

B38EM Introduction to Electricity and Magnetism

Lecture 5

Electrostatics (part 3)

Dr. Yuan Ding (Heriot-Watt University)
yuan.ding@hw.ac.uk
yding04.wordpress.com

Topics

- Coulomb Law & Gauss Law
- Parallel Plate Capacitor
- Energy Storage in a Capacitor
- Capacitance
- Dielectric
- Polarisation Density

References & Resources

 Elements of Electromagnetics (7th Edition), by Sadiku, Oxford University Press

Fundamentals of Applied Electromagnetics (7th Edition), by Ulaby and Ravaioli

 Field and Wave Electromagnetics (2nd Edition), by David K. Cheng

• ...

Coulomb Law & Gauss Law

Coulomb's Law:

$$F_e = \frac{Q_1 \times Q_2}{4\pi\varepsilon_0 r^2}$$

Gauss Law:

The total flux is independent of the surface area and equal to the net charge enclosed.

$$\Psi = DS = Q$$
 $D = \varepsilon_0 E$

Coulomb Law & Gauss Law

Assume for "Gaussian surface" a sphere at the centre of which lies the charge. Due to symmetry we can write

$$q = \varepsilon_o E \cdot (4\pi r^2) \Longrightarrow E = \frac{q}{4\pi \varepsilon_o \cdot r^2}$$

And therefore the force experienced by a charge Q due to q

$$F = \frac{q \cdot Q}{4\pi\varepsilon_o \cdot r^2}$$

⇒ Coulomb's law can be derived by Gauss's law.

Capacitor

Capacitor: as a means to store energy

Advantages

- efficient
- low inertia, therefore high speed

Disadvantages

low energy density – limited by flashover at e.g. 3
 MV/m for air

Parallel Plate Capacitor

Electric field between two oppositely charged plates (assuming large surface and short separation) is uniform; therefore potential varies linearly

$$V = \int_{-d/2}^{d/2} \vec{E} \cdot \vec{dl} = \int_{-d/2}^{d/2} E \cdot dl = E \int_{-d/2}^{d/2} dl = E \cdot d$$

Parallel Plate Capacitor

Suppose that a potential difference *V* is applied across two parallel plates separated by air.

$$E = V / d$$
 $D = \varepsilon_0 E$
 $\therefore \Psi \propto V$

Parallel Plate Capacitor

$$E = V / d$$
 $D = \varepsilon_0 E$
 $\therefore \Psi \propto V$

From Gauss Theorem,

$$\Psi = Q$$

$$\therefore Q \propto V$$

$$\therefore Q = CV$$

where *C*, the constant of proportionality, is the *capacitance*. Hence capacitance is

$$C = Q/V (Farads \ or \ F)$$

Energy Stored in a Capacitor

A charge of one coulomb (1 C) receives or delivers an energy of one joule (1 J) when it moves through a voltage of one volt (1 V).

$$\left. \begin{array}{l} w = qv \\ q = Cv \end{array} \right\} \quad dw = q \cdot dv = Cv \cdot dv$$

$$W = \frac{1}{2}CV^2 = \frac{1}{2C}Q^2 = \frac{1}{2}QV$$

Determination of Capacitance

$$C = rac{Q}{V}$$

- Start with arbitrary charges of Q and –Q on the electrodes
- Use Gauss Theorem to obtain the electric flux \(\mathcal{Y} \)
- Obtain the electric flux density D
- Obtain the electric field strength from $D = \varepsilon_0 E$
- Obtain the voltage between the electrodes from

$$V_{AB} = \int_{A}^{B} E dx$$

Parallel Plates

$$\therefore C = \frac{\varepsilon_0 S}{d}$$

Capacitors in Parallel

$$\begin{array}{c|c} C & Q = Q_1 + Q_2 + \dots \\ \hline \end{array}$$

$$C_{\rm eq} = \frac{Q}{V} = \frac{Q_1 + Q_2}{V} = \frac{Q_1}{V} + \frac{Q_2}{V} \qquad \qquad C = C_1 + C_2 + \dots$$

Capacitors in Series

$$\begin{array}{c|c} C & -Q \\ \hline \end{array}$$

$$\frac{1}{C_{\text{eq}}} = \frac{V}{Q} = \frac{V_1 + V_2}{Q} = \frac{V_1}{Q} + \frac{V_2}{Q}.$$

$$1/C = 1/C_1 + 1/C_2 + \dots$$

Capacitors and Dielectrics

A block of insulating material becomes polarized as follows:

Capacitors and Dielectrics

Capacitor with dielectric:

Gauss Law: $(Q - q) = \varepsilon_0 \cdot E \cdot S$, so that E is reduced once a dielectric is introduced.

Also we can rewrite Gauss Law:

$$Q = \frac{Q}{Q - q} \cdot \varepsilon_0 \cdot E \cdot S = \varepsilon_r \cdot \varepsilon_0 \cdot E \cdot S \quad \text{where} \quad \varepsilon_r = \frac{Q}{Q - q}$$

$$\therefore D = \varepsilon_r \cdot \varepsilon_0 \cdot E$$

Capacitors and Dielectrics

Since $V = E \cdot d$, a fixed charge Q will produce a lower voltage (since E is now reduced)

The capacitance is increased. Express this by a factor $\epsilon_{\rm r}$

$$C = \frac{\varepsilon_r \varepsilon_0 S}{d}$$
$$\varepsilon_r = \frac{Q}{Q - q}$$

 ε_r is *relative permittivity* (1.0 for air).

Polarisation Density

Polarisation density is a vector field that expresses the density electric dipole moments in a dielectric material

The polarization density, \vec{P} , defines the electric flux density according to

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

(remember that so far we were using $\overrightarrow{D} = \varepsilon_r \varepsilon_0 \overrightarrow{E}$)

Energy Stored in a Capacitor

$$W = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{\varepsilon_{r}\varepsilon_{0}S}{d}(Ed)^{2}$$
$$= \frac{1}{2}\varepsilon_{r}\varepsilon_{0}E^{2} \times volume$$

For example, ε_r for mica is 5 and E_{max} = 600 kV/cm.

$$\therefore W_{\text{max_density}} \approx 80,000 J / m^3$$