Gaussian process regression methods and extensions for stock market prediction

Zexun Chen

Department of Mathematics University of Leicester

zc74@le.ac.uk

PhD Viva

June 22, 2017

Thanks to you, my kind examiners:

Prof. Sergei Fedotov Prof. Jeremy Levesley

Thanks to my kind supervisors:

Prof. Alexander N. Gorban Dr. Bo Wang

2 / 27

Overview

- Thesis structure
- Question process regression (GPR)
 - Kernel and mean function
 - Parameter estimation
- Gaussian process regression extensions
 - GPR extensions
 - Applications of GPR and its extensions
- Further extensions for multi-output prediction
 - Multivariate Gaussian process regression (MV-GPR)
 - Multivariate Student-t process regression (MV-TPR)
 - Applications of MV-GPR and MV-TPR
- Summary

Thesis structure

- Gaussian process regression (GPR)
 - Model derivations, covariance function (kernel) and mean function
 - Parameter estimation
 - Initial hyper-parameter selection (my work)
- Gaussian process regression extensions and applications
 - Model extensions, including Gaussian process regression with Student-t likelihood (GPRT), Student-t process regression (TPR), state-space GPR (SSGPR), state-space TPR (SSTPR)
 - Equity index prediction (my work)
- GPR extensions for multi-output prediction (my work)
 - Multivariate Gaussian process regression (MV-GPR)
 - Multivariate Student-t process regression (MV-TPR)
 - Simulated examples and stock market investment

Gaussian process for machine learning

Gaussian process

A Gaussian process is a collection of random variables, any finite number of which have (consistent) Gaussian distribution.

Theorem (Gaussian process)

For any set S, any mean function $\mu: S \mapsto \mathbb{R}$ and any covariance function $k: S \times S \mapsto \mathbb{R}$, there exists a $GP\ f(t)$ on S, s.t., $\mathbb{E}[f(t)] = \mu(t)$, $\operatorname{cov}(f(s), f(t)) = k(s, t), \forall s, t \in S$. It denotes $f(t) \sim \mathcal{GP}(\mu, k)$.

A collection of functions $[f(t_1), f(t_2), \dots, f(t_n)]$ are realised through a multivariate Gaussian distribution

$$[f(t_1), f(t_2), \ldots, f(t_n)]^{\mathrm{T}} \sim \mathcal{N}(\boldsymbol{\mu}, K)$$

where $\mu_i = \mu(t_i)$ and $K_{ij} = k(t_i, t_i)$.

Gaussian process regression

- Consider a noisy model $y = f(x) + \varepsilon$, where f is drawn from a GP and ε is Gaussian noise. Then, we wish to predict new observations \mathbf{y}_* for new test points Z.
- ullet The joint distribution of training observations $oldsymbol{y}$ and test data $oldsymbol{y}_*$ is

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(X) \\ \mu(Z) \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(Z,X)^{\mathrm{T}} \\ K(Z,X) & K(Z,Z) \end{bmatrix} \right),$$

ullet The predictive distribution is $p(m{y}_*|X,m{y},Z)\sim \mathcal{N}(\hat{m{\mu}},\hat{m{\Sigma}})$, where

$$\hat{\boldsymbol{\mu}} = K(Z, X)^{\mathrm{T}} (K(X, X) + \sigma_n^2 I)^{-1} (\boldsymbol{y} - \mu(X)) + \mu(Z), \qquad (1)$$

$$\hat{\Sigma} = K(Z, Z) - K(Z, X)^{\mathrm{T}} (K(X, X) + \sigma_n^2 I)^{-1} K(Z, X).$$
 (2)

Kernel and mean function

Kernels

- Basic kernels, such as, linear (LIN), squared exponential (SE), periodic (PER), etc.
- Composite kernels, such as local periodic (LP), spectral mixture (SM), etc. [Wilson, 2014]

Mean functions

- Zero-offset (mainstream) [Roberts et al., 2013]
- Linear
- Others

Maximum marginal likelihood

Sensitivity of initial hyper-parameters

- Negative log marginal likelihood (nlml) is not always convex, it may suffer a local optima
- Initial hyper-parameters selection may affect the final result

A common approach to overcome the sensitivity

- Randomly select several initial hyper-parameters in a reasonable range
- Compute nlmls for these initial hyper-parameters
- Select the best initial hyper-parameters with the smallest nlml

Problem: how to randomly select?

