Langages formels

Paul Gastin

Paul.Gastin@lsv.ens-cachan.fr http://www.lsv.ens-cachan.fr/~gastin/Langages/

L3 Informatique Cachan 2014-2015

◆□▶◆□▶◆□▶◆□▶ □ 夕久○ 3/197

Motivations

Définition :

- 1. Description et analyse (lexicale et syntaxique) des langages (programmation, naturels, . . .)
- 2. Modèles de calcul
- 3. Abstractions mathématiques simples de phénomènes complexes dans le but de
 - Prouver des propriétés.
 - Concevoir des algorithmes permettant de tester des propriétés ou de résoudre des problèmes.
- 4. Types de données

Plan

Langages reconnaissables

Automates d'arbres

Grammaires

Langages algébriques

Automates à pile

Analyse syntaxique

Fonctions séquentielles

Références

[7] Olivier Carton.

Langages formels, calculabilité et complexité. Vuibert, 2008.

[9] John E. Hopcroft et Jeffrey D. Ullman. Introduction to automata theory, languages and computation.

Addison-Wesley, 1979.

[10] Dexter C. Kozen.

Automata and Computability.

Springer, 1997.

[13] Jacques Sakarovitch.

Éléments de théorie des automates.

Vuibert informatique, 2003.

[8] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison, Marc Tommasi.

Tree Automata Techniques and Applications.

http://www.grappa.univ-lille3.fr/tata/

Références

 Alfred V. Aho, Ravi Sethi et Jeffrey D. Ullman. Compilers: principles, techniques and tools. Addison-Wesley, 1986.

[2] Alfred V. Aho et Jeffrey D. Ullman.

The theory of parsing, translation, and compiling. Volume I: Parsing. Prentice-Hall. 1972.

[3] Luc Albert, Paul Gastin, Bruno Petazzoni, Antoine Petit, Nicolas Puech et Pascal Weil.

Cours et exercices d'informatique. Vuibert, 1998.

[4] Jean-Michel Autebert.

Théorie des langages et des automates.

Masson, 1994.

Plan

Introduction

- 2 Langages reconnaissables
 - Mots
 - Langages
 - Automates déterministes
 - Automates non déterministes
 - Automates avec ε -transitions
 - Propriétés de fermeture
 - Langages rationnels
 - Critères de reconnaissabilité
 - Minimisation
 - Logique MSO
 - Morphismes et congruences

Automates d'arbres

Grammaires

Références

- [5] Jean-Michel Autebert, Jean Berstel et Luc Boasson. Context-Free Languages and Pushdown Automata. Handbook of Formal Languages, Vol. 1, Springer, 1997.
- [6] Jean Berstel.

Transduction and context free languages.

Teubner, 1979.

[11] Jean-Éric Pin.

Automates finis et applications.

Polycopié du cours à l'École Polytechnique, 2004.

[12] Grzegorz Rozenberg et Arto Salomaa, éditeurs.

Handbook of Formal Languages,

Vol. 1, Word, Language, Grammar, Springer, 1997.

[14] Jacques Stern.

Fondements mathématiques de l'informatique.

Mc Graw Hill, 1990.

Bibliographie

[4] Jean-Michel Autebert.

Théorie des langages et des automates.

Masson, 1994.

[7] Olivier Carton.

Langages formels, calculabilité et complexité.

Vuibert. 2008.

[9] John E. Hopcroft et Jeffrey D. Ullman.

Introduction to automata theory, languages and computation.

Addison-Wesley, 1979.

[10] Dexter C. Kozen.

Automata and Computability.

Springer, 1997.

[13] Jacques Sakarovitch.

Éléments de théorie des automates.

Vuibert informatique, 2003.

Mots

A ou Σ : alphabet (ensemble fini). $u \in \Sigma^*$: mot = suite finie de lettres.

· : concaténation associative.

 ε ou 1 : mot vide, neutre pour la concaténation.

 (Σ^*, \cdot) : monoïde libre engendré par Σ .

|u|: longueur du mot u.

 $|\cdot|: \Sigma^* \to \mathbb{N}$ est le morphisme défini par |a| = 1 pour $a \in \Sigma$.

 $|u|_a$: nombre de a dans le mot u.

 \tilde{u} : miroir du mot u.

Langages

 $\label{eq:langage} \mbox{Langage} = \mbox{sous-ensemble de } \Sigma^*.$ Exemples.

Opérations sur les langages : soient $K, L \subseteq \Sigma^*$

Ensemblistes: union, intersection, complément, différence, ...

Concaténation : $K \cdot L = \{u \cdot v \mid u \in K \text{ et } v \in L\}$

La concaténation est associative et distributive par rapport à l'union.

 $|K\cdot L| \leq |K|\cdot |L|$

notion de multiplicité, d'ambiguïté

Mots

Ordres partiels:

- ightharpoonup u préfixe de v si $\exists u', v = uu'$
- u suffixe de v si $\exists u', v = u'u$
- ightharpoonup u facteur de v si $\exists u', u'', v = u'uu''$
- lacksquare u sous-mot de v si $v=v_0u_1v_1u_2\cdots u_nv_n$ avec $u_i,v_i\in\Sigma^*$ et $u=u_1u_2\cdots u_n$

Théorème : Higman

L'ordre sous-mot est un *bon* ordre, i.e. (de toute suite infinie on peut extraire une sous-suite infinie croissante) (ou tout ensemble de mots a un nombre fini d'éléments minimaux)

Langages

 $\begin{array}{l} \text{It\'eration}:\ L^0=\{\varepsilon\},\ L^{n+1}=L^n\cdot L=L\cdot L^n,\\ L^*=\bigcup_{n\geq 0}L^n,\ L^+=\bigcup_{n>0}L^n.\\ \text{Exemples}:\ \Sigma^n,\ \Sigma^*,\ (\Sigma^2)^*. \end{array}$

 $\begin{array}{c} \text{Quotients}: \ K^{-1} \cdot L = \{v \in \Sigma^* \mid \exists u \in K, u \cdot v \in L\} \\ L \cdot K^{-1} = \{u \in \Sigma^* \mid \exists v \in K, u \cdot v \in L\} \end{array}$

Automates déterministes

Définition : Automate déterministe

 $\mathcal{A} = (Q, \delta, i, F)$

Q ensemble fini d'états, $i \in Q$ état initial, $F \subseteq Q$ états finaux, $\delta: Q \times \Sigma \to Q$ fonction de transition (totale ou partielle).

Exemples.

Calcul de \mathcal{A} sur un mot $u = a_1 \cdots a_n : q_0 \xrightarrow{u} q_n$

$$q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$$

avec $q_i = \delta(q_{i-1}, a_i)$ pour tout $0 < i \le n$.

Généralisation de δ à $Q \times \Sigma^*$:

$$\delta(q,\varepsilon) = q$$
,

 $\delta(q,u\cdot a)=\delta(\delta(q,u),a) \text{ si } u\in\Sigma^* \text{ et } a\in\Sigma.$

Automates non déterministes

Exemple : automate non déterministe pour $\Sigma^* \cdot \{aba\}$

Définition : Automate non déterministe

 $\mathcal{A} = (Q, T, I, F)$

Q ensemble fini d'états, $I\subseteq Q$ états initiaux, $F\subseteq Q$ états finaux,

 $T \subseteq Q \times \Sigma \times Q$ ensemble des transitions.

On utilise aussi $\delta: Q \times \Sigma \to 2^Q$.

Calcul de \mathcal{A} sur un mot $u = a_1 \cdots a_n : q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ avec $(q_{i-1}, a_i, q_i) \in T$ pour tout $0 < i \le n$.

Langage accepté (reconnu) par ${\mathcal A}$:

 $\mathcal{L}(\mathcal{A}) = \{ u \in \Sigma^* \mid \exists i \xrightarrow{u} f \text{ calcul de } \mathcal{A} \text{ avec } i \in I \text{ et } f \in F \}.$

←□ → ←□ → ←□ → □ → へ○ 15/197

Automates déterministes

Langage accepté (reconnu) par $\mathcal{A}: \mathcal{L}(\mathcal{A}) = \{u \in \Sigma^* \mid \delta(i,u) \in F\}.$ Exemples.

Définition : Reconnaissables

Un langage $L\subseteq \Sigma^*$ est reconnaissable, s'il existe un automate fini $\mathcal A$ tel que $L=\mathcal L(\mathcal A)$.

On note $Rec(\Sigma^*)$ la famille des langages reconnaissables sur Σ^* .

Automates non déterministes

Théorème : Déterminisation

Soit \mathcal{A} un automate non déterministe. On peut construire un automate déterministe \mathcal{B} qui reconnaît le même langage $(\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}))$.

Preuve

Automate des parties

Exemple : automate déterministe pour $\Sigma^* \cdot \{aba\}$

On appelle déterminisé de \mathcal{A} l'automate des parties émondé.

Exercices:

- 1. Donner un automate non déterministe avec n états pour $L = \sum^* a \sum^{n-2}$.
- 2. Montrer que tout automate déterministe reconnaissant ce langage L a au moins 2^{n-1} états
- 3. Donner un automate non déterministe à n états tel que tout automate déterministe reconnaissant le même langage a au moins $2^n 1$ états.

Automates non déterministes

Un automate (D ou ND) est *complet* si $\forall p \in Q, \ \forall a \in \Sigma, \ \delta(p,a) \neq \emptyset$. On peut toujours compléter un automate.

Un automate (D ou ND) est émondé si tout état $q \in Q$ est

- ▶ accessible d'un état initial : $\exists i \in I$, $\exists u \in \Sigma^*$ tels que $i \xrightarrow{u} q$,
- co-accessible d'un état final : $\exists f \in F$, $\exists u \in \Sigma^*$ tels que $q \xrightarrow{u} f$

On peut calculer l'ensemble $\mathrm{Acc}(I)$ des états accessibles à partir de I et l'ensemble $\mathrm{coAcc}(F)$ des états co-accessibles des états finaux.

Corollaire:

Soit A un automate.

- 1. On peut construire \mathcal{B} émondé qui reconnaît le même langage.
- 2. On peut décider si $\mathcal{L}(\mathcal{A}) = \emptyset$.

Décision

Presque tout est décidable sur les langages reconnaissables donnés par des automates.

Définition :

Problème du vide : étant donné un automate fini \mathcal{A} , décider si $\mathcal{L}(\mathcal{A})=\emptyset$.

Problème du mot : étant donnés un mot $w\in \Sigma^*$ et un automate $\mathcal A$, décider si $w\in \mathcal L(\mathcal A).$

Théorème : vide et mot

Le problème du vide et le problème du mot sont décidables en **NLOGSPACE** pour les langages reconnaissables donnés par automates (déterministe ou non, avec ou sans ε -transitions).

Preuve

C'est de l'accessibilité.

Automates avec ε -transitions

Exemple.

Définition : Automate avec ε -transitions

 $\mathcal{A} = (Q, T, I, F)$

Q ensemble fini d'états, $I \subseteq Q$ états initiaux, $F \subseteq Q$ états finaux, $T \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ ensemble des transitions.

Un calcul de \mathcal{A} est une suite $q_0 \xrightarrow{a_1} q_1 \cdots q_{n-1} \xrightarrow{a_n} q_n$ avec $(q_{i-1}, a_i, q_i) \in T$ pour tout $0 < i \le n$.

Ce calcul reconnaît le mot $u = a_1 \cdots a_n$ (les ε disparaissent).

Remarque : Soit $\mathcal A$ un automate. On peut construire un automate sans ε -transition $\mathcal B$ qui reconnaît le même langage.

Propriétés de fermeture

Opérations ensemblistes

Proposition:

La famille $\operatorname{Rec}(\Sigma^*)$ est fermée par les opérations ensemblistes (union, complément, \ldots).

Preuve

Union: construction non déterministe.

Intersection: produit d'automates (préserve le déterminisme).

Complément : utilise la déterminisation.

Corollaire:

On peut décider de l'égalité ou de l'inclusion de langages reconnaissables. Plus précisément, soient $L_1, L_2 \in \operatorname{Rec}(\Sigma^*)$ donnés par deux automates \mathcal{A}_1 et \mathcal{A}_2 . On peut décider si $L_1 \subseteq L_2$.

Propriétés de fermeture

Opérations liées à la concaténation

Proposition:

 $\operatorname{Rec}(\Sigma^*)$ est fermée par concaténation et itération.

Concaténation :

Méthode 1 : union disjointe des automates et ajout de transitions.

Méthode 2 : fusion d'états.

On suppose que les automates ont un seul état initial sans transition entrante et un seul état final sans transition sortante.

Itération :

Méthode 1 : ajout de transitions. Ajouter un état pour reconnaître le mot vide.

Méthode 2 : ajout d' ε -transitions.

Propriétés de fermeture

Proposition:

La famille $\operatorname{Rec}(\Sigma^*)$ est fermée par quotients gauches et droits :

Soit $L \in \operatorname{Rec}(\Sigma^*)$ et $K \subseteq \Sigma^*$ arbitraire.

Les langages $K^{-1} \cdot L$ et $L \cdot K^{-1}$ sont reconnaissables.

Preuve

Modification des états initiaux et/ou finaux.

Exercice:

Montrer que si de plus K est reconnaissable, alors on peut effectivement calculer les nouveaux états initiaux/finaux.

Propriétés de fermeture

Si $L \subseteq \Sigma^*$, on note

- $\Pr(L) = \{ u \in \Sigma^* \mid \exists v \in \Sigma^*, \ uv \in L \},$
- $\operatorname{Suff}(L) = \{ v \in \Sigma^* \mid \exists u \in \Sigma^*, \ uv \in L \},$
- $\operatorname{Fact}(L) = \{ v \in \Sigma^* \mid \exists u, w \in \Sigma^*, \ uvw \in L \}.$

Proposition:

 $\operatorname{Rec}(\Sigma^*)$ est fermée par préfixe, suffixe, facteur.

Preuve

Modification des états initiaux et/ou finaux.

Propriétés de fermeture

Morphismes

Soient A et B deux alphabets et $f: A^* \to B^*$ un morphisme.

Pour $L \subseteq A^*$, on note $f(L) = \{ f(u) \in B^* \mid u \in L \}$.

Pour $L \subseteq B^*$, on note $f^{-1}(L) = \{u \in A^* \mid f(u) \in L\}$.

Proposition:

La famille des langages reconnaissables est fermée par morphisme et morphisme inverse.

- 1. Si $L \in \text{Rec}(A^*)$ et $f: A^* \to B^*$ est un morphisme alors $f(L) \in \text{Rec}(B^*)$.
- 2. Si $L \in \text{Rec}(B^*)$ et $f: A^* \to B^*$ est un morphisme alors $f^{-1}(L) \in \text{Rec}(A^*)$.

Preuve

Modification des transitions de l'automate.

Propriétés de fermeture

Définition : Substitutions

Une substitution est définie par une application $\sigma:A\to \mathcal{P}(B^*)$. Elle s'étend en un morphisme $\sigma:A^*\to \mathcal{P}(B^*)$ défini par $\sigma(\varepsilon)=\{\varepsilon\}$ et $\sigma(a_1\cdots a_n)=\sigma(a_1)\cdots\sigma(a_n)$.

Pour $L\subseteq A^*$, on note $\sigma(L)=\bigcup_{u\in L}\sigma(u)$. Pour $L\subseteq B^*$, on note $\sigma^{-1}(L)=\{u\in A^*\mid \sigma(u)\cap L\neq\emptyset\}$.

Une substitution est *rationnelle* (ou *reconnaissable*) si elle est définie par une application $\sigma:A\to \operatorname{Rec}(B^*)$.

Langages rationnels

Syntaxe pour représenter des langages.

Soit Σ un alphabet et $\underline{\Sigma}$ une copie de Σ . Une expression rationnelle (ER) est un mot sur l'alphabet $\underline{\Sigma} \cup \{(,),+,\cdot,*,\emptyset\}$

Définition : Syntaxe

L'ensemble des ER est défini par

 $\mathsf{B}:\,\underline{\emptyset} \text{ et }\underline{a} \text{ pour } a \in \Sigma \text{ sont des ER,}$

I : Si E et F sont des ER alors (E+F), $(E\cdot F)$ et (E^*) aussi.

On note $\mathcal E$ l'ensemble des expressions rationnelles.

Propriétés de fermeture

Proposition:

La famille des langages reconnaissables est fermée par substitution rationnelle et substitution rationnelle inverse.

- 1. Si $L \in \text{Rec}(A^*)$ et $\sigma: A \to \text{Rec}(B^*)$ est une substitution rationnelle alors $\sigma(L) \in \text{Rec}(B^*)$.
- 2. Si $L \in \text{Rec}(B^*)$ et $\sigma : A \to \text{Rec}(B^*)$ est une substitution rationnelle alors $\sigma^{-1}(L) \in \text{Rec}(A^*)$.

Preuve

- 1. On remplace des transitions par des automates.
- 2. Plus difficile.

Langages rationnels

Définition : Sémantique

On définit $\mathcal{L}: \mathcal{E} \to \mathcal{P}(\Sigma^*)$ par

 $\mathsf{B}:\,\mathcal{L}(\underline{\emptyset})=\emptyset\text{ et }\mathcal{L}(\underline{a})=\{a\}\text{ pour }a\in\Sigma\text{,}$

 $\begin{array}{l} \mathbf{I}: \ \mathcal{L}((E+F)) = \mathcal{L}(E) \cup \mathcal{L}(F), \ \mathcal{L}((E \cdot F)) = \mathcal{L}(E) \cdot \mathcal{L}(F) \ \text{et} \\ \mathcal{L}((E^*)) = \mathcal{L}(E)^*. \end{array}$

Un langage $L\subseteq \Sigma^*$ est rationnel s'il existe une ER E telle que $L=\mathcal{L}(E)$. On note $\mathrm{Rat}(\Sigma^*)$ l'ensemble des langages rationnels sur l'alphabet Σ .

Remarque : $\operatorname{Rat}(\Sigma^*)$ est la plus petite famille de langages de Σ^* contenant \emptyset et $\{a\}$ pour $a\in\Sigma$ et fermée par union, concaténation, itération.

Langages rationnels

Définition :

Deux ER E et F sont équivalentes (noté $E \equiv F$) si $\mathcal{L}(E) = \mathcal{L}(F)$.

Exemples : commutativité, associativité, distributivité, . . .

Peut-on trouver un système de règles de réécriture caractérisant l'équivalence des ER ?

Oui, mais il n'existe pas de système fini.

Comment décider de l'équivalence de deux ER ?

On va utiliser le théorème de Kleene.

Abus de notation :

- On ne souligne pas les lettres de Σ : $((a+b)^*)$.
- On enlève les parenthèses inutiles : $(aa + bb)^* + (aab)^*$.
- On confond langage rationnel et expression rationnelle.

Critères de reconnaissabilité

 $\ensuremath{\mathsf{Y}}$ a-t-il des langages non reconnaissables ?

Oui, par un argument de cardinalité.

Comment montrer qu'un langage n'est pas reconnaissable ?

Exemples.

- 1. $L_1 = \{a^n b^n \mid n \ge 0\},\$
- 2. $L_2 = \{ u \in \Sigma^* \mid |u|_a = |u|_b \},$
- 3. $L_3 = L_2 \setminus (\Sigma^*(a^3 + b^3)\Sigma^*)$

Preuves : à la main (par l'absurde).

Langages rationnels

Théorème: Kleene. 1936

 $\operatorname{Rec}(\Sigma^*) = \operatorname{Rat}(\Sigma^*)$

Preuve

 \supseteq : les langages \emptyset et $\{a\}$ pour $a\in \Sigma$ sont reconnaissables et la famille $\operatorname{Rec}(\Sigma^*)$ est fermée par union, concaténation, itération.

: Algorithme de McNaughton-Yamada.

Corollaire:

L'équivalence des expressions rationnelles est décidable.

Preuve

Il suffit de l'inclusion $Rat(\Sigma^*) \subseteq Rec(\Sigma^*)$.

Critères de reconnaissabilité

Lemme : itération

Soit $L \in \text{Rec}(\Sigma^*)$. Il existe $N \ge 0$ tel que pour tout $x \in L$,

- 1. si $|x| \geq N$ alors $\exists u_1, u_2, u_3 \in \Sigma^*$ tels que $x = u_1 u_2 u_3$, $u_2 \neq \varepsilon$ et $u_1 u_2^* u_3 \subseteq L$.
- 2. si $x=w_1w_2w_3$ avec $|w_2|\geq N$ alors $\exists u_1,u_2,u_3\in \Sigma^*$ tels que $w_2=u_1u_2u_3$, $u_2\neq \varepsilon$ et $w_1u_1u_2^*u_3w_3\subseteq L$.
- 3. si $x = uv_1v_2 \dots v_N w$ avec $|v_i| \ge 1$ alors il existe $0 \le j < k \le N$ tels que $uv_1 \dots v_j (v_{j+1} \dots v_k)^* v_{k+1} \dots v_N w \subseteq L$.

Preuve

Sur l'automate qui reconnaît L.

Application à L_1 , L_2 , L_3 et aux palindromes $L_4 = \{u \in \Sigma^* \mid u = \tilde{u}\}.$

Critères de reconnaissabilité

Exercice : Puissance des lemmes d'itérations

1. Montrer que les langages suivants satisfont (1) mais pas (2) :

$$K_1 = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$$

$$K_1' = \{b^p a^n \mid p > 0 \text{ et } n \text{ est premier}\} \cup \{a\}^*$$

2. Montrer que le langage suivant satisfait (2) mais pas (3) :

$$K_2 = \{(ab)^n (cd)^n \mid n \ge 0\} \cup \Sigma^* \{aa, bb, cc, dd, ac\} \Sigma^*$$

3. Montrer que le langage suivant satisfait (3) mais n'est pas reconnaissable :

$$K_3 = \{udv \mid u, v \in \{a, b, c\}^* \text{ et soit } u \neq v \text{ soit } u \text{ ou } v \text{ contient un carré}\}$$

Critères de reconnaissabilité

Pour montrer qu'un langage n'est pas reconnaissable, on peut aussi utiliser les propriétés de clôture.

Exemples : Sachant que L_1 n'est pas reconnaissable.

- $L_2 \cap a^*b^* = L_1.$
- Donc L_2 n'est pas reconnaissable.
- ▶ Soit $f: \Sigma^* \to \Sigma^*$ défini par f(a) = aab et f(b) = abb. On a $f^{-1}(L_3) = L_2$.

Donc L_3 n'est pas reconnaissable.

▶ $L_5 = \{u \in \Sigma^* \mid |u|_a \neq |u|_b\} = \overline{L_2}$. Donc L_5 n'est pas reconnaissable.

