上海交通大学试卷

(20<u>20</u> 至 20<u>21</u> 学年 第<u>1</u>学期 <u>2020</u>年 <u>11</u>月 <u>25</u>日)

班级号			学号				姓名				
课程名称		(《数学分析》(荣誉)I (期中考试)				成绩				
	題 号	-	1	[11]	四	五	六	七	总:	分	
	满 分	20	12	10	32	10	8	8	100)	
	得 分										
_	一、填空题 (每小题 4 分, 共 20 分)										
1.	. 设曲线 $f(x) = x^n$ 在点 (1,1) 处的切线与 x 轴的交点为 $(\xi_n, 0)$,则 $\lim_{n \to \infty} f(\xi_n) = $										
2.	设 f'(e	e^x) = $\sin x$;,则 <i>f</i> (:	x) =							
3.	设 $f(x)$	$(x) = x^3 - 3 $	x-1	$\leq x \leq 2$),	则 $\min_{x \in [0,2]} \{$	$f(x)\} = _$, <u>r</u>	$\max_{x \in [0,2]} \{f(x)$)}=		
	. 设 $f(x) = x^3 - 3x - 1 (0 \le x \le 2)$,则 $\min_{x \in [0,2]} \{ f(x) \} = $, $\max_{x \in [0,2]} \{ f(x) \} = $. 设函数 $y = xe^x (x > 0)$ 的反函数为 $x = x(y)$,则 $\frac{d^2 x}{dy^2} \Big _{y = e} = $										
5.											
=	、单项道	选择题(名	每小题3	分,共1	.2分)						
6.	设∫ <i>xf</i>	(x) dx = a	arcsin x+	C,则∫-	$\frac{1}{f(x)} \mathrm{d}x =$	=		••••	. [1	
	$(\mathbf{A})\sqrt{1}$	$\overline{-x^2} + C$.			$(\mathbf{B}) x$	$\sqrt{1-x^2}$ +	C.				
	$(\mathbf{C}) - \frac{1}{2}$	$\frac{1}{2}(1-x^2)^{\frac{3}{2}}$	+C.		(D) –	$\frac{1}{3}(1-x^2)$	$\frac{3}{2} + C.$				
7.	设函数	(f(x)在	U(0)有兌	三义, 且	$\lim_{x\to 0} f(x) =$	=0,则		••••	. [1	
	(A) 当 $\lim_{x\to 0} \frac{f(x)}{\sqrt{ x }} = 0$ 时, $f(x)$ 在 $x = 0$ 处可导.										
	(B) 当 $\lim_{x\to 0} \frac{f(x)}{x^2} = 0$ 时, $f(x)$ 在 $x = 0$ 处可导.										
	(C) 当 $f(x)$ 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{ x }} = 0$.										
	(D) ≝	if(x)在.	x=0处豆	[导时,]	$\lim_{x \to 0} \frac{f(x)}{x^2}$	=0.					

8.	设 $a < b$, f 是闭区间 $[a,b]$ 上的凸函数	汝,则下列断语中	····· 【)					
	① $f(x)$ 必在开区间 (a,b) 内连续.	② $f(x)$ 必在开区间 (a,b)	为)内可导.						
	③ $f(x)$ 必在开区间 (a,b) 内有界.								
	(A) ①正确,②和③不正确.	(B) ①和③正确,②不正	E确.						
	(C) ③正确,①和②不正确.	(D) ①,②和③都正确.							
9.	9. 设函数 $f(x)$ 在 $(a,+∞)$ 上可导,则下列断语中								
	① 若 $f' \in U.C(a, +\infty)$,且 $\lim_{x \to +\infty} f(x)$ 存在,则必有 $\lim_{x \to +\infty} f'(x) = 0$. ② 若 $f' \in U.C(a, +\infty)$,且 $\lim_{x \to +\infty} f'(x) = 0$,则必有 $\lim_{x \to +\infty} f(x)$ 存在.								
	(A) ①正确,②不正确. (B)	①不正确,②正确.							
	(C) ①和②都正确. (D)	①和②都不正确.							
三、	作图题 (本题共 10 分)								
10. 全面讨论 $y = xe^{\frac{1}{x}}$ 的性态,并作出函数图像.									

四、计算题 (每小题 8 分, 共 32 分)

12. 计算不定积分
$$\int \frac{1}{2\sin x - \cos x + 5} dx$$
.

13. 计算不定积分
$$\int \frac{e^x(x-1)}{x^2} dx$$
.

14. 求极限
$$\lim_{x\to 0} \frac{e^{-x^4} - \cos^2 x - x^2}{\sin^4 x}$$
.

五、 (本题共10分)

- **15.** 设函数 f 在[0,1] 上二阶可导,且 f(0) = f(1) = 0, $f(x_0) = \min_{0 \le x \le 1} \{f(x)\} = -1$.
 - (1) 试写出 f(x) 在 x_0 处带 Lagrange 型余项的一阶 Taylor 公式;
 - (2) 证明:存在 $\xi \in (0,1)$ 使得 $f''(\xi) \ge 8$.

六、证明题 (本题共8分)

16. 设函数 f 在 [a,b] 上二阶可导,且 f(a) = f'(a) , f(b) = f'(b) . 证明:存在 $\xi \in (a,b)$ 使得 $f(\xi) = f''(\xi)$.

七、证明题 (本题共8分)

- 17. 设函数 f 在 \mathbb{R} 上具有连续导数,且对 $\forall x \in \mathbb{R}$,有 f(x+1) f(x) = f'(x).
 - (1) 对 $\forall x \in \mathbb{R}$, 令 $E_x = \{t \mid f'(t) = f'(x), t \in \mathbb{R}\}$, 证明: $\sup\{E_x\} = +\infty$;
 - (2) 若 $\lim_{x\to+\infty} f'(x) = c$ (常数),证明: $f'(x) \equiv c$.