Sex and sociality in a disconnected world

BIOL3110

Habitat fragmentation

70% of Forests within 1km of forest edge

Loss of genetic variation

Glanville fritillary butterfly Saccheri *et al.* 1998 *Nature*

Simple genetic diversity was the best predictor of local extinction

Frankham et al. (2017)

Impacts at a range of scales

Level of fragmentation

Mona et al. 2014 Heredity

Simulation study

Inbreeding depression seen in virtually all species that usually outbreed

Frankham et al. (2017)

Maintaining dispersal and gene flow (demographic and genetic connectivity)

Landscape genetics to evaluate the influence of environmental variables on gene flow/dispersal

Holderegger et al. 2014, Trends in Plant Science

Better at detecting genetic differences that have accumulated recently

Stow et al. 2006 WRes

Better at identifying variables influencing dispersal

Isolation by resistance

(1) Input: landscape data and sample coordinates

Pairwise resistance

0000000		Α	В	С
0.000.000.000	Α	0		
	В	6.5	0	
	С	5.5	3.5	0

Predicted gene flow

(2) Output: pairwise resistance matrix

Temperature influences the Wingless Grasshopper (Phaulocridium) Darker colour – more resistance

Credit: Museum Victoria

11k SNPs ddRAD

Yadav et al. 2019 Mol Ecol

Most emphasis on matrix between habitat patches

And the influence of environmental variables on connectivity

Within-patch processes: changes to interspecific interactions

- Antipredator behaviour
- Avoidance of parasitism
- Increased competition

Predation risk

Within patch – changes to intraspecific interactions

- Home range size
- Aggression
- Group size
- Kin interactions e.g. infanticide in bank voles
- Mate availability
- Inbreeding avoidance

Science Photo Library

Impacts of habitat fragmentation

+/- of Resource defence

Population density; Resource density; Spatial clumping

Figure 1 Resource defence theory. Ecological factors such as number and distribution of resources and competitors determine whether an individual guards a resource. Above the lower threshold, individuals aggressively defend space around a resource. Above the upper threshold, they cease to defend a resource. Graph based on [14] with the social structure that emerges under each condition added by the current authors. See text for detailed description.

Aggressive defence

e.g. chuckwalla

Oldfield 2015 Frontiers in Zool

Oldfield 2015 Frontiers in Zool

Blue headed Wrasse Polygyny large territories, Monogamy small territories

AVP implicated in plasticity of social behavior

Females preferentially coexist in fragmented habitat – but avoid in continuous habitat.

Image: Australian Geographic

Fewer males and reduced multiple paternity

Image: The Australian museum

Banks et a. 2005 mol ecol

Change from monogamy to polygamy

Image: The Australian Museum

Change in Sex-bias Dispersal and increased aggression/infanticide

Bank Vole

Korpela 2010 Behav

Male biased dispersal only in fragmented habitats

(Stow et al. 2001 Mol Ecol)

Do some behaviours slow down the negative consequences from isolation? e.g mating system

Do females discriminate against poor quality males?

Taken from: https://malikaihle.wordpress.com/research/

Or active inbreeding avoidance?

Social Resistance

SYDNEY-AUSTRALIA

Social resistance affects the transition between key life history stages— development, settlement, reproduction

Combining behavioural ecology and landscape genetics Social System Components (Kappeler 2013, Proc.B)

Social Organisation

Relatedness

E.g. brown jays more likely to migrate to group with related male -

Strong inbreeding avoidance e.g. Cunningham's skink

breeding resistance for immigrants

Social Organisation

Optimal Group Size

E.g. Southern pied babblers will accept unrelated immigrants when group size is below optimum

Social Structure

Long-term relationships e.g. pair bonded sleepy lizards

reproduce earlier

Breeding resistance

Assortative mixing e.g acoustic pattern toothed whales

Entry & Breeding resistance

Dominance Hierarchies

e.g manakin (Chiroxiphia spp.) – can enter the group
but lowest rank in lek

Mating System

High reproductive skew

Fig. 1 Distribution of reproductive success among males pursuing different reproductive tactics. Observed (black) and expected (gray) number of paternities attributed to established residents (ER), takeover males (TO), recent immigrants (RI), and roaming males (RO). Expected values are based on the proportion of males in the population across all mating seasons

Breeding Resistance

Breeding Resistance

Banded Mongoose - inbreeds

Meerkat – outbreeding

Care System

Longer parental care period

entry resistance

Allocaring

entry resistance

Or pretend to feed young when no one is looking!

Balkenhol et al. 2015 Lands Gen

Test whether within-patch social environments affect landscape connectivity.

Best model for behavioural influences...

AIC to evaluate best model

Or... expert opinion

Yadav, Stow, Dudaneic 2019, Mol Ecol

Predicting the consequences agent based models

Macal & North 2010 J Sim

Better understand mismatch between dispersal capacity and genetic structure

Lowther et al. 2012 Animal behavior

Social resistance and Habitat fragmentation

How does habitat fragmentation affect the expression of social resistance?

Oldfield 2015 Frontiers in Zool

Can environmental changes render previously optimised dispersal strategies maladaptive by modifying the social landscape?

e.g longer transience or resistance = greater

Next Lecture – Genetics and Climate Change