Homework 2

顾淳 19307110344

```
In [1]:
                                                                                                M
import nltk
from nltk import sent tokenize, word tokenize, ngrams, FreqDist, ConditionalFreqDist
import matplotlib.pyplot as plt
from collections import defaultdict
import numpy as np
import json
import re
import random
import math
import time
import pickle
import pandas as pd
import copy
import os
```

Task 1

In [2]:

Train word embeddings using SGNS: Use our enwiki 20220201.json as training data.

Preprocessing

```
np. random. seed(0)
wiki_data = []
with open("enwiki_20220201. json", "r") as f:
    for each_line in f:
        record = json. loads(each_line)
        wiki_data. append(record)

1 = len(wiki_data)

In [3]:

def preprocess(sentence):
    # 将句内除字母、数字、空格外的所有字符替换为空格
    res = re. sub(r'[^w\s]', '', sentence)
    return res. lower()
```

对每篇文章进行分词

M

```
In [5]:
words = [word_tokenize(preprocess(text['text'])) for text in wiki_data]
```

定义 dataset 类

In [6]:

N

```
class dataset:
   def init (self, words, **kwargs):
       # 对数据集进行采样,随机丢弃出现频率高的单词
        self.words=dataset.downsample(words)
        self.vocab=FreqDist([word for text in self.words for word in text])
        self. vocab['<unknown>']=0
        # 序号->单词 映射, 频率
        self. index2word, self. frequency=np. array(list(self. vocab. items())). T
        self. frequency=self. frequency. astype (np. float32)
        self. frequency/=self. frequency. sum()
        self.indexes=np.arange(len(self.index2word))
       # 单词->序号 映射
        self.word2index={word:i for i, word in enumerate(self.index2word)}
        # 获得中心词,上下文,负采样
       self.centers, self.contexts, self.negatives=self.get_center_context(**kwargs)
   @staticmethod
   def downsample (words, t=1e-4):
        下采样高频词
        vocab = FreqDist([word for sent in words for word in sent])
       N = \text{vocab.} N()
       # 按照概率, 随机丢弃高频词
       def drop (word):
           return random. random() \langle \max(1-\text{math. sqrt}(t/(\text{vocab}[\text{word}]/\text{N})), 0) \rangle
       return [[word for word in text if not drop(word)] for text in words]
   def get center context(self, **kwargs):
        获得中心词、上下文、负采样
       window=kwargs.get('window', 2)
       alpha=kwargs.get('alpha', 0.75)
       k=kwargs. get('k', 5)
       centers=[]
       contexts=[]
       # 从数据集中获得中心词和上下文
        for sent in self.words:
           for i in range (window, len (sent) -window):
                center=self.word2index[sent[i]]
                centers. append (center)
                context = sent[i-window:i]+sent[i+1:i+window+1]
                contexts.append([self.word2index[word] for word in context])
        centers=np. array (centers)
        contexts=np. array (contexts)
       weights=np.array([self.vocab[word] for word in self.index2word])**alpha
       weights = weights/np. sum(weights)
       negatives=self.negative sample(contexts, weights, k)
       not na=(negatives.isna().sum(axis=1)==0).values
       negatives=negatives.values
       return centers not na], contexts not na], negatives not na]. astype (int)
   def negative sample (self, contexts, weights, k):
        负采样
       # 随机生成负采样样本
       neg_sample=np.random.choice(self.indexes, size=(len(contexts), len(contexts[0])*k), p=weights)
```

```
a=contexts[:, None].repeat(len(contexts[0])*k, axis=1)
   b=neg sample[:,:,None]
   # 获得与上下文有重叠的部分(需要被取代)
   condition=((a==b)). prod(axis=-1)
   new=np. where (condition, neg sample, np. nan)
   df=pd. DataFrame (new)
   # 用前项或后项填充重叠部分
   df. fillna (method='bfill', axis=1, inplace=True)
   df. fillna (method='ffill', axis=1, inplace=True)
   return df
def __getitem__(self, i):
    从数据集中获取中心词、上下文、负采样
   centers=self.centers[i]
   context_neg=np. concatenate([self. contexts[i], self. negatives[i]], axis=1)
   # 上下文标签为 1, 负采样标签为 0
   labels=np.concatenate([np.ones_like(self.contexts[i]), np.zeros_like(self.negatives[i])], axis
   return centers, context_neg, labels
def __len__(self):
    数据集大小
   return len (self. centers)
```

定义 batch_loader 类

用于批量读取数据

```
In [7]:
```

```
class batch loader:
   def __init__(self, dataset, batch=16, shuffle=True):
        self.dataset=dataset
        self.batch=batch
        self. i=0
        self. N=len(dataset)
       # 随机取样
        self.shuffle=shuffle
   def iter (self):
       return self
   def next (self):
        if self. i>self. N:
           self. i=0
           #raise StopIteration
        self. i+=self. batch
       # 随机取样
        if self. shuffle:
           x=random. randint (1, self. N-self. batch)
        else:
           x=self.i
        return self.dataset[x:x+self.batch]
```

定义 skip-gram 模型

In [8]:

```
class mymodel:
   def __init__(self, embed_dim, vocab_size):
       self.dim = embed_dim
       self.vocab size = vocab size
       # 中心词矩阵
       self. embed v = np. random. randn (self. vocab size, self. dim)
       # 上下文矩阵
       self. embed w = np. random. randn (self. vocab size, self. dim)
   def call (self, center, context, label):
       self.center = center
       self.context = context
       # 从中心词、上下文矩阵中取出对应的词向量
       self.v = v = np. expand_dims(self. embed_v[center], 1)
       self.w = w = self.embed_w[context]
       # 中心词向量和上下文向量点乘
       pred = (v * w).sum(axis=-1)
       # 计算 sigmoid
       logit = sigmoid(pred)
       # 损失函数
       loss = -np. mean((label * np. log(logit) + (1 - label) * np. log(1 - logit)))
       # 计算中心词和上下文矩阵的梯度, 便于后续梯度下降
       self.dv = -(w * np.expand\_dims(label * (1 - logit) - (1 - label) * logit, -1)).sum(axis=1,
       self.dw = -(v * np.expand_dims(label * (1 - logit) - (1 - label) * logit, -1))
       return loss
   def step(self, lr=1e-5):
       反向传播更新参数
       # 梯度下降
       self.embed v[self.center] -= self.dv.reshape(-1, self.dv.shape[-1]) * lr
       self.embed_w[self.context.reshape(-1)] -= self.dw.reshape(-1, self.dw.shape[-1]) * lr
   def save(self, path):
       np. save(path + '.npy',
               {'dim': self.dim, 'vocab size': self.vocab size, 'embed v': self.embed v, 'embed w':
   def load(self, path):
       dic = np.load(path + '.npy', allow_pickle=True).item()
       self.dim = dic['dim']
       self.vocab size = dic['vocab size']
       self.embed v = dic['embed v']
       self.embed w = dic['embed w']
def sigmoid(x):
   sigmoid 函数
   s = 1 / (1 + np. exp(-x) + 1e-8)
   return s
def onehot(x, size):
   将序号转换为onehot形式(未使用,由于计算量太大,效率很低)
   if len(x. shape) == 2:
       return (np. arange(size) == x[:,:, None]). astype(int)
   elif len(x. shape) == 1:
```

```
return (np.arange(size) == x[:, None]).astype(int)
```

