IN THE CLAIMS

What is claimed is:

		<i>j</i>
1	1./	A computer software product including one or more recordable media having
2/		executable instructions stored thereon which, when executed by a processing
3		device, causes the processing device to:
4		strengthen a first antecedent label for an edge in an assertion graph.
1	2.	The computer software product recited in Claim 1 which, when executed by a
2		processing device, further causes the processing device to:
3		abstract a second antecedent label to produce the first antecedent label.
1	3.	The computer software product recited in Claim 1 wherein strengthening the
2		antecedent label comprises causing the processing device to:
3		join any pre-images for antecedent labels of outgoing edges from the
4		edge in the assertion graph; and
5		keep in the strengthened antecedent label for the edge only what is
6		already contained by the first antecedent label for the edge and also
7		contained by the joined pre-images for antecedent labels of outgoing edges
8		from the edge.
1	4.	The computer software product recited in Claim 1 which, when executed by a
2		processing device, further causes the processing device to:
3		compute a simulation relation for the edge from the strengthened
4		antecedent label; and
5		compare the simulation relation for the edge to a consequence label for
6		the edge.
1	5.	The computer software product recited in Claim 4 wherein computing the

2

simulation relation comprises causing the processing device to:

3		identify in the strengthened antecedent label of the edge any states that
4		are also contained by a post-image for a simulation relation of an edge
5		incoming to the edge in the assertion graph; and
6		join to the simulation relation for the edge, the identified states.
1	6.	The computer software product recited in Claim 4 wherein comparing the
2		simulation relation to a consequence label comprises causing the processing
3		device to:
4		determine whether the simulation relation for the edge is contained by the
5		consequence label for the edge.
1	7.	The computer software product recited in Claim 4 wherein comparing the
2		simulation relation to a consequence label comprises causing the processing
3		device to:
4		negate a Boolean expression of the simulation relation for the edge, and:
5		logically combine the negated Boolean expression with a Boolean
6		expression of the consequence label for the edge using a logical OR
7		operation.
1	8.	The computer software product recited in Claim 4 wherein computing a
2		simulation relation for the edge from the strengthened antecedent label
3		comprises causing the processing device to:
4		compute a simulation relation abstraction for the edge; and
5		concretize the simulation relation abstraction for the edge to produce the
6		simulation relation for the edge.
1	9.	The computer software product recited in Claim 8 wherein computing a
2		simulation relation for the edge from the strengthened antecedent label

3

4

abstract the strengthened antecedent label to produce an antecedent

further comprises causing the processing device to:

5	label abstraction for the edge; and
6	use the antecedent label abstraction to compute the simulation relation
7	abstraction for the edge.
1	10.A method comprising:
2	strengthening a first antecedent label for an edge in an assertion graph;
1	11. The method recited in Claim 10 wherein strengthening the antecedent label
2	comprises:
3	joining pre-images of antecedent labels of any outgoing edges from the
4	edge in the assertion graph; and
5	keeping, in the strengthened antecedent label for the edge, states already
6	contained by the first antecedent label for the edge and also contained by the
7	joined pre-images of antecedent labels of any outgoing edges from the edge
1	12. The method recited in Claim 10 wherein the first antecedent label is one of a
2	plurality of antecedent labels including a second antecedent label encoded
3	along with the first antecedent label into a third antecedent label by a
4	symbolic indexing function.
1	13. The method recited in Claim 10 further comprising:
2	computing a simulation relation for the edge from the strengthened
3	antecedent label; and
4	comparing the simulation relation for the edge to a consequence label for
5	the edge.
1	14. The method recited in Claim 13 wherein comparing the simulation relation to
2	a consequence label comprises:
3	determining whether the simulation relation for the edge is contained by
4	the consequence label for the edge.

