

Methods

- Surface-based deformations
- Space deformations
 - Shape is volumetric (planar domain for 2D, polyhedral domain for 3D)
 - Deformation defined in neighborhood of shape
 - · Can be applied to any shape representation

Advantages

- Handle arbitrary input
 - Meshes (also non-manifold)
 - Point sets
 - Polygonal soups
 - •

Complexity mainly depends on the control object, not the surface

- 3M triangles
- 10k components
- Not oriented
- Not manifold

Advantages

Easier to analyze: functions on Euclidean domain

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

Jacobian – local deformation

$$J_F = USV^T$$
, $S = diag(\sigma_1, \sigma_2, \sigma_3)$

Distortion: conformal, volume

Disadvantages

The deformation is only loosely aware of the shape that is being edited

Disadvantages

- The deformation is only loosely aware of the shape that is being edited
- ➤ Small Euclidean distance → similar deformation

Disadvantages

- The deformation is only loosely aware of the shape that is being edited
- ➤ Small Euclidean distance → similar deformation
- Local surface detail may be distorted

Space deformations

- User defines displacements $d_i \in \mathbb{R}^3$ for each element of the control object
- Displacements are interpolated to the entire space using basis functions $B_i(x): \mathbb{R}^3 \to \mathbb{R}$,

 $d(x) = \sum_{i} d_{i}B_{i}(x)$

Space deformations

- Trivariate Tensor Product Bases
- > Skeleton
- Cage-based deformation

Trivariate Tensor Product Bases

- Control object = lattice
- \triangleright Basis functions $B_i(x)$ are trivariate tensor-product splines

$$d(x) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} d_{ijk} N_i(x) N_j(y) N_k(z)$$

Lattice as Control Object

> Interpolate deformation constraints - by least squares

Comparison to wires

- Control objects are arbitrary space curves
- Can place curves along meaningful features of the edited object
- Smooth deformations around the curve with decreasing influence

Comparison to RBF

Represent deformation by RBFs

$$d(x) = \sum_{i=1}^{l} w_i \, \phi(\|c_i - x\|) + p(x)$$

where w_i weights, $\phi(r) = r^3$ triharmonic basis function, c_i a set of centers and p(x) a polynomial of low degree.

Comparison to RBF

- > RBF fitting
 - Interpolate displacement constraints
 - Solve linear system for w_i and p

Figure 1: The blue support region is deformed by smoothly interpolating the affinely transformed green control handle. The fair triharmonic surface-based deformations of [BK04a] (left) can be reproduced by the triharmonic space deformation, where the C^2 constraints are defined by the red bands of three points thickness (center). However, the number of centers required for a sufficiently accurate approximation (see Sect. 5) is usually significantly lower, like 20% in this example (right).

Skeleton

- Place skeleton in shapes
 - Medial Axis Transform (MAT)

Skeleton extraction

- Laplacian shrinking
- · Voronoi diagram
- · Reeb graph, segmentation ...

Skeleton

Compute/paint weights

$$v'_{i} = \sum_{j=1}^{m} w_{i,j} T_{j} v_{i} = \left(\sum_{j=1}^{m} w_{i,j} T_{j}\right) v_{i}$$

Skinning:

$$w_{i,j} \geq 0$$
 and $\sum_{j=1}^{m} w_{i,j} = 1$

Sparsity: for each v_i , only a few $w_{i,j} > 0$

Skeleton

Deform bones

 T_j : rotation + translation

Blending rotations

$$1/2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 1/2 \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Rotation by 0

 $\begin{array}{c} \text{Rotation} \\ \text{by } \pi \end{array}$

Not a rotation

> 2D plane : complex number

$$z = x + iy = \exp(\rho + i\theta)$$

where

$$\exp(\rho + i\theta) = \exp \rho (\cos \theta + i \sin \theta)$$

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$$

> 3D space : quaternions

$$\mathbb{H}: q = (q_0, q_1, q_2, q_3) \to q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} = (\dot{q}, \dot{q})$$
$$pq = (\dot{p}, \dot{p})(\dot{q}, \dot{q}) = (\dot{p}\dot{q} - \dot{p} \cdot \dot{q}, \dot{p}\dot{q} + \dot{q}\dot{p} + \dot{p} \times \dot{q})$$

Conjugate
$$q^* = (q_0, -q_1, -q_2, -q_3) \rightarrow q_0 - q_1 \mathbf{i} - q_2 \mathbf{j} - q_3 \mathbf{k}$$

And
$$qq^* = q^*q = q_0^2 + q_1^2 + q_2^2 + q_3^2 := |q|^2$$

Thus, if
$$|q| > 0$$
, we have $q^{-1} = \frac{q^*}{|q|^2}$

From \mathbb{R}^3 to $\mathbb{H}: \vec{x} = (x_1, x_2, x_3) \to x = (0, \vec{x}) = 0 + x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}$

Rotation around the axis $\vec{u}=(u_1,u_2,u_3), ||\vec{u}||=1$

$$q = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right) = \cos\frac{\theta}{2} + \sin\frac{\theta}{2}(u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k})$$

$$q^* = \left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{u}\right), \ qq^* = 1 \to q^{-1} = q^*$$

$$y = qxq^* = 0 + y_1i + y_2j + y_3k \rightarrow \vec{y} = (y_1, y_2, y_3)$$

Scale :
$$p = cq$$
, $c \in \mathbb{R} \Longrightarrow y' = p^*xp = c^2y$

$$\left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right)(0, \lambda\vec{u})\left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{u}\right)
= \left(-\sin\frac{\theta}{2}\lambda, \cos\frac{\theta}{2}\lambda\vec{u}\right)\left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{u}\right)
= \left(-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\lambda + \sin\frac{\theta}{2}\cos\frac{\theta}{2}\lambda, \cos^2\frac{\theta}{2}\lambda\vec{u} + \sin^2\frac{\theta}{2}\lambda\vec{u}\right)
= (0, \vec{u})$$

For any
$$\vec{u} \cdot \vec{v} = 0$$

$$\left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right)(0, \vec{v})\left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{u}\right)$$

$$= \left(0, \cos\frac{\theta}{2}\vec{v} + \sin\frac{\theta}{2}\vec{u} \times \vec{v}\right)\left(\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{u}\right)$$

$$= \left(0, \cos^2\frac{\theta}{2}\vec{v} + \cos\frac{\theta}{2}\sin\frac{\theta}{2}\vec{u} \times \vec{v} - \cos\frac{\theta}{2}\sin\frac{\theta}{2}\vec{v} \times \vec{u} - \sin^2\frac{\theta}{2}\vec{u} \times \vec{v} \times \vec{u}\right) = (0, \cos\theta\vec{v} + \sin\theta\vec{u} \times \vec{v})$$

Euler's identity

Let unit quaternion
$$p = (\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}), q = (\cos\frac{\phi}{2}, \sin\frac{\phi}{2}\vec{u})$$

 $pq = (\dot{p}\dot{q} - \vec{p} \cdot \vec{q}, \dot{p}\vec{q} + \dot{q}\vec{p} + \vec{p} \times \vec{q}) = (\cos\frac{\theta + \phi}{2}, \sin\frac{\theta + \phi}{2}\vec{u})$

Euler's identity

$$\exp\left(\vec{u}\frac{\theta}{2}\right) = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right) \Longrightarrow \log\left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right) = \vec{u}\frac{\theta}{2}$$

We have
$$\exp\left(\vec{u}\frac{\theta}{2}\right)^t = \exp\left(\vec{u}t\frac{\theta}{2}\right)$$

Blend of quaternion

Two unit quaternion p, q

- Quaternion Linear Blending $QLB(t|p,q) = \frac{(1-t)p+tq}{\|(1-t)p+tq\|}$
- > Spherical Linear Interpolation $ScLERP(t|p,q) = p(p^*q)^t$

Let
$$\sigma = p^*q = \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{u}\right) = \exp(\frac{\theta}{2}\vec{u})$$
,

$$QLB(t|p,q) = p \frac{(1-t) + tp^*q}{\|(1-t)p + tq\|} = p \frac{((1-t) + t\cos\frac{\theta}{2}, t\sin\frac{\theta}{2}\vec{u})}{\|(1-t)p + tq\|}$$

$$ScLERP(t|p,q) = p(p^*q)^t = p\exp(t\frac{\theta}{2}\vec{u}) = p(\cos\frac{t\theta}{2},\sin\frac{t\theta}{2}\vec{u})$$

Rotate and translate

- > For example, screw motion
 - Rotation about s_0 by $\frac{\theta_0}{2}$
 - Translation along s_0 with $\frac{\theta_\epsilon}{2}$

 s_0 need not pass through origin

Dual quaternion (Clifford algebra)

- > Dual quaternion : $\sigma=p+\epsilon q$, where ϵ commute with \pmb{i} , \pmb{j} , \pmb{k} and $\epsilon^2=0$
 - $\sigma_1 + \sigma_2 = (p_1 + p_2) + \epsilon(q_1 + q_2)$
 - $\sigma_1 \otimes \sigma_2 = p_1 p_2 + \epsilon (p_1 q_2 + p_2 q_1)$
- \rightarrow A dual number with $p \neq 0$ has a inverse

$$\sigma^{-1} = p^{-1}(1 - \epsilon q p^{-1})$$

Dual quaternion conjugates

$$\sigma' = p - \epsilon q \Longrightarrow \sigma \otimes \sigma' = (p + \epsilon q)(p - \epsilon q) = pp + \epsilon (qp - pq)$$

$$\sigma'' = p'' + \epsilon q'' \Longrightarrow \sigma \otimes \sigma'' = (p + \epsilon q)(p'' + \epsilon q'') = pp'' + \epsilon (qp'' + pq'')$$

$$\sigma'' = p'' - \epsilon q'' \Longrightarrow \sigma \otimes \sigma'' = (p + \epsilon q)(p'' - \epsilon q'') = pp'' + \epsilon (qp'' - pq'')$$

We have $(\sigma_1 \otimes \sigma_2)^{\cdot} = \sigma_1^{\cdot} \otimes \sigma_2^{\cdot}$, $(\sigma_1 \otimes \sigma_2)^* = \sigma_2^* \otimes \sigma_1^*$, $(\sigma_1 \otimes \sigma_2)^{\circ} = \sigma_2^{\circ} \otimes \sigma_1^{\circ}$

Unit dual quaternion

 $Doll : \sigma \otimes \sigma^* = 1$

$$\begin{cases} pp^* = 1 \\ qp^* + pq^* = 0 \end{cases} \Rightarrow \begin{cases} p_0^2 + p_1^2 + p_2^2 + p_3^2 = 1 \\ p_0q_0 + p_1q_1 + p_2q_2 + p_3q_3 = 0 \end{cases}$$

Degrees of freedom (DOFs) – six : rotation + translation

Rotation quaternion r and translation quaternion $t=(0,\vec{t})$

$$\sigma = r + \epsilon \frac{1}{2} tr \Longrightarrow \sigma \otimes \sigma^* = 1$$

Unit dual quaternion

For vector \vec{v} , corresponding dual quaternion $1 + \epsilon(0, \vec{v}) = 1 + \epsilon v$

$$\sigma \otimes (1 + \epsilon v) \otimes \sigma^{\circ} = \left(r + \epsilon \frac{1}{2} tr\right) \otimes (1 + \epsilon v) \otimes \left(r^* - \epsilon \frac{1}{2} r^* t^*\right)$$

$$= \left(r + \epsilon \left(rv + \frac{1}{2} tr\right)\right) \otimes \left(r^* - \epsilon \frac{1}{2} r^* t^*\right)$$

$$= rr^* + \epsilon \left(rvr^* + \frac{1}{2} trr^* - \frac{1}{2} rr^* t^*\right) = 1 + \epsilon (rvr^* + t)$$

Chasles' theorem.

