Circuitos Lógicos

Profa. Grace S. Deaecto

Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. grace@fem.unicamp.br

Segundo Semestre de 2013

NOTA AO LEITOR

Estas notas de aula foram inteiramente baseadas nas seguintes referências :

- T. Floyd, "Digital Fundamentals", 10th Edition, Prentice Hall, 2009.
- R. J. Tocci, N. S. Widmer, G. L. Moss, "Sistemas Digitais: Princípios e Aplicações", Prentice-Hall, 2007.
- I. V. Iodeta, F. G. Capuano, "Elementos de Eletrônica Digital", Editora Érica, 2006.
- V. A. Pedroni, "Circuit Design and Simulation with VHDL", 2nd Edition, MIT, 2010.

- Circuitos Combinacionais
 - Funções e variáveis lógicas
 - Operações e portas lógicas
 - Tabela verdade e expressão lógica
 - Álgebra de Boole
 - Minimização
 - Aplicação prática : Elevador
 - Síntese de circuitos combinacionais

Funções e variáveis lógicas

- No nosso dia-a-dia estamos repletos de circunstâncias em que somente dois estados são possíveis: luz apagada ou acesa, pessoa morta ou viva, porta fechada ou aberta, etc.
- Em 1854 o matemático George Boole descreveu um conjunto de regras capaz de relacionar estas circunstâncias (entradas) de maneira a permitir a tomada de decisões (saídas).
- Este conjunto de regras foi denominado de álgebra booleana.
- A ideia deste capítulo é estudar a álgebra booleana nos aspectos de análise, síntese e simplificação de expressões lógicas.

Funções e variáveis lógicas

Seguem algumas definições importantes :

- Variável booleana é uma quantidade que pode ser, em diferentes momentos, igual a 0 ou 1.
- Função booleana associa a cada n variáveis de entrada uma única saída.
- Podemos descrever uma função booleana utilizando
 - tabela verdade
 - portas lógicas
 - equações
 - formas de onda
- Diferente da álgebra comum, a álgebra booleana possui somente três operações básicas : OR, AND e NOT, conhecidas como operações lógicas.

Tabela verdade

• Seja uma função $f(A_1, \dots, A_n)$ com n entradas. A tabela verdade expressa o estado da saída para todas as combinações possíveis dos estados de entrada $\{A_1, \dots, A_n\}$. Segue um exemplo para duas entradas.

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	1
1	0	1
1	1	0

 Além de 0s e 1s a função f(·) pode ser igual ao caracter x, chamado de don't care. Este caracter serve para indicar que para uma dada combinação de entradas, x pode ser tanto 0 como 1. Como veremos, o don't care é estratégico no processo de simplificação booleana.

Operação NOT : Para qualquer entrada A, ela é definida como

$$f(A) = \overline{A}$$

ou seja, é a entrada negada (barrada). Para uma entrada A_1 , por exemplo, temos

Tabela verdade

A_1	$f(A_1)$
0	1
1	0

Porta lógica

• Operação OR : Para entradas $\{A_1, \dots, A_n\}$, ela é definida como

$$f(A_1,\cdots,A_n)=\sum_{i=1}^nA_i$$

e vale 1 se qualquer uma das entradas for igual a 1. Para duas entradas temos :

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	1
1	0	1
1	1	1

• Operação AND : Para entradas $\{A_1, \dots, A_n\}$, ela é definida como

$$f(A_1,\cdots,A_n)=\prod_{i=1}^nA_i$$

e vale 1 apenas se todas as entradas forem iguais a 1. Para duas entradas temos :

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	0
1	0	0
1	1	1

• Operação NOR: É a operação OR negada. Para duas entradas $\{A_1, A_2\}$, por exemplo, ela é definida como

$$f(A_1,A_2)=\overline{A_1+A_2}$$

e vale 1 apenas se todas as entradas forem iguais a 0.

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	0
1	0	0
1	1	0

Sobre a porta NOR podemos fazer os seguintes comentários :

Utilizando a tabela verdade, podemos verificar que

$$\overline{A_1 + A_2} = \overline{A_1}$$
 . $\overline{A_2}$

que é um dos resultados do Teorema de De Morgan que veremos posteriormente.

