定义 1.2 如果随机过程 X(t) 对任意的 $t_1, \dots, t_n \in T$ 和任何 h 有

$$(X(t_1+h), \cdots, X(t_n+h)) \stackrel{d}{=} (X(t_1), \cdots, X(t_n)),$$
 (1)

则称为严格平稳的.

条件 (1.3) 很强也不易验证, 所以退而求其次有所谓宽平稳或二阶平稳过程. 引入如下定义.

定义 1.3 如果随机过程的所有二阶矩存在并有 EX(t) = m 及协方差函数 $R_X(t,s)$ 只与时间差 t-s 有关,则称为宽平稳的或二阶矩平稳的.

定义 1.4 如果对任意的 $t_1 < t_2 \cdots < t_n, t_1, \cdots, t_n \in T$, 随机变量 $X(t_2)$ — $X(t_1), X(t_3) - X(t_2), \cdots, X(t_n) - X(t_{n-1})$ 是相互独立的,则 X(t) 称为独立增量过 程. 如果进一步有对任意的 $t_1, t_2, X(t_1+h) - X(t_1) \stackrel{d}{=} X(t_2+h) - X(t_2)$, 则过程称 为有平稳独立增量的过程.

可以证明平稳独立增量过程的均值函数一定是 t 的线性函数. 我们以后要介 取极限即知给定 S = 1, T 是 [0,1] 上的均匀分布. 习题 1 第 10 题提供另一解法, 不 妨一试.

条件期望有些重要的性质我们总结为下面的命题。

命题 1.1 (a) 若 X 与 Y 独立,则 E(X | Y = y) = EX.

(b) 条件期望有所谓的平滑性:

$$EX = \int E(X \mid Y = y)dF_Y(y) = E[E(X \mid Y)].$$
 (1.14)

(c) 对随机变量 X,Y 的函数 $\phi(X,Y)$ 恒有

$$E[\phi(X,Y) \mid Y = y] = E[\phi(X,y) \mid Y = y]. \tag{1.15}$$

1.2.2 矩母函数及生成函数

定义 1.5 随机变量 X 的矩母函数定义为随机变量 $\exp\{tX\}$ 的期望,记作 g(t), \mathbb{P}

$$g(t) = E(\exp\{tX\}) = \int \exp\{tx\}dF(x).$$
 (1.17)

矩母函数刻画了随机变量的许多特征,是研究它们特性的重要工具. 当矩母函 数存在时,它唯一地确定了X的分布.通过g(t)可以求出X的各阶矩,即有

$$E[X^n] = g^{(n)}(0), \quad n \ge 1,$$
 (1.18)
其中 $g^{(n)}(t)$ 是 $g(t)$ 的 n 阶导数在 t 的取值. 通过在积分号下求导数容易得到 (1.18)

式的证明. 对相互独立的随机变量 X 和 Y, 它们和的矩母函数就等于其矩母函数 的积: $g_{X+Y}(t) = g_X(t)g_Y(t).$

$$g_{X+Y}(t) = g_X(t)g_Y(t).$$
 (1.1)

定义 2.1 一个整数值随机过程 $\{N(t), t \geq 0\}$ 满足下述三个条件就称作强度 $\lambda > 0$ 的 Poisson 过程:

- (i) N(0) = 0;
- (ii) N(t) 是独立增量过程;
- (iii) 对任何 t > 0, $s \ge 0$, 增量 N(s+t) N(t) 服从参数为 λt 的 Poisson 分布,

$$P\{N(s+t) - N(t) = k\} = \frac{(\lambda t)^k \exp\{-\lambda t\}}{k!}, \quad k = 0, 1, \cdots.$$
 (2.1)

发生的事件数. 我们特作如下假定:

- (1) 在不相交区间中事件发生的数目相互独立, 也即对任何整数 $n=1,2,\cdots$, 设时刻 $t_0 = 0 < t_1 < t_2 < \cdots < t_n$, 增量 $N(t_1) - N(t_0), N(t_2) - N(t_1), \cdots N(t_n)$ — $N(t_{n-1})$ 相互独立;
- (2) 对任何时刻 t 和正数 h, 随机变量 (增量)N(t+h) N(t) 的分布只依赖于 区间长度 h 而不依赖时刻 t;
- (3) 存在正常数 λ , 当 h ↓ 0 时, 使在长度为 h 的小区间中事件至少发生一次的 概率

$$P\{N(t+h) - N(t) \geqslant 1\} = \lambda h + o(h);$$

(4) 在小区间 (t,t+h] 发生两个或两个以上事件的概率为 o(h) (可以忽略不 +), 即当 $h \downarrow 0$,

$$P\{N(t+h) - N(t) \ge 2\} = o(h).$$

从逼近的观点看,(1)说明试验是独立的;(2)说明在每个长度相同的小区间上 事件发生有相同的概率 p; (3) 告诉我们成功 (事件发生) 概率 $p = \lambda h$, 而且 p 很 小; (4) 是说明事件不发生的概率为 $1 - \lambda h \doteq 1 - p$. 这正好是独立 Bernoulli 试验 的模型. 若观察区间为 [0,1], 则 $N \doteq \frac{t}{h}$, 所以当 $h \downarrow 0$ 时, $N \to \infty$, 而 $Np \doteq \lambda t$. 从 而二项分布的极限是参数为 λt 的 Poisson 分布. 从直观意义看, 如前所述 (1) 为前 后的独立性,(2)为时间上的均匀性或齐次性,(3)表明事件是稀有的,而(4)则称 为相继性 (orderliness), 意思指事件是一件一件地发生的, 在同一瞬间同时发生多 个事件的可能性很小很小. 基于这些假定我们可以证明如下结论.

命题 2.2 $X_n, n = 1, 2, \cdots$ 是均值为 $\frac{1}{\lambda}$ 的独立同分布的指数随机变量, W_n 服从参数为n和 λ 的 Γ 分布.

$$P\{W_n \le t\} = P\{N(t) \ge n\} = \sum_{j=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^j}{j!},$$
 (2.5)

对 W_n 的分布函数 (2.5) 式关于 t 求导即可求出 W_n 的密度函数

$$f_{W_n}(t) = -\sum_{j=n}^{\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^j}{j!} + \sum_{j=n}^{\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^{j-1}}{(j-1)!}$$
$$= \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}.$$

$$f_{W_1, \dots, W_n | N(t) = n}(w_1, \dots, w_n | n) = \frac{n!}{t^n}, \quad 0 < w_1 < \dots < w_n \le t.$$
 (2.6)

2.3.5 更新过程

由命题 2.2 知事件的间隔时间 X_i 相互独立且有相同的均值为 $\frac{1}{\lambda}$ 的指数分布. 这是 Poisson 过程的重要的特征. 如果把时间间隔 X_i 服从的指数分布改为一般的 分布函数 F(x), 那么所得的将会是什么过程呢? 这就是所谓的更新过程.

定义 2.3 如果 X_i , $i=1,2,\cdots$ 为一串非负的随机变量,它们独立同分布,分

布函数为
$$F(x)$$
. 记 $W_0=0$, $W_n=\sum_{i=1}^n X_i$, W_n 表示第 n 次事件发生的时刻,则称
$$N(t)=\max\{n:W_n\leqslant t\}$$

为更新过程.

定义中 N(t) 代表了到时刻 t 时事件的总数. W_i , $i=1,2,\cdots$, 也常常称为是 更新点,在这些更新点上过程又重新开始.在更新过程中事件平均发生的次数称为 是更新函数, 记作 m(t), 即 m(t) = E[N(t)]. 更新理论的主体是研究更新函数的性 质, 我们仅给出最基本的.

命题 2.4 更新过程 N(t) 的分布

$$P\{N(t) = n\} = F^{(n)}(t) - F^{(n+1)}(t),$$

而更新函数 $m(t) = \sum F^{(n)}(t)$. 其中 $F^{(n)}(t)$ 为 F(t) 的 n 重卷积, F(t) 即为 X_i 的 分布函数.

定理 3.1 Markov 链的 n 步转移概率矩阵满足

$$P_{ij}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{kj}^{(n-1)}, \tag{3.5}$$

定义 3.3 (可达与互达) 如果对某一 $n \ge 0$, 有 $P_{ij}^{(n)} > 0$, 则称状态 j 是从状 态 i 可达的 (accessible), 记作 $i \rightarrow j$. 它表示从状态 i 经过有限步的转移可以到达 状态 j. 两个互相可达的状态 i 和 j 则称为互达的 (communicate), 记作 $i \leftrightarrow j$. 如果两个状态 i 和 j 不是互达的, 那就有对所有 $n \ge 0$, $P_{ij}^{(n)} = 0$ 或者对所有

 $n \ge 0$, $P_{ii}^{(n)} = 0$, 或者两者都成立. 三种情况必居其一. 互达性是一种数学上的等 价关系,也就是说它满足自反性、对称性和传递性.

