int_{\sin(0)}^{\sin(\frac{\pi}{2})} \frac{dx}{x + \sqrt{1 - x^2}}$$
$$= \int_0^1 \frac{dx}{\sqrt{1 - x^2} + x}$$

on en conclut que
$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}+x} = \frac{\pi}{4}.$$

Correction de l'exercice 20:

1)

$$W_0 = \int_0^{\frac{\pi}{2}} \sin^0(x) \, \mathrm{d}x$$
$$= \int_0^{\frac{\pi}{2}} 1 \, \mathrm{d}x$$
$$= \frac{\pi}{2}$$

$$W_1 = \int_0^{\frac{\pi}{2}} \sin(x) dx$$
$$= \left[-\cos x \right]_0^{\frac{\pi}{2}}$$
$$= -\cos(\frac{\pi}{2}) + \cos 0$$

2) Pour tout $n \in \mathbb{N}$, $W_n \ge 0$ car c'est l'intégrale d'une fonction positive sur $[0, \frac{\pi}{2}]$. De plus, (W_n) est une suite décroissante. En effet, pour tout $x \in [0, \frac{\pi}{2}]$, $0 \le \sin(x) \le 1$ donc $\sin^{n+1}(x) \le \sin^n(x)$. Ainsi, pour tout entier naturel n,

$$W_{n+1} = \int_0^{\frac{\pi}{2}} \sin^{n+1}(x) dx$$
$$\leq \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$
$$\leq W_n$$

 (W_n) est donc une suite décroissante et minorée par 0 donc elle converge vers un réel $\ell \geq 0$.

3) On pose le changement de variable $t = \frac{\pi}{2} - x$, donc dt = -dx. On a donc

$$\int_0^{\frac{\pi}{2}} \sin^n(x) \, dx = \int_{\frac{\pi}{2} - 0}^{\frac{\pi}{2} - \frac{\pi}{2}} \sin^n(\frac{\pi}{2} - t)(-dt)$$
$$= -\int_{\frac{\pi}{2}}^0 \cos^n(t) \, dt$$
$$= \int_0^{\frac{\pi}{2}} \cos^n(t) \, dt$$

4) On en déduit que $W_2 = \int_0^{\frac{\pi}{2}} \sin^2(x) dx = \int_0^{\frac{\pi}{2}} \cos^2(x) dx$.

$$2W_2 = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx + \int_0^{\frac{\pi}{2}} \cos^2 x \, dx$$
$$= \int_0^{\frac{\pi}{2}} (\sin^2(x) + \cos^2(x)) \, dx$$

$$= \int_0^{\frac{\pi}{2}} 1 \, \mathrm{d}x$$
$$= \frac{\pi}{2}$$

On en déduit que $W_2 = \frac{\pi}{4}$.

5) Pour tout entier naturel n, on a par intégration par partie

$$W_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+2}(x) \, \mathrm{d}x = \left[-\cos(x) \sin^{n+1}(x) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -\cos(x) \times (n+1) \cos(x) \sin^n(x) \, \mathrm{d}x$$

$$= 0 + (n+1) \int_0^{\frac{\pi}{2}} \cos^2(x) \sin^n(x) \, \mathrm{d}x$$

$$= (n+1) \int_0^{\frac{\pi}{2}} (1 - \sin^2(x)) \sin^n(x) \, \mathrm{d}x$$

$$= (n+1) \int_0^{\frac{\pi}{2}} \sin^n(x) \, \mathrm{d}x - (n+1) \int_0^{\frac{\pi}{2}} \sin^{n+2}(x) \, \mathrm{d}x$$

$$= (n+1) W_n - (n+1) W_{n+2}$$

On en déduit donc

$$(n+2)W_{n+2} = (n+1)W_n$$
$$W_{n+2} = \frac{n+1}{n+2}W_n$$

6) Montrons que la suite $((n+1)W_nW_{n+1})_{n\in\mathbb{N}}$ est une suite constante. On note pour tout $n\in\mathbb{N},\ V_n=(n+1)W_nW_{n+1}$. Alors

$$\forall n\in\mathbb{N}, V_{n+1}=(n+2)W_{n+1}W_{n+2}$$

$$=(n+2)W_{n+1}\frac{n+1}{n+2}W_n$$
 d'après la question 5
$$=(n+1)W_nW_{n+1}$$

$$=V_n$$

donc (V_n) est bien une suite constante, et de plus $V_0 = (0+1)W_0W_1 = 1 \times \frac{\pi}{2} \times 1 = \frac{\pi}{2}$ d'après la question 1. Finalement, pour tout $n \in \mathbb{N}$, $V_n = \frac{\pi}{2}$ donc $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.

