

CLAIMS

What is claimed is:

1. A memory subsystem comprising
two memory devices connected in parallel to a bus,
said bus including a plurality of bus lines for
carrying substantially all address, data and control in-
formation needed by said memory devices,
said control information including device-select
information,
said bus containing substantially fewer bus lines than
the number of bits in a single address, and
said bus carrying device-select information without the
need for separate device-select lines connected directly to
individual memory devices.
2. The memory subsystem of claim 1 wherein said bus
contains at least 8 bus lines adapted to carry at least 16
address bits and at least 8 data bits.
3. The memory subsystem of claim 1 wherein said bus also
includes parallel lines for clock and power.
4. A system comprising
a memory subsystem of claim 1 wherein each bus of said
memory subsystem is connected to its own transceiver device,

a transceiver bus connecting said transceiver devices,
and

5 a means for transferring information between each of
said buses of said memory subsystems and said transceiver
bus, whereby memory subsystems may be integrated into a
larger system having more memory than an individual memory
subsystem.

10 5. The system of claim 4 having a plurality of memory
subsystems.

15 6. The system of claim 4 further comprising a master
device connected to said transceiver bus.

7. The system of claim 6 wherein said master device is
selected from the group consisting of a central processing unit,
a floating point unit and a direct memory access unit.

20 8. The system of claim 4 further comprising a peripheral
device connected to the transceiver bus, said peripheral device
adapted for connection to other devices not on the bus.

25 9. The system of claim 8 wherein said peripheral device is
selected from the group consisting of an I/O interface port, a
video controller and a disk controller.

10. The system of claim 5 wherein said transceiver bus is in a different plane than the plane of the bus of each of said memory subsystems.

5

11. The system of claim 5 wherein the bus of each memory subsystem lies substantially in a subsystem bus plane and said transceiver bus lies substantially in a plane orthogonal to said subsystem bus plane.

10

12. The system of claim 4 having at least two transceiver buses, each transceiver bus having a plurality of memory subsystem buses connected through a first transceiver to said transceiver bus,

15

each of said transceiver buses being further connected to a second transceiver adapted to interface to a second-order transceiver bus, whereby each transceiver bus is connected through said second transceiver to form a second-order transceiver bus unit.

20

13. A semiconductor subsystem bus for interconnecting semiconductor devices comprising
a plurality of semiconductor devices connected in parallel to a bus, at least one of said semiconductor

devices being a memory device or a transceiver device which
in turn is connected to a memory subsystem,

5 said bus including a plurality of bus lines for
carrying substantially all address, data and control
information needed by said semiconductor devices,

said control information including semiconductor
device-select information,

10 said bus containing substantially fewer bus lines than
the number of bits in a single address, and

15 said bus carrying device-select information without the
need for separate device-select lines connected directly to
individual semiconductor devices, and

at least one modifiable register in each of the semi-
conductor devices on said bus, said modifiable registers
being accessible from said bus, whereby the subsystem can be
20 configured using signals transmitted on said bus.

14. The semiconductor subsystem bus of claim 13 wherein one
type of modifiable register is an access-time register designed
25 to store a time delay after which a device may take some
specified action on said bus.

15. The semiconductor subsystem bus of claim 13 further
comprising a semiconductor device having at least two access-time
25 registers and

one of said access-time registers is permanently programmed to contain a fixed value and at least one of said access-time registers can be modified by information carried on said bus.

5 16. The semiconductor subsystem bus of claim 13 further comprising a memory device having at least one discrete memory section and also having a modifiable address register adapted to store memory address information which corresponds to each said discrete memory section.

10 17. The semiconductor subsystem bus of claim 16 wherein said memory address information comprises a pointer to said discrete memory section.

15 18. The semiconductor subsystem bus of claim 16 wherein said discrete memory section has a top and a bottom and said memory address information comprises pointers to said top and said bottom.

20 19. The semiconductor subsystem bus of claim 16 wherein said memory address information comprises
 a pointer to said discrete memory section and
 a range value indicating the size of said discrete
 memory section.

20. The semiconductor subsystem bus of claim 16 wherein
said address registers of each of said discrete memory sections
of each of said memory devices connected to said bus are set to
contain memory address information that is different for each
5 discrete memory section and such that the highest memory address
in each discrete memory section is one less than the lowest
memory address in another discrete memory section,

whereby memory may be organized into one or a small number
of contiguous memory blocks.

10

15

20

21. The semiconductor subsystem bus of claim 16 further
comprising a means for testing each of said discrete memory sec-
tions of each of said memory devices for proper function, and
for each non-functional discrete memory section, a
means for setting at least one address register which
corresponds to said discrete memory section to indicate that
said discrete memory section is non-functional,
for each functional discrete memory section, a means
for setting at least one address register which corresponds
to said discrete memory section to contain such
corresponding address information.

22. The semiconductor subsystem bus of claim 21 wherein
said address registers corresponding to said discrete memory

sections are set to provide one contiguous memory block within the subsystem.

23. The semiconductor subsystem bus of claim 13 wherein one of said modifiable registers is a device identification register which can be modified to contain a value unique to that semiconductor device.

24. The semiconductor subsystem bus of claim 23 wherein said device identification register is set to contain a unique value which is a function of the physical position of that semiconductor device either along said bus or in relationship to other semiconductor devices or said bus.

25. A bus subsystem comprising
two semiconductor devices connected in parallel to a bus, wherein one of said semiconductor devices is a master device,

said master device including a means for initiating bus transactions,

said bus including a plurality of bus lines for carrying substantially all address, data and control information needed by said devices,

said control information including device-select information,

said bus containing substantially fewer lines than the number of bits in a single address, and

said bus carrying device-select information without the need for separate device-select lines connected directly to individual devices on said bus, whereby said master device initiates bus transactions which transfer information between said semiconductor devices on said bus.

