Como maximizar os lucros no Airbnb?

Nome: Diego Wenceslau

Telefone: 31 988712037 - Whatsapp

E-mail: diegowenceslau16@hotmail.com

Objetivo do projeto:

Airbnb é uma comunidade online, onde as pessoas possam anunciar e reservarem acomodações e meios de hospedagem.

A base de dados airbnb.csv (dados abertos da plataforma airbnb) contém dados de casas e apartamentos que estão disponíveis para aluguel e as características que influenciam na composição do preço da locação.

Abaixo, segue o modelo criado, realizando, preparação, análise exploratória e modelagem dos dados, para que possamos chegar no objetivo de entender as cacterísticas dos imóveis e precificar(definir valor) do aluguel de imóveis.

```
In [161]: # Importando as bibliotecas
          import os
          path = os.getcwd()
          import numpy as np # Utilizado para operações matemáticas
          import pandas as pd # Utilizado para visualização, análise e manipulação dos d
          ados
          import matplotlib as mpl # Utilizado para criação de gráficos
          import matplotlib.pyplot as plt # Utilizado para criação de gráficos
          import seaborn as sns # Utilizado para criação de gráficos
          import statsmodels.api as sm # Mostrar resultado do modelo de previsão
          %matplotlib inline
          # Carregando o algoritmo para utilizar o modelo de regressão e realização de m
          étricas
          from sklearn import linear_model
          from sklearn import preprocessing
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear model import LinearRegression
          from sklearn.model selection import train test split
          from sklearn.metrics import explained variance score
          from sklearn.metrics import mean_squared_error
          from sklearn import metrics
          from sklearn.metrics import mean absolute error
          # Utilizado para não mostrar avisos na execução do código
          import warnings
          warnings.filterwarnings("ignore")
```

Para carregar o conjunto de dados do dataset, foi utilizado o meu diretório de trabalho.

```
In [3]: # Carregando o dataset do Airbnb
airbnb = pd.read_csv("airbnb.csv", sep = ',', encoding = "utf8")
```

Out[4]:

_	host_is_superhost	cancellation_policy	instant_bookable	host_total_listings_count	neigl
	0 t	moderate	t	1.0	
	1 f	strict_14_with_grace_period	f	2.0	
	2 f	strict_14_with_grace_period	f	10.0	
	3 f	strict_14_with_grace_period	f	10.0	
	4 f	strict_14_with_grace_period	f	2.0	

5 rows × 34 columns

In [5]: # Visualizando o tamanho do dataset

print('\nLinhas e Colunas: ', airbnb.shape)

Linhas e Colunas: (7146, 34)

Out[6]: host_is_superhost object cancellation policy object instant bookable object host_total_listings_count float64 neighbourhood cleansed object latitude float64 longitude float64 object property_type object room type accommodates float64 float64 bathrooms bedrooms float64 beds float64 bed_type object minimum nights float64 number_of_reviews float64 review_scores_rating float64 review scores accuracy float64 review_scores_cleanliness float64 review_scores_checkin float64 review scores communication float64 float64 review scores location review_scores_value float64 price float64 float64 bedrooms_na bathrooms_na float64 float64 beds na review scores rating na float64 review_scores_accuracy_na float64 review scores cleanliness na float64 review_scores_checkin_na float64 review scores communication na float64 review scores location na float64 review scores value na float64 dtype: object

Logo abaixo, conseguimos realizar um resumo/sumário estatístico de algumas colunas do dataset.

Podemos perceber que termos propriedades sem banheiros(bathrooms), sem quartos(bedrooms) e sem cama(beds).

Termos acomodações que vão de 1 dia, até 365 dias.

Média de acomodações são de 3 pessoas.

Termos propriedades sem comentários, com score de 20 até 100.

In [6]: # Sumário estatístico do dataset
airbnb.describe()

Out[6]:

	host_total_listings_count	latitude	longitude	accommodates	bathrooms	bedro
count	7146.000000	7146.000000	7146.000000	7146.000000	7146.000000	7146.000
mean	52.604954	37.765812	-122.430534	3.201092	1.328086	1.342
std	177.428653	0.022531	0.026799	1.914916	0.793787	0.932
min	0.000000	37.707430	-122.513060	1.000000	0.000000	0.000
25%	1.000000	37.751140	-122.442972	2.000000	1.000000	1.000
50%	2.000000	37.767570	-122.425490	2.000000	1.000000	1.000
75%	8.000000	37.784618	-122.411070	4.000000	1.500000	2.000
max	1199.000000	37.810310	-122.369790	16.000000	14.000000	14.000
	.					

