특 2001 -0081 036

# (19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) int. CI.1 HD4N 5/335

(11) 공개번호 (43) 공개일자

气2001-0081036 2001년08월25일

(21) 출원번호 (22) 출원일자 번역문제출일자

10-2001-7006565 2001년 05월25일 2001년 05월25일

(86) 국제출원번호

PCT/JP2000/05703 2000년 08월24일

(87) 국제공개번호

WD 2001/24512

(86) 국제출원출원일자 (81) 지정국

(87) 국제공개일자

국내특허 : 오스트레일리아 캐나다 중국 대한민국 노르웨이 싱가포트인도 타 유라시아특허 : 아르메니아 아제르바이잔 벨라루스 키르기즈 카자흐스탄 몰도바 러시아 타지키스탄 투르크메니스탄 노르웨미 싱가포르 FP 유럽특허 : 오스트리아 벨기에 스위스 독일 스페인 프랑스 영국 이탈리아 네덜란드 스웨덴 핀랜드

(30) 무선권주장

11/271882 1999년09월27일 일본(JP)

(?1) 출원인

11/370533 1999년12월27일 일본(JP)

가시오게산키 가부시키가이샤

(72) 발명자

가시오 가즈오 일본국 도쿄도 시부야쿠 혼마치 1초메 6반 2고 고시즈카먀스오

일본국도교도홋사시구마가와1448-1-221

사사키마코토

일본국도교도하치오지시다미마치2-19-11-302

나카무라요시아키

일본국도쿄도오메시가베마치9-7-1-5-402

(74) 대리인

손은진

실시 경구 : 있음

# (54) 광전 소자 시스템 및 이에 대한 구동 제이 방법

#### 恐孕

2차원으로 배열된 다수의 광전 소자를 갖는 광전 소자 배열을 포함하는 광전 소자 시스템은 신호 전압을 각각의 광전 소자에 인기하기 위한 구동회로 및 판독회로; 그리고 각각의 광전 소자에 인가된 전압을 제 어하고 각각의 광전 소자의 민감도를 조정하는 기능을 갖는 제어회로를 포함한다. 각각의 광전 소자의 민감도를 설정하기 위한 미미지 판독 동작 및 판독 동작시, 각각의 광전 소자의 각각의 광전 소자의 가된 유효 전압을 OV 또는 각각의 광전 소자 특성의 성능저하를 최소화하는 값으로 조정하는 유효 전압을 갖는 정정 신호가 발생된다. 이 정정 신호는 각각의 게미트 전국에 인가된다.

**5**1

#### 4201

광전 소자, 구동회로, 판독회로, 제머회로, 정정 신호, 게이트 전국

### BARA

본 발명은 2차원 배열의 광전 소자 배열을 갖는 광전 소자 시스템 및 상기 시스템을 구동 제머하기 위한 방법에 관한 것이다. 烟割沙金

전자스틸 카메라, 비디오 카메라, 등과 같은 이미지 처리 장치가 매우 널리 이용되어 왔다. 이런 이미지 처리 장치는 가령, CCD(전하 결합 소자:Charge coupled Device)와 같은 현상될 대상물의 이미지를 이미지

신호로 변환하기 위한 광전 변환 장치의 역할을 하는 고체-상태 이미지 처리 소자를 이용한다. 잘 알려진 바와 같이, 상기 CCD는 포토다이오드와 같은 광전 소자(수광소자) 또는 박막 트랜지스터(IFT:Thin Transistor)가 매트릭스에 배열되고 각각의 센서의 수광부에 들어가는 광량에 대응하여 발생되는 전자 및 정공 쌍의 수량이 수평 주사 회로 및 수직 주사 회로에 의해 검출되며 이로 인해 방사 휘도를 검출하는 구조를 갖는다.

그런 CCD를 이용하는 광전 소자 시스템에 있어서, 주사된 광전 소자가 선택된 상태를 취하게 하기 위해 주사된 광전 소자에 선택 트랜지스터를 각각 공급하는 것이 보통 필요하다. 상기 광전 소자 및 상기 선 택 트랜지스터의 조합 대신에, 광전 소자(이하, '이중-게이트 광전 소자'라고 함)가 지금 개발중이고, 미 것은 소위 이중-게이트 구조의 박막 트랜지스터로 형성되고 광전 소자 기능 및 선택 기능 둘다 갖고

도 16A는 그런 이중-게이트 광전 소자(10)의 구조를 도시한 단면도이다. 상기 미중-게이트 광전 소자 (10)는 무정형 실리콘으로 형성된 반도체 박막(11), n'-실리콘총(17, 18), 상기 n'-실리콘총(17, 18) 각 성성된 소스 전국(12) 및 드레인 전국(13), 상기 반도체 박막(11)위에 형성된 탑 제미트 전국(21) 각이 전국(12) 및 드레인 전국(13), 상기 반도체 박막(11)위에 형성된 탑 제미트 전국(21) 그리고 그 사이에 개재된 블럭 절만막(14) 및 상촉 게이트 절면막(15), 상기 탑 게이트 전국(21)상에 설치된 보호 절면막(20), 및 상기 반도체 박막(11) 아래에 설치된 저면 게이트 전국(22) 그리고 그 사이에 개재된 하축 게이트 절면막(16)을 포함한다. 상기 이중-게이트 광전 소자(10)는 예를 들어, 유리로 형성된 투명한 절면기판(19)상에 설치된다.

다시 말해서, 상기 미중-게이트 광전 소자(10)는 상기 반도체 박막(11), 상기 소스 전국(12), 상기 드레인 전국(13) 및 상기 탑 게이트 전국(21)으로 구성된 상촉 MOS 트랜지스터, 및 상기 반도체 박막(11), 상기 소스 전국(12), 상기 드레인 전국(13) 및 상기 저면 게이트 전국(22)으로 구성된 하촉 MOS 트랜지스터 물 포함한다. 도 168의 동가 회로에 나타난 바와 같이, 상기 미중-게이트 광전 소자(10)는 상기 반도체 박막(11), TG(탑 게이트 단자), BG(저면 게이트 단자), S(소스 단자) 및 D(드레인 단자)으로 형성된 공통채널 영역을 갖는 두개의 MOS 트랜지스터를 포함하는 것으로 간주된다.

상기 보호 절연막(20), 상기 탑 게이트 전극(21), 상기 상측 게이트 절연막(15), 상기 블럭 절연막(14) 및 상기 하촉 게이트 절연막(16)은 모두 상기 반도체 박막(11)을 활성화시키기 위해 가시광선에 대해 높은 투과율을 갖는 물질로 형성된다. 상기 탑 게이트 전극(21) 촉으로부터 상기 센서에 들어오는 빛은 상기 탑 게이트 전극(21), 상기 상촉 게이트 절연막(15) 및 상기 블럭 절연막(14)을 통고하고, 그리고 나서 상기 반도체 박막(11)에 들어가며, 이로 인해 상기 채널 영역에서 전하(정공)를 발생하며 축적한다.

도 17은 2차원으로 배열된 이중-게이트 광전 소자(10)로 유형성된 광전 소자 시스템을 도시하는 개략도이다. 도 17에 도시된 바와 같이, 상기 광전 소자 세스템은 (n xm)의 매트릭스로 배열된 다수의 이중-게이트 광전 소자(10)로 구성된 센서 배열(100), 상기 미중-게이트 광전 소자(10)의 탑 게이트 단자(10)를 행방향으로 연결한 탑 게이트 라인(101), 상기 광전 소자(10)의 상기 저면 게이트 단자(86)를 행방향으로 연결하는 저면 게이트 라인(102), 상기 탑 게이트 라인(101) 및 상기 저면 게이트 라인(102) 각계 연결된 탑 게이트 구동기(111) 및 저면 게이트 라인(102) 강 레인 단자(0)를 열방향으로 연결하는 데이터 라인(103), 및 상기 데이터 라인(103)에 연결된 출력 회로부 (113)를 포함하다.

도 17에서, øtg 및 øbs는 나중에 기술되는 리셋 펼스 신호 øTi 및 판독 펼스 신호 øBi 각각을 발생시 키기 위한 제머 신호를 나타내고, øps는 사전-충전 전압 Vpg가 인가된 시점을 제머하기 위한 사전-충전 펄스 신호를 나타낸다.

상기 기술된 구조에서, 나중에 기술되지만, 선결된 전압을 상기 탑 게이트 구동기(111)로부터 상기 탑 게이트 단자(16)에 인기함으로써 상기 광전 소자 기능이 실현되고, 선결된 전압을 상기 저면 게이트 구동기 (112)로부터 상기 저면 게이트 단자(86)에 인기함으로써 상기 판독 기능이 실현되며, 그리고 나서 상기 광전 소자(10)의 출력 전압을 상기 데이터 라인(103)을 경유하여 상기 출력 회로부(113)에 전송하고, 일 련의 데이터(Yout)를 출력한다.

도 184-180는 상기 광전 소자 시스템을 구동-제어하기 위한 방법을 도시하고 상기 센서 배열(100)의 (번 째 행의 검출 동작 주기(i번째 행 프로세스 주기)를 LHEHH는 타이밍도이다. 먼저, 도 184에 도시된 바 와 같이 고레벨 펄스 전압(리셋 펄스 신호; 예를 들어, Vtg = + 15 V) &Ti가 상기 i번째 행의 상기 탑 게 이트 라민(101)에 인가되고, 리셋 주기 Treset 동안 상기 i번째 행의 상기 이중-게이트 광전 소자를 방전 하다 이하 리센 도자이 시행되다.

순차적으로, 저레벨(예를 틀어, Vtg = - 15)의 바이어스 전압 øTi는 상기 i번째 행의 상기 탑 게이트 라인(101)에 인가되고, 이로 인해 상기 리셋 주기를 마치며 상기 채널 영역이 충전되는 전하 총적 주기 Ta인 동안, 상기 탑 게이트 전극촉으로부터 각각의 센서에 들어오는 광량에 대응하는 전하(정공)가 상기 채널 영역에 축적된다.

그리고 나서, 도 18C에 도시되어 사전-총전 전압 Vpg를 갖는 사전-총전 필스 신호 øpg가 상기 전하 축적 주기 Ta인 동안 상기 데이터 라인(103)에 인기되고, 상기 드레인 전국(13)이 총전을 유지하게 하기 위한 사전-총전 주기 Tprch 미호, 도 188에 도시된 고레벨(예를 틀어, Vbg = + 10V)의 바이어스 전압(판독 펄 스 신호 øBi)가 상기 i번째 행의 저면 게이트 라인(102)에 입기된다. 이 때, 상기 i번째 행의 미중-게 미트 광전 소자(10)가 켜지고 미로 인해 판독 주기 Tread를 개시한다.

상기 판독 주기 Tread인 동안, 상기 채널 영역에 촉적된 전하는 각각의 탑 게이트 단자 TG에 인가된 반대 국성의 저레벨 전압(예를 들어, Vtg = - 15 V)을 조절하는 역할을 한다. 그러므로, 마형 채널은 각각의 저면 게이트 단자 BG에서의 전압 Vbs에 의해 형성되고, 이로 인해 상기 사전-충전 전압 Vps가 인가된 후 저면 게이트 단자 BG에서의 전압 Vbs에 의해 형성되고, 이로 인해 상기 사전-충전 전압 Vps가 인가된 후 시간 경과와 더불어 상기 데이터 라인(103)에서의 전압 VD는 상기 드레인 전류에 따라 점점 감소한다. 이욱 구체적으로, 상기 데이터 라인(103)에서의 전압 VD의 변화 경향은 상기 전하 축적 주기 Ta 및 그 수 광량에 달려있다. 도 180에 도시된 바와 같이, 입사광이 어두운 경우 즉, 소량의 빛을 수용한 경우, 상 기 전압 VD는 점점 감소하는 경향이 있고, 따라서 겨우 소량의 전하만이 축적되는 반면에, 입사광이 밝은

경우 즉, 다량의 빛을 수용한 경우 갑자기 감소하는 경향이 있으며, [마라서 다량의 전하가 축적된다. 이로부터, 상기 판독 주기 Treac의 개시 후 선결된 주기에서 상기 데이터 라인(103)에서의 전압 VD를 검출하거나, 상기 전압 VD가 선결된 임계 전압에 도달할 때까지 필요한 주기를 검출함으로써 방사량이 계산된다.

상기 센서 배열(100)의 각 라인에 대해 상기 기술된 구동-제머를 순차적으로 실행하고 상기 구동 펄스가 중첩하지 않는 다른 시점에서 병렬로 각 라인에 대해 제머를 실행함으로써 미미지 판독이 수행된다.

상기 이중-게이트 광전 소자를 이용하는 경우가 상기와 같이 기술되었지만, 광전 소자로서 포토다이오드 또는 포토트랜지스터를 이용하는 광전 소자 시스템에서 조차도, '리셋 동작 →전하 축적 동작 →시전-총 전 동작 →판독 동작'의 순차적인 동작이 수행되고 유사한 제어도 또한 실행된다.

상기와 같이 상기 종래의 광전 소자 시스템은 다음의 문제점들을 가지고 있다.

(1) 상기 기술된 증래의 광전 소자 시스템 구동-제어 방법에 이용된 이미지 판독 동작에 있어서, 예를 들어, 상기 기술된 이중-게이트 광전 소자를 광전 소자로 이용하는 경우, 상기 탑 게이트 단자 T6에 리셋 필스 신호의 인가, 상기 드레인 단자 D0에 사전-총진 필스의 인가, 및 상기 저면 게이트 단자 B6에 판독 필스 신호의 인가, 당기 근레인 단자 D0에 사전-총진 필스의 인가, 및 상기 저면 게이트 단자 B6에 판독 필스 신호의 인가를 포함하는 일련의 동작들이 반복된다. 이 경우에, 각 필스 신호는 단시간 동안 방생되는 짧은 필스파를 갖는다. 예를 들어, 고레벨 전압(예를 불어, + 15V)이 단기간 동안 상기 탑 게이트 단자 T6에 인가되고, 저레벨 전압(예를 들어, - 15V)이 그 나머지 주기동안 상기 단자 T6에 인가된다. 따라서, 상기 동작 주기(예를 들어, 도 184-180에 도시된 i번째 행 처리 주기)인 동안, 상기 탑 게이트 단자 T6에 인가된 전압 신호의 파형은 0V(GND 레벨)에 대해 비대청적이다. 상기 탑 게이트 단자 T6에 인가된 유효 전압은 도 184에 도시된 Vte이고, 이것은 상기 저레벨촉(음 전압촉)에 크게 바이어스된다. 유시하게는, 고레벨 전압(예를 들어, + 10V)이 단거간 동안 상기 저면 게이트 단자 B6에 인기되고, 저레벨 전압(에어 레벨)도 그 나머지 주기 동안 상기 단자 B6에 인기된다. (따라서, 상기 저면 게이트 단자 T6에 인가된 전압 (ND 레벨)도 그 나머지 주기 동안 상기 단계 명이 인기된다. (마라서, 상기 저면 게이트 단자 B6에 인가된 상기 유효 전압은 도 188에 도시된 Vbe이고, 이것은 상기 고레벨촉(양 전압촉)에 크게 바이어스된다. 사용한 면 모든 188에 도시된 Vbe이고, 이것은 상기 고레벨촉(양 전압촉)에 크게 바이어스된다. 바라 바다 토래지스된 그것의 함께 소대에 있으면서 그런 사용되었다. 전함 전압속에 되게 바이어스된다. 사용한 토래지스된 그것의 함께 소대에 있으면서 그런 사용되었다. 전함 전압속이 되게 바이어스된다. 바라 트래지스된 그것의 함께 소대에 있으면서 그런 사용되었다. 전함 전압속이 되게 바이어스된다. 사용되었다. 함께 보다 토래지스된 그것의 함께 소대에 있으면서 그런 사용되었다. 전함 전압속이 크게 바이어스된다. 사용되었다. 전략 전압속이 크게 바이어스된다. 사용되었다. 그런 사용되었다. 전략 전압속이 크게 바이어스된다. 사용되었다. 전략 전압속이 크게 바이어스된다. 사용되었다. 그런 사용되었다. 전략 전압속이 크게 바이어스된다. 사용되었다. 그런 사용되었다. 전략 전압속이 크게 바이어스된다. 사용되었다. 그런 사용되었다. 전략 전압속이 크게 바이어스된다. 사용되었다.

