PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-180355

(43) Date of publication of application: 02.07.2003

(51)Int.Cl.

C12N 15/09 C12N 1/21 C12P 13/06 C12P C12P 13/14 //(C12P 13/06 C12R C12R (C12P 13/14 C12R

(21)Application number: 11-189515

(71)Applicant: AJINOMOTO CO INC

(22)Date of filing:

02.07.1999

(72)Inventor: SUGIMOTO MASAKAZU

ITO HISAO

KURAHASHI OSAMU

(54) METHOD FOR PRODUCING L-AMINO ACID

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for producing L-amino acids, such as L-lysine or Lglutamic acid, through a fermentation process which is more improved than ever, and to provide strains used for the method.

SOLUTION: This coryneform bacterium is obtained by introducing a gene which codes enolase into the coryneform bacterium having ability for producing the L-amino acids, such as the L-lysine or the Lglutamic acid, so that enolase activity of the bacterium is enhanced. Thus, the bacterium is improved in the ability for producing the L-amino acids. The bacterium is utilized in the method for producing the amino acids.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-180355 (P2003-180355A)

(43)公開日 平成15年7月2日(2003.7.2)

識別記号 709 ZNA 721 706	FI 7-73-1-(参考) C12N 1/21 4B024 C12P 13/06 C 4B064 D 4B065 13/08 A C
21 06	C 1 2 P 13/06 C 4 B 0 6 4 D 4 B 0 6 5 13/08 A
06	D 4B065
	13/08 A
08	
708	C
	審査請求 未請求 請求項の数6 OL (全 9 頁) 最終頁に続
特顧平11-189515	(71)出願人 000000066
	味の素株式会社
平成11年7月2日(1999	9.7.2) 東京都中央区京橋1丁目15番1号
	(72)発明者 杉本 雅一
	神奈川県川崎市川崎区鈴木町1-1味の3
	株式会社発酵技術研究所内
	(72)発明者 伊藤 久生
	神奈川県川崎市川崎区鈴木町1-1味の3
	株式会社発酵技術研究所内
	(74)代理人 100089244
	弁理士 遠山 勉 (外2名)

(54) 【発明の名称】 L-アミノ酸の製造法

(57)【要約】

【課題】 従来よりもさらに改良された発酵法による L ーリジン又は L ーグルタミン酸等の L ーアミノ酸の製造法、及びそれに用いる菌株を提供する。

【解決手段】 Lーリジン又はLーグルタミン酸等のLーアミノ酸生産能を有するコリネ型細菌にエノラーゼをコードする遺伝子を導入し、エノラーゼ活性を増強することによって、これらのLーアミノ酸生産能を向上させる。

2

【特許請求の範囲】

【請求項1】 細胞中のエノラーゼ活性が増強され、かつLーアミノ酸生産能を有するコリネ型細菌。

1

【請求項2】 前記L-アミノ酸が、L-リジン、L-グルタミン酸、L-スレオニン、L-イソロイシン、L ーセリンから選ばれる請求項1記載のコリネ型細菌。

【請求項3】 前記エノラーゼ活性の増強が、前記細菌細胞内のエノラーゼをコードする遺伝子のコピー数を高めることによるものである請求項1記載のコリネ型細菌。

【請求項4】 前記エノラーゼをコードする遺伝子がエシェリヒア属細菌由来である請求項3記載のコリネ型細菌。

【請求項5】 請求項1~4のいずれか一項に記載のコリネ型細菌を培地に培養し、該培養物中にLーアミノ酸を生成蓄積せしめ、該培養物からLーアミノ酸を採取することを特徴とするLーアミノ酸の製造法。

【請求項6】 前記L-アミノ酸が、L-リジン、L-グルタミン酸、L-スレオニン、L-イソロイシン、L -セリンから選ばれる請求項5記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、発酵法によるLーアミノ酸の製造法、特にLーリジン及びLーグルタミン酸の製造法に関する。Lーリジンは飼料添加物等として、Lーグルタミン酸は調味料原料等として広く用いられている。

[0002]

【従来の技術】従来、Lーリジン及びLーグルタミン酸等のLーアミノ酸は、これらのLーアミノ酸生産能を有するブレビバクテリウム属やコリネバクテリウム属に属するコリネ型細菌を用いて発酵法により工業生産されている。これらのコリネ型細菌は、生産性を向上させるために、自然界から分離した菌株または該菌株の人工変異株が用いられている。

【0003】また、組換えDNA技術によりLーアミノ酸の生合成酵素を増強することによって、Lーアミノ酸の生産能を増加させる種々の技術が開示されている。例えば、Lーリジン生産能を有するコリネ型細菌において、Lーリジン及びLースレオニンによるフィードバック阻害が解除されたアスパルトキナーゼをコードする遺伝子(変異型lysC)、ジヒドロジピコリン酸レダクターゼ遺伝子(dapA)、ジアミノピメリン酸デカルボキシラーゼ遺伝子(lysA)遺伝子、及びジアミノピメリン酸デヒドロゲナーゼ遺伝子(ddh)(W096/40934)、lysA及びddh(特開平9-322774号)、lysC、lysA及びホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)(特開平10-165180号)、変異型lysC、dapB、dapA、lysA及びアスパラギン酸アミノトランスフェラーゼ遺伝子(aspC)

