NASA Technical Memorandum 86871

NASA-TM-86871 19850005242

Static Jet Noise Test Results of Four 0.35 Scale-Model QCGAT Mixer Nozzles

Donald E. Groesbeck and Charles A. Wasserbauer Lewis Research Center Cleveland, Ohio

LIBRARY COPY

JAN 2 1985

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

October 1984

STATIC JET NOISE TEST RESULTS OF FOUR 0.35 SCALE-MODEL

OCGAT MIXER NOZZLES

Donald E. Groesbeck and Charles A. Wasserbauer National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SUMMARY

As part of the NASA Quiet Clean General Aviation Turbofan (QCGAT) engine mixer-nozzle exhaust system program, static jet exhaust noise was recorded at microphone angles of 45° to 155° relative to the nozzle inlet for a conventional profile coaxial nozzle and three 12-lobed coaxial mixer nozzles. Both flows in all four nozzles are internally mixed before being discharged from a single exhaust nozzle. The conventional profile coaxial nozzle jet noise is compared to the current NASA Lewis coaxial jet noise prediction and after applying an adjustment to the predicted levels based on the ratio of the kinetic energy of the primary and secondary flows, the prediction is within a standard deviation of 0.9 dB of the measured data. The mass average (mixed flow) prediction is also compared to the noise data for the three mixer nozzles with a reasonably good fit after applying another kinetic energy ratio adjustment (standard deviation of 0.7 to 1.5 dB with the measured data). The tests included conditions for the full-scale engine at takeoff (T.O.), cutback (86 percent T.O.) and approach (67 percent T.O.).

INTRODUCTION

The NASA Quite Clean General Aviation Turbofan (QCGAT) engine program goal was to apply known large size turbofan technology to a small general aviation turbofan engine, thus improving the environmental characteristics of civil aircraft by reducing noise and pollution that restrain growth of civil aviation. The program required the design of a full-scale co-annular reference exhaust nozzle and mixer exhaust nozzle systems. Scale-model testing of several mixer nozzle designs was accomplished. However, the acoustic test results were questionable because of the test arena used. As a result, four 0.35 scale QCGAT nozzles were tested acoustically at the NASA Lewis Research Center outdoor coaxial jet acoustic facility (fig. 1). The component parts of the four nozzles were those tested for Garrett Corporation under NASA Contract NAS3-20585 by Fluidyne Engineering Corporation (ref. 1).

The purpose of this paper is to present the acoustic test results of the four model nozzles: a conventional profile coaxial nozzle and three 12-lobe core mixer coaxial nozzles, with the core flow temperature up to 1123 K (2022 °R). The jet noise was recorded at microphone angles from 45° to 155° referenced to the nozzle inlet. The noise data of the four nozzles are compared with the current NASA Lewis coaxial jet noise prediction (ref. 2.).

N85-13551

SYMBOLS

```
Α
          area
          speed of sound
C
          diameter
D
          1/3-octave band center frequency
h
          annulus height
          kinetic energy
K.E.
          Mach number
          number of data points
N
          overall sound pressure level, dB re 20 \mu N/m^2
OASPL
          overall power level, dB re 10^{-13} W
OAPWL
          total pressure
Р
PWL
          power level
           static pressure
          nozzle-to-microphone distance
R
R*
          nozzle-to-microphone distance for distributed noise sources (ref. 1)
          1/3-octave band sound pressure level, dB re 20 uN/m<sup>2</sup>
SPL
          standard deviation
STD DEV
          total temperature
Т
           static temperature
           velocity
٧
          effective jet exhaust velocity (mass average)
          mass flow rate
           ratio of specific heats
Υ
          directivity angle from inlet axis (fig. 2), deg, relative to nozzle
θ
           exit
0*
           directivity angle from inlet axis (fig. 2), deg, for distributed
           noise sources (ref. 2)
          (OASPL<sub>exp</sub> - OASPL<sub>adi</sub>)
Δ
          prediction adjustment equal to (OASPL exp - OASPL pred)
Δ<sub>M</sub>
Subscripts
          ambient
a
adj
          adjusted
е
          effective
          experimental
exp
          primary
p
pred
          predicted
S
          secondary
```

APPARATUS AND PROCEDURE

Facility

A photograph of the dual-stream heated jet facility is shown in figure 1. Both streams could be heated to around 1100 K and operated to nozzle pressure ratios of 3.0. Flow rate, total pressure, and total temperature were measured for both streams. Mufflers in each line attenuated flow control valve noise and internal combustion noise. A detailed description of the flow facility is given in reference 3.

In order to produce a single free-field (no reflections) spectrum at each microphone angle, two microphone arrays were used as shown in figure 2. Nine 0.635-cm condenser microphones at the nozzle centerline elevation were mounted on poles. The protective metal grid caps were removed to improve the microphone performance at high frequencies. Nine 1.27-cm condenser microphones. mounted on metal plates, were placed on the ground at the same angle and acoustic ray distance as the corresponding centerline microphone. The microphones up to and including 135° were at a sideline distance of 33 core nozzle diameters (6.67 m). The microphones at 145°, 150°, and 155° were at the same radial distance as the 135° microphone because of space and acoustic level The angle θ is referenced to the centerline of the nozzle considerations. exit plane. The angle 0* is referenced to assumed distributed noise sources in the jet as discussed in reference 4 and are within one degree of the angles determined by the assumptions of reference 2. The ground plane of the acoustic area was asphalt interspersed with patches of concrete.

Test Nozzles

Schematics of the four coaxial nozzles are shown in figure 3. All the configurations have a plug in the primary flow and the primary and secondary flows mix before exiting from a single nozzle. QCGAT II (mixer A) and III (mixer C) have parallel walled lobes and differ only in length. QCGAT IV (mixer D) is the same length as III but has modified radial walls.

Procedure

All tests were conducted at steady state flow conditions for given nozzle total pressures and temperatures. Upstream plenum chamber total pressures and total temperatures were used to calculate nozzle exhaust velocities assuming isentropic expansion to atmospheric conditions. Nozzle exit static temperatures were calculated from the measured total temperatures after correcting the total temperature for thermocouple radiation heat loss. In order to simulate the QCGAT engine flows, only the primary (core) nozzle flow was heated.

An on-line analysis of the noise signal from each microphone in succession was performed. One-third octave band sound pressure level spectra were digitally recorded. Atmospheric attenuation and ground reflection corrections were applied to the spectral data to give free-field lossless data for each microphone at each angle. A single spectrum for each measurement angle was obtained by combining the centerline and ground microphone spectra. The ground microphone spectrum was used over the frequency range of 100 to

1000 Hz; the centerline microphone spectrum was used over the frequency range from 5000 to 8000 Hz. For the intermediate frequency range of 1250 to 4000 Hz the data from both microphones were arithmetically averaged.

RESULTS

The test conditions for the four nozzles are given in table I. Runs 3, 5, and 7 simulate the QCGAT engine operating line for takeoff fan speed, cutback (86 percent takeoff fan speed) and approach (67 percent takeoff fan speed) respectively. Runs 1, 2, 4, and 6 extend the data range.

A tabulation of the measured lossless free-field spectra for all nine directivity angles used in the tests for each nozzle is given in table II. At the higher frequencies, after including the atmospheric attenuation correction, there was a reversal of the slope of the sound pressure level (SPL) with frequency that occurred because the magnitude of the input signal at the higher frequencies was lower than the internal noise floor of the spectrum analyzer; therefore, all the listings have been deleted beyond the frequency where the slope reversal began.

Predicted jet noise spectra of the four QCGAT nozzles were generated using the method of reference 2. The separate flow coaxial jet condition was used for QCGAT I and a mass averaged (mixed flow) condition was used for QCGAT II, III, and IV. The test conditions of QCGAT I were used for both predictions since they were nominally the same for all four nozzle tests. The predicted spectra for QCGAT I are listed in table III and for QCGAT II, III, and IV are listed in table IV.

Comparing the directivities of all the measured and predicted OASPL's, it was noted the trends were similar but the levels were different. The data will be discussed later. Using an adjustment based on a kinetic energy ratio of the primary (core) flow to the secondary (fan) flow brought the predicted and measured OASPL data together for a respectable fit. The adjustment, $\Delta_{\text{M}} = (\text{OASPL}_{\text{exp}} - \text{OASPL}_{\text{pred}})$, is shown in figure 4. Using a kinetic energy ratio accounts for some of the internal natural mixing of the two jets before they leave the exit nozzle. The kinetic energy ratio exponent for the mixer nozzles is one-half the exponent of the conventional profile (QCGAT I) nozzle. After applying the adjustments to the predicted OASPL's, a statistical comparison was made of the differences between the experimental and adjusted predicted OASPL. The results, shown in table V, are that the standard deviation of all the differences for the four nozzles averaged 1 dB with QCGAT II at 0.7 dB and QCGAT III at 1.5 dB.

The OASPL directivities for the four nozzles are shown in figure 5. Even and odd numbered runs are separated for clarity. Figure 5(a) shows the good fit of the measured data and the adjusted predicted levels for the QCGAT I nozzle. For unknown reasons the measured and predicted levels disagree for angles greater than 120° for the highest velocity run (run 1). The directivities of the three mixer nozzles is shown in figure 5(b). The adjusted prediction levels closely match the measured levels except for the QCGAT II nozzle for angles over 125°.

Spectral data are shown in figure 6 for the QCGAT I nozzle at directivity angles, 0* of 45°, 90°, 125°, and 145°. The adjusted predicted levels in general predict the data trends. Shown in figure 7 are the spectral data for the three mixer nozzles at the same directivity angles. Although there are some deviations between the data and the adjusted prediction, the trends are fairly well represented. In the mid-to-high-frequency range generally the measured data are higher than the adjusted predicted level, but are parallel to the prediction. In reference 5, measured engine noise was greater than the ANOPP predictions and could have been due to jet and/or core noise. Since the present data are somewhat above the mass average (mixed flow) adjusted prediction, the discrepancy here and in reference 5 may be due to incomplete mixing causing higher jet noise.

The acoustic power level spectra for the four QCGAT nozzles are listed in table VI. Predicted power level spectra are listed in table VII. Far field acoustic power level comparisons of the full-scale QCGAT engine (ref. 6) and scaled-up data of the four QCGAT nozzles are shown in figure 8. The effective jet exhaust velocity (mass averaged) is

$$V = \frac{W V + W V}{p p S S}$$

$$W + W$$

$$p S$$

where W_p and W_s are primary and secondary mass flows, respectively and V_p and V_s are primary and secondary velocities, respectively. The data were scaled up by adding 9.1 dB (20 \log_{10} 1/0.35) to the measured OAPWL and the levels are in agreement with the full scale engine. The engine data in the V_e range of the model data fall between the adjusted and scaled up predictions. The mass average prediction fairly well represents all the scaled up mixer nozzles (QCGAT II, III, and IV) and is linear with the velocity to the eighth-power. The adjusted and scaled up separate flow prediction data points are close to the measured data points but are scattered relative to the eighth-power slope. The lower velocity engine data are above an extension of an eighth-power slope indicating core noise dominates over jet noise.

Acoustic power level spectral comparisons are shown in figure 9 between the QCGAT engine (ref. 6) and QCGAT I and II scale nozzles. Run 6 was used because the V_e was nearly identical to the engine V_e at 89 percent rated e fan speed. The scale model frequencies were shifted downward by three frequency bands (1/0.35), and 9.1 dB were added to the power levels. The predictions were adjusted the same as the SPL and OASPL discussed earlier. The engine and model data are in substantial agreement in the low frequency range (50 to 400 Hz). Above 400 Hz both engine configurations have higher power levels than the scaled model data. The engine mixer nozzle data begins to deviate from the scaled model mixer nozzle data at about 100 Hz. For both nozzles the far field engine spectrum at 89 percent speed has low frequency peaks and higher frequency turbine tones that are not in the scale model data. Based on the agreement of the engine and scale model data at low frequency it is concluded that the low frequency acoustic power at 89 percent engine speed is dominated by jet noise.

CONCLUDING REMARKS

Static acoustic tests of four QCGAT 0.35 model-scale nozzles were made and jet noise was recorded at 45° to 155° from the nozzle inlet. The nozzles were a conventional bypass, and three 12-lobed mixer-type bypass. The noise data from the four nozzles is compared to the current NASA Lewis coaxial jet noise prediction and, after adjusting the prediction with a kinetic energy ratio function to account for internal mixing, substantial agreement was obtained. The measured and predicted OASPL data had a standard deviation of 0.7 to 1.5 dB. The trends of the spectral data are in good agreement with the adjusted prediction.

The model data were scaled up and compared with full-scale engine data and the adjusted prediction on a power level basis. The overall power levels as a function of effective jet exhaust velocity are in agreement. The power level spectra in the low frequency range (50 to 400 Hz) generally agree with the adjusted prediction.

REFERENCES

- Blackmore, W.L.; and Thompson, C.E.: QCGAT Mixer Compound Exhaust System Design and Static Rig Model Test Report. (AIRESEARCH 21-2861, AiResearch Mfg. Co.; NASA Contract NAS3-20585.) NASA CR-135386, 1978.
- 2. Stone, J.R.; Groesbeck, D.E.; and Zola, C.L.: An Improved Prediction Method for Noise Generated by Conventional Profile Coaxial Jets. AIAA Paper 81-1991, Oct. 1981.
- 3. Goodykoontz, J.H.; and Stone, J.R.: Experimental Study of Coaxial Nozzle Exhaust Noise. AIAA Paper 79-0631, Mar. 1979.
- 4. Stone, J.R.; Goodykoontz, J.H.; and Gutierrez, O.A.: Effects of Geometric and Flow-Field Variables on Inverted-Velocity-Profile Coaxial Jet Noise and Source Distributions. AIAA Paper 79-0635, Mar. 1979.
- 5. Kisner, Larry S.: AiResearch QCGAT Engine Acoustic Test Results. General Aviation Propulsion, NASA CP-2126, 1980, pp. 65-100.
- Huff, Ronald G.; Groesbeck, Donald E.; and Goodykoontz, Jack H.: Low Frequency Noise in a Quiet, Clean, General Aviation Turbofan Engine. NASA TM-83520, 1984.

TABLE I. - NOZZLE TEST CONDITIONS

(a) QCGAT I - Constant Ambient Conditions: temperature, t_a = 296 K (532 $^{\circ}$ R); pressure, P_a = 98.8 kN/m² (14.33 psia); relative humidity, 35 percent

