The Expansion Rate of a Supernova Remnant – partial answer key

There is no full answer key for this investigation. The idea of this exercise is to introduce students to the methods used by scientists to study the expansion of supernova remnants. Students will not have access to all the statistical tools used by scientists and making sure the same spot on a region is being measured from one observation to the next can be tricky. Students are also just looking at a small sample of data.

Estimating the expansion velocity of the forward shock in Cas A:

Here is a screenshot of some sample data taken in this activity with js9 (for images 10 years apart) and the calculations to find the expansion velocity of the forward shock. The region numbers correspond to those in the image and table underneath by <u>Delaney and Rudnick</u>, 2002 which used images 2 years apart.

expansion center (RA)	350.868853	dist, from Earth to Cas A (km)	1.05E+17				
expansion center (dec)	58.81372222	time betw. obs. (s)	316065078				
FORWARD SHOCK					js9 calculated	vel. From	
	distance of region distance of region		expansion	expansion	expansion	DeLaney & Rudnick	
region #	from neutron star 2004	from neutron star 2014	of region	of region	velocity	w/2 yr spread	
	(arc sec)	(arc sec)	(radians)	(km)	(km/s)		
2	151.024801	155.895569	2.36142E-05	2.48E+12	7837	6520	
14	148.072804	150.483595	1.16879E-05	1.23E+12	3879	4511	
4	131.341116	134.73961	1.64764E-05	1.73E+12	5468	5497	
29	166.276767	170.163573	1.88438E-05	1.98E+12	6254	6190	
7	162.343744	165.735595	1.64442E-05	1.72E+12	5458	4956	
28	167.755643	171.642368	1.88434E-05	1.98E+12	6254	6028	
8	150.040802	151.959593	9.30257E-06	9.76E+11	3087	4961	
22	135.284356	138.675631	1.64414E-05	1.72E+12	5457	5764	
20	140.200836	141.135604	4.53189E-06	4.75E+11	1504	2504	
3	135.772816	138.675582	1.4073E-05	1.48E+12	4671	4361	
		470 477744	0.0000.4740	0.705.40	4007	1016	
mean velocity	0	172.177711	0.000834742	8.76E+13	4987	4916	

Fig. 1.— The second epoch Chandra X-ray image of Cas A (log brightness scale) with measured proper motion regions marked.

Table 2. Forward Shock Fragment Measurements

Region	Azimuth (degrees)	Radius (arcsec)	Expansion Rate (% yr ⁻¹)	Expansion Rate Error (% yr ⁻¹)	Radius ^a Velocity ^a (pc) (km s ⁻¹)		Velocity Error ^a (km s ⁻¹)	
1	51.8	167.83	0.196	0.024	2.77	5296	647	
2	38.8	147.59	0.274	0.010	2.43	6520	245	
3	42.0	132.75	0.204	0.036	2.19	4361	763	
4	41.1	126.42	0.270	0.025	2.08	5497	505	
5	37.0	134.91	0.261	0.025	2.22	5668	537	
6	20.8	156.34	0.259	0.037	2.58	6519	930	
7	12.2	158.80	0.194	0.018	2.62	4956	465	
8	1.8	147.42	0.209	0.011	2.43	4961	250	
9	353.0	156.65	0.099	0.022	2.58	2498	561	
10	347.3	157.17	0.186	0.039	2.59	4723	996	
11	347.0	153.00	0.159	0.056	2.52	3929	1376	
12	348.1	145.80	0.167	0.050	2.40	3934	1179	
13	341.2	157.45	0.249	0.041	2.60	6308	1030	
14	338.4	151.01	0.185	0.010	2.49	4511	232	
15	234.3	160.77	0.321	0.053	2.65	8324	1377	
16	208.2	134.96	0.021	0.016	2.22	452	353	
17	192.3	157.12	0.107	0.022	2.59	2722	542	
18	188.9	152.39	0.197	0.060	2.51	4841	1461	
19	186.7	147.30	0.215	0.016	2.43	5106	382	
20	191.4	136.53	0.114	0.020	2.25	2504	435	
21	180.4	132.84	0.197	0.045	2.19	4225	970	
22	175.7	132.22	0.270	0.035	2.18	5764	741	
23	154.2	150.29	0.111	0.042	2.48	2691	1005	
24	152.5	145.90	0.275	0.041	2.40	6459	964	
25	144.7	142.93	0.218	0.030	2.36	5029	686	
26	136.9	154.85	0.246	0.019	2.55	6137	462	
27	125.0	157.73	0.252	0.021	2.60	6404	529	
28	122.8	165.01	0.227	0.027	2.72	6028	729	
29	108.5	162.07	0.237	0.016	2.67	6190	412	
mean		149.18	0.204		2.46	4916		
median		151.01	0.209		2.49	5029		
rms		11.03	0.066		0.18	1623		
error in mean		2.05	0.012		0.03	301		

^aAssuming distance of 3.4 kpc

Estimating the age of Cas A from knots in the jet:

Again, here is a screenshot of some sample data taken in this activity with js9. Please note that these knots are in x-rays whereas the following data from Fesen et al, 2006 examines optical knots.

					js9 calculated	
JETS	distance of region	distance of region	expansion	expansion	expansion	
	from neutron star 2004	from neutron star 2014	of region	of region	velocity	
	(arc sec)	(arc sec)	(radians)	(km)	(km/s)	
	233.074421	242.479035	4.55949E-05	4.78E+12	15133	
	204.390139	208.522523	2.00344E-05	2.10E+12	6649	
	214.6213	219.346496	2.29084E-05	2.40E+12	7603	
	197.994149	204.094541	2.95756E-05	3.10E+12	9816	
				MEAN	9800	
CONCLUSION #3	diameter (arc sec)	radius (rad)	radius (km)	velocity km/	(time (s)	time (y)
CONCLUSION #3						
	300	0.00072722	7.63E+13	9800	7784220517	246.804709
					DATE	1757.19529

From Fesen et al, 2006

"When the proper motion extrapolations are replaced with predicted knot proper motions based solely on March 2004 knot positions and the COE [center of expansion], a structure of opposing jet features and north and south gaps appears even more striking (Fig. 2, bottom panel). The circle in the figure marks a radial 200" from the distance of COE corresponding to a proper motion of 0."625 yr⁻¹ for an age of 320 years and an implied ≈ 10,000 km s⁻¹ transverse velocity assuming a remnant distance of 3.4 kpc."

"Age Estimates Assuming No Knot Deceleration: The average arrival date for the 1825 outer knots with undecelerated extrapolated arrival dates between 1580 and 1750 is 1662±27 yr. This is consistent with that estimated by Thorstensen et al. (2001) who found an undecelerated convergent date of 1671.3±0.9 based on a sample of 17 especially long-lasting knots for which archival imaging data were available covering a time span of up to 50 years."

Fig. 2.— Top: Plot of extrapolated 320 yr proper motions for the 1825 identified outer knots based on actual proper motions measures using the March and December 2004 ACS/WFC data. Central white circle has a radius of 5" and marks the remnant's estimated cente of expansion [Thorstensen et all [200]]. Sottom: Plot of 1825 outer knot positions and their expected motions sway from the remnant's known center of expansion revealing a 'bow-tie' asymmetric structure. Circle represents the radial distance of 200" corresponding to measured proper motion of 0"(5" yr "1 and thus an implied 10,000 km s "1 transverse velocity at the assumed remnant distance of 3.4 kpc