UFMG/ICEx/DCC

Projeto e Análise de Algoritmos

3ª Lista de Exercícios

Pós-Graduação em Ciência da Computação

1º Semestre de 2010

Observações:

 Assuma que a estrutura de dados usada para representar um grafo é a lista de adjacência. Se você optar por outra estrutura, justifique a sua escolha.

Questão 1

Temos três recipientes cujos volumes são 10, 7 e 4 litros, respectivamente. Os recipientes de 7 e 4 litros começam cheios de água, mas o de 10 litros está inicialmente vazio. É permitido apenas um tipo de operação: despejar o conteúdo de um recipiente em outro, parando somente quando o recipiente de origem estiver vazio ou quando o recipiente de destino estiver cheio. Queremos saber se existe uma sequência de despejos que deixe exatamente 2 litros no recipiente de 7 litros ou no de 4 litros.

- (a) Modele como um problema em grafos: forneça uma definição precisa do grafo envolvido e formule a questão específica sobre esse grafo que precisa ser respondida.
- (b) Qual algoritmo deve ser aplicado para resolver este problema?
- (c) Proponha uma "metodologia genérica" (princípios) que podem ser aplicados e seguidos para resolver este tipo de problema.

Questão 2

Para cada vértice v em um grafo não-dirigido, seja GrausVizinhos[v] a soma dos graus dos vizinhos de v. Mostre como computar o vetor inteiro de valores de GrausVizinhos em tempo linear na quantidade de vértices e arestas.

Questão 3

Apresente pelo menos duas propriedades que um grafo não-dirigido deve ter para ser bipartido. Prove essas propriedades.

Questão 4

Apresente um algoritmo linear na quantidade de vértices e arestas para determinar se um grafo não-dirigido é bipartido.

Questão 5

Apresente um algoritmo eficiente que receba como entrada um grafo dirigido acíclico G = (V, E) e dois vértices $s, t \in V$ e compute o número de caminhos diferentes de s a t em G.

Para o problema abaixo, escreva o algoritmo, faça a implementação, testes e apresente o custo de complexidade identificando a operação considerada relevante. Lembre-se que a linguagem de programação é C/C++. No caso de apresentar uma solução recursiva, discuta também e apresente a complexidade para o crescimento da pilha.

Exercício de Programação: Estados globais de uma execução

De todos os "objetos" matemáticos usados em Ciência da Computação, o grafo tem um papel de fundamental importância. É possível modelar vários dos problemas usando esse objeto.

Este exercício de programação é motivado por um cenário típico que ocorre em uma computação (execução) em um único elemento computacional ou em um conjunto de elementos computacionais. Sejam n computações

(execuções) representadas por n threads em um único elemento computacional ou por n processos, cada um executado em um elemento computacional distinto. Essas n threads ou n processos serão identificados apenas pela letra p_i , sendo $1 \le i \le n$. Essas n tarefas podem trocar dados entre si através de "mensagens", ou seja, não existe uma memória compartilhada entre as diferentes execuções.

Uma atividade típica $\operatorname{\bf após}$ a execução das n tarefas é saber se uma determinada propriedade foi satisfeita (i.e., ocorreu, tornou-se verdadeira) ou não durante a computação. Para isso, é possível construir, após o término da computação, um grafo das possíveis execuções das n atividades (incluindo naturalmente o sub-grafo que representa a computação que efetivamente ocorreu mas que, em geral, não é possível saber qual é), percorrer esse grafo e avaliar em cada "estado" do sistema a propriedade de interesse. Dependendo da estrutura do grafo, é possível afirmar se a propriedade ocorreu com certeza ou afirmar que pode ter ocorrido.

Seja, por exemplo, uma computação envolvendo p_1 e p_2 como mostrado na figura 1. As linhas horizontais representam a linha do tempo. Nessa computação, os "momentos" (eventos) de interesse são representados por e_i^k , onde o subscrito i representa o processo i e o superscrito k representa o k-ésimo evento de interesse em p_i . Um evento ocorre por uma mudança no estado da computação que é importante do ponto de vista de todo o sistema. É exatamente quando ocorre um evento que devemos avaliar se uma propriedade é satisfeita ou não. Uma seta de um processo para outro indica uma relação de dependência causal entre esses eventos, ou seja, a ocorrência de um evento em um processo (origem da seta) causa a ocorrência de um evento em outro processo (término da seta).

Figura 1: Computação envolvendo p_1 e p_2 .

A questão passa a ser quais são as combinações de estados válidos que podem ter ocorrido na computação envolvendo p_1 e p_2 . Para isso, podemos gerar um grafo que representa os possíveis estados válidos como mostrado na figura 2. Nessa figura, os vértices têm dois algarismos, sendo que o primeiro diz respeito ao número do evento do processo p_1 e o segundo ao número do evento do processo p_2 . Assim, o vértice 00 significa que é possível ter o nosso sistema de interesse em um determinado momento com p_1 em e_1^0 e p_2 em e_2^0 , que são os eventos iniciais e não estão explicitados na figura. A partir desse estado, a computação pode ir tanto para 10 ou 01. No primeiro caso, temos p_1 em e_1^1 e p_2 em e_2^0 . No segundo caso, temos p_1 em e_1^0 e p_2 em e_2^1 . Note que não é possível ter um vértice que representa a computação 20. Isso implicaria que teríamos p_1 em e_1^2 e p_2 em e_2^0 , ou seja, p_1 teria alcançado e_1^2 enquanto p_2 ainda estaria em e_2^0 . Mas isso não é possível já que a ocorrência de e_1^2 depende da ocorrência de e_2^1 que ocorre depois de e_2^0 .

