Coursera Statistical Inference Course Project -Inferential Data Analysis

Sherman Wood July 21, 2016

Inferential Data Analysis

In this inferential analysis, we are going to explore the ToothGrowth data set that is part of the base R distribution. Let's start with an overview of the base ToothGrowth data set.

The documentation for the ToothGrowth data set says:

The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, (orange juice (coded as OJ) or ascorbic acid (a form of vitamin C and coded as VC).

head(ToothGrowth)

```
##
      len supp dose
## 1
      4.2
            VC
               0.5
## 2 11.5
            VC
               0.5
      7.3
                0.5
      5.8
            VC
                0.5
      6.4
            VC
                0.5
## 6 10.0
            VC
                0.5
```

table(ToothGrowth\$supp, ToothGrowth\$dose)

```
## 0.5 1 2
## 0J 10 10 10
## VC 10 10 10
```

We can see 10 observations for each dose/delivery method combination. The observations are independent.

We will assume that the length of time for the observations is the same, so tooth growth is comparable across the combinations.

ToothGrowth data profile

Comparison of tooth growth

Let us investigate whether the tooth growth was significantly differentiated by delivery method - orange juice versus ascorbic acid, regardless of dosage. This can be highlighted by a t-test of tooth growth across the samples partitioned by delivery method.

We will assume that the variances between the two groups is not equal.

```
##
## Welch Two Sample t-test
##
## data: oj$len and vc$len
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156  7.5710156
## sample estimates:
## mean of x mean of y
## 20.66333  16.96333
```

Conclusions

Given a t statistic of 1.9153 and a a low p-value of 0.0606, this test supports the hypothesis that orange juice provides significantly better tooth growth than asorbic acid. The 95% confidence interval of -0.171, 7.571, which is only just negative on the lower tail, also supports this conclusion.

Appendix

ToothGrowth data summaries

```
xtabs(len ~ dose, aggregate(len ~ dose, ToothGrowth, mean))
## dose
##
     0.5
               1
## 10.605 19.735 26.100
xtabs(len ~ supp, aggregate(len ~ supp, ToothGrowth, mean))
## supp
        OJ
                  VC
##
## 20.66333 16.96333
xtabs(len ~ dose, aggregate(len ~ dose,ToothGrowth,quantile))
##
## dose
             0%
                   25%
                          50%
                                 75%
                                       100%
    0.5 4.200 7.225 9.850 12.250 21.500
         13.600 16.250 19.250 23.375 27.300
##
##
     2
         18.500 23.525 25.950 27.825 33.900
xtabs(len ~ supp, aggregate(len ~ supp, ToothGrowth, quantile))
##
## supp
            0%
                  25%
                         50%
                                75%
                                      100%
     OJ 8.200 15.525 22.700 25.725 30.900
     VC 4.200 11.200 16.500 23.100 33.900
xtabs(len ~ dose + supp, aggregate(len ~ dose + supp, ToothGrowth, mean))
##
        supp
## dose
           OJ
                  VC
     0.5 13.23 7.98
##
        22.70 16.77
##
     1
##
     2
       26.06 26.14
```