SBML Model Report

Model name: "Jones1994_BloodCoagulation"

May 28, 2014

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Michael Schubert¹ and Vijayalakshmi Chelliah² at June sixth 2011 at 5:21 p.m. and last time modified at May 28th 2014 at 2:02 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	18
events	0	constraints	0
reactions	20	function definitions	1
global parameters	22	unit definitions	0
rules	2	initial assignments	0

Model Notes

Jones1994_BloodCoagulationThis model is built based on the experimental findings described in Lawson et al., 1994(PMID:8083241)

This model is described in the article: A model for the tissue factor pathway to thrombin. II. A mathematical simulation. Jones KC, Mann KG.J. Biol. Chem. 1994 Sep; 269(37): 23367-23373

¹EBI, schubert@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

Abstract:

A mathematical simulation of the tissue factor pathway to the generation of thrombin has been developed using a combination of empirical, estimated, and deduced rate constants for reactions involving the activation of factor IX, X, V, and VIII, in the formation of thrombin, as well as rate constants for the assembly of the coagulation enzyme complexes which involve factor VIIIa-factor IXa (intrinsic tenase) and factor Va-Xa (prothrombinase) assembled on phospholipid membrane. Differential equations describing the fate of each species in the reaction were developed and solved using an interactive procedure based upon the Runge-Kutta technique. In addition to the theoretical considerations involving the reactions of the tissue factor pathway, a physical constraint associated with the stability of the factor VIIIa-factor IXa complex has been incorporated into the model based upon the empirical observations associated with the stability of this complex. The model system provides a realistic accounting of the fates of each of the proteins in the coagulation reaction through a range of initiator (factor VIIa-tissue factor) concentrations ranging from 5 pM to 5 nM. The model is responsive to alterations in the concentrations of factor VIII, factor V, and their respective activated species, factor VIIIa and factor Va, and overall provides a reasonable approximation of empirical data. The computer model permits the assessment of the reaction over a broad range of conditions and provides a useful tool for the development and management of reaction studies.

This model is hosted on BioModels Database and identified by: BIOMD0000000336.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_1	compartment_1		3	1	litre	Ø	

3.1 Compartment compartment_1

This is a three dimensional compartment with a constant size of one litre.

Name compartment_1

4 Species

This model contains 18 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
IX	IX	compartment_1	$\text{mol} \cdot l^{-1}$	\Box	\Box
IX_TF_VIIa	IX_TF_VIIa	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\Box
$TF_{-}VIIa$	TF_VIIa	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\Box
IXa	IXa	$\verb compartment_1 $	$\text{mol} \cdot 1^{-1}$		\Box
X	X	$\verb compartment_1 $	$\text{mol} \cdot 1^{-1}$		\Box
X_TF_VIIa	X_TF_VIIa	$\verb compartment_1 $	$\text{mol} \cdot 1^{-1}$		\Box
Xa	Xa	$\verb compartment_1 $	$\operatorname{mol} \cdot 1^{-1}$		\Box
${\tt VIIIa_IXa}$	VIIIa_IXa	$\verb compartment_1 $	$\operatorname{mol} \cdot 1^{-1}$		
X_VIIIa_IXa	X_VIIIa_IXa	${\tt compartment_1}$	$\text{mol} \cdot l^{-1}$		\Box
V	V	${\tt compartment_1}$	$\text{mol} \cdot 1^{-1}$		\Box
Va	Va	$\verb compartment_1 $	$\text{mol} \cdot 1^{-1}$		\Box
VIII	VIII	compartment_1	$\text{mol} \cdot 1^{-1}$		
VIIIa	VIIIa	compartment_1	$\text{mol} \cdot 1^{-1}$		
IIa	IIa	compartment_1	$\operatorname{mol} \cdot 1^{-1}$		
II	II	compartment_1	$\operatorname{mol} \cdot 1^{-1}$		
II_Va_Xa	II_Va_Xa	${ t compartment}_{ t 1}$	$\operatorname{mol} \cdot 1^{-1}$		
Va_Xa	Va_Xa	$\texttt{compartment}_{_}1$	$\text{mol} \cdot 1^{-1}$		
mIIa	mIIa	$ exttt{compartment}_{-1}$	$\text{mol} \cdot l^{-1}$	\Box	