26. The bus subsystem of claim 25 wherein one of said conductor devices is a memory device connected to said bus, memory device having at least one discrete memory section also having a modifiable address register adapted to store memory address information which corresponds to each said discrete memory section.

27. The bus subsystem of claim 26 wherein one of said semiconductor devices comprises a transceiver device connected in parallel to said bus and connected in parallel to a memory device on a bus other than said bus.

28. The bus subsystem of claim 26 further including a means for said master device to request said memory device to prepare for a bus transaction by sending a request packet along said bus, said memory device and said master device each having a device-internal means to prepare to begin said bus transaction during a

device-internal phase and further having a bus access means to effect said bus transaction during a bus access phase, said request packet including

5 a sequence of bytes containing address and control information,

10 said control information including information about the requested bus transaction and about the access time, which corresponds to a number of bus cycles, which needs to intervene before beginning said bus-access phase, and

15 said address information pointing to at least one memory location within one of said discrete memory sections of said memory device.

29. The bus subsystem of claim 28 wherein said memory device includes a means to read said control information and initiate said device-internal means at a time so as to complete said device-internal phase within said access time and begin said bus access phase after said number of bus cycles.

20 30. The bus subsystem of claim 28 wherein said control information comprises an op code.

25 31. The bus subsystem of claim 30 wherein said memory device includes sense amplifiers adapted to hold a bit of information or to precharge after a selected time and a means to

transfer a data block during a data block transfer either reading data from said memory device or writing data into said memory device, and

5 wherein said op code instructs said memory device to activate a response means, said response means including a means to

10 initiate a data block transfer,

15 select the size of said data block,

20 select the time to initiate said data block transfer,

25 access a control register, including reading from or writing to said control register,

30 precharge said sense amplifiers after each of said data block transfers is complete,

35 hold a bit of information in each of said sense amplifiers after each of said data block transfers is complete, or

40 select normal or page-mode access.

32. The bus subsystem of claim 31 wherein said data block

45 transfer comprises a read from or a write to memory within a single memory device.

33. The bus subsystem of claim 28 further comprising a means for said master device to send control information to a specific one of said semiconductor devices on said bus by

including in said request packet a device identification number unique to said semiconductor device.

5 34. The bus subsystem of claim 28 further comprising a means for said master device to send control information to a selected one of said discrete memory portions by including in said request packet a specific memory address.

10 35. The bus subsystem of claim 28 further comprising a means for said master device to send control information to substantially all semiconductor devices on said bus by including in said request packet a special device identification number which is recognized by said semiconductor devices.

15 36. The bus subsystem of claim 28 wherein said control information specifies directly or indirectly the number of bus cycles for said master device and said memory device to wait before beginning said bus access phase.

20 37. The bus subsystem of claim 36 wherein, for a data block transfer, said master device and said memory device use the same access time and same data block size regardless of whether said data block transfer is a read or write operation.

38. The bus subsystem of claim 28 wherein said control information further includes a block-size value that encodes and specifies the size of the block of data to be transferred.

5 39. The bus subsystem of claim 38 wherein said block-size value is encoded as a linear value for relatively small block sizes values and is encoded as a logarithmic value for relatively larger block sizes.

10 40. The bus subsystem of claim 38 wherein said block-size value is encoded using four bits, and where the encoded value is

15 Encoded Value

0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	16
10	32
11	64
12	128
13	256
14	512
15	1024

20 Block Size (Bytes)

25 41. The bus subsystem of claim 26 wherein said memory device is a DRAM device containing
30 a plurality of sense amplifiers,
35

5 a means to hold said sense amplifiers in an unmodified state after a read or write operation, leaving the device in page mode,

10 a means to precharge said sense amplifiers and
15 a means for selecting whether to precharge said sense amplifiers or to hold said sense amplifiers in an unmodified state.

20 42. The bus subsystem of claim 28 wherein said request packet comprises an even number of bytes.

25 43. The bus subsystem of claim 28 further including a means for generating and controlling a plurality of bus cycles, during which said bus carries said address, data and control 30 information, and wherein alternate said bus cycles are designated 35 odd cycles and even cycles, respectively, and wherein said request packet begins only on an even cycle.

40 44. The bus subsystem of claim 28 further including a means 45 for generating ECC information corresponding to a block of data and a means for using said ECC information to correct errors in 50 storing or reading said block of data, wherein said ECC 55 information may be stored separately from said block of data.

45. The bus subsystem of claim 44 further comprising at least two of said memory devices wherein said ECC information and said corresponding block of data are stored in a first and a second said memory device, respectively, and said master device includes a means to write or read said block of data with error correction by sending separate ones of said request packets for said ECC information and for said corresponding block of data.

46. A bus subsystem comprising
10 a memory device and a master device connected in parallel on a bus,

15 a means for said master device to send a request packet and initiate a bus transaction and

20 a means for said master device to keep track of current and pending bus transactions,

25 said bus including a plurality of bus lines for carrying substantially all address, data and control information needed by said memory devices,

30 said bus containing substantially fewer lines than the number of bits in a single address, and

35 said bus carrying device-select information without the need for separate device-select lines connected directly to individual devices on said bus, whereby said master device initiates bus transactions which transfer information 40 between devices on said bus and collisions on said bus are

avoided because said master device avoids initiating bus transactions which would conflict with current or pending bus transactions.

5 47. The bus subsystem of claim 46 having at least two of
 said master devices and including

a collision detecting means whereby a first said master device sending a first said request packet can detect a second said master device sending one of said colliding request packets, where one of said said colliding request packet may be sent simultaneous with the initial sending of or overlapping the sending of said first request packet, and

an arbitration means whereby said first and said second master devices select a priority order in which each of said master devices will be allowed to access said bus sequentially.

48. The bus subsystem of claim 47 wherein each of said master devices has a master ID number and each of said request packets includes a master ID position which is a predetermined number of bits in a predetermined position in said request packet, and wherein said collision detection means comprises a means included in each master device for sending a request packet including said master ID number of said

5 master device in said master ID position of said request packet and

10 a means to detect a collision and invoke said arbitration means if any master device detects any other master ID number in said master ID position.

15 49. The bus subsystem of claim 47 wherein each of said master devices includes

20 a means for sending a request packet,
a means for driving a selected bus line or lines during at least one selected bus cycle while said request packet is being sent,

25 a means for monitoring said selected bus line or lines to see if a said master device is sending a colliding request packet and

30 a means for informing all other master devices that a collision has occurred and for invoking said arbitration means.

35 50. The bus subsystem of claim 47 wherein each of said master devices includes

40 a means, when sending a request packet, to drive a selected bus line or lines with a certain current during at least one selected bus cycle,

5 a means for monitoring said selected bus line or lines for a greater than normal current to see if another master device is driving that line or lines,

10 a means for detecting said greater than normal current, and

15 a means for informing all said master devices that a collision has occurred and for invoking said arbitration means.

20 51. The bus subsystem of claim 47 wherein said arbitration means comprises

25 a means for initiating an arbitration cycle,

30 a means for allocating a single bus line to each master device during at least one selected bus cycle relative to the start of said arbitration cycle,

35 a means for allocating each master device to a single bus line during one of said selected bus cycles if there are more master devices than available bus lines,

40 a means for each of said master devices which sent a colliding request packet to drive said bus line allocated to said master device during said selected bus cycle, and

45 a means in at least one of said master devices for storing information about which master devices sent a colliding request packet,

whereby said master devices can monitor selected bus lines during said arbitration cycle and identify each said master device which sent a colliding request packet.

5 52. The bus subsystem of claim 47 wherein said arbitration means comprises

a means included in a first one of said master devices which sent colliding request packets for identifying each of said master devices which sent colliding request packets,

10 a means for assigning a priority to each said master device which sent a colliding request packet, and

15 a means for allowing each said master device which sent a colliding request packet to access the bus sequentially according to that priority.

53. The bus subsystem of claim 52 wherein said priority is based on the physical location of each of said master devices.

54. The bus subsystem of claim 52 wherein said priority is based on said master ID number of said master devices.

55. The bus subsystem of claim 52 wherein each of said master devices includes a means, when sending a colliding request packet, for deciding which master device can send the next request packet in what order or at what time, whereby no master

device may send a new request packet until responses to each pending request packet have been completed or scheduled.

5 \ 56. A bus subsystem comprising
 a plurality of semiconductor devices connected in
 parallel to a bus,

10 said bus including a plurality of bus lines for
 carrying substantially all address, data and control
 information needed by said semiconductor devices,

15 said control information including device-select
 information,

20 said bus containing substantially fewer lines than the
 number of bits in a single address,

25 said bus carrying said device-select information with-
 out the need for separate device-select lines connected
 directly to individual semiconductor devices,

30 said semiconductor devices including a reset means
 having an input and an output, the output of the reset means
 of one semiconductor device being connected to the input of
 the reset means of the next semiconductor device in series.

35 57. The bus subsystem of claim 56 further including system
 reset means comprising

40 a means for generating a first and a second reset
 signal,

5 a means for passing said first reset signal to a first of said semiconductor devices and then to subsequent ones of said semiconductor devices in series and

5 a means for passing a second reset signal to said first semiconductor device and then to said subsequent semiconductor devices in series,

10 said bus subsystem including one of said semiconductor devices containing

10 a device identification register adapted to contain a number unique to said semiconductor device within said bus subsystem,

15 a device identification register setting means, and

15 a device reset means for resetting said semiconductor device to some desired, known reset state in response to said first reset signal and for setting said device identification register in response to said second reset signal,

20 whereby said bus subsystem can be reset to a known reset state with a unique device identification value in said device identification register of each of said semiconductor devices.

25 58. The bus subsystem of claim 57 wherein said desired,

known reset state is where all registers in the semiconductor device are cleared and the state machines are reset.

59. The bus subsystem of claim 57 wherein said device identification register setting means comprises

- a means for detecting said second reset signal,
- a means for reading a device identification number from said bus lines at a specific time relative to said second reset signal and
- a means for storing said device identification number in said device identification register of said semiconductor device.

10 60. The bus subsystem of claim 57 wherein said second reset signal comprises multiple pulse sequences and wherein said device identification setting means includes

- a means for interpreting said pulse sequences as a device identification number and
- a means for storing said device identification number in said device identification register of said semiconductor device.

15 20 61. The bus subsystem of claim 57 wherein said device reset means comprises an n-stage shift register capable of storing n-bit values, wherein said device reset means interprets a specific value in said shift register as said first reset signal and

interprets a specific value in said shift register as said second reset signal.

5 62. The bus subsystem of claim 57 wherein one of said semiconductor devices is a master device, said master device including a means for generating said first and said second reset signals.

10 63. The bus subsystem of claim 57 wherein one of said semiconductor devices is a master device, said master device including

15 a master ID register,
 a means for assigning a master ID number to said master device and
 a means for storing said master ID number in said master ID register.

20 64. The bus subsystem of claim 63 further comprising a second one of said master devices, and a means for a first one of said master devices to assign a master ID number to substantially all other said master devices, whereby said first master device assigns one of said master ID numbers to each of said master devices on said bus subsystem and each said master device stores said assigned master ID number in said master ID register.

5 65. The bus subsystem of claim 57 wherein one of said semiconductor devices includes a device-type register adapted to contain an identifier characteristic of that type of semiconductor device, and one or more modifiable registers, at least one of which is an access-time register adapted for storing access times.

10 66. The bus subsystem of claim 65 wherein one of said semiconductor devices is a master device having
15 a means for selecting a semiconductor device,
a means for reading said device-type register of said selected semiconductor device,
a means for determining the device type of said selected semiconductor device,
a means for determining access-time values appropriate for said selected semiconductor device and for storing said access-time values in said access-time registers of said selected semiconductor device, and
20 a means for selecting and storing other values appropriate for said selected semiconductor device in corresponding registers of said selected semiconductor device,
25 whereby said master device can select a semiconductor device, determine what type it is, and set said access-time and other registers to contain appropriate values.

