

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

Números Complejos

Semana 01

Docente: José Luis Vásquez Carhuamaca

OBJETIVOS:

- ✓ Manejar las diversas formas como expresar los números complejos.
- ✓ Operar adecuadamente los números complejos y sus propiedades.
- ✓ Resolver problemas tipo examen de admisión que involucren a los números complejos

UNIDAD IMAGINARIA

Se denota por Euler como "i" y se define:

$$i = \sqrt{-1}$$

Donde:

$$i^2 = -1$$

POTENCIAS ENTERAS DE i

Se definen:

$$i^0 = 1 \quad i^1 = i$$

Donde:

$i^1 = i$	$i^5 = i$	$i^9 = i$
$i^2=-1$	$i^6 = -1$	$i^{10}=-1$
$i^3 = -i$	$i^7 = -i$	$i^{11} = -i$
$i^4 = 1$	$i^8 = 1$	$i^{12} = 1$

Cada 4 potencias se repiten

PROPIEDADES

Sean $k, n \in \mathbb{Z}$, se cumple:

$$1 \quad i^{4k} = i^{4} = 1$$

•
$$i^{40} = i^{4(10)} = i^{4} = 1$$

•
$$i^{56}\frac{16}{4} = i^{16} = i^{4} = 1$$

•
$$i^{-32} = i^{\frac{4}{9}} = 1$$

$2 \quad i^{4k+n} = i^n$

Ejemplos

$$i^{25} = i^{24+1} = i^1 = i$$

•
$$i^{1746} = i^{46} = i^{44+2} = i^2 = -1$$

•
$$i^{78931} = i^{31} = i^{28+3} = i^3 = -i$$

•
$$i^{-15} = i^{-16+1} = i^1 = i$$

= $i^{-12-3} = i^{-12-3} = i^{$

$$3 \quad i + i^2 + i^3 + \dots + i^4 = 0$$

•
$$i + i^2 + i^3 + \dots + i^{16} = 0$$

•
$$i + i^2 + i^3 + \dots + i^{100} = 0$$

•
$$i + i^2 + i^3 + \dots + i^{42} =$$

$$= \underbrace{i + i^2 + i^3 + \dots + i^{40} + i^{41} + i^{42}}_{0}$$

$$= i^1 + i^2 = i - 1$$

DEFINICIÓN DE UN NÚMERO COMPLEJO

Un número complejo z es un par ordenado de número reales

$$z = (a; b)$$
 $a y b \in \mathbb{R}$

FORMA BINÓMICA DE UN NÚMERO COMPLEJO

$$z = (a; b) = a + bi$$
 $a y b \in \mathbb{R}$; $i = \sqrt{-1}$
Parte real Parte imaginaria
 $Re(z)$ $Im(z)$

Ejemplos

•
$$z = 3 + 4i$$
 • $w = 3 - i$
 $Re(z) = 3$ $Re(w) = 3$
 $Im(z) = 4$ $Im(w) = -1$

Definiciones: $a y b \in \mathbb{R}$; $i = \sqrt{-1}$

z = a + bi	z = 3 + 4i	w = 3 - i
Conjugado $\bar{z} = a - bi$	$\bar{z} = 3 - 4i$	$\overline{w} = 3 + i$
Opuesto $z^* = -a - bi$	$z^* = -3 - 4i$	$w^* = -3 + i$
Módulo	$ z = \sqrt{3^2 + 4^2}$	$ w = \sqrt{3^2 + (-1)^2}$
$ z = \sqrt{a^2 + b^2}$	= 5	$=\sqrt{10}$

IGUALDAD DE DOS NÚMEROS COMPLEJOS

$$a, b, m, n \in \mathbb{R}; i = \sqrt{-1}$$

$$a + bi = m + ni \leftrightarrow a = m \land b = n$$

OPERACIONES

RESULTADOS

NOTABLES

Adición

$$3 + 7i + 2 - 4i$$

$$5 + 3i$$

Sustracción

$$5 + 8i - 2 - 4i$$

$$3 + 12i$$

Multiplicación

$$(4+3i)(2-3i)$$

$$= 8 - 12i + 6i - 9i^2$$

$$= 17 - 6i$$

División

$$\frac{(1+2i)}{(3+i)} \cdot \frac{(3-i)}{(3-i)}$$

$$=\frac{5+5i}{10}=\frac{1}{2}+\frac{i}{2}$$

Cuando(X=y=i)

