Algoritmos e Estruturas de Dados

Subset Sum Problem

Relatório

João Miguel Matos 103341 (50%) Filipe Maia Antão 103470 (50%) 30-12-2021

Introdução ao problema

O problema que nos era proposto resolver para este projeto era o problema do soma de subconjuntos (subset sum problem). Este problema consiste em, dados um conjunto com vários números e uma soma, determinar se é possível executar a soma com os números dados pelo conjunto e se possível, quais os números que servem como parcelas para o cálculo dessa soma. É importante considerar que o conjunto contém números inteiros positivos apenas, ordenados de forma crescente. Este problema suscitou muito interesse na comunidade científica, tendo por isso muitas propostas de algoritmos para chegar a uma solução (Brute Force e Branch and Bound apoiando-se na recursividade, técnica de Horowitz e Sahni ou meet-in-the-middle, ou a técnica de Schroeppel and Shamir, etc...).

Neste projeto tentamos recriar os algoritmos Brute Force, Branch and Bound e Meet-In-The-Middle. Em todos eles, o objetivo é encontrar uma solução que consiste num vetor binário (zeros e uns) que representa os elementos do conjunto inicial que, somados, resultam na soma dada.

Soluções encontradas Brute Force

Este é o primeiro algoritmo que desenvolvemos. Apoiando-se na recursividade, este constrói o vetor um bit de cada vez, percorrendo o array dado de forma crescente, analisando todas as permutações possíveis para o vetor.

A função toma como argumento uma estrutura (BFData) que contém todos os dados necessários:

- int n − comprimento do array p;
- integer_t *p ponteiro para o array p;
- integer_t desiredSum soma pretendida;
- int nextIndex índice do vetor de bits a ser processado pela função (ao chamar a função, o valor deve ser sempre 0);
- integer_t partialSum soma dos valores considerados para a solução até ao momento (ao chamar a função, o valor deve ser sempre 0);
- *int *b* ponteiro para o array que será populado com o vetor de bits correspondente à solução.

A recursividade tem dois escapes possíveis:

- Quando o valor de partialSum é igual ao valor de desiredSum. Isto é sinal que uma solução foi encontrada, portanto a função retorna o valor 1 e o array apontado por b estará já populado com o vetor de bits correspondente à solução.
- Quando o valor de nextIndex é igual ao valor de n. Aqui, o vetor de bits desta esta cadeira recursiva (agora finalizada) não representa solução, portanto a função retorna o valor 0.

Branch and Bound

Este pode ser considerado uma versão melhorada do primeiro algoritmo. A diferença essencial está nos dois novos casos triviais da recursividade. Neles, é analisado o estado corrente da solução — caso a soma parcial até ao momento seja maior que a soma pretendida, ou caso a soma parcial até ao momento mais a soma restante, tomando todos os bits restantes como um seja menor que a pretendida, a função cessa processamento posterior e retorna zero, já que não existe soma possível.

Para isto, a estrutura passada como argumento (BBData) contém o parâmetro adicional *remainingSum*, que contém o valor da soma dos valores que falta analisar.

À semelhança do algoritmo anterior, quando uma solução é encontrada, a função retorna 1 e o array apontado por *b* estará já populado com o vetor de bits correspondente a essa solução, e quando, finalizada a cadeia de recursão, não existe solução, a função retorna 0.

Meet in the Middle

Também conhecido com a técnica de Horowitz e Sahni. Esta função recebe como argumentos:

- int n comprimento do array p;
- integer_t *p ponteiro para o array p;
- integer t desiredSum soma pretendida;
- char *bin ponteiro para o array a ser populado pelo bit de vectores correspondente à solução.

