EXERCICE N°1

Optimisation en géométrie

Extrait du Sesamath 1er spe n°83 p158

VOIR LE CORRIGÉ

Un charpentier doit construire le toit incliné (DM) au dernier étage d'une maison, en laissant un espace rectangulaire vide (OABC) qui correspondra à la surface habitable de cet étage. Il observe qu'il peut faire varier l'inclinaison de ce toit tout en conservant l'espace habitable OABC; ainsi la hauteur OD va varier en fonction de la largeur au sol x. Afin d'optimiser l'espace de rangement BCM et l'espace « grenier » ABD, il souhaite établir la largeur x qui permettrait de minimiser la surface OMD.

Dans le schéma ci-après les longueurs sont exprimées en mètres.

- 1) À l'aide d'un théorème de géométrie, exprimer OD en fonction de x.
- 2) En déduire que l'aire du triangle OMD peut être modélisée par la fonction g définie sur l'intervalle]3; $+\infty[$ par $g(x)=\frac{x^2}{x-3}$.
- 3) Étudier les variations de g sur]3; $+\infty[$ et conclure le problème.

EXERCICE N°2 Optimisation d'un bénéfice

Inspiré du Déclic 1er spe n°86 p125

Une entreprise produit des tablettes tactiles avec un maximum de production de $30\,000$ unités par mois. Soit x le nombre de milliers de tablettes produites.

Le coût de production en milliers d'euros est modélisé par la fonction C définie sur l'intervalle [0;30] par : $C(x)=\frac{1}{3}x^3+22x^2+96x$.

Aide au calcul $44^{2}-384 = 40$ $\frac{30^{3}}{3}-22\times30^{2}+384\times12 = 720$ $\frac{12^{3}}{3}-22\times12^{2}+384\times12 = 2016$

Chaque tablette est vendue 480 euros et on suppose que l'entreprise écoule toute sa production mensuelle.

- 1) On note R(x) la recette en milliers d'euros pour x milliers de tablettes vendues. Exprimer R(x) en fonction de x.
- 2) Montrer que le bénéfice de l'entreprise sera alors donné par $B(x) = \frac{1}{3}x^3 22x^2 + 384x$
- 3) Établir le tableau de variations de B sur [0; 30].
- 4) Donner la production à réaliser pour obtenir le bénéfice maximal et préciser la valeur de ce bénéfice.

EXERCICE N°3 Courbes de Lorenz

VOIR LE CORRIGÉ

Extrait du Sesamath 1er spe n°99 p162

On appelle courbe de Lorenz la représentation graphique d'une fonction L vérifiant les conditions suivantes :

- (1) L est définie et croissante sur [0;1];
- (2) L(0) = 0 et L(1) = 1;
- (3) Pour tout x de [0; 1], $L(x) \le x$.
- 1) Soit la fonction f définie sur [0;1] par $f(x)=x^3+2x^2$.
- **1.a)** Déterminer la dérivée de f et dresser le tableau de variation de f sur [0; 1].
- **1.b)** Déterminer le signe de f(x)-x sur [0; 1].
- 1.c) La courbe C_f représentative de la fonction f est-elle une courbe de Lorenz ?
- 2) Soit la fonction g définie sur [0; 1] par $g(x) = \frac{3}{2}x + \frac{1}{x+1} 1$. La courbe C_g représentative de la fonction g est-elle une courbe de Lorenz ? Justifier.

Aide au calcul $-3+2\sqrt{3} \approx 0.46$

Extrait du Sesamath 1er spe n°83 p158

Un charpentier doit construire le toit incliné (DM)au dernier étage d'une maison, en laissant un espace rectangulaire vide (OABC) qui correspondra à la surface habitable de cet étage. Il observe qu'il peut faire varier l'inclinaison de ce toit tout en conservant l'espace habitable OABC; ainsi la hauteur OD va varier en fonction de la largeur au sol x. Afin d'optimiser l'espace de rangement BCM et l'espace « grenier » ABD, il souhaite établir la largeur x qui permettrait de minimiser la surface OMD.

1) À l'aide d'un théorème de géométrie, exprimer OD en fonction de x.

Pour x > 3

- On considère les triangles MBC et MOD,
- On sait que : M, B et D ainsi que M, C et O sont alignés dans le même ordre et que (BC)//(OD) (car OABC est un rectangle).
- On peut appliquer le théorème de Thalès :

$$\frac{MB}{MD} = \frac{MC}{MO} = \frac{BC}{OD} \quad \text{d'où} \quad \frac{MB}{MD} = \frac{x-3}{x} = \frac{2}{OD}$$
On a précisé au début que $x > 3$ donc $x \ne 0$ et l'écriture est légitime.

On obtient:

$$\frac{x-3}{x} = \frac{2}{OD} \Leftrightarrow OD(x-3) = 2x \Leftrightarrow OD = \frac{2x}{x-3}$$

La dernière égalité est également légitime : x > 3 donc $x \ne 3$

Ainsi, pour tout $x \in [3; +\infty]$,

$$OD = \frac{2x}{x-3}$$

2) En déduire que l'aire du triangle *OMD* peut être modélisée par la fonction g définie sur l'intervalle]3; $+\infty$ [par $g(x) = \frac{x^2}{x-3}$.

