

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Week 12: Dynamic regression models

Regression models

$$y_t = \beta_0 + \beta_1 X_{1,t} + \cdots + \beta_k X_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- lacksquare In regression, we assume that $arepsilon_t$ is WN.
- Now we want to allow ε_t to be autocorrelated.

Regression models

$$y_t = \beta_0 + \beta_1 X_{1,t} + \cdots + \beta_k X_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t is WN.
- Now we want to allow ε_t to be autocorrelated.

Example: ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- AIC of fitted models misleading.

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- 2 Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- AIC of fitted models misleading.
 - Minimizing $\sum \varepsilon_t^2$ avoids these problems.
 - Maximizing likelihood similar to minimizing $\sum \varepsilon_t^2$.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables.

Original data

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$
where $\phi(B)(1 - B)^d \eta_t = \theta(B)\varepsilon_t$

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables.

Original data

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$
where $\phi(B)(1 - B)^d \eta_t = \theta(B)\varepsilon_t$

After differencing all variables

$$y'_t = \beta_1 x'_{1,t} + \cdots + \beta_k x'_{k,t} + \eta'_t.$$

where
$$\phi(B)\eta_t' = \theta(B)\varepsilon_t$$
, $y_t' = (1 - B)^d y_t$, $x_{i,t}' = (1 - B)^d x_{i,t}$, and $\eta_t' = (1 - B)^d \eta_t$

- In R, we can specify an ARIMA(p, d, q) for the errors, then d levels of differencing will be applied to all variables $(y, x_{1,t}, \ldots, x_{k,t})$ during estimation.
- Check that ε_t series looks like white noise.
- AICc can be calculated for final model.
- Repeat procedure for all subsets of predictors to be considered, and select model with lowest AICc value.

Forecasting

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- Some predictors are known into the future (e.g., time, dummies).
- Separate forecasting models may be needed for other predictors.
- Forecast intervals ignore the uncertainty in forecasting the predictors.

Your turn

Fit a regression model with a piecewise linear trend and Fourier terms for the US leisure employment data.

```
leisure <- us_employment |>
  filter(Title == "Leisure and Hospitality", year(Month) > 2001) |>
  mutate(Employed = Employed / 1000) |>
  select(Month, Employed)
```

- Add a dynamic regression model with the same predictors.
- How do the models compare on AICc?
- Does the additional ARIMA component fix the residual autocorrelation problem in the regression model?
- How different are the forecasts from each model?