4

5

الحساب العددي (2)

الدرس الثالث

الدرس	محتوى
-------	-------

المعادلات من الدرجتين الأولى و إلثانية بمجهول واحد	1
<u> </u>	

- إشارة الحدوديات من الدرجتين الأولى و الثانية
- المتراجحات من الدرجتين الأولى و الثانية بمجهول واحد
 - نظمات معادلتين من الدرجة الأولى بمجهولين 4

1. المعادلات من الدرجتين الأولى و الثانية بمجهول واحد

خاصية 1

ax + b = 0 نعتبر المعادلة

 $S=\emptyset$ و $b \neq 0$ و a=0 فإن *

 $S = \left\{-\frac{b}{a}\right\}$ فإن $a \neq 0$ نان *

 $S=\mathbb{R}$ أَذَا كَانُ a=0 وَ b=0 فَإِنْ *

تمرین 1

3x - 2 = 5x + 3 - 2x (حل في \mathbb{R} المعادلات: (1) 4x + 3 = 5 (ا) 3x - 5 = -2x + 1 (ب) 4x + 3 = 5 (ا) 3x - 5 = -2x + 1 (عل المعادلات: $(2x - 1) = \frac{3}{4}$ (عل ال

خاصية 2

 $ax^2 + bx + c = 0$ نعتبر المعادلة

 $\Delta = b^2 - 4ac$ العدد الحقيقي الذي يرمن له بالرمن Δ و المعرف بما يلي: $\Delta = b^2 - 4ac$

- $x_2=rac{-b-\sqrt{\Delta}}{2a}$ و $x_1=rac{-b+\sqrt{\Delta}}{2a}$: هما: همان $x_1=\frac{-b+\sqrt{\Delta}}{2a}$ و $\Delta>0$ فإن المعادلة $\Delta>0$
 - $-x=-rac{b}{2a}$ إذا كان $\Delta=0$ فإن المعادلة (E) تقبل حلا وحيدا هو:
 - $S=\emptyset$ فإن المعادلة (E) لا تقبل حلولا أي $\Delta<0$

تمرين 2

- $x^2 x + 2 = 0$ (ج) $x^2 + 2x 3 = 0$ (ب) $x^2 x 6 = 0$ (ا) المعادلات التالية: $x^2 + x 1 = 0$ (غ) $x^2 + x 1 = 0$ (غ) $x^2 + 5x 6 = 0$ (غ) $-x^2 + 2x 1 = 0$ (غ) $-3x^2 + 7x + 1 = 0$ (غ) $2x^2 + 12x + 18 = 0$ (ح)
- $\frac{5}{2}x^2 + 15x + 30 = 0$ (ج) $-x^2 \frac{2}{3}x \frac{1}{9} = 0$ (ب) $x^2 + 3\sqrt{2}x + 4 = 0$ (۱) عاد لات التالية: $x^2 + 5x = 0$ (ع) $-3x^2 2x = 0$ (غ) $x^2 2 = x$ (و) $5x^2 3 = 0$ (ع) $4x^2 + 1 = 0$ (ع) $x^2 + x = -3$ (ط)

قواعد

تمرين 4

- (x+3)(2x-1)(5x-2)=0 (ب) $\frac{x-2}{2x-3}=0$ (ب) (x-2)(2x-3)=0 (ا) المعادلات التالية: (۱) (x+3)(2x-1)(5x-2)=0 (ب) المعادلات التالية: (۱) (x+3)(2x-1)(5x-2)=0
 - $\frac{x-1}{x^2-2x+1} = 0 \ (\mathfrak{s}) \quad (x-1)(x^2+x-2) \ (\mathfrak{s}) \quad \frac{(x-3)(x-1)}{x-7} \ (\mathfrak{s})$
- |2x-7|=0 (ج) |2x-3|=|2-x| (ب) |x-2|=|x+2| (ا) |x-2|=|x+2| (ع) |2x-7|=3 (ع) |2x-7|=3 (ع) |2x-7|=3 (ع) |2x-7|=3 (ع)
- $(2x-3)^2=4$ (ج) $(-2x+1)^2=0$ (ب) $(x^2-5x+6)^2=0$ (ای) $(3x^2-2x)^2+4=0$ (ز) $(x^2-2x)^2-1=0$ (و) $(\sqrt{3}x-2)^2=-7$ (م) $(x^2-2x)^2-3=5$ (د)

a عكس إشارة

ax + b

إشارة a

2. إشارة الحدوديات من الدرجتين الأولى و الثانية

خاصية 1

نسمي حدودية من الدرجة الأولى كل تعبير على شكل ax+b حيث a و a عددان حقيقيان مع ax+b حل المعادلة ax+b=0 هو العدد ax+b=0 و يسمى جذرا للحدانية

