Verschiedene Konvergenzarten Wir betrachten den Wahrscheinlichkeitsraum ([0,1], $\mathcal{B}([0,1]), P$), wobei P das Lebesgue-Maß λ eingeschränkt auf [0,1] sei. Wir betrachten die Folge von Zufallsvariablen $X_1 \equiv 0, X_n = \sqrt{n} \mathbb{1}_{(\frac{1}{n},\frac{2}{n})}$. Untersuchen Sie diese auf 1. stochastische Konvergenz, 2. P-fastsichere Konvergenz, 3. L^2 -Konvergenz und 4. gleichgradige Integrierbarkeit.

1, 4. Wir prüfen L^1 -Konvergenz. Es gilt $E[|X_n|] = \frac{\sqrt{n}}{n} \to 0$. Benutze Konvergenzsatz von Vitali – Stochastisch konvergent gegen 0 und gleichgradig integrierbar. 2. Zu zeigen ist, dass für alle $\omega \in [0,1]$ gilt, dass $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N X_n(\omega) < \varepsilon$, bis auf P-Nullmengen. Zeige Aussage für $\omega \in (0,1)$. Das reicht, denn $\{0\}$ und $\{1\}$ sind P-Nullmengen. Wähle N so, dass $\frac{2}{n} < \varepsilon$, also $N > \frac{2}{\varepsilon}$, dann ist $\mathbb{1}_{(\frac{1}{n},\frac{2}{n})} = 0$ und somit $X_n(\omega) = 0$ für alle $n \geq N$. Also Konvergenz fast sicher gegen 0. 3. L^2 -Konvergenz folgt stochastische Konvergenz, also Grenzwert 0 wenn konvergent. $E[|X_n|^2] = \frac{\sqrt{n^2}}{n} = 1$. Also nicht konvergent.

Wir betrachten den Wahrscheinlichkeitsraum ([0,1] $\mathcal{B}([0,1]),P$). Das Maß P sei absolut stetig bezüglich des Lebesgue-Maßes $\lambda|_{[0,1]}$ mit Dichte $f(\omega)=\frac{1}{2}\omega^{-1/2}$. Es gelte $X_n(\omega)=\omega^{1/n}$. Zeigen Sie oder widerlegen Sie 1. P-Konvergenz, 2. f.s. Konvergenz, 3. L^1 -Konvergenz, 4. gleichgradige Integrierbarkeit. 2. Für alle $\omega\in(0,1]$ gilt $\omega^{1/n}\to 1$. $\{0\}$ ist Nullmenge, also f.s. Konvergenz. 1. folgt aus 2. 3. Es gilt $\omega^{1/n}\le 1$, also $E[|X_n-1|]=E[|1-X_n|]=\int_0^1(1-\omega^{1/n})\frac{1}{2}\omega^{-1/2}=1+\int_0^1\frac{1}{2}\omega^{1/n-1/2}=1-\frac{n}{n+2}\omega^{\frac{n+2}{2n}}\Big|_0^1=\frac{2}{n+2}\to 0$, also L^1 -Konvergenz. 4. folgt aus 2. mit Vitali.

Für jede Zahl $n \in \mathbb{N}$ gibt es eine eindeutige Darstellung $n = 2^{k_n} + m_n$ mit $0 \le m_n < 2^{k_n}$. Es sei P die Gleichverteilung auf $([0,1], \mathcal{B}([0,1]))$ – das heißt, P hat Lebesgue-Dichte $\mathbbm{1}_{[0,1]}$ – und außerdem $X_n \colon [0,1] \to \mathbb{R}, \omega \mapsto k_n$ für $\frac{m_n}{2^{k_n}} \le \omega \le \frac{m_n+1}{2^{k_n}}$ und $\omega \mapsto 0$ sonst. Untersuchen Sie die Folge der X_n bezüglich P auf schwache, stochastische, fast sichere und L^p -Konvergenz für $p \ge 1$ sowie auf gleichgradige Integrierbarkeit.

Es gilt
$$X_n = k_n \mathbb{1}_{\left[\frac{m_n}{2k_n}, \frac{m_n+1}{2k_n}\right]}$$
, also $X_1 = 1, X_2 = \mathbb{1}\mathbb{1}_{\left[0, \frac{1}{2}\right]}, X_3 = \mathbb{1}\mathbb{1}_{\left[\frac{1}{2}, 1\right]}$

