CS305 Computer Architecture

Hamming Codes

Bhaskaran Raman Room 406, KR Building Department of CSE, IIT Bombay

http://www.cse.iitb.ac.in/~br

Need for Error Correcting Codes

- Reading and writing may be separated in time: storage systems
 - Main memory
 - Hard disk
- Reading and writing may be separated in space: communication
- Errors could be introduced in bits between writing & reading
- How to correct these errors? Error correcting codes.

Error Correcting Codes: Terminology

- Redundant bits = ECC bits = (n-m) = k
- Notation for ECC: (n, m)
- Typically: code-word = superset of data-word

Hamming codes: specific kind of ECC

Error Detection vs Error Correction

- Suppose data-word = 1 bit
- How many extra bits needed to detect 1-bit error?
- How many extra bits needed to correct 1-bit error?
- Suppose data-word = m bits
- How many extra bits needed to detect 1-bit error?
- How many extra bits needed to correct 1-bit error?
 - Answered through information theory analysis

1-bit Error Correction: |Ni| = ^+| Data und:m Information Theory Analysis 100 No Contraction of the Contraction of t Code worder n.msk (i) 2^{n} \times (n+1)Consider space of all Nors of a node possible vode words = Nodes at Hamming Distance = 1 size of this 1-bit error (m+k+1 spacesá Code.words (valid): corr. is not A possible 0-bit prosible $c_0, c_1, \ldots, c_{2m-1}$ 0 0 error patterns Ni = Set & nbrs of Ci = 2^m Ristance bein 2p13 = valid code Ni U Nj = p in this space words = # bit flips tregt to go from one nobit. N; = N; U & C; 3 N; ON; = \$ pattern to another Hamming distance 1011101) いらいないをよう

Hamming Code (n, 4) (4+k+1) \(\lambda \)

$$(4+k+1) \leq 2^{R}$$

$$k \geqslant 3$$

$$n \geqslant 7$$

$$n = 7$$

For m=4,
$$(4+k+1) <= 2^k$$
, satisfied for $k >= 3$

Hamming code uses min. reqd. k=3, i.e. (7, 4)

$$7 = 111 \text{ b}$$

 $6 = 110 \text{ b}$
 $5 = 101 \text{ b}$
 $4 = 100 \text{ b}$
 $3 = 011 \text{ b}$
 $2 = 010 \text{ b}$
Bit is set in representation of 7, 6, 3
→ p2 = d7 + d6 + d3
P1 = d7 + d5 + d3
Bit is set in representation of 7, 5, 3
→ p1 = d7 + d5 + d3

Error Correction in Hamming Code

Assuming at most 1-bit error

Compute p4, p2, p1 bits again

Add up bit positions of pi, which do not match with code-word read == position of bit error

Scheme works even if error is in pi bit

Hamming Code (7, 4): An Example

Given data word 0110, what is the code-word?

Suppose code word read =
$$0100011$$

 $p4 = 1$, $p2 = 1$, $p1 = 0$
Position of error = $4+1 = d5$

Generic Hamming Code

2-D Parity Scheme

(+) detect 2-bit errors
3-bit errors
detect most 4-bit errors
(-) romre bits than Hamming
ode scheme

Summary

- Error correction: extra bits needed
 - Many more than for error detection
- Hamming code: k = O(log(m))
- 2-D parity: k = O(sqrt(m))