GEL10280: Communications numériques **2007 Examen final Solutionnaire**

Problème 1 (15 points sur 100)

Considérons un PLL d'ordre deux avec largeur de bande équivalente de bruit de B_N =.05 et facteur d'amortissement ζ =.5. Le filtre de boucle est passe-bas avec la forme

$$F(\omega) = \frac{\omega_1}{j\omega + \omega_1}$$

La phase à l'entrée est un échelon avec un saut de phase de 1.25 radian.

Quelle est l'erreur asymptotique pour B_N =.05 et ζ =.5?

$$E(\omega) = \frac{j\omega \frac{\Delta \varphi}{j\omega}}{j\omega + K_0 F(\omega)} = \frac{\Delta \varphi}{j\omega + K_0 \frac{\omega_1}{j\omega + \omega_1}} = \frac{\Delta \varphi(j\omega + \omega_1)}{j\omega(j\omega + \omega_1) + K_0 \omega_1}$$

$$\lim_{j\omega\to0}j\omega E\left(\omega\right)=\lim_{j\omega\to0}\frac{\triangle\varphi j\omega}{j\omega+K_{0}F\left(\omega\right)}=\lim_{j\omega\to0}\frac{\triangle\varphi j\omega\left(j\omega+\omega_{1}\right)}{j\omega\left(j\omega+\omega_{1}\right)+K_{0}\omega_{1}}=\frac{\triangle\varphi\cdot0\cdot\left(jQ+\omega_{1}\right)}{j0\left(j0+\omega_{1}\right)+K_{0}\omega_{1}}=\frac{0}{K_{0}\omega_{1}}=0$$

L'erreur asymptotique est nul peu importe les valeurs de la large \sqrt{r} de bande équivalent du bruit ou le facteur d'amortissement. Dans la graphique pour B_N =.05 et ζ =.5 l'erreur semble non-nulle seulement parce que l'erreur tend plus lentement vers zéro.

Problème 2 (10 points sur 100)

Voici quatre PLL.

Classifiez chaque PLL selon la méthode de génération des références de phase, soit

- A) tonalité ou pilote
- B) re-modulation
- C) mettre signal reçu au carré (puissance quatre, etc.)

Band-pass Received filter Mth-power Loop tuned to filter signal device Mf_c $\sin (2M\pi f_c t + M\hat{\phi})$ VCO Frequency divider $\div M$ Output

PLL i. B) re-modulation

Nous voyons que le détecteur sort la décision et fait entrer les données dans le boucle pour enlever la modulation de la référence. La désavantage de cette approche est le délai.

PLL iii. B) re-modulation

Dans une boucle de Costas la décision est générée dans la boucle, donc en exploitant la remodulation des données. Il n'y a pas de délai introduit.

PLL ii. C) mettre signal reçu au carré (puissance quatre, etc.)

PLL iv. C) mettre signal reçu au carré (puissance quatre, etc.)

Problème 3 (20 points sur 100)

Voici le tableau standard et la table des syndromes pour un code en bloc.

	code systématique											
	bits de message	001	010	011	100	101	110	111	Syndrome			
_	000000	110001	101010		011100	101101	110110	000111	000			
rs d'erreu	000001	110000 110011	101011 101000	011010 011001	0111 <mark>01</mark> 011110	101100 101111	110111 110100	000110	110 101			
	000100 001000	110101 111001	101110 100010	011111 010011	011000 010100	101001 100101	110010 111110	000011 001111	011			
cteu	010000 100000	100001 010001	111010 001010	001011 111011	001100 111100	111101 001101	100110 010110	010111 100111	010 100			
\ \	001001	111000	100011	010010	010101	100100	111111	001110	111			

Combien de vecteurs d'erreur peuvent être corrigés par ce code?

7 vecteurs d'erreur

A. Combien de bits peuvent être corrigés par ce code?

Toutes les erreurs d'un bit peuvent être corrigés

B. Est-ce que le code est systématique?

Oui, le code est systématique.

C. Est-ce que le code est linéaire?

Oui, le code est linéaire – tous les sommes des mots de code sont encore des mots de code.

D. Quelle est la distance minimale du code?

_	000000	110001	101010	011011	011100	101101	110110	000111	
	0	3	3	4	3	4	4	3	poid

Le poids minimal est 3, donc la distance minimale est 3.

E. Quel est le taux de code?

Il y a 3 bits qui entrent et 6 bits qui sortent, donc le taux de code est 3/6 ou un demi.

F. Si la séquence reçue est 010011, est-ce qu'il y a eu une erreur de transmission?

La séquence 010011 n'est pas un mot de code, donc il y avait une erreur de transmission. En cherchant 010011 dans la table nous voyons que le troisième bit a été inversé.

G. Avec l'information fournie, est-ce que vous pouvez donner une esquisse de l'encodeur?

NON. Il n'est pas possible d'écrire l'encodeur sans des manipulations mathématiques importante (inversion d'une matrice). **OUI**, avec l'inversion d'une matrice...

donc finalement j'ai accepté les deux.

$$G = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \quad H = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- H. Avec l'information fournie est-ce que vous pouvez corriger les erreurs?
 OUI.
 - a. Si oui, comment?

En cherchant le vecteur reçu dans le tableau standard, nous pouvons lire le mot de code correct dans la première rangé de la colonne avec le vecteur reçu. Par exemple, la séquence 010011 n'est pas un mot de code donc il y avait une erreur de transmission. En cherchant 010011 dans la table nous trouvons que le mot de code valide était 011011, c.-à-d., que le troisième bit a été inversé.

b. Si non, quelle information additionnelle est requise?

Problème 4 (30 points sur 100)

Considérons le système TCM 8QAM suivant

Il y a deux possibilités pour le chemin avec la distance la plus courte.

Notons que sur chaque transition il y a trois bits de code. Le premier bit du code c₃, qui est égal au premier bit de données, est fourni pour chaque transition.

A. (10 points) Complétéz les mots de code pour toutes les transitions dans les deux chemins.

B. (20 points) Trouvez les distances globales (métriques de chemin) pour les deux chemins en utilisant la distance euclidienne au carré.

La distance pour chemin un est 8.

La distance pour chemin deux est 7.15. Donc la distance minimale est 7.15.

Problème 5 (25 points sur 100)

Voici un décodeur pour un code convolutif. Les métriques de branche (distances locales) sont indiquées pour chaque transition, et représentent la distance de Hamming entre le mot de code reçu et le mot de code valide pour la transition.

A. (15 points) Quelle est la sortie du décodeur, c.-à-d. la séquence de cinq bits de données?

Page 7

Page 8

B. (10 points) Est-ce qu'il y a eu des erreurs pendant la transmission? Si oui, combien?

La distance n'est pas nulle, donc il y a eu des erreurs. La distance est 2, donc deux erreurs. Nous voyons dans le décodeur que les erreurs arrivaient pendant les deux premiers intervalles.

