Bayesian Inference and Hypothesis Testing

Christos Dimitrakakis

October 25, 2024

Conditional Probability and the Theorem of Bayes

Conditional Probability and the Theorem of Bayes

Simple Bayesian hypothesis testing

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

It is also true that:

$$P(B|A) = P(A \cap B)/P(A)$$

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

It is also true that:

$$P(B|A) = P(A \cap B)/P(A)$$

Combining the two equations, reverse the conditioning:

$$P(A|B) = P(B|A)P(A)/P(B)$$

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

It is also true that:

$$P(B|A) = P(A \cap B)/P(A)$$

Combining the two equations, reverse the conditioning:

$$P(A|B) = P(B|A)P(A)/P(B)$$

So we can reverse the order of conditioning, i.e. relate to the probability of A given B to that of B given A.

2/23

The cards problem

- 1. Print out a number of cards, with either [A|A], [A|B] or [B|B] on their sides.
- 2. If you have an A, what is the probability of an A on the other side?
- 3. Have the students perform the experiment with:
 - 3.1 Draw a random card.
 - 3.2 Count the number of people with A.
 - 3.3 What is the probability that somebody with an A on one side will have an A on the other?
 - 3.4 Half of the people should have an A?

The cards problem

- 1. Print out a number of cards, with either [A|A], [A|B] or [B|B] on their sides.
- 2. If you have an A, what is the probability of an A on the other side?
- 3. Have the students perform the experiment with:
 - 3.1 Draw a random card.
 - 3.2 Count the number of people with A.
 - 3.3 What is the probability that somebody with an A on one side will have an A on the other?
 - 3.4 Half of the people should have an A?

The prior and posterior probabilities

```
A A 2/6 A observed 2/3
A B 1/6 A observed 1/3
B A 1/6
B B 2/6
```

Simple Bayesian hypothesis testing

Conditional Probability and the Theorem of Bayes

Simple Bayesian hypothesis testing

A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - \triangleright H_0 : They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

All those that think the accused is guilty, raise their hand.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

- All those that think the accused is guilty, raise their hand.
- Divide by the number of people in class

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - ► H₀: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

- All those that think the accused is guilty, raise their hand.
- Divide by the number of people in class
- ▶ Let us call this $P(H_1)$.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - ► H₀: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

- All those that think the accused is guilty, raise their hand.
- Divide by the number of people in class
- ▶ Let us call this $P(H_1)$.
- This is a purely subjective measure!

Let us now do a DNA test on the suspect

Let us now do a DNA test on the suspect

DNA test properties

▶ *D*: Test is positive

Let us now do a DNA test on the suspect

DNA test properties

- ▶ D: Test is positive
- ▶ $P(D|H_0) = 10\%$: False positive rate

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- ▶ $P(D|H_0) = 10\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- ▶ $P(D|H_0) = 10\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Let us now do a DNA test on the suspect

DNA test properties

- ▶ D: Test is positive
- $ightharpoonup P(D|H_0) = 10\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Run the test

▶ The result is either positive or negative $(\neg D)$.

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- ▶ $P(D|H_0) = 10\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Run the test

- ▶ The result is either positive or negative $(\neg D)$.
- ▶ What is your belief now that the suspect is guilty?

Run a DNA test on everybody in the house.

- Run a DNA test on everybody in the house.
- ▶ What is different from before?

- Run a DNA test on everybody in the house.
- ▶ What is different from before?
- ► Who has a positive test?

- Run a DNA test on everybody in the house.
- What is different from before?
- ► Who has a positive test?
- ▶ What is your belief that the people with the positive test are guilty?

ightharpoonup Prior: $P(H_i)$.

$$P(D) = P(D \cap H_0) + P(D \cap H_1) \tag{1}$$

$$= P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$$
 (2)

- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0) + P(D|H_1)P(H_1)}$
- Assuming $P(D|H_1) = 1$, and setting $P(H_0) = q$, this gives

$$P(H_0|D) = \frac{0.1q}{0.1q + 1 - q} = \frac{q}{10 - 9q}$$

► The posterior can always be updated with more data!

