Лекция 5

Съдържание: Класическа транспортна задача. Методи за намиране на начален опорен план.

Основни понятия и формули

Постановката на класическата транспортна задача е следната: От производителите (складове, отправни пунктове и др.) $A_{\rm l},...,A_{\rm l},...,A_{\rm m}$ с налични еднородни количества продукти, съответно $a_{\rm l},...,a_{\rm l},...,a_{\rm m}$, трябва да се доставят на потребители $B_{\rm l},...,B_{\rm l},...,B_{\rm m}$ с потребнности от тези количества, съответно $b_{\rm l},...,b_{\rm l},...,b_{\rm l}$. Известни са транспортните разходи $c_{\rm ij}$ $\left(i=1,...,m;j=1,...,n\right)$, които се правят при пренасянето на единица продукт от производител $A_{\rm l}$ до потребител $B_{\rm l}$. Целта е да се намери оптимален план на превозите, че да се задоволят потребностите, като се заплати минимална сума.

Ако с x_{ij} (i=1,...,m;j=1,...,n) се означат неизвестните количества продукти, които се превозват от производител A_i до потребител B_j , то математическият модел на формулираната транспортна задача е:

(5.1)
$$\min F = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

(5.2)
$$\sum_{j=1}^{n} x_{ij} = a_{i}, \quad (i = 1, ..., m)$$

$$\sum_{j=1}^{m} x_{ij} = b_{j}, \quad (j = 1, ..., n)$$

(5.3)
$$x_{ij} \ge 0$$
, $(i = 1,...,m; j = 1,...,n)$.

Матричният запис на модела (5.1)-(5.3) е

(5.4)
$$\min F = C_{1 \times (m,n)} X_{(m,n) \times 1}$$

(5.5)
$$A_{(m+n)\times(m,n)}X_{(m,n)\times 1} = B_{(m+n)\times 1}$$

$$(5.6) X_{(m,n)\times 1} \ge 0.$$

Транспортната задача е със затворен модел, ако е изпълнено балансиращото условие

(5.7)
$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i.$$

Ако условие (5.7) не е изпълнено, то транспортната задача е с *отворен модел*. Условието на транспортната задача и след това и решението й се представят в така наречената разпределителна таблица 5.1. Във всяка клетка – пресечницата на произволен ред A_i и произволен стълб B_j , има две числа, едното е стойността на превозите на единица товар, а другото е количеството на превозения товар.

Таблица 5.1.

	B_1	•••	B_n	a_i
A_1	x_{11}		\mathcal{X}_{1n}	a_1
:				:
A_m	C_{m1}		C_{mn}	a_m
b_{j}	b_1		b_{n}	$\sum_{i=1}^{m} a_i$ $\sum_{j=1}^{n} b_j$

Теорема 5.1. Необходимо и достатъчно условие транспортната задача да има решение е да бъде изпълнено условие (5.7).

- 1. Ако $\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$, то се въвежда фиктивен производител A_{m+1} с наличност $a_{m+1} = \sum_{i=1}^n b_j \sum_{i=1}^m a_i$ и транспортни разходи $c_{m+1 \ j} = 0, \left(j=1,...,n\right).$
- 2. Ако $\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$, то се въвежда фиктивен потребител B_{n+1} с потребност $b_{n+1} = \sum_{i=1}^m a_i \sum_{j=1}^n b_j$ и транспортни разходи $c_{i\,n+1} = 0, \left(i=1,...,m\right)$.

Теорема 5.2. Всяка задача със затворен модел има оптимално решение.

Теорема 5.3. Рангът на матрицата $A_{(m+n)\times(m,n)}$ на (5.5) е равен на m+n-1 .

Свойство 5.1. В транспортна задача от m броя производители и n броя потребители, броят на базисните неизвестни е m+n-1 и броят на свободните неизвестни е (m-1)(n-1).

Методи за намиране на начален опорен план

Разглеждаме два метода за намиране на начален опорен план (начално базисно решение) на транспортната задача.

