	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	V	W	Х	у	z
ſ	С	Ι	S	Q	V	N	F	0	W	Α	X	М	Т	G	U	Н	Р	В	K	L	R	Ε	Y	D	Z	J

Table 1.1: Simple substitution encryption table

	j	r	a	х	V	g	n	р	b	Z	S	t	1	f	h	q	d	u	С	m	0	е	i	k	W	у
ſ	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z

Table 1.2: Simple substitution decryption table

Decryption is a similar process. Suppose that we receive the message

GVVQG VYKCM CQQBV KKWGF SCVKV B

and that we know that it was encrypted using Table 1.1. We can reverse the encryption process by finding each ciphertext letter in the second row of Table 1.1 and writing down the corresponding letter from the top row. However, since the letters in the second row of Table 1.1 are all mixed up, this is a somewhat inefficient process. It is better to make a decryption table in which the ciphertext letters in the lower row are listed in alphabetical order and the corresponding plaintext letters in the upper row are mixed up. We have done this in Table 1.2. Using this table, we easily decrypt the message.

Putting in the appropriate word breaks and some punctuation reveals an urgent request!

Need new salad dressing. -Caesar

1.1.1 Cryptanalysis of simple substitution ciphers

How many different simple substitution ciphers exist? We can count them by enumerating the possible ciphertext values for each plaintext letter. First we assign the plaintext letter a to one of the 26 possible ciphertext letters A–Z. So there are 26 possibilities for a. Next, since we are not allowed to assign b to the same letter as a, we may assign b to any one of the remaining 25 ciphertext letters. So there are $26 \cdot 25 = 650$ possible ways to assign a and b. We have now used up two of the ciphertext letters, so we may assign c to any one of the remaining 24 ciphertext letters. And so on. . . . Thus the total number of ways to assign the 26 plaintext letters to the 26 ciphertext letters, using each ciphertext letter only once, is

 $26 \cdot 25 \cdot 24 \cdot \cdot \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 26! = 403291461126605635584000000.$

There are thus more than 10^{26} different simple substitution ciphers. Each associated encryption table is known as a key.

Suppose that Eve intercepts one of Bob's messages and that she attempts to decrypt it by trying every possible simple substitution cipher. The process of decrypting a message without knowing the underlying key is called *crypt-analysis*. If Eve (or her computer) is able to check one million cipher alphabets per second, it would still take her more than 10^{13} years to try them all.⁵ But the age of the universe is estimated to be on the order of 10^{10} years. Thus Eve has almost no chance of decrypting Bob's message, which means that Bob's message is secure and he has nothing to worry about!⁶ Or does he?

It is time for an important lesson in the practical side of the science of cryptography:

Your opponent always uses her best strategy to defeat you, not the strategy that you want her to use. Thus the security of an encryption system depends on the <u>best known</u> method to break it. As new and improved methods are developed, the level of security can only get worse, never better.

Despite the large number of possible simple substitution ciphers, they are actually quite easy to break, and indeed many newspapers and magazines feature them as a companion to the daily crossword puzzle. The reason that Eve can easily cryptanalyze a simple substitution cipher is that the letters in the English language (or any other human language) are not random. To take an extreme example, the letter q in English is virtually always followed by the letter u. More useful is the fact that certain letters such as e and t appear far more frequently than other letters such as f and c. Table 1.3 lists the letters with their typical frequencies in English text. As you can see, the most frequent letter is e, followed by t, a, o, and n.

Thus if Eve counts the letters in Bob's encrypted message and makes a frequency table, it is likely that the most frequent letter will represent e, and that t, a, o, and n will appear among the next most frequent letters. In this way, Eve can try various possibilities and, after a certain amount of trial and error, decrypt Bob's message.

In the remainder of this section we illustrate how to cryptanalyze a simple substitution cipher by decrypting the message given in Table 1.4. Of course the end result of defeating a simple substitution cipher is not our main goal here. Our key point is to introduce the idea of statistical analysis, which will prove to

 $^{^5\}text{Do}$ you see how we got 10^{13} years? There are $60\cdot60\cdot24\cdot365$ seconds in a year, and 26! divided by $10^6\cdot60\cdot60\cdot24\cdot365$ is approximately $10^{13.107}$.

⁶The assertion that a large number of possible keys, in and of itself, makes a cryptosystem secure, has appeared many times in history and has equally often been shown to be fallacious.

