UTS Open '18 P6 - Subset Sum

One day, PlasmaVortex gave insect a question to solve: the Subset Sum Problem! However, insect proved that it was NP-complete, so PlasmaVortex makes up a new problem about subset sums:

Each of the 2^N $(1 \le N \le 18)$ subsets of the set $\{1,2,3,\ldots,N\}$ has an N-bit identifier s, where the i^{th} bit $(1 \le i \le N)$ of s is 1 if the set contains i, and 0 if the set doesn't contain i. Each set also has a value V_s $(0 \le s < 2^N, 1 \le V_s \le 10^6)$. There are Q queries that come in two different types:

- 1. 1 s v The set whose N-bit identifier is s has its value changed to v. $(0 \le s < 2^N, 1 \le v \le 10^6)$
- 2. 2 a b Let A and B be the sets with identifiers a and b $(0 \le a, b < 2^N)$. Output the sum of the values of all sets X such that $A \subseteq X \subseteq B$. (Output 0 if there are no such sets X).

Help insect solve this modified subset sum problem!

Input Specification

The first line contains N and Q. $(1 \le N \le 18, 1 \le Q \le 10^5)$

The next contains $V_0,V_1,V_2,\ldots,V_{2^N-1}$, the values of the 2^N subsets of $\{1,2,3,\ldots,N\}$. $(1\leq V_0,V_1,V_2,\ldots,V_{2^N-1}\leq 10^6)$

Each of the next Q lines contains a query in the format specified above.

Output Specification

Output the answer to each type 2 query on a separate line.

Subtasks

Subtask 1 [20%]

 $1 \le N \le 10$

Subtask 2 [30%]

 $a\,{=}\,0$ for all type 2 queries

Subtask 3 [50%]

No additional constraints.

Sample Input

```
3 4
1 1 2 3 5 8 13 21
2 4 7
2 1 2
1 3 7
2 1 3
```

Sample Output

```
47
0
8
```

Explanation for Sample Output

In the first query, $a=4=100_2$ and $b=7=111_2$ correspond to sets $A=\{1\}$ and B = $\{1,2,3\}$. There are 4 possible sets X that satisfy $A\subseteq X\subseteq B$, which are $\{1\},\{1,2\},\{1,3\},\{1,2,3\}$, and the sum of their values is 5+13+8+21=47.

In the second query, $a=1=001_2$ and $b=2=010_2$, so $A=\{3\}$ and $B=\{2\}.$ No sets X satisfy $A\subseteq X\subseteq B$, so the answer is 0.

The third query changed the value of $\{2,3\}$ to 7, and in the fourth query, the possible sets X with $A=\{3\}\subseteq X\subseteq\{2,3\}$ are $X=\{3\}$ and $X=\{2,3\}$. The sum of their values is 1+7=8.