Matching-Based Measures (I): Purity vs. Maximum Matching

- **Purity**: Quantifies the extent that cluster C_i contains points only from one (ground truth) partition: $purity_i = \frac{1}{n_i} \max_{j=1}^{n_i} \{n_{ij}\}$
 - Total purity of clustering *C*:

$$purity = \sum_{i=1}^{r} \frac{n_i}{n} purity_i = \frac{1}{n} \sum_{i=1}^{r} \max_{j=1}^{k} \{n_{ij}\}$$

- Perfect clustering if purity = 1 and r = k (the number of clusters obtained is the same as that in the ground truth)
- **Ex.** 1 (green or orange): $purity_1 = 30/50$; $purity_2 = 20/25$; $purity_3 = 25/25$; purity = (30 + 20 + 25)/100 = 0.75
- Two clusters may share the same majority partition
- Maximum matching: Only one cluster can match one partition
 - Match: Pairwise matching, weight $w(e_{ij}) = n_{ij}$ $w(M) = \sum_{e \in M} w(e)$ Maximum weight matching: $match = \arg\max_{M} \{\frac{w(M)}{n}\}$

 - \blacksquare Ex2. (green) match = purity = 0.75; (orange) match = 0.65 > 0.6

$C \setminus T$	T ₁	T ₂	T ₃	Sum
C_1	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_{j}	25	40	35	100

C_3	25	0	0	25
m_{j}	25	40	35	100
$C \setminus T$	T ₁	T ₂	<i>T</i> ₃	Sum
C_1	0	30	20	50
C_2	0	20	5	25
C_3	25	0	0	25
m_{i}	25	50	25	100