From preferences to judgments and back

Davide Grossi

Individual and Collective Reasoning Group University of Luxembourg

Iss

$$(x,y) \in \preceq, (x,y) \notin \preceq$$

Iss

$$(x,y) \in \preceq, (x,y) \notin \preceq$$

$$\mathcal{L}_i \subseteq \mathcal{L}$$

$$\mathcal{I}:\mathcal{L}_i\longrightarrow\{1,0\}$$

$$\mathcal{I} \models \phi, \ \mathcal{I} \not\models \phi$$

$$(x,y) \in \preceq, (x,y) \not\in \preceq$$

$$\mathcal{L}_i \subseteq \mathcal{L}$$

$$\mathcal{I}:\mathcal{L}_i\longrightarrow\{1,0\}$$

$$\mathcal{I} \models \phi, \ \mathcal{I} \not\models \phi$$

- Can we view preferences as judgments?
- ... and judgments as preferences?

PA as JA ... axiomatic way

Iss

≺: strict total order on Iss

$$(a,b) \in \prec, (a,b) \not\in \prec$$

Iss

≺: strict total order on Iss

$$(a,b) \in \prec, (a,b) \not\in \prec$$

$$\mathcal{L}_{\mathtt{Iss}} \subseteq \mathcal{L}$$
 $\mathcal{I}^{\sigma} : \mathcal{L}_{\mathtt{Iss}} \longrightarrow \{1, 0\}$
 $\mathcal{I}^{\sigma} \models bPa, \ \mathcal{I}^{\sigma} \not\models bPa$

Iss

 \prec : strict total order on Iss $(a,b) \in \prec$, $(a,b) \notin \prec$

$$\forall x, y(xPy \to \neg yPx)$$

$$\forall x, y, z((xPy \land yPz) \to xPz)$$

$$\forall x, y(x \neq y \to (xPy \lor yPx))$$

Iss

 \prec : strict total order on Iss $(a,b) \in \prec$, $(a,b) \notin \prec$

$$\forall x, y(xPy \to \neg yPx)$$

$$\forall x, y, z((xPy \land yPz) \to xPz)$$

$$\forall x, y(x \neq y \to (xPy \lor yPx))$$

- Preferences are FOL formulae
- Rationality conditions are FOL formulae

Dietrich & List, 07

- "Preference agendas" exhibit characteristic structural properties (e.g., strong connectedness)
- ... which are sufficient to yield impossibility results under Arrow's conditions for aggregation functions
- ... hence Arrow's theorem can be obtained as a corollary of more general JA impossibility results

PA as JA ... semantic way

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

(Debreu, 1954) Let \leq be a total preorder on a finite set Iss. There exists a ranking function $u: Iss \longrightarrow [0,1]$ such that $\forall x,y \in Iss: x \leq y$ iff $u(x) \leq u(y)$. Such a function is unique up to ordinal transformations.

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

$$a \leq b$$
 iff $u(a) \leq u(b)$ iff $u \models a \rightarrow b$

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

$$a \leq b$$
 iff $u(a) \leq u(b)$ iff $u \models a \rightarrow b$

iff
$$u \models a -$$

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

$$a \prec b$$
 iff

$$a \leq b$$
 iff $u(a) \leq u(b)$ iff $u \models a \rightarrow b$

$$u \models a \rightarrow t$$

Iss

$$(a,b) \in \preceq, (a,b) \notin \preceq$$

$$egin{aligned} \mathcal{L} & (\mathbf{P} = \mathtt{Iss}) \ u : \mathcal{L} & \longrightarrow [0,1] \ u & \models a \longrightarrow b, \ u \not\models a \longrightarrow b \end{aligned}$$

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

$$egin{aligned} \mathcal{L} & (\mathbf{P} = \mathtt{Iss}) \ u : \mathcal{L} & \longrightarrow [0,1] \ u & \models a \longrightarrow b, \ u \not\models a \longrightarrow b \end{aligned}$$

Preferences are implications in many-valued logic

Iss

$$(a,b) \in \preceq, (a,b) \not\in \preceq$$

$$egin{aligned} \mathcal{L} & (\mathbf{P} = \mathtt{Iss}) \ u : \mathcal{L} & \longrightarrow [0,1] \ u & \models a \longrightarrow b, \ u \not\models a \longrightarrow b \end{aligned}$$

- Preferences are implications in many-valued logic
- Rationality conditions are captured by the ranking/interpretation function

Importing impossibilities

- "Preference agendas" exhibit characteristic structural properties (e.g., minimal connectedness)
- ... which are sufficient to yield impossibility results
- ... hence PA impossibilities can be obtained as a corollary of more general JA impossibility results

JA as PA

JA as PA ... the semantic way

An interpretation is a binary ranking function on {1,0}

- An interpretation is a binary ranking function on {1,0}
- It determines a trivial total preorder on the formulae

- An interpretation is a binary ranking function on {1,0}
- It determines a trivial total preorder on the formulae
- ... preserving the meaning of Boolean connectives

Iss =
$$\mathcal{L}_i$$

 \preceq : total preorder on Iss
$$\mathcal{I} : \mathcal{L}_i \subseteq \mathcal{L}$$

$$\mathcal{I} : \mathcal{L}_i \longrightarrow \{1, 0\}$$

$$(\phi, \psi) \in \preceq, \ (\phi, \psi) \not\in \preceq$$

$$\mathcal{I} \models \phi, \ \mathcal{I} \not\models \phi$$

- An interpretation is a binary ranking function on {1,0}
- It determines a trivial total preorder on the formulae
- ... preserving the meaning of Boolean connectives

 What kind of impossibilities still hold assuming only the set of Boolean Preference profiles (hence giving up Universal Domains)?

Importing impossibilities

 Impossibilities on Boolean preference domains yield JA impossibilities as immediate corollaries:

Importing impossibilities

 Impossibilities on Boolean preference domains yield JA impossibilities as immediate corollaries:

For any JA structure \mathfrak{S}^J with a set of issues $\{p, q, p \to q\} \subseteq \mathcal{L}_i$ (where \to can be substituted by \vee or \wedge), there exists no aggregation function which satisfies \mathbf{U} , \mathbf{Sys} and \mathbf{NoDict} .

LUXEMBOURG

Conclusions

JA	binary	complex
PA	many-valued	atomic

JA	binary	complex
PA	many-valued	atomic

JA	binary	complex
PA	many-valued	atomic

MINIEDCITÉ DIL		
JA	binary	complex
PA	many-valued	atomic

MINTEDCITÉ DIL		
JA	binary	complex
PA	many-valued	-atomic

I. Investigate the aggregation framework that generalizes both JA and PA

- I. Investigate the aggregation framework that generalizes both JA and PA
- 2. ... and further possible generalizations (e.g. po-sets)

- I. Investigate the aggregation framework that generalizes both JA and PA
- 2. ... and further possible generalizations (e.g. po-sets)
- 3. Translate (im)possibilities between the two frameworks

- I. Investigate the aggregation framework that generalizes both JA and PA
- 2. ... and further possible generalizations (e.g. po-sets)
- 3. Translate (im)possibilities between the two frameworks
- 4. Relate many-valued logics on [0,1] to more standard (modal) logics of preferences

