

Resource Description Framework (RDF)

VL Semantic Technologies

Bernd Neumayr

(with contributions from Dieter Steiner)

Department for Business Informatics - Data & Knowledge Engineering

RI/IRI RDF Linked Data RDFS

Informal Representation of an RDF Graph

Source: http://www.w3.org/TR/rdf11-primer/

RI/IRI RDF Linked Data RDFS

RDF Graph

Blank Nodes

Quelle: http://www.w3.org/TR/rdf11-primer/

Resource Description Framework Data Model for the Web of Data

- URI/IRI Uniform / Internationalized Resource Identifiers
- Resource Description Framework (RDF)
- Unked Data Web of Data
- RDF Schema

Overview RDF within the Semantic Web Stack

enabling technologies for the Semantic Web

- Identification mechanism
- Data model
- Data format

Overview RDF within the Semantic Web Stack

enabling technologies for the Semantic Web

- Identification mechanism
- Data model
- Data format

URI/IRI – Uniform / Internationalized Resource Identifiers

Resources and their global identification

Everything is a Resource

- Files: documents, multimedia files, ontologies
- Things: objects, persons, products, abstract things such as countries, time periods, . . .
- Concepts: classes, relations
- Services
 - Services, in the sense of SOA, independent of a concrete implementation
 - Web Services, concrete implementations of services
 - . . .

Non-Information Resource

- Thing, Real-World-Entity
- e.g., the person 'Bob' is identified by http://example.org/bob#me

Information Resource

- Document, file on the Web; description, picture, or representation of a Non-Information Resource
- e.g., the RDF file that describes 'Bob' is identified by http://example.org/bob
- Information- and Non-Information Resources are disjoint
- 'Ceci n'est pas une pipe' http://collections.lacma.org/node/239578

Non-Information Resource

- Thing, Real-World-Entity
- e.g., the person 'Bob' is identified by

http://example.org/bob#me

Information Resource

- Document, file on the Web; description, picture, or representation of a Non-Information Resource
- e.g., the RDF file that describes 'Bob' is identified by http://example.org/bob
- Information- and Non-Information Resources are disjoint
- 'Ceci n'est pas une pipe' http://collections.lacma.org/node/239578

Non-Information Resource

- Thing, Real-World-Entity
- e.g., the person 'Bob' is identified by

http://example.org/bob#me

Information Resource

- Document, file on the Web; description, picture, or representation of a Non-Information Resource
- e.g., the RDF file that describes 'Bob' is identified by http://example.org/bob
- Information- and Non-Information Resources are disjoint
- 'Ceci n'est pas une pipe' http://collections.lacma.org/node/239578

Non-Information Resource

- Thing, Real-World-Entity
- e.g., the person 'Bob' is identified by

http://example.org/bob#me

Information Resource

- Document, file on the Web; description, picture, or representation of a Non-Information Resource
- e.g., the RDF file that describes 'Bob' is identified by

http://example.org/bob

- Information- and Non-Information Resources are disjoint
- 'Ceci n'est pas une pipe' http://collections.lacma.org/node/239578

Information Resources

No Unique Name Assumption

in databases: Unique Name Assumption

- Each tuple/object is identified by exactly one ID/OID
- Different objects in the database represent different things
- Or alternatively: There are only names and no objects. (Herbrand-Universe, Datalog)

in the Web: No Unique Name Assumption

- A single resource can be identified by multiple different IRIs.
- Every IRI identifies exactly one resource.

No Unique Name Assumption

in databases: Unique Name Assumption

- Each tuple/object is identified by exactly one ID/OID
- Different objects in the database represent different things
- Or alternatively: There are only names and no objects. (Herbrand-Universe, Datalog)

in the Web: No Unique Name Assumption

- A single resource can be identified by multiple different IRIs.
- Every IRI identifies exactly one resource.

No Unique Name Assumption in the Web

- Scheme
- Authority www.foo.com
- Path
 /data/persons
- Query (optional) ?family=black
- Fragment (optional, not part of an HTTP-Request)
 john

- Scheme
 - http
- Authoritywww.foo.com
- Path
 /data/persons
- Query (optional) ?family=black
- Fragment (optional, not part of an HTTP-Request)
 john

- Scheme http
- Authority www.foo.com
- Path
 /data/persons
- Query (optional)
 ?family=black
- Fragment (optional, not part of an HTTP-Request)
 john

- Scheme http
- Authority www.foo.com
- Path
 /data/persons
- Query (optional) ?family=black
- Fragment (optional, not part of an HTTP-Request)
 john

