CCP 2002. Filière MP. MATHÉMATIQUES 1.

Corrigé de JL. Lamard (jean-louis.lamard@prepas.org)

Généralités et exemples.

- **1.** Si le produit infini $\prod_{n\geqslant 0} u_n$ converge alors $P_n \xrightarrow[n\to+\infty]{} \ell \in \mathbb{R}^*$ et donc $u_n = \frac{P_n}{P_{n-1}} \xrightarrow[n\to+\infty]{} 1$.
- **2.** a. Soit (u_n) une suite de réels non nuls convergeant vers 1. En écrivant le définition de la limite avec $\varepsilon = \frac{1}{2}$ il vient qu'il existe n_0 tel que $u_n \geqslant \frac{1}{2}$ pour $n \geqslant n_0$. \square
- **2.** b. Notons $C = \prod_{p=0}^{n_0-1} u_p$. Il vient que C est une constante non nulle (puisqu'aucun terme de la suite (u_n) n'est nul par hypothèse) et que $\prod_{p=0}^{n} u_p = C \prod_{p=n_0}^{n} u_p$ pour $n \ge n_0$ ce qui prouve que les produits infinis $\prod_{n \ge 0} u_n$ et $\prod_{n \ge n_0} u_n$ sont de même pature
- 3. Dans toute cette question on peut envisager la suite $(\ln u_n)$ puisque (u_n) est une suite de réels strictement positifs.
- 3. a. La suite (P_n) est une suite de réels strictement positifs et donc, par caractérisation séquentielle de la continuité du logarithme dans un sens et de l'exponentielle dans l'autre, elle converge vers un réel ℓ non nul si et seulement si la suite $(\ln P_n)$ converge vers le réel $\ln \ell$.

En d'autres termes si $u_n > 0$ alors le produit infini $\prod u_n$ converge si et seulement si la série $\sum \ln u_n$ converge et alors $\sum_{n=0}^{+\infty} \ln u_n = \ln \prod_{n=0}^{+\infty} u_n$ et $\prod_{n=0}^{+\infty} u_n = \exp \left(\sum_{n=0}^{+\infty} \ln u_n \right)$. \square

- 2. b. Comme $1+u_n>0$ il découle de 3.a que $\prod (1+u_n)$ converge si et seulement si la série $\sum \ln(1+u_n)$ converge. Si cette série converge alors son terme général tend vers 0 donc u_n tend vers 0 et donc $\ln(1+u_n)\sim u_n>0$ ce
 - qui prouve que la série $\sum u_n$ converge (séries à termes positifs équivalents). Réciproquement si la série $\sum u_n$ converge alors son terme général tend vers 0 donc $u_n \sim \ln(1+u_n) > 0$ ce qui prouve de la même manière que la série $\sum \ln(1+u_n)$ converge.

En conclusion si $u_n > 0$ alors le produit infini $\prod (1 + u_n)$ converge si et seulement si la série $\sum u_n$ converge. \square

- 3. c. Lorsque $0 < u_n < 1$ alors $1 u_n > 0$ et par exactement la même démonstration que ci-dessus (sauf qu'on a affaire à des séries à termes négatifs donc de signe fixe -et donc la règle des équivalents est encore valable-) on prouve que le produit infini $\prod (1-u_n)$ converge si et seulement si la série $\sum u_n$ converge. \square
- **4. a.** $\prod \left(1 \frac{1}{4n^2}\right)$ converge puisque $\sum \frac{1}{4n^2}$ converge (question 3.c). \square
- **4. b.** Idem pour $\prod \left(1 \frac{x^2}{n^2 \pi^2}\right)$ et $x \in]-\pi,\pi[\setminus\{0\}]$. Pour x=0 convergence évidente vers 1. Donc finalement convergence pour $x \in]-\pi,\pi[.$
- **4. c.** Pour x>0 on a $u_n=(1+\frac{x}{n})e^{-x/n}>0$ donc, par la question 3.a, le produit infini $\prod u_n$ est de même nature que la série $\sum \ln u_n$. Or $\ln u_n = -\frac{x}{n} + \ln(1 + \frac{x}{n}) = O(\frac{1}{n^2})$. Donc le produit infini converge. \square
- 5. a. Comme $\frac{1}{n} > 0$, la série $\sum \frac{1}{n}$ est de même nature que le produit infini $\prod (1 + \frac{1}{n})$. Or $P_n = \prod_{k=1}^n \frac{k+1}{k} = n+1$
- **5. b.** Pour $p \ge 2$ on a $\sum_{k=0}^{+\infty} \frac{1}{p^k} = \frac{1}{1-\frac{1}{2}} = \frac{p}{p-1}$ (série géométrique). \square
- 5. c. D'après la question 3.c la série $\sum \frac{1}{p_n}$ est de même nature que le produit infini $\prod (1 \frac{1}{p_n}) = \prod \frac{p_n 1}{p_n}$.

