111 Summer Workshop

ML/DL/ANN/CNN

7/25 (—) 15:30-17:30

AIM Lab 李偉華

Machine Learning Intro.

Outline

- Machine Learning Intro. (about 0.5 hour)
 - Supervised Linear Regression
 - Unsupervised Clustering
 - Unsupervised PCA

Why Machine Learning?

- 我們也許可以告訴電腦規則(Rules)... 用if else 判斷式來打遍天下。
- 但有些任務很困難,我們很難歸納出一個通則並告訴程式如何解決任務。也就是為什麼需要學習。

if 有眼睛和耳朵 return 狗 else return 麵包

狗

if 有眼睛和耳朵 return 狗 else return 麵包

麵包

if 有眼睛和耳朵 return 狗 else return 麵包

麵包?

if 有眼睛和耳朵 return 狗 else return 麵包

狗?

AI & ML & DL

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

AI:計算機模仿人類思考進而模擬人類的能力/行為。

ML:從資料中學習模型。

DL:利用多層的非線性學習資料表徵。

Different Type of ML

監督式學習 Supervised Learning

從被標記的訓練數據集 (Training data) 中學習,並導出模型,而這個模型可以對未來的數據做預測。

非監督式學習 Unsupervised Learning

又稱作無監督式學習,這類學習和監督式學習相反,是指訓練資料中並**沒有任何已標籤的資料**,因此模型必須從數據資料集本身找出一定的規則,產生某種能給出結果的模式。

半監督式學習 Semi-Supervised Learning

半監督式學習可以說是介於監督式學習和非監督式學習之間,訓練資料會有一群有標記過的資料,以及一群沒有標籤的資料,且有標記的資料往往會比沒有標記的資料要少很多。如果到很極端的只有一點點資料,就會稱作 Few-Shot Learning.

- Transductive Learning: 已經見過測試資料
 - 你的 Unlabeled data 就是你的測試資料,會參考 testing data 的 feature,但是不使用 testing data 的 label。
- Inductive Learning: 沒有見過測試資料
 - 我們不考慮測試資料,也就是我們完全不知道測試資料是什麼。

其他學習方式 Others

- Reinforcement Learning (強化學習):
 - 電腦透過與一個動態環境不斷重複地互動,來學習正確地執行一項任務。這種嘗試錯誤(trial-and-error)的學習方法,使電腦在沒有人類干預、沒有被寫入明確的執行任務程式下,就能夠做出一系列的決策。
- Life-long Learning or Continuous Learning (持續學習):
 - 試圖要解決災難性遺忘的問題 (Catastrophic Forgetting Problem)。
- Active Learning (主動學習):
 - 通過一定的演算法查詢最有用的未標記樣本,並交由專家進行標記,然後用查詢到的樣本訓練分類模型來提高模型的精確度。
- Meta Learning (元學習):
 - 試圖解決訓練資料與測試資料的 Domain Gap ,衍生出來的學習方式,在面臨新的樣本時會再去微調模型。

Supervised - Regression

自變數

Independent (a) 獨立的

代表不會被其他數影響

應變數

dependent (a) 相依的

代表會被其他數影響

學例來說:

地段、坪數、裝潢、交通、生活機能
可能會影響 | 房價

應變數

迴歸其實是在找自變數和應變數的關係

梯度下降法線性迴歸

from sklearn.linear model import LinearRegression Ir = LinearRegression()

Ir.fit(x train, y train)

y test = lr.predict(x test)

- 這邊介紹使用 梯度下降 (Gradient Descent) 的方式 來做簡單線性迴歸
 - 設定: 損失函數、學習率、Epoch數
 - 目標要找到一條線: $y = \beta_0 + \beta_1 x$
 - 假設損失函數為: L2 Loss Function (最小平方法): $Loss(\hat{\beta}_0, \hat{\beta}_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - Learning Rate
 - 這條線能使損失越小越好

$$\operatorname{Loss}(\hat{\beta}_0, \hat{\beta}_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\operatorname{Loss}(\hat{\beta}_0, \hat{\beta}_1) = \frac{1}{n} \sum (y_i - (\beta_0 + \beta_1 x))^2$$

$$\frac{dLoss(\widehat{\beta_0},\widehat{\beta_1})}{d\beta_0} = -\frac{2}{n} \sum (y_i - (\beta_0 + \beta_1 x))$$

$$\frac{dLoss(\widehat{\beta_0},\widehat{\beta_1})}{d\beta_1} = -\frac{2}{n} \sum (y_i - (\beta_0 + \beta_1 x)) * \beta_1$$

Unsupervised - Clustering

• 經典的分群演算法: K-means

Means: 平均,此演算法跟很多(群)的平均有關

K-means

K:常數,表示我們想要分成K群

from sklearn.cluster import KMeans

- 1. 需要設定要分成幾群, k = 群的數量。
- 2. 隨機分配 k 個樣本,作為群心。
- 3. 每個樣本開始和這 k 個群心計算距離。
- 4. 將每個樣本分配給最近的群心。
- 5. 根據新的樣本群,來更新群心。
- 6. 重複3~5步驟直到不再有變動(收斂)

PCA 先備知識:

- 線性組合 Linear Combination
- 線性轉換 Linear Transformation
- 特徵向量/值 Eigenvectors 與 Eigenvalues
- 拉格朗日乘數 Lagrange Multiplier
- 有很多方法可以做降維,這邊介紹最經典的主成分分析 (Principal Component Analysis, PCA)
- 當資料的特徵、變數維度很高,可透過降維的方法,只取出最有用的特徵,減少分析的難度、避免過擬合,並提高資料的可視化
- 將原本的特徵空間以線性轉換到另一個由正交向量組成的座標系統,保留訊息量(變異數)較大主成分,忽略訊息量較少的成分

特徵一特徵二

S1	S2	S3	S4	S5	S6	S7	S8
1	2	3	4	5	6	7	8
2	4	7	8	10	11	14	16

轉換到新的座標後,要能保留資料的最大差異性(最大化資料變異數)

要保留最大訊息量 > 資料間距離要最遠 > 變異數要大

- 須將 d 維空間的樣本轉換到 d' 維度, 其中 $d' \leq d$
- 原樣本 $X=(x_1,x_2,\ldots x_m)\in R^{d*m}$
- 投影所需要用到的轉移矩陣 $W = \left(w^1, w^2, ..., w^{d'}\right) \in R^{d*d'}$
- 投影後得到的樣本

$$Z=(z_1,z_2\ldots,z_m)\in R^{d'*m}$$
 $z=Wx$

from sklearn.decomposition import PCA

pca = PCA(n_component=0.5)

data = pca.fit_transform([2,8,4,5,9,3],[6,3,0,8,7,1],[5,4,9,1,8,2])

$$x_{1} = \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ \dots \\ x_{1d} \end{bmatrix}$$

$$W = \begin{bmatrix} w_{11} & w_{12} & ... & w_{1d} \\ w_{21} & w_{22} & ... & w_{2d} \\ w_{31} & w_{32} & ... & w_{3d} \\ ... & ... & ... \\ w_{d'1} & w_{d'2} & ... & w_{d'd} \end{bmatrix} = \begin{bmatrix} (w^1) \\ (w^2) \\ (w^3) \\ ... \\ (w^{d'}) \end{bmatrix} \in \mathbb{R}^{d'*d}$$

W 是一種轉移矩陣 將 d 維轉換到 d'維

$$\begin{bmatrix} z_{11} \\ z_{12} \\ z_{13} \\ \dots \\ z_{1d'} \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1d} \\ w_{21} & w_{22} & \dots & w_{2d} \\ w_{31} & w_{32} & \dots & w_{3d} \\ \dots & \dots & \dots & \dots \\ w_{d'1} & w_{d'2} & \dots & w_{d'd} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ \dots \\ x_{1d} \end{bmatrix}$$

轉移矩陣
$$\downarrow$$
 $\in R^{d'*d}$ 樣本數 $Z=(z_1,z_2\ldots,z_m)\in R^{d'*m}$ \downarrow $z_1=\begin{bmatrix}z_{11}\\z_{12}\\z_{13}\end{bmatrix}$

$$z = Wx$$

$$z_1=w^1x$$
 $\overline{z_1}=rac{1}{n}\sum z_1=rac{1}{n}\sum w^1x=w^1rac{1}{n}\sum x=w^1ar{x}$ $var(z_1)=\sum (z_1-\overline{z_1})^2=\sum (w^1(x-ar{x}))^2$ 因為: $(ab)^2=(a^Tb)^2=a^Tba^Tb=a^Tb(a^Tb)^T=a^Tbb^Ta$ scaler

所以:
$$var(z_1) = \sum (w^1)^T (x - \overline{\mathbf{x}})(x - \overline{\mathbf{x}})^T w^1$$
$$= (w^1)^T (\sum (x - \overline{\mathbf{x}})(x - \overline{\mathbf{x}})^T) w^1$$
$$= (w^1)^T cov(x) w^1$$

$$W = \begin{bmatrix} w_{11} & w_{12} & ... & w_{1d} \\ w_{21} & w_{22} & ... & w_{2d} \\ w_{31} & w_{32} & ... & w_{3d} \\ ... & ... & ... \\ w_{d'1} & w_{d'2} & ... & w_{d'd} \end{bmatrix} = \begin{bmatrix} (w^1) \\ (w^2) \\ (w^3) \\ ... \\ (w^{d'}) \end{bmatrix} \in \mathbb{R}^{d'*d}$$

$$\begin{bmatrix} z_{11} \\ z_{12} \\ z_{13} \\ \dots \\ z_{1d'} \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1d} \\ w_{21} & w_{22} & \dots & w_{2d} \\ w_{31} & w_{32} & \dots & w_{3d} \\ \dots & \dots & \dots & \dots \\ w_{d'1} & w_{d'2} & \dots & w_{d'd} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ \dots \\ x_{1d} \end{bmatrix}$$

我們希望每個樣本中的第一維特徵變異數越大越好 我們如果要轉換成d'維,就需要知道 $w^1 \sim w^{d'}$

我們要找 w^1 極大化 $(w^1)^T cov(x) w^1$

會使用 Lagrange Multiplier: $L(w^1, \lambda) = (w^1)^T cov(x)(w^1) - \lambda((w^1)^T(w^1) - I)$

