Math 185

Homework #4

Chapter 2, Sec. 5

Ex. 2 Show that if v is a harmonic conjugate for u, then -u is a harmonic conjugate for v

Suppose v is a harmonic conjugate for u.

This means that u is harmonic and v is harmonic such that u+iv is analytic.

so:
$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$
 and $\frac{\partial^2 v}{\partial x^2} = -\frac{\partial}{\partial x}\frac{\partial u}{\partial y} = -\frac{\partial}{\partial y}\frac{\partial u}{\partial x} = -\frac{\partial^2 v}{\partial y^2}$

We need to show that -u is harmonic and v - iu is analytic

and since
$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$
, $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ and $\lim_{\Delta x \to 0}\frac{(-u)(x+\Delta x,y)-(-u)(x,y)}{\Delta x}=-\frac{\partial u}{\partial x}$

and
$$\lim_{\Delta y o 0} rac{(-u)(x,y+\Delta y)-(-u)(x,y)}{\Delta y} = -rac{\partial u}{\partial y}$$

and the partial derivatives of u are continuous, so are the ones for -u.

So we have:

$$rac{\partial (-u)}{\partial x}=-rac{\partial v}{\partial u}$$
 and $rac{\partial (-u)}{\partial u}=rac{\partial v}{\partial x}$, this shows $v-iu$ is analytic.

And:
$$\frac{\partial^2(-u)}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial(-u)}{\partial x} = -\frac{\partial}{\partial x} \frac{\partial v}{\partial y} = -\frac{\partial}{\partial y} \frac{\partial v}{\partial x} = -\frac{\partial^2(-u)}{\partial y^2}$$
, this shows $-u$ is harmonic

Ex. 7 Show that $\log |z|$ has no conjugate harmonic function on the punctured plane $\mathbb{C}\setminus\{0\}$, though it does have a conjugate harmonic function on the slit plane $\mathbb{C}\setminus(-\infty,0]$

Over
$$D = \mathbb{C} \setminus (-\infty, 0]$$

letting
$$u=\log|z|$$
 so $\frac{\partial u}{\partial x}=\frac{x}{x^2+y^2}$ and $\frac{\partial u}{\partial y}=\frac{y}{x^2+y^2}$

and
$$\frac{\partial^2 u}{\partial x}=rac{y^2-x^2}{(x^2+y^2)^2}$$
 and $\frac{\partial^2 u}{\partial y}=rac{x^2-y^2}{(x^2+y^2)^2}$, so $u=\log|z|$ is harmonic

Taking the integral of $\frac{x}{x^2+y^2}$ w.r.t. to y,

we get $\arctan(y/x) + C(x)$ and then taking the derivative of this with respect to x it can be easily shown that C'(x) = 0 if v is a harmonic conjugate to u

it must be equal to $\arctan(y/x) + C$ where C is a constant $\in \mathbb{R}$

and
$$\arctan(y/x) = Arg(z)$$

so
$$u + iv = Log(z) + iC$$

If we were to extend u to $D = \mathbb{C} \setminus \{0\}$

u is still continuous, since |z| is continuous over all points in $\mathbb C$ and $\log(x)$ is continuous over all $x \in \mathbb R$ s.t. x > 0 and therefore harmonic.

however, Arg(z) = $\arctan(y/x)$ is not continuous over $\mathbb{C}\backslash\{0\}$ since

for x < 0:

$$\lim_{y\to 0^+} Arg(x+iy) = \pi$$

$$\lim_{y \to 0^-} Arg(x+iy) = -\pi$$

Chapter 2, Sec. 6

Ex. 1 Sketch the families of level curves of u and v for the following functions f=u+iv

(a)
$$f(z) = 1/z$$

$$f(x+iy) = rac{1}{x+iy} imes rac{x-iy}{x-iy} = rac{x}{x^2+u^2} + irac{-y}{x^2+v^2}$$

$$u(x,y)=rac{x}{x^2+y^2}$$
 , $v(x,y)=rac{-y}{x^2+y^2}$

$$u(x^2 + y^2) = x$$
 and $v = \frac{-y}{x^2 + y^2}$

$$u(x^2+y^2)=x$$
 and $v=rac{-y}{x^2+y^2}$ $x^2-rac{x}{u}+y^2=0$ $x^2+y^2+rac{y}{v}=0$ $(x-rac{1}{2u})^2-rac{1}{4u^2}+y^2=0$ $x^2+(y+rac{1}{2v})^2=rac{1}{4v^2}$

