### Tentamen EE1P21

## Elektriciteit en Magnetisme A

- Dit tentamen bestaat uit 3 bladzijden met 4 opgaven.
- Het totaal te behalen aantal punten bedraagt 90.
- Bij iedere opgave is het aantal voor die opgave te behalen punten vermeld.
- Begin iedere opgave op een <u>nieuw</u> vel en vermeld op ieder vel van uw uitwerkingen zowel <u>naam als studienummer.</u>

#### Veel succes!

#### 20 punten

### Opgave 1

- **a.)** Bereken het elektrisch veld  $\vec{E}_1(0,0,z)$  in het punt P(0,0,z) ten gevolge van een puntlading  $Q_1$  in  $(x_1,y_1,0)$ .
- **b.)** Bereken de kracht  $\vec{F}$  die het elektrisch veld  $\vec{E}_1(0,0,z)$  uitoefent op een lading  $Q_2$  in  $(0,0,z_2)$ .

In het vlak z=-2 (m) bevindt zich binnen een dunne circulaire plaat gecentreerd in (0,0,-2), met radius R=2 (m), een oppervlaktelading met ladingsdichtheid

$$\sigma = \sin^2\varphi = -[\exp(\mathrm{i}\varphi) - \exp(-\mathrm{i}\varphi)]^2/4\,(\mathrm{nC/m^2})$$

waarbij i de imaginaire grootheid is en de grootheid  $\varphi$  is gedefinieerd zoals in het figuur hieronder.



- c.) Bereken de lading dq op het polaire oppervlak  $r dr d\varphi$  en bereken de totale lading Q op de plaat.
- **d.**) Bereken het elektrisch veld  $\vec{E}(0,0,0)$  in de oorsprong.

Hint: Let op de symmetrie eigenschappen van de ladingsdichtheid bij punten c) en d).

#### 25 punten

#### Opgave 2

Gegeven zijn drie concentrische geleidende dunne holle bollen. Binnen de binnenste bol met straal  $r = R_1$  bevindt zich vacuum met permittiviteit  $\epsilon_0$ . De binnenste bol is omhuld met een concentrisch bol met straal  $r = R_2$  met daartussen een medium met relatieve permitiviteit  $\epsilon_{r,2} = 3$ . De ruimte tussen de middelste bol met straal  $R_2$  en de buitenste bol met straal  $r = R_3$ ,  $R_2 < r < R_3$  is gevuld met een medium met relatieve permittiviteit  $\epsilon_{r,3} = 4$ . Op de buitenkant van de binnenste bol bevindt zich een lading 2Q en op de buitenkant van de middelste bol bevindt zich een negatieve lading -Q. De buitenste bol heeft een lading Q en bevindt zich in vacuum. We veronderstellen dat de concentrische media geen vrije ladingdragers bevatten en dat de potentiaal V op oneindig gelijk aan 0 volt is.

- a.) Maak een duidelijke schets van de situatie.
- **b.**) Bereken het elektrisch veld  $\vec{E}$  in het gebied  $r < R_1$  en in het gebied  $r > R_3$ .
- c.) Bereken het elektrisch veld  $\vec{E}$  in het gebied  $R_1 < r < R_2$  en in het gebied  $R_2 < r < R_3$ .
- d.) Laat zien dat de tangentieële componenten van  $\vec{E}$  op de geleidende bol met straal  $r=R_2$  voldoen aan de randvoorwaarden op de bol.
- e.) Bereken de elektrische potentiaal van de binnenste bol met straal  $R_1$  en de elektrische potentiaal van de buitenste bol met straal  $R_3$ .
- f.) Bereken de capaciteit C tussen de geleidende bollen met straal  $R_1$  en  $R_2$ .

#### 25 punten

#### Opgave 3

Gegeven een vierkante vlakke geleidende plaat-condensator met afmeting a en plaatafstand d, met  $d \ll a$  (verwaarloos "fringing effects"). Het midden tussen de twee platen is gelegen in het vlak z=0. De plaat in het boven-halfvlak op z=d/2 heeft een lading Q en de plaat in het onder-halfvlak op z=-d/2 heeft een lading -Q. In eerste instantie is de ruimte tussen de platen vacuum.

- a.) Bereken het elektrische veld  $\vec{E}$  en het potentiaalverschil V tussen de platen.
- b.) Bereken de capaciteit C tussen de platen en de opgeslagen energie U in de condensator.

De ruimte tussen de platen wordt nu vanaf de onderste plaat gevuld met een medium met relatieve permittiviteit  $\varepsilon_{\rm r,1}=10$  en dikte d/3. De overige ruimte wordt gevuld met een medium met relatieve permittiviteit  $\varepsilon_{\rm r,2}=20$ .

c.) Bereken het elektrische veld  $\vec{E}$  in beide media en het potentiaalverschil V tussen de beide platen.

d.) Bereken de capaciteit C tussen de platen en de opgeslagen energie U in de condensator.

# 20 punten

#### Opgave 4

We be schouwen een dunne uniform geladen ring met straal a en lading Q. De afstand van de deellading dq tot het punt P op de as van de ring is  $r = \sqrt{x^2 + a^2}$ . We nemen aan dat de potentiaal V = 0 op oneindig.

a.) Toon aan dat de potentiaal ten gevolge van de ringlading in punt P gelijk is aan:

$$V = \frac{kQ}{\sqrt{x^2 + a^2}}.$$

**b.**) Bereken het elektrische veld  $\vec{E}$  in het punt P.

We beschouwen nu een uniform geladen schijf met oppervlaktelading Q en straal R.

c.) Toon aan dat de potentiaal ten gevolge van de schijflading in punt P gelijk is aan:

$$V = 2kQ \frac{\sqrt{x^2 + R^2} - |x|}{R^2}.$$

Einde Tentamen