Math251

Practice Exam #02

1. Write the equation of the line in slope-intercept form.

$$M_A = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-3)}{-5 - 6} = -\frac{6}{11}$$

$$3 = -\frac{6}{11}(-5) + 6$$

$$3 = 6$$
 $y = -9x + 3$

$$M_B = \frac{32 - 31}{2 \times 2 - 2} = \frac{1 - (-4)}{6 - (-2)} = \frac{1 + 4}{6 + 2} = \frac{5}{8}$$

$$y = mx + b$$

$$8 = 36 + 86$$
 $-30 = 36$
 $-22 = 86$

$$-\frac{23}{22} = 86$$

$$-\frac{22}{8} = \frac{86}{3}$$

$$\frac{33 = 30 + 116}{33 = 30}$$

$$\frac{3}{11} = \frac{116}{3}$$

$$\frac{3}{11} = \frac{116}{3}$$

$$\frac{3}{11} = \frac{11}{3}$$

$$\frac{3}{11} = \frac$$

2. The plane travels 408 miles in 3 hours with the wind and 128 miles in 2 hours against the wind. Find the speed of the wind and the speed of the plane in still air. **Complete**

3. Write the equation of the line in slope intercept form using the given information.

a)
$$m = -\frac{3}{2}$$
, $\left(-\frac{5}{2}, 2\right)$
 $y = mx + 6$
 $2 = \left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) + 6$
 $2 = \left[\frac{15}{4} + 6\right]$
 $4 = \left[\frac{15}{4} + 6\right]$
 $3 = \left[\frac{15}{4} + 6\right]$

in slope intercept form using the given information.

$$b) (3,-2), (-5,-3)$$

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - (-2)}{-5 - 3} = \frac{-3 + 2}{-8} = \frac{-1}{8} = \frac{1}{8}$$

$$Wsing (3,-2) \notin M = \frac{1}{8};$$

$$V = Mk + b$$

$$-2 = \frac{1}{8}(3) + b$$

$$-2 = \frac{1}{8}(3) + \frac{1}{8}$$

$$-16 = 1 \cdot 3 + \frac{1}{8}b$$

$$-16 = \frac{3}{8} + \frac{1}{8}b$$

$$-\frac{19}{8} = \frac{8}{8}$$

$$-\frac{19}{8} = \frac{1}{8}$$

$$-\frac{19}{8} = \frac{1}{8}$$

4. A pharmacist has in stock a 30% alcohol solution and a 80% alcohol solution. How many liters of each are required to be mixed together to get 100 liters of a 50% alcohol solution? Fill in the table, get the two equations and solve. **Complete the**

table and set up an equation to solve this problem.

		Amount of solution	% alcohol	Amount of alcohol	
Ī	Sol 1	X	0,3	0,3x	
	Sol 2	71)	0.8	0.84	\
_	Final	100	0.5	50	
XTA			∞		+0.8y = 50 +0.8y] = 10[50]
				3x	+84=500/
	3 [x	+9]=3	[100]		

5. Solve each system by elimination.

3x + 39 = 300

a)
$$x + y = 2$$
$$x - 2y = 4$$

X+y=Z

 $\frac{(-) \times -2y = 4}{\frac{3y = -2}{3}}$

 $y = -\frac{2}{3}$

Multiply top Equation by 2

[X+y] = 2[2]

$$2x + 2y = 4$$

Top
Equation
$$2x+2y=4$$

Botton $x-2y=4$
Equation $x-2y=4$
 $x-3$
 $x=\frac{8}{3}$
 $x=\frac{8}{3}$

Solution
$$\left(\frac{2}{3}, -\frac{2}{3}\right)$$

TO ElimiNate X, Mutiply top Equation by 3. b) $\frac{2x-3y=3}{3x+4y=-1}$ Multiply bottom Equation by Z 3[2x-3]=[3]3 = [-1]Z 6x - 9y = 9 6x + 8y = -26x-94=9 $\frac{(-) 6x + 8y = -2}{-17y = 11}$ y=-# To Eliminate y, Multiply toperution by 4. 4[2x-3y]=[3]4; 3[3x+4y]=[-1]3 8x - 12y = 12 9x + 12y = -3(+) 9x + 12y = -3 | Solution | (-)

6. At the end of the day a cashier has a total of 103 \$1 and \$5 bills. The total value of the money is \$415. How many bills of each denomination does the cashier have?

Complete the table and set up an equation to solve this problem.

	Number of bills	Bill value	Total value
\$1's	X	1	×
\$5's	7	.5	54
Total	103	$\times\!\!\!\times\!\!\!\times\!\!\!\!\times$	415

$$x+y=103$$
 $x+5y=415$

$$\begin{array}{c} x + 5g = 415 \\ (-) x + g = (03) \\ 4y = 312 \\ \hline 4 \\ \hline (y = 78 \ $\pm 5's) \\ \hline x + y = 103 \\ x + 78 = 103 \\ \hline x = 25 \ $\pm 1's \end{array}$$

7. Graph the inequality.

8. Line A and Line B are two perpendicular lines that intersect at the point (3,6). Line A has equation -2x + 3y = 12. Find the coordinates of the y-intercept for Line B.

Since Line A & Line B are perpendicular,
and
$$M_A = \frac{2}{3} \Longrightarrow M_B = -\frac{3}{3}$$

To find the Equation for Line B, use
 $(3,6)$ & $M_B = -\frac{3}{2}$: $y = mx + b$
 $6 = -\frac{3}{2}(3) + b$
 $2[6] = 2[-\frac{3}{2}(3) + b]$
 $12 = -9 + 2b$
 $\frac{49}{21} = 2b$

릭=6

9. A mini-mart store manager wishes to blend candy selling at \$1.20 per lb with candy that sells at \$1.50 per lb to get a mixture that will sell for \$1.35. How many pounds of the \$1.20 and the \$1.50 candies should be used to get 10 lbs of the blended candy mixture. Complete the table and set up an equation to solve this problem.

	Amount of candy	Cost per Pound	Total Cost
Canda I	X	1.20	1.20 X
Candy 2	y	1.50	1,50g
Rended Cardy	10	1.35	13.5

10. Solve the system of equations by graphing. Plot at least three points for each line.

the two lines.