Пересечение множеств L и K — это точка C с координатами $\left(x=\frac{2}{9};y=\frac{3}{14}\right)$, которые и определяют оптимальные стратегии соответственно министерства и города. Графическая интерпретация решения данной игры представлена на рис. 3.4.

Рис. 3.4

$$\mathbf{x}^{*_{\mathrm{T}}} = \begin{bmatrix} \frac{2}{9} & \frac{7}{9} \end{bmatrix}; \quad \mathbf{y}^{*_{\mathrm{T}}} = \begin{bmatrix} \frac{3}{14} & \frac{11}{14} \end{bmatrix}.$$

При этом выигрыши сторон соответственно равны:

$$\begin{split} H_A = & (x - 1 - x) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y \\ 1 - y \end{pmatrix} = \begin{bmatrix} \frac{2}{9} & \frac{7}{9} \end{bmatrix} \begin{bmatrix} -10 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3/14 \\ 11/14 \end{bmatrix} = -\frac{4}{7}; \\ H_B = & (x - 1 - x) \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} y \\ 1 - y \end{pmatrix} = \begin{bmatrix} \frac{2}{9} & \frac{7}{9} \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3/14 \\ 11/14 \end{bmatrix} = \frac{1}{3}; \\ \mathbf{Otbet:} \ \mathbf{x}^{*T} = \begin{bmatrix} \frac{2}{9} & \frac{7}{9} \end{bmatrix}; \ \mathbf{y}^{*T} = \begin{bmatrix} \frac{3}{14} & \frac{11}{14} \end{bmatrix}; \ H_A = -\frac{4}{7}; \ H_B = \frac{1}{3}. \end{split}$$

3.4. Аналитический метод решения биматричных игровых задач $m \times n$. Алгоритм Лемке–Хоусона

Пусть **A** и **B** — матрицы выигрышей соответственно игроков **A** и **B** размерности $(m \times n)$; m — число чистых стратегий игрока **A**; n — стороны **A** размерности $(m \times 1)$; \mathbf{y}^* — вектор смешанных стратегий стороны **B** размерности $(m \times 1)$; \mathbf{y}^* — вектор смешанных стратегий менты матрицы **A** положительны; запись $\mathbf{A} > 0$ означает, что все элекомпоненты вектора \mathbf{x} неотрицательны. Через $(\mathbf{1})_{m \times 1}$, $(\mathbf{1})_{n \times 1}$ обозначим векторы размерности $(m \times 1)$ и $(n \times 1)$ соответственно, состоящие

 μ_{3} одних единиц; через **E** обозначим матрицу размерности $(m \times n)$, все элементы которой равны единице: $e_{ij} = 1, i = 1, ..., m; j = 1, ..., n$. Проведем вычисление ситуаций равновесия по Нэшу для матриц выигрышей **A** и **B** на основе условий (3.1.1)–(3.1.3) [9]. Если ввести в рассмотрение величину

$$d = \max_{i,j} (a_{ij}, b_{ij}) + 1, \quad i = 1, ..., m; j = 1, ..., n,$$

и перейти от первоначальных матриц А и В к матрицам

$$\mathbf{A}_1 = d\mathbf{E} - \mathbf{A} > 0;$$

$$\mathbf{B}_1 = d\mathbf{E} - \mathbf{B} > 0;$$

 $_{\text{можно}}$ получить систему неравенств и уравнений, эквивалентную условиям (3.1.1)—(3.1.3), но более удобную для решения:

$$\mathbf{B}_{1}^{\mathrm{T}}\widetilde{\mathbf{x}} \geq (\mathbf{1})_{n \times 1}; \tag{3.4.1}$$

$$\tilde{\mathbf{x}} \ge 0$$
; (3.4.2)

$$(\widetilde{\mathbf{y}}, (\mathbf{B}_{\perp}^{\mathrm{T}} \widetilde{\mathbf{x}} - (\mathbf{1})_{n \times 1})) = 0; \tag{3.4.3}$$

$$\mathbf{A}_{1}^{\mathsf{T}}\widetilde{\mathbf{y}} \geq (\mathbf{1})_{m \times 1} ; \tag{3.4.4}$$

$$\widetilde{\mathbf{v}} \ge 0$$
; (3.4.5)

$$(\widetilde{\mathbf{x}}, (\mathbf{A}_1^{\mathrm{T}} \widetilde{\mathbf{y}} - (\mathbf{1})_{m \times 1})) = 0;$$
(3.4.6)

Соотношение (3.4.1) может быть приведено к виду

$$\mathbf{B}_{1}^{\mathrm{T}}\widetilde{\mathbf{x}} \leq (d\sum_{i=1}^{m}\widetilde{x}_{i}-1)(\mathbf{1})_{n\times 1}$$
(3.4.7)

и после нормировки

$$\mathbf{x}^* = \frac{\widetilde{\mathbf{x}}}{\sum_{i=1}^m \widetilde{\mathbf{x}}_i}$$

станет эквивалентно условию (3.1.3):

$$\mathbf{B}_{1}^{\mathrm{T}}\mathbf{x}^{*} \leq \left(d - \frac{1}{\sum_{i=1}^{m} \widetilde{x}_{i}}\right) (\mathbf{1})_{n \times 1}.$$

Если к условию (3.4.1) добавить соотношение

$$\mathbf{x}^{*T}\mathbf{B}\mathbf{y}^* = d - \frac{1}{\sum_{i=1}^{m} \widetilde{x}_i},$$

определяющее цену игры и эквивалентное условию

$$\widetilde{\mathbf{x}}^{\mathrm{T}} \mathbf{B} \widetilde{\mathbf{y}} = \widetilde{\mathbf{x}}^{\mathrm{T}} d \mathbf{E} \widetilde{\mathbf{y}} - (1)_{n \times 1}^{\mathrm{T}} \widetilde{\mathbf{y}}$$

или

$$(\widetilde{\mathbf{y}}, (\mathbf{B}_1^{\mathrm{T}} \widetilde{\mathbf{x}} - (\mathbf{1})_{n \times 1})) = 0$$
,

то получим, что соотношение (3.1.3) будет выполняться при выполнении условий (3.4.1)-(3.4.3).

