CS2040C

Sorting

$O(n^2)$ sorting algorithms

- Bubble sort (stable): well we know how it works already
 - \circ Can be used if the list is almost sorted, since can be terminated early at O(n)
- · Selection sort (not stable): swap with the smallest element after it
- Insertion sort (stable): shift left until good
 - \circ Can be used when n is small, as it is stable and has a small constant despite being $O(n^2)$

$O(n \log n)$ sorting algorithms

- Merge sort (stable): D&C, iterative merge step
 - \circ Can be used when n is large and the sort must be stable
 - Slower than random quick sort on average
- Quick sort (not stable): select pivot, shift stuff so that left < pivot and right > pivot
 - \circ Pre-determined pivot: $O(n^2)$ worst case not good
 - \circ Randomised pivot (random quick sort): $O(n \log n)$ average case good
 - Randomised version can be used when sorting doesn't need to be stable
 - o Randomised version much faster than merge sort on average

O(n) sorting algorithms

- Very specific constraints
- · Counting sort: we know it already
 - Must be integers of small range (<1m)
 - $\circ\;$ Actual complexity: O(n+k) where k is the range
- Radix sort: sort as strings (pad zeros if needed), sort by pushing to queue on every digit from the least significant then concatenate
 - \circ Actual complexity: O(w(n+k)) where w is the length of strings and k is the base (base-10 for decimal numbers, base-26 for lowercase English alphabet, etc.)
 - \circ Can be used if w is significantly smaller than $\log n$.

Comparisons in specific use cases

	Random	Sorted (non-↓)	Sorted (non-↑)	Nearly (non-↓)	Nearly (non-↑)	Duplicates
Bubble	$O(n^2)$	O(n)	$O(n^2)$	←	←	←
Selection	$O(n^2)$	←	←	←	←	←
Insertion	$O(n^2)$	O(n)	$O(n^2)$	O(n)	$O(n^2)$	$O(n^2)$
Merge	$O(n \log n)$	←	←	←	←	←
Quick	$O(n \log n)$	$O(n^2)$	←	←	←	←
Rand quick	$O(n \log n)$	←	←	←	←	←
Counting	$O(n)^*$	←	←	←	←	←
Radix	$O(n)^*$	←	←	←	←	←

*: see specific notes for counting and radix sort algorithms above.

Linked List

	SLL	DLL	Stack	Queue	Deque
search	O(n)	O(n)	\Diamond	\Diamond	\Diamond
peek front	O(1)	O(1)	O(1)	O(1)	O(1)
peek back	O(1)	O(1)	\Diamond	O(1)	O(1)
insert front	O(1)	O(1)	O(1)	\Diamond	O(1)
insert back	O(1)	O(1)	\Diamond	O(1)	O(1)
insert middle	O(n)	O(n)	\Diamond	\Diamond	\Diamond
remove front	O(1)	O(1)	O(1)	O(1)	O(1)
remove back	O(n)	O(1)	\Diamond	\Diamond	O(1)
remove middle	O(n)	O(n)	\Diamond	\Diamond	\Diamond

Binary Max Heap

For **priority queues** with $O(\log n)$ enqueue and dequeue operations.

Definition

- · Complete binary tree
- Max → min from top down

Main content

- PQ can't be implemented as LL/array as it is slow (O(n)) for either enqueue or dequeue)
- · Store binary tree as compact array
 - \circ Parent: x/2
 - \circ Left child: 2x
 - $\circ \ \ \text{Right child:} \ 2x+1$
- Operations:
 - $\circ \ \ \mathsf{ShiftUp}(v) \!\!: \mathsf{swap} \ v \ \mathsf{with} \ \mathsf{parent} \ p \ \mathsf{of} \ v \ \mathsf{if} \ \mathsf{need} \ \mathsf{to}, \ \mathsf{then} \ \mathsf{ShiftUp}(p) \ \mathsf{until} \ \mathsf{finish} \ \mathsf{or} \ \mathsf{root} \\$
 - $O(\log n)$ since maximum height is $\log n$
 - \circ ShiftDown(v): swap v with largest child of v if need to, until finish or no more child
 - $O(\log n)$ for same reason

Insert

Insert at index n+1 (last position in the tree), then ShiftUp(new vertex). $O(\log n)$

Extract max

Retrieve and remove root, put last position to root, then ShiftDown(root). $O(\log n)$

Create from array

- $O(n \log n)$ version: keep inserting for each value
- O(n) version: Robert W. Floyd (1964)
 - $\circ~$ Compact array = complete binary tree where half of all vertices are binary max heap by default

o For all non-leaf vertices from lowest position to root, ShiftDown()

Update/delete key given index

Update A[i] = newValue then call both shifting operations on it (only one of them will actually be triggered). Similar for delete key. $O(\log n)$.

