1. (20.3)

(a) Prove all norms on a finite dimensional vector space \mathcal{X} are equivalent. Suggestion: Fix a basis e_1, \ldots, e_n for \mathcal{X} and define $\|\sum a_k e_k\|_1 := \sum |a_k|$. It is routine to check that $\|\cdot\|_1$ is a norm on \mathcal{X} . Now complete the following outline.

(i) Let $\|\cdot\|$ be the given norm on \mathcal{X} . Show there is an M such that $\|x\| \leq M\|x\|_1$. Conclude that the mapping $\iota \colon (\mathcal{X}, \|\cdot\|_1) \to (\mathcal{X}, \|\cdot\|)$ defined by $\iota(x) = x$ is continuous. Proof. For $x = \sum x_k e_k \in \mathcal{X}$, we have $\|x\| \leq \sum |x_k| \|e_k\| \leq \max_k \{\|e_k\|\} \sum |x_k| = \max_k \{\|e_k\|\} \|x\|_1$.

It follows that for any $x \in \mathcal{X}$, $\|\iota(x)\|/\|x\|_1 \leq \max_k \{\|e_k\|\}$, from which it follows that ι is bounded hence continuous.

(ii) Show that the unit sphere $S = \{x \in \mathcal{X} : ||x||_1 = 1\}$ in $(\mathcal{X}, ||\cdot||_1)$ is compact in the $||\cdot||_1$ topology.

Proof. We show that S is sequentially compact. Given a sequence $(x_j = \sum x_{j_k} e_k)_j$ from S, we show that it has a convergent subsequence. We form this subsequence in an inductive fashion. We can find a subsequence $(x_{j_\ell})_\ell$ of $(x_j)_j$ such that the first components $(x_{j_{\ell 1}})_\ell$ of each of the

 $x_{j\ell}$ converge to some $x_1 \in [0,1]$. This can be done since [0,1] is compact/sequentially compact and $(x_{j_1})_j$ is a sequence from [0,1]; the subsequence $(x_{j\ell})_\ell$ consists of vectors $x_{j\ell}$ which have first component $x_{j\ell 1}$. Then repeat this process on $(x_{j\ell})_\ell$ to obtain a sub-subsequence where the second component of the vectors as a sequence from [0,1] converge to some x_2 , while we still have that the first component of the vectors as a sequence converge to x_1 . Since \mathcal{X} has finite dimension, we repeat this process to obtain a subsequence $(x_{j_m})_m$ where each of the component sequences $(x_{j_m})_m$ converge to x_i in [0,1].

We show that $(x_{j_m})_m$ converges to $x = \sum x_k e_k$ in the $\|\cdot\|_1$ topology. Given $\varepsilon > 0$, choose M large enough so that simultaneously for $1 \le k \le n$, each of $|x_{j_{mk}} - x_k| < \varepsilon/n$ for m > M. Then for m > M we have $||x_{j_m} - x||_1 \le \varepsilon$. Furthermore, applying the reverse triangle inequality with our choice of x_{j_m} gives $||x||_1 - ||x_{j_m}||_1 | \le ||x - x_{j_m}||_1 \le \varepsilon$, and since $||x_{j_m}||_1 = 1$ we have that $1-\varepsilon \le ||x||_1 \le 1+\varepsilon$ for any $\varepsilon > 0$. Thus $x \in S$ as needed also, so that S is sequentially compact. \square

(iii) Show that the mapping $f: S \to \mathbb{R}$ given by f(x) = ||x|| is continuous and hence attains its infimum. Show this infimum is not zero and finish the proof.

Proof. Given $\varepsilon > 0$, we have for $||x - y|| < \varepsilon$ that $|||x|| - ||y||| \le ||x - y|| < \varepsilon$, meaning $||\cdot||$ is continuous (and is Lipschitz also).

The continuous image of a compact set is compact. So $S = \iota(S)$ is compact in the $\|\cdot\|$ topology. It follows that f is uniformly continuous on S and hence attains its infimum f(s) = c for some $s \in S$. If c was zero then s must be the zero vector, which is impossible. Since every element of S is given by $x/\|x\|_1$, we have that $f(x/\|x\|_1) = \|x/\|x\|_1 \| \|x\|/\|x\|_1 \| \|x\|\| \|x\|\| \| \|x\|\| \| \|x\|\| \| \|x\|\| \|x\|\| \| \|x\|\| \|x\|\| \| \|x\|\| \|x\|\| \| \|x\|\| \|x\|$

(b) Combine the result of part (a) with the result of Problem 20.2 to conclude that every finite dimensional normed vector space is complete.

Proof. Let \mathcal{X} be a finite dimensional space with basis $\{e_k\}_{k=1}^n$ as above. We show that \mathcal{X} with the $\|\cdot\|_1$ -topology is complete.

Let $\sum_{i=1}^{\infty} ||x_i||_1$ converge. We show that $\sum_{i=1}^{\infty} x_i$ converges.

