Metody Numeryczne - Lista 6

Janusz Szwabiński

1. W tabeli 1 przedstawiona jest moc P przyłożona do kół samochodu jako funkcja prędkości v. Zakładając, że masa samochodu m wynosi 2000 kg, wyznacz czas potrzebny do rozpędzenia samochodu od prędkości 1 m/s do 6 m/s. Wskazówka:

$$\Delta t = m \int_{v_1}^{v_2} \frac{v}{P} \mathrm{d}v.$$

v (m/s)	0	1,0	1,8	2,4	3,5	4,4	5,1	6,0
P(kW)	0	4,7	12,2	19,0	31,8	40,1	43,8	43,2

Tabela 1: Moc w funkcji czasu.

2. Oblicz całkę

$$\int_{-1}^{1} \cos(2\cos^{-1}x) \mathrm{d}x$$

korzystając ze wzoru Simpsona dla 3, 5 i 7 węzłów. Wyjaśnij wyniki.

3. Oblicz całkę

$$\int_{1}^{\infty} (1+x^4)^{-1} \mathrm{d}x$$

korzystając ze wzoru trapezów dla 6 węzłów. Wskazówka: skorzystaj z podstawienia $x^3=1/t.$

4. Okres T wahadła matematycznego o długości L zadany jest wzorem

$$T = 4\sqrt{\frac{L}{g}}h(\theta_0),$$

gdzie g to przyspieszenie ziemskie, θ_0 to amplituda oraz

$$h(\theta_0) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \sin^2(\theta_0/2)\sin^2\theta}}.$$

Oblicz $h(15^\circ)$, $h(30^\circ)$ i $h(45^\circ)$. Porównaj te wartości z $h(0)=\pi/2$ stosowanym w przybliżeniu harmonicznym.

5. Oblicz całkę

$$\int_{1}^{\pi} \frac{\ln x}{x^2 - 2x + 2} \mathrm{d}x$$

metodą Gaussa-Legendre'a dla 2 i 4 węzłów.

6. Dane są funkcje

$$f_1(x) = x^3 - 2x$$
, $f_2(x) = \sin x$, $f_3(x) = e^x$.

Uzupełnij poniższą tabelę:

Pochodne	h	$f'(x) - D_{f1}$	$f'(x) - D_{c2}$	$f'(x) - D_{c4}$
$f_1'(1) = 1$	0,1			
	0,01			
	0,001			
$f_2'(\pi/3) = 1/2$	0,1			
	0,01			
	0,001			
$f_3'(0) = 1$	0,1			
	0,01			
	0,001			
	0,01 0,001 0,1 0,01			

7. Na podstawie danych z tabeli oblicz $f^{\prime}(0.2)$ najdokładniej, jak to tylko możliwe:

\overline{x}	0,0	0,1	0, 2	0,3	0, 4
f(x)	0,000000	0,078348	0,138910	0,192916	0,244981

8. Korzystając z interpolacji wielomianowej, oblicz $f^{\prime}(0)$ i $f^{\prime\prime}(0),$ jeśli

\boldsymbol{x}	-2, 2	-0,3	0, 8	1,9	
f(x)	15, 180	10,962	1,920	-2,040	