

Curso de Tecnologia em Sistemas de Computação Disciplina: Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein

Gabarito da EP da Aula 02

Observações:

- 1. Em algumas questões serão dadas o desenvolvimento e em outras apenas a resposta.
- 2. É importante que você tente resolver cada exercício justificando cada passo <u>antes</u> de ler o gabarito. Desta forma, você estará mais preparado para entender o raciocínio usado, será capaz de avaliar onde acertou e onde errou.
- 3. Lembre-se que muitos exercícios podem ser resolvidos usando raciocínios diferentes. Nós desenvolvemos apenas um, tente encontrar outras formas, ajuda a compreender melhor os conceitos.
- 1. Sejam $U = \{0, 1, 2, 3, 4\}, A = \{0, 4\}, B = \{0, 1, 2, 3\}, C = \{1, 4\}, D = \{0, 1\}.$ Determine os seguintes conjuntos:

(a)
$$A \cup B = \{0, 1, 2, 3, 4\}$$

- (b) $B \cap C = \{1\}$
- (c) $A \cap \overline{B} = \{4\}$
- (d) $A \cup (B \cap C) = \{0, 1, 4\}$, pois $A \cup (B \cap C) = \{0, 4\} \cup \{1\}$ $= \{0, 1, 4\}.$

(e)
$$(A \cup B) \cap (A \cup C) = \{0, 1, 4\}$$
, dado que
$$(A \cup B) \cap (A \cup C) = \{0, 1, 2, 3, 4\} \cap \{0, 1, 4\}$$
$$= \{0, 1, 4\}$$

Observação: Note que os ítens (d) e (e) devem ser iguais pela propriedade distributiva da união em relação a interseção, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

$$(f)$$
 $(\overline{A \cap B}) \cup (\overline{A \cap C})$

$$\begin{array}{lll} (\overline{A\cap B})\cup(\overline{A\cap C}) &=& (U-(A\cap B))\cup(U-(A\cap C))\\ &=& (\{0,1,2,3,4\}-\{0\})\cup(\{0,1,2,3,4\}-\{4\})\\ &=& \{1,2,3,4\}\cup\{0,1,2,3\}\\ &=& \{0,1,2,3,4\} \end{array}$$

(g)
$$A \cup \overline{B} = \{0,4\}$$
, pois $A = \{0,4\}$ e $\overline{B} = \{4\}$

- $(h) A B = \{4\}$
- $(i) B \overline{A} = \{0\}$
- $(j)\ A\cup (B\cap C\cap D)=\{0,1,4\}$
- 2. Represente por meio de um diagrama de Venn a diferença simétrica entre dois conjuntos, $A\Delta B$, definida por $A\Delta B = (A B) \cup (B A)$

- 3. Sejam $A,\,B$ e C subconjuntos de um conjunto universo U. Represente por meio de diagramas de Venn as seguintes situações:
 - (i) $A \subset B \subset C$

Resposta:

$$(ii)\ A\cap B=\emptyset,\, A\cap C=\emptyset,\, B\cap C=\emptyset$$

 $(iii)\ A\subseteq B\cup C$

Resposta:

 $(iv)\ A\subseteq \overline{B}$

Resposta:

 $(v) A \subseteq B - C$

4. Verifique, usando os diagramas de Venn as seguintes igualdades:

$$(i) (A - B) \cup B = A \cup B$$

Resposta:

$$(ii) (A - B) \cap B = \emptyset$$

(*iii*)
$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Resposta:

$$(v) \ (\overline{\overline{A}}) = A$$

Resposta:

5. Mostre que $A\subseteq B$ e $A\subseteq C\Rightarrow A\subseteq B\cap C.$

Resposta: Seja $x \in A$. Como $A \subseteq B$ e $A \subseteq C$, então $x \in B$ e $x \in C$. Logo, $x \in B \cap C$ e conseqüentemente $A \subseteq B \cap C$.

6. Mostre que $A \subseteq B \Leftrightarrow A - B = \emptyset$

Resposta: Primeiro provaremos que $A \subseteq B \Rightarrow A - B = \emptyset$.

Se $x \in A - B$, então $x \in A$ e $x \notin B$. No entanto, sabemos por hipótese que todo elemento de A é também elemento de B, isto implica que $x \in B$ o que é uma contradição. Logo, $A - B = \emptyset$.

