

WYŻSZA SZKOŁA INFORMATYKI I UMIEJĘTNOŚCI Wydział Informatyki i Zarządzania Kierunek: Informatyka

Sebastian Florek nr albumu: 29571

Praca Magisterska Monitorowanie otoczenia za pomocą mikrokontrolerów Raspberry Pi w oparciu o system zarządzania klastrem Kubernetes

Praca napisana pod kierunkiem dr inż. Grzegorz Zwoliński

Rok akademicki 2016/2017

Spis treści

1	Wstęp							
	1.1	_						
	1.2		a badawcza	4				
	1.3		ad literatury w dziedzinie	4				
	1.4	_	pracy	4				
2	Podstawy teoretyczne 6							
	2.1	Podsta	wowe definicje	6				
		2.1.1	Wirtualizacja oparta na Linuksie	6				
		2.1.2	Wirtualizacja oparta o nadzorcę	6				
		2.1.3	Wirtualizacja oparta na kontenerach	6				
		2.1.4	Mikrokontroler RaspberryPi	6				
		2.1.5	Kompilacja skrośna	6				
	2.2	Systen	ny zarządzania kontenerami	6				
		2.2.1	Kubernetes	6				
		2.2.2	Docker Swarm	6				
		2.2.3	Resin.io	6				
3	Projekt KubePi 7							
	3.1	Analiz	a wymagań	7				
	3.2		technologie	7				
	3.3	-	t	7				
	3.4		żytkowania	7				
	3.5	-	ad użycia	7				
	3.6	-	wości rozszerzania aplikacji	7				
4	Podsumowanie			8				
Bi	bliog	rafia		8				

SPIS TREŚCI	3
Spis rysunków	9
Spis tabel	10

Rozdział 1

Wstęp

1.1 Problematyka i zakres pracy

Wraz z rozwojem Internetu Rzeczy na świecie powstają coraz to nowe urządzenia mające na celu automatyzację działań i ułatwienie życia człowieka. Dzięki ich zdolności do wzajemnej komunikacji, wymiany informacji oraz zdalnego zarządzania zasobami stają się one coraz bardziej popularne, a wręcz wymagane w życiu codziennym coraz większej grupy osób. Sterowanie oświetleniem, radiem czy innymi sprzętami elektronicznymi za pomocą naszego smartfona już nikogo nie dziwi. W wielu przypadkach urządzenia te muszą zbierać bardzo duże ilości danych oraz przesyłać je do centralnego punktu. Powoduje to ogromny wzrost ilości danych, które nie są w stanie zostać obsłużone przez jeden serwer. Powstaje więc potrzeba stworzenia niezawodnych, wydajnych i bezpiecznych systemów o wysokiej dostępności.

Technologie wirtualizacji ¹ powstały w celu realizacji tych wymagań. Wirtualizacja serwerów dawno już wyparła tradycyjne serwery, które zostały zastąpione przez rozwiązania chmurowe. Niezależność sprzętowa, lepsza utylizacja zasobów, większe bezpieczeństwo, łatwa migracja danych i redukcja kosztów to tylko niektóre z wielu zalet wirtualizacji. Właśnie ta niezależność sprzętowa pozwala na coraz lepsze wykorzystanie urządzeń opartych na architekturze ARM, których głównymi zaletami są mały koszt i niewielki pobór mocy, a dzięki coraz lepszej optymalizacji systemów i postępującej miniaturyzacji, również rosnąca wydajność.

Proponowanym rozwiązaniem powyższych problemów będzie projekt o nazwie KubePi. Projekt ten skupia się na wirtualizacji opartej o kontenery Dockera ² zarządzane przez system zarządzania klastrem Kubernetes i ma na celu stworzenie

¹[?]

