CS251: Assignment 7 - Question 4

Anuj Nagpal - 14116

$March\ 9,\ 2016$

Contents

List of Figures		
1	Sample Space and Random Variable	3
2	Probability Function of the dices	9
	2.1 Die:1	
	2.2 Die:2	
	2.3 Die:3	;
3	Expected Values of the Sums of the Three Dices	
	3.1 Die:1	;
	3.2 Die:2	;
	3.3 Die:3	;
4	Observations	2
	4.1 Explanation	4
	4.1.1 A Mathematical Explanation	
	4.1.2 An Intuitive Explanation	
Tn	dex	é

List of Figures

1	Representation of average of each throw of all the Dice	4
2	Two Sample Dices	٦

1 Sample Space and Random Variable

Let χ be a random variable such that, χ : Outcome of roll of the die.

 $\therefore \chi = \omega$, such that $\omega \in \{1,2,3,4,5,6\}$.

2 Probability Function of the dices

2.1 Die:1

$$P(\chi = x) = \begin{cases} \frac{1}{6} & x \in \{1, 2, 3, 4, 5, 6\} \end{cases}$$

2.2 Die:2

$$P(\chi = x) = \begin{cases} \frac{1}{6} - 0.025 & x \in \{1, 2, 3, 4\} \\ \frac{1}{6} + 0.05 & x \in \{5, 6\} \end{cases}$$

2.3 Die:3

$$P(\chi = x) = \begin{cases} \frac{1}{6} - 0.05 & x \in \{1, 2, 3, 4\} \\ \frac{1}{6} + 0.10 & x \in \{5, 6\} \end{cases}$$

3 Expected Values of the Sums of the Three Dices

3.1 Die:1

$$E(\chi) = \sum_{x_i} P(\chi = x_i) x_i = \frac{1}{6} (1 + 2 + 3 + 4 + 5 + 6) = 3.5$$

3.2 Die:2

$$E(\chi) = \sum_{x_i} P(\chi = x_i) x_i = (\frac{1}{6} - 0.025)(1 + 2 + 3 + 4) + (\frac{1}{6} + 0.05)(5 + 6) = 3.8$$

3.3 Die:3

$$E(\chi) = \sum_{x_i} P(\chi = x_i) x_i = (\frac{1}{6} - 0.05)(1 + 2 + 3 + 4) + (\frac{1}{6} + 0.10)(5 + 6) = 4.1$$

4 Observations

After rolling the three dice(each die is rolled twice), it was observed that sum on Die:1 was least and sum on Die:3 was highest, i.e., we get successively higher sums for later dice.

This can clearly be seen in Figure 1.

Figure 1: Representation of average of each throw of all the Dice

4.1 Explanation

Given below are the two possible explanations of the phenomenon observed above.

4.1.1 A Mathematical Explanation

It is clear from the expected value of χ for all the three dices that if the experiment is repeated a large number of times, the average value of outcome would be close to the expected value. Since, the expected value is lowest for Die:1 and highest for Die:3, so, we get successively higher sums for later dice.

4.1.2 An Intuitive Explanation

Since, all the outcomes on the first die are equally likely while the second die is biased in the favour of the outcomes 5 and 6 by 5%, so, outcome of the second die was more biased to 5 and 6 which are the highest outcomes of the die. This results in a higher sum of the outcome of the second die as compared to first.

Now, third die is biased in the favour of the outcomes 5 and 6 by 10%, so, outcome of the third die is biased more in the favour of 5 and 6 as compared to the second die. This results in a higher sum of the outcome of the third die as compared to second.

Figure 2: Two Sample Dices

Index

Expectation, 3 Explanation, 4

Observations, 4 Outcome, 3

Probability Function, 3

Random Variable, 3