Mechatronics / Electrical Signals

- · DC (=direct current) motors are more complex and less efficient than AC (=alternate current) motors
 LD-DC easier to manipulate / easier math
 integration is easier/cheaper (e.g. batteries
 Produce DC current)
- · Circuit analysis: usually voltage is given calculate convert

OHM'S LAW

Resistors in series: $RT = R_1 + R_2 + R_3 \dots$ -WW-WW-WW-W $R_1 \qquad R_2 \qquad R_3$

Resistors in parallel: $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Voltages in series: $V_T = V_{1} + V_{2} + V_{3} \dots$ Current in series: $I_{1} = I_{2} = I_{3}$ $I_{7} = I_{1} = I_{2} = I_{3}$ $V_{1} = V_{2} = V_{3}$

Voltages in parallel: VT = V1 = V2 = V3

Current in parallel:

IT=In+I2+I3 Vn-

Kirchoff's Laws:

- · algebraic sum of currents meeting at one point is zero
- · direct sum of voltages in closed loop is zero

When analyzing complex networks, choose direction of correct to voltage rise is positive, voltage chrop is negative