(特開平10-215883号)を導入することにより、同細菌のLーリジン生産能が向上することが知られている。

【0004】また、エシェリヒア属細菌においては、da pA、変異型lvsC、dapB、ジアミノピメリン酸デヒドロゲ ナーゼ遺伝子(ddh)(又はテトラヒドロジピコリン酸 スクシニラーゼ遺伝子 (dapD) 及びスクシニルジアミノ ピメリン酸デアシラーゼ遺伝子(dapE)) を順次増強す るとLーリジン生産能が向上することが知られている (WO 95/16042)。尚、WO 95/16042ではテトラヒドロジ 10 ピコリン酸スクシニラーゼがスクシニルジアミノピメリ ン酸トランスアミナーゼと誤記されている。一方、コリ ネバクテリウム属またはブレビバクテリウム属細菌にお いて、エシェリヒア・コリ又はコリネバクテリウム・グ ルタミクム由来のクエン酸シンターゼをコードする遺伝 子の導入が、Lーグルタミン酸生産能の増強に効果的で あったことが報告されている(特公平7-121228号)。ま た、特開昭61-268185号公報には、コリネバクテリウム 属細菌由来のグルタミン酸デヒドロゲナーゼ遺伝子を含 む組換え体DNAを保有した細胞が開示されている。さ 20 らに、特開昭63-214189号公報には、グルタミン酸デヒ ドロゲナーゼ遺伝子、イソクエン酸デヒドロゲナーゼ遺 伝子、アコニット酸ヒドラターゼ遺伝子、及びクエン酸 シンターゼ遺伝子を増強することによって、Lーグルタ ミン酸の生産能を増加させる技術が開示されている。

【0005】しかし、エノラーゼをコードする遺伝子の 構造はコリネ型細菌では報告されておらず、エノラーゼ をコードする遺伝子をコリネ型細菌の育種に利用するこ とも知られていない。

【発明が解決しようとする課題】本発明は、従来よりも さらに改良された発酵法によるLーリジン又はLーグル タミン酸等のLーアミノ酸の製造法、及びそれに用いる 菌株を提供することを課題とする。

[0006]

【課題を解決するための手段】本発明者等は、上記課題を解決するために鋭意検討を行った結果、エノラーゼをコードする遺伝子をコリネ型細菌に導入し、エノラーゼ活性を増幅することにより、Lーリジン又はLーグルタミン酸の生産量を増大させることができることを見出し、本発明を完成するに至った。すなわち本発明は、以下のとおりである。

【0007】(1)細胞中のエノラーゼ活性が増強され、かつL-アミノ酸生産能を有するコリネ型細菌。

- (2) 前記L-アミノ酸が、L-リジン、L-グルタミン酸、L-スレオニン、L-イソロイシン、L-セリンから選ばれる(1) のコリネ型細菌。
- (3) 前記エノラーゼ活性の増強が、前記細菌細胞内のエノラーゼをコードする遺伝子のコピー数を高めることによるものである前記(1)のコリネ型細菌。
- (4) 前記エノラーゼをコードする遺伝子がエシェリヒ 50 ア属細菌由来である(3) のコリネ型細菌。

ર

(5) 前記(1) \sim (4) のいずれかのコリネ型細菌を培地に培養し、該培養物中にL-アミノ酸を生成蓄積せしめ、該培養物からL-アミノ酸を採取することを特徴とするL-アミノ酸の製造法。

(6) 前記L-アミノ酸が、L-リジン、L-グルタミン酸、L-スレオニン、L-イソロイシン、L-セリンから選ばれる(5)の方法。

[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。 【0009】<1>本発明のコリネ型細菌

本発明のコリネ型細菌は、Lーアミノ酸生産能を有し、細胞中のエノラーゼ活性が増強されたコリネ型細菌である。Lーアミノ酸としては、Lーリジン、Lーグルタミン酸、Lースレオニン、Lーイソロイシン、Lーセリン等が挙げられる。これらの中では、Lーリジン及びLーグルタミン酸が好ましい。以下、本発明の実施の形態を、主としてLーリジン生産能又はLーグルタミン酸生産能を有するコリネ型細菌について説明するが、本発明*

*は、目的とするL-アミノ酸固有の生合成系がエノラー ゼよりも下流に位置するものについては同様に適用され 得る。

【0010】本発明でいうコリネ型細菌としては、バージーズ・マニュアル・オブ・デターミネイティブ・バクテリオロジー(Bergey's Manual of Determinative Bacteriology)第8版599頁(1974)に定義されている一群の微生物であり、好気性、グラム陽性、非抗酸性、胞子形成能を有しない桿菌であり、従来ブレビバクテリウム属に分類されていたが現在コリネバクテリウム属細菌として統合された細菌を含み(Int. J. Syst. Bacterio 1., 41, 255(1981))、またコリネバクテリウム属と非常に近縁なブレビバクテリウム属細菌及びミクロバテリウム属細菌を含む。Lーリジン又はLーグルタミン酸の製造に好適に用いられるコリネ型細菌の菌株としては、例えば以下に示すものが挙げられる。

