

Module 02 – Exercise Class

STATISTIC

Nguyen Quoc Thai

Objectives

Introduction

- * Random Variable
- ❖ Discrete Random Variable
- Continuous Random Variable
- \Leftrightarrow Mean: $\mu = \frac{1}{n} \sum_{k} x_{k}$
- Variance: $Var(X) = \frac{1}{n} \sum_{k} (x_k \mu)^2$
- **Standard Deviation:** $\sigma(X) = \sqrt{Var(X)}$
- Covariance & Correlation:
 Cov(X, Y), Corr(X, Y)
- Important Probability Distributions
 - Bernoulli
 - Uniform
 - Normal

Application

- **❖** Tabular Data Analysis
- Text Retrieval

Outline

SECTION 1

Basic Statistics

SECTION 2

Important Probability Distribution

SECTION 3

Tabular Data Analysis

SECTION 4

Text Retrieval

A Random Variable

A random variable X is a function $X: \Omega \to \mathbb{R}$, maps an outcome $s \in \Omega$ to a number on the real line $X(s) \in \mathbb{R}$

A continuous random variable X is a function $X(s): \Omega \to \mathbb{R}$, maps an outcome s from **an uncountably infinite** to a number on the real line $X(s) \in \mathbb{R}$ A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

A Continuous Random Variable

A continuous random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome s from **an uncountably infinite** to a number on the real line $X(s) \in \mathbb{R}$

Rotate a pointer about a pivot in a plane (a clock)

Outcome: the angle where stops: $2\pi\theta$, $\theta \in (0,1]$

$$\Omega = (0, 1]$$

A continuos random variable: $X(\theta) = \theta$

A Discrete Random Variable

A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

Toss a coin 3 times in sequence

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

- > X(s) = the number of Heads in the sequence X(HTH) = 2 X(THT) = 1 ...
- Y(s) $\begin{cases} \text{The index of the first H} \\ 0 \text{ if the sequence has no H} \\ X(TTH) = 3 \qquad X(TTT) = 0 \qquad \dots \end{cases}$

A Discrete Random Variable

A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

Toss a coin 3 times in sequence

```
\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
```

> X(s) = the number of Heads in the sequence X(s) = 2=> corresponds to the event $s = \{HHT, HTH, THH\}$ $1 < X(s) \le 3$ => $s = \{HHH, HHT, HTH, THH\}$

A Discrete Random Variable

Probability measure on discrete random variables

Toss a coin 3 times in sequence

```
\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
```

```
> X(s) = the number of Heads in the sequence

X(s) = 2 => corresponds to the event s = \{HHT, HTH, THH\}

=> P(X=2) = P(\{HHT, HTH, THH\}) = 3/8

1 < X(s) \le 3 => s = \{HHH, HHT, HTH, THH\}

=> P(1 < X \le 3) = P(\{HHH, HHT, HTH, THH\}) = 3/8
```

Question

- \triangleright P(X=1)
- \triangleright P(X=2)
- \triangleright P(X<3)
- \triangleright P(X \leq -1)
- $ightharpoonup P(X \le 3)$
- $ightharpoonup P(1 < X \le 3)$

Discrete Random Variables

Probability Mass Function

Probability mass function $p_X(x) = P(X = x)$

Toss a coin 3 times in sequence

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

$$> p(0) = 1/8$$

$$> p(1) = 3/8$$

$$\rightarrow$$
 p(2) = 3/8

$$> p(3) = 1/8$$

Discrete Random Variables

Probability Distribution Function

Probability mass function
$$p_X(x) = P(X = x)$$

(Cumulative) Probability distribution function
$$F_X(x) = P(X \le x)$$

Toss a coin 3 times in sequence

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

$$> p(0) = 1/8$$

$$> p(1) = 3/8$$

$$\rightarrow$$
 p(2) = 3/8

$$> p(3) = 1/8$$

$$F(-1) = P(X \le -1) = 0/8$$

$$F(0) = P(X \le 0) = 1/8$$

$$F(1) = P(X \le 1) = 4/8$$

$$F(2) = P(X \le 2) = 7/8$$

$$F(3) = P(X \le 3) = 1$$

$$F(4) = P(X \le 4) = 1$$

Discrete Random Variables

Probability Distribution Function

(Cumulative) probability distribution function
$$F_X(x) = P(X \le x)$$

Toss a coin 3 times in sequence

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ X(s) = the number of Heads in the sequence

