Comprehensive TRM Robustness Report

Generated: 2025-10-14 03:59:38 **Platform:** CUDA A100 GPU

Framework: auto-LiRPA + attack-guided verification

Dataset: MNIST (28×28 grayscale)

Executive Summary

Models Evaluated: Standard TRM, Adversarial TRM

Total Samples Verified: 7168

Perturbation Norm: L ∞ 8 Range: 0.01 – 0.1

Key Findings

- Adversarial training dramatically improves robustness:
- Adversarial TRM: 80.3% verified at ϵ =0.01 Standard TRM: 1.0% verified at ϵ =0.01
- Improvement: 7927%
- Performance characteristics:
- Adversarial TRM avg time: 0.200s per sample
- GPU memory usage: 27.9 MB average
- Efficient verification at scale
- Robustness across perturbation sizes:
- ε=0.01: 80% verified
- ε=0.02: 58% verified
- ε =0.03: 40% verified
- ε=0.04: 19% verified

Verification Results

Figure 1: Certified Robustness vs Perturbation Size

TRM Certified Robustness Comparison 8.0 Standard TRM Adversarial TRM 0.7 0.6 Verified Fraction 0.5 0.4 0.3 0.2 0.1 0.0 0.02 0.04 0.06 0.08 0.10 ε (L∞ perturbation)

Figure 2: Verification Time Analysis

Figure 3: GPU Memory Footprint

Detailed Results Table

Model	ε	Ver.	Fals.	Ver.%	Time(s)	Mem(MB)
Standard TRM	0.01	5	507	1.0%	0.174	25.2
Standard TRM	0.02	0	512	0.0%	0.112	23.7
Standard TRM	0.03	0	512	0.0%	0.074	21.8
Standard TRM	0.04	0	512	0.0%	0.051	20.6
Standard TRM	0.06	0	512	0.0%	0.020	18.9
Standard TRM	0.08	0	512	0.0%	0.007	18.2
Standard TRM	0.1	0	512	0.0%	0.004	18.1
Adversarial TRM	0.01	411	101	80.3%	0.235	27.1
Adversarial TRM	0.02	299	213	58.4%	0.224	28.4
Adversarial TRM	0.03	207	305	40.4%	0.211	28.8
Adversarial TRM	0.04	96	416	18.8%	0.204	28.8
Adversarial TRM	0.06	5	507	1.0%	0.188	28.1
Adversarial TRM	0.08	0	512	0.0%	0.172	27.2
Adversarial TRM	0.1	0	512	0.0%	0.164	26.7

Conclusions

This report demonstrates successful GPU-accelerated robustness verification of Tiny Recursive Models (TRM) using attack-guided α -CROWN verification. **Key Takeaways:** Adversarial training at ϵ =0.15 provides strong certified robustness up to ϵ =0.04 7x improvement in verified robustness compared to standard training Efficient verification: <0.25s per sample, <30MB GPU memory System ready to scale to larger models and datasets **Future Work:** Extend to full 7M parameter TRM models, test on ARC-AGI reasoning tasks, and explore β -CROWN for even tighter bounds.