AMATH 561 Problem Set 1
I. a. In a given string of coin flips, let H represent heads and T represent tails. Also assume that for any given toss, the probability of heads is p and the probability of tails is 1-p. Then, we can write the probability space (Ω, F, P) as follows: $\Omega = SHHH, HHT, HTH, HTT, THH, THT, TTH, TTT)$ and take $F = 2^{-1}$ to be the power set of Ω .

Define the function $q: \Omega \to R$ s.t. $q(HHH) = p^3, q(HHT) = q(HTH) = q(THH) = p^2(1-p),$ $q(HTT) = q(THT) = q(TTH) = p(1-p)^2, q(TTT) = (1-p)^3.$ Then, $\forall A \in F, P(A) = \Sigma_{\omega \in A} q(\omega)$ defines our probability measure P. Clearly, $P(A) \ge P(\emptyset) = 0$. $\forall A \in F$ and \forall sequence of disjoint sets $A_i \in F$ (which must be finite because F is finite), $P(U, A_i) = \sum_i P(A_i)$ (because we just decompose into events) and $P(\Omega) = p^3 + 3p^2(1-p) + 3p(1-p)^2 + (1-p)^3 = (p+(1-p))^3 = 1$. Thus, this is indeed a probability measure.

b. Now, in a given string of balls drawn, let B represent blue and R represent red. Then, we can write the probability space (Σ, F, P) as $\Sigma = SRR, RB, BR, BBC$, $F = 2^{-2}$ and define $p: \Sigma \to R$ s.t. $p(RR) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$, $p(RB) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$, $p(BR) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$, $p(BR) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$, $p(BR) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$ and let $P(A) = \Sigma_{WA} p(W)$ $\forall A \in F$ define our probability measure P. As before, this is clearly a measure and $P(\Sigma) = \frac{1}{6} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} = 1$ $\Rightarrow P$ is a probability measure.

2. Consider a probability measure P on $\Omega = \mathbb{Z}$ with the σ -algebra $F = \mathbb{Z}^2$ that satisfies the translation-invariance property. Let $B = 50\% \in \mathbb{Z}^2$. Then, by the translation invariance property, $P(i) = P(B) = P(B+n) = P(5n\%) \quad \forall n \in \mathbb{Z}$. Of course, $\Omega = \mathbb{Z} = \mathbb{Z}$

that $I = P(SC) = P(iQAi) = iZ_i P(Ai) = iZ_i P(B) = P(B)iZ_i I$. This sum diverges unless P(B) = 0, but if P(B) = 0, then P(SC) = 0. Thus $P(SC) \neq I$, meaning that P cannot be a probability measure which in turn implies that no such probability measure exists.

3. Now, consider a probability measure P on the set N=R with σ -algebra F=B(R) with the translation-invariance property. We apply a very similar method as the previous problem by letting B=(o,I]. Then, \forall $n\in\mathbb{Z}$, P(B)=P(B+n)=P((n,n+I)). Let $A_i=(i,i+I)$ \forall $i\in\mathbb{Z}$. Then, N=R=iZ A_i . Note that the A_i 's are all disjoint. As before, this is a countable union, so it must hold that $I=P(N)=P(iZ_iA_i)=iZ_iP(A_i)=iZ_iP(B)=P(B)$. As before, this is not possible, so P cannot be a probability measure, meaning that no such probability measure exists.

H. Consider (J2, F, P) s.t. N=R, Fisthe set of all subsets $A \in R$ s.t. A is countable or A^c is countable, and P(A)=0 if A is countable and P(A)=1 if A^c is countable. We first show that F is a a-algebra (as R is clearly a set) by verifying the required axioms:

i. If $A \in F$ is countable, then $A^c \in F$ because $(A^c)^c = A$ is countable. If $A \in F$ is uncountable, then $A^c \in F$ because A^c is countable. Thus, F is closed to compliments.

ii. Let $A = \{0, A\}$ be a countable union of sets $A \in F$ $\forall i \in N$.

If A_i is countable $\forall i$, then $A \in F$ because the countable.

union of countable sets is countable.

Now, say that not all A; s are countable, i.e. I kelns. t. Ak is uncountable.

A'= , A; (de Morgan's law) = ; Ak A; ^A; A' < A' < A' < However,

A' must be countable because A, is uncountable, so

A' must be countable > A < F. Thus, F is closed to

countable unions and is therefore a of-algebra

Naw, we wish to show that P satisfies the axioms of a probability measure.

i. Ø is countable, so P(A) = P(Ø) = O Y AEF.

ii. Consider F> A = U A; where the A; se F are disjoint.

First, say assume that A; is countable Y i. Then, A

is also countable as a countable union of countable sets,

so = P(A;) = O = P(A) = P(J) Ai).

Now, assume that J some KEN s.t. Ax is uncountable.

Because all A; s are disjoint, A; CAX Y i th.

Ax is uncountable, so Ax must be countable

A; is countable Y i th. Note that Ax CA, so A

must be uncountable. Then,

\$\int_{P(A;)} = P(A_{\infty}) + \int_{\infty} P(A_{\infty}) = 1 + O = 1 = P(A) = P(\infty] Ai).

Thus, P(YAi) = \int_{\infty} P(A_{\infty}) in all cases.

iii. \$\mathbb{L} = R\$ is uncountable, so P(R) = 1.

Thus, Pratisfies all the axioms and is indeed a probability measure, meaning that (R, F, P) is a probability space.