1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

По лабораторной работе №2

По курсу: «Анализ алгоритмов»

Тема: «Алгоритмы умножения матриц»

Студент: Ле Ни Куанг

Группа: ИУ7и-56Б

Преподаватель: Волкова Л. Л.

Строганов Ю. В.

Москва

2020

Оглавление

Bı	ведеі	ние	3
1	Ана	литический раздел	4
	1.1	Описание алгоритмов	4
		1.1.1 Стандартный алгоритм	4
		1.1.2 Алгоритм Винограда	4
		1.1.3 Модель вычислений	5
	1.2	Вывод	5
2	Кон	иструкторский раздел	6
	2.1	Разработка алгоритмов	6
		2.1.1 Схема стандартного алгоритма умножения матриц	6
		2.1.2 Схема алгоритма Винограда	7
	2.2	Оценка трудоемкости	9
		2.2.1 Стандартный алгоритм	9
		2.2.2 Алгоритм Винограда	9
		2.2.3 Оптимизированный алгоритм Винограда	10
	2.3	Вывод	10
3	Tex	нологический раздел	11
	3.1	Средства реализации	11
	3.2	Листинг кода	11
	3.3	Описание тестирования	14
	3.4	Вывод	14
4	Экс	периментальный раздел	15
	4.1	Примеры работы	15
	4.2	Результаты тестирования	16
	4.3	Сравнение времени работы	16
	4.4	Вывод	19
За	клю	чение	20
П	итер	атура	20

Введение

Умножение матриц - одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведением матриц.

Целью работы: изучение алгоритмов умножения матриц. В данной лабораторной работе рассматривается стандартный алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда. Также требуется изучить рассчет сложности алгоритмов, получить навыки в улучшении алгоритмов.

Задачи работы:

- 1. изучить алгоритмы умножения матриц: стандартный и алгоритм Винограда, оптимизировать алгоритм Винограда.
- 2. дать теоретическую оценку алгоритмы (трудоемкость).
- 3. реализовать три алгоритма умножения матриц.
- 4. сравнить алгоритмы умножения матриц.

1 Аналитический раздел

В данном разделе будет приведено описание алгоритмов и модель вычислений для оценок трудоемкости.

1.1 Описание алгоритмов

1.1.1 Стандартный алгоритм

Пусть даны две прямоугольные матрицы A и B размерности l х m и m х n соответственно:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{lm} \end{pmatrix}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

Тогда матрица C размерностью $l \times m$:

$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \dots & c_{ln} \end{pmatrix}$$

в которой:

$$c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \quad (i = 1, 2, ..., l; \ j = 1, 2, ..., n)$$
(1.1)

называется их произведением.

1.1.2 Алгоритм Винограда

Рассматривая результат умножения двух матриц очевидно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее.

Рассмотрим два вектора $V=(v_1,v_2,v_3,v_4)$ и $W=(w_1,w_2,w_3,w_4)$. Их скалярное произведение равно:

$$V \cdot W = v_1 w_1 + v_2 w_2 + v_3 w_3 + v_4 w_4 \tag{1.2}$$

Это равенство можно переписать в виде:

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1v_2 - v_3v_4 - w_1w_2 - w_3w_4$$
 (1.3)

Несмотря на то, что второе выражение требует вычисления большего количества операций, чем первое: вместо четырех умножений - шесть, а вместо трех сложений - десять, выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй, что позволяет выполнять для каждого элемента лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения. В случае, если в произведении $A(l,m)\cdot B(m,n)$, m - нечётное число, пройти во второй раз по матрице, дополняя элементы C_{ij} недостающим элементом.

