

Teória sietí 3

Komunikačná sieť

Komunikačná sieť je komunikačný podsystém, ktorý sa skladá z komunikačných prostredí (špeciálne kanálov) a spojovacích uzlov

Základné vrstvy

Úloha vrstvy prevádzky?

Nájsť kompromis medzi kvalitou a efektívnosť ou siete.

- 1. z ekonomických dôvodov musí byť kapacita siete menšia než sú možné požiadavky na prenos
- 2. požiadavky na prenos vznikajú náhodne

Riešenie?

Policing – odmietnuť záťaž prevyšujúcu kapacitu siete

Shaping – odložiť záťaž prevyšujúcu kapacitu siete na neskôr

Prehľad pojmov

_	oriradenie výstupov	pevné	premenlivé		
	príznak	sta	tický	dynamický	komutácia
počet príznakov	ako počet účastníkov o málo viac než kapacita siete	Prenos	Prepoj	ovanie	paketov
poče	nie viac než kapacita siete				kanálov

Prvá úloha

Ako popísať proces, ktorý sa v sieti odohráva?

Ako popísať proces v prenosovej vrstve?

Aká hodnota sa prenáša?

Ako popísať proces vo vrstve prevádzky?

Prenáša sa sinál?

Ako popísať náhodnosť procesu vo vrstve prevádzky?

Prenáša sa sinál = ? náhodný jav

presnejšie

n-tica náhodných javov

áno	nie	áno									
	čas										

KIS – FRI ŽU

10

Vlastnosti procesu

- 1. javy sú nezávislé
- 2. javy nastávajú s rovnakou pravdepodobnosťou

Bernoulliho proces

čas

Bernoulliho proces

$$n = 1, 2, ..., k = 0, 1, ..., n$$

$$P\{N(n)=k\} = \binom{n}{k} p^k (1-p)^{n-k}$$

špeciálne nech $p=1-p=\frac{1}{2}$

$$P\{N(n)=k\} = \binom{n}{k} 2^{-n}$$

Pascalov trojuholník

Daltonova doska

Daltonova doska

Bootstrapping – kĺzavý priemer

Voľba šírky okna

Aká je potrebná šírka okna?

Taká, koľko potrebujeme úrovní.

Voľba šírky okna

Aká je potrebná šírka okna?

Taká, ako je použitá v sieťových prvkoch.

Príklad:

fy Extreme (prepínače Black Diamond) používajú pre meranie špičkovej rýchlosti okno 8 ms

Zistite presnosť pri 1 Gbit/s, ak rámec = 40 Byte

Newtonov vzorec

Binomické rozdelenie

Binomické rozdelenie

Nesymetrická Daltonova doska

Nesymetrická Daltonova doska

Bernoulliho proces

rozdelenie pravdepodobnosti

$$P\{\tau_k = n\} = P\{\tau = n\} = p(1-p)^{n-1}$$
$$\forall k, \ n = 1, 2, \dots$$

Iný popis v čase

Rozdelenie dĺžok intervalov medzi rámcami

Rozdelenie dĺžok zhlukov rámcov

Rozdelenie medzier a zhlukov

Rozdelenie dĺžok intervalov medzi rámcami

$$P(\alpha = n) = (1-p)^n p, \quad n = 0,1,2,...$$

Rozdelenie dĺžok zhlukov rámcov

$$P(\beta = n) = p^{n}(1-p), n = 0,1,2,...$$

Stredné dĺžky medzier a zhlukov

Stredná dĺžka intervalov medzi rámcami

$$\mathcal{E}\{\alpha\} = \overline{\alpha} = \sum_{n=0}^{\infty} nP\{\alpha = n\} = \sum_{n=1}^{\infty} np(1-p)^n =$$

$$= (1-p)\sum_{n=1}^{\infty} np(1-p)^{n-1} = \frac{1-p}{p} =$$

$$= \frac{1}{p} - 1$$

$$= \frac{\tau_1}{p} = \frac{\tau_2}{p}$$

Prednáška 3

Ďakujem za pozornosť

Iný popis v čase

Rozdelenie dĺžok intervalov a zhlukov rámcov

Na určenie čím hádzať, potrebujeme vedieť

výsledok predchádzajúceho hodu

Rozdelenie medzier a zhlukov

Rozdelenie dĺžok intervalov medzi rámcami

$$P(\alpha = n) = (1-p)^n p, \quad n = 0,1,2,...$$

Rozdelenie dĺžok zhlukov rámcov

$$P(\beta = n) = p^{n}(1-p), n = 0,1,2,...$$