- Scheme http
- Authority www.foo.com
- Path
 /data/persons
- Query (optional) ?family=black
- Fragment (optional, not part of an HTTP-Request)
 john

- Scheme http
- Authority www.foo.com
- Path
 /data/persons
- Query (optional) ?family=black
- Fragment (optional, not part of an HTTP-Request)
 john

Abbreviations of IRIs: Namespace Prefixes

without Namespace Prefixes

```
<http://www.dbpedia.org/resource/Linz>
<http://example.org/famblack.rdf#Jim>
```

with Namespace Prefixes

```
@prefix dbpedia: <http://www.dbpedia.org/resource/>.
@prefix f: <http://example.org/famblack.rdf#>.
dbpedia:Linz
f:Jim
```

Types of IRIs, Standards

Uniform Resource Locator (URL)

identification through access mechanism permits dereferencing, e.g., using HTTP or FTP

Uniform Resource Name (URN) no dereferencing possible, e.g., urn:ISBN

Internationalized Resource Identifier (IRI)
Internationalized URI; allows Unicode characters

Types of IRIs, Standards

Uniform Resource Locator (URL)

identification through access mechanism permits dereferencing, e.g., using HTTP or FTP

Uniform Resource Name (URN)

no dereferencing possible, e.g., urn:ISBN

Internationalized Resource Identifier (IRI)
Internationalized URI: allows Unicode characters

Types of IRIs, Standards

Uniform Resource Locator (URL)

identification through access mechanism permits dereferencing, e.g., using HTTP or FTP

Uniform Resource Name (URN)

no dereferencing possible, e.g., urn:ISBN

Internationalized Resource Identifier (IRI)

Internationalized URI; allows Unicode characters

IRI/URI - Summary

- 'Everything' is a resource
- Non-Information Resource vs. Information Resource
- Every IRI identifies exactly one resource
- No Unique Name Assumption: Multiple IRIs can identify the same resource

additional information:

- http://www.w3.org/TR/webarch/#id-resources
- http://www.ietf.org/rfc/rfc3986

A Data Model for the Web of Data

- Overview
- Data Model
- Serialization
- RDF Dataset, Named Graphs
- Summary

RDF is a data model for a

- linked (RDF Statement = Link),
- decentralized (distributed and without central control mechanism),
- machine interpretable (uniform and easily interpretable data model: a subject is described by a predicate and an object),
- conceptual (close to the mental conceptions of humans: direct representation of entities and their relations and properties)

RDF is a data model for a

• linked (RDF Statement = Link),

RDF

- decentralized (distributed and without central control mechanism),
- machine interpretable (uniform and easily interpretable data model: a subject is described by a predicate and an object),
- conceptual (close to the mental conceptions of humans: direct representation of entities and their relations and properties)

RDF is a data model for a

- linked (RDF Statement = Link),
- decentralized (distributed and without central control mechanism),
- machine interpretable (uniform and easily interpretable data model: a subject is described by a predicate and an object),
- conceptual (close to the mental conceptions of humans: direct representation of entities and their relations and properties)

Overview

RDF is a data model for a

- linked (RDF Statement = Link),
- decentralized (distributed and without central control mechanism),
- machine interpretable (uniform and easily interpretable data model: a subject is described by a predicate and an object),
- conceptual (close to the mental conceptions of humans: direct representation of entities and their relations and properties)

RDF

Overview

RDF is a data model for a

- linked (RDF Statement = Link),
- decentralized (distributed and without central control mechanism),
- machine interpretable (uniform and easily interpretable data model: a subject is described by a predicate and an object),
- conceptual (close to the mental conceptions of humans: direct representation of entities and their relations and properties)

Overview

Related Technologies

- Frames
- Conceptual Graphs
- Topic Maps
- Metadata Frameworks
- RSS (Really Simple Syndication)
- ...

subject

- IRI (Resource) or
- Blank Node

predicate

IRI (Property)

object

- IRI (Resource),
- Blank Node or
- Litera

http://www.dke.jku.at/ privat/ue/famblack.rdf#**john**

http://www.dke.jku.at/privat/ ue/family.rdf#hasSon

http://www.dke.jku.at/ privat/ue/famblack.rdf#**jim**

subject

- IRI (Resource) or
- Blank Node

predicate

IRI (Property)

object

- IRI (Resource),
- Blank Node or
- Litera

subject

- IRI (Resource) or
- Blank Node

predicate

IRI (Property)

object

- IRI (Resource),
- Blank Node or
- Literal

http://www.dke.jku.at/ privat/ue/famblack.rdf#**john**

http://www.dke.jku.at/privat/ ue/family.rdf#hasSon

http://www.dke.jku.at/ privat/ue/famblack.rdf#**jim**

subject

- IRI (Resource) or
- Blank Node

predicate

IRI (Property)

object

- IRI (Resource),
- Blank Node or
- Literal

RDF Graph = Set of Statements

An RDF graph is a directed, labelled graph.