Or, d'après 5.b, $\frac{1}{\Pi_N} = \prod_{n=1}^N \frac{p_n}{p_n - 1} = \prod_{n=1}^N \left(\sum_{k=0}^{+\infty} \frac{1}{p_n^k}\right) \geqslant \prod_{n=1}^N \left(\sum_{k=0}^M \frac{1}{p_n^k}\right) = S_{N,M}$ pour tout entier M. Or $S_{N,M}$ est clairement la somme des inverses des entiers dont la décomposition en facteurs premiers fait intervenir

uniquement les N premiers nombres premiers et en outre à une puissance inférieure ou égale à M.

En faisant tendre M vers $+\infty$, il vient que Π_N est supérieur ou égal à la somme des inverses des entiers dont la décomposition ne fait intervenir que les N premiers nombres premiers. Donc a fortiori $\frac{1}{\prod_N} \geqslant \sum\limits_{k=1}^{p_N} \frac{1}{k}$ et comme

 $p_N \xrightarrow[N \to +\infty]{} +\infty$ et que la série harmonique diverge, il vient que $\frac{1}{\prod_N} \xrightarrow[N \to +\infty]{} +\infty$.

Ainsi $\Pi_N \xrightarrow[N \to +\infty]{} 0$ i.e. le produit infini diverge. Donc :

La série des inverses des nombres premiers diverge. \Box

Développement eulérien du sinus et formule de Wallis.

6. Commençons par remarquer que comme $\cos(-\alpha\pi) = \cos(\alpha\pi)$ la definition de f_{α} par sa restriction à $[-\pi,\pi]$ fermé et par 2π -périodicité a bien un sens.

 f_{α} est clairement continue et de classe \mathcal{C}^1 par morceaux sur \mathbb{R} (discontinuités de première espèce de f'_{α} en les multiples de π). Donc la série de Fourier de f_{α} converge normalement sur \mathbb{R} vers f_{α} .

Comme
$$f_{\alpha}$$
 est clairement paire, tous les b_n sont nuls et il vient pour tout entier n :
$$a_n = 2 < f_{\alpha}(t), \cos(nt) > = \frac{1}{\pi} \int_{2\pi} f_{\alpha}(t) \cos(nt) \, \mathrm{d} \, t = \frac{2}{\pi} \int_0^{\pi} \cos(\alpha t) \cos(nt) \, \mathrm{d} \, t$$

$$= \frac{1}{\pi} \int_0^{\pi} \left(\cos\left(\alpha + n\right) t \right) + \cos\left((\alpha - n) t\right) \right) \, \mathrm{d} \, t = \frac{(-1)^n \sin(\alpha \pi)}{\pi} \left(\underbrace{\frac{1}{\alpha + n} + \frac{1}{\alpha - n}}_{\text{car } \alpha \notin \mathbb{Z}} \right) = (-)^n \frac{2\alpha \sin(\alpha \pi)}{\pi (\alpha^2 - n^2)}.$$

Ainsi
$$f_{\alpha}(t) = \frac{\sin(\alpha \pi)}{\pi} \left(\frac{1}{\alpha} + 2\alpha \sum_{n=1}^{+\infty} (-1)^n \frac{\cos(nt)}{\alpha^2 - n^2} \right) \quad \forall t \in \mathbb{R} \quad \forall \alpha \notin \mathbb{Z} \quad (1). \quad \Box$$

REMARQUE : on retrouve bien la convergence normale de la série ed Fourier sur $\mathbb R$

En appliquant (1) en $t = \pi$ en particulier, on obtient $\cot(\pi\alpha) = \frac{1}{\pi\alpha} + \frac{2\alpha}{\pi} \sum_{n=1}^{+\infty} \frac{1}{\alpha^2 - n^2} \quad \forall \alpha \notin \mathbb{Z}$ (2).