- ightharpoonup Prior: $P(H_i)$.
- Likelihood $P(D|H_i)$.

$$P(D) = P(D \cap H_0) + P(D \cap H_1) \tag{1}$$

$$= P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$$
 (2)

- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0)+P(D|H_1)P(H_1)}$
- Assuming $P(D|H_1) = 1$, and setting $P(H_0) = q$, this gives

$$P(H_0|D) = \frac{0.1q}{0.1q + 1 - q} = \frac{q}{10 - 9q}$$

► The posterior can always be updated with more data!

- ightharpoonup Prior: $P(H_i)$.
- ▶ Likelihood P(D|H_i).
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$

$$P(D) = P(D \cap H_0) + P(D \cap H_1) \tag{1}$$

$$= P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$$
 (2)

- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0) + P(D|H_1)P(H_1)}$
- lacksquare Assuming $P(D|H_1)=1$, and setting $P(H_0)=q$, this gives

$$P(H_0|D) = \frac{0.1q}{0.1q + 1 - q} = \frac{q}{10 - 9q}$$

The posterior can always be updated with more data!

- ightharpoonup Prior: $P(H_i)$.
- ▶ Likelihood P(D|H_i).
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$
- Marginal probability:

$$P(D) = P(D \cap H_0) + P(D \cap H_1) \tag{1}$$

$$= P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$$
 (2)

- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0)+P(D|H_1)P(H_1)}$
- lacksquare Assuming $P(D|H_1)=1$, and setting $P(H_0)=q$, this gives

$$P(H_0|D) = \frac{0.1q}{0.1q + 1 - q} = \frac{q}{10 - 9q}$$

The posterior can always be updated with more data!

Python example

```
def get_posterior(prior, data, likelihood):
    marginal = prior * likelihood[data][0] + (1 - prior) * likelihood
    posterior = prior * likelihood[data][0] / marginal
    return posterior

import numpy as np
prior = 0.9 # Pr(H1)
likelihood = np.zeros([2, 2])
likelihood[0][0] = 0.9 # Pr(F|H0)
```

data = 1

likelihood[1][0] = 0.1 # Pr(T|H0)
likelihood[0][1] = 0 # Pr(F|H1)
likelihood[1][1] = 1 # Pr(T|H1)

return get_posterior(prior, data, likelihood)

Types of hypothesis testing problems

Simple Hypothesis Test

Example: DNA evidence, Covid tests

- ▶ Two hypothesese H_0, H_1
- \triangleright $P(D|H_i)$ is defined for all i

Multiple Hypotheses Test

Example: Model selection

- $ightharpoonup H_i$: One of many mutually exclusive models
- \triangleright $P(D|H_i)$ is defined for all i

Null Hypothesis Test

Example: Are men's and women's heights the same?

- $ightharpoonup H_0$: The 'null' hypothesis
- \triangleright $P(D|H_0)$ is defined
- The alternative is undefined

Problem definition

▶ Defining the models $P(D|H_i)$ incorrectly.

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

The garden of many paths

► Having a huge hypothesis space

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

The garden of many paths

- ► Having a huge hypothesis space
- ► Selecting the relevant hypothesis after seeing the data

▶ Model family $\{P_{\theta}|\theta\in\Theta\}$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- ► How can we predict a new data point?

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- ► How can we predict a new data point?

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- How can we predict a new data point?

Example (Bernoulli model)

 $ightharpoonup x \in \{0,1\}, \ \theta \in [0,1]$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- How can we predict a new data point?

- $x \in \{0,1\}, \theta \in [0,1]$
- $\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- How can we predict a new data point?

- $x \in \{0,1\}, \theta \in [0,1]$
- $\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$
- $P_{\theta}(x=1) = \theta$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- ► How can we predict a new data point?

- $x \in \{0,1\}, \ \theta \in [0,1]$
- $\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$
- ightharpoonup $P_{\theta}(x = 1) = \theta$
- $ightharpoonup P_{\theta}(x = 0) = 1 \theta.$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- ► How can we predict a new data point?

- $x \in \{0,1\}, \ \theta \in [0,1]$
- $\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$
- ightharpoonup $P_{\theta}(x = 1) = \theta$
- $ightharpoonup P_{\theta}(x = 0) = 1 \theta.$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- ► How can we predict a new data point?

Example (Bernoulli model)

$$x \in \{0,1\}, \ \theta \in [0,1]$$

$$\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$$

$$ightharpoonup P_{\theta}(x=1) = \theta$$

$$ightharpoonup P_{\theta}(x = 0) = 1 - \theta.$$

Example (Gaussian model)

$$\triangleright$$
 $x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}_+$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- How can we predict a new data point?

