CO₂ System

CO₂ system is a one component system in which following equilibrium can exist:

Solid
$$CO_2$$
 (s) = Liquid CO_2 (l) = Vapor CO_2 (g)

The system consists of three phases, viz., solid, liquid and gas, since only one formula (CO_2) can express all the three phases, therefore, it is a one component system. Hence,

$$F = C - P + 2 = 1 - P + 2 = 3 - P$$

i.e, degree of freedom depends on the number of phases present in various cases:

if
$$P=1$$
; $F=2$, if $P=2$; $F=1$ if $P=3$; $F=0$

Fig. Phase diagram of CO₂ System

Thus, for one component system the maximum number of the degree of freedom is

Such a system can be represented by a two dimensional diagram and two variables in this case are the pressure and temperature.

1. Areas:

Solid CO₂ (area on the left of the curve AOB) Liquid CO₂ (area between OC and OA) Vapor CO₂ (area below curve BOC)

Since one phase exists in these areas hence: P=1

So
$$F = C-P + 2$$

= $1-1 + 2 = 2$

2. **Curves / Boundary lines:** Separating the areas are lines/curves OA, OB, OC. Along the lines/curves two phases can coexist in equilibrium and degree of freedom is one.

Along curve OB Solid $CO_2 \leftrightarrow Vapor$ are in equilibrium

(It is called **Sublimation curve**)

$$F = C - P + 2 = 1 - 2 + 2 = 1$$

Along curve OC $CO_2(1) \leftrightarrow Vapor(g)$, are in equilibrium (called **vapor pressure curve**). The OC has a natural upper limit at $31.1^{\circ}C$ which is the **critical point**, beyond which the liquid phase merges into vapor phase. Along this curve the system is mono variant as predicted from phase rule equation.

$$F = C - P + 2 = 1 - 2 + 2 = 1$$

Along curve OA solid CO₂ is in equilibrium with liquid CO₂.

$$CO_2(s) \leftrightarrow CO_2(l)$$
 (It is called **fusion curve**).

Along this curve the system is mono variant as predicted from phase rule equation.

$$F = C - P + 2 = 1 - 2 + 2 = 1$$

- 3. **Triple point (O):** The three curves meet at point o which is called triple point. At this point all the three phases solid, liquid and vapor coexist in equilibrium and degree of freedom is zero (F=3-3=0). At this point the temperature is 56.4°C and pressure is 5.1 atm. If any pressure or temperature is altered at this point one phase will disappear.
- 4. **The critical point 'C':** The point 'C' in the diagram is called the critical point. The temperature and pressure corresponding to this point are 31.1°C and 73 atm. They are called critical temperature and critical pressure. The effect of increase of the pressure on vapor phase at a temperature lower than critical temperature will eventually cause condensation of liquid CO ₂, because above critical temperature it is impossible to condense a gas into a liquid just by increasing pressure. Thus, it is impossible to get any liquid

 CO_2 at pressure less than 5.11 atm. It means that at 1 atm pressure CO_2 will sublimate at a temperature of -78.5° C. This is the reason that solid CO_2 is often called as dry ice. We cannot get liquid CO_2 under normal conditions.