將目標函數轉換成拉格朗日方程式,原本的最佳化問題變成要找能讓拉格朗日方程式最大化的 w^1 跟 λ

$$\frac{dL(w^{1},\lambda)}{dw_{1}^{1}} = 0$$

$$\frac{dL(w^{1},\lambda)}{dw_{2}^{1}} = 0$$

$$\frac{dL(w^{1},\lambda)}{dw_{3}^{1}} = 0$$

$$\frac{dL(w^{1},\lambda)}{dw_{n}^{1}} = 0$$

$$\frac{dL(w^{1},\lambda)}{dw_{n}^{1}} = 0$$

$$1 + (W + \sigma) = 0$$

$$\frac{dL(w^{1},\lambda)}{dw_{n}^{1}} = 0$$

特徵向量 (eigenvector, W) 特徵值 (eigenvalue,λ)

$$\frac{dL(w^1,\lambda)}{d\lambda} = 0 >>> |w^1| = 1$$

$$(w^1)^T cov(x) w^1 = (w^1)^T \lambda w^1 = \lambda (w^1)^T w^1 = \lambda$$

目標:極大化 $(w^1)^T cov(x) w^1$

其中 $cov(x)w^1 = \alpha w^1$

$$(w^1)^T cov(x) w^1 = (w^1)^T \alpha w^1 = \alpha (w^1)^T w^1 = \alpha$$

結論: 共變異數矩陣的最大的特徵值對應的特徵向量,就是可以使得轉換後變異數最大的轉移矩陣 w^1

演算法流程

輸入:

原始樣本資料集 $X = (x_1, x_2, ..., x_m) \in \mathbb{R}^{d \times m}$ 決定投影後空間維度 d', $d' \leq d$

過程:

對所有樣本進行中心化運算: $\tilde{x} = \sum_i x_i = 0$ 計算所有樣本的共變異數矩陣: $\sum_m X_m X_m^T$

對共變異數矩陣求特徵值 λ

取最大的 d' 個特徵值 $\lambda_1, \lambda_2, ..., \lambda_{d'}$ 求出相對應的特徵向量 $W = (w^1, w^2, ..., w^{d'}) \in R^{d \times d'}$

求出新樣本資料集 $Z = (z_1, z_2, ..., z_m) \in R^{d' \times m}$

輸出:

轉換矩陣 $W = (w^1, w^2, ..., w^{d'}) \in R^{d \times d'}$ 新樣本資料集 $Z = (z_1, z_2, ..., z_m) \in R^{d' \times m}$

Numpy Array v.s List

Numpy Array Operator

```
import numpy as np
# initial an 6*6 matrix
na = np.arange(1, 49).reshape(3, 4, 4)
print(na) # show na
print("Show the shape of na: ",na.shape)
print("=====")
print(na[0,1,3])
print("=====")
print(na[:,:2,:2])
print("=====")
print(na[::2,::2,::2])
print("======")
print(na[-3::2,-3::2,-3::2])
```

```
Show the shape of na: (3, 4, 4)
=====
[[[ 1 2]
 [5 6]]
[[17 18]
 [21 22]]
[[33 34]
 [37 38]]]
[[[ 1 3]
 [ 9 11]]
[[33 35]
 [41 43]]]
=====
[[[ 6 8]
  [14 16]]
 [[38 40]
  [46 48]]]
```

Numpy Array Operator

```
import numpy as np
# initial an 6*6 matrix
na = np.arange(1, 49).reshape(3, 4, 4)
print(na) # show na
print("Show the shape of na: ",na.shape)
print("=====")
print(na[0,1,3])
print("=====")
print(na[:,:2,:2])
print("=====")
print(na[::2,::2,::2])
print("======")
print(na[-3::2,-3::2,-3::2])
```

```
[[[1]2[3]4]
  5 6 7 8]
 [9 10 11 12]
                  起始位置(包含)
                                          間隔
 [13 14 15 16]]
[[17 18 19 20]
 [21 22 23 24]
                              0:0:0
 [25 26 27 28]
 [29 30 31 32]]
[[33_34_35_36]
                         結束位置(不包含)
 [37 38 39 40]
 [41 42 43 44]
 [45 46 47 48]]]
```

```
Show the shape of na: (3, 4, 4)
=====
[[[ 1 2]
 [5 6]]
[[17 18]
 [21 22]]
[[33 34]
 [37 38]]]
[[[ 1 3]
 [ 9 11]]
[[33 35]
 [41 43]]]
=====
[[[ 6 8]
  [14 16]]
 [[38 40]
  [46 48]]]
```

Numpy Array Operator

```
import numpy as np
# initial an 6*6 matrix
na = np.arange(1, 49).reshape(3, 4, 4)
print(na) # show na
print("Show the shape of na: ",na.shape)
print("=====")
print(na[0,1,3])
print("=====")
print(na[:,:2,:2])
print("=====")
print(na[::2,::2,::2])
print("=====")
print(na[-3::2,-3::2,-3::2])
```

```
[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[ 13 14 15 16]]
[[17 18 19 20]
[ 21 22 23 24]
[ 25 26 27 28]
[ 29 30 31 32]]
[[33 34 35 36]
[ 37 38 39 40]
[ 41 42 43 44]
[ 45 46 47 48]]]
```

```
Show the shape of na: (3, 4, 4)
=====
[[[ 1 2]
 [5 6]]
[[17 18]
 [21 22]]
[[33 34]
 [37 38]]]
[[[ 1 3]
 [ 9 11]]
[[33 35]
 [41 43]]]
=====
[[[ 6 8]
  [14 16]]
 [[38 40]
  [46 48]]]
```

Deep Learning Intro.

