

Clustering Tomàs Aluja

Barcelona; January 20th, 2017

Outline

- What is a clustering
- Hierarchical clustering
- K-means clustering
- Consolidation
- Clustering of large data sets
- Interpreting the clusters
- Assigning new individuals to a cluster
- Applications: Clustering of Cars, Bank clients and ZIP data.

WHAT IS A CLUSTERING

Clustering

2nd step of the Multivariate Description of data

Clustering: Tool to synthesize the data

Purpose:

Grouping a set of *n* objects in *k* classes homogeneous and distinct among them.

Input \rightarrow The proximity measure between all pairs of objects.

It needs to reflect the actual proximity between objects according the final aim of the clustering. Weighting the attributes might be necessary

Idea of clustering

Clustering using the raw data or the significant components?

- Why if we perform the clustering in the factorial space?
 - To take into account the structural component of data and discard the noise
 - To reduce the curse of dimensionality
 - To work with orthogonal factors (avoiding multicollinearity)
 - To embed the points in an Euclidean space
- Which disadvantages do we have?
 - Interpretation is more difficult since we work with components. Need to come back to the original variables
 - Need to specify the significant dimensions of the factorial space. Working with all dimensions is equivalent to perform the clustering with the raw data

& Executive Development

Clustering of the Iris data

sepal & petal measures

Iris setosa

Iris flowers according sepal and petal length and width

PCA of IRIS dataset

Iris versicolor

Iris virginica

Clustering using R

First we perform a PCA

```
> library(FactoMineR)
```

> data(iris)

> pc.iris <- PCA(iris,quali.sup=5)</pre>

> pc.iris\$eig

eigenvalue percentage of variance cumulative percentage of variance

```
      comp 1 2.91849782
      72.9624454
      72.96245

      comp 2 0.91403047
      22.8507618
      95.81321

      comp 3 0.14675688
      3.6689219
      99.48213

      comp 4 0.02071484
      0.5178709
      100.00000
```

- > plot(pc.iris\$eig\$eigenvalue,type="1",main="Screeplot")
- > abline(h=mean(pc.iris\$eig\$eigenvalue),col="gray")

> nd = 2

PCA results of Iris data

Individuals factor map (PCA)

Variables factor map (PCA)

Clustering of Iris data from the two first components

Clustering upon the significant components of the PCA

```
> Psi <- pc.iris$ind$coord[,1:nd]
> dist_mat          <- dist(Psi)
> hclus.iris <- hclust(dist_mat, method="ward.D2")
> plot(hclus.iris, cex=0.6)
```

The aggregation process (bottom-up)

dist_mat hclust (*, "ward.D2")

& Executive Development

In that cas, we know that there are three classes of flowers

```
# CUT OF THE DENDROGRAM IN 3 FINAL CLASSES

Cluster Dendrogram
```

three classes: C1, C2 and C3

```
> barplot(hclus.iris$height[(nrow(iris)-30):(nrow(iris)-1)])
```


Partition obtained by cutting the dendrogram in 3 clusters

True iris types:

virginica

```
s setosa
o versicolor
x virginica
```

0 30 20

Consolidation of the clustering

CONSOLIDATION

- > k_def <- kmeans(Psi,centers=cdg)</pre>
- > table(iris\$Species,k_def\$cluster)

	1	2	3
setosa	50	0	0
versicolor	0	11	39
virginica	0	36	14

Before consolidation

After consolidation

Consolidation allows to overcome the overlapping condition between successive nodes imposed by the Hierarchical Clustering, hence, to improve the final clustering

HIERARCHICAL CLUSTERING

Algorithm of Hierarchical Clustering

Algorithm

- E = Set of objects to cluster
- Calculate the matrix of distances of E in D
- While (cardinal(\mathbf{E}) > 1) do
 - Find the closest (a,b) in D
 - Set h= a ∪ b
 - Update $\mathbf{E} = \mathbf{E} \{a, b\} + \{h\}$
 - Update the matrix of distances of E in D
- End while

Fast algorithm: By finding the reciprocal neighbors : a = nn(b); b = nn(a)

A toy example of hierarchical clustering

Hierarchy of parts of E:

$$P_1 = \{(1),(2),(3),(4),(5)\}$$

$$P_2 = \{(1,3),(2),(4),(5)\}$$

$$P_3 = \{(1,3),(4),(2,5)\}$$

$$P_4 = \{(1,3,4),(2,5)\}$$

$$P_5 = \{(1,2,3,4,5)\}$$

Important leaps in height reveal where to cut the tree to obtain a meaningful partition

Methods of Hierarchical Clustering

Depending on the updating of the Distance matrix at each iteration:

Let be **h** and **h'** two nodes

$$d(h,h') = \min[d(i,i')]$$

$$d(h,h') = mean[d(i,i')]$$

$$d(h,h') = d(G_1,G_2)$$

$$d(h,h') = Inertia(G_1,G_2) = \dots = \frac{w_h w_{h'}}{w_h + w_{h'}} d^2(G_1,G_2)$$

