## LEARNING LAB, Part 2



#### Learning Lab, Part 2:

- Exploratory Data Analysis
  - Modelling
  - ✓ Data Visualisation & Communication

### The Data Science Process





## **Exploratory Data Analysis**



Exploratory Data Analysis (EDA) is the process of summarising data using summary statistics and data visualisation

## **Exploratory Data Analysis**



### Why do we need to explore the data?

- 1. To spot problems
- > Missing values, bad fields or variables, identifying outliers
- Identify what needs formatting and cleansing

## **Exploratory Data Analysis**



### Why do we need to explore the data?

- 2. To give a sense of the data
- > Build a more detailed picture of the data
  - > Explore summary statistics
  - > To refine our question (if necessary)



### Modelling

Modelling is the stage where we extract valuable insights from the data



### Common Modelling Tasks:

Classification - Finding out if something belongs to one thing or another

Scoring - Predicting or estimating a numeric value, such as price

Ranking - Ordering items by preferences

Clustering - Grouping items into most-similar groups

Finding Relations - Identifying correlations or causes

**Characterisation** - Plotting and report-writing



### Modelling

- > For each modelling task, there are multiple options to choose from
  - > Evaluating models is very important.

Example questions: Is the model accurate enough, is it generalisable and how does it compare to other models?



#### Please be mindful...

Correlation does not imply causation



#### **Data Visualisation**

The ability to communicate information and the results of a data science project is hugely important.

Storytelling with data is a powerful way to communicate your message

But it should be grounded in some rules





These charts all have the <u>same mean and</u> standard deviation

Source: Alan Smith, FT



#### **Exploratory Data Visualisation**

- > The user is free to ask questions of the visualisation and explore and find insights
  - > Discovery a key element
    - > No single narrative
      - > Often interactive



Cumulative Cases of Ebola

23,948

WHO
Data - Explore - Mar 02, 2015

People Receiving Food Assistance

3.3 million

Cumulative Deaths from Ebola

9,729

WHO
Data - Explore - Mar 02, 2015

Open Ebola Treatment Centers

Response Plan Coverage

57.3%

OCHA FTS

Data - Explore - Feb 18, 2015

Currently Affected Countries

Currently Affected Countries

4

Humanitarian Data Exchange (HDX) www.data.hdx.rwlabs.org/ebola



#### **Explanatory Data Visualisation**

- > Focused on one or more key insights
- > Greater element of storytelling in their production
  - > Less discovery-led
- > Data Journalism tends to be more explanatory, for example





Washington Post https://www.washingtonpost.com/graphics/national/power -plants/



#### Some Principles for Data Visualisation

> Choose the most appropriate and effective visualisations

> Always keep your audience in mind and do not deceive them simply to make a point

#### > A little design goes a long way

- > Be careful with your choice of colour
  - > Choose your chart types with care
- > In the vast majority of cases, do not mess with axes
  - > Don't use 3D graphics and avoid pie charts
    - > Take care with proportional graphics



#### NO!





> Always consider other ways to communicate the story and evaluate your efforts





#### NO!





#### **BETTER!**

