CECS (2007)

Sun et al. [?] explained the model from CECS (2007), which describes the course of the carbonation depth $x_c(t)$ as follows:

$$x_c(t) = 3K_{CO_2}K_{kl}K_{kt}K_{ks}K_FT^{0,25}RH^{1,5}(1 - RH)\left(\frac{58}{f_{cuk}} - 0,76\right) * \sqrt{t}$$

 K_{CO_2} : CO₂ density factor: [-] $K_{CO_2} = \sqrt{\frac{c_{Co_2}}{0.03}}$

 c_{CO_2} : CO₂ density [%]

 K_{kl} : location factor: [-] $K_{kl} = 1,4$ for the corner of the component

 $K_{kl} = 1,0$ for other areas

 K_{kt} : curing factor: [-] $K_{kt} = 1,2$

 K_{ks} : stress factor: [-] $K_{ks} = 1,0$ for compression condition

 $K_{ks} = 1, 1$ for tension condition

 K_F : fly ash factor: [-] $K_F = 1,0+13,34*F^{3,3}$

F: fly ash content [weight ratio] T: annual temperature [°C] RH: annual relative humidity [-] f_{cuk} : charasteristic strength [MPa]