Outline

- Deep Learning Intro. (about 1.5 hour)
 - ANN & Back Propagation
 - Computer Vision & CNN
 - Padding & Pooling & Flatten
 - Activation Function
 - Pytorch Build Network
 - Homework Build an image classifier
 - Loss Function
 - Dataset & Dataloder
 - Augmentation

ANN

Multi-Layer Perceptron

- 包含輸入層 (Input layer)、隱藏層 (Hidden layer) 和輸出層 (Output layer)
- 深度神經網路泛指 MLP中將隱藏層加深。
- 通常利用 backpropagation 來訓練

• Compute gradients of expressions based on the chain rule

Interpreting the gradient

$$\nabla f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = f(x) + h\nabla f(x)$$

Example

$$f(x) = 3x^2 \to \nabla f(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$$

$$= 3 \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = 3 \lim_{h \to 0} 2x + h = 6x$$

$$if x = 2, \nabla f(2) = 12$$

 $x + h \rightarrow f(x)$ will increase by 12h

Chain Rule - Example

$$f(x,y,z) = (x+y)z$$

$$let g(x,y) = x + y \to f(x,y,z) = g(x,y)z$$

$$\frac{dg(x,y)}{dx} = 1 \qquad \frac{dg(x,y)}{dy} = 1$$

$$\frac{df(x,y,z)}{dx} = \frac{df(g(x,y),z)}{dg(x,y)} \frac{dg(x,y)}{dx} = z$$

$$\frac{df(x,y,z)}{dy} = \frac{df(g(x,y),z)}{dg(x,y)} \frac{dg(x,y)}{dy} = z$$

$$\frac{df(x,y,z)}{dz} = \frac{df(g(x,y),z)}{dz} = g(x,y)$$

Chain Rule - Example

$$f(x,y,z) = (x+y)z$$

$$let g(x,y) = x + y \to f(x,y,z) = g(x,y)z$$

$$\frac{dg(x,y)}{dx} = 1 \qquad \frac{dg(x,y)}{dy} = 1$$

$$\frac{df(x,y,z)}{dx} = \frac{df(g(x,y),z)}{dg(x,y)} \frac{dg(x,y)}{dx} = z$$

$$\frac{df(x,y,z)}{dy} = \frac{df(g(x,y),z)}{dg(x,y)} \frac{dg(x,y)}{dy} = z$$

$$\frac{df(x,y,z)}{dz} = \frac{df(g(x,y),z)}{dz} = g(x,y)$$

在 x = -2, y=5, z=-4 的情況下,Gradient 值

Chain Rule - Example

$$f(x,y,z) = (x+y)z$$

$$let g(x,y) = x + y \to f(x,y,z) = g(x,y)z$$

在 x = -2, y=5, z=-4 的情況下 · Gradient 值

Computer Vision

• What is an image?

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110				152	213	206	208	221
243	242	123		94	82	132		108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116		150				201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	83	175	252	241	240
235	238	230	128	172	138			234	249	241	245
237	236	247	143				94	255	248	247	251
234	237	245	193			115	144	213	255	253	251
248	245	161	128	149	109	138			156	239	255
190	107		102	94		114					137
			148	168	203	179					
			160	255	255	109					

0 ~ 255 (8 bits) 3 channel

深度學習在影像的應用

近年來深度學習在影像上有很多有用的應用,可以分成以下幾個等級。

Convolution

Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1	
-1	1	-1	
-1	-1	1	

Kernel 1

-1	1	-1
-1	1	-1
-1	1	-1

Kernel 2

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3		

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	-3	

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	-3	-1

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	-3	-1
-3			

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	-3	-1
-3	1		

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	-3	-1
-3	1	0	-3
-3	-3	0	1
3	-2	-2	-1

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

-1	1	-1
-1	1	-1
-1	1	-1

-1	-1	-1	-1
-1	-1	-2	1
-1	-1	-2	1
-1	0	-4	3

Colorful image - Convolution

多通道卷積 (Multi-Channel Convolution)

Padding

為每條邊增加 pixels,使經過 filter 後的 feature map 大小與原圖一致。

Stride=1, Kernel Size =k, pad = $\left\lfloor \frac{k}{2} \right\rfloor$

$$w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}$$

$$h' = \begin{cases} h - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ h, & \text{w padding.} \end{cases}$$

$$w' = floor\left(\frac{W + 2 \times pad - ks}{S}\right) + 1$$

Convolution Neural Network

The whole CNN

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

3	-1	-3	-1
-3	1	0	-3
-3	-3	0	1
3	-2	-2	-1

-1	1	-1
-1	1	-1
-1	1	-1

-1	-1	-1	-1
-1	-1	-2	1
-1	-1	-2	1
-1	0	-4	3

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

3		
	0	
		1
3		

•	Average	Poo	ling
---	---------	-----	------

- Median Pooling
- Min Pooling

3	0
3	1

-1	1	
0	3	

Flatten

激活函數 (Activation function)

