Constraining Milky Way models with action clustering

Robyn Sanderson Kapteyn Institute, Groningen

Tidal streams: keys to the dark Milky Way

Martinez-Delgado et al. 2010

Tidal streams in AA space

Tidal streams in AA space

Actions are most clustered in the correct potential

$$J_r = rac{GM}{\sqrt{-2E}} - rac{1}{2} \left(m{L} + \sqrt{m{L^2} + 4GMb}
ight)$$

Potential parameters
Observations
Both

Actions are most clustered in the correct potential

$$J_r = rac{GM}{\sqrt{-2E}} - rac{1}{2} \left(m{L} + \sqrt{m{L^2} + 4GMb}
ight)$$

Potential parameters Observations Both

Smoother Distribution → lower D_{KL}

$$D_{KI} = 0.4$$

Performance with perfect measurements

Initial "satellites":

 $\sigma_{\rm r}$: 0.5-4.5 kpc

 $\sigma_{\rm v}$: 10-40 km/s

Orbital pds: 20-70 Myr

Stream ages: 500-5000 Myr

10 kpc from Sun

25 kpc from Sun

Effect of adding more streams (avg. 1000 stars each)

M (10¹² solar masses)

Effect of adding more stars (5 streams)

Including observational errors

- Ten "satellites"
- Avg. 5000 stars each
- Randomly chosen orbits & ages
- Isochrone potential
- Convolved with Gaia/4MOST error models
- Includes Gaia photo parallaxes
- No RA/Dec cuts

The effect of improved RVs

% of stars with $\sigma_\pi/\pi < 0.2$ that also have $\sigma_{RV} < 10$ km/s

Stellar mag	Gaia only	Gaia + 4MOST
"Red giants" $(M_V = 1)$	60%	100%
"MSTO" $(M_V = 4.5)$	2%	100%

The effect of improved RVs

For RED GIANTS $(M_V = 1)$

Gaia only

With 4MOST RVs

The effect of improved RVs

For MSTO $(M_V = 4.5)$

Not enough stars left!

Gaia only

With 4MOST RVs

Conclusions

- Action clustering can be used to constrain the mass and shape of a potential
- number of streams > number of stars per stream
 - Resolve degeneracies between parameters
 - Clumpier underlying distribution provides more contrast
- Gaia photo parallax errors may be sufficient
- *Existence* of 4MOST RVs >> accuracy (dist error dominates)
 - ⇒ sky coverage >> spectral resolution
- More stars = better constraints:
 - Find more streams
 - Larger distances = better total mass measurement
 - Pick best data in each stream

Review of action-angle coordinates

Canonical transformation for bound orbits

$$(q,p) o (heta,J)$$
 $H(q,p) o H(J)$

Angles increase linearly with time

$$heta = heta_0 + \Omega(t-t_0) \quad \Omega \equiv rac{\partial H}{\partial J}$$

- Actions are
 - Constants of motion
 - Adiabatic invariants
 - Potential-dependent

$$J = \mathrm{const} \ \mathrm{for} \ \frac{1}{H} \frac{\partial H}{\partial t} \ll \Omega$$

Outline

- Review of action-angle variables
- Tidal streams in action space
- How to measure clustering
- Proof of principle
- Effect of Gaia proper-motion errors
- Impact of 4MOST improved RVs