問題 行列 $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ によって定まる線形写像 $T_A:\mathbf{R}^2\to\mathbf{R}^2$ について次の問いに答えよ.

- (1) \mathbf{R}^2 の基底 $\mathbf{a}_1=\begin{pmatrix}1\\1\end{pmatrix}$, $\mathbf{a}_2=\begin{pmatrix}1\\-1\end{pmatrix}$ に関する T_A の表現行列 B を求めたい (つまり $(T_A(\mathbf{a}_1),T(\mathbf{a}_2))=(\mathbf{a}_1,\mathbf{a}_2)B)$.
 - (a) \mathbf{R}^2 の標準基底 $e_1=\begin{pmatrix}1\\0\end{pmatrix}, e_2=\begin{pmatrix}0\\1\end{pmatrix}$ に関する T_A の表現行列が A になることを計算して確かめよ

(b) $\{e_1,e_2\}$ と $\{a_1,a_2\}$ の変換行列 P を求めよ、ただし、 $(a_1,a_2)=(e_1,e_2)P$.

(c) 定理 3.2 (および系 3.3) を参考に $\{a_1,a_2\}$ に関する T_A の表現行列 B を求めよ.

(2) \mathbf{R}^2 の基底 $oldsymbol{b}_1 = \left(egin{array}{c} 1 \ 0 \end{array}
ight), oldsymbol{b}_2 = \left(egin{array}{c} 1 \ 1 \end{array}
ight)$ に関する T_A の表現行列 C を求めよ.