R - Data cleaning and preprocessing

This assignment to exercise cleaning and preparing data for data mining. You are required to **code**, **run**, **and answer the following**:

1. Using R Studio (or any R compiler), install the following packages as follows:

- 2. Give a brief description of each package of ten packages above.
- 3. Load Iris dataset as follows:

```
library(tidyverse)
data(iris)
iris <- as tibble(iris)
iris</pre>
```

- 4. Briefly describe Iris dataset.
- 5. Show the output of the above code and elaborate on the output.

```
print(iris, n = 3, width = Inf)
```

6. Show the output of the above code line and elaborate on the parameters and output.

```
summary(iris)
```

7. Show the output of the above code line and elaborate on the output.

```
iris %>% summarize_if(is.numeric, mean)
```

8. Show the output of the above code line and elaborate on the parameters and output.

```
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
ggpairs(iris, aes(color = Species), progress = FALSE)
```

9. Show the output of the above code and elaborate on the parameters and output.

```
clean.data <- iris %>%
  drop na() %>%
  unique()

summary(clean.data)
```

10. Show the output of the above code and elaborate on the output.

```
iris %>% group by(Species) %>% summarize all(mean)
iris %>% group by(Species) %>% summarize all(median)
```

11. Show the output of the above code and elaborate on the output.

```
\underline{sample}(\underline{c}("A", "B", "C"), size = 10, replace = TRUE)
```

12. Show the output of the above code line and elaborate on the output.

```
take <- sample(seq(nrow(iris)), size = 15)
take
iris[take, ]</pre>
```

13. Show the output of the above code and elaborate on the output.

```
set.seed(1000)
s <- iris %>% slice sample(n = 15)
ggpairs(s, aes(color = Species), progress = FALSE)
```

14. Show the output of the above code and elaborate on the output.

15. Show the output of the above code and elaborate on the output.

Dimensionality Reduction

Principal Components Analysis (PCA)

16. Show the output of the above code and elaborate on the output.

```
iris_projected <- as tibble(pc$x) %>% add column(Species = iris$Species)

ggplot(iris_projected, aes(x = PC1, y = PC2, color = Species)) +
    geom point()
```

17. Show the output of the above code and elaborate on the output.

```
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
fviz pca(pc)
fviz pca var(pc)
```

18. Show the output of the above code and elaborate on the output.

Discretize Features

```
ggplot(iris, aes(x = Petal.Width)) + geom histogram(binwidth = .2)
```

19. Show the output of the above code and elaborate on the output.

Proximities: Similarities and Distances

Minkowsky Distances

The <u>Minkowsky distance</u> is a family of metric distances including Euclidean and Manhattan distance. To avoid one feature to dominate the distance calculation, scaled data is typically used. We select the first 5 flowers for this example.

```
iris_sample <- iris.scaled %>% select(-Species) %>% slice(1:5)
iris_sample
dist(iris_sample, method = "euclidean")
dist(iris_sample, method = "manhattan")
dist(iris_sample, method = "maximum")
```

20. Show the output of the above code and elaborate on the output.

Relationships Between Features

Correlation

```
cc <- iris %>% select(-Species) %>% cor()
cc

with(iris, cor(Petal.Length, Petal.Width))
with(iris, cor.test(Petal.Length, Petal.Width))

ggplot(iris, aes(Petal.Length, Petal.Width)) +
    geom point() +
    geom smooth(method = "lm")
```

21. Show the output of the above code and elaborate on the output.