[0011]

コリネバクテリウム・アセトアシドフィルム ATCC13870 コリネバクテリウム・アセトグルタミクム ATCC15806 コリネバクテリウム・カルナエ ATCC15991 コリネバクテリウム・グルタミクム ATCC13032 (ブレビバクテリウム・ディバリカタム) ATCC14020 (ブレビバクテリウム・ラクトファーメンタム) ATCC13869 (コリネバクテリウム・リリウム) ATCC15990 (ブレビバクテリウム・フラバム) ATCC14067 コリネバクテリウム・メラセコーラ ATCC17965 ブレビバクテリウム・サッカロリティクム ATCC14066 ブレビバクテリウム・インマリオフィルム ATCC14068 ブレビバクテリウム・ロゼウム ATCC13825 ブレビバクテリウム・チオゲニタリス ATCC19240 ミクロバクテリウム・アンモニアフィラム ATCC15354 コリネバクテリウム・サーモアミノゲネス

【0012】これらを入手するには、例えばアメリカン ・タイプ・カルチャー・コレクション (American Type Culture Collection、住所 12301 Parklawn Drive, Roc kville, Maryland 20852, United States of America) より分譲を受けることができる。すなわち、各微生物ご とに対応する登録番号が付与されており、この登録番号 を引用して分譲を受けることができる。各微生物に対応 する登録番号はアメリカン・タイプ・カルチャー・コレ クションのカタログに記載されている。また、AJ12340 株は、通商産業省工業技術院生命工学工業技術研究所 (郵便番号305-8566日本国茨城県つくば市東一丁目1番 3号)にブダペスト条約に基づいて寄託されている。 【0013】また、上記菌株以外にも、これらの菌株か ら誘導されたLーリジン又はLーグルタミン酸等のL-アミノ酸生産能を有する変異株等も、本発明に利用でき る。この様な人工変異株としては次の様なものがある。 S-(2-アミノエチル)ーシステイン(以下、「AE

AJ12340(FERM BP-1539) C」と略記する)耐性変異株(例えば、ブレビバクテリ ウム・ラクトファーメンタムAJ11082 (NRRL B-1147 0) 、特公昭56-1914号、特公昭56-1915号、特公昭57-14 157号、特公昭57-14158号、特公昭57-30474号、特公昭5 8-10075号、特公昭59-4993号、特公昭61-35840号、特公 昭62-24074号、特公昭62-36673号、特公平5-11958号、 特公平7-112437号、特公平7-112438号参照)、その成長 にLーホモセリン等のアミノ酸を必要とする変異株(特 公昭48-28078号、特公昭56-6499号)、AECに耐性を示 し、更にLーロイシン、Lーホモセリン、Lープロリ ン、Lーセリン、Lーアルギニン、Lーアラニン、L-バリン等のアミノ酸を要求する変異株(米国特許第3708 395号及び第3825472号)、 $DL-\alpha-r$ ミノー $\epsilon-$ カプ ロラクタム、αーアミノーラウリルラクタム、アスパラ ギン酸ーアナログ、スルファ剤、キノイド、Nーラウロ イルロイシンに耐性を示すLーリジン生産変異株、オキ 50 ザロ酢酸脱炭酸酵素 (デカルボキシラーゼ) または呼吸

系酵素阻害剤の耐性を示すLーリジン生産変異株(特開 昭50-53588号、特開昭50-31093号、特開昭52-102498 号、特開昭53-9394号、特開昭53-86089号、特開昭55-97 83号、特開昭55-9759号、特開昭56-32995号、特開昭56-39778号、特公昭53-43591号、特公昭53-1833号)、イノ シトールまたは酢酸を要求するLーリジン生産変異株 (特開昭55-9784号、特開昭56-8692号)、フルオロピル ビン酸または34℃以上の温度に対して感受性を示す L -リジン生産変異株(特開昭55-9783号、特開昭53-86090 号)、エチレングリコールに耐性を示し、L-リジンを 10 生産するブレビバクテリウム属またはコリネバクテリウ ム属の生産変異株(米国特許第4411997号)。

【0014】また、Lースレオニン生産能を有するコリ ネ型細菌としては、コリネバクテリウム・アセトアシド フィラム AJ12318 (FERM BP-1172)(米国特許第5,188,94 9号参照) 等が、L-イソロイシン生産能を有するコリ ネ型細菌としてはブレビバクテリウム・フラバム AJ121 49 (FERM BP-759)(米国特許第4,656,135号参照) 等が挙 げられる。

