

GENERAL INFORMATION

This low-cost MOS integrated circuit series is designed specifically for electronic organ applications.

FUNCTIONS AND CHARACTERISTICS ($V_s = -10 \text{ V}, T_A = 25^{\circ}\text{C}$)

FUNCTION	TYPE CASE 93 0 to +75°C	Output Loading Factor Each Output	Output Voltage Swing Volts	Operating Frequency kHz	Total Power Dissipation mW typ/pkg
Dual Keyer Gate with Snub Inputs	MC1120	5	12	0 to 100	10
Frequency Divider (Four Stage)	MC1124	5	10	0 to 100	190

MAXIMUM RATINGS

RATING	VALUE	Vdc	
Power Supply Voltage	-40 to +0.3		
Input Voltage — MC1120P MC1124P	-40 to +0.3 -30 to +0.3	Vdc	
Operating Temperature Range	0 to +75	°C	
Storage Temperature Range	—55 to +125	°C	

DUAL KEYER GATE With Snub Inputs

MC1120P

A monolithic circuit consisting of two gates with key and snub inputs.

- Noise Immunity = 1.0 Volt
- Minimum Fan-Out = 5
- Temperature Range = 0 to +75°C

CIRCUIT SCHEMATIC

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Source Voltage	v _s	-40 to +0.3	Vdc	
Input, Snub, Key Voltages	v _{in} , v _{SN} , v _K	-40 to +0.3	Vdc	
Operating Temperature Range	^T A	. 0 to +75	°C	
Storage Temperature Range	Tstg	-55 to +125	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25 °C unless otherwise noted)

						Test Conditions Vdc ± 1%					
		Pin Under				V _{1L} -2.5	V _{IH} -15	V _K -20	V _{max} -40	∨ _S -10	
Characteristic	Symbol	Test	Min	Max	Unit	Appli	Applied to pins listed below:		N:	Ground	
Source Supply Drain Current	Is	. 11		1.0	mAdc	-	9, 2	6, 13	-	11	7, 8, 14
Input Current	Iin	2 9	-	100 100	μAdc μAdc		-	-	2 9	-	6, 7 7, 13
Snub Current	I _{SN}	8 14	-	100 100	μAdc μAdc	-	-	-	8 14	-	6,7 7,13
Key Current	I _K	6 13	-	100 100	μAdc μAdc		-	-	5 13	1.7	2, 7, 8 7, 9, 14
Key Current (Snub On)	I _{K(on)}	6 13	70 70	-	μAdc μAdc	-	8 14	6 13	-	1 1	2,7 7,9
Key Current (Snub Off)	I _{K(off)}	6. 13	-	1.0 1.0	μAdc μAdc	8 14	-	6 13	-	-	2,7 7,9
Logical "1" Output Voltage	V _{OL}	5 12	-	-2.0 -2.0	Vdc Vdc	-	-	2, 6 9, 13		11 11	7
Logical "0" Output Voltage	V _{ОН}	5 12	-9.0 -9.0		Vdc Vdc	-		6 13	-	11 11	2,7 7,9

TYPICAL APPLICATION

Closing of the organ key "enables" the KEYER GATE, permitting subsequent pulses applied to the signal input to pass through the gate, and simultaneously charges capacitor C. When the key is released the stored charge maintains the gate conduction until charge is removed. The SNUB line provides a means of varying the total resistance in parallel with the capacitor by controlling the series impedance of the MOS transistor. Therefore the length of time that the note is sustained after the key is released depends upon the snub voltage.

FREQUENCY DIVIDER

MOS MC1120P series

MC1124P

A monolithic circuit consisting of four flip-flops with single rail inputs and $\overline{\mathbf{Q}}$ outputs.

- Toggle Frequency = DC to 500 kHz
- Noise Immunity = 1.0 Volt
- Minimum Fan-Out = 5
- Temperature Range = 0 to +75°C

CASE 93

(TO-116)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain Voltage	v _{DD}	-40 to +0.3	Vdc
Trigger Input Voltage	v _{in}	-30 to +0.3	Vdc
Operating Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS

Characteristic		Pin Under	Min	Max		T			
	Symbol				. Unit	VTin	VTin VDD VS		1
		Test				*	-30 ± 1 Vdc	-10 ±0. 5 Vdc	Ground
				!		Ap	plied to pins li		
Drain Supply Drain Current	I _{DD}	11	-	2.5	mAdc	-	11	12	1,4,7,8,13
Source Supply Drain Current	I _{DS}	12	-	17	mAdc	_	1,2,5,9,11	12	4,7,8,13
Source Supply Leakage Current	I _{SS}	12	-	5. 0	μAdc	-	-	12	1,2,3,4,5 6,7,8,9,10 11, 13, 14
"Q" Logical "0" Output Voltage	V _{ОН}	3 6 10 14	-9.0 -9.0 -9.0 -9.0	-	Vdc	1 4 8 13	11 11 11 11	12 12 12 12	7 7 7
"Q" Logical "1" Output Voltage	V _{OL}	3 6 10 14	-	-2.5 -2.5 -2.5 -2.5	Vdc	1 4 8 13	11 11 11 11	12 12 12 12 12	7 7 7 7
"Q" Logical "0" Output Voltage	V _{OH}	1 2 5 9	-10 -10 -10 -10	- - -	Vdc	13 1 4 8	11 11 11 11	12 12 12 12	7 7 7 7
"Q" Logical "1" Output Voltage	v _{OL}	1 2 5 9	-	-2.5 -2.5 -2.5 -2.5	Vdc	13 1 4 8	11 11 11 11	12 12 12 12	7 7 7 7
Toggle Frequency	$f_{\mathbf{Tog}}$		100	-	kHz		See Test I	at .	

 $^{{}^*}VT_{in}$ — Preset to desired output level by applying -20 Vdc to input then open.

TOGGLE FREQUENCY TEST DIAGRAMS AND WAVEFORMS