Critères de reconnaissabilité

Théorème : Ehrenfeucht, Parikh, Rozenberg ([13, p. 128])

Soit $L\subseteq \Sigma^*$. Les conditions suivantes sont équivalentes :

- 1. L est reconnaissable
- 2. Il existe N>0 tel que pour tout mot $x=uv_1\dots v_Nw\in \Sigma^*$ avec $|v_i|\geq 1$, il existe $0\leq j< k\leq N$ tels que pour tout $n\geq 0$,

$$x \in L$$
 ssi $uv_1 \dots v_j (v_{j+1} \dots v_k)^n v_{k+1} \dots v_N w \in L$

3. Il existe N>0 tel que pour tout mot $x=uv_1\dots v_Nw\in \Sigma^*$ avec $|v_i|\geq 1$, il existe $0\leq j< k\leq N$ tels que

$$x \in L$$
 ssi $uv_1 \dots v_i v_{k+1} \dots v_N w \in L$

Remarque : la preuve utilise le théorème de Ramsey.

Minimisation

Il y a une infinité d'automates pour un langage donné.

Exemple : automates D ou ND pour a^{*} .

Questions:

- ► Y a-t-il un automate canonique ?
- ▶ Y a-t-il unicité d'un automate minimal en nombre d'états ?
- Y a-t-il un lien structurel entre deux automates qui reconnaissent le même langage ?

□ → ←□ → ← □ → ← □ → □ ← 36/197

Automate des résiduels

Définition : Résiduels

Soient $u \in \Sigma^*$ et $L \subseteq \Sigma^*$.

Le résiduel de L par u est le quotient $u^{-1}L = \{v \in \Sigma^* \mid uv \in L\}.$

Exemple : Calculer les résiduels des langages

$$L_j = \{u = u_0 u_1 \cdots u_n \in \{0, 1\}^* \mid \overline{u}^2 = \sum_{i=0}^n u_i 2^i \equiv j \text{ [3]} \}.$$

Définition : Automate des résiduels

Soit $L\subseteq \Sigma^*$. L'automate des résiduels de L est $\mathcal{R}(L)=(Q_L,\delta_L,i_L,F_L)$ avec

- $Q_L = \{u^{-1}L \mid u \in \Sigma^*\},\$
- $\delta_L(u^{-1}L, a) = a^{-1}(u^{-1}L) = (ua)^{-1}L,$
- $i_L = L = \varepsilon^{-1}L$,
- $F_L = \{u^{-1}L \mid \varepsilon \in u^{-1}L\} = \{u^{-1}L \mid u \in L\}.$

Théorème:

Un langage $L \subseteq \Sigma^*$ est reconnaissable ssi L a un nombre fini de résiduels.

Équivalence de Nerode

Définition : Équivalence de Nerode

Soit $\mathcal{A} = (Q, \delta, i, F)$ un automate DCA (DC et accessible) reconnaissant L.

Pour $q \in Q$, on note $\mathcal{L}(\mathcal{A},q) = \{u \in \Sigma^* \mid \delta(q,u) \in F\}.$

L'équivalence de Nerode de $\mathcal A$ est définie par $p\sim q$ si $\mathcal L(\mathcal A,p)=\mathcal L(\mathcal A,q).$

Proposition :

L'équivalence de Nerode est une congruence.

L'automate $\mathcal{A}/\!\!\sim$ est appelé quotient de Nerode de $\mathcal{A}.$

Théorème :

$$\mathcal{A}/\sim = \mathcal{R}(L)$$

Le quotient de Nerode est isomorphe à l'automate des résiduels.

 $\varphi \colon Q/\sim \to Q_L$ définie par $\varphi([q]) = \mathcal{L}(\mathcal{A},q)$ est un isomorphisme de $\mathcal{A}/\sim \operatorname{sur} \mathcal{R}(L)$.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣魚○ 39/197

Congruences et quotients

Définition : Congruence sur les automates

Soit ${\mathcal A}$ un automate DC. Une relation d'équivalence \sim sur Q est une congruence si

- $\quad \forall p,q \in Q \text{, } \forall a \in \Sigma \text{, } p \sim q \text{ implique } \delta(p,a) \sim \delta(q,a) \text{,}$
- F est saturé par \sim , i.e., $\forall p \in F$, $[p] = \{q \in Q \mid p \sim q\} \subseteq F$.

Le quotient de \mathcal{A} par \sim est $\mathcal{A}/\sim=(Q/\sim,\delta_\sim,[i],F/\sim)$ où δ_\sim est définie par $\delta_\sim([p],a)=[\delta(p,a)].$

Exemple:

Donner un automate DCA \mathcal{A} à 6 états qui 'calcule' $\overline{u}^2 \mod 3$ et accepte L_1 . Exhiber une congruence non triviale sur \mathcal{A} . Calculer le quotient \mathcal{A}/\sim .

Proposition:

 \mathcal{A}/\sim est bien défini et $\mathcal{L}(\mathcal{A}/\sim)=\mathcal{L}(\mathcal{A})$.

Automate minimal

Théorème :

Soit $L \in \operatorname{Rec}(\Sigma^*)$.

- 1. Si $\mathcal A$ est un automate DCA qui reconnaît L, alors $\mathcal R(L)$ est un quotient de $\mathcal A$.
- 2. $\mathcal{R}(L)$ est minimal parmi les automates DCA reconnaissant L. (minimal en nombre d'états et minimal pour l'ordre quotient)
- 3. Soit \mathcal{A} un automate DC reconnaissant L avec un nombre minimal d'états. \mathcal{A} est isomorphe à $\mathcal{R}(L)$ (unicité de l'automate minimal)

Corollaire:

- 1. On obtient l'automate minimal de L en calculant le quotient de Nerode de n'importe quel automate DCA qui reconnaît L.
- 2. Soient \mathcal{A} et \mathcal{B} deux automates DCA. Pour tester si $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$: Calculer les quotients de Nerode puis tester leur égalité : $\mathcal{A}/\sim = \mathcal{B}/\sim$.

Problème : comment calculer le quotient de Nerode efficacement ?

Algorithme de Moore

Pour $n\geq 0$, on note $\Sigma^{\leq n}=\Sigma^0\cup\Sigma^1\cup\cdots\cup\Sigma^n$ et on définit l'équivalence \sim_n sur Q par

$$\begin{array}{ll} p \sim_n q & \mathrm{ssi} & \mathcal{L}(\mathcal{A},p) \cap \Sigma^{\leq n} = \mathcal{L}(\mathcal{A},q) \cap \Sigma^{\leq n} \\ & \mathrm{ssi} & \forall w \in \Sigma^{\leq n}, \quad \delta(p,w) \in F \Longleftrightarrow \delta(q,w) \in F \end{array}$$

Remarque 1 : \sim_0 a pour classes d'équivalence F et $Q \setminus F$.

Remarque 2 : \sim_{n+1} est plus fine que \sim_n , i.e., $p \sim_{n+1} q \Longrightarrow p \sim_n q$.

Remarque 3 : $\sim = \bigcap_{n \geq 0} \sim_n$, i.e., $p \sim q$ ssi $\forall n \geq 0$, $p \sim_n q$.

Proposition : Soit ${\mathcal A}$ automate DC

- $p\sim_{n+1}q\quad\text{ssi}\quad p\sim_n q\text{ et }\forall a\in\Sigma\text{, }\delta(p,a)\sim_n\delta(q,a).$
- Si $\sim_n = \sim_{n+1}$ alors $\sim = \sim_n$.
- $\sim = \sim_{|Q|-2}$ si $\emptyset \neq F \neq Q$ et $\sim = \sim_0$ sinon.

Permet de calculer l'équivalence de Nerode par raffinements successifs.

Exercice:

Calculer l'automate minimal par l'algorithme d'Hopcroft de raffinement de partitions en $\mathcal{O}(n\log(n))$ (l'algo na $\ddot{\text{i}}$ f est en $\mathcal{O}(n^2)$ avec n=|Q|).

Logique sur les mots

Définition : Codage d'une valuation dans l'alphabet

Soit V un ensemble de variables, on note $\Sigma_V = \Sigma \times \{0,1\}^V$.

Un couple (w,σ) où $w=w_1w_2\cdots w_n\in \Sigma^+$ est un mot sur l'alphabet Σ et σ est une valuation des variables de V est codé par un mot $W=(w_1,\tau_1)\cdots (w_n,\tau_n)\in \Sigma_V^+$ sur l'alphabet Σ_V avec:

- $\forall i \in pos(w), \ \tau_i(x) = 1 \text{ ssi } \sigma(x) = i$ si $x \in V$ est une variable du premier ordre,
- $\forall i \in pos(w), \ \tau_i(X) = 1 \ ssi \ i \in \sigma(X)$
- si $X \in V$ est une variable monadique du second ordre.

Un mot $W \in \Sigma_V^+$ est valide si il code un couple (w, σ) . On identifie W et (w, σ) .

Définition : Sémantique de $MSO(\Sigma, <)$

Soit $\varphi\in \mathrm{MSO}(\Sigma,<)$ et soit V un ensemble de variables contenant les variables libres de $\varphi,$

$$\mathcal{L}_V(\varphi) = \{ W \in \Sigma_V^+ \mid W = (w, \sigma) \text{ est valide et } (w, \sigma) \models \varphi \}$$

Logique sur les mots

Définition : Syntaxe de $MSO(\Sigma, <)$

$$\varphi ::= \bot \mid P_a(x) \mid x < y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi$$

avec $a \in \Sigma$, $\{x, y, \ldots\}$ variables du premier ordre, $\{X, Y, \ldots\}$ variables monadiques du second ordre.

Définition : Sémantique de $MSO(\Sigma, <)$

Soit $w=w_1w_2\cdots w_n\in \Sigma^+$ un mot et $\mathrm{pos}(w)=\{1,2,\ldots,n\}$ les positions du mot. Soit σ une valuation :

 $\sigma(x) \in pos(w)$ si x est une variable du premier ordre et $\sigma(X) \subseteq pos(w)$ si X est une variable monadique du second ordre.

```
\begin{array}{llll} w,\sigma \models P_a(x) & \text{si} & w_{\sigma(x)} = a \\ w,\sigma \models x < y & \text{si} & \sigma(x) < \sigma(y) \\ w,\sigma \models x \in X & \text{si} & \sigma(x) \in \sigma(X) \\ w,\sigma \models \exists x\,\varphi & \text{si} & \exists\, i \in \mathrm{pos}(w) \text{ tel que } w,\sigma[x \mapsto i] \models \varphi \\ w,\sigma \models \exists X\,\varphi & \text{si} & \exists\, I \subseteq \mathrm{pos}(w) \text{ tel que } w,\sigma[X \mapsto I] \models \varphi \end{array}
```

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣魚◆ 42/197

Logique sur les mots

Théorème : Büchi 1960, Elgot 1961, Trakhtenbrot 1961

Un langage $L\subseteq \Sigma^+$ est reconnaissable si et seulement si il est définissable par une formule close $\varphi\in \mathrm{MSO}(\Sigma,<)$.

Preuve

 $\Longrightarrow : \text{Si } L \text{ est reconnu par un automate } \mathcal{A} \text{ ayant } n \text{ \'etats } Q = \{q_1, \dots, q_n\} \text{, on \'ecrit une formule de la forme } \varphi = \exists X_1 \cdots \exists X_n \, \psi(X_1, \dots, X_n) \text{ qui caract\'erise l'existence d'un calcul acceptant de } \mathcal{A} \text{ sur un mot } w \in \Sigma^+.$

 X_i est l'ensemble des positions de w pour lesquelles le calcul est dans l'état q_i . La formule ψ assure que les transitions de l'automate sont respectées.

 $\mathcal{L}_{V}(P_{a}(x)) = (\Sigma_{V}^{x=0})^{*} (\Sigma_{V}^{x=1} \cap (\{a\} \times \{0,1\}^{V})) (\Sigma_{V}^{x=0})^{*}.$

 $\mathcal{L}_V(x\in X) = (\Sigma_V^{x=0})^* (\Sigma_V^{x=1}\cap \Sigma_V^{X=1}) (\Sigma_V^{x=0})^*.$ $\mathcal{L}_V(x< y) = (\Sigma_V^{x=y=0})^* (\Sigma_V^{x=1}\cap \Sigma_V^{y=0}) (\Sigma_V^{x=y=0})^* (\Sigma_V^{x=y=0})^* (\Sigma_V^{x=y=0})^*.$ On utilise les propriétés de clôture des langages reconnaissables :

union (\vee), complémentaire (\neg) et projection ($\exists x \text{ et } \exists X$).

◆□▶◆□▶◆≣▶◆≣▶ ■ りQで 44/197

Morphismes

Définition: Reconnaissance par morphisme

- $\varphi: \Sigma^* \to M$ morphisme dans un monoïde fini M.
- $L \subseteq \Sigma^*$ est *reconnu* ou *saturé* par φ si $L = \varphi^{-1}(\varphi(L))$.
- $L\subseteq \Sigma^* \text{ est reconnu par un mono\"ide fini } M \text{ s'il existe un morphisme } \varphi: \Sigma^* \to M \text{ qui reconna\^it } L.$
- $L\subseteq \Sigma^*$ est reconnaissable par morphisme s'il existe un monoïde fini qui reconnaît L.

Définition : Monoïde de transitions

Soit $\mathcal{A} = (Q, \Sigma, \delta, i, F)$ un automate déterministe complet.

Le monoïde de transitions de $\mathcal A$ est le sous monoïde de $(Q^Q,*)$ engendré par les applications $\delta_a:Q\to Q$ $(a\in\Sigma)$ définies par $\delta_a(q)=\delta(q,a)$ et avec la loi de composition interne $f*g=g\circ f$.

Proposition:

Le monoïde de transitions de A reconnaît $\mathcal{L}(A)$.

Congruences

Définition :

Soit $L\subseteq \Sigma^*$ et \equiv une congruence sur Σ^* .

 $\text{Le langage } L \text{ est } \textit{satur\'e} \text{ par} \equiv \text{si } \forall u,v \in \Sigma^* \text{, } u \equiv v \text{ implique } u \in L \Longleftrightarrow v \in L.$

Théorème:

Soit $L\subseteq \Sigma^*$. L est reconnaissable ssi L est saturé par une congruence d'index fini.

Exemple: Automate à double sens (Boustrophédon)

Un automate Boustrophédon est un automate fini non déterministe qui, à chaque transition, peut déplacer sa tête de lecture vers la droite ou vers la gauche. De façon équivalente, c'est une machine de Turing à une seule bande qui n'écrit pas sur cette bande

- 1. Montrer que tout langage accepté par un automate Boustrophédon est en fait rationnel.
- 2. Montrer qu'à partir d'un automate Boustrophédon ayant n états, on peut effectivement construire un automate déterministe classique équivalent ayant $2^{\mathcal{O}(n^2)}$ états.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ 9 へ ○ 47/197

Morphismes

Théorème:

Soit $L\subseteq \Sigma^*$. L est reconnaissable par morphisme ssi L est reconnaissable par automate.

Corollaire:

 $\operatorname{Rec}(\Sigma^*)$ est fermée par morphisme inverse.

Exemple:

Si L est reconnaissable alors $\sqrt{L} = \{v \in \Sigma^* \mid v^2 \in L\}$ est aussi reconnaissable.

Exercices:

- 1. Montrer que $Rec(\Sigma^*)$ est fermée par union, intersection, complémentaire.
- 2. Montrer que $\operatorname{Rec}(\Sigma^*)$ est fermée par quotients. Si $L \in \operatorname{Rec}(\Sigma^*)$ et $K \subseteq \Sigma^*$ alors $K^{-1}L$ et LK^{-1} sont reconnaissables.
- 3. Montrer que $\operatorname{Rec}(\Sigma^*)$ est fermée par concaténation (plus difficile).

Morphismes et Congruences

Exercice:

Soit L un langage reconnaissable. Montrer que le langage

$$L' = \{ v \in \Sigma^* \mid v^{|v|} \in L \}$$

est aussi reconnaissable.

Exercice : Machine de Turing et automates

Une machine de Turing qui ne modifie pas sa donnée est une MT à une seule bande qui ne peut pas modifier le mot d'entrée, mais qui peut bien sûr écrire sur sa bande en dehors de la zone occupée par le mot d'entrée. La MT peut être non déterministe et ne s'arrête pas forcément.

- 1. Montrer qu'une MT qui ne modifie pas sa donnée reconnaît en fait un langage rationnel
- Étant donnée une MT qui ne modifie pas sa donnée, montrer que l'on peut effectivement calculer la fonction de transition d'un automate fini déterministe équivalent.
- Peut-on décider le problème du mot pour une MT qui ne modifie pas sa donnée ?

Congruence et monoide syntaxique

Définition : Congruence syntaxique

 $\text{Soit } L \subseteq \Sigma^*. \hspace{1cm} u \equiv_L v \hspace{1cm} \text{si} \hspace{1cm} \forall x,y \in \Sigma^*, xuy \in L \Longleftrightarrow xvy \in L.$

Théorème :

Soit $L\subseteq \Sigma^*$.

- $\blacksquare \equiv_L$ est une congruence et \equiv_L sature L.
- $= \equiv_L$ est la plus *grossière* congruence qui sature L.
- L est reconnaissable ssi \equiv_L est d'index fini.

Définition : Monoide syntaxique

Soit $L \subseteq \Sigma^*$.

 $M_L = \Sigma^* / \equiv_L$.

Théorème :

Soit $L \subseteq \Sigma^*$.

- lacksquare M_L est le monoïde de transitions de l'automate minimal de L.
- $\sim M_L$ divise (est quotient d'un sous-monoïde) tout monoïde qui reconnaît L.

On peut effectivement calculer le monoïde syntaxique d'un langage reconnaissable.

Apériodiques et sans étoile

Définition : Sans étoile

La famille des langages sans étoile est la plus petite famille qui contient les langages finis et qui est fermée par union, concaténation et complémentaire.

Exemple : Le langage $(ab)^*$ est sans étoile.

Définition : Apériodique

- Un monoïde fini M est apériodique si il existe $n \geq 0$ tel que pour tout $x \in M$ on a $x^n = x^{n+1}$.
- ▶ Un langage est apériodique s'il peut être reconnu par un monoïde apériodique.
- Rem: L est apériodique si et seulement si M_L est fini et apériodique.

Théorème: Schützenberger 1965

Un langage est sans étoile si et seulement si son monoïde syntaxique est apériodique.

Exemple : Le langage $(aa)^*$ n'est pas sans étoile.

Exercice:

Montrer que le langage $((a+cb^*a)c^*b)^*$ est sans étoile.

Congruences

Exercice: Congruence à droite

- 1. Montrer que $L\subseteq \Sigma^*$ est reconnaissable ssi il est saturé par une congruence à droite d'index fini
- 2. Soit $u\equiv_L^r v$ si $\forall y\in \Sigma^*$, $uy\in L\Longleftrightarrow vy\in L$. Montrer que \equiv_L^r est la congruence à droite la plus grossière qui sature L.
- 3. Faire le lien entre \equiv_L^r et l'automate minimal de L

Sans étoile et sans compteur

Définition : Compteur

Soit $\mathcal{A} = (Q, \Sigma, \delta, i, F)$ un automate déterministe complet.

L'automate A est sans compteur si

$$\forall w \in \Sigma^*, \ \forall m > 1, \ \forall p \in Q,$$
 $\delta(p, w^m) = p \quad \Rightarrow \quad \delta(p, w) = p.$

Exemple : L'automate minimal de $(aa)^*$ possède un compteur.

Théorème : Mc Naughton, Papert 1971

Un langage est sans étoile si et seulement si son automate minimal est sans compteur.

Exercice:

Montrer que le langage $((a+cb^*a)c^*b)^*$ est sans étoile.

Sans étoile et logique du premier ordre

Théorème : Mc Naughton, Papert 1971

Un langage $L\subseteq \Sigma^+$ est sans étoile si et seulement si il est définissable par une formule de la logique du premier ordre $FO(\Sigma,<)$.

Exemple : Le langage $(aa)^*$ n'est pas définissable en $FO(\Sigma, <)$.

Exercice:

Montrer que le langage $((a+cb^*a)c^*b)^*$ est définissable en logique du premier ordre: $FO(\Sigma,<)$.

Théorème:

Un langage $L\subseteq \Sigma^+$ est sans étoile si et seulement si il est définissable par une formule $\varphi\in \mathrm{FO}_3(\Sigma,<)$ qui utilise au plus 3 noms de variables.

Exercice:

Montrer que $((a+cb^*a)c^*b)^*$ est définissable par une formule de $FO_3(\Sigma,<)$.

Bibliographie

[8] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison, Marc Tommasi.

Tree Automata Techniques and Applications.

http://www.grappa.univ-lille3.fr/tata/

↓□▶ ◀♪ ◀ ≧ ▶ ∢ ≧ ▶ ▼ 夏 り�� 55/197

Plan

Introduction

Langages reconnaissables

Automates d'arbres

- Arbres
- Automates d'arbres
- Termes
- Ascendant / Descendant
- Déterminisme
- Lemme d'itération
- Congruences
- Minimalité
- Logique MSO

Grammaires

Langages algébriques

Arbres

Définition : Arbres

Soit $A_p = \{d_1, \ldots, d_p\}$ un alphabet ordonné $d_1 \prec \cdots \prec d_p$.

Un arbre fini sur l'alphabet Σ et d'arité (au plus) p est une fonction partielle $t:A_p^* \to \Sigma$ dont le domaine est un langage fini non vide $\emptyset \neq \mathrm{dom}(t) \subseteq A_p^*$

- Formé par préfixe : $u \le v$ et $v \in dom(t)$ implique $u \in dom(t)$,
- ▶ fermé par frère aîné : $d_i \prec d_j$ et $ud_j \in dom(t)$ implique $ud_i \in dom(T)$.

On note $T_p(\Sigma)$ l'ensemble des Σ -arbres finis d'arité au plus p.

Exemples:

1. Arbre représentant l'expression logique

$$((x \longrightarrow y) \land (\neg y \lor \neg z)) \land (z \lor \neg x)$$

2. Arbre représentant le programme

```
lire a; lire b; q := 0; r := a;
Tant que b \le r faire q := q+1; r := r-b Fin tant que; afficher q; afficher r.
```


Arbres

Définition : Terminologie

La racine de l'arbre est le mot vide $\varepsilon \in dom(t)$.

Un nœud de l'arbre est un élément $u \in dom(t)$.

Une feuille de l'arbre est un nœud $u \in dom(t)$ tel que $ud_1 \notin dom(t)$.

Le nombre de nœuds (taille) de l'arbre est |t| = |dom(t)|.

La hauteur de l'arbre est $H(t) = \max\{|u| \mid u \in dom(t)\}.$

La frontière Fr(t) de l'arbre t est la concaténation des étiquettes des feuilles de t.

L'arité d'un nœud $u \in dom(t)$ est $max\{n \mid ud_n \in dom(t)\}$ $(max \emptyset = 0)$.

