1 Определения

1.1 Машины Тьюринга

- **Def. 1.** Алфавит Σ конечное множество символов. Строка над Σ конечная последовательность символов из Σ . Множество строк $\bigcup_{n>0} \Sigma^n = \Sigma^*$, ε пустая строка.
- **Def. 2.** Машина Тьюринга семерка $(\Sigma, \Gamma, Q, q_0, \delta, q_{acc}, q_{rej})$, где: Σ входной алфавит, $\Gamma \supset \Sigma$ рабочий алфавит (содержит особый символ пробела, Q множество всех состояний, $q_0 \in Q$ начальное состояние, $\delta: (Q \backslash q_{acc}; q_{rej}) \times \Gamma \to Q \times \Gamma \times -1, +1$ функция переходов.
- **Def. 3.** Конфигурация МТ строка вида $\alpha q_a \beta$, $\alpha, \beta \in \Gamma^*, q \in Q$ машина в состоянии q, головка указывает на символ a между α, β , окруженные бесконечным числом пробелов. Начальная конфигурация $q_0 \omega$ состояние q_0 , головка в позиции 0, с одной стороны пробелы, с другой ω .

Функция переходов - $\delta(q,a)=(q',a',\pm 1)$

Def. 4. Проблема остановки - для любой машины Тьюринга с входным алфавитом $\{0,1\}$ можно дать на вход описание $\sigma(M)$:

$$L_1 = \{ \sigma(M) \mid \sigma(M) \in L(M) \}$$
 - МТ, принимающая свое описание $L_0 = \{ \sigma(M) \mid \sigma(M) \notin L(M) \}$ - МТ, не принимающая свое описание .

1.2 Булевы функции

- **Def. 5.** Булева функция функция вида $f:\{0,1\}^n \to \{0,1\}$
- **Def. 6.** Базис \mathcal{F} некоторое подмножество булевых функций.

База: любая функция $f \in \mathcal{F}$ является функцией над \mathcal{F} . Индукционный переход: Если $f(x_1, \dots x_n)$ - формула над базисом \mathcal{F} , а $F_1, \dots F_n$ - формулы, то $f(F_1, \dots F_n)$ - формула над базисом \mathcal{F} .

- **Def. 7.** Простая конъюнкция конъюнкция одной или нескольких переменных или их отрицаний, причем все переменные встречаются не более одного раза.
- **Def. 8.** Дизъюнктивная нормальная форма преставление булевой функции в виде дизъюнкции простых конъюнкций. $(x \land \neg y) \lor z$
- **Def.** 9. Совершенная ДН Φ ДН Φ , в любой конъюнкции которой участвуют все переменные.
- **Def. 10.** Простая дизъюнкция дизъюнкция одной или нескольких переменных или их отрицаний, причем все переменные встречаются не более одного раза.

Def. 11. Конъюктивная нормальная форма - представление булевой функции в виде простых дизъюнкций. $(x \lor \neg y) \land z$

Def. 12. Совершенная $KH\Phi$ - $KH\Phi$, в любой конъюнкции которой участвуют все переменные.

Def. 13. Многочлен Жегалкина - сумма по модулю два конъюнкций переменных (допускается слагаемое единица) без повторения слагаемых, а также константа ноль.

Def. 14. Замыкание [\mathcal{F} - множество булевых функций] относительно суперпозиции - множество всех булевых функций, представимых формулой над \mathcal{F} .

Def. 15. Замкнутый класс - класс БФ, равный своему замыканию.

Def. 16. T_0 - класс функций, сохраняющих ноль:

$$T_0 = \{ f \mid f(0, \dots 0) = 0 \}.$$

Def. 17. T_1 - класс функций, сохраняющих единицу:

$$T_1 = \{ f \mid f(1, \dots 1) = 1 \}.$$

Def. 18. Двойственная функция к $f - f^*(x_1, ... x_n) = \neg f(\neg x_1, ... \neg x_n)$.

Def. 19. Самодвойственная функция - равная двойственной к себе.

Def. 20. Монотонная функция - функция f, такая что $f(\alpha) \leq f(\beta)$, $\forall \alpha \leq \beta$.

Def. 21. Линейная функция - функция, многочлен Жегалкина, которой не использует конъюнкций, а также константа ноль.

Def. 22. Множество булевых функций \mathcal{F} называется полной системой, если все булевы функции выразимы формулами над этим базисом.

1.3 Комбинаторика

Def. 23. Выборки:

- 1. Упорядоченная с повторами: n^k
- 2. Упорядоченная без повторов: $A_n^k = \frac{n!}{(n-k)!}$
- 3. Неупорядоченная без повторов: $C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{k}$
- 4. Неупорядоченная с повторами: $\widehat{C}_n^k = C_{n+k-1}^k$

Def. 24. Формула Стирлинга - $n! = (1 + o(1))\sqrt{2\pi n}(\frac{n}{e})^n$

Def. 25. Правильная скобочная последовательность - пустая строка, объединение двух ПСП и ПСП в скобках.

Def. 26. Язык Дика - множество всех правильных скобочных последовательностей.

Def. 27. Числа Каталана - количество последовательностей длины 2n в языке Дика.

$$c_0 = 1$$

$$c_n = \sum_{k=0}^{n-1} c_k c_{n-k-1}$$

$$c_n = \frac{1}{n+1} C_{2n}^n.$$

$$c_n = (1+o(1)) \frac{4^n}{n^{\frac{3}{2}\sqrt{\pi}}}.$$

1.4 Графы

Def. 28. Граф - пара G=(V,E), где V - конечное множество вершин, $E\subseteq V\times V$ - множество ребер.

Def. 29. Матрица смежности - матрица A размером $|V| \times |V|$, где

$$a_{ij} = \begin{cases} 1 & (i,j) \in E \\ 0 & else \end{cases}$$

Def. 30. Неориентированный граф - если $((u,v) \in E \to (v,u) \in E)$

Def. 31. Ориентированный граф - не неориентированный.

Def. 32. Мультиграф - допустимы кратные ребра.

Def. 33. Смежные вершины $u, v := (u, v) \in E$

Def. 34. Петля - $(v,v) \in E$

Def. 35. Путь в графе - последовательность ребер и вершин $v_0 \stackrel{e_1}{\to} v_1 \dots v_n$, такая что $e_i = (v_{i-1}, v_i)$

Def. 36. Простой путь - все вершины которого различны.

Def. 37. Реберно-простой путь - все ребра которого различны.

Def. 38. Цикл - путь, первая и последняя вершина которого совпадают.

Def. 39. Простой цикл - все вершины которого различны.

Def. 40. Реберно-простой цикл - все ребра которого различны.

Def. 41. Две вершины связны, если они совпадают или соединены некоторым путем.

- Def. 42. Связный граф имеющий ровно одну компоненту связности.
- Def. 43. Эйлеров путь реберно-простой путь, проходящий по всем ребрам.
- Def. 44. Эйлеров цикл эйлеров путь, возвращающийся в первую вершину.
- **Def. 45.** Строка де Брейна порядка n для k-символьного алфавита Σ :
 - ullet множество вершин $V=\Sigma^n$
 - ullet k исходящих дуг у каждой вершины $w_1,\dots w_n\in \Sigma^n: \forall b\in \Sigma$ дуга из $w_1,\dots w_n$ в $w_2,\dots w_n b$
- **Def. 46.** Гамильтонов путь простой путь, проходящий через каждую вершину ровно один раз.
- **Def. 47.** Гамильтонов цикл простой цикл, проходящий через каждую вершину ровно один раз.
- **Def.** 48. Лес граф без циклов.
- Def. 49. Дерево связный граф без циклов.
- **Def. 50.** Ориентированное дерево ориентированный граф без циклов, где только одна вершина имеет степень входа ноль, а остальные один.
- **Def. 51.** Мост ребро, удаление которого увеличивает количество компонент связности.
- **Def. 52.** Остовный подграф H в графе G V(H) = V(G)
- **Def. 53.** Остовное дерево остовный подграф, являющийся деревом.
- **Def. 54.** Графы $G_1(V_1, E_1), G_2(V_2, E_2)$ изоморфны, если существует биекция $f: V_1 \to V_2$, такая что $\forall u, v \in V_1, (u, v) \in E_1 \Leftrightarrow (f(u), f(v)) \in E_2$
- **Def. 55.** Плоский граф граф, который можно изобразить в виде геометрической фигуры на плоскости без пересечения ребер.
- **Def. 56.** Планарный граф изоморфный плоскому.
- **Def. 57.** Двойственный граф граф, где каждая грань становится вершиной, а каждое ребро, служившее границей, ребро, соединяющее соответствующие вершины.
- **Def. 58.** Операция разбиения ребра добавить вершину w и заменить ребро (v, u) на (v, w), (w, u).
- **Def. 59.** Графы гомеоморфны, если, применяя к каждому операции разбиения можно получить два изоморфных.
- **Def. 60.** Раскраска графа функция $c: V \to C$, где C множество цветов.

- **Def. 61.** Правильная раскраска такая раскраска, что $\forall v, u, (u, v) \in E : c(u) \neq c(v)$
- **Def.** 62. Хроматическое число $\chi(G)$ наименьшее число цветов, в которое можно правильно раскрасить вершины графа G.
- **Def. 63.** Паросочетание подмножество ребер, где никакие два ребра не имеют общих концов.
- **Def. 64.** Совершенное паросочетание паросочетание, в котором участвуют все вершины.
- **Def. 65.** Множество $X \subseteq V(G)$ (V_1, V_2) разделяющее, если в графе $G \backslash X$ нет путей из V_1 в V_2 .
- **Def. 66.** Реберная раскраска функция $c: E \to C$.
- **Def. 67.** Правильная раскраска такая раскраска, что $\forall (e, e_1) \in V : c(e) \neq c(e_1)$.
- **Def. 68.** Устойчивое паросочетание $M: \nexists (v_1, v_2) \in E \backslash M:$
 - (v_1, v_2) у v_1 выше в списке предпочтений, чем текущая пара $(v_1, v_2) \in M$, либо v_1 не в паре.
 - (v_1, v_2) у v_2 выше в списке предпочтений, чем текущая пара $(v_1\prime, v_2)$, либо v_2 не в паре.

1.5 Теория Рамсея

Def. 69. $n \in \mathbb{N}$ обладает свойством Рамсея $\mathcal{R}(k; m_1, \dots m_d)$, если для любой покраски всех k-элементных подмножеств в M (|M| = N) в d цветов $\{1, \dots d\}$ существует номер i и подмножество $A \subseteq M, |A| = m_i$ такой, что все k-элементные подмножества A покрашены в цвет i. Число Рамсея $R(k, m_1, \dots m_d)$ - наименьшее из \mathbb{N} , удовлетворяющих $\mathcal{R}(k; m_1, \dots m_d)$.