Data Mining

로지스틱 회귀 과제

2021년 4월 29일

유방암 진단

로지스틱 회귀 분석으로 유방암을 진단해보자.

KNN

나이브 베이즈 성능

로지스틱 회귀 성능

accuracy: 0.9564164648910412

precision: 0.97

recall: 0.7461538461538462

fl_score: 0.8434782608695651

accuracy: 0.965034965034965

precision: 1.0

recall: 0.9019607843137255

fl_score: 0.9484536082474228

1. 데이터셋

위스콘신 유방암 진단 데이터셋 (Wisconsin Breast Cancer Diagnostic dataset)

위스콘신 유방암 진단 데이터셋 (WBCD)

- 위스콘신 대학(University of Wisconsin)의 연구원들이 기부
- 유방암 조직 검사 **569개** 샘플
- 총 **32개 컬럼**으로 구성됨 (ID, 진단 결과, 30 실측값)
- **진단 결과** " M": 악성 (malignant), " B": 양성 (benign)
- 30개 실측값
 - 유방 종양의 미세침 흡인물 이미지에서 측정한 세포핵의 특징
 - 세포핵의 10개 특징에 대한 평균, 표준 오차, 최악의 값(즉, 최댓값)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

위스콘신 유방암 진단 데이터셋 (Wisconsin Breast Cancer Diagnostic dataset)

총 32개 컬럼

속성	설명	타입
id	아이디	int
diagnosis	M, B	char
_mean	평균 (3-12 컬럼)	float
_se	표준 오차 (13-22 컬럼)	float
_worst	최댓값 (23-32 컬럼)	float

10개 특징 별 (평균, 표준 오차, 최댓값)

속성	설명	타입
Radius	반지름	float
Texture	질감 (Gray-Scale 값의 표준 편차)	float
Perimeter	둘레	float
Area	넓이	float
Smoothness	매끄러움 (반지름의 변화율)	float
Compactness	조밀성 (Perimeter²/Area-1)	float
Concavity	오목함	float
Concave points	오목한 점의 수	float
Symmetry	대칭성	float
Fractal dimension	프랙탈 차원	float

데이터셋 다운로드

패키지 임포트

```
import matplotlib.pyplot as plt
import os
from typing import List, Tuple
import csv
from scratch.linear_algebra import Vector, get_column
```

데이터 다운로드

```
import requests

data = requests.get("https://archive.ics.uci.edu/ml/machine-learning-
databases/breast-cancer-wisconsin/wdbc.data")
dataset_path = os.path.join('data', 'wdbc.data')

with open(dataset_path, "w") as f:
    f.write(data.text)
```

• URL에서 데이터를 다운로드해서 'wdbc.data' 파일에 저장

데이터 파싱

회귀 분석을 할 수 있도록 데이터를 벡터 형태로 파싱

데이터 파싱

```
def parse_cancer_row(row: List[str]) -> Tuple[Vector, int]:
    measurements = [float(value) for value in row[2:]]
    label = row[1]
    label = 1 if label == 'M' else 0
    return measurements, label
```

- 레이블을 숫자 타입으로 0과 1로 변경
- 입력 데이터와 레이블을 별도로 반환

데이터 읽기

입력 데이터 X_cance와 레이블 데이터 y_cancer 생성

csv 파일 읽기 및 한 행 씩 파싱

- csv 파일 읽기
- 각 row를 파싱해서 입력 데이터와 타겟으로 분리 (X_cancer, y_cancer)

```
print(X_cancer[0])
print(y_cancer[0])
```

[17.99, 10.38, 122.8, 1001.0, 0.1184, 0.2776, 0.3001, 0.1471, 0.2419, 0.07871, 1.095, 0.9053, 8.589, 153.4, 0.006399, 0.04904, 0.05373, 0.01587, 0.03003, 0.006193, 25.38, 17.33, 184.6, 2019.0, 0.1622, 0.6656, 0.7119, 0.2654, 0.4601, 0.1189]

