ГЛАВА 5. ИНТЕГРАЛ ЛЕБЕГА

1 Суммируемые по Лебегу функции

Всюду в этой главе E – измеримое множество в \mathbb{R}^m .

В этом параграфе E – ограниченное измеримое множество и f – заданная на E ограниченная измеримая функция.

Опр. Конечная система измеримых множеств $T = \{E_k\}_{k=1}^n$ называется разбиением множества E, если

$$\bigcup_{k=1}^{n} E_k = E$$
 и $|E_i \cap E_j| = 0$ при $i \neq j$.

Фиксируем некоторое разбиение T множества E и положим

$$m_k = \inf_{x \in E_k} f(x), \quad M_k = \sup_{x \in E_k} f(x), \quad 1 \leqslant k \leqslant n.$$

Составим нижнюю и верхнюю интегральные суммы

$$s_T(f) = \sum_{k=1}^n m_k |E_k|, \quad S_T(f) = \sum_{k=1}^n M_k |E_k|.$$

Ясно, что

$$s_T(f) \leqslant S_T(f)$$
.

Введем нижсний и верхний интегралы Лебега функции f на множестве E следующим образом:

$$\underline{J}(f) = \sup_{T} s_{T}(f), \quad \overline{J}(f) = \inf_{T} S_{T}(f).$$

Опр. Функция f называется интегрируемой по Лебегу на множестве E (или суммируемой на E), если

$$\underline{J}(f) = \overline{J}(f).$$

Число $J(f) = \underline{J}(f) = \overline{J}(f)$ называется интегралом Лебега функции f на множестве E и обозначается так:

$$J(f) = \int_{E} f(x) \, dx$$

Опр. Разбиение $\widetilde{T}=\{\widetilde{E}_i\}_{i=1}^m$ называется *измельчением* разбиения $T=\{E_k\}_{k=1}^n,$ если для каждого i верно $\widetilde{E}_i\subset E_k$ с некоторым k=k(i) и $E_k=\bigcup_{\widetilde{E}_i\subset E_k}\widetilde{E}_i.$

В этом случае

$$|E_k| = \sum_{\widetilde{E}_i \subset E_k} |\widetilde{E}_i|.$$

Опр. Пусть $T_1 = \{E_i^{(1)}\}_{i=1}^n, T_2 = \{E_j^{(2)}\}_{j=1}^m$ – два разбиения множества E. Разбиение

$$T_1 \cdot T_2 = \{ E_i^{(1)} \cap E_j^{(2)}, \ 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m \}$$

называется произведением разбиений T_1 и T_2 .

Очевидно, что $T_1 \cdot T_2$ является измельчением каждого из разбиений T_1 и T_2 .

Отметим следующие свойства.

Лемма 1.1. Если $\widetilde{T} = \{\widetilde{E}_i\}_{i=1}^m$ – измельчение разбиения $T = \{E_k\}_{k=1}^n$, то $s_T(f) \leqslant s_{\widetilde{T}}(f), \quad S_{\widetilde{T}}(f) \leqslant S_T(f).$

Доказательство. Если $\widetilde{E}_i \subset E_k$, то

$$m_k = \inf_{x \in E_k} f(x) \leqslant \widetilde{m}_i = \inf_{x \in \widetilde{E}_i} f(x),$$
$$\widetilde{M}_i = \sup_{x \in \widetilde{E}_i} f(x) \leqslant M_k = \sup_{x \in E_k} f(x).$$

Поэтому

$$s_{T}(f) = \sum_{k=1}^{n} m_{k} |E_{k}| = \sum_{k=1}^{n} m_{k} \sum_{\widetilde{E}_{i} \subset E_{k}} |\widetilde{E}_{i}| \leqslant \sum_{k=1}^{n} \sum_{\widetilde{E}_{i} \subset E_{k}} \widetilde{m}_{i} |\widetilde{E}_{i}| = \sum_{i=1}^{m} \widetilde{m}_{i} |\widetilde{E}_{i}| = s_{\widetilde{T}}(f),$$

$$S_{\widetilde{T}}(f) = \sum_{i=1}^{m} \widetilde{M}_{i} |\widetilde{E}_{i}| = \sum_{k=1}^{n} \sum_{\widetilde{E}_{i} \subset E_{k}} \widetilde{M}_{i} |\widetilde{E}_{i}| \leqslant \sum_{k=1}^{n} M_{k} \sum_{\widetilde{E}_{i} \subset E_{k}} |\widetilde{E}_{i}| = \sum_{k=1}^{n} M_{k} |E_{k}| = S_{T}(f).$$

Лемма доказана.

Лемма 1.2. Для любых двух разбиений T_1 и T_2

$$s_{T_1}(f) \leqslant S_{T_2}(f)$$
.

Доказательство. Пусть $\widetilde{T} = T_1 \cdot T_2$. Тогда в силу леммы 1.1

$$s_{T_1}(f) \leqslant s_{\widetilde{T}}(f) \leqslant S_{\widetilde{T}}(f) \leqslant S_{T_2}(f).$$

Лемма доказана.

Лемма 1.3. Справедливо неравенство

$$\underline{J}(f) \leqslant \overline{J}(f).$$

Доказательство. В силу леммы 1.2 имеем

$$s_{T_1}(f) \leqslant S_{T_2}(f) \Rightarrow \underline{J}(f) = \sup_{T_1} s_{T_1}(f) \leqslant S_{T_2}(f) \Rightarrow \underline{J}(f) \leqslant \inf_{T_2} S_{T_2}(f) = \overline{J}(f).$$

Лемма доказана.

Замечание. Как нетрудно видеть,

$$\int\limits_{E} 1 \, dx = |E|.$$

Действительно, для f(x) = 1 имеем

$$s_T(f) = \sum_{k=1}^n 1 \cdot |E_k| = |E| \Rightarrow \underline{J}(f) = \sup_T s_T(f) = |E|,$$

$$S_T(f) = \sum_{k=1}^n 1 \cdot |E_k| = |E| \Rightarrow \overline{J}(f) = \inf_T S_T(f) = |E|.$$

Ясно также, что

$$\int\limits_{E} 0 \, dx = 0.$$

Свойства интеграла Лебега ограниченной измеримой функции

Свойство 1. Пусть функция f суммируема на E и $\lambda \in \mathbb{R}$. Тогда функция λf суммируема на E и справедливо равенство

$$\int_{E} \lambda f(x) \, dx = \lambda \int_{E} f(x) \, dx.$$

Доказательство. Пусть $\lambda > 0$. Тогда

$$s_T(\lambda f) = \lambda s_T(f) \Rightarrow \underline{J}(\lambda f) = \sup_T s_T(\lambda f) = \lambda \sup_T s_T(f) = \lambda \underline{J}(f) = \lambda J(f),$$

$$S_T(\lambda f) = \lambda S_T(f) \Rightarrow \overline{J}(\lambda f) = \inf_T S_T(\lambda f) = \lambda \inf_T S_T(f) = \lambda \overline{J}(f) = \lambda J(f).$$

Следовательно

$$\underline{J}(\lambda f) = \overline{J}(\lambda f) = \lambda J(f).$$

Пусть $\lambda < 0$. Тогда

$$s_T(\lambda f) = \lambda S_T(f) \Rightarrow \underline{J}(\lambda f) = \sup_T s_T(\lambda f) = \lambda \inf_T S_T(f) = \lambda \overline{J}(f) = \lambda J(f),$$

$$S_T(\lambda f) = \lambda s_T(f) \Rightarrow \overline{J}(\lambda f) = \inf_T S_T(\lambda f) = \lambda \sup_T s_T(f) = \lambda \underline{J}(f) = \lambda J(f).$$

Следовательно

$$\underline{J}(\lambda f) = \overline{J}(\lambda f) = \lambda J(f).$$

Свойство доказано.

Свойство 2. Пусть функции f и g суммируемы на E. Тогда функция f+g суммируема на E и справедливо равенство

$$\int_{E} (f+g)(x) dx = \int_{E} f(x) dx + \int_{E} g(x) dx.$$

Доказательство. Пусть T_1 и T_2 – произвольные разбиения множества E. Возьмем $T=T_1\cdot T_2.$ Тогда

$$s_{T_1}(f) + s_{T_2}(g) \leqslant s_T(f) + s_T(g) \leqslant s_T(f+g) \leqslant \underline{J}(f+g) \leqslant \langle \overline{J}(f+g) \rangle \leqslant S_T(f+g) \leqslant S_T(f) + S_T(g) \leqslant S_T(g) + S_T(g) + S_T(g) \leqslant S_T(g) + S_T(g)$$

Как следствие,

$$J(f) + J(g) \leq \underline{J}(f+g) \leq \overline{J}(f+g) \leq J(f) + J(g).$$

Таким образом,

$$\underline{J}(f+g) = \overline{J}(f+g) = J(f) + J(g).$$

Свойство доказано.

Следствие. Если функции f, g суммируемы на E для их произвольная линейная комбинация $\alpha f + \beta g$ также суммируема на E, причем

$$\int_{E} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{E} f(x) dx + \beta \int_{E} g(x) dx.$$

Свойство 3. Пусть $E = E_1 \cup E_2$, где E_1 и E_2 – измеримые непересекающиеся множества.

а) Если функция f суммируема на E, то f суммируема на E_1 и на E_2 , причем

$$\int_{E} f(x) dx = \int_{E_{1}} f(x) dx + \int_{E_{2}} f(x) dx.$$
 (1.1)

б) Если функция f суммируема на E_1 и на E_2 , то f суммируема и на E и справедливо равенство (1.1).

Доказательство. а) Пусть $T = \{\widetilde{E}_k\}_{k=1}^n$ – произвольное разбиение множества E. Оно индуцирует разбиения

$$T_1 = \{\widetilde{E}_k \cap E_1\}_{k=1}^n$$
 и $T_2 = \{\widetilde{E}_k \cap E_2\}_{k=1}^n$

множеств E_1 и E_2 . Заметим, что

$$m_k = \inf_{x \in \widetilde{E}_k} f(x) \leqslant m_{k,1} = \inf_{x \in \widetilde{E}_k \cap E_1} f(x), \quad \text{if} \quad m_k \leqslant m_{k,2} = \inf_{x \in \widetilde{E}_k \cap E_2} f(x),$$

$$M_k = \sup_{x \in \widetilde{E}_k} f(x) \geqslant M_{k,1} = \sup_{x \in \widetilde{E}_k \cap E_1} f(x), \quad \text{if} \quad M_k \geqslant M_{k,2} = \sup_{x \in \widetilde{E}_k \cap E_2} f(x).$$

Поэтому

$$s_{T}(f) = \sum_{k=1}^{n} m_{k} |\widetilde{E}_{k}| = \sum_{k=1}^{n} m_{k} |\widetilde{E}_{k} \cap E_{1}| + \sum_{k=1}^{n} m_{k} |\widetilde{E}_{k} \cap E_{2}| \leq$$

$$\leq \sum_{k=1}^{n} m_{k,1} |\widetilde{E}_{k} \cap E_{1}| + \sum_{k=1}^{n} m_{k,2} |\widetilde{E}_{k} \cap E_{2}| = s_{T_{1}}(f) + s_{T_{2}}(f),$$

$$S_{T}(f) = \sum_{k=1}^{n} M_{k} |\widetilde{E}_{k}| = \sum_{k=1}^{n} M_{k} |\widetilde{E}_{k} \cap E_{1}| + \sum_{k=1}^{n} M_{k} |\widetilde{E}_{k} \cap E_{2}| \geq$$

$$\geq \sum_{k=1}^{n} M_{k,1} |\widetilde{E}_{k} \cap E_{1}| + \sum_{k=1}^{n} M_{k,2} |\widetilde{E}_{k} \cap E_{2}| = S_{T_{1}}(f) + S_{T_{2}}(f).$$

Таким образом,

$$s_T(f) \leqslant s_{T_1}(f) + s_{T_2}(f) \leqslant \underline{J}_1(f) + \underline{J}_2(f) \leqslant \overline{J}_1(f) + \overline{J}_2(f) \leqslant S_{T_1}(f) + S_{T_2}(f) \leqslant S_T(f).$$

Отсюда следует, что

$$J(f) \leqslant \underline{J}_1(f) + \underline{J}_2(f) \leqslant \overline{J}_1(f) + \overline{J}_2(f) \leqslant J(f).$$

Поэтому

$$\underline{J}_1(f) = \overline{J}_1(f), \quad \underline{J}_2(f) = \overline{J}_2(f) \quad \text{if} \quad J_1(f) + J_2(f) = J(f).$$

б) Пусть T_1 и T_2 – произвольные разбиения множеств E_1 и E_2 . Заметим, что $T=T_1\cup T_2$ является разбиением множества E. Поэтому

$$s_{T_1}(f) + s_{T_2}(f) = s_T(f) \leqslant \underline{J}(f) \leqslant \overline{J}(f) \leqslant S_T(f) = S_{T_1}(f) + S_{T_2}(f).$$

Как следствие,

$$J_1(f) + J_2(f) \leqslant \underline{J}(f) \leqslant \overline{J}(f) \leqslant J_1(f) + J_2(f).$$

Поэтому

$$J(f) = \underline{J}(f) = \overline{J}(f) = J_1(f) + J_2(f).$$

Свойство доказано.

Свойство 4. Пусть функция f(x) суммируема на E.

Тогда для всякого $h \in \mathbb{R}^m$ функция f(x-h) суммируема на E+h и

$$\int_{E+h} f(x-h) dx = \int_{E} f(x) dx.$$

Доказательство. Пусть $T = \{E_k\}_{k=1}^N$ — разбиение множества E. Тогда $T + h = \{E_k + h\}_{k=1}^N$ — разбиение множества E + h.

Положим $f_h(x) = f(x-h)$ и заметим, что

$$\inf_{x \in E_k + h} f_h(x) = \inf_{x \in E_k} f(x) = m_k, \quad \sup_{x \in E_k + h} f_h(x) = \sup_{x \in E_k} f(x) = M_k.$$

Пользуясь инвариатностью меры относительно сдвига, имеем

$$s_T(f) = \sum_{k=1}^{N} m_k |E_k| = \sum_{k=1}^{N} m_k |E_k + h| = s_{T+h}(f_h),$$

$$S_T(f) = \sum_{k=1}^{N} M_k |E_k| = \sum_{k=1}^{N} M_k |E_k + h| = S_{T+h}(f_h).$$

Поэтому

$$J(f) = \underline{J}(f) = \underline{J}(f_h), \quad J(f) = \overline{J}(f) = \overline{J}(f_h) \quad \Rightarrow \underline{J}(f_h) = \overline{J}(f_h) = J(f).$$

Следствие доказано.

Свойство 5. Пусть |E| = 0. Тогда

$$\int_{E} f(x) \, dx = 0.$$

Доказательство. Достаточно заметить, что $s_T(f) = 0$, $S_T(f) = 0$.

Свойство 6. Пусть функции f и g суммируемы на E, причем $f(x) \leqslant g(x)$ почти всюду на E. Тогда

$$\int_{E} f(x) \, dx \leqslant \int_{E} g(x) \, dx.$$

Доказательство. Заметим, что

$$\int_{E} f \, dx - \int_{E} g \, dx = \int_{E} (f - g) \, dx = \int_{E[f \leqslant g]} (f - g) \, dx + \int_{E[f > g]} (f - g) \, dx.$$

Для первого интеграла $s_T(f-g) \leqslant 0$ и поэтому значение этого интеграла неотрицательно. Второй интеграл равен нулю, так как |E[f>g]|=0.

Свойство доказано.

Теорема 1.1. (Теорема Лебега.) Любая ограниченная измеримая на множестве E конечной меры функция f интегрируема по Лебегу на этом множестве.

Доказательство. По условию $m \leqslant f < M$. Разобьем отрезок [m, M] точками

$$m = y_0 < y_1 < \dots < y_n = M.$$

с постоянным шагом $\delta_n = \frac{M-m}{n}$.

Положим $T = \{E_k\}_{k=1}^n$, где $E_k = E[y_{k-1} \leqslant f < y_k]$ для $1 \leqslant k \leqslant n$. Заметим, что

$$\sum_{k=1}^{n} y_{k-1} |E_k| \leqslant s_T(f) \leqslant \underline{J}(f) \leqslant \overline{J}(f) \leqslant S_T(f) \leqslant \sum_{k=1}^{n} y_k |E_k|.$$

Следовательно

$$0 \leqslant \overline{J}(f) - \underline{J}(f) \leqslant \sum_{k=1}^{n} (y_k - y_{k-1})|E_k| = \sum_{k=1}^{n} \delta_n |E_k| = \delta_n |E|.$$

Переходя к пределу при $n \to \infty$, имеем:

$$0 \leqslant \overline{J}(f) - \underline{J}(f) \leqslant 0 \Rightarrow \underline{J}(f) = \overline{J}(f).$$

Теорема доказана.

Замечание 1. Именно для измеримости множеств E_k Лебегу и потребовалось свойство измеримости функции f.

Замечание 2. Можно доказать. что всякая интегрируемая по Лебегу функция f является измеримой.

Теорема 1.2. Если функция f интегрируема по Риману на отрезке [a, b], то она интегрируема на [a, b] по Лебегу, причем интегралы Римана и Лебега совладают:

$$(R) \int_{a}^{b} f(x) \, dx = (L) \int_{a}^{b} f(x) \, dx = \int_{[a,b]} f(x) \, dx$$

Доказательство. Пусть $\underline{I}(f)$ и $\overline{I}(f)$ – нижний и верхний интегралы Дарбу.

$$\underline{I}(f) = \sup_{T} s_{T}(f), \quad \overline{I}(f) = \inf_{T} S_{T}(f),$$

где $T = \{ [x_{k-1}, x_k] \}_{k=1}^n, \quad a = x_0 < x_1 < \dots < x_n = b,$

$$s_T(f) = \sum_{k=1}^n m_k(x_x - x_{k-1}), \quad S_T(f) = \sum_{k=1}^n M_k(x_x - x_{k-1}).$$

Очевидно, что

$$\underline{I}(f) \leqslant \underline{J}(f) \leqslant \overline{J}(f) \leqslant \overline{I}(f),$$

так как множество разбиений в определении $\underline{J}(f)$ и $\overline{J}(f)$ шире.

Так как
$$\underline{I}(f) = \overline{I}(f) = (R) \int_a^b f(x) \, dx$$
, то

$$\underline{J}(f) = \overline{J}(f) = (L) \int_{a}^{b} f(x) dx = (R) \int_{a}^{b} f(x) dx.$$

Теорема доказана.

Замечание. Из интегрируемости по Лебегу не следует интегрируемость по Риману! (Функция Дирихле.)

Теорема 1.3. Функция f интегрируема по Риману на отрезке [a,b] тогда и только тогда, когда f ограничена и непрерывна почти всюду на [a,b].