

A consistency test of GR using different multipoles of gravitational radiation from binary black holes

S. Dhanpal, Abhirup Ghosh, P. Ajith, B.S. Sathyaprakash

Testing GR Telecon, December 18, 2017

Method

Gravitational waveform can be decomposed into the two independent polarisations:

$$h(t) := h_{+}(t) - ih_{\times}(t)$$

• Alternatively, expand in a basis of spin -2 weighted spherical harmonics:

$$h(t; \iota, \phi_0, \lambda) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \mathcal{Y}_{lm}^{-2}(\iota, \phi_0) h_{lm}(t, \lambda)$$
$$\lambda = \{M_c, q, t_0, d_L\}$$

• Split contributions from dominant (2, \pm2) modes, and the subdominant higher-order multipole moments:

$$h(t; \iota, \phi_0, \lambda) = \mathcal{Y}_{2,\pm 2}^{-2}(\iota, \phi_0) h_{2,\pm 2}(t, \lambda) + \sum_{\text{H.O.M}} \mathcal{Y}_{lm}^{-2}(\iota, \phi_0) h_{lm}(t, \lambda)$$

Method

• The Test: Check for consistency between estimates of λ , independently measured using the dominant and the sub-dominant modes of the gravitational waveform respectively:

$$h(t; \iota, \phi_0, \lambda, \lambda') = \mathcal{Y}_{2,\pm 2}^{-2}(\iota, \phi_0) h_{2,\pm 2}(t, \lambda) + \sum_{\text{H.O.M}} \mathcal{Y}_{lm}^{-2}(\iota, \phi_0) h_{lm}(t, \lambda')$$

λ: PE estimates using dominant (2, \pm 2) modes

 λ ': PE estimates using subdominant higher-order modes

- If GR is correct, these two independent estimates would be consistent with each other.
- Alternatively define: $\lambda' = \lambda + \Delta \lambda$
- If GR is correct $p(\Delta \lambda)$ should be consistent with 0.

Results

- Analysis:
 - Single IFO PE over $\lambda = \{Mc, q\}$
 - Fixed SNR = 25 (optimally oriented on the sky)
 - Waveform model: higher-order IMR model described in Mehta et al (arxiv:1708.03501, accepted in PRD)
 - Noise PSD: Advanced LIGO ZDHP noise
 - Sampler: emcee

Results

Kludge Waveforms

Results

