JUSTIFIQUEU TOTES LES RESPOSTES

1. Sigui $k \geq 2$ un nombre natural. Definim el graf $G_k = (V_k, A_k)$, on:

$$\begin{array}{rcl} V_k & = & \{x_1, \dots, x_k, y_1, \dots, y_k\} \\ A_k & = & \{x_1 y_1\} \cup \{x_i x_j : i \neq j\} \cup \{y_i y_j : i \neq j\} \end{array}$$

- a) (1 punt) Representeu els grafs G_2 i G_5 . Doneu l'ordre i la mida de G_k i del seu complementari, G_k^c , en funció de k.
- b) (1 punt) Esbrineu si G_k^c és bipartit. En cas afirmatiu, doneu les parts estables.
- c) (1 punt) Calculeu el diàmetre del graf complementari, G_k^c .
- d) (1 punt) Quin és el mínim nombre d'arestes que cal afegir al graf G_k , $k \geq 2$, per tal d'obtenir un graf eulerià?
- e) (1 punt) Proveu que G_3^c és hamiltonià. Per a quins valors de k és G_k^c hamiltonià?
- **2.** Considerem el graf bipartit complet $K_{2,10}$ amb parts estables $\{1,2\}$ i $\{3,4,5,6,7,8,9,10,11,12\}$.
 - a) (1 punt) Quants arbres generadors diferents té?
 - b) (1 punt) Quants arbres generadors no isomorfs té?
 - c) (1 punt) Doneu l'arbre generador obtingut en aplicar l'algorisme BFS si es comença amb el vèrtex 1 i, si en algun moment l'algorisme té diversos vèrtexs on escollir, es tria sempre el vèrtex d'etiqueta més petita. Representeu l'arbre obtingut i doneu l'ordre en que s'hi afegeixen els vèrtexs en aplicar l'algorisme.
 - d) (0.5 punts) Calculeu la seqüència de Prüfer de l'arbre obtingut a l'apartat anterior.
- **3.** (1.5 punts) Sigui G un graf d'ordre $n, n \geq 2$, amb exactament k components connexos. Demostreu que G és acíclic si, i només si, la seva mida és n k.

Informacions

- Durada de l'examen: 1h 25m
- S'ha de respondre amb tinta blava o negra.
- Cal lliurar els 3 exercicis per separat.
- No es poden utilitzar ni llibres, ni apunts, ni calculadores, ni mòbils, ni dispositus electrònics que puguin emmagatzemar, emetre o rebre informació, . . .
- Publicació de les notes: 21/06/2021.
- Revisió de l'examen: s'haurà de demanar el 22 de juny seguint el procediment que es publicarà al racó.

1. (5 punts) Sigui $k \geq 2$ un nombre natural. Definim el graf $G_k = (V_k, A_k)$ on:

$$V_k = \{x_1, \dots, x_k, y_1, \dots, y_k\}$$

$$A_k = \{x_1y_1\} \cup \{x_ix_j : i \neq j\} \cup \{y_iy_j : i \neq j\}$$

Solució. Observem primer com són els grafs G_k i G_k^c . Si definim $V_{k1} = \{x_1, \ldots, x_k\}$ i $V_{k2} = \{y_1, \ldots, y_k\}$, observem que V_{k1} i V_{k2} indueixen grafs complets en G_k i només hi ha una aresta amb un extrem a V_{k1} i l'altre a V_{k2} . Per tant, el graf G_k està format per dos grafs complets d'ordre k més l'aresta x_1y_1 , que té un extrem a cadascún d'aquests grafs complets.

Per tant, en G_k^c , els conjunts V_{k1} i V_{k2} indueixen grafs nuls (és a dir, no hi ha arestes de tipus $x_i x_j$ ni de tipus $y_i y_j$), i hi ha totes les arestes possibles entre un vèrtex de V_{k1} i un altre de V_{k2} (és a dir, arestes del tpus $x_i y_j$) excepte l'aresta $x_1 y_1$.

a) Representeu els grafs G_2 i G_5 . Doneu l'ordre i la mida de G_k i del seu complementari, G_k^c , en funció de k.

