姓名: 专业: 学号:

第 04 周作业解答

练习 1. 设
$$A = \begin{pmatrix} 1 & -4 & 2 \\ -1 & 4 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ -1 & 3 \\ 5 & -2 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 2 \\ 1 & -1 \\ 1 & -3 \end{pmatrix}$, 计算 $B + C$, AB , BA , AC , CA 和 $A(2B - 3C)$ 。

解

$$B+C=\left(\begin{array}{cc} 3 & 4 \\ 0 & 2 \\ 6 & -5 \end{array}\right), \qquad AB=\left(\begin{array}{cc} 15 & -14 \\ -15 & 14 \end{array}\right), \qquad BA=\left(\begin{array}{cc} -1 & 4 & -2 \\ -4 & 16 & -8 \\ 7 & -28 & 14 \end{array}\right)$$

$$AC=\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right), \qquad CA=\left(\begin{array}{cc} 0 & 0 & 0 \\ 2 & -8 & 4 \\ 4 & -16 & 8 \end{array}\right), \qquad A(2B-3C)=\left(\begin{array}{cc} 30 & -28 \\ -30 & 28 \end{array}\right)$$

练习 2. 设 $A = \begin{pmatrix} 2 & 1 & 4 \\ -3 & 0 & 2 \end{pmatrix}$,计算 AA^T 及 A^TA 。

解

$$AA^{T} = \begin{pmatrix} 2 & 1 & 4 \\ -3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 0 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 21 & 2 \\ 2 & 13 \end{pmatrix}$$
$$A^{T}A = \begin{pmatrix} 2 & -3 \\ 1 & 0 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 \\ -3 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 2 & 2 \\ 2 & 1 & 4 \\ 2 & 4 & 20 \end{pmatrix}$$

练习 3. 若 $A = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}$ 和 $AB = \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix}$,求 B。

解由题意知:

$$\begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix} B = \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix}$$

所以

$$B = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}^{-1} \cdot \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix} = \begin{pmatrix} 7 & -8 & 1 \\ 4 & -5 & 1 \end{pmatrix}$$

以下是附加题,做出来的同学下次课交,可以加分。注意解答过程要详细。

练习 4. (关于纠错码) 在这个练习中,我们不使用实数,而使用二进制数字 0 和 1。在这种数字系统中,加 法、减法、乘法定义为: 1+1=0, 1+0=1, 0-1=1, $1\cdot 1=1$, $0\cdot 1=0$ 等等。用 $\mathbb F$ 表示这种数字系统,即 $\mathbb F = \{0,1\}$ 。(题外话,实数系统则记为 $\mathbb R$ 。)

把分量均为 \mathbb{F} 中的 0 和 1 的 n 维向量的全体,定义为 \mathbb{F}^n 。不难知道, \mathbb{F}^n 只包含 2^n 个向量。在信息通信中, \mathbb{F}^8 中的一个向量就是一个字节(byte)。例如,向量

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

就是一个字节。

计算机中信息储存的形式是 0 和 1 的字符串。例如

 $\cdots 1011000111100100101011110\cdots$

通常把该字符串以8个数字为一段加以断开。例如上述字符串就断开成:

$$\cdots \mid 10110001 \mid 11100100 \mid 10101110 \mid \cdots$$

这样,每一段的 8 个数字正好构成 1 个字节,也就是 \mathbb{F}^8 中的一个向量。通信时,每次传输 1 字节的信息。通信的过程有时会出错,例如,把字节 10110001 发送出去,但接受方可能收到的是字节 10110101。那么,有没有一种办法,让接收方**自行**判断收到的字节是否正确?这是有的,其中一种办法是采用"纠错码"。这种方法会涉及到线性代数中矩阵的乘积。以上就是本题的背景和说明。

下面介绍纠错码时,我们假设字符串是以 4 个数字为一段进行断开,而不是通常的 8 个数字。这样做是为了叙述简单。

首先给出一些定义。定义矩阵

$$H = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{array}\right).$$

该矩阵称为 Hamming 矩阵。定义 \mathbb{F}^7 中四个向量:

$$v_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad v_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_{3} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_{4} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

验证: 乘积 Hv_1 , Hv_2 , Hv_3 , Hv_4 均为 \mathbb{F}^3 中的零向量。 定义矩阵

$$M = (v_1, v_2, v_3, v_4).$$

(即: 矩阵 M 为 7×4 矩阵,各列依次为: v_1, v_2, v_3, v_4) 则上述所验证的结论说明 HM = O。 现在假设 Coco 要发送信息 $u \in \mathbb{F}^4$ 给 Cici。纠错码的办法是:

- 1. 首先 Coco 计算乘积 v:=Mu。(注意 $v\in\mathbb{F}^7$ 。) **验证**: v 的后四位数字正好就是 u。
- 2. 然后, Coco 把 v 发送给 Cici。(注意不是发送原信息 u。)
- 3. 假设 Cici 收到的信息是 $w \in \mathbb{F}^7$ 。(如果 $w \neq v$,则说明发送过程出错。但 Cici 现在还不知道收到的 w 究竟有错没错。)

4. 假设传输过程信息**最多出错一个数字**。例如,假设发送的是
$$v = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
,那么收到的可能是

$$w = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} (第 2 位数字出错) 或者 $w = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} (第 6 位数字出错) 等等,但不可能收到 $w = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$$$

(第 2, 6 位数字同时出错)。

4. Cici 开始验证了: 计算乘积 Hw。请你**验证**: 如果 Hw=0,则说明传输过程没错,即 w=u。这时 w 的后 4 位数字正好就是原信息 u。如果 $Hw \neq 0$,则说明传输过程出错,即 $w \neq v$ 。

5. 即便传输过程出错,也是有办法在错误中把原信息恢复出来。请你以这个例子想一想:假设收到

$$w = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 , 那么原信息 u 是什么?

提示原信息
$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
。注意到 $Hw = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \neq 0$,说明 w 是错误信息。注意到 $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 是 H 的

提示原信息 $u=\begin{pmatrix}1\\1\\1\\0\end{pmatrix}$ 。注意到 $Hw=\begin{pmatrix}0\\1\\1\end{pmatrix}\neq 0$,说明 w 是错误信息。注意到 $\begin{pmatrix}0\\1\\1\end{pmatrix}$ 是 H 的 第 5 列,说明 w 的第 5 位数字出错。所以发送的信息是 $v=\begin{pmatrix}0\\0\\1\\1\\1\\0\end{pmatrix}$ 。由于 v 的后 4 位数字为 u,所以

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

地,如果 Hw=0,则说明 w=v,接收到的信息没有错。如果 $Hw\neq 0$,则 $w\neq v$,接收到的信息 有误,这时: Hw 一定等于 H 的某一列,如果是第 i 列,则 w 的第 i 位数字出错。