Opgave 1

Let $X_1, X_2, ...$ be a sequence of random variables with the same mean μ and variance σ^2 , which are such that $Cov[X_j, X_k] < 0$ for all $j \neq k$. Show that $\overline{X} \stackrel{P}{\to} \mu$ as $n \to \infty$.

Brug korollar 3.24 til at beregne variansen, da variablene ikke er uafhængige.

$$\operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\sum_{k=1}^{n} a_{k} X_{k}\right] = \sum_{k=1}^{n} a_{k}^{2} \operatorname{Var}[X_{k}] + \sum_{i \neq k} \operatorname{Cov}[X_{i}, X_{j}]$$

$$= \operatorname{Var}\left[\sum_{k=1}^{n} \frac{1}{n} X_{k}\right] + \sum_{i \neq j} [X_{i}, X - j]$$

$$= \frac{1}{n^{2}} \operatorname{Var}\left[\sum_{k=1}^{n} X_{k}\right] + \sum_{i \neq j} [X_{i}, X_{j}]$$

$$= \frac{1}{n^{2}} n \sigma^{2} + \sum_{i \neq j} [X_{i}, X_{j}]$$

$$\leq \frac{\sigma^{2}}{n}$$

Nu kan Chebychevs ulighed bruges - sæt $c = \varepsilon \frac{\sqrt{n}}{\sigma}$:

$$P\left(|\overline{X} - \mu| \ge c\sqrt{\mathrm{Var}[\overline{X}]}\right) \le \frac{1}{c^2}$$

$$P\left(|\overline{X} - \mu| \ge \varepsilon \frac{\sqrt{n}}{\sigma} \sqrt{\mathrm{Var}[\overline{X}]} \le \varepsilon\right) \le \frac{\sigma^2}{n\varepsilon^2} \to 0 \text{ for } n \to \infty$$

Opgave 3

Let X_1, X_2, \ldots be iid unif[0, 1] and let $g : [0, 1] \to \mathbb{R}$ be a funtion. What is the limit of $\sum_{k=1}^{n} g(X_k)/n$ as $n \to \infty$? How can this result be used?

Opgave 8

Use the central limit theorem to argue that the following random variables are approximately normal; also give the parameters: (a) $X \sim \Gamma(n, \lambda)$ for large n and (b) $X \sim \text{Poi}(\lambda)$ for large λ .