$$F(-1) = P(X \le -1) = 0/8 > F(2) = P(X \le 2) = 7/8$$

$$ightharpoonup F(0) = P(X \le 0) = 1/8 \qquad
ightharpoonup F(3) = P(X \le 3) = 1$$

$$ightharpoonup F(1) = P(X \le 1) = 4/8 \qquad
ightharpoonup F(4) = P(X \le 4) = 1$$

$$P(0 < X \le 2) = P(X = 1) + P(X = 2) = F(2) - F(0)$$

The graph of the probability distribution function

Expectation

The expected value of a discrete random variable X is

$$E[X] = \sum_{k} x_k \cdot P(X = x_k) = \sum_{k} x_k \cdot p_X(x_k)$$

The **E**[X] represents the weighted average value of X E[X] is also called the mean of X

Expectation

The expected value of a discrete random variable X is

$$E[X] = \sum_{k} x_k . P(X = x_k) = \sum_{k} x_k . p_X(x_k)$$

Rolling a die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

X	1	2	3	4	5	6
p(x)	1/6	1/6	1/6	1/6	1/6	1/6

$$E[X] = 1 * \frac{1}{6} + 2 * \frac{1}{6} + 3 * \frac{1}{6} + 4 * \frac{1}{6} + 5 * \frac{1}{6} + 6 * \frac{1}{6} = \frac{7}{2}$$

Prove the following:

$$\triangleright$$
 E[α X] = α E[X]

$$\triangleright$$
 E[$\alpha X + b$] = α E[X] + b

Variance

Mean of X: $\mu = E[X]$ Variance (The average weighted square distance from the mean) of X: $Var(X) = E[(X - \mu)^2] = \sum_k (x_k - \mu)^2 p(x_k)$

Toss a coin 2 times in sequence

$$\Omega = \{HH, TH, HT, TT\}$$

	p(0)	=	1/4
>	p(1)	=	2/4

$$> p(2) = 1/4$$

$$E[X] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = 1$$

$$Var(X) = (0-1)^2 * \frac{1}{4} + (1-1)^2 * \frac{2}{4} + (2-1)^2 * \frac{1}{4} = 0.5$$

Variance

Mean of X: $\mu = E[X]$

Variance (The average weighted square distance from the mean) of X: $Var(X) = E[(X - \mu)^2] = \sum_k (x_k - \mu)^2 p(x_k) = E[X^2] - \mu^2$

Toss a coin 2 times in sequence

$$\Omega = \{HH, TH, HT, TT\}$$

p(0) =	1/4
p(1) =	2/4
p(2) =	1/4

$$E[X] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = 1$$

$$E[X^2] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 4 * \frac{1}{4} = 1.5$$
 $Var(X) = 1.5 - 1 = 0.5$

Standard Deviation

Standard Deviation (The average weighted **distance** from the mean) of X:

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]} = \sqrt{E[X^2] - \mu^2}$$

Toss a coin 2 times in sequence

$$\Omega = \{HH, TH, HT, TT\}$$

$$> p(0) = 1/4$$

$$> p(1) = 2/4$$

$$> p(2) = 1/4$$

$$Var(X) = 1.5 - 1 = 0.5$$

$$E[X] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = 1$$

$$Var(X) = 1.5 - 1 = 0.5$$
 $\sigma(X) = \sqrt{1.5 - 1} = \sqrt{0.5} = 0.707$

Standard Deviation

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

X	1	3	4	
times	1	1	2	
p(x)	1/4	1/4	1/2	

$$E[X] = \mu = 1 * \frac{1}{4} + 3 * \frac{1}{4} + 4 * \frac{1}{2} = 3$$

$$Var(X) = \frac{1}{4} * (1 - 3)^{2} + \frac{1}{4} * (3 - 3)^{2}$$

$$+ \frac{1}{2} * (4 - 3)^{2} = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

Standard Deviation

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

Mean:
$$\mu = \frac{1}{n} \sum_{k} x_k$$

Variance:
$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

Standard Deviation:
$$\sigma(X) = \sqrt{Var(X)}$$

$$\mu = \frac{1}{4}(1+3+4+4) = 3$$

$$Var(X) = \frac{1}{4}[(1-3)^2 + (3-3)^2 + (4-3)^2 + (4-3)^2] = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

