## Chapter 3: Relationships Between Variables

DSCC 462 Computational Introduction to Statistics

> Anson Kahng Fall 2022

# Plan for Today

- Visualize relationships between variables
- Determine whether variables are correlated

### Summaries for Two Variables

- Recall that we have discussed summaries of center and spread for one variable
- Suppose we wanted to summarize height by sex, or summarize the relationship between hip length and weight
- Much of what we did for one variable can be extended to two variables

# Case CQ: Categorical and Quantitative

- If we have a quantitative variable that we want to summarize over multiple categories/groups, we can simply calculate quantitative variable summary statistics (e.g., mean, median, SD, IQR, etc.) for each category/group
- Heights in Group A (in): 64, 66, 67, 69, 69, 71
- Heights in Group B (in): 61, 62, 64, 67, 69
- Mean for Group A:  $\bar{x}_A = 67.7$
- Mean for Group B:  $\bar{x}_B = 64.6$

## Case CQ: Categorical and Quantitative

We can make histograms for each group, or side-by-side boxplots



# Case CC: Categorical and Categorical

- If we have two categorical variables, we want to make a *two-way table* to describe the results
  - Cross tabulation of two categorical variables
- Extend the frequency table we made for one categorical variable and extend it to two variables
- Consider the variables group (A/B) and smoking status (smoker/non-smoker)

|         | Smoker | Non-Smoker |
|---------|--------|------------|
| Group A | 15     | 22         |
| Group B | 26     | 18         |

# Case CC: Categorical and Categorical

- From this table, we can determine the total number of people in Group A, people in Group B, smokers, and non-smokers
- These sub-totals are known as marginal values for each variable
- The marginal distributions for each variable can be summarized exactly as we did for the one variable case; we can make a bar plot for each and calculate marginal frequencies

|         | Smoker | Non-Smoker | Total |
|---------|--------|------------|-------|
| Group A | 15     | 22         | 37    |
| Group B | 26     | 18         | 44    |
| Total   | 41     | 40         | 81    |

### Case CC: Conditional Distributions

|         | Smoker | Non-Smoker | Total |
|---------|--------|------------|-------|
| Group A | 15     | 22         | 37    |
| Group B | 26     | 18         | 44    |
| Total   | 41     | 40         | 81    |

• What is the probability of smoking given that you are in Group B?

• What is the probability of being in Group A given that you smoke?

### Case CC: Conditional Distributions





### Case QQ: Quantitative and Quantitative

- Suppose we are interested in examining the relationship between diabetic patients' weights and ages
- We can graphically display this relationship with a two-way scatterplot
- When we make a scatterplot, we have our two variables as our two axes, and points are plotted based on their corresponding values for each variable
- R code: plot (x=weight, y=age, xlab="Weight", ylab="Age")

# Scatterplot



# Scatterplot

- Want to discuss the direction, form, and strength
  - Direction: positive, negative, or neither
  - Form: linear, non-linear, or no relationship
  - Strength: strong, weak, or none

# Examples: Strength, Direction, and Form







# Scatterplot: Outliers

- From a scatterplot, we are able to visually identify unusual points and features of the data
- Examine the scatterplot to see if there are any points that do not seem to follow the trend of the data
  - These points are outliers

# Outliers: Examples





### Correlation

- From a scatterplot, we can see the relationship between two variables
- Correlation tells us the degree to which two random variables are (linearly)
  associated or related
- Setup: two quantitative variables, X and Y; X is on the horizontal axis of the scatterplot and Y is plotted on the vertical axis

### Pearson's Correlation Coefficient (r)

• Pearson's coefficient of correlation, or sample correlation coefficient, r:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}}$$

A quantity related to the correlation is the sample covariance:

$$S_{xy} = \frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

#### Correlation vs. Covariance

- Both correlation and covariance measure the relationship between variables
- Positive values = positive (linear) relationship
- Negative values = negative (linear) relationship
- Covariance indicates direction
- Correlation indicates direction and strength
- Correlation values are standardized between -1 and 1
- Covariance values are not standardized

#### Pearson's Correlation Coefficient: Alternative Form

• We can define Sums of Squares:

$$SS_{x} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = (n-1)s_{x}^{2}$$

$$SS_{y} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = (n-1)s_{y}^{2}$$

$$SS_{xy} = \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) = (n-1)s_{xy}$$