RDF

RDF Graph = Set of Statements

An RDF graph is a directed, labelled graph.

corresponds to a ternary relation (set of triples):

subject	predicate	object
f:Frank	family:hasSon	f:John
f:James	foaf:knows	f:John
f:John	family:hasDaughter	f:Mary
f:Mary	foaf:knows	f:James

Classification

- rdf:type
- Multiple classifications possible
- No distinction between classes and individuals

Plain Literal

- Character string with optional language definition
- Represents itself
- in RDF 1.1, every literal has a type

Literals

Plain Literal

- Character string with optional language definition
- Represents itself
- in RDF 1.1, every literal has a type

Typed Literal

- Character string and data type URI
- Represents element from the data type's value space

Blank Nodes - Unnamed Nodes

- Auxiliary nodes
- Specification of IRI not necessary

Mary knows someone who is called James.

Reification: Statements about Statements

フスの

- Statements as resources
- Particular vocabulary:
 - rdf:subject
 - rdf:predicate
 - rdf:object
 - rdf:Statement

Frank thinks that "John knows Susi", John denies this.

Container and Collections

Container

- Adding additional elements is possible.
- rdf:Bag, rdf:Seq, rdf:Alt

Collection (Finalized List)

- No additional elements can be added.
- rdf:List, rdf:first, rdf:rest, rdf:nil

Serialization of RDF

RDF

Source: http://www.w3.org/TR/rdf11-new/

Serialization of RDF

Turtle family

Turtle and TriG offer a convenient, abbreviated notation for N-Triples and N-Quads.

RDF/XML

widespread; good tool support

JSON-LD

JSON for Linked Data

RDFa

Embedding of RDF in HTML, Google Rich Snippets; alternative: Microdata (schema.org), Microformats

Turtle

http://www.dke.jku.at/ privat/ue/famblack.rdf#john http://www.dke.jku.at/privat/ ue/family.rdf#hasSon http://www.dke.jku.at/ privat/ue/famblack.rdf#**jim**

```
<http://example.org/famblack.rdf#John>
<http://example.org/family.rdf#hasSon>
    <http://example.org/famblack.rdf#Jim>.
```

abbreviated notation using prefixes:

Turtle

http://www.dke.jku.at/ privat/ue/famblack.rdf#john http://www.dke.jku.at/privat/_ ue/family.rdf#hasSon http://www.dke.jku.at/ privat/ue/famblack.rdf#**jim**

```
<http://example.org/famblack.rdf#John>
<http://example.org/family.rdf#hasSon>
    <http://example.org/famblack.rdf#Jim>.
```

abbreviated notation using prefixes:

```
@prefix family: <http://example.org/family.rdf#>.
@prefix f: <http://example.org/famblack.rdf#>.
```

Turtle

http://www.dke.jku.at/ privat/ue/famblack.rdf#john

http://www.dke.jku.at/privat/_ ue/family.rdf#hasSon http://www.dke.jku.at/ privat/ue/famblack.rdf#**jim**

```
<http://example.org/famblack.rdf#John>
<http://example.org/family.rdf#hasSon>
    <http://example.org/famblack.rdf#Jim>.
```

abbreviated notation using prefixes:

```
@prefix family: <http://example.org/family.rdf#>.
@prefix f: <http://example.org/famblack.rdf#>.
f:John family:hasSon f:Jim.
```

RDF/XML

http://www.dke.iku.at/ privat/ue/famblack.rdf#john

http://www.dke.jku.at/privat/ ue/family.rdf#hasSon

http://www.dke.iku.at/ privat/ue/famblack.rdf#jim

```
<rdf:RDF
```

```
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="http://example.org/famblack.rdf#"
xmlns:family="http://example.org/family.rdf#">
```

```
</rdf:RDF>
```

