

Scanning electron microscopy

Cleaved surface ZnO, TiO₂, NiO, NaCl, Si, Ge, GaAs, InP

Scanning tunneling microscopy

Crystals are build by "small" repeating units (= basis) like atoms and molecules

1. Chemical bonding and crystal structure

1.1 Atoms

$$H = \frac{1}{2m} \vec{p}^2 + V(r)$$

$$\vec{r} = r \cdot \hat{e}_r$$

$$\vec{L} = \vec{r} \times \vec{p} = const.$$

$$\Psi = R_{nl}(r) \cdot Y_{lm}(\vartheta, \varphi)$$

Hydrogen atom

1.1 Atoms

$$V_l = \frac{\hbar^2 l(l+1)}{2mr^2} - \frac{Ze^2}{4\pi\epsilon_0 r}$$

 \Leftrightarrow only for s-waves (I=0) $R_{n0}(r = 0) \neq 0$

1.1 Atoms

m = ±1

$$L^{2}Y_{lm}(\vartheta,\varphi) = \hbar^{2}l(l+1)Y_{lm}(\vartheta,\varphi)$$

$$L_{z}Y_{lm}(\vartheta,\varphi) = \hbar m_{l}Y_{lm}(\vartheta,\varphi)$$

Polar plot

$$|Y_{lm}(\vartheta,\varphi)|^2 = |\Theta_{lm}(\vartheta)|^2$$

22

22

Ni (Z = 28), Z_{eff} = 8, d = 2.49 Å

Radial part of the wavefunction R_{nl} 4s-Welle, R₄₀ 3d-Welle, R₃₂ d/2Distance (Bohr radius - 0.529 Å)

1.1 Atoms

Chemical bonding and Crystal structure

Hydrogen atom

Feinstruktur + Lamb-Verschiebg. + Hyperfein. n=2, l=1 10.950 2P16 1057 MHZ

10950 MHz = 0.045 meV, beachte aber $\Delta E/E \sim Z^2\alpha^2$

1.1 Atoms

Fine structure (
$$\alpha = e^2/4\pi\epsilon_0 \hbar c = 1/137$$
)

corresponds to relativistic corrections which result from Dirac's equation

- Relativistic, kinetic energy
- Spin-orbit coupling (LS coupling)
- ili) Darwin term

$$\Delta E_{rel}/E \propto \alpha^2 Z^2$$

(see, e.g., $p_{1/2}$ - $p_{3/2}$ splitting in Nickel)

Chemical bonding and Crystal structure

1.1 Atoms

i) Relativistic, kinetic energy

$$E = \sqrt{m^2c^4 + p^2c^2} = mc^2(1 + p^2/m^2c^2)^{1/2} \simeq mc^2 + p^2/2m(1 - 1/4(v/c)^2 + \ldots)$$

Estimate of $(v/c)^2$ via uncertainty relation (a = Bohr radius):

$$\langle r \rangle_{nl} = an^2/Z$$

 $\Delta p \simeq \hbar/\Delta x = \hbar Z/a = Zme^2/(4\pi\epsilon_0\hbar)$
 $(v/c)^2 = (p/mc)^2 = (Ze^2/(4\pi\epsilon_0c\hbar))^2 = Z^2\alpha^2$

28

ii) Classical Hamiltonian for the spin-orbit interaction

B field from the proton in the electron's rest frame is

$$\vec{B} = -(\vec{v}/c^2 \times \vec{E})$$

perturbation Hamiltonian

$$H = -\vec{\mu}\vec{B} = g\mu_B/\hbar \ \vec{S} \cdot \vec{B} = -g\mu_B/\hbar \ \vec{S} \cdot (v/c^2 \times E)$$
$$H = -\frac{g}{mc^2}\mu_B/\hbar \ \vec{S} \cdot (p \times \nabla V(r)) = -\frac{g}{mc^2}\mu_B/\hbar \ \vec{S} \cdot (p \times \hat{r}\frac{\partial}{\partial r}V(r))$$

$$H = \frac{g}{mc}\mu_B/\hbar \ \vec{S} \cdot \vec{L} \ \frac{1}{r}\frac{\partial}{\partial r}V(r)$$

$$H = \frac{1}{2} \frac{g}{2mc^2} \frac{e}{2m} \frac{Ze}{4\pi\epsilon_0 r^3} \vec{S} \cdot \vec{L}$$

