Math 462 Homework 7

Paul Hacking

April 1, 2015

(1) Give a precise geometric description of the following transformation of the complex plane:

$$T \colon \mathbb{C} \to \mathbb{C}, \quad T(z) = (1+i)z.$$

(2) Recall the description of rotations of \mathbb{R}^3 using quaternions of length 1: Let q = a + bi + cj + dk be a quaternion with length |q| = 1. Then we can write q uniquely as

$$q = \cos(\theta) + \sin(\theta)\mathbf{v},$$

where $0 \le \theta \le \pi$ and $\mathbf{v} \in \mathbb{R}^3 \subset \mathbb{H}$ has length 1. Consider the transformation

$$T \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad T(\mathbf{x}) = q\mathbf{x}\bar{q}.$$

Then T is given by rotation about the axis L passing through the origin in direction \mathbf{v} through angle 2θ counterclockwise as viewed from \mathbf{v} .

- (a) Write $q = (\sqrt{2} + i + j)/2$ in the form $q = \cos(\theta) + \sin(\theta)\mathbf{v}$.
- (b) Let T_1 be rotation about the line L through the origin in direction (1,1,0) through angle π . Let T_2 be rotation about the x-axis through angle $\pi/2$ as viewed from the positive x-axis. Use quaternions to obtain a geometric description of the composite $T_2 \circ T_1$.
- (c) Let T_1 be rotation about the y-axis through angle $\pi/2$ counter-clockwise as viewed from the positive y-axis. Let T_2 be rotation about the z-axis through angle $\pi/2$ counterclockwise as viewed from the positive z-axis. Use quaternions to obtain a geometric description of the composite $T_2 \circ T_1$.

(3) Recall the interpretation of the quaternion multiplication in terms of the dot and cross product:

$$q_1q_2 = (t_1 + \mathbf{v}_1)(t_2 + \mathbf{v}_2) = (t_1t_2 - \mathbf{v}_1 \cdot \mathbf{v}_2) + (t_1\mathbf{v}_2 + t_2\mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2).$$

- (a) Let $\mathbf{v} \in \mathbb{R}^3$ be a vector with length 1. Show that the quaternions of the form $a + b\mathbf{v}$, $a, b \in \mathbb{R}$ multiply in the same way as complex numbers. That is, regarding $\mathbf{v} \in \mathbb{R}^3 \subset \mathbb{H}$ as a quaternion with zero real part, we have $\mathbf{v}^2 = -1$.
- (b) Explain why (a) is consistent with the description of rotations of \mathbb{R}^3 about the axis L through the origin in direction \mathbf{v} in terms of the quaternions q of the form $q = a + b\mathbf{v}$ with |q| = 1.
- (4) (a) Suppose given $q = \cos(\theta) + \sin(\theta)\mathbf{v}$, with $0 \le \theta \le \pi$ and $\|\mathbf{v}\| = 1$. Write $-q = \cos(\phi) + \sin(\phi)\mathbf{w}$ with $0 \le \phi \le \pi$ and $\|\mathbf{w}\| = 1$. How are ϕ and \mathbf{w} related to θ and \mathbf{v} ?
 - (b) Use your answer to part (b) and the geometric description of the rotation associated to q recalled in Q2 above to check that q and -q correspond to the same rotation.
 - (c) Conversely, show that if unit quaternions q_1 and q_2 define the same rotation then $q_2 = \pm q_1$.
- (5) Let $\bar{F}: S^2 \to \mathbb{C} \cup \{\infty\}$ be the stereographic projection of the sphere S^2 onto the (extended) complex plane. In class we showed that a rotation $T: S^2 \to S^2$ induced by a quaternion q = a + bi + cj + dk of length 1 corresponds to the linear fractional transformation (LFT)

$$f \colon \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}, \quad f(w) = \frac{(a+di)w + (-c+bi)}{(c+bi)w + (a-di)}$$

- (a) Determine the images of the points (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1) under stereographic projection \bar{F} .
- (b) Let $T\colon S^2\to S^2$ be rotation about the x-axis through angle $\pi.$ Compute the corresponding LFT f.
- (c) Check your answer to part (b) using your answer to part (a).
- (6) Let $C \subset \mathbb{R}^3$ be the cube with vertices $(\pm 1, \pm 1, \pm 1)$ in \mathbb{R}^3 . By a rotational symmetry of the cube C we mean a rotation $T : \mathbb{R}^3 \to \mathbb{R}^3$

such that T(C) = C. There are 24 rotational symmetries of the cube including the identity transformation (this can be checked using the orbit–stabilizer theorem from 411). List the rotational symmetries T of the cube and identify the corresponding pairs $\pm q$ of quaternions.

[Hint: The possible axes of rotation are of three types.]