8 rows × 27 columns

Aqui, conseguimos ver resumo/sumário estatístico de algumas variáveis de forma individual.

Podemos ver a coluna Preço(Price), que termos valores de 10 a 10.000, com média de 213.

Banheiros:

```
count
          7146.000000
mean
            1.328086
            0.793787
std
min
            0.000000
25%
            1.000000
50%
            1.000000
75%
            1.500000
           14.000000
max
```

Name: bathrooms, dtype: float64

Quartos de dormir:

count	7146.000000
mean	1.342709
std	0.932855
min	0.000000
25%	1.000000
50%	1.000000
75%	2.000000
max	14.000000

Name: bedrooms, dtype: float64

Preço:

```
count
           7146.000000
mean
           213.309824
std
           311.375499
min
            10.000000
25%
           100.000000
50%
           150.000000
75%
           235.000000
         10000.000000
max
```

Name: price, dtype: float64

Agora vamos algumas analises exploradas realizando comparação das colunas do dataset.

```
In [9]: # Quantidade por tipo de propriedade

qtd_tipo_propriedade = pd.DataFrame(airbnb['property_type'].value_counts())
qtd_tipo_propriedade.columns = ['Quantidade_tipo_propriedade']
qtd_tipo_propriedade
```

1

1

Out[9]:

Quantidade_tipo_propriedade Apartment 3010

Apartment	0010
House	1990
Condominium	760
Guest suite	496
Boutique hotel	183
Townhouse	140
Serviced apartment	116
Hotel	100
Loft	93
Hostel	87
Guesthouse	44
Bed and breakfast	29
Other	22
Aparthotel	20
Bungalow	17
Villa	10
Cottage	8
Resort	8
Tiny house	3
Cabin	3
Boat	2
Earth house	1
In-law	1
Timeshare	1

Castle

Treehouse

```
In [9]: # Quantidade total de quartos por número de quartos

qtd_quartos= pd.DataFrame(airbnb['bedrooms'].value_counts())
qtd_quartos.columns = ['Quantidade_de_quartos']
qtd_quartos
```

Out[9]:

	Quantidade_de_quartos
1.0	4199
2.0	1304
0.0	804
3.0	627
4.0	175
5.0	25
6.0	9
7.0	2
14.0	1

```
In [10]: # Valor total do preço por quantidade de quarto

qtd_quartos = airbnb.filter(items = ['bedrooms', 'price']).groupby('bedrooms')
    .sum().sort_values(['price'], ascending=[False])
    qtd_quartos
```

Out[10]:

price

bedrooms					
1.0	625402.0				
2.0	369160.0				
3.0	270527.0				
0.0	120083.0				
4.0	98455.0				
5.0	21244.0				
6.0	16477.0				
7.0	2895.0				
14.0	69.0				

```
In [11]: # Quantidade total de tipo de cama

qtd_cama= pd.DataFrame(airbnb['bed_type'].value_counts())
qtd_cama.columns = ['Quantidade_de_cama']
qtd_cama
```

Out[11]:

	Quantidade_de_cama
Real Bed	7073
Futon	32
Pull-out Sofa	23
Airbed	11
Couch	7

```
In [12]: # Valor total do preço por tipo de cama

total_cama = airbnb.filter(items = ['bed_type', 'price']).groupby('bed_type').
    sum().sort_values(['price'], ascending=[False])
    total_cama
```

Out[12]:

price

bed_type	
Real Bed	1513777.0
Futon	4259.0
Pull-out Sofa	3273.0
Couch	1954.0
Airbed	1049.0

Vamos realizar o tratamento dos dados, verificando se tem linhas faltantes e valores NA(Nulos), no dataset.

