Curso: Engenharia de Computação

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Nível do Sistema Operacional

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Máquina de seis níveis

O que é um sistema operacional

- O conjunto de instruções do nível do S.O. é o conjunto completo de instruções disponíveis para os programadores de aplicação. Contém todas as instruções de nível ISA, bem como o conjunto de novas instruções que o sistema operacional adiciona.
- Essas novas instruções são denominadas **chamadas de sistema**.
- O nível do sistema operacional é sempre interpretado.

O que é um sistema operacional

- Contém todas as instruções de nível ISA, bem como o conjunto de novas instruções
- Chamadas de sistema
- O nível do sistema operacional é sempre interpretado

Chamadas de sistema

- Mecanismo de interrupção utilizado pelas aplicações para serem atendidos pelo sistema
- Geralmente é oferecida as aplicações pela biblioteca do sistema (system library): prepara os parâmetros, invoca a chamada e devolve os resultados
- O conjunto de chamadas de sistema define a API (Application Programming Interface)

Objetivos

- 1. Conveniência. Visa tornar o uso do computador mais conveniente.
- 2. Eficiência. Permite uma utilização mais eficiente dos recursos do sistema.

Atividades típicas

Atividades típicas do SO

- a. **Criação de programas**. Auxiliar o programador no desenvolvimento de programas. Fornece programas utilitários, os quais na verdade não são parte do sistema operacional, mas podem ser acessados por ele.
- b. **Execução de programas**. Executa várias tarefas na execução de programas, como carregar instruções e dados na memória, inicialização de arquivos e dispositivos de entrada e saída, entre outras.

Atividades típicas do SO

- c. Acesso aos dispositivos de entrada e saída. Encarrega-se do gerenciamento desses dispositivos, que possui um conjunto peculiar de instruções.
- d. Acesso controlado aos arquivos. Controla o formato dos arquivos no meio de armazenamento.

Atividades típicas do SO

- e. **Acesso ao sistema**. No caso de sistemas compartilhados ou públicos, controla o acesso ao sistema como um todo e acesso a recursos específicos. Fornece proteção contra uso não autorizado tanto para recursos quanto para dados de usuários. Além disso, resolve conflitos em caso de contenção de um recurso.
- f. **Deteccção e reação aos erros**. Reage e elimina os erros do sistema, tanto de software quanto de hardware.
- g. Monitoramento. Monitora parâmetros de desempenho.

Atividades típicas

- a. Criação de programas
- b. Execução de programas
- c. Acesso aos dispositivos de E/S
- d. Acesso controlado aos arquivos
- e. Acesso ao sistema
- f. Deteccção e reação aos erros
- g. Monitoramento

Elementos do sistema operacional

Núcleo (kernel)

Código de inicialização (boot code)

Drivers

Programas utilitários

Código de inicialização

- Reconhecer os dispositivos instalados, testá-los e configurá-los adequadamente para seu uso posterior.
- Carregar o núcleo do sistema operacional em memória e iniciar sua execução.

While entering setup, System Time BIOS auto detects the [14:28:46] System Date [Fri 07/24/2009] presence of IDE Legacy Diskette A devices. This displays [1.44M, 3.5 in.] Language the status of auto [English] detection of IDE ▶ Primary IDE Master devices. Primary IDE Slave : [PHILIPS DUD+/-RW D] ▶ Third IDE Master : [SAMSUNG HD300LJ] ▶ Third IDE Slave : [SAMSUNG SP2504C] Fourth IDE Master : [Not Detected] ▶ Fourth IDE Slave : [Not Detected] ▶ IDE Configuration Select Screen

Interface de configuração da BIOS

F10 Saue and Exit ESC Exit

Níveis de privilégio

- Núcleo
- Usuário

Áreas do sistema operacional

GESTÃO DE
PROCESSOS:
CRIAR, CARREGAR
CÓDIGO,
TERMINAR,
ESPERAR,
LER/MUDAR
ATRIBUTOS.

GESTÃO DA
MEMÓRIA:
ALOCAR/LIBERAR/
MODIFICAR ÁREAS
DE MEMÓRIA.

GESTÃO DE
ARQUIVOS: CRIAR,
REMOVER, ABRIR,
FECHAR, LER,
ESCREVER,
LER/MUDAR
ATRIBUTOS.

COMUNICAÇÃO:
CRIAR/DESTRUIR
CANAIS DE
COMUNICAÇÃO,
RECEBER/ENVIAR
DADOS.

GESTÃO DE
DISPOSITIVOS:
LER/MUDAR
CONFIGURAÇÕES,
LER/ESCREVER
DADOS.

GESTÃO DO SISTEMA:

LER/MUDAR DATA E

HORA,

DESLIGAR/SUSPENDER/
REINICIAR O SISTEMA.