RDF/XML


```
http://www.dke.iku.at/
                                                      http://www.dke.iku.at/
                           http://www.dke.iku.at/privat/
  privat/ue/famblack.rdf#john
                             ue/familv.rdf#hasSon
                                                    privat/ue/famblack.rdf#iim
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:f="http://example.org/famblack.rdf#"
  xmlns:family="http://example.org/family.rdf#">
  <rdf:Description rdf:about=
         "http://example.org/famblack.rdf#John">
  </rdf:Description>
</rdf:RDF>
```

http://www.dke.iku.at/

privat/ue/famblack.rdf#iohn

</rdf:Description>

<family:hasSon rdf:resource=

http://www.dke.iku.at/privat/

ue/familv.rdf#hasSon

RDF/XML


```
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="http://example.org/famblack.rdf#"
xmlns:family="http://example.org/family.rdf#">
<rdf:Description rdf:about=</pre>
```

"http://example.org/famblack.rdf#Jim"/>

"http://example.org/famblack.rdf#John">

http://www.dke.iku.at/

privat/ue/famblack.rdf#iim

</rdf:RDF>

Classification

Turtle:

f:Jim a

family:Father.

RDF/XML:

```
<family:Father rdf:about=
  "http://example.org/famblack.rdf#Jim">
```

</family:Father>

Classification

Turtle:

f:Jim a foaf:Person, family:Father.

RDF/XML:

```
<family:Father rdf:about=
  "http://example.org/famblack.rdf#Jim">
 <rdf:type rdf:resource=
      "http://xmlns.com/foaf/0.1/Person"/>
</family:Father>
```

Literals (Turtle)

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

Literals (Turtle)

```
JYU
```

```
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
f:John
    foaf:name "John";
```


Literals (Turtle)


```
"Fussball"@de

"Soccer"@en

"John"

foaf:interest

foaf:name

@prefix xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>

f:John

foaf:name "John";

foaf:interest "Soccer"@en,

"Fussball"@de;
```

```
"Fussball"@de
                                           "Soccer"@en
                                                                    "John"
                                                         foaf:interest
                                                   foaf:interest
                                                                 foaf:name
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
                                                                  f:John
f:John
    foaf:name "John";
    foaf:interest "Soccer"@en,
                                               family:nrOfChildren
                    "Fussball"@de;
    family:age "40"^^xsd:integer;
                                                             family:age
                                            3
    family:nrOfChildren 3.
                                                 "40"^^http://www.w3.org/2001/
                                                     XMLSchema#integer
```

Literals (RDF/XML)

```
<rdf:Description rdf:about=
    "http://example.org/famblack.rdf#John">
    <foaf:name>John<foaf:name>
```

</foaf:Person>

Literals (RDF/XML)

```
コスの
```

```
<rdf:Description rdf:about=
    "http://example.org/famblack.rdf#John">
    <foaf:name>John<foaf:name>
    <foaf:interest xml:lang="de">
        Fussball
    </foaf:interest>
    <foaf:interest xml:lang="en">
        Soccer
    </foaf:interest>
```

</foaf:Person>

Literals (RDF/XML)

```
JYU
```

```
<rdf:Description rdf:about=
      "http://example.org/famblack.rdf#John">
   <foaf:name>John<foaf:name>
   <foaf:interest xml:lang="de">
       Fussball
   </foaf:interest>
   <foaf:interest xml:lang="en">
       Soccer
   </foaf:interest>
   <family:nrOfChildren rdf:datatype=
     "http://www.w3.org/2001/XMLSchema#integer">
       3
   </family:nrOfChildren>
   <family:age rdf:datatype=
      "http://www.w3.org/2001/XMLSchema#integer">
       40
   </family:age>
</foaf:Person>
```


Turtle:

f:Mary

f:Mary

RDF/XML:

```
<rdf:Description rdf:about=
```

"http://example.org/famblack.rdf#Mary">

</rdf:Description>

Turtle:

```
f:Mary family:knows [
       1.
```


RDF/XML:

```
<rdf:Description rdf:about=
 "http://example.org/famblack.rdf#Mary">
```

```
</rdf:Description>
```


Turtle:

```
f:Mary family:knows [
       1.
```


RDF/XML:

```
<rdf:Description rdf:about=
 "http://example.org/famblack.rdf#Mary">
 <foaf:knows rdf:parseType="Resource">
 </foaf:knows>
</rdf:Description>
```


Turtle:

</rdf:Description>

<foaf:name>James</foaf:name>

Blank Nodes

Turtle:

```
f:Mary family:knows [
           foaf:name "James"
                                          f:Mary
                                                   -family:knows-
       1.
RDF/XML:
                                                                foaf:name
<rdf:Description rdf:about=
  "http://example.org/famblack.rdf#Mary">
                                                                 "James"
  <foaf:knows rdf:parseType="Resource">
```