1. Метод на северозападния ъгъл

В таблица 5.1. определяме клетката, която заема северозападния ъгъл и тя е $\langle 1,1 \rangle$

. Запълваме клетката с $x_{11} = \min\{a_1, b_1\}$. Следват случаите:

- 1.1. Ако $a_1 > b_1$, то $x_{11} = b_1$ и останалите клетки от първия стълб са със свободни неизвестни, а в производител A_1 са останали за разпределяне количества $\left(a_1 b_1\right)$. Разпределителната таблица се разглежда без първи стълб.
- 1.2. Ако $a_1 < b_1$, то $x_{11} = a_1$ и останалите клетки от първия ред са със свободни неизвестни, а потребител B_1 има необходимост от количество $(b_1 a_1)$. Разпределителната таблица се разглежда без първи ред.
- 1.3. Ако $a_{\rm l}=b_{\rm l}=\alpha$, то $x_{\rm l\, l}=\alpha$ този случай се нарича изрозен и се въвежда « базисна нула», т.е. една клетка от първия ред или първия стълб има базисна неизвестна с нулева стойност, а останалите клетки от първия стълб и първия ред са със свободни неизвестни. Разпределителната таблица се разглежда без първи ред и първи стълб.

Отново се търси клетката, която заема северозападния ъгъл и се разглеждат горните три случаи. Така се намират запълнените m+n-1 клетки ,т.е. намира се начален опорен план.

Най-отдалечен опорен план от оптималния е този, който се получава при прилагане на метода на северозападния ъгъл, но този метод е в основата на останалите други методи.

2. Метод на двупосочното предпочитане

Маркират се (например с "*") клетките с минимални цени по редове и след това със същия знак се маркират клетките с минимални цени по стълбове. Клетките в табл. 5.1.най-общо се разделят на три: 1. клетки с двойна маркировка; 2. клетки с единична маркировка и 3. клетки без маркировка. Методът на северозападния ъгъл се прилага най-напред за двойномаркираните клетки и след изчерпването им се прилага към еднократно маркираните и последно за немаркираните.

Забележка 1. За първа клетка във всяка подгрупа се избира тази, която има минимални транспортни разходи.

Забележка 2. Ако в някоя от подгрупите има клетки с равни минимални транспортни разходи, за първа клетка се избира произволна от тях.

Правила за решаване на задачи

- Съставя се разпределителната таблица, като се спазва условие (5.7).
- Намира се начален опорен план по един от описаните по-горе методи и се пресмята началната стойност на целевата функция по (5.1).

Задачи и въпроси

5.1. От складове $A_{\!_1}$, $A_{\!_2}$ и $A_{\!_3}$ с наличности (100;150;70) към потребители $B_{\!_1}$, $B_{\!_2}$, $B_{\!_3}$ и $B_{\!_4}$ с потребности съответно (120;50;60;90) се транспортират количества продукти, като цените за единица продукт от склад $A_{\!_i}$ до потребител $B_{\!_j}$ са дадени

с платежната матрица
$$C = \begin{bmatrix} 4 & 2 & 5 & 7 \\ 2 & 4 & 3 & 5 \\ 3 & 5 & 1 & 6 \end{bmatrix}$$
. Да се намери начален опорен план на

транспортната задача:

- а) по метода на северозападния ъгъл;
- б) по метода на двупосочното предпочитане.

Да се пресметне началната стойност на целевата функция по всеки от двата метода и да се направи сравнение между тях.

Решение: Съставяме таблица 5.2.

Таблица 5.2. B_{i} B_1 B_{γ} B_3 $B_{\scriptscriptstyle \Delta}$ a_{i} A_{i} 2 7 4 5 100 $A_{\rm l}$ 2 4 3 5 150 A_{2} 3 5 1 6 70 A_3 320 b_{i} 120 50 60 90 320