The sum $\sum_{i=1}^{\infty} \sum_{k=1}^{n} |x_{ik}| = \sum_{k=1}^{n} \sum_{i=1}^{\infty} |x_{ik}|$ converges (and the interchange of order of summation is okay since the original sum converged absolutely). It follows that each of the sums $\sum_{i=1}^{\infty} |x_{ik}|$ converge for $1 \le k \le n$. But then $\sum_{i=1}^{\infty} x_{ik}$ must converge as a result. Then $\sum_{k=1}^{n} \sum_{i=1}^{\infty} x_{ik} = \sum_{i=1}^{\infty} \sum_{k=1}^{n} x_{ik} = \sum_{i=1}^{\infty} x_{i}$ must converge also (and again the interchange of order of summation is okay due to absolute convergence). It follows that \mathcal{X} with the $\|\cdot\|_1$ -topology is complete. By Problem 20.2 it follows that \mathcal{X} with any $\|\cdot\|$ -topology is also complete since all norms are equivalent (to the $\|\cdot\|_1$ -norm). Hence every finite dimensional normed vector space is complete.

(c) Let \mathcal{X} be a normed vector space and $\mathcal{M} \subset \mathcal{X}$ a finite-dimensional subspace. Prove that \mathcal{M} is closed in \mathcal{X} .

Proof. Every sequence from \mathcal{M} converging in \mathcal{X} is necessarily Cauchy. Then since finite dimensional spaces are complete, such sequences must converge in \mathcal{M} . So \mathcal{M} contains all of its limit points, so it is closed.

2. (20.18) Let \mathcal{X} be a normed vector space and \mathcal{M} a proper closed subspace. Prove for every $\varepsilon > 0$, there exists $x \in \mathcal{X}$ such that ||x|| = 1 and $\inf_{y \in \mathcal{M}} \{||x - y||\} > 1 - \varepsilon$. (Hint: take any $u \in \mathcal{X} \setminus \mathcal{M}$ and let $a = \inf_{y \in \mathcal{M}} \{||u - y||\}$. Choose $\delta > 0$ small enough so that $a/(a + \delta) > 1 - \varepsilon$, and then choose $v \in \mathcal{M}$ so that $||u - v|| < a + \delta$. Finally let x = (u - v)/||u - v||.)

Proof. Let $\varepsilon > 0$ be given. Following the hint above, we take any $u \in \mathcal{X} \setminus \mathcal{M}$ and let $a = \inf_{y \in \mathcal{M}} \{\|u - y\|\}$. The subspace has to be closed for this infimum to be nonzero for any fixed $u \in \mathcal{X}$. Then we can take $\delta > 0$ small enough for $a/(a+\delta) > 1-\varepsilon$ (as increasing δ decreases $a/(a+\delta)$). Then with $a+\delta$ greater than the infimum a, we would be able to choose a $v \in \mathcal{M}$ such that $\|u-v\| < a+\delta$. By taking $x = (u-v)/\|u-v\|$, observe that $\|x\| = \|u-v\|/\|u-v\| = 1$. Furthermore we have for every $y \in \mathcal{M}$ that $\|x-y\| = \|(u-v)/\|u-v\| - y\| = \|u-\|u-v\|y\|/\|u-v\| \ge a/\|u-v\| \ge a/(a-\delta) \ge 1-\varepsilon$, since $\|u-v\|y \in \mathcal{M}$. \square

3. (20.19) Prove, if \mathcal{X} is an infinite-dimensional normed space, then the unit ball $ball(\mathcal{X}) = \{x \in \mathcal{X} : ||x|| \le 1\}$ is not compact in the norm topology. (Hint: use the result of problem 20.18 to construct inductively a sequence of vectors $x_n \in \mathcal{X}$ such that $||x_n|| = 1$ for all n and $||x_n - x_m|| \ge 1/2$ for all m < n.)

Proof. Observe that the span of finitely many nonzero vectors forms a finite dimensional subspace, which is closed.

Let $x_1 \in \mathcal{X}$ be a nonzero vector with $||x_1|| = 1$. Then by the previous problem we can find $x_2 \in \mathcal{X}$ with $||x_2|| = 1$ and $\inf_{y \in \langle x_1 \rangle} \{||x_2 - y||\} > 1 - 1/2 = 1/2$. So in particular $||x_2 - x_1|| \ge 1/2$. Then we can find $x_3 \in \mathcal{X}$ with $||x_3|| = 1$ and $\inf_{y \in \langle x_1, x_2 \rangle} \{||x_3 - y||\} > 1/2$. It follows that $||x_3 - x_2|| > 1/2$, and $||x_3 - x_1|| > 1/2$. The inductive step is similar. So by induction we obtain a sequence of vectors $(x_n)_n \subset \mathcal{X}$

with $||x_n|| = 1$ for all n (so $(x_n)_n \subset ball(S)$) and $||x_n - x_m|| \ge 1/2$ for all m < n. Such a sequence cannot have a convergent subsequence as convergent sequences are Cauchy. Hence ball(S) is not sequentially compact.