

Europäisches Patentamt

European Patent Office

Office européen des brevets

(1) Veröffentlichungsnummer: 0 655 437 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 94810652.1

(51) Int. CI.6: C07C 249/12

(22) Anmeldetag: 16.11.94

(30) Priorität: 25.11.93 CH 3525/93

(43) Veröffentlichungstag der Anmeldung : 31.05.95 Patentblatt 95/22

(84) Benannte Vertragsstaaten :
AT BE CH DE DK ES FR GB GR IE IT LI LU MC
NL PT SE

(1) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH)

(72) Erfinder: Blaser, Denis, Dr. Route des Aunaires 12 CH-1870 Monthey (CH)

- (54) Verfahren zur Herstellung O-substituierter Oxime.
- Die vorliegende Erfindung betrifft ein Verfahren zur Hydroxyalkylierung von Aldoximen und Ketoximen durch Umsetzung dieser Oxime mit unsubstituiertem oder substituiertem Ethylen- oder Propylencarbonat in Gegenwart eines Katalysators, das dadurch gekennzeichnet ist, dass man katalytische Mengen einer N-alkylierten, stabilen, organischen Amidinbase oder ein mit sekundärem Amin substituiertes Pyridin verwendet. Die Verbindungen sind wichtige Zwischenprodukte für herbizid wirksame Stoffe.

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von O-ω-Hydroxyalkyloximen durch Umsetzung von Oximen mit Alkylencarbonaten in Gegenwart katalytischer Mengen einer Amidin-oder Pyridinbase.

Diese Oxime stellen wichtige Zwischenverbindungen für herbizid wirksame Stoffe dar, wie sie zum Beispiel in der US-A-4,545,807 und der US-A-4,687,849 beschrieben sind. In der US-A-4,687,849 wird hierbei ein Verfahren zur Herstellung von 2-[(iso-Propylidenamino)oxy]ethanol vorgeschlagen, bei dem Acetonoxim in wässrigem Medium in Gegenwart katalytischer Mengen Ca(OH)₂ mit Ethylenoxid umgesetzt wird. Ein Nachteil dabei ist, dass Ethylenoxid grosstechnisch schwierig und nur mit hohen Sicherheitsvorkehrungen zu handhaben ist, da es hochexplosiv und äusserst giftig ist. Ein weiterer Nachteil ist der Anfall hoher Abwassermengen, die gereinigt werden müssen.

Es ist auch bereits bekannt, dass 2-[(iso-Propylidenamino)oxy]ethanol durch Umsetzung von Acetonoxim mit Ethylencarbonat hergestellt werden kann. Für diese Reaktion können als Katalysatoren Kaliumfluorid und Tetramethylammoniumbromid eingesetzt werden. Dieses Verfahren ist zum Beispiel in R. Klauser et al. in ACS Symposium Ser. 1991, 443, (Synth. Chem. Agrochem. 2), 226-235 beschrieben. Die gleiche Umsetzung ohne Verwendung von Katalysatoren und Lösungsmitteln beschreiben S. I. Hong et al. in J. Polym. Sci. Part A-1, 1972, 10, 3405-19. Selbst bei erhöhten Temperaturen werden nur Ausbeuten von 33% erreicht. Diese Verfahren haben schwerwiegende ökologische und ökonomische Nachteile, z. B. dass ein heterogenes Reaktionsgemisch vorliegt und lange Reaktionszeiten von bis zu 10 Stunden benötigt werden. Durch die Verwendung eines Fluorids wird die grosstechnische Aufarbeitung des Reaktionsgemisches erschwert. Es muss eine Filtration und eine Waschstufe angeschlossen werden. Zusätzlich muss eine Aufarbeitung des Waschwassers durchgeführt werden.

Es wurde nun gefunden, dass man in homogenen organischen Reaktionsmedien bei erheblich verkürzten Reaktionszeiten mindestens gleich hohe Ausbeuten erzielen kann, wenn man organische Amidin-oder Pyridinbasen als Katalysatoren verwendet. Das gewünschte Produkt kann in einfacher Weise mittels Destillation isoliert werden, wobei Lösungsmittel und Katalysator ebenfalls zurückgewonnen und wiederverwendet werden können. Dieses ökologische und ökonomische Verfahren eignet sich daher besonders für den grosstechnischen Maßstab.

