Stochastic Variance Reduced Gradient Methods

Master 2 Data Science, Univ. Paris Saclay

Robert M. Gower

References for this class

Section 6.3:

Sébastien Bubeck (2015)

Foundations and Trends

Convex Optimization: Algorithms and

Complexity

M. Schmidt, N. Le Roux, F. Bach (2016), Mathematical Programming Minimizing Finite Sums with the Stochastic Average Gradient.

How to transform convergence results into iteration complexity

Solving the Finite Sum Training Problem

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} f_i(w) =: f(w)$$

SGD shrinking stepsize

SGD 1.0: Descreasing stepsize

Set
$$w^0 = 0$$
, choose $\alpha > 0$, $\alpha_t = \frac{\alpha}{\sqrt{t+1}}$, for $t = 0, 1, 2, \dots, T-1$ sample $j \in \{1, \dots, n\}$ $w^{t+1} = w^t - \alpha_t \nabla f_j(w^t)$ Output w^T

Convergence for Strongly Convex

- f(w) is λ strongly convex
- Subgradients bounded

$$\alpha_t = O\left(\frac{1}{\lambda t}\right) \quad \Rightarrow \quad \mathbb{E}[f(w^T)] - f(w^*) = O\left(\frac{1}{\lambda T}\right)$$

SGD initially fast, slow later

Variance reduced methods through Sketching

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Unbiased

$$\mathbb{E}[g^t] = \nabla f(w^t)$$

Converges in L2

$$\mathbb{E}||g^t||_2^2 \longrightarrow_{w^t \to w^*} 0$$

Instead of using directly $\nabla f_j(w^t) \approx \nabla f(w^t)$ Use $\nabla f_j(w^t)$ to update estimate $g_t \approx \nabla f(w^t)$

$$w^{t+1} = w^t - \alpha g^t$$

We would like gradient estimate such that:

Unbiased

$$\mathbb{E}[g^t] = \nabla f(w^t)$$

Solves problem of $||\nabla f_j(w)||_2^2 \leq B^2$

Converges in L2

$$\mathbb{E}||g^t||_2^2 \longrightarrow_{w^t \to w^*}$$

Covariates

Let x and z be random variables. We say that x and z are covariates if:

$$cov(x, z) \ge 0$$

Variance Reduced Estimate:

$$x_z = x - z + \mathbb{E}[z]$$

Covariates

 $cov(x, z) := \mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])]$

Let x and z be random variables. We say that x and z are covariates if:

 $x_z = x - z + \mathbb{E}[z]$

Variance Reduced Estimate:

EXE:

- 1. Show that $\mathbb{E}[x_z] = \mathbb{E}[x]$
- 2. $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2] = ?$
- 3. When is $VAR[x_z] \leq VAR[x]$

Covariates

 $cov(x, z) := \mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])]$

Let x and z be random variables. We say that x and z are covariates if:

Variance Reduced Estimate:

$$x_z = x - z + \mathbb{E}[z]$$

EXE:

- 1. Show that $\mathbb{E}[x_z] = \mathbb{E}[x]$
- 2. $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2] = ?$
- 3. When is $VAR[x_z] \leq VAR[x]$

$$\begin{split} \mathbb{E}[(x_z - \mathbb{E}[x_z])^2] &= \mathbb{E}[(x - \mathbb{E}[x] - (z - \mathbb{E}[z]))^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x])^2] - 2\mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])] \\ &+ \mathbb{E}[(z - \mathbb{E}[z])^2] \\ &= \mathbb{VAR}[x] - 2\mathrm{cov}(x, z) + \mathbb{VAR}[z] \end{split}$$