Nela, o array p é dividido em dois, e para cada uma dessas partes é criado e armazenado um array com todas as somas possíveis (arrays a e b, tamanhos n_a e n_b), utilizando um algoritmo de permutações dos vetores de bits, que são também armazenados (arrays aBin e bBin). Ambos os arrays são ordenados de forma crescente (o algoritmo de sorting utilizador é o quicksort adaptado do website $\frac{https:}{www.programiz.com/dsa/quick-sort}$) e, para se obter a solução, percorre-se os arrays a e b, o primeiro a partir do índice a0 (início), e o segundo a partir do índice a0 (fim). Verificamos se a1 + a2 desiredSum. Se sim, uma solução foi encontrada, então a função popula o array apontado por a3 junção dos vetores de bits correspondentes a a3 + a4 a5 armazenados em a6 a6 a7 demasiado pequena, aumenta-se o índice de a8. Se a soma for demasiado pequena, aumenta-se o índice de a8. Caso algum dos arrays sair dos limites, não existe solução para os dados fornecidos.

Nesta função, decidimos utilizar um array de *char* em vez de *int* por questões de memória. Como não estávamos a conseguir computar todos os problemas dados, decidimos fazer essa mudança, já que um *char* ocupa 1 byte ao invés dos 4 bytes de uma *int*.

Análise das soluções encontradas

Brute Force

Este algoritmo percorre todas as situações possíveis no pior cenário. Dado que para cada inteiro podemos ter apenas duas opções (0 ou 1), concluimos assim que a complexidade do algoritmo é de O(2^N), sendo N o número de inteiros. Logo, o tempo de execução do algoritmo cresce de forma exponencial em função do número de inteiros, como é possível observar no gráfico representado (Observação: Como o tempo de execução era demasiado grande, não foi possível recolher valores de tempo para valores de n superiores a 32).

N	Tempo(103341.h)	Tempo(103470.h)	N	Tempo(103341.h)	Tempo(103470.h)
10	0.00026	0.000266	22	1.498343	1.316146
11	0.000589	0.000783	23	3.400088	3.049042
12	0.001180	0.001024	24	4.254520	9.267880
13	0.001883	0.002466	25	9.830943	19.634865
14	0.005028	0.004929	26	20.844932	38.606905
15	0.010587	0.008422	27	50.769689	38.392771
16	0.019641	0.19611	28	86.075633	110.941589
17	0.037737	0.045166	29	159.153207	212.584424
18	0.073003	0.071498	30	334.538435	495.838451
19	0.197814	0.157574	31	814.788577	842.382047
20	0.406625	0.357410	32	1704.890525	1519.302801
21	0.886781	0.665483	_		

Branch and Bound

Este algoritmo é semelhante ao Brute Force, apenas interrompendo o cálculo para um determinado número de inteiros quando a soma é impossível com os cálculos já feitos. No entanto num pior cenário possível, terá de percorrer todos os casos possíveis sendo a complexidade O(2^N). O tempo de execução deste algoritmo cresce de forma exponencial. (Observação: Como o tempo de execução era demasiado grande, não foi possível recolher valores de tempo para valores de n superiores a 32).

N	Tempo(103341.h)	Tempo(103470.h)	N	Tempo(103341.h)	Tempo(103470.h)
10	0.000085	0.000150	23	0.788883	0.886233
11	0.000281	0.000341	24	1.884009	1.514439
12	0.000524	0.000469	25	4.105963	2.772111
13	0.000868	0.000924	26	8.062917	6.490392
14	0.002108	0.001577	27	14.858841	11.939659
15	0.003497	0.003251	28	27.805003	25.576561
16	0.005932	0.005541	29	63.597179	51.391546
17	0.012985	0.021578	30	108.910439	84.795131
18	0.028299	0.019294	31	216.880176	204.477320
19	0.039796	0.056872	32	440.080007	474.691524
20	0.122002	0.070978	33	741.552437	863.709310
21	0.209529	0.211319	34	1763.692509	1577.058275
22	0.504800	0.507696			

Meet In The Middle

Este algoritmo é mais eficiente para arrays de grande dimensão do que os dois algoritmos anteriores. Ao dividirmos o array em dois arrays de tamanho igual e calcular as somas parciais de todos os elementos a complexidade é $O(2^N)$. Depois, damos sort com a função *quicksort()* que tem complexidade $O(N^2)$. Por fim ao fazer os cálculos das somas temos complexidade O(N/2). Complexidade Final: $O(2^N*N^3*(1/2))$. No entanto, não suporta arrays com mais do que 49 números inteiros (o programa retorna killed para n > 49).