命题 3.1 互达性是等价关系,即

- (i) i ↔ i, 自反性;
- (ii) 若 $i \leftrightarrow j$, 则 $j \leftrightarrow i$, 对称性;
- (iii) 若 $i \leftrightarrow j$, 且 $j \leftrightarrow k$, 则 $i \leftrightarrow k$, 传递性.

在上式中我们约定 $P_{ii}^{(0)} = 1$, 当 $j \neq i$ 时 $P_{ij}^{(0)} = 0$.

定义 3.4 状态 i 的周期. 设 i 为 Markov 链的一个状态, 使 $P_{ii}^{(n)} > 0$ 的所 有正整数 n $(n \ge 1)$ 的最大公约数称作是状态 i 的周期,记作 d(i).如果对所有 $n \ge 1$, 都有 $P_{ii}^{(n)} = 0$ 则约定周期为 ∞ ; d(i) = 1 的状态 i 则称为是非周期的.

由定义立即可知, 如果 n 不能被周期 d(i) 整除, 则必有 $P_{ii}^{(n)} = 0$. 命题 3.2 如果 $i \leftrightarrow j$ 则 d(i) = d(j).

推论 3.1 如果 $P_{ii}^{(m)} > 0$, 则存在正整数 N 使得对 $n \ge N$ 恒有 $P_{ii}^{(m+nd(i))} >$

命题 3.4 令 P 为不可约、非周期、有限状态 Markov 链的转移概率阵,则必 存在 N, 使得当 $n \ge N$ 时, n 步转移概率阵 $P^{(n)}$ 的所有元素都非零.

证 由于 Markov 链是不可约的, 过程的任两个状态 i 和 j 都是可达的, 于 是存在 m(与 i, j 有关) 使 $P_{ij}^{(m)} > 0$. 由推论 3.1 及链非周期得知存在 N, 使得当 $n \ge N$ 时有 $P_{ij}^{(m+n\cdot 1)} > 0$. 因状态空间有限, 对全部的状态对 (i,j) 求出 N(i,j). 并 取 $N = \max(m(i,j) + N(i,j))$, 则显然对所有状态 i,j, 当 n > N 时有 $P_{ij}^{(n)} > 0$.

这种存在 n 使 P^n 的元素全部非零的 k 个状态 (记为 $0,1,\cdots,k-1$) 的 Markov 链称为是正则的. 而最重要的事实是对一个正则的有限状态 Markov 链. 极限 $\lim_{i \to \infty} P_{ij}^{(n)}$ 总是存在的, 记为 π_j (注意极限与初始状态 i 无关). 并且这些极限 构成一概率分布, 即对 $\pi = (\pi_0, \pi_1, \dots, \pi_{k-1})$, 满足 $\pi_j > 0$, $j = 0, 1, \dots, k-1$, 及 $\sum \pi_j = 1$. 这些是下一节极限定理和平稳分布所要讨论的内容.

3.2.2 常返 (recurrent) 与瞬过 (transient)

$$f_{ij}^{(0)} = 0,$$

 $f_{ij}^{(n)} = P\{X_n = j, X_k \neq j, k = 1, \dots, n-1 | X_0 = i\},$

定义 3.5 如果 $f_{ii} = 1$, 我们称状态 i 是常返 (recurrent) 的. 一个非常返状 态就称为瞬过 (transient) 的.

从定义知道如果 i 是常返的状态, 那么从 i 出发经过有限步转移后最终又回到 i 的概率为 1. 那么如何判断一个状态 i 是否是常返的呢? 我们给出用 n 步转移概 率 $P_{ii}^{(n)}$ 表示的一个判别准则.

定理 3.2 状态 i 常返的充分必要条件是

$$\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty. \tag{3.8}$$

当然与此等价地有, 状态 i 是瞬过的当且仅当

$$\sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty. \tag{3.9}$$

推论 3.2 如果 i 是常返的, 且 $i \leftrightarrow j$, 则 j 也是常返的.

