

Remarks

Upon entry of the foregoing amendment, claims 1-37 are pending in the application, with claims 1, 14, 25 and 27 being the independent claims. Claims 38 and 39 are sought to be cancelled without prejudice to or disclaimer of the subject matter therein. Claims 3-13, 16-24, 29-31 and 33-37 were amended only to eliminate multiple dependencies and correct spelling errors. Hence, no new matter has been added by the amendment and entry and consideration of the same is respectfully requested.

Conclusion

It is respectfully believed that the present application is in condition for examination. Early notice to this effect is earnestly solicited. If the Examiner believes, for any reason, that personal communication will expedite prosecution of this application, the Examiner is invited to telephone the undersigned at the number provided.

Respectfully submitted,

STERNE, KESSLER, GOLDSTEIN & FOX P.L.L.C.

Eric K. Steffe
Attorney for Applicants
Registration No. 36,688

Date: 9/20/02
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
(202) 371-2600

Version with markings to show changes made

In the Claims:

The pending claims 3-13, 16-24, 29-31 and 33-37 were substituted by the following claims 3-13, 16-24, 29-31 and 33-37.

3. (Once amended) Method according to claim 1 [or 2], characterized [characterised] in that the prokaryotic cell is *E. coli*.

4. (Once amended) Method according to [one of claims] claim 1 [to 3], characterized [characterised] in that the [the] following steps are carried out:

- a) the DNA encoding the tPA, tPA variant, K2S molecule or K2S variant is amplified by PCR;
- b) the PCR product is purified;
- c) said PCR product is inserted into a vector comprising the DNA coding for OmpA signal peptide and the DNA coding for gpIII in such a way that said PCR product is operably linked upstream to the DNA coding for the OmpA signal sequence and linked downstream to the DNA coding for gpIII of said vector;
- d) that a stop codon is inserted between said tPA, tPA variant, K2S molecule or K2S variant and gpIII;
- e) said vector is expressed by the prokaryotic cell;
- f) the tPA, tPA variant, K2S molecule or K2S variant is purified.

5. (Once amended) Method according to [one of claims] claim 1 [to 4],
characterized [characterised] in that the vector is a phagemid vector comprising the DNA
coding for OmpA signal peptide and the DNA coding for gpIII.

6. (Once amended) Method according to [one of claims] claim 1 [to 5],
characterized [characterised] in that the vector is the pComb3HSS phagemid.

7. (Once amended) Method according to [one of claims] claim 1 [to 6],
characterized [characterised] in that the DNA Sequence of OmpA linked upstream to
K2S comprises the following sequence or a functional variant thereof or a variant due to
the degenerate nucleotide code:

ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTCGCTACCG
TGGCCCAGGCAGGCCTCTGAGGGAAACAGTGACTGCTACTTGGGAATGGGTC
AGCCTACCGTGGCACGCACAGCCTCACCGAGTCGGTGCCCTGCCTCCCG
TGGAAATTCCATGATCCTGATAGGCAAGGTTACACAGCACAGAACCCAGTG
CCCAGGCACTGGGCCTGGCAAACATAATTACTGCCGAATCCTGATGGGGA
TGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACGTGGAGTA
CTGTGATGTGCCCTCCTGCTCCACCTGCCGCTGAGACAGTACAGCCAGCCT
CAGTTTCGCATCAAAGGAGGGCTTCGCCGACATGCCCTCCCACCCCTGGC
AGGCTGCCATTTGCCAAGCACAGGAGGTGCCGGAGAGCGGTTCTGTG
CGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTGCCGCCACTGCTTCC

AGGAGAGGTTCCGCCCCACCACCTGACGGTGATCTTGGCAGAACATACCG
GGTGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGAAAAATACATTGT
CCATAAGGAATTGATGATGACACTTACGACAATGACATTGCGCTGCTGCAG
CTGAAATCGGATTCGTCCCGCTGTGCCAGGAGAGCAGCGTGGTCCGCACTG
TGTGCCTCCCCCGGCGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCT
CTCCGGCTACGGCAAGCATGAGGCCTTGTCTCCTTCTATTGGAGCGGCTG
AAGGAGGCTCATGTCAGACTGTACCCATCCAGCCGCTGCACATCACAAACATT
TACTTAACAGAACAGTCACCGACAACATGCTGTGTGCTGGAGACACTCGGAG
CGGCGGGCCCCAGGCAAACATTGCACGACGCCTGCCAGGGCGATTGGGAGG
CCCCCTGGTGTCTGAACGATGGCCGCATGACTTGGTGGCATCATCAGC
TGGGGCCTGGCTGTGGACAGAAGGATGTCCGGGTGTGTACACAAAGGTTA
CCAACCTACCTAGACTGGATTGACAAACATGCGACCG (SEQ ID NO:2)

