MATH 161, SHEET 1: SETS, FUNCTIONS and CARDINALITY

Jeffrey Zhang IBL Script 1 Corrections (6 November 2013)

Exercise 1.16 Let $A = \{1, 2, 3\}$. Identify $\wp(A)$ by explicitly listing its elements. $\wp(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$

Lemma 1.25 Suppose that $f: A \to B$ is bijective. Then there exists a bijection $g: B \to A$.

Proof. We define $g(B) = \{a \in A \mid f(a) \in B\}$. We know that f is bijective, so f is injective and it follows by Definition 1.20 that for every $a \in A$ there exists a unique $b \in B$ such that f(a) = b. Thus, we know that g satisfies the definition of a function (Definition 1.17). Let $x, x' \in X$ such that g(x) = g(x'). Let g(x) = a for some $a \in A$, then f(a) = x. g(x) = g(x') so it follows that g(x') = a, f(a) = x'. Then x = x', so g is injective (Definition 1.20). Let $a \in A$ and f(a) = b. We have shown that f is injective, so we know that there exists a unique $b \in B$ such that f(a) = b. It follows then that $\exists g(b) = a$ for some $b \in B$. So we can say that $\forall a \in A$ such that f(a) = b, $\exists b \in B$ such that g(b) = a. Then by definition 1.20, g is surjective.

Lemma 1.29 Let A, B, and C be sets and suppose that there is a bijective correspondence between A and B and a bijective correspondence between B and C. Then there is a bijective correspondence between A and C.

Proof. Let $f:A\to B,\ g:B\to C$. We know f and g are bijections. Suppose $c\in C$, then $\exists b\in B$ such that g(b)=c by Definition 1.20. By the same definition we also know that $\forall b\in B\ \exists a\in A$ such that f(a)=b. It follows then that for $c\in C,\ \exists a\in A$ such that g(f(a))=c. We define a function h such that $h=g\circ f$, so $h:A\to C$ and h is surjective. Suppose $a,a'\in A$ and h(a)=h(a'). It follows then that g(f(a))=g(f(a')). We know by Definition 1.20 that $\forall b,b'\in B$, if g(b)=g(b') then b=b'. So we know that f(a)=f(a'). By the same definition, we know that $\forall a,a'\in A$, if f(a)=f(a') then a=a'. Thus, if h(a)=h(a') then a=a', so h is injective. Because h is injective and surjective, h is bijective.

Exercise 1.34 Let A and B be two finite sets. Then $|A \times B| = |A| \cdot |B|$.

Proof. Let |A| = m, |B| = n. We let the proposition $P(n) : |A \times B| = |A| \cdot |B|$. To prove the base case, we let n = 1. It follows then that |A| = m, |B| = 1, so $|A \times B| = m$, which is obviously true. Let the inductive hypothesis be that $|A \times B| = |A| \cdot |B|$ for two sets A, B. We define two sets A, B such that |A| = m and |B| = n + 1. It follows then that $|A| \cdot |B| = m(n+1)$. Let $B = C \cup D$ for two disjoint sets C, D such that |C| = n and |D| = 1. We know that the set $|A \times B| = \{(a,b)|a \in A,b \in B\}$, and we know that $|A| + |C| = |A| \cdot |C| = m * n$ using the inductive hypothesis. It follows then that $|A \times B| = m * (n+1)$. Thus, using induction we know that $|A \times B| = |A| \cdot |B|$ for two finite sets A, B.