1

计算理论导论

习题五:下推机

中国人民大学 信息学院 崔冠宇 2018202147

- 1. Let G be the context-free grammar with the productions
 - $S o \mathbf{a} A \mathbf{a} \mid \mathbf{b} B \mathbf{b} \mid \varepsilon$
 - $A \rightarrow a \mid C$
 - $B \rightarrow \mathbf{b} \mid C$
 - $C \rightarrow CDE \mid \varepsilon$
 - $D \rightarrow ab \mid A \mid B$

Simplify this grammar by removing useless symbols, unit productions and ε -productions (in the right order); finally, obtain a grammar in the Chomsky normal form.

解:

- 1. 去掉无用的符号:
 - (a) 计算能产生终结符的状态: $S(S \to \varepsilon)$, $A(A \to a)$, $B(B \to b)$, $C(C \to \varepsilon)$, $D(D \to ab)$ 。 因此删除非终结符 E 及其所有出现,得:
 - $S
 ightarrow \mathbf{a} A \mathbf{a} \mid \mathbf{b} B \mathbf{b} \mid \varepsilon$
 - $A o \mathtt{a} \mid C$
 - $\bullet \ B \to \mathbf{b} \mid C$
 - $C \rightarrow \varepsilon$
 - $D \to {\tt ab} \mid A \mid B$

- (b) 计算从起始符号 S 可达的状态: S(自反性), $A(S \to aAa)$, $B(S \to bBb)$, $C(A \to C)$ 。因此删除非终结符 D 及其所有出现,得:
 - $S o \mathbf{a} A \mathbf{a} \mid \mathbf{b} B \mathbf{b} \mid \varepsilon$
 - $A \rightarrow a \mid C$
 - $B \rightarrow \mathbf{b} \mid C$
 - $C \to \varepsilon$
- 2. 增加一个新的开始符号 S_0 ,以及新产生式 $S_0 \rightarrow S$,得
 - $S_0 \to S$
 - $S \rightarrow aAa \mid bBb \mid \varepsilon$
 - $A \rightarrow \mathbf{a} \mid C$
 - $B \rightarrow \mathbf{b} \mid C$
 - $C \to \varepsilon$
- 3. 按下列步骤去除 ε-产生式:
 - 对 $S \rightarrow \varepsilon$, 对每一个 S 在产生式右侧的出现,增加用 ε 进行替换后得到的串,得

$$-S_0 \rightarrow S \mid \varepsilon$$

- $S \to \mathbf{a} A \mathbf{a} \mid \mathbf{b} B \mathbf{b}$
- $A \rightarrow {\tt a} \mid C$
- $-B \rightarrow b \mid C$
- $C \rightarrow \varepsilon$
- 对 $C \to \varepsilon$, 对每一个 C 在产生式右侧的出现,增加用 ε 进行替换后得到的串,得 (由于产生式左部不再有 C,可以删去)

$$-S_0 \rightarrow S \mid \varepsilon$$

- $S \to \mathbf{a} A \mathbf{a} \mid \mathbf{b} B \mathbf{b}$
- $A \rightarrow a \mid \varepsilon$
- $B \rightarrow \mathbf{b} \mid \varepsilon$
- 对 $A \rightarrow \varepsilon$, 对每一个 A 在产生式右侧的出现, 增加用 ε 进行替换后得到的串, 得
 - $-S_0 \to S \mid \varepsilon$
 - $S \rightarrow \mathtt{a} A \mathtt{a} \mid \mathtt{a} \mathtt{a} \mid \mathtt{b} B \mathtt{b}$
 - $\mathbf{-}\ A \to \mathbf{a}$
 - $B \rightarrow \mathbf{b} \mid \varepsilon$
- 对 $B \to \varepsilon$, 对每一个 B 在产生式右侧的出现, 增加用 ε 进行替换后得到的串, 得
 - $-S_0 \to S \mid \varepsilon$
 - $S \rightarrow {\tt a} A {\tt a} \mid {\tt aa} \mid {\tt b} B {\tt b} \mid {\tt bb}$
 - $\mathbf{-}\ A \to \mathbf{a}$
 - $-B \rightarrow b$
- 4. 按下列步骤去除 unit-productions:
 - 对 $S_0 \to S$,对每一个 S 在产生式左侧的出现,增加 S_0 导出右侧符号的产生式,得: (由于产生式左部不再有 S,可以删去)
 - $S_0 \rightarrow {\tt a} A {\tt a}$ | ${\tt aa}$ | ${\tt b} B {\tt b}$ | ${\tt bb}$ | ε
 - $\mathbf{-}\ A \to \mathbf{a}$
 - $B \rightarrow \mathbf{b}$
- 5. 通过引入符号来改写成 Chomsky 范式:
 - $S_0 \rightarrow AU_1 \mid AA \mid BU_2 \mid BB \mid \varepsilon$
 - $U_1 \to AA$