L'arité d'une feuille est 0.

Les fils d'un nœud $u \in dom(t)$ d'arité n sont les nœuds $ud_1, \ldots, ud_n \in dom(t)$.

Définition inductive de $T_p(\Sigma)$ (notation préfixe)

```
Si a \in \Sigma alors t = a \in T_p(\Sigma): dom(t) = \{\varepsilon\} et t(\varepsilon) = a
```

Si $a \in \Sigma$ et $t_1, \ldots, t_n \in T_p(\Sigma)$ avec $1 \le n \le p$ alors $t = a(t_1, \ldots, t_n) \in T_p(\Sigma)$:

- $dom(t) = \{\varepsilon\} \cup \bigcup_{i=1}^{n} d_{i}dom(t_{i}),$
- $t(\varepsilon) = a$ et la racine de t est d'arité n,
- $t(d_i v) = t_i(v)$ pour $1 \le i \le n$ et $v \in dom(t_i)$.

Automates d'arbres

Exemples : Donner des automates pour les langages d'arbres suivants :

- 1. L'ensemble des arbres d'arité au plus p ayant un nombre pair de nœuds internes
- 2. $L = \{t_n \mid n > 0\}$ avec $t_1 = c(a, b)$ et $t_{n+1} = c(a, t_n, b)$.
- 3. L'ensemble des arbres de la forme $t=f(g(t_1),f(t_2,a))\in T_p(\Sigma).$
- 4. Soit $\Sigma=\{a,b,c\}$. L'ensemble des arbres $t\in T_2(\Sigma)$ tels que ${\rm Fr}(t)\in (ab)^*$ et dont les nœuds internes sont d'arités 2 et étiquetés par c.
- 5. Généraliser à un langage reconnaissable arbitraire pour la frontière.
- 6. L'ensemble des arbres d'arité au plus p dont les étiquettes de toutes les branches sont dans un langage rationnel fixé $L \subset \Sigma^*$.
- 7. L'ensemble des arbres d'arité au plus p dont au moins une branche est étiquetée par un mot d'un langage rationnel fixé $L\subseteq \Sigma^*$.

Automates d'arbres

Définition : Automate

Un automate d'arbres est un quadruplet $\mathcal{A} = (Q, \Sigma, \delta, F)$ où

- Q est un ensemble fini d'états
- ullet Σ est un alphabet fini
- $\delta \subset \bigcup_{n} Q^{n} \times \Sigma \times Q$ est l'ensemble fini des transitions
- $F \subseteq Q$ est l'ensemble des états finaux.

Définition : Calcul, langage

- Un calcul de l'automate $\mathcal A$ sur un arbre $t\in T_p(\Sigma)$ est un arbre $\rho\in T_p(Q)$ ayant même domaine que t et tel que pour tout $u\in \mathrm{dom}(t)$ d'arité n, on a $(\rho(u\cdot d_1),\ldots,\rho(u\cdot d_n),t(u),\rho(u))\in \delta.$
- Le calcul est acceptant si $\rho(\varepsilon) \in F$.
- $ightharpoonup \mathcal{L}(\mathcal{A})$ est l'ensemble des Σ -arbres acceptés par \mathcal{A} .
- Un langage d'arbre est reconnaissable s'il existe un automate d'arbres qui l'accepte.

Grammaires et automates d'arbres

Théorème : du feuillage

- Soit L un langage d'arbres reconnaissable. Le langage ${\rm Fr}(L)$ des frontières des arbres de L est algébrique.
- Soit L' un langage algébrique propre ($\varepsilon \notin L'$). Il existe un langage d'arbres reconnaissable L tel que $L' = \operatorname{Fr}(L)$.

Termes

Définition : Un terme est un arbre avec symboles typés

- \mathcal{F} un ensemble fini de symboles de fonctions avec arités.
- On note \mathcal{F}_n les symboles d'arité n.
- \times \mathcal{X} un ensemble de variables (arité 0) disjoint de \mathcal{F}_0 (les constantes).
- $T(\mathcal{F},\mathcal{X})$ ensemble des termes sur \mathcal{F} et \mathcal{X} défini inductivement par :
 - $\mathcal{F}_0 \cup \mathcal{X} \subseteq T(\mathcal{F}, \mathcal{X}),$
 - si $f \in \mathcal{F}_n$ $(n \ge 1)$ et $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{X})$ alors $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{X})$

Remarque : on peut aussi utiliser une notation suffixe ou infixe parenthésée.

- Free(t) est l'ensemble des variables de t.
- $T(\mathcal{F})$ l'ensemble des termes qui ne contiennent pas de variable (termes clos).
- ▶ Un terme t est linéaire s'il contient au plus une occurrence de chaque variable.
- Hauteur: H(x) = 0 pour $x \in \mathcal{X}$ et H(f) = 0 pour $f \in \mathcal{F}_0$ et $H(f(t_1, \dots, t_n)) = 1 + \max(H(t_1), \dots, H(t_n))$.
- Taille : |x|=0 pour $x\in\mathcal{X}$ et |f|=1 pour $f\in\mathcal{F}_0$ et $|f(t_1,\ldots,t_n)|=1+|t_1|+\cdots+|t_n|$.

Arbres et termes

Un terme est un arbre typé

Un terme peut être vu comme un arbre t étiqueté dans $\mathcal{F} \cup \mathcal{X}$ tel que

- si $u \in dom(t)$ et $t(u) \in \mathcal{F}_n$ alors u est d'arité n.
- si $u \in \text{dom}(t)$ et $t(u) \in \mathcal{X}$ alors u est une feuille.

La hauteur d'un terme clos est la hauteur de l'arbre qui le représente. La taille d'un terme clos est le nombre de nœuds de l'arbre qui le représente.

Exemples :

- 1. Soit $\mathcal F$ un ensemble fini de symboles de fonctions avec arités et $\mathcal X$ un ensemble fini de variables. Le langage d'arbres $T(\mathcal F,\mathcal X)$ est reconnaissable.
- 2. Considérons $\mathcal{F}_2 = \{\land,\lor\}$, $\mathcal{F}_1 = \{\lnot\}$, $\mathcal{F}_0 = \{\lnot,\bot\}$ et $\mathcal{X} = \emptyset$. L'ensemble des formules closes du calcul propositionnel qui s'évaluent à *vrai* est reconnaissable.
- 3. Considérons $\mathcal{F}_2 = \{\land, \lor\}$, $\mathcal{F}_1 = \{\lnot\}$, $\mathcal{F}_0 = \{\top, \bot\}$ et $\mathcal{X} = \{p_1, \ldots, p_n\}$ fini. L'ensemble des formules *satisfaisables* du calcul propositionnel est reconnaissable.

Termes

Exemple: Expressions logiques

$$\mathcal{F}_2 = \{ \land, \lor, \rightarrow, \oplus, \ldots \}, \ \mathcal{F}_1 = \{ \neg \}, \ \mathcal{F}_0 = \{ \top, \bot \}, \ \mathcal{X} = \{ p, q, r \}$$

$$\wedge(\vee(\neg(p),q),\vee(\neg(q),r)) = (\neg p \vee q) \wedge (\neg q \vee r)$$

Exemple: Expressions arithmétiques

$$\mathcal{F}_2 = \{+, -, \times, /, \ldots\}, \ \mathcal{F}_1 = \{\sin, \cos, \ln, !, \ldots\}, \ \mathcal{F}_0 = \{0, \ldots, 9\} \text{ et } \mathcal{X} = \{x, y, \ldots\}.$$

$$+(3, \times(2, !(x))) = 3 + (2 \times x!)$$

Arbres et termes

Un arbre est la projection d'un terme clos

Soit $t \in T_p(\Sigma)$ un Σ -arbre d'arité au plus p.

Soit
$$\mathcal{F} = \Sigma \times \{0, \dots, p\}$$
 avec $\mathcal{F}_i = \Sigma \times \{i\}$ pour $0 \leq i \leq p$.

Soit t' l'arbre ayant même domaine que t et tel que si $u \in \text{dom}(t)$ est d'arité i et t(u) = f alors t'(u) = (f, i).

 $t' \in T(\mathcal{F})$ est un terme clos et t est le projeté de t'.

Remarque:

Un arbre de dérivation n'est pas toujours un terme car les règles associées à une variable n'ont pas forcément une longueur fixe.

Exemple: $S \rightarrow aSb + ab$

Vision ascendante

Définition : calcul ascendant

Soit $\mathcal{A} = (Q, \Sigma, \delta, F)$ un automate d'arbres.

On voit δ comme une fonction $\delta: \bigcup_n Q^n \times \Sigma \to 2^Q$.

L'étiquetage d'un calcul est construit à partir des feuilles en remontant vers la racine.

Exemples:

- 1. Évaluation d'une formule close du calcul propositionnel.
- 2. Arbres de la forme $t = f(g(t_1), f(t_2, a)) \in T_p(\Sigma)$.

Définition : Déterminisme ascendant

Un automate $\mathcal{A}=(Q,\Sigma,\delta,F)$ est déterministe ascendant si $\delta:\bigcup_n Q^n\times\Sigma\to Q$ est une fonction (partielle si \mathcal{A} n'est pas complet).

Exercice:

Parmi les automates d'arbres vus précédemment, quels sont ceux qui sont déterministes ascendants ?

Automates déterministes

Théorème : Déterminisation

Soit $\mathcal A$ un automate d'arbres. On peut effectivement construire un automate déterministe ascendant $\mathcal B$ tel que $\mathcal L(\mathcal A)=\mathcal L(\mathcal B)$.

Théorème : Clôture

La classe des langages d'arbres reconnaissables est effectivement close par union, intersection et complémentaire.

Proposition:

La classe des langages d'arbres reconnaissables par un automate déterministe descendant est strictement incluse dans la classe des langages d'arbres reconnaissables. Exemple : le langage $\{f(a,b),f(b,a)\}$ n'est pas déterministe descendant.

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣۹♀ 67/197

Vision descendante

Définition : calcul descendant

Soit $\mathcal{A} = (Q, \Sigma, \delta, I)$ un automate d'arbres.

On voit δ comme une fonction $\delta: Q \times \Sigma \to 2^{\bigcup_n Q^n}$.

L'étiquetage d'un calcul est construit à partir de la racine en descendant vers les feuilles.

L'étiquette de la racine doit être dans I.

On dit que I est l'ensemble des états *initiaux*.

Exemples:

- 1. Arbres de la forme $t = f(g(t_1), f(t_2, a)) \in T_p(\Sigma)$.
- 2. Évaluation d'une formule close du calcul propositionnel.

Définition : Déterminisme descendant

Un automate $\mathcal{A}=(Q,\Sigma,\delta,I)$ est *déterministe descendant* s'il a un seul état initial et si pour tous $q\in Q,\ a\in \Sigma$ et $n\geq 0$ on a $|\delta(q,a)\cap Q^n|\leq 1$.

Exercice:

Parmi les automates d'arbres vus précédemment, quels sont ceux qui sont déterministes descendants ?

Substitutions d'arbres

Définition :

- Une substitution σ est une application d'un sous-ensemble fini de $\mathcal X$ dans $T_p(\Sigma\cup\mathcal X).$
- Si $\sigma = [t_1/x_1, \dots, t_n/x_n]$ est une substitution et t un arbre alors $\sigma(t) = t[t_1/x_1, \dots, t_n/x_n]$ est défini inductivement par :
 - $\sigma(x_i) = t_i$ pour $1 \leq i \leq n$ (feuille étiquetée par une variable à substituer),
 - $\sigma(f) = f$ pour $f \in \Sigma \cup \mathcal{X} \setminus \{x_1, \dots, x_n\}$ (autre feuille),
- $\sigma(f(s_1,\ldots,s_k))=f(\sigma(s_1),\ldots,\sigma(s_k))$ pour $f\in\Sigma$ (nœud interne).

On dit que $t[t_1/x_1,\ldots,t_n/x_n]$ est une instance de t.

- La substitution $\sigma = [t_1/x_1, \dots, t_n/x_n]$ est *close* si chaque t_i est clos.
- Si t_1, t_2 sont clos, alors $t[t_1/x_1, t_2/x_2] = t[t_1/x_1][t_2/x_2]$. En général, $t[t_1/x_1, t_2/x_2] \neq t[t_1/x_1][t_2/x_2]$.

Exemple: Instances d'un terme

Soit $s = f(g(x), f(y, a)) \in T(\mathcal{F}, \mathcal{X})$.

L'ensemble des termes $t \in T(\mathcal{F})$ qui sont instances de s est reconnaissable.

Généraliser à l'ensemble des instances d'un ensemble fini de termes linéaires.

Concaténation d'arbres

Définition : Arbre à trou ou contexte

Un Σ -arbre à trou t est un $(\Sigma \cup \{\Box\})$ -arbre ayant un unique nœud étiqueté \Box et ce nœud doit être une feuille : $t:A_p^* \to \Sigma \cup \{\Box\}$, $t^{-1}(\Box) = \{u\}$ et $ud_1 \notin \mathrm{dom}(t)$. On note $T_{p,\Box}(\Sigma)$ l'ensemble des Σ -arbres à trou d'arité au plus p.

Définition : Concaténation

Soit $t \in T_{\square}(\Sigma)$ et soit $t' \in T(\Sigma) \cup T_{\square}(\Sigma)$.

La concaténation $t\cdot t'=t[t'/\square]$ est le Σ -arbre (avec ou sans trou) obtenu en appliquant la substitution $[t'/\square]$ à l'arbre t.

L'ensemble $T_{\square}(\Sigma)$ est un monoïde avec comme élément neutre \square .

Exemple:

Soient $t_1 = c(a, \square, b)$ et $t_2 = c(a, b)$.

Le langage $L = t_1^*t_2$ est reconnaissable.

Remarque : le langage Fr(L) des mots de feuilles de L est $\{a^nb^n \mid n>0\}$.

Congruences

Définition : Congruence (en haut)

Une relation d'équivalence \equiv sur $T_p(\Sigma)$ est une congruence si pour tous $a \in \Sigma$, et $t_1,\ldots,t_n,s_1,\ldots,s_n \in T_p(\Sigma)$ avec $n \leq p$ on a

$$(\forall 1 \le i \le n, \ s_i \equiv t_i) \Longrightarrow a(s_1, \dots, s_n) \equiv a(t_1, \dots, t_n)$$

Proposition:

Une relation d'équivalence \equiv sur $T_p(\Sigma)$ est une congruence si et seulement si pour tout $r \in T_{p,\square}(\Sigma)$ et tous $s,t \in T_p(\Sigma)$, on a $s \equiv t$ implique $r \cdot s \equiv r \cdot t$.

<□▶<□▶<□▶<□▶<□▶<□▶<□▶<□▶<□>□</br>

Lemme d'itération

Lemme: itération (pumping)

Soit L un langage d'arbres reconnaissable.

 $\exists n > 0$, $\forall t \in L$, si $H(t) \geq n$ alors $\exists t_1, t_2 \in T_{\square}(\Sigma)$, $\exists t_3 \in T(\Sigma)$ tels que

- $t_2 \neq \Box$, $t = t_1 \cdot t_2 \cdot t_3$, $t_1(t_2)^* t_3 \subseteq L$,
- $\operatorname{prof}_{\square}(t_1) + \operatorname{prof}_{\square}(t_2) \leq n \text{ ou } \operatorname{prof}_{\square}(t_2) + H(t_3) \leq n.$

 $\operatorname{prof}_{\square}(\square) = 0$, $\operatorname{prof}_{\square}(a) = -\infty$, $\operatorname{prof}_{\square}(a(t_1, \dots, t_n)) = 1 + \max(\operatorname{prof}_{\square}(t_1), \dots, \operatorname{prof}_{\square}(t_n))$.

Exemples:

- $L = \{f(g^n(a), g^m(a)) \mid n, m \ge 0\}$ est reconnaissable.
- $L = \{f(g^n(a), g^n(a)) \mid n \ge 0\}$ n'est pas reconnaissable.
- L'ensemble des instances de f(x,x) n'est pas reconnaissable.
- Associativité. Soit $\mathcal{F}_2=\{f\}$ et $\mathcal{F}_0=\{a,b\}$. Un langage $L\subseteq T(\mathcal{F})$ est associativement clos si il est fermé par la congruence engendrée par f(f(x,y),z)=f(x,f(y,z)). Soit $t_1=f(f(a,\square),b)$ et $t_2=f(a,b)$.

 $t_1^\ast t_2$ est reconnaissable mais sa clôture associative n'est pas reconnaissable.

Congruence syntaxique

Définition : Résiduels et Congruence syntaxique

Soit $L\subseteq T_p(\Sigma)$ un langage d'arbres et $s\in T_p(\Sigma)$. Le résiduel de L par s est

$$L \setminus s = \{ r \in T_{p,\square}(\Sigma) \mid r \cdot s \in L \}.$$

La congruence syntaxique \equiv_L associée à L est définie par $s \equiv_L t$ si $L \backslash s = L \backslash t$.

Remarque:

La relation d'équivalence \equiv_L est bien une congruence et sature le langage L. \equiv_L est la plus grossière congruence qui sature L.

Lemme:

Soit $\mathcal{A}=(Q,\Sigma,\delta,F)$ un automate DC (déterministe, complet) reconnaissant L.

Pour $t \in T_p(\Sigma)$, on note $\mathcal{A}(t)$ l'état à la racine du run de \mathcal{A} sur t.

La relation $\equiv_{\mathcal{A}} \operatorname{sur} T_p(\Sigma)$ est définie par $s \equiv_{\mathcal{A}} t \operatorname{si} \mathcal{A}(s) = \mathcal{A}(t)$.

 $\equiv_{\mathcal{A}}$ est une congruence qui sature L.

Donc $\equiv_{\mathcal{A}}$ et $\equiv_{\mathcal{L}}$ sont d'index finis.

Congruence et reconnaissabilité

Définition :

Soit \equiv une congruence d'index fini qui sature $L \subseteq T_p(\Sigma)$.

On note [t] la classe pour \equiv d'un arbre $t \in T_p(\Sigma)$.

On définit l'automate $\mathcal{A}_{\equiv} = (Q, \Sigma, \delta, F)$ par :

- $Q = T_p(\Sigma)/\equiv$,
- $\delta([t_1],\ldots,[t_n],a)=[a(t_1,\ldots,t_n)]$ (bien définie car \equiv congruence),
- $F = \{ [t] \mid t \in L \}.$

Pour la congruence syntaxique, on note simplement $\mathcal{A}_L = (Q_L, \Sigma, \delta_L, F_L) = \mathcal{A}_{\equiv_L}$.

Lemme:

L'automate A_{\equiv} est DAC (déterministe, accessible, complet) et reconnaît L.

Théorème : Myhill-Nerode

Soit $L \subseteq T_p(\Sigma)$. Les conditions suivantes sont équivalentes :

- 1. L est reconnaissable.
- 2. L est saturé par une congruence d'index fini,
- 3. la congruence syntaxique \equiv_L est d'index fini.

Automate minimal

Définition : Quotient de Nerode

Soit $\mathcal{A}=(Q,\Sigma,\delta,F)$ un automate DAC reconnaissant $L\subseteq T_p(\Sigma)$.

On définit le quotient de Nerode $\mathcal{A}/\sim=(Q/\sim,\Sigma,\delta_\sim,F/\sim)$ avec

$$\delta_{\sim}([q_1],\ldots,[q_n],a) = [\delta(q_1,\ldots,q_n,a)]$$

La fonction de transition δ_{\sim} est bien définie.

Théorème : automate minimal

Soit $\mathcal{A} = (Q, \Sigma, \delta, F)$ un automate DAC reconnaissant $L \subseteq T_p(\Sigma)$.

- 1. A_L est isomorphe au quotient de Nerode A/\sim .
- 2. Si \mathcal{A} a un nombre minimal d'états alors \mathcal{A}_L est isomorphe à \mathcal{A} .
- 3. \mathcal{A}_L est l'unique à isomorphisme près automate DAC minimal reconnaissant L.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹ペ 75/197

Equivalence de Nerode

Définition : Equivalence de Nerode

Soit $\mathcal{A} = (Q, \Sigma, \delta, F)$ un automate DAC reconnaissant $L \subseteq T_p(\Sigma)$.

Pour $q \in Q$, on note $\mathcal{A}_q = (Q, \Sigma \uplus \{\Box\}, \delta \uplus \{(\Box, q)\}, F)$.

On note $\mathcal{L}_{\square}(\mathcal{A}_q) = T_{p,\square}(\Sigma) \cap \mathcal{L}(\mathcal{A}_q)$.

L'équivalence de Nerode de l'automate ${\cal A}$ est définie par

$$q \sim q' \text{ si } \mathcal{L}_{\square}(\mathcal{A}_q) = \mathcal{L}_{\square}(\mathcal{A}_{q'}).$$

Lemme : Equivalence de Nerode et congruence syntaxique

- \sim est une relation d'équivalence qui sature F.
- Soit $t \in T_p(\Sigma)$ et $q = \mathcal{A}(t)$. On a $L \setminus t = \mathcal{L}_{\square}(\mathcal{A}_q)$
- Soient $t, t' \in T_p(\Sigma), q = \mathcal{A}(t)$ et $q' = \mathcal{A}(t')$. On a $q \sim q' \iff t \equiv_L t'$

Calcul de l'équivalence de Nerode

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,\delta,F)$ un automate DAC reconnaissant $L\subseteq T_p(\Sigma).$

On définit les relations d'équivalence $(\sim_m)_{m>0}$ inductivement :

- $q \sim_0 q'$ si $q, q' \in F$ ou $q, q' \notin F$
- $\begin{array}{c} \neq q \sim_{m+1} q' \text{ si } q \sim_m q' \text{ et } \forall a \in \Sigma \text{ et } \forall q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n \in Q \text{ on a} \\ \delta(q_1, \ldots, q_{i-1}, q, q_{i+1}, \ldots, q_n, a) \sim_m \delta(q_1, \ldots, q_{i-1}, q', q_{i+1}, \ldots, q_n, a) \end{array}$

On a alors

$$\sim = \bigcap_{m \geq 0} \sim_m = \sim_{|Q|}$$

Plus précisément, on note

$$T_{p,\square}^{\leq m}(\Sigma) = \{ r \in T_{p,\square}(\Sigma) \mid \operatorname{prof}_{\square}(t) \leq m \} \quad \text{ et } \quad \mathcal{L}_{\square}^{\leq m}(\mathcal{A}_q) = T_{p,\square}^{\leq m}(\Sigma) \cap \mathcal{L}(\mathcal{A}_q)$$

On a

$$q \sim_m q' \iff \mathcal{L}_{\square}^{\leq m}(\mathcal{A}_q) = \mathcal{L}_{\square}^{\leq m}(\mathcal{A}_{q'})$$

Exercices

Exercice: Morphisme

Montrer que $L\subseteq T(\mathcal{F})$ est reconnaissable ssi il existe une \mathcal{F} -algèbre finie $A(\mathcal{F})$ telle que $L=\varphi^{-1}(\varphi(L))$ où $\varphi:T(\mathcal{F})\to A(\mathcal{F})$ est le morphisme canonique.

