IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s)

Mark Levine et al.

Serial No.

10/699,997

For

DURABLE HIGHLY CONDUCTIVE SYNTHETIC

FABRIC CONSTRUCTION

Filing Date

•

November 3, 2003

Examiner

Andrew T. Piziali

Group Art Unit

1794

Confirmation No.

5362

745 Fifth Avenue New York, NY 10151

October 20, 2009

FIFTH REVISED APPEAL BRIEF OF APPELLANT UNDER 37 C.F.R. § 41.37

MAIL STOP APPEAL BRIEF- PATENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Pursuant to the Advisory Action after the Filing of an Appeal Brief and the accompanying Fifth Notification of Non-Compliant Appeal Brief, each dated October 1, 2009 setting a one-month period for response, up to and including November 1, 2009, Appellant's attorneys submit this Fifth Revised Appeal Brief, which is believed to address the Examiner's stated rationale for non-compliance, namely, the entry of the Amendment After-Final dated September 9, 2008.

This is an Appeal from the Final Rejection by the Examiner dated Final Office Action mailed June 12, 2008, which issued in the above-identified application, finally rejecting claims 1-4, 7-14, 16, 17, 19, 20, 22-24, 27-34, and 36-40, and from the Pre-Appeal Brief Conference Decision dated November 3, 2008 confirming the rejections. A Notice of Appeal was filed on October 3, 2008. The period for response to Pre-Appeal Brief Conference Decision was set for December 3, 2008 and extendable under 37 CFR 1.136 based upon the mail date of the Decision. Please charge any additional fees required for the Notice of Appeal, or otherwise occasioned by this paper or credit any overpayments to Deposit Account No. 50-0320.

REAL PARTY IN INTEREST

The real party in interest is Albany International Corp., 1373 Broadway, Albany, New York 12204, to which Appellants have assigned all interest in, to and under this application, by virtue of an assignment recorded on March 8, 2004 at reel 015060, frame 0418; reel 015060, frame 0428; reel 015060, frame 0430; of the assignment records of the Patent and Trademark Office.

RELATED APPEALS AND INTERFERENCES

Upon information and belief, the undersigned attorney does not believe that there is any appeal or interference that will directly affect, be directly affected by or have a bearing on the Board's decision in the pending appeal.

STATUS OF THE CLAIMS

The Application was filed with claims 1-38 on November 3, 2003 and assigned Application Serial No. 10/699,997.

In a first Office Action dated June 17, 2005, the Examiner required an election of a species under 35 U.S.C. §121.

The Examiner also rejected claims 12, 18 and 32 under 35 U.S.C. §112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The Examiner also rejected claims 1-4, 7-8, 11-16, 19-22, 27-28 and 31-36 under 35 U.S.C. §102(b) or in the alternative under 35 U.S.C. §103(a) over U.S. Patent No. 6,432,850 to Takagi.

Claims 9-10, 23, 29-30 and 38 were rejected under 35 U.S.C. §103(a) over U.S. Patent No. 6,432, 850 to Takagi as applied to 1-4, 7-8, 11-16, 19-22, 27-28 and 31-36, above and further in view of U.S. Patent No. 4,803,096 to Kuhn et al.

In response to this first Office Action, Appellants filed an Amendment on September 13, 2005 electing (pursuant to a teleconference) species 3, including claims 1-4, 7-24 and 27-38, amending claims 1, 12, 13, 15, 16, 21, 24, 32, 33, 35, 36, adding new claims 39 and 40, and arguing against the claim rejections.

The Examiner then issued a Final Office Action dated October 14, 2005 ("Final Office Action"), in which the Examiner withdrew the rejections under 35 U.S.C. §112 and maintained the remaining rejections in the first Office Action.

In response to this Final Office Action, Appellants filed a Request for Continued Examination with an Amendment on January 11, 2006. An Office Action was mailed March 30, 2006 maintaining the rejections in the Final Office Action.

In response to this first Office Action, Appellants filed an Amendment on June 30, 2006 amending claims 1, and 24 and arguing against the claim rejections.

Appellants held a teleconference with the Examiner, as documented in the Interview Summary dated July 10, 2006, in which claims 1, 15 and 16 were discussed.

The Examiner then issued a Final Office Action dated August 21, 2006, in which the Examiner withdrew the rejections of claims 15 and 35 and rejected claims 1-4, 7-8, 11-14, 16-17, 19-22, 24, 27-28, 31-34, 36-34, and 39-40 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Patent No. 6,432,850 to Takagi in view of U.S. Patent No. 5,744,236 to Rohrbach et al. Claims 9-10, 23, 29-30 and 38 were rejected under 35 U.S.C. §103(a) over U.S. Patent No. 6,432, 850 to Takagi in view of U.S. Patent No. 5,744,236 to Rohrbach et al. as applied to 1-4, 7-8, 11-16, 19-22, 27-28 and 31-36, above and further in view of U.S. Patent No. 4,803,096 to Kuhn et al

Appellants held a teleconference with the Examiner, documented in an Interview Summary dated December 4, 2006, in which all claims were discussed.

In response to this Final Office Action, Appellants filed an Amendment on December 21, 2006 amending claims 1 and 24 and canceling claim 21 and arguing against the claim rejections.

The Examiner then issued an Advisory Action dated February 1, 2007 ("Advisory Action"), indicating that the December 21, 2006 response was not entered since the amendment raised new issues that would require further consideration and/or search.

Appellants them filed a Request for Continued Examination on February 16, 2007 appealing the Final rejection.

An Office Action was mailed April 9, 2007 maintaining the rejections in the Final Office Action. Claims 1-4, 7-8, 11-14, 16-17, 19-20, 22, 24, 27, 28, 31-34, 36, 37, 39-40 were rejected over U.S. Patent No. 6,432, 850 to Takagi in view of U.S. Patent No. 5,744,236 to Rohrbach et al. and further in view of U.S. Patent No. 3,842,465 to Sillaots et al. ("Sillaots") under 35 U.S.C. §103(a). Claims 9-10, 23, 29-30 and 38 were rejected under 35 U.S.C. §103(a) over U.S. Patent No. 6,432, 850 to Takagi in view of U.S. Patent No. 5,744,236 to Rohrbach et al. and further in view of U.S. Patent No. 4,803,096 to Kuhn.

In response to this Office Action, Appellants filed a Response on July 9, 2007 arguing against the claim rejections.

The Examiner then issued a Final Office Action dated August 6, 2007 in which the Examiner maintained the remaining rejections in the first Office Action.

In response to this Final Office Action, Appellants filed a Response on October 25, 2007 providing links to websites and arguing against the claim rejections.

The Examiner then issued an Advisory Action dated November 1, 2007, indicating that the October 25, 2007; the evidence was not entered.

In response to this Advisory Action, Appellants filed a Request for Continued Examination on December 6, 2007 appealing the Final rejection and requesting the previously submitted response be considered.

An Office Action was mailed January 10, 2008 maintaining the rejections in the Final Office Action.

In response to this Office Action, Appellants filed an Amendment on April 18, 2008 amending claims 1-4, 7-14, 16-17, 19-20, 22-24, 39-40, providing evidence and arguing against the claim rejections.

The Examiner then issued a Final Office Action dated June 12, 2008 in which the Examiner maintained the remaining rejections in the first Office Action. Claims 1-4, 7-14, 16, 17, 19, 20, 22, 23, and 39 were also rejected under 35 U.S.C. §112, first paragraph, alleging failure to comply with the written description requirement. Claims 1-4, 7-8, 11-14, 16-17, 19-20, 22-24, 27-28, 31-34, 36-37 and 39-40 are were rejected over Takagi in view of Rohrbach and Sillaots or U.S. Patent No.5,830,983 to Alex ("Alex") under 35 U.S.C. 103(a). Claims 9-10, 23, 29-30, and 38 were also rejected under 35 U.S.C. 103(a) over Takagi in view of Rohrbach and Sillaots or Alex and further in view of Kuhn.