目的:做非線性轉換

Sigmoid

- 常被用於二分類問題的網路模型中,會輸出範圍介於 [0,1] (大於0.5 & 小於0.5)
- 是 gradient-based method,所以 activation 是可微的函數比較好計算

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x)) = \frac{1}{1 + e^{-x}} * (1 - \frac{1}{1 + e^{-x}})$$

- 指數運算較為耗時
- 當 X 很大或很小,會趨近於0 > 造成梯度消失 (gradient vanishing)

Softmax

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

- 將一組向量映射為每個向量當中的元素,都位於(0,1)之間。
- 每個分類的機率分佈,這個向量的所有元素相加總和應為1。
- Softmax 通常加在最後一層

```
import numpy as np
inputs = np.array([1, 4, 9, 7, 5])

def softmax(inputs):
    return np.exp(inputs)/sum(np.exp(inputs))

outputs = softmax(inputs)
for n in range(len(outputs)):
    print('{} -> {}'.format(inputs[n], outputs[n]))
```

1 -> 0.00028901145493871657

4 -> 0.005804950249395781

9 -> 0.8615310049461178

7 -> 0.11659554257150641

5 -> 0.015779490778041354

Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

- 計算速度相當快
- 收斂速度快
- 通常用在隱藏層

• 當某個神經元輸出為0後,就難以再度輸出(後面都會是0)

ReLU Variant

解決了X<0的區段梯度消失的問題

ELU

• 也解決 Dead ReLU 問題,輸出的均值接近於0

Pytorch - Build Network

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def init (self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
    def forward(self, x):
        x = F.max pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max pool2d(F.relu(self.conv2(x)), 2)
        return x
model = Net()
output = model(input content)
```

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Pytorch - Build Network

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net2(nn.Module):
                                               nn.Sequential
   def init (self):
                                                一個有序的容器,NN會有序地被執行
       super(Net2, self). init ()
       self.features = nn.Sequential(
                   nn.Conv2d(3, 6, 5),
                   nn.ReLU(),
                   nn.MaxPool2d(2,2),
                   nn.Conv2d(6, 16, 5),
                   nn.ReLU(),
                   nn.MaxPool2d(2,2)
   def forward(self, x):
       x = self.features(x)
       return x
net2 = Net2()
print(net2)
```

Pytorch - Build Network

```
class UNet(nn.Module):
    def __init__(self, layer_size=5, input channels=3, upsampling mode='nearest'):
        super(). init ()
        self.freeze enc bn = False
        self.upsampling mode = upsampling mode
        self.layer size = layer size
        self.enc 1 = PCBActiv(input channels, 64, bn=False, sample='down-7')
        self.enc 2 = PCBActiv(64, 128, sample='down-5')
        self.enc 3 = PCBActiv(128, 256, sample='down-5')
        self.enc 4 = PCBActiv(256, 512, sample='down-3')
        for i in range(4, self.layer size):
           name = 'enc \{:d\}'.format(i + 1)
           setattr'self, name, PCBActiv(512, 512, sample='down-3'))
        for i in range(4, self.layer size):
            name = 'dec \{:d\}'.format(i + 1)
            setattr(self, name, PCBActiv(512 + 512, 512, activ='leaky'))
        self.dec 4 = PCBActiv(512 + 256, 256, activ='leaky')
        self.dec 3 = PCBActiv(256 + 128, 128, activ='leaky')
        self.dec 2 = PCBActiv(128 + 64, 64, activ='leaky')
        self.dec 1 = PCBActiv(64 + input channels, input channels,
                              bn=False, activ=None, conv bias=True)
```

```
def forward(self, input):
    h dict = {} # for the output of enc N
    h dict['h 0']= input
    h key prev = 'h 0'
    for i in range(1, self.layer size + 1):
        l key = 'enc {:d}'.format(i)
       h key = 'h {:d}'.format(i)
        h_dict[h_key] = getattr(self, l_key)(
           h dict[h key prev])
       h key prev = h key
    h key = 'h {:d}'.format(self.layer size)
   h = h dict[h key]
    # (exception)
    for i in range(self.layer size, 0, -1):
        enc h key = h {:d}'.format(i - 1)
       dec 1 key = 'dec {:d}'.format(i)
       h = F.interpolate(h, scale factor=2, mode=self.upsampling mode)
        h = torch.cat([h, h_dict[enc_h_key]], dim=1)
       h= getattr(self, dec_l_key)(h)
    return h
```

setattr & getattr 的靈活運用

讓模型更有彈性

Conv2d - Usage

Conv2d

[SOURCE]

