Electronic Circuits

Prof. Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin

> Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

Biasing

 $\label{eq:Biasing: Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.$

The Three States of Operation

• Active or Linear Region Operation
Base–Emitter junction is forward biased
Base–Collector junction is reverse biased

• Cutoff Region Operation Base–Emitter junction is reverse biased

• Saturation Region Operation

Base–Emitter junction is forward biased Base–Collector junction is forward biased

DC Biasing Circuits

- · Fixed-bias circuit
- · Emitter-stabilized bias circuit
- Collector-emitter loop
- · Voltage divider bias circuit
- DC bias with voltage feedback

Saturation When the transistor is operating in saturation, current through the transistor is at its maximum possible value. $I_{Csat} = \frac{V_{CC}}{R_C}$ $V_{CE} \equiv 0V$

Base-Emitter Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

Load Line Analysis

Cutoff:

Saturation:

$$\begin{aligned} \mathbf{V}_{\mathrm{CE}} &= \mathbf{V}_{\mathrm{CC}} \\ \mathbf{I}_{\mathrm{C}} &= \mathbf{0} \, \mathbf{m} \mathbf{A} \end{aligned}$$

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{I}}$$
$$V_{CE} = 0 V$$

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Troubleshooting Hints

- Approximate voltages
- V_{BE} \cong .7 V for silicon transistors
- $V_{CE}\!\cong\!25\%$ to 75% of V_{CC}
- Test for opens and shorts with an ohmmeter.
- Test the solder joints.
- Test the transistor with a transistor tester or a curve tracer.
- Note that the load or the next stage affects the transistor operation.

PNP Transistors

The analysis for pnp transistor biasing circuits is the same as that for npn transistor circuits. The only difference is that the currents are flowing in the opposite direction.