Algebraic geometry 1 Exercise sheet 2

Solutions by: Eric Rudolph and David Čadež

21. Oktober 2023

Exercise 1. Let $I=(f_1,\ldots,f_r)\subseteq k[x_1,\ldots,x_n]$ be an ideal and $X=V(I)\subseteq \mathbb{A}^n(k)$ be its vanishing locus.

1. We have to show

$$\overline{X} = \bigcap \{V^+(h) \mid h \text{ homogenous}, h(X) = 0\} = V(\{\tilde{g} \mid g \in I\}).$$

Pick any homogenous h that vanishes on X. By letting $x_{n+1}=1$ we see that $h(x_1,\ldots,x_n,1)\in \sqrt{I}$, since it vanishes on X. Therefore we have $l\in \mathbb{N}$ such that $h(x_1,\ldots,x_n,1)^l=\sum_{i=1}^r\alpha_if_i$ for some $\alpha_i\in k[x_1,\ldots,x_n]$. There also exists $m\in \mathbb{N}$ such that $x_{n+1}^mh(x_1,\ldots,x_n,1)=h$. Adding these two together we get $x_{n+1}^{ml}\sum_{i=1}^r\alpha_if_i=h^l$.