Redes Neuronales

Elementos básicos de las redes neuronales carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S.

Universidad San Buenaventura, Cali

Junio de 2021

Contenido

Contenido

1 Elementos básicos

2 Tipos de aprendizaje

Elementos básicos

- Aprendizaje adaptativo
- Generalización
- Naturaleza para propósito no-lineal
- Auto-organización

■ Paralelismo masivo

Modelo no lineal

- Cada neurona recibé un conjunto de señales discretas o continuas
- Estas seña es se ponderan o integran
- 3 Cada conexión tiene un peso sináptico
- 4 Los pesos representan el conocimiento
- **5** Estos pesos se ajustan con algoritmos de aprendizaje

Modelo no lineal

Figura: Modelo no lineal. Tomado de: [Pérez Ortiz, 1999]

Modelo no lineal

Una red neuronal tiene:

1 Un conjunto *m* de señales de entrada

- 2 Un conjunto de sinapsis w_{ji} , donde i indica la i-ésima entrada de la neurona j
- 3 Un umbral o sesgo b, puede ser positivo o negativo
- 4 Las entradas son sumadas o integradas, tomando en cuenta sus respectivos pesos
- 5 Se tiene una función de activación σ que describe el funcionamiento de la neurona

Modelo no lineal

Este modelo lo podemos describir así:

$$z = \varphi(\sum_{i=1}^{mw_i x_i + b})$$

En forma vectorial:

$$z = \varphi(wx^T + b)$$

Funciones de activación

Con una función:

- **1** Función lineal: Suele variar entre 0 y 1 o -1 y 1.
- Sunción escalón. Salida bivaluada $\varphi(x) = \left\{ egin{array}{ll} 0 & \emph{si} & \emph{x} < 0 \\ 1 & \emph{si} & \emph{x} \geq 0 \end{array} \right.$
 - 3 Función sigmoidea. Transformación no lineal de la entrada

$$\varphi(x) = \frac{1}{1 + e^{-ax}}$$

Suele utilizarse a=1

Funciones de activación

Figura: Función escalón. Tomado de: [Haykin, 1998]

Funciones de activación

Funciones de activación

Modelo estocástico, dada una distribución de probabilidad P(v)

$$x = \begin{cases} 1 & con & P(v) \\ -1 & con & 1 - P(v) \end{cases}$$

Contenido

1 Elementos básicos

2 Tipos de aprendizaje

El aprendizaje

El aprendizaje en las redes neuronales se puede modelar así.

$$w(t+1) = w(t) + \Delta w(t)$$

Aprendizaje supervisado

- Basado en la comparación entre la salida actual y la deseada
- Los pesos de ajustan de acuerdo a patron de entrenamiento de acuerdo
- Existe un criterio de parada para el proceso de aprendizaje de acuerdo a la medida del error

$$E = \frac{1}{N} \sum_{p=1}^{N} (y_d - y_c)^2$$

Aprendizaje no supervisado

- No hay valores objetivos
- Está basado en las correlaciones entre la entrada y patrones significantes que ayuden en el aprendizaje
- Se requiere un método de parada

Aprendizaje por refuerzo

- Es un caso especial de aprendizaje supervisado
- La salida deseada es desconocida
- Se castiga una mala salida y se premia una buena salida

Contenido

1 Elementos básicos

2 Tipos de aprendizaje

$$(1,0)$$
 1 $(1,0.1)$

Clases de arquitecturas

Redes de una capa sin ciclos

- Es la forma más simple
- Consiste en una capa que recibe las entrada y emite una o más salidas

Figura: Esquema red de una capa. Tomado de: [Haykin, 1998]

entrodo X = 0

$$\begin{bmatrix} w_{64} & w_{62} \\ S_S \end{bmatrix} = \begin{bmatrix} S_4 \\ S_S \end{bmatrix} = \begin{bmatrix} S_4 \\ S_5 \end{bmatrix} =$$

Redes recurrentes

- Tienen estructura monocapa o multicapa
- La salidas se conectan a las entradas, pero estas tienen un retardo

Figura: Esquema red multicapa. Tomado de: [Haykin, 1998]

Referencias I

- Du, K. and Swamy, M. (2006).

 Neural Networks in Softcomputing Framework.

 Springer-Verlag.
- Haykin, S. (1998).

 Neural Networks: A Comprehensive Foundation (2nd Edition).

 Prentice Hall.
- Pérez Ortiz, J. A. (1999).
 Clasificación con discriminantes: Un enfoque neuronal.

http: //www.dlsi.ua.es/~japerez/pub/pdf/cden1999.pdf. Material de clase, Accessed: Ago-2017.

¿Preguntas?

Próximo tema: Perceptrón y adeline

-> closificación documenta