recall

$$\vec{S} \cdot \vec{L} = (J^2 - L^2 - S^2)/2$$

1.1 Atoms

Chemical bonding and Crystal structure

iii) Darwin term

Flickering motion of electron in nucleus leads to average potential

$$\langle V(x+\delta x)\rangle = V(x) + \langle \delta x \nabla V(x)\rangle + \langle 1/2 \delta x^2 \nabla^2 V(x)\rangle$$

$$\langle H \rangle = E + \langle \Psi_{nl} | 1/2 \delta x^2 \nabla^2 V(x) | \Psi_{nl} \rangle$$

contribution only for s-waves with finite amplitude at x = 0

Valenzniveaus Valenzniveaus 3d9,4s1 3d8,4s2 Nicht die Größe der Bindungsenergie sondern der Grad der Lokalisation der Wellenfunktion entscheidet.

Rumpfniveaus

Chemical bonding and Crystal structure

1.1 Atoms

1.1 Atoms

Hund'sche Regeln für teilweise gefüllte Schalen (Valenzelektronen)

- 1. S maximal
- 2. L maximal
- 3. J = |L-S| für nicht mehr als halbgefüllte Schalen
- 4. J = L+S für mehr als halbgefüllte Schalen

Ni: Ar 3d8 4s2

1.
$$S = 1$$

2.
$$L = 3$$

3.
$$J = 4$$

$$^{2S+1}L_{.1} = ^{3}F_{4}$$

0

32

2S+1L_I He 1s² – excited states

attractive Coulomb interaction: "s-wave in core, p-wave not" 1s 2p 1s 2s (1s)² singulett state antisymmetric 2s+1=3triplett state symmetric

Spatial part accordingly (Hund's rules!)

1.1 Atoms

Chemical bonding and Crystal structure

Aufbauprinzip

H'																						He²
ls		Perio	dic	Table				r Elect neir Gr				ns o	f Ne	utrai								ls²
Li³	Be⁴	The	nota	tion u	sed	to des	cribe	the el	ectron	ie ec	nfigu	ratior	ofa	toms	Bs	C*	T	N ⁷	O*	F		Ne
_		The	lette	ers s,	p, c	ł,	sign	tbooks nify ele	ectron	s ha	ving	orbita	ıl an	gular			2	$2s^{2}2p^{3}$	l. "	ا	² 2p ⁵	2s ² 2
2s	2s2	mom	entu	ım 0,	1, 2	,	in u	nits 析; uantum	the r	iumb ber (er to	the l	eft o	of the		Si	_	28 2p	2s ² 2 S ¹⁶	CI		Ar"
Na¹¹	Mg ¹²	supe	rscri	pt to t	he ri	ght de	note	s the n	umbe	r of e	lectro	ns in	the	orbit.	All	31.		Ρ	3	ال	.	Ar
3s	3s ²														3823	382	$3p^2$	$3s^23p^3$	3s23	p ⁴ 3s	² 3p ⁵	3s ² 3
K19	Ca ²⁰	Sc ²¹	Ti	22 V	23	Cr ²⁴	М	n ²⁵ Fe	26	Co ²⁷	Ni ²⁸	Ci	J ²⁹	Zn ³⁰	Ga ³	Ge	32	As ³³	Se ³⁴	Вг	-35	Kr ³⁴
		3d	30	1 ² 3	d ^a	3ds	34	5 3d	,	3d7	3d*	36	Į 10	3d 10	1	1	- 1		ı		1	
48	4s2	4s2	48		s ²	4 s	48	48	2 4	ls²	4s2	48		4s2	4s24	4s2	$4p^2$	4s24p3	$4s^{2}4$	p ⁴ 4s	$^{2}4p^{5}$	4s24
Rb37	Sr³*	Y 334	Zı	-40 N	b"	Mo12	To	43 Rt	J" F	₹h⁴⁵	Pd	A	947	Cd*	In49	Sn	in	SP	Te ⁵²	Isa		Хe
		4d	40		d4	4d5	44			ld*	4d1			4d 10		1	- 1		l	1		
5s	5s ²	$5s^2$	5s	2 5	s	58	58	_	_	is	Ŀ	5s	-	5s²	5s25	_	-	$5s^25p^3$	-	_	25p5	5s ² 5
Cs55	Ba ⁵⁶	La ⁵⁷	H:		a ⁷³	W74	Re	75 0	B ⁷⁶	F ⁷⁷	Pt ⁷⁸	^	u ⁷⁹	Hg ⁸⁰	TISI	РЬ	82	Bi ⁸³	Pos	' A1	MS.	Rn³
		5d	50	$l^2 = 5$	d^3	5d4	54			5d°	5d9		d 10	5d10		١.,	ا ،	0.20.3			20 5	0.74
6s	6s ²	6s ²	68	6	s ²	6s²	6s	² 6s	<u> </u>		6 s	68		6s²	6s26	68*	6p ²	6s26p3	68*6	p' 6s	*6 <i>p</i> °	68-0
Fr ⁸⁷	Rass	Ac*9	1	Ce ⁵⁸	Pr		ld ⁶⁰	Pm ⁶¹	Sm ⁶	2 E	u ⁶³	Gd ⁶⁴	ТЬ			Ho ⁶⁷	Er			Yb ⁷⁰		J ⁷¹
78	7s²	$\frac{6d}{7s^2}$		4f2	4 <i>f</i>	3 4	f^4	$4f^5$	$4f^6$	4j		4f7 5d	4f' 5d		1f 10	4f11	4f 1	¹² 4j	r13	4f14	4f	C14
18	18	18	┖	6s2	6s	2 6	s ²	6s²	6s2 -	68		5a 6s²	6s2		6s²	6s²	6s²	68	,2	$6s^2$	6s	
				Th‰	Pa		92	Np ⁹³	Pu ⁹⁴			Cm%	Bk	97 (Cf ⁹⁸	Es ⁹⁹	Fm	100 M	d ¹⁰¹	No ¹⁰²	L	103
				- 6d²	5f		f^3	5f 5	5f6	5)		5f7 6d	l	1				- 1	- 1		1	
				$7s^2$	78		s ²	$7s^2$	$7s^2$	78		7s²		1				- 1			1	

