

WM_W60X_参数区使用说明 V1.2

北京联盛德微电子有限责任公司 (winner micro)

地址: 北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

1.0 2018/9/6 [C]创建文档 Cuiych 1.1 2018/10/12 增加图形编号 Cuiych 1.2 2018/12/13 因支持 W601 芯片,文件更名 Cuiych W60X W60X W60X	版本	修订时间	修订记录	作者	审核
1.2	1.0	2018/9/6	[C]创建文档	Cuiych	
W60X	1.1	2018/10/12	增加图形编号	Cuiych	
	1.2	2018/12/13		Cuiych	
				1	
				1/2	
			7/	// X	

目录

1	引言.		3
	1.1	编	写目的3
	1.2	预	期读者3
	1.3	术	吾定义
	1.4	参	考资料3
2	QFLA	ASH 参	数区布局
	2.1	物	理层参数区
	2.2	QF	LASH 参数区域
	2.3	用。	· · · · · · · · · · · · · · · · · · ·
	2.4	系	统参数区域
3	物理》	层参数[Σ
	3.1	物	理层参数介绍e
	3.2	物	理层参数写入阶段e
	3.3	物	理层参数的使用 <u>.</u>
4	QFLA		数区
	4.1	QF	LASH 参数区介绍
	4.2	QF	LASH 参数区写入阶段
		4.2.1	QFLASH 参数区使用
5	系统	参数区	
	5.1	系	统参数介绍8
	5.2	系	统参数的使用
		5.2.1	初始化阶段
		5.2.2	参数使用阶段10
6	用户	参数区	
	6.1	用	⁻
	6.2	用。	户区使用11
		6.2.1	用户参数区的操作11
		6.2.2	用户参数区的调整规则11
		6.2.3	用户参数区的双备份机制

1 引言

1.1 编写目的

本文档主要用于阐述 W60X 中的 QFLASH 布局,关键参数区和系统参数区使用以及用户参数区处理。

1.2 预期读者

该文档适用的读者包括研发人员、测试人员、架构师等。

1.3 术语定义

序号	术语/缩略语	说明/定义
1	QFLASH	Quad-SPI FLASH
2	SECBOOT	Second Boot, relative to ROM
3	ROM	Read-Only Memory

1.4 参考资料

无

2 QFLASH 参数区布局

图 2-1

2.1 物理层参数区

地址空间: 0x8000000-0x8000FFF, 共 4kbyte

参数内容:

MAC 地址和 RF 参数。

参数布局:

图 2-2

2.2 QFLASH 参数区域

地址空间: 0x8001000-0x8001FFF, 共 4kbtye

参数内容:

QFLASH 参数头、Security Level 和 CHIP ID 以及 QFLASH 参数。

参数布局:

图 2-3

2.3 用户参数区

地址空间: 0x80F0000-0x80FBFFF, 共48Kbyte

参数内容:

用于用户存放自定义参数时使用。

参数布局:

用户自定义

2.4 系统参数区域

地址空间: 0x80FD000-0x80FFFFF, 共12Kbyte

参数内容:

系统运行时所需的相关参数

参数布局:

MAGIC Number:4byte	IAGIC Number:4byte		
PARTITION_NUM:2byte	RTITION_NUM:2byte MODIFY_CNT:2byte		
RESERVED:4byte			
RESERVED:2byte Length:2byte(整个参			
数的大小,包含 CRC			
值,由系统参数决定)			
Data Content(系统参数决定)			
CRC Value:4byte(CRC 之前的内容的值)			

- 1) 系统参数 1 区: 0x80FD000-0x80FDFFF
- 2) 系统参数 2 区: 0x80FE000-0x80FEFFF
- 3) 系统参数 3 区: 0x80FF000-0x80FFFFF

3 物理层参数区

3.1 物理层参数介绍

W60X 模块工作所需要的 MAC 地址,以及 Wi-Fi 收发机工作所需要的 RF 校准参数

3.2 物理层参数写入阶段

W60X 芯片或者模块生产时写入

3.3 物理层参数的使用

W60X 模块启动时会从关键参数区把所需参数读取出来使用。 物理层参数具有备份机制。

4 QFLASH 参数区

4.1 QFLASH 参数区介绍

W60X 芯片 ROM 的安全级别设置,芯片 ID 以及 QFLASH 工作参数的存储

4.2 QFLASH 参数区写入阶段

W60X 芯片生产阶段。

4.2.1 QFLASH 参数区使用

W60X 启动时使用,获取安全级别或者芯片 ID,或者针对 QFLASH 的某些操作时使用时,具有备份。

5 系统参数区

5.1 系统参数介绍

系统参数是指 W60X 模块运行时所需要的联网,接口配置,模式配置等的参数,具体如下:

- 1) Wi-Fi 相关(SSID, BSSID, KEY, 信道列表, 节电标志, 速率设置, 区域码, 工作模式)
 - 2) IP 信息(静态 IP, DHCP 使能信息, NTP 服务器, DNS 服务器)
 - 3)接口配置(UART, SDIO, HSPI模式配置)
 - 4) 其他参数 (WEB)

5.2 系统参数的使用

5.2.1 初始化阶段

系统参数区具有备份机制,通过 CRC 和 MODIFY_CNT 校验值确定使用哪个参数区的内容作为系统运行时使用的参数,具体机制为:

- 1)参数区 CRC 均正确的情况下,依据 MODIFY_CNT 选取使用的当前参数
- 2) 参数区 CRC 只有一个正确的情况下,选择 CRC 正确的参数区作为当前参数,另外一个参数区更新为当前参数区的值
- 3)参数区 CRC 都不正确的情况下,首先尝试参数恢复,如果尝试恢复后,参数依然都不正确,则使用默认参数值作为运行时使用参数,同时,更新参数区的内容为默认参数。

5.2.2 参数使用阶段

1)参数获取

系统参数区除了存放于 QFLASH 的两个区域外,还会在初始化的时候在内存中备份一份,以便于运行时的使用,防止频繁访问 QFLASH。

2)参数写入

- (1) 系统启动时,第一次初始化或者参数区有破坏,会写参数区
- (2) 运行中,系统参数更新,会写参数区

6 用户参数区

6.1 用户参数

W60X 使用者期望存储自定义的参数或者运行日志。

6.2 用户区使用

6.2.1 用户参数区的操作

W60X的 SDK会增加针对用户参数区的操作机制,保证用户针对参数区的操作仅使用相对地址(相对 USER_ADDR_START)即可实现。

6.2.2 用户参数区的调整规则

W60X 的默认 QFLASH 的布局所能提供给用户的区域为 48Kbyte。但是,当前的 W60X 用户参数区设置是依据代码区最大化来设计的。

6.2.2.1 用户参数区的调整规则:

1) 依据用户编译的 WM_W600_SEC.img 确定的所用运行区空间

2) 依据用户编译的 WM_W600_GZ.img 确定的所用升级区空间

- 3) 依据 WM_W600_SEC.img 和 WM_W600_GZ.img 的大小按照 QFLASH 的 BLOCK (64Kbyte) 区间向上取整划分(需要重点关注)。
- 4) 依据 IMAGE 的划分结果重新确定用户空间的起始地址。
- 5) 根据新划分的空间调整 W60X SDK 的宏定义确定新的用户空间起始地址

```
/**Upgrade image header area & System parameter area */
#define CODE_UPD_HEADER_ADDR (FLASH_B)
#define TLS_FLASH_PARAM1_ADDR (FLASH_B)
                                                               (FLASH_BASE_ADDR + 0xFC000)
(FLASH_BASE_ADDR + 0xFD000)
(FLASH_BASE_ADDR + 0xFE000)
(FLASH_BASE_ADDR + 0xFF000)
#define TLS FLASH PARAM2 ADDR
#define TLS_FLASH_PARAM_RESTORE_ADDR
#define TLS_FLASH_END_ADDR
                                                                (FLASH_BASE_ADDR + OXFFFFF
#define FLASH KEY PARAM AREA LEN
                                                                (0x2000)
#define SECBOOT_HEADER_ADDR
                                                                (FLASH_BASE_ADDR + FLASH_KEY_PARAM_AREA_LEN)
#define SECBOOT_HEADER_AREA_LEN
#define SECBOOT_AREA_ADDR
#define SECBOOT_AREA_LEN
                                                                (SECBOOT_HEADER_ADDR + SECBOOT_HEADER_AREA_LEN)
(0x10000 - FLASH_KEY_PARAM_AREA_LEN - SECBOOT_HEADER_AREA_LEN)
/**Run-time image header area*/
#define CODE_RUN_HEADER_ADDR
                                                                (SECBOOT_AREA_ADDR + SECBOOT_AREA_LEN)
#define CODE_RUN_HEADER_AREA_LEN
/ **Run-time Image area*/
#define CODE_RUN_START_ADDR
#define CODE_RUN_AREA_LEN
                                                                (CODE RUN_HEADER_ADDR + CODE_RUN_HEADER_AREA_LEN)
/ * * Upgrade image area * /
#define CODE_UPD_START_ADDR
                                                                 CODE RUN_START_ADDR + CODE_RUN_AREA_LEN)
#define CODE_UPD_AREA_LEN
/**Area can be used by User*/
#define USER_ADDR_START
#define TLS_FLASH_PARAM_DEFAULT
#define USER_AREA_LEN
                                                                (CODE_UPD_START_ADDR + CODE_UPD_AREA_LEN)
(USER_ADDR_START)
                                                                (CODE_UPD_HEADER_ADDR - USER_ADDR_START)
```

