The forward-backward algorithm

Sargur Srihari srihari@buffalo.edu

HMM Topics

- 1. What is an HMM?
- 2. State-space Representation
- 3. HMM Parameters
- 4. Generative View of HMM
- 5. Determining HMM Parameters Using EM
- 6. Forward-Backward or α – β algorithm
- 7. HMM Implementation Issues:
 - a) Length of Sequence
 - b) Predictive Distribution
 - c) Sum-Product Algorithm
 - d) Scaling Factors
 - e) Viterbi Algorithm

Forward-Backward Algorithm

- E step: efficient procedure to evaluate $\gamma(z_n)$ and
 - $\xi(z_{n-1},z_n)$
- Graph of HMM, a tree→

- In HMM it is called forward-backward algorithm or Baum-Welch Algorithm
- Several variants lead to exact marginals
 - Method called alpha-beta discussed here

Derivation of Forward-Backward

Several conditional-independences (A-H) hold

A.
$$p(X|z_n) = p(x_1,...x_n|z_n) p(x_{n+1},...x_N|z_n)$$

• Proved using d-separation:

Path from x_1 to x_{n-1} passes through z_n which is observed.

Path is head-to-tail. Thus $(x_1,...x_{n-1}) \perp \!\!\! \perp x_n \mid z_n$ Similarly $(x_1,...x_{n-1},x_n) \perp \!\!\! \perp x_{n+1},...x_N \mid z_n$

Conditional independence B

$$(x_1,...x_{n-1})$$
 $\perp \perp x_n \mid x_n \mid$

B.
$$p(\mathbf{x}_{1},...\mathbf{x}_{n-1}|\mathbf{x}_{n},\mathbf{z}_{n}) = p(\mathbf{x}_{1},...\mathbf{x}_{n-1}|\mathbf{z}_{n})$$

Conditional independence C

$$(\mathbf{X}_1,...\mathbf{X}_{n-1})$$
 $\underline{\coprod}$ $\mathbf{Z}_n \mid \mathbf{Z}_{n-1}$

C.
$$p(\mathbf{x}_{1},...\mathbf{x}_{n-1}|\mathbf{z}_{n-1},\mathbf{z}_{n}) = p(\mathbf{x}_{1},...\mathbf{x}_{n-1}|\mathbf{z}_{n-1})$$

Conditional independence D

$$(\mathbf{X}_{n+1},...\mathbf{X}_N)$$
 $\perp \perp \perp \mathbf{Z}_n \mid \mathbf{Z}_{n+1}$

D.
$$p(\mathbf{x}_{n+1},...\mathbf{x}_N|\mathbf{z}_n,\mathbf{z}_{n+1}) = p(\mathbf{x}_1,...\mathbf{x}_N|\mathbf{z}_{n+1})$$

Conditional independence E

$$(\mathbf{X}_{n+2},...\mathbf{X}_N)$$
 $\perp \perp \perp \mathbf{Z}_n \mid \mathbf{Z}_{n+1}$

E.
$$p(\mathbf{x}_{n+2},...\mathbf{x}_N|\mathbf{z}_{n+1},\mathbf{x}_{n+1}) = p(\mathbf{x}_{n+2},...\mathbf{x}_N|\mathbf{z}_{n+1})$$

Conditional independence F

F.
$$p(X|z_{n-1},z_n) = p(x_1,...x_{n-1}|z_{n-1})p(x_n|z_n)$$

 $p(x_{n+1},...x_N|z_n)$

Conditional independence G

$$(\mathbf{x}_1,...\mathbf{x}_N)$$
 $\perp \!\!\! \perp \!\!\! \perp \mathbf{x}_{N+1} \mid \mathbf{z}_{N+1}$

G.
$$p(\mathbf{x}_{N+1}|X,\mathbf{z}_{N+1}) = p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1})$$

Conditional independence H

H.
$$p(\mathbf{z}_{N+1}|\mathbf{z}_N, X) = p(\mathbf{z}_{N+1}|\mathbf{z}_N)$$

Evaluation of $\gamma(z_n)$

- Recall that this is to efficiently compute the E step of estimating parameters of HMM
 - $\gamma(z_n) = p(z_n|X,\theta^{old})$: Marginal posterior distribution of latent variable z_n
- We are interested in finding posterior distribution $p(\mathbf{z}_n|\mathbf{x}_1,...\mathbf{x}_N)$
- This is a vector of length K whose entries correspond to expected values of z_{nk}