- aو إذا كان ax+b فإن إشارة ax+b هي إشارة •
- ax+b فإن إشارة ax+b هي عكس إشارة ه $x<-rac{b}{a}$

ax + b نلخص هذه النتائج في جدول يسمى جدول إشارة

تمرين 5

 $-x-rac{1}{2}$ (ه) x+4 (ع) -4x-8 (ج) -2x+3 (ب) 3x-2 (۱) أدرس إشارة التعابير التالية:

خاصية 2

 $a \neq 0$ نسمي حدودية من الدرجة الثانية كل تعبير على شكل $ax^2 + bx + c$ حيث a و a و a أعداد حقيقية مع $ax^2 + bx + c$ حلول المعادلة $ax^2 + bx + c = 0$ إن وجدت تسمى جذورا لثلاثية الحدود $ax^2 + bx + c = 0$

 ax^2+bx+c ميز المعادلة $ax^2+bx+c=0$ هو $\Delta=b^2-4ac$ هو $\Delta=b^2-4ac$ ميز المعادلة

• إذا كان $\Delta > 0$ فإن الحدودية $ax^2 + bx + c$ تقبل جذرين α_1 و جدول إشارتها على شكل

x	$-\infty$	α_1	α_2	$+\infty$
$ax^2 + bx + c$	إشارة a	Ó	a عكس إشارة ϕ	إشارة a

و إذا كان $\Delta=0$ فإن الحدودية ax^2+bx+c تقبل جذرا وحيدا α

x	$-\infty$		α		$+\infty$
$ax^2 + bx + c$		a إشارة	Ó	a إشارة	

• إذا كان $\Delta < 0$ فإن الحدودية $ax^2 + bx + c$ لا تقبل أي جذر و جدول إشارتها على شكل

x	$-\infty$ $+\infty$
$ax^2 + bx + c$	<u>ا</u> شارة <i>a</i>

تمرين 6

 $-\frac{1}{2}x^2 - x\sqrt{5} + 2$ (د) $4x^2 - 2x + \frac{1}{4}$ (ج) $-2x^2 + 2x - 3$ (ب) $x^2 - 3x - 10$ (۱) أدرس إشارة التعابير التالية: $3x^2 + 4$ (و) $-x^2 + 3x$

قاعدة

 $ax^2 + bx + c$ و Q(x) من الدرجة الأولى أو الثانية ax + b تعبيرهما على أحد شكلين Q(x) و Q(x)

x	$-\infty$ جذور $P(x)$ و $Q(x)$ مرتبة تصاعديا $+\infty$
P(x)	P(x) إشارة
Q(x)	Q(x) إشارة
$P(x)Q(x)$ $\frac{P(x)}{Q(x)}$ أو	Q(x) و $P(x)$ جداء إشارتي

لدراسة إشارة جداء أو خارج الحدوديتين P(x) و خارج الحدوديتين Q(x) و ندرس إشارة كل حدودية على حدا ثم نستنج كما في الجدول التالي:

تمرين 7

$$\frac{-x^2+2x-1}{2x-1}$$
 (ع) $(x-1)(x^2+x-2)$ (ج) $\frac{x+4}{x+2}$ (ب) $(x-3)(2x+1)$ (ا) $\frac{x^2+1}{x^2+1}$ (ع) $(3x^2+1)(x^2-2x)$ (ه)

3. المتراجحات من الدرجتين الأولى و الثانية بمجهول واحد

قواعد

لحل متراجحة من الدرجة الأولى أو الثانية، ندرس إشارة الطرف الأول من المتراجحة ثم نستنتج حسب ما يلي:
• إذا كانت المتراجحة من النوع $ax+b\geq 0$ أو $ax+c\geq 0$ فإن حلول المتراجحة هي المجالات التي تحتوي على
الإشارة الموجبة بمحدات مغلقة.
على سبيل المثال حل المتراجحة $0 \leq x - 3$ في \mathbb{R} .

و إذا كانت المتراجحة من النوع $ax+b\leq 0$ أو $ax^2+bx+c\leq 0$ فإن حلول المتراجحة هي المجالات التي تحتوي على الاثالية المالة بمهاري مناة $ax^2+bx+c\leq 0$
الإشارة السالبة بمحدات مغلقة.
على سبيل المثال حل المتراجحة $x^2 + 5x + 6 \leq x^2 + 5$ في \mathbb{R} .
•••••••••••
• إذا عوض الرمزين ≥ و ≤ بالرمزين > و < مجالات الحلول تصبح مفتوحة.
على سبيل المثال حل المتراجحة $x-4 < 0$ في \mathbb{R} .

