Louis Meunier

Algebra 2 MATH251

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Anush Tserunyan.

Contents

-	Intr	roduction	2
	1.1	Vector Spaces	2
	1.2	Creating Spaces from Other Spaces	4
	1.3	Linear Combinations and Space	6
	1.4	Linear Dependence and Span	10

1 Introduction

Remark 1.1. This course is about vector spaces and linear transformations between them; a vector space involves multiplication by scalars, where the scalars come from some field. We recall first examples of fields, then vector spaces, as a motivation, before presenting a formal definition.

1.1 Vector Spaces

Remark 1.2. Much of this is recall from Algebra 1.

*** Example 1.1: Examples of Fields**

- 1. \mathbb{Q} ; the field of rational numbers.
- 2. \mathbb{R} ; the field of real numbers; $\mathbb{Q} \subseteq \mathbb{R}$.
- 3. \mathbb{C} ; the field of complex numbers; $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- 4. $\mathbb{F}_p \equiv \mathbb{Z}/p\mathbb{Z} \equiv \{0, 1, \dots, p-1\}$; the (unique) field of pelements, where pprime.

(a)
$$p = 2$$
; $\mathbb{F}_2 \equiv \{0, 1\}$.

(b)
$$p = 3$$
; $\mathbb{F}_3 \equiv \{0, 1, 2\}$.

(c) · · ·

a where $a +_p b :=$ remainder of $\frac{a+b}{p}$, $a \cdot_p b :=$ remainder of $\frac{a \cdot b}{p}$.

Remark 1.3. Throughout the course, we will denote an abstract field as \mathbb{F} .

® Example 1.2: Examples of Vector Spaces

- 1. $\mathbb{R}^3 := \{(x,y,z) : x,y,z \in \mathbb{R}\}$. We can add elements in \mathbb{R}^3 , and multiply them by real scalars.
- 2. $\mathbb{F}^n := \underbrace{\mathbb{F} \times \mathbb{F} \times \cdots \mathbb{F}}_{n \text{ times}} := \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F}\}, \text{ where } n \in \mathbb{N}^1; \text{ this is a generalization of the previous example, where we took } n = 3, \mathbb{F} = \mathbb{R}. \text{ Operations follow identically; addition:}$

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) := (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and, taking a scalar $\lambda \in \mathbb{F}$, multiplication:

$$\lambda \cdot (a_1, a_2, \dots, a_n) := (\lambda \cdot a_1, \lambda \cdot a_2, \dots, \lambda \cdot a_n).$$

We refer to these elements (a_1, \dots, a_n) as vectors in \mathbb{F}^n ; the vector for which

 $a_i = 0 \,\forall i$ is the 0 *vector*, and is the additive identity, making \mathbb{F}^n an abelian group under addition, that admits multiplication by scalars from \mathbb{F} .

- 3. $C(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} : f \text{ continuous} \}$. Here, we have the constant zero function as our additive identity $(x \mapsto 0 \forall x)$, and addition/scalar multiplication of two continuous real functions are continuous.
- 4. $\mathbb{F}[t] := \{a_0 + a_1t + a_2t^2 + \dots + a_nt^n : a_i \in \mathbb{F} \, \forall i, n \in \mathbb{N} \}$, ie, the set of all polynomials in t with coefficients from \mathbb{F} . Here, we can add two polynomials;

$$(a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_mt^m) := \sum_{i=0}^{\max\{n,m\}} (a_i + b_i)t^i,$$

(where we "take" undefined a_i/b_i 's as 0; that is, if m > n, then $a_{m-n}, a_{m-n+1}, \ldots, a_m$ are taken to be 0). Scalar multiplication is defined

$$\lambda \cdot (a_0 + a_1t + a_2t^2 + \dots + a_nt^n) := \lambda a_0 + \lambda a_1t + \lambda a_2t^2 + \dots + \lambda a_nt^n.$$

Here, the zero polynomial is simply 0 (that is, $a_i = 0 \,\forall i$).

→ Definition 1.1: Vector Space

A vector space V over a field \mathbb{F} is an abelian group with an operation denoted + (or $+_V$) and identity element² denoted 0_V , equipped with scalar multiplication for each scalar $\lambda \in \mathbb{F}$ satisfying the following axioms:

1.
$$1 \cdot v = v$$
 for $1 \in \mathbb{F}$, $\forall v \in V$.