N	Tempo(103341.h)	Tempo(103470.h)	N	Tempo(103341.h)	Tempo(103470.h)
10	0.000406	0.000427	30	1.478541	1.189185
11	0.000650	0.000712	31	2.425823	2.506681
12	0.000859	0.000873	32	2.476908	2.369058
13	0.001410	0.001562	33	6.132900	4.366565
14	0.001902	0.001970	34	5.555633	6.761485
15	0.003768	0.003555	35	14.434693	10.711662
16	0.005035	0.005629	36	13.604501	16.495458
17	0.008418	0.007846	37	20.153064	21.795100
18	0.010735	0.010776	38	29.961112	24.973794
19	0.017322	0.018786	39	50.976135	43.731178
20	0.026075	0.024051	40	102.524772	68.000000
21	0.040207	0.037918	41	95.376878	89.053430
22	0.060582	0.067825	42	144.884728	125.075419
23	0.085507	0.111810	43	278.088275	299.378846
24	0.116767	0.131013	44	448.630000	280.018263
25	0.212961	0.265363	45	429.079337	465.240683
26	0.286359	0.423662	46	578.827179	683.875798
27	0.434214	0.437235	47	1056.696078	869.505469
28	0.608936	0.647884	48	1589.892435	1395.060521
29	0.936382	1.289928	49	1988.592892	4011.089213

Apêndice Código

```
// Solution of the first practical assignement (subset sum problem)
// 103341 - João Miguel Matos
 #error "This code must must be compiled in c99 mode or later (-std=c99)" // to handle the unsigned long long data type
#fndef STUDENT_H_FILE
// the STUDENT_H_FILE defines the following constants and data types
// handle #define max_n 57 --- the largest n value we
// will handle #define n_sums 20 --- the number of sums
// for each n value #define n_problems (max_n - min_n + 1) --- the number of
// typedef unsigned long long integer_t; --- 64-bit unsigned integer
// int n; --- number of elements of the set
// (for a valid problem, min_n \le n \le max_n) integer_t p[max_n]; --- the
// elements of the set, already sorted in increasing order (only the first n
// sums (problem: for each sum find the corresponding subset)
// subset_sum_problem_data_t all_subset_sum_problems(n_problems); ---// the
```

```
// place your code here
// possible function prototype for a recursive brute-force function:
// int brute_force(int n,integer_t p[n],int desired_sum,int
// current_index,integer_t partial_sum);
// note, however, that you may get a faster function by reducing the number of
void printIntArray(int n, int *b) { // prints an int array
 for (int i = 0; i < n; ++i) (
 printf("\n");
void printTArray(int n, integer_t *b) { // prints a integer_t array
 for (int i = 0; i < n; ++i) {
  printf("%llu\n",b[i]);
void printCharArray(int n, char *b) { // prints a char array
 for (int i = 0; i < n; ++i) (
 printf("%c", b(i]);
integer_t sumAll(int n, integer_t p(n)) { //
 integer_t sum = 0;
 for (int i = 0; i < n; i++) {
 int n;
  integer_t desiredSum;
 int nextindex;
 typedef struct bruteForceData BFData;
 if (data->desiredSum == data->partialSum) (
  }
```

```
if (data->nextIndex == data->n) {
  return 0;
 // set next bit to zero
 data->b[data->nextIndex] = 0;
 BFData newData = {data->n, data->p,
     data->desiredSum, data->nextIndex + 1,
      data->partialSum, data->b};
 return 1;
 // set next bit to one - no solution found on zero
 data->b[data->nextIndex] = 1;
 newData.partialSum = data->partialSum + data->p[data->nextindex];
integer_t *p;
 integer_t partialSum;
 integer_t remainingSum;
typedef struct branchAndBoundData BBData;
if (data->desiredSum == data->partialSum) (
  for (int i = data->nextIndex; i < data->n; ++i) {
  }
   return 1;
   return 0;
 if (data->partialSum > data->desiredSum) {
 // set next bit to zero
 data->b[data->nextindex] = 0;
```