Exercice : Problèmes de décision et complexité

Lire la section 7 du chapitre 1 du TATA.

Logique sur les arbres

Exemples:

- L'ensemble des arbres d'arité au plus p ayant un nombre pair de nœuds internes
- L'ensemble des formules closes du calcul propositionnel qui s'évaluent à *vrai* est définissable en $MSO(\Sigma, \downarrow_1, \downarrow_2)$.

Exercice: ordre ascendant

On considère la relation d'ordre "être un ascendant", i.e., x < y si le nœud x est un ascendant du nœud y.

Montrer que cette relation est définissable en $\mathrm{MSO}(\Sigma,\downarrow_1,\ldots,\downarrow_p).$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 野兔Թ 79/197

Logique sur les arbres

Définition : Syntaxe de $MSO(\Sigma, \downarrow_1, \dots, \downarrow_p)$

$$\varphi ::= \bot \mid P_a(x) \mid x \downarrow_1 y \mid \dots \mid x \downarrow_n y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \exists X \varphi$$

avec $a \in \Sigma$, $\{x, y, \ldots\}$ variables du premier ordre, $\{X, Y, \ldots\}$ variables monadiques du second ordre

Définition : Sémantique de $MSO(\Sigma, \downarrow_1, \dots, \downarrow_n)$

Soit $t \colon A_p^* \to \Sigma$ un Σ -arbre d'arité au plus p.

Soit σ une valuation :

 $\sigma(x) \in \text{dom}(t)$ si x est une variable du premier ordre et

 $\sigma(X) \subseteq \text{dom}(t)$ si X est une variable monadique du second ordre.

 $t, \sigma \models P_a(x)$ si $t(\sigma(x)) = a$

 $t, \sigma \models x \downarrow_i y$ si $\sigma(y) = \sigma(x) \cdot d_i$

 $t, \sigma \models x \in X \quad \text{ si } \quad \sigma(x) \in \sigma(X)$

 $t,\sigma \models \exists x\,\varphi \qquad \text{si} \quad \exists\, u \in \mathrm{dom}(t) \text{ tel que } t,\sigma[x \mapsto u] \models \varphi$

 $t, \sigma \models \exists X \varphi$ si $\exists U \subseteq \text{dom}(t) \text{ tel que } t, \sigma[X \mapsto U] \models \varphi$

Logique sur les arbres

Définition : Codage d'une valuation dans l'alphabet

Soit V un ensemble de variables, on note $\Sigma_V = \Sigma \times \{0,1\}^V$.

Un couple (t,σ) où $t\colon A_p^* \to \Sigma$ est un Σ -arbre d'arité au plus p et σ est une valuation des variables de V est codé par un Σ_V -arbre $T=(t,\tau)\colon A_p^* \to \Sigma_V$ sur l'alphabet Σ_V avec:

 $\forall u \in \text{dom}(t), \ \tau(u)(x) = 1 \text{ ssi } \sigma(x) = u$

si $x \in V$ est une variable du premier ordre,

 $\forall u \in \text{dom}(t)$, $\tau(u)(X) = 1$ ssi $u \in \sigma(X)$

si $X \in V$ est une variable monadique du second ordre.

Un Σ_V -arbre T est valide si il code un couple (t,σ) . On identifie T et (t,σ) .

Définition : Sémantique de $MSO(\Sigma, \downarrow_1, \dots, \downarrow_p)$

Soit $\varphi\in\mathrm{MSO}(\Sigma,\downarrow_1,\ldots,\downarrow_p)$ et soit V un ensemble de variables contenant les variables libres de φ ,

$$\mathcal{L}_V(\varphi) = \{ T \in T_p(\Sigma_V) \mid T = (t, \sigma) \text{ est valide et } (t, \sigma) \models \varphi \}$$

Logique sur les arbres

Théorème: Thatcher and Wright 1968

Un langage $L \subseteq T_n(\Sigma)$ est reconnaissable si et seulement si il est définissable par une formule close $\varphi \in MSO(\Sigma, \downarrow_1, \dots, \downarrow_p)$.

Preuve

 \implies : Si L est reconnu par un automate $\mathcal A$ ayant n états $Q=\{q_1,\ldots,q_n\}$, on écrit une formule de la forme $\varphi = \exists X_1 \cdots \exists X_n \ \psi(X_1, \dots, X_n)$ qui caractérise l'existence d'un calcul acceptant de \mathcal{A} sur un arbre $t \in T_n(\Sigma)$.

 X_i est l'ensemble des nœuds de t pour lesquels le calcul est dans l'état q_i . La formule ψ assure que les transitions de l'automate sont respectées.

= : On construit facilement des automates pour les formules atomiques. On utilise les propriétés de clôture des langages reconnaissables : union (\vee) , complémentaire (\neg) et projection $(\exists x \text{ et } \exists X)$.

Grammaires de type 0

Définition : Grammaires générales (type 0)

 $G = (\Sigma, V, P, S)$ où

- Σ est l'alphabet terminal
- V est l'alphabet non terminal (variables)
- $S \in V$ est l'axiome (variable initiale)
- $P \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ est un ensemble **fini** de règles ou productions.

Exemple: Une grammaire pour $\{a^{2^n} \mid n > 0\}$

1: $S \to DXaF$ 3: $XF \to YF$ 5: $DY \to DX$ $7: aZ \rightarrow Za$ $2: Xa \rightarrow aaX$ $4: aY \rightarrow Ya \qquad 6: XF \rightarrow Z$ $8: DZ \to \varepsilon$

Définition : Dérivation

 $\alpha \in (\Sigma \cup V)^*$ se dérive en $\beta \in (\Sigma \cup V)^*$, noté $\alpha \to \beta$, s'il existe $(\alpha_2, \beta_2) \in P$ tel que $\alpha = \alpha_1 \alpha_2 \alpha_3$ et $\beta = \alpha_1 \beta_2 \alpha_3$. On note $\stackrel{*}{\rightarrow}$ la clôture réflexive et transitive de \rightarrow .

◆□▶◆□▶◆臺▶◆臺▶ 臺 ∽Q♡ 83/197

Plan

Introduction

Langages reconnaissables

Automates d'arbres

4 Grammaires

- Type 0 : générale
- Type 1 : contextuelle (context-sensitive)
- Type 2 : hors contexte (context-free, algébrique)
- Grammaires linéaires
- Hiérarchie de Chomsky

Langages algébriques

Automates à pile

Analyse syntaxique

Grammaires de type 0

Définition : Langage engendré

Soit $G = (\Sigma, V, P, S)$ une grammaire et $\alpha \in (\Sigma \cup V)^*$.

Le langage engendré par α est $\mathcal{L}_G(\alpha) = \{u \in \Sigma^* \mid \alpha \xrightarrow{*} u\}.$

Le langage élargi engendré par α est $\widehat{\mathcal{L}}_G(\alpha) = \{\beta \in (\Sigma \cup V)^* \mid \alpha \xrightarrow{*} \beta\}.$

Le langage engendré par G est $L_G(S)$.

Un langage est de type 0 s'il peut être engendré par une grammaire de type 0.

Théorème : Type 0 [9, Thm 9.3 & 9.4]

Un langage $L\subseteq \Sigma^*$ est de type 0 ssi il est récursivement énumérable.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹@ 84/197

Grammaires contextuelles

Définition : Grammaire contextuelle (type 1, context-sensitive)

Une grammaire $G=(\Sigma,V,P,S)$ est *contextuelle* si toute règle $(\alpha,\beta)\in P$ vérifie $|\alpha|<|\beta|.$

Un langage est de type 1 (ou contextuel) s'il peut être engendré par une grammaire contextuelle.

Exemple : Une grammaire contextuelle pour $\{a^{2^n} \mid n > 0\}$

Remarque:

Le langage engendré par une grammaire contextuelle est propre. Si on veut engendrer le mot vide on peut ajouter $\hat{S} \to S + \varepsilon$.

Grammaires contextuelles

Théorème : Type 1 [9, Thm 9.5 & 9.6]

Un langage est de type 1 ssi il est accepté par une machine de Turing non déterministe en espace linéaire.

Les langages contextuels sont strictement inclus dans les langages récursifs.

Théorème : Problème du mot

Étant donnés un mot w et une grammaire G, décider si $w \in L_G(S)$. Le problème du mot est décidable en PSPACE pour les grammaires de type 1.

Théorème : indécidabilité du vide

On ne peut pas décider si une grammaire contextuelle engendre un langage vide.

Exercices:

- 1. Montrer que $\{a^{n^2} \mid n>0\}$ est contextuel.
- 2. Montrer que $\{ww \mid w \in \{a,b\}^+\}$ est contextuel.

Grammaires contextuelles

Définition : Forme normale (context-sensitive/contextuelle)

Une grammaire $G=(\Sigma,V,P,S)$ contextuelle est en forme normale si toute règle est de la forme $(\alpha_1X\alpha_2,\alpha_1\beta\alpha_2)$ avec $X\in V$ et $\beta\neq \varepsilon.$

Théorème : Forme normale [4, Prop. 2, p. 156]

Tout langage de type 1 est engendré par une grammaire contextuelle en forme normale.

Exemple : Une grammaire contextuelle en FN pour $\{a^{2^n} \mid n > 0\}$

◆□▶◆罰▶◆臺▶◆臺▶ 臺 釣Q企 86/197

Grammaires algébriques

Définition : Grammaire hors contexte ou algébrique ou de type 2

Une grammaire $G=(\Sigma,V,P,S)$ est hors contexte ou algébrique si $P\subseteq V\times (\Sigma\cup V)^*$ (sous ensemble fini).

Un langage est de type 2 (ou hors contexte ou algébrique) s'il peut être engendré par une grammaire hors contexte.

On note Alg la famille des langages algébriques.

Exemples :

- 1. Le langage $\{a^nb^n\mid n\geq 0\}$ est algébrique.
- 2. Expressions complètement parenthésées.

Lemme: fondamental

Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique, $\alpha_1, \alpha_2, \beta \in (\Sigma \cup V)^*$ et $n \ge 0$.

$$\alpha_1 \alpha_2 \xrightarrow{n} \beta \iff \alpha_1 \xrightarrow{n_1} \beta_1, \alpha_2 \xrightarrow{n_2} \beta_2 \text{ avec } \beta = \beta_1 \beta_2 \text{ et } n = n_1 + n_2$$

Langages de Dyck

Définition : D_n^*

Soit $\Sigma_n=\{a_1,\ldots,a_n\}\cup\{\bar{a}_1,\ldots,\bar{a}_n\}$ l'alphabet formé de n paires de parenthèses. Soit $G_n=(\Sigma_n,V,P_n,S)$ la grammaire définie par $S\to a_1S\bar{a}_1S+\cdots+a_nS\bar{a}_nS+\varepsilon$. Le langage $D_n^*=\mathcal{L}_{G_n}(S)$ est appelé langage de Dyck sur n paires de parenthèses

Exercices : Langages de Dyck

- 1. Montrer que
 - $D_1^* = \{ w \in \Sigma_1^* \mid |w|_{a_1} = |w|_{\bar{a}_1} \text{ et } |v|_{a_1} \ge |v|_{\bar{a}_1} \text{ pour tous } v \le w \}.$
- 2. On considère le système de réécriture (type 0) $R_n = (\Sigma_n, P'_n)$ dont les règles sont $P'_n = \{(a_i \bar{a}_i, \varepsilon) \mid 1 \leq i \leq n\}$.
 - Montrer que $D_n^* = \{ w \in \Sigma_n^* \mid w \xrightarrow{*} \varepsilon \text{ dans } R_n \}.$
- 3. Soit Γ un alphabet disjoint de Σ_n , $\Sigma = \Sigma_n \cup \Gamma$ et $L \subseteq \Sigma^*$ un langage.

On définit la clôture $\operatorname{clot}(L) = \{v \in \Sigma^* \mid \exists w \in L, w \xrightarrow{*} v \text{ dans } R_n\}.$ Montrer que si L est reconnaissable, alors $\operatorname{clot}(L)$ aussi.

On définit la réduction $red(L) = \{v \in clot(L) \mid v \not\to dans R_n\}$. Montrer que si L est reconnaissable, alors red(L) aussi.

Hiérarchie de Chomsky

Théorème : Chomsky

- 1. Les langages réguliers (type 3) sont strictement contenus dans les langages linéaires.
- 2. Les langages linéaires sont strictement contenus dans les langages algébriques (type 2).
- 3. Les langages algébriques propres (type 2) sont strictement contenus dans les langages contextuels (type 1).
- 4. les langages contextuels (type 1) sont strictement contenus dans les langages récursifs.
- 5. les langages récursifs sont strictement contenus dans les langages récursivement énumérables (type 0).

Grammaires linéaires

Définition : Grammaire linéaire

La grammaire $G = (\Sigma, V, P, S)$ est

- Inéaire si $P \subseteq V \times (\Sigma^* \cup \Sigma^* V \Sigma^*)$,
- Inéaire gauche si $P \subseteq V \times (\Sigma^* \cup V\Sigma^*)$,
- ▶ linéaire droite si $P \subseteq V \times (\Sigma^* \cup \Sigma^* V)$.

Un langage est linéaire s'il peut être engendré par une grammaire linéaire.

On note Lin la famille des langages linéaires.

Exemples:

- Le langage $\{a^nb^n \mid n \geq 0\}$ est linéaire.
- Le langage $\{a^nb^nc^p\mid n,p\geq 0\}$ est linéaire.

Proposition:

Un langage est rationnel si et seulement si il peut être engendré par une grammaire linéaire gauche (ou droite).

Bibliographie

[4] Jean-Michel Autebert.

Théorie des langages et des automates.

Masson, 1994.

[5] Jean-Michel Autebert, Jean Berstel et Luc Boasson.

Context-Free Languages and Pushdown Automata.

Handbook of Formal Languages, Vol. 1, Springer, 1997.

[7] Olivier Carton.

Langages formels, calculabilité et complexité.

Vuibert, 2008.

[9] John E. Hopcroft et Jeffrey D. Ullman.

Introduction to automata theory, languages and computation.

Addison-Wesley, 1979.

[10] Dexter C. Kozen.

Automata and Computability.

Springer, 1997.

[14] Jacques Stern.

Fondements mathématiques de l'informatique.

Mc Graw Hill. 1990.

Plan

Introduction

Langages reconnaissables

Automates d'arbres

Grammaires

- 5 Langages algébriques
 - Arbres de dérivation
 - Propriétés de clôture
 - Formes normales et algorithmes
 - Problèmes sur les langages algébriques
 - Forme normale de Greibach
 - Équations algébriques

Automates à pile

Arbres de dérivation

Lemme : Dérivations et arbres de dérivation

Soit $G = (\Sigma, V, P, S)$ une grammaire.

- 1. Si $x \stackrel{*}{\to} \alpha$ une dérivation de G alors il existe un arbre de dérivation t de G tel que $\operatorname{rac}(t) = x$ et $\operatorname{Fr}(t) = \alpha$.
- 2. Si t un arbre de dérivation de G alors il existe une dérivation $\operatorname{rac}(t) \stackrel{*}{\to} \operatorname{Fr}(t)$ dans G.

Si $\operatorname{Fr}(t) \in \Sigma^*$ alors on peut faire une dérivation gauche $\operatorname{rac}(t) \xrightarrow{*}_g \operatorname{Fr}(t)$.

Une dérivation est gauche si on dérive toujours le non terminal le plus à gauche.

Remarques:

- 2 dérivations sont équivalentes si elles sont associées au même arbre de dérivation.
- Il y a bijection entre dérivations gauches terminales et arbres de dérivation ayant une frontière dans Σ^* .
- Si la grammaire est linéaire, il y a bijection entre dérivations et arbres de dérivations.

Arbres de dérivation

Définition :

Soit $G = (\Sigma, V, P, S)$ une grammaire.

Un arbre de dérivation pour G est un arbre t étiqueté dans $V \cup \Sigma \cup \{\varepsilon\}$ tel que chaque nœud interne u est étiqueté par une variable $x \in V$ et si les fils de u portent les étiquettes $\alpha_1, \ldots, \alpha_k$ alors $(x, \alpha_1 \cdots \alpha_k) \in P$.

De plus, si $k \neq 1$, on peut supposer $\alpha_1, \ldots, \alpha_k \neq \varepsilon$.

Exemple:

Arbres de dérivation pour les expressions.

Mise en évidence des priorités ou de l'associativité G ou D.

◆□▶◆□▶◆≣▶◆≣▶ 夏 かQで 96/197

Grammaires et automates d'arbres

Théorème:

- 1. Soit L un langage d'arbres reconnaissable. Le langage ${\rm Fr}(L)$ des frontières des arbres de L est algébrique.
- 2. Soit L' un langage algébrique propre ($\varepsilon \notin L'$). Il existe un langage d'arbres reconnaissable L tel que $L' = \operatorname{Fr}(L)$.

Ambiguïté

Définition : Ambiguïté

- Une grammaire est ambiguë s'il existe deux arbres de dérivations (distincts) de même racine et de même frontière.
- Un langage algébrique est non ambigu s'il existe une grammaire non ambiguë qui l'engendre.

Exemples:

- La grammaire $S \to SS + aSb + \varepsilon$ est ambiguë mais elle engendre un langage non ambigu.
- La grammaire $E \to E + E \mid E \times E \mid a \mid b \mid c$ est ambiguë et engendre un langage rationnel.

Proposition : Tout langage rationnel peut être engendré par une grammaire linéaire droite non ambiguë.

Exercice: if then else

Montrer que la grammaire suivante est ambiguë.

 $S \rightarrow \text{if } c \text{ then } S \text{ else } S \mid \text{if } c \text{ then } S \mid a$

Montrer que le langage engendré n'est pas ambigu.

Lemme d'Ogden

Plus fort que le théorème de Bar-Hillel, Perles, Shamir.

Lemme: Ogden

Soit $G=(\Sigma,V,P,S)$ une grammaire. Il existe un entier $N\in\mathbb{N}$ tel que pour tout $x\in V$ et $w\in \widehat{L}_G(x)$ contenant au moins N lettres distinguées, il existe $y\in V$ et $\alpha,u,\beta,v,\gamma\in (\Sigma\cup V)^*$ tels que

- $w = \alpha u \beta v \gamma$,
- $x \xrightarrow{*} \alpha y \gamma, y \xrightarrow{*} u y v, y \xrightarrow{*} \beta,$
- $-u\beta v$ contient moins de N lettres distinguées,
- soit α, u, β soit β, v, γ contiennent des lettres distiguées.

Lemme d'itération

Théorème : Bar-Hillel, Perles, Shamir ou Lemme d'itération

Soit $L\in \mathrm{Alg}$, il existe $N\geq 0$ tel que pour tout $w\in L$, si $|w|\geq N$ alors on peut trouver une factorisation $w=\alpha u\beta v\gamma$ avec |uv|>0 et $|u\beta v|< N$ et $\alpha u^n\beta v^n\gamma\in L$ pour tout $n\geq 0$.

Exemple:

Le langage $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ n'est pas algébrique.

Corollaire:

Les familles Alg et Lin ne sont pas fermées par intersection ou complémentaire.

Lemme d'Ogden

Exercice ·

Le langage $L_2 = \{a^n b^n c^p d^p \mid n, p \ge 0\}$ est algébrique mais pas linéaire.

Corollaire:

La famille Lin n'est pas fermée par concaténation ou itération.

Exercice:

Le langage $L_3=\{a^nb^nc^p\mid n,p>0\}\cup\{a^nb^pc^p\mid n,p>0\}$ est linéaire et (inhéremment) ambigu.

Corollaire:

Les langages non ambigus ne sont pas fermés par union.

Propriétés de clôture

Proposition:

- 1. La famille Alg est fermée par concaténation, itération.
- 2. La famille Alg est fermée par substitution algébrique.
- 3. Les familles Alg et Lin sont fermées par union et miroir.
- 4. Les familles Alg et Lin sont fermées par intersection avec un rationnel.
- 5. Les familles Alg et Lin sont fermées par morphisme.
- 6. Les familles Alg et Lin sont fermées par projection inverse.
- 7. Les familles Alg et Lin sont fermées par morphisme inverse.

Définition : Substitutions algébriques

Une substitution $\sigma:A\to \mathcal{P}(B^*)$ est algébrique si $\forall a\in A$, $\sigma(a)\in \mathrm{Alg}$

Définition : Projection

La projection de A sur $B\subseteq A$ est le morphisme $\pi:A^*\to B^*$ défini par

$$\pi(a) = \begin{cases} a & \text{si } a \in B \\ \varepsilon & \text{sinon.} \end{cases}$$

Transductions rationnelles

Théorème : Chomsky et Schützenberger

Les propositions suivantes sont équivalentes :

- 1. L est algébrique.
- 2. Il existe une TR τ telle que $L = \tau(D_2^*)$.
- 3. Il existe un entier n, un rationnel K et un morphisme alphabétique ψ tels que $L=\psi(D_n^*\cap K).$

Corollaire:

Les langages non ambigus ne sont pas fermés par morphisme.

Théorème : Elgot et Mezei, 1965

La composée de deux TR est encore une TR.

Théorème : Nivat, 1968

Une application $\tau:A^*\to \mathcal{P}(B^*)$ est une TR si et seulement si son graphe $\{(u,v)\mid v\in \tau(u)\}$

est une relation rationnelle (i.e., un langage rationnel de $A^* \times B^*$).

◆□ ▶ ◆□ ▶ ◆ 章 ▶ ◆ 章 ▶ ○ 章 り へ ○ 103/197

Transductions rationnelles

Définition : Transduction rationnelle

Une transduction rationnelle (TR) $\tau:A^*\to \mathcal{P}(B^*)$ est la composée d'un morphisme inverse, d'une intersection avec un rationnel et d'un morphisme.

$$C^* \xrightarrow{\bigcap K} C^*$$

$$\varphi^{-1} \downarrow \psi$$

$$A^* \xrightarrow{\tau} B^*$$

Soient A,B,C trois alphabets, $K\in \mathrm{Rat}(C^*)$ et $\varphi:C^*\to A^*$ et $\psi:C^*\to B^*$ deux morphismes. L'application $\tau:A^*\to \mathcal{P}(B^*)$ définie par $\tau(w)=\psi(\varphi^{-1}(w)\cap K)$ est une TR.

Proposition:

Les familles Alg, Lin et Rat sont fermées par TR.