$$(x-rac{1}{2u})^2+y^2=rac{1}{4u^2}$$

So the families of level curves of u are going to be circles centered at $(\frac{1}{2u},0)$ with radius $|\frac{1}{2u}|$ and families of level curves of v are going to be circles centered at $(0, -\frac{1}{2v})$ with radius $|\frac{1}{2v}|$ Except at u=0, v=0, u=0 represents the line x=0 and v=0 represents the line y=0

red curves represent u level curves, from $-5 \le u \le 5$ increasing by 1 blue curves represent v level curves from $-5 \leq v \leq 5$ increasing by 1 and when u<0 they are circles in the left plane, and when u>0 they are circles in the right plane when v<0 they are circles in the upper plane and when v>0 they are circles in the lower plane also smaller magnitudes of u,v correspond to larger circles

So f is conformal whenever $z \neq 0$, since 1/z is not defined at z=0 and $f'(z)=-rac{1}{z^2}$

(b)
$$f(z) = 1/z^2$$

$$f(x+iy) = rac{1}{(x+iy)^2} = rac{1}{x^2-y^2+i2xy} = rac{x^2-y^2}{(x^2-y^2)^2+(2xy)^2} + irac{-2xy}{(x^2-y^2)^2+(2xy)^2}$$

In terms of |z| and $\arg z = \theta$, and $(x^2 - y^2)^2 + (2xy)^2 = (x^2 + y^2)^2 = |z|^4$

$$u = \frac{|z|^2(\cos^2\theta - \sin^2\theta)}{|z|^4} = \frac{\cos 2\theta}{|z|^2}$$

$$v=rac{-2|z|^2\sin heta\cos heta}{|z|^4}=-rac{\sin2 heta}{|z|^2}$$

$$u=c$$
, $\cos 2 heta=c|z|^2\equiv |z|=\sqrt{rac{1}{c}\cos 2 heta}$, if $c>0$ not defined for $rac{\pi}{4}< heta<rac{3\pi}{4}$ and $-rac{3\pi}{4}< heta<-rac{\pi}{4}$

if
$$c<0$$
 not defined for $-\frac{\pi}{4}<\theta<\frac{\pi}{4}$ and $\frac{3\pi}{4}<\theta<\frac{5\pi}{4}$

$$v=c, |z|^2=-rac{1}{c}\sin 2 heta$$
, if $c>0$ not defined for $0< heta<rac{\pi}{2}$ and $-\pi< heta<-rac{\pi}{2}$

if c < 0 not defined for $\frac{\pi}{2} < \theta < \pi$ and $-\frac{\pi}{2} < \theta < 0$

red curves correspond to u, blue curves correspond to v

and each curve represents an integer from $-3\ \mathrm{to}\ 3$

When
$$u=0$$
, we must have $x^2=y^2$, so the lines $y=x$ and $y=-x$

When v=0 we must have either x=0 or y=0, so the lines y=0 and x=0 (f(z) not defined at (0,0))

Conformal everywhere except z=0

(c)
$$f(z) = z^6$$

$$f(|z|e^{i\theta}) = |z|^6 e^{i6\theta}$$

$$u = |z|^6 \cos(6\theta)$$

$$u = c \Longrightarrow$$

$$|z|^6 \cos(6\theta) = c$$

$$|z| = \left(\frac{c}{\cos(6\theta)}\right)^{1/6}$$

$$v = |z|^6 \sin(6\theta)$$

$$v = c \Longrightarrow |z|^6 \sin(6\theta) = c$$

$$|z| = \left(\frac{c}{\sin(6\theta)}\right)^{1/6}$$

 $\mathsf{Red},\, u \; \mathsf{curves}. \; \mathsf{Blue},\, v \; \mathsf{curves}$

The radius of the circle at which 6 curves (corresponding to the same u or v value) intersects only once = the value of $u^{1/6}$ or $v^{1/6}$

and the points (x,y) at which these curves intersect the circle represent a 6th root of u or iv