Аналогично, соотношение (3.1.2) будет выполняться при выполнении условий (3.4.4)-(3.4.6).

После определения пары равновесных по Нэшу стратегий $\tilde{\mathbf{x}}, \tilde{\mathbf{y}}$. оптимальные стратегии $\mathbf{x}^*, \mathbf{y}^*,$ а также цены игры H_A, H_B определяются из соотношений

$$\mathbf{X}^* = \frac{\widetilde{\mathbf{X}}}{\sum_{i=1}^{m} \widetilde{x}_i}, \quad \mathbf{y}^* = \frac{\widetilde{\mathbf{y}}}{\sum_{j=1}^{n} \widetilde{y}_j};$$
 (3.4.8)

$$H_A = d - \frac{1}{\sum_{j=1}^{n} \tilde{y}_j}; \ H_B = d - \frac{1}{\sum_{i=1}^{m} \tilde{x}_i}.$$
 (3.4.9)

Рассмотрим алгоритм решения задачи (3.4.1)—(3.4.6).

Описание алгоритма Лемке-Хоусона

- $I.\$ Вычисление матриц A_1 и $B_1.$
- 1. Определяем число d в соответствии с выражением

$$d = \max_{i,j} (a_{ij}, b_{ij}) + 1, \quad i = 1, ..., m; \quad j = 1, ..., n.$$

2. Выполняем преобразования:

$$\mathbf{A}_{1} = d\mathbf{E} - \mathbf{A};$$

$$\mathbf{B}_{1} = d\mathbf{E} - \mathbf{B};$$

$$\mathbf{e}_{ii} = 1, \quad i = 1$$

 $e_{ij} = 1, i = 1, ..., m; j = 1, ..., n.$ где Е — матрица, состоящая из одних единиц, той же размерности,

II. Определение начальных значений векторов стратегий $\mathbf{x}^{0}, \mathbf{y}^{0}$. Формируем таблицу \mathbf{A}_{0}^{*} в следующем виде:

$$\mathbf{A}_{0}^{*} = \begin{bmatrix} \mathbf{a}_{11}^{1} & \dots & \mathbf{a}_{m}^{1} & \mathbf{e}_{1} & \mathbf{e}_{2} & \dots & \mathbf{e}_{n} \\ a_{12}^{1} & \dots & a_{m1}^{1} & 1 & 0 & \dots & 0 \\ a_{12}^{1} & \dots & a_{m2}^{1} & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{1n}^{1} & \dots & a_{mn}^{1} & 0 & 0 & \dots & 1 \end{bmatrix}$$

Таблица \mathbf{A}_0^* состоит из матрицы $\mathbf{A}_1^{\mathrm{T}}$ и единичной матрицы $\mathbf{I}_{n \times n}$ размерности $n \times n$, которая соответствует начальному базису $(\mathbf{e}_1, ..., \mathbf{e}_n)$. 4. Выбираем начальное значение у0:

$$\mathbf{y}_{1\times n}^{0\mathrm{T}} = \left(\frac{1}{a} \quad 0 \quad \dots \quad 0\right),\,$$

 $_{\text{где}} a = \min a_{i1}^1, i = 1, ..., m$ — минимальный элемент первого столбца матрицы ${\bf A}_1$ (или первой строки ${\bf A}_1^{\rm T}$, входящей в таблицу ${\bf A}_0^*$). Данный элемент будет разрешающим для данной таблицы при последующем симплекс-преобразовании. Обозначим через i^* то значение индекса i, для которого достигается данный минимум.

5. Формируем таблицу \mathbf{B}_0^* в виде

$$\mathbf{B}_{0}^{*} = \begin{bmatrix} \mathbf{b}_{11}^{1} & \dots & \mathbf{b}_{n}^{1} & \mathbf{f}_{1} & \mathbf{f}_{2} & \dots & \mathbf{f}_{m} \\ b_{11}^{1} & \dots & b_{1n}^{1} & 1 & 0 & \dots & 0 \\ b_{21}^{1} & \dots & b_{2n}^{1} & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ b_{m1}^{1} & \dots & b_{mn}^{1} & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Таблица \mathbf{B}_0^* состоит из матрицы \mathbf{B}_1 и единичной матрицы $\mathbf{I}_{m \times m}$ размерности $m \times m$, которая соответствует начальному базису ($\mathbf{f}_1, ..., \mathbf{f}_m$).

6. Выбираем начальное значение ${\bf x}^0$:

$$\mathbf{x}_{1\times m}^{0\mathsf{T}} = \left(0 \dots 0 \frac{1}{b} 0 \dots 0\right),\,$$

 $^{\text{где}}b=\min_{j}b_{i^{*}j}^{1},\ j=1,...,n\ (b-\text{минимальный элемент }i^{*}$ -й строки

матрицы ${\bf B}_1$). Этот элемент будет разрешающим для данной таблицы при поставления через i то при последующем симплекс-преобразовании. Обозначим через j то значение $_{\rm 3}$ начение индекса j, для которого достигается данный минимум. При

этом i^* -й элемент вектора \mathbf{x}_0 равен $\frac{1}{b}$, остальные равны нулю.

