In the next section we use Farkas II to prove the duality theorem in linear programming. Observe that by taking the negation of the equivalence in Farkas II we obtain a criterion of solvability, namely:

The system of inequalities $Ax \leq b$ has a solution $x \geq 0$ iff for every nonzero linear form $y \in (\mathbb{R}^m)^*$ such that $y \geq 0_m^\top$, if $yA \geq 0_n^\top$, then $yb \geq 0$.

We now prove the Farkas–Minkowski proposition without using Proposition 47.1. This approach uses a basic property of the distance function from a point to a closed set.

Definition 47.1. Let $X \subseteq \mathbb{R}^n$ be any nonempty set and let $a \in \mathbb{R}^n$ be any point. The distance d(a, X) from a to X is defined as

$$d(a,X) = \inf_{x \in X} \|a - x\|.$$

Here, $\| \|$ denotes the Euclidean norm.

Proposition 47.5. Let $X \subseteq \mathbb{R}^n$ be any nonempty set and let $a \in \mathbb{R}^n$ be any point. If X is closed, then there is some $z \in X$ such that ||a - z|| = d(a, X).

Proof. Since X is nonempty, pick any $x_0 \in X$, and let $r = ||a - x_0||$. If $B_r(a)$ is the closed ball $B_r(a) = \{x \in \mathbb{R}^n \mid ||x - a|| \le r\}$, then clearly

$$d(a, X) = \inf_{x \in X} \|a - x\| = \inf_{x \in X \cap B_r(a)} \|a - x\|.$$

Since $B_r(a)$ is compact and X is closed, $K = X \cap B_r(a)$ is also compact. But the function $x \mapsto ||a - x||$ defined on the compact set K is continuous, and the image of a compact set by a continuous function is compact, so by Heine–Borel it has a minimum that is achieved by some $z \in K \subseteq X$.

Remark: If U is a nonempty, closed and convex subset of a Hilbert space V, a standard result of Hilbert space theory (the projection lemma, see Proposition 48.5) asserts that for any $v \in V$ there is a unique $p \in U$ such that

$$||v - p|| = \inf_{u \in U} ||v - u|| = d(v, U),$$

and

$$\langle p-v, u-p\rangle \geq 0 \quad \text{for all } u \in U.$$

Here $||w|| = \sqrt{\langle w, w \rangle}$, where $\langle -, - \rangle$ is the inner product of the Hilbert space V.

We can now give a proof of the Farkas–Minkowski proposition (Proposition 47.2) that does not use Proposition 47.1. This proof is adapted from Matousek and Gardner [123] (Chapter 6, Sections 6.5).