

Talstelsels

- Decimale stelsel
- Binaire stelsel
- Hexadecimale stelsel
- Octale stelsel

Negatieve binaire getallen

- Teken/grootte notatie
- Plus n-notatie
- Een- en tweecomplementnotatie
- Overflow

Niet-gehele binaire getallen

- 'Floating point'-getallen
- IEEE-notatie

BCD-getallen

(PXL)IT Decimale stelsel – Definitie

- <u>Decimaal</u> = tiendelig = basis-10
- Grondtal = 10
- 10 symbolen: 0 1 2 3 4 5 6 7 8 9
- XX₍₁₀₎

(PXL)IT Decimale stelsel – Definitie

ALGEMENE FORMULE

$$G = \sum$$
 symbool x grondtal positie

ALGEMENE FORMULE DECIMAAL STELSEL

$$G = \sum$$
 symbool x 10 positie

(PXL)IT Decimale stelsel – Voorbeeld

$$54 \rightarrow 5 \times 10^1 + 4 \times 10^0$$

165
$$\rightarrow$$
 1 x 10² + 6 x 10¹ + 5 x 10⁰

$$6452 \rightarrow 6x10^3 + 4x 10^2 + 5x 10^1 + 2x 10^0$$

$$G = \sum$$
 symbool x grondtal positie

(PXL)IT Decimale stelsel – Samenvatting

Samenvatting

Opmerking

$$X^{0} = 1$$

$$X^1 = X$$

(PXL)IT Decimale stelsel

- Wetenschappelijke notatie:
- $6452 = +6,452 \cdot 10^{+3}$
 - GETAL =
 - toestandsteken x mantisse x grondtal positie
 - Waarbij 1 < mantisse < grondtal

Talstelsels

- Decimale stelsel
- Binaire stelsel
- Hexadecimale stelsel
- Octale stelsel

Negatieve binaire getallen

- Teken/grootte notatie
- Plus n-notatie
- Een- en tweecomplementnotatie
- Overflow

Niet-gehele binaire getallen

- 'Floating point'-getallen
- IEEE-notatie
- BCD-getallen

(PXL)IT Binaire stelsel - Definitie

- Binair
- Grondtal = 2
- 2 cijfersymbolen: 0 1
- XX₍₂₎

Bit = toestand van aan of uit (=binary digit) Byte (by eight) = 8 bits

(PXL)IT Binaire stelsel - Definitie

ALGEMENE FORMULE

$$G = \sum$$
 symbool x grondtal positie

ALGEMENE FORMULE BINAIR STELSEL

$$G = \sum$$
 symbool x 2 positie

$$G = \sum_{\mathbf{1}} \mathbf{0}$$

$$\mathbf{1}$$

$$\mathbf{1}$$

$$\mathbf{1}$$

$$\mathbf{2}^{0} \rightarrow \mathbf{1}$$

$$\mathbf{2}^{1} \rightarrow \mathbf{2}$$

$$\mathbf{2}^{2} \rightarrow \mathbf{4}$$

$$\mathbf{2}^{3} \rightarrow \mathbf{8}$$

$$\mathbf{2}^{4} \rightarrow \mathbf{16}$$

Decimaal

Binair

Hexadecimaal

Octaal

(PXL)IT Binaire stelsel - Definitie

De bits krijgen volgens hun plaats volgende waarde.

Bitpositie	2 ^{positie}	Decimale waarde
Bits 7	2 ⁷	128
Bits 6	2 ⁶	64
Bits 5	2 ⁵	32
Bits 4	24	16
Bits 3	2 ³	8
Bits 2	2 ²	4
Bits 1	2 ¹	2
Bits 0	2 ⁰	1

Opmerking

1-2-4-8-16-32-64-128-256-512-1024-2048

Decimaal

Binair

Hexadecimaal

Octaal

(PXL)IT Binaire stelsel - Voorbeeld

• Vb:

DECIMAAL (Herhaling)

