Temporal Logics and Model Checking

Francesco Goretti

Alma Mater Studiorum - University of Bologna Presentation for the course of Logic Methods for Philosophy

26/04/2023

Temporal logics

- Michele has always driven
- Michele drove
- Michele had driven
- Michele will drive
- Michele will always drive

Temporal logics - Syntax

Let $\phi := \{p_0, p_1, p_2, ...\}$ be the set of atomic predicates.

The set of temporal formulas F_m^{ϕ} is defined as follows:

- $p_i \in \phi$ implies $p_i \in F_m^{\phi}$
- $\bot \in F_m^{\phi}$
- $A \in F_m^{\phi}$ implies $\neg A \in F_m^{\phi}$
- $A, B \in F_m^{\phi}$ implies $(A \land B), (A \lor B), (A \to B) \in F_m^{\phi}$
- $A \in F_m^{\phi}$ implies $HA, GA, PA, FA \in F_m^{\phi}$
- F_m^ϕ doesn't contain anything else

Temporal logics - Temporal operators

H: "It was always the case that"

G: "It will be always the case that"

P: "It was the case that"

F: "It will be the case that"

$$H,G \sim \square$$

$$P, F \sim \Diamond$$

Duality:

$$\neg H \neg A = PA$$

$$\neg G \neg A = FA$$

Temporal logics - Examples

p := "Michele drives"

•	Michele	has	always	s driven	H_{μ}	0
---	---------	-----	--------	----------	-----------	---

- Michele drove Pp
- Michele had driven PPp
- Michele will drive Fp
- Michele will always drive Gp

Temporal logics - Semantics

A temporal model ${\rm M}$ is defined as follows:

$$M:=$$

where

- $T := \{t_0, t_1, t_2, ...\}$ non-empty set of instants
- \bullet < $\subseteq T \times T$ relation of temporal precedence
- I : $\phi \to \mathcal{P}(T)$ valuation function

A temporal frame F is defined as follows:

$$F := < T, < >$$

Temporal Logics - Truth value of a formula

Truth value of a formula A in an instant $t \in T$ of a model M:

```
• \models_t p_i iff t \in I(p_i)
\bullet \not\models_t \bot

    ⊨<sub>+</sub> ¬B

                                iff
                                               ⊭<sub>+</sub> B
                         iff
• ⊨<sub>+</sub> B ∧ C
                                                \models_{t} B and \models_{t} C

    ⊨<sub>+</sub> B ∨ C

                       iff \models_t B or \models_t C
                         iff
• \models_t B \rightarrow C
                                                \not\vDash_{t} B or \vDash_{t} C
                                            \forall t' \in T(t' < t \text{ implies } \models_{t'} B)
                             iff
• ⊨<sub>+</sub> HB
                                            \forall t' \in T(t < t' \text{ implies } \models_{t'} B)
• ⊨<sub>t</sub> GB
                             iff
                             iff
                                            \exists t' \in \mathrm{T}(t' < t \text{ and } \vDash_{t'} B)
\bullet \models_t PB
                                            \exists t' \in \mathrm{T}(t < t' \text{ and } \vDash_{t'} B)
                             iff
\bullet \models_t FB
```

K_t logic

It's a set of formulas Γ such that:

- TAUT $\in \Gamma$
- $H(A \rightarrow B) \rightarrow (HA \rightarrow HB) \in \Gamma$
- $G(A \to B) \to (GA \to GB) \in \Gamma$
- $A \to HFA \in \Gamma$
- A → GPA ∈ Γ
- $\frac{A \to B \in \Gamma}{B \in \Gamma}$ $\frac{A \in \Gamma}{B \in \Gamma}$ (modus ponens)
- $\frac{A \in \Gamma}{HA \in \Gamma}$ $\frac{A \in \Gamma}{GA \in \Gamma}$ (necessitation)

K4_t logic

$$\label{eq:K4t} \begin{aligned} \mathsf{K4_t} &= \mathsf{K_t} + "\mathrm{H} \mathcal{A} \to \mathrm{HH} \mathcal{A}" \\ &\qquad \qquad \text{(transitivity)} \end{aligned}$$

if t < t' and t' < t'' then t < t''

Linear past and future

In K4_t, past and future are branched.