Introducing alpha and beta

- Using Bayes theorem $\gamma(z_n) = p(z_n | X) = \frac{p(X | z_n)p(z_n)}{p(X)}$
- Using conditional independence A

$$\gamma(z_n) = \frac{p(x_1, ... x_n | z_n) p(x_{n+1}, ... x_N | z_n) p(z_n)}{p(X)}$$

$$= \frac{p(x_1, ... x_n, z_n) p(x_{n+1}, ... x_N | z_n)}{p(X)} = \frac{\alpha(z_n) \beta(z_n)}{p(X)}$$

• where $\alpha(z_n) \equiv p(x_1,...,x_n,z_n)$

which is the probability of observing all given data up to time n and the value of \mathbf{z}_n

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1},...,\mathbf{x}_N|\mathbf{z}_n)$$

which is the conditional probability of all future data from time n+1 up to N given the value of z_n

Recursion relation for alpha

$$\alpha(z_{n}) = p(x_{1},...,x_{n},z_{n})$$

$$= p(x_{1},...,x_{n}|z_{n})p(z_{n}) \text{ by Bayes rule}$$

$$= p(x_{n}|z_{n})p(x_{1},...,x_{n-1}|z_{n})p(z_{n}) \text{ by conditional independence B}$$

$$= p(x_{n}|z_{n})p(x_{1},...,x_{n-1},z_{n}) \text{ by Bayes rule}$$

$$= p(x_{n}|z_{n})\sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n-1},z_{n}) \text{ by Sum Rule}$$

$$= p(x_{n}|z_{n})\sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n}|z_{n-1})p(z_{n-1}) \text{ by Bayes rule}$$

$$= p(x_{n}|z_{n})\sum_{z_{n-1}} p(x_{1},...,x_{n-1}|z_{n-1})p(z_{n}|z_{n-1})p(z_{n-1}) \text{ by cond. ind. C}$$

$$= p(x_{n}|z_{n})\sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n-1})p(z_{n}|z_{n-1}) \text{ by Bayes rule}$$

$$= p(x_{n}|z_{n})\sum_{z_{n-1}} \alpha(z_{n-1})p(z_{n}|z_{n-1}) \text{ by definition of } \alpha$$

Forward recursion for alpha evaluation

Recursion Relation is

$$\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1})$$

- There are K terms in the summation
 - Has to be evaluated for each of K values of z_n
 - Each step of recursion is $O(K^2)$
- Initial condition is

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1) p(\mathbf{x}_1 \mid \mathbf{z}_1) = \prod_{k=1}^{K} \{ \pi_k p(\mathbf{x}_1 \mid \phi_k) \}^{z_{1k}}$$

• Overall cost for the chain in $O(K^2N)$

Recursion relation for beta

$$\beta(z_{n}) = p(x_{n+1},...,x_{N} | z_{n})$$

$$= \sum_{z_{n+1}} p(x_{n+1},...,x_{N},z_{n+1} | z_{n}) \text{ by Sum Rule}$$

$$= \sum_{z_{n+1}} p(x_{n+1},...,x_{N} | z_{n},z_{n+1}) p(z_{n+1} | z_{n}) \text{ by Bayes rule}$$

$$= \sum_{z_{n+1}} p(x_{n+1},...,x_{N} | z_{n+1}) p(z_{n+1} | z_{n}) \text{ by Cond ind. D}$$

$$= \sum_{z_{n+1}} p(x_{n+2},...,x_{N} | z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_{n}) \text{ by Cond. ind E}$$

$$= \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_{n}) \text{ by definition of } \beta$$

Backward recursion for beta

Backward message passing

$$\beta(z_n) = \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1}|z_n) p(z_{n+1}|z_n)$$

