SESSION 7

Matrix-matrix
multiplication





# Matrix-matrix multiplication

Given n-by-n matrices A and B, we can compute C = AB

$$\textbf{C}_{ij} \leftarrow \textbf{C}_{ij} + \sum_{k} \textbf{A}_{ik} \textbf{B}_{kj}$$

with

```
for (int i = 0; i < n; i++)
  for (int j = 0; j < n; j++)
   for (int k = 0; k < n; k++)
        C[i*n + j] += A[i*n + k] * B[k*n + j];</pre>
```

- ▶ m: # data elements moved
- ► f: # flops

- t<sub>m</sub>: time per memory access
- $\blacktriangleright \ t_f \ll t_m \ time \ per \ flop$
- q =: f/m average flops per slow memory access

hardware

software

- ▶ m: # data elements moved
- f: # flops
- ▶ t<sub>f</sub> ≪ t<sub>m</sub> time per flop

▶ t<sub>m</sub>: time per memory access

q =: f/m average flops per slow memory access

Minimum time to solution

t<sub>f</sub> ⋅ f

hardware

software

- ▶ m: # data elements moved
  ▶ t<sub>m</sub>: time per memory access
- $\blacktriangleright$  f: # flops  $\blacktriangleright$  t\_f  $\ll$  t\_m time per flop

q =: f/m average flops per slow memory access

 $\begin{array}{ccc} \text{Minimum time to solution} & & \text{Ty} \\ & & & \\ \textbf{t_f} \cdot \textbf{f} & & & \textbf{f} \ \textbf{t_f} + \end{array}$ 

Typical time to solution  $ft_f + mt_m = ft_f \left(1 + \frac{t_m}{t_f} \cdot \frac{1}{q}\right)$ 

# **Naïve matrix-multiply**

```
for (int i = 0; i < n; i++)
  for (int j = 0; j < n; j++)
   for (int k = 0; k < n; k++)
        C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];</pre>
```

- ▶  $2n^3 = \mathcal{O}(n^3)$  flops and  $3 \cdot 8n^2$  bytes of memory
- ightharpoonup q potentially  $\mathcal{O}(n)$ , arbitrarily large for large n



# Naïve matrix-multiply

```
for (int i = 0; i < n; i++)
  // Read row i of A into fast memory
  for (int j = 0; j < n; j++)
    // Read Cii into fast memory
    // Read column j of B into fast memory
    for (int k = 0; k < n; k++)
      C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
      // Write Cii back to slow memory
```

# Number of slow memory references

$$m=n^3$$
 each column of B is read n times 
$$+n^2$$
 each row of A is read once 
$$+2n^2$$
 each entry of C is read once and written once 
$$=(n^3+3n^2)$$

Hence

$$\lim_{n\to\infty} q = \frac{f}{m} = \frac{2n^3}{(n^3 + 3n^2)} = 2$$

▶ m: # data elements moved

► t<sub>m</sub>: time per memory access

► f: # flops

ightharpoonup  $t_{
m f}\ll t_{
m m}$  time per flop

q =: f/m average flops per slow memory access

Minimum time to solution

Typical time to solution

t<sub>f</sub> ⋅ f

$$ft_f + mt_m = ft_f\left(1 + \frac{t_m}{t_f} \cdot \frac{1}{q}\right)$$

hardware

software

### From model to prediction

► For three nested loops, predicted typical time to solution is:

$$T = f t_f \left( 1 + \frac{t_m}{2 t_f} \right)$$

## From model to prediction

► For three nested loops, predicted typical time to solution is:

$$T = f t_f \left( 1 + \frac{t_m}{2 t_f} \right)$$

Memory latency of about 200 cycles per cache line (8 doubles)

## From model to prediction

► For three nested loops, predicted *typical* time to solution is:

$$T = f t_f \left( 1 + \frac{t_m}{2 t_f} \right)$$

- Memory latency of about 200 cycles per cache line (8 doubles)
- ▶ Approximating  $t_m \approx 200/8 = 25$ , and say  $t_f = 1$ :

$$T = f t_f \left( 1 + \frac{25}{2} \right) = 13.5 f t_f$$

► **Estimate:** Maximum 7% flop peak.

