Física III

Potencial Elétrico

Prof. VICTOR M. MIRANDA

Objetivos de Aprendizagem

Ao estudar este capítulo você aprenderá:

- Como calcular o trabalho realizado ao deslocar uma carga de um ponto a outro em um campo elétrico;
- Como calcular a energia potencial de um conjunto de cargas;
- O significado e a importância do potencial elétrico e da diferença de potencial;
- Como calcular o potencial elétrico que um conjunto de cargas puntiformes produz em um ponto do espaço;
- Como usar o campo elétrico para calcular o potencial elétrico;
- Como calcular o potencial elétrico que distribuições contínuas de carga produzem em um ponto no espaço;
- Como usar superfícies equipotenciais para visualizar como o potencial elétrico varia no espaço;
- Como usar o potencial elétrico para calcular o campo elétrico.

Trabalho e Energia Potencial Elétrica

• Quando uma partícula carregada se desloca em um campo elétrico de um ponto **a** até um ponto **b**, o campo exerce uma força que realiza **trabalho** sobre a partícula.

$$W_{a\to b} = \int_a^b \vec{F} \cdot d\vec{l} = \int_a^b F \cos \phi dl$$

onde \overrightarrow{dl} é um deslocamento infinitesimal ao longo da trajetória da partícula e ϕ é o ângulo entre \overrightarrow{F} e \overrightarrow{dl} em cada ponto da trajetória.

• Se a força elétrica for conservativa, esse trabalho realizado pode ser expresso em termos da Energia Potencial Elétrica (EPE).

$$W_{a \to b} = U_a - U_b = -(U_b - U_a) = -\Delta U$$
 (trabalho realizado por uma força conservativa)

Quando há uma troca de energia num sistema físico, pode-se dizer que um **trabalho** foi realizado. A transferência de energia ocorre quando uma força F é aplicada sobre um objeto de modo a deslocá-lo por uma distância d, ao longo de uma linha na qual haja uma projeção diferente de zero da respectiva força. A medida da quantidade de energia gasta neste processo é denominada trabalho.

Potencial Elétrico

• Denomina-se **Potencial Elétrico** (ou simplesmente **Potencial**) a **energia potencial elétrica por unidade de carga.**

$$V = \frac{U}{q_0} \quad ou \quad U = q_0 V$$

$$W_{a\to b} = \int_a^b \vec{F} \cdot d\vec{l} = \int_a^b F \cos \phi dl$$

 $W_{a\to b} = U_a - U_b = -(U_b - U_a) = -\Delta U$ (trabalho realizado por uma força conservativa)

No S.I. [v]=1J/C=1volt. A diferença de potencial elétrico será dada por:

$$\frac{W_{a \to b}}{q_0} = -\frac{\Delta U}{q_0} = -\left(\frac{U_b}{q_0} - \frac{U_a}{q_0}\right) = -(V_b - V_a)$$

$$\frac{W_{a \to b}}{q_0} = V_a - V_b = V_{ab}$$

 V_{ab} é o potencial de a em relação a b, que é igual ao trabalho realizado pela força elétrica quando uma carga UNITÁRIA se desloca de a até b.

 V_{ab} , o potencial de a em relação a b, é igual ao trabalho realizado contra a força elétrica para deslocar lentamente uma carga UNITÁRIA de b até a.

Ponto b $V_{ab} = 1.5 \text{ volt}$

 Nos circuitos, a diferença de potencial (ddp) entre dois pontos é, geralmente, chamada de Voltagem ou Tensão. O Voltímetro é um instrumento que mede a ddp entre dois pontos.

Potencial Elétrico de uma Carga Puntiforme

A energia potencial entre duas cargas puntiformes, q e q_0 é dada por:

$$U = \frac{1}{4\pi\epsilon_0} \frac{q_0 q}{r}$$

O potencial *V* para uma única carga *q* será:

$$V = \frac{U}{q_0} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

- r é a distância entre q e o ponto onde o potencial está sendo calculado.
- ▶ $q > 0 \to V > 0$.
- ▶ $q < 0 \to V < 0$.
- $ightharpoonup r = \infty \rightarrow V = 0.$
- V é independente da carga q₀.

Potencial de um Conjunto de Cargas Puntiformes e de uma Distribuição Contínua de Cargas

A energia potencial entre um conjunto de cargas puntiformes, é dada por:

$$U = \frac{q_0}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

O potencial V para um conjunto de carga será:

$$V = \frac{U}{q_0} = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$
 OBS: Soma algébrica

Para um distribuição continua de cargas o somatório se torna uma integral,

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$$

Exemplo 1: Potencial de um Conjunto de Cargas Pontuais

Qual é o valor do potencial elétrico no ponto *P*, situado no centro do quadrado de cargas pontuais que aparece na Fig. 24-8*a*? A distância *d* é 1,3 m e as cargas são

$$q_1 = +12 \text{ nC},$$
 $q_3 = +31 \text{ nC},$
 $q_2 = -24 \text{ nC},$ $q_4 = +17 \text{ nC}.$

O potencial elétrico V no ponto P é a soma algébrica dos potenciais elétricos produzidos pelas quatro cargas. (Como o potencial elétrico é um escalar, as orientações das cargas são irrelevantes.)

FIG. 24-8 (a) Quatro cargas pontuais são mantidas fixas nos vértices de um quadrado. (b) A curva fechada é uma seção reta, no plano da figura, da superfície eqüipotencial que contém o ponto P. (A curva é apenas um esboço.)

Cálculos: De acordo com a Eq. 24-27, temos:

$$V = \sum_{i=1}^{4} V_i = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r} + \frac{q_2}{r} + \frac{q_3}{r} + \frac{q_4}{r} \right).$$

A distância $r \in d/\sqrt{2} = 0.919$ m e a soma das cargas é

$$q_1 + q_2 + q_3 + q_4 = (12 - 24 + 31 + 17) \times 10^{-9} \,\mathrm{C}$$

= $36 \times 10^{-9} \,\mathrm{C}$.

Assim,
$$V = \frac{(8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2})(36 \times 10^{-9} \,\mathrm{C})}{0.919 \,\mathrm{m}}$$
$$\approx 350 \,\mathrm{V}. \qquad (Resposta)$$

Nas vizinhanças das três cargas positivas da Fig. 24-8a o potencial assume valores positivos muito elevados. Nas proximidades da carga negativa o potencial assume valores negativos muito elevados. Assim, deve haver pontos no interior do quadrado nos quais o potencial tem o mesmo valor intermediário que no ponto P. A curva da Fig. 24-8b mostra a interseção do plano da figura com a superfície eqüipotencial que contém o ponto P. Qualquer ponto sobre essa curva tem o mesmo potencial do ponto P.

Exemplo 2: Potencial de um Conjunto de Cargas Pontuais

•12 Considere uma carga pontual $q = 1.0 \mu$ C, o ponto A a uma distância $d_1 = 2.0 \text{ m}$ de q e o ponto B a uma distância $d_2 = 1.0 \text{ m}$ de q. (a) Se A e B estão diametralmente opostos, como na Fig. 24-31a, qual é a diferença de potencial elétrico $V_A - V_B$? (b) Qual é a diferença de potencial elétrico se A e B estão localizados como na Fig. 24-31b?

FIG. 24-31 Problema 12.

12. (a) The potential difference is

$$V_A - V_B = \frac{q}{4\pi\varepsilon_0 r_A} - \frac{q}{4\pi\varepsilon_0 r_B} = (1.0 \times 10^{-6} \text{ C})(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) \left(\frac{1}{2.0 \text{ m}} - \frac{1}{1.0 \text{ m}}\right)$$
$$= -4.5 \times 10^3 \text{ V}.$$

(b) Since V(r) depends only on the magnitude of \vec{r} , the result is unchanged.

Exemplo 3: Potencial Elétrico

POTENCIAL PRODUZIDO POR DUAS CARGAS PUNTIFORMES

Um dipolo elétrico é constituído por duas cargas puntiformes $q_1 = +12$ nC e $q_2 = -12$ nC, sendo a distância entre elas igual a 10 cm (Figura 23.14). Calcule os potenciais nos pontos a, b e c somando os potenciais produzidos pelas cargas individuais como na Equação (23.15).