Grammaires réduites

La taille d'une grammaire $G=(\Sigma,V,P,S)$ est $|G|=|\Sigma|+|V|+\sum_{x \to \alpha \in P} 1+|\alpha|.$

Définition : Grammaires réduites

La grammaire $G=(\Sigma,V,P,S)$ est réduite si toute variable $x\in V$ est

- productive : $\mathcal{L}_G(x) \neq \emptyset$, i.e., $\exists \ x \xrightarrow{*} u \in \Sigma^*$, et
- accessible : il existe une dérivation $S \xrightarrow{*} \alpha x \beta$ avec $\alpha, \beta \in (\Sigma \cup V)^*$.

Lemme : Soit $G = (\Sigma, V, P, S)$ une grammaire.

- 1. On peut calculer l'ensemble des variables productives de ${\cal G}$
- 2. On peut décider si $\mathcal{L}_G(S) = \emptyset$ $\mathcal{O}(|G|)$.
- 3. On peut calculer l'ensemble des variables accessibles de G $\mathcal{O}(|G|)$.

Corollaire : Soit $G = (\Sigma, V, P, S)$ une grammaire

- Si $\mathcal{L}_G(S) \neq \emptyset$, on peut construire une grammaire réduite équivalente $\mathcal{O}(|G|)$.
- Preuve: Restreindre aux variables productives, puis aux variables accessibles.

 $\mathcal{O}(|G|)$.

Grammaires propres

Définition: Grammaires propres

La grammaire $G=(\Sigma,V,P,S)$ est propre si $P\subseteq V\times ((\Sigma\cup V)^+\setminus V)$, i.e., elle ne contient pas de règle de la forme $x\to \varepsilon$ ou $x\to y$ avec $x,y\in V$. Un langage $L\subseteq \Sigma^*$ est propre si $\varepsilon\notin L$.

Lemme:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut calculer l'ensemble des variables x telles que $\varepsilon \in \mathcal{L}_G(x)$ $\mathcal{O}(|G|)$. On peut construire une grammaire équivalente sans ε -règle autre que $S \to \varepsilon$ et dans ce cas S n'apparaît dans aucun membre droit $\mathcal{O}(|G|)$.

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut construire une grammaire propre G' qui engendre $\mathcal{L}_G(S)\setminus\{\varepsilon\}$ $\mathcal{O}(|G|^2)$.

Remarque: la réduction d'une grammaire propre est une grammaire propre.

Corollaire:

On peut décider si un mot $u \in \Sigma^*$ est engendré par une grammaire G.

| □ ▶ ◀ ■ ▶ ◀ 重 ▶ ◀ 重 ▶ ▼ 9 Q ○ 105/197

Problèmes décidables

Proposition: Problème du mot: Cocke, Younger, Kasami [9, p. 139]

Soit G une grammaire algébrique.

On peut décider si un mot w est engendré par G en temps $\mathcal{O}(|w|^3)$.

Exercice:

Soit G une grammaire algébrique et $\mathcal A$ un automate fini.

Montrer que l'on peut décider en temps polynomial si $\mathcal{L}(G) \cap \mathcal{L}(\mathcal{A}) \neq \emptyset$.

Proposition: Vide et finitude

Soit G une grammaire algébrique.

On peut décider si le langage engendré par G est vide, fini ou infini (PTIME).

Grammaires quadratiques

Définition : Forme normale de Chomsky

Une grammaire $G = (\Sigma, V, P, S)$ est en forme normale

- 1. quadratique si $P \subseteq V \times (V \cup \Sigma)^{\leq 2}$
- 2. de Chomsky si $P\subseteq \{(S,\varepsilon)\}\cup (V\times (V^2\cup \Sigma))$ et si $(S,\varepsilon)\in P$ alors S n'apparaît dans aucun membre droit.

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On peut construire une grammaire équivalente en FN quadratique $\mathcal{O}(|G|)$. On peut construire une grammaire équivalente en FN de Chomsky $\mathcal{O}(|G|^2)$.

Remarques:

1. La réduction d'une grammaire en FNC est encore en FNC.

Problèmes indécidables

Proposition:

Soient L,L' deux langages algébriques et R un langage rationnel. Les problèmes suivants sont indécidables :

- $L \cap L' = \emptyset ?$
- $L = \Sigma^*$?
- L = L'?
- $L \subseteq L'$?
- $R \subseteq L$?
- L est-il rationnel ?
- L est-il déterministe ?
- L est-il ambigu ?
- ullet \overline{L} est-il algébrique ?
- $L \cap L'$ est-il algébrique ?

Forme normale de Greibach

Définition :

La grammaire $G = (\Sigma, V, P)$ est en

FNG (forme normale de Greibach) $\text{si }P \subseteq V \times \Sigma V^*$

si $P \subseteq V \times \Sigma (V \cup \Sigma)^*$ **FNPG** (presque Greibach)

FNGQ (Greibach quadratique) $si P \subseteq V \times (\Sigma \cup \Sigma V \cup \Sigma V^2)$

Remarque: on passe trivialement d'une FNPG(Q) à une FNG(Q).

Théorème:

Soit $G = (\Sigma, V, P)$ une grammaire propre.

On peut construire $G' = (\Sigma, V', P')$ en FNG équivalente à G.

i.e., $V \subseteq V'$ et $\mathcal{L}_G(x) = \mathcal{L}_{G'}(x)$ pour tout $x \in V$.

La difficulté est d'éliminer la récursivité gauche des règles.

Forme normale de Greibach

Remarque: Grammaire propre

Si G est propre alors pour $1 \le i, j \le n$ on a

$$\alpha_{i,j} \subseteq (\Sigma \cup V)^+$$
 et $\beta_j \subseteq \Sigma \cdot (\Sigma \cup V)^*$

donc les règles $X \to BY + B$ de G' sont en FNPG.

On définit G'' à partir de G' en remplacant chaque variable x_{ℓ} en tête d'un mot de $\alpha_{i,j}$ par sa définition $\sum_{k} \beta_k y_{k,\ell} + \beta_{\ell}$.

Proposition: FNG et FNGQ

- Les grammaires G et G'' sont équivalentes.
- Si G est une grammaire propre alors G'' est en FNPG.
- Si G est propre et en FN de Chomsky, alors G'' est en FNGQ.

Exemples: Mettre les grammaires suivantes en FNG(Q)

$$G_1: \left\{ \begin{array}{l} x_1 \to x_1 b + a \\ x_2 \to x_1 b + a x_2 \end{array} \right. \qquad G_2: \left\{ \begin{array}{l} x_1 \to x_1 (x_1 + x_2) + (x_2 a + b) \\ x_2 \to x_1 x_2 + x_2 x_1 + a \end{array} \right.$$

◆□▶◆②▶◆ミ▶◆ミ▶ き りQで 111/197

Forme normale de Greibach

Preuve

Soit $G = (\Sigma, V, P)$ une grammaire avec $V = \{x_1, \dots, x_n\}$

Pour
$$i,j \in \{1,\dots,n\}$$
 on pose
$$\left\{ \begin{array}{ll} \alpha_{i,j} &=& x_i^{-1}P(x_j) \subseteq (\Sigma \cup V)^* \\ \beta_j &=& P(x_j) \cap (\Sigma \cdot (\Sigma \cup V)^* \cup \{\varepsilon\}) \\ \text{de sorte que les règles de } G \text{ s'écrivent } x_j \to \sum_i x_i \alpha_{i,j} + \beta_j \text{ pour } 1 \leq j \leq n. \end{array} \right.$$

On peut écrire P vectoriellement : $X \to XA + B$

avec
$$X = (x_1, ..., x_n)$$
, $B = (\beta_1, ..., \beta_n)$ et $A = (\alpha_{i,j})_{1 \le i,j \le n}$.

On définit $G' = (\Sigma, V', P')$ par $V' = V \uplus \{y_{i,j} \mid 1 \le i, j \le n\}$ et

$$P': \qquad \begin{array}{ccc} X & \to & BY+B \\ Y & \to & AY+A \end{array} \qquad \text{i.e.} \qquad \begin{array}{ccc} x_j & \to & \sum_k \beta_k y_{k,j} + \beta_j \\ y_{i,j} & \to & \sum_k \alpha_{i,k} y_{k,j} + \alpha_{i,j} \end{array}$$

avec $Y = (y_{i,j})_{1 \le i,j \le n}$.

Proposition: Equivalence des grammaires

Les grammaires G et G' sont équivalentes, i.e., $\forall x \in V$, $\mathcal{L}_G(x) = \mathcal{L}_{G'}(x)$.

Équations algébriques

Définition : Système d'équations algébriques

Un système d'équations algébriques est un triplet (Σ, V, P) où :

- Σ est l'alphabet terminal,
- $V = \{X_1, \dots, X_n\}$ est un ensemble fini de variables disjoint de Σ ,
- $P = (P_1, \dots, P_n)$ avec $P_i \subseteq (\Sigma \cup V)^*$ (non nécessairement fini).

On écrit le système d'équations $\overline{X}=P(\overline{X})$ ou $\begin{cases} X_1=P_1(\overline{X})\\ \vdots\\ X_n=P_n(\overline{X}) \end{cases}$

Une solution est un tuple $\overline{L} = (L_1, \dots, L_n)$ de langages sur Σ vérifiant $\overline{L} = P(\overline{L})$.

Exemple:

$$\overline{L} = (a^+b^+, ab^*) \text{ est solution de } \begin{cases} X_1 = aX_1 + X_2b \\ X_2 = X_2b + a \end{cases}$$

Équations algébriques

Théorème : Existence de solutions

Tout système (Σ,V,P) d'équations algébriques admet une plus petite solution :

$$\overline{L} = \bigsqcup_{n \ge 0} \overline{L}^n$$

avec
$$\overline{L}^0 = (\emptyset, \dots, \emptyset)$$
 et $\overline{L}^{n+1} = P(\overline{L}^n)$.

Exercice : Grammaire et équations algébriques

Soit $G=(\Sigma,V,Q)$ une grammaire avec $V=\{X_1,\ldots,X_n\}$. Le système d'équations associé est (Σ,V,P) où $P_i=\{\alpha\in(\Sigma\cup V)^*\mid (X_i,\alpha)\in Q\}$.

Montrer que $(L_G(X_1),\ldots,L_G(X_n))$ est la plus petite solution du système d'équations $\overline{X}=P(\overline{X})$.

Équations algébriques

Théorème : Résolution par élimination

On considère le système
$$\begin{cases} \overline{X} = P(\overline{X}, \overline{Y}) \\ \overline{Y} = Q(\overline{X}, \overline{Y}) \end{cases}$$

avec
$$\overline{X} = (X_1, \dots, X_n)$$
 et $\overline{Y} = (Y_1, \dots, Y_m)$.

Soit \overline{K} une solution de $\overline{Y} = Q(\overline{X}, \overline{Y})$ sur $\Sigma \cup \{X_1, \dots, X_n\}$. Soit \overline{L} une solution de $\overline{X} = P(\overline{X}, \overline{K})$ sur Σ .

Alors, $(\overline{L},\overline{K}(\overline{L}))$ est une solution du système $\left\{ \overline{\overline{X}}=P(\overline{X},\overline{Y})\ \overline{Y}=Q(\overline{X},\overline{Y}) \right\}$

Exemple:

Résolution par élimination du système $\begin{cases} X_1 = aX_1 + bX_2 + \varepsilon \\ X_2 = bX_1 + aX_2 \end{cases}$

Exemple:

Résolution par élimination du système
$$\begin{cases} X = YX + b \\ Y = aX \end{cases}$$

◆□▶◆□▶◆□▶◆□▶ ■ 9Q@ 115/197

Équations algébriques

Définition :

Un système d'équations (Σ, V, P) est

- ▶ propre si $P_i \cap (V \cup \{\varepsilon\}) = \emptyset$ pour tout i
- strict si $P_i \subseteq \{\varepsilon\} \cup (\Sigma \cup V)^* \Sigma (\Sigma \cup V)^*$ pour tout i

Le système est faiblement propre (resp. strict) s'il existe k>0 tel que $\overline{X}=P^k(\overline{X})$ est propre (resp. strict).

Théorème : Unicité

Tout système (Σ,V,P) d'équations algébriques faiblement strict ou faiblement propre admet une solution unique.

Exemple:

 $\begin{array}{ll} D_1^* \text{ est l'unique solution de } X = aXbX + \varepsilon. \\ \textbf{ℓ est l'unique solution de } X = aXX + b. \\ \text{On en déduit } t = D_1^*b. \end{array}$

Plan

Introduction

Langages reconnaissables

Automates d'arbres

Grammaires

Langages algébriques

6 Automates à pile

- Définition et exemples
- Modes de reconnaissance
- Lien avec les langages algébriques
- Mots de pile
- Langages déterministes
- Complémentaire

Automates à pile

Définition : $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0, F)$ où

- Q ensemble fini d'états
- \triangleright Σ alphabet d'entrée
- ightharpoonup Z alphabet de pile
- $T \subseteq QZ \times (\Sigma \cup \{\varepsilon\}) \times QZ^*$ ensemble fini de transitions
- $q_0z_0\in QZ$ configuration initiale
- $F \subseteq Q$ acceptation par état final.

De plus, $\mathcal A$ est temps-réel s'il n'a pas d' ε -transition.

Définition : Système de transitions (infini) associé

- $\mathcal{T} = (QZ^*, T', q_0z_0, FZ^*)$
- lacksquare Une configuration de ${\mathcal A}$ est un état $ph\in QZ^*$ de ${\mathcal T}$
- ► Transitions de \mathcal{T} : $T' = \{pzh \xrightarrow{a} qgh \mid (pz, a, qg) \in T\}$.
- $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists \ q_0 z_0 \xrightarrow{w} qh \in FZ^* \ \mathsf{dans} \ \mathcal{T} \}.$

Propriétés fondamentales

Lemme: fondamental

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile.

- 1. Si $pg \xrightarrow{w} p'g'$ est un calcul de \mathcal{A} et $h \in Z^*$ alors $pgh \xrightarrow{w} p'g'h$ est aussi un calcul de \mathcal{A} .
- 2. Si $p_0g_0 \xrightarrow{a_1} p_1g_1 \cdots \xrightarrow{a_n} p_ng_n$ est un calcul de $\mathcal A$ tel que $|g_i| > k$ pour $0 \le i < n$ alors il existe $h \in \mathbb Z^k$ tel que $g_i = g_i'h$ pour $0 \le i \le n$ et $p_0g_0' \xrightarrow{a_1} p_1g_1' \cdots \xrightarrow{a_n} p_ng_n'$ est un calcul de $\mathcal A$.
- 3. $pgh \xrightarrow[n]{w} r$ est un calcul de \mathcal{A} ssi il existe deux calculs de \mathcal{A} : $pg \xrightarrow[n]{w} q$ et $qh \xrightarrow[n]{w} r$ avec $w = w_1w_2$ et $n = n_1 + n_2$.

◆□▶◆□▶◆□▶◆□▶ ■ かなで 119/197

Automates à pile

Exemples:

- $L_1 = \{a^n b^n c^p \mid n, p > 0\} \text{ et } L_2 = \{a^n b^p c^p \mid n, p > 0\}$
- $L = L_1 \cup L_2$ (non déterministe)

Exercices:

- 1. Montrer que le langage $\{w\tilde{w}\mid w\in\Sigma^*\}$ et son complémentaire peuvent être acceptés par un automate à pile.
- 2. Montrer que le complémentaire du langage $\{ww\mid w\in \Sigma^*\}$ peut être accepté par un automate à pile.
- 3. Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile. Montrer qu'on peut construire un automate à pile équivalent \mathcal{A}' tel que $T'\subseteq Q'Z\times (\Sigma\cup \{\varepsilon\})\times Q'Z^{\leq 2}.$
- 4. Soit \mathcal{A} un automate à pile. Montrer qu'on peut construire un automate à pile équivalent \mathcal{A}' tel que les mouvements de la pile sont uniquement du type *push* ou *pop*.

Acceptation généralisée

Définition :

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile et $K\subseteq QZ^*$ un langage reconnaissable. Le langage reconnu par \mathcal{A} avec acceptation généralisée K est

$$\mathcal{L}_K(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists \ q_0 z_0 \xrightarrow{w} qh \in K \text{ dans } \mathcal{T} \}$$

Cas particuliers :

- $K = FZ^*$: acceptation classique par état final.
- K=Q: acceptation par pile vide.
- K = F: acceptation par pile vide et état final.
- $K = QZ'Z^*$ avec $Z' \subseteq Z$: acceptation par sommet de pile.

Exemple:

 $L = \{a^nb^n \mid n \ge 0\}$ peut être accepté par pile vide ou par sommet de pile.

Proposition : Acceptation généralisée

Soit \mathcal{A} un automate à pile avec acceptation généralisée K, on peut effectivement construire un automate à pile \mathcal{A}' acceptant par état final tel que $\mathcal{L}_K(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Acceptation généralisée

Preuve : Acceptation généralisée

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile et $K\subseteq QZ^*$ un langage reconnu par l'automate fini déterministe $\mathcal{B} = (P, Z \cup Q, \delta, p_0, F)$ avec $P \cap Q = \emptyset$.

Soit $\mathcal{A}' = (Q', \Sigma, Z \uplus \{\bot\}, T', q'_0 \bot, \{f\})$ avec $Q' = Q \uplus P \uplus \{q'_0, f\}$, et

1.
$$q_0' \cdot \perp \xrightarrow{\varepsilon} q_0 \cdot z_0 \perp \in T'$$
,

Initialisation

2.
$$T \subseteq T'$$
.

Simulation

3.
$$q \cdot z \xrightarrow{\varepsilon} \delta(p_0, q) \cdot z \in T'$$
, si $q \in Q$ et $z \in Z \uplus \{\bot\}$,

Acceptation

Acceptation

4.
$$p \cdot z \xrightarrow{\varepsilon} \delta(p,z) \cdot \varepsilon \in T'$$
, si $p \in P$ et $z \in Z$,

5.
$$p \cdot \perp \xrightarrow{\varepsilon} f \cdot \varepsilon \in T'$$
, si $p \in F$,

Acceptation

On a $\mathcal{L}(\mathcal{A}, K) = \mathcal{L}(\mathcal{A}')$.

Remarque: \mathcal{A}' reconnaît aussi $\mathcal{L}(\mathcal{A}, K)$ par pile vide.

exo: Modifier \mathcal{A}' pour qu'il reconnaisse $\mathcal{L}(\mathcal{A}, K)$ par sommet de pile.

Corollaire:

Tous les modes d'acceptation ci-dessus sont équivalents.

Accessibilité et mots de pile

Proposition : Accessibilité et mots de pile

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0)$ un automate à pile.

Pour $pq \in QZ^*$, on note

$$\mathcal{C}(pg) = \{ qh \in QZ^* \mid \exists \ pg \Rightarrow qh \ \mathsf{dans} \ \mathcal{T} \}$$

l'ensemble des configurations accessibles à partir de pq.

On peut effectivement construire un automate fini \mathcal{B} qui reconnaît $\mathcal{C}(pq)$.

Corollaire : Décidabilité

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0, F)$ un automate à pile.

On peut décider si $\mathcal{L}(\mathcal{A}) = \emptyset$.

◆□▶◆□▶◆□▶◆□▶ ■ 釣魚○ 123/197

Automates à pile et grammaires

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile reconnaissant par pile vide. On peut construire une grammaire G qui engendre $\mathcal{L}(\mathcal{A})$.

De plus, si A est *temps-réel* alors G est en FNG.

Proposition:

Soit $G = (\Sigma, V, P, S)$ une grammaire. On peut construire un automate à pile simple (un seul état) A qui accepte $L_G(S)$ par pile vide.

De plus, si G est en FNPG alors on peut construire un tel A temps-réel.

Si G est en FNGQ alors on peut construire un tel A standardisé $(T \subseteq Z \times \Sigma \times Z^{\leq 2})$.

Accessibilité et mots de pile (Preuve)

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0)$ un automate à pile.

On définit $\Gamma = Q \uplus Z \uplus \overline{Q} \uplus \overline{Z}$ et la réduction sur Γ^* par

$$\left\{ \begin{array}{ll} \overline{q}q & \xrightarrow{\operatorname{red}} & \varepsilon & \quad \operatorname{pour} \ q \in Q \\ \overline{z}z & \xrightarrow{\operatorname{red}} & \varepsilon & \quad \operatorname{pour} \ z \in Z \end{array} \right.$$

Pour $L \subseteq \Gamma^*$ on pose $\operatorname{Clot}(L) = \{ w \in \Gamma^* \mid \exists v \in L, \ v \xrightarrow{\operatorname{red}} w \}.$

Lemme: Clôture

Si $L \subseteq \Gamma^*$ est un langage rationnel alors $\operatorname{Clot}(L) \subseteq \Gamma^*$ aussi.

De plus, on peut effectivement construire un automate pour Clot(L) à partir d'un automate pour L.

Soit $K = \{qh\overline{xp} \mid \exists px \xrightarrow{a} qh \in T\} \subseteq \Gamma^+$, langage fini donc rationnel.

Lemme:

Soit n > 0.

il existe un calcul $pq \xrightarrow{r} qh$ dans \mathcal{T} ssi il existe $w \in K^n$ tel que $wpq \xrightarrow{\operatorname{red}} qh$

Corollaire : $C(pq) = Clot(K^+ \cdot pq) \cap QZ^*$.

Calculs d'accessibilité

Corollaire:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile.

On peut effectivement calculer les ensembles suivants :

- 1. $X = \{(p, x, q) \in Q \times Z \times Q \mid \exists px \Rightarrow q \text{ dans } \mathcal{T}\}$
- 2. $Y = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists px \Rightarrow qyh \text{ dans } \mathcal{T}\}$
- 3. $W = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists px \Rightarrow qy \text{ dans } \mathcal{T}\}$
- 4. $X' = \{(p, x, q) \in Q \times Z \times Q \mid \exists px \xrightarrow{\varepsilon} q \text{ dans } \mathcal{T}\}$
- 5. $Y' = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists px \xrightarrow{\varepsilon} qyh \text{ dans } \mathcal{T}\}$
- 6. $W' = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists px \xrightarrow{\varepsilon} qy \text{ dans } \mathcal{T}\}$

Exercice:

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0)$ un automate à pile.

Montrer qu'on peut effectivement calculer les ensembles suivants :

- 1. $V = \{(p, x) \in Q \times Z \mid \exists px \Rightarrow \mathsf{dans} \ \mathcal{T}\}$
- 2. $V' = \{(p, x) \in Q \times Z \mid \exists px \xrightarrow{\varepsilon} \mathsf{dans} \ \mathcal{T}\}\$

Acceptation par pile vide

Exemples:

- 1. Le langage $\{a^nba^n\mid n\geq 0\}$ peut être accepté par $\it pile vide$ par un automate D+TR+S.
- 2. Le langage $\{a^nb^pca^n\mid n,p>0\}\cup\{a^nb^pdb^p\mid n,p>0\}$ peut être accepté par pile vide par un automate D.