2.
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta)v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$$

3.
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$$

4.
$$\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v, \forall \alpha \in \mathbb{F}, u, v \in V.$$

We refer to elements $v \in V$ as vectors.

$\hookrightarrow \underline{\textbf{Proposition}}$ 1.1

For a vector space V over a field \mathbb{F} , the following holds:

1.
$$0 \cdot v = 0_V$$
, $\forall v \in V$ (where $0 := 0_{\mathbb{F}}$)

2.
$$-1 \cdot v = -v, \forall v \in V \text{ (where } 1 := 1_{\mathbb{F}})^3$$

¹Where we take $0 \in \mathbb{N}$, for sake of consistency. Moreover, by convention, we define \mathbb{F}^0 (that is, when n=0) to be $\{0\}$; the trivial vector space.

²The "zero vector".

3.
$$\alpha \cdot 0_V = 0_V, \forall \alpha \in \mathbb{F}$$

³NB: "additive inverse"

<u>Proof.</u> 1. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 \cdot v = 0_V$ (by "cancelling" one of the $0 \cdot v$ terms on each side).

2.
$$v + (-1 \cdot v) = (1 \cdot v + (-1) \cdot v) = (1 - 1) \cdot v = 0 \cdot v = 0_V \implies (-1 \cdot v) = -v.$$

3. $\alpha \cdot 0_V = \alpha \cdot (0_V + 0_V) = \alpha \cdot 0_V + \alpha \cdot 0_V \implies \alpha \cdot 0_V = 0_V$ (by, again, cancelling a term on each side).

→ Wed Jan 10 14:16:29 EST 2024

1.2 Creating Spaces from Other Spaces

→ Definition 1.2: Product/Direct Sum of Vector Spaces

For vector spaces U, V over the same field \mathbb{F} , we define their *product* (or *direct sum*) as the set

$$U \times V = \{(u, v) : u \in U, v \in V\},\$$

with the operations:

$$(u_1, v_1) + (u_2, v_2) := (u_1 + u_2, v_1 + v_2)$$

 $\lambda \cdot (u, v) := (\lambda \cdot u, \lambda \cdot v)$

\circledast Example 1.3: \mathbb{F}

 $\mathbb{F}^2 = \mathbb{F} \times \mathbb{F}$, where \mathbb{F} is considered as the vector space over \mathbb{F} (itself).

→ Definition 1.3: Subspace

For a vector space V over a field \mathbb{F} , a *subspace* of V is a subset $W \subseteq V$ s.t.

- 1. $0_V \in W^4$
- 2. $u + v \in W \, \forall \, u, v \in W$ (closed under addition)
- 3. $\alpha \cdot u \in W \, \forall \, u \in W, \alpha \in \mathbb{F}^5$

Then, W is a vector space in its own right.

*** Example 1.4: Examples of Subspaces**

- 1. Let $V := \mathbb{F}^n$.
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 = 0\} = \{(0, x_2, x_3, \dots, x_n) : x_i \in \mathbb{F}\}.$
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 + 2 \cdot x_2 = 0\}$

<u>Proof.</u> Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in W$. Then, $x + y = (x_1 + y_1, ..., x_n + y_n)$, and $x_1 + y_1 + 2 \cdot (x_2 + y_2) = x_1 + 2 \cdot x_2 + y_1 + 2 \cdot y_2 = 0 + 0 = 0 \implies x + y \in W$. Similar logic follows for axioms 2., 3.

• (More generally)

$$a_{11}x_1 + \cdots + a_{1n}x_n = 0$$

$$W := \{(x_1, \dots, x_n) \in \mathbb{F}^n : a_{21}x_1 + \cdots + a_{2n}x_n = 0 \},$$

$$\vdots$$

$$a_{k1}x_1 + \cdots + a_{kn}x_n = 0$$

that is, a linear combination of homogenous "conditions" on each term.

- $W^* := \{(x_1, \dots, x_n) : x_1 + x_2 = 1\}$ is *not* a subspace; it is not closed under addition, nor under scalar multiplication.
- 2. Let $\mathbb{F}[t]_n := \{a_0 + a_1t + \dots + a_nt^n : a_i \in \mathbb{F}\}$. Then, $\mathbb{F}[t]_n$ is a subspace of $\mathbb{F}[t]$, the more general polynomial space. *However*, the set of all polynomials of degree *exactly* n (all axioms fail, in fact) is not a subspace of $\mathbb{F}[t]_n$.
 - $W := \{p(t) \in \mathbb{F}[t]_n : p(1) = 0\}.$
 - $W := \{p(t) \in \mathbb{F}[t]_n : p''(t) + p'(t) + 2p(t) = 0\}.$
- 3. Let $V:=C(\mathbb{R})$ be the space of continuous function $\mathbb{R} \to \mathbb{R}$.