Solució. Vegeu a la figura una representació dels grafs G_2 i G_5 :

L'ordre de G_k és

$$ord(G_k) = |V_k| = |\{x_1, \dots, x_k, y_1, \dots, y_k\}| = 2k.$$

La mida de G_k és

$$\begin{split} mida(G_k) &= |A_k| = |\{x_1y_1\} \cup \{x_ix_j : i \neq j\} \cup \{y_iy_j : i \neq j\}| \\ &= |\{x_1y_1\}| + |\{x_ix_j : i \neq j\}| + |\{y_iy_j : i \neq j\}| \\ &= 1 + \frac{k(k-1)}{2} + \frac{k(k-1)}{2} = 1 + k(k-1) = k^2 - k + 1. \end{split}$$

L'ordre de G_k^c és el mateix que el de G_k , o sigui,

$$ord(G_k^c) = ord(G_k) = 2k.$$

La mida de G_k^c és la mida d'un complet amb 2k vèrtexs menys la mida de G_k , o sigui:

$$mida(G_k^c) = mida(K_{2k}) - mida(G_k) = \frac{2k(2k-1)}{2} - (k^2 - k + 1)$$

= $k(2k-1) - (k^2 - k + 1) = k^2 - 1$.

b) Esbrineu si G_k^c és bipartit. En cas afirmatiu, doneu les parts estables.

Solució. Tal com hem vist abans, en G_k^c , no hi ha arestes entre vèrtexs de V_{k1} ni entre vèrtexs de V_{k2} . Per tant, G_k^c és bipartit amb parts estables V_{k1} i V_{k2} .

c) Calculeu el diàmetre del graf complementari, G_k^c .

Solució. Calculem les distàncies entre tots els possibles parells de vèrtexs de G_k^c . Observem que $d(x_i, x_j) = 2$, si $i \neq j$, ja que els vèrtexs x_i i x_j no són adjacents en G_k^c , però hi ha un camí de longitud 2 en G_k^c , $x_i \sim y_2 \sim x_j$. Per simetria, $d(y_i, y_j) = 2$, si $i \neq j$. D'altra banda, tenim que $d(x_i, y_j) = 1$, si $i \neq j$, i $d(x_i, y_i) = 1$, si $i \neq 1$. Finalment, $d(x_1, y_1) = 3$, perquè $x_1 \sim y_2 \sim x_2 \sim y_1$, però $x_1 \sim y_1$ i no hi ha camins de longitud 2 entre x_1 i y_1 , perquè G_k^c és bipartit i tots els camins entre vèrtexs de parts estables diferents tenen longitud senar.

Per tant, el diàmetre és 3 (el màxim de les distàncies entre tots els parells de vèrtexs).

d) Quin és el mínim nombre d'arestes que cal afegir al graf G_k , $k \geq 2$, per tal d'obtenir un graf eulerià?

Solució. Tal com hem observat a l'inici de l'exercici, G_k és un graf connex amb 2 vèrtexs de grau k (concretament, els vèrtexs x_1 i y_1) i 2k-2 vèrtexs de grau k-1 (la resta de vèrtexs).

Per tant, si k és parell, hi ha exactament 2k-2 vèrtexs de grau senar. Perquè tots els vèrtexs tinguin grau parell, cal afegir almenys k-1 (= (2k-2)/2) arestes (ja que tot vèrtex de grau senar ha de ser incident com a mínim a una aresta més i una nova aresta pot ser incident amb dos vèrtexs de grau senar). Si afegim les k-1 arestes $a_i = x_i y_i$, $i \neq 1$, obtenim el graf $G_k + \{a_2, \ldots, a_k\}$, que és eulerià per ser connex amb tots els vèrtexs de grau k, parell. Per tant, el mínim nombre d'arestes que cal afegir en aquest cas és k-1.