SVRG: Stochastic Variance Reduced Gradients

$$w^{t+1} = w^t - \alpha g^t$$

Reference point

$$\tilde{w} \in \mathbb{R}^d$$

Sample

$$\nabla f_i(w^t), \quad i \in \{1, \dots, n\}$$
 uniformly

grad estimate

$$g^t = \nabla f_i(w^t) - \nabla f_i(\tilde{w}) + \nabla f(\tilde{w})$$

$$x_z = x - z + \mathbb{E}[z]$$

SVRG: Stochastic Variance Reduced Gradients

Set
$$w^0 = 0$$
, choose $\alpha > 0, m \in \mathbb{N}$ $\tilde{w}^0 = w^0$ for $t = 0, 1, 2, \dots, T - 1$ recalculate $\nabla f(\tilde{w}^t)$ for m iterations
$$w^0 = \tilde{w}^t$$
 for $k = 0, 1, 2, \dots, m - 1$ sample $j \in \{1, \dots, n\}$
$$g^k = \nabla f_j(w^k) - \nabla f_j(\tilde{w}^t) + \nabla f(\tilde{w}^t)$$

$$w^{k+1} = w^k - \alpha g^k$$
 Option I: $\tilde{w}^{t+1} = w^m$ Option II: $\tilde{w}^{t+1} = \frac{1}{m} \sum_{i=0}^{m-1} w^i$ Output \tilde{w}^T

SAGA: Stochastic Average Gradient

$$w^{t+1} = w^t - \alpha g^t$$

Sample

$$\nabla f_i(w^t), \quad i \in \{1, \dots, n\} \text{ uniformly }$$

Reference points

if i is sampled store
$$w^{t_i} = w^t$$

grad estimate

$$g^{t} = \nabla f_{i}(w^{t}) - \nabla f_{i}(w^{t_{i}}) + \frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}(w^{t_{j}})$$

$$x_z = x - z + \mathbb{E}[z]$$

SVRG: Stochastic Variance Reduced Gradients

Set
$$w^0 = 0$$
, choose $\alpha > 0, m \in \mathbb{N}$ $\tilde{w}^0 = w^0$ for $t = 0, 1, 2, \dots, T - 1$ recalculate $\nabla f(\tilde{w}^t)$ for m iterations
$$w^0 = \tilde{w}^t$$
 for $k = 0, 1, 2, \dots, m - 1$ sample $j \in \{1, \dots, n\}$
$$g^k = \nabla f_j(w^k) - \nabla f_j(\tilde{w}^t) + \nabla f(\tilde{w}^t)$$

$$w^{k+1} = w^k - \alpha g^k$$
 Option I: $\tilde{w}^{t+1} = w^m$ Option II: $\tilde{w}^{t+1} = \frac{1}{m} \sum_{i=0}^{m-1} w^i$ Output \tilde{w}^T

SAG: Stochastic Average Gradient (Biased version)

$$w^{t+1} = w^t - \alpha g^t$$

Sample

$$\nabla f_i(w^t), \quad i \in \{1, \dots, n\} \text{ uniformly }$$

Reference points

if i is sampled store
$$w^{t_i} = w^t$$

grad estimate

$$g^t = \frac{1}{n} \sum_{j=1}^n \nabla f_j(w^{t_j})$$

$$\mathbb{E}[g^t] \neq \nabla f(w^t)$$

$$x_z = x - z + \mathbb{E}[z]$$

SAGA: Stochastic Average Gradient

```
Set w^0 = 0, choose \alpha > 0, m \in \mathbb{N}
z_i = \nabla f_i(w^0), \text{ for } i = 1, \dots, n
for t = 0, 1, 2, \dots, T - 1
\text{sample } j \in \{1, \dots, n\}
g^t = \nabla f_j(w^t) - z_j + \frac{1}{n} \sum_{i=1}^n z_i
w^{t+1} = w^t - \alpha g^t
z_j = \nabla f_j(w^t)
Output w^T
```

Store all n vectors $z_i \in \mathbb{R}^d$

The Stochastic Average Gradient

The Stochastic Average Gradient

How to prove this converges? Is this the only option?