- ⁴This is equivalent to requiring that $W \neq \emptyset$; stated this way, axiom 3. would necessitate that $0 \cdot w = 0_V \in W$.
- ⁵Note that these axioms are equivalent to saying that W is a subgroup of V with respect to vector addition; 2. ensures closed under addition, and 3. ensures the existence of additive inverses (as per $-1 \cdot v = -v$).

• $W := \{ f \in C(\mathbb{R}) : f(\pi) + 7f(\sqrt{2}) = 0 \}.$

• $W:=C^1(\mathbb{R}):=$ everywhere differentiable functions.

• $W := \{ f \in C(\mathbb{R}) : \int_0^1 f \, \mathrm{d}x = 0 \}.$

\hookrightarrow Proposition 1.2

Let W_1, W_2 be subspaces of a vector space V over \mathbb{F} . Then, define the following:

1. $W_1 + W_2 := \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$

2. $W_1 \cap W_2 := \{ w \in V : w \in W_1 \land w \in W_2 \}$

These are both subspaces of V.

Proof. 1. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 + W_2$.

(b) $(u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W_1 + W_2$.

(c) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v \in W_1 + W_2$

2. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 \cap W_2$.

(b) $u, v \in W_1 \cap W_2 \implies u + v \in W_1 \wedge u + v \in W_2 \implies u + v \in W_1 \cap W_2$.

(c) $\alpha \cdot u \in W_1 \wedge \alpha \cdot u \in W_2 \implies \alpha \cdot u \in W_1 \cap W_2$.

1.3 Linear Combinations and Space

→ Definition 1.4: Linear Combination

Let V be a vector space over a field \mathbb{F} . For finitely many vectors v_1, v_2, \ldots, v_n , their *linear combination* is a sum of the form

$$\sum_{i=1}^{n} a_i v_i = a_1 \cdot v_1 + \dots + a_n \cdot v_n,$$

where $a_i \in \mathbb{F} \, \forall i$.

A linear combination is called *trivial* if $a_i = 0 \,\forall i$, that is, all coefficients are 0.

If n=0 (ie, we are "summing up" 0 vectors), we define the sum as the zero vector; $\sum_{i=1}^0 a_i v_i := 0_V$.

 \hookrightarrow Wed Jan 10 13:37:51 EST 2024

→ Definition 1.5: A More General Definition of Linear Combination

For a a (possible infinite) set S of vectors from V, a linear combination of vectors in S is a linear combination of $a_1v_1 + \cdots + a_nv_n$ for some finite subset $\{v_1, \dots, v_n\} \subseteq S^6$

> ⁶That is, we do not allow infinite sums.

\hookrightarrow **Definition** 1.6: Span

For a subset $S \subseteq V$, we define its *span* as

 $\operatorname{Span}(S) := \operatorname{set} \operatorname{of} \operatorname{all linear combinations of} S := \{a_1v_1 + \cdots + a_nv_n : a_i \in \mathbb{F}, v_i \in S\}.$

By convention, we set $Span(\emptyset) = \{0_V\}.$

*** Example 1.5**

Let $S := \{(1,0,-1), (0,1,-1), (1,1,-2)\} \subset \mathbb{R}^3$. Then,

$$0_{\mathbb{R}^3} = (0,0,0) = 1 \cdot (1,0,-1) + 1 \cdot (0,1,-1) + -1 \cdot (1,1,-2).$$

We claim, moreover, that $\mathrm{Span}(S) = U := \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ (a plane through the origin).

Proof. Note that $S \subseteq U$, hence $S \subseteq \operatorname{Span} S \subseteq U$. OTOH, if $(x, y, z) \in U$, we have z = -x - y, and so

$$(x, y, z) = (x, y, -x - y) = x \cdot (1, 0, -1) + y \cdot (0, 1, -1) \in \text{Span}(S)$$

hence $U \subseteq \operatorname{Span}(S)$ and thus $\operatorname{Span}(S) = U$.