Проверяваме дали балансиращото условие (5.7) е в сила:

$$\sum_{i=1}^{3} a_i = 100 + 150 + 70 = 320,$$

$$\sum_{j=1}^{4} b_j = 120 + 50 + 60 + 90 = 320.$$

а) Попълваме клетка $\langle 1,1 \rangle$ със стойност $x_{11} = \min\{100;120\} = 100$. Клетки $\langle 1,2 \rangle$, $\langle 1,3 \rangle$ и $\langle 1,4 \rangle$ са свободни, а на първия потребител са останали 120-100=20 единици незадоволени потребности. Останалата таблица се състои от редове $A_{\scriptscriptstyle 2}$ и $A_{\scriptscriptstyle 3}$ със съответни количества (150;70) и от стълбове $B_{\rm l}$, $B_{\rm 2}$, $B_{\rm 3}$ и $B_{\rm 4}$ със съответни потребности (20;50;60;90). Северозападният ъгъл на новата таблица е клетка $\langle 2,1 \rangle$. В нея записваме стойност $x_{21} = \min\{150; 20\} = 20$. Клетка $\langle 3,1 \rangle$ е свободна, а от количеството продукт на склад A_2 са останали 150-20=130 единици. Новата таблица се състои от редове $A_{\scriptscriptstyle 2}$ и $A_{\scriptscriptstyle 3}$ със съответни количества (130;70) и от B_3 и B_4 със съответни потребности стълбове B_2 , (50;60;90). Новият $\langle 2,2\rangle$. Попълваме северозападен е ъгъл клетка Я С количество $x_{22} = \min\{130; 50\} = 50$. Клетка $\langle 3, 2 \rangle$ е свободна, а от количеството продукт на склад $A_{\!\scriptscriptstyle 2}$ са останали $130-50=80\,$ единици. Останалата таблица се състои от редове $A_{\!\scriptscriptstyle 2}$

и A_3 със съответни количества (80;70) и от стълбове B_3 и B_4 със съответни потребности (60;90). Северозападният ъгъл е клетка $\langle 2,3\rangle$. В нея записваме количество $x_{23}=\min \left\{80;60\right\}=60$. Свободна е клетка $\langle 3,3\rangle$. Новата таблица състои от редове A_2 и A_3 със съответни количества (20;70) и от стълб B_4 с потребност (90). Северозападният ъгъл е е клетка $\langle 2,4\rangle$, в която записваме товар $x_{24}=\min \left\{20;90\right\}=20$. На потребител B_4 са останали 90-20=70 единици незадоволени потребности, които се набавят от 70 единици количетво продукт в склад A_3 . Така разпределителната таблица има вида (5.3):

							Табл	пица	5.3.
A_i	B_1		B_2		B_3		B_4		a_i
A_1	100	4		2		5		7	100
A_2	20	2	50	4	60	3	20	5	150
A_3		3		5		1	70	6	70
b_{j}	120		50		60		90		320 320

Броят на пълните клетки е m+n-1=4+3-1=6, което ни осигурява начален

опорен план. Той е матрицата $X_1 = \begin{vmatrix} 100 & 0 & 0 & 0 \\ 20 & 50 & 60 & 20 \\ 0 & 0 & 0 & 70 \end{vmatrix}$.

Стойността на целевата функция за този план е $F(X_1) = 100.4 + 20.2 + 50.4 + 60.3 + 20.5 + 70.6 = 1340$.

б) Клетките с минимални транспортни разходи по редове са съответно $\langle 1,2 \rangle$, $\langle 2,1 \rangle$ и $\langle 3,3 \rangle$. Маркираме ги със символът "*". Клетките с минимални цени по стълбове са $\langle 2,1 \rangle$, $\langle 1,2 \rangle$, $\langle 3,3 \rangle$ и $\langle 2,4 \rangle$ съответно. Така *Таблица 5.2* добива вида *(5.4.)*.

							Табл	тица	5.4.
A_i	B_1		B_2		B_3		B_4		a_{i}
A_1		4	* *	2		5		7	100
A_2	* *	2		4		3	*	5	150
A_3		3		5	* *	1		6	70
b_{j}	120		50		60		90		320 320

Клетките в *Табл.5.4.* се разделиха на три групи:

- с двойна маркировка клетки $\langle 1, 2 \rangle$, $\langle 2, 1 \rangle$ и $\langle 3, 3 \rangle$;
- с единична маркировка клетка (2,4);
- без маркировка всички останали клетки.

От клетките в групата с двойна маркировка започваме с клетка $\langle 3,3 \rangle$, тъй като тя има минимални транспортни разходи. Попълваме я с товар $x_{33} = \min \left\{ 70; 60 \right\} = 60$. Клетки $\langle 1,3 \rangle$ и $\langle 2,3 \rangle$ са свободни, а от количеството продукция в склад A_3 са останали 70-60=10 единици. Останалите две клетки с двойна маркировка са с равни транспортни разходи, така че избираме произволна от тях — например $\langle 1,2 \rangle$. В нея записваме количество $x_{12} = \min \left\{ 100; 50 \right\} = 50$. Клетки $\langle 2,2 \rangle$ и $\langle 3,2 \rangle$ са свободни, а в склад A_1 остават 100-50=50 единици продукция. От първата група клетки остава само $\langle 2,1 \rangle$. Попълваме я с $x_{21} = \min \left\{ 150; 120 \right\} = 120$ единици товар. Свободните клетки са $\langle 1,1 \rangle$ и $\langle 3,1 \rangle$. В склад A_2 остават 150-120=30 единици продукция.

Следват клетките с единична маркировка. В нашия случай тя е единствена - $\langle 2,4 \rangle$. В нея записваме количество $x_{24} = \min \{30; 90\} = 30$ единици товар.

От клетките в групата без маркировка започваме с $\langle 3,4 \rangle$, тъй като тя има наймалки транспортни разходи. Попълваме я с товар $x_{34} = \min\{10;60\} = 10$ единици. На потребител B_4 са останали 60-10=50 незадоволени потребности, които се набавят от склад A_1 и се нанасят в последната останала клетка - $\langle 1,4 \rangle$. Разпределителната таблица има вида (5.5.)

Таблица 5.5. B_{i} $B_{\scriptscriptstyle 1}$ B_3 B_{γ} $B_{\scriptscriptstyle \Delta}$ a_i 4 * * 2 5 7 100 $A_{\scriptscriptstyle 1}$ 50 50 3 * * 2 4 5 150 A_2 120 30 1 3 5 * * 6 70 A_3 60 10 320 b_{i} 120 50 60 90 320`

Броят на пълните клетки е m+n-1=4+3-1=6, което ни осигурява начален

опорен план. Той е матрицата
$$X_2 = \begin{vmatrix} 0 & 50 & 0 & 50 \\ 120 & 0 & 0 & 30 \\ 0 & 0 & 60 & 10 \end{vmatrix}.$$

Стойността на целевата функция за този план е $F(X_2) = 50.2 + 50.7 + 120.2 + 30.5 + 60.1 + 10.6 = 960$.

При сравняване на началните стойности на целевите функции, полуени по двата метода имаме $F(X_1) = 1340$, $F(X_2) = 960$ и $F(X_1) > F(X_2)$. Наистина, опорният план, получен при прилагане на метода на северозападния ъгъл е по-отдалечен от оптималния в сравнение с този, получен по метода на двупосочното предпочитане.

5.2. Да се пресметне началната стойност на целевата функция по метода на двупосочното предпочитане за следната транспортна задача с разпределителна таблица *5.6.*

	Таблица 5.6.									
A_i	B_1	B_2	B_3	a_i						
$A_{\rm l}$	2	4	6	90						
A_2	1	3	7	100						
A_3	4	8	13	140						
b_{j}	110	100	80							

Решение: Проверяваме дали е в сила балансиращото условие (5.7). Сумираме:

$$\sum_{i=1}^{3} a_i = 90 + 100 + 140 = 330,$$

$$\sum_{j=1}^{3} b_j = 110 + 100 + 80 = 290.$$

За да изравним двете суми, трябва да въведем фиктивен потребител B_4 с 40 единици потребност, при нулеви транспортни разходи. Новата разпределителната таблица има вида 5.7.