III. Проверка условий равновесия.

 Проверка условий равновесия можно проверить одним из двух способов. Способ А. Проверяем выполнение соотношений

$$(\mathbf{e}_{j}^{\mathrm{T}}\mathbf{y}^{0})(\mathbf{b}_{j}^{1\mathrm{T}}\mathbf{x}^{0}-1)=0, \quad j=1, ..., n,$$

 $(\mathbf{f}_{j}^{\mathrm{T}}\mathbf{x}^{0})(\mathbf{a}_{j}^{1\mathrm{T}}\mathbf{y}^{0}-1)=0, \quad i=1, ..., m,$

где \mathbf{a}_i^1 , \mathbf{e}_i — столбцы таблицы \mathbf{A}_0^* ; а \mathbf{b}_j^1 , \mathbf{f}_i — столбцы таблицы \mathbf{B}_0^* . Если хотя бы одно из этих соотношений не выполняется, то переходим к пункту 8 алгоритма. Если все условия выполняются, то переходим к пункту 15.

Способ В. Определяем множества p(x) и q(y).

В множество $\mathbf{p}(\mathbf{x})$ входят те элементы \mathbf{f}_i , для которых выполняется соотношение $\mathbf{f}_i^{\mathrm{T}} \mathbf{x} = 0$, и те элементы $\mathbf{b}_j^{\mathrm{I}}$, для которых выполняется условие $\mathbf{b}_j^{\mathrm{IT}} \mathbf{x} - 1 = 0$:

$$\mathbf{p}(\mathbf{x}) = \{\mathbf{f}_i, \mathbf{b}_j^1 | \mathbf{f}_i^T \mathbf{x} = 0, \mathbf{b}_j^{1T} \mathbf{x} - 1 = 0\}.$$

Аналогично находится множество q(y):

$$\mathbf{q}(\mathbf{y}) = \{\mathbf{e}_j, \mathbf{a}_i^1 | \mathbf{e}_j^T \mathbf{y} = 0, \ \mathbf{a}_i^{1T} \mathbf{y} - 1 = 0\}.$$

Можно показать, что множества $\mathbf{p}(\mathbf{x}^0)$ и $\mathbf{q}(\mathbf{y}^0)$ имеют вид

$$\mathbf{p}(\mathbf{x}^{0}) = \{\mathbf{f}_{1}, ..., \mathbf{f}_{i^{*}-1}, \mathbf{b}_{j^{*}}, \mathbf{f}_{i^{*}+1}, ..., \mathbf{f}_{m}\};$$

$$\mathbf{q}(\mathbf{y}^{0}) = \{\mathbf{a}_{i^{*}}, \mathbf{e}_{2}, ..., \mathbf{e}_{n}\}.$$

Проверка условий равновесия производится с использованием множества $M(\mathbf{x}, \mathbf{y})$:

$$M(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{e}_r, \mathbf{f}_s \middle| \mathbf{e}_r \in M(\mathbf{x}, \mathbf{y}), \text{ если } \mathbf{e}_r \in \mathbf{q}(\mathbf{y}) \text{ или } \mathbf{b}_r^1 \in \mathbf{p}(\mathbf{x}) \end{cases}$$
Если $M(\mathbf{x}, \mathbf{y}) = (\mathbf{e}_r \in M(\mathbf{x}, \mathbf{y}), \mathbf{e}_s)$

Если $M(\mathbf{x}_i, \mathbf{y}_j) = {\mathbf{e}_1, ..., \mathbf{e}_n, \mathbf{f}_1, ..., \mathbf{f}_m}$, то $(\mathbf{x}_i, \mathbf{y}_j)$ — ситуация равновесия. Если условия равновесия выполняются, то переходим к пун-

IV. Замена базисов.

8. Заменяя базисы $(\mathbf{e}_1,...,\mathbf{e}_n)$ на $\mathbf{q}(\mathbf{y}^0)$ и $(\mathbf{f}_1,...,\mathbf{f}_m)$ на $\mathbf{p}(\mathbf{x}^0)$, составляем с помощью симплекс-преобразования новые таблицы \mathbf{A}_1^* и \mathbf{B}_1^* .

Номер строки, в которой находится разрешающий элемент, совпадает с номером столбца е или f, который из базиса выводится.

105 годовен, в котором находится разрешающий элемент, в базис годовен. В котором находится разрешающий элемент, в базис

 $\mathbf{a}_{i}^{\text{стобы}}$ составить таблицу \mathbf{A}_{i}^{*} , надо исключить из базиса вектор \mathbf{e}_{i} чтобы составить него вектор \mathbf{a}_{i} . Это выполняется ка ввести вместо него вектор **а**_i.. Это выполняется, как в симввести вместоде: строка, содержащая разрешающий элемент (на пер- $_{\text{плекс-методе.}}$ — это первая строка), делится на этот разрешающий $_{\text{вой итерации}}$ — остальных строк таблицы $_{0}^{*}$ вычитается $_{\rm goll}$ итерации $_{\rm goll}$ итерации $_{\rm goll}$ всех остальных строк таблицы $_{\rm goll}$ вычитается строка с $_{\rm goll}$ $_{\rm goll}$ элементом, умноженная на коэффициональной строка с $_{3}$ лемент, из воставления, умноженная на коэффициенты, подоразрешающим элементом, умноженная на коэффициенты, подоразрешающим так, чтобы i-й элемент во всех строках из i-й i-й элемент во всех строках из i-й i p_{a3} решающим так, чтобы i-й элемент во всех строках, кроме строки бранные так, чтобы i-й элементом, обратился в ноль бранные с разрешающим элементом, обратился в ноль.