In response to this Office Action, Appellants filed an Amendment on September 12, 2008 amending claims 1-4, 7-14, 16-17, 19-20, 22-24, and 39 and arguing against the claim rejections.

The Examiner then issued an Advisory Action dated September 19, 2008, indicating that the September 18, 2008 amendment was not entered.

In response to this Advisory Action, Appellants filed a Notice of Appeal with a Pre-Appeal Brief Request for Review on October 3, 2008 appealing the Final rejection. A Notice of Panel Decision from Pre-Appeal Brief Review was mailed on November 11, 2008 maintaining the rejections in the Final Office Action. An Appeal Brief was filed pursuant to the Notice of Appeal filed on October 3, 2008 and the Pre-Appeal Brief Conference Decision dated November 3, 2008.

A First Revised Appeal Brief was filed on January 14, 2009 pursuant to a Notification of Non-Compliant Appeal Brief dated December 12, 2008. A Second Revised Appeal Brief was filed on March 13, 2009 pursuant to a Second Notification of Non-Compliant Appeal Brief dated February 25, 2009 for the reason of removing printouts of exemplary pages from websites submitted in the first Appeal Brief as Exhibits IV, V, and VI and replacing them with the URLs themselves. The websites were entered pursuant to the Request for Continued Examination on January 10, 2008 in response to an Advisory Action refusing to enter the evidence, whereby such evidence was entered by operation of law. The Exhibits were rendered moot by and

A Third Revised Appeal Brief was filed on June 26, 2009 pursuant to a Notification of Non-Compliant Appeal Brief dated June 23, 2009 for the reason of revising the statement of the status of the claims.

In response to a Fourth Notification of Non-Compliant Appeal Brief and an Advisory Action after Filing an Appeal Brief, each dated August 6, 2009, the Examiner entered the Amendment After-Final dated September 9, 2008. The Examiner also withdrew the following rejections:

- claims 1-4, 7-14, 16, 17, 19, 20, 22, 23, and 39 under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement;
- claims 1-4, 7-8, 11-14, 16-17, 19-20, 22-24, 27-28, 31-34, 36-37 and 39-40 as
 rejected under 35 U.S.C. 103(a) over U.S. Patent No. 6,432,850 to Takagi ("Takagi")
 in view of U.S. Patent No. 5,774,236 to Rohrbach ("Rohrbach") and U.S. Patent No. 3,842,465 to Sillaots or U.S. Patent No. 5,830,983 to Alex; and

00700594

• claims 9-10, 23, 29-30 and 38 as rejected under 35 U.S.C. 103(a) over Takagi in view of Rohrbach and Sillaots or Alex and further in view of U.S. Patent No. 4,803,096 to Kuhn ("Kuhn").

Appellant's attorneys here submit this Fourth Revised Appeal Brief in response to the Fourth Notification of Non-Compliant Appeal Brief and an Advisory Action after Filing an Appeal Brief, each dated August 6, 2009.

Accordingly, the status of the claims may be summarized as follows:

Claims Withdrawn:

5-6, 25-26

Claims allowed:

None.

Claims Objected to:

None.

Claims Rejected:

1-4, 7-14, 16-17, 19-20, 22-24, 27-34 and 36-40

Claims Appealed:

1-4, 7-14, 16-17, 19-20, 22-24, 27-34 and 36-40

Claims Canceled:

15, 18, 21, 35

Rejected claims 1-4, 7-14, 16-17, 19-20, 22-24, 27-34 and 36-40 are set forth in the Appendix attached hereto. Appellants are appealing the Final rejection of claims 1-4, 7-14, 16-17, 19-20, 22-24, 27-34 and 36-40, which constitute all of the currently pending claims in this application.

STATUS OF THE AMENDMENTS

Appellants filed an Amendment on September 12, 2008 amending claims 1-4, 7-14, 16-17, 19-20, 22-24, and 39. The Examiner then issued an Advisory Action dated September 19, 2008, indicating that the September 18, 2008 amendment was not entered. The Advisory

Action after the Filing of and Appeal Brief entered the Amendment dated September 12, 2008. Appellants believe that all the submitted Amendments have been entered.

SUMMARY OF THE CLAIMED SUBJECT MATTER

The citations to Figures and Specification locations are provided immediately following elements of independent claims 1, and 24 which Appellants summarize below. However, such citations are merely examples and are not intended to limit the interpretation of the claims or to evidence or create any estoppel.

Claim 1 is directed toward an industrial belt used in making nonwoven textiles in the airlaid, meltblown or spunbonding processes comprising a conductive engineered fabric. Page 4, lines 5-9. The fabric comprises a plurality of polymeric filaments having one or more C-shaped grooves with a mouth having a width less than the width of a central portion of the groove formed therein. Page 5, ln. 26- page 6, ln. 3; Figure 1, ref. no 18. Each filament includes electrically conductive polymer material incorporated as either a blend or a coating that substantially fills the C-shaped grooves. Page 4, lns. 21-32; Figure 1, ref. no. 14. The conductive fabric has static dissipation properties comparable to metal-based fabrics whilst being resistant to dents and creases. Page 4, line 32 to page 5, ln. 7. One or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity. Page 6, lns. 8-12.

Claim 24 recites an industrial belt polymeric filament said polymeric filament having one or more C-shaped grooves with a mouth having a width less than the width of a central portion of the groove. Page 5, ln. 26- page 6, ln. 3; Figure 1, ref. no 18. The C-shaped grooves are substantially filled with electrically conductive polymer material mechanically locked in place.

Page 4, lns. 21-32, page 5, ln. 32 to page 6, ln. 8; Figure 1, ref. no. 14. The one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity. Page 6, lns. 8-12.

A-10 00700594

GROUNDS FOR REJECTION TO BE REVIEWED ON APPEAL

Whether claims 1-4, 7-8, 11-14, 16-17, 19-20, 22, 24, 27-28, 31-34, 36-37 and 39-40 are patentable over U.S. Patent No. 6,432,850 to Takagi ("Takagi") in view of U.S. Patent No. 5,744,236 to Rohrbach et al ("Rohrbach") under 35 U.S.C. §103(a).

Whether claims 9-10, 23, 29-30 and 38 are patentable under 35 U.S.C. §103(a) over Takagi in view of Rohrbach and further in view of U.S. Patent No. 4,803,096 to Kuhn.

ARGUMENTS

I. Claims 1-4, 7-8, 11-14, 16-17, 19-20, 22, 24, 27-28, 31-34, 36-37 and 39-40 are patentable over Takagi in view of Rohrbach under 35 U.S.C. §103(a).

The Examiner rejects claims 1-4, 7-8, 11-14, 16-17, 19-20, 22, 24, 27-28, 31-34, 36-37 and 39-40 under 35 U.S.C. §103(a) over Takagi in view of Rohrbach. Claims 1 and 24 are independent. Nothing in the cited art of record cures the deficiencies of the art as applied to independent claims 1 and 24. Thus dependent claims 2-4, 7-8, 11-14, 16-17, 19-20, 22-23, 27-28, 31-34, 36-37 and 39-40 stand or fall with independent claims 1 and 24. Claims 1 and 24 are patentable and non-obvious over Takagi in view of Rohrbach. For the reasons given below, Appellants traverse the rejection.

Claim 1 recites:

An industrial belt used in making nonwoven textiles in the airlaid, meltblown or spunbonding processes comprising a conductive engineered fabric comprising a plurality of polymeric filaments having one or more C-shaped grooves with a mouth having a width less than the width of a central portion of the groove formed therein, wherein each filament includes electrically conductive polymer material incorporated as either a blend or a coating that substantially fills the C-shaped grooves, said conductive fabric having static dissipation properties comparable to metal-based fabrics whilst being resistant to dents and creases and wherein the one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity. (Emphasis added)

Claim 24 recites:

An industrial belt polymeric filament said polymeric filament having one or more C-shaped grooves with a mouth having a width less than the width of a central portion of the groove, wherein said C-shaped grooves are substantially filled with electrically conductive polymer material mechanically

<u>locked in place</u> and wherein the one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the <u>monofilament wears so that the filament</u> retains its conductivity.