$$(1+i)^2=2i$$

$$(1+i)^2 = 2i | (1+i)^4 = -4$$

$$(1-i)^2 = -2i | (1-i)^4 = -4 |$$

$$\frac{1+i}{1+i}=i$$

$$\frac{1-i}{1+i}=-i$$

INTENSIVO UNI	
Aplicación:	$\Rightarrow \frac{Z}{i} - \frac{2+4i}{-1+i} \Rightarrow Z = \frac{-4+2i}{-1+i}$
El número complejo z satisface la ecuación:	-1+i -1+i -1+i
$\frac{3-i}{2+4i} = \frac{i}{z} - i$	$Z = (4-2i)(1+i) = \frac{4+4i-2i+2}{1^2-i^2}$ $(1-i)(1+i) = \frac{4+4i-2i+2}{1^2-i^2}$
Determine el valor de $f(z)$; donde	$\frac{7}{2} = \frac{6+2i}{2} = 3+i$
$f(x) = x^2 - 2x - 2$	
(A)(4i)(B) - 4i(C) - 4(D)(4)(E)(0)	$f(x) = x^2 - 2x + 1 - 3$
Resolución:	$f(x) = (x-1)^2 - 3$
$\frac{\dot{c}}{z} = \frac{3-\dot{c}}{2+4\dot{c}} + \dot{c}$	$\Rightarrow \int (z) = (3+i-1)^2 - 3 = (2+i)^2 - 3$
$\frac{\dot{\iota}}{1} = -1 + \dot{\iota}$	$f(z) = 4 + 4i + i^2 - 3$
2+4i	$\int_{0}^{3} \left(z \right) = 4\dot{c}$
	CÉSAR VALLEJO

Propiedades del conjugado

1.
$$\overline{\overline{z}} = z$$

6.
$$\overline{z.w} = \overline{z}.\overline{w}$$

$$2. z + \overline{z} = 2 \operatorname{Re}(z)$$

7.
$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$$

$$3. z - \overline{z} = 2\operatorname{Im}(z)i$$

8.
$$\overline{z^n} = \overline{z}^n$$

4.
$$\overline{z+w}=\overline{z}+\overline{w}$$

9.
$$\sqrt[n]{z} = \sqrt[n]{\overline{z}}$$

5.
$$\overline{z-w}=\overline{z}-\overline{w}$$

Ejemplos

•
$$\overline{z \times (1+i)} = \overline{z} (\overline{1+i}) = \overline{z} (1-i)$$

•
$$\overline{(2+4i)^3} = (\overline{2+4i})^3 = (2-4i)^3$$

•
$$\sqrt{4+7i} = \sqrt{4+7i} = \sqrt{4-7i}$$

INTERPRETACIÓN GRÁFICA DEL MÓDULO DE UN NÚMERO COMPLEJO

Sea el complejo z = x + yi, su módulo es graficamente, la distancia del polo al afijo

•
$$z = 1 + \sqrt{3}i$$
 $|z| = \sqrt{1^2 + \sqrt{3}^2} = 2$

•
$$z = 3 + 4i$$
 $|z| = \sqrt{3^2 + 4^2} = 5$

INTENSIVO UNI

Propiedades del módulo

1) $ z \geq 0 \forall z \in \mathbb{C}$	
$ z = \bar{z} = z^* $	$ \left \frac{z}{w} \right = \frac{ z }{ w } $
$3) z ^2 = z. \overline{z}$	$6) z^n = z ^n$
4) z.w = z w	$7) \left \sqrt[n]{z} \right = \sqrt[n]{ z }$

•
$$|3 + 4i| = |3 - 4i| = |-3 - 4i| = 5$$

•
$$(1+\sqrt{3}i)(1-\sqrt{3}i) = 1^2 + \sqrt{3}^2 = 4$$

• $|(1+i)(3+4i)| = |1+i||3+4i|$

•
$$|(1+i)(3+4i)| = |1+i||3+4i|$$

= $\sqrt{2} \times 5$

INTENSIVO UNI						
Aplicación:	Z ·	_				
Halle el módulo de z donde						
$z = \frac{(2 + i\sqrt{5})(1 + i\sqrt{3})^{3}}{\sqrt{5} + i\sqrt{3}}$ $A) 5\sqrt{2} B) 6\sqrt{2} C) 3\sqrt{2} D) 7\sqrt{2} E) 4\sqrt{2}$						
$z = \frac{1}{\sqrt{5} + i\sqrt{3}}$						
A) $5\sqrt{2}$ B) $6\sqrt{2}$ C) $3\sqrt{2}$ D) $7\sqrt{2}$ E) $4\sqrt{2}$						
Resolución:						
\Z = (2+\(\int\)) (1+\(\int\))						
√5'+2√3' /						
$ z = \frac{ 2+i\sqrt{5} 1+i\sqrt{5} ^3}{ 1+i\sqrt{5} }$						
15"+ L 131]						
					CÉSAR VALLEJ	0

FORMA POLAR Y EXPONENCIAL DE UN COMPLEJO

Sea el complejo z = a + bi

Como z = a + bi

 $z = |z|\cos\theta + |z|\sin\theta$. i

$$z = |z|(\cos\theta + i \sin\theta)$$

Forma polar o trigonométrica

 θ : Argumento de z (Arg(z))

$$0 \le \theta < 2\pi$$

Observación

$$\cos\theta + i \sin\theta = \operatorname{cis}\theta = e^{\theta i}$$

$$z = |z| \operatorname{cis}(\theta)$$

Forma cis

$$z = |z|e^{\theta i}$$

Forma exponencial

Ejemplos

Exprese en las otras formas los siguientes números:

1)
$$z = 5 + 5i$$

2)
$$w = -2 + 2\sqrt{3}i$$

$$z = 4\left(\cos\frac{2\pi}{3} + i \sin\frac{2\pi}{3}\right)$$

$$z = 4 \operatorname{cis} \frac{2\pi}{3}$$

$$z = 4e^{\frac{2\pi}{3}i}$$

Complejos Notables

$$\mathbf{1} = (\cos 0 + i \sin 0) = \operatorname{cis}(0) = e^{0i}$$

$$\mathbf{i} = \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right) = \operatorname{cis}\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}i}$$

$$-\mathbf{1} = (\cos \pi + i \sin \pi) = \operatorname{cis}(\pi) = e^{\pi i}$$

$$-\mathbf{i} = \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}\right) = \operatorname{cis}\left(\frac{3\pi}{2}\right) = e^{\frac{3\pi}{2}i}$$

TEOREMAS

Sean los números complejos z y w no nulos.

$$z = |z|(\cos\theta + i\sin\theta) = |z|\operatorname{cis}(\theta) = |z|e^{\theta i}$$
$$w = |w|(\cos\alpha + i\sin\alpha) = |w|\operatorname{cis}(\alpha) = |w|e^{\alpha i}$$

Donde se cumplen:

$$\mathbf{z}.\mathbf{w} = \begin{cases} |z|.|w|[\cos(\theta + \alpha) + i\sin(\theta + \alpha)] \\ |z|.|w|\cos(\theta + \alpha) \\ |z|.|w|e^{(\theta + \alpha)i} \end{cases}$$

$$\frac{\mathbf{z}}{|\mathbf{z}|} = \begin{cases} \frac{|\mathbf{z}|}{|\mathbf{w}|} [\cos(\theta + \alpha)i \\ \frac{|\mathbf{z}|}{|\mathbf{w}|} [\cos(\theta - \alpha) + i \sin(\theta - \alpha)] \\ \frac{|\mathbf{z}|}{|\mathbf{w}|} (\cos(\theta - \alpha)) \\ \frac{|\mathbf{z}|}{|\mathbf{w}|} e^{(\theta - \alpha)i} \end{cases}$$

Ejemplos

Sean los números complejos

$$z = 6\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
 y $w = 2\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$

$$\mathbf{z}.\mathbf{w} = 6.2 \left(\cos \left(\frac{\pi}{4} + \frac{\pi}{8} \right) + i \operatorname{sen} \left(\frac{\pi}{4} + \frac{\pi}{8} \right) \right)$$

$$\mathbf{z}.\mathbf{w} = 12\left(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right)$$

$$= 12\operatorname{cis}\left(\frac{3\pi}{8}\right) = 12e^{\frac{3\pi}{8}i}$$

$$\frac{\mathbf{z}}{\mathbf{w}} = \frac{6}{2} \left(\cos \left(\frac{\pi}{4} - \frac{\pi}{8} \right) + i \operatorname{sen} \left(\frac{\pi}{4} - \frac{\pi}{8} \right) \right)$$

$$\frac{\mathbf{z}}{\mathbf{w}} = 3\left(\cos\frac{\pi}{8} + i \operatorname{sen}\frac{\pi}{8}\right) = 3\operatorname{cis}\left(\frac{\pi}{8}\right) = 3e^{\frac{\pi}{8}i}$$

TEOREMA DE MOIVRÉ

Dado el número complejo no nulo

$$z = |z|(\cos\theta + i\sin\theta) = |z|e^{\frac{\partial c}{\partial z}}$$

Se tiene $(n \in \mathbb{N})$

I.
$$\mathbf{z}^{n} = \begin{cases} |z|^{n} \left[\cos(\theta \mathbf{n}) + i \sin(\theta \mathbf{n}) \right] \\ |z|^{n} \cos(\theta \mathbf{n}) \\ |z|^{n} e^{(\theta \mathbf{n})i} \end{cases}$$

1.
$$(\cos 36^{\circ} + i \sec 36^{\circ})^{5} = \cos(36^{\circ}.5) + i \sec(36^{\circ}.5)$$

= $\cos(180^{\circ}) + i \sec(180^{\circ})$
= $-1 + i.0$
= -1

2.
$$\left(\sqrt{2} \operatorname{cis} \frac{\pi}{3}\right)^{18} = \sqrt{2}^{18} \operatorname{cis} \left(18.\frac{\pi}{3}\right)^{18}$$

$$= 2^{9} \operatorname{cis} (6\pi)$$

$$= 512 \operatorname{cis} (0)$$

$$= 512 \left(1 + 0i\right)$$

$$= 512$$
3. $\left(\sqrt{5}e^{\frac{7\pi}{4}i}\right)^{6} = \sqrt{5} \cdot e^{6 \cdot \frac{7\pi}{4}i}$

$$= 5^{3}e^{\frac{21\pi}{2}i}$$

$$= 125e^{\left(10\pi + \frac{\pi}{2}\right)i}$$

$$= 125 (0 + 1i)$$

$$= 125i$$

INT	ENSIV	O UNI													
							Ė /V								
														CÉS/ VA	AR LLEJO

INT	ENSIV	O UNI													
						D	E M	A							
														CÉS.	AR LLEJO

CÉSAR VALLEJO

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe