2 СИСТЕМНОЕ ПРОЕКТИРОВАНИЕ

Изучив предметную область разрабатываемой системы, были разработаны основные требования, которые должны быть выполнены при реализации дипломного проекта. Для упрощения разработки системы разобьем ее на структурные блоки.

2.1 Описание основных блоков устройства

Для данного дипломного проекта были определены следующие блоки:

- блок интерфейса и взаимодействия пользователя
- блок управления контейнерами
- блок балансировщик нагрузки
- блок контейнеров
- блок операций масштабирования
- блок анализа нагрузки
- блок метрик
- блок мониторинга

Структурная схема, иллюстрирующая перечисленные блоки и связи между ними приведена на чертеже ГУИР.400201.071 C1.

Блоки были выделены таким образом, чтобы каждый из них выполнял определённую задачу, и обеспечивали корректную работу системы в целом. Далее рассмотрим принцип работы и задачи каждого из перечисленных выше блоков, а также их взаимодействие между собой.

2.2 Блок интерфейса и взаимодействия пользователя

Пользовательский интерфейс (UI) программный интерфейс И приложения (API) являются точкой входа для пользователей в систему позволяет контейнерами. Этот блок пользователям взаимодействовать с системой, выполнять запросы и получать результаты этих запросов. И предоставляет графический интерфейс, который можно ДЛЯ наблюдения за состоянием системы, контейнерами и конфигурации параметров, в то время как АРІ предоставляет программные хуки для автоматизации этих процессов и интеграции с внешними системами.

Интеграция с блоком операций масштабирования подразумевает возможность отправки команд на изменение числа рабочих экземпляров контейнеров в зависимости от текущей нагрузки, полученной из блока метрик или блока мониторинга. Это обеспечивает гибкость системы, позволяя масштабировать ресурсы под текущие требования нагрузки и оперативно реагировать на изменения во внешней среде или в рамках самой системы.

Блок интерфейса и взаимодействия пользователя является ключевым

компонентом для обеспечения пользовательской интеграции с системой, представляя сложную инфраструктуру контейнеризации в удобной, интуитивно понятной и легкодоступной форме. Это центральное звено в обеспечении пользовательской адаптивности и оперативного управления приложениями и сервисами в динамически масштабируемой и многопользовательской среде.

2.3 Блок управления контейнерами

Блок управления контейнерами В системе управления контейнеризированными приложениями является ключевым элементом, отвечающим за координацию и управление контейнерами. функция этого блока — оркестрация контейнеров, то есть управление их жизненным циклом, что включает в себя развертывание, мониторинг, масштабирование и обработку сбоев. Через программный интерфейс блок управления контейнерами автоматизирует развертывание контейнеров, регулирует их масштабирование в зависимости от изменения нагрузки и поддерживает оптимальное количество работающих экземпляров обеспечения устойчивой и надежной работы сервисов.

Блок управления контейнерами тесно взаимодействует с блоком интерфейса и взаимодействия пользователя, принимая от него команды и передавая обратную связь об успешности выполнения операций. Это позволяет пользователям не только запускать или останавливать контейнеры, но и отслеживать их состояние через пользовательский интерфейс.

Связь с блоком операций масштабирования имеет решающее значение для поддержания эффективности работы приложений. Блок управления контейнерами получает сигналы о необходимости масштабирования от этого модуля, основываясь на анализе текущей нагрузки и производительности контейнеров. При получении указания на масштабирование вверх блок управления контейнерами инициирует создание дополнительных контейнеров, а при масштабировании вниз — останавливает и удаляет избыточные экземпляры. Это динамическое взаимодействие позволяет системе быстро адаптироваться к изменяющимся требованиям нагрузки, поддерживая оптимальную производительность и уровень ресурсов.

Также блок управления контейнерами напрямую взаимодействует с блоком контейнеров, осуществляя непосредственное управление их жизненным циклом.

Блок управления контейнерами представляет собой центральное звено между оперативными потребностями приложений и динамическими возможностями инфраструктуры, позволяя эффективно адаптироваться к меняющимся условиям.

2.4 Блок балансировщик нагрузки

Блок балансировщика нагрузки представляет собой системный выполняющий распределение входящего трафика между компонент, запущенными контейнерами, что обеспечивает равномерное распределение нагрузки и предотвращает перегрузку отдельных узлов. Задача этого блока заключается в динамическом анализе текущего состояния нагрузки на контейнеры и их метрик, чтобы решить, какой контейнер наиболее подходит для обработки нового запроса, исходя из стремления к оптимизации производительности на уровне всей системы. В случае сбоя или простоя какого-либо контейнера, балансировщик нагрузки незамеллительно перераспределяет трафик к другим доступным экземплярам, тем самым уменьшая время простоя и поддерживая непрерывность сервиса.

