

Before start

- Vectors, matrices
- Eigenvalues, eigenvectors
- Linear equation solvers
- Optimization
 - Gradients
 - Cost functions
- > Statistics & Probability
 - Probability distributions
 - Likelihoods
 - Statistics

What is ML?

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

ML Problem Types

Bias-Variance Tradeoff

Bias-Variance Tradeoff

➤ Bias:

- The error due to **overly simplistic assumptions** in the learning algorithm.
- ➤ High bias means the model is not complex enough to capture the underlying patterns of the data.
- > Variance:
 - The error due to the model's sensitivity to small fluctuations in the training data.
 - ➤ High variance means the model fits the training data very closely but fails to generalize well.

Overfitting vs Ideal Fit vs Underfitting

Managing the tradeoff

1. Choose the Right Model Complexity

Simple models (e.g., linear regression) tend to have **high bias** and **low variance**, while **complex models** (e.g., deep neural networks) have **low bias** and **high variance**. Start with a simple model and increase complexity gradually, guided by validation performance.

2. Use More Training Data

More training data helps reduce variance, particularly for complex models, by enabling them to better capture the underlying data distribution.

3. Use Cross-Validation

Cross-validation (e.g., k-fold) provides a reliable estimate of model performance on unseen data. It helps in **identifying overfitting** (high variance) or **underfitting** (high bias).

4. Apply Regularization

Regularization techniques such as L2 (Ridge), L1 (Lasso), and dropout (for neural networks) penalize model complexity. They **reduce variance** by slightly increasing bias to prevent overfitting.

Managing the tradeoff

5. Use Ensemble Methods

Ensemble techniques like bagging (e.g., Random Forest) reduce variance, while boosting (e.g., XGBoost) can **reduce bias**. They **combine** multiple **models** to improve **generalization**.

6. Feature Engineering and Selection

Creating informative features reduces bias, while **removing irrelevant or noisy features reduces variance**. Dimensionality reduction methods like PCA also help control variance.

7. Monitor Learning Curves

Plot training and validation errors against the number of training samples to diagnose bias and variance. High training and validation errors indicate high bias; low training error and high validation error indicate high variance.

Pearson vs Spearman

ML Libraries in Python

Python Libraries

- ➤ NumPy (Numerical Python)
 - ➤ Purpose: Foundation for numerical computing in Python.
 - ➤ Key Feature: ndarray, a powerful N-dimensional array object.
 - ➤ Speed: Vectorized operations using compiled C backend (fast linear algebra).
 - ➤ Uses: Matrix computations, random sampling, broadcasting, Fourier transforms.

> Pandas

- ➤ Purpose: Data manipulation & analysis with labeled axes.
- Core Structures: Series (1D) and DataFrame (2D).
- > Features:
 - Intuitive slicing, filtering, merging, and groupby operations.
 - ➤ Handles missing data, time series, categorical variables.
- ➤ Best For: Tabular data processing and transformation pipelines.

Python Libraries

> Scikit-learn

- ➤ Purpose: Standard ML toolkit for supervised & unsupervised learning.
- > Strengths:
 - Unified API for models: fit(), predict(), score()
 - Pipelines, cross-validation, hyperparameter tuning (GridSearchCV, RandomizedSearchCV)
- ➤ Algorithms: SVM, Random Forest, KNN, PCA, KMeans, Logistic Regression, etc.
- ➤ Integration: Works seamlessly with NumPy/pandas.

- > SciPy (Scientific Python)
 - ➤ Purpose: Advanced scientific computing built on top of NumPy.
 - > Submodules:
 - scipy.linalg: Linear algebra (beyond NumPy)
 - scipy.optimize: Optimization & curve fitting
 - scipy.spatial: Distance metrics, KDtrees
 - > scipy.stats: Statistical functions, distributions, hypothesis testing
 - ➤ Use Case: Numerical routines required in engineering, physics, and ML.

Plotting and Typical Workflow

> Matplotlib

- ➤ Purpose: 2D plotting library for visualizing data and models.
- ➤ Main Interface: pyplot (similar to MATLAB).
- Features:Line plots, scatter plots, bar charts, histograms, heatmaps.Highly customizable (styles, ticks, annotations).
- Extensions: Integrates with seaborn for statistical plots.

```
NumPy → pandas (data wrangling) → scikit-learn (ML modeling) → SciPy (scientific routines) → Matplotlib (visualization)
```

Importing Libraries

```
import sys
print("Python version: {}".format(sys.version))
import pandas as pd
print("pandas version: {}".format(pd.__version__))
import matplotlib
print("matplotlib version: {}".format(matplotlib.__version__))
import numpy as np
print("NumPy version: {}".format(np.__version__))
import scipy as sp
print("SciPy version: {}".format(sp.__version__))
import IPython
print("IPython version: {}".format(IPython.__version__))
import sklearn
print("scikit-learn version: {}".format(sklearn.__version__))
```

Supervised Learning Cases

Example	Task Type	Description
Spam Email Detection	Classification	Predict if an email is spam or not based on text features.
2 House Price Prediction	Regression	Predict the price of a house based on size, location, etc.
3 Medical Diagnosis	Classification	Classify whether a tumor is benign or malignant from imaging features.
	Classification	Assess if a person is likely to default on a loan using credit history.
5 Stock Price Forecasting	Regression	Predict the next day's stock price using historical data.

Unsupervised Learning Cases

Example	Task Type	Description
Customer Segmentation	Clustering	Group customers by purchasing behavior (e.g., into segments).
2 Anomaly Detection	Outlier Detection	Detect fraudulent transactions without explicit labels.
3 Topic Modeling	Dimensionality Reduction	Discover latent topics in a collection of documents (e.g., LDA).
Image Compression	Feature Extraction	Reduce image size using PCA while preserving key information.
5 Gene Expression Analysis	Clustering	Cluster genes with similar expression patterns across samples.

A First Application: Classifying Iris Species

Classification

- > Setosa
- > Versicolor
- > Virginica