Gerador de números aleatórios

Lucas Monteiro (fc52849@alunos.fc.ul.pt)

Implementação e teste de diversas sequências de números pseudo-aleatórios geradas por geradores lineares congruentes, utilizando o teste do quadrado, cubo e χ^2 ; e estudo da distribuição de probabilidade não uniforme dum círculo.

Introdução

Um gerador de números aleatórios (gna) é a geração de uma sequência de valores preferencialmente descorrelacionados entre eles e uniformemente distribuídos num certo intervalo. Os números aleatórios gerados durante este trabalho vão sê-lo através de algoritmos, logo a geração não é verdadeiramente aleatória, daí chamar-se a este tipo de algoritmos geradores de números pseudoaleatórios. Acrescenta-se assim ás características de um bom gna o facto de ter um longo período ou a capacidade de gerar um grande número de valores até estes se repetirem criando, assim, um ciclo.

1. Implementação de um gerador linear congruente

Começou-se por escrever o código para gerar números aleatórios usando o método congruente (MC). Este tipo de gerador é definido pela relação de recorrência (1):

$$X_{n+1} = (c * X_n + a) \bmod p \tag{1}$$

, onde **c** é o multiplicador, **a** o desvio e **p** o módulo escolhido. Também se define o valor inicial ($\mathbf{X_0}$) ou seed no intervalo [0; p[e **n** o número de valores aleatórios que se pretende gerar.

Para testar o código implementado escolheu-se valores relativamente baixos (<50) para os parâmetros c e p, nomeadamente c = 3 e p = 31. Os valores por defeito dos restantes parâmetros foram definidos como a = 0, X_0 = 7 e n = 100. Chamou-se esta sequência de (i).

Para verificar a correlação entre os números gerados seguiu-se para o teste do quadrado, que consiste em desenhar um gráfico bi-dimensional onde as coordenadas de cada ponto correspondem a dois números gerados seguidos $(X_n \in X_{n+1})$. Com este método pretende-se melhor visualizar os dados e perceber a sua correlação, ou descorrelação, pela emergência de padrões, por exemplo retas, no gráfico.

Visualizou-se então os números gerados pelo MC utilizando os parâmetros já definidos. Estes claramente estão fortemente correlacionados, visto que várias retas se notam no gráfico. Notou-se que bastavam cerca de uma dezena de pontos para o padrão começar a formar-se e que o período da sequência era 30.

Também foi utilizado o método do cubo que é em tudo semelhante ao método do quadrado exceto que em três dimensões em vez de duas. Como era de esperar também neste teste se nota a correlação entre os números gerados. Ambos os métodos estão representados na Figura 1.

Figura 1. Visualização da correlação dos pontos gerados pelo método congruente com c=3 e p=31, utilizando o método do quadrado (á esquerda) e do cubo (á direita)

Visto que estes parâmetros produziam valores correlacionados seguiu-se para o teste de outros, nomeadamente (ii) c=8121, p=134456 e (iii) $c=16807, p=2^{16}$.

Na sequência (ii) nota-se ainda correlação entre os pontos, embora menos que na (i), no entanto na (iii) obteve-se resultados 'bons', com números aparentemente descorrelacionados. O teste do quadrado de (ii) e (iii) podem se visualizar na Figura 2.

Figura 2. Teste do quadrado em valores gerados pelo método congruente com $c=8121,\ p=134456$ e $c=16807,\ p=2^{16}$

Também se testou outros gna implementados em C++, nomeadamente o (iv) rand() e o (v) drand48(), obtendo também resultados descorrelacionados.

2. Gerar pontos uniformemente num círculo

Seguidamente, pretendeu-se gerar pontos num círculo sem rejeição. Para isso implementou-se o código (2) para transformar coordenadas polares em cartesianas, onde \boldsymbol{r} e $\boldsymbol{\theta}$ são valores do intervalo [0;1[gerados aleatoriamente.

$$x = r\cos(2\pi\theta) \ e \ y = r\sin(2\pi\theta) \ ; \ r, \theta \in [0; 1]$$
 (2)

Foram gerados 500 números aleatórios em círculo utilizando o método congruente com $c=16807,\ p=2^{16}$ e a transformação (2). Para cada parâmetro do circulo $(r \ e \ \theta)$ foi utilizada uma seed diferente, $X_{r0}=0$ e $X_{\theta0}=59169$, pois, caso contrário, $r \ e \ \theta$ aleatórios estariam correlacionados.

Notou-se então, como se observa na Figura 4, que a distribuição dos pontos não é uniforme. Isto deve-se ao fato dos pontos serem uniformemente gerados em r e θ . Assim um ponto aparecer numa circunferência de raio r tem o dobro da probabilidade de aparecer numa de 2r pois o comprimento da circunferência cresce linearmente com r.