#### Measurement

- ▶ 2 4-wide FMAs per cycle ⇒ 16 DP Flops/cycle
- ▶ Peak is  $3.6 \cdot 16 = 57.6 \text{ GFlops/s} \Rightarrow \text{model predicts 4.03 GFlops/s}$

#### Measurement

- ▶ 2 4-wide FMAs per cycle ⇒ 16 DP Flops/cycle
- ▶ Peak is  $3.6 \cdot 16 = 57.6 \text{ GFlops/s} \Rightarrow \text{model predicts 4.03 GFlops/s}$



7

# How to improve reuse?

```
// Treat A, B, C \in \left(\mathbb{R}^{b \times b}\right)^{N \times N}
// N \times N matrices where each entry is a b \times b matrix.
for (int i = 0; i < N; i++)</pre>
  for (int j = 0; j < N; j++)
    // Read block Cii into fast memory
    for (int k = 0; k < n; k++)
       // Read block Aik into fast memory
       // Read block Bki into fast memory
       // Do matrix multiply on the blocks
       C[i*N + j] = C[i*N + j] + A[i*N + k] * B[k*N + j];
       // Write block Cii back to slow memory
```

## How to improve reuse?

```
// Treat A, B, C \in \left(\mathbb{R}^{b \times b}\right)^{N \times N}
// N \times N matrices where each entry is a b \times b matrix.
for (int ii = 0: ii < N: ii++)</pre>
  for (int jj = 0; jj < N; jj++)</pre>
    for (int kk = 0: kk < N: kk++)
       for (int i = 0; i < b; i ++)
         for (int i = 0; i < b; i ++)
            for (int k = 0; k < b; k ++) {
               const int i = ii*b + i ;
               const int j = jj*b + j;
               const int k = kk*b + k ;
               C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
```

### What did that do to the data movement?

$$m = Nn^2$$
 each block of B is read  $N^3$  times   
  $+ Nn^2$  each block of A is read  $N^3$  times   
  $+ 2n^2$  each block of C is read once and written once   
  $= 2n^2(N+1)$ 

Hence

$$\lim_{n\to\infty}q=\frac{f}{m}=\frac{2n^3}{2n^2(N+1)}\approx\frac{n}{N}=b\gg 2$$

## What did that do to the data movement?

 $m = Nn^2$  each block of B is read  $N^3$  times  $+ Nn^2$  each block of A is read  $N^3$  times  $+ 2n^2$  each block of C is read once and written once  $= 2n^2(N+1)$ 

Hence

$$\lim_{n\to\infty} \mathbf{q} = \frac{\mathbf{f}}{\mathbf{m}} = \frac{2n^3}{2n^2(N+1)} \approx \frac{n}{N} = b \gg 2$$

**Limit on** b: still must still fit in fast memory.

### From model to machine characteristics

ightharpoonup If algorithm is "fast" when T  $\geq$  50% peak, then

$$f\,t_f\left(1+\frac{t_m}{t_f}\frac{1}{q}\right)\leq 2\,f\,t_f\Leftrightarrow \frac{t_m}{t_f}\frac{1}{q}\leq 1\Leftrightarrow q\geq \frac{t_m}{t_f}$$

- ► For  $t_m = 25$ ,  $t_f = 1 \Rightarrow b \approx q \ge 25$ .
- $\blacktriangleright$  To hold all three b  $\times$  b matrices in cache we need

$$3b^2 = 3 \cdot 25^2 = 1875$$
 doubles  $\approx 14.6$ KB of fast memory

▶ This is smaller than L1, but too large for registers.

### Is this the best we can do?

### Hong and Kung (1981)

Any reorganization of this algorithm using only associativity has

$$q = \mathcal{O}(\sqrt{M_{\text{fast}}})$$

and the number of data elements moved (slow  $\Leftrightarrow$  fast) is

$$\Omega\left(\frac{\mathsf{n}^3}{\sqrt{\mathsf{M}_{\mathsf{fast}}}}\right)$$

- Exact values for the bounds are not known
- ▶ Best bounds by Smith and van de Geijn (2017)
- GotoBLAS/OpenBLAS approach approaches these bounds

# **Exercise 8: tiled matrix-matrix multiplication**

- 1. Split into small groups
- 2. Download the code (three versions, one source)
- 3. Measure Flop rate as matrix size changes
- 4. Try different tile sizes
- **5.** Ask questions!