Verificamos que todas as colunas contém todas as linhas e não termos valores Nulos.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7146 entries, 0 to 7145
Data columns (total 34 columns):
host is superhost
                                   7146 non-null object
cancellation_policy
                                   7146 non-null object
                                   7146 non-null object
instant bookable
host_total_listings_count
                                   7146 non-null float64
neighbourhood cleansed
                                   7146 non-null object
latitude
                                   7146 non-null float64
longitude
                                   7146 non-null float64
                                   7146 non-null object
property type
                                   7146 non-null object
room type
accommodates
                                   7146 non-null float64
bathrooms
                                   7146 non-null float64
                                   7146 non-null float64
bedrooms
beds
                                   7146 non-null float64
                                   7146 non-null object
bed_type
                                   7146 non-null float64
minimum nights
number_of_reviews
                                   7146 non-null float64
review scores rating
                                   7146 non-null float64
review scores accuracy
                                   7146 non-null float64
review scores cleanliness
                                   7146 non-null float64
review scores checkin
                                   7146 non-null float64
review scores communication
                                   7146 non-null float64
review scores location
                                   7146 non-null float64
review scores value
                                   7146 non-null float64
price
                                   7146 non-null float64
                                   7146 non-null float64
bedrooms na
bathrooms na
                                   7146 non-null float64
beds na
                                   7146 non-null float64
review scores rating na
                                   7146 non-null float64
review_scores_accuracy_na
                                   7146 non-null float64
review scores cleanliness na
                                   7146 non-null float64
review scores checkin na
                                   7146 non-null float64
review scores communication na
                                   7146 non-null float64
review_scores_location_na
                                   7146 non-null float64
review scores value na
                                   7146 non-null float64
dtypes: float64(27), object(7)
memory usage: 1.9+ MB
```

```
In [16]: # Confirmando se tem valores NA(nulos)
         airbnb.isna().sum()
Out[16]: host_is_superhost
                                             0
         cancellation policy
                                             0
         instant bookable
                                             0
         host_total_listings_count
                                             0
         neighbourhood cleansed
                                             0
         latitude
                                             a
         longitude
                                             0
                                             0
         property_type
         room_type
                                             0
         accommodates
         bathrooms
                                             0
         bedrooms
                                             0
         beds
                                             0
         bed_type
                                             0
         minimum nights
         number_of_reviews
                                             0
         review_scores_rating
                                             0
         review_scores_accuracy
                                             a
         review_scores_cleanliness
                                             0
         review_scores_checkin
                                             0
         review_scores_communication
                                             0
         review scores location
                                             0
         review_scores_value
                                             0
         price
                                             0
                                             0
         bedrooms_na
         bathrooms_na
                                             0
         beds na
                                             0
         review scores rating na
                                             0
         review_scores_accuracy_na
                                             0
         review scores cleanliness na
                                             0
         review_scores_checkin_na
                                             0
         review_scores_communication_na
         review scores location na
                                             0
         review scores value na
         dtype: int64
```

Agora vamos criar um novo dataset contendo apenas as colunas númericas.

In [13]: # Visualizando a variável que contém apenas as colunas númericas
airbnb_col_numericas.head()

Out[13]:

	host_total_listings_count	latitude	longitude	accommodates	bathrooms	bedrooms	beds
0	1.0	37.76931	-122.43386	3.0	1.0	1.0	2.0
1	2.0	37.74511	-122.42102	5.0	1.0	2.0	3.0
2	10.0	37.76669	-122.45250	2.0	4.0	1.0	1.0
3	10.0	37.76487	-122.45183	2.0	4.0	1.0	1.0
4	2.0	37.77525	-122.43637	5.0	1.5	2.0	2.0

5 rows × 27 columns

Chegou a hora de utilizar os gráficos para análise exploratoria.

Em um dos gráficos abaixo, podemos ver:

Quantidade maior de até dois banheiros.

Termos uma quantidade maior de dois a quatro de quartos para dormi.

Quantidade maior de até duas camas.

```
In [19]: # Vamos criar gráficos para todas as variáveis númericas

plt.rcParams.update({'font.size': 13})

columns = airbnb_col_numericas.columns[:]
plt.subplots(figsize=(16,200))
length = len(columns)

for i,j in zip(columns,range(length)):
    plt.subplot((length/1),2,j+1)
    plt.subplots_adjust(wspace=0.2,hspace=0.5)
    airbnb[i].hist(bins=15,edgecolor='black')
    plt.title(i)

plt.show()
```


15/03/2021

Na fígura abaixo, podemos ver que termos aluguel que chegam a ser mais altos com a quantidade maior com dois quartos.

```
In [20]: # Comparando a relação de número de quartos com o preço do aluguel

print('\n')

plt.rcParams['figure.figsize'] = (14,7)
plt.bar(airbnb.bedrooms, airbnb.price)
plt.xlabel("Quantidade de Quartos")
plt.ylabel("Preço do Aluguel")
plt.title("Quantidade de Quartos X Preço do Aluguel")
plt.show()
```


Termos muito mais uma quantidade maior para camas do tipo Real Bed, creio que seja camas mais tradicionais, com preços chegam a ser mais altos.

