Programare in limbaj de asamblare

Instructiuni MMX

Tehnologia MMX

- MMX Multi-Media eXtension
- Objectiv:
 - cresterea vitezei de prelucrare a informatiilor audio, video, grafica, etc.
 - Achizitia, prelucrarea si generarea in timp-real a informatiilor multimedia
 - Dezvoltarea de aplicatii multimedia la care timpul de executie (reactie) este critic
- Componente MMX:
 - Registre MMX (8), MM0 .. MM7; 64biti/registru
 - Instructiuni MMX (57)
 - Tipuri de date impachetate
 - Unitate de executie MMX

Tehnologia MMX – caracteristici generale

- Ideea de baza:
 - Executia in paralel a unei instructiuni pe un set de date
 - Paralelism de tip SIMD Single Instruction Multiple Data (simulare)
- Tehnologia MMX este eficienta daca:
 - Datele au o structura de tip vector, matrice, sau o alta structura cu grad ridicat de regularitate
 - Aceeasi secventa de operatii se aplica in mod identic pe fiecare element al structurii
 - Aceeasi secventa de prelucrare se executa de un numar foarte mare de ori (ex: pe un milion de pixeli ai unei imagini)
 - Timpul de executie este critic

Tipuri de date MMX

Octeti impachetati (Packed byte): 8 octeti, 64 biti 63 Cuvinte impachetate (Packed word): 4 cuvinte, 64 biti Dublu-cuvinte impachetate (Packed dword): 2 dcuvinte, 64 biti Cuadruplu-cuvant (Quadword): 1 qcuvant, 64 biti

Sintaxa instructiunilor MMX

- <instructiune>:= <mnemonica> [<destinatie>,<sursa>]
- <mnemonica>:=P<operatie><sufixe>
- $\langle sufixe \rangle := [US|S|SS][B|W|D|Q][B|W|D|Q]$
- Sufixele indica tipul datelor si modul de efectuare a a operatiilor aritmetice:
 - US unsigned, saturation
 - S, SS signed, saturation (in lipsa wrapearound)
 - B, W, D, sau Q byte, word, dword, qword; daca apar 2 litere atunci sursa este de tipul primei litere iar destinatia de tipul celei de a doua litere
- Exemplu:

```
paddusw MM4, mem1
psubusb MM4, mem1
```

Operatii aritmetice cu Saturare si cu Intoarcere (wraparound)

- Tehnici de solutionare a depasirilor de capacitate (superioara sau inferioara):
 - Prin "intoarcere"
 - Prin saturare

Exemplul 1: operatii cu numere fara semn (octeti):

Intoarcere: Saturare:

F0h+20h = 10h F0h+20h = FFh

80h - A0h = 20h 80h - A0h = 00h

Exemplul 2: operatii cu numere cu semn (octeti):

127+1=-127 127+1=127

-128 - 1 = 127 -128 - 1 = -128

Operatii aritmetice cu saturare

```
• Exemplul 3: paddsw 7f38+1707 = 7fff - saturare
```

Exemplul 4: paddusw

7f38+1707 = 963f - nu este saturare

7f38

1707

7 f f f Cu semn
963 f Fara semn

Instructiunile MMX

- EMMS
- Adunare si scadere
- Instructiuni de deplasare (shift)
- Instructiuni logice
- Instructiuni de multiplicare
- Instructiuni de comparare
- Instructiuni de impachetare/despachetare
- Instructiuni de transfer

Instructiuni MMX

- Instructiunea EMMS
 - Se foloseste dupa o secventa de instructiuni MMX si inainte de o instructiune in virgula flotanta pentru a evita generarea unei exceptii sau a unui rezultat incorect pt. operatii in virgula flotanta
 - Problema:
 - starea modulului MMX este o copie a starii unitatii flotante
 - dupa instructiuni MMX registrul tag al coprocesorului este alterat; poate genera o exceptie de tip stiva invalida
 - EMMS sterge starea MMX si astfel valideaza registrul tag (toate intrarile in stiva flotanta sunt validate)