7. a. Comme $x \in]0, \pi[$, g est continue sur]0, x] et au voisinage de 0 on a : $\cot nt = \frac{1 + O(t^2)}{t + O(t^3)} = \frac{1}{t} \cdot \frac{1 + O(t^2)}{1 + O(t^2)} = \frac{1}{t} \cdot (1 + O(t^2)) \left(1 + O(t^2)\right) = \frac{1}{t} \cdot \left(1 + O(t^2) = \frac{1}{t} + O(t)\right)$ ce qui prouve que g est in the first of [0, t] and [0, t] is the first of [0, t] in the first of [0, t] is the first of [0, t] in the first of [0, t] is the first of [0, t] in the first of [0, t] is the first of [0, t] in the first of [0, t] in the first of [0, t] is the first of [0, t] in the first of [0, t] in the first of [0, t] in the first of [0, t] is the first of [0, t] in the first of [0, t] in the first of [0, t] is the first of [0, t] in the first of [0, t] is the first of [0, t] in th

Comme
$$x \in]0, \pi[$$
 on a $\int_{\varepsilon}^{x} g(t) dt = \ln(\sin x) - \ln(x) - \left(\ln(\sin \varepsilon) - \ln \varepsilon\right)$.

Or
$$\ln(\sin \varepsilon) - \ln \varepsilon = \ln \frac{\sin \varepsilon}{\varepsilon} \xrightarrow{\varepsilon \to 0} 0$$
. Donc $\int_0^x g(t) dt = \ln \frac{\sin x}{x}$. \square

7. b. Pour $0 < t \le x < \pi$ on peut écrire $t = \alpha \pi$ avec $\alpha = \frac{t}{\pi} \notin \mathbb{Z}$ et la formule (2) fournit alors :

 $\cot n t = \frac{1}{t} + \frac{2t}{\pi^2} \sum_{n=1}^{+\infty} \frac{1}{\frac{t^2}{2} - n^2} \text{ soit } g(t) = 2t \sum_{n=1}^{+\infty} \frac{1}{t^2 - n^2 \pi^2}. \text{ En } t = 0 \text{ la série converge (Riemann) donc le membre } t = 0$

de droite a un sens et vaut 0 = g(0). Ainsi l'égalité est encore vraie en t = 0.

En conclusion
$$g(t) = 2t \sum_{n=1}^{+\infty} \frac{1}{t^2 - n^2 \pi^2} \quad \forall t \in [0, x] \quad (3). \quad \Box$$

7. c Posons $u_n(x) = 1 - \frac{x^2}{n^2\pi^2}$ pour $x \in]0,\pi[$. On sait par la question 4.b que le produit infini $\prod u_n(x)$ converge et

d'après la remarque de la question 3a, comme $u_n(x) > 0$, on a $\ln \prod_{n=1}^{+\infty} u_n(x) = \sum_{n=1}^{+\infty} \ln u_n(x)$.

Il suffit donc de prouver que
$$\sum_{n=1}^{+\infty} \ln u_n(x) = \ln \frac{\sin x}{x}$$
 pour conclure i.e. $\sum_{n=1}^{+\infty} \ln u_n(x) = \int_0^x g(t) dt$ d'après 7.a.

Or pour $t \in [0, x]$ on a $g(t) = \sum_{n=1}^{+\infty} \frac{2t}{t^2 - n^2 \pi^2}$ et cette série converge normalement sur [0, x] car : $\left| \frac{2t}{t^2 - n^2 \pi^2} \right| = \frac{2t}{n^2 \pi^2 - t^2} \leqslant \frac{2\pi}{n^2 \pi^2 - \pi^2} = \frac{2}{(n^2 - 1)\pi}$ pour $n \geqslant 2$.

$$\left| \frac{2t}{t^2 - n^2 \pi^2} \right| = \frac{2t}{n^2 \pi^2 - t^2} \leqslant \frac{2\pi}{n^2 \pi^2 - \pi^2} = \frac{2}{(n^2 - 1)\pi} \text{ pour } n \geqslant 2.$$

