Non-linear Minimization in R

Fish 559; Lecture 89

Non-linear Minimization Functions in R

- Single-dimension methods
 - optimize find the minimum (or maximum) of a univariate function within pre-specified bounds.

Non-linear Minimization Functions in R

(Multi-dimension methods)

- nls fit a regression model using non-linear least squares. This function produces almost all of the diagnostics associated with lm, lme and nlme.
- dfp minimize an objective function using the Davidson-Fletcher-Powell algorithm and compute 95% intervals (in library Bhat).
- mle minimize a real-valued function f subject to constraints (in library stats4). Assumes fx in nll, computes hessian and inverts it for you gives you variance
- newton minimize an objective function using a Newton-Raphson algorithm and compute 95% intervals (in library Bhat).
- optim minimize a real-valued function f subject to constraints.
 Family of functions optimx() calls multiple minimization methods for you.
- nlminb minimizes an constrained (or unconstrained) function.

Non-linear Minimization in R

• Optim/mle applies one of several methods (quasi-Newton [BFGS], simplex [Nelder-Mead], and conjugate-gradient[CG])and can make use of derivatives and the Hessian matrix (if they are available). It also includes options to use Simulated Annealing (SANN) – monte-carlo method, very robust but very slow).

Calling optim-I

optim(pars, fn, gr, method, control, lower, upper, hessian)

- Required parameters:
 - pars a vector of parameters (the initial guesses).
 - fn the objective function that which is to be minimized.
- Optional parameters:
 - gr function that computes the gradient.
 - hessian should the Hessian matrix be computed?

Calling optim-II

- Optional parameters:
 - method which of the various types of minimization algorithm to use.
 - control parameters used to control the minimization (maximum iterations, function calls, etc.).
 - rel.tol how much change in the function before you stop 10e-10 means it's going to try very hard to get a minimum
 - lower / upper vector of lower and upper bounds for the parameters (including –Inf / Inf).

Calling optim-III

- (Key) outputs:
 - par the estimates of the parameters.
 - value the lowest value of the objective function.
 - counts number of function and gradient calls.
 - convergence code indicating whether convergence occurred. 0 means it thinks it converged >1 means not
 - message additional information
 - hessian estimate of the Hessian matrix at the solution.
 - Deviance twice the nll making 3.84 the critical value, should be 1.92 for likelihood profile. 1.96 is 2*se assuming asymptotic normal.

559

A first example-I (The waiting data)

The times between eruptions of "Old Faithfull" (dataset "waiting") appear to be bimodal. We would like to fit these data to a model that is a mixture of two normals.

$$P(x) = \pi N(x \mid \mu_1, \sigma_1) + (1 - \pi)N(x \mid \mu_2, \sigma_2)$$

We can get sensible estimates for the parameters of this model (0.3, 50, 5, 80, 5) from the histogram.

A first example-II (The waiting data)

The initial guesses for the parameters are not bad but we can improve on them.

We first write a function that computes the negative log-likelihood.

$$\sum_{i=1}^{n} \ell n \left[\frac{\pi}{\sigma_1} \phi \left(\frac{y_i - \mu_1}{\sigma_1} \right) + \frac{1 - \pi}{\sigma_2} \phi \left(\frac{y_i - \mu_2}{\sigma_2} \right) \right]$$

A first example-III (The waiting data)

We can now use **optim** to minimize the negative log-likelihood function.

Initial values

```
wait.init < c(0.3,50,5,80,5)
```

mix.n1 <- optim(wait.init, mix.obj,method=`L-BFGS-B', lower=c(0,-Inf,0,-Inf,0),upper=c(1,rep(Inf,4)),x=geyser\$waiting)

Place bounds on the parameter values

Pass the data

A first example-IV (The waiting data)

 The results object should be examined to identify that the minimum has indeed been found.

A first example-V (The waiting data)

Our analysis did not use information on the derivatives of the likelihood function. This is a case where it is possible (and relatively straightforward) to make use of derivative information.

559

Calling **mle** - I

mle(minuslogl, start, method, fixed,lower,upper)

- minuslogI the negative log-likelihood function that which is to be minimized.
- start a named list of estimated parameters (the initial guesses).
- fixed a named list of parameters which are passed to the objective function.
- method which of the various types of minimization algorithm to use.