Блок балансировщика нагрузки представляет собой сложный алгоритмический компонент, который интегрируется с блоком контейнеров, непрерывно собирая данные о состоянии и производительности. Это достигается путём циклического обращения к каждому контейнеру с целью получения актуальных метрик, на основании которых и происходит распределение трафика. Важность ЭТОГО блока подчеркивается способностью к принятию мгновенных решений об изменении нагрузки, на реальном времени отклика и текущей доступности основываясь контейнеров.

нагрузки постоянно взаимодействует Балансировщик контейнеров. Связь между балансировщиком нагрузки и контейнерами является основной для его функционирования. Балансировщик постоянно просматривает состояние каждого контейнера, И нагрузку распределять входящие запросы максимально эффективно. В случае если определённый контейнер становится недоступен или перегружен, перенаправляет другие, балансировщик нагрузки трафик на Это обеспечивает балансировку нагрузки и загруженные контейнеры. повышает отказоустойчивость системы.

Блок анализа нагрузки предоставляет данные о текущей загрузке каждого контейнера, и на основании этой информации балансировщик принимает решение о том, какому контейнеру следует обработать новый запрос. Такая взаимосвязь создает основу для эффективного управления ресурсами и гарантирует надежную и сбалансированную работу сервисов.

В целом, балансировщик нагрузки играет ключевую роль в обеспечении высокой производительности, доступности и отказоустойчивости контейнеризированных приложений, являясь неотъемлемой частью современных распределенных систем.

2.5 Блок контейнеров

Контейнеры – это технология, которая позволяет упаковать

приложение и все его зависимости в один компактный исполняемый пакет. Это обеспечивает непрерывность работы приложения при переходе от одной вычислительной среды к другой. Суть контейнеризации заключается в возможности легко и быстро запускать приложения в любом окружении, что особенно ценится в разработке программного обеспечения, тестировании и эксплуатации.

Блок контейнеров является непосредственно исполняемым слоем в архитектуре системы, обрабатывающим пользовательские и системные запросы. Связь с блоком балансировщика нагрузки критически важна, так как блок балансировщика непрерывно распределяет входящие запросы на основе текущей загрузки контейнеров, обеспечивая эффективное справедливое использование ресурсов и минимизацию времени отклика. Эта динамическая связь позволяет системе поддерживать высокую доступность и производительность, распределяя нагрузку между контейнерами перенаправляя трафик к менее загруженным экземплярам.

Блок управления контейнерами осуществляет взаимодействие с блоком контейнеров, отправляя команды для создания, запуска, остановки и удаления контейнеров. Это включает в себя обработку запросов на выделение ресурсов и управление жизненным циклом контейнера в ответ на операции пользователей и системных событий. Блок управления является административным центром, через который проходят все операционные команды, связанные с контейнерами.

Блок операций масштабирования взаимодействует с блоком контейнеров, регулируя их количество в соответствии с текущей нагрузкой и потребностями системы. Этот блок принимает решения о масштабировании вверх или вниз, добавляя или удаляя контейнеры, чтобы соответствовать требуемому уровню обслуживания и управления ресурсами. Процесс масштабирования является результатом анализа метрик загрузки и производительности, полученных от блока метрик и блока анализа нагрузки.

Блок метрик тесно связан с блоком контейнеров, поскольку он отвечает за сбор и анализ данных о состоянии и производительности каждого контейнера. Эти данные необходимы для оценки нагрузки на систему и принятия обоснованных решений о распределении ресурсов и масштабировании. Взаимодействие с блоком метрик позволяет блоку контейнеров поддерживать оптимальное состояние работы, предоставляя важную информацию для всех уровней управления системой.

Эти взаимодействия образуют основу для эффективного и гибкого управления приложениями в динамичной, распределенной среде. Контейнеры гарантируют, что приложения могут быть надежно и масштабируемо запущены в любой среде, от локальных рабочих станций до облачных платформ, что является критически важным для современных бизнес-процессов.

2.6 Блок операций масштабирования

Блок операций масштабирования отвечает за динамическое изменение количества контейнеров в системе в зависимости от текущей нагрузки и требований пользователей. Это включает в себя автоматическое увеличение числа контейнеров (масштабирование вверх) при росте нагрузки для поддержания производительности и отказоустойчивости, а также уменьшение количества контейнеров (масштабирование вниз) в периоды низкой активности для экономии ресурсов. Функциональность этого блока критически важна для обеспечения гибкости и эффективности облачных ресурсов, позволяя системе быстро адаптироваться к изменяющимся условиям.

Связи блока операций масштабирования характеризуются активным обменом информацией с другими модулями системы. Он принимает информацию о состоянии контейнеров от блока контейнеров, чтобы определить, какие контейнеры следует запустить или остановить. С блоком управления контейнерами существует двусторонняя связь, блок масштабирования инициирует создание или удаление контейнеров и получает обратную связь о статусе этих операций.

мониторинга предоставляет необходимые данные здоровье производительности И системы, что позволяет определить необходимость в масштабировании. Взаимодействие с блоком интерфейса и взаимодействия пользователя позволяет администраторам и пользователям инициировать процессы масштабирования вручную основе управленческих решений автоматически через пользовательские ИЛИ настройки.