1.2 Molecules

bonding (attraction) due to valence electrons Pauli repulsion between neighbouring atoms

\$\infty\$ equilibrium distance r₀ (related to lattice parameter)

1.2 Molecules

Chemical bonding and Crystal structure

Hydrogen ion H₂- $\Psi_{bonding} = c_A \Psi_A + c_B \Psi_B$ Bonding $\Psi_{antibonding} = c_A \Psi_A - c_B \Psi_B$ Antibonding $\Psi_{A,B} = \text{s-wave}$ Antibonding Energy E H_{AA} H_{BB} $c_A = c_B$ **Bonding**

LCAO – linear combination of atomic orbitals

 $\Psi_{A,B}=$ s-wave

1.2 Molecules

 $|c_A| > |c_B|$

 $c_A \Psi_A + c_B \Psi_B$

 $\Psi_{bonding} =$

Chemical bonding and Crystal structure

36

Molecular orbitals (e.g. benzene)

LCAO

Covalent bonding (3-9 eV)

Metalic bonding (1-2 eV)

 $\begin{array}{c} 3s^4\\ \text{band} \end{array}$ $\begin{array}{c} 2p^6\\ 2s^2\\ 1s^2 \end{array}$

1.3 Crystals

Ionic bonding (6 -10 eV)

Hydrogen-bridge bonding (0.1 eV)

Van der Waals bonding (< 0.2 eV)

Chemical bonding and Crystal structure

Covalent bonding

graphite: planar sp^2 structure

diamond, silicon: tetrahedral sp³ structure

Electron density (contour plot)

Ionic bonding - energetics

	ionization energy (eV)	electron affinity (eV)		ionization energy (eV)	electron affinity (eV)
Li	5.39	0.62	F	17.4	3.40
Na	5.14	0.55	CI	13.0	3.61
K	4.34	0.5	Br	11.8	3.36
Rb	4.18		Ι	10.5	3.06

 $Na + Cl \rightarrow Na^{+} + Cl^{-} + 1.53 \text{ eV}$ electrostatic interaction between ions Na⁺ and Cl⁻: 5.1 eV $(r_0 \sim 2.8 \text{ Å})$ total energy gain of 3.57 eV

Nearly spherical charge distributions (closed shell)