BBData newData = (data >n, data >p, data >desiredSum, data >nextindex + 1, data >partialSum, data >remainingSum - data >p(data >nextindex + 1), data >b); if (result == 1) { newData.partialSum = data->partialSum + data->p[data->nextindex]; return branchAndBound(&newData); void swap(int x, int y, integer_t array(), char **bin) { //swap two integer_t elements integer_t temp = array(x); array(x) = array(y); array(y) = temp; bin[x] = bin[y]; $int \, partition(integer_t \, array[], \, int \, low, \, int \, high, \, char \, {**bin, \, int \, *i}) \, \{$ integer_t *pivot = (integer_t *) malloc(sizeof(integer_t)); *pivot = array[high]; *i = (low - 1); // traverse each element of the array for (int j = low; j < high; j++) { // swap it with the greater element pointed by i swap(*i, j, array, bin); // swap the pivot element with the greater element at i

swap(*i + 1, high, array, bin);

```
// return the partition point
   return (*i + 1);
void quickSort(integer_t array(), int low, int high, char **bin) { // Complexidade O(n log n)
      // elements smaller than pivot are on left of pivot
      // elements greater than pivot are on right of pivot
        //int pi = partition(array, low, high, bin);
          int *pi = (int *) malloc(sizeof(int));
          int *i = (int *)malloc(sizeof(int));
          *pi = partition(array, low, high, bin, i);
          // recursive call on the left of pivot
          quickSort(array, low, *pi - 1, bin);
          quickSort(array, *pi + 1, high, bin);
   int\ high = ceil \{n \ / \ 2.0f\},\ low = floor \{n \ / \ 2.0f\};
   int aSize = (int)pow(2, high), bSize = (int)pow(2, low);
   integer\_t *a = (integer\_t *) malloc(a Size * size of (integer\_t)), *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size * size of (integer\_t)); *b = (integer\_t *) malloc(b Size of (integer\_t)); *b = (integer\_t *) malloc(b Size of (integer\_t)); *b = (integer\_t *) malloc(b Size of (integer\_t)); *b 
   char **aBin = (char **)malloc(aSize * sizeof(char *)), **bBin = (char **)malloc(bSize * sizeof(char *));
   int i, j, k;
      sum = 0;
      aBin(i) = (char *)malloc(high * sizeof(char));
            if (i & (1 << j)) {
             sum += p[j];
                 aBin[i][j] = '1';
               } else {
                 aBin[i][j] = '0';
            }
          bBin[i] = (char *)malloc(low * sizeof(char));
          for (j = 0; j < low; ++j) {
```

```
if (i & (1 << j)) {
     sum += p[j + high];
     bBin[i][j] = '1';
    } else {
     bBin(i)(j) = '0';
  b[i] = sum;
// sort them and corresponding binary arrays
quickSort(a, 0, aSize - 1, aBin);
 quickSort(b, 0, bSize - 1, bBin);
// find solution
i = 0;
while (i < aSize | | j >= 0) {
 \mathsf{sum} = \mathsf{a[i]} + \mathsf{b[j]};
 if (sum < desiredSum) {
 } else if (sum > desiredSum) {
  } else { // found the solution
     bin[k] = aBin[i][k];
    for (k = 0; k < low; ++k) (
     bin[k+high]=bBin[j][k];
    free(a);
 return 0; // array went out of bounds; didn't find a solution
fprintf(stderr, "Program configuration: \n");\\
fprintf(stderr, " min_n ...... %d \n", min_n);
fprintf(stderr, " max_n ..... %d\n", max_n);
fprintf(stderr, " n_sums ..... %d\n", n_sums);
// place your code here
```

```
int i, j, result;
printf("\nTesting...\n");
int n;
integer_t *p, *sums;
 p = all_subset_sum_problems[i].p;
  sums = all_subset_sum_problems[i].sums;
 for (j = 0; j < n_sums; ++j) {
  BFData BFTest = {n, p, sums[j], 0, 0, bf};
   result = bruteForce(&BFTest);
 for (i = 0; i <= n_problems; ++i) {
 p = all_subset_sum_problems[i].p;
  sums = all_subset_sum_problems(i).sums;
 for (j = 0; j < n_sums; ++j) {
  BBData BBTest = (n, p, sums[j], 0, 0, sumAll(n, p), cbf);
 n = all_subset_sum_problems(i).n;
 p = all_subset_sum_problems(i).p;
 sums = all_subset_sum_problems(i).sums;
 char cbf[n];
  for (j = 0; j < n_sums; ++j) {
   result = meetinTheMiddle(n, p, sums[j], cbf);
```