 $X_4 = 2\mathbbm{1}_{\left[0,\frac{1}{4}\right]}, \ X_5 = 2\mathbbm{1}_{\left[\frac{1}{4},\frac{1}{2}\right]}, \dots L^p$ -Konvergenz: finde zunächst den Kandidaten für den Grenzwert. Da die Folge (X_n) also bezüglich der L^1 -Norm konvergiert, ist sie nach Theorem 22 auch gleichgradig integrierbar. Folge wird immer kleiner, also Kandidat 0. Es gilt $E[|X_n|^p] = \int_0^1 X_n(\omega)^p = \frac{k_n^p}{2^{k_n}} \to 0$ mit L'Hospital. Damit L^p , stochastische, schwache Konvergenz und gleichgradige Integrierbarkeit. Für f.s. müsste Grenzwert auch 0 sein. Möchte Divergenz zeigen, also P(A) > 0 für $A = \{\omega \in \Omega \mid \forall c \in \mathbb{R} \exists N \in \mathbb{N} \\ \mathbb{N} \\ V_n > NX_n > c\}$. Sei $\omega \in \Omega$ und $c \in \mathbb{R}$ gegeben, wähle N so, dass $k_N > c$ und $\frac{m_n}{2^{k_n}} \le \omega \le \frac{m_n+1}{2^{k_n}}$. Dann gilt $X_n(\omega) > c$, also $\omega \in A$. Da ω beliebig war, gilt $A = \Omega$ und $P(X_n$ konvergiert nicht) = 1. Oder auch es gibt TF X_{n_l} so dass $\omega \in [\frac{m_{n_l}}{2^{k_{n_l}}}]$, d.h. $\lim \sup \ge 1$ und somit $\lim \ne 0$.

Sei $P(X_n = \sqrt{n}) = \frac{1}{n} = 1 - P(X_n = 0)$. Untersuchen Sie die Folge auf 1. stochastische, 2. P-fast-sichere und 3. L^p -Konvergenz und auf 4. gleichgradige Integrierbarkeit. 1. Wenn $X_n > \varepsilon$, dann ist $P(X_n = \sqrt{n}) = \frac{1}{n} \to 0$, also ja. 2. Nein. $(\{X_n \geq 1\})_n$ sind unabhängig. Kann Borel-Cantelli anwenden. $\sum P(X_n \geq 1) = \sum \frac{1}{n} = \infty$, sodass $1 = P(\limsup\{X_n \geq 1\}) = P(X_n \geq 1 \text{ für unendlich viele } n)$. Das heißt, existiert Teilfolge für P fast alle $\omega X_{n_k}(\omega) = \sqrt{n_k}$. $\limsup X_n(\omega) \geq \lim \sqrt{n_k} = \infty$. Also $1 = P(\limsup X_n \geq 1)$, sodass $P(X_n \to 0) = 0$. 3. $E[|X|^p] = (\sqrt{n})^p \frac{1}{n} = n^{p/2-1}$, also L^p -Konvergenz wenn p < 2. 4. GGIB, da L^1 -Konvergenz nach Vitali.

Einfache Aufgaben Sei $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}([0, 1]), \lambda|_{[0, 1]})$, wobei $\lambda|_{[0, 1]}$ das Lebesgue-Maß auf [0, 1] bezeichnet. Dann haben X_1 und X_2 mit $X_1(\omega) = \omega$ und $X_2(\omega) = 1 - \omega$ die gleiche Verteilung.

[a,b] erzeugen $\mathcal{B}([0,1])$, also reicht zu prüfen $\lambda\circ X_1^{-1}([a,b])=b-a$, $\lambda\circ X_2^{-1}([a,b])=\lambda([1-b,1-a])=b-a.$

Sei $(\Omega, \mathcal{F}) = ([0,1], \mathcal{B}([0,1]))$. Es gibt ein Wahrscheinlichkeitsmaß P, sodass $X_1(\omega) = \omega$ und $X_2(\omega) = 1 - \omega$ nicht die gleiche Verteilung haben. δ_0 , denn $\delta_0 \circ X_1^{-1}(\{0\}) = 1$, aber $\delta_0 \circ X_2^{-1}(\{0\}) = 0$.

Sei $X \sim \mathcal{N}(2,2)$. Dann gilt, dass $P[|X-2| \geq 2] \leq \frac{1}{2}$. Ja, Tschebyscheff $P(|X-E[x]| > \varepsilon) \leq \frac{\operatorname{Var}(x)}{\varepsilon^2}$. Jede reellwertige Zufallsvariable hat Dichte bezüglich Lebesgue-Maß (also $X_{\star}P = f \cdot \lambda$) Radon-Nikodym: ν Dichte bezüglich μ genau dann wenn $\nu \ll \mu$. Sei X = 0. Dann ist X stetig und somit messbar mit P(X=0) = 1, also $X_{\star}P = \delta_0$. Da $0 = \lambda(\{0\}) \neq \delta_0(\{0\}) = 1$, ist δ_0 nicht absolut stetig bezüglich λ . Nach dem Satz von Radon-Nikodym besitzt dann δ_0 keine Dichte bezüglich des Lebesgue-Maßes.

Alle Abbildungen $f: (\Omega, \mathcal{P}(\Omega)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ sind messbar. Ja. Sei $A \in \mathcal{B}(\mathbb{R})$, dann ist $f^{-1}(A) \in \mathcal{P}(\Omega)$, denn in $\mathcal{P}(\Omega)$ sind alle Mengen, die nach A abbilden könnten, drin.

