#### Indian Institute of Technology Roorkee

# CHN-323 Computer Applications in Chemical Engineering

#### Ashwini Kumar Sharma

Department of Chemical Engineering Indian Institute of Technology Roorkee

Email: ashwini.fch@iitr.ac.in



#### Interpretation

 $\triangleright$  What will be f(3.5)?

| $\boldsymbol{x}$ | f(x) |
|------------------|------|
| 2                | 8    |
| 3                | 27   |
| 4                | 64   |
| 5                | 125  |
| 6                | 216  |

#### Difference operators

> Let us say we have a data set

$$\{(f_j, x_j) | j = 1, 2, ..., m\}$$

Data is equally spaced

$$x_{i+1} = x_i + h$$
  
where  $i = 1, 2, ...., m - 1$ 

- > h: step size, discretization interval
- $ightharpoonup \Delta f_i = f_{i+1} f_i$  Forward difference operator
- $ightharpoonup 
  abla f_i = f_i f_{i-1}$  Backward difference operator
- $\succ Ef_i = f_{i+1}$  Shift operator

## Difference operators: higher order

#### Difference tables





#### Shift operator

- $\succ Ef_i = f_{i+1}$
- $\triangleright E^2 f_i = f_{i+2}$

what are  $f_i$  and  $f_{i+1}$ ?

$$Ef(x_i) = f(x_i + h)$$

- $\triangleright$  We know that  $\Delta f_i = f_{i+1} f_i$
- This can be rewritten as  $\Delta f_i = E f_i f_i = (E-1) f_i$   $\Delta = (E-1)$  Or  $E = (1+\Delta)$
- $\triangleright$  Generalizing this,  $E^{\alpha} = (1 + \Delta)^{\alpha}$
- $\triangleright$  Exercise: Prove that  $E^2 = (1 + \Delta)^2$

# Polynomial approximation of dataset

> Our data set

$$\{(f_j, x_j) | j = 1, 2, ..., m\}$$

This can be approximated as

$$f(x) = P_n(x) + R(x)$$

Where  $P_n(x)$  is the polynomial approximation of f(x) and R(x) is the residual error.

 $\triangleright$  What will be f(3.5)?

| x | f(x) |
|---|------|
| 2 | 8    |
| 3 | 27   |
| 4 | 64   |
| 5 | 125  |
| 6 | 216  |

➤ In other words, we need to find f(3 + 0.5) or f(2 + 1.5) or f(4 - 0.5).

Or 
$$f(x_i + \alpha h)$$

$$f(x_i + \alpha h) = E^{\alpha} f(x_i) = (1 + \Delta)^{\alpha} f(x_i)$$

> Using binomial theorem, we can write

$$f(x_i + \alpha h)$$

$$= \left[1 + \alpha \Delta + \frac{\alpha(\alpha - 1)}{2!} \Delta^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} \Delta^3 + \cdots\right] f(x_i)$$

 $\succ$  Can choose  $\alpha$  to be 0, 1, ..., m-1 and indeed other non-integer real values to reach any x value in  $[x_1, x_m]$ 

#### Numerical differentiation

- ightharpoonup We need to estimate  $\frac{df}{dx}$
- > We have already written

$$f(x) = f(x_i + \alpha h) = \left[1 + \alpha \Delta + \frac{\alpha(\alpha - 1)}{2!} \Delta^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} \Delta^3 + \cdots\right] f(x_i)$$

> Thus we can write

$$f'(x) \approx \frac{1}{h} \left[ \Delta + \frac{\alpha + (\alpha - 1)}{2} \Delta^2 + \frac{\{\alpha(\alpha - 1) + (\alpha - 1)(\alpha - 2) + \alpha(\alpha - 2)\}}{6} \Delta^3 + \cdots \right] f(x_i)$$

For  $x_1$ ,  $\alpha = 0$ 

$$f'(x_1) \approx \frac{1}{h} \left[ \Delta - \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 + \dots \pm \frac{1}{m-1} \Delta^{m-1} \right] f(x_1) + O(h^{m-1})$$

Consider only the first term

$$f'(x_1) \approx \frac{1}{h} \Delta f(x_1) + O(h)$$
  
  $\approx \frac{1}{h} \{f_2 - f_1\} + O(h)$ 

Two-points (2P)
First order accurate (FOA)
Forward difference (FDA)

Generalized form:  $f'(x_i) \approx \frac{1}{h} \{f_{i+1} - f_i\} + O(h)$ 

Consider the first two terms

$$f'(x_1) \approx \frac{1}{h} \left[ \Delta f(x_1) - \frac{1}{2} \Delta^2 f(x_1) \right] + O(h^2)$$

$$\approx \frac{1}{h} \left[ (f_2 - f_1) - \frac{1}{2} (f_1 - 2f_2 + f_3) \right] + O(h^2)$$

$$\approx \frac{1}{2h} \left[ -3f_1 + 4f_2 - f_3 \right] + O(h^2)$$

3P, SOA, FDA

Generalized form:  $f'(x_i) \approx \frac{1}{2h} [-3f_i + 4f_{i+1} - f_{i+2}] + O(h^2)$ 

For  $x_2$ ,  $\alpha = 1$ 

$$f'(x_2) \approx \frac{1}{h} \left[ \Delta + \frac{1}{2} \Delta^2 - \frac{1}{6} \Delta^3 + \cdots \right] f(x_1) + O(h^{m-1})$$

