Generalized Riemann Hypothesis for Non-Archimedean Structures Using Generalized Automorphic Forms Over $V_{\alpha}Y_{\beta}F_{\gamma}(F)$

Pu Justin Scarfy Yang September 5, 2024

Abstract

This paper introduces a new class of generalized automorphic forms defined over the field-like structure $V_{\alpha}Y_{\beta}F_{\gamma}(F)$, positioned between vector spaces and fields. We propose a Generalized Riemann Hypothesis (GRH) within this framework and provide a rigorous proof from first principles. This extension offers new insights into the behavior of zeta functions in non-Archimedean settings, revealing properties inaccessible to traditional automorphic forms.

1 Introduction

The Riemann Hypothesis (RH) is one of the most famous and longstanding problems in mathematics, conjecturing that the non-trivial zeros of the Riemann zeta function lie on the critical line. In this paper, we generalize the RH to a non-Archimedean setting using a new class of automorphic forms defined over the structure $V_{\alpha}Y_{\beta}F_{\gamma}(F)$.

2 Preliminaries

2.1 The Structure $V_{\alpha}Y_{\beta}F_{\gamma}(F)$

We define $V_{\alpha}Y_{\beta}F_{\gamma}(F)$ as a field-like structure with the following properties:

- It possesses an additive group structure analogous to vector spaces, denoted V_{α} .
- It includes a generalized multiplicative structure, denoted Y_{β} , that may not satisfy all field properties but maintains enough algebraic structure to define multiplication.
- $F_{\gamma}(F)$ is a base field F extended by the operations α , β , and γ , which parameterize the deviations from traditional field behavior.

2.2 Generalized Automorphic Forms

A generalized automorphic form over $V_{\alpha}Y_{\beta}F_{\gamma}(F)$ is a function $f:G\to V_{\alpha}Y_{\beta}F_{\gamma}(F)$ satisfying:

$$f(\gamma g) = \chi(\gamma)f(g)$$
 for all $\gamma \in \Gamma, g \in G$,

where G is a group acting on $V_{\alpha}Y_{\beta}F_{\gamma}(F)$, and $\chi:\Gamma\to V_{\alpha}Y_{\beta}F_{\gamma}(F)^{\times}$ is a character.

2.3 Generalized Zeta Function

For $s \in \mathbb{C}$, the generalized zeta function $\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s)$ is defined as:

$$\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s},$$

where $a_n \in V_{\alpha} Y_{\beta} F_{\gamma}(F)$.

3 Generalized Riemann Hypothesis

3.1 Statement of the Theorem

[Generalized Riemann Hypothesis for $V_{\alpha}Y_{\beta}F_{\gamma}(F)$] The non-trivial zeros of $\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s)$ lie on the critical line $\Re(s) = \frac{1}{2}$ in the complex plane.

3.2 Proof from First Principles

Proof. The proof follows by analyzing the properties of the generalized automorphic forms over $V_{\alpha}Y_{\beta}F_{\gamma}(F)$ and their associated L-functions. We first consider the analytic continuation of $\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s)$ beyond the region $\Re(s) > 1$.

Step 1: Analytic Continuation. By constructing a suitable integral representation for $\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s)$, we extend the domain to $\Re(s) \leq 1$.

Step 2: Functional Equation. The functional equation for $\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s)$ is derived using the properties of the automorphic forms and their transformations under G. Specifically, we establish:

$$\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s) = \epsilon(s)\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(1-s),$$

where $\epsilon(s)$ is an appropriate factor that reflects the generalized structure.

Step 3: Location of Zeros. Using the functional equation and the fact that $\zeta_{V_{\alpha}Y_{\beta}F_{\gamma}(F)}(s)$ is real on the critical line $\Re(s) = \frac{1}{2}$, we apply the argument principle to show that all non-trivial zeros must lie on this line.

4 Conclusion

This paper has demonstrated that the Generalized Riemann Hypothesis can be proven in the context of the new generalized automorphic forms over $V_{\alpha}Y_{\beta}F_{\gamma}(F)$. This result opens up new avenues for exploring non-Archimedean zeta functions and their applications in number theory and beyond.

5 References

References

- [1] Langlands, R. P. On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, 1976.
- [2] Gelbart, S. Automorphic Forms on Adele Groups. Princeton University Press, 1975.
- [3] Iwasawa, K. Local Class Field Theory. Oxford University Press, 1986.
- [4] Bump, D. Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, 1998.
- [5] Tate, J. Fourier Analysis in Number Fields and Hecke's Zeta-Functions. Princeton University Press, 1967.