

Paper: Ring Attention with Blockwise Transformers for Near-Infinite Context

BUAN 6382.SW1 - 24S Group 6

Ring Attention with Blockwise Transformers for Near-Infinite Context

Authors:

Hao Liu, Matei Zaharia, Pieter Abbeel

UC Berkeley

October 2023

https://arxiv.org/pdf/2310.01889.pdf

Problem Statement

- Transformers demonstrate outstanding performance across numerous state-of-the-art AI models.
- However, their capacity to effectively process lengthy sequences of tokens is constrained.
- As the popularity of AI models and applications exponentially grow, so does the need for LLM architectures to have memory capabilities to process extremely large amounts of data efficiently.

Why is this Important?

LLMs are being applied to larger and larger bodies of data

→ including books, high-resolution images, and long videos.

Reduce memory usage and increase speed of algorithms

→ vital to processing vast amounts of data

Proposed Solution: Ring Attention with Blockwise Transformers

Key Advantage:

Reduces memory requirements

Enables training of:

- 500x longer token sequence than other transformers
- sequences exceeding100 million tokens in length without making approximations to attention

Ability to achieve near-infinite context size.

What is Ring Attention with Blockwise Transformers?

Combines: Ring Attention + Blockwise Processing

Ring Attention:

- Restricts attention to a fixed radius of distance from each token.
- Limits computational complexity
- More efficient process for long sequences

Blockwise Processing:

- Chunks input sequence into smaller blocks, each containing a fixed number of tokens
- Processes sequences incrementally
- Reduces memory requirements

(b)

Code and Demo

Ring Attention

```
class RingAttention(nn.Module):
    def __init__(self, input_size, num_heads=8, block_size=16):
        super(RingAttention, self).__init__()
        self.input_size = input_size
        self.num_heads = num_heads
        self.block_size = block_size

        self.query_projection = nn.Linear(input_size, input_size)
        self.key_projection = nn.Linear(input_size, input_size)
        self.value_projection = nn.Linear(input_size, input_size)
        self.output_projection = nn.Linear(input_size, input_size)
```

Attention Computation on Q,K,V

```
def forward(self, x):
   batch_size, seq_len, input_size = x.size()
   assert input_size == self.input_size
   # Reshape input into blocks
   x = x.view(batch_size, -1, self.block_size, input_size)
   # Apply projections
   queries = self_query_projection(x) # [batch_size, num_blocks, block_size, input_size]
   keys = self.key_projection(x) # [batch_size, num_blocks, block_size, input_size]
   values = self.value_projection(x) # [batch_size, num_blocks, block_size, input_size]
   # Compute attention scores
   attention_scores = torch.einsum('bijk,bilk->bijl', queries, keys) / (input_size ** 0.5) # [batch_size, num_blocks, block_size, block_size]
   attention_weights = F.softmax(attention_scores, dim=-1) # [batch_size, num_blocks, block_size, block_size]
   # Apply attention to values
   attended_values = torch.einsum('bijl,bilk->bijk', attention_weights, values) # [batch_size, num_blocks, block_size, input_size]
   # Reshape back to original shape
   attended values = attended values.view(batch size, seq len, input size)
   # Apply output projection
   outputs = self.output_projection(attended_values)
    return outputs
```


Blockwise Transformer

```
class BlockwiseTransformer(nn.Module):
    def __init__(self, input_size, num_layers=4, num_heads=8, block_size=16):
        super(BlockwiseTransformer, self).__init__()
        self.input_size = input_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.block_size = block_size
```


Initialization of Ring Attention Layers in Blockwise Transformer (ie Devices)

```
# Define Ring Attention layers

RA_Layers = []
for _ in range(num_layers):
    RA_Layers.append(RingAttention(input_size, num_heads, block_size))
self.attention_layers = nn.ModuleList(RA_Layers)
```


Ring Attention Layer Execution and FF Initialization

```
# Feedforward layer
   self.feedforward = nn.Sequential(
       nn.Linear(input size, 4 * input size),
       nn.ReLU(),
       nn.Linear(4 * input_size, input_size)
def forward(self, x):
    for layer in self.attention_layers:
       x = x + layer(x) # Residual connection
       x = F.layer_norm(x, normalized_shape=x.size()[1:]) # Layer normalization
       x = self.feedforward(x) # Feedforward layer
    return x
```


