情報通信ネットワーク第14回

理工学部情報科学科 松澤 智史

本日のコンテンツ

- ・LANに関する技術
 - VPN
 - カプセル化とトンネリング
 - IPSec
 - 暗号アルゴリズム
 - ・ファイアウォール
 - IDS,IPS
- その他の暗号プロトコル
 - TLS/SSL

VPN(Virtual Private Network)

- 仮想的なプライベートネットワーク接続
- インターネットVPN
 - ・インターネットなどの公衆網を利用したVPN
- IP-VPN
 - 通信事業者が提供するIPネットワークを利用したVPN

VPNの接続形態

・サイト間VPN

• リモートアクセスVPN

暗号化とカプセル化

復号と非カプセル化

VPNを構成する技術

- ・トンネリング(カプセル化)
 - ある通信プロトコルに他の通信プロトコルのヘッダを付加する(カプセル化)
 - ・ある通信プロトコルの環境の上に、異なる通信プロトコルを透過的に流す

• 暗号

- 共通鍵暗号
- 公開鍵暗号
- 鍵交換

トンネリングとカプセル化

ヘッダとあるデータ

カプセル化

トンネリング

192.168.0.5

192.168.0.5

トンネリング用のプロトコル

プロトコル	層	マルチキャスト可	暗号可
IPsec	L3 (IP)	×	0
GRE	L3 (IP,他)	0	×
L2TP	L2 (PPP) L3(IP,他)	0	×

IPSec

- ・ネットワーク層でデータを保護するためのアーキテクチャ
- VPNはIPSec利用例の1つ
- •機能
 - 通信内容の秘匿
 - 通信相手の認証
 - 通信内容の改ざん検出
- ・ IPSec プロトコル
 - AH(Authentication Header)認証, 改ざん検知が可能なプロトコル
 - ESP(Encapsulating Security Payload)
 秘匿, 改ざん検知が可能なプロトコル
 - IKE(Internet Key Exchange)
 鍵交換プロトコル

IPSecで使用されるアルゴリズム

- 鍵交換(IKE)
 - Diffie-Hellman
- 暗号化
 - 公開鍵暗号
 - Elgamal, RSA
 - 共通鍵暗号
 - DES, 3DES, AES
- デジタル署名
 - RSA, DSA

IPSecで使用されるアルゴリズム

- 鍵交換(IKE)
 - Diffie-Hellman
- 暗号化
 - 公開鍵暗号
 - Elgamal, RSA
 - 共通鍵暗号
 - DES, 3DES, AES
- デジタル署名
 - RSA, DSA

Diffie-Helman

- 前提(離散対数問題)
 - $h = g^x \pmod{p}$ gは群Gの生成元,pは素数
 - ・gとhが既知であってもxを求めるのは容易ではない
- ・アルゴリズム

IPSecで使用されるアルゴリズム

- 鍵交換(IKE)
 - Diffie-Hellman
- 暗号化
 - 公開鍵暗号
 - Elgamal, RSA
 - 共通鍵暗号
 - DES, 3DES, AES
- デジタル署名
 - RSA, DSA

Elgamal暗号

- GF(p)のpと生成元gを選ぶ
- xをZ*pからランダムに選ぶ (秘密鍵)
- $h = g^x \ge t$ 6.
- (p,g,h)を公開しxを秘密鍵とする
- ・ 平文 $m \in Z_p^*$ において、 $r \in Z_p^*$ とし、暗号文 c_1 と c_2 を $c_1 = g^r, c_2 = m \times h^r$ と計算する
- ・暗号文 $c_1, c_2 \in \mathbb{Z}_p^*$ において暗号文mを

$$m = c_2 \times (c_1^x)^{-1}$$
 と計算する

IPSecで使用されるアルゴリズム

- 鍵交換(IKE)
 - Diffie-Hellman
- 暗号化
 - 公開鍵暗号
 - Elgamal, RSA
 - 共通鍵暗号
 - DES, 3DES, AES
- デジタル署名
 - RSA, DSA

RSA

- ・素数pとqを選ぶ,n = p * qとする(pとqは互いに素)
- gcd(e, (p-1)(q-1)) = 1となるeを選ぶ
- $ed = 1 \mod (p-1)(q-1)$ となるdを選ぶ(秘密鍵)
- (n,e)を公開鍵とする
- ・平文 $m \in Z_p^*$ において暗号文cを $c = m^e mod n$ と計算する
- ・暗号文 $c \in \mathbb{Z}_p^*$ において暗号文mを $m = c^d mod n$ と計算する

