

Tema: Predavanje 7

19.11.2018

M011 Grafovi

Tema: Grafovi

Zimski semestar ak.god. 2018/2019.

Znamo da je graf G povezan ako između bilo koja dva vrha postoji put u G. No, zanima nas "koliko jako" je G povezan, tj. hoće li prestati biti povezan izbacivanjem samo jednog vrha (brida) ili izbacivanjem više njih.

Sjetimo se: Vrh grafa G zovemo rezni vrh ako se njegovim izbacivanjem povećava broj komponenata povezanosti od G. Analogno se definira rezni brid (ili most) nekog grafa.

Definicija 12.1

Vršni rez (separator, separacijski skup) od G je podskup $V'\subseteq V(G)$ tako da je G-V' nepovezan ili trivijalan. K-vršni rez je vršni rez s k elemenata, tj. |V'|=k. Slično definiramo bridni rez i k-bridni rez od G. Najmanji bridni rez zovemo vez.

Definiciia 12.2

Povezanost ili vršna povezanost $\kappa(G)$ grafa G je najmanji broj vrhova čijim izbacivanjem graf prestaje biti povezan ili postaje trivijalan, ti.

$$\kappa(G) = \min\{|V'| : V' \text{ vršni rez od } G\}.$$

Slično definiramo bridnu povezanost $\kappa'(G)$. To je najmanji broj bridova čijim izbacivanjem graf prestaje biti povezan ili postaje trivijalan, tj.

$$\kappa'(G) = \min\{|F'| : F' \text{ bridni rez od } G\}.$$

- \diamond Kažemo da je G k-povezan ako je $\kappa(G) > k$.
- \diamond Kažemo da je G k-bridno povezan ako je $\kappa'(G) \geq k$.

- Za G nepovezan imamo $\kappa(G) = \kappa'(G) = 0$.
- Ako je G povezan, onda je 1-povezan.
- Za svako stablo T_n s $n \geq 2$ vrhova imamo $\kappa'(T_n) = \kappa(T_n) = 1$.
- Za potpun graf vrijedi $\kappa(K_n) = \kappa'(K_n) = n 1$.
- Ako $G \neq K_n$ i ako su u i v nesusjedni vrhovi iz G, tada uklanjanjem n-2 vrhova dobivamo graf u kojem nema (u,v)-puta. Stoga $\kappa(G) \leq n-2$.

Teorem 12.3 (Whitney (1932.))

Za proizvoljan graf G imamo $\kappa(G) < \kappa'(G) < \delta(G)$.

<u>Dokaz:</u> Ako je G trivijalan (tj. ima samo jedan vrh), onda je $\kappa'(G) = \kappa(G) = 0$. Neka G nije trivijalan graf. Ukoliko uklonimo sve bridove incidentne s vrhom najmanjeg stupnja $\delta(G)$, dobiti ćemo nepovezan graf s barem jednim izoliranim vrhom. Slijedi $\kappa'(G) \leq \delta(G)$.

Dokažimo prvu nejednakost.

Ako je G nepovezan, onda je $\kappa(G) = \kappa'(G) = 0$ i gotovi smo.

Neka je G povezan. Ako je $\kappa'(G)=1$, onda G sadrži rezni brid e. Izbacivanjem jednog od krajeva od e, dobivamo ili nepovezan ili trivijalan graf (jer ako je e rezni brid u G, onda je G ili K_2 ili je barem jedan od krajeva od e rezni vrh.) U oba slučaja vrijedi $\kappa(G)=\kappa'(G)$.

Teorem 12.3 (Whitney (1932.))

Za proizvoljan graf G imamo $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Pretpostavimo sada da je $\kappa'(G)\geq 2$. Tada odstranjivanjem $\kappa'(G)$ bridova dobivamo graf koji nije povezan, a odstranjivanjem bilo kojih $\kappa'(G)-1$ od tih bridova dobivamo graf s najmanje jednim reznim bridom e=uv.

Za svaki od tih $\kappa'(G)-1$ bridova odaberimo jedan kraj koji je različit i od u i od v. (Moguće je da za dva ili više različitih bridova odaberemo isti vrh.) Označimo sa S skup takvih vrhova.

Njihovim uklanjanjem dobivamo graf iz kojeg smo izbacili najmanje $\kappa'(G)-1$ bridova. Ako smo dobili nepovezan graf, onda imamo $\kappa(G)\leq |S|\leq \kappa'(G)-1<\kappa'(G)$. Ako smo dobili povezan graf, onda on sadrži rezni brid e, pa izbacivanjem jednog od krajeva u i v brida e=uv koji ima još susjeda, dobivamo nepovezan ili trivijalan graf pa vrijedi $\kappa(G)<|S|+1<\kappa'(G)$.

Familija puteva u G je <mark>unutarnje disjunktna</mark> ako niti jedan vrh grafa G nije unutarnji vrh više od jednog puta te familije.

Kažemo da skup $S\subseteq V(G)$ separira vrhove u i v grafa G ako u i v pripadaju različitim komponentama povezanosti od G-S. Skup S zovemo (u,v)-separacijski skup.

G: a b c d e v f g h i

F={uabcv,udev,ufghiv}-FAMILIJA UNUTARNJE DISJUNKTNIH PUTEVA S={b,e,g}- (u,v)-SEPARACIJSKI SKUP

Teorem 12.4 (Mengerov teorem (1927.))

Neka je G graf s $|V(G)| \ge k+1$ vrhova. Tada vrijedi:

G je k-povezan ako i samo ako su svaka dva različita vrha od G povezana s barem k unutarnje disjunktnih puteva.

<u>Dokaz:</u> Najprije ćemo iskazati slabiju verziju Mengerovog teorema, a onda pomoću nje dokazati ovu (jaku) verziju.

Teorem 12.5 (Mengerov teorem (1927.))

Neka su u i v dva nesusjedna vrha u povezanom grafu G. Tada je minimalan broj vrhova koji separiraju u i v jednak maksimalnom broju unutarnje disjunktnih (u, v)-puteva.

Dokažimo sada glavni teorem:

Teorem 12.4 (Mengerov teorem (1927.))

Neka je G graf s $|V(G)| \ge k + 1$ vrhova. Tada vrijedi:

G je k-povezan ako i samo ako su svaka dva različita vrha od G povezana s barem k unutarnje disjunktnih puteva.

Dokaz: Ako su svaka dva različita vrha povezana s barem k unutarnje disjunktnih puteva, onda je jasno da $\kappa(G) \geq k$. Za drugi smjer pretpostavimo da $\kappa(G) = k$, ali da G sadrži vrhove u i v koji su povezani s najviše k-1 unutarnje disjunktnih puteva. Prema slabijoj verziji Mengerovog teorema, mora vrijediti $e = uv \in E(G)$. Tada su u i v povezani s najviše k-2 unut. disj. puteva u G-e pa u i v možemo separirati u G-e sa skupom S takvim da |S| = k-2. No, |V(G)| > k, jer je $\kappa(G) = k$, pa postoji $w \in V(G)$ koji nije u $S \cup \{u,v\}$. Vrh w je separiran u G-e sa S od u ili od v, inače bi postojao (u,v)-put u $(G-e) \setminus S$. Neka je w separiran od u. Skup $S \cup \{v\}$ ima k-1 elemenata i separira u i w u G. Dobili smo kontradikciju s pretpostavkom da $\kappa(G) = k$.

Iskažimo verziju Mengerova teorema s bridovima.

Teorem 12.6 (Mengerov teorem (1927.))

G je k-bridno povezan ako i samo ako su svaka dva različita vrha od G povezana s barem k bridno disjunktnih puteva.

