

16

Kinetic Theory of Gases and Thermodynamics

❖ Boyle's law: If m and T are constant

$$V \propto \frac{1}{P}$$

$$P_1V_1 = P_2V_2$$

❖ Charles's law: If m and P are constant

$$V \propto T$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

❖ Gay-Lussac's law: If *m* and *V* are constant

$$P \propto T$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

 \diamond Avogadro's law: If P, V and T are same

$$N_1 = N_2$$

where, N_1 and N_2 are the number of molecules $V \propto n$ (no. of molecules of gas)

$$\frac{\mathbf{V}_1}{\mathbf{p}} = \frac{\mathbf{V}_2}{\mathbf{p}}$$

❖ Graham's law: If *P* and *T* are constant

rate of diffusion
$$r \propto \frac{1}{\sqrt{\rho}}$$

ρ is density

$$\frac{r_1}{r_2} = \sqrt{-}$$

Dalton's law: $P = P_1 + P_2 + P_3 \dots$

P = Total pressure

 $P_1, P_2, P_3 \dots$ = Pressure exerted by each component present in the mixture.

❖ Ideal gas equation: $PV = nRT = k_R NT$

n = number of moles

N = number of molecules

R = universal gas constant

 k_{R} = Boltzmann's constant

* Pressure exerted by ideal gas

$$P = \frac{1}{3} \frac{mN}{v} \overline{v^2}$$

$$\frac{1}{v^2} = \text{mean square velocity } \left\{ \frac{1}{v^2} = \frac{v_1^2 + v_2^2 + v_3^2 + \dots}{N} \right\}$$

m =mass of each molecule

or
$$P = \frac{1}{3}nm\overline{v^2}$$

n = number density i.e., $n = \frac{N}{V}$

$$V_{rms} = \left(\overline{v^2}\right)^{1/2}$$

K.E. =
$$\frac{3}{2}k_BT = \frac{1}{2}m\overline{v^2}$$

$$\overline{v^2} = \frac{3k_BT}{m}$$

$$\Rightarrow V_{\rm rms} = \sqrt{\frac{3k_BT}{m}}$$

$$V_{av} = \sqrt{\frac{8K_BT}{\pi m}}$$

$$V_{\rm mp} = \sqrt{\frac{2K_BT}{m}}$$

• Mean free path
$$(\overline{l}) = \frac{1}{\sqrt{2}n\pi d^2}$$

n = number density

d = diameter of molecule

 γ = ratio of specific heats

 C_p = specific heat at constant pressure

 C_v = specific heat at constant volume

$$C_p - C_v = R$$

R = universal gas constant

S.No.	Atomicity	No. of degree of freedom	C_{p}	C_{v}	$\gamma = C_P/C_v$
1	Monoatomic	3	$\frac{5}{2}R$	$\frac{3}{2}R$	$\frac{5}{3}$
2	Diatomic	5	$\frac{7}{2}R$	$\frac{5}{2}R$	$\frac{7}{5}$

$$c_{v(\text{mix})} = \frac{n_1 C_{v_1} + n_2 C_{v_2}}{n_1 + n_2}$$

where n_1 and n_2 are number of moles of gases mixed together C_{v_1} and C_{v_2} are molar specific heat at constant volume of the two gas and $C_{v(\text{mix})}$: Molar specific heat at constant volume for mixture.

THERMODYNAMICS

First law of themodynamics

$$\Delta Q = \Delta U + \Delta W$$

* Work done.

$$\Delta W = P \Delta V$$

$$\therefore \Delta Q = \Delta U + P\Delta V$$

* Relation between specific heats for a gas $C_p - C_v = R$

Polytropic Process

It is a thermodynamic process that can be expressed as follows: $PV^x = \text{Constant}$

x (Polytropic exponent)	Type of standard process	Expression
0	Isobaric $(dP = 0)$	P = Constant
1	Isothermal $(dT = 0)$	PV = Constant
γ	Adiabatic $(dQ = 0)$	$PV^{\gamma} = Constant$
∞	Isochoric $(dV = 0)$	V = Constant

Process	Definition	P-V graph	P-T graph	V-T graph
Isothermal	Temperature constant	P_1, V_1 P_2, V_2 V	$P P_1, T P_2, T T$	V_{2}, T V_{1}, T T
Isobaric	Pressure constant	P_0 P, V_1 P, V_2 V	P_0 P, T_1 P, T_2 V	V_2, T_2 V_1, T_1 T
Isochoric	Volume constant	$P \downarrow P_2, T \downarrow P_1, T \downarrow V$	P_{1}, T_{2} P_{1}, T_{1} T	V V T V T T

