# Prova-01

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

## Sumário

| 1 | Binário para decimal (++)                   | 2 |
|---|---------------------------------------------|---|
| 2 | Números invertíveis em $\mathbb{Z}_n$ (+++) | 3 |
| 3 | Triângulo de Pascal (+++)                   | 4 |

## 1 Binário para decimal (++)



(++)

Faça um programa que leia um número inteiro escrito na base binária e o converta para a base decimal. O programa deverá admitir números binários negativos, os quais serão representados pela adição do sinal '-' à esqueda do número. Você deverá implementar a seguinte função bin2dec() que recebe um número inteiro no formato binário, ou seja, composto somente por zeros e uns, e retorna o número correspondente na base decimal.

```
long int bin2dec( long int bin );
```

#### **Entrada**

Seu programa deve ler um inteiro formado unicamente por zeros e/ou uns usando a função scanf() código do formato %1d. O sinal de negativo, caso seja necessário, deverá aparecer à esquerda no número informado.

#### Saída

O programa deve apresantar uma linha contendo o número inteiro na base decimal.

### **Exemplo**

| Entrada | Saída |
|---------|-------|
| -1101   | -13   |

| Entrada | Saída |
|---------|-------|
| 1110111 | 119   |

## 2 Números invertíveis em $\mathbb{Z}_n$ (+++)



A teoria dos números é um assunto fascinante. Por exemplo, podemos definir o conjunto  $\mathbb{Z}$  como o conjunto infinito dos números inteiros de modo que, qualquer operação, por exemplo a multiplicação, entre dois números desse conjunto produza um outro número que também pertence a esse conjunto. Dentro do conjunto  $\mathbb{Z}$  podemos definir outros conjuntos, tal o qual o conjunto  $\mathbb{Z}_n$ . Esse conjunto é definido em função de n, é finito e representa todos os números de 0 a n-1. Por exemplo, o conjunto  $\mathbb{Z}_9$  é formado pelos números  $\{0,1,2,3,4,5,6,7,8\}$ . Se considerarmos a teoria de anéis, podemos observar que qualquer número de  $\mathbb{Z}$  está dentro do conjunto  $\mathbb{Z}_n$  de forma cíclica. Por exemplo, o número 15 equivale ao número 6 no conjunto  $\mathbb{Z}_9$ , porque 15 **mod** 9=6, onde **mod** representa o operador de módulo, ou seja, o resto da divisão. Dentro do conjunto  $\mathbb{Z}_n$  há outro sub-conjunto, denominado de conjunto dos números invertíveis. Dois números a e b são ditos invertíveis dentro de  $\mathbb{Z}_n$  se  $a \cdot b = 1$ , ou  $(a \cdot b)$  **mod** n = 1. Isso significa dizer que o produto de a e b gera um número equivalente ao número 1 dentro de  $\mathbb{Z}_n$ .

Faça um programa que, dado o valor de n, apresente todos os pares de números invertíveis dentro do conjunto  $\mathbb{Z}_n$ .

#### **Entrada**

Um número inteiro que corresponde ao n do conjunto  $\mathbb{Z}_n$ .

#### Saída

O programa deverá apresentar todos os pares de números invertíveis em uma linha seguindo o formato "(x,y)". Como x e y formam os pares (x,y) e (y,x), para evitar duplicidades, seu programa deve apresentar somente os pares (x,y) tal que  $x \le y$ .

#### Exemplo

| Entrada | Saída                                 |
|---------|---------------------------------------|
| 7       | (1,1)                                 |
|         | (2,4)                                 |
|         | <ul><li>(3,5)</li><li>(6,6)</li></ul> |
|         | (6, 6)                                |
|         |                                       |

| Entrada | Saída |
|---------|-------|
| 9       | (1,1) |
|         | (2,5) |
|         | (4,7) |
|         | (8,8) |
|         |       |

## 3 Triângulo de Pascal (+++)



Faça um programa que calcule e apresente uma faixa de linhas do Triângulo de Pascal. Cada linha do Triângulo de Pascal é dado pela seguinte equação:

Linha 
$$n:$$
  $\binom{n}{0}$   $\binom{n}{1}$   $\binom{n}{2}$  ...  $\binom{n}{n}$  (1)

sendo que

$$\binom{n}{p} = C_{n,p} = \frac{n!}{p!(n-p)!} \tag{2}$$

#### **Entrada**

O programa deverá ler 2 números inteiros, sendo o primeiro correspondendo à linha inicial e o segundo à linha final do Triângulo de Pascal.

#### Saída

O programa deverá imprimir as linhas do Triângulo de Pascal com os números separados por vírgula.

### Exemplo

| Entrada | Saída     |
|---------|-----------|
| 3 4     | 1,3,3,1   |
|         | 1,4,6,4,1 |
|         |           |

| Entrada | Saída                |
|---------|----------------------|
| 0 5     | 1                    |
|         | 1,1                  |
|         | 1,2,1                |
|         | 1,3,3,1              |
|         | 1,3,3,1<br>1,4,6,4,1 |
|         | 1,5,10,10,5,1        |
|         |                      |