PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék

Digitális Rendszerek és Számítógép Architektúrák

1. előadás: Boole-algebra, logikai függvények

Előadó: Dr. Vörösházi Zsolt

voroshazi.zsolt@virt.uni-pannon.hu

Kapcsolódó jegyzet, segédanyag:

Angol nyelvű könyv:
 <u>http://www.virt.uni-pannon.hu</u> → Oktatás
 → Tantárgyak → Digitális Rendszerek és Számítógép Architektúrák (nappali)

 Bevezetés: Számítógép Generációk (chapter01.pdf)

- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

További hasznos segédanyagok:

- Dr. Göllei A, Dr. Holczinger T, Dr. Vörösházi Zs.: Digitális Technika I. egyetemi jegyzet (2014 -TAMOP4.1.2A):
 - □ Digitalis_technika_I_TAMOP

- Dr. Göllei A, Dr. Holczinger T, Dr. Vörösházi Zs.: Digitális Technika II. egyetemi jegyzet (2014 -TAMOP4.1.2A):
 - □ <u>Digitalis_technika_II_TAMOP</u>

Boole-algebra

(1815-1864)

- Logikai operátorok algebrája
- George Boole: először mutatott hasonlóságot az általa vizsgált logikai operátorok és a már jól ismert aritmetikai operátorok között.
- HW tervezés alacsonyabb absztrakciós szintjén rendkívül fontos szerepe van. (Specifikáció + egyszerűsítés)

re.

Boole algebra elemei:

- A vizsgált 3 alapművelet: AND, OR, NOT
- Tulajdonságaik (AND, OR esetén):
 - Kommutatív: A+B=B+A, A · B=B · A
 - Asszociatív: A+(B+C)=(A+B)+C=A+B+C
 - $A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$
 - Disztributív: A·(B+C)=A · B+A · C,
 - $A+(B \cdot C)=(A+B)\cdot(A+C)$
- Operátor precedencia (csökkenő sorrendben):
 - NOT
 - AND
 - OR
 - □ átzárójelezhetőség!

Boole algebrai azonosságok!

1.)
$$\overline{A} = A$$
 NOT

2.) $A + 0 = A$
3.) $A + 1 = 1$
4.) $A + A = A$
5.) $A + \overline{A} = 1$

6.) $A \cdot 1 = A$
7.) $A \cdot 0 = 0$
8.) $A \cdot A = A$
9.) $A \cdot \overline{A} = 0$

AND

10.) $A + A \cdot B = A$

11.) $A \cdot (A + B) = A$

Elnyelési tul.

12.)
$$A \cdot B + A \cdot \overline{B} = A$$

13.) $(A + B) \cdot (A + \overline{B}) = A$
14.) $A + \overline{A} \cdot B = A + B$ *
15.) $A \cdot (\overline{A} + B) = A \cdot B$

De-Morgan azonosságok:

$$18.)\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$19.)\overline{A \cdot B} = \overline{A} + \overline{B}$$
DUAL ITÁS

Boole-algebrai azonosság igazolása igazságtáblával

PI: De Morgan

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Α	В	A-B	NOT (A·B)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Dualitás elve

Α	В	NOT A	NOT B	NOT(A) + NOT(B)
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Példa: egyszerűsítésre

$$\overline{A \cdot (B + C \cdot (B + \overline{A}))} = \overline{A} + \overline{B}$$

Logikai hálózatok csoportosítása

Ismétlés: Ezek alapján kétféle hálózatot különböztetünk meg:

- (K.H.) Kombinációs logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációk létrehozásához elég a bemeneti kombinációk pillanatnyi értéke.
- (S.H.) Sorrendi (szekvenciális) logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációt, nemcsak a pillanatnyi bemeneti kombináció, hanem a korábban fennállt bementi kombinációk és azok sorrendje is befolyásolja. (A szekunder kombinációk segítségével az ilyen hálózatok képessé vállnak arra, hogy az ugyanolyan bemeneti kombinációkhoz más-más kimeneti kombinációt szolgáltassanak, attól függően, hogy a bemeneti kombináció fellépésekor, milyen értékű a szekunder kombináció)

Kombinációs vs sorrendi hálózatok:

Kombinációs hálózat:

Sorrendi hálózat:

Egyváltozós logikai függvények:

Jelmásoló (jel-erősítés):

be	ki
0	0
1	1

Negálás - Inverter (NOT):

be	ki
0	1
1	0

Kétváltozós logikai függvények:

■ ÉS (AND):

Α	В	ki
0	0	0
0	1	0
1	0	0
1	1	1

VAGY (OR):

А	В	ki
0	0	0
0	1	1
1	0	1
1	1	1

Antivalencia (XOR):

Α	В	ki
0	0	0
0	1	1
1	0	1
1	1	0

Kétváltozós log.függv. (folyt.):

■ NEM-ÉS (NAND):

Α	В	ki
0	0	1
0	1	1
1	0	1
1	1	0

Univerzálisan teljes rendszert a NAND illetve NOR függvény alkot!

NEM-VAGY (NOR):

Α	В	ki
0	0	1
0	1	0
1	0	0
1	1	0

Ekvivalencia (NXOR):

Α	В	ki
0	0	1
0	1	0
1	0	0
1	1	1

Funkcionális teljesség: példák

Funkcionálisan teljes vagy univerzális áramköri alapkapuk: Logikai hálózatok esetén a CMOS NAND, illetve NOR kapu.

(Aritmetikai egységek esetén esetében ilyen univerzális építőelem az összeadó.)

Tri-State Buffer:

- buszok esetén használatos: kommunikációs irány változhat
 - Driver: egyirányú kommunikációra
 - □ Transceiver: kétirányú kommunikációra
- 3 állapota lehet:
 - □ magas: '1'
 - □ alacsony: '0' (normál TTL szintek)
 - nagy impedanciás állapot: 'Z' mindkét kimeneti tranzisztor zár

А	EN	OUT
0	1	0
1	1	1
X	0	Z

A OUT

Low-true enable

High-true enable

