性能测试与分析文档

Valor-go Team

小组知乎文章:https://zhuanlan.zhihu.com/p/1923813736247964768

1. LLM部署相关的性能指标列表

- 1. 首Token返回延迟(Time to First Token)
 - 1. 定义:从用户发送请求到收到第一个输出Token的时间
 - 2. 合理性:直接影响用户体验的"响应感知"速度,对于交互场景十分重要
- 2. 输出吞吐量 (输出速度, Tokens per Second)
 - 1. 定义:模型每秒生成的Token数量(排除首Token延迟时间)
 - 2. 合理性:决定长文本生成的流畅度。低吞吐量会导致长回答"卡顿式输出",影响用户体验
- 3. 并发处理能力(Concurrent Requests Handled)
 - 1. 定义:系统在保证SLA (Service Level Agreement, 如延迟<2秒)下能同时处理的请求数
 - 2. 合理性:反映系统的实际服务容量,直接影响部署成本和业务扩展性(如应对流量高峰)
- 4. 显存占用(GPU Memory Use)
 - 1. 定义:推理时GPU显存占用
 - 2. 合理性:过高的显存占用会导致OOM错误,限制并发能力;过低则可能意味着资源浪费,需优化模型分片或量化策略
- 5. 错误率(Error Rate)
 - 1. 定义:请求失败比例(如超时、崩溃、返回非法内容)
 - 2. 合理性:直接影响服务可靠性;需区分暂时性错误(可重试)和系统性错误(如显存泄漏)
- 6. 每请求成本(Cost per Request)
 - 1. 定义:单次请求消耗的计算资源成本(如GPU秒数)
 - 2. 合理性:直接关联商业可行性,尤其在面向C端的高频调用场景(如AI写作助手)

2. 设计测试任务与性能指标选择

2.1 性能指标选择

- 1. 输出吞吐量(Tokens per Second):可直接通过llama-bench的输出查看
- 2. 显存占用(Memory Use): 运行llama-bench时,在另一个终端使用指令nvidia-smi --query-gpu=timestamp,utilization.gpu,utilization.memory.memory.total,memory.used --format=csv -l 1 > gpu_log.csv,其中的memory.used便是显存占用

2.2 测试任务

使用llama-bench进行测试(llama-bench的详细使用请参考:https://github.com/ggml-org/llama.cpp/tree/master/tools/llama-bench)

```
usage: llama-bench [options]

options:
-h, --help
```

```
--numa <distribute|isolate|numactl> numa mode (default: disabled)
                                            number of times to repeat each
  -r, --repetitions <n>
test (default: 5)
  --prio <0|1|2|3>
                                            process/thread priority
(default: 0)
  --delay <0...N> (seconds)
                                            delay between each test
(default: 0)
  -o, --output <csv|json|jsonl|md|sql> output format printed to
stdout (default: md)
  -oe, --output-err <csv|json|jsonl|md|sql> output format printed to
stderr (default: none)
 -v, --verbose
                                            verbose output
                                            print test progress indicators
 --progress
test parameters:
  -m, --model <filename>
                                            (default: models/7B/ggml-
model-q4 0.gguf)
  -p, --n-prompt <n>
                                            (default: 512)
                                            (default: 128)
  -n, --n-gen <n>
                                            (default: )
  -pg <pp,tg>
  -d, --n-depth <n>
                                            (default: 0)
                                            (default: 2048)
  -b, --batch-size <n>
 -ub, --ubatch-size <n>
                                            (default: 512)
 -ctk, --cache-type-k <t>
                                            (default: f16)
 -ctv, --cache-type-v <t>
                                            (default: f16)
 -dt, --defrag-thold <f>
                                            (default: -1)
 -t, --threads <n>
                                            (default: system dependent)
 -C, --cpu-mask <hex,hex>
                                            (default: 0x0)
  --cpu-strict <0|1>
                                            (default: 0)
  --poll <0...100>
                                            (default: 50)
  -ngl, --n-gpu-layers <n>
                                            (default: 99)
  -rpc, --rpc <rpc servers>
                                            (default: none)
  -sm, --split-mode <none|layer|row>
                                            (default: layer)
  -mg, --main-gpu <i>
                                            (default: 0)
  -nkvo, --no-kv-offload <0|1>
                                            (default: 0)
  -fa, --flash-attn <0|1>
                                            (default: 0)
  -mmp, --mmap <0|1>
                                            (default: 1)
                                            (default: 0)
  -embd, --embeddings <0|1>
  -ts, --tensor-split <ts0/ts1/..>
                                            (default: 0)
  -ot --override-tensors <tensor name pattern>=<buffer type>;...
                                            (default: disabled)
  -nopo, --no-op-offload <0|1>
                                            (default: 0)
Multiple values can be given for each parameter by separating them with
1,1
or by specifying the parameter multiple times. Ranges can be given as
'first-last' or 'first-last+step' or 'first-last*mult'.
```

