

Emisyon Miktarlarının Belirlenmesi

- ➤ Kaynağında ölçüm
- Dış ortam hava kalitesi ölçümleri
- Emisyon envanterleri
- Emisyon envanteri:
- ➤ Belli bir zaman periyodu içinde sınırları belirli bir alandaki tüm kirletici kaynaklar tarafından atmosfere salınan hava kirleticilerinin miktarlarının listesidir.

Emisyon Envanterlerinin Kullanıldığı Yerler

- ➤ Hava kalitesi modellerinde girdi olarak
- > Hava kalitesinin belirlenmesinde
- > Temiz hava planlarının oluşturulmasında
- > Emisyon azaltım stratejilerinin belirlenmesinde
- Erken uyarı sistemlerinin oluşturulmasında

Emisyon Envanteri

Boyutuna Göre

- > Yerel
 - 1 × 1 km
- Bölgesel
 - 50 × 50 km veya 20 × 20 km
- Küresel
 - 1° enlem × 1° boylam

Amacına göre

- > Hızlı ve basit envanterler
- > Detaylı envanterler
- Özel envanterler

Emisyon Envanterlerindeki Yaklaşımlar

➤ Tavandan-tabana (top-down) yaklaşım

 Ulusal veya bölgesel istatistiklerden yola çıkılarak nüfus, işçi sayıları veya yakıt satış miktarları gibi verilerin yardımıyla yerel verilerin elde edildiği yaklaşım türü

Aşağıdan-yukarı (bottom-up) yaklaşım

- Envanter alanındaki her bir kirletici kaynağı ile ilgili verilerin mevcut olması veya anket çalışmaları ile elde edilmesi gerekir.
- Daha masrafli
- Daha fazla zaman gerektirir
- Sonuçlar daha kesin ve güvenilirdir.

Emisyon Envanterinin Aşamaları

- 1. Planlama
- 2. Veri toplama
- 3. Veri analizi ve emisyonların tahmini
- 4. Raporlama

Emisyonların tahmininde kullanılan yöntemler şunlardır:

- > anket çalışmaları
- > emisyonların sürekli takibi
- > emisyon kaynağında yapılan testler
- kütle balansı
- yakıt analizi
- emisyon faktörleri
- > emisyon belirleme modelleri
- mühendislik karar vermesi

Emisyon Faktörleri

- Emisyon faktörü, kirletici kaynağının birim aktivitesi sonucu atmosfere saldığı ortalama kirletici miktarını belirtmek için kullanılan bir değerdir.
- Emisyon faktörleri genellikle kirletici kütlesinin birim aktiviteye bölümü şeklinde ifade edilirler.
- ➢ Örnek:
 - kg CO / km araç
 - kg CH₄ / ton üretim

Emisyon Miktarlarının Hesaplanması

- $ightharpoonup E = A \times EF$ veya
- ightharpoonup E = A x EF x (1-ER/100)
- E: emisyon miktarı,
- > A: aktivite istatistiği,
- ➤ EF: emisyon faktörü,
- > ER: toplam emisyon giderim verimi (%)

Motorlu Taşıtlar için Emisyon Miktarı Hesabı

- \triangleright E = A × S × EF
- ➤ burada;
- ➤ E: Emisyon Miktarı
- ➤ A: Araç Sayısı
- ➤S: Seyahat Mesafesi
- > EF: Emisyon Faktörü

Motorlu Taşıt Emisyonlarını Etkileyen Faktörler

- > Aracın türü (otomobil, minibüs, kamyon, otobüs vb.)
- > Aracın yükü
- ➤ Motor hacmi
- > Aracın yaşı
- > Kullanılan teknoloji
- Dış ortam sıcaklığı
- Kullanılan yakıt tipi (benzin, dizeli LPG)
- > Trafiğin akış hızı
- Sürücünün psikolojik davranışları (kibar, agresif)

Emisyon Envanterlerinde Belirsizlik

- Emisyon faktörleri verinin kalitesine göre A, B, C, D ve E şeklinde sınıflandırılır.
- A sınıfı veriler en güvenilir veri olup E sınıfı verilere doğru gidildikçe belirsizlik artmaktadır.
- Envanter sonuçlarının geçerliliğinin kanıtlanabilmesi için kirletici kaynağında ve dış ortamda yapılacak olan ölçümlerle karşılaştırılmaları gerekir.

