BIO3SS3: Population Ecology

UNIT 1: Introduction

1 Course overview

1.1 Course structure

Communication

- Lecture notes for each section will be available the afternoon before you need them
 - Check Avenue frequently for announcements and new information
 - All info will also be on the course resource page
 - * http://bio3ss.github.io/
- The professor is Jonathan Dushoff
 - Contact via Teams classroom channel
 - or Teams chat

Expectations of professor

- Start and end on time
- Focus on conceptual understanding
- Make clear what terminology and facts must be learned
- Open to questions in class (within reason); office hours; classroom channel

Expectations of students

- Start and end on time
- Don't talk while other students are talking, or while I am responding to student questions
- If you must talk at other times, be unobtrusive
- Don't use the internet for non-class activities
- Attend the lecture, and the mandatory tutorials
 - Tutorials start week of 17 Jan

Craziness

- We expect to return in person for the week of 7 Feb
- We will share additional information with you as soon as we get it

Texts

- The primary text for this course is the lecture notes
- Additional resources will be shared through the resource page

Structure of presentation

- Required material will be clearly outlined in the notes
- Required terminology will be presented in **bold**
- General ideas and approaches presented in class may also be required; you should take notes on these in your own words

Taking notes

- You will do best if you take notes
 - You should know by now what works for you
 - Or else that you need to keep working on it
- If a new concept is making sense to you right now, write something that will help you remember
- If there's something specific I think you all need to write down, I will write it for you (or mark it as an answer)

Polling

- You can obtain extra credit by responding to in-class polls
 - Text from your cell phone, or answer on the web
- Poll: Why are you taking this class?

1.2 People

Dushoff

- Loves math
- Lived in four countries
- Studies evolution and spread of infectious diseases
 - HIV, rabies, ebola, influenza, ...
 - https://mac-theobio.github.io/dushoff.html
 - https://twitter.com/jd_mathbio

TA

- Celine Lajoie
 - Effects of forestry on mercury in boreal stream food webs
 - Also: how mercury risks may be mediated by beaver ponds

Students

- Poll: What year are you in?
- Poll: What kind of career are you aiming for?

2 Course content

2.1 Learning goals

- Ecology and population ecology
- Quantitative thinking
- Dynamical modeling

Ecology

- Poll: What is ecology?
- My answer

-

Population ecology

- Poll: What is population ecology?
- My answer

_

_

Dynamical modeling

- Investigates the links between local, short-term processes, and large-scale, long-term outcomes
- Allows us to explore what assumptions we're making, and how assumptions affect the link

Math

- Population ecology uses math
 - Math is a critical tool for linking processes to outcomes
 - Math will play a central role in the course
- We will keep it *simple*
 - But we understand that simple does not always mean easy
- Review the math supplement: https://bio3ss.github.io/materials/math.handouts.pdf

Humans and abstract thought

- People are evolved to be concrete thinkers, not conceptual thinkers
- A goal of this course is to build conceptual thinking skills

2.2 Examples

Malaria

- A nasty, mosquito-borne disease
- In some places (e.g., the southeastern US), it has been eradicated almost by accident
 - Mosquitoes are still present
- In other places it persists at high levels despite concerted efforts at elimination
- What factors determine when and where malaria spreads?

Red squirrels

- Red squirrels are rapidly disappearing from England
 - Loss of suitable habitat?
 - Competition from gray squirrels introduced from North America?
 - Diseases carried by gray squirrels?
- http://en.wikipedia.org/wiki/Eastern_grey_squirrels_in_Europe

Cod fisheries

- Is the ocean too big for people to affect?
- What happened to the cod?
- http://en.wikipedia.org/wiki/Collapse_of_the_Atlantic_northwest_cod_fishery

Populations

• Poll: What population of organisms interests you?

Dandelions

- Start with one dandelion; it produces 100 seeds, of which only 4% survive to reproduce the next year.
 - How many dandelions after 3 years?

*

*

3 Example populations

3.1 Dandelions

- Start with one dandelion; it produces 100 seeds, of which only 4% survive to reproduce the next year.
- How many dandelions after 3 years?

_

- See spreadsheet on resource page: https://bio3ss.github.io/linear.html

• The spreadsheet is an implementation of a dynamical model!

Dynamical models

- Make rules about how things change on a small scale
- Assumptions should be clear enough to allow you to calculate or simulate population-level results
- Challenging and clarifying assumptions is a key advantage of models

3.2 Gypsy moths

- A pest species that feeds on deciduous trees
- Introduced to N. America from Europe 150 years ago
- Capable of wide-scale defoliation

Gypsy moth populations

Moth calculation

- Researchers studying a gypsy moth population make the following estimates:
 - The average reproductive female lays 600 eggs
 - -10% of eggs hatch into larvae
 - 10% of larvae mature into pupae
 - 50% of pupae mature into adults
 - 50% of adults survive to reproduce
 - All adults die after reproduction
- What happens if we start with 10 moths?

