# Concepte si notiuni de baza

Lenuţa Alboaie adria@info.uaic.ro

# Cuprins

- Concepte
- Definitii
- Necesitatea si utilizarea retelelor de calculatoare
- Clasificare
- Topologii
- Componente
- Protocol
- Modele de arhitecturi de retea

# Concepte

- Informatie: orice poate fi reprezentat sub forma de biti
- Resursa: termen generic putind reprezenta date, echipamente et. al.
- Pachet: modalitate de stocare a datelor
- Legatura: conexiune realizata intre membrii retelei
- Nod: calculator din retea care are asociata o adresa
- Protocol: reguli utilizate pentru realizarea comunicarii
- Comunicare: schimb de informatii intre nodurile din retea

#### Retea de calculatoare

#### Definitii:

- Colectie interconectata de calculatoare autonome
- O retea poate fi definita in mod recursiv ca doua sau mai multe noduri conectate printr-o legatura fizica, sau prin doua sau mai multe retele conectate de unul sau mai multe noduri

#### Aspecte:

- Hardware: conecteaza "fizic" computerele intre ele
- Software: Protocoale specifica serviciile furnizate de retea

#### Retea de calculatoare

#### De ce sunt necesare:

- Partajarea resurselor (fizice, date)
- Asigurarea fiabilitatii
- Reducerea costurilor
- Impactul in viata reala:
  - Conversatiile electronice
  - Access la informatii la distanta
  - Divertisment interactiv
  - Comert electronic
  - **—** ...

- Dupa dispunerea spatiala:
  - PAN (Personal Area Network)
  - LAN (Local Area Network)
  - MAN (Metropolitan Area Network)
  - WAN (Wide Area Network)
  - Internet

Dupa dispunerea spatiala:

| Distanţa<br>Interprocesor | Procesoare<br>localizate în<br>aceeași/același: | Exemple  |
|---------------------------|-------------------------------------------------|----------|
| 1 m                       | Metru pătrat                                    | PAN      |
| 10 m                      | Cameră                                          |          |
| 100 m                     | Clădire                                         | LAN      |
| 1 km                      | Campus                                          |          |
| 10 km                     | Oraș                                            | MAN      |
| 100 km                    | Ţară                                            | _        |
| 1000 km                   | Continent                                       | WAN      |
| 10.000 km                 | Planetă                                         | Internet |

Figura. Clasificare dupa dispunerea spatiala

[conform Computer Networks, 2010 – Andrew S. Tanenbaum, et. al.]

- In functie de tehnologia de transmisie:
  - Retele cu difuzare (un singur canal de comunicare)
    - broadcast, multicast
  - Retele point-to-point
    - unicast

# Topologii de retea

**Topologie fizica**: modul de interconectare a calculatoarelor in retea

**Topologie logica**: modul in care datele sunt transferate de la un calculator la altul

#### Posibile topologii fizice pentru:

- Retele cu difuzare LAN
  - Magistrala (bus)
  - Inel (ring)
- Retele point-to-point
  - Stea (star)
  - Inel (ring)
  - Arbore (tree)
  - Completa

# Topologii de retea

#### Retele cu difuzare - LAN

Magistrala (bus)



Inel (ring)



# Topologii de retea

Retele point-to-point

- Stea (star)
- Inel (ring)

– Arbore (tree)

Completa







- In functie de tehnologia hardware (si software) folosita pentru interconectare
  - Retele folosind medii de transmisie cu fir
  - Retele folosind medii de transmisie fara fir (a se vedea cursul din Saptamina 13)

- In functie de elementele componente:
  - Omogena: retea de calculatoare folosind configuratii si protocoale similare
    - Exemplu: O retea folosind Microsoft Windows via TCP/IP
  - Eterogena: retea care contine tipuri diferite de calculatoare, sisteme de operare si/sau protocoale diferite.
    - Exemplu: LAN care conecteaza un PC si un computer Apple Machintosh

### Componente

**Gazda** (eng. *Host*) – este un sistem computational conectat la Internet

Hub (Hub Network) - dispozitiv
(deseori amplificator de semnal)
folosit pentru conectarea mai
multor dispozitive => segment de
retea (network segment)



**Switch** (*Switch*)- dispozitiv care filtreaza si retrimite pachetele in retea



Leonard-Kleinrock -> IMP (Interface Message Processor) 1969

## Componente

 Ruter (Router) – dispozitiv oferind conectivitatea intre retele individuale, realizind dirijarea pachetelor intre aceste retele



- **Punte** (*Bridge*) dispozitiv care conecteaza doua LAN, sau doua segmente ale aceluiasi LAN
- **Poarta** (*Gateway*) este punctul de conectare a doua retele incompatibile
- **Repeater** este un dispozitiv electronic care primeste semnale pe care le retransmite la un nivel mai inalt sau la o putere mai mare, astfel ca semnalul sa poata acoperi zone mari fara degradarea calitatii sale

# Retele de calculatoare – organizare

- Organizarea retelelor de calculatoare stiva de nivele
  - Functionalitate:
    - Interfata: asigura comunicarea intre doua nivele consecutive
    - Serviciu: furnizeaza functionalitatea unui nivel
  - Rezultat: reducerea complexitatii proiectarii
  - Principiul de comunicare: ce transmite emitatorul la nivelul n este ceea ce se primeste la destinatar la nivelul n
  - Protocol regulile si conventiile prin care se realizeaza comunicarea

# Exemplu: legatura - nivele, protocoale si interfete



- Specificarea serviciului este realizata printr-un set de primitive (operatii) puse la dispozitia celui ce foloseste serviciul
- Serviciu != Protocol



- Tipuri de servicii
  - Orientat-conexiune (eng. connection-oriented)
    - Comunicarea necesita stabilirea unei conexiuni
    - Similar serviciului telefonic
  - Fara conexiune (eng. connectionless)
    - Comunicarea nu necesita stabilirea unei conexiuni
    - Similar serviciului postal

- Arhitectura de retea: multimea de nivele si de protocoale
  - Specificatia unei arhitecturi trebuie sa ofere suficiente informatii pentru ca programele sau echipamentele destinate unui nivel sa indeplineasca protocoalele corespunzatoare
- Stiva de protocoale: lista de protocoale (de pe toate nivelele) utilizate de catre un anumit sistem

- Fiecare nivel trebuie sa realizeze indentificarea emitatorilor & receptorilor printr-un mecanism de adresare
- Identificarea regulilor de transfer a datelor
  - comunicare simplex
    - Exemplu: TV
  - comunicare half-duplex
    - Exemplu: "walkie-talkie"
  - comunicare Full-duplex
    - Exemplu: telefon

- In general canalele de comunicatie nu pastreaza ordinea mesajelor trimise => necesitatea unui protocol ce furnizeaza un mecanism de reconstituire a ordinii corecte a mesajelor
- Exista situatii in care receptorul nu poate face managmentul mesajelor de lungime variabila => trebuie sa existe un mecanism de impartire/asamblare a mesajelor
- Costuri mari in alocarea de conexiuni separate? => multiplexarea
   utilizarea aceleiasi conexiuni pentru conversatii independente
- In general exista mai multe cai intre sursa si destinatie => mecanism de rutare
- Circuitele fizice de comunicatii nu sunt perfecte => necesitatea unui mecanism de control al erorilor

#### Modele de referinta pentru arhitecturi de retea

- ISO/OSI (International Standard Organization/ Open System Interconnection)
- TCP/IP (Transmission Control Protocol/ Internet Protocol)



[conform Computer Networks, 2010 – Andrew S. Tanenbaum, et.al.]

## Arhitectura de retea - Echipamente



Figura: Dispozitive si nivelele corespunzatoare

#### Modelul OSI- motivatie

- Necesitatea unui nivel de abstractizare diferit => crearea unui nou nivel
  - Obs. Numarul de niveluri trebuie sa fie optim a.i. acelasi nivel sa aiba functii diferite, dar arhitectura sa fie functionala
- Un nivel are un rol bine definit; functia nivelului trebuie aleasa acordindu-se atentie definirii de protocoale standardizate pe plan international
- Minimizarea fluxului de informatii intre nivele este realizata printr-o buna delimitare a nivelelor
  - => nivelele pot fi modificate si implementate in mod independent
- Fiecare nivel ofera un serviciu nivelului superior (folosind servicii de pe nivelurile anterioare)
- Nivelurile "peer" al sistemelor diferite comunica via un protocol



# Modelul OSI – structura unui mesaj



[Retele de calculatoare – curs 2007-2008, Sabin Buraga]

#### Modelul OSI – structura

- Nivelul Fizic
- Nivelul Legaturii de Date
- Nivelul Retea
- Nivelul Transport
- Nivelul Sesiune
- Nivelul Prezentare
- Nivelul Aplicatie



- Nivelul Fizic: mediu de transmisie a datelor
  - Rol: asigura faptul ca secventa de biti transmisa de la emitator ajunge la receptor
  - Medii de transmisie:
    - Cu fir (cablu torsadat, cablu coaxial, fibre optice)
    - Fara fir (spectru electromagnetic radio, microunde, infrarosii,...) -> curs 13

#### Nivelul Fizic:

Transmiterea datelor:

- Analogic (valori continue)
  - Exemplu: sisteme telefonice
- Digital (valori discrete)
  - Exemplu: computerele

Conversia datelor din format analogic în format digital si invers

- Modem: date în format digital sunt transmise în format analogic
- Codec (coder/decoder): date în format analogic sunt transmise în format digital