Accordingly, claim 1 recites an industrial belt used in making nonwoven textiles by airlaid, meltblown and spunbond processes. Similarly, claim 24 recites an industrial belt polymeric filament. In particular, claim 24 recites "an industrial belt polymeric filament with electrically conductive polymer material mechanically locked in place and wherein the one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity." On the contrary, Takagi relates to garment fabrics for use in dust proof clothes. Such fabrics are <u>not</u> capable of being used as industrial belts merely because they are "garment fabrics" and not industrial belts.

Industrial belts used in making nonwoven textiles by airlaid, meltblown and spunbond processes typically use yarns having a diameter of 0.50mm or more (evidenced by page 3 of Exhibit I), and the linear density of such yarns is 2444 denier or higher (see conversion on page 358 of Exhibit II). The reason why yarns of such large diameter are used in industrial belts is because they are able to withstand the tension and load experienced by industrial belts, for example when used in processes such as airlaid, meltblown and spunbonding process. Industrial belts such as the claimed belt are often subject to high stresses due to applied tension (required to prevent slippage of the conveyor belt on the machine drive rolls), stretching, heavy loads conveyed by the belt, high speed movement combined with side to side movement induced by guiding systems or off-tracking problems, and thermal extremes or thermal shocks. The breaking load of even a 0.50mm diameter industrial yarn is around 10.41daN (see page 202 of Exhibit II), which is equivalent to 23.40lb-force, and an industrial belt formed using such industrial yarns has a breaking strength that measures tens of hundreds of lb-force, and operate

under tensions of 20-50pli (pounds per linear inch) of the belt. Takagi, which uses fibers having a linear density of 200 denier or less, simply **cannot** be used in such environments. In other words, Takagi's fibers are **not** suitable for the above-claimed belt.

For the reasons given above, Takagi's garment fabrics cannot be used as an industrial belt, especially in an airlaid, meltblown or spunbonding process. At page 14 of the Final Office Action, the Examiner proffers three rationales as justification for dismissing Appellants' evidence on this point. The Examiner's dismissal is improper, for the reasons that follow.

First the Examiner states that it is not clear that the Exhibit I is drawn to an industrial belt (fabric). Appellants disagree. Exhibit I explicitly refers to the "belt design" at page 6, where it expressly states, among other things, that the "belt design" allows for "less machine shutdowns," and that it has "[g]ood web release." It is also referred to and pictured as an industrial fabric throughout. Moreover, throughout the Exhibit it refers to the fabric's use as a belt in a machine (e.g. yarn on the machine side, machine direction and cross machine direction yarns on page 3, web release on pages 4 and 6, and other machine characteristics throughout). The Exhibit further explains that the belts disclosed in the Exhibit are for use on Reicofil machines. See pages 1, 4, 6, and 8-10. Appellants also directed the Examiner's attention to www.reicofil.com, where the machines used for its spunbonding and meltblown lines are shown. Exemplary pages printed out from this website are attached as Exhibit III. A cursory review of

¹ The record is unclear whether the Examiner deems the website evidence that needs to be entered. It was provided in the September 12, 2008 Response to the Final Office Action as a convenience to the Examiner so he could quickly view a Reicofil machine, named in Exhibit I, as he alleged it was unclear to him that Exhibit I was directed toward an industrial belt. While the Advisory Action of September 19, 2008 checked a box that stating other evidence would not be

the website and the machines therein suffice to further demonstrate that the Exhibit I refers to an industrial fabric.

Second, the Examiner alleges Exhibits I and II are not sufficient evidence because they are drawn to PET, polyester, and nylon, instead of "the broad range of materials covered by the claim." The Examiner has incorrectly shifted the burden of proof, and more to the point, does not answer the evidence. The material Takagi uses to exemplify its single fibers of 10-220 denier, and preferably 10-100 denier, is polyester, and polymide (nylon 6, nylon 66, etc.). See Col. 3, line 69 to Col. 4, line 7; Col 4 lines 27-30 to Takagi. The Exhibits clearly show that Takagi's yarns are utterly inappropriate for the claimed industrial belts. In particular the evidence shows, as the Office Action acknowledges, that polyester and nylon - the very varns Takagi disclose - must be of far greater strength and have far greater diameter and linear density to meet the requirements for the claimed industrial fabrics. The Office Action has not provided any art or evidence that discloses or otherwise suggests that Takagi's yarn with a 200 denier or less can serve to produce an industrial belt, whereas Appellants have explained and provided evidence that the yarns of the art of record cannot. Thus Appellants' have met any evidentiary burdens it may have had, which remain unrebutted, which demonstrates that Takagi fails to disclose any yarn usable in an industrial fabric.

entered, no explanation was given as to what he meant. The Examiner did not object to the printout of the website's inclusion in the evidence appendix of the first Appeal Brief in his the Second Notice of Non-Complaint Appeal Brief, although other website printouts were challenged, nor in any of the subsequent Notices. Appellants thus understand that the Examiner considered the website as of the Advisory Action dated September 19, 2008, i.e. when it was provided in the Response to the Final Office Action.

Lastly, the Examiner asserts that Appellants have not shown that all industrial fabric fibers must have denier greater than 200 denier. Appellants did not argue that all industrial fabric fibers must have a denier of 200 denier or greater, but those used in an industrial fabric used in making nonwoven textiles in the airlaid, meltblown or spunbonding processes must. As Appellants have already amply explained and evidenced, fibers of 200 denier or less cannot withstand the stresses from applied tension, stretching, heavy loads, high speed and side-to-side movement, and thermal extremes and shocks attending the claimed processes.

As to Rohrbach, it is directed to a nonwoven filter media designed to entrap particles without adhesive. *Rohrbach*, Abstract. As recited in independent claims 1 and 24, the claims recite polymeric filaments and the industrial belts constructed therefrom, wherein the polymeric filaments comprise, *inter alia*, "one or more C-shaped grooves with a mouth having a width less than the width of the central portion of the groove" wherein an electrically conductive polymer substantially fills the C-shaped grooves, "and wherein the one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity." (Emphasis added). Claim 24 further recites that "said C-shaped grooves are substantially filled with electrically conductive polymer material mechanically locked in place." Substantially filling the C-shaped grooves with the electrically conductive polymer allows continued exposure of the highly conductive polymer to the surface of the fabric even as the monofilament wears while also shielding and protecting the conductive polymer material. *Instant Application*, page 6, lines 4-12.

On page 4 of the Final Office Action the Examiner asserts that the configuration taught by Rohrbach "inherently" allows for continued exposure of the conductive polymer to the

filament surface as the monofilament wears so that the filament retains its conductivity.

Applicants respectfully disagree. First, Rohrbach is directed to fibers for use in nonwoven filter media having cavities that entrap powdered activated carbon adsorbent particles. *See Rohrbach*, col. 1, lines 45-63. To form the filter media of Rohrbach, solid particles are aggressively rubbed into the individual fibers. The procedure used to accomplish this dry impregnation is to take the fibers and liberally dust them with the adsorbent powder. The powder particles are rolled into the fiber several times. The powder particles which remain within the cavities of the fibers are surprisingly stable and resistant to physical action. *See id.* at col. 3, lines 38.

Rohrbach further discloses that they do not know the exact reason why the particles remain within the cavities, but they believe it is a keystone type mechanical entrapment effect where the particles seem to engage each other and do not spill from the cavities through the cavity openings. *See id.* at col. 3, lines 37-42. Lastly, and most importantly, Rohrbach states, "[w]e tried impregnating trilobal fiber in which the outer ends or caps of the lobes 26 were removed. Very little carbon particles were retained by such fibers." *Id.* at col. 3, lines 42-45. Consequently, Applicants assert that if the tops or caps of the T-shaped lobes (indicated in the below drawing, which is an annotated version of Figure 3 from Rohrbach) were to wear, the keystone type mechanical entrapment effect within the cavities would fail, causing the powder particles to spill or fall-out of the cavities.

