Math 307: Problems for section 4.1

November 14, 2012

- 1. For the following matrices find
 - (a) all eigenvalues
 - (b) linearly independent eigenvectors for each eigenvalue
 - (c) the algebraic and geometric multiplicity for each eigenvalue and state whether the matrix is diagonalizable.

$$A = \begin{bmatrix} 3 & 7 \\ 2 & -2 \end{bmatrix} \quad \text{(calculate by hand)}$$

$$B = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix} \quad \text{(calculate using Matlab/Octave or otherwise)}$$

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \end{bmatrix} \quad \text{(calculate using Matlab/Octave or otherwise)}$$

- 2. Find a 3×3 real, non-zero (*i.e.* not all entries zero) matrix which has all three eigenvalues zero.
- 3. (a) By hand find a matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$ and corresponding eigenvectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(b) Using Matlab/Octave or otherwise, find a matrix with eigenvalues $\lambda_1=1,\ \lambda_2=2$ and $\lambda_3=3$ and corresponding eigenvectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 9 \\ 4 \\ 4 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}.$$

- 4. Show that if A is an $n \times n$ square matrix and each column sums to c, then c is an eigenvalue of A. Hint: if you cannot show this in a few lines, try another approach.
- 5. If $p(\lambda)$ is the characteristic polynomial of an $n \times n$ invertible matrix A, find an expression for the characteristic polynomial of A^{-1} in terms of the characteristic polynomial of A.
- 6. Find the Jordan canonical form of the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1