Provaremos agora que $A - B = \emptyset \Rightarrow A \subseteq B$.

Notemos que provar $A-B=\emptyset \Rightarrow A\subseteq B$ é equivalente a provar a contrapositiva da implicação, isto é, $A\not\subseteq B\Rightarrow A-B\neq\emptyset$.

Usaremos esta estratégia.

Se $A \not\subseteq B$ significa que existe $x \in A$ tal que $x \notin B$, então $x \in A - B$, portanto $A - B \neq \emptyset$ que é o que queríamos provar. Logo, $A - B = \emptyset \Rightarrow A \subseteq B$.

Portanto, provamos que $A \subseteq B \Leftrightarrow A - B = \emptyset$.

7. Mostre que $A - B \subseteq A$

Resposta: Provaremos a inclusão acima. $A - B = \{x | x \in A \text{ e } x \notin B\}$. Portanto, se $x \in A - B$, então $x \in A$, logo pela definição de inclusão tem - se $A - B \subseteq A$.

8. Mostre que $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$

Resposta: (\Rightarrow) Inicialmente provaremos que $A \subseteq B \Rightarrow \overline{B} \subseteq \overline{A}$.

Seja $x \in \overline{B}$, então $x \notin B$. Logo, por hipótese $x \notin A$, portanto $x \in \overline{A}$ o que implica que $\overline{B} \subseteq \overline{A}$.

 (\Leftarrow) Provaremos agora que $\overline{B} \subseteq \overline{A} \Rightarrow A \subseteq B$.

Assumimos que $\overline{B} \subseteq \overline{A}$, devemos provar que $A \subseteq B$.

Se $x \in A$, então $x \notin \overline{A}$. Por hipótese $\overline{B} \subseteq \overline{A}$, isto significa que $x \notin \overline{B}$, conseqüentemente, $x \in B$. Concluímos portanto que $A \subseteq B$.

9. Dados os conjuntos $C = \{x \in \mathbb{N} | x \text{ \'e m\'ultiplo de 2} \}$, $D = \{x \in \mathbb{N} | x \text{ \'e m\'ultiplo de 3} \}$, $E = \{x \in \mathbb{N} | x \text{ \'e m\'ultiplo de 6} \}$, verifique que $C \cap D = E$.

Resposta: Decompondo 6 em fatores primos obtemos que 6 = 2.3, portanto se um número n é múltiplo de 6, então n é múltiplo de 2 e 3, isto significa que $E \subseteq C \cap D$. Analogamente, se n é múltiplo de 2 e 3

então n é múltiplo de 6, isto é $D \cap C \subseteq E$. Concluímos portanto que $C \cap D = E$.

10. Considere $A=\{x\in\mathbb{N}|5\leq x^2\leq 300\}$, $B=\{x\in\mathbb{N}|1\leq 3x-2\leq 30\}$. Calcule:

Resposta: A e B representam os conjuntos: $A = \{3, 4, 5, ..., 17\}$ e $B = \{1, 2, 3, ..., 10\}$.

(i)
$$A \cup B = \{1, 2, 3, ..., 16, 17\}$$

(ii)
$$A \cap B = \{3, 4, ..., 10\}$$

$$(iii) A - B = \{11, 12, ..., 17\}$$

$$(iv) B - A = \{1, 2\}$$

$$(vi) \ \overline{A} \cup \overline{B} = \{x \in \mathbb{N} | x \le 2 \text{ ou } x \ge 11\}$$

11. Dado $C = \{2, -1, 5\}$, considere o conjunto universo sendo o conjunto de partes de C, U = P(C). Calcule:

$$(i) \overline{A}$$
 $(ii) A \cap B$

para
$$A = \{\{2, -1\}, \{2\}\}$$
, $B = \{\{5\}, \{2, -1, 5\}, \{-1, 2\}\}$.

