

Public Key Encryption

Göran Andersson

goeran@kth.se

Symmetric Key Encryption

Cont'd

The Advanced Encryption Standard (AES)

- In 1997, the U.S. National Institute for Standards and Technology (NIST) put out a public call for a replacement to DES.
- It narrowed down the list of submissions to five finalists, and ultimately chose an algorithm that is now known as the **Advanced Encryption Standard (AES)**.
- AES is a block cipher that operates on 128-bit blocks. It is designed to be used with keys that are 128, 192, or 256 bits long, yielding ciphers known as AES-128, AES-192, and AES-256.

3/27/2017

AES Round Structure

- The 128-bit version of the AES encryption algorithm proceeds in ten rounds (10, 12 or 14).
- Each round performs an invertible transformation on a 128-bit array, called state.
- The initial state X₀ is the XOR of the plaintext P with the key K:
- $X_0 = P XOR K.$
- Round i (i = 1, ..., 10) receives state X_{i-1} as input and produces state X_i.
- The ciphertext C is the output of the final round: $C = X_{10}$.

AES Rounds

- Each round is built from four basic steps:
- 1. SubBytes step: an S-box substitution step
- 2. ShiftRows step: a permutation step
- 3. MixColumns step: a matrix multiplication step
- **4. AddRoundKey step**: an XOR step with a **round key** derived from the 128-bit encryption key

Block Cipher Modes

- A block cipher mode describes the way a block cipher encrypts and decrypts a sequence of message blocks.
- Electronic Code Book (ECB) Mode (is the simplest):
 - Block P[i] encrypted into ciphertext block C[i] = $E_{\kappa}(P[i])$
 - Block C[i] decrypted into plaintext block M[i] = D_k(C[i])

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Strengths and Weaknesses of ECB

• Strengths:

- Is very simple
- Allows for parallel encryptions of the blocks of a plaintext
- Can tolerate the loss or damage of a block

Weakness:

 Documents and images are not suitable for ECB encryption since patters in the plaintext are repeated in the ciphertext:

Figure 8.6: How ECB mode can leave identifiable patterns in a sequence of blocks: (a) An image of Tux the penguin, the Linux mascot. (b) An encryption of the Tux image using ECB mode. (The image in (a) is by Larry Ewing, lewing@isc.tamu.edu, using The Gimp; the image in (b) is by Dr. Juzam. Both are used with permission via attribution.)

Cipher Block Chaining (CBC) Mode

- In Cipher Block Chaining (CBC) Mode
 - The previous ciphertext block is combined with the current plaintext block $C[i] = E_K(C[i-1] \oplus P[i])$
 - C[-1] = V, a random block separately transmitted encrypted (known as the initialization vector)
 - Decryption: $P[i] = C[i-1] \oplus D_K(C[i])$

Strengths and Weaknesses of CBC

Strengths:

- Doesn't show patterns in the plaintext
- Is the most common mode
- Is fast and relatively simple

Weaknesses:

- CBC requires the reliable transmission of all the blocks sequentially
- CBC is not suitable for applications that allow packet losses (e.g., music and video streaming)

Java AES Encryption Example

Source

http://docs.oracle.com/javase/8/docs/api/javax/crypto/package-summary.html

Generate an AES key

```
KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecretKey aesKey = keygen.generateKey();
```

Create a cipher object for AES in ECB mode and PKCS5 padding

```
Cipher aesCipher;
```

```
aesCipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
```

Encrypt

```
aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);
byte[] plaintext = "My secret message".getBytes();
byte[] ciphertext = aesCipher.doFinal(plaintext);
```

Decrypt

```
aesCipher.init(Cipher.DECRYPT_MODE, aesKey);
byte[] plaintext1 = aesCipher.doFinal(ciphertext);
```


Mathematica AES Example

```
In[1]:= msg = "This is a secret that cannot be revealed!";
In[2]:= keyAES = GenerateSymmetricKey[
        Method → < | "Cipher" → "AES256", "BlockMode" → "CBC" | > ]
Out[2]= SymmetricKey
In[3]:= cipherAES = Encrypt [keyAES, msg]
                                  data length: 48 bytes
Out[3]= EncryptedObject
                                  IV length: 128 bits
                                  original form: String
In[4]:= Decrypt[keyAES, cipherAES]
Out[4]= This is a secret that cannot be revealed!
```


