신경회로망의 역사

과 목 명 : 딥러닝 실제

학 번: 2021254008

이 름: 최준혁

1. 신경회로망이란?

신경회로망은 신경회로 또는 신경의 망으로, 현대적 의미에서는 인공 뉴런이나 노드로 구성된 인공 신경망을 의미한다. 그러므로 신경망은 실제 생물학적 뉴런으로 구성된 생물학적 신경망이거나 인공지능(AI) 문제를 해결하기 위한 인공 신경망으로 구분할 수 있다.

[그림 1] 신경회로망

2. 신경회로망의 역사

(1) 1943 - McCulloch, Pitts의 Neuron 모델화

1943년 워렌 맥쿨로츠(Warren McCulloch)와 윌터 피츠(Walter Pitts)의 논문인 <A logical calculus of ideas immanent in nervous activity>로부터 시작되었다. 각 신경세포(Neuron)의 기능은 매우 단순하나, 이들이 상호 연결됨으로써 복잡한 계산을 수행하는 신경 시스템의 기초를 마련한 이 논문에서, 현대 컴퓨터의 기반을 이루는 모든 Boolean 논리 표현은 2진 출력을 갖는 맥클로치-피츠 신경세포로 구현 가능함을 보여주었다.

[그림 2] 워렌 맥쿨로츠와 윌터 피츠의 MCP(McCulloch Pitts) 뉴런

이 논문에서 단위 뉴런의 동작은 단순하나 뉴런들이 연결되어 하나의 뇌와 같은 네트워크는 복잡한 문제를 해결할 수 있고, 생물학적 뉴런의 네트워크를 기계적으로 모델링이라는 점에서 인공 신경망의 기원이라는 의의를 가지고 있다.

(2) 1949 - Hebb의 법칙

도날드 햅(Donald Hebb)는 "Hebbian Learning"을 통해 시냅스로 연결된 뉴런들이 지속적으로 활성화되면 해당 뉴런들의 연결 강도가 향상된다, 즉 뉴런(A,B)가 있을 때 A 뉴런의 활성이 B 뉴런의 활성에 지속적으로 기여한다면 두 뉴런 사이의 연결 가중치(Weight)를 높이는 방식의 학습방법으로, 이후 개념이 발전되어 현재 많은 신경망 모델의 학습이 이를 기초하고 있다.

[그림 3] Hebbian Learning

(3) 1969 - 퍼셉트론의 한계

Marvin Minsky와 Seymour Papert의 "Perceptrons"라는 논문에 의해 퍼셉트론의 한계점으로 XOR 문제를 해결할 수 없음을 밝히고, 여러 퍼셉트론으로 구성된 MLP(Multi-Layer Perceptron)로 XOR 문제 해결은 가능하나, MLP를 해결할 방법이 없다고 밝혔다. 이로 인해 신경망 연구는 침체되었다. (신경망 연구의 1차 겨울)

[그림 4] 퍼셉트론의 한계

(4) 1986 - Back-propagation 알고리즘

David Rumelhart과 Geoffrey Hintor의 저서인 "Parallel Distrbuted Processing"에서 Back-popagation 알고리즘을 제시하면서 기존 Rosenblatt의 퍼셉트론의 경우 XOR는 MLP를 통해 해결이 가능하나 MLP는 은닉층에 대한 목표값을 정의할 수 없기 때문에 오차를 구할 수 없어 가중치를 갱신하지 못했다. Back-propagation 알고리즘은 출력층에서 구한 오차를 바탕으로 오차를 이전 층으로 역전파하는 방식을 통해 출력층 이전의 은닉층에 대한 오차를 구할 수 있게 되고, MLP를 학습시킬 수 있다는 것을 보여주었다. 이를 통해 인공 신경망에 대한 연구는 다시 집중받기 시작했다.

[그림 5] Back-propagation 알고리즘

(5) 2006 - RELU

심층 신경망과 같은 깊은 구조의 신경망의 경우 Back-propagation 알고리즘을 적용했을 때 기울기 소실 문제(Vanishing gradient problem)가 발생하여 신경망의 학습이 제대로 진행되지 않고 성능에 영향을 주게 되면서 신경망 연구는 한계를 맞았지만, 기울기 소실 문제의 원인이었던 Sigmoid 대신 RELU라는 활성화 함수가 등장함으로 해결되었다.

[그림 6] RELU 함수 그래프