в результате получаем такую таблицу:

$$\mathbf{A}_{1}^{*} = \begin{bmatrix} \alpha_{11} & \alpha_{21} & \dots & \alpha_{i^{*}-1,1} & 1 & \alpha_{i^{*}+1,1} & \dots & \alpha_{m1} & q^{11} & \dots & q^{1n} \\ \alpha_{12} & \alpha_{22} & \dots & \alpha_{i^{*}-1,2} & 0 & \alpha_{i^{*}+1,2} & \dots & \alpha_{m2} & q^{21} & \dots & q^{2n} \\ \dots & \dots \\ \alpha_{1n} & \alpha_{2n} & \dots & \alpha_{i^{*}-1,n} & 0 & \alpha_{i^{*}+1,n} & \dots & \alpha_{mn} & q^{n1} & \dots & q^{nn} \end{bmatrix} \quad \lambda_{n}$$

$$\xi_{1}-1 \quad \xi_{2}-1 \quad \dots \quad \xi_{i^{*}-1}-1 \quad \xi_{i^{*}-1}-1 \quad \xi_{i^{*}-1}-1 \quad \dots \quad \xi_{m}-1 \quad y_{1}^{0} \quad \dots \quad y_{n}^{0}$$

Здесь

$$\alpha_{i1} = \frac{a_{i1}^1}{a_{i^*1}^1}, \quad \alpha_{ij} = a_{ij}^1 - \alpha_{i1} a_{i^*j}^1$$
для $j \neq 1$.

9. Записываем в строке под таблицей \mathbf{A}_1^* под первоначальным базисом $(\mathbf{e}_1, ..., \mathbf{e}_n)$ вектор $\mathbf{y}^{0\mathsf{T}} = (y_1^0 \ y_2^0 \ ... \ y_n^0)$, как это сделано

Вычисляем значения $\xi_i = \mathbf{a}_i^{1\text{T}} \mathbf{y}^0$ при i = 1, ..., m, где \mathbf{a}_i^1 — столбцы таблицы \mathbf{A}_0^* . Вносим значения ξ_i-1 в строку под таблицей \mathbf{A}_1^* , как это показано выше.

10. Для j-й строки полученной таблицы вычисляем значения λ_j и λ_j^* по следующим формулам:

$$\lambda_{j}^{*} = \min_{\substack{\alpha_{kj} < 0 \\ q^{jr} < 0 \\ 1 \le k \le m \\ 1 \le r \le n}} \left\{ -\frac{\xi_{k} - 1}{\alpha_{kj}}, -\frac{y_{r}^{0}}{q^{jr}} \right\}; \qquad \lambda_{j}^{**} = \max_{\substack{\alpha_{sj} > 0 \\ q^{jr} > 0 \\ 1 \le s \le m \\ 1 \le t \le n}} \left\{ -\frac{\xi_{s} - 1}{\alpha_{sj}}, -\frac{y_{t}^{0}}{q^{jt}} \right\}.$$

 \int Иибо число λ_{j}^{*} , либо число λ_{j}^{**} будет равно нулю.

 $B_{\text{Ведем В}}$ столбец λ , который находится справа от матрицы \mathbf{A}_{1}^{*} , в $\mathbf{E}_{\text{СТВе}}$ $\lambda_{j}^{*} = \lambda_{i}^{**} = 0$ то из чисел λ_{j}^{*} или λ_{j}^{**} , которое отлично от нуля. Если $\lambda_{j}^{*} = \lambda_{j}^{**} = 0$, то вводим ноль. Справа от λ_{j} укажем, за счет какого столбца быть столбца было получено соответствующее число.

11. Аналогично формируется таблица \mathbf{B}_1^* , только вместо чисел λ_j получим числа μ_i , где i=1,...,m, вместо значений ξ_i-1 в нижней строке будут фигурировать η_j-1 , вместо q^{ii} получим p^{ij} .

V. Определение оптимальных стратегий и цен игры.

12. Определяем возможные значения стратегий х и у:

$$\begin{cases} \mathbf{x}_{i}^{\mathrm{T}} = \mathbf{x}^{\mathrm{0T}} + \mu_{i} \mathbf{p}^{i}, & i = 1,...,m, \\ \mathbf{y}_{i}^{\mathrm{T}} = \mathbf{y}^{\mathrm{0T}} + \lambda_{j} \mathbf{q}^{j}, & j = 1,...,n, \end{cases}$$

где $\mathbf{p}^i, \mathbf{q}^i$ — строки матриц \mathbf{P} и \mathbf{Q} , входящих в преобразованные таблицы \mathbf{B}_1^* и \mathbf{A}_1^* .

13. Находим множества $\mathbf{q}(\mathbf{y}_j)$, $\mathbf{p}(\mathbf{x}_i)$ для i=1,...,m; j=1,...,n. Для значения λ_j соответствующий минимум (при $\lambda_j = \lambda_j^*$) или максимум (при $\lambda_j = \lambda_j^*$) достигается для одного из отношений

$$-rac{\xi_k - 1}{lpha_{kj}}$$
 или $-rac{{oldsymbol y}_r^0}{q^{jr}}$.

