

Radboud University Nijmegen

The Law of Large Numbers (Bernouiili, 1713) + The Central Limit Theorem (de Moivre, 1733) + The Gauss-Markov Theorem (Gauss, 1809) + Statistics by Intercomparison (Galton, 1875) = Social Physics (Quetelet, 1840)

Collectively known as: The Classical Ergodic Theorems

Molenaar, P.C.M. (2008). On the implications of the classical ergodic theorems:

Analysis of developmental processes has to focus on intra individual variation. *Developmental Psychobiology*, *50*, 60-69

component dominant dynamics

interaction dominant dynamics

Deterministic chaos (Lorenz, 1972) (complexity, nonlinear dynamics, predictability)

Takens' Theorem (1981) (phase space reconstruction)

Systems far from thermodynamic equilibrium (Prigogine, & Stengers, 1984)

SOC $I \frac{1}{f^{\alpha}}$ noise (Bak, 1987) (self-organized criticality, interdependent measurements)

Fractal geometry (Mandelbrot, 1988) (self-similarity, scale free behaviour, infinite variance)

Aczel's Anti-Foundation Axiom (1988) (hyperset theory, circular causality, complexity analysis)

Two types of mathematical formalism:

Random events / processes Linear Efficient causes

Random events / processes Deterministic events / processes Linear / Nonlinear Efficient causes / Circular causality

Two types of mathematical formalism:

Random events / processes Linear Efficient causes Random events / processes
Deterministic events / processes
Linear / Nonlinear
Efficient causes / Circular causality

component dominant dynamics

The Law of Large Numbers (Bernouiili, 1713) +
The Central Limit Theorem (de Moivre, 1733) +
The Gauss-Markov Theorem (Gauss, 1809) +
Statistics by Intercomparison (Galton, 1875) =
Social Physics (Quetelet, 1840)

Collectively known as: The Classical Ergodic Theorems

Molenaar, P.C.M. (2008). On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on intra individual variation. *Developmental Psychobiology*, *50*, 60-69

interaction dominant dynamics

Deterministic chaos (Lorenz, 1972) (complexity, nonlinear dynamics, predictability)

Takens' Theorem (1981) (phase space reconstruction)

Systems far from thermodynamic equilibrium (Prigogine, & Stengers, 1984)

SOC $I \frac{1}{f^{\alpha}}$ noise (Bak, 1987) (self-organized criticality, interdependent measurements)

Fractal geometry (Mandelbrot, 1988) (self-similarity, scale free behaviour, infinite variance)

Aczel's Anti-Foundation Axiom (1988) (hyperset theory, circular causality, complexity analysis)

Two types of mathematical formalism for two types of systems

component dominant dynamics

Jakob Bernouiili (1654-1704): [The application of the Law of large numbers in chance theory] to predict the weather next month or year, predicting the winner of a game which depends partly on psychological and or physical factors or to the investigation of matters which depend on hidden causes, which can interact in a multitude of ways is completely futile!" Vervaet (2004)

A system is ergodic iff:

The averaged behaviour of an observed variable in a substantial ensemble of individuals (space-average) is expected to be equivalent to the average behaviour of an individual observed over a substantial amount of time (time average)

f.i. Throw 100 dice at once, and then throw 1 die 100 times in a row... The expected value will be similar for both measurements

interaction dominant dynamics

Deterministic chaos (Lorenz, 1972) (complexity, nonlinear dynamics, predictability)

Takens' Theorem (1981) (phase space reconstruction)

Systems far from thermodynamic equilibrium (Prigogine, & Stengers, 1984)

SOC /
$$\frac{1}{f^{\alpha}}$$
 noise (Bak, 1987)

(self-organized criticality, interdependent measurements)

Fractal geometry (Mandelbrot, 1988) (self-similarity, scale free behaviour, infinite variance)

Aczel's Anti-Foundation Axiom (1988) (hyperset theory, circular causality, complexity analysis)