· بنفس الطريقة نحل متراجحات طرفها الأول جداء أو خارج حدوديتين و طرفها الثاني 0.
بعنس المثال حل المتراجحة $(x-1)(x+2)>0$ في $\mathbb{R}.$
•••••••••••••••••••••••••••••••••••••••
••••••••••••••
••••••

تمرين 8

حل في \mathbb{R} المتراجحات: $-2x+5 \geq 3 \text{ (a)} \quad 3x-2 \leq -4 \text{ (a)} \quad -2x^2-4x+5 < 7 \text{ (b)} \quad 3x^2+7x+4 \geq 0 \text{ (c)} \quad 5x-7 > 0 \text{ (l)}$ $2x(x^2-1) \leq 0 \text{ (c)} \quad 4x-1 < -2x+3 \text{ (d)} \quad \frac{x+2}{2x-1} > 2 \text{ (c)} \quad \frac{x+2}{2x-1} > 0 \text{ (d)} \quad (3x-5)(2x-3) < 0 \text{ (d)}$ $x - 1 - 4x \geq -6 - 3x + 3 \text{ (d)} \quad \frac{-x^2-x+2}{x-3} \text{ (d)} \quad 2x + 5 > 4x + 7 - 2x \text{ (d)} \quad \frac{x+3}{2x^2-15x+4} < 0 \text{ (d)}$

4. نظمات معادلتين من الدرجة الأولى بمجهولين

تذكير

لحل نظمة لمعادلتين من الدرجة الأولى بمجهولين نعتمد على ثلاث طرق:

• طريقة التعوض، و تتم عبر المراحل التالية:

• طريقة التآلفية الخطية، و تتم عبر المراحل التالية:

x يمكن التأكد من الحل بتعويض قيمتي x و y المحصل عليها في النظمة.

تمرين 9

1. حل في \mathbb{R}^2 النظمات التالية باستعمال طريقة التعويض:

$$\begin{cases} -4x - 12y = 8 \\ 2x + 6y = -4 \end{cases} \text{ (a)} \quad \begin{cases} 2x - y = -3 \\ -8x + 4y = 15 \end{cases} \text{ (b)} \quad \begin{cases} -x + 4y = 0 \\ 3x + 2y = 7 \end{cases} \text{ (c)} \quad \begin{cases} 2x + 3y = 1 \\ 3x + 2y = 4 \end{cases} \text{ (l)}$$

2. حل في \mathbb{R}^2 النظمات التالية باستعمال طريقة التآلفية الخطية:

$$\begin{cases} -4x - 12y = 8 \\ 2x + 6y = -4 \end{cases} \text{ (a)} \quad \begin{cases} 2x - y = -3 \\ -8x + 4y = 15 \end{cases} \text{ (b)} \quad \begin{cases} -x + 4y = 0 \\ 3x + 2y = 7 \end{cases} \text{ (c)} \quad \begin{cases} 2x + 3y = 1 \\ 3x + 2y = 4 \end{cases} \text{ (b)}$$

خاصية

$$\bullet(S): \left\{ \begin{array}{l} ax+by=c \\ a'x+b'y=c' \end{array} \right.$$
 نعتبر النظمة

$$D = \left| egin{array}{cc} a & b \ a' & b' \end{array} \right| = ab' - ba'$$
 يلي: $D = \left| egin{array}{cc} a & b \ a' & b' \end{array} \right| = ab' - ba'$ نسمي محددة النظمة $D = \left| egin{array}{cc} a & b \ a' & b' \end{array} \right|$

$$y=rac{\left|egin{array}{cc} a & c \ a' & c' \end{array}
ight|}{D}$$
 و إذا كان $y=\frac{\left|egin{array}{cc} c & b \ c' & b' \end{array}
ight|}{D}$ بيث: $y=\frac{\left|egin{array}{cc} c & b \ c' & b' \end{array}
ight|}{D}$ و إذا كان $y=\frac{\left|egin{array}{cc} c & b \ c' & b' \end{array}
ight|}{D}$ و النظمة $y=\frac{\left|egin{array}{cc} c & b \ c' & b' \end{array}
ight|}{D}$

و العلول و مجموعة حلولها هي الخلول و مجموعة حلولها هي
$$D = 0$$
 الغلول و مجموعة حلولها هي $D = 0$ الغلول و مجموعة حلولها هي $S = \{(x;y) \in \mathbb{R}^2 \mid ax + by = c\}$

تمرين 10

حل في \mathbb{R}^2 النظمات التالية باستعمال طريقة المحددة:

$$\begin{cases} -4x - 12y = 8 \\ 2x + 6y = -4 \end{cases} \text{ (a)} \quad \begin{cases} 2x - y = -3 \\ -8x + 4y = 15 \end{cases} \text{ (b)} \quad \begin{cases} -x + 4y = 0 \\ 3x + 2y = 7 \end{cases} \text{ (c)} \quad \begin{cases} 2x + 3y = 1 \\ 3x + 2y = 4 \end{cases} \text{ (d)}$$