Topics in Heterogeneous Agent Macro: Heterogeneous-Agent Models in Continuous Time

Lecture 5

Andreas Schaab

Outline

Paper: Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach.

Slides based on Ben's: https://benjaminmoll.com/lectures/

- 1. Textbook heterogeneous agent model (no aggregate shocks) Aiyagari-Bewley-Huggett model
- 2. Some theoretical results
- 3. Computations

What this lecture is about

- Many interesting questions require thinking about distributions
 - Why are income and wealth so unequally distributed?
 - Is there a trade-off between inequality and economic growth?
 - What are the forces that lead to the concentration of economic activity in a few very large firms?

What this lecture is about

- Many interesting questions require thinking about distributions
 - Why are income and wealth so unequally distributed?
 - Is there a trade-off between inequality and economic growth?
 - What are the forces that lead to the concentration of economic activity in a few very large firms?
- Modeling distributions is hard
 - closed-form solutions are rare
 - computations are challenging

What this lecture is about

- Many interesting questions require thinking about distributions
 - Why are income and wealth so unequally distributed?
 - Is there a trade-off between inequality and economic growth?
 - What are the forces that lead to the concentration of economic activity in a few very large firms?
- Modeling distributions is hard
 - closed-form solutions are rare
 - computations are challenging
- Main idea: solving heterogeneous agent model = solving PDEs
 - main difference to existing continuos-time literature:
 handle models for which closed-form solutions do not exist

Solving het. agent model = solving PDEs

- More precisely: a system of two PDEs
 - 1. Hamilton-Jacobi-Bellman equation for individual choices
 - 2. Kolmogorov Forward equation for evolution of distribution
- Many well-developed methods for analyzing and solving these https://benjaminmoll.com/codes/

https://github.com/schaab-lab/SparseEcon

2/52

Solving het. agent model = solving PDEs

- More precisely: a system of two PDEs
 - 1. Hamilton-Jacobi-Bellman equation for individual choices
 - 2. Kolmogorov Forward equation for evolution of distribution
- Many well-developed methods for analyzing and solving these

```
https://benjaminmoll.com/codes/
https://github.com/schaab-lab/SparseEcon
```

- Apparatus is very general: applies to any heterogeneous agent model with continuum of atomistic agents
 - 1. heterogeneous households (Aiyagari, Bewley, Huggett,...)
 - 2. heterogeneous producers (Hopenhayn,...)
- can be extended to handle aggregate shocks (Krusell-Smith,...)

Computational Advantages relative to Discrete Time

- 1. Borrowing constraints only show up in boundary conditions
 - FOCs always hold with "="
- 2. "Tomorrow is today"
 - FOCs are "static", compute by hand: $c^{-\gamma} = v_a(a, y)$
- Sparsity
 - solving Bellman, distribution = inverting matrix
 - but matrices very sparse ("tridiagonal")
 - reason: continuous time ⇒ one step left or one step right
- 4. Two birds with one stone
 - tight link between solving (HJB) and (KF) for distribution
 - matrix in discrete (KF) is transpose of matrix in discrete (HJB)
 - reason: diff. operator in (KF) is adjoint of operator in (HJB)

Real Payoff: extends to more general setups

- non-convexities
- stopping time problems
- multiple assets
- aggregate shocks

What you'll be able to do at end of this lecture

Joint distribution of income and wealth in Aiyagari model

What you'll be able to do at end of this lecture

· Experiment: effect of one-time redistribution of wealth

What you'll be able to do at end of this lecture

Video of convergence back to steady state

https://www.dropbox.com/s/op5u2nlifmmer2o/distribution_tax.mp4?dl=0

Model

Workhorse Model of Income and Wealth Distribution

Households are heterogeneous in their wealth a and income y, solve

$$\begin{split} \max_{\{c_t\}_{t\geq 0}} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t) dt & \text{ s.t.} \\ \dot{a}_t &= y_t + r a_t - c_t \\ y_t &\in \{y_1, y_2\} \text{ Poisson with intensities } \lambda_1, \lambda_2 \\ a_t &\geq \underline{a} \end{split}$$

- c_t : consumption
- u: utility function, u' > 0, u'' < 0
- ρ: discount rate
- r_t : interest rate
- $\underline{a} \ge -y_1/r$: borrowing limit e.g. if $\underline{a} = 0$, can only save

Later: carries over to y_t = more general processes, e.g. diffusion

Equilibrium (Huggett): bonds in fixed supply, i.e. aggregate a_t = fixed

Typical Consumption and Saving Policy Functions

Typical Stationary Distribution

$$\rho v_j(a) = \max_c \ u(c) + v_j'(a)(y_j + ra - c) + \lambda_j(v_{-j}(a) - v_j(a))$$
(HJB)

$$ho v_j(a) = \max_c \ u(c) + v_j'(a)(y_j + ra - c) + \lambda_j(v_{-j}(a) - v_j(a))$$