1	15. The method recited in Claim 13 wherein comparing the simulation relation to
2	a consequence label comprises:
3	negating a Boolean expression of the simulation relation for the edge,
4	and:
5	logically combining the negated Boolean expression with a Boolean
6	expression of the consequence label for the edge using a logical OR
7	operation.
1	16. A method comprising:
2	computing a first simulation relation for an edge in a first assertion graph
3	from a first antecedent label for the edge;
4	computing a second simulation relation for the edge from a concretization
5	function applied to the first simulation relation for the edge; and
6	comparing the second simulation relation for the edge with a
7	consequence label for a corresponding edge in a second assertion graph to
8	see if the second simulation relation is contained by the consequence label.
1	17. The method recited in Claim 16 further comprising:
2	computing the first antecedent label as an abstraction of a second
3	antecedent label for the corresponding edge in the second assertion graph.
1	18. The method recited in Claim 17 further comprising:
2	computing the second antecedent label by strengthening a third
3	antecedent label for the edge in the second assertion graph.
1	19. The method recited in Claim 16 further comprising:
2	computing a third antecedent label for the edge in the first assertion graph
3	as an abstraction of a second antecedent label for the corresponding edge in
4	the second assertion graph; and

5	computing the first antecedent label by strengthening the third anteceden
6	label for the edge in the first assertion graph.
1	20. A verification system comprising:
2	means for strengthening an first antecedent label for an edge in an
3	assertion graph;
1	21. The verification system of Claim 20 wherein the means for strengthening the
2	antecedent label comprises:
3	means for joining any pre-images for antecedent labels of outgoing edges
4	from the edge in the assertion graph; and
5	means for keeping, in the strengthened antecedent label for the edge,
6	states already contained by the first antecedent label for the edge and also
7	contained by the joined pre-images for antecedent labels of outgoing edges
8	from the edge.
1	22. The verification system of Claim 20 wherein the first antecedent label is one
2	of a plurality of antecedent labels including a second antecedent label
3	encoded along with the first antecedent label into a third antecedent label by
4	a symbolic indexing function.
1	23. The verification system of Claim 20 further comprising:
2	means for computing a simulation relation for the edge from the
3	strengthened antecedent label; and
4	means for comparing the second simulation relation for the edge with a
5	consequence label for a corresponding edge in a second assertion graph to
6	check if the second simulation relation is contained by the consequence
7	label.
1	24. The verification system of Claim 23 wherein the means for comparing the
2	simulation relation to a consequence label comprises:

3	means for determining whether the simulation relation for the edge is
4	contained by the consequence label for the edge.
1	25.A verification system comprising:
2	means for computing a first simulation relation for an edge in a first
3	assertion graph from a first antecedent label for the edge;
4	means for computing a second simulation relation for the edge from a
5	concretization function applied to the first simulation relation for the edge; and
6	means for comparing the second simulation relation for the edge with a
7	consequence label for a corresponding edge in a second assertion graph to
8	see if the second simulation relation is contained by the consequence label.
1	26. The verification system of Claim 26 further comprising:
2	means for computing the first antecedent label as an abstraction of a
3	second antecedent label for the corresponding edge in the second assertion
4	graph.
1	27. The verification system of Claim 27 further comprising:
2	means for computing the second antecedent label by strengthening a
3	third antecedent label for the edge in the second assertion graph.
1	28. The verification system of Claim 26 further comprising:
2	means for computing a third antecedent label for the edge in the first
3	assertion graph as an abstraction of a second antecedent label for the
4	corresponding edge in the second assertion graph; and
5	means for computing the first antecedent label by strengthening the third
6	antecedent label for the edge in the first assertion graph.
1	29. A verification system comprising:
2	a recordable medium to store executable instructions;
3	a processing device to execute instructions; and

4	a plurality of executable instructions that when executed by the processing
5	device, cause the processing device to strengthen a antecedent label for an
6	edge in an assertion graph.
1	30. The verification system of Claim 4 wherein the plurality of executable
2	instructions, when executed by the processing device, further cause the
3	processing device to:
4	compute a first simulation relation for the edge; and
5	concretize the first simulation relation computed for the edge to produce a
6	second simulation relation for the edge.