The Rise of Market Power and the Macroeconomic Implications

De Loecker et al. (QJE 2020)

Questions

- How has market power in the US economy evolved since the 1950s?
- What are the macroeconomic implications of this change?

Approach

- Derive firm-level mark-ups based on a cost minimization problem
 - No need to assume market structure and firm conduct
 - Study firms from very different industries
- Analyze firm profitability
 - Higher mark-ups may be explained by higher fixed costs
 - Higher profits and higher mark-ups provide evidence of an increase in market power

Data

- Compustat, 1950-2016
 - Financial statements from all publicly traded firms in the US
 - Sales, input expenditure, capital stock, industry, cost of goods sold (variable costs) + some measure of overheads (fixed costs)
- US censuses
 - Available for Manufacturing, Retail Trade and Wholesale Trade
 - Universe of establishments (includes private firms)

The Production Approach

• A firm i in year t solves the cost minimization problem:

$$\mathcal{L}(V_{it}, K_{it}, \lambda_{it}) = P_{it}^V V_{it} + r_{it} K_{it} - \lambda_{it} (Q(\cdot) - \bar{Q}_{it})$$

• Which leads to the first-order condition (wrt V_{it}):

Output elasticity of variable input
$$\theta_{it}^v = \frac{1}{\lambda_{it}} \cdot \frac{P_{it}^V V_{it}}{Q_{it}}$$

• Since λ is a direct measure of marginal cost, mark-ups are

Mark-up
$$\mu_{it} = \frac{P_{it}}{\lambda_{it}} = \theta_{it}^{v} \cdot (\frac{P_{it}^{V}V_{it}}{P_{it}O_{it}})^{-1}$$
 Output elasticity of variable input (Inverse)

Mark-ups have increased unevenly across firms

Reallocation accounts for more than two-thirds of the increase in mark-ups

Change in average mark-ups can be decomposed:

$$\Delta \mu_t = \sum_i m_{i,t-1} \Delta \mu_{it} + \sum_i \tilde{\mu}_{i,t-1} \Delta m_{i,t} + \sum_i \Delta \mu_{i,t} \Delta m_{i,t}$$

$$\Delta \text{market share} \qquad \Delta \text{cross term}$$

$$\Delta \text{reallocation}$$

$$+ \sum_{i \in \text{Entry}} \tilde{\mu}_{i,t} m_{i,t} - \sum_{i \in \text{Exit}} \tilde{\mu}_{i,t-1} m_{i,t-1}$$

$$\text{net entry}$$

where
$$\tilde{\mu}_{it} = \mu_{it} - \mu_{t-1}$$
 and $\tilde{\mu}_{it-1} = \mu_{it-1} - \mu_{t-1}$

Decomposition of Markup Growth at the Firm Level

Profits

- Higher mark-ups may not necessarily imply that firms have more market power if their fixed costs had increased over the same period
- Need to analyze profits in order to understand whether higher mark-ups are indicative of a rise in market power in the US
- Let $\Pi_{it}=S_{it}-P_{it}^VV_{it}-r_{it}K_{it}-F_{it}$ denote net profits where F_{it} denotes fixed cost

Then the net profit rate is:
$$\pi_{it} = \frac{\Pi_{it}}{S_{it}} = 1 - \frac{\theta_{st}}{\mu_{it}} - \frac{r_t K_{it}}{S_{it}} - \frac{F_{it}}{S_{it}}$$

Profits have increased (unevenly) across firms

Excess mark-ups

If we set $\pi = 1 - \frac{\theta_{st}}{r} - \frac{r_t K_{it}}{r} - \frac{r_t K_{it}}{r}$

$$\pi_{it} = 1 - \frac{\theta_{st}}{\mu_{it}} - \frac{r_t K_{it}}{S_{it}} - \frac{F_{it}}{S_{it}} = 0$$

we get
$$\mu_{it}^* = \frac{\theta_{st}}{1 - \frac{r_t K_{it}}{S_{it}} - \frac{F_{it}}{S_{it}}}$$

And the weak lower bound on excess mark-up is given by

$$\mu_{it} - \mu_{it}^*$$

Increased market power could explain the secular decline in US labor share

Firms hire less labor as mark-ups increase: $\mu_{it} = \theta_{it}^v \cdot (\frac{P_{it}^V V_{it}}{P_{it} Q_{it}})^{-1} = \theta_{it}^L \cdot (\frac{w_{it} L_{it}}{P_{it} Q_{it}})^{-1}$

REGRESSIONS: LO	G (LABOR	SHARE) ON	Log	(MARKUP)
TIEGITE BOLOND. LO	G (LADOR	DILAME) ON	LOG	(IVIAIUXOI)

	Labor share (log)								
	(1)	(2)	(3)	(4)	(5)	(6)			
Markup (log)	-0.24	-0.23	-0.20	-0.24	-0.68	-0.73			
	(0.03)	(0.03)	(0.03)	(0.03)	(0.02)	(0.02)			
Cost share (log)					0.91	0.96			
					(0.01)	(0.01)			
Year FE		X	X	X	X	X			
Industry FE			X		X				
Firm FE				X		X			
R^2	0.02	0.08	0.21	0.88	0.93	0.99			
N	24,838								

Note: FE = fixed effects. Four-digit industries. Standard errors (in parentheses) are clustered at the firm level.

Summary

- Using data from financial statements and a cost minimization approach, the authors find substantial evidence that market power in the US has significantly increased
 - Mark-ups and net profit rates have increased; more so for high- μ firms
 - Reallocation effect: main channel for overall rise in market power
- Higher mark-ups are inversely related to firms' expenditure on labor
 - Implications for labor force participation and labor market dynamism
- Increased market power could also explain decline in capital spending (as capital adjustments occur over the long-run)