```
In [21]: # Comparando a relação do tipo da cama com o preço do aluguel

print('\n')

plt.bar(airbnb.bed_type, airbnb.price)
plt.xlabel("Tipo da Cama")
plt.ylabel("Preço do Aluguel")
plt.title("Tipo da Cama X Preço do Aluguel")
plt.show()
```


Quantidade de até cem comentarios são os que tem com maior frequência.

```
In [23]: # Visualizando a frequência de quantidade de comentários

plt.style.use("ggplot")
plt.figure(figsize = (14, 8))
plt.rcParams.update({'font.size': 12})
airbnb["number_of_reviews"].hist(bins = 6, ec = "k", alpha = .6, color = "roya lblue")
plt.xlabel("Número de comentários")
plt.ylabel("Frequencia")
plt.title("Quantidade de número de comentários")
plt.show()
```


Aqui conseguimos ver que termos pontuação que varia de 20 até 100, sendo que a maiorias das pessoas realização mais as pesquisas onde se teve uma boa pontuação.

```
In [89]: # Visualizar a frequência de quantidade de avaliação de pontuação

plt.style.use("ggplot")
plt.figure(figsize = (14, 8))
plt.rcParams.update({'font.size': 12})
airbnb["review_scores_rating"].hist(bins = 6, ec = "k", alpha = .6, color = "r
oyalblue")
plt.xlabel("Avaliação de pontuação")
plt.ylabel("Frequencia")
plt.title("Quantidade de avaliação de pontuação")
plt.show()
```


Podemos perceber que a região da propriedade, influência no preço do aluguel.

```
In [70]: # Comparando os bairros (Regiões) com o preço.
# Obersavação: Abra o gráfico em uma nova Guia, clicando com botão direito ->
    Abrir imagem em uma nova guia

sns.set(rc={'figure.figsize':(80,20)})
sns.barplot(x= 'neighbourhood_cleansed', y = 'price', data=airbnb) \
    .set(title='Bairro (Região) X Preço', xlabel='Bairro (Região)', ylabel='Preço')

Out[70]: [Text(0,0.5,'Preço'),
    Text(0.5,0,'Bairro (Região)'),
    Text(0.5,1,'Bairro (Região) X Preço')]
```

Aqui também conseguimos ver que pontuação menores que seis, possuem uma menor pontuação da classificação do aluguel.

Propriedades que oferecem cancelamento flexível, tem quantidade maior com preços que chegam a ser mais altos.

```
In [94]: # Comparando a relação política de cancelamento com o preço do aluguel

plt.rcParams['figure.figsize'] = (14,7)
plt.rcParams.update({'font.size': 10})
plt.bar(airbnb.cancellation_policy, airbnb.price)
plt.xlabel("Política de Cancelamento")
plt.ylabel("Preço do Aluguel")
plt.title("Política de Cancelamento X Preço do Aluguel")
plt.show()
```


A quantidade é muito maior com preços que chegam a ser mais altos, com propriedades do tipo, condomio, casa e apartamento.

```
In [98]: # Comparando a relação tipo de propriedade com o preço do aluguel
# Obersavação: Abra o gráfico em uma nova Guia, clicando com botão direito ->
    Abrir imagem em uma nova guia