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

$$\frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1} = (9.0 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{12 \times 10^{-9} \,\mathrm{C}}{0.060 \,\mathrm{m}}$$
$$= 1800 \,\mathrm{N \cdot m/C}$$
$$= 1800 \,\mathrm{J/C} = 1800 \,\mathrm{V}$$

e o potencial produzido pela carga negativa q_2 é

$$\frac{1}{4\pi\epsilon_0} \frac{q_2}{r_2} = (9.0 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{(-12 \times 10^{-9} \,\mathrm{C})}{0.040 \,\mathrm{m}}$$
$$= -2700 \,\mathrm{N \cdot m/C}$$
$$= -2700 \,\mathrm{J/C} = -2700 \,\mathrm{V}$$

Figura 23.14

Quais são os potenciais nos pontos a, b e c produzidos por este dipolo elétrico?

Exemplo 3: Potencial Elétrico (Continuação)

O potencial V_a é a soma dos resultados anteriores

$$V_a = 1800 \text{ V} + (-2700 \text{ V}) = -900 \text{ V}$$

Fazendo um cálculo análogo, você pode mostrar que, no ponto b, o potencial produzido pela carga positiva é igual a +2700 V, o potencial produzido pela carga negativa é igual a -770 V e

$$V_b = 2700 \text{ V} + (-700 \text{ V}) = 1930 \text{ V}$$

No ponto c, o potencial produzido pela carga positiva é

$$\frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1} = (9.0 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{12 \times 10^{-9} \,\mathrm{C}}{0.13 \,\mathrm{m}} = 830 \,\mathrm{V}$$

O potencial produzido pela carga negativa é igual a -830 V e o potencial total é igual a zero:

$$V_c = 830 \text{ V} + (-830 \text{ V}) = 0$$

O potencial também é igual a zero em todos os pontos situados no infinito (pontos infinitamente distantes de ambas as cargas).

Figura 23.14

Quais são os potenciais nos pontos

a, b e c produzidos por

este dipolo elétrico?

Elétron-Volt (eV)

$$-\frac{\Delta U}{q} = V_{ab} \to q(V_a - V_b) = -(U_b - U_a) \to q(V_a - V_b) = U_a - U_b$$

Elétron-volt é uma unidade de energia.

$$U_a - U_b = q(V_a - V_b) = qV_{ab}$$

Quando q possui modulo igual a $e=1,602\times 10^{-19}C$ a carga do elétron e $V_{ab}=1Volt$, então:

$$1eV = (1,602 \times 10^{-19}C)(1Volt) = 1,602 \times 10^{-19}J$$

Obtendo o Potencial a partir do Campo Elétrico

Quando conhecemos \vec{E} e não a distribuição de cargas podemos calcular o potencial elétrico a partir do campo elétrico. Como $\vec{F} = q_0 \vec{E}$, então:

$$W_{a \to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = \int_{a}^{b} q_{0} \vec{E} \cdot d\vec{l}$$

$$\frac{W_{a \to b}}{q_{0}} = \frac{\int_{a}^{b} q_{0} \vec{E} \cdot d\vec{l}}{q_{0}} = V_{a} - V_{b}$$

$$V_{a} - V_{b} = \int_{a}^{b} \vec{E} \cdot d\vec{l} = \int_{a}^{b} E \cos \phi dl$$

- Ao se mover no sentido de \vec{E} , você se desloca para valores decrescentes de V(V diminui).
- Ao se mover no sentido oposto de \(\vec{E}\), você se desloca para valores crescentes de \(V(V)\) aumenta).

No S.I. a unidade de campo elétrico pode ser: 1N/C = 1V/m.

Obtendo o Potencial a partir do Campo Elétrico

Analogamente, uma carga de teste positiva q_0 sofre a ação de uma força elétrica no mesmo sentido de \vec{E} , para valores decrescentes de V; uma carga de teste negativa sofre a ação de uma força elétrica em sentido contrário ao de \vec{E} , para valores crescentes de V. Logo, uma carga positiva tende a 'cair' de uma região de potencial mais elevado para uma região de potencial mais baixo. Para uma carga negativa, ocorre o contrário.

- O campo elétrico aponta sempre no sentido de potenciais decrescentes.
- A equação anterior pode ser reescrita do seguinte modo:

$$V_a - V_b = -\int_b^a \vec{E} \cdot d\vec{l}$$

Exemplo 1: Trabalho e Potencial

23.17 Uma carga igual a +28,0 nC está em um campo elétrico uniforme, orientado verticalmente de baixo para cima e que possui módulo igual a 4.0×10^4 V/m. Qual é o trabalho realizado pela força elétrica quando a carga se desloca (a) 0.450 m para a direita? (b) 0.670 m de baixo para cima? (c) 2.60 m formando um ângulo de 45.0° abaixo da horizontal?

