Übung 05

Ressourceneinsatzplanung & Losgrößen

Aufgabe 1 - Montageplanung

Die Fahrzeugfertigung Zwickau GmbH ist ein traditionsreicher Standort im Automobilbau und hat sich auf die Produktion von Komponenten und die Endmontage von Elektrofahrzeugen spezialisiert. Für die Einführung einer neuen Montagelinie zur Fertigung von Batteriemodulen für das Modell "Saxon-E" müssen die einzelnen Arbeitsschritte genau geplant werden. Das Projektmanagement-Team hat die folgende Liste von Arbeitsgängen (AG), deren Dauer in Stunden (Std.) und die direkten Vorgänger identifiziert:

Arbeits-	Beschreibung	Dauer	Direkte
gang		(Std.)	Vorgänger
Α	Materialbereitstellung Rahmen	3	-
В	Vormontage Zellhalterungen	5	А
С	Einbau Zellhalterungen in Rahmen	4	В
D	Materialbereitstellung Elektronik	2	-
Е	Vormontage Steuerungseinheit	6	D
F	Integration Steuerungseinheit	3	C, E
G	Qualitätsprüfung & Endverschluss	2	F

Der Projektstart (Beginn von A und D) ist zum Zeitpunkt O.

Ihre Aufgaben:

- a) Erstellen Sie ein Netzplan-Diagramm für dieses Projekt.
- b) Führen Sie eine Vorwärtsrechnung durch, um die frühestmöglichen Anfangszeitpunkte (FAZ) und Endzeitpunkte (FEZ) für jeden Arbeitsgang zu bestimmen.
- c) Führen Sie eine Rückwärtsrechnung durch, um die spätestzulässigen Anfangszeitpunkte (SAZ) und Endzeitpunkte (SEZ) für jeden Arbeitsgang zu bestimmen.
- d) Berechnen Sie die Gesamtpufferzeit (GP) für jeden Arbeitsgang.
- e) Identifizieren Sie den kritischen Weg im Projekt.
- f) Was könnte passieren, wenn einige Arbeitsschritte Kapazitätsbeschränkungen unterliegen?

Caution

Lösungshinweise:

- b) Vorwärtsrechnung:
 - A: FAZ=0, FEZ=3
 - D: FAZ=0, FEZ=2
 - B: FAZ=max(FEZ(A))=3, FEZ=3+5=8
 - E: FAZ=max(FEZ(D))=2, FEZ=2+6=8
 - C: FAZ=max(FEZ(B))=8, FEZ=8+4=12
 - F: FAZ=max(FEZ(C)=12, FEZ(E)=8)=12, FEZ=12+3=15
 - G: FAZ=max(FEZ(F))=15, FEZ=15+2=17 Die minimale Projektdauer beträgt 17 Stunden.
- c) Rückwärtsrechnung (Annahme SEZ(G) = FEZ(G) = 17, um kritischen Pfad zu finden):
 - G: SEZ=17. SAZ=17-2=15
 - F: SEZ=min(SAZ(G))=15, SAZ=15-3=12
 - C: SEZ=min(SAZ(F))=12, SAZ=12-4=8
 - E: SEZ=min(SAZ(F))=12, SAZ=12-6=6
 - B: SEZ=min(SAZ(C))=8, SAZ=8-5=3
 - A: SEZ=min(SAZ(B))=3, SAZ=3-3=0
 - D: SEZ=min(SAZ(E))=6, SAZ=6-2=4
- d) Gesamtpuffer (GP = SAZ FAZ):
 - A: GP = 0 0 = 0
 - B: GP = 3 3 = 0
 - C: GP = 8 8 = 0
 - D: GP = 4 0 = 4
 - E: GP = 6 2 = 4
 - F: GP = 12 12 = 0
 - G: GP = 15 15 = 0
- e) Kritischer Weg (GP=0):

 $A \rightarrow B \rightarrow C \rightarrow F \rightarrow G$. Die Dauer dieses Pfades ist 3+5+4+3+2 = 17 Stunden.

f) Kapazitätsbeschränkungen

Die Produktion könnte nicht mehr möglich sein.

Aufgabe 2: Kapazitätsorientierte Losgrößenplanung (CLSP)

Ein Hersteller von Spezialgetrieben fertigt auf einer CNC-Maschine zwei verschiedene Getriebetypen: Typ A und Typ B. Pro Woche muss die Maschine für jedes zu produzierende Produkt neu gerüstet werden.

