Computational Methods and Modelling

Antonio Attili & Edward McCarthy

antonio.attili@ed.ac.uk ed.mccarthy@ed.ac.uk

School of Engineering University of Edinburgh United Kingdom

Tutorial 8 Solution of a system of differential equations

Exercise 1: Numerical simulation of chaos, the Lorenz system

Edward Lorenz developed the following system for atmospheric fluid dynamics

$$\frac{dy_1}{dt} = \sigma(y_2 - y_1)$$

$$\frac{dy_2}{dt} = \rho y_1 - y_2 - y_1 y_3$$

$$\frac{dy_3}{dt} = -\beta y_3 + y_1 y_2$$

which can show chaotic dynamics, depending on the value of σ , β , and ρ . The system has wide applicability, being relevant also for convection in toroidal pipes (nuclear fusions) and in single-mode lasers.

Exercise 1: Numerical simulation of chaos, the Lorenz system

▶ Write a Python code to solve numerically the Lorenz equations in the interval $0 \le t \le t_f$ ($t_f = 30$), assuming $\sigma = 10$; $\beta = 8/3$; $\rho = 28$ and with initial conditions:

$$y_1^0 = y_2^0 = y_3^0 = 5$$
 at $t = 0$

- ► To this end, use the python function solve_ivp included in the module scipy¹.
- ▶ Plot the solution in the interval $0 \le t \le t_f$ for the 3 variables.
- ▶ Plot the solution in the planes y_1y_2 and y_1y_3 : one plot with y_1 in the abscissa and y_2 in the ordinate and one plot with y_1 in the abscissa and y_3 in the ordinate.
- ▶ Repeat the tasks above for $\sigma=10$; $\beta=8/3$; $\rho=10$. In this case the solution is not chaotic and the plots will look different.
- ▶ Tip: in order to obtain nice plots, specify explicitly the times at which to store the computed solution. This can be done by using the optional argument t_eval of the python function solve_ivp. A good number of elements for the array t_eval is 5000. The array t_eval can be defined easily with the python code line: t_eval = np.linspace(0, t_final, num=5000)

where t_final is the final time $t_f = 30$ mentioned above.

The function np.linspace is used to generate an array of 5000 elements equispaced in the range 0, t_final.

¹See also the reference manual online docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html