IPSecで使用されるアルゴリズム

- 鍵交換(IKE)
 - Diffie-Hellman
- 暗号化
 - 公開鍵暗号
 - Elgamal, RSA
 - 共通鍵暗号
 - DES, 3DES, AES
- ・ デジタル署名
 - RSA, DSA

DES(Data Encryption Standard)

・共通鍵を使って転置、シフト、XORを繰り返す

IPSecで使用されるアルゴリズム

- 鍵交換(IKE)
 - Diffie-Hellman
- 暗号化
 - 公開鍵暗号
 - Elgamal, RSA
 - 共通鍵暗号
 - DES, 3DES, AES
- デジタル署名
 - RSA, DSA

デジタル署名(電子署名)

- 公開鍵暗号とハッシュを用いて改ざんを防止する
- ・秘密鍵で暗号化し、公開鍵で復号する(公開鍵暗号とは逆)

デジタル認証

・デジタル署名を用いて階層的に認証を行う方法

【 不正な公開鍵の配布 】

このケースはデジタル署名だけでは防げない

デジタル認証の仕組み

CA(Certification Authority)と呼ばれる認証局のデジタル署名を受けたデジタル証明書(電子証明書)を使用する

【 デジタル証明書を使用したデジタル署名の仕組み 】

証明書を確認してみよう

証明書を確認してみよう

証明書を表示

VPNまとめ

- カプセル化を行いトンネリングで拠点間のデータ転送を行う
- トンネルプロトコルとしてIPSecなどが使われる
- ・IPSecはセキュリティのフレームワークで、 鍵交換、暗号化(秘匿、認証、改ざん検知)が行える

ファイアウォール

- 不審な通信を遮断するソフトウェア
- ・ パケットフィルタリング型
 - IPアドレス, ポート番号で通過の判断を行う
- アプリケーションゲートウェイ型
 - 特定のアプリケーションの通信内容を見て通過の判断を行う

ファイアウォールの設置場所

・一般的には内部ネットワーク(イントラネット)と 外部ネットワークとの境界に置く

ただしこの場合、公開したいサーバなどの機器がある場合に 不便となる

ファイアウォールの設置場所

• DMZ(DeMilitarized Zone)を設ける

ツール: nmap

- ・ポートスキャンツール
- 動作しているポート番号をチェックする
- https://nmap.org/download.html

IDS(Intrusion Detection System)

- ・侵入検知システム
- ・不正な侵入や攻撃を検知すると管理者に通知するシステム
- 検知方法からシグネチャ型とアノマリ型に分類される

IDSの種類

• シグネチャ型

- 不正な侵入や攻撃の特徴データ(シグネチャ)をあらかじめ定義しておき シグネチャと一致したものを脅威として検知する
- 既知の攻撃しか対応できない

• アノマリ型

- 監視対象の正常な状態をあらかじめ定義しておき これと大きく異なった状態となった場合に異常として検知する
- 未知の攻撃にも対応することができる

IDSの種類

• 検知方法

シグネチャ型

アノマリ型

IPS (Intrusion Prevention System)

・IDSと同様の働きをするが管理者に通知ではなく 防御策を実行するシステム

TLS/SSL

- 正式名: Transport Layer Security/Secure Sockets Layer
- ・トランスポート層(TCP)の上で動作する暗号プロトコル
- ・暗号アルゴリズムはIPSecと同様に選択可能
- TLS1.0はSSL3.0の後継バージョン

【 IPsecの動作レイヤー 】

アプリケーション層		
プレゼンテーション層		
セッション層		
トランスポート層		
IPsec ネットワーク層 IP		
データリンク層		
物理層		

【 SSLの動作レイヤー 】

アプリケーション層		
プレゼンテーション層		
SSL セッション層		
トランスポート層 TCP		
ネットワーク層 IP		
データリンク層		
物理層		

TLS/SSLの動作

今回のまとめ

VPN

- カプセル化を行いトンネリングで拠点間のデータ転送を行う
- トンネルプロトコルとしてIPSecなどが使われる
- IPSecは鍵交換、暗号化(秘匿、認証、改ざん検知)などが行える

ファイアウォール

- パケットフィルタ型とアプリケーションゲートウェイ型がある
- IDS,IPS
 - 通信異常を検出し、管理者に通知する(IDS) or 防御策を実行する(IPS)
- TLS/SSL
 - IPSecとは異なり、TCP上で動作する暗号プロトコル