

W861 chip specification

V2.0

Beijing Winner Microelectronics Co., Ltd. (Winner Micro)

Address: Floor 6, Yindu Building, No. 67 Fucheng Road, Haidian District, Beijing

Tel: +86-10-62161900

Website: www.winnermicro.com

Document modification record

Version revi	sion time	revision history	author	review
V1.0	2022/1/25 Create dod	cument	Ray	
V2.0	2022/8/20 Update co	mpany information and modify bugs	Ray	
				*
			Y	

Table of content

Documentat	tion Modification History	ξ
1 Overview	/	4
2 features .		4
3 chip struc	cture	7
4Address s	space division	7
5 Functiona	al description	10
	← A	
5.1	SDIO HOST controller	10
5.2	SDIO Device Controller	11
5.3 High	Speed SPI Device Controller	12
5.4	DMA controller	12
5.5	Clock and Reset	12
5.6	memory manager	12
5.7 Digit	tal baseband	13
5.8	MAC controller	13
5.9 Secu	urity system	14
5.10	FLASH controller	14
5.11	RSA encryption module	14
5.12	Generic hardware encryption module	

5.13	I 2C Controller	15
5.14 Maste	/Slave SPI Controller	15
5.15	UART controller	16
5.16	GPIO controller	16
5.17 Timer		
5.18	Watchdog Controller	16
5.19	RF Configurator	17
5.20	RF Transceiver	17
5.21 PWM (controller	
5.22	I ² S Controller	17
5.23	7816/UART Controller	
5.24	ADC	19
5.25	Touch Button Controller	19
6 Pin definition	n	
7 electrical ch	aracteristics	twenty four
7.1 Limit pa	arameters	besonly
7.2	RF Power Consumption Parameters	twenty fou
7.3	Wi-Fi radio	25
7.4 Bluetoo	th radio	

7.4.1 Legacy Bluetooth radio	2	6
7.4.2 Bluetooth low energy radio	29	
Packaging information	31	

1 Overview

The W861 chip is a secure IoT Wi-Fi/Bluetooth dual-mode SoC chip. The chip provides large-capacity RAM and Flash space, supports rich digital functional interface. Support 2.4G IEEE802.11b/g/n Wi-Fi communication protocol; support BLE4.2 protocol. Chip integrated 32-bit CPU Processor, built-in UART, GPIO, SPI, I 2C, I 2S, 7816, SDIO, ADC, LCD, TouchSendor and other digital interfaces; built-in

2MBFlash memory, 2MB memory; support TEE security engine, support multiple hardware encryption and decryption algorithms, built-in DSP, floating point unit With the security engine, it supports code security permission setting, supports multiple security measures such as firmware encrypted storage, firmware signature, security debugging, security upgrade, etc.

Guaranteed product safety features. Suitable for a wide range of smart home appliances, smart homes, smart toys, wireless audio and video, industrial control, medical monitoring, etc.

IoT field.

2 features

- ÿ Chip Appearance
 - ÿ QFN56 package, 6mm x 6mm
- ÿ MCU Features
 - ÿ Integrated 32-bit XT804 processor, operating frequency 240MHz, built-in DSP, floating point unit and security engine
 - ÿ Built-in 2MB Flash, 288KB RAM + 2MB PSRAM
 - ÿ Integrated 6-way UART high-speed interface
 - $\ddot{\text{y}}$ Integrated 4-channel 12-bit ADC, the highest sampling rate is 1KHz
 - ÿ Integrates a high-speed SPI interface, supporting up to 50MHz
 - ÿ Integrated 1 master/slave SPI interface
 - $\ddot{y} \ \text{Integrate 1 SDIO_HOST interface, support SDIO2.0, SDHC, MMC4.2}$
 - ÿ Integrate 1 SDIO_DEVICE, support SDIO2.0, the highest throughput rate is 200Mbps