【0015】<2>エノラーゼ活性の増幅 コリネ型細菌細胞中のエノラーゼ活性を増幅するには、 エノラーゼをコードする遺伝子断片を、該細菌で機能す るベクター、好ましくはマルチコピー型のベクターと連 結して組み換えDNAを作製し、これをLーリジン又は Lーグルタミン酸生産能を有するコリネ型細菌に導入し て形質転換すればよい。形質転換株の細胞内のエノラー ゼをコードする遺伝子のコピー数が上昇する結果、エノ ラーゼ活性が増幅される。エノラーゼは、エシェリヒア ・コリではeno遺伝子にコードされている。

【0016】エノラーゼ遺伝子は、コリネ型細菌の遺伝 子を用いることも、エシェリヒア属細菌等の他の生物由 来の遺伝子のいずれも使用することができる。エシェリ ヒア・コリのeno遺伝子の塩基配列は既に明らかにされ ている (Klein, M. et al., DNA Seq. 6, 315-355 (199 6年), Genbank/EMBL/DDBJ accetion No. X82400) の で、その塩基配列に基づいて作製したプライマー、例え ば配列表配列番号1及び2に示すプライマーを用いて、 エシェリヒア・コリ染色体DNAを鋳型とするPCR法 (PCR: polymerase chain reaction; White, T.J. e t al; Trends Genet. 5,185(1989)参照) によって、eno 遺伝子を取得することができる。コリネ型細菌等の他の 微生物のエノラーゼをコードする遺伝子も、同様にして 取得され得る。

【0017】染色体DNAは、DNA供与体である細菌 から、例えば、斎藤、三浦の方法(H. Saito and K. Mi ura Biochem. Biophys. Acta, 72, 619 (1963)、生物工 学実験書、日本生物工学会編、97~98頁、培風館、 1992年参照)等により調製することができる。

【0018】PCR法により増幅されたエノラーゼをコ

ネ型細菌の細胞内において自律複製可能なベクターDN Aに接続して組換えDNAを調製し、これをエシェリヒ ア・コリ細胞に導入しておくと、後の操作がしやすくな る。エシェリヒア・コリ細胞内において自律複製可能な ベクターとしては、プラスミドベクターが好ましく、宿 主の細胞内で自立複製可能なものが好ましく、例えば p UC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RS F1010等が挙げられる。

【0019】コリネ型細菌の細胞内において自律複製可 能なベクターとしては、pAM330 (特開昭58-67699号公報 参照)、pHM1519(特開昭58-77895号公報参照)等が挙 げられる。また、これらのベクターからコリネ型細菌中 でプラスミドを自律複製可能にする能力を持つDNA断 片を取り出し、前記エシェリヒア・コリ用のベクターに 挿入すると、エシェリヒア・コリ及びコリネ型細菌の両 方で自律複製可能ないわゆるシャトルベクターとして使 用することができる。このようなシャトルベクターとし ては、以下のものが挙げられる。尚、それぞれのベクタ ーを保持する微生物及び国際寄託機関の受託番号をかっ こ内に示した。

pAJ655 1>1)L7.JJAJ11882(FERM BP-136) コリネハ クテリウム・ク ルクミクムSR8201 (ATCC39135) pAJ1844 I>iUlt7.JUAJ11883(FERM BP-137) コリネハ クテリウム・ク ルタミクムSR8202 (ATCC39136) pAJ611 1>x")\t7-""JAJ11884(FERM BP-138) pAJ3148 コリネハ クテリウム・ク か か ミクム SR8203 (ATCC 39137) pHC4 エシェリヒア・コリAJ12617 (FERM BP-3532)

【0020】エノラーゼをコードする遺伝子とコリネ型 細菌で機能するベクターを連結して組み換えDNAを調 製するには、エノラーゼをコードする遺伝子の末端に合 うような制限酵素でベクターを切断する。連結は、T4 DNAリガーゼ等のリガーゼを用いて行うのが普通であ る。

【0021】上記のように調製した組み換えDNAをコ リネ型細菌に導入するには、これまでに報告されている 形質転換法に従って行えばよい。例えば、エシェリヒア ・コリ K-12について報告されているような、受容 菌細胞を塩化カルシウムで処理してDNAの透過性を増 す方法 (Mandel, M. and Higa, A., J. Mol. Biol., 53,159 (1970)) があり、バチルス・ズブチリスについて報告 されているような、増殖段階の細胞からコンピテントセ ルを調製してDNAを導入する方法 (Duncan, C.H., Wil son, G.A. and Young, F.E., Gene, 1, 153 (1977)) があ る。あるいは、バチルス・ズブチリス、放線菌類及び酵 母について知られているような、DNA受容菌の細胞 を、組換え D N A を容易に取り込むプロトプラストまた はスフェロプラストの状態にして組換えDNAをDNA 受容菌に導入する方法 (Chang, S. and Choen, S. N., Mole ードする遺伝子は、エシェリヒア・コリ及び/又はコリ 50 c. Gen. Genet., 168, 111 (1979);Bibb,M.J.,Ward,J.

