Лабораторная работа № 5

Стохастические сетевые модели вычислительных систем

Цель работы. Изучение стохастических сетевых моделей вычислительных систем (ВС) и выполнение расчета основных характеристик экспоненциальной стохастической сети.

Теоретическая часть

Вычислительные системы принято рассматривать как совокупность устройств, для описания которых используются модели теории массового обслуживания. Основными моделями являются одно- и многоканальные системы массового обслуживания (СМО).

В одноканальной СМО в каждый момент времени может обслуживаться только одна заявка из общего потока заявок, поступающих на вход СМО, с интенсивностью λ. Среднее время обслуживания заявки равно - υ. Остальные заявки, поступившие в СМО, в это время образуют очередь.

Многоканальная СМО содержит К однотипных каналов, среднее время обслуживания заявок о в каждом из которых непременно одинаково. Особенностью такой СМО является полная доступность, при которой любая заявка может быть обслужена любым свободным каналом. В системе может обслуживаться одновременно до К заявок.

ВС в целом можно представить как совокупность СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы. Совокупность взаимосвязанных СМО называется стохастической сетью.

Используются разомкнутые и замкнутые стохастические сети. Для разомкнутой сети характерно, что интенсивность источника заявок не зависит от состояния сети.

Распределение времени обслуживания заявок в СМО сети определяется по модели вычислительного процесса. При произвольных законах распределения и произвольных входящих потоках получение аналитических зависимостей характеристик ВС в общем случае невозможно. Задача становится разрешимой, если принять допущение, что входящие потоки простейшие, и длительности обслуживания распределяются по экспоненциальному закону. Такие сети принято называть экспоненциальными стохастическими сетями.

Таким образом, сетевые модели имеют ряд достоинств: непосредственно отражаются конфигурация и режим функционирования ВС, наличие очередей и задержек обслуживания программ в устройствах ВС.

Определение параметров стохастической сети

Основными параметрами, характеризующими работу разомкнутой сети, являются :

- 1) число и систем массового обслуживания $S_1, ..., S_n$ образующих сеть;
- 2) число каналов $K_1,...,K_n$ входящих в СМО $S_1,...,S_n$;

- 3) матрица вероятности передач $p = [P_{ij}], \quad \text{где } i, j = 0, 1...n;$
- 4) интенсивность λ_0 источника заявок S_0 ;
- 5) средние длительности обслуживания заявок $V_1...V_n\,$ в системах $S_1,..,S_n.$

Рассмотрим способы определения перечисленных параметров при построении разомкнутых стохастических сетевых моделей.

Пример 1. Разомкнутая сеть содержит 4 СМО и источник входящего потока заявок S_0 с интенсивностью их обслуживания λ_0 . Матрица вероятности передач имеет следующий вид:

	S_0	S_1	S_2	S_3	S ₄
S_0		1			
S_1	0.1		0.3		0.6
S_2		0.3		0.7	
S ₃		0.2			0.8
S ₄		0.5		0.1	

Вероятности P_{ij} определяют порядок циркуляции заявок в сети и соотношения между интенсивностями потоков заявок, циркулирующих в сети. Если все заявки, обслуженные системой S_i поступают в систему S_i , то $P_{ij}=1$. Если система S_j не связана по выходу с системой S_i , то $P_{ij}=0$. Интенсивность потока, входящего в любую S_i систему сети, определяется суммой интенсивностей потоков, поступающих в нее из других S_i систем.

$$\lambda_i = \sum_{j=0}^n P_{ij} \lambda_j \quad j = (0, \dots, n) \quad (1)$$

Эти выражения представляют собой систему алгебраических уравнений n+1-го порядка, характеризующих сеть, откуда нетрудно определить коэффициенты передачи α_j СМО по формуле:

и по заданной интенсивности источника заявок λ_0 . Подставляя значение $\lambda_0=2c^{-1}$ и вероятности передач в (1), получим систему уравнений:

$$\begin{cases} \lambda_0 = P_{10}\lambda_1; \\ \lambda_1 = P_{01}\lambda_0 + P_{21}\lambda_2 + P_{31}\lambda_3 + P_{41}\lambda_4 \\ \lambda_2 = P_{12}\lambda_1 + P_{42}\lambda_4 \\ \lambda_3 = P_{23}\lambda_2 + P_{43}\lambda_4 \\ \lambda_{14} = P_{14}\lambda_1 + P_{34}\lambda_3 \end{cases}$$

откуда
$$\lambda_1 = 20 \text{ c}^{-1}$$
; $\lambda_2 = 14.82 \text{ c}^{-1}$; $\lambda_3 = 12.59 \text{ c}^{-1}$; $\lambda_4 = 22.06 \text{ c}^{-1}$

Используя найденные значения λ_i в формулу (2), найдем значения коэффициентов передач: α_1 =10; α_2 =7.41; α_3 =6.3; α_4 =11.03.

Структурная схема сети на основе матрицы коэффициентов передач имеет вид:

Определение характеристик разомкнутых стохастических сетей

Здесь целесообразно остановиться на рассмотрении характеристики стационарного режима разомкнутых экспоненциальных стохастических сетей. Существование стационарного режима разомкнутой сети связано существованием стационарных режимов в ее СМО. Для системы S_i стационарный режим существует, если загрузка ρ_i системы меньше единицы, т.е. $\rho_i = (\lambda_i \upsilon_i / K_i) < 1$

где $\lambda_i v_i = k_i$ - среднее число занятых каналов: K_i - общее число каналов в СМО.

После ряда преобразований с учетом (2) можно записать условие существования стационарного режима в разомкнутой сети:

$$\lambda_0 < \min(K_i/\alpha_i \upsilon_i, ..., K_n/\alpha_n \upsilon_n)$$
 (4)

Поэтому при выполнении работы, в случае необходимости, нужно уменьшить значение v_i только для соответствующей i-его СМО так, чтобы условие (4) не нарушалось. Состояние удобно оценивать вероятностью что многоканальная СМО S_i свободна от обслуживания заявок, - вероятностью простоя:

$$\pi_{0i} = \sum_{M_i=0}^{k_i-1} \left[\frac{\beta_i^{M_i}}{M_i!} + \frac{\beta_i^{k_i}}{k_i*(1-\beta_i*l*k_i)} \right]$$

где M_i - количество заявок, находящихся в системе S_i :

 β_i - находиться из условия $\beta_i = \lambda_i \upsilon_i$

Для одноканальной СМО: $\pi_{0i} = 1 - \rho_i$

Пример 2. Используя ранее полученные результаты, определим характеристики сети при $K_1 = 3$, $K_2 = 2$, $K_3 = 2$, $K_4 = 3$ и средней длительности обслуживания заявок в канале υ_i=0.1 с.

В рассматриваемой сети существует стационарный режим, так как
$$\lambda_0 = 2c^{-1} < \min\left(\frac{3}{\alpha_1 v_i}; \frac{2}{\alpha_2 v_i}; \frac{2}{\alpha_3 v_i}; \frac{3}{\alpha_4 v_i}\right) = \min\left(3; 2,7; 3,18; 2,72\right)$$

Загрузка систем $S_1,...,S_4$ и среднее число занятых каналов соответственно равны:

$$p_{1} = \frac{\lambda_{1}v_{i}}{3} = 0.67; \ p_{2} = \frac{\lambda_{2}v_{i}}{2} = 0.75; \ p_{3} = \frac{\lambda_{3}v_{i}}{2} = 0.65; \ p_{i} = \frac{\lambda_{4}v_{i}}{3} = 0.73$$

$$\beta_{1} = \lambda_{1}v_{i} = 2; \ \beta_{2} = \lambda_{2}v_{i} = 1.5; \ \beta_{3} = \lambda_{3}v_{i} = 1.3; \ \beta_{4} = \lambda_{4}v_{i} = 2.2;$$

Подставляя полученные значения в (5), определим вероятности простоя каждой СМО сети:

$$\pi_{01} = \left[\frac{\beta_1^0}{0!} + \frac{\beta_1^1}{1!} + \frac{\beta_1^2}{2!} + \frac{\beta_1^3}{3! (1 - \beta_1/3)} \right] = 0,11$$

$$\pi_{01} = \left[\frac{\beta_2^0}{0!} + \frac{\beta_2^1}{1!} + \frac{\beta_2^2}{2! (1 - \beta_2/2)} \right] = 0,14$$

$$\pi_{01} = \left[\frac{\beta_3^0}{0!} + \frac{\beta_3^1}{1!} + \frac{\beta_3^3}{2! (1 - \beta_3/3)} \right] = 0,41$$

$$\pi_{01} = \left[\frac{\beta_4^0}{0!} + \frac{\beta_4^1}{1!} + \frac{\beta_4^2}{2!} + \frac{\beta_4^3}{3! (1 - \beta_4/3)} \right] = 0,15$$

На основе полученных вероятностей состояний определяют все остальные характеристики систем в сети, используя теорию массового обслуживания.

Средняя длина очереди заявок, ожидающих обслуживания в системе Si:

$$l_i = \frac{\beta_i^{K_i}}{K_i! K_i* (1 - \beta_i * l * K_i)^2} * \pi_{0i} \quad (6)$$

 $1_1 = 0.85$; $1_2 = 1.9$; $1_3 = 1.8$: $1_4 = 2.7$.

Среднее число заявок в системе S_i:

$$m_i = l_i + \beta_i \qquad (7)$$

$$m1 = 0.85 + 2 = 2.85$$
;

$$m2 = 1.9 + 1.5 = 3.4$$
:

$$m3 = 1.8 + 1.3 = 3.1$$
:

$$m4 = 2.7 + 2.2 = 4.9$$

Среднее время ожидания заявки в очереди системы S_i:

$$\omega_i = l_i / \lambda_i \tag{8}$$

$$\omega_1 = 0.85/20 = 0.04 \text{ c};$$

$$\omega_2 = 1.9/14.82 = 0.13 \text{ c}$$
:

$$\omega_3 = 1.8/12.59 = 0.14 \text{ c};$$

$$\omega_4 = 2.7/22.06 = 0.12 \text{ c}.$$

Среднее время пребывания заявки в системе S_i:

$$u_i = m_i/\lambda_i$$
 (9)

из (8) и (9) следует возможность определения $u_i = \omega_i + \upsilon_i$.

$$u_1 = 0.04 + 0.1 = 0.14 c$$
;

$$u_2 = 0.13 + 0.1 = 0.23 c$$
:

$$u_3 = 0.14 + 0.I = 0.24 c$$
:

$$u_4 = 0.12 + 0.1 = 0.22 c.$$

Из выражений (6),(7),(8) и (9) находим характеристики сети в целом.

Среднее число заявок, стоящих на очереди в сети:

$$L = \sum_{i=1}^{n} l_i = 7,25 \tag{10}$$

Среднее число заявок, находящихся на обслуживании в сети:

$$L = \sum_{i=1}^{n} m_i = 14,45 \tag{11}$$

Среднее время ожидания в сети:

$$W = \sum_{i=1}^{n} \alpha_i * \omega_i = 3.6$$
 (12)

Среднее время пребывания заявки в сети:

$$U = \sum_{i=1}^{n} \alpha_i * u_i = 7,03$$
 (13)

Таким образом, в результате проделанных вычислений получены основные характеристики разомкнутой сети, представляющей собой модель системы, например, системы с разделением времени, в которой может находиться на обработке переменное число заявок.

ЗАДАНИЕ

Рассчитать основные характеристики и построить структурную схему разомкнутой стохастической сети, представленной совокупностью систем массового обслуживания (СМО) и заданной в виде матрицы вероятностей передач 6-го порядка.

Определению подлежат следующие характеристики стационарного режима разомкнутой стохастической сети:

- а) загрузка каждой СМО (ρ_i);
- б) среднее число занятых каналов каждой СМО (β_i);
- в) вероятности состояния сети (π_{0i})
- г) средние длины очередей заявок, ожидающих обслуживания в СМО;
- д) среднее число заявок $m_1 ... m_i$, пребывающих в каждой из систем сети;
- е) средние времена пребывания $u_1..u_i$ заявок в системах $S_1..S_i$;
- ж) характеристики сети в целом.

В соответствии с заданным вариантом решения задачи произвести численное определение $P_{1i}..P_{5i}$. Составить матрицу вероятности передач, дополнив некоторые клетки матрицы значениями P_{ji} так, чтобы выполнялось условие $\sum_{i=1}^{n} P_{ji} = 1$

Варианты заданий

Работа имеет 90 вариантов. Подлежащий решению вариант задания выдает преподаватель. Если в процессе решения задачи не хватает исходных данных, то ими следует задаться, предварительно обосновав их выбор.

Выбор элементов P_{ij} матрицы вероятностей производится в соответствии с таблицей (индекс j - указывает номер строки, а индекс i - номер столбца матрицы вероятностей). Для каждого варианта в таблице приведена строчка из пяти элементов вероятностей:

$$P_{1k}$$
; P_{21} ; P_{3m} ; P_{4n} ; P_{5g} .

Численные значения указанных элементов определяют по формулам:

 $P_{1k}\!\!=\!\!1/\!N1; \quad P_{21}\!\!=\!\!1/\!N_2; \quad P_{3m}\!\!=\!\!1/\!N_3; \quad P_{4n}\!\!=\!\!1/\!N_4; \quad P_{5g}\!\!=\!\!1/\!N_5$

где N_1 - число букв фамилии;

 N_2 - число букв имени;

N₃ - число букв отчества;

 $N_4 = N_1 + N_2; N_5 = N_1 + N_3.$

Значение вероятности P_{01} принимается равным единице. Значение $P_{00}, P_{02}, P_{03}, P_{04}$ равны нулю. Значения υ_1 приведены в таблице (считается, что все СМО имеют одинаковую среднюю длительность обслуживания заявок, т.е. $\upsilon_1 = \upsilon_2 = \upsilon_3 = \upsilon_4 = \upsilon_5$).

таблица

№ п/п	Элеме	нты ма	грицы і	-	юстей	λο c-1	Vi	K ₁	K ₂	K ₃	K ₄	K ₅
1 2 3 4 5 6 7 8 9	P ₁₂ P ₁₃ P ₁₄ P ₁₃ P ₁₄ P ₁₅ P ₁₂ P ₁₃ P ₁₄ P ₁₅	P ₂₃ P ₂₃ P ₂₁ P ₂₃ P ₂₃ P ₂₃ P ₂₃ P ₂₃ P ₂₁ P ₂₁ P ₂₁ P ₂₁	Р ₃₁ Р ₃₂ Р ₃₁ Р ₃₁ Р ₃₁ Р ₃₁ Р ₃₁ Р ₃₁ Р ₃₂ Р ₃₁	P ₄₂	P ₅₃ P ₅₄ P ₅₃ P ₅₃ P ₅₃ P ₅₃ P ₅₄ P ₅₄ P ₅₄ P ₅₄	1 1 1 1 1 1 1 1	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1 2 3 4 1 1 1 1	2 1 1 1 1 1 1 1 1	1 1 4 1 2 3 4 2 2	3 4 2 2 3 2 3 2 2	2 2 1 3 4 4 2 4 3
10 11 12 13 14 15 16 17 18 19 20	P ₁₂ P ₁₃ P ₁₄ P ₁₅ P ₁₂ P ₁₃ P ₁₄ P ₁₅ P ₁₂ P ₁₃ P ₁₄ P ₁₅ P ₁₂ P ₁₃	P ₂₄ P ₂₄ P ₂₄ P ₂₄ P ₂₅ P ₂₅ P ₂₅ P ₂₅ P ₂₁ P ₂₁	P ₃₁ P ₃₁ P ₃₁ P ₃₁ P ₃₁ P ₃₁ P ₃₁ P ₃₁ P ₃₂ P ₃₂	P ₄₂	P54 P54 P54 P54 P54 P54 P54 P54 P54 P54	1 1 1 1 1 2 2 2 2 2	3.0 3.0 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 2	3 2 2 3 3 3 4 2 1	2 4 3 3 4 2 3 3 3	2 2 2 4 2 3 3 3 4
21 23 24 25 26 27 28 29 30	P ₁₄ P ₁₂ P ₁₃ P ₁₄ P ₁₅ P ₁₂ P ₁₃ P ₁₄ P ₁₅ P ₁₄ P ₁₅	P ₂₁ P ₂₃ P ₂₃ P ₂₃ P ₂₃ P ₂₄ P ₂₄ P ₂₄ P ₂₄ P ₂₄	P ₃₂	P ₄₂	P ₅₄ P ₅₄ P ₅₄ P ₅₄ P ₅₄ P ₅₄ P ₅₄ P ₅₄ P ₅₄ P ₅₄	2 2 2 2 2 2 2 2 2 2	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1 1 1 1 1 1 1 1 1	3 2 3 4 2 3 3 2 3	1 1 1 1 1 1 1 3 2	2 4 4 3 3 2 4 1 1	4 3 2 2 3 2 3 4 4
31 32	P ₁₂ P ₁₃ P ₁₄	P ₂₅ P ₂₅ P ₂₅	P ₃₂ P ₃₂ P ₃₂	P ₄₂ P ₄₂ P ₄₂	P ₅₄ P ₅₄ P ₅₄	2.5 2.5	2 2	1 1	2 3	2 3	1	4

	_											
33	P ₁₅	P_{25}	P_{32}	P_{42}	P ₅₄	2.5	2	1	3	3	1	3
34	P_{12}	P_{21}	P_{34}	P_{42}	P ₅₄	2.5	2	1	2	2	1	3
35	P ₁₃	P_{21}	P ₃₄	P_{42}	P ₅₄	2.5	2	1	2	2	1	3
36	P ₁₄	P_{21}	P_{34}	P_{42}	P ₅₄	2.5	2	1	3	3	1	2
37	P ₁₅	P_{21}	P_{34}	P_{42}	P ₅₄	2.5	2	1	2	2	1	2
38	P ₁₂	P_{23}	P_{34}	P_{42}	P ₅₄		2	1	3	3	1	$\stackrel{\scriptstyle 2}{2}$
	P ₁₃	P_{23}	P_{34}	P_{42}	P ₅₄	2.5	2					
39						2.5	2	1	3	3	4	1
40						2.5	2	1	2	2	4	1
41	р	D	D	D	D	2.5	2	1	3	3	2	1
42	P ₁₄	P_{23}	P ₃₄	P ₄₂	P ₅₄	2.5		1	2	2	3	1
43	P ₁₅	P_{23}	P ₃₄	P_{42}	P ₅₄	2.5	2 2	1	2	2	4	1
	P ₁₂	P_{24}	P ₃₄	P_{42}	P ₅₄							
44	P ₁₃	\mathbf{P}_{24}	\mathbf{P}_{34}	P_{42}	P ₅₄	2.5	2	1	3	3	2	1
45	P ₁₄	P_{24}	P_{34}	P_{42}	P ₅₄	2.5	2	1	3	3	4	1
46	P ₁₅	P_{24}	P_{34}	P_{42}	P ₅₄	3	1.5	1	4	4	2	1
47	P ₁₂	P_{25}	P_{34}	P_{42}	P ₅₄	3	1.5	1	4	4	3	1
48	P ₁₃	P_{25}	P_{34}	P_{42}	P ₅₄	3	1.5	2	2	2	3	2
49	P ₁₄	P_{25}	P_{34}	P_{42}	P ₅₄		1.5	3	1	1	3	4
50	P ₁₅	P_{25}	P_{34}	P_{42}	P ₅₄	3 3	1.5	2	1	1	3	4
51	P_{12}	P_{21}	P_{35}	P_{42}	P ₅₁	3 3	1.5	3	1	1	3	2
52	P ₁₃	P_{21}	P_{35}	P_{42}	P ₅₁	3	1.5	2	1	1	4	2
53	P ₁₄	P_{21}	P_{35}	P_{42}	P_{51}	3	1.5	2	1	1	4	3
54	P ₁₅	P_{21}	P_{35}	P_{42}	P_{51}	3	1.5	2	1	1	3	3
55	P ₁₂	P_{23}	P_{35}	P_{42}	P_{51}	3	1.5	3	1	1	4	3
56	P ₁₃	P_{23}	P_{35}	P_{42}	P_{51}	3	1.5	3	1	1	4	2
57	P ₁₄	P_{23}	P_{35}	P_{42}	P_{51}	3	1.5	3	2	1	1	2
	P ₁₅	P_{23}	P_{35}	P_{42}	P_{51}	3		3	4	2	2	$\frac{2}{3}$
58	P ₁₂	P_{24}	P_{35}	P_{42}	P_{51}	3	1.5					3
59	P ₁₃	P ₂₄	P_{35}	P_{42}	P_{51}	3	1.5	3	4	1	1	2
60	1 13	1 24	1 33	1 42	1 31	3	1.5	3	2	1	1	3
61	P_{14}	P_{24}	P ₃₅	P ₄₅	P ₅₁	3.5	1.0	4	2	1	1	2
62	P ₁₅	P ₂₄			P ₅₁	3.5	1.0	4	3	1	1	2
63			P_{35}	P ₄₅		3.5	1.0	3	3	1	1	2
64	P ₁₂	P_{25}	P_{35}	P ₄₅	P ₅₁	3.5	1.0	4	3	1	1	3
	P ₁₃	P ₂₅	P_{35}	P ₄₅	P_{51}			4	2	1	1	$\frac{3}{3}$
65	P ₁₄	P_{25}	P_{35}	P ₄₅	P ₅₁	3.5	1.0					
66	P ₁₅	P_{25}	P ₃₅	P ₄₅	P ₅₂	3.5	1.0	4	1	2	3	1
67	P ₁₂	\mathbf{P}_{21}	P_{31}	P_{45}	P_{52}	3.5	1.0	4	1	3	2	1
68	P ₁₃	P_{21}	P_{31}	P_{45}	P ₅₂	3.5	1.0	4	1	2	2	1
69	P ₁₄	P_{21}	P_{31}	P ₄₅	P ₅₂	3.5	1.0	3	1	2	3	1
70	P ₁₅	P_{21}	P_{31}	P_{45}	P_{52}	3.5	1.0	3	1	3	2	1
71	D	D	D	n	n	3.5	1.0	3	1	2	2	1
	P ₁₂	P_{23}	P_{31}	P ₄₅	P ₅₂		1.0	2	1	2	3	1
72	P ₁₃	P_{23}	P_{31}	P ₄₅	P ₅₂	3.5						
73	P ₁₄	P_{23}	P ₃₁	P ₄₅	P ₅₂	3.5	1.0	2	1	3	2	1
74	P ₁₅	P_{23}	P_{31}	P_{45}	P ₅₂	3.5	1.0	2	1	3	3	1
75	P ₁₂	P_{24}	P_{31}	P_{43}	P ₅₂	4	0.5	2	3	4	1	1
76	P ₁₃	\mathbf{P}_{24}	\mathbf{P}_{31}	P_{43}	P ₅₂	4	0.5	3	2	4	1	1
77	P ₁₄	P_{24}	P_{31}	P_{43}	P_{52}	4	0.5	4	3	2	1	1
	I.								-			

78	P ₁₅	P ₂₄	P ₃₁	P ₄₃	P ₅₃	4	0.5	2	2	4	1	1
79	P_{12}	P_{25}	P_{31}	P_{43}	P_{53}	4	0.5	2	2	3	1	1
80	P_{13}	P ₂₅	P ₃₁	P ₄₃	P ₅₃	4	0.5	4	2	2	1	1
81	P ₁₄	P ₂₅	P ₃₁	P ₄₃	P ₅₃	4	0.5	3	2	2	1	1
82	P ₁₅	P_{25}	P_{31}	P_{43}	P ₅₃	4	0.5	2	4	2	1	1
83	P_{12}	\mathbf{P}_{21}	P_{32}	P_{43}	P ₅₃	4	0.5	2	3	2	1	1
84	P_{13}	P_{21}	P_{32}	P_{43}	P_{53}	4	0.5	3	3	4	1	1
85	P_{14}	P_{21}	P_{32}	P_{43}	P ₅₃	4	0.5	3	3	2	1	1
86	P_{15}	P_{21}	P_{32}	P_{43}	P_{53}	4	0.5	3	4	3	1	1
87	P_{12}	P_{23}	P_{32}	P_{43}	P_{53}	4	0.5	3	2	3	1	1
88	P_{13}	P_{23}	P_{32}	P_{43}	P ₅₃	4	0.5	4	3	3	1	1
89	P_{14}	P_{23}	P_{32}	P_{43}	P ₅₃	4	0.5	2	3	3	1	1
90	P ₁₅	P_{23}	P ₃₂	P ₄₃	P ₅₃	4	0.5	3	4	1	2	1