3 chip structure

4 Address space division

0X5FFF FEFF

512M-Byte
Block 2
Peripherals

0X4000 0000
0X3FFF FFFF

512M-Byte
Block 1
SRAM

0X2000 0000
0X1FFF FFFF

512M-Byte
Block 0
Code

Figure 4-1 Address space mapping

Table 4-1 Detailed division of bus device address space

bus slave	BootMode=0	Address Space Subdivision	Remark
ROM	0x0000 0000 ~ 0x0004		Store the solidified firmware code
	FFFF		
FLASH	0x0800 0000 ~ 0x0FFF FFFF		as a dedicated instruction memory.
SRAM	0x2000 0000 ~ 0x2002		Firmware memory and instruction store
	7FFF		
Mac RAM 0x20	02 8000 ~ 0x2004		SDIO/H-SPI/UART data buffer
	7FFF		*
PSRAM	0x3000 0000 ~	5	Memory
	0x30800000		
CONFIG	0x4000 0000 ~ 0x4000	0x4000 0000 ~ 0x4000 05FF RSA co	onfiguration space
	2FFF	0x4000 0600 ~ 0x4000 07FF GPSE0	configuration space
4	A 1 1 2 2	0x4000 0800 ~ 0x4000 09FF DMA co	onfiguration space
		0x4000 0A00 ~ 0x4000 0CFF SDIO_	HOST configuration space
		0x4000 0D00 ~ 0x4000	PMU configuration space
		0DFF	
		0x4000 0E00 ~ 0x4000 0EFF Clock a	and Reset configuration space
		0x4000 0F00 ~ 0x4000 0FFF MacPH	Y Router configuration space
		0x4000 1000 ~ 0x4000 13FF BBP co	nfiguration space

		0x4000 1400 ~ 0x4000 17FF MAC co	onfiguration space
		0x4000 1800 ~ 0x4000 1FFF SEC co	nfiguration space
		0x4000 2000 ~ 0x4000 21FF FLASH	Controller configuration space
		0x4000 2200 ~ 0x4000 23FF PSRAM	LCTRL configuration space
		0x4000 2400 ~ 0x4000 25FF SDIO S	lave configuration space
		0x4000 2600 ~ 0x4000 27FF H-SPI c	onfiguration space
		0x4000 2800 ~ 0x4000 29FF SD Wra	pper configuration space
		0x4000 2A00 ~ 0x4000 A9FF BT Cor	e configuration space
		0x4000 B000 ~ 0x4000 B0FF SASC-	B1 Level 1 bus memory security
			configuration module
		0x4000 B100 ~ 0x4000 B1FF SASC-	Flash Flash security configuration
			module
		0x4000 B200 ~ 0x4000 B2FF SASC-	B2 secondary bus memory security
			configuration module
APB	0x4001 0000 ~ 0x4001	0x4001 0000 ~ 0x4001 01FF I 2C ma	aster
12.	C000	0x4001 0200 ~ 0x4001 03FF Sigma	ADC
		0x4001 0400 ~ 0x4001 07FF SPI ma	ster
		0x4001 0600 ~ 0x4001 07FF UART0	
		0x4001 0800 ~ 0x4001 09FF UART1	
		0x4001 0A00 ~ 0x4001 0BFF UART2	
		0x4001 0C00 ~ 0x4001 0DFF UARTS	3
		0x4001 0E00 ~ 0x4001 0FFF UART4	
	1	9	

0x4001 1000 ~ 0x4001 11FF UART5
0x4001 1200 ~ 0x4001 13FF GPIO-A
0x4001 1400 ~ 0x4001 15FF GPIO-B
0x4001 1600 ~ 0x4001 17FF WatchDog
0x4001 1800 ~ 0x4001 19FF Timer
0x4001 1A00 ~ 0x4001 1BFF RF_Controller
0x4001 1C00 ~ 0x4001 1DFF LCD
0x4001 1E00 ~ 0x4001 1FFF PWM
0x4001 2000 ~ 0x4001 22FF I ² S
0x4001 2200 ~ 0x4001 23FF BT-modem
0x4001 2400 ~ 0x4001 25FF Touch Sensor
0x4001 2600 ~ 0x4001 25FF TIPC Interface security settings
0x4001 4000 ~ 0x4000 BFFF RF_BIST DAC transmit memory
0x4001 C000 ~ 0x4003 BFFF RF_BIST ADC receive memory
0x4001 3C00 ~ 0x5FFF FFFF RSV

5 Functional description

5.1 SDIO HOST controller

The SDIO HOST device controller provides a digital interface capable of accessing Secure Digital Input Output (SDIO) and MMC cards. were able

Access SDIO devices and SD card devices compatible with SDIO 2.0 protocol. The main interfaces are CK, CMD and 4 data lines.