1.1.3 Модель вычислений

В данной работы используется следующая модель вычислений:

1. Стоимость базовых операций:
$$F=1$$
 $(=,*,+,-,/,\%,<,<=,>,>=,==,!=,[],+=,-=,*=,/=)$

2. Стоимость цикля
$$for$$

$$F_{for} = f_{init} + f_{compare} + N_{loop} \cdot (f_{body} + f_{inc} + f_{compare})$$

3. Трудоемкость условного оператора
$$if$$

$$F_{if} = f_{compare} + f_{body} = f_{compare} + \begin{cases} f_{min}, & \text{лучший случай} \\ f_{max}, & \text{худший случай} \end{cases}$$

1.2 Вывод

Были приведено описание алгоритмов, стандартный и Винограда, также рассмотрено модель вычислений для оценок трудоемкости.

2 Конструкторский раздел

В данном разделе будет приведено описание схем алгоритмов и вычислены их трудоемкости.

2.1 Разработка алгоритмов

На рисунках показаны схемы алгоритмов умножения матриц, стандартный и алгоритм Винограда.

2.1.1 Схема стандартного алгоритма умножения матриц

Рис. 2.1: Схема стандартного алгоритма умножения матриц

2.1.2 Схема алгоритма Винограда

Рис. 2.2: Схема алгоритма Винограда

Рис. 2.3: Схема оптимизированного алгоритма Винограда

2.2 Оценка трудоемкости

Примечание: две матрицы можно перемножать [l,m]*[m,n].

2.2.1 Стандартный алгоритм

F_{bodyC}	6
F_{forC}	2 + m(6+2) = 8m + 2
F_{bodyB}	8m + 6
F_{forB}	2 + n(8m + 6 + 2) = 8mn + 8n + 2
F_{bodyA}	8mn + 8n + 2
F_{forA}	2 + l(8mn + 8n + 2 + 2) = 8lmn + 8ln + 4l + 2
$F_{standard}$	8lmn + 8ln + 4l + 3

2.2.2 Алгоритм Винограда

F_{bodyC_1}	9		
F_{forC_1}	$3 + m/2 \cdot (9+3) = 6m+3$		
F_{bodyA_1}	6m + 6		
$F_{for A_1}$	2 + l(6m + 6 + 2) = 6lm + 8l + 2		
F_{bodyC_2}	9		
F_{forC_2}	$3 + m/2 \cdot (9+3) = 6m+3$		
F_{bodyB_2}	6m + 6		
$F_{for B_2}$	2 + n(6m + 6 + 2) = 6mn + 8n + 2		
F_{bodyC}	18		
F_{forC}	$3 + m/2 \cdot (18 + 3) = 10.5m + 3$		
F_{bodyB}	10.5m + 11		
F_{forB}	2 + n(10.5m + 11 + 2) = 10.5mn + 13n + 2		
F_{bodyA}	10.5mn + 13n + 2		
F_{forA}	2 + l(10.5mn + 13n + 2 + 2) = 10.5lmn + 13ln + 4l + 2		
E	∫ 1, л.с.		
F_{if}	$\begin{cases} 1, & \text{i.i.s.} \\ 1+2+l(2+n(2+10)), & \text{x.c.} \end{cases}$		
$F_{winograd}$	$10.5lmn + 6lm + 6mn + \begin{cases} 13ln, & \text{л.с.} \\ 25ln, & \text{х.с.} \end{cases} + \dots$		