Any rigid displacement is equivalent to a rotation about some line, called the screw axis, followed by a translation in the direction of the line.

Parameter:

$$d = \vec{t} \cdot \vec{l}, \qquad \vec{m} = \vec{p} \times \vec{l}$$

From $\sigma = p + \epsilon q$, we have

$$p = (\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{l})$$

$$d = \vec{t} \cdot \vec{l} = \operatorname{Im}(2qp^*) \cdot \vec{l}$$

For moment m,

$$\vec{m} = \frac{1}{2} \left(\vec{t} \times \vec{l} + \vec{l} \times (\vec{t} \times \vec{l}) \cot \frac{\theta}{2} \right)$$
$$= \frac{1}{2} \left(\vec{t} \times \vec{l} + (\vec{t} - d\vec{l}) \cot \frac{\theta}{2} \right)$$

$$\vec{m} = \frac{1}{2} \left(\vec{t} \times \vec{l} + \left(\vec{t} - d\vec{l} \right) \cot \frac{\theta}{2} \right)$$
Multiply $\sin \frac{\theta}{2}$,
$$\vec{m} \sin \frac{\theta}{2} + \vec{l} \frac{d}{2} \cos \frac{\theta}{2}$$

$$= \frac{1}{2} \left(\vec{t} \times \vec{l} \sin \frac{\theta}{2} + \vec{t} \cos \frac{\theta}{2} \right)$$

$$\frac{1}{2}tr = \frac{1}{2}(0,\vec{t})\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{l}\right)$$

$$= \frac{1}{2}\left(-\vec{t}\cdot\vec{l}\sin\frac{\theta}{2},\vec{t}\cos\frac{\theta}{2} + \vec{t}\times\vec{l}\sin\frac{\theta}{2}\right)$$

$$= \left(-\frac{d}{2}\sin\frac{\theta}{2},\vec{m}\sin\frac{\theta}{2} + \vec{l}\frac{d}{2}\cos\frac{\theta}{2}\right)$$

$$\sigma = r + \epsilon \frac{1}{2} tr$$

$$= \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{l}\right) + \epsilon \left(-\frac{d}{2} \sin \frac{\theta}{2}, \vec{m} \sin \frac{\theta}{2} + \vec{l} \frac{d}{2} \cos \frac{\theta}{2}\right)$$

$$= \left(\cos \frac{\theta}{2} - \epsilon \frac{d}{2} \sin \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{l} + \epsilon (\vec{m} \sin \frac{\theta}{2} + \vec{l} \frac{d}{2} \cos \frac{\theta}{2})\right)$$

$$= \left(\cos \frac{\theta + \epsilon d}{2}, \sin \frac{\theta + \epsilon d}{2} (\vec{l} + \epsilon \vec{m})\right)$$

$$= \left(\cos \frac{\theta + \epsilon d}{2}, \sin \frac{\theta + \epsilon d}{2} (\vec{l} + \epsilon \vec{m})\right)$$

$$= \left(-\frac{d}{2} \sin \frac{\theta}{2}, \vec{m} \sin \frac{\theta}{2} + \vec{l} \frac{d}{2} \cos \frac{\theta}{2}\right)$$
By defining

$$\begin{cases} \cos\frac{\theta + \epsilon d}{2} = \cos\frac{\theta}{2} - \epsilon\frac{d}{2}\sin\frac{\theta}{2} \\ \sin\frac{\theta + \epsilon d}{2} = \sin\frac{\theta}{2} + \epsilon\frac{d}{2}\cos\frac{\theta}{2} \end{cases}$$

$$\frac{1}{2}tr = \frac{1}{2}(0,\vec{t})\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{l}\right)$$

$$= \frac{1}{2}\left(-\vec{t}\cdot\vec{l}\sin\frac{\theta}{2},\vec{t}\cos\frac{\theta}{2} + \vec{t}\times\vec{l}\sin\frac{\theta}{2}\right)$$

$$= \left(-\frac{d}{2}\sin\frac{\theta}{2},\vec{m}\sin\frac{\theta}{2} + \vec{l}\frac{d}{2}\cos\frac{\theta}{2}\right)$$

