

Leistungselektronik

Hinweis: Bei der Prüfung *Leistungselektronik* ist derzeit keine Formelsammlung zugelassen. Daher kann diese Sammlung wichtiger Formeln und Schaltungen lediglich als Hilfe bei der Prüfungsvorbereitung dienen.

Bilder: Viele Bilder dieser Formelsammlung stammen aus dem Übungsskript zum Fach Leistungselektronik: Grundlagen und Standartanwendungen. Bei diesen Bildern liegt das Copyright beim Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik - TU München

Allgemeines

Mittelwert:
$$u_{\mathsf{M}} = \frac{1}{T}\int\limits_{t_0}^{t_0+T}u(t)\,\mathrm{d}t$$
 Effektivwert (RMS): $U_{\mathsf{eff}} = \frac{1}{T}\sqrt{\int\limits_0^Tu^2(t)\,\mathrm{d}t}$

1. Grundlagen

1.1. Elektrische Engergieumwandlung durch Stromrichter

2. Leistungshalbleiter

b aktiver Betrieb von Halbleitern wird bewusst vermieden. Leistungshalbleiter sind keine idealen Schalter \rightarrow Verluste

2.1. Hartschaltende Bauelemente

- Sehr hohe Halbleiterbelastung
- Große Safe Operating Area erforderlich
- Niedrige Schaltfrequenz
- Problematisch bei hohen Leistungen

2.2. Weichschaltende Bauelemente

- Niedrige Halbleiterbelastung
- Höherer Ausschaltstrom
- Hohe Schaltfrequenz
- Einfacherer Gate-Treiber
- Zusätzliche Leistungskomponenten

3. Kühlung von Leistungshalbleitern

Abgestrahlte Leistung:
$$P_{\rm rad} = \sigma \epsilon A (T_{KK}^4 - T_a^4)$$
 Strahlungskonstante: $\sigma = 5, 67 \cdot 10^{-8} {\rm W \over m^2 \, K^4}$

4. Netzgefuehrte Schaltungen

4.1. Netzteile

Grundstruktur

Gleichrichter Gleichrichterschaltungen unterscheidet man in Mittelpunkt- und Brückenschaltungen. Außerdem unterscheidet man aufgrund der Anzahl an Kommutierungen pro Periode.

Hinweis: An einer (idealen)Diode können nur positive Ströme auftreten. Allerdings ist (bei induktiven Lasten) das auftreten von negativen Spannungen möglich.

 \Rightarrow die Ausgangsspannung hängt immer auch von der Art der Last ab! mit Freilaufdiode

4.2. B2-Schaltung (Graetz-Brücke)

mit Transformator zur galvanischen Trennung.

für U>0: i fließt über D1, Last, D4 für U<0: i fließt über D2, Last, D3

Last	Strom	Spannung
R	-	-
RL	Glättung: wird nicht zu null	gleichgerichteter Sinus
RC	hoher Aufladestrom	Glättung: sinkt langsam ab

Voltage Ripple: $U_{\text{max}} - U_{\text{min}}$

- a Zahl der ausfallenden Halbswellen
- f Frequenz der Halbwelle

Dimensionierung des Glättungskondensators

- ullet Festlegung I_{max}
- Festlegung Voltage Ripple oder min. Spannung
 ⇒ Ladepausendauer = 1 Halbwelle
- Ausfallende Halbwellen?
- $\Rightarrow t_{\mathsf{LP}} pprox (a+1) rac{1}{f}$
- ullet Kondensator: $i=Crac{\mathrm{d}u}{\mathrm{d}t}$ $i=I_{\mathsf{max}}=const.$

$$C = \frac{I_{\text{max}} t_{\text{LP}}}{\hat{U} - U_{\text{min}}}$$

4.3. M3-Schaltung

Es leitet immer die Diode mit dem höchsten Potential.

4.4. B6-Schaltung

Oben: Es leitet immer die Diode mit dem höchsten Potential. Unten: Es leitet immer die Diode mit dem niedrigsten Potential.

5. Schutzbeschaltung

5.1. Snubber-Schaltung

Die Kombination aus der dem RC-Glied mit zum Wiederstand paralell geschalteter Diode nennt man Snubber Schaltung.

6. Schaltnetzteile

Ausgangsspannung: $U_A = U_0 \frac{t_{\rm on}}{t_{\rm on} + t_{\rm off}}$

7. DC-DC-Converters

7.1. Linearregler

7.2. Tiefsetzsteller

7.3. Hochsetzsteller

8. Verlustleistung und Kühlung

8.1. Durchlassverluste

zeitlicher Mittelwert:
$$I_{\text{AV}} = \frac{1}{T} \int\limits_0^T i \; \mathrm{d}t$$

$$\text{Effektivwert: } I_{\text{RMS}} = \sqrt{\frac{1}{T}} \int\limits_0^T i^2 \; \mathrm{d}t$$

$$p_D = ui = U_S i + r_D i^2$$

$$P_D = \frac{1}{D} \int\limits_0^T p_D \; \mathrm{d}t = U_S \frac{1}{T} \int\limits_0^T i \; \mathrm{d}t + r_D \frac{1}{T} \int\limits_0^T i^2 \; \mathrm{d}t$$

8.2. Sperrverluste

für sinusförmige Sperrspannungen
$$(u_R(t)=\hat{u}_R\sin(\omega t))$$

$$P_R=\frac{1}{T}\int\limits_0^Tp_R(t)\,\mathrm{d}t=\frac{1}{\pi}\hat{u}_RI_R$$

8.3. Ein- und Ausschaltverluste

$$\begin{aligned} & \text{Einschaltverluste } W_{\text{on}} = \int\limits_{t_0}^{t_0+t_{\text{off}}} p \, \mathrm{d}t \\ & \text{Ausschaltverluste } W_{\text{off}} = \int\limits_{t_0}^{t_0+t_{\text{off}}} \\ & \text{gesamte Schaltverluste } P_s = f(W_{\text{on}} + W_{\text{off}}) \end{aligned}$$

9. Thermisches Ersatzschaltbild

9.1. Wärmeleitung

R_{th}	Wärmewiderstand
λ	Wärmeleitfähigkeit
A	Querschnitt d. Körpers
d	Dicke des Körpers

Wärmeleitung:
$$R_{\rm th}=\frac{\theta_1-\theta_2}{P}$$
 $R_{\rm th}=\frac{d}{\lambda A}$

9.2. Wärmespeicherung

C_{th}	Wärmekapazität
V	Volumen
γ	spez. Masse
c	spez. Wärmekapazität

$$P = C_{\mathsf{th}} \frac{\mathrm{d}\theta}{\mathrm{d}t} = C_{\mathsf{th}}\theta$$

9.3. Transiente Wärmewiderstände

$$Y_{\mathsf{thi}}(t) = R_{\mathsf{thi}} \left(1 - e^{\frac{-t}{\tau_{\mathsf{thi}}}} \right)$$