Figura 3. Representação gráfica de pontos gerados não uniforme e uniformemente num círculo sem rejeição, pelo MC

Queremos então que a função densidade de probabilidade $(\mathbf{f(r')})$ cresça linearmente com r'. Sabendo que esta tem área igual a 1 e $r' \in [0;1[$ temos que f(r') = 2r'. Sabese que se f(r') é contínua, e a sua função distribuição acumulada é invertível, então esta pode ser simulada a partir de uma distribuição uniforme. Tomamos então o inverso da função distribuição acumulada $(\mathbf{F^{-1}(r)})$ para obter a transformação que transforma r em r'.

$$F(r') = \int_0^{r'} f(r')dr' = r'^2 \Rightarrow r' = F^{-1}(r) = \sqrt{r}. \quad (3)$$

Substituindo em (2) o r por r' obtemos a distribuição uniforme no círculo (4).

$$x = \sqrt{r}\cos(2\pi\theta)$$
 e $y = \sqrt{r}\sin(2\pi\theta)$; $r, \theta \in [0; 1]$ (4)

3. Teste do χ^2

O teste do quadrado e do cubo são bons para visualizar a correlação entre os valores, no entanto, é difícil de entender o quão correlacionados estes estão.

Para isso fazemos o Teste χ^2 de Pearson, que consiste em dividir o intervalos de valores gerados em k intervalos de tamanho igual e, uma vez gerados os n valores aleatórios, ver quantos destes (N_i) estão compreendidos nos k intervalos i. Sabendo isto, calcula-se o valor de χ^2 pela fórmula (5), onde p_i é a probabilidade de um número

estar num intervalo i. Como neste caso a distribuição é uniforme temos que $p_i = \frac{1}{h}$.

$$\chi^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i} \stackrel{p_i = \frac{1}{k}}{=} \sum_{i=1}^k \frac{k(N_i - \frac{n}{k})^2}{n}$$
 (5)

Utilizando os valores predefinidos dos parâmetros a, X_0 e n, e com $np_i \geqslant 5$, calculou-se o χ^2 de cada um dos gna anteriormente descritos, com k=10 e para diferentes n. Os valores obtidos foram representados na Tabela 1, onde os valores de χ^2 estão em baixo, com n=100 á direita, n=500 no centro e n=1000 á esquerda, de cada sequência. Os valores foram todos arredondados por defeito á primeira casa decimal.

Tabela I. Valores de χ^2 para diferente sequências de números aleatórios, onde $n=100,\,n=500$ e $n=1000,\,$ respetivamente

(i)	(ii)	(iii)		(iv)	(v) 12. 8.2 14.6
1. 0.2 0.1	2.8 1.	0.2 7.4	7.6	4.9 4.2	6.4 4.8	12. 8.2 14.6

Utilizando os valores da tabela em anexo para k=10, ou 9 graus de liberdade, vemos que procuramos 'bons' valores de χ^2 entre 6 e 8, rejeitando logo á partida sequências com valores abaixo de 3 e acima de 17. Salienta-se também que é importante testar para vários valores de n pois um gerador pode aparentar ser 'bom' para certos valores de n mas não o ser para outros, como acontece com a sequência (iv).

Assim, rejeita-se logo á partida os geradores (i) e (ii) por apresentarem valores de χ^2 muito baixos. Os geradores (iv) e (v) apresentam resultados razoáveis, embora mais baixos e altos, respectivamente, dos desejáveis; e a sequência (iii) é a que apresenta melhores resultados.

Ainda se testou o gerador (iii) com n = 500, k = 10 e diferentes valores de X_0 , como se vê na Tabela 2. Os valores oscilaram bastante ao ponto de haverem valores muito próximos de 0 e outros muito altos ($\chi^2 = 500$).

Tabela II. Valores de χ^2 de (iii) para diferentes valores de X_0

X_0	3	7	12	365	1872	25771	59169	117649	248832
χ^2	10.	7.6	10.	5.2	0.1	9.9	5.7	6.7	500

Conclusão

Com este exercício compreende-se a necessidade de testar diferentes geradores de modo a escolhermos o mais indicado. Notou-se que os geradores são muito sensíveis ás escolhas dos diferentes parâmetros o que leva a um cuidado adicional na sua escolha. Dos testados, viu-se que o gerador mais indicado foi o do MC com c=16807, $a=0,\ p=2^{16}$ e $X_0=7$.

Também se mostrou que é possível impor uma distribuição uniforme de pontos aleatórios sobre uma distribuição não uniforme, através de uma transformação, de modo a, por exemplo, gerar pontos uniformemente num círculo.