Bit Vectors

103341.h 0101101111 | 0001011110 | 0110001010 | 1110000001 0011110000 | 0110101110 | 0011001010 | 1111101000 0010100000 | 0001011000 | 0111001010 | 0011111100 00011111111 | 00001000111 | 11000010011 | 01000011000 00110011111 | 10010001000 | 00110110110 | 10011111000 10001000110 | 01100110011 | 01011101100 | 11111000000 10101000011 | 00101000011 | 00100010101 | 01001101000 n = 12 100001101110 | 011011000111 | 100111010101 | 111011111101 110011100000 | 110100001000 | 001001010010 | 010101100001 n = 13 0100001110100 | 0010000101110 | 1111100001111 | 0100000111001 1110101001001 | 0001011011110 | 0100001011010 | 0011001010001 1110011010110 | 0100101010100 | 1011011001000 | 0000111000110 n = 14 10001111101100 | 00011110100011 | 10000011001001 | 01101110010101 10011001101110 | 11001011100101 | 01011010101101 | 11000110101111 11001011010011 | 10101011100001 | 10101110010010 | 00111011010011 110101000010100 | 010011100011001 | 101100001011101 | 011010110100100 101100001100000 | 010011010001000 | 010110110010011 | 110101100000011

n = 16 1100010010111010 | 0000100011001111 | 1100010010110000 | 0001110100111111 0011100011011110 | 01101010111110010 | 1100101101011001 | 1101010000101011 0000011011110111 | 0010110010011111 | 0010011110110110 | 10111111100011001 n = 17 10011101100011011 | 10001111111011111 | 10100001110100010 | 01100011011011110 10001011001011100 | 11000010000100111 | 10111100111100001 | 00011111110110011 n = 18 001111110110101100 | 000001010101100110 | 010000101000111001 | 011101001001010111 100101011001010000 | 111011110001010000 | 00110110100110111 | 000010111100000100 011011100100011111 | 010100010011111110 | 101000001011101010 | 101101000010110110 n = 19 0001000100101101010 | 1110000111110001101 | 101000000010111101 | 1111100101011110111 11101011011111010110 | 0011001100001000001 | 11010010010111100111 | 00010010011110000111 n = 20 00001001110100011000 | 11110101101101000010 | 10100011111010001100 | 10001100101111011110 11001001110000110100 | 01111001101000001110 | 0011111101100101010 | 10101110000101010000 10011000101011110100 | 01110100110100100011 | 11101100011011000110 | 11001001111110110001 n = 22

0111001101100100110011 | 110001100010100000011 | 11110101101001111100 | 0000000100111001110110

1101000000010000110100 | 0001101100001011001000 | 1011110010111111100110 | 010011111110010111110001 1110000100111000001101 | 1100011001001011010001 | 000100100111111001011 | 111011111101101011010 n = 23 100100001010111111111000 | 11101100100111001001111 | 11000010010010111110101 | 10000100100000101011110 1101010001110101010111 | 10001110011101001111111 | 01100001010100001011010 | 00000001110001001001000 n = 24 111001001111110100000010 | 1100110110110110100001001 | 101100001110100011110111 | 0000010100100101111100101 n = 25 $0111000111100001011101001 \mid 11000000011010101111000010 \mid 10101011000110000110000101 \mid 1111101111001010001111101$ n = 26 1011101100001000001010001 | 00101001110001100010011010 | 01101011101000001010000110 | 01111000011000011101100100 n = 28

n = 30 n = 31 n = 32 $10111111101010100010000011101011 \mid 11001110100010100110110010011011001 \mid 101111101101010000111110111101 \mid 1001010111100001000000110000100\\$ n = 33 n = 35

