TP4IA_Hategekimana_Fabrice

5.1 Formulation du problème sous forme d'un csp

règles à vérifier: adjacence, côté

- 1. Déterminer:
 - 1. Variables du problème:
 - la position de la cave C ($D=\{1,2,3,4\}$)
 - la position de la fenêtre F ($D=\{1,2,3,4\}$)
 - la position de la porte P ($D=\{1,2,3,4\}$)
 - 2. Possibilité:
 - Je ne vois qu'une seule possibilité mais ce choix n'est pas unique
 - On a donc les variables $A=\{C, F, P\}$ ou $A=\{C, W, D\}$
 - 3. Contraintes du problèmes (forme <X1,,Xn>: <a1,,an>,,<b1,,bn>)
 - $\langle F, C \rangle$: $\langle piece(F) = X, piece(C) = Y \rangle$, X != Y
 - $\langle F,C \rangle$: $\langle piece(F) = X, adjacent(C) = Y \rangle$, X != Y
 - : $\langle nb(adjacent(F)=X) \rangle$, X >= 2
 - : $\langle nb(adjacent(P)=X)\rangle$, X >= 2
 - La fonction piece() retourne le numéro de la pièce où se trouve l'objet
 - La fonction adjacent() retourne toutes les pièces adjacentes

5.2 Backtracking

On utilise l'algorithme du backtracking:

PSC_BACKTRACKING(A: affectation, D:domaines) 1. Si $A=S_G$ alors retourner A 2. Sélectionner une variable x_p non affectée 3. Pour chaque valeur v_p de D_p faire: - Ajouter $x_p <$ - v_p dans A - D <- FORWARD_CHECKING(A,D) - si aucun domaine de D n'est vide: - Retourner PSC_BACKTRACKING(A,D) - sinon: - Retourner échec

Résultats:

```
Etape 1. CU C=0; D=0; W=0
Etape 2. AV C=1; D=0; W=0
Etape 3. FC C=1; D=0; W=0
Etape 4. AV C=1; D=3; W=0
```

```
Etape 5. FC C=1; D=3; W=0

Etape 6. AV C=1; D=3; W=3

Etape 7. FC C=1; D=3; W=3

final: { 'C': 1, 'D': 3, 'W': 3}}
```