Electron density (contour plot)

1.3 Ion Crystals

Chemical bonding and Crystal structure

Ionic bonding - electrostatic energy (Born-Mayer potential)

$$U/N = zBe^{-r/\rho} - A\frac{e^2}{4\pi\epsilon_0 r} , A = \sum_{i \neq j} \frac{\pm 1}{p_{ij}}$$

A Madelung constant, z coordination number

NaCl (
$$z = 6$$
): $A = 1.747565$

CsCl (z=8): A = 1.762675

1.3 Ion Crystals

	r ₀	K	ρ	В	E _{Bino}	_{I.} [eV]
	[Å]	[10 ⁻¹¹ m ² /N]	[Å]	[eV]	Theore- tisch	Experi- mentell
LiF	2,014	1,49	0,291	306	10,70	10,92
LiCl	2,570	3,36	0,330	509	8,55	8,93
NaCl	2,820	4,17	0,322	1090	7,92	8,23
NaBr	2,989	5,03	0,329	1360	7,50	7,82
NaJ	3,237	6,62	0,345	1655	6,96	7,35
KC1	3,147	5,75	0,327	2068	7,17	7,47
KJ	3,533	8,55	0,349	2936	6,43	6,75
RbF	2,815	3,82	0,301	1810	7,99	8,17

Parameters ρ and B of the repulsive potential determined by equilibrium distance r_0 and compressibility κ

Different structures of ionic crystals:

stability depends on the ratio r_A / r_B of ionic radii: $\mathsf{CsCl} \ \leftrightarrow \ \mathsf{NaCl} \ \leftrightarrow$ ZnŚ

1.3 Crystals - metals

Chemical bonding and Crystal structure

Metallic bonding

Overlapping wave functions form delocalized states (Bloch states)

- s electrons of Alkali metals Li, Na, K, Cs, Rb (bcc)
- s,p electrons of 3d metals Fe (bcc), Co (hcp), Ni (fcc), Cu (fcc) (d-electrons add covalent character)

hexagonal hcp

Hydrogen-bridge bonding

<u>Hydrogen:</u> 1s¹, I_0 = 15.6 eV, 'ion core' (proton) with radius ~10⁻¹⁵ m

- Electron transfer to strongly electronegative atoms (F, O, ...)
- Small size of proton leads to hydrogen bond A-H...B between two negatively charged atoms (double well potential)

Water

1.3 Crystals

Chemical bonding and Crystal structure

Hydrogen-bridge bonding

Ice

DNA

1.3 Van der Waals Crystals

Origin: Interplay between attractive (van der Waals) and repulsive forces

- van der Waals interaction:
- zero point fluctuations of electrons lead to induced dipole forces
- Short range repulsive interaction due to Pauli exclusion principle

'Model potential: Lennard-Jones potential

$$U(r) = 4\epsilon \{ (\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6 \}$$

1.3 Rare gas crystals

Chemical bonding and Crystal structure

Ioni-

$$U_{tot}(r) = 2N\epsilon \{A_{12}(\frac{\sigma}{r})^{12} - A_6(\frac{\sigma}{r})^6\}; A_n = \sum_{i \neq j} (\frac{1}{p_{ij}})^n$$

closed packed

fcc (ABC - stacking) $A_{12} = 12.13$; $A_6 = 14.45$ hcp (AB - stacking)

	Nearest- neighbor distance,	coh	rimental esive ergy	- Melting	zation potential of free atom,	
	in Å	kJ/mol	eV/atom	point, K	eV	
He	(liquid	at zero pr	essure)		24.58	hcp
Ne	3.13	1.88	0.02	24	21.56	fcc
Ar	3.76	7.74	0.080	84	15.76	fcc
Kr	4.01	11.2	0.116	117	14.00	fcc
Xe	4.35	16.0	0.17	161	12.13	fcc