	By decreasing	ng fre	equency
E	13.11%	Μ	2.54%
T	10.47%	U	2.46%
A	8.15%	G	1.99%
О	8.00%	Y	1.98%
N	7.10%	Р	1.98%
R	6.83%	W	1.54%
I	6.35%	В	1.44%
S	6.10%	V	0.92%
Н	5.26%	K	0.42%
D	3.79%	X	0.17%
L	3.39%	J	0.13%
F	2.92%	Q	0.12%
С	2.76%	Z	0.08%

	In alphabe	etical	order
A	8.15%	N	7.10%
В	1.44%	О	8.00%
С	2.76%	Р	1.98%
D	3.79%	Q	0.12%
E	13.11%	R	6.83%
F	2.92%	S	6.10%
G	1.99%	Т	10.47%
Н	5.26%	U	2.46%
I	6.35%	V	0.92%
J	0.13%	W	1.54%
K	0.42%	X	0.17%
L	3.39%	Y	1.98%
M	2.54%	Z	0.08%

Table 1.3: Frequency of letters in English text

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

Table 1.4: A simple substitution cipher to cryptanalyze

have many applications throughout cryptography. Although for completeness we provide full details, the reader may wish to skim this material.

There are 298 letters in the ciphertext. The first step is to make a frequency table listing how often each ciphertext letter appears.

	J																									
Freq	32	28	27	24	23	22	19	18	17	15	12	12	8	8	7	6	6	5	4	3	1	1	0	0	0	0
%	11	9	9	8	8	7	6	6	6	5	4	4	3	3	2	2	2	2	1	1	0	0	0	0	0	0

Table 1.5: Frequency table for Table 1.4—Ciphertext length: 298

The ciphertext letter J appears most frequently, so we make the provisional guess that it corresponds to the plaintext letter e. The next most frequent ciphertext letters are L (28 times) and D (27 times), so we might guess from Table 1.3 that they represent t and a. However, the letter frequencies in a short message are unlikely to exactly match the percentages in Table 1.3. All that we can say is that among the ciphertext letters L, D, G, Y, and S are likely to appear several of the plaintext letters t, a, o, n, and r.

th			l					ı		l			l .	
168	132	92	91	88	86	71	68	61	53	52	51	49	46	46

(a) Most common English bigrams (frequency per 1000 words)

LO	OJ	GY	DN	VD	YL	DL	DM	SN	KD	LY	NG	OY	JD	SK	EP	JG	SV	JM	JQ
9	7	6	each		5	ea	ch						4	ea	ch				

(b) Most common bigrams appearing in the ciphertext in Table 1.4

Table 1.6: Bigram frequencies

There are several ways to proceed. One method is to look at bigrams, which are pairs of consecutive letters. Table 1.6(a) lists the bigrams that most frequently appear in English, and Table 1.6(b) lists the ciphertext bigrams that appear most frequently in our message. The ciphertext bigrams L0 and 0J appear frequently. We have already guessed that J=e, and based on its frequency we suspect that L is likely to represent one of the letters t, a, o, n, or r. Since the two most frequent English bigrams are th and he, we make the tentative identifications

$$L0 = th$$
 and $OJ = he$.

We substitute the guesses J = e, L = t, and O = h, into the ciphertext, writing the putative plaintext letter below the corresponding ciphertext letter.

At this point, we can look at the fragments of plaintext and attempt to guess some common English words. For example, in the second line we see the three blocks

Looking at the fragment th---ht, we might guess that this is the word thought, which gives three more equivalences,

$$S = o,$$
 $C = u,$ $I = g.$

This yields

Now look at the three letters ght in the last line. They must be preceded by a vowel, and the only vowels left are a and i, so we guess that Y = i. Then we find the letters itio in the third line, and we guess that they are followed by an n, which gives N = n. (There is no reason that a letter cannot represent itself, although this is often forbidden in the puzzle ciphers that appear in newspapers.) We now have

```
LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC the-- ite-- --i-e ----- o-ent ---e --e-- ion-t -it-h o---u GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG ---eo --g-- n-eo- -ne-e to--t ho--- -n-in -o-tt hough t-hi-ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ ---- u-ion --e-e --in- ---i -e--- o--n ---o-o -itio n-o-e CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD u--i -o-t -t-in g-ou -hi-- e-u-t ---e --tot heuni niti-LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM te-th -tunt i-the --e-- ne-th e--o e--e ---hi -hheh ----- YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM i-e-- tthe- the-- ight- e---o n-i-e -hi-- --ne- -o--n -e-
```

So far, we have reconstructed the following plaintext/ciphertext pairs:

	J	L	D	G	Y	S	0	N	М	Р	Ε	V	Q	С	Т	W	U	K	Ι	X	Z	В	Α	F	R	Н
	е	t	-	-	i	0	h	n	-	-	-	-	-	u	-	-	-	-	g	-	-	-	-	-	-	_
Freq	32	28	27	24	23	22	19	18	17	15	12	12	8	8	7	6	6	5	4	3	1	1	0	0	0	0

Recall that the most common letters in English (Table 1.3) are, in order of decreasing frequency,

```
e, t, a, o, n, r, i, s, h.
```

We have already assigned ciphertext values to e, t, o, n, i, h, so we guess that D and G represent two of the three letters a, r, s. In the third line we notice that GYLYSN gives -ition, so clearly G must be s. Similarly, on the fifth line we have LJQLO DLCNL equal to te-th -tunt, so D must be a, not r. Substituting these new pairs G = s and D = a gives

```
LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC the-- ite-- -ai-e ---a- o-ent a--e- --ess ionat -it-h o-a-u GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG s--eo -ag-a n-eo- ane-e to-at ho-a- ansin -ostt hough tshis ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ -on-- usion s-e-e asin- a--i- -eass o-an- --o-o sitio nso-e CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD u--i- sosta -t-in g-ou- -his- esu-t sa--e a-tot heuni nitia LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM te-th atunt i-the --ea- ne-th e--o- esses ---hi -hheh a-a-- YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM i-e-a tthe- the-- ight- e---o nsi-e -hi-a sane- -o-an -e-
```

It is now easy to fill in additional pairs by inspection. For example, the missing letter in the fragment atunt i-the on the fifth line must be 1, which gives P = 1, and the missing letter in the fragment -osition on the third line must be p, which gives W = p. Substituting these in, we find the fragment e-p-ession on the first line, which gives Z = x and M = r, and the fragment -on-lusion on the third line, which gives E = c. Then consi-er on the last line gives Q = d and the initial words the-riterclai-e- must be the phrase "the writer claimed," yielding U = w and V = m. This gives

```
LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC thewr iterc laime d--am oment ar-ex press ionat witch o-amu GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG scleo ragla nceo- ane-e to-at homam ansin mostt hough tshis ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ concl usion swere asin- alli- leass oman- propo sitio nso-e CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD uclid sosta rtlin gwoul dhisr esult sappe artot heuni nitia LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM tedth atunt ilthe -lear nedth eproc esses --whi chheh adarr YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM i-eda tthem the-m ightw ellco nside rhima sanec roman cer
```

It is now a simple matter to fill in the few remaining letters and put in the appropriate word breaks, capitalization, and punctuation to recover the plaintext:

The writer claimed by a momentary expression, a twitch of a muscle or a glance of an eye, to fathom a man's inmost thoughts. His

conclusions were as infallible as so many propositions of Euclid. So startling would his results appear to the uninitiated that until they learned the processes by which he had arrived at them they might well consider him as a necromancer.⁷

1.2 Divisibility and greatest common divisors

Much of modern cryptography is built on the foundations of algebra and number theory. So before we explore the subject of cryptography, we need to develop some important tools. In the next four sections we begin this development by describing and proving fundamental results from algebra and number theory. If you have already studied number theory in another course, a brief review of this material will suffice. But if this material is new to you, then it is vital to study it closely and to work out the exercises provided at the end of the chapter.

At the most basic level, Number Theory is the study of the natural numbers

$$1, 2, 3, 4, 5, 6, \ldots,$$

or slightly more generally, the study of the integers

$$\ldots$$
, -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 , 3 , 4 , 5 , \ldots

The set of integers is denoted by the symbol \mathbb{Z} . Integers can be added, subtracted, and multiplied in the usual way, and they satisfy all the usual rules of arithmetic (commutative law, associative law, distributive law, etc.). The set of integers with their addition and multiplication rules are an example of a *ring*. See Section 2.10.1 for more about the theory of rings.

If a and b are integers, then we can add them a + b, subtract them a - b, and multiply them $a \cdot b$. In each case, we get an integer as the result. This property of staying inside of our original set after applying operations to a pair of elements is characteristic of a ring.

But if we want to stay within the integers, then we are not always able to divide one integer by another. For example, we cannot divide 3 by 2, since there is no integer that is equal to $\frac{3}{2}$. This leads to the fundamental concept of divisibility.

Definition. Let a and b be integers with $b \neq 0$. We say that b divides a, or that a is divisible by b, if there is an integer c such that

$$a = bc$$
.

We write $b \mid a$ to indicate that b divides a. If b does not divide a, then we write $b \nmid a$.

⁷A Study in Scarlet (Chapter 2), Sir Arthur Conan Doyle.