8. (Once amended) Method according to [one of claims] claim 1 [to 7],
characterized [characterised] in that the DNA Sequence of OmpA comprises the
following sequence:

ATGAAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTCGCTACCG
TGGCCCAGGCGGCC (SEQ ID NO:3)

9. (Once amended) Method according to [one of claims] claim 1 [to 8],
characterized [characterised] in that the DNA Sequence of OmpA consists of the
following sequence:

ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTCGCTACCG
TGGCCCAGGCAGGCC (SEQ ID NO:3)

10. (Once amended) Method according to [one of claims] claim 1 [to 9],
characterized [characterised] in that the DNA of the tPA, tPA variant, K2S molecule or
K2S variant is preceded [preceeded] by a lac promoter [promotor] and/or a ribosomal
binding site.

11. (Once amended) Method according to [one of claims] claim 1 [to 10],
characterized [characterised] in that the DNA coding for the tPA, tPA variant, K2S
molecule or K2S variant is selected from the group of DNA molecules coding for at least
90% of the amino acids 87 - 527, 174 - 527, 180 - 527 or 220 - 527 of the human tissue
plasminogen activator protein.

12. (Once amended) Method according to [one of claims] claim 5 [to 11],
characterized [characterised] in that the DNA Sequence of K2S comprises the following
sequence or a functional variant thereof or a variant due to the degenerate nucleotide
code:

TCTGAGGGAAACAGTGACTGCTACTTGGGAATGGGTAGCCTACCGTGG
CACGCACAGCCTACCGAGTCGGTGCCTCCTGCCTCCGTGGAATTCCA
TGATCCTGATAGGCAAGGTTACACAGCACAGAACCCAGTGCCCAGGC
ACTGGGCCTGGCAAACATAATTACTGCCGGAATCCTGATGGGGATGCC
AAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACGTGGGAGTACT

GTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCT
CAGTTCGCATCAAAGGAGGGCTTCGCGACATGCCCTCCACCCCTG
GCAGGCTGCCATCTTGCCAAGCACAGGAGGTGCCCCGGAGAGCGGTTTC
CTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTGCCGCCA
CTGCTTCCAGGAGAGGTTCCGCCACCACCTGACGGTGATCTGGCA
GAACATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGA
AAAATACATTGTCCATAAGGAATTGATGATGACACTTACGACAATGACA
TTGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCAGGAGAGC
AGCGTGGTCCGCACTGTGTGCCTCCCCCGGCGGACCTGCAGCTGCCGA
CTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAGGCCTGTCTC
CTTCTATTGGAGCGGCTGAAGGAGGCTATGTCAGACTGTACCCATCC
AGCCGCTGCACATCACAAACATTACTAACAGAACAGTCACCGACAACA
TGCTGTGTGGAGACACTCGGAGCGGCGGGCCAGGCAAACATTGCA
CGACGCCTGCCAGGGCGATTGGGAGGGCCCTGGTGTCTGAACGAT
GGCCGCATGACTTGGTGGCATCATCAGCTGGGCCTGGCTGTGGAC
AGAAGGATGTCCGGGTGTGTACACAAAGGTACCAACTACCTAGACTG
GATTGACAAACATGCGACCGTGA (SEQ ID NO:4).

