CS4495/6495 Introduction to Computer Vision

9C-L1 3D perception

Some slides by Kelsey Hawkins

Motivation

Why do animals, people & robots need vision?

- To detect and recognize objects/landmarks
 - Is that a banana or a snake? A cup or a plate?
- To find relative location of objects
 - Want to grasp fruit/tool, where should I put my body/arm?
 - Changes in elevation: steps, rocks, inclined planes

Motivation

- Determine shape
 - What is the physical 3D structure of this object?
 - Where does an object begin and the background begin?
- Find obstacles and map the environment
 - How do I get my body/arm from A to B without hitting things?
- Others tracking, dynamics, etc.

Weaknesses of images

Surface Geometry

Weaknesses of images

Color Inconsistency

Weaknesses of monocular vision

Scale

Weaknesses of monocular vision

Lack of texture

Weaknesses of monocular vision

Background-foreground similarity

Potential solution: 3D sensing

Types of 3D sensing

- Passive 3D sensing
 - Work with naturally occurring light
 - Exploit geometry or known properties of scenes

Passive: 3D sensors - stereo

Amateur Stereo Rigs

Passive: 3D sensors - stereo

Professional Stereo Rigs

Passive: 3D sensors – shape from (de)focus

Nayar, Watanabe, and Noguchi 1996

Types of 3D sensing

- Passive 3D sensing
 - Work with naturally occurring light
 - Exploit geometry or known properties of scenes
- Active 3D sensing
 - Project light or sound out into the environment and see how it reacts
 - Encode some pattern which can be found in the sensor readings

Active: Photometric stereo

Active: Time of flight

Bounce signal off of surface, record time to come back

$$d = v * t/2$$

LIDAR: Laser Range finder

SONAR: Sound Transceiver

Structured light

Like stereo

Structured light

- Like stereo
- But replace one camera with a projector

Infrared structured light

Infrared structured light

How does Kinect work?

Not public, but PrimeSense patent(s) describe at least two methods:

- A very clever optics trick that changes the shape of a of projected pattern as a function of depth
- A more standard yet well engineered approach counting on have a known fixed geometry and a fixed pseudo random pattern of projected points

How the Kinect sensor works - focus

Cylindrical lens: Only focuses light in one direction

PrimeSense patent 2010/0290698

PrimeSense patent 2010/0290698

Orientation is a function of distance!

Structured light

- Like stereo
- But replace one camera with a projector

Same stereo algorithms apply

Projector

Sensor

Structured light

- Like stereo
- But replace one camera with a projector

 Can do it with speckle pattern too...

1. Detect dots ("speckles") and label them unknown

- 2. Randomly select a region anchor, a dot with unknown depth
 - a) Windowed search via normalized cross correlation along scanline
 - Check that best match score is greater than threshold; if not, mark as "invalid" and go to 2
 - b) Region growing
 - 1. Neighboring pixels are added to a queue
 - 2. For each pixel in queue, initialize by anchor's shift; then search small local neighborhood; if matched, add neighbors to queue
 - 3. Stop when no pixels are left in the queue

3. Stop when all dots have known depth or marked "invalid"

Projected IR vs. Natural Light Stereo

- What are the advantages of IR?
 - Works in low light conditions
 - Does not rely on having textured objects
 - Not confused by repeated scene textures
 - Can tailor algorithm to produced pattern

Projected IR vs. Natural Light Stereo

- What are advantages of natural light?
 - Works outside, anywhere with sufficient light
 - Resolution limited only by sensors, not projector

Projected IR vs. Natural Light Stereo

- Difficulties with both
 - Very dark surfaces may not reflect enough light
 - Specular reflection in mirrors or metal causes trouble

Representing depth scenes

Natural: depth image

A little more nuanced: point clouds

Depth Images

- Advantages
 - Dense representation
 - Gives intuition about occlusion and free space
 - Depth discontinuities are just edges on the image

Depth Images

- Disadvantages
 - Viewpoint dependent, can't merge
 - Doesn't capture physical geometry
 - Need actual 3D locations of camera(s)

Take every depth pixel and put it out in the world

- What can this representation tell us?
- What information do we lose?

- Advantages
 - Viewpoint independent
 - Captures surface geometry
 - Points represent physical locations

- Disadvantages
 - Sparse representation
 - Lost information about free space and unknown space
 - Variable density based on distance from sensor

- Biggest advantage:
 - PCL Point Cloud Library

http://pointclouds.org

Point Clouds and Surfaces

- Point clouds are sampled from object surfaces
- The concept of volume is inferred, not perceived

Surfaces

- Tangent plane defined by normal
- First-order approximation

Surface Normals

 Size of patch is like width of Gaussian in image gradient calculation

 We can use them to find planes

Viewpoint Invariance

- Want to find unique patches of surface geometry
- What type of invariance do we need?
- Need viewpoint invariance
 - Translation + orientation
 - Color and texture come automatically!

Point Feature Histograms

Remember SIFT?

Point Feature Histograms

- At a point, take a ball of points around it
- For every pair of points, find the relationship between the two points and their normals
- Must be frame independent

Point Feature Histograms

- Find these for variables for every pair in the ball
- Build a 5x5x5x5 histogram of the variables
 - Often the distance variable is excluded
 - In this case, we have a 125-long feature vector
- Use this just like a SIFT feature descriptor
- Usually, a sped-up version called Fast Point Feature Histograms is used for real-time applications

Point Cloud Software

- Point Cloud Library (PCL)
 - http://pointclouds.org
- Robot Operating System (ROS)
 - Framework for building systems
 - http://www.ros.org
- Drivers for Kinect and other PrimeSense sensors
 - http://www.ros.org/wiki/openni_launch

PCL Example: RANSAC Cylinder Segmentation

