

Introduction to machine learning

Artificial intelligence

• Emulate human intelligence: how?

•

Artificial intelligence

Encode human knowledge

Artificial intelligence

Use large amounts of examples

3

(it works!)

Machine learning

- Extract information (patterns) from data
- Applications:
 - Predictions (e.g. energy demand, sales)
 - Recommendations (e.g. Netflix)
 - Anomaly detection (e.g. intrusions, virus mutations)
 - Classification (e.g. image recognition, medical diagnoses)
 - Ranking (e.g. Google search)
 - Decision making (e.g. Al, robotics, games, trading)

Machine learning

- When it is useful
 - Lack of human support (e.g. robot on Mars)
 - Difficulty in encoding human experience (e.g. speech recognition, vision, language)
 - Too dimensionally-large problems (web page ranking, personalized advertising)

5

Success of machine learning

Datasets

- Image datasets in the '90s: 100 images
- Image datasets in 2012: 1,000,000 images
- Key factors: storage, data collection (image search),
 validation (crowdsourcing)
- General-purpose GPU
 - 100x speed-up w.r.t. CPUs
 - Training times of complex models: 1-2 weeks (on GPUs!)

7

Dataset

- Collection of data
 - Observation/samples/features: $\{x_i\}$
 - Potentially noisy, correlated, redundant
 - Label/target/output: $\{y_i\}$
- Examples:
 - Images + type of depicted content
 - Medical exams + positive/negative diagnosis
 - Past stock market trend + future stock market trend
 - Points $(x_1, x_2, ..., x_n)$ of a function and values $y = f(x_1, x_2, ..., x_n)$

Model

- Objective: find the law that associates x to y
- Model: family of functions, defined by a set of parameters
- Algorithm design:
 - Choose the model according to our knowledge/expectation of the dataset
 - Choose the model's parameters: training

9

Non-parametric models

- E.g. nearest-neighbor
 - Dataset: $\{x_i, y_i\}$
 - Unknown input z
 - Associate to z the value y_j such that:

$$\left|z-x_{j}\right|=\min_{x_{i}}\left|z-x_{i}\right|$$

Learning modalities

- Supervised learning
- Unsupervised learning
- Reinforcement learning

11

Learning modalities

- Supervised learning:
 - Model is trained from $\{x_i, y_i\}$ pairs
 - Pros:
 - Most common, most studied, simplest
 - · Training quality monitoring
 - Cons:
 - «Overfit» risk: the model learns the dataset too well
 - Dataset annotation (collecting $\{y_i\}$)

Learning modalities

- Unsupervised learning:
 - Model is trained from $\{x_i\}$
 - Pros:
 - Uncovers hidden dynamics (unknown even to experts)
 - Annotation is not necessary
 - Cons:
 - We may not know the set of possible values for y_i
 - Current techniques not satisfactory
 - E.g. clustering, anomaly detection

13

Learning modalities

- Reinforcement learning:
 - State: x_t , action: a_t
 - Reward: r_t , new state: x_{t+1}
 - No dataset, but an environment simulator
 - Pros:
 - · Similar to human learning
 - Annotation is not necessary
 - Cons:
 - · Hard to establish link between past actions and rewards
 - Hard to define reward
 - E.g. games

Supervised learning: classification

- $y_i \in \{C_1, C_2, ..., C_k\}$
- Categorical/discrete labels
- Binary classification: k=2
 - E.g. positivity/negativity of medical diagnosis
 - E.g. identify static/moving pixels in video
- Multiclass classification: k > 2
 - E.g. identify an object in an image

15

Supervised learning: regression

- $y_i \in \mathbb{R}$
- Continuous labels
- Examples:
 - Predict stock market prices
 - Predict user age on YouTube
 - Predict home energy consumption from temperature, sensors, weather, etc.

Classification vs regression

- Classification separates
- Regression approximates

Training

- How to choose model parameters?
- Cost/loss/error/energy function
 - Evaluates how good a set of parameter values is
 - Lower value → better parameters
- Analytical approach:
 - Compute θ such that $\frac{\partial L}{\partial \theta} = 0$
 - Usually intractable
- Iterative approach:
 - Initialize parameters θ_0
 - Repeat until convergence:
 - Evaluate loss $L(\theta_i)$
 - Re-compute $\theta_{i+1} \leftarrow \text{update}(\theta_i)$
- A «swipe» on the whole dataset is called epoch

17

Dataset splits

- Training set: fraction of the dataset used for training
 - The training algorithm uses these data only
 - Model/parameter choices must be conditioned on these data only
- Test set: fraction of the dataset used for verifying the model
 - The training algorithm and the designer MUST NOT see these data!
 - Evaluates how good the trained model in reality: generalizability

19

Dataset splits

- Why can't we trust the training set?
- Overfit: over-adaptation of the model on the training set, causing loss of generalizability
 - Reasons: model too complex, dataset too small

Unbalance

- Example: your dataset has 90 dog images and 10 cat images
- Your model, for any image, predicts a dog
- Accuracy of your model: 90% (?)

How to detect overfit

- The training algorithm can only use the training set
- The test set can be used at the end of training
- The model may have overfitted, but we only find out after evaluating on the test set
 - And we can do nothing about it, because we can't use the test set to improve our model
 - Problem: how to detect overfit?

21

How to detect overfit

- Solution: divide the original training set into a smaller training set and a validation set
- The new training set is used to update parameters
- The validation set is used during training to detect overfit
 - It's fine, it was part of the original training set
- The test set is only used at the end of training

Where we'll go from here

- Linear regression and classification
- Neural networks
 - Mostly for classification
- Convolutional neural networks
 - Mainly, 2D data processing (e.g. images)
- Recurrent neural networks
 - Sequential data processing (e.g. text, audio)

23

What you need to know

- Elements of linear algebra: scalar product, matrix multiplications
- Elements of calculus: derivatives and gradients
- Python