Chapter 2: The Integers' Solutions

Saif Mohammed

October 21, 2024

Exercise 3. Prove that the set of all linear combinations of a and b are precisely the multiples of gcd(a, b).

Solution. Let $d = \gcd(a, b)$ and c = ax + by for $c, x, y \in \mathbb{Z}$. We prove c is a multiple of d.

Let
$$a = da'$$
 and $b = db'$. So $c = ax + by = d(a'x + b'y)$. Hence, $d \mid c$.

We now prove the converse: if c is a multiple of d, then it is a linear combination of a and b.

Let c = dc'. We know d is the least positive linear combination of a and b. So

$$d = am + bn$$
 [for $m, n \in \mathbb{Z}$]

$$\implies dc' = amc' + bnc'$$

$$\implies c = a(mc') + b(nc').$$

Hence, we proved c is a linear combination of a and b.

Exercise 4. Two numbers are said to be relatively prime if their gcd is 1. Prove that a and b are relatively prime if and only if every integer can be written as a linear combination of a and b.

Solution. Suppose a and b are relatively prime. We know that $ax + by = \gcd(a, b) = 1$ for some $x, y \in \mathbb{Z}$. As every integer is a multiple of 1, then by (3), every integer can be written as a linear combination of a and b.

Now, we prove the the converse: if every integer can be written as a linear combination of a and b, then gcd(a, b) = 1.

As 1 is the least positive integer and we know that gcd(a, b) must be the least positive linear combination, we can conclude that gcd(a, b) = 1.

Exercise 5. Prove Theorem 2.6. That is, use induction to prove that if the prime p divides $a_1 a_2 \cdots a_n$, then p divides a_i , for some i.

Solution. If $p \mid a_1$, then the statement is trivially true. Now suppose if $p \mid a_1 a_2 \cdots a_k$, then $p \mid a_i$ for some i. Now for $p \mid a_1 a_2 \cdots a_{k+1}$, if we bring out a a_{k+1} , then there can happen two cases.

Case 1: $p \mid a_{k+1}$. If so, then the statement is obviously true.

Case 2: $p \nmid a_{k+1}$. Is so, then we can say $p \mid a_1 a_2 \cdots a_k$. And by the induction hypothesis, there is a_i for some i such that $p \mid a_i$.

Hence, the theorem is proved.

[Note: In each case, any a_n not necessarily the same with other a_n 's. So, a_1 of the base case, a_1, a_2, \ldots, a_k of the induction hypothesis, and a_1, a_2, \ldots, a_k of the inductive step are not necessarily are the same numbers.]

Exercise 7. (a) A natural number greater than 1 that is not prime is called **composite**. Show that for any n, there is a run of n consecutive composite numbers. *Hint:* Think factorial.

(b) Therefore, there is a string of 5 consecutive composite numbers starting where?

Solution. (a) For any n, consider the numbers (n+1)! + a, where $2 \le a \le n+1$. There are n+1-2+1=n numbers, all are composite. Because, here, a is also a factor of (n+1)!, so we write:

$$(n+1)! + a = 1 \cdot 2 \cdot \dots \cdot (a-1) \cdot a \cdot (a+1) \cdot \dots \cdot (n+1) + a$$

= $a(1 \cdot 2 \cdot \dots \cdot (a-1) \cdot (a+1) \cdot (a+2) \cdot \dots \cdot (n+1)).$

It implies that the numbers can be written as m = bc, where $b \neq \pm 1$ and $c \neq \pm 1$. Hence, they are not prime.

(b) Starting from
$$(5+1)! + 2 = 722$$
.

Exercise 9. Notice that $gcd(30, 50) = 5 gcd(6, 10) = 5 \cdot 2$. In fact, this is always true; prove that if $a \neq 0$, then $gcd(ab, ac) = a \cdot gcd(b, c)$.

Solution. gcd(ab, ac) = abx + acy = a(bx + cy) for some $x, y \in \mathbb{Z}$. Now gcd(b, c) is multiple of any linear combination of b and c, so

$$\gcd(b,c)\mid bx+cy \implies a\cdot\gcd(b,c)\mid a(bx+cy) \implies a\cdot\gcd(b,c)\mid\gcd(ab,ac).$$

Again, for some $x', y' \in \mathbb{Z} \gcd(b, c) = bx' + cy' \implies a \cdot \gcd(b, c) \implies abx' + acy'$. As $\gcd(ab, ac)$ is multiple of any linear combination of ab and ac, so

$$\gcd(ab, ac) \mid abx' + acy' \implies \gcd(ab, bc) \mid a \cdot \gcd(b, c)$$

Because $a \cdot \gcd(b, c) \mid \gcd(ab, ac)$ and $\gcd(ab, bc) \mid a \cdot \gcd(b, c)$, it can be concluded that $\gcd(ab, ac) = a \cdot \gcd(b, c)$.

Exercise 10. Suppose that two integers a and b have been factored into primes as follows:

$$a = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

and

$$b = p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r},$$

where the p_i 's are primes, and the exponents m_i and n_i are non-negative integers. It is the case that

$$\gcd(a,b) = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r},$$

where s_i is the smaller of n_i and m_i . Show this with $a = 360 = 2^3 3^2 5^1$ and $b = 900 = 2^2 3^2 5^2$. Now prove this fact in general.

Solution. For r=1, $a=p_1^{n_1}$ and $b=p_1^{m_1}$, where WLOG, $n_1>m_1=s_1$. We can rewrite $a=p_1^{s_1}p_1^{n_1-s_1}$ and so $\gcd(a,b)=p_1^{s_1}\cdot\gcd(p_1^{n_1-s_1},1)=p_1^{s_1}$.