Synthetic Dataset

```
# Define SyntheticDataset class
class SyntheticDataset(Dataset):
   def __init__(self, num_samples, seq_len, input_size);
        self.num_samples = num_samples
        self.seg len = seg len
        self.input_size = input_size
   def len (self):
        return self.num_samples
   def __getiten__(self, idx):
        # Generate random sequence tensor
        sequence = torch.randn(self.seq_len, self.input_size)
        # Determine label based on some criteria (e.g., sum of the sequence)
        label = torch.tensor(1 if sequence.sum() > 0 else 0, dtype=torch.long)
        return sequence, label
# Instantiate the dataset and dataloader
nun_samples = 1000 # Number of samples in the dataset
seq_len = 1024  # Length of each sequence
input_size = 512  # Dimensionality of each element in the sequence
batch size = 32 # Batch size for training
dataset = SyntheticDataset(num_samples, seq_len, input_size)
dataloader = Dataloader(dataset, batch_size=batch_size, shuffle=True)
# Instantiate the model
model - BlockwiseTransformer(input_size-imput_size, num_layers-4, num_heads-8, block_size-16)
# Define device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.801)
```


Training loop & Results: Synthetic Dataset

```
# Training locs
num epochs = 10
for epoch in range(num_epochs):
    total_loss = 0.0
    for batch_idx, linputs, targets) in enumerate(dataloader):
        inputs, targets = inputs.to(device), targets.to(device)
        # Forward pass
        optimizer.zero_grad()
        outputs = model(inputs)
        # Compute loss
        loss = criterion(outputs.mean(dim=1), targets.squeeze())
        # Backward pass and optimization
        loss.backward()
        optimizer.step()
        total loss += loss.item()
        if (batch_idx + 1) % 10 == 0:
            print(f"Epoch [{epoch+1}/{num_epochs}], Batch [{batch_idx+1}/{len(dataloader)}], Loss: {loss.item():.4f]")
    print(f"Epoch [{epoch+1}/{num_epochs}], Average Loss: {total_loss / len|dataloader):.4f}")
```

```
Epoch [1/10], Batch [10/32], Loss: 0.6545
Epoch [1/10], Batch [20/32], Loss: 1.1160
Epoch [1/10], Batch [30/32], Loss: 0.6245
Epoch [1/10], Average Loss: 1.1188
Epoch [2/10], Batch [10/32], Loss: 0.7041
Epoch [2/10], Batch [20/32], Loss: 0.7914
Epoch [2/10], Batch [30/32], Loss: 0.7351
Epoch [2/10], Average Loss: 0.7848
Epoch [3/10], Batch [10/32], Loss: 0.7019
Epoch [3/10], Batch [20/32], Loss: 0.6059
Epoch [3/10], Batch [30/32], Loss: 0.7423
Epoch [3/10], Average Loss: 0.7463.
Epoch [4/10], Batch [10/32], Loss: 0.7776
Epoch [4/10], Batch [20/32], Loss: 0.7838
Epoch [4/10], Batch [30/32], Loss: 0.6873
Epoch [4/10], Average Loss: 0.7228
Epoch [5/10], Batch [10/32], Loss: 0.7369
Epoch [5/10], Batch [20/32], Loss: 0.6925
Epoch [5/10], Batch [30/32], Loss: 0.7179
Epoch [5/10], Average Loss: 0.7131
Epoch [6/10], Batch [10/32], Loss: 0.7483
Epoch [6/10], Batch [20/32], Loss: 0.7060
Epoch [8/10], Batch [30/32], Loss: 0.6869
Epoch [€/10], Average Loss: 0.7188
Epoch [7/10], Batch [10/32], Loss: 0.7529
Epoch [7/10], Batch [20/32], Loss: 0.7376
Epoch [7/10], Batch [30/32], Loss: 0.7207
Epoch [7/10], Average Loss: 0.7827
Epoch [8/10], Batch [10/32], Loss: 0.6874
Epoch [8/10], Batch [20/32], Loss: 0.7057
Epoch [8/10], Batch [30/32], Loss: 0.6671
Epoch [8/10], Average Loss: 0.6996
Epoch [9/10], Batch [10/32], Loss: 0.6970
Epoch [9/10], Batch [20/32], Loss: 0.7019
Ecoch [9/10], Batch [30/32], Loss: 0.7659
Epoch [9/10], Average Loss: 0.7189
Epoch [10/10], Batch [10/32], Loss: 0.7399
Epoch [10/10], Batch [20/32], Loss: 0.7024
Epoch [10/10], Batch [30/32], Loss: 0.7105
Epoch [10/10], Average Loss: 0.7149
```