For Polytropic Process

$$\Delta Q = \Delta U + W$$

$$\Rightarrow nC\Delta T = \frac{f}{2}nR\Delta T + \frac{nR\Delta T}{1-x}$$

$$\Rightarrow C = \frac{f}{2}R + \frac{R}{1-x}$$

For infinitesimal changes in Q, U, and W, we ca write,

$$dQ = dU + dW$$

$$\Rightarrow nCdT = \frac{f}{2}nRdT + PdV$$

$$\Rightarrow C = \frac{f}{2}R + \frac{P}{n}\frac{dV}{dT}$$

[: Work done in a general polytropic process = $[nR\Delta T/(1-x)]$

Process	Equation of State	W	ΔU
Isobaric $(dP = 0)$	$\frac{V}{T} = c$	$P(V_f - V_i) = nR(T_f - T_i)$	$\frac{f}{2}nR(T_f - T_i) = \frac{f}{2}P(V_f - V_i)$
Isochoric $(dV = 0)$	$\frac{P}{T} = c$	0	$\frac{f}{2}nR(T_f - T_i) = \frac{f}{2}V(P_f - P_i)$
Isothermal $(dT = 0)$	PV = c	$nRT \ln \left(\frac{V_f}{V_i}\right) = nRT \ln \left(\frac{P_i}{P_f}\right)$	0
Adiabatic $(dQ = 0)$	$PV^{\gamma} = c$	$\frac{f}{2}nR(T_i - T_f) = \frac{f}{2}(P_iV_i - P_fV_f)$	$\frac{f}{2}nR(T_f - T_i)$

Process	$\Delta \mathcal{Q}$
Isobaric $(dP = 0)$	$\left(\frac{f}{2} + 1\right) nR\Delta T = \left(\frac{f}{2} + 1\right) P(V_f - V_i)$
Isochoric $(dV = 0)$	$\frac{f}{2}nR(T_f - T_i) = \frac{f}{2}V(P_f - P_i)$
Isothermal $(dT = 0)$	$nRT \ln \left(\frac{V_f}{V_i}\right) = nRT \ln \left(\frac{P_i}{P_f}\right)$
Adiabatic $(dQ = 0)$	0

- Slope of adiabatic = γ (slope of isotherm)
- Carnot engine

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$$

$$W = Q_1 - Q_2$$

(efficiency)
$$\eta = \frac{W}{Q_1}$$

Refrigerator

Coefficient of performance is β

$$\beta = \frac{Q_2}{Q_1 - Q_2} = \frac{Q_2}{W}; \ \beta = \frac{1 - \eta}{\eta}$$

Heat pump

$$\alpha = \frac{Q_1}{W} = \frac{Q_1}{Q_1 - Q_2} = \frac{1}{\eta}$$

SUMMARY

- Zeroth law of thermodynamics states that 'two systems in thermal equilibrium with a third system are in thermal equilibrium with each other.
- * Zeroth law leads to the idea of temperature.
- * Heat and work are two modes of energy transfer to the system.

Kinetic Theory of Gases and Thermodynamics

- Heat gets transferred due to temperature difference between the system and its environment (surroundings).
- Work is energy transfer which arises by other means, such as moving the piston of a cylinder containing the gas, by raising or lowering some weight connected to it.
- Internal energy of any thermodynamic system depends only on its state. The internal energy change in a process depends only on the initial and final states, not on the path, i.e. it is state function.
- * The internal energy of an isolated system is constant.
- ❖ (a) For isothermal process $\Delta T = 0$
 - (b) For adiabatic process $\Delta Q = 0$
- * First law of thermodynamics states that when heat Q is added to a system while the system does work W, the internal energy U changes by an amount equal to Q W. This law can also be expressed for an infinitesimal process.
- First law of thermodynamics is general law of conservation of energy.
- Second law of thermodynamics does not allow some processes which are consistent with the first law of thermodynamics.

It states

Clausius statement: No process is possible whose only result is the transfer of heat from a colder object to a hotter object.

Kelvin-Plank statement: No process is possible whose only result is the absorption of heat from a reservoir and complete conversion of the heat into work.

- No engine can have efficiency equal to 1 or no refrigerator can have co-efficient of performance equal to infinity.
- * Carnot engine is an ideal engine.
- The Carnot cycle consists of two reversible isothermal process and two reversible adiabatic process.
- \bullet If Q > 0, heat is added to the system.

If Q < 0, heat is removed from the system.

If W > 0, work is done by the system (Expansion).

If W < 0, work is done on the system (Compression).