概率论 笔记

任云玮

目录

1	样本空间与概率																							
	1.1	概率模型							_				_			_								2

1 样本空间与概率

1.1 概率模型

1 定义

- 1. 对于一次实验,定义其可能产生的结果的全体为**样本空间** Ω .
- 2. 称一个集合 A 为**事件**,若它是样本空间 Ω 的一个子集.

评注 对于样本空间,在选取的时候需要注意结果需要是良定义的(无歧义的),同时需要实验的所有结果都在 Ω 中.

- **2 定义 (概率律)** 设 Ω 是一个样本空间,称定义在 Ω 中事件全体上的函数 P 为**概率律**,若它成立
 - 1. 非负性. 对任意事件 $A, P(A) \ge 0$.
 - 2. 可加性. 对任意不相交的 A 和 B,成立 $P(A \cup B) = P(A) + P(B)$. 或者更一般的,对于两两互不相交的 $\{A_n\}_{n=1}^{\infty}$,成立 $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$.
 - 3. 归一性. $P(\Omega) = 1$.

评注 显然成立 $P(\emptyset) = 0$. 另外,一般在讨论概率律的时候,不区分只包含一个结果的事件和该结果本身.

- 3 定理 (概率律的性质) 给定概率律 P, 事件 A, B, C, 则
 - 1. 若 $A \subset B$,则 P(A) < P(B).
 - 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
 - 3. $P(A \cup B) \le P(A) + P(B)$.
 - 4. $P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$.

评注 这些式子的证明都是 trivial 的,其中 [3.] 至少可以推广至有限个事件.对于 [4.],它实际上演示了一个将重合的事件拆分成不相交事件的方法.

4 引理 (Bonferroni 不等式) 设有事件 A_1, A_2, \ldots, A_n ,则成立

$$P\left(\bigcap_{i=1}^{n} A_i\right) \ge \sum_{i=1}^{n} P(A_i) - (n-1).$$

证明 对 n 施归纳法, 利用定理 3[2.] 即可.

5 定理 (容斥原理) 设 A_1, A_2, \ldots, A_n 为样本空间 Ω 的事件,则

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^k \sum_{\substack{I \subset 1,\dots,n \\ |I| = k}} P(A_I).$$

6 定理 (连续概率) 设有事件序列 $\{A_n\}_{n=1}^{\infty}$,成立 $A_n \subset A_{n+1}$. 令 $A = \bigcup_{n=1^{\infty}} A_n$,则 $P(A) = \lim_{n \to \infty} P(A_n)$.

证明 考虑将 $P(\bigcup_{n=1}^{\infty} A_n)$ 拆分成级数的形式. 定义 $B_0=\varnothing$, $B_n=A_n-A_{n-1}$,则只需证明 $\bigcup_{k=1}^{\infty} B_k=A$,再利用 定义 2拆分 L.H.S 即可. \blacksquare

评注 对于"单调减"的事件序列,把并换成交,可以有类似的结论.