Therefore, Applicants assert that Rohrbach both fails to disclose and in fact teaches away from a monofilament that allows for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity. As the Supreme Court said in *KSR International Co. v. Teleflex Inc.* (KSR), 550 U.S. _____, 82 USPQ2d at 1395 (2007) (citing *U.S. v. Adams*, 383 U.S. 39,40): "[W]hen the prior art teaches away from combining certain known elements, discovery of successful means of combining them is more likely to be non-obvious." In addition, a "'reference will teach away if it suggests that the line of development flowing from the reference's disclosure is unlikely to be productive of the result sought by the applicant." *Id.* at 1350 (quoting *In re Gurley*, 27 F.3d 551, 553 (Fed. Cir. 1994)).

This case presents a textbook example of a reference teaching away from the result sought by the applicant. As discussed above, the claimed invention is advantageous in that the monofilaments and hence the fabric, remain electrically conductive as the monofilaments wear because of continued exposure of the conductive polymer to the monofilament surface.

Therefore the skilled artisan confronted with the problem articulated by the Applicant, namely the need for a highly durable electrically conductive industrial belt, would clearly have been led away from the approach taken by Applicants after having read the Rohrbach reference because, as previously discussed, as the Rohrbach fiber wears, the powder particles entrapped within the cavities would spill out, resulting in a fiber that would not have the same characteristics and properties as a fiber still containing the powder particles.

Consequently, because Rohrbach teaches away from the instant invention and because all of the rejections are based on Rohrbach in combination with Takagi, the § 103 rejections must fail as a matter of law.

Finally, both Takagi and Rohrbach **do not** even remotely relate to industrial belts. Thus neither the Takagi and Rohrbach are **analogous art**, and for this reason alone, the rejection of claim 1 under §103(a) over Takagi in view of Rohrbach must be withdrawn. Following the decision by the Supreme Court of the United States in *KSR International v. Teleflex, Inc.*, 127 S.Ct. 1727, 167 L.Ed2d 705, 82 U.S.P.Q.2d 1365 (2007), the analogous art requirement remains an important part of the primary analysis under *Graham v John Deere Co. of Kansas City*, 383 U.S. 1, 86 S.Ct. 684, 15 L.Ed.2d 545, 148 U.S.P.Q. 459 (1966). As recently re-stated by the Board of Patent Appeals and Interferences:

The analogous-art test requires the Board to show that a reference is either in the field of the applicant's endeavor or is reasonably pertinent to the problem with which the inventor was concerned in order to rely on that reference as a basis for rejection.

Ex Parte Bartly et al., 2008 WL 275524 (Bd.Pat.App. & Interf. 2008) (Appeal No. 2007-2583).

The Board has further explained that:

In view of KSR's holding that "any problem known in the field of endeavor at the time of invention and addressed by the patent can provide a reason for combining the elements in the matter claimed" [citation omitted] it is clear that the **second part** of the analogousart test as stated [above] must be expanded to require a determination of **whether the reference**, even though it may be in a different field from that of the inventor's endeavor, is one which, because of the matter with which it deals, **logically** would have commended itself to an artisan's (not necessarily the inventor's) attention in considering **any need or problem** known in the field of endeavor.

Id., at 2008 WL 275525 (emphasis added); and *Ex Parte Morrow*, 2008 WL 1997942 (Appeal No. 2007-3972, which further states that "although under *KSR* it is not always necessary to identify a known need or problem as a motivation for modifying or combining the prior art, it is nevertheless **always necessary** that the prior art relied on to prove obviousness be **analogous.**") (Emphasis added).

See also, *Ex Parte Kurt*, 2007 WL 4470067 (Bd. Pat. App. & Interf., 2007) (Appeal No. 2007-4172) in which an obviousness rejection was reversed because the cited prior art, directed to extreme UV radiation optical elements, was found to be non-analogous to the claims at issue, which were directed to photolithographic projection. As stated by the Board in *Ex Parte Kurt*, "in the present case, even one looking outside Appellant's field of endeavor would not look to Morshita's Mo-Cr metal mold material to cure the deficiencies of Shiraishi's lithographic optical system" (*Id.*, 2007 WL at 4470069).

In the present case, the claim 1 recites: "[a]n industrial belt used in making nonwoven textiles in the airlaid, meltblown or spunbonding processes comprising a conductive engineered fabric having static dissipation properties comparable to metal-based fabrics whilst being resistant to dents and creases." Claim 24 recites "C-shaped grooves are substantially filled with electrically conductive polymer material mechanically locked in place ... [where] the monofilament wears so that the filament retains its conductivity."

There is no need or problem known in the field of such papermaking machines that requires

making the industrial belts dustproof, which is the reason for Takegi's antistatic clothes.

Moreover, the claim expressly recites that the belt be resistant to dents and creases; whereas denting and creasing are necessary and desirable properties in clothing (e.g., to allow mobility).

Quite simply, and ordinarily skilled artisan would not look to garment fabrics to solve problems of industrial belts.

Yet even assuming arguendo that an artisan would to look to Takegi, an ordinarily skilled artisan would not look to Rohrbach's filtering fabric designed to entrap particles in order to cure Takegi's deficiencies. Indeed, given that Takegi teaches making clothes dustproof, whereas Rohrbach teaches designing filters to entrap particles without adhesive (see Rohrbach, abstract, column 1, lines 45-50), an ordinarily skilled artisan would not combine the two to create either a filter that repels dust or dust-free clothing that traps particles. It follows that neither reference combines or logically commends itself to an artisans attention to disclose, much less render obvious, "[a]n industrial belt used in making nonwoven textiles in the airlaid, meltblown or spunbonding processes comprising a conductive engineered fabric having static dissipation properties comparable to metal-based fabrics whilst being resistant to dents and creases," as claimed in claim 1 or a monofilament with "C-shaped grooves are substantially filled with electrically conductive polymer material mechanically locked in place ... [where] the monofilament wears so that the filament retains its conductivity" as claimed in claim 24.

Applicants submit therefore, that even under the post-KSR analysis of analogous-art, both the Takegi and Rohrbach references fail to qualify as analogous art with each other, much less with the presently claimed invention. Specifically, Takagi and Rohrbach are directed to a garment and hollow fibers for use in nonwoven filter media respectively, and **not** to an industrial

belt as recited in the above-recited claims. Applicants thus respectfully submit that the ground of rejection in the Office Action over these references must be withdrawn.

For at least the foregoing reasons, Applicants respectfully submit that independent claims 1 and 24 are patentable over the relied upon portions of Takagi and Rohrbach, considered either alone or in combination, and are therefore allowable. Claims 2-4, 7-8, 11-14, 16-17, 19-20, 22-23, 27-28, 31-34, 36-37 and 39-40 each depend from independent claims 1 and 24, discussed above, and are therefore patentable for at least the same reasons. Therefore, Appellants respectfully request reversal of the § 103 rejections in the Office Action by this Honorable Board.

II. Claims 9-10, 23, 29-30 and 38 are patentable over Takagi in view of Rohrbach and further in view of U.S. Patent No. 4,803,096 to Kuhn under 35 U.S.C. §103(a).

Claims 9-10, 23, 29-30 and 38 are rejected under 35 U.S.C. §103(a) over Takagi in view of Rohrbach and further in view of U.S. Patent No. 4,803,096 to Kuhn. Claims 2-4, 7-8, 11-14, 16-17, 19-20, 22-23, 27-28, 31-34, 36-37 and 39-40 each depend from independent claims 1 and 24, discussed above, and are therefore patentable for at least the same reasons. Nothing in the cited art of record cures the deficiencies of the art as applied to independent claims 1 and 24. Thus dependent claims 2-4, 7-8, 11-14, 16-17, 19-20, 22-23, 27-28, 31-34, 36-37 and 39-40 stand or fall with independent claims 1 and 24. Appellants thereby respectfully request reversal of the rejections and allowance of the claims by this Honorable Board.