Tabela verdade

A_1	A_2	$\overline{A_1 + A_2}$	$\overline{A_1}$. $\overline{A_2}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

 Utilizando somente portas NOR podemos obter as três portas básicas :

• O que indica a vantagem tecnológica desta porta.

• Operação NAND : É a operação AND negada. Para duas entradas $\{A_1, A_2\}$, por exemplo, ela é definida como

$$f(A_1,A_2)=\overline{A_1.A_2}$$

e vale 0 apenas se todas as entradas forem iguais a 1.

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	1
1	0	1
1	1	0

Sobre a porta NAND podemos fazer os seguintes comentários :

Utilizando a tabela verdade, podemos verificar que

$$\overline{A_1.A_2} = \overline{A_1} + \overline{A_2}$$

que é um dos resultados do Teorema de De Morgan.

Tabela verdade

A_1	A_2	$\overline{A_1.A_2}$	$\overline{A_1} + \overline{A_2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

 Utilizando somente portas NAND podemos obter as três portas básicas :

• O que indica a vantagem tecnológica desta porta.

 Operação XOR (ou exclusivo) : Definida apenas para duas entradas $\{A_1, A_2\}$ como sendo

$$f(A_1, A_2) = \overline{A_1} \cdot A_2 + A_1 \cdot \overline{A_2}$$

= $A_1 \oplus A_2$

e vale 1 apenas se as entradas forem diferentes.

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	0
0	1	1
1	0	1
1	1	0

• Operação XNOR (coincidência) : Definida apenas para duas entradas $\{A_1, A_2\}$ como sendo

$$f(A_1, A_2) = \overline{A_1} \cdot \overline{A_2} + A_1 \cdot A_2$$

= $A_1 \odot A_2$

e vale 1 apenas se as entradas forem iguais.

Tabela verdade

A_1	A_2	$f(A_1,A_2)$
0	0	1
0	1	0
1	0	0
1	1	1

Tabela verdade e expressão lógica

- Dado um circuito lógico, sua expressão booleana é obtida facilmente a partir da simples leitura das portas lógicas. Da mesma maneira, dada uma expressão lógica, a obtenção do circuito é feita termo a termo utilizando as portas correspondentes.
- Vamos discutir agora como obter a expressão lógica a partir da sua tabela verdade.
- Existem duas maneiras: através de somas de produtos (mintermos) ou através de produtos de somas (maxtermos).
 No curso será adotado a primeira maneira, tendo em vista o método de simplificação que adotaremos e que será apresentado posteriormente.

Tabela verdade e expressão lógica

Tabela verdade e expressão lógica

Para exemplificar as duas formas, vamos considerar a tabela verdade da função NAND.

Somas de produtos (mintermos) :

$$f(\cdot) = 1.(\bar{A}\bar{B}) + 1.(\bar{A}B) + 1.(\bar{A}B) + 0.(\bar{A}B)$$

= $\bar{A}\bar{B} + \bar{A}B + \bar{A}B$

Produtos de somas (maxtermos) :

$$f(\cdot) = \{1 + (A + B)\}.\{1 + (A + \bar{B})\}.\{1 + (\bar{A} + B)\}.\{0 + (\bar{A} + \bar{B})\}$$
$$= \bar{A} + \bar{B}$$

Tabela verdade e expressão lógica

Podemos observar que ambas as expressões

Utilizando mintermos : $\bar{A}\bar{B} + \bar{A}B + A\bar{B}$ Utilizando maxtermos : $\bar{A} + \bar{B} = \overline{AB}$

são equivalentes, pois designam a porta lógica NAND. Entretanto, a primeira é escrita utilizando 3 portas lógicas com duas conexões cada e a segunda utiliza uma única porta lógica, a NAND de duas conexões.

- Logo, uma mesma tabela pode representar circuitos equivalentes. Estamos interessados naquele com expressão mínima.
- A seguir, estudaremos duas técnicas de minimização
 - Álgebra booleana.
 - Mapa de Karnaugh.

Álgebra de Boole

- As regras operacionais de minimização utilizando a álgebra de Boole decorrem dos postulados e propriedades a seguir :
 - Postulados da complementação

$$\overline{\overline{A}} = A$$

Postulados da adição

$$A + 0 = A$$
, $A + 1 = 1$, $A + A = A$, $A + \overline{A} = 1$

Postulados da multiplicação

$$A \cdot 0 = 0, \ A \cdot 1 = A, \ A \cdot A = A, \ A \cdot \overline{A} = 0$$

 Propriedades: Comutativa, associativa e distributiva são válidas para a adição e a multiplicação.