K-MEANS CLUSTERING

K-means algorithm

Criterion: $\frac{I_{between clusters}}{I_{total}} \rightarrow local \ maximum$

Convergence to local optima Linear cost

Pros and cons

Hierarchical clustering

- Quadratic cost
- The tree informs about
 the whole process of
 aggregation and gives
 clues about the number
 of distinct classes in the
 data.
- Suboptimal partition (overlapping classes)

K-means

- Lineal cost
- Number of classes must be known apriori
- Local optimal partition

CONSOLIDATION OPERATION

Consolidation: sequential clustering (hclust+kmeans)

Taking profit of both approaches

Consolidation:

- 1. Perform a hierarchical clustering
- 2. Decide the number of classes present in your data and calculate the corresponding centroids
- 3. Perform a k-means algorithm taking as seeds the centroids previously calculated

CLUSTERING VERY LARGE DATA SETS

Clustering very large data sets

Hierarchical clustering is of quadratic cost, hence not applicable to big data volumes.

Sequential Clustering (kmeans + hclust + kmeans)

- 1. Perform the kmeans algorithm with a very large number of classes.
- 2. Compute the centroids of all classes obtained by kmeans.
- 3. Perform a hierarchical clustering on the centroids of classes.
- 4. Decide from the obtained dendrogram the number of classes present in your data
- 5. Perform the consolidation operation (calculate the corresponding centroids and the k-means algorithm taking as seeds the centroids previously calculated).

CLUSTERS INTERPRETATION

Profiling: Interpreting the clusters

Profiling. What is the profile of a group of individuals?

i.e.: a class resulting from a clustering algorithm, or a modality of a categorical variable. What is the profile of A buyers?

Profiling is finding the significant characteristics which make the group of individuals different than the whole set of individuals.

→ Automatic detection of significant deviations

Interpreting the clusters

3rd step of the Multivariate Description of data Profiling: Giving *meaning* to the obtained clusters

Diferential characterisation among classes

PROFILING the obtained clusters: Statistical characterization

& Executive Development

Steps in exploratory multivariate Analysis

Exploring a Data Matrix				
1. Multivariate	Visualization			
Description	Outlier detection			
	Reduction of dimensionality			
	Extraction of latent factors			
	Interpreting the information of the data			
	Generating new hypothesis			
2. Clustering	Synthesis to simplify the complex reality			
	Classes must be operative regard to the goal of the clustering			
	Define the rules to assign new individuals			
3. Interpret the classes	Differential characteristics per each class. Assign			
	them a name.			

ASSIGNING NEW INDIVIDUALS TO A CLUSTER

Classification of new individuals

• Compute the distance of the new individual to each class centroid

APPLICATION 1: CLUSTERING OF CARS

Application 1: Clustering of cars

```
# CLUSTERING DE LOS COCHES SEGUN SUS CARACTERISTICAS TECNICAS
```

```
# CALCULO DE LA MATRIZ DE DISTANCIAS ENTRE COCHES A PARTIR DE LAS COMPONENTES SIGNFICATIVAS dist.car <- dist(Psi)
```

CLUSTERING JERARQUICO, METODO DE Ward
hclus.car <- hclust(dist.car,method="ward.D2")</pre>

PLOT DEL ARBOL JERAQUICO OBTENIDO
plot(hclus.car,cex=0.3)

Cluster Dendrogram

dist.car hclust (*, "ward.D2")

Finding the number of clusters

DIAGRAMA DE BARRAS DEL INDICE DE AGREGACION DE LAS ULTIMAS 29 AGREGACIONES FORMADAS barplot(hclus.car\$height[(nrow(car)-30):(nrow(car)-1)])

CUANTAS CLASES (CLUSTERS) DE COCHES HAY?
> nc = 6
CORTE DEL ARBOL DE AGREGACION EN nc CLASES

> cut6 <- cutree(hclus.car,nc)</pre>

NUMERO DE COCHES POR CLASE

> table(cut6)

cut6

$$\frac{I_{B_cut6}}{I_T} = 71.0$$

- # CALCULO DE LOS CENTROIDES DE LAS nc CLASES OBTENIDAS POR CORTE DEL ARBOL JERARQUICO
- > cdg.nc <- aggregate(as.data.frame(Psi),list(cut6),mean)[,2:(nd+1)]</pre>
- # ALGORITMO kmeans CON CENTROS INICIALES EN LOS CENTROIDES cdg.nc
- > k6 <- kmeans(Psi,centers=cdg.nc)</pre>
- # NUMERO DE COCHES POR CLASE FINAL
- > k6\$size
- [1] 173 78 86 25 29 99

$$\frac{I_{B_k6\$cluster}}{I_{\pi}} = 73.65$$

Visualising the difference among clusters

```
# VISUALIZACION DE LAS nc CLASES FINALES EN EL PRIMER PLANO FACTORIAL
plot(Psi[,1],Psi[,2],type="n",main="Clustering of cars in 6 classes")
text(Psi[,1],Psi[,2],col=k6$cluster,labels=iden,cex = 0.6)
abline(h=0,v=0,col="gray")
legend("topleft",c("c1","c2","c3","c4","c5","c6"),pch=20,col=c(1:6))
```

Clustering of cars in 6 classes

Interpreting the clusters: Cluster 1

- > # INTERPRETACION DE LAS nc CLASES FINALES OBTENIDAS
- > catdes(cbind(as.factor(k6\$cluster),car),num.var=1)

\$quanti

\$quanti\$`1`

	v.test	Mean in category	Overall mean	sd in category	Overall sd	p.value
revoluciones	7.050631	5782.369942	5507.204082	375.8130171	637.5502695	1.781086e-12
plazas	2.551414	5.040462	4.895918	0.4074222	0.9254804	1.072869e-02
potencia	-2.479735	120.381503	129.785714	22.7785038	61.9533811	1.314802e-02
consumo	-2.958827	8.993642	9.449796	0.9138087	2.5184888	3.088122e-03
peso	-4.409687	1096.421965	1174.820408	116.9636621	290.4340320	1.035200e-05
poca_aceleracion	-4.897291	10.000000	11.013469	1.4096693	3.3806687	9.716708e-07
precio	-5.275453	2685.913295	4103.808163	837.0904803	4390.6834064	1.324286e-07
cilindrada	-5.493296	1825.647399	2146.714286	224.5814024	954.7955738	3.945016e-08
cilindros	-6.588475	4.086705	4.651020	0.3198575	1.3992159	4.443682e-11

\$category\$`1`

	Cla/Mod	Mod/Cla	Global	p.value	v.test
combustible=Gasolina	42.364532	99.4219653	82.857143	8.713911e-17	8.321116
traccion=Delantera	41.987179	75.7225434	63.673469	3.468400e-05	4.140308
marca=VOLVO	66.666667	5.7803468	3.061224	1.479337e-02	2.437398
marca=NISSAN	64.285714	5.2023121	2.857143	2.993139e-02	2.170997

Interpreting the clusters: Cluster 2

\$quanti\$`2`

	v.test	Mean in category	Overall mean	sd in category	Overall sd	p.value
poca_aceleracion	8.383209	13.958974	11.013469	2.7482132	3.3806687	5.150406e-17
maletero	7.761076	506.012821	402.140816	74.3204244	128.7744531	8.421202e-15
altura	6.731604	143.333333	139.126531	6.6364701	6.0129376	1.678026e-11
plazas	6.680181	5.538462	4.895918	0.8871202	0.9254804	2.386477e-11
longitud	4.650648	450.461538	430.842857	20.3329292	40.5891033	3.308935e-06
ancho	2.722964	171.410256	169.185714	3.8445296	7.8605317	6.469919e-03
peso	2.082021	1237.666667	1174.820408	190.8768341	290.4340320	3.734058e-02
precio	-1.991363	3195.089744	4103.808163	1479.1688864	4390.6834064	4.644105e-02
cilindros	-2.360901	4.307692	4.651020	0.6851482	1.3992159	1.823060e-02
potencia	-5.641361	93.461538	129.785714	23.2393854	61.9533811	1.687114e-08
velocidad	-6.189982	174.166667	192.904082	14.1931878	29.1255022	6.017115e-10
consumo	-6.239268	7.816667	9.449796	1.4727801	2.5184888	4.396224e-10
coste.Km	-9.423250	10.873077	14.389592	2.1790773	3.5905820	4.373356e-21
revoluciones	-12.762547	4661.538462	5507.204082	446.4190193	637.5502695	2.653787e-37

\$category\$`2`

	Cla/Mod	Mod/Cla	Global	p.value	v.test
combustible=Diesel	72.619048	78.20513	17.142857	1.246544e-42	13.685089
marca=MERCEDES	34.883721	19.23077	8.775510	1.375554e-03	3.199732
marca=FIAT	33.333333	11.53846	5.510204	2.202619e-02	2.289916
marca=VOLKSWAGEN	28.205128	14.10256	7.959184	4.263525e-02	2.027266

Interpreting the clusters: Cluster 3

\$quanti\$`3`

	v.test Mean	in category	Overall mean	sd in category	Overall sd p.value
velocidad	9.951965	221.313953	192.904082	12.7737573	29.125502 2.472530e-23
coste.Km	9.594867	17.766279	14.389592	1.7800320	3.590582 8.402550e-22
potencia	9.370500	186.686047	129.785714	30.2475298	61.953381 7.218978e-21
consumo	9.219434	11.725581	9.449796	1.5129815	2.518489 2.986716e-20
longitud	8.553733	464.872093	430.842857	19.5833321	40.589103 1.191699e-17
peso	7.940147	1400.848837	1174.820408	131.7633112	290.434032 2.019420e-15
ancho	7.365595	174.860465	169.185714	4.3056555	7.860532 1.763583e-13
maletero	5.922714	476.895349	402.140816	102.1488915	128.774453 3.166706e-09
cilindros	5.173051	5.360465	4.651020	0.9265187	1.399216 2.303015e-07
cilindrada	4.941457	2609.151163	2146.714286	436.5783320	954.795574 7.754085e-07
revoluciones	4.341334	5778.488372	5507.204082	435.2585905	637.550269 1.416204e-05
precio	3.574222	5641.965116	4103.808163	1538.9088285	4390.683406 3.512710e-04
altura	2.113449	140.372093	139.126531	4.2673627	6.012938 3.456236e-02
poca_aceleracion	-7.960983	8.375581	11.013469	1.1644877	3.380669 1.706774e-15

\$category\$`3`

	Cla/Mod	Mod/Cla	Global	p.value	v.test
combustible=Gasolina	21.182266	100.000000	82.857143	1.604506e-08	5.649997
marca=SAAB	83.333333	11.627907	2.448980	8.829780e-07	4.916072
traccion=Trasera	30.714286	50.000000	28.571429	3.571598e-06	4.634871
marca=BMW	54.545455	13.953488	4.489796	6.862588e-05	3.981000
marca=MASERATI	71.428571	5.813953	1.428571	2.502520e-03	3.023037
marca=AUDI	40.909091	10.465116	4.489796	9.031395e-03	2.610863
traccion=4x4	34.210526	15.116279	7.755102	1.008115e-02	2.573033
marca=MERCEDES	32.558140	16.279070	8.775510	1.241070e-02	2.500246

Interpreting the clusters: Cluster 4

\$quanti\$`4`

	v.test	Mean in category	Overall mean	sd in category	Overall sd	p.value
cilindrada	16.576868	5233.560	2146.714286	1025.4496411	954.7955738	1.024296e-61
cilindros	14.910724	8.720	4.651020	1.9497692	1.3992159	2.806907e-50
peso	12.791944	1899.400	1174.820408	292.0284918	290.4340320	1.818669e-37
consumo	11.959333	15.324	9.449796	1.8524103	2.5184888	5.802591e-33
precio	11.565064	14007.160	4103.808163	7588.2714589	4390.6834064	6.194505e-31
coste.Km	10.427956	21.692	14.389592	1.6289678	3.5905820	1.848205e-25
potencia	9.714175	247.160	129.785714	38.7160742	61.9533811	2.623659e-22
ancho	8.619652	182.400	169.185714	3.3105891	7.8605317	6.715799e-18
longitud	8.493716	498.080	430.842857	18.3213973	40.5891033	2.001325e-17
velocidad	5.312330	223.080	192.904082	15.7020253	29.1255022	1.082325e-07
maletero	2.287851	459.600	402.140816	70.2982219	128.7744531	2.214621e-02
plazas	-2.082688	4.520	4.895918	0.9846827	0.9254804	3.727964e-02
poca_aceleracion	-3.866742	8.464	11.013469	1.1206712	3.3806687	1.102992e-04
revoluciones	-4.883354	4900.000	5507.204082	462.8174586	637.5502695	1.042964e-06

\$category\$`4`

1 2 - 2 1					
	Cla/Mod	Mod/Cla	Global	p.value	v.test
traccion=Trasera	15.0000000	84	28.5714286	5.279000e-09	5.838130
marca=JAGUAR	70.0000000	28	2.0408163	4.109641e-08	5.486074
marca=BENTLEY	100.0000000	16	0.8163265	5.331483e-06	4.551302
marca=CADILLAC	100.0000000	12	0.6122449	1.180197e-04	3.850204
marca=ROLLS ROYCE	100.0000000	8	0.4081633	2.504069e-03	3.022849
combustible=Gasolina	6.1576355	100	82.8571429	7.963883e-03	2.653597
marca=MERCEDES	13.9534884	24	8.7755102	1.949540e-02	2.335920

Interpreting the clusters: Cluster 5

\$quanti\$`5`

	v.test	Mean in category	Overall mean	sd in category	Overall sd	p.value
potencia	8.857332	228.724138	129.785714	80.1476640	61.9533811	8.195195e-19
velocidad	8.823893	239.241379	192.904082	30.6421562	29.1255022	1.105476e-18
precio	8.562100	10881.931034	4103.808163	9090.0777013	4390.6834064	1.108303e-17
revoluciones	6.005900	6197.586207	5507.204082	538.1555676	637.5502695	1.902739e-09
coste.Km	5.848570	18.175862	14.389592	2.9927101	3.5905820	4.958159e-09
consumo	5.494637	11.944828	9.449796	2.6464793	2.5184888	3.915148e-08
cilindrada	4.431033	2909.517241	2146.714286	900.2956074	954.7955738	9.378295e-06
cilindros	3.980317	5.655172	4.651020	2.1699493	1.3992159	6.882333e-05
ancho	3.956505	174.793103	169.185714	9.4773025	7.8605317	7.605424e-05
peso	2.551834	1308.448276	1174.820408	223.1593811	290.4340320	1.071574e-02
poca_aceleracion	-6.839037	6.844828	11.013469	1.2677937	3.3806687	7.972744e-12
maletero	-10.423025	160.137931	402.140816	135.2029698	128.7744531	1.946606e-25
altura	-13.030221	125.000000	139.126531	5.4393204	6.0129376	8.236866e-39
plazas	-16.941596	2.068966	4.895918	0.3649312	0.9254804	2.220202e-64

\$category\$`5`

yearegory 5					
	Cla/Mod	Mod/Cla	Global	p.value	v.test
traccion=Trasera	18.5714286	89.655172	28.5714286	1.983626e-12	7.035630
marca=PORSCHE	100.0000000	13.793103	0.8163265	1.001012e-05	4.416955
marca=FERRARI	100.0000000	13.793103	0.8163265	1.001012e-05	4.416955
marca=MAZDA	50.0000000	13.793103	1.6326531	6.177203e-04	3.423712
marca=LOTUS	100.0000000	6.896552	0.4081633	3.388840e-03	2.930071
combustible=Gasolina	7.1428571	100.000000	82.8571429	3.579073e-03	2.913059
marca=TOYOTA	40.0000000	6.896552	1.0204082	3.201446e-02	2.144230
marca=HONDA	40.0000000	6.896552	1.0204082	3.201446e-02	2.144230

Interpreting the clusters: Cluster 6

\$quanti\$`6`

	v.test 1	Mean in category	Overall mean	sd in category	Overall sd	p.value
poca_aceleracion	11.871210	14.620202	11.013469	3.2806744	3.380669	1.670340e-32
cilindros	-5.418165	3.969697	4.651020	0.1714198	1.399216	6.021373e-08
precio	-6.662166	1474.969697	4103.808163	557.8413383	4390.683406	2.698217e-11
cilindrada	-9.149496	1361.616162	2146.714286	242.3782713	954.795574	5.719957e-20
consumo	-9.310752	7.342424	9.449796	1.1731931	2.518489	1.269302e-20
coste.Km	-9.724837	11.251515	14.389592	1.9569799	3.590582	2.362828e-22
maletero	-9.887118	287.717172	402.140816	72.0712387	128.774453	4.734627e-23
potencia	-11.314732	66.787879	129.785714	16.9808405	61.953381	1.109411e-29
peso	-12.680622	843.838384	1174.820408	89.9461912	290.434032	7.572866e-37
velocidad	-12.933462	159.050505	192.904082	15.3645096	29.125502	2.913970e-38
ancho	-15.047747	158.555556	169.185714	4.9547900	7.860532	3.571948e-51
longitud	-16.037098	372.343434	430.842857	20.6945860	40.589103	7.036695e-58

\$category\$`6`

7 0 0 0 0 0 0 0 1 7 7 0					
	Cla/Mod	Mod/Cla	Global	p.value	v.test
traccion=Delantera	30.448718	95.959596	63.6734694	7.645591e-17	8.336602
marca=PEUGEOT	45.714286	16.161616	7.1428571	4.332600e-04	3.518949
marca=SEAT	70.000000	7.070707	2.0408163	8.712991e-04	3.329091
marca=YUGO	100.000000	4.040404	0.8163265	1.586538e-03	3.158370
marca=LADA	100.000000	3.030303	0.6122449	8.048376e-03	2.650034
marca=INNCOCENTI	100.000000	3.030303	0.6122449	8.048376e-03	2.650034
marca=VOLKSWAGEN	35.897436	14.141414	7.9591837	1.783384e-02	2.369050
marca=SKODA	100.000000	2.020202	0.4081633	4.049080e-02	2.048707

APPLICATION 2: CLUSTERING OF BANK CLIENTS

Clustering of the clients' bank

Clustering as a large data set:

```
# PARTITION OF THE LARGE DATA SET IN A VERY SMALL AND HOMOGENEOUS GROUPS
```

```
> n1 = 400
> set.seed(17)

> k1 <- kmeans(Psi,n1)
> freq <- k1$size

> d2 <- dist(k1$centers)

# HIERARCHICAL CLUSTERING OF THE CENTROIDES OF THE GROUPS

> h2 <- hclust(d2,method="ward.D2",members=freq)
> plot(h2)
> barplot(h2$height[(n1-30):(n1-1)])
```


Number of classes = 7

-50

Psi[, 1]

50

School of Professional & Executive Development

Clustering of the clients' bank

```
CUTTING THE DENDROGRAM
> nc = 7
> c2 <- cutree(h2,nc)</pre>
> cdg <- aggregate((diag(freg/sum(freg)) %*% k1$centers),list(c2),sum)[,2:(nd+1)]</pre>
  # CONSOLIDATION
> k_def <- kmeans(Psi,centers=cdq)</pre>
> k_def$size
                                                                   Clustering of clients
     348 885
               680 3570 3136 1408
                                      468
                                                       8
> perc_expl <- 100*k_def$betweenss/k_def$totss</pre>
> perc_expl
[1] 82.64384
                                                      20
# LETS SEE THE PARTITION VISUALLY
> plot(Psi[,1],Psi[,2],pch=20,col=k_def$cluster,
main="Clustering of clients")
> abline(h=0,v=0,col="gray")
> legend("bottomleft",c("c1","c2","c3","c4","c5",
                                                          c5
"c6", "c7"), pch=20, col=c(1:nc))
                                                          с6
```

Profile of the clients' bank typology

- > cla_def = as.factor(k_def\$cluster)
- > catdes(cbind(cla_def,Xtot_act),1,proba=0.0001)

Cluster 1:

\$quanti\$`1`	v.test Mea	n in category	Overall mean	sd in catego	ory Overall s	d p.value
asseg_apor	72.38993	81.236485	5.537738	20.035	581 19.83818	0.000000e+00
pres_person	-14.71342	5.729976	42.711070	14.714	449 47.6823	1 5.286297e-49
vista	-27.43043	13.265797	72.105607	14.45	718 40.6939	6 1.189432e-165
<pre>\$category\$`1`</pre>		Cla/Mod	Mod/Cla	Global	p.value	v.test
destinacio=de	st_NA	5.110294	79.88506	51.83421 2.9	950950e-28 1	1.023283
contractat=co	ntr_NO	5.110294	79.88506	51.83421 2.9	950950e-28 1	1.023283

Cluster 2:

\$quanti\$`2`	v.test Mean	in category O	verall mean	sd in category	Overall s	sd p.value
pres_person	35.39249	96.997078	42.7110702	9.981124	47.68231	.2 2.228233e-274
asseg_apor	32.01342	25.967040	5.5377381	37.220175	19.83818	32 7.092638e-225
vista	-46.89921	10.713156	72.1056069	16.110658	40.69395	0.000000e+00
\$category\$`2` contractat=co seg_vida=Seg_ destinacio=Mo publicitat=pu	ntr_SI vid_SI biliari	Cla/Mod 16.300692 14.662322 18.591224 13.467449	Mod/Cla 93.107345 55.932203 36.384181 54.463277	Global 48.16579 1.0392 32.16770 1.8096 16.50310 2.8304 34.10195 1.6104	531e-52 123e-51	v.test 30.07467 15.24382 15.06313 12.97896

Cluster 3:

\$quanti\$`3`	v.test Mean	in category	Overall mean	sd in catego	ory Overall so	d p.value
hipoteques	95.139437	89.574859	6.698979	12.889	23.4880	7 0.000000e+00
actiu_total	51.757723	5057.486765	833.079752	4736.752	246 2200.7485	0.000000e+00
pres_person	-18.837684	9.398742	42.711070	12.270	47.6823	1 3.708398e-79
<pre>\$category\$`3</pre>	•	Cla/Mod	Mod/Cla	Global	p.value	v.test
imp_ab_tot=A	b_(8e+03,1e+07]	15.518825	24.85294	10.37637 2.9	994053e-29 1	1.227325
imp_car_tot=	Car_(8e+03,1e+07] 15.370540	24.70588	10.41448 1.5	503094e-28 1	1.083826

Profile of the clients' bank typology

Cluster 4:

toi T.								
\$quanti\$`4`	v.test	Mean in category	overall mea	n sd in ca	tegory	Overall	sd	p.value
vista	47.255794	98.25070368	72.10560	7 8.	103246	40.6939	0.000	000e+00
passiu_total	-14.649240	366.08739496	833.68623	2 996.	749050	2347.7566	1.362	307e-48
asseg_apor	-18.843013	0.45547122	5.53773	8 3.	488705	19.8381	.82 3.353	216e-79
hipoteques	-20.713689	0.08427947	6.69897	9 1.	689753	23.4880	74 2.607	040e-95
actiu_total	-23.684687	124.41092437	833.07975	2 1058.	267719	2200.7485	45 5.1859	34e-124
termini	-30.365122	0.36720489	12.42208	9 3.	154661	29.1999	93 1.5867	62e-202
pres_person	-64.468965	0.91713563	42.71107	0 5.	607045	47.6823	0.000	000e+00
<pre>\$category\$`4`</pre>	•	Cla/Mod	Mod/Cla	Global		p.value	v.test	
destinacio=de	est_NA	61.727941	94.0616246	51.8342068	0.000	0000e+00	Inf	
contractat=co	ontr_NO	61.727941	94.0616246	51.8342068	0.000	0000e+00	Inf	
seg_vida=Seg_	_vid_NO	48.770895	97.2549020	67.8323011	0.000	0000e+00	Inf	
imp_car_tot=0	Car_(0,400]	67.255892	22.3809524	11.3196760	7.5850	074e-137	24.899227	
imp_ab_tot=Ab	_(0,400]	62.857143	18.4873950	10.0047642	2.842	2734e-90	20.147287	
car_ab_period	d=Car-Ab_NO	52.424242	19.3837535	12.5774178	4.696	5186e-49	14.721431	
visa_master=V	/is_Mast_NO	39.907392	65.1820728	55.5597904	1.485	5878e-46	14.326909	
imp_ab_tot=Ab	_(-1,0]	69.375000	6.2184874	3.0490710	4.136	6522e-39	13.082670	
targetes=Targ	g_NO	42.382756	40.7563025	32.7108147	6.159	9494e-36	12.515274	
ofic_rel=of_1	_	39.380863	58.7955182	50.7860886	3.655	5800e-32	11.805507	

Cluster 5:

\$quanti\$`5`	v.test	Mean in category	Overall mean	sd in category	Overall sd	p.value
pres_person	76.149107	97.00771162	42.711070	8.7341854	47.682312	0.000000e+00
vista	44.225020	99.01778360	72.105607	5.0845932	40.693959	0.000000e+00
passiu_total	-16.987526	237.29113520	833.686232	584.6022297	2347.756615	1.015836e-64
asseg_apor	-17.408858	0.37330111	5.537738	2.9994377	19.838182	7.068026e-68
hipoteques	-17.821639	0.43938888	6.698979	3.8071263	23.488074	4.800906e-71
termini	-27.651887	0.34788866	12.422089	3.0541879	29.199993	2.648703e-168
<pre>\$category\$`5`</pre>		Cla/Mod	Mod/Cla	Global	p.value	v.test
contractat=co		60.0593472	96.81122449	48.165793 0.00	0000e+00	Inf
seg_vida=Seg_	_vid_SI	64.0699052	68.97321429	32.167699 0.00	0000e+00	Inf
destinacio=Mo	obiliari	59.6420323	32.94005102	16.503097 2.508	142e-177 28.	392424
destinacio=Ve	ehicles	61.6642959	27.64668367	13.396856 3.589	093e-157 26.	710138
destinacio=Re	este	62.4760077	20.75892857	9.928537 2.047	615e-117 23.	035671
nomina=Nom_Sl	Ι	35.9830952	57.01530612	47.346355 2.263	3459e-38 12.	952865

Profile of the clients' bank typology

Cluster 6:

\$quanti\$`6`	v.test	Mean in category	Overall mean	sd in category	Overall sd	p.value
termini	68.99223	62.3819638	12.4220890	36.159287	29.199993	0.000000e+00
passiu_total	34.21032	2825.4992898	833.6862315	3964.224343	2347.756615	1.698466e-256
fonds_inv	18.93776	7.5294578	1.7929740	24.638903	12.214586	5.571733e-80
interm_pag	12.35292	2.4450159	0.5050847	13.918392	6.332543	4.697298e-35
pres_person	-35.43707	0.8072621	42.7110702	4.720863	47.682312	4.589071e-275
vista	-56.98271	14.5998293	72.1056069	14.363878	40.693959	0.000000e+00
<pre>\$category\$`6`</pre>		Cla/Mod	Mod/Cla	Global	p.value	v.test
destinacio=de	st_NA	24.283088	93.821023 5	51.834207 2.979	693e-298 36	.911881
contractat=co	ntr_NO	24.283088	93.821023 5	51.834207 2.979	693e-298 36	.911881
seg_vida=Seg_	vid_NO	19.230229	97.230114 6	57.832301 9.993	200e-193 29	.613573
edat=65:99_an	iys	34.709193	13.139205	5.078609 4.25	9482e-38 12	.904249

Cluster 7:

ч	<i>*</i> -								
	\$quanti\$`7`	v.test	Mean in	category	Overall mean	sd in cat	tegory Overa	ll sd p.v	<i>r</i> alue
	termini	50.51943		79.07716	12.42209	16.0	29.	19999 0.000000	0e+00
	pres_person	25.19985		97.00451	42.71107	9.3	365102 47.	68231 4.020805	e-140
	vista	-29.72374		17.45117	72.10561	14.7	717436 40.	69396 3.789975	e-194
	<pre>\$category\$`7`</pre>			Cla/Mod	Mod/Cla	Global	p.valu	e v.test	
	contractat=cor	ntr_SI	9	.0801187	98.0769231	48.16579	3.412243e-13	5 24.746132	
	destinacio=Vel	nicles	12	.8733997	38.6752137	13.39686	6.319771e-4	5 14.064014	
	seg_vida=Seg_v	vid_SI	8	.2049763	59.1880342	32.16770	1.136198e-3	4 12.281676	