Пусть это будет, к примеру, $\left(-\frac{\xi_m-1}{\alpha_{mj}}\right)$, тогда

$$\mathbf{q}(\mathbf{y}_j) = {\mathbf{q}(\mathbf{y}^0) \cup \mathbf{a}_m} \setminus {\mathbf{e}_j}.$$

Аналогично находим $\mathbf{p}(\mathbf{x}_i)$:

$$\mathbf{p}(\mathbf{x}_i) = \{\mathbf{p}(\mathbf{x}^0) \cup \mathbf{b}_m\} \setminus \{\mathbf{f}_i\}.$$

14. Для каждой пары $(\mathbf{x}_i, \mathbf{y}_j)$ определяем множество $M(\mathbf{x}_i, \mathbf{y}_j)$ и проверяем условия равновесия, как в пункте 7. Если условия равновесия выполняются, то переходим к пункту 15. Если условия равновесия не выполняются ни для одной пары, то переходим к пункту 4 алгоритма и производим поиск минимального элемента во второй строке матрицы \mathbf{A}_1^T , входящей в таблицу \mathbf{A}_0^* . Начальное значение \mathbf{y}^0 будет следующего вида:

$$\mathbf{y}_{1\times n}^{0\mathrm{T}} = \left(0 \quad \frac{1}{a} \quad \dots \quad 0\right).$$

Далее выполняются все последующие этапы алгоритма, вплоть до проверки условий равновесия. В случае если условия равновесия не выполняются и на второй итерации алгоритма, переходим к третьей итерации путем поиска минимального элемента уже в третьей строке матрицы $\mathbf{A}_{\perp}^{\mathrm{T}}$ и составления соответствующего вектора \mathbf{y}^0 , где элемент $\frac{1}{2}$ будет уже на третьем месте, и т. д.

15. Если известно равновесное решение $\widetilde{\mathbf{x}}$, $\widetilde{\mathbf{y}}$, то оптимальные стратегии \mathbf{x} , \mathbf{y} и цены игры H_A , H_B находятся исходя из соотношений (3.4.8), (3.4.9):

$$\mathbf{x}^* = \frac{\widetilde{x}}{\sum_{i=1}^{m} \widetilde{x}_i}; \quad \mathbf{y}^* = \frac{\widetilde{y}}{\sum_{j=1}^{n} \widetilde{y}_j};$$

$$H_A = d - \frac{1}{\sum_{j=1}^{n} \widetilde{y}_j}; \quad H_B = d - \frac{1}{\sum_{i=1}^{m} \widetilde{x}_i}.$$

Пример 3.5. Найти решение следующей игровой задачи с помощью алгоритма Лемке—Хоусона:

$$\mathbf{A} = \begin{bmatrix} 6 & 3 & 2 & 8 \\ 4 & 9 & 7 & 2 \\ 8 & 2 & 3 & 6 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 2 & 7 & 8 & 1 \\ 9 & 2 & 4 & 4 \\ 4 & 8 & 3 & 5 \end{bmatrix}.$$

Решение.

I. Вычисление матриц A_1 и B_1 :

II. Определение начальных значений векторов стратегий $\mathbf{x}^0, \mathbf{y}^0$.

3. Формируем таблицу \mathbf{A}_0^* в виде блочной матрицы $\mathbf{A}_0^* = (\mathbf{A}_1^\mathsf{T} \mid \mathbf{I}_{n \times n})$:

$$\mathbf{A}_{0}^{1} = \begin{bmatrix} \mathbf{a}_{2}^{1} & \mathbf{a}_{3}^{1} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} \\ 4 & 6 & \boxed{2} & 1 & 0 & 0 & 0 \\ 7 & 1 & 8 & 0 & 1 & 0 & 0 \\ 8 & 3 & 7 & 0 & 0 & 1 & 0 \\ 2 & 8 & 4 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

4. Выбираем начальное значение \mathbf{y}^0 :

$$a = \min_{i} a_{i1}^{1} = 2, i = 1, ..., m;$$

 $\mathbf{y}_{1 \times n}^{0T} = \begin{pmatrix} 1 \\ 2 & 0 & 0 \end{pmatrix}.$

Фиксируем номер столбца, для которого достигается данный минимум: $i^* = 3$.

5. Формируем таблицу ${f B}_0^*$ в виде следующей блочной матрицы $\mathbf{B}_0^* = (\mathbf{B}_1 | \mathbf{I}_{m \times m})$:

$$\mathbf{B}_{0}^{1} = \begin{bmatrix} 8 & 3 & 2 & 9 & 1 & 0 & 0 \\ 1 & 8 & 6 & 6 & 0 & 1 & 0 \\ 6 & 2 & 7 & 5 & 0 & 0 & 1 \end{bmatrix}.$$

6. Выбираем начальное значение ${\bf x}^0$:

$$b = \min_{i} b_{i'j}^{1} = 2, j=1, ..., n$$

(b- минимальный элемент i^* -й строки матрицы \mathbf{B}_1);

$$\mathbf{x}_{1\times n}^{0\mathrm{T}} = \left(0 \quad 0 \quad \frac{1}{2}\right).$$

Фиксируем номер столбца, для которого достигается данный минимум: $j^{\dagger} = 2$.