定义训练函数 (由于数据集极大, 故不设置验证集)

```
In [9]:
```

```
def train(kwargs):
   训练函数
   # 如果改变 windows, k, alpha 等超参数,则需要更新训练集
   if kwargs.get('change', False):
        train_set.centers, train_set.contexts, train_set.negatives=train_set.get_center_context(**kwar
   # 获得 batchloader
   train loader=batch loader(train set, kwargs['batch'], shuffle=kwargs.get('shuffle', False))
   # 获得模型
   m=mymodel(kwargs['embed_dim'], len(train_set.vocab))
   if os.path.exists(kwargs['exp_name']) and kwargs.get('load', False):
       print('loading weights...')
       m. load (kwargs ['exp name'])
   i=0
   1r=kwargs['1r']
   best_loss=10000
   best iter=0
   for data in train_loader:
       i+=1
       # 前向传播, 计算 loss
       loss=m(*data)
       # 反向传播更新参数
       m. step(1r=1r)
        if i%20000==0 and kwargs.get('print', True):
           print('Exp:%s, Iteration:%06d, Loss:%.3f'%(kwargs['exp_name'],i,loss))
        # learning rate decay
        if i%kwargs['lr_decay_step']==0:
           1r/=10
           if kwargs.get('print',True):
               print('lr change to %f'%lr)
       # 保存最佳 loss, 用于后续比较
       if best_loss>loss:
           best loss=np.copy(loss)
           best iter=i
        if kwargs.get('early_stop', None) and kwargs['early stop'] <i:
           break
   m. save (kwargs ['exp name'])
   print('Exp:%s, best iter:%d, best loss:%f'%(kwargs['exp name'], best iter, best loss))
   return {'loss':loss,'model':m}
```

初始化训练集

In [10]:

```
j=0
results={}
kwargs={
   'exp name':'%03d'%j, # 实验名称
   'embed_dim':50, # 词向量长度
              # 上下文窗口大小
   'window':2,
   'alpha': 0.75, # 负采样时,用于确定每个单词的权重
   'k':5,
         # 每个 context 采样 5 个负采样
   'lr':0.001, # learning rate
   'batch':1024, # 每步 16个中心词
   'lr_decay_step':20000,
   'early_stop':1000000, # 训练 100万步后停止
   'shuffle':True,
   'print':True
train_set=dataset(words, **kwargs)
```

查看训练集大小

In [11]:

```
# 单词数,训练集大小
train_set.vocab.B(),len(train_set)
```

Out[11]:

(357306, 24220900)

进行实验选择各超参数

对比词向量长度分别为30,50,100,200时,模型的表现。

实验发现当词向量长度为 200 时,效果最好。

(由于实验耗时长, 耗内存高, 所以分很多次进行, 未保存结果)

In []: ▶

```
j=0
embed dims=[50, 100, 200, 300]
for embed_dim in embed_dims:
    kwargs={
         exp_name':'%03d'%j,
        'embed dim':embed dim,
        'window':2,
        'alpha':0.75,
        'k':5,
        '1r':0.001,
        'batch':16,
        'lr_decay_step':200000,
        'early_stop':1000000,
        'change':True,
        'shuffle':True,
        'print':True
    print('\n\nEmbed_dim =', embed_dim)
    results[kwargs['exp_name']]={'train':train(kwargs),'kwargs':kwargs}
    j+=1
```

对比上下文窗口大小分别为3,5,7时,模型的表现。

实验发现当上下文窗口大小为5时,效果最好。

```
In [ ]:
```

```
windows=[1, 2, 3]
for window in windows:
    kwargs = \{
        'exp_name':'%03d'%j,
        'embed_dim':200,
        'window':window,
        'alpha': 0.75,
        'k':5,
        'lr':0.001,
        'batch':16,
        'lr decay step':200000,
        'early stop':1000000,
        'change':True,
        'shuffle':True,
        'print':True
    print('\n\nwindow =', window)
    results[kwargs['exp_name']]={'train':train(kwargs),'kwargs':kwargs}
    j+=1
```

对比 alpha 大小分别为 0.5, 0.75, 1时, 模型的表现。

实验发现当 alpha 大小为 0.75 时,效果最好。

In []:

```
alphas=[0.5, 0.75, 1]
for alpha in alphas:
    kwargs={
        'exp name':'%03d'%j,
        'embed_dim':200,
        'window':2,
        'alpha':alpha,
        'k':5,
        'lr':0.001,
        'batch':16.
        'lr_decay_step':200000,
        'early_stop':1000000,
        'change':True,
        'shuffle':True,
        'print':True
    print('\n\nalpha =', alpha)
    results[kwargs['exp_name']]={'train':train(kwargs),'kwargs':kwargs}
    j+=1
```

对比 k (每个上下文采样 k 个负样本) 大小分别为3, 5, 7时,模型的表现。 实验发现当 k 大小为 5 时,效果最好。

```
In [ ]:
```

```
ks=[3, 5, 7]
for k in ks:
    kwargs={
        'exp_name':'%03d'%j,
        'embed_dim':50,
        'window':2,
        'alpha':0.75,
        'k':k,
        'lr':0.001,
        'batch':16,
        'lr_decay_step':200000,
        'early stop':1000000,
        'change':True,
        'shuffle':True,
        'print':True
    results[kwargs['exp_name']]={'train':train(kwargs),'kwargs':kwargs}
    j+=1
```

对比初始 learning rate 大小分别为 1e-2, 1e-3, 1e-4, 1e-5 时,模型的表现。 实验发现当初始 learning rate 大小为 1e-2 时,效果最好。

```
In [ ]:
1rs=[1e-2, 1e-3, 1e-4, 1e-5]
for lr in lrs:
    kwargs={
        'exp name': '%03d'%j,
        'embed_dim':50,
        'window':2,
        'alpha':0.75,
        'k':5,
        'lr':1r,
        'batch':16.
        'lr_decay_step':400000,
        'early_stop':2000000,
        'shuffle':True,
        'print':True
   results[kwargs['exp_name']]={'train':train(kwargs), 'kwargs':kwargs}
    j+=1
```

用最好的一组超参数训练,得到后续要使用的模型

```
In [12]:
i=90
kwargs={
         exp_name':'%03d'%j,
        'embed_dim':200,
        'window':5,
        'alpha':0.75,
        'k':5,
        '1r':1e-2,
        'batch':16,
        'lr decay_step':2000000,
        'early_stop':10000000,
        'shuffle':True,
        'print':True
In [ ]:
results[kwargs['exp name']]={'train':train(kwargs),'kwargs':kwargs}
In [18]:
model=results['090']['train']['model']
```

Task 2

Find similar/dissimilar word pairs: Randomly generate 100, 1000, and 10000-word pairs from the vocabularies. For each set, print 5 closest word pairs and 5 furthest word pairs

定义随机获取词对,通过 cos 计算相似度的函数

```
In [13]:
                                                                                                  H
def generate_pairs(dataset, n=100):
    随机获取词对
    # 随机获取词对
    c=np. random. choice (dataset. indexes, size=(n, 2), p=dataset. frequency)
    # 去除重复词对 (两个词相同的词对)
    duplicate=c[:, 0]==c[:, 1]
    s=duplicate.sum()
    while s:
        a=np. random. choice (dataset. indexes, size=(s, 2), p=dataset. frequency)
        c[duplicate]=a
        duplicate=c[:,0]==c[:,1]
        s=duplicate.sum()
    return c
def compute_similarity(pairs, model):
    根据词对计算 cos 相似度
    data=model.embed v[pairs]
    x=data[:,0]
    y=data[:,1]
   cos=np. abs((x*y). sum(axis=1))/(np. linalg. norm(x, axis=1)*np. linalg. norm(y, axis=1))
    return cos
```

