Fine-grained Parameterized Algorithms

 $FPA \cdot SoSe-2024 \cdot tcs.uni-frankfurt.de/parameterized/ \cdot 2024-07-03 \cdot 2d88037$

Problem set 9: OVH and ETH

9.1 Fingerübungen. Let $0 < \varepsilon < 0.5$ and $c \in \mathbb{N}$ be arbitrary. Consider the following functions:

$$n^{2-\varepsilon}$$
, $n \cdot \log^c n$, $\frac{n^2 \log \log n}{\log n}$, $\frac{n^2}{2\sqrt{n}}$, n^2 , $n^{1+\varepsilon}$, $n^{2-\frac{1}{\log \log n}}$.

- a) Arrange these functions in increasing order of growth rate.
- b) Which of these functions are contained in $n^{1+o(1)}$ and $n^{2-o(1)}$, respectively?
- !! <u>Skill-9a.</u> OVH: I can use the orthogonal vectors hypothesis (OVH) to prove conditional lower bounds for polynomial-time problems.
 - 9.2 OVH Variant. Recall the Orthogonal Vectors Hypothesis (OVH):

OVH: Given two sets $A, B \subseteq \{0, 1\}^d$ with |A| = |B| = n. There is no algorithm running in time $n^{2-\epsilon} \cdot \text{poly}(d)$ (for any $\epsilon > 0$) which decides whether there exists $a \in A, b \in B$ such that a and b are orthogonal.

Consider the following variant OVH' of OVH:

OVH': Given a set $A \subseteq \{0,1\}^d$ with |A| = n. There is no algorithm running in time $n^{2-\epsilon} \cdot \operatorname{poly}(d)$ (for any $\epsilon > 0$) which decides whether there exist $a, a' \in A$ such that a and a' are orthogonal.

Prove that OVH' and OVH are equivalent.

9.3 Maximum Inner Product. Consider the problem of finding the maximum inner product of elements of two sets:

MaxInnerProduct: Given two sets $A, B \subseteq \mathbb{R}^d_{\geq 0}$ with |A| = |B| = n, compute the maximum $\max\{\langle a, b \rangle \mid a \in A, b \in B\}$,

where $\langle \cdot, \cdot \rangle$ denotes the standard inner product of $\mathbb{R}^d_{>0}$.

Prove that there is no algorithm running in time $n^{2-\epsilon} \cdot \text{poly}(d)$ (for any $\epsilon > 0$) for this problem unless OVH fails. *Hint:* .2.9 Now yam not Yes with the second of the second

9.4 Regular Expressions. From your algorithms classes, you may know the problem of finding a string P (often called pattern) in another string T (often called text). This well-known problem is often called Pattern Matching; there are algorithms for this problem that run in time O(|P| + |T|).

Instead of finding a single pattern string P, we are now interested in finding any substring of T that can be generated by a given regular expression. Formally, consider the following problem:

RegExPatternMatching: Given a regular expression R of size m, and a text T of size n, determine if there is a substring P of T that can be derived from R.

Prove that there is no algorithm running in time $O((mn)^{1-\epsilon})$ (for any $\epsilon > 0$) for RegExPatternMatching unless OVH fails.

- !! <u>Skill-9b.</u> ETH: I can use the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis (SETH) to prove conditional lower bounds for problems in polynomial time or in exponential time.
 - **9.5 SETH** \Rightarrow LDOVH. Consider the following stronger variant of the Orthogonal Vectors Hypothesis (OVH), called LDOVH (Low-dimensional OVH): For all $\epsilon > 0$, there is a constant $\epsilon > 0$, such that the Orthogonal Vectors problem cannot be solved in time $O(n^{2-\epsilon})$, even when the input is restricted restricted to $d \le \epsilon \cdot \log n$. Prove that SETH implies LDOVH. *Hint: .nmms_I noitasifieraq2 edt 92u yam u0Y*
 - **9.6 Subsetting Sum Fun.** A classical NP-hard problem is the Subset Sum problem:

Subset Sum: Given a set of n distinct integers $X = \{1 \le x_1 < \dots < x_n\}$ and an integer t, determine whether there is a subset $A \subseteq X$ that sums up to t, that is $\sum_{a \in A} a = t$.

Assuming the Exponential Time Hypothesis (ETH), prove that there is a $\delta > 0$, such that no algorithm for Subset Sum has a running time of $O^*(2^{\delta n})$.