Mathematica AES Example

The information can be extracted by

```
In[5]:= Normal[keyAES]
\mathsf{Out}_{[5]}= SymmetricKey \Big|\Big\{\mathsf{Cipher} 	o \mathsf{AES256}, \mathsf{BlockMode} 	o \mathsf{CBC},
       \texttt{Key} 	o \texttt{ByteArray} \Big[ \ \ \texttt{32 bytes} \ \Big], \texttt{InitializationVector} 	o \texttt{None} \Big\} \Big]
In[6]:= keyBytesAES = Normal[keyAES["Key"]]
24, 182, 179, 182, 92, 29, 56, 52, 100, 192, 168,
      241, 3, 142, 35, 129, 185, 162, 31, 38, 100, 139}
     The cipher can be transformed into bytes by
In[7]:= cipherBytesAES = Normal[cipherAES["Data"]]
185, 221, 185, 69, 230, 59, 194, 44, 222, 88, 73, 201,
      163, 32, 53, 146, 3, 135, 94, 114, 217, 147, 225, 85,
      130, 192, 52, 100, 95, 150, 129, 91, 239, 38, 116, 242}
```


Public Key Encryption

Public-Key Cryptography

- Bob has two keys: a **private key**, S_B , which Bob keeps secret, and a **public key**, P_B , which Bob broadcasts widely.
- Alice encrypts using Bob's public key, P_B ,
- $C = E_{P_R}(M)$
- Bob then uses his private key to decrypt the message
- $M = D_{S_R}(C)$.

Public-Key Cryptography

Separate keys are used for encryption and decryption.

Public Key Distribution

Only one key pair is needed for each participant

Math Concepts (Review)

Fundamental theorem of arithmetic

Every integer n > 1 has a unique decomposition of prime factors

$$n = \prod_{i=1}^{r} p_i^{e_i}$$

Example:
$$13276725 = 3 \times 5^2 \times 7 \times 11^3 \times 19$$

Coprime

• Two integers n_1 and n_2 are relatively prime or coprimes iff $gcd(n_1, n_2) = 1$

Example:
$$gcd(15, 16) = gcd(3 \times 5, 2^4) = 1$$

Example: $gcd(700, 392) = gcd(2^2 5^2 7, 2^3 7^2)$
 $= gcd(2^2 5^2 7^1, 2^2 2^1 7^1 7^1) = 2^2 7^1 = 28 \neq 1$

Math Concepts (Review)

Inverse

• In \mathbb{Z}_n $i = a^{-1}$ is the (multiplicative) inverse to a iff a $i = 1 \mod n$

$$a \in \mathbf{Z}_n$$
, : $\gcd(a, n) = 1 \Leftrightarrow a^{-1} \in \mathbf{Z}_n$

• This means that if a is a coprime to n then a^{-1} exists

Euler's totient function

• In $\mathbb{Z}_n \phi(n)$ gives the number of coprimes to n

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$$

Problem

- How many invertible elements are there in \mathbb{Z}_{19} ?
- in \mathbb{Z}_{63} ?

Math Concepts (Review)

Euler's theorem

$$a \in \mathbf{Z}_n$$
, $\gcd(a, n) = 1 \Rightarrow a^{\phi(n)} \equiv 1 \mod (n)$

Example: What's 5¹⁰²⁰⁰ mod 10403?

- Consider \mathbf{Z}_n , $n = 10403 = 101 \times 103$.
- We have $\phi(10403) = (101-1)(103-1) = 10200$.
- Then since n and 5 are coprimes we have: $5^{10200} = 5^{\phi(10403)} = 1 \mod 10403$

Problem

• Compute 10^{842} in \mathbf{Z}_{147}

RSA

- RSA encryption was introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman
- Its security is based on the fact that it is time-consuming to factorize large numbers
- The encryption method makes use of Euler's theorem

RSA Cryptosystem

• Setup:

- -n = pq, with p and q primes
- -e relatively prime to

$$\phi(n) = (p-1)(q-1)$$

- -d inverse of e in $Z_{\phi(n)}$
- Keys:
 - -Public key: $K_E = (n, e)$
 - -Private key: $K_D = d$
- Encryption:
 - -Plaintext M in Z_n
 - $-C = M^e \mod n$
- Decryption:
 - $-M = C^d \mod n$

• Example

■ Setup:

•
$$p = 7$$
, $q = 17$

•
$$n = 7.17 = 119$$

•
$$\phi(n) = 6.16 = 96$$

•
$$e = 5$$

- Keys:
 - public key: (119, 5)
 - private key: 77
- Encryption:

•
$$C = 19^5 = 66 \mod 119$$

- Decryption:
 - $C = 66^{77} = 19 \mod 119$

Complete RSA Example

• Setup:

$$-p = 5, q = 11$$

 $-n = 5.11 = 55$
 $-\phi(n) = 4.10 = 40$
 $-e = 3$
 $-d = 27 (3.27 = 81 = 2.40 + 1)$