Pour tout $x \in [3; +\infty[$

$$A_{OMD} = \frac{OM \times OD}{2} = \frac{x \times \frac{2x}{x-3}}{2} = \frac{\frac{2x^2}{x-3}}{2} = \frac{2x^2}{x-3} \times \frac{1}{2} = \frac{x^2}{x-3} = g(x)$$
 cqfd

3) Étudier les variations de g sur 3; $+\infty$ et conclure le problème.

 $g = \frac{u}{v}$ avec u et v des sommes de fonctions de références définies et dérivables sur $3 : +\infty$, de plus v ne s'annule pas sur $3 : +\infty$ donc g est bien définie et dérivable sur

$$\begin{bmatrix}
3 ; +\infty [\text{ et pour tout } x \in]3 ; +\infty [,] \\
g'(x) = \frac{2x \times (x-3) - x^2 \times 1}{(x-3)^2} = \frac{2x^2 - 6x - x^2}{(x-3)^2} = \frac{x^2 - 6x}{(x-3)^2}$$

$$g'(x) = \frac{x(x-6)}{(x-3)^2}$$

On en déduit le tableau de signes de g' et celui de variations de g sur $x \in]3$; $+\infty[$:

x	3	6		+∞
x	+		+	
x-6	-	0	+	
$(x-3)^2$	+	1	+	
g'(x)	_	0	+	
g(x)	12			

D'après le tableau de variations, il devra choisir une longueur de 12 m.

LA DÉRIVATION M07C

EXERCICE N°2 O

Optimisation d'un bénéfice

RETOUR À L'EXERCICE

Inspiré du Déclic 1er spe n°86 p125

Une entreprise produit des tablettes tactiles avec un maximum de production de 30 000 unités par mois. Soit x le nombre de milliers de tablettes produites.

Le coût de production en milliers d'euros est modélisé par la fonction C définie sur l'intervalle

[0; 30] par:
$$C(x) = \frac{1}{3}x^3 + 22x^2 + 96x$$
.

Chaque tablette est vendue 480 euros et on suppose que l'entreprise écoule toute sa production mensuelle.

1) On note R(x) la recette en milliers d'euros pour x milliers de tablettes vendues. Exprimer R(x) en fonction de x.

$$R(x) = 480 x$$

1 tablette se vend 480 € donc 1 milliers de tablettes se vend 480 milliers d'euros.

2) Montrer que le bénéfice de l'entreprise sera alors donné par $B(x) = \frac{1}{3}x^3 - 22x^2 + 384x$

Pour tout
$$x \in [0; 30]$$
,
 $B(x) = R(x) - C(x)$
 $= 480 x - \left(\frac{1}{3}x^3 + 22x^2 + 96x\right)$
 $= 480 x - \frac{1}{3}x^3 - 22x^2 - 96x$
 $= \frac{1}{3}x^3 - 22x^2 + 384x$ cqfd

- 3) Établir le tableau de variations de B sur [0; 30].
- B est une somme de fonctions de référence définies et dérivables sur [0;30] donc B l'est aussi et pour tout $x \in [0;30]$,

$$B'(x) = \frac{1}{3} \times 3x^{2} - 22 \times 2x + 384 \times 1$$

$$B'(x) = x^{2} - 44x + 384$$

Aide au calcul

$$44^{2}-384 = 40$$

$$\frac{30^{3}}{3}-22\times30^{2}+384\times12 = 720$$

$$\frac{12^{3}}{3}-22\times12+384\times12 = 2016$$

Posons $\Delta = (-44)^2 - 4 \times 1 \times 384 = 400$,

le discriminant de ce trinôme. $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-(-44) - \sqrt{400}}{2 \times 1} = \frac{44 - 20}{2} = 12$$

et

$$x_2 = \frac{-(-44) + \sqrt{400}}{2 \times 1} = \frac{44 + 20}{2} = 32$$

- Ainsi, B'(x) = (x-12)(x-32)

On en déduit le tableau de signes de B' et celui de variations de B sur [0; 30]

en acaute i	c tableau de signes de D	et cerar de vari	ations ac b sa	<u>ı [0,50].</u>
x	0	12		30
x-12	-	0	+	
x - 32	-		_	
B'(x)	+	0	_	
B(x)	0	2016		3 11 12 3

Aide au calcul $44^2 - 384 = 40$ $-22 \times 30^2 + 384 \times 12 = 720$

 $\frac{12^3}{3}$ - 22×12+384×12 = 2016

4) Donner la production à réaliser pour obtenir le bénéfice maximal et préciser la valeur de ce bénéfice.