박막 트랜지스터 구조의 광전 소자에 있어서, 그런 바이어스된 전압은 빛이 상기 센서에 인기된 상태에서 각 게이트 단자에 연속적으로 인기된 경우, 예를 들어, 전하(정공 또는 전자)가 각 게이트 전국에 트랩되고, 이로 인해 상기 광전 소자의 소자 특성들의 성능저하를 일으키고 따라서 그 민감도를 변화시킨다. 결과적으로, 상기 광전 소자의 신뢰도가 감소한다.

(2) 추가로, 전술한 광전 소자들을 이용한 광전 소자 시스템이 여러 곳에서 이용되거나 다양한 형태의 대상물들의 이미지를 픽업하는데 이용되는 경우, 상기 대상물들은 서로 다른 밝기를 가지며 이런 밝기는 그들 환경의 상태에 따라 변하게 될 수도 있다. 다양한 환경의 다양한 형태의 대상물들의 이미지들을 정확하게 판독하기 위해, 상기 광전 소자의 민감도를 각 대상물 및/또는 환경에 적합한 수치로 설정하고, 그실정 민감도에서 그 이미지를 판독할 필요가 있다. 상기 광전 소자의 민감도가, 예를 들어, 상기 주기동안 총 입사광량에 대응하는 상기 전하 축적 주기내에 축적된 전하량으로부터 결정된다. 따라서, 상기 전하 축적 주기를 조정함으로써 상기 민감도가 조정된다. 각 게이트 단자에 인가된 상기 유효 전압이 최적의 수치로 설정된 경우라도, 상기 전하 축적 주기가 각 환경에 적합한 수치로 변하게 된다면, 각 게이트 단자에 인기된 유효 전압은 불가피하게 상기 최적의 수치를 변화시켜 일탈할 것이다. 이것은, 예를들어, 전술한 민감도 특성을 변화시키기 때문에, 이로 인해 상기 이미지 판독 장치의 신뢰도를 충분히 확보하는 데 어려움이 있게 된다.

#### 발명의 상세환 설명

본 발명의 목적은 박막 트랜지스터 구조의 광전 소자를 갖는 높은 신뢰도의 광전 소자 시스템을 제공하는 것으로서, 각각의 광전 소자는 그 소자 특성의 상당한 성능저하면 이로 인한 그 민감도 특성의 큰 변화 로부터 자유로운 것이 특징이고, 이것은 각각의 광전 소자와 각각의 게이트 전국에 인가된 신호의 유효 전압이 양 또는 음 전압측에 바이어스되는 경우 발생된다.

본 발명의 다른 목적은 적절한 판독 민감도가 사용 환경에 따라 각각의 광전 소자에 대해 설정되고 판독 동작이 상기 설정 민감도에서 실행되는 경우라도 각각의 광전 소자의 소자 특성의 성능저허를 막고 상기 광전 소자 시스템의 신뢰도 감소를 최소화하기 것이다.

상기 목적들을 달성하기 위해, 본 발명은 2차원으로 배열된 다수의 광전 소자를 갖는 광전 소자 배열, 신호 전압을 각각의 광전 소자에 인가하기 위한 구동회로 및 판독회로, 각각의 광전 소자에 인기된 전압을 제 마하고 각각의 광전 소자의 민감도를 조정하는 기능을 갖는 제마회로, 및 상기 광전 소자 시스템의 제 마와 관련된 데이터를 저장하는 RAM을 포함하는 광전 소자 시스템을 제공한다.

본 발명은 또한 상기 광전 소자 시스템을 구동-제어하기 위한 방법으로서, 이미지 판독 주기에서 상기 광전 소자들에 대해 실행된 리셋 및 판독 동작 동안 각각의 광전 소자의 각각의 게이트 전국에 인가된 전압신호의 극성을 바꾸거나, 또는 신호 파형 발생의 타이밍을 조절합으로써 얻어진 파형을 기초로, 상기 전동작 주기인 동안 각각의 광전 소자의 각각의 게이트 전국에 인가된 유효 전압을 만 또는 각각의 광전 소자의 목성의 성능저하를 최소화하는 값으로 조정하는 유효 전압을 갖는 정정 신호가 발생되는 것을 특징으로 한다.

상기 광전 소자 시스템을 구동-제어하기 위한 방법은 또한 삼기 선결된 최적의 민감도에서 상기 정규의 판독 동작을 수행하기 위해 사용 환경에 따라 각각의 광전 소자에 대한 최적의 민감도를 결정하기 위한 임시 이미자 판독이 대상 이미지를 판독하기 위한 정규 판독 동작 바로 전에 수행되는 경우라도, 최적의 민감도를 설정하기 위해 상기 임시 이미지 판독 동작 동안 및 상기 정규 이미지 판독 동작 동안 여기에 인가된 유효 전압을 오프셋함으로써 상기 전 동작 주기인 동안 각각의 광전 소자의 각각의 게이트 전국에 인가된 유효 전압을 최적의 수치로 조정하는 정정 신호가 상기 설정된 최적의 판독 민감도에 대응하는 전 하 축적 주기를 기초로 발생되고 각각의 광전 소자의 각각의 게이트 전국에 인가되는 것을 특징으로



ötCt.

이런 제어 방법들은 상기 리셋 및 판독 동작 동안 각각의 광천 소자의 각각의 게이트 전국에 인가된 바이 어스된 유효 전압을 최적의 수치로 정정하고, 미로 인해 각각의 광전 소자의 상기 소자 특성들의 성능저 하 및 상기 성능저하로 인해 발생된 그 민감도 특성의 변화를 최소화한다. 결과적으로, 높은 신뢰도의 광전 소자 시스템이 제공된다.

### 도면의 관단화 설명

도 1은 본 발명에 따른 광전 소자 시스템을 도시하는 블럭도이고;

도 2A-2H는 본 발명의 제1의 실시예에 따른 광전 소자 제머 방법에 이용된 각각의 행에서의 동작 EH이밍을 도시하는 EH이밍도이며;

도 3A 및 3B는 상기 제1의 실시예에서 상기 광전 소자에 인가된 전압 신호들의 파형들을 구체적으로 도시 하는 타이밍도이고;

도 4A-4H는 본 발명의 제2의 실시에에 따른 광전 소자 제어 방법에 이용된 각각의 행에서의 동작 EH이밍

도 5A 및 5B는 상기 제2의 실시예에서 상기 광전 소자에 인가된 전압 신호들의 파형들을 구체적으로 도시 하는 타이밍도이고:

도 6A-6버는 본 발명의 제3의 실시예에 따른 광전 소자 제머 방법에 이용된 각각의 행에서의 동작 EH이밍 을 도시하는 타이밍도이며;

도 7A 및 7B는 상기 제3의 실시예에서 상기 광전 소자에 인기된 전압 신호들의 파형들을 구체적으로 도시하는 타이밍도이고;

도 8은 광전 소자를 구성하는 트랜지스터의 게이트 전국에 인가된 각각의 바이어스 전압간 관계를 도시하는 그래프 즉, 상기 BT 처리 온도 및 상기 임계 전압이며;

도 9A-9H는 본 발명의 제4의 실시예에 따른 광전 소자 제어 방법에 이용된 각각의 행에서의 동작 타미밍

도 10A 및 10B는 상기 제4의 실시에에서 상기 광전 소자에 인가된 전압 신호들의 파형들을 구체적으로 도 시하는 타이밍도이며;

도 11A-11H는 본 발명의 제5의 실시예에 따른 광전 소자 제어 방법에 이용된 각각의 행에서의 동작 EHO 밍을 도시하는 EHOI밍도이고;

도 12A 및 12B는 상기 제5의 실시예에서 상기 광전 소자에 인가된 전압 신호들의 파형들을 구체적으로 도 시하는 타미밍도미며;

도 13A-13H는 본 발명의 제6의 실시예에 따른 광전 소자 제머 방법에 미용된 각각의 행에서의 동작 EH이 밍을 도시하는 EH이밍도이고;

도 14A 및 14B는 유효 전압 조정 동작 주기인 동안 상기 제6의 실시예의 광전 소자에 인가된 신호 및 사전 판독 동작 주기 및 이미지 판독 동작 주기인 동안 상기 광전 소자에 인가된 신호간 관계를 도시하는

도 15A-15H는 상기 제6의 실시에에서 실행된 또 다른 사전-판독 동작을 도시하는 타이밍도이고;

도 16A는 이중-게이트 광전 소자의 구조를 도시하는 단면도이며;

도 168는 상기 미중-게이트 광전 소자에 동기인 회로를 도시하는 도면이고;

도 17은 이중-게이트 광전 소자가 2차원으로 배열된 상기 광전 소자 시스템의 회로 구조를 도시하는 도면

.18A-18D는 상기 이중-게이트 광전 소자 시스템을 제머하기 위한 종래의 방법을 도시하는 타이밍도이다.

\*도면의 주요부분에 대한 부호의 설명\*

10:미중-게미트 광전 소자

103:데이터 라인

11:반도체총

111:탑 게이트 구동기

12:소스 전극

112:저면 게이트 구동기

13:드레인 전국

113:출력 회로부 🔻 🎉 🦠

14:블럭 절연막

114:칼럼 스위치

17, 18:n 실리콘총

115:사전-충전 스위치

20:상촉 게이트 절연막

116:증폭기

100:광전 소자 배열

117:A/D 변환기

101:탑 게이트 라인

120:제머기

102:저면 게이트 라인

130:RAM

200:외부 기능부

#### **ALKION**

본 발명의 실시예들에 따른 광전 소자 시스템을 제어하기 위한 방법들은 동변하는 도면들을 참조로 하여 자세하게 기술된다. 이하 기술되는 실시예들에 있어서 박막 트랜지스터 구조의 상기 이중-게이트 광전 소자가 광전 소자로 이용되지만, 본 발명은 상기 이중-게이트 광전 소자에 한정되지 않고 다른 형태의 광 전 소자를 이용하는 광전 소자 시스템에 응용가능하다.

도 1에 도시된 비와 같이, 본 발명의 광전 소자 시스템은 도 16A에 도시된 비와 같이 2차원으로 배열된 광전 소자 배열(100); 선결된 리셋 필스 신호를 선결된 시점에서 각각의 이중-게이트 광전 소자(10)의 상기 탑 게이트 단자 T6에 인가하기 위한 탑 게이트 구동기(111); 선결된 판독 필스 신호를 선결된 시점에서 각각의 이중-게이트 광전 소자(10)의 상기 답 게이트 단자 T6에 인가하기 위한 탑 게이트 구동기(111); 선결된 판독 필스 신호를 선결된 시점에서 각각의 이중-게이트 광전 소자(10)의 상기 저면 게이트 단자 B6에 인가하기 위한 저면 게이트 구동기(112); 데이터 라인 전압을 판독하고 사전-총전 전압을 각각의 이중-게이트 광전 소자(10)에 각각 인가하기 위해 칼럼 스위치(114), 사전-총전 스위치(115), 및 증폭기(116)로 구성된 출력 회로부(113); 마날로그 신호로서 상기 판독 데이터 전압을 디지털 신호로서 이미지 데이터로 변환하기 위한 마날로그/디지털 변환기(이하, 'A/D 변환기'라고 함)(117); 상기 광전 소자 배열(100)에 의해 대상물의 미미지를 판독하는 동작을 제어하고, 본 발명에 따른 상기 유효 전압의 조정을 실행하며, 그리고 외부 기능부(200)와 데이터를 교환하기 위해 적용되고 이하 기술되는 민감도 설정 기능을 갖는 제어기(120); 예를 들어, 판독 이미지 데이터, 이하 기술되는 판독 민감도의 설정 또는 상기 유효 전압의 조정에 관련된 데이터를 저장하는 RAM(130)을 포함한다.

상기 광전 소자 배열(100), 상기 탑 게이트 구동기(111), 상기 저면 게이트 구동기(112) 및 상기 출력 회로부(113)를 포함하는 구조는 도 17에 도시된 종래의 광전 소자 시스템이자 동일한 기능을 가지고 있다. 이 구조외에도, 본 발명의 광전 소자 시스템은 또한 상기 A/D 변환기(117), 상기 제어기(120) 및 상기 RAM(130)를 포함하고, 미들은 이하 기술되는 비와 같이 다양한 형태의 제어를 가능하게 한다.

