

Universidade de Brasília Departamento de Ciências Mecânica Programa de Pós-Graduação

Atividade 1 Cálculo de Raízes: Newton-Raphson Modificado

Disciplina: Métodos Numéricos Professor: Rafael Gabler Gontijo Data: 13 de abril de 2025

Aluno: Eng. Lucas Wanick — Mestrando em Engenharia Mecânica

Introdução

A presente atividade tem como objetivo aplicar o método de Newton-Raphson em sua versão modificada para o cálculo das raízes de uma função polinomial com múltiplas raízes reais. Os resultados serão analisados quanto à convergência, número de iterações e comportamento dos erros absoluto e verdadeiro.

Formulação Matemática

O método de Newton-Raphson é baseado na aproximação sucessiva da raiz a partir da iteração:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Para o método modificado, considera-se a função auxiliar:

$$\phi(x) = \frac{f(x)}{f'(x)}$$

a iteração é ajustada para:

$$x_{i+1} = x_i - \frac{\phi(x_i)}{\phi'(x_i)}$$

Sendo:

$$\phi'(x) = \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2}$$

Reorganizando:

$$x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{f'(x_i)^2 - f(x_i)f''(x_i)}$$

Função Analisada

A função escolhida foi:

$$f(x) = (x-2)^2(x-3)(x-4)$$

Figura 1: Função do Polinômio f(x)

Cuja expansão algébrica é:

$$f(x) = x^4 - 11x^3 + 46x^2 - 78x + 48$$

As derivadas necessárias para o método modificado são:

$$f'(x) = 4x^3 - 33x^2 + 92x - 78$$

$$f''(x) = 12x^2 - 66x + 92$$

Resultados Numéricos

Os resultados foram obtidos para quatro raízes reais, com ponto inicial 0.3 unidades acima de cada raiz real.

Tabelas de Iteração

As tabelas a seguir mostram os valores de x_i , $f(x_i)$, $f'(x_i)$, $f''(x_i)$, x_{i+1} , erro absoluto e erro real para cada raiz.

	$m_1 = m_2 = 2$									
i	x_i	f(x)	f'(x)	f''(x)	x_{i+1}	$\epsilon_{ m abs}$	$\epsilon_{ m verdadeiro}$			
0	2.3	0.1071	0.498	-0.32	2.11105		0.3			
1	2.11105	0.02071	0.33869	2.14907	2.01115	0.18895	0.11105			
2	2.01115	0.00024	0.0435	3.80074	2.00009	0.0999	0.01115			
3	2.00009	1.8064×10^{8}	0.00038	3.99829	2.000000007	0.0111	9.50437×10^5			

Tabela 1: Iterações para a raiz dupla de f(x) com $m_1 = m_2 = 2$

Raiz em $x=3$									
i	x_i	f(x)	f'(x)	f''(x)	x_{i+1}	$\epsilon_{ m abs}$	$\epsilon_{ m verdadeiro}$		
0	3.3	-0.3549	-1.222	0.88	3.05809	_	0.3		
1	3.05809	-0.06316	-1.10803	-1.59822	2.97701	0.24019	0.05809		
2	2.97701	0.00229	-0.99539	-2.01373	2.99999	0.06211	0.0023		
3	2.99999	5.3578×10^{-6}	-0.99999	-2.00003	3	0.00229	5.3578×10^{-6}		

Tabela 2: Iterações para a raiz de f(x) com aproximação inicial em $x_0 = 3.3$

	Raiz em $x=4$								
i	x_i	f(x)	f'(x)	f''(x)	x_{i+1}	$\epsilon_{ m abs}$	$\epsilon_{ m verdadeiro}$		
0	4.3	2.0631	10.258	26.08	3.88843		0.3		
1	3.88843	-0.35348	2.39605	12.80229	3.97029	0.41157	0.11157		
2	3.97029	-0.10965	3.54744	15.13801	3.99824	0.08250	0.02971		
3	3.99824	-0.00703	3.97182	15.94711	3.99994	0.02731	0.00176		
4	3.99994	-2.49701×10^{-5}	3.9999	15.99881	4	_	_		

Tabela 3: Iterações para a raiz de f(x) com aproximação inicial em $x_0=4.3$

Conclusão

O método de Newton-Raphson modificado mostrou-se eficaz na obtenção das raízes da função polinomial. Mesmo para raízes múltiplas, o algoritmo convergiu em no máximo quatro iterações com erro absoluto inferior a 0,01. A modificação do método contribuiu para estabilizar a convergência, sobretudo nas proximidades de raízes múltiplas, onde a derivada tende a valores muito pequenos e compromete a performance do método de Newton clássico. A comparação dos erros absolutos e reais mostrou que, especialmente para raízes duplas, o comportamento do erro exige atenção redobrada na escolha do ponto inicial.