Primeira Prova de Teoria da Computação Campus de Sorocaba da UFSCar 1 de novembro de 2009 Prof. José de Oliveira Guimarães

Entregue apenas a folha de respostas. As questões não precisam estar em ordem e podem ser respondidas a lápis ou caneta. Na correção, símbolos ou palavras ilegíveis não serão considerados. Justifique todas as respostas a menos de menção em contrário.

Coloque o seu nome na folha de resposta, o mais acima possível na folha, seguido do número da sua coluna de carteiras. A primeira carteira é a mais perto da porta e a última a mais perto das janelas. Não coloque o RA. Se você não quiser que a sua nota seja divulgada publicamente, escreva apenas NÃO depois do número da sua coluna.

Na resposta, coloque todos os passos do seu raciocínio.

- 1. (1.0) Prove que, se L é uma linguagem decidível, L^c é decidível também.
- 2. (2.0) Prove que, se L e K são linguagens decidíveis, L K é decidível.
- 3. (2.0) Cite e explique o Teorema de Church-Turing.
- 4. (2.5) Dada a linguagem $L = \{\langle M; x \rangle : M(x) = 1\}$, prove que:
- (a) (1.0) L é recursivamente enumerável;
- (b) $(1.5) L \notin R$.
- 5. (2.0) Explique como funciona uma MTND. Preferencialmente, faça um pequeno de máquina com uma entrada e explique o seu funcionamento.
- 6. (2.0) Faça uma MT que decida a linguagem $A = \{01^n : n \in \mathbb{N}, n > 0 \text{ e } n \text{ é par } \}$. A cabeça de leitura e gravação, ao início da computação, está sempre na primeira célula da entrada. Vá para o estado q_A se a entrada foi aceita e para q_R se foi rejeitada. Não é necessário escrever 1 e 0 na saída.

Definições básicas

Uma MT é uma 7-tupla $(Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R)$ na qual Q é um conjunto de estados, Σ é o alfabeto da entrada, Γ é o alfabeto da pilha, $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, S, R\}$ é uma função de transição, $q_0 \in Q$ é o estado inicial, $q_A \in Q$ é o estado de aceitação e $q_R \in Q$ é o estado de rejeição. Todos os conjuntos são finitos. A menos de menção em contrário, $\Sigma = \{0,1\}$ e $\sqcup \in \Gamma$. Uma MT M com uma entrada x pode produzir um resultado que será denotado por M(x). Também usamos M(x) para a computação de M com entrada x, a sequência de passos que a máquina realiza quando dada esta entrada. A MT possui uma fita infinita em ambas as direções. Uma MT não determinística (MTND) é uma 7-tupla como uma MT mas na qual a função delta é substituída por uma relação $\Delta \subset Q \times \Gamma \times Q \times \Gamma \times \{L, S, R\}$. Um exemplo de uma instrução de uma MTND pode ser q_01q_10L . Uma MT com k fitas possui instruções do tipo $qs_1 \dots s_k q's'_1 \dots s'_k D_1 \dots D_k$ com o seguinte significado: estando no estado q e as células correntes das k fitas sendo s_1, \dots, s_k , o estado corrente torna-se q', são escritos $s'_1, \dots s'_k$ nas células correntes e a cabeça de leitura/escrita i move-se na direção dada por D_i (que pode ser L, S ou R).

Qualquer subconjunto de Σ^* é chamado de linguagem. Uma linguagem L é recursiva (ou decidível) se existe uma MT M que sempre retorna 0 ou 1 tal que $x \in L$ se e somente se M(x) = 1. Uma linguagem L é recursivamente enumerável (ou Turing reconhecível) se existe uma MT M tal que, se $x \in L$, então M(x) = 1 e se $x \notin L$, então M(x) = 0 ou $M(x) \uparrow$. O conjunto de todas as linguagens recursivas é denotado por R. O conjunto de todas as linguagens recursivamente enumeráveis é denotado por RE. O complemento de uma linguagem L, denotado por L^c é $\Sigma^* - L$. Um enumerador é uma MT capaz de enumerar uma linguagem L da seguinte forma: dado $n \in \mathbb{N}$, $M(n) \in L$ e para todo $x \in L$, existe um $n \in \mathbb{N}$ tal que M(n) = x. Ou seja, M(0), M(1), M(2), \ldots é uma enumeração de L em que os elementos podem estar fora de ordem e podem aparecer elementos repetidos. Se preferir, um enumerador de uma linguagem L pode ser uma MT M que não toma nenhuma entrada e escreve a_0, a_1, a_2, \ldots na fita, em ordem, tal que a_0, a_1, \ldots seja uma lista contendo todos os elementos de L (possivelmente fora de ordem e com elementos repetidos). Dizemos que uma MTND N decide uma linguagem L se $x \in L$ se e somente se existir uma sequência de escolhas não determinísticas tal que N(x) = 1. Isto é, se $x \in L$, então existe uma sequência de escolhas para N(x) tal que N(x) = 1. E se $x \notin L$, nenhuma sequência de escolhas não determinísticas resulta em N(x) = 1.