자체(130)을 포함하고, 이들은 이하 기술되는 바와 같이 나왕인 형태의 세어을 가능하게 만나.
구체적으로, 상기 제어기(20)는 제어 신호 호 19 및 호 18 게이트 구동기(111) 및 상기 저면 게이트 구동기(112) 각각에 출력하고, 차례로 선결된 신호 전압(리셋 펼스 신호 호 11 및 판독 필스 신호 호 16)을 상기 광전 소자 배열(100)의 각각의 이중-게이트 광전 소자(10)의 상기 탑 게이트 단자 TG 및 상기 저면 게이트 단자 BT 각각에 출력하다. 상기 제어기는 또한 제어 신호 호 19를 상기 시전-충전 스위치(115)에 출력하고, 차례로 사전-충전 전압 Vps를 상기 데이터 라인에 인가한다. 결과적으로, 대상물의이미지가 판독된다. 각각의 이중-게이트 광전 소자(10)로부터 판독된 상기 데이터 라인 전압 VD는 상기 이미지가 판독된다. 각각의 이중-게이트 광전 소자(10)로부터 판독된 상기 데이터 라인 전압 VD는 상기 증폭기(116) 및 상기 사전 변환기(117)를 경유하여 디지털 신호로 변환되고, 상기 제어기(120)에 이미지 데이터로서 공급된다. 상기 제어기(120)는 또한 상기 이미지 데이터를 기록하거나 판독하는 기능을 가지고 있다. 이것은 이미지 데이터 식별, 수정, 등과 같은 선결된 프로세스를 실행하는 상기 외부 기능부(200)에 대해 인터페이스의 역할을 한다. 이하 기술되는 바와 같이, 상기 제어기(120)는 각각의 이중-게이트 광전 소자(10)의 상기 탑 게이트 단자 TG 및 상기 저면 게이트 단자 BG에 인가된 상기 유효 전압을 최적의 수치로 조정하기 위해 상기 탑 게이트 구동기(111) 및 상기 저면 게이트 구동기(112)에 출력되도록 제어 신호 호 19 호 10를 제어하는 다른 기능, 및 외부 빛과 같은 주위 휘도에 따라 대상물의 이미저를 판독하기 위한 최적의 판독 민감도를 설정하는 또 다른 기능 즉, 각각의 이중-게이트 광전 소자(10)에 대해 최적의 광 축적 주기 Ta를 설정하는 기능을 가지고 있다.

상기와 같은 구조의 상기 광전 소자 시스템을 제어하기 위한 방법들은 상기 시스템의 구조를 나타내는 도 1 및 17을 포함하여 관련된 도면을 참조로 하여 기술된다.

이하 기술되는 바와 같이, 각각의 실시예에 따른 광전 소자 시스템 제어 방법에 있어서, 각각의 동작은 상기 제어기(120)로부터 공급된 제어 신호( $\phi$  tg,  $\phi$  bg,  $\phi$  pg 등)를 기초로 제어된다. <제1의 실시예>

도 2A-2H는 본 발명의 상기 제1의 실시예의 광전 소자 시스템 제어 방법에 이용된 각각의 행에서의 동작을 도시하는 타이밍도이다. 상기 제1의 실시예는 각각의 탑 게이트 라인(101)에 인기된 리셋 필스 신호 및 각각의 저면 게이트 라인(102)에 인가된 판독 필스 신호 각각의 고 및 저 레벨들은 반대 극성들(GND 레벨(OY)에 대해) 및 동일한 절대치를 가지고 있는 경우로 지향하게 된다.

본 실시예의 제어 방법에 있어서, 먼저 리셋 펼스 신호를  $\phi T1$ ,  $\phi T2$ , ...  $\phi Tn$ 은 순차적으로 상기 탑 게이트 라인(101)에 인가되고, 미로 인해 도 2A-2C0에 도시된 비와 같이 순차적으로 각각의 행에 대해 리셋 주기 Treset를 개시하고 각각의 행에서의 상기 미중-게이트 광전 소자(10)를 초기화한다. 상기 리셋 필스 신호들  $\phi T1$ ,  $\phi T2$ , ...  $\phi Tn$  각각은 양 전압(고레벨) Yts에 및 음 전압(저레벨) Yts니을 가진다. 상기 전압 Yts에 및 Yts니은 반대 극성을 갖는 형태를 가지지만 상기 GND 레벨(OY)에 대해 대청적이다.

상기 리셋 펼스들 ♠ T1, ♠ T2, ... ♠ Tn은 상기 리셋 주기 Treset를 순차적으로 순차적으로 마치고 각각의 왕 축적 주기 Ta를 개시하기 위해 떨어지고, 이로 인해 전하들(청공)이 그들 탑 게이트 전국측으로부터 각각의 행에서 상기 미중-게미트 광전 소자들에 들어가는 광량에 따라 각각의 채널 영역에서 발생되어 축적된다. 상기 광 축적 주기 Ta인 동만, 상기 사전-충전 신호 ♠ pg가 도 26에 도시된 바와 같이 상기 사전-충전 주기 Tprch를 개시하도록 순차적으로 인가된다. 결과적으로, 상기 사전-충전 전압 ∀prch은 각각의 데이터 라인(103)에 인가되고, 이로 인해 각각의 미중-게이트 광전 소자(10)의 상기 드레인 전국이 선결된 전압을 유지하게 하기 위한 사전-충전 동작을 실행한다는

그 다음, 도 20-27에 도시된 이미지 판독 동작 주기에서 도시된 바와 같이, 판독 필스 신호 øB1, øB2, ... øBn은 상기 광 축적 주기 Ta 및 상기 사전-홍전 주기 Tprch가 경과했던 각각의 행의 저면 게이트 라 인율 경유하여 상기 이중-게이트 광전 소자(10)에 순차적으로 인가되고, 이로 인해 상기 판독 주기 Tread 를 순차적으로 개시하며, 상기 출력 회로부(113)로부터 대응하는 데이터 라인(103)을 경유하여 각각의 이 중-게이트 광전 소자(10)에 축적된 전하에 대응하는 전압 변화 VD를 순차적으로 판독하고, 그리고 상기 RAM(130)에서 상기 판독 전압 변화를 순차적으로 저장한다. 상기 판독 필스 신호를  $\phi$  B1,  $\phi$  B2, ...  $\phi$  Bn 각각은 양 전압(고레벨) VbsH 및 음 전압(저레벨) VbsL을 갖는다. 상기 전압 VbsH 및 VbsL은 반대 극성을 갖지만 상기 GND 레벨(OV)에 대해 대청적인 수치들을 갖는다.

종래의 경우에서 처럼, 방사량은 상기 판독 주기 Tread의 개시 후 선결된 주기에서 상기 데이터 라인 (103)에서의 전압 VD를 검출하거나, 또는 상기 전압 VD가 선결된 임계 전압에 도달할 때까지 필요한 주기 를 검출함으로써 계산된다.

상기 기술된 일련의 이미지 판독 동작들(상기 리셋 동작 →상기 광 축적 동작 →상기 사전-충전 동작 → 상기 판독 동작)이 상기 광전 소자 배열(100)의 모든 행들에 대해 실행된 다음, 상기 이미지 판독 동작에 서 각각의 행에 대한 상기 탑 및 저면 게미트 라인(101, 102)에 인가된 전압에 대해 역바이머스의 역할을 하는 전압이 각각의 행에 애해 상기 탑 및 저면 게미트 라인(101, 102)에 인가된다.

구체적으로, 도 2A-2C에 도시된 상기 유효 전압 조정 주기 동안 실행된 상기 리셋 동작에서, 각각의 미중 -게미트 광전 소자(10)의 상기 탑 게미트 단자 TG에 인가된 상기 리셋 펼스 신호 \$TI, \$T2, ... \$Tn의 극성과 반대되는 극성을 갖는 파형의 전압 신호가 각각의 탑 게미트 라인(101)에 대해 정정 신호로서 발 생되고, 다시 말해서, 상기 미미지 판독 주기에서 각각의 미중-게미트 광전 소자(10)의 상기 탑 게미트 단자 TG에 인가된 전압 신호의 파형을 상기 GND 레벨(0V)에 대해 반전함으로써 얻어진 파형의 전압 신호 가 발생된다. 상기 발생된 전압 신호는 상기 미미지 판독 주기(도 2A-2C는 상기 신호 인가가 상기 미미 지 판독 주기 비로 후 실행되는 경우를 도시합) 바로 전 또는 후에 민가된다.

유사하게는, 도 20-2F에 도시된 상기 유효 전압 조정 주기인 동안 실행된 상기 판독 동작에서, 각각의 이 중-게이트 광전 소자(10)의 상기 저면 게이트 단자 BT에 인기된 상기 판독 펼스 신호 �Bi, �B2, ... � Bn의 극성과 반대되는 극성을 갖는 파형의 전압 신호는 각각의 저면 게이트 라인(102)에 대해 정정 신호로서 발생되고, 다시 말해서 상기 이미지 판독 주기에서 각각의 미중-게이트 광전 소자(10)의 상기 저면 게이트 단자 BB에 인가된 전압 신호의 파형을 상기 GND 레벨(W)에 대해 반전함으로써 얻어지는 파형의 전압 신호가 발생된다. 상기 발생된 전압 신호는 상기 이미지(한국 주기(도 20-2F는 상기 신호 인가가상기 이미지 판독 주기 바로 후에 실행된 경우를 도시함) 바로 전 또는 후에 인가된다.

각각의 이중-게이트 광전 소자(10)의 상기 탑 및 저면 게이트 단자 TG 및 BG에 인가된 상기 전압 신호들 의 파형들에 대해 보다 상세한 설명이 주머지게 된다.

도 3A 및 3B는 본 실시에에서 각각의 미중-게이트 광전 소자(10)의 상기 탑 및 저면 게이트 단자 TG 및 BG에 인가된 상기 전압 신호들의 대형을 자세하게 도시하는 타이밍도이다. 미런 도면들은 제1행의 탑 및 저면 게이트 라인에 인가된 전압 신호들의 대형만을 도시하지만, 유사한 전압 신호들이 그 나머지 행들의 게이트 라인에 인가된다.

도 3A에 도시된 바와 같이, 상기 이미지 판독 동작 동안 상기 리셋 동작을 실행하는 경우, 상기 양 전압 Vt에의 리셋 펄스 신호 ¢T1가 단지 매우 짧은 주기 동안(상기 리셋 주기 Treset) 대응하는 탑 게이트 라 인(101)을 경유하며 각각의 이중-게이트 광전 소자의 상기 탑 게이트 단자 TG에 인기된다. 상기 리셋 주 기보다 상대적으로 긴 주기인 동안, 음 전압 VtgL이 여기에 인가된다. 따라서, 각각의 탑 게이트 단자 TG에 인가된 상기 유효 전압은 상기 음 전압촉에 크게 바이어스된다.

한편으로, 상기 판독 동작에서도 또한, 상기 양 전압 VbsH의 판독 필스 신호 ◆BI은 단지 매우 짧은 주기 (상기 판독 주기 Tread인 동안)인 동안 도 3B에 도시된 바와 같이 대응하는 저면 게이트 라인(102)을 통 해 각각의 미중-게이트 광전 소자의 상기 저면 게이트 단자 BG에 인가된다. 상기 판독 주기보다 상대적 으로 긴 주기인 동안, 음 전압 VbsL은 며기에 인가된다. (따라서, 각각의 저면 게이트 단자 BG에 인가된 상기 유효 전압은 상기 음 전압 VbsL은 며기에 인가된다. (따라서, 각각의 저면 게이트 단자 BG에 인기된 상기 유효 전압은 상기 음 전압속에 크게 바이머스된다. 하나의 극성측에 바이머스된 파형을 갖는 전압 신호가 게이트 단자에 연속적으로 인가된 경우, 전하들(정공 또는 전자)은 상기 게이트부에 트랩되고, 미 로 인해 상기 광전 소자의 민감도 특성을 변화시키거나 또는 그것들의 소자 특성들의 성능저하를 일으킨

이를 피하기 위해, 본 실시예에서, 상기 GND 레벨(OV)에 대해 상기 미미지 판독 주기인 동안 인기된 상기 전압 신호의 극성을 반전시킴으로써 얻어진 역바이어스된 파형의 정정 신호가 발생되어 상기 미미지 판독 주기 바로 전 또는 상기 미미지 판독 주기 바로 후 상기 유효 전압 조정 주기인 동안 각각의 게이트 전극 이에 인가된다. 상기 광전 소자 시스템에 대한 이런 제어 방법에 있어서, 전압 신호들은 상기 미미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 유사한 타이밍에서 상기 탑 또는 저면 게미트 단자 T6 또는 B6 에 인가되고, 동일한 시적분 값을 갖지만 반대 극성을 갖는다고 따라서, 상기 미미지 판독 주기 및 상기 유효 전압 조정 주기를 포함하여 상기 전 동작 주기인 동안(상기)탑 또는 저면 게이트 단자 T6 또는 B6 에 인가된 전압 신호들이 오프셋되고 미로 인해 상기 유효 전압의 상기 바이머스된 극성을 제거한다.

대 근기는 인접 인포함이 보고 지표 이후 인행 8기 표표 인접 8기 미미이 교 제기인다.

더욱 구체적으로, 도 3A 및 3B에 도시된 바와 같이, 상기 이미지 판독 주기에서 상기 탑 및 저면 게이트
단자 TG 및 BG에 인기된 유효 전압이 각각 Yte1 및 Ybe1이고, 상기 유효 전압 조정 주기에서 상기 탑 및
저면 게이트 단자 TG 및 BG에 인가된 상기 유효 전압들은 각각 Yte2 및 Ybe2라고 가정하자. 이 경우에,
상기 두 주기 동안 상기 단자들에 인가된 상기 유효 전압은 동일한 절대치 및 다른 국성들 가지며, |
Vte1 |= | Yte2 | 및 | Ybe1 |= | Ybe2 | 이 설정된다. [따라서, 상기 두 주기에서 상기 탑 또는 저면 게
이트 단자 TG 또는 BG에 인가된 상기 유효 전압이 오프셋되기 때문에, 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기를 포함하여 상기 전 동작 주기인 동안 상기 탑 및 저면 게이트 단자 TG 및 BG에 인가
된 상기 평균 전압(평균 유효 전압) Yte 및 Ybe은 DV이다. 결과적으로, 상기 게이트부에서 전하(정공 또
전자)의 축적이 처단되고, 이로 인해 각각의 광전 소자의 상기 소자 특성들 또는 민감도 특성의 성능

상기 실시예에서 추가로, 상기 미미지 판독 동작 및 상기 유효 전압 조정 주기인 동안, 각각의 탑 게이트 단자 TG에 인가될 신호에 필요한 전압이 한 쌍의 양 및 음 전압 YtsH 및 YtsL(=-YtsH)미고, 상기 GND 레 벨(OV)에 대해 반대 극성을 가지고 있다. 유사하게는, 각각의 저면 게이트 단자 BG에 인가될 신호에 필요한 전압이 한 쌍의 양 및 음 전압 VbsH 및 VbsL(=-VbsH)이고, 상기 GND 레벨(OV)에 대해 반대 극성을 가진다. 따라서, 상기 탑 게이트 구동기(111) 및 상기 저면>케이트 구동기(112) 각각은 두개-수치 출력 의 구동기로 형성된다. 이런 형태의 구동기는 싸기 때문에,월그런 구동기를 이용하는 상기 광전 소자 시 스템은 저비용으로 만들어 진다.

<제2의 실시예>

본 발명의 제2의 실시에에 따른 광전 소자 시스템을 제어하기 위한 방법이 도 4A-5B를 참조로 하여 기술 된다.