Update/delete key without index

Still can do in $O(\log n)$ with a <u>hash table</u> to look up key in O(1). A bit more complicated though.

Sorting algorithms

Call extract max n times $_{\dashv}$ $O(n\log n)$ sorting algorithm

Call extract max k times $\rightarrow O(k \log n)$ partial sorting algorithm to take only the top k largest elements

Hash Tables

Used for $\mathtt{std}: \mathtt{unordered_map}$ and $\mathtt{std}: \mathtt{unordered_set}$ to look up a key in O(1).

Key operations: search(v), insert(v), remove(v) — all have to be O(1).

Terminologies

- ullet Symbols: n number of keys, m hash table size
 - \circ m is usually a large prime not near a power of 2 to make distribution "more" uniform
- Load factor lpha=n/m, lpha should be smaller than 0.5
- Expected number of probes = expected cost of an operation (in open addressing):

$$C_{ ext{expected}} \leq rac{1}{1-lpha}$$

Open addressing

Linear probing

- $h(v) = v \mod m (\sqrt{8} m)$
- If already occupied, scan forwards one index at a time for an empty slot: h(v) + 1, h(v) + 2, etc.
- Remove: set to DELETED instead of EMPTY so that prob sequence is intact (search() won't break)
- Can easily cause large primary clusters (sequence of successive occupied slots) → slow

Quadratic probing

- $h(v) = v \mod m$ again
- $h(v) + 1^2$, $h(v) + 2^2$, $h(v) + 3^2$, etc.
- NOT h(v) + 1, h(v) + 1 + 4, h(v) + 1 + 4 + 9, etc.
- Have to ensure lpha < 0.5 to avoid infinite loop

Double hashing

- $h(v) = v \mod m$
- Second hash function $h_2(v)$, can be $v \mod m_2$ (VisuAlgo) or anything...
 - \circ Should satisfy $h_2(v) > 1$
- Prob: $h(v) + h_2(v)$, $h(v) + 2h_2(v)$, $h(v) + 3h_2(v)$, etc.

Separate chaining

Each slot in the hash table is a DLL. Simply insert to the back of the DLL when we insert new key.

Search and remove are $O(1 + \alpha)$.

Likely used in std::unordered_map and std::unordered_set.

When α gets too fat

Can rehash: build a new hash table of size 2m, then recompute the new hash values completely for each value in the old hash table.

Binary Search Tree

Used for std::set, std::map, can be used for priority queues as well.

Search, insert and remove operations in $O(\log n)$. Compared to hash table (unordered keys), in BST keys must be ordered (opening the way for more operations: max(), min(), predecessor(), successor(), etc.)

Definitions

- Binary search tree: A binary tree sorted from leftmost vertex to the rightmost one
- AVL tree: self-balancing BST where height is always $O(\log n)$
- ullet Rank of a key v is where it stays (1-based index???) if all keys are sorted in ascending order

Operations

Search(v)

- ullet Search from root, compare with v and continue searching in left/right children accordingly
- min() and max() can be found by keep searching left/right children
- O(h) (which is O(n) in bare BST and $O(\log n)$ in AVL)

Successor(v)

- Search for v (of course)
- If have right subtree, find the min in the right subtree
- If not have right subtree, traverse the ancestors until we find a right turn, from there we get the max in that subtree
- Similar for predecessor(v)
- Still O(h)

Traversal

- In-order: visit(left), print(root), visit(right)
- Pre-order: print(root), visit(left), visit(right)
- Post-order: visit(left), visit(right), print(root)
- All three are O(n)

Insert(v)

- Search for v. Should be not found (since all values in BST are unique if not unique needs to add secondary data to ensure uniqueness)
- $\bullet \quad \text{Insert v at that position} \\$
- *O*(*h*)

Remove(v)

- Search for v, already O(h)
- If leaf: remove the leaf O(1)
- If not leaf and has only one child: connect the child with the parent O(1)
- ullet Otherwise: replace v with its successor, then remove the successor in the subtree O(h)

Create

· Insert for each element

AVL

- Adelson-Velskii & Landis = 1962 in case prof somehow asks history questions
- ullet Define ${\tt v.height}$: number of edges from v to deepest leaf
 - \circ root.height is h and leaf.height is 0
 - o v.height = max(v.left.height, v.right.height) + 1
 - Compute on insertion/deletion to cache value
- $h < 2 \log n$, so all O(h) operations are $O(\log n)$
- ullet For all vertices v, balance factor is v.left.height v.right.height
 - \circ Height balanced: must be between -1 and +1 inclusive.

