Mathematik für Informatiker 2 - SS 2024

Studiengang Angewandte Informatik

Gemischte Übungen 4: Differentialrechnung

1. Gemischte Aufgaben: Grundübungen zu den Ableitungsregeln, Regeln auch in Kombination anwenden

Bilden	Bilden Sie die erste Ableitung Strategie / Umformung		Kontrolle
1.1	$f(x) = \frac{x^5}{2} - \frac{2}{x^5} + \frac{5}{x} - \frac{x}{5} + \frac{5}{\sqrt{x}}$		
1.2	$C(t) = (50t + 4)e^{-t}$		$(46-50t)e^{-t}$
1.3	$f(x) = \sqrt{x^3 + 3x^2 + 2}$		$\frac{1}{2} \frac{3x^2 + 6x}{\sqrt{x^3 + 3x^2 + 2}}$
1.4	$f(x) = 2\cos^3(x^4 + 5)$		$-24\cos^2(x^4+5)\sin(x^4+5)x^3$
1.5	$f(x) = \frac{\ln(1-x)}{x^3}$		Ohne Doppelbruch: $-\frac{1}{1-x} \cdot \frac{1}{x^3} - \frac{3\ln(1-x)}{x^4}$
1.6	$f(x) = e^{2^{x^2}}$		$e^{2^{x^2}} \cdot 2^{x^2} \cdot \ln 2 \cdot 2x$
1.7	$f(x) = \frac{e^{0.5x}}{2x^2 + x}$		$\frac{e^{0.5x} (x^2 - 3.5x - 1)}{(2x^2 + x)^2}$
1.8	$f(x) = \frac{2}{(1+3x)^2}$		$\frac{-12}{(1+3x)^3}$
1.9	$f(x) = \frac{5x^3 - 7x^2 + 9}{x^2 - x + 5}$		$\frac{(10x-7)(x^2-5)-(5x^2-7x)(2x)}{(x^2-5)^2}$ 2
1.10	$f(x) = \ln(x^2\sqrt{1 + e^{2x}} \cdot e^{3x})$		$\frac{2}{x} + \frac{e^{2x}}{1 + e^{2x}} + 3$
1.11	$f(x) = \frac{\ln(\cos(3x^2 - 2))}{\ln(x^2)}$		

2. Stetigkeit und Differenzierbarkeit

Sind die folgenden Funktionen auf ihrem Definitionsbereich D stetig? Falls ja, berechnen Sie die erste Ableitung und entscheiden Sie, ob die Funktion nicht differenzierbar, differenzierbar oder sogar stetig differenzierbar ist.

2.1	$f(x) = \begin{cases} x^2 + 1, & x \ge 0 \\ 1, & x < 0 \end{cases}$
2.2	$f(x) = \begin{cases} x^2 + 1, & x < 1 \\ -x(x - 3), & x \ge 1 \end{cases}$
2.3	$f(x) = \begin{cases} \frac{\ln(x)}{x-1}, & x \neq 1\\ 1, & x = 1 \end{cases}$

3. Ableitung von Funktionen mit Parametern (diese seien jeweils so gewählt, dass der Funktionsausdruck wohldefiniert ist)

Bilde die erste Ableitung der Funktion		Strategie / Umformung	Ableitung nach der Variablen
3.1	$f(z) = 2zx^2 - z^3 + z^2 \ln x + x^2 \ln z$		$2x^2 - 3z^2 + 2z \ln x + \frac{x^2}{z}$
3.2	$\frac{d}{dr}a \cdot r^b = ? ; \frac{d}{db}a \cdot r^b = ?$		$a \cdot b \cdot r^{b-1}$; $a \cdot \ln r \cdot r^b$
3.3	$f(t) = Ae^{-\lambda t}\cos\left(\omega t + \frac{5}{6}\pi\right)$		$-Ae^{-\lambda x}\left(\lambda\cos\left(\omega t+\frac{5}{6}\pi\right)+\omega\sin\left(\omega t+\frac{5}{6}\pi\right)\right)$
3.4	$y(t) = Ae^{bt}$		Ableitung steht mit dem Original in Beziehung: $\dot{y} = b \cdot y$
3.5	$y(t) = S - Ae^{-bt}$		Ableitung steht mit dem Original in Beziehung: $\dot{y} = b \cdot (S - y)$
3.6	$y(t) = \frac{S}{1 + Ae^{-bt}}$		Ableitung steht mit dem Original in Beziehung: $\dot{y} = \frac{b}{S} \cdot y \cdot (S - y)$
3.7	$f(x) = e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$		Zeigen Sie: $f'(x) = -\frac{1}{\sigma^2}(x - \mu)f(x)$
3.8	$f(x) = \frac{ax + b}{cx^2 + dx + e}$		$\frac{-acx^2 - 2bcx + ae - bd}{(cx^2 + dx + e)^2}$
3.9	$f(i) = \frac{1}{(1+i)^n} \ (n \in \mathbb{N}_0)$		$\frac{-n}{(1+i)^{n+1}}$

Anstelle von Entfernungen bzw. Änderungsraten zurückgelegter Wegstrecken betrachten wir Bestandsgrößen und deren Änderungsraten. Die folgenden Wachstumsprozesse, die auf $Ae^{\pm bt}$ aufbauen, sind uns schon begegnet. Es sei $y_0 = y(0)$.

Exponentielles Wachstum

$$y(t) = Ae^{bt}$$
 mit $A = y_0$

Wir haben gezeigt:

$$y' = b \cdot y$$
 d.h. $y' \sim y$

Exponentielles Wachstum zeichnet sich dadurch aus, dass die momentane Änderungsrate (Geschwindigkeit der Bestandsentwicklung) proportional ist zum aktuellen Bestand ist.

Exponentielles Wachstum bzw. Zerfall gegen eine Schranke S

$$y(t) = S - Ae^{-bt}$$
 mit $A = S - y_0$

Wir haben gezeigt:

$$y' = b \cdot (S - y)$$
 d.h. $y' \sim S - y$

Exponentielles Wachstum, Zerfall gegen eine Schranke zeichnet sich aus, dass die momentane Änderungsrate proportional ist zu S - f(t), d.h. zum "**Restpotential**" bis zum Erreichen der Schranke.

Logistisches Wachstum gegen eine Schranke S (Verbreitung innovativer Produkte) $y(t) = \frac{S}{1 + Ae^{-bt}} \quad \text{mit} \quad A = \frac{S}{y_0} - 1.$

$$y(t) = \frac{S}{1 + Ae^{-bt}}$$
 mit $A = \frac{S}{y_0} - 1$

Wir haben gezeigt:

$$y' = \frac{b}{S} \cdot y \cdot (S - y)$$
 d.h. $y' \sim y \cdot (S - y)$

Logistisches Wachstum zeichnet sich dadurch aus, dass die Geschwindigkeit des Wachstums stets proportional ist zum Produkt des aktuellen Bestandes f(t) mit dem "Restpotential" S - f(t)

Passende Theorieblöcke in der TeachMatics App

(In der App Suche per Stichwort oder ID)

Wie leitet man ab?

31

Ableiten mit der Konstantenregel

54

Ableiten mit der Faktorregel	109
Ableiten mit der Summenregel	59
Ableiten mit der Potenzregel	56
Ableiten mit der Produktregel	32
Ableiten mit der Quotientenregel	82
Ableiten mit der Kettenregel	33
<u>Logarithmisches Differenzieren</u>	80

Es gibt in der TeachMatics App auch Aufgabenpakete

- Vorbereitungskurs (kostenfrei) > Differential- und Integralrechnung > Differentialrechnung
 - Ableitung elementarer Funktionen
 - o Produktregel
 - o Quotientenregel
 - o Kettenregel
- Analysis (kostenfrei) > Differential- und Integralrechnung > Ableiten