본 실시예는 이전 실시예에서 상기 이미지 판독 주기에 이용된 상기 리셋 펄스 신호 및 상기 판독 펄스 신호 각각은 상기 GND 레벨(OV)에 대해 비대청적인 고레벨 전압 및 저레벨 전압을 갖는다는 점에서 다르 다.

도 4A-4H는 본 발명의 상기 제2의 실시예의 상기 광전 소자 시스템 제어 방법에 이용되는 각각의 행에서의 동작 타이밍을 도시하는 타이밍도이다. 도 5A 및 5B는 본 실시예에서 각각의 이중-게이트 광전 소자(10)의 상기 탑 및 저면 게이트 단자 TG 및 BG에 인기된 상기 전압 신호들의 파형들을 자세하게 도시하는타이밍도이다. 상기 기술된 제1의 실시예에서 이용된 바와 같은 동일한 제어는 자세하게 기술되지는 않는다.

본 실시예의 상기 제어 방법에서, 먼저 도 4A-4C에 도시된 리셋 펼스 신호들 ¢T1, ¢T2, ... ¢Tn은 상기 탑 게이트 라인(101)에 순차적으로 인가되고, 이로 인해 각각의 행에 대해 리셋 주기 Treset를 순차적으로 개시하고, 상기 각각의 행에서의 상기 이중-게이트 광전 소자(10)를 초기화하며, 그리고 각각의 광축적 주기 Ta를 개시한다. 결과적으로, 상기 입사광량에 대응하는 전하들(정공)은 각각의 채널 영역에 축적된다. 상기 리셋 펄스 신호들 ¢T1, ¢T2, ... ¢Tn 각각은 양 전압(고레벨) YtsH2 및 음 전압(저레벨) YtsH1(≠-YtsH2)을 가지며, 미들은 상기 GND 레벨(OY)에 대해 비대청적이다.

고 다음, 도 4D-4F에 도시된 바와 같이 판독 펄스 신호를 ⋄B1, ⋄B2, ... ⋄Bn은 상기 광 축적 주기 Ta 및 상기 사전-충전 주기 Tprch가 지나간 각각의 행의 상기 저면 게이트 라인(102)을 경유하며 상기 이중-게이트 광전 소자(10)에 순차적으로 인가되고, 이로 인해 판독 주기 Tread를 순차적으로 개시하고, 상기 출력 회로부(113)로부터 대응하는 데이터 라인(103)을 경유하여 각각의 이중-게이트 광전 소자(10)에 축적된 전하에 대응하는 도 4H에 도시된 전압 변화 VD를 순차적으로 판독하며, 그리고 상기 RAM(130)에서 상기 판독 전압 변화를 순차적으로 저장한다. 상기 판독 펼스 신호를 ⋄B1, ⋄B2, ... ⋄Bn 각각은 상기 GND 레벨(0V)에 대해 비대칭적인 양 전압(고레벨) VbgH2 및 유전압(저레벨) VbgL1을 갖는다.

상기 기술된 일련의 미미지 판독 동작이 상기 광전 소자 배열(100)의 모든 행들에 대해 실행된 다음, 상기 미미지 판독 동작 동안 각각의 행의 상기 탑 및 저면 게미트 라인(101, 102)에 인가된 전압 신호에 대해 역바이어스 신호의 역할을 하는 정정 신호들이 상기 미미지 판독 주기 바로 후 상기 유효 전압 조정주기인 동안 모든 행에서의 상기 미미지 판독 동작에 필요한 주기와 동일한 주기 동안 각각의 행에 대해 상기 탑 및 저면 게미트 라인(101, 102)에 인가된다. 선택적으로, 본 신호 인가는 상기 미미지 판독 주기 바로 전에 실행될 수 있다.

더욱 구체적으로, 도 58 및 58에 도시된 바라 같이, 상가 GND 레벨(OY)에 대해 상기 이미지 판독 주기인 동안 각각의 탑 게이트 단자 TG에 인가된 전압 신호의 국성을 반전시킴으로써 발생되고, 양 전압 VtsH1(=-\ttsh1)을 고레벨 전압으로 그리고 음 전압 VtsL2(=-\ttsh2)를 저전압으로 갖는 정정 신호가 상기유호 전압 조정 주기인 동안 각각의 탑 게이트 단자 TG에 인가된다. 한편, 상기 GND 레벨(OY)에 대해 상기 이미지 판독 주기인 동안 각각의 처면 게이트 단자 BG에 인가된 전압 신호의 국성을 반전시킴으로써 발생되고, 양 전압 VbsH1(=-\ttsh1)을 고레벨 전압으로 그리고 음 전압 VbsH2(=-\ttsh1)를 저전압으로 갖는 정정 신호가 상기 유호 전압 조정 주기인 동안 각각의 탑 게이트 단자 TG에 인가된다.

상기 광전 소자 시스템에 대한 본 제어 방법에 있어서, 전압 산호들은 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 유사한 타이밍에 상기 탑 또는 저면 게이트 단자 TG 또는 BG에 인가되고, 동일한 시적분 주기를 갖지만 반대 극성을 갖는다. 따라서, 상기 이미지 판독 주기 및 상기 유효 전압 조정주기를 포함하여 상기 전 동작 주기인 동안, 상기 탑 및 저면 게이트 단자 TG 및 BG에 인가된 평균 전압 Vte 및 Vbe가 OV이고, 이로 인해 각각의 게이트 전국에서 전하(정공 또는 전자)의 축적을 막고, 그래서상기 광전 소자들의 민감도 특성의 변화 또는 이들 소자 특성들의 성능저하를 최소화시킨다.

본 실시예에서 상기 이미지 판독 주기인 동안 사용된 상기 리셋 펄스 신호 및 상기 판독 펄스 신호 각각의 고레벨 및 저레벨 전압은 상기 GND 레벨(OV)에 대해 비대청적이기 때문에, 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 상기 탑 및 저면 게이트 단작지 T6 및 BG 각각에 인가될 신호에 필요한 전압이 두개의 양 전압 및 두개의 용 전압 즉, 상기 GND 레벨(OV)에 대해 비대청적인 총 4개의 전압이다. 따라서, 상기 탑 및 저면 게이트 구동기(111, 112) 각각이 다중-레벨 출력의 구동기로 형성된다. 이것은 각각의 광전 소자의 민감도 특성에 대해 적절한 전압의 인가를 가능하게 하며, 이로 인해 적절한 이미지 판독 동작을 가능케 한다.

<제3의 실시예>

본 발명의 제3의 실시예에 따른 광전 소자 시스템을 제어하기 위한 방법이 도 GA-7B를 참조로 하여 기술 된다.

본 실시에는 상기 이미지 판독 주기에 이용된 상기 리셋 펄스 신호 및 상기 판독 펄스 신호 각각이 상기 어마 레벨(이V)에 대해 비대청적인 고레벨 전압 및 저레벨 전압을 갖는 상기 제2의 실시예와 유사한 경우에 지형된다.

도 6A-6H는 본 발명의 상기 제3의 실시예의 상기 광전 소자 시스템 제어 방법에 이용된 각각의 행에서의 동작 타이밍을 도시하는 타이밍도이다. 도 7A 및 7B는 본 실시예에서 각각의 이중-게이트 광전 소자(1 0)의 상기 탑 및 저면 게이트 단자 TG 및 BG에 인가된 상기 전압 신호들의 파형을 자세하게 도시하는 타 이밍도이다. 상기 기술된 실시예들에서 이용된 바와 같은 동일한 제어가 자세하게 기술되지는 않는다.

본 실시예의 상기 제어 방법에 있어서, 먼저 도 6A-6C에 도시된 리셋 펼스 신호들 φ T1, φ T2, ... φ Tn 은 상기 탑 게이트 라인(101)에 순차적으로 인가되고, 이로 인해 각각의 행에 대해 리셋 주기 Treset을 순차적으로 개시하며, 상기 각각의 행에서의 상기 이중-게이트 광전 소자(10)를 초기화하고, 그리고 각각의 황 축적 주기 Ta를 개시한다. 결과적으로, 상기 입사광량에 대응하는 전하들(정공)이 각각의 채널 영역에 축적된다. 상기 리셋 필스 신호들 φ T1, φ T2, ... φ Tn 각각은 양 전압(고레벨) YtsH 및 음 전압(저레벨) YtsH(★-YtsH)을 가지며, 마들은 상기 GND 레벨(0Y)에 대해 비대청적이다.

그 다음, 도 6D-6F에 도시된 바와 같이 판독 펄스 신호를  $\phi$ B1,  $\phi$ B2, ...  $\phi$ BnOl 상기 광 축적 주기 Ta및 상기 사전-충전 주기 Tprch가 지나간 각각의 행의 상기 저면 게이트 라인(102)을 경유하며 상기 미중-및 상기 사전-충전 소자(10)에 순차적으로 인가되고, 이로 인해 판독 주기 Tread를 순차적으로 개시하며, 상기 출력 회로부(113)로부터 대응하는 데이터 라인(103)을 경유하며 각각의 미중-게이트 광전 소자(10)에 축적된 전하에 대응하는 도 6H에 도시된 전압 변화 VD를 순차적으로 판독하고, 그리고 상기 RAM(130)에서 상기 판독 전압 변화를 순차적으로 저장한다. 상기 판독 절스 신호들  $\phi$ B1,  $\phi$ B2, ...  $\phi$ Bn 각각은 상기 6ND 레벨(0V)에 대해 비대칭적인 양 전압(고레벨) VbgH 및 음 전압(저레벨) VbgL( $\phi$  -VbgH)을 가진다.

상기 기술된 일련의 이미지 판독 동작이 상기 광전 소자 배열(100)의 모든 행들에 대해 실행된 다음, 상기 이미지 판독 동작에서 각 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인기된 상기 유효 전압을 오 프셋하는 역바이어스 전압 파형물, 이것들을 0V로 만들기 위해, 갖는 정정 신호들이 상기 이미지 판독 주기 바로 후 상기 유효 전압 조정 주기인 동안 각 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인가된다. 선택적으로, 본 신호 인가는 상기 이미지 판독 주기 바로 전에 실행될 수 있다.

구체적으로, 상기 유효 전압 조정 주기인 동안, 정정 신호가 발생되어 각각의 탑 게이트 단자 TG에 인가되며, 상기 미미지 판독 주기인 동안 여기에 인가된 상기 펼스 신호와 같이 동일한 양 및 음 전압 Vts에 및 Vtsl을 갖고, 상기 양 및 음 전압 Vts에 및 Vtsl의 신호폭을 조절하며 상기 GND 레벨(OV)에 대해 상기 미미지 판독 주기인 동안 여기에 인가된 유효 전압 Vtel의 극성을 반전시킴으로써 발생되는 유효 전압 Vte2(=-Vtel)을 갖는다. 추가로, 상기 유효 전압 조정 주기인 동안, 정정 신호가 발생되어 각각의 저면 게이트 단자 BG에 인가되고, 상기 미미지 판독 주기인 동안 여기에 인가된 상기 필스 신호와 같이 동일한 양 및 음 전압 Vbs에 및 Vbsl을 가지며, 상기 양 및 음 전압 Vbs에 및 Vbsl의 신호 폭을 조절하고 상기 GND 발생되는 유효 전압 Vbs에 대해 상기 이미지 판독 주기인 동안 여기에 인가된 상기 필스 신호와 같이 동일한 양 및 음 전압 Vbs에 및 Vbsl의 신호 폭을 조절하고 상기 GND 발생되는 유효 전압 Vbe2(=-Vbe1)을 갖는다.

보다 구체적으로, 도 7A 및 7B에 도시된 바와 같이, 상기 유효 전압 조정 주기인 동안, 정정 신호가 발생되어 각각의 탑 게이트 단자 TG에 인가되고, 양 전압(고레벨) Yts에 및 음 전압(저레벨) Ytsl을 가지며, 상기 GND 레벨(0V)에 대해 상기 이미지 판독 주기인 동안 여기에 인가된 유효 전압 Yte1의 극성을 반전시 장으로써 발생된 유효 전압 Yte2를 갖는다. 게다가, 상기 유효 전압 조정 주기인 동안, 정정 신호가 발생되어 각각의 저면 게이트 단자 BG에 인가되고, 양 전압(고레벨) Yts에 및 음 전압(저레벨) Ybsl을 가지며, 상기 GND 레벨(0V)에 대해 상기 이미지 판독 주기인 동안 여기에 인가된 유효 전압 Ybe1의 극성을 반전시킴으로써 발생된 유효 전압 Ybe2를 갖는다. 상기 유효 전압 조정 주기는 상기 이미지 판독 동작에 필요한 주기와 동일하거나, 또는 그것과 다를 수 있는데, 다시 말해서 상기 주기보다 더 짧을 수 있다. 바꿔 말하면, 전압 신호가 상기 유효 전압 조정 주기인 동안 여기에 인가된 유효 전압들이 상기 이미지 판독 주기인 동안 여기에 인가된 유효 전압을 오프셋시키도록 설정되면 충분하다.

상기 광전 소자 시스템에 대해 상기 기술된 제어 방법에 있어서, 상기 이미지 판독 주기 및 상기 유효 전 압 주기를 포함하며 상기 전 동작 주기인 동안, 상기 탑 및 저면 게이트 단자 TG 및 BG에 인가된 상기 평 균 유효 전압 Vte 및 Vbe가 DV(GND 레벨)이고, 미로 인해 상기 게이트부에서 전하(정공 또는 전자)의 축 적을 막고 각각의 광전 소자의 소자 특성 또는 민감도 특성의 성능저하를 억압한다.

게다가, 본 실시예에서, 상기 이미지 판독 통작 및 상기 유효 전압 조정 주기인 동안, 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 상기 탑 및 저면 게이트 라인(101, 102)에 인가될 각각의 신호 에 필요한 전압들은 한 쌍의 양 및 음 전압등미고, 반대 극성을 가지며 상기 GND 레벨(0V)에 대해 비대칭 적이다. 따라서, 상기 탑 게이트 구동기(111) 및 상기 저면 게이트 구동기(112) 각각은 두개-수치 출력 의 구동기로 형성된다. 이런 형태의 구동기는 싸기 때문에, 의런 구동기들을 미용하는 광전 소자 시스템 은 저가로 만들어 전다.

<제4의 실시예>

본 발명의 제4의 실시예에 따른 광전 소자 시스템을 제어하는 방법은 도 8-108를 참조로 하여 기술된다.

본 실시예는 상기 이미지 판독 주기에 이용된 상기 리셋 펄스 신호 및 상기 판독 펄스 신호 각각이 상기 6ND 레벨(NV)에 대해 비대청적인 고레벨 전압 및 저레벨 전압을 갖는 상기 제2의 실시예와 유사한 경우를 지향하게 된다. 그러나, 상기 제4의 실시예는 광전 소자를 구성하는 트랜지스터의 임계값의 변화를 최소 화하도록 역바이어스 전압 파형이 설정되는 것을 특징으로 한다.