Stochastic Gradient Descent $\alpha = 0.5$

Proving Convergence

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Calculate L_i and $L_{\max} := \max_{i=1,...,n} L_i$ for

1.
$$f(w) = \frac{1}{2}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$
, where $A \in \mathbb{R}^{n \times d}$

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

1.
$$f(w) = \frac{1}{2}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$

1.
$$f(w) = \frac{1}{2}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$

1.
$$f(w) = \frac{1}{2}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2 = \frac{1}{n}\sum_{i=1}^n (\frac{n}{2}(A_{i:}^\top w - y_i)^2 + \frac{\lambda}{2}||w||_2^2)$$
$$= \frac{1}{n}\sum_{i=1}^n f_i(w)$$

1.
$$f(w) = \frac{1}{2}||Aw - y||_2^2 + \frac{\lambda}{2}||w||_2^2$$

1.
$$f(w) = \frac{1}{2}||Aw - y||_{2}^{2} + \frac{\lambda}{2}||w||_{2}^{2} = \frac{1}{n}\sum_{i=1}^{n}(\frac{n}{2}(A_{i:}^{\top}w - y_{i})^{2} + \frac{\lambda}{2}||w||_{2}^{2})$$
$$= \frac{1}{n}\sum_{i=1}^{n}f_{i}(w)$$

$$\nabla^2 f_i(w) = n A_{i:} A_{i:}^{\top} + \lambda \leq (n||A_{i:}||_2^2 + \lambda)I = L_i I$$

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2$$

2.
$$f_i(w) = \ln(1 + e^{-y_i \langle w, a_i \rangle}) + \frac{\lambda}{2} ||w||_2^2,$$

$$\nabla f_i(w) = \frac{-y_i a_i e^{-y_i \langle w, a_i \rangle}}{1 + e^{-y_i \langle w, a_i \rangle}} + \lambda w$$

$$\nabla^{2} f_{i}(w) = a_{i} a_{i}^{\top} \left(\frac{(1 + e^{-y_{i} \langle w, a_{i} \rangle}) e^{-y_{i} \langle w, a_{i} \rangle}}{(1 + e^{-y_{i} \langle w, a_{i} \rangle})^{2}} - \frac{e^{-2y_{i} \langle w, a_{i} \rangle}}{(1 + e^{-y_{i} \langle w, a_{i} \rangle})^{2}} \right) + \lambda I$$

$$= a_{i} a_{i}^{\top} \frac{e^{-y_{i} \langle w, a_{i} \rangle}}{(1 + e^{-y_{i} \langle w, a_{i} \rangle})^{2}} + \lambda I \quad \leq \quad \left(\frac{||a_{i}||_{2}^{2}}{4} + \lambda \right) I = L_{i} I$$

EXE: Let f(w) be L-smooth and $f_i(w)$ be L_i -smooth for $i = 1, \ldots, n$.

Show that

$$L \leq \frac{1}{n} \sum_{i=1}^{n} L_i \leq L_{\max} := \max_{i=1,\dots,n} L_i$$

Proof: From definition of $f_i(w)$ smoothness

EXE: Let f(w) be L-smooth and $f_i(w)$ be L_i -smooth for $i = 1, \ldots, n$.

Show that

$$L \leq \frac{1}{n} \sum_{i=1}^{n} L_i \leq L_{\max} := \max_{i=1,\dots,n} L_i$$

Proof: From definition of $f_i(w)$ smoothness

$$\frac{1}{n} \sum_{i=1}^{n} f_i(w) \le \frac{1}{n} \sum_{i=1}^{n} f_i(y) + \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(y), x - y \right\rangle + \frac{1}{2n} \sum_{i=1}^{n} L_i ||w - y||_2^2$$

$$= f(y) + \left\langle \nabla f(y), x - y \right\rangle + \frac{1}{2n} \sum_{i=1}^{n} L_i ||w - y||_2^2$$

Convergence SVRG

Theorem

If
$$\alpha = 1/10L_{\text{max}}$$
 and $m = 20L_{\text{max}}/\lambda$ then

$$\mathbb{E}[f(\tilde{w}^t)] - f(w^*) \le 0.9^t (f(\tilde{w}^0) - f(w^*))$$

Need $O(L_{\text{max}}/\lambda)$ inner iterations to have linear convergence

In practice use
$$\alpha = 1/L_{\text{max}}, m = n$$

Johnson, R. & Zhang, T. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, NIPS 2013

Proof:

$$||w^{k+1} - w^*||_2^2 = ||w^k - w^* - \alpha g^k||_2^2$$
$$= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

$$\mathbb{E}_{j} \left[||w^{k+1} - w^{*}||_{2}^{2} \right] = ||w^{k} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{k}), w^{k} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

$$\stackrel{\text{conv.}}{\leq} ||w^{k} - w^{*}||_{2}^{2} - 2\alpha (f(w^{k}) - f(w^{*})) + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