ÿ Support SPI, 1-bit SD and 4-bit SD modes

5.3 High Speed SPI Device Controller

Compatible with the general SPI physical layer protocol, by agreeing on the data format for interaction with the host, the host can access the device at a high speed, and the maximum supported operating frequency is

50Mbps.

- ÿ Compatible with general SPI protocol
- ÿ Selectable level interrupt signal
- ÿ Support up to 50Mbps rate
- ÿ Simple frame format, full hardware analysis and DMA

5.4 DMA Controller

Support up to 8 channels, 16 DMA request sources, support linked list structure and register control.

- ÿ Amba2.0 standard bus interface, 8 DMA channels
- ÿ Support DMA operation based on memory linked list structure
- ÿ Software configures 16 hardware request sources
- ÿ Support 1, 4-burst operation mode
- ÿ Support byte, half-word, word operations
- ÿ The source and destination addresses are unchanged or sequentially incremented, configurable or cyclically operate within a predefined address range
- ÿ Synchronous DMA request and DMA response hardware interface timing

5.5 Clock and Reset

Support chip clock and reset system control, clock control includes clock frequency conversion, clock shutdown and adaptive gating; reset control includes system and

And the soft reset control of the sub-module

5.6 Memory Manager

Support the configuration of sending and receiving buffer size, as well as control information such as the base address of MAC access buffer, the number of buffers, and the upper limit of frame aggregation.

5.7 Digital baseband

Support IEEE802.11a/b/g/e/n (1T1R) transmitter and receiver algorithm implementation, the main parameters:

- ÿ Data rate: 1~54Mpbs (802.11a/b/g), 6.5~150Mbps(802.11n)
- ÿ MCS format: MCS0~MCS7, MCS32 (40MHz HT Duplicate mode)
- ÿ Support 40MHz bandwidth non-HT Duplicate mode, 6Mÿ54M
- ÿ Signal bandwidth: 20MHz, 40MHz
- ÿ Modulation: DSSS (DBPSK, DQPSK, CCK) and OFDM (BPSK, QPSK, 16QAM, 64QAM)
- ÿ Realize 1T1R MIMO-OFDM spatial multiplexing
- ÿ Support Short GI mode
- ÿ Support legacy mode and Mixed mode
- ÿ Support the transmission and reception of 20M upper and lower sideband signals under 40MHz bandwidth
- ÿ Support STBC reception of MCS0~7, 32
- ÿ Support Green Field mode

5.8 MAC Controller

Support IEEE802.11a/b/g/e/n MAC sublayer protocol control, specific specifications include:

- ÿ Support EDCA channel access mode
- ÿ Support CSMA/CA, NAV and TXOP protection mechanism
- $\ddot{\text{y}}$ Beacon, Mng, VO, VI, BE, BK five-way sending queue and QoS
- ÿ Support single and wide group wave frame receiving and sending
- ÿ Support RTS/CTS, CTS2SELF, Normal ACK, No ACK frame sequence
- ÿ Support retransmission mechanism and retransmission rate and power control
- \ddot{y} Support MPDU hardware aggregation and de-aggregation and Immediate BlockAck mode

ÿ	Support RIFS, SIFS, AIFS
ÿ	Support reverse transfer mechanism
ÿ	Support TSF timing, and software configurable
ÿ	Support MIB statistics
5.9 Sec	curity system
Support the	e security algorithm stipulated in IEEE802.11a/b/g/e/n protocol, cooperate to complete the encryption and decryption of sending and receiving data frames.
ÿ÷	Satisfied that the encryption and decryption throughput rate is greater than 150Mbps
ÿ	Amba2.0 standard bus interface
ÿ	Support WAPI Security Mode 2.0
ÿ	Support WEP security mode - 64-bit encryption
ÿ	Support WEP security mode - 128-bit encryption
ÿ	Support TKIP security mode
ÿ	Support CCMP security mode
5.10 FL	LASH controller
4	Provide bus access FLASH interface Provide system bus and data bus access arbitration
ÿ	Realize the CACHE cache system to improve the access speed of the FLASH interface

5.11 RSA encryption module

ÿ Provide compatibility with different QFlash

RSA operation hardware coprocessor, providing Montgomery (FIOS algorithm) modular multiplication operation function. Cooperate with RSA software library to realize RSA algorithm.

