8/17/25, 6:17 PM Sem 3 Notes

Assignment: Pattern Recognition – Unit I (Introduction and Mathematical Preliminaries)

Q1. Define Pattern Recognition. List any three real-life applications.

Definition

Pattern Recognition (PR) is a branch of Artificial Intelligence (AI) and Machine Learning (ML) that focuses on automatically identifying patterns, structures, or regularities in data.

- In simple terms: Pattern Recognition is the act of classifying data based on knowledge already gained or statistical information extracted from patterns.
- A pattern can be anything: image, speech signal, handwriting, medical data, or even DNA sequence.
- PR provides the foundation for many modern AI systems including speech assistants, facial recognition, and medical diagnostics.

General Workflow of Pattern Recognition

```
[\texttt{Raw Data}] \rightarrow [\texttt{Preprocessing}] \rightarrow [\texttt{Feature Extraction}] \rightarrow [\texttt{Classifier/Model}] \rightarrow [\texttt{Decision}]
```

- Raw Data: Input such as images, text, or audio.
- **Preprocessing**: Removing noise, scaling, normalization.
- Feature Extraction: Identifying useful attributes (edges in images, keywords in text).
- Classifier: Algorithm (k-NN, SVM, Neural Networks).
- **Decision**: Predicted label or group.

* Example: In facial recognition – raw input is a photo, preprocessing adjusts brightness, feature extraction measures facial landmarks, classifier decides the person's identity.

Applications of Pattern Recognition

- 1. Biometric Authentication
 - Examples: Fingerprint, Face, and Iris recognition.
 - Used in Aadhaar authentication in India, iPhones FaceID, or fingerprint sensors on laptops.
- 2. Medical Image Analysis
 - Detecting tumors, fractures, or retinal diseases using MRI/X-ray scans.
 - Helps doctors with faster and more accurate diagnosis.
- 3. Speech Recognition
 - Converting speech to text (e.g., Siri, Alexa, Google Assistant).
 - Used in call centers for automatic query classification.

Other applications: Spam email filtering, weather prediction, fraud detection, and handwriting recognition (used by OCR software).

8/17/25, 6:17 PM Sem 3 Notes

Assignment Note: Always define \rightarrow explain \rightarrow diagram \rightarrow give at least 3 examples \rightarrow summarize.

Q2. Differentiate between Clustering and Classification with suitable examples.

Classification (Supervised Learning)

- Classification means assigning input data to one of predefined categories.
- Requires labeled training data.
- Learns a mapping from input features to output class labels.

Example:

- Handwritten digit recognition (MNIST dataset): input = pixel values, output = digit (0-9).
- Email filtering: "spam" vs "not spam".

Clustering (Unsupervised Learning)

- Clustering groups unlabeled data based on similarity or distance measures.
- No prior categories; algorithm discovers hidden structure in data.

Example:

- Customer segmentation: grouping customers into "budget buyers," "premium buyers," etc.
- Document clustering: grouping research papers by topic without prior labels.

Tabular Comparison

Aspect	Classification	Clustering
Learning type	Supervised (needs labels)	Unsupervised (no labels)
Input	Features + Labels (x, y)	Features only (x)
Output	Known categories	Groups formed automatically
Example	Predicting handwritten digits	Grouping customers by shopping style
Algorithms	SVM, Decision Trees, k-NN	k-Means, DBSCAN, Hierarchical

Illustration

Classification (pre-labeled classes):

00000 8/17/25, 6:17 PM Sem 3 Notes

```
Decision boundary separates classes.

Clustering (no labels):

••••• •••• •••••

Groups formed automatically by similarity.
```

Assignment Note: Use examples in both domains (like customer data, image recognition). Adding a diagram or graph gets bonus marks.

Q3. Explain the difference between Supervised and Unsupervised Learning in the context of Pattern Recognition.

Supervised Learning

- Works on **labeled data**: input \rightarrow output pairs (x, y).
- The model learns a mapping from inputs to outputs using training examples.
- Aim: predict class labels for unseen data.
- ***** Examples:
- Tumor classification as benign or malignant.
- Credit card fraud detection (fraud vs not fraud).

Pipeline Diagram

```
Training data (x, y) → Model → Predict y*
```

Unsupervised Learning

- Works on **unlabeled data**: only inputs (x).
- The model finds hidden patterns or clusters without predefined labels.
- Aim: discover structure in data.
- * Examples:
- Grouping news articles by topic (politics, sports, tech).
- Reducing dimensionality with PCA (Principal Component Analysis).

Pipeline Diagram

```
Unlabeled data (x) \rightarrow Model \rightarrow Discover clusters/structure
```

Comparison

8/17/25, 6:17 PM Sem 3 Notes

Aspect	Supervised Learning	Unsupervised Learning
Labels needed	Yes	No
Goal	Predict known labels	Discover hidden structure
Example	Handwritten digit recognition	Customer segmentation
Algorithms	Logistic Regression, SVM, Neural Nets	k-Means, Hierarchical, PCA

Interplay in Pattern Recognition

- Often combined:
 - Unsupervised: PCA reduces data dimensions.
 - **Supervised**: Classifier then predicts the final class.

 \star Example: Face recognition system \to uses PCA (unsupervised) to extract eigenfaces \to then applies supervised classifier (SVM/NN).

Assignment Note: End with a real-life example where both approaches are used together (face recognition, fraud detection).

Summary of Unit I Concepts

- Pattern Recognition deals with automatic classification and decision-making.
- Classification is supervised; clustering is unsupervised.
- Supervised learning requires labeled data; unsupervised finds structure without labels.
- Applications range from healthcare and biometrics to NLP and computer vision.