Rotations

Insert(v)

- Insert as a normal BST
- From insertion point to the root, update height and balance factor bf
 - o Do rotation if necessary

Remove(v)

· Remove as a normal BST

• From deletion point to the root, update height and bf, do rotation if necessary

Union-Find Disjoint Sets

Find set, check same set and union two sets must be constant time (not exactly O(1) but it is $O(\alpha(1)) \approx O(1)$, with $\alpha(x)$ being the inverse Ackermann function.

Data storage

p[i] is the parent of i and p[i] = i if i is the root of the tree. By default, p[i] = i since all values are disjointed.

rank[i] is the upper bound of the height of subtree rooted at vertex i. It's not necessarily the true height of the subtree and only used as a guiding heuristic. By default rank[i] = 0.

Operations

Initialise

Set p[i] = i and rank[i] = 0. Obviously O(n).

Find set (i)

Recursively get p[i] until p[i] = i (root). Then assign p[i] to this root (compress the tree). O(h), but thanks to tree compression, it's expectedly O(1).

Check same set

Find the root of both and check for equality. O(1)

Union set

Find roots r_i and r_j of i and j. If rank of r_i is smaller than rank of r_j , mark parent of r_i to be r_j , and vice versa. If the two ranks are equal, can mark parent of either to be the other, then increase the rank of the new root by one.

Graphs

- Graph, (directed/undirected) edge, edge weight, vertex, path, connected graph, cycle, DAG, trees, complete graph, bipartite, AM, AL, EL, DFS, BFS: ok
- Simple graph: No self-loop edges (u o u), no parallel edges (two u o v).
- Simple path: No repeated vertices along the path
- Adjacency: two edges sharing a vertex or two vertices sharing one edge
 - $\circ~$ Directed: v is adjacent to $u \Leftrightarrow u o v$ exists
- · Degree of vertex
 - o Undirected: Number of edges from/to that vertex
 - o Directed: Differentiate with in-degree and out-degree
- Strongly Connected Component: (only directed) Each vertex can visit all other vertices in the subgraph
- . Articulation points also cut vertices: vertices if removed will disconnect the graph
- · Bridges: edges if removed will disconnect the graph
- Topological sort: Sort vertices in order in directed graph

Single-Source Shortest Paths

Given a graph and a source vertex s, find d_i being the minimum distance from s to i for all vertices i in the graph.

Output is ill-defined when there is a negative weight cycle.

Algorithms

Relax operation

What happens when retax(1, 2) is called: since $d_1 + w < d_2$, d_2 is updated to be $d_1 + w$ (the SSSP to vertex 2 now includes 1)

Bellman-Ford

- $O(V \times E)$ slow, although it can solve all kinds of valid SSSP variants
- After each iteration of i, all direct neighbours of s has the correct d values. Hence after V-1 iterations, all (V-1)-th neighbours of s aka the entire graph has the correct d values.
- If no relaxation occurs, outermost loop can be terminated \rightarrow can be $O(k \times E) < O(V \times E)$

BFS for constant-weight graphs

Okay... I guess. O(V+E)

Doesn't work for non-constant-weight graphs.

DFS for trees

O(V+E)=O(V), doesn't work for non-trees.

DP for DAG

- · Get the topological sort
- · Relax edges according to the topological order
 - o Similar to Bellman-Ford, but we only do the inner loop once with a very specifically ordered edge list
- O(V+E)

Dijkstra

- · Does not work for negative edges.
- Maintain a set S of solved vertices, initially $S = \{s\}$.
- ullet While S is not the entire graph:
 - $\circ \ u$ is the vertex with the minimum shortest path estimate
 - \circ Relax all outgoing edges of u
 - $\circ \;\;$ Add u to S
- · Time complexity:
 - $\circ \ O(V \log V)$ when handling vertices inside the PQ
 - $\circ~O(E\log V)$ when relaxing the neighbours and updating values inside the PQ
 - $\circ~O((V+E)\log V)$ in total

Modified Dijkstra

We do not update the d value inside the PQ when relaxing, but add new values instead. Works for negative edges, but may not terminate.

