9TH GRADUATE STUDENT TOPOLOGY AND GEOMETRY CONFERENCE.

Michigan State University

"Puncture Stability" for the pure mapping class group

R. Jimenez Rolland

April 3, 2011

The setting

Sequence $\{X_n\}$ of groups or spaces with maps $\phi_n: X_n \to X_{n+1}$.

The setting

Sequence $\{X_n\}$ of groups or spaces with maps $\phi_n: X_n \to X_{n+1}$.

Question: How does $H_i(X_n)$ change as the parameter n gets large?

The setting

Sequence $\{X_n\}$ of groups or spaces with maps $\phi_n: X_n \to X_{n+1}$.

Question: How does $H_i(X_n)$ change as the parameter n gets large?

Homological Stability:

The map ϕ_n induces isomorphism

$$H_i(X_n) \approx H_i(X_{n+1}),$$

when the parameter n is large with respect to i.

Let $\Sigma_{g,r}^n$ be an orientable, connected surface of genus g, with r boundary components and n punctures.

Let $\Sigma_{g,r}^n$ be an orientable, connected surface of genus g, with r boundary components and n punctures.

 $\mathsf{PDiff}^+(\Sigma^n_{g,r},\mathsf{rel}\;\partial) := \mathsf{Group}\;\mathsf{of}\;\mathsf{diffeomorphisms}\;\mathsf{that}\;\mathsf{fix}\;\mathsf{the}\;\mathsf{punctures}\;\mathsf{pointwise}.$

Let $\Sigma_{g,r}^n$ be an orientable, connected surface of genus g, with r boundary components and n punctures.

Definition (Pure Mapping Class Group)

$$\mathsf{PMod}_{g,r}^n := \pi_o(\mathsf{PDiff}^+(\Sigma_{g,r}^n, \mathit{rel}\ \partial))$$

 $\mathsf{PDiff}^+(\Sigma^n_{g,r},\mathsf{rel}\;\partial) := \mathsf{Group}\;\mathsf{of}\;\mathsf{diffeomorphisms}\;\mathsf{that}\;\mathsf{fix}\;\mathsf{the}\;\mathsf{punctures}\;\mathsf{pointwise}.$

Let $\Sigma_{g,r}^n$ be an orientable, connected surface of genus g, with r boundary components and n punctures.

Definition (Pure Mapping Class Group)

$$\mathsf{PMod}_{g,r}^n := \pi_o(\mathsf{PDiff}^+(\Sigma_{g,r}^n, \mathit{rel}\ \partial))$$

 $\mathsf{PDiff}^+(\Sigma^n_{g,r},\mathsf{rel}\;\partial) := \mathsf{Group}\;\mathsf{of}\;\mathsf{diffeomorphisms}\;\mathsf{that}\;\mathsf{fix}\;\mathsf{the}\;\mathsf{punctures}\;\mathsf{pointwise}.$

Examples:

- No punctures:

$$\mathsf{PMod}_{g,r}^0 = \mathsf{Mod}_{g,r}^0 = \mathsf{Mapping} \ \mathsf{class} \ \mathsf{group} \ \mathsf{of} \ \Sigma_{g,r}.$$

Let $\Sigma_{g,r}^n$ be an orientable, connected surface of genus g, with r boundary components and n punctures.

Definition (Pure Mapping Class Group)

$$\mathsf{PMod}^n_{g,r} := \pi_o(\mathsf{PDiff}^+(\Sigma^n_{g,r}, \mathit{rel}\,\partial))$$

 $\mathsf{PDiff}^+(\Sigma^n_{g,r},\mathsf{rel}\;\partial) := \mathsf{Group}\;\mathsf{of}\;\mathsf{diffeomorphisms}\;\mathsf{that}\;\mathsf{fix}\;\mathsf{the}\;\mathsf{punctures}\;\mathsf{pointwise}.$

Examples:

- No punctures:

$$\mathsf{PMod}_{g,r}^0 = \mathsf{Mod}_{g,r}^0 = \ \mathsf{Mapping} \ \mathsf{class} \ \mathsf{group} \ \mathsf{of} \ \Sigma_{g,r}.$$

- The torus: $\mathsf{PMod}_{1,0}^0 = \mathsf{Mod}_{1,0} = \mathsf{SL}_2(\mathbb{Z})$

Let $\Sigma_{g,r}^n$ be an orientable, connected surface of genus g, with r boundary components and n punctures.

Definition (Pure Mapping Class Group)

$$\mathsf{PMod}_{g,r}^n := \pi_o(\mathsf{PDiff}^+(\Sigma_{g,r}^n, \mathit{rel}\ \partial))$$

 $\mathsf{PDiff}^+(\Sigma^n_{g,r},\mathsf{rel}\;\partial) := \mathsf{Group}\;\mathsf{of}\;\mathsf{diffeomorphisms}\;\mathsf{that}\;\mathsf{fix}\;\mathsf{the}\;\mathsf{punctures}\;\mathsf{pointwise}.$

Examples:

- No punctures:

$$\mathsf{PMod}_{g,r}^0 = \mathsf{Mod}_{g,r}^0 = \ \mathsf{Mapping} \ \mathsf{class} \ \mathsf{group} \ \mathsf{of} \ \Sigma_{g,r}.$$

- The torus: $\mathsf{PMod}_{1,0}^0 = \mathsf{Mod}_{1,0} = \mathsf{SL}_2(\mathbb{Z})$
- The pure braid group: $PMod_{0,1}^n = P_n$

Remarks:

The group $PMod_{g,r}^n$:

Is a finite index subgroup of the mapping class group Modⁿ_{g,r}:

$$1 \to \mathsf{PMod}^n_{g,r} \to \mathsf{Mod}^n_{g,r} \to \mathcal{S}_n \to 1$$

Remarks:

The group $PMod_{g,r}^n$:

Is a finite index subgroup of the mapping class group Modⁿ_{g,r}:

$$1 o \mathsf{PMod}^n_{g,r} o \mathsf{Mod}^n_{g,r} o \mathcal{S}_n o 1$$

Is related with the topology of

 $\mathcal{M}_{g,n}:=$ the moduli space of n-pointed genus g projective curves, since

$$H^*(\mathsf{PMod}_g^n;\mathbb{Q}) pprox H^*(\mathcal{M}_{g,n};\mathbb{Q})$$

Surfaces with boundary:

(1) Increasing the Genus g. The inclusion $\Sigma_{g,r}^n \hookrightarrow \Sigma_{g+1,r-1}^n$

Surfaces with boundary:

(1) Increasing the Genus g. The inclusion $\Sigma_{g,r}^n \hookrightarrow \Sigma_{g+1,r-1}^n$

induces

$$\alpha: \mathsf{PMod}_{g,r}^n \to \mathsf{PMod}_{g+1,r-1}^n$$

(2) Increasing the number r of boundary components. The inclusion $\sum_{g,r}^n \hookrightarrow \sum_{g,r+1}^n$

(2) Increasing the number r of boundary components. The inclusion $\Sigma_{q,r}^n \hookrightarrow \Sigma_{q,r+1}^n$

induces

$$\beta:\mathsf{PMod}^n_{g,r}\to\mathsf{PMod}^n_{g,r+1}$$

Theorem (Harer 1985)

The groups

$$H_i(\mathsf{PMod}_{g,r}^n;\mathbb{Z})$$

do not depend on the parameters g and r if g is large with respect to i.

Theorem (Harer 1985)

The groups

$$H_i(\mathsf{PMod}_{g,r}^n;\mathbb{Z})$$

do not depend on the parameters g and r if g is large with respect to i.

Remarks.

Parameter n is fixed.

Theorem (Harer 1985)

The groups

$$H_i(\mathsf{PMod}^n_{g,r};\mathbb{Z})$$

do not depend on the parameters g and r if g is large with respect to i.

Remarks.

- Parameter n is fixed.
- The homology is independent of the parameter r, once g is large enough.

Theorem (Harer 1985)

The groups

$$H_i(\mathsf{PMod}_{g,r}^n;\mathbb{Z})$$

do not depend on the parameters g and r if g is large with respect to i.

Remarks.

- Parameter n is fixed.
- The homology is independent of the parameter r, once g is large enough.
- Stable ranges have been improved by Ivanov and others.

Parameter *n*: Surfaces with boundary.

Increasing the number of punctures *n*:

The inclusion $\Sigma_{g,r}^n \hookrightarrow \Sigma_{g,r}^{n+1}$

Parameter n: Surfaces with boundary.

Increasing the number of punctures *n*:

The inclusion $\Sigma_{g,r}^n \hookrightarrow \Sigma_{g,r}^{n+1}$

induces

$$\mu_n:\mathsf{PMod}^n_{g,r} o\mathsf{PMod}^{n+1}_{g,r}$$

Parameter *n*: Surfaces with boundary.

Increasing the number of punctures *n*:

The inclusion $\Sigma_{g,r}^n \hookrightarrow \Sigma_{g,r}^{n+1}$

induces

$$\mu_n:\mathsf{PMod}^n_{q,r}\to\mathsf{PMod}^{n+1}_{q,r}$$

Pure braid group case:

$$\mu_n: P_n \rightarrow P_{n+1}$$

"adding a strand"

Pure Braid Group:

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large.

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large. FAILURE OF STABILITY!

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large. FAILURE OF STABILITY!

• If $g \geq 3$, $H_1(PMod_{g,r}^n; \mathbb{Z}) = 0$.

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large. FAILURE OF STABILITY!

• If $g \geq 3$, $H_1(PMod_{g,r}^n; \mathbb{Z}) = 0$.

STABILITY HOLDS!

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large. FAILURE OF STABILITY!

• If $g \geq 3$, $H_1(PMod_{g,r}^n; \mathbb{Z}) = 0$.

STABILITY HOLDS!

• If $g \geq 4$, $H_2(PMod_{g,r}^n; \mathbb{Z}) = \mathbb{Z}^{n+1}$.

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large.

• If $g \geq 3$, $H_1(PMod_{q,r}^n; \mathbb{Z}) = 0$.

STABILITY HOLDS!

• If $g \geq 4$, $H_2(PMod_{g,r}^n; \mathbb{Z}) = \mathbb{Z}^{n+1}$.

FAILURE OF STABILITY!

Pure Braid Group:

The dimension of $H_i(P_n; \mathbb{Q})$ blows up to infinity for each fixed i > 0 as n gets very large.

• If $g \geq 3$, $H_1(PMod_{g,r}^n; \mathbb{Z}) = 0$.

STABILITY HOLDS!

• If $g \geq 4$, $H_2(PMod_{q,r}^n; \mathbb{Z}) = \mathbb{Z}^{n+1}$.

FAILURE OF STABILITY!

In general, the pure mapping class group fails to satisfy "puncture" homological stability.

The inclusion $\Sigma_{g,r}^{n+1} \hookrightarrow \Sigma_{g,r}^n$ induces

$$f_n:\mathsf{PMod}_{g,r}^{n+1}\to\mathsf{PMod}_{g,r}^n$$

The inclusion $\Sigma_{g,r}^{n+1} \hookrightarrow \Sigma_{g,r}^n$ induces

$$\boxed{f_n:\mathsf{PMod}_{g,r}^{n+1}\to\mathsf{PMod}_{g,r}^n}$$

Example: The pure braid group

$$f_n: P_{n+1} \rightarrow P_n$$

"forget the last strand"

The inclusion $\Sigma_{g,r}^{n+1} \hookrightarrow \Sigma_{g,r}^n$ induces

$$f_n: \mathsf{PMod}_{g,r}^{n+1} o \mathsf{PMod}_{g,r}^n$$

Example: The pure braid group

$$f_n: P_{n+1} \rightarrow P_n$$

"forget the last strand"

Remarks:

• f_n is defined for closed surfaces.

The inclusion $\Sigma_{g,r}^{n+1} \hookrightarrow \Sigma_{g,r}^n$ induces

$$f_n: \mathsf{PMod}_{g,r}^{n+1} \to \mathsf{PMod}_{g,r}^n$$

Example: The pure braid group

$$f_n: P_{n+1} \rightarrow P_n$$

"forget the last strand"

Remarks:

- f_n is defined for closed surfaces.
- For surfaces with boundary: $f_n \circ \mu_n = id$.

Cohomology groups as S_n -representations

(a) $H^i(\mathsf{PMod}^n_{g,r};\mathbb{Q})$ is a finite dimensional \mathbb{Q} -vector space with an S_n -action from

$$1 \to \mathsf{PMod}^n_{g,r} \to \mathsf{Mod}^n_{g,r} \to \mathcal{S}_n \to 1$$

It is a finite dimensional rational S_n -representation.

Cohomology groups as S_n -representations

(a) $H^i(\mathsf{PMod}^n_{g,r};\mathbb{Q})$ is a finite dimensional \mathbb{Q} -vector space with an S_n -action from

$$1 \to \mathsf{PMod}^n_{q,r} \to \mathsf{Mod}^n_{q,r} \to \mathcal{S}_n \to 1$$

It is a finite dimensional rational S_n -representation.

(b) The induced maps

$$f_n^i: H^i(PMod_{g,r}^n; \mathbb{Q}) \to H^i(PMod_{g,r}^{n+1}; \mathbb{Q})$$

are linear and equivariant with respect to $S_n \hookrightarrow S_{n+1}$.

Cohomology groups as S_n -representations

(a) $H^i(\mathsf{PMod}^n_{g,r};\mathbb{Q})$ is a finite dimensional \mathbb{Q} -vector space with an S_n -action from

$$1 \to \mathsf{PMod}^n_{g,r} \to \mathsf{Mod}^n_{g,r} \to \mathcal{S}_n \to 1$$

It is a finite dimensional rational S_n -representation.

(b) The induced maps

$$f_n^i: H^i(PMod_{g,r}^n; \mathbb{Q}) \to H^i(PMod_{g,r}^{n+1}; \mathbb{Q})$$

are linear and equivariant with respect to $S_n \hookrightarrow S_{n+1}$.

 $\{H^i(\mathsf{PMod}_{g,r}^n;\mathbb{Q}),f_n^i\}$ is a **consistent sequence** of S_n -representations.

About S_n -representations

• A rational S_n -representation is a \mathbb{Q} -vector space V with a linear S_n -action.

About S_n -representations

- A rational S_n -representation is a \mathbb{Q} -vector space V with a linear S_n -action.
- Any S_n-representation decomposes over ℚ as a direct sum of irreducible representations.

About S_n -representations

- A rational S_n -representation is a \mathbb{Q} -vector space V with a linear S_n -action.
- Any S_n-representation decomposes over ℚ as a direct sum of irreducible representations.
- Irreducible representations of S_n are classified by partitions of n:

Irreducible S_n -representations

Partitions of n

$$V(\lambda)_n = V(\lambda_1, \ldots \lambda_l)_n$$

$$(n-\sum \lambda_i \geq \lambda_1 \geq \ldots \geq \lambda_l)$$

$$V(0)_n$$
 = Trivial Representation of S_n
 $V(1)_n$ = Standard Representation of S_n

$$V(\underbrace{1,\ldots,1}_{k})_{n}=\bigwedge^{k}(\text{standard})$$

$$(n-0,0) = (n)$$

 $(n-1,1)$

$$(n-k,\underbrace{1,\ldots,1}_{k})$$

If
$$g \ge 4$$

$$H^2(\mathsf{PMod}_{g,r};\mathbb{Q})=\mathbb{Q}$$

If
$$g \geq 4$$

$$egin{aligned} &H^2(\mathsf{PMod}_{g,r};\mathbb{Q})=\mathbb{Q} \ &H^2(\mathsf{PMod}_{g,r}^1;\mathbb{Q})=\mathbb{Q}^2=\mathit{V}(0)_1\oplus\mathit{V}(0)_1 \end{aligned}$$

If
$$g \ge 4$$

$$\begin{split} &H^2(\mathsf{PMod}_{g,r};\mathbb{Q})=\mathbb{Q}\\ &H^2(\mathsf{PMod}_{g,r}^1;\mathbb{Q})=\mathbb{Q}^2=\mathit{V}(0)_1\oplus\mathit{V}(0)_1\\ &\text{If } n\geq 2\\ &H^2(\mathsf{PMod}_{g,r}^n;\mathbb{Q})=\mathbb{Q}^{n+1}=\mathit{V}(0)_n\oplus\mathit{V}(0)_n\oplus\mathit{V}(1)_n \end{split}$$

If
$$g \ge 4$$

$$H^2(\mathsf{PMod}_{g,r};\mathbb{Q})=\mathbb{Q}$$

$$H^2(\mathsf{PMod}_{g,r}^1;\mathbb{Q})=\mathbb{Q}^2=V(0)_1\oplus V(0)_1$$
 If $n\geq 2$
$$H^2(\mathsf{PMod}_{g,r}^n;\mathbb{Q})=\mathbb{Q}^{n+1}=V(0)_n\oplus V(0)_n\oplus V(1)_n$$
 If $n\geq 4$
$$H^1(P_n;\mathbb{Q})=\mathbb{Q}^{n(n-1)/2}=V(0)_n\oplus V(1)_n\oplus V(2)_n$$

If
$$g \geq 4$$

$$H^2(\mathsf{PMod}_{g,r};\mathbb{Q}) = \mathbb{Q}$$

$$H^2(\mathsf{PMod}_{g,r}^1;\mathbb{Q}) = \mathbb{Q}^2 = V(0)_1 \oplus V(0)_1$$
 If $n \geq 2$
$$H^2(\mathsf{PMod}_{g,r}^n;\mathbb{Q}) = \mathbb{Q}^{n+1} = V(0) \oplus V(0) \oplus V(1)$$

If
$$n \ge 4$$

$$H^{1}(P_{n}; \mathbb{Q}) = \mathbb{Q}^{n(n-1)/2} = V(0) \oplus V(1) \oplus V(2)$$

Main Theorem (informal statement):

The decomposition into irreducibles is eventually independent of *n*. Roughly speaking this is the notion of "representation stability".

The pure braid group case

Theorem (Church-Farb 2010)

The sequence $\{H^i(P_n; \mathbb{Q}), f_n^i\}$ is uniformly representation stable.

The pure braid group case

Theorem (Church-Farb 2010)

The sequence $\{H^i(P_n;\mathbb{Q}),f_n^i\}$ is uniformly representation stable.

The proof relies on the fact that $P_n = \pi_1(\mathsf{Conf}_n(\mathbb{R}^2))$.

The pure braid group case

Theorem (Church-Farb 2010)

The sequence $\{H^i(P_n;\mathbb{Q}),f_n^i\}$ is uniformly representation stable.

The proof relies on the fact that $P_n = \pi_1(\mathsf{Conf}_n(\mathbb{R}^2))$.

Corollary (Rational Arnol'd 1969)

The braid groups satisfy homological stability:

$$H_i(B_n; \mathbb{Q}) \approx H_i(B_{n+1}; \mathbb{Q})$$

if n is large with respect to i.

What about higher genus?

What about higher genus?

Theorem (J. R.)

For $g \ge 2$, the sequence $\{H^i(PMod_{g,r}^n; \mathbb{Q})\}$ is uniformly representation stable.

What about higher genus?

Theorem (J. R.)

For $g \ge 2$, the sequence $\{H^i(PMod_{g,r}^n; \mathbb{Q})\}$ is uniformly representation stable.

The multiplicity of the trivial representation is constant for n large enough and

$$H^i(\mathsf{Mod}^n_{g,r};\mathbb{Q}) pprox (H^i(\mathsf{PMod}^n_{g,r};\mathbb{Q}))^{\mathcal{S}_n}$$

What about higher genus?

Theorem (J. R.)

For $g \ge 2$, the sequence $\{H^i(PMod_{g,r}^n; \mathbb{Q})\}$ is uniformly representation stable.

The multiplicity of the trivial representation is constant for n large enough and

$$H^i(\mathsf{Mod}^n_{a,r};\mathbb{Q}) \approx (H^i(\mathsf{PMod}^n_{a,r};\mathbb{Q}))^{\mathcal{S}_n}$$

Corollary (Rational Hatcher-Wahl 2010)

The groups $\operatorname{\mathsf{Mod}}_{g,r}^n$, with r>0, satisfy "puncture" homological stability:

$$H_i(\mathsf{Mod}_{g,r}^n;\mathbb{Q}) \approx H_i(\mathsf{Mod}_{g,r}^{n+1};\mathbb{Q})$$

if n is large with respect to i.

Ingredients for the proof:

• The Birman exact sequence for $g \ge 2$:

$$1 \to \pi_1(\mathsf{Conf}_n(\Sigma_g^r)) \to \mathsf{PMod}_{g,r}^n \to \mathsf{Mod}_{g,r} \to 1$$

Ingredients for the proof:

• The Birman exact sequence for $g \ge 2$:

$$1 \to \pi_1(\mathsf{Conf}_n(\Sigma_g^r)) \to \mathsf{PMod}_{g,r}^n \to \mathsf{Mod}_{g,r} \to 1$$

Associated "sequence of Hochschild-Serre spectral sequences"

$$E_2^{p,q}(n) = H^p\big(\operatorname{\mathsf{Mod}}_{g,r}; H^q(\pi_1(\operatorname{\mathsf{Conf}}_n(\Sigma_g^r)); \mathbb{Q})\big) \Rightarrow H^{p+q}(\operatorname{\mathsf{PMod}}_{g,r}^n; \mathbb{Q}).$$

Ingredients for the proof:

• The Birman exact sequence for $g \ge 2$:

$$1 \to \pi_1(\mathsf{Conf}_n(\Sigma_g^r)) \to \mathsf{PMod}_{g,r}^n \to \mathsf{Mod}_{g,r} \to 1$$

Associated "sequence of Hochschild-Serre spectral sequences"

$$E_2^{p,q}(n) = H^p\big(\operatorname{\mathsf{Mod}}_{g,r}; H^q(\pi_1(\operatorname{\mathsf{Conf}}_n(\Sigma_g^r)); \mathbb{Q})\big) \Rightarrow H^{p+q}(\operatorname{\mathsf{PMod}}_{g,r}^n; \mathbb{Q}).$$

Theorem (Church)

The sequence $\{H^q(\pi_1(Conf_n(\Sigma_g^r)), f_n^q\}$ is uniformly representation stable and monotone.

Induction argument on the pages of the spectral sequence.

Induction argument on the pages of the spectral sequence.

- Base of the induction: E2-page

Theorem (Representation stability with changing coefficients, J.R.)

Let $\{V_n.\phi_n\}$ be a consistent sequence compatible with G-actions. If the sequence is monotone and uniformly representation stable, then so it is the sequence $\{H^p(G; V_n), \phi_n^p\}$.

Induction argument on the pages of the spectral sequence.

- Base of the induction: E2-page

Theorem (Representation stability with changing coefficients, J.R.)

Let $\{V_n.\phi_n\}$ be a consistent sequence compatible with G-actions. If the sequence is monotone and uniformly representation stable, then so it is the sequence $\{H^p(G; V_n), \phi_n^p\}$.

 Induction step: uses monotonicity and naturality of the spectral sequence.

Induction argument on the pages of the spectral sequence.

- Base of the induction: E2-page

Theorem (Representation stability with changing coefficients, J.R.)

Let $\{V_n.\phi_n\}$ be a consistent sequence compatible with G-actions. If the sequence is monotone and uniformly representation stable, then so it is the sequence $\{H^p(G; V_n), \phi_n^p\}$.

- Induction step: uses monotonicity and naturality of the spectral sequence.
- The conclusion of the Theorem is recovered from the E_{∞} -page.

• Get "puncture" homological stability for $\mathsf{Mod}_{g,r}^n$ with twisted coefficients.

- Get "puncture" homological stability for Modⁿ_{g,r} with twisted coefficients.
- Same approach:
 Get a similar theorem for the cohomology of pure mapping class groups of some manifolds of higher dimension.

- Get "puncture" homological stability for $Mod_{g,r}^n$ with twisted coefficients.
- Same approach:
 Get a similar theorem for the cohomology of pure mapping class groups of some manifolds of higher dimension.
- Future: Representation stability for the cohomology of $\overline{\mathcal{M}}_{g,n}$ the Deligne-Mumford compatification of $\mathcal{M}_{g,n}$.

- Get "puncture" homological stability for $Mod_{g,r}^n$ with twisted coefficients.
- Same approach:
 Get a similar theorem for the cohomology of pure mapping class groups of some manifolds of higher dimension.
- Future: Representation stability for the cohomology of $\overline{\mathcal{M}}_{g,n}$ the Deligne-Mumford compatification of $\mathcal{M}_{g,n}$.

Thank you