The black lines represent the angles $k rac{\pi}{3}$ where $k \in Z$

and where it intersects with the curves for v as v
ightarrow 0,

The purple lines represent the angles $rac{\pi}{12}+krac{pi}{3}$ where $k\in\mathbb{Z}$

and the curves for u as u o 0

and where the black lines intersect with the circle of radius 1 represents 6th roots of 1 the second set of red curves these black lines intersect with represent 6th roots of 2 the third set of red curves these black lines intersect with represent 6th roots of 3 and similarly for the purple lines and 6th roots of ki where k=1,2 or 3 $f(z)=z^6$ is conformal everywhere except for when f'(z)=0 @ z=0

Ex. 7 For the function f(z)=z+1/z=u+iv sketch the families of level curves of u and v Determine the images under f(z) of

so
$$f(z)=(x+rac{x}{x^2+y^2})+i(y-rac{y}{x^2+y^2})$$

and
$$u=0 \implies x=0$$

If we have $y^2+x^2=1-\epsilon$, for some $0\leq\epsilon\leq 1$ (meaning, (x,y) are on or inside the unit circle)

$$u(x,y)=x+rac{x}{x^2+y^2}=x+rac{x}{1-\epsilon}$$

and as
$$\epsilon o 0^+$$
 , we get $u o 2x$,so $x = rac{u}{2}$

so for any $|c| \leq 2$, we can find points (x,y) within or on the unit circle that satisfy u(x,y) = c

if we restrict $x^2+y^2=1/(c-1)$, with c>2 , we will always have points (x,y) in the unit disk

and
$$u(x,y) = x + (c-1)x = cx$$

$$x=u/c$$
 , if $u>0$, $x>0$

$$y=\pm\sqrt{rac{1}{c-1}-rac{u^2}{c^2}}$$

and
$$y=0$$
 when $\frac{1}{c-1}-\frac{u^2}{c^2}=0$

$$c^2 - u^2 c + u^2$$

so when $c=rac{u^2\pm\sqrt{u^4-4u^2}}{2}$ real when $u^2\geq 4$

orange lines correspond to positive u values

not pictured: for large \boldsymbol{u} values, we have lines looking like $\boldsymbol{x}=\boldsymbol{u}$ corresponding to this \boldsymbol{u} value

because as x grows larger, $rac{x}{x^2+y^2} o 0$

red lines correspond to negative u values

and x=0 is the line corresponding to u=0

purples lines correspond to positive \emph{v} values

blue lines correspond to negative $\emph{\textit{v}}$ values

the green line corresponds to $\emph{v}=\emph{0}$

As can be seen in the image, for any u=c curve, it will intersect any curve v in and out of the unit circle.

the top half of the unit disk $(x^2+y^2\leq 1), y\geq 0$

Corresponds to $v \leq 0$

and
$$u \in (-\infty, +\infty)$$

so the lower plane

the bottom half of the unit disk

Corresponds to $v \geq 0$

$$u \in (-\infty, +\infty)$$

the upper plane

the part of the upper half plane outside the unit disk

$$v>0$$
, and $u\in(-\infty,+\infty)$

the upper plane

the part of the lower half-plane outside the unit disk

$$v < 0$$
, and $u \in (-\infty, +\infty)$

the lower plane

Chapter 2, Sec. 7

Ex. 2 Consider the fractional linear transformation $(1+i,2,0)\mapsto (0,\infty,i-1)$. Without referring to an explicit formula, determine the image of the circle |z-1|=1, the image of the disk |z-1|<1 and the image of the real axis

1+i,2,0 all lie on the circle |z-1|=1

so this fractional linear transformation maps the circle to the line passing through origin and (i-1) (y=-x)

Since orientation is preserved, all points within the circle are mapped under the line y=-x

The real line is a circle containing 0, 2 and is orthogonal to the circle |z-1|=1

Its image will be the circle that contains the points ∞ and i-1, so a line passing through i-1 that is orthogonal to the line y=-x, so a line with slope 1 containing the point (-1, 1)

so
$$(y-1) = (x+1)$$
, $y = x+2$

Ex. 8 Show that any fractional linear transformation can be represented in the from f(z)=(az+b)/(cz+d) where ad-bc=1. Is this representation unique?

