

#### THIAGARAJAR COLLEGE OF ENGINEERING, MADURAI-15

(A Govt. Aided Autonomous Institution affiliated to Anna University)



- where quality and ethics matter

# Explainable AI for Early Detection and Characterization of Retinal Pathologies in OCT

Team Number: 14

Jeyasakthi R(21H019), Kavyaa S M(21H021),

Mivetha K(21H030)

Guide: Mrs. Priya Thiagarajan

## Research Area Identified

 Type the Research area identified: Artificial Intelligence in Medical Imaging

Specific Research area: Retinal Disease
 Classification Using OCT Images

## Problem Statement

- Early detection of retinal diseases is crucial to prevent vision loss, but traditional diagnosis is time-consuming and expertise-dependent.
- Diseases considered : Choroidal neovascularization(CNV), Diabetic Macular Edema(DME), Drusen
- Explainable AI-powered OCT analysis ensures faster, more accurate, and transparent detection, providing insights into the decision-making process for better clinical trust and reliability.
- Target Users: Ophthalmologists, healthcare institutions, and AI-based diagnostic systems.

## Objectives

- To create an explainable AI-based model for retinal illness classification that offers precise diagnoses together with open information on the decision-making process
- To improve the efficiency and accuracy of diagnosis
- To assist medical systems and ophthalmologists

## Tools and Technologies proposed to be used

- Jupyter notebook
- Packages:numpy,matplotlib,keras,tensorflow,
   Torch,torchvision,shutil,opency
- Dataset: Mendeley Data(<u>Labeled Retinal</u>
   <u>Optical Coherence Tomography Dataset for</u>
   <u>Classification of Normal, Drusen, and CNV</u>
   <u>Cases Mendeley Data</u>)

| Title of the paper                                            | Journal name and year of publication                         | Q1/Q2/Q3/Q4 | Inference of the paper (bulleted points)                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------|--------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-Label Retinal Disease Classification Using Transformers | IEEE Journal of Biomedical and Health Informatics, June 2023 | Q1          | <ul> <li>Introduction of the MuReD dataset, which combines various publicly available datasets, specifically for multi-label retinal disease classification.</li> <li>Achieved better performance than state-of-the-art techniques by 7.9% in disease detection and 8.1% in disease classification</li> </ul> |
| 3/12/2025                                                     | Department of Com<br>Business                                |             | 8                                                                                                                                                                                                                                                                                                             |

| Title of the paper                                                                                                 | Journal name and year of publication                | Q1/Q2/Q3/Q<br>4   | Inference of the paper (bulleted points)                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A two-stage CNN model for the classification and severity analysis of retinal and choroidal diseases in OCT images | International Journal of Intelligent Networks, 2024 | Q1                | <ul> <li>The proposed system is a novel pipeline designed for the classification and grading of retinal diseases using Optical Coherence         Tomography (OCT) images.</li> <li>It leverages machine learning and image processing techniques to streamline and enhance the diagnostic process.</li> </ul> |
| 3/12/2025                                                                                                          | Department of Com                                   | puter Science and | 9                                                                                                                                                                                                                                                                                                             |

Business

Systems

| Title of the paper                                                                                                | Journal name and year of publication              | Q1/Q2/Q3/Q4 | Inference of the paper (bulleted points)                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification | Medical & Biological Engineering & Computing,2021 | Q2          | <ul> <li>AI Can Perform at<br/>Par with or Better<br/>Than Human<br/>Experts</li> <li>GAN-Based<br/>Augmentation<br/>Helps Overcome<br/>Data Shortage</li> </ul> |

| Title of the paper                                                                                                                                                               | Journal name and year of publication         | Q1/Q2/Q3/Q4                       | Inference of the paper (bulleted points)                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Quantitative assessment of choroidal parameters in type 1 macular neovascularization linked to central serous chorioretinopathy and neovascular age-related macular degeneration | Photodiagnosis and Photodynamic Therapy,2024 | Q2                                | • This imaging technique provides a wide and detailed view of the choroid, making it a powerful tool for diagnosing choroidal disorders. |
| 3/12/2025                                                                                                                                                                        |                                              | omputer Science and<br>ss Systems | 11                                                                                                                                       |

| Title of the paper                                                                                     | Journal name and year of publication                     | Q1/Q2/Q3/Q4 | Inference of the paper (bulleted points)                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Artificial Intelligence in Retinal Screening Using OCT Images: A Review of the Last Decade (2013–2023) | Computer Methods<br>and Programs in<br>Biomedicine, 2024 | Q1          | <ul> <li>Machine learning models struggle with feature selection, whereas deep learning models work better in an end-to-end manner.</li> <li>Effectiveness of AI in Retinal Disease Detection</li> </ul> |