도 8은 광전 소자를 구성하는 트랜지스터의 상기 게이트 전극에 인가된 각각의 바이머스 전압간 관계 즉, 상기 트랜지스터의 상기 BT 처리 온도 및 상기 임계 전압을 도시한다. 상기 BT 처리 후 상기 임계값의 변화가 상기 CV 측정 방법에 의해 측정됐다.

도 8에 도시된 예들에서, 양 바이머스가 상기 게이트 전국에 인기된 경우, 상기 임계 전압은 몇 볼트에서 십 몇 볼트로 크게 변하는 반면에, 음 바이머스가 여기에 민가된 경우 몇 볼트 또는 그 이하의 범위내에 서 약간 변한다. 따라서, 상기 게이트 전국에 인가된 상기 유효 전압은 OV이고 상기 양 바이머스 및 상 기 음 바이머스가 상기 동일한 주기에 인가된 경우, 상기 기술된 바와 같이, 상기 임계 전압이 상기 음 전압이 인기된 경우보다 상기 양 바이머스가 인가된 경우에 보다 크게 변하기 때문에, 상기 이중-게이트

광전 소자의 민감도 특성이 변하거나 그 소자 특성들이 성능저하할 수 있다. 그러므로, 상기 임계 전압의 변화를 줄이기 위해, 상기 게이트 전국에 인가된 상기 유효 전압이 상기 음 전압 측에 바이머스되는 것이 바람직하다. 전술한 바와 같이, 본 실시예에서, 상기 게이트 전국에 인가된 상기 유효 전압은 상기임계 전압의 변화를 최소화시키는 0V외의 수치로 설정된다. 이런 목적으로 발생된 역바이머스 전압 신호가 상기 이미지 판독 주기 바로 전 또는 후에 각각의 게이트 단자에 인가된다.

도 8의 경우에 있어서, 상기 음 전압 바이머스가 인가된 경우보다 상기 양 바이머스가 인가된 경우에 상기 임계 전압은 보다 크게 변한다. 그러나, 이것은 단지 하나의 예일 뿐이고, 상기 음 바이머스가 상기게이트 전국에 인가될 때 상기 임계 전압이 보다 크게 변하는 반대의 경우가 있다. 이런 차이는 상기 소자 구조, 상기 미용된 물질, 등등에 달려있다.

도 9A-에는 본 발명의 상기 제4의 실시예의 상기 광전 소자 시스템 제어 방법에 이용된 각각의 행에서의 동작 타이밍을 도시하는 타이밍도이다. 도 10A 및 10B는 본 실시예에서 각각의 미중-게이트 광전 소자의 삼기 탑 및 저면 게이트 단자 TG 및 BG 에 인기된 상기 전압 신호들의 파형들을 자세하게 도시하는 타이밍도이다. 상기 제2의 실시예와 같이, 상기 제4의 실시예는 또한 상기 이미지 판독 주기에 미용된 상기리셋 펄스 신호 및 상기 판독 펄스 신호 각각이 상기 GND 레벨(OV)에 대해 비대청적인 고레벨 전압 및 저레벨 전압을 갖는 경우에 지형하게 된다. 상기 기술된 실시예들에서 미용된 바와 같이 동일한 제어는 자세하게 기술되지는 않는다.

본 실시예의 제어 방법에 있어서, 먼저 도 9A-9C에 도시된 리셋 펼스 신호들 φT1, φT2, ... φTn은 상기 탑 게이트 라인(101)에 순차적으로 인가되고, 이로 인해 각각의 행에 대해 리셋 주기 Treset를 순치적으로 개시하고, 상기 각각의 행에서의 상기 이중-게이트 광전 소자(10)를 초기화하며, 그리고 각각의 광축적 주기 Ta를 개시한다. 결과적으로, 상기 입시광량에 대응하는 전하들(정공)은 각각의 채널 영역에 촉적된다. 상기 리셋 펄스 신호들 φT1, φT2, ... φTn 각각은 양 전압(고레벨) VtsH2 및 음 전압(저레벨) VtsL(≠-VtsH2)을 가지며, 상기 GND 레벨(OV)에 대해 비대청적이다.

고 다음, 도 90-9F에 도시된 바와 같이 판독 펄스 신호를 ♦B1, ♦B2, ... ♦Bn이 상기 광 축적 주기 Te 및 상기 사전-총전 주기 Tprch가 지나간 각각의 행의 상기 저면 게이트 라인(102)을 경유하며 상기 이중-게이트 광전 소자(10)에 순차적으로 인가되고, 이로 인해 판독 주기 Tread를 순차적으로 개시하고, 상기 출력 회로부(113)로부터 대응하는 데이터 라인(103)을 경유하며 각각의 미중-게이트 광전 소자(10)에 축적된 전하에 대응하는 도 9H에 도시된 전압 변화 VD를 순차적으로 판독하며, 그리고 상기 RAM(130)에 상기 판독 전압 변화를 순차적으로 저장한다. 상기 판독 펄스 신호들 ♦B1, ♦B2, ... ♦Bn 각각은 싱기터에 레벨(0V)에 대해 비대청적인 양 전압(고레벨) VbgH2 및 음전압(저레벨) VbgL(≠-VtgH2)을 갖는다.

상기 기술된 일련의 이미지 판독 동작이 상기 광전 소자 배열(100)의 모든 행들에 대해 실행된 다음, 각 각의 트랜지스터의 상기 임계 전압의 변화를 오프셋하고 최소회하는 역바이어스 전압 파형들을 가지며 상 기 이미지 판독 동작에서 각각의 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인가된 전압들의 극성에 따라 발생하는 정정 신호들이 상기 이미지 판독 주기 바로 후 상기 유효 전압 조정 주기인 동안 각각의 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인가된다. 선택적으로, 이 신호 인가는 상기 이미지 판 독 주기 바로 전에 실행될 수 있다.

구체적으로, 상기 유효 전압 조정 주기인 동안, 각각의 이중-게이트 광전 소자(10)의 탑 게트 단자 TG 측 트랜지스터의 임계값의 변화를 최소화하거나 0으로 만들도록 설정된 최적의 전압 Vte에 대해 상기 이미지 판독 주기인 동안 여기에 인가된 전압 신호의 극성을 반전시킴으로써 얻어지며, 양 전압 VtgHI(고레벨) 및 음 전압 VtgL2(저레벨)을 갖는 정정 신호가 발생되어 각각의 탑 게이트 단자 TG에 인가된다. 추가로, 상기 유효 전압 조정 주기인 동안, 각각의 이중-게이트 광전 소자(10)의 저면 게이트 단자 BG 측 트랜지 스터의 임계값의 변화를 최소화하도록 설정된 최적의 전압 Vbe에 대해 상기 이미지 판독 주기인 동안 여 기에 인가된 전압 신호의 극성을 반전시킴으로써 얻어지며, 양 전압(고레벨) VbgH1 및 음 전압(저레벨) VbgL2를 갖는 정정 신호가 발생되어 각각의 저면 게이트 단자 BG에 인가된다.

보다 구체적으로, 도 10A 및 10B에 도시된 바와 같이, 상기 유효 전압 조정 주기인 동안 이용된 역바이어스 전압 신호의 유효 전압 Yte2 및 Ybe2가 상기 이미지 판독 주기인 동안 각각의 제이트 전국에 인가된 상기 유효 전압 Yte1 및 Ybe1을 기초로 설정되고, 그래서 각각의 광전 소자의 각각의 트랜지스터의 임계 값의 변화를 최소화하거나 0으로 만드는 최적의 전압 Yte 및 Ybe가 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기를 포함하여 상기 전 프로세스 주기인 동안 평균 유효 전압으로서 얻게 된다. 다시 말해서, 상기 이미지 판독 주기인 동안 인기된 상기 유효 전압 Yte1 및 Ybe1의 평균 수치를 및 상기 유효 전압 조정 주기인 동안 인기된 상기 유효 전압 Yte2 및 Vbe2가 상기 최적의 전압 Yte 및 Vbe 각각과 동일하도록 상기 역바이어스 전압 신호들이 설정된다.

상기 광전 소자 시스템에 대해 상기 기술된 제어 방법에 있어서, 상기 이미지 판독 주기 및 상기 유효 전 압 조정 주기를 포함하며 상기 전 프로세스 주기인 동안 상기 평균 유효 전압들이 각각의 트랜지스터의 임계 전압의 변화를 최소화하거나 0으로 만들도록 역바이어스 전압 신호들이 상기 탑 게이트 단자 TG 및 상기 저면 게이트 단자 BG에 인가된다. 따라서, 본 발명은 상기 탑 및 저면 게이트 단자 TG 및 BG에 인 가된 전압의 극성으로 인해 각각의 트랜지스터의 임계 전압의 변화의 영향을 막을 수 있는 높은 신뢰도의 광전 소자 시스템을 제공하고, 이로 인해 각각의 광전 소자의 상기 민감도 특성 또는 상기 소자 특성의 성능저하를 최소화할 수 있다.

본 실시에에서, 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 상기 탑 및 게이트 단자 TG 및 BG 각각에 인가될 신호에 필요한 전압들은 두개의 양 전압 및 두개의 음전압 즉, 상기 GNO 레벨(OV)에 대해 비대청적인 총 4개의 전압이다. 따라서, 상기 탑 및 게이트 구동기(111, 112) 각각은 다중-레벨 출력의 구동기로 형성된다. 이것은 각각의 광전 소자의 민감도 특성에 대해 적절한 전압의 인가를 가능하게 하고, 이로 인해 적절한 이미지 판독 동작을 가능하게 한다. 전체 보기 설시에>

본 발명의 제5의 실시예에 따른 광전 소자 시스템을 제어하기 위한 방법이 도 11A-12B를 참조로 하여기

술된다.

본 실시에는 상기 이미지 판독 주기에 이용된 상기 리셋 필스 신호 및 상기 판독 필스 신호 각각이 상기 6M 레벨(OV)에 대해 비대청적인 고레벨 전압 및 저레벨 전압을 갖는 상기 제4의 실시예에 유사한 경우에 지향되고, 광전 소자를 구성하는 트랜지스터의 임계값의 변화를 최소화하도록 역바이어스 전압 파형이 설 정되는 것을 특징으로 한다.

도 11A-11H는 본 발명의 상기 제5의 실시예의 광전 소자 시스템 제어 방법에 이용된 각각의 행에서의 동작 타이밍을 도시하는 타이밍도이다. 도 12A 및 128는 본 실시예에서 각각의 미중-게이트 광전 소자의 상기 탑 및 저면 게이트 단자 T6 및 BB에 인가된 상기 전압 신호들의 피형들을 자세하게 도시하는 타이밍 도이다. 상기 기술된 실시예들에 이용된 동일한 제어는 자세하게 기술되지는 않는다.

본 실시예의 제어 방법에 있어서, 먼저 도 11A-11C에 도시된 리셋 펄스 신호를 øT1, øT2, ... øTn은 상기 탑 게이트 라인(101)에 순치적으로 민가되고, 미로 인해 각각의 행에 대해 리셋 주기 Treset를 순차적으로 개시하고, 상기 각각의 행에서의 상기 미중-게이트 광전 소자(10)를 초기회하며, 그리고 각각의 광 축적 주기 Ta를 개시한다. 결과적으로, 상기 입사광량에 대응하는 전하들(정공)은 각각의 채널 영역에 축적된다. 상기 리셋 펄스 신호를 øT1, øT2, ... øTn 각각은 양 전압(고레벨) YtsH 및 몸 전압(저레벨) YtgL(≠-YtgH)을 가지며, 상기 GND 레벨(0V)에 대해 비대청적이다.

그 다음, 도 110-11F에 도시된 바와 같이 판독 펄스 신호들  $\phi$  B1,  $\phi$  82, ...  $\phi$  BrOl 상기 광 축적 주기 Ta 및 상기 사전-충전 주기 Tprch가 지나간 각각의 행의 상기 저면 게이트 라인(102)을 경유하여 상기 이중-게이트 광전 소자(10)에 순차적으로 인가되고, 이로 인해 판독 주기 Tread를 순차적으로 개시하며, 상기 출력 회로부(113)로부터 대응하는 데이터라 라인(103)을 경유하며 각각의 이중-게이트 광전 소자(10)에 축적된 전하에 대응하는 도 11H에 도시된 전압 변화 VD를 순차적으로 판독하며, 그리고 상기 RAM(130)에 상기 판독 전압 변화를 순차적으로 저장한다. 상기 판독 펄스 신호들  $\phi$  B1,  $\phi$  B2, ...  $\phi$  Bn 각각은 상기 대한 레벨(0Y)에 대해 비대칭적인 양 전압(고레벨) VbsH2 및 음전압(저레벨) VbsL1( $\neq$ -YtsH2)을 가진다.

상기 기술된 일련의 이미지 판독 동작이 상기 광전 소자 배열(100)의 모든 행들에 대해 실행된 다음, 각 각의 트랜지스터의 상기 임계 전압의 변화를 오프셋하고 최소화하는 역바이머스 전압 파형들을 가지며 상 기 이미지 판독 동작에서 각각의 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인가된 전압들의 극성에 따라 발생하는 정정 신호들이 상기 이미지 판독 주기 바로 후 상기 유효 전압 조정 주기인 동안 각각의 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인기된다. 선택적으로, 이 신호 인가는 상기 이미지 판 독 주기 바로 전에 실행될 수 있다.

구체적으로, 상기 유효 전압 조정 주기인 동안, 각각의 이중-게이트 광전 소자(10)의 탑 게이트 단자 TG 측 트랜지스터의 임계값의 변화를 최소화하거나 0으로 만들도록 설정된 최적의 전압 Yte에 대해 상기 이미자 판독 주기인 동안 여기에 인가된 전압 신호의 극성을 반전시킴으로써 얻어지며, 양 전압 Yte에(고레벨) 및 음 전압 Ytel(저레벨)을 갖는 정정 신호가 발생되어 각각의 탑 게이트 단자 TG에 인가되고, 상기양 전압 및 음 전압 Vtel(지레벨)을 지하는 목 전압 모양 조정 주기인 동안, 각각의 이중-게이트 광전 소자(10)의 저면 게이트 단자 BG 측 트랜지스터의 임계값의 변화를 최소화하도록 설정된 최적의 전압 Ybe에 대해 상기 이미지 판독 주기인 동안 여기에 인가된 전압 신호의 극성을 반전시킴으로써 얻어지며, 양 전압(고레벨) Ybell 및 음 전압(지레벨) Ybell 및 음 전압(지레벨) Ybell 및 유 전압(고레벨) Ybell 및 유 전압(고레벨) Ybell 및 유 전압(지레벨) Ybell 및 유 전압(지레벨) Ybell 및 유 전압(지레벨) Ybell 및 유 전압(고리 폭이 조정된다.