5 67. The bus subsystem of claim 66 further comprising a memory device having at least one discrete memory section and at least one modifiable address register adapted to store memory address information which corresponds to each of said discrete memory sections, and

10 said master device further comprising a means for selecting and testing each of said discrete memory sections and a means for storing address information in said address registers corresponding to each of said discrete memory sections, whereby said master device can test all said discrete memory sections and assign unique address values thereto.

15 68. A bus subsystem comprising

20 two semiconductor devices connected in parallel to a bus, one of said semiconductor devices being a master device,

25 said bus including a plurality of bus data lines for carrying substantially all address, data and control information needed by said semiconductor devices,

30 said control information including device-select information,

35 said bus containing substantially fewer of said bus data lines than the number of bits in a single address, and

said bus carrying device-select information without the need for separate device-select lines connected directly to individual semiconductor devices,

wherein all of said bus data lines are terminated transmission lines and all of said address, data and control information is carried on said bus data lines as a sequential series of bits in the form of low-voltage-swing signals.

69. The bus subsystem of claim 68 further comprising a conductor device including a current-mode driver connected to one of said bus data lines.

70. The bus subsystem of claim 69 further comprising a conductor device having a means to measure the voltage of low-voltage-swing signals on a selected one of said bus data lines, whereby said semiconductor device can determine whether one, or more than one of said current-mode drivers are driving said selected bus data line.

71. The bus subsystem of claim 70 further comprising a semiconductor device having a plurality of input receivers connected to one of said bus data lines, and

5 a selection means for selecting said input receivers
one by one to sense and store, one at a time, the bits of
said sequential series of bits.

10 5 72. The bus subsystem of claim 70 further comprising a
semiconductor device having two input receivers connected to one
of said bus data lines.

15 10 73. A bus subsystem comprising
two semiconductor devices connected in parallel to a
bus having a first and a second end, said bus including a
bus clock line, said bus clock line having first and second
ends corresponding to said first and second ends of said
bus, respectively,

20 15 a clock generator connected to said first end of said
bus clock line to generate early bus clock signals with a
normal rise time, and

25 20 signal return means at said second end of said bus
clock line to return said early bus clock signals to said
first end of said bus as corresponding late bus clock
signals,

25 whereby each of said early bus clock signals will
propagate from said clock generator along said clock line
starting from said first end to said second end of said bus
and then return at a later time to said first end of said

bus as a corresponding late bus clock signal, whereby each semiconductor device on said bus can detect said early bus clock signals and said corresponding late bus clock signals.

5 74. The bus subsystem of claim 73 further comprising a

first and a second said bus clock line having first and second

ends at said first and said second ends of said bus,

respectively, wherein said signal return means directly connects

said second ends of said first and said second bus clock lines

10 whereby each of said early bus clock signals will propagate from

said clock generator at said first end of said bus along said

first bus clock line to said second end of said bus and then

return on said second bus clock line to said first end of said

bus as one of said corresponding late bus clock signals.

15 75. The bus subsystem of claim 73 wherein said signal

return means comprises said first bus clock line without a line

terminator at said second end thereof whereby each of said early

bus clock signals reaching said second end of said first bus

20 clock line will be reflected back along said first bus clock line

as said corresponding late bus clock signals.

76. The bus subsystem of claim 73 further comprising
a means for operating said bus in bus cycles timed to
have a certain bus cycle frequency and a corresponding bus
cycle period and

5 a means for operating said clock generator with a
period of twice the bus cycle period.

77. The bus subsystem of claim 76 wherein said bus cycle
frequency is greater than approximately 50 MHz and less than or
10 equal to approximately 500 MHz.

78. The bus subsystem of claim 73 further including a
semiconductor device having an internal device clock generating
means to derive the midpoint time between said early and
15 corresponding late bus clock signals and to generate an internal
device clock synchronized to said midpoint time.

79. The bus subsystem of claim 73 further including a
semiconductor device having a low-skew clock generator circuit
20 comprising

a first delay line having an input, an output and a
basic delay and means for synchronizing the output of said
first delay line with said early bus clock signal,

25 a second delay line having said basic delay plus a
variable delay, said second delay line having an output and

a means for synchronizing the output of said second delay line with said late bus clock signal, and

5 a third delay line having a third delay and a means to set said third delay midway between the delays of said first and second delay lines, said third delay line having an output which provides an internal device clock signal synchronized to a time halfway between said early and said late bus clock signals.

10 80. The bus subsystem of claim 73 wherein said early and said late bus clock signals are low-voltage-swing signals that transition cyclically between low and high logical values, and further including a semiconductor device having a low-skew clock generator circuit comprising

15 a DC amplifier to convert said early and said late bus clock signals into full-swing logic signals,

a first variable delay line having a first variable delay and an input and an output, the input of said first variable delay line being connected to said DC amplifier

20 a first, a second and a third additional delay line, each having an input and an output, the input of each of said additional delay lines being connected to the output of said first delay line,

25 said first additional delay line having a fixed delay,

5 said second additional delay line having said
fixed delay plus a second variable delay, and
 said third additional delay line having said fixed
delay plus one half of said second variable delay,
10 a first clocked input receiver connected to sample said
early bus clock signal and gated by said output of said
first additional delay line,
 a means for adjusting said first variable delay so said
first clocked input receiver samples said early bus clock
signal just as said early bus clock signal transitions,
15 a second clocked input receiver connected to sample
said late bus clock signal and gated by said output of said
second additional delay line,
 a means for adjusting said second variable delay so
said second clocked input receiver samples said late bus
clock signal just as said late bus clock signal transitions,
 whereby said output of said third additional delay line
is synchronized to a time halfway between said outputs of
said first and said second additional delay lines, and said
output of said third additional delay line provides an
internal device clock signal.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420

a first one of said low-skew clock generator circuits which generates a "true" internal device clock signal and

a second one of said low-skew clock generator circuits connected to generate a "complement" internal device clock signal synchronized with but opposite in logical value to said "true" internal device clock signal.

