

Reusable Tagset Conversion Using Tagset Drivers

Daniel Zeman

Univerzita Karlova Ústav formální a aplikované lingvistiky Malostranské náměstí 25 CZ-11800 Praha

zeman@ufal.mff.cuni.cz

https://wiki.ufal.ms.mff.cuni.cz/user:zeman:interset

(downloads and documentation)

Abstract

Part-of-speech or morphological tags are important means of annotation in a vast number of corpora. However, different sets of tags are used in different corpora, even for the same language. Tagset conversion is difficult, and solutions tend to be tailored to a particular pair of tagsets. We propose a universal approach that makes the conversion tools reusable. We also provide an indirect evaluation in the context of a parsing task.

Universal Set of Features

The key idea of our approach is to have a feature structure capable of storing all or most information from any tagset. The structure contains all features whose values are usually encoded in tags. The role of this universal set ("Interset") is similar to the role of Interlingua in Interlingua-based machine translation or the role of Unicode among character sets. The Interset serves as an intermediate step on the way from tagset A to tagset B. The interaction between the Interset and tagsets A and B, respectively, is described in what we call tagset drivers. Once we write the drivers, we can do the two-way conversion A to B and B to A, plus the conversion between one of these tagsets and any other tagset that has been defined so far.

unclassified particle (Czech TT, English RP, Swedish Q-----)

interrogative particle (Arabic FI الله hal, Bulgarian тп ли li)

auxiliary particle (Bulgarian Tx ∂a da = "to", щe šte = "will")

modal particle (Bulgarian тт май тај = "possibly")

emphasis particle (Bulgarian те даже daže = "even")

verbal particle (Bulgarian ту нека neka = "let")

affirmative particle (Bulgarian Ta ∂a da)

Particles

negative particle (Arabic FN У lā, Bulgarian Tn не ne, German PTKNEG nicht)

response particle (German PTKANT ja = "yes", nein = "no", doch = "yes",

Difficult phenomena

Endemic word classes are roofed by more common parts of speech. It makes encoding safer when the target tagset does not know the word class.

Nouns (Common Nouns, Proper Nouns, Substantive Pronouns (Personal, Demonstrative, Interrogative, Relative, Indefinite, Negative))
 Adjectives (Adjectives, **Determiners** (Articles), Predeterminers, Attributive Pronouns (Possessive, Demonstrative, Interrogative, Relative, Indefinite, Negative), Attributive Numerals (Ordinals))
 Particles (all kinds of stuff, see separate frame)

The prontype feature distinguishes pronouns from nouns, determinative pronouns from adjectives, WH and indefinite from concrete adverbs etc.

Participles: in some tagsets verbs, in others adjectives

Numerals: cardinal numbers usually separate; ordinals classified as adjectives in some tagsets; various other kinds of numerals (multiplicative, generic, indefinite)

Different approaches in tagsets could lead to different feature values!

We *recommend* that participles are verbs (in other words, you should not set verbform if you do not set pos = "verb"). However, we do not prohibit any such combination of feature values.

gradable particle (Bulgarian тg най naj = "most") unique POS (Danish U, covering the words at = infinitival "to", som, der) infinitive mark (German РТКZU zu, Swedish IM att, English то to – includes prepositional occurrences of to) separated verbal prefix (German РТКVZ, vor in stellen Sie sich vor) adjectival particle (German РТКА, am in am besten, zu in zu groß) existential there in English (EX) measure word, quantifier (Chinese DM)

danke = "thank you"...)

genitive particle de in Chinese (DE 的 and 得) Chinese particles 了 le (perfect), 著 zhe, 起 qǐ, 過 guò (Di) Chinese particles 了 le, 的 de, 來 lái (Ta)

Chinese particles Jie, 的 de, 來 lai (Ta)
Chinese particles 而已 éryǐ, 沒有 méiyǒu, 也罷 yěba, 沒有 méiyǒu, 好了 hǎole (Tb)

Chinese particles 呢 ne, 吧 ba, 啊 a, 囉 $lu\bar{o}$ (Tc) Chinese particles 嗎 ma, 否 fou (Td)

Partial trie of feature value combinations permitted in Swedish sy::hajic tagset. **Bold** arrows show its traversal during encoding of the Czech tag **NNMS1----A---** (**purple** arrows indicate replacing of a forbidden value by a default).

List of features and values currently used in the universal feature set ("Interset").

Tagset/Driver	Number of	Other feature	Approximate
	tags		implementation
			time
ar::conll	241	21	13 h
bg::conll	528	247	35 h
cs::conll	4854	775	6 h
cs::pdt	4288	209	18 h
da::conll	143	6	7 h
de::conll	54	1	10 min
de::stts	54	1	4 h
en::conll	45	2	45 min
en::penn	45	2	3 h
pt::conll	657	260	28 h
sv::conll	41	12	20 min
sv::hajic	156	17	8 h
sv::mamba	41	12	3 h
zh::conll	294	294	21 h

Table 1: Overview of tagset drivers. The "other" column shows tags that make the decoder set the "other" feature.

	ar	bg	csc	csp	da	de	en	pt	svh	svm	zh
ar	241	42	68	54	29	17	15	55	33	12	11
bg	65	528	104	94	64	32	25	87	50	15	11
CSC	68	46	4854	4288	44	21	26	125	56	14	11
csp	66	42	4288	4288	42	20	24	120	54	13	11
da	25	46	55	54	143	24	24	49	71	14	11
de	14	16	17	16	17	54	20	29	18	15	10
en	16	17	28	26	22	20	45	24	28	17	11
pt	54	34	113	108	51	30	27	657	46	15	10
svh	33	34	63	62	62	22	28	46	156	17	11
svm	14	15	15	14	15	17	17	15	16	41	10
zh	10	9	10	10	10	11	9	11	10	9	294

Table 2: Number of tags resulting from conversion from drivers named in row headers to drivers named in column headers.

Lang	Year	P(orig)	P(cnv)	Signif
ar	2006	64.3	67.6	yes
ar	2007	59.8	66.9	yes
bg	2006	68.0	71.3	yes
cs	2006	56.1	71.4	yes
cs	2007	58.7	74.0	yes
da	2006	68.3	69.8	yes
de	2006	69.5	67.7	yes
en	2007	63.8	67.3	yes
pt	2006	73.5	76.4	yes
SV	2006	71.0	73.5	yes
zh	2006	69.0	68.0	no
zh	2007	66.1	63.5	yes

Table 3: Accuracy of the parser on various CoNLL data sets, using original and converted tags. The last column indicates whether the change was statistically significant, using the McNemar's test with $p \le 0.05$.