				Таблица	5.7.
A_i	B_1	B_2	B_3	B_4	a_i
A_1	2	4	6	0	90
A_2	1	3	7	0	100
A_3	4	8	13	0	140
b_{j}	110	100	80	40	330 330

Маркираме с "*" клетките с минимални транспортни разходи по редове. Те са съответно $\langle 1,4 \rangle$, $\langle 2,4 \rangle$ и $\langle 3,4 \rangle$. По стълбове те са $\langle 2,1 \rangle$ в първия, $\langle 2,2 \rangle$ - във втория, $\langle 1,3 \rangle$ - в третия и $\langle 1,4 \rangle$, $\langle 2,4 \rangle$ и $\langle 3,4 \rangle$ - в четвъртия стълб. Получаваме *табл. 5.8.*

							Табл	ица	5.8.
B_j A_i	B_{1}		B_2		B_3		B_4		a_{i}
$A_{\rm l}$		2		4	*	6	* *	0	90
A_2	*	1	*	3		7	* *	0	100
A_3		4		8		13	* *	0	140
b_{j}	110		100		80		40		330 330

Групираме клетките:

- ullet с двойна маркировка клетки $\langle 1,4
 angle$, $\langle 2,4
 angle$ и $\langle 3,4
 angle$;
- с единична маркировка клетки $\langle 1,2 \rangle$, $\langle 2,2 \rangle$ и $\langle 1,3 \rangle$;
- без маркировка всички останали клетки.

Разпределяме товарите, започвайки от произволна клетка с двойна маркировка (например $\langle 1,4 \rangle$), тъй като всички клетки в тази група имат еднакви транспортни разходи. След тази стъпка всички останали клетки с двойна маркировка стават свободни и трябва да преминем към групата с единична. Започваме с $\langle 2,1 \rangle$, която има минимални транспортни разходи, а след това попълваме клетка $\langle 1,3 \rangle$.

Продължаваме, следвайки правилата, с клетките, които не са маркирани. Първата от тях е $\langle 3,1 \rangle$. Последователно попълваме останалите клетки и получаваме *табл.* 5.9.

Таблица 5.9. \boldsymbol{B}_{j} $B_{\scriptscriptstyle 1}$ B_{γ} B_3 $B_{\scriptscriptstyle A}$ a_{i} A_{i} $A_{\scriptscriptstyle 1}$ * * A_2 A_3 b_i

Броят на пълните клетки е m+n-1=4+3-1=6. Началният опорен план на дадената транспортна задача е матрицата $X_0=\begin{bmatrix}0&0&50&40\\100&0&0&0\\10&100&30&0\end{bmatrix}$.

Стойността на целевата функция за този план е $F\left(X_0\right) = 50.6 + 40.0 + 100.1 + 10.4 + 100.8 + 30.13 = 1630$.

- **5.3.** Да се пресметне началната стойност на целевата функция по метода на северозападния ъгъл за транспортната задача с разпределителна таблица *5.6.*
- **5.4.** Да се пресметне началната стойност на целевата функция по метода на двупосочното предпочитане за транспортната задача с разпределителна таблица *5.10.*

Таблица 5.10. \boldsymbol{B}_{i} $B_{\scriptscriptstyle 1}$ B_{γ} B_3 $B_{\scriptscriptstyle \Delta}$ a_{i} $A_{\scriptscriptstyle 1}$ A_2 A_3 b_i

при условие, че връзката между склад A_2 и потребител B_3 е блокирана и потребител B_2 трябва да задоволи потребностите си напълно.

Решение: Проверяваме дали е в сила балансиращото условие (5.7). Сумираме:

$$\sum_{i=1}^{3} a_i = 110 + 200 + 320 = 630,$$

$$\sum_{j=1}^{4} b_j = 100 + 250 + 150 + 170 = 670.$$

За да балансираме задачата, трябва да се въведе фиктивен склад $A_{\!\scriptscriptstyle 4}$ с 40 единици продукция и нулеви транспортни разходи. Получаваме *табл. 5.11.*

							абли	ца 5.	11.
A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		4		7		9		2	110
A_2		15		6		8		1	200
A_3		4		5		2		11	320
A_4		0		0		0		0	40
b_{j}	100		250		150		170		670 670