165 (10)
$$\rightarrow$$
 1 x 10² + 6 x 10¹ + 5 x 10⁰

BINAIR (Voorbeeld)

$$1001_{(2)} \rightarrow 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$1001_{(2)} \rightarrow 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1$$

$$1001_{(2)} \rightarrow 9_{(10)}$$

(PXL)IT Binaire stelsel – Bitpositie

- Bitpositie → Verwijst naar de significantie
 - MSB = Most Significant bit
 - LSB = Least Significant bit

MSB	7	6	5	4	3	2	1	0	LSB
	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	
	128	64	32	16	8	4	2	1	
					1	0	0	1	

• Voorbeeld: 1001₍₂₎

$$=9_{(10)}$$

(PXL)IT Binaire stelsel – Bits & Bytes

Eenheden van bits en bytes

afk.	naam	decimaal	waarde
K	Kilo	10 ³	1000
M	Mega	10 ⁶	1000000
G	Giga	10 ⁹	100000000
Т	Tera	10 ¹²	100000000000
Р	Peta	10 ¹⁵	1000000000000000
E	Exa	10 ¹⁸	100000000000000000000000000000000000000
Z	Zetta	10 ²¹	100000000000000000000000000000000000000
Υ	Yotta	10 ²⁴	100000000000000000000000000000000000000
afk.	naam	binair	waarde
ain.		W	110.01.010
Ki	Kibi	2 ¹⁰	1024
Ki	Kibi	2 ¹⁰	1024
Ki Mi	Kibi Mebi	2 ¹⁰ 2 ²⁰	1024 1048576
Ki Mi Gi	Kibi Mebi Gibi	2 ¹⁰ 2 ²⁰ 2 ³⁰	1024 1048576 1073741824
Ki Mi Gi Ti	Kibi Mebi Gibi Tebi	2 ¹⁰ 2 ²⁰ 2 ³⁰ 2 ⁴⁰	1024 1048576 1073741824 1099511627776
Ki Mi Gi Ti Pi	Kibi Mebi Gibi Tebi Pebi	2 ¹⁰ 2 ²⁰ 2 ³⁰ 2 ⁴⁰ 2 ⁵⁰	1024 1048576 1073741824 1099511627776 1125899906842624
Ki Mi Gi Ti Pi Ei	Kibi Mebi Gibi Tebi Pebi Exbi	2 ¹⁰ 2 ²⁰ 2 ³⁰ 2 ⁴⁰ 2 ⁵⁰ 2 ⁶⁰	1024 1048576 1073741824 1099511627776 1125899906842624 1152921504606846976

(PXL)IT Binaire stelsel - omzetten naar binair

"Herhaalde deling van het om te zetten getal door het grondtal (tot het quotiënt van een deling nul wordt).

De rest van elke deling vormt een bit binnen het binaire getal (beginnende met de LSB). "

Binair

(EXL)IT Binaire stelsel – $X_{(10)} \rightarrow X_{(2)}$ Voorbeeld

$$94_{(10)} = BINAIR ?$$

94	/2	
47	0	LSB
23	1	
11	1	ting
5	1	eesrichting
2	1	ee S
1	0	-
0	1	MSB
	I	-

Methode 1
"deling door het grondtal"

(PXL)IT Binaire stelsel – $X_{(10)} \rightarrow X_{(2)}$ Voorbeeld

$$94_{(10)} = BINAIR ?$$

7	6	5	4	3	2	1	0
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
0	1	0	1	1	1	1	0

$$\Rightarrow 30-16=14$$

$$\Rightarrow 14-8=6$$

$$\Rightarrow 6-4=2$$

$$\Rightarrow 2-2=0$$

Methode 2
"Splitsen in gewichten"