</foaf:knows> </rdf:Description>

Blank Nodes - Alternative Turtle Notation

Turtle:

```
f:Mary family:knows [
    foaf:name "James"].
```

alternative Turtle notation:

```
f:Mary family:knows _:1.
_:1 foaf:name "James".
```


RDF Dataset, Named Graphs

- An RDF dataset consists of one or more RDF graphs.
 - one unnamed Default Graph
 - any number of Named Graphs
- Named Graphs are identified by an IRI or a Blank Node.
- Graphs can be linked.
- Statements can be made about graphs.
- A dataset can be serialized using N-Quads, TriG, or JSON-LD.

Serialization of an RDF Dataset using TriG


```
<http://example.org/>
0.1
         BASE
0.2
         PREFIX foaf: <http://xmlns.com/foaf/0.1/>
0.3
         PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#>
04
         PREFIX schema: <http://schema.org/>
0.5
         PREFIX dcterms: <http://purl.org/dc/terms/>
         PREFIX wd: <a href="http://www.wikidata.org/entity/">http://www.wikidata.org/entity/></a>
06
0.7
0.8
         GRAPH <a href="http://example.org/bob">http://example.org/bob>
0.9
1.0
               <hoh#me>
11
                     a foaf:Person ;
12
                     foaf:knows <alice#me> ;
13
                     schema:birthDate "1990-07-04"^^xsd:date ;
14
                     foaf:topic interest wd:012418 .
15
16
17
         GRAPH <a href="https://www.wikidata.org/wiki/Special:EntityData/012418">https://www.wikidata.org/wiki/Special:EntityData/012418</a>
18
19
               wd:012418
2.0
                     dcterms:title "Mona Lisa"
21
                     dcterms:creator <a href="http://dbpedia.org/resource/Leonardo">http://dbpedia.org/resource/Leonardo</a> da Vinci> .
22
23
               <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
24
                   dcterms:subject wd:012418 .
25
26
         <http://example.org/bob>
2.7
28
               dcterms:publisher <a href="http://example.org">dcterms:publisher</a> <a href="http://example.org">http://example.org</a>;
29
              dcterms:rights <a href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</a> .
```

Source: http://www.w3.org/TR/rdf11-primer/

RDF

RDF - Summary

- RDF is a data model for the linked, decentralized, machine interpretable, conceptual description of resources.
- Every statement is a triple in the form of a subject-predicate-object expression.
- Sets of RDF statements form a graph.
- There are multiple formats for serializing RDF, e.g., Turtle, RDF/XML.
- To be continued . . .

Further Information

- RDF 1.1 Primer http://www.w3.org/TR/rdf11-primer/
- Current Recommendations: RDF 1.1
 http://www.w3.org/standards/techs/rdf
- List of tools for working with RDF http://www.w3.org/RDF/

Linked Data – Web of Data

The Web as *Decentralized* Database

RI/IRI RDF Linked Data RDFS

Linked Data Cloud

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lodi.gcloud-net/ = >

Linked Data - Data Sources

- DBPedia http://dbpedia.org
- Wikidata http://www.wikidata.org/
- Google Knowledge Graph Search API https: //developers.google.com/knowledge-graph/
- GeoNames http://www.geonames.org/
- data.gov.uk http: //data.gov.uk/data/search?res_format=RDF
- datahub http://datahub.io/dataset
- Freebase; foundation for Google Knowledge Graph http://www.freebase.com, https://developers.google.com/freebase/

Web of Documents → Web of Data

- Starting point: Vast amount of unstructured data and knowledge in the Web represented as hypertext
- Problem: Knowledge and data extraction is difficult and only partially supported by machines. Document Retrieval (search engines), Browsing, reading
- Goal: Query (analogous to database)

Web of Documents → Web of Data

- Starting point: Vast amount of unstructured data and knowledge in the Web represented as hypertext
- Problem: Knowledge and data extraction is difficult and only partially supported by machines. Document Retrieval (search engines), Browsing, reading
- Goal: Query (analogous to database)

Web of Documents → Web of Data

- Starting point: Vast amount of unstructured data and knowledge in the Web represented as hypertext
- Problem: Knowledge and data extraction is difficult and only partially supported by machines. Document Retrieval (search engines), Browsing, reading
- Goal: Query (analogous to database)