컬럼 이름

컬럼 이름

```
columns = [
    "radius_mean", "texture_mean", "perimeter_mean", "area_mean", "smoothness_mean",
    "compactness_mean", "concavity_mean", "points_mean", "symmetry_mean", "dimension_mean",
    "radius_se", "texture_se", "perimeter_se", "area_se", "smoothness_se",
    "compactness_se", "concavity_se", "points_se", "symmetry_se", "dimension_se",
    "radius_worst", "texture_worst", "perimeter_worst", "area_worst", "smoothness_worst",
    "compactness_worst", "concavity_worst", "points_worst", "symmetry_worst", "dimension_worst",
]
```

2. 데이터 탐색

데이터 탐색 클래스 비율 확인

레이블 개수 세기

```
$
```

```
from collections import defaultdict
label_type = defaultdict(int)
for y in y_cancer:
    label = 'M' if y == 1 else 'B'
    label_type[label] += 1
```

데이터 탐색 클래스 비율 확인

막대 그래프와 파이 차트 그리기

```
plt.figure(figsize=(8,4))
plt.subplot(1, 2, 1)
plt.bar(label_type.keys(),
        label type.values(),
        0.5,
        facecolor="#2E495E",
                                            # Black edges for each bar
        edgecolor=(0, 0, 0))
plt.xlabel("Diagnosis")
plt.ylabel("# of diagnosis")
plt.title("Cancer diagnosis")
plt.subplot(1, 2, 2)
pies = plt.pie(label_type.values(),
               labels=label type.keys(),
               startangle=90)
plt.legend()
plt.show()
```

데이터 탐색 특징 별 히스토그램

평균

데이터 탐색 특징 별 히스토그램

특징 별로 히스토그램 그리기

```
from matplotlib import pyplot as plt
num_rows = 6
num_cols = 5

fig, ax = plt.subplots(num_rows, num_cols, figsize=(num_cols*4, num_rows*4))
for row in range(num_rows):
    for col in range(num_cols):
        histogram(ax[row][col], num_cols * row + col)
plt.show()
```

특정 컬럼의 특징을 히스토그램으로 그리는 함수

© 2021 SeongJin Yoon. All Rights Reserved.

데이터탐색특징쌍별산포도 평균관련특징만비교

데이터 탐색 특징 쌍 별 산포도

같은 레이블끼리 딕셔너리에 모으기

```
from typing import Dict
points_by_diagnosis: Dict[str, List[Vector]] = defaultdict(list)
for i, x in enumerate(X_cancer):
    y = y_cancer[i]
    label = 'M' if y == 1 else 'B'
    points_by_diagnosis[label].append(x)
```

• points_by_diagnosis 딕셔너리에 같은 레이블 별로 데이터 벡터를 리스트 형태로 모으기

평균 관련 특징의 쌍 만들기

```
start = 0
end = start + 10
pairs = [(i, j) for i in range(start, end) for j in range(i+1, end) if i < j]
marks = ['+', '.']</pre>
```

pairs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]

© 2021 SeongJin Yoon. All Rights Reserved.

데이터 탐색 특징 쌍 별 산포도

9x5 그리드에 그림 그리기

```
from matplotlib import pyplot as plt
num rows = 9
num cols = 5
fig, ax = plt.subplots(num rows, num cols, figsize=(num cols*3, num rows*3))
for row in range(num rows):
    for col in range(num cols):
        i, j = pairs[num cols * row + col]
        ax[row][col].set_title(f"{columns[i]} vs {columns[j]}", fontsize=8)
        ax[row][col].set xticks([])
        ax[row][col].set yticks([])
        for mark, (diagnosis, points) in zip(marks, points by diagnosis.items()):
            xs = [point[i] for point in points]
           ys = [point[j] for point in points]
            ax[row][col].scatter(xs, ys, marker=mark, label=diagnosis)
ax[-1][-1].legend(loc='lower right', prop={'size': 6})
plt.show()
```

© 2021 SeongJin Yoon. All Rights Reserved.

3. 데이터 전처리

데이터셋 분리

데이터셋을 분리하기 전에 상수 항에 대한 입력 1을 추가

입력 데이터에 상수 항에 대한 입력 1 추가

```
X_cancer = [[1.0] + row for row in X_cancer]
```

데이터셋 분리

```
import random
from scratch.machine_learning import train_test_split

random.seed(12)
X_train, X_test, y_train, y_test = train_test_split(X_cancer, y_cancer, 0.25)
print('train dataset :', len(X_train))
print('test dataset :', len(X_test))
```

train dataset : 426 test dataset : 143

© 2021 SeongJin Yoon. All Rights Reserved.

