U.S. Adult Census: Income Prediction with Logistic Regression

Benjamin Gerochi – Izzy Zhou – Michael Tham – Yui Mikuriya

Table of contents

1	Sum	nmary	1
2	Intro	oduction	1
	2.1	Dataset Overview	1
	2.2	Dataset Details:	2
	2.3	Variables and Their Types	2
	2.4	Research Question	3
	2.5	Literature Context	3
	2.6	Objective	3
3	Met	hods & Results	4
	3.1	Loading the Libraries and Dataset	4
	3.2	Data Wrangling	4
	3.3	Exploratory Data Analysis (EDA)	6
		3.3.1 Pairwise Plot:	6
	3.4	Proposed Method: Logistic Regression and ROC Curve	8
		3.4.1 Assumptions:	8
		3.4.2 Limitations:	8
	3.5	Fit the Logistic Regression Model	8
	3.6	Visualizing the ROC Curve	9
	3.7	Test the Model on the Testing Dataset	9
	3.8	Classification Results and Model Metrics	9
	3.9	Interpretation	10
4	Disc	cussion	10
	4.1	Summary of Findings and Implications	10
	4.2		13
	4.3	Future Research	13

References 13

1 Summary

This report investigates income prediction using the UCI Adult Dataset (Kohavi and Becker 1996), which compiles demographic and income data from the 1994 U.S. Census. The primary objective is to predict whether an individual earns over \$50,000 annually using factors such as age, education level, and hours worked per week. By employing a logistic regression model, the analysis effectively predicted income levels on test cases while assessing model performance using metrics like the ROC curve (AUC: Area Under the Curve), sensitivity, specificity, and accuracy. The findings underscore that while the model achieves robust overall accuracy, there are challenges with false positives that warrant further refinement.

The insights derived from this study not only validate the role of education and work intensity in income determination but also suggest avenues for future research, such as integrating geographic and intersectional demographic variables to capture the complexities of income disparities. Overall, the analysis offers a comprehensive approach to understanding income inequality and provides actionable information for policy makers and individuals aiming to navigate economic opportunities.

2 Introduction

2.1 Dataset Overview

The dataset selected for this project is the UCI Adult Dataset (Kohavi and Becker 1996), available through the UCI Machine Learning Repository (Dua and Graff 2017). It contains demographic and income data collected by the U.S. Census Bureau and is widely used for predicting whether an individual's income exceeds \$50,000 per year based on various demographic factors.

2.2 Dataset Details:

• Dataset Name: UCI Adult Dataset (Kohavi and Becker 1996)

• Source: 1994 U.S. Census database, compiled by Ronny Kohavi and Barry Becker

• Total Observations: 32,561

• Total Variables: 15

2.3 Variables and Their Types

Table 1: Variable Index and Descriptions

Variable Index	Variable Name	Type	Description
0	age	continuous	Age of the individual
1	workclass	categorical	Employment
2	fnlwgt	continuous	sector Number of individuals represented
3	education	categorical	Highest level of education attained
4	education-num	continuous	Numerical version of education level
5	marital-status	categorical	Marital status
6	occupation	categorical	Type of occupation
7	relationship	categorical	Position in household
8	race	categorical	Race of the individual
9	sex	categorical	Gender (Male/Female)
10	capital-gain	continuous	Capital gains earned
11	capital-loss	continuous	Capital losses incurred
12	hours-per-week	continuous	Average hours worked per week
13	native-country	categorical	Country of origin
14	income	categorical	Income level $(<=50K, >50K)$

This dataset includes both **categorical** and **numerical** variables, making it suitable for analyzing relationships between **demographic attributes** and **income levels**. Further **exploration and preprocessing** may involve handling **missing values** and **encoding categorical features**.

2.4 Research Question

How accurately can key demographic factors predict whether an individual's annual income exceeds \$50,000?

This study aims to use demographic variables to predict income levels without pre-assuming key predictors. Our team initially analyzed different aspects of the dataset before deciding to focus on demographic influences on income such as age, education, and hours worked.

2.5 Literature Context

Prior research supports the importance of demographic factors in income prediction. Jo (Jo 2023) analyzed the **Adult dataset** and identified **capital gain, education, relationship status, and occupation** as key predictors. Similarly, Azzollini et al. (Azzollini, Breen, and Nolan 2023) found that demographic differences explained **40% of income inequality** across OECD countries, reinforcing the relevance of our analysis.

2.6 Objective

To develop and evaluate a predictive model that estimates the probability of an individual earning more than \$50,000 annually based on their demographic characteristics:

- **Prediction:** Build a robust model to forecast whether an individual's annual income will exceed \$50,000.
- Model Evaluation: Assess model performance to ensure that the model provides reliable predictions.

3 Methods & Results

3.1 Loading the Libraries and Dataset

We will start by importing the necessary R libraries for data analysis and preprocessing. We then load the dataset into R by referencing the downloaded file path.

Table 2: Raw Adult Income Dataset

20	State-	7771CD 1 119		Adm-	Not-	W/I ::/// 1 015	740 40	United-
39	gov	77516Bacheldißs	married	clerical	family	WhitMale 217	40 40	<u>States</u> <=50K
50	Self- emp- not-inc	83311Bacheldds	_	Exec- manageria		dWhitMale 0	0 13	S United- <=50K States
38	Private	21564 H S- 9 grad		Handlers- cleaners	Not- in- family	WhitMale 0	0 40	United- <=50K States
53	Private	23472 1 1th 7		Handlers- cleaners	Husban	dBlackMale 0	0 40	United- <=50K States
28	Private	33840 Bachel Φ 8s	Married-	Prof- specialty	Wife	BlackFemal@	0 40	Cuba <=50K
37	Private	28458Master\$4	Married-	Exec- manageria	Wife al	WhitFemal@	0 40	United- <=50K States
49	Private	16018 9 th 5		Other- service	Not- in- family	BlackFemal@	0 16	Jamaica <= 50K

3.2 Data Wrangling

We will begin by cleaning Table 2. First, we remove missing values and convert the income column into a factor variable to ensure R treats it as a categorical variable. This transformation is crucial for statistical modeling and visualization, especially when income is used as a binary outcome in logistic regression. We also create new column names to streamline readability and analysis.

Table 3: Cleaned Adult Income Dataset

age	e workcla	asfanlwgetduca teidunca	ti ona<u>r</u>inal n	n statups at	icelation	nskripsex	capital	a gaita l <u>h</u>	dass_	_pertiveeidacontey
39	State- gov	7751 (Bachelons)	Never- married			WhitMal	e2174	0	40	United-<=50K States

Table 3: Cleaned Adult Income Dataset

age	workcla	sfanlwgtduca tibu ca	tima <u>rinalm</u> statupaticelationshipsex capital <u>ca</u> gnital <u>h</u> duss_	_pertive_ideoontey
50	Self- emp- not- inc	8331 Bacheloris3	Married-Exec- Husban White ale 0 0 13 civ- managerial spouse	United-<=50K States
38	Private	2156 46 S- 9 grad	DivorcedHandlersNot- WhitMale 0 0 40 cleaners infamily	United-<=50K States
53	Private	2347 21 th 7	Married-HandlersHusbandlacMale 0 0 40 civ- cleaners spouse	United-<=50K States
28	Private	3384 Bacheloris3	Married-Prof- Wife BlacFemale 0 0 40 civ- specialty spouse	Cuba <=50K
37	Private	2845 M asters14	Married-Exec- Wife Whitemale 0 0 40 civ- managerial spouse	United-<=50K States

Number of Rows: 32561

After removing missing values from Table 3, we randomly sample 10% of the data (which contains a total of 32561 observations), bringing our sample size to 3256 data points. The sample is then split into training and testing sets (80-20 split) for prediction analysis.

Table 4: Training Set of Adult Dataset

age	workcl áns wgtducat id	nca	ti on ar ita lm	_ stactups a	timentatio	omshipsex c	apital	caganital l	1 donss_	poznti weedoo on hey
51	Federal 106257ssocgov acdm	12	Married-	Tech- suppor	110000	nBlacMale	0	0	40	United-<=50K States
50	State- 2418 Bachelor gov	4 3	civ-	Exec- manage	_	n W hitMale	0	0	38	United->50K States
34	Privat&408 \$1 \$-grad	9	spouse Married- civ-	Prof- special		n W hitelale	0	0	60	Philippin 50K
22	Privat&165 09 S- grad	9	spouse Never- married	Craft-repair	Not- in- family	WhitMale	0	0	50	United-<=50K States

Table 4: Training Set of Adult Dataset

age	e workcl áns wgtducaté dn e	ati m ar ita h	n_otactupsa	ationshipsex o	capita	l <u>cag</u> aiitna l <u>h</u>	igorass	_pozntiveedocombey
40	Private 37142S-grad	Married civ- spouse	l-Sales	Husban W hit M ale	. 0	0	60	United-<=50K States
43	Privatel 8880 Stasters 14	•	l-Exec- manag		. 0	0	45	United->50K States

Number of Rows: 2604

Above, we can see that Table 3 has been successfully split, with Table 4 containing 2604 rows, representing about 80% of our sample size: 3256.

3.3 Exploratory Data Analysis (EDA)

3.3.1 Pairwise Plot:

To focus on the most relevant variables, we will exclude columns that do not directly contribute to addressing our research question. Hence, we have retained demographic predictors such as age, education level, and hours worked per week. These predictors were chosen based on prior literature Smith-Edgell (2024), theoretical considerations, and empirical evidence from exploratory analyses, which indicate that they have a significant influence on income levels.

Using Table 4 with the irrelevant columns dropped, we create pairwise plots to examine relationships between continuous variables (age, hours_per_week, education_num) and the response variable, as well as associations among the input variables.

Figure 1 shows that age is right-skewed, hours_per_week peaks around 40, and education_num has a bimodal distribution. Weak correlations (< 0.6) suggest minimal multicollinearity.

The following code generates summary tables for continuous variables, with the code computing key summary statistics: mean, standard deviation, median, variance, maximum, and minimum.

Table 5: Summary Statistics Table of Relevant Predictors

name	mean	sd	median	variance	max	min
age	38.72504	13.560569	37	183.889023	90	17
education_num	10.04224	2.592533	10	6.721227	16	1
hours_per_week	40.10676	12.432628	40	154.570235	99	1

Table 5: Summary Statistics Table of Relevant Predictors

name mean	sd	median	variance	max	min
-----------	---------------------	--------	----------	-----	-----

Table 5 shows that the average age is 39 years (SD = 13.56) with a range of 17 to 90. The average education level (education_num) is 10 years (SD = 2.59), reflecting high school or some college education. For hours_per_week, the average is 40.11 hours (SD = 12.43), with a maximum of 99 hours, indicating some individuals work significantly long hours.

3.4 Proposed Method: Logistic Regression and ROC Curve

Why is Logistic Regression Appropriate?

Logistic regression is suitable for modeling binary outcomes like income categories (\leq 50K and \geq 50K). It estimates the probability of an individual falling into a specific category based on predictors, then classifies the predictions based on a threshold. The ROC Curve, on the other hand, is a reliable tool for evaluating the effectiveness of our model.

3.4.1 Assumptions:

- 1. Independence of observations.
- 2. No high correlation among predictors.
- 3. A large enough sample size for reliable estimates.

3.4.2 Limitations:

1. Potential underfitting if too little predictors are included.

3.5 Fit the Logistic Regression Model

In the following code, we fit the logistic regression model to Table 4 using the relevant predictors.

Table 6: Summary of the Logistic Regression Model

term	estimate	std.error	statistic	p.value
(Intercept)	-8.1289099	0.3776223	-21.526561	0
age	0.0471249	0.0040550	11.621338	0
$education_num$	0.3237071	0.0224509	14.418428	0

Table 6: Summary of the Logistic Regression Model

term	estimate	std.error	statistic	p.value
hours_per_week	0.0396302	0.0042943	9.228463	0

We can observe from Table 6 that all predictors were deemed significant (based on the p-values). Furthermore, education number seemed to have the highest coefficient (0.323707135264823), demonstrating the greatest impact on model predictions.

3.6 Visualizing the ROC Curve

To evaluate the model, we will use the ROC curve to visualize the trade-off between sensitivity and specificity across classification thresholds. The AUC (Area Under the Curve) will be calculated to quantify model performance, with values closer to 1 indicating strong discrimination and values near 0.5 suggesting random guessing.

Figure 2 shows us that the AUC (Area Under the Curve) values obtained for the model (0.7928) is significantly above 0.5, indicating that the model performs much better than random guessing. The high AUC value suggests that the model has strong discriminatory power, effectively distinguishing between individuals earning <=50K and >50K based on the selected predictors.

3.7 Test the Model on the Testing Dataset

Now, we perform the classification analysis and apply the model to the testing dataset and visualize the results of the analysis in a confusion matrix.

3.8 Classification Results and Model Metrics

Table 7: Classification Results and Model Metrics

-	
Metric	Value
Sensitivity	0.3741935
Specificity	0.9336016
Precision	0.6373626
Accuracy	0.8006135
Cohen's Kappa	0.3587629

From Table 7, we observe the following metrics:

Figure 1: Pairwise Plot of Response and Predictors

Figure 2: ROC Curve of the Logistic Regression Model

Figure 3: Confusion Matrix of Full Model on Testing Set

- 1. **Sensitivity** (SN): 37.42% The model correctly identifies 37.42% of higher-income individuals.
- 2. **Specificity** (SP): 93.36% 93.36% of lower-income individuals are correctly classified.
- 3. **Precision (PR): 63.74%** 63.74% of predicted >50K individuals actually earn >50K, indicating many false positives.
- 4. Accuracy (ACC): 80.06% 80.06% of overall predictions are correct.
- 5. Cohen's Kappa (): 35.88% Moderate agreement, better than random chance but room for improvement.

3.9 Interpretation

- Strong specificity, but low sensitivity and moderate precision suggest improvements in identifying high-income individuals.
- High accuracy reflects solid overall performance but overlooks class imbalance.
- Low Cohen's Kappa indicates the need for refinement to improve consistency of predictions.

4 Discussion

4.1 Summary of Findings and Implications

- The logistic regression model showed strong predictive power (AUC =0.7928102), demonstrating that the model can effectively distinguish income levels better than a baseline.
- These findings can inform policies aimed at reducing income inequality. Education and hours worked were key predictors, emphasizing the need for skill development and worklife balance.
- Understanding the factors behind income disparities can help individuals make more informed career decisions and pursue opportunities for skill enhancement.

4.2 Expectations and Results

- The model's AUC (0.7928102) is strong, reflecting the importance of predictors like age, education, and hours worked. Overall, the results are consistent with expectations from the research study:
 - Age correlates with experience, leading to higher salaries.

- Education increases income, with those holding a degree earning significantly more.
- Hours Worked reflects labor input, where more hours can translate to higher pay.

4.3 Future Research

- Geographic Influence on Income: Including geographic variables may reveal regional disparities in income linked to education and job opportunities.
- Intersectionality of Demographics: Exploring how race, gender, and marital status interact could improve the model's accuracy in predicting income.
- Health and Disability Status: Accounting for health conditions or disability could
 provide additional insight into income disparities by limiting education or work opportunities.

References

- Azzollini, L., R. Breen, and B. Nolan. 2023. "Demographic Behaviour and Earnings Inequality Across OECD Countries." *Journal of Economic Inequality* 21: 441–61. https://doi.org/10.1007/s10888-022-09559-1.
- Dua, Dheeru, and Casey Graff. 2017. "UCI Machine Learning Repository." University of California, Irvine, School of Information and Computer Sciences. https://archive.ics.uci.edu/ml.
- Jo, K. 2023. "Income Prediction Using Machine Learning Techniques." University of California, Los Angeles.
- Kohavi, R., and B. Becker. 1996. "UCI Machine Learning Repository: Adult Data Set." UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/adult.
- Smith-Edgell, A. 2024. "Proof Point: Financial Returns After a Post-Secondary Education Have Diminished." RBC Thought Leadership. https://thoughtleadership.rbc.com/proof-point-financial-returns-after-a-post-secondary-education-have-diminished/#:~: text=Incomes%20are%20positively%20correlated%20with%20higher%20education&text=Respondents%20with%20a%20bachelor's%20degree,median%20income%20in%20the%20sample.