- Evaluates $\beta(z_n)$ in terms of $\beta(z_{n+1})$
- Starting condition for recursion is

$$p(\mathbf{z}_N \mid \mathbf{X}) = \frac{p(\mathbf{X}, \mathbf{z}_N) \beta(\mathbf{z}_N)}{p(\mathbf{X})}$$

- Is correct provided we set $\beta(z_N) = 1$ for all settings of z_N
 - This is the initial condition for backward computation

M-step Equations

• In the M-step equations p(x) will cancel out

$$\mu_k = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) x_n}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

$$p(X) = \sum_{z_n} \alpha(z_n) \beta(z_n)$$

Evaluation of Quantities $\xi(z_{n-1}, z_n)$

• They correspond to the values of the conditional probabilities $p(z_{n-1},z_n|X)$ for each of the K x K settings for (z_{n-1},z_n)

$$\xi(z_{n-1}, z_n) = p(z_{n-1}, z_n \mid X) \text{ by definition}$$

$$= \frac{p(X|z_{n-1}, z_n)p(z_{n-1}, z_n)}{p(X)} \text{ by Bayes Rule}$$

$$= \frac{p(x_1, ... x_{n-1}|z_{n-1})p(x_n \mid z_n)p(x_{n+1}, ..., x_N \mid z_n)p(z_n \mid z_{n-1})p(z_{n-1})}{p(X)} \text{ by cond ind F}$$

$$= \frac{\alpha(z_{n-1})p(x_n \mid z_n)p(z_n \mid z_{n-1})\beta(z_n)}{p(X)}$$

• Thus we calculate $\xi(z_{n-1}, z_n)$ directly by using results of the α and β recursions

Summary of EM to train HMM

Step 1: Initialization

- Make an initial selection of parameters θ^{old} where $\theta = (\pi, A, \phi)$
 - 1. π is a vector of K probabilities of the states for latent variable z_1
 - 2. A is a $K \times K$ matrix of transition probabilities A_{ij}
 - 3. ϕ are parameters of conditional distribution $p(\mathbf{x}_k|\mathbf{z}_k)$
- A and π parameters are often initialized uniformly
- Initialization of ϕ depends on form of distribution
 - For Gaussian:
 - parameters μ_k initialized by applying K-means to the data, Σ_k corresponds to covariance matrix of cluster

Summary of EM to train HMM

Step 2: E Step

- Run both forward α recursion and backward β recursion
- Use results to evaluate $\gamma(z_n)$ and $\xi(z_{n-1},z_n)$ and the likelihood function

Step 3: M Step

 Use results of E step to find revised set of parameters θ^{new} using M-step equations

Alternate between E and M until convergence of likelihood function

Values for $p(\mathbf{x}_n|\mathbf{z}_n)$

- In recursion relations, observations enter through conditional distributions $p(\mathbf{x_n}|\mathbf{z_n})$
- Recursions are independent of
 - Dimensionality of observed variables
 - Form of conditional distribution
 - So long as it can be computed for each of K possible states of \mathbf{z}_n
- Since observed variables $\{x_n\}$ are fixed they can be pre-computed at the start of the EM algorithm

Length of Sequence

- HMM can be trained effectively if length of sequence is sufficiently long
 - True of all maximum likelihood approaches
- Alternatively we can use multiple short sequences
 - Requires straightforward modification of HMM-EM algorithm
- Particularly important in left-to-right models
 - In given observation sequence, a given state transition for a non-diagonal element of A occurs only once

Predictive Distribution

- Observed data is X={ x₁,...,x_N}
- Wish to predict \mathbf{x}_{N+1}
- Application in financial forecasting

$$p(\mathbf{x}_{N+1} \mid X) = \sum_{z_{N+1}} p(\mathbf{x}_{N+1}, \mathbf{z}_{N+1} \mid X)$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1} | X) p(\mathbf{z}_{N+1} | X) \text{ by Product Rule}$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1}, z_{N} | X) \text{ by Sum Rule}$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1} | z_{N}) p(z_{N} | X) \text{ by conditional ind H}$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1} | z_{N}) \frac{p(z_{N}, X)}{p(X)} \text{ by Bayes rule}$$

$$= \frac{1}{p(X)} \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1} | z_{N}) \alpha(z_{N}) \text{ by definition of } \alpha$$