Must control this!
$$\mathbb{E}_{j}\left[||g^{k}||_{2}^{2}\right]$$

Smoothness Consequences I

Smoothness

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 1

$$f(y - \frac{1}{L}\nabla f(y)) - f(y) \le -\frac{1}{2L}\nabla f(y), \quad \forall y$$

Proof:

Substituting $w = y - \frac{1}{L}\nabla f(y)$ into the smoothness inequality gives

$$f(y - \frac{1}{L}\nabla f(y)) - f(y) \leq \langle \nabla f(y), -\frac{1}{L}\nabla f(y)\rangle + \frac{L}{2}||-\frac{1}{L}\nabla f(y)||_2^2$$
$$= -\frac{1}{2L}\nabla f(y). \quad \blacksquare$$

Smoothness Consequences II

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 2

$$\mathbb{E}[||\nabla f_i(w) - \nabla f_i(w^*)||_2^2] \le 2L_{\max}(f(w) - f(w^*))$$

Proof: Let $g_i(w) = f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$ which is L_i -smooth.

Smoothness Consequences II

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 2

$$\mathbb{E}[||\nabla f_i(w) - \nabla f_i(w^*)||_2^2] \le 2L_{\max}(f(w) - f(w^*))$$

Proof: Let $g_i(w) = f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$ which is L_i -smooth.

Smoothness Consequences II

Smoothness

$$f_i(w) \le f_i(y) + \langle \nabla f_i(y), w - y \rangle + \frac{L_i}{2} ||w - y||_2^2, \text{ for } i = 1, \dots, n$$

EXE: Lemma 2

$$\mathbb{E}[||\nabla f_i(w) - \nabla f_i(w^*)||_2^2] \le 2L_{\max}(f(w) - f(w^*))$$

Proof: Let $g_i(w) = f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$ which is L_i -smooth.

Convexity of $f_i(w) \Rightarrow g_i(w) \geq 0$ for all w. From Lemma 1 we have

$$g_i(w) \geq g_i(w) - g_i(w - \frac{1}{L_i} \nabla g_i(w)) \geq \frac{1}{2L_i} ||\nabla g_i(w)||_2^2 \geq \frac{1}{2L_{\max}} ||\nabla g_i(w)||_2^2$$
Inserting definition of $g_i(w)$ we have
$$\frac{1}{2L_{\max}} ||\nabla f_i(w) - \nabla f_i(w^*)||_2^2 \leq f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$$

$$\frac{1}{2L_{\max}}||\nabla f_i(w) - \nabla f_i(w^*)||_2^2 \le f_i(w) - f_i(w^*) - \langle \nabla f_i(w^*), w - w^* \rangle$$

Result follows by taking expectation of i.

Bounding gradient estimate

EXE: Lemma 3

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof: Hint: use $||a+b||_2^2 \le 2||a||_2^2 + 2||b||_2^2$ and Lemma 2

Where we used in the first inequality that
$$\mathbb{E}[||X - \mathbb{E}X||_2^2] \leq \mathbb{E}[||X||_2^2]$$
 with $X = \nabla f_i(w^*) - \nabla f_i(\tilde{w}^t)$ thus $\mathbb{E}[X] = -\nabla f(\tilde{w}^t)$

Bounding gradient estimate

EXE: Lemma 3

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof: Hint: use $||a+b||_2^2 \le 2||a||_2^2 + 2||b||_2^2$ and Lemma 2

Where we used in the first inequality that
$$\mathbb{E}[||X - \mathbb{E}X||_2^2] \leq \mathbb{E}[||X||_2^2]$$
 with $X = \nabla f_i(w^*) - \nabla f_i(\tilde{w}^t)$ thus $\mathbb{E}[X] = -\nabla f(\tilde{w}^t)$