plt.rcParams['figure.figsize'] = (40,20)
plt.rcParams.update({'font.size': 10})
plt.bar(airbnb.property_type, airbnb.price)
plt.xlabel("Tipo de propriedade")
plt.ylabel("Preço do Aluguel")
plt.title("tipo de propriedade X Preço do Aluguel")
plt.show()
```


Agora vamos realizar a correlação entre as variáveis.

Podemos ver que a correlação é muito baixa da variável Price com as demais variáveis númericas do dataset.

Out[14]:

	host_total_listings_count	latitude	longitude	accommodates
host_total_listings_count	1.000000	0.168420	0.179394	-0.031795
latitude	0.168420	1.000000	0.186439	-0.040640
longitude	0.179394	0.186439	1.000000	-0.079097
accommodates	-0.031795	-0.040640	-0.079097	1.000000
bathrooms	-0.009684	0.043451	-0.009345	0.351962
bedrooms	-0.044223	-0.101949	-0.105547	0.758461
beds	-0.070620	-0.048615	-0.088636	0.832837
minimum_nights	0.168062	0.146478	0.111562	-0.044867
number_of_reviews	-0.162465	-0.116828	-0.123448	-0.081727
review_scores_rating	0.026785	-0.013030	0.012461	0.064387
review_scores_accuracy	0.021991	-0.021110	-0.006865	0.028920
review_scores_cleanliness	0.050223	-0.005867	0.010879	0.022402
review_scores_checkin	0.002453	-0.041226	-0.031385	0.018343
review_scores_communication	-0.014081	-0.039130	-0.026124	0.027383
review_scores_location	0.025204	0.201675	-0.010708	0.022239
review_scores_value	0.047182	-0.014218	0.012213	-0.022997
price	-0.012935	0.104869	0.021325	0.372839
bedrooms_na	-0.002981	0.015008	-0.014056	0.024458
bathrooms_na	-0.012950	0.045186	0.025316	-0.038105
beds_na	-0.005956	0.014314	0.018139	-0.021978
review_scores_rating_na	0.308821	0.168140	0.122144	-0.038223
review_scores_accuracy_na	0.308090	0.167269	0.121281	-0.037964
review_scores_cleanliness_na	0.308273	0.167420	0.121356	-0.038120
review_scores_checkin_na	0.307728	0.167448	0.120575	-0.038383
review_scores_communication_na	0.308456	0.167605	0.122189	-0.037910
review_scores_location_na	0.307728	0.167448	0.120575	-0.038383
review_scores_value_na	0.307547	0.167780	0.120375	-0.038593

27 rows × 27 columns

```
In [15]: # Visualizando correlação entre as varíaveis através do gráfico
plt.figure(figsize=(50,50))
```

```
cor = airbnb_col_numericas.corr()
sns.heatmap(cor, annot=True, cmap="YlGnBu", fmt=".2f")
plt.show()
```



```
In [249]: # Função para criar o gráfico de dispersão.
# Compara as varíaveis independente(Price) que mais tem correlação linear com
a varíavel dependente.

def corr_linear(coluna_independente, coluna_dependente, titulo_x, titulo_y):
    plt.figure(figsize=(10,5))
    plt.rcParams.update({'font.size': 12})
    plt.scatter(coluna_independente, coluna_dependente)
    print('\n')
    plt.title(titulo_x+' X '+titulo_y)
    plt.xlabel(titulo_x)
    plt.ylabel(titulo_y)
    plt.show()
```


Preparando o modelo para machine learning

Definimos que a variável Price, será a variável target(preditora), que queremos realizar a previsão.

Para o modelo de machine learning, iremos utilizar o método de Regressão.

Modelo 01

```
In [119]: # Passando variáveis preditoras para X. Vamos utilizar as variáveis númericas,
          retirando a variável Price que queremos prever.
          # Passando variável target para Y.
          X = airbnb_col_numericas.drop('price', axis=1)
          Y = airbnb['price']
          test_size = 0.30
          seed = 50
In [120]: # Vamos usar a Padronização (StandardScaler).
          # Está técnica ajusta os coeficientes e torna a superfície de erros mais "trat
          ável".
          scaler = StandardScaler()
          X = StandardScaler().fit_transform(X)
          scaler
Out[120]: StandardScaler(copy=True, with mean=True, with std=True)
In [121]: # Utilização train_test_split, para dividir os dados em 70% para treino e 30%
           para teste
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,
          random state=seed)
```

```
In [122]: # Modelo regressão linear
          reg log = linear model.LinearRegression()
          reg log.fit(X train,Y train)
          Y_pred = reg_log.predict(X_test)
In [123]: # Erro médio quadrado e erro médio absoluto
          from sklearn.metrics import mean_squared_error
          mean_squared_error = mean_squared_error(Y_test, Y_pred)
          erro medio absoluto = mean absolute error(Y test, Y pred)
In [124]: # Exibindo os resultados
          print ("\nCoeficiente de determinação r² com dados de treino:", round(reg_log
          .score(X_train,Y_train), 2) * 100,'%')
          print ("\nCoeficiente de determinação r² com os dados de teste:", round(reg_lo
          g.score(X_test,Y_test), 2) * 100,'%')
          print("\nErro médio quadrado: ", round(mean_squared_error))
          print("\nErro médio absoluto:", round(erro medio absoluto))
          Coeficiente de determinação r² com dados de treino: 25.0 %
          Coeficiente de determinação r² com os dados de teste: 10.0 %
          Erro médio quadrado: 134500.0
          Erro médio absoluto: 99.0
```