7) On a montré à la question 2 que (W_n) convergeait vers un réel ℓ . Pour tout $n \in \mathbb{N}$, $W_n W_{n+1} = \frac{\pi}{2(n+1)}$ d'après la question précédente. Or $\lim_{n \to +\infty} W_n = \lim_{n \to +\infty} W_{n+1} = \ell$ et $\lim_{n \to +\infty} \frac{\pi}{2(n+1)} = 0$ donc par passage à la limite on obtient $\ell^2 = 0$ donc $\ell = 0$.

Intéressons nous maintenant à la suite $\frac{W_n}{W_{n+1}}$.

On a montré à la question 2 que (W_n) était décroissante, ainsi pour tout entier n on a $W_{n+1} \leq W_n$ et $W_{n+2} \leq W_{n+1}$. Ainsi, $\frac{W_n}{W_{n+1}} \geq 1$ et de plus, $\frac{n+2}{n+1} = \frac{W_n}{W_{n+2}} \geq \frac{W_n}{W_{n+1}} \geq 1$ car $W_n > 0$.

Comme $\lim_{n\to+\infty} \frac{n+1}{n+2} = 1$, on en déduit par théorème d'encadrement que $\lim_{n\to+\infty} \frac{W_{n+1}}{W_n} = 1$.

On a ainsi $W_n \underset{n \to \infty}{\sim} W_{n+1}$, donc d'après la question précédente $\frac{\pi}{2} = (n+1)W_nW_{n+1} \underset{n \to \infty}{\sim} nW_n^2$. Ainsi, $\sqrt{n}W_n \underset{n \to \infty}{\sim} \sqrt{\frac{\pi}{2}}$ donc $\lim_{n \to +\infty} \sqrt{n}W_n = \sqrt{\frac{\pi}{2}}$.

8) Pour tout $n \in \mathbb{N}$, d'après la question 5, on a

$$\begin{split} W_{2n} &= \frac{2n-1}{2n} W_{2n-2} \\ &= \frac{(2n-1)(2n-3)}{2n(2n-2)} W_{2n-4} \\ &= \frac{(2n-1) \times (2n-3) \times \dots \times 1}{2n \times (2n-2) \times \dots \times 2} \times W_0 \\ &= \frac{(2n-1) \times (2n-3) \times \dots \times 1}{2n \times (2n-2) \times \dots \times 2} \times \frac{\pi}{2} \\ &= \frac{((2n-1) \times (2n-3) \times \dots \times 1) \times (2n \times (2n-2) \times \dots \times 2)}{(2n \times (2n-2) \times \dots \times 2)^2} \times \frac{\pi}{2} \\ &= \frac{(2n)!}{2^{2n} \times (n \times (n-1) \times \dots \times 1)^2} \times \frac{\pi}{2} \\ &= \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2} \end{split}$$

Pour le rédiger plus rigoureusement, on raisonne par récurrence :

- Initialisation : Pour $n=0, W_0=\frac{\pi}{2}$ et $\frac{0!}{2^0\times 0!^2}\frac{\pi}{2}=\frac{\pi}{2}$, donc l'égalité est vraie au rang 0.
- **Hérédité**: Supposons qu'il existe un entier naturel n tel que $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$, et montrons que $W_{2n+2} = \frac{(2n+2)!}{2^{2n+2}(n+1)!^2} \frac{\pi}{2}$.

 Alors,

$$\begin{split} W_{2(n+1)} &= W_{2n+2} \\ &= \frac{2n+1}{2n+2} W_{2n} \\ &= \frac{(2n+1)(2n)!}{(2n+2)2^{2n}(n!)^2} \frac{\pi}{2} \\ &= \frac{(2n+2)!}{(2n+2)^2 2^{2n}(n!)^2} \frac{\pi}{2} \end{split} \qquad \text{par hypothèse de récurrence} \\ &= \frac{(2n+2)!}{(2n+2)^2 2^{2n}(n!)^2} \frac{\pi}{2} \\ &= \frac{(2n+2)!}{2^2 (n+1)^2 2^{2n}(n!)^2} \frac{\pi}{2} \\ &= \frac{(2n+2)!}{2^{2n+2}((n+1)!)^2} \frac{\pi}{2} \end{split}$$

donc l'égalité est vraie au rang n+1

— Conclusion: Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$

Correction de l'exercice 21:

1) On fait le changement de variable $x = \sin t$, donc $dx = \cos t dt$. On a donc

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{\sin(0)}^{\sin(\frac{\pi}{2})} \sqrt{1 - x^{2}} \, dx$$

$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2}(t)} \cos t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos(t) \cos(t) \, dt$$

car sur $\left[0, \frac{\pi}{2}\right]$ on a $\cos t = \sqrt{1 - \sin^2 t}$

$$= \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} \, \mathrm{d}t$$

d'après la formule de linéarisation du cosinus

2) Notons pour tout entier naturel non nul n, $S_n = \sum_{k=1}^n \frac{\sqrt{n^2 - k^2}}{n^2}$.

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{k=1}^n \frac{n\sqrt{1 - \frac{k^2}{n^2}}}{n^2}$$

$$= \frac{1}{n} \sum_{k=1}^n \sqrt{1 - \left(\frac{k}{n}\right)^2}$$

$$= \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$
avec $f: x \longmapsto \sqrt{1 - x^2}$.

Or f est une fonction continue sur [0,1] donc d'après la propriété des sommes de Riemann, S_n converge et

$$\lim_{n \to +\infty} S_n = \int_0^1 f(x) \, \mathrm{d}x$$
$$= \int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x$$

On calcule cette intégrale à l'aide de la question précédente :

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} \, dt$$

$$= \int_0^{\frac{\pi}{2}} \frac{1}{2} \, dt + \int_0^{\frac{\pi}{2}} \frac{\cos(2t)}{2} \, dt$$

$$= \frac{\pi}{4} + \left[\frac{\sin(2t)}{4} \right]_0^{\frac{\pi}{2}}$$

$$= \frac{\pi}{4} + \frac{\sin(\pi)}{4} - \frac{\sin 0}{4}$$

Ainsi
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n^2 - k^2}{n^2} = \frac{\pi}{4}$$

Correction de l'exercice 22:

1) Par intégration par partie :

$$\int_0^1 \ln(1+x) \, \mathrm{d}x = \left[(1+x) \ln(1+x) \right]_0^1 - \int_0^1 \frac{1+x}{1+x} \, \mathrm{d}x$$
$$= \boxed{2 \ln(2) - 1}$$

Remarque: on pouvait aussi faire le changement de variable u=x+1 et utiliser la primitive $x\mapsto x\ln x-x$ de $x\mapsto \ln x$.

2) u_n n'est pas sous forme de somme, on s'intéresse à la suite (v_n) définie pour tout $n \in \mathbb{N}^*$ par $v_n = \ln(u_n)$.

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n} \left(\ln((2n)!) - \ln(n^n) - \ln(n!) \right)$$

$$= \frac{1}{n} \left(\sum_{k=1}^{2n} \ln k - n \ln n - \sum_{k=1}^{n} \ln k \right)$$

$$= \frac{1}{n} \left(\sum_{k=n+1}^{2n} \ln k - n \ln n \right)$$

$$= \frac{1}{n} \left(\sum_{j=1}^{n} \ln(n+j) - n \ln n \right)$$

$$= \frac{1}{n} \left(\sum_{j=1}^{n} (\ln(n+j) - \ln n) \right)$$

$$= \frac{1}{n} \sum_{j=1}^{n} \ln \left(1 + \frac{j}{n} \right)$$

$$= \frac{1}{n} \sum_{j=1}^{n} f\left(\frac{j}{n}\right)$$

avec $f: x \longmapsto \ln(1+x)$ continue sur [0,1]

Ainsi, d'après la propriété des sommes de Riemann, (v_n) converge et $\lim_{n\to+\infty}v_n=\int_0^1f(x)\,\mathrm{d}x=2\ln(2)-1$ d'après la question précédente.

Puisque $\forall n \in \mathbb{N}^*$, $u_n = e_n^v$, on en déduit que (u_n) converge et que $\lim_{n \to +\infty} u_n = e^{2\ln(2)-1}$ par composition de limites.

Ainsi,
$$\lim_{n \to +\infty} u_n = (e^{\ln(2)})^2 e^{-1} = 4 e^{-1}$$