

Listing of the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently amended) A method of safely removing at least one volatile oxidizable compound which can form an explosive mixture with oxygen from particles (2) present in a container (1), in which a gas stream is introduced into the container (1), the gas stream takes up the oxidizable compounds from the particles (2) and a gas stream laden with the volatile oxidizable compounds is discharged from the container (1),

wherein

- (i) oxygen is added to the gas stream which has been discharged and the volatile oxidizable compounds present in the discharged gas stream are at least partly catalytically oxidized by means of the oxygen, thereby forming an oxidized gas stream; and
- (ii) the oxidized gas stream forms at least part of the gas stream introduced into the container (1), so that the gas stream is circulated in a circuit,

and wherein the concentration of oxygen in the container (1) is below the explosive limit of about 7% by volume.

2. (Previously presented) The method as claimed in claim 1, wherein the particles are polymer particles (2) and the volatile oxidizable compounds are at least one of residual monomers and solvents remaining in the polymer particles (2) after they have been produced.
3. (Previously presented) The method as claimed in claim 2, wherein the polymer particles are solid polymer granules (2).
4. (Previously presented) The method as claimed in claim 2, wherein the particles are sprayed liquid or wax-like polymer particles.

5. (Previously presented) The method as claimed in claim 1, wherein the oxygen is added to the volatile oxidizable compounds in an essentially stoichiometric amount corresponding to that required for complete oxidation.
6. (Previously presented) The method as claimed in claim 1, wherein the oxygen is added in the form of air.
7. (Previously presented) The method as claimed in claim 6, wherein the amount of added oxygen is regulated on the basis of the content of oxygen and the volatile oxidizable compound measured in the oxidized gas stream.
8. (Previously presented) The method as claimed in claim 1, wherein the oxidation is carried out with the aid of a catalyst whose active component comprises at least one noble metal selected from the group consisting of platinum, palladium and rhodium.
9. (Previously presented) The method as claimed in claim 1, wherein the particles (2) are continuously introduced into the container (1) and discharged from the container (1).
10. (Previously presented) The method as claimed in claim 8, wherein the gas stream is conveyed in countercurrent to the particles (2).
11. (Previously presented) The method as claimed in claim 1 having a preceding start-up phase in which the circuit is purged with an inert gas.
12. (Previously presented) The method as claimed in claim 11, wherein an oxygen content in the container (1) is increased continuously to a level of from 0.5 to 5% by volume during the start-up phase and is subsequently kept constant.
13. (Withdrawn) An apparatus for removing volatile, oxidizable compounds from particles, comprising:

- (i) a container (1) for accommodating polymer particles (2), having a gas inlet (3) and a gas outlet (4),
- (ii) a catalyst unit (5) containing an oxidation catalyst for oxidizing residual monomer by means of oxygen,
- (iii) a gas circulation line comprising a gas outlet line (9) which connects the gas outlet (4) to the catalyst unit (5) and a gas return line (10) which connects the catalyst unit (5) to the gas inlet (3) and
- (iv) an air metering unit (6) connected to the gas outlet line (9) for introducing oxygen into the gas outlet line (9).

14. (Withdrawn) The apparatus as claimed in claim 13 further comprising a polymer particle inlet (7) and a polymer particle outlet (8), where the polymer particle inlet (7) and the gas inlet (3) are located on one side of the container (1) and the polymer particle outlet (8) and the gas outlet (4) are located on an opposite side of the container (1) so that a gas stream and the polymer particles (2) can be conveyed in countercurrent.

15. (Withdrawn) The apparatus as claimed in claim 13, wherein the container is a silo (1) for the storage of granulated polymer (2).

16. (Withdrawn) The apparatus as claimed in claim 13, wherein the oxidation catalyst comprises a bundle of conventional monolithic three-way or oxidation catalysts for automobile exhaust gas purification.

17. (Withdrawn) The apparatus as claimed in claim 13, wherein the catalyst unit (5) can be operated autothermally.

18. (Withdrawn) The apparatus as claimed in claim 13, which further comprises:

- (i) a lambda probe for measuring an oxygen content in the return line (10); and

- (ii) a regulating unit which regulates the amount of oxygen introduced through the air metering unit (6) on the basis of the oxygen content measured by means of the lambda probe.

19. (Currently amended) The method of claim 3, wherein the polymer granules are polyolefin granules.

20. (Currently amended) The method of as claimed in claim 11, wherein where the inert gas is nitrogen.

21. (Previously presented) The method as claimed in claim 12, wherein the oxygen content in the container (1) is from 1 to 4% by volume.