Gegebene Daten:

• Planungshorizont: 4 Wochen

- Wöchentliche Kapazität: 60 Stunden
- Anfangslagerbestand: O für beide Typen
- Endlagerbestand: O für beide Typen (alle Bedarfe müssen erfüllt sein)

Produktdaten:

Parameter	Getriebe Typ A	Getriebe Typ B
Rüstkosten (s)	200 GE	150 GE
Lagerkosten (h)	5 GE/Stück/Woche	7 GE/Stück/Woche
Bearbeitungszeit (tb)	1,0 h/Stück	1,2 h/Stück
Rüstzeit (tr)	10 h	8 h

Nachfrage:

Woche (t)	1	2	3	4
Bedarf Typ A	20	30	0	25
Bedarf Typ B	0	0	35	20

Vorgegebener Produktionsplan:

Um das Konzept zu verstehen, analysieren Sie den folgenden, manuell erstellten Produktionsplan:

- Woche 1: Produziere $50 \times Typ A$
- Woche 2: Keine Produktion
- Woche 3: Produziere 55 × Typ B
- Woche 4: Produziere 25 × Typ A
- a) Berechnen Sie die gesamten Rüst- und Lagerkosten für den vorgegebenen Plan.
- b) Überprüfen Sie für jede Woche, ob die Produktions- und Rüstzeiten die verfügbare Kapazität von 60 Stunden einhalten.
- c) Erläutern Sie, warum die separate Anwendung des Wagner-Whitin-Algorithmus für jedes Produkt hier wahrscheinlich zu einem unzulässigen oder suboptimalen Gesamtplan führen würde.

O Caution

Lösungshinweise:

a) Berechnung der Rüst- und Lagerkosten:

\	Woche	Produk- tion A	Produk- tion B	Be- darf A		Lagerbestand A (Ende)	Lagerbestand B (Ende)
•	1	50	0	20	0	30	0
	2	0	0	30	0	0	0
	3	0	55	0	35	0	20
	4	25	0	25	20	0	0

Rüstkosten:

- Woche 1: Typ A wird produziert → Rüstkosten = 200 GE
- Woche 2: Keine Produktion → Rüstkosten = 0 GE
- Woche 3: Typ B wird produziert → Rüstkosten = 150 GE
- Woche 4: Typ A wird produziert → Rüstkosten = 200 GE

Gesamte Rüstkosten: 200 + 0 + 150 + 200 = 550 GE

Lagerkosten:

- Woche 1: 30 Stück A × 5 GE/Stück/Woche = 150 GE
- Woche 2: 0 Stück A × 5 GE/Stück/Woche = 0 GE
- Woche 3: 0 Stück A × 5 GE/Stück/Woche + 20 Stück B × 7 GE/Stück/Woche = 140 GE
- Woche 4: 0 Stück × 5 GE/Stück/Woche + 0 Stück B × 7 GE/Stück/Woche = 0 GE

Gesamte Lagerkosten: 150 + 0 + 140 + 0 = 290 GE

Gesamtkosten: 550 + 290 = 840 GE

b) Kapazitätsprüfung:

Für jede Woche prüfen wir: Rüstzeit + Bearbeitungszeit ≤ 60 Stunden

Woche 1 (Typ A):

• Rüstzeit: 10 h

• Bearbeitungszeit: 50 Stück \times 1,0 h/Stück = 50 h

Gesamtzeit: 10 + 50 = 60 h ≤ 60 h ✓ (zulässig)

Woche 2:

Keine Produktion: 0 h ≤ 60 h ✓ (zulässig)

Woche 3 (Typ B):

Rüstzeit: 8 h

Mginel July p. Jegigskielediggroßen en einstelle großen woalle viele kapæriaten, in Stiendemänserderitken wirtettsbeschränkungen zu berücksichtigen. Dies führt zu Wegnert Wegner-Whitin separat für TypiA und Typ B anwenden würden: einem gemischt-ganzahligen Optimierungsprochem (MIP), das deutlich komplexer Mogliche Angerischen wurde versuchen, die Anzahl der Rüstvorgange zu minimieren produzieren (z.B. 20 Stück B in Woche 2 und 35 Stück B in Woche 3).

c) SULSP vs. CLSP: