

C.P.D.A.

Centre de Préparation au Diplôme d'Etat d'Audioprothésiste

Cours de 3^e année - 2006/2007

Traitement du signal - Fiche transformée en Z G. Pellerin

Signal	Transformée en ${\bf z}$	Rayon de convergence
$\delta(t)$	1	tous z
$\mu(t)$	$\frac{1}{1-z^{-1}}$	z > 1
$\delta(t-m)$	z^{-m}	tous z sauf 0 et/ou ∞
$\alpha^t \mu(t)$	$\frac{1}{1-\alpha z^{-1}}$ αz^{-1}	$ z > \alpha$
$t\alpha^t\mu(t)$	$(1-\alpha z^{-1})^2$	$ z > \alpha$
$(\cos \omega_0 t) \mu(t)$	$\frac{1 - (\cos \omega_0) z^{-1}}{1 - (2\cos \omega_0) z^{-1} + z^{-2}}$	z > 1
$(\sin \omega_0 t) \mu(t)$	$\frac{1 - (\sin \omega_0) z^{-1}}{1 - (2\cos \omega_0) z^{-1} + z^{-2}}$	z > 1
$r^t (\cos \omega_0 t) \mu(t)$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
$r^t \left(\sin \omega_0 t\right) \mu(t)$	$\frac{1 - (r\sin\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r

Transformée en z de signaux élémentaires

Signal	Transformée en z	Propriété
$ax_1(t) + bx_2(t)$	$aX_1(z) + bX_2(z)$	linéarité
$x(t-t_0)$	$z^{-t_0}X(z)$	décalage temporel
$e^{j\omega_0 t}x(t)$	$X(e^{-j\omega_0 t}z)$	décalage fréquentiel
$z_0^t x(t)$	$X(z/z_0)$	décalage fréquentiel
$a^t x(t)$	$X(a^{-1}z)$	décalage fréquentiel
x(-t)	$X(z^{-1})$	renversement temporel
$x_1(t) * x_2(t)$	$X_1(z)X_2(z)$	convolution
$x_1(t).x_2(t)$	$\frac{1}{2\pi j} \oint_C X_1(\alpha) X_2(z/\alpha) \alpha^{-1} d\alpha$	produit
tx(t)	$-z\frac{dX(z)}{dz}$	dérivation
$\sum_{-\infty}^{n} x(t)$	$\frac{1}{1-z^{-1}}X(z)$	sommation
x(t+M)	$\frac{1}{1-z^{-M}}X_M(z)$	périodicité
$\lim_{t\to 0} x(t)$	$\lim_{z \to \infty} X(z)$	valeur initiale
$\lim_{t \to \infty} x(t)$	$\lim_{z\to 1} 1 - \frac{X(z)}{z}$	valeur finale
$\sum_{-\infty}^{+\infty} x(t) ^2$	$\frac{1}{2\pi j} \oint_C X(\alpha) X^*(1/\alpha^*) \alpha^{-1} d\alpha$	Théorème de Parseval

Propriétés de la transformée en z