Processos

Modelo de processo com cinco estados

Bloco de controle de processos do sistema operacional

Informação	Descrição	
Identificador	Cada processo tem um identificador distinto.	
Estado	Um dos cinco estados possíveis	
Contexto	Dados contidos nos regsitradores do processador. Dados do Contador de Programas do processador. Os dados são guardados pelo Sistema Operacional quando a execução do processo é suspensa.	
Estado de E/S	Dados sobre os requisites pendentes de E/S. Dispositivos alocados. Lista de arquivos alocados.	
Contabilidade	Quantidade de tempo do processador. Tempo total já usado pelo processo. Limites de tempo de execução. Contabilização de uso dos recursos.	

O escalonamento é a decisão do sistema operacional de acrescentar ou executar processos já disponíveis na memória.

Escalonamento de longo prazo

Escalonamento de médio prazo

Escalonamento de curto prazo

Pode ser a longo prazo, quando a decisão é a de acrescentar um novo processo ao conjunto de processos a serem executados pelo processador. O sistema operacional deve inicializar o processo para colocá-lo no estado de pronto.

 O escalonamento também pode ser a médio prazo, quando a decisão é de acrescentar um processo a um conjunto de processos que estão parcial ou completamente carregados na memória principal. Faz parte da função de troca de processos (swapping) entre a memória principal e a memória secundária

- No escalonamento de curto prazo o S.O. define qual dos processos disponíveis na memória principal será executado pelo processador.
- Decisão é realizada frequentemente pelo despachante (*dispatcher*).
- A operação do escalonador requer a definição do estado do processo.

Escalonamento e filas de processos

Tarefas x processos

Processo para sistemas operacionais foi introduzido de forma mais genérica do que tarefa (*job*), mas atualmente pode ser definido como uma **entidade para a qual o processador é alocado, como um programa**.

Tarefas x processos

- Processo: unidade de contexto, ou seja, contêiner de recursos utilizados por uma ou mais tarefas para sua execução
- Um processo pode então conter várias <u>tarefas</u>, que compartilham esses recursos.

Gerência de memória

Gerência de memória

- Memória virtual Uso de disco como memória lógica virtual
- Paginação. Os trechos de programa lidos em memória secundária são organizados em páginas, todas do mesmo tamanho.
- O espaço de endereços contempla uma parte que endereça a memória física e outra parte endereça a memória virtual. O espaço de endereço físico e o espaço de endereço virtual são bem definidos.

Mapeamento endereços virtuais para endereços da memória principal

Paginação

- Um mapa de memória ou tabela de páginas especifica o endereço físico correspondente a cada endereço virtual.
- O espaço de endereço físico é dividido em quadros de página
- As máquinas que utilizam memória virtual dispõem de um dispositivo chamado MMU Unidade de Gerenciamento de Memória

Página	Endereços virtuais
~	*
15	61.440 - 65.535
14	57.344 - 61.439
13	53.248 - 57.343
12	49.152 - 53.247
11	45.056 - 49.151
10	40.960 - 45.055
9	36.864 - 40.959
8	32.768 - 36.863
7	28.672 - 32.767
6	24.576 - 28.671
5	20.480 - 24.575
4	16.384 - 20.479
3	12.288 - 16.383
2	8.192 - 12.287
1. 0	4.096 - 8.191
0	0 - 4.095

32 K da parte inferior da memória principal Endereços físicos
28.672 - 32.767
24.576 – 28.671
20.480 - 24.575
16.384 - 20.479
12.288 - 16.383
8.192 – 12.287
4.096 - 8.191
0 - 4.095

Paginação

No início, o carregamento das páginas é por demanda...

Paginação por demanda

Paginação utilizando o conjunto de trabalho – princípio da localidade

• LRU - Least Recently Used

• FIFO — First-In-First-Out

Substituindo as páginas da memória...

Segmentação

- Uma solução aos problemas advindos de ter somente um espaço de memória virtual pode ser simplesmente prever muitos espaços de endereço virtual completamente independentes, denominados segmentos.
- O segmento é uma entidade lógica, da qual o programador está ciente e que a usa conscientemente. O segmento pode conter um procedimento, um vetor, uma pilha, enfim vários tipos de estrutura de dados.

Formas de implementar a segmentação...

- Permutação Se for feita referência a um segmento que não está na memória naquele instante, então o segmento é trazido à memória. Se não houver mais espaço para ele, um ou mais segmentos devem ser escritos na memória secundária antes.
- Paginação

Fragmentação externa

Gestão de entrada/saída

Interrupções

Gestão de entrada/saída

- Comunicação controlador-processador
- Requisição de interrupção (Interrupt Request-IRq)
- As requisições de interrupção são sinais elétricos veiculados através do barramento de controle do computador.
- Cada interrupção está geralmente associada a um número inteiro que permite identificar sua origem.