M.andHopwood,O.A.,Nature, 274, 398 (1978);Hinnen, A.,Hicks,J.B.and Fink,G.R.,Proc. Natl. Acad. Sci. USA, 75 1929 (1978)) も応用できる。本発明の実施例で用いた形質転換の方法は、電気パルス法(特開平 2 - 2 0 7 7 9 1 号公報参照)である。

【0022】エノラーゼをコードする活性の増幅は、エ **ノラーゼをコードする遺伝子を上記宿主の染色体DNA** 上に多コピー存在させることによっても達成できる。コ リネ型細菌に属する微生物の染色体DNA上にエノラー ゼをコードする遺伝子を多コピーで導入するには、染色 体DNA上に多コピー存在する配列を標的に利用して相 同組換えにより行う。染色体DNA上に多コピー存在す る配列としては、レペッティブDNA、転移因子の端部 に存在するインバーティッド・リピートが利用できる。 あるいは、特開平2-109985号公報に開示されて いるように、エノラーゼをコードする遺伝子をトランス ポゾンに搭載してこれを転移させて染色体DNA上に多 コピー導入することも可能である。いずれの方法によっ ても形質転換株内のエノラーゼをコードする遺伝子のコ ピー数が上昇する結果、エノラーゼ活性が増幅される。 【0023】エノラーゼ活性の増幅は、上記の遺伝子増 幅による以外に、染色体DNA上又はプラスミド上のエ ノラーゼをコードする遺伝子のプロモーター等の発現調 節配列を強力なものに置換することによっても達成され る(特開平1-215280号公報参照)。たとえば、 lacプロモーター、trpプロモーター、trcプロ モーター、tacプロモーター、ラムダファージのPk プロモーター、P₁プロモーター等が強力なプロモータ ーとして知られている。これらのプロモーターへの置換 により、エノラーゼをコードする遺伝子の発現が強化さ れることによってエノラーゼ活性が増幅される。

【0024】また、本発明のコリネ型細菌は、エノラーゼ活性に加えて、他のアミノ酸生合成経路又は解糖系等の酵素遺伝子を強化することによって、それらの酵素活性が増強されてもよい。例えば、L-リジンの製造に利用可能な遺伝子の例としては、L-リジン及びL-スレオニンによる相乗的なフィードバック阻害が実質的に解除されたアスパルトキナーゼ α サブユニット蛋白質又は β サブユニット蛋白質をコードする遺伝子(W094/25605 国際公開パンフレット)、コリネホルム細菌由来の野生 40型ホスホエノールピルビン酸カルボキシラーゼ遺伝子(特別の50-87798号公報) コリネホルル 細菌由来の野生 (特別の50-87798号公報) コリネホルル 細菌由来の野生

(特開昭60-87788号公報)、コリネホルム細菌由来の野生型ジヒドロジピコリン酸合成酵素をコードする遺伝子(特公平6-55149号公報)等が知られている。

【0025】また、Lーグルタミン酸の製造に利用可能 な遺伝子の例としては、グルタミン酸デヒドロゲナーゼ (GDH、特開昭61-268185号)、グルタミン シンテターゼ、グルタミン酸シンターゼ、イソクエン酸 デヒドロゲナーゼ(特開昭62-166890号、特開 昭63-214189号)、アコニット酸ヒドラターゼ 50

8

(特開昭62-294086号)、クエン酸シンターゼ、ピルビン酸カルボキシラーゼ(特開昭60-87788号、特開昭62-55089号)、ホスホエノールピルビン酸カルボキシラーゼ、ホスホエノールピルビン酸シンターゼ、エノラーゼ、ホスホグリセロムターゼ、ホスホグリセリン酸キナーゼ、グリセルアルデヒドー3ーリン酸デヒドロゲナーゼ、トリオースリン酸イソメラーゼ、フルトースビスリン酸アルドラーゼ、ホスホフルクトキナーゼ(特開昭63-102692号)、グルコ10-スリン酸イソメラーゼ等がある。

【0026】さらに、目的とするL-Pミノ酸の生合成経路から分岐して同L-Pミノ酸以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損していてもよい。例えば、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素としては、ホモセリンデヒドロゲナーゼがある(W095/23864参照)。また、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物を生成する反応を触媒する酵素としては、 α ケトグルタール酸デヒドロゲナーゼ、イソクエン酸リアーゼ、リン酸アセチルトランスフェラーゼ、酢酸キナーゼ、アセトヒドロキシ酸シンターゼ、アセト乳酸シンターゼ、ギ酸アセチルトランスフェラーゼ、乳酸デヒドロゲナーゼ、グルタミン酸デカルボキシラーゼ、1-ピロリン酸デヒドロゲナーゼ、等がある。