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a),$$

$$s_j(a) = y_j + ra - c_j(a) = \text{saving policy function from (HJB)},$$

$$\int_a^\infty (g_1(a) + g_2(a))da = 1, \quad g_1, g_2 \ge 0$$

(HJB)

(KF)

$$\rho v_{j}(a) = \max_{c} \ u(c) + v'_{j}(a)(y_{j} + ra - c) + \lambda_{j}(v_{-j}(a) - v_{j}(a)) \tag{HJB}$$

$$0 = -\frac{d}{da}[s_{j}(a)g_{j}(a)] - \lambda_{j}g_{j}(a) + \lambda_{-j}g_{-j}(a), \tag{KF}$$

$$s_{j}(a) = y_{j} + ra - c_{j}(a) = \text{saving policy function from (HJB)},$$

$$\int_{\underline{a}}^{\infty} (g_{1}(a) + g_{2}(a))da = 1, \quad g_{1}, g_{2} \geq 0$$

$$S(r) := \int_{a}^{\infty} ag_{1}(a)da + \int_{a}^{\infty} ag_{2}(a)da = B, \quad B \geq 0 \tag{EQ}$$

$$\rho v_{j}(a) = \max_{c} \ u(c) + v'_{j}(a)(y_{j} + ra - c) + \lambda_{j}(v_{-j}(a) - v_{j}(a)) \tag{HJB}$$

$$0 = -\frac{d}{da}[s_{j}(a)g_{j}(a)] - \lambda_{j}g_{j}(a) + \lambda_{-j}g_{-j}(a), \tag{KF}$$

$$s_{j}(a) = y_{j} + ra - c_{j}(a) = \text{saving policy function from (HJB)},$$

$$\int_{\underline{a}}^{\infty} (g_{1}(a) + g_{2}(a))da = 1, \quad g_{1}, g_{2} \geq 0$$

$$S(r) := \int_{a}^{\infty} ag_{1}(a)da + \int_{a}^{\infty} ag_{2}(a)da = B, \quad B \geq 0 \tag{EQ}$$

 The two PDEs (HJB) and (KF) together with (EQ) fully characterize stationary equilibrium
 Derivation of (HJB)
 (KF)

Transition Dynamics

- Needed whenever initial condition ≠ stationary distribution
- Equilibrium still coupled systems of HJB and KF equations...
- ... but now time-dependent: $v_j(a, t)$ and $g_j(a, t)$
- See next slides for equations
- Difficulty: the two PDEs run in opposite directions in time
 - HJB looks forward, runs backwards from terminal condition
 - KF looks backward, runs forward from initial condition

Transition Dynamics

$$B = \int_{\underline{a}}^{\infty} ag_1(a, t)da + \int_{\underline{a}}^{\infty} ag_2(a, t)da$$

$$(EQ)$$

$$(a, t) = \max_{\underline{a}} u(c) + \lambda \operatorname{re}(a, t)(u + r(t)a - c)$$

$$\rho v_j(a,t) = \max_c \ u(c) + \partial_a v_j(a,t)(y_j + r(t)a - c)$$

$$+ \lambda_j(v_{-j}(a,t) - v_j(a,t)) + \partial_t v_j(a,t),$$

$$\partial_t g_i(a,t) = -\partial_a [s_i(a,t)g_i(a,t)] - \lambda_i g_i(a,t) + \lambda_{-i}g_{-i}(a,t),$$
(KF)

$$s_j(a,t) = y_j + r(t)a - c_j(a,t), \quad c_j(a,t) = (u')^{-1}(\partial_a v_j(a,t)),$$

$$\int_{\underline{a}}^{\infty} (g_1(a,t) + g_2(a,t)) da = 1, \quad g_1, g_2 \ge 0$$

- Given initial condition $g_{j,0}(a)$, the two PDEs (HJB) and (KF) together with (EQ) fully characterize equilibrium.
- Notation: for any function f, $\partial_x f$ means $\frac{\partial f}{\partial x}$

Borrowing Constraints?

- Q: where is borrowing constraint $a \ge \underline{a}$ in (HJB)?
- A: "in" boundary condition

Borrowing Constraints?

- Q: where is borrowing constraint $a \ge \underline{a}$ in (HJB)?
- A: "in" boundary condition
- Result: v_i must satisfy

$$v'_j(\underline{a}) \ge u'(y_j + r\underline{a}), \quad j = 1, 2$$
 (BC)

- Derivation:
 - the FOC still holds at the borrowing constraint

$$u'(c_j(\underline{a})) = v'_j(\underline{a})$$
 (FOC)

- for borrowing constraint not to be violated, need

$$s_j(\underline{a}) = y_j + r\underline{a} - c_j(\underline{a}) \ge 0 \tag{*}$$

- (FOC) and $(*) \Rightarrow (BC)$.

Plan

- New theoretical results:
 - 1. analytics: consumption, saving, MPCs of the poor
 - 2. closed-form for wealth distribution with 2 income types
 - 3. unique stationary equilibrium if IES ≥ 1 (sufficient condition)
 - 4. "soft" borrowing constraints

Note: for 1., 2. and 4. analyze partial equilibrium with $r < \rho$

- Computational algorithm:
 - problems with non-convexities
 - transition dynamics

Theoretical Results

Consumption/saving behavior near borrowing constraint depends on:

- 1. tightness of constraint
- **2**. properties of u as $c \to 0$

Consumption/saving behavior near borrowing constraint depends on:

- 1. tightness of constraint
- **2**. properties of u as $c \to 0$

Assumption 1:

As $a \to \underline{a}$, coefficient of absolute risk aversion R(c) := -u''(c)/u'(c) remains finite

$$-\frac{u''(y_1+r\underline{a})}{u'(y_1+r\underline{a})}<\infty$$

will show: A1 ⇒ borrowing constraint "matters" (in fact, it's an ⇔)

Consumption/saving behavior near borrowing constraint depends on:

- 1. tightness of constraint
- **2**. properties of u as $c \to 0$

Assumption 1:

As $a \to \underline{a}$, coefficient of absolute risk aversion R(c) := -u''(c)/u'(c) remains finite

$$-\frac{u''(y_1+r\underline{a})}{u'(y_1+r\underline{a})}<\infty$$

will show: A1 ⇒ borrowing constraint "matters" (in fact, it's an ⇔)

How to read A1?

- "standard" utility functions, e.g. CRRA, satisfy $-\frac{u''(0)}{u'(0)} = \infty$
- hence for standard utility functions A1 equivalent to $\underline{a} > -y_1/r$, i.e. constraint matters if it is tighter than "natural borrowing constraint"
- but weaker: e.g. if $u'(c) = e^{-\theta c}$, constraint matters even if $\underline{a} = -\frac{y_1}{r}$

Rough version of Proposition: under A1 policy functions look like this

Proposition: Assume $r < \rho, y_1 < y_2$ and that A1 holds.

Then saving and consumption policy functions close to $a=\underline{a}$ satisfy

$$s_1(a) \sim -\sqrt{2\nu_1}\sqrt{a-\underline{a}}$$
 $c_1(a) \sim y_1 + ra + \sqrt{2\nu_1}\sqrt{a-\underline{a}}$
 $c_1'(a) \sim r + \frac{1}{2}\sqrt{\frac{\nu_1}{2(a-\underline{a})}}$

where $\nu_1 = \text{constant}$ that depends on $r, \rho, \lambda_1, \lambda_2$ etc – see next slide

Note: " $f(a) \sim g(a)$ " means $\lim_{a \to \underline{a}} f(a)/g(a) = 1$, "f behaves like g close to \underline{a} "

Corollary: The wealth of worker who keeps y_1 converges to borrowing constraint in finite time at speed governed by v_1 :

$$a(t)-\underline{a}\sim rac{
u_1}{2}\left(T-t
ight)^2$$
, $T:=$ "hitting time" $=\sqrt{rac{2(a_0-\underline{a})}{
u_1}}$, $0\leq t\leq T$

Proof: integrate
$$\dot{a}(t) = -\sqrt{2 \nu_1} \sqrt{a(t) - \underline{a}}$$

Corollary: The wealth of worker who keeps y_1 converges to borrowing constraint in finite time at speed governed by v_1 :

$$a(t)-\underline{a}\sim rac{
u_1}{2}\left(T-t
ight)^2$$
 , $T:=$ "hitting time" $=\sqrt{rac{2(a_0-\underline{a})}{
u_1}}$, $0\leq t\leq T$

Proof: integrate
$$\dot{a}(t) = -\sqrt{2 \nu_1} \sqrt{a(t) - \underline{a}}$$

And have analytic solution for speed

$$\nu_{1} = \frac{(\rho - r)u'(\underline{c}_{1}) + \lambda_{1}(u'(\underline{c}_{1}) - u'(\underline{c}_{2}))}{-u''(\underline{c}_{1})}$$
$$\approx (\rho - r)IES(\underline{c}_{1})\underline{c}_{1} + \lambda_{1}(\underline{c}_{2} - \underline{c}_{1})$$

Intuition for Result 1: Two Special Cases

- What's the role of A1? And why the square root?
- Explain using two special cases with analytic solution
- Both cases: no income uncertainty

Intuition for Result 1: Two Special Cases

Special case 1: A1 holds, hit constraint

Special case 2: A1 violated, approach constraint asymptotically

Special case 1: hit constraint

• exponential utility $u'(c) = e^{-\theta c}$, tight constraint

$$\dot{c} = \frac{1}{\theta}(r - \rho), \qquad \dot{a} = y + ra - c, \qquad a \ge 0$$

• satisfies A1: $-\frac{u''(y)}{u'(y)} = \theta < \infty$.

Special case 2: only approach constraint asymptotically

• CRRA utility $u'(c) = c^{-\gamma}$, loose constraint

$$\frac{\dot{c}}{c} = \frac{1}{\gamma}(r - \rho), \qquad \dot{a} = y + ra - c, \qquad a \ge \underline{a} = -\frac{y}{r}$$

• violates A1: $-\frac{u''(y+ra)}{u'(y+ra)} \to \infty$ as $a \to \underline{a}$.

Special case 1: hit constraint

• exponential utility $u'(c) = e^{-\theta c}$, tight constraint

$$\dot{c} = \frac{1}{\theta}(r - \rho), \qquad \dot{a} = y + ra - c, \qquad a \ge 0$$

• satisfies A1: $-\frac{u''(y)}{u'(y)} = \theta < \infty$. Solution:

$$c(t) = y + v(T - t), \quad a(t) = \frac{v}{2}(T - t)^2, \quad v := \frac{\rho - r}{\theta}$$

Special case 2: only approach constraint asymptotically

• CRRA utility $u'(c) = c^{-\gamma}$, loose constraint

$$\frac{\dot{c}}{c} = \frac{1}{\gamma}(r - \rho), \qquad \dot{a} = y + ra - c, \qquad a \ge \underline{a} = -\frac{y}{r}$$

• violates A1: $-\frac{u''(y+ra)}{u'(y+ra)} \to \infty$ as $a \to \underline{a}$.

Special case 1: hit constraint

• exponential utility $u'(c) = e^{-\theta c}$, tight constraint

$$\dot{c} = \frac{1}{\theta}(r - \rho), \qquad \dot{a} = y + ra - c, \qquad a \ge 0$$

• satisfies A1: $-\frac{u''(y)}{u'(y)} = \theta < \infty$. Solution:

$$c(t) = y + v(T - t), \quad a(t) = \frac{v}{2}(T - t)^2, \quad v := \frac{\rho - r}{\theta}$$

Special case 2: only approach constraint asymptotically

• CRRA utility $u'(c) = c^{-\gamma}$, loose constraint

$$\frac{\dot{c}}{c} = \frac{1}{\gamma}(r - \rho), \qquad \dot{a} = y + ra - c, \qquad a \ge \underline{a} = -\frac{y}{r}$$

• violates A1: $-\frac{u''(y+ra)}{u'(y+ra)} \to \infty$ as $a \to \underline{a}$. Solution:

$$c(t) = y + (r + \eta)a(t), \quad a(t) - \underline{a} = (a_0 - \underline{a})e^{-\eta t}, \quad \eta := \frac{\rho - r}{\gamma}$$

Intuition for Result 1: Two Special Cases

Special case 1: A1 holds, hit constraint

Special case 2: A1 violated, approach constraint asymptotically

Consumption, Saving Behavior of the Rich

• Skip this today. See paper.

• So far: have characterized $c_i'(a) \neq \mathsf{MPC}$ over discrete time interval

- So far: have characterized $c_i'(a) \neq \mathsf{MPC}$ over discrete time interval
- **Definition:** The MPC over a time period τ is given by

$$ext{MPC}_{j, au}(a) = C'_{j, au}(a), \quad ext{where}$$
 $C_{j, au}(a) = \mathbb{E}\left[\int_0^ au c_j(a_t)dt|a_0 = a, y_0 = y_j
ight]$

- So far: have characterized $c_i'(a) \neq \mathsf{MPC}$ over discrete time interval
- **Definition:** The MPC over a time period τ is given by

$$ext{MPC}_{j, au}(a) = C'_{j, au}(a), \quad ext{where}$$
 $C_{j, au}(a) = \mathbb{E}\left[\int_0^ au c_j(a_t)dt|a_0 = a, y_0 = y_j
ight]$

• Lemma: If τ sufficiently small so that no income switches, then

$$MPC_{1,\tau}(a) \sim \min\{\tau c_1'(a), 1 + \tau r\}$$

Note: MPC_{1, τ}(a) bounded above even though $c_1'(a) \to \infty$ as $a \downarrow \underline{a}$

- So far: have characterized $c_i'(a) \neq \mathsf{MPC}$ over discrete time interval
- **Definition:** The MPC over a time period τ is given by

$$ext{MPC}_{j, au}(a) = C'_{j, au}(a), \quad ext{where}$$
 $C_{j, au}(a) = \mathbb{E}\left[\int_0^ au c_j(a_t)dt|a_0 = a, y_0 = y_j
ight]$

• Lemma: If τ sufficiently small so that no income switches, then

$$MPC_{1,\tau}(a) \sim \min\{\tau c_1'(a), 1 + \tau r\}$$

Note: MPC_{1, τ}(a) bounded above even though $c_1'(a) \to \infty$ as $a \downarrow \underline{a}$

- If new income draws before τ , no more analytic solution
- But straightforward computation using Feynman-Kac formula

Using the Formula for ν_1 to Better Understand MPCs

• Consider dependence of low-income type's MPC_{1, τ}(a) on y_1

Using the Formula for v_1 to Better Understand MPCs

• Consider dependence of low-income type's $MPC_{1,\tau}(a)$ on y_1

Why hump-shaped?!?

Using the Formula for v_1 to Better Understand MPCs

• Consider dependence of low-income type's MPC_{1, τ}(a) on y_1

• Why hump-shaped?!? Answer: $MPC_{1,\tau}(a)$ proportional to

$$c_1'(a) \sim r + \frac{1}{2} \sqrt{\frac{\nu_1}{2(a-\underline{a})}}, \quad \nu_1 \approx (\rho - r) \frac{1}{\gamma} \underline{c_1} + \lambda_1 (\underline{c_2} - \underline{c_1})$$

and note that $c_1 = y_1 + ra$

• Can see: increase in y_1 has two offsetting effects

Result 2: Stationary Wealth Distribution

Recall equation for stationary distribution

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a)$$
(KF)

• Lemma: the solution to (KF) is

$$g_i(a) = \frac{\kappa_j}{s_j(a)} \exp\left(-\int_{\underline{a}}^a \left(\frac{\lambda_1}{s_1(x)} + \frac{\lambda_2}{s_2(x)}dx\right)\right)$$

with κ_1 , κ_2 pinned down by g_i 's integrating to one

- Features of wealth distribution:
 - Dirac point mass of type y_1 individuals at constraint $G_1(\underline{a}) > 0$
 - thin right tail: $g(a) \sim \xi(a_{\text{max}} a)^{\lambda_2/\zeta_2 1}$, i.e. not Pareto
 - see paper for more
- Later in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)

Result 2: Stationary Wealth Distribution

Note: in numerical solution, Dirac mass = finite spike in density

General Equilibrium: Existence and Uniqueness

Increase in r from r_L to $r_H > r_L$

Stationary Equilibrium

Asset Supply
$$S(r)=\int_{\underline{a}}^{\infty}ag_{1}(a;r)da+\int_{\underline{a}}^{\infty}ag_{2}(a;r)da$$

Stationary Equilibrium

Asset Supply
$$S(r)=\int_{\underline{a}}^{\infty}ag_{1}(a;r)da+\int_{\underline{a}}^{\infty}ag_{2}(a;r)da$$

Proposition: a stationary equilibrium exists

Result 3: Uniqueness of Stationary Equilibrium

Proposition: Assume that the IES is weakly greater than one

$$IES(c) := -\frac{u'(c)}{u''(c)c} \ge 1 \quad \text{for all } c \ge 0,$$

and that there is no borrowing a > 0. Then:

- 1. Individual consumption $c_i(a;r)$ is strictly decreasing in r
- 2. Individual saving $s_i(a;r)$ is strictly increasing in r
- 3. $r \uparrow \Rightarrow \text{CDF } G_i(a; r)$ shifts right in FOSD sense
- 4. Aggregate saving S(r) is strictly increasing \Rightarrow uniqueness

Note: holds for any labor income process, not just two-state Poisson

• Parts 2 to 4 direct consequences of part 1 $(c_i(a;r)$ decreasing in r)

- Parts 2 to 4 direct consequences of part 1 $(c_i(a;r)$ decreasing in r)
- \Rightarrow focus on part 1: builds on nice result by Olivi (2017) who decomposes $\partial c_j/\partial r$ into income and substitution effects

- Parts 2 to 4 direct consequences of part 1 $(c_i(a;r)$ decreasing in r)
- \Rightarrow focus on part 1: builds on nice result by Olivi (2017) who decomposes $\partial c_i/\partial r$ into income and substitution effects
- **Lemma** (Olivi, 2017): c response to change in r is

$$\frac{\partial c_j(a)}{\partial r} = \underbrace{\frac{1}{u''(c_0)}}_{\text{Substitution effect}<0} \mathbb{E}_0 \int_0^T e^{-\int_0^t \xi_s ds} u''(c_t) dt + \underbrace{\frac{1}{u''(c_0)}}_{\text{Income effect}>0} \mathbb{E}_0 \int_0^T e^{-\int_0^t \xi_s ds} u''(c_t) a_t \partial_a c_t dt$$

$$\text{where } \xi_t := \rho - r + \partial_a c_t \text{ and } T := \inf\{t \geq 0 | a_t = 0\} = \text{time at which hit } 0$$

33/52

- Parts 2 to 4 direct consequences of part 1 $(c_i(a;r)$ decreasing in r)
- \Rightarrow focus on part 1: builds on nice result by Olivi (2017) who decomposes $\partial c_j/\partial r$ into income and substitution effects
- **Lemma** (Olivi, 2017): *c* response to change in *r* is

$$\frac{\partial c_j(a)}{\partial r} = \underbrace{\frac{1}{u''(c_0)}}_{\text{substitution effect}<0} \mathbb{E}_0 \int_0^T e^{-\int_0^t \xi_s ds} u''(c_t) dt + \underbrace{\frac{1}{u''(c_0)}}_{\text{income effect}>0} \mathbb{E}_0 \int_0^T e^{-\int_0^t \xi_s ds} u''(c_t) a_t \partial_a c_t dt$$
where $\xi_t := \rho - r + \partial_a c_t$ and $T := \inf\{t \geq 0 | a_t = 0\} = \text{time at which hit } 0$

• We show: IES $(c) := -\frac{u'(c)}{u''(c)c} \ge 1 \Rightarrow$ substitution effect dominates $\Rightarrow \partial c_i(a)/\partial r < 0$, i.e. consumption decreasing in r

Result 4: "Soft" Borrowing Constraints

- Empirical wealth distributions:
 - 1. individuals with positive wealth
 - 2. individuals with negative wealth
 - 3. spike at close to zero net worth
- Does not square well with Aiyagari-Bewley-Huggett model

Result 4: "Soft" Borrowing Constraints

- Empirical wealth distributions:
 - 1. individuals with positive wealth
 - 2. individuals with negative wealth
 - 3. spike at close to zero net worth
- Does not square well with Aiyagari-Bewley-Huggett model
- Simple solution: "soft" borrowing constraint = wedge between borrowing and saving r
- Paper: first theoretical characterization of "soft" constraint
 - square root formulas
 - Dirac mass at zero net worth

Computations

Computational Advantages relative to Discrete Time

- 1. Borrowing constraints only show up in boundary conditions
 - FOCs always hold with "="
- 2. "Tomorrow is today"
 - FOCs are "static", compute by hand: $c^{-\gamma} = v_j'(a)$
- 3. Sparsity
 - solving Bellman, distribution = inverting matrix
 - but matrices very sparse ("tridiagonal")
 - reason: continuous time ⇒ one step left or one step right
- 4. Two birds with one stone
 - tight link between solving (HJB) and (KF) for distribution
 - matrix in discrete (KF) is transpose of matrix in discrete (HJB)
 - reason: diff. operator in (KF) is adjoint of operator in (HJB)

Computations for Heterogeneous Agent Model

- Hard part: HJB equation
- Easy part: KF equation. Once you solved HJB equation, get KF equation "for free"

Computations for Heterogeneous Agent Model

- Hard part: HJB equation
- Easy part: KF equation. Once you solved HJB equation, get KF equation "for free"
- · System to be solved

$$\begin{split} \rho v_1(a) &= \max_c \ u(c) + v_1'(a)(y_1 + ra - c) + \lambda_1(v_2(a) - v_1(a)) \\ \rho v_2(a) &= \max_c \ u(c) + v_2'(a)(y_2 + ra - c) + \lambda_2(v_1(a) - v_2(a)) \\ 0 &= -\frac{d}{da}[s_1(a)g_1(a)] - \lambda_1g_1(a) + \lambda_2g_2(a) \\ 0 &= -\frac{d}{da}[s_2(a)g_2(a)] - \lambda_2g_2(a) + \lambda_1g_1(a) \\ 1 &= \int_{\underline{a}}^{\infty} g_1(a)da + \int_{\underline{a}}^{\infty} g_2(a)da \\ B &= \int_{\underline{a}}^{\infty} ag_1(a)da + \int_{\underline{a}}^{\infty} ag_2(a)da := S(r) \end{split}$$

Bird's Eye View of Algorithm for Stationary Equilibria

- Use finite difference method
- Discretize state space a_i , i = 1, ..., I with step size Δa

$$v_j'(a_i)pprox rac{v_{i+1,j}-v_{i,j}}{\Delta a} \quad ext{or} \quad rac{v_{i,j}-v_{i-1,j}}{\Delta a}$$
 Denote $\mathbf{v}=egin{bmatrix} v_1(a_1) \ dots \ v_2(a_I) \end{bmatrix}$, $\mathbf{g}=egin{bmatrix} g_1(a_1) \ dots \ g_2(a_I) \end{bmatrix}$, dimension $=2I imes 1$

End product of FD method: system of sparse matrix equations

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v}; r) \mathbf{v}$$
$$\mathbf{0} = \mathbf{A}(\mathbf{v}; r)^{\mathrm{T}} \mathbf{g}$$
$$B = S(\mathbf{g}; r)$$

which is easy to solve on computer

Visualization of A (output of spy(A) in Matlab)

Transition Dynamics: Intuition in Growth Model

- Next two slides: intuition for algorithm in rep agent growth model
- In three slides: solve Huggett model in exactly analogous fashion
- Equilibrium in growth model is solution to:

$$\frac{\dot{C}(t)}{C(t)} = \frac{1}{\gamma}(r(t) - \rho)$$

$$\dot{K}(t) = w(t) + r(t)K(t) - C(t)$$

$$w(t) = (1 - \alpha)K(t)^{\alpha}, \quad r(t) = \alpha K(t)^{\alpha - 1}$$

$$K(0) = K_0, \quad \lim_{T \to \infty} C(T) = C_{\infty}$$

- For numerical solution, solve on [0,T] for large T with $C(T)=C_{\infty}$
- Define $w(r) = (1 \alpha)(\alpha/r)^{\frac{\alpha}{1-\alpha}} \Rightarrow$ only one price, r(t)

Transition Dynamics: Intuition in Growth Model

Equilibrium is therefore solution to

$$\dot{K}(t) = w(r(t)) + r(t)K(t) - C(t), \quad K(0) = K_0$$

$$r(t) = \alpha K(t)^{\alpha - 1}$$

 $\frac{\dot{C}(t)}{C(t)} = \frac{1}{\gamma}(r(t) - \rho), \quad C(T) = C_{\infty}$

Define excess capital demand $D_t(\{r(s)\}_{s>0})$ as follows:

- 1. given $\{r(s)\}_{s\geq 0}$, solve (1) backward in time
- 2. given $\{C(s)\}_{s>0}$, solve (2) forward in time
- 3. given $\{K(s)\}_{s>0}$, compute $D_t(\{r(s)\}_{s>0}) = \alpha K(t)^{\alpha-1} r(t)$

Then find $\{r(s)\}_{s>0}$ such that

$$D_t(\{r(s)\}_{s>0}) = 0$$
 all t

Different options for solving this: (i) ad hoc, (ii) Newton-based methods

(1)

(2)

Transition Dynamics in Huggett Model

- Natural generalization of algorithm for stationary equilibrium
 - denote $v_{i,j}^n = v_i(a_j, t^n)$ and stack into \mathbf{v}^n
 - denote $g_{i,j}^n = g_i(a_j, t^n)$ and stack into \mathbf{g}^n
- System of sparse matrix equations for transition dynamics:

$$ho \mathbf{v}^n = \mathbf{u}(\mathbf{v}^{n+1}) + \mathbf{A}(\mathbf{v}^{n+1}; r^n) \mathbf{v}^n + \frac{\mathbf{v}^{n+1} - \mathbf{v}^n}{\Delta t},$$
 $\frac{\mathbf{g}^{n+1} - \mathbf{g}^n}{\Delta t} = \mathbf{A}(\mathbf{v}^n; r^n)^{\mathrm{T}} \mathbf{g}^{n+1},$
 $B = S(\mathbf{g}^n; r^n),$

- Terminal condition for \mathbf{v} : $\mathbf{v}^N = \mathbf{v}_{\infty}$ (steady state)
- Initial condition for g: $g^1 = g_0$.

An MIT Shock in the Aiyagari Model

• Production: $Y_t = F_t(K, L) = A_t K^{\alpha} L^{1-\alpha}, dA_t = \nu(\bar{A} - A_t) dt$

Generalizations and Applications

A Model with a Continuum of Income Types

Assume idiosyncratic income follows diffusion process

$$dy_t = \mu(y_t)dt + \sigma(y_t)dW_t$$

- Reflecting barriers at \underline{y} and \bar{y}
- Value function, distribution are now functions of 2 variables:

$$v(a,y)$$
 and $g(a,y)$

• \Rightarrow HJB and KF equations are now PDEs in (a, y)-space

It doesn't matter whether you solve ODEs or PDEs

⇒ everything generalizes

Saving Policy Function and Stationary Distribution

• Analytic characterization of MPCs: $c(a,y) \sim \sqrt{2\nu(y)} \sqrt{a-\underline{a}}$ with

$$\nu(y) = (\rho - r) \mathrm{IES}(\underline{c}(y)) \underline{c}(y) + \left(\mu(y) - \frac{\sigma^2(y)}{2} \mathcal{P}(\underline{c}(y))\right) \underline{c}'(y) + \frac{\sigma^2(y)}{2} \underline{c}''(y)$$
 where $\mathcal{P}(c) := -u'''(c) / u''(c) = \text{absolute prudence, and } \underline{c}(y) = c(\underline{a}, y)$

Other Applications – see Paper

- Non-convexities: indivisible housing, mortgages, poverty traps
- Fat-tailed wealth distribution
- Multiple assets with adjustment costs (Kaplan-Moll-Violante)
- Stopping time problems

Appendix

Derivation of Poisson KF Equation - Back

Work with CDF (in wealth dimension)

$$G_i(a,t) := \Pr(\tilde{a}_t \leq a, \tilde{y}_t = y_i)$$

- Income switches from y_i to y_{-i} with probability $\Delta \lambda_i$
- Over period of length Δ , wealth evolves as $\tilde{a}_{t+\Delta} = \tilde{a}_t + \Delta s_i(\tilde{a}_t)$
- Similarly, answer to question "where did $\tilde{a}_{t+\Delta}$ come from?" is

$$ilde{a}_t = ilde{a}_{t+\Delta} - \Delta s_j(ilde{a}_{t+\Delta})$$

• Momentarily ignoring income switches and assuming $s_i(a) < 0$

$$\Pr(\tilde{a}_{t+\Delta} \le a) = \underbrace{\Pr(\tilde{a}_t \le a)}_{\text{already below } a} + \underbrace{\Pr(a \le \tilde{a}_t \le a - \Delta s_j(a))}_{\text{cross threshold } a} = \Pr(\tilde{a}_t \le a - \Delta s_j(a))$$

• Fraction of people with wealth below a evolves as

$$\Pr(\tilde{a}_{t+\Delta} \leq a, \tilde{y}_{t+\Delta} = y_j) = (1 - \Delta \lambda_j) \Pr(\tilde{a}_t \leq a - \Delta s_j(a), \tilde{y}_t = y_j)$$
$$+ \Delta \lambda_j \Pr(\tilde{a}_t \leq a - \Delta s_{-j}(a), \tilde{y}_t = y_{-j})$$

• Intuition: if have wealth $< a - \Delta s_i(a)$ at t, have wealth < a at $t + \Delta s_i(a)$

Derivation of Poisson KF Equation

• Subtracting $G_i(a,t)$ from both sides and dividing by Δ

$$\frac{G_j(a,t+\Delta) - G_j(a,t)}{\Delta} = \frac{G_j(a-\Delta s_i(a),t) - G_j(a,t)}{\Delta} - \lambda_i G_j(a-\Delta s_i(a),t) + \lambda_{-i} G_{-i}(a-\Delta s_{-i}(a),t)$$

• Taking the limit as $\Delta \to 0$

$$\partial_t G_j(a,t) = -s_j(a)\partial_a G_j(a,t) - \lambda_j G_j(a,t) + \lambda_{-j} G_{-j}(a,t)$$

where we have used that

$$\lim_{\Delta \to 0} \frac{G_j(a - \Delta s_j(a), t) - G_j(a, t)}{\Delta} = \lim_{x \to 0} \frac{G_j(a - x, t) - G_j(a, t)}{x} s_j(a)$$
$$= -s_j(a) \partial_a G_j(a, t)$$

- Intuition: if $s_j(a) < 0$, $\Pr(\tilde{a}_t \le a, \tilde{y}_t = y_j)$ increases at rate $g_j(a, t)$
- Differentiate w.r.t. a and use $g_j(a,t) = \partial_a G_j(a,t) \Rightarrow$

$$\partial_t g_j(a,t) = -\partial_a [s_j(a,t)g_j(a,t)] - \lambda_j g_j(a,t) + \lambda_{-j} g_{-j}(a,t)$$

Accuracy of Finite Difference Method?

Two experiments:

- 1. special case: comparison with closed-form solution
- 2. general case: comparison with numerical solution computed using very fine grid

Accuracy of Finite Difference Method, Experiment 1

- · Recall: get closed-form solution if
 - exponential utility $u'(c) = c^{-\theta c}$
 - no income risk and r = 0 so that $\dot{a} = y c$ (and $a \ge 0$)

$$\Rightarrow$$
 $s(a) = -\sqrt{2\nu a},$ $c(a) = y + \sqrt{2\nu a},$ $\nu := \frac{\rho}{\theta}$

• Accuracy with I = 1000 grid points ($\widehat{c}(a)$ = numerical solution)

Accuracy of Finite Difference Method, Experiment 1

- · Recall: get closed-form solution if
 - exponential utility $u'(c) = c^{-\theta c}$
 - no income risk and r = 0 so that $\dot{a} = y c$ (and $a \ge 0$)

$$\Rightarrow$$
 $s(a) = -\sqrt{2\nu a},$ $c(a) = y + \sqrt{2\nu a},$ $\nu := \frac{\rho}{a}$

• Accuracy with I = 30 grid points ($\widehat{c}(a) =$ numerical solution)

Accuracy of Finite Difference Method, Experiment 2

Consider HJB equation with continuum of income types

$$\rho v(a,y) = \max_{c} u(c) + \partial_{a}v(a,y)(y + ra - c) + \mu(y)\partial_{y}v(a,y) + \frac{\sigma^{2}(y)}{2}\partial_{yy}v(a,y)$$

- Compute twice:
 - 1. with very fine grid: I = 3000 wealth grid points
 - 2. with coarse grid: I = 300 wealth grid points

then examine speed-accuracy tradeoff (accuracy = error in agg C)

	Speed (in secs)	Aggregate C
I = 3000	0.916	1.1541
I = 300	0.076	1.1606
row 2/row 1	0.0876	1.005629

- i.e. going from I=3000 to I=300 yields $>10\times$ speed gain and 0.5% reduction in accuracy (but note: even I=3000 very fast)
- Other comparisons? Feel free to play around with HJB_accuracy2.m