

Automotive MOSFET

OptiMOS™ 7 Power-Transistor

Features

- OptiMOS[™] power MOSFET for automotive applications
- N-channel Enhancement mode Normal Level
- Extended qualification beyond AEC-Q101
- Enhanced electrical testing
- Robust design
- MSL2 up to 260°C peak reflow
- 175°C operating temperature
- RoHS compliant
- 100% Avalanche tested

PG-HSOG-4-1

TAB

Potential Applications

General automotive applications.

Product Validation

Qualified for automotive applications. Product validation according to AEC-Q101.

Product Summary

V_{DS}	40	V
R _{DS(on)}	0.60	mΩ
I _D (chip limited)	500	Α

Туре	Package	Marking
IAUMN04S7N006G	PG-HSOG-4-1	7N04N006

IAUMN04S7N006G

Table of Contents

Description	1
Maximum ratings	3
Thermal characteristics	4
Electrical characteristics	4
Electrical characteristics diagrams	6
Package outline & footprint	10
Revision history	11
Disclaimer	12

IAUMN04S7N006G

Maximum Ratings

at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	$V_{GS} = 10 \text{ V}$, Chip limitation ^{1,2)}	500	А
		V _{GS} = 10 V, DC current	200	
		$T_a = 100^{\circ}\text{C}, V_{GS} = 10 \text{ V}, R_{thJA}$ on 2s2p ^{2,3)}	53	
Pulsed drain current ²⁾	I _{D,pulse}	$T_{\rm C}$ = 25°C, $t_{\rm p}$ = 100 μ s	1390	
Avalanche energy, single pulse ²⁾	E _{AS}	I _D = 100 A	310	mJ
Avalanche current, single pulse	I _{AS}	-	200	А
Gate source voltage	V_{GS}	-	±20	٧
Power dissipation	P _{tot}	T _C = 25°C	193	W
Operating and storage temperature	$T_{\rm j}, T_{\rm stg}$	-	-55 +175	°C

IAUMN04S7N006G

Thermal Characteristics²⁾

Parameter	Cumbal	Canditions	Values			
	Symbol	Conditions	min.	typ.	max.	Unit
Thermal resistance, junction - case	R_{thJC}	-	_	_	0.78	K/W
Thermal resistance, junction - ambient ³⁾	R_{thJA}	-	_	23.3	-	

Electrical Characteristics

at T_i=25 °C, unless otherwise specified

Parameter	Suma had	Samularia and Samularia and	Values				
	Symbol	Conditions	min.	typ.	max.	Unit	
Static Characteristics							
Drain-source breakdown voltage	V _{(Br)DSS}	$V_{GS} = 0 \text{ V},$ $I_D = 1 \text{ mA}$	40	-	-	V	
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 105 \mu\text{A}$	2.2	2.6	3.0		
		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 25^{\circ}\text{C}$	-	-	1	μА	
Zero gate voltage drain current	/ _{DSS}	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V},$ $T_j = 100^{\circ}\text{C}^{2}$	_	_	26		
Gate-source leakage current	I _{GSS}	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	nA	
Duning and the services and		$V_{GS} = 7 \text{ V}, I_D = 50 \text{ A}$	-	0.66	0.74	mΩ	
Drain-source on-state resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 100 \text{ A}$	-	0.55	0.60]	
Gate resistance ²⁾	R _G	-	-	1.2	-	Ω	

IAUMN04S7N006G

Parameter	Cumbal	Symbol Conditions r	Values			IImia	
	Symbol		min.	typ.	max.	Unit	
Dynamic Characteristics ²⁾							
Input capacitance	Ciss		_	7095	9224	pF	
Output capacitance	C oss	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}, f = 1 \text{ MHz}$	_	4133	5373		
Reverse transfer capacitance	C rss		_	152	228		
Turn-on delay time	t _{d(on)}		_	13	-	ns	
Rise time	t _r	$V_{DD} = 20 \text{ V}, V_{GS} = 10 \text{ V},$ $I_{D} = 125 \text{ A}, R_{G} = 3.5 \Omega$	_	10	-		
Turn-off delay time	t _{d(off)}		_	36	_		
Fall time	t _f		_	22	_		