$$\sigma = r + \epsilon \frac{1}{2} tr$$

$$= \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{l}\right) + \epsilon \left(-\frac{d}{2} \sin \frac{\theta}{2}, \vec{m} \sin \frac{\theta}{2} + \vec{l} \frac{d}{2} \cos \frac{\theta}{2}\right) \quad \text{Let } \begin{cases} \theta' = \theta + \epsilon d \\ \vec{l}' = \vec{l} + \epsilon \vec{m}' \end{cases}$$

$$= \left(\cos \frac{\theta}{2} - \epsilon \frac{d}{2} \sin \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{l} + \epsilon (\vec{m} \sin \frac{\theta}{2} + \vec{l} \frac{d}{2} \cos \frac{\theta}{2})\right) \quad \sigma = \left(\cos \frac{\theta'}{2}, \vec{l}' + \epsilon \vec{m}\right) \sin \frac{\theta + \epsilon d}{2}$$
By defining
$$\exp \left(\vec{l}' \frac{\theta'}{2}\right)$$

$$\begin{cases} \cos\frac{\theta + \epsilon d}{2} = \cos\frac{\theta}{2} - \epsilon\frac{d}{2}\sin\frac{\theta}{2} \\ \sin\frac{\theta + \epsilon d}{2} = \sin\frac{\theta}{2} + \epsilon\frac{d}{2}\cos\frac{\theta}{2} \end{cases}$$

et
$$\begin{cases} \theta' = \theta + \epsilon d \\ \vec{l}' = \vec{l} + \epsilon \vec{m}' \end{cases}$$

$$\sigma = \left(\cos \frac{\theta'}{2}, \vec{l}' \sin \frac{\theta'}{2} \right) = \exp(\vec{l}' \frac{\theta'}{2})$$

$$\exp\left(\vec{l}' \frac{\theta'}{2} \right)^{t} = \exp(\vec{l}' \frac{t\theta'}{2})$$

Blend of dual quaternion

Two unit dual quaternion σ_1 , σ_2

- Parameter Point Property Quaternion Linear Blending $QLB(t|\sigma_1,\sigma_2) = \frac{(1-t)\sigma_1 + t\sigma_2}{\|(1-t)\sigma_1 + t\sigma_2\|}$
- > Spherical Linear Interpolation $ScLERP(t|\sigma_1,\sigma_2)=\sigma_1\otimes(\sigma_1^*\otimes\sigma_2)^t$

Let
$$\sigma_1^* \otimes \sigma_2 = \exp(\vec{l} \frac{\theta}{2})$$

$$QLB(t|\sigma_1,\sigma_2) = \frac{(1-t)\sigma_1 + t\sigma_2}{\|(1-t)\sigma_1 + t\sigma_2\|} = \sigma_1 \otimes \frac{((1-t) + t\cos\frac{\theta}{2}, t\sin\frac{\theta}{2}\vec{l})}{\|(1-t)\sigma_1 + t\sigma_2\|}$$

$$ScLERP(t|p,q) = p(p^*q)^t = p\exp(\vec{l}t\frac{\theta}{2}) = p(\cos\frac{t\theta}{2},\vec{l}\sin\frac{t\theta}{2})$$

Cage-based deformation

- Cage = crude version of the input shape
- Polytope (not a lattice)

Cage-based deformation

Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$x = \sum_{i=1}^k w_i(x) p_i$$

Cage-based deformation

Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$x = \sum_{i=1}^k w_i(x) p_i$$

$$x' = \sum_{i=1}^k w_i(x) p_i'$$

Generalized barycentric coordinates

> Lagrange property: $w_i(p_j) = \delta_{ij}$

Partition of unity: $\forall x, \sum_{i=1}^k w_i(x) = 1$

Reproduction: $\forall x, \sum_{i=1}^k w_i(x) p_i = x$

Generalized barycentric coordinates

- Mean-value coordinates
- > Harmonic coordinates
- Green coordinates
- Bounded biharmonic weights
- Local barycentric coordinates

