Exercice 1

Soit $n \in \mathbb{N}$. Montrer que $(P,Q) \mapsto \sum_{k=0}^{n} P(k)Q(k)$ définit un produit scalaire sur $\mathbb{R}_n[X]$.

Exercice 2

Soit $E = C^1([0, 1], \mathbb{R})$ et

$$\varphi:(f,g)\in E^2\mapsto f(0)g(0)+\int_0^1f'(t)g'(t)\,dt.$$

Montrer que φ est un produit scalaire sur E.

Exercice 3

Soient $E = \mathbb{R}^2$ et $a, b, c, d \in \mathbb{R}$. À quelles conditions sur a, b, c, d l'application

$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

$$((x,y),(x',y')) \mapsto axx' + bxy' + cx'y + dyy'$$

définit-elle un produit scalaire sur \mathbb{R}^2 ?

Exercice 4

Dans \mathbb{R}^3 muni de son produit scalaire canonique, orthonormaliser par le procédé de Gram-Schmidt la famille (u, v, w) où

$$u = (1, 0, 1), v = (1, 1, 1), w = (-1, 1, 0).$$

Exercice 5

Soient F et G deux sous-espaces vectoriels d'un espace euclidien E. Exprimer $(F \cap G)^{\perp}$ en fonction de F^{\perp} et G^{\perp} .

Exercice 6

On considère \mathbb{R}^4 muni de sa structure euclidienne canonique et F le sous-espace vectoriel de \mathbb{R}^4 défini par

$$F = \{(x, y, z, t) \mid x + y + z + t = x - y + z - t = 0\}.$$

- (1) Déterminer une base du supplémentaire orthogonal de F.
- (2) Écrire la matrice dans la base canonique de \mathbb{R}^4 de la projection orthogonale sur F.
- (3) Calculer d(u, F) où u = (1, 2, 3, 4).

Exercice 7

Soit $E = \mathbb{R}^3$ muni de son produit scalaire canonique et p l'endomorphisme de E dont la matrice dans la base canonique est

$$M = \frac{1}{6} \left(\begin{array}{rrr} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{array} \right).$$

Montrer que p est une projection orthogonale sur un plan dont on précisera une équation.

Exercice 8

Soit $E = M_n(\mathbb{R})$.

- (1) Montrer que $(A, B) \in E^2 \mapsto \operatorname{tr}({}^t AB)$ est un produit scalaire.
- (2) Soit $A \in M_n(\mathbb{R})$ une matrice fixée. On désigne par S_n l'ensemble des matrices symétriques de taille n. Déterminer

$$\inf_{M \in S_n} \sum_{1 \le i,j \le n} (m_{ij} - a_{ij})^2.$$

Exercice 9: Mines-Ponts MP

Soit p une projection d'un espace euclidien E. Montrer que p est une projection orthogonale si et seulement si $||p(x)|| \le ||x||$ pour tout $x \in E$.

Exercice 10

Soit E un espace euclidien et $f \in L(E)$ tel que

$$\forall x, y \in E, \ \langle x, f(y) \rangle = \langle f(x), y \rangle.$$

- (1) Montrer que la matrice de f dans une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ est symétrique.
- (2) Montrer que le noyau et l'image de f sont orthogonaux.

Exercice 11

Soit f un endomorphisme d'un espace euclidien vérifiant

$$\forall x, y \in E, (x \perp y \implies f(x) \perp f(y)).$$

Montrer qu'il existe $\lambda \geq 0$ tel que pour tout $x \in E$, $||f(x)|| = \lambda ||x||$.

Exercice 12

Soient E un espace euclidien et $f: E \to E$ une application satisfaisant

$$\forall x, y \in E, \langle f(x), f(y) \rangle = \langle x, y \rangle.$$

Montrer que f est une application linéaire.

Exercice 13

Soit E un espace euclidien et $x, y \in E$. Montrer que x et y sont orthogonaux si et seulement si

$$\forall \lambda \in \mathbb{R}, \ ||x + \lambda y|| \ge ||x||.$$

Exercice 14

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$ muni du produit scalaire défini par

$$\forall f, g \in E, \ \langle f, g \rangle = \int_{-1}^{1} f(t)g(t) \, dt.$$

On pose

$$F = \{ f \in E \mid \forall t \in [-1, 0], \ f(t) = 0 \} \text{ et } G = \{ g \in E \mid \forall t \in [0, 1], \ g(t) = 0 \}.$$

- (1) Montrer que $F^{\perp} = G$.
- (2) Les sous-espaces vectoriels F et G sont-ils supplémentaires?

Exercice 15: Centrale PC 3-4

Soit $f:[0,1]\to\mathbb{R}$ de classe C^1 avec f(0)=0.

- (1) Montrer que $\int_0^1 f(t)^2 dt \le \frac{1}{2} \int_0^1 f'(t)^2 dt$.
- (2) Si f(1) = 0, améliorer l'inégalité précédente.

		Temporary page!	
	able to guess the total number led to the final page this extra	of pages correctly. As	data that should
If you re	un the document (without alter o expect for this document.		X now knows how