LITERATURE SURVEY

Date	27 th September 2022
Team ID	PNT2022TMID46442
Project Name	Fertilizer Recommendation System For Disease Prediction
Maximum Marks	4 Marks

Problem Statement:

Agriculture is the most important sector in today's life. Most plants are affected by a wide variety of bacterial and fungal diseases. Diseases on plants placed a major constraint on production and a major threat to food security. Hence, early and accurate identification of plant diseases is essential to ensure high quantity and best quality.

An automated system is introduced to identify different diseases in plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases.

LITERATURE SURVEY

Author	Title	Year	Source	Findings	Advantages	Disadvantages
Apurva Save, Aksham Gupta, Sarthak Pruthi, Divyanjana Nikam, Prof. Dr. Shilpa	Plant Disease Detection and Fertilizer Suggestions	Year 2022	Source	Different approaches and models of Deep Learning methods were explored and used in this project so that it	Advantages The Accuracy of training percentage is 90.88%	The training Loss percentage is 1.3739
Paygude				can detect and classify plant		
				diseases		
				correctly through		
				image processing		
				of leaves of the		
				plants. The		

	T				<u> </u>
			procedure starts		
			from collecting		
			the images used		
			for training,		
			testing and		
			validation to		
			image		
			preprocessing		
			and		
			augmentation		
			and finally		
			comparison of		
			different		
			pretrained		
			models over		
			their accuracy.		
			Finally, at the		
			end, our model		
			detects and		
			distinguishes		
			between a		
			healthy plant and		
			different diseases		
			and provides		
			suitable remedies		
			so as to cure the		
			disease.		
Devdatta A.	Prediction Of		The prediction of	SVM calculation	Most of the
Bondre	Crop Yield And		crop yield based	has a regularization	existing system are
Student,	Fertilizer		on location and	parameter,	hardware based
NICT	Recommendation	2019	proper	which stays away	which makes them
Solutions &	Using Machine		implementation	from over-fitting.	expensive and
Research,	Learning		of algorithms		difficult to
Belagavi,	Algorithms		have proved that	The random forest	maintain. Also
Karnataka,	8		the higher crop	algorithm is not	they lack to give
India			yield can be	biased, since,	accurate results.
			achieved. From	there are multiple	Some systems
Mr. Santosh			above work	trees and each tree	suggest crop
Mahagaonkar			concludes that	is trained on	sequence
Research			for soil	a subset of data.	depending on yield
Head, NICT			classification		rate and market
Solutions &			Random Forest		price. The
Research,			is good with		system proposed
Belagavi,			accuracy 86.35%		tries to overcome
Karnataka,			compare to		these drawbacks
India			Support Vector		and
			Machine. For		predicts crops by
			crop yield		analyzing
			prediction		structured data.
			Support Vector		
	I .		Support vector	l .	<u> </u>

Tions	Machine		Machine is good with accuracy 99.47% compare to Random Forest algorithm. Data sets ML models enable Pestic	cides and
Tiago Domingues , Tomás Brandão and João C. Ferreira	Learning for Detection and Prediction of Crop Diseases and Pests:	2022	containing weather, diseases, and pests data should keep records for long periods of time. Time-series ML occurrence of models, such as RNN, can be employed to accurately forecast the occurrence of diseases and pests hased on regression, among the of the models of the models of the models occurrence occurrence of the models occurrence occ	ical nents have been used by ers to keep away. use of eides for crop ection is on the with negative equences for n health and

Srinivas	Crop Disease		Deep learning	The Dataset can be	In order to develop
Srinivas Chilukuri, ZS New York AI Center of Excellence	Crop Disease Detection Using Machine Learning and Computer Vision	2021	Deep learning techniques can be applied to detect wheat rust in crops based on close-shot images. In addition to good prediction accuracy, the model is able to effectively learn the right representations through the explanations inferred from class activation maps. When scaled, this approach can help in digitally monitoring crop health and could	The Dataset can be viewed in colored, Grayscale or Leaf Segmented	In order to develop accurate image classifiers for the purposes of plant disease diagnosis, we needed a large, verified dataset of images of diseased and healthy plants. Until very recently, such a dataset did not exist, and even smaller datasets were not freely available.
			lead to significant improvement in the agriculture productivity and		
Dr.P. Pandi Selvi P. Poornima	Soil Based Fertilizer Recommendation System for Crop Disease Prediction System	2021	yield. The first step involves the registration phase, where the user has to present his personal details, details of land and the soil type. • In the second step the user will upload the soil test report into the system for soil analysis. In this step, if the soils test report was not	If crop gets infected, then captures the images of an infected crop via mobile camera for recommendation of best fertilizer then all data stored on cloud.	Plant diseases are a principal threat to the safety of food. In agriculture sectors, it is the greatest challenge to identify plant diseases.

				submitted by the		
				user, soil		
				analysis		
				will be carried		
				out by the		
				sensors. Sensors		
				measure the		
				nutrients level of		
				the soil and		
				the data was		
				stored within the		
				database.		
				• In the third		
				step, the		
				corresponding		
				crops		
				infection status		
				will be analyzed		
				and		
				recorded.		
				 In the fourth 		
				step, comparison		
				and		
				classification of		
				the soil type was		
				carried out		
				using Long or		
				Short term		
				Memory		
				algorithm.		
				Finally the		
				fertilizers are		
				recommended.		
R. Neela, P.	Fertilizers	2019		Agriculture is	Recommend the	The main problem
Nithya	Recommendation			the main aspect	fertilizer for	of farmers is the
- \	System For			of country	affected leaves	detection of leaf
	Disease			development.	based on severity	diseases. The leaf
	Prediction In			Many people	level. Fertilizers	disease detection
	Tree Leave			lead their life	may be organic or	
	1100 20070			from agriculture	inorganic.Which	
				field, which	the Admin or a	
				gives fully	farmer can store the	
				related to	fertilizers based on	
				agricultural	disease	
				products. Plant	categorization with	
				disease,	severity levels. The	
				especially on	measurements of	
				leaves, is one of	fertilizers	
				the major factors	suggested based on	
				of reductions in	disease severity	
	<u> </u>	<u> </u>	1	or reductions in	arboube be verity	<u> </u>

<u> </u>	,
	both quality and
	quantity of the
	food crops. In
	agricultural
	aspects, if the
	plant is affected
	by leaf disease
	then it reduces
	the growth of the
	agricultural
	level. Finding
	the leaf disease
	is an important
	role of
	agriculture
	preservation.
	After pre-
	processing using
	a median filter,
	segmentation is
	done by Guided
	Active Contour
	method and
	finally, the leaf
	disease is
	identified by
	using Support
	Vector Machine.
	The disease-
	based similarity
	measure is used
	for fertilizer
	recommendation.