Lecture 5: Static CMOS Logic Circuit

Outline

- Construction of Static CMOS Logic Gate
- Static CMOS Logic Circuit Delay and Power Analysis
- Static CMOS Logic Circuit Advanced Delay Analysis
 - Intermediate Capacitance
 - Delay Optimization

Overview

symbol

Inverter

- ✓ DC Characterizations VTC
- ✓ Propagation Delay
- **✓ Power Consumption**
- ✓ Design Optimization

combination

Logic Gate

Combinational vs. Sequential

Output = f(In)

Output = f(In, State)

NMOS Transistors in Series/Parallel

- □ Transistor ↔ switch controlled by its gate signal
- □ NMOS switch opens when switch control input is *HIGH*

PMOS Transistors in Series/Parallel

- □ Transistor ↔ switch controlled by its gate signal
- ☐ PMOS switch opens when switch control input is *LOW*

Static CMOS NAND Logic Gates

Y = 1 when
$$\overline{A} + \overline{B}$$

Y = $\overline{A} + \overline{B}$

Y = $\overline{A} + \overline{B}$

Apply DeMorgan's Theorems
$$Y = \overline{A \cdot B}$$

Static CMOS NOR Logic Gates

$$Y = 0$$
 when $A + B$

$$Y = \overline{A + B}$$

$$Y = 1$$
 when $\overline{A} \cdot \overline{B}$

$$Y = \overline{A} \cdot \overline{B}$$

Apply DeMorgan's Theorems

$$Y = \overline{A + B}$$

2-input NOR

Example: NAND & NOR Logic Gates

2-input NAND

- \square *n*-input NAND can be constructed by the combination of #n PMOS in parallel to V_{DD} and #n NMOS in series to GND.
- \square *n*-input NOR can be constructed by the combination of #n NMOS in parallel to GND and #n PMOS in series to V_{DD} .

Other Static CMOS Logic Gates

□ All combinational logic circuits can be implemented by the combinations of static CMOS NAND and/or NOR gates!

Combination of NOR

Example: Constructing a Complex Gate

$$Y = \overline{D + A(B + C)}$$

Example: Constructing XOR Gate

KEY: Apply Standard SOP(Sum Of Product)

Process for Y

Static 2-input XOR Gate

A	В	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

$$Y = \overline{A} \cdot B + A \cdot \overline{B}$$

$$\overline{Y} = \overline{A} \cdot B + A \cdot \overline{B}$$

Example: Constructing XOR Gate

KEY: Apply Standard SOP(Sum Of Product) Process for \overline{Y}

Static 2-input XOR Gate

Α	В	Y	Y
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Weak and Strong PUN & PDN

Summary

- □ The pull-up network (PUN) is made of <u>PMOS</u> transistors <u>ONLY</u> while the pull-down network (PDN) is made of <u>NMOS transistors ONLY</u>.
- □ Logic inputs connect to the <u>Gate terminal</u> of MOSFETs.
- □ The output of Static CMOS logic gate is connected to V_{DD} or GND via a low-resistive path at every point in time (except during the switching transients).
- ☐ The outputs of the static CMOS logic gates at all times are the value of the Boolean function, implemented by the circuit at steady state.