1 Лекция 5 Изоморфизм Карри-Ховарда (завершение), Унификация

1.1 Изоморфизм Карри-Ховарда

Определение 1.1. Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M$: σ влечет $|\Gamma| \vdash \sigma$
- 2. $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M : \sigma$, где $\Delta = \{x_{\sigma} : \sigma \mid \sigma \in \Gamma \}$

Пример.

 $\{f:\alpha \to \beta, x:\beta\} \vdash fx:\beta$

Применив изоморфизм Карри-Ховарда получим: $\{\alpha \to \beta, \beta\} \vdash \beta$

 $oxed{eta}$ оказательство.

 $\Pi.1$ доказывается индукцией по длине выражения т.е. есть 3 правила вывода. убирая P и Q.

П.2 доказывается аналогичным способом но действия обратные.

Т.е. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот.

Определение 1.2. Расширенный полином определяется формулой:

$$E(p,q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p,q), & \text{if } p, q \neq 0 \end{cases}$$

, где C — константа, p_1, p_2, p_3 — выражения, составленные из *, +, p, q и констант

по сути расширенный полином это множество функций над натуральными числами (черчевскими нумералами).

Пусть $v=(\alpha\to\alpha)\to(\alpha\to\alpha)$, где α —произвольный тип и пусть $F\in\Lambda$, что $F:v\to v\to v$, то существует расширенный полином E, такой что $\forall a,b\in\mathbb{N}$ $F(\overline{a},\overline{b})=_{\beta}\overline{E(a,b)}$, где \overline{a} —черчевский нумерал

Теорема 1.1. У каждого терма в просто типизиреумом λ исчислении существует расширенный полином.

Утверждение 1.1. Основные задачи типизации λ исчисления

- 1. Проверка типа—выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ терма M и типа σ (для проверки типа обычно откидывают σ и рассматривают п.2).
- 2. Реконструкция типа—можно ли подставить вместо ? и $?_1$ в $?_1 \vdash M$:? подставить конкретный тип σ в ? и контекст Γ в $?_1$.

3. Обитаемость типа—пытается подобрать, такой **замкнутый** терм M и контекст Γ , что бы было выполнено $\Gamma \vdash M : \sigma$.

Определение 1.3. Алгебраический терм

Выражение типа
$$\Theta = a | (f_k \Theta_1 \cdots \Theta_n),$$
 где a -переменная, $(f_k \Theta_1 \cdots \Theta_n)$ -применение функции

Пример.

- 1. (fab(ga))
- 2. Известно, что \rightarrow -функция, тогда выражение $((a \rightarrow b) \rightarrow c) \Longleftrightarrow (\rightarrow (\rightarrow ab)c)$

1.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$ Система уравнений в алгебраических термах

Определение 1.4. Система уравнений в алгебраических термах

$$\left\{egin{aligned} \Theta_1 &= \sigma_1 \ dots \ \Theta_n &= \sigma_n \end{aligned}
ight.$$
где Θ_i и σ_i — термы

Определение 1.5. $\{a_i\} = A$ -множество перменных, $\{\Theta_i\} = T$ -множество термов.

Определение 1.6. Подстановка—отображение вида: $S_0: A \to T$, которое является решением в алгебраических термах.

Т.е. S_0 – конечное множество переменных $a_1 \cdots a_n$ на которых $S_0(a_i) = \Theta_i$ либо $S_0(a_i) = a_i$.

Доопределим S на все T т.е. $S: T \to T$, где

- 1. $S(a) = S_0(a)$
- 2. $S(f(\Theta_1 \cdots \Theta_k)) = f(S(\Theta_1) \cdots S(\Theta_k))$

По сути S тоже самое что и много if'ов либо map строк

Определение 1.7. Решить уравнение в алгебраических термах—найти такое S, что $S(\Theta_1) = S(\Theta_2)$

Пример.

Заранее обозначим: a, b — переменные, f, g, h — функции

- 1. f(a(gb)) = f(he)d имеет решение S(a) = he и S(d) = gb
 - (a) S(fa(qb)) = f(he)(qb)
 - (b) S(f(he)d) = f(he)(qb)
 - (c) f(he)(gb) = f(he)(gb)
- 2. fa = gb-решений не имеет

Таким образом, что бы существовало решение необходимо равенство строк полученной подстановки

1.3 Алгоритм Унификации

- 1. Система уравнений E_1 эквивалентна E_2 , если они имеют одинаковые решения(унификаторы).
- 2. Любая система E эквивалентна некторому уравнению $\Sigma_1 = \Sigma_2$.

 $oxed{\it Доказательство}.$

Возьмем функциональный символ f, не использующийся в E,

$$E = \begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$

это же уравнение можно записать как $-f\Theta_1\dots\Theta_n=f\sigma_1\dots\sigma_n$

Если сущесвтует подстановка S такая, что

$$S(\Theta_i) = S(\sigma_i) \; \forall i, \text{ To } S(f \; \Theta_1 \ldots \Theta_n) = f \; S(\sigma_1) \ldots S(\sigma_n)$$

Обратное аналогично.

