Estructura de campo

Definición (Campo)

Sea \mathbb{K} un conjunto no vacío en el cuál están definidas dos operaciones, suma (+) y producto (\cdot) . Decimos que \mathbb{K} es un **campo**, y lo denotamos $(\mathbb{K}, +, \cdot)$, si se verifican los siguientes axiomas:

- 1. $+: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K}$ (+ LEY DE COMPOSICION INTERNA) Es decir: $\forall \ a, b \in \mathbb{K}, \ a+b \in \mathbb{K}$
- 2. $\forall a, b \in \mathbb{K}, a+b=b+a$ (+ CONMUTATIVA)
- 3. $\forall a, b, c \in \mathbb{K}, (a+b)+c=a+(b+c)$ (+ ASOCIATIVA)
- 4. $\exists \ 0 \in \mathbb{K} : \forall \ a \in \mathbb{K}, \ a+0=0+a=a$ (Existencia del Neutro Aditivo)

 0 es elemento neutro de la suma en \mathbb{K}
- 5. $\forall a \in \mathbb{K}, \exists a' \in \mathbb{K} : a + a' = a' + a = 0$ (EXISTENCIA DEL OPUESTO) $a' \ es \ el \ elemento \ opuesto \ de \ a, \ se \ denota \ -a$
- 6. $\cdot : \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K}$ (• LEY DE COMPOSICION INTERNA) Es decir: $\forall \ a, b \in \mathbb{K}$, $a \cdot b \in \mathbb{K}$
- 7. $\forall a, b \in \mathbb{K}, a \cdot b = b \cdot a \quad (\cdot \text{ CONMUTATIVA})$
- 8. $\forall a, b, c \in \mathbb{K}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (* ASOCIATIVA)
- 9. $\exists \ 1 \in \mathbb{K} : \forall \ a \in \mathbb{K}, \ a \cdot 1 = 1 \cdot a = a$ (Existencia del Neutro Multiplicativo)

 1 es el **elemento neutro** del producto en \mathbb{K}
- 10. $\forall a \in \mathbb{K}, a \neq 0, \exists a'' \in \mathbb{K} : a \cdot a'' = a'' \cdot a = 1$ (Existencia del Inverso) $a'' \text{ es el } \textbf{elemento inverso } de \ a, \text{ se denota } a^{-1}$
- 11. $\forall a, b, c \in \mathbb{K}, \ a \cdot (b+c) = a \cdot b + a \cdot c$ (DISTRIBUTIVA DEL PROD. RESPECTO DE LA SUMA)

Ejemplo

Las ternas $(\mathbb{R}, +, \cdot)$ y $(\mathbb{C}, +, \cdot)$ tienen estructura de campo.