```
In [125]: # Exibindo os resultados de forma detalhada
    resultado = sm.add_constant(X_train)
    LR_model = sm.OLS(Y_train, resultado).fit()
    print(LR_model.summary())
```

OLS Regression Results

======	OLS Regression Results						
=							
Dep. Var 2	iable:	pri	ice R-squa	red:		0.25	
Model: 8		(DLS Adj. R	-squared:		0.24	
Method: 8		Least Squar	es F-stat	istic:		67.0	
Date: 0	Su	ın, 21 Feb 20	921 Prob (F-statistic	:):	1.63e-29	
Time: 3.		18:39	:08 Log-Li	kelihood:		-3442	
No. Obse	rvations:	56	002 AIC:			6.890e+0	
4 Df Resid	uals:	49	976 BIC:			6.907e+0	
4 Df Model			25				
	ce Type:	nonrobi					
	=========					=======	
=							
	coef	std err	t	P> t	[0.025	0.97	
5]							
const 4	209.7793	3.344	62.739	0.000	203.224	216.33	
x1 0	-13.3985	3.626	-3.695	0.000	-20.507	-6.29	
x2 8	41.0576	3.622	11.336	0.000	33.957	48.15	
x3 9	11.5507	3.478	3.321	0.001	4.733	18.36	
x4	75.7138	6.816	11.108	0.000	62.352	89.07	
6 x5 1	7.7679	3.807	2.041	0.041	0.305	15.23	
х6	70.5804	5.643	12.508	0.000	59.518	81.64	
2 x7	-22.8280	6.448	-3.540	0.000	-35.469	-10.18	
7 x8	-7.2659	3.565	-2.038	0.042	-14.256	-0.27	
6 x9	-16.7015	3.646	-4.581	0.000	-23.848	-9.55	
5 x10	23.6357	6.476	3.650	0.000	10.940	36.33	
1 x11	-2.2742	5.200	-0.437	0.662	-12.469	7.92	
1 x12	20.1766	4.952	4.075	0.000	10.469	29.88	
4 x13	-2.3347	4.474	-0.522	0.602	-11.105	6.43	
6 x14	2.7636	4.806	0.575	0.565	-6.658	12.18	
5 x15 9	5.1515	3.987	1.292	0.196	-2.666	12.96	

15/03/2021				Airbnb			
	x16 3	-25.9065	5.077	-5.103	0.000	-35.860	-15.95
	x17 0	-1.9155	3.961	-0.484	0.629	-9.681	5.85
	x18 0	-2.3118	3.347	-0.691	0.490	-8.873	4.25
	x19 5	-1.8963	2.821	-0.672	0.502	-7.427	3.63
	x20 4	31.6637	66.817	0.474	0.636	-99.326	162.65
	x21 4	43.8167	116.238	0.377	0.706	-184.061	271.69
	x22 2	129.0646	140.717	0.917	0.359	-146.803	404.93
	x23 9	-17.2403	58.058	-0.297	0.767	-131.059	96.57
	x24 4	-163.0978	122.239	-1.334	0.182	-402.739	76.54
	x25 9	-17.2403	58.058	-0.297	0.767	-131.059	96.57
	x26 6	-6.6863	95.010	-0.070	0.944	-192.949	179.57

Omnibus: 10673.834 Durbin-Watson: 1.99

3

Prob(Omnibus): 0.000 Jarque-Bera (JB): 61821649.99

4

Skew: 18.508 Prob(JB): 0.0

0

Kurtosis: 546.374 Cond. No. 2.25e+1

5

_

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.63e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Modelo 02

```
In [211]: # Visualizando as primeiras Linhas das colunas escolhidas
x2.head()
```

Out[211]:

	accommodates	bathrooms	bedrooms	beds_na	beds
0	3.0	1.0	1.0	0.0	2.0
1	5.0	1.0	2.0	0.0	3.0
2	2.0	4.0	1.0	0.0	1.0
3	2.0	4.0	1.0	0.0	1.0
4	5.0	1.5	2.0	0.0	2.0

```
In [212]: # Passando variáveis preditoras para X
# Passando variável target para Y