Calling **mle** - II

- The methods associated with mle can be used to:
 - Extract the log-likelihood (logLik)
 - Extract the estimated parameters (coef)
 - Extract the variance-covariance matrix (vcov)
- mle provides estimates of the standard errors of the estimates automatically (unlike optim, which require you invert the Hessian matrix).
- Hint: mle makes computing profile likelihood very easy (compared to optim)

The Example Problem

 Fit the dynamic Schaefer model to the catch and effort data for Cape hake off the west coast of South Africa.

$$B_{t+1} = B_t + rB_t (1 - B_t / K) - C_t; \ B_{1917} = K$$
$$-\ell nL = \sum_{y} (\ell nI_y - \ell n(q B_t))^2$$

We will make use of the maximum likelihood estimate for q:

$$\ell nq = \frac{1}{n} \sum_{y} \ell n(I_y / B_y)$$

The Example Problem (The sum of squares surface)

The Example Problem (The methods)

- We could apply methods that are:
 - Derivative free:
 - Simplex / Powell's method
 - Derivative based:
 - optim
- Note: that we will not supply optim with analytic derivatives nor use deriv to compute them for us (why?)

Passing Parameters

- The likelihood function depends on data (catches, CPUE) as well as on the values for the model parameters (r, q and K).
- It is necessary therefore to pass the data to the function being minimized.
- There are several ways to do this but I prefer to place common parameters in frame 1 so that my function can "see" them.

co <- list()
co\$Final <- F
co\$Nyear <- Nyear
co\$Catch <- TheData\$Catch
co\$CPUEObs <- TheData\$CPUE
assign("co",co,pos=1)</pre>

The Function to Minimize

```
f1 \leftarrow function(x)
K <- \exp(x[1]); r <- \exp(x[2])
CpuePred <- rep(0,co$Nyear); Biomass <- rep(0,co$Nyear+1)
# Do projections
Biomass[1] <- K
for (Year in 1:co$Nyear)
 { Biomass[Year+1] <- Biomass[Year] + r*Biomass[Year]*(1.0-Biomass[Year]/K) -
co$Catch[Year]
if (Biomass[Year+1] < 0.01) Biomass[Year+1] < -0.01 }
# Calculate the ML estimate of q
qbar <- 0; npar <- 0
for (Year in 1:co$Nyear)
 if (co$CPUE[Year] > 0)
 { npar <- npar + 1; qbar <- qbar + log(co$CPUE[Year]/Biomass[Year]) }
qbar <- exp(qbar / npar)</pre>
# Find the SS
SS <- 0
for (Year in 1:co$Nyear)
 if (co$CPUE[Year] > 0)
 { CpuePred[Year] <- qbar*Biomass[Year]</pre>
          SS <- SS + log(CpuePred[Year]/co$CPUE[Year])^2 }
return(SS) }
```

559

Results - optim

SS=0.6924 r=0.335 K=1562

Function evaluations:65 Gradient evaluations:65

Note: the graphs were produced by adding code to the function. The graphs are output if 'final'=T

Results - Powell

SS=0.6798 r=0.307 K=1692

468 function evaluations! The algorithm requires some tuning!

Results - Simplex

SS=0.6798 r=0.307 K=1692

88 function evaluations 45 iterations

Comparison of Packages (from Schnute et al., 1998)

Parameters	Product	Calls	Times
37	ADMB	161	4.6 s
	Gauss	4041	2.8 min
	MatLab	1936	5.8 min
	S-plus	n/a	n/a
100	ADMB	291	38 s
	Gauss	23,365	1.08 hr
	MatLab	18,360	3.25 hr
	S-plus	n/a	n/a

The trials involved fitting an age-structured model,

Hints

- Methods may work better if the variables are all scaled to approximately 1.
- If some of the parameters are linear functions of the parameters (e.g. the q and σ parameters in a likelihood function for the Schaefer model), find analytical solutions for them this reduces the dimension of the problem.
- Never trust a non-linear minimizer!
 - Try different starting values.
 - Combine different methods (e.g. apply Simplex and then a conjugate gradient method). The function optimx in the package optimx provides a wrapper for the algorithims in optim (except SANN) as well in other packages.
 - Test your code with deterministic data, then simulated data with stochastic processes.