1	•
7	

Li 158. 1.63 37.7	Be 320. 3.32 76.5	state	from the er in u	e solid	at 0 I	at	rated ne 1 atm. e, revis	The	data w	ere	supplie	d by	Prof	. Leo	56 5.8 134	1 7.		N 474. 4.92 113.4	0 251 2.60 60.0) (31.0 0.84 19.37	Ne 1.92 0.020 0.46
Na 107. 1.113 25.67	Mg 145. 1.51 34.7	<u>. </u>					eV/a	mol atom /mol		10000			G1/64 02 11 10 5 27	→	327 3.3 78.	9 4.		P 331. 3.43 79.16	\$ 275 2.88 65.7		01 135. 1.40 32.2	Ar 7.74 0.080 1.85
K 90.1 0.934 21.54	Ca 178. 1.84 42.5	Sc 376 3.90 89.9	Ti 468. 4.85 111.8	v 512. 5.31 122.	395 4.1 94.	0.	Mn 282. 2.92 67.4	Fe 410 4.2 98.	8 4.	4.	Ni 428. 4.44 102.4	33 3.4 80	6. 49	Zn 130 1.35 31.04	Ga 27 2.8 64.	1. 37 1 3 .		As 285.3 2.96 68.2	Se 237 2.46 56.7	3	Br 118. 1.22 28.18	Kr 11.2 0.116 2.68
Rb 82.2 0.852 19.64	Sr 166. 1.72 39.7	Y 422. 4.37 100.8	Zr 603. 6.25 144.2	Nb 730. 7.57 174.5	658 6.8 157	2	Tc 661. 6.85 158.	Ru 650 6.7 155	0. 55 4 5 .	4.	Pd 376. 3.89 89.8	28 2.9 68	4.	Cd 112. 1.16 26.73	In 243 2.5 58.	2 3.		Sb 265. 2.75 63.4	Te 211 2.19 50.0	9	107. 1.11 25.62	Xe 15.9 0.16 3.80
Cs 77.6 0.804 18.54	Ba 183. 1.90 43.7	La 431. 4.47 103.1	Hf 621. 6.44 148.4	Ta 782. 8.10 186.9	859 8.9 205	0	Re 775. 8.03 185.2	788 8.1 188	8. 67 7 6.		Pt 564. 5.84 134.7	36 3.8 87	8. 31	Hg 65. 0.67 15.5	182 1.8 43.	8 2.	-	Bi 210. 2.18 50.2	Po 144 1.50 34.3	0	At	Rn 19.5 0.202 4.66
Fr	Ra 160. 1.66 38.2	Ac 410. 4.25 98.	4.	17. :	Pr 357. 3.70 35.3	32 3. 78	28. 40	n	Sm 206. 2.14 49.3		79. 4 86 4	id 00. .14 5.5	7b 391 4.0	5 3.		Ho 302. 3.14 72.3		7. 2 29 2	m 33. .42 5.8	Yb 154 1.60 37.1	4.4	8.
			6	n 1 98. 20 42.9	°a	53 5. 12	55 4		Pu 347. 3.60 83.0	26 2. 63	34. 3 73 3	m 85 .99 2.1	Bk	C		Es	Fr	n M	1d	No	Lr	