Ein Gegenstand der Erfindung ist ein Verfahren zur Hydroxyalkylierung von Aldoximen und Ketoximen durch Umsetzung dieser Oxime mit unsubstituiertem oder mit C₁-C₈-Alkyl substituiertem Ethylen- oder Propylencarbonat in Gegenwart eines Katalysators, das dadurch gekennzeichnet ist, dass man katalytische Mengen einer N-alkylierten, stabilen, organischen Amidinbase oder ein mit sekundärem Amin substituiertes Pyridin verwendet.

Stabil bedeutet, dass die Amidinbase oder Pyridinbase bei den gewählten Reaktionsbedingungen, wie zum Beispiel Temperatur und Lösungsmittel praktisch nicht zersetzt wird.

N-alkyliert bedeutet, dass das N-Atom der Aminogruppe der Amidinbase ein-oder zweifach mit C_1 - C_8 -Alkyl, bevorzugt mit C_1 - C_4 -Alkyl substituiert ist, oder das N-Atom Teil eines Rings von mono-bis tricyclischem Ringsystem ist.

Bevorzugt wird das Verfahren zur Herstellung von Verbindungen der Formel I

$$\begin{array}{c}
R_1 \\
R_1
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_4 \\
R_5
\end{array}$$

$$\begin{array}{c}
OH
\end{array}$$

$$\begin{array}{c}
(I)
\end{array}$$

verwendet, worin R_1 und R_2 unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_1 - C_8 -Halogenalkyl, unsubstituiertes oder mit C_1 - C_8 Alkyl oder Halogen substituiertes Phenyl, Benzyl, Phenylethyl bedeuten, oder R_1 und R_2 zusammen unsubstituiertes oder mit C_1 - C_8 -Alkyl oder Halogen substituiertes C_2 - C_7 -Alkylen bedeuten, R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff oder C_1 - C_8 Alkyl sind und n eine Zahl 0 oder 1 ist, durch Umsetzung von Verbindungen der Formel II

$$R_1$$
 OH (II)

mit Verbindungen der Formel III

5

30

35

40

45

55

$$R_3$$
 R_5
 R_5
 R_5

worin R₃, R₄, R₅ und n die vorstehend angegebenen Bedeutungen haben. In den Verbindungen der Formel I steht n bevorzugt für 0.

15

20

25

30

35

40

45

55

R₁ und R₂ enthält als Cycloalkyl bevorzugt 5 oder 6 C-Atome. Beispiele für Cycloalkyl sind Cyclopropyl, Dimethylcyclopropyl, Cyclobutyl, Cyclopentyl, Methylcyclopentyl, Cyclohexyl, Cycloheptyl.

Halogen kann im Rahmen der vorliegenden Erfindung für Fluor, Chlor, Brom oder Jod, bevorzugt für Fluor, Chlor oder Brom und besonders bevorzugt für Fluor oder Chlor stehen.

Beispiele für Halogenalkyl, das bevorzugt 1-4 C-Atome enthält, sind: Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2-Chlorethyl, 2,2,2-Trichlorethyl, 1,1,2,2-Tetrafluorethyl sowie teilweise oder vollständig chloriertes oder fluoriertes Isopropyl, n-Propyl, n-Butyl, iso-Butyl, sek-Butyl, tert-Butyl, Pentyl-, Hexyl-, Heptyl- und Octyl.

 R_3 , R_4 und R_5 stellen bevorzugt Wasserstoff oder C_1 - C_4 -Alkyl dar. Beispiele für Alkyl sind Methyl, Ethyl, n-oder i-Propyl, n-,i-, oder t-Butyl. Besonders bevorzugt bedeuten R_3 , R_4 , und R_5 Wasserstoff.

In einer bevorzugten Ausführungsform des Verfahrens sind R₁ und R₂ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl oder R₁ und R₂ bilden zusammen unsubstituiertes C₂-C₇-Alkylen, R₃ und R₅ bedeuten Wasserstoff oder C₁-C₄ Alkyl, wobei n für 0 steht.

Eine besonders bevorzugte Ausführungsform des Verfahrens ist jene, wenn R_1 und R_2 Methyl, Ethyl oder Propyl sind, R_3 und R_4 Wasserstoff bedeuten und n für 0 steht.