Instructiuni de adunare si scadere

Instructiune	b	W	d	q
padd	X	X	X	
padds	X	X		
paddus	X	X		
psub	X	X	X	
psubs	X	X		
psubus	X	X		

paddxx <destinatie>, <sursa>

<destinatie>:= MMi

<sursa>:=MMi | <variabila>

Adunare si scadere - exemple

Instructiuni de deplasare (shift)

Instructiune	b	W	d	q
psll		X	X	X
psra		X	X	
psrl		X	X	X

Shift left logic
Shift right arithmetic

Elementele destinatiei se deplaseaza la stanga sau la dreapta cu un <numar> de pozitii binare

Instructiuni de deplasare - exemple

psllw MM4, 3

psllq MM4, 3

Instructiuni logice

Instructiune	64 biti
pand	X
pandn	X
por	X
pxor	X

X=X AND Y
X=(NOT X) AND Y
X=X OR Y
X=X XOR Y

pand | pandn | por | pxor | <destinatie>, <sursa>

Operatia logica se executa bit cu bit

Instructiuni logice - exemplu

pand MM4, MM3

r-1	Γ-1 +		
1010111111111111	1010000000001111	1000000000000001	100000000000001
0111111111111101	0000000001111100	000000000001100	000000000001000
0010111111111101	000000000001100	0000000000000000	0000000000000000

Instructiuni de multiplicare

Instructiuni	b	W	d	q
pmadd				
pmulh		Х		
pmull		Х		

multiply and add
multiply and keep high
multiply and keep low

pmadd – multiply and add

$$X_{31-0} = X_{15-0} * Y_{15-0} + X_{31-16} * Y_{31-16}$$

$$X_{31-0} = X_{15-0} * Y_{15-0} + X_{31-16} * Y_{31-16}$$

 $X_{63-32} = X_{47-32} * Y_{47-32} + X_{63-48} * Y_{63-48}$

Instructiuni de multiplicare

pmadd MM3,MM4

Instructiuni de multiplicare

pmulh MM3,MM4

8 0 0 0

F 0 5 C

8 0 0 0

1 C 0 0

Instructiuni de comparare

Instructiuni	b	W	d	q
pcmpeq	X	X	X	
pcmpgt	X	X	X	

compare equal compare greater (intregi cu semn)

pcmpeqw MM3,MM4 Exemplu: 0 0 0 0 1 2 3 4 FFFF 0 0 C B MM3 0 0 C B 0560 1 2 3 4 1 3 F F MM4 FFFF FFFF MM3 0 0 0 0 0 0 0 0

Instructiuni de impachetare/despachetare

Instructiuni	b	W	d	q	
packss	←	— •			pack signed, saturation
packus	-				pack signed to unsigned
punpckh		-	—	-	unpack high
punpckl		-	—	-	unpack low

Impachetare: copierea unei structuri mai mari (ex: word) intr-o structura mai mica (ex: byte) cu saturare in caz de nevoie

Despachetare: interclasarea elementelor celor doi operanzi – se foloseste pentru extinderea reprezentarii

Instructiuni de impachetare/despachetare Exemplu de impachetare

packss MM3,MM4

ns – nesaturat

7F39 = 32569 > 7F00 = 32512 => sat.

s - saturat

FFC9 = -37 > 8000 = -32512 = > nsat.

1111.1111.1100.1001 => 1100.1001

Instructiuni de impachetare/despachetare Exemplu de despachetare

punpckhwd MM3,MM4 ; cuvant ->dublu-cuvant

Instructiuni de transfer

Instructiune	32biti	64 biti
movd	X	
movq		X

move dword (32 biti) move qwordword (64 biti)

```
movd | movq <destinatie>, <sursa>
  <destinatie> := MMi | <variabila_mem> | <registru_x86>
  <sursa> := MMi | <variabila_mem> | <registru_x86>
  exemple: movd MM2, var_32 ; se extinde cu 0
    movd var_32, MM3 ; se copiaza partea low
    movq var_64, MM5
```

Exemple de proceduri MMX Produsul scalar a doi vectori: Σ a(i)*b(i)

Exemple de programe MMX Suprapunerea selectiva a imaginilor

- 1. pcmpeqb MM1, MM3
- 2. pand MM4, MM1
- 3. pandn MM1, MM3
- 4. por MM4, MM1