13. (Once amended) Method according to [one of claims] claim 5 [to 12],
characterized [characterised] in that the DNA Sequence of K2S consists of the following
sequence:

TCTGAGGGAAACAGTGAUTGCTACTTGGGAATGGGTAGCCTACCGTGG
CACGCACAGCCTACCGAGTCGGTGCCTCCTGCCTCCGTGGAATTCCA

TGATCCTGATAGGCAAGGTTACACAGCACAGAACCCCCAGTGCCCAGGC
ACTGGGCCTGGCAAACATAATTACTGCCGGAATCCTGATGGGGATGCC
AAGCCCTGGTGCACGTGCTGAAGAACCGCAGGCTGACGTGGGAGTACT
GTGATGTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCT
CAGTTCGCATCAAAGGAGGGCTTCCGCCGACATGCCCTCCCACCCCTG
GCAGGCTGCCATCTTGCCAAGCACAGGAGGTGCCCCGGAGAGCGGTT
CTGTGCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTGCCGCCA
CTGCTTCCAGGAGAGGTTCCGCCACCACCTGACGGTGATCTGGGCA
GAACATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGA
AAAATACATTGTCCATAAGGAATTGATGATGACACTACGACAATGACA
TTGCGCTGCTGCAGCTGAAATCGGATTGCTCCGCTGTGCCAGGAGAGC
AGCGTGGTCCGCACTGTGTGCCTCCCCGGGGACCTGCAGCTGCCGGA
CTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAGGCCTGTCTC
CTTCTATTGGAGCGGCTGAAGGAGGCTATGTCAGACTGTACCCATCC
AGCCGCTGCACATCACAAACATTACTAACAGAACAGTCACCGACAACA
TGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACCTGCA
CGACGCCTGCCAGGGCGATTGGGAGGCCCCCTGGTGTCTGAACGAT
GGCCGCATGACTTGGTGGCATCATCAGCTGGGCCTGGCTGTGGAC
AGAAGGATGTCCGGGTGTACACAAAGGTTACCAACTACCTAGACTG
GATTCGTGACAACATGCGACCGTGA (SEQ ID NO:4).

16. (Once amended) DNA molecule according to claim 14 [or 15], characterized in that said DNA sequence consists of the following sequence:

ATGAAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTCGCTACCG
TGGCCCAGGCAGGCCTCTGAGGGAAACAGTGACTGCTACTTGGGAATGGGTC
AGCCTACCGTGGCACGCACAGCCTACCGAGTCGGTGCCCTCCTGCCTCCCG
TGGAATTCCATGATCCTGATAGGCAAGGTTACACAGCACAGAACCCAGTG
CCCAGGCAGTGGCCTGGCAAACATAATTACTGCCGGAATCCTGATGGGA
TGCCAAGCCCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACGTGGAGTA
CTGTGATGTGCCCTCCTGCTCCACCTGCCGCTGAGACAGTACAGCCAGCCT
CAGTTCGCATCAAAGGAGGGCTTCGCCGACATGCCCTCCCACCCCTGGC
AGGCTGCCATTTGCCAAGCACAGGAGGTCGCCGGAGAGCGGTTCTGT
GCGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCACTGCTT
CCAGGAGAGGTTCCGCCACCACCTGACGGTGATCTGGCAGAACATA
CCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGAAAAATACA
TTGTCCATAAGGAATTGATGATGACACTTACGACAATGACATTGCGCTGC
TGCAGCTGAAATCGGATTGTCCTGCTGTGCCAGGAGAGCAGCGTGGTCC
GCACTGTGCCTCCCCCGGCGGACCTGACGCTGCCGACTGGACGGAGT
GTGAGCTCTCCGGTACGGCAAGCATGAGGCCTGTCTCCTTCTATTGG
GCGGCTGAAGGAGGCTATGTCAGACTGTACCCATCCAGCCGCTGCACATC
ACAACATTACTAACAGAACAGTCACCGACAACATGCTGTGCTGGAGAC
ACTCGGAGCGGCGGGCCCCAGGCAAACCTGACGACGCCGCCAGGGCGAT
TCGGGAGGCCCCCTGGTGTCTGAACGATGCCGCATGACTTGGTGGCA
TCATCAGCTGGGCCTGGCTGTGGACAGAAGGATGTCCGGGTGTACAC
AAAGGTTACCAACTACCTAGACTGGATTGTCGACAACATGCGACCG (SEQ ID
NO:5).

17. (Once amended) DNA molecule according to [one of claims] claim 14 [to 16], characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 87 - 527 of the human tissue plasminogen activator protein.

18. (Once amended) DNA molecule according to [one of claims] claim 14 [to 17], characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 174 - 527 of the human tissue plasminogen activator protein.