Die Amidinbase enthält das Strukturelement -C-N=C-N-C-. Es kann sich um offenkettige Verbindungen, alicyclische Ringe oder bicyclische und tricyclische Ringsysteme handeln, die 4 bis 8, bevorzugt 5 oder 6 Ring-glieder enthalten. Die Amidinbase enthält bevorzugt 4 bis 20, besonders bevorzugt 4 bis 14 und ganz besonders bevorzugt 4 bis 10 C-Atome. Das Sekundäramino als Substituent von Pyridin enthält bevorzugt 2 bis 24, besonders bevorzugt 2 bis 18 und ganz besonders bevorzugt 2 bis 12 C-Atome.

Bevorzugt entspricht die organische Amidinbase der Formel IV oder dem mit sekundärem Amin substituierten Pyridin der Formel V

$$R_{8} \sim R_{7} \sim R_{10} \sim R_{$$

worin R_6 , R_7 , R_8 und R_9 unabhängig voneinander C_1 - C_8 -Alkyl oder C_3 - C_8 -Cycloalkyl bedeuten, oder R_6 und R_7 zusammen einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden und R_8 und R_9 die vorstehend angegebene Bedeutung haben, oder R_8 und R_9 zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden und R_6 und R_7 C_1 - C_8 -Alkyl oder C_3 - C_8 -Cycloalkyl bedeuten, oder R_6 und R_7 zusammen einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen sowie R_8 und R_9 zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden.

 R_{10} und R_{11} unabhängig voneinander C_1 - C_{12} -Alkyl sind und R_{12} für Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl oder C_1 - C_8 -Halogenalkyl steht.

In einer vorteilhaften Ausführungsform des Verfahrens wird als Katalysator eine Verbindung der Formel IV oder V verwendet, wobei R_6 und R_7 zusammen einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden und R_8 und R_9 C_1 - C_8 -Alkyl oder C_5 - C_6 -Cycloalkyl sind, oder R_8 und R_9 zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden und R_6 und R_7 C_1 - C_8 -Alkyl oder C_5 - C_6 -Cycloalkyl bedeuten, oder R_6 und R_7 zusammen einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen sowie R_8 und R_9 zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden,

 R_{10} und R_{11} unabhängig voneinander C_1 - C_4 -Alkyl bedeuten und R_{12} für Wasserstoff, C_1 - C_4 -Alkyl, C_5 - C_6 -Cycloalkyl oder C_1 - C_4 -Halogenalkyl steht.

Eine besonders vorteilhafte Verfahrensdurchführung besteht darin, dass als Katalysator eine Amidinbase

der Formel IV verwendet wird, wobei R_6 und R_7 zusammen einen gesättigten Kohlenwasserstoffrest mit 3 bis 6 C-Atomen und R_8 und R_9 zusammen einen gesättigten Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden.

Eine andere bevorzugt verwendete Gruppe von Katalysatoren sind Verbindungen der Formel V wobei R_{12} Wasserstoff oder C_1 - C_8 -Alkyl bedeutet, und R_{10} und R_{11} gleich sind und für C_1 - C_4 -Alkyl stehen.

Besonders bevorzugte Katalysatoren für das erfindungsgemässe Verfahren sind Verbindungen der Formel V, wobei R_{12} Wasserstoff ist und die Gruppe -NR₁₀R₁₁ in 2 oder 4 Stellung gebunden ist, wobei R₁₀ und R₁₁ C₁-C₄-Alkyl sind.

Ganz besonders bevorzugt werden die Verbindungen 1,5-Diazabicyclo[4.3.0]non-5-en, 1,8-Diazabicyclo[5.4.0]undec-7-en und 2-Dimethylaminopyridin sowie 4-Dimethylaminopyridin als Katalysatoren verwendet.

Das molare Verhältnis von Carbonaten der Formel III zu Oximen der Formel II kann zum Beispiel 0,5 bis 2,0, bevorzugt 0,8 bis 1,5 und besonders bevorzugt 0,8 bis 1 betragen. Katalytische Mengen einer Amidinbase oder Pyridinbase kann zum Beispiel 0,1 bis 10, bevorzugt 1 bis 10 und besonders bevorzugt 2 bis 6 Mol % bedeuten.