对常返状态 i, 我们定义 T_i 为首次返回状态 i 的时刻, 称作常返时. 记 $\mu_i = ET_i$ 则有

$$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$
. (3.10)

回想 $f_{ii}^{(n)}$ 代表从 i 出发在第 n 步转移时首次回到 i 的概率, 所以 μ_i 是首次返回 i的期望步数, 也叫状态 i 的平均常返时. 利用 μ_i 可以对常返状态作进一步的分类, 分为零常返和正常返.

定义 3.6 一个常返状态 i 当且仅当 $\mu_i = \infty$ 时称为零常返的, 而当且仅当 $\mu_i < \infty$ 时称为正常返的.

对于只有有限多个状态的 Markov 链, μ_i 总是有限的, 所以只有在有可列无穷 多个状态时才可能出现零常返的状态 (参看习题 3 第 15 题). 当状态数目不大时直

在上一节有关 Markov 链状态分类的讨论中已经引进了常返状态 i 的常返时 T_i . 它还可记为

$$T_i = \min\{n \geqslant 1 : X_n = i\},\,$$

$$f_{ii}^{(n)} = P\{X_n = i, X_k \neq i, k = 1, \dots, n-1 | X_0 = i\}$$

= $P\{T_i = n | X_0 = i\}, \quad n = 1, 2, \dots$

表示了 T_i 的条件概率分布, $\mu_i = \sum_{i=0}^{\infty} n f_{ii}^{(n)}$ 则为 T_i 在给定 $X_0 = i$ 时的条件期望.

在进行更深入的讨论之前先看如下的例子.

长则过程就长期而言处于状态 0 的概率越小. πο 有两重含义, 它既可以反映在时 间长河中过程处于状态 0 的份额或机会, 又同时代表当整个过程处于平衡状态 (极 限情形下) 时过程处于状态 0 的机会.

定理 3.3 Markov 链的基本极限定理

(a) 若状态 i 是瞬过的或者是零常返的,则

$$\lim_{n \to \infty} P_{ii}^{(n)} = 0. \tag{3.11}$$

(b) 若状态 i 是周期为 d 的常返状态, 则

$$\lim_{n\to\infty} P_{ii}^{(nd)} = \frac{d}{\mu_i}.$$
(3.12)

(c) 当状态 i 是非周期的正常返状态, 则

$$\lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\mu_i}.$$
(3.13)

一个正常返非周期的状态也称作是遍历的 (ergodic). 定理 3.3 (c) 告诉我们对

遍历状态 i 有 $\lim_{n\to\infty} P_{ii}^{(n)} = \frac{1}{\mu_i}$, 其中 μ_i 是常返时的期望.

至于不同状态间的 n 步转移概率 $P_{ii}^{(n)}$ 有如下推论.

推论 3.3 如果状态 i 是遍历的,则对所有 $i \rightarrow j$ 有

$$\lim_{n \to \infty} P_{ji}^{(n)} = \lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\mu_i}.$$

 $\lim_{n\to\infty} P_{ji}^{(n)} = \lim_{n\to\infty} P_{ii}^{(n)} = \frac{1}{\mu_i}.$ 定义 3.7 Markov 链有转移概率阵 $P = (P_{ij})$. 一个概率分布 $\{\pi_i, i \geq 0\}$ 如

果满足
$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$$
,则称为这一 Markov 链的平稳分布.

定理 3.4 若一个不可约 Markov 链中的所有状态都是遍历的,则对所有 i.j. 极限 $\lim_{n\to\infty} P_{ij}^{(n)} = \pi_j$ 存在且 $\pi = \{\pi_j, j \ge 0\}$ 为平稳分布. 也即

$$\sum \pi_j = 1, \quad \pi_j > 0, \tag{3.15}$$

$$\sum \pi_i P_{ij} = \pi_j. \tag{3.16}$$

反之, 若一个不可约 Markov 链只存在一个平稳分布, 即满足 (3.15) 式及 (3.16) 式, 且这个 Markov 链的所有状态都是遍历的. 则该平稳分布就是这一 Markov 链的极 限分布,即对任何 i 有

$$\lim_{n \to \infty} P_{ij}^{(n)} = \pi_j. \tag{3.17}$$

在实际应用中 $\{\pi_i\}$ 有两种解释: 一是作为 $P_{ij}^{(n)}$ 的极限分布, 它告诉我们在过 程的长期运行中不论初始状态 i 是什么, 经过一段时期后发现过程处于状态 j 的概 率就是 π_j . 另一解释是 π_j 也代表了就长期而言过程访问 j 的次数在总时间中的 平均份额或比例. 这可从下面的推理中看出. 设

