Statistics for Data Science - 2

Important results

Discrete random variables:

Distribution	PMF $(f_X(k))$	$CDF(F_X(x))$	E[X]	Var(X)
Uniform(A) $A = \{a, a + 1, \dots, b\}$	$ \frac{1}{n}, x = k $ $ n = b - a + 1 $ $ k = a, a + 1, \dots, b $	$\begin{cases} 0 & x < 0 \\ \frac{k-a+1}{n} & k \le x < k+1 \\ & k = a, a+1, \dots, b-1, b \\ 1 & x \ge n \end{cases}$	$\frac{a+b}{2}$	$\frac{n^2-1}{12}$
Bernoulli(p)	$\begin{cases} p & x = 1 \\ 1 - p & x = 0 \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$	p	p(1-p)
Binomial(n, p)	${}^{n}C_{k}p^{k}(1-p)^{n-k},$ $k=0,1,\ldots,n$	$\begin{cases} 0 & x < 0 \\ \sum_{i=0}^{k} {}^{n}C_{i}p^{i}(1-p)^{n-i} & k \le x < k+1 \\ & k = 0, 1, \dots, n \\ 1 & x \ge n \end{cases}$	np	np(1-p)
Geometric(p)	$(1-p)^{k-1}p,$ $k=1,\ldots,\infty$	$\begin{cases} 0 & x < 0 \\ 1 - (1 - p)^k & k \le x < k + 1 \\ & k = 1, \dots, \infty \end{cases}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!},$ $k = 0, 1, \dots, \infty$	$\begin{cases} 0 & x < 0 \\ e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} & k \le x < k+1 \\ & k = 0, 1, \dots, \infty \end{cases}$	λ	λ

Continuous random variables:

Distribution	PDF $(f_X(k))$	$CDF(F_X(x))$	E[X]	$\operatorname{Var}(X)$
$\operatorname{Uniform}[a,b]$	$\frac{1}{b-a}, \ a \le x \le b$	$\begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}, x > 0$	$\begin{cases} 0 & x \le 0 \\ 1 - e^{-\lambda x} & x > 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\mathrm{Normal}(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right),$ $-\infty < x < \infty$	No closed form	μ	σ^2
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}, x > 0$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
$Beta(\alpha, \beta)$	$ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} $ $0 < x < 1 $		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

1. Markov's inequality: Let X be a discrete random variable taking non-negative values with a finite mean μ . Then,

$$P(X \ge c) \le \frac{\mu}{c}$$

2. Chebyshev's inequality: Let X be a discrete random variable with a finite mean μ and a finite variance σ^2 . Then,

$$P(\mid X - \mu \mid \ge k\sigma) \le \frac{1}{k^2}$$

3. Weak Law of Large numbers: Let $X_1, X_2, \ldots, X_n \sim \text{iid } X \text{ with } E[X] = \mu, \text{Var}(X) = \sigma^2$.

Define sample mean $\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$. Then,

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2}$$

4. Using CLT to approximate probability: Let $X_1, X_2, \ldots, X_n \sim \text{iid } X \text{ with } E[X] = \mu, \text{Var}(X) = \sigma^2$.

Define $Y = X_1 + X_2 + \ldots + X_n$. Then,

$$\frac{Y - n\mu}{\sqrt{n}\sigma} \approx \text{Normal}(0, 1).$$

• Test for mean Case (1): When population variance σ^2 is known (z-test)

Test	H_0	H_A	Test statistic	Rejection region
right-tailed	$\mu = \mu_0$	$\mu > \mu_0$	$T = \overline{X}$ $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$	$\overline{X} > c$
			$T = \overline{X}$ $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$	$\overline{X} < c$
two-tailed			$T = \overline{X}$ $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$	$ \overline{X} - \mu_0 > c$

Case (2): When population variance σ^2 is unknown (t-test)

