Exercise 1 Laser Model

Moritz Wolter

May 14, 2015

1 The equations

$$\dot{n} = GnN - kn. \tag{1}$$

$$\dot{N} = -GnN - fN + p. \tag{2}$$

2 First Order Analysis

Assume that the number of excited atoms remains quasi-static.

$$\dot{N} \approx 0.$$
 (3)

$$\Rightarrow \dot{n} = Gn \cdot \frac{p}{Gn+f} - kn. \tag{4}$$

(5)

2.1 Linear Stability analysis

In the two dimensional case fixed points are at the intersections of the first derivative with the real axis. Thus the can be found by solving $\dot{n} = 0$. Leading to the problem:

$$0 = n(\frac{Gp}{Gn+f} - k) \tag{6}$$

Which has the zeros 0 and $\frac{p}{k} - \frac{f}{G}$. To learn more about the nature of the fixed points one has to set the derivative of 4 to zero. Using the Quotient rule the expression:

$$\ddot{n} = \frac{Gfp}{(Gn+f)^2} - k \tag{7}$$

is obtained. A fixed point is stable if the second derivative is negative. Likewise it is unstable if the second derivative is positive ¹. Evaluating the second derivative for the fixed point a zero leads to $\ddot{n}(0) = \frac{Gp}{f} - k$ which leads to a values of $p_c = \frac{fk}{G}$. Thus the fixed points becomes unstable if $p > p_c$.

Figure 1 indicates a trans-critical bifurcation.

¹Strogatz, p.25

Figure 1: Plot of the position of the right zero and the parameter p (left). Plot of \dot{n} for different p values with the zeros marked with red stars. G=f=k=1 is assumed, leading to $p_c=1$.