- Starting point: Vast amount of structured data in databases
- Problem: Data integration
 - heterogeneous data models
 - heterogeneous conceptualizations
 - heterogeneous database schemas
 - instance level: duplicates, referencing
- Goal: simple, inter-organizational integration of databases
- First steps (Web of Data):
 - RDF as data model for integration (DB→RDF Mappings)
 - Ontologies, Ontology Mappings
 - Schema-Mappings, Schema-Ontology-Mappings
 - IRIs as global IDs, linking, sameAs

- Starting point: Vast amount of structured data in databases
- Problem: Data integration
 - heterogeneous data models
 - heterogeneous conceptualizations
 - heterogeneous database schemas
 - instance level: duplicates, referencing
- Goal: simple, inter-organizational integration of databases
- First steps (Web of Data):
 - RDF as data model for integration (DB→RDF Mappings)
 - Ontologies, Ontology Mappings
 - Schema-Mappings, Schema-Ontology-Mappings
 - IRIs as global IDs, linking, sameAs

- Starting point: Vast amount of structured data in databases
- Problem: Data integration
 - heterogeneous data models
 - heterogeneous conceptualizations
 - heterogeneous database schemas
 - instance level: duplicates, referencing
- Goal: simple, inter-organizational integration of databases
- First steps (Web of Data):
 - RDF as data model for integration (DB→RDF Mappings)
 - Ontologies, Ontology Mappings
 - Schema-Mappings, Schema-Ontology-Mappings
 - IRIs as global IDs, linking, sameAs

- Starting point: Vast amount of structured data in databases
- Problem: Data integration
 - heterogeneous data models
 - heterogeneous conceptualizations
 - heterogeneous database schemas
 - instance level: duplicates, referencing
- Goal: simple, inter-organizational integration of databases
- First steps (Web of Data):
 - RDF as data model for integration (DB→RDF Mappings)
 - Ontologies, Ontology Mappings
 - Schema-Mappings, Schema-Ontology-Mappings
 - IRIs as global IDs, linking, sameAs

Semantic Web Stack

Semantic Web is more difficult than initially thought.

Technologies are in part still

- not mature: Unifying Logic, Proof, Trust
- too complex for efficient computation:
 Reasoning, ...
- too difficult in their application:
 Ontology Engineering, ...

Semantic Web Stack

Semantic Web is more difficult than initially thought.

Technologies are in part still

- not mature: Unifying Logic, Proof, Trust
- too complex for efficient computation:
 Reasoning, ...
- too difficult in their application:
 Ontology Engineering, ...

Keep it Simple!

Related Approaches and Technologies

- Mashups (ad-hoc, not generic)
- Semantic Search (automatic identification of entities and relationships in hypertext; very complex)
- Web Data Extraction, Lixto
- Database integration
- Distributed databases
-

Linked Data on the Web

- Distributed and linked RDF data
- Non-local IRIs in RDF documents as links to other documents
- RDF Statements as typed links

Four rules

- Use IRIs as names for things.
- Use HTTP IRIs so that people can look up those names.
- When someone looks up a IRI, provide useful information.
- Include links to other IRIs. so that they can discover more things.

Berners-Lee, http://www.w3.org/DesignIssues/LinkedData.html

Linked Data on the Web

- Distributed and linked RDF data
- Non-local IRIs in RDF documents as links to other documents
- RDF Statements as typed links

Four rules:

- Use IRIs as names for things.
- Use HTTP IRIs so that people can look up those names.
- When someone looks up a IRI, provide useful information.
- Include links to other IRIs. so that they can discover more things.

(Berners-Lee, http://www.w3.org/DesignIssues/LinkedData.html)

Distributed RDF

Distributed RDF

Distributed RDF

URIs for Non-Information Resources

- How to name things and concepts and how to access their description?
- Variant 1: Hash-URIs
- Variant 2: 303 Response

URIs for Non-Information Resources

- How to name things and concepts and how to access their description?
- Variant 1: Hash-URIs
- Variant 2: 303 Response

- Tim Berners-Lee
 - http://www.w3.org/People/Berners-Lee/card#i
- Description of Tim-Berners-Lee

```
http://www.w3.org/People/Berners-Lee/card
```


- Tim Berners-Lee
 - http://www.w3.org/People/Berners-Lee/card#i
- Description of Tim-Berners-Lee
 http://www.w3.org/People/Berners-Lee/card

Dereferencing of

http://www.w3.org/People/Berners-Lee/card#i?

- Tim Berners-Lee
 - http://www.w3.org/People/Berners-Lee/card#i
- Description of Tim-Berners-Lee
 http://www.w3.org/People/Berners-Lee/card

Dereferencing of

http://www.w3.org/People/Berners-Lee/card#i?