Problem: how to randomly select?

- Researchers' expert opinions and experiences
- Uniform (0,1) (mainstream)
- $\mathcal{N}(0,1)$
- Other simple distributions

My work

- Put different priors on initial hyper-parameters
- Explore how priors of initial parameters affect the estimation
- Study how priors of initial parameters affect the performance of GPR model

How priors of initial hyper-parameters affect GPR models

Experimental results [Chen and Wang, 2016]

- The hyper-parameter estimation depends on the choice of kernels
 - SE: robust
 - PER: very sensitive
- The performance of GPR is considerable regardless of the prior choice

GPR extensions

Fat-tailed distributions

- Student-t distribution
- Pareto distribution
- Lévy distribution (Lévy walk [Fedotov and Korabel, 2017])
- Other stable distributions

Gaussian process regression with Student-t likelihood (GPRT)

 $y=f+\varepsilon$, where f follows a GP and ε follows Student-t distribution [Vanhatalo et al., 2009].

Student-t process regression (TPR)

y = f, where f follows a Student-t process (TP) [Shah et al., 2014].

State-space GPR (SSGPR) and state-space TPR (SSTPR)

Consider the historical prices/indices as state in GPR and TPR model.

Some applications (my work)

Equity index series predictions with fixed forecasting horizon

- INDU, NDX, SPX, and UKX predictions using GPR, GPRT, and TPR
- DAX, HSI, INDU, NDX, NKY, SENSEX, SPX, UKX predictions using GPR, GPRT, TPR, and ARMA model

Result: GPR and TPR perform relatively better overall

Model validation based on equity index predictions

- Objective: ten equity indices, including DAX, HSI, INDU, NDX, NKY, SENSEX, SHSZ300, SPX, UKX, XU100.
- Methods: leave-one-out cross-validation, k-fold validation (k=10) and sliding windows (using GPR and TPR).
- Result: Overall both GPR and TPR perform well and the superiority of them depends on the data set.

Some applications (my work)

State-space models for equity index predictions

- Objective: ten equity indices, including DAX, HSI, INDU, NDX, NKY, SENSEX, SHSZ300, SPX, UKX, XU100.
- Methods: sliding windows using State-space Gaussian process regression (SSGPR) and State-space Student—t process regression (SSTPR) [Brahim-Belhouari and Bermak, 2004, Girard et al., 2003]
- Result: SSTPR performs better than SSGPR overall

Stock market efficiency analysis

- Data: sliding windows predictions using SSGPR and SSTPR
- Result: the developed markets are efficient on the whole while sometimes some emerging markets are also unpredictable, for example, Chinese market

Multi-output prediction

- Chinese company in NASDAQ
- Internet sector

How can we make multi-output predictions by extending GPR?

Gaussian process for vector-valued function

Main steps in the existing methods [Boyle and Frean, 2005, Alvarez et al., 2011, Wang and Chen, 2015]

- Vectorise the multi-output variables(convert a matrix to a vector) $\text{vec}[(\mathbf{f}^{\mathrm{T}}(\mathbf{x}_1), \cdots, \mathbf{f}^{\mathrm{T}}(\mathbf{x}_n))^{\mathrm{T}}]$, where $\mathbf{f}: \mathcal{X} \mapsto \mathbb{R}^d$ is a vector-valued function and $\text{vec}[\cdot]$ is vector operator
- Construct a new "big" covariance matrix, usually Kronecker product, $\Omega \otimes K$), where $K \in \mathbb{R}^{n \times n}$ is still a covariance matrix and $\Omega \in \mathbb{R}^{d \times d}$ captures the covariance of outputs
- Assume $\operatorname{vec}[(\boldsymbol{f}^{\mathrm{T}}(\boldsymbol{x}_1),\cdots,\boldsymbol{f}^{\mathrm{T}}(\boldsymbol{x}_n))^{\mathrm{T}}] \sim \mathcal{N}(\boldsymbol{0},\Omega \otimes \mathcal{K})$
- Operate the remaining steps similar to the classical GPR

Essential assumption

$$(\mathbf{f}^{\mathrm{T}}(\mathbf{x}_1), \cdots, \mathbf{f}^{\mathrm{T}}(\mathbf{x}_n))^{\mathrm{T}} \sim \mathcal{MN}(\mathbf{0}, K, \Omega).$$

Problem and solution

Essential property

Matrix-variate Gaussian distribution can be reformulated as multivariate Gaussian distribution [Gupta and Nagar, 1999].