Adaptação do enunciado: Calcular o potencial.

$$W_{a\to b} = q' E(y_b - y_a) = (+28.0 \times 10^{-9} \,\text{C}) (4.00 \times 10^4 \,\text{N/C}) (-1.838 \,\text{m}) = -2.06 \times 10^{-3} \,\text{J}.$$

$$W_{a\to b} = q' \int_{0}^{b} \vec{E} \cdot d\vec{l} = q'E \int_{0}^{b} dy = q'E(y_b - y_a)$$

 $y_b - y_a = +0.670$ m, positive since the displacement is upward and we have taken +y to be upward.

$$W_{a\rightarrow b} = q'E(y_b - y_a) = (+28.0 \times 10^{-9} \text{ C})(4.00 \times 10^4 \text{ N/C})(+0.670 \text{ m}) = +7.50 \times 10^{-4} \text{ J}.$$

Exemplo 2: Potencial de uma Carga Puntiforme

DETERMINAÇÃO DO POTENCIAL POR INTEGRAÇÃO

Integrando o campo elétrico, como na Equação (23.17), determine o potencial a uma distância r da carga q.

IDENTIFICAR: este problema requer a determinação do potencial elétrico a partir do campo elétrico.

PREPARAR: para encontrarmos o potencial V a uma distância r da carga puntiforme, consideramos o ponto a na Equação (23.17), situado a uma distância r, e o ponto b, a uma distância infinita da carga.

EXECUTAR: para fazermos a integral, podemos escolher qualquer trajetória que ligue esses dois pontos; a trajetória mais conveniente é uma linha reta radial, como a indicada na Figura 23.15, de modo que $d\vec{l}$ é a direção radial e possui módulo dr. Considerando q positiva, \vec{E} e $d\vec{l}$ são sempre paralelos, portanto ϕ = 0 e a Equação (23.17) fornece o resultado

$$V - 0 = \int_{r}^{\infty} E \, dr = \int_{r}^{\infty} \frac{q}{4\pi\epsilon_{0}r^{2}} dr = -\frac{q}{4\pi\epsilon_{0}r} \Big|_{r}^{\infty} = 0 - \left(-\frac{q}{4\pi\epsilon_{0}r}\right)$$

$$V = \frac{q}{4\pi\epsilon_{0}r}$$

Determinação do Potencial Elétrico: Aplicações

Esfera Condutora Carregada:

Para $r \leq R$ o campo elétrico é dado por,

$$\vec{E} = 0$$

$$dV = -\vec{E} \cdot d\vec{l} = 0$$

$$\int_{b}^{a} dV = V_{a} - V_{b} = 0$$

Logo o potencial para $r \leq R$ é constante pois, $V_a - V_b = 0$ e igual ao da superfície.

Para r > R o campo elétrico é dado por,

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r} \qquad V_a - V_b = -\int_b^a \vec{E} \cdot d\vec{l}$$

$$\int_b^a dV = -\frac{q}{4\pi\epsilon_0} \int_b^a r^{-2} dr$$

$$V_a - V_b = V_{ab} = \frac{q}{4\pi\epsilon_0} (r_a^{-1} - r_b^{-1})$$

Considerando o ponto b no infinito, temos que $V_b = 0$.

Para r>R o potencial elétrico é dado por $V=\frac{1}{4\pi\epsilon_0}\frac{q}{r}$ e na superfície é igual a $V=\frac{1}{4\pi\epsilon_0}\frac{q}{R}$

À medida que você se afasta da esfera, no mesmo sentido de \vec{E} , V diminui (como era de se esperar).

Exemplo: Determinação do Potencial Elétrico: Aplicações

Esfera Condutora Carregada:

23.49 Uma esfera metálica com raio r_a está apoiada sobre uma base isolada no centro de uma casca esférica metálica com raio externo r_b . Existe uma carga +q na esfera interna e uma carga -q na esfera externa. (a) Determine o potencial V(r) para as regiões (i) $r < r_a$; (ii) $r_a < r < r_b$; (iii) $r > r_b$. (Sugestão: O potencial total é dado pela soma dos potenciais de cada esfera.) Considere V igual a zero para r infinito.

