

- 1) Shortest parth
- 2) Minimum Spanning Tree

$$G = (V, E)$$
 $V = conjunto de vértices (o nodos)$

$$E = conjunto de avistas $\subseteq V \times V$

$$e = (a,b)$$

$$e = (a,b)$$

$$n = |V|$$

$$m = |E|$$$$

Formas de Representar Grafos

G nodiriqido A ensimétrica
G en liriqido A no ensimétrica

2) Matriz de Insidencia
$$I_6 = \sqrt{\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right]} \right] = 0 \pmod{mn}$$
mxn

$$\frac{1}{2}$$

$$\frac{1}$$

Grafo pronderado o grafo em pesos (Weighted graphs)

distancia, Tiempo, flujo, costo, ...

1) Shortest Path.

Dado G=(V,E,d) y dado SEV (source). queremos hallar la ruta de menor distancia de sa veV.

 $S = V_0 \qquad V_1 \qquad V_2 \qquad d(x) = \sum_{i=1}^{k} d(v_{i-1}, v_{i})$

carnino $\gamma = \left\{ \left\{ v_0, v_1 \right\}, \left\{ v_1, v_2 \right\}, \dots, \left\{ v_{k_1}, v_k \right\} \right\} \in \mathbb{Z}$ con $v_0 = S$ of $v_k = V$

G es conexo

Dijbsha: (1969).
$$O(n^2) = O(V^2)$$

dist = $v_1 v_2 v_3 \dots v_n$
 $v_1 v_2 v_3 \dots v_n$
 $v_1 v_2 v_3 \dots v_n$
 $v_1 v_2 v_3 \dots v_n$

heap have fibraries have alt = dist[v] + $d(u,v_1)$

where $v_1 v_2 v_3 v_3 \dots v_n$

dist[v] $v_1 v_2 v_3 \dots v_n$
 $v_2 v_3 \dots v_n$

Alt = $v_1 v_2 v_3 \dots v_n$
 $v_2 v_3 \dots v_n$
 $v_1 v_2 v_3 \dots v_n$

Alt = $v_1 v_2 v_3 \dots v_n$
 $v_2 v_3 \dots v_n$

Alt = $v_1 v_2 v_3 \dots v_n$
 $v_2 v_3 \dots v_n$

Alt = $v_1 v_2 v_3 \dots v_n$
 $v_2 v_3 \dots v_n$

Alt = $v_1 v_2 v_3 \dots v_n$
 $v_2 v_3 \dots v_n$

Alt = $v_1 v_2 v_3 \dots v_n$

Alt = v

2) Minimum Spanning Tree:

Que remos hallar el árbol T = G con \(\subseteq d(e) es mínima.

· conexo

o no cidos

$$T = (V, E_T)$$

Prim: (Jarnik 15th, Prim 157, Dijksten 59) Kruskal (156) Borůvka (126)