题号	_	11	Ш	四	五	六	七	八	九	+	总分	阅卷人
得分												

备注: 闭卷, 可以带计算器

得分	阅卷人				

一、Fill the blanks(40%)

- 1. Let there is a continuous time sequences $x(t) = x1(t) + x2(t) + with two continuous components, <math>x1(t) = \cos(3\pi t)$, $x2(t) = \cos(7\pi t)$, $x3(t) = \cos(10\pi t)$, if the combined digital signal is x[n] = x1[n] + x2[n] + x3[n], then
- (1) if sampled by 10Hz, then the signal will get aliasing or not $\underline{\bigcirc}$ and then sampled signal in time domain $x[n]=\underline{\bigcirc}$;
- (2) based on (1) , to filter the x1[n] by passing x[n] through a digital filter, choose one kind of digital filter and determine its cut-off frequency $\underline{\Phi}$
- (3) based on (2), determine the period of x1[n], N=______
- 2. If $x[n] = \{1, 4, 5, -4, -1\}, -2 \le n \le 2$, then
- (1) $\mathbf{x}[\mathbf{n}]$ can be expressed in terms of the unit impulse signal $\boldsymbol{\delta}[\mathbf{n}]$ as $\underline{}$;
- (2) If the impulse response of a LTI system is $h[n] = \{1, 4, 5\}, 0 \le n \le 3$, then given by x[n], the output sequence $y[1] = \boxed{0}$ and the range of y[n] is between $\boxed{8}$ and $\boxed{9}$;
- (3) if calculate $y_c[n]$ by 6-points circulation convolution, the value of $y_c[1] = \underline{0}$;
- (4) without computing the DTFT, $X(e^{j0}) = \underline{O}$; $\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega = \underline{Q}$;
- (5) to make h[n] to be a Type1 linear phrase FIR, then write out one of the possible new linear phase $h'[n] = \underline{\Omega}$.
- (5) Without computing the DTFT, determine what kind of $X(e^{j\omega})$ is $\underline{\underline{\mathcal{U}}}$; (real-valued or imaginary-valued or others types of DTFT).
- 3. If x[n] is a length-120 sequence and h[n] is a FIR filter with $0 \le n \le 4$. If using 10-points overlap method to computer y[n], then the length of each small segment of x[n] is _____ and their whole length output y[n] is _____ $\underline{\mathfrak{G}}$ _.
- $\overline{4}$. Some samples of the 5-point DFT of a length-5 real sequence are given by X[0]=-4.7, X[2]=1.2-j2, X[4]=-3.5+j3. The X[1] should be $\underline{\mathcal{O}}$.
- 5. An IIR digital filter has the unit pulse response $h[n] = (0.5)^n \mu[-n] + (0.2)^n \mu[n]$, then
- (1) z-transform of H(z) in closed form is ______ and its R.O.C is ______ ____.
- (2) whether h[n] is BIBO stable or not $\underline{\underline{20}}$.

得分	阅卷人

□、Comprehensive problems(60%)

1. (40%) A causal LTI system is described by the recursive difference equation

$$y[n] = 2x[n] - x[n-1] + \frac{7}{12}y[n-1] - \frac{1}{12}y[n-2]$$

- (1) Find the transfer function of H(z) and its R.O.C.(6%)
- (2) Draw the diagram of the system in parallel form. (8%)
- (3) If using bilinear form to transfer the digital filter to analog filter, write out the transform equation.

(4%)

- (4) Find the impulse response h[n] by solving differential equations. (8%)
- (5) Write out the magnitude function of the frequency response $H(e^{j\omega})$.(6%)
- (6) If using FIR filter to approximate h[n] and N=10, then what its magnitude function of the frequency response $H(e^{j\omega})$ will be. (6%)
- (7) How to make (6) to be linear phase.(2%)
- 2. (20%) For a continuous time signal x(t) with frequency spectrum X(j Ω), which $-\pi \times 10^4 \text{r/s} \le \Omega \le \pi \times 10^4 \text{r/s}$ as following.

- (1) Plot corresponding frequency spectrum of $X^{(e^{j\omega})}$ and $Xs(j\Omega)$ with a proper sampling period $T=0.5\times 10^{-4}s$ (5%).
- (2) If there is a LPF $H(e^{j\omega})$ with cut-off frequency $-\pi/4 \le \omega_c \le \pi/4$, Plot the frequency spectrum of $Y(e^{j\omega})$ and its 10-points DFT $Y^{[k]}$. (5%)
- (3) Determine the range of sampling rate Ω_s if $Ys(j\Omega)$ is reconstructed by filter in (2)without aliasing and Draw the $Ys(j\Omega)$. (5%)
- (4) Design an antialiasing filter if $T=0.2^{\times} 10^{-4}$ s and plot the frequency spectrum of $Xs(j\,\Omega)$ after using anti-aliasing filter . (5%)

なる。

级

密.....