To have a linear past the following clause is added to the definition of Γ :

$$FPA \rightarrow PA \lor A \lor FA \in \Gamma$$

which corresponds to trichotomy:

$$t < t''$$
 and $t' < t''$ implies $t < t'$ or $t = t'$ or $t' < t$

Instead, to have a linear future the following clause is added:

$$PFA \rightarrow PA \lor A \lor FA \in \Gamma$$

Branched future

Model Checking

Model checking is an automated method of verification of properties on a finite-state model.

Kripke structure

A Kripke structure is a quadruple < S, S_0 , R, I > where:

- $S = \{s_0, s_1, s_2\}$ set of states
- $\bullet \ \mathrm{S}_0 = \textbf{\textit{s}}_0 \ \text{initial state}$
- $R \subseteq S \times S$ transition relation
- $I: \Phi \to \mathcal{P}(S)$ interpretation function

Computation tree logic (CTL)

CTL - Syntax

The set of CTL formulas F_m^{ϕ} is defined as follows:

- It contains every propositional formula
- $B, C \in F_m^{\phi}$ implies $AXB, AFB, AGB, A(BUC) \in F_m^{\phi}$
- $B, C \in F_m^{\phi}$ implies $EXB, EFB, EGB, E(BUC) \in F_m^{\phi}$
- F_m^{ϕ} doesn't contain anything else

Quantifiers:	Operators:
All	ne X t
E xists	F uture
	G lobally
	Until

CTL - Examples of formulas

 $B \wedge C$

 $AG(B \wedge C)$

 $\mathbf{EX} B$ A B

AG EF B AE B

 $B \vee AG(C \wedge E(BUD))$ A $(B \rightarrow C)X$

Path

A path is a non-empty sequence of states such that there always exists a transitions between them.

$$s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_0 \rightarrow \dots$$

Path

CTL - Semantics

Truth value of a CTL formula in a state $s_0 \in S$ of a Kripke structure (temporal cases):

- $\vDash_{s_0} AXB$ iff $\forall s_0 \rightarrow s_1(\vDash_{s_1} B)$
- $\models_{s_0} EXB$ iff $\exists s_0 \rightarrow s_1(\models_{s_1} B)$
- $\models_{s_0} AGB$ iff $\forall s_0 \to s_1 \to s_2 \to \dots (\forall i (\models_{s_i} B))$
- $\models_{s_0} EGB$ iff $\exists s_0 \to s_1 \to s_2 \to \dots (\forall i (\models_{s_i} B))$
- $\models_{s_0} AFB$ iff $\forall s_0 \to s_1 \to s_2 \to \dots (\exists i (\models_{s_i} B))$
- $\vDash_{s_0} EFB$ iff $\exists s_0 \to s_1 \to s_2 \to \dots (\exists i (\vDash_{s_i} B))$
- $\models_{s_0} A(B \cup C)$ iff $\forall s_0 \to s_1 \to s_2 \to \dots (\exists i (\models_{s_i} C \text{ and } \forall j < i (\models_{s_i} B)))$
- $\models_{s_0} E(BUC)$ iff $\exists s_0 \to s_1 \to s_2 \to \dots (\exists i (\models_{s_i} C \text{ and } \forall j < i (\models_{s_i} B)))$

 $\vDash_{s_0} \mathrm{AG}(p_1 \vee p_2)$

 $\vDash_{s_0} \mathrm{EX}\ p_0$

 $\vDash_{s_0} \mathrm{EF}\ p_2$

 $\not \succeq_{s_0} \mathrm{A}((p_0 \vee p_1) \mathrm{U} p_2)$

Linear temporal logic (LTL)

Conclusions

LTL vs CTL vs CTL* vs μ -calculus