$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

Α	В	\overline{A}	\overline{B}	$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0					
0	1					
1	0					
1	1					

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

Α	В	\overline{A}	\overline{B}	$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0	1				
0	1	1				
1	0	0				
1	1	0				

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

				$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0	1	1			
0	1	1	0			
1	0	0	1			
1	0 1 0 1	0	0			

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

Α				$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0	1	1	1		
0 1	1	1	0	0		
1	0	0	1	0		
1	1	0	1 0 1 0	0		

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

Α	В	\overline{A}	\overline{B}	$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0	1	1	1	0	
0	1	1	0	0	1	
1	0	0	1	0	1	
1	1	0	0	0	1	

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$
?

				$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0	1	1	1 0	0	1
0	1	1	0	0	1	0
1	0	n	1	0	1	0
1	1	0	0	0	1	0

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}!$$

Α	В	\overline{A}	\overline{B}	$\overline{A} \wedge \overline{B}$	$A \vee B$	$\overline{A \vee B}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	1 0 0 0	1	0
1	1	0	0	0	1	0

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$

$$(\overline{A} \wedge \overline{B}) \leftrightarrow (\overline{A \vee B})$$

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$

$$(\overline{A} \wedge \overline{B}) \leftrightarrow (\overline{A \vee B})$$

$$\left[(\overline{A} \wedge \overline{B}) \to (\overline{A \vee B}) \right] \wedge \left[(\overline{A \vee B}) \to (\overline{A} \wedge \overline{B}) \right]$$

$$\overline{A} \wedge \overline{B} = \overline{A \vee B}$$

$$(\overline{A} \wedge \overline{B}) \leftrightarrow (\overline{A \vee B})$$

$$[(\overline{A} \wedge \overline{B}) \to (\overline{A \vee B})] \wedge [(\overline{A \vee B}) \to (\overline{A} \wedge \overline{B})]$$

$$\mathcal{L} \vdash [(\overline{A} \wedge \overline{B}) \to (\overline{A \vee B})] \wedge [(\overline{A \vee B}) \to (\overline{A} \wedge \overline{B})]$$

Законы логики высказываний

Ассоциативность
$$A \lor (B \lor C) = A \land (B \land C) = (A \lor B) \lor C = (A \land B) \land C = (A \land B) \land C$$

$$= A \lor B \lor C = A \land B \land C$$
Коммутативность
$$A \lor B = B \lor A \qquad A \land B = B \land A$$
Константы и идемпотентность
$$A \lor 1 = 1 \qquad A \land 1 = A$$

$$A \lor 0 = A \qquad A \land 0 = 0$$

$$A \lor A = A \qquad A \land A = A$$
Дистрибутивность
$$A \lor (B \land C) = A \land (B \lor C) = (A \land B) \lor (A \land C)$$
Отрицание отрицания
$$\neg \neg A = A$$

$$3 \text{аконы де Моргана}$$

$$\overline{A \lor B} = \overline{A} \land \overline{B} \qquad \overline{A \land B} = \overline{A} \lor \overline{B}$$

$$\begin{array}{ccc} (A \lor B \lor C) & \land \\ (\neg A \lor B \lor \neg C) & \land \\ (\neg A) & \end{array}$$

 $\neg A$

 $\neg A$ $\neg A \lor B$

$$\neg A
\neg A \lor B
(A \lor B) \lor C$$

$$\neg A
\neg A \lor B
(A \lor B) \lor C = A \lor B \lor C$$

$$\neg A
\neg A \lor B
(A \lor B) \lor C = A \lor B \lor C
(A \lor B) \land C$$

$$\neg A$$

 $\neg A \lor B$
 $(A \lor B) \lor C = A \lor B \lor C$
 $(A \lor B) \land C$
 $(A \lor B) \land (\neg C \lor D)$

$$\neg A
\neg A \lor B
(A \lor B) \lor C = A \lor B \lor C
(A \lor B) \land C
(A \lor B) \land (\neg C \lor D)
(A \land B) \lor C$$

$$\neg A
\neg A \lor B
(A \lor B) \lor C = A \lor B \lor C
(A \lor B) \land C
(A \lor B) \land (\neg C \lor D)
(A \land B) \lor C = (A \lor C) \land (B \lor C)$$

$$\begin{array}{c}
\neg A \to \overline{B \to C} \\
A \lor \overline{\neg B \lor C}
\end{array}$$

$$\neg A \to \overline{B \to C}
A \lor \overline{\neg B \lor C}
A \lor (B \land \neg C)$$

$$\neg A \to \overline{B \to C}
A \lor \neg B \lor C
A \lor (B \land \neg C)
(A \lor B) \land (A \lor \neg C)$$