Standard Deviation

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

```
1 data = np.array([1, 3, 4, 4])
2 print(data)
3
4 print("Mean: ", np.mean(data))
5 print("Std: ", np.std(data))
6 print("Variance: ", np.var(data))
```

[1 3 4 4] Mean: 3.0

Std: 1.224744871391589

Variance: 1.5

$$\mu = \frac{1}{4}(1+3+4+4) = 3$$

$$Var(X) = \frac{1}{4}[(1-3)^2 + (3-3)^2 + (4-3)^2 + (4-3)^2] = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

Practice

Một xạ thủ có 3 viên đạn được yêu cầu bắn lần lượt từng viên cho đến khi trúng mục tiêu hoặc hết cả 3 viên thì thôi. Tính kỳ vọng, phương sai của số đạn đã bắn, biết rằng xác suất bắn trúng đích của mỗi lần bắn là 0.8

Covariance

X, Y: random variables
$$E[X] = \mu_X$$
; $E[Y] = \mu_Y$

Covariance of X and Y:
$$\text{Cov}(X,Y) = \text{E}[(X - \mu_X)(Y - \mu_Y)] = \frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$$

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \frac{1}{4}(1 + 3 + 4 + 4) = 3$$

$$Var(X) = \frac{1}{4}[(1 - 3)^2 + (3 - 3)^2 + (4 - 3)^2 + (4 - 3)^2] = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

$$Y = \{1, 2, 3, 2\}$$

$$E[Y] = \mu = \frac{1}{4}(1 + 2 + 3 + 2) = 2$$

$$Var(Y) = \frac{1}{4}[(1 - 2)^2 + (2 - 2)^2 + (3 - 2)^2 + (2 - 2)^2] = 0.5$$

$$\sigma(Y) = \sqrt{Var(Y)} = \sqrt{0.5} \approx 0.707$$

Covariance

X, Y: random variables
$$E[X] = \mu_X$$
; $E[Y] = \mu_Y$

Covariance of X and Y:
$$\bar{X}$$
 \bar{y} Cov(X, Y) = E[(X - μ_X)(Y - μ_Y)] = $\frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$

Covariance of X and Y:
$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \frac{\sum (x - \mu_X)(y - \mu_Y)}{n}$$

Covariance

X, Y: random variables
$$E[X] = \mu_X$$
; $E[Y] = \mu_Y$

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu_X = 3$$

$$Y = \{1, 2, 3, 2\}$$

$$E[Y] = \mu_Y = 2$$

Covariance of X and Y:

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)] = $\frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$

$$Cov(X,Y) = \frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$$

$$= \frac{(1-3)(1-2) + (3-3)(2-2)}{+(4-3)(3-2) + (4-3)(2-2)}$$
$$= \frac{4-1}{3} = 1$$

Covariance

Cov(X,Y)measures "concordance" or "coherence" of X and Y

Covariance of X and Y:

Cov(X,Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)] = $\frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$

Positive Covariance – Cov(X, Y) > 0

Negative Covariance – Cov(X, Y) < 0

Zero Covariance – Cov(X, Y) = 0

Correlation

A statistical measure the quantifies the strength and direction of a linear relationshop between two random variables

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu_X = 3$$

$$Y = \{1, 2, 3, 2\}$$

$$E[Y] = \mu_Y = 2$$

$$\begin{aligned} & \text{Correlation of X and Y:} \\ & \text{Corr}(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{var}(X)} \sqrt{\text{var}(Y)}} \\ & = \frac{n(\sum_i x_i y_i) - (\sum_i x_i)(\sum_i y_i)}{\sqrt{n \sum_i x_i^2 - (\sum_i x_i)^2} \sqrt{n \sum_i y_i^2 - (\sum_i y_i)^2}} \end{aligned}$$

$$Corr(X,Y) = \frac{27n - 96}{\sqrt{42n - 144}\sqrt{18n - 64}} = \frac{12}{\sqrt{24}\sqrt{8}} \approx 0.866$$

Correlation

Correlation of X and Y:

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{var(X)}\sqrt{var(Y)}}$$

 $Corr(X, Y) \in [-1,1]$

Median

Median: a measure of central tendency which gives the value of the middle – most observation in the data

$$X = \{1, 3, 4, 2, 5\}$$

$$Sorted_X = \{1, 2, 3, 4, 5\}$$

$$N = 5$$
 is odd: $m = S_{\frac{5+1}{2}} = S_3 = 3$

$$X = \{x_1, x_2, ..., x_N\}$$
If N is odd: $m = S_{\frac{N+1}{2}}$
If N is even: $m = \frac{1}{2} \left(S_{\frac{N}{2}} + S_{\frac{N}{2}+1} \right)$

$$X = \{1, 3, 4, 2\}$$

$$Sorted_X = \{1, 2, 3, 4\}$$

N = 4 is even:
$$m = \frac{1}{2}(S_2 + S_3) = 2.5$$

Practice

Theo thống kê ở một cửa hàng đậu tương, người ta thấy số lượng đậu tương bán ra X là một biến ngẫu nhiên rời rạc có bảng phân phối dưới đây. Nếu giá nhập là 10000 VNĐ/kg thì cửa hàng sẽ lãi 5000 VNĐ/kg, nếu cuối ngày không bán được thì lỗ 8000 VNĐ/kg. Mỗi ngày cửa hàng nên nhập bao nhiêu để thu được lãi nhiều nhất?

X (kg)	10	13	16	19
$P(X=x_i)$	0.15	0.2	0.35	0.3

Exercise 1

```
Mean: \mu = \frac{1}{n} \sum_{k} x_k
```

Mean : 1.8

Exercise 2

```
X = \{x_1, x_2, \dots, x_N\}
If N is odd: m = S_{\frac{N+1}{2}}
If N is even: m = \frac{1}{2} \left( S_{\frac{N}{2}} + S_{\frac{N}{2}+1} \right)
```

```
### Question 2
     def compute_median(X):
      size = len(X)
     X = np.sort(X)
      print(X)
      if (size % 2 == 0):
         return (1/2*(X[int(size/2)-1] \
                      + (X[int(size/2) + 1 - 1])))
       else:
 10
         return X[int((size+1)/2)-1]
 12
 13 X = [1, 5, 4, 4, 9, 13]
 14 print("Median: ", compute_median(X))
✓ 0.0s
```

```
[ 1 4 4 5 9 13] Median: 4.5
```


Exercise 3

Mean:
$$\mu = \frac{1}{n} \sum_{k} x_k$$

Variance:
$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

Standard Deviation: $\sigma(X) = \sqrt{Var(X)}$

```
### Question 3
     def compute_std(X):
       mean = compute_mean(X)
      variance = 0
      for x in X:
        variance = variance + (x - mean)**2
       variance = variance / len(X)
  8
  9
       return np.sqrt(variance)
 10
     X = [171, 176, 155, 167, 169, 182]
     print(np.round(compute_std(X),2))
✓ 0.0s
```

8.33

Exercise 3

Mean:
$$\mu = \frac{1}{n} \sum_{k} x_k$$

Variance:
$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

```
Standard Deviation: \sigma(X) = \sqrt{Var(X)}
```

Mean: 170.0

edian: 170.0

Std: 8.32666399786453

Variance: 69.333333333333333

Exercise 4

```
### Question 4
     def compute_correlation_cofficient(X, Y):
       N = len(X)
  4
       numerator = N * X.dot(Y) - np.sum(X)*np.sum(Y)
       denominator = np.sqrt(N*np.sum(np.square(X))-np.sum(X)**2)
         * np.sqrt(N*np.sum(np.square(Y))-np.sum(Y)**2)
       return np.round(numerator / denominator,2)
 10
     X = np.asarray([-2, -5, -11, 6, 4, 15, 9])
     Y = np.asarray([4, 25, 121, 36, 16, 225, 81])
     print("Correlation: ", compute_correlation_cofficient(X,Y))
✓ 0.0s
```

Correlation: 0.42

Outline

SECTION 1

Basic Statistics

SECTION 2

Important Probability Distribution

SECTION 3

Tabular Data Analysis

SECTION 4

Text Retrieval

aivietnam.edu.vn Important Probability Distribution

Bernoulli Random Variable

Bernoulli: two outcomes

$$P(X) = \begin{cases} P(X = 1) = p \\ P(X = 0) = 1 - p \end{cases}$$

Tossing a coin
Winning or losing a game

$$E[X] = 1 * p + 0 * (1 - p) = p$$

$$E[X^2] = 1^2 * p + 0^2 * (1 - p) = p$$

$$Var(X) = E[X^2] - E[X]^2 = p - p^2$$

= p * (1 - p)