Stochastic version

- Obviously, we will not get *exactly* 7.5 moths.
- If we consider moths as individuals, we need a **stochastic** model
- What do we mean by stochastic?

_

Stochastic model

- A stochastic model has randomness in the model.
- If we run it again with the same parameters and starting conditions, we get a different answer

3.3 Bacteria

- Imagine we have some bacteria growing in a big tank, constantly dividing and dying:
 - They divide (forming two bacteria from one) at a rate of 0.04/hr
 - They wash out of the tank at a rate of 0.02/hr
 - They die at a rate of 0.01/hr
- Rates are **per capita** (i.e., per individual) and **instaneous** (they describe what is happening at each moment of time)
- We start with 10 bacteria/ml
 - How many do we have after 1 hr?
 - What about after 1 day?

Bacteria, rescaled

- Imagine we have some bacteria growing in a big tank:
 - They divide (forming two bacteria from one) at a rate of 0.96/day
 - They wash out of the tank at a rate of $0.48/\mathrm{day}$
 - They die at a rate of $0.24/\mathrm{day}$
- If we start with 10 bacteria/ml, how many do we have after 1 day?

Units

F

Terminology

- Sometimes people distinguish
 - arithmetic from linear growth, or
 - **geometric** from **exponential** growth
- Based on:

• We won't worry much about this.

3.4 Log and linear scales

Scales of comparison

• Poll: 1 is to 10 as 10 is to what?

Scales of display

There is only one log scale; it doesn't matter which base you use!

Canadian provinces

- How many people know the Canadian provinces song?
- Poll: Which Canadian province is the most unusual in terms of area?
- Poll: Which Canadian province is the most unusual in terms of population?

Canadian provinces

Predation comparison

- A 300 lb lion is attacking a 600 lb buffalo!
- Poll: This is analogous to a 15 lb red fox attacking: a beaver, an elk
 - A 30 lb beaver (twice as heavy)?
 - A 315 lb elk (300 lbs heavier)?

Different scales

- The log scale and linear scale provide different ways of looking at the same data
- Equally valid
- What are some advantages of each?

Advantages of arithmetic view

•

_

•

•

Advantages of geometric view

•

•

Gypsy-moth example

Scales in population biology

- The linear scale looks at differences at the population scale
- The log scale looks at differences at the individual scale (per capita)

3.5 Time scales

Characteristic times

• Characteristic time is the *ratio* between the thing that is changing (units [widgets]) and the rate of change ([widgets/time]).

- Exponential change is when the characteristic time stays constant:
 - I'm always 1 hour away from the town of Speed
 - So I'm approaching it exponentially

Bacteriostasis

- What if we add an agent to the tank that makes the birth and death rates nearly zero?
- Now the bacteria are merely washing out at the rate of 0.02/hr
- If we start with 10 bacteria/ml, how many do we have after:
 - Poll: 1 hr?
 - Poll: 1 wk?

Bacteriostasis answers

• Bacteria wash out at the rate of 0.02/hr

_

• Start with 10 bacteria/ml:

_

Bacteriostasis analysis

- Rate of exponential decline is $r = 0.02/\,\mathrm{hr}$
- Characteristic time is $T_c = 1/r = 50 \,\mathrm{hr}$
- It is useful to think about time scales in exponential change by *comparing* elapsed time to characteristic time
 - 1 hour is short (almost linear decline)
 - 1 week is long (many exponential changes)

Euler's e

- ullet The reason mathematicians like e is that it makes this link between instantaneous change and long-term behaviour
- If I drive for an hour, how much closer do I get to the ideal town of Speed?

_

- \bullet e or 1/e is the approximate answer to a lot of questions like this one
 - If I compound 1%/year interest for 100 years, how much does my money grow?
 - If two people go deal out two decks of cards simultaneously, what is the probability they will never match cards?
 - If everyone picks up a backpack at random after a test, what's the probability nobody gets the right backpack?

Exponential growth

- We can think about exponential growth the same way as exponential decline:
 - Things are always changing at a rate that would take a fixed amount of time to get (back) to zero
 - This is the characteristic time
 - Exponential growth follows $N=N_0\exp(rt)=N_0\exp(t/T_c)$

Half life and doubling time

- \bullet The characteristic time is how long it takes to change by a factor of e
 - Direct link to rate of instantaneous change.
- Half life (or doubling time) is how long to change (down or up) by a factor of 2
 - If it takes T_c time to change by a factor of e
 - It takes $\log_e(2)T_c \approx 0.69T_c$ to change by a factor of 2
- You should be able to do this calculation

$$-\exp(-rT_h) = 1/2$$

$$-rT_h = \log_e(1/2) = -\log_e(2)$$

$$-T_h = \log_e(2)/r$$

$$-T_h = \log_e(2)T_c$$

Summary

- Exponential growth is a specific thing
 - At least in math and science
- \bullet Often tied to a specific mechanism

_

- Units can help us think clearly
 - or notice our mistakes