定理 3.5 对分支过程 X_n , 若 $p_0 > 0$, $p_0 + p_1 < 1$, 则有

(a) 群体消亡概率
$$\pi$$
 是方程 $\phi(s)=s$ 的最小正解, 其中 $\phi(s)=\sum_{j=0}^{\infty}p_{j}s^{j}$, $\{p_{j}\}$

是 X_1 与 Z_1 的概率分布.

(b) $\pi = 1$ 当且仅当 $\mu \leq 1$, 其中 $\mu = EZ_1$.

以下设T为具有如下性质的下标集合: 若 $t_1,t_2 \in T$,则 $t_1+t_2 \in T$. 通常T取如下几种集合之一:

(i) $T = \{0, 1, 2, \cdots\};$ (ii) $T = \{0, \pm 1, \pm 2, \cdots\};$

(iii) $T = \{t : t \ge 0\};$

(iv) $T = \{t : -\infty < t < \infty\}.$

直观上, 下标集合可以理解为时间 (当然, T 也可以表示空间位置或其他).

设 $X = \{X(t), t \in T\}$ 为严平稳过程, 由定义如果均值函数 m(t) = EX(t) 存 在,则必为常数,即 $m(t) = m, t \in T$. 同样,如果方差函数存在,则 Var(X(t)) = $E(X(t)-m)^2$ 也是一个常数, 记为 σ^2 . 设 $s,t\in T$ (不妨设 s< t), 由平稳性, 其协 (3.15) 方差函数

$$E(X(t) - m)(X(s) - m) = E(X(t - s) - m)(X(0) - m).$$

(3.16) 等式右端只依赖于时间差 t - s. 若记

$$R(h) = E(X(h) - m)(X(0) - m),$$

$$E(X(t+h) - m)(X(t) - m) = R(h),$$

即协方差函数仅与时间差有关, 而与起点无关. 当然, 由定义知 Var(X(t)) = R(0). 此外, 易知 $r(\tau) = EX(t)X(t+\tau)$ 与起点 t 无关, 我们分别称 $r(\tau)$ 和

$$\rho(v) = R(v)/\sigma^2 = R(v)/R(0)$$

为平稳过程 X 的自相关函数和标准自相关函数. 由概率论中相关系数性质易知 $\rho(0) = 1 \ \mathcal{R} \ |\rho(v)| \le 1.$

定义 4.5 设 $X = \{X(t), -\infty < t < \infty\}$ 为一平稳过程(或序列), 若

$$\overline{X} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)dt \stackrel{L_2}{=} m \qquad (4.6)$$

$$\overline{X} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} X(k) \stackrel{L_2}{=} m, \qquad (4.7)$$

则称 X 的均值有遍历性, 如果

$$\hat{R}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} (X(t) - m)(X(t + \tau) - m) dt \stackrel{L_2}{=} R(\tau)$$
(4.8)

$$\hat{R}(\tau) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=1}^{n} (X(k+\tau) - \hat{m}_n)(X(k) - \hat{m}_n) \stackrel{L_2}{=} R(\tau), \tag{4.9}$$

则称 X 的协方差函数有遍历性. 若随机过程(或序列)的均值和协方差函数都有遍 历性,则称此随机过程有遍历性.

注意, 我们这里的极限是定义 1.8 中的均方极限, 以 (4.6) 式为例, 即

$$E\left(\frac{1}{2T}\int_{-T}^{T}X(t)dt-m\right)^{2}\to 0 \quad (T\to\infty).$$

遍历性又称各态历经性. 直观上可以这样理解: 考虑只有有限个状态的平稳序列

先考虑平稳过程均值的遍历性问题. 定理 4.1(均值遍历性定理)

(i) 设 $X = \{X_n, n = 0, \pm 1, \cdots\}$ 为平稳序列, 其协方差函数为 $R(\tau)$, 则 X 有 遍历性的充分必要条件是

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\tau=0}^{N-1} R(\tau) = 0.$$

(ii) 若 $X = \{X(t), -\infty < t < \infty\}$ 为平稳过程,则 X 有遍历性的充分必要条

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{2T} (1 - \frac{\tau}{2T}) R(\tau) d\tau = 0.$$

由此定理,可以推出一些判断平稳过程均值有遍历性的充分条件.