Für $X \sim \mathcal{N}(0,1)$ und $Y \sim \mathcal{N}(0,2)$ gilt $E[XY] \leq \sqrt{2}$? Ja, denn nach der Cauchy–Schwarz-Ungleichung, also der Hölder-Ungleichung mit r=1 und $p=q=2 \text{ gilt } E[XY] \leq \|X\|_2 \|Y\|_2 = \sqrt{E[X^2]} \sqrt{E[Y^2]} = \sqrt{E[(X-E[X])^2]} \sqrt{E[(Y-E[Y])^2]} = \sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)} = \sqrt{2}.$

Eine N-wertige Zufallsvariable ist zu sich selbst unabhängig, wenn sie fast sicher konstant ist. Wenn X zu sich selbst unabhängig ist, gilt $P(X = k) = P(\{X = k\}) \cap \{X = k\}) = P(X = k)^2$, also $P(X = k) \in \{0, 1\}$. Das heißt, nur für ein $k_0 \in \mathbb{N}$ ist $P(X = k_0) = 1$, also ist X konstant. Umgekehrt sei $P(X = k_0) = 1$, dann ist $P(\{X \in A\} \cap \{X \in B\}) = \mathbb{I}_{A \cap B}(k_0) = \mathbb{I}_A(k_0)\mathbb{I}_B(k_0) = P(X \in A)P(X \in B)$.

 $X = \mathbbm{1}_A$ und $Y = \mathbbm{1}_B$. $E[XY] = E[X]E[Y] \iff A \perp B$. Ja, $E[XY] = P[A \cap B] = P(A)P(B) = E[X]E[Y]$ oder $P(A \cap B) = E[XY] = E[X]E[Y] = P(A)P(B)$.

 $E[X^4] \geq E[X]^4$ gilt nach Jensen-Ungleichung, da x^4 konvex.

Auf $(\omega, \{\Omega, \emptyset\})$ gibt es keine Borel-messbare Abbildung? Doch. Sei f = 0, dann für $A \in \mathcal{B}(\mathbb{R})$ gilt $f^{-1}(A) = \emptyset$, falls $0 \notin A$, beziehungsweise $f^{-1}(A) = \Omega$, falls $0 \in A$.

Sei X exponential verteilt mit $\lambda=6$ und Y mit $\lambda=1/3$. Dann ist nach Cauchy-Schwarz $E[XY] \leq E[X^2]^{1/2} E[Y^2]^{1/2} = \frac{2}{\lambda_X^2} \frac{2}{\lambda_Y^2} = 1$. $X\in L^p\Rightarrow X\in L^q \text{ für }q\leq p, \text{ da }\|X\|_q=\|1\cdot X\|_q\leq \|X\|_p\|1\|_r \text{ mit }r \text{ so,}$ dass $\frac{1}{q}=\frac{1}{p}+\frac{1}{r}.$

Maßtheorie $\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C}))$ Zeige zunächst "⊆". Es ist $\mathcal{C} \subset \sigma(\mathcal{C})$, also auch $f^{-1}(\mathcal{C}) \subset f^{-1}(\sigma(\mathcal{C}))$. f^{-1} von einer σ -Algebra ist wieder σ -Algebra und da ist $\sigma(f^{-1}(\mathcal{C}))$ als kleinste σ -Algebra drin. Nun "supseteq". Betrachte $\mathcal{F} = \{A \in \sigma(\mathcal{C}) \mid f^{-1}(A) \in \sigma(f^{-1}(\mathcal{C}))\}$. Zeige \mathcal{F} ist σ -Algebra. $f^{-1}(\emptyset) = \emptyset \in \sigma(f^{-1}\mathcal{C}), f^{-1}(\Omega) = \Omega' \in \sigma(f^{-1}(\mathcal{C}))$. Entsprechend $f^{-1}(A^c) = f^{-1}(A)^c \in \sigma(f^{-1}(\mathcal{C}))$ und so weiter. Da $f^{-1}(\mathcal{C}) \subset \sigma(f^{-1}(\mathcal{C}))$ ist $\mathcal{C} \subset \mathcal{F}$, also auch $\sigma(\mathcal{C}) \subset \mathcal{F}$. Damit ist $f^{-1}(\sigma(\mathcal{C})) \subset \sigma(f^{-1}(\mathcal{C}))$.

Starkes Gesetz der großen Zahlen Seien X_1, X_2, \ldots iid uniform auf [0,1] verteilt. Weiter sei $f \in L^1([0,1])$. Zeigen Sie, dass die Monte-Carlo Simulation $\hat{I}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$ fast sicher gegen das Integral $\int_0^1 f(x) \mathrm{d}x$ konvergiert.

Sei $Y_i = f(X_i)$, nach Blockungslemma unabhängig. Da $(f \circ X_i)_{\star}P = (f \circ X_1)_{\star}P$ identisch verteilt. $f \in L^1$, sodass $E[|Y_1|] < \infty$. SGGZ $\frac{1}{n} \sum_{i=1}^n f(X_i) \xrightarrow{\text{f.s.}} E[Y_1] = \int_{[0,1]} f(X_1) dP = \int_0^1 f(x) dx$, da X_i uniform sind und somit konstante Dichte haben.

Schwache Konvergenz Vorgehen: benutze $F_n(x) \to F(x)$, Levy, ZGWS, andere Konvergenzarten, sonst Definition