6) 依据确定的升级区间的起始位置调整 IMAGE 生成的参数(红色字体)

```
wm_gzip.exe "..\Bin\WM_W600.bin"
```

 $makeimg.exe "..\Bin\WM_W600.bin.gz" "..\Bin\WM_W600_GZ.img" 0 1 "..\Bin\version.txt" \\ \textbf{90000} 10100 "..\Bin\WM_W600.bin" \\ makeimg.exe "..\Bin\WM_W600.bin" "..\Bin\WM_W600_SEC.img" 0 0 "..\Bin\version.txt" \\ \textbf{90000} 10100 \\ \textbf{10100} \\ \textbf{$

makeimg.exe "..\Bin\WM_W600.bin" "..\Bin\WM_W600.img" 0 0 "..\Bin\version.txt" 90000 10100 makeimg_all.exe "..\Bin\secboot.img" "..\Bin\WM_W600.img" "..\Bin\WM_W600.FLS"

6.2.2.2 举例

如果用户编译的 IMAGE 大小为

WM_W600_SEC.img: 311Kbyte WM_W600_GZ.img: 222Kbyte

把 IMAGE 的大小向上取 64Kbyte 的整数倍(重要),则

运行区空间: 320Kbyte 升级区空间: 256Kbyte

配置步骤如下:

1) 用户的新空间如图黄色部分

图 6-3

2) 新的代码空间调整为:

#define SECBOOT_HEADER_ADDR
#define SECBOOT_HEADER_AREA_LEN

#define SECBOOT_AREA_ADDR
#define SECBOOT_AREA_LEN

/**Run-time image header area*/
#define CODE_RUN_HEADER_AREA_LEN

/**Run-time image area*/
#define CODE_RUN_START_ADDR
#define CODE_RUN_AREA_LEN

/**Upgrade image area*/
#define CODE_UPD_START_ADDR
#define CODE_UPD_AREA_LEN

/**Area can be used by User*/
#define USER_ADDR_START
#define TLS_FLASH_PARAM_DEFAULT
#define TLS_FLASH_PARAM_DEFAULT
#define USER_AREA_LEN

3) IMAGE 生成修改为:

(FLASH_BASE_ADDR + FLASH_KEY_PARAM_AREA_LEN)
(0x1000)

(SECBOOT_HEADER_ADDR + SECBOOT_HEADER_AREA_LEN)
(0x10000 - FLASH_KEY_PARAM_AREA_LEN - SECBOOT_HEADER_AREA_LEN)

(SECBOOT_AREA_ADDR + SECBOOT_AREA_LEN)
(0x100)

(CODE_RUN_HEADER_ADDR + CODE_RUN_HEADER_AREA_LEN)
(CODE_RUN_START_ADDR + CODE_RUN_AREA_LEN)
(CODE_UPD_START_ADDR + CODE_UPD_AREA_LEN)
(USER_ADDR_START)
(CODE_UPD_HEADER_ADDR - USER_ADDR_START)

 $wm_gzip.exe "..\Bin\WM_W600.bin"$

makeimg.exe "..\Bin\WM_W600.bin.gz" "..\Bin\WM_W600_GZ.img" 0 1 "..\Bin\version.txt" 60000 10100 "..\Bin\WM_W600.bin" makeimg.exe "..\Bin\WM_W600.bin" "..\Bin\WM_W600_SEC.img" 0 0 "..\Bin\version.txt" 60000 10100 makeimg.exe "..\Bin\WM_W600.bin" "..\Bin\WM_W600.img" 0 0 "..\Bin\version.txt" 60000 10100 makeimg_all.exe "..\Bin\secboot.img" "..\Bin\WM_W600.img" "..\Bin\WM_W600.FLS"

4) 重新编译烧录 WM_W600_GZ.img 文件,模块启动后,用户参数区即变为新的设定值。

6.2.3 用户参数区的双备份机制

如果用户参数区会记录关键信息,建议用户实现双备份机制,主区和备区按照 4Kbyte 间隔划分。