Лекция 16

10 декабря 2024

1 Критерий Коши для последовательностей

Определение 1

Числовая последовательность $\{x_n\}$ называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n, m > N \ |x_m - x_n| < \varepsilon$$

Пример. $\{x_n\} = \left\{\frac{1}{n}\right\}$.

Лемма 1

Фундаментальная последовательность ограничена.

Теорема 1 – Критерий Коши для последовательностей

Последовательность сходится \iff последовательность фундаментальная.

Доказательство.

- 1. Необходимость (последовательность сходится \implies она фундаментальная).
 - (a) Пусть $\lim_{n\to\infty}x_n=A$. То есть $\forall \varepsilon>0\ \exists N(\varepsilon)\in\mathbb{N}: \forall n>N\,|x_n-A|<rac{\varepsilon}{2}.$
 - (b) Из (1) получим, что $\forall n, m \in \mathbb{N} \ |x_n x_m| = |(x_n a) + (a x_m)| \le |x_n a| + |x_m a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon \implies \{x_n\}$ фундаментальная.
- 2. Достаточность (последовательность фундаментальная \implies она сходится).
 - (a) Пусть x_n фундаментальная \implies (по лемме 2) $\{x_n\}$ ограничена.
 - (b) По теореме Больцано-Вейерштрасса из $\{x_n\}$ можно выделить подпоследовательность $\{x_{k_n}\}$ такую, что $\lim_{n\to\infty}x_{k_n}=A$.
 - (c) Докажем, что $\lim_{n\to\infty}x_{k_n}=A$. Зададим произвольное $\varepsilon>0$. Рассмотрим ε и $\frac{\varepsilon}{2}$ окрестности точки A.
 - (d) Начиная с некоторого номера N_1 все члены подпоследовательности x_{k_n} лежат в $\frac{\varepsilon}{2}$ -окрестности точки A.
 - (e) Начиная с некоторого номера N_2 все члены последовательности отстоят друг от друга не более, чем на $\frac{\varepsilon}{2}$ (так как $\{x_n\}$ фундаментальна).
 - (f) Положим $N=\max{\{N_1,N_2\}}$. Тогда $\forall n>N$ $x_n\in U_\varepsilon(A)\implies \lim_{n\to\infty}x_n=A$.

Пример. Докажем с помошью критерия Коши, что $\{x_n\} = \{\sin(n)\}$ расходится.

1. Предоложим, что $\{x_n\}$ фундаментальная. Тогда $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n,m > N \ |\sin(m) - \sin(n)| < \varepsilon$.

1

- 2. Пусть m=n+2, тогда $|2\sin(1)\cos(n+1)|<arepsilon\implies |\cos(n+1)|<\dfrac{arepsilon}{2\sin(1)}\implies \{\cos(n)\}$ бесконечно малая последовательность.
- $3. \cos(n+1) = \cos(n)\cos(1) \sin(n)\sin(1) \implies \sin(n) = \frac{\cos(n)\cos(1) \cos(n+1)}{\sin(1)} \implies \{\sin(n)\} \text{бесконечно малая последовательность.}$
- 4. $\begin{cases} \sin(n) \to 0 & \text{при } n \to \infty \\ \cos(n) \to 0 & \text{при } n \to \infty \end{cases} \implies \text{противоречие } \left(\cos(n) = \sqrt{1 \sin^2(n)}\right).$

2 Предел функции по Гейне

Пусть функция f определена на X, и a — предельная точка X.

Определение 2 – Предел по Коши

Число b называется пределом функции f при $x \to a$, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in U_{\delta}(a) \implies |f(x) - b| < \epsilon$$

Определение 3 – Предел функции по Гейне

Число b называется пределом функции f при $x \to a$, если \forall последовательности аргументов $\{x_n\}$, сходящейся к a $(x_n \neq a)$ последовательность значений функции $\{f(x_n)\}$ сходится к b.

Теорема 2

Определения 2 и 3 эквивалентны.

Пример. Легко проверить при помощи определения по Гейне, что $extstyle \lim_{n \to \infty} \cos(n)
extstyle .$

3 Критерий Коши для функций

Определение 4

Говорят, что f(x) удовлетворяет в точке a условию Коши, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x', x'' : |x' - a| < \delta, \ |x'' - a| < \delta \implies |f(x') - f(x'')| < \varepsilon$$

Теорема 3 – Критерий Коши для функций

 $\exists \lim_{x \to a} f(x) \iff f(x)$ удовлетворяет условию Коши.

Доказательство.

- 1. Необходимость.
 - (a) Пусть $\lim_{x \to a} f(x) = b$. Тогда $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in \dot{U}_{\delta}(a) \implies |f(x) b| < \frac{\varepsilon}{2}$.

(b)
$$|f(x') - f(x'')| = |(f(x') - b) + (b - f(x''))| \le |f(x') - b| + |f(x'') - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

2. Достаточность на лекции не доказывалась.

4 Теоремы о непрерывных функциях

Теорема 4

f(x) непрерывна в точке $a \implies f(x)$ ограничена в U(a).

Замечание: доказательство вытекает непосредственно из определения непрерывности функции.

Теорема 5 – 1-ая теорема Вейерштрасса

Непрерывная на отрезке функция ограничена на этом отрезке.