Convolution Layer

```
torch.nn.Conv1d : Input [N, C, W] # move kernel in 1D torch.nn.Conv2d : Input [N, C, W, H] # move kernel in 2D torch.nn.Conv3d : Input [N, C, D, W, H] # move kernel in 3D
```

```
Input:16 → output: 33
>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)
```

```
import torch
  import torch.nn as nn
                                             w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
  class Net(nn.Module):
       def __init__(self):
           super(Net, self).__init__()
           # 1 input image channel, 6 output channels, 5x5 square convolution
           # kernel
Define
           self.conv1 = nn.Conv2d(1, 6, 5)
modules self.conv2 = nn.Conv2d(6, 16, 5)
param.
           # an affine operation: y = Wx + b
           self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
           self.fc2 = nn.Linear(120, 84)
           self.fc3 = nn.Linear(84, 10)
       def forward(self, x):
           # Max pooling over a (2, 2) window
           x = F.max_pool2d(F.relu(self.conv1(x))), (2, 2))
           # If the size is a square, you can specify with a single number
Build
           x = F.max_pool2d(F.relu(self.conv2(x)), 2)
Network
           x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
           x = F.relu(self.fc1(x))
           x = F.relu(self.fc2(x))
           x = self.fc3(x)
           return x
  net = Net()
  print(net)
```

Input: 1*32*32

[C, H, W]: 1*32*32 > 6*28*28

Conv1

ReLU

Pooling

Conv2

ReLU

Pooling

fc1

ReLU

fc2

ReLU

fc3

```
import torch
  import torch.nn as nn
                                             w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
  class Net(nn.Module):
       def __init__(self):
           super(Net, self).__init__()
           # 1 input image channel, 6 output channels, 5x5 square convolution
           # kernel
Define
           self.conv1 = nn.Conv2d(1, 6, 5)
modules self.conv2 = nn.Conv2d(6, 16, 5)
param.
           # an affine operation: y = Wx + b
           self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
           self.fc2 = nn.Linear(120, 84)
           self.fc3 = nn.Linear(84, 10)
       def forward(self, x):
           # Max pooling over a (2, 2) window
           x = F.max_pool2d F.relu self.conv1(x)), (2, 2))
           # If the size is a square, you can specify with a single number
Build
           x = F.max_pool2d(F.relu(self.conv2(x)), 2)
Network
           x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
           x = F.relu(self.fc1(x))
           x = F.relu(self.fc2(x))
           x = self.fc3(x)
           return x
  net = Net()
  print(net)
```