ſ				relati Prim		-					Second	iary		* · · · · · · · · · · · · · · · · · · ·
Run	Pressure ratio, P _p /P _a	Exit total temper- ature Tp, K (°R)	Exit Mach num- ber M _p	Exit sonic velocity, Cp m/sec (ft/sec)	Ideal exit velocity, Vp m/sec (ft/sec)	Ratio of specific heats, Yp	Mass flow rate, kg/sec (lb _m /sec)	Pressure ratio, P _S /P _a	Exit total temper- ature Ts, K (°R)	Exit Mach num- ber Ms	Exit sonic velocity, cs m/sec (ft/sec)	Ideal exit velocity, Vs m/sec (ft/sec)	Ratio of specific heats, Ys	Mass flow rate, kg/sec (lb _m /sec)
1 2	1.610 1.488	1123 (2022) 1032	.881	614 (2015) 595	541 (1776) 476	1.295 1.304	3.024 (6.667) 2.848	1.707 1.625	293 (527) 294	.909	318 (1044) 321	289 (949) 277	1.399 1.399	15.26 (33.64) 14.36
3	1.425	(1858) 846	.747	(1953) 545	(1561) 407	1.327	(6.278) 2.959	1.448	(529) 293	.747	(1053) 326	(908) 243	1.399	(31.66)
4	1.296	(1522) 994 (1789)	.633	(1788) 598 (1963)	(1336) 379 (1242)	1.306	(6.523) 2.275 (5.015)	1.441	(528) 293 (528)	.742	(1069) 326 (1069)	(798) 242 (794)	1.399	(26.99) 12.15 (26.78)
5	1.292	827 (1488)	.631	546 (1791)	344 (1130)	1.330	2.500 (5.512)	1.334	294 (529)	.655	330 (1083)	216 (709)	1.399	10.60 (23.37)
6	1.173	996 (1793)	.493	607 (1990)	299 (982)	1.303 1.333	1.745 (3.848) 1.784	1.269	294 (529) 294	.594	332 (1090) 335	198 (648) 173	1.399 1.399	9.539 (21.03) 8.224
7	1.144	804 (1447)	.449	550 (1803)	247 (810)		(3.932)		(529)		(1099)	(568)		(18.13)
		(b) Q(GAT II 28 psi	- Constant a); relativ	Ambient Co	onditions: 34 percen	temperatur t	e, t _a = 29	7 K (535	°R); p	ressure, Pa	a = 98.5 kN/	_{m2}	
1	1.593	1122 (2019)	.864	618 (2028)	532 (1747)	1.295	2.962 (6.529) 2.808	1.709	296 (533)	.910	319 (1048)	291 (954)	1.399	14.88 (32.80)
2	1.485	1036 (1864)	.789	600 (1968)	473 (1553)	1.304	(6.191)	1.603	296 (532)	.850	322 (1057)	274 (899)	1.399	13.79 (30.39)
3 4	1.433	841 (1514) 998	.747	545 (1789) 600	408 (1337) 376	1.327	2.964 (6.534) 2.229	1.453	296 (532) 295	.751	327 (1072) 327	245 (805) 241	1.399 1.399	12.01 (26.48) 11.78
5	1.291	(1797) 823	.625	(1968) 547	(1234) 342	1.331	(4.914) 2.476	1.324	(531) 295	.647	(1074) 331	(791) 214	1.399	(25.97) 10.22
6	1.172	(1481) 985	.492	(1794) 603	(1122) 297	1.303	(5.459) 1.740	1.269	(531) 295	.594	(1086) 333 (1002)	(702) 198	1.399	(22.53) 9.326
7	1.150	(1773) 790 (1422)	.462	(1979) 540 (1773)	(975) 250 (819)	1.333	(3.836) 1.837 (4.049)	1.197	(531) 297 (534)	.514	(1093) 336 (1103)	(648) 173 (567)	1.399	(20.56) 7.979 (17.59)
		(c) QC (14.	GAT III 33 psia	I – Constan a); relativ	t Ambient C e humidity,	onditions: 44 percent	temperatur t	re, t _a = 29	96 K (533	°R);	pressure, P	a = 98.8 kN	/m ²	
1	1.614	1120 (2016)	.884	613 (2011)	542 (1778)	1.295	3.117	1.713	295 (531)	.912	319 (1047)	291 (955)	1.399	14.81 (32.66)
2	1.496	1032	.805	595 (1952)	479 (1571)	1.304	(6.872) 2.945 (6.492) 3.029	1.634	295 (531)	.869	321 (1054)	279 (915)	1.399	14.01 (30.89)
3	1.426	851 (1532)	.748	547 (1794)	409 (1342)	1.327	(6.677)	1.443	295 (531)	.743	327 (1073)	243 (798)	1.399	11.78 (25.97)
5	1.302	996 (1792) 817	.646 .629	594 (1949) 543	384 (1259) 342	1.306 1.332	2.371 (5.227) 2.574	1.444	295 (531) 295	.744	327 (1072) 331	243 (798) 213	1.399	11.79 (26.00) 10.06
6	1.168	(1470) 999	.487	(1782) 607	(1121) 296	1.303	(5.675) 1.764	1.266	(531) 295	.591	(1086) 333	(699) 197	1.399	(22.18) 9.190
7	1.150	(1798) 796 (1433)	.462	(1993) 543 (1780)	(971) 251 (822)	1.333	(3.890) 1.889 (4.165)	1.198	(531) 296 (533)	.515	(1093) 339 (1112)	(646) 175 (573)	1.399	(20.26) 7.933 (17.49)
		(d) QC	GAT IV 37 psia		Ambient Co	nditions: 49 percent	temperatur	e, $t_a = 297$		°R); p		= 99.1 kN/	m ²	L
1	1.590	1123	.869	615	535	1.295	3.064	1.689	295	.899	319	287	1.399	14.61
2	1.478	(2022) 1034 (1861)	.793	(2017) 596 (1956)	(1754) 472 (1550)	1.303	(6.754) 2.900 (6.393)	1.645	(531) 295 (531)	.874	(1048) 321 (1052)	(943) 280 (920)	1.399	(32.21) 14.16 (31.21)
3	1.432	852 (1533)	.752	547 (1793)	411 (1348)	1.326	3.055 (6.736)	1.452	295 (531)	.750	327 (1072)	245 (804)	1.399	11.93 (26.31)
4	1.288	996 (1792)	.626	`599' (1966)	375 (1230)	1.303	(5.087)	1.439	295 (531)	.741	327 (1073)	242 (794)	1.399	11.77 (25.94)
5	1.286	822 (1479) 994	.624	545 (1787) 606	340 (1115) 304	1.330	2.552 (5.626) 1.834	1.319	295 (531) 295	.642	331 (1087) 333	212 (697) 199	1.399	10.07 (22.20) 9.330
7	1.143	(1790) 789	.452	(1987) 540	(999) 244	1.333	(4.044) 1.860	1.195	(531) 296	.511	(1092) 336	(653) 172	1.399	(20.57) 7.897
		(1420)		(1773)	(802)		(4.100)		(532)		(1102)	(563)		(17.41)

TABLE II. - LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(a) QCGAT I

Fre-	Run			· · · · · · · · · · · · · · · · · · ·	Dire	ctivity	angle, e	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pre	ssure le	vel, SPL	., dB		L
100 125 160 200 250 315 400 500 6300 1250 1600 2500 3150 4000 6300 8000 12500 16000 20000 25000 31500 40000 63008 8000 10000 63008 8000 63008 80001 60000 60000 60000 60000 60000		76.7 77.2 79.8 81.5 84.1 84.2 85.0 87.2 88.8 91.1 89.9 88.8 90.7 89.8 88.9 86.8 87.4 85.6 84.3 83.9 83.1 80.7 80.1 78.6 77.1	78.6 80.7 81.4 87.9 87.6 87.2 89.2 90.7 92.2 93.5 94.2 93.5 94.4 93.0 91.9 93.1 91.5 89.6 89.6 89.6 89.2 87.0 87.3 86.5 7	83.7 83.5 86.5 91.6 91.6 92.5 93.8 97.5 98.0 98.0 98.2 95.3 95.3 96.3 95.4 91.1 91.0 89.7 88.2 88.1 87.3 86.9	85.8 87.7 90.7 97.7 93.6 95.8 96.7 99.3 101.6 101.7 102.5 103.3 103.2 102.8 101.1 97.2 98.2 97.3 96.3 95.1 94.3 98.9 990.2 89.9 89.9 108.6	88.3 88.6 91.1 102.7 99.7 100.9 103.3 104.4 107.3 108.1 109.0 108.2 105.7 105.8 105.1 103.4 102.0 93.7 93.6 91.6 91.6 91.9	93.0 95.9 97.2 105.4 103.6 104.3 106.8 108.9 111.5 110.3 108.9 107.7 106.9 104.0 97.5 96.4 94.0 92.7 91.4 119.9	94.5 96.9 102.5 107.1 106.7 109.0 110.1 109.4 110.9 108.1 110.6 110.2 109.5 107.7 104.9 101.1 97.1 95.0 89.7 88.1 120.7	98.9 98.8 104.7 109.5 108.0 109.1 111.1 110.0 109.2 107.3 107.7 108.8 108.5 108.7 106.5 103.6 97.8 88.6 86.3 120.4	99.4 102.7 102.4 106.8 108.1 109.3 109.4 109.5 107.0 106.5 107.0 107.1 106.6 96.8 93.2 90.6 86.5
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 6300 8000 12500 12500 12500 12500 12500 12500 12500 2000 20	2	74.7 76.2 76.8 81.2 80.3 81.2 83.3 85.3 84.0 85.8 87.0 86.8 87.0 86.8 85.6 85.5 84.0 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 86.8 87.0 87.6 87.6 87.6 87.6 87.6 87.6 87.6 87.6	74.3 76.2 78.8 84.5 84.5 88.0 87.5 88.0 89.2 90.4 90.2 90.2 89.3 86.4 86.0 85.7 85.0 84.2 84.2 79.9 101.0	80.9 81.4 90.8 86.9 90.1 90.5 92.7 94.4 94.3 95.1 93.7 93.4 92.6 90.8 91.3 89.3 89.3 89.3 89.7 88.8 88.7 85.1 84.6 83.1 84.6	83.6 84.1 96.1 91.9 93.5 94.7 96.2 97.5 98.2 98.1 96.3 95.4 92.9 90.5 90.7 90.7 90.7 86.8 86.2 84.3 85.4	89.1 88.3 90.7 102.5 97.1 98.6 99.5 99.1 102.4 103.4 103.8 102.1 100.0 100.1 99.9 97.1 96.3 93.1 91.2 90.4 88.9 87.2 87.3 84.7 84.5	87.0 90.0 92.9 104.5 99.1 101.0 103.3 103.1 104.9 104.6 105.3 100.8 101.7 100.3 98.4 94.5 93.0 90.1 89.7 88.7 88.2 88.0 86.4 84.7 113.9	94.7 96.9 98.5 108.3 104.8 106.1 106.5 106.4 107.0 105.8 102.6 101.7 103.0 100.8 97.4 95.7 85.0 83.1 81.4 81.0	94.1 96.5 99.2 109.1 105.5 107.0 106.2 104.7 105.6 101.7 102.8 101.3 101.0 98.1 96.1 94.2 89.9 86.4 83.9 82.8 82.7 81.8	96.7 97.4 101.0 108.5 105.2 105.6 105.8 105.8 104.7 103.3 102.4 100.0 101.2 99.9 100.2 96.8 93.9 85.8 82.0 80.0 79.5
100 125 160	3	75.4 75.9 76.2	74.0 74.2 77.3	79.2 80.1 82.3	84.3 84.9 85.1	84.8 87.0 88.4	88.3 90.1 91.4	89.9 93.8 96.4	91.1 95.0 96.3	94.0 96.0 96.3

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(a) Continued. QCGAT I

Fre-	Run				Dire		angle, e	*		
quency, Hz		45°	. 65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pro	essure l	evel, SPL	., dB	,	
200 250 3150 2000 25000 31500 25000 31500 25000 31500 6300 80000 63000 8000 8000 8000 80000 80000 80000 80000 80000 80000 80000 80000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 80000 8000	3	78.7 82.4 81.0 81.7 82.8 83.8 84.1 86.6 85.5 84.7 84.4 83.9 82.0 79.7 80.6 77.4 76.7 75.0 74.1 73.8 72.5	80.1 82.4 83.4 85.9 87.3 88.7 89.9 89.0 88.9 87.4 86.3 86.7 84.4 84.3 83.8 81.8 81.1 78.2	84.6 86.8 89.3 90.9 93.4 93.5 93.9 92.9 91.7 91.0 89.5 89.1 88.4 88.4 86.3 85.0 84.4 79.6 80.4 79.5	88.1 91.0 90.1 93.1 93.8 96.2 97.7 96.9 97.7 94.5 93.5 91.4 90.7 90.8 89.1 87.3 86.8 85.3 83.8	91.4 92.8 94.9 97.5 97.8 99.1 99.8 97.4 96.4 93.9 90.9 87.7 88.1 85.4 85.4 83.9 83.1 82.6	97.2 97.6 100.5 101.0 102.0 102.4 101.2 99.0 98.1 96.8 94.9 91.5 90.1 86.3 88.8 87.7 85.7 85.2 86.2 82.8 82.8 83.8 84.9 85.7 85.7 85.2 86.2 86.2 87.8 87.8 88.8	98.1 101.2 103.3 103.7 105.2 104.2 101.9 99.4 97.7 96.0 93.6 90.2 86.4 83.9 83.3 82.8 80.3 79.4 79.0	100.0 100.8 103.1 103.3 101.5 100.2 98.5 97.4 94.9 92.5 88.4 87.0 84.5 80.1 78.2 77.9	100.8 101.2 102.3 104.4 102.7 103.4 102.5 100.2 98.0 97.5 96.2 92.9 89.2 85.4 82.7 77.5 77.5 77.5
100 125 160 200 250 315 400 500 630 800 1250 1600 2500 3150 6300 8000 12500 12	4	71.9 72.3 73.9 76.5 79.2 76.9 78.4 79.4 80.5 81.2 81.9 83.5 82.3 80.1 79.4 78.6 78.0 77.4 71.3 92.9	73.1 75.5 77.2 78.7 80.9 83.6 84.8 85.9 86.6 86.6 86.4 84.5 83.9 83.5 83.5 80.9 79.9 81.2 80.3 80.1 77.2	77.6 79.1 78.6 82.5 83.8 85.2 87.1 88.6 88.3 89.2 88.7 88.7 88.7 88.4 87.3 85.2 87.1 84.9 82.8 82.8 82.1 79.7 78.6 78.6	79.9 80.6 82.8 85.4 85.8 85.9 90.4 92.9 93.4 91.9 90.8 89.3 90.5 86.5 87.3 86.4 85.2 84.7 82.4 81.0 80.0 79.1 79.0	81.7 82.6 84.8 87.3 89.8 90.5 91.6 93.6 93.4 93.8 91.3 90.7 89.1 88.0 84.7 84.4 84.9 83.5 82.2 82.8 81.1	86.4 88.2 90.3 92.3 93.0 95.3 95.2 96.4 96.5 95.1 96.0 92.9 92.2 91.1 83.0 82.6 83.4 83.7 82.1	88.3 90.5 93.6 94.5 96.1 97.5 98.2 97.7 98.0 96.7 92.8 92.1 89.8 83.0 82.0 79.9 78.1 77.7	90.0 91.3 94.0 95.8 98.0 98.9 100.5 97.5 96.5 93.6 92.1 90.7 89.0 87.3 84.5 80.9 76.6 107.6	89.8 93.2 93.9 97.7 99.2 98.5 96.6 95.7 90.4 88.8 87.2 85.4 83.6 81.1 76.7 77.6 77.6 75.5 75.0
100 125 160 200 250 315 400	5	73.5 75.7 72.0 73.7 76.4 74.9 76.1	71.8 73.2 73.1 76.9 80.2 81.3 80.9	74.9 77.8 77.8 81.0 81.3 83.3 85.1	77.7 80.1 80.4 85.1 85.9 87.0 88.6	82.4 83.6 86.1 87.0 88.7 90.8 92.6	83.5 85.8 88.2 91.0 92.5 93.9 94.0	85.1 90.1 90.1 92.7 95.4 96.5 96.8	88.8 89.6 93.5 96.4 95.9 95.2 96.7	89.3 91.2 92.1 95.1 96.6 97.5 97.0

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(a) Continued. QCGAT I

Į	Fre-	Run	T		<u>`</u>	Dire	ctivity	angle, θ	*		
	quency,	Kuii	45°	65°	90°	110°	125°	135°	145°	150°	155°
	пZ		40	65		L		L	L	130	L 155
								vel, SPL	Γ	Γ	₁
The second secon	500 630 800 1000 1250 1600 2500 3150 4000 6300 8000 12500 16000 25000 31500 4000 25000 31500 4000 63000 63000 63000 63000 63000 63000 63000 63000 63000 63000	5	78.6 78.2 79.3 78.9 79.1 79.2 77.3 78.3 75.5 74.9 73.4 71.9 69.7 68.6 67.0	84.7 83.5 84.3 85.2 83.3 83.5 82.3 80.1 80.1 80.6 77.6 77.6 77.6 74.9 74.0	87.7 88.4 87.6 87.6 86.0 86.0 85.4 84.7 83.1 81.9 80.4 80.4 77.9 77.5 77.3 75.4	89.7 91.7 91.6 91.8 91.2 90.9 89.6 88.2 86.8 84.6 84.2 82.5 80.7 80.7 80.7 80.7 77.1 77.0 76.4	92.0 93.3 93.6 94.6 91.2 89.9 89.2 87.5 86.4 82.9 82.9 82.0 79.8 80.5 77.4 76.2 75.3	94.1 95.3 93.9 93.6 91.1 90.6 89.7 87.5 84.8 83.2 79.3 80.0 79.3 80.2 79.5 	97.6 97.9 94.3 91.7 90.3 90.8 87.6 85.5 82.6 80.6 76.2 78.8 76.2 75.5	96.8 95.7 93.3 90.5 89.5 88.3 85.9 83.4 79.1 77.6 77.7 78.7 74.9 74.5	96.9 95.7 92.6 90.2 87.3 85.8 83.6 80.9 77.4 75.9 74.4 71.9
	100 125 160 200 250 315 400 500 630 1000 1250 1600 2500 3150 4000 5000 6300 25000 31500 4000 50000 63000 63000 63000 0ASPL	6	71.0 73.6 70.1 78.1 72.5 73.1 74.2 74.8 75.3 75.0 74.8 73.4 73.4 73.2 69.4 68.2 67.9 67.9 67.3 66.2 65.2 65.2 63.7 87.5	72.3 73.4 71.9 79.0 75.7 74.6 78.2 78.7 79.4 80.8 79.7 79.5 78.1 76.9 76.0 74.3 75.2 73.5 72.7 74.1 72.0 70.9 71.1 69.6	74.5 76.5 75.6 80.5 79.6 80.5 83.5 83.8 83.6 81.4 80.0 78.8 77.7 75.7 77.5 76.7 77.5 73.3 72.1 71.0 70.3 68.6	75.0 77.2 79.2 81.8 82.4 83.4 84.7 83.8 84.2 85.6 86.5 85.0 84.6 77.2 77.3 76.6 77.3 76.6 77.3 73.8 73.6 73.8 73.8 73.8	79.0 80.5 80.6 82.9 83.6 82.7 86.2 84.5 87.3 86.9 81.6 78.8 78.1 77.4 75.6 75.8 74.0 72.8 74.0 72.8 74.0	77.9 79.9 79.9 84.1 85.0 86.1 86.7 88.8 86.9 86.9 84.8 83.7 81.5 80.1 75.1 75.1 75.2 74.4 73.8 74.1 73.3 97.3	80.9 85.0 86.9 87.6 88.0 88.7 90.3 89.4 89.6 87.2 83.7 80.4 78.8 76.9 75.8 74.0 71.5 70.7 71.1 70.7 77.1 69.3 	82.7 85.5 87.4 89.2 90.3 90.2 88.9 89.7 88.9 86.7 84.6 82.1 79.3 78.0 75.4 74.3 72.6 73.3 70.5 69.4 68.9 69.9 99.0	86.7 86.8 86.1 89.4 90.4 90.2 90.1 88.6 87.6 85.9 83.5 80.1 79.5 470.7 70.9 68.3 68.8 67.5 67.8 67.6
	100 125 160 200 250 315 400 500 630 800 1000	7	71.6 74.3 69.3 72.2 67.7 72.6 75.7 71.4 71.2 72.6 72.3	69.4 71.2 74.8 76.8 71.9 74.0 77.7 77.0 76.8 78.0 76.9	74.5 76.1 77.1 77.6 75.6 78.2 80.0 79.2 79.6 78.8 80.8	74.7 75.5 76.5 79.6 78.7 79.2 80.5 81.1 80.4 82.4 81.4	76.0 80.0 79.2 79.1 80.7 81.0 82.9 83.8 82.7 83.7 83.7	75.4 78.7 79.1 80.0 83.2 83.0 84.6 83.8 85.0 83.9 83.1	77.9 80.2 81.6 84.9 85.5 85.7 84.7 84.4 84.3 83.6 82.7	80.8 81.1 83.1 85.4 86.6 85.7 85.8 84.7 83.8 81.4 78.9	80.0 82.4 81.9 87.4 85.5 85.6 85.4 84.3 82.1 80.1 78.8

