Applied Statistical Analysis

EDUC 6050 Week 3

Finding clarity using data

- 1. Review Statistical Terminology
- 2. Central Tendency
- 3. Variability

Questions from Chapter 1

Quick, Quiet, Qualifying Quiz

- 1. What is the difference between a sample and a population?
- 2. What are descriptive statistics?
- 3. True or False. Inferential statistics help us use our sample to understand the population.
- 4. True or False. Independent Variables are also known as outcomes.
- 5. Hypothesis tests inform us about the of our findings.

- 6. True or False. Hypothesis testing informs us about the population.
- 7. What is the difference between qualitative and quantitative?
- 8. Is a nominal variable more qualitative or quantitative?
- 9. What information does a bar chart provide? What about a histogram?
- 10. How satisfied are you with your answers?

Descriptive Statistics

Describing the data that you have (your sample)

Inferential Statistics

Understanding what your data say about the population

Independent Variables

Dependent Variables

"predictors" or "IV"

These are the variables that we think are causing or influencing the outcome

"outcomes" or "DV"

These are the variables that we think are caused by an independent variable

Hypothesis Testing (Inferential Statistics)

"Null Hypothesis Significance Testing"

Gives us an idea about what the population may look like based on our sample (accounts for sampling error) = "significance"

Hypothesis Testing (Inferential Statistics)

"Null Hypothesis Significance Testing"

Effect Sizes

"Magnitude of the effect"

Tells us how big the effect is = "meaningfulness"

Review: Scales of Measurement

4 General Types (see pg. 11)

Scale	Definition	What the scale allows you to do
Nominal	Categories based on qualitative similarity (no order to the categories)	Count the number of things in the categories
Ordinal	Like nominal, but the categories can be ranked	Count and rank the number of things in each category
Interval	Quantify how much of something	Count, rank, and quantify how much of something there is (zero does not mean there's nothing)
Ratio	Quantify how much of something (zero means there is none of that thing)	Count, rank, and quantify how much of something there is with a meaningful zero

Review: Scales of Measurement

4 General Types (see pg. 11)

Review: Scales of Measurement

These lie on a spectrum from qualitative to quantitative

Nominal Ordinal Interval

Ratio

Qualitative

Quantitative

Break Time

Reliability and Validity

Reliability: the consistency of the

measure

Validity: does it measure what we think it

measures?

Reliability and Validity

Reliability: the consistency of the

measure

Validity: does it measure what we think it

measures?

Reliable Valid

Reliable Not Valid

Not Reliable Valid

Not Reliable
Not Valid

Reliability and Validity

Reliability

Compare with factor analyses (not covered in the class)

Validity

Compare with correlations with things that should correlate or shouldn't

Often based on theory

Correlation and Experimentation

Correlation

Experimentation

observational, no treatment/intervention

treatment/intervention (best
if groups are randomized)

What are the pro's and con's of each?

Correlation and Experimentation

Depends on the field how often each are used

Possible, but difficult, to convince of causation with correlational (observational) data

Correlation does not imply causation AND

Correlation does not imply it isn't causal

Central Tendency

What does this mean?

Mean

"arithmetic average" divided by number of half of the scores scores

Median

"the middle score" Sum of scores The number where are above and half are below

Mode

"most common score" The most common score

Central Tendency

Measure	When to use it
Mean	With interval/ratio data that are ~normally distributed
Median	With ordinal data With interval/ratio data that are skewed or have outliers
Mode	With nominal data

Outliers = points far from the other points

Central Tendency

See Figure 2.2 (page 42)

Computing the Mean

Sum of scores
Number of scores

$$M = \frac{\sum X}{N}$$

Computing the Median

- 1. Order the values from lowest to highest
- 2. Find the middle value
- 3. If two are in the middle, take the average of those two

Computing the Mode

Find the value that is the most common

Mean, Median, and Mode for Age?

Mean, Median, and Mode for Degree?

Age	Degree
21	MS
25	MEd
34	PhD
21	PhD
22	MEd
28	MS
33	MS
29	MS

Mean, Median, and Mode for Age?

```
Mean = 213/8 = 26.6

Median = 21 21 22 25 28 29 33 34 = 26.5

Mode = 21
```

Mean, Median, and Mode for Degree?

```
Mean = ...
Median = ...
Mode = MS
```

Age	Degree
21	MS
25	MEd
34	PhD
21	PhD
22	MEd
28	MS
33	MS
29	MS

This is what variability is all about

Variability "spread"

Measure	What is It
Range	Max - Min
Standard Deviation	The typical (or standard) distance each score is from the mean

Variability

Measure	When to Use	Possible Values
Range	Ordinal, Interval, Ratio	0+
Standard Deviation	Interval, Ratio	0+

Computing Range

Two approaches:

1. Max - Min
 2. "[Min] to [Max]"

Computing Standard Deviation

Essentially it is the deviation from the mean (X - M)

$$SD = \sqrt{\frac{\sum (X - M)^2}{N - 1}}$$

Other Stuff about Standard Deviation

There is a population standard deviation denoted σ but is usually unknown

Our SD is an estimate of the population standard deviation

Variability

What is the range of Age?

What is the range of Grade?

Age	Grade
21	Α
25	В
34	А
21	В
22	C
28	В
33	В
29	Α

Variability

What is the range of Age?

Range =
$$34 - 21 = 13$$

= $21 \text{ to } 34$

What is the range of Grade?

Range = A to C

Age	Grade
21	Α
25	В
34	Α
21	В
22	C
28	В
33	В
29	Α

Review

- 1. The figure to the right is reliable/unreliable and valid/invalid.
- 2. When should you use the mean? What about the median?
- 3. What does the standard deviation tell us?
- 4. Can we obtain a standard deviation with nominal data?

Another look at Jamovi

Plots
Central Tendency
Variability

Questions?

Next week:

- Statistics terminology continued
 (hypothesis testing, descriptive and
 inferential statistics, effect sizes,
 confidence intervals, Type I and II errors)
- 2. Chapters 4, 5, and 6 in Book
- 3. Statistical Organizer due