Course	COMP 7003
Program	Bachelor of Science in Applied Computer Science
Term	January 2024

This is an individual <u>programming</u> assignment.

Objective

- Develop the ability to capture and analyze network traffic at the packet level using Scapy in Python.
- Understand packet structures by converting raw data to a hex dump, parsing the fields of various network layers, and displaying the results in a clear and organized format.

Learning Outcomes

- Technical Skill in Packet Analysis: Gain proficiency in capturing, filtering, and analyzing network packets using Scapy and Python.
- Understanding Network Protocols: Strengthen knowledge of Ethernet, IPv4, ICMP, TCP, and UDP protocols by dissecting packet fields and identifying key components.
- Data Handling and Parsing: Improve the ability to convert raw packet data into a humanreadable form (e.g., hex dumps) and extract relevant header information.
- Software Development Practice: Enhance coding skills and experience implementing structured, maintainable Python solutions that meet specified requirements.
- Problem-Solving and Debugging: Develop the capacity to troubleshoot, refine, and test code to ensure accurate packet capture and analysis.

Assignment Details

- You will receive a starter code template that uses Scapy to capture network traffic.
- Your task is to:
 - Capture packets on a specified interface.
 - Filter and identify packets using the required protocols: Ethernet, IPv4, ICMP, TCP, and UDP.
 - Convert each captured packet into a hex dump.
 - Parse the packet from the hex dump and display its fields in a format matching the provided reference screenshots.
 - Test your program with multiple packets for each protocol type, ensuring it accurately identifies and displays their details.
 - Screenshots of the expected output are at the end of this document.

The starting source code is provided.

Requirements

- Protocols: Must support Ethernet, IPv4, ICMP, TCP, UDP, and DNS.
- Hex Dump: Implement functionality to produce a hex dump of each packet's raw data.
- Field Extraction: Accurately parse and display relevant fields (e.g., source/destination MAC and IP addresses, protocol fields, source/destination ports for TCP/UDP details).
- Output Format: Match the style and clarity of the provided screenshots. Maintain consistent and organized formatting.
- Code Quality: Write clean, commented code that follows best practices in Python programming.
- Testing: Collect and analyze multiple packets from each supported protocol to verify that your program works correctly.

Constraints

 Ensure your code runs on the lab environment's standard Python installation with Scapy pre-installed.

Resources

- Official Scapy <u>documentation</u>
- Course materials and lecture notes on packet structure and protocols
- Provided starter code and reference screenshots

Submission

- Ensure your submission meets all the <u>guidelines</u>, including formatting, file type, and submission.
- Follow the AI usage guidelines.
- Be aware of the late submission policy to avoid losing marks.
- Note: Please strictly adhere to the submission requirements to ensure you don't lose any marks.

Evaluation

Topic	Value
Correct Output	50%
Design	25%

Testing	25%
Total	100%

Hints

- Review Scapy's layer structure and methods for filtering and dissecting packets.
 Understanding show() and layer fields will help determine which fields to print.
- Use the provided starter code as a template. Focus on integrating your parsing logic into the given structure.
- Experiment with capturing traffic from different sources (pinging hosts, making DNS queries, etc.) to generate test packets.
- Start testing and debugging early. Make incremental changes and confirm that each protocol layer parses correctly before moving on.
- To capture and generate traffic:

Protocol	Filter	Capture Command	Traffic Generation Command
ARP	arp	sudo python3 main.py -i any -c 1 -f arp	arping -c 1 <ip_address></ip_address>
UDP	udp	sudo python3 main.py -i any -c 1 -f udp	echo "Hello, World!" ncat udp 192.168.0.1 12345
TCP	tcp	sudo python3 main.py -i any -c 1 -f tcp	<pre>curl http://<ip_address> or telnet <ip_address> <port></port></ip_address></ip_address></pre>
ICMP	icmp	sudo python3 main.py -i any -c 1 -f icmp	ping -c 1 <ip_address></ip_address>