Teorema de De Morgan

As seguintes igualdades são verdadeiras :

$$\bullet \ \overline{A \cdot B \cdot C \cdot \cdots \cdot N} = \overline{A} + \overline{B} + \cdots + \overline{N}$$

$$\bullet \ \overline{A+B+C+\cdots+N} = \overline{A} \cdot \overline{B} \cdot \cdots \cdot \overline{N}$$

• Exemplo 1 : Minimize a expressão sem utilizar o teorema.

$$\bar{A}\bar{B} + \bar{A}B + A\bar{B} = \bar{A}(B + \bar{B}) + A\bar{B}$$

$$= \bar{A}(1 + \bar{B}) + A\bar{B}$$

$$= \bar{A} + (A + \bar{A})\bar{B}$$

$$= \bar{A} + \bar{B}$$

Teorema de De Morgan

 Exemplo 2 : Minimize a mesma expressão utilizando o teorema de De Morgan.

$$ar{A}ar{B} + ar{A}B + Aar{B} = ar{A}(B + ar{B}) + Aar{B}$$

$$= ar{A} + Aar{B}$$

$$= A.(ar{A} + B)$$

$$= \overline{A}B$$

$$= \overline{A} + \overline{B}$$

Exemplo 3 : Minimize a seguinte expressão

$$ABC + A\overline{B} + A\overline{C} = A(BC + \overline{B} + \overline{C})$$

$$= A(BC + (\overline{\overline{B} + \overline{C}}))$$

$$= A(BC + \overline{BC})$$

$$= A$$

Exercício

• Descreva a expressão lógica que representa o circuito a seguir

A expressão lógica é dada por

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A \cdot C})$$

Minimizar a expressão de um circuito lógico, significa obter uma outra equivalente com menos termos e operações. Isto implica em menos portas lógicas e conexões.

- Como vimos, podemos usar a álgebra de Boole para realizar a minimização.
- Neste caso, a simplificação nem sempre é óbvia.
- Geralmente, podemos seguir dois passos essenciais :
 - colocar a expressão na forma de soma de produtos
 - identificar fatores comuns e realizar a fatoração
- Algumas vezes devemos contar com habilidade e experiência para obter uma boa simplificação.

Simplificação algébrica

 Utilizando a álgebra de Boole, podemos minimizar a expressão da função do exercício anterior

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A \cdot C})$$

$$= A \cdot B \cdot C + A \cdot \overline{B} \cdot (A + C)$$

$$= A \cdot C \cdot (B + \overline{B}) + A \cdot \overline{B}$$

$$= A \cdot (C + \overline{B})$$

O circuito lógico simplificado é dado por.

A quantidade de portas lógicas foi reduzida de 7 para 3!!!

Exercício

 A partir do circuito apresentado anteriormente, obtenha a sua tabela verdade e, a partir dela, obtenha a expressão lógica.

Α	В	C	f(A, B, C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Utilizando a tabela, sua expressão lógica é dada por

$$f(A, B, C) = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

embora seja equivalente à função obtida através do circuito, ela possui um número maior de termos.

Minimizando a expressão, temos

$$f(A, B, C) = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

= $A \cdot \overline{B} \cdot (\overline{C} + C) + A \cdot B \cdot C$
= $A \cdot (\overline{B} + B \cdot C)$

que, como sabemos, não é a expressão mínima. De fato, fazendo um passo adicional, nem sempre óbvio, obtemos

$$f(A, B, C) = A \cdot (\overline{B} + B \cdot C)$$

$$= A \cdot (\overline{B} \cdot (1 + C) + B \cdot C)$$

$$= A \cdot (\overline{B} + C \cdot (\overline{B} + B))$$

$$= \underbrace{A \cdot (\overline{B} + C)}_{\text{expressão mínima}}$$

- O mapa de Karnaugh é um método gráfico sistemático para simplificar expressões booleanas.
- Por ser um método procedimental ele não depende da habilidade do projetista com as regras da álgebra booleana.
- Ele converte a tabela verdade na função booleana minimizada.
- Sua utilidade prática está restrita a problemas com até cinco variáveis.
- Para mais de cinco variáveis utiliza-se o método de Quine-McCluscky que funcionalmente é similar ao de Karnaugh, mas é tabular e, portanto, mais eficiente para ser processado pelo computador.
- A seguir estudaremos a simplificação via mapa de Karnaugh de duas a cinco variáveis de entrada.

