Bölüm 1: Giriş

İşletim Sistemleri

Modern Bilgisayarın Bileşenleri:

- Bir veya daha fazla işlemci
- Ana bellek
- Diskler
- Yazıcılar
- Klavye
- Fare
- Ekran
- Ağ arayüzleri
- G/Ç cihazları

İşletim Sistemi Nerede Yer Alır

- Bilgisayar donanımı ve yazılım arasında bir arayüzdür.
- Donanım, fiziksel olarak mevcut olan bileşenleri (örneğin CPU, RAM, diskler) temsil eder.
- Yazılım ise, bilgisayarın yapabileceği işlemleri yürütmek için yazılmış kodları içerir.
- Donanımın yazılım tarafından nasıl kullanılacağını yönetir.
- İşletim sistemi, yazılımın donanımı kullanmasını kontrol ederken, aynı zamanda donanımın kullanımını optimize eder ve sistemin güvenliğini sağlar.

İşletim Sistemi Nerede Yer Alır

Uzatılmış Makine Olarak İşletim Sistemi

- Donanımın üstüne inşa edilmiş bir yazılımdır.
- Bilgisayar donanımını kullanmayı kolaylaştırır.
- Donanımın özelliklerini ve yeteneklerini kullanılabilir hale getirir.
- Donanımın özelliklerini gizler ve direk kullanmasını engeller.
- İşletim sistemi arayüzünü kullanmak daha kolaydır.
- İşletim sistemleri çirkin donanımları güzel soyutlamalara dönüştürür.

Uzatılmış Makine Olarak İşletim Sistemi

Kaynak Yöneticisi Olarak İşletim Sistemi

- İşletim sistemi, bilgisayar donanımının kaynaklarını etkili bir şekilde yönetir. Kaynak kullanımını optimize eder. Kaynakların uygulamalar arasında adil bir şekilde dağıtımını sağlar.
- Üstten aşağıya bakış açısı:
 - Uygulama programları için soyutlamalar sağlar
- Aşağıdan yukarıya bakış açısı:
 - Karmaşık sistemin parçalarını yönetir
- Alternatif bakış açısı:
 - Kaynakların düzenli ve kontrollü dağıtımını sağlar.

İşletim Sistemlerinin Tarihi

- İlk jenerasyon (1945-55)
 - vakum tüpleri
- İkinci jenerasyon (1955-65)
 - transistörler ve batch sistemleri
- Üçüncü jenerasyon (1965-1980)
 - IC'ler ve çoklu programlama
- Dördüncü jenerasyon (1980-günümüz)
 - kişisel bilgisayarlar
- Beşinci jenerasyon (1990-günümüz)
 - mobil bilgisayarlar

Transistörler ve Batch Sistemleri

- Transistörlerin icadı ile birlikte ikinci jenerasyon işletim sistemleri ortaya çıktı. Transistörler, vakum tüplerin yerini aldılar
 - daha küçük, daha güvenilir ve daha enerji verimli
- Batch sistemler, işlemlerin toplu olarak yürütülmesini sağlar. İşlemler işlem kuyruğuna eklenir ve işletim sistemi sırayla yürütür.
 - İşlemlerin paralel olarak yürütülmesini engeller.
 - İşlemlerin manuel olarak yürütülmesini gerektirir.
 - Veri işleme, hesaplama ve raporlama gibi işlemler için kullanılır
 - Gerçek zamanlı işlemler için uygun değildir.

Transistörler ve Batch Sistemleri

- Eski bir batch sistemi.
- (a) Programcılar 1401'e kartlar getirir.
- (b) 1401, iş kartlarını tape'e okur.

Transistörler ve Batch Sistemleri

- (c) Girdi bandının 7094'e taşınması.
- (d) 7094 hesaplamaları yapar.
- (e) Çıktı bandının 1401'e taşınması.
- (f) 1401 çıktıyı yazdırır.