Das Verfahren kann in einem gegenüber den Reaktionspartnern inerten, organischen Lösungsmittel durchgeführt werden. Bevorzugt werden polare aprotische Lösungsmittel verwendet. Lösungsmittel werden mit Vorteil dann verwendet, wenn die Reaktionsprodukte isoliert und Lösungsmittel sowie Katalysator und überschüssige Ausgangsprodukte rezykliert und zurückgewonnen werden sollen. Durch Wahl der Lösungsmittel (Siedepunkte) können hierfür optimale Bedingungen eingestellt werden. Beispiele von organischen Lösungsmitteln sind aromatische oder aliphatische Lösungsmittel wie Benzol, Toluol, Xylol, Mesytilen, Hexan, Heptan Octan, Cyclohexan; aliphatische und aromatische Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Trichlorethan, Chlorbenzol, Dichlorbenzol; Ether wie Diethylether, Dibutylether, Diisobutylether, Tetrahydrofuran und Dioxan; ferner Dimethylsulfoxid und Säureamidderivate, wie N, N-Dimethylformamid, N, N-Dimethylacetamid und N-Methyl-2-pyrrolidon; und Carbonsäureester wie Ethylacetat. Bevorzugt sind Toluol, Xylol, Dichlorbenzol, Chlorbenzol oder Dimethylformamid.

Die Konzentration an Oxim und Carbonat in der Reaktionsmischung kann bei Mitverwendung eines Lösungsmittels 20 bis 60, bevorzugt 25 bis 50 Vol%, bezogen auf das Lösungsmittel betragen.

Das Verfahren kann zum Beispiel bei einer Temperatur von 80° C bis 200° C, vorzugsweise von 90° C bis 150° C durchgeführt werden.

Das Verfahren kann ferner unter Normaldruck oder leichtem Über-oder Unterdruck durchgeführt werden.

Im einzelnen kann man zum Beispiel so vorgehen, dass man das Oxim oder die Lösung des Oxims langsam zu dem erwärmten oder siedenden Carbonat, bzw. Lösung des Carbonats zugibt. Dann lässt man noch eine gewisse Zeit nachreagieren, z. B. 0,5 bis 2 Stunden und isoliert das Reaktionsprodukt zum Beispiel mittels Rektifikation.

Eine andere Möglichkeit ist zum Beispiel, dass zu dem aus Hydroxylaminsulfat und Keton in situ hergestellten Oxim die Carbonatlösung zugegeben wird und nach einer Reaktionszeit von z. B. 0,5 bis 2 Stunden das Reaktionsprodukt isoliert wird.

Ein weiterer Vorteil des erfindungsgemässen Verfahrens ist, dass die entstehenden ω-Hydroxyalkyloxime nicht isoliert werden müssen, sondern als Lösung im organischen Lösungsmittel direkt für Folgereaktionen eingesetzt werden können. Dadurch wird die Herstellung von zum Beispiel herbizid wirksame Verbindungen wesentlich vereinfacht.

Die folgenden Beispiele erläutern die Erfindung.

Beispiel 1.

5

30

35

45

In ein

In einem mit Rückflusskühler, Thermometer, Tropftrichter und Rührer versehenen Reaktionsgefäss, das aussenseitig mit einem Temperiermantel umgeben ist, wird eine Lösung von 160g (1,81 Mol) Ethylencarbonat und 11,02g (0,07 Mol) 1,8-Diazabicyclo[5.4.0]undec-7-en in 220g Toluol zum Rückfluss erhitzt. Zu dieser Lösung wird über einen Zeitraum von 2 Stunden eine Lösung von 146,2g (2,00 Mol) Acetonoxim in 217g Toluol zugetropft. Danach wird die Reaktionslösung noch 1 Stunde unter Rückfluss gehalten, bis die CO₂-Gasentwicklung beendet ist und eine vollständige Umsetzung von Ethylencarbonat erreicht ist. Man erhält 722g einer 24,4% igen toluolischen Oximglykol Lösung, was einer Ausbeute von 83,1% entspricht. Das reine Oximglykol wird durch anschliessende zweimalige Rektifikation je nach gewünschter Reinheit in einer Ausbeute von 65% bis 75% erhalten.