Кроме того, тесная связь с блоком анализа нагрузки критична для принятия решений о масштабировании, так как этот блок предоставляет аналитические данные о текущей нагрузке, производительности и предсказании тенденций, что позволяет блоку операций масштабирования реагировать оперативно и адекватно.

Эти многосторонние связи создают комплексную систему управления, способную к самонастройке и оптимизации в зависимости от внутренних и внешних изменений в использовании ресурсов.

2.7 Блок анализа нагрузки

Блок анализа нагрузки является ключевым компонентом системы, которого является обработка И задачей интерпретация данных производительности контейнеров, получаемых от блока метрик. использует эти данные для выявления информации, пиковой активности и потенциальных мест В инфраструктуре. Ha узких основе производительности блок анализа нагрузки предоставляет информацию для принятия обоснованных решений о масштабировании инфраструктуры, управлении ресурсами и балансировке нагрузки.

Связи блока анализа нагрузки интегрируют его в общую систему управления контейнерами. Он тесно связан с блоком метрик, откуда поступают данные для анализа. Это двусторонняя связь, блок анализа нагрузки не только принимает данные, но и может инициировать сбор дополнительной информации, необходимой для более глубокого анализа. Взаимодействие с блоком операций масштабирования является двунаправленным, блок анализа нагрузки поставляет данные, необходимые для определения моментов масштабирования системы, и, в свою очередь, получает обратную связь о влиянии этих операций на производительность системы.

Помимо этого, блок анализа нагрузки напрямую влияет на работу блока балансировщика нагрузки, предоставляя ему информацию о текущей загрузке каждого контейнера и помогая эффективно распределять входящий трафик между контейнерами. Это позволяет балансировщику нагрузки оптимизировать распределение запросов в реальном времени, повышая производительность и снижая задержки.

Таким образом, блок анализа нагрузки выполняет функцию интеллектуального анализа, который необходим для прогнозирования и планирования ресурсов системы, делая процесс масштабирования и балансировки более предсказуемым и эффективным. Эти аналитические способности обеспечивают решения, которые помогают системе быть адаптивной к изменяющимся требованиям и обеспечивать высокий уровень обслуживания пользователей.

2.8 Блок метрик

Блок метрик — это инструментарий системы управления контейнерами, который отвечает за сбор, агрегацию и предоставление данных о производительности и ресурсах контейнеров. Он играет роль центрального репозитория, где хранится вся информация о СРU, памяти, хранилище, сетевой активности и других критически важных метриках контейнеров. Блок метрик активно собирает данные в реальном времени, обеспечивая актуальность информации о состоянии системы для других модулей.

Связь блока метрик блоком c анализа нагрузки является однонаправленной: он поставляет данные, необходимые для анализа текущей производительности и прогнозирования будущих трендов нагрузки, что позволяет принимать информированные решения о масштабировании и распределении ресурсов. Эти данные также используются для оптимизации работы блока балансировщика позволяя нагрузки, ему распределять запросы на основе актуальной нагрузки на каждый контейнер.

Блок метрик также связан с блоком контейнеров, откуда он напрямую получает информацию о состоянии и работе каждого контейнера. Эта двусторонняя связь позволяет блоку метрик активно отслеживать состояние

каждого контейнера, обновлять метрики и посылать уведомления о важных событиях или изменениях в состоянии контейнеров.

Кроме того, блок метрик передаёт данные в блок мониторинга, где эти данные могут быть использованы для визуализации состояния системы, уведомления пользователей о критических событиях и долгосрочного анализа производительности для планирования масштабирования инфраструктуры.

В целом, блок метрик является жизненно важным для оперативного реагирования на изменения в работе системы, постоянно предоставляя данные, которые нужны для поддержания высокой производительности, надёжности и доступности сервисов, предоставляемых контейнеризированными приложениями.

2.9 Блок мониторинга

Блок мониторинга в системе управления контейнерами отвечает за наблюдение, отслеживание состояния и предоставление своевременной информации о здоровье и производительности системы. Этот компонент является жизненно важным для оперативного управления и поддержания надежности сервисов, поскольку он выявляет потенциальные проблемы и неэффективное использование ресурсов до того, как они приведут к сбоям или ухудшению качества обслуживания. Блок мониторинга использует различные инструменты и технологии для сбора логов, проверки работоспособности контейнеров и их компонентов, а также оценки нагрузки и производительности системы.

Связь блока мониторинга с блоком метрик является входящей: он принимает собранные метрики и использует их для генерации уведомлений, алертов и отчётов, которые могут быть представлены администраторам системы через пользовательский интерфейс или другие каналы оповещения. Эти данные помогают администраторам оценить текущее состояние системы и принимать решения об устранении неполадок или оптимизации ресурсов.

В свою очередь, блок мониторинга взаимодействует с блоком контейнеров, направляя данные о работоспособности и доступности каждого контейнера в блок управления контейнерами. Это позволяет своевременно реагировать на любые сбои или проблемы в работе контейнеров, например, инициировать их перезапуск или масштабирование.