Useful distributions

univariate normal A random variable $X \in \mathbb{R}$ has a $N(\theta, \sigma^2)$ distribution if $\sigma^2 > 0$ and $p(x|\theta,\sigma^2) = (2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2}(x-\theta)^2}$ for $-\infty < x < \infty$.

multivariate normal A random vector $X \in \mathbb{R}^p$ has a $MVN(\theta, \Sigma)$ distribution if $\Sigma > 0$ and $p(x|\theta, \Sigma) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\{-\frac{1}{2}(x-\theta)^T \Sigma^{-1}(x-\theta)\}$

gamma A random variable $X \in (0, \infty)$ has a gamma(a,b) distribution if a > 0, b > 0 and $p(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}$ for x > 0. E[X|a,b] = a/b, $Var[X|a,b] = a/b^2$

inverse-gamma A random variable $X \in (0, \infty)$ has an inverse-gamma(a,b) distribution if 1/X has a gamma(a,b) distribution. If X is inverse-gamma(a,b) then the density of X is $p(x|a,b) = \frac{b}{\Gamma(a)} x^{-a-1} e^{-b/x} \quad \text{for } x > 0.$ $E[X|a,b] = \frac{b}{a-1} \text{ if } a >= 1, \infty \text{ if } 0 < a < 1$ $Var[X|a,b] = \frac{b^2}{(a-1)^2(a-2)}$ if $a \ge 2, \infty$ if 0 < a < 2

inverse-Wishart A random $p \times p$ matrix Σ has an inverse-Wishart distribution if $p(\Sigma|\nu_0,S_0^{-1}) \propto |\Sigma|^{-(\nu_0+p+1)/2} \times \exp\{-\tfrac{1}{2}tr(S_0\Sigma^{-1})\}.$

- the support is $\Sigma > 0$ and Σ symmetric $p \times p$ matrix. $\nu_0 \in \mathbb{N}^+$ and $\nu_0 \geq p$. S_0 is a $p \times p$ symmetric positive definite matrix.
- $E[\Sigma^{-1}] = \nu_0 S_0^{-1}$ and $E[\Sigma] = \frac{1}{\nu_0 \nu_0 1} S_0$.

binomial A random variable $X \in \{0, 1, ..., n\}$ has a binomial (n, θ) distribution if $\theta \in [0, 1]$ and $p(X = x | \theta, n) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} \quad \text{for } x \in \{0, 1, \dots, n\}$ $E[X | \theta] = n\theta, \ Var[X | \theta] = n\theta (1 - \theta)$

beta A random variable $X \in [0,1]$ has a beta(a,b) distribution if a > 0, b > 0 and
$$\begin{split} p(x|a,b) &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \quad \text{ for } 0 \leq x \leq 1. \\ E[X|a,b] &= \frac{a}{a+b}, \ Var[X|a,b] = \frac{ab}{(a+b+1)(a+b)^2} \end{split}$$

$$E[X|a,b] = \frac{a}{a+b}, Var[X|a,b] = \frac{ab}{(a+b+1)(a+b)^2}$$

Poisson A random variable $X \in \{0, 1, 2, ...\}$ has a Poisson(θ) distribution if $\theta > 0$ and $p(X = x|\theta) = \theta^x \frac{e^{-\theta}}{x!} \quad \text{for } x \in \{0, 1, 2, \ldots\}$ $E[X|\theta] = \theta, Var[X|\theta] = \theta$

exponential A random variable $X \in [0, \infty)$ has a exponential (θ) distribution if $\theta > 0$ and $p(x|\theta) = \theta e^{-\theta x}$ $E[X|\theta] = \frac{1}{\theta}, \ Var[X|\theta] = \frac{1}{\theta^2}$