Autoencoder

4. (14 points) Otto N. Coder is exploring different autoencoder architectures. Consider the following autoencoder with input $x \in \mathbb{R}^d$ and output $y^{pred} \in \mathbb{R}^d$. The autoencoder has one hidden layer with m hidden units: $z^{(1)}$, $a^{(1)} \in \mathbb{R}^m$.

$$\begin{split} z^{(1)} &= W^{(1)}x + b^{(1)} \\ a^{(1)} &= f^{(1)}(z^{(1)}) \quad \text{element-wise} \\ z^{(2)} &= W^{(2)}a^{(1)} + b^{(2)} \\ y^{pred} &= f^{(2)}(z^{(2)}) \quad \text{element-wise} \end{split}$$

(a) Assume $x, z^{(2)}$, and y^{pred} have dimensions $d \times 1$. Also let $z^{(1)}$ and $a^{(1)}$ have dimensions $m \times 1$. What are the dimensions of the following matrices?

$W^{(1)}$	$b^{(1)}$	$W^{(2)}$	$b^{(2)}$

Name:	
	_

Otto trains the autoencoder with back-propagation. The loss for a given datapoint x, y is:

$$J(x,y) = \frac{1}{2}||y^{pred} - y||^2 = \frac{1}{2}(y^{pred} - y)^T(y^{pred} - y) \ .$$

Compute the following intermediate partial derivatives. For the following questions, write your answer in terms of x, y, y^{pred} , $W^{(1)}$, $D^{(1)}$, $D^{(2)}$, $D^{(2)}$, $D^{(1)}$, $D^{(2)}$ and any previously computed or provided partial derivative. Also note that:

- 1. Let $\partial f^{(1)}/\partial z^{(1)}$ be an $m \times 1$ matrix, provided to you.
- 2. Let $\partial f^{(2)}/\partial z^{(2)}$ be a $d\times 1$ matrix, provided to you.
- 3. If Ax = y where A is a $m \times n$ matrix and x is $n \times 1$ and y is $m \times 1$, then let $\partial y / \partial A = x$.
- 4. In your answers below, we will assume multiplications are matrix multiplication; to indicate element-wise multiplication, use the symbol *.

Find $\partial J/\partial y^{pred}$,	a <i>a</i> × 1 matri.	х.		

- (c) Find $\partial J/\partial z^{(2)}$, a $d\times 1$ matrix. You may use $\partial J/\partial y^{pred}$ and * for element-wise multiplication.
- (d) Find $\partial J/\partial W^{(2)}$, a $d\times m$ matrix. You may use $\partial J/\partial z^{(2)}$.

(e)	Write the gradient descent update step for just $W^{(2)}$ for one data point (x,y) given learning rate η and $\partial J/\partial W^{(2)}$.
(f)	Otto's friend Bigsby believes that bigger is better. He takes a look at Otto's neural network and tells Otto that he should make the number of hidden units m in the hidden layer very large: $m = 10d$. (Recall that $z^{(1)}$ has dimensions $m \times 1$.) Is Bigsby correct? What would you expect to see with training and test accuracy using Bigsby's approach?
(g)	Otto's other friend Leila says having more layers is better. Let m be much smaller than d . Leila adds 10 more hidden layers all with linear activation before Otto's current hidden layer (which has sigmoid activation function $f^{(1)}$) such that each hidden layer has m units. What would you expect to see with your training and test accuracy, compared to just having one hidden layer with activation $f^{(1)}$?

Name: _____

Name:	
· · · · · · ·	

(h) Another friend Neil suggests to have several layers with non-linear activation function. He says Otto should regularize the number of active hidden units. Loosely speaking, we consider the average activation of a hidden unit j in our hidden layer 1 (which has sigmoid activation function $f^{(1)}$) to be the average of the activation of $a_j^{(1)}$ over the points x_i in our training dataset of size N:

$$\hat{p}_j = \frac{1}{N} \sum_{i=1}^{N} a_j^{(1)}(x_i) .$$

Assume we would like to enforce the constraint that the average activation for each hidden unit \hat{p}_j is close to some hyperparameter p. Usually, p is very small (say p < 0.05).

What is the best format for a regularization penalty given hyperparameter p and the average activation for all our hidden units: \hat{p}_i ? Select one of the following:

- \bigcirc Hinge loss: $\Sigma_j \max(0, (1-\hat{p}_j)p)$
- $\bigcirc \text{ NLL: } \Sigma_j \left(-p \log \frac{p}{\hat{p}_j} (1-p) \log \frac{(1-p)}{(1-\hat{p}_j)} \right)$
- \bigcirc Squared loss: $\Sigma_j(\hat{p}_j p)^2$
- \bigcirc l2 norm: $\Sigma_j(\hat{p}_j)^2$
- (i) Which pass should Otto compute \hat{p}_j on? Select one of the following:
 - O Forwards pass
 - \bigcirc Backwards pass
 - O Gradient descent step (weight update) pass