²[?]

rozproszonego systemu służącego do monitorowania otoczenia. Przykładowy klaster opierać się będzie na dwóch mikrokontrolerach RaspberryPi. Do pierwszego urządzenia będącego zarazem głównym węzłem klastra podłączone zostaną trzy czujniki: temperatury, wilgotności oraz alkoholu. Jego zadaniem będzie udostępnianie zbieranych informacji. Drugie urządzenie zostanie natomiast wyposażone w wyświetlacz LED ³, co pozwoli na odczyt i wyświetlanie temperatury raportowanej przez pierwsze urządzenie. Dodatkowo w klastrze zostanie zainstalowana aplikacja webowa ⁴ pozwalająca na zdalny monitoring. W celu lepszego zobrazowania komunikacji między urządzeniami zostanie ona uruchomiona na drugim urządzeniu.

1.2 Metoda badawcza

1.3 Przegląd literatury w dziedzinie

1.4 Układ pracy

Celem pracy jest zaproponowanie architektury i sprawdzenie w działaniu rozproszonego systemu wysokiej dostępności służącego do monitorowania otoczenia.

Rozdział pierwszy zawiera szczegółowy opis problemu. Zostają w nim przedstawione różne problemy związane z wydajnością oraz bezpieczeństwem tradycyjnych rozwiązań, wraz z opisem metod badawczych użytych do analizy tematu. Podsumowane zostają również główne założenia i cele pracy. Na koniec przeprowadzony zostaje przegląd literatury związanej z tematem, z naciskiem na kluczowe zagadnienia dotyczące wirtualizacji, rozwiązań chmurowych oraz mikrokontrolerów opartych na architekturze ARM, wraz z krótkim opisem użytych źródeł.

W rozdziale drugim przybliżona zostaje tematyka systemów zarządzania klastrami pod kątem ich wymagań, bezpieczeństwa oraz komunikacji sieciowej. Kolejnym krokiem jest dokładniejsze zapoznanie się z wirtualizacją, a konkretniej wirtualizacją opartą o kontenery Dockera, co pozwoli lepiej zrozumieć ideę pracy. Następnie po krótce przedstawione zostają tematyki związane z mikrokontrolerami oraz Internetem Rzeczy.

Rozdział 3 skupia się na analizie istniejących systemów zarządzania klastrami oraz ich pochodnych. Dodatkowo przedstawiona zostaje analiza kilku systemów typu Smart Home ⁵.

³[?]

⁴[?]

⁵[?]

Kolejny rozdział opisuję fazę projektowania i implementacji projektu KubePi. Spisane zostają wymagania funkcjonalne aplikacji, a także ograniczenia projektowe. Wymienione i opisane zostają użyte technologie. Opisany zostaje proces konfiguracji urządzeń, sieci oraz systemu. Następnie wskazane zostają kluczowe punkty aplikacji wraz z kodem źródłowym i opisem. W kolejny kroku przechodzimy do fazy testów stworzonych aplikacji jak i całego systemu.

W podsumowaniu pracy opisane zostają słabe i mocne strony przedstawionego rozwiązania. Na podstawie uzyskanych wyników następuje ocena możliwości i przydatności zaproponowanego rozwiązania. Na końcu omówione zostają możliwe perspektywy rozwoju projektu.

Rozdział 2

Podstawy teoretyczne

2.1	Podstawowe	definicje
-----	-------------------	-----------

- 2.1.1 Wirtualizacja oparta na Linuksie
- 2.1.2 Wirtualizacja oparta o nadzorcę
- 2.1.3 Wirtualizacja oparta na kontenerach

Docker

2.1.4 Mikrokontroler RaspberryPi

Protokoły komunikacji

- 2.1.5 Kompilacja skrośna
- 2.2 Systemy zarządzania kontenerami
- 2.2.1 Kubernetes

Architektura

- 2.2.2 Docker Swarm
- 2.2.3 Resin.io

Rozdział 3

Projekt KubePi

- 3.1 Analiza wymagań
- 3.2 Użyte technologie
- 3.3 Projekt
- 3.4 Opis użytkowania
- 3.5 Przykład użycia
- 3.6 Możliwości rozszerzania aplikacji

Rozdział 4 Podsumowanie

Bibliografia

[1] Some books

Spis rysunków

Spis tablic