ДНІПРОВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. О. ГОНЧАРА ФАКУЛЬТЕТ ПРИКЛАДНОЇ МАТЕМАТИКИ КАФЕДРА ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ ТА МЕТЕМАТИЧНОЇ КІБЕРНЕТИКИ

Теорія

до лабораторної роботи №3
«Методи розв'язування нелінійного рівняння»
з курсу «Методи обчислень»

Виконав:

студент групи $\Pi A-18-1(2)$

Лєшанов Андрій

Зміст

Постановка задачі		9	
1.	Осн	овні теоретичні відомості	4
	1.1.	Методи відокремлення дійсних коренів	4
	1.2.	Загальна ідея ітераційних методів уточнення кореня	(
	1.3.	Геометричне зображення ітераційних методів	(
	1.4.	Метод простої ітерації	11
	1.5.	Метод Ньютона	12
	1.6.	Метод хорд	14
	1.7.	Комбінований метод	16

Постановка задачі

Розглянемо рівняння

$$f(x) = 0$$
, де $f(x) \in C[a, b]$. (1)

Число ξ , що перетворює рівняння (1) у тотожність, будемо називати коренем цього рівняння, або нулем функції f(x). Розв'язати рівняння - означає знайти всі його корені. Корені рівняння можуть бути дійсними, комплексними, кратними, ізольованими (простими).

Лише у виняткових випадках розв'язок рівняння можна побудувати у вигляді формули. Крім того, у деяких випадках рівняння (1) може мати коефіцієнти, які відомі лише наближено, тоді задача про точне визначення коренів такого рівняння втрачає сенс.

Наближений пошук ізольованих дійсних коренів складається з двох етапів: відокремлення коренів і уточнення.

Відокремити дійсний корінь - означає знайти інтервал (за можливістю малий), який містить лише один корінь рівняння.

Уточнити корінь - означає довести його наближене значення до потрібної точності.

1. Основні теоретичні відомості

1.1. Методи відокремлення дійсних коренів

При відокремленні дійсних коренів аналітичним методом слід опиратися на першу теорему Больцано-Коші.

Теорема. Якщо визначена і неперервна на відрізку [a, b] функція f(x) приймає на кінцях цього відрізку значення різних знаків, тобто $f(a) \cdot f(b) < 0$, то цей відрізок містить хоча б 1 дійсний корінь рівняння f(x) = 0.

Корінь буде єдиним, якщо f'(x) існує та зберігає знак на [a, b], тобто f(x) є монотонною.

Процес відокремлення коренів на [a, b] починається з визначення знаків f(x) у межових точках x = a, x = b. Якщо на кінцях [a, b] f(x) набуває значень різних знаків, то на цьому проміжку розташована непарна кількість коренів рівняння (1), якщо одного знаку - на відрізку або не існують корені рівняння, або їх кількість парна.

Далі визначаються знаки функції в деяких проміжних точках $x = \alpha_1, \alpha_2, \ldots, \alpha_n$, вибір яких враховує особливості функції. Якщо $f(\alpha_k) \cdot f(\alpha_{k+1}) < 0$, то відрізок $[\alpha_k, \alpha_{k+1}]$ містить корені рівняння (1). Якщо f'(x) зберігає знак $\forall x \in [\alpha_k, \alpha_{k+1}]$, то корінь на цьому відрізку єдиний, якщо змінює - відрізок треба розбити на ще менші відрізки так, щоб f'(x) зберігала знак на кожному з них.

Процес вважається закінченим, коли визначені проміжки монотонності f(x), на кінцях яких f(x) набуває значень різних знаків.

Універсальним методом відокремлення коренів є побудова графіка функції y = f(x) за допомогою ЕОМ (графічний метод). Координати точок перетину графіка з віссю абсцис і є нулями функції f(x).

При застосуванні цього методу інколи буває зручно записати спочатку рівняння (1) у вигляді $\varphi(x) = \psi(x)$ і далі побудувати графіки функцій $y = \varphi(x)$ і $y = \psi(x)$. Абсциси точок перетину всіх графіків і будуть значеннями коренів.

Теорема 1. Алгебраїчне рівняння n-го степеня має n комплексних коренів, причому кожен корінь рахується стільки разів, яка його кратність.

Теорема 2. Якщо в алгебраїчного рівняння всі коефіцієнти дійсні, то комплексні корені (якщо вони є) будуть обов'язково комплексно спряженими парами.

Наслідок. Алгебраїчне рівняння непарного степеня з усіма дійсними коефіцієнтами має хоча б 1 дійсний корінь.

Теорема 3. В алгебраїчному рівнянні з усіма дійсними коефіцієнтами кількість додатніх коренів (з урахуванням кратності) дорівнює кількості змін знаків у послідовності коефіцієнтів $\alpha_1, \alpha_2, \ldots, \alpha_n$ або менше на парне число. Нульові коефіцієнти рівняння не враховуються.

Кількість від'ємних коренів можна знайти, якщо застосувати теорему 3 до рівняння $P_n(-x) = 0$.

Теорема Штурма. Нехай P(x) - алгербаїчний многочлен з усіма дійсними коефіцієнтами, a і b (a < b) - дійсні числа, які не є його нулями, тобто $P(a) \neq 0$, $P(b) \neq 0$; $f_0(x), f_1(x), \ldots, f_m(x)$ - система функцій Штурма, побудована для P(x) на [a, b]. Тоді кількість різних (без урахування кратності) дійсних коренів рівняння $P_n(-x) = 0$, що належать [a, b], дорівнює різниці N(a) - N(b), де N(a) - кількість змін знаків у послідовності значень $f_0(a), f_1(a), \ldots, f_m(a)$, а N(b) - кількість змін знаків у послідовності значень $f_0(b), f_1(b), \ldots, f_m(b)$. Нульові значення в цих послідовностях не приймаються до уваги (пропускаються).

Система функцій Штурма $f_i(x)$, $i=\overline{0,m}$ для полінома P(x) будується так. Дві перші функції знаходяться за правилом: $f_0(x)=P(x)$, $f_1(x)=P'(x)$. Кожна з наступних функцій $f_i(x)$, $i=\overline{2,m}$ знаходиться як остача від ділення $f_{i-2}(x)$ на $f_{i-1}(x)$, але взята з протилежним знаком, тобто якщо записати $f_{i-2}(x)=f_{i-1}(x)\cdot q(x)+r_i(x)$, де $r_i(x)$ - остача, то $f_i(x)=-r_i(x)$. За цим правилом знаходяться функції до останньої не рівної нулю остачі. Функції системи Штурма можно будувати з точністю до додатного сталого множника.

У випадку, коли поліном P(x) не має кратних дійсних коренів остання функція у системі $f_m(x)$ дорівнює сталому не рівному нулю числу, та m=n, де n

- степінь алгебраїчного рівняння. Також теоремою можна користуватися і у випадку присутності кратних дійсних коренів, тоді кратність теорема не враховує, а функція $f_m(x)$ є алгебраїчним поліномом степеня вище нульового, тобто m < n.

1.2. Загальна ідея ітераційних методів уточнення кореня

Нехай відомо, що рівняння (1) на [a, b] має єдиний дійсний ізольований корінь ξ , функція $f(x) \in C^{(2)}[a, b]$, причому f'(x) та f''(x) зберігають знак на [a, b]. Рівняння (1) перепишемо у більш зручному для ітерування вигляді

$$x = \varphi(x). \tag{2}$$

Помножимо обидві частини рівності (1) на деяку неперервну функцію $\psi(x) \neq 0, x \in [a, b]$, а потім до лівої та правої частин одержаної рівності додамо x. Отримаємо:

$$x + \psi(x) \cdot f(x) = 0 \cdot \psi(x) + x.$$

Позначимо

$$\varphi(x) \equiv x + \psi(x) \cdot f(x), \tag{3}$$

і перейдемо до вигляду (2). Легко бачити, що корені рівнянь (2) і (1) збігаються на [a, b].

Далі на [a, b] обираємо довільну точку x_0 як початкове наближення до кореня ξ , а потім за допомогою ітераційної формули

$$x_{n+1} = \varphi(x), \ n = 0, 1, \dots$$
 (4)

будуємо послідовність

$$x_0, x_1, x_2, \dots, x_n, \dots \tag{5}$$

Ітераційний метод збігається, якщо послідовність (5) прямує до кореня ξ , тобто виконується умова

$$\lim_{n \to \infty} x_n = \xi, \text{ aloo } \lim_{n \to \infty} |\xi - x_n| = 0.$$
 (6)

Якщо ітераційний метод збігається, то число x_n - окремий член послідовності (5) - можна вважати наближеним значенням кореня ξ .

Теорема (збіжності). Нехай рівняння (2) має єдиний дійсний корінь $\xi \in [a, b]$ і нехай функція $\varphi(x)$ така, що виконуються умови:

- 1) $\varphi(x) \in [a, b]$ при $\forall x \in [a, b]$;
- 2) $\exists \varphi'(x)$ і $|\varphi'(x)| \leqslant q < 1$ для $\forall x \in [a, b]$.

Тоді ітераційний метод буде збігатися при будь-якому виборі нульового наближення $x_0 \in [a, b]$, і для наближеного розв'язку x_n , обчисленого за формулою (4), буде виконуватись така нерівність:

$$|\xi - x_n| \leqslant \frac{q}{1-q} |x_n - x_{n-1}|.$$
 (7)

Доведення. Візьмемо довільно $x_0 \in [a, b]$ та за ітераційною формулою (4) побудуємо числову послідовність (5).

Використовуючи теорему Лагранжа:

$$\xi - x_n = \varphi(\xi) - \varphi(x_{n-1}) = \varphi'(\eta) \cdot (\xi - x_{n-1}),$$

де $\eta \in [a, b]$. З добутої рівності можна записати:

$$|\xi - x_n| = |\varphi'(\eta)| \cdot |\xi - x_{n-1}| \le q \cdot |\xi - x_{n-1}| \le q^2 \cdot |\xi - x_{n-2}| \le \ldots \le q^n \cdot |\xi - x_0|$$
.

Якщо в останній нерівності число $n \to \infty$, отримаємо:

$$\lim_{n \to \infty} |\xi - x_n| \leqslant \lim_{n \to \infty} q^n \cdot |\xi - x_0| = 0.$$

Це означає, що умова (6) виконується, тобто метод збігається, причому незалежно від вибору нульового наближення $x_0 \in [a, b]$.

Для доведення (7) виконаємо перетворення:

$$|\xi - x_n| \le q \cdot |\xi - x_n + x_n - x_{n-1}| \le q \cdot (|\xi - x_n| + |x_n - x_{n-1}|).$$

Звідси добудемо шукану нерівність (7). Теорему доведено.

При застосуванні ітераційних методів нерівність (7) використовується для оцінки похибки наближеного розв'язку x_n . Як тільки виконується умова

$$\frac{q}{1-q}\left|x_n - x_{n-1}\right| \leqslant \epsilon,\tag{8}$$

то $|\xi - x_n| \le \epsilon$. На нерівність (8) можна дивитися як на умову зупинення ітераційного процесу, при цьому число q треба знайти за формулою

$$q = \max_{x \in [a, b]} |\varphi'(x)|. \tag{9}$$

Якщо число q важно знайти, то замість (7) можна використати:

$$|\xi - x_n| \leqslant \frac{|f(x_n)|}{\min_{x \in [a, b]} |f'(x)|}.$$
(10)

Для доведення (10) візьмемо розвинення

$$f(x_n) = f(\xi) + (x_n - \xi) \cdot f'(\tilde{x}), \ \tilde{x} \in (\xi, x_n),$$

і, припускаючи, що $f'(x) \neq 0, \ x \in [a, b]$, знайдемо потрібну різницю

$$\xi - x_n = -\frac{f(x_n)}{f'(\tilde{x})}.$$

Звідси і випливає нерівність (10). Якщо f''(x) зберігає знак на [a, b], то f'(x) монотонна, тоді $\min_{x \in [a, b]} |f'(x)| = \min \{|f'(a)|, |f'(b)|\}.$

Зауваження:

1. Інколи на практиці близькість наближеного розв'язку x_n до кореня ξ оцінюють за значенням $|f(x_n)|$, а не $|\xi - x_n|$.

Число $|f(x_n)|$ може бути меншим, ніж ξ , а точка x_n при цьому знаходиться ще далеко від точки ξ . Можливо і напваки, число $|f(x_n)|$ ще перевищує ϵ , а відстань $|\xi - x_n|$ мала і вже треба зупиняти ітераційний процес.

2. Оскільки метод ітерації збігається при будь-якому виборі $x_0 \in [a, b]$, якщо $|\varphi'(x)| < 1$, то цей метод має властивість самовиправленості. Це означає, що окрема помилка при обчисленні деякого наближення x_n , яка не виводить це наближення за межі [a, b], не впливає на кінцевий результат. Помилкове значення x_n

можна вважати новим нульовим наближенням x_0 . Можливо зміниться лише обсяг обчислювальної роботи. Властивість самовиправленості робить ітераційний метод одним із надійних методів числення.

3. Чим менше буде число q, тим вищою буде швидкість збіжності. Це випливає з (7). Крім того, з ітераційної формули (4) можна знайти залежність між похибками двох сусідніх ітерацій. Позначимо $\xi - x_n \equiv r_n, \ n = 0, 1, \ldots$ На підставі (4) маємо залежність $\xi - r_{n+1} = \varphi(\xi - r_n), \ n = 0, 1, \ldots$ Звідси знаходимо $r_{n+1} = \xi - \varphi(\xi - r_n)$. Вважаючи похибку малою величиною, перепишемо останню рівність у вигляді розкладу в ряд Тейлора:

$$r_{n+1} = \xi - \varphi(\xi) + \frac{r_n}{1!} \varphi'(\xi) - \frac{r_n^2}{2!} \varphi''(\xi) + \dots - \frac{(-r_n)^m}{m!} \varphi^{(m)}(\xi) + O\left(|r_n|^{m-1}\right).$$

Оскільки ξ - точний корінь рівняння, то $\xi = \varphi(\xi)$ і остаточно маємо:

$$r_{n-1} = \frac{r_n}{1!} \varphi'(\xi) - \frac{r_n^2}{2!} \varphi''(\xi) + \dots - \frac{(-r_n)^m}{m!} \varphi^{(m)}(\xi) + O\left(|r_n|^{m-1}\right).$$

Якщо в (2) функція $\varphi(x)$ така, що виконуються умови

$$\varphi'(\xi) = 0, \ \varphi''(\xi) = 0, \dots, \ \varphi^{(m-1)}(\xi) = 0, \ \varphi^{(m)}(\xi) \neq 0,$$
 (11)

TO

$$r_{n+1} = (-1)^{m+1} \frac{(r_n)^m}{m!} \varphi^{(m)}(\xi) + O(|r_n|^{m+1}) = O(|r_n|^m).$$

У цьому випадку кажуть, що метод має m-тий порядок збіжності. Чим більше число m, тим більша швидкість збіжності методу.

1.3. Геометричне зображення ітераційних методів

Нехай в околі дійсного кореня $x = \xi$ дійсна функція $\varphi(x)$, що стоїть праворуч у (2), має неперервну похідну $\varphi'(x)$, таку що $\varphi'(x) \leqslant q < 1$. Якщо $\varphi'(x)$ зберігає знак в околі кореня ξ , то ітераційні методи мають наочну геометричну інтерпретацію (рис. 1).

На площині xoy будуємо графіки функцій y = x та $y = \varphi(x)$. Абсциса точки перетину цих графіків і буде шуканим дійсним коренем ξ рівняння (2). Починаючи

Рис. 1. Геометричне зображення ітераційний методів: a - сходинки, b - спіраль

з деякої точки $A_0(x_0, \varphi(x_0))$, будуємо ламану $A_0B_1A_1B_2A_2\dots$, ланки якої по черзі паралельні осям ox та oy. На кривій $y=\varphi(x)$ розташовані вершини $A_0, A_1, A_2\dots$, а вершини $B_1, B_2\dots$ - на прямій y=x. Спільні абсциси точок A_1 і B_1, A_2 і B_2 є послідовними наближеннями x_1, x_2 кореня ξ .

У випадку a, коли $0 < \varphi'(x) < 1$, всі наближення знаходяться з того боку кореня ξ , з якого взято нульове наближення x_0 . Послідовність наближень монотонно прямує до кореня ξ , тобто кожне наступне наближення ближче до точного кореня, ніж попереднє.

У випадку b, коли $-1 < \varphi'(x) < 0$, наближення розташовані по черзі то з одного, то з іншого боку від кореня ξ . Кожне наступне наближення знаходиться по інший бік від кореня ξ , ніж попереднє. У цьому випадку послідовність наближень збігається до кореня ξ за коливним законом. Це означає, що корінь знаходиться завжди між двома сусідніми ітераціями, тому зручно виходити з ітераційного процесу за умови $|x_n - x_{n-1}| \leqslant \epsilon$. Коли ітераційний процес збігається за коливним законом, то треба прослідкувати, щоб $x_1 \in [a, b]$.

З рис. 1 видно, що коли в околі кореня ξ функція $|\varphi'(x)|$ близька до одиниці, то збіжність ітераційного процесу буде дуже повільною, а якщо функція $|\varphi'(x)|$ близька до нуля, то ітераційний процес збігається дуже швидко.

Якщо $\max_{x\in[a,b]}|\varphi'(x)|>1$, то процес ітерацій може розбігатися. Геометрично це показано на рис. 2 при $\varphi'(x)>1$.

Рис. 2. Геометричне зображення розбіжного методу

Якщо $\varphi'(x)$ не зберігає знак в околі кореня ξ , але умова збіжності $\varphi'(x) < 1$ виконується, то ітераційний процес буде збігатися за схемою, яка буде якоюсь комбінацією розглянутих двох випадків, показаних на рис. 1. При цьому, для алгоритму не можна дати такого наочного геометричного зображення, як у розглянутих двох випадках.

Ітераційні методи відрізняються один від одного вибором функції $\psi(x)$ у формулі (3).

1.4. Метод простої ітерації

Цей метод добудемо як частковий випадок ітераційних методів, якщо функцію $\psi(x)$, що знаходиться у правій частині рівності (3), виберемо у вигляді

$$\psi(x) = -k = const \neq 0.$$

Ітераційна формула (4) для методу простої ітерації приймає вигляд

$$x_{n+1} = x_n - k \cdot f(x_n), \ n = 0, 1, \dots$$

Вважаємо, що на [a, b] похідна f'(x) існує, неперервна та зберігає знак (це умова застосування методу). Коефіцієнт k виберемо так, щоб виконувалась умо-

ва $|\varphi'(x)|=|1-k\cdot f'(x)|<1$ (щоб метод збігався). Останню нерівність можна переписати у вигляді $-1<1-k\cdot f'(x)<1$, або у вигляді системи двох нерівностей

$$\begin{cases} k \cdot f'(x) > 0, \\ k \cdot f'(x) < 2 \end{cases} \tag{12}$$

Нехай $m_1 \leqslant |f'(x)| \leqslant M_1, \ \forall x \in [a, b].$ Розглянемо 2 випадки.

1) f'(x) > 0, $\forall x \in [a, b]$. З умов (12) добуваємо нерівності $0 < k < \frac{2}{f'(x)}$. Звідси випливає, що коефіцієнтом k може бути будь-яке число з проміжку $\left(0; \frac{2}{M_1}\right)$.

2) f'(x) < 0, $\forall x \in [a, b]$. З умов (12) добуваємо нерівності $\frac{-2}{|f'(x)|} < k < 0$. Звідси випливає, що якщо k належить проміжку $\left(\frac{-2}{M_1}; 0\right)$, то $|\varphi'(x)| \leqslant q < 1$.

В обох випадках швидкість збіжності залежить від числа q. Метод буде збігатися найшвидше, якщо

$$k = \frac{2}{M_1 + m_1}$$
 у випадку $f'(x) > 0, \ \forall x \in [a, b].$ (13)

$$k = \frac{-2}{M_1 + m_1}$$
 у випадку $f'(x) < 0, \ \forall x \in [a, b].$ (14)

Доведемо формулу (13). Пам'ятаємо, що $q = \max_{x \in [a,b]} |\varphi'(x)|$. Позначимо $|\varphi'(x)| = |1 - k \cdot f'(x)| \equiv \rho(k,x)$. Тут k є аргументом, x - параметром функції $\rho(k,x)$. Кожному значенню $x \in [a,b]$ відповідає свій графік функції $\rho(k,x)$ (рис. 3). Тоді $q = \max_{x \in [a,b]} \rho(k,x) \equiv q(k)$. Оскільки f'(x) > 0, $\forall x \in [a,b]$, то $k \in \left(0; \frac{2}{M_1}\right)$. Позначимо $k_{\text{опт}}$ таке значення аргументу k, при якому $q(k_{\text{опт}})$ буде мінімальним, тобто

$$q(k_{ ext{oht}}) = \min_{k \in \left(0; rac{2}{M_1}
ight)} q(k).$$

Задачу мінімізації функції q(k) розв'язуємо графічно. З рис. З видно, що функція q(k) своє мінімальне значення приймає в точці D, де

$$1 - m_1 \cdot k_{\text{опт}} = -(1 - M_1 \cdot k_{\text{опт}}).$$

Звідси знаходимо $(M_1+m_1)\cdot k_{\text{опт}}=2$, тобто $k_{\text{опт}}=\frac{2}{M_1+m_1}$. Отже, формула (13) доведена.

Для випадку $f'(x) < 0, \ \forall x \in [a, b]$ формула (14) доводиться аналогічно.

Зауважимо, що $\varphi'(\xi) = 1 - k \cdot f'(\xi) \neq 0$. Це означає, що порядок збіжності методу простої ітерації дорівнює одиниці.

Рис. 3. Графічне доведення формули (13)

1.5. Метод Ньютона

Цей метод одержимо, якщо функцію $\psi(x)$, шо стоїть у правій частині формули $\varphi(x) \equiv x + \psi(x) \cdot f(x)$, виберемо у вигляді $\psi(x) = -\frac{1}{f'(x)}$, тоді $\varphi(x) = x - \frac{f(x)}{f'(x)}$. Вважаємо, що на [a,b] похідні f'(x), f''(x) існують, неперервні та зберігають знак. Знаходимо похідну $\varphi(x)$

$$\varphi'(x) = 1 - \frac{f'(x)}{f'(x)} + \frac{f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$
(1)

Як видно з (1), $\varphi'(\xi) = 0$. З цього, $\exists O(\xi) : \max_{x \in [a,b]} |\varphi'(x)| < 1$, тобто ітераційний процес буде збігатися. Отже, якщо метод Ньютона розбігається, то треба звузити відрізок [a,b].

З (1) знаходимо

$$\varphi''(\xi) = \frac{f''(\xi)}{f'(\xi)} \neq 0 \tag{2}$$

. Це означає, що в умові $\varphi^{(i)}(\xi)=0, i=\overline{0,m}$, m=2, тобто, порядок збіжності методу Ньютона дорівнює двом.

Запишемо ітераційну формулу методу Ньютона

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1 \dots$$
 (3)

Якщо x_0 вибрати так, щоб $f(x_0) \cdot f''(x_0) > 0$, то $\varphi'(x_0) > 0$, тому всі наближення, починаючи з x_0 , будуть знаходитись з одного і того ж боку від кореня ξ (з того, де розташоване x_0) та будуть прямувати до ξ монотонно.

Якщо x_0 вибрати так, щоб $f(x_0) \cdot f''(x_0) < 0$, то наближення x_1 буде з іншого боку від кореня ξ , ніж x_0 , і якщо x_1 не вийде за межі відрізка [a,b], то всі наступні наближення x_2, x_3, \ldots будуть з того боку від кореня ξ , з якого знаходиться x_1 . Отже, послідовність x_1, x_2, x_3, \ldots буде монотонно прямувати до кореня ξ . Якщо x_1 вийде за межі [a,b], то треба замінити x_0 .

Метод Ньютона має своє власне геометричне зображення, показане на рисунку Ітераційну формулу (3) можна добути з геометричного зображення методу, для цього треба записати рівняння дотичного графіка функції y = f(x) в точці $(x_n, f(x_n))$

$$y = f(x_n) + (x - x_n)f'(x_n)$$

Точка перетину цієї дотичної з віссю абцис має координати $(x_{n+1}, 0)$. Підставивши координати цієї точки в рівняння дотичної, добудемо формулу (3)

1.6. Метод хорд

Цей частинний випадок ітераційних методів добудемо, якщо функцію $\psi(x)$, шо стоїть у правій частині формули $\varphi(x) \equiv x + \psi(x) \cdot f(x)$, виберемо у вигляді

$$\psi(x) = -\frac{x - c}{f(x) - f(c)},$$

де c - якась точка з [a,b]. З формули $\varphi(x)\equiv x+\psi(x)\cdot f(x)$ маємо,

$$\varphi = x - \frac{(x-c)f(x)}{f(x) - f(c)}.$$

Ітераційна формула методу хорд має вигляд

$$x_{n+1} = x_n - \frac{(x_n - c)f(x_n)}{f(x_n) - f(c)}, n = 0, 1, 2, \dots$$
(1)