ARP

```
assign-2 — -zsh — 95×26
(.venv) ds@chaos assign-2 % sudo python3 main.py -i any -c 1 -f arp
Password:
Available interfaces: ['lo0', 'gif0', 'stf0', 'anpi1', 'anpi2', 'anpi0', 'en4', 'en5', 'en6', 'en1', 'en2', 'en3', 'ap1', 'en0', 'bridge0', 'awd10', 'llw0', 'utun0', 'utun1', 'utun2', 'utun3', 'utun4', 'utun5', 'utun6', 'utun7', 'utun8', 'utun9']
Starting packet capture on en0
Starting packet capture on en0 with filter: arp
Captured Packet 1:
Ethernet Header:
  Destination MAC:
                                fffffffffff
                                                         | ff:ff:ff:ff:ff
  Source MAC:
                                 cc96e52a1ea5
                                                         cc:96:e5:2a:1e:a5
  EtherType:
                                0806
                                                         2054
ARP Header:
                                0001
  Hardware Type:
                                                         | 1
                                 0800
                                                         2048
  Protocol Type:
  Hardware Size:
                                 96
                                                         6
  Protocol Size:
                                 04
                                                         | 4
                                 0001
                                                         | 1
  Operation:
  Sender MAC:
                                 cc96e52a1ea5
                                                         | cc:96:e5:2a:1e:a5
  Sender IP:
                                 c0a80014
                                                         192.168.0.20
                                                         00:00:00:00:00:00
  Target MAC:
                                 000000000000
  Target IP:
                                 c0a80062
Packet capture completed on en0.
(.venv) ds@chaos assign−2 % ■
```

UDP

```
assign-2 — -zsh — 95×32
(.venv) ds@chaos assign-2 % sudo python3 main.py -i any -c 1 -f udp
Available interfaces: ['lo0', 'gif0', 'stf0', 'anpi1', 'anpi2', 'anpi0', 'en4', 'en5', 'en6', 'en1', 'en2', 'en3', 'ap1', 'en0', 'bridge0', 'awd10', 'llw0', 'utun0', 'utun1', 'utun2', 'utun3', 'utun4', 'utun5', 'utun6', 'utun7', 'utun8', 'utun9']
Starting packet capture on en0
Starting packet capture on en0 with filter: udp
Captured Packet 1:
Ethernet Header:
                                                          | da:b3:70:1e:94:9f
                                 dab3701e949f
  Destination MAC:
  Source MAC:
                                 e2842607c9b9
                                                           | e2:84:26:07:c9:b9
  EtherType:
                                 0800
                                                          2048
IPv4 Header:
  Version:
                                                          | 20 bytes
  Header Length:
                                                          | 57
                                 0039
  Total Length:
  Flags & Frag Offset:
                                 0000
                                                          | 0b0
    Reserved:
    DF (Do not Fragment): 0
MF (More Fragments): 0
                             0x0 | 0
    Fragment Offset:
                                                          | 17
  Protocol:
                                 11
                                 c0a8003f
  Source IP:
                                                           192.168.0.63
  Destination IP:
                                 8efb216a
                                                          142.251.33.106
UDP Header:
  Source Port:
                                 cd22
                                                           | 52514
  Destination Port:
                                 01bb
                                                           443
                                 0025
                                                            37
  Length:
  Checksum:
                                 2de5
                                                           11749
                                 42ea88b1358becb33db421363f10b88fd0bf62dbb683a519cd1566e08a
  Payload (hex):
Packet capture completed on en0.
(.venv) ds@chaos assign-2 %
```

```
assign-2 - -zsh - 95×48
(.venv) ds@chaos assign-2 % sudo python3 main.py -i any -c 1 -f tcp
Available interfaces: ['lo0', 'gif0', 'stf0', 'anpi1', 'anpi2', 'anpi0', 'en4', 'en5', 'en6', 'en1', 'en2', 'en3', 'ap1', 'en0', 'bridge0', 'awd10', 'llw0', 'utun0', 'utun1', 'utun2', 'utun3', 'utun4', 'utun5', 'utun6', 'utun7', 'utun8', 'utun9']
Starting packet capture on en0
Starting packet capture on en0 with filter: tcp
Captured Packet 1:
Ethernet Header:
                                                        | e2:84:26:07:c9:b9
  Destination MAC:
                                e2842607c9b9
  Source MAC:
                                dab3701e949f
                                                         da:b3:70:1e:94:9f
  EtherType:
                                0800
                                                        2048
IPv4 Header:
  Version:
                                                        20 bytes
  Header Length:
                                5
                                                         125
                                997d
  Total Length:
  Flags & Frag Offset:
                                da79
                                                        | 0b1101101001111001
    Reserved:
    DF (Do not Fragment): 1
    MF (More Fragments): 0
    Fragment Offset:
                            0x1a79 | 6777
  Protocol:
                                96
                                                        1 6
                                8efbd3e6
                                                        | 142.251.211.230
  Source IP:
  Destination IP:
                                c0a8003f
                                                        192.168.0.63
TCP Header:
  Source Port:
                                01bb
                                                        443
  Destination Port:
                                сосс
                                                          49356
                                da96f530
                                                          3667326256
  Sequence Number:
  Acknowledgment Number:
                                44a0227a
                                                          1151345274
  Data Offset:
                                                          32 bytes
  Reserved:
                                0b0
                                                          0
                                0b000011000
                                                        | 24
  Flags:
    NS:
    CWR:
                            0
    ECE:
                            0
                            0
    URG:
    ACK:
                            1
    PSH:
                            1
                            0
    RST:
    SYN:
                            0
    FIN:
                            0
  Window Size:
                                041a
                                                          1050
  Checksum:
                                0807
                                                          2055
  Urgent Pointer:
                                0000
                                                        10
                                1703030044190968a9a1df104f6472e4949de47ec4fd0a606630b77a96b052fd41f
  Payload (hex):
\tt 02b5ce5839a8f06ca3d200ce0ed36302f65114df9b7becae0b0819df1ab9696a1383d97cbfc7cd7
Packet capture completed on en0.
(.venv) ds@chaos assign-2 % ■
```