On peut donc intégrer terme à terme et $\int_0^x g(t) dt = \sum_{n=0}^{+\infty} \left[\ln |t^2 - n^2 \pi^2| \right]_0^x = \sum_{n=0}^{+\infty} \ln \left(1 - \frac{x^2}{n^2 \pi^2} \right) = \sum_{n=0}^{+\infty} u_n(x).$

Ainsi
$$\prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right) = \frac{\sin x}{x} \quad \forall x \in]0, \pi[. \quad \Box$$

On en déduit $\sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$ pour $x \in]0, \pi[$. Cette égalité est encore clairement vraie en 0 (le produit

infini converge bien). Également sur] $-\pi$, 0[par parité. Finalement $\sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2\pi^2}\right) \quad \forall x \in]-\pi, \pi[. \quad \Box$

8. En particulier pour $x = \frac{\pi}{2}$ on obtient $\prod_{n=1}^{+\infty} \left(1 - \frac{1}{4n^2}\right) = \frac{2}{\pi}$.

Formule de Weierstrass et constante d'Euler.

9. a. Notons $\varphi:(x,t)\longmapsto e^{-t}t^{x-1}$ et $\varphi_x:t\longmapsto \varphi(x,t)$.

Pour tout réel x, la fonction φ_x est continue donc localement intégrable sur $]0,+\infty[$ et intégrable en $+\infty$ car $\varphi_x(t)=o(\frac{1}{t^2})$. Au voisinage de 0^+ on a $\varphi_x(t)\sim t^{x-1}>0$ donc, par la règle des équivalents pour les intégrales de

fonctions positives, φ_x est intégrable en 0^+ si et seulement si x > 0.

En conclusion le domaine de définition de la fonction Γ est $]0, +\infty[$. \square

9. b. $\Gamma(1) = 1$. \square

REMARQUE: par intégration par parties on obtient plus généralement $\Gamma(n) = (n-1)!$ pour tout entier n > 0.

- 9. c Pour montrer que Γ est de classe \mathcal{C}^1 sur $]0,+\infty[$ et dérivable sous le signe intégral, il suffit de prouver que :
 - 1/ Pour tout x > 0 la fonction φ_x est intégrable sur $]0, +\infty[$.
 - $2/\frac{\partial \varphi}{\partial x}(x,t)$ est définie sur $]0,+\infty[\times]0,+\infty[$.
 - 3/ Pour tout t > 0 la fonction $x \longmapsto \frac{\partial \varphi}{\partial x}(x,t)$ est continue sur $]0,+\infty[$.
 - 4/ Pour tout x > 0 la fonction $t \longmapsto \frac{\partial \varphi}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$.
 - 5/ La fonction $(x,t) \longmapsto \frac{\partial \varphi}{\partial x}(x,t)$ est localement dominée en x par une fonction intégrable sur $]0,+\infty[$.

La première propriété a été établie en a. et les propriétés 2, 3 et 4 sont claires avec $\frac{\partial \varphi}{\partial x}(x,t) = \ln t \times \varphi(x,t)$.

Soit désormais un segment K=[a,b] quelconque inclus dans $]0,+\infty[$. Alors pour $(x,t)\in K\times]0,+\infty[$ on a $\left|\frac{\partial \varphi}{\partial x}(x,t)\right|\leqslant \psi_K(t)$ avec $\psi_K(t)=\ln t.e^{-t}.t^{a-1}$ pour $t\in]0,1]$ et $\psi_K(t)=\ln t.e^{-t}.t^{b-1}$ pour $t\geqslant 1$.

Cette fonction ψ_K est continue par morceaux (et même continue) et intégrable sur $]0, +\infty[$ car dominée par $\frac{1}{t^2}$ au voisinage de $+\infty$ par croissances comparées et équivalente en 0^+ à $\ln t.t^{a-1}$ de signe fixe (négatif) et intégrable en 0 car elle-même dominée par $\frac{1}{t^c}$ avec 1-a < c < 1. Ce qui prouve que la propriété 4 est satisfaite.