Si k és senar, aleshores hi ha exactament 2 vèrtexs de grau senar, concretament els vèrtexs x_1 i y_1 . Perquè tots els vèrtexs tinguin grau parell, cal afegir almenys una aresta a_1 incident amb x_1 i una aresta incident a_2 amb y_1 . No pot ser $a_1 = a_2$, perquè aleshores hauria de ser $a_1 = a_2 = x_1 y_1$, i aquesta aresta ja és de G_k . Per tant, $a_1 = x_1 y_j$, amb $j \neq 1$, i $a_2 = x_i y_1$, amb $i \neq 1$. Però aleshores $G_k + \{a_1, a_2\}$ té exactament dos vèrtexs de grau senar, concretament x_i i y_j . Per tant, cal afegir almenys una aresta més, o sigui, almenys 3. Finalment, observem que $x_1 y_2, x_2 y_2, x_2 y_1$ no són arestes de G_k i el graf $G_k + \{x_1 y_2, x_2 y_2, x_2 y_1\}$ és eulerià, ja que és connex i té tots els vèrtexs de grau parell. Per tant, el mínim nombre d'arestes que cal afegir en aquest cas és 3.

e) Proveu que G_3^c és hamiltonià. Per a quins valors de $k \geq 2$ és G_k^c hamiltonià?

Solució. El graf G_3^c és hamiltonià, ja que un possible cicle hamiltonià és $x_1y_3x_2y_1x_3y_2x_1$. El graf G_k^c és hamiltonià si $n \geq 3$, ja que podem construir un cicle hamiltonià, per exemple:

$$x_1y_3x_2y_4x_3\dots x_{k-2}y_kx_{k-1}y_1x_ky_2x_1,$$

on el cicle està construit de la forma següent: comencem en el vèrtex x_1 , i a partir d'aquí, a cada pas anem de x_i a y_{i+2} i de y_j a x_{j-1} , on els subíndexs els prenem mòdul k, fins arribar de nou al vèrtex x_1 . Observem que el cicle donat és una ziga zaga en què visitem els vèrtexs de V_{k1} en l'ordre $x_1, x_2, \ldots, x_k, x_1$ i els vèrtexs de V_{k2} en l'ordre $y_3y_4 \ldots y_{k-1}y_ky_1y_2$:

El graf G_2^c no és hamiltonià ja que és isomorf a T_4 i, per tant, $G_2^c \cong (T_4)^c \cong T_4$, que no és hamiltonià perquè té vèrtexs de tall. Per tant G_k^c és hamiltonià si i només si $k \geq 3$.

- **2.** (3.5 punts) Considerem el graf bipartit complet $K_{2,10}$ amb parts estables $\{1,2\}$ i $\{3,4,5,6,7,8,9,10,11,12\}$.
 - a) Quants arbres generadors diferents té?

Solució. Denotem $W = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Sigui T un arbre generador del graf $K_{2,10}$. La mida de T és 11, perquè $K_{2,10}$ té ordre 12. Per ser T és connex, per a tot vèrtex u de $K_{2,10}$ hi ha almenys una aresta de T incident amb u. Per tant, l'arbre tindrà 10 arestes $3x_3, 4x_4, \ldots, 12x_{12}$, on $x_k \in \{1,2\}$ per a tot $k \in W$, més una aresta de la forma $i y_i$, on $i \in W$ i $y_i \in \{1,2\}$. Per tant, hi haurà un vèrtex del conjunt W que tindrà grau 2 en T, i la resta de vèrtexs de W, tindran grau 1 en T. A més, qualsevol subgraf de $K_{2,10}$ amb 11 arestes d'aquesta forma és connex, ja que almenys un vèrtexs és adjacent a 1 i 2 alhora, i la resta de vèrtexs són adjacents al vèrtex 1 o al vèrtex 2. És a dir, d'aquesta manera obtenim sempre arbres generadors de $K_{2,10}$. Si w és el vèrtex de W de grau 2 en T, W_1 és el el conjunt de vèrtexs de $W \setminus \{w\}$ adjacents a 1 en T i W_2 és el el conjunt de vèrtexs de $W \setminus \{w\}$ adjacents a 2 en T, l'estructura dels arbres generadors de $K_{2,10}$ és:

Podem triar el vèrtex w de W de 10 maneres diferents, i un cop escollit aquest vèrtex, hi ha 2^9 possibles maneres de triar el subconjut W_1 (són els possibles subconjunts del conjunt $W \setminus \{w\}$, que té cardinal 9), i aleshores ja queda determinat el conjunt W_2 . Per tant, $K_{2,10}$ té 10×2^9 arbres generadors diferents.

b) Quants arbres generadors no isomorfs té?

Solució. Mirem quants arbres obtenim a l'apartat anterior llevat isomorfismes. Dos arbres generadors seran isomorfs si els valors $\{|W_1|, |W_2|\}$ són els mateixos per als dos arbres. Per tant, tenim 5 arbres llevat isomorfismes, segons si els cardinals dels conjunts W_1 i W_2 són 0-9; 1-8; 2-7; 3-6 o bé 4-5 (aquests 5 arbres no són isomorfs perquè tenen grau màxim diferent, concretament 10, 9, 8, 7 i 6, respectivament). Vegeu els 5 arbres obtinguts a la figura següent:

c) Doneu l'arbre generador obtingut en aplicar l'algorisme BFS si es comença amb el vèrtex 1 i, si en algun moment l'algorisme té diversos vèrtexs on escollir, es tria sempre el vèrtex d'etiqueta més petita. Representeu l'arbre obtingut i doneu l'ordre en que s'hi afegeixen els vèrtexs en aplicar l'algorisme.

Solució. Vegeu a la figura l'arbre obtingut. L'ordre en què s'afegeixen els vèrtexs a l'arbre generador és 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2.

d) Calculeu la sequència de Prüfer de l'arbre obtingut a l'apartat anterior.

Solució. A la seqüència de Prüfer de l'arbre obtingut a l'apartat anterior només apareixen els vèrtexs 1 i 3, ja que són els únic vèrtexs que no són fulles. La seqüència de Prüfer és (3,1,1,1,1,1,1,1,1,1,1).

3. (1.5 punts) Sigui G un graf d'ordre $n, n \ge 2$, amb exactament k components connexos. Demostreu que G és acíclic si, i només si, la seva mida és n - k.

Solució. Suposem primer que G és acíclic. Aleshores G és un bosc d'ordre n, mida m i k components connexos. I sabem que la mida d'un bosc d'ordre n amb k components connexos és n-k.

Demostrem ara el recíproc per reducció a l'absurd. Suposem que G té d'ordre n, mida m, k components connexos G_1, \ldots, G_k , i que es compleix m = n - k, però que no és acíclic, és a dir, G té almenys un cicle. Podem suposar que tenim numerats els component connexos de manera que el component connex G_1 té algun cicle. Per ser G_1, \ldots, G_k connexos, es compleix $mida(G_i) \geq ordre(G_i) - 1$, per a tot $i \in \{1, \ldots, k\}$. A més, $mida(G_1) \neq ordre(G_1) - 1$ perquè en cas contrari G_1 seria un arbre, i conseqüentment, acíclic. Per tant, $mida(G_1) > ordre(G_1) - 1$. Aleshores,

$$m = \sum_{i=1}^{k} mida(G_i) > \sum_{i=1}^{k} (ordre(G_i) - 1) = \sum_{i=1}^{k} ordre(G_i) - k = n - k,$$

4

que és una contradicció, ja que m = n - k per hipòtesi.