Exercices:

- 1. Montrer qu'un langage L est déterministe et préfixe $(L \cap L\Sigma^+ = \emptyset)$ ssi il existe un automate déterministe qui accepte L par pile vide.
- 2. Montrer que pour les automates à pile déterministes, l'acceptation par pile vide est équivalente à l'acceptation par pile vide ET état final.

Exercice:

Montrer que D_n^* peut être accepté par sommet de pile par un automate D+TR+S.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ 9 へ ○ 127/197

Langages déterministes

Définition : Automate à pile déterministe

 $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0, F)$ est déterministe si

- $\forall (pz, a) \in QZ \times (\Sigma \cup \{\varepsilon\}), \quad |T(pz, a)| \leq 1,$
- $\forall pz \in QZ, \quad T(pz, \varepsilon) \neq \emptyset \implies \forall a \in \Sigma, \ T(pz, a) = \emptyset$

Un langage $L\subseteq \Sigma^*$ est $d\acute{e}terministe$ s'il existe un automate à pile déterministe qui accepte L par état final.

Exemples:

- 1. $\{a^nba^n\mid n\geq 0\}$ peut être accepté par un automate D+TR mais pas par un automate D+S car il n'est pas fermé par préfixe.
- 2. Le langage $\{a^nb^pca^n\mid n,p>0\}\cup\{a^nb^pdb^p\mid n,p>0\}$ est déterministe mais pas D+TR.

Exercices:

- 1. Montrer que D_n^* est D+TR mais pas D+S.
- 2. Montrer que le langage $\{a^nb^n\mid n>0\}\cup\{a^nb^{2n}\mid n>0\}$ est non ambigu mais pas déterministe.

◆ロト ◆御 ト ◆ 草 ト ◆ 草 ・ 夕 Q ○ 126/107

Lemme d'itération pour les déterministes

Lemme : Itération

Soit $L\subseteq \Sigma^*$ un langage déterministe. Il existe un entier $N\in \mathbb{N}$ tel que tout mot $w\in L$ contenant au moins N lettres distinguées se factorise en $w=\alpha u\beta v\gamma$ avec

- 1. $\forall p \geq 0 : w = \alpha u^p \beta v^p \gamma \in \mathcal{L}(\mathcal{A}),$
- 2. $u\beta v$ contient moins de N lettres distinguées,
- 3. soit α, u, β soit β, v, γ contiennent des lettres distiguées,
- 4. pour tout $\gamma' \in \Sigma^*$,

$$\exists p : \alpha u^p \beta v^p \gamma' \in L \quad \Longrightarrow \quad \forall p : \alpha u^p \beta v^p \gamma' \in L$$

Langages déterministes

Proposition : Décidabilité et indécidabilité

On ne peut pas décider si un langage algébrique est déterministe.

Soient L,L' deux langages déterministes et R un langage rationnel.

Les problèmes suivants sont décidables :

- L = R?
- $R \subseteq L$?
- ightharpoonup L est-il rationnel ?
- L = L'?

Les problèmes suivants sont indécidables :

- $L \cap L' = \emptyset$?
- $L \subseteq L'$?
- $L \cap L'$ est-il algébrique ?
- L \cap L' est-il déterministe ?
- L \cup L' est-il déterministe ?

Blocage

Définition : Blocage

Un automate à pile $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ est sans blocage si pour toute configuration accessible $p\alpha$ et pour toute lettre $a\in\Sigma$ il existe un calcul $p\alpha\xrightarrow{\varepsilon}\xrightarrow{a}$.

Proposition : Critère d'absence de blocage

Un automate déterministe est sans blocage si et seulement si pour toute configuration accessible $p\alpha$ on a

- 1. $\alpha \neq \varepsilon$, et donc on peut écrire $\alpha = x\beta$ avec $x \in Z$,
- 2. $px \xrightarrow{\varepsilon} ou \forall a \in \Sigma, px \xrightarrow{a}$
- 3. $px \xrightarrow{\varepsilon}$.

De plus, ce critère est décidable.

Remarque :

Si \mathcal{A} est sans blocage alors chaque mot $w \in \Sigma^*$ a un unique calcul maximal (et fini) $q_0 z_0 \xrightarrow[]{w} p \alpha \xrightarrow{g} \text{dans } \mathcal{A}$ (avec $\alpha \neq \varepsilon$).

Complémentaire

Théorème : Les déterministes sont fermés par complémentaire.

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe \mathcal{A}' qui reconnaît $\Sigma^* \setminus \mathcal{L}(\mathcal{A})$.

Il y a deux difficultés principales :

- 1. Un automate déterministe peut se bloquer (deadlock) ou entrer dans un ε -calcul infini (livelock). Dans ce cas il y a des mots qui n'admettent aucun calcul dans l'automate.
- 2. Même avec un automate déterministe, un mot peut avoir plusieurs calculs (ε -transitions à la fin) certains réussis et d'autres non.

Blocage

Proposition: Suppression des blocages

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe sans blocage $\mathcal{A}'=(Q',\Sigma,Z',T',q_0'z_0',F')$ qui reconnaît le même langage.

Preuve

 $Q'=Q\uplus\{q_0',d,f\},\ F'=F\uplus\{f\},\ Z'=Z\uplus\{\bot\},\ z_0'=\bot\text{ et pour }p\in Q,\ a\in\Sigma\text{ et }x\in Z$

- 1. $q_0' \perp \xrightarrow{\varepsilon} q_0 z_0 \perp$,
- 2. Si $px \xrightarrow{a} q\alpha \in T$ alors $px \xrightarrow{a} q\alpha \in T'$,
- 3. Si $px \xrightarrow{a}$ et $px \xrightarrow{\hat{s}}$ dans \mathcal{A} alors $px \xrightarrow{a} dx \in T'$,
- 4. Si $px \xrightarrow{\underline{\varepsilon}_f} \mathsf{dans} \ \mathcal{A} \ \mathsf{et} \ px \xrightarrow{\underline{\varepsilon}} q\alpha \in T \ \mathsf{alors} \ px \xrightarrow{\underline{\varepsilon}} q\alpha \in T'$,
- 5. Si $px \xrightarrow{\varepsilon} \operatorname{dans} \mathcal{A}$ et $\exists \ px \xrightarrow{\varepsilon} q\alpha$ avec $q \in F$ alors $px \xrightarrow{\varepsilon} fx \in T'$,
- 6. Si $px \xrightarrow{\varepsilon} \operatorname{dans} \mathcal{A}$ et $\forall \ px \xrightarrow{\varepsilon} q\alpha$ on a $q \notin F$ alors $px \xrightarrow{\varepsilon} dx \in T'$,
- 7. $p \perp \xrightarrow{\varepsilon} d \perp$, $d \perp \xrightarrow{a} d \perp$, $dx \xrightarrow{a} dx$ et $fx \xrightarrow{a} dx$.

Cette construction est effective

Complémentaire

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe \mathcal{A}' qui reconnaît $\Sigma^* \setminus \mathcal{L}(\mathcal{A})$.

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe équivalent \mathcal{A}' tel qu'on ne puisse pas faire d' ε -transition à partir d'un état final de \mathcal{A}' .

Exercice:

Montrer que tout langage déterministe est non ambigu.

Plan

Introduction

Langages reconnaissables

Automates d'arbres

Grammaires

Langages algébriques

Automates à pile

- Analyse syntaxique
 - Analyse descendante (LL)
 - Analyse ascendante (LR)
 - Analyseur SLR
 - Analyseur LR(1)

◆□▶◆②▶◆臺▶◆臺▶ 臺 釣&♡ 135/197

Langages déterministes

Exercice:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,K)$ un automate à pile déterministe avec acceptation généralisée par le langage rationnel $K\subset QZ^*$.

Montrer qu'on peut effectivement construire un automate à pile déterministe équivalent reconnaissant par état final.

Exercice:

Soit \mathcal{A} un automate à pile déterministe. Montrer qu'on peut effectivement construire un automate à pile déterministe qui reconnaît le même langage et dont les ε -transitions sont uniquement effacantes : $px \xrightarrow{\varepsilon} q$.

Bibliographie

- [1] Alfred V. Aho, Ravi Sethi et Jeffrey D. Ullman. Compilers: principles, techniques and tools. Addison-Wesley, 1986.
- [2] Alfred V. Aho et Jeffrey D. Ullman. The theory of parsing, translation, and compiling. Volume I: Parsing. Prentice-Hall, 1972.
- [9] John E. Hopcroft et Jeffrey D. Ullman. Introduction to automata theory, languages and computation. Addison-Wesley, 1979.

Analyse syntaxique

Buts:

- Savoir si un programme est syntaxiquement correct.
- Construire l'arbre de dérivation pour piloter la génération du code.

Rappels:

- Un programme est un mot $w\in \Sigma^*$ (Σ est l'alphabet ASCII). L'ensemble des programmes syntaxiquement corrects forme un langage $L\subset \Sigma^*$.
- Ce langage est algébrique : la syntaxe du langage de programmation est définie par une grammaire $G=(\Sigma,V,P,S)$.
- Pour tester si un programme w est syntaxiquement correct, il faut résoudre le problème du mot : est-ce que $w \in \mathcal{L}_G(S)$?
- L'arbre de dérivation est donné par la suite des règles utilisées lors d'une dérivation gauche (ou droite).

Analyse descendante (LL)

Définition : Automate LL ou expansion/vérification

Soit $G = (\Sigma, V, P, S)$ une grammaire réduite.

On construit l'automate à pile simple non déterministe qui accepte par pile vide : $\mathcal{A}=(\Sigma,\Sigma\cup V,T,S)$ où les transitions de T sont des

- expansions : $\{(x, \varepsilon, \alpha) \mid (x, \alpha) \in P\}$ ou
- vérifications : $\{(a, a, \varepsilon) \mid a \in \Sigma\}$.

Remarque : sommet de pile à gauche.

Lemme:

Soient $x, y \in V$, $w \in \Sigma^*$ et $\alpha \in (\Sigma \cup V)^*$.

- 1. $\exists \alpha \xrightarrow{*} w$ dérivation dans G ssi $\exists \alpha \xrightarrow{w} \varepsilon$ calcul dans A.
- 2. $\exists \alpha \xrightarrow{*} wy\beta$ dérivation gauche dans G ssi $\exists \alpha \xrightarrow{w} y\beta$ calcul dans A.

Définition :

Analyse LL : $\left\{ \begin{array}{l} \mathsf{L} : \mathsf{le} \ \mathsf{mot} \ \mathsf{est} \ \mathsf{lu} \ \mathsf{de} \ \mathsf{gauche} \ \mathsf{\grave{a}} \ \mathsf{droite} \ \mathsf{dans} \ \mathcal{A}. \\ \mathsf{L} : \mathsf{on} \ \mathsf{construit} \ \mathsf{une} \ \mathsf{d\acute{e}rivation} \ \mathsf{gauche} \ \mathsf{dans} \ \mathcal{G}. \end{array} \right.$

Analyse syntaxique

Rappels : le problème du mot est décidable

- Programmation dynamique : $\mathcal{O}(|w|^3)$. Ce n'est pas assez efficace.
- en lisant le mot si on a un automate à pile déterministe complet. $\mathcal{O}(|w|)$ si l'automate est temps réel ou si les ε -transitions ne font que dépiler. Mais la grammaire qui définit la syntaxe du langage de programmation peut être non déterministe ou ambiguë.

Exercice:

Si la grammaire n'est pas récursive à gauche $(x \xrightarrow{+} x\alpha)$, on peut construire un analyseur récursif avec backtracking. (Cet analyseur n'est pas efficace.)

Analyse descendante (LL)

Problème:

L'automate ainsi obtenu est en général non déterministe.

Solution:

Pour lever le non déterminisme de l'automate on s'autorise à regarder les k prochaines lettres du mot.

Exemple:

1. $G_1: S \to aSb + ab$.

On peut lever le non déterminisme de l'automate associé à la grammaire ${\cal G}_1$ en regardant les 2 prochaines lettres.

2.
$$G_2: \left\{ \begin{array}{ll} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T \times F \mid F \\ F & \rightarrow & (E) \mid a \mid b \mid . \end{array} \right.$$

On ne peut pas lever le non déterminisme de l'automate associé à la grammaire G_2 en regardant les k prochaines lettres.

Analyse LL avec lookahead

Définition : Table d'analyse LL avec lookahead

Soit $G = (\Sigma, V, P, S)$ une grammaire.

Une k-table d'analyse pour G est une application $M\colon V\times \Sigma^{\leq k}\to 2^P$ telle que pour $x\in V$ et $v\in \Sigma^{\leq k}$ on a $M(x,v)\subseteq P\cap (\{x\}\times (\Sigma\cup V)^*)$.

La table est déterministe si $|M(x,v)| \leq 1$ pour tout $x \in V$ et $v \in \Sigma^{\leq k}$.

Définition : Analyseur LL avec lookahead

Soit $G=(\Sigma,V,P,S)$ une grammaire et soit M une k-table d'analyse pour G. L'analyseur LL défini par M, noté \mathcal{A}_M , est l'automate LL \mathcal{A} associé à G dont les expansions sont pilotées par M:

Si $x \in V$ est au sommet de pile et si $v \in \Sigma^{\leq k}$ est le mot formé des (au plus) k prochaines lettres à lire, alors \mathcal{A}_M choisit une expansion dans M(x,v). L'analyseur est bloqué (erreur) si $M(x,v) = \emptyset$.

Corollaire : $\mathcal{L}(\mathcal{A}_M) \subseteq \mathcal{L}(\mathcal{A}) = \mathcal{L}_G(S)$

Définition : L'analyseur \mathcal{A}_M est complet si $\mathcal{L}(\mathcal{A}_M) = \mathcal{L}(\mathcal{A}) = \mathcal{L}_G(S)$

On dit aussi que la table M est complète pour G.

-- 4 ロ ト 4 同 ト 4 ミ ト 4 ミ ト シ ミ ・4) Q (* 141/107

Analyse descendante $First_k$

Définition : First

- Pour $w\in \Sigma^*$ et $k\geq 0$, on définit $\mathrm{First}_k(w)= egin{cases} w & \mathrm{si}\ |w|\leq k \\ w[k] & \mathrm{sinon}. \end{cases}$
- Pour $L \subseteq \Sigma^*$ et $k \ge 0$, $\mathrm{First}_k(L) = \{ \mathrm{First}_k(w) \mid w \in L \}$.
- $\qquad \text{Soit } G = (\Sigma, V, P, S) \text{ une grammaire algébrique, } \alpha \in (\Sigma \cup V)^* \text{ et } k \geq 0,$

$$\operatorname{First}_k(\alpha) = \operatorname{First}_k(\mathcal{L}_G(\alpha)) \subseteq \Sigma^{\leq k}$$

Remarque:

$$\operatorname{First}_k(\alpha\beta) = \operatorname{First}_k(\operatorname{First}_k(\alpha) \cdot \operatorname{First}_k(\beta))$$

Exemple:

Calculer $\operatorname{First}_2(E)$ pour la grammaire G_2 .

Remarque:

Pour $\alpha \in (\Sigma \cup V)^*$, $\mathrm{First}_0(\alpha) = \{\varepsilon\}$ ssi toutes les variables de α sont productives.

◆□▶◆□▶◆≣▶◆≣▶ ■ りQ℃ 143/197

Analyse LL avec lookahead

Exemple:

- 1. Construire une 2-table d'analyse déterministe et complète pour G_1 .
- 2. Construire une 1-table d'analyse déterministe et complète pour la grammaire usuelle du langage de Dyck D_n^* sur n paires de parenthèses:

$$S \to \varepsilon \mid a_1 S b_1 S \mid \dots \mid a_n S b_n S$$

Exercice:

Transformer l'analyseur LL défini par une table déterministe en un automate à pile déterministe classique (sans lookahead) équivalent.

Objectif de l'analyse LL(k)

Étant donnés une grammaire G et un entier k, construire automatiquement une k-table d'analyse déterministe et complète pour la grammaire G.

Calcul de First_k

Définition : Algorithme de calcul pour First_k (k > 0)

On définit $X_m(\alpha)$ pour $\alpha \in \Sigma \cup V$ et $m \geq 0$ par :

- si $a \in \Sigma$ alors $X_m(a) = \{a\}$ pour tout $m \ge 0$,
- si $x \in V$ alors $X_0(x) = \emptyset$ et

$$X_{m+1}(x) = \bigcup_{x \to \alpha_1 \cdots \alpha_n \in P} \operatorname{First}_k(X_m(\alpha_1) \cdots X_m(\alpha_n))$$

Proposition : Point fixe (k > 0)

- 1. $X_m(\alpha) \subseteq X_{m+1}(\alpha)$
- 2. $X_m(\alpha) \subseteq \operatorname{First}_k(\alpha)$
- 3. Si $\alpha \xrightarrow{m} w \in \Sigma^*$ alors $\operatorname{First}_k(w) \in X_m(\alpha)$.
- 4. First_k(α) = $\bigcup_{m\geq 0} X_m(\alpha)$

Ceci fournit un algorithme pour calculer $\mathrm{First}_k(\alpha)$ pour $\alpha \in \Sigma \cup V$. Pour $\gamma \in (\Sigma \cup V)^*$ on utilise $\mathrm{First}_k(\alpha\beta) = \mathrm{First}_k(\mathrm{First}_k(\alpha) \cdot \mathrm{First}_k(\beta))$. En particulier, $\mathrm{First}_k(\varepsilon) = \{\varepsilon\}$.

Analyse descendante LL(k)

Définition : LL(k)

Une grammaire $G=(\Sigma,V,P,S)$ est $\mathrm{LL}(k)$ si pour toute dérivation $S \xrightarrow{*} \gamma x \delta$ avec $x \in V$ et pour toutes règles $x \to \alpha$ et $x \to \beta$ avec $\alpha \neq \beta$, on a

$$\operatorname{First}_k(\alpha\delta) \cap \operatorname{First}_k(\beta\delta) = \emptyset.$$

Remarque : on peut se restreindre aux dérivations gauches avec $\gamma \in \Sigma^*$, i.e., aux calculs de l'automate LL.

Exemple:

- 1. La grammaire G_1 est LL(2) mais pas LL(1).
- 2. La grammaire G_2 n'est pas LL(k).
- 3. On peut transformer la grammaire G_2 en une grammaire ${\rm LL}(1)$ équivalente. Il suffit de supprimer la récursivité gauche.

$$G_2' = \left\{ \begin{array}{cccc} E & \rightarrow & TE' & E' & \rightarrow & +TE' \mid \varepsilon \\ T & \rightarrow & FT' & T' & \rightarrow & \times FT' \mid \varepsilon \\ F & \rightarrow & (E) \mid a \mid b \mid c \end{array} \right.$$

「□▶▲御▶▲皇▶▲皇▶ 皇 釣♀♡ 145/197

Analyse descendante LL(k)

Remarques:

- Étant donnés une grammaire G et un entier k, on peut décider si G est $\mathrm{LL}(k)$.
- Étant données deux grammaires $\mathrm{LL}(k)$, on peut décider si elles engendrent le même langage.
- ${\mathord{\,\boldsymbol{\,\cdot\,\,}}}$ La hiérarchie des langages $\mathrm{LL}(k)$ est stricte.
- Étant donnée une grammaire G, on ne peut pas décider s'il existe un entier k tel que G soit $\mathrm{LL}(k)$.
- Étant donnée une grammaire G, on ne peut pas décider s'il existe une grammaire équivalente qui soit $\mathrm{LL}(1)$.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹ペ 147/197

Analyse descendante LL(k)

Exercices:

- 1. Construire une *k*-table d'analyse déterministe et complète pour une grammaire LL(*k*).
- 2. Montrer qu'un langage LL(k) est déterministe.
- 3. Montrer que si l'automate expansion/vérification associé à une grammaire est déterministe, alors la grammaire est LL(0).
- 4. Montrer qu'une grammaire LL(0) engendre au plus un mot.
- 5. Montrer que si G est en FNPG et que pour toutes règles $x \to a\alpha$ et $x \to b\beta$ avec $a,b \in \Sigma$ on a $a \neq b$ ou $\alpha = \beta$, alors G est $\mathrm{LL}(1)$.
- 6. Montrer que la réciproque est fausse.
- 7. Montrer qu'un langage rationnel admet une grammaire LL(1).

Follow

Définition : Follow

Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique, $x \in V$ et $k \ge 0$,

$$\operatorname{Follow}_k(x) = \bigcup_{\delta \mid \exists S \xrightarrow{*} \gamma x \delta} \operatorname{First}_k(\delta) = \{ w \in \Sigma^* \mid \exists \ S \xrightarrow{*} \gamma x \delta \text{ avec } w \in \operatorname{First}_k(\delta) \}$$

Remarque : on peut se restreindre aux dérivations gauches avec $\gamma \in \Sigma^*$.

Théorème : Caractérisation

Les ensembles $(\operatorname{Follow}_k(x))_{x \in V}$ satisfont le système d'équations :

$$\operatorname{Follow}_k(S) = \{\varepsilon\} \cup \bigcup_{y \to \alpha S \beta} \operatorname{First}_k(\beta \operatorname{Follow}_k(y))$$
$$(x \neq S) \qquad \operatorname{Follow}_k(x) = \bigcup_{y \to \alpha x \beta} \operatorname{First}_k(\beta \operatorname{Follow}_k(y))$$

Exemple:

Calculer $Follow_1(x)$ pour chaque variable x de la grammaire G_2' .

Calcul de $Follow_k$

Définition : Algorithme de calcul pour Follow_k

Pour $m \ge 0$ et $x \in V$, on définit $Y_m(x)$ par :

$$Y_0(S) = \{\varepsilon\} \text{ et } Y_0(x) = \emptyset \text{ si } x \neq S$$

$$Y_{m+1}(x) = Y_m(x) \cup \bigcup_{y \to \alpha x \beta \in P} \text{First}_k(\beta Y_m(y))$$

Proposition: Point fixe

- 1. $Y_m(x) \subseteq Y_{m+1}(x)$
- 2. $Y_m(x) \subseteq \text{Follow}_k(x)$
- 3. Si $S \xrightarrow{m} \gamma x \delta$ alors $\operatorname{First}_k(\delta) \subseteq Y_m(x)$.
- 4. Follow_k $(x) = \bigcup_{m>0} Y_m(x)$

Ceci fournit donc un algorithme pour calculer $\operatorname{Follow}_k(\alpha)$.

Analyseur fortement LL

Définition : Analyseur fortement LL(k)

Soit $G = (\Sigma, V, P, S)$ une grammaire.