metals: ~1 - 2 eV/atom covalent: ~3 - 9 eV/atom ionic: ~6-10 eV/atom

van der Waals: 20-200 meV/atom

hydrogen: ~100 meV/bond

1.4 Bravais lattice

Chemical bonding and Crystal structure

11 4K 1CP 3.75 5.12		the st	ated Vyck	tem	are	e at ro	oom to	empe g K.	erature For fu	es of the for the rther de es label	most	comi	mon f of the	ele	ment	s								He ⁴ : hcp 3.57 5.83
i 78K CC .491	Be hcp 2.27 3.59	S-100.080	COLUMN			resident (m. 1844)		e e e e e e e e e e e e e e e e e e e		10011-02		938 rouma		CEC T	TERROR CO.	B	ıb.	C diamo 3.56	nd cul	66	O compli (O ₂)	ex F		Ne 4 fcc 4.46
Na 5K DCC 1.225	Mg hcp 3.21 5.21	£					_ a la	ttice		ture. ter, in A ter, in A				_		Al fcc 4.0		Si diamo 5.43		nplex	S compl	α .	CI complex (CI ₂)	Ar 41 fcc 5.31
K 5K bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	Ti hcj 2.9 4.6	5	V bcc 3.03	ь	cc !.88	Mn cubic comp	bo	: hc	p 51	Ni fcc 3.52	Cu fcc 3.6	١	Zn hcp 2.66 4.95	Ga		Ge diamo 5.65		s omb.	Se hex. chain:		Br complex (Br ₂)	Kr 4 fcc 5.64
Rb 5K occ 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	Zr hcj 3.2 5.1	3	Nb bcc 3.30	ь	No cc .15	Tc hcp 2.74 4.40	2.7	fcc 1 3.8		Pd fcc 3.89	Ag fcc 4.0		Cd hcp 2.98 5.62	In teti 3.2 4.9	r. 5	Sn diamo	nd rhe	o imb.	Te hex. chains		cómplex [l ₂)	Xe 4 fcc 6.13
Сs 5к bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hc ₁ 3.1 5.0	9	Ta bcc 3.30		V xcc 3.16	Re hcp 2.76 4.46	2.7	tc:	. 1	Pt fcc 3.92	Au tcc 4.0		Hg rhomb.	TI hep 3.4 5.5	6	Pb fcc 4.95		i omb.	Po sc 3.34	- 1	At .	Rn
r -	Ra —	Ac fec 5.31		Ce fcc 5.1	6	Pr hex. 3.67	No he:	х.	Pm —	Sm	Eu bcc 4.58	h 3	id icp i.63	Tb hcp 3.6 5.7	0	Dy ncp 3.59 5.65	Ho hcp 3.5 5.6	8	Er hcp 3.56 5.59	Tri ho 3.5	p 54	Yb fcc 5.48	Э.	u 50 55
			`	Th fcc 5.0	8	Pa tetr. 3.92 3.24	U	nplex	Np complex	Pu complex	Am hex 3.64	C	:/8 :m	Bk	-	Cf	Es	-	Fm	M	-	No —	L	_

48

 a_2 a_1 a_2 a_1 a_1 a_1 a_1

- choice of unit cell is not unique
- primitive unit cell contains only one point

1.4 14 Bravais lattices

Chemical bonding and Crystal structure

System	Number of lattices	Restrictions on conventional cell axes and angles
Triclinic	1	$a_1 \neq a_2 \neq a_3$ $\alpha \neq \beta \neq \gamma$
Monoclinic	2	$a_1 \neq a_2 \neq a_3$ $\alpha = \gamma = 90^{\circ} \neq \beta$
Orthorhombic	4	$a_1 \neq a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	2	$a_1 = a_2 \neq a_3$ $\alpha = \beta = \gamma = 90^{\circ}$
Cubic	3	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^{\circ}$
Trigonal	1	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma < 120^{\circ}, \neq 9$
Hexagonal	1	$a_1 = a_2 \neq a_3$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$

simple cubic

body-centered cubic

face-centered cubic

1.4 Cubic Bravais lattices

Wigner-Seitz cell

Chemical bonding and Crystal structure

2 - dim.

32 crystallographic point groups

Schönflies symbols

	Symbol	Meaning
Classification according to	C_i	(j=2, 3, 4, 6) j-fold rotation axis
rotation axes and principal	$S_j^{'}$	j-fold rotation-inversion axis
mirror planes	$ec{D}_{j}$	j two-fold rotation axes \perp to a $(j$ -fold) principal rotation axis
	T	4 three- and 3 two-fold rotation axes as in a tetrahedron
	0	4 three- and 3 four-fold rotation axes as in an octahedron
	C_i	a center of inversion
	C_s	a mirror plane
Additional symbols for	h	horizontal=perpendicular to the rotation axis
mirror planes	v	vertical=parallel to the main rotation axis
•	d	diagonal = parallel to the main rotation axis in the plane bisecting the 2-fold rotation axes

rota-rahe-cta-

Diamond point group T_d; fcc and bcc point group O_h

1.5 Crystal structure

Chemical bonding and Crystal structure

Hexagonal close-packed

stacking ABABAB...

stacking ABCABC...

1.5 Crystal structure

Chemical bonding and Crystal structure

Diamond structure C, Si, Ge

Zink sulfid structure ZnS, GaAs, AgI

NaCl

CsCl, NiAl, CuBe

1.5 Crystal structure

Chemical bonding and Crystal structure

Quasicrystals

long-range orientational, but non-periodic order

Penrose tiles

56

 $Al_{65}Cu_{20}Fe_{15}$ produced by cooling with 106 K/s

fivefold symmetry

1.5 Crystal structure

Chemical bonding and Crystal structure

Substitutional binary alloys

Two elements crystallizing with the same structure