• Rewriting the sample correlation:

$$r = \frac{SS_{xy}}{\sqrt{SS_x SS_y}}$$

# Pearson's Correlation Coefficient: Interpretation

- The correlation coefficient does not have units and is bounded:  $-1 \le r \le 1$
- If r = 1 (resp. r = -1), then X and Y have a perfect linear relationship in the positive (resp. negative) direction, i.e., for each increase in X, we have a perfect increase (resp. decrease) in Y
  - In the cases of  $r = \pm 1$ , pairs of outcomes (x, y) lie on a straight line
- Any r > 0 indicates a positive relationship between X and  $Y(x \uparrow \rightarrow y \uparrow)$
- Any r < 0 indicates a negative relationship between X and  $Y(x \uparrow \rightarrow y \downarrow)$
- When r = 0, X and Y have no linear relationship at all (could be non-linear)

# Pearson's Correlation Coefficient: Examples



### Correlation and Outliers

- Correlation can be sensitive to outliers
- A highly influential outlier can cause correlation to look strong when in fact not much of a relationship actually exists





# Correlation: Example

• Find the correlation between weight (X) and age (Y) for the following data

| Patient | Weight (lbs | s) Age | Average weight: $\bar{x} = \frac{220 + 215 + 179 + 145 + 145 + 177 + 136}{7} = 173.86$                                                                                                                                               |
|---------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 220         | 68     | Average age: $\overline{y} = \frac{68 + 58 + 43 + 37 + 20 + 58 + 36}{7} = 45.71$                                                                                                                                                     |
| 2       | 215         | 58     | $\sum_{i=0}^{7} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=0}^{7} (x_i - 173.86)(y_i - 45.71) = 2919.714$                                                                                                                    |
| 3       | 179         | 43     | i=1 $Strong positive$                                                                                                                                                                                                                |
| 4       | 145         | 37     | $\sum_{i=1}^{7} (x_i - \overline{x})^2 = \sum_{i=1}^{7} (x_i - 173.86)^2 = 6956.857$ Strong, positive, linear relationship between weight                                                                                            |
| 5       | 145         | 20     | $\sum_{i=1}^{7} (y_i - \bar{y})^2 = \sum_{i=1}^{7} (y_i - 45.71)^2 = 1637.429$ and age                                                                                                                                               |
| 6       | 177         | 58     | $i=1$ $i=1$ $\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ 2919.714                                                                                                                                                                 |
| 7       | 136         | 36     | $r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \bar{y})^2\right]}} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{\sqrt{6956.857 \times 1637.429}} = 0.865$ |

# Correlation: Example

• Find the correlation between weight (X) and age (Y) for the following data

| Weight (lbs)        |                                                       | tient                                             | Pati |
|---------------------|-------------------------------------------------------|---------------------------------------------------|------|
| 20                  | 22                                                    | 1                                                 |      |
| 5                   | 21                                                    | 2                                                 | 2    |
| '9                  | 17                                                    | 3                                                 | 3    |
| <b>1</b> 5          | 14                                                    | 4                                                 | 2    |
| <b>1</b> 5          | 14                                                    | 5                                                 | [    |
| 7                   | 17                                                    | 6                                                 | 6    |
| 86                  | 13                                                    | 7                                                 | -    |
| 5<br>'9<br>'5<br>'7 | <ul><li>21</li><li>17</li><li>14</li><li>17</li></ul> | <ul><li>2</li><li>3</li><li>4</li><li>5</li></ul> |      |



### Correlation: Caveat

- Correlation does not imply causation (!!)
- We are only noting that a relationship exists; we are not specifying any cause-and-effect relationship

### Three Variables: Add Color

- Imagine we have two quantitative variables and one other variable (either Q or C)
- We can augment our QQ approach (scatterplots) with color corresponding to the third variable



# Correlograms

- Correlograms: Visualize correlation coefficients between pairs of variables
- Very useful for looking at all pairwise relationships in large datasets





### Dimension Reduction: PCA

- Imagine we have a dataset with many variables (far too many to visualize)
- Intuitively, many of them may be correlated
- Dimension reduction: Reduction in the number of key dimension without losing much information

#### • Principal Component Analysis (PCA):

- Principal components: Linear combinations of original variables
- All uncorrelated (i.e., orthogonal)
- The  $n^{th}$  principal component explains the  $n^{th}$  largest amount of variation in the data

### Dimension Reduction: PCA

