

Shenzhen CTL Electromagnetic Technology Co., Ltd. Tel: +86-755-89486194 Fax: +86-755-26636041

Tackychen Lung Czi Lung Czi

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15.247

Report Reference No...... CTL1312182003-WF

Compiled by

(position+printed name+signature) .: File administrators Jacky Chen

Name of the organization performing

the tests Test Engineer Tracy Qi

(position+printed name+signature) .:

Approved by

(position+printed name+signature) .: Manager Tracy Qi

Date of issue...... Jan. 09, 2014

Representative Laboratory Name .: Shenzhen CTL Electromagnetic Technology Co., Ltd.

Address Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test Firm Bontek Compliance Testing Laboratory Ltd

Road, Nanshan, Shenzhen, China

Applicant's name...... Skytech Digital Limited

Address Unit 04, 7/f, Bright Way Tower, No. 33, Mong Kok Road, Kowloon,

Hong Kong

Test specification:

Standard FCC Part 15.247: Operation within the bands 902–928 MHz, 2400–

2483.5 MHz, and 5725-5850 MHz.

Master TRF...... Dated 2011-01

Shenzhen CTL Electromagnetic Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Electromagnetic Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Electromagnetic Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description ANDROID SET TOP BOX WITH WLAN

FCC ID...... 2ABMQA360D

Model/Type reference i8000 HD

802.11n: up to 150 Mbps

Antenna Gain 2dBi

Antenna type Internal

Result Positive

V1.0 Page 2 of 80 Report No.: CTL1312182003-WF

TEST REPORT

Test Report No. :	CTL1312182003-WF	Jan. 09, 2014
	01E131E102003-W1	