

Database Design & Applications

Conversion of an E-R Schema to Tables

Converting Strong Entity Types

- Each entity type becomes a table
- Each single-valued attribute becomes a column
- Derived attributes are ignored
- Composite attributes are represented by components
- Multi-valued attributes are represented by a separate table
- The key attribute of the entity type becomes the primary key of the table

O

7

The final Relational Schema:

DOJ

Employee (<u>E#</u>, Name, Street, Floor, Building, Date_Of_Joining)
Emp_Skillset(<u>E#</u>, <u>Skills</u>)

Employee		Emp_Skillset	
E#	PK ←	E# PK/FK	
Name	Name PN/FN		
ranic		Skills	PK
Street			
Floor			
Building			

As per the rules:

- Derived attributes are ignored
- Composite attributes are represented by components
- Multi-valued attributes are represented by a separate table
- The primary key of Employee table will become the foreign key in Emp_SkillSet Table

- Weak entity types are converted into a table of their own
- The primary key of the strong entity act as a foreign key in the table.
- This foreign key along with the key of the weak entity form the composite primary key of this table

The Relational Schema:

Employee (EmpCode, EmpName, DateOfJoining, SkillSet)

Dependent (EmpCode, Dependant_ID, Name, Address)

EMPLOYEE			DEPENDENT	
EmpCode	PK	-	EmpCode	PK/FK
EmpName			Dependent_ID	PK
DateOfJoining			Name	
SkillSet			Address	

Converting Relationships

- The representation of relationships depends on the cardinality and the degree of the relationship.
- The possible cardinalities are:
 - o 1:1
 - o 1:M
 - o M:N
- The degrees are:
 - Unary
 - Binary
 - Ternary

Unary (1:1)

- Consider employees who are also a couple.
- The primary key field itself will become foreign key in the same table.
- Employee (Ex Name Spouse)

Unary (1:1)

Conversion of Unary (1:1) Relationship to table

Employee T	able	
<u>EmpCode</u>	PK	7/5
EmpName] _
DateofJoining		
Skil1Set		
Spouse	FK	

Unary (1:N)

- Consider there are multiple employees, and few employees among them work as a manager.
- The primary key field itself will become foreign key in the same table

Unary (1:N)

Conversion of Unary (1:N) Relationship to table

Employee Table	₄
EmpCode PK	
Emp Name	1
DateofJoining	
SkillSet	
Man ager FK	

Unary (M:N)

- Consider there are multiple employees, and few employees gives guarantee for other employees.
- One employee can give guarantee for many employees
- A employee can take the guarantee from many employees.
- There will be two resulting tables:
 - One to represent the entity
 - Another to represent the many to many relationship

Unary (M:N)

B 1 a

Conversion of Unary (M:N) Relationship to tables

EMPLOYEE		Guaranty	
EmpCode	PK	Guarantor	PK/FK
EmpName		Beneficiary Pl	K PK/FK
DateOfJoining		•	
SkillSet			

- Combination of Participation types: In binary (1:1) relationship if combination of
 participation exists, the primary key of the partial participation will become the
 foreign key of the total participation.
- Conversion of total and partial participation to tables

Conversion of total and partial participation to tables

Conversion of Binary (1:1) Uniform participation into tables

Employee Table			
EmpCode PK		Ch air	
EmpName		Citan	
DateofJoining	┌─	itemNo	PK
SkillSet	-	Model	FK
SKIISEL	<u> </u>	Location	
Sits_On FK			

The primary key of the "1" side of the relationship becomes a foreign key in the relation on the "N" side

Binary 1: N

Conversion of binary (1:N) relationship to tables

- A new table is created to represent relationship
- This new table contains two foreign keys one from each of participating entities
- The primary key of new table is the combination of two foreign

Binary M: N

Conversion of Binary (M:N) relationship to tables

PName

Address

Age

Assumptions:

There are multiple banks and each bank has many branches.

Each branch has multiple customers

Customers have various types of accounts in any branch

Some Customers also had taken different types of loans from these bank branches

One customer can have multiple accounts and Loans

Final Bank Schema

Thank You!