82. A DRAM device designed to be connected to an external having a plurality of bus lines for carrying substantially address, data and control information needed by said DRAM ce as a sequential series of bits, said control information uding device-select information, said external bus containing tantly fewer said bus lines than the number of bits in a le address, and said bus carrying device-select information out the need for separate device-select lines connected ctly to said DRAM device, said DRAM device comprising an array of memory cells connected in rows and columns, each of said memory cells adapted to store one of said bits, a row address selection means for selecting one of said rows.

a column sense amp connected to each of said columns, each of said column sense amps adapted to latch one of said

bits as a binary logical value or to precharge to a selected state,

5 a column decoding means connected to each of said column sense amps for selecting a plurality of said column sense amps for inputting one of said bits to or outputting one of said bits from said memory cells,

10 an internal I/O bus having a plurality of internal I/O lines wherein each of said internal I/O lines is connected to a plurality of said column sense amps, and

15 a plurality of bus connection means designed to connect said internal I/O lines to said external bus,

20 whereby a selected bit of said sequential series of bits can be transferred from said external bus to a selected one of said memory cells or said bit contained in a selected one of said memory cells can be transferred to said external bus.

83. The DRAM device of claim 82 further comprising
25 an output driver connected to one said bus connection means,

30 an output multiplexer having an output connected to said output driver and a plurality of inputs, each of said inputs being connected to one of said internal I/O lines, and

5 a control means to select whether said output driver can drive said external bus,

5 whereby a plurality of memory cells are selected using said row address selection means and said column decoding means and a plurality of bits contained in said plurality of memory cells are output through said column sense amps to said internal I/O bus to said output multiplexer to said output driver to said external bus.

10 84. The DRAM device of claim 82 further comprising

10 a plurality of input receivers connected to one of said bus data lines and to said internal I/O bus,

15 a selection means for selecting said input receivers one by one to sense and store, one at a time, the bits of said sequential series of bits, and

20 a control means to select whether an input receiver can drive said internal I/O bus, whereby a bit of said sequential series of bits is input from said external bus through one of said input receivers to one of said internal I/O lines to one of said column sense amps to one of said memory cells.

85. The DRAM device of claim 82 further comprising
a first and a second half-array of said memory cells
wherein each said row of said array of said memory cells is
subdivided into two parts,

5 a first and a second one of said internal I/O buses
connected to said column sense amps in said first and said
second half-arrays, respectively, and

10 a column decoder means to gate selected ones of said
column sense amps connected to said memory cells in a
selected row of said first and said second half-arrays
simultaneously.

15 86. The DRAM device of claim 85 wherein said column decoder
means selects sixteen column sense amps at a time.

20 87. The DRAM device of claim 82 wherein said external bus
operates at a certain speed and wherein said DRAM device includes
four of said internal I/O buses, each of which operates at one-
fourth the speed of said external bus.

88. The DRAM device of claim 82 further comprising
a means for precharging one of said column sense amps
to a precharged state from which a binary logical value can
quickly be loaded into said column sense amp,

if said column sense amp contains a binary logical value, a means for latching the logical value currently contained in said column sense amp and

5 a means for instructing said DRAM device to precharge said column sense amp or latch said binary logical value in said column sense amp.

89. The DRAM device of claim 88 further comprising a means for instructing said DRAM device to precharge said column sense 10 amp without further instruction whenever said row address selection means selects a different one of said rows.

90. The DRAM device of claim 88 further comprising a means for instructing said DRAM device to precharge said column sense 15 amp without further instruction at a first or a second preselected time after latching the latest said binary logical value, said first preselected time being long enough for said DRAM to latch said binary logical value into said column sense amp and transfer said binary logical value into memory or onto one of said internal I/O lines, and said second preselected time being a variable which can be stored in said DRAM device whereby 20 said DRAM can latch a binary logical value into said column sense amp for transferring said binary logical value into or out of a selected said memory cell, then precharge to allow a faster 25 subsequent read or write.

5 91. A package containing

a semiconductor die having a side, circuitry and a plurality of connecting areas positioned along or near said side, spaced at a selected pitch and connected to said circuitry,

10 said package comprising a plurality of bus connecting means for connecting to a plurality of external bus lines, each of said external bus lines corresponding to one of said connecting areas, each of said bus connecting means being

15 positioned on a first side of said package,

connected to one said external bus line and to said corresponding connecting area on said semiconductor die, and

20 spaced at a pitch substantially identical to said selected pitch of said connecting areas, whereby each of said external bus lines can be connected to said corresponding connecting area on said semiconductor die by bus connection means positioned along a single side of said package.

25 92. The package of claim 91 further comprising a plurality of said bus connecting means wherein each of said bus connecting means includes

a pin adapted for connection to one of said external bus lines and

5 a wire connecting said pin to one of said connecting areas on said semiconductor die,
said wire having an effective lead length less than about 4 millimeters and wherein the effective lead length of said wire of each of said bus connection means for said package is approximately equal.

93. A plurality of packages of claim 91 wherein at least

10 two of said semiconductor die are memory devices, each of said packages being generally flat, having a top and a bottom, and wherein

15 said packages are physically secured adjacent and parallel to each other in a stack,

20 where a first one of said packages is adjacent to a second one of said packages in said stack, said top of said first package is substantially aligned with said bottom of said second package, and

25 said bus connecting means of each of said packages are substantially aligned and are lying substantially in a plane.

94. The plurality of packages of claim 93 further comprising a plurality of stacks wherein each of said bus connecting means can be electrically connected to corresponding said bus connecting means in each of said stacks.