Binaire stelsel – omzetten van binair– $X_{(2)} \rightarrow X_{(10)}$

Omzetting

$$= 0^{27} + 1^{26} + 0^{25} + 1^{24} + 1^{23} + 1^{22} + 1^{21} + 0^{20}$$

(PXL)IT Binaire stelsel - Optellen

Optellen in het binaire stelsel

• 0 + 0 = 0

•
$$0 + 1 = 1$$

•
$$1 + 1 = 10$$

- met een 1 als overdracht naar de volgende kolom
- 1+1+1=11
 - ⇒ met een 1 als overdracht naar de volgende kolom

(PXL)IT Binaire stelsel – Optellen voorbeeld

Optellen met positieve binaire getallen

Vb 1: binaire optelling zonder overdrachten

$$6 + 8 = 14$$

$$00000110 \rightarrow 6$$

$$00001000 \rightarrow 8$$

$$00001110 \rightarrow 14$$

Vb 2: binaire optelling met overdrachten

$$15 + 9 = 24$$

1111 dit zijn de overdrachten 00001111 \rightarrow 15 \rightarrow 9 00001001 00011000 \rightarrow 24

(PXL)IT Binaire stelsel - oefeningen

- Binair -> Decimaal
- 1001 0011 =
- 1101 1001 =
- 1001 1001 =
- Decimaal -> Binair
- 12 =
- **72** =
- 83 =
- **100** =
- 200 = ...

There are only 10 types of people in the world: Those who understand binary and those who don't.

CISCO BINARY GAME

Decimaal

Binair

Hexadecimaal

Octaal

Talstelsels

- Decimale stelsel
- Binaire stelsel
- Hexadecimale stelsel
- Octale stelsel

Negatieve binaire getallen

- Teken/grootte notatie
- Plus n-notatie
- Een- en tweecomplementnotatie
- Overflow

Niet-gehele binaire getallen

- 'Floating point'-getallen
- IEEE-notatie
- BCD-getallen

(PXL)IT Hexadecimale stelsel - Definitie

<u>Hexa</u>decimaal = 16 - delig

Grondtal = 16

- 16 symbolen:
 - 0123456789ABCDEF
- XX₍₁₆₎ of XX_(h)

(PXL)IT Hexadecimale stelsel - Definitie

Algemene formule

$$G = \sum$$
 symbool x grondtal positie

(PXL)IT Hexadecimale stelsel – Definitie


```
= 4 \text{ bits} \qquad = 1/2 \text{ byte} \qquad = \text{van } 0 \text{ tot } 2^4
NIBBLE
NIBBLE
              = 0-15_{(10)}
              = 0-F_{(16)}
              = 0000_{(2)} - 1111_{(2)}
NIBBLE = 1 HEX-symbool
```

Opmerking

HEX = kortere schrijfwijze dan binair HEX = eenvoudig van en naar binair! (grondtal is 24)

(PXL)IT Hexadecimale stelsel - Definitie

Hexadecimaal	Binair	Decimaal	
0	0000	0	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	
7	0111	7	
8	1000	8	
9	1001	9	
Α	1010	10	
В	1011	11	
С	1100	12	
D	1101	13	
Е	1110	14	
F	1111	15	
Decimaal Bina	ir Hexadeci	imaal Octaa	l

(PXL)IT Hexadecimale stelsel - Voorbeeld

DECIMAAL (Herhaling)

Voorbeeld: 1A (h)
$$165$$
 (10) \rightarrow 1 x $10^2 + 6$ x $10^1 + 5$ x 10^0

Grondtal 16, algemene formule IDEM!

Decimaal:
$$1*16^1 + A*16^0 = 1*16+10*1 = 26_{(10)}$$

Binair:

1 A
$$_{(h)} =$$

(PXL)IT Hexadecimale stelsel - Voorbeeld

F6_(h)

Decimaal:
$$F*16^1 + 6*16^0$$

= $15*16 + 6*1$
= $246_{(10)}$

Binair: F
$$\frac{6}{(h)} = \frac{1111}{0110} = \frac{0110}{(2)}$$

Hexadecimale stelsel – Decimaal naar HEX $X_{(10)} \rightarrow X_{(h)}$

Omzetting

Hexadecimale stelsel – Decimaal naar HEX $X_{(10)} \rightarrow X_{(h)}$

$$2356_{(10)} = HEX ?$$

$$2356_{(10)} = 934_{(h)}$$

PXL)IT Hexadecimale stelsel – HEX naar binair $X_{(h)} \rightarrow X_{(2)}$

BAF5 $_{(h)}$ = BIN ??