Example (Bernoulli model)

$$x \in \{0,1\}, \ \theta \in [0,1]$$

$$\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$$

$$ightharpoonup P_{\theta}(x=1) = \theta$$

$$ightharpoonup P_{\theta}(x = 0) = 1 - \theta.$$

$(\theta) \longrightarrow x_t$

Example (Gaussian model)

$$\triangleright x \in \mathbb{R}, \ \mu \in \mathbb{R}, \sigma \in \mathbb{R}_+$$

$$\triangleright x \mid \mu, \sigma \sim \text{Normal}(\mu, \sigma)$$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data $x \sim P_{\theta^*}$ for some $\theta^* \in \Theta$.
- ▶ How can we estimate the correct θ ?
- ► How can we predict a new data point?

Example (Bernoulli model)

$$x \in \{0,1\}, \ \theta \in [0,1]$$

$$\triangleright x \mid \theta \sim \text{Bernoulli}(\theta)$$

$$\triangleright$$
 P _{θ} (x = 1) = θ

$$ightharpoonup P_{\theta}(x = 0) = 1 - \theta.$$

Example (Gaussian model)

$$\triangleright$$
 $x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}_+$

$$\triangleright$$
 $x \mid \mu, \sigma \sim \text{Normal}(\mu, \sigma)$

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

Example (Bernoulli model)

▶ $x_t \in \{0, 1\}$, for $t \in [T]$, $\theta \in [0, 1]$

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

- ▶ $x_t \in \{0,1\}$, for $t \in [T]$, $\theta \in [0,1]$
- $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

- ▶ $x_t \in \{0,1\}$, for $t \in [T]$, $\theta \in [0,1]$
- $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$
- $ightharpoonup P_{\theta}(x_1,\ldots,x_T) = \prod_{t=1}^T P_{\theta}(x_t)$

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

- ▶ $x_t \in \{0,1\}$, for $t \in [T]$, $\theta \in [0,1]$
- $ightharpoonup x_t \mid \theta \sim \text{Bernoulli}(\theta)$
- $\triangleright P_{\theta}(x_1,\ldots,x_T) = \prod_{t=1}^T P_{\theta}(x_t)$
- ► What maximises the likelihood?

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

- $x_t \in \{0,1\}, \text{ for } t \in [T], \theta \in [0,1]$
- $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$
- $\triangleright P_{\theta}(x_1,\ldots,x_T) = \prod_{t=1}^T P_{\theta}(x_t)$
- ► What maximises the likelihood?
- ▶ Define $s_T = \sum_{t=1}^T x_t$.

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

- $x_t \in \{0,1\}, \text{ for } t \in [T], \theta \in [0,1]$
- $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$
- $\blacktriangleright P_{\theta}(x_1,\ldots,x_T) = \prod_{t=1}^T P_{\theta}(x_t)$
- ► What maximises the likelihood?
- ightharpoonup Define $s_T = \sum_{t=1}^T x_t$.
- ▶ Show that $\theta_{\mathrm{ML}}(x) = s_T/T$.

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .

- ▶ $x_t \in \{0,1\}$, for $t \in [T]$, $\theta \in [0,1]$
- $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$
- $\blacktriangleright P_{\theta}(x_1,\ldots,x_T) = \prod_{t=1}^T P_{\theta}(x_t)$
- ► What maximises the likelihood?
- ightharpoonup Define $s_T = \sum_{t=1}^T x_t$.
- ▶ Show that $\theta_{\mathrm{ML}}(x) = s_T/T$.
- ▶ What is the problem with this estimate?

Maximum a posteriori (MAP) inference

- ▶ Family $\{P_{\theta} | \theta \in \Theta\}$
- ▶ Data x with likelihood $P_{\theta}(x)$ for each parameter value θ .
- ▶ Prior $\beta(\theta)$.
- Experiment with the prior for the Bernoulli model.

▶ Model family $\{P_{\theta} | \theta \in \Theta\}$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- **Each** model θ assigns probabilities $P_{\theta}(x)$ to possible $x \in X$.

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- **Each** model θ assigns probabilities $P_{\theta}(x)$ to possible $x \in X$.
- \blacktriangleright We also have a (subjective) prior distribution β over the parameters.

