University Of Tripoli

Faculty Of Engineering

Materials And Metallurgical Engineering

Student Name : Marwan Mohammed Ahmed El-Janzouri

No:02108594

Numerical methods

MME308

Assignment 5

Grop.

Problem no: 1,8,11,15

fall 2014

PROBLEM 1

GIVES

a)
$$Y = x3 + 4x - 15$$
 at $x = 0$ h = 0.1

Required

Compute the fires f'(x) and second f''(x) order central difference approximation of O(h2) Solution

a)
$$Y = x3 + 4x - 15$$
 at $x = 0$ h = 0.1

Χ	-0.2	-0.1	0	0.1	0.2
У	-15.808	-15.401	-15	-14.599	-14.192

The first central difference approximation is given by :

$$F'(x) = \frac{f(x+h)-f(x-h)}{2h} + O(h^2)$$

$$F'(0) = \frac{f(0.1) - f(-0.1)}{2h}$$

$$F'(0) = \frac{-14.599 + 15.401}{2(0.1)}$$

The second difference approximation is given by:

$$F''(x) = \frac{f(x+h)-2f(X)+f(x-h)}{h2}$$

$$F''(x) = \frac{f(0.1)-2f(0)+f(-0.1)}{h2}$$

$$F''(x) = \frac{-14.599+2*15-15.401}{h2}$$

$$F''(0) = 0$$

b) $Y = x^2 \cos x$ at x = 0.5 h=0.5

X	-0.5	0	0.5	1	1.5
У	0.24999	0	0.24999	0.99985	2.24923

The first central difference approximation is given by :

$$F'(x) = \frac{f(x+h)-f(x-h)}{2h} + O(h^2)$$

$$F'(0.5) = \frac{f(1) - f(0)}{2h}$$

$$F'(0.5) = \frac{0.99985 - 0.}{2(0.5)}$$

$$F'(0.5) = 0.99985$$

The second difference approximation is given by:

$$F''(x) = \frac{f(x+h)-2f(X)+f(x-h)}{h2}$$

$$F''(0.5) = \frac{f(1)-2f(0.5)+f(0)}{h2}$$

$$F''(0.5) = \frac{0.9999+2*0.24999-0}{h2}$$

$$F''(0) = 5.9995$$

Problem 8

Gives

Χ	0	0.5	0.75	1	1.15	1.25	1.5	2.25
У	0	0.375	0.844	1.5	1.984	2.344	3.375	7.594

Required:

T=0, 1.25, 2.25 by use numerical differential.

Solution:

Forward
$$F'(x) = \frac{-3f(x)+4f(x+h)-f(x+2h)}{2h} + O(h^2)$$
forward
$$F'(0) = \frac{-3f(0)+4f(0.5)-f(1)}{2h} + O(h^2)$$
Forward
$$F'(0) = \frac{-3*0+4*0.375-1.5}{2(0.5)} + O(h^2)$$

$$F'(0) = 0$$

center
$$F'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

center $F'(1.25) = \frac{f(1.5) - f(1)}{2h} + O(h^2)$
center $F'(1.25) = \frac{5.625 - 2.5}{2(0.25)} + O(h^2)$
 $F'(0) = 6.25$

Backward
$$F'(x) = \frac{3f(x)-4f(x-h)+f(x-2h)}{2h} + O(h^2)$$

Backward $F'(2.25) = \frac{3f(2.25)-4f(1.5)+f(0.75)}{2h} + O(h^2)$
Backward $F'(2.25) = \frac{3*7.594-4*3.375+0.844}{2(0.75)} + O(h^2)$
 $F'(0) = 6.7507$

problem 11

Given:

Taylor series:

$$F(x) = f(x_0) + f'(x)(x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 + \dots + f^{(n)} (X-X_0)^n$$

$$X_i - X_{i-1} = 3h \text{ and } X_{i+1} - X_i = h$$

$$\underbrace{i-1}_{X_0} \underbrace{i}_{X_1} \underbrace{i+1}_{X_2}$$

Required:

Find f'(x), A and B

Form the Taylor series:

$$F(x + h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + F^n(x) + \dots$$
 (1)

$$F(x-3h) = f(x) - 3hf'(x) + \frac{(3h)2}{2!} f''(x) + \dots$$
 (2)

بطرب المعادلة (1) في 3^2 تصبح:

9 F(x + h) = 9 f(x) + 9 h f'(x) + 9
$$\frac{h_2}{2!}$$
 f''(x)+..... (3)

بطرح المعادلة (2) من (3)

$$9f(x + h) - f(x - 3h) = 8 f(x) + 12h f'(x) + O(h^2)$$

12h F'(X) = 9
$$f(x+h) - f(x-3h) - 8 f(x)$$

$$F'(x) = \frac{9(x+h) - f(x-3h) - 8f(x)}{12h}$$
 (4)

$$F'(x) = A f(x - 3h) + B f(x) + C f(x + h)$$
 (5)

مقارنة المعادلة 4 مع المعادلة 5 نجد ان:

$$A = -\frac{1}{12h}$$

$$B = -\frac{8}{12h} = -\frac{2}{3h}$$

$$C = \frac{9}{12h} = \frac{3}{4h}$$

Problem 15

	t	у	dy\dt	LOG(dy\dt)	Log(y)	x2	x*y
1	5	2.45	-0.071	-2.6451	0.8961	0.8030	-2.3702
2	15	1.74	-0.061	-2.7969	0.5539	0.3068	-1.5492
3	25	1.23	-0.043	-3.1466	0.2070	0.0429	-0.6514
4	35	0.88	-0.0305	-3.4900	-0.1278	0.0163	0.4461
5	45	0.62	-0.022	-3.8167	-0.4780	0.2285	1.8245
6	55	0.44	-0.018	-4.0174	-0.8210	0.6740	3.2982
Σ				-19.9126	0.2301	2.0715	0.9981

Solution

$$-\frac{dy}{dt} = k y^{n}$$

$$Log(-\frac{dy}{dt}) = n log(y) + log(k)$$

$$Y = A X + B$$

$$\sum X = 0.2301$$
 $\sum Y = -19.9126$ $\sum X^2 = 2.0715$ $\sum X.Y = 0.9981$ N=6

aN + b
$$\sum_{i=1}^{n} xi = \sum_{i=1}^{n} yi$$

a $\sum_{i=1}^{n} xi + b\sum_{i=1}^{n} xi2 = \sum_{i=1}^{n} xiyi$ (1)

Now, eq (1) becomes.

in this system is solving by using guess elimination

$$\begin{pmatrix} 6 & 0.2301 \\ 0.2301 & 2.0715 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -19.9126 \\ 0.9981 \end{pmatrix}$$

R1 = R1/6

$$\begin{pmatrix} 1 & 0.0384 \\ 0.2301 & 2.0715 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -3.3188 \\ 0.9981 \end{pmatrix}$$

R2= R2-0.2301*R1

$$\begin{pmatrix} 1 & 0.0384 \\ 0 & 2.0627 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} -3.3188 \\ 1.7618 \end{pmatrix}$$

R2= R2/2.0627

$$\binom{1}{0} \quad \frac{0.0384}{1} \binom{A}{B} = \binom{-3.3188}{0.8541}$$

Now, this augmented matrix represents the equivalent linear system.

$$1 A + 0.0384 B = -3.3188$$
 (2)

$$B = 0.8541$$
 (3)

Since B = 0.8541 from the last equation, substituting in the equation (2) by B

$$A + 0.0384 B = -3.3188$$

$$A + 0.0384(0.8541) = -3.3188$$

That is,

but
$$A = In(K)$$
, $K = e^A$, $B = n$

Hence, the solution set consists of k=0.0350, n=0.8541

Hence the fitting

$$-\frac{dy}{dx} = K y^n$$

Y = 0.0350 X 0.8541