Bounding gradient estimate

EXE: Lemma 3

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof: Hint: use $||a+b||_2^2 \le 2||a||_2^2 + 2||b||_2^2$ and Lemma 2

$$\mathbb{E}_{j}[||g^{k}||_{2}^{2}] = \mathbb{E}_{j}[||\nabla f_{i}(w^{k}) - \nabla f_{i}(w^{*}) + \nabla f_{i}(w^{*}) - \nabla f_{i}(\tilde{w}^{t}) + \nabla f(\tilde{w}^{t})||_{2}^{2}]$$

$$\leq 2\mathbb{E}_{j}[||\nabla f_{i}(w^{k}) - \nabla f_{i}(w^{*})||_{2}^{2}] + 2\mathbb{E}_{j}[||\nabla f_{i}(w^{*}) - \nabla f_{i}(\tilde{w}^{t}) + \nabla f(\tilde{w}^{t})||_{2}^{2}]$$

$$\leq 2\mathbb{E}_{j}[||\nabla f_{i}(w^{k}) - \nabla f_{i}(w^{*})||_{2}^{2}] + 2\mathbb{E}_{j}[||\nabla f_{i}(w^{*}) - \nabla f_{i}(\tilde{w}^{t})||_{2}^{2}]$$

$$= 4L_{\max} \left(f(w^{k}) - f(w^{*}) + f(\tilde{w}^{t}) - f(w^{*}) \right)$$

$$\downarrow Lemma 2$$

Where we used in the first inequality that $\mathbb{E}[||X - \mathbb{E}X||_2^2] \leq \mathbb{E}[||X||_2^2]$ with $X = \nabla f_i(w^*) - \nabla f_i(\tilde{w}^t)$ thus $\mathbb{E}[X] = -\nabla f(\tilde{w}^t)$

Proof:

$$||w^{k+1} - w^*||_2^2 = ||w^k - w^* - \alpha g^k||_2^2$$
$$= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

$$\mathbb{E}_{j} \left[||w^{k+1} - w^{*}||_{2}^{2} \right] = ||w^{k} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{k}), w^{k} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

$$\stackrel{\text{conv.}}{\leq} ||w^{k} - w^{*}||_{2}^{2} - 2\alpha (f(w^{k}) - f(w^{*})) + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

Must control this!
$$\mathbb{E}_{j}\left[||g^{k}||_{2}^{2}\right]$$

$$\mathbb{E}[||g^k||_2^2] \le 4L_{\max}(f(w^k) - f(w^*)) + 4L_{\max}(f(\tilde{w}^t) - f(w^*))$$

Proof (continued I):

$$||w^{k+1} - w^*||_2^2 = ||w^k - w^* - \alpha g^k||_2^2$$
$$= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

$$\mathbb{E}_{j} \left[||w^{k+1} - w^{*}||_{2}^{2} \right] = ||w^{k} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{k}), w^{k} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

$$\stackrel{\text{conv.}}{\leq} ||w^{k} - w^{*}||_{2}^{2} - 2\alpha (f(w^{k}) - f(w^{*})) + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

$$\leq ||w^{k} - w^{*}||_{2}^{2} - 2\alpha (1 - 2\alpha L_{\text{max}}) (f(w^{k}) - f(w^{*}))$$

$$+4\alpha^{2} L_{\text{max}} (f(\tilde{w}^{t}) - f(w^{*}))$$

Proof (continued I):

$$||w^{k+1} - w^*||_2^2 = ||w^k - w^* - \alpha g^k||_2^2$$
$$= ||w^k - w^*||_2^2 - 2\alpha \langle g^k, w^k - w^* \rangle + \alpha^2 ||g^k||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

$$\mathbb{E}_{j} \left[||w^{k+1} - w^{*}||_{2}^{2} \right] = ||w^{k} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{k}), w^{k} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

$$\stackrel{\text{conv.}}{\leq} ||w^{k} - w^{*}||_{2}^{2} - 2\alpha (f(w^{k}) - f(w^{*})) + \alpha^{2} \mathbb{E}_{j} \left[||g^{k}||_{2}^{2} \right]$$

$$\leq ||w^{k} - w^{*}||_{2}^{2} - 2\alpha (1 - 2\alpha L_{\text{max}}) (f(w^{k}) - f(w^{*}))$$

$$+4\alpha^{2} L_{\text{max}} (f(\tilde{w}^{t}) - f(w^{*}))$$

Taking expectation and summing from k = 0, ..., m-1 gives

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Proof (continued II):