Beispiel 2

Man verfährt wie in Beispiel 1 setzt jedoch 13,82g (0,09 Mol)1,8-Diazabicyclo[5.4.0]undec-7-en in 220g

Toluol ein und erhitzt zum Rückfluss. Zu dieser Lösung wird über einen Zeitraum von 2 Stunden eine Lösung von 146,2g (2,00 Mol) Acetonoxim in 330g Toluol zugetropft. Man verfährt weiter wie in Beispiel 1 angegeben und erhält 813g einer 21,4 %igen toluolischen Oximgykol Lösung, was einer Ausbeute von 82,1% entspricht. Das reine Oximglykol wird durch anschliessende zweimalige Rektifikation je nach gewünschter Reinheit in einer Ausbeute von 65% bis 75% erhalten.

Patentansprüche

5

20

25

30

35

40

45

55

- 1. Verfahren zur Hydroxyalkylierung von Aldoximen und Ketoximen durch Umsetzung dieser Oxime mit unsubstituiertem oder substituiertem Ethylen- oder Propylencarbonat in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass man katalytische Mengen einer N-alkylierten, stabilen, organischen Amidinbase oder ein mit sekundärem Amin substituiertes Pyridin verwendet.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Amidinbase das Strukturelement C-N=C-N-C- und insgesamt 4 bis 20 C-Atome enthält.
 - Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1,

$$\begin{array}{c}
R_1 \\
R_1
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_4 \\
R_5
\end{array}$$

$$\begin{array}{c}
OH \\
\end{array}$$

$$\begin{array}{c}
(I), \\
\end{array}$$

worin R_1 und R_2 unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_1 - C_8 -Halogenal-kyl, unsubstituiertes oder mit C_1 - C_8 Alkyl oder Halogen substituiertes Phenyl, Benzyl, Phenylethyl bedeuten, oder R_1 und R_2 zusammen unsubstituiertes oder mit C_1 - C_8 -Alkyl oder Halogen substituiertes C_2 - C_7 -Alkylen bedeuten, R_3 , R_4 und R_5 unabhängig voneinander Wasserstoff oder C_1 - C_8 Alkyl sind und R_8 und R_8

$$R_2$$
 OH (II)

mit einer Verbindung der Formel III

$$R_3$$
 R_5
 R_5
(III),

worin R₃, R₄, R₅ und n die vorstehend angegebene Bedeutung haben.

- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass R₁ und R₂ unabhängig voneinander Wasserstoff oder C₁-C₈-Alkyl, oder zusammen unsubstituiertes C₂-C₇-Alkylen bilden, R₃ und R₅ Wasserstoff oder C₁-C₈ Alkyl bedeuten, wobei n für 0 steht.
 - Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass, R₁ und R₂ Methyl, Ethyl oder Propyl sind, R₃ und R₄ Wasserstoff bedeuten und n für 0 steht.
 - 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man katalytische Mengen einer stabilen organischen Amidinbase der Formel IV oder eines mit sekundärem Amin substituierten Pyridins der Formel

٧

5

15

20

25

30

45

50

55

$$R_{8}$$
 $N^{-R_{6}}$ (IV) R_{12} $N^{-R_{11}}$ $N^{-R_{10}}$ $N^{-R_{10}}$

verwendet, worin R_6 , R_7 , R_8 und R_9 unabhängig voneinander C_1 - C_8 -Alkyl oder C_3 - C_8 -Cycloalkyl bedeuten, oder R_6 und R_7 zusammen einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden und R_8 und R_9 die vorstehend angegebene Bedeutung haben, oder R_8 und R_9 zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden und R_6 und R_7 C_1 - C_8 -Alkyl oder C_3 - C_8 -Cycloalkyl bedeuten, oder R_8 und R_7 einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden sowie R_8 und R_9 zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden,

R₁₀ und R₁₁ unabhängig voneinander C₁-C₁₂-Alkyl sind und R₁₂ für Wasserstoff, C₁-C₈-Alkyl, C₃-C₉-Cycloalkyl oder C₁-C₈-Halogenalkyl steht.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysator eine Verbindung der Formel IV oder V verwendet wird, wobei R₆ und R₇ zusammen einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden und R₈ und R₉ C₁-C₈-Alkyl oder C₅-C₆-Cycloalkyl sind, oder R₈ und R₉ zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden und R₆ und R₇ C₁-C₈-Alkyl oder C₅-C₆-Cycloalkyl bedeuten, oder R₆ und R₇ einen Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden sowie R₈ und R₉ zusammen einen Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden, R₁₀ und R₁₁ unabhängig voneinander C₁-C₄-Alkyl bedeuten und R₁₂ für Wasserstoff, C₁-C₄-Alkyl, C₅-C₆-Cycloalkyl oder C₁-C₄-Halogenalkyl steht.