Test	H_0	H_A	Test statistic	Rejection region
right-tailed	$\mu = \mu_0$	$\mu > \mu_0$	$T = \overline{X}$ $t_{n-1} = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$	$\overline{X} > c$
left-tailed	$\mu = \mu_0$	$\mu < \mu_0$	$T = \overline{X}$ $t_{n-1} = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$\overline{X} < c$
			$T = \overline{X}$ $t_{n-1} = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$	$ \overline{X} - \mu_0 > c$

• χ^2 -test for variance:

Test	H_0	H_A	Test statistic	Rejection region
right-tailed	$\sigma = \sigma_0$	$\sigma > \sigma_0$	$T = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$S^2 > c^2$
left-tailed	$\sigma = \sigma_0$	$\sigma < \sigma_0$	$T = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$S^2 < c^2$
two-tailed	$\sigma = \sigma_0$	$\sigma \neq \sigma_0$	$T = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$S^2 > c^2$ where $\frac{\alpha}{2} = P(S^2 > c^2)$ or $S^2 < c^2$ where $\frac{\alpha}{2} = P(S^2 < c^2)$

\bullet Two samples z-test for means:

Test	H_0	H_A	Test statistic	Rejection region
right-tailed	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$T = \overline{X} - \overline{Y}$ $\overline{X} - \overline{Y} \sim \text{Normal}\left(0, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right) \text{ if } H_0 \text{ is true}$	$\overline{X} - \overline{Y} > c$
left-tailed	$\mu_1 = \mu_2$	$\mu_1 < \mu_2$	$T = \overline{Y} - \overline{X}$ $\overline{Y} - \overline{X} \sim \text{Normal}\left(0, \frac{\sigma_2^2}{n_2} + \frac{\sigma_1^2}{n_1}\right) \text{ if } H_0 \text{ is true}$	$\overline{Y} - \overline{X} > c$
two-tailed	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$T = \overline{X} - \overline{Y}$ $\overline{X} - \overline{Y} \sim \text{Normal}\left(0, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right) \text{ if } H_0 \text{ is true}$	$ \overline{X} - \overline{Y} > c$

\bullet Two samples F-test for variances

Test	H_0	H_A	Test statistic	Rejection region
one-tailed	$\sigma_1 = \sigma_2$	$\sigma_1 > \sigma_2$	$T = \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$	$\frac{S_1^2}{S_2^2} > 1 + c$
			$T = \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$	
two-tailed	$\sigma_1 = \sigma_2$	$\sigma_1 eq \sigma_2$	$T = \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$	$\frac{S_1^2}{S_2^2} > 1 + c_R \text{ where } \frac{\alpha}{2} = P(T > 1 + c_R) \text{ or } $ $\frac{S_1^2}{S_2^2} < 1 - c_L \text{ where } \frac{\alpha}{2} = P(T < 1 - c_L)$

• χ^2 -test for goodness of fit:

 H_0 : Samples are i.i.d X, H_A : Samples are not i.i.d X

Test statistic:
$$T = \sum_{i=1}^{k} \frac{(y_i - np_i)^2}{np_i} = \sum_{i=1}^{k} \frac{(\text{observed value} - \text{expected value})^2}{\text{expected value}} \sim \chi_{k-1}^2$$

Test: Reject H_0 if T > c.

• Test for independence:

 H_0 : Joint PMF is product of marginals, H_A : Joint PMF is not product of marginals

Test statistic:
$$T = \sum_{i,j} \frac{(y_{ij} - np_{ij})^2}{np_{ij}} = \sum_{i=1}^k \frac{(\text{observed value} - \text{expected value})^2}{\text{expected value}} \sim \chi_{dof}^2$$

where $dof = (\text{number of rows}-1) \times (\text{number of columns}-1)$ $y_{ij} = \text{product of marginals for } (i, j)$ $np_{ij} = \text{expected}$, if independent

Test: Reject H_0 if T > c.