Supports 128-bit to 2048-bit modular multiplication.

5.12 General hardware encryption module

The encryption module automatically completes the encryption of the source address space data of the specified length, and automatically writes the encrypted data back to the specified destination address space after completion;

Support SHA1/MD5/RC4/DES/3DES/AES/CRC/TRNG.

- ÿ Support SHA1/MD5/RC4/DES/3DES/AES/CRC/TRNG encryption algorithm
- ÿ DES/3DES supports both ECB and CBC modes
- ÿ AES supports three modes: ECB, CBC and CTR
- ÿ CRC supports CRC8, CRC16_MODBUS, CRC16_CCITT and CRC32 four modes
- ÿ CRC supports input/output reverse
- ÿ SHA1/MD5/CRC supports continuous multi-packet encryption
- ÿ Built-in true random number generator, also supports seed seed to generate pseudo-random numbers

5.13 I2C Controller

APB bus protocol standard interface, only supports the main device controller, I²C working frequency support can be configured, 100K-400K.

5.14 Master/Slave SPI Controller

Supports synchronous SPI master-slave functionality. Its working clock is the internal bus clock of the system. Its characteristics are as follows:

- ÿ 8-word-deep FIFOs for transmit and receive paths
- ÿ master supports 4 formats of Motorola SPI (CPOL, CPHA), TI timing, macrowire timing
- ÿ slave supports 4 formats of Motorola SPI (CPOL, CPHA);
- $\ddot{\text{y}}$ Support full duplex and half duplex
- ÿ The master device supports bit transmission, up to 65535bit transmission
- $\ddot{\text{y}}$ The slave device supports transmission modes of various byte lengths
- ÿ The maximum clock frequency of SPI_Clk input from the device is 1/6 of the system clock

5.15 UART Controller

5.16 GPIO Controller

Configurable GPIO, software-controlled input and output, hardware-controlled input and output, configurable interrupt mode.

The GPIOA and GPIOB registers have different starting addresses, but the functions are the same.

5.17 Timers

Microsecond and millisecond timing (the number of counts is configured according to the clock frequency), and six configurable 32-bit counters are realized. When the counting configured by the corresponding calculator is completed

When successful, a corresponding interrupt is generated

5.18 Watchdog Controller

Support "watchdog" function. Observe the correctness of software behavior and allow a global reset after a system crash. "Watchdog" generates a periodic

The system software must respond to the interrupt and clear the interrupt flag; if the interrupt flag has not been cleared for a long time due to system crash, then

Generate a hard reset to perform a global reset of the system.

5.19 RF Configurator

A synchronous SPI master function is implemented. Its working clock is the internal bus clock of the system. Its characteristics are as follows:

ÿ 1-word-deep FIFOs for transmit and receive paths

5.20 RF Transceiver

ÿ The radio frequency transceiver part includes modules including power amplifier, transmit path, receive path, phase-locked loop and SPI. By adjusting the control

Control ports SHDN, RXEN and TXEN to change the working state of the chip

ÿ The receiving channel adopts a zero-IF structure, which directly converts the RF signal into two outputs of baseband I and Q. The RF front end works at 2.4GHz,

Contains a low noise amplifier and a quadrature mixer; the baseband is composed of a low-pass filter and a variable gain amplifier to achieve channel filtering and gain control;

Driver Amplifier Provides Different DC Outputs for ADC Interface

ÿ The transmission path includes: programmable control filter, up-conversion mixer, variable gain amplifier and power amplifier, and the transmission path also uses direct

Frequency conversion structure. The output signal of the DAC passes through a low-pass filter to filter out the image frequency and out-of-band noise. PA outputs are differential output drivers

off-chip antenna

5.21 PWM Controller

- ÿ 5-channel PWM signal generation function
- ÿ 2-channel input signal capture function (PWM0 and PWM4 two channels)
- ÿ Frequency range: 3Hz~160KHz
- ÿ Maximum accuracy of duty cycle: 1/256, counter width for inserting dead zone: 8bit