III. Проверка условий равновесия.

7. Способ А. Проверяем выполнение первой группы условий:

$$(\mathbf{e}_{j}^{\mathrm{T}}\mathbf{y}^{0})(\mathbf{b}_{j}^{1\mathrm{T}}\mathbf{x}^{0}-1)=0, \ j=1, ..., n.$$

Для j=1

$$(\mathbf{e}_{1}^{T} \mathbf{y}^{0}) (\mathbf{b}_{1}^{1T} \mathbf{x}^{0} - 1) =$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 8 & 1 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1/2 \end{bmatrix} - 1 = \frac{1}{2} (3 - 1) = 1 \neq 0.$$

Как видно, уже первое соотношение не выполняется, следовательно, остальные соотношения можно не проверять — на данный момент стратегии \mathbf{x}^0 и \mathbf{y}^0 не являются равновесными.

Способ В. Определяем множества p(x) и q(y).

Производим замену базисов, используя следующее правило.

Номер строки, в которой находится разрешающий элемент, совпадает с номером столбца е или f, который из базиса выводится. Тот столбец, в котором находится разрешающий элемент, в базис вводится.

Перейдем от исходного базиса $(\mathbf{e}_1,...,\mathbf{e}_n)$ к базису $\mathbf{q}(\mathbf{y}^0)$.

Переидем \mathbf{A}_0^* разрешающий элемент находится в первой строке, следовательно, из базиса выводится столбец **e**₁, а на его место вводится столбец а3, содержащий разрешающий элемент:

$$(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4) \rightarrow \mathbf{q}(\mathbf{y}^0) = (\mathbf{a}_3, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4).$$

В таблице \mathbf{B}_0^* разрешающий элемент находится в третьей строке и во втором столбце. Следовательно,

$$(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3) \to \mathbf{p}(\mathbf{x}^0) = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{b}_2).$$

Стратегии $(\mathbf{x}_i, \mathbf{y}_j)$ будут равновесными, если в базисах $\mathbf{p}(\mathbf{x}_i)$ и $q(y_i)$ индексы при (a, f) пробегают все значения от 1 до m, a инdeксы при (b,e) пробегают все значения от 1 до n (в любых комбинациях).

Проверим пару $(\mathbf{x}^0, \mathbf{y}^0)$. Индексы при (\mathbf{a}, \mathbf{f}) в базисах $\mathbf{p}(\mathbf{x}^0)$ и $\mathbf{q}(\mathbf{y}^0)$ пробегают все значения от 1 до m=3: ($\mathbf{f}_1, \mathbf{f}_2, \mathbf{a}_3$). А вот индексы при (\mathbf{b},\mathbf{e}) не пробегают все значения от 1 до n=4: $(\mathbf{b}_2,\mathbf{e}_2,\mathbf{e}_3,\mathbf{e}_4)$. Два раза встречается индекс 2 и ни разу — 1. Следовательно, стратегии \mathbf{x}^0 и \mathbf{y}^0 не являются равновесными.

IV. Замена базисов.

8. Составляем таблицу ${f A}_1^*$, переходя с помощью симплекс-преобразования от базиса (\mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , \mathbf{e}_4) к базису $\mathbf{q}(\mathbf{y}^0)$.

$$\mathbf{A}_{0}^{*} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} \\ 2 & 3 & 1 & 1/2 & 0 & 0 & 0 \\ -9 & -23 & 0 & -4 & 1 & 0 & 0 \\ -6 & -18 & 0 & -7/2 & 0 & 1 & 0 \\ -6 & -4 & 0 & -2 & 0 & 0 & 1 \end{bmatrix}.$$

9. Вычисляем значения $\xi_i = \mathbf{a}_i^{1\mathsf{T}} \, \mathbf{y}^0$ при $i=1,\,...,\,m$, где \mathbf{a}_i^1 — столбцы таблицы A_0 .

БЛИЦЫ
$$A_0$$
.
$$\xi_1 = \begin{bmatrix} 4 & 7 & 8 & 2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 2; \ \xi_2 = \begin{bmatrix} 6 & 1 & 3 & 8 \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 3;$$

$$\xi_3 = \begin{bmatrix} 2 & 8 & 7 & 4 \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 1.$$

Составляем строку под таблицей в виде ($\xi - 1 \mid \mathbf{y}^{0T}$), где $\xi - 1 =$ $= [\xi_1 - 1 \ \xi_2 - 1 \ \xi_3 - 1]$

$$\mathbf{A}_{0}^{*} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} \\ 2 & 3 & 1 & 1/2 & 0 & 0 & 0 \\ -9 & -23 & 0 & -4 & 1 & 0 & 0 \\ -6 & -18 & 0 & -7/2 & 0 & 1 & 0 \\ -6 & -4 & 0 & -2 & 0 & 0 & 1 \end{bmatrix}.$$

$$1 \quad 2 \quad 0 \quad 1/2 \quad 0 \quad 0 \quad 0$$

10. Для j-й строки полученной таблицы вычислим значения λ_{i}^{*} и λ_{j}^{**} по формулам

$$\lambda_{j}^{*} = \min_{\substack{\alpha_{kj} < 0 \\ q^{jr} < 0 \\ 1 \le k \le m \\ 1 \le r \le n}} \left\{ -\frac{\xi_{k} - 1}{\alpha_{kj}}, -\frac{y_{r}^{0}}{q^{jr}} \right\}; \qquad \lambda_{j}^{**} = \max_{\substack{\alpha_{sj} > 0 \\ q^{jt} > 0 \\ 1 \le s \le m \\ 1 \le t \le n}} \left\{ -\frac{\xi_{s} - 1}{\alpha_{sj}}, -\frac{y_{t}^{0}}{q^{jt}} \right\}.$$

Все отличные от нуля числа j-й строки таблицы \mathbf{A}_1^* разбиваем на два множества: множество отрицательных чисел (для них работает формула для λ_{i}^{*}) и множество положительных чисел (для них работает формула для λ_i).

