3 Sejam A, B e C C E

(b) Dê exemplos de linguagens não vazias A, B e C finitas e intemilas.

tais que AC+ ACB e AC=BC

· tome Z = ta, bl.

 $A,B \in C$ tome $A = hw \in \Sigma^*$: $|w|_{a=0}$ on $|w|_{a \in impar}$ infinites $b = C = \Sigma^*$

Então ACB

como labo A E A.

 $AC = \Sigma^*$ pois $A \cdot W = W$ pora $W \in \Sigma^*$.

pertants $AC = E^* = E^* E^* = BC$

A,B,C . Seja $\Sigma' = \{a\}$

· tome A = 1 a, aaat

B= fa, aa, aaat

c= laa, aaal

Então ACB,

e AC = { ajaa, ajaaa, aaa'aa, aaajaaa f

BC = \ a. da, a | aaa = aa | aa, aa | aaa = aaa | aa, aaa aaa }

Camo Wi=xc para i=1 ... 4.

então AC=BC

4) Sejam A, B, C C I*. Prove que:

O YM ENT, (A*) = A*

(?) (At)" C A* (himal)

we can add we I mie N 19. We will wime an wis e A sound.

work add we I mie N 19. We will wime an wis e A sound.

working we will will wime an wis e A sound.

working we have with the wine with the wine and wis e A sound.

we have the wine with the wine

(2) A* C (A*)"

WEA = 3m EN 10. W= We who can WEE A journ

Be m=m

entair $W \in (A^*)^m$ pais $W = W_1 \cdots W_{m+m}$ con $W \in A^* = \overset{\circ}{U} A^* = \overset{\circ}{U} A^*$

2 se m>m

entar we (A*)" pois podenos agrupos a fatoração do requinte

wancena: w = xx = wx x = we - xn = who where who com

então we (A'Y" pais we was in who have home can he h

Obs Wie A = Wie A" & A & A*

Assim on (1), (2), (3) A'C (A')"

· (A)) = A+ Pan V me M+

J) Se ACC* 2 BCC* en las AB CC*

@ · As C*. Entai ye A > W. EC*, Assim 3 m & N 1q.

Wi = Wi ... Win com Wile Cies - m

O. BCC*. Enlas WZEBDWZEC*. Assim 3m EN 19.

Wer We ... We can weit & C i=1 ... m

· Se W E AB. En fas W= Ws Wz 4.9. Ws EA & WEB.

por DeD W= W1, - W2 W2, - W2 con W2 EC & W2 EC

·. WEC > WEC

(3) $(AUB)^* = A^* (BA^*)^*$ $(3) (AUB) \subseteq A^* (BA^*)^*$ $S_{eja} w \in (AUB)^*$

Caso 1 Existe algum el de B falor de W.

· entar podemos momean os m latones l de W, t, q. $l \in B$, como U_1 , U_2 · U_3 · U_4 · U_4

ie. dabaababa

W= x0 y, x1 y2 x2 ... ynxn.

· Como Como $x_0 \in A^* \in x_i y_i \in BA^*,$ $W \in A^* (BA^*)(BA^*) - (BA^*) \Rightarrow W \in A^*(BA^*)^n \Rightarrow W \in A^*(BA^*)^*$ n_{Veges}

caso2 la existe el de 8 falor de w.

· enter 3 m e M d.g. w= W. ... Who and wie A, i=s-m.

. portanto w e A* => W= W2 e A*(8A*)*.

(3) A* (BA*)* S (AUB)*

Seja W E A*(BA*)*

- 1. Então, existem WI E At e WE E (BAT) 1. q. W= WIWZ
- @ Deste modo, In EN to W= W= W= W, W, onde We EA, i=1 on
 - e ∃m ∈ N 1.q. Wz = Vz, Vzm 1 ande Wz, ∈ BA*.
- 3 Para cada Wz, 3 xz & B e xz & A.
- (9). Mas para cado Xej, 3p EN 19 Xzj= Xzj Xzj. Xzj, Com Xzj EA,

Kal.p.