- Encryption
 - $C = M^3 \mod 55$
- Decryption

■
$$M = C^{27} \mod 55$$

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{C}	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
C	39	25	21	33	12	19	5	31	48	7	24	50	36	43	22	34	30	16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
C	53	37	29	35	6	3	32	44	45	41	38	42	4	40	46	28	47	54

Problem

• With n = 323 and e = 5 encrypt the message m = 4

Security

- Security of RSA based on difficulty of factoring
 - Widely believed
 - Best known algorithm takes exponential time
- RSA Security factoring challenge (discontinued)
- In 1999, 512-bit challenge factored in 4 months using 35.7 CPU-years
 - 160 175-400 MHz SGI and Sun
 - 8 250 MHz SGI Origin
 - 120 300-450 MHz Pentium II
 - 4 500 MHz Digital/Compaq

- In 2005, a team of researchers factored the RSA-640 challenge number using 30 2.2GHz CPU years
- In 2004, the prize for factoring RSA-2048 was \$200,000
- Current practice is 2,048-bit keys
- Estimated resources needed to factor a number within one year

Length (bits)	PCs	Memory
430	1	128MB
760	215,000	4GB
1,020	342×10 ⁶	170GB
1,620	1.6×10 ¹⁵	120TB

Correctness

- We show the correctness of the RSA cryptosystem for the case when the plaintext M does not divide n
- Namely, we show that $(M^e)^d \bmod n = M$
- Since $ed \mod \phi(n) = 1$, there is an integer k such that

$$ed = k\phi(n) + 1$$

 Since M does not divide n, by Euler's theorem we have

$$M^{\phi(n)} \mod n = 1$$

Thus, we obtain $(M^e)^d \bmod n = M^{ed} \bmod n = M^{k\phi(n)+1} \bmod n = MM^{k\phi(n)} \bmod n = M(M^{\phi(n)})^k \bmod n = M(M^{\phi(n)})^k \bmod n = M(M^{\phi(n)})^k \bmod n = M(1)^k \bmod n = M \bmod n = M \bmod n = M$

Proof of correctness can be extended to the case when the plaintext M divides n

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - -Modular power
- Decryption
 - –Modular power

- Setup
 - -Generation of random numbers with a given number of bits (to generate candidates p and q)
 - —Primality testing (to check that candidates p and q are prime)
 - -Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
 - –Computation of the multiplicative inverse (to compute d from e)

Modular Power

- The repeated squaring algorithm speeds up the computation of a modular power a^p mod n
- Write the exponent p in binary

$$p = p_{b-1}p_{b-2} \dots p_1p_0$$

Start with

$$\mathbf{Q}_1 = \mathbf{a}^{\mathbf{p}_{b-1}} \bmod \mathbf{n}$$

Repeatedly compute

$$\mathbf{Q}_i = ((\mathbf{Q}_{i-1})^2 \bmod n) a^{p_{b-i}} \bmod n$$

• We obtain

$$Q_b = a^p \mod n$$

• The repeated squaring algorithm performs $O(\log p)$ arithmetic operations

Example

```
-3^{18} \mod 19 (18 = 10010)
-Q_1 = 3^1 \mod 19 = 3
-\mathbf{Q}_2 = (3^2 \mod 19)3^0 \mod 19 = 9
-Q_3 = (9^2 \mod 19)3^0 \mod 19 =
      81 \mod 19 = 5
-Q_4 = (5^2 \mod 19)3^1 \mod 19 =
      (25 \mod 19)3 \mod 19 =
       18 \mod 19 = 18
-Q_5 = (18^2 \mod 19)3^0 \mod 19 =
      (324 \mod 19) \mod 19 =
       17.19 + 1 \mod 19 = 1
```


Problem

•Compute 9¹⁰⁰ mod 147

Modular Inverse

Theorem

Given positive integers *a* and *b*, let *d* be the smallest positive integer such that

$$d = ia + jb$$

for some integers i and j.

We have

$$d = \gcd(a,b)$$

Example

$$- a = 21$$

$$- b = 15$$

$$- d = 3$$

$$-i=3, j=-4$$

$$-3 = 3.21 + (-4).15 = 63 - 60 = 3$$

 Given positive integers a and b, the extended Euclid's algorithm computes a triplet (d,i,j) such that

$$- d = \gcd(a,b)$$

$$-d=ia+jb$$

- To test the existence of and compute the inverse of $x \in \mathbb{Z}_n$, we execute the extended Euclid's algorithm on the input pair (x,n)
- Let (*d*,*i*,*j*) be the triplet returned

$$-d=ix+jn$$

Case 1:
$$d = 1$$

i is the inverse of x in Z_n

Case 2:
$$d > 1$$

x has no inverse in Z_n

Problem

•Compute 117^{-1} in \mathbb{Z}_{337}

Problem

• With n = 323 and e = 5, find d and decrypt the cipher c = 300 (home work)