Suppose g(z) = (Az + B)/(Cz + D) is a fractional linear transformation

with
$$AD-BC=lpha$$
 where $lpha
eq 0$

$$(AD - BC)/\alpha = 1$$
, $(A/\sqrt{\alpha})(D/\sqrt{\alpha}) - (B/\sqrt{\alpha})(C/\sqrt{\alpha}) = 1$

so we let
$$a=A/\sqrt{\alpha}, b=B/\sqrt{\alpha}, c=C/\sqrt{\alpha}, d=D/\sqrt{\alpha}$$

and this still gives the same function:

$$g(z) imes 1 = g(z) imes rac{1/\sqrt{lpha}}{1/\sqrt{lpha}} = rac{(A/\sqrt{lpha})z + B/\sqrt{lpha}}{(C/\sqrt{lpha})z + D/\sqrt{lpha}}$$

Not unique: we could also do $a = -A/\sqrt{\alpha}$, etc...

so multiplying g(z) by $1=rac{-1/\sqrt{lpha}}{-1/\sqrt{lpha}}$ will give the same result, different representation and

$$(-A/\sqrt{\alpha})(-D/\sqrt{\alpha}) - (-B/\sqrt{\alpha})(-C/\sqrt{\alpha}) = 1$$

Ex. 11 Two maps f and g are conjugate if there is h such that $g=h\circ f\circ h^{-1}$. Here the conjugating map is assumed to be one-to-one, with appropriate domain and range. We can think of f and g as the "same" map, after the change of variable w=h(z). A point z_0 is a fixed point of f if $f(z_0)=z_0$ Show the following

(a) If f is conjugate to g, then g is conjugate to f.

Let f be conjugate to g then \exists a map h such that

$$g = h \circ f \circ h^{-1}$$
 then:

$$h^{-1}\circ g\circ h=h^{-1}\circ h\circ f\circ h^{-1}\circ h=f$$

thus, g is conjugate to f, with h^{-1} being the conjugating map

(b) If f_1 is conjugate to f_2 and f_2 to f_3 , then f_1 is conjugate to f_3

We have:

$$f_2 = h \circ f_1 \circ h^{-1}$$

$$f_3 = q \circ f_2 \circ q^{-1}$$

Substituting $h \circ f_1 \circ h^{-1}$ for f_2 :

$$f_3 = g \circ h \circ f_1 \circ h^{-1} \circ g^{-1} = (g \circ h) \circ f_1 (g \circ h)^{-1}$$

this proves the statement.

(c) If f is conjugate to g, then $f \circ f$ is conjugate to $g \circ g$, and more generally, the m-fold composition $f \circ \cdots \circ f$ (m times) is conjugate to $g \circ \cdots \circ g$ (m times).

$$q = h \circ f \circ h^{-1}$$

$$g\circ g=h\circ f\circ h^{-1}\circ h\circ f\circ h^{-1}=h\circ f\circ f\circ h^{-1}$$

We can use induction, as we've proven n=2, and assuming $(g\circ \ldots \circ g)=h\circ f\ldots \circ f\circ h^{-1}$ k times k>2, we prove for k+1

$$g \circ \cdots \circ g = (g \circ \cdots \circ g) \circ g$$
 , (k times)(1 time)

$$= (h \circ f \circ \dots \circ f \circ h^{-1})(\circ h \circ f \circ h^{-1})$$
$$= h \circ f \circ \dots \circ f \circ f \circ h^{-1}$$

So, for any natural number m, we have proven the statement

(d) If f and g are conjugate, then the conjugate function h maps fixed points of f to the fixed points of g. In particular f and g have the same number of fixed points

Let z_0 be any point such that $f(z_0) = z_0$

$$g = h \circ f \circ h^{-1}$$

Let w_0 be the point such that $h^{-1}(w_0)=z_0\equiv h(z_0)=w_0$

then
$$g(w_0) = h(f(z_0)) = h(z_0) = w_0$$

So we have that h maps fixed point of z_0 to fixed point of g

and h^{-1} maps fixed point of g to fixed points of f

Ex. 12 Classify the conjugacy classes of fractional linear transformations by establishing the following:

(a) A fractional linear transformation that is not the identity has either 1 or 2 fixed points, that is points satisfying $f(z_0)=z_0$

$$f(z)=rac{az+b}{cz+d}$$

$$rac{az+b}{cz+d}=z$$

$$az + b = cz^2 + dz$$

$$cz^2 + (d-a)z - b = 0$$

if every z made this equal to 0, we'd have f(z) = z for all z, but f is not the identity so:

By solving for z we find fixed points,

if $c \neq 0$: since polynomials of degree 2 have 2 finite roots, we get 2 finite fixed points.

$$z = \frac{a - d \pm \sqrt{(d - a)^2 + 4cb}}{2c}$$

If $(d-a)^2+4cb=0$, we have one root with multiplicity 2

if c=0 , we have one finite fixed point, z=b/(d-a) and $z=\infty$ is also a fixed point

if d-a=0 and $b\neq 0$ then we only have one fixed point at ∞

(b) If a fractional linear transformation f(z) has two fixed points, then it is conjugate to the dilation $z\mapsto az$ with $a\neq 0$, $a\neq 1$, that is, there is a fractional linear transformation h(z) such that h(f(z))=ah(z). Is a unique?

Let f(z) have two fixed points: $z_0, z_1, f(z_0) = z_0, f(z_1) = z_1$

If f(0)=0, $f(\infty)=\infty$ so $f(0)=\frac{b}{d}\implies b=0$ and $\lim_{z\to\infty}\frac{az}{cz+d}=\frac{a}{c}$, but we need it to be ∞ , so c=0 and so we have: $f(z)=\frac{az+b}{cz+d}=\frac{az}{d}$, which is a dilation $z\mapsto \frac{a}{d}z$

$$f(z)=rac{az+b}{cz+d}$$
 with $rac{az_i+b}{cz_i+d}=z_i\,\,i=0,1$

So, if we define h to map fixed points of f to 0 and ∞ , $h^{-1}(0)=z_0$ so $h(z_0)=0, h^{-1}(\infty)=z_1, h(z_1)=\infty$

We have so $h\circ f\circ h^{-1}(0)=0$ and $h\circ f\circ h^{-1}(\infty)=\infty$

so $g = h \circ f \circ h^{-1}$ is a dilation, and f is conjugate to g

Suppose $g: z \mapsto az$

If g is conjugate with another dilation, j, then f is conjugate to j, meaning, a is not unique

So suppose this is true and $j: z \mapsto Az$, where $A \neq a$

then there exists a map k s.t. $j = k \circ q \circ k^{-1}$

And k must map fixed points of g to a fixed point of j

so either k(0)=0 and $k(\infty)=\infty$ so k is a dilation, $k:z\mapsto cz$

or $k(0)=\infty$ and $k(\infty)=0$, so k is an inversion, $k:z\mapsto \frac{c}{z}$

suppose
$$k(z)=cz$$
 so $k^{-1}(z)=c^{-1}z$

$$j=k(g(k^{-1}(cz)))=k(g(z))=k(az)=caz=Acz$$
 so $a=A$

suppose
$$k(z)=c/z$$
 and $k^{-1}=c/z$

$$j = k(g(k^{-1}(cz^{-1}))) = k(g(z)) = k(az) = c/(az) = Ac/z$$
 so $rac{1}{a} = A$

so there exists a mapping k s.t. g is conjugate to $j:z\mapsto 1/a$

a is not unique

(c) If a fractional linear transformation f(z) has exactly one fixed point, then it is conjugate to the translation $\zeta\mapsto \zeta+1$. In other words, there is a fractional linear transformation h(z) such that $h(f(h^{-1}(\zeta)))=\zeta+1$ or equivalently, such that h(f(z))=h(z)+1

if a fractional linear transformation only has one fixed point at ∞ , then we must have (from (a))

$$f(z) = z + b$$

Let h map the fixed point z_0 of f to ∞

so we have
$$h^{-1}(\infty)=z_0$$

so
$$g = h \circ f \circ h^{-1}(\infty) = \infty$$
 is the only fixed point

so we must have g(z)=z+b , b
eq 0 (else 0 would be a fixed point)

we need to show there exists a map, k s.t.

$$k(g(k^{-1}(z))) = z + 1$$

this means
$$k(k^{-1}(z)+b)=k^{-1}(z)/b+1$$
 so $k^{-1}(z)=bz$

and
$$k(z) = z/b$$

SO
$$(k\circ h\circ f\circ h^{-1}\circ k^{-1}(z)=k\circ g\circ k^{-1}(z)=z+1$$

So,
$$(k \circ h) f(k \circ h)^{-1}(z) = z + 1$$

 $k \circ h$ is the linear mapping that takes f(z) to k(h(z)) + 1