

Verification in Isabelle/HOL of Hopcroft's algorithm for minimizing DFAs including runtime analysis

Vincent Trélat supervised by Prof. Dr. Tobias Nipkow and Dr. Peter Lammich

Technical University of Munich Chair for Logic and Verification

September 2023

Outline

1. Living in Munich

- 1.1 The city
- 1.2 Technical University of Munich

2. Hopcroft's algorithm

- 2.1 DFA minimization by example
- 2.2 Towards a formal definition...

Living in Munich ıblin Netherlands Berlin⊚ London Germany Belgium Prague Czechia Paris Vienna ⊚ Austria France Croatia Marseille Italy ⊚Rome Barcelona

Figure: Location of Munich

Madrid

Living in Munich The ci

Figure: Some photos of Munich

Figure: Technical University of Munich (TUM)

1. Living in Munich

- 1.1 The city
- 1.2 Technical University of Munich

2. Hopcroft's algorithm

- $_{\rm 2.1}$ DFA minimization by example
- 2.2 Towards a formal definition...

Splitter	Partition	Workset
_	${q_0, q_1, q_5}{q_2, q_3, q_4}$	$(\alpha, \{q_0, q_1, q_5\}) (\beta, \{q_0, q_1, q_5\})$

Splitter	Partition	Workset
_	$\{q_0, q_1, q_5\}\{q_2, q_3, q_4\}$	$(\alpha, \{q_0, q_1, q_5\}) (\beta, \{q_0, q_1, q_5\})$
$(\beta, \{q_0, q_1, q_5\})$	$\{q_0, q_1\}\{q_5\}\{q_2, q_3, q_4\}$	$ \begin{array}{c} (\alpha, \{q_0, q_1, q_5\}) \ (\beta, \{q_0, q_1, q_5\}) \\ (\alpha, \{q_0, q_1\}) \ (\alpha, \{q_5\}) \end{array} $

Splitter	Partition	Workset
_	${q_0, q_1, q_5}{q_2, q_3, q_4}$	$(\alpha, \{q_0, q_1, q_5\}) \ (\beta, \{q_0, q_1, q_5\})$
$(\beta, \{q_0, q_1, q_5\})$	${q_0, q_1}{q_5}{q_2, q_3, q_4}$	
$(\alpha, \{q_0, q_1\})$	$\{q_0, q_1\}\{q_5\}\{q_2, q_3, q_4\}$	$(\alpha,\{q_5\})$

Splitter	Partition	Workset
_	${q_0, q_1, q_5}{q_2, q_3, q_4}$	$(\alpha, \{q_0, q_1, q_5\}) (\beta, \{q_0, q_1, q_5\})$
$(\beta, \{q_0, q_1, q_5\})$	$\{q_0, q_1\}\{q_5\}\{q_2, q_3, q_4\}$	
$(\alpha, \{q_0, q_1\})$	$\{q_0, q_1\}\{q_5\}\{q_2, q_3, q_4\}$	
$(\alpha, \{q_5\})$	$\{q_0, q_1\}\{q_5\}\{q_2, q_3, q_4\}$	Ø

Formalization