95. A semiconductor device capable of use in a semi-conductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes a plurality of bus lines for carrying substantially all address, 5 data, control and device-select information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said 10 semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, said semiconductor device comprising connection means adapted to connect said semiconductor device to said bus, and 15 at least one modifiable identification register accessible to said bus through said connection means, whereby data may be transmitted to said register via said bus and enable said device thereafter to be uniquely identified.

20

96. The semiconductor device of claim 95 wherein said semiconductor device is a memory device which connects substantially only to said bus and sends and receives substantially all address, data and control information over said 25 bus.

97. A semiconductor device capable of use in a semiconductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes a plurality of bus lines for carrying substantially all address, data, control and device-select information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, said semiconductor device comprising connection means adapted to connect said semiconductor device to said bus, and at least one modifiable register to hold device address information, said modifiable register accessible to said bus through said connection means, whereby data may be transmitted to said register via said bus which enables said device thereafter to respond to a predetermined range of addresses.

98. The semiconductor device of claim 97 wherein said semiconductor device is a memory device which connects substantially only to said bus and sends and receives

substantially all address, data and control information over said bus.

5 99. The semiconductor device of claim 98 wherein said memory device has at least one discrete memory section and also has at least one modifiable address register adapted to store memory address information which corresponds to each said discrete memory section.

10 100. The semiconductor device of claim 99 wherein said memory address information comprises a pointer to said discrete memory section.

15 101. The semiconductor device of claim 100 wherein said discrete memory section has a top and a bottom and said memory address information comprises pointers to said top and said bottom.

20 102. The semiconductor device of claim 100 wherein said memory address information comprises a pointer to said discrete memory section and a range value indicating the size of said discrete memory section.

103. A semiconductor device capable of use in a semiconductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes a plurality of bus lines for carrying substantially all address, 5 data and control information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, said semiconductor device comprising

10 connection means adapted to connect said semiconductor device to said bus, and

15 at least one modifiable access-time register accessible to said bus through said connection means, whereby data may be transmitted to said register via said bus which establishes a predetermined amount of time that said semiconductor device thereafter must wait before using said bus in response to a request.

104. The semiconductor device of claim 103 wherein said 20 semiconductor device is a memory device which connects substantially only to said bus and sends and receives substantially all address, data and control information over said bus.

5 105. The semiconductor device of claim 103 further comprising at least two access-time registers and one of said access-time registers is permanently programmed to contain a fixed value and at least one of said access-time registers can be modified by information carried on said bus.

10 106. A semiconductor device capable of use in a semiconductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes
15 a plurality of bus lines for carrying substantially all address, data, control and device-select information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, and wherein each said bus line is a terminated transmission line, said semiconductor device comprising
20 connection means adapted to connect said semiconductor device to said bus, and

 a bus line driver capable of producing a low-voltage-swing signal on one of said terminated transmission lines.

107. The semiconductor device of claim 106 wherein said semiconductor device is a memory device which connects substantially only to said bus and sends and receives substantially all address, data and control information over said bus.

5

108. A semiconductor device capable of use in a semiconductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes a plurality of bus lines for carrying substantially all address, data, control and device-select information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, said bus further including at least one bus clock line for carrying early and late bus clock signals, said semiconductor device comprising

15

20

25

connection means adapted to connect said semiconductor device to said bus, and

an internal device clock generating means which generates an internal device clock synchronized to a time halfway between said early and said late bus clock signals.

109. The semiconductor device of claim 108 wherein said bus further includes a first and a second one of said bus clock lines, said first bus clock line carries said early bus clock signal and said second bus clock line carries said late bus clock signal, said semiconductor device further comprising a means to detect said early bus clock signal on said first bus clock line and a means to detect said late bus clock signal on said second bus clock line.

10 110. The semiconductor device of claim 109 wherein said semiconductor device is a memory device which connects substantially only to said bus and sends and receives substantially all address, data and control information over said bus.

15 111. A semiconductor device capable of use in a semiconductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes a plurality of bus lines for carrying as a sequential series of bits substantially all address, data, control and device-select information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said semiconductor device without the need for a

separate device-select line connected directly to said individual semiconductor device, said semiconductor device comprising

connection means adapted to connect said semiconductor device to said bus,

5 a plurality of input receivers connected to one of said bus data lines and

10 a selection means for selecting said input receivers one by one to sense and store, one at a time, the bits of said sequential series of bits.

15 112. The semiconductor device of claim 111 wherein said semiconductor device is a memory device which connects substantially only to said bus and sends and receives substantially all address, data and control information over said bus.

20 113. The semiconductor device of claim 112 wherein two input receivers are connected to one of said bus lines.

25 114. A semiconductor device capable of use in an architecture for a semiconductor system bus including a plurality of semiconductor devices connected in parallel to a bus wherein said bus system includes a plurality of bus lines for carrying substantially all address, data, control and device-select information needed by said semiconductor device for communication

with substantially every other semiconductor device connected to said system bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, said semiconductor device comprising connection means adapted to connect said semiconductor device to said system bus,

an internal input/output bus within said semiconductor device having more lines than said system bus, and a means for multiplexing the lines of said internal bus to the lines of said system bus, whereby said system bus can run at a higher speed than said internal bus.

115. The semiconductor device of claim 114 wherein said semiconductor device is a memory device which connects substantially only to said system bus and sends and receives substantially all address, data and control information over said system bus.

116. A semiconductor device capable of use in an architecture for a semiconductor system bus including a plurality of semiconductor devices connected in parallel to a bus wherein said system bus includes a plurality of bus lines for carrying substantially all address, data, control and device-select

information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said system bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select 5 information for said semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, said semiconductor device comprising connection means adapted to connect said semiconductor device to said system bus,

10 an internal input/output bus within said semiconductor device having more lines than said system bus,

15 a means for multiplexing the lines of said internal bus to the lines of said system bus, whereby said system bus can run at a higher speed than said internal bus, and at least one modifiable identification register accessible to said system bus through said connection means, whereby data may be transmitted to said register via said system bus and which enables said device thereafter to be uniquely identified.