1. 吞吐能力测试:

1. 不同batch size下的吞吐能力测试

```
1. 指令./llama-bench -n 0 -p 1024 -b 128,256,512,1024 -m ./models/ggml-org_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf;
```

- 2. 其中的-b 128,256,512,1024用于测试不同batch size的性能效果;
- 3. -n 0 -p 1024指不生成token,提示词长度为1024,这是常见的前向性能基准测试方法, 常用于模型部署时评估吞吐能力
- 2. 不同threads num下的吞吐能力测试
 - 1. ./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32 -m ./models/ggmlorg_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf
 - 2. -t 1,2,4,8,16即指定不同的线程数量
 - 3. 使用 prompt 长度 64 (-p 64)
 - 4. 不生成 tokens 的测试:-n 0 → pp64
 - 5. 生成 16 tokens 的测试:-n 16 → tg16
- 3. 不同GPU层数下的吞吐能力测试
 - 1. ./llama-bench -ngl 10,20,30,31,32,33,34,35,99 -m ./models/ggmlorg_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf
 - 2. -ngl指n-gpu-layers,即放置在GPU上的模型层数
- 4. 不同预填充上下文下的吞吐能力测试
 - 1../llama-bench -d 0,512 -m ./models/ggml-org_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf
 - 2. 这里的-d就是指定预填充上下文的长度
- 2. 显存占用测试: 只需在使用llama-bench测试时,在另一个终端使用指令nvidia-smi --query-gpu=timestamp,utilization.gpu,utilization.memory,memory.total,memory.used --format=csv -l 1 > gpu_log.csv,其中的memory.used便是显存占用 为了方便,我编写了一个脚本run_benchmark.sh在使用llama-bench时同时触发上述指令 收集数据时仅选择最大值(峰值)
- 3. 测试任务说明:
- pp(num) 指prompt processing, 也就是提示词长度 = num,用于测评纯前向推理速度,比如总结/编码阶段的瓶颈。
- tg(num) 指text generation, 也就是生成token 数 = num,用于测评生成速度,反映整体响应时间中的实际 token 生成效率

3. 测试数据、分析以及优化

- 选择最佳参数的原则:
 - 。 Tokens per Second越大越好,这样吞吐更快
 - 。 GPU Memory Use适中比较好

3.1.1 不同batch-size下的测试

./llama-bench -n 0 -p 1024 -b 128,256,512,1024 -m ./models/ggml-org_Qwen3-1.7B-GGUF Qwen3-1.7B-Q4 K M.gguf

model	size	params	backend	ngl	n_batch	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	128	pp1024	2457.54 ± 79.48	1374

model	size	params	backend	ngl	n_batch	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	256	pp1024	2419.84 ± 30.16	1454
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	512	pp1024	2375.89 ± 16.96	1614
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	1024	рр1024	2408.87 ± 10.85	1614

观察以上数据可知:随着batch_size增加, Tokens per Second标准差逐渐稳定, GPU Memory Use逐渐升高直至最大1614, 因此我们对batch_size的最优化选择是128, 此时Tokens per Second最大,且GPU Memory Use最小

3.1.2 不同threads_num下的测试

./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32 -m ./models/ggml-org_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf

model	size	params	backend	ngl	threads	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	1	рр64	2586.35 ± 1034.14	1224
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	1	tg16	34.37 ± 3.76	1208
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	2	рр64	2167.59 ± 42.58	1228
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	2	tg16	33.36 ± 0.34	1228
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	4	рр64	2164.58 ± 78.53	1228
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	4	tg16	33.73 ± 2.35	1224
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	8	рр64	2146.30 ± 55.10	1226
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	8	tg16	33.07 ± 1.15	1224
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	16	рр64	2084.91 ± 50.26	1228
			4 /	8				

model	size	params	backend	ngl	threads	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	16	tg16	32.79 ± 1.14	1228
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	32	рр64	2090.97 ± 47.05	1228
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	32	tg16	32.79 ± 1.37	1228

观察数据可知:

- 在pp64测试中,随着线程数增加,Tokens per Second均值逐渐减小、方差起伏不定,GPU Memory Use保持稳定
- 在tg16测试中,和pp64测试类似
- 综上,线程数的最优化选择是1

3.1.3 不同GPU层数下的测试

./llama-bench -ngl 10,20,30,31,32,33,34,35,99 -m ./models/ggml-org_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf

model	size	params	backend	ngl	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	10	pp512	2439.33 ± 98.51	998
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	10	tg128	44.79 ± 2.06	998
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	20	pp512	2840.46 ± 272.70	1304
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	20	tg128	56.58 ± 4.67	1304
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	30	pp512	2509.46 ± 378.98	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	30	tg128	33.80 ± 0.53	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	31	pp512	2641.39 ± 136.02	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	31	tg128	33.09 ± 0.26	1550

model	size	params	backend	ngl	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	32	pp512	2773.88 ± 174.51	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	32	tg128	32.74 ± 0.05	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	33	pp512	2580.63 ± 142.67	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	33	tg128	32.59 ± 0.15	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	34	pp512	2764.08 ± 129.42	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	34	tg128	32.84 ± 0.09	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	35	pp512	2571.51 ± 127.89	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	35	tg128	32.61 ± 0.04	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	pp512	2340.46 ± 479.29	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	tg128	32.39 ± 0.09	1550

- 在pp512测试中:随着ngl增加, Tokens per Second在ngl=20时表现最佳,且GPU Memory Use 在ngl=30及以后达到最大值1550
- 在tg128测试中, Tokens per Second中表现最佳的也是ngl=20, 且它的GPU Memory Use并没有达到最大
- 综合考虑我们的最优化选择为ngl=20

3.1.4 不同预填充上下文下的测试

./llama-bench -d 0,512 -m ./models/ggml-org_Qwen3-1.7B-GGUF_Qwen3-1.7B-Q4_K_M.gguf

model	size	params	backend	ngl	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	pp512	2707.51 ± 196.63	1550
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	tg128	33.38 ± 0.33	1550

model	size	params	backend	ngl	test	t/s	GPU Memory Use(MiB)
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	pp512 @ d512	2173.30 ± 21.61	1614
qwen3 1.7B Q4_K - Medium	1.19 GiB	2.03 B	CUDA	99	tg128 @ d512	31.40 ± 0.55	1614

- 无论是pp512还是tg128, d=0时Tokens per Second均大于d=512时,且d=0时可以节省GPU Memory
- 所以最优化选择是d=0

4. 关键优化操作分析

4.1 影响最大的三项优化操作

根据测试数据,按照对性能指标和LLM输出质量的影响程度从大到小排序:

4.1.1 GPU层数优化(ngl)

数据:

- ngl=10: pp512测试为2439.33 t/s, GPU内存998MiB
- ngl=20: pp512测试为2840.46 t/s , GPU内存1304MiB
- ngl=99: pp512测试为2340.46 t/s, GPU内存1550MiB

影响分析:

- **性能影响**:从ngl=10到ngl=20,吞吐量提升16.4%(2439→2840 t/s),这是所有测试中最显著的性能 提升
- 资源效率: ngl=20相比ngl=99节省246MiB GPU内存,同时保持更优性能
- 输出质量影响:GPU层数直接影响模型推理精度。过少的GPU层会导致部分计算在CPU上进行,可能影响数值精度和模型输出的一致性

原因解释:

- ngl=20时达到了GPU计算能力和内存使用的最佳平衡点
- 过高的ngl值会导致GPU内存碎片化和调度开销增加
- 适中的GPU层数确保了关键的注意力计算和前馈网络在GPU上高效执行

4.1.2 批处理大小优化(batch_size)

数据:

- batch_size=128: 2457.54 t/s , GPU内存1374MiB
- batch size=256: 2419.84 t/s , GPU内存1454MiB
- batch size=1024: 2408.87 t/s , GPU内存1614MiB

影响分析:

• 性能影响: batch size=128相比1024提升约2%的吞吐量,同时节省240MiB内存

- 并发能力: 较小的batch_size为并发请求预留更多GPU内存空间
- 输出质量影响: batch size主要影响推理效率,对单个请求的输出质量影响较小

原因解释:

- 较小的batch size减少了GPU内存碎片,提高了内存访问效率
- 避免了大batch导致的缓存失效和内存带宽瓶颈

4.1.3 线程数优化(threads)

数据:

- threads=1: pp64测试为2586.35 t/s
- threads=2: pp64测试为2167.59 t/s
- threads=32: pp64测试为2090.97 t/s

影响分析:

- 性能影响:单线程相比多线程有显著优势,threads=1比threads=32提升约24%
- 资源利用: 多线程在GPU加速场景下反而引入了额外开销
- 输出质量影响:线程数不直接影响模型输出质量,主要影响推理速度

原因解释:

- GPU计算为主的场景下, CPU多线程并行的收益有限
- 线程间同步和调度开销超过了并行带来的收益

4.2 最优参数组合

基于以上分析,推荐的最优参数组合:

- ngl=20 (GPU层数)
- batch_size=128 (批处理大小)
- threads=1(线程数)
- d=0 (预填充上下文)

预期效果:

- 最大化吞吐量性能
- 优化GPU内存使用效率
- 为并发请求预留资源空间
- 保持模型输出质量稳定性