Politechnika Wrocławska	Wrocław, 2016
Wydział Budownictwa Lądowego i Wodnego	
Zakład Dróg i Lotnisk	
Projekt drogi głównej	
Wykonał:	Sprawdzający:
Piotr Kopka	Mgr inż. Dariusz Dobrucki

Klasa drogi: G

Teren płaski- maksymalna różnica wysokości terenu na 1km <25m oraz największe pochylenie terenu i<5%

Prędkość projektowa: v_{proj} = 70 km/h

Prędkość miarodajna: $v_m = v_p + 20 \text{ km/h} = 70 + 20 = 90 \text{ km/h}$

Łuki poziome

W1:
$$\alpha = 52^{\circ}$$
, $R = 500m$

$$T = R * tg\left(\frac{\alpha}{2}\right) = 500 * tg\left(\frac{52^{\circ}}{2}\right) = 243,87 m$$

$$\mathcal{L} = \frac{\alpha \pi R}{180^{\circ}} = \frac{52^{\circ} * 3,14 * 500m}{180^{\circ}} = 453,79 m$$

$$SW = R * \left(\frac{1}{\cos\left(\frac{\alpha}{2}\right)} - 1\right) = 500m * \left(\frac{1}{\cos\left(\frac{52^o}{2}\right)} - 1\right) = 56,30 m$$

W2:
$$\alpha = 22^{\circ}$$
, $R = 500 m$

$$T = R * tg\left(\frac{\alpha}{2}\right) = 599 * tg\left(\frac{22^{\circ}}{2}\right) = 97,19 m$$

$$L = \frac{\alpha \pi R}{180^{\circ}} = \frac{22^{\circ} * 3,14 * 500m}{180^{\circ}} = 191,99 m$$

$$SW = R * \left(\frac{1}{\cos\left(\frac{\alpha}{2}\right)} - 1\right) = 500m * \left(\frac{1}{\cos\left(\frac{22^o}{2}\right)} - 1\right) = 9,36 m$$

Łuki pionowe

1: R = 3000 m;
$$i_1$$
 = 0,042; i_2 = 0,0162

$$T = R * \frac{|i_1 - i_2|}{2} = 3000 * \frac{|0,042 - 0,0162|}{2} = 87,30 m$$

$$z = \frac{T^2}{2R} = \frac{87,30^2}{2*3000} = 1,27 m$$

$$T = R * \frac{i_1 + i_2}{2} = 8000 * \frac{0,0162 + 0,0132}{2} = 117,60 m$$

$$z = \frac{T^2}{2R} = \frac{117,60^2}{2*8000} = 0,86 m$$

Dok	0	LC	С	СР	А			
Rok	[pojazdów/dobę]							
2015	507	165	7	30	14			
2016	522	167	7	31	14			
2016	313	134	6	30	7			
2017	323	135	6	31	7			
2018	332	137	7	32	7			
2019	341	138	7	33	7			
2020	350	140	7	34	7			
2021	359	142	7	35	7			
2022	368	143	7	36	7			
2023	377	144	7	37	7			
2024	386	146	7	38	7			
2025	394	147	7	39	7			
2026	403	148	7	40	7			
2027	412	150	7	42	7			
2028	421	151	7	43	7			
2029	430	152	7	44	7			
2030	440	154	7	45	7			
2031	449	155	7	46	7			
2032	458	157	8	47	8			
2033	468	158	8	49	8			
2034	477	159	8	50	8			
2035	487	161	8	51	8			
2036	496 162		8	52	8			
	Razem		150	855	154			

Liczba równoważnych osi standardowych 100 kN na pas w całym okresie projektowym

$$N_{100} = f_1 * f_2 * f_3 * (N_C * r_C + N_{CP} * r_{CP} + N_A * r_A)$$

$$N_C = 365 * \sum C = 365 * 150 = 54750$$

$$N_{CP} = 365 * \sum CP = 365 * 855 = 312075$$

$$N_A = 365 * \sum A = 365 * 154 = 56210$$

$$r_C = 0.45$$

$$r_{CP} = 1,60$$

$$r_A = 1.05$$

$$f_1 = 0.5$$

$$f_2 = 1,06 \text{ dla s} = 3\text{m}$$

$$f_3 = 1.0 \text{ dla i} \le 6\%$$

$$\begin{aligned} N_{100} &= f_1 * f_2 * f_3 * (N_C * r_C + N_{CP} * r_{CP} + N_A * r_A) \\ &= 0.5 * 1.06 * 1.0 * (54750 * 0.45 + 312075 * 1.60 + 56210 * 1.05) = 308978 \end{aligned}$$