- 3. Рассмотрим операции
 - (а) Редукция терма

Заменим уравнение вида $-f_1~\Theta_1\ldots\Theta_n=f_1~\sigma_1\ldots\sigma_n$ на систему уравнений

$$\Theta_1 = \sigma_1$$

:

$$\Theta_n = \sigma_n$$

(b) Устранение переменной

Пусть есть уравне
ие $x=\Theta$, заменим во всех остальных уравнениях переменную
 xна терм Θ

Утверждение 1.2. Эти операции не изменяют множества решений.

Определение 1.8. Система уравнений в разрешеной форме если

- 1. Все уравнения имеют вид $a_i = \Theta_i$
- 2. Каждый из a_i входит в систему уравнений только раз

Определение 1.9. Система несовместима если

- 1. существует уравнение вида $f \Theta_1 \dots \Theta_n = g \sigma_1 \dots \sigma_n$, где $f \neq g$
- 2. существует уравнение вида $a=f\ \Theta_1\dots\Theta_n$, причем a выходит в какой-то из Θ_i

3

1.4 Алгоритм унификации

- 1. Пройдемся по системе, выберем такое уравнение, что оно удовлетворяет одному из условий:
 - (a) Если $\Theta_i = a_i$, то перепишем, как $a_i = \Theta_i$, Θ_i —не переменная
 - (b) $a_i = a_i y$ далим
 - (c) $f \Theta_1 \dots \Theta_n = f \sigma_1 \dots \sigma_n$ применим редукцию термов
 - (d) $a_i = \Theta_i$ Применим подстановку переменной т.е. подставим во все остальне уравнения Θ_i вместо a_i
- 2. Проверим разрешима ли система, совместима ли система (два пункта несовместимости)
- 3. повторим пункт 1

Утверждение 1.3. Алгоритм не изменяет множетва решений

Утверждение 1.4. Несовместимая решения не имеет решений

Утверждение 1.5. Система в разрешеной форме имеет решение:

$$\begin{cases} a_1 = \Theta_1 \\ \vdots \\ a_n = \Theta_n \end{cases}$$
 wheet решение—
$$\begin{cases} S_0(a_1) = \Theta_1 \\ \vdots \\ S_0(a_n) = \Theta_n \end{cases}$$

Утверждение 1.6. Алгоритм всегда закначивается

 \mathcal{A} оказательcтво.

По индукции, выберем три числа $\langle x \, y \, z \rangle$, где

x-количество переменных, которые встречаются строго больше одного раза в левой части некоторого уравнения (т.е. b не повлияет на x, а a повлияет в уравнении $f(a(ga)b) = \Theta$).

у- количество функциональных символов в системе,

z-количество уравнеий типа a=a и $\Theta=b$

3 a метим, что (a) и (b) всегда уменьшают z и иногда уменьшают x,

- (c) всегда уменьшает y иногда x и, возможно, увеличивает z,
- операция (d) всегда уменьшает x, и иногда увеличивает y.

Очевидно, что с каждой операцией a-d данная тройка уменьшается и так как $x,y,z\geq 0$, то данный алгоритм завершится за конечное время.

Пример.

Исходная система

$$E = g(x_2) = x_1$$
$$f(x_1, h(x_1), x_2) = f(q(x_3), x_4, x_3)$$

Применим пункт (c) ко второму уравнению верхней системы получим:

$$E =$$

$$g(x_2) = x_1$$

$$x_1 = g(x_3)$$

$$h(x_1) = x_4$$

$$x_2 = x_3$$

Применим пункт (d) ко второму уравнению верхней системы (оно изменит 1ое уравнение) получим:

$$E =$$

$$g(x_2) = g(x_3)$$

$$x_1 = g(x_3)$$

$$h(g(x_3)) = x_4$$

$$x_2 = x_3$$

Применим пункт (c) ко первому ур-ию и пункт (a) к третьему уравнению верхней системы

$$E = x_2 = x_3$$

$$x_1 = g(x_3)$$

$$x_4 = h(g(x_3))$$

$$x_2 = x_3$$

Применим пункт (b) к последнему уравнению и получим систему в разрешеной форме

$$E = x_2 = x_3$$
$$x_1 = g(x_3)$$
$$x_4 = h(g(x_3))$$

Решение системы:

$$S = \{ (x_1 = g(x_3)), (x_2 = x_3), (x_4 = h(g(x_3))) \}$$

Определение 1.10. $S \circ T$ -композиция подстановок, если $S \circ T = S(T(a))$

Определение 1.11. S-наиболее общий унификатор ксли любое решение сисетмы R может быть получено уточнением: $\exists T: R = T \circ S$

Утверждение 1.7. Алгоритм дает наиболее общий унификатор системы, если у нее есть решения. Если решений нет алгоритм окончится неудачей.