5 Parameters

This model contains 22 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	0000036	$2 \cdot 10^7$		Ø
k2	k2	0000036	$2 \cdot 10^7$		
k3	k3	0000036	10^{7}		$\overline{\checkmark}$
k4	k4	0000036	$2 \cdot 10^7$		
k5	k5	0000036	10^{7}		$\overline{\checkmark}$
k6	k6	0000036	10^{8}		
k7	k7	0000036	10^{7}		
k8	k8		$4 \cdot 10^{8}$		$\overline{\mathbf{Z}}$
k9	k9	0000038	0.005		$\overline{\checkmark}$
k10	k10	0000038	0.400		$\overline{\checkmark}$
k11	k11	0000035	0.300		
k12	k12	0000035	1.150		
k13	k13	0000035	8.200		
k14	k14	0000035	32.000		
k15	k15	0000036	100000.000		$\overline{\checkmark}$
k16	k16	0000038	24.000		
k17	k17	0000038	44.000		$\overline{\checkmark}$
k18	k18	0000038	0.001		$\overline{\checkmark}$
k19	k19	0000038	70.000		$\overline{\checkmark}$
k20	k20		0.020		$\overline{\mathbf{Z}}$
I	I		0.000		
IIa_plus_1-	IIa+1.2mIIa		0.000		
_2mIIa					

6 Function definition

This is an overview of one function definition.

6.1 Function definition function_4_VIIIa_IXa_degradation_2

Name function_4_VIIIa_IXa_degradation_2

Arguments I, [VIIIa_IXa], vol(compartment_1)

Mathematical Expression

$$\frac{\text{vol}\left(\text{compartment_1}\right) \cdot |I - [VIIIa_IXa]| + \left(I - [VIIIa_IXa]\right)}{\text{vol}\left(\text{compartment_1}\right)} \tag{1}$$

7 Rules

This is an overview of two rules.

7.1 Rule IIa_plus_1_2mIIa

Rule IIa_plus_1_2mIIa is an assignment rule for parameter IIa_plus_1_2mIIa:

$$IIa_plus_1_2mIIa = [IIa] + 1.2 \cdot [mIIa]$$
 (2)

7.2 Rule I

Rule I is a rate rule for parameter I:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{I} = ((|\mathbf{I} - [\mathbf{VIIIa}_{-}\mathbf{I}\mathbf{X}\mathbf{a}]|) + (\mathbf{I} - [\mathbf{VIIIa}_{-}\mathbf{I}\mathbf{X}\mathbf{a}])) \cdot \mathbf{k}20 \tag{3}$$

8 Reactions

This model contains 20 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	R1	R1	IX+TF_VIIa ⇌ IX_TF_VIIa	
2	R1b	R1b	$IX_TF_VIIa \longrightarrow TF_VIIa + IXa$	
3	R2	R2	$X + TF_VIIa \Longrightarrow X_TF_VIIa$	
4	R2b	R2b	$X_{-}TF_{-}VIIa \longrightarrow TF_{-}VIIa + Xa$	
5	R3	R3	$X + VIIIa_IXa \Longrightarrow XVIIIa_IXa$	
6	R3b	R3b	$X_VIIIa_IXa \longrightarrow VIIIa_IXa + Xa$	
7	R4	R4	$IX + Xa \longrightarrow Xa + IXa$	
8	R5	R5	$V + Xa \longrightarrow Xa + Va$	
9	R6	R6	$VIII + Xa \longrightarrow Xa + VIIIa$	
10	R7	R7	$V + IIa \longrightarrow IIa + Va$	
11	R8	R8	$VIII + IIa \longrightarrow IIa + VIIIa$	
12	R9	R9	II + Va_Xa ← II_Va_Xa	
13	R9b	R9b	$II_{Va}Xa \longrightarrow VaXa + mIIa$	
14	R10	R10	$mIIa + Va_Xa \longrightarrow Va_Xa + IIa$	
15	R11	R11	VIIIa+IXa ← → VIIIa_IXa	
16	R12	R12	$Va + Xa \Longrightarrow Va_Xa$	
17	$R7_{atn}$	R7_atn	$V + mIIa \longrightarrow mIIa + Va$	
18	R8_atn	R8_atn	$VIII + mIIa \longrightarrow mIIa + VIIIa$	
19	$R4_atn$	R4_atn	$IX + Va_Xa \longrightarrow Va_Xa + IXa$	
20	VIIIa_IXa- _degradation	VIIIa_IXa_degradation	VIIIa_IXa $\xrightarrow{\text{VIIIa}_I\text{IXa}} \emptyset$	

