Swarm Intelligence Based Maze Solver

Digya Acharya¹, Pranish Bhagat¹, Pratik Bhandari¹, Sijan Bhattarai¹, Dinesh Baniya Kshatri²

¹ Institute of Engineering, Pulchowk Campus, Nepal ² Institute of Engineering, Thapathali Campus, Nepal

OUTLINE

- Motivation
- Problem Statement
- Introduction
- Methodology
- Result
- Conclusion
- Demo

MOTIVATION

What's the shortest path to reach the center of this maze?

PROBLEM STATEMENT

• Demonstrate the concept of swarm intelligence

Solve a maze using swarm robotics

Establish an effective communication between two robots

INTRODUCTION

- Group of robots operate without any form of centralized control
- Use local methods of control and communication
 - Local control autonomous operation
 - Local communication avoids bottlenecks
 - Scalable new robots can be added, or fail without need for recalibration
 - Simplicity cheap, expendable robots
- Self-organization

APPLICATIONS OF SWARM

• Search And Rescue (SAR) Operation

Disaster Relief

• Landmine Detection and Further Operations

PURPOSE OF SWARM INTELLIGENCE

- Efficient use of Resources
- Autonomous Navigation
- Work Division
- De-centralization
- Unknown Terrain Navigation

METHODOLOGY

METHODOLOGY (System Overview)

First Robot

- Traverses the whole maze from start to finish
- Implements Left Wall Follower Algorithm
- Relays maze mapping information

Second Robot

Traverse in shortest possible path

METHODOLOGY (Functional Block Diagram)

METHODOLOGY (Functional Overview-First Robot)

- The **first robot** traverses the entire maze. (non-optimal path)
 - Implements left wall following algorithm.

Detects the target.

Sends the optimized path to the second robot.

METHODOLOGY (Functional Overview-Second Robot)

The second robot receives the optimized path from the first robot.

Traverses the maze in the shortest path possible.

12

METHODOLOGY (First Robot Schematic)

METHODOLOGY (Second Robot Schematic)

METHODOLOGY (Structure of the maze)

METHODOLOGY (Obstacle Detection)

- Detection Carried Out Through IR Sensors FC-51
 - IR Transmitter
 - IR Receiver

METHODOLOGY (Obstacle Detection-Left Wall)

METHODOLOGY (Obstacle Detection-Left Wall)

METHODOLOGY (Maze Traversal-First Robot)

Left Wall Following Algorithm

Robot will reach the target by keeping track of the left wall

Priorities	Direction
1	Left
2	Straight
3	Right
4	U-Turn

METHODOLOGY

 Algorithm - maze traversal -first robot

METHODOLOGY (Maze Traversal-First Robot)

METHODOLOGY (Maze Traversal-First Robot)

METHODOLOGY (Target Detection)

• Target : **Smoke**

• Target detected using MQ-2 Smoke Sensor

Smoke generated using incense

Spreading contained with enclosure

METHODOLOGY (Target Detection)

METHODOLOGY (Path Deduction)

METHODOLOGY (Path Deduction)

The optimal decisions for shortest path.

METHODOLOGY (Path Deduction)

Deduced path stored in an array.

This array is sent to the second robot.

METHODOLOGY (Bluetooth Communication)

• The deduced path sent to the robot via Bluetooth.

- Two HC-05 used for interfacing the Arduinos'.
 - HC-05 used as **master** in the first robot
 - Used as slave in the second robot

Serial Communication is established.

Data transfer only from the first to the second robot

METHODOLOGY (Bluetooth Communication)

 Asynchronous Connectionless Packet's Payload i.e. only data is sent to the second robot.

The decoded array used as the payload for the wireless transfer.

METHODOLOGY (Optimal Path Information)

 Upon receiving the optimal path, the second robot traverses the maze avoiding wrong turns

METHODOLOGY (Optimal Path Information)

METHODOLOGY (Optimal Path Information)

METHODOLOGY (Differential Kinematics)

Consists of 2 drive wheels

Has high degree of freedom i.e. 3

METHODOLOGY (H-Bridge L298N)

Interface between motor and Arduino

Contains four switching element.

Load at center.

METHODOLOGY (H-Bridge L298N)

Q1	Q2	Q3	Q4	RESULT
1	1 0 0	0	1	Motor moves
		_	right	
0	1 1 0	1	0	Motor moves
			left	
0	0	0	0	Motor coasts
0	1	0	1	Motor brakes
1	0	1	0	Motor brakes
1	1	0	0	Short circuit
0	0	1	1	Short circuit
1	1	1	1	Short circuit

RESULTS (Path traversed by first robot)

RESULTS (Path traversed by second robot)

CONCLUSION

Visualized the concept of Swarm Intelligence

Not limited to Maze Solving

Limitations of Bluetooth Communication

A swarm of simple robots can be made intelligent

DEMO

THANK YOU

Swarm Intelligence Based Maze Solver

REFERENCES

- B. W. D.H. Barnhard, J.T. McClain and W. Potter, "Odin and hodur: Using Bluetooth communication for coordinated robotic search," The University of Georgia, Tech. Rep
- B. F. V. Gazi, "Coordination and control of multi-agent dynamic systems: Models and approaches," in *Swarm Robotics, Springer*, 2007, pp. 71–102.
- D. B. Michael Gims, Sonja Lenz. (1999, May) Microprocessor controlled vehicle. [Online]. Available: http://www.dbecker.de/sites/default/files/micromouse.pdf
- S. P. Y. Mohan, "An extensive review of research in swarmrobotics in nature and biologically inspired computing," *World Congress on, IEEE*, vol. 1, pp. 140–145, 2009.

REFERENCES

- M. S. L. Iocchi, D. Nardi, "Reactivity and deliberation: a survey on multi-robot systems," in *Balancing reactivity and social deliberation in multi-agent systems, Springer*, 2001, pp. 9–32.
- Infrared obstacle avoidance proximity sensors module fc-51 art of circuits.
- (2011) Arduino arduinoboarduno. [Online]. Available: https://www.arduino.cc/en/Main/ArduinoBoardUno