2.2.3 Оптимизированный алгоритм Винограда

E	7
F_{bodyC_1}	7
F_{forC_1}	$2 + m/2 \cdot (7+2) = 4.5m + 2$
F_{bodyB_1}	4.5m + 5
F_{forB_1}	2 + n(4.5m + 5 + 2) = 4.5mn + 7l + 2
F_{bodyC_2}	5
F_{forC_2}	$2 + m/2 \cdot (5+2) = 3.5m + 2$
F_{bodyC_3}	12
F_{forC_3}	$2 + m/2 \cdot (12 + 2) = 7m + 2$
F_{bodyB_3}	$\begin{cases} 7m+10, & \text{л.с.} \\ 7m+16, & \text{х.с.} \end{cases}$
$F_{for B_3}$	$\begin{cases} 2 + n(7m + 12), & \text{л.с.} \\ 2 + n(7m + 18), & \text{х.с.} \end{cases}$
F_{bodyA}	$\begin{cases} 7mn + 3.5m + 12n + 7, & \text{ л.с.} \\ 7mn + 3.5m + 18n + 7, & \text{ x.c.} \end{cases}$
$F_{for A}$	$\begin{cases} 2 + l(7mn + 3.5m + 12n + 7), & \text{ л.с.} \\ 2 + l(7mn + 3.5m + 18n + 7), & \text{ x.c.} \end{cases}$
F_{wino_opt}	$7lmn + 3.5lm + 4.5mn + \begin{cases} 12ln, & \text{л.с.} \\ 18ln, & \text{х.с.} \end{cases} + \dots$

2.3 Вывод

В данном разделе было приведено описание схем алгоритмов и вычислены их трудоемкости. Трудоемкости алгоритмов соответственно 8, 10.5, 7 (lmn - куб).

3 Технологический раздел

3.1 Средства реализации

Язык программирования: С++

Библиотеки: google test, google benchmark

Редактор: VS Code

Я использую эти инструменты потому, что они мощные, широко используемые и хочу изучить фреймворк для тестирования и тестирования на C ++.

3.2 Листинг кода

Я создал шаблон для матричного типа, сами данные использовал статический двумерный массив. Его интерфейс прост в использовании, но код не очень понятен. Для краткости я перечисляю только шаблон Matrix.

Листинг 3.1: Шаблон для матричного типа

```
template <size_t R, size_t C, typename T = int>
class Matrix : public BaseMatrix
{
  private:
    T data[R][C];
    // ...
}
```

Листинг 3.2: Стандартный алгоритм умножения матриц

```
template <size_t R2, size_t C2>
      Matrix <R, C2, T> operator*(Matrix <R2, C2, T> &m2)
      {
3
           if (C != R2) throw std::exception();
          Matrix <R,C2,T> r;
           for (int i = 0; i < R; i++)</pre>
               for (int j = 0; j < C2; j++)
10
11
                   T sum = 0;
12
                    for (int k = 0; k < C; k++)
                        sum += data[i][k] * m2[k][j];
14
15
                   r[i][j] = sum;
16
```

```
}
17
           }
18
19
20
           return r;
      }
21
                Листинг 3.3: Алгоритм Винограда для умножения матриц
       template <size_t R2, size_t C2>
      Matrix < R, C2, T > operator ^ (Matrix < R2, C2, T > & m2)
       {
3
           if (C != R2) throw std::exception();
5
           Matrix < R, C2, T > r
           T mulH[R] = {}, mulV[C2] = {};
           T sum;
           for (int i = 0; i < R; i++)</pre>
10
11
                sum = 0;
12
                for (int k = 0; k < C/2; k++)
13
                    sum += data[i][2*k] * data[i][2*k+1];
14
                mulH[i] = sum;
15
           }
16
17
           for (int j = 0; j < C2; j++)
18
           {
19
                sum = 0;
20
                for (int k = 0; k < C/2; k++)
21
                    sum += m2[2*k][j] * m2[2*k+1][j];
22
                mulV[j] = sum;
23
           }
24
25
           for (int i = 0; i < R; i++)</pre>
           {
27
                for (int j = 0; j < C2; j++)
28
                    sum = -mulH[i] - mulV[j];
30
                    for (int k = 0; k < C/2; k++)
31
                         sum += (data[i][2*k] + m2[2*k+1][j])
                              * (data[i][2*k+1] + m2[2*k][j]);
33
                    r[i][j] = sum;
34
                }
35
           }
36
37
           if (C % 2)
           {
39
                for (int i = 0; i < R; i++)</pre>
40
                    for (int j = 0; j < C2; j++)
41
```

```
r[i][j] += data[i][C-1] * m2[C-1][j];
42
           }
43
44
45
           return r;
      }
46
        Листинг 3.4: Алгоритм Винограда для умножения матриц с оптимизацией
      template <size_t R2, size_t C2>
      Matrix <R, C2, T> operator&(Matrix <R2, C2, T> &m2)
       {
3
           if (C != R2) throw std::exception();
           Matrix < R, C2, T > r;
           T mulH, mulV[C2] = \{\};
           T sum;
           size_t C_ = C >> 1 << 1;
10
           for (int j = 0; j < C2; j++)
11
           {
12
                sum = 0;
13
                for (int k = 0; k < C_; k += 2)</pre>
14
                    sum += m2[k][j] * m2[k+1][j];
15
                mulV[j] = sum;
16
           }
18
           T* m1_i = data[0];
19
20
           for (int i = 0; i < R; i++, m1_i += C)
21
           {
22
                mulH = 0;
23
                for (int k = 0; k < C_-; k += 2)
24
                    mulH += m1_i[k] * m1_i[k+1];
25
26
                for (int j = 0; j < C2; j++)
27
                {
28
                    sum = -mulH - mulV[j];
29
                    for (int k = 0; k < C_; k += 2)</pre>
30
                         sum += (m1_i[k] + m2[k+1][j])
31
                             * (m1_i[k+1] + m2[k][j]);
32
33
                    if (C % 2)
34
                         sum += m1_i[C_] * m2[C_][j];
35
                    r[i][j] = sum;
36
                }
37
           }
38
39
           return r;
40
      }
41
```