Resposta: $U = P(C) = \{\emptyset, \{2\}, \{-1\}, \{5\}, \{2, -1\}, \{2, 5\}, \{-1, 5\}, \{2, -1, 5\}\}.$

$$(i) \ \overline{A} = \{\emptyset, \{-1\}, \{5\}, \{2, 5\}, \{-1, 5\}, \{2, -1, 5\}\}.$$

(ii)
$$A \cap B = \{\{2, -1\}\}.$$

12. Use a propriedade distributiva da interseção em relação a união de conjuntos para provar que $(A\cap D)\cup\overline{D}=A\cup\overline{D}$

Resposta: Para provar a igualdade, consideremos U o conjunto universo onde estão os conjuntos A e D.

$$(A \cap D) \cup \overline{D}$$
 =
(propriedade distributiva) = $(A \cup \overline{D}) \cap (D \cup \overline{D})$
 = $(A \cup \overline{D}) \cap U$
 = $A \cup \overline{D}$

13. Prove que
$$A - (B - C) = (A - B) \cup (A \cap C)$$
.

Resposta: Para provar a igualdade utilizaremos as propriedades conhecidas e obteremos o segundo termo a partir do primeiro.

$$\begin{array}{lll} A-(B-C) & = & \\ \text{(prop. da diferença)} & = & A\cap \overline{(B\cap \overline{C})} \\ \text{(Lei de Morgan)} & = & A\cap \overline{(B}\cup \overline{C}) \\ & = & A\cap \overline{(B}\cup C) \\ \text{(prop. distributiva)} & = & (A\cap \overline{B})\cup (A\cap C) \\ \text{(prop. da diferença)} & = & (A-B)\cup (A\cap C) \end{array}$$

14. Mostre as seguintes igualdades:

$$(i) (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Resposta: Para provar a igualdade, consideremos U o conjunto universo onde estão os conjuntos $A \in D$.

$$\begin{array}{rcl} (A-B)\cup(B-A) &=& \\ (\text{prop. da diferença}) &=& (A\cap\overline{B})\cup(B\cap\overline{A}) \\ (\text{prop. distributiva}) &=& [A\cup(B\cap\overline{A})]\cap[\overline{B}\cup(B\cap\overline{A})] \\ (\text{prop. distributiva}) &=& [(A\cup B)\cap(A\cup\overline{A})]\cap[(\overline{B}\cup B)\cap(\overline{B}\cup\overline{A})] \\ (\text{Lei de Morgan}) &=& [(A\cup B)\cap\underline{U}]\cap[U\cap\overline{(A\cap B)}] \\ &=& (A\cup B)\cap\overline{(A\cap B)} \\ (\text{prop. da diferença}) &=& (A\cup B)-(A\cap B) \end{array}$$

$$(ii) A \cap (B - C) = (A \cap B) - (A \cap C)$$

Resposta: Para provar a igualdade, consideremos U o conjunto universo onde estão os conjuntos $A \in D$.

$$(A \cap B) - (A \cap C) = (Prop. da diferença) = (A \cap B) \cap \overline{(A \cap C)}$$
(Lei de Morgan) = $(A \cap B) \cap \overline{(A \cup C)}$
(prop. distributiva) = $[(A \cap B) \cap \overline{A}] \cup [(A \cap B) \cap \overline{C}]$
(prop. comutativa e associativa) = $[(A \cap \overline{A}) \cap B] \cup [A \cap (B \cap \overline{C})]$
(prop. da diferença) = $(\emptyset \cap B) \cup [A \cap (B - C)]$
= $\emptyset \cup [A \cap (B - C)]$
= $A \cap (B - C)$

15. Observação: Nesta questão estamos considerando $0 \in \mathbb{N}$.

Dados os seguintes conjuntos: $A=\{x\in\mathbb{Z}|0\leq x\leq 7\}$, $B=\{x\in\mathbb{N}|0\leq x\leq 7\}$. Verifique que:

$$(i) A = B$$

Resposta: Os elementos de A e B são os mesmos, $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$ e $B = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

$$(ii) \ \overline{A} \neq \overline{B}$$

Resposta: $A \subseteq \mathbb{Z}$ logo o conjunto universo onde está A é \mathbb{Z} , portanto, $\overline{A} = \{x \in \mathbb{Z} | x \geq 8 \text{ ou } x \leq -1\} = \{..., -3, -2, -1, 8, 9, ...\}.$

Por definição $B\subseteq \mathbb{N}$, portanto o conjunto universo é \mathbb{N} , então $\overline{B}=\{x\in \mathbb{N}|x\geq 8\}=\{8,9,10,\ldots\}.$