Przyjęto kategorię ruchu KR2

Konstrukcja nawierzchni

Przyjęto:

Podbudowa zasadnicza: beton asfaltowy AC, mieszanka niezwiązana z kruszywem C50/30

Warstwy:

- warstwa ścieralna z mieszanki mineralno- asfaltowej 40mm
- warstwa wiążąca z betonu asfaltowego 80mm
- warstwa podbudowy zasadniczej z mieszanki niezwiązanej z kruszywem C50/30

Przepustowość

Rok	0	LC	С	СР	Α	SDR	Qh	Q ₁₅	
KOK	[pojazdów/dobę]						[pojazdów/godzinę]		
2016	313	134	6	30	7	490	59	71	
2021	359	142	7	35	7	550	66	80	
2026	403	148	7	40	7	606	73	88	
2031	449	155	7	46	7	665	80	96	

$$Q_h = 12\% \, SDR$$

$$Q_{15} = \frac{Q_h}{k_{15}}$$

$$k_{15} = 0.83$$

$$Q_{ki} = 2800 * f_q * f_k * f_p * f_c$$

Procent odcinków bez możliwości wyprzedzania $\frac{suma\ długości\ zakrętów}{długość\ drogi} = \frac{191,99+453,79}{2828} = 0,23 = 23\%$

$$f_c = \frac{1}{1 + p_c * (E_c - 1) + p_a * (E_a - 1)}$$

$$p_c = \frac{C + CP}{SDR}$$

$$p_a = \frac{A}{SDR}$$

Rok	PSR	Ec	Ea	p _c	pa	f _c	fq	f _k	fp	Q _{ki} [pojazdów/ godzinę]
2016	Α	2	1,8	6,44	0,014	0,134	0,12	1	0,81	37
	В	2,2	2	6,44	0,014	0,114	0,24	1	0,81	62
	С	2,2	2	6,44	0,014	0,114	0,39	1	0,81	101
	D	2	1,6	6,44	0,014	0,134	0,62	1	0,81	189
	E	2	1,6	6,44	0,014	0,134	1	1	0,86	323
	Α	2	1,8	6,84	0,013	0,127	0,12	1	0,81	35
	В	2,2	2	6,84	0,013	0,108	0,24	1	0,81	59
2021	С	2,2	2	6,84	0,013	0,108	0,39	1	0,81	96
	D	2	1,6	6,84	0,013	0,127	0,62	1	0,81	179
	Е	2	1,6	6,84	0,013	0,127	1	1	0,86	307
	Α	2	1,8	7,21	0,012	0,122	0,12	1	0,81	33
	В	2,2	2	7,21	0,012	0,104	0,24	1	0,81	56
2026	С	2,2	2	7,21	0,012	0,104	0,39	1	0,81	92
	D	2	1,6	7,21	0,012	0,122	0,62	1	0,81	171
	Е	2	1,6	7,21	0,012	0,122	1	1	0,86	293
	Α	2	1,8	7,54	0,011	0,117	0,12	1	0,81	32
2031	В	2,2	2	7,54	0,011	0,099	0,24	1	0,81	54
	С	2,2	2	7,54	0,011	0,099	0,39	1	0,81	88
	D	2	1,6	7,54	0,011	0,117	0,62	1	0,81	164
	E	2	1,6	7,54	0,011	0,117	1	1	0,86	282

Poziom swobody ruchu drogi to C w latach 2016 – 2027 oraz D od roku 2028. Przepustowość jest optymalna do roku 2027, później droga będzie przeciążona i należy w przyszłości zmienić jej przekrój poprzeczny. Klasa techniczna drogi została przyjęta prawidłowo.