20

117. The semiconductor device of claim 116 wherein said semiconductor device is a memory device which connects substantially only to said system bus and sends and receives substantially all address, data and control information over said system bus.

118. A semiconductor device capable of use in an

architecture for a semiconductor system bus including a plurality

of semiconductor devices connected in parallel to a bus wherein

said system bus includes a plurality of bus lines for carrying

5 substantially all address, data, control and device-select

information needed by said semiconductor device for communication

with substantially every other semiconductor device connected to

said system bus, and has substantially fewer bus lines than the

number of bits in a single address, and carries device-select

10 information for said semiconductor device without the need for a

separate device-select line connected directly to said individual

semiconductor device, said semiconductor device comprising

connection means adapted to connect said semiconductor
device to said system bus,

15 an internal input/output bus within said semiconductor
device having more lines than said system bus,

a means for multiplexing the lines of said internal bus
to the lines of said system bus, whereby said system bus can
run at a higher speed than said internal bus, and

20 at least one modifiable register to hold device address
information, said modifiable register accessible to said
system bus through said connection means, whereby data may
be transmitted to said register via said system bus which
enables said device thereafter to respond to a predetermined
range of addresses.

119. The semiconductor device of claim 118 wherein said semiconductor device is a memory device which connects substantially only to said system bus and sends and receives substantially all address, data and control information over said system bus.

5

120. The semiconductor device of claim 119 wherein said memory device has at least one discrete memory section and also has at least one modifiable address register adapted to store memory address information which corresponds to each said discrete memory section.

10

15

20

25

121. A semiconductor device capable of use in an architecture for a semiconductor system bus including a plurality of semiconductor devices connected in parallel to a bus wherein said system bus includes a plurality of bus lines for carrying substantially all address, data and control information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said system bus, and has substantially fewer bus lines than the number of bits in a single address, said semiconductor device comprising connection means adapted to connect said semiconductor device to said system bus, an internal input/output bus within said semiconductor device having more lines than said system bus.

a means for multiplexing the lines of said internal bus to the lines of said system bus, whereby said system bus can run at a higher speed than said internal bus, and

5 at least one modifiable access-time register accessible to said system bus through said connection means, whereby data may be transmitted to said register via said system bus which establishes a predetermined amount of time that said semiconductor device thereafter must wait before using said system bus in response to a request.

10 122. The semiconductor device of claim 121 wherein said semiconductor device is a memory device which connects substantially only to said system bus and sends and receives substantially all address, data and control information over said system bus.

15 123. The semiconductor device of claim 121 further comprising at least two access-time registers and one of said access-time registers is permanently programmed to contain a fixed value and at least one of said access-time registers can be modified by information carried on said system bus.

20 124. A semiconductor device capable of use in a semiconductor bus architecture including a plurality of semiconductor devices connected in parallel to a bus wherein said bus includes

a plurality of bus lines for carrying substantially all address, data, control and device-select information needed by said semiconductor device for communication with substantially every other semiconductor device connected to said bus, and has substantially fewer bus lines than the number of bits in a single address, and carries device-select information for said semiconductor device without the need for a separate device-select line connected directly to said individual semiconductor device, wherein said address, data, control and device-select information is carried over said bus in the form of request packets and bus transactions, said semiconductor device comprising

connection means adapted to connect said semiconductor device to said bus,

a means to receive said request packets over said bus,

a means to decode information in said request packets,

and

a means to respond to said information in said request packets.

125. The semiconductor device of claim 124 wherein said means to decode information in said request packet further comprises

a means to identify and decode said control information in said request packet,

a means to identify and decode said device-select information in said request packet,

a means to identify and decode said address information in said request packet and

5 a means to determine whether said control information or said address information instructs said semiconductor device to begin a response.

10 126. The semiconductor device of claim 124 wherein each of said bus transactions is carried out in response to said address and said control information in one of said request packets, and wherein said means to identify and decode information in said request packets includes a means to identify a sequence of bytes on said bus as one of said request packets containing said address and said control information, said control information including information about the type of said bus transaction being requested and the access time which needs to intervene before beginning said bus transaction over said bus and said address and said control information includes device-select 15 information instructing one or more said semiconductor devices to respond to said address and said control information.

20

127. The semiconductor device of claim 124 further comprising

5 a plurality of sense amplifiers adapted to precharge to a selected state or to latch a bit of information,

10 a means to hold said sense amplifiers in an unmodified state after latching one of said bits of information,

15 a means to precharge said sense amplifiers and

20 a means for selecting whether said semiconductor device should precharge said sense amplifiers or should hold said sense amplifiers in an unmodified state.

25 128. The semiconductor device of claim 124 wherein said

30 means to respond to said information, where said information is control information, further comprises a means to

35 transfer a data block during a data block transfer, further including a means to

40 read data from said semiconductor device and

45 write data into said semiconductor device, and

50 initiate a data block transfer,

55 transfer a data block of a selected size,

60 transfer a data block at a selected time,

65 access a control register, including a means to read from or write to said control register, or

70 select normal or page-mode access.

75 129. The semiconductor device of claim 124 further

comprising a means to respond to said information in said request

packet if said information includes a device identification number unique to said semiconductor device.

130. The semiconductor device of claim 124 further comprising a means to respond to said information in said request packet if said information includes a special device identification number which calls for said semiconductor device to respond.

131. The semiconductor device of claim 124 further comprising a means to respond to said information in said request packet if said information includes an address unique to said semiconductor device.

132. The semiconductor device of claim 124 further comprising a means to interpret said control information and decode the time to wait before beginning said bus transaction over said bus.

133. The semiconductor device of claim 124 further comprising a means to interpret said control information and decode the size of a data block to transfer during one of said bus transactions.

134. The semiconductor device of claim 124, 125, 126, 127,

128, 129, 130, 131, 132 or 133 wherein said semiconductor device
is a memory device which connects substantially only to said bus
and sends and receives substantially all address, data and
control information over said bus.