推论 4.1 若
$$\int_{-\infty}^{\infty} |R(\tau)| < \infty$$
, 则均值遍历性成立.

这是由于当 $0 \le \tau \le 2T$ 时, $|(1 - \frac{\tau}{2T})R(\tau)| \le |R(\tau)|$,

$$\frac{1}{T}\left|\int_0^{2T}(1-\tau/2T)R(\tau)d\tau\right|\leqslant \frac{1}{T}\int_0^{2T}|R(\tau)|d\tau\leqslant \frac{1}{T}\int_0^\infty|R(\tau)|d\tau\to 0.$$

推论 4.2 对平稳序列而言, 若 $R(\tau) \to 0 (\tau \to \infty)$, 则均值遍历性成立.

定理 4.2 (协方差函数遍历性定理) 设 $X = \{X(t), -\infty < t < \infty\}$ 为平稳过 程, $Y_{\tau} = \{Y_{\tau}(t), -\infty < t < \infty\}$ 其中 Y_{τ} 由上面所定义, 则对给定的 τ , X 的协方差 函数 $R(\tau)$ 有遍历性的充分必要条件是

$$\lim_{T \to \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau_1}{2T} \right) (B(\tau_1) - R^2(\tau)) d\tau_1 = 0,$$

$$B(\tau_1) = EX(t + \tau + \tau_1)X(t + \tau_1)X(t + \tau)X(t).$$

对于定义在 $[0,\infty)$ 上的平稳过程, 只要把遍历性理解为 (4.10),(4.11) 等式, 则 定理 4.1 和定理 4.2 仍成立

关于协方差函数的遍历性, 由于牵涉到过程的四阶矩, 一般很难验证. 但对于 Gauss 过程来说, 问题要简单得多, 比如我们有如下的结果.

定理 4.3 设 $X = \{X_n, n = 0, \pm 1, \cdots\}$ 是均值为 0 的 Gauss 平稳过程, 如果

$$\lim_{T \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} R^2(k) = 0,$$

则 Gauss 过程的协方差函数有遍历性

4.3.1 协方差函数

对平稳过程 X 的协方差函数 $R(\tau)$, 容易由定义得到如下性质:

- 1. 对称性, 即 $R(-\tau) = R(\tau)$.
- 2. 有界性, 即 $|R(\tau)| \leq R(0)$.
- 3. 非负定性. 即对任意的时刻 t_n 及实数 $a_n, n = 1, 2, \dots, N$, 有

$$\sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m R(t_n - t_m) \ge 0.$$

这是很重要的一条性质, 证明见 (1.2) 式.

关于平稳过程导数, 我们作如下定义: 如果存在 Y(t), $t \in T$ 使

$$\lim_{h \to 0} E \left| \frac{X(t + h - X(t))}{h} - Y(t) \right|^2 = 0,$$

则称 $Y = \{Y(t)\}$ 为过程 X 在 t 点的均方导数, 简称导数, 并记为 X'(t) 或 $\frac{dX(t)}{dt}$. 可以验证, 均方导数存在的充分必要条件是

$$\lim_{h \to 0, k \to 0} \frac{R(0) - R(h) - R(k) + R(h - k)}{hk}$$

存在有限. 由此我们可以推出如下的有趣性质: 只要下面所涉及的导数都存在, 则 性质成立.

 $Cov(X^n(t), X^n(t+\tau)) = (-1)^n R^{(2n)}(\tau).$

4. 平稳过程 n 阶导数的协方差函数为

 $\bar{S}(\omega) = S(\omega) \geqslant 0,$

由
$$S(\omega)$$
 的定义可知

 $S(-\omega) = S(\omega).$

(4.16)

这是因为 $|F(\omega,T)|^2 = F(\omega,T)F(-\omega,T)$ 为实的, 非负偶函数. 其次, 由 (4.27) 定 义的平均功率谱密度 $S(\omega)$ 和协方差函数 $R(\tau)$ (假定平稳过程的均值为零) 是一对 Fourier 变换. 一般由 (4.27) 定义的平均功率谱密度 $S(\omega)$ 和自相关函数 $r(\tau)$ 也是 一对 Fourier 变换. 更具体地, 我们有如下定理.

