

EE 357 Unit 1

Fixed Point Systems and Arithmetic

Learning Objectives

- Understand the size and systems used by the underlying HW when a variable is declared in a SW program
- Understand and be able to find the decimal value of numbers represented in various systems in either binary or hex
- Perform the various arithmetic and logic operations that the HW needs to perform
- Be able to determine when overflow has occurred in an arithmetic operation

© Mark Redekopp, All rights reserved

Connecting C & EE 101

- This slide package is meant to review the basic data representation and operations that we learned in EE 101 but now in the context of a programming language like C
- We will show how the code you write in C directs the compiler to control the HW in specific ways

Unsigned
2's Complement
Sign and Zero Extension
Hexadecimal Representation

SIGNED AND UNSIGNED SYSTEMS

Binary Representation Systems

- Integer Systems
 - Unsigned
 - Unsigned (Normal) binary
 - Signed
 - Signed Magnitude
 - 2's complement
 - Excess-N*
 - 1's complement*
- Floating Point
 - For very large and small (fractional) numbers

- Codes
 - Text
 - ASCII / Unicode
 - Decimal Codes
 - BCD (Binary Coded Decimal) / (8421 Code)

^{* =} Not fully covered in this class

Data Representation

- In C/C++ variables can be of different types and sizes
 - Integer Types (signed by default...unsigned with leading keyword)

C Type	Bytes	Bits	Coldfire Name	MIPS Name
[unsigned] char	1	8	byte	byte
[unsigned] short [int]	2	16	word	half-word
[unsigned] long [int]	4	32	longword	word
[unsigned] long long [int]	8	64	-	double word

Floating Point Types

C Type	Bytes	Bits	Coldfire/MIPS Name
float	4	32	single
double	8	64	double

C examples

int x = -2; Allocates a 4-byte (32-bit) chunk of memory

Any operation involving x will use signed operations, if necessary

char c = 0xfa; Allocates a 1-byte (8-bit) chunk of memory

unsigned char d = 10; Allocates a 1-byte chunk of memory

Any operation involving d will use unsigned operations, if necessary

float f = 3.1; Allocates a 4-byte (32-bit) chunk of memory

Any operation involving f will use floating point HW

double g = -1.5; Allocates an 8-byte (64-bit) chunk of memory

unsigned long long y; Allocates an 8-byte (64-bit) chunk of memory

short z = -1; Allocates a 2-byte (16-bit) chunk of memory

Unsigned and Signed Variables

 Unsigned variables use unsigned binary (normal power-of-2 place values) to represent numbers

$$\frac{1}{128} \quad \frac{0}{64} \quad \frac{0}{32} \quad \frac{1}{16} \quad \frac{0}{8} \quad \frac{0}{4} \quad \frac{1}{2} \quad \frac{1}{1} = +147$$

 Signed variables use the 2's complement system (Neg. MSB weight) to represent numbers

$$\frac{1}{-128} \quad \frac{0}{64} \quad \frac{0}{32} \quad \frac{1}{16} \quad \frac{0}{8} \quad \frac{0}{4} \quad \frac{1}{2} \quad \frac{1}{1} = -109$$

2's Complement System

- MSB has negative weight
- MSB determines sign of the number
 - -1 = negative
 - -0 = positive
- To take the negative of a number
 (e.g. -7 => +7 or +2 => -2), requires taking the
 complement
 - 2's complement of a # is found by flipping bits and adding 1

1001
$$x = -7$$

0110 Bit flip (1's comp.)
+ 1 Add 1
0111 $-x = -(-7) = +7$

Zero and Sign Extension

 Extension is the process of increasing the number of bits used to represent a number without changing its value

Unsigned = Zero Extension (Always add leading 0's):

$$111011 = 00111011$$

Increase a 6-bit number to 8-bit number by zero extending

2's complement = Sign Extension (Replicate sign bit):

pos.
$$011010 = 00011010$$

Sign bit is just repeated as many times as necessary

neg.
$$110011 = 111110011$$

Zero and Sign Truncation

 Truncation is the process of decreasing the number of bits used to represent a number without changing its value

Unsigned = Zero Truncation (Remove leading 0's):

DQ111011 = 111011

Decrease an 8-bit number to 6-bit number by truncating 0's. Can't remove a '1' because value is changed

2's complement = Sign Truncation (Remove copies of sign bit):

neg.
$$1110011 = 10011$$

Any copies of the MSB can be removed without changing the numbers value. Be careful not to change the sign by cutting off ALL the sign bits.

Representation Range

- Given an n-bit system we can represent 2ⁿ unique numbers
 - In unsigned systems we use all combinations to represent positive numbers [0 to 2ⁿ-1]
 - In 2's complement we use half for positive and half for negative
 [-2ⁿ⁻¹ to +2ⁿ⁻¹-1]

n	2 ⁿ
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512

Approximating Large Powers of 2

- Often need to find decimal approximation of a large powers of 2 like 2¹⁶, 2³², etc.
- Use following approximations:
 - $-2^{10} \approx 10^3$ (1 thousand)
 - $-2^{20} \approx 10^6 (1 \text{ million})$
 - $-2^{30} \approx 10^9$ (1 billion)
- For other powers of 2, decompose into product of 2¹⁰ or 2²⁰ or 2³⁰ and a power of 2 that is less than 2¹⁰
- See examples

```
2^{16} = 2^6 * 2^{10}
 \approx 64 * 10^3 = 64,000
```

$$2^{24} = 2^4 * 2^{20}$$

 $\approx 16 * 10^6 = 16,000,000$

$$2^{28} = 2^8 * 2^{20}$$

 $\approx 256 * 10^6 = 256,000,000$

$$2^{32} = 2^2 * 2^{30}$$

 $\approx 4 * 10^9 = 4,000,000,000$

Hexadecimal Representation

- Since values in modern computers are many bits, we use hexadecimal as a shorthand notation (4 bits = 1 hex digit)
 - -11010010 = D2 hex
 - -0111011011001011 = 76CB hex
- To interpret the value of a hex number, you must know what underlying binary system is assumed (unsigned, 2's comp. etc.)

Translating Hexadecimal

- Hex place values (16², 16¹, 16⁰) can ONLY be used if the number is positive.
- If hex represents unsigned binary simply apply hex place values
 - $B2 hex = 11*16^1 + 2*16^0 = 178_{10}$
- If hex represents signed value (2's comp.)
 - First determine the sign to be pos. or neg.
 - Convert the MS-hex digit to binary to determine the MSB (e.g. for B2 hex, B=1011 so since the MSB=1, B2 is neg.)
 - In general, hex values starting 0-7 = pos. / 8-F = neg.
 - If pos., apply hex place values (as if it were unsigned)
 - If neg., take the 16's complement and apply hex place values to find the neg. number's magnitude

Taking the 16's Complement

- Taking the 2's complement of a binary number yields its negative and is accomplished by finding the 1's complement (bit flip) and adding 1
- Taking the 16's complement of a hex number yields its negative and is accomplished by finding the 15's complement and adding 1
 - 15's complement is found by subtracting each digit of the hex number from F₁₆

```
Original value B2:

FF

-B2 Subtract each digit from F

4D 15's comp. of B2

+ 1 Add 1

16's comp. of B2:

4E 16's comp. of B2
```


Translating Hexadecimal

- Given 6C hex
 - If it is unsigned, apply hex place values
 - 6C hex = $6*16^1 + 12*16^0 = 108_{10}$
 - If it is signed…
 - Determine the sign by looking at MSD
 - -0-7 hex has a 0 in the MSB [i.e. positive]
 - -8-F hex has a 1 in the MSB [i.e. negative]
 - Thus, 6C (start with 6 which has a 0 in the MSB is positive)
 - Since it is positive, apply hex place values
 - $-6C \text{ hex} = 6*16^1 + 12*16^0 = 108_{10}$

Translating Hexadecimal

- Given FE hex
 - If it is unsigned, apply hex place values
 - FE hex = $15*16^1 + 14*16^0 = 254_{10}$
 - If it is signed…
 - Determine sign => Negative
 - Since it is negative, take 16's complement and then apply place values
 - 16's complement of FE = 01 + 1 = 02 and apply place values = 2
 - -Add in sign => -2 = FE hex

Finding the Value of Hex Numbers

- B2 hex representing a signed (2's comp.) value
 - Step 1: Determine the sign: Neg.
 - Step 2: Take the 16's comp. to find magnitudeFF B2 + 1 = 4E hex
 - Step 3: Apply hex place values $(4E_{16} = +78_{10})$
 - Step 4: Final value: B2 hex = -78_{10}
- 7C hex representing a signed (2's comp.) value
 - Step 1: Determine the sign: Pos.
 - Step 2: Apply hex place values $(7C_{16} = +124_{10})$
- 82 hex representing an unsigned value
 - Step 1: Apply hex place values $(82_{16} = +130_{10})$

C examples

int x = -2; Allocates a 4-byte (32-bit) chunk of memory

Any operation involving x will use signed operations, if necessary

char c = 0xfa; Allocates a 1-byte (8-bit) chunk of memory

unsigned char d = 10; Allocates a 1-byte chunk of memory

Any operation involving d will use unsigned operations, if necessary

float f = 3.1; Allocates a 4-byte (32-bit) chunk of memory

Any operation involving f will use floating point HW

double g = -1.5; Allocates an 8-byte (64-bit) chunk of memory

unsigned long long y; Allocates an 8-byte (64-bit) chunk of memory

short z = -1; Allocates a 2-byte (16-bit) chunk of memory

x = z; Implicit 'cast' of 2-byte z to 4-byte x by sign extending

y = d; Implicit 'cast' of 1-byte d to 8-byte y by zero extending

c = (char) x; Explicit 'cast' of 4-byte x to 1-byte c by sign truncation (keep LSB's)

x = (int) f; Explicit 'cast' of 4-byte floating point format to 4-byte integer format

g = g + (double) z; Explicit 'cast' of 2-byte integer format z to 8-byte FP format

Arithmetic Operations and Overflow Bitwise Logic Operations Bit Shift Operations

OPERATIONS

Arithmetic and Logic Instructions

C operator	CF Assembly	Notes
+	ADD.s src1,src2/dst	
-	SUB.s src1,src2/dst	Order: src2 – src1
&	AND.s src1,src2/dst	
	OR.s src1,src2/dst	
۸	EOR.s src1,src2/dst	
~	NOT.s src/dst	
-	NEG.s src/dst	Performs 2's complementation
* (signed)	MULS src1,src2/dst	Implied size .W
* (unsigned)	MULU src1, src2/dst	Implied size .W
/ (signed)	DIVS src1,src2/dst	Implied size .W
/ (unsigned)	DIVU src1, src2/dst	Implied size .W
<< (signed)	ASL.s cnt, src/dst	Arithmetic (signed) Left shift
<< (unsigned)	LSL.s cnt, src/dst	Logical (uns.) Left Shift
>> (signed)	ASR.s cnt, src/dst	Arithmetic (signed) Right shift
>> (unsigned)	LSR.s cnt, src/dst	Logical (uns.) Right Shift
==, <, >, <=, >=, != (src2 ? src1)	CMP.s src1, src2	Order: src2 – src1

Unsigned and Signed Addition

- Addition process is the same for both unsigned and signed numbers
 - Add columns right to left
 - Drop any final carry out
- Examples:

```
11 <u>If unsigned If signed</u>
1001 (9) (-7)
+ 0011 (3) (3)
1100 (12) (-4)
```


Overflow in Addition

- Overflow occurs when the result of the addition cannot be represented with the given number of bits.
- Tests for overflow:
 - Unsigned: if Cout = 1
 - Signed: if p + p = n or n + n = p

	1 1	If unsigned	<u>If signed</u>	0 1	<u>If unsigned</u>	<u>If signed</u>
	1 101	(13)	(-3)	0110	(6)	(6)
+	0100	(4)	(4)	+ 0101	(5)	(5)
	0001	(17)	(+1)	1011	(11)	(-5)
		Overflow	No Overflow		No Overflow	Overflow
		Cout = 1	n + p		Cout = 0	p + p = n

Unsigned and Signed Subtraction

- Subtraction process is the same for both unsigned and signed numbers
 - Convert A B to A + Comp. of B
 - Drop any final carry out
- Examples:

```
| If unsigned | If signed | 11_1_ | 1100 | A | 1101 | 1's comp. of B | Add 1 | 1010 | (10) | (-6) | If unsigned | If signed |
```


Overflow in Subtraction

- Overflow occurs when the result of the subtraction cannot be represented with the given number of bits.
- Tests for overflow:
 - Unsigned: if Cout = 0
 - Signed: if addition is p + p = n or n + n = p

Results

Overflow

Cout = 0

Overflow

p + p = n

Hex Addition and Overflow

- Same rules as in binary
 - Add left to right
 - Drop any carry (carry occurs when sum > F₁₆)
- Same addition overflow rules
 - Unsigned: Check if final Cout = 1
 - Signed: Check signs of inputs and result

```
0 1 1
   7AC5
                                         6C12
+ C18A
                                      + 549F
                                         COB1
   3C4F
           If unsigned
                       If signed
                                                  If unsigned
                                                               If signed
             Overflow No Overflow
                                                 No Overflow
                                                               Overflow
             Cout = 1
                                                   Cout = 0
                                                               p + p = n
```


Hex Subtraction and Overflow

- Same rules as in binary
 - Convert A B to A + Comp. of B
 - Drop any final carry out
- Same subtraction overflow rules
 - Unsigned: Check if final Cout = 0
 - Signed: Check signs of addition inputs and result

Logical Operations

 Logic operations on numbers means performing the operation on each pair of bits

Initial Conditions:
$$x = 0x000000F0$$
, $y = 0x0000003C$

Logical Operations

 Logic operations on numbers means performing the operation on each pair of bits

Initial Conditions: x = 0xFFFFFFF0, y = 0x0000003C

1
$$x = \sim x$$
; $NOT 0xF0 \longrightarrow NOT 1111 0000 $x = 0x0000000F \longrightarrow 0x0F \longrightarrow 0000 1111$$

Logical Operations

- Logic operations are often used for "bit" fiddling
 - Change the value of 1-bit in a number w/o affecting other bits
 - C operators: & = AND, | = OR, ^ = XOR, ~ = NOT
- Examples (Assume an 8-bit variable, v)
 - Set the LSB to '0' w/o affecting other bits
 - v = v & 0xfe;
 - Set the MSB to '1' w/o affecting other bits
 - $v = v \mid 0x80;$
 - Flip the LS 4-bits w/o affecting other bits
 - $v = v ^ 0x0f;$
 - Check if the MSB = '1' regardless of other bit values
 - if(v & 0x80) { code }

Logical Shift vs. Arithmetic Shift

Logical Shift

- Use for unsigned or nonnumeric data
- Will always shift in 0's whether it be a left or right shift

Arithmetic Shift

- Use for signed data
- Left shift will shift in 0's
- Right shift will sign extend (replicate the sign bit) rather than shift in 0's
 - If negative number...stays negative by shifting in 1's
 - If positive...stays positive by shifting in 0's

Logical Shift

- 0's shifted in
- Only use for operations on unsigned data
 - Right shift by n-bits = Dividing by 2ⁿ
 - Left shift by n-bits = Multiplying by 2ⁿ

Logical Right Shift by 2 bits:

Logical Left Shift by 2 bits:

Arithmetic Shift

- Use for operations on signed data
- Arithmetic Right Shift replicate MSB
 - Right shift by n-bits = Dividing by 2ⁿ
- Arithmetic Left Shift shifts in 0's (same as logical)
 - Left shift by n-bits = Multiplying by 2ⁿ

Arithmetic Right Shift by 2 bits:

Arithmetic Left Shift by 2 bits:

MSB replicated and shifted in...

0's shifted in...

Notice if we shifted in 0's (like a logical right shift) our result would be a positive number and the division wouldn't work

C examples

int x = 4; x = 0x00000004

char c = 0x80; c = 0x80

unsigned char d = 10; d = 0x0a

short z = -2: z = 0xfffe

c = c >> x; Signed (arithmetic) right shift of 0x80 by 4 bit places = 0xf8

d = d << 2; Unsigned (logical) left shift of 0x0a by 2 bit places = 0x28

d = (unsigned char) c >> x; Unsigned (logical) right shift of 0x80 by 4 bit places = 0x08

 $c = c \mid 0x0f$; Bitwise OR of 0x80 with 0x0f = 0x8f

z = z & 0x03; Bitwise AND of 0xfffe and 0x0003 = 0x0002