보다 구체적으로, 도 12A 및 12B에 도시된 바와 같이, 상기 유효 전압 조정 주기인 동안 이용된 역바이어 스 전압 신호의 유효 전압 Yte2 및 Vbe2가 상기 이미지 판독 주기인 동안 각각의 게이트 전국에 인가된 상기 유효 전압 Yte1 및 Vbe1을 기초로 설정되고, 그래서 각각의 광전 소자의 각각의 트랜지스터의 임계 값의 변화를 최소화하거나 0으로 만드는 최적의 전압 Yte 및 Vbe가 상기 이미지 판독 주기 및 상기 유효 전압 오징 주기를 포함하여 상기 전 프로세스 주기인 동안 평균 유효 전압으로서 얻게 된다. 다시 말해서, 상기 이미지 판독 주기인 동안 인가된 상기 유효 전압 Yte1 및 Vbe1의 평균 전압들 및 상기 유효 전압 조정 주기인 동안 인가된 상기 유효 전압 Yte2 및 Vbe2가 상기 최적의 전압 Yte 및 Vbe 각각과 동일하도록 상기 역바이어스 전압 신호들이 설정된다.

상기 유효 전압 조정 주기는 상기 이미지 판독 동작에 필요한 주기와 동일할 수도 있고 또는 그것과 다를 수 있는데, 다시 말해서 상기 주기보다 더 짧을 수 있다. 다시 말해서, 상기 유효 전압 조정 주기인 동 안 상기 탑 및 저면 게이트 단자 TG 및 BB에 인가된 유효 전압들이 상기 평균 유효 전압 Vte 및 Vbe와 동 일하도록 전압 신호들이 설정되면 충분하다.

본 실시에에서, 상기 미미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 상기 탑 및 게이트 단자 TG 및 BG 각각에 인기될 신호에 필요한 전압들은 상기 GND 레벨(GV)에 대해 비대청적인 한 쌍의 양 및 음 전 압들이다. 따라서, 상기 탑 및 저면 게이트 구동기(11, 112) 감각은 두개-수치 출력의 구동기로 형성된 다. 미런 형태의 구동기는 싸기 때문에, 그런 구동기들을 마용하는 상기 광전 소자 시스템은 저가로 만들어 진다.

<제6의 실시예>

본 발명의 제6의 실시예에 따른 광전 소자 시스템을 제머하기 위한 방법이 도 13A-14B를 참조로 하여 기 술된다. 본 실시에는 상기 제1 내지 제5의 실시에에 기술된 비와 같이 대상물의 이미지를 판독하는 단계외에 상기 이미지 판독 주기 바로 전 상기 환경의 휘도, 검출될 대상물의 형태, 등과 같은 다양한 조건에 따라 변하 고 상기 이미지 판독 동작에 이용되는 상기 광전 소자에 대해 최적의 민감도를 결정하기 위한 동작(미하 '사전-판독 동작'이라고 함)을 실행하는 단계를 포함하는 제머 방법에 지형하고 있다.

도 13A-13H는 본 발명의 상기 제6의 실시예의 광전 소자 시스템 제어 방법에 이용된 각각의 행에서의 통작 타이밍을 도시하는 타이밍도이다. 상기 기술된 실시예들에 이용된 동일한 제어는 자세하게 기술되지는 않는다. 본 실시예에서, 상기 탑 및 저면 게이트 라인(101, 102)에 인가된 전압 신호들의 상기 고 및 저레벨 전압들이 상기 6ND 레벨(OV)에 대해 비대청적이고, 상기 제4 및 제5의 실시예와 같이 광전 소자를 구성하는 트랜지스터의 임계 전압의 변화가 최소화되도록 역바이어스 전압 파형들이 설정된다.

본 실시예에서 상기 사전-판독 동작을 수행할 때, 먼저 도 13A-13CM 도시된 리셋 필스 신호를  $\phi$  T1,  $\phi$  T2, ...  $\phi$  TrOI 정규 지연 주기  $T_{\text{cet}}$ , 와 함께 상기 탑 게이트 라인(101)에 순차적으로 인가되고, 이로 인해 각각의 행들에 대해 리셋 주기  $T_{\text{res}}$  연차적으로 개시하고 상기 각각의 행에서 상기 이중-게이트 광전 소자(10)를 초기화한다. 리셋 필스 신호들  $\phi$  T1,  $\phi$  T2, ...  $\phi$  Tn 각각은 양 전압(고레벨)  $V_{\text{tgH}}$  및 음 전압(저레벨)  $V_{\text{tgH}}$  ( $V_{\text{tgH}}$ )를 갖고, 상기 GMD 레벨( $V_{\text{tgH}}$ )에 대해 비대청적이다.

상기 리셋 필스들 ♠ T1, ♠ T2, ... ♠ Tn은 상기 리셋 주기 Treset를 순차적으로 마치고 각각의 광 축적 주기 TA1, TA2, ... TAn을 개시하기 하기 위해 순차적으로 떨어진다. 결과적으로, 이를 게이트 전극 축으로부터 각각의 행의 상기 이중-게이트 광전 소자(10)에 물어가는 광량에 대응하는 전하(정공)가 상기 광전 소자들의 상기 채널 영역에 축적된다. 그 다음, 마지막 리셋 필스 ♠ Tn이 떨어진 후 각각의 행에 대해 설정된 상기 광 축적 주기 TA1, TA2, ... TAn이 상기 선결된 지연 주기 Trest,의 단위로 계단식으로 변하도록 도 13G에 도시된 사전-충전 신호 ♠ ps가 인가된다. 추가로, 도 13D-13F에 도시된 바와 같이 판독 필스 신호들 ♠ B1, ♠ B2, ... ♠ Bn이 상기 저면 게이트 라인(102)에 순차적으로 인가되고, 이로 인해 판독 주기 Tresd를 순차적으로 개시하며, 상기 출력 회로부(113)로부터 대응하는 데이터 라인(103)을 경유하며 각각의 이중-게이트 광전 소자(10)에 축적된 전하에 대응하는 도 13H에 도시된 전압 변화 VD를 순차적으로 판독하고, 그리고 상기 RAM(130)에 상기 판독 전압 변화를 순차적으로 저장한다.

상기 판독 펄스 신호를  $\phi$ B1,  $\phi$ B2, ...  $\phi$ Bn 각각은 상기 GND 레벨(OV)에 대해 비대칭적인 양 전압(고레벨) VbgH 및 음 전압(저레벨) VbgL( $\neq$ -VbgH)를 갖는다.

상기 기술된 사전-판독 동작에서, 각각의 행에 대해 설정된 상기 광 축적 주기 TA1, TA2, ... TArOl 상기 선결된 지연 주기  $T_{RE}$ ,의 두 배의 단위로 변하기 때문에, 상기 광전 소자 배열(100)의 행의 수보다 더 큰 민감도 조정 폭으로 설정된 판독 민감도에서 판독된 이미지 데이터가 얻어진다. 이 이미지 데이터를 기초로, 상기 제대기(120)는, 예를 들어, 최대의 명암 대조를 가능하게 하는 광 축적 주기를 도출하고, 최적의 광 축적 주기 Tage = 23 장하기 위한 방법은 상기 최대의 대조를 가능하게 하는 조건을 도출하기 위한 상기 방법에 한정되지 않는다.

상기 사전-판독 동작 후, 이미지 판독 동작은 상기 사전-판독 동작에 의해 결정된 상기 최적의 광 축적 주기를 이용하여 실행된다. 본 이미지 판독 동작은 기본적으로 상기 제1 내지 제5의 실시예들에서 실행 된 바와 동일하다.

구체적으로, 먼저 리셋 펼스 신호들  $\phi$  T1,  $\phi$  T2, ...  $\phi$  Tn은 상기 탑 게이트 라인(101)에 순차적으로 인기되고, 이로 인해 각각의 행에 대해 리셋 주기 Treset를 순차적으로 개시하고, 상기 각각의 행에서의 상기 이중-게이트 광전 소자(10)를 초기화한다. 이런 리셋 펄스 신호들  $\phi$  T1,  $\phi$  T2, ...  $\phi$  Tn 각각은, 상기 사전-판독 동작에 미용된 상기 리셋 펄스 신호들과 같이, 상기 GND 레벨(0V)에 대해 비대칭적인 양 전압(고레벨) Vt회 및 음 전압(저레벨) Vt회.( $\phi$ -Vt회)을 가진다.

상기 리셋 필스들  $\phi$  T1,  $\phi$  T2, ...  $\phi$  Tn은 상기 리셋 주기를 Treset을 순차적으로 마치고 각각의 행에 대해 상기 전술한 최적의 광 축적 주기 Ta를 개시하기 위해 떨어지고, 미로 인해 상기 탑 게이트 전국 측으로부터 들어가는 광량에 따라 전하(정공)가 발생되어 각각의 이중-게이트 광전 소자(10)의 상기 채널 영역에 축적된다.

그 다음, 판독 펄스 신호틀 �B1, �B2, ... �Bn이 상기 최적의 광 축적 주기 Ta 및 상기 사전-충전 주기 Tprch가 지나간 각각의 행의 상기 저면 게이트 라인(102)율 경유하며 상기 이중-게이트 광전 소자(10)에 순차적으로 인가되고, 이로 인해 판독 주기 Tread를 순차적으로 개시하며, 상기 출력 회로부(113)로 부터 대응하는 데이터 라인(103)율 경유하며 각각의 이중-게이트 광전 소자(10)에 축적된 전하에 대응하는 전압 변화 VD를 순차적으로 판독하며, 그리고 상기 RAM(130)에 상기 판독 전압 변화를 순차적으로 저장한다.

이런 판독 필스 신호들  $\phi$  B1,  $\phi$  B2, ...  $\phi$  Bn 각각은, 상기 사전-판독 동작에 이용된 상기 판독 필스 신호들과 같이, 상기 GND 레벨(GV)에 대해 비대청적인 양 전압(고레벨) VbgH 및 음전압(저레벨) VbgL( $\phi$ -VbgH)을 가진다.

상기 이미지 판독 동작이 모든 행에 대해 실행된 후, 상기 사전-판독 동작 및 상기 이미지 판독 동작인 동안 각각의 게이트 라인에 인가된 상기 바이머스된 유효 전압 신호를 조정하고 최적화하기 위해 유효 전 압 조정 동작이 상기 유효 전압 조정 주기인 동안 실행된다.

구체적으로, 상기 유효 전압 조정 주기인 동안, 상기 사전-판독 주기 및 상기 이미지 판독 주기인 동안 리셋 펄스 신호로서 여기에 인가된 상기 유효 전압들의 평균 수치를 및 상기 유효 전압 조정 주기인 동안 여기에 인가된 상기 유효 전압을 각각의 광전 소자의 각각의 트랜지스터의 임계값의 변화를 최소화하거나 ©으로 만드는 최적의 전압 Vte 및 Vbe로 조정하는 유효 전압을 갖는 상기 정정 신호들이 발생되어 각각의 행의 상기 탑 및 저면 게이트 라인(101, 102)에 인가된다.

상기 유효 전압 조정 주기인 동안 각각의 탑 게이트 단자 TG 및 각각의 저면 게이트 단자 BG에 인가된 신호들이 관련 도면들을 참조로 하며 보다 자세하게 기술된다. 본 설명을 용이하게 하기 위해, 각각의 탑

게이트 단자 TG에 인가된 상기 유효 전압 및 각각의 저면 게이트 단자 BG에 인가된 상기 유효 전압 둘 다 상기 저레벨 측에 바이어스된다고 가정하고, 상기 설명은 상기 제1의 행의 상기 탑 및 저면 게이트 라인 에만 관련이 있다.

도 14A 및 14B는 상기 유효 전압 조정 주가인 동안 각각의 탑 게이트 단자 TG 및 각각의 저면 게이트 단 자에 인가된 신호들 및 상기 사전-판독 주기 및 상기 이미지 판독 주기인 동안 여기에 인기된 신호들간의 관계로서 본 실시예에 따른 상기 광전 소자 시스템을 제어하기 위한 방법에 이용된다.

도 13A-13H에 도시된 바와 같이, 상기 사전-판독 주기 및 상기 미미지 판독 주기인 동안 리셋 동작에서,고레벨 전압(양 전압) VtsH의 리셋 펼스 신호 øT1이 단지 매우 짧은 주기(상기 리셋 주기 Treset 동안)동안 대응하는 탑 게이트 라인(101)을 경유하여 각각의 탑 게이트 단자 TG에 인가된다. 상기 리셋 주기보다 상대적으로 긴 주기인 동안, 저레벨 전압(음 전압)VtsL이 여기에 인가된다. 상기 미미지 판독 동작에 이용된 상기 광 축적 주기 Te가, 예를 들어, 상기 환경의 휘도에 따라 상기 사전-판독 주기인 동안 설정된다.

다른 한편으로, 상기 사전-판독 주기 및 상기 미미지 판독 주기인 동안 상기 판독 동작에서도, 고레벨 전 압(양 전압) VbgH의 판독 펄스 신호 øB은 단지 매우 짧은 주기인 동안(상기 판독 주기 Tread인 동안) 대응하는 저면 게이트 라인(102)을 경유하며 각각의 저면 게이트 단자 BG에 인가된다. 상기 판독 주기보 다 상대적으로 긴 주기인 동안, 저레벨 전압(음 전압) VbgL이 여기에 인가된다. 상기 미미지 판독 동작 에 미용된 상기 광 축적 주기 Ta가, 예를 들어, 상기 환경의 휘도에 따라 상기 사전-판독 주기인 동안 설 정된다.

본 실시예에서, 각각의 탑 게이트 단자 TG에 인가된 상기 최적의 유효 전압 Vte 및 각각의 저면 게이트 단자 BG에 인가된 상기 최적의 유효 전압 Vbe을 참조로 하며, 상기 사전-판독 주기, 상기 이미지 판독 주 기 및 실행될 상기 유효 전압 조정 동작의 주기인 동안 각각의 광전 소자의 각각의 게이트 단자에 인가된 전압들의 피형들의 상기 고레벨 측 시적분 수치의 절대치를 상기 이중-게이트 광전 소자의 상기 민감도 특성에 따라 설정된 피형들의 상기 저레벨측 시적분 수치의 절대치와 동일하게 만드는 전압 파형들을 갖 는 신호들이 발생된다. 이런 발생된 신호들은 상기 유효 전압 조정 주기인 동안 선결된 시점에서 상기 이중-게이트 광전 소자들에 대해 각각의 탑 게이트 라인(101) 및 각각의 저면 게이트 라인(102)에 인기된다.