BAF5_(h) = 1011 1010 1111 0101₍₂₎

"Opdeling in groepjes van 4 bits" 1011

1010 $A \rightarrow$ **F** → 1111

5 **→** 0101

BAF5 = 0101 (2) 1011 1010 1111

Hexadecimale stelsel – Binair naar HEX - $X_{(2)} \rightarrow X_{(16)}$

 $01001010_{(2)} = HEX ?$

0100 1010 ₍₂₎ = 4A_(h)

0100₍₂₎ \rightarrow 4_(h)

1010₍₂₎ → A_(h)

Hexadecimale stelsel – Binair naar HEX - $X_{(2)} \rightarrow X_{(16)}$

 $101\overline{1}\ 1010\ \overline{1111}\ 0101_{(2)} = XX_{(h)}$

1011 1010 1111 0101 (2) = BAF5(h)

1011 (2)

-

B (h)

1010 (2)

→

A (h)

1111 (2)

→

F (h)

0101 (2)

→

5_(h)

Decimaal

Binair

Hexadecimaal

Octaal

(PXL)IT Hexadecimale stelsel - Oefening

Talstelsels

- Decimale stelsel
- Binaire stelsel
- Hexadecimale stelsel
- Octale stelsel

Negatieve binaire getallen

- Teken/grootte notatie
- Plus n-notatie
- Een- en tweecomplementnotatie
- Overflow

Niet-gehele binaire getallen

- 'Floating point'-getallen
- IEEE-notatie
- BCD-getallen

 \underline{Oct} aal = 8 - delig

Grondtal = 8

8 symbolen: 0 1 2 3 4 5 6 7

 $XX_{(8)}$

ALGEMENE FORMULE

$$G = \sum$$
 symbool x grondtal positie

Binair groepje van 3 bits.

 \rightarrow 2³ mogelijkheden = 8

Octaal	Binair	Decimaal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

De positie van het octale getal bepaalt de waarde van de digit.

Positie	8positie	Decimale waarde
0	80	1
1	8 ¹	8
2	8 ²	64
3	83	512
4	84	4096
5	8 ⁵	32768

(PXL)IT Octale stelsel - Voorbeeld

25₍₈₎ = DEC
$$\rightarrow$$
 2*8¹+5*8⁰ = 2*8+5 = 16+5 = 21

BIN
$$\rightarrow$$
 00 010 101 (2)

2 5 (8)

HEX
$$\rightarrow$$
 vanuit binair-> $0001 \ 0101_{(2)} = 15_{(h)}$

HEX naar DEC: 1*16 + 5

(PXL)IT Octale stelsel - Voorbeeld

357 (8) =

DEC =
$$3*8^2 + 5*8^1 + 7*8^0$$
= $3*64 + 5*8 + 7$
= $192+40+7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

E F (h)

F F (h)

F DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

E F (h)

E F (h)

BIN par DEC = $3*64 + 5*8 + 7$

E F (h)

E F (h)

BIN par DEC = $3*64 + 5*8 + 7$

E F (h)

E F (h)

BIN par DEC = $3*64 + 5*8 + 7$

E F (h)

BIN par DEC = $3*64 + 5*8 + 7$

E F (h)

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*8 + 7$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5*64 + 32 + 15$

BIN par DEC = $3*64 + 5$

(PXL)IT Octale stelsel - Oefeningen

Oefeningen

$$178_{(10)}$$

$$= ..._{(8)} = ..._{(2)} = ..._{(16)} = ..._{(10)}$$

$$= ..._{(16)} = ..._{(2)} = ..._{(8)} = ..._{(10)}$$