8.1 Reaction R1

This is a reversible reaction of two reactants forming one product.

Name R1

Reaction equation

$$IX + TF_{-}VIIa \Longrightarrow IX_{-}TF_{-}VIIa$$
 (4)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
IX	IX	0000010
$TF_{-}VIIa$	TF_VIIa	0000010

Product

Table 7: Properties of each product.

Id	Name	SBO
IX_TF_VIIa	IX_TF_VIIa	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{compartment}_1) \cdot (\text{k6} \cdot [\text{IX}] \cdot [\text{TF}_{\text{VIIa}}] - \text{k16} \cdot [\text{IX}_{\text{TF}_{\text{VIIa}}}])$$
 (5)

8.2 Reaction R1b

This is an irreversible reaction of one reactant forming two products.

Name R1b

Reaction equation

$$IX_TF_VIIa \longrightarrow TF_VIIa + IXa$$
 (6)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
IX_TF_VIIa	IX_TF_VIIa	0000010

Products

Table 9: Properties of each product.

1	
Name	SBO
TF_VIIa	0000011
IXa	0000011
	TF_VIIa

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit contains undeclared units

$$v_2 = \text{vol} \left(\text{compartment_1} \right) \cdot \text{k11} \cdot \left[\text{IX_TF_VIIa} \right]$$
 (7)

8.3 Reaction R2

This is a reversible reaction of two reactants forming one product.

Name R2

Reaction equation

$$X + TF_{-}VIIa \Longrightarrow X_{-}TF_{-}VIIa$$
 (8)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
Х	X	0000010
$TF_{-}VIIa$	TFVIIa	0000010

Product

Table 11: Properties of each product.

THOIR TIVITOPETRIES OF CHEST PROGRESS			
Id	Name	SBO	
X_TF_VIIa	X_TF_VIIa	0000011	

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_3 = \text{vol}\left(\text{compartment_1}\right) \cdot \left(\text{k6} \cdot [\text{X}] \cdot [\text{TF_VIIa}] - \text{k17} \cdot [\text{X_TF_VIIa}]\right) \tag{9}$$

8.4 Reaction R2b

This is an irreversible reaction of one reactant forming two products.

Name R2b

Reaction equation

$$X_{TF_{VII}a} \longrightarrow TF_{VIIa} + Xa$$
 (10)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
X_TF_VIIa	X_TF_VIIa	0000010

Products

Table 13: Properties of each product.

Id	Name	SBO
TF_VIIa	TF_VIIa	0000011
Xa	Xa	0000011

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{compartment_1}) \cdot \text{k12} \cdot [\text{X_TF_VIIa}]$$
 (11)

8.5 Reaction R3

This is a reversible reaction of two reactants forming one product.

Name R3

Reaction equation

$$X + VIIIa_IXa \Longrightarrow X_VIIIa_IXa$$
 (12)

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
Х	X	0000010
${\tt VIIIa_IXa}$	VIIIa_IXa	0000010

Product

Table 15: Properties of each product.

Id	Name	SBO
X_VIIIa_IXa	$X_{-}VIIIa_{-}IXa$	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_5 = \text{vol}\left(\text{compartment_1}\right) \cdot \left(\text{k6} \cdot [\text{X}] \cdot [\text{VIIIa_IXa}] - \text{k18} \cdot [\text{X_VIIIa_IXa}]\right)$$
 (13)

8.6 Reaction R3b

This is an irreversible reaction of one reactant forming two products.

