厦门大学高等代数 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§5.2 **整除**

思考 在 F[x] 中,是否 2|3? 是否 f(x)|0? 什么情况下 0|f(x)? 什么情况下 f(x)|1?

解 在 F[x] 中,总有 2|3. 因为总存在 $\frac{3}{2}$, 使得 $2 \cdot \frac{3}{2} = 3$.

总有 f(x)|0. 因为总存在 $0 \in F[x]$, 使得 $0 \cdot f(x) = 0$.

当且仅当 f(x) = 0 时, 0|f(x).

当且仅当 $\deg f(x) = 0$ 时, f(x)|1.

思考(1) 设 $f(x) \neq 0$, g(x)|f(x), 则 $\deg f(x) \geq \deg g(x)$, 且等号成立的充分必要条件是 f(x),g(x) 相伴.

(2) 若 $\deg f(x) < \deg g(x)$ 且 g(x)|f(x), 则 f(x) = 0.

解 (1) 因为 g(x)|f(x), 所以存在 h(x), 使得 f(x) = g(x)h(x). 故

$$\deg f(x) = \deg g(x) + \deg h(x) \ge \deg g(x).$$

等号成立的充分必要条件是 $\deg h(x)=0$, 即 h(x) 是非零常数. 所以等号成立的充分必要条件是 f(x),g(x) 相伴.

(2)由(1)即得.

思考整除与数域扩大无关否?即,设F,K是两个数域,且 $F\subseteq K,f(x),g(x)\in F[x]$. 若在F[x]中 g(x)|f(x),在K[x]中是否g(x)|f(x)? 反之,若在K[x]中 g(x)|f(x),在F[x]中是否g(x)|f(x)?

解 整除与数域扩大无关. 事实上, 带余除法与数域扩大无关. 而 g(x)|f(x) 的充分必要条件是 g(x) 除 f(x) 的余式为零.

习题

1. 在什么条件下 x|f(x)?

 $\mathbf{R} x | f(x)$ 的充分必要条件是 f(x) 的常数项为零.

证明 因为 $f_1(x)|g_1(x)$, $g_1(x)g_2(x)|f_1(x)f_2(x)$, 故存在多项式 u(x), v(x) 使得 $g_1(x)=u(x)f_1(x)$, $f_1(x)f_2(x)=v(x)g_1(x)g_2(x)$, 因此 $f_1(x)f_2(x)=u(x)v(x)f_1(x)g_2(x)$. 又因为 $f_1(x)\neq 0$, 由消去律即得 $f_2(x)=u(x)v(x)g_2(x)$, 故 $g_2(x)|f_2(x)$.

3. 求 f(x) 除以 g(x) 的商式和余式.

(1)
$$f(x) = 4x^5 + 7x^3 - 2$$
, $g(x) = 2x^3 + x^2 + 3x - 1$;

(2)
$$f(x) = x^4 - 4x^3 - 1$$
, $g(x) = x^2 - 2x + 1$.

解(1)

所以商式 $q(x) = x^2 - x + 1$, 余式 $r(x) = 4x^2 - 4x - 1$.

- (2) (过程略) 商式 $q(x) = x^2 2x 5$, 余式 r(x) = -8x + 4.
- 4. 当且仅当 a, b, c 满足什么条件时, $x^2 + ax + 1$ 整除 $x^4 + bx^2 + c$?

解 (法一) 由带余除法, $x^2 + ax + 1$ 除 $x^4 + bx^2 + c$ 的商式为 $q(x) = x^2 - ax + (b-1+a^2)$,余式为 $r(x) = a(2-b-a^2)x + (c-b+1-a^2)$. 当且仅当 r(x) = 0 时 $x^2 + ax + 1$ 整除 $x^4 + bx^2 + c$. 而 r(x) = 0 充要条件是 $a(2-b-a^2) = 0$ 且 $(c-b+1-a^2) = 0$,即 a = 0 且 c = b-1 或 $b = 2-a^2$ 且 c = 1.

(法二) 待定系数法. 设 $x^4 + bx^2 + c = (x^2 + ax + 1)(x^2 + dx + e)$. 比较系数, 得到

$$\begin{cases} a+d=0\\ ad+1+e=b\\ ae+d=0\\ e=c \end{cases}$$

整理,得

$$\begin{cases} a(c-1) = 0 \\ 1 + c - a^2c = b \end{cases}$$

解得,

$$\begin{cases} a = 0 \\ 1 + c = b \end{cases}$$

或

$$\begin{cases} c = 1 \\ 2 - a^2 = b \end{cases}$$

5. 证明: x^d-1 整除 x^n-1 的充分必要条件是 d 整除 n.

证明 充分性. 设 n=dk, k 为自然数, 则 $x^n-1=(x^d)^k-1=(x^d-1)((x^d)^{k-1}+(x^d)^{k-2}+\cdots+x^d+1)=(x^d-1)(x^{dk-d}+x^{dk-2d}+\cdots+x^d+1)$, 故 x^d-1 整除 x^n-1 .

必要性. 反证法. 若不然, 设 n = dq + r, 0 < r < d, 则

$$x^{n} - 1 = x^{n} - x^{r} + x^{r} - 1 = x^{r}(x^{dq} - 1) + (x^{r} - 1).$$

由已知 $x^d - 1$ 整除 $x^n - 1$, 而 $x^d - 1$ 整除 $(x^{dq} - 1)$, 因此 $x^d - 1$ 整除 $(x^r - 1)$, 但 这是不可能的,因为 $x^d - 1$ 的次数 d 大于 $(x^r - 1)$ 的次数 r. 故命题得证.