ENGN 2520 Exam

Give short answers:

- (a) What is the difference between the training error and test error?
- (b) What is overfitting? How can we avoid it in practice?
- (c) What is the margin in a support vector machine?
- (d) What is a naive Bayes classifier?
- (e) Give an example of a classification problem in \mathbb{R}^2 that *cannot* be solved by a linear-treshold function in the original input space.

Suppose we have a classification problem where the input space is $X = \mathbb{R}$ and the output space is $Y = \{0, 1\}$.

Let p(x, y) be a joint density defined by,

$$p(y=0) = \frac{1}{2}$$
 $p(y=1) = \frac{1}{2}$

p(x|y=0) is a Gaussian with $\mu=0$ and $\sigma=1.$

p(x|y=1) is a Gaussian with $\mu=0$ and $\sigma=2$.

Derive the Bayes optimal classifier in this setting. You should use a 0/1 loss to derive the optimal classification rule. What are the decision regions and decision boundaries?

Let $\{(x_1, y_1), \dots (x_n, y_n)\}$ be n labeled training examples with $y_i \in \mathbb{R}$. Let ϕ be a (fixed) feature map. Consider the regularized regression problem where we want to minimize

$$E(w) = \left(\sum_{i=1}^{n} (w^{T} \phi(x_i) - y_i)^{2}\right) + \frac{\lambda}{2} ||w||^{2}$$

Here λ is a parameter that controls the regularization strength.

(a) Why is regularization useful and how does the value of λ affect the solution to the regression problem?

Although this problem can be solved using a linear system, it is also possible to minimize E(w) using gradient descent.

- **(b)** Give a formula for $\nabla E(w)$.
- (c) Explain how gradient descent can be used to minimize E(w). You should give a clear description of the resulting algorithm with pseudo-code.

There are two kinds of fish in a river: salmon and bass. Let f_S and f_B be the fraction of fish in the river that are salmon and bass respectively $(f_S + f_B = 1)$. Our goal is to estimate f_S and f_B by measuring the lengths of random fish from the river.

You can assume that if we pick a random fish from the river it will be a salmon with probability f_S and a bass with probability f_B .

The length of a random salmon has probability density $p_S(x)$. The length of a random bass has probability density $p_B(x)$. For this problem you can assume p_S and p_B are known.

Note that p_S and p_B will have significant overlap so it is difficult to accurately classify an individual fish.

- (a) Consider the length x of random fish from the river. What is the density of x?
- (b) Suppose we record the length of n random fish from the river. How can we use the recorded lengths x_1, \ldots, x_n to estimate f_S and f_B without classifying the individual fish?