Prova di Comunicazioni Numeriche 075II

03/06/2024

- 1. Nel gioco del Lotto ci sono 90 numeri da estrarre, si estrae sequenzialmente senza rimettere i numeri all'interno dell'urna una volta estratti.
 - (a) Calcolare la probabilità che esca 6 alla prima o alla seconda pescata.
- 2. Data la funzione di densità di probabilità $f_X(X) = kx$, definita in [0,4]:
 - (a) Calcolare k e disegnare $f_X(X)$.
 - (b) Calcolare e disegnare la funzione di distribuzione di X.
 - (c) Calcolare il valor medio e la varianza di X.
- 3. Sia $w(t) = \frac{N_0}{2} \text{rect}\left(\frac{f}{2B}\right)$ in ingresso a un sistema LTI con $h(t) = \delta(t) \delta(t-T)$:
 - (a) Calcolare la potenza del segnale in uscita x(t).
- 4. Utilizzare un esempio per dimostrare la veridicità dell'affermazione:
 - "Una dilatazione dell'asse dei tempi comporta compressione delle frequenze e viceversa".
- 5. Data la funzione $x(t) = \operatorname{sinc}\left(\frac{2t}{T}\right)$, con T = 0.1 micro secondi:
 - (a) Calcolare la frequenza minima di $y(t)=x^3(t)$ per essere campionato.
- 6. Si consideri un codice di Hamming sistematico di ordine 3. Con la codifica a sindrome, calcolare x avendo ricevuto y = x + e = [1, 0, 1, 1, 1, 0, 0].
- 7. Si consideri un codice a ripetizione di ordine 3. Utilizzando la codifica a sindrome:
 - (a) Determinare quanti errori può correggere.

- (b) Calcolare la probabilità di errore sul bit in funzione di p.
- 8. Un sistema di comunicazione 4 QAM impiega un codice a blocco con rate r ed un impulso a radice di coseno rialzato con roll-off $\alpha=0.4$. Il sistema è utilizzato per trasmettere un flusso di bit con velocità $R_b=100~\mathrm{Mbit/s}$.
 - (a) Determinare il rate del codice al fine di garantire una banda $B=80~\mathrm{MHz}.$
 - (b) Calcolare la probabilità di errore sul bit in ingresso al decodificatore del codice a blocco, nell'ipotesi in cui $\frac{E_b}{N_0}=7$ dB (dove E_b rappresenta l'energia per bit non codificato).