도 13A-13C에 도시된 바와 같이, 상기 유효 전압 조정 주기인 동안 각각의 탑 게이트 라인(101)에 인기된 상기 정정 신호는 각각의 탑 게이트 단자 TG에 대한 상기 최적의 유효 전압 Yte에 대해 선결된 신호폭(시 간 주기를 나타냄) Tm 을 갖는 저레벨측 전압 소자, 및 선결된 신호폭 Tm 를 갖는 고레벨측 전압 소자를 포함한다.

다른 한편으로, 상기 유효 전압 조정 주기인 동안 각각의 저면 게이트 라인(102)에 인기된 상기 정정 신호는 각각의 저면 게이트 단자 BB에 대한 상기 최적의 유효 전압 Ybe에 대해 선결된 신호폭(시간 주기를 나타냄) Tark 및 Tarks을 갖는 저레벨측 전압 소자, 및 선결된 신호폭 Tarks를 갖는 고레벨측 전압 소자를 포함한다.

각각의 탑 게이트 단자 TG에 인가된 상기 정정 신호 및 나머지 신호간의 관계는 도 144에 도시된다. 도 144에서, Yte는 각각의 탑 게이트 단자 TG의 상기 최적의 유효 전압을 나타내고, YtsH는 상기 사전 판독 주기 및 상기 이미지 판독 주기인 동안 여기에 인가된 신호에 포함된 고전압을 나타내며, YtsL은 상기 상회에 포함된 저전압이고, Te는 상기 이미지 판독 동작 동안 이용된 상기 최적의 광 축적 주기에며, Tt.구 상기 사전-판독 주기 및 상기 이미지 판독 주기인 동안 상기 최적의 광 축적 주기보다 낮은 레벨의 주기이고, 그리고 Tm 는 상기 사전-판독 주기 및 상기 이미지 판독 주기인 동안 고레벨 주기(즉, Teest + Teest)라고 가정하자. 그리고 나서, 방정식은 다음과 같이 주어진다:

$$Ht \cdot (T_{nen} + T_{nr}) = Lt \cdot (Ta + T_{Lr} + T_{neL}) \cdots (1)$$

며기서, ht는 상기 고전압 VtsH 및 상기 최적의 전압 Vte간 차의 절대값(|VtsH - Vte|)을 LEPH고, Lt는 상기 저전압 VtsL 및 상기 최적의 전압 Vte간 차의 절대값(|VtsH - Vte|)을 LEPH다.

상기 방정식(1)로부터, 상기 유효 전압 조정 주기인 등안 각각의 탑 게이트 라인(101)에 대한 상기 정정신호의 인가 주기간 관계 즉, 상기 고레벨측 전압 소자의 신호폭 T $_{
m ml}$  및 상기 저레벨측 전압 소자의 신호폭 T $_{
m ml}$ 간 관계는 다음과 같이

$$T_{\text{TPH}} = Lt/Ht \cdot (T_{\hat{\alpha}} + T_{LT} + T_{TPL}) - T_{HT} \cdots (2)$$

주머진다.

따라서, 상기 이미지 판독 동작 동안 상기 최적의 광 축적 주기가 상기 환경의 휘도에 따라 변하게 된다 하더라도, 상기 고전압 Yts와 신호가 상기 방점식(2)에 의해 표현된 T<sub>한</sub>에 대응하는 주기인 동안 각각의 탑 게이트 라인(101)에 인가된다면, 각각의 탑 게이트 단자 TG에 인가된 상기 바이어스된 유효 전압은 상 기 최적의 값 Yte로 조정되고, 이로 인해 그 소자 특정의 성능저하로 인한 각각의 이중-게이트 광전 소자 의 민감도 특성의 변화를 최소화시킨다.

한편, 각각의 저면 게이트 라인(102)에 인가된 상기 정정 신호 및 나머지 신호간 관계는 도 148에 도시된다. 도 148에서, Vbe는 각각의 저면 게이트 단자 BG의 상기(최적의 유효 전압을 나타내고, VbsH는 상기사전-판독 주기 및 상기 이미지 판독 주기인 동안 여기에 인가된 신호에 포함된 고전압을 나타내며, VbsL은 상기 신호에 포함된 저전압을 나타내며, VbsL은 상기 신호에 포함된 저전압을 나타내고, Ta는 상기 이미지 판독 동작 동안 이용된 상기 최적의 광 축적 주기를 나타내며, Ta는 사전-판독 주기 및 상기 이미지 판독 주기인 동안 상기 최적의 광 축적 주기 Ta와의 저레벨 주기를 나타내고, 그리고 Ta는 상기 사전-판독 주기 및 상기 이미지 판독 주기인 동안 고

레벨 주기(즉, T<sub>RED</sub> + T<sub>RED</sub>)를 나타낸다고 가정하자. 그리고 나서, 다음과 같은 방적식이 주어진다:

 $Hb \cdot (T_{BPH} + T_{HB}) = Lb \cdot (Ta + T_{LB} + T_{BPL}) \cdots (3)$ 

여기서, Hb는 상기 고전압 VbsH 및 상기 최적의 전압 Vbe간 차약 절대값(|VbsH - Vbe|)을 LH라내고, Lb는 상기 저전압 VbsL 및 상기 최적의 Vbe간 차의 절대값(|VbsL - Vbe|)을 LH라낸다. 게다가, Teple 상기 저레벨측 전압 소자의 총 신호폭(Teple + Teple)을 LH라낸다.

상기 방정식(3)으로부터, 각각의 저면 게이트 라인(102)에 대해 상기 정정 신호의 인가 주기간 관계 즉, 상기 고레벨측 전압 소자의 신호폭  $\Gamma_{\rm pr}$  및 상기 저레벨측 전압 소자의 신호폭  $\Gamma_{\rm pr}$  및 상기 저레벨측 전압 소자의 신호폭  $\Gamma_{\rm pr}$  간 관계가 다음과 같이

 $T_{\text{DPH}} = \text{Lb/Hb} \cdot (Ta + T_{\text{LB}} + T_{\text{BPL}}) - T_{\text{HS}} \quad \cdots (4)$ 

#### 주어진다.

따라서, 상기 이미지 판독 동작인 동안 상기 최적의 광 축적 주기 Ta는 상기 환경의 휘도에 따라 변하게 된다하더라도, 상기 고전압 Vts바의 신호가 상기 방정식(2)에 의해 표현된 T₅m+에 대응하는 주기에 대해 각 각의 저면 게이트 라인(102)에 인기되면, 각각의 저면 게이트 단자 BG에 인가된 바이어스된 유효 전압은 상기 최적의 값 Vte로 조정되고, 이로 안해 그 소자의 특성의 성능저하로 인해 각각의 이중-게이트 광전 소자의 민감도 특성의 변화를 최소화시킨다.

상기 미중-게이트 광전 소자들의 민감도 특성에 따라 상기 기술된 유효 전압 조정 동작 동안, 각각의 탑 게이트 단자 TG 및 각각의 저면 게이트 단자 BG 각각에 대해 설정된 상기 최적의 유효 전압 Yte 및 Ybe는 이들에 미용된 상기 미중-게이트 광전 소자들 또는 물질들의 상기 소자 구조로부터 결정되고, 양 전압, 음 전압 또는 OVOICH.

더욱이, 본 실시예에서, 상기 유효 전압 조정 동작인 동안 각각의 탑 또는 저면 게이트 단자 TG 또는 BG에 인가된 상기 정정 신호의 고레벨측 전압 소자 및 저레벨측 전압 소자는 상기 사전-판독 동작 및 상기 이미지 판독 동작인 동안 여기에 인가된 상기 전압 신호의 대응하는 전압 소자들과 동일하다. 이경우에, 두 전압은 상기 탑 및 저면 게이트 단자 TG 및 BG 각각에 인가되고, 따라서 상기 탑 게이트 구동기(111) 및 상기 저면 게이트 구동기(112) 각각은 상기 제1, 제3 및 제5의 실시예에서 처럼 두개-수치 출력의 구동기로 형성된다. 이런 형태의 구동기는 싸기 때문에, 그런 구동기들을 이용하는 광전 소자 시스템은 저비용으로 만들어 진다. 그러나, 상기 제6의 실시예는 본 구조에 제한되지 않는다. 상기 제2 및 제4의 실시예 처럼, 상기 이미지 판독 주기 및 상기 유효 전압 조정 주기인 동안 각각의 탑 또는 저면 게이트 단자 TG 또는 BG에 인가된 신호가 서로 다른 고레벨 전압 및 저레벨 전압을 갖도록 변형될 수 있다. 따라서 상기 탑 및 저면 게이트 구동기(111, 112) 각각은 다중하라벨 출력의 구동기로 형성될 수 있다.

추가로, 상기 제6의 실시예에서, 상기 사전-판독 통작을 실행하는 방식은 도 13A-13H에 도시된 것에 제한 되지 않지만, 변형될 수 있다.

도 15A-15H는 상기 제6의 실시예에 이용되는 다른 사전-판독 동작을 도시하는 타이밍도이다.

본 사전-판독 동작에 있어서, 먼저 도 15A-15C에 도시된 비와 같이 리셋 필스 신호들  $\phi$  T1,  $\phi$  T2, ...  $\phi$  Tn은 모든 탑 게이트 라인(101)에 동시에 인가되고, 이로 인해 모든 행에 대해 리셋 주기 Treset을 개시하며 동시에 모든 행의 상기 미중-게이트 광전 소자(10)를 초기화한다.

상기 리셋 필스 신호들  $\phi$  T1,  $\phi$  T2, ...  $\phi$  Tn은 상기 리셋 주기 Treset을 마치기 위해 동시에 떨어지고 모든 행의 상기 미중-게미트 광전 소자(10)에 대해 광 축적 주기 TB1, TB2, ... TBn을 동시에 개시하며, 미로 인해 미를 탑 게미트 전국측으로부터 각각의 행의 상기 미중-게미트 광전 소자(10)에 들머기는 광량에 따라 전하(정공)가 발생되어 각각의 채널 영역에 축적된다.

지면 주기  $T_{rel}$ ,를 각각 증가시킴으로써 각각의 행에 대해 설정된 상기 광 축적 주기들 TB1, TB2, ... TBn 이 더 길어지도록 도 156에 도시된 바와 같이 사전-충전 신호  $\phi$  pg가 인가되고, 판독 펄스 신호들  $\phi$  B1,  $\phi$  B2, ...  $\phi$  Bn은 도 15D-157에 도시된 바와 같이 상기 저면 게이트 라인(102)에 순차적으로 인가되고, 이로 인해 판독 주기들 Tread를 순차적으로 개시하고, 상기 출력 회로부(113)로부터 상기 각각의 데이터라인(103)을 경유하며 각각의 행들의 상기 이중-게이트 광전 소자(10)에 축적된 전하에 대응하는 판독 전압 변화를 VD1, VD2, VD3, ... VDm을 순차적으로 판독하며, 그리고 상기 판독 전압 변화를 상기 RAM(13 0)에 순차적으로 저장한다.

따라서, 대상물의 이미지의 각각의 행에 대해 설정된 다른 판독 민감도로 판독된 이미지 데이터가 상기 대상물 이미지를 단 한번에 판독합으로써 얻어진다.

본 실시예에 이용된 상기 사전-판독 동작을 실행하는 방법은 상기 기술된 것에 한정되지 않는다. 대상물 이미지가 다른 판독 민감도로 판독된다면 충분하다. 예를 들어, 일련의 동작 -- 리셋 동작 →광 축적 동 작 →사전-충전 동작 →판독 동작 -- 들이 수차례 반복되면서, 다른 판독 민감도를 이용하는 이미지 데이 더를 얻기 위해 상기 판독 민감도를 순차적으로 변화시킨다. 임의의 다른 적절한 방법들이 물론 이용될 수도 있다.

상기 기술된 실시예에서 상기 이중-게이트 광전 소자가 광전<sup>국소</sup>자로서 이용되지만, 본 발명은 이에 한정 되지 않는다. 이들 민감도 특성 또는 소자 특성들이 사전-판독 동작 또는 이미지 판독 동작인 동안 인가 된 신호의 전압 극성 때문에 변하거나 성능저하하기 쉽고 그런 변화 또는 성능저하가 유효 전압 조정 동 작 동안 인가된 정정 신호에 의해 최소화된다면, 본 발명의 제어 방법은 또 다른 형태의 광전 소자들을 이용하는 광전 소자 시스템에 응용될 수 있다.

상기 기술된 실시예들에서, 반대 전압 극성을 갖는 펄스 신호가 이중-게이트 광전 소자의 상기 동작 특성 또는 상기 광전 소자 시스템의 상기 구조에 따라 상기 유효 전압 조정 동작 동안 인가되지만, 본 발명은 이에 한정되지 않는다. 상기 사전-판독 주기 및 상기 이미지 판독 주기를 포함하며 상기 전 주기인 동안 상기 평균 유효 전압이 상기 광전 소자 특성의 변화가 억제되는 값(OV 또는 선결된 값)으로 설정된다면, 선결된 전압을 갖는 신호가 반대 전압 극성을 갖는 펄스 신호 대신에 인가될 수 있다.

#### 산업상이용자등성

본 발명은 박막 트랜지스터 구조의 광전 소자를 갖는 높은 신뢰도의 광전 소자 시스템을 제공하고 적절한 판독 민감도가 사용 환경에 따라 각각의 광전 소자에 대해 설정되고 판독 동작이 상기 설정 민감도에서 실행되는 경우라도 각각의 광전 소자의 소자 특성의 성능저하를 막고 상기 광전 소자 시스템의 신뢰도 감 소를 최소화시킨다.

### (57) 경구의 범위

#### 청구항 1

2차원으로 배열된 다수의 광전 소자(10)를 포함하는 광전 소자 배열(100);

상기 광전 소자 배열(100)의 상기 광전 소자(10) 각각에 사전-충전 필스 신호( $\phi$ P9)를 인가하고, 상기 광전 소자(10) 각각에 판독 필스 신호( $\phi$ Bi)를 인가하며, 그리고 상기 광전 소자(10) 각각으로부터 전압 출력을 수신하기 위한 신호 판독 수단(114, 115, 120); 및

상기 초기화 수단 및 상기 신호 판독 수단에 의해 상기 광전 소자(10) 각각에 인기된 상기 신호의 유효 전압을 최적의 수치로 정정하기 위한 정정 신호를 상기 광전 소자 각각에 인가하기 위한 유효 전압 조정 수단을 포함하는 것을 특징으로 하는 광전 소자 시스템.