5.22 I2S Controller

- $\ddot{\text{y}}$ Support AMBA APB bus interface, 32bit single read and write operations
- ÿ Support master and slave mode, can work duplex
- $\ddot{\text{y}}$ Support 8/16/24/32 bit width, the highest sampling frequency is 128KHz

- ÿ Support mono and stereo mode
- ÿ Compatible with I²S and MSB justified data format, compatible with PCM A/B format
- ÿ Support DMA request read and write operations. Only word-by-word operations are supported

5.23 7816/UART Controller

ÿ Support 0.5 and 1.5 stop bit configuration

5.24 ADCs

The acquisition module based on Sigma-Delta ADC completes the acquisition of up to 4 channels of analog signals, and the sampling rate is controlled by an external input clock.

It can collect the input voltage and also collect the chip temperature, and supports input calibration and temperature compensation calibration.

5.25 Touch key controller The basic handlers of the module are at tokens: 9 Support up to 15 channels of Touch Sensor scanning 9 Record the scanning results of each Touch Sensor 9 Report scan results through interrupts

6 Pin definition

Table 6-1 W861 pin assignment definition (QFN56)

No. Nam	ne Type Pin Fun	ction After	Reset	multiplexing function	Highest frequency pull	-up and pull-down capab	ility drive capability
1	PB_18	I/O GP	O, input, high impedance U/	RT5_TX/LCD_SEG30	10MHz	UP/DOWN	12mA
2	PB_26	I/O GP	O, input, high impedance LS	PI_MOSI/PWM4/LCD_SEG1	20MHz	UP/DOWN	12mA
3	PB_25	I/O GP	O, input, high impedance LS	PI_MISO/PWM3/LCD_COM0	20MHz	UP/DOWN	12mA
4	PB_24	I/O GP	O, input, high impedance LS	PI_CK/PWM2/LCD_SEG2	20MHz	UP/DOWN	12mA
5	PB_23	I/O GP	O, input, high impedance LS	PI_CS/PCM_DATA/LCD_SEG0	20MHz	UP/DOWN	12mA
6	PB_22	I/O GP	O, input, high impedance U/	RT0_CTS/PCM_CK/LCD_COM2	10MHz	UP/DOWN	12mA
7	PB_21	I/O GP	O, input, high impedance U/	RTO_RTS/PCM_SYNC/LCD_COM1	10MHz	UP/DOWN	12mA
8	PB_20	I/O UAI	RT_RX	UART0_RX/PWM1/UART1_CTS/I2C_SCL	10MHz	UP/DOWN	12mA
9	PB_19	I/O UAI	RT_TX	UARTO_TX/PWM0/UART1_RTS/I2C_SDA	10MHz	UP/DOWN	12mA
10	RESET	IRES	ET Reset	4 A		UP	
11 XT	AL_OUT O Exte	rnal crysta	l oscillator output				
12 XT	AL_IN I Externa	crystal os	cillator input				
13 AV	DD33	P chip	power supply, 3.3V		,	Ÿ	
14	ANT	I/O RF	Antenna		*		
15 AV	DD33	P chip	power supply, 3.3V				
16 AV	DD33	P chip	power supply, 3.3V				
17	AVDD33_AU	P chip	power supply, 3.3V	\bigcirc			
18 BO	OTMODE I/O B	OOTMOD		I2S_MCLK/LSPI_CS/PWM2/I2S_DO	20MHz	UP/DOWN	12mA
19	PA_1	I/O JTA	G_CK	JTAG_CK/I2C_SCL/PWM3/I2S_LRCK/AD	20MHz	UP/DOWN	12mA
20	PA_2	I/O GP	O, input, high impedance	UART1_RTS/UART2_TX/PWM0/UART3_RT S/ADC_4	20MHz	UP/DOWN	12mA
4	PA_3	I/O GP	O, input, high impedance	UART1_CTS/UART2_RX/PWM1/UART3_CT S/ADC_3	20MHz	UP/DOWN	12mA
Twenty Seo	PA_4	I/O JTA	G_SWO	JTAG_SWO/I2C_SDA/PWM4/I2S_BCK/AD C_2	20MHz	UP/DOWN	12mA
Season Sign Stream	PA_5	I/O GP	O, input, high impedance	UART3_TX/UART2_RTS/PWM_BREAK/UAR T4_RTS/VRP_EXT	20MHz	UP/DOWN	12mA
tweetly floar	PA_6	I/O GP	O, input, high impedance	UART3_RX/UART2_CTS/NULL/UART4_CT S/LCD_SEG31/VRP_EXT	20MHz	UP/DOWN	12mA
25	PA_7	I/O GP	O, input, high impedance	PWM4/LSPI_MOSI/I2S_MCK/I2S_DI/LC D_SEG3/Touch_1	20MHz	UP/DOWN	12mA
26	PA_8	I/O GP	O, input, high impedance	PWM_BREAK/UART4_TX/UART5_TX/I2S_ BCLK/LCD_SEG4	20MHz	UP/DOWN	12mA