Remark 1.4. We implicitly used the following claim in the proof above; we prove it more generally.

\hookrightarrow Proposition 1.3

§1.3

Let V be a vector space over \mathbb{F} and let $S \subseteq V$. Then, $\operatorname{Span}(S)$ is always a subspace. Moreover, it is the smallest (minimal) subspace containing S (that is, for any subspace $U \supseteq S$, we have that $U \supseteq \operatorname{Span} S$).

Proof. Because adding/scalar multiplying linear combinations of elements of S again results in a linear combination of elements of S, and $0_V \in \text{Span}(S)$ by definition, we have that Span(S)is indeed a subspace.

If $U \supset S$ is a subspace of V containing S, then by definition U is closed under addition, that is, taking linear combinations of its elements (in particular, of elements of S); hence, $U \supset$ $\mathrm{Span}(S)$.

→ Lemma 1.1

For $S \subseteq V$ and $v \in V$, $v \in \operatorname{Span}(S) \iff \operatorname{Span}(S \cup \{v\}) = \operatorname{Span}(S)$.

<u>Proof.</u> (\Longrightarrow) Let $v \in \operatorname{Span}(S) \Longrightarrow v = a_1v_1 + \cdots + a_nv_n, a_i \in \mathbb{F}, v_i \in V$. Then, for any linear combination

$$b_1u_1 + \cdots + b_mu_m + b \cdot v = b_1u_1 + \cdots + b_mu_m + b(a_1v_1 + \cdots + a_nv_n)$$

is a linear combination of vectors in $S \cup \{v\}$ (first equality) or equivalently, a combination of vectors in S (second equality) and thus $\mathrm{Span}(S \cup \{v\}) \subseteq \mathrm{Span}\, S$. The reverse inclusion follows trivially.

$$(\longleftarrow) \operatorname{Span}(S \cup \{v\}) = \operatorname{Span}S \implies v \in \operatorname{Span}(S).$$

*** Example 1.6**

(From the above example) We have

$$Span(\{(1,0,-1),(0,1,-1)\} \cup \{(1,1,-2)\}) = Span(\{(1,0,-1),(0,1,-1)\}),$$

since $(1, 1, -2) \in \text{Span}(\{(1, 0, -1), (0, 1, -1)\})$ (it was redundant, as it could be generated by the other two vectors).

$\hookrightarrow \underline{\textbf{Definition}}$ 1.7: Spanning Set

Let V be a vector space over a field \mathbb{F} . We call $S \subseteq V$ a spanning set for V if $\mathrm{Span}(S) = V$. We call such a spanning set minimal if no proper subset of S is a spanning set $/\!\!\!/ 2v \in S$ s.t. $S \setminus \{v\}$ spanning).

Remark 1.5. Note that any $S \subseteq V$ is a spanning for $\mathrm{Span}(S)$. But, S may not be minimal; indeed, consider the previous example. We were able to remove a vector from S while having the same span.

*** Example 1.7**

§1.3

For \mathbb{F}^n as a vector space over \mathbb{F} , the *standard spanning set*

$$St := \{ \underbrace{(1, \dots, 0)}_{:=e_1}, \underbrace{(0, 1, 0, \dots, 0)}_{:=e_2}, \dots, \underbrace{(0, \dots, 1)}_{e_n} \}.$$

Given any $x := (x_1, \dots, x_n) \in \mathbb{F}^n$, we can write

$$x = x_1 \cdot e_1 + \cdots + x_n \cdot e_n$$
.

This is clearly minimal; removing any e_i would then result in a 0 in the *i*th "coordinate"

→ **<u>Definition</u>** 1.8: Linear Dependence

Let V be a vector space over a field \mathbb{F} . A set $S \subseteq V$ is said to be *linearly dependent* if there is a nontrivial linear combination of vectors in S that is equal to 0_V .

Conversely, S is called *linearly independent* if there is no nontrivial linear combination of vectors in S that is equal to 0_V ; all linear combinations of vectors in S that equal 0_V are trivial.

*** Example 1.8**

- 1. The empty set \varnothing is linearly independent; there are no non-trivial linear combinations that equal 0_V (there are no linear combinations at all).
- 2. For $v \in V$, the set $\{v\}$ is linearly dependent iff $v = 0_V$.
- 3. $S := \{(1,0,-1),(0,1,-1),(1,1,-2)\} := \{v_1,v_2,v_3\}; S$ is linearly dependent $(v_1+v_2-v_3=(0,0,0)).$
- 4. $V:=\mathbb{F}^3$; $S:=\{(1,0,-1),(0,1,-1),(0,0,1)\}=\{v_1,v_2,v_3\}$ is linearly independent.