X2 = x2

Y2 = airbnb['price']

test_size2 = 0.30
random_state = 42
```

Out[213]: StandardScaler(copy=True, with_mean=True, with_std=True)

```
In [214]: # Utilização train_test_split, para dividir os dados em 70% para treino e 30%
    para teste

X_train2, X_test2, Y_train2, Y_test2 = train_test_split(X2, Y2, test_size=test
    _size2, random_state=random_state)
```

```
In [215]: # ModeLo regressão Linear
    reg_log2 = linear_model.LinearRegression()
    reg_log.fit(X_train2,Y_train2)

Y_pred2 = reg_log.predict(X_test2)
```

```
In [217]: # Exibindo os resultados

print ("\nCoeficiente de determinação r² com dados de treino:", round(reg_log .score(X_train2,Y_train2), 2) * 100,'%')

print ("\nCoeficiente de determinação r² com os dados de teste:", round(reg_log.score(X_test2,Y_test2), 2) * 100,'%')

print("\nErro médio quadrado: ", round(mean_squared_error2))

print("\nErro médio absoluto:", round(erro_medio_absoluto2))
```

Coeficiente de determinação r² com dados de treino: 13.0 %

Coeficiente de determinação r² com os dados de teste: 31.0 %

Erro médio quadrado: 29896.0

Erro médio absoluto: 91.0

```
In [218]: # Exibindo os resultados de forma detalhada

resultado2 = sm.add_constant(X_train2)
LR_model2 = sm.OLS(Y_train, resultado2).fit()
print(LR_model2.summary())
```

OLS Regression Results

= Dep. Variab 1	ole:		price	R-sq	uared:		0.00
Model: 0			OLS	Adj.	R-squared:		0.00
Method:		Least	Squares	F-st	atistic:		1.04
Date:		Sun, 21	Feb 2021	Prob	(F-statistic):	0.39
Time: 6.		:	19:21:49	Log-	Likelihood:		-3514
No. Observa	ntions:		5002	AIC:			7.030e+0
Df Residual	ls:		4996	BIC:			7.034e+0
Df Model:	T	_	5				
Covariance			onrobust ======	======			=======
=	coef	f std (err	t	P> t	[0.025	0.97
5]						-	
-							
const 4	210.7862	3.	855 !	54.679	0.000	203.229	218.34
x1	10.6458	3 7.	527	1.414	0.157	-4.110	25.40
2 x2	4.4881	L 4.	276	1.050	0.294	-3.895	12.87
1 x3	1.4796	6.	259	0.236	0.813	-10.792	13.75
0 x4	1.8526	3.8	818	0.485	0.628	-5.633	9.33
6 x5	-8.2418	R 7.	318	-1.126	0.260	-22.588	6.10
4	012-120		310	11120	0.200	22.300	0.10
-	:======	======	======	=====	========	=======	=======
Omnibus:		!	9604.828	Durb	in-Watson:		2.01
Prob(Omnibu	ıs):		0.000	Jarq	ue-Bera (JB):	3	0250771.60
1 Skew:			14.636	Prob	(JB):		0.0
0 Kurtosis:			382.854	Cond	. No.		4.1
1			======			=======	=======
=							
ldenne de neces							

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [233]: # Tabela comparando valor do preço real com a previsão
    print('Tabela da comparação dos valores real e previstos:')
    pd.DataFrame(list(zip(Y_test2[10:20], Y_pred2[10:20])), columns=['Preço','Previsao'])
```

Tabela da comparação dos valores real e previstos:

Out[233]:

		Preço	Previsao
_	0	410.0	724.395043
	1	235.0	418.682396
	2	148.0	147.788437
	3	100.0	147.788437
	4	100.0	147.788437
	5	69.0	147.788437
	6	299.0	297.489272
	7	290.0	283.235417
	8	77.0	215.354300
	9	133.0	147.788437

