Contents

1	Power Inequality	1
2	The Real Numbers and the Completeness Axiom	1
	2.1 What is \mathbb{R}	3

1 Power Inequality

Theorem 1.1 (Power Inequality). For every $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$ if $0 \le x < y$, then $0 \le x^n < y^n$ To prove this let us start with a lemma.

Lemma 1.1.1. Suppose $a, b, c \in \mathbb{R}$. If a < b and c > 0, then ac < bc.

Proof. Suppose towards a contradiction that ac = bc. Then by the equality we require $bc \le ac$. Since we have c > 0, then $c^{-1} > 0$. Then we have

$$b = bcc^{-1} \le acc^{-1} = a$$

which contradicts the assumption that a < b.

Proof. Let P(n): for all $x, y \in \mathbb{R}$, if $0 \le x < y$, then $x^n < y^n$.

Base Case

Take $P(1): 0 \le x < y$ which implies $0 \le x^1 < y^1$. Which is true based on the given relationship of x and y.

Inductive Step

Suppose P(n) holds, that is $\forall x, y \in \mathbb{R}$, if $0 \le x < y$, then $0 \le x^n < y^n$. Let $x, y \in R$, $0 \le x < y$. Then

$$x^{n+1} = x^n \cdot x \le x^n \cdot y$$
 (using $x < y$, and $0 \le x^n$)
$$< y^n = y^{n+1} \cdot y$$
 (by the claim using $x^n < y^n$ and $0 < y$)

This then implies $x^{n+1} < y^{n+1}$ (1). Finally, since $0 \le x^n$, and $0 \le x$, then $0 \le x^{n+1}$ (2). Taking these two (1 and 2) we have the desired result.

2 The Real Numbers and the Completeness Axiom

Let $S \subseteq \mathbb{R}$, where $S \neq \emptyset$.

- 1. The largest element of S (if there is one), is called the maximum of S, $\max S$
- 2. The least element of S (if there is one), is called the minimum of S, $\min S$

Example 2.1. Every finite non-empty $S \subseteq \mathbb{R}$ has a maximum and minimum.

Example 2.2. Let $a < b \in \mathbb{R}$. Then consider the closed interval

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

has minimum $\min[a, b] = a$ and maximum $\max[a, b] = b$.

Example 2.3. The open interval

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

has neither a max nor a min.

Example 2.4. $\mathbb{Z}, \mathbb{Q}, \subseteq \mathbb{R}$ do not have a min or max. Consider $a \in \mathbb{Z}$. Then there exists and $a+1 \in \mathbb{Z}$ hence there is no max. Conversely the same arg for min.

Definition 2.1 (Bounds). Let $S \subseteq \mathbb{R}$ where $S \neq \emptyset$.

- 1. We call $M \in \mathbb{R}$ an upper bound for S if $M \geq S$ for all $s \in S$.
- 2. We call $m \in \mathbb{R}$ a lower bound for S if $m \leq S$ for all $s \in S$.
- 3. We say that S is bounded if S is bounded from above and from below.

Example 2.5. The max of a set (if it exists) is an upper bound. The min of a set (if it exists) is a lower bound.

Example 2.6. Let $a < b \in \mathbb{R}$ then a is a lower bound for [a, b] and (a, b). b is an upper bound for both sets as well.

Example 2.7. Neith of the set \mathbb{Z} or \mathbb{Q} are bounded from below or above.

Definition 2.2. Let $S \subseteq \mathbb{R}$ where $S \neq \emptyset$.

- 1. If S is bounded from above and has a least upper bound, s_0 , then s_0 is the **supremum** of S, $s_0 = \sup S$.
- 2. If S is bounded from below and has a greatest lower bound, s_1 , then s_1 is the **infinum** of S, $s_1 = \inf S$.

Remark 1 1. Every $S \subseteq \mathbb{R}$, $S \neq \emptyset$, can have a most one supremum and one infinum.

- 2. If $S \subseteq \mathbb{R}$ has a max, then $\max S = \sup S$.
- 3. The following are equivalent:
 - $s_0 = \sup S$
 - $s_0 > s \forall s \in S$, and if $s_1 > s \forall s \in S$, then $s_1 > s_0$
 - $s_0 \ge s \forall s \in S$, and if $s_1 < s_0$, then $s_1 < s$ for some $s \in S$.

Example 2.8. For $a < b \in \mathbb{R}$,

- 1. $\sup[a, b] = \sup(a, b) = b$
- 2. $\inf[a, b] = \inf(a, b) = a$

Example 2.9. Let $A = \{\frac{1}{n^2} : n \in \mathbb{N}, n \ge 3\}$ A is bounded from above and from below. max A = 1/3, however is there is no minimum.