110010110101010100100100100101101011 1100111101100000101111100001110101 011110001011001110111
$00111000001010010010111110111011 \mid 111010011100010100000000$
$11010111010101010000100010011111101 \mid 011101000000110000100110101101101 \mid 011111110000010000111000 \mid 00011001001001001001001010101$
10110000110100101010101101101101101 001000011001010101
n = 36
$0001110110010100110110011011000111000 \mid 11001110000110011$
$0000101010101110111101110100011001 \mid 11001111110110001011010000011111111$
1100110100011001100110011001101011011101111
$11001101010011001110101100100000000 \mid 10011001$
10000110001101001001101010101010101010000
n=37
$1101011000011110100111100000001110111 \mid 1110101001111110011100111001100$
$00101001100110011000100000010101101 \mid 001001010011001$
$1011100110000110001111100100011000101 \mid 101100110$
$10101100101101111011001000000010101 \mid 100101111110010110000101100111001000 \mid 0101111000101011011001000001110111$
$0101011011010111110011010001101010111 \mid 110101111001100$
n = 38
010100110000011110011110110111001101101
$01111010011010101010000111010111101001 \mid 010100110111000111001100$
11000001111010110010001100000001111110 01001110011010001101001111010000001101 00101011011001011000011110000110110 100110100011100011111010111111101110
$0011100010001100011010110101101011001 \mid 11110111111010010100010110100000110101 \mid 01110000100101010000100101101100001 \mid 110101000000110001000$
$10001100010001010110101001011100000010 \mid 001100100000100110110101010$
n = 39
101010001010110101101010010001111101111 100100000000
10010001100110010100000111011101 10101101011011110000010000001010111110 0101101111101110
110110000011100001011001000111110111111
1100111110110010111111011001110110001010
110100100001000100110010010101010010010
n = 40
010100001101110010001101111101000111111
1001001011101111101100110011000100010101
$0101011001100110111101110110101111100100 \mid 1000011100111100110101010$
100100111111111101101000111111001010000 110011111000001010000000111100100101010 010101000010011011101
0110100110000011101010011110001011001010

n=41
$0000111110110110111110101111111111010011 \mid 010011001$
1111010110000100001101110010000101110000
1111010110000100001101110010000010110000

n = 43 n = 44 n = 45

00111110011111111110001110001101010101
0011010011010000101011001100101010101011011101110011001110011100110011011100110011011100110011010
0000001100100110000010111000001100110000
1000000011010011000100000100110110110101
n = 49
11=49
0110010011011101110000101101111011100101
00110011101011110000111100010101010101
000001111100010010010010011011001101100101
01110000110110001000101111111111110000101
1110110101111011110111101000101100011111
103470.h
n=10
0110011110 1001111110 111000000 1011010100
1011100010 1101111001 0110111111 0011010011
1100110111 0101110000 1101110011 0110000110
0011100001 0010000111 0000101110 0100101100
0100101000 0101100110 0101010110 0011010001
n=11
10001010011 11011110100 01001110011
11011101100 10001000101 00110000101 11010100111
11110010011 10001110110 11111001110 10101101110
00110001100 01010001110 01101000101 10000011100
01101011010 10001000111 11100001011 11011111000
n=12
\$\$40\$\$40000
111011100101 001101110000 110110000111 011110110111
010000010101 111010010011 111001000111 101100000011
001001001111 101011110111 00101000100
000111101100 001011000010 001111011110 000101111111
101110001011 000001000011 000101111011 100000111101
n=13
0110101100100 1010110111101 1111010100011 1110111110001
1001110111000 1010000000011 0101101000010 0110110100010
110000001010 0100010010000 100001001011 1101011100010
1110101101110 0001100011011 0110000011111 0010110101011
0110000010011 1001011000101 0110111001101 00000000
n=14
01000100001011 11110110101111 11101010110110 00100110000111