获取词对,并计算相似度进行排序,获得最相似、最不相似的 5 个词

```
In [14]:
```

展示最相似、最不相似的 5 个词

In [15]:

```
ns = [100, 1000, 10000]
for n in ns:
    print('\nRandomly select %d pairs'%n)
    print('\tThe furthest5:', end='\t')
    for pair in results2[n]['furthest5']:
        print ('%s, %s'% (pair[0], pair[1]), end='\t')
    print('\n\tThe closest5:', end='\t')
    for pair in results2[n]['closest5']:
        print('%s, %s'% (pair[0], pair[1]), end='\t')
```

```
Randomly select 100 pairs
        The furthest5: gon, removing
                                          integration, masses
                                                                    united, doors
                                                                                     esca
pes, their
                 perfect, sen
        The closest5:
                         need, was
                                          bäckmann, given warren, rescue
                                                                            announced, 2
following, uncle
Randomly select 1000 pairs
        The furthest5: foreword, agenda favourite, king during, brigade attacks, expa
nded
        deposited, winnipeg
        The closest5:
                         mills, regular
                                          related, allowed texas, confederate
                                                                                     fire
        with, parent
d, new
Randomly select 10000 pairs
        The furthest5: bursting, 13
                                          december, developers
                                                                    dramatic, raban
                                                                                     goy
a, pliny commented, to
        The closest5:
                         notable, receive ceding, produce writing, socialist
                                                                                     plac
                 patrick, anti
ed, saying
```

Task 3

Present a document as an embedding

定义获得 document embeding 的函数

```
In [70]:
                                                                                                   H
```

```
# 对文章所有词的词向量取平均获得文章向量
def doc embed all words (text, model, train set):
   words idx=np.array([train set.word2index.get(word, train set.word2index['<unknown')']) for word i
   return model.embed_v[words_idx].mean(axis=0)
# 对文章前n个词的词向量取平均获得文章向量
def doc embed first n(text, model, train set, n=100):
   words idx=np.array([train set.word2index.get(word, train set.word2index['<unknown'')]) for word i
   return model.embed v[words idx].mean(axis=0)
```

获取文章向量

```
In [71]:
def get all doc embed (texts, model, train set, method=doc embed all words, **kwargs):
    根据之前定义的方法获得文档向量
    embeds=[]
    for text in texts:
       embeds.append(method(text, model, train_set, **kwargs))
    embeds=np. array (embeds)
    return embeds
   [59]:
In
# 用文档所有词向量求平均获得文章向量
doc embeds 1=get all doc embed (words, model, train set, method=doc embed all words)
   [66]:
In
                                                                                               H
# 用文章前 100 个词向量求平均得到结果
doc_embeds_2=get_all_doc_embed(words, model, train_set, method=doc_embed_first_n, n=1000)
使用 Doc2Vec 库函数
   [72]:
                                                                                               M
In
from gensim. models. doc2vec import TaggedDocument
from gensim. models import Doc2Vec
data=[TaggedDocument(sent,[i]) for i, sent in enumerate(words)]
In
   [ ]:
doc_model=Doc2Vec(vector_size=40, min_count=1, epochs=30)
doc model.build vocab(data)
doc model.train(data, total examples=doc model.corpus count, epochs=doc model.epochs)
X_doc2vec=np.array([doc_model.infer_vector(words[i]) for i in range(10000)])
```

k 均值聚类

In [18]:

```
def k means (doc embeds, k=10):
   对所有 document 进行 k-means 聚类
   # 初始化 k 个类中心为所有文档中的任意 k 个
   np. random. seed (2000)
   idx=np.random.randint(doc_embeds.shape[0], size=k)
   #idx=np. linspace (500, 9500, 10). astype (int)
   centers=doc_embeds[idx]
   centers pre=np. zeros like (centers)
   embeds=doc_embeds[:, None, :].repeat(k, axis=1)
   df=pd. DataFrame (doc embeds)
   i=0
   while (centers!=centers_pre).sum()>0:
       i+=1
       centers_pre=np. copy (centers)
       # 对每个文档分类到其距离最近的类中
       classify=np.linalg.norm(embeds-centers, axis=-1).argsort(axis=-1)[:,0]
       # 重新计算类中心
       group_mean=df. groupby(classify).mean()
        index=group_mean.index.values
       values=group mean.values
       centers[index]=values
        if i\%1==0:
           print('Iter:%d, loss:'%i, np. square(centers-centers_pre). sum())
           print('Number of each class:', np. bincount(classify))
   print('\nIt takes %d iterations.'%i)
   print('Number of each class:', np. bincount(classify))
   return classify
```

In [60]:

classify_1=k_means(doc_embeds_1)

T+1 1 (0.2400205600465500						
	0.3498395699465528 class: [5289 6 12	22	2467	2	35	3 2155	97
	0. 16045727887223674	22	2407	2	59	5 2100	9]
Number of each		71	3533	1	76	3 1982	16]
	0. 011810366685253848	11	0000	1	10	0 1302	10]
Number of each		82	3744	1	75	3 2161	29]
	0. 006489677283829474	~-	0.11	-		·	_ ,
Number of each		93	3805	1	74	3 2377	77]
Iter:5, loss: (0. 0033172994774527138						
Number of each	class: [3282 5 24	120	3787	1	73	3 2532	173]
	0. 0013838136684537286						
	class: [3086 5 22	157	3753	1	73	3 2597	303]
	0. 0007706459600869113						_
	class: [2962 5 19	189	3720	1	73	3 2617	411]
	0. 0001922808245213929	015	0.000		7.0	0.0000	5 007
	class: [2873 5 19	215	3699	1	73	3 2606	506]
•	9. 311336742646886e-05	920	2606	1	72	2 2506	E70]
	class: [2809 5 19 5. 6193362133082746e-05	230	3686	1	73	3 2596	578]
•	class: [2771 5 19	242	3680	1	73	3 2564	642]
	5. 63974339526842e-05	242	3000	1	13	5 2504	042]
Number of each		262	3666	1	73	3 2534	692]
	2. 402662186278652e-05	202	0000	1	••	0 2001	002]
Number of each		268	3664	1	73	3 2498	743]
	1. 977887882423848e-05						_
	class: [2717 5 19	272	3646	1	73	3 2466	798]
Iter:14, loss:	1. 3441017218421053e-05						
Number of each	class: [2709 5 19	273	3630	1	73	3 2426	861]
	1. 0336724195692252e-05						
	class: [2699 5 19	274	3611	1	73	3 2396	919]
	7. 0788263450118916e-06						7
Number of each		273	3594	1	73	3 2372	965]
	6. 36777882634842e-06	050	0.555		7 0	0.0041	1010]
Number of each		273	3575	1	73	3 2341	[8101
	6. 964465540128823e-06	979	2550	1	72	2 9201	1076]
	class: [2691 5 19 7. 108834216583701e-05	213	3998	1	73	3 2301	1076]
•	class: [2685 5 19	272	3545	1	72	3 2259	1139]
	8. 682509552446782e-06	212	9949	1	12	3 2233	1100]
Number of each		272	3534	1	72	3 2204	1210]
	1. 1870652756443936e-05		0001	•		0 2201	1210,
Number of each		273	3515	1	72	3 2145	1295]
	1. 2393159360871482e-05						_
	class: [2657 5 19	273	3492	1	72	3 2081	1397]
Iter:23, loss:	1.0771800296668545e-05						
Number of each	class: [2649 5 19	273	3458	1	72	3 2018	1502]
=	8. 587412596474948e-06						
Number of each		273	3430	1	72	3 1960	1583]
	9. 88525785479242e-06						
	class: [2651 5 19	273	3401	1	72	3 1912	1663]
	5. 813744242633067e-06	074	2204	1	70	9 1000	1705]
	class: [2651 5 19	214	3384	1	72	3 1866	1725]
	5. 546868293646828e-06 class: [2654 5 19	275	3363	1	72	3 1827	17217
	3. 6921311041451674e-06		0000	1	14	0 1041	1101]
1001.20, 1055.	5. 55215115111151014E 00						