ICMP

```
assign-2 — -zsh — 95×33
(.venv) ds@chaos assign-2 % sudo python3 main.py -i any -c 1 -f icmp
Available interfaces: ['lo0', 'gif0', 'stf0', 'anpi1', 'anpi2', 'anpi0', 'en4', 'en5', 'en6', 'en1', 'en2', 'en3', 'ap1', 'en0', 'bridge0', 'awd10', 'llw0', 'utun0', 'utun1', 'utun2', 'utun3', 'utun4', 'utun5', 'utun6', 'utun7', 'utun8', 'utun9']
Starting packet capture on en0
Starting packet capture on en0 with filter: icmp
Captured Packet 1:
Ethernet Header:
                                                            | 6c:5a:b0:3d:e7:5c
  Destination MAC:
                                  6c5ab03de75c
  Source MAC:
                                  ea6f69a682c7
                                                             | ea:6f:69:a6:82:c7
  EtherType:
                                  0800
                                                            2048
IPv4 Header:
  Version:
                                                            | 20 bytes
  Header Length:
                                  5
  Total Length:
                                  0054
                                                            84
                                                            | 0b1110101111011110
  Flags & Frag Offset:
                                  ebde
    Reserved:
                              1
     DF (Do not Fragment): 1
    MF (More Fragments): 1
     Fragment Offset: 0xbde | 3038
  Protocol:
                                  01
  Source IP:
                                  c0a800f1
                                                            192.168.0.241
  Destination IP:
                                  ac43c328
                                                            172.67.195.40
ICMP Header:
  Type:
  Code:
                                  00
                                                               0
                                  464d
                                                             17997
  Checksum:
  Payload (hex):
                                  d0790b29678fd9a10002a9d908090a0b0c0d0e0f101112131415161718191a1b1c1
d1e1f202122232425262728292a2b2c2d2e2f3031323334353637
Packet capture completed on en0.
(.venv) ds@chaos assign-2 %
```