

Optimización

Guía de asignatura

Última actualización: julio de 2020

1. Información general

Nombre de la asignatura	Optimización
Código	11310012
Tipo de asignatura	Obligatoria
Número de créditos	3
Tipo de crédito	2A+1B
Horas de trabajo semanal con	80
acompañamiento directo del	
profesor	
Horas semanales de trabajo	64
independiente del estudiante	
Prerrequisitos	Álgebra Lineal, Cálculo 2
Correquisitos	Ninguno
Horario	Martes y jueves 7:00 am a 8:30 am
	Viernes 7:00 a 9:00 am
Líder de área	Martín Andrade Restrepo
	Correo: martin.andrade@urosario.edu.co
Salón	Remoto
	https://urosario.zoom.us/j/6480119630

2. Información del profesor y monitor

Nombre del profesor	Cécile Gauthier Umaña
Perfil profesional	Ingeniera electrónica, maestría en Ingeniería electrónica y de computadores. Candidata doctoral en ciencias biomédicas, área de investigación: Neurociencias
Correo electrónico institucional	cecile.gauthier@urosario.edu.co
Lugar y horario de atención	https://urosario.zoom.us/j/6196400759
Página web u otros medios	

3. Resumen y propósitos del curso

Se presentan los principales resultados de la programación convexa bajo un análisis matemático riguroso y formal, así como métodos algorítmicos para problemas lineales y no lineales. Es un curso con un alto valor formativo, que es una puerta de entrada a uno de los campos más exigentes y desarrollados de las matemáticas aplicadas: la optimización. Incluye una introducción al análisis convexo, un tratamiento formal de la programación lineal, un tratamiento formal de la programación no lineal, métodos algorítmicos y su implementación computacional para la solución de estos problemas.

4. Conceptos fundamentales

- 1. Problemas lineales y análisis convexo
- 2. Optimización lineal
- 3. Dualidad
- 4. Optimización no restringida: análisis y algoritmos
- 5. Optimización restringida: análisis y algoritmos

5. Resultados de aprendizaje esperados (RAE)

- 1. Construir y resolver modelos de optimización a partir de situaciones con un contexto real
- 2. Identificar los distintos elementos de la teoría de la optimización
- 3. Describir conjuntos y funciones convexas
- 4. Analizar y resolver los principales problemas de optimización utilizando las herramientas apropiadas de cálculo, álgebra y análisis convexo
- 5. Diseñar e implementar algoritmos de optimización

6. Modalidad del curso

Remota: Todos sus estudiantes estarán conectados remotamente desde sus casas o ubicaciones externas a la Universidad.

7. Estrategias de aprendizaje

Talleres
Tareas
Clases magistrales

8. Actividades de evaluación

Tema	Actividad de evaluación	Porcentaje
Sesiones 1-14	Primer Parcial	20%
Sesiones 16-27	Segundo Parcial	20%
Sesiones 28- 47	Tercer Parcial	20%
Proyecto final	Proyecto Final	25%
Todos los temas	Quices y Tareas	15%

9. Programación de actividades

	Sesión Fecha	Tema	Recursos
	<u>1</u>	Introducción. Formulación	[2, cap. 1.1, 1.2]
	2	Formulación	[2, cap. 1.1, 1.2]
	3	Análisis convexo y conjuntos poliédricos	[2, cap. 1.3]
agosto :	3 4	Análisis convexo y conjuntos poliédricos	[2, cap. 2.4-2.6]
<mark>agosto 5</mark>	5	Análisis convexo y conjuntos poliédricos	[1, cap. 2.3-2.4]
agosto 6	6	El método simplex	[2, cap. 3.1-3.3]
agosto 1	7	El método simplex	[2, cap. 3.4]
<mark>agosto 1</mark>	2 8	El método simplex	[2, cap. 3.5]
agosto 1	3 9	El método simplex	[2, cap. 3.6, 3.7]
agosto 1	7 10	El método simplex	[2, cap. 4.1, 4.2]
agosto 1	9 11	El método simplex	[2, cap. 4.6]
agosto :	12 20	Dualidad	[2, cap. 6.3]
.33330			[2, cap. 6.1, 6.2]

agosto 24 13	Dualidad	[2, cap. 6.1, 6.2]
14	Dualidad	[2, cap. 6.1, 6.2]
agosto 26		[2, cap. 6.3]
agosto 27	15 - Parcial 1 (Semana 5 – Sesión	3 – agosto 27)
16	_ ·	[1, cap. 7.0, 7.1, ap B]
agosto 31	Condiciones de optimalidad	[3, cap. 1.1, 1.2]
17		[1, cap. 7.2, 7.3, 7.4]
septiembre 2	cóncavas y convexas.	[3, cap. 1.4]
18	Optimización no restringida. Análisis de	[1, cap. 7.3, 7.4, 7.5, ap B]
septiembre 3	algoritmos de descenso.	[3, cap. 3.1, 3.3, 3.4]
19	Optimización no restringida. Algoritmos.	[1, cap. 7.7]
septiembre 7		[3, cap. 7.1, 7.2]
20	Optimización no restringida. Algoritmos.	[1, cap. 8.1]
septiembre 9		[3, cap. 8.1]
21	Optimización no restringida. Algoritmos.	[1, cap. 8.1]
septiembre 10		[3, cap. 8.1, 8.2]
22	Optimización no restringida. Algoritmos.	[1, cap. 8.1]
septiembre 14		[3, cap. 8.1]
23	Optimización no restringida. Algoritmos.	[1, cap. 8.2, 8.3]
septiembre 16		[3, cap. 8.6]
24	Optimización no restringida. Algoritmos.	[1, cap. 8.2, 8.3, 8.5]
septiembre 17		[3, cap. 8.6]
25	Optimización no restringida. Algoritmos.	[1, cap. 8.5]
septiembre 21		[3, cap. 8.6, 8.7]
26	Optimización no restringida. Algoritmos.	[1, cap. 9.1, 9.2, 9.3]
septiembre 23		[3, cap. 8.6, 8.7, 8.8]
27	Optimización no restringida. Algoritmos.	[1, cap. 9.1, 9.2, 9.3]
septiembre 24		[3, cap. 8.6, 8.7, 8.8]

