Contents

1	Hash functions for sampling											2					
	1.1	Exercise 1															2
		1.1.1 (a)															2
		1.1.2 (b)															2
2	Bot	Bottom-k sampling													4		
	2.1	Frequency Estimat	ion														4
		2.1.1 Exercise 2															4
		2.1.2 Exercise 3															4
	2.2	Similarity Estimati	on														4
		2.2.1 Exercise 4															4
3	Bot	tom-k sampling v	ith str	ong ı	ıniv	ers	sali	ty									5
	3.1	A union bound															5
		3.1.1 Exercise 5															5
	3.2																5
		3.2.1 Exercise 6															5
		3.2.2 Exercise 7 .															5

1 Hash functions for sampling

1.1 Exercise 1

1.1.1 (a)

We are asked to prove $p \leq Pr[h_m(x)/m < p] \leq 1.01p$. We will use various facts to show this. Firstly that $h(x) = h_m(x)/m$ is a Strong Universal Hash Function, secondly as we are give $p \geq 100/m$ this implies that $p/100 \geq 1/m$, thirdly $h_m(x)/m \leq p$ implies $h_m(x) \leq mp$ and finally we will use that for any $y, y \leq \lceil y \rceil < y + 1$.

We observe that

$$Pr[h_m(x)/m < p]$$

$$= \sum_{0 \le k < mp} Pr[h_m(x) = k]$$

$$= \sum_{0 \le k < mp} \frac{1}{m}$$

$$= \frac{1}{m} |[0, mp)|$$

$$= \frac{1}{m} \cdot \lceil mp \rceil$$

$$= \frac{\lceil mp \rceil}{m}$$

Thus we conclude

$$p = \frac{pm}{m} \le Pr[h_m(x)/m < p] = \frac{\lceil pm \rceil}{m} \le \frac{pm+1}{m} \le p + \frac{p}{100} = 1.01p$$

1.1.2 (b)

We are asked to bound the probability that two keys share the same hash value $\frac{h_m(x)}{m} = \frac{h_m(y)}{m}$, given that $A \subset U, m \ge 100|A|^2$.

To prove this we use that $\frac{\binom{n}{2}}{2}=\frac{n(n-1)}{2}=\frac{n(n-1)}{2m}$ The probability can be

written as

$$Pr[\exists \{x, y\} \in A : \frac{h_m(x)}{m} = \frac{h_m(x)}{m}]$$

$$\leq \sum_{\{x, y\} \in A} Pr\left[\frac{h_m(x)}{m} = \frac{h_m(x)}{m}\right]$$

$$= \frac{\binom{|A|}{2}}{m}$$

$$\leq \frac{|A|(|A| - 1)}{2m}$$

$$\leq \frac{|A|(|A| - 1)}{2 \cdot 100|A|^2}$$

$$\leq \frac{|A|(|A| - 1)}{200|A|^2}$$

Thus the bound for two keys sharing the same hash value is

$$\leq \frac{1}{200}$$

Bottom-k sampling $\mathbf{2}$

2.1 **Frequency Estimation**

2.1.1Exercise 2

We are asked to show that $E\left[|C\cap S_h^k(A)|/k\right]=|C|/|A|$. We are told that $S_h^k(A)$ is a uniformly random subset of A and C is a subset of A which is independent from $S_h^k(A)$, knowing these we can say

$$Pr\left[x \in S_h^k(A)\right] = p = \frac{k}{|A|} \tag{1}$$

$$Pr\left[x \in C\right] = Pr(C) = \frac{|C|}{|A|} \tag{2}$$

$$\begin{split} E\left[|C\cap S_h^k(A)|/k\right] &= \frac{1}{k} \cdot E\left[|C\cap S_h^k(A)|\right] \\ &= \frac{1}{k} \sum_{a \in A} E\left[a \in C \land a \in S_h^k(A)\right] \\ &= \frac{1}{k} \sum_{a \in A} Pr\left[a \in C \land a \in S_h^k(A)\right] \\ &= \frac{1}{k} \sum_{a \in A} \left(Pr\left[a \in C\right] \cdot Pr\left[a \in S_h^k(A)\right]\right) & \text{Independence} \\ &= \frac{1}{k} \cdot \sum_{a \in A} \left(\frac{|C|}{|A|} \cdot \frac{k}{|A|}\right) & \text{From 1 and 2} \\ &= \frac{1}{k} \cdot \frac{|C|}{|A|} \cdot \frac{k}{|A|} \cdot \sum_{a \in A} 1 & \text{Elements in summation independent of } a \in A \\ &= \frac{1}{k} \cdot \frac{|C|}{|A|} \cdot k \\ &= \frac{|C|}{|A|} \end{split}$$

2.1.2 Exercise 3

2.2 **Similarity Estimation**

2.2.1 Exercise 4

3 Bottom-k sampling with strong universality

- 3.1 A union bound
- 3.1.1 Exercise 5
- 3.2 Upper bound with 2-independence
- **3.2.1** Exercise 6
- 3.2.2 Exercise 7

References