5

135. A semiconductor device capable of use in a semi-

conductor bus architecture including a plurality of semiconductor
devices connected in parallel to a bus wherein said bus includes
a plurality of bus lines for carrying substantially all address,
data, control and device-select information needed by said
semiconductor device for communication with substantially every
other semiconductor device connected to said bus, and has
substantially fewer bus lines than the number of bits in a single
address, and carries device-select information for said
semiconductor device without the need for a separate device-
select line connected directly to said individual semiconductor
device, wherein said address, data, control and device-select
information is carried over said bus in the form of request
packets and bus transactions, said semiconductor device
comprising

connection means adapted to connect said semiconductor
device to said bus,

25

a means to encode address and control information in
said request packets and

a means to send said request packets over said bus.

136. The semiconductor device of claim 135 further

comprising a means to request a bus transaction wherein each of
5 said bus transactions is carried out in response to said address
and said control information in one of said request packets, and
wherein said means to encode information in said request packets
includes a means to mark a sequence of bytes on said bus as one
of said request packets, said control information including
10 information about the type of said bus transaction being
requested and the access time which needs to intervene before
beginning said bus transaction over said bus and said address and
said control information includes device-select information
instructing one or more said semiconductor devices to respond to
15 said address and said control information.

137. The semiconductor device of claim 135 wherein one or

more of said plurality of semiconductor devices has a unique
device identification number, said semiconductor device further
20 comprising a means to send control information to a specific one
of said plurality of semiconductor devices by including in said
request packet a selected said device identification number.

138. The semiconductor device of claim 135 wherein each of

25 said plurality of semiconductor devices is adapted to respond to

a special device identification number, said semiconductor device further comprising a means to send control information to each of said plurality of semiconductor devices by including in said request packet said special device identification number.

5

139. The semiconductor device of claim 135 wherein one or more of said plurality of semiconductor devices is a memory device having a plurality of addresses, said semiconductor device further comprising a means to send control information to a specific address or range of addresses in one of said plurality of semiconductor devices by including said specific address or range of addresses in said request packet.

10

140. The semiconductor device of claim 135 wherein at least one of said request packets is a request packet requesting a bus transaction which is followed by a corresponding one of said bus transactions, said semiconductor device further comprising a means to encode said control information to specify directly or indirectly the time between the end of said request packet requesting a bus transaction and said corresponding bus transaction over said bus.

15

20

25

141. The semiconductor device of claim 140 wherein one type of said bus transactions is a transfer of a data block, said semiconductor device further comprising a means to encode said

control information to specify the size of said data block to transfer.

142. The semiconductor device of claim 140 further

5 comprising a means to keep track of current and pending bus transactions, whereby collisions on said bus are avoided because said semiconductor device avoids initiating bus transactions which would conflict with current or pending bus transactions.

10 143. The semiconductor device of claim 135 wherein said

semiconductor device is a first master device and one of said plurality of semiconductor devices is a second master device, further comprising

15 a collision detecting means whereby said first master device when sending a first one of said request packets can detect said second master device sending a colliding one of said request packets, where said colliding request packet may be sent simultaneous with the initial sending of or overlapping the sending of said first request packet, and

20 an arbitration means whereby said first and said second master devices select a priority order in which each of said master devices will be allowed to access said bus sequentially.

144. The semiconductor device of claim 143 wherein said semiconductor device is a master device and at least one of said plurality of semiconductor devices is a master device, each of said master devices has a master ID number and each of said request packets includes a master ID position which is a predetermined number of bits in a predetermined position in said request packet, and wherein said collision detection means comprises

a means for said semiconductor device to send its master ID number in said request packet and

a means to detect a collision and invoke said arbitration means if said semiconductor device detects any other master ID number in said master ID position.

145. The semiconductor device of claim 144 wherein said system bus architecture includes a means for carrying information on said bus during bus cycles, said semiconductor device further comprising

a means for driving a selected bus line or lines during at least one selected bus cycle while sending each said request packet,

a means for monitoring said selected bus line or lines to see if another said master device is sending one of said colliding request packets and

5 a means for informing all said master devices that a
10 collision has occurred and for invoking said arbitration
15 means.

5 146. The semiconductor device of claim 145 further
10 comprising

15 a means, when sending a request packet, for driving a
20 selected bus line or lines with a certain current during at
least one selected bus cycle,

25 a means for monitoring said selected bus line or lines
30 for a greater than normal current to see if another said
35 master device is driving that line or lines,

40 a means for detecting said greater than normal current,
45 and

50 a means for informing all said master devices that a
55 collision has occurred and for invoking said arbitration
60 means.

65 147. The semiconductor device of claim 143 wherein said
70 arbitration means comprises

75 a means for initiating an arbitration cycle,
80 a means for allocating a single bus line to each said
85 master device during at least one selected bus cycle
90 relative to the start of said arbitration cycle,

5 a means for allocating each said master device to a single bus line during one of said selected bus cycles if there are more master devices than available bus lines,
a means for each of said master devices which sent one of said colliding request packets to drive said bus line allocated to said master device during said selected bus cycle, and

10 a means in at least one of said master devices for storing information about which master devices sent one of said colliding request packets,

15 whereby said master devices can monitor selected bus lines during said arbitration cycle and identify each said master device which sent one of said colliding request packets.

148. The semiconductor device of claim 143 wherein said arbitration means comprises

20 a means for identifying each of said master devices which sent one of said colliding request packets,

a means for assigning a priority to each said master device which sent one of said colliding request packets, and

25 a means for allowing each said master device which sent one of said colliding request packets to access the bus sequentially according to that priority.

25

149. The semiconductor device of claim 143 wherein said priority is based on the physical location of each of said master devices.

5 150. The semiconductor device of claim 143 wherein said priority is based on said master ID number of said master devices.

10

ABR
ABR 617