Emisyon Faktörleri Veritabanları

- ➤ EMEP/EEA air pollutant emission inventory guidebook 2019 (Avrupa Çevre Ajansı)
- Compilation of Air Pollution Emission Factors (USEPA AP-42) (Amerikan Çevre Koruma Örgütü)
- ➤ IPCC Guidelines for National Greenhouse Gas Inventories (IPCC) (Hükümetler arası İklim Değişikliği Paneli)

EMEP/EEA Air Pollutant Emission Inventory Guidebook - 2019

https://www.eea.europa.eu/publications/emep-eea-guidebook-2019

EMEP/EEA air pollutant emission inventory guidebook 2019
Technical guidance to prepare national emission inventories

AP-42: Compilation of Air Emission Factors

https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors

IPCC Guidelines for National Greenhouse Gas Inventories

http://www.ipcc-nggip.iges.or.jp/public/2006gl/

Örnek Emisyon Faktörü Seçimleri - 1

Evsel ısınmada doğalgaz yanması için EF seçimi (EMEP/EEA 2019)

Emisyon faktörlerinin birimi g/GJ olduğu için kullanılan yakıtların enerji miktarlarını hesaplamak gerekir.

Enerji Miktarı = Yakıt Miktarı x Yakıt Alt Isıl Değeri

Örnek Emisyon Faktörü Seçimleri - 2

> Termik santralde bütümlü kömür yanması için EF seçimi (EPA)

Table 1.1-3. EMISSION FACTORS FOR SO., NO., AND CO FROM BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION®

		SO _x ^b		NO _x ^c		CO ^{d,e}	
Firing Configuration	SCC	Emission Factor (lb/ton)	EMISSION FACTOR RATING	Emission Factor (lb/ton)	EMISSION FACTOR RATING	Emission Factor (lb/ton)	EMISSION FACTOR RATING
PC, dry bottom, wall-fired ^r , bituminous Pre-NSPS ^g	1-01-002-02 1-02-002-02 1-03-002-06	388	A	22	A	0.5	A
PC, dry bottom, wall-fired', bituminous Pre-NSPS ^g with low-NO _x burner	1-01-002-02 1-02-002-02 1-03-002-06	38S	Α	11	A	0.5	A
PC, dry bottom, wall-fired ^f , bituminous NSPS ^g	1-01-002-02 1-02-002-02 1-03-002-06	38S	A	12	A	0.5	A
PC, dry bottom, wall-fired ^r , sub-bituminous Pre-NSPS ^g	1-01-002-22 1-02-002-22 1-03-002-22	35S	Α	12	C	0.5	A
PC, dry bottom, wall fired ^f , sub-bituminous NSPS ^g	1-01-002-22 1-02-002-22 1-03-002-22	35S	Α	7.4	Α	0.5	A
PC, dry bottom, cell burner ^h fired, bituminous	1-01-002-15	388	A	31	A	0.5	A
PC, dry bottom, cell burner fired, sub-bituminous	1-01-002-35	358	: ‰ _A KUI	kür <u>t</u> or	anı _E	0.5	A

Yakma teknolojisi, kontrol ekipmanı, yakıt türü vb. göre seçim yapılır.

Örnek

- PC: pulvarize kömür
- Wall fired tangential fired
- Low burner NOx (NOx kontrolü)
- Hand fed: Elle beslemeli sistem
- FBC: akışkan yatakta yakma

Örnek Emisyon Faktörü Seçimleri - 2

➤ Termik santralde bütümlü kömür yanması için EF seçimi (EPA)

Table 1.1-4. UNCONTROLLED EMISSION FACTORS FOR PM AND PM-10 FROM BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION³

		Filterable	PM ^b	Filterable PM-10	
Firing Configuration	SCC	Emission Factor (lb/ton)	EMISSION FACTOR RATING	Emission Factor (lb/ton)	EMISSION FACTOR RATING
PC-fired, dry bottom, wall-fired	1-01-002-02/22 1-02-002-02/22 1-03-002-06/22	10A	Α	2.3A	Е
PC-fired, dry bottom, tangentially fired	1-01-002-12/26 1-02-002-12/26 1-03-002-16/26	10A	В	2.3A ^c	E
PC-fired, wet bottom	1-01-002-01/21 1-02-002-01/21 1-03-002-05/21	7A ^d	D	2.6A	E
Cyclone furnace	1-01-002-03/23 1-02-002-03/23 1-03-002-03/23	A: % kü	il orar	0.26A	E
Spreader stoker	1-01-002-04/24 1-02-002-04/24 1-03-002-09/24	66°	В	13.2	E
Spreader stoker, with multiple cyclones, and reinjection	1-01-002-04/24 1-02-002-04/24 1-03-002-09/24	17	В	12.4	Е
Spreader stoker, with multiple cyclones, no reinjection	1-01-002-04/24 1-02-002-04/24 1-03-002-09/24	12	A	7.8	Е

Figure 2.1: Different coal burner configurations (main systems applied)

Best Available Techniques (BAT) Reference Document for Large Combustion Plants, IPPC, 2017