> Consider the first two terms

$$f'(x_2) \approx \frac{1}{h} \left[ \Delta f(x_1) + \frac{1}{2} \Delta^2 f(x_1) \right] + O(h^2)$$

$$\approx \frac{1}{h} \left[ (f_2 - f_1) + \frac{1}{2} (f_1 - 2f_2 + f_3) \right] + O(h^2)$$

$$\approx \frac{1}{2h} [f_3 - f_1] + O(h^2)$$

2P, SOA, CDA

 $\triangleright$  Generalizing this, we can write another formula for  $f'(x_i)$ 

$$f'(x_i) \approx \frac{1}{2h} \{ f_{i+1} - f_{i-1} \} + O(h^2)$$

| First Derivative                  |                                                            |                     |
|-----------------------------------|------------------------------------------------------------|---------------------|
| Method                            | Formula                                                    | Truncation<br>Error |
| Two-point forward dif-<br>ference | $f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$                  | O(h)                |
| Three-point forward difference    | $f'(x_i) = \frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h}$ | $O(h^2)$            |
| Two-point central dif-<br>ference | $f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$             | $O(h^2)$            |

| Two-point backward difference   | $f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$                 | O(h)     |
|---------------------------------|-----------------------------------------------------------|----------|
| Three-point backward difference | $f'(x_i) = \frac{f(x_{i-2}) - 4f(x_{i-1}) + 3f(x_i)}{2h}$ | $O(h^2)$ |

- > Second order derivatives
- > We have already written

$$f(x) = f(x_i + \alpha h) = \left[ 1 + \alpha \Delta + \frac{\alpha(\alpha - 1)}{2!} \Delta^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} \Delta^3 + \cdots \right] f(x_i)$$

> Thus we can write

$$f''(x) \approx \frac{1}{h^2} \left[ \Delta^2 + \frac{\{\alpha + (\alpha - 1) + (\alpha - 1) + (\alpha - 2) + \alpha + (\alpha - 2)\}}{6} \Delta^3 + \cdots \right] f(x_i)$$

For  $x_1$ ,  $\alpha = 0$ 

$$f''(x_1) \approx \frac{1}{h^2} \left[ \Delta^2 - \Delta^3 + \frac{11}{12} \Delta^4 + \cdots \right] f(x_1)$$

> Consider only the first term

$$f''(x_1) \approx \frac{1}{h^2} [\Delta^2 f(x_1)] + O(h)$$
  
  $\approx \frac{1}{h^2} \{f_1 - 2f_2 + f_3\} + O(h)$  3P, FOA, FDA

Generalized form: 
$$f''(x_i) \approx \frac{1}{h^2} \{ f_i - 2f_{i+1} + f_{i+2} \} + O(h)$$

Consider the first two terms

$$f''(x_1) \approx \frac{1}{h^2} [\Delta^2 f(x_1) - \Delta^3 f(x_1)] + O(h^2)$$
$$\approx \frac{1}{h^2} \{2f_1 - 5f_2 + 4f_3 - f_4\} + O(h^2)$$
 4P, SOA, FDA

Generalized form: 
$$f''(x_i) \approx \frac{1}{h^2} \{2f_i - 5f_{i+1} + 4f_{i+2} - f_{i+3}\} + O(h^2)$$

 $\triangleright$  For  $x_2$ ,  $\alpha = 1$ 

$$f''(x_2) \approx \frac{1}{h^2} [\Delta^2 + 0\Delta^3 + \cdots] f(x_1)$$

> Consider the first two terms

$$f''(x_2) \approx \frac{1}{h^2} [\Delta^2 f(x_1)] + O(h^2)$$
  
  $\approx \frac{1}{h^2} \{f_1 - 2f_2 + f_3\} + O(h^2)$  3P, SOA, CDA

 $\triangleright$  Generalizing this, we can write another formula for  $f''(x_i)$ 

$$f''(x_i) \approx \frac{1}{h^2} \{ f_{i-1} - 2f_i + f_{i+1} \} + O(h^2)$$

| Second Derivative              |                                                                           |                     |
|--------------------------------|---------------------------------------------------------------------------|---------------------|
| Method                         | Formula                                                                   | Truncation<br>Error |
| Three-point forward difference | $f''(x_i) = \frac{f(x_i) - 2f(x_{i+1}) + f(x_{i+2})}{h^2}$                | O(h)                |
| Four-point forward difference  | $f''(x_i) = \frac{2f(x_i) - 5f(x_{i+1}) + 4f(x_{i+2}) - f(x_{i+3})}{h^2}$ | $O(h^2)$            |
| Three-point central difference | $f''(x_i) = \frac{f(x_{i-1}) - 2f(x_i) + f(x_{i+1})}{h^2}$                | $O(h^2)$            |

| difference                     | $f''(x_i) = \frac{1}{h^2}$                                                 | O(h)     |
|--------------------------------|----------------------------------------------------------------------------|----------|
| Four-point backward difference | $f''(x_i) = \frac{-f(x_{i-3}) + 4f(x_{i-2}) - 5f(x_{i-1}) + 2f(x_i)}{h^2}$ | $O(h^2)$ |

## Example

- $\rightarrow$  What is f'(3.5)?
  - Using 2P, FOA, FDA
  - Using 2P, FOA, BDA
  - Using 2P, SOA, CDA
- $\triangleright$  What is f''(3.5)?
  - Using 3P, SOA, CDA

| X   | f(x)     |
|-----|----------|
| 3.4 | 0.294118 |
| 3.5 | 0.285714 |
| 3.6 | 0.277778 |