Ring Attention Implementation on IMDb Dataset

```
# Load IMDB dataset
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

# Preprocess the data
max_len = 200  # Limiting sequence length to 200 for padding
train_data = pad_sequences(train_data, maxlen=max_len, padding='post')
test_data = pad_sequences(test_data, maxlen=max_len, padding='post')
```


RA on IMDb – Model Build

```
def build_model():
    inputs = Input(shape=(max_len,))
    x = Embedding(input_dim=10000, output_dim=128)(inputs) # Embedding layer
    x = BlockwiseTransformer(num_blocks=6, embed_dim=128, num_heads=8, mlp_dim=128, dropout=0.1)(x)
    x = GlobalAveragePooling1D()(x)
    outputs = Dense(1, activation='sigmoid')(x)
    model = Model(inputs=inputs, outputs=outputs)
    return model

# Create and compile the model
model = build_model()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```


Basic training & Results: IMDb Dataset

```
# Train the model
history = model.fit(train_data, train_labels, epochs=5, batch_size=64, validation_split=0.1)
# Evaluate the model on test data
loss, accuracy = model.evaluate(test_data, test_labels)
print(f"Test Accuracy: {accuracy:.4f}")
Epoch 1/5
352/352 [==
                              - 44s 01ns/step - loss: 0.5507 - accuracy: 0.6003 - val loss: 0.3206 - val accuracy: 0.0592
Epoch 2/5
                              - 17s 47ns/step - loss: 0.2469 - accuracy: 0.9845 - val_loss: 0.3857 - val_accuracy: 0.3824
Epoch 3/5
                                14s 39ms/step - loss: 0.1743 - accuracy: 0.9351 - val loss: 0.3298 - val accuracy: 0.3726
Epoch 4/5
                              - 12s 35ms/step - loss: 0.1444 - accuracy: 0.9484 - val_loss: 0.3493 - val_accuracy: 0.3728
352/352 [-
Epoch 5/5
                      Test Accuracy: 0.8555
```


Basic training & Results: IMDb Dataset

fcNN (model from class lecture)

Ring Attention model

Ring Attention Implementation on Reuters Dataset

```
# Load IMDB dataset
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
# Preprocess the data
max len = 2400 # Limiting sequence length to 200 for padding
train_data = pad_sequences(train_data, maxlen=max_len, padding='post')
test data = pad_sequences(test_data, maxlen=max_len, padding='post')
from tensorflow.keras.utils import to categorical
# Convert labels to one-hot encoding
train labels = to categorical(train labels, num classes=46)
test labels = to categorical(test labels, num classes=46)
```


RA on Reuters – Model Build

```
def build model():
    inputs = Input(shape=(max len,))
    x = Embedding(input dim=10000, output dim=128)(inputs) # Embedding layer
    x = BlockwiseTransformer(num blocks=6, embed dim=128, num heads=8, mlp dim=128, dropout=0.1)(x)
    x = GlobalAveragePooling1D()(x)
    outputs = Dense(46, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    return model
# Create and compile the model
model = build model()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```


Basic training & Results: Reuters Dataset

```
# Train the model
|history = model.fit|(train data, train labels, epochs=20, batch size=16, validation split=0.1)
# Evaluate the model on test data
loss, accuracy = model.evaluate(test data, test labels)
print(f"Test Accuracy: {accuracy:.4f}")
Epoch 1/28
589/586 [-
                                        - 1695 385ms/step - loss: 1.87/5 - accuracy: 8.5278 - val_loss: 1.5441 - val_accuracy: 8.6296
Epoch 7/28
                                        - 153s 382ms/step - loss: 1.4965 - sccuracy: 8.6432 - val_loss: 1.4434 - val_accuracy: 8.6596
586/586 [==
                                       - 153s 387ms/step - loss: 1.3868 - sccuracy: 8.5772 - val_loss: 1.4284 - val_accuracy: 8.5538
Epach 4/28
585/586 f=
                                          153s 387ms/step - loss: 1.1933 - accuracy: 8.7811 - val_loss: 1.4411 - val_accuracy: 8.6574
585/586 [==
                                         153s 397ms/step - loss: 1.1523 - accuracy: 8.7853 - val_loss: 2.9182 - val_accuracy: 8.5573
Epoch 6/28
                                          153s 387ms/step - loss: 1.1552 - accuracy: 8.7858 - val_loss: 1.4671 - val_accuracy: 8.6449
585/586 [==
Epoch 7/28
586/586 [-
                                        - 153s 382ms/step - loss: 1.3338 - accuracy: 8.6568 - val_loss: 1.4623 - val_accuracy: 6.6429
Epoch 8/28
585/566 [****************************** - 153s 382ms/step - loss: 1.4294 - accuracy: 0.6328 - val_loss: 1.4116 - val_accuracy: 0.6463
586/586 [--
                                        153s 392ms/step = loss: 1.2793 = accuracy: 8.6687 = val_loss: 1.3501 = val_accuracy: 8.6529
Epoch 16/28
595/586 [---
                                       - 153s 392ms/step - loss: 1.1689 - accuracy: 0.5021 - val_loss: 1.3545 - val_accuracy: 0.6639
Epoch 11/28
586/586 [---
                                       - 153s 397ms/step - loss: 1.2007 - accuracy: 0.6881 - val_loss: 1.4764 - val_accuracy: 0.6185
Epoch 12/28
585/586 [===
                                       - 153s 382ms/step - Loss: 1.2295 - accuracy: 8.6771 - val_loss: 1.4237 - val_accuracy: 8.6374
Epoch 13/28
586/586 [==
                                        - 153s 382ms/step - loss: 1.1527 - accuracy: 8.6958 - val_loss: 1.4812 - val_accuracy: 8.6541
                                         153s 382ms/step - loss: 1.8658 - accuracy: 8.7183 - val_loss: 1.4762 - val_accuracy: 8.6385
Epach 15/28
                                         1548 387ms/step - loss: 1.1888 - accuracy: 8.7885 - val_loss: 1.3798 - val_accuracy: 8.6529
585/586 [-----
                                        - 153s 30/ms/step - loss: 1.8718 - accuracy: 8.7177 - wal_loss: 1.3033 - val_accuracy: 8.6797
Epach 17/28
                                        - 153s 388ms/step - loss: 1.0768 - accuracy: 0.7169 - val_loss: 1.3744 - val_accuracy: 0.6563
586/586 [===
                                       - 153s 383ms/step - loss: 1.1007 - accuracy: 8.7105 - val_loss: 1.3485 - val_accuracy: 8.6641
Epoch 19/26
                                         153s 383ms/step - loss: 1.1072 - accuracy: 8.7816 - val_loss: 1.4890 - val_accuracy: 8.6429
Epoch 26/26
596/586 [--
                                     -] - 154s 393ms/step - loss: 1.6849 - accuracy: 8.7136 - val loss: 1.4399 - val accuracy: 6.6596
71/71 1----
                                   -l = 14s 192ms/step = loss: 1.4531 = accuracy: 0.6327
Test Accuracy: 0.6327
```


Compare with Alternative Solutions

Simple attention

Keys, Values, Query vectors -> attention scores

Cross attention

Learns relationships across separate queries. Good for Q&A.

Vanilla attention mechanisms

- Do not scale well with increasing sequence lengths due to quadratic complexity.
- Ring attention scales linearly with the number of devices, allowing it to handle near-infinite context sizes.

Blockwise Attention (Ring attention builds upon this idea)

Chunks sequence into blocks (groups of tokens) for stepwise processing.

Especially Noteworthy Alternate Solution: Striped Attention

Especially Noteworthy Alternate Solution: Striped Attention

Conclusions

- Ring attention is built using a blockwise implementation.
- Ring attention provides significant improvement in memory utilization over vanilla transformers.
- Newer approaches, such as striped attention, are taking this idea even further by achieving faster application speeds.
- Evolution of algorithms in this field is occurring rapidly.
- Large World Model (LWM) uses ring attention to handle larger contexts
 - eg: understands up to 1-hour videos

References

Ring Attention with Blockwise Transformers for Near-Infinite Context

https://arxiv.org/pdf/2310.01889.pdf

Blockwise Self-Attention for Long-Document Understanding

https://arxiv.org/abs/1911.02972

Striped Attention: Faster Ring Attention for Causal Transformers

https://arxiv.org/pdf/2311.09431.pdf

Large World Model (LWM)

https://github.com/LargeWorldModel/LWM/blob/main/README.md

Ring Attention in Large World Model (LWM)

• <a href="https://jrodthoughts.medium.com/inside-large-world-model-uc-berkeley-multimodal-model-that-can-understand-1-hour-long-videos-d1a97c5c7fa0#:~:text=LWM%20provides%20a%20strong%20foundation,to%20interact%20with%20long%20videos.

Questions?

Thank you!