AMATH 481 / 581 Fall 2018

Homework 1 - Initial Value Problems

Submission open until 11:59:59pm Thursday October 18, 2018

1. Consider the ODE

$$\frac{dy(t)}{dt} = -3y(t)\sin t, \quad y(t=0) = \frac{\pi}{\sqrt{2}},$$

which has the exact solution $y(t) = \pi e^{3(\cos t - 1)}/\sqrt{2}$ (you can verify that). Implement the methods forward Euler and Heun's for this ODE to test the error as a function of Δt . In particular:

(a) Solve the ODE numerically using the forward Euler method:

$$y(t_{n+1}) = y(t_n) + \Delta t f(t_n, y(t_n))$$

with $t = [0:\Delta t:5]$, where $\Delta t = 2^{-2}, 2^{-3}, 2^{-4}, \dots, 2^{-8}$. For each of these Δt values calculate the error $E = \mathtt{norm}((y_{true} - y_{num}), 2)$ of the numerical method. Plot $\log(\Delta t)$ on the x axis and $\log(E)$ on the y axis. Using polyfit, find the slope of the best fit line through this data. This is the order of the forward Euler method.

ANSWER: Save your last numerical solution ($\Delta t = 2^{-8}$) as a column vector in A1.dat. Save the error values in a row vector with seven components in A2.dat. Save the slope of the line in A3.dat.

(b) Solve the ODE numerically using Heun's method:

$$y(t_{n+1}) = y(t_n) + \frac{\Delta t}{2} [f(t_n, y(t_n)) + f(t_n + \Delta t, y(t_n) + \Delta t f(t_n, y(t_n)))]$$

with $t = [0:\Delta t:5]$, where $\Delta t = 2^{-2}, \ 2^{-3}, \ 2^{-4}, \dots, 2^{-8}$. For each of these Δt values, calculate the error $E = \text{norm}((y_{true} - y_{num}), 2)$ of the numerical method. Plot $\log(\Delta t)$ on the x axis and $\log(E)$ on the y axis. Using polyfit, find the slope of the best fit line through this data. This is the order of the Heun's method.

ANSWER: Save your last numerical solution ($\Delta t = 2^{-8}$) as a column vector in A4.dat. Save the error values in a row vector with seven components in A5.dat. Save the slope of the line in A6.dat.

2. Consider the van der Pol oscillator

$$\frac{d^2y(t)}{dt^2} + \epsilon[y^2(t) - 1]\frac{dy(t)}{dt} + y(t) = 0$$

with ϵ being a parameter.

(a) With $\epsilon = 0.1$, solve the equation for t = [0:0.5:32] using ode45. The initial conditions are $y(t=0) = \sqrt{3}$ and dy(t=0)/dt = 1. Repeat this for $\epsilon = 1$ and $\epsilon = 20$.

ANSWER: Save the solutions y(t) for different ϵ as a matrix of 3 columns in A7.dat.

(b) Using the time span t = [0, 32] (the step size for displaying the result is not specified), solve

the van der Pol's equation with ode45. Use $\epsilon = 1$ and the initial conditions y(t = 0) = 2 and $dy(t = 0)/dt = \pi^2$.

Below is an example on how to control the error tolerance TOL in ode45:

```
TOL = 1e-4;
options = odeset('AbsTol',TOL,'RelTol',TOL);
[T,Y] = ode45('rhs',tspan,y0,options);
```

Using the diff and mean commands on the vector T shown above, calculate the average stepsize t needed to solve the problem for each of the following tolerance values: $10^{-4}, 10^{-5}, \dots, 10^{-10}$. Plot $\log(\Delta t)$ on the x axis and $\log(\text{TOL})$ on the y axis. Using polyfit, find the slope of the best fit line through this data. This is the order of the local truncation error of ode45. Repeat this with ode23 and ode113.

ANSWER: The slopes should be written out as A8.dat - A10.dat for ode45, ode23, and ode113 respectively.

3. To explore interaction between neurons, implement two Fitzhugh neurons coupled via linear coupling:

$$\frac{dv_1}{dt} = -v_1^3 + (1+a_1)v_1^2 - a_1v_1 - w_1 + I + \mathbf{d}_{12}\mathbf{v}_2$$

$$\frac{dw_1}{dt} = bv_1 - cw_1$$

$$\frac{dv_2}{dt} = -v_2^3 + (1+a_2)v_2^2 - a_2v_2 - w_2 + I + \mathbf{d}_{21}\mathbf{v}_1$$

$$\frac{dw_2}{dt} = bv_2 - cw_2$$

with parameters $a_1 = 0.05$, $a_2 = 0.25$, b = c = 0.01 and, I = 0.1. Start the simulations with the initial condition of $(v_1(0), v_2(0)) = (0.1, 0.1)$ and $(w_1(0), w_2(0)) = (0, 0)$ and use the ode15s solver. Set the interaction parameters such that d_{12} is negative and d_{21} is positive. What do you observe from the different graphical representations of the solutions?

ANSWERS: Set the interaction parameters to 5 different values

 (d_{12}, d_{21}) : (0,0), (0,0.2), (-0.1,0.2), (-0.3,0.2), (-0.5,0.2). For each interaction value solve the system for t = [0:0.5:100] and save the computed solution, (v_1, v_2, w_1, w_2) , in a 201×4 matrix. Write out the 5 different solutions, each of which corresponds to an interaction parameter, in A11.dat - A15.dat.