Friday, November 15, 2019 10:25

X LCH Space

Goal: compute Co(X)*

Recall: a Bord measure μ on X i's called outer regular if $\mu(E) = \inf \{ \mu(u) \mid E \in U \text{ open} \}$ and on the regular if $\mu(E) = \sup \{ \mu(K) \mid E \ni K \text{ cpt} \}$.

If u is inner a outer regular on all Borel E, u is regular Eg: Lebesgue-Stieltjes measures.

Def A Radon measure on X is a Barel measure which is

- finite on compact sets

· in ner regular on spen sets

| Stw., X \sigma-cpt \in X \sigma-finite sets |
| Stw., X \sigma-cpt \in X \sigma-finite.

Consider $C_c(X)$ cts for of opt supp.

A Radon integral on X is a positive linear functional $\varphi: C_c(x) \longrightarrow C$, i.e. $\varphi(f) \geqslant 0$ if $f \geqslant 0$.

Page 1

Lemma Radon integrals are bold on compact subsets of X.

ie. Let $K \subset X$ cpt. Show $\exists C_K > 0$ s.t. $\forall f \in C_c(X)$ ω / $supp(f) \subset K$, $|\varphi(f)| \in C_K ||f||_{\infty}$.

If By taking Re + Im parts, we may asome f is \mathbb{R} -valued. Choose $g \in C_c(X)$ s.t. g = 1 on K by Urysohn's Lemma If supp (f) = K, $|f| \leq ||f||_{\infty} g$. Then $||f||_{\infty} g - |f| \geq 0$, and so $||f||_{\infty} g \pm f \geq 0$. So $||f||_{\infty} \varphi(g) \pm \varphi(f) \geq 0$, so $||\varphi(f)| \leq |\varphi(g)||f||_{\infty}$.

Properties of Radon Measures: X LCH, u Radon.

1) If ECX is o-finite, then u is inner regular on E.

=> Every o-finite Radon meas is regular

⇒ X o-cpt ⇒ 5

F If μ(E) < ∞, then let ε>0. Pick U⊃E open s.t. μ(u) < μ(E) + €.

And pick a cpt FCU s.t. $\mu(F) > \mu(U) - \frac{\varepsilon}{2}$.

Then $\mu(U \mid E) < \frac{\epsilon}{2}$, \exists open $V \supset U \setminus E = \omega / \mu(V) < \frac{\epsilon}{2}$.

let K = F \ V C E . K is cpt .

$$\mu(K) = \mu(F) - \mu(F \cap V)$$

$$> \mu(V) - \frac{e}{2} - \mu(V)$$

$$> \mu(E) - \frac{e}{2} - \mu(V)$$

$$> \mu(E) - \epsilon.$$

⇒ µ inner regular on E.

If $\mu(E) = \infty$, E = UE; s.l. $E_j \subset E_{j+1}$ & $\mu(E_j) < \infty$. So $\forall n \in \mathbb{N}$, $\exists j$ s.l. $\mu(E_j) > \mathbb{N}$ and $\exists cpt \ K \subset E_j \subset E$ S.t. $\mu(K) > \mathbb{N}$. So μ inner regular on E.

- D If μ is σ -finite on X and $E\subset X$ is Borel, tuen $\forall \ensuremath{\epsilon} > 0$, $\exists \ensuremath{\mathsf{F}} \subset E\subset U$ w/ $\ensuremath{\mathsf{F}}$ closed, U opon, $\ensuremath{\mathsf{F}} \mu(U\setminus F)< \epsilon$.
- 3 Suppose X is LCH s.t. every open set is o-cpt. [Eg X is 2nd ofble].

 Then every Borel measure which is finite on cpt sets is regular (and so Radon).

 of: Suppose u is finite on cpt sets. Then C_c(X) C L'(u). So...

Riesz Representation Thm: Y Radon integral φ on X, $\exists !$ Radon measure μ_{φ} on X sit. $|\varphi(f)| = \int f d\mu_{\varphi} \ \forall f \in C_{c}(X)$. Moreover,

(a) $\mu_{\varphi}(u) = \sup \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall u \text{ open}$ (b) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (b) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (c) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (c) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (d) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (e) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (f) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K) = \inf \{ \varphi(f) \mid f \in C_{c}(X) \text{ w} \} \ \forall K \text{ ept.}$ (g) $\mu_{\varphi}(K)$

Back to pf of 3: Let ν be the unique Radon measure on X s.t. If $d\nu = \int f d\mu \ \forall \ f \in C_c(x)$. Show μ is Radon so $\mu = \nu$. Radon integral.

For $u \in X$ open, write $u = U K_n$ w/ K_n cpt. Inductively find $f_n \in C_c(X)$ sit. $f_n \times U$, $f_n = I$ on $U K_j$ and 1 on cpt set $u \in V$ supp (f_j) . So $f_n \wedge \chi_u$ pointwise. So, by Mct, $\chi_u = \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} \int f_n d\mu = \chi(u)$. If E is Borel & E > 0,

take FCECU S.b. $M(U \setminus F) = V(U \setminus F) < \epsilon$. Then

 $\mu(u) - E \leq \mu(E) \leq \mu(F) + E$. So $\nu(E) = \mu(E) \Rightarrow \mu = \nu$.