2010-2011 学年第二学期工科 高等数学 (2-2) 期中试题

一、填空题 $(5 \times 5 \% = 25 \%)$

1.
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2)e^{-(x+y)} = \underline{\hspace{1cm}}$$

3. 函数 $u = xy^2 z$ 在点 P(1, -1, 2) 处沿______方向的方向导数值最大,最大的方向

导数值为 ______

4.
$$f(x,y)$$
 为连续函数,且 $f(x,y)=xy+\iint\limits_D f(u,v)dudv$,其中 D 由 $y=0,\ y=x^2,$

$$x = 1$$
 围成,则 $f(x, y) =$ ______

5.
$$\int_{0}^{1} dx \int_{x}^{1} e^{-y^{2}} dy =$$

二、选择题 (5×5分=25分)

2. 函数 f(u,v)有连续的偏导数, $f(x,x^2) = x^4 + 2x^3 + x$, $f_1'(x,x^2) = 2x^2 - 2x + 1$, 则

$$f_2'(x, x^2) = ()$$

(A)
$$2x^2 + 2x + 1$$
; (B) $x^2 + 2x + 1$; (C) $2x^2 + 2x + 2$; (D) $2x^2 + x + 1$.

- 3. 下列关于函数 z = f(x, y) 在 $P_0(x_0, y_0)$ 处的性质描述正确的是 ()
- (A) $f \in P_0$ 处连续是函数 f 在该点偏导数存在的必要条件;
- (B) $f \in P_0$ 处可微分是函数 f 在该点偏导数存在的必要条件;
- (C) 如果 f 在 P_0 处的两个偏导数为零,则函数 f 在该点可以取得极值;
- (D) 如果 f 在 P_0 处两个偏导数连续,则函数 f 在该点沿任何方向的方向导数都存在.

4. 曲线
$$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \text{ 在对应} t = 0 \text{处的切线与z轴} \\ z = 2e^t \end{cases}$$

正向夹角的正弦是(

(A)
$$\frac{\sqrt{3}}{2}$$
; (B) $\frac{2\sqrt{3}}{3}$; (C) $\frac{\sqrt{3}}{3}$; (D) $\frac{\sqrt{3}}{6}$.

- 5. 设函数 $f(x,y) = 3xy x^3 y^3$, 则 f(x,y) (
 - (A) 在(0,0)点有极小值; (B) 在(1,1)点有极大值;
 - (C) 在(1,2)点有极小值; (D) 没有极值.

三、计算题 (6+7+7+8+7+7+8=50 分)

1. 直线
$$L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$
 , $L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 求过 L_1 且与 L_2 平行的平面

 Π 的方程,并求 L_2 到平面 Π 的距离.(6分)

2. 计算二重积分
$$\iint_D (x+y+1)^2 dx dy$$
, 其中 D 为 $x^2+y^2 \le 1$. (7分)

3. 求空间区域 Ω : $0 \le x \le 1$, $0 \le y \le x$, $x + y \le z \le e^{x+y}$ 的体积V. (7分)

4. 设z = z(x,y) 是由f(x-z,y-z) = 0确定的隐函数,其中f有二阶连续偏导数,且

$$f_1' + f_2' \neq 0, \stackrel{\circ}{x} \frac{\partial^2 z}{\partial x^2}.$$
 (8 $\stackrel{\circ}{x}$)

5. 由曲线
$$\begin{cases} y^2 = 2z \\ 4z = 0 \end{cases}$$
 绕 z 轴旋转一周形成的曲面与 $z = 8$ 围成的区域为 Ω ,求

$$I = \iiint_{\Omega} (x^2 + y^2) dx dy dz . \quad (7 \%)$$

6. 求极限
$$\lim_{t\to 0^+} \frac{1}{t^6} \iiint\limits_{x^2+y^2+z^2\leq t^2} \sin(x^2+y^2+z^2)^{\frac{3}{2}} dx dy dz$$
 (7分)

- 7. 在曲面 Σ : $(x^2y+y^2z+z^2x)^2+(x-y+z)=0$ 上的点(0,0,0)处的切平面 Π 内求一点
- P, 使P到(2,1,2)和(-3,1,-2)的距离的平方和最小. (8分)