0	22/4/20 23:47						Assign	ment-	021 - Jup	yte	r Noteb	ook
	Number of each					276	3348	1	72	3	1789	1830]
	Iter:29, loss:	4. 47938	375050539	59e-()6							
	Number of each	class:	[2656	5	19	277	3329	1	72	3	1759	1879]
	Iter:30, loss:	3. 11390	024114368	783e-	-06							
	Number of each	class:	[2658	5	19	277	3317	1	72	3	1725	1923]
	Iter:31, loss:	4. 34500	038621824	06e-0)6							
	Number of each	class:	[2663	5	19	278	3303	1	72	3	1698	1958]
	Iter:32, loss:	8.39836	558297821	75e-0)7							
	Number of each	class:	[2665	5	19	278	3291	1	72	3	1685	1981]
	Iter:33, loss:	7. 33608	399618647	78e-0)7							
	Number of each	class:	[2664	5	19	278	3280	1	72	3	1674	2004]
	Iter:34, loss:	4. 54459	961709948	836e-	-07							
	Number of each	class:	[2668	5	19	278	3275	1	72	3	1663	2016]
	Iter:35, loss:	4. 23028	392410275	97e-0)7							
	Number of each	class:	[2671	5	19	278	3271	1	72	3	1655	2025]
	Iter:36, loss:	4. 45519	966117012	14e-()7							
	Number of each	class:	[2674	5	19	277	3270	1	72	3	1650	2029]
	Iter:37, loss:	1. 50752	224475948	046e-	-07							
	Number of each	class:	[2674	5	19	277	3267	1	72	3	1646	2036]
	Iter:38, loss:	4. 34562	203197562	875e-	-08							
	Number of each	class:	[2674	5	19	277	3265	1	72	3	1646	2038]
	Iter:39, loss:	6.01350	066320738	95e-(8(
	Number of each	class:	[2674	5	19	277	3262	1	72	3	1646	2041]
	Iter:40, loss:	5. 31894	169675964	42e-(8(
	Number of each	class:	[2674	5	19	277	3261	1	72	3	1646	2042]
	Iter:41, loss:	0.0										
	Number of each	class:	[2674	5	19	277	3261	1	72	3	1646	2042]
	It takes 41 ite	erations	5.									
	Number of each	class:	[2674	5	19	277	3261	1	72	3	1646	2042]

In [67]:

 ${\tt classify_2=k_means}\,({\tt doc_embeds_2})$

Iter:1, loss: (1 402082102	6880345								
Number of each				381	1235	2	328	2	7714	328]
Iter:2, loss:				301	1233	۷	320	J	1114	320]
Number of each				1149	2102	1	799	2	4005	1026]
Iter:3, loss: (1149	2103	1	199	J	4905	1020]
				1560	2601	1	960	9	2165	1596]
Number of each				1000	2091	1	900	3	3100	1990]
Iter:4, loss: (1605	9947	1	OEG	2	2605	17717
Number of each				1095	2841	1	956	3	2095	1771]
Iter:5, loss: (1700	0070	1	000	0	0574	10047
Number of each				1798	2879	1	902	3	2574	1804]
Iter:6, loss: (1000	0000	4	0.46	0	05.40	1550]
Number of each		3 2		1906	2889	1	846	3	2542	1770]
Iter:7, loss: (0000	0077	1	7.5.1	0	0550	17967
Number of each				2030	2877	1	751	3	2550	1736]
Iter:8, loss: (0100	0000		0.40	0	0500	15057
Number of each				2139	2869	1	646	3	2562	1705]
Iter:9, loss: (00.40	0015	4	505	0	0505	10547
Number of each				2246	2817	1	565	3	2565	1674]
Iter:10, loss:				00.45	0==4	_	=0.1	0	0=40	40407
Number of each				2345	2771	1	501	3	2543	1646]
Iter:11, loss:										
Number of each				2410	2698	1	458	3	2542	1625]
Iter:12, loss:				a . - a						
Number of each				2470	2598	1	420	3	2533	1613]
Iter:13, loss:										
Number of each				2511	2500	1	372	3	2553	1614]
Iter:14, loss:										_
Number of each			521	2567	2427	1	328	3	2565	1583]
Iter:15, loss:										_
Number of each				2636	2360	1	283	3	2578	1546]
Iter:16, loss:										_
Number of each				2700	2308	1	254	3	2574	1503]
Iter:17, loss:										
Number of each	class: [3 2	701	2769	2277	1	239	3	2578	1427]
Iter:18, loss:	0.00012084	7906577	7898							
Number of each	class: [3 2	739	2810	2253	1	223	3	2580	1386]
Iter:19, loss:										
Number of each	class: [3 2	769	2835	2249	1	211	3	2577	1350]
Iter:20, loss:	8.63530935	5389844	e-05							
Number of each	class: [3 2	794	2864	2241	1	200	3	2567	1325]
Iter:21, loss:	1.83650727	6064495	3e-05							
Number of each	class: [3 2	819	2880	2233	1	197	3	2560	1302]
Iter:22, loss:	2. 11525014	6112361	2e-05							
Number of each				2895	2233	1	194	3	2556	1278]
Iter:23, loss:	1.61286851	7313506	e-05							
Number of each	class: [3 2	852	2916	2232	1	192	3	2549	1250]
Iter:24, loss:										
Number of each				2932	2233	1	190	3	2546	1230]
Iter:25, loss:										_
Number of each				2939	2227	1	190	3	2550	1214]
Iter:26, loss:						_	-	-		3
Number of each			881	2947	2222	1	190	3	2552	1199]
Iter:27, loss:						•		Ŭ		
Number of each				2959	2220	1	190	3	2555	1177]
Iter:28, loss:						1	100	J	_555	
1001.20, 1000.	J. 00000170	5555010	50 00							

.022/4/20 23.47					Assign	шеш	uz i - Jup	yte	i Moten	OOK
Number of each				2966	2221	1	190	3	2550	1164]
Iter:29, loss: Number of each				2077	9917	1	190	2	2544	1155]
Iter:30, loss:				2911	2211	1	190	J	2044	1199]
Number of each				2987	2212	1	189	3	2542	1144]
Iter:31, loss:										
Number of each				2992	2208	1	189	3	2545	1137]
Iter:32, loss: Number of each				2001	2200	1	100	2	2540	11917
Iter:33, loss:				3001	2208	1	189	3	2540	1131]
Number of each				3003	2208	1	189	3	2540	1125]
Iter:34, loss:						_				
Number of each	class: [3 2	928	3006	2207	1	189	3	2541	1120]
Iter:35, loss:										-
Number of each				3009	2207	1	189	3	2540	1116]
Iter:36, loss: Number of each				2011	2206	1	189	2	25/1	1113]
Iter:37, loss:				5011	2200	1	109	3	2041	1113]
Number of each				3014	2205	1	189	3	2542	1109]
Iter:38, loss:										
Number of each				3017	2205	1	189	3	2541	1106]
Iter:39, loss:										
Number of each				3018	2204	1	189	3	2541	1105]
Iter:40, loss: Number of each				3020	2204	1	189	2	25/1	1103]
Iter:41, loss:				3020	2204	1	109	J	2041	1100]
Number of each				3024	2203	1	189	3	2541	1100]
Iter:42, loss:										
Number of each				3024	2205	1	189	3	2541	1098]
Iter:43, loss:				2000	0005		100	0	05.44	10007
Number of each Iter:44, loss:				3022	2205	1	189	3	2544	1096]
Number of each				3024	2206	1	189	3	2541	1094]
Iter: 45, loss:				0021	2200	•	100	Ü	2011	1001]
Number of each				3023	2205	1	189	3	2542	1093]
Iter:46, loss:			e-07							
Number of each	_			3023	2206	1	189	3	2540	1091]
Iter: 47, loss:				2025	2206	1	100	2	0527	10007
Number of each Iter: 48, loss:				3025	2200	1	189	5	2001	1090]
Number of each				3025	2206	1	189	3	2535	1090]
Iter:49, loss:						-	100			10003
Number of each	class: [3 2	947	3026	2205	1	189	3	2535	1089]
Iter:50, loss:										_
Number of each				3026	2205	1	189	3	2535	1089]
Iter:51, loss: Number of each				3025	2205	1	189	2	2536	1089]
Iter:52, loss:				3023	2200	1	109	J	2000	1009]
Number of each				3026	2205	1	189	3	2535	1089]
Iter:53, loss:										_
Number of each		3 2	948	3026	2205	1	189	3	2534	1089]
Iter:54, loss:			0.40	2022	~~~ -		100	0	0=04	10007
Number of each	class: [3 2	948	3026	2205	1	189	3	2534	1089]
It takes 54 ite	erations									
Number of each		3 2	948	3026	2205	1	189	3	2534	1089]
	_	_							_	