Input: 1*32*32

[C, H, W]: 1*32*32 > 6*28*28

[C, H, W]: 6*28*28

Conv1

ReLU

Pooling

Conv2

ReLU

Pooling

fc1

ReLU

fc2

ReLU

fc3

```
Input: 1*32*32
  import torch
  import torch.nn as nn
                                                                                                                                          Conv1
                                           w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
                                                                                                 [C, H, W]: 1*32*32 > 6*28*28
                                                                                                                                           ReLU
  class Net(nn.Module):
                                                                                                           [C, H, W]: 6*28*28
      def __init__(self):
                                                                                                                                         Pooling
           super(Net, self).__init__()
                                                                                                 [C, H, W]: 6*28*28 > 6*14*14
           # 1 input image channel, 6 output channels, 5x5 square convolution
           # kernel
                                                                                                                                          Conv2
Define
          self.conv1 = nn.Conv2d(1, 6, 5)
modules self.conv2 = nn.Conv2d(6, 16, 5)
param.
           # an affine operation: y = Wx + b
                                                                                                                                           ReLU
           self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
           self.fc2 = nn.Linear(120, 84)
                                                                                                                                         Pooling
           self.fc3 = nn.Linear(84, 10)
      def forward(self, x):
                                                                                                                                            fc1
           # Max pooling over a (2, 2) window
           x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
           # If the size is a square, you can specify with a single number
Build
                                                                                                                                           ReLU
           x = F.max_pool2d(F.relu(self.conv2(x)), 2)
Network
          x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
          x = F.relu(self.fc1(x))
                                                                                                                                            fc2
          x = F.relu(self.fc2(x))
          x = self.fc3(x)
           return x
                                                                                                                                           ReLU
                                                                                                                                            fc3
  net = Net()
  print(net)
```

```
Input: 1*32*32
  import torch
  import torch.nn as nn
                                                                                                                                         Conv1
                                            w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
                                                                                                 [C, H, W]: 1*32*32 > 6*28*28
                                                                                                                                          ReLU
  class Net(nn.Module):
                                                                                                          [C, H, W]: 6*28*28
      def __init__(self):
                                                                                                                                        Pooling
           super(Net, self).__init__()
                                                                                                [C, H, W]: 6*28*28 > 6*14*14
           # 1 input image channel, 6 output channels, 5x5 square convolution
           # kernel
                                                                                                                                         Conv2
Define
          self.conv1 = nn.Conv2d(1, 6, 5)
                                                                                              [C, H, W]: 6*14*14 > 16*10*10
modules self.conv2 = nn.Conv2d(6, 16, 5)
           # an affine operation: y = Wx + b
param.
                                                                                                                                          ReLU
           self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
           self.fc2 = nn.Linear(120, 84)
                                                                                                                                         Pooling
           self.fc3 = nn.Linear(84, 10)
      def forward(self, x):
                                                                                                                                           fc1
           # Max pooling over a (2, 2) window
           x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
           # If the size is a square, you can specify with a single number
Build
                                                                                                                                          ReLU
           x = F.max_pool2d(F.relu(self.conv2(x)), 2)
Network
          x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
          x = F.relu(self.fc1(x))
                                                                                                                                           fc2
          x = F.relu(self.fc2(x))
          x = self.fc3(x)
           return x
                                                                                                                                          ReLU
                                                                                                                                           fc3
  net = Net()
  print(net)
```

```
Input: 1*32*32
  import torch
  import torch.nn as nn
                                                                                                                                         Conv1
                                            w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
                                                                                                 [C, H, W]: 1*32*32 > 6*28*28
                                                                                                                                          ReLU
  class Net(nn.Module):
                                                                                                          [C, H, W]: 6*28*28
      def __init__(self):
                                                                                                                                        Pooling
           super(Net, self).__init__()
                                                                                                [C, H, W]: 6*28*28 > 6*14*14
           # 1 input image channel, 6 output channels, 5x5 square convolution
           # kernel
                                                                                                                                         Conv2
Define
          self.conv1 = nn.Conv2d(1, 6, 5)
                                                                                              [C, H, W]: 6*14*14 > 16*10*10
modules self.conv2 = nn.Conv2d(6, 16, 5)
param.
           # an affine operation: y = Wx + b
                                                                                                                                          ReLU
           self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
                                                                                                        [C, H, W]: 16*10*10
           self.fc2 = nn.Linear(120, 84)
                                                                                                                                         Pooling
           self.fc3 = nn.Linear(84, 10)
      def forward(self, x):
                                                                                                                                           fc1
           # Max pooling over a (2, 2) window
           x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
           # If the size is a square, you can specify with a single number
Build
                                                                                                                                          ReLU
           x = F.max_pool2d F.relu (self.conv2(x)), 2)
Network
          x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
          x = F.relu(self.fc1(x))
                                                                                                                                           fc2
          x = F.relu(self.fc2(x))
          x = self.fc3(x)
           return x
                                                                                                                                          ReLU
                                                                                                                                           fc3
  net = Net()
  print(net)
```

```
Input: 1*32*32
  import torch
  import torch.nn as nn
                                                                                                                                         Conv1
                                           w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
                                                                                                [C, H, W]: 1*32*32 > 6*28*28
                                                                                                                                         ReLU
  class Net(nn.Module):
                                                                                                          [C, H, W]: 6*28*28
      def __init__(self):
                                                                                                                                        Pooling
          super(Net, self). init ()
                                                                                                [C, H, W]: 6*28*28 > 6*14*14
          # 1 input image channel, 6 output channels, 5x5 square convolution
          # kernel
                                                                                                                                        Conv2
Define
          self.conv1 = nn.Conv2d(1, 6, 5)
                                                                                              [C, H, W]: 6*14*14 > 16*10*10
modules self.conv2 = nn.Conv2d(6, 16, 5)
param.
          # an affine operation: y = Wx + b
                                                                                                                                         ReLU
          self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
                                                                                                        [C, H, W]: 16*10*10
          self.fc2 = nn.Linear(120, 84)
                                                                                                                                        Pooling
          self.fc3 = nn.Linear(84, 10)
                                                                                              [C, H, W]: 16*10*10 > 16*5*5
      def forward(self, x):
                                                                                                                                           fc1
          # Max pooling over a (2, 2) window
          x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
          # If the size is a square, you can specify with a single number
Build
                                                                                                                                         ReLU
          x = F.max_pool2d(F.relu(self.conv2(x)), 2)
Network
          x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
          x = F.relu(self.fc1(x))
                                                                                                                                           fc2
          x = F.relu(self.fc2(x))
          x = self.fc3(x)
           return x
                                                                                                                                         ReLU
                                                                                                                                           fc3
  net = Net()
  print(net)
```

```
Input: 1*32*32
  import torch
  import torch.nn as nn
                                                                                                                                        Conv1
                                           w' = \begin{cases} w - 2 \left\lfloor \frac{k}{2} \right\rfloor, & \text{w/o padding;} \\ w, & \text{w padding.} \end{cases}
  import torch.nn.functional as F
                                                                                               [C, H, W]: 1*32*32 > 6*28*28
                                                                                                                                        ReLU
  class Net(nn.Module):
                                                                                                         [C, H, W]: 6*28*28
      def __init__(self):
                                                                                                                                       Pooling
          super(Net, self). init ()
                                                                                               [C, H, W]: 6*28*28 > 6*14*14
          # 1 input image channel, 6 output channels, 5x5 square convolution
          # kernel
                                                                                                                                       Conv2
Define
          self.conv1 = nn.Conv2d(1, 6, 5)
                                                                                             [C, H, W]: 6*14*14 > 16*10*10
modules self.conv2 = nn.Conv2d(6, 16, 5)
param.
          # an affine operation: y = Wx + b
                                                                                                                                        ReLU
          self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
                                                                                                       [C, H, W]: 16*10*10
          self.fc2 = nn.Linear(120, 84)
                                                                                                                                       Pooling
          self.fc3 = nn.Linear(84, 10)
                                                                                             [C, H, W]: 16*10*10 > 16*5*5
      def forward(self, x):
                                                                                                                                          fc1
          # Max pooling over a (2, 2) window
                                                                                               Flatten: 16*5*5 > 400
          x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
                                                                                                                400 > 120
          # If the size is a square, you can specify with a single number
Build
                                                                                                                                        ReLU
          x = F.max_pool2d(F.relu(self.conv2(x)), 2)
Network
          x = torch.flatten(x, 1) # flatten all dimensions except the batch dimension
          x = F.relu(self.fc1(x))
                                                                                                                                          fc2
          x = F.relu(self.fc2(x))
                                                                                                                 120 > 84
          x = self.fc3(x)
           return x
                                                                                                                                        ReLU
                                                                                                                                          fc3
  net = Net()
                                                                                                                   84 > 10
  print(net)
```