CONCLUSION

For the reasons discussed above, claims 1-4, 7-14, 16-17, 19-20, 22-24, 27-34 and 36-40 are patentable. It is, therefore, respectfully submitted that the Examiner erred in rejecting claims 1-4, 7-14, 16-17, 19-20, 22-24, 27-34 and 36-40, and Appellants request a reversal of these rejections by this Honorable Board. As a result, the allowance of this application should be mandated.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP Attorneys for Appellant

By /Brian M. McGuire/

Ronald R. Santucci Reg. No. 28,988 Brian M. McGuire Reg. No. 55,445

Ph: (212) 588-0800 Fax: (212) 588-0500

APPENDIX I

CLAIMS ON APPEAL

What is claimed is:

- 1. (Previously Presented) An industrial fabric used in making nonwoven textiles in the airlaid, meltblown or spunbonding processes comprising a conductive engineered fabric comprising a plurality of polymeric filaments having one or more C-shaped grooves with a mouth having a width less than the width of a central portion of the groove formed therein, wherein each filament includes electrically conductive polymer material incorporated as either a blend or a coating that substantially fills the C-shaped grooves, said conductive fabric having static dissipation properties comparable to metal-based fabrics whilst being resistant to dents and creases and wherein the one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity.
- 2. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the functional filaments constitute between five and one hundred percent of the fabric.
- 3. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the fabric has static dissipation properties equivalent to metal-based fabrics whilst also having physical properties comparable to non-conductive synthetic fabrics.

- 4. (Previously Presented) The industrial fabric in accordance with claim 3, wherein said physical properties include one of modulus, tenacity, strength, adhesion, abrasion resistance, and durability.
- 5. (Withdrawn) The fabric in accordance with claim 1, wherein the filament comprises conductive polymer material blended with polymeric materials that can be oriented.
- 6. (Withdrawn) The fabric in accordance with claim 1, wherein the filament is a bicomponent fiber containing conductive polymer material and formed by melt extrusion.
- 7. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the filament comprises an oriented structure coated with conductive polymer material.
- 8. (Previously Presented) The industrial fabric in accordance with claim 7, wherein the conductive polymer is applied by one of dip coating, spraying from solutions, dispersion over the filament, and thermal spraying.
- 9. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the filament comprises one hundred percent conductive polymer material selected from the class of polyanilines.
- 10. (Previously Presented) The industrial fabric in accordance with claim 9, wherein said polyaniline filament has physical properties comparable to a polyamide filament.

- 11. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the filament is a lobed monofilament coated with conductive polymer material.
- 12. (Previously Presented) The industrial fabric in accordance with claim 11, wherein the coating has a conductivity, minimally greater than 10⁻³ S/cm, whilst maintaining the physical and tribological properties of the core monofilament.
- 13. (Previously Presented) The industrial fabric in accordance with claim 11, wherein the shape of the one or more C-shaped grooves provide a mechanical interlock between the monofilament and the conductive polymer filling the grooves.
- 14. (Previously Presented) The industrial fabric in accordance with claim 13, wherein the interlock reduces a need for adhesion of the conductive polymer to the monofilament.
 - 15. (Canceled).
- 16. (Previously Presented) The industrial fabric in accordance with claim 13, wherein positioning of the conductive polymer in the C-shaped grooves shields the polymer and reduces the impact of its lesser abrasion resistance and physical properties.

- 17. (Previously Presented) The industrial fabric in accordance with claim 11, wherein the weight composition of the conductive material is ten percent or less of the total weight of the coated monofilament.
 - 18. (Canceled).
- 19. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the fabric is single layered, multi layered, or laminated.
- 20. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the fabric is one of woven, nonwoven, spiral-link, MD or CD yarn arrays, knitted fabric, extruded mesh, and spiral wound strips of woven and nonwoven materials comprising yarns including monofilaments, plied monofilaments, multifilaments, plied multifilaments and staple fibers.
 - 21. (Canceled).
- 22. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the fabric is used in a dry application in which static dissipation is required through a belting media.
- 23. (Previously Presented) The industrial fabric in accordance with claim 1, wherein the conductive polymer is one of polyacetylene (PA), polythiophene (PT), poly3alkyl-thiophene)

(P3AT), polypyrrole (Ppy), poly-isothianaphthene (PITN), poly(ethylene dioxythiophene (PEDOT), alkoxy-substituted poly(para-phenylene vinylene) (PPV), poly(para-phenylene vinylene) (PPV), poly(2,5-dialkoxy-para-phenylene), poly(paraphenylene) (PPP), ladder-type poly(para-phenylene) (LPPP), poly(para-phenylene) sulfide (PPS), polyheptadiyne(PHT), and poly(3-hexyl thiophene) (P3HT).

- 24. (Previously Presented) An industrial fabric polymeric filament said polymeric filament having one or more C-shaped grooves with a mouth having a width less than the width of a central portion of the groove, wherein said C-shaped grooves are substantially filled with electrically conductive polymer material mechanically locked in place and wherein the one or more C-shaped grooves allow for continued exposure of the conductive polymer to the filament surface as the monofilament wears so that the filament retains its conductivity.
- 25. (Withdrawn) The filament in accordance with claim 24, wherein the filament comprises conductive polymer material blended with polymeric materials that can be oriented.
- 26. (Withdrawn) The filament in accordance with claim 24, wherein the filament is a bicomponent fiber containing conductive polymer material and formed by melt extrusion.
- 27. (Original) The filament in accordance with claim 24, wherein the filament comprises an oriented structure coated with conductive polymer material.

- 28. (Original) The filament in accordance with claim 27, wherein the conductive polymer is applied by one of dip coating, spraying from solutions, dispersion over the filament, and thermal spraying.
- 29. (Original) The filament in accordance with claim 24, wherein the filament comprises one hundred percent conductive polymer material selected from the class of polyanilines.
- 30. (Original) The filament in accordance with claim 29, wherein said polyaniline filament has physical properties comparable to a polyamide filament.
- 31. (Original) The filament in accordance with claim 24, wherein the filament is a lobed monofilament coated with conductive polymer material.
- 32. (Previously Presented) The filament in accordance with claim 31, wherein the coating has a conductivity, minimally greater than 10⁻³ S/cm, whilst maintaining the physical and tribological properties of the core monofilament.
- 33. (Previously Presented) The filament in accordance with claim 31, wherein the shape of the C-shaped grooves provide a mechanical interlock between the monofilament and the conductive polymer filling the grooves.

- 34. (Original) The filament in accordance with claim 33, wherein the interlock reduces a need for adhesion of the conductive polymer to the monofilament.
 - 35. (Canceled).
- 36. (Previously Presented) The filament in accordance with claim 33, wherein positioning of the conductive polymer in the C-shaped grooves shields the polymer and reduces the impact of its lesser abrasion resistance and physical properties.
- 37. (Original) The filament in accordance with claim 31, wherein the weight composition of the conductive material is ten percent or less of the total weight of the coated monofilament.
- 38. (Original) The filament in accordance with claim 24, wherein the conductive polymer is one of polyacetylene (PA), polythiophene (PT), poly3alkyl-thiophene) (P3AT), polypyrrole (Ppy), poly-isothia-naphthene (PITN), poly(ethylene dioxythiophene (PEDOT), alkoxy-substituted poly(para-phenylene vinylene) (PPV), poly(para-phenylene vinylene) (PPV), poly(2,5-dialkoxy-para-phenylene), poly(para-phenylene) (PPP), ladder-type poly(para-phenylene) (LPPP), poly(para-phenylene) sulfide (PPS), polyheptadiyne(PHT), and poly(3-hexyl thiophene) (P3HT).

