Math 74, Week 6

Tianshuang (Ethan) Qiu

October 9, 2021

1 Mon Lec, 4c

Non of the number repeating means that it is a rearrangement of the set of remainders $\{1, 2, ...6\}$. We first show that if $a \not\equiv b \mod 7$, then $4a \not\equiv 4b \mod 7$ Proof: Suppose for contradiction that $4a \equiv 4b \mod 7$, then we have $7 \mid 4(a - b)$. Since $\gcd(4,7) = 1$, $7 \mid a - b$, $a \equiv b \mod 7$, 4. We have a contradiction, therefore $4a \not\equiv 4b \mod 7$

Let a = 1, b = 2, 3, 4, 5, 6. We can see that $(4 \times 1)...(4 \times 6) \equiv 6! \mod 7$. Since 6! is coprime with 7, we can divide it, leaving us with

$$4^6 \equiv 1 \bmod 7$$

2 Mon Lec, 5a

Using the formula

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$

$$\phi(10) = 10(1 - \frac{1}{2})(1 - \frac{1}{5}) = 4$$

3 Mon Lec, 6

We simplify

$$\frac{x+2k}{3} \le x+1$$
$$x+2k \le 3x+3$$

$$2x \ge 2k - 3$$
$$x \ge \frac{2k - 3}{2}$$

4 Mon Dis, 2b

$$17^{1707} \bmod 11 \equiv 6^{1707} \bmod 11$$

By fermats little theorem $6^10 \equiv 1 \mod 11$

$$6^1707 \equiv (6^10)^170 \times 6^7 \mod 11 \equiv 6^7 \mod 11$$

Now we start raising 6 to higher powers.

$$6^2 \equiv 3 \bmod 11$$

$$6^4 \equiv 9 \bmod 11$$

$$6^7 \equiv 3 \times 9 \times 6 \mod 11 \equiv 8 \mod 11$$

So $17^{1707} \equiv 8 \mod 11$

5 Mon Dis, 4c

We first compute $\phi(100)$

$$\phi(100) = 100(1 - \frac{1}{2})(1 - \frac{1}{5}) = 40$$

Since gcd(43, 100) = 1, we can apply Euler Totient theorem.

$$43^{1763} \equiv (43^{40})44 \times 43^3 \equiv 43^3 \mod 100$$

 $43^2=1849\equiv 49 \bmod 100,$ so $43^3\equiv 49\times 43 \bmod 100$ Finally we get $43^3\equiv 7 \bmod 100$

6 Wed Lec, 2a

We factor the expression into $n(n^2 - 1) = n(n + 1)(n - 1)$

Integers that are divisible by 2 are spaced such that there is one every other, and those divisible by 3 are spaced such that there is one every third. Here we have a product of 3 consecutive integers, so there must be at least 1 integer between n-1, n, n+1 that is divisible by 2, and at least 1 that is divisible by 3. Since $6 = 2 \times 3$, we have $6 \mid n(n+1)(n+2)$.

Thus we have proven that $6 \mid n^3 - n$

7 2021⁴⁰⁴² mod 100

First we since 2021 is odd and does not end in 5 or 0, gcd(2021, 100) = 1, so we can apply the Euler Totient Theorem.

$$\phi(100) = 100(1 - \frac{1}{2})(1 - \frac{1}{5}) = 40$$

$$2021^{4042} \equiv (2021^{40})101 \times 2021^2 \equiv 2021^2 \equiv 21^2 \mod 100$$

Now we can simply calculate the square to be $441 \equiv 41 \mod 100$

8 Wed Dis 1a

First we show that $17n^2 + 1 \not\equiv 0 \mod 4$

 $17n^2+1\equiv n^2+1$ mod 4 Now we assume that there exists some $n\geq 1$ that sataisfies this equation. Then we have $n^2+1\equiv 0$ mod 4

$$n^2 \equiv 3 \bmod 4$$

Now we consider all the possibilities of $n \mod 4$: $1^2 \equiv 1, 2^2 \equiv 0, 3^3 \equiv 1, 4^2 \equiv 0 \pmod{5}$. Therefore there is no way n that sataisfies $n^2 \equiv 3$. Our assumption is incorrect and $4 \mid /17n^2 + 1$

We repeat the proof for mod 5

 $17n^2 + 1 \equiv 2n^2 + 1 \mod 5$ We assume that there exists some $n \geq 1$ that sataisfies this equation. Then we have $2n^2 + 1 \equiv 0 \mod 5$

$$2n^2 \equiv 4 \mod 5$$

$$n^2 \equiv 2 \bmod 5$$

We can examine the possible squares: $1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 4, 4^2 \equiv 1 \pmod{5}$ Once again there is no possible way for n^2 to be 2. Our assumption is incorrect and $5 \mid /17n^2 + 1$

Thus we have proven both parts of the hypothesis.

9 Wed Dis, 5