1. More on buses

- a. Remember, shared transmission medium
- b. Multiple bus hierarchies
 - i. Same idea as before, create multiple buses
 - ii. Reduce length of entire bus, allow parallel data transfer
 - iii. Traditional
 - 1. CPU \leftrightarrow local bus \leftrightarrow cache \leftrightarrow system bus \leftrightarrow main memory and expansion bus interface
 - 2. Expansion bus interface ↔ expansion bus ↔ network and other I/O
 - iv. High performance
 - 1. $CPU \leftrightarrow local bus \leftrightarrow cache/bridge \leftrightarrow high-speed bus$
 - 2. High-speed bus \leftrightarrow main memory
 - 3. High-speed bus \leftrightarrow video, network, GPUs, expansion bus interface
 - 4. Expansion bus interface ↔ other I/O
 - v. For high performance, place important devices closer to CPU
 - 1. Skip level of indirection by hooking up directly to high-speed bus

2. Bus specifics

- a. Bus width
 - i. How big are our addresses?
 - ii. How big is our data?
 - 1. Larger bus means transferring more data at once
- b. Bus clock time
 - i. Bus driven by input clock
 - ii. Determines how much data we can transfer at once
 - iii. Example below, want to determine throughput (bits / second) of a bus
 - 1. 32-bit bus, 1 GHz input clock = 1 ns
 - a. Frequency (Hz) = 1 / seconds (s)
 - b. Giga = 10^9 , so 1 GHz = 10^9 Hz
 - c. Invert 1 GHz, which is our frequency
 - d. Inverting this, we get $1/10^9$ Hz = 10^{-9} seconds
 - e. Nano prefix = 10^{-9} , so 10^{-9} seconds * $(10^{9}$ nanoseconds / 1 second) = 1 nanosecond
 - 2. Bus cycle takes at least 100 input cycles
 - a. Will take at least 100 clock cycles to do one bus cycle
 - b. So 32 bits / bus cycle * 1 bus cycle / 100 clock cycle = 0.32 bits / clock cycle
 - c. Key word is at least, so this is a theoretical maximum
 - 3. Transfer rate = (bits / bus cycle) * (bus cycles / clock cycle) * (clock cycles / time)
 - a. 32 bits / bus cycle * 1 bus cycles / 100 clock cycles * 1 clock cycle / 1 ns
 - b. $0.32 \text{ bits / ns} * 10^9 \text{ nanoseconds / 1 second} = 3.2 * 10^8 \text{ bits / s}$
 - 4. So 3.2 * 108 bps (bits / s) is our theoretical maximum
 - a. Can turn this into a more reasonable number by converting to megabits
 - b. Mega prefix = 2^{20}
 - c. $3.2 * 10^8$ bits / second * 1 megabit / 2^{20} megabits = 305 megabits / second
 - 5. 305 Mbps (megabits per second) is the theoretical maximum throughput for this bus
- c. How to arbitrate a bus
 - i. Who gets the bus when?
- d. Methods of arbitration
 - i. Centralized bus controller allocates time on bus
 - 1. Bus Request Line OR all requests from devices on bus
 - 2. Bus Grant Line daisy chain across all devices

- a. Order of devices on line determines priority
- ii. Distributed each module contains logic to access bus, work together to share bus
 - 1. Arbitration Line bus is being granted right now
 - 2. Busy Line bus is being used
 - 3. Bus Request if another device wants to use the bus
 - a. Conflicts settled by priority or random back-off
 - b. Random back-off each device waits a random amount of time before requesting again