27	PA_9	I/O GP	O, input, high impedance	MMC_CLK/UART4_RX/UART5_RX/I2S_LR CLK/LCD_SEG5/TOUCH_2	50MHz	UP/DOWN	12mA
28	PA_10	I/O GP	O, input, high impedance	MMC_CMD/UART4_RTS/PWM0/I2S_DO/LC D_SEG6/TOUCH_3	50MHz	UP/DOWN	12mA
29 VDI	D33IO	PIO p	ower supply, 3.3V				
30	PA_11	I/O GP	O, input, high impedance	MMC_DAT0/UART4_CTS/PWM1/I2S_DI/L CD_SEG7	50MHz	UP/DOWN	12mA
31	PA_12	I/O GP	O, input, high impedance	MMC_DAT1/UART5_TX/PWM2/LCD_SEG8/	50MHz	UP/DOWN	12mA
32	PA_13	I/O GP	O, input, high impedance MI	MC_DAT2/UART5_RX/PWM3/LCD_SEG9	50MHz	UP/DOWN	12mA
33	PA_14	I/O GP	O, input, high impedance	MMC_DAT3/UART5_CTS/PWM4/LCD_SEG1 0/TOUCH_15	50MHz	UP/DOWN	12mA
34	NC						>
35	PB_0	I/O GP	O, input, high impedance	PWM0/LSPI_MISO/UART3_TX/LCD_SEG1 2/Touch_4	80MHz	UP/DOWN	12mA
36	PB_1	I/O GP	O, input, high impedance	PWM1/LSPI_CK/UART3_RX/LCD_SEG13/ Touch_5	80MHz	UP/DOWN	12mA
37	PB_2	I/O GP	O, input, high impedance	PWM2/LSPI_CK/UART2_TX/LCD_SEG14/ Touch_6	80MHz	UP/DOWN	12mA
38	PB_3	I/O GP	O, input, high impedance	PWM3/LSPI_MISO/UART2_RX/LCD_SEG1 5/Touch_7	80MHz	UP/DOWN	12mA
39	NC						
40	PB_4	I/O GP	O, input, high impedance	LSPI_CS/UART2_RTS/UART4_TX/LCD_S EG16/Touch_8	80MHz	UP/DOWN	12mA
41	PB_5	I/O GP	O, input, high impedance	LSPI_MOSI/UART2_CTS/UART4_RX/LCD _SEG17/Touch_9	80MHz	UP/DOWN	12mA
42 VDI	D33IO	PIO p	ower supply, 3.3V				
43	CAP	I Exte	rnal capacitor, 1µF			-	
44	PB_6	I/O GP	O, input, high impedance	UART1_TX/MMC_CLK/HSPI_CK/SDIO_CK /LCD_SEG18/Touch_10	50MHz	UP/DOWN	12mA
45	PB_7	I/O GP	O, input, high impedance	UART1_RX/MMC_CMD/HSPI_INT/SDIO_C MD/LCD_SEG19/Touch_11	50MHz	UP/DOWN	12mA
46	PB_8	I/O GP	O, input, high impedance	I2S_BCK/MMC_D0/PWM_BREAK/SDIO_D0 /LCD_SEG20/Touch_12	50MHz	UP/DOWN	12mA
47	PB_9	I/O GP	O, input, high impedance	I2S_LRCK/MMC_D1/HSPI_CS/SDIO_D1/ LCD_SEG21/Touch_13	50MHz	UP/DOWN	12mA
48	PB_12	I/O GP	O, input, high impedance	HSPI_CK/PWM0/UART5_CTS/I2S_BCLK/ LCD_SEG24	50MHz	UP/DOWN	12mA
49	PB_13	I/O GP	O, input, high impedance	HSPI_INT/PWM1/UART5_RTS/I2S_LRCL K/LCD_SEG25	50MHz	UP/DOWN	12mA

