Andrew Camps

Homework 8

11/30/16

Problem 1: Function plotFun that graphs the function below

Code:

```
function plotFun( x0, x1, y0, y1 )
%plotFun Function that graphs the f(x,y) = -x.* sin(sqrt(abs(x)))
%- y.* sin(sqrt(abs(y))).

x = x0:5:x1;
y = y0:5:y1;

[x, y] = meshgrid(x, y);

fxy = -x.* sin(sqrt(abs(x))) - y.* sin(sqrt(abs(y)));

mesh(x, y, fxy);
xlabel('x-axis') %Axis and title labeling
ylabel('y-axis')
zlabel('z-axis')
title('f(x,y)=-x*sin(sqrt(abs(x)))-y*sin(sqrt(abs(y)))')
end
```

Problem 2: Simulated Annealing Code

```
function [ P best, E best, iteration] = SA( f, dim, domain, start, T0,
Lambda, minTemp )
%SA Function that uses the Simulated Annealing algorithm to calculate the
%global min of a functon specified.
finished = 0;
iteration = 0;
T = T0; %Initial Temp
for i=1:1:dim
    P(i) = {start(i)};
end
E current = f(P{:}); %Calculate initial current fitness
E best = E current;
P best = P;
while ~finished % Loop until exit criteria met
    iteration = iteration + 1; %Iteration counter
    PTemp = newSol(P, domain(1), domain(2)); % Calls function to modify
parameters
    for i=1:1:dim
        PNew(i) = \{PTemp(i)\};
    end
    E temp = f(PNew{:}); %Gets temp
    if(E temp < E current) %Compares temp to current</pre>
```

```
E current = E temp; %Current becomes temp
        P = PNew;
        if(E current < E best) %Checks for best</pre>
            E_best = E_current;
            P best = P;
            if (E best < minTemp)</pre>
                finished = 1; %Exit if reached goal
            end
        end
    else
        X = rand;
        if(X < exp(-(E_temp - E_best) / T)) %Accept with a certain
probability
            E_current = E_temp;
            P = PNew;
        end
    end
    T = Lambda * T; %Cooling
    if(T < minTemp)</pre>
        finished = 1; % Exit criteria
end
end
function mu = newSol(x, Lb, Ub)
    mu = Lb + (Ub - Lb) .* rand(size(x)); % modifies parameters
end
```

Problem 3: Table with Matlab Script with different T0 and Lambda Values

	T0_300	T0_200	T0_100	T0_50	T0_10	T0_Neg20	T0_Neg100	T0_Neg150	T0_Neg200	T0_Neg250
0.1	-494.7	-627.91	-302.13	-422.64	-312.42	-320.74	-371.6	-428.73	-646.32	-671.61
0.2	-463.94	-445.89	-312.6	-318.88	-325.89	-414.51	-603.59	-528.82	-521.07	-473.88
0.3	-307.56	-450.69	-347.56	-420.77	-714.8	-347.39	-776.65	-366.94	-327.82	-339.34
0.4	-437.87	-465.68	-528.12	-411.93	-369.02	-589.53	-388.63	-559.02	-341.09	-388.05
0.5	-430.66	-454.82	-505.32	-355.21	-301.82	-366.95	-427.84	-354.75	-300.49	-333.62
0.6	-309.4	-576.48	-377.92	-311.08	-481.82	-402.01	-553.64	-784.61	-441.97	-367.5
0.7	-517.11	-309.3	-336.06	-321.31	-442.56	-316.15	-503.75	-439.34	-513.36	-641.61
0.8	-331.55	-453.19	-594.73	-373.25	-493.16	-517.58	-338.86	-314.23	-320.38	-423.15
0.9	-402.59	-310.76	-324.48	-349.53	-309.13	-736.23	-325.65	-410.83	-328.63	-327.02
1	-369.87	-361.67	-491.83	-484.89	-448.45	-600.94	-501.33	-502.42	-440.78	-642.83

Code:

```
clear
f = Q(x,y)-x*\sin(sqrt(abs(x))) - y*\sin(sqrt(abs(y)));
dim = 2;
domain = [-500, 500];
minTemp = -300;
start = [150; -40];
Lambda = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1];
T0 = [300, 200, 100, 50, 10, -20, -100, -150, -200, -250];
for i = 1:1:10
              for j = 1:1:10
                            [P best(i,:,j), E best(i,:,j)] = SA(f, dim, domain, start, TO(i),
Lambda(j), minTemp);
              end
end
RowNames = \{ 0.1'; 0.2'; 0.3'; 0.4'; 0.5'; 0.6'; 0.7'; 0.8'; 0.9'; 0.9'; 0.8'; 0.9'; 0.8'; 0.9'; 0.8'; 0.9'; 0.8'; 0.8'; 0.9'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8'; 0.8
'1'};
T0 300 = E best(1,:)';
T0 200 = E best(2,:)';
T0 100 = E best(3,:)';
T0 50 = E best(4,:)';
T0 10 = E best(5,:)';
T0 Neg20 = E best(6,:)';
T0 Neg100 = E best(7,:)';
T0 Neg150 = E best(8,:)';
T0 Neg200 = E best(9,:)';
T0 Neg250 = E best(10,:)';
table(TO 300, TO 200, TO 100, TO 50, TO 10, TO Neg20,...
              TO Neg100, TO Neg150, TO Neg200, TO Neg250, 'RowNames', RowNames)
```

Problem 4: 10 Dimension optimization problem

Best Run Values:

```
Lambda = 0.9;

T0 = -2.17;

minTemp = -6.7;

start = [1.9,1.5,2,3,2,1.4,2.6,1.6,0.3,1.6];
```

```
E_best = -6.75547911857615
```

P_best = 2.09237710457881 0.739500413257148 2.07598388729929 2.06357664453415 2.00059790733111 1.53265892264426 0.578724877890683 2.42048284390297 1.43213906876917 1.70578049866120

Iteration = 8998220

Code:

```
clear
pi = 3.14159;
f = @(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) - (sin(x10)*(sin(x1^(2/pi))^(20)) +
\sin(x9)*(\sin(2*x2^{(2/pi)})^{(20)}) + ...
    \sin(x8)*(\sin(3*x3^{(2/pi)})^{(20)}) + \sin(x7)*(\sin(4*x4^{(2/pi)})^{(20)}) +
\sin(x6)*(\sin(5*x5^{(2/pi)})^{(20)}) + \dots
    \sin(x5)*(\sin(6*x6^{(2/pi)})^{(20)}) + \sin(x4)*(\sin(7*x7^{(2/pi)})^{(20)}) +
\sin(x3)*(\sin(8*x8^{(2/pi)})^{(20)}) + \dots
    \sin(x2)*(\sin(9*x9^(2/pi))^(20)) + \sin(x1)*(\sin(10*x10^(2/pi))^(20)));
dim = 10;
domain = [0,pi];
Lambda = .9;
T0 = -2.17;
minTemp = -6.7;
start = [1.9, 1.5, 2, 3, 2, 1.4, 2.6, 1.6, 0.3, 1.6];
[P best, E best, iteration] = SA(f, dim, domain, start, T0, Lambda, minTemp);
```