Задача 0.

Берсенева N = 9Маргарита M = 9Сергеевна L = 9

Задача 1.

- а) Для одного кольца:
 - 1. Переставляем кольцо с 1 стержня на 2.
 - 2. Затем со 2 на 3 стержень.
- b) Для двух колец:
 - 1. Переставляем маленькое кольцо с 1 стержня на 2.
 - 2. Затем его же со 2 на 3.
 - 3. Переставляем большое кольцо с 1 на 2.
 - 4. Переставляем маленькое кольцо с 3 на 2.
 - 5. Затем его же со 2 на 1.
 - 6. Переставляем большое кольцо со 2 на 3.
 - 7. Переставляем маленькое кольцо с 1 на 2.
 - 8. Затем его же со 2 на 3.
- с) Для трех колец:
 - 1. Переставляем маленькое кольцо с 1 стержня на 2.
 - 2. Затем его же со 2 на 3.
 - 3. Переставляем среднее кольцо с 1 на 2.
 - 4. Переставляем маленькое кольцо с 3 на 2.
 - 5. Затем его же со 2 на 1.
 - 6. Переставляем среднее кольцо со 2 на 3.
 - 7. Переставляем маленькое кольцо с 1 на 2.
 - 8. Затем его же со 2 на 3. Заметим, что порядок шагов и сами шаги 1. 8. оказались идентичны с пунктом b). Примем их за базу.
 - 9. Переставляем большое кольцо с 1 стержня на 2.

- 10. 17. база (переставлем маленькое и среднее кольцо обратно с 3 стержня на 1 за 8 шагов)
- 18. Переставляем большое кольцо со 2 стержня на 3.
- 19. 26. база (переставлем маленькое и среднее кольцо с 1 стержня обратно на 3 за 8 шагов)
- d) 1. Переставляем (n 1) кольца с 1 стержня на 2.
 - 2. Переставляем (n 1) кольца со 2 стержня на 3.
 - 3. Переставляем самое большое (n) кольцо на 2 стержень.
 - 4. Переставляем (n 1) кольца с 3 стержня на 2.
 - 5. Переставялем (n 1) кольца со 2 стержня на 1.
 - 6. Переставляем самое большое (n) кольцо на 3 стержень.
 - 7. Переставляем (n 1) кольца с 1 стержня на 2.
 - 8. Переставляем (n 1) кольца со 2 стержня на 3.
 - 3 количество стержней (не можем переставлять через один)
- е) $3^{n}-1$, где п количество дисков
 - (- 1) не считаем начальное положение за перестановку
- f) Сведем проанализированные случаи в таблицу:

На основе данных из этой таблицы выводится формула представленная выше.

Задача 2.

а) Так как на сверчок сидит на первой шпале, то начнем рассматривать ситуации с $\mathbf{n}=2$:

 $F_2 = 1$ (только один вариант прыгнуть на соседнюю шпалу)

 $F_3 = 2$ (два варианта, потому что сверчок может перепрыгнуть вторую шпалу, а может на нее прыгнуть тоже)

 $F_4 = 3$ и так далее.

Нетрудно заметить, что сумма способов складывается из суммы двух предыдущих способов, т. е. $F_n = F_{n-1} + F_{n-2}$

Посчитаем F_n при $n = 2L = 2 \cdot 9 = 18$:

$$F_5 = 5$$

$$F_6 = 8$$

$$F_7 = 13$$

$$F_8 = 21$$

$$F_9 = 34$$

$$F_{10} = 55$$

$$F_{11} = 89$$

$$F_{12} = 144$$

$$F_{13} = 233 F_{14} = 377$$

$$F_{15} = 610$$

$$F_{16} = 987$$

$$F_{17} = 1597$$

$$F_{18} = 2584$$

Задача 3.

a)
$$5^n + 4n - 1.8$$

1.
$$n = 1, 5 + 4 - 1 = 8$$
:8 - верно

2.
$$n = k$$

 $5^k + 4k - 1.8$ - верно

3.
$$5^{k+1}+4(k+1)-1=$$

= $5^k\cdot 5+4k+4-1=$
= $5^k\cdot 5+4k+3=$
= $5\underbrace{(5^k+4k-1)}_{\vdots 8}$ - $\underbrace{16k}_{\vdots 8}$ - верно, ч. т. д.

b)
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \geqslant \sqrt{n}$$

1.
$$n = 1, \frac{1}{\sqrt{1}} \geqslant \sqrt{1}$$
 - верно

2.
$$n = k$$

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} \geqslant \sqrt{k}$$
 - верно

3.
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \geqslant \sqrt{k+1}$$

$$\geqslant \sqrt{k} \text{ по 2 пункту}$$

$$\sqrt{k} + \frac{1}{\sqrt{k+1}} \geqslant \sqrt{k+1}$$

$$\frac{\sqrt{k} \cdot \sqrt{k+1} + 1}{\sqrt{k+1}} \geqslant \sqrt{k+1} + 1 \Rightarrow \sqrt{k+1}$$

$$\sqrt{k} \cdot \sqrt{k+1} + 1 \geqslant k + 1$$

$$\sqrt{k} \cdot \sqrt{k+1} \geqslant k$$

$$\sqrt{k} \cdot \sqrt{k+1} \geqslant \sqrt{k} \cdot \sqrt{k}$$

$$\sqrt{k+1} \geqslant \sqrt{k} \cdot \text{ верно, ч. т. д.}$$

c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

1. $n = 1, 1^3 = 1^2$ - Bedho

2.
$$n = k$$
 $1^3 + 2^3 + 3^3 + \dots + k^3 = (1 + 2 + 3 + \dots + k)^2$ - верно
$$1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3 = (1 + 2 + 3 + \dots + k + k + 1)^2$$
 $(1 + 2 + 3 + \dots + k)^2 + (k+1)^3 = (1 + 2 + 3 + \dots + k + k + 1)^2$

$$\left(\frac{(k+1) \cdot k}{2}\right)^2 + (k+1)^3 = \left(\frac{(1 + (k+1))(k+1)}{2}\right)^2$$

$$\frac{(k+k^2)^2}{4} + (k+1)^3 = \frac{((k+1)^2(k+1+1)^2)^2}{4}$$
3.
$$\frac{k^2(k+1)^2}{4} + (k+1)^3 = \frac{(k+1)^2(k+1+1)^2}{4} | : (k+1)^2$$

$$\frac{k^2}{4} + (k+1) = \frac{(k+2)^2}{4} | \cdot 4$$

$$k^2 + 4(k+1) = (k+2)^2$$

$$k^2 + 4k + 4 = k^2 + 4k + 4$$
 - верно, ч. т. д.

Задача 4.

$$N \cdot M \cdot L = 9^3 = 729$$

Не будет нужды в перестановках, если мальчик или несколько мальчиков будут стоять в самом конце очереди, при том что все девочки стоят перед ними, потому что никого не надо будет пропускать.

Самое большое количество перестановок, а именно $(N \cdot M \cdot L - 1)$ будет в том случае, когда мальчик будет стоять в самом начале очереди, а за ним только девочки. С началом каждой минуты ему нужно будет пропускать по одной девочке вперед, пока не наступит последняя минута, когда он уже будет стоять в самом конце очереди. Все перестаноки совершатся за $(N \cdot M \cdot L - 1)$ минут, потому что мальчик будет пропускать $(N \cdot M \cdot L - 1)$ девочку вперед себя (мальчика из числа студентов в очереди уже вычли, ему не нужно пропускать себя).

Случай, когда мальчик стоит в начале очереди и где-то в недрах очереди есть еще один мальчик, не будет максимальным по количеству перестановок, потому что двум мальчикам придется пропустить $(N \cdot M \cdot L - 2)$ девочек (вычли 2 мальчиков из общего числа студентов в очереди, им не нужно себя пропускать), следовательно и время, за которое совершатся все перестаноки, будет равно $(N \cdot M \cdot L - 2)$.

Таким образом, случаи, когда в очереди более одного мальчика не будут максимальными по престановкам, так как чем больше число мальчиков в очереди, тем меньше число девечек, которое им нужно будет пропустить, а следовательно и время тоже затратится меньше, и они точно успеют до открытия буфета поменяться местами.

В итоге, не существует такого случая, когда перестановки в очереди не успеют закончиться до открытия буфета.

Задача 5.

- a) 1. $A \implies C \equiv \bar{A} \vee C$
 - 2. $A \vee \bar{B}$
 - 3. $A \implies (B \wedge \bar{C}) \equiv \bar{A} \vee B \wedge \bar{C}$
- b) 1. $\neg (A \implies C) \equiv A \wedge \bar{C}$

Завтра будет солнечно, но Онегин не пойдет гулять по бульвару.

2.
$$\neg (A \lor \bar{B}) \equiv \bar{A} \land B$$

Завтра не будет солнечно, и Онегин наденет широкий боливар.

3. $\overline{A}\vee B\wedge \overline{C}\equiv A\wedge \overline{B\wedge C}\equiv A\wedge (\bar{B}\vee C)\equiv A\wedge \bar{B}\vee A\wedge C$ Или завтра будет солнечно и Онегин не наденет широкий бо-

Или завтра будет солнечно и Онегин не наденет широкий боливар, или завтра будет солнечно и Онегин пойдет гулять на бульвар.

с) Таблица истинности для выражения $\bar{A} \vee B \wedge \bar{C}$

A	В	С	$ \bar{A} $	\bar{C}	$B \wedge \bar{C}$	$\bar{A} \vee B \wedge \bar{C}$
0	0	0	1	1	0	1
0	0	1	1	0	0	1
0	1	0	1	1	1	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	1	0	0	0	0
1	1	0	0	1	1	1
1	1	1	0	0	0	0

Задача 6.

1.
$$(A \Longrightarrow B) \land (B \Longrightarrow C) \equiv (A \Longrightarrow C)$$

Левая часть выражения:

A	В	$\mid C \mid$	$(A \implies B)$	$(B \implies C)$	$(A \Longrightarrow B) \land (B \Longrightarrow C)$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Правая часть выражения:

A	В	$\mid C \mid$	$(A \Longrightarrow C)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Формула не верна, т. к. последние столбцы в таблицах истинности разных частей выражения не совпали.

2.
$$((A \Longrightarrow B) \land (B \Longrightarrow C)) \Longrightarrow ((A \Longrightarrow B)) \equiv$$

$$\frac{(\bar{A} \lor B) \land (\bar{B} \lor C) \Longrightarrow (\bar{A} \lor C) \equiv}{(\bar{A} \lor B) \land (\bar{B} \lor C) \lor \bar{A} \lor C \equiv}$$

$$\frac{(\bar{A} \lor B) \land (\bar{B} \lor C) \land A \land \bar{C} \equiv}{(\bar{A} \land A \lor A \land B) \land (\bar{B} \land \bar{C} \lor C \land \bar{C}) \equiv}$$

$$\frac{(\bar{A} \land A \lor A \land B) \land (\bar{B} \land \bar{C} \lor C) \equiv}{(\bar{A} \land B) \land (\bar{B} \land \bar{C} \lor C) \equiv}$$

3. Выражения отличаются, потому что, во-первых, первое неверно, а второе верно, во-вторых, в первом выражении доказывается эквивалентность высказываний в выражении, а во втором - истинность всего выражения.

Задача 7.

- 1. $\exists x \in X, \forall y \in Y : M(x) \land \overline{P(x,y)}$
- $2. \ \exists x \in X : M(x) \land P(x,x)$
- 3. $\exists y \in Y, \forall x \in X : \overline{M(x)} \lor P(x, y)$
- 4. $\forall x \in X, \exists y \in Y : \overline{M(x)} \lor P(x,y)$

Задача 8.

1. Для любого предложения из множества всех предложений найдется слово из множества всех слов такое, что в любом предложении встречается это слово.

- 2. Существует слово из множества всех слов, что для любого предложения из множества всех предложений верно, что в любом предложении встречается это слово.
- 3. Существует такая часть речи из множества всех частей речи, что для любого предложения из множества всех предложений найдется слово из множества всех слов такое, что в любом предложении есть слово этой части речи.