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

$$2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - \mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

$$\leq 2(2m\alpha^{2}L_{\max} - \lambda^{-1})\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Proof (continued II):

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging and using strong convexity $f(\tilde{w}^t) - f(w^*) \ge \frac{\lambda}{2} ||\tilde{w}^t - w^*||_2^2$

$$2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - \mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right]$$

$$+4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

$$\leq 2(2m\alpha^{2}L_{\max} - \lambda^{-1})\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Proof (continued II):

$$\mathbb{E}\left[||w^{m} - w^{*}||_{2}^{2}\right] \leq \mathbb{E}\left[||w^{0} - w^{*}||_{2}^{2}\right] - 2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^{k}) - f(w^{*}))\right] + 4m\alpha^{2}L_{\max}\mathbb{E}\left[f(\tilde{w}^{t}) - f(w^{*})\right]$$

Re-arranging and using strong convexity $f(\tilde{w}^t) - f(w^*) \ge \frac{\lambda}{2} ||\tilde{w}^t - w^*||_2^2$

$$2\alpha(1 - 2\alpha L_{\max})\mathbb{E}\left[\sum_{k=0}^{m-1} (f(w^k) - f(w^*))\right] \leq \mathbb{E}\left[||w^0 - w^*||_2^2\right] - \mathbb{E}\left[||w^m - w^*||_2^2\right]$$

$$w^0 = \tilde{w}^t + 4m\alpha^2 L_{\max}\mathbb{E}\left[f(\tilde{w}^t) - f(w^*)\right]$$

$$\leq 2(2m\alpha^2 L_{\text{max}} - \lambda^{-1})\mathbb{E}\left[f(\tilde{w}^t) - f(w^*)\right]$$

Re-arranging again

$$\mathbb{E}[(f(\sum_{k=0}^{m-1} \frac{w^k}{m}) - f(w^*))] \leq \mathbb{E}[\frac{1}{m} \sum_{k=0}^{m-1} (f(w^k) - f(w^*))]$$
Jensen's inequality
$$\leq \left(\frac{2\alpha L_{\max}}{1 - 2\alpha L_{\max}} + \frac{1}{\lambda \alpha (1 - 2\alpha L_{\max})m}\right) \mathbb{E}\left[f(\tilde{w}^t) - f(w^*)\right]$$

Now plug in values $\alpha = 1/(10L_{\rm max})$ and $m = 20L_{\rm max}/\lambda$

Convergence SAGA

Theorem SAGA

If
$$\alpha = 1/3L_{\rm max}$$
 then

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le \left(1 - \min\left\{\frac{1}{4n}, \frac{\lambda}{3L_{\max}}\right\}\right)^t ||w^0 - w^*||_2^2$$

A practical convergence result!

M. Schmidt, N. Le Roux, F. Bach (2016)
Mathematical Programming
Minimizing Finite Sums with the Stochastic Average
Gradient.

Comparisons in complexity for strongly convex

Approximate solution

$$\mathbb{E}[f(w^T)] - f(w^*) \le \epsilon$$

SGD

$$O\left(\frac{1}{\lambda\epsilon}\right)$$

Gradient descent

$$O\left(\frac{nL}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$$

SVRG/SAGA

$$O\left(\left(n + \frac{L_{\max}}{\lambda}\right) \log\left(\frac{1}{\epsilon}\right)\right)$$

Variance reduction faster than GD when

$$L \ge \lambda + L_{\max}/n$$

How did I get these complexity results from the convergence results?

Section 1.3.5, R.M. Gower, Ph.d thesis: Sketch and Project: Randomized Iterative Methods for Linear Systems and Inverting Matrices University of Edinburgh, 2016

Take for home Variance Reduction

- Variance reduced methods use only **one stochastic gradient per iteration** and converge linearly on strongly convex functions
- Choice of **fixed stepsize** possible
- **SAGA** only needs to know the smoothness parameter to work, but requires storing n past stochastic gradients
- **SVRG** only has O(d) stored, but requires full gradient computations every so often