Получихме транспортна задача от затворен тип, но сега трябва да осигурим потребител B_2 да задоволи потребностите си изцяло. За целта определяме в клетка $\langle 4,2 \rangle$ транспортни разходи, които са много големи, така че този потребител да не може да получава продукция от фиктивния склад A_4 и продукцията му да бъде доставяна само от реалните производители A_1 , A_2 и A_3 . Така цената между A_4 и B_2 става $c_{42}=M$, където M>>0. По същия начин се блокра връзката между склад A_2 и потребител B_3 , като $c_{23}=M$, M>>0.

По правилата на метода на двупосочното предпочитане определяме трите групи клетки:

- с двойна маркировка клетки $\langle 4,1 \rangle$, $\langle 4,3 \rangle$ и $\langle 4,4 \rangle$;
- с единична маркировка клетки $\langle 1,4 \rangle$, $\langle 2,4 \rangle$, $\langle 3,2 \rangle$ и $\langle 3,3 \rangle$;
- без маркировка всички останали клетки.

Разпределяме товарите и получаваме разпределителната таблица която има вида *5.12.*

Таблица 5.12. \boldsymbol{B}_{i} B_1 $B_{\scriptscriptstyle 4}$ B_{2} B_3 a_{i} A_{i} 4 7 9 2 $A_{\scriptscriptstyle 1}$ 110 60 50 15 6 M 1 200 A_2 170 30 5 2 4 11 320 A_3 170 150 0 M 0 0

Броят на пълните клетки е m+n-1=4+4-1=7. Началният опорен план на

150

170

дадената транспортна задача е матрицата $X_0 = \begin{vmatrix} 60 & 50 & 0 & 0 \\ 0 & 30 & 0 & 170 \\ 0 & 170 & 150 & 0 \\ 40 & 0 & 0 & 0 \end{vmatrix}$.

250

 A_4

 b_i

40

100

Стойността на целевата функция за този план е $F(X_0) = 60.4 + 50.7 + 30.6 + 170.1 + 170.5 + 150.2 + 40.0 = 2090$.

5.5. Да се реши задача 5.4. по метода на северозападния ъгъл.

OTT.: $F(X_0) = 3600$

5.6. Да се пресметне началната стойност на целевата функция по метода на северозападния ъгъл за транспортната задача с разпределителна таблица 5.13 при условие, че склад A_1 бъде напълно освободен от продукцията си и връзката между склад A_2 и потребител B_2 е невъзможна.

Таблица 5.13.

40

670

670

							aona	79. 0.	. • .
A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		4		7		9		3	150
A_2		12		8		8		2	250
A_3		1		7		2		10	320
b_{j}	120		250		150		170		

Решение: Сумираме, за да проверявим дали е в сила балансиращото условие (5.7).

$$\sum_{i=1}^{3} a_i = 150 + 250 + 320 = 720,$$

$$\sum_{i=1}^{4} b_i = 120 + 250 + 150 + 170 = 690.$$

За да балансираме задачата, трябва да се въведе фиктивен потребител $B_{\rm 5}$ с 30 единици количество потребност и нулеви транспортни разходи. Получаваме *табл. 5.14.*

Таблица 5.14. \boldsymbol{B}_{i} B_1 B_2 B_3 B_4 B_5 a_{i} A_1 A_2 A_3 b_i

За да се освободи склад $A_{_1}$ от продукцията си, то той трябва да я доставя само на реални потребители, затова връзката между него и фиктивния потребител $B_{_5}$ трябва да бъде забранена като се постави транспортен разход $c_{_{15}}=M$, където M>>0. Блокраме и връзката между склад $A_{_2}$ и потребител $B_{_2}$ по същия начин и $c_{_{22}}=M$, M>>0.

Следвайки правилата на метода на северозападния ъгъл получваме следната разпределителна таблица – *таблица* – *таблица* 5.15.

