NEW AUXILIARY MODEL APPROACH TO THE MOTT MIT

ABHIRUP MUKHERJEE 1, SIDDHARTHA LAL 1

¹DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

MARCH 21, 2022

THE MODEL

THE MODEL

standard p-h symmetric Anderson impurity model

$$H = \sum_{k\sigma} \epsilon_{k} \tau_{k\sigma} + V \sum_{k\sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right) - \frac{1}{2} U \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^{2} + \underbrace{J \vec{S}_{d} \cdot \vec{s} - U_{b} \left(\hat{n}_{o\uparrow} - \hat{n}_{o\downarrow} \right)^{2}}_{\text{additional terms}}$$

supplement 1-particle hybridisation with

- **spin-exchange** between impurity and bath
- **correlation** on zeroth site of bath

Schrieffer and Wolff 1966; Anderson 1961.

URG ANALYSIS: $U_b = 0$

U_b = 0 : FLOW TOWARDS STRONG-COUPLING

U > 0, J > 0

$$d_{0} = \omega - \frac{D}{2} - \frac{U}{2} + \frac{K}{4}, \quad d_{1} = \omega - \frac{D}{2} + \frac{U}{2} + \frac{J}{4} \qquad \Delta V = \frac{3n_{j}VJ}{8} \left(\frac{1}{|d_{2}|} + \frac{1}{|d_{1}|} \right) > O$$

$$d_{2} = \omega - \frac{D}{2} + \frac{J}{4} \qquad \Delta J = \frac{n_{j}J^{2}}{|d_{2}|} > O$$

U_b = 0 : FLOW TOWARDS STRONG-COUPLING

U > 0 FIXED POINT HAMILTONIAN

$$H^* = \sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + \frac{U^*}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J^* \vec{S}_d \cdot \vec{s}_{<}$$

$$+ V^* \sum_{k < k^*, \sigma} \left(c_{d\sigma}^{\dagger} c_{k\sigma} + \text{h.c.} \right)$$

$$= \text{IOMs}$$

$$E < E_F$$

$$E > E_F$$

$$\vec{S}_{<} = \frac{1}{2} \sum_{k, k' < k^*} c_{k\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{k', \beta}$$

IMPURITY SPECTRAL FUNCTION

URG ANALYSIS: $U_b \neq 0$

U > o RG Equations

- U_b is **marginal**: $\Delta U_b = 0$
- Spin-exchange couling J can now be **driven irrelevant** by U_b :

$$\Delta J = -\frac{n_j J (J + 4U_b)}{d_2} \longrightarrow \begin{cases} \text{relevant when } J + 4U_b > 0 \\ \text{irrelevant when } J + 4U_b < 0 \end{cases}$$

■ Same can be said for the hybridisation *V*:

$$\Delta V = -\frac{3n_jV}{8} \left[\left(J + \frac{4U_b}{3} \right) \left(\frac{1}{d_2} + \frac{1}{d_1} \right) + \frac{4U_b}{3} \left(\frac{1}{d_3} + \frac{1}{d_0} \right) \right] \longrightarrow \begin{cases} \text{rel. when } J + 4U_b > 0 \\ \text{irrel. when } J + 4U_b < 0 \end{cases}$$

■ *U* can be relevant if *J* decays slower than *V*; needs to be checked numerically

U > o Phase Diagram

- black line represents line of **critical** points at $U_b^* = -J^*/4$
- blue: screened impurity (strong-coup.)
- red: unscreened local mom. (J = V = 0)
- \blacksquare gray: imp. level absent (U = J = V = o)
- lacktriangle green: J vanishes (J < U) (this region vanishes in therm. limit)

	~ 0 <i>7</i> = 0			
phase	RG flow	fixed point	GS	2-site GS
blue	$\Delta U < O, \Delta J, \Delta V > O$	$U^* \ll V^* \ll J^*$	SS	$ SS\rangle = \uparrow,\downarrow\rangle - \downarrow,\uparrow\rangle$
green	$\Delta U < 0, \Delta J < 0, \Delta V > 0$	$J^* < U^* \ll V^*$	SS + CT-o	$c SS\rangle + \sqrt{1-c^2} CT-O\rangle$
red	$\Delta U > O, \Delta J, \Delta V < O$	$U^* \gg 1, V^* = J^* = 0$	loc. mom	$\{\ket{\uparrow},\ket{\downarrow}\}\otimes\{\ket{0},\ket{2}\}$
gray	$\Delta U, \Delta J, \Delta V < o$	$U^* = V^* = J^* = 0$	bath	$\{\ket{\uparrow},\ket{\downarrow},\ket{0},\ket{2}\}\otimes\{\ket{0},\ket{2}\}$

EVOLUTION OF TWO-SITE GROUNDSTATE AND

CORRELATIONS ACROSS THE TRANSITION

OVERLAP OF GROUND STATE AGAINST SPIN SINGLET AND CHARGE TRIPLET ZERO STATES

OVERLAP OF GROUND STATE AGAINST SPIN SINGLET AND CHARGE TRIPLET ZERO STATES

OVERLAP OF GROUND STATE AGAINST SPIN SINGLET AND CHARGE TRIPLET ZERO STATES

SPIN AND CHARGE CORRELATIONS IN GROUND STATE

SPIN AND CHARGE CORRELATIONS IN GROUND STATE

SPIN AND CHARGE CORRELATIONS IN GROUND STATE

Kondo cloud

Real space mutual information

Impurity entanglement entropy and spin-spin correlations

Real-space correlations

ZERO-BANDWIDTH LIMIT OF FIXED POINT

HAMILTONIAN

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Route to the zero-bandwidth model

At strong-coupling fixed point,

- kinetic energy acts as a perturbation
- compress the bandwidth to just the Fermi surface

$$H_{\text{zero bw}}^* = (\epsilon_F - \mu) \, \hat{n}_{k_F} + \frac{U^*}{2} \, (\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow})^2 + V^* \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{o\sigma} + \text{h.c.} \right) + J \vec{S}_d \cdot \vec{S}_o$$
(center of motion)

■ Setting μ = ϵ_F gives a **two-site model**

$$H_{\rm zero}^* = \frac{U^*}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + V^* \sum_{\sigma} \left(c_{d\sigma}^{\dagger} c_{o\sigma} + \text{h.c.} \right) + J \vec{S}_d \cdot \vec{s}_o$$

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Effective two-site problem

$$|\Psi\rangle_{gs} = \frac{c_s}{\sqrt{2}} (|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle) + \frac{\sqrt{1-c_s^2}}{\sqrt{2}} (|2,0\rangle + |0,2\rangle), \quad c_s \to 1 \text{ as } D \to \infty$$

Effective Hamiltonian in singlet subspace

We treat the dispersion as a real-space nearest neighbour hopping.

$$\begin{split} H^* &= -\frac{U}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right)^2 + J^* \vec{S}_d \cdot \vec{s}_0 \\ &+ V \sum_{\sigma} \left(c^{\dagger}_{d\sigma} c_{0\sigma} + \text{h.c.} \right) \\ &- t \sum_{i\sigma} \left(c^{\dagger}_{i\sigma} c_{i+1,\sigma} + \text{h.c.} \right) \end{split}$$

Effective Hamiltonian in singlet subspace

Initially consider **just the first site**. Treat **hopping as perturbation**:

$$|\Psi\rangle_{GS}^{*} = c_{s} |SS\rangle + \sqrt{1 - c_{s}^{2}} |CT, o\rangle$$

$$V = -t \sum_{\sigma} \left(c_{O\sigma}^{\dagger} c_{1,\sigma} + \text{h.c.} \right)$$

Effective Hamiltonian in singlet subspace

Upto fourth order, effective Hamiltonian is

$$H_{ ext{eff}}^*$$
 = constant + $lpha \mathcal{P}_{ ext{charge}}$
 $\mathcal{P}_{ ext{charge}} \longrightarrow ext{projector onto } \hat{n}_1
eq 1$

- For $U \ll V \ll J$, we get $0 < \alpha \ll 1$
- a very weak local FL on 1st site

SIGNATURES OF BREAKDOWN OF SCREENING -

JOURNEY TOWARDS LOCAL MOMENT PHASE

- We will work with a Hilbert space of (6+1=) **7 sites**
- **Recreate RG flow** by tuning the parameters U, V, J
- Observe various measures of entanglement and correlation along this variation

WHAT'S HAPPENING?

Auxiliary Model ightarrow bulk

- At large *J*, *V*, we have **large overlapping** Kondo clouds (gray regions)
- As we go towards the local moment phase, the **Kondo clouds shrink**
- \blacksquare At $V, J \sim$ 0, the Kondo **length scale diverges** and the system becomes insulating

■ Rewinding the RG flow shows the **decoupling** of the impurity site.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a metal-insulator transition.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.
- Stabilising the insulating phase under RG still remains to be done.

- Rewinding the RG flow shows the **decoupling** of the impurity site.
- When used as an auxiliary model, this a **metal-insulator transition**.
- Stabilising the insulating phase under RG **still remains to be done**.
- For this, we will insert a **Hubbard term on the zeroth site**, and check the RG flows.