Mean-value coordinates

- Mean-value coordinates [Floater 2003, Ju et al. 2005]
 - Generalization of barycentric coordinates
 - Closed-form solution for $w_i(x)$

Mean-value coordinates

Mean-value coordinates

$$\phi_i(v_0) = \frac{\tan \frac{\alpha_{i-1}}{2} + \tan \frac{\alpha_i}{2}}{\|v_i - v_0\|}$$

$$w_{i}(v_{0}) = \frac{\phi_{i}(v_{0})}{\sum_{i=1}^{k} \phi_{i}(v_{0})}$$

Concave polygon

Yellow indicates positive values, green indicates negative values.

Results

Harmonic coordinates

- Harmonic coordinates [Joshi et al. 2007]
 - \triangleright Harmonic functions $h_i(x)$ for each cage vertex p_i
 - Solve $\Delta h = 0$

Subject to h_i linear on the boundary s.t. $h_i(p_j) = \delta_{ij}$

Numerical solution

- Allocate a regular grid of cells that is large enough to enclose the cage
- Volumetric Laplace equation
 - > Laplacian smooth: explicit iteration until convergence
 - > Hierarchical finite difference solver

Results

Green coordinates

- Green coordinates [Lipman et al. 2008]
- Observation: previous vertex-based basis functions always lead to affine

invariance!

$$x' = \sum_{i=1}^k w_i(x) p_i'$$

Green coordinates

- Green coordinates [Lipman et al. 2008]
- Correction: Make the coordinates depend on the cage faces as well

$$x' = \sum_{i=1}^k w_i(x) p_i'$$

$$x' = \sum_{i=1}^{k} w_i(x) p_i' + \sum_{i=1}^{k} \phi_i(x) n_i'$$

Green coordinates

- Closed-form solution
 - · Conformal in 2D
 - quasi-conformal in 3D
- Hard to control details of embedded surface

Bounded biharmonic weights

$$\underset{w_j, \ j=1,...,m}{\operatorname{arg\,min}} \sum_{j=1}^{m} \frac{1}{2} \int_{\Omega} \|\Delta w_j\|^2 dV \tag{2}$$

subject to:
$$w_j|_{H_k} = \delta_{jk}$$
 (3)

$$w_j|_F$$
 is linear $\forall F \in \mathcal{F}_{\mathcal{C}}$ (4)

$$\sum_{j=1}^{m} w_j(\mathbf{p}) = 1 \qquad \forall \mathbf{p} \in \Omega \qquad (5)$$

$$0 \le w_j(\mathbf{p}) \le 1, \quad j = 1, \dots, m, \quad \forall \mathbf{p} \in \Omega, \quad (6)$$

Properties

- > Smoothness ($\Delta^2 w_j = 0$) C^1 at the handles and C^∞ everywhere else
- Non-negativity
- > Shape-awareness: bi-Laplacian operator
- Partition of unity
- Locality and sparsity: just observation
- No local maxima: experimentally observed

Properties

Figure 4: Weights like unconstrained biharmonic functions that have negative weights (left) and extraneous local maxima (right) lead to undesirable and unintuitive behavior. Notice the shrinking of the head on the right.

Local barycentric coordinates

- A local change in the value at a single control point will create a global change by propagation into the whole domain
- Global nature
 - The first one is the lack of locality and control over a deformation.
 - The second drawback is scalability. Most practical applications store barycentric coordinates
 using one scalar value per control point for every vertex of the target domain.

Formulation

$$\min_{w_1, \dots, w_n} \sum_{i=1}^n \int_{\Omega} |\nabla w_i|$$

s.t.
$$\sum_{i=1}^{n} w_i(\mathbf{x}) \mathbf{c}_i = \mathbf{x}, \sum_{i=1}^{n} w_i = 1, w_i \ge 0, \forall \mathbf{x} \in \Omega,$$

$$w_i(\mathbf{c}_j) = \delta_{ij} \ \forall i, j,$$

 w_i is linear on cage edges and faces $\forall i$.

Locality