- 39. (Previously Presented) The industrial fabric in accordance with claim 11, wherein the coating has a conductivity greater than 10^3 S/cm, whilst maintaining the physical and tribological properties of the core monofilament.
- 40. (Previously Presented) The filament in accordance with claim 31, wherein the coating has a conductivity greater than 10^3 S/cm, whilst maintaining the physical and tribological properties of the core monofilament.

APPENDIX II

EVIDENCE

I.	Exhibit I:	Entered by	the	Examiner	in the	Office	Action	mailed June	12,	2008

II. Exhibit II: Entered by the Examiner in the Office Action mailed June 12, 2008.

III. Exhibit III: Understood to be considered and entered by the Examiner as of the

Advisory Action dated September 19, 2008.

EXHIBIT I

A-33 00700594

NEOSTAT 2001

The new solution for your Reicofil line

COFPA

NEOSTAT 2001

Neostat design

Velostat 170 PC 500 design

NEOSTAT 2001

Neostat 2001 versus Velostat 170PC 500

Design	Air Permeability (CFM)	MD Yarns	CMD Yarns
Neostat 2001	550	0.5 mm PET and conductive yarns	Flat yarn close to the product in order to increase fiber retention and big yarn on machine side
Velostat 170PC 50(500	200	0.5 mm PET and conductive yarns	Big yarn in cross machine direction

NEOSTAT is the result of a 2 years joint development between Cofpa and Reifenhäuser.

solve at the same time operating problems on the last generation of Reicofil machines such release. This goal needs to be achieved with Sobjective: this new patented design should

Note: The patented desig as: fiber penetration, cleanliness, web a durable and stable fabric design.

VEOSTAT 2001

器Main benefits:

☑Better formation

#Improved fiber support thanks to belt design

☑Vacuum boxes stay cleaner for longer periods - less machine shut-downs

□Good web release

#Better formation:

□By keeping vacuum boxes clean, uniformity of formation is guaranteed over longer periods of time.

器Easy to clean:

□A single layer design as Neostat with higher fiber support thanks to flat yarn closed to the top. This allows polymer drops to stay on surface and to be easily removed

have shown good fibers retention. In this case fibers are trapped inside the fabric and are more difficult to clean.

第Mechanical strength:

design retains a high mechanical strength □By using thick monofilaments, Neostat

temperature) and removal of polymer drips with ⊠reduced risk of damage during production ⊠supports shock wash (high-pressure, high scraper

器Quick start-up:

reached immediately after installation of a ☑No grinding or other startup procedure is necessary. Full production speed can be new fabric. This will bring you value by increasing throughput.

#Neostat design is tested and used on:

 □ Reicofil 3 MF, SSMMS: producing SSS and SSMMS:

☑Reicofil 4: producing SS, SSS, SMMMS

Polymer drip on NEOSTAT

After cleaning with scraper only

#Polymer drops are not embedded in the fabric and are easier to remove

EXHIBIT II

A-34 00700594

Asten

PAPER MACHINE CLOTHING

Sabit Adanur, B.S., M.S., Ph.D.

Associate Professor, Department of Textile Engineering
Auburn University, Alabama, U.S.A.

Published in the Western Hemisphere by Technomic Publishing Company, Inc. 851 New Holland Avenue, Box 3535 Lancaster, Pennsylvania 17604 U.S.A.

Distributed in the Rest of the Horld by Technomic Publishing AG Missionsstrasse 44 CH-4055 Basel, Switzerland

Copyright © 1997 by Asten, Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Asten, Inc.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

· Main entry under title: Paper Machine Clothing

· Library of Congress Catalog Card No. 97-60981 ISBN No. 1-56676-544-7

HOW TO ORDER THIS BOOK
BY PHONE: 800-233-9936 or 717-291-5609, 8AM-5PM Eastern Time
BY FAX: 717-295-4538
BY MAIL: Order Department
Technomic Publishing Company, Inc.
851 New Hofland Avenue, Box 3535
Lancaster, PA 17604, U.S.A.
BY CREDIT CARD: American Express, VISA, MasterCard
BY WWW SITE: http://www.techpub.com

TABLE 4.2. Properties of Polyester Dryer Yam Material (diameter: 0.5 mm).

	Density	Tenacity	Breaking	Elongation	Free Shrinkage (%)	Toetrito (9.)	Loop S	Loop Strength
	(orex)	(cN/lex)	Load (daN)	(%)	(180°C, 30 min)	(180°C. 2 mln)	Nep	à
	2832	36.5	10.33	41.6		/	ממיז	2
	2835	36.8	10.41	41.0	D	2.7	17.2	82.6
	2836	37.2	7 0	0.04		2.5	18.21	27.5
	2826	, ,	10.7	43.2	4.0	2.7	15 30	3 6
	200	7.1.5	10.54	41.0	4.1		10.54	7.5.7
	6787	37.0	10.49	41.1		0.7	17.21	82.7
	2830	35.9	10.16	7 6	7 .	2.7	14.52	8.69
	2833	36.8	10.41	† i	7.5	5.6	16.80	80.7
	2832	340	11:01	47.7	3.9	2.6	15.75	757
	2830	76.5	10.43	41.8	4.0	2.6	19 61	
	2000	4,00	10,32	43.0	3.0	. 96	10.01	4,7
	7697	36.8	10.41	41.5	4.0	2, C	15.31	73.6
	;				}	7.7	10.34	79.5
Average	2832	36.7	10.41	, ,	. (
Minimum	2826	35.9	10.16	7.7	0.4	2.6	16.55	79.5
Maximum	2837	37.5	10.10	37.4	3.9	2.5	14.57	8 09
ıa	3.3	† ?	10.34	43.2	4.1	2.7	18.61	0.00
>		* .	0.12	1.6	0.1	, ,	5.5	†
	81.5	1.1%	1.1%	3.8%	86.1	10x -	1.32	
Certificati							%6.7	•
י כהי חיוכשוב		36.8		39.2	3.0	•		
Product tolerance;	2750 ± 150	36.0 ± 4.0	100.005.113		,			
			(17-0-2)	41.0 1 0.0	3.5 ± 1.0	2.5 ± 1.0		

POLYESTER MONOFILAMENT SIZE EQUIVALENCY CHART

Dismeter Thousendths of an	Olameter				
Inch (mil.)	Milimetere	Denler	Decitex	Yards/lb.	Meters/Ko
.0039	.10	95	108	45.50+	***************************************
004	.1018	100	112	45,591	93,881
.0043	.11	116	129	44,289	89,243
.0047	.12	139	154	38,327	77,230
.005	.1270	157		32,078	64,638
.0051	.13	183	175	28,345	57,115
.0055	.14	190	182	27,245	54,899
.0059	.15		211	23,425	47,201
.006	.1524	219	243	20,357	41,020
.0063	.18	226	252	19,684	39,863
.0067		250	277	17,854	35,977
.007	.17	282	314	15,786	31,809
.0071	.1788	308	343	14,481	29,140
	.18	317	· 352	14,057	28,325
.0075	.19	354	393	12,598	25,385
.0079	.20	393	436	11,354	22,879
.006	-2032	403	448	11,072	22,310
.0083	.21	434	482	10,286	20,727
.0087	.22	476	529	9,362	
,009	.2286	510	567	8.748	18.865
.0091	.23	521	579	8.557	17,628
.0094	.24	558	618	6,020	17,243
.0098	.25	605	672	7,378	16,160
.010	.2540	630	700	7.068	14,867
.0102	.26	655	726	6,811	14,278
.0106	.27	.707	786		13,724
.011	-28	785	850	6,306	12,708
.0114	.29	818	909	5,832	11,751
-0 118	.30	877	974	5,452	10,987
\012	.3048	907		5,069	10,254
¯.0122	.31	937	1,008	4,921	9,915
.0126	.32	1,000 .	1,041	4,761	9,593
.013	.33		1,111	4,483	8,994
.0134	.33 ,34	1,064	1,183	4,193	8,449
.0138	.35	1,131	1,256	3,946	7,952
.014	.3556	1,199	1,333	3,721	7,497
.0142		1,234	1,372	3,815	7,285
.0148	.36	1,270	1,411	3.514	7.061
.015	.37	1,342	1,492	3,324	6.698
.0154	.38	1,417	1,575	3,149	6,346
.0157	.39	1,494	1,560	2,988	6,020
	.40	1,552	1,725	2,874	5,792
,016	.4084	1,612	1,792	2,768	5,577
.0161	.41	1,633	1,814	2,733	5,508
.0165	.42	1,715	1.905	2,802	5,244
.0169	.43	1.799	1,999	2,481	4,999
.017	.4318	1,820	2,023	2.452	
.0173	.44	1,885	2,095	2,367	4,940
.0177	.45	1.973	2,193		4.770
.016	.4572	2,041	2,153	2,261	4,557
.0161	.48	2,063	2,200 2,293	2,187	4,407
.0185	.47	2,003 2,156		2,163	4,358
.0189	.48		2,395	2,070	4,172
.019	.4828	2,250	2,500	1,983	3,997
.0193	.4020	2,274	2,527	1,962	3,955
.0197		2,346	2,607	1,902	3,833
	.50	2,444	2, 716	1,825	3.676