Name R3b

Reaction equation

$$X_VIIIa_IXa \longrightarrow VIIIa_IXa + Xa$$
 (14)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
X_VIIIa_IXa	$X_{-}VIIIa_{-}IXa$	0000010

Products

Table 17: Properties of each product.

Id	Name	SBO
VIIIa_IXa	VIIIa_IXa	0000011
Xa	Xa	0000011

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{compartment_1}\right) \cdot \text{k13} \cdot \left[\text{X_VIIIa_IXa}\right]$$
 (15)

8.7 Reaction R4

This is an irreversible reaction of two reactants forming two products.

Name R4

Reaction equation

$$IX + Xa \longrightarrow Xa + IXa$$
 (16)

Reactants

Table 18: Properties of each reactant.

T.17 T		
IX I	X	0000010
Xa X	Xa	0000461

Products

Table 19: Properties of each product.

Id	Name	SBO
Xa	Xa	0000461
IXa	IXa	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k15} \cdot [\text{IX}] \cdot [\text{Xa}]$$
 (17)

8.8 Reaction R5

This is an irreversible reaction of two reactants forming two products.

Name R5

Reaction equation

$$V + Xa \longrightarrow Xa + Va$$
 (18)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
V	V	0000010
Хa	Xa	0000461

Products

Table 21: Properties of each product.

Id	Name	SBO
Хa	Xa	0000461
۷a	Va	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{compartment}_1) \cdot \text{k1} \cdot [\text{V}] \cdot [\text{Xa}]$$
 (19)

8.9 Reaction R6

This is an irreversible reaction of two reactants forming two products.

Name R6

Reaction equation

$$VIII + Xa \longrightarrow Xa + VIIIa \tag{20}$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
VIII	VIII	0000010
Хa	Xa	0000461

Products

Table 23: Properties of each product.

Id	Name	SBO
Xa	Xa	0000461
VIIIa	VIIIa	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_9 = \text{vol} (\text{compartment_1}) \cdot \text{k3} \cdot [\text{VIII}] \cdot [\text{Xa}]$$
 (21)

8.10 Reaction R7

This is an irreversible reaction of two reactants forming two products.

Name R7

Reaction equation

$$V + IIa \longrightarrow IIa + Va$$
 (22)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
V	V	0000010
IIa	IIa	0000461

Products

Table 25: Properties of each product.

Id	Name	SBO
IIa	IIa	0000461
Va	Va	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_{10} = \text{vol} \left(\text{compartment}_{-1} \right) \cdot \text{k2} \cdot [\text{V}] \cdot [\text{IIa}]$$
 (23)

8.11 Reaction R8

This is an irreversible reaction of two reactants forming two products.

Name R8

Reaction equation

$$VIII + IIa \longrightarrow IIa + VIIIa$$
 (24)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
VIII	VIII	0000010
IIa	IIa	0000461

Products

Table 27: Properties of each product.

Id	Name	SBO
IIa	IIa	0000461
VIIIa	VIIIa	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{compartment_1}) \cdot \text{k4} \cdot [\text{VIII}] \cdot [\text{IIa}]$$
 (25)

8.12 Reaction R9

This is a reversible reaction of two reactants forming one product.

Name R9

Reaction equation

$$II + Va_X a \rightleftharpoons II_V a_X a$$
 (26)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
II	II	0000010
Va_Xa	Va_Xa	0000010

Product

Table 29: Properties of each product.

Id	Name	SBO
II_Va_Xa	II_Va_Xa	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \left(\text{k6} \cdot [\text{II}] \cdot [\text{Va}_{-}\text{Xa}] - \text{k19} \cdot [\text{II}_{-}\text{Va}_{-}\text{Xa}]\right) \tag{27}$$

8.13 Reaction R9b

This is an irreversible reaction of one reactant forming two products.