En conclusion Γ est de classe \mathcal{C}^1 sur $]0,+\infty[$ et $\Gamma'(t)=\int_0^{+\infty} \ln t.e^{-t}.t^{x-1}\,\mathrm{d}\,t.$

REMARQUE : par itération claire on prouve que γ est de classe \mathcal{C}^{∞} et que $\Gamma^{(n)}(x) = \int_0^{+\infty} (lnt)^n . e^{-t} . t^{x-1} dt$.

10.a. Commençons par remarquer les fonction f_n sont continues sur $]0, +\infty[$.

On sait que par concavité de la fonction logarithme on a $\ln(1+x) \leqslant x$ pour tout x > -1 donc que $\ln(1-y) \leqslant -y$ pour tout y < 1. Donc $\left(1 - \frac{t}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{t}{n}\right)\right) \leqslant e^{-t}$ pour $t \in]0, n[$ par croissance de la fonction exponentielle.

Cette inégalité est encore vraie pour t = n car $0 \le e^{-n}$.

Il en découle que $f_n(t) \leq e^{-t}$ pour tout $n \geq 1$ et tout $t \in]0, +\infty[$. \square

10.b. Remarquons que la suite (f_n) converge simplement sur $]0, +\infty[$ vers la fonction $t \mapsto e^{-t}$ car, pour t fixé, on a $f_n(t) = \left(1 - \frac{t}{n}\right)^n$ pour n assez grand (en fait n > t).

Il en découle que la suite (g_n) définie par $g_n(t) = f_n(t)t^{x-1}$ où x est un réel strictement positif fixé converge simplement sur \mathbb{R} vers $\varphi_x(t)$.

Ainsi la suite de fonctions $(g_n(t))$ est une suite de fonctions continues qui converge simplement sur $]0, +\infty[$ vers la fonction continue $\varphi_x(t)$. En outre cette suite est dominée par la fonction intégrable $\varphi_x(t)$ elle-même d'après le a. et le fait que $t^{x-1} > 0$. Le théorème de la convergence dominée prouve alors que :

$$\int_{0}^{+\infty} g_n(t) dt = \int_{0}^{n} \left(1 - \frac{t}{n}\right)^n t^{x-1} dt \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} \varphi_x(t) dt = \Gamma(x) \quad \forall x > 0. \quad \Box$$

- **11.a.** Soit x fixé dans $]0, +\infty[$. La fonction $u \longmapsto (1-u)^n$ est de classe \mathcal{C}^1 sur [0,1] et $u \longmapsto u^{x-1}$ continue sur [0,1]. On peut donc intégrer par parties sur $[\varepsilon,1]$. Un calcul facile suivi d'un passage à la limite prouve alors que $I_n(x) = \frac{n}{x}I_{n-1}(x+1) \quad \forall x>0 \quad \forall n\geqslant 1.$
- **11.b.** Une itération évidente fournit alors $I_n(x) = \frac{n!}{x(x+1)...(x+n-1)}I_0(x+n) = \frac{n!}{x(x+1)...(x+n)}$. \square

11.c. Par changement de variable il vient $\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = n^x I_n(x)$. Il résulte alors des questions 10.b et 11.c que $\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{\prod_{x \to +\infty} (x+k)} \quad \forall x > 0. \quad \Box$

12.a. Soit
$$x$$
 fixé dans $]0,1[$. La formule de Gauss s'écrit aussi $\frac{1}{\Gamma(x)} = x \lim_{n \to +\infty} \frac{1}{n^x} \cdot \prod_{k=1}^n \left(1 + \frac{x}{k}\right)$.

Comme 0 < x < 1 on a 1 - x > 0 et donc $\frac{1}{\Gamma(1 - x)} = \lim_{n \to +\infty} \frac{\prod_{k=1}^{n-1} (k - x)}{n! \ n^{1 - x}} = (n + 1 - x) \cdot \frac{1}{n^{1 - x}} \cdot \prod_{k=1}^{n} \left(1 - \frac{x}{k}\right)$. $\operatorname{donc} \frac{1}{\Gamma(x)\Gamma(1-x)} = x \lim_{n \to +\infty} \frac{n+1-x}{n} \times \prod_{k=1}^{n} \left(1 - \frac{x^2}{k^2}\right). \text{ Comme } \frac{n+1-x}{n} \text{ tend vers 1, cela prouve la convergence}$ du produit infini et que $\frac{1}{\Gamma(x)\Gamma(1-x)} = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2}\right) \quad \forall x \in]0,1[. \quad \Box$

12.b. La formule de la question 7.c s'écrit également
$$\sin \pi x = \pi x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2}\right) \quad \forall x \in]-1,1[$$
. D'où la formule des compléments $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x} \quad \forall x \in]0,1[$.

12.c. Le
$$C^1$$
 difféormorphisme $t \longmapsto \sqrt{t} = u$ de $]0, +\infty[$ sur lui-me montre que $\int_0^{+\infty} e^{-u^2} du = \frac{1}{2}\Gamma(\frac{1}{2})$. Or la formule des compléments montre que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Donc $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

13.a.
$$u_n = -\ln\left(1 - \frac{1}{n}\right) - \frac{1}{n} = O\left(\frac{1}{n^2}\right)$$
.

13.b.
$$v_n = 1 - \sum_{k=2}^n u_k$$
.

14. On a vu que
$$\frac{1}{\Gamma(x)} = x \lim_{n \to +\infty} \frac{1}{n^x} \cdot \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = x \lim_{n \to +\infty} w_n(x).$$

Or
$$w_n(x) = e^{-x \ln n} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = e^{-x(1+1/2+\dots+1/n-v_n)} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = e^{xv_n} \cdot \prod_{k=1}^n \left(1 + \frac{x}{k}\right) e^{-x/k}$$
.

Par ailleurs on sait (question 4.c) que le produit infini $\prod_{k=1}^n \left(1 + \frac{x}{k}\right) e^{-x/k}$ converge et que la suite (v_n) converge vers

 γ donc que $e^{-v_n x}$ tend vers $e^{\gamma x}$ par continuité de l'exponentielle. Il en résulte la formule de Weierstrass :

$$\frac{1}{\Gamma(x)} = x \ e^{\gamma x} \ \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) e^{-x/k} \quad \forall x > 0. \quad \Box$$

15.a. D'après la question 3 et sa remarque, la formule de Weierstrass permet d'écrire :
$$\ln\left(\Gamma(x)\right) = -\ln x - \gamma x - \sum_{k=1}^{+\infty} \left(\ln\left(1 + \frac{x}{k}\right) - \frac{x}{k}\right) = -\ln x - \gamma x - \sum_{k=1}^{n} u_n(x) = -\ln x - \gamma x - S(x) \quad (1).$$

Or les fonction $u_n(x)$ sont de classe C^1 sur $]0, +\infty[$, la série $\sum u_n(x)$ y converge simplement et la série dérivée $-\sum \frac{x}{k(k+x)}$ converge localement normalement sur $]0, +\infty[$ car $\left|\frac{x}{k(k+x)}\right| \le \frac{b}{k(k+a)} \sim \frac{b}{k^2}$ pour tout $x \in [a,b]$ avec 0 < a < b. Cela prouve que la fonction S est de classe C^1 sur $]0, +\infty[$ et qu'on peut dériver terme à terme de sorte que S'x) = $-\sum_{k=1}^{+\infty} \frac{x}{k(k+x)} \quad \forall x \in]0, +\infty[$.

Par ailleurs la fonction Γ étant de classe \mathcal{C}^1 et à valeurs positives on a $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(\Gamma(x) \right) = \frac{\Gamma'(x)}{\Gamma(x)}$.

En dérivant la relation (1) ci-dessus, il vient alors $\frac{\Gamma'(x)}{\Gamma(x)} = -\frac{1}{x} - \gamma + \sum_{k=1}^{+\infty} \frac{x}{k(k+x)} \quad \forall x > 0.$

15.b. En particulier pour
$$x = 1$$
 on obtient $\Gamma'(1) = -1 - \gamma + \sum_{k=1}^{+\infty} \frac{1}{k(k+1)}$.

Or $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ de sorte que par télescopage (en prenant une somme partielle) $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = 1$ et $\Gamma'(1) = \int_0^{+\infty} e^{-t} \ln t \, dt$ (Cf question 9.c). Donc $\int_0^{+\infty} e^{-t} \ln t \, dt = -\gamma$. \square