Computational complexity – Homework

Marc CHEVALIER

October 25, 2014

1 NP-Hardness

1.1 Halting problem

Let be φ an instance of SAT problem. We denote by n the number of variables.

Let be M a TURING machine which tests in a cycle all the 2^n possible assignations of the previous formula : when M has tested all assignations, it starts again. This machine halts if and only if φ is satisfiable. This reduction is polynomial, therefore $SAT \leqslant_p HALT$, ie. HALT is NP-hard since SAT is NP-hard.

HALT is not *NP*-complete otherwise it was decidable by a TURING-machine, but HALT is unsatisfiable.

1.2 *TQBF*

All instance of SAT problem is an instance of TQBF. Without transformation, we have a polynomial reduction, ie. $SAT \leq_p TQBF$ so TQBF is NP-hard.

This problem is known for being PSPACE-complete. It's not NP-complete.

1.3 NAE - 3 - SAT

Let be φ an instance of NAE - 3 - SAT.

$$\varphi = \bigwedge_{i=1}^{n} (x_{i,1} \vee x_{i,2} \vee x_{i,3})$$

We will describe the "not all equal" condition is term of formula.

$$\bigwedge_{i=1}^{n} \neg (x_{i,1} \wedge x_{i,2} \wedge x_{i,3}) \wedge \neg (\neg x_{i,1} \wedge \neg x_{i,2} \wedge \neg x_{i,3})$$

using DE MORGAN's law:

$$\psi := \bigwedge_{i=1}^{n} (\neg x_{i,1} \lor \neg x_{i,2} \lor \neg x_{i,3}) \land (x_{i,1} \lor x_{i,2} \lor x_{i,3})$$

$$|\psi| \sim 2|\varphi| \Rightarrow |\psi| = \mathcal{O}(|\varphi|).$$

Let $\omega := \varphi \wedge \psi$. ω is an instance of *SAT* and the reduction is polynomial. If there is an solution to the *SAT* problem ξ , then φ is satisfied and, thanks to ψ , the "not all equal" condition is true.

Reciprocally, if there is a solution of the NAE - 3 - SAT problem φ , then this assignation makes ξ true.

Consequently, $SAT \leq_p NAE - 3 - SAT$ and NAE - 3 - SAT is NP-hard.

Moreover, NAE - 3 - SAT is clearly NP: a valid assignation is a sufficient witness. We can check in polynomial time if this assignation makes the formula true and if the "not all equal" condition is satisfied. Then NAE - 3 - SAT is NP-complete.

2 Reductions

3 Difference of NP problems

Proposition 1. EXACTINDSET is in DP.

Proof. Let *A* be the set of all pairs (G, k) such that *G* has an independent set of size at least k, and let *B* be the set of all pairs (G, k) such *G* has a independent set of size at least k + 1. Then EXACTINDSET $= A \setminus B$ and *A* is in NP and *B* is in NP. Hence by definition of *DP*, EXACTINDSET is in *DP*.

Proposition 2. $\forall L \in DP$, L is polynomial-time reducible to EXACTINDSET.

Proof.

Lemma 3. INDSET $\geqslant_p 3 - SAT$

Proof. Suppose we have an instance F of 3 - SAT problem where $F = \bigwedge_{i=1}^{m} C_i$ where C_i is the disjunction of 3 variables. We note x_1, \ldots, x_n the variables. We create the graph G as follows:

- For each variable in each clause, create a vertex, which we will label with the name of the variable. Therefore there may be multiple vertexs with the label x_i or $\neg x_i$, if these variables appear in multiple clauses.
- For each clause, add an edge between the three vertices corresponding the variables from that
- For all i, add an edge between every pair of vertexs with one is labelled with x_i and the other labelled with x_i.

There is a independent set of size *m* in *G* if and only if *F* is satisfiable.

We note that this reduction from 3-SAT to INDSET took an instance φ of 3-SAT consisting of m clauses each of three literals and produced a graph G_{φ} with 3m vertexs such that if φ is satisfiable then the largest independent set in G has m vertexs, and if G is unsatisfiable then the largest independent set of G has at most m-1 vertices.

Now suppose that A is in DP. We want to show that $A \leq_p EXACTINDSET$. By definition of DP, $A = L_1 \setminus L_2$ for $(L_1, L_2) \in NP^2$. Since 3 - SAT is NP-complete, there are polytime functions f_1 , f_2 such that for i = 1, 2 and for all $x \in \{0,1\}^*$ we have $x \in L_i \Leftrightarrow f_i(x) \in 3SAT$. Hence for each fixed $x \in \{0,1\}^*$, setting $\varphi_i = f_i(x)$, we have $x \in L_i \Leftrightarrow \varphi_i$ is satisfiable Thus from the above reduction to INDSET, there is a polytime function which takes x to a pair of graphs G_1 , G_2 such that if m_i is the number of clauses in φ_i , then for i = 1, 2, no independent set in G_i has more than m_i vertices, and $x \in L_i \Leftrightarrow$ the largest independent set in G_i has size M_i .

Now we use the notation $G \sqcup H$ for the disjoint union of graphs G and H. That is, the vertices in $G \sqcup H$ are the disjoint union of those in G and H, and similarly for the edges. Now let $G'_1 = G_1 \sqcup G_1$ Then a maximum independent set in G'_1 is the union of maximum independent sets in the two copies of G_1 .

Thus $x \in L_1 \Rightarrow$ maximum independent set of G_1' is $2m_1$ and $x \in \overline{L_1} \Rightarrow$ maximum independent set of G_1' is $\leqslant 2m_1-2$. Now define G_2' so that its vertices are those of G_2 together with m_2-1 new vertices, and the edges consist of those of G_2 together with an edge from each of the new vertices to every vertex of G_2 . Then we have designed G'2 so that no independent set can contain both vertices of G_2 and new vertices, so $x \in L_2 \Rightarrow$ maximum independent set of G_2' is m_2 , $x \in \overline{L_2} \Rightarrow$ maximum independent set of G_2' is $m_2 - 1$. Now let $G_3 = G_1' \sqcup G_2'$ and let $k = 2m_1 + m_2 - 1$. To finish the proof that $A \leqslant_p DP$, it suffices to show that

Lemma 4.

$$x \in A \Leftrightarrow (G_3, k) \in DP$$

(⇒): Suppose $x \in A$. Then by (2) $x \in L_1 \cap L_2$, so by (3) and (6) we conclude the maximum independent set of $G_3 = G_1' \sqcup G_2'$ is $2m_1 + m_2 - 1 = k$.

(\Leftarrow): Suppose $x \notin A$. There are three cases:

- $x \in L_1 \cap L_2 \Rightarrow maxindset(G_3) = 2m_1 + m_2 > k$.
- $x \in L_1 \cap L_2 \Rightarrow maxindset(G_3) \leq 2m_1 + m_2 2 < k$
- $x \in L_1 \cap L_2 \Rightarrow maxindset(G_2) = 2m_1 + m_2 3 < k$

Theorem 5. EXACTINDSET is *DP-complete*.

Proof. EXACTINDSET is in DP (proposition 1) and it is DP-hard (proposition 2).

- 4 Classes with exponential resources
- 5 Downward self-reducibility
- 6 Space hierarchy theorem
- 7 Polynomial hierarchy