 Para n variáveis, o mapa apresenta 2ⁿ posições, cada uma representando uma situação da entrada. Ademais, o valor de cada posição "0" ou "1" representa a saída correspondente.

• Como o mapa utiliza a forma de soma de produtos na simplificação, geralmente, expressa-se somente as posições em que $f(\cdot)=1$.

Para duas variáveis :

Α	В	f(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

$$f(A,B) = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$$

= $A + B$

- Na simplificação agrupamos as regiões f(A, B) = 1 para obter o menor número de agrupamentos.
- Os agrupamentos devem formar quadrados ou retângulos maiores possíveis.
- O número de elementos em cada agrupamento deve ser uma potência de 2.
- O mapa de Karnaugh

$$f(A,B) = \underbrace{\overline{A} \cdot B + A \cdot \overline{B}}_{XOR}$$

32 / 67

não admite simplificação!!

• Para três variáveis :

Α	В	C	f(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$f(A, B, C) = A \cdot \overline{B} + A \cdot C$$

= $A \cdot (\overline{B} + C)$

• Para quatro variáveis :

	Α	В	С	D	f(A,B,C,D)		
	0	0	0	0	1		
	0	0	0	1	0		
	0	0	1	0	1		
	0	0	1	1	0		
	0	1	0	0	1		
	0	1	0	1	1		
	0	1	1	0	1		
	0	1	1	1	1		
	1	0	0	0	1		
	1	0	0	1	0		
	1	0	1	0	1		
	1	0	1	1	0		
	1	1	0	0	1		
	1	1	0	1	0		
	1	1	1	0	1		
	1	1	1	1	1		

$$f(A, B, C, D) = \overline{D} + B \cdot C + \overline{A} \cdot B$$

• Para cinco variáveis :

$$f(A, B, C, D, E) = C \cdot E + \overline{B} \cdot \overline{D} \cdot \overline{E} + B \cdot \overline{C} \cdot D \cdot \overline{E}$$

Aplicação prática: Controle da porta de um elevador

- Em um prédio de três andares deseja-se projetar um circuito lógico para controlar a abertura da porta de um elevador. As variáveis de entrada são A, B, C, D em que:
 - A indica que o elevador está em movimento quando igual a 1.
 - B, C, D indicam que o elevador está posicionado nos andares 1,2,3 quando iguais a 1, respectivamente.
- Projete a saída Ab que indica, quando em nível alto, que o elevador deve abrir a porta. Para isto :
 - Determine a tabela verdade do problema.
 - Faça simplificações utilizando um dos métodos estudados.
 - Desenhe o circuito lógico correspondente.

Aplicação prática : Controle da porta de um elevador

Tabela verdade:

Α	В	C	D	Ab
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	Χ
0	1	1	0	Χ
0	1	1	1	Χ
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	X
1	1	0	0	0
1	1	0	1	X
1	1	1	0	X
1	1	1	1	Χ

ES572

Aplicação prática : Controle da porta de um elevador

Minimização via mapa de Karnaugh :

$$Ab = \overline{A} \cdot (B + C + D)$$

Aplicação prática : Controle da porta de um elevador

Representação do circuito :

Síntese de circuitos combinacionais

- Vamos agora utilizar os conceitos iniciais apresentados para realizar a síntese de alguns circuitos combinacionais importantes:
 - meio somadores e somadores completos
 - comparadores
 - codificadores e decodificadores
 - multiplexadores e demultiplexadores

Meio somador

• O meio somador aceita duas variáveis de entrada A e B e possui como saídas a soma Σ e o carry out C_{out} .

Tabela verdade

Α	В	Σ	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Meio somador

Meio somador

• Não é difícil verificar que

$$\Sigma = \bar{A}B + A\bar{B}$$
$$= A \oplus B$$

e que

$$C_{out} = AB$$

Seu circuito é dado por

ES572

 O somador completo possui como variáveis de entrada A, B e o carry in C_{in} e como variáveis de saída a soma Σ e o carry out C_{out}.

