5.3 - ICE Box Problems - Assignment

1. For the reaction

 $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$

The initial $[N_2]$ = 0.32 M and the initial $[H_2]$ = 0.66 M. At a certain temperature and pressure the equilibrium $[H_2]$ is found to be 0.30 M. What is K_{eq} under these

circumstances?

	Na	[H2]	[74]
(Initial)	0.32	0.66	0
[Change]	-0.12	-0.36	0.84
(Equilibrium)	0.20	0.3	0.24

3 Ha : RINH3

2. Suppose that 2.00 moles of HCl in a 1.00L plass flask slowly decomposes into H₂ and Cl₂. When equilibrium is reached, the concentrations of H₂ and Cl₂ are both 0.214 M. What is the K_{eq}?

req:		HCL	Hz	Clz
[Initial]		2.0	0	
[Change]		-0.428	r.214	+0,214
[Equilibrium]	ŀ,	.512	0.214	0.214

aHCI - Ha + Cla

4NO 0 2N20 +02

3. Consider the equilibrium: $2N_2O(g) + O_2(g) \leftrightarrow 4NO(g)$ keg for this $r \times n$. 3.00 moles of NO(g) are introduced into a 1.00-Liter evacuated flask. When the system comes to equilibrium, 1.00 mole of N₂O(g) has formed. Determine the equilibrium concentrations of each substance. Calculate the K for the reaction based on these data

	NZO	
3.0	0	0
2.0	+1.0	+0.5M
I. O	1.0	0.51
	3.0 2.0 1.0	3.0 O 2.0 +1.0 1.0 1.0

$$NO: N_2O$$

$$\frac{4mol}{x} = \frac{2mol}{1.0}$$

$$xz.oM$$

$$O_2 = N_2O$$
 $|mo| = 2 moli$
 $\times 1.0$
 $\times -0.5 m$

At some temperature, K_{eq} = 33 for the reaction H₂ + I₂ → 2HI. If initially, [H₂] =

	$I_{\mathcal{H}_2}$	Ţ ₂	HT
(Initial)	0.06	0.03	0
[Change]	- X	- ×	+2X
[Equilibrium]			2×

$$33 = \frac{4x^{2}}{0.0018 - 0.09x + x^{2}} \Rightarrow 33(0.0018 - 0.09x + x^{2}) = 4x^{2}$$

$$0.0594 - 2.97x + 33x^{2} = 4x^{2}$$

$$0.0594 - 2.97x + 29x^{2} = 0$$

$$0.0594 - 2.97x + 2.97x +$$

Graphite (solid carbon) and carbon dioxide are kept at constant pressure at 1000 K until the following reaction reaches equilibrium.

$$C_{(s)} + \underline{CO}_{2(g)} \leftrightarrow 2CO_{(g)}$$

If $K_{eq} = 0.021$, calculate the equilibrium concentration of CO if the concentration of CO₂ was initially 0.012 M.