### Module description for both R&D and industry

#### **Module 1: Gathering and Preparing Data**

- 1. : Data collection
- 2. : Data Splitting(Training 80, Testing 10, validating 10)
- 3 : Image Pre-Processing(Data Augumentation, Segmentation)

#### **Module 2: Model Development and Training**

- 1. :Model Training(InceptionV3, MobileNetV2, EfficientNetB4)
- 2. : Model Selection(InceptionV3)

### Module description for both R&D and industry

#### **Module 3: Optimizing Models**

1. : Adam Optimizer

## Module 4: Disease Classification and Prediction with Explainable AI Prediction Generation

- 1. : Explainability Analysis(Lime, Grad-CAM, Grad-CAM++)
- 2. : LIME Prediction

#### **Module 5: Performance Analysis and Evaluation**

- 1. : Accuracy and Loss Metrics.
- 2. : Confusion Matrix
- 3. : Comparison with Other Models

## Work flow diagram



| Model           | Accuracy(%) |
|-----------------|-------------|
| InceptionV3     | 98.76       |
| MobileNetV2     | 92.56       |
| EfficientNet-B4 | 90.62       |

With an accuracy of **98.76%**, InceptionV3 outperformed MobileNetV2 (92.56%) and EfficientNet-B4 (90.62%) among the models we evaluated. **InceptionV3 is the greatest option** for our forecasts because it produces the most accurate results, which increases its dependability for our requirements.

## Result and Inference -Inception V3

#### **Bar Chart-Test Classes**



#### **Bar Chart-Train Classes**



#### **Confusion Matrix**



## Result and Inference Classification Report

#### MobileNetV2

#### EfficientNet-B4

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| CNV          | 0.89      | 0.96   | 0.92     | 242     |
| DME          | 0.94      | 0.94   | 0.94     | 242     |
| DRUSEN       | 0.98      | 0.80   | 0.88     | 242     |
| NORMAL       | 0.91      | 1.00   | 0.95     | 242     |
| accuracy     |           |        | 0.93     | 968     |
| macro avg    | 0.93      | 0.93   | 0.92     | 968     |
| weighted avg | 0.93      | 0.93   | 0.92     | 968     |

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.88      | 0.87   | 0.87     | 242     |
| 1            | 0.79      | 0.75   | 0.77     | 242     |
| 2            | 0.79      | 0.71   | 0.75     | 242     |
| 3            | 0.81      | 0.95   | 0.88     | 242     |
| accuracy     |           |        | 0.82     | 968     |
| macro avg    | 0.82      | 0.82   | 0.82     | 968     |
| weighted avg | 0.82      | 0.82   | 0.82     | 968     |

#### InceptionV3

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.99      | 0.95   | 0.97     | 242     |
| 1            | 0.97      | 1.00   | 0.98     | 242     |
| 2            | 0.98      | 0.99   | 0.99     | 242     |
| 3            | 1.00      | 0.99   | 1.00     | 242     |
| accuracy     |           |        | 0.98     | 968     |
| macro avg    | 0.98      | 0.98   | 0.98     | 968     |
| weighted avg | 0.98      | 0.98   | 0.98     | 968     |



Diabetic macular edema (DME) was correctly identified by the **InceptionV3** model, and the afflicted region was highlighted by **LIME**.

#### Lime Method



#### Lime Method



## References

- 1 L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong, "Age related macular degeneration," Lancet, vol. 379, no. 9827, pp. 1728–1738, 2012.
- 2 "The repair of rhegmatogenous retinal detachments," Ophthalmol ogy, vol. 103, no. 8, pp. 1313–1324, 1996.
- 3 M.D.Abràmoff, M.K.Garvin, and M.Sonka, "Retinalimaging and image analysis," IEEE Rev. Biomed. Eng., vol. 3, pp. 169–208, 2010.
- 4 U.Schmidt-Erfurth, A. Sadeghipour, B. S. Gerendas, S. M. Waldstein, and H. Bogunović, "Artificial intelligence in retina," Prog. Retinal Eye Res., vol. 67, pp. 1–29, Nov. 2018.
- 5 Y. Tan, K.-F. Yang, S.-X. Zhao, and Y.-J. Li, "Retinal vessel segmentation with skeletal prior and contrastive loss," IEEE Trans. Med. Imag., vol. 41, no. 9, pp. 2238–2251, Sep. 2022.