- 1. inf A=0. A is the set of values where each value is equivalent to $1/n^2$ for values of $n \geq 3$. So we can choose n to be sufficiently large. Because $n \to \infty$, $\frac{1}{n^2} \to 0$. So we know that 0 is the greatest lowerbound.
- 2. $\sup A = \max A = 1/3$

Definition 2.3 (Completeness Axiom). Every non-empty subset of \mathbb{R} which is bounded from above has a least upper bound. This is equivalent to: Given $S \subseteq \mathbb{R}$, $S \neq \emptyset$, if S has at least one upper bound, then $\sup S$, exists.

Remark 2

The Completeness Axiom failes for \mathbb{Q} .

$$A = \{r \in \mathbb{Q} : 0 \le r \text{ and } r^2 \le 2\}$$
$$= \{r \in \mathbb{Q} : 0 \le r \le \sqrt{2}\}$$

A is bounded from above (e.g. $\frac{3}{2}$ is an upper bound), but the sup $A = \sqrt{2} \notin \mathbb{Q}$.

Corollary 2.0.1. Every $\emptyset \neq S \subseteq \mathbb{R}$ that is bounded from below has a greatest lower bound inf S

Proof. Given $S \subseteq \mathbb{R}$, let $-S = \{-s : s \in S\}$. Given that S is bounded below, $\exists m \in \mathbb{R}$ such that $m \leq s$ for $s \in S$. This implies that $-m \geq -s$ for all $s \in S$.

So $-m \ge u$, $\forall u \in -S$. Thus -S is bounded from above by -m. By the Completeness Axiom for -S, the $\sup -S$ exists.

Let $s_0 = \sup -S$. What we need to show is that

- 1. $-s_0$ is a lower bound of $S(-s_0 \le s, \forall s \in S)$
- 2. $-s_0$ is the greatest lower bound (if $t \leq s, \forall s \in S$ then $t \leq -s_0$)

.

We take $s_0 \ge -s$ for all $s \in S$. And this implies the condition (1) by multiply both sides by -1.

For the second part assume $t \leq s, \forall s \in S$. This is equivalent to

$$-t \ge -s, \forall s \in S$$

$$\implies -t \ge u, \forall u \in -S$$

$$\implies -t \ge s_0$$

$$\implies t \le s_0$$

2.1 What is \mathbb{R}

 \mathbb{R} is a number system containing \mathbb{Q} and satisfying the Completeness Axiom.

Definition 2.4 (Archimedian Property). The following properties of \mathbb{R} hold.

- 1. For every positive real number a > 0, there is a natural number n such that n > a.
- 2. For every a, b > 0 in \mathbb{R} , there is an $n \in \mathbb{N}$ such that $n \cdot a > b$
- 3. For every $\epsilon > 0 \in \mathbb{R}$ there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$

Proof. 1. Assume towards contradiction that $\exists a>0\in\mathbb{R}$ such that $a\geq n$ for every $n\in\mathbb{N}$. Thus a is an upper bound for $\mathbb{N}\subseteq\mathbb{R}$. By the completeness axiom, there exist some $b\in\mathbb{R}$ such that $b=\sup\mathbb{N}$. As b is the least upper bound of the set \mathbb{N} the number b-1/2 is not an upper bound for \mathbb{N} . In particular, $\exists n\in\mathbb{N}$ such that $n>b-\frac{1}{2}$. This implies that $n+1>b-\frac{1}{2}+1>b$. However, this says that $b\neq\sup N$, which is a contradiction.

- 2. Suppose a, b > 0, in particular $\frac{b}{a} > 0$. By the first property, $\exists n \in \mathbb{N}$ such that $n > \frac{b}{a}$. This rearranging, $n \cdot a > b$.
- 3. Suppose $\epsilon > 0$, $\epsilon \in \mathbb{R}$. Then $\frac{1}{\epsilon} > 0$. By (1) $\exists n \in \mathbb{N}$ such that math $n > \frac{1}{\epsilon}$. Rearanging, we can get $\epsilon > \frac{1}{n}$.

Corollary 2.0.2. Suppose $a < b \in \mathbb{R}$ and b - a > 1. Then there is an integer m such that a < m < b.

Proof. By the Archimedian Property, $\exists k > \max(|a|,|b|)$. Then we know that -k < a < b < k. Let the sets $K = \{j \in \mathbb{Z} : -k \leq j \leq k\}$ and $K' = \{j \in \mathbb{Z} : a \leq j\}$ such that both K, K' are finite and non empty as $k \in K' \subseteq K$.

Theorem 2.1 (Density of \mathbb{Q} in \mathbb{R}). For every real numbers $a, b \in \mathbb{R}$ with a < b, $\exists r \in Q$) such that a < r < b

Proof. We need to find a quotient of integers, $m, n \in \mathbb{Z}$ such that n > 0 and

$$a < \frac{m}{n} < b$$

We need to choose n such that the demoniator is large enough so that consecutive increments of 1/n are too close to step over in the interval (a, b).

Using the Archimedean Property we may pick $\frac{1}{n} < \epsilon$ where $\epsilon = b - a$.