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(a) Concluded. QCGAT I

Fre-	Run				Dir	ectivity	angle,	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				9	Sound pre	essure l	evel, SPI	L, dB		
1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500 16000 25000 31500 40000 50000 63000	7	70.3 71.6 71.1 69.6 68.9 67.0 66.9 61.9 61.2 60.9	75.1 74.4 73.4 72.6 74.0 73.7 70.2 68.9 68.7 68.6 67.1 66.3	76.7 76.7 76.2 75.1 75.6 74.5 70.8 71.5 70.2 69.7 69.0 68.4 66.8 65.8 65.2	80.8 79.7 78.6 76.9 78.0 77.7 73.6 72.0 71.1 71.0 69.0 68.6 68.4 68.4 68.0 67.8	82.9 79.5 78.8 78.0 77.9 74.7 72.5 70.1 70.5 69.2 68.2	79.9 79.5 77.3 76.1 76.4 76.7 72.6 70.9 70.0	78.7 78.3 74.9 73.4 73.1 72.6 68.7 67.5 66.6 66.3 66.2	77.6 77.2 74.8 73.0 71.8 71.5 71.3 70.0 69.2 67.0 66.1	75.2 75.2 72.1 70.5 70.6 65.1 64.0 63.7 62.3 62.1 62.2
80000 0ASPL	+	84.3	87.9	90.2	92.1	93.5	93.8	94.6	94.8	94.4

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(b) QCGAT II

Fre-	Run				Dire		angle, e	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pre	essure le	evel, SPL	, dB		
100 125 160 200 250 315 400 500 630 800 1000 1250 3150 630 800 1000 25000 6300 8000 12500 12500 13500 16000 25000 31500 25000		77.5 78.7 77.3 80.3 81.7 82.7 83.1 85.2 85.4 86.7 88.3 86.1 88.8 88.0 88.2 85.5 85.6 83.5 85.6 83.1 78.4 77.5	76.5 79.7 81.1 83.9 85.5 85.8 87.2 88.6 90.7 91.7 91.7 90.9 90.9 90.0 92.1 90.6 90.0 87.6 87.6 86.4 87.0	83.3 85.4 84.8 88.9 88.8 90.0 91.2 92.9 95.1 95.6 94.7 95.6 94.6 94.9 94.1 93.7 93.1 93.7 95.1 88.8	84.9 85.3 88.0 91.1 92.8 92.8 95.3 96.3 97.3 98.4 98.6 98.9 99.3 99.3 99.3 99.3 99.3 99.3 99.3	87.2 89.4 91.5 95.0 96.1 98.6 98.7 99.2 98.9 101.3 101.3 99.0 98.9 97.5 97.0 95.2 94.3 92.5 91.7 90.6	88.8 90.9 93.4 98.3 99.5 98.9 101.2 102.4 103.1 101.4 98.7 99.4 97.7 96.7 93.0 94.8 94.8 94.4 93.7 93.5 93.2 92.2	95.9 96.9 99.2 102.3 104.5 105.1 107.0 105.4 106.2 105.0 102.4 99.0 97.6 96.5 94.1 93.7 92.1 93.7 92.1 91.6 87.8 87.7 85.8 85.4	95.9 98.7 99.9 103.7 104.6 106.8 106.2 104.5 100.8 99.5 98.3 96.6 95.2 93.8 92.1 92.1 92.1 92.9 89.3 86.9 80.9	94.3 97.6 101.0 104.9 104.9 106.4 107.7 106.3 102.9 99.3 97.4 96.5 92.8 92.3 91.6 92.1 90.0 88.7 88.4 86.9
63000 80000 0ASPL	V	99.0	103.4	107.0	110.6	111.4	112.0	115.0	115.4	114.7
100 125 160 200 250 315 400 500 630 800 1250 1600 2500 3150 4000 5000 6300 25000 31500 16000 25000 31500 40000 50000 63000 80000 0ASPL	2	76.3 77.1 75.6 79.3 78.6 80.2 81.0 83.8 84.7 85.0 84.9 84.7 85.8 84.6 84.5 85.5 78.5 78.5 78.5 78.5 78.0	74.9 75.6 77.7 81.4 82.8 85.3 87.5 86.6 87.4 89.0 89.3 88.2 88.2 88.7 88.1 86.0 85.1 85.8 84.6 82.2	81.4 82.3 83.4 85.5 86.8 87.8 88.4 91.5 92.2 93.2 91.4 91.5 92.3 91.9 92.3 91.9 92.3 89.8 90.0 89.9 89.4 88.5 88.5 88.5	83.2 82.9 86.4 88.9 90.3 90.9 91.8 93.1 93.9 95.0 95.6 95.6 95.6 95.6 95.0 95.4 97.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95	84.7 85.1 88.0 91.3 92.0 93.0 95.4 95.3 97.8 98.1 98.1 96.3 96.3 94.6 93.8 93.1 92.1 91.9 91.2 91.4 88.7 87.3	89.4 89.9 92.8 95.8 97.1 99.1 199.1 100.6 99.6 96.2 96.0 95.1 94.0 91.7 92.2 90.2 90.2 89.1 89.0 88.3 89.0 87.0 86.1	91.6 94.2 95.8 99.3 101.9 101.4 102.2 96.3 96.3 96.5 94.6 93.3 92.5 94.6 93.3 89.9 88.9 91.1 90.8 89.9 87.4 86.3 85.4 82.3 81.7	95.6 96.6 98.7 102.5 102.8 102.0 102.8 101.3 101.1 99.4 94.5 94.5 94.5 94.5 94.6 91.7 89.9 88.0 87.6 89.7 87.1 84.4 83.0 82.7 81.8 	94.7 95.8 97.7 100.6 103.3 103.0 103.5 101.4 99.6 97.1 95.5 93.3 93.7 90.0 87.4 88.1 88.7 86.2 82.4 81.0
100 125 160 200	3	75.0 76.5 73.6 77.1	73.4 76.2 77.6 79.9	78.6 80.8 82.0 84.2	80.6 80.5 83.8 86.6	82.5 87.0 86.8 89.9	84.6 88.3 87.7 89.5	88.4 91.2 92.9 95.1	91.1 89.0 94.6 96.9	89.6 92.1 95.9 97.2

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(b) Continued. QCGAT II

		:		(b) Con	tinued.	QCGAT 1				
Fre- quency,	Run				Dire	ectivity	angle, e	*		*
Hz		45°	65°	90°	110°	· 125°	135°	145°	150°	155°
				S	ound pre	ssure le	evel, SPL	, dB		
250 315 400 630 800 1000 1250 1600 2500 3150 4000 6300 8000 10000 12500 16000 25000 31500 4000 25000 31500 4000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 40000 25000 31500 400000 400000 400000 400000 4000	3	77.6 78.9 79.5 80.9 81.4 82.0 83.2 83.2 83.2 83.2 83.7 82.6 81.0 80.1 77.7 76.3 75.9 75.6 73.5	80.8 79.8 82.9 85.9 85.7 85.0 86.0 85.7 86.4 86.6 85.5 86.2 86.3 86.0 84.8 83.7 92.9 83.3 82.1 79.7	84.6 85.9 86.6 87.0 88.7 89.2 88.7 89.3 89.4 89.7 88.8 89.7 87.0 87.1 85.8 84.9 83.8 82.6	87.5 86.9 89.3 90.4 91.5 93.8 92.9 92.5 92.6 93.3 93.0 91.4 90.8 90.2 88.8 87.0 85.9 85.2	89.2 90.7 91.7 92.7 93.8 94.0 94.9 94.7 92.8 93.1 92.4 92.4 92.6 89.4 89.5 88.4 87.5 88.4 87.5 88.4 84.2	92.6 94.4 93.6 92.6 94.8 94.6 91.4 91.9 90.8 89.4 88.2 87.7 87.1 85.4 85.8 84.7	96.9 97.3 97.9 96.1 96.5 94.0 93.6 91.8 92.1 90.8 89.3 88.2 88.1 88.0 88.1 82.3 81.3 80.3 77.8 106.6	97.5 98.8 96.8 96.5 95.4 93.5 91.4 89.6 90.1 88.5 87.4 85.2 86.0 83.4 81.6 79.0	99.0 99.0 98.3 96.2 94.0 91.9 88.1 88.2 85.9 86.2 84.6 82.6 84.7 83.3 82.9 80.6 79.3 79.1
100 125 160 200 315 400 630 800 1000 1250 1600 2500 3150 4000 6300 8000 12500 16000 2500 3150 4000 2500 3150 4000 6300 8000 6300 8000 6300 8000 6300 8000	4	72.5 76.4 72.4 73.8 75.1 76.1 76.8 78.4 78.1 80.2 80.6 80.6 80.6 80.6 79.7 78.5 77.5 77.5 77.5 77.5 77.5 77.5	74.8 77.5 75.9 76.8 78.7 80.4 82.1 83.4 84.5 83.4 84.5 83.0 81.4 79.9 80.6 79.7 78.6 76.2	78.1 80.3 80.3 81.4 82.1 84.6 85.2 84.9 87.4 87.0 87.3 86.6 87.1 87.2 85.0 85.3 84.4 82.3 84.4 82.3 80.8 79.3 78.9	81.0 81.3 82.3 84.3 85.8 86.9 87.9 86.9 89.6 90.8 89.5 89.9 90.1 90.2 91.0 90.2 91.0 88.4 84.2 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4	81.6 82.4 84.2 86.0 87.7 89.5 90.8 91.9 92.2 92.7 91.9 90.4 90.0 89.8 89.1 88.9 84.5 84.9 82.6 82.6 81.0 80.4	81.5 84.4 88.0 89.3 90.7 91.1 91.9 92.8 92.3 90.6 89.1 89.5 88.3 84.6 84.9 83.4 81.6	85.9 89.0 88.5 94.1 93.3 94.6 95.8 94.0 93.4 92.0 89.2 89.4 88.1 86.5 85.1 84.9 81.3 78.9 76.5 104.2	89.3 90.1 90.6 95.3 94.6 93.3 94.6 93.4 91.7 91.7 91.2 88.4 87.5 87.2 85.8 84.7 81.8 81.4 81.3 80.1 77.1 76.4	89.2 90.2 92.4 95.3 93.9 94.4 94.5 92.5 91.3 88.9 86.9 85.5 86.3 84.2 82.8 81.1 80.5 79.2 77.4 76.6
100 125 160 200 250 315 400 500	5	73.3 75.7 72.6 72.9 72.0 73.9 74.6 75.5	73.3 76.0 73.6 74.2 75.7 76.4 78.6 79.3	74.3 77.1 77.4 81.0 80.0 82.9 82.5 83.9	78.3 80.7 81.3 82.7 83.4 84.8 86.6 86.6	79.0 80.1 82.4 84.5 84.3 86.6 86.9 86.4	82.2 82.5 83.0 87.7 88.7 88.2 87.9 88.2	84.9 87.7 88.9 90.0 91.3 90.5 90.5 88.9	85.5 86.0 88.4 92.4 93.2 91.9 90.7 90.0	83.5 89.2 90.4 92.5 92.5 91.2 90.2 89.7

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA $\hbox{(b) Continued. QCGAT II}$

Fre- quency,	Run				Dir	ectivity	angle, e)*		
Hz Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pr	essure l	evel, SPI	_ , dB		
630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 12500 25000 31500 20000 25000 31500 40000 50000 63000 80000 63000 80000 0ASPL	5	75.0 77.1 77.7 77.0 78.2 77.9 77.2 78.0 77.1 74.7 73.1 71.0 70.0 69.8 68.4 67.2	81.5 83.0 82.0 81.8 82.5 82.1 81.2 80.3 81.9 81.8 76.8 76.8 76.3 74.5	85.0 84.9 86.3 83.6 84.6 84.8 82.7 84.4 84.6 81.8 82.4 81.9 79.5 79.9 78.3 76.4	87.6 88.2 88.5 87.1 88.0 87.6 87.6 87.5 87.7 86.1 84.6 84.7 84.1 81.9 81.4 78.9	87.6 88.4 89.9 89.0 87.7 87.2 87.3 85.4 85.4 86.0 83.8 82.7 82.4 81.0 80.4	89.7 88.8 88.5 86.8 86.2 85.2 84.0 83.8 83.5 80.1 82.1 81.1 79.4 79.3 79.7 75.9	90.3 89.1 87.2 85.6 86.1 84.4 82.5 82.5 80.6 79.5 77.7 74.7 72.6 71.6	90.0 88.1 85.7 84.9 83.8 83.1 81.5 80.0 79.6 77.1 77.3 74.7 72.3 73.1 71.3 70.4	88.0 86.4 84.9 83.7 83.5 81.3 80.0 77.1 75.3 77.1 75.9 73.9 73.9 73.9 73.9 73.9
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000 31500 40000 50000 63000 80000 63000 80000 63000	6	73.8 75.9 67.9 71.5 70.8 72.8 72.1 73.5 74.1 73.5 74.9 73.6 72.5 769.7 70.5 66.9 66.9 66.9 64.7 64.4	70.7 74.8 70.7 74.8 70.7 73.3 75.0 74.9 75.9 78.7 79.7 78.7 79.5 77.4 76.6 77.4 76.6 73.7 75.2 74.4 74.3 73.5 71.7	74.3 76.3 73.6 77.5 77.9 78.2 77.9 79.4 81.2 80.5 80.8 79.8 79.8 77.7 78.9 76.6 74.9 73.2 74.9 71.5 92.3	77.9 78.4 79.8 79.8 81.5 81.5 81.8 82.9 83.4 83.5 83.2 82.7 77.2 77.2 77.2 77.2 77.6 74.1	77.9 79.4 79.7 81.4 82.3 83.0 82.2 85.8 84.9 84.6 85.2 82.7 83.1 82.9 79.4 77.4 78.0 75.2 76.3 74.8 95.4	77.4 77.6 79.6 81.5 83.9 82.9 83.3 84.3 84.3 81.3 80.0 79.5 76.5 77.6 77.6 77.6 77.6 77.6 77.6 77	80.3 82.2 83.2 85.3 85.6 84.9 83.9 82.7 80.9 81.4 77.4 72.5 70.1 68.7	82.1 82.4 84.2 86.9 85.3 85.8 85.3 84.6 82.8 79.5 79.7 78.3 77.3 74.4 71.8 70.8 68.8 67.7	81.3 81.6 85.0 85.3 86.5 84.2 84.2 82.8 80.1 77.9 76.0 75.1 72.5 72.1
100 125 160 200 250 315 400 500 630 800 1000 1250	7	72.8 75.3 64.5 65.6 67.6 66.7 66.9 68.6 68.2 69.7 69.5 69.7	70.8 73.9 64.1 67.9 70.8 69.8 72.3 73.7 73.3 74.2 74.2 74.1	70.7 74.2 72.1 73.9 71.8 73.1 75.2 74.8 76.8 76.1 77.2 76.3	72.4 75.9 74.0 76.1 75.6 76.4 76.0 76.7 75.9 77.0 77.4 78.0	75.4 76.4 76.3 77.0 77.1 77.6 77.9 78.7 78.9 79.1 79.4 78.8	75.0 74.9 75.0 79.4 76.7 77.3 77.7 78.5 79.6 77.8 78.4 76.5	74.4 76.0 79.3 79.6 81.3 77.6 79.3 80.1 80.9 77.7 77.5 75.5	77.8 79.1 79.1 80.6 80.3 81.5 80.4 79.7 80.5 78.5 77.1 75.0	77.5 77.7 76.7 80.5 80.9 79.0 78.8 77.6 77.5 75.2 73.8 73.2