Figura. Semnal Analogic



Figura. Semnal Digital

- Nivelul Fizic- aspecte:
  - Largimea de banda (Bandwidth): numarul de biti care pot fi transmisi pe retea intr-o anumita perioada de timp (viteza transfer de date)
    - •Se exprima de obicei in bits/secunda
  - Latenta: reprezinta intervalul de timp maxim necesar unui bit de a se propaga de la o extremitate la alta a retelei si se exprima in unitati de timp
    - •RTT(*Round Trip Time*) Timpul necesar unui bit să traverseze de la un capăt la altul, şi înapoi mediul

Parametrii fundamentali de asigurare a performantei retelei

Nivelul Fizic – Aspecte

Modificari suferite de semnale in timpul propagarii in mediile de transmisie:

- Atenuarea: pierderea de energie în timpul propagării semnalului printr-un mediu de transmisie
- **Zgomotul:** modificarea semnalului cauzata de factori externi (e.g. fulgere, alte echipamente electronice etc) sau factori interni (miscarea de agitatie termica a atomilor din dispozitivele electronice)
  - Diafonia = zgomot provenit din semnal transmis de un mediul de transmisie vecin
- **Distorsiune** (engl. *Distortion*)- este o modificare determinista a semnalului receptionat fata de cel emis



#### Nivelul Fizic – Concluzii

Ofera servicii de transport, asupra carora putem indentifica o serie de probleme posibile

- Datele pot fi alterate/distruse din cauza zgomotului
- Daca destinatia nu poate prelucra datele in ritmul celor emise, o parte se vor pierde
- Daca un acelasi mediu de transmisie este utilizat de mai multe emitatoare, exista riscul ca pachetele trimise sa se altereze reciproc
- Este mai putin costisitoare construirea de legaturi logice care sa partajeze aceeeasi legatura fizica, decat crearea de legaturi fizice independente



- Nivelul legatura de date:
  - Ofera
    - servicii nivelului retea, unitatea de date fiind cadrul (engl. *frame*)
    - mecanisme de detectie si corectare a erorilor
    - mecansime de reglementare a fluxului de date
    - mecanism de control al accesului la mediu

- Nivelul legatura de date:
  - Datele se incapsuleaza in cadre (frame-uri)
  - Analogie: frame=plic digital



- Nivelul legatura de date:
  - Ofera servicii nivelului retea
    - Servicii neconfirmate fara conexiune
      - » Emitatorul transmite cadre independente catre destinatar fara sa astepte confirmare
      - » Un cadru pierdut nu este recuperat
    - Servicii confirmate fara conexiune
      - » Se realizeaza confirmarea cadrelor trimise
      - » Transmiterea cadrelor nu se face in ordine
    - Servicii confirmate orientate-conexiune
      - » Inainte de transmiterea datelor se stabileste o conexiune
      - » Cadrele sunt numerotate pentru a se pastra ordinea

- Nivelul legatura de date:
  - Divizat in doua subniveluri:
    - Controlul logic al legaturii LLC (Logical Link Control)
      - Rol: Ofera nivelelor superioare o vedere independenta de mediul de comunicare
    - Controlul accesului la mediu MAC (Medium Access Control)
      - Rol: Folosit pentru a determina cine urmeaza sa transmita intr-un canal multi-acces (engl. multiaccess channel)

- Nivelul legatura de date:
- Controlul accesului la mediu MAC (Medium Access Control)
  - Contextul problemei: acelasi mediu fizic e folosit de mai multi emitatori (identificati unic printr-o adresa fizica sau adresa MAC) care activeaza simultan, de exemplu:
    - transmisie semi-duplex, intre entitati care utilizeaza acelasi mediu fizic pentru ambele sensuri
    - comunicatia prin unde radio, cind exista statii care
       emit pe aceeasi lungime de unda (Wireless Ethernet
      - IEEE 802.11, Bluetooth, etc).

- Nivelul legatura de date:
- Controlul accesului la mediu MAC (Media Access Control)
  - Strategii:
    - Alocare statica
      - » FDM (Frequency Division Multiplexing)
      - » TDM (Time Division Multiplexing)
    - Acceptarea posibilitatii coliziunilor si retransmiterea pachetelor afectate de coliziuni – alocare dinamica

Coliziune=transmiterea simultana a datelor

Mecanism general: o statie ce are date de transmis, le transmite imediat; in caz de coliziune va face retransmitere pana la transmitere cu succes

Nivelul legatura de date:

Controlul accesului la mediu – protocoale:

- ALOHA
  - Pure ALOHA: "transmite oricind doresti"
  - Slotted ALOHA
- CSMA (Carrier Sense Multiple Access): protocol cu detectia transmisiei ("canal liber inainte de a transmite?")
  - 1-persistent CSMA
  - nonpersistent CSMA
  - p-persistent CSMA

