

Fall_2019 VV256_Assignment 2: Nonlinear first-order ODEs and elements of linear algebra.

Deadline: 2019-10-15

Problem 1 [20 points]

State Bihari's lemma and find the interval of existence of the solution to the initial-value problem

$$y' = 2y^2 - x$$
, $y(1) = 1$.

Problem 2 [20 points]

Find all solutions of the following equations including singular solutions if they exist. Illustrate your answer with graphs of solutions.

a)
$$(y')^2 - y^2 = 0$$

b)
$$8(y')^3 = 27y$$
,

a)
$$(y')^2 - y^2 = 0$$
, b) $8(y')^3 = 27y$, c) $y + xy' = 4\sqrt{y'}$, d) $y' = e^{\frac{ty'}{y}}$

$$d) y' = e^{\frac{ty}{y}}$$

Problem 3 [20 points]

- a) Prove that the system of elements of a linear space is linearly dependent if and only if one of those elements can be expressed as a linear combination of others.
- b) Determine if the following elements are linearly dependent or independent:

1.
$$(1,2,-2)$$
, $(3,1,0)$, $(2,-1,1)$, $(4,3,-2)$ in \mathbb{R}^3 .

2.
$$e^{\alpha_1 t}, e^{\alpha_2 t}, \dots$$
 , $e^{\alpha_n t}$ (all α_i are distinct) in $\mathcal{C}[a,b]$

Problem 4 [15 points]

Solve the following systems of linear equations:

a)
$$\begin{cases} x - z = 0 \\ 3x + y + z = 0 \\ -x + y + 2z = 0 \end{cases}$$

b)
$$\begin{cases} x + 2 - z = 1 \\ 2x + y + z = 1 \\ x - y + 2z = 1 \end{cases}$$

$$\begin{cases} x - z = 0 \\ 3x + y + z = 0 \\ -x + y + 2z = 0 \end{cases} b) \begin{cases} x + 2 - z = 1 \\ 2x + y + z = 1 \\ x - y + 2z = 1 \end{cases} c) \begin{cases} x - z = 0 \\ 3x + y + z = 1 \\ -x + y + 2z = 2 \end{cases}$$

Problem 5 [15 points]

For the matrix $A = \begin{pmatrix} 0 & -1 & -2 \\ -1 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix}$, find

- a) Its inverse A^{-1} b) eigenvalues and corresponding eigenvectors
- c) $||A||_{1}$, $||A||_{2}$, $||A||_{m}$.

Problem 6 [10 points]

State and prove Young's, Holder's and Minkowski's inequalities. (Use recommended reference books.)