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(b) Concluded. QCGAT II

Fre- quency, Hz	Run			,	Dire	ectivity	angle, e	*		
		45°	65°	90°	110°	125°	135°	145°	150°	155°
			I	S	ound pre	ssure le	evel, SPI	, dB		L
1600	7	71.0	74.3	76.3	77.9	77.7	77.1	76.9	75.0	73.9
2000	1	70.6	74.5	76.7	77.8	78.1	75.3	74.9	73.4	71.8
2500		69.8	73.1	76.0	77.2	78.1	74.8	73.5	72.4	71.0
3150		70.4	73.0	75.0	76.1	76.7	74.3	73.3	69.9	69.5
4000		69.9	72.5	74.0	75.1	75.3	75.0	71.9	69.7	68.1
5000		67.1	74.2	72.9	73.8	74.0	70.0	70.5	67.8	
6300		66.2	71.9	72.4	73.4	72.4	70.2	69.9	67.6	
8000		64.2	73.0	71.5	73.3	72.1	69.2	67.5	67.2	
10000		62.6	71.0	71.6	73.7	71.0	68.6	66.1	65.6	
12500		61.6	71.3	70.7	71.5			65.5	64.9	
16000		61.8	70.0	69.7	70.6					
20000		60.7	69.3	68.2	69.7					
25000			69.0	66.6						
31500										
40000										
50000										
63000										
80000										
OASPL	*	82.8	86.4	88.1	89.4	90.3	89.5	90.3	90.7	89.1

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(c) QCGAT III

		т			c) QCGAT					
Fre- quency,	Run		·	******		·	angle, e			,
Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pre	ssure le	evel, SPL	, dB		
100 125 160 200 250 315 400 500 630 800 1000 1250 3150 4000 5000 6300 8000 10000 12500 16000	1	77.4 78.8 76.3 81.4 81.1 82.2 84.4 83.2 85.6 87.7 87.1 88.0 88.5 88.1 89.5 88.1 89.5 88.1 89.5 88.1 89.5 80.9 81.0	76.4 78.4 78.8 84.3 84.9 86.3 86.8 89.6 90.1 91.1 91.8 92.4 91.7 92.0 90.8 92.3 91.1 90.1 90.3 88.8 86.9	83.7 85.0 84.4 87.5 89.9 89.6 92.1 92.7 94.1 95.2 95.4 95.3 95.7 95.6 93.4 94.3 94.2 93.8 92.3 91.9	85.8 86.7 86.5 91.3 91.5 93.5 96.0 97.5 98.0 100.0 109.7 98.4 99.2 98.6 99.7 98.8 99.7 98.3 99.7 98.3 99.1 94.8 92.2	87.6 90.2 93.0 95.4 98.5 99.0 100.6 101.8 103.2 103.9 100.9 100.5 100.9 100.1 99.0 96.7 93.6 94.2 94.3 94.3	90.4 92.7 95.9 99.9 100.7 103.6 106.0 106.2 107.4 106.4 103.9 102.5 100.3 97.3 97.3 94.4 94.2 92.3 88.6 88.5 89.0	94.1 97.7 99.5 104.8 105.5 107.9 108.6 108.0 106.1 103.3 100.8 98.7 95.4 91.8 89.4 87.4 86.4 85.6 84.3	95.8 97.2 101.5 106.1 106.0 107.7 109.4 107.5 107.6 106.4 104.1	98.3 101.6 102.7 105.4 106.9 107.1 108.5 108.4 107.8 102.5 100.0 99.7 97.4 95.6 91.3 91.2 90.1 91.2 86.8 85.5 83.7
20000 25000 31500 40000 50000 63000 80000 0ASPL		77.6 76.4 99.0	84.9	90.4 89.3 88.6 88.1 107.2	90.4 89.3 88.6 88.5 110.7	91.2 89.5 88.8 113.3	87.0 86.2 115.9	83.3	116.4	82.0
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 6300 8000 10000 12500 16000 25000 31500 6300 8000 20000 25000 31500 10000 1	2	75.0 77.3 75.1 77.9 81.3 81.6 82.2 83.7 85.5 86.5 85.7 85.8 85.0 84.9 84.6 82.9 81.8 80.3 79.4 78.5 76.2 75.9 74.4	75.3 76.3 80.0 80.9 83.9 83.3 86.9 87.5 89.6 90.4 90.8 89.7 89.7 89.7 88.7 86.0 87.2 85.5 84.6 83.2 83.0 80.8 	81.3 83.2 83.5 85.4 88.1 89.2 90.3 92.2 93.6 93.1 92.0 92.3 92.3 92.3 92.2 91.3 91.5 89.7 89.7 89.7 89.7 89.7	83.0 85.4 87.8 90.7 88.9 91.7 93.4 93.8 95.7 96.0 95.5 95.4 95.7 94.4 95.7 94.0 91.9 92.5 91.3 90.0 88.7 86.8 107.1	85.6 86.9 89.4 92.6 94.1 97.1 98.7 97.6 98.9 98.6 99.1 99.6 96.8 96.5 96.3 94.0 91.6 91.3 90.4 89.2 88.5 	89.3 91.4 92.9 95.4 98.2 100.3 101.5 101.4 100.9 99.9 98.2 95.9 94.0 92.7 92.2 89.7 92.2 89.7 92.2 89.7 89.2 87.3 86.7 84.9 84.9 83.9 	93.2 95.9 96.7 99.9 102.2 106.0 104.4 102.3 100.9 98.0 97.8 93.4 91.0 89.3 86.2 86.1 85.0 81.8 80.4 113.3	94.0 96.3 98.3 102.1 104.8 105.9 104.7 104.3 105.1 100.2 	92.5 94.8 100.1 102.9 103.9 105.8 105.7 105.5 104.3 100.8 98.7 95.8 94.1 92.0 90.2 87.6 84.1 84.2 80.9 79.5 79.1 78.8
100 125 160 200	3	74.3 76.3 73.8 75.0	73.1 75.9 76.8 77.5	78.3 80.0 78.9 83.9	81.4 81.2 85.0 84.7	83.7 84.1 85.8 88.8	84.5 87.2 91.0 92.9	89.2 91.4 93.0 95.2	93.6 95.2 96.7 98.9	90.4 93.2 93.7 98.9

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(c) Continued. QCGAT III

ı					C) COIII		QCGA1 1				
	Fre- quency,	Run					ectivity	angle, e) * r		
	Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
					S	ound pre	essure le	evel, SPL	., dB		
	250 315 400 630 800 1000 1250 1600 2500 3150 4000 6300 8000 12500 12500 12500 25000 31500 25000 25000 25000 25000 31500 25000	3	75.9 76.1 78.8 79.4 78.8 81.5 82.4 83.3 83.1 82.7 84.4 84.7 82.3 81.6 79.7 77.8 76.0 74.3 74.7 72.5	78.9 80.8 83.1 84.2 85.3 87.1 86.8 87.0 87.5 87.2 87.2 87.2 87.2 87.2 87.2 87.2 87.2	83.5 84.8 87.1 84.9 99.1 88.6 90.3 89.8 90.3 90.7 90.7 90.5 89.2 86.0 86.0 84.5 82.5	86.8 88.3 88.7 90.5 90.9 92.3 92.1 92.7 92.9 93.5 93.5 93.6 90.9 90.4 90.5 88.4 86.9 83.4	90.8 91.8 92.4 92.9 93.8 94.7 95.6 94.9 92.5 92.7 92.3 90.4 91.5 90.4 88.9 88.9 86.6 86.1	92.5 93.9 94.7 94.6 96.6 96.3 95.5 93.5 93.0 89.5 90.0 87.7 86.8 86.9 85.6 83.8 87.7	97.1 98.2 98.3 97.9 98.6 96.4 94.4 92.3 92.2 90.3 86.7 87.1 88.3 86.7 87.1 84.3 82.5 80.8 79.9 79.4	98.9 98.8 100.3 99.0 97.4 94.7 91.5	99.7 100.6 100.1 98.4 96.4 93.4 91.5 88.5 87.6 86.0 85.5 84.0 82.3 83.0 81.6 79.5 77.4
	100 125 160 200 250 315 400 630 800 1000 1250 1600 2500 3150 4000 6300 8000 12500 16000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 40000 25000 31500 63000 80000 63000 80000 63000	4	74.1 75.1 71.2 74.9 76.4 76.3 77.8 78.4 79.3 80.1 80.3 80.3 79.4 79.9 76.8 76.2 75.6 70.4 69.8 68.1	72.3 73.1 73.6 76.2 77.8 80.0 81.8 83.6 84.2 84.0 83.9 84.4 84.1 83.3 82.3 82.2 81.5 79.2 79.7 79.0 78.1 76.1	77.9 78.2 79.4 83.3 84.1 85.3 87.9 86.9 86.6 87.0 86.6 87.0 86.6 86.1 84.3 84.3 84.5 82.2 82.1 80.3 78.9	81.0 82.1 83.4 84.7 87.8 88.0 87.6 90.5 90.1 90.6 89.5 89.5 88.7 83.1 83.6 83.6 83.0 81.0 79.3	80.7 82.7 86.5 86.9 89.4 90.6 91.1 93.2 92.5 93.3 92.5 90.1 89.0 88.5 87.4 86.6 86.2 85.5	82.3 84.0 88.3 89.7 92.1 93.0 94.2 93.7 95.2 93.8 93.6 90.3 91.3 89.6 87.9 85.7 85.7 85.4 82.9 82.7 80.4 79.3	87.5 89.0 91.9 94.0 95.3 96.1 98.4 97.0 96.4 93.9 92.3 89.9 90.7 87.6 85.9 83.4 82.1 81.4 79.7 77.7 77.7	88.1 90.7 94.0 95.9 98.4 96.7 95.5 93.0 90.1	90.8 91.9 94.4 98.1 99.2 100.1 98.5 96.3 93.5 91.8 88.6 85.2 83.6 81.9 77.0 76.3 74.9
	100 125 160 200 250 315 400 500	5	70.7 73.6 69.6 72.9 72.9 74.5 74.5 75.2	69.6 72.1 71.8 75.0 76.4 77.2 79.2 80.4	74.6 77.6 79.0 80.9 80.4 80.5 83.3 85.2	77.4 80.6 82.0 82.8 82.4 84.9 85.6 85.1	79.2 81.3 83.6 86.4 85.1 87.0 88.6 89.0	81.9 84.4 85.9 88.8 89.3 89.7 89.4 88.4	84.0 87.1 88.0 91.8 91.5 91.9 92.9 91.6	86.5 88.3 90.9 94.3 94.9 93.1 93.8 91.7	87.9 89.2 91.1 93.9 93.7 93.5 93.6 90.9

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(c) Continued. QCGAT III

Fre-	Run				Dir	ectivity	angle, ø	*		<u> </u>
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pr	essure le	vel, SPL	, dB		
630 800 1000 1250 1600 2000 25000 3150 4000 5000 6300 10000 12500 20000 25000 40000 50000 63000 63000 0ASPL	5	76.3 76.5 78.4 77.6 78.7 79.6 78.1 77.9 76.7 74.5 73.6 71.3 70.2 68.8 66.1	81.4 82.1 82.0 81.9 82.7 82.8 83.0 83.7 79.2 79.0 77.0 77.0 37.3 8	85.3 84.8 85.8 85.9 85.9 85.6 84.3 83.0 86.8 84.6 83.2 81.7 80.6 80.7 78.4 75.8	87.5 88.3 89.0 86.7 87.4 87.5 87.1 83.8 82.1 79.9 77.6 76.1	90.5 89.3 89.0 89.9 87.8 87.3 87.3 84.9 85.0 83.6 82.9 83.6 82.2 81.5	90.1 90.2 89.5 87.9 87.6 87.1 85.3 83.6 83.9 81.8 80.2 79.2 78.6 76.8 75.6 74.7	92.6 89.9 89.0 85.6 86.9 84.1 83.2 82.2 80.8 78.8 75.9 76.1 73.0 72.4 70.6	92.4 90.0 87.1	90.1 87.2 84.9 82.5 82.5 80.6 79.5 76.8 76.1 74.3 71.4 68.8
100 125 160 200 250 315 400 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 12500 16000 12500 16000 25000 31500 6300 80000 63000	6	70.3 74.0 68.5 71.2 70.2 72.2 72.2 72.4 72.7 74.2 74.4 72.9 74.0 73.8 73.3 70.2 71.0 65.5 64.1 64.0 63.1	68.8 71.2 69.7 72.7 75.0 75.6 76.3 77.8 78.5 79.8 78.6 77.2 77.6 77.1 76.1 76.2 75.4 71.3 70.9 69.3	73.7 74.2 74.1 77.3 79.0 79.3 79.6 80.9 81.9 81.8 82.2 80.0 79.5 76.6 76.7 76.8 75.4 72.9 72.7 71.5	75.7 78.2 78.4 80.3 82.4 83.3 84.4 83.1 82.2 82.2 81.4 80.6 78.8 75.0 74.9 74.6 72.8 71.5	79.1 80.6 82.1 81.5 82.8 85.2 86.5 86.7 86.7 85.5 83.2 83.0 82.4 82.3	78.5 80.0 83.5 86.7 86.4 85.9 85.5 84.7 86.6 82.2 82.6 81.1 79.7 77.6 77.6 77.6 72.3 71.1 70.8	81.8 83.3 86.2 87.1 89.5 87.2 88.0 87.5 85.9 82.1 81.8 79.2 77.8 73.6 73.6 73.6 73.6 73.9 9	83.7 83.4 85.1 89.5 88.4 90.6 89.2 88.3 88.0 85.2 82.3 	86.4 86.4 87.4 89.3 91.0 91.1 88.8 86.8 85.9 83.2 81.3 77.9 77.5 72.7 70.8 69.0 68.8 65.7
100 125 160 200 250 315 400 500 630 800 1000 1250	7	72.1 72.3 68.4 69.0 68.2 67.9 67.5 67.7 67.9 68.7 69.5	67.7 69.7 67.2 70.0 70.5 71.0 72.7 72.5 72.4 74.6 74.1	71.4 72.7 70.8 74.2 74.4 74.1 76.9 75.7 76.8 77.0 76.9	71.6 73.0 75.7 77.3 75.7 76.6 76.5 77.6 78.8 79.9 78.8 78.2	75.1 76.3 76.9 77.3 77.9 78.2 79.4 78.4 80.2 79.6 79.7 79.5	74.8 77.0 76.4 77.9 77.8 80.3 80.5 79.6 61.0 79.8 78.4 77.1	79.8 80.6 79.4 80.2 80.9 81.7 81.1 80.7 82.4 80.2 78.4 75.7	78.2 78.8 81.7 81.1 82.8 81.5 82.1 80.2 80.2 77.8 76.3	80.4 82.8 82.5 83.1 82.2 83.3 82.2 80.3 79.4 76.9 74.5 71.6

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(c) Concluded. QCGAT III

				(-)	- radea -	QUART 1				
Fre-	Run				Dire	ectivity	angle, e	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pre	essure le	evel, SPU	., dB		
1600	7	70.5	73.3	76.0	77.5	77.2	77.0	76.2		72.3
2000	1	69.7	73.1	76.3	77.4	78.1	76.1	74.3		70.5
2500		68.8	71.5	75.3	75.9	77.1	74.4	72.6		69.0
3150		67.7	70.2	74.5	74.0	77.3	72.8	73.1		68.9
4000		66.5	68.7	73.8	72.2	77.4	71.5	73.3		67.8
5000		65.5	67.4	73.2	70.5	77.4	70.4	68.4		62.3
6300		65.4	68.0	72.3	70.9	76.3	69.6	69.3		63.5
8000		62.3	67.3	72.9	71.4	76.4	68.8	67.7		63.6
10000		62.6	66.1	70.0	71.7		67.7	65.8		60.9
12500		61.7	65.7	69.5	70.3		67.8	66.6		60.2
16000		61.4	65.4	68.4	68.4		67.0	64.8		
20000		60.4	64.6	66.7	67.9					
25000		58.6	64.6	66.7	66.7					
31500										
40000										
50000										
63000										
80000										**********
OASPL	*	81.9	84.6	88.3	89.6	91.2	90.4	91.6	91.0	91.8

