Universida_{de}Vigo

ESCOLA TÉCNICA SUPERIOR DE ENXEÑEIROS DE TELECOMUNICACIÓN

Proyecto Fin de Carrera

Heart rate estimation using facial video information

escrito por **Noa García Docampo** bajo la tutela de **Pablo Dago Casas**

y realizado, bajo el Convenio de Cooperación Educativa, en

Curso 2011-2012

Motivación

- ¿Qué es la frecuencia cardíaca?
- ¿Cómo se mide la frecuencia cardíaca?

Motivación

- Estimación no invasiva:
 - Fotopletismografía
 - Cámaras con luz infraroja
 - Sistema con webcam del Massachusetts Institute of Technology
 - Aplicación para iPhone y iPad de Philips
- Ventajas:
 - No resulta incómodo
 - Sencillo para el usuario
 - Minimiza el cableado que se usa
 - Bajo coste

Objetivos

- Diseño de estimador no invasivo de frecuencia cardíaca
- 2 Análisis estadístico de la exactitud del sistema
- Implementación de una aplicación final

Esquema general

Índice

- 1 Procesado de Imagen
- 2 Procesado de Señal
- 3 Diseño e implementación
- 4 Conclusiones y lineas futuras

Procesado de Imagen

Seguimiento de cara

Detección de piel

Detección de piel basada en el histograma de color:

Procesado de Señal

Independent Component Analysis

$$\mathbf{x}_{1} = a_{11} \cdot \mathbf{s}_{1} + a_{12} \cdot \mathbf{s}_{2} + a_{13} \cdot \mathbf{s}_{3}$$

$$\mathbf{x}_{2} = a_{21} \cdot \mathbf{s}_{1} + a_{22} \cdot \mathbf{s}_{2} + a_{23} \cdot \mathbf{s}_{3}$$

$$\mathbf{x}_{3} = a_{31} \cdot \mathbf{s}_{1} + a_{32} \cdot \mathbf{s}_{2} + a_{33} \cdot \mathbf{s}_{3}$$

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{s}$$

Experimentos

Parameter	Values	Module
Sampling frequency	[8, 16, 24, 32] Hz	Pre processing
Video length	[10, 15, 25, 45, 60] s	
Spectral estimation method		
Periodogram		
Samples Fourier transform	[512, 1024, 2048]	
Welch's Method		Post processing
Samples Fourier transform	[512, 1024, 2048]	
Window length	[5, 10, 15, 20] s	
Overlap	[0, 15, 30, 60, 75] %	
AR models		
Order	[2, 4, 8, 16, 32, 64]	

Experimentos

- Se graban videos a aprox. 25 fps con una webcam estandard.
- En los experimentos, se utilizan un total de 41 videos de 30 voluntarios.
- Mientras se graban los videos, se monitoriza la señal cardíaca con un pulsómetro.
- Se analiza estadísticamente el error de cada configuración usando la técnica de Bootstrap.

Ejemplo

Ejemplo

Implementación

Aplicación en C++

- Se ha decidido implementar el sistema con la siguiente configuración:
 - Frecuencia de muestreo: 24 Hz.
 - Estimador Espectral: Welch's method con ventana de 10 s, 30 % solape y 2048 muestras en la FT.
 - Duración por estimación: 45 s.
 - Tiempo entre estimaciones: 5 s.

Implementación

Conclusiones

- Estudio sobre la influencia de los parámetros del sistema.
 - Frecuencia de muestreo próxima a la tasa de captura de la webcam.
 - Estimador Espectral:
 - Periodograma: inestable frente a cortas y largas secuencias.
 - Método de Welch: método más robusto.
 - Modelos AR: presentan mejores resultados cuando hay pocas muestras que los otros métodos.
- Mejoras en la robustez del sistema frente al movimiento.
- Implementación de una aplicación final y funcional con un error absoluto medio entre 1,7 bpms y 2,3 bpms
- Se han cumplido los objetivos iniciales.

Lineas futuras

- Mejorar la robustez frente al movimiento.
- Uso de la información del fondo de la imagen.
- Uso de otros espacios de color.
- Detección de frecuencia cardíaca.
- Mejora en la recuperación de la señal cardíaca.

Conclusiones Lineas futuras

Heart rate estimation using facial video information

FIN