50	PB_14	I/O GPIO, input, high impedance	HSPI_CS/PWM2/LSPI_CS/I2S_DO/LCD_ SEG26	50MHz	UP/DOWN	12mA
51	PB_15	I/O GPIO, input, high impedance	HSPI_DI/PWM3/LSPI_CK/I2S_DI/LCD_ SEG27	50MHz	UP/DOWN	12mA
52	PB_10	I/O GPIO, input, high impedance	I2S_DI/MMC_D2/HSPI_DI/SDIO_D2/LC D_SEG22	50MHz	UP/DOWN	12mA
53 VD	D33IO	PIO power supply, 3.3V				
54	PB_11	I/O GPIO, input, high impedance	I2S_DO/MMC_D3/HSPI_DO/SDIO_D3/LC D_SEG23	50MHz	UP/DOWN	12mA
55	PB_16	I/O GPIO, input, high impedance	HSPI_DO/PWM4/LSPI_MISO/UART1_RX/ LCD_SEG28	50MHz	UP/DOWN	12mA
56	PB_17	I/O GPIO, input, high impedance	UART5_RX/PWM_BREAK/LSPI_MOSI/I2S _MCLK/LCD_SEG29	20MHz	UP/DOWN	12mA

Note: 1. I = Input, O = Output, P = Power

7 Electrical Characteristics

7.1 Limit parameters

Table 7-1 Limit parameters

parameter	name	minimum value	typical value	maximum value	unit
supply voltage	VDD	3.0	3.3	3.6	V
Input Logic Level Low	VIL	-0.3		0.8	^
Input logic level high	VIH	2.0		VDD+0.3	V
Input Pin Capacitance	Cpad			2	pF
output logic level low	VOL			0.4	V
output logic level high	VOH	2.4	11/2		٧
Output maximum drive capacity	IMAX	2		teartly four	mA
storage temperature range	TSTR	-40°C	V	+125°C	ÿ
range of working temperature	TOPR	-40°C		+85°C	ÿ

7.2 RF Power Consumption Parameters

Test conditions: 3.3V power supply, transmit according to 50% duty cycle test.

Table 7-2 RF power consumption parameters

model	typical value	unit
Transmit IEEE802.11b 1Mbps POUT = +19.4dBm	240	mA
Transmit IEEE802.11b 11Mbps	240	

POUT = +19.3dBm		
Transmit IEEE802.11g 54Mbps	190	mA
POUT = +14.7dBm	130	
Send IEEE802.11n MCS7	180	mA
POUT = +12dBm	100	IIIA
Receive IEEE802.11b/g/n	95	mA

7.3 Wi-Fi Radio

Table 7-3 Wi-Fi radio parameters

parameter	typical value	unit
input frequency	2.4~2.4835	GHz
	transmit power	
IEEE802.11b 11Mbps	19±2	dBm
IEEE802.11g 54Mbps	16±2	dBm
IEEE802.11n MCS7 HT20	13±2	dBm
	Receiver sensitivity	
IEEE802.11b 1Mbps	-96	dBm
IEEE802.11b 11Mbps	-86	dBm
IEEE802.11g 54Mbps	-73	dBm
IEEE802.11g MCS7 HT20	-71	dBm

Adjacent channel inhibition					
IEEE802.11b 6Mbps	32	dB			
IEEE802.11g 54Mbps	16	dB			
IEEE802.11n HT20, MCS0	31	dB			
IEEE802.11n HT20, MCS7	12	dB			

