

SERIES DE TIEMPO

Oralia Santiago

CONTENIDO

- ¿QUÉ ES UNA SERIE DE TIEMPO?
- MÉTODOS COMUNES DE ANÁLISIS
- IMPORTANCIA Y APLICACIONES
- VENTAJAS Y LIMITACIONES

¿Qué es una serie de tiempo?

Definición

En Estadística se le llama así a un conjunto de valores observados durante una serie de períodos temporales secuencialmente ordenada, tales períodos pueden ser semanales, mensuales, trimestrales o anuales

Tipos de Series Temporales

Discretas o Continuas

Flujo o Stock

Unidad de medida

Periodicidad

Componentes de las series de tiempo

TENDENCIA

ESTACIONALIDAD

CÍCLICIDAD

ALEATORIEDAD

Componentes de las series de tiempo

Modelo Aditivo

$$Y_t = T_t + S_t + C_t + \varepsilon_t$$

$$Y_t = T_t \times S_t \times C_t \times \varepsilon_t$$

Modelo Multiplicativo

 $Y_t \equiv \text{valor observado en el tiempo } t$

 $T_t \equiv \text{tendencia}$

 $S_t \equiv \text{estacionalidad}$

 $C_t \equiv \text{componente cíclica}$

 $\varepsilon_t \equiv \text{error aleatorio (ruido)}$

Análisis Exploratorio de Series de Tiempo

VISUALIZACIÓN

Graficos

DESCOMPOSICIÓN

Separar

AUTOCORRELACIÓN

Relación

ESTACIONARIEDAD

Propiedades estáticas

Modelos de Predicción: Holt-Winters y ARIMA

HOLT-WINTERS:

Método de suavizado exponencial

ARIMA

Modelo autorregresivo integrado de media móvi

SELECCIÓN DEL MODELO

Dependiendo de la naturaleza de la serie

Suavizamiento exponencial simple

$$\hat{Y}_{t+1} = \alpha Y_t + (1 - \alpha)\hat{Y}_t$$

 $\alpha \equiv \text{parámetro de suavizamiento}(0 < \alpha < 1)$

Holt-Winters

Con Estacionalidad Aditiva

Nivel
$$\ell_t = \alpha(Y_t - s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1})$$

Tendencia $b_t = \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}$
Estacionalidad $s_t = \gamma(Y_t - \ell_t) + (1-\gamma)s_{t-m}$
Predicción $\hat{Y}_{t+h} = \ell_t + hb_t + s_{t+h-m}$

 $\ell_t \equiv \text{nivel}$

 $b_t \equiv tendencia$

 $s_t \equiv estacionalidad$

 $m \equiv \text{período estacional}$

 $h \equiv \text{pasos hacia el futuro}$

ARIMA A(p,d,q))

$$\phi(B)(1-B)^d Y_t = \theta(B)\varepsilon_t$$

```
B \equiv 	ext{operador de rezago}
\phi(B) \equiv 	ext{parte autorregresiva (AR)}
(1-B)^d \equiv 	ext{diferencia para lograr estacionariedad}
\theta(B) \equiv 	ext{parte de media móvil (MA)}
\varepsilon_t \equiv 	ext{error blanco}
```

EJEMPLO