Tabela verdade

Α	В	C_{in}	Σ	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Podemos verificar que

$$\Sigma = A \oplus B \oplus C_{in}$$

e que

$$C_{out} = \bar{A}BC_{in} + A\bar{B}C_{in} + AB\bar{C}_{in} + ABC_{in}$$

= $(A \oplus B)C_{in} + AB$

Seu circuito é dado por

 O somador completo pode ser construído a partir de dois meio somadores.

 Para números de 4 bits, um somador paralelo básico está apresentado a seguir.

46 / 67

 Podemos cascatear os somadores de maneira a considerar palavras maiores.

Como podemos verificar, a saída C_{out} de cada somador completo está conectada à entrada C_{in} do somador seguinte. Desta forma, a soma em cada estágio só pode ser efetuada após o recebimento do carry C_{out} do estágio anterior provocando um atraso de propagação no processo de adição. Para evitar este atraso pode-se projetar um circuito antecipador de carry. De fato, fazendo a minimização, para o somador completo de 1 bit temos

$$C_{out} = (A \oplus B)C_{in} + AB$$

= $(A + B)C_{in} + AB$

Para um somador de 2 bits, definindo $Cgi = A_iB_i$ e $C_{pi} = A_i + B_i$ para o estágio i, temos :

• Primeiro estágio :

$$C_{out1} = C_{g1} + C_{p1}C_{in1}$$

Segundo estágio :

$$C_{in2} = C_{out1}$$

 $C_{out2} = C_{g2} + C_{p2}(C_{g1} + C_{p1}C_{in1})$

e, desta forma, não há atraso de propagação pois todos os carries são calculados no mesmo instante uma vez que todos dependem apenas do primeiro C_{in1} .

Comparador

- A função do comparador é comparar a magnitude de números binários.
- Para comparar a igualdade de dois bits, basta utilizar a porta lógica XNOR, que fornecerá nível lógico alto apenas na igualdade.
- Desta maneira, para comparar se dois números binários, por exemplo, A = A₃A₂A₁A₀ e B = B₃B₂B₁B₀ são iguais basta agrupar os bits dois a dois da forma {A₃, B₃}, {A₂, B₂}, {A₁, B₁} e {A₀, B₀} e conectá-los, respectivamente, à quatro portas XNORs. As saídas destas portas são conectadas à uma porta AND de quatro entradas. A saída da porta AND terá nível alto somente se os números forem iguais.

Comparador

 Para comparar se dois números são diferentes e detectar qual deles é o maior, basta analisá-los começando com o bit mais significativo. Por exemplo, para dois números binários A = A₃A₂A₁A₀ e B = B₃B₂B₁B₀, o procedimento a seguir é realizado.

- Se $A_3 = 1$ e $B_3 = 0$ então A > B.
- Se $A_3 = 0$ e $B_3 = 1$ então A < B.
- Se $A_3 = B_3$ realizam-se as verificações anteriores para o bit consecutivo menos significativo.

Codificador e decodificador

- Os circuitos codificadores e decodificadores são aqueles que efetuam a passagem de um código para outro.
- O circuito codificador torna possível a passagem de um código conhecido para um desconhecido. Exemplo: o circuito inicial de uma calculadora que transforma decimal (nossa linguagem) para binário (linguagem da máquina).
- O circuito decodificador faz o inverso, ou seja, transforma um código desconhecido em outro conhecido.
- É claro, que o termo codificador ou decodificador depende do referencial que estamos considerando. Se estivermos considerando a máquina como referencial o raciocínio é inverso.

Codificador

 Um exemplo de circuito codificador é aquele que passa de decimal para BCD. Neste caso, temos 10 entradas e 4 saídas.

Tabela verdade

Decimal	A_3	A_2	A_1	A_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Circuito decimal/BCD

Codificador

- Existe ainda o codificador decimal para BCD com prioridade.
 Neste caso, se dois números decimais forem acionados, o codificador fornecerá o código BCD do maior deles.
- A figura a seguir apresenta o chip 74HC147 que é um codificador decimal para BCD com prioridade. Neste chip as entradas e as saídas são ativas em nível baixo.