- Tim Berners-Lee
 - http://www.w3.org/People/Berners-Lee/card#i
- Description of Tim-Berners-Lee
 http://www.w3.org/People/Berners-Lee/card

Dereferencing of

http://www.w3.org/People/Berners-Lee/card#i?

Linz

http://de.dbpedia.org/resource/Linz

Description of Linz

http://de.dbpedia.org/data/Linz

- Linz
 - http://de.dbpedia.org/resource/Linz
- Description of Linz http://de.dbpedia.org/data/Linz

Dereferencing of

- Linz
 - http://de.dbpedia.org/resource/Linz
- Description of Linz http://de.dbpedia.org/data/Linz

Dereferencing of

- I inz
 - http://de.dbpedia.org/resource/Linz
- Description of Linz http://de.dbpedia.org/data/Linz

Dereferencing of

- I inz
 - http://de.dbpedia.org/resource/Linz
- Description of Linz
 http://do.dbpodia

http://de.dbpedia.org/data/Linz

Dereferencing of

- I inz
 - http://de.dbpedia.org/resource/Linz
- Description of Linz http://de.dbpedia.org/data/Linz

Dereferencing of

rdfs:seeAlso

rdfs:seeAlso is used to indicate that additional information can be found at the referenced location.

rdfs:seeAlso

rdfs:seeAlso is used to indicate that additional information can be found at the referenced location.

rdfs:seeAlso

rdfs:seeAlso is used to indicate that additional information can be found at the referenced location.

owl:sameAs

owl:sameAs is used to indicate that two IRIs identify the same Resource.

owl:sameAs

owl:sameAs is used to indicate that two IRIs identify the same Resource.

owl:sameAs

owl:sameAs is used to indicate that two IRIs identify the same Resource.

Summary Linked Data on the Web

- Linked data are distributed, linked RDF data.
- HTTP-URLs are used as identifiers and locators of Information and Non-Information Resources.

Further Reading

- How to Publish Linked Data on the Web
- http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/
- Christian Bizer, Tom Heath, Tim Berners-Lee: Linked Data The Story So Far. Int. J. Semantic Web Inf. Syst. 5(3): 1-22 (2009)
- Nigel Shadbolt, Kieron O'Hara, Tim Berners-Lee, Nicholas Gibbins, Hugh Glaser, Wendy Hall, m. c. schraefel: Linked Open Government Data: Lessons from Data.gov.uk. IEEE Intelligent Systems 27(3): 16-24 (2012)

RDF Schema

RDF Vocabulary Description Language

- Selected Language Elements
- RDFS Examples

Class Hierarchies

Class Hierarchies

Given:

Deduced:

:Mary a foaf:Person. :Mary a foaf:Agent. family:Woman rdfs:subClassOf foaf:Agent.

Property Hierarchies

Given:

family:hasDaughter
 rdfs:subPropertyOf
 family:hasChild.
family:hasChild
 rdfs:subPropertyOf
 family:hasDescendant.
:John family:hasDaughter :Mary.

Deduced:

Property Hierarchies

Given:

Deduced:

family:hasDaughter
 rdfs:subPropertyOf
 family:hasDescendant.
:John family:hasChild :Mary.
:John family:hasDescendant :Mary.

Domain and Range of Properties

Given:

family:hasDaughter
 rdfs:domain family:Person;
 rdfs:range family:Woman.
:John family:hasDaughter :Mary.

Deduced:

Domain and Range of Properties

Given:

family:hasDaughter
 rdfs:domain family:Person;
 rdfs:range family:Woman.
:John family:hasDaughter :Mary.

Deduced:

```
:John a family:Person.
:Mary a family:Woman.
```


Metamodeling

No separation between model levels:

- Individuals, such as : John
- Classes, such as family:Person
- Metaclasses, such as rdfs:Class

A class can be a member of itself. Attention, this is not compatible with OWL DL!

