

Lecture 8

Topics covered in this lecture session

- Matrix Introduction
- 2. Algebra of matrices.
- 3. Inverse matrix.
- 4. Solving systems of linear equations using matrices.
- 5. More definitions.

Matrix - Introduction

A matrix is a rectangular array (table) of numbers in rows (horizontal) and columns (vertical).

In general, we denote a matrix by

$$A = (a_{ij})_{m \times n} = \begin{pmatrix} \operatorname{Col} 1 & \operatorname{Col} 2 & \operatorname{Col} 3 & \cdots & \cdots & \operatorname{Col} j & \cdots & \cdots & \operatorname{Col} n \\ \downarrow & \downarrow & \downarrow & \cdots & \cdots & \downarrow & \cdots & \cdots & \downarrow \\ a_{11} & a_{12} & a_{13} & \cdots & \cdots & a_{1j} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & \cdots & a_{2j} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots \\ a_{i1} & a_{i2} & a_{i3} & \cdots & \cdots & a_{ij} & \cdots & \cdots & a_{in} \\ \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & \cdots & a_{mj} & \cdots & \cdots & a_{mn} \end{pmatrix} \xleftarrow{\longleftarrow} \operatorname{Row} n$$

Matrix - Introduction

Each a_{ij} is called an element (entry) of the matrix.

The order (or size or dimension) of a matrix is defined as

number of rows x number of columns.

e.g. The matrix
$$B=\left(\begin{array}{ccc} 1 & 2 & 4 \\ 4 & 5 & 6 \end{array} \right)$$
 is a (rectangular)

matrix of order 2 x 3.

i.e. Matrix B has 2 rows and 3 columns.

Application areas of matrices

- In Physics:
 in the study of electrical circuits
 (e.g. in solving problems using
 - Kirchoff's laws).
- In robotics and automation:
 as base elements for the robot movements.

- In computers:
 in the projection of 3D image
 into a 2D screen.
- In Google search engine: to rank the webpages.
- In Online banking: by encrypting message codes/passwords.

1. Equality of Matrices

Two matrices A and B of the same order are equal if their corresponding elements are equal.

e.g. Matrices
$$A=\begin{pmatrix} 1 & a \\ b & 2 \end{pmatrix}$$
 and $B=\begin{pmatrix} c & -2 \\ 0 & -a \end{pmatrix}$

$$\Rightarrow a = -2, b = 0, \text{ and } c = 1.$$

are equal

Note: To add/subtract two matrices, they must be of the same order.

1. Addition of Matrices

The sum of two matrices of the same order is defined as the matrix formed by adding its corresponding elements.

2. Difference of Matrices

The difference of two matrices of the same order is defined as the matrix formed by subtracting its corresponding elements.

e.g. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -1 \\ -2 & 3 \\ 0 & 9 \end{pmatrix}$, then

$$A + B = \begin{pmatrix} 1+2 & 2+(-1) \\ 3+(-2) & 4+3 \\ 5+0 & 6+9 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 7 \\ 5 & 15 \end{pmatrix}$$

and
$$A-B=\left(\begin{array}{ccc} 1-2 & 2-(-1) \\ 3-(-2) & 4-3 \\ 5-0 & 6-9 \end{array} \right) \ = \ \left(\begin{array}{ccc} -1 & 3 \\ 5 & 1 \\ 5 & -3 \end{array} \right).$$

3. Multiplication of a Matrix by a scalar

Multiplication of a matrix by a scalar k is defined as multiplying each element of the matrix by that number k.

e.g. If
$$A=\left(\begin{array}{cc} 1 & 2 \\ 0 & -3 \end{array}\right)$$
, then

$$\mathbf{3}A = \left(\begin{array}{ccc} \mathbf{3} \times 1 & \mathbf{3} \times 2 \\ \mathbf{3} \times 0 & \mathbf{3} \times (-3) \end{array}\right) = \left(\begin{array}{ccc} 3 & 6 \\ 0 & -9 \end{array}\right).$$

4. Multiplication of Matrices

The product of two matrices $A = (a_{ik})_{m \times p}$ and

$$B=(b_{kj})_{p\times n}$$
 is a matrix $C=(c_{ij})_{m\times n}$ where the

elements c_{ij} of the product matrix C are defined by:

$$c_{ij} = \sum_{k=1}^p \, a_{ik} \, b_{kj}$$
 where $1 \le i \le m \ 1 \le j \le n$; $i,j,k \in \mathbb{N}$

Clearly, Matrix multiplication is a complex process in comparison to addition and subtraction of matrices.

So, we understand the process with a couple of worked examples.

1. Given matrices
$$A=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)$$
 and $B=\left(\begin{array}{cc}7\\8\end{array}\right)$, find AB .

Solution:

$$C = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix} = \begin{pmatrix} a_{11} \times b_{11} + a_{12} \times b_{21} \\ a_{21} \times b_{11} + a_{22} \times b_{21} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \times 7 + 2 \times 8 \\ 3 \times 7 + 4 \times 8 \end{pmatrix} = \begin{pmatrix} 23 \\ 53 \end{pmatrix}.$$

2. Given matrices $A=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)$ and $B=\left(\begin{array}{cc}5&6\\7&8\end{array}\right)$

find .

Solution:
$$C = AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

$$= \left(\begin{array}{c|c} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ \hline 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{array}\right) = \left(\begin{array}{c|c} 19 & 22 \\ \hline 43 & 50 \end{array}\right).$$

Ex.1 Find AB and BA for the matrices,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$. Is $AB = BA$?

1. Row Matrix

A matrix that consists of only one row is called a row matrix.

e.g. $\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ is a row matrix (of order 1×4).

2. Column Matrix

A matrix that consists of only one column is called a

column
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

column $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is a column matrix (of order 3×1).

3. Square Matrix

A square matrix is a matrix with the same number of row as columns.

e.g.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 is a 3×3 square matrix.

It is also called an order 3 matrix.

4. Upper triangular matrix

A square matrix is called upper triangular if all the entries below the main diagonal are zero.

e.g. The matrix
$$U=\begin{pmatrix}1&2&3\\\mathbf{0}&-3&9\\\mathbf{0}&\mathbf{0}&-2\end{pmatrix}$$
 is upper triangular.

5. Lower triangular matrix

A square matrix is called lower triangular if all the entries above the main diagonal are zero.

e.g. The matrix
$$L=\left(\begin{array}{ccc} 1 & \mathbf{.0} & \mathbf{0} \\ 5 & -3 & \mathbf{.0} \\ 9 & -7 & -2 \end{array}\right)$$
 is lower triangular.

6. Diagonal matrix

A matrix that is both upper and lower triangular is called

a diagonal matrix.

e.g.
$$D = \operatorname{diag}(-1, 4, 8) = \begin{pmatrix} -1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 4 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 8 \end{pmatrix}$$

is a diagonal matrix.

7. Identity matrix

A diagonal matrix with all its main diagonal entries as 1 is called a Unit or Identity matrix. It is denoted by I or I_n .

e.g.
$$I=I_3=\begin{pmatrix} 1&0&0\\0&1&0\\0&0&1 \end{pmatrix}$$
 is a unit matrix of order 3.

Given a square matrix A, if there exists a matrix B such that AB = BA = I, then the matrix B is said to be the inverse of matrix A, and is denoted by A^{-1} .

Here, the Identity matrix I is of the same order as matrices A and B.

Thus,
$$AA^{-1} = A^{-1}A = I$$
.

Method to find the inverse of a 2×2 matrix $A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$

To find inverse of a matrix, we need a number called determinant.

Determinant $(\det(A))$ of a 2×2 matrix is a number given by:

$$\det(A) = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

Note: For inverse matrix to exists, det(A) must be non-zero.

The Method:

Step 1: Find
$$det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Step 2: Interchange elements of the principal diagonal. i.e. *a* and *d*.

Step 3: Change the signs of elements on the secondary diagonal. i.e. change signs of elements b and c.

Step 4: Divide the matrix so obtained by det(A).

Thus,
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

e.g. For
$$A=\left(\begin{array}{cc} 3 & -2 \\ 6 & 5 \end{array}\right)$$
,

$$\det(A) = \begin{vmatrix} 3 & -2 \\ 6 & 5 \end{vmatrix} = 15 + 12 = 27 \neq 0.$$

$$\therefore A^{-1} = \frac{1}{27} \begin{pmatrix} 5 & 2 \\ -6 & 3 \end{pmatrix}.$$

Systems of linear equations

A system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.

e.g.
$$x+2y=13$$
 $\begin{cases} 2x-5y=8 \end{cases}$

x + 2y = 13 is a system of linear equations 2x - 5y = 8 in 2 variables (x and y) in 2 variables (x and y).

Systems of linear equations

There are various methods to solve the linear systems, such as:

- a) Method of Substitution
- b) Method of Elimination
- c) Cramer's Rule
- d) Iteration Methods.

Here, we study the Matrix method for solving a 2 x 2 linear system.

Systems of linear equations in Matrix form

To study the method, first we need to put the linear system of equations in Matrix form, AX = B.

where, $A \equiv$ (Square) matrix of the coefficients

 $X \equiv$ (Column) matrix of the unknowns (variables)

 $B \equiv$ (Column) matrix of the constants on the Right-hand side

Systems of linear equations in Matrix form

Form AX = B

e.g.

$$\begin{array}{rcl}
x + 2y & = & 13 \\
2x - 5y & = & 8
\end{array}$$

Matrix method for solving a 2x2 linear system

We assume that the inverse of matrix A exist and use it to

find the solution matrix X.

$$AX = B \Rightarrow A^{-1}(AX) = A^{-1}B$$

$$\Rightarrow (A^{-1}A) X = A^{-1}B$$

$$\Rightarrow (I) X = A^{-1}B$$

$$\Rightarrow X = A^{-1}B$$

Thus,
$$AX = B \Rightarrow X = A^{-1} B$$

Matrix method for solving a 2x2 linear system

The Method

$$\begin{array}{rcl}
x + 2y & = & 13 \\
2x - 5y & = & 8
\end{array}$$

Here,
$$A=\left(\begin{array}{cc} 1 & 2 \\ 2 & -5 \end{array}\right)$$
 \Rightarrow

Here, $A = \begin{pmatrix} 1 & 2 \\ 2 & -5 \end{pmatrix} \Rightarrow \begin{cases} \det A = -5 - 4 = -9 \neq 0 \\ \therefore A^{-1} \text{ (and hence unique solution) exist.} \end{cases}$

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} -5 & -2 \\ -2 & 1 \end{pmatrix} = \frac{-1}{9} \begin{pmatrix} -5 & -2 \\ -2 & 1 \end{pmatrix}$$

Matrix method for solving a 2x2 linear system

$$\therefore X = \begin{pmatrix} x \\ y \end{pmatrix} = A^{-1}B = \frac{-1}{9} \begin{pmatrix} -5 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 13 \\ 8 \end{pmatrix}$$

$$= \frac{-1}{9} \left(\frac{(-5) \times 13 + (-2) \times 8}{(-2) \times 13 + (1) \times 8} \right)$$

$$=\frac{-1}{9} \left(\begin{array}{c} -81 \\ -18 \end{array} \right)$$

$$= \begin{pmatrix} 9 \\ 2 \end{pmatrix} \qquad \begin{array}{c} \therefore \ x = 9 \text{ and } y = 2 \\ \text{is the required solution.} \end{array}$$

Step 4

8. Transpose matrix

The transpose of matrix A is the matrix formed by interchanging the rows and corresponding columns of A.

It is denoted by A^T .

e.g. If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
,

then its transpose matrix is:
$$A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
 .

9. Trace of a square matrix

The trace of a square matrix A is defined as the sum of the

elements on the main (leading or principal) diagonal of A.

i.e. trace
$$(A) = a_{11} + a_{22} + a_{33} + \dots + a_{nn} = \sum_{k=1}^{n} a_{kk}$$

e.g. Given
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $\operatorname{trace}(A) = 1 + (-5) + 9 = 5$.

10. Zero matrix

A zero (or null) matrix is a matrix with all its entries as zero.

It is denoted by O.

$$\text{e.g. } O_2 = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \quad O_{1 \times 2} = \left(\begin{array}{cc} 0 & 0 \end{array} \right), \quad O_{2 \times 1} = \left(\begin{array}{cc} 0 \\ 0 \end{array} \right)$$

are all zero matrices.

Note that a zero matrix can also be rectangular.

11. Symmetric matrix

A symmetric matrix is a square matrix that is equal to its transpose.

i.e. A is symmetric if $A^T = A$.

e.g.
$$A=\left(\begin{array}{ccc} 1 & 2 & -7 \\ 2 & 8 & 3 \\ -7 & 3 & 6 \end{array}\right)$$
 is a symmetric matrix.

12. Skew-symmetric (anti-symmetric) matrix

An skew-symmetric matrix is a square matrix whose

transpose is its negative. i.e. A is symmetric if $A^T = -A$.

e.g.
$$A=\left(\begin{array}{ccc} 0 & -2 & 7 \\ 2 & 0 & -3 \\ -7 & 3 & 0 \end{array}\right)$$
 is a skew-symmetric matrix.

Note that for an antisymmetric matrix, the entries on its main diagonal are all zero.

13.Non-singular matrix

A square matrix A is called non-singular if its inverse exists. i.e. A is non-singular,

if
$$det(A) \neq 0$$
.

e.g.
$$A=\left(egin{array}{cc} 5 & 4 \ 2 & 3 \end{array}
ight)$$
 is

non-singular.

14. Singular matrix

A square matrix *A* is called singular if its inverse does not exists.

i.e. A is singular,

if
$$det(A) = 0$$
.

e.g.
$$A = \left(\begin{array}{cc} 8 & 4 \\ 6 & 3 \end{array} \right)$$
 is

singular.