데이터 표준화

훈련 데이터의 평균과 표준 편차로 테스트 데이터를 표준화 하도록 normalization() 함수를 작성해 보시오.

rescale <u>zlez</u> normalization() ez

표준 정규 분포로 정규화

훈련 데이터 및 테스트 데이터 표준화

```
X_train_normed, X_train_means, X_train_stdevs = normalization(X_train)
X_test_normed, _, _ = normalization(X_test, X_train_means, X_train_stdevs)
```

4. 로지스틱 회귀

로지스틱 함수 (Q2)

로지스틱 함수와 미분을 구현해 보시오.

로지스틱 함수

your code

로지스틱 함수의 미분

your code

손실 함수 (Q3)

베르누이 분포의 음의 로그 우도(NLL)로 정의되는 손실 함수를 구현해 보시오.

음의 로그 우도 (NLL : Negative Log Likelihood)

your code

전체 데이터셋에 대해 NLL 합산

your code

손실 함수 미분 (Q4)

24

NLL의 그래디언트를 구현해 보시오.

卫昭盖水.

 β_i 에 대한 NLL 편미분

your code

 $oldsymbol{eta}$ 에 대한 그래디언트

your code

그래디언트 합산

your code

모델 훈련 (Q5)

로지스틱 회귀 모델 학습을 미니배치 경사 하강법으로 구현하시오. 고를 함하 🕍 2년

경사 하강법

```
import random
import tqdm
import IPython.display as display
from scratch.linear_algebra import vector_mean
from scratch.gradient_descent import gradient_step
def logistic regression(xs: List[Vector],
                        ys: List[float],
                        learning_rate: float = 0.001,
                        num steps: int = 1000,
                        batch size: int = 1) -> Vector:
    # your code
    return beta
beta = logistic_regression(X_train_normed, y_train)
```

모델 훈련 (Q5)

단, 훈련 과정에서 loss를 리스트에 모아서 100 epoch 단위로 아래와 같은 성능 그래프를 그려보시오.

힌트

```
import IPython.display as display

if epoch and epoch % 100 == 0:
    display.clear_output(wait=True)
    plt.plot(history)
    plt.show()
```

• Ipython.display를 이용하면 화면의 같은 위치에 그림을 업데이트 할 수 있다.

50472497 506484844 72931

3 = 6

() ... 50 00

로지스틱 회귀

계수 확인

plt.plot(beta)
plt.show()

[0.9647006970633951, -0.2744791809983345, 1.1705597846055091, -0.13143193058226912, 0.041937034495812986, 1.118880058706684, -2.6002755364818713, 2.648345763119501, 1.7613420213919546, -0.6783555523525762, -0.14780116563898843, 2.750892724324039, -0.586916493323834, 2.7665713319886773, 1.9632988879467639, 0.6718442516022319, -1.5364618682467392, -0.21925084354789118, 0.17456308481755253, -2.0285988320556947, -0.9790471815358512, 1.2544327595050775, 1.142928121059567, 1.5810647167021017, 1.3284151036727085, 0.09724373770594201, -0.9819253785814891, 1.2263158746889942, 2.0673973187920915, 1.9725690747854867, 1.7213239854639844]

30×1 IRPH

27

모델 테스트 (Q6)

테스트 데이터를 이용해서 모델 예측을 해보고 TP, FP, FN, TN을 계산해 보시오.

정밀도와 재현율 계산

your code

confusion_matrix = [[TP, FP], [FN, TN]]

모델 성능

정밀도와 재현율 계산

```
from scratch.machine_learning import accuracy, precision, recall, f1_score

print(confusion_matrix)
print("accuracy :", accuracy(TP, FP, FN, TN))
print("precision :", precision(TP, FP, FN, TN))
print("recall :", recall(TP, FP, FN, TN))
print("f1_score :", f1_score(TP, FP, FN, TN))
```

[[46, 0], [5, 92]]

accuracy: 0.965034965034965

precision: 1.0

recall: 0.9019607843137255 f1_score: 0.9484536082474228

© 2021 SeongJin Yoon. All Rights Reserved.

모델 성능

Thank you!