Load Data

Dataset, Dataloader

```
import torch
   from torch.utils.data import Dataset, DataLoader
   class Dataset(Dataset):
       def init (self):
          self.data = torch.tensor([[1,1,1,1],[2,2,2,2],[3,3,3],[4,4,4,4]])
          self.label = torch.tensor([1, 2, 3, 4])
      def __getitem__(self,index):
          return self.data[index],self.label[index]
       def len (self):
          return len(self.data)
   dataset = Dataset()
   dataloader = DataLoader(dataset=dataset,
                           batch size=2, shuffle=True)
   device = 'cuda' if torch.cuda.is available() else 'cpu'
   print(device)
   for i,(data,label) in enumerate(dataloader):
        data = data.to(device)
        label = label.to(device)
        print(data, label)
cpu
tensor([[1, 1, 1, 1],
        [3, 3, 3, 3]]) tensor([1, 3])
tensor([[2, 2, 2, 2],
         [4, 4, 4, 4]]) tensor([2, 4])
```

Data Augmentation

```
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import functional as F
import torchvision.transforms as transforms
from PIL import Image as Image
import matplotlib.pyplot as plt
import os
class Dataset(Dataset):
   def init (self, dir, transform=None):
       self.dir = dir
       self.image list = os.listdir(dir)
       print(self.image list)
       self.transform = transform
   def len (self):
       return len(self.image list)
   def getitem (self,index):
        image = Image.open(os.path.join(self.dir,self.image list[index]))
       if self.transform:
           image = self.transform(image)
        else:
           image = F.to tensor(image)
       return image
```

```
my transform = transforms.Compose([
       transforms.RandomCrop(400),
       transforms.RandomHorizontalFlip(),
       transforms.RandomRotation(20),
       transforms.ToTensor()
   dataset = Dataset(dir="./img",transform=my transform)
   dataloader = DataLoader(dataset=dataset,
                              batch size=1, shuffle=True)
['(1).jpg', '(2).jpg', '(3).jpg']
   for epoch in range(5):
       for i,(image) in enumerate(dataloader):
           plt.imshow(image[0].permute(1, 2, 0))
 250
```

https://pytorch.org/vision/stable/transforms.html

Simple Training Example

```
model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
scheduler = lr scheduler.StepLR(optimizer, step size=30, gamma=0.1)
criterion = torch.nn.MSELoss()
dataset = ImagesDataset(path to images)
data loader = torch.utils.data.DataLoader(train dataset, batch size=10)
train = True
for epoch in range (epochs):
    if train:
        lr scheduler.step()
    for inputs, labels in data loader:
        inputs = Variable(to gpu(inputs))
        labels = Variable(to gpu(labels))
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        if train:
            optimizer.zero grad()
            loss.backward()
            optimizer.step()
    if not train:
        save best model(epoch validation accuracy)
```


- Optimizer & Scheduler (adjust Learning Rate while training): https://pytorch.org/docs/stable/optim.html
- Loss Function: https://pytorch.org/docs/stable/nn.html#loss-functions
- How to Save Model: https://pytorch.org/tutorials/beginner/saving_loading_models.html

Homework

Build your Rain Streak classifier

What you have?

Training Set:

• Heavy Rain Streak: 80 pics

• Light Rain Streak: 80 pics

Test Set:

Rain Streak: 40 pics

Requirements:

- Report the **Accuracy** of your Classifier.
- Check Your Loss with **tensorboard** (screen-shot)

補充資料:影像讀檔

- Import cv2
- from PIL import Image as Image
- import torch
- import torchvision.transforms.functional as F

```
print("===== Tensor Operate =====")
print("The Shape of cv2 image: ",cv image.shape)
cv image tensor = F.to tensor(cv image) # H W C > C H W
print("After <to tensor> operate, Tensor shape is:", cv image tensor.shape)
cv image tensor = cv image tensor.permute(1,2,0) # C H W > H W C
print("After <permute> operate, Tensor shape is",cv image tensor.shape)
# move our tnesor to GPU and back to cpu
cv image tensor = cv image tensor.to(device)
print("After <to device> operate, Show where the tensor is: ",cv image tensor.device)
cv image tensor = cv image tensor.cpu()
print("After <cpu()> operate, Show where the tensor is: ",cv image tensor.device)
# convert our tensor to numpy array
print("Show the type of tensor: ",type(cv image tensor))
cv image = cv image tensor.numpy() # this will work only when our tensor on cpu
print("After <numpy()> operate, Show where the cv image is: ",type(cv image))
```