Accident Prophet:
Predicting Road
Incidents

Group 11

Mr. Nitesh Ghimire

Mr. Gholamreza Izadi

Mr. Tairo Kageyama

Mr. Panithi Sirisatjapipat

Mr. Bakyt Tursaliev

Table of contents

01

Introduction

03

Modeling

02

Data Wrangling

04

Deployment

01

Introduction

Introduction

Our product is driven by the belief that data-driven decision-making, coupled with the power of machine learning, can significantly enhance the way we understand and manage traffic accidents. "AccidentProphet" harnesses the potential of machine learning and data analytics to unlock valuable patterns and trends within accident records.

Accident Prophet

	Accident information		Location		Road specification		Weather		Time	
	ID	object	Start_Lat	float64	Amenity	bool	Airport_Code	object	Start_Time	object
	Source	object	Start_Lng	float64	Bump	bool	Weather_Timestamp	object	End_Time	object
	Severity	int64	End_Lat	float64	Crossing	bool	Temperature(F)	float64	Timezone	object
DATA	Distance(mi)	float64	End_Lng	float64	Give_Way	bool	Wind_Chill(F)	float64		
	Description	object	Street	object	Junction	bool	Humidity(%)	float64		
			City	object	No_Exit	bool	Pressure(in)	float64		
			County	object	Railway	bool	Visibility(mi)	float64		
			State	object	Roundabout	bool	Wind_Direction	object		
			Zipcode	object	Station	bool	Wind_Speed(mph)	float64		
			Country	object	Stop	bool	Precipitation(in)	float64		
					Traffic_Calming	bool	Weather_Condition	object		
					Traffic_Signal	bool	Sunrise_Sunset	object		
					Turning_Loop	bool	Civil_Twilight	object		
							Nautical_Twilight	object		
							Astronomical_Twilight	object		

DATA

02

Data Wrangling

Data Wrangling

Creating time component

Selecting records of year after 2020

Dropping End_Lat and End_Long

Removing samples with missing value

Creating Features "Delay(min)"

Converting Measurement to Metric Standard

Recode some variables such as weather condition and doing one hot encode for categorical columns

Recoding severity to two class attribute

Data Wrangling

Creating count plots, bar plots, and scatter plot for different type of attributes

Describe data columns

Deleting 48 variables

Removing outliers

Creating dataframes X and Y

Train-test split

Imbalance fixing

03 Modeling

ModelingFeatures and Label

	Feature name	min	mean	max
1	Start_Lat	24	35	49
2	Start_Lng	-124	-93	-67
3	Humidity(%)	1	64	100
4	Crossing	0	0	1
5	Junction	0	0	1
6	Stop	0	0	1
7	Traffic_Signal	0	0	1
8	Sunrise_Sunset	0	0	1
9	Civil_Twilight	0	0	1
10	Start_Hour	0	12	23
11	IsWeekend	0	0	1
12	Temperature(C)	-29	16	44
13	Pressure(cm)	0	74	78
14	Precipitation(cm)	0	0	81
15	Visibility(km)	0	14	16
16	Wind_Speed(kmph)	0	12	88
17	Weather_Bin_Clear	0	0	1
18	Weather_Bin_Cloudy	0	0	1
19	Weather_Bin_Rainy	0	0	1
20	Weather_Bin_Snowy	0	0	1
21	Start_Month_December	0	0	1
22	Start_Month_January	0	0	1

Severity (0,1)

Modeling

After data preparation, four classification algorithms
(Adaboost, xgboost, Random Forest, Logistic Regression) were used. Cross-validation assessed their performance, helping select the best model based on accuracy, precision, recall, and F1-score..

Modeling

After data preparation, four classification algorithms (Adaboost, xgboost, Random Forest, Logistic Regression) were used. Cross-validation assessed their performance, helping select the best model based on accuracy, precision, recall, and F1-score...

Modeling

Cross Validation

Modeling

Evaluation

Modeling

Grid Search

Modeling

Feature Importance

Modeling

Inference

04 Deployment

Home

View Statistics

Start Lat

Predict

Predict

Predict

Thank You So Much!

