4.2.1 指数函数的概念

一、教学内容分析

本节课是人民教育出版社出版的《普通高中教科书 数学 必修第一册》(2019 年 A 版)第四章"指数函数与对数函数"第二节"指数函数"的第一课时,主要内容是指数函数的概念.

《普通高中数学课程标准(2017 年版 2020 年修订)》中明确 提出:"通过具体实例,了解指数函数的实际意义,理解指数函数的 概念."

函数是现代数学中的核心概念,它不仅是描述现实世界中变量之间关系的数学语言,也是解决问题的基本工具.指数函数是一种基础而广泛应用的函数类型,与我们的日常生活紧密相连,可以描述自然界和社会现象中增长和衰减过程的基本工具.通过研究指数函数,能够更准确地预测和模拟这些现象的发展趋势.

在指数函数的教学过程中可以采用**启发式**和**探究式**的教学策略, 学习指数函数的过程有助于培养学生的**数学抽象、逻辑推理、数学运 算、数学建模**等数学学科核心素养.

二、学生学情分析

学生的知识储备:本节课面向的是高一学生.在前面的学习中,他们已经掌握了函数的基本概念和性质,并且对幂函数有了一定的了解.在上一节课程中,他们已经将幂运算的概念从有理数指数扩展到了实数指数,并熟练掌握了幂的运算法则.通过类比和自主探索的学习方式,他们已经具备了理解指数函数概念的基础,并能够运用这些

知识解决实际问题.

学生可能面临的挑战:由于幂函数中自变量是底数,而指数函数中自变量是指数,学生在理解上可能会遇到思维转换的困难,容易将两者混淆.此外,学生需要对幂和指数的基础知识有深入的掌握,而这些概念具有一定的复杂性.

三、教学目标设置

- 1. 经历从实际情景抽象出具体函数,从具体函数抽象出一般的一类函数的过程,借助与幂函数概念的对比分析,形成指数函数的概念.
- 2. 理解指数函数在实际问题中的意义,认识数学与现实生活及其他学科的联系,发展逻辑推理和数学抽象的核心素养.
- 3. 应用指数函数的概念解决简单问题, 初步体会指数函数的实际应用价值.

四、教学重难点

教学重点: 掌握指数函数的概念与意义.

教学难点: 从实际问题中抽象出具体的函数.

五、教学策略分析

本节课是概念课的教学典范,采用问题驱动、引导发现的启发式教学方法来教,引导学生通过观察发现、自主探究、合作交流的探究式学习方法来学,并结合多媒体辅助教学.

六、教学过程设计

引言:

对于指数幂 $a^{x}(a > 0)$,指数x的范围已经拓展到了R.

上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数概念的过程与方法.

函数的概念	背景 ————————————————————————————————————
幂函数的概念	背景 抽象 具体的幂函数 抽象 一般的幂函数

设计意图: 回顾已经学习过的内容,建立新旧知识之间的联系,为学习新内容打下基础.

(一) 创设情境,引入新知

情境 1: 随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A、B两地景区自 2001 年起采取了不同的应对措施,A地提高了景区门票价格,而 B 地则取消了景区门票.表格给出了A、B两地景区 2001年至 2015年的游客人次以及逐年增加量.

n+高/左	A 地景区		B地景区		
时间/年	人次/万次	年增加量/万次	人次/万次	年增加量/万次	
2001	600		278		
2002	609	9	309	31	
2003	620	11	344	35	
2004	631	11	383	39	
2005	641	10	427	44	
2006	650	9	475	48	
2007	661	11	528	53	
2008	671	10	588	60	
2009	681	10	655	67	
2010	691	10	729	74	
2011	702	11	811	82	
2012	711	9	903	92	
2013	721	10	1 005	102	
2014	732	11	1 118	113	
2015	743	11	1 244	126	

景区游客人次与时间的散点图下表所示:

问题 1: 结合表格中的数据及散点图发现怎样的变化规律?

A 景区的游客人次是线性增长的,年增加量基本保持不变.A 图像中的数据点在一条直线上.

B景区的游客人次是非线性增长的,年增加量越来越大.B图像中的数据点不在一条直线上.

设计意图: 通过生活中的实际情境,引导学生发现不同的增长方式,激发学生的好奇心.

问题 2: 从图象和年增加量我们都难以看出 B 地景区年游客人次变化规律.那么能否通过对 B 地景区每年的游客人次做其他运算发现游客人次的变化规律呢?

通过计算发现:

$$\frac{2002 年游客人次}{2001 年游客人次} = \frac{309}{278} \approx 1.11$$

$$\frac{2003 年游客人次}{2002 年游客人次} = \frac{344}{309} \approx 1.11$$

$$\frac{2015 年游客人次}{2014 年游客人次} = \frac{1380}{1244} \approx 1.11$$

结果表明,从 2001 年开始,景区游客人次的变化规律为:

时间	1年后	2年后	3年后	•••••	x年后
----	-----	-----	-----	-------	-----

倍数	1.11 ¹	1.11 ²	1.11 ³	•••••	1.11 ^x
----	-------------------	-------------------	-------------------	-------	-------------------

设经过x年后的游客人次为 2001 年的y倍,则 $y = 1.11^x$ ($x \in N$),这是一个函数,其中x是自变量.

设计意图: 从实际情境抽象出一个具体的函数,为后续生成指数函数概念作铺垫,体会数学在解决现实问题中的应用.

情境 2: 在考古界,通过碳 14 来测定一件生物样本的年代已经是一种成熟的技术手段.碳 14 的衰变极有规律,其精确性可以称为自然界的"标准时钟".当生物死亡后,它机体内原有的碳 14 含量会按确定的比率衰减(称为衰减率).

问题 3: 若年衰减率为p,生物体内碳 14 含量与死亡年数之间有怎样的关系呢?

如果把刚刚死亡的生物体内碳 14 的含量看成"1"个单位,则死亡n年后,生物体内的碳 14 含量为 $y = (1-p)^n$.

问题 4: 科学家发现,大约每经过 5730 年,死亡的生物体内碳 14 含量会衰减为原来的一半,这个时间称为"半衰期",根据半衰期 的时间,能确定出p吗?如果能确定出p,那么请计算一下生物体死亡 1.5 年后,生物体内的碳 14 含量是多少?

由 $y = (1-p)^{5730} = \frac{1}{2}$,可以求得 $1-p = \left(\frac{1}{2}\right)^{\frac{1}{5730}}$, $p = 1 - \left(\frac{1}{2}\right)^{\frac{1}{5730}}$,设生物死亡年数为x,死亡生物体内碳 14 含量为y,那么 $y = \left(\left(\frac{1}{2}\right)^{\frac{1}{5730}}\right)^x$,当x = 1.5时, $y = \left(\frac{1}{2}\right)^{\frac{2}{17190}}$.即死亡 1.5 年后,生物体内的碳 14 含量为 $\left(\frac{1}{2}\right)^{\frac{1}{8595}}$.

设计意图: 将考古测量与数学结合,通过计算得到具体函数,为 形成概念作铺垫,发展数学运算的核心素养

问题 5:
$$y = \left(\left(\frac{1}{2}\right)^{\frac{1}{5730}}\right)^x$$
 这个等式中x的范围是什么?

这里x的范围是 $[0,+\infty)$.

在生物体碳 14 含量衰减这个情境中,碳 14 的含量是随着时间按确定比例衰减的,能够通过等式来确定任意时刻x对应的碳 14 含量y.

在上述情境中,可以发现幂指数的拓展不仅是代数推理的结果, 还是实际问题的需要.

设计意图:帮助学生理解函数在实际情境中的应用,与回顾旧知相呼应.

(二) 引导探究,概念生成

问题 6: 上面出现的两个函数有什么相同点,与幂函数又有什么不同呢?

相同点: 底数是不变量、指数是自变量.

不同点: 幂函数的自变量为底数, 它表示的是自变量的幂的形式.

参考幂函数定义:函数 $y = x^a$ 叫做幂函数,其中x是自变量,a是常数.定义指数函数:函数 $y = a^x(a > 0, \exists a \neq 1)$ 叫做指数函数,其中x为自变量,定义域为x

设计意图:通过探究两个具体函数的特征,与幂函数进行比较,帮助学生形成指数函数的概念.

追问 1: 为什么a要大于0且不等于1?

 $a \leq 0$ 时,a的指数幂不一定有意义.

a = 1时,y = 1为常值函数,已经研究过.

追问 2: 为什么指数函数定义域是R?

对∀ $x \in R$, a^x 均有意义, 故指数函数定义域是R.

设计意图: 探讨指数函数中参数*a*的限制条件和定义域,帮助学生理解指数函数的定义.

(三)回归情境,加深理解

问题 7: 情境 1 和情境 2 中出现的函数是指数函数吗?

 $y = 1.11^x (x \in N)$ 与 $y = \left(\left(\frac{1}{2}\right)^{\frac{1}{5730}}\right)^x (x \in R)$ 都不是指数函数,它们的对应关系符合指数函数的要求,但是不满足定义域为R.

问题 8: 情境 1 中 B 图像中的数据点不在一条直线上,那么它们的数据点在什么图像上呢?

B 图像中的数据点一个指数图象上.

设计意图:回归实际情境,加深对指数函数概念的理解,初步体会指数函数的实际应用价值.

(四) 巩固练习,应用概念

例1: 判别下列函数哪些是指数函数?

$$(1)y = 3 \times 2^x \qquad (2)y = 2^{x+1} \qquad (3) \ y = e^x$$

只有(3)是指数函数.

例 2: 己知指数函数 $f(x) = a^x (a > 0 且 a \neq 1)$,且 $f(3) = \pi$,求 f(0), f(1), f(-3)的值.

$$f(x) = a^x$$
, 且 $f(3) = \pi$, 则 $a^3 = \pi$, 解得 $a = \pi^{\frac{1}{3}}$, 于是 $f(x) = \pi^{\frac{x}{3}}$,

代入求得f(0) = 1, $f(1) = \pi^{\frac{1}{3}}$, $f(-3) = \pi^{-1}$.

设计意图: 利用指数函数解决简单问题,发展学生数学运算的核心素养.

(五)课堂小结 布置作业

小结:

指数函数概念形成			
背景	情境1:景区游客 情境2:碳14测量		
具体函数	$y = 1.11^{x} (x \in N)$ $y = \left(\left(\frac{1}{2} \right)^{\frac{1}{5730}} \right)^{x} (x \in [0, +\infty))$		
指数函数概念	函数y=a ^x (a>0,且a≠1) 叫做 <mark>指数函数</mark> , 其中x是自变量,函数定义域R.		

作业: 教科书第 115 页练习第 1-3 题.

设计意图:通过习题练习,检测学生对指数函数概念的掌握情况.

七、板书设计