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- **Each** model θ assigns probabilities $P_{\theta}(x)$ to possible $x \in X$.
- \blacktriangleright We also have a (subjective) prior distribution β over the parameters.
- Given x, we calculate the posterior distribution

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- **Each** model θ assigns probabilities $P_{\theta}(x)$ to possible $x \in X$.
- \blacktriangleright We also have a (subjective) prior distribution β over the parameters.
- Given x, we calculate the posterior distribution

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- **Each** model θ assigns probabilities $P_{\theta}(x)$ to possible $x \in X$.
- lacktriangle We also have a (subjective) prior distribution eta over the parameters.
- Given x, we calculate the posterior distribution

$$\beta(\theta|x) = \frac{P_{\theta}(x)\beta(\theta)}{\sum_{\theta' \in \Theta} P_{\theta'}(x)\beta(\theta')}, \qquad \text{(finite } \Theta, \ \beta \text{ is a probability)}$$

$$\beta(\theta|x) = \frac{P_{\theta}(x)\beta(\theta)}{\int_{\Theta} P_{\theta'}(x)\beta(\theta')d\theta'}, \qquad \text{(continuous } \Theta, \ \beta \text{ is a density)}$$

$$\beta(B|x) = \frac{\int_{B} P_{\theta'}(x)d\beta(\theta)}{\int_{\Omega} P_{\theta'}(x)d\beta(\theta)}, \qquad B \subset \Theta \qquad \text{(arbitrary } \Theta, \ \beta \text{ is a measure)}$$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- **Each** model θ assigns probabilities $P_{\theta}(x)$ to possible $x \in X$.
- \triangleright We also have a (subjective) prior distribution β over the parameters.
- Given x, we calculate the posterior distribution

$$\beta(\theta|x) = \frac{P_{\theta}(x)\beta(\theta)}{\sum_{\theta' \in \Theta} P_{\theta'}(x)\beta(\theta')}, \qquad \text{(finite } \Theta, \beta \text{ is a probability)}$$

$$\beta(\theta|x) = \frac{P_{\theta}(x)\beta(\theta)}{\int_{\Theta} P_{\theta'}(x)\beta(\theta')d\theta'}, \qquad \text{(continuous } \Theta, \beta \text{ is a density)}$$

$$\beta(B|x) = \frac{\int_{B} P_{\theta'}(x)d\beta(\theta)}{\int_{\Theta} P_{\theta'}(x)d\beta(\theta)}, \qquad B \subset \Theta \qquad \text{(arbitrary } \Theta, \beta \text{ is a measure)}$$

Alternative notation for different probability spaces

- ▶ The prior $\beta(\theta) = \mathbb{P}(\theta)$ and posterior $\beta(\theta \mid x) = \mathbb{P}(\theta \mid x)$ belief.
- ▶ The likelihood $P_{\theta}(x) = \mathbb{P}(x \mid \theta)$
- ▶ The marginal $\mathbb{P}_{\beta}(x) = \sum_{\theta} P_{\theta}(x)\beta(\theta)$.

Probabilistic machine learning

▶ Model family $\{P_{\theta} | \theta \in \Theta\}$

Probabilistic machine learning

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ightharpoonup Prior β on Θ

Probabilistic machine learning

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ightharpoonup Prior β on Θ
- \triangleright Observations $x = x_1, \dots, x_t$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ightharpoonup Prior β on Θ
- \triangleright Observations $x = x_1, \dots, x_t$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ightharpoonup Prior β on Θ
- Observations $x = x_1, \dots, x_t$

Maximum likelihood approach

- ▶ Model selection: $\theta_{ML}^*(x) = \arg\max_{\theta} P_{\theta}(x)$.
- Model prediction: $P_{\theta_{MI}^*(x)}(x_{t+1})$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- \triangleright Prior β on Θ
- Observations $x = x_1, \dots, x_t$

Maximum likelihood approach

- ▶ Model selection: $\theta_{ML}^*(x) = \arg\max_{\theta} P_{\theta}(x)$.
- ▶ Model prediction: $P_{\theta_{ML}^*(x)}(x_{t+1})$

Maximum a posteriori approach

- ▶ Model selection: $\theta_{MAP}^*(x) = \arg\max_{\theta} P_{\theta}(x)\beta(\theta)$.
- ▶ Model prediction: $P_{\theta_{MAP}^*(x)}(x_{t+1})$

- ▶ Model family $\{P_{\theta} | \theta \in \Theta\}$
- ightharpoonup Prior β on Θ
- ightharpoonup Observations $x = x_1, \dots, x_t$.