- Can be evaluated by first running forward α recursion and summing over z_{N} and z_{N+1}
- Can be extended to subsequent predictions of x_{N+2} , after x_{N+1} is observed, using a fixed amount of storage

Sum-Product and HMM

- HMM graph is a tree and hence sum-product algorithm can be used to find local marginals for hidden variables
 - Equivalent to forwardbackward algorithm
 - Sum-product provides a simple way to derive alphabeta recursion formulae
- Transform directed graph to factor graph
 - Each variable has a node, small squares represent factors, undirected links connect factor nodes to variables used

HMM Graph

Joint distribution

$$p(x_1,...x_N,z_1,...z_n) = p(z_1) \left[\prod_{n=2}^N p(z_n \mid z_{n-1}) \right] \prod_{n=1}^N p(x_n \mid z_n)$$

Fragment of Factor Graph

Deriving alpha-beta from Sum-product

- Begin with simplified form of factor graph
- Factors are given by

$$h(z_1) = p(z_1)p(x_1 | z_1)$$

$$f_n(z_{n-1}, z_n) = p(z_n | z_{n-1})p(x_n | z_n)$$

Messages propagated are

$$\mu_{z_{n-1}\to f_n}(z_{n-1}) = \mu_{f_{n-1}\to z_{n-1}}(z_{n-1})$$

$$\mu_{f_n\to z_n}(z_n) = \sum_{z_{n-1}} f_n(z_{n-1}, z_n) \mu_{z_{n-1}\to f_n}(z_{n-1})$$

- Can show that α recursion is computed
- Similarly starting with the root node β recursion is computed
- So also γ and ξ are derived

Fragment of Factor Graph

Simplified by absorbing emission probabilities into transition probability factors

Final Results

$$\alpha(z_{n}) = p(x_{n} | z_{n}) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_{n} | z_{n-1})$$

$$\beta(z_{n}) = \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1} | z_{n}) p(z_{n+1} | z_{n})$$

$$\gamma(z_{n}) = \frac{\alpha(z_{n}) \beta(z_{n})}{p(X)}$$

$$\xi(z_{n-1}, z_{n}) = \frac{\alpha(z_{n-1}) p(x_{n} | z_{n}) p(z_{n} | z_{n-1}) \beta(z_{n})}{p(X)}$$

Scaling Factors

- Implementation issue for small probabilities
- At each step of recursion

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n \mid \mathbf{z}_n) \sum_{n} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$$

- To obtain new value of $\alpha(z_n)$ from previous value $\alpha(z_{n-1})$ we multiply $p(z_n|z_{n-1})$ and $p(x_n|z_n)$
- These probabilities are small and products will underflow
- Logs don't help since we have sums of products_

- Solution is rescaling
 - of $\alpha(z_n)$ and $\beta(z_n)$ whose values remain close to unity

The Viterbi Algorithm

- Finding most probable sequence of hidden states for a given sequence of observables
- In speech recognition: finding most probable phoneme sequence for a given series of acoustic observations
- Since graphical model of HMM is a tree, can be solved exactly using max-sum algorithm
 - Known as Viterbi algorithm in the context of HMM
 - Since max-sum works with log probabilities no need to work with re-scaled varaibles as with forwardbackward

Viterbi Algorithm for HMM

- Fragment of HMM lattice showing two paths
- Number of possible paths grows exponentially with length of chain
- Viterbi searches space of paths efficiently
 - Finds most probable path with computational cost linear with length of chain

Deriving Viterbi from Max Sum

Start with simplified factor graph

- Treat variable z_N as root node, passing messages to root from leaf nodes
- Messages passed are

$$\mu_{z_n \to f_{n+1}}(z_n) = \mu_{f_n \to z_n}(z_n)$$

$$\mu_{f_{n+1} \to z_{n+1}}(z_{n+1}) = \max_{z_n} \left\{ \ln f_{n+1}(z_n, z_{n+1}) + \mu_{z_n \to f_{n+1}}(z_n) \right\}$$