CONTENTS

Chapter No	Chapter Name	Page No	
	Abstract	i	
	List of Abbreviations	ii	
	List of Figures	iii	
1	INTRODUCTION	1	
	1.1 Introduction	1	
2	LITERATURE SURVEY	4	
	2.1 literature review	4	
3	SYSTEM ANALYSIS	6	
	3.1 Existing System	6	
	3.2 Disadvantages Of Existing System	6	
	3.3 Proposed System	7	
	3.4 Advantages Of Proposed System		
4	SYSTEM REQUIREMENT SPECIFICATION	8	
	4.1 Hardware Requirements	8	
	4.2 Software Requirements	8	
5	SYSTEM DESIGN	9	
	5.1 Introduction	9	
	5.2 Modules	9	
	→ Face detection	9	
	→ Pre-processing	10	
	→ Deep learning algorithm	10	
	→ Train-test split and model fitting		
	5.3 System architecture	14	
	5.4 UML Diagrams	16	
	→ Construction of use case diagrams	19	
		20	
	→ Sequence Diagram	22	
	→ Class Diagram	22	
	→ Activity Diagram	23	
	→ Data Flow Diagram	24	

6	SYSTEM IMPLEMENTATION	25
	6.1 Input and output design → Logical design → Physical design	25
	6.2 Input and output representation	26
	6.3 Coding	29
7	IMPLEMENTATION	35
	7.1 Module description with Implementation Of Key Function	35
8	TESTING	39
9	RESULTS AND SCREENSHOTS	44
10	CONCLUSION	47
11	FUTURE ENHANCEMENT	48
	REFERENCES	49

ABSTRACT

Mental stress in the workplace is a growing concern, as it can negatively impact employee well-being, productivity, and overall organizational success. Traditional methods of assessing stress, such as self-reported surveys or observations, can be subjective and often fail to capture real-time stress levels. Traditional methods of assessing stress, such as self-reported surveys or observations, can be subjective and often fail to capture real-time stress levels. This project aims to develop an intelligent system for **real-time mental stress detection** in workplaces using **machine learning** techniques. The proposed system leverages multiple modalities, including **physiological signals** (heart rate, skin conductance), **behavioral cues** (speech patterns, facial expressions), and **textual analysis** (emails, messages) to provide a comprehensive measure of stress. A dataset containing various sleep patterns and stress levels is analyzed. The proposed system implements Random Forest along with Support Vector Machine (SVM), Decision Trees (DT), Naïve Bayes (NB), and Logistic Regression (LR) to compare their accuracy in classifying stress levels. The dataset, sourced from SayoPillow.csv, includes features such as snoring range, respiration rate, body temperature, limb movement rate, blood oxygen levels, eye movement, sleep hours, heart rate, and stress levels.

LIST OF ABBREVIATIONS

S. No	Word	Standard form
1	API	Application Programming Interface
2	BP	Blood Pressure
3	CSS	Cascading Style Sheet
4	DT	Decision Tree
5	EEG	Electroencephalogram
6	FFT	Fast Fourier Transform
7	GSR	Generalized Symbolic Regression
8	HTML	Hyper Text Markup Language
9	IDE	Integrated Development Environment
10	IT	Information Technology
11	KNN	K-Nearest Neighbor
12	ML	Machine learning
13	SVM	Support Vector Machine
14	UML	Unified Modelling Language
15	RAM	Random Access Memory

LIST OF FIGURES

S. No	Name of the figure	Page No.
1	Figure 1: Stress levels	3
2	Figure 2: Use Case Diagram	20
3	Figure 3: Sequence diagram	21
4	Figure 4: Class Diagram	22
5	Figure 5: Activity Diagram	23
6	Figure 6: Data Flow Diagram	24
7	Figure 7: Random Forest	38