【0027】さらに、Lーグルタミン酸生産能を有する コリネ型細菌に、界面活性剤等のビオチン作用抑制物質 に対する温度感受性変異を付与することにより、過剰量 のビオチンを含有する培地中にてビオチン作用抑制物質 の非存在下でLーグルタミン酸を生産させることができ る (W096/06180号参照)。このようなコリネ型細菌とし ては、W096/06180号に記載されているブレビバクテリウ ム・ラクトファーメンタムAJ13029が挙げられる。AJ130 29株は、1994年9月2日付けで工業技術院生命工学工業 技術研究所に、受託番号FERM P-14501として寄託され、 1995年8月1日にブダペスト条約に基づく国際寄託 に移管され、受託番号FERM BP-5189が付与されている。 【0028】また、Lーリジン及びLーグルタミン酸生 産能を有するコリネ型細菌に、ビオチン作用抑制物質に 対する温度感受性変異を付与することにより、過剰量の ビオチンを含有する培地中にてビオチン作用抑制物質の 非存在下でLーリジン及びLーグルタミン酸を同時生産 させることができる(W096/06180号参照)。このような 菌株としては、W096/06180号に記載されているブレビバ クテリウム・ラクトファーメンタムAJ12993株が挙げら れる。同株は1994年6月3日付けで工業技術院生命 工学工業技術研究所に、受託番号FERM P-14348で寄託さ れ、1995年8月1日にブダペスト条約に基づく国際 寄託に移管され、受託番号FERM BP-5188が付与されてい

【0029】<3>L-アミノ酸の生産

エノラーゼ活性が増幅され、かつ、Lーアミノ酸生産能を有するコリネ型細菌を好適な培地で培養すれば、同Lーアミノ酸が培地に蓄積する。例えば、エノラーゼ活性が増幅され、かつLーリジン酸生産能を有するコリネ型細菌を好適な培地で培養すれば、Lーリジンが培地に蓄積する。また、エノラーゼ活性が増幅され、かつLーグルタミン酸生産能を有するコリネ型細菌を好適な培地で培養すれば、Lーグルタミン酸が培地に蓄積する。

【0030】さらに、エノラーゼ活性が増幅され、かつ Lーリジン及びLーグルタミン酸生産能を有するコリネ型細菌を培地で培養すれば、Lーリジン及びLーグルタミン酸が培地に蓄積する。LーリジンとLーグルタミン酸を同時に醗酵生産する場合には、Lーリジン生産菌をLーグルタミン酸の生産条件下で培養してもよいし、あるいはLーリジン生産能を有するコリネ型細菌とLーグルタミン酸生産能を有するコリネ型細菌を混合培養してもよい(特開平5-3793号公報)。

【0031】本発明の微生物を用いてLーリジン又はLーグルタミン酸等のLーアミノ酸を製造するのに用いる培地は、炭素源、窒素源、無機イオン及び必要に応じその他の有機微量栄養素を含有する通常の培地である。炭素源としては、グルコース、ラクトース、ガラクトース、フラクトース、シュクロース、廃糖蜜、澱粉加水分解物などの炭水化物、エタノールやイノシトールなどのアルコール類、酢酸、フマール酸、クエン酸、コハク酸等の有機酸類を用いることができる。

【0032】窒素源としては、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム等の無機アンモニウム塩、アンモ 30ニア、ペプトン、肉エキス、酵母エキス、酵母エキス、コーン・スティープ・リカー、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。

【0033】無機イオンとしては、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。有機微量栄養素としては、ビタミンB」などの要求物質または酵母エキス等を必要に応じ適量含有させることが望ましい。

【0034】培養は、振とう培養、通気撹拌培養等による好気的条件下で16~72時間実施するのがよく、培養温度は30℃~45℃に、培養中pHは5~9に制御する。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。

【0035】発酵液からのL-アミノ酸の採取は、通常 技術研究所 (郵便番号305-85666 のL-アミノ酸の製造法と同様にして行うことができ 一丁目1番3号) に受託番号 F E として寄託され、1991年8月 として寄託され、1991年8月 法、沈澱法その他の公知の方法を組み合わせることによ 条約に基く国際寄託に移管され、り実施できる。また、Lーグルタミン酸を採取する方法 50 P-3532が付与されている。

も常法によって行えばよく、例えばイオン交換樹脂法、晶析法等によることができる。具体的には、Lーグルタミン酸を陰イオン交換樹脂により吸着、分離させるか、または中和晶析させればよい。Lーリジン及びLーグルタミン酸の両方を製造する場合、これらを混合物として用いる場合には、これらのアミノ酸を相互に分離することは不要である。

[0036]

【実施例】以下、本発明を実施例によりさらに具体的に 10 説明する。

【0037】<1>エシェリヒア・コリJM109株のeno遺 伝子のクローニング

エシェリヒア・コリのeno遺伝子の塩基配列は既に明らかにされている(Klein, M. et al., DNA Seq. 6, 315-355 (1996年), Genbank/EMBL/DDBJ accetion No.X8240 0)。報告されている塩基配列に基づいて配列表配列番号1及び2に示すプライマーを合成し、エシェリヒア・コリJM109株の染色体DNAを鋳型にしてPCR法によりピルビン酸デヒドロゲナーゼ遺伝子を増幅した。

【0038】合成したプライマーの内、配列番号1は、Genbank/EMBL/DDBJ accetion No. X82400に記載されているeno遺伝子の塩基配列の1番目から24番目の塩基に至る配列に相当し、配列番号2は、2089番目から2066番目の塩基に至る配列に相当する。