#### 청구항 2

제 1 항에 있어서, 추가로 각각 설정된 판독 민감도로 형성된 상기 대상 이미지의 이미지 패턴을 기초로 최적의 이미지 판독 민감도를 결정하기 위해, 상기 판독 수단을 이용하며, 2차원으로 배열된 상기 광전 소자에 대응하는 화소(pixel)로 형성된 대상 이미지를 판독하면서 상기 초기화 수단 및 상기 신호 판독 수단에 의해 상기 광전 소자(10) 각각에 대해 설정된 이미지 판독 민감도를 변화시키기 위한 최적의 판독 민감도 설정 수단을 포함하는 것을 특징으로 하는 광전 소자 시스템:

#### 청구함 3

제 1 할에 있어서, 상기 유효 전압 조정 수단에 의해 인가된 상기 정정 신호가 DV에서 상기 초기화 수단 및 상기 신호 판독 수단에 의해 상기 광전 소자(ID)에 인가된 신호의 평균 유효 전압을 설정하는 것을 특 징으로 하는 광전 소자 시스템,

#### 청구한 4

제 1 항에 있어서, 상기 유효 전압 조정 수단에 의해 인가된 상기 정정 신호가 상기 초기화 수단 및 상기 신호 판독 수단에 의해 상기 광전 소자(10) 각각에 인가된 신호의 평균 유효 전압을 상기 광전 소자(10) 각각의 임계 전압의 변화가 최소화되는 수치로 조정하는 것을 특징으로 하는 광전 소자 시스템.

#### 청구항 5

제 1 항에 있어서, 상기 유효 전압 조정 수단에 의해 인가된 상기 정정 신호의 전압 파형은 상기 초기화수단 및 상기 신호 판독 수단에 의해 상기 광전 소자(1D) 각각에 인기된 상기 신호의 전압 파형의 시적분수치와 반대의 극성의 시적분 수치를 갖는 것을 특징으로 하는 광전 소자 사스템.

#### 청그한 6

제 1 함에 있어서, 상기 초기화 수단 및 상기 유효 전압 조정 수단에 의해 그리고 상기 신호 판독 수단 및 상기 유효 전압 조정 수단에 의해 상기 광전 소자(10) 각각에 인가된 신호 각각은 한 쌍의 고레벨 및 저레벨 전압을 갖는 것을 특징으로 하는 광전 소자 시스템.

#### 청구항 7

제 1 할에 있머서, 상기 초기화 수단 및 상기 유효 전압 조정 수단에 의해 그리고 상기 신호 판독 수단 및 상기 유효 전압 조정 수단에 의해 상기 광전 소자(10) 각각에 인가된 신호 각각은 고레벨 및 저레벨 전압 쌍을 갖는 것을 특징으로 하는 광전 소자 시스템.

#### 청구한 8

제 1 항에 있머서, 상기 광전 소자(10) 각각은 소스 전극(12), 드레인 전국(13), 및 상기 전극들 사미에 채널 영역으로서 개재된 반도체 총(111), 상기 채널 영역 위미래 형성된 탑 게이트 전극(21) 및 저면 게 미트 전극(22), 및 상기 게미트 전극들 사미에 각각 개재된 절연막을 포함하는 미중-게미트 구조를 가지 며; 그리고

상기 초기화 수단은 상기 광전 소자 각각의 상기 탑 게이트 전국(21)에 상기 리셋 펼스 신호(фTi)를 인 가함으로써 상기 광전 소자 각각을 초기화하고, 상기 신호 판독 수단은 상기 광전 소자(10) 각각의 상기 저면 게이트 전국에 상기 판독 펄스 신호(φBi)를 인가하며, 이로 인해 상기 초기화의 중단에서부터 상기 판독 펄스 신호(φBi)의 인가에 이르기까지 전하 축적 주기인 동안 상기 채널 영역에 축적된 전하에 대응 하는 전압을 상기 출력 전압으로서 출력하는 것을 특징으로 하는 광전 소자 시스템.

#### 청구항 9

광전 소자(10)를 초기화하기 위해 상기 광전 소자 배열(100)의 상기 광전 소자(10) 각각에 리셋 필스 신호( $\phi$ Ti)를 인가하는 초기화 단계;

상기 광전 소자 배열(100)의 상기 광전 소자(10) 각각에 사전-충전 필스 신호( $\phi$ P9)를 인가하고, 상기 광전 소자(10) 각각에 판독 펄스 신호( $\phi$ Bi)를 인가하며, 그리고 상기 광전 소자(10) 각각으로부터 출력된 전압을 수신하는 신호 판독 단계; 및

상기 초기화 및 신호 판독 단계에서 상기 광전 소자(10) 각각에 인가된 상기 신호의 유효 전압을 선결된 최적의 값으로 조정하는 유효 전압 조정 단계를 포함하는 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구항 10

제 9 할에 있어서, 상기 유효 전압 조정 단계에서 조정된 상기 광전 소자(10)에 인기된 상기 신호의 상기 유효 전압의 상기 최적의 값이 GV인 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구한 11

제 9 항에 있어서, 상기 유효 전압 조정 단계에서 조정된 상기 광전 소자(10)에 인기된 상기 신호의 상기 유효 전압의 상기 최적의 값이 상기 광전 소자(10) 각각의 임계 전압의 변화가 최소화되는 수치인 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소 자 시스템을 제어하는 방법.

#### 청구항 12

교 의 항에 있어서, 상기 광전 소자(10) 각각은 소스 전극(12), 드레인 전극(13), 및 상기 전극들 사이에 채널 영역으로서 개재된 반도체 총(111), 상기 채널 영역 위이래 형성된 탑 게이트 전극(21) 및 저면 게이트 전극(22), 및 상기 게이트 전극들 사이에 각각 개재된 절면막을 포함하는 미중-게이트 구조를 가지며; 그리고

상기 초기화 수단은 상기 광전 소자 각각의 상기 탑 게이트 전국(21)에 상기 리셋 펄스 신호(♠Ti)를 인 가함으로써 상기 광전 소자 각각을 초기화하고, 상기 신호 판독 수단은 상기 광전 소자(10) 각각의 상기 저면 게이트 전국(22)에 상기 판독 펄스 신호(♠Bi)를 인가하며, 이로 인해 상기 초기화의 중단으로부터 상기 판독 펄스 신호(♠Bi)의 인가에 이르기까지 전하 축적 주기인 동안 상기 채널 영역에 축적된 전하에 대응하는 전압을 상기 출력 전압으로 출력하는 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자 (10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구항 13

제 9 항에 있어서, 추가로 2차원으로 배열된 상기 광전 소자 배열(100)의 상기 광전 소자(10)에 대응하는 화소(pixel)로 형성된 상기 대상 이미지를 판독하면서, 상기 초기화 단계 및 상기 신호 판독 단계에서 상 기 광전 소자(10) 각각에 대해 설정된 이미지 판독 민감도를 변화시키고, 이로 인해 얻어진 상기 대상 이 미지의 이미지 패턴을 기초로 최적의 이미지 판독 민감도를 설정하면서 상기 이미지 판독 민감도를 변화 시키는 사전-판독 단계;

상기 설정된 최적의 미미지 판독 민감도를 이용하는 상기 대상 미미지의 전 부분을 판독하는 미미지 판독 단계; 및

상기 사전-판독 단계 및 상기 미미지 판독 단계인 동안 상기 광전 소자 배열(100)의 상기 광전 소자 각각에 인가된 상기 신호의 상기 유효 전압을 상기 최적의 값으로 조정하는 유효 전압 조정 단계를 포함하는 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구항 14

제 13 함에 있어서, 상기 사전-판독 단계는 제1의 시주기외의 주기인 동안 인가된 제1의 신호 전압으로 상기 광전 소자(10)를 초기화하기 위해, 상기 제1의 주기에서 상기 광전 소자(10) 각각에 선결된 국성을 갖는 제1의 리셋 펄스 신호(♠Ti)를 인가하는 제1의 단계; 및

상기 초기화 후, 제2의 시주기외의 주기인 동안 인가된 제2의 선호 전압으로 상기 초기화의 중단으로부터 상기 제1의 판독 펄스 신호(�Bi)의 인가에 미르기까지 전하는록적 주기인 동안 축적된 전하에 대응하는 제1의 판독 전압을 출력시키기 위해, 상기 사전-충전 펄스 신호(�ps)를 기초로 한 사전-전하 동작미 끝 난 제2의 시주기에서 상기 광전 소자(10) 각각에 선결된 극성을 갖는 제1의 판독 펄스 신호(�Bi)를 인가 하는 제2의 단계를 포함하고; 그리고

상기 제1의 판독 필스 신호(ቀBi)가 선결된 비율로 상기 전하 축적 주기를 변화시키도록 상기 제2의 시주 기에 인가되고, 최적의 전하 축적 주기가 각각의 전하 축적 주기에서 축적된 전하에 대응하는 상기 제1의 판독 전압으로부터 얻어진 상기 대상 이미지의 이미지 패턴을 기초로 결정되는 것을 특징으로 하는 2차원 으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구항 15

제 14 항에 있어서, 상기 이미지 판독 단계는 제3의 시주기외의 주기인 동안 인가된 제3의 신호 전압으로 상기 광전 소자(10)를 초기화하기 위해, 상기 제3의 시주기에서 상기 광전 소자(10) 각각에 선결된 극성

3.3%

을 갖는 제2의 리셋 펄스 신호(φTi)를 인가하는 제3의 단계; 및 /

상기 초기화 후, 제4의 시주기외의 주기인 동안 인가된 제4의 신호 전압으로 상기 초기화의 중단으로부터 상기 제2의 판독 펄스 신호(♠Bi)의 인가에 미르기까지 상기 최적의 전하 축적 주기인 동안 축적된 전하 에 대응하는 제2의 판독 전압을 출력하기 위해, 상기 사전-판독 단계인 동안 결정된 상기 최적의 전하 축 적 주기에 대응하는 상기 제4의 시주기에서 상기 사전-충전 펄스 신호(♠P9)를 기초로 한 사전-충전 동작 미 끝난 상기 광전 소자(10) 각각에 선결된 극성을 갖는 제2의 판독 펄스 신호(♠Bi)를 인가하는 제4의 단계를 포함하고; 그리고

상기 유효 전압 조정 수단은 상기 광전 소자(10) 각각에 인가되고 상기 제1 및 제2의 리셋 펄스 신호(Ti) 및 상기 제1 및 제3의 단계에서 인가된 제1 및 제3의 신호 전압을 기초로 한 유효 전압을 상기 최적으로 값으로 조정하기 위해 선결된 유효 전압을 갖는 제5의 신호를 상기 광전 소자(10) 각각에 인가하는 제5의 단계; 및

상기 광전 소자(10) 각각에 인가되고 상기 제1 및 제2의 판목 펼스 신호(ΦBi) 및 상기 제2 및 제4의 단계에서 인가된 제2 및 제4의 신호 전압을 기초로 한 유효 전압을 상기 최적의 값으로 조정하기 위한 선결된 유효 전압을 갖는 제6의 신호를 상기 광전 소자(10) 각각에 인기하는 제6의 단계를 포함하는 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자시스템을 제어하는 방법

#### 청구항 16

제 15 항에 있머서, 상기 제5의 신호는 상기 광전 소자(10) 각각의 민감도 특성에 따라 설정된 상기 최적 의 유효 전압을 참조로 하여 발생되고 상기 광전 소자(10) 각각에 인가되고 상기 제1 및 제2의 리셋 펄스 신호(♠Ti) 및 상기 제1 및 제3의 단계에서 인가된 상기 제1 및 제3의 신호 전압을 기초로 한 상기 유효 전압의 반대 극성을 갖는 유효 전압을 가지며; 그리고

상기 제6의 신호는 상기 광전 소자(10) 각각의 상기 민감도 특성에 따라 설정된 상기 최적의 유효 전압을 참조로 하여 발생되고 상기 광전 소자(10) 각각에 인가되고 상기 제1 및 제2의 판독 펄스 신호(¢Bi) 및 상기 제2 및 제4의 단계에서 인가된 상기 제2 및 제4의 신호 전압을 기초로 한 상기 유효 전압의 반대 극 성을 갖는 유효 전압을 가지는 것을 특징으로 하는 2차원으로 배멸된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구한 17

제 15 항에 있어서, 상기 제5의 단계에서, 상기 광전 소자(10) 각각의 상기 민감도 특성에 따라 설정된 상기 최적의 유효 전압보다 낮은 제5의 전압 소자 및 상기 최적의 유효 전압보다 더 높은 제6의 전압 소 자를 갖는 상기 제5의 신호는 상기 광전 소자(10) 각각에 인가되고, 상기 제5 및 제6의 전압 소자는 상기 제1 및 제3의 신호 전압 및 상기 제5의 전압 소자의 시적분 값의 절대값이 상기 제1 및 제2의 리셋 필스 신호(♠TI) 및 상기 제6의 전압 소자의 시적분 값의 절대값과 동일한 선결된 값으로 설정된 이들 시간폭 을 가지며; 그리고

상기 제6의 단계에서, 상기 광전 소자(10) 각각의 상기 민감도 특성에 따라 설정된 상기 최적의 유효 전 압보다 낮은 제7의 전압 소자, 및 상기 최적의 유효 전압보다 더 높은 제8의 전압 소자를 갖는 상기 제6 의 선호가 상기 광전 소자(10) 각각에 인가되고, 상기 제7 및 제8의 전압 소자는 상기 제2 및 제4의 신호 전압 및 상기 제7의 전압 소자의 시적분 값의 절대값이 상기 제1 및 제2의 판독 펄스 신호(Bi) 및 상기 제8의 전압 소자의 시적분 값의 절대값과 동일한 선결된 값으로 설정된 이들 시간폭을 갖는 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법.

#### 청구항 18

제 15 항에 있어서, 상기 제1, 제3, 및 제5의 단계에서 상기 광전 소자(10) 각각에 인가된 상기 신호의 전압 파형 및 상기 제2, 제4 및 제6의 단계에서 상기 광전 소자(10) 각각에 인가된 상기 신호의 전압 파 형은 한 쌍의 저레벨 및 고레벨 전압을 발생시키기 위한 두개-수치 구동기 각각에 의해 발생되는 것을 특 징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템을 제어하는 방법

#### 청구항 19

제 15 항에 있머서, 상가 제1, 제3 및 5의 단계에서 상기 광전 소자(10) 각각에 인가된 상기 신호의 전압 파형 및 상기 제2, 제4 및 제6의 단계에서 상기 광전 소자(10) 각각에 인가된 상기 신호의 전압 파형미 저레벨 및 고레벨 전압의 쌍을 발생시키기 위한 다중-레벨 구동기 각각에 의해 발생되는 것을 특징으로 하는 2차원으로 배열된 다수의 광전 소자(10)를 갖는 광전 소자 배열(100)을 포함하는 광전 소자 시스템 을 제대하는 방법.

*星型* 

SB1







*도型3* 











































*⊊₽15* 



*⊊010* 





*도만17* 



<u> 52/18</u>



33-33



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

# THIS PAGE BLANK (USPTO)