Chapter 4

How Antennas Work

Review – Antenna

Type

- Passive antennas
- Active antennas
 - With an amplifier built-in, not common, much higher cost

Size

- Inversely proportional to the frequency of the signal it is designed to transmit or receive
 - Lower frequency signals require larger antennas

Shapes

Vary according to their specific applications

Topics

Gain and Loss

2 Antenna Characteristics

Antenna Performance

Antenna Performance

- A measure of how efficiently an antenna can radiate an RF signal
- Design, installation, size, and type of antenna can affect its performance
- How antennas work
 - Radiation Patterns
 - Antenna Polarization
 - Antenna Dimensions

Signal Strength and Direction

- Distance between the transmitter and receiver determines the strength of the signal
 - Most antennas are passive type, transmitters produce a finite amount of RF energy
- Free space loss
 - Signals lose energy as EM wave travels away from antenna
- Omnidirectional antenna divides strength of signal in a 360-degree circle around the antenna
- Directional antenna sends most energy in the direction the antenna is pointed
 - RF wave travels farther

Wavelength

- Wavelength: length of a single RF sine wave
 - Determines the size of an antenna
- Full-wave antenna
 - Antenna transmits and receives a signal most efficiently at a specific frequency
 - When it is as long as the full length of the wave
 - In most cases, this is not practical
- Half-wave antennas, quarter-wave antennas, or eighth-wave antennas are more commonly for practical reasons

Radiation Patterns

- Antennas emit signals in two dimensions
 - Horizontally and vertically

Radiation pattern of omnidirectional antenna: a - vertical plane, b - horizontal plane, c - 3D image

Radiation pattern of directional antenna: a - vertical plane, b - horizontal plane, c - 3D image

Antenna Polarization

- Antenna polarization: orientation of the wave leaving the antenna
 - Vertical polarization
 - Sine waves travel up and down when leaving antenna
 - Horizontal polarization
 - Sine waves travel from side to side on a horizontal plane

 Most efficient signal transmission and reception is experienced when both antennas are equally polarized

Antenna Dimensions

- One-dimensional antennas
 - Basically, a length of wire or metal
 - Monopole antenna
 - Straight piece of wire or metal, usually a quarter of the wavelength, with no reflecting or ground element
 - Dipoles are commonly built as two monopoles
 - Mounted together at the base
 - A monopole antenna is less efficient than a dipole

Antenna Dimensions

- Two-dimensional antennas
 - Antennas organized in a two-dimensional pattern
- Examples: horn antenna
 - Resembles a large horn with wide end bent to one side
 - Common in telephone networks
 - Used to transmit microwave signals between two distant towers

Figure 4-14 Telephone transmission tower showing two hom antennas

Smart Antennas

- Used primarily in cellular telephony and WiMAX
- "Learn" where the mobile receiver is
 - Can track and focus RF energy in specific direction
 - Uses several narrow beam antennas pointing in different directions
 - Has the effect of sending the energy beam in a particular direction

Topics

Gain and Loss

2 Antenna Characteristics

Antenna
Performance

Antenna System Implementation

- Proper installation of antennas
 - Knowledge of the user's requirements
 - Deal with various challenges such as physical obstacles, municipal building codes, and other regulatory restrictions
- Major concerns for the RF technician
 - System's performance
 - Reliability
 - Security

Antenna Cables

- Most antennas are connected to the transmitter or receiver using coaxial cable
- You must consider the signal loss caused by the connector and by the cable itself
- Cable loss is measured in relation to the length of the cable
 - Use special low-loss antenna cables to minimize signal loss

Coaxial cable

RF Wave Propagation Groups

Group	Frequency Range
Ground waves	3KHz to 2MHz
Sky waves	3KHz to 2MHz
Line-of-sight waves	30MHz to 300GHz

Links

- Point-to-multipoint wireless link
 - One transmitter communicates with several mobile clients
 - Maximize the signal distance by
 - Using an omnidirectional antenna at the central location
 - Using directional, higher-gain antennas at the remote locations
- Point-to-point wireless link
 - Connects two computer networks in different buildings
 - Directional antennas provide the most reliable method of transmitting RF waves

Figure 4-22 Point-to-point link using directional antennas

Figure 4-21 Point-to-multipoint links using a combination of omnidirectional and direct

Fresnel Zone

- RF waves have a tendency to spread out
 - Space between two antennas would be more accurately represented by an ellipse
 - Called the Fresnel zone
- When planning a wireless link
 - At least 60% of the Fresnel zone must be kept clear of obstructions
 - May affect the height of the antenna tower

Link Budgets

- Link budgets
 - Calculate whether you have enough signal strength to meet the receiver's minimum requirements
- Information needed to calculate link budget includes:
 - Gain of the antennas
 - Cable and connector losses for receiver and transmitter
 - Receiver sensitivity
 - Free space loss figure
- Many link budgeting tools available on the Internet

Challenges of Outdoor Links

- Radio waves can reflect, diffract, or be absorbed by some materials
- Weather phenomena can affect the performance and reliability of wireless links
 - Examples: heavy fog, rain, dust, or snowstorms
- Air disturbances and changes in temperature can also affect wireless links
- Seasonal changes can impact a wireless link
 - An antenna that was setup in winter (when there were no leaves on trees) may not work as well in the spring (when leaves can block a percentage of the Fresnel zone)

Challenges of Outdoor Links

- While planning an outdoor link:
 - Always consider environmental conditions
 - Check the history of the region's weather
 - Check for short- and long-term plans that may interfere with your intended link
 - Consider the possibility of another link that may interfere with your link