Modelo 03

```
In [236]: # Utilização train test split, para dividir os dados em 70% para treino e 30%
           para teste
          X train3, X test3, Y train3, Y test3 = train test split(X3,
                                                               test size=0.30,
                                                               random state=5)
In [237]: # Modelo regressão linear
          reg log3 = linear model.LinearRegression()
          reg_log.fit(X_train3,Y_train3)
          Y_pred3 = reg_log.predict(X_test3)
In [238]: | # Erro médio quadrado e erro médio absoluto
          from sklearn.metrics import mean_squared_error
          mean_squared_error3 = mean_squared_error(Y_test3, Y_pred3)
          erro medio absoluto3 = mean absolute error(Y test3, Y pred3)
In [239]: # Exibindo os resultados
          print ("\nCoeficiente de determinação r² com dados de treino:", round(reg_log
           .score(X_train3,Y_train3), 2) * 100,'%')
          print ("\nCoeficiente de determinação r² com os dados de teste:", round(reg_lo
          g.score(X_test3,Y_test3), 2) * 100,'%')
          print("\nErro médio quadrado: ", round(mean_squared_error3))
          print("\nErro médio absoluto:", round(erro medio absoluto3))
          Coeficiente de determinação r² com dados de treino: 15.0 %
          Coeficiente de determinação r² com os dados de teste: 16.0 %
          Erro médio quadrado: 59830.0
          Erro médio absoluto: 93.0
```

```
In [240]: # Exibindo os resultados de forma detalhada

    resultado3 = sm.add_constant(X_train3)
    LR_model3 = sm.OLS(Y_train3, resultado3).fit()
    print(LR_model3.summary())
```

OLS Regression Results

=======================================						
= Dep. Variable: 1		price	R-squar	ed:		0.15
Model: 1		OLS	Adj. R-	squared:		0.15
Method: 2	L	east Squares	F-stati	stic:		178.
Date:	Sun,	21 Feb 2021	Prob (F	-statistic):		5.03e-17
Time: 8.		19:26:15	Log-Lik	elihood:		-3566
No. Observation	ons:	5002	AIC:			7.135e+0
Df Residuals: 4		4996	BIC:			7.139e+0
Df Model: Covariance Typ	e:	5 nonrobust				
=======================================	=======	=========	=======	========	=======	======
	coef	std err	t	P> t	[0.025	0.9
75]						
const 254	-1.5563	9.595	-0.162	0.871	-20.366	17.
	44.5968	4.341	10.274	0.000	36.087	53.
bathrooms 360	12.7308	5.932	2.146	0.032	1.101	24.
bedrooms 376	63.7952	7.438	8.577	0.000	49.214	78.
beds_na 356	-23.4149	151.380	-0.155	0.877	-320.185	273.
beds 995	-15.4216	6.849	-2.252	0.024	-28.848	-1.
=========		=========	:======:	========		=======
=		40572 760	Daniel de la	latar.		2 02
Omnibus: 0		10573.760	Duroin-I	watson:		2.02
Prob(Omnibus): 7		0.000	Jarque-Bera (JB):		454	24133.79
Skew: 0		18.255	Prob(JB):		0.0
Kurtosis:		468.420	Cond. No	o.		17
==========						======
=						

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [241]: # Tabela comparando valor do preço real com a previsão
    print('Tabela da comparação dos valores real e previstos:')
    pd.DataFrame(list(zip(Y_test3[10:20], Y_pred3[10:20])), columns=['Preço','Previsao'])
```

Tabela da comparação dos valores real e previstos:

Out[241]:

	Preço	Previsao
0	86.0	148.741629
1	400.0	703.605571
2	250.0	148.741629
3	94.0	148.741629
4	200.0	158.718348
5	80.0	116.875625
6	129.0	222.513592
7	100.0	148.741629
8	250.0	222.513592
9	315.0	197.115312

Metodologia utilizada e Conclusão

A primeira parte a ser realizada, foi definir o problema de negócio, realizando perguntas e explorando o cenário atual.

Por exemplo: Onde quero chegar ? Qual é o objetivo ?

Foi realizado pesquisas sobre o assunto e do dataset, para buscar entender o que os dados representam.

Através da analise exploratória, conseguimos realizar pesquisas que foram realizadas no dataset e verificar as características dos imóveis e precificar o aluguel dos imóveis, tendo como alguns motivos que pode definir o valor do aluguel ser mais alto ou mais baixo, e com essas informações, também pode ser utilizada para realizar processos de melhoria.

Podemos ver que a localidade da propriedade, tipo de cama, quantidade de camas e quartos, pontuação de limpeza, ser mais flexível no cancelamento, pode influenciar para mais ou para menos o preço do aluguel.

Ao verificar a correlação das variáveis com a variável Price, verificamos que termos muita variança entre os dados, não sendo linear, sendo assim tendo uma baixa correlação. Muito provavelmente influenciou no baixo valor do coeficiente de determinação na da previsão realizada do modelo utilizado por Regressão.