No negative edges: $O((V+E)\log V)$, but exponential time for negative edges.

Code snippets

```
void bellman_ford(int s) {
    dist[s] = 0;
    for (int i = 0; i < n - 1; i++) {
        bool updated = false;
        for (int u = 0; u < n; u++)
            for (auto& [v, w] : adj[u])
                if (__sssp_relax(u, v, w, dist, parent)) updated = true;
        if (!updated) break;
    for (int u = 0; u < n; u++)
        for (auto& [v, w] : adj[u])
            if (dist[v] > dist[u] + w) {
                cerr << "Negative cycle detected\n";</pre>
void original_dijkstra(int s) {
    dist[s] = 0;
    set<pair<T, int>> pq;
    for (int i = 0; i < n; i++) pq.insert({dist[i], i});
    while (!pq.empty()) {
        auto [d, u] = *pq.begin();
        pq.erase(pq.begin());
        for (auto& [v, w] : adj[u]) {
   if (dist[u] + w >= dist[v]) continue;
            pq.erase(pq.find({dist[v], v}));
            dist[v] = dist[u] + w;
parent[v] = u;
            pq.insert({dist[v], v});
        }
    }
void dijkstra(int s) {
    dist[s] = 0;
    priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> pq;
    pq.push({0, s});
    while (!pq.empty()) {
        auto [d, u] = pq.top();
        pq.pop();
        if (d > dist[u]) continue;
        for (auto& [v, w] : adj[u]) {
            if (dist[u] + w >= dist[v]) continue;
            dist[v] = dist[u] + w;
            parent[v] = u;
            pq.push({dist[v], v});
        }
   }
}
```

Comparisons

	Bellman-Ford	Dijkstra	Mod. Dijkstra	
Neg cycle	WA	WA	Not terminated	
Neg edge	AC	WA/AC	AC (long)	
Dijkstra killer	AC	WA	AC (long)	
BFS killer	AC	AC	AC	

Minimum Spanning Tree

Applicable to a connected undirected weighted graph. Find the spanning tree with the lowest total weight.

Properties of MST

If an algorithm satisfies both of these, it is a valid MST algorithm.

- For any cycles in the graph, the maximum edge is never in the MST
- Divide the graph to two subgraphs, the minimum edge between the two is always in the MST

Kruskal

- $O(E \log V)$ greedy algorithm
- · Sort all edges by lowest weight first
- · Loop through the sorted edges, select an edge to the current spanning tree (initially empty) if it doesn't create a loop
 - Using UFDS
- ullet If the spanning tree reaches V-1 edges, we can terminate.

Prim (Jarnik-Prim)

- Also $O(E \log V)$ greedy algorithm
- ullet Starts from source s (can be any source)
 - If there are equal edge weights, the choice of s may change the MST (although total weight is still unique)
- ullet Enqueue all edges incident to s to a PQ sorted by lowest weight first
- ullet While PQ is non-empty and tree doesn't have V-1 edges yet:
 - o If the dequeued edge doesn't form a cycle, add it to the tree and enqueue edges connected to it
 - o Otherwise discard the dequeued edge

Code snippets

```
T kruskal() {
   UnionFind uf(n);
    sort(edges.begin(), edges.end());
    T mst_cost = 0;
    int num_edges = 0;
    for (auto& [w, u, v] : edges) {
        if (uf.is_same_set(u, v)) continue;
        uf.union_set(u, v);
        mst_cost += w;
        if (++num_edges == n - 1) break;
    return mst_cost;
void \_prim\_process(int u, vector < bool>\& in\_mst, priority\_queue < pair < T, int>, vector < pair < T, int>>, greater < pair < T, int>>>& pq) { } \\
    in_mst[u] = true;
    for (auto& [v, w] : adj[u])
        if (!in_mst[v]) pq.push({w, v});
T prim() {
    vector<bool> in_mst(n, false);
    priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> pq;
   __prim_process(0, in_mst, pq);
T mst_cost = 0;
    int num edges = 0;
    while (!pq.empty()) {
        auto [w, u] = pq.top();
        pq.pop();
        if (in_mst[u]) continue;
        mst_cost += w;
         __prim_process(u, in_mst, pq);
        if (++num_edges == n - 1) break;
    return mst_cost;
```