Algorithm Foundations of Data Science and Engineering Welcome Tutorial :-) Tutorial 8

GAO Ming

DaSE @ ECNU

15 Apr., 2019

Tutorial 8

1. Given a Markov chain determined by the transition marix

$$P = \left(egin{array}{cc} rac{1}{2} & rac{1}{2} \ rac{1}{4} & rac{3}{4} \end{array}
ight) \ ext{and} \ \pi = \left(egin{array}{cc} 1 \ 0 \end{array}
ight)^T.$$

- a. Compute πP , πP^2 , πP^3 and πP^4 ;
- b. Show that the results are approaches a constant vector.
- 2. Given a Markov chain determined by the transition matrix P. Prove that P and (1/n)((n-1)I+P) have the same stationary distribution, where I is an identity matrix.
- 3. A certain experiment is believed to be described by a two-state Markov chain with the transition matrix P, where $P = \begin{pmatrix} 0.5 & 0.5 \\ p & 1-p \end{pmatrix}$ and the parameter p is unknown. When the experiment is performed many times, the chain ends in state one approximately 20 percent of the time and in state two approximately 80 percent of the time.
 - a. Compute a sensible estimate for the unknown parameter *p* and explain how you found it;
 - b. Whether is the Markov chain irreducible and aperiodic, or not? Why?

Tutorial 8

4. Given a Markov chain determined by the transition marix

$$P = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{array}\right)$$

- a. Show that $\pi = (0.4, 0.6)$ is a stationary distribution of this chain;
- b. Show that $\pi = (0.4, 0.6)$ is also a stationary distribution of the Markov chain with the transition matrix $\frac{1}{2}(I+P)$, where I is an identity matrix.
- c. If P has a stationary distribution π . Prove that P and $\frac{1}{2}(I+P)$ have the same stationary distribution.
- 5. Given a Markov chain determined by the transition matrix

$$\begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$$
, where $a,b \in [0,1]$.

- a. If the Markov chain is periodic, what are the values of a and b?
- b. In this case, what is the period?
- c. In this case, is the Markov chain irreducible? (Hint: a Markov chain is irreducible if it is possible to go from every state to every state (not necessarily in one move).)