8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysator eine Amidinbase der Formel IV verwendet wird, wobei R₆ und R₇ zusammen einen gesättigten Kohlenwasserstoffrest mit 3 bis 6 C-Atomen bilden und R₈ und R₉ zusammen einen gesättigten Kohlenwasserstoffrest mit 2 bis 6 C-Atomen bilden

9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysator eine Verbindungen der Formel V verwendet wird, wobei R₁₂ Wasserstoff oder C₁-C₈-Alkyl bedeutet, und R₁₀ und R₁₁ gleich sind und für C₁-C₄-Alkyl stehen.

10. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysator eine Verbindungen der Formel V verwendet wird, wobei R₁₂ Wasserstoff ist und die Gruppe -NR₁₀R₁₁ in 2 oder 4 Stellung gebunden ist, wobei R₁₀ und R₁₁ C₁-C₄-Alkyl sind.

11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysator 1,5-Diazabicyclo[4.3.0]non5-en oder 1,8-Diazabicyclo[5.4.0]undec-7-en oder 2-Dimethylaminopyridin oder 4-Dimethylaminopyridin verwendet wird.

12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das molare Verhältnis von Carbonaten der Formel III zu Oximen der Formel II 0,5 bis 2,0 beträgt.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das molare Verhältnis von Carbonaten der Formel III zu Oximen der Formel II 0,8 bis 1,5 beträgt.

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das molare Verhältnis von Carbonaten der Formel III zu Oximen der Formel II 0,8 bis 1,0 beträgt.

15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die katalytischen Mengen von Verbindungen der Formel IV oder V 0,1 bis 10 Mol %, bezogen auf das eingesetzte Oxim betragen.

16. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die katalytischen Mengen von Verbindungen der Formel IV oder V 1 bis 10 Mol %, bezogen auf das eingesetzte Oxim betragen.

17. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die katalytischen Mengen von Verbindungen

der Formel IV oder V 2 bis 6 Mol %, bezogen auf das eingesetzte Oxim betragen.

- 18. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass es in einem gegenüber den Reaktionspartnern inerten, organischen Lösungsmittel durchgeführt wird.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Konzentration an Oxim und Carbonat bei Mitverwendung eines Lösungsmittels 20 bis 60 Vol%, bezogen auf das Lösungsmittel beträgt.
- 20. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es bei einer Temperatur von 80° C bis 200° C durchgeführt wird.
- 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass es bei einer Temperatur von 90° C bis 150° C durchgeführt wird.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 94 81 0652

EINSCHLÄGIGE DOKUMENTE					
ategorie	Kennzeichnung des Dokuments der maßgebliche	s mit Angube, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)	
,D	US-A-4 687 849 (G. FI * Spalte 4, Zeile 40	RATER ET AL) - Zeile 68 *	1-21	C07C249/12	
A ,D	ACS SYMPOSIUM SERIES CHEMISTRY OF AGROCHED Bd.443, 1991 Seiten 226 - 235 P. KLAUS ET AL. 'Syn Graminicide Propaqui * Seite 231; Abbildu	MICALS II, thesis of the New zafop'	1-21		
				RECHERCHIERTE SACTIGEBIETE (Int. Cl. 6)	
Des	vorliegende Recherchenbericht wurd			Prufer	
	Recherchemort	Abechluftdatum der Recherche		ánchez García, J.M.	
Y:	DEN HAAG KATEGORIE DER GENANNTEN von besonderer Bedeutung allein betrach von besonderer Bedeutung in Verbindun anderen Veröffentlichung derselben Kate technologischer Hintergrund	E: alteres P: nach dem g mit einer D: in der An gkorle L: aus ander	dung zugrunde lieger atentdokument, das j Anmeldedatum vert ameldung angeführte m Gründen angeführ	ide Theorien oder Grundsätze edoch erst am oder offentlicht worden ist s Dokument	

BLANK PAGE