【0039】エシェリヒア・コリJM109株の染色体DNAの調製は常法によった(生物工学実験書、日本生物工学会編、97~98頁、培風館、1992年)。また、PCR反応は、PCR法最前線(関谷剛男ほか編、共立出版社、1989年)185頁に記載されている標準反応条件を用いた。

【0040】生成したPCR産物を常法により精製後、Smalで切断したプラスミドpHC4と、ライゲーションキット(宝酒造社製)を用いて連結した後、エシェリヒア・コリJM109のコンピテントセル(宝酒造社製)を用いて形質転換を行い、クロラムフェニコール 30μ g/mlを含むL培地(バクトトリプトン10g/L、バクトイーストエキストラクト5g/L、NaCl5g/L、寒天15g/L、pH7.2)に塗布し、一晩培養後、出現した白色のコロニーを釣り上げ、単コロニー分離し、形質転換株を得た。取得した形質転換体よりプラスミドを抽出し、ベクターにeno遺伝子が結合したプラスミドpHC4ppsを得た。

【0041】pHC4を保持するエシェリヒア・コリは、プライベートナンバーAJ12617と命名され、1991年4月24日に、通商産業省工業技術院生命工学工業技術研究所(郵便番号305-8566日本国茨城県つくば市東一丁目1番3号)に受託番号FERM P-12215として寄託され、1991年8月26日に、ブタペスト条約に基く国際寄託に移管され、受託番号FERM BP-3532が付与されている。

11

【0042】次に、クローニングされたDNA断片がエノラーゼ活性を有するタンパク質をコードしていることを確認するため、JM109株及び、pHC4enoを保持するJM109株のエノラーゼ活性をBucher, T., Meth. Enzymol. 1, 427-435(1955)に記載の方法により測定した。その結果、pHC4enoを保持するJM109株は、pHC4enoを保持しないJM109株の約15倍のエノラーゼ活性を示すことから、eno遺伝子が発現していることを確認した。

【0043】 <2>コリネ型細菌のLーグルタミン酸生 産株へのpHC4enoの導入とLーグルタミン酸生産 ブレビバクテリウム・ラクトファーメンタムAJ13029を 電気パルス法 (特開平2-207791号公報参照) によりプラ スミドpHC4enoで形質転換し、得られた形質転換株を得 た。得られた形質転換株AJ13029/pHC4enoを用いてL-グルタミン酸生産のための培養を以下のように行った。 5μg/mlのクロラムフェニコールを含むCM2Bプレー ト培地にて培養して得たAJ13029/pHC4eno株の菌体を、5 μg/mlのクロラムフェニコールを含む下記組成を有する Lーグルタミン酸生産培地に接種し、31.5℃にて振とう 培養し、培地中の糖が消費されるまで振とう培養した。 得られた培養物を、同じ組成の培地に5%量接種し、37 ℃にて培地中の糖が消費されるまで振とう培養した。コ ントロールとしてコリネバクテリウム属細菌AJ13029株 に、既に取得されているコリネバクテリウム属細菌で自 律複製可能なプラスミド р H C 4 を電気パルス法により 形質転換した菌株を上記と同様にして培養した。

【0044】 [Lーグルタミン酸生産培地] 下記成分 (1L中) を溶解し、KOHでpH8.0に調製し、115℃で15 分殺菌する。

74 1241-4 7 - 0	
グルコース	150g
KH2PO4	2g
MgSO4 • 7H2O	1.5g
F e S O ₄ · 7 H ₂ O	15mg
MnSO4 · 4H2O	15mg
大豆蛋白加水分解液	50m1
ビオチン	2mg
サイアミン塩酸塩	3mg

【0045】培養終了後、培養液中のLーグルタミン酸蓄積量を旭化成工業社製バイオテックアナライザーAS-210により測定した。このときの結果を表1に示した。

【0046】 【表1】 12 **表1**

黄	株	L ーグルタ	タミン酸	g生成量(g/L)
AJ1302	9/pHC4		20.	9
AJ1302	9/pHC4	eno	23.	4

【0047】<3>コリネ型細菌のL-リジン生産株へのpHC4enoの導入とL-リジン生産

ブレビバクテリウム・ラクトファーメンタムAJ11082を電気パルス法(特開平2-207791号公報参照)によりプラスミドpHC4enoで形質転換し、得られた形質転換株を得た。得られた形質転換株AJ11082/pHC4enoを用いてLーリジン生産のための培養を以下のように行った。5μg/mlのクロラムフェニコールを含むCM2Bプレート培地にて培養して得たAJ11082/pHC4eno株の菌体を、5μg/mlのクロラムフェニコールを含む下記組成のLーリジン生産培地に接種し、31.5℃にて培地中の糖が消費されるまで振とう培養した。コントロールとしてコリネバクテリウム属細菌AJ11082株に、既に取得されているコリネバクテリウム属細菌で自律複製可能なプラスミドpHC4を電気パルス法により形質転換した菌株を上記と同様にして培養した。