7.4 Bluetooth RF

7.4.1 Traditional Bluetooth RF

Receiver - Base Data Rate (BR)

parameter	condition	Min Typ I	Иах Unit	
Sensitivity@0.1% BER			-91	dBm
Maximum Received Signal @0.1% BER			0	dBm
Co-channel rejection ratio C/I			9	dB
out-of-band blocking	30 MHz ~ 2000 MHz		-10	dBm
	2000 MHz ~ 2400		-27	dBm
	MHz			
	2500 MHz ~ 3000		-27	dBm
	MHz			
	3000MHz ~ 12.5GHz		-10	dBm
Intermodulation			-39	dB

Emitter - Base Rate (BR)

		1		ĺ	
parameter	condition	Min Typ M	lax Unit		
RF transmit power			6		dBm
Gain Control Step Size			3		용
RF power control range		-10		12	dBm
20dB bandwidth		0.918 0.92	23		
ÿ f1avg	4		159.8		
ÿ f2max			142.8		
ÿ f2avg/ÿ f1avg			0.89		
ICFT			0		
Drift rate		-2.25 -2.0	8 2.23		kHz
Offset (DH1)		-4		-1	kHz
Offset (DH5)			0	teenty one	kHz

Receiver - Enhanced Rate (EDR)

parameter	condition	Min Typ M	lax Unit		
ÿ/4 DQPSK					
Sensitivity@0.01% BER			-88		dBm
Maximum received signal@0.01%			0		dBm
BER					

8DPSK					
Sensitivity@0.01% BER			-81		dBm
Maximum received signal@0.01%			0		dBm
BER					

Transmitter - Enhanced Data Rate (EDR)

parameter	condition	Min Typ I	Max Unit		
RF transmit power			0		dBm
Gain Control Step Size	C		3		db
RF power control range		-10		8	dBm
ÿ/4 DQPSK max w0		-3.2		2.6	KHz
ÿ/4 DQPSK max wi		-5.3		-2.4 KHz	
ÿ/4 DQPSK max wi + w0		-4.8		-3.9 KHz	
8DPSK max w0	>	-1.4		1.5	KHz
8DPSK max wi		-4.1		-2.9 KHz	
8DPSK max wi + w0		-4.8		-4.1	KHz
ÿ/4 DQPSK Modulation Accuracy	RMS DEVM		6.7		%
	99% DEVM		100		%
	Peak DEVM		14.1		%
8 DPSK modulation accuracy	RMS DEVM		6.8		%
	00				

	99% DEVM	99.99	%
	Peak DEVM	15.3	%
EDR differential phase encoding		100	%

7.4.2 Bluetooth Low Energy Radio

receiver

				100	
parameter	condition	Min Typ M	ax Unit		
Sensitivity@30.8% PER	4		-94		dBm
Maximum received signal@30.8%				0	dBm
PER			7		
out-of-band blocking	30MHz~2000MHz		-30		dBm
	2003MHz~2399MHz		-35		dBm
	2484MHz~3000MHz		-35		dBm
• 1	3000MHz~12.5GHz		-30		dBm
Intermodulation	,		-47		dBm

launcher

parameter	condition	Min Typ Max	Unit		
RF transmit power			6		dBm
Gain Control Step Size			2		db
RF power control range		-10		12	dBm

ÿ f1avg	240.8	241.2 24	12	kHz
ÿ f2max	175.7	182.7 18	33.9 kHz	
Drift rate		1.5		kHz
offset		-4.3		kHz

8 Package Information

SIDE VIEW

Figure 8-1 W861 package parameters

Table 8-1 W861 Package Parameters

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
A	0.70	0.75	0.80		
	0.80	0.85	0.90		
A1	0.00	0.02	0.05		
b	0.13	0.18	0.23		
b1	0.12 REF				

С	0.18	0.20	0.25	
D.	5.90	6.00	6.10	
D2	4.60	4.70	4.80	
е	0.35BSC			
Ne	4.55BSC			
Nd	4.55BSC			
E.	5.90	6.00	6.10	
E2	4.60	4.70	4.70	
L	0.35	0.40	0.45	
h	0.30	0.35	0.40	
L/F carrier size	193x193			