In [88]:

 ${\tt classify_3=k_means}\,({\tt X_doc2vec})$

Itanii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Iter:1, loss: 1001.4569 Number of each class: [1861	555	820	736	1108	229	882	1356	1711	742]
Iter:2, loss: 66.57652	000	020	100	1100	223	002	1000	1111	172]
Number of each class: [1784	543	773	765	1255	402	1080	1189	1314	895]
Iter:3, loss: 28.537455	0.10		•00	1200	102	1000	1100	1011	000]
Number of each class: [1784	558	920	748	1263	479	1104	1072	1195	877]
Iter:4, loss: 17.410084		•=•			2.0				0
Number of each class: [1723	604	1063	794	1270	508	1111	1022	1113	792]
Iter:5, loss: 17.89223									
Number of each class: [1661	662	1219	843	1313	520	1121	959	1034	668]
Iter:6, loss: 21.506447									
Number of each class: [1643	728	1352	874	1362	546	1127	885	945	538]
Iter:7, loss: 15.626589									
Number of each class: [1630	823	1443	877	1418	563	1152	806	819	469]
Iter:8, loss: 8.184514									
Number of each class: [1621	884	1504	859	1449	614	1180	729	710	450]
Iter:9, loss: 6.3854303									
Number of each class: [1606	905	1566	838	1444	655	1205	680	654	447]
Iter:10, loss: 5.884942									-
Number of each class: [1588	878	1631	807	1447	682	1233	648	639	447]
Iter:11, loss: 4.9466076	001	1004	770	1 4 4 C	702	1005	COO	CO 4	4467
Number of each class: [1562 Iter:12, loss: 3.1098433	001	1664	110	1446	103	1265	623	634	446]
Number of each class: [1554	868	1673	769	1433	717	1286	608	647	445]
Iter:13, loss: 2.8488734	000	1010	100	1100	111	1200	000	011	110]
Number of each class: [1554	863	1673	767	1416	720	1286	599	677	445]
Iter:14, loss: 2.1852548									_
Number of each class: [1545	882	1677	772	1392	720	1269	593	703	447]
Iter:15, loss: 1.4230978									
Number of each class: [1539	903	1671	786	1382	712	1266	591	704	446]
Iter:16, loss: 0.71358573									-
Number of each class: [1532	911	1676	795	1370	707	1265	591	706	447]
Iter:17, loss: 0.33653718									= 7
Number of each class: [1525	930	1678	802	1368	699	1259	590	702	447]
Iter:18, loss: 0.32768932	022	1674	905	1270	600	1940	E00	707	4407
Number of each class: [1527 Iter:19, loss: 0.17312151	933	1074	600	1370	099	1240	589	707	448]
Number of each class: [1527]	03/	1671	809	1372	699	1242	588	710	448]
Iter:20, loss: 0.07972757	501	1011	003	1012	000	1212	000	110	110]
Number of each class: [1526	923	1670	810	1375	701	1243	586	719	447]
Iter:21, loss: 0.101482585									
Number of each class: [1525	915	1666	809	1374	705	1245	583	731	447]
Iter:22, loss: 0.0863325									
Number of each class: [1524	907	1664	809	1373	708	1244	581	743	447]
Iter:23, loss: 0.11065065									
Number of each class: [1524	901	1659	807	1373	709	1241	580	759	447]
Iter:24, loss: 0.052730452									
Number of each class: [1523	896	1659	807	1374	707	1236	580	771	447]
Iter: 25, loss: 0.03906338	001	1055	000	1071	707	1000	F00		4.477
Number of each class: [1526]	891	1655	808	1371	107	1238	580	777	447]
Iter: 26, loss: 0.036833197	900	1652	907	1260	704	1239	200	783	4477
Number of each class: [1528 Iter:27, loss: 0.064244635	090	1653	001	1369	104	1439	580	103	447]
Number of each class: [1532]	883	1652	806	1369	699	1241	580	791	447]
Iter:28, loss: 0.075732365	550	1002	550	1000	500	11	330	.01	
,									

022/4/20 23:47					Ass	ignme	nt-021 -	Jupyter	Notebo	ok
Number of each	class: [1532	881	1653	808	1368	696	1243	581	791	447]
Iter:29, loss:	0.032838404									
Number of each		883	1651	809	1367	694	1241	581	796	447]
Iter:30, loss:										
Number of each		879	1647	809	1367	693	1243	581	802	447]
Iter:31, loss:										
Number of each		878	1649	808	1366	692	1243	581	804	447]
Iter:32, loss:										
Number of each		874	1652	807	1365	693	1242	581	808	447]
Iter:33, loss:										
Number of each		869	1653	807	1366	694	1241	581	810	447]
Iter:34, loss:										= 7
Number of each		865	1652	807	1368	695	1242	581	812	447]
Iter:35, loss:		0.00	1050	005	1000	202	1040	5 01	01.4	4.457
Number of each		862	1652	805	1368	696	1243	581	814	447]
Iter:36, loss:		055	1.050	000	1007	C07	1040	E01	001	4.477
Number of each		855	1652	806	1367	697	1243	581	821	447]
Iter:37, loss:		OE 1	1650	907	1260	COC	1949	581	007	4477
Number of each		991	1650	807	1368	090	1242	981	827	447]
Iter:38, loss: Number of each		010	1649	907	1368	606	1242	581	831	447]
Iter:39, loss:		040	1049	001	1306	090	1242	901	001	441]
Number of each		811	1649	807	1368	606	1245	581	833	446]
Iter: 40, loss:		044	1049	001	1300	090	1240	561	000	440]
Number of each		830	1649	807	1368	695	1246	581	839	446]
Iter:41, loss:		000	1043	001	1000	030	1240	501	000	110]
Number of each		839	1650	805	1366	695	1246	581	843	446]
Iter:42, loss:		000	1000	000	1000	000	1210	001	010	110]
Number of each		842	1646	805	1365	695	1247	581	844	446]
Iter:43, loss:		~ . <u>-</u>	1010							
Number of each		849	1643	803	1364	695	1248	581	843	446]
Iter:44, loss:										_
Number of each	class: [1528	851	1642	803	1364	694	1248	581	843	446]
Iter:45, loss:	0.0017002099									
Number of each	class: [1528	851	1642	803	1364	693	1248	581	844	446]
Iter:46, loss:	0.0020615468									
Number of each	class: [1528	851	1642	803	1364	692	1248	581	845	446]
Iter:47, loss:	0.0023697712									
Number of each	class: [1528	853	1642	802	1364	691	1248	581	845	446]
Iter:48, loss:	0.0									
Number of each	class: [1528	853	1642	802	1364	691	1248	581	845	446]
It takes 48 ite	orations									
it takes 40 ltt	=1 at 10H5.								a . -	

Number of each class: [1528 853 1642 802 1364 691 1248 581 845 446]

定义评估方法

In [19]:

```
from IPython. display import display
def get_confusion(classify, label):
    评估聚类效果, 获得 Confusion Matrix
    cu=classify[:,None]==classify[None,:]
    lei=label[:, None] == label[None,:]
    # 减去和自己的比较
    tp=(cu&lei).sum()-len(classify)
    fn=((^ccu)\&lei).sum()
    fp=(cu&(~lei)).sum()
    tn = ((^{\sim}cu) \& (^{\sim}1ei)).sum()
    return pd. DataFrame([[tp, fn], [fp, tn]], index=['同类', '非同类'], columns=['同簇', '非同簇'])
def micro f1(classify, label, beta=1):
    计算 micro F1-scroe
    confusion=get_confusion(classify, label)
    precision=confusion.iloc[0,0]/confusion.iloc[:,0].sum()
    recall=confusion.iloc[0,0]/confusion.iloc[0,:].sum()
    f1=(1+beta**2)*(precision*recall)/(beta**2*precision+recall)
    display (confusion)
    print ('Precision: %. 2f%%, Recall: %. 2f%%, Micro F1: %. 2f%%'% (precision*100, recall*100, f1*100))
```

In [20]:

```
label=pd.DataFrame(wiki_data,columns=['label'])['label'].values
```

比较结果

1.使用文档的全部单词向量的平均值作为文档向量

```
In [92]: ▶
```

```
confusion=micro_f1(classify_1, label)
```

```
同簇 非同簇
同类 16587736 9390112
非同类 8148050 65864102
```

Precision: 67.06%, Recall: 63.85%, Micro F1: 65.42%

2.使用文档的前100个单词向量的平均值作为文档向量

```
In [91]:
```

```
confusion=micro_f1(classify_2, label)
```

同簇 非同簇 同类 12145120 13832728

非同类 10405106 63607046

Precision:53.86% , Recall:46.75% , Micro F1:50.05%

3.使用Doc2Vec模型计算文档向量 (结果大约为 F1:40%)

```
In [ ]:
confusion=micro_f1(classify_3, label)
```

可见用所有单词向量的平均作为文档向量有着最好的效果

用文档中最常出现的n个单词(去除出现频率大于100的常用词),按照其出现频率加权求和得到文档向量

```
In [81]:

def get_doc_embed(text, model, train_set):
    vocab=FreqDist(text)
    word_list=vocab.most_common(1000)
    f=np.zeros(200)
    m=0
    for word, k in word_list:
        idx=train_set.word2index.get(word, train_set.word2index['<unknown>'])
        f+=model.embed_v[idx]*k
        m+=k
    f/=m
    return f
```

```
In [82]: ▶
```

```
doc_embeds_4=get_all_doc_embed(words, model, train_set, method=get_doc_embed)
```

In [83]:

classify_4=k_means(doc_embeds_4)

T4 1	0 100001104250514					
Number of each	0. 199961184359514 class: [121 968 2656	5	2	1 1979	1 4266	1]
•	0. 0658144214839575 class: [398 2350 2241	12	3	1 2035	1 2958	1]
Iter:3, loss:	0. 012840927859489941					
	class: [619 2841 1984 0. 00048484451711700396	14	4	1 2078	1 2457	1]
Number of each	class: [806 3009 1815 0.00015685055819303877	15	4	1 2150	1 2198	1]
Number of each	class: [1041 2977 1651	15	4	1 2262	1 2047	1]
Number of each	0. 00011352654767406693 class: [1308 2875 1472	15	4	1 2357	1 1966	1]
Number of each	9.0873501334931e-05 class: [1566 2766 1307	15	4	1 2433	1 1906	1]
	5.611973273702895e-05 class: [1772 2677 1202	15	4	1 2480	1 1847	1]
	5. 271255198919269e-05 class: [1941 2613 1089	15	4	1 2527	1 1808	1]
	4. 9236237804297956e-05 class: [2094 2569 982	15	4	1 2555	1 1778	1]
Iter:11, loss:	4. 595641872007373e-05					
	class: [2205 2543 881 5.0103759338445134e-05	15	4	1 2590	1 1759	1]
	class: [2296 2524 800 7.310945270107658e-05	15	4	1 2625	1 1733	1]
Number of each	class: [2363 2523 710 5.4755895809431395e-05	15	4	1 2657	1 1725	1]
Number of each	class: [2412 2529 650	15	4	1 2677	1 1710	1]
Number of each	6. 347824394550093e-05 class: [2447 2543 594	15	4	1 2695	1 1699	1]
	3. 59859155452393e-05 class: [2463 2560 563	15	4	1 2707	1 1685	1]
	2. 2768246315088913e-05 class: [2468 2580 536	15	4	1 2717	1 1677	1]
Iter:18, loss:	1. 3131107559538545e-05					
	class: [2457 2605 523 1.7845249609338196e-05	15	4	1 2721	1 1672	1]
Number of each	class: [2454 2628 512 1.1028985522337571e-05	15	4	1 2724	1 1660	1]
Number of each	class: [2452 2645 501	15	4	1 2729	1 1651	1]
	1. 4132518696444194e-05 class: [2464 2654 490	15	4	1 2737	1 1633	1]
	3. 052373460031008e-06 class: [2469 2670 489	15	4	1 2741	1 1609	1]
	4. 227598733891307e-06	15	4	1 9749	1 1502	1]
	class: [2467 2688 487 1.6387396554113427e-06	15	4	1 2743	1 1593	1]
	class: [2470 2702 487 1.670220578125822e-06	15	4	1 2738	1 1581	1]
Number of each	class: [2473 2713 489	15	4	1 2735	1 1568	1]
Number of each	3. 89327367326177e-06 class: [2477 2725 494	15	4	1 2731	1 1551	1]
Number of each	6. 319025654059487e-06 class: [2478 2743 497	15	4	1 2725	1 1535	1]
iter:28, loss:	7. 770519038756573e-06					

2022/4/20 23:47			Assig	ınment-021 - Jı	upyter Noteboo	k
	class: [2476 2757 505 1.959424810221257e-05	15	4	1 2722	1 1518	1]
Number of each	class: [2475 2770 521	15	4	1 2720	1 1492	1]
Number of each	1. 4883111647619336e-05 class: [2469 2783 536	15	4	1 2720	1 1470	1]
	7. 701183034220868e-06 class: [2472 2795 547	15	4	1 2723	1 1441	1]
	1. 4480651365634573e-05 class: [2474 2804 563	15	4	1 2726	1 1411	1]
Iter:33, loss:	1. 4250709789021626e-05 class: [2469 2817 581	15	4	1 2730	1 1381	1]
Iter:34, loss:	1. 2484164859095248e-05					
Iter:35, loss:	class: [2473 2820 598 5. 265541645323446e-06	15	4	1 2736	1 1351	1]
	class: [2468 2831 607 6.414084416453196e-06	15	4	1 2744	1 1328	1]
	class: [2472 2841 614 5.005748787358601e-06	15	4	1 2748	1 1303	1]
Number of each	class: [2478 2851 621 1.9962767839624874e-06	15	4	1 2748	1 1280	1]
Number of each	class: [2469 2872 623 2.7734366548216573e-06	15	4	1 2746	1 1268	1]
Number of each	class: [2472 2887 628	15	4	1 2744	1 1247	1]
Number of each	1. 9908711506435655e-06 class: [2481 2896 629	15	4	1 2743	1 1229	1]
Number of each	2. 267534420056685e-06 class: [2482 2909 630	15	4	1 2744	1 1213	1]
	2. 243174813027351e-06 class: [2482 2926 630	15	4	1 2744	1 1196	1]
	1.8249300190012928e-06 class: [2479 2944 632	15	4	1 2741	1 1182	1]
	1.9067132805419677e-06 class: [2479 2960 633	15	4	1 2744	1 1162	1]
	1. 286593081615536e-06 class: [2483 2971 633	15	4	1 2739	1 1152	1]
Iter:46, loss:	1. 7065043831529758e-06 class: [2490 2978 634	15	4	1 2739	1 1137	1]
Iter:47, loss:	1. 4747126356278655e-06			1 2738		
Iter:48, loss:	class: [2493 2989 633 2.1902137917375403e-06	15	4		1 1125	1]
Iter:49, loss:	class: [2494 3001 633 1.7457486626816174e-06	15	4	1 2743	1 1107	1]
	class: [2493 3012 633 2.695163898021186e-06	15	4	1 2746	1 1094	1]
	class: [2486 3026 636 2.5469672347195086e-06	15	4	1 2753	1 1077	1]
Number of each	class: [2480 3038 639 2.225406108687684e-06	15	4	1 2757	1 1064	1]
Number of each	class: [2477 3049 640 3.741461463258523e-06	15	4	1 2760	1 1052	1]
Number of each	class: [2479 3057 643	15	4	1 2757	1 1042	1]
Number of each	2.7096654632658233e-06 class: [2485 3067 644	15	4	1 2755	1 1027	1]
Number of each	2.5013325861014423e-06 class: [2492 3074 646	15	4	1 2756	1 1010	1]
Number of each	3. 040069724480457e-06 class: [2505 3080 648	15	4	1 2759	1 986	1]
	4. 565552105094942e-06 class: [2526 3082 650	15	4	1 2760	1 960	1]
	3. 0668632252858433e-06 class: [2539 3084 651	15	4	1 2761	1 943	1]

-0	22/4/20 20.47			7 (00igi		1021	oupytoi	Notobook	•
		3. 34830795835699e-06 class: [2560 3084 653	2 15	4	1	9761	1	921	1]
		1. 913751155679624e-06	Z 13	4	1	2761	1	921	1]
		class: [2570 3087 655	2 15	4	1	2761	1	908	1]
	Number of each	2.08414963393351e-06 class: [2582 3091 65	2 15	4	1	2759	1	894	1]
	•	3. 871983678882326e-06 class: [2595 3095 65-	4 15	4	1	2760	1	874	1]
	•	5. 532322190447935e-06 class: [2615 3097 65	F 1F	4	1	9761	1	950	17
		6. 880269036492535e-06	5 15	4	1	2761	1	850	1]
		class: [2638 3101 65 3.944169795049064e-06	5 15	4	1	2763	1	821	1]
	Number of each	class: [2646 3112 65		4	1	2762	1	803	1]
		5. 2464695350073554e-0 class: [2670 3114 65-		4	1	2759	1	781	1]
		3. 8061367127532427e-0 class: [2682 3123 65-		4	1	2757	1	762	1]
	Iter:68, loss:	7. 33056321453006e-06							
		class: [2706 3135 65 7. 2331253276816e-06	3 15	4	1	2748	1	736	1]
	Number of each	class: [2724 3145 65 1.1120166585077908e-0		4	1	2744	1	712	1]
	Number of each	class: [2739 3159 654		4	1	2739	1	687	1]
		6. 838151575882184e-06 class: [2736 3183 65	3 15	4	1	2741	1	665	1]
	Iter:72, loss:	5. 004069487088813e-06		4					
		class: [2741 3202 65: 4.087278722399844e-06	2 15	4	1	2734	1	649	1]
		class: [2734 3227 65 2.244928010657871e-06	1 15	4	1	2731	1	635	1]
	•	class: [2732 3241 65	0 15	4	1	2727	1	628	1]
	Itani75 laggi	1. 1918277529650543e-0	e						
	•	class: [2728 3254 65		4	1	2722	1	624	1]
		1. 1929087294201108e-0eclass: [2728 3264 649]		4	1	2715	1	622	1]
	Iter:77, loss:	5. 293535338530317e-07		4			1		
		class: [2730 3269 64 5. 242889052860679e-07	9 15	4	1	2711	1	619	1]
	Number of each	class: [2726 3276 64		4	1	2710	1	617	1]
		1. 2933719796119964e-0 class: [2730 3279 64		4	1	2709	1	611	1]
		8. 3081380819893e-07 class: [2735 3279 644	8 15	4	1	2708	1	608	1]
	Iter:81, loss:	2.41229441489033e-07	0 10	4			1	008	
		class: [2736 3281 64 2. 2967007992967084e-0		4	1	2705	1	607	1]
	Number of each	class: [2737 3282 64	9 15	4	1	2704	1	606	1]
		1.6175109867998626e-0 class: [2738 3282 64		4	1	2704	1	605	1]
	Iter:84, loss:	0.0 class: [2738 3282 64'	9 15	4	1	2704	1	605	1]
			<i>J</i> 10	4	1	41U 1	1	000	ΙJ
	It takes 84 ite	erations. class: [2738 3282 64º	9 15	4	1	2704	1	605	1]
		11455. [2.00 0202 01	. 10	-	_		1		T]

In [84]: ▶

```
confusion=micro_f1(classify_4, label)
```

	同簇	非同簇
同类	17487038	8490810
非同类	8870216	65141936

Precision:66.35%, Recall:67.32%, Micro F1:66.83%

可以看见, 此方法优于所有词向量取均值。

Task 4

Use t-SNE to project these vectors into 2-d and plot them out for each of the above choices.

计算向量距离矩阵

```
In [93]:

def cal_dist(data, n=200):

根据向量矩阵计算距离矩阵

"""

N=data. shape[0]
    dist=np. zeros((N, N))

# 防止爆内存,分批计算
    for i in range(0, N, n):
        dist[i:i+n,:]=np. linalg. norm(data[None,:]. repeat(n, axis=0)-data[i:i+n][:, None], axis=-1)
        #print(i)
    return dist
```

计算高维向量概率/熵

In [94]:

```
def calc_p_and_entropy(dist, beta):
   计算高维向量概率/熵
   n=dist.shape[0]
   p = np.exp(-np.square(dist) * beta[:,None])
   # 防止数字下溢,现将对角线设为 0
   p[range(n), range(n)]=0
   p_sum = p. sum(axis=1, keepdims=True)
   # 防止取 log 时对角线上为 0
   p[range(n), range(n)]=1e-20
   p/=p sum
   p[p<1e-20]+=1e-20
   # 计算熵
   log_entropy_matrix = -(p*np. log(p))
   #print(log_entropy_matrix)
   #log_entropy = log_entropy_matrix.sum(axis=1)-log_entropy_matrix[range(n), range(n)]
   log_entropy = log_entropy_matrix.sum(axis=1)
   p[range(n), range(n)]=0
   return p, log_entropy
```

二分法搜索 beta 值

ref: https://www.bilibili.com/video/BV1cU4y1w74A (https://www.bilibili.com/video/BV1cU4y1w74A)

In [104]:

```
def binary search (dist, init beta, perplexity, threshold=1e-4, max iter=50):
                    二分法搜索最佳 beta 值
                  print("寻找最佳 beta...")
                  n=dist.shape[0]
                  # 初始化 beta 上下限
                  beta_max = np. array([np. inf]*n, dtype=np. float32)
                  beta_min = np.array([-np.inf]*n, dtype=np.float32)
                  beta = np. array([init beta]*n, dtype=np. float32)
                  # 计算高维向量概率/熵
                  P, log entropy=calc p and entropy (dist, beta)
                  # 计算与设定困惑度的差值
                  diff = log_entropy - perplexity
                  i=0
                  while np. abs(diff). max() > threshold and i < max iter:
                                     # 更新上下限
                                    beta_min[diff>0]=beta[diff>0]
                                    beta max[diff<=0]=beta[diff<=0]
                                     # 交叉熵比期望值大,增大beta
                                    beta [(diff>0) \& (beta max==np. inf)] *= 2.
                                    beta[(diff>0)&(beta max!=np.inf)]=(beta[(diff>0)&(beta max!=np.inf)]+beta max[(diff>0)&(beta max])+beta max[(diff>0)&(beta max])+b
                                     # 交叉熵比期望值小, 减少beta
                                    beta [(diff \le 0) \& (beta min = -np. inf)]/=2.
                                     beta[(diff \le 0) \& (beta min! = -np. inf)] = (beta[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = -np. inf)] + beta min[(diff \le 0) \& (beta min! = 
                                     # 重新计算
                                     p, log_entropy=calc_p_and_entropy(dist, beta)
                                      diff = log entropy - perplexity
                                     print ('iter %d'% (i+1), ', max difference of log-entropy: %. 6f' %np. abs (diff). max ())
                                      i+=1
                  # 返回最优的 beta 以及所对应的 P
                  return p, beta
```

计算高维联合概率

In [96]: ▶

```
def p_joint(data, init_beta=1, perplexity=5):

"""

N=data.shape[0]
# 计算距离
dist=cal_dist(data, n=200)
# 二分法获得最佳 beta
p, beta=binary_search(dist, init_beta, perplexity)
p_join = (p + p. T)/2
p_join /= p_join.sum()
p_join[range(N), range(N)]=1e-10
print("Mean value of beta: %f" % np. mean(beta))
return p_join
```

计算低维联合概率: t 分布

In [97]:

def q_tsne(dist):
 """
 计算低维联合概率: t分布
 """
 N = dist.shape[0]
 tmp=(1+np.square(dist))**-1
 tmp[range(N), range(N)]=0
 # 归一化
 q=tmp/tmp.sum()
 # 设对角线为非 0 值, 方便后面计算
 q[range(N), range(N)]=1
 return q

定义画图函数

```
In [98]:
                                                                                                     M
def draw_pic(data, labs, name = '1. jpg'):
    画图
    plt.cla()
   unque_labs = np. unique(labs)
    colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1,len(unque_labs))]
   p=[]
    legends = []
    for i in range(len(unque_labs)):
        index = np. where(labs==unque labs[i])
        pi = plt.scatter(data[index, 0], data[index, 1], c = [colors[i]] )
        p. append (pi)
        legends.append(unque_labs[i])
    plt.legend(p, legends)
    #plt. savefig(name)
   plt.show()
```

利用 T-SNE 将高维向量投影到 2 维

In [110]:

```
def tsen(data, dim, init beta, target perplexity, plot=False, p=None):
   计算 tsne
   data: 文档向量
   dim:低维向量维度
   init beta:初始化beta值
   target_perplexity:目标困惑度
   N, D = data. shape
   # 随机初始化低维数据
   y = np. random. randn (N, dim)
   # 计算高维向量的联合概率
   print ("1. 计算高维向量的联合概率")
   if p is None:
       p = p_joint(data, init_beta, target_perplexity)
   # 开始进行迭代训练
   # 训练相关参数,用 Adam 算法迭代
   print("2. 迭代计算低维向量的联合概率")
   \max iter = 30
   1r=300
   beta1=0.9
   beta2=0.999
   eps=1e-20
   m=np.zeros_like(y)
   v=np. zeros like(y)
   for m_iter in range(max_iter):
       # 低维距离
       dist y=cal dist(y)
       # 低维联合概率
       q= q tsne(dist y)
       # 计算梯度
       y minus=y[:, None]. repeat (N, axis=1)-y[None,:]. repeat (N, axis=0)
       dy=4*((p-q)[:,:,None]*y_minus*(1+dist_y**2)[:,:,None]**-1).sum(axis=1)
       # Adam 优化器
       m = (1-beta1)*m+beta1*dy
       v = (1-beta2)*v+beta2*dv**2
       m hat=m/(1-beta1**(m iter+1))
       v hat=v/(1-beta2**(m iter+1))
       y=1r*m hat/(np. sqrt(v hat)+eps)
       \#y = 1r * dy
       # 损失函数
       if (m iter + 1) \% 1 == 0:
           c=p * np. log(p / q)
           loss=c.sum()-c[range(N), range(N)].sum()
           print("Iteration %d: ,loss: %f" % (m_iter + 1, loss))
           if loss<1e-2:
              break
   return y
```

用 t-SNE 映射到2维

选择 perplexity 为 8

In [112]:

```
y=tsen(doc_embeds_1, 2, 1, 8)
```

```
1. 计算高维向量的联合概率
寻找最佳 beta...
iter 1, max difference of log-entropy: 1.207288
iter 2, max difference of log-entropy: 1.200100
iter 3 , max difference of log-entropy: 1.177830
iter 4 , max difference of log-entropy: 7.081110
iter 5, max difference of log-entropy: 6.834616
iter 6, max difference of log-entropy: 7.741193
iter 7, max difference of log-entropy:8242295340.724341
iter 8, max difference of log-entropy: 7.485889
iter 9, max difference of log-entropy: 1.776096
iter 10 , max difference of log-entropy: 0.632702
iter 11, max difference of log-entropy: 0.259153
iter 12, max difference of log-entropy: 0.142855
iter 13, max difference of log-entropy: 0.068369
iter 14 , max difference of log-entropy: 0.033078
iter 15, max difference of log-entropy: 0.016036
iter 16, max difference of log-entropy: 0.007737
iter 17, max difference of log-entropy: 0.003991
iter 18, max difference of log-entropy: 0.001751
iter 19, max difference of log-entropy: 0.000951
iter 20, max difference of log-entropy: 0.000447
iter 21, max difference of log-entropy: 0.000221
iter 22, max difference of log-entropy: 0.000134
iter 23, max difference of log-entropy: 0.000067
Mean value of beta: 122.242249
2. 迭代计算低维向量的联合概率
Iteration 1: ,loss: 1.050600
Iteration 2: ,loss: 6.663622
Iteration 3: ,loss: 6.123033
Iteration 4: ,loss: 3.869120
Iteration 5: ,loss: 2.789792
Iteration 6: ,loss: 2.524771
Iteration 7: , loss: 2.474798
Iteration 8: , loss: 2.459945
Iteration 9: ,loss: 2.452864
Iteration 10: ,loss: 2.469265
Iteration 11: , loss: 2.470422
Iteration 12: ,loss: 2.485549
Iteration 13: ,loss: 2.499139
Iteration 14: ,loss: 2.506209
Iteration 15: , loss: 2.515930
Iteration 16: , loss: 2.515370
Iteration 17: , loss: 2.527019
Iteration 18: , loss: 2.541587
Iteration 19: ,loss: 2.534746
Iteration 20: ,loss: 2.548401
Iteration 21: ,loss: 2.562620
Iteration 22: ,loss: 2.541740
Iteration 23: ,loss: 2.584747
Iteration 24: ,loss: 2.564516
Iteration 25: ,loss: 2.577333
Iteration 26: ,loss: 2.594686
Iteration 27: ,loss: 2.588397
Iteration 28: ,loss: 2.595040
```

Iteration 29: ,loss: 2.585675 Iteration 30: ,loss: 2.605602

画图得到结果

效果并不好

In [113]: ▶

draw_pic(y, label)

改用库函数

能看到同类数据点有明显地聚集

In [114]:

from sklearn.manifold import TSNE
tsne_ = TSNE(n_components=2, init='pca', random_state=33, perplexity=5)
X_tsne=tsne_.fit_transform(doc_embeds_1)

D:\Program Files (x86)\Anaconda\envs\nlp\lib\site-packages\sklearn\manifold_t_sne.p y:790: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'a uto' in 1.2.

warnings.warn(

D:\Program Files (x86)\Anaconda\envs\nlp\lib\site-packages\sklearn\manifold_t_sne.p y:982: FutureWarning: The PCA initialization in TSNE will change to have the standar d deviation of PC1 equal to 1e-4 in 1.2. This will ensure better convergence. warnings.warn(

draw_pic(X_tsne, label)

In []: ▶