D'après le tableau de variations, il faut un bénéfice maximal de 2016 000 € .

une production de 12 000 tablettes

pour obtenir

LA DÉRIVATION M07C

EXERCICE N°3 Courbes de Lorenz

Extrait du Sesamath 1er spe n°99 p162

RETOUR À L'EXERCICE

On appelle courbe de Lorenz la représentation graphique d'une fonction L vérifiant les conditions suivantes :

- (1) L est définie et croissante sur [0;1];
- (2) L(0)=0 et L(1)=1;
- (3) Pour tout x de [0; 1], $L(x) \le x$.
- 1) Soit la fonction f définie sur [0;1] par $f(x) = \frac{x^3 + 2x^2}{3}$.
- **1.a)** Déterminer la dérivée de f et dresser le tableau de variation de f sur [0; 1]. f est une somme de fonctions de référence définies et dérivables sur [0; 1] donc f l'est aussi et pour tout $x \in [0; 1]$,

$$f'(x) = \frac{3x^2 + 4x}{3}$$

ou encore

$$f'(x) = \frac{x(3x+4)}{3}$$

On en déduit le tableau de signes de f' et celui de variations de f sur [0;1].

х	0
x	+
3x+4	+
B'(x)	+
B(x)	0

Déterminer le signe de f(x)-x sur [0;1].

Pour tout
$$x \in [0;1]$$
,

$$f(x)-x = \frac{x^3+2x^2}{3}-x = \frac{x^3+2x^2-3x}{3} = \frac{x}{3}(x^2+2x-3)$$

Posons $\Delta = 2^2 - 4 \times 1 \times (-3) = 16$, le discriminant du trinôme. $\Delta > 0$, donc il y a deux

$$x_1 = \frac{-2 - \sqrt{16}}{2 \times 1} = \frac{-2 - 4}{2} = -3$$

$$x_2 = \frac{-2 + \sqrt{16}}{2 \times 1} = \frac{-2 + 4}{2} = 1$$

$$f(x) - x = \frac{x}{3}(x-1)(x+3)$$

On en déduit le tableau de signes suivants sur [0 : 1].

х	0
$\frac{x}{3}$	+
x-1	_
x+3	+
f(x)-x	_

La courbe C_f représentative de la fonction f est-elle une courbe de Lorenz ? 1.c)

On a bien:

- (1): f est définie et croissante sur [0; 1] d'après 1.a)
- (2): f(0) = 0 et f(1) = 1 d'après 1.a)
- (3): Pour tout $x \in [0; 1]$, $f(x) x \le 0 \Leftrightarrow f(x) \le x$ d'après 1.b)

Donc C_f est bien une courbe de Lorenz

- 2) Soit la fonction g définie sur [0; 1] par $g(x) = \frac{3}{2}x + \frac{1}{x+1} 1$. La courbe C_g représentative de la fonction g est-elle une courbe de Lorenz ? Justifier.
- Commençons par vérifier le point (2) :

On a bien g(0) = 0 et g(1) = 1

Vérifions le point (1)

Sur [0; 1], $x \mapsto x+1$ est définie et dérivable et ne s'annule pas donc $x \mapsto \frac{1}{x+1}$ est aussi définie et dérivable sur [0; 1].

Ainsi, g est une somme de fonctions définies et dérivables sur [0; 1], elle l'est donc aussi et pour tout $x \in [0; 1]$,

$$g'(x) = \frac{3}{2} - \frac{1}{(x+1)^2} = \frac{\frac{3}{2}(x+1)^2 - 1}{(x+1)^2} = \frac{\frac{3}{2}x^2 + 3x + \frac{3}{2} - 1}{(x+1)^2} = \frac{\frac{3}{2}x^2 + 3x - \frac{1}{2}}{(x+1)^2} = \frac{1}{2} \times \frac{3x^2 + 6x - 1}{(x+1)^2}$$

Posons $\Delta = 6^2 - 4 \times 3 \times (-1) = 48$,

le discriminant de ce trinôme.
$$\Delta > 0$$
, donc il y a deux racines : $x_1 = \frac{-6 - \sqrt{48}}{2 \times 1} = \frac{-6 - 4\sqrt{3}}{2} = -3 - 2\sqrt{3}$

$$x_2 = \frac{-6 + \sqrt{48}}{2 \times 1} = \frac{-6 + 4\sqrt{3}}{2} = -3 + 2\sqrt{3}$$

Aide au calcul $-3+2\sqrt{3} \approx 0.46$

$$g'(x) = \frac{1}{2} \times \frac{3(x - (-3 - 2\sqrt{3}))(x - (-3 + 2\sqrt{3}))}{(x+1)^2}$$
$$g'(x) = \frac{1}{2} \times \frac{3(x + 3 + 2\sqrt{3})(x + 3 - 2\sqrt{3})}{(x+1)^2}$$

$$g'(x) = \frac{1}{2} \times \frac{3(x+3+2\sqrt{3})(x+3-2\sqrt{3})}{(x+1)^2}$$

On en déduit le tableau de signes de g' et celui de variations de g sur [0;1].

X	0	-3+2	$\sqrt{3}$	30
$x+3+2\sqrt{3}$	+		+	
$x+3-2\sqrt{3}$	_	0	+	
$(x+1)^2$	+		+	
g'(x)	+	0	_	
g(x)		*		

Ainsi g n'est pas croissante sur [0; 1].

Au final, C_g n'est pas une courbe de Lorenz