Lie Algebras and Groups

A course by: Monty McGovern Notes by: Nico Courts

Winter 2019

Introduction

These notes are my best attempt at following along with our *Math* 508 – *Lie Algebras* course at UW. This is my first time trying to type my notes on-the-fly in class so we'll see how well this goes. The course reference is Humphreys' *Introduction to Lie Algebras and Representation Theory*.

The course description follows:

This is the second course in the Algebraic Structures sequence. I will classify finite-dimensional complex semisimple Lie algebras, also proving some structural results on general Lie algebras along the way. Although one usually first encounters Lie algebras in a manifolds course, the treatment (following the text) will be entirely algebraic.

1 January 7, 2019

The homework is posted on Monty's website. :)

1.1 Lie algebras

This course will be studying Lie algebras, but as opposed to their treatment in manifolds, we will be studying them from a purely algebraic point of view. The book (Humphreys) actually never defines a Lie group.

1.1.1 Definition

A Lie Algebra L or $\mathfrak g$ over a field k is a k-vector space (usually f.d.) along with a bracket operation $[vw]: L \times L \to L$ such that $[\cdot \cdot]$ is

- anticommutative,
- bilinear,
- [x[yz]] = [[xy]z] + [y[xz]]

1.1.2 Remark: The last principle above is actually equivalent to the *Jacobi identity*:

$$[x[yz]] + [y[xz]] + [z[xy]].$$

This follows from bilinearity and anticommutativity of the bracket.

The most natural place for these to arise is as derivations on an algebra!

1.1.3 Definition

A k-derivation $d: A \to A$ on an algebra A over k is a k-linear map satisfying the Leibniz rule.

- 1.1.4 Remark: Some key facts about derivations (for us):
 - Given a fixed $a \in A$, the map d_a sending $b \mapsto ab ba$, the **commutator** [ab] is a derivation.
 - If d, e are derivations, then so is [de] = de ed, where de is the *composite* of d and e as opposed to the product.

1.2 Examples

A main source of Lie algebras is (associative) algebras! Any associative k-algebra A becomes a Lie algebra over k, taking [ab] = ab - ba. In particular, one obvious choice for k-algebra is $M_n(k) = \mathfrak{gl}_n(k)$, the (Lie) algebra of $n \times n$ matrices over k.

Lie subalgebras are what you'd expect (including closure under brackets). Notice that if $L' \leq L$, then they must both be over the same field.

If L is a k-Lie algebra and $I \triangleleft L$ is an ideal of L, then the quotient space L/I becomes a Lie algebra with [x+I,y+I] = [xy] + I as the bracket.

A Lie algebra homomorphism is a map $\varphi: L \to L'$ such that φ is k-linear and $\varphi([xy]) = [\varphi(x)\varphi(y)].$

We get the usual first isomorphism theorem $L/\ker \varphi \cong \varphi(L)$.

Associative algebras are not the only source of Lie algebras, however! One example is $\mathfrak{sl}(n,k) = \{n \times n \text{ matrices over } k \text{ with trace zero}\}$

Note that this is **not closed under product** since $tr(AB) \neq tr A tr B$ but tr(AB) = tr(BA) so tr(AB - BA) = tr(AB) - tr(BA) = 0.

1.2.1 Definition

We call this algebra (or, in fact any subalgebra of $\mathfrak{gl}(n,k)$) linear. Think "Linear" means "of matrices."

We say that $\mathfrak{sl}(n,k)$ has **type** A_{n-1} . Eventually we will see seven types A-G of semisimple Lie algebras. The shift in index will emerge later.

 $\mathfrak{sl}(n,k)$ is, in fact, a simple Lie algebra: for $k=\mathbb{C},\,\mathfrak{sl}(n,\mathbb{C})$ has no ideals apart from the trivial ones.

Other non-associative examples include k^n with a bilinear form (\cdot, \cdot) which is either symmetric or skew-symmetric and (in either case) is nondegenerate.

1.2.2 Definition

 (\cdot,\cdot) is **nondegenerate** if the map $v\mapsto (v,\cdot)$ is injective. Equivalently there is no $v\in V$ such that (v,w)=0 for all $w\in V$.

Given $V = k^n$ and a bilinear form on V, we can look at all $X \in \mathfrak{gl}(n,k) = \mathfrak{gl}(V)$ such that (Xv, w) = (v, Xw). Then X is **skew-adjoint** with respect to the form. One can check that [XY] is skew-adjoint whenever both X and Y are.

1.3 Generating (skew) symmetric forms

It ends up that the dot product (which a symmetric form) is misleadingly simple – thus we will look elsewhere.

If $M \in \mathfrak{gl}(n,k)$ is symmetric, so that $M^t = M$, then $(v,w) = v^t M w$ is a symmetric. If instead M is skew-symmetric, then the same definition yields a skew-symmetric form. This actually induces a one-to-one correspondence between matrices and forms.

In both cases, if M is invertible, then the form will be nondegenerate. As a consequence, since skew-symmetric matrices are always singular in odd dimensions, we see that nondegenerate skew-symmetric forms (over char $k \neq 2$ where the two families of forms coincide) exist only in even dimensions.

1.4 A peek at classifications

If we have a nondegenerate symmetric form where n = 2m is going to give us an algebra of type D_m . If n = 2m + 1, then it is of type B_m . Both of these cases are called **orthogonal**.

If instead we have a skew-symmetric form and n = 2m, then this is of type C_m , and we call this algebra **symplectic.**

We will make a particular choice for our matrix M and then study the resulting Lie algebras in much more detail next time. The choices will be:

• For type D_m :

$$\begin{pmatrix} 0 & I_m \\ I_m & 0 \end{pmatrix}$$

• For type C_m :

$$\begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix}$$

• For type B_m :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_m \\ 0 & I_m & 0 \end{pmatrix}$$