Щоб проаналізувати особливості збіжності методу, знайдемо $\varphi'(x)$.

$$\varphi'(x) = 1 - \left(\frac{x - c}{f(x) - f(c)}\right)_{x}' \cdot f(x) - \frac{(x - c) \cdot f'(x)}{f(x) - f(c)} =$$

$$= 1 - f(x) \left(\frac{1}{f(x) - f(c)} - \frac{(x - c) \cdot f'(x)}{(f(x) - f(c))^{2}}\right) - \frac{(x - c) \cdot f'(x)}{f(x) - f(c)} =$$

$$= 1 - \frac{f(x)}{f(x) - f(c)} + \frac{(x - c)f'(x)}{f(x) - f(c)} \left(\frac{f(x)}{f(x) - f(c)} - 1\right) =$$

$$= \frac{f(c)}{(f(x) - f(c))^{2}} (f(c) - f(x) + (x + c)f'(x).)$$

Якщо скористатися наступним розвиненням

$$f(c) = f(x) + (c - x) \cdot f'(x) + \frac{(c - x)^2}{2!} f''(\widetilde{x}), \widetilde{x} \in (x, c)$$

то шукану похідну $\varphi'(x)$ можна переписати у вигляді

$$\varphi'(x) = \frac{f(c) \cdot f''(\widetilde{x}) \cdot (c - x)^2}{2(f(x) - f(c))^2}, \widetilde{x} \in (x, c)$$
(2)

Похідні f'(x), f''(x), зберігають знак на [a,b] (це умова застосування методу хорд), тому якщо точку c вибрати так, щоб виконувалася нерівність

$$f(c) \cdot f''(c) > 0, \tag{3}$$

то на всьому відрізку [a,b] буде виконуватись умова $\varphi(x) > 0$, а це означає, що послідовність наближень $\{x_n\}_{n=0}^{\infty}$ буде прямувати до кореня ξ монотонно. Якщо при цьому нульове наближення x_0 вибрати так, щоб

$$f(x_0) \cdot f(c) < 0 \tag{4}$$

то в знаменнику ітераційної формули (1) модулі чисел $f(x_n)$ та f(c) будуть додаватися.

Коли число c взято достатньо близьким до точного кореня ξ , то, як видно з $(2),\ \varphi'(x)$ буде малим за модулем числом за рахунок множника f(c) і тому $\exists O(\xi): |\varphi'(x)| < 1$, а це означає, що ітераційний процес буде збігатися до точного кореня ξ .

З формули (2) маємо $\varphi'(\xi) = \frac{f(c) \cdot f''(\tilde{x}) \cdot (c-\xi)^2}{2(f(c))^2} \neq 0$. Це означає, що в умовах $\varphi^{(i)}(\xi) = 0, i = \overline{0,m}, \ m=1$, тобто метод хорд має перший порядок збіжності. Метод хорл має своє власне геометричне зображення, показане на рисунке.

Ітераційну формулу (1) можна добути з геометричного зображення методу хорд. Для цього запишемо рівняння прямої, що проходить через дві точки з координатами $(x_n, f(x_n))$ та (c, f(c))

$$\frac{x - x_n}{c - x_n} = \frac{y - f(x_n)}{f(c) - f(x_n)}.$$

Ця пряма (хорда) перетинає вісь абсцис у точці з координатами $(x_{n+1}, 0)$. Підставивши координати цієї точки до рівняння хорди, добудемо формулу (1).

1.7. Комбінований метод

Методи хорд і дотичних дають наближення кореня зз різних боків. Тому часто їх застосовують у комбінації один з одним, і уточнення кореня відбувається швидше.

Методи комбінують так.

Якщо $f'(x_0)f''(x_0) > 0$, то метод хорд дає наближене значення кореня з недостачею, а метод дотичних - з надлишком.

Якщо ж $f'(x_0)f''(x_0) < 0$, то за методом хорд отримаємо значення кореня α з надлишком, а методом дотичних - з недостачею.

У всіх випадках справжній корінь розміщений між наближеними значеннями, отриманими за методами хорл і дотичних, тобто

$$a < \underline{x}_n < \alpha < \overline{x}_n < b$$

де \underline{x}_n - наближене значення кореня з недостачею; \overline{x}_n - наближене значення кореня з надлишком.

