Link Prediction Data Challenge

Description and Key Points

The Task

Besides the graph we also have information on the papers (title, authors, abstract)

Classification Task

- training_set <source, target, class>: pairs of papers and whether there is an edge between the two (1 means there is an edge between source and target)
- node_information: information on papers
- testing_set <source, target> : classify the pair of papers
- example_simple_features : example python code of the classification task

Example - Baseline

- Stem text : Porter Stemmer
- Simple similarities:
 - Title: overlapping terms
 - Authors: overlapping authors
 - Difference between publication years
- SVM classifier
 - Evaluate classifier on sample of data
 - k-fold validation

Evaluation

F1 score: harmonic mean of precision and recall

$$-F1 = 2\frac{p*r}{p+r}$$

- Precision : How many did I get correct $p = \frac{tp}{tp+fp}$
- Recall : How many of the desired class were correctly retrieved $r = \frac{tp}{tp+fn}$

Improving the Baseline

- Text based :
 - Cleaning:
 - Data analysis: Are all terms in the text needed?
 - Part of speech tagging for removing terms
 - TF-IDF based features
 - Topic modeling
- Graph Based:
 - Node properties : degree, pagerank
 - Clustering coefficient
 - k-core number
- Similarity metrics:
 - Jaccard Index
 - Cosine similarity

TF-IDF vectorization

Sklearn TfidfVectorizer

```
vectorizer = TfidfVectorizer(stop_words="english")
TFIDF_matrix = vectorizer.fit_transform(corpus)
```

- Corpus: a list of documents as strings
- TFIDF_matrix : Document X Terms (sparse) matrix
- Fit/transform:
 - Fit learns the dictionary terms and their importnace
 - Transform computes TFIDF

TfidfVectorizer

Parameters:

- Tokenizer: Function to split strings into words.
 Override this if you want more than space based tokenization
- stop_words: words to ignore
- ngram_range: range of how many tokens should we use as "one term" (min,max)
- max/min_df : values in [0-1] range; ignore words with frequency higher/lower than the specified
- vocabulary: use only terms from this pre-computed list

Part of Speech Tagging

Are all terms useful?

```
#assume tokens holds a set of words
tagged_tokens = nltk.pos_tag(tokens)
#tagged_tokens=[ (token, tag),...]
```

- (some) possible tags:
 - Verbs:VB,VBD,VBG,VBN,VBP,VBZ
 - Nouns: NN,NNP,NNPS,NNS
 - Adjectives: JJ,JJR,JJS
 - Other : nltk.help.upenn_tagset()

NetworkX

import networkx as nx

G = nx.DiGraph()

Import library

Create a new directed graph

G.add_edges_from([("A","B"), ("C","A")])

Add nodes and edges edges

print G.in_degree()
print G.out_degree()

Print the in-degree and out-degree of the nodes

print G.neighbors("A")
print G.neighbors("B")

Print the neighborhood nodes of A and B

Graph Properties

- Clustering Coefficient: $c_u = \frac{2T(u)}{\deg(u)(\deg(u)-1)}$
 - T(u): the number of triangles u belongs to
- k-core number:
 - k-core : the maximal graph where all nodes have at least k neighbors
 - k-core number of node:
 the maximum k for which a node belongs to a k-core

Latent Semantic Analysis (LSA)

Assume matrix A with TF-IDF values

```
U, S, V = np.linalg.svd(A)
```

- Intuition: The collection is a produced by a collection of topics.
 - U: document to concept association. Each vector represents the topic weights for each document
 - S: A weight for each concept
 - V: term to concept association. Each vector represent the weight of a term to a topic
- We can project A directly to the concept space:

```
#keep only the most important topics
M = np.dot(A,V[:k,:].transpose())
```

Similarity Metrics

Jaccard Index (sets A, B):

$$-J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Percentage of terms that overlap over possible terms
- Cosine similarity (vectors A, B):

$$-similarity = \frac{A \cdot B}{|A||B|}$$

 If we subtract the vector means then we get the Pearson Correlation

Further improvements

- Other classifiers
 - You can explore other classification algorithms
 from sklearn
- Optimizing hyper-parameters
 - Sklearn can automatically produce the scores of a classifier over a grid of possible values for the hyper-parameters (model selection)

THE END

What else can you think?