Поскольку все числа первой строки положительны, то в данном случае пользуемся только формулой для λ_{j}^{**} :

$$\lambda_{1}^{**} = \max\left\{-\frac{1}{2}; -\frac{2}{3}; -\frac{0}{1}; -\frac{1/2}{1/2}\right\} = 0$$

$$\Rightarrow \lambda_{1} = 0;$$

$$\lambda_{2}^{*} = \min\left\{-\frac{1}{-9}; -\frac{2}{-23}; -\frac{1/2}{-4}\right\} = \frac{2}{23}; \quad \lambda_{2}^{**} = \max\left\{-\frac{0}{1}\right\} = 0$$

$$\Rightarrow \lambda_{2} = \frac{2}{23};$$

$$\lambda_{3}^{*} = \min\left\{-\frac{1}{-6}; -\frac{2}{-18}; -\frac{1/2}{-7/2}\right\} = \frac{1}{9}; \quad \lambda_{3}^{**} = \max\left\{-\frac{0}{1}\right\} = 0$$

$$\Rightarrow \lambda_{3} = \frac{1}{9};$$

$$\lambda_{4}^{*} = \min\left\{-\frac{1}{-6}; -\frac{2}{-4}; -\frac{1/2}{-2}\right\} = \frac{1}{6}; \quad \lambda_{4}^{**} = \max\left\{-\frac{0}{1}\right\} = 0$$

$$\Rightarrow \lambda_{4} = \frac{1}{6}.$$

введем в столбец λ , который находится справа от матрицы \mathbf{A}_{1}^{*} , которое отличие Введем λ_j то из чисел λ_j^* или λ_j^{**} , которое отлично от нуля. Если $\lambda_j^{**} = 0$. то вводим ноль. Справа от λ_j^{**} укажем $_{B}^{Ka}$ качество от вводим ноль. Справа от λ_{j} укажем, за счет какого λ_{j}^{*} было получено соответствующее число: \(\lambda_j = \lambda_j \) укаже столбца было получено соответствующее число:

$$\mathbf{A}_{1}^{*} = \begin{bmatrix} 2 & 3 & 1 & 1/2 & 0 & 0 & 0 \\ -9 & -23 & 0 & -4 & 1 & 0 & 0 \\ -6 & -18 & 0 & -7/2 & 0 & 1 & 0 \\ -6 & -4 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/9 & (\mathbf{a}_{2}) \\ 1/6 & (\mathbf{a}_{1}) \end{bmatrix}$$

11. Аналогично формируется таблица ${\bf B}_1^*$:

$$\mathbf{B}_{1}^{*} = \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4} & \mathbf{f}_{1} & \mathbf{f}_{2} & \mathbf{f}_{3} & \mu \\ -1 & 0 & -17/2 & 3/2 & 1 & 0 & -3/2 \\ -23 & 0 & -22 & -14 & 0 & 1 & -4 \\ 3 & 1 & 7/2 & 5/2 & 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 5/17(\mathbf{b}_{3}) \\ 2/23(\mathbf{b}_{1}) \\ 0 & 0 & 0 & 1/2 \end{bmatrix}$$

V. Определение оптимальных стратегий и цен игры.

12. Определяются возможные значения векторов стратегий хиу.

$$\mathbf{x}_{1}^{T} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \end{bmatrix} + \frac{5}{17} \begin{bmatrix} 1 & 0 & -\frac{3}{2} \end{bmatrix} = \begin{bmatrix} \frac{5}{17} & 0 & \frac{1}{17} \end{bmatrix};$$

$$\mathbf{x}_{2}^{T} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \end{bmatrix} + \frac{2}{23} \begin{bmatrix} 0 & 1 & -4 \end{bmatrix} = \begin{bmatrix} 0 & \frac{2}{23} & \frac{7}{46} \end{bmatrix};$$

$$\mathbf{x}_{3}^{T} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \end{bmatrix};$$

$$\mathbf{y}_{1}^{T} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \end{bmatrix};$$

$$\mathbf{y}_{2}^{T} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \end{bmatrix} + \frac{2}{23} \begin{bmatrix} -4 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{7}{46} & \frac{2}{23} & 0 & 0 \end{bmatrix};$$

$$\mathbf{y}_{3}^{T} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} -\frac{7}{2} & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{9} & 0 & \frac{1}{9} & 0 \end{bmatrix};$$

$$\mathbf{y}_{4}^{T} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} -2 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & 0 & 0 & \frac{1}{6} \end{bmatrix}.$$

13. Находим множества $\mathbf{p}(\mathbf{x}_i)$, $\mathbf{q}(\mathbf{y}_j)$ для i=1,...,m; j=1,...,n. Определим, к примеру, $\mathbf{p}(\mathbf{x}_i)$. Полагаем i=1 в формуле для $\mathbf{p}(\mathbf{x}_i)$:

$$\mathbf{p}(\mathbf{x}_1) = {\{\mathbf{p}(\mathbf{x}^0) \cup \mathbf{b}_m\} \setminus {\{\mathbf{f}_1\}}.$$