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(d) QCGAT IV

Fre-	Run				Dire		angle, e) *		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				5	ound pro	essure l	evel, SPI	, dB	L	I
100 125 160 200 250 315 400 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 12500 15000 6300 8000 15000 63000 8000 04000 63000 80000 63000 80000 63000		74.8 76.7 75.5 80.3 79.9 81.5 84.3 85.5 84.3 85.7 87.3 89.7 89.1 89.7 88.9 86.5 80.1 77.7 76.9	75.6 779.3 82.9 82.4 86.3 88.9 89.1 92.0 92.4 93.6 93.4 93.5 93.4 93.5 93.4 93.5 86.3 85.5 86.3 85.5 86.3	82.8 82.8 83.4 87.9 88.8 89.9 92.0 94.1 94.8 97.2 96.4 97.2 96.4 97.7 95.6 93.7 95.6 93.7 95.6 88.5 87.9	86.7 87.8 91.0 93.3 91.7 94.2 95.3 94.9 97.6 99.6 99.7 100.1 100.7 101.1 97.0 102.0 99.8 98.3 95.7 95.2 94.2 92.5 92.1 91.5	87.3 88.4 94.1 96.6 98.3 98.4 98.5 100.5 101.3 101.4 102.0 100.2 100.4 100.7 99.6 100.2 98.5 97.3 95.0 94.4 93.7 92.1 90.2	90.1 92.6 95.1 97.0 97.9 100.1 102.2 101.7 103.1 101.8 100.8 98.1 98.4 97.5 98.4 97.5 95.6 94.8 92.0 89.6 94.8 92.0 89.6 94.8 92.0	95.0 95.1 100.8 102.4 104.3 105.1 104.9 105.6 103.8 102.2 100.2 95.3 96.1 94.6 93.9 93.4 95.7 91.2 88.1 85.0 82.7 77.1 76.3 	96.5 99.2 100.3 103.5 107.5 106.7 105.7 104.5 101.8 98.2 96.0 95.5 95.5 95.8 96.5 96.7 95.3 94.3 92.4 88.0 85.2 82.5	96.8 99.0 101.2 102.3 104.1 105.2 106.0 105.2 101.2 97.6 94.4 96.3 94.8 94.2 94.2 94.0 94.5 95.6 83.3 81.3
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 12500 16000 2000 2000 2000 3150 4000 5000 6300 8000 4000 5000 6300 8000 6300 8000 6300 8000 6300 8000 6300 8000 6300 8000 80	2	99.5 73.4 74.5 76.1 79.7 80.5 81.6 83.0 83.9 85.5 84.9 85.7 86.5 86.1 83.6 83.0 81.9 80.4 78.8 77.7 75.2 74.3	75.3 77.1 78.4 80.4 82.6 84.8 86.3 88.8 90.6 90.2 90.9 90.3 89.9 87.3 88.9 87.0 88.9 87.1 88.9 87.0 87.1 88.9 87.0 80.1 81.4 80.4	108.1 80.2 83.3 83.3 85.0 86.4 88.0 89.1 93.0 92.5 91.7 92.0 92.9 92.6 91.8 90.3 91.6 89.1 89.8 88.2 88.3 87.5 87.0	82.1 84.4 86.1 87.6 90.0 90.9 92.3 94.8 95.6 95.8 95.4 95.9 95.9 95.9 94.4 93.3 93.3 93.2 93.4 91.3 90.6 87.6	112.4 86.1 86.6 87.8 91.2 90.7 93.0 94.8 95.0 97.1 96.1 97.5 97.7 94.5 93.1 89.8 89.6 87.6 88.1 87.6 86.1 85.0 107.4	39.6 90.0 89.2 95.0 95.4 96.7 97.9 98.0 97.2 93.5 92.1 90.0 86.7 86.6 83.2 82.8 83.6 83.2 82.6 83.7 83.7 83.7 83.7 83.7 84.7 85.7 86.7	91.7 93.3 96.7 101.5 101.7 102.4 102.7 101.6 100.5 99.1 95.8 90.6 89.2 88.0 88.6 86.2	93.9 95.0 96.8 101.0 103.4 102.6 103.5 101.8 101.4 95.7 92.2 92.6 91.6 89.9 88.8 87.4 86.1 84.8 84.0 81.4 78.8 111.3	96.2 97.0 98.6 101.0 105.2 104.1 102.2 100.3 99.3 96.4 94.3 91.5 92.0 90.3 89.1 87.3 86.5 85.2 83.3 81.4 80.4 79.6 7
100 125 160 200	3	72.0 73.6 74.1 75.1	74.4 77.1 75.0 79.6	77.4 79.7 81.5 83.0	80.8 81.5 84.1 85.1	83.1 83.4 86.2 89.6	85.1 86.4 89.0 92.2	89.0 91.9 93.4 96.8	88.3 91.9 93.7 97.3	89.7 90.3 94.8 97.4

TABLE II. - Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(d) Continued. QCGAT IV

				(4) 001	tinued.	QUGAT				
Fre- quency,	Run			· · · · · · · · · · · · · · · · · · ·			angle, e			
Hz		45°	65°	90°	110°.	125°	135°	145°	150°	155°
				S	ound pre	essure le	evel, SPI	, dB		
250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 25000 12500 16000 20000 25000 3150 4000 5000 6300 8000 63000 80000	3	76.9 78.9 78.9 78.9 80.7 80.9 82.9 83.8 83.3 84.5 85.6 85.2 85.5 80.7 77.0 76.0 74.9 72.7 71.0	79.0 82.3 84.6 85.5 87.4 88.8 88.6 88.9 88.9 89.7 89.3 87.7 86.3 86.0 84.5 83.6 82.7 80.6 80.3 79.7	85.4 86.8 88.1 89.9 90.2 90.9 90.4 91.2 92.0 92.4 91.8 90.3 91.5 86.2 85.2 85.2 85.2 82.4 82.4	85.5 86.0 89.8 91.5 92.8 93.5 94.1 95.9 95.4 95.9 95.4 92.5 90.6 88.0 86.1	90.7 91.7 92.1 92.9 94.1 94.6 96.0 95.9 94.3 94.3 93.5 91.2 91.3 89.9 88.2 88.3 85.5 85.0	91.7 94.1 93.3 93.0 94.6 95.0 92.6 92.1 91.5 90.2 88.4 88.6 84.9 81.6 81.5 78.4	97.5 97.0 95.7 94.0 95.6 93.2 93.0 89.0 89.3 88.5 86.6 	97.5 96.4 97.7 94.8 92.8 92.9 91.1 90.3 90.2 88.7 88.4 88.8 85.9 85.3 84.6 77.8 77.8 73.8 73.9	98.0 98.7 95.8 95.4 92.4 91.2 89.6 88.4 88.9 87.9 86.5 83.3 85.5 82.0 90.6 74.7 73.7
OASPL	*	95.2	100.5	103.2	106.0	106.1	105.1	105.8	106.1	106.0
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 2000 2500 3150 4000 5000 6300 2000 25000 31500 40000 50000 63000 80000 0ASPL	4	73.5 74.4 72.0 74.6 75.7 77.8 78.0 78.0 78.9 80.4 81.2 80.8 78.4 79.1 77.8 76.8 73.9 72.3 71.7 69.9 68.5	72.3 73.0 77.5 79.4 82.5 81.7 82.8 83.9 85.0 85.0 84.9 84.7 84.1 85.2 81.1 80.4 79.5 75.5 75.5	77.5 79.0 79.9 83.3 83.8 84.4 85.5 85.7 86.8 87.4 87.1 87.0 85.6 87.7 84.4 84.0 83.8 82.2 80.9 80.6 78.8 77.4 98.8	80.1 80.5 83.9 84.9 85.2 87.3 89.0 89.6 89.8 89.6 90.6 90.0 90.6 90.0 90.6 90.2 86.2 85.7 85.9 84.2 83.0 82.3 81.3 	82.8 83.4 84.2 85.5 89.8 89.7 90.7 91.2 91.6 93.0 90.0 89.5 87.0 83.5 83.1 83.4 83.2 82.3 81.1 79.6	87.0 85.9 86.3 90.8 92.1 91.6 92.1 92.0 91.0 89.3 89.1 88.0 86.9 84.5 85.9 81.4 83.1 82.6 80.7 79.0 76.6 76.0	87.7 89.7 93.5 94.5 93.4 93.5 92.1 90.2 85.6 85.1 83.2 81.9 79.8 80.8	87.8 90.0 92.7 95.5 96.6 94.5 92.8 91.9 90.5 86.6 86.5 85.0 83.3 81.5 77.9 79.5 76.8 74.3 71.8 	89.2 89.9 92.6 95.2 94.1 96.5 93.8 91.7 88.6 88.3 86.4 84.7 85.0 79.2 78.4 77.3 78.6 75.9 75.0
100 125 160 200 250 315 400 500	5	71.5 74.8 70.4 70.9 70.8 71.7 74.8 75.1	71.5 74.3 73.3 76.5 77.2 77.5 79.4 80.9	76.1 78.4 76.6 78.9 79.1 79.6 81.9 83.1	76.2 79.4 78.9 81.0 82.5 82.4 83.8 85.2	78.6 78.4 81.3 84.1 85.1 85.6 86.7 87.6	80.3 81.7 84.1 85.1 86.5 87.6 87.7 88.8	83.8 83.8 86.2 91.2 90.7 89.9 88.6 89.3	85.8 87.2 85.4 90.5 90.6 90.6 88.9 89.5	86.7 85.5 87.9 91.9 89.6 90.2 88.7 87.9

TABLE II. – Continued. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(d) Continued. QCGAT IV

<u> </u>		r			itinuea.	QCGAT .				
Fre- quency,	Run					····	angle, e	·		
Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pre	essure l	evel, SPL	., dB		
630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000 31500 40000 50000 63000 80000 0ASPL	5	76.3 77.8 79.1 78.8 80.6 80.4 79.5 79.0 78.6 76.7 76.3 73.4 68.8 68.9 68.9 68.1 66.9	82.1 83.4 84.0 84.2 84.7 84.3 84.5 84.4 83.0 82.1 80.6 79.2 75.0 74.2 75.7 74.2 75.7	84.3 85.2 85.7 86.6 87.2 87.7 86.1 87.9 87.2 84.6 82.3 80.5 79.5 79.6 77.5 76.1 75.8	86.2 87.5 88.0 88.6 88.7 89.3 90.3 88.0 87.3 88.9 85.6 84.9 82.6 81.4 79.9 78.8	89.1 88.8 89.9 90.0 88.7 88.1 87.4 87.4 87.4 87.5 84.5 81.2 76.6	88.8 88.1 87.8 86.7 86.9 86.1 84.5 81.6 83.6 81.9 79.9 76.0 75.4 72.1	88.7 88.6 88.1 83.3 83.2 82.4 81.1 80.2 79.5	89.1 87.6 85.7 84.8 84.4 83.0 82.3 82.1 80.7 81.2 77.5 75.0 73.0 73.0 77.1 3 69.4	86.0 84.8 82.9 82.4 83.1 81.0 80.0 77.6 77.9 76.7 74.3 72.9 73.2 72.6
100 125 160 200 250 315 400 500 630 800 1250 1600 2500 3150 4000 5000 6300 8000 10000 12500 16000 25000 31500 40000 50000 63000 80000 0ASPL	6	69.5 72.1 68.8 70.0 71.7 71.8 72.5 73.0 73.2 73.9 74.9 74.8 73.6 74.9 74.8 69.2 65.8 64.7 63.7 62.9 85.7	70.4 72.0 70.5 73.6 75.1 76.4 77.5 79.1 78.6 79.0 78.7 78.9 78.7 77.5 73.8 73.0 73.8 73.1 70.2 69.4 68.3 68.3	72.7 75.2 75.0 76.8 78.1 78.5 79.3 81.5 81.8 82.6 80.9 80.5 78.0 78.0 75.5 71.4 70.1 69.7	76.7 78.7 76.8 78.5 79.6 80.2 82.6 81.2 83.6 84.7 83.5 82.6 81.0 78.0 77.0 76.5 76.1 72.3	77.4 78.8 78.3 81.9 83.3 82.5 84.6 83.1 84.8 84.7 83.4 82.8 82.3 80.1 78.9 77.5.1 75.8 73.1 73.0	77.1 79.5 80.2 82.2 81.8 83.0 82.8 83.9 84.2 83.1 82.2 81.2 81.0 79.0 76.2 75.8 74.7 73.4 70.3 69.9 94.1	81.6 81.0 83.5 85.3 84.7 85.9 86.6 82.9 85.6 83.8 78.0 76.1 74.2 72.7 72.0	81.5 81.8 84.3 85.1 87.3 86.6 85.8 84.7 82.9 82.7 80.6 78.3 79.0 76.8 73.1 67.0 68.5 69.3 68.1 67.4 66.8	84.8 84.9 85.6 88.5 89.1 88.1 83.7 84.8 83.6 81.3 77.2 77.2 77.2 77.2 70.0 67.7 67.2 65.6
100 125 160 200 250 315 400 500 630 800 1000 1250	7	71.5 73.8 67.7 67.0 66.7 66.5 67.0 68.9 68.4 70.5 70.1 69.9	71.0 73.1 68.1 72.0 72.6 72.7 73.0 73.6 73.9 75.2 76.6 74.9	71.5 73.4 73.1 72.5 71.3 74.9 76.3 75.9 76.2 76.7	72.6 73.0 74.3 75.0 76.7 76.6 77.2 76.6 78.3 79.3 78.7	74.0 73.7 73.8 78.2 77.6 78.7 77.5 78.6 79.0 79.4 79.8 78.6	76.8 77.6 76.3 78.7 79.1 77.7 78.4 79.3 79.0 78.9 76.0	78.9 80.6 80.3 80.0 80.8 80.1 79.1 79.2 78.9 77.1 76.0 72.7	81.3 82.0 80.9 82.2 80.2 81.4 81.0 80.6 78.5 77.4 74.0	78.4 80.6 80.1 81.0 80.6 79.3 79.3 78.6 76.4 74.5 73.0 72.1

TABLE II. - Concluded. LOSSLESS, FREE-FIELD JET MIXING NOISE DATA

(d) Concluded. QCGAT III

Fre-	Run				Dir	ectivity	angle,	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				S	ound pr	essure l	evel, SPI	L, dB		
1600 2000 2500	7	71.2 70.7 69.5	74.7 74.2 73.0	76.0 75.9 74.7	78.7 78.2 77.1	77.4 77.0 75.8	76.1 74.9 73.2	72.6 70.4 68.8	73.7 71.8 69.9	73.8 72.0 69.9
3150 4000 5000 6300		68.9 67.8 63.8 63.4	73.6 72.4 68.7 67.6	73.0 71.5 69.6 70.8	75.9 74.7 73.3 71.8	75.8 73.4 72.5 71.8	71.2 71.1 68.2 67.9	68.6	67.5 67.2 68.6 68.1	68.8 68.6
8000 10000 12500		63.0 61.8 58.9	67.0 66.8 66.6	69.8 68.2 67.6	71.8 71.3 71.0	70.7 70.8 69.4	66.2 66.4 64.1		65.9 63.5 62.4	
16000 20000 25000		59.7 59.3 57.4	65.2 63.9	66.4 64.8 64.6	69.6 68.0 67.3	67.9 67.5 66.6	64.1 63.3 62.3		61.0	
31500 40000 50000						66.2				
63000 80000 0ASPL		82.3	86.2	87.6	89.8	90.1	 89.7	90.1	91.2	 89.5

TABLE III. - UNADJUSTED PREDICTED (SEPARATE FLOW) LOSSLESS FREE-FIELD JET NOISE SPECTRA, QCGAT I

Fre-	Run		· · · · · · · · · · · · · · · · · · ·		Dire	ctivity a	angle, ø	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
			L	S	ound pre	ssure le	vel, SPL	, dB	L	L
100 125 160 200 250 315 400 630 800 1000 1250 1600 2000 25000 3150 4000 12500 16000 25000 31500 40000 50000 63000 80000 63000 80000 63000 80000 63000		79.6 81.8 84.0 85.8 87.2 88.3 99.1 90.7 91.0 91.3 91.4 91.3 91.4 89.9 89.2 88.4 86.4 85.3 84.2 83.0 81.8 80.7	82.4 84.6 86.9 99.5 92.0 93.0 93.9 94.7 95.6 95.3 94.1 92.5 91.5 91.5 88.2 87.1 85.9 	85.3 87.6 89.8 92.0 94.1 95.8 97.1 98.2 99.9 100.4 101.0 101.0 101.0 91.0 92.3 98.6 97.8 95.7 94.6 93.5 92.3 91.1 90.8 88.8	87.8 90.2 92.5 94.7 96.9 99.0 100.7 102.2 103.5 105.9 105.9 105.8 105.5 105.1 104.5 103.7 102.8 101.9 101.9 99.9 98.7 97.6 96.4 95.2 94.9 92.9	92.8 95.7 98.5 101.3 104.1 106.2 107.7 109.0 111.0 111.1 110.9 107.9 106.6 105.3 104.0 102.7 101.4 100.0 98.7 97.3 95.9 120.5	95.8 99.0 102.5 105.5 108.2 110.1 111.6 112.7 113.7 114.3 114.0 113.2 112.0 110.6 108.9 107.2 105.7 104.0 102.5 100.9 99.3 97.6 96.0	99.2 102.5 105.8 108.6 110.8 112.4 114.0 115.2 116.6 116.1 114.8 113.2 111.4 109.5 107.8 106.0 104.2 102.4 100.6 98.8 97.0	100.8 103.9 106.9 109.6 111.4 112.9 114.4 115.6 116.8 116.3 114.8 113.0 111.1 109.3 107.4 105.5 103.6 101.8 99.9 98.0 96.1	102.3 105.1 107.7 110.1 112.0 113.4 114.7 115.7 116.3 116.0 115.0 113.3 111.4 109.4 107.5 105.5 103.5 101.6 99.6 97.7 95.7
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 12500 1000 12500 1000 12500 1000 12500 1000 10	2	78.6 80.9 82.9 84.5 85.7 86.7 87.6 88.3 89.1 89.3 89.1 88.6 88.1 87.4 86.6 85.8 84.7 83.6 82.5 81.4 80.2 79.0 77.9 76.7	81.5 83.7 85.8 87.7 89.3 91.3 92.1 92.7 93.4 93.4 93.1 92.7 91.3 90.5 88.6 87.2 86.3	84.1 86.3 88.6 90.7 92.6 94.0 95.1 96.9 97.5 97.9 98.2 98.3 98.2 97.4 96.1 95.3 94.4 95.3 94.4 95.3 94.6 86.1 95.3 94.0	86.2 88.5 90.7 93.0 95.1 96.9 98.3 99.6 100.7 101.6 102.3 102.3 102.3 102.1 101.9 101.4 100.7 99.9 99.1 98.1 98.3 99.6 98.3 99.6 102.3 103.9 99.1 99.1 98.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 98.3 99.1 99.3 99.1 98.3 99.1 99.1 99.3 99.3 99.3 99.3 90.3 9	90.4 93.2 95.7 98.6 101.0 102.7 104.0 105.3 106.7 106.6 106.2 105.2 104.1 103.0 101.8 100.5 99.3 97.9 96.7 99.4 94.0 92.7 91.4 90.0	93.3 96.6 99.6 102.6 104.6 106.2 107.4 108.5 109.1 108.5 106.1 101.5 99.9 98.4 96.8 95.3 93.7 92.1 90.5 87.4 85.9	96.3 99.7 102.7 105.2 107.0 108.5 109.8 110.9 111.3 110.2 107.0 105.2 103.5 101.7 100.0 98.2 96.4 94.7 92.9 91.1 89.3 87.5	97.6 100.8 103.6 105.7 107.3 110.3 111.4 112.0 111.7 110.5 108.7 106.9 105.0 103.2 101.3 99.5 97.6 95.8 93.9 92.1 90.2 88.3 86.5 84.6	98.9 101.7 104.3 106.3 107.8 109.2 110.4 111.3 110.6 109.2 111.3 105.4 103.5 101.6 97.7 93.9 91.9 90.0 88.2 86.0
100 125 160 200	3	77.2 79.4 81.3 82.7	80.1 82.4 84.4 86.1	82.7 84.9 87.1 89.1	84.4 86.6 88.9 91.0	87.8 90.0 93.0 95.7	90.9 93.8 97.0 99.4	93.7 96.9 99.5 101.5	94.5 97.5 99.8 101.6	95.2 97.9 100.1 101.7

