Эконометрика, 2020-2021, 3 модуль Семинар 2 18.01.2020 Группы Э_Б2018_Э_3 Семинарист О.А.Демидова

Обобщенный МНК

Вопрос 1. Для модели $Y_i = \beta X_i + \varepsilon_i$ с $\mathrm{E}(\varepsilon_i) = 0$ известно, что оценка $\hat{\beta} = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n X_i}$ обладает наименьшей дисперсией среди линейных несмещённых оценок.

Дисперсии $Var(\varepsilon_i)$ пропорциональны

A	$1/X^{2}$
	-/

C $1/X_i$

 $E X_i^2$

 $B X_i$

 $D \sqrt{X_i}$

F Нет верного ответа.

Вопрос 2.

Рассмотрим модель $Y_i = \mu + \varepsilon_i$, $E(\varepsilon_i) = 0$, $cov(\varepsilon_i, \varepsilon_j) = 0$, $i \neq j$, $Var(\varepsilon_i) = \sigma_\varepsilon^2/X_i$, $i = 1, \ldots, 4$ при X = (1, 2, 3, 4), полученную обычным и обобщенным МНК. Во сколько раз дисперсия оценки коэффициента μ для модели, оцененной обобщенным МНК с учетом особенностей ковариационной матрицы ошибок, будет меньше дисперсии оценки, полученной обычным МНК?

3) Учебник Демешев и Борзых

- 8.7 По наблюдениям x=(1,2,3)', y=(2,-1,3)' оценивается модель $y=\beta_1+\beta_2x+\varepsilon$. Ошибки ε гетероскедастичны и известно, что $\mathrm{Var}(\varepsilon_i)=\sigma^2\cdot x_i^2$.
 - 1. Найдите оценки \hat{eta}_{ols} с помощью МНК и их ковариационную матрицу.
 - 2. Найдите оценки $\hat{\beta}_{gls}$ с помощью обобщенного МНК и их ковариационную матрицу.

- 8.15 Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
- 8.16 Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
- 8.17 Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.
- 8.18 Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещённых оценок.

Метод максимального правдоподобия

5.4 Совместное распределение величин X и Y задано функцией

$$f(x,y) = \frac{\theta(\beta y)^x e^{-(\theta+\beta)y}}{x!}.$$

Величина X принимает целые неотрицательные значения, а величина Y — действительные неотрицательные. Имеется случайная выборка $(X_1,Y_1),...(X_n,Y_n)$.

С помощью метода максимального правдоподобия оцените

- 1. θ и β ;
- 2. $a = \theta/(\beta + \theta)$.
- Оценки коэффициентов линейной регрессии, полученные методом максимального правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей, будут совпадать
 - А всегда
 - В никогда
 - С если ковариационная матрица случайной составляющей нулевая
 - D если ковариационная матрица случайной составляющей диагональна
 - если ковариационная матрица случайной составляющей пропорциональна единичной
 - F Нет верного ответа.

3)

Методом максимального правдоподобия Гоша оценил модель

$$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_6 X_{i6} + \varepsilon_i,$$

где $\varepsilon\sim\mathcal{N}(0,\sigma_\varepsilon^2I)$, по 12 наблюдениям. Оказалось, что RSS=24. Оценка дисперсии случайной составляющей равна

A 0.5

B 24/7

C 2.4

D 0.48

2

F Нет верного ответа.