Task 1: Give it a go

Question Nu	mber Score				Click on a question no marked and, where a	,		answe	ers were
Question	1 4	1	4	Review	Question Nu	mher S	co	re	
Question	2 3	1	3	Review	Question			4	Review
Question	3 6	1	6	Review	Question	2 3	/	3	Review
Question	4 5	1	5	Review	Question	3 6	1	6	Review
Question	5 2	1	2	Review	Question	4 5	1	5	Review
otal	20	/	20 (1	100%)	Question	-	1	2	
Performar		aı	•	100%)	Total	20		20 (Review (100%)
	nce Summ		ry	Quiz - Short	Performan	ce Summ	a	ry	,
Performar	nce Summ		r y :k 5 - 0	,	Total Performan Exam Name:	ce Summ	a	20 (ry ek 5 -	(100%) Quiz - Shor
Performar	nce Summ	Vee	r y -k 5 - 0	Quiz - Short 941749110	Total Performan Exam Name: Session ID:	ce Summ	ıa _{Vei}	20 (ry ek 5 -	(100%) Quiz - Shor 1898830234
Performar Exam Name: Session ID:	SIT190 - V	Vee	ry ek 5 - 0 15 Del (ed	Quiz - Short 941749110	Total Performan Exam Name: Session ID: Student's Name:	20 ICE Summ SIT190 -1 COWLISHAW, Eth	Nei	20 (ry ek 5 - 1' Del (e	Quiz - Shor 189883023- dcowlishaw
Performar Exam Name: Session ID: Student's Name:	SIT190 - V COWLISHAW, Etha	Vee an E	ry k 5 - 0 15 Del (ed	Quiz - Short 941749110 (cowlishaw)	Total Performan Exam Name: Session ID:	20 CE Summ SIT190 - V COWLISHAW, Eth	Wei	20 (ry ek 5 - 1' Del (e	(100%) Quiz - Shor 189883023

1 & 3)

2) Review

a) Identify a question to ask

I need to understand how to do square root simplifications as I do not understand them. I also need to better understand the ranges of logs.

b) Identify & implement a strategy addressing this question

I plan to review the course materials and play around with my CAS calculator to find a way that works for me. If these do not help, I will request assistance from the teacher.

c) Describe the identified question and your implementation strategy

The question I got stuck on was simplifying $\sqrt{98}$. After I saw the answer to the question, I understood it better. I did not understand what it was even asking but after viewing it, I did, though I still did not understand how to do it. Course materials and calculator play are necessary.

4) Short reflection on improvements

I improved significantly, much like the other times I've done these quizzes. By reviewing course materials then finding factors on my calculator, I could understand what was happening to reach the correct answers. Without having some fun and trial & error on the calculator, I do not believe I would have understood what was happening.

Task 2: Index rules

1) Simply each expression, showing 1 rule/step

a)
$$12^24^3 - 4^24$$

$$12^24^3 - 4^24$$
 -> $(144 * 64) - (4^{2+1})$

Here we applied the multiplication rule $a^m \times a^n = a^{m+n}$.

We simply calculated 12^24^3 as a is not the same, $12 \neq 4$

$$-> 9216 - 4^3$$

9152

b)
$$\frac{x^6x^3}{x^2} + (4x^3)^2$$

$$\frac{x^6x^3}{x^2} + (4x^3)^2$$

We'll focus on $\frac{x^6x^3}{x^2}$, where we apply the multiplication rule

->
$$x^6x^3 = x^{6+3} = x^9$$

$$-> \frac{x^9}{x^2}$$

Then, we apply the division rule $\frac{a^m}{a^n} = a^{m-n}$

$$-> \frac{x^9}{x^2} = x^{9-2} = x^7$$

The equation now is $x^7 + (4x^3)^2$

Focusing on $(4x^3)^2$ now, we apply the bracketed multiplication rule $(ab)^n=a^nb^n$ to the 4

$$-> (4)^2 = 4^2 = 16$$

Then, we apply another variation of the bracketed multiplication rule, $(a^m)^n = a^{mn}$ to the x^3

$$-> (x^3)^2$$

$$-> x^{3*2}$$

 x^6

The equation is now $x^7 + 16x^6$.

It can be further simplified by factoring now.

Each x has at least 6 powers, and there is only one number, 16.