TABLE III. - Continued. UNADJUSTED PREDICTED (SEPARATE FLOW) LOSSLESS FREE-FIELD JET NOISE SPECTRA, QCGAT I

Fre- quency,	Run	···			Dire	tivity a	angle, e	*		
Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				Sc	ound pres	ssure lev	/el, SPL	, dB		
250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 10000 12500 10000 12500 25000 3150 4000 5000 6300 8000 8000 8000 8000	3	83.9 84.8 85.6 86.3 86.7 86.9 86.9 86.2 85.6 84.9 83.1 82.1 83.1 77.5 77.5 77.5 77.5	87.3 88.3 89.3 90.0 90.5 90.5 91.0 91.0 90.5 90.0 89.3 88.0 87.7 86.7 85.6 84.5 83.4 82.0	90.7 91.9 92.8 93.7 94.4 94.9 95.2 95.4 95.3 94.7 94.1 92.7 91.8 89.7 88.6 89.7 88.6 87.4 86.2 85.1 83.9 82.7 81.5	92.9 94.4 95.6 96.6 97.5 98.1 98.4 98.6 98.5 98.1 96.7 96.0 95.1 93.1 91.9 90.8 89.7 88.5	97.3 98.7 100.5 101.4 102.0 101.9 101.1 100.1 98.0 96.8 95.6 94.3 93.1 90.6 89.3 88.0 66.7 85.3	100.9 102.1 103.3 104.0 104.0 103.6 102.9 101.5 100.1 98.5 97.0 95.5 91.0 92.5 91.0 86.5 88.0 86.5 88.9 83.5 81.9	103.0 104.4 105.4 106.2 106.1 105.2 103.8 102.2 100.5 98.8 97.0 95.2 93.6 91.8 90.1 88.3 86.6 84.8 83.1	103.2 104.9 106.1 106.8 106.7 105.6 103.9 102.0 100.2 98.4 96.6 94.7 92.9 91.1 89.3 87.4 85.6 83.7 81.9	103.1 104.5 105.5 106.0 105.4 104.2 102.3 100.4 98.6 96.7 94.8 92.8 91.0 89.1 87.2 85.3 83.5 81.5 79.6
OASPL	*	98.0	102.0	106.4	109.4	111.7	113.2	114.8	115.1	114.3
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000 31500 6300 80000 0000 63000 80000 63000 80000 63000	4	77.3 79.2 80.8 82.0 83.1 85.4 85.4 85.3 85.0 81.0 79.9 76.6 77.7 76.6 77.3 74.2 73.0	79.9 82.0 83.8 85.3 86.4 87.3 88.1 88.7 89.1 89.5 89.3 89.1 88.6 88.0 87.3 85.5 85.5 84.5 82.3 81.1 79.8 87.8 82.3 81.1 79.8 82.3	81.9 84.2 86.3 88.1 89.5 90.6 91.5 92.3 92.3 93.5 93.5 93.6 93.5 93.6 93.5 89.6 88.5 88.6 88.1 88.1 88.1 89.5 89.5 89.6 89.7 99.3 89.5 89.6 89.6 89.6 89.6 89.6 89.6 89.6 89.6	83.2 85.4 87.7 91.4 92.7 93.8 95.6 96.1 96.4 96.5 96.5 96.9 95.2 94.5 93.8 92.9 91.9 90.8 83.7 83.7 82.7	85.9 88.2 91.1 93.3 95.1 96.7 98.2 99.7 99.7 99.3 98.5 97.6 95.5 94.3 93.2 91.9 90.7 88.2 86.8 85.6 84.3 109.3	89.0 91.8 95.1 97.2 98.6 99.7 100.9 101.5 101.4 100.0 98.7 97.2 95.8 94.3 92.8 94.3 92.8 88.4 88.4 83.7	91.7 94.8 97.5 99.3 100.8 102.0 103.6 103.3 101.0 99.4 97.6 95.9 94.2 92.5 90.7 89.0 87.3 85.6 83.8 82.1	92.4 95.2 97.5 99.1 100.9 102.7 104.3 104.0 102.7 101.0 99.2 97.4 95.5 93.7 91.9 90.1 88.3 86.5 82.8 81.0	92.8 95.4 97.5 99.0 100.6 101.8 102.8 103.1 102.6 101.3 99.4 97.5 95.4 97.5 95.4 97.5 95.4 97.5 95.7
100 125 160 200 250 315 400 500 630	5	76.0 78.0 79.5 80.7 81.6 82.5 83.2 83.7 83.9	78.7 80.8 82.5 83.9 85.0 85.9 86.7 87.3 87.7	80.8 83.1 85.2 86.8 88.1 89.1 90.0 90.7 91.3	82.0 84.3 86.5 88.4 89.9 91.0 92.0 92.8 93.5	84.1 86.8 89.3 91.3 93.1 94.7 96.0 96.8 97.2	87.5 90.8 93.5 95.2 96.3 97.5 98.4 98.6 98.4	90.6 93.5 95.7 97.3 98.7 99.7 100.5 100.7	91.1 93.6 95.6 97.2 99.1 100.6 101.5 101.7	91.2 93.6 95.3 96.8 98.3 99.3 100.3 100.2 99.4

TABLE III. - Continued. UNADJUSTED PREDICTED (SEPARATE FLOW) LOSSLESS FREE-FIELD JET NOISE SPECTRA, QCGAT I

۰ſ	F 1	D 1				D2		male :			
	Fre- quency,	Run	450	650	000		tivity a			1500	15.0
	Ηz		45°	65°	90°	110°	125°	135°	145°	150°	155°
					Sc	ound pres	ssure lev	/el, SPL	, dB 		
	800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000	5	84.2 84.0 83.9 83.5 82.2 81.5 80.5 79.5 78.4 77.3 76.2 75.0 73.8 72.7	87.9 87.8 87.4 87.0 86.3 85.6 84.8 82.8 81.7 80.6 79.4 78.2 77.0 75.8	91.6 91.8 91.7 91.6 91.3 90.7 90.0 89.3 88.4 86.3 85.2 84.1 82.9 81.7	93.9 94.2 94.3 94.2 94.1 93.6 93.0 92.3 91.5 90.6 88.5 87.3 86.5 85.0 83.8	97.1 96.5 95.7 94.8 93.8 92.7 91.6 90.4 89.2 88.0 86.8 85.6 84.3 83.0 81.8 80.5	97.8 96.7 95.3 93.9 92.4 90.9 89.5 88.0 86.6 85.2 83.7 82.3 80.8 79.3	99.0 97.4 95.7 94.0 92.4 90.7 89.0 87.2 85.6 83.9 82.1 80.1	99.2 97.4 95.6 93.8 92.0 90.2 88.4 86.6 84.8 83.0 79.4 77.5	97.6 95.8 93.9 92.1 90.2 88.4 86.5 84.7 82.8 81.0 79.1
	31500 40000					82.7 81.5					
	50000 63000										
	80000				102 9	105 4	106.0	107.0	100 4	100.0	100.7
	0ASPL 100 125 160 200 250 315 400 500 630 1000 1250 3150 4000 5000 6300 12500 6300 25000 6300 25000 63000 63000 63000 63000 63000 63000 63000 63000 63000	6	95.1 75.8 77.4 78.6 79.5 80.4 81.1 81.5 81.8 82.0 81.9 81.8 81.3 80.7 79.3 78.4 76.3 77.4 76.3 75.2 74.1 72.9 71.7 70.5 69.3 68.1	78.3 80.1 81.5 82.6 83.5 84.9 85.3 85.5 85.5 85.5 85.5 85.2 84.8 82.6 80.6 79.5 76.0 77.2 76.0 74.8 73.7	80.0 82.1 83.8 85.2 86.2 87.9 88.5 88.9 89.1 89.0 88.7 86.0 85.0 85.0 85.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 86.0 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5	80.5 82.8 84.8 86.4 87.6 88.6 89.5 90.3 90.1 91.3 91.2 91.1 89.4 86.8 85.7 84.6 83.5 82.3 81.1 80.0 78.8	81.8 84.5 86.7 90.1 91.6 92.7 93.3 93.5 93.2 92.5 91.8 90.9 88.9 86.7 85.5 84.3 83.2 81.9 80.7 79.4	107.8 84.7 87.8 90.0 91.4 92.6 93.8 94.5 94.4 94.2 93.4 94.2 90.9 89.6 88.2 86.8 85.4 82.6 81.2 77.6 75.6 74.1 72.7	109.4 87.6 90.4 92.2 93.8 94.9 95.9 96.6 96.2 95.4 94.2 92.7 91.1 89.4 86.1 84.5 86.2 77.5 77.8 76.2 77.5 77.9 77.2	109.9 88.1 90.6 92.3 94.1 95.6 96.7 97.4 97.0 95.9 94.3 92.6 90.9 89.1 87.3 85.6 83.8 76.6 73.2 71.5 105.7	88.1 90.3 91.9 93.5 94.8 95.9 94.7 92.9 91.2 89.4 87.4 83.7 82.1 80.3 78.4 76.6 71.1 69.3 71.1 69.3 71.1 69.3 71.1
	100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000	7	73.8 75.2 76.2 77.2 77.9 78.5 78.9 79.1 79.1 79.0 78.7 78.2 77.6 76.9	76.4 78.0 79.1 80.1 81.7 82.2 82.7 82.5 82.3 81.9 81.3 80.6	78.2 80.0 81.5 82.6 83.5 84.3 84.9 85.3 85.6 85.5 85.3 84.8	78.7 80.7 82.3 83.6 84.6 85.5 86.2 86.8 87.1 87.3 87.2 87.1 86.8 86.2	79.5 81.8 83.5 85.2 86.6 87.7 88.4 88.7 88.5 88.1 87.5 86.8 86.0 85.0	82.1 84.3 85.8 87.2 88.5 89.3 89.5 89.3 88.7 87.6 86.4 85.2 83.9 82.6	85.2 87.2 88.6 89.7 90.8 91.2 91.1 90.4 89.4 87.7 86.3 84.7 83.1 81.5	86.0 87.8 89.4 90.5 91.5 92.1 91.7 90.7 89.4 87.8 86.1 84.4 82.7 81.0	85.6 87.2 88.8 90.1 91.1 91.5 91.1 89.8 88.3 86.6 84.8 83.5 81.3 79.5

TABLE III. - Concluded. UNADJUSTED PREDICTED (SEPARATE FLOW) LOSSLESS FREE-FIELD JET NOISE SPECTRA, QCGAT I

Fre-	Run		***************************************		Dire	ctivity	angle, θ	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				Si	ound pre	ssure le	vel, SPL	, dB		
2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000 31500 40000 50000 63000	7	76.0 75.1 74.0 72.9 71.8 70.6 69.4 68.3 67.1	79.8 78.9 77.9 76.8 75.7 74.6 73.4 72.2 71.1 69.9	83.5 82.7 81.7 80.7 79.6 78.5 77.3 76.1 74.9 73.8 72.6 71.4	85.5 84.8 83.9 82.9 81.9 80.8 79.7 78.4 77.2 76.1 74.9 73.7 72.5 71.3	84.0 82.9 81.8 80.7 79.5 78.3 77.1 75.8 74.6 73.4	81.3 80.0 78.6 77.3 76.0 73.6	80.0 78.4 76.9 75.2 73.7 72.1 70.5 68.8	79.3 77.6 75.9 74.2 72.5 70.8 69.1 67.3	77.7 76.0 74.2 72.4 70.6 68.9 67.1 65.2 63.5 61.7
80000 0ASPL	+	90.1	93.5	96.7	98.3	98.7	98.8	100.1	100.6	99.9

TABLE IV. - UNAJUSTED PREDICTED (MASS AVERAGE) LOSSLESS, FREE-FIELD JET NOISE SPECTRA, QCGAT I

Fre-	Run				Dire	ctivity a	angle, e	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				Sc	ound pres	sure lev	/el, SPL,	, dB		
100 125 160 200 250 315 400 500 630 800 1000 2500 3150 4000 5000 6300 8000 10000 12500 16000 25000 31500 40000 25000 31500 40000 50000 63000 80000 63000 80000 0ASPL		76.5 78.7 80.9 83.0 84.7 86.0 87.9 88.7 89.6 89.9 89.8 89.7 89.4 88.8 88.2 87.5 86.6 84.5 83.4 82.3 81.1 79.9 100.9	79.8 82.0 84.3 86.4 88.2 89.6 91.6 92.4 93.3 93.6 93.5 92.1 91.4 90.6 88.6 87.4 86.3 85.2 84.0	83.1 85.7 87.5 97.7 91.6 93.1 94.3 95.2 96.7 97.1 97.5 97.4 97.5 96.2 95.5 94.7 91.6 88.2 89.4 88.2 85.9 84.7	85.2 87.4 89.6 91.9 95.4 96.6 97.6 98.5 99.7 100.0 100.1 100.0 99.5 98.9 98.2 97.5 96.5 95.5 94.4 93.3 92.2 91.0 88.8 88.7 87.5	87.9 90.1 92.9 95.4 97.3 98.9 100.7 101.9 102.9 102.2 101.4 100.5 99.3 97.2 96.1 94.9 93.7 92.5 91.2 90.0 88.7 112.6	91.2 94.1 97.3 99.8 101.3 102.4 103.7 104.5 104.5 102.2 100.8 100.8 100.8 100.8 100.9 100.6	94.3 97.5 100.2 103.7 105.0 105.9 106.6 104.3 102.7 101.0 99.3 97.6 94.2 92.5 90.8 89.1 87.4 85.6	95.1 97.9 100.3 102.0 103.9 105.6 106.8 107.5 106.0 104.3 102.5 98.9 97.1 98.9 97.1 98.9 98.1 86.3 84.4	95.4 98.2 100.2 101.8 103.4 104.7 105.8 106.2 105.8 104.4 102.6 100.8 98.9 97.0 95.0 95.0 89.6 87.8 85.9 84.1
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 6300 8000 10000 12500 16000 25000 31500 4000 50000 6300 80000 6300 80000 6300	2	75.2 77.4 79.7 81.7 81.7 83.3 84.5 85.5 86.4 87.1 88.0 88.2 88.1 88.0 87.6 87.6 87.6 87.6 87.0 86.3 85.6 84.7 82.6 81.5 80.4 76.9	78.5 80.7 83.0 85.0 86.7 88.0 90.8 91.3 91.6 91.9 91.8 90.1 89.4 88.6 87.6 86.5 85.4 84.3 83.6 87.6	81.7 83.9 86.1 90.0 91.4 92.5 94.3 94.3 95.5 95.5 95.4 95.2 94.7 93.3 92.5 91.6 89.4 88.3 87.1 85.9 84.8 83.6 82.4	83.6 85.8 88.0 90.2 92.1 93.5 94.7 95.6 97.8 97.8 97.8 97.9 97.1 96.5 97.1 96.5 97.1 96.5 85.0 94.1 91.9 90.8 88.5 87.3 88.5 87.3	86.0 88.2 90.9 93.3 95.2 96.9 98.4 100.2 100.4 100.3 99.4 98.8 97.9 96.9 95.8 94.8 93.6 92.4 91.2 90.0 88.8 87.5 90.0	89.2 92.0 95.2 97.3 98.7 99.9 101.1 101.8 101.6 101.3 100.6 99.3 98.0 95.1 93.6 95.1 93.6 95.1 93.6 85.0 85.0 83.7 85.0	92.4 95.4 98.1 99.7 101.3 102.4 103.4 104.0 103.5 102.6 98.0 96.3 94.5 92.7 99.5 87.9 86.1 84.5 82.8 81.1 79.4	93.2 95.9 98.3 99.7 101.7 103.2 104.3 102.9 101.1 99.4 97.6 95.8 94.0 92.2 90.4 88.7 86.9 85.1 83.3 81.5 77.7 77.7 76.1	93.5 96.1 98.0 99.4 101.0 102.3 103.3 103.3 103.5 103.3 99.5 97.6 95.8 94.0 92.2 91.3 88.5 86.7 84.8 83.0 81.1 79.3 77.6 111.9
100 125 160 200	3	72.7 74.9 77.1 78.9	75.9 78.0 80.4 82.2	78.8 81.0 83.3 85.3	80.4 82.6 84.9 86.9	82.1 84.6 87.2 89.2	85.0 88.0 90.7 92.4	88.4 91.3 93.5 95.1	89.3 92.0 93.9 95.6	89.5 91.8 93.5 95.1