AIVIET NAM @aivietnam.edu.vn Important Probability Distribution

Bernoulli Random Variable

Bernoulli: two outcomes

$$P(X) = \begin{cases} P(X = 1) = p \\ P(X = 0) = 1 - p \end{cases}$$

Tossing a coin Winning or losing a game

Tossing a coin

$$p = \frac{1}{2}$$

$$E[X] = \frac{1}{2}$$

$$E[X^2] = \frac{1}{2}$$

Var(X) =
$$E[X^2] - E[X]^2 = \frac{1}{2} * \frac{1}{2} = \frac{1}{4}$$

Rolling a die

$$p = \frac{1}{6}$$

$$E[X] = \frac{1}{6} \qquad \qquad E[X^2] = \frac{1}{6}$$

$$Var(X) = E[X^2] - E[X]^2 = \frac{1}{6} * \frac{5}{6} = \frac{5}{36}$$

AIVIET NAM @aivietnam.edu.vn Important Probability Distribution

Uniform Distribution (Continuous)

$$f(x) = \frac{1}{b-a}$$
$$-\infty < a \le x \le b < \infty$$

AI VIET NAM @aivietnam.edu.vn Important Probability Distribution

Uniform Distribution (Continuous)

$$f(x) = \frac{1}{b-a}$$
$$-\infty < a \le x \le b < \infty$$

$$E[X] = \frac{a+b}{2}$$
 $Var(X) = \frac{(b-a)^2}{12}$

Standard Uniform

$$a = 0, b = 1$$

$$\begin{cases} f(x) = 1; 0 \le x \le 1 \\ f(x) = 0; otherwise \end{cases}$$

```
import numpy as np
     data = np.random.uniform(0, 1, (2, 3))
  4 data
✓ 0.2s
```

```
array([[0.93003596, 0.18329112, 0.44956657],
       [0.51529433, 0.17943308, 0.80715331]])
```


Uniform Distribution (Continuous)

$$f(x) = \frac{1}{b-a}$$
$$-\infty < a \le x \le b < \infty$$

Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons.

Uniform Distribution (Continuous)

$$f(x) = \frac{1}{b-a}$$
$$-\infty < a \le x \le b < \infty$$

Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons.

Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
$$-\infty < x < \infty$$

The curve is bell shaped and is symmetric around the mean μ

Standard deviation σ controls the "flatness" of the curve

Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
$$-\infty < x < \infty$$

The curve is bell shaped and is symmetric around the mean μ Increasing the mean shifts the density curve to the right

Standard deviation σ controls the "flatness" of the curve

Same variance, different means

Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
$$-\infty < x < \infty$$

The curve is bell shaped and is symmetric around the mean μ Increasing the mean shifts the density curve to the right

Standard deviation σ controls the "flatness" of the curve Increasing the standard deviation flattens the density curve

Same mean, different standard deviations

Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
$$-\infty < x < \infty$$

$$\mu = 0$$
, $\sigma = 1$

Standard Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp^{-\frac{x^2}{2}}$$

AI VIET NAM @aivietnam.edu.vn Important Probability Distribution

Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
$$-\infty < x < \infty$$

$$\mu = 0$$
, $\sigma = 1$

Standard Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp^{-\frac{x^2}{2}}$$

```
import numpy as np
   data = np.random.normal(0, 1, (2, 3))
    data
✓ 0.0s
```

```
array([[-0.31501619, 1.06958159, -0.0243189],
       [0.2949796, -0.15386693, 0.00876236]])
```


Outline

SECTION 1

Basic Statistics

SECTION 2

Important Probability Distribution

SECTION 3

Tabular Data Analysis

SECTION 4

Text Retrieval

Tabular Data Analysis

Advertising Dataset

```
1 import pandas as pd
2 data = pd.read_csv("advertising.csv")
3 data
```

1 data.head(5)

2 data.tail(5)

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

Tabular Data Analysis

Basic EDA

1 data.describe()

	TV	Radio	Newspaper	Sales	
count	200.000000	200.000000	200.000000	200.000000	
mean	147.042500	23.264000	30.554000	15.130500	
std	85.854236	14.846809	21.778621	5.283892	
min	0.700000	0.000000	0.300000	1.600000	
25%	74.375000	9.975000	12.750000	11.000000	
50%	149.750000	22.900000	25.750000	16.000000	
75%	218.825000	36.525000	45.100000	19.050000	
max	296.400000	49.600000	114.000000	27.000000	