定理 4.4 (Wiener-Khintchine公式) 假定 EX(t) = 0, 且 $\int |R(\tau)|d\tau < \infty$, 则

$$S(\omega) = \int R(\tau) e^{-j\omega\tau} d\tau, \qquad (4.33)$$

$$R(\tau) = \frac{1}{2\pi} \int S(\omega) e^{j\omega\tau} d\omega.$$
 (4.34)

$$S(\omega) = \sum_{\tau = -\infty}^{\infty} e^{-j\omega\tau} R(\tau), \tag{4.37}$$

$$R(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) \cos \omega \tau d\omega$$
. (4.38)
Fourier 分析中知道, 如果允许谱密度和协方差函数中含有 δ 函数, 则在广义 Fourier

变换下, 仍成立 Wiener-Khintchine 公式. 这主要是利用 δ 函数的如下基本性质: 对 任一连续函数 $f(\tau)$,

$$\int \delta(\tau - \tau_0) f(\tau) d\tau = f(\tau_0).$$

由此可得

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega\tau} d\omega = \delta(\tau), \qquad (4.39)$$

$$\int \delta(\tau) e^{-j\omega\tau} d\tau = 1. \qquad (4.40)$$

由 (4.39) 式, 当协方差函数为常数 1 时, 对应的谱密度函数为 $2\pi\delta(\omega)$. 反之, 当谱密度为 1 时, 由 (4.39) 知协方差函数为 $\delta(\tau)$. 再由

$$\cos \omega \tau = \frac{1}{2} (e^{j\omega \tau} + e^{-j\omega \tau}), \qquad \sin \omega \tau = \frac{1}{2j} (e^{j\omega \tau} - e^{-j\omega \tau}).$$

可以得到当谱密度为 $a\cos\omega\tau_0$ 时, 其对应的协方差函数为

$$R(\tau) = \frac{1}{2\pi} \int a \cos \omega \, \tau_0 e^{j\omega \tau} d\omega$$

$$= \frac{a}{4\pi} \left[\int e^{j\omega(\tau + \tau_0)} d\omega + \int e^{j\omega(\tau - \tau_0)} d\omega \right]$$

$$= \frac{a}{2} (\delta(\tau + \tau_0) + \delta(\tau - \tau_0)).$$

 $\int \mathcal{P}(X = x)/f(x)$ | 矩母 | EX|Var(X)

 $B(n,p)|C_n^x p^x (1-p)^{n-x}|(pe^t + (1-p))^n|np|np(1-p)$

$$poisson|\frac{e^{-\lambda}\lambda^{x}}{x!}|exp\{\lambda(e^{t}-1)\}|\lambda|\lambda$$

几何|p(1-p)^{x-1}|\frac{pe^{t}}{1-(1-p)e^{t}}|\frac{1}{p}|\frac{1-p}{p^{2}}

负二项 $|C_{x-1}^{r-1}p^r(1-p)^{x-r}|\left(\frac{pe^t}{1-(1-p)e^t}\right)^r|\frac{r}{p}|\frac{r(1-p)}{p^2}$

 $|U(a,b)| \frac{1}{b-a} \left| \frac{e^{ta} - e^{tb}}{t(a-b)} \right| \frac{a+b}{2} \left| \frac{(b-a)^2}{12} \right|$

指数 $|\lambda e^{-\lambda x}| \frac{\lambda}{\lambda - t} |\frac{1}{\lambda}| \frac{1}{\lambda^2}$

 $\left|\Gamma(n,\lambda)\right|^{\frac{\lambda e^{-\lambda x}(\lambda x)^{n-1}}{(n-1)!}}\left|\left(\frac{\lambda}{\lambda-t}\right)^n\right|^{\frac{n}{\lambda}}\left|\frac{n}{\lambda^2}\right|$

 $N(\mu, \sigma^2) | \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} | \exp \left\{ \mu t + \frac{\sigma^2 t^2}{2} \right\} |\mu| \sigma^2$

Modified by Raybran

made by Lyncien

Res $f(z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]$