MATHEMATICS 121, FALL 2013 LINEAR ALGEBRA WITH APPLICATIONS

November 1, 2013 Luis Perez

Module #15, Proof: Prove that a continuous real-valued function f defined on a compact subset $C \subset \mathbb{R}^n$ has a supremum M and that there is a point $\mathbf{a} \in C$ (a maximum) where $f(\mathbf{a}) = M$.

First, we prove that a continuous real-valued function \mathbf{f} defined on a compact subset $C \subset \mathbb{R}^n$ has a supremum M.

Proof. Assume that **f** is unbounded. Then we can construct a sequence $\mathbf{f}(\mathbf{a_1}) > 1$, $\mathbf{f}(\mathbf{a_2}) > 2$, \cdots $\mathbf{f}(\mathbf{a_n}) > N$. Because C is compact, by the Bolzano-Weierstrass Theorem, we can extract a convergent subsequence $\mathbf{a_i}$ which converges to $a \in C$. Because **f** is continuous, we know that $\forall \epsilon > 0, \exists \delta > 0$ such that $|\mathbf{x} - a| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| < \epsilon$. Using the triangle inequality, we have

$$\begin{aligned} |\mathbf{f}(\mathbf{x})| &= |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a}) + \mathbf{f}(\mathbf{a})| \\ &\leq |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| + |\mathbf{f}(\mathbf{a})| \end{aligned} < \epsilon + \mathbf{f}(\mathbf{a})$$

Because $\mathbf{a_i}$ converges to \mathbf{a} , we have $|\mathbf{a_i} - \mathbf{a}| < \delta$ for sufficiently large i. But as soon $i > \mathbf{f}(\mathbf{a}) + \epsilon$, we have from our definition of \mathbf{f} that $\mathbf{f}(\mathbf{a_i}) > i > \mathbf{f}(\mathbf{a})$, a contradiction in our definition of continuity. Therefore, our assumption that \mathbf{f} is unbounded is wrong, and therefore \mathbf{f} must have a supremum, M.

Next, we show that there exists a point $\mathbf{a} \in C$ such that $\mathbf{f}(\mathbf{a}) = M$.

Proof. Using the above information, we know that there is a sequence $\mathbf{x_i}$ such that as $i \to \infty$, $\mathbf{f}(\mathbf{x_i}) = M$. Using Bolzano-Weierstrass again, we can extract a convergent subsequence $\mathbf{a_i}$ which converges to some point $\mathbf{a}inC$. Then it is clear that as $i \to \infty$, $\mathbf{a_i} \to \mathbf{a}$ and $\mathbf{f}(\mathbf{a}) = \mathbf{f}(\mathbf{a_i}) = M$.

Q.E.D.