RDF Schema - Summary

- RDF Schema is a semantic extension of RDF
- It is used to define simple vocabularies (Concepts/Classes and Properties)
- Further Reading:

```
http://www.w3.org/TR/rdf-schema/
```

RDFS Examples

The following sample document is given:

```
:hasYoungDaughter rdfs:subPropertyOf :hasDaughter.
:hasDaughter rdfs:range :Women.
:hasChild rdfs:range :Person;
         rdfs:domain :Person.
:Women rdfs:subClassOf :Person.
:Maria :hasYoungDaughter :Susi.
```

```
:Maria a :Person
```

```
• Maria ·hasChild ·Susi
```

```
• :Susi a :Women
```

- :Susi a :Person
- :Maria :hasDaughter :Susi

The following sample document is given:

```
:hasYoungDaughter rdfs:subPropertyOf :hasDaughter.
:hasDaughter rdfs:range :Women.
:hasChild rdfs:range :Person;
         rdfs:domain :Person.
:Women rdfs:subClassOf :Person.
:Maria :hasYoungDaughter :Susi.
```

- :Maria a :Person no
- Maria ·hasChild ·Susi
- :Susi a :Women
- :Susi a :Person
- :Maria :hasDaughter :Susi

The following sample document is given:

```
:hasYoungDaughter rdfs:subPropertyOf :hasDaughter.
:hasDaughter rdfs:range :Women.
:hasChild rdfs:range :Person;
         rdfs:domain :Person.
:Women rdfs:subClassOf :Person.
:Maria :hasYoungDaughter :Susi.
```

Can the following statements be deduced?

```
:Maria a :Person
                            no
```

```
• Maria ·hasChild ·Susi
                               nο
```

```
• :Susi a :Women
```

```
:Susi a :Person
```

:Maria :hasDaughter :Susi

The following sample document is given:

```
:hasYoungDaughter rdfs:subPropertyOf :hasDaughter.
:hasDaughter rdfs:range :Women.
:hasChild rdfs:range :Person;
         rdfs:domain :Person.
:Women rdfs:subClassOf :Person.
:Maria :hasYoungDaughter :Susi.
```

•	:Maria a :Person	no
•	:Maria :hasChild :Susi	no
•	:Susi a :Women	yes
•	:Susi a :Person	
•	:Maria :hasDaughter :Susi	

The following sample document is given:

```
:hasYoungDaughter rdfs:subPropertyOf :hasDaughter.
:hasDaughter rdfs:range :Women.
:hasChild rdfs:range :Person;
         rdfs:domain :Person.
:Women rdfs:subClassOf :Person.
:Maria :hasYoungDaughter :Susi.
```

• :Maria a :Person	no
• :Maria :hasChild :Susi	no
• :Susi a :Women	yes
• :Susi a :Person	yes
• :Maria :hasDaughter :Susi	

The following sample document is given:

•	:Maria a :Person	no	
•	:Maria :hasChild :Susi	no	
•	:Susi a :Women	yes	
•	:Susi a :Person	yes	
•	:Maria :hasDaughter :Susi	yes	

Can the following information be modeled using RDF(S)? If so, provide a solution:

- Each person knows its children.
- Each car is a vehicle.
- Only persons can own things; everyone who owns something is a person.
- Every father has at least one child.

Can the following information be modeled using RDF(S)? If so, provide a solution:

- Each person knows its children.
 - :hasChild rdfs:subPropertyOf foaf:knows.
- Each car is a vehicle.
- Only persons can own things; everyone who owns something is a person.
- Every father has at least one child.

Can the following information be modeled using RDF(S)? If so, provide a solution:

- Each person knows its children.
 - :hasChild rdfs:subPropertyOf foaf:knows.
- Each car is a vehicle.
 - :Car rdfs:subClassOf :Vehicle.
- Only persons can own things; everyone who owns something is a person.
- Every father has at least one child.

Can the following information be modeled using RDF(S)? If so, provide a solution:

Each person knows its children.

:hasChild rdfs:subPropertyOf foaf:knows.

Each car is a vehicle.

:Car rdfs:subClassOf :Vehicle.

 Only persons can own things; everyone who owns something is a person.

:owns rdfs:domain :Person.

Every father has at least one child.

Can the following information be modeled using RDF(S)? If so. provide a solution:

Each person knows its children.

:hasChild rdfs:subPropertyOf foaf:knows.

Each car is a vehicle.

:Car rdfs:subClassOf :Vehicle.

 Only persons can own things; everyone who owns something is a person.

:owns rdfs:domain :Person.

Every father has at least one child.

no solution

extra hint: für typenbeschreibung funktioniert Bsp "Mary is a Person" :Mary a :Person . ODER :Mary rdf:type :Person . extra hint 2:

Bernd Neumayr (WIN-DKE)

:Mary foaf :age 27 . ODER :Mary foaf :age "27" \Axsd:integer . \Cong \text{ } \Cong \text{ } SemTech - RDF

für Integer funktioniert Bsp "Mary ist 27 Jahre alt"