W=W1W2=W1-W1W2,-W2m=W1,-W1 x21x23-x1x2m

con $W_{i} \in A$, $x_{ij} \in B$, $x_{ij} \in A$

:. W ∈ (AUB) (+ 5+1K) >> W ∈ (AUB)*

be $\lambda \in A$ e $\lambda \in B$ into $(A \Sigma^* B)^* = \Sigma^*$

 $(?) (A\Sigma^*B)^* \subseteq \Sigma^*$

Pela propriedade d) da contatemação, vida en aula: ACB => ACCBC e

· Sends assim

Pola transtividade A I B E I

$$(3) \quad \Sigma_* \in (\mathbb{A} \Sigma_* \mathbb{B})_{x}$$

 Λ eja $w \in \Sigma^*$

- então temos que Δ W Δ \in $(A\Sigma^{2}B)$, pois Δ \in A \in B.

· Assim
$$\Sigma^* \subseteq (A \Sigma^* B) \subseteq (A \Sigma^* B)^*$$

Pela transiticidade I' (AIB)*

5. Para cada uma dus alimanentes a seguer, responde se é verdadena su falsa. Prove sua resposta

a) Para quaisquer longuagens A e B C I*, A=B see A*=B*

Yalsa!

Contra exemplo:

Sijam: Z=A=10,11 B=Z=10,1,00,01,10,11

cabennos que $A^{*} = \Sigma^{*}$ e $B^{*} = \Sigma^{*}$ mas $A \neq B$.

d) Para quaisquer linguagens D, B e C ⊆ ∑*, (AB) J C = (AUD)(BJE)

Falsal

contra exemplo

sejam \(\Sigma = \forall \) \(\Delta = \forall \) \(\Delta = \forall \) \(\Delta = \forall \)

· Entar (AB) UC = AA, 1

De WEAB > W= AA = A : AB= 1 X1

- 321 U C = 32,21 resultado das motos de auto

· Mas (Auc)(8uc) = (11,1) (15,21) = 11,15,21

: (AB) uc + (Auc) (Buc)

6 Siga L= {x = {0,1}*: |x10 + 1x1/2}

a) Prove que L* = {0,1/*

Sabemos que em 30,11 existem ou palavros x com Ixlo=1xlo

e $L \subseteq L^{*}$ nada a fager

· se a palasna x e tal que la/o=/x/s en-tas temos

très cases 3

rasol (or termina em L.)

Note case podernos falorar x la $x = x_{\perp} \perp$

· Sabemes que 11/=0 e 11/=1 : 11/0 + 11/4 : 1 EL

· Como |x, |= |x|, -1, sabemos que |x, |+ |x, |o:x, EL

osim $x \in L^2 \Rightarrow x \in L^*$

Caso 2 (x termina en O.)

Amalego ao caso anterior.

 $\frac{(0.03)}{(0.03)} (0.03)$

então x e L* pois & E L*.

Portants 10,11 & 2 1*

· como o alfabeto pode sen descrito com $\Sigma = 40,11$, provon que $L^* \subseteq 10,11^*$ é provon que $L^* \subseteq \Sigma^*$, que é trivial.

Assim $L^* = 40,11^*$

5) Descreva I, e prove que (I)*= [

 $\overline{L} = \{ x \in \{0,1\}^* : |x|_0 = |x|_1 \}$

(3) (I) × CI

então Wilo= Wils

Podemes observar que

| W | 0 = | W | 0 + - - + | W | 10

Por 1 Podemor trocar /W/0=/W//, +--+/W/n/1

com Wilo = Wily Vill -- m!

· IWG=WA => WE

 $(3) \overline{L} \subseteq (\overline{L})^*$

OBS

Por de finiçai.

Assim (L) *