Proof. Suppose

$$a_1v_1 + a_2v_2 + a_3v_3 = 0_V$$

 $\implies a_1 = 0 \land a_2 = 0 \land -a_1 - a_2 + a_3 = 0 \implies a_3 = 0$
 $\implies a_1 = a_2 = a_3 = 0$

Hence only a trivial linear combination is possible.

5. St_n is linearly independent.

Proof.

§1.3

$$\sum_{i=1}^{n} a_i e_i = 0_{\mathbb{F}^n} \implies a_i = 0 \,\forall i$$

\hookrightarrow Lemma 1.2

Let V be a vector space over a field \mathbb{F} , and $S \subseteq V$ (possibly infinite).

- 1. S is linearly dependent \iff there is a finite subset $S_0 \subseteq S$ that is linearly dependent.
- 2. S is linearly independent \iff all finite subsets of S are linearly independent.

Proof. 2. follows from the negation of 1.

 (\Leftarrow) Trivial.

(\Longrightarrow) Suppose S linearly dependent. Then, $0_V = \text{some nontrivial linear combination of vectors } v_1, \ldots, v_n \text{ in } S$. Let $S_0 = \{v_1, \ldots, v_n\}$, then, S_0 is linearly dependent itself.

1.4 Linear Dependence and Span

\hookrightarrow Proposition 1.4

Let V be a vector space over a field \mathbb{F} and $S \subseteq V$.

- 1. S linearly dependent $\iff \exists v \in \text{Span}(S \setminus \{v\}).$
- 2. S linearly independent \iff there is no $v \in \text{Span}(S \setminus \{v\})$.

Proof. 2. follows from the negation of 1.

(\Longrightarrow) Suppose S linearly dependent. Then, $0_V = \sum_{i=1}^n a_i v_i$ for some nontrivial linear combination of distinct vectors S. At least one of $a_i \neq 0$; we can assume wlog (reindexing) $a_1 \neq 0$. Then,

$$a_1 v_1 = -\sum_{i=2}^n a_i v_i \implies v_1 = (-a_1^{-1}) \sum_{i=2}^n a_i v_i = \sum_{i=2}^n (-a_1^{-1} a_i) v_i,$$

hence, $v_1 \in \operatorname{Span}(\{v_2, \dots, v_n\}) \subseteq \operatorname{Span}(S \setminus \{v\})$

(\iff) Suppose $v \in \text{Span}(S \setminus \{v\})$, then $v = a_1v_1 + \cdots + a_nv_n$, with $v_1, \ldots, v_n \in S \setminus \{v\}$, thus

$$0_V = a_1 v_1 + \cdots + a_n v_n - v,$$

which is not a trivial combination (-1 on the v; v cannot "merge" with the other vectors), hence S is linearly dependent.

\hookrightarrow Corollary 1.1

 $S \subseteq V$ is linearly independent $\iff S$ a minimal spanning set of Span S.

Proof. Follows from proposition 1.4, 2.

→ **Definition** 1.9: Maximally Independent

Let V be a vector space over a field \mathbb{F} . A set $S \subseteq V$ is called *maximally independent* if S is linearly independent and $\exists v \in V \setminus S$ s.t. $S \cup \{v\}$ is still linearly independent.

In other words, there is no proper supset $\tilde{S} \supseteq S$ that is still independent.

→ Lemma 1.3

If $S \subseteq V$ maximally independent, then S is spanning for V.

<u>Proof.</u> Let $S \subseteq V$ be maximally independent. Let $v \in V$; supposing $v \notin S$ (in the case that $v \in S$, then $v \in \operatorname{Span}(S)$ trivially). By maximality, $S \cup \{v\}$ is linearly dependent, hence there exists a nontrivial linear combination that equals 0_V . Since S independent, this combination must include v, with a nonzero coefficient. We can write

$$av + \sum_{i=1}^{n} a_i v_i = 0_V \quad a \neq 0, v_i \in S$$

$$\implies v = \sum_{i=1}^{n} (-a^{-1}a_i)v_i \in \operatorname{Span} S.$$

\hookrightarrow Theorem 1.1

Let V be a vector space over a field \mathbb{F} and let $S \subseteq V$. TFAE:

- 1. S is a minimal spanning set;
- 2. S is linearly independent and spanning;
- 3. S is a maximally linearly independent set;
- 4. Every vector in V is equal to *unique* linear combination of vectors in S.

→ Mon 7an 15 13:44:34 EST 2024

<u>Proof.</u> (1. \implies 2.) Suppose S is spanning for V and is minimal. Then, by corollary 1.1, we have that S is linearly independent, and is thus both linearly independent and spanning.

(2. \Longrightarrow 3.) Suppose S is linearly independent and spanning. Let $v \in V \setminus S$; S is spanning, hence $v \in \operatorname{Span} S$, that is, there exists a linear combination of vectors in S that is equal to v:

$$v = a_1 v_1 + \dots + a_n v_n, a_i \in \mathbb{F}, v_i \in S.$$

Thus, $0_V = a_1v_1 + \cdots + a_nv_n - v$, thus $S \cup \{v\}$ is linearly dependent, and so S is maximally linearly independent.

(3. \implies 1.) Suppose S is maximally linearly independent. By lemma 1.3, S is spanning, and since S is linearly independent, by corollary 1.1, S is minimally spanning for Span S.

(2. \implies 4.) Suppose S is linearly independent and spans V, and let $v \in V$. We have that $v \in \operatorname{Span} S$ and hence is equal to a linear combination of vectors in S. This gives existence; we now need to prove uniqueness.

Suppose there exist two linear combinations that equal v,

$$v = a_1v_1 + \cdots + a_nv_n = b_1u_1 + \cdots + b_mu_m$$

 $a_i, b_j \in \mathbb{F}$, $v_i, u_j \in S$. With appropriate reindexing/relabelling and allowing certain scalars to equal 0, we can assume that the combinations use the same vectors (with potentially different coefficients), that is,

$$v = a_1 w_1 + \dots + a_k w_k = b_1 w_1 + \dots + a_k w_k.$$

This implies, then,

$$(a_1 - b_1)w_1 + \cdots + (a_k - b_k)w_k = 0_V$$

and by the assumed linear independent of S, each coefficient $(a_i - b_i) = 0 \,\forall i \implies a_i = b_i \,\forall i$, hence, these are indeed the same representations, and thus this representation is unique.

(4. \implies 2.) Suppose every vector in V admits a unique linear combination of vectors in S. Clearly, then, S is spanning. It remains to show S is linearly independent. Suppose

$$0_V = a_1 v_1 + \dots + a_n v_n$$

for $v_i \in S$. But we have that every vector has a unique representation, and we know that $a_i = 0 \,\forall i$ is a (valid) linear combination that gives 0_V ; hence, this must be the unique combination, $a_i = 0 \,\forall i$, and the linear combination above is trivial. Hence, S is linearly independent and spanning.

\hookrightarrow **Definition 1.10: Basis**

If any (hence all) of the above statements hold, we call S a *basis* for V.

In the words of 4., we call the unique linear combination of vectors in S that is equal to v the unique representation of v in S. Its coefficients are called the Fourier coefficients of v in S.

*** Example 1.9**

- 1. $\operatorname{St}_n = \{e_i : 1 \leq i \leq n\}$ is a basis for \mathbb{F}^n .
- 2. In \mathbb{F}^3 , the set

$$\{(1,0,-1),(0,1,-1),(0,0,1)\}$$

is a basis; it is linearly independent and spanning.

3. For $\mathbb{F}[t]_n$, the standard basis is

$$\{1,t,t^2,\ldots,t^n\}.$$

4. For $\mathbb{F}[t]$, the standard basis is

$$S := \{1, t, t^2, \dots\} = \{t^n : n \in \mathbb{N}\}.$$

5. Let $\mathbb{F}[\![t]\!]$ denote the space of all formal power series $\sum_{n\in\mathbb{N}}a_nt^n$; polynomials are an example, but with only finite nonzero coefficients. Note that, then, the set S defined above is not a basis for this "extended" set. We can in fact find a basis for this set; we need more tools first.

$\hookrightarrow \underline{\text{Theorem}} \ 1.2$

Every vector space has a basis.

Remark 1.6. This theorem relies on assuming the Axiom of Choice.

→ Mon Jan 15 14:25:13 EST 2024