3.3 Описание тестирования

В таблице 3.1 приведен функциональные тесты для алгоритмов умножения матриц.

Матрица 1	Матрица 2	Ожидаемый результат
$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 \\ 4 & 4 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
$ \begin{pmatrix} 2 & 4 & 3 \\ 1 & -3 & 2 \end{pmatrix} $	$\begin{pmatrix} 2 & -3 \\ 4 & 4 \\ 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 26 & 19 \\ -6 & -9 \end{pmatrix}$
$ \begin{pmatrix} 2 & -3 \\ 4 & 4 \\ 2 & 3 \end{pmatrix} $	$ \begin{pmatrix} 2 & 4 & 3 \\ 1 & -3 & 2 \end{pmatrix} $	$\begin{pmatrix} 1 & 17 & 0 \\ 12 & 4 & 20 \\ 7 & -1 & 12 \end{pmatrix}$
$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	Exception

Таблица 3.1: Функциональные тесты

3.4 Вывод

В этом разделе было рассмотрено код программы и описание тестирования.

4 Экспериментальный раздел

4.1 Примеры работы

На рисунке 4.1 приведен пример работы программы.

```
===== Program =====
A [2x3]
  0 0
            0
  0 0
            0
B [2x3]
       2
            3
  1
   3
            5
std::exception - Can't multiply matrices A and B
C [2x3]
  2 4
1 -3
            3
           2
D [3x2]
  2 -3
  4
       4
       3
Standard algorithm
CxD [2x2]
 26
 -6
DxC [3x3]
  1 17
           0
 12
     4
           20
  7 -1
           12
Coppersmith-Winograd algorithm
CxD [2x2]
 26 19
 -6
DxC [3x3]
 1 17
 12
      4
           20
      -1
           12
```