1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	TV	200 non-null	float64
1	Radio	200 non-null	float64
2	Newspaper	200 non-null	float64
3	Sales	200 non-null	float64
مريد الحالم	41+64	/ A \	

dtypes: float64(4)
memory usage: 6.4 KB

Tabular Data Analysis

Correlation

1 data_corr_coef = data.corr()
2 data_corr_coef

	TV	Radio	Newspaper	Sales
TV	1.000000	0.054809	0.056648	0.901208
Radio	0.054809	1.000000	0.354104	0.349631
Newspaper	0.056648	0.354104	1.000000	0.157960
Sales	0.901208	0.349631	0.157960	1.000000

Outline

SECTION 1

Basic Statistics

SECTION 2

Important Probability Distribution

SECTION 3

Tabular Data Analysis

Text Retrieval

Text Retrieval

Text Embedding (TF-IDF)

Term Frequency (TF)

$$tf_{t,d} = count(t,d)$$

- > Some ways to reduce the raw frequency:
 - Using log space + add 1:

$$tf_{t,d} = log(count(t,d) + 1)$$

• Divide the number of occurrences by the length of document:

$$tf_{t,d} = \frac{count(t,d)}{len(d)}$$

Term Frequency (TF)

$$tf_{t,d} = count(t,d)$$

Example

[dog, bites, man][man, bites, dog][dog, eats, meat][man, eats, food]

	bites	dog	eats	food	man	meat
D1						
D2						
D3						
D4						

Term Frequency (TF)

$$tf_{t,d} = count(t,d)$$

Example

[dog, bites, man][man, bites, dog][dog, eats, meat][man, eats, food]

	bites	dog	eats	food	man	meat
D1	1/3	1/3	0	0	1/3	0
D2	1/3	1/3	0	0	1/3	0
D3	0	1/3	1/3	0	0	1/3
D4	0	0	1/3	1/3	1/3	0

Inverse Document Frequency (IDF)

$$idf_t = \frac{N}{df_t}$$

- Measures the importance of the word across a corpus
 N: The total number of documents in the corpus
 df_t: The number of documents with term t in them
- Using log space:

$$idf_t = log \frac{N}{df_t}$$
 $idf_t = log \frac{N}{df_t} + 1$ $idf_t = log \frac{N+1}{df_t+1} + 1$

Inverse Document Frequency (IDF)

$$idf_t = ln\frac{N+1}{df_t + 1} + 1$$

Example

[dog, bites, man]

[man, bites, dog]

[dog, eats, meat]

[man, eats, food]

bites	dog	eats	food	man	meat

Inverse Document Frequency (IDF)

$$idf_t = ln\frac{N+1}{df_t + 1} + 1$$

Example

[dog, bites, man] [man, bites, dog]

[dog, eats, meat]

[man, eats, food]

bites	dog	eats	food	man	meat
1.511	1.223	1.511	1.916	1.223	1.916

TF-IDF

$$w_{t,d} = t f_{t,d} \times i d f_t$$

- \triangleright The weighted value $w_{t,d}$ for word t in document d
- > IDF weighs down the terms: very common across a corpus and rare terms
- The TF-IDF vector representation for a document is then simply TF-IDF score for each term in that document.

TF-IDF

Example

[dog, bites, man][man, bites, dog][dog, eats, meat][man, eats, food]

bites	1.511
dog	1.223
Eats	1.511
Food	1.916
Man	1.223
meat	1.916

	bites	dog	eats	food	man	meat
D1	1/3	1/3	0	0	1/3	0
D2	1/3	1/3	0	0	1/3	0
D3	0	1/3	1/3	0	0	1/3
D4	0	0	1/3	1/3	1/3	0

	bites	dog	eats	food	man	meat
D1						
D2						
D3						
D4						

TF-IDF

Example

[dog, bites, man][man, bites, dog][dog, eats, meat][man, eats, food]

bites	1.511
dog	1.223
Eats	1.511
Food	1.916
Man	1.223
meat	1.916

	bites	dog	eats	food	man	meat
D1	1/3	1/3	0	0	1/3	0
D2	1/3	1/3	0	0	1/3	0
D3	0	1/3	1/3	0	0	1/3
D4	0	0	1/3	1/3	1/3	0

	bites	dog	eats	food	man	meat
D1	0.504	0.408	0	0	0.400	0
D2	0.504	0.408	0	0	0.408	0
D3	0	0.408	0.504	0	0	0.639
D4	0	0	0.504	0.639	0.408	0