- Nivelul legatura de date:
  - Controlul accesului la mediu protocoale:
    - CSMA (Carrier Sense Multiple Access)
      - -CSMA/CD (CSMA with Collision Detection)
        - "canalul e liber in timp ce transmiti?"
        - » baza pentru Ethernet LAN (IEEE 802.3)
    - MACA (Multiple Access with Collision Avoidance)
      - -Baza pentru retelele wireless (IEEE 802.11)
    - MACAW
      - Imbunatateste MACA

| Standard<br>IEEE  | Descriere                                                                |
|-------------------|--------------------------------------------------------------------------|
| 802               | Grupul de standarde pentru reţele LAN şi<br>MAN                          |
| 802.2             | LLC (Logical Link Control)                                               |
| 802.3             | Ethernet (Carrier Sense Multiple Access with Collision Detect (CSMA/CD)) |
| 802.3u            | Fast Ethernet                                                            |
| 802.3z            | Gigabit Ethernet                                                         |
| 802.11<br>a/b/g/n | Reţele fără fir – wireless (WLAN)                                        |
| 802.15            | Wireless PAN (802.15.1 Bluetooth,)                                       |
| 802.16            | Reţele wireless WAN                                                      |

#### Accesul la mediu – Exemplu de Standarde

- Nivelul legatura de date echipamente
  - punti (engl. bridges)
    - Retransmit frame-urile dintre doua retele (LAN) incompatibile
    - Nu modifica continutul frame-urilor si pot schimba doar antetele acestora
    - Imbunatatesc siguranta transmiterii si performanta
    - Pot oferi controlul fluxului si congestiei datelor
    - Retransmiterea datelor se realizeaza via rute statice sau folosind un arbore de acoperire

STP (IEEE 802.1D) – Spanning Tree Protocol



#### Nivelul retea:

- Preia pachetele de la sursa si le transfera catre destinatie
- Ofera servicii nivelului transport
  - ce fel de servicii?
    - Comunitatea Internet propune:
      - » servicii neorientate conexiune: SEND PACKET, RECEIVE PACKET
      - » Pachetele (numite datagrame) sunt independente si sunt dirijate in mod individual
      - » Serviciile de tip datagrama sunt similare sistemului de posta (obsinuita)



#### Nivelul retea:

- Preia pachetele de la sursa si le transfera catre destinatie
- Ofera servicii nivelului transport
  - ce fel de servicii?
    - Companiile telefonice propun:
      - » Servicii orientate conexiune, sigure
      - » Inainte de transfer se initiaza o negociere pentru stabilirea unei conexiuni (*VC-virtual circuit*)
      - » Serviciile de acest tip sunt similare sistemului telefonic

- Nivelul retea:
  - -Probleme
    - Conversii de protocol si adrese
    - Controlul erorilor (flux, congestie)
    - Divizarea si recompunerea pachetelor
    - Securitatea criptare, firewall
  - Protocoale folosite
    - X.25 (orientat conexiune)
    - IP



- Nivelul transport: ofera siguranta si cost-eficient in transportul datelor de la masina sursa la masina destinatie, independent de reteaua fizica sau retelele in prezent in uz
  - Servicii: ofera servicii orientate-conexiune si fara conexiune

Diferente intre nivelul transport si nivelul retea?

### Nivelul transport:

- Primitive:
  - LISTEN se blocheaza pina cind un proces incearca sa se conecteze
  - CONNECT incearca sa stabileasca o conexiune
  - SEND trimite date
  - RECEIVE se blocheaza pina se primesc datele
  - DISCONNECT eliberarea conexiunii
- Performanta calitatea serviciilor (QoS Quality of Service): stabilirea/eliberarea conexiunii, rata de eroare, protectia, prioritatea, rezilienta (probabilitatea ca o conexiune sa se inchida din ratiuni interne), duplicarea pachetelor, controlul fluxului



- Nivelul sesiune: se refera la probleme de stabilire de sesiuni (servicii de control al dialogului, de sincronizare etc.)
- Nivelul prezentare: se ocupa de prezentarea datelor, codificindu-le intr-un format standard
  - Pentru a se asigura comunicarea intre calculatoare cu reprezentari diferite, nivelul prezentare asigura conversia reprezentarilor interne a structurilor de date in reprezentare standardizata din retea si invers

Nivelul aplicatie:

gestioneaza servicii ale retelei: terminal virtual abstract, transfer de fisiere, posta electronica, executia la distanta a aplicatiilor,...



### Rezumat

- Necesitatea si utilizarea retelelor de calculatoare
- Clasificare
- Topologii
- Componente
- Protocol
- Modele de arhitecturi de retea (OSI, TCP/IP)

# Intrebari?