Tipik bir FMS işinin yapısı

• FMS (Flexible manufacturing system)

Bütünleşik Devreler ve Çoklu Programlama

- Bütünleşik devrelerin (IC) icadı ile birlikte üçüncü jenerasyon işletim sistemleri ortaya çıktı. IC'ler transistörlerin yerini aldı.
 - daha küçük, daha güvenilir ve daha enerji verimli
- Çoklu programlama, birden fazla işlemi aynı anda yürütmek için kullanılır.
 - Dinamik olarak işlemlerin ağırlıklarının ayarlanmasını sağlar.
 - İşlemler arasında eşitliği sağlar ve işlemlerin paralel olarak yürütülmesini sağlar.
 - Gerçek zamanlı işlemler için uygun.

Bütünleşik Devreler ve Çoklu Programlama

• Bellekte üç işi olan bir çoklu programlama sistemi.

Kişisel Bilgisayarın Bazı Bileşenleri

İşlemciler

- Bilgisayarın en önemli bileşenidir ve tüm işlemleri yürütmek için kullanılır.
- İşlemci,
 - bilgisayar kodunu anlar
 - kodu yürütmek için gerekli olan işlemleri gerçekleştirir.
 - çok çekirdekli yapıda olabilir ve birden fazla işlemi aynı anda yürütebilir.
 - hız, çekirdek sayısı, önbellek boyutu, veri yolu genişliği ve diğer özellikler açısından değişebilir.

İşlemciler

- (a) Üç aşamalı bir boru hattı (pipeline).
- (b) Bir superscalar CPU

Bellek

- İşlemciler tarafından okunabilecek ve yazılabilecek verileri geçici olarak saklamak için kullanılan bileşendir.
- RAM (Random Access Memory) olarak da adlandırılır.
- Bellek boyutu, bilgisayarın performansını ve kullanılabilirliğini etkiler.
- Bellek, işlemler arasında verileri paylaşmayı ve hızlı erişimi sağlar.

Bellek

- (a) Paylaşımlı L2 önbellekli bir dört çekirdekli chip.
- (b) Ayrı L2 önbellekli dört çekirdekli chip.

Bellek

Tipik bir bellek hiyerarşisi. Numaralar çok yaklaşık tahminlerdir.

Önbellekleme sistemi sorunları

- Yeni bir öğe önbelleğe ne zaman yerleştirilmeli?
- Yeni öğe hangi önbellek satırına koyulmalı?
- Yer açmak için önbellekten hangi öğe çıkarılmalı?
- Çıkarılan öğe bellekte nereye yerleştirilmeli?

Disk

- Verileri uzun vadeli saklamak için kullanılan cihazlardır.
- Okuma ve yazma işlemleri için veriler disk plakaları üzerinde saklanır.
- Disk sürücüleri, farklı boyutlarda ve kapasitelerde olabilir.
- Disk sürücüsü yapısı, disk plakası, okuyucu/yazıcı kafası, motor ve kontrol elemanlarından oluşur.
 - Disk plakası, verileri saklamak için kullanılan alandır.
 - Okuyucu/yazıcı kafası, verileri okuma ve yazma işlemleri için kullanılır.
 - Motor, disk plakasını döndürür ve okuyucu/yazıcı kafasını hareket ettirir.
 - Kontrol elemanları, disk sürücüsünün işlemlerini yönetir.

Disk Sürücüsünün Yapısı

G/Ç Cihazları

- Bilgisayarın veri alma ve veri gönderme işlemlerini gerçekleştirmek için kullandığı cihazlardır.
- Dış dünya ile bilgisayar arasındaki veri transferini sağlar.
- Çeşitli tipte olabilir: Klavye, fare, ekran, yazıcı, tarayıcı, ses kartı, kameralar, vb.
- İşletim sistemi tarafından yönetilir ve kullanıcının cihazları kullanmasına izin verir.
- Bilgisayarın performansını ve kullanılabilirliğini etkiler.

G/Ç Cihazları

G/Ç cihazını başlatma ve bir kesme alma adımları

G/Ç Cihazları

- Kesme işleme,
 - kesmeyi alma
 - kesme işleyicisini çalıştırma
 - kullanıcı programına dönme

