

NSR/AS

SWINBURNE UNIVERSITY OF TECHNOLOGY

Wireless LAN Network Security

Lecture Twenty-five

Outline of Lecture

- Overview of WLAN
- WLAN security

Wireless LAN

- Wireless Local area network
- Developed by IEEE 802.11 task groups
- A number of sub-groups. Main ones
 - a, b, g, n, ac transmission protocols
 - e Quality of service
 - i enhanced security
 - Many other groups dealing with interworking, network management, mobility etc.
- Uses ISM bands around 2.4 GHz and 5 GHz

IEEE 802 Network Protocols

802.11 Requirements

Requirements

- Purpose is to provide layer 2 connectivity only
- Carries higher layer traffic (TCP/IP)
- Single MAC layer for different physical layer technologies
- Allow multiple overlapping networks (shared band)
- Handle interference from other ISM band radios and microwave ovens.
- Privacy and access control

802.11 Architecture

802.11 Architecture

- Shared medium
 - Broadcast channel
 - Issue of sharing channel amongst distributed users
- Distribution System
 - Used to connect multiple Access Points to form a coverage area
 - Usually Ethernet
- Access Point
 - Bridge between distribution system and wireless medium
- Wireless Medium
 - RF in the 2.5 and 5.0 GHz ranges
- Station
 - Computing device with wireless network interface cards

802.11 Network Types

- Basic Service Set
 - Group of stations that communicate
- Basic Service Area
 - Coverage of wireless medium
- Two types of networks
 - Independent BSS
 - All stations in Basic Coverage area communicate directly
 - Ad-hoc network
 - Infrastructure BSS
 - Stations communicate via an access point
- Can link multiple infrastructure BSS into Extended Service Sets

802.11 Network Types

Extended Service Area

802.11 Protocol Stack

Data Link Layer	LLC		Station Management
	MAC	MAC Management	
Physical Layer	PLCP	PHY Management	ınageme
	PMD		nt

MAC Layer

- Familiar problem of sharing a common channel
 - Ethernet uses CSMA/CD
 - Bluetooth uses a Master-slave to specify who can transmitt
 - GSM uses slotted ALOHA in the Random Access Channel
- 802.11 uses CSMA/CA
 - Carrier Sense Multiple Access / Collision Avoidance
 - Station monitors the channel ("Carrier Sensing") before transmitting
 - All transmitted frames are acknowledged
 - Collisions are avoided by a station sending messages to gain the channel before sending frames
 - Optional

MAC Access Modes

- Two mechanisms for accessing the shared radio medium.
- Distributed Coordination Function (DCF)
 - Checks to see if radio link is clear
 - Waits a random backoff time each frame when channel is clear
 - Optionally uses CTS/RTS to avoid collisions
 - CSMA/CA
- Point Coordination Function (PCF)
 - Infrastructure networks only (Access Points)
 - PCF allows stations to transmit frames earlier than DCF

WLAN Attacks

- WLAN susceptible to the same attacks at the application and transport layer as all IP networks
 - Application layer
 - HTTP drive-by downloads etc
 - Transport layer
 - SYN flooding, Session hijacking, etc
 - IP layer
 - Smurf attacks (ping flooding), IP spoofing etc
- WLAN is also susceptible to new forms of attacks at the Physical and Data link layers

Physical layer attacks

- 802.11 operate on different frequency bands around 2.4 GHz and (less commonly) 5 GHz
 - Industrial, Scientific, Medical band
 - A lightly regulated, publicly available band
- Plenty of (non malicious) devices create noise in 2.4 GHz range
 - DECT cordless phones, Microwave ovens, Bluetooth
 - Operating these devices in proximity to WLAN will affect capacity
 - Devices that are faulty or malicious may completely disable a WLAN
- Easy to build devices that produce noise around this frequency

Data link layer attacks

- Much scope for malicious attacks at the WLAN Data link layer
 - Broadcast MAC
 - Weak encryption
 - Weak authentication
 - Distributed control
 - Resource allocation based on interframe spacings
- Easy for a non-conforming station to subvert WLAN MAC layer
 - DOS attacks
 - Man in the middle attacks
 - Illicit use

DOS Attacks

- Flooding
 - Because of lower bandwidth compared with Ethernet a host attached to a WLAN can easily be overwhelmed by DDoS traffic
- Interframe spacing attacks
 - Priorities in WLAN determined by nature of frame to be transmitted
 - Priority given by different waiting times for access to wireless medium
 - SIFS, PIFS, DIFS
 - A misbehaving workstation can ignore interframe spacing and transmit messages without waiting for appropriate interframe spacing
 - Can be used as a DOS or just to gain unfair access to bandwidth

Man in the middle attacks

Eavesdropping

- Broadcast nature of WLAN means that no special effort is needed to listen in on messages
- Just have to be in range and listening to appropriate ISM band

Manipulation

- Can masquerade as another party
 - Take over sessions already in operation using TCP hijack

ARP Poisoning

- Can use WLAN to intercept communications between two wired stations
 - ARP poisoning
- ARP Cache
 - contains mapping of MAC to IP address
 - Mapping can be obtained two ways:
 - ARP requests
 - Who has IP address 192.168.0.1?
 - Receipt of packets from hosts on the same LAN
 - Lazy ARP (most common)

ARP Poisoning

- Attacker can force packets to go through a malicious host by exploiting Lazy ARP
 - Attacker wishes to intercept communications between client (192.168.0.99) and server (192.168.0.1)
 - Attacker on same LAN segment as server and client
 - Attacker sends a message to the client with IP address of server but MAC address of attacker
 - Attacker sends a message to the server with IP address of client but MAC address of attacker
 - All traffic will be sent to the attacker even if the client and server are on a wired, switched network
 - Attacker can watch, drop, forward or manipulate data

WLAN component security

- Station
 - Mobile station
 - laptop, PDA
- Access point
 - Interface between wired and wireless network
 - Can be layer 2 or 3
- Gateway
 - Wireless capable Firewall

WLAN Station security

- Secure communication
 - Should use some form of encryption
 - Should be regarded as mandatory for wireless communication
 - Look at options later in the lecture
- Audit logging should be considered
 - Use some exception notification to warn of attempted attacks
- Static ARP should also be considered
 - If always using the same gateway then ARP should be configured with a static ARP entry
 - Will override any dynamic ARP information

WLAN Access Point Security

- Should configure and use available encryption
- Should use MAC address filtering where possible
 - Only allow communication to and from specific devices based on MAC address
- Management interfaces need to be well protected and probably disabled
 - Most APs have an administration interface accessed through HTTP,
 Telnet or USB
 - Telnet should be avoided if possible
 - Administration interfaces should be disabled after configuration

WLAN Gateway/Firewall Security

- Important to separate wired network from wireless network
 - Prevents ARP poisoning attacks
- Most commonly done with a WLAN Gateway/Firewall
- Multiple Access Points form a single SSID
 - No reason for communication between stations connected to the same SSID
 - Firewall should prohibit direct communications between mobile stations
 - Bridging firewall

WLAN Gateway/Firewall Insecure Configuration

WLAN Gateway/Firewall Secure Configuration

WLAN Gateway/Firewall Secure Configuration with Bridging Firewall

Wired Equivalent Privacy (WEP)

- Intended to provide the same level of security as that of wired LAN
- Layer 2 security
 - point to point
- Simple symmetric encryption with a manually exchanged key
- Symmetric encryption used to encrypt messages
- Symmetric encryption used to provide authentication
- Cyclic Redundancy Check used to provide integrity

WEP Cryptography

- RC4
 - Stream, shared secret key cipher
 - Used to provide authentication, confidentiality and integrity
 - Developed 1987
 - Used in WEP
- Crypto systems based on RC4 should discard the first few bytes generated by RC4
 - First few bytes provide a considerable amount of information about the key
 - Systems that concatenate the initialisation vector with the key (such as WEP) are particularly vulnerable

Problems with WEP

- A major difficulty with WEP is that it uses the master key rather than a one-off derived key per session
 - The initialisation vector was intended to deal with this, but it is too short (24 bits)
 - On average, the initialisation vector will be repeated after about 5 hours
- Another major difficulty is that WEP has no replay protection
 - An attacker can capture a sequence of messages and just replay them
 - No sequence numbering
- Because of the US ban on export of strong cryptographic protocols WEP originally had a weak key length of 40 bits

WPA

- WiFi Protected Access
- An interim protocol issued by 802.11i to fill the gap caused by the failure of WEP
- Key size (usually) 128 bits
- Still uses RC4 but incorporates additional techniques to make more secure
 - Frequent change of session key
 - Typically every 10 minutes to an hour (configurable)
- Many WEP devices upgradeable to WPA
- Designed to replace WEP without replacing legacy hardware
 - Need to continue to use RC4

WPA

- WPA was announced 2002
- User authentication
 - 802.1X
 - Extensible Authentication Protocol (EAP)
- Encryption
 - Temporal Key Integrity Protocol (TKIP)
 - 802.1X for dynamic key distribution
- WPA can include of 802.1X, EAP, TKIP, MIC
- WPA2 uses AES with cipher block chaining

Temporal Key Integrity Protocol (TKIP)

- TKIP Still uses RC4 but improves on it in the following ways:
 - Improved initialisation vector
 - Frequent (every 10000 frames) change of session key
 - Calculation of message integrity code (MIC) to protect contents
 - Per-frame TKIP sequence counter (TSC) for replay protection
 - Different encryption key for each frame
 - Combines a session key, address and TSC to generate a encryption different key
- Frequent change of key most important change

WPA Modes of Use

- Two modes of use
 - With an 802.1X authentication server
 - Distributes different keys to each user
 - WPA-Enterprise
 - In less secure "pre-shared key" (PSK) mode (every user is given the same passphrase).
 - WPA-Personal
 - Domestic use

802.1X

- A framework for authentication and encryption
 - Integrates an authentication server such as RADIUS
 - Not restricted to wireless
 - Makes use of Extensible Authentication Protocol
- Authentication
 - Who can access the network and services?
- Authorization
 - What is the user allowed?
- Access Control
 - Control is based on authentication and authorization

802.1X

Ref: Wikipedia

802.1X

- Transports authentication information in the form of Extensible Authentication Protocol (EAP) payloads
- Authenticator (Network Access Server) relays EAP received in 802.1x packets to an authentication server by using RADIUS to carry the EAP information
- Three forms of EAP are specified in the standard
 - EAP-MD5 MD5 Hashed Username/Password
 - EAP-OTP One-Time Passwords
 - EAP-TLS Strong PKI Authenticated Transport Layer Security (SSL)

WPA2 and WPA3

WPA2

- Makes use of AFS
- Replaces TKIP with CCMP
 - CCMP uses AES with Cyclic Block Chaining

WPA3

- Strengthens authentication using a Diffie-Hellman like authentication mechanism over an Elliptic Curve
- "Dragonfly Key Exchange"

Conclusion

- Overview of wireless networking
- Security issues
- Introduction to WLAN
- Some attacks of WLAN
- Security protocols in WLAN