Classifying 5 new clients

> Xtot sup[,1:17] vista termini divises asseg_apor asseg_mer fonds_inv tit_propis interm_pag renda_fixa renda_var 0 0.00000 0.000000 7901 100.0000000 0 0 0 0 8007 5.4770228 0 0 0 94.52298 0 0.000000 0 8582 4.2401004 0 0 95.75990 0 0.000000 0 8768 100.0000000 0 0 0 0 0.00000 0 0.000000 0 9623 0.2596714 0 0 0 97.34234 0 2.397986 altre_pas hipoteques pres_person tar_credit cmp_credit desc_comer risc_aval 7901 0.2210395 75.45474 24.32422 0 0 0 8007 22.42412 42.7886810 0 34.78720 0 8582 29.56113 31.5434527 38.89542 0 0

0

0

23.10797

0.00000

```
> library(class)
```

0

0

73.44672

0.00000

3.4453058

0.0000000

```
> pred_sup <- knn1(k_def$centers, pc$ind.sup$coord[,1:nd], cl=c("c1","c2","c3","c4","c5","c6","c7"))
```

0

0

```
> pred_sup
```

8768

9623

[1] c4 c2 c2 c3 c6

APPLICATION 3: CLUSTERING OF ZIP DATA

Clustering of zip data

```
# Choosing the number of dimensions from a fixed percentage of inertia
nd <- perc.inertia(90)</pre>
[1] "Percentage of selected inertia = 90"
[1] "Number of selected dimensions = 55"
# Clustering
# Let's compute the matrix of distances
Psi <- zip.pca$ind$coord[,1:55]</pre>
                                                                         Cluster Dendrogram
zip.dist <- dist(Psi)</pre>
                                                     400
# Hierarchical clustering, "ward" method
zip.hclus <- hclust(zip.dist, method="ward.D2")</pre>
                                                     300
# Dendrogram
plot(zip.hclus, cex=0.3)
                                                     200
                                                  Height
                                                     8
```

Cutting the dendrogram in 10 groups

Clustering ZIP data in 10 classes

Since we know there are 10 digits, we cut the dendrogram in 10 classes

Image of the 10 centroides of each cluster

Precision per cluster

> print(data.frame(k.10\$size,predict.class,
precision.pred))

_	_						
	k.10.size	<pre>predict.class</pre>	precision.pred				
1	776	6	68.55670				
2	922	3	59.21909				
3	646	2	86.68731				
4	529	7	83.74291				
5	1073	1	93.28984				
6	589	0	88.96435				
7	727	4	61.34801				
8	567	0	90.47619				
9	816	9	54.41176				
10	646	8	67.02786				
# Error rate							
[1] 0.2536003							

Separate clustering per each digit (except the 1)

Each digit is classified in 4 clusters:

```
while (i <= length(digit)) {</pre>
  Psi diq <- Psi[zip.data[1:N.train,1]==digit[i],]</pre>
  zip.hclus_dig <- hclust(dist(Psi_dig), method="ward.D2")</pre>
  nc diq <- 4
  cut.dig <- cutree(zip.hclus_dig, nc_dig)</pre>
  cdg.nc_dig <- aggregate(as.data.frame(Psi_dig), list(cut.dig), mean)[,2:(nd+1)]</pre>
  k.dig <- kmeans(Psi_dig, centers=cdg.nc_dig)</pre>
  cdg_fin <- rbind(cdg_fin, k.dig$centers)</pre>
  class_fin <- c(class_fin, rep(digit[i], nc_dig))</pre>
```


Images of the centroides per digit

Visualisation of the centroides per digit

Assignement of test digits and precision

```
# Assignemnt of test individuals to the closest centroide
pred_test <- knn1(cdg_fin, zip.pca$ind.sup$coord, class_fin)</pre>
# Confusion table (crossing the true digit with the predicted one)
(conf.table test.original <- table(zip.data[(N.train+1):N,1], pred test original))</pre>
pred_test
          1
      0
                                             9
                                             1
  0 339
          0
      0 250
                           0
  1
                                             3
          0 171
                           1
                                            1
          0
               3 138
                          15
                                             0
                   0 164
                                        0
                                            20
  4
                           1
                       2 138
                   6
                                            3
  6
                            2 160
                   0
                                    0
                                             0
      Ω
               0
                           0
                                0 125
                                           10
                                    0 142
                            5
                                0
                                             4
                                0
                                    6
                                        1 160
# Precision
diag(conf.table_test)/apply(conf.table_test,2,sum)
        0
                                  4
                                        5
                                               6
    0.934 0.977 0.891 0.863 0.863 0.826 0.884 0.906 0.899 0.792
# Error rate
(error_test <- (1-sum(diag(conf.table_test))/nrow(zip.test))*100)</pre>
[1] 10.96163
```