Name R9b

Reaction equation

$$II_{Va}Xa \longrightarrow VaXa + mIIa$$
 (28)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
II_Va_Xa	II_Va_Xa	0000010

Products

Table 31: Properties of each product.

Id	Name	SBO
Va_Xa	Va_Xa	0000011
mIIa	mIIa	0000011

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k14} \cdot [\text{II}_{-}\text{Va}_{-}\text{Xa}]$$
 (29)

8.14 Reaction R10

This is an irreversible reaction of two reactants forming two products.

Name R10

Reaction equation

$$mIIa + Va_Xa \longrightarrow Va_Xa + IIa$$
 (30)

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
mIIa	mIIa	0000010
Va_Xa	Va_Xa	0000461

Products

Table 33: Properties of each product.

Id	Name	SBO
Va_Xa	Va_Xa	0000461
IIa	IIa	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_{14} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{k5} \cdot [\text{mIIa}] \cdot [\text{Va_Xa}]$$
 (31)

8.15 Reaction R11

This is a reversible reaction of two reactants forming one product.

Name R11

Reaction equation

$$VIIIa + IXa \Longrightarrow VIIIa IXa$$
 (32)

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
VIIIa	VIIIa	0000010
IXa	IXa	0000010

Product

Table 35: Properties of each product.

Id	Name	SBO
VIIIa_IXa	VIIIa_IXa	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \left(\text{k7} \cdot \left[\text{VIIIa}\right] \cdot \left[\text{IXa}\right] - \text{k9} \cdot \left[\text{VIIIa}_{-1}\text{IXa}\right]\right)$$
 (33)

8.16 Reaction R12

This is a reversible reaction of two reactants forming one product.

Name R12

Reaction equation

$$Va + Xa \Longrightarrow Va_Xa$$
 (34)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
Va	Va	0000010
Хa	Xa	0000010

Product

Table 37: Properties of each product.

Id	Name	SBO
Va_Xa	Va_Xa	0000011

Kinetic Law

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme

Derived unit contains undeclared units

$$v_{16} = \text{vol}\left(\text{compartment_1}\right) \cdot \left(\text{k6} \cdot \left[\text{Va}\right] \cdot \left[\text{Xa}\right] - \text{k10} \cdot \left[\text{Va_Xa}\right]\right) \tag{35}$$

8.17 Reaction R7_atn

This is an irreversible reaction of two reactants forming two products.

Name R7_atn

Reaction equation

$$V + mIIa \longrightarrow mIIa + Va$$
 (36)

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
V	V	0000010
mIIa	mIIa	0000461

Products

Table 39: Properties of each product.

Id	Name	SBO
mIIa	mIIa	0000461
Va	Va	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_{17} = \text{vol} \left(\text{compartment}_{-1} \right) \cdot \text{k2} \cdot [V] \cdot [\text{mIIa}]$$
 (37)

8.18 Reaction R8_atn

This is an irreversible reaction of two reactants forming two products.

Name R8_atn

Reaction equation

$$VIII + mIIa \longrightarrow mIIa + VIIIa$$
 (38)

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
VIII	VIII	0000010
${\tt mIIa}$	mIIa	0000461

Products

Table 41: Properties of each product.

	_	
Id	Name	SBO
mIIa	mIIa	0000461
VIIIa	VIIIa	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_{18} = \text{vol}(\text{compartment}_{-1}) \cdot \text{k4} \cdot [\text{VIII}] \cdot [\text{mIIa}]$$
 (39)

8.19 Reaction R4_atn

This is an irreversible reaction of two reactants forming two products.

Name R4_atn

Reaction equation

$$IX + Va_Xa \longrightarrow Va_Xa + IXa$$
 (40)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
IX	IX	0000010
Va_Xa	Va_Xa	0000461

Products

Table 43: Properties of each product.

Id	Name	SBO
Va_Xa	Va_Xa	0000461
IXa	IXa	0000011

Kinetic Law

SBO:0000045 mass action rate law for second order irreversible reactions

Derived unit contains undeclared units

$$v_{19} = \text{vol}\left(\text{compartment}_{-1}\right) \cdot \text{k15} \cdot [\text{IX}] \cdot [\text{Va}_{-}\text{Xa}]$$
 (41)

8.20 Reaction VIIIa_IXa_degradation

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name VIIIa_IXa_degradation

Reaction equation

$$VIIIa_IXa \xrightarrow{VIIIa_IXa} \emptyset$$
 (42)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
VIIIa_IXa	VIIIa_IXa	0000010

Modifier

Table 45: Properties of each modifier.

Id	Name	SBO
VIIIa_IXa	VIIIa_IXa	0000019

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol} (\text{compartment}_{-1})$$

 $\cdot \text{function}_{-4} \text{-VIIIa}_{-1} \text{Xa}_{-1} \text{degradation}_{-2} (I, [\text{VIIIa}_{-1} \text{Xa}], \text{vol} (\text{compartment}_{-1}))$
(43)

$$\begin{aligned} & \text{function_4_VIIIa_IXa_degradation_2} \left(I, [VIIIa_IXa], vol \left(\text{compartment_1} \right) \right) \\ &= \frac{vol \left(\text{compartment_1} \right) \cdot |I - [VIIIa_IXa]| + \left(I - [VIIIa_IXa] \right)}{vol \left(\text{compartment_1} \right)} \end{aligned} \tag{44}$$

$$\begin{aligned} & \text{function_4_VIIIa_IXa_degradation_2} \left(I, [VIIIa_IXa], vol \left(\text{compartment_1} \right) \right) \\ &= \frac{vol \left(\text{compartment_1} \right) \cdot |I - [VIIIa_IXa]| + \left(I - [VIIIa_IXa] \right)}{vol \left(\text{compartment_1} \right)} \end{aligned} \tag{45}$$

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species IX

Name IX

Initial concentration $9 \cdot 10^{-8} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R1, R4, R4_atn).

$$\frac{d}{dt}IX = -|v_1| - |v_7| - |v_{19}| \tag{46}$$

9.2 Species IX_TF_VIIa

Name IX_TF_VIIa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R1b and as a product in R1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IX}_{-}\mathrm{TF}_{-}\mathrm{VIIa} = |v_{1}| - |v_{2}| \tag{47}$$

9.3 Species TF_VIIa

Name TF_VIIa

Initial concentration $5 \cdot 10^{-9} \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R1, R2 and as a product in R1b, R2b).

$$\frac{d}{dt}TF_{-}VIIa = |v_2| + |v_4| - |v_1| - |v_3|$$
 (48)

9.4 Species IXa

Name IXa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R11 and as a product in R1b, R4, R4-_atn).

$$\frac{\mathrm{d}}{\mathrm{d}t} IXa = |v_2| + |v_7| + |v_{19}| - |v_{15}| \tag{49}$$

9.5 Species X

Name X

Initial concentration $1.7 \cdot 10^{-7} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R2, R3).

$$\frac{\mathrm{d}}{\mathrm{d}t}X = -|v_3| - |v_5| \tag{50}$$

9.6 Species X_TF_VIIa

Name X_TF_VIIa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R2b and as a product in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X}_{-}\mathbf{TF}_{-}\mathbf{VIIa} = \begin{vmatrix} v_3 \end{vmatrix} - \begin{vmatrix} v_4 \end{vmatrix} \tag{51}$$

9.7 Species Xa

Name Xa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in R4, R5, R6, R12 and as a product in R2b, R3b, R4, R5, R6).

$$\frac{d}{dt}Xa = v_4 + v_6 + v_7 + v_8 + v_9 - v_7 - v_8 - v_9 - v_{16}$$
(52)

9.8 Species VIIIa_IXa

Name VIIIa_IXa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R3, VIIIa_IXa_degradation and as a product in R3b, R11 and as a modifier in VIIIa_IXa_degradation).

$$\frac{d}{dt}VIIIa_{I}Xa = |v_{6}| + |v_{15}| - |v_{5}| - |v_{20}|$$
(53)