We can therefore simplify by using the multiplication rules like so:

$$-> x^7 + 16 * x^6$$

->
$$x^{7-6} = x^1$$
 (subtraction rule)

This is the smallest value that the internal brackets can be

$$?(x\pm?)$$

For $16x^6$ to be achieved, we need to times 16 by x^6

->
$$x^6(x\pm?)$$
. This shows the multiplication rule. $x^6+x^1=x^7$

Then, we need to add the 16 in

->
$$x^6(x+16)$$

c)
$$\frac{2x^{10}-3x^2}{x^2}$$

There is an opportunity to divide the common factor of x^2 exponents using the division rule.

$$-> \frac{2x^{10}-3x^2}{}$$

$$\Rightarrow \frac{x^2}{2x^{10-2}-3x^{2-2}}$$

$$x^{2-2}$$
-> $\frac{2x^8 - 3x^0}{x^0}$

$$-> \frac{2x^8-3(1)}{1}$$

In one fell swoop, we have removed the division entirely, one x^2 term, and significantly reduced the size of the fraction into

$$2x^{8} - 3$$

2) Solve $13x^2 = 39$ for x

$$13x^2=39$$

$$-> x^2 = \frac{39}{13}$$

->
$$x^2 = 3$$

$$x=\sqrt{3}$$

Task 3: Log rules

1) Simplify each log expression and state each rule as applied

a)
$$log_8(4) + log_8(2)$$

$$log_8(4) + log_8(2)$$

We use the log law of addition to calculate this.

->
$$log_8(4 \times 2)$$

$$-> log_8(8)$$

The base and the number are identical, which is subject to the $log_a(a) = 1$ law.

$$log_8(8) = 1$$

b)
$$2log_2(12) - log_2(4)$$

$$2log_2(12) - log_2(4)$$

We want to first recondense the $2log_2(12)$ statement into a subtractable statement using the log \underline{law} $log_a(m^n)=(n)log_a(m)$

$$2log_2(12)$$

$$-> log_2(12^2)$$

$$-> log_2(144)$$

Now we can subtract using the subtraction law $log_a(m) - log_a(n) = log_a(rac{m}{n})$

$$log_2(144) - log_2(4)$$

$$-> log_2(\frac{144}{4})$$

and get the final answer of $log_2(36)$

2) Simplify $log_{15}(60)$ by changing base

Changing base formula: $log_a(b) = \frac{log_c(b)}{log_c(a)}$

$$log_{15}(60) = 1.5119$$

->
$$a = 15$$
 and $b = 60$

->
$$\frac{log_{60}(60)}{log_{60(15)}}$$

$$\frac{1}{\log_{20}(15)}$$

Factors of 60:

Factors of 15:

$$log_{10}(3) + log_{10}(5) + log_{10}(4)$$

$$log_{10}(6) + log_{10}(10)$$

$$=\log((60/15)) = 0.6020599913$$

$$=\log(60) / \log(15) = 1.51191604$$

3) Solve for x

a)
$$ln(x+3) = 7$$

->
$$e^{ln(x+3)} = e^7$$

->
$$x + 3 = e^7$$

$$x = e^7 - 3 = -2.901$$

b)
$$e^{4x-7} = 8$$

->
$$ln(e^{4x-7}) = ln(8)$$

$$-> 4x - 7 = ln(8)$$

$$-> 4x = ln(8) + 7$$

$$x = \frac{ln(8)+7}{4} = 2.270$$

Task 4: Cultural contribution

1) Describe an application in Ancient Egypt requiring mathematics

2) Why was mathematics needed in it?

3) Solve $x + \frac{3x}{24} = 11$ using Egyptian heap-calculation

-> Guess of
$$x=8$$

->
$$8 + \frac{3(8)}{24} = 11$$

-> $8 + \frac{24}{24} = 11$

$$-> 8 + \frac{24}{24} = 11$$

$$9 \neq 11$$

Since the left does not equal the right, we divide the RHS by the LHS

$$\rightarrow \frac{\text{RHS}}{\text{LHS}} \rightarrow \frac{11}{9}$$

Multiply our guess (x=8) by this fraction to find the true value of x

->
$$8 \times \frac{11}{9}$$

->
$$8 \times \frac{11}{9}$$

-> $\frac{88}{9} = 9.77$

Verify

$$x + \frac{3x}{24} = 11$$

$$x + \frac{3x}{24} = 11$$

$$- > \frac{88}{9} + \frac{3(\frac{88}{9})}{24} = 11$$

$$- > \frac{88}{9} + \frac{\frac{88}{3}}{24} = 11$$

$$- > \frac{88}{9} + \frac{11}{9} = 11$$

$$- > \frac{99}{9} = 11$$

$$-> \frac{88}{9} + \frac{\frac{88}{3}}{24} = 11$$

$$-> \frac{88}{9} + \frac{11}{9} = 11$$

$$-> \frac{99}{9} = 11$$

$$11 = 11$$

4) Solve $x+\frac{x}{3}=16$ using modern methods

$$x + \frac{x}{3} = 16$$

We multiply the whole left side by 3, not just the $\frac{x}{3}$