									ı ao.	пица	5.15.
A_i	B_1		B_2		B_3		B_4		B_5		a_i
$A_{\rm l}$	120	4	30	7		9		3		М	150
A_2		12	220	М	30	8		2		0	250
A_3		1		7	120	2	170	10	30	0	320
b_{j}	120		250		150		170		30		720 720

Броят на пълните клетки е m+n-1=5+3-1=7. Началният опорен план на

дадената транспортна задача е матрицата
$$X_0 = \begin{bmatrix} 120 & 30 & 0 & 0 & 0 \\ 0 & 220 & 30 & 0 & 0 \\ 0 & 0 & 120 & 170 & 30 \end{bmatrix}$$
 .

Стойността на целевата функция за този план є $F\left(X_0\right)=120.4+30.7+220.M+30.8+120.2+170.10+30.0=2870+220.M$, където M>>0 .

5.7. Да се реши задача 5.6. по метода на двупосочното предпочитане.

ОТГ.:
$$F(X_0) = 2170 + 50.M$$

За следните транспортни задачи да се намери начален опорен план:

- а) по метода на северозападния ъгъл;
- б) по метода на двупосочното предпочитане.

Да се пресметне началната стойност на целевата функция по всеки от двата метода и да се направи сравнение между тях. Съответните разпределителни таблици са:

5.8.

	Таблица 5.16.									
A_i	B_{1}		B_2		B_3		a_{i}			
A_1		1		3		4	12			
A_2		2		5		3	8			
A_3		6		7		5	10			
b_{j}	6		9		15					

OTT.: a)
$$F(X_0) = 104$$

6)
$$F(X_0) = 104$$

5.9.

						T	абли	ца 5.	17.
A_i	B_1		B_2		B_3		B_4		a_i
A_1		6		2		3		1	30
A_2		5		11		4		2	50
A_3		1		8		6		1	50
b_{j}	20		40		60		10		

Отг.: *a)*
$$F(X_0) = 1000$$

6)
$$F(X_0) = 430$$

	Таолица 3. го.								
A_i	B_1		B_2		B_3		B_4		a_{i}
$A_{\rm l}$		1		2		2		3	11
A_2		4		5		6		11	11
A_3		5		7		9		12	11
A_4		10		8		12		13	11
b_{j}	17		7		10		8		

OTT.: a)
$$F(X_0) = 291$$

6)
$$F(X_0) = 280$$

A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		26		20		15		14	40
A_2		17		12		22		16	30
A_3		22		14		12		30	50
b_{j}	32		25		35		28		

Отг.: *a)*
$$F(X_0) = 2586$$

6)
$$F(X_0) = 1939$$

5.12.

Таблица 5.20.

	74077444 0:20:								
B_j A_i	B_1		B_2		B_3		B_4		a_i
$A_{\rm l}$		5		8		10		4	250
A_2		13		9		9		3	350
A_3		2		8		3		11	420
b_{j}	220		350		250		380		

ОТГ.: a)
$$F(X_0) = 7350$$

6)
$$F(X_0) = 4050$$

5.13.

Таблица 5.21.

	. 401.444 0.2								
B_j A_i	B_1		B_2		B_3		B_4		a_{i}
$A_{\rm l}$		6		9		11		4	30
A_2		12		8		10		3	60
A_3		6		7		4		13	120
b_{j}	80		25		15		70		

Отг.: a)
$$F(X_0) = 1935$$

6)
$$F(X_0) = 1025$$

5.14. От складове A_1 , A_2 и A_3 с наличности (150;250;320) към потребители B_1 , B_2 , B_3 и B_4 с потребности съответно (120;250;150;270) се транспортират количества продукти, като цените за единица продукт от склад A_i до потребител B_i са дадени

с платежната матрица
$$C = \begin{vmatrix} 5 & 6 & 10 & 4 \\ 13 & 9 & 9 & 3 \\ 2 & 8 & 3 & 11 \end{vmatrix}$$
 . Да се намери начален опорен план на

транспортната задача по метода на северозападния ъгъл при условие, че склад A_3 бъде напълно освободен от продукцията си. За намереният опорен план да се пресметне началната стойност на целевата функция.

ОТГ.:
$$F(X_0) = 1935$$