01110111100111 | 01100110111001 | 01001011011110 | 10100011010101

11111110000011 | 11100001001100 | 01100000110010 | 01101101101111 011101111011111 | 010001110111101 | 111110000101111 | 0111000011111010 101111110100001 | 100111101100001 | 000010000001100 | 10100000100101 100110000000010 | 1111111111101011 | 001111100101000 | 001110010010111 n = 16 1010001100100111 | 0110111110001100 | 1001101111101101 | 0011101001001001 1111111101110110 | 1101110000101100 | 0010000011110010 | 1000010000010101 n = 17 n = 18 010011110111111010 | 001010011010011111 | 110000001101111011 | 111110111110101110 n = 19 0100111010111111011 | 1111100101110100000 | 0101100000111100100 | 0111010010011010000 1100001010001000010 | 1100011011001110101 | 0110001100001001110 | 0101111101100100101 0101100111011110111 | 0000000001111010001 | 0011010010000111000 | 0111111001111010001 n = 20

1001010110111111100001 | 000010111000110111001 | 110010110000111011010 | 101010110101000001010 110001000001001011101 | 101001110101111010101 | 0010111111000011111100 | 001110100001011111101 0.038166 | 21 n = 22 n = 23 10101111101010101101101 | 10010100110110000011111 | 01111110001011011110111 | 01111100000001101000000 n = 24 100111010000000010101111 | 001110111100011011011110 | 00111110011010110110 | 01100111000101000000010 001011000110101001001110 | 100010010100010110100101 | 11100101110101011111000 | 0101101011010111101011 n = 25 $101111011100100001001100 \mid 1100101011110110000010100 \mid 111001101010001100011100 \mid 011001110001010011110$ n = 27

1011111000110011001101010101 | 001000011011100010101100100 | 110100110111000100110111 | 00100111011001011011011011010110 n = 28 n = 29 n = 30 100001010110010011011001011000 | 110111110110100110100101100111 | 001011001111001011100111100010 | 01110101000000111100101100 n = 31 n = 32 n = 33

n = 35 10110001111010011111010110100011010 | 10111001001010000100001101110000110 | 01001101100011111001111001111000000 | 0010010001101100011101010110 n = 36 n = 37 n = 38

$0100111111110001110100100001000111111100 \mid 01101110000101001101101100110$
01010100110000110000000011101011110011010
1011000010000110111010011110111000010111 01110111
101100010001101110100111011110101111101111
n = 41
111011110000010110011001101011010111110 1011111010010001111110100011111000001110000
01111101100001101000001101100000011 000110110101111100011011111111
$00011111010011111111100100011011110001101 \mid 00101000010110110000100000000$
010101001100010111101011011011011011011
100001101000100011101101101101101101101
n=42
11= 92
$11001000011100010101110001110001110001110001110001 \mid 010111011$
000101011110001010101010101010101010101111
111100000001101111100011101000001101111010
$010010111011011010000111100001101100011011 \mid 1010111011$
$110001101101100100011110110110000001011000 \mid 111011111000101011011111111$
n=43
$10110110110110100100100010100001010001001 \mid 1101100101000010110111111001011111001111$
1110100100100101100001110000111000011100101
110101001001111111100100011011101000000
111101000100100000010111010110110110110
110001100110000001001110000111011011011
n ≈ 44
1111011011111110101001001101000010000
0011010001100110010101010110111110100000
0011010001100101010110111111101000000111 10000111010011010011110010110010100110011001101111
0011010001100110101011011110110000000111 1000011101011101011010011010011110011100110010011001111
01011000001001101001110111011101110111101111
010110000010011010110110110110110101111001111
010110000010011010110110110110110101111001111
010110000010011011011011011011011011011
01011000001001101011011011011011011010111010
010110000010011011011011011011011011011
01011000001001101011011011011011011010111010
01011000001001101101110111011101110101111
010110000010011010110110101101101010111010
0101100000100110110111011101110111101111
01011000001001101101110111001111011101111
0101100000100110110111011101110111101111
0101100000100110110111011101110111101111
010110000010011011011101110011110111101111
01011000001001101011101110111011101111010
010111000001001101101101101101011101011010
010110000010011001110110011101011110101111
010111000001001101101101101101011101011010