Projektrapport Grupp 3 CUURRLLINNNGGG! TNM??? Modelleringsprojekt

Linnéa Mellblom Linnea Malcherek Julia Nilsson Michael Nilsson Linnéa Nåbo

2014-02-27

Redogörelse för arbetet 1

Translation 1.1

I beräkningarna av stenens rörelse har hänsyn tagits till tre påverkande friktionskrafter: Kraft i riktning motsatt stenens rörelseriktning, samt två krafter i ortogonal riktning mot denna (1). Dessa två krafter utgörs av friktionskrafterna i främre delen av stenen samt i den bakre delen. Differensen mellan dessa två krafter är vad som påverkar stenens curl. Stenens curl beror på att friktionen i den bakre delen av stenen är högre än den främre, på grund av de spår som den främre delen av stenen skapar i isen. REFERENS!

$$\bar{F}_t = \bar{F}_f + \bar{F}_b + \bar{F}$$

$$\bar{F}_f < \bar{F}_b$$
(1)

$$\bar{F}_f < \bar{F}_b \tag{2}$$

Translationen av stenen är en resulterande hastighetsvektor v, som består av hastigheten i rörelseriktningen samt av hastigheten i punkterna längs det ringformade band stenen roterar på. I beräkningarna har dessa förenklats till två hastighetsvektorer: en för den främsta punkten (p1) på stenens band och en för den bakersta (p2),(Figur 2).

Figur 1: Påverkan av stenens translation

Beräkningen av hastigheterna i punkterna p1 och p2 beräknas i två steg. I första steget omvandlas stenens rotationshastighet till translationshastighet i riktningen i punkternas rotationsriktning (3).

$$v_1 = v_1 = \omega r \tag{3}$$

I det andra steget beräknas den påverkan som friktionen har på hastigheten i de två punkterna (4) (5), där friktionen påverkas av hastigheten i punkten samt av en konstant c (6) . Resultatet av detta blir två hastighetsvektorer i motsatta riktningar där den ena är större än den andra och resultanten blir således den riktning åt vilken stenen curlar.

$$F_1 = \mu_1 mg \tag{4}$$

$$F_2 = \mu_2 mg \tag{5}$$

$$\mu = \frac{c}{\sqrt{v}} \tag{6}$$

Translationen av stenen i riktning framåt beräknas enligt Eulers stegmetod och med konstant friktionskoefficient.

Den resulterande hastigheten består i beräkningarna således av tre komponenter (7).

$$\bar{v} = \bar{v_f} + (\bar{v_1} + \bar{v_2}) \tag{7}$$

$$pos = pos_n + \bar{v_n} \Delta t \tag{8}$$

$$v = v_n + a\Delta t \tag{9}$$

$$\omega = \omega_n + \alpha \Delta t \tag{10}$$

2 Mål

- 1. Här är en numrerad lista
- 2. Filtrera
- 3. Kontrollera
- 4. Göra
- 5. Skapa
- 6. Möjlighet

2.1 Kravhantering

Här är en sektion

2.2 Principer och rutiner vid testning

2.2.1 Allmänt

Här är en subsektion

2.2.2 Rutiner för test

Och en subsub!

Här är en onumrerad lista

- Olika
- \bullet Att
- \bullet Att
- \bullet Om

Systemarkitekturen utgörs av ett Use-Case Diagram, och här kommer den automatiska referensen till den: (Figure 2).

Figur 2: Translation

3 Projektmedlemmar

Linnea Malcherek - projektledare och scrum master Julia Nilsson - kundkontakt och produktägare Linnéa Nåbo Lovisa Dahl