19. (Once amended) DNA molecule according to [any one of claims] claim 14 [to 18], characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 180 - 527 of the human tissue plasminogen activator protein.

20. (Once amended) DNA molecule according to [any one of claims] claim 14 [to 19], characterized in that said DNA sequence b) is coding for at least 90% of the amino acids 220 - 527 of the human tissue plasminogen activator protein.

21. (Once amended) DNA molecule according to [any one of claims] claim 14 [to 20], characterized in that said DNA sequence a) is hybridizing under stringent conditions to the following sequence:

ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCG
TGGCCCAGGCGGCC (SEQ ID NO:6).

22. (Once amended) DNA molecule according to [any one of claims] claim 14 [to 21], characterized in that said DNA sequence a) consists of the following sequence:

ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCG
TGGCCCAGGCAGGCC (SEQ ID NO:6).

23. (Once amended) DNA molecule according to [any one of claims] claim 14 [to 22], characterized in that said DNA sequence b) is hybridizing under stringent conditions to the following sequence:

TCTGAGGGAAACAGTGAUTGCTACTTGGGAATGGGTCAACCTACCGTGGC
ACGCACAGCCTACCGAGTCGGGTGCCTCCTGCCTCCGTGGAATTCCATG
ATCCTGATAGGCAAGGTTACACAGCACAGAACCCAGTGCCCAGGCAGT
GGGCCTGGCAAACATAATTACTGCCGAATCCTGATGGGGATGCCAAGC
CCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACGTGGAGTACTGTGAT
GTGCCCTCCTGCTCCACCTGCGGCCTGAGACAGTACAGCCAGCCTCAGTT
CGCATCAAAGGAGGGCTTCGCCGACATGCCCTCCACCCCTGGCAGGCT
GCCATCTTGCCAAGCACAGGAGGTGCCGGAGAGCGGTTCTGTGCGGG
GGCATACTCATCAGCTCCTGCTGGATTCTCTGCCGCCACTGCTTCCAGG
AGAGGTTCCGCCACCCACCTGACGGTGATCTGGCAGAACATACCGGG
TGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGAAAAATACATTGTCC
ATAAGGAATTGATGACACTTACGACAATGACATTGCGCTGCTGCAGCT
GAAATCGGATTCGTCCCGCTGTGCCAGGAGAGCAGCGTGGTCCGACTGTG
TGCCTTCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCT
CCGGCTACGGCAAGCATGAGGCCTGTCTCCTTCTATTGGAGCGGCTGAA

GGAGGCTCATGTCAGACTGTACCCATCCAGCCGCTGCACATCACAAACATT
CTAACAGAACAGTCACCGACAACATGCTGTGCTGGAGACACTCGGAGCG
GCGGGCCCCAGGCAAACATTGCACGACGCCTGCCAGGGCGATTGGGAGGCC
CCCTGGTGTGTCTGAACGATGCCGCATGACTTGGTGGGCATCATCAGCTG
GGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTACACAAAGGTTAC
CAACTACCTAGACTGGATTGTGACAAACATGCGACCGTGA (SEQ ID NO:7).

24. (Once amended) DNA molecule according to [any one of claims] claim 14 [to 23], characterized in that said DNA sequence b) consists of the following sequence:

TCTGAGGGAAACAGTGAUTGCTACTTGGGAATGGGTAGCCTACCGTGGC
ACGCACAGCCTACCGAGTCGGGTGCCTCCTGCCCTCCGTGGAATTCCATG
ATCCTGATAGGCAAGGTTACACAGCACAGAACCCCAGTGCCAGGCAGT
GGCCTGGCAAACATAATTACTGCCGAATCCTGATGGGATGCCAAGC
CCTGGTGCCACGTGCTGAAGAACCGCAGGCTGACGTGGAGTACTGTGAT
GTGCCCTCCTGCTCCACCTGCCCTGAGACAGTACAGCCAGCCTCAGTT
CGCATCAAAGGAGGGCTTCGCCGACATGCCCTCCACCCCTGGCAGGCT
GCCATTTGCCAAGCACAGGAGGTGCCGGAGAGCGGTTCTGTGCGGG
GGCATACTCATCAGCTCTGCTGGATTCTCTGCCGCCACTGCTCCAGG
AGAGGTTCCGCCAACCACCTGACGGTGATCTGGCAGAACATACCGGG
TGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGAAAAATACATTGTCC
ATAAGGAATTGATGACACTTACGACAATGACATTGCGCTGCTGCAGC
TGAAATCGGATTGTGCTGCCAGGAGAGCAGCGTGGTCCGCACTGT
GTGCCTTCCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTC

TCCGGCTACGGCAAGCATGAGGCCTTGTCTCCTTCTATTGGAGCGGCTGA
AGGAGGCTCATGTCAGACTGTACCCATCCAGCCGCTGCACATCACAAACATT
ACTTAACAGAACAGTCACCGACAACATGCTGTGCTGGAGACACTCGGAGC
GGCGGGCCCCAGGCAAACTTGCACGACGCCTGCCAGGGCGATTGGGAGGC
CCCCCTGGTGTCTGAACGATGGCCGCATGACTTGGTGGGCATCATCAGCT
GGGGCCTGGGCTGTGGACAGAAGGATGTCCCAGGTGTACACAAAGGTTA
CCAACCTACCTAGACTGGATTGACAAACATGCGACCGTGA (SEQ ID NO:7).

29. (Once amended) K2S protein according to claim 28 [or 29], characterized [characterised] in that it comprises a protein characterized by the following amino acid sequence or a fragment, a functional variant, an allelic variant, a subunit, a chemical derivative or a glycosylation variant thereof:

SEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLG
KHNCRNPDGDAKPWCHVLKNRRLTWEYCDVPSCSTCGLRQYSQPQFRIKGGL
FADIASHPWQAAIFAKHRRSPGERFLCGGILISSCWILSAAHCFQERFPPHHLTVIL
GRTYRVVPGEEQKFEVEKYIVHKEFDDDTYDNDIALLQLKSDSSRCAQESSVV
RTVCLPPADLQLPDWTECELSGYGKHEALSPFYSERLKEAHVRLYPSSRCTSQHL
LNRTVTDNMLCAGDTRSGGPQANLHDACQGDGGPLVCLNDGRMTLVGIISWG
LGCGQKDVPGVYTKVTNYLDWIRDNMRP* (SEQ ID NO:11).

30. (Once amended) K2S according to [any one of claims] claim 27 [to 30], characterized [characterised] in that it consists of a protein characterized by the following amino acid sequence:

SEGNSDCYFGNGSAYRGTHSLTESGASCLPWNSMILIGKVYTAQNPSAQALGLG
KHNÝCRNPDGDAKPWCHVLKNRRLTWEYCDVPSCSTCGLRQYSQPQFRIKGGL
FADIASHPWQAAIFAKHRRSPGERFLCGGILISSCWILSAAHCFQERFPPHHLTVIL
GRTYRVVPGEQQKFEVEKYIVHKEFDDDTYDNDIALLQLKSDSSRCAQESSVV
RTVCLPPADLQLPDWTECELSGYGKHEALSPFYSERLKEAHVRLYPSSRCTSQHL
LNRTVTDNMLCAGDTRSGGPQANLHDACQGDGGPLVCLNDGRMTLVGIISWG
LGCGQKDVPGVYTKVTNYLDWIRDNMRP* (SEQ ID NO:11).

31. (Once amended) A vector containing a DNA sequence according to [any one of claims] claim 14 [to 24].

33. (Once amended) The vector pComb3HSS containing a DNA according to [any one of claims] claim 14 [to 24], wherein the expression of the gp III protein is suppressed or inhibited by deleting the DNA molecule encoding said gp III protein or by a stop codon between the gene coding for a polypeptide containing the kringle 2 domain and the serine protease domain of tissue plasminogen activator protein and the protein III gene.

34. (Once amended) A prokaryotic host cell comprising a DNA molecule according to [any one of claims] claim 14 [to 24].

35. (Once amended) A prokaryotic host cell comprising a vector according to [any one of claims] claim 31 [to 33].

36. (Once amended) An *E. coli* host cell comprising a DNA molecule according to [any one of claims] claim 14 [to 24].

37. (Once amended) An *E. coli* host cell comprising a vector according to [any one of claims] claim 31 [to 33].

Claims 38 and 39 were canceled.