ムAJ11082は、1979年6月18日にアグリカルチュラル・ リサーチ・サービス・カルチャー・コレクション (Agri cultural Research Service Culture Collection) に国 際寄託され、受託番号NRRL B-11470が付与されている。 【0049】 [Lーリジン生産培地] 炭酸カルシウム以 30 外の下記成分 (1 L中) を溶解し、KOHでpH8.0に調製 し、115℃で15分殺菌した後、別に乾熱殺菌した炭酸カ

【0048】ブレビバクテリウム・ラクトファーメンタ

	グルコース	100 g
	(NH4)2SO4	55 g
	KH2PO4	1 g
	MgSO4 - 7H2O	1 g
	ビオチン	500 μg
	チアミン	2000 μg
	F e S O ₄ • 7 H ₂ O	0.01 g
)	MnSO4 · 7H2O	0.01 g
	ニコチンアミド	5 mg
	蛋白質加水分解物(豆濃)	30 ml
	炭酸カルシウム	50 g

ルシウムを50g加える。

【0050】培養終了後、培養液中のL-リジン蓄積量を旭化成工業社製バイオテックアナライザーAS-210により測定した。このときの結果を表2に示した。

[0051]

【表2】

表**2** 13

茵	株	L - リジン生成量(g/L)		
AJ1108	2/pHC4	29. 5		
AJ11082/pHC4eno		32.4		

【0052】<4>コリネ型細菌のL-リジン及びL-グルタミン酸生産株へのpHC4enoの導入とL-リジン及びL-グルタミン酸同時生産

ブレビバクテリウム・ラクトファーメンタムAJ12993を電気パルス法 (特開平2-207791号公報参照) によりプラスミドpHC4enoで形質転換し、得られた形質転換株を得た。得られた形質転換株AJ12993/pHC4enoを用いて L ーリジン及び L ーグルタミン酸生産のための培養を以下のように行った。 $5\mu g/ml$ のクロラムフェニコールを含む *

14
* CM2Bプレート培地にて培養して得たAJ12993/pHC4en o株の菌体を、5µg/mlのクロラムフェニコールを含む前記Lーリジン生産培地に接種して31.5℃にて培養した。培養を開始してから12時間後に培養温度を34℃にシフトし、培地中の糖が消費されるまで振とう培養した。コントロールとしてコリネバクテリウム属細菌AJ12993株に、既に取得されているコリネバクテリウム属細菌で自律複製可能なプラスミドpHC4を電気パルス法により形質転換した菌株を上記と同様にして培養した。

10 【0053】培養終了後、培養液中のLーリジン及びLーグルタミン酸蓄積量を旭化成工業社製バイオテックアナライザーAS-210により測定した。このときの結果を表3に示した。

[0054]

【表3】

表3

菌 株 L-	リジン生成量(g/L) L-	グルタミン酸生成量(g/L)
AJ12993/pHC4	10.2	19. 1
AJ12993/pHC4eno	12.4	21.5

[0055]

※上させることができる。

【発明の効果】本発明により、コリネ型細菌のLーリジンのHはL だいなことが知り、ファスを持ちたった。

[0056]

ン又はL-グルタミン酸等のL-アミノ酸の生産能を向※

【配列表】

Sequence Listing

[0057]

<110> 味の素株式会社(Ajinomoto Co., Inc.)

<120> L-アミノ酸の製造法

<130> P-6640

<141> 1999-07-02

<160> 2

<170> PatentIn Ver. 2.0

[0058]

<210> 1

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying Esherichia coli eno gene

<400> 1

aactagtgac ttgaggaaaa ccta

24

[0059]

<210> 2

<211> 24

<212> DNA

<213> Artificial Sequence

15

<220>

 $\ensuremath{^{<\!\!223>}}$ Description of Artificial Sequence:primer for amplifying Esherichia coli eno gene

<400> 2

ttccaagtgc aaattgccgt atta

24

16

フロントペー	-ジの続き			
(51) Int.C1.	7 識別記号	FΙ		テーマコード(参考)
C 1 2 P	13/08	C 1 2 P	13/14	4 A
	13/14		13/06	6
//(C12P	13/06	C 1 2 R	1:15	
C 1 2 R	1:15)	C 1 2 P	13/08	8
(C 1 2 P	13/08		13/14	4
C 1 2 R	1:15)	C 1 2 N	15/00	O ZNAA
(C 1 2 P	13/14			
C 1 2 R	1:15)			-4
(72)発明者	倉橋 修 神本川県川崎寺川崎区発士町1・1叶のま	F ターム(参考)	4B024 AA03 AA05 BA07 BA71 BA72
	神奈川県川崎市川崎区鈴木町1-1味の素 株式会社発酵技術研究所内			BA74 CAO3 CA20 DAO6 DA10 EAO4 GA11 GA14 GA19
	1ALCA TECHETIX NUMBER 1			4B064 AE19 AE25 CA02 CA19 CC01
				CC24 CD01 CD09 CD22 CD30
				DA10
				4B065 AA22X AA24X AA26X AA26Y
				ABO1 AC14 AC15 AC16 BAO2
				BAO3 BA25 BBO3 BB15 BB20
				BB27 BC01 BC02 BC03 BC26
				CA17 CA27 CA41 CA43