

МАТЕМАТИКА БЕЗ ГРАНИЦИ

9-12 КЛАС

ECEH 2015

Задача 1. Кое от посочените числа е най-голямо?	
---	--

- **A**) $2\sqrt{5}$
- **B**) $3\sqrt{4}$
- **C**) $4\sqrt{3}$
- **D**) $5\sqrt{2}$

Задача 2. Намерете липсващото число в равенството

$$\frac{15}{45} = \sqrt{\frac{15}{?}}.$$

A) 25

B) 45

C) 90

D) 135

Задача 3. Броят на рационалните числа в редицата $\sqrt{1}$, $\sqrt{3}$, $\sqrt{5}$, ..., $\sqrt{997}$, $\sqrt{999}$ e:

A) 31

B) 16

- **C**) 450
- **D**) 225

Задача 4. В правоъгълния $\triangle ABC$ хипотенузата $AB = \sqrt{2} \ cm$ и $\triangleleft BAC = 75^{\circ}$. Лицето на триъгълника е:

- A) $4 cm^2$
- **B**) $2\sqrt{2} cm^2$ **C**) $\sqrt{2} cm^2$ **D**) $8\sqrt{2} cm^2$

Задача 5. Ако $a = \sqrt{3} - 2$ и $b = -\sqrt{3} - 2$, тогава стойността на израза (a + 2|a|).(b - |b|) e:

A) 2

- **B**) -2
- C) ab
- **D**) 0

Задача 6. Многоъгълник има повече от 100 диагонала. Тогава броят на страните му е най-малко:

A) 15

B) 16

C) 17

D) 18

Задача 7. При решаването на едно и също квадратно уравнение трима ученици получили различни резултати.

Първият ученик получил за корени числата 1 и 2;

Вторият ученик - 2 и 3;

Третият ученик - 3 и 4.

Оказало се, че всеки е познал точно един корен на уравнението.

Ако корените са α и β , тогава $(\alpha - \beta)^2$ е:

A) 1

B) 2

C) 4

D) 9

Задача 8. Числата a и b, са такива, че изразът $a^2 + b^2 + 5 - ab - 2a - 2b$ има най-малка стойност. Тази стойност е:

A) -1

B) 1

C) 5

D) -5

Задача 9. Правоъгълник е разделен чрез две пресичащи се прави, успоредни на страните му, на 4 по-малки правоъгълника, три от които имат лица S_1, S_2 и S_3 (виж чертежа). Да се намери най-малката възможна стойност на лицето на четвъртия правоъгълник, ако $S_1 < S_2 < S_3$.

 $\mathbf{A)} \ \frac{S_1 \times S_2}{S_3}$

B) $\frac{S_1 \times S_3}{S_2}$

C) $\frac{S_2 \times S_3}{S_1}$

D) друг отговор

Задача 10. Колко са естествените числа n, за които числото $\frac{3n-1}{n-2}$ също е естествено?

A) 0

B) 1

C) 2

D) 3

Задача 11. Ако $(x-\sqrt{2}).(\sqrt{2}x-1)=0$ коя е най-голямата възможна стойност на $\sqrt{2}x-1$?

Задача 12. Колко най-много остри ъгли може да има изпъкнал шестоъгълник?

Задача 13. Бедрото AD на трапеца ABCD (AB > CD, $AB \parallel CD$) има дължина a, а разстоянието от средата на AB до AD е равно на b. Ако AB:DC=3:2, изразете лицето на трапеца чрез a и b.

Задача 14. Колко са естествените числа по-малки от 2015, които могат да се представят като сбор на 4 последователни естествени числа?

Задача 15. Колко най-голям брой квадрати 1×1 можем да оцветим в квадрат 11×11 , така че нито в един квадрат 2×2 да няма три оцветени квадрата 1×1 ?

Задача 16. Намерете цялото число α , ако $\sqrt{11-2\sqrt{10}}-\sqrt{11+2\sqrt{10}}=\alpha$.

Задача 17. Точката D е от медианата CM на триъгълник ABC, такава че CD=DM. Ако точката E е пресечна точка на правата AD и страна BC намерете CE:CB.

Задача 18. За кои прости числа α и β корените на уравнението $x^2 - \alpha \beta x + \alpha + \beta = 0$ са цели числа?

Задача 19. Колко са естествените числа, които са делители на $3^6 - 1$?

Задача 20. Ако $y = x^2 + 5x + 4$, изразете чрез y израза, равен на

$$(x+1)(x+2)(x+3)(x+4)$$
.