Maximum likelihood approach

- ▶ Model selection: $\theta_{ML}^*(x) = \arg\max_{\theta} P_{\theta}(x)$.
- ▶ Model prediction: $P_{\theta_{tu}^*(x)}(x_{t+1})$

Maximum a posteriori approach

- ▶ Model selection: $\theta_{MAP}^*(x) = \arg\max_{\theta} P_{\theta}(x)\beta(\theta)$.
- ▶ Model prediction: $P_{\theta_{MAP}^*(x)}(x_{t+1})$

Bayesian approach

- ▶ Posterior calculation: $\beta(\theta|x) = P_{\theta}(x)\beta(\theta)/\mathbb{P}_{\beta}(x)$
- Model prediction: $\mathbb{P}_{\beta}(x_{t+1}|x) = \sum_{\theta} P_{\theta}(x_{t+1})\beta(\theta|x)$

15 / 23

Differences between approaches

Maximum likelihood approach

- Ignores model complexity
- Is an optimisation problem

Maximum a posteriori approach

- Regularises model selection using the prior
- Can be seen as solving the optimisation problem

$$\max_{\theta} \ln P_{\theta}(x) + \ln \beta(\theta),$$

where the prior term $\ln \beta(\theta)$ acts as a regulariser.

Bayesian approach

- Does not select a single model
- Averages over all models according to their fit and the prior
- Does not result in an optimisation problem.

The n-meteorologists problem

- ▶ Consider *n* meteorological stations $\{\mu\}$ predicting rainfall.
- $ightharpoonup x_t \in \{0,1\}$ with $x_t = 1$ if it rains on day t.
- We have a prior distribution $\beta(\mu)$ for each station.
- At time t, station μ makes as a prediction $P_{\mu}(x_{t+1}|x_1,\ldots,x_t)$
- We observe x_{t+1} and calculate the posterior $\beta(\mu|x_1,\ldots,x_t,x_{t+1})$.

The marginal distribution

To take into account all stations, we can marginalise:

$$\mathbb{P}_{\beta}(x_{t+1} \mid x_1, \dots x_t) = \sum_{\mu} P_{\mu}(x_{t+1} | x_t) \beta(\mu)$$

The posterior

► Show that

$$\beta(\mu \mid x_1, \dots, x_{t+1}) = \frac{P_{\mu}(x_t \mid x_1, \dots, x_t)\beta(\mu \mid x_1, \dots, x_t)}{\sum_{\mu'} P_{\mu'}(x_t \mid x_1, \dots, x_t)\beta(\mu' \mid x_1, \dots, x_t)}$$

How would you implement an ML or a MAP solution to this problem?

Sufficient statistics

A statistic f

This is any function $f: X \to S$ where

- X is the data space
- \triangleright S is an arbitrary space

Example statistics for $X = \mathbb{R}^*$ (the set of all real-valued sequences)

- ▶ The sample mean of a sequence $1/T \sum_{t=1}^{T} x_t$
- The total number of samples T

Sufficient statistic

f is sufficient for a family $\{P_{\theta}: \theta \in \Theta\}$ when

$$f(x) = f(x') \Rightarrow P_{\theta}(x) = P_{\theta}(x') \forall \theta \in \Theta.$$

If there exists a finite-dimensional sufficient statistic, Bayesian and ML learning can be done in closed form within the family.

Conjugate priors

Consider a parametrised family of priors $\mathcal B$ on Θ and a distribution family $\{P_\theta\}$ The pair is conjugate if, for any prior $\beta \in \mathcal B$, and any observation x, there exists $\beta' \in \mathcal B$ such that $\beta'(\theta) = \beta(\theta|x)$

Standard Parametric conjugate families

Prior	Likelihood	Parameters $ heta$	Observations x
Beta	Bernoulli	[0, 1]	$\{0,1\}^T$
Multinomial	Dirichlet	\triangle^n	$\{1,\ldots,n\}^T$
Gamma	Normal	\mathbb{R},\mathbb{R}	\mathbb{R}^{T}
Wishart	Normal	$\mathbb{R}^n, \mathbb{R}^{n \times n}$	$\mathbb{R}^{n \times T}$

The Simplex $\mathbb{\Delta}^n = \{ \boldsymbol{\theta} \in [0,1]^n : \|\boldsymbol{\theta}\|_1 \}$ is the set of all *n*-dimensional probability vectors.