23.49. IDENTIFY and SET UP: For a solid metal sphere or for a spherical shell, $V = \frac{kq}{r}$ outside the sphere and $V = \frac{kq}{R}$ at all points inside the sphere, where R is the radius of the sphere. When the electric field is radial, $E = -\frac{\partial V}{\partial r}$.

EXECUTE: (a) (i)
$$r < r_a$$
: This region is inside both spheres. $V = \frac{kq}{r_a} - \frac{kq}{r_b} = kq \left(\frac{1}{r_a} - \frac{1}{r_b} \right)$.

- (ii) $r_a < r < r_b$: This region is outside the inner shell and inside the outer shell. $V = \frac{kq}{r} \frac{kq}{r_b} = kq \left(\frac{1}{r} \frac{1}{r_b} \right)$.
- (iii) $r > r_b$: This region is outside both spheres and V = 0 since outside a sphere the potential is the same as for point charge. Therefore the potential is the same as for two oppositely charged point charges at the same location. These potentials cancel.

Exercícios: Determinação do Potencial Elétrico: Aplicações

Problema 66 do Halliday 8ª ed. – pág 105

Duas cascas condutoras concêntricas têm raios $R_1 = 0,500$ m e $R_2 = 1,00$ m, cargas $q_1 = +2,00$ μ C e $q_2 = +1,00$ μ C e espessura insignificante. Determine o módulo do campo elétrico E a uma distância do centro de curvatura das cascas (a) r = 4,00; (b) r = 0,700 m; (c) r = 0,200 m. Com V = 0 no infinito, determine V para (d) r = 4,00 m; (e) r = 1,00 m; (f) r = 0,700 m; (g) r = 0,500 m; (h) r = 0,200 m; (i) r = 0.

Uma esfera metálica de raio R_1 , tendo uma carga positiva Q_1 , está rodeada de uma casca esférica condutora de raio R_2 , tendo uma carga negativa Q_2 . Tomando V = 0 no infinito, ache as expressões para E(r) e V(r), onde r é a distância ao centro das esferas.

RESUMO: Obtendo o Potencial a partir do Campo Elétrico

• Quando conhecemos o campo elétrico \vec{E} em função da posição, para calcular V podemos usar as equações:

$$V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l}$$
 ou $V_a - V_b = -\int_b^a \vec{E} \cdot d\vec{l}$

• A obtenção de V a partir de \vec{E} exige integração, enquanto que a obtenção de \vec{E} a partir de V exige o cálculo de derivadas. Esse último caso não trataremos nesta disciplina.

Superfícies Equipotenciais

Superfícies equipotenciais

Superfícies equipotenciais

São superfícies em que todos os pontos têm o mesmo potencial.

$$W_{\text{I}}, W_{\text{II}}, W_{\text{III}} \text{ e } W_{\text{IV}} = ?$$

As linhas de \vec{E} são perpendiculares às superfícies equipotenciais. Por quê?

Um deslocamento ao longo de uma equipotencial não requer trabalho $(\vec{E} \cdot d\vec{l} = 0)$

Superfícies Equipotenciais

Superfícies Equipotenciais

Uma superfície equipotencial é uma superfície em três dimensões, sobre a qual o potencial elétrico V permanece constantes em todos os pontos.

Se uma carga de teste q_0 se desloca de um ponto a outro sobre essa superfície, a energia potencial q_0V permanece constante, assim, o campo elétrico \vec{E} não realiza trabalho.

Portanto, \vec{E} deve ser perpendicular à superfície em todos os pontos, de modo que a força \vec{F} seja perpendicular ao deslocamento de uma carga que se mova sobre essa superfície.

As linhas de campo elétrico e as superfícies equipotenciais são sempre mutuamente perpendiculares.

Em regiões onde o módulo de \vec{E} é grande, as superfícies equipotenciais ficam agrupadas mais compactamente.

Em regiões onde o módulo de \vec{E} é fraco, as superfícies equipotenciais ficam agrupadas mais

Uma única carga positiva

Superfícies Equipotenciais

Figura: Esfera próxima a uma superfície.

Dúvidas??

BONS ESTUDOS !!!

Prof. Victor M. Miranda