TABLE IV. - Continued. UNAJUSTED PREDICTED (MASS AVERAGE) LOSSLESS, FREE-FIELD

JET NOISE SPECTRA, QCGAT I

1	Fre-	Run	:			Direc	tivity a	anala a	*		
	quency, Hz	Kuti	45°	65°	90°	110°	125°	135°	145°	150°	155°
	112		,,,			ound pres					1.00
	250	3	80.3	83.7	86.8	88.5	90.9	93.7	96.4	97.1	96.5
	315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 12500 16000 25000 31500 40000 50000 63000 80000 63000 80000 0ASPL	•	81.4 82.4 83.2 83.8 84.2 84.5 84.5 84.4 84.2 83.7 79.6 80.7 77.4 76.0 73.9	84.8 85.8 86.6 87.3 87.7 88.0 87.4 86.8 86.1 85.3 84.4 83.3 82.2 81.1 80.0 78.6	88.0 89.9 90.6 91.1 91.3 91.5 91.4 91.3 90.9 88.0 87.0 85.9 84.7 83.6 82.4 80.1 78.9 77.7 102.6	89.8 90.8 91.7 92.4 92.9 93.3 93.5 93.4 91.7 91.0 86.9 85.8 84.6 83.4 104.5	92.6 93.8 94.8 95.3 95.4 95.0 94.4 93.7 92.8 89.7 88.6 87.4 86.3 85.1 83.8 82.6 81.3 80.1	95.0 96.0 96.4 96.3 95.8 94.8 93.2 92.3 91.0 89.7 88.3 86.9 78.5 84.1 79.9 78.5 77.1 75.7 105.7	97. 4 98.2 98.3 97.6 96.6 95.2 93.5 91.9 90.3 88.7 87.0 83.7 82.1 80.5 77.2 75.6 107.1	98.3 99.0 99.0 98.0 96.6 95.0 93.2 91.5 89.7 88.0 86.3 84.5 77.5 75.8 75.0 107.5	97.6 98.2 98.0 96.9 95.2 93.5 91.7 88.9 88.0 86.3 84.5 82.7 780.9 79.0 77.2 75.4 73.6 71.8
	100 125 160 200 250 315 400 630 800 1250 1600 2500 3150 4000 6300 8000 12500 12500 31500 4000 50000 6300 80000 63000 80000 63000 80000 63000	4	72.3 74.6 76.7 78.5 79.9 81.0 81.9 82.7 83.3 83.7 83.9 84.0 83.9 83.1 82.5 81.0 80.0 77.0 77.6 77.5 6 74.4 73.2	75.6 77.8 80.0 81.8 83.3 84.4 85.3 86.1 86.8 87.5 87.5 87.6 97.5 87.2 86.8 86.1 85.4 84.6 83.7 81.6 80.4 79.3 78.1	78.4 80.6 82.9 84.8 86.3 87.5 89.3 90.0 90.5 90.8 90.7 90.2 89.6 88.9 88.2 87.3 86.2 87.3 86.5 79.4 77.0	79.9 82.1 84.4 88.0 89.2 90.2 91.1 91.8 92.3 92.6 92.2 91.7 91.0 90.3 89.4 87.3 86.1 85.0 83.8 82.6 81.5 85.0	81.5 84.1 86.6 89.8 90.3 91.9 93.2 94.2 94.7 94.2 93.6 92.1 91.1 90.1 87.9 86.7 85.5 84.4 83.1 81.9 80.6	84.4 87.6 90.1 91.7 93.0 94.4 95.3 95.6 95.5 96.1 94.0 92.8 91.5 90.2 88.8 87.5 86.1 84.7 83.4 82.0 79.2	87.9 90.8 92.9 94.5 95.7 96.7 97.4 96.8 95.7 94.2 92.7 91.0 87.8 86.2 84.6 82.9 81.3 79.7 76.4	88.8 91.5 93.3 95.0 96.5 97.5 98.3 98.1 97.1 95.7 94.1 85.4 83.7 80.2 78.5 76.7 74.9	88.9 91.3 92.9 94.5 95.8 96.9 97.4 97.2 95.5 94.4 92.6 90.8 88.5 87.2 85.4 83.6 81.8 80.0 78.2 76.5 74.6 72.8
	100 125 160 200 250 315 400 500	5	70.2 72.5 74.6 76.2 77.4 78.4 79.2 80.0	73.4 75.6 77.7 79.3 80.7 81.9 82.6 83.3	76.0 78.3 80.4 82.2 83.5 84.6 85.5 86.3	77.3 79.6 81.7 83.5 84.9 86.1 87.0 87.8	78.6 81.1 83.4 85.2 86.8 88.3 89.5 90.2	81.2 84.1 86.3 87.9 89.1 90.4 91.2 91.3	84.7 87.5 89.4 90.7 91.8 92.8 93.3 92.9	85.9 88.4 90.1 91.6 92.7 93.5 94.0 93.4	85.9 88.0 89.6 91.1 92.2 93.1 93.4 92.7

TABLE IV. - Continued. UNAJUSTED PREDICTED (MASS AVERAGE) LOSSLESS, FREE-FIELD JET NOISE SPECTRA, QCGAT I

Fre-	Run				Dire	tivity a	angle, e	*		
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°
				Se	ound pres	sure lev	el, SPL	, dB		
630 800 1000 1250 1600 2500 3150 4000 6300 8000 12500 25000 31500 40000 25000 31500 40000 63000 80000 63000 80000 63000	5	80.5 80.8 81.0 80.9 80.8 80.4 79.1 77.5 76.5 75.4 74.3 73.2 72.0 70.8 69.7	83.9 84.2 84.4 84.3 84.2 83.9 83.3 82.6 81.1 79.0 77.9 76.8 75.6 74.4 73.3	86.9 87.2 87.5 87.5 87.4 87.1 86.6 85.9 85.2 84.4 82.4 83.4 81.3 80.1 79.0 77.8 76.6	88.4 88.8 89.1 89.0 88.8 88.3 87.7 87.0 86.2 85.2 84.2 83.1 81.9 80.6 78.4 77.3 76.1	90.6 90.5 90.0 89.5 88.7 87.0 86.0 84.9 83.8 82.7 81.6 80.3 79.0 77.9 75.4	91.2 90.5 89.4 88.3 87.0 85.8 84.5 83.1 81.8 80.5 79.1 77.6 4 75.0 73.6 100.7	92.1 91.0 89.4 87.9 86.3 84.6 83.1 81.5 80.0 78.4 76.8 75.2 73.6	92.3 90.9 89.2 87.5 85.8 84.1 82.4 80.7 77.3 75.6 73.9 70.4	91.3 89.7 87.9 86.1 84.4 82.6 80.8 79.1 77.2 75.5 73.7 72.0
100 125 160 200 250 315 400 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 12500 10000 12500 10000 12500 10000 12500 10000 12500 10000 12500 10000 12500 10000 125000 10000 125000 10000	6	68.7 70.9 72.7 74.1 75.2 76.2 77.6 78.0 78.3 78.2 78.5 76.9 76.2 75.4 73.4 72.3 71.2 70.0 68.8 67.6 66.5	71.6 73.9 75.8 77.2 78.4 79.4 80.2 81.6 81.4 80.9 80.2 79.6 73.5 74.6 73.5 72.3 71.1	74.1 76.4 78.4 79.9 81.1 82.1 83.6 84.1 84.6 84.5 84.4 83.9 83.3 82.6 81.0 80.0 77.8 76.6 77.4 77.4 77.7 77.7 70.7	75.2 77.4 79.5 81.1 82.3 83.3 85.0 85.5 85.8 86.0 85.9 84.9 84.2 83.5 82.6 80.5 79.4 78.3 77.1 75.9 74.8 93.6	76.2 78.5 80.6 82.4 83.9 85.3 86.3 87.1 87.1 86.9 85.9 85.2 84.4 80.3 79.3 78.1 76.9 75.6 74.4 73.2 72.0	78.5 81.1 83.0 84.5 86.0 87.1 87.4 86.6 84.4 83.2 82.0 80.8 79.4 76.9 75.6 74.2 72.9 71.5 70.2 867.5	82.3 84.6 86.3 87.5 88.6 89.4 89.0 88.1 86.4 83.8 82.3 80.7 79.2 77.6 67.6 67.6 69.9 68.2 66.2 66.2	83.6 85.7 87.3 88.4 90.1 90.1 90.1 89.4 88.3 86.1 83.5 81.8 75.1 73.4 77.7 70.1 66.7 65.0	83.3 85.2 86.8 88.1 89.2 89.9 89.8 87.4 85.7 84.0 81.2 80.5 776.9 75.2 73.5 71.7 69.9 68.2 66.0 64.6 62.9
100 125 160 200 250 315 400 500 630 800 1000 1250	7	65.6 67.6 69.2 70.4 71.4 72.3 73.0 73.5 73.8 74.0 73.9 73.8	68.5 70.6 72.2 73.5 74.5 75.4 76.1 76.6 77.0 77.2 77.1	70.7 72.8 74.6 75.9 76.9 77.9 78.6 79.2 79.6 79.8 79.8	71.5 73.7 75.5 76.8 77.9 78.9 79.7 80.3 80.7 80.9 80.9	71.9 74.2 76.0 77.7 79.0 80.3 81.1 81.6 81.4 81.0 80.5	74.0 76.2 77.8 79.4 80.8 81.7 82.0 82.1 81.6 80.6 79.7 78.6	78.0 80.0 81.3 82.4 83.4 83.5 83.0 82.0 80.5 79.1 77.6	79.7 81.4 82.5 83.3 84.1 84.5 84.0 83.3 82.1 80.5 78.9	79.3 80.6 82.5 83.5 84.4 84.8 84.0 82.9 81.3 79.7 77.9 76.0

TABLE IV. - Concluded. UNAJUSTED PREDICTED (MASS AVERAGE) LOSSLESS, FREE-FIELD

JET NOISE SPECTRA, QCGAT I

Fre-	Run	Directivity angle, e*											
quency, Hz		45°	65°	90°	110°	125°	135°	145°	150°	155°			
			Sound pressure level, SPL, dB										
1600	7	73.5	76.7	79.4	80.6	79.8	77.5	76.1	75.6	74.5			
2000 2500		72.9 72.2	76.1 75.4	78.8 78.2	80 . 1 79 . 4	79.0 78.1	76.2 75.1	74.6 73.1	74.0 72.3	72.8 71.0			
3150		71.5	74.7	77.5	78.7	77.1	73.8	71.6	70.7	69.3			
4000 5000		70.6 69.6	73.9 72.9	76.6 75.7	77.9 77.0	76.1 75.0	72.5 71.3	70.1 68.6	69.1 67.4	67.6 65.9			
6300		68.5	71.8 70.7	74.6	75.9 74.8	73.9 72.7	70.0 68.7	67.1 65.6	65.8 64.2	64.1 62.4			
8000 10000		67.4	69.6	73.5 72.4	73.7	71.5		64.2	62.6	59.7			
12500 15000		65.0 63.9	68.4 67.2	71.2 70.0	72.5 71.3	70.3 69.1		62.6	60.9	59.0 57.2			
20000		03.9	66.1	68.9	70.2	67.9				55.5			
25000 31500				67.7 66.5	69.0 67.8								
40000					66.6								
50000 63000					65.4								
80000													
OASPL	*	85.0	88.2	90.9	92.0	91.9	91.6	92.7	93.3	93.1			

TABLE V. - STATISTICAL COMPARISON OF DIFFERENCE BETWEEN EXPERIMENTAL AND ADJUSTED PREDICTED OASPL

(a) QCGAT I nozzle. Separate flow (ref. 1). For all 63 points: mean a = -0.4 dB; variance b = 0.8 dB; standard deviation c = 0.9 dB

Run	$(OASPL_{exp} - OASPL_{adj}) dB = \Delta$										0veral1			
	Angle from inlet axis, e*, deg										Variance	Standard		
	45°	65°	65° 90° 110°		125°	135°	145°	150°	155°			deviation		
1	0.4	0.1	-0.2	-0.3	-1.1	-0.8	-2.0	-2.5	-2.0	-1.0	2.4	1.5		
2	0.5	0.	-0.7	-0.4	-0.3	-0.8	-0.3	-0.7	-0.7	-0.4	0.3	0.5		
3	0.2	-0.2	-0.4	0.4	-0.2	0.5	0.4	-0.7	0.5	0.1	0.2	0.4		
4	1.4	1.4	0.4	0.1	-0.5	0.5	-0.2	0.2	0.6	0.4	0.3	0.6		
5	-1.6	-1.0	-1.7	-0.7	-0.2	-0.5	-0.4	-1.2	0.1	-0.8	1.0	1.0		
6	0.2	-0.6	-0.9	-1.3	-0.8	-0.8	-0.6	-1.0	-0.2	-0.6	0.6	0.8		
7	-0.5	-0.3	-1.2	-0.9	0.1	0.3	-0.2	-0.5	-0.2	-0.4	0.3	0.6		
Mean	0.1	-0.1	-0.7	-0.4	-0.4	-0.2	-0.5	-0.9	-0.4					
Variance	0.8	0.5	0.9	0.5	0.3	0.4	0.7	1.4	1.5					
Standard deviation	0.9	0.7	0.9	0.7	0.6	0.6	0.8	1.2	1.2					

(b) QCGAT II nozzle. Mass averaged single flow (ref. 1). For all 63 points: mean a = -0.1 dB; variance b = 0.5 dB; standard deviation c = 0.7 dB

1	-0.8	-0.2	-0.5	-0.5	-0.1	-0.6	0.8	0.8	1.3	0.1	0.5	0.7
2	-1.2	-0.6	-1.2	-0.3	0.1	0.2	0.5	0.1	0.9	-0.2	0.5	0.7
3	-0.7	-0.1	0	1.0	1.1	-0.1	0.6	0	1.2	0.3	0.5	0.7
4	-1.3	-0.2	-0.9	0.1	0.5	-0.6	0.3	-0.9	-0.1	-0.3	0.5	0.7
5	-1.5	-0.4	-0.3	0.9	0.5	0.3	0	-0.1	0.3	0	0.4	0.6
6	-0.5	0.1	-0.6	0.7	0.8	-0.3	-0.3	0.8	-1.2	-0.2	0.4	0.7
7	0.2	0.6	-0.4	-0.2	0.8	0.3	0	-0.2	-1.6	-0.1	0.4	0.7
Mean	-0.8	-0.1	-0.6	0.4	0.5	-0.1	0.3	-0.2	0.1			
Variance	1.0	0.1	0.4	0.4	0.4	0.1	0.2	0.3	1.1			
Standard deviation	1.0	0.4	0.7	0.6	0.7	0.4	0.5	0.6	1.1			

aMean = $\Sigma \Delta/N$ bVariance = $\Sigma \Delta^2/N$ cStandard deviation = $(\Sigma \Delta^2/N)^{1/2}$

TABLE V. - Continued. STATISTICAL COMPARISON OF DIFFERENCE BETWEEN EXPERIMENTAL AND ADJUSTED PREDICTED OASPL

(c) QCGAT III nozzle. Mass averaged single flow (ref. 1). For all 63 points: mean $^a=0.8~dB$; variance $^b=2.3~dB$; standard deviation $^c=1.5~dB$