TF-IDF

Information Retrieval

Example

[dog, bites, man]

[man, bites, dog]

[dog, eats, meat]

[man, eats, food]

	bites	dog	eats	food	man	meat
D1	0.504	0.408	0	0	0.400	0
D2	0.504	0.408	0	0	0.408	0
D3	0	0.408	0.504	0	0	0.639
D4	0	0	0.504	0.639	0.408	0

Search: "dog, meat"

TF-IDF

```
1 from sklearn.feature_extraction.text import TfidfVectorizer
2
3 tfidf_vectorizer = TfidfVectorizer()
4 context_embedded = tfidf_vectorizer.fit_transform(context)
5
6 question = vi_data_df.iloc[0]['question']
7 query_embedded = tfidf_vectorizer.transform([question.lower()])
8 query_embedded.shape
```

	id	question	text
0	1570446247	Quang Hải giành được chức vô địch U21 quốc gia	Năm 2013 , Nguyễn Quang Hải giành chức vô địch
1	1570445661	Mỗi hiệp bóng đá kéo dài bao lâu	Một trận đấu bóng đá thông thường có hai hiệp
2	1570382095	Quân đội Hoa Kỳ gồm những lực lượng nào	Quân đội Hoa Kỳ hay Các lực lượng vũ trang Hoa
3	1570382072	Ngọc Lan là ai	Ngọc Lan (28 tháng 12 năm 1956 - 6 tháng 3 20
4	1570382037	Thu Phương từng được những giải thưởng nào	Cô được coi là một trong những ca sĩ thuộc thế

Similarity Scoring

Cosine Similarity

$$cs(\vec{x}, \vec{y}) = \frac{\vec{x}.\vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{\sum_{1}^{n} x_{i} y_{i}}{\sqrt{\sum_{1}^{n} x_{i}^{2}} \sqrt{\sum_{1}^{n} y_{i}^{2}}}$$

Correlation Similarity

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{Cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} = \frac{n(\sum_i x_i y_i) - (\sum_i x_i)(\sum_i y_i)}{\sqrt{n \sum_i x_i^2 - (\sum_i x_i)^2} \sqrt{n \sum_i y_i^2 - (\sum_i y_i)^2}}$$

```
def corr search(question, tfidf vectorizer, top d=5):
        query_embedded = tfidf_vectorizer.transform([question.lower()])
        corr scores = np.corrcoef(
            query_embedded.toarray()[0],
 4
            context embedded.toarray()
 6
        corr_scores = corr_scores[0][1:]
        results = []
 8
        for idx in corr scores.argsort()[-top d:][::-1]:
            doc = {
10
                 'id': idx,
11
                 'corr_score':corr_scores[idx]
12
13
            results.append(doc)
14
        return results
15
```


Summary

Introduction

- * Random Variable
- ❖ Discrete Random Variable
- ❖ Continuous Random Variable
- \Leftrightarrow Mean: $\mu = \frac{1}{n} \sum_{k} x_{k}$
- Variance: $Var(X) = \frac{1}{n} \sum_{k} (x_k \mu)^2$
- **Standard Deviation:** $\sigma(X) = \sqrt{Var(X)}$
- Covariance & Correlation:
 Cov(X, Y), Corr(X, Y)
- Important Probability Distributions
 - Bernoulli
 - Uniform
 - Normal

Application

- ❖ Tabular Data Analysis Advertising Dataset
- Text Retrieval
 TF-IDF

$$tf_{t,d} = count(t,d) idf_t = \frac{N}{df_t}$$

$$w_{t,d} = t f_{t,d} \times i d f_t$$

Cosine Similarity

$$cs(\vec{x}, \vec{y}) = \frac{\vec{x}.\vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{\sum_{1}^{n} x_{i} y_{i}}{\sqrt{\sum_{1}^{n} x_{i}^{2}} \sqrt{\sum_{1}^{n} y_{i}^{2}}}$$

Correlation Similarity

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Thanks! Any questions?