Zadanie 3

Patryk Lisik

10 Lutego 2024

Treść

Binarny liniowy kod cykliczny $C_{cyc}(n,k)$ o długości kodu n=14 ma wielomian generujący $g(x)=1\oplus x^2\oplus x^6$.

- (a) Wyznacz liczbę bitów wiadomości ki przystości w każdym słowie kodowym ${\bf c}$
- (b) Wyznacz liczbę słów kodowych kodu M.
- (c) Wyznacz macierz generującą G i kontroli przystości H kodu.
- (d) Wyznacz minimalną odległość Hamminga d_{min} kodu.

Rozwiązanie

a) Wyznacz liczbę bitów wiadomości k i przystości w każdym słowie kodowym c

Niech r będzie stopniem wielominu generującego g(x). Jeśli wielomian jest stopnia r to genruje kod cykliczny $C_{cyc}(n,l)$ taki, że r=n-k. Wielomin g(x) jest stopnia 6, co onzacza że kod jest $C_{cyc}(14,8)$. Kod ma 8 bitów wiadomości o 6 bitów parzystości.

b) Wyznacz liczbę słów kodowych kodu M

$$M = 2^k = 2^8 = 256$$

c) Wyznacz macierz generującą G i kontroli przystości H kodu

Macierz kontroli parzystości

d) Wyznacz minimalną odległość Hamminga d_{min} kodu

Dla linowego kodu blokowego, odległość minimalna kodu jest równa minimalnej liczbie kolumn z macierzy \mathbf{H} , które dodane razem dają 0.

c_0	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}
1	0	0	0	0	0	1	0	0	0	1	0	1	0
0	1	0	0	0	0	0	1	0	0	0	1	0	1
0	0	1	0	0	0	1	0	1	0	1	0	0	0
0	0	0	1	0	0	0	1	0	1	0	1	0	0
0	0	0	0	1	0	0	0	1	0	1	0	1	0
0	0	0	0	0	1	0	0	0	1	0	1	0	1

 $d_{min}=3$