Dispositivo	Interrupção
teclado	1
interface serial COM2	3
interface serial COM1	4
interface paralela LPT1	7
relógio de tempo real	8
mouse PS/2	12
barramento ATA primário	14
barramento ATA secundário	15

Tratamento de interrupções

- Cada requisição de interrupção deve disparar uma rotina de tratamento específica.
- Tabela de endereços de funções: Tabela de Interrupções (IVT -Interrupt Vector Table)

onde cada entrada da tabela contém o endereço da rotina de tratamento da interrupção correspondente.

• as interrupções geradas pelos dispositivos de entrada/saída não são transmitidas diretamente ao processador, mas a um controlador de interrupções programável (PIC - Programmable Interrupt Controller)

Roteiro típico de processamento de interrupção

Drivers

- Módulos de código específicos para acessar os dispositivos físicos.
- Existe um driver para cada tipo de dispositivo
- Muitas vezes o driver é construído pelo próprio fabricante do hardware e fornecido em forma compilada (em linguagem de máquina) para ser acoplado ao restante do sistema operacional.

Exceções

 Eventos internos ao processador que ocasionam o desvio da execução usando o mesmo mecanismo de interrupção

Exceção	Descrição
0	erro de divisão por zero
3	breakpoint (parada de depurador)
5	erro de faixa de valores
6	operação inválida
7	dispositivo não disponível
11	segmento de memória ausente
12	erro de pilha
14	falta de página
16	erro de ponto flutuante
19-31	valores reservados pela Intel

Tratamento de interrupções

Dados no disco rígido

- Cada face é dividida logicamente em
- > trilhas (ou cilindros) e
- > setores.
- A interseção de trilha e setor em uma face define um bloco físico,
- que é a unidade básica de armazenamento e transferência de dados no disco.
- Atualmente os blocos possuem
 4.096 bytes.

Escalonamento de disco

Gestão de arquivos

- Arquivo: sequência de bytes armazenada em um dispositivo físico não volátil.
- Organizados em estruturas de dados hierárquicas denominadas diretórios, para facilitar sua localização e acesso pelos usuários.

Atributos ou metadados de arquivos

- Nome
- Tipo
- Tamanho
- Datas
- Proprietário (típico de sistemas multiusuários)
- Permissões de acesso
- Localização

Operações de arquivos

Permissões para SISTEMA	Permitir	Negar
Controle total		
Modificar		
Ler & executar		
Leitura		
Gravar		
Permissões especiais		

Para permissões especiais ou configurações avançadas, clique em Avançadas.

A<u>v</u>ançadas

- Criar implicar alocar espaço e definir atributos
- Abrir implica verificar existência, permissões, localização de seu conteúdo e criação de referência em memória
- Ler/Escrever Transferir dados para/de uma área de memória
- Fechar Liberar as estruturas de gerência
- Remover Eliminar o arquivo do dispositivo
- Alterar atributos Modificar os valores dos atributos

Formato de arquivos

- Sequência de bytes
- Arquivos de registros
- Arquivos de texto
- Arquivos de código programa executável ou biblioteca, contém código, tabela de símbolos (variáveis e funções), lista de dependências
- Identificação de conteúdo extensão do nome

Interface de acesso

- Através dessa interface, um processo pode operar sobre o arquivo
- Composta por uma representação lógica do arquivo, denominada descritor de arquivo (file descriptor ou file handle), e um conjunto de funções para manipular o arquivo.
- Níveis de interface de acesso:
 - ➤ baixo nível, oferecida pelo sistema operacional aos processos através de chamadas de sistema, e
 - ➤ alto nível, composta de funções na linguagem de programação para implementar cada aplicação. Portabilidade de programas entre sistemas operacionais distintos.
- A interface de alto nível é implementada sobre a interface de baixo nível, geralmente na forma de uma biblioteca de funções e/ou um suporte de execução (*runtime*).

Tabela 23.1: Chamadas de sistema para arquivos

Operação	Linux	Windows
Abrir arquivo	OPEN	NtOpenFile
Ler dados	READ	NtReadRequestData
Escrever dados	WRITE	NtWriteRequestData
Fechar arquivo	CLOSE	NtClose
Remover arquivo	UNLINK	NtDeleteFile
Criar diretório	MKDIR	NtCreateDirectoryObject

Tabela 23.2: Funções de biblioteca para arquivos (fd: file descriptor, obj: objeto)

Operação	C (padrão C99)	Java (classe File)
Abrir arquivo	fd = fopen()	obj = File()
Ler dados	<pre>fread(fd,)</pre>	obj.read()
Escrever dados	fwrite(fd,)	obj.write()
Fechar arquivo	fclose(fd)	obj.close()
Remover arquivo	remove()	obj.delete()
Criar diretório	mkdir()	obj.mkdir()

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