Let up to r = k this holds. Now for r = k + 1, there are two cases. WLOG, $n_{k+1} > m_{k+1} = s_{k+1}$.

$$\begin{split} \gcd(a,b) &= p_{k+1}^{s_{k+1}} \cdot \gcd(p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}, p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} p_{k+1}^{m_{k+1} - s_{k+1}}) \\ &= p_{k+1}^{s_{k+1}} \cdot \gcd(p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}, p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}) & \text{[no common divisor exists between} \\ &= p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k} p_{k+1}^{s_{k+1}} & \text{[by induction hypothesis.]} \end{split}$$

Exercise 11. The least common multiple of natural numbers a and b is the smallest positive common multiple of a and b. That is, if m is the least common multiple of a and b, then $a \mid m$ and $b \mid m$, and if $a \mid n$ and $b \mid n$ then $n \geq m$. We will write $\operatorname{lcm}(a, b)$ for the least common multiple of a and b. Find $\operatorname{lcm}(20, 114)$ and $\operatorname{lcm}(14, 45)$. Can you find a formula for the lcm of the type given for the gcd in the previous exercise?

Solution. If $a=p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$ and $b=p_1^{m_1}p_2^{m_2}\cdots p_r^{m_r}$, then we claim that

$$lcm(a,b) = p_1^{l_1} p_2^{l_2} \cdots p_r^{l_r}$$

where l_i is the largest of n_i and m_i .

Now we prove that. Let $c = p_1^{l_1} p_2^{l_2} \cdots p_r^{l_r}$. As l_i is the largest of n_i and m_i , it is always larger than or equal to the corresponding power of factorization of either a or b. So $a \mid c$ and $b \mid c$.

Now let's take another common multiple of a and b, $d = p_1^{w_1} p_2^{w_2} \cdots p_r^{w_r}$. So

$$a \mid d \implies p_i^{n_i} \mid p_i^{w_i} \implies n_i \mid w_i \implies n_i \leq w_i$$

and

$$b \mid d \implies p_i^{m_i} \mid p_i^{w_i} \implies m_i \mid w_i \implies m_i \leq w_i$$

It follows that w_i is larger than or equal to the largest of n_i and m_i . That is, $w_i \ge l_i$. Hence, $c \mid d \implies c \le d$. Thus, we can conclude c is indeed the lcm of a and b.

Exercise 12. Show that if gcd(a,b) = 1, then lcm(a,b) = ab. In general, show that

$$lcm(a,b) = \frac{ab}{\gcd(a,b)}.$$

Solution. For $a = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$ and $b = p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$, we know,

$$lcm(a,b) = p_1^{l_1} p_2^{l_2} \cdots p_r^{l_r}$$
 [l_i is the largest of m_i and n_i .] (1)

П

and
$$gcd(a,b) = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r}$$
 [s_i is smallest of m_i and n_i .] (2)

Let $m_i \geq n_i$ for some $i \in \mathbb{N}$. So $l_i = m_i$ and $s_i = n_i$. Hence, $p_i^{l_i} \cdot p_i^{s_i} = p_i^{m_i} \cdot p_i^{n_i}$. Similarly, we can show that for $m_i \leq n_i$, $p_i^{l_i} \cdot p_i^{s_i} = p_i^{m_i} \cdot p_i^{n_i}$. It follows that if we multiply (1) and (2), then $p_i^{m_i}$ and $p_i^{n_i}$ both exists for any $i \in \mathbb{N}$ as factors of the product. By rearranging them, we can write

$$\operatorname{lcm}(a,b) \cdot \operatorname{gcd}(a,b) = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} \cdot p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r}$$

$$\implies \operatorname{lcm}(a,b) \cdot \operatorname{gcd}(a,b) = ab$$

$$\implies \operatorname{lcm}(a,b) = \frac{ab}{\operatorname{gcd}(a,b)}.$$

Exercise 13. Prove that if m is a common multiple of both a and b, then $lcm(a,b) \mid m$.

Solution. Let l = lcm(a, b). Let's assume that $l \nmid m$. So, $m = l \cdot k + r$, where $k \in \mathbb{N}$ and 0 < r < |l|. Here, $a \mid m$ and $b \mid m$ and also $a \mid l$ and $b \mid l$, so $a \mid r$ and $b \mid r$.

So we see that r is a common multiple of a and b, which is less than l, but this is not possible because l is the least common multiple of a and b. Therefore, $l \mid m \implies \operatorname{lcm}(a,b) \mid m$.

Exercise 19. Recall from Exercise 1.14 the definition of the binomial coefficient $\binom{n}{k}$. Suppose that p is a positive prime integer, and k is an integer with $1 \le k \le p-1$. Prove that p divides the binomial coefficient $\binom{p}{k}$.

Solution. We know for $\binom{n}{k} \neq 1$ if $k \neq 0$ or n. Now from the definition,

$$\binom{p}{k} = \frac{p}{(p-k)!k!} \implies \binom{p}{k} \cdot (p-k)! \cdot k! = p \cdot (p-1)!$$

From the combinatorial definition, $\binom{p}{k}$ is always a natural number and also it cannot be equal to 1 because $1 \le k \le p-1$. Now from the definition of primes, $p \mid \binom{p}{k}$ or $p \mid (p-k)!$ or $p \mid k!$. As (p-k) and k is less than p and an integer cannot divide an integer less than itself, $p \nmid (p-k)!$ and $p \nmid k!$. Therefore, $p \mid \binom{p}{k}$.