septiembre 28	28	Optimización restringida. Condiciones.	[1, cap. 11.1, 11.2] [3, cap. 4.2]
septiembre 30	29	Optimización restringida. Condiciones.	[1, cap. 11.2, 11.3] [3, cap. 4.3]
octubre 1	30	Parcial 2 (Semana 10 – Sesión 3 – octubre 1)	
octubre 5	31	Optimización restringida. Condiciones.	[1, cap. 11.2, 11.3] [3, cap. 4.3]
octubre 7	32	Optimización restringida. Condiciones.	[1, cap. 11.3, 11.4, 11.5] [3, cap. 4.3]
octubre 8	33	Optimización restringida. Condiciones.	[1, cap. 11.4, 11.5] [3, cap. 4.3, 4.4]
octubre 12	34	Optimización restringida. Condiciones.	[1, cap. 11.6] [3, cap. 4.3, 4.4]
octubre 14	35	Optimización restringida. Condiciones.	[1, cap. 11.8] [3, cap. 4.3, 4.4]
octubre 15	36	Optimización restringida. Condiciones.	[1, cap. 11.8] [3, cap. 4.3, 4.4]
octubre 19	37	Optimización restringida. Condiciones.	[1, cap. 11.7, 11.8] [3, cap. 4.3, 4.4]
octubre 21	38	Optimización restringida. Algoritmos.	[1, cap. 12.1, 12.2]
octubre 22	39	Optimización restringida. Algoritmos.	[1, cap. 12.2]
octubre 26	40	Optimización restringida. Algoritmos.	[1, cap. 12.3, 12.4]
octubre 28	41	Optimización restringida. Algoritmos.	[1, cap. 12.4]
octubre 29	42	Optimización restringida. Algoritmos.	[1, cap. 12]
noviembre 2	43	Optimización restringida. Algoritmos.	[1, cap. 12]
noviembre 4] 44	Optimización restringida. Algoritmos.	[1, cap. 13]
noviembre 5	45	Optimización restringida. Algoritmos.	[1, cap. 13]
noviembre 9	46	Optimización restringida. Algoritmos.	[1, cap. 13]
noviembre 11	47	Optimización restringida. Algoritmos.	[1, cap. 13]

noviembre 12

48

Parcial 3 (Semana 16 – Sesión 3 – noviembre 12)

10. Factores de éxito para este curso

A continuación, se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso
- 2. Organizar el sitio y los materiales de estudios
- 3. Tener un grupo de estudio, procurar el apoyo de compañeros
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen temas ni trabajos
- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda
- 7. Utilizar los espacios destinados para consultas y resolución de dudas, tales como Sala Gauss y Sala Knuth
- 8. Propiciar espacios para el descanso y la higiene mental, procurar tener buenos hábitos de sueño
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño

11. Bibliografía y recursos

- [1] D. Luenberger and Yinyu Ye. Linear and NonLinear Programming. 4th Edition. 2016. Springer.
- [2] M. Bazaraa, J. Jarvis, H. Sherali. Linear Programming and Network Flows. Wiley, 4th ed. 2010.
- [3] M. Bazaraa, H. Sherali, C. Shetty. Nonlinear Programming: Theory and Algorithms. Wiley-Interscience, 3rd ed. 2006.

12. Bibliografía y recursos complementarios

[4] S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge University Press. 2004.

[5] D. Bertzekas. Convex Optimization Theory. Athenea Scientific. 2009.

13. Acuerdos para el desarrollo del curso

No está permitido comer o usar dispositivos móviles dentro de clase.

No se realizará aproximación de notas al final del semestre. Las notas solo serán cambiadas con base en reclamos <u>OPORTUNOS</u> dentro de los límites de tiempo determinados por el Reglamento Académico. Si por motivos de fuerza mayor el estudiante falta a algún parcial o quiz, deberá seguir el procedimiento regular determinado por el Reglamento Académico para presentar supletorios. No habrá acuerdos informales al respecto. No se eximirá a ningún estudiante de ningún examen.

PROCESOS DISCIPLINARIOS-FRAUDE EN EVALUACIONES

Teniendo en cuenta el reglamento formativo-preventivo y disciplinario de la Universidad del Rosario, y la certeza de que las acciones fraudulentas van en contra de los procesos de enseñanza y aprendizaje, cualquier acto corrupto vinculado a esta asignatura será notificado a la secretaría académica correspondiente de manera que se inicie el debido proceso disciplinario. Se recomienda a los estudiantes leer dicho reglamento para conocer las razones, procedimientos y consecuencias que este tipo de acciones pueden ocasionar, así como sus derechos y deberes asociados a este tipo de procedimientos.

La asignatura no tiene ningún tipo de bono.

14. Respeto y no discriminación

Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).

