Código de evaluación Proyecto 1

formato aritméticas:

op rs rt rd shamt funct

000001 00001 00010 00011 00000 000000 ADD R3, R1, R2

formato lw, sw, beq:

op rs rt inm

000010 00000 00001 000000000000000 LW R1, O(R0) dir 0

Memoria: [8, 0, 0, 0, 0, 0, 0, 0, 0...] En M(8) aparecerá un 44 (0x2C) Valor final regs: r0=12, r1=8, r2=16, r3=12, r4=32, r5=44, r6=0

separado por campos:

3cparado p	or camp	<i>5</i> 5.						
0000 10	00 000	0 0001	00000000000000000	08010000		@0x0	LW R1, 0(R0)	En la posición 0 hay un 8. R1=8 , R0=0
0000 01	00 001	0 0001	00010000000000000	04211000		@0x4	ADD R2,R1, R1	Dependencia doble en R1 generada por Rt: Parada y corto MEM_out. R2=16 (10h)
0000 10	00 000	0 0011	00000000000000100	08030004	inm:	@0x8	LW R3, 4(R0)	M[1] <- 12. <i>R3=12</i> (Ch)
0000 01	00 010	0 0010	00100000000000000	04422000		@0x0C	ADD R4, R2, R2	Dependencia doble en R2 generada por Rd: corto ALUout_MEM. R4= 32 (20h)
0000 01	00 100	0 0011	00101000000000000	04832800		@0x10	ADD R5, R4, R3	Dependencia en R4 generada por Rd: corto ALUout;
								Dependencia en R3 generada por Rt: corto Mem_out. R5= 44 =2C
0000 11	00 000	0 0101	0000000000001000	0C050008		@0x14	SW R5, 8(R0)	Dependencia en R5 generada por Rd: corto ALUout.
								M[2]= 44, R0=0
0001 00	00 000	0 0101	1111111111111011	1005FFFB		@0x18	beq R0, R5, inm;	Dependencia en R5 con el addHay que parar un ciclo R0 tiene que valer 0 y R5 44,
								-> no se salta
0000 01			0000000000000000	04000000		@0x1C	add r0, r0, r0	para comprobar si se para aunque no haga falta
0000 10		0 0000	0000000000000000	08200000		@0x20	lw r0, 0(r1)	si no gestiona bien las dependencias hará una parada. Escribe 44 (2C) en r0
000 00	000 000	0 0000	00000000000000000	00000000		@0x24	nop	
0000 10	00 110	0 0000	0000000000001100	08c0000c		@0x28	lw r0, 12(r6)	$r\theta = 0$ M[3] (cargado con un cero)
0001 00	00 000	0 0011	11111111111111111	1003FFFF	L0:	@0x2C	beq R0, R3, L0;	Dependencia en rt. Dos ciclos de parada
								R0 == 0 y $R3 == 12$ por tanto no se salta
1000 10	00 110	0 0001	0000000000010000	88c10010		@0x30	LWFP R1, 16(R6)	En $M[4]$ hemos puesto un 0.2. $R1fp = (X''3e4ccccd'')$, $R6=0$
1000 01	00 001	0 0001	00010000000000000	84211000		@0x34	ADDFP R2,R1,R1	R2fp = 0. = 3ECCCCCD 2 Paradas datos. 5 paradas FP
1000 01	00 010	0 0001	00010000000000000	84411000		@0x38	ADDFP R2,R2,R1	R2fp = 0.6 2 Paradas datos 3F199999. 5 paradas FP
								•
1000 11	00 110	0 0010	0000000000010100	8cc20014		@0x3C	SWFP R2, 20(R6)	M[5] = (0x3F199999), R6=0 2 paradas datos
0000 10	00 000	0 0001	00000000000000000	08010000		@0x40	LW R1, 0(R0)	R1int = M[0] (= 8)
1000 10	00 001	0 0011	00000000000000000	88230000		@0x44	LWFP R3, 0(R1)	$R3fp = M[2] (=0x2C)$. 1 parada lw_uso
0000 11	00 000	0 0011	0000000000011000	0c030018		@0x48	SW R3, 24(R0)	M[6] = R3int = 0xC; no hay dep ni por tanto riesgo con la anterior
0000 10	00 110	0 0010	0000000000011000	08c20018		@0x4C	LW R2, 24(R0)	R2int = M[1] (= 12 = 0xC, i.e @M[3])
1000 11	00 010	0 0011	00000000000000000	8c430000		@0x50	SWFP R3, 0(R2)	$M[3] = R3 = 0x2C 1 parada lw_uso$
							' '	
0001 00	00 000	0 0000	1111111111111111	1000ffff	fin	@0x54	beq R0, R0, fin;	