Can we use this method to extend multi-output TPR? **NO!**Can we have another way to derive multi-output GPR, which can be easily extended to multi-output TPR? **YES!**

Standard solution of GPR and TPR for multi-output prediction (my work)

- Define a multivariate Gaussian (Student-t) process
- Carry out regression model (matrix form) with the assumption of the multivariate Gaussian (Student-t) process directly
- Estimate the parameters directly (matrix computation)
- Make predictions directly (matrix computation)

Multivariate Gaussian process regression (MV-GPR)

Given *n* pairs of observations $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n, \boldsymbol{x}_i \in \mathbb{R}^p, \boldsymbol{y}_i \in \mathbb{R}^d$, assuming

$$f \sim \mathcal{MGP}(\mathbf{0}, k', \Omega),$$

 $\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i), \text{ for } i = 1, \dots, n,$

where $k' = k(\mathbf{x}_i, \mathbf{x}_j) + \delta_{ij}\sigma_n^2$, $\delta_{ij} = 1$ if i = j, otherwise $\delta_{ij} = 0$. The joint distribution of the training observations Y and the predictive targets \mathbf{y}_*

$$\begin{bmatrix} Y \\ \mathbf{y}_* \end{bmatrix} \sim \mathcal{MN} \left(\mathbf{0}, \begin{bmatrix} K'(X, X) & K'(Z, X)^{\mathrm{T}} \\ K'(Z, X) & K'(Z, Z) \end{bmatrix}, \Omega \right), \tag{3}$$

Therefore, the predictive distribution is

$$p(\mathbf{y}_*|X,Y,Z) = \mathcal{M}\mathcal{N}(\hat{M},\hat{\Sigma},\hat{\Omega}), \tag{4}$$

where

$$\hat{M} = K'(Z, X)^{\mathrm{T}} K'(X, X)^{-1} Y,$$
 (5)

$$\hat{\Sigma} = K'(Z, Z) - K'(Z, X)^{\mathrm{T}} K'(X, X)^{-1} K'(Z, X), \tag{6}$$

Zexun Chen (University of Leicester)

Comparison

Table 1: The comparison of existing multi-output GPR and MV-GPR

	Existing multi-output GPR	MV-GPR
Predictive distribution	Same	
Formulation	Complicated	Concise
Extension	Non-exist	MV-TPR

Multivariate Student-t process regression (MV-TPR)

Given n pairs of observations $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n, \boldsymbol{x}_i \in \mathbb{R}^p, \boldsymbol{y}_i \in \mathbb{R}^d$, we assume

$$\mathbf{f} \sim \mathcal{MTP}(\nu, \mathbf{u}, k', \Omega), \nu > 2,$$

 $\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i), \text{ for } i = 1, \dots, n,$

Therefore the predictive distribution is

$$p(\mathbf{f}_*|X,Y,Z) = \mathcal{MT}(\hat{\nu},\hat{M},\hat{\Sigma},\hat{\Omega}), \tag{8}$$

where

$$\hat{\nu} = \nu + n, \tag{9}$$

$$\hat{M} = K'(Z,X)^{\mathrm{T}}K'(X,X)^{-1}\boldsymbol{y}, \tag{10}$$

$$\hat{\Sigma} = K'(Z, Z) - K'(Z, X)^{\mathrm{T}} K'(X, X)^{-1} K'(Z, X), \tag{11}$$

$$\hat{\Omega} = \Omega + Y^{\mathrm{T}} K'(X, X)^{-1} Y. \tag{12}$$

| □ ▶ ◀圖 ▶ ◀돌 ▶ ◀돌 ▶ │ 돌 │ 쒸요()

Experiments and results

Simulated data prediction

	Simulated data with correlated					
	Gaussian noise	Student- t noise				
Pe	erform MV-TPR>MV-GPR>TPR>GPR	MV-TPR>MV-GPR>TPR>GPR				

Stock market investments

(1)	Three Chinese stocks investment in NASDAQ						
	BIDU	NTES	CTRP				
Result	Insignificant difference	Insignificant difference	MV-TPR best				

(2)	Stocks investment from diverse sectors in Dow 30								
	Oil&Gas	Industrial	Goods	Health Care	Services	Financials	Technology		
Best model	TPR	TPR	MV-GPR	MV-TPR	MV-GPR	MV-GPR	GPR		

What have I done in this thesis?

- Reviews
 - GPR (model derivation, kernel, mean function, parameter estimation)
 - GPR extensions, including TPR, GPRT, SSGPR and SSTPR
- Further studies and developments
 - Initial hyper-parameters selection (put different priors on the initials)
 - Another derivation of the existing dependent Gaussian process (MV-GPR)
 - New considerable method for multi-output prediction (MV-TPR)
- Applications
 - Predict many equity indices (GPR and its extensions)
 - Make stock market investment based on Buy&Sell strategy (MV-GPR and MV-TPR)

What have I achieved in this thesis?

- Study the sensitivity of initial hyper-parameters and find that
 - the initial hyper-parameters' estimates depend on the choice of kernel
 - the performance of GPR is satisfactory in terms of predictability regardless of the prior selection
- Apply GPR and its extension to equity index prediction and find that
 - GPR and TPR have relatively considerable capability of predicting performances
 - the developed markets are efficient overall
- Propose MV-GPR and MV-TPR and find that both MV-GPR and MV-TPR
 - have considerable predictions on the simulated data, particularly MV-TPR performs better
 - are shown profitable in stock market investment

References I

Alvarez, M. A., Rosasco, L., and Lawrence, N. D. (2011). Kernels for vector-valued functions: A review. arXiv preprint arXiv:1106.6251.

Boyle, P. and Frean, M. (2005). Multiple output Gaussian process regression.

Brahim-Belhouari, S. and Bermak, A. (2004). Gaussian process for nonstationary time series prediction.

Computational Statistics & Data Analysis, 47(4):705–712.

Chen, Z. and Wang, B. (2016).

How priors of initial hyperparameters affect gaussian process regression models. arXiv preprint arXiv:1605.07906.

Chen, Z., Wang, B., and Gorban, A. N. (2017).

Multivariate gaussian and student -t process regression for multi-output prediction. arXiv preprint arXiv:1703.04455.

Fedotov, S. and Korabel, N. (2017).

Emergence of Lévy walks in systems of interacting individuals.

Physical Review E, 95(3):030107.

References II

Girard, A., Rasmussen, C., Quiñonero Candela, J., and Murray Smith, R. (2003). Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting.

Advances in Neural Information Processing Systems, pages 545-552.

Gupta, A. K. and Nagar, D. K. (1999). Matrix variate distributions, volume 104.

CRC Press.

MacKay, D. J. (1998).

Introduction to Gaussian processes.

NATO ASI Series F Computer and Systems Sciences, 168:133–166.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., and Aigrain, S. (2013).

Gaussian processes for time-series modelling.

Phil. Trans. R. Soc. A, 371(1984):20110550.

Shah, A., Wilson, A. G., and Ghahramani, Z. (2014).

Student-t processes as alternatives to Gaussian processes.

arXiv preprint arXiv:1402.4306.

References III

Vanhatalo, J., Jylänki, P., and Vehtari, A. (2009).

Gaussian process regression with Student-t likelihood.

In Advances in Neural Information Processing Systems, pages 1910–1918.

Wang, B. and Chen, T. (2015).

Gaussian process regression with multiple response variables.

Chemometrics and Intelligent Laboratory Systems, 142:159–165.

Wilson, A. G. (2014).

Covariance kernels for fast automatic pattern discovery and extrapolation with Gaussian processes.

PhD thesis, PhD thesis, University of Cambridge.

