1 Принципы индукции и рекурсии

- 1° **Принцип индукции.** Пусть есть множество $\mathbb{N}, 0 \in \mathbb{N}$ и задана функция $S(n) : \mathbb{N} \to \mathbb{N}$, тогда оно (множество) удовлетворяет принципу индукции, если, имея:
 - \bullet Предикат P
 - Доказательство того, что верно P(0)
 - Доказательство для всех $n \in \mathbb{N}$ того, что если P(n) верно, то верно и P(S(n))

Мы получаем, что $\forall n \in \mathbb{N}$ верно, что P(n).

- 2° **Принцип рекурсии.** Пусть есть множество $\mathbb{N}, 0 \in \mathbb{N}$ и задана функция $S(n) : \mathbb{N} \to \mathbb{N}$, тогда оно (множество) удовлетворяет принципу рекурсии, если, имея:
 - В множество
 - ullet b элемент из B
 - \bullet e выражение, которое может содержать f(n) и задавать элемент из B

Можно задать функцию $f: \mathbb{N} \to B$, удовлетворяющую этим свойствам.

2 Принцип Лейбница

Для симметричности: $\phi(x) = (x = t_2)$ Дли конгруэнтности: $\phi(x) = (f(t_1, ..., t_i, ..., t_n) = f(t_1, ..., x, ..., t_n))$ Для транзитивности: ...

3 Принцип

Пусть есть множество $T \subset Form$ — набор теорем. Тогда принципом называем такую штуку P, что $P(T) \subset Form$. И для любого $T \subset P(T)$ верно P(P(T)) = P(T) и $P(T) \subset P'(T)$. (замыкание).