

General Description

The AO4486 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

$$V_{DS}(V) = 100V$$

 $I_{D} = 4.2A$

 $R_{DS(ON)}$ < 79m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 94m Ω (V_{GS} = 4.5V)

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V_{GS}	±20		
Continuous Drain	T _A =25℃		4.2		
Current	T _A =70℃	'D	3.4	А	
Pulsed Drain Current ^C		I _{DM}	31		
Avalanche Current ^C		I _{AS} , I _{AR}	14	А	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	10	mJ	
	T _A =25℃	р	3.1	w	
Power Dissipation ^B	Dissipation ^B T _A =70℃		2		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150		

Thermal Characteristics

Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	О	31	40	℃/W
Maximum Junction-to-Ambient AD	Steady-State	$\kappa_{\theta JA}$	59	75	℃/W
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	€\M

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		100			V
	Zoro Coto Voltago Droin Current	V _{DS} =100V, V _{GS} =0V				1	^
I _{DSS}	Zero Gate Voltage Drain Current		T _J =55℃			5	μА
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.6	2.2	2.7	V
$I_{D(ON)}$	On state drain current	V _{GS} =10V, V _{DS} =5V		31			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =5A			69	79	mΩ
	Statio Brain Godres On Recipianos	V _{GS} =4.5V, I _D =3A			82	94	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =3A			20		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.74	1	V
Is	Maximum Body-Diode Continuous Current					3.5	Α
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz		620	778	942	pF
C _{oss}	Output Capacitance			38	55	81	pF
C_{rss}	Reverse Transfer Capacitance			13	24	35	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		0.7	1.45	2.2	Ω
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =50V, I _D =3.0A		13	16.3	20	nC
Q _g (4.5V)	Total Gate Charge			6.4	8.1	10	nC
Q_{gs}	Gate Source Charge			2.2	2.8	3.4	nC
Q_{gd}	Gate Drain Charge			2.4	4.1	5.8	nC
t _{D(on)}	Turn-On DelayTime				6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =16.7 Ω , R_{GEN} =3 Ω			2.5		ns
t _{D(off)}	Turn-Off DelayTime				21		ns
t _f	Turn-Off Fall Time				2.4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =3A, dI/dt=500A/μs		14	21	28	ns
Q_{rr}	Body Diode Reverse Recovery Charge	l _F =3A, dI/dt=500A/μs		65	94	123	nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using $\le 10s$ junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

initial T_J =25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

2

6

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage

(Note E)

1.0

10

0.0

0.2

0.4

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

0.6

0.8

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

PACKAGE OUTLINE DIMENSIONS

SOP-8

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	(BSC)	0.050	O(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW AO4486	SOP-8	3000	Tape and reel