Данная запись означает, что из базиса $\mathbf{p}(\mathbf{x}^0)$ надо удалить столбец \mathbf{f}_1 , а вместо него ввести столбец \mathbf{b}_m , для которого достигается соответствующее значение максимума (минимума) (его номер указан в правом столбце таблицы \mathbf{A}_1^*); в первой строке это \mathbf{b}_3 . Таким образом, имеем:

$$\begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{b}_2 \\ \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{b}_2 \\ \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{b}_2 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{b}_3 & \mathbf{f}_2 & \mathbf{b}_2 \\ \mathbf{f}_1 & \mathbf{b}_1 & \mathbf{b}_2 \\ \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{b}_2 \end{bmatrix} = \mathbf{P}(\mathbf{x});$$

$$\begin{bmatrix} \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \\ \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \\ \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \\ \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \\ \mathbf{a}_3 & \mathbf{a}_2 & \mathbf{e}_3 & \mathbf{e}_4 \\ \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{a}_2 & \mathbf{e}_4 \\ \mathbf{a}_3 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{a}_1 \end{bmatrix} = \mathbf{Q}(\mathbf{y}).$$

14. Для каждой пары $(\mathbf{x}_i, \mathbf{y}_j)$ определяем множество $M(\mathbf{x}_i, \mathbf{y}_j)$ и проверяем условия равновесия, как в пункте 7. В данном случае равновесная ситуация возникает при $(\mathbf{x}_2, \mathbf{y}_2)$. Индексы при (\mathbf{a}, \mathbf{f}) в базисах $\mathbf{p}(\mathbf{x}_2)$ и $\mathbf{q}(\mathbf{y}_2)$ пробегают все значения от 1 до $m=3-(\mathbf{f}_1, \mathbf{a}_2, \mathbf{a}_3)$. Индексы при (\mathbf{b}, \mathbf{e}) пробегают все значения от 1 до $n=4-(\mathbf{b}_1, \mathbf{b}_2, \mathbf{e}_3, \mathbf{e}_4)$.

Таким образом, множество $M(\widetilde{\mathbf{x}}_2, \widetilde{\mathbf{y}}_2) = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$. Следовательно, $(\widetilde{\mathbf{x}}_2, \widetilde{\mathbf{y}}_2)$ — ситуация равновесия.

15. На основе известного равновесного решения $(\widetilde{\mathbf{x}}_2, \widetilde{\mathbf{y}}_2)$ определяем оптимальные стратегии $\mathbf{x}^*, \mathbf{y}^*$ и цены игры:

$$\mathbf{x}^{*T} = \frac{\begin{bmatrix} 0 & \frac{2}{23} & \frac{7}{46} \end{bmatrix}}{0 + \frac{2}{23} + \frac{7}{46}} = \begin{bmatrix} 0 & \frac{4}{11} & \frac{7}{11} \end{bmatrix};$$

$$\mathbf{y}^{*T} = \frac{\begin{bmatrix} \frac{7}{46} & \frac{2}{23} & 0 & 0 \end{bmatrix}}{\frac{7}{46} + \frac{2}{23} + 0 + 0} = \begin{bmatrix} \frac{7}{11} & \frac{4}{11} & 0 & 0 \end{bmatrix};$$

$$H_B = d - \frac{1}{\sum_{i=1}^{m} \widetilde{x}_i} = 10 - \frac{46}{11} = 5\frac{9}{11}; \quad H_A = d - \frac{1}{\sum_{j=1}^{n} \widetilde{y}_j} = 10 - \frac{46}{11} = 5\frac{9}{11}.$$

OTBET.
$$\mathbf{x}^{*T} = \begin{bmatrix} 0 & \frac{4}{11} & \frac{7}{11} \end{bmatrix}; \mathbf{y}^{*T} = \begin{bmatrix} \frac{7}{11} & \frac{4}{11} & 0 & 0 \end{bmatrix};$$
 $H_B = 5\frac{9}{11}; \quad H_A = 5\frac{9}{11}.$

Проверьте себя! Решите биматричные задачи.
1.
$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 6 & 3 \end{bmatrix}$$
; $\mathbf{B} = \begin{bmatrix} 5 & 4 \\ 2 & 5 \end{bmatrix}$.

OTBET: $\mathbf{x}^{*T} = [0.75 \ 0.25]; \ \mathbf{y}^{*T} = [0.17 \ 0.83]; \ H_A = 3.5; H_B = 4.25.$

2.
$$\mathbf{A} = \begin{bmatrix} 4 & 8 \\ 6 & 3 \end{bmatrix}$$
; $\mathbf{B} = \begin{bmatrix} 7 & 1 \\ 5 & 8 \end{bmatrix}$.

Other: $\mathbf{x}^{*T} = [0.33 \ 0.67]; \ \mathbf{y}^{*T} = [0.714 \ 0.286]; \ H_A = 5.14; H_B = 5.76.$

3.
$$\mathbf{A} = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 3 \\ 8 & 0 & 5 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 7 & 6 & 2 \\ 8 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}.$$

OTBET: $\mathbf{x}^{*T} = [0.375 \ 0 \ 0.625]; \ \mathbf{y}^{*T} = [0.2 \ 0 \ 0.8]; \ H_A = 5.6; H_B = 3.88.$

4.
$$\mathbf{A} = \begin{bmatrix} 7 & 0 & 14 & 3 \\ 10 & 1 & 8 & 6 \\ 2 & 9 & 5 & 11 \\ 4 & 6 & 9 & 0 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 13 & 9 & 7 & 3 \\ 5 & 10 & 6 & 11 \\ 7 & 3 & 5 & 4 \\ 11 & 12 & 0 & 9 \end{bmatrix}.$$

Other: $\mathbf{x}^{*T} = [0 \ 0.333 \ 0.667 \ 0]; \ \mathbf{y}^{*T} = [0.385 \ 0 \ 0.615];$ $H_A = 7.54$; $H_B = 6.33$.