• Нехай $f'(x_0)f''(x_0) > 0$, тоді з кінця a лежать наближені значення, отримані за методом хорд, а з кінця b - за методом дотичних. Ітераційний процес матиме вигляд

$$\underline{x}_{0} = a, \overline{x}_{0} = b;$$

$$\underline{x}_{n} = \underline{x}_{n-1} - \frac{f(\underline{x}_{n-1})(\overline{x}_{n-1} - \underline{x}_{n-1})}{f(\overline{x}_{n-1}) - f(\underline{x}_{n-1})};$$

$$\overline{x}_{n} = \overline{x}_{n-1} - \frac{f(\overline{x}_{n-1})}{f'(\overline{x}_{n-1})}; n = 1, 2, \dots$$

$$(1)$$

• Нехай $f'(x_0)f''(x_0) < 0$, тоді, навпаки, з кінця a є наближені значення кореня за методом дотичних, а з кінця b - за методом хорд

$$\underline{x}_{0} = a; \overline{x}_{0} = b;$$

$$\underline{x}_{n} = \underline{x}_{n-1} - \frac{f(\underline{x}_{n-1})}{f'(\underline{x}_{n-1})};$$

$$\overline{x}_{n} = \overline{x}_{n-1} - \frac{f(\overline{x}_{n-1})(\overline{x}_{n-1} - \underline{x}_{n-1})}{f(\overline{x}_{n-1}) - f(\underline{x}_{n-1})}; n = 1, 2 \dots$$

$$(2)$$

Ітераційний процес закінчується, коли $|\overline{x}_n - \underline{x}_n| < \epsilon$. За значення кореня вибираємо середину звуженого проміжку

$$a = \frac{1}{2}(\overline{x}_n + \underline{x}_n).$$

Комбінований метод є нестаціонарним методом уточнення дійсних коренів рівняння f(x) = 0 Збігається він значно швидше, ніж метод дотичних.

Метод хорд є ітераційним методом першого порядку, а метод Ньютона - другого порядку. Метод Кьютона можна застосовувати і для знаходження комплексних коренів. Тоді для випадку дійсної функції f(x) початкове наближення x_0 повинно бути комплексним числом.

Швидкість збіжності розглянути методів така:

- метод ітерацій: $|x_n a| \leq M^n |x_0 a|$, де $M = \max_{[a,b]} |\varphi'(x)|$;
- метод хорд: $|x_n a| \leq \frac{|f(x_n)|}{m}$, де $m = \min_{[a,b]} |f'(x)|$;

• метод дотичних:
$$|x_n - a| \leq \frac{M_2}{2m} |x_{n-1} - a|^2$$
, де $M_2 = \max_{[a,b]} |f''(x)|$.

Зауваження 1. За умов теореми метод ітерацій збігається для довільного початкового значення $x_0 \in [a,b]$. Завдяки цьому він є самовиправним, тобто окрема помилка в обчисленнях не впливає на кінцевий результат, бо помилкове значення можна розглядати як нове початкове наближення x_0 . Ця властивість робить метод ітерацій найнадійнішим методом обчислень.

На практиці часто виникає ситуація, коли проміжок [a,b] досить великий і умова $|\varphi'(x)| < 1$ виконується лише в деякому околі кореня, тому в разі невдалого вибору початкового наближення x_0 послідовні наближення $x_n = \varphi(x_{n-1})(n=1,2,\ldots)$ можуть вийти за межі проміжку [a,b].

Зауваження 2. У методі дотичних з формули (1) бачимо, що чим більше числове значення похідної f'(x) в околі заданого кореня, тим менша поправка, яку требя додати до n-го наближення, щоб отримати (n+1)-ше наближення. Тому метод Ньютона особливо зручно застосовувати тоді, коли в околі заданого кореня графік функції має велику стрімкість. Однак коли числове значення похідної f'(x) біля кореня мале, то поправки будуть великими й обчислення кореня за цим методом може виявитись довгим, а іноді й зовсім неможливим. Отже, якщо крива y = f(x) поблизу точки перетину з віссю Ox майже горизонтальна, то застосовувати метод Ньютона для розв'язування рівняння f(x) = 0 не рекомендуємо.