Codificador

• Exemplo de um teclado. Entradas e saídas ativas em nível baixo.

Decodificador

 Segue um exemplo de decodificador BCD para decimal. Ele possui 4 variáveis de entrada e 10 variáveis de saída relacionadas como na tabela a seguir.

Α	В	C	D	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0

Decodificador

- Como o código BCD não possui valores maiores do que 9, para fins de simplificação, o "don't care" é utilizado nas possibilidades excedentes.
- Para cada dígito fazemos o mapa de Karnaugh e simplificamos a expressão. Para o dígito 9 (D₉), temos

$$D_9 = A \cdot D$$

Decodificadores

 Procedendo com a simplificação para os demais dígitos, obtemos o seguinte resultado.

$$\begin{array}{rcl} D_{8} & = & A \cdot \bar{D} \\ D_{7} & = & B \cdot C \cdot D \\ D_{6} & = & B \cdot C \cdot \bar{D} \\ D_{5} & = & B \cdot \bar{C} \cdot D \\ D_{4} & = & B \cdot \bar{C} \cdot \bar{D} \\ D_{3} & = & \bar{B} \cdot C \cdot D \\ D_{2} & = & \bar{B} \cdot C \cdot \bar{D} \\ D_{1} & = & \bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D \\ D_{0} & = & \bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D} \end{array}$$

Decodificador

 O display de 7 segmentos nos permite escrever números de 0 a 9 e algumas letras ou sinais. A figura a seguir apresenta uma unidade genérica do display com sua nomenclatura de identificação.

Decodificador

 Elaboração de um decodificador de código BCD para display de 7 segmentos.

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

Simplique e apresente o circuito correspondente!

- Os multiplexadores são circuitos que permitem passar uma informação digital proveniente de diversos canais em um só canal. Eles também são chamados de selecionadores de dados.
- A Figura a seguir apresenta o esquema de um multiplexador.

 Vamos supor que temos 4 linhas de informações e apenas uma linha de transmissão. Neste caso o selecionador possui 2 bits e seu circuito está apresentado a seguir.

Tabela verdade

Α	В	S
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Multiplexador de 4 entradas

 Para ampliarmos a capacidade de um multiplexador podemos cascatear outros de menor capacidade. Exemplo: Multiplex de 16 canais a partir de multiplex de 8 canais.

 Podemos também utilizar o multiplexador para construir um circuito combinacional qualquer como apresentado a seguir.
 Circuito

Tabela verdade

Va	ariáv	eis	MUX 1	MUX 2
de	sele	,		
Α	В	С	S_1	S_2
0	0	0	$I_0 = 0$	$I_0 = 0$
0	0	1	$I_1 = 1$	$I_1 = 0$
0	1	0	$I_2 = 1$	$I_2 = 0$
0	1	1	$I_3 = 0$	$I_3 = 1$
1	0	0	$I_4 = 1$	$I_4 = 0$
1	0	1	$I_5 = 0$	$I_5 = 1$
1	1	0	$I_6 = 0$	$I_6 = 1$
1	1	1	$I_7 = 1$	$I_7 = 1$

Demultiplexadores

- Os demultiplexadores são circuitos capazes de enviar informações contidas em um único canal de entrada à vários canais de saída.
- A Figura a seguir apresenta o esquema de um demultiplexador.

Síntese de circuitos combinacionais

Demultiplexadores

 Vamos supor que temos 1 linha de informação e 4 linhas de transmissão. Neste caso o selecionador possui 2 bits e seu circuito está apresentado a seguir.

Tabela verdade

Α	В	<i>S</i> ₀	S_1	S_2	<i>S</i> ₃
0	0	Ε	0	0	0
0	1	0	Ε	0	0
1	0	0	0	Ε	0
1	1	0	0	0	Е

Demultiplexador de 4 entradas

Demultiplexadores

 Para ampliarmos a capacidade de um demultiplexador podemos cascatear outros de menor capacidade. Exemplo : Demultiplex de 16 canais a partir de demultiplex de 8 canais.

Gerador de paridade

- Considerando paridade ímpar podemos construir um circuito gerador de paridade.
- Para uma transmissão de 4 bits, a tabela verdade representa a saída do bit de paridade.