Gate Charge Characteristics2)

Gate to source charge	Q _{gs}		_	29	38	nC
Gate to drain charge	Q _{gd}	$V_{DD} = 20 \text{ V}, I_{D} = 100 \text{ A},$	_	20	30	
Gate charge total	Qg	V _{GS} = 0 to 10 V	-	103	134	
Gate plateau voltage	$V_{ m plateau}$		_	4.1	-	٧

Reverse Diode

Diode continuous forward current ²⁾	Is	T _C = 25°C	-	_	200	А
Diode pulse current ²⁾	/ _{S,pulse}	$T_{\rm C}$ = 25°C, $t_{\rm p}$ = 100 µs	-	_	1390	
Diode forward voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_F = 100 \text{ A}, T_j = 25^{\circ}\text{C}$	_	0.8	0.95	V
Reverse recovery time ²⁾	t _{rr}	$V_R = 40 \text{ V}, I_F = 50 \text{ A}$	_	53	80	ns
Reverse recovery charge ²⁾	Q _{rr}	$di_F/dt = 100 A/\mu s$	_	50	100	nC

 $^{^{1)}}$ Practically the current is limited by the overall system design including the customer-specific PCB.

²⁾ The parameter is not subject to production testing – specified by design.

³⁾ Device on 2s2p FR4 PCB defined in accordance with JEDEC standards (JESD51-5, -7). PCB is vertical in still air.

Electrical characteristics diagrams

1 Power dissipation

 $P_{\text{tot}} = f(T_{\text{C}}); V_{\text{GS}} \ge 6 \text{ V}$

2 Drain current

 $I_{\text{D}} = f(T_{\text{C}}); V_{\text{GS}} \ge 6 \text{ V}$

3 Safe operating area

 $I_{\rm D}$ = f($V_{\rm DS}$); $T_{\rm C}$ = 25 °C; D = 0; parameter: $t_{\rm p}$

4 Max. transient thermal impedance

 $Z_{thJC} = f(t_p)$; parameter: D = t_p/T

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 \,^{\circ}\text{C}; \text{ parameter: } V_{GS}$

6 Typ. drain-source on-state resistance

 $R_{DS(on)} = f(I_D); T_j = 25 \,^{\circ}C; parameter: V_{GS}$

7 Typ. transfer characteristics

 $I_D = f(V_{GS}); V_{DS} = 6 \text{ V}; \text{ parameter: } T_j$

8 Typ. drain-source on-state resistance

 $R_{DS(on)} = f(T_j)$; parameter: I_D , V_{GS}

9 Typ. gate threshold voltage

 $V_{\text{GS(th)}} = f(T_{\text{j}}); V_{\text{GS}} = V_{\text{DS}}; \text{ parameter: } I_{\text{D}}$

10 Typ. capacitances

 $C = f(V_{DS}); V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}$

11 Typ. forward diode characteristics

 $I_F = f(V_{SD})$; parameter: T_j

12 Typ. avalanche characteristics

 $I_{AS} = f(t_{AV})$; parameter: $T_{j(start)}$

13 Typical avalanche energy

 $E_{AS} = f(T_j)$; parameter: I_D

14 Drain-source breakdown voltage

 $V_{(Br)DSS} = f(T_j); I_D = 1 \text{ mA}$

15 Typ. gate charge

 V_{GS} = f(Q_{gate}); I_D = 100 A pulsed; parameter: V_{DD}

16 Gate charge waveforms

IAUMN04S7N006G

Package Outline

Footprint

Packaging

IAUMN04S7N006G

Revision History

Revision	Date	Changes
Revision 1.0	2024-09-24	Final Data Sheet

Trademarks

Edition 2024-09-24

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG

All Rights Reserved.

Do you have any questions about any aspect of this document?

Email: erratum@infineon.com

Document reference IAUMN04S7N006G-Data-Sheet-10-Infineon

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact the nearest Infineon Technologies Office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.