Skriftlig eksamen på Økonomistudiet Vinteren 2017 - 2018

DYNAMISKE MODELLER

Torsdag den 18. januar 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

2. årsprøve 2018 V-2DM ex

Skriftlig eksamen i Dynamiske Modeller Torsdag den 18. januar 2018

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. For ethvert $a \in \mathbf{R}$ betragter vi tredjegradspolynomiet $P : \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^3 + (6+a)z^2 + (5+6a)z + 5a.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + (6+a)\frac{d^2x}{dt^2} + (5+6a)\frac{dx}{dt} + 5ax = 0,$$

og

$$\frac{d^3x}{dt^3} + 8\frac{d^2x}{dt^2} + 17\frac{dx}{dt} + 10x = 168e^{2t}$$

samt differentialligningen

$$(***) \frac{d^3x}{dt^3} + 8\frac{d^2x}{dt^2} + 17\frac{dx}{dt} + 10x = 10t^2 + 54t + 80.$$

- (1) Vis, at tallet z = -1 er rod i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.
- (2) Bestem for ethvert $a \in \mathbf{R}$ den fuldstændige løsning til differentialligningen (*), og bestem de $a \in \mathbf{R}$, hvor (*) er globalt asymptotisk stabil.
- (3) Bestem den fuldstændige løsning til differentialligningen (**).

(4) Bestem den fuldstændige løsning til differentialligningen (* * *).

For ethvert $\alpha \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(****) \frac{d^3x}{dt^3} + \alpha^2 \frac{d^2x}{dt^2} + 2\frac{dx}{dt} + \alpha x = 0,$$

(5) Opstil Routh-Hurwitz matricen $A_3(\alpha)$ for differentialligningen (****), og bestem de $\alpha \in \mathbf{R}$, hvor (****) er globalt asymptotisk stabil.

Opgave 2. Vi betragter vektorfunktionen $f: \mathbb{R}^2 \to \mathbb{R}^2$, som er givet ved forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : f(x_1, x_2) = (x_1^2 - x_2, -x_1 + x_2^2).$$

- (1) Bestem fixpunkterne for vektorfunktionen f. Altså de punkter $(x_1, x_2) \in \mathbb{R}^2$, hvorom det gælder, at $f(x_1, x_2) = (x_1, x_2)$.
- (2) Bestem Jacobimatricen $Df(x_1, x_2)$ for vektorfunktionen f i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}$, og bestem, i hvilke punkter denne matrix er regulær.
- (3) Angiv differentialet df(1,1) for vektorfunktionen f ud fra punktet (1,1).
- (4) Løs ligningen

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = f(1,1) + df(1,1)$$

med hensyn til $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Betragt mængden M =

$$\{(x_1, x_2) \in [0, 1]^2 \mid (x_2 = 0, \text{ hvis } x_1 \notin \mathbf{Q}) \lor (x_2 \in [0, 1], \text{ hvis } x_1 \in \mathbf{Q})\}.$$

- (5) Vis, at mængden $f(\overline{M})$ er kompakt.
- (6) Vis, at mængden $\overline{f(M)}$ er kompakt.

Opgave 3. Vi betragter den funktion $f: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : f(z) = z^2 - z.$$

- (1) Bestem funktionsværdierne f(i), f(-i) og $\frac{f(i)}{f(-i)}$.
- (2) Løs ligningen f(z) = z.
- (3) Løs ligningen $f(z) = iz z^3$.

Vi betragter torussen

$$\mathbf{T} = \{ z \in \mathbf{C} \mid |z| = 1 \}$$

og den funktion $g: \mathbf{T} \to \mathbf{C}$, som er defineret ved udtrykket

$$\forall t \in \mathbf{T} : g(t) = f(t).$$

- (4) Vis, at billedmængden $g(\mathbf{T})$ er kompakt.
- (5) Lad (t_k) være en vilkårlig følge af punkter fra torussen \mathbf{T} . Vis, at denne følge har en konvergent delfølge (t_{k_p}) med grænsepunkt $t_0 \in \mathbf{T}$. Vis desuden, at billedfølgen $(g(t_k))$ har en konvergent delfølge $(g(t_{k_p}))$ med et grænsepunkt t^* , og begrund, at $|t^*| \leq 2$.
- (6) Angiv en følge (t_k) på \mathbf{T} , så $t^* = 2$.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 \left(\dot{x}^2 + \frac{1}{2}x^2 + 4xe^t \right) dt,$$

hvor x(0) = 4 og x(1) = 5e.

Idet vi skal optimere dette integral, er der tale om et variationsproblem med integranden

$$F(t, x, \dot{x}) = \dot{x}^2 + \frac{1}{2}x^2 + 4xe^t.$$

- (1) Vis, at dette variationsproblem er et minimumsproblem.
- (2) Løs dette variationsproblem.