- $U_2 \rightarrow BB$
- $\bullet \ A \to \mathtt{a}$
- $B \rightarrow b$
- 2. Give pushdown automata for recognizing the languages in 2.4(d) and 2.9 respectively.
- **2.4(d)**: $\{w | \text{ the length of } w \text{ is odd and its middle symbol is a 0} \};$
- **2.9:** $A = \{ a^i b^j c^k | i = j \text{ or } j = k \text{ where } i, j, k \ge 0 \}.$

解:

(1) 思路: 猜测何处的 0 为中间,在左侧对读到的任意字符压栈,在右侧无论读到什么字符都弹出栈顶字符,若最后得到空栈则接受。状态转移图如下:

(2) 思路: 利用不确定性,只需要分别考虑两种可能性即可。状态转移图如下:

3. Let $\Sigma = \{a,b\}$. Let $L = \{x \in \Sigma^* : x \text{ is a palindrome and } |x| \text{ is a multiple of } 3\}$, give a PDA that recognizes L.

解:

思路: 需要同时考虑两个因素,字符串的长度以及是否读到了中间位置。状态转移图如下所示:

2.11 Convert the CFG G_4 given in **Exercise 2.1** to an equivalent PDA, using the procedure given in **Theorem 2.20**.

Exercise 2.1:

•
$$E \rightarrow E + T \mid T$$

•
$$T \rightarrow T \times F \mid F$$

•
$$F \rightarrow (E) \mid a$$

解:

思路: 根据 **Theorem 2.20** 即可。

(1) 首先画出 $q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}$ 三个状态,以及在边上填入未展开的产生式:

(2) 对于右边多于两个符号的产生式,添加中间状态以展开产生式:

5. 【选做】For a positive integer i, let N(i) denote its decimal representation (the usual string we write when writing the number i, with no leading zeros). Let $N^R(i)$ denote the string N(i) written in reverse order (least-significant digit first). Show that the language $L = \{N(i)\#N^R(i+2)|i\ge 1\}$ over the alphabet $\Sigma = \{0,1,2,3,4,5,6,7,8,9,\#\}$ is recognizable by a pushdown automaton.

解:

思路: 这是验证十进制加法的过程,利用栈和辅助符号#读入前半部分(注意处理前导o),之后逐个

符号弹出,与加二后的结果从低位到高位比对,同时还需要记录进位。设计好的 PDA $A=(Q,\Sigma,\Gamma=\Sigma\cup\{\$\},\delta,q_{\text{start}},F=\{q_{\text{accept}}\})$,其中:

- Q = {q_{start}, q_{read}, q_{add}, q_{varify,0}, q_{varify,1}, q_{accept}}
 q_{start} 表示开始状态, q_{read} 表示读取 N(i) 的状态, q_{add} 表示加二的状态, q_{varify,0} 表示进位为 o 的从 低位到高位验证状态, q_{varify,1} 表示进位为 1 的验证状态, q_{accept} 表示接受状态。
- δ 如下图所示:

