Seagrass ecosystems as a significant global carbon stock James W. Fourgureant* Carlos M. Durate J. Hilary Kennedy Noria Warbab Marianne Holmer Miguel Angel Mateof Eugenia T. Apostolaki Gary A. Kendrick

- a. Department of Biological sciences and Southeast Environmental Research Center, Marine Science Program, Florida International University, 3000 NE 151st St, North Miami, FL 33181, USA
- b. Department of Global Change Research. IMEDEA (CSIC-UIB) Institut Mediterrani d'Estudis Avançats, C/ Miguel Marqués 21, 07190 Esporles (Mallorca) Spain
- c. The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
- d. School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street Menai Bridge, Anglesey LL59 5AB, Wales, United Kingdom
- e. Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- f. Centre for Advanced Studies of Blanes, (CEAB-CSIC), Acceso Cala S. Francesc 14, 17300 Blanes, Spain
- g. Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion Crete, Greece
- h. Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
- i. Department of Environmental Sciences, PO Box 400123, Clark Hall, University of Virginia Charlottesville, VA 22904, USA

Dorte Krause-Jensenh Karen J. McGlatheryi

Oscar Serranof

Seagrasses have a broad global distribution

Measuring C stored in seagrass soils: Piston corer to collect uncompressed cores

Measuring C stored in living biomass

Need:

- volumetric measures
 of Dry Bulk Density
 (mass of soil per
 volume)
- Carbon content of soil (as a fraction of mass)
 - Organic matter, or Loss on Ignition (LOI)
 - $\mathbf{C}_{\mathrm{org}}$

Case study: C stores in Florida Bay seagrasses

C_{org} generally decreases downcore in Florida Bay seagrass soils.

Buried peats have high C_{org}

DBD generally increases downcore in Florida Bay seagrass soils.

Buried peats have low DBD

C_{org} stocks in top m of seagrass beds

There are about 18,000 km² of seagrass beds in south Florida

A very rough estimate of carbon stored in the top meter of seagrass soils in south Florida:

18,000 km² of seagrasses 594 tons CO₂e ha⁻¹

1 x 109 tons CO₂e stored in the soils!

A very rough estimate of carbon stored in the top meter of seagrass soils in south Florida:

18,000 km² of seagrasses 594 tons CO₂e ha⁻¹

1 x 109 tons CO₂e stored in the soils!

Anthropogenic CO₂e flux is about 29 x 10⁹ tons y⁻¹

Distribution of seagrass C stock data

Global distribution of seagrass soil DBD

LOI can be used to predict C_{org}

Global distribution of soil C_{org} in

Global values for Seagrass abundance

	n	Range	Median	Mean ± 95%CI
Aboveground biomass Mg (dry weight) ha ⁻¹	251	0.002 – 15.850	0.756	2.151 ± 0.364
Belowground biomass Mg (dry weight) ha ⁻¹	251	0.002 – 50.957	1.542	5.008 ± 1.069
Total seagrass biomass Mg (dry weight) ha ⁻¹	251	0.004 – 66.807	2.854	7.159 ± 1.399
Dry Bulk Density g (dry weight) mL ⁻¹	2484	0.06 – 2.35	0.92	1.03 ± 0.02
Porosity %	1687	18.0 – 99.7	61.6	59.2 ± 0.8
Organic matter as LOI % of dry weight	2783	0.0 – 100.0	4.2	5.7 ± 0.3

Tuesday, June 12, 2012

Global ranges of C_{org} density

	n	Range	Median	Mean ± 95%CI
Aboveground biomass Mg (C _{org}) ha ⁻¹	251	0.001 – 5.548	0.264	0.755 ± 0.128
Belowground biomass Mg (C _{org}) ha ⁻¹	251	0.001 - 17.835	0.540	1.756 ± 0.375
Total seagrass biomass Mg (C _{org}) ha ⁻¹	251	0.001 – 23.382	1.000	2.514 ± 0.489
Soil C _{org}	2535	0 – 48.2	1.8	2.5 ± 0.1
% of dry weight	3561	0 – 48.2	1.4	2.0 ± 0.1
Dry Bulk Density g (dry weight) mL ⁻¹	2484	0.06 – 2.35	0.92	1.03 ± 0.02

Global estimates of seagrass soil C_{org}

Some seagrass beds rival C-rich

Seagrass bioregions

Regional estimates of Seagrass C_{org}

	Living Seagrass Biomass ion MgC ha ⁻¹		Soil C _{org}	
Region				MgC ha ⁻¹
	n	Mean ± 95%CI	n	Mean ± 95%CI
Northeast Pacific	5	0.97 ± 1.02	1	64.4
Southeast Pacific	0	ND	0	ND
North Atlantic	50	0.85 ± 0.19	24	48.7 ± 14.5
Tropical Western				
Atlantic	44	0.84 ±0.17	13	150.9 ± 26.3
Mediterranean	57	7.29 ± 1.52	29	372.4 ± 74.5
South Atlantic	5	1.06 ± 0.51	5	137.0 ± 56.8
Indopacific	47	0.61 ± 0.26	8	23.6 ± 8.3
Western Pacific	0	ND	0	ND
South Australia	40	2.32 ± 0.63	9	268.3 ± 101.7
Global Average	251	2.51 ± 0.49	89	194.2 ± 20.2

How big are Global Seagrass Blue

- 300,000-600,000 km² of seagrasses
- Median estimate of seagrass biomass:

Median estimate of seagrass soil Corg (top meter)

Global seagrass biomass:

Global seagrass Soil C_{org}:

(earlier estimate of salt marshes and mangrove combined is 10 Pg C

Reports of seagrass losses and the rates of decline are increasing dramatically

Waycott et al. 2009 PNAS

Seagrass ecosystems are declining globally

What are the consequences of seagrass

- Seagrass loss has averaged 1.5% y⁻¹ since the beginning of the 20th century
- Resulting loss of seagrass biomass:

$$11.3 - 22.7 \text{ Tg C y}^{-1}$$

Resulting loss of seagrass soil C_{org} (top meter)

$$63 - 297 \text{ Tg C y}^{-1}$$

These rates are roughly 10% of total CO₂ fluxes