9.9 Species X_VIIIa_IXa

Name X_VIIIa_IXa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R3b and as a product in R3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X}_{-}\mathbf{VIIIa}_{-}\mathbf{IXa} = |v_{5}| - |v_{6}| \tag{54}$$

9.10 Species V

Name V

Initial concentration $2 \cdot 10^{-8} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R5, R7, R7_atn).

$$\frac{\mathrm{d}}{\mathrm{d}t}V = -|v_8| - |v_{10}| - |v_{17}| \tag{55}$$

9.11 Species Va

Name Va

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R12 and as a product in R5, R7, R7_atn).

$$\frac{\mathrm{d}}{\mathrm{d}t} Va = |v_8| + |v_{10}| + |v_{17}| - |v_{16}| \tag{56}$$

9.12 Species VIII

Name VIII

Initial concentration $7 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R6, R8, R8_atn).

$$\frac{d}{dt}VIII = -|v_9| - |v_{11}| - |v_{18}| \tag{57}$$

9.13 Species VIIIa

Name VIIIa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R11 and as a product in R6, R8, R8_atn).

$$\frac{d}{dt}VIIIa = |v_9| + |v_{11}| + |v_{18}| - |v_{15}|$$
(58)

9.14 Species IIa

Name IIa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R7, R8 and as a product in R7, R8, R10).

$$\frac{d}{dt}IIa = v_{10} + v_{11} + v_{14} - v_{10} - v_{11}$$
(59)

9.15 Species II

Name II

Initial concentration $1.4 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in R9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{II} = -v_{12} \tag{60}$$

9.16 Species II_Va_Xa

Name II_Va_Xa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R9b and as a product in R9).

$$\frac{d}{dt}II_{-}Va_{-}Xa = v_{12} - v_{13}$$
 (61)

9.17 Species Va_Xa

Name Va_Xa

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R9, R10, R4_atn and as a product in R9b, R10, R12, R4_atn).

$$\frac{\mathrm{d}}{\mathrm{d}t} Va_{-} Xa = |v_{13}| + |v_{14}| + |v_{16}| + |v_{19}| - |v_{12}| - |v_{14}| - |v_{19}|$$
(62)

9.18 Species mIIa

Name mIIa

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in R10, R7_atn, R8_atn and as a product in R9b, R7_atn, R8_atn).

$$\frac{d}{dt}mIIa = |v_{13}| + |v_{17}| + |v_{18}| - |v_{14}| - |v_{17}| - |v_{18}|$$
(63)

A Glossary of Systems Biology Ontology Terms

- **SBO:0000010 reactant:** Substance consumed by a chemical reaction. Reactants react with each other to form the products of a chemical reaction. In a chemical equation the Reactants are the elements or compounds on the left hand side of the reaction equation. A reactant can be consumed and produced by the same reaction, its global quantity remaining unchanged
- **SBO:0000011 product:** Substance that is produced in a reaction. In a chemical equation the Products are the elements or compounds on the right hand side of the reaction equation. A product can be produced and consumed by the same reaction, its global quantity remaining unchanged
- **SBO:0000019 modifier:** Substance that changes the velocity of a process without itself being consumed or transformed by the reaction
- **SBO:0000035 forward unimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000036 forward bimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving two reactants. This parameter encompasses all the contributions to the velocity except the quantity of the reactants. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000038** reverse unimolecular rate constant, continuous case: Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000045** mass action rate law for second order irreversible reactions: Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does not include any reverse process that creates the reactants from the products. The change of a product quantity is proportional to two reactant quantity

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme:

Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does not include any reverse process that creates the reactants from the products. The change of a product quantity is proportional to the quantity of one reactant. It is to be used in a reaction modelled using a continuous framework.

SBO:0000101 mass action rate law for second order forward, first order reverse, reversible reactions, two reactants, continuous scheme: Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does include a reverse process that creates the reactants from the products. The rate of the forward process is proportional to the product of two reactant quantities. The rate of the reverse process is proportional to the quantity of one product. It is to be used in a reaction modelled using a continuous framework.

SBO:0000461 essential activator: A substance that is absolutely required for occurrence and stimulation of a reaction

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany