Lista zadań. Nr 5. 14 kwietnia 2019

ALGORYTMY I STRUKTURY DANYCH

IIUWr. II rok informatyki

1. (1pkt) Pokaż, że problem znajdowania otoczki wypukłej nie może być rozwiązany w modelu drzew decyzyjnych.

2. (2pkt) Rozważmy następujący problem:

PROBLEM:

```
Dane: Liczby rzeczywiste x_1, \ldots, x_n.

Wynik: 'TAK' - jeśli \exists_{1 \leq i < j < k \leq n} x_i + x_j + x_k = 0,
'NIE' - w przeciwnym przypadku.
```

Udowodnij, że $\Omega(n \log n)$ jest dolną granicą na rozwiązanie tego problemu w modelu liniowych drzew decyzyjnych.

- 3. (**Z** 1pkt) Udowodnij, że technika użyta w poprzednim zadaniu nie pozwala na pokazanie wyższej dolnej granicy niż $\Omega(n \log n)$ (czyli że liczba spójnych składowych odpowiadających instancjom z odpowiedzią 'NIE' to $2^{\Theta(n \log n)}$).
- 4. (2pkt) Udowodnij, że 2n-1 porównań trzeba wykonać, aby scalić dwa ciągi n elementowe w modelu drzew decyzyjnych. Zastosuj grę z adwersarzem, w której adwersarz na początku ogranicza przestrzeń danych tak, by zawierała 2n zestawów danych takich, by każde porównanie wykonane przez algorytm eliminowało co najwyżej jeden zestaw.
- 5. (**Z** 2pkt) Rozważmy problem wyznaczenia za pomocą porównań elementów największego i drugiego z kolei w zbiorze n-elementowym. Udowodnij, że $n + \lceil \log n \rceil 2$ porównań potrzeba i wystarcza do wyznaczenia tych elementów.
- 6. (**Z** 2pkt) Liderem ciągu a_1, a_2, \ldots, a_n nazywamy wartość, która pojawia się w nim przynajmniej (n+1)/2 razy. Skonstruuj algorytm, który znajduje lidera podanego ciągu (lub stwierdza, że go nie ma), używając jak najmniej operacji typu "czy $a_i = a_j$?". Pokaż, że każdy algorytm rozwiązujący ten problem musi wykonać $c \cdot n$ porównań, dla pewnej stałej c > 1. Uwaga: istnieje bardzo prosty algorytm, który używa 2n-1 takich porównań, nie jest on jednak optymalny.

Zadania dodatkowe - nie będą rozwiązywane w czasie ćwiczeń

- 1. (0pkt) Pokaż, że $\Omega(n \log n)$ pozostaje dolną granicą dla problemu sortowania, jeśli w modelu drzew decyzyjnych na zapytania o relację między elementami a i b możliwe są trzy odpowiedzi: "a<b", "a=b" i "a>b".
- 2. (1pkt) Pokaż, że problem "Element uniqueness" rozbija R^n na $\Omega(n!)$ spójnych składowych.
- 3. (2pkt) Rozważmy następujący problem weryfikacji rozmiaru wielozbioru (MSV). Dany jest wielozbiór złożony z n liczb rzeczywistych oraz liczba naturalna k. Należy sprawdzić, czy w tym wielozbiorze jest dokładnie k różnych elementów. Postaraj się wskazać jak najwięcej różnych spójnych składowych, na które problem ten rozbija R^n .
- 4. (2pkt) Algebraiczne Drzewo Obliczeń jest uogólnieniem algebraicznego drzewa decyzyjnego. Posiada ono dwa rodzaje wierzchołków:
 - wierzchołki obliczeniowe: z każdym takim wierzchołkiem u związana jest wartość f_u , która jest określona jako wynik jednej z poniższych opeacji:

$$f_u \leftarrow f_w + f_v, \quad f_u \leftarrow f_w - f_v, \quad f_u \leftarrow f_w * f_v, \quad f_u \leftarrow f_w / f_v, \quad f_u \leftarrow \sqrt{f_v},$$

gdzie f_w i f_v są wartościami skojarzonymi z pewnymi przodkami wierzchołka u lub są elementami ciągu wejściowego lub stałymi z R.

• wierzchołki rozgałęziające: wierzchołek v wykonuje test $f_u < 0$ bądź $f_u \ge 0$ bądź $f_u = 0$, gdzie u jest przodkiem v.

Problem Set Equality (SE) zdefiniowany jest następująco: dane są zbiory $X = \{x_1, \ldots, x_n\}$ oraz $Y = \{y_1, \ldots, y_n\}$; pytamy, czy X = Y. Pokaż , że jeśli dane dla problemu SE są liczbami całkowitymi, to problem ten może być rozwiązany w modelu Algebraicznych Drzew Obliczeń w czasie liniowym.

- 5. (1pkt) Rozważmy decyzyjną wersję problemu otoczki wypukłej: mamy dane n punktów p_1, \ldots, p_n na płaszczyźnie oraz liczbę naturalną k. Pytamy, czy otoczka wypukła tego zbioru składa się z k punktów. Wiedząc, że problem MSV zdefiniowany w poprzednim zadaniu wymaga $\Omega(n \log k)$ operacji w modelu algebraicznych drzew decyzyjnych, pokaż, że w tym modelu decyzyjna wersja problemu otoczki także wymaga tylu działań.
- 6. (2pkt) Problem "Przekrój zbiorów" zdefiniowany jest następująco:

PROBLEM:

Dane: Liczby rzeczywiste
$$x_1, \ldots, x_n, y_1, \ldots, y_n$$
.

Wynik: 'TAK' - jeśli $\{x_1, \ldots, x_n\} \cap \{y_1, \ldots, y_n\} = \emptyset$
'NIE' - w przeciwnym przypadku.

Udowodnij, że $\Omega(n \log n)$ jest dolną granicą na rozwiązanie tego problemu w modelu liniowych drzew decyzyjnych.

Krzysztof Loryś