La table d'analyse fortement LL(k) de G est définie pour $x \in V$ et $v \in \Sigma^{\leq k}$ par

$$M_k(x, v) = \{x \xrightarrow{\varepsilon} \alpha \mid (x, \alpha) \in P \text{ et } v \in \text{First}_k(\alpha \text{Follow}_k(x))\}$$

L'analyseur fortement LL(k) associé est \mathcal{A}_{M_k} .

Proposition : Correction

Soit $G = (\Sigma, V, P, S)$ une grammaire.

La table d'analyse fortement $\mathrm{LL}(k)$ de G est complète: $\mathcal{L}(\mathcal{A}_{M_k}) = \mathcal{L}_G(S)$.

Si G est fortement $\mathrm{LL}(k)$ alors sa table d'analyse fortement $\mathrm{LL}(k)$ est déterministe.

Exemple:

- 1. Construire la table d'analyse fortement $\mathrm{LL}(2)$ de la grammaire $G_1.$
- 2. Construire la table d'analyse fortement LL(1) de la grammaire G'_2 .
- 3. Construire la table d'analyse fortement $\mathrm{LL}(1)$ de la grammaire usuelle du langage de Dyck D_n^* .

◆□▶◆□▶◆臺▶◆臺▶ 臺 ∽Q~ 151/197

Fortement LL

Définition : Fortement LL(k)

Une grammaire $G=(\Sigma,V,P,S)$ est fortement $\mathrm{LL}(k)$ si pour toutes règles $x\to \alpha$ et $x\to \beta$ avec $\alpha\ne \beta$, on a

 $\operatorname{First}_k(\alpha \operatorname{Follow}_k(x)) \cap \operatorname{First}_k(\beta \operatorname{Follow}_k(x)) = \emptyset$

Proposition:

Si une grammaire G est fortement LL(k) alors elle est LL(k).

Exemple:

- 1. La grammaire G_1 est fortement LL(2).
- 2. La grammaire G'_2 est fortement LL(1).
- 3. La grammaire $G_3 = \begin{cases} S \rightarrow axaa \mid bxba \\ x \rightarrow b \mid \varepsilon \end{cases}$ est LL(2) mais pas fortement LL(2).

Proposition:

Une grammaire est LL(1) si et seulement si elle est fortement LL(1).

(□▶◀圖▶◀臺▶◀臺▶ 臺 쒸٩♡ 150/197

Analyse ascendante (LR)

Définition : Automate shift/reduce (LR)

Soit $G = (\Sigma, V, P, S)$ une grammaire.

On construit un automate à pile généralisé simple (non déterministe) $\mathcal{B}. \\$

Alphabet de pile : $\Sigma \cup V.$ Initialement la pile est vide.

Transitions généralisées : $T\subseteq (\Sigma\cup V)^*\times (\Sigma\cup \{\varepsilon\})\times (\Sigma\cup V)$ fini

- by décalages (shift) : $\{(\varepsilon,a,a)\mid a\in\Sigma\}$ ou
- ightharpoonup réductions (reduce) : $\{(\alpha, \varepsilon, x) \mid (x, \alpha) \in P\}$.

L'automate accepte lorsque la pile contient uniquement le symbole ${\cal S}.$

Remarque : sommet de pile à droite.

Exemples:

- 1. $G_1: S \to aSb \mid ab$
- 2. $G_2: E \to E + T \mid T$, $T \to T * F \mid F$, $F \to (E) \mid \mathbf{id}$

Définition :

halyse LR : $\begin{cases} L : \text{le mot est lu de gauche à droite.} \\ R : \text{on construit une dérivation droite.} \end{cases}$

Analyse ascendante (LR)

Lemme:

 $\forall \alpha, \beta \in (\Sigma \cup V)^*, \forall u \in \Sigma^*,$

- 1. si $\beta \xrightarrow{u} \alpha$ dans \mathcal{B} alors $\alpha \xrightarrow{*}_r \beta u$ dans G
- 2. si $\alpha \stackrel{*}{\to}_r \beta u$ dans G et $\beta \notin (\Sigma \cup V)^*\Sigma$ alors $\beta \stackrel{u}{\to} \alpha$ dans \mathcal{B}

Corollaire:

L'automate LR reconnaît le langage $\mathcal{L}_G(S)$

Exercice:

Transformer l'automate LR en un automate à pile classique.

k-conflits et grammaires LR(k)

Définition : (Rappel) First

Pour $w \in \Sigma^*$ et $k \geq 0$, on définit $\mathrm{First}_k(w) = \begin{cases} w & \text{si } |w| \leq k \\ w[k] & \text{sinon.} \end{cases}$

Définition : k-conflits

• Un *k*-conflit shift/reduce est un tuple (x, α, w, av) tel qu'il existe $\delta \in (\Sigma \cup V)^*$ et deux calculs dans $\mathcal B$:

$$\delta\alpha \xrightarrow[\text{reduce}]{\varepsilon} \delta x \xrightarrow[*]{w} S \qquad \text{et} \qquad \delta\alpha \xrightarrow[\text{shift}]{a} \delta\alpha a \xrightarrow[*]{v} S$$

avec $First_k(w) = First_k(av)$.

Un *k*-conflit reduce/reduce est un tuple $(x, \alpha, w, x', \alpha', w')$ tel qu'il existe $\delta, \delta' \in (\Sigma \cup V)^*$ et deux calculs dans \mathcal{B} :

$$\delta\alpha \xrightarrow[\text{reduce}]{\varepsilon} \delta x \xrightarrow[*]{w} S \qquad \text{et} \qquad \delta'\alpha' \xrightarrow[\text{reduce}]{\varepsilon} \delta'x' \xrightarrow[*]{w'} S$$

avec $\delta \alpha = \delta' \alpha'$, $\mathrm{First}_k(w) = \mathrm{First}_k(w')$ et $(x, \alpha) \neq (x', \alpha')$.

◆□▶◆②▶◆③▶◆③▶ ● **9 ○○** 155/197

Conflits dans un automate LR

Exemple : Automate LR pour la grammaire G_2 :

Conflits

reduce/reduce: (3,4): on choisit 3

(5,6): on choisit 5

shift/reduce: $\{1,2,3,4\}$ contre $\{7,8,9,10,11\}$: on choisit reduce

 $\{5,6\}$ contre 7 : on choisit shift (priorité de * sur +)

 $\{5,6\}$ contre $\{8,9,10,11\}$: on choisit reduce

La grammaire G_2 est non ambiguë : lors d'un conflit, si on fait le mauvais choix, on ne peut pas prolonger en un calcul acceptant.

4□ ▶ 4個 ▶ 4 월 ▶ 4 월 ▶ 월 ♥9 Q ○ 154/107

k-conflits

Exemples:

- La grammaire G_1 n'a aucun 0-conflit (il faut réduire dès que possible).
- La grammaire $G_3: E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$ a des k-conflits pour tout k.

Exercice:

Montrer que la grammaire G_2 n'a aucun 1-conflit.

Proposition : k-conflits

Une grammaire n'a pas de $k\mbox{-conflit}$ (shift/reduce ou reduce/reduce) si et seulement si

$$\left.\begin{array}{c}
S \stackrel{*}{\rightarrow}_r \delta x w \stackrel{1}{\rightarrow}_r \delta \alpha w \\
S \stackrel{*}{\rightarrow}_r \gamma \stackrel{1}{\rightarrow}_r \delta \alpha w' \\
\operatorname{First}_k(w) = \operatorname{First}_k(w')
\end{array}\right\} \Longrightarrow \gamma = \delta x w'$$

Grammaires augmentées

Remarque:

Pour une grammaire LR(0) il faut aussi pouvoir décider si on doit s'arrêter sans regarder s'il reste des lettres à lire.

C'est le cas pour la grammaire ${\cal G}_1$: on s'arrête si la pile est exactement ${\cal S}.$

Ce n'est pas le cas pour la grammaire $S \to Sa \mid a$ qui n'a pourtant aucun 0-conflit. Formellement, cette grammaire doit donc être LR(1) et pas LR(0).

Définition : Grammaire augmentée

Soit $G = (\Sigma, V, P, S)$ une grammaire.

La grammaire augmentée de G est $G' = (\Sigma, V \uplus \{S'\}, P \uplus \{S' \to S\}, S')$.

Définition : Grammaire LR(k)

Une grammaire G est $\mathrm{LR}(k)$ si sa grammaire augmentée G' n'a aucun k-conflit.

Remarque:

Soit G une grammaire sans dérivation du type $S \xrightarrow{+} S$ et k > 0. La grammaire G n'a aucun k-conflit si et seulement si G' n'a aucun k-conflit.

Analyseur LR(k)

Définition :

Soit $G=(\Sigma, V, P, S^\prime)$ une grammaire augmentée.

Un analyseur $\mathrm{LR}(k)$ pour G est un automate à pile \mathcal{A}_k défini par

- ightharpoonup un automate des contextes (fini et déterministe) : $\mathcal{C}_k = (Q, \Sigma \cup V, q_0, \operatorname{goto})$
- une table des actions : pour $q \in Q$ et $v \in \Sigma^{\leq k}$,

$$\operatorname{action}(q, v) \subseteq \{\operatorname{accept}, \operatorname{shift}\} \cup \{\operatorname{reduce}_{A \to \alpha} \mid A \to \alpha \in P\}$$

Soit (γ,w) une configuration de \mathcal{A}_k où γ est le contexte (contenu de la pile) et w le mot qui reste à lire.

Dans la configuration (γ, w) , \mathcal{A}_k effectue une $\operatorname{action}(\operatorname{goto}(q_0, \gamma), \operatorname{First}_k(w))$. Si l'ensemble des actions est vide, il déclare une erreur de syntaxe.

Grammaires LR(k)

Remarques:

- 1. Toute grammaire LR(k) engendre un langage déterministe.
- 2. Tout langage déterministe peut être engendré par une grammaire LR(1).
- 3. La hiérarchie des grammaires LR(k) est stricte : Pour tout k>0 il existe une grammaire LR(k) qui n'est pas LR(k-1).
- 4. Étant donnée une grammaire G, on ne peut pas décider s'il existe une entier k tel que G soit $\mathrm{LR}(k)$.
- 5. Toute grammaire LL(k) est une grammaire LR(k).
- 6. On peut décider si une grammaire $\mathrm{LR}(k)$ est aussi $\mathrm{LL}(k)$.
- 7. Étant donnée une grammaire $\mathrm{LR}(k)$ G, on ne peut pas décider s'il existe n tel que G soit $\mathrm{LL}(n)$.

Analyseur SLR

Exemple : Analyseur SLR pour G_4

 $0:\ S'\to S \qquad 1:\ S\to SaSb \qquad 2:\ S\to \varepsilon$

Analyseur		goto		
SLR	a	b	ε	S
$0: \varepsilon$	r_2	r_2	r_2	1
1: S	s_2		accept	
2: Sa	r_2	r_2	r_2	3
3: SaS	s_2	s_4		
4: SaSb	r_1	r_1	r_1	

 s_i : shift and goto i r_j : reduce with rule j.

Analyseur LR(k)

Remarques:

- Pour éviter de calculer $goto(q_0, \gamma)$ à chaque transition, on mémorise les états intermédiaires sur la pile :
- Si $\gamma = \gamma_1 \cdots \gamma_k$ alors la pile est en fait le calcul de l'automate :

$$q_0 \gamma_1 q_1 \cdots \gamma_k q_k$$

avec $q_{i+1} = goto(q_i, \gamma_{i+1})$.

Initialement, la pile est donc q_0 .

- Lors d'un $\operatorname{shift}(a)$ on empile a puis $\operatorname{goto}(q_k,a)$
- Lors d'un $\mathrm{reduce}_{A\to\alpha}$ on dépile $2|\alpha|$ symboles et on empile A puis $\mathrm{goto}(q_{k-|\alpha|},A).$
- ► Lors d'un $\operatorname{reduce}_{A \to \alpha}$, α sera toujours un suffixe de γ .
- Les symboles $\gamma_1, \ldots, \gamma_k$ sont en fait inutiles, il suffit d'avoir la pile des états q_0, \ldots, q_k .

Calcul des 0-items valides

Définition : Clôture

Soit W un ensemble de 0-items.

- Règle de clôture : $\frac{A \to \alpha_1.B\alpha_2 \in W}{B \to \beta \in W}$
- On note $\operatorname{clot}(W)$ la clôture de W.

Lemme : Clôture (G réduite)

Pour tout $\gamma \in (\Sigma \cup V)^*,$ l'ensemble $V_0(\gamma)$ est clos.

Définition : goto

Soit W un ensemble de 0-items et $x \in \Sigma \cup V$.

 $goto(W, x) = clot(\{A \to \alpha_1 x. \alpha_2 \mid A \to \alpha_1. x \alpha_2 \in W\})$

Lemme : goto (G réduite)

Pour tout $\gamma \in (\Sigma \cup V)^*$, on a $goto(V_0(\gamma), x) \subseteq V_0(\gamma x)$.

◆□▶◆②▶◆③▶◆③▶ ● **9 9 9 9 163/197**

Analyseur SLR (Simple LR)

Définition : 0-item

- ▶ Un 0-item est une règle pointée : $A \to \alpha_1.\alpha_2$ avec $A \to \alpha_1\alpha_2 \in P$.
- Le 0-item $A \to \alpha_1.\alpha_2$ est valide dans le contexte γ si $\gamma = \delta \alpha_1$ et s'il existe dans G une dérivation droite :

$$S' \xrightarrow{*}_r \delta Aw$$

ou de façon équivalente, s'il existe dans l'automate shift/reduce ${\cal B}$ un calcul

$$\gamma \alpha_2 = \delta \alpha_1 \alpha_2 \xrightarrow[\text{reduce}]{\varepsilon} \delta A \xrightarrow[*]{w} S'$$

• On note $V_0(\gamma)$ l'ensemble des 0-items valides pour γ .

Remarque:

- Si $A \to \alpha_1.a\alpha_2 \in V_0(\gamma)$ alors l'action shift_a est utile dans le contexte γ .
- Si $A \to \alpha$. $\in V_0(\gamma)$ alors l'action $\operatorname{reduce}_{A \to \alpha}$ est utile dans le contexte γ .

L'automate des contextes C_0 calcule les 0-items valides.

Automate des contextes

Définition : Automate des contextes SLR

L'automate $\mathcal{C}_0 = (Q, \Sigma \cup V, q_0, \operatorname{goto})$ est définit par

- Q est un sous-ensemble des ensembles de 0-items
- $q_0 = \operatorname{clot}(\{S' \to .S\})$
- goto est déjà défini.

On ne considère que les états accessibles.

Proposition : Automate des contextes (G réduite)

L'automate \mathcal{C}_0 calcule les 0-items valides : pour tout $\gamma \in (\Sigma \cup V)^*$ on a

$$V_0(\gamma) = goto(q_0, \gamma)$$

Exemple : Automate \mathcal{C}_0 des contextes SLR de G_4

$$0: S' \to S$$
 $1: S \to SaSb$ $2: S \to \varepsilon$

Table des actions

Définition : Table des actions de l'analyseur SLR \mathcal{A}_0

Soit W un ensemble de 0-items, $a \in \Sigma$ et $u \in \Sigma^{\leq 1}$:

 $shift \in action(W, a)$ si W contient un 0-item du type $A \to \alpha_1.a\alpha_2$

 $\operatorname{reduce}_{A \to \alpha} \in \operatorname{action}(W, u)$ si $A \to \alpha \in W$ et $u \in \operatorname{Follow}_1(A)$ et $A \neq S'$

 $accept \in action(W, \varepsilon)$ si $S' \to S \in W$

Remarque : les actions ne sont utiles que pour les états accessibles de l'automate des contextes C_0 .

Définition: Grammaire SLR

Une grammaire G est SLR s'il n'y a pas de conflit dans la table action de son analyseur SLR

Analyse SLR

Exercice:

Calculer l'automate des contextes et la table des actions pour la grammaire G_2 :

 $0: E' \to E$

 $1: E \to E + T$ $2: E \to T$

 $3: T \to T * F$ $4: T \to F$

 $5: F \to (E)$ $6: F \to id$

En déduire que G_2 est une grammaire SLR.

Analyseur SLR

Exemple : Analyseur SLR pour G_4

 $0: S' \to S$ $1: S \to SaSb$ $2: S \to \varepsilon$

$$Follow_1(S') = \{$$

 $Follow_1(S') = \{\varepsilon\}$ $Follow_1(S) = \{\varepsilon, a, b\}$

Analyseur		$rac{ ext{goto}}{S}$			
SLR	a	$a \mid b \mid \varepsilon$			
$0: \varepsilon$	r_2	r_2	r_2	1	
1: S	s_2		accept		
2: Sa	r_2	r_2	r_2	3	
3: SaS	s_2	s_4			
4: SaSb	r_1	r_1	r_1		

 s_i : shift and goto i

 r_i : reduce with rule j.

Analyse SLR

Proposition: Correction

Soit \mathcal{A}_0 l'analyseur SLR de $G = (\Sigma, V, P, S')$. On a $\mathcal{L}(\mathcal{A}_0) = \mathcal{L}_G(S')$.

Preuve

Soit \mathcal{B} l'analyseur shift/reduce général de la grammaire G.

Tout calcul de \mathcal{A}_0 est un calcul de $\mathcal{B}: \mathcal{L}(\mathcal{A}_0) \subseteq \mathcal{L}(\mathcal{B}) = \mathcal{L}_G(S')$.

Tout calcul acceptant $\varepsilon \xrightarrow{w} S'$ de \mathcal{B} est un calcul de $\mathcal{A}_0 : \mathcal{L}(\mathcal{A}_0) \supseteq \mathcal{L}(\mathcal{B}) = \mathcal{L}_G(S')$.

Remarque : non déterminisme

Si G n'est pas SLR, l'analyseur A_0 est non déterministe : plusieurs actions peuvent être possibles dans une configuration (γ, w) .

On a quand même $\mathcal{L}(\mathcal{A}_0) = \mathcal{L}_G(S')$.

Analyseur SLR

Exemple : Analyseur SLR pour G_5

 $0: S' \to S$ $1: S \to L := R$ $2: S \to R$

 $3: L \rightarrow *R \qquad 4: L \rightarrow id \qquad 5: R \rightarrow L$

 $\operatorname{Follow}_1(S') = \operatorname{Follow}_1(S) = \{\varepsilon\}$ $\operatorname{Follow}_1(R) = \operatorname{Follow}_1(L) = \{\varepsilon, :=\}$

Analyseur	action					goto		
SLR	id	*	:=	ε	S	L	R	
$0: \varepsilon$	s_5	s_4			1	2	3	
1: S				accept				
2: L			$s_6 \mid r_5$	r_5				
3: R				r_2				
4: *	s_5	s_4				8	7	
5: id			r_4	r_4				
6: L :=	s_5	s_4				8	9	
7: *R			r_3	r_3				
8: *L			r_5	r_5				
9: $L := R$				r_1				

Un conflit shift/reduce.

4□ > 4□ > 4□ > **4**□

Grammaire ambiguë

Exemple : Table SLR pour G_3

 $0: E' \to E$ $1: E \to E + E$ $2: E \to E * E$

 $3: E \to (E)$ $4: E \to id$

 $Follow_1(E) = \{\varepsilon, +, *, \}$

		id	+	*	(ε	$\mid E \mid$
			ļ.	T	(<i></i>	ζ	_
_	ε	s_3			s_2			1
1:	E		s_4	s_5			accept	
2:	(s_3			s_2			6
3:	id		r_4	r_4		r_4	r_4	
4:	E+	s_3			s_2			7
5:	E*	s_3			s_2			8
6:	(E		s_4	s_5		s_9		
7:	E + E		$r_1 \mid s_4$	$r_1 \mid s_5$		r_1	r_1	
8:	E * E		$r_2 \mid s_4$	$r_2 \mid s_5$		r_2	r_2	
9:	(E)		r_3	r_3		r_3	r_3	

4 conflits shift/reduce que l'on résout grâce aux règles de priorité et d'associativité.

Grammaires et génération du code

Remarque: Grammaires équivalentes

La grammaire G_5

 $0: S' \to S$ $1: S \to L := R$ $2: S \to R$

 $3: L \rightarrow *R \qquad 4: L \rightarrow id \qquad 5: R \rightarrow L$

est équivalente à la grammaire G_5'

 $0: S' \to S$ $1: S \to L := L$ $2: S \to L$

 $3: L \rightarrow *L \qquad 4: L \rightarrow id$

et elle engendre même un langage rationnel donc elle est équivalente à une grammaire linéaire (gauche ou droite).

Cependant G_5 est mieux adaptée à la génération du code.

Elle explicite la différence entre adresse (L) et valeur (R) et les règles permettent de générer le code correspondant :

 $L \rightarrow id$: obtenir l'adresse de la variable

 $R \to L$: obtenir la valeur contenue à une adresse

 $L \rightarrow *R$: convertir valeur en adresse.

Exemple: abres syntaxiques pour les instructions id := id et *id := *id.

◆□▶◆□▶◆□▶◆□▶ ■ ◆○○○ 170/107

IF THEN ELSE

Remarque:

L'instruction if then else présente aussi une ambiguïté classique.

Considérons la grammaire

 $I \rightarrow \text{if } C \text{ then } I \text{ else } I \mid \text{if } C \text{ then } I \mid A$

Le mot if C then if C then A else A admet deux arbres de dérivation.

L'automate LR présente un conflit shift/reduce.

On choisit le shift : un else se rapporte au dernier if qui n'a pas de else.

Insuffisance de l'analyse SLR

Remarque:

Supposons que reduce $_{A\to\alpha}\in \operatorname{action}(V_0(\gamma),a)$, i.e.,

$$A \to \alpha \in V_0(\gamma)$$
 et $a \in \text{Follow}_1(A)$

Mais que pour tout $S' \xrightarrow[]{*}_r \delta Aw$ on ait $a \notin \mathrm{First}_1(w)$ alors,

l'action $\operatorname{reduce}_{A\to\alpha}$ est inutile pour $(V_0(\gamma),a)$.

cf. preuve de la proposition Correction.

Ceci est dû à l'imprécision de $Follow_1(A)$.

Calcul des 1-items valides

Définition : Clôture

Soit W un ensemble de 1-items.

- Règle de clôture : $\frac{[A \to \alpha_1.B\alpha_2, u] \in W \ , \ B \to \beta \in P \ , \ v \in \mathrm{First}_1(\alpha_2 u)}{[B \to .\beta, v] \in W}$
- ightharpoonup On note $\operatorname{clot}(W)$ la clôture de W.

Lemme : Clôture

Pour tout $\gamma \in (\Sigma \cup V)^*$, l'ensemble $V_1(\gamma)$ est clos.

Définition : goto

Soit W un ensemble de 1-items et $x \in \Sigma \cup V$.

$$\operatorname{goto}(W,x) = \operatorname{clot}(\{[A \to \alpha x.\alpha_2, u] \mid [A \to \alpha.x\alpha_2, u] \in W\})$$

Lemme: goto

Pour tout $\gamma \in (\Sigma \cup V)^*$, on a $goto(V_1(\gamma), x) \subseteq V_1(\gamma x)$.

Analyseur LR(1)

Définition : 1-item

- ▶ 1-item : $[A \to \alpha_1.\alpha_2, u]$ avec $A \to \alpha_1\alpha_2 \in P$ et $u \in \Sigma^{\leq 1}$.
- Le 1-item $[A \to \alpha_1.\alpha_2, u]$ est valide dans le contexte γ si $\gamma = \delta \alpha_1$ et s'il existe dans G une dérivation droite :

$$S' \xrightarrow{*}_r \delta Aw$$
 avec $u = \text{First}_1(w)$

ou de façon équivalente, s'il existe dans l'automate shift/reduce ${\cal B}$ un calcul

$$\gamma \alpha_2 = \delta \alpha_1 \alpha_2 \xrightarrow[\text{reduce}]{\varepsilon} \delta A \xrightarrow[*]{w} S'$$
 avec $u = \text{First}_1(w)$

On note $V_1(\gamma)$ l'ensemble des 1-items valides pour γ .

Remarque:

- Si $[A \to \alpha_1.\alpha_2, \mathbf{u}] \in V_1(\gamma)$ alors $A \to \alpha_1.\alpha_2 \in V_0(\gamma)$ et $\mathbf{u} \in \operatorname{Follow}_1(A)$.
- Si $A \to \alpha_1.\alpha_2 \in V_0(\gamma)$ alors il existe $u \in \Sigma^{\leq 1}$ tel que $[A \to \alpha_1.\alpha_2, u] \in V_1(\gamma)$.
- Si $[A \to \alpha, u] \in V_1(\gamma)$ alors l'action $\operatorname{reduce}_{A \to \alpha}$ est utile dans une configuration (γ, w) avec $u = \operatorname{First}_1(w)$.

◁□▶◁♬▶◁▤▶◁▤▶ ▮ 쒼९♡ 174/197

Automate des contextes

Définition : Automate des contextes

L'automate $\mathcal{C}_1 = (Q_1, \Sigma \cup V, q_0, \operatorname{goto})$ est définit par

- $\triangleright Q_1$ est un sous-ensemble des ensembles de 1-items
- $q_0 = \operatorname{clot}(\{[S' \to .S, \varepsilon]\})$
- goto est déjà défini.

On ne considère que les états accessibles.

Proposition: Automate des contextes

L'automate \mathcal{C}_1 calcule les 1-items valides : pour tout $\gamma \in (\Sigma \cup V)^*$ on a

$$V_1(\gamma) = goto(q_0, \gamma)$$

Exemple:

Calcul de l'automate des contextes \mathcal{C}_1 pour la grammaire G_5 .

Exercices:

- 1. Calcul de l'automate des contextes C_1 pour la grammaire G_2 .
- 2. Calcul de l'automate des contextes C_1 pour la grammaire G_4 .

Table des actions

Définition : Table des actions

Soit W un ensemble de 1-items, $a \in \Sigma$ et $u \in \Sigma^{\leq 1}$:

 $\operatorname{shift} \in \operatorname{action}(W,a)$ si W contient un 1-item du type $[A \to \alpha_1.a\alpha_2,u]$

 $\operatorname{reduce}_{A \to \alpha} \in \operatorname{action}(W, u) \quad \operatorname{si} [A \to \alpha., u] \in W \text{ et } A \neq S'$

 $accept \in action(W, \varepsilon)$ si $[S' \to S., \varepsilon] \in W$

Remarque : les actions ne sont utiles que pour les états accessibles de l'automate des contextes.

Exemple:

Tables action et goto pour l'analyseur LR(1) de G_5 .

Exercices:

- 1. Tables action et goto pour l'analyseur LR(1) de G_2 .
- 2. Tables action et goto pour l'analyseur LR(1) de G_4 .

Analyseur LR(1)

Exemple : Analyseur LR(1) pour G_5

Analyseur	action					goto		
LR(1)	id	*	:=	ε	S	L	R	
$0: \varepsilon$	s_5	s_4			1	2	3	
1: S				accept				
2: L			s_6	r_5				
3: R				r_2				
4: *	s_5	s_4				8	7	
5: id			r_4	r_4				
6: L :=	s_{12}	s_{11}				10	9	
7: *R			r_3	r_3				
8: *L			r_5	r_5				
9: $L := R$				r_1				
10: L := L				r_5				
11: L := *	s_{12}	s_{11}				10	13	
$12: L := \mathbf{id}$				r_4				
13: $L := *R$				r_3				

◆□▶◆□▶◆□▶◆□▶ ■ からで 179/197

Analyseur LR(1)

Exemple : Analyseur LR(1) pour G_4

 $0:\ S'\to S \qquad 1:\ S\to SaSb \qquad 2:\ S\to \varepsilon$

Analyseur		goto		
LR(1)	a	b	ε	S
$0: \varepsilon$	r_2		r_2	1
1: S	s_2		accept	
2: Sa	r_2	r_2		3
3: SaS	s_5	s_4		
4: SaSb	r_1		r_1	
5: SaSa	r_2	r_2		6
6: SaSaS	s_5	s_7		
7: SaSaSb	r_1	r_1		

 s_i : shift and goto i r_j : reduce with rule j

Analyse LR(1)

Lemme : \mathcal{A}_0 versus \mathcal{A}_1

- Si $[A \to \alpha_1.\alpha_2, u] \in V_1(\gamma)$ alors $A \to \alpha_1.\alpha_2 \in V_0(\gamma)$ et $u \in \text{Follow}_1(A)$.
- Si $A \to \alpha_1.\alpha_2 \in V_0(\gamma)$ alors il existe $u \in \Sigma^{\leq 1}$ tel que $[A \to \alpha_1.\alpha_2, u] \in V_1(\gamma)$.
- \mathcal{A}_0 et \mathcal{A}_1 ont les mêmes actions shift.
- Les actions reduce de A_1 sont des actions de A_0 .

Proposition : Correction

Soit \mathcal{A}_1 l'analyseur LR(1) de $G = (\Sigma, V, P, S')$. On a $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}_G(S')$.

Proposition:

Une grammaire G est $\mathrm{LR}(1)$ si et seulement si il n'y a pas de conflit dans la table action de son analyseur $\mathrm{LR}(1)$

Corollaire:

On peut décider si une grammaire G est LR(1).

Plan

Introduction

Langages reconnaissables

Automates d'arbres

Grammaires

Langages algébriques

Automates à pile

Analyse syntaxique

- 8 Fonctions séquentielles
 - Définitions et exemples
 - Composition
 - Résiduels et normalisation

Automates séquentiels purs

Définition : Automates séquentiels purs (Mealy machine)

$$\mathcal{A}=(Q,A,B,q_0,\delta,arphi)$$
 où

- ightharpoonup Q ensemble fini d'états et $q_0 \in Q$ état initial,
- ${f ilde{\hspace{1pt}}} A$ et B alphabets d'entrée et de sortie,
- $\delta:Q imes A o Q$ fonction partielle de transition,
- ${}^{\blacktriangleright} \ \varphi : Q \times A \to B^* \ \text{fonction partielle de sortie avec} \ \dim(\varphi) = \dim(\delta).$

Remarque : L'automate "d'entrée" (Q,A,q_0,δ) est déterministe.

Définition : Sémantique : $[\![\mathcal{A}]\!]:A^*\to B^*$

On étend δ et φ à $Q\times A^*$ par

- $\delta(q,\varepsilon) = q$ et $\delta(q,ua) = \delta(\delta(q,u),a)$
- $\varphi(q,\varepsilon) = \varepsilon \text{ et } \varphi(q,ua) = \varphi(q,u)\varphi(\delta(q,u),a)$

et la sémantique de $\mathcal A$ est la fonction partielle $[\![\mathcal A]\!]:A^*\to B^*$ définie par

Noter que $[\![\mathcal{A}]\!](\varepsilon)=\varepsilon$

Bibliographie

[6] Jean Berstel.

Transduction and context free languages.

Teubner, 1979.

[11] Jean-Éric Pin.

Automates finis et applications.

Polycopié du cours à l'École Polytechnique, 2004.

[13] Jacques Sakarovitch.

Éléments de théorie des automates.

Vuibert informatique, 2003.

fonctions séquentielles pures

Définition : fonctions séquentielles pures

Une fonction $f:A^*\to B^*$ est séquentielle pure s'il existe un automate séquentiel pur $\mathcal A$ qui la réalise : $f=[\![\mathcal A]\!]$.

Exemples:

- 1. Transformation d'un texte en majuscules.
- 2. Remplacement d'une séquence d'espaces ou tabulations par un seul espace.
- 3. Codage et décodage avec le code préfixe défini par

 $a\mapsto 0000$ $c\mapsto 001$ $e\mapsto 011$ $g\mapsto 11$ $b\mapsto 0001$ $d\mapsto 010$ $f\mapsto 10$

4. Division par 3 d'un entier écrit en binaire en commençant par le bit de poids fort. Qu'en est-il si on commence avec le bit de poids faible ?

◆□▶◆□▶◆臺▶◆臺▶ 臺 ∽♀ 184/197

Automates séquentiels

Définition : Automates séquentiels

 $\mathcal{A} = (Q,A,B,q_0,\delta,\varphi,m,\rho)$ où

- $\mathcal{A}=(Q,A,B,q_0,\delta,arphi)$ est un automate séquentiel pur,
- $m \in B^*$ est le préfixe initial,
- $ho:Q o B^*$ est la fonction partielle finale.

On appelle état final un état dans $dom(\rho)$.

La sémantique de \mathcal{A} est la fonction partielle $[\![\mathcal{A}]\!]:A^*\to B^*$ définie par

 $\|\mathcal{A}\|(u) = m\varphi(q_0, u)\rho(\delta(q_0, u)).$

Exemples:

- 1. La fonction $f: A^* \to A^*$ définie par $f(u) = u(ab)^{-1}$.
- Addition de deux entiers écrits en binaire en commençant par le bit de poids faible.
- 3. La multiplication par 3 d'un entier écrit en binaire en commençant par le bit de poids faible.
- 4. Le décodage par un code à délai de déchiffrage borné.

Ces fonctions sont-elles séquentielles pures ?

Composition

Théorème : Composition

Soient $f: A^* \to B^*$ et $g: B^* \to C^*$ deux fonctions partielles.

- 1. Si f et g sont séquentielles alors $g\circ f:A^*\to C^*$ est aussi séquentielle.
- 2. Si f et g sont séquentielles *pures* alors $g \circ f$ est aussi séquentielle *pure*.

Exemple: Multiplication par 5

Dans cet exemple, $A=C=\{0,1\}$, $B=\{0,1\}^2$ et les mots représentent des entiers codés en binaire en commençant par le bit de poids faible.

On considère les fonctions séquentielles $f: A^* \to B^*$ et $g: B^* \to C^*$ définies par f(n) = (n, 4n), i.e., f(u) = (u00, 00u) et g(n, m) = n + m.

La fonction $g \circ f$ code la multiplication par 5.

Construire les automates séquentiels réalisant f et g.

En déduire un automate séquentiel pour $g \circ f$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○ 187/197

fonctions séquentielles

Définition : fonctions séquentielles

Une fonction $f:A^*\to B^*$ est séquentielle s'il existe un automate séquentiel $\mathcal A$ qui la réalise : $f=[\![\mathcal A]\!]$.

Lemme:

Une fonction séquentielle peut être réalisée par un automate séquentiel ayant un préfixe initial vide $(m=\varepsilon)$.

Proposition:

Une fonction séquentielle peut être réalisée par un automate émondé, i.e., tel que $\forall p \in Q, \exists u, v \in A^*$ tels que $\delta(q_0, u) = p$ et $\delta(p, v) \in \mathrm{dom}(\rho)$.

Produit en couronne

Définition : Produit en couronne

Soient $\mathcal{A}=(Q,A,B,q_0,\delta,\varphi,m,\rho)$ et $\mathcal{A}'=(Q',B,C,q_0',\delta',\varphi',m',\rho')$ deux automates séquentiels.

Le produit en couronne $\mathcal{A}' \circ \mathcal{A} = (Q'', A, C, q''_0, \delta'', \varphi'', m'', \rho'')$ est défini par

- $Q'' = Q \times Q', q_0'' = (q_0, \delta'(q_0', m)) \text{ et } m'' = m'\varphi'(q_0', m),$
- $\delta''((p,p'),a) = (\delta(p,a), \delta'(p',\varphi(p,a))),$
- $\varphi''((p,p'),a) = \varphi'(p',\varphi(p,a)),$
- $\rho''((p,p')) = \varphi'(p',\rho(p))\rho'(\delta'(p',\rho(p))).$

Lemme : Extension à A^*

Pour tout $u \in A^*$, on a

- $\delta''((p,p'),u) = (\delta(p,u),\delta'(p',\varphi(p,u))),$
- $\varphi''((p,p'),u)=\varphi'(p',\varphi(p,u))\text{,}$

Preuve (Composition)

- 1. Si f et g sont réalisées par \mathcal{A} et \mathcal{A}' alors $g \circ f$ est réalisée par $\mathcal{A}' \circ \mathcal{A}$.
- 2. Si \mathcal{A} et \mathcal{A}' sont purs alors $\mathcal{A}' \circ \mathcal{A}$ est pur.

Fonct. séquentielles et lang. rationnels

Définition : Fonction caractéristique

Soit $L \subseteq A^*$ un langage. La fonction caractéristique de L est la fonction totale $\mathbf{1}_L: A^* \to \{0,1\}$ définie par $\mathbf{1}_L(u) = 1$ si et seulement si $u \in L$.

Théorème:

Un langage $L\subseteq A^*$ est rationnel si et seulement si sa fonction caractéristique $\mathbf{1}_L$ est séquentielle.

Corollaire: Image inverse

Soient $f:A^*\to B^*$ une fonction séquentielle. Si $L\subseteq B^*$ est rationnel alors $f^{-1}(L)$ est rationnel.

Théorème : Image directe

Soient $f:A^*\to B^*$ une fonction séquentielle. Si $L\subseteq A^*$ est rationnel alors f(L) est rationnel.

Résiduels

Définition : Résiduels

Soit $f: A^* \to B^*$ une fonction partielle et soit $u \in A^*$.

Le résiduel $f_u:A^* \to B^*$ est défini par

- $\operatorname{dom}(f_u) = u^{-1}\operatorname{dom}(f)$ et
- $f_u(v) = (\bigwedge f(uA^*))^{-1} f(uv) \text{ pour } uv \in \text{dom}(f).$

 $\bigwedge f(uA^*)$ représente tout ce qu'on peut écrire si on sait que la donnée commence par u. Le résiduel $f_u(v)$ est donc ce qui reste à écrire si la donnée est uv.

Exemple:

Calculer les résiduels de la fonction $f: A^* \to A^*$ définie par $f(w) = w(ab)^{-1}$.

Lemme: Composition

Soient $u, v \in A^*$. On a $f_{uv} = (f_u)_v$, i.e., $\operatorname{dom}(f_{uv}) = v^{-1} \operatorname{dom}(f_u)$ et $f_{uv}(w) = (\bigwedge f_u(vA^*))^{-1} f_u(vw)$.

Théorème : Caractérisation par résiduels

 $f:A^* \to B^*$ est séquentielle si et seulement si elle a un nombre fini de résiduels.

Plus grand préfixe commun

Définition :

- Tout sous ensemble $\emptyset \neq X \subseteq B^*$ admet un plus grand préfixe commun, i.e., une borne inférieure pour l'ordre préfixe. Cette borne inférieure est notée $\bigwedge X$.
- Noter que ∅ n'admet pas de plus grand préfixe commun. Donc ∧ ∅ n'est pas défini.

Remarque:

1. Soit $u \in B^*$ et $\emptyset \neq X \subseteq B^*$.

2. Soit $f: A^* \to B^*$ une fonction partielle, on a $f(A^*) = \{f(u) \mid u \in \text{dom}(f)\}.$

Donc $\bigwedge f(A^*)$ est défini si $dom(f) \neq \emptyset$.

Exemple:

Soit $f:A^*\to A^*$ la fonction partielle définie par $f(w)=w(ab)^{-1}$. Pour $u\in A^*$, calculer $\bigwedge f(uA^*)$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ Q ○ 100/107

Normalisation

Exemple:

Donner un automate séquentiel réalisant la fonction $f:A^*\to A^*$ définie par $f(a^{2n}b)=(ab)^na$.

Cet automate devra sortir les lettres du résultat le plus rapidement possible.

Définition : Automate normalisé

Intuitivement, un automate est normalisé s'il écrit son résultat au plus tôt.

Soit $A = (Q, A, B, q_0, \delta, \varphi, m, \rho)$ un automate séquentiel et $p \in Q$.

On définit $\mathcal{A}_p = (Q, A, B, p, \delta, \varphi, \varepsilon, \rho)$ et $m_p = \bigwedge [\![\mathcal{A}_p]\!](A^*)$ si $[\![\mathcal{A}_p]\!](A^*) \neq \emptyset$.

L'automate $\mathcal A$ est normalisé si pour tout $p\in Q$, $[\![\mathcal A_p]\!](A^*)=\emptyset$ ou $m_p=\varepsilon.$

Exercice: Effectivité

Étant donné un automate séquentiel \mathcal{A} , on peut calculer les m_p en temps quadratique (cf. DM1 2006).

Normalisation

Proposition: Normalisation

Tout automate séquentiel est équivalent à un automate séquentiel normalisé, qui peut être choisi émondé ou complet.

Preuve

Soit $\mathcal{A} = (Q, A, B, q_0, \delta, \varphi, m, \rho)$ un automate séquentiel émondé (donc m_p est bien défini pour tous $p \in Q$).

On définit $\mathcal{A}' = (Q, A, B, q_0, \delta, \varphi', m', \rho')$ par :

- $m' = m m_{q_0} = \bigwedge \llbracket \mathcal{A} \rrbracket (A^*),$
- $\varphi'(p,a)=m_p^{-1}(\varphi(p,a)m_{\delta(p,a)}) \text{ si } (p,a)\in \mathrm{dom}(\varphi)=\mathrm{dom}(\delta)$
- $\rho'(p) = m_p^{-1}\rho(p) \text{ si } p \in \text{dom}(\rho)$

On vérifie que \mathcal{A}' est normalisé et $[\![\mathcal{A}']\!] = [\![\mathcal{A}]\!].$

Pour obtenir un automate complet, il suffit d'ajouter un état puits.

Résiduels

Théorème : Caractérisation par résiduels

Une fonction $f:A^*\to B^*$ est séquentielle si et seulement si elle a un nombre fini de résiduels.

Lemme:

Soit $\mathcal{A}=(Q,A,B,q_0,\delta,\varphi,m,\rho)$ un automate normalisé complet. Soit $u\in A^*$ et $p=\delta(q_0,u)$. Alors $f_u=[\![\mathcal{A}_p]\!]$.

On en déduit qu'une fonction séquentielle réalisée par ${\mathcal A}$ a au plus |Q| résiduels.

Exemple:

La fonction $f:A^* \to A^*$ définie par f(w)=ww est-elle séquentielle ?

Séquentielle et séquentielle pure

Définition :

Une fonction partielle $f: A^* \to B^*$ préserve les préfixes si

- son domaine est préfixiel : $u \le v$ et $v \in dom(f)$ implique $u \in dom(f)$,
- et elle est croissante : $u \le v$ et $v \in \text{dom}(f)$ implique $f(u) \le f(v)$.

Proposition:

- 1. Une fonction séquentielle pure préserve les préfixes.
- 2. Soit $f:A^*\to B^*$ une fonction séquentielle. Si $f(\varepsilon)=\varepsilon$ et f préserve les préfixes alors f est séquentielle pure.

Preuve

L'automate normalisé émondé d'une fonction séquentielle f qui préserve les préfixes et telle que $f(\varepsilon)=\varepsilon$ est un automate séquentiel pur.

Automate des résiduels

L'automate des résiduels de f est $\mathcal{R} = (Q, A, B, q_0, \delta, \varphi, m, \rho)$ où

- $ightharpoonup Q = \{f_u \mid u \in A^*\}$ (supposé fini pour la réciproque du théorème),
- $q_0 = f_{\varepsilon}$ et $m = \bigwedge f(A^*)$ si $dom(f) \neq \emptyset$, et $m = \varepsilon$ sinon,
- $\delta(f_u, a) = (f_u)_a = f_{ua},$
- $ightharpoonup \varphi(f_u,a) = \bigwedge f_u(aA^*) \text{ si } \operatorname{dom}(f_{ua}) \neq \emptyset, \text{ et } \varphi(f_u,a) = \varepsilon \text{ sinon},$
- $ho(f_u) = f_u(\varepsilon) \text{ si } \varepsilon \in \text{dom}(f_u), \text{ et } f_u \notin \text{dom}(\rho) \text{ sinon.}$

Lemme:

- 1. Soient $u, v \in A^*$. On a $\delta(f_u, v) = f_{uv}$.
- 2. Soient $u, v \in A^*$. On a $\varphi(f_u, v) = \bigwedge f_u(vA^*)$ si $dom(f_{uv}) \neq \emptyset$.
- 3. Soit $u \in A^*$. On a $f_u = \llbracket \mathcal{R}_{f_u} \rrbracket$.
- **4**. $f = [\![\mathcal{R}]\!]$.
- 5. L'automate des résiduels est normalisé, accessible et complet.

Exemple:

Calculer l'automate des résiduels de la fonction *multiplication par 5* où les entiers sont codés en binaire en commençant avec le bit de poids faible.

Minimisation

Théorème : Automate minimal

Soit $f: A^* \to B^*$ une fonction séquentielle.

L'automate des résiduels de f, noté \mathcal{R}_f , est minimal parmi les automates normalisés et complets qui réalisent f.

Construction de l'automate minimal

Soit $\mathcal{A} = (Q, A, B, q_0, \delta, \varphi, m, \rho)$ un automate réalisant une fonction f.

- émonder puis normaliser puis compléter l'automate.
- quotienter l'automate par l'équivalence définie par $p \sim q$ si $[\![\mathcal{A}_p]\!] = [\![\mathcal{A}_q]\!]$.

Cette équivalence se calcule par raffinement :

- $p \sim_0 q \text{ si } \rho(p) = \rho(q).$
- $p \sim_{n+1} q$ si $p \sim_n q$ et $\forall a \in A$, $\delta(p,a) \sim_n \delta(q,a)$ et $\varphi(p,a) = \varphi(q,a)$.

Exemple:

Minimiser l'automate naturel de $f: A^* \to A^*$ définie par $f(w) = w(ab)^{-1}$.

