Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

increase by 160.5 in WINTER (reference)

Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING

Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER

Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER
- increase by 187.7 (= 160.5 + 27.2) in FALL

EXAMPLE: QUADRATIC EFFECT

Example: Adding quadratic effect for temp

Interpretation: Not linear anymore!

temp depends on two weights:
 280.2 · x_{temp} - 5.6 · x²_{temp}

	Weights
(Intercept)	3094.1
seasonSPRING	619.2
seasonSUMMER	284.6
seasonFALL	123.1
hum	-36.4
windspeed	-65.7
days_since_2011	4.7
temp	280.2
temp ²	-5.6

EXAMPLE: QUADRATIC EFFECT

Example: Adding quadratic effect for temp (left) and interaction with season (right))

	Weights
(Intercept)	3802.1
seasonSPRING	-1345.1
seasonSUMMER	-6006.3
seasonFALL	-681.4
hum	-38.9
windspeed	-64.1
days_since_2011	4.8
temp	39.1
temp ²	8.6
seasonSPRING:temp	407.4
seasonSPRING:temp2	-18.7
seasonSUMMER:temp	801.1
seasonSUMMER:temp2	-27.2
seasonFALL:temp	217.4

seasonFALL:temp2

-11.3

Interpretation: Not linear anymore!

temp depends on multiple weights due to season:

\rightarrow WINTER: 39. $k_{re} x_{temp} + 8.6 \epsilon_{re}^2 x_{temp}^2$
→ SPRING: (39.1+407.) + (8.6-1877) - x ² temp + (8.6-1877) - x ² temp + (8.6-1877) - x ² temp - (8.6-1877) - x ²
→ SUMMER: $1+801.1$) · $x_{temp} + (111-27.2) \cdot x_{temp}^2$
$(39FALB0(1.1) \cdot x_{temp} +)(8.6_{mp}27.1) \cdot x_{temp}^{2} 3) \cdot x_{temp}^{2}$
\rightarrow FALL: (39.1+217.4) $\cdot x_{temp} + (8.6-11.3) \cdot x_{temp}^2$

REGULARIZATION VIA LASSO Tibshirani (1996)

- LASSO adds an L₁-norm penalization term $(\lambda ||\theta||_1)$ to least squares optimization problem
 - Shrinks some feature weights to zero (feature selection)
 - → Sparser models (fewer features): more interpretable
- Penalization parameter λ must be chosen (e.g., by CV)

$$min_{\theta} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \mathbf{x}^{(i)}^{\top} \theta)^{2} + \lambda ||\theta||_{1}}_{\text{Least square estimate for LM}} + \lambda ||\theta||_{1} \right)$$

REGULARIZATION VIA LASSO Tibshirani (1996)

Example (interpretation of weights analogous to LM):

- LASSO with main effects and interaction temp with season.
- λ is chosen → 6 selected features (≠ 0)
- LASSO shrinks weights of single categories separately (due to dummy encoding) → No feature selection of whole categorical features (only w.r.t. category levels)
 - → Solution: group LASSO → Yuan and Lin (2006)

	Weights
(Intercept)	3135.2
seasonSPRING	767.4
seasonSUMMER	0.0
seasonFALL	0.0
temp	116.7
hum	-28.9
windspeed	-50.5
days_since_2011	4.8
seasonSPRING:temp	0.0
seasonSUMMER:temp	0.0
seasonFALL:temp	30.2