Extensions

- Discrete Bayesian Networks.
- Linear-Gaussian Models (i.e. Bayesian linear regression)
- Gaussian Processes

Beta-Bernoulli

Definition of the Bernoulli distribution If $x_t \mid \theta \sim \text{Bernoulli}(\theta)$. $\theta \in [0, 1], x_t \in \{0, 1\}$ and:

$$P_{\theta}(x_t = 1) = \theta$$

Definition of the Beta density

If $\theta \sim \text{Beta}(\alpha_1, \alpha_0), \alpha_0, \alpha_1 > 0$ and

$$p(\theta|\alpha_1,\alpha_0) \propto \theta^{\alpha_1-1} (1-\theta)^{\alpha_0-1}$$

Bayesian Inference and Hypothesis Testing

Beta-Bernoulli conjugate pair

 $\triangleright \theta \sim \text{Beta}(\alpha_1, \alpha_0)$

Christos Dimitrakakis

 $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$.

Then, for any $x = x_1, \dots, x_T$, the posterior distribution is

$$\blacktriangleright \theta \mid x \sim \text{Beta}(\alpha_1 + \sum_t x_t, \alpha_0 + T - \sum_t x_t).$$

Dirichlet-Multinomial

Definition of the Multinomial distribution

If $x_t \mid \boldsymbol{\theta} \sim \operatorname{Mult}(\boldsymbol{\theta})$, with $\boldsymbol{\theta} \in \mathbb{\Delta}^n$ and $x_t \in \{1, \dots, n\}$ and:

$$P_{\theta}(x_t = i) = \theta_i$$

Definition of the Dirichlet density

If $\theta \sim \mathrm{Dir}(\alpha)$, with $\alpha \in \mathbb{R}^n_+$ then

$$p(heta|lpha) \propto \prod_i heta_i^{lpha_i-1}$$

Dirichlet-Multinomial conjugate pair

- \bullet $\theta \sim \text{Dir}(\alpha)$.
- $\triangleright x_t \mid \theta \sim \text{Bernoulli}(\theta)$.

Then, for any $x = x_1, \dots, x_T$, the posterior distribution is β thristos Dimpripulação + ST) VB hycerian takerence and Hypothesis Tecting?

Discrete Bayesian Networks

- ▶ A directed acyclic graph (DAG) defined on variables $x_1, ..., x_n$ with each x_n taking a finite number of values,
- ▶ Let S_i be the indices corresponding to parent variables of x_i .
- $\triangleright x_i \mid \theta_i, x_{S_i} = k \sim \text{Mult}(\theta_{i,k}).$

Example: Lung cancer, smoking and asbestos

$$P_{\theta_A}(x_A = 1) = \theta_A \tag{3}$$

$$P_{\theta_S}(x_S=1)=\theta_S \tag{4}$$

$$P_{\theta_C}(x_C = 1 \mid X_A = j, X_S = k) = \theta_{C,j,k}$$
 (5)

Markov model

A Markov model obeys

$$\mathbb{P}_{\boldsymbol{\theta}}(x_{k+1}|x_k,\ldots,x_1) = \mathbb{P}_{\boldsymbol{\theta}}(x_{k+1}|x_k)$$

i.e. the graphical model is a chain. We are usually interested in homogeneous models, where

$$\mathbb{P}_{\boldsymbol{\theta}}(x_{k+1} = i \mid x_k = j) = \theta_{i,j} \qquad \forall k$$

Inference for finite Markov models

- ▶ If $x_t \in [n]$ then $x_{t+1} \mid \theta, x_t = i \sim \text{Mult}(\theta_i), \theta_i \in \mathbb{A}^n$
- Prior $\theta_i \mid \alpha \sim \operatorname{Dir}(\alpha)$ for all $i \in [n]$.
- ▶ Posterior $\theta_i \mid x_1, \dots, x_t, \alpha \sim \text{Dir}(\alpha^{(t)})$ with

$$\alpha_{i,j}^t = \alpha_{i,j} + \sum_{i=1}^r \mathbb{I}\left\{x_k = i \land x_{k+1} = j\right\}_{d_i = 1} \alpha_{i,j}^0 = \alpha.$$