Run	(OASPL _{exp} - OASPL _{adj}) dB = Δ										0verall			
	Angle from inlet axis, 0*, deg									Mean	Variance	Standard deviation		
	45°	65° 90° 110°			125°	135°	145°	150°	155°			deviation		
1	-0.8	-0.2	-0.3	0.6	1.8	3.3	3.2	2.0	3.2	1.4	4.4	2.1		
2	-0.9	-0.1	-1.0	-0.2	1.0	1.4	2.4	2.1	3.4	0.9	3.0	1.7		
3	-0.2	0.6	0.5	0.7	1.0	1.2	1.3	1.5	2.4	1.0	1.5	1.2		
4	-1.2	-0.8	-0.8	-0.6	0.4	1.1	1.9	1.0	3.5	0.5	2.4	1.5		
5	-1.0	0.1	0.3	0.6	1.4	1.2	1.1	1.4	1.7	0.8	1.2	1.1		
6	-1.3	-0.8	-0.5	-0.3	1.6	1.8	1.8	1.7	2.8	0.8	2.5	1.6		
7	-0.7	-1.2	-0.2	0	1.7	1.2	1.3	0.1	1.1	0.4	1.0	1.0		
Mean	-0.9	-0.3	-0.3	0.1	1.3	1.6	1.9	1.4	2.6					
Variance	0.9	0.4	0.3	0.2	1.8	3.1	3.9	2.4	7.4					
Standard deviation	0.9	0.7	0.6	0.5	1.4	1.8	2.0	1.5	2.7					

(d) QCGAT IV nozzle. Mass averaged single flow (ref. 1). For all 63 points: meana = 0.1 dB; variance $^{\rm b}$ = 0.9 dB; standard deviation $^{\rm c}$ = 0.9 dB

1	-0.3	0.9	0.6	1.7	0.9	-0.6	-0.4	0	0.3	0.3	0.6	0.8
2	-1.0	0.3	-0.9	-0.2	-1.0	-1.8	-0.2	0	1.2	-0.4	0.9	0.9
3	0.7	2.5	1.7	2.6	1.9	0.5	-0.2	-0.3	0.5	1.1	2.3	1.5
4	-0.8	0.1	-0.8	0	0.2	0.2	-0.5	-0.5	-0.2	-0.3	0.2	0.5
5	-0.4	1.5	1.2	1.5	1.2	-0.4	-1.1	-1.2	-1.1	0.1	1.3	1.1
6	-1.0	0	-0.4	0.3	0.6	-0.4	-0.7	-1.0	0.8	-0.2	0.4	0.7
7	-0.3	0.4	-0.9	0.2	0.6	0.5	-0.2	0.3	-1.2	-0.1	0.4	0.6
Mean	-0.4	0.8	0.1	0.9	0.6	-0.3	-0.5	-0.4	0			
Variance	0.5	1.4	1.0	1.7	1.1	0.6	0.3	0.4	0.7			
Standard deviation	0.7	1.2	1.0	1.3	1.0	0.8	0.6	0.6	0.9			

 $\begin{array}{ll} ^{a}\text{Mean} &=& \Sigma \Delta / N \\ \text{by ariance} &=& \Sigma \Delta^2 / N \\ \text{c} \text{Standard deviation} &=& \left(\Sigma \Delta^2 / N \right) 1/2 \end{array}$

TABLE VI. - POWER LEVEL SPECTRA dB (RE 10^{-13} W)

(a) QCGAT I

(a) QCGAT I												
Fre- quency,	Run											
Hz	1	2	3	4	5	6	7					
			PWL.	, dB								
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 6300 8000 1000 12500 10000 12500 10000 25000 0APWL dB	130.6 133.1 135.2 140.2 141.6 142.8 143.2 144.6 144.1 144.0 143.1 144.6 143.4 142.8 141.3 139.0 135.1 133.5 132.3 139.0 135.1	128.0 129.3 132.1 141.3 137.4 138.6 139.1 139.0 139.8 139.5 137.0 137.2 136.1 135.5 133.1 131.6 129.2 127.9 126.6 126.3 125.4 124.8	125.5 127.8 128.8 134.0 135.8 137.1 137.4 137.6 136.9 136.3 135.0 134.2 133.1 125.5 127.8 125.3 125.7 125.2 123.5 122.3 121.6	122.5 124.8 126.6 129.2 130.7 131.3 132.0 133.1 131.6 131.0 130.7 129.4 128.5 127.7 126.5 125.0 125.2 122.0 122.1 121.7 120.9 120.0 142.0	121.2 123.5 124.8 127.6 129.0 130.0 130.8 131.0 129.5 127.7 127.0 125.6 124.2 122.5 121.4 120.1 119.2 118.1	117.9 119.4 120.2 122.8 123.1 123.3 124.4 124.1 123.6 123.2 121.7 120.3 118.9 117.7 115.5 113.0 113.0 113.0 113.0 113.0 113.0	114.5 116.8 116.9 119.4 119.8 120.7 120.1 119.7 119.7 119.7 119.3 117.2 116.2 114.0 113.6 114.0 113.2 109.7 109.1 108.4					
Ve, m/sec	331	310	275	264	240	213	186					
			(b) QC0	SAT II								
100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 6300 8000 10000 12500 16000 20000 25000 0APWL dB Ve, m/sec	127.8 130.1 132.6 136.3 137.2 139.8 139.0 138.6 137.7 137.0 135.9 136.5 134.3 133.2 132.8 133.2 132.8 130.6 129.7	126.8 127.9 130.0 133.2 135.1 135.1 135.5 134.5 135.2 132.7 132.4 131.5 131.2 130.4 128.8 128.0 127.3 127.0 126.0 124.0 124.0	122.6 124.9 127.3 129.2 130.7 131.3 131.1 130.6 130.6 129.9 128.9 129.0 128.9 128.2 128.1 127.4 126.8 129.0 125.2 124.5 124.0	121.4 123.1 124.4 127.5 127.2 127.9 128.3 128.3 128.3 127.5 126.6 126.5 126.5 125.5 125.0 124.5 123.3 121.3 121.4	118.5 121.5 122.4 124.8 125.0 124.6 125.3 125.1 125.1 123.9 123.4 123.4 123.4 121.6 119.7 119.6 111.7 119.6 111.7 117.4 117.0	116.2 117.5 118.1 119.8 120.2 120.0 119.9 120.0 121.3 120.8 119.6 119.5 117.3 116.4 	113.1 114.9 112.9 115.1 115.0 114.5 114.5 114.7 115.2 114.7 114.8 114.7 116.5 116.0					
	1		(c) QCG	AT III								
100 125 160	129.2 132.1 133.9	126.0 128.3 131.2	123.6 125.7 127.1	122.2 123.6 126.3	119.6 121.7 123.3	117.9 118.8 120.1	114.0 115.4 115.1					

TABLE VI. - Concluded. POWER LEVEL SPECTRA dB (RE $10^{-13}~\mathrm{W}$)

(c) Concluded. QCGAT III

		(c) (Concluded	I. QCGAT	III					
Fre- quency,			R	un						
Hz.	1	2	3	4	5	6	7			
:			PWL	, dB						
200 250 315 400 500 630 800 1000 1250 2000 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000 0APPL	137.6 138.7 140.0 141.5 141.5 141.1 140.1 138.2 137.8 136.8 135.7 134.5 132.3 131.2 130.2 128.8 127.9 126.4	40.0 137.8 41.5 138.3 41.5 138.0 41.8 137.8 41.1 136.3 40.1 135.4 38.2 133.9 37.8 133.2 35.7 131.5 34.5 130.7 34.5 130.7 34.5 130.4 32.6 128.6 32.3 127.3 31.2 127.3 31.2 127.3 31.2 127.3 31.2 127.3 22.9 124.0 26.4 123.3		129.0 130.5 131.0 131.1 129.9 130.1 128.9 128.4 126.6 125.6 124.8 123.5 122.0 121.2	126.2 126.1 126.2 126.8 125.8 125.7 125.4 124.1 123.9 123.3 123.2 122.4 120.3 119.2 118.5 117.1	122.1 123.2 123.4 122.9 122.3 122.5 121.6 121.4 119.1 118.3 117.3 117.4 114.9 117.8 116.3	116.1 115.9 116.7 116.8 116.0 116.9 116.3 115.6 114.7 114.0 112.7 119.3 120.1 110.2 109.6 109.5			
Ve, m/sec	335	314	277	267	239	213	189			
		(d) QCGAT IV								
125		127.2 128.2 129.9 133.4 135.8 135.5 134.5 134.7 133.4 132.0 131.7 131.5 131.0 120.9 128.7 127.2 126.9 126.4 124.6 124.6 123.4	122.4 124.1 126.8 129.8 130.3 130.9 130.1 129.7 130.2 130.4 130.5 130.3 130.3 130.3 127.9 124.1 122.8 122.9	122.2 123.0 125.3 127.4 128.1 128.8 127.6 127.7 127.0 126.9 126.4 125.9 125.3 124.6 124.7 121.3 121.1 120.8 120.0 139.1	118.8 119.4 120.5 124.1 123.6 123.7 124.4 124.7 124.8 125.0 125.0 125.0 124.5 123.3 123.0 120.7 121.3 120.7 121.3	116.7 117.6 118.0 120.3 120.9 121.0 120.1 121.0 120.7 120.6 119.8 119.0 118.1 116.4 117.4 114.0 113.2 112.0 110.6 132.1	113.9 115.4 114.2 115.4 115.3 115.4 115.6 115.7 114.5 114.7 114.1 112.8 114.7 108.7 108.2 108.0 127.5			
dB Ve, m/sec	330	313	279	264	238	216	186			

TABLE VII. - PREDICTED POWER LEVEL SPECTRA dB (RE $10^{-13}~\mbox{W}$)

(a) QCGAT I Separate Flow

	(a) quant 1 Separate 110W							r—	
	Fre- quency,							Full scale	
	Hz	1	2	3	4	5	6	7	engine f, Hz
		PWL, dB							1, 112
	100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2500 3150 4000 5000 6300 8000 10000 12500 16000 20000 25000 0APWL dB	133.5 136.3 139.3 141.9 144.1 145.7 147.1 148.3 149.1 149.4 149.0 147.9 146.6 145.2 141.2 139.9 139.0 137.2 135.9 135.9 135.9 135.9 136.5	130.5 133.5 136.2 138.5 140.3 141.9 143.0 144.1 144.6 144.4 143.7 142.5 141.3 140.0 138.8 137.5 136.2 134.0 132.7 131.7 130.2 128.6 127.6 126.6 127.6 126.6	127.6 130.3 132.8 134.8 136.4 137.7 138.6 139.5 139.0 138.1 137.0 135.9 134.9 132.8 131.7 130.6 129.5 128.3 127.1 125.8 124.6 123.4 149.0	125.6 128.3 130.8 132.5 134.1 135.4 136.6 137.0 136.4 133.4 133.4 133.4 133.4 130.3 120.3 128.2 127.1 125.9 124.7 125.7 126.7	124, 2 126, 9 129, 0 130, 6 132, 0 133, 3 134, 2 134, 4 134, 1 133, 5 131, 6 130, 7 129, 8 127, 9 126, 9 126, 9 125, 8 124, 7 123, 5 124, 7 123, 5 124, 7 123, 5 121, 1 119, 9 118, 6 117, 4 144, 0	121.4 124.0 126.0 127.5 128.8 129.9 130.6 130.5 129.5 127.0 126.2 127.0 126.2 123.2 124.2 123.2 121.0 119.8 117.5 116.2 115.8 140.4	119.5 121.3 122.8 124.1 125.1 125.8 125.9 125.7 125.2 124.5 123.2 122.3 121.5 120.6 119.7 118.6 117.5 116.4 115.2 114.0 112.7 111.5 110.4	31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 800 800 800 800 800 800 800
			(b) QCGAT	I Mass /	Average	y		
The state of the s	100 125 160 200 250 315 400 500 630 800 1000 1250 4000 2000 2000 2500 8000 1000 12500 16000 2000 2000 2000 2000 2000 2000 2	127.9 130.7 133.1 135.1 136.8 138.1 139.3 140.0 140.1 139.7 138.9 138.9 138.0 137.1 136.3 135.5 134.6 133.7 122.8 123.3 127.2 126.1 124.8 149.9	126.0 128.7 131.1 132.9 134.5 135.8 136.9 137.5 136.4 135.4 135.4 134.6 133.9 133.1 130.4 128.4 127.3 128.4 127.3 128.4 127.3 126.1 124.9 123.7 122.5 147.4	122.2 124.7 126.9 128.6 130.0 131.2 132.1 132.2 131.7 131.1 130.4 129.7 129.1 128.3 127.5 126.6 125.7 124.7 123.6 122.5 121.3 120.1 118.9 117.7 142.5	121.6 124.2 126.3 128.0 129.4 130.5 131.4 131.6 131.4 131.0 130.3 129.7 129.0 128.4 127.6 126.8 125.9 125.0 124.0 122.9 121.7 120.5 119.4 118.9	118.7 121.2 123.1 124.6 125.8 126.9 127.5 127.6 127.3 126.9 126.3 125.7 125.1 124.5 123.7 122.0 121.1 120.0 118.9 117.6 115.4 114.2 113.0 138.0	116.3 118.5 120.3 121.7 122.9 123.3 124.2 123.9 123.4 122.3 121.8 121.1 120.3 119.5 118.6 117.6 116.6 115.4 114.3 111.9 110.7 109.5 134.7	112.4 114.3 115.8 117.0 118.1 118.9 118.9 118.6 118.1 117.7 117.2 116.6 115.9 115.1 114.2 113.3 112.3 111.2 110.0 108.9 107.7 106.4 105.3 104.1 129.6	31.5 40 50 63 80 100 125 160 200 250 315 400 630 800 1000 1250 1600 2000 2500 3150 4000 5000 630 800 800 800 800 800 800 800 8

Figure 1. - NASA Lewis outdoor coaxial Jet Acoustic Facility.

Figure 2. - Schematic microphone layout.

Figure 3. - Nozzle schematics. All dimensions in centimeters.

Final exit area = $320.90 \text{ cm}^2 \text{ (d = } 20.21 \text{ cm)}$ (b) QCGAT II (mixer A)

Flow area, cm² 168, 83 374, 42
Equivalent 14, 66 21, 83

Final exit area = 320, 90 cm² (d = 20, 21 cm) (c) QCGAT III (mixer C)

Figure 3. - Continued.

	Primary	Secondary
Flow area, cm ²	168, 79	374, 43
Equivalent diameter, cm	14,66	21.83

Final exit area = $320.90 \text{ cm}^2 \text{ (d = } 20.21 \text{ cm)}$ (d) QCGAT IV (mixer D)

Figure 3. - Concluded.

Figure 4. - Adjustment in dB applied to predicted OASPL and SPL as a function of primary to secondary kinetic energy ratio for the 0.35 scale QCGAT I, II, III and IV nozzles.

Figure 5. - Comparison of experimental and adjusted predicted lossless free field OASPL directivity.

Figure 6. - Comparison of experimental and adjusted separate flow predicted spectral results for QCGAT I nozzle at various flow conditions.

Figure 6. - Concluded.

Figure 7. - Comparison of experimental and adjusted mass average predicted spectral results for the 0.35 scale QCGAT II, III, and IV nozzles at various flow conditions.

Figure 7. - Concluded.

Figure 8. - Far field acoustic power level comparison of full scale QCGAT engine (ref. 6), 0.35 scale model nozzles and ref. 2 predictions.

Figure 9. - Far field acoustic power level spectral comparison of full scale QCGAT engine (ref. 6) and scaled up data from 0.35 scale model nozzles.

1. Report No. NASA TM-86871	2. Government Accession No.	3. Recipient's Catalog No.					
4. Title and Subtitle	5. Report Date						
Static Jet Noise Test Resul Model QCGAT Mixer Nozzles	November 1984						
Model QCGAL MIXEL NOZZIES		6. Performing Organization Code					
		505-31-3B					
7. Author(s)		8. Performing Organization Report No.					
Donald E. Groesbeck and Cha	E-2333						
		10. Work Unit No.					
9. Performing Organization Name and Address							
National Aeronautics and Sp.	ace Administration	11. Contract or Grant No.					
Lewis Research Center	ace Mainthis et a et on						
Cleveland, Ohio 44135		13. Type of Report and Period Covered					
12. Sponsoring Agency Name and Address		Technical Memorandum					
		The state of the s					
National Aeronautics and Sp Washington, D.C. 20546	ace Administration	14. Sponsoring Agency Code					
15. Supplementary Notes							
16. Abstract	<u>and a superior of the superio</u>						
As part of the NASA Quiet Clean General Aviation Turbofan (QCGAT) engine mixer- nozzle exhaust system program, static jet exhaust noise was recorded at micro- phone angles of 45° to 155° relative to the nozzle inlet for a conventional profile coaxial nozzle and three 12-lobed coaxial mixer nozzles. Both flows in all four nozzles are internally mixed before being discharged from a single exhaust nozzle. The conventional profile coaxial nozzle jet noise is compared to the current NASA Lewis coaxial jet noise prediction and after applying an adjustment to the predicted levels based on the ratio of the kinetic energy of the primary and secondary flows, the prediction is within a standard deviation of 0.9 dB of the measured data. The mass average (mixed flow) prediction is also compared to the noise data for the three mixer nozzles with a reasonably good fit after applying another kinetic energy ratio adjustment (standard devi- ation of 0.7 to 1.5 dB with the measured data). The tests included conditions for the full-scale engine at takeoff (T.0.), cutback (86 percent T.0.) and ap- proach (67 percent T.0.).							

Jet noise
Acoustics
QCGAT

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

Unclassified

22. Price*

18. Distribution Statement

17. Key Words (Suggested by Author(s))

End of Document