1 Komplexe Zahlen \mathbb{C}

1.1 Zahlbereichserweiterung

Ziel ist es Gleichungen wie $\mathbf{x}^2 + \mathbf{1} = \mathbf{0}$ zu lösen. Man definiert dazu nun eine Einheit i mit der Eigenschaft $\mathbf{i}^2 = -\mathbf{1}$. Für so eine Zahl ist nun jedoch kein Platz mehr in der Zahlengerade, deshalb erweitert man die Zahlengerade mit den Komplexen Zahlen zu einer **Zahlenebene**. Somit sind die komplexen Zahlen eine **Erweiterung der Reellen Zahlen**. Dies wird auch **Zahlbereichserweiterung** genannt

1.2 Einführung

Eine komplexe Zahl $\mathbf{z} \in \mathbb{C}$ ist ein Wertepaar $(\mathbf{a}; \mathbf{b})$, wobei a den Realenteil und \mathbf{b} den Imaginärenteil darstellt.

$$z = (a; b) z \in \mathbb{C}$$

$$a = \text{Re}(z)$$

$$b = \text{Im}(z)$$

$$(a; b) + (c; d) = (a + c; b + d)$$

$$(a; b) - (c; d) = (a - c; b - d)$$

$$(a; b) \cdot (c; d) = (ac - bd; ad + bc)$$

$$r \cdot (a; b) = (ra; rb) r \in \mathbb{R}$$

1.3 Komplexe Zahlen als Vektorraum

Eine komplexe Zahl als Wertepaar kann mit einem Vektor im Vektorraum \mathbb{R}^2 verglichen werden, wobei auch Rechenarten, wie Addition und Multiplikation (mit reellen Zahlen) analog zur Vektoraddition und Vektormultiplikation sind. Der Vektorraum bei komplexen Zahlen hat wie der Vektorraum von \mathbb{R}^2 zwei Koordinatenachsen. Dabei gibt die x-Achse den reellen Anteil und die y-Achse den imaginären Anteil der komplexen Zahlen an. Für die Darstellung komplexer Zahlen wird die Gleichung $\mathbf{z} = (\mathbf{a}; \mathbf{b}) = \mathbf{a} \cdot (\mathbf{1}; \mathbf{0}) + \mathbf{b} \cdot (\mathbf{0}; \mathbf{1})$ verwendet. Dabei ist das Wertepaar $(\mathbf{1}; \mathbf{0}) = \mathbf{1}$ als Einselement definiert, während das Wertepaar $(\mathbf{0}; \mathbf{1}) = \mathbf{i}$ angibt. Es ergibt sich also folgende Gleichung: $\mathbf{z} = \mathbf{a} \cdot \mathbf{1} + \mathbf{b} \cdot \mathbf{i} = \mathbf{a} + \mathbf{bi}$.

1.4 Sind die reellen Zahlen wirklich eine Teilmenge von den komplexen Zahlen?

Nun haben wir eine neue Menge, in der $\sqrt{-1}=i$ ist, jedoch wollen wir nun beweisen, dass die Menge eine **Erweiterung der reellen Zahlen** $\mathbb R$ ist. Dazu nutzen wir unsere vorherige Definition, laut der $\mathbf x \cdot \mathbf 1 = (\mathbf x; \mathbf 0)$ ist, nun nehmen wir zwei Zahlen $\mathbf a$, $\mathbf b$ mit $\mathbf a, \mathbf b \in \mathbb R$, schreiben sie nach Definition auf: $\mathbf a \cdot \mathbf 1 = (\mathbf a; \mathbf 0)$ und $\mathbf b \cdot \mathbf 1 = (\mathbf b; \mathbf 0)$ und addieren sie $\mathbf a \cdot \mathbf 1 + \mathbf b \cdot \mathbf 1 = (\mathbf a + \mathbf b) \cdot \mathbf 1$ und $(\mathbf a; \mathbf 0) + (\mathbf b; \mathbf 0) = (\mathbf a + \mathbf b; \mathbf 0) = (\mathbf a + \mathbf b) \cdot \mathbf 1$ beim Vergleichen, stellen wir fest, dass die beiden Ergebnisse **gleich** sind, dass bedeutet, dass alle Elemente aus $\mathbb C$ mit $(\mathbf a \cdot \mathbf 1) \in \mathbb R$ sich **gleich wie die Reellen Zahlen verhalten**.

Wir schreiben also $z = (a; b) = a\mathbf{1} + b\mathbf{i}$, jedoch verzichten wir auf die **1** und schreiben **i** ohne Fettdruck, also $z = (a; b) = a + b \cdot i$.

1.5 Aufgaben

1.5.1 Berechnen Sie:

- a) (5;4) (1;-2)
- b) $3 \cdot (2; -1)$
- c) $(6;0) \cdot (4;1)$
- d) $(1;3) \cdot (1;-3)$
- e) Berechnen Sie die ersten drei Potenzen von (2; -2).

1.5.2 Bestimmen Sie Real- und Imaginärteil von:

- a) z = (2 7i) + (12 13i)
- b) $z = (5+7i) \cdot (3+i)$
- **1.5.3** Benutze i = (0,1) um $i^2 = -1$ nachzuweisen
- **1.5.4** Bestimmen Sie die reelen Zahlen c und d so, dass $(-1; 2) \cdot (c; d) = (-13; 1)$
- 1.5.5 Beweise, dass für $a \cdot b$, das Kommutativgesetz gilt
- 1.5.6 Beweise, dass für $a \cdot b$, das Distributivgesetz gilt