

High-Performance Practice Processes

Author: Guillaume Roels

Management Science, 2020

Received: May 17, 2017

Revised: July 30, 2018; December 12, 2018

Accepted: December 19, 2018

Accepted by Serguei Netessine, Operations Management.

Qiuwei Guo

Guillaume Roels

■ Education:

- Catholic University of Louvain, Belgium
 - MS degree in Management Engineering
- MIT
 - PhD in Operations Research

■ Work:

- Timken Chaired Professor at INSEAD
- Research Director of the INSEAD-Wharton Alliance
- Department Editor for M&SOM and Service Science

■ Research Areas:

- Supply Chain Management
- Service Management
- Entrepreneurial Operations Management

■ Reward

• One of the Poets & Quants 2015 Best 40 Business School Professors under 40.

Guillaume Roels

■ Publications:

• Before 2009: **Supply Chain Management**

- 20 papers in UTD journal
 - 7 Management Science
 - 3 Operations Research
 - 6 Manufacturing and Service Operations Management
 - 2 Service Science
 - 2 Production and Operations Management

• After 2009: **Service Management**

Journal Article

Roels G., Su X. (2013). Optimal Design of Social Comparison Effects: Setting Reference Groups and Reference Points . *Management Science*, 60(3), pp606-627.

Journal Article

Martinez-de-Albeniz V., Roels G. (2011). Competing for Shelf Space. Production and Operations Management, 20(1), pp32-46.

Journal Article

Roels G., Karmarkar U. S., Carr S. (2010). Contracting for Collaborative Services . *Management Science*, 56(5), pp849-863.

Insights

- Similar to our research.
 - Research problem;
 - Utility and disutility.
- Generalize the **research problem** to a wider area.
- Introduce the **model construction** process in detail.
- Fit the model with real **training program data**.

Practice Process Optimization

- Scenarios: "Practice makes better"
 - A runner training for a marathon;
 - A machine operator learning to operate a new machine;
 - A student preparing for a GMAT test.
- The **type** and **timing** of practice matter.

一周训练计划

适用于(大基数人群)

大基数人群一周4练训练计划						
	周一 全身训练	周三 推类+心肺	周五 拉类+心肺	周天心肺		
热身	全身热身5min 动态伸展	全身热身5min 动态伸展	全身热身5min 动态伸展	全身热身5min 动态伸展		
训练	最伟大伸展 (1组)	史密斯卧推 (12个X6组)	壶铃硬拉 (15个X4组)	VIPR左右移动 (20sX4组)		
	平板支撑 (30sX4组)	跪姿俯卧撑 (12个X6组)	高位下拉 (12个X6组)	vipr蹲推 (20sX4组)		
	TRX深蹲 (10个X4组)	VIPR推肩 (12个X4组)	TRX划船 (15个X4组)	战术绳 (30sX5组)		
	登山走 (5min)	折返跑	药球反应接球	波速抛传球 (20次X4组)		
	臀桥 (15个X6组)	平板支撑 (30sX4组)	药球击地 (12个X6组)	深蹲开合跳 (15个X4组)		
	山羊挺身 (15个X4组)	战术绳 (30-60s,休息等长时间 共10min)	壶铃摇摆 (15个X4组)	跪姿俯卧撑 (10个X3组)		
				波比跳 (15个X4组)		
拉伸	全身拉伸	全身拉伸	全身拉伸	全身拉伸		

考研周计划 时间: 2022年5月16日-5月23日 可控时间 法律硕士《考试分析》: 刑法第5~15章 (共150页) 阿课, 刑法第5-15课(共7.5小时) 7:30: 早餐 7:30-11:30: 学 (4h) 12.00。 午餐 13:30: 午休 13:30-17:00: 学习 (3.5h) 17:00-18:00: 個金 18:30: 晚餐 18:30-22:30: 学习 (4h) 23:30: 休息 英语文学:周二下午3-5点 英语翻译:周四上午10-12点 战略目标 1, 4月20日 晚上9:00 给家里打电话 1、4月23日下午 洗衣服 专业课: 125 分 锻炼;每天下午6-7点,跑步 综合课: 125 分 英语: 75分 周六下午到晚上; 连街、看美剧、出去玩 政治: 75分 专业课进度慢,下周安排5个小时学习时间

Research Problem:

- What is the **optimal practice process** to **maximize performance** on a given date?
 - Should the practice involve breaks? Should it be massed or distributed? Should it be pulsed?
 - Should there be a decrease in practice intensity before the final performance test?

Research Gap

Related area	Published research	Research content	Contribution	
Training for Endurance Sports	Ladany (1975); Zwols and Sierksma (2009)	 More focus on in-game strategies, drafting, and team scheduling; Static training models. 	Bringing a dynamic optimization	
Learning Newell and Simon (1972);Brown et al. (2014);Cepeda et al. (2006);		 "Power law of practice"; "Power law of forgetting"; There is limited guidance on the optimal amount of spacing or optimal intensity of each practice. 	perspective to training and learning.	
People-Centric Operations Management	erations (2009); Powell et al. • Fatigue and adaptation on employee productivity		Developing a novel process model for optimizing learning and performance, incorporating the effects of fatigue and adaptation.	

Fitness-Fatigue Model (Banister et al.,1975)

• $\mathbf{w} = (w_1, ..., w_T)$: intensities of the activity during time $T, w_t \ge 0$ (Decision variable).

• $P_t = P_0 + k_F F_t - k_G G_t$, k_F , $k_G > 0$.

$$F_t = \frac{\alpha}{\alpha} F_{t-1} + w_t$$

$$G_t = \beta G_{t-1} + w_t$$

 $\alpha, \beta \in (0,1)$: Memory decay rate.

F-F model

- Maximize $P_T(w)$? --Not realistic!
 - Unbounded solution
 - Threshold policy

Total 9

A Generalized Fitness-Fatigue Model

> Adaptation:

- Replace w_t with w_t/b_t .
- b_t : base level, $b_t = \epsilon \cdot h(w_{t-1}, b_{t-1})$
- h(w,b):
 - Geometric mean: $h(w, b) = w^{\theta} b^{1-\theta}$, (Faster adaptation to low-intensity, cognitive skills);
 - Maximum mean: $h(w, b) = \max\{w, b\}$, (Faster adaptation to high-intensity, motor skills);

Total 9

Nonlinearities:

- > Power functions
 - $F_t = \alpha F_{t-1} + (\frac{w_t}{b_t})^{\lambda}$, $\lambda < 1$ (Diminishing marginal returns)
 - $ightharpoonup G_t = \beta G_{t-1} + (\frac{w_t}{b_t})^{\mu}$, $\mu > 1$ (Increasing marginal costs)

A Generalized Fitness-Fatigue Model

> Additive and Multiplicative Impact of Practice.

•
$$F_t = F_{t-1}(\alpha + (\frac{w_t}{b_t})^{\lambda})$$

•
$$G_t = G_{t-1}(\beta + (\frac{w_t}{b_t})^{\mu})$$

•
$$P_t = P_0 + \gamma \frac{F_t}{G_t}, \ \gamma > 0$$

- Additive model: skill acquisition stage.
- Multiplicative model: skill retention stage.

Formulation

Additive model:

$$P_t = P_0 + k_F F_t - k_G G_t$$

$$F_t = \alpha F_{t-1} + (\frac{w_t}{b_t})^{\lambda}$$

$$G_t = \beta G_{t-1} + (\frac{w_t}{b_t})^{\mu}$$

Multiplicative model:

$$P_t = P_0 + \gamma \frac{F_t}{G_t} F_t$$

$$F_{t-1}(\alpha + (\frac{w_t}{b_t})^{\lambda})$$

$$G_t = G_{t-1}(\beta + (\frac{w_t}{b_t})^{\mu})$$

- $b_t = \epsilon \cdot h(w_{t-1}, b_{t-1})$
- $h(w,b) = w^{\theta}b^{1-\theta} \text{ or } h(w,b) = \max\{w,b\}$
- **4 Cases**: Additive or Multiplicative; Geometric mean or Maximum mean.

Total 9

5. Optimal Practice Process Profiles

Optimal Profiles

Table 1. Optimal Effort Profiles

		Performance model		
Final effort requirement	Adaptation mechanism	Additive (skill acquisition)	Multiplicative (skill retention)	
Low		Monotone	Constant	
High	Geometric (cognitive skills)	U-shaped (smooth)	Constant up to $T-1$ Pulsed	
	Maximum (continuous motor skills)	U-shaped (abrupt)	Pulsed	

Figure 7. Daniels's 18-Week Marathon Training Program and Fitted Multiplicative Model with Maximum Adaptation

Problem: What is the optimal practice process to maximize performance?

(b) Optimal Practice Process Profiles (a) Model I. Fitness-Fatigue Model Limitations: Unbounded solution and threshold policy II. Generalized Fitness-Fatigue Model Adaptation (2) **Nonlinearities** Additive and Multiplicative Impact of Practice (2) 4 Cases

- **I. Additive** Model (Skill Acquisition)
- **Low** Final Effort Requirement
- **High** Final Effort Requirement
 - Geometric Adaptation
 - Maximum Adaptation
 - **I. Multiplicative** Model (Skill Retention)
- **Low** Final Effort Requirement
- **High** Final Effort Requirement
 - Geometric Adaptation (Cognitive Tasks).
 - Maximum Adaptation (Continuous Motor Tasks)

Total 9

Thank you for listening!

Qiuwei Guo