21603 Model Theory I

Rohan Jain

Contents

Chapter 1		Page 2
1.1	random info	2
1.2	Logic	2

Chapter 1

1.1 random info

rami@cmu.edu username: MOAB password: APLATON

MOAB1.pdf

- 1. Set Theory
- 2. Model Theory
- 3. Recursion Theory
- 4. Proof Theory

1973 book by Chang and Keisler - Model Theory - Highly recommended for elementary model theory. What is model theory? Model Theory = logic + universal algebra 1984 - W. Hodges - Shorter Model Theory model theory = algebraic geometry - field theory Algebraic structures:

- 1. groups
- 2. rings
- 3. vector spaces
- 4. fields
- 5. graphs (V, E)
- 6. ordered structures

Around 1870, mathematicians started to layout the foundations for mathematics. One of the ideas was axiomatization. One example was Euclidean axioms for plane geometry.

1.2 Logic

Definition 1.2.1: Language

L is a language if $L = F \cup R \cup C$ are parameter disjoint.

Definition 1.2.2: L-structure

Let L be a language (similarity type/signature). Then \mathcal{M} is an L-structure provided:

$$\mathcal{M} = (U, \{ f^{\mathcal{M}} \mid f \in F \}, \{ r^{\mathcal{M}} \mid r \in R \}, \{ c^{\mathcal{M}} \mid c \in C \})$$

where U is a nonempty set. U is also called the universe of \mathcal{M} .

For any $f \in F$ there is U(f) natural number such that $f^{\mathcal{M}}: U^{n(F)} \to U, R^{\mathcal{M}} \subseteq U^{n(R)}, C^{\mathcal{M}} \subseteq U, \forall c \in C$.

Notation: $|\mathcal{M}| = U$. The cardinal of \mathcal{M} is |U|. $||\mathcal{M}||$ denotes the cardinality of \mathcal{M} .

Definition 1.2.3: Theory

Let L be a language. A theory T is a set of sentences in L. A sentence is a finite set of symbols from L.

Example 1.2.1 (Sentences)

 $L_{gr} = \{e, \cdot\}. \ e \in C, \cdot \in F. \ T_{gr} = \{\forall x \forall y \forall z (x \cdot (y \cdot z) = (x \cdot y) \cdot z), \forall x (x \cdot e = x, e \cdot x = x), \forall x \exists y (x \cdot y = e, y \cdot x = e)\}.$ These are the group axioms (associativity, identity, existence of inverse).

Definition 1.2.4: Term

Let L be a language. A term is:

- 1. c is a term for any $c \in C$.
- 2. x when x is a variable.
- 3. τ_1, \ldots, τ_k terms, $f \in F$, n(f) = k, then $f(\tau_1, \ldots, \tau_k)$ is a term.

Definition 1.2.5: Term

Term(L) is a minimal set of finite strings of symbols from $L \cup \{(,)\} \cup X$ that contains $C \cup x$ and closed under the following rule:

 $\tau_1, \ldots, \tau_k \in \text{Term}(L), fk$ – place function symbol, then $f(\tau_1, \ldots, \tau_k) \in \text{Term}(L)$

Example 1.2.2 (L_r)

 $L_r = \{0,1,+,-\}. \ \mathrm{Term}(L_r) \supseteq \{\sum a_j x_1^{n_j} \mid a_j \in \mathbb{Z}, n_j \in \mathbb{N}\}.$

Example 1.2.3 $(L_{\rm gr})$

 $\operatorname{Term}(L_{\operatorname{gr}}) \supseteq \{x_1 \cdot x_n \cdots x_n \mid x_i \in X, n \in \omega\}.$

Definition 1.2.6: Fml

Fml(L) is the set of first order formulas in L.