

Table of Contents

01

Case study

03

Diagnose

02

Define

04

Delivery

Food Delivery Time Prediction

A popular food delivery company wants to enhance its customer experience by providing accurate delivery time estimates. They receive a significant number of orders daily, and customers often complain about delayed deliveries.

The company aims to build a machine learning model that can predict the delivery time based on various factors to minimize delivery delays and improve overall customer satisfaction.

Source: Kaggle

(https://www.kaggle.com/datasets/bhanupratapbiswas/food-delivery-time-prediction-case-study)

Food Delivery Time Prediction

The company collects historical delivery data, including the following features:

- Courier ID: Unique ID of the courier
- Order ID: Unique ID of the order
- Courier age: Age of the courier
- Rating: Rating given by the customer out of 5
- Restaurant latitude: Latitude of the pick-up point
- Restaurant longitude: Longitude of the pick-up point
- Delivery location latitude: Latitude of the drop-off point
- Delivery location longitude: Longitude of the drop-off point
- Type of order: Four different types of food and beverage services ordered by the customer
- Type of vehicle: Four different means of transport used by the courier
- Time taken: Time (in minutes) taken by the delivery person to deliver the food package. This is calculated by taking the difference between the timestamps of the delivery person's pick-up confirmation and drop-off information

- 1. Conduct a data-driven analysis about food delivery time
- Handling missing values: Imputing or removing missing or incorrect data
- Defining distance between locations
- Identify delivery performance, delivery service quality, optimize delivery process
- 2. Answer the critical business question: "What should we do to enhance satisfaction's customers?"

Diagnose the problem

N = 45540

57% couriers <= 30 years old

97%Ratings from 4*

Food Delivery Analysis | Overview

Type of Vehicles

Age of Couriers

Ratings

Rating

Food Delivery Analysis | Overview

This formula assumes the Earth is a sphere and calculates the distance as the crow flies.

Distance (km)

1.47

9.74

20.97

Min

Average

Max

Time (minutes)

10

26

54

Delivery time increases with distance

GG

The increase in delivery time is **not linear**—the time difference between 11-16 km and 16-21 km is **minimal**.

No significant correlation between delivery distance and delivery time

GG

The R-squared value (r^2) of 0.1 suggests that only 10% of the variation in delivery time can be explained by distance, indicating that other factors play a much greater role in determining delivery duration.

Less delivery time takes higher ratings

GG

- Fast deliveries (≤10 minutes) receive the highest satisfaction.
- Customer satisfaction starts declining after 15 minutes.
- Deliveries taking 30+ minutes see a significant drop in ratings.
- Most 1-star ratings come from deliveries within 30 minutes.

Food Delivery Analysis | Details

Couriers under 30 years old tend to deliver orders approximately 5 minutes faster than older couriers

No statistically significant difference in delivery times across different order types

66

Using ANOVA test shows p-value > 0.05

Statistically significant difference in delivery times across different vehicle types

Using ANOVA test shows p-value < 0.05. **At least one vehicle type** has a significantly different delivery time compared to the others.

Scooter has **many outliers** \rightarrow Some orders are experiencing **serious delays**.

- 1. Distance isn't the only factor that affects delivery time (traffic conditions, courier experience, route efficiency...)
- 2. Fast-delivery orders receive higher ratings (speed is a major driver of positive customer experience)
- 3. Younger couriers are faster than older groups (could be due to higher physical endurance, familiarity with routes, or a greater tendency to take risks)
- 4. Different types of orders don't affect delivery time
- 5. Scooters (both normal & electric) deliver faster than other vehicle types (likely due to maneuverability in traffic and ease of parking)

- 1. Optimize delivery assignments by prioritizing scooters for short-to-medium distances.
- 2. Encourage fast deliveries by offering incentives for high-rated, quick couriers.
- 3. Analyze external factors affecting delivery time (e.g., weather, order volume, peak hours)
- 4. Investigate why certain couriers (especially older ones) are slower—training or better route planning might help.
- 5. Analyze customer reviews to identify recurring complaints in 1-star ratings.
- 6. Investigate couriers with frequent low ratings to provide training or feedback.

