Carnegie Mellon University

Study of Cloud Microphysics using Data Aggregation & tuning of standard atmospheric parametrizations

Yash Gokhale *12.14.2020*

Motivation

- Minute changes in extent or location of clouds leads to significant changes in atmosphere
- Uncertainties in the numerical weather models are required to be incorporated into these models for accurate estimations
- Potential reasons for uncertainties
 - Gaps in empirical or theoretical description of cloud processes
 - Inherent variability in spatial-temporal structures in clouds
 - High nonlinearity and complexity of cloud processes
- Practical approach to solve this is to depend on parameterizations which only on bulk chemical properties of aerosols and cloud particles

Objectives

- Test the efficacy of standard parameterizations in literature for CDNC, LWC and LWP
- Develop an automated script to detect cloud base in convective clouds and a spatial-temporal clustering methodology to output time series data
- Analyze the source of uncertainties in standard parameterizations

Data source: ARM's SGP (Southern Great Plains) observatory Campaign: MC3E Field Campaign

Parameterizations under consideration

$$N_d = \frac{2e^{3\sigma_X^2}\rho^2}{9\pi} \frac{\sigma^3}{q^2}$$

Yang parameterization: LWC, Extinction coefficient

$$N_d = C_3^{\frac{2k}{2+k}} N_0^{\frac{2}{2+k}} w^{\frac{3k}{4+2k}}$$

Pinsky parameterization: Temp, CCN, Updraft velocity

$$N_d = \sqrt{\frac{8\alpha^3 < r^6 >}{Z*\pi^3 < r^2 > 3} (\frac{K}{K_W})^2}$$

Lidar parameterization: Backscatter coefficient, Reflectivity factor, Droplet radius distribution

Task I- Detection of Cloudbase in liquid clouds

University

Task II: Automated Code for Spatial-Temporal Clustering

Generating indices for extinction -----Start of clustering cycle-----Changing time resolution from 21600->2880 Changing height resolution from 596->667 You are decreasing time resolution You are increasing height resolution ------End of clustering cycle-----Clustering of Retrieved Liquid Water Concentration took 5.26 s Filtering of Retrieved Liquid Water Concentration took 145.87 s Total time: 152.22083568572998s Clustering of Mean Doppler velocity took 4.65 s Filtering of Mean Doppler velocity took 163.41 s Total time: 169.7653408050537s Clustering of Spectral width took 6.52 s Filtering of Spectral width took 155.09 s Total time: 162.78985214233398s Clustering of Reflectivity took 4.76 s Filtering of Reflectivity took 142.07 s Total time: 147.98419713974s Processing temperature -----Start of clustering cycle------Changing time resolution from 144->2880 Changing height resolution from 198->667 You are increasing time resolution You are increasing height resolution

------End of clustering cycle------

Processing CCN -----Start of clustering cycle-----Changing time resolution from 1440->2880 Changing height resolution from 1000->596 You are increasing time resolution You are decreasing height resolution -----End of clustering cycle-----Generating Output file Date 2880 Time 2880 Height 2880 LWC 2880 LWC_SD 2880 Velocity 2880 Velocity_SD 2880 Spectral_Width 2880 Spectral Width SD 2880 Reflectivity 2880 Reflectivity_SD 2880 Temperature 2880 Extinction_low 2880 Extinction 2880 Extinction_high 2880 CCN 2880 Time taken so far 674.44

Task IV: Predictive Models for LWC

Inaccurate models

Fair models

Task V: Analyzing sources of Uncertainties in LWP

$$LWC = \left[\frac{N_d * Z_{liquid}}{3.6}\right]^{\frac{1}{1.8}} \qquad LWP_t = \int_{h_i = c_{base}}^{h_f = c_{top}} LWC_t(h) * dh \qquad LWP_t = \int_{h_i = c_{base}}^{h_f = c_{top}} \left[\frac{N_d * Z_{liquid}(h)}{3.6}\right]^{\frac{1}{1.8}} * dh$$

Sources of uncertainty:

- 1. Clustering of data
- Cloud base detection
- 3. Empirical relation
- 4. Numerical integration

Accomplishments & Future Work

Accomplishments

- Development of an automated clustering methodology from scratch
- Detection of sources of uncertainty in standard parametrizations
- Baseline predictive models for LWC

Future Work

- Tuning the developed clustering methodology for better time-series estimations
- Higher order prediction models using neural networks

Acknowledgements

• Dr. Hamish Gordon

Guide for M.S. Chemical Engineering '20 at Carnegie Mellon University

• Department of Chemical Engineering, Carnegie Mellon University

Allowing me to work on the project and develop strong research aptitude

Aditya Biyani, Hanyu Liu

Peers and research group members

References

Go to References section of the complete report:

https://github.com/yashgokhale/CMU-MS-Research/blob/main/Reports/ysg MastersReport.pdf