Note que esse grafo é dirigido mas neste caso estamos usando uma representação especial que se chama reticulado (lattice). O reticulado é a transformação de um grafo dirigido em um grafo não-dirigido. Para isso, representa-se o grafo dirigido com todas as arestas desenhadas de baixo para cima. O vértice inicial ou de entrada desse grafo é o vértice mais embaixo (neste caso, o vértice 00). Assim, todo caminhamento sempre ocorre "para cima". O grafo não-dirigido é obtido eliminando-se o sentido das arestas e o caminhando continua sendo feito "para cima".

Na figura 3, a linha mais grossa mostra uma possível computação desse sistema envolvendo p_1 e p_2 , começando no vértice 00 e terminando no vértice 65. De forma mais precisa, o caminhamento que representa essa computação pode ser expresso como a sequência de vértices 00, 01, 11, 21, 31, 32, 42, 43, 44, 54, 64, 65.

Pede-se: gerar o grafo (reticulado) das possíveis computações de n atividades, sendo $2 \le n \le 4$, e avaliar propriedades de interesse nesse grafo. No caso da propriedade ser satisfeita, deve-se dizer se a propriedade ocorreu com certeza ou se pode ter ocorrido. A propriedade deve ser expressa como uma expressão proposicional. Uma expressão proposicional, ou condição, é uma expressão que possui variáveis que se transforma numa proposição, i.e., possui um valor lógico verdadeiro ou falso, quando se substituem essas variáveis por valores.

Suposições: para resolver este trabalho, faça as seguintes suposições:

- 1. A expressão proposicional é formada por variáveis apenas do tipo inteiro;
- 2. O evento e_i^k em p_i será identificado no arquivo de entrada pelo número inteiro k;
- 3. A variável v_i^k em p_i será identificada no arquivo de entrada pelo número inteiro k;
- 4. Uma expressão proposicional pode ter os seguintes operadores (representados entre colchetes pelo símbolo a ser fornecido no arquivo de entrada):
 - Operadores lógicos: \neg (negação) [~], \lor (disjunção) [I], \land (conjunção) [.], \rightarrow (condicional) [I], \leftrightarrow (bi-condicional) [B];
 - Operadores aritméticos: adição [+], subtração [-], multiplicação [*] e divisão [/];
 - Operadores relacionais: "maior que" [>], "menor que" [<] e "igualdade" [=].
- 5. Expressões podem ter parênteses e a prioridade é a mesma de uma expressão proposicional;
- 6. Como foi explicado acima, existem eventos em diferentes atividades que estão relacionados entre si. Por exemplo, na figura 2, os eventos e_2^1 e e_1^2 estão relacionados entre si, sendo que a ocorrência do primeiro implica na ocorrência do segundo. No arquivo de entrada, na linha de descrição do evento, isso será codificado com uma referência da seguinte forma: $\langle e_i^k[\mathsf{D}|\mathsf{D}]\mathsf{P}p_j\rangle$, onde e_i^k indica o número do k-ésimo evento em p_i (este é um número sequencial que começa em 0), 0 caso seja um evento que está relacionado com outro que tem origem em p_j e D caso seja um evento que está relacionado com outro que tem destino em p_j . Essa codificação pode ser usada a partir da terceira linha do arquivo de entrada como discutido abaixo;
- 7. Uma variável v_i^k em p_i será identificada em uma expressão proposicional como $\langle V v_i^k P p_i \rangle$, onde v_i^k indica o número da k-ésima variável em p_i ;

Entrada: o formato de cada linha do arquivo de entrada está descrito abaixo:

Formato de cada linha do arquivo de entrada	Exemplo
$N^{\underline{o}}$ de atividades	2
$\mathbb{N}^{\underline{o}}$ de variáveis associadas a p_1,\ldots,p_n	2 3
Processo p_i , evento e_i^k , valores das variáveis $v_i^1 \dots$	1 0 0 0
	1 1 2 0
	1 2D2P2 3 1
	1 305P2 5 4
	1 4 7 9
	1 5D3P2 11 16
	1 6 13 25
	2 0 0 0 0
	2 101P1 1 -1 3
	2 2 2 3 5
	2 305P1 3 -5 7
	2 4 4 7 9
	2 5D3P1 5 -9 11
$\langle Id\ do\ predicado \rangle$: $\langle predicado \rangle$	P1: V1P1 > V3P2

Figura 2: Grafo da computação envolvendo p_1 e p_2 .

Figura 3: Possível execução do grafo da computação envolvendo p_1 e p_2 .