Рис. 4.1: Примеры работы алгоритмов умножения матриц

4.2 Результаты тестирования

На рисунке 4.2 приведен результат теста с использованием фреймворка google test.

```
======= Testing =======
[======] Running 7 tests from 3 test suites.
[-----] Global test environment set-up.
[-----] 2 tests from ZeroTest
[ RUN ] ZeroTest.MulStandard
     OK ] ZeroTest.MulStandard
[ RUN ] ZeroTest.MulWinograd
 OK ] ZeroTest.MulWinograd
-----] 3 tests from NormalTest
[ RUN ] NormalTest.MulStandard
      OK ] NormalTest.MulStandard
[ RUN ] NormalTest.MulWinograd
     OK ] NormalTest.MulWinograd
[ RUN ] NormalTest.MulWinogradOpt
 OK ] NormalTest.MulWinogradOpt
 [ RUN ] ErrorTest.MulStandard
     OK ] ErrorTest.MulStandard
[ RUN ] ErrorTest.MulWinograd
      OK ] ErrorTest.MulWinograd
[-----] Global test environment tear-down
[======] 7 tests from 3 test suites ran.
[ PASSED ] 7 tests.
```

Рис. 4.2: Примеры работы алгоритмов умножения матриц

4.3 Сравнение времени работы

В таблице 4.1 приведены замеры времени работы алгоритмов умножения матриц на квадратных матрицах, на основе них построены графики 4.3 и 4.4.

Размер	Стандартный	Винограда	Винограда(о)
100	4.2321e+06	4.3321e+06	3.4289e+06
200	3.5857e + 07	3.3469e + 07	2.6979e + 07
300	1.0255e + 08	$9.9688e{+07}$	$8.6865\mathrm{e}{+07}$
400	2.9630e + 08	2.8231e + 08	2.3073e + 08
500	$5.0361\mathrm{e}{+08}$	$4.9825e{+08}$	$4.3241e{+08}$
600	$8.8321e{+08}$	$8.5834e{+08}$	7.4968e + 08
700	1.4755e + 09	$1.4011\mathrm{e}{+09}$	1.2223e+09
800	2.5314e + 09	2.4905e+09	2.0274e + 09
Размер	Стандартный	Винограда	Винограда(о)
101	4.0446e + 06	4.1116e + 06	$3.2180\mathrm{e}{+06}$
201	3.2154e + 07	$3.2622e{+07}$	$2.5230\mathrm{e}{+07}$
301	$1.0256e{+08}$	1.0014e + 08	$8.9064 e{+07}$
401	$2.5948e{+08}$	$2.5450e{+08}$	2.2657e + 08
501	5.1728e + 08	5.0715e + 08	$4.3993e{+08}$
601	$9.1651\mathrm{e}{+08}$	8.9246e + 08	7.7484e + 08
701	$1.4396\mathrm{e}{+09}$	1.4173e + 09	$1.2808\mathrm{e}{+09}$
801	2.1816e+09	2.1910e+09	1.8964e + 09

Таблица 4.1: Времени работы (ns)

Рис. 4.3: Зависимость времени работы алгоритмов умножения матриц от размеры матрицы (при четном размере)

Рис. 4.4: Зависимость времени работы алгоритмов умножения матриц от размеры матрицы (при нечетном размере)

4.4 Вывод

Из графики, очевидно, что алгоритм Винограда с оптимизацией самый быстрый при умножении матриц большого размера, на матрицах размером 800×800 работает примерно на 20% (15-25% зависит от m четное или нечетное) быстрее стандартный алгоритм.

Заключение

В ходе лабораторной работы было изучено алгоритмов умножения матриц: стандартный алгоритм и алгоритм Винограда. Было проведено рассчет сложности алгоритмов и сделаны следующие выводы:

- алгоритм Винограда в большинстве случаев быстрее стандартный алгоритм, но не сильно отличаются;
- алгоритм Винограда с оптимизацией самый быстрый при умножении матриц большого размера, быстрее чем стандартный алгоритм в 20% на матрицах размером 800х800.

Литература

- [1] Корн Г., Корн Т. Алгебра матриц и матричное исчисление // Справочник по математике. 4-е издание. М: Наука, 1978. С. 392—394.
- [2] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9:251-280, 1990.
- [3] Google Testing Framework
 https://github.com/google/googletest
- [4] Google Benchmark https://github.com/google/benchmark