: :

POLYESTER MONOFILAMENT SIZE EQUIVALENCY CHART

Diemoter outsandths of an inch (mil.)	Diameter Millimeters		•		
.020		Donier	Decitex	Yarda/ib.	Meters/K
.0201	.5060	2,520	2,800	1,771	3,587
.0205	51	2,545	2,828	1,754	3,534
.0209	.52 53	2,647	2,941	1,686	3,397
.021		2,751	3,057	1.622	3,268
.0213	.5334	2,778	3.087	1,606	3,237
.0217	.54	2,858	3,175	1.561	3,147
.022	.55	2,968	3,296	1.504	
,0224	.56	3,060	3,400	1,458	3,032 2,939
.0228	.57	3,181	3,512	1,412	2,845
.023	.58	3,274	3,638	1,363	2.746
.0232	.5842	3,332	3,703	1,339	
.0238	.59	3,390	3,787	1,316	2,899 2,852
.024	.60	3,508	3,898	1,272	2,652 2,563
.0244	.81	. 3,628	4,032	1,230	
.0248	.82	3,750	4,167	1,190	2,478
.0240 .025	.53 ·	3,874	4,305	1,152	2,398
	.B350	3,937	4,375	1.133	2,321
.0252	64	4,000	4,445	1,115	2,264
.0256	.65	4,128	4,587	1,715	2,248
.028	.66	4,258	4,732	1,048	2,178
.0264	.67	4,390	4,676		2,112
.0268	.88	4,524	5,027	1,018	2,048
.027	.6858	4,592	5,103	986	1,988
.0272	.89	4.660	5,178	972	1,958
.OZ78	.70	4.799	5,332	957	1,929
.028	.71	4,939	5,468	930	1,874
.0283	.72	5.045	5,606	903	1,821
.0267	.73	5,189	5,000 6.706	. 844	1,782
.028	.7368	5,298	5,785 5,887	860	1,733
.0291	.74	5,334	5,927	842	1,897
.0295	.75	5.482	6,091	836	1,688
.0299 .	.76	5,632	9,031	814	1,640
,033	.7620	5,670	6,258 6,300	792	1,597
.0303	.77	5,783	9,300. 6,300	787	1,588
.0307	.78	5.937	5,428 6:500	771	1,555
.031	.7874	6.054	6,59 0 6,727	751	1,515
,0311	.79	6,093		737	1,485
.0315	.80	6,251	8,770	732	1,476
.0319	.81	8,410	8,945	714	1,439
.032	.8128	6,451	7,123	698	1,403
.0023	.82	6,572	7,168	69,2	1,394
.0326	.63	8,895	7,303	879	1,368
.033	.84	5,880	7,439	668	1,343
.0334	.85	7.028	7,523	650	1,311 -
.0338	.88		7,608	635	1,279
.034	.8638	7,197	7,997	. 620	1,240
.0342	.87	7,262	8,092	613	1,235
.0346	.68	7,388	8,187	605	1,220
.035	.89	7,542	8,380	. 591	1,192
.0354	.90	7,717	8,575	576	1,165
-0358	.91	7,894	8,772	5 85	1,139
.036	.9144	8,074	8,971	552	1,114
.0362		8,154	9,072	546	1,101
.0388	.92	8,255	9,173	\$40	1,089
-037	.93	5,439	9,376	529	1,065
.0374	.94	8,824	9,583	517	1,043
.0374 .0377	.95 .	8,812	9,791	506	1,020
.038	.98	8,954	9,949	498	1,004
.038 .0381	.9652	9,097	10,108	490	988
	.97	9,145	10,181	458	.983
.0365	.98	9,338	10,375	478	.963
.0389	.99	9,533	10,592	468	943
.039	.9906	9,582	10,648	465	943 936
.0393	1.00	9,730	10,811	458	
.0397	1.01	8,929	11,032	449	924 905
.040 _	1.0160	10,080	11,200	770	16.75s

NYLON MONOFILAMENT SIZE EQUIVALENCY CHART

Diameter Thousandths of an	Olemeter				
Inch (mil.)	Millimatera	Oenler .	Decitex .	Yanda/lb.	*4-b
.004 .0043	.1016	83	92	53.658	Metera/Kg
.0047	.11	96	106	53,658 46,436	108,122
.005	.12	114	127	38,868	93,589
.0051	.1270	130	144	34,341	78,319
.0055	.13	135	.150	33,008	69,198
.0059	.14	157	174	28,381	66,S12
.006	.15	181	201	24,663	57,188
.0063	.1524	187	208	23,848	49,697
.0067	.16	206	229	21,632	48,054
.007	,17 ,1778	233	259	19,126	43,588
.0071		254	283	17,521	38,536
.0075	.18 .19	262	291 .	17,031	35,305
.0079		292	325	15,262	34,317
.008	.20 .2032	324	360	13,756	30,754
.0083	.21	332	369	13,414	27,719 27,030
.0087	.22	358	398	12,482	25,112
.009	.2286	393	437	11,343	22,856
.0091	23	421	466	10,599	21,357
.0094	.24	430	478	10,367	20,890
.0098	.25	459	. 510	9,716	19,576
,010	2540	499 520 <i>4</i>	554	8,939	18,013
.0102	.26		577	8,585	17,299
.0106	.27	541 584	601	8,252	16,628
.011	.28	629	649	7,641	15,398
.0114	.29	875	699	7,095	14,297
.0118	.30	724	750	6,608	13,311
.012	.3048	748	804 832	6,165	12,424
.0122	.31	773	659	5,962	12,013
.0126	.32	825	917	5.768	11,623
.013	.33	878	976	5,407 5,080	10,696
.0134 .0138	.34	933	1,037	4,781	10,236
.014	.35	990	1,100	4,508	9,634
.0142	.3556	1,019	1,132	4,360	9,084
.D146	.36	1,048	1,165	4.257	8,826
.015	.37	1,108	1,231	4.027	8,579
.0154	38	1,170	1,300	3.815	8,115
.D157	.39 . .40 ·	1,233	1,370	3,520	7,688 7,294
.016	.4064	1,281	1,424	3,483	7,018
.0161	.41	1,331	1,479	3,353	6,757
.0165	.42	1,347	1,497	3,312	6,673
.0169	.43	1,415	1,573	3,153	6,354
.017	.4316	1,485	1,650	3,005	6,057
.0173	.44	1,502	1,669	2,970	5,985
.0177 °	.45	1,556	1,729	2,868	5,780
.016	.4572	1,629	1,810	2,740	5,521
.0181	:46	1,584	1,672	2,649	5,339
.0185	.47	1,703 1,779	1,892	2,620	5,280
.0189	.48		1,977	2,508	5,054
.019	.4826	1,857	2,063	2,403	4,642
.0193	.49	1,877 1,936	2,065	2,378	4,792
.0197	.50	2,018	2,152	2,304	4,844
.020	.5080	2,080	2,242	2,212	4,457
.0201	.51	2,100	2,311	2,146	4,324
.0205	.52 .53	2,165	2,334 2,42B	2,125	4,281
.0209	E2	2,271	2,428 2,523	2.042	4,116

NYLON MONOFILAMENT SIZE EQUIVALENCY CHART

Olemeter cusendths at an fach (mil.)	Diameters Millimeters	D anto-	<u>.</u> .		
.021	.5334	Denler	Decitex	Yerds/lb.	Meters/k
.0213	.5334	2,293	2,548	1,946	3,922
.0217	55	2,359	2,621	1,892	3,813
.022	.56	2,448	2,720	1,823	3,673
.0224	.57	2,516 2,609	2,795	1,773	3,574
.0228	.56	2,703	2,899	1,711	3,447
.023	.5842	2,750 ·	3,003	1,651	3,327
.0232	.59	2.798 2.798	3,056	1,622	3,270
.0236	.80	2,896	3,109	1,595	3,214
.024	.81 '		3,217	1,541	3,106
.0244	62	2,995 3,095	3,328	1,490	3,003
.0248	.63	3,198	3,439	1,442	2,905
.025	.6350	3,250	3,553	1,395	2,812
.0252 ·	.84	3,302	3,611 3,669	1,373	2,787
.0258	.85	3,407	3,788	1,351	2,724
-026	.86	3,515	3,905	1,310	2,639
.0264	.67	·3,824 ·	4,026	1,270	2,559
.0268	:68	3,734	4,149	1,231	2,482
.027	.8858	3,790	4,212	1,195	2,408
.0272	.69	3,847	4,274	1,177	2,373
.0276	.70	3,961	4,401	1,180	2,338
.028	.71	4.076	4,529	1,127 1,095	2,270
.0283	.72	4,184	4,627	1,095	2,206
.0287	.73	4,283	4,759	1,042	2,106
.029	.7356	4,373	4,859	1.020	2,100
.0291	:74	4,403	4,892	1,013	2,057
.0295	.75	4,525	5,028	986	2,042
.0299	.76	4,648	5,165	960	1,987 1,935
.030	• .7620	4,680	5,200	953	1,935
.0303	.77	4,774	5,304	935	1,884
.0307	-78	4,900	5,445	910	1,835
.031	.7874	4,997	5,552	893 '	1,800
.0311	.79	5 029	5,586	887	1,788
.0315 .0319	-80	5,159	5,733	865	1,743
.0319	.81	5,291	5,879	843	1,700
.0323	.ē128	5,324	5,916	838	1,689
.0326	.82	5,425	8,027	822	1,658
.033	.83	5,526	6.140	607 ·	1,827
.0334	.84	5,662	6,292	- 788	1,588
.0338	.85	5,600	6,445	769	1,550
.034	.86	S,940	6,600	75 t	1,514
.0342	.8636	8,011	6,679	-742	1,498
.0346	.87 .88	6,082	8,757 →	734	1,479
.035		6,225	. 6,916 .	717	1,445
.D354	.89	6,370	7,077	700	1,412
.0358	.90 .91	6,516	. 7,240	685	1,380
.038		8,684	7,405	869	1,349
.0362	.9144	8,739	7,488	862	1,334
.0366	.92 .93	6,814	7,571	655	1,320
.037	.94	6,965	7,739	640	1,291
.0374	.95	7,118	7,909	827	1,263
.0377	.95 .96	7,273	0,081	613 <u>.</u>	1,236
038	.9652	7,390	8,211	504	1,217
0381	.9032 .97	7,508	6,343	594	1,198
0385	.98	7,548	. 8,387	591	1,191
.0389	.99	7,707	8,584	. 579	1,167
039 -	.9806	7,888 7,909	8,742	567	1,143
0393	1.00	7,909 8,031	8,788	564	1,137
0397	1.01		6,923	\$55	1,120
040	1.016	8,195 8,320	9,106	544	1,097
045	1.143	6,32V 10 620	9,244	536	1,081
050	1.270	10,530	11,700	423	854
055	1.397	13,000	174,444	343	691
060	1.524	15,730 18,720	17,477	283	571
065	1.651	21,970	20,800	328	480
070	1.778	25,480	24,411	203	409
075	1.905	29,250	28,311	175	353
080	3.032	33,280	32,500	152	307

EXHIBIT III

A-35 00700594

Home | Customer Login | Relfenhäuser Group | German | Sitemap

Search	:	
		- 2

REICOFIL® Spunbording lines Process description Modules Technology Type overview MeltBlown lines Composite lines Areas of application R&O cooperation Service Exhibition & Events Press & News Company Purchasing

Job & Career Contact

Spunbonding lines

The spunbonding process is the most economic way of making nonwoven materials from a polymer in one step. Encless filaments in combination with a uniform discharge guarantee low grammage whilst retaining strength.

> Process description > Type overview

+49 (0)2241 93261-0 +49 (0)700 REICOFIL Info@reicofit.com > Send message

Module

A typical spunbonding fabric line - A module-by-module explanation.

> Interactive line demo

Infomaterial to download

REICOFIL - Spunbond and Composite Systems 04/2007, pdf, 2402 KByte

You require a current Adobe Acrobat Reader to read these documents. Click here to <u>download</u> this software.

© Reifenhäuser REICOFL GmbH & Co. KG / 2006 > About...

Home | Customer Login | Reifenhäuser Group | German | Sitemap

Search

Customer-Login >>>

Your contact

+49 (0)2241 93261-0 +49 (0)700 REICOFIL info@reicofil.com > Send message

REICOFIL®	
Spunbonding lines	
Process description	
Modules	
Technology	_
Type overview	
MeltBlown lines	
Composite lines	
Areas of application	
R&D cooperation	
Service	
Exhibition & Events	
Press & News	
Company	
Purchasing	
Job & Career	

Spunbonding lines: Type overview

We apart three different types of spunbonding lines; one, two and three beam systems, differing in working speed and total throughput.

Single beam spundbond line

For production speeds up to 250 m/min

Double beam spunbond line

For production speeds up to 450 m/min

Three beam spunbond line

For production speeds up to 800 m/min

© Relfenhäuser REICOF L GmbH & Co. KG / 2008 ≥ About...

Home | Customer Login | Reifenhäuser Group | German | Sitemap Search

REICOFIL®
Spunbonding lines
Process description
Modules
Technology
Type overview
MeltBlown lines
Composite lines
Areas of application
R&D cooperation
Service
Exhibition & Events
Press & News
Company
Purchasing
Job & Career
041

Spunbonding lines: Modules

- 1 Dosing unit
- 2 Mett preparation
- 3 Filament production
- 4 Collection and conveyor
- 5 Nonwoven bonding
- 6 Nonwoven equipment
- 7 Winder

Your contact

- +49 (0)2241 93261-0 +49 (0)700 REICOFIL info@reicofil.com > Send message

1 Dosing unit

4 Collection and conveyor unit

8 Nonwoven equipment

7 Winder

© Reifenhäuser REICOFIL GmbH & Co. KG / 2006 > About...

Home | Customer Login | Relfenhäuser Group | German | Siteman

Search	15

REICOFIL®
Spunbonding lines
MeltBlown lines
Process description
Modules
Technology
Type overview
Composite lines
Areas of application
R&D cooperation
Service
Exhibition & Events
Press & News
Company
Purchasing
Job & Career
Cantact

MeltBlown lines: Modules

- 1 Dosing unit
- 2 Melt preparation
- 3 Filament production
- 4 Collection and conveyor unit
- 5 Winder

Your contact

+49 (0)2241 93261-0 +49 (0)700 REICOFIL info@reicofil.com > Send message

1 Dosing unit

2 Melt preparation

3 Filament production

4 Collection and conveyor unit

5 Winder

© Reifenhäuser REICOFL GmbH & Co. KG / 2006 > About.

APPENDIX III

RELATED PROCEEDINGS

None