4.5 Κανόνας αλυσίδας

Θεώρημα (Κανόνας αλυσίδας - 1η περίπτωση)

Αν οι συναρτήσεις x(t), y(t) είναι παραγωγίσιμες στο t και η z=f(x,y) είναι παραγωγίσιμη στο (x,y)=(x(t),y(t)) τότε η z=f(x(t),y(t)) είναι παραγωγίσιμη στο t και

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Aν
$$z=x^2y$$
, $x=y^2$ και $y=t^3$, να βρεθεί η παράγωγος $\frac{dz}{dt}$.

Θεώρημα (Κανόνας αλυσίδας - 1η περίπτωση)

Αν οι συναρτήσεις x(t), y(t), z(t) είναι παραγωγίσιμες στο t και η w=f(x,y,z) είναι παραγωγίσιμη στο (x,y,z)=(x(t),y(t),z(t)) τότε η w=f(x(t),y(t),z(t)) είναι παραγωγίσιμη στο t και

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

Aν $w=\sqrt{x^2+y^2+z^2}$, $x=\cos\theta$, $y=\sin\theta$ και $z=\tan\theta$, να βρεθεί η παράγωγος $\frac{dw}{d\theta}$ για $\theta=\pi/4$.

Θεώρημα (Κανόνας αλυσίδας - 2η περίπτωση)

Αν οι συναρτήσεις x(u,v), y(u,v) έχουν μερικές παραγώγους στο (u,v) και η z=f(x,y) είναι παραγωγίσιμη στο (x,y)=(x(u,v),y(u,v)) τότε η z=f(x(u,v),y(u,v)) έχει μερικές παραγώγους στο (u,v) και

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad \text{kal} \quad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

Θεώρημα (Κανόνας αλυσίδας - 2η περίπτωση)

Αν οι συναρτήσεις x(u,v), y(u,v), z(u,v) έχουν μερικές παραγώγους στο (u,v) και η w=f(x,y,z) είναι παραγωγίσιμη στο (x,y,z)=(x(u,v),y(u,v),z(u,v)) τότε η w=f(x(u,v),y(u,v),z(u,v)) έχει μερικές παραγώγους στο (u,v) και

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial u} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial u} \quad \kappa\alpha\iota \quad \frac{\partial w}{\partial v} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial v} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial v}$$

Aν
$$w=e^{xyz}$$
, $x=3u+v$, $y=3u-v$, $z=u^2v$, να βρεθούν οι $\frac{\partial w}{\partial u}$, $\frac{\partial w}{\partial v}$.

Aν
$$w = xy + yz$$
, $x = 3u + v$, $y = \sin x$, $z = e^x$, να βρεθεί η $\frac{dw}{dx}$.

Θεώρημα (Παράγωγος πεπλεγμένης συνάρτησης)

An h exiswsh f(x,y)=c (ópou $c\in\mathbb{R}$) orize thn y we sundright tou x se penderhénh moran tote

$$\frac{dy}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

Απόδειξη:

$$Aν x^3 + y^2x - 3 = 0, να βρεθεί η \frac{dy}{dx}.$$

Θεώρημα (Παράγωγος πεπλεγμένης συνάρτησης)

Aν η εξίσωση f(x,y,z)=c (όπου $c\in\mathbb{R}$) ορίζει την z ως συνάρτηση των x,y σε πεπλεγμένη μορφή τότε

$$\frac{\partial z}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial z} \quad \text{kai} \quad \frac{\partial z}{\partial y} = -\frac{\partial f/\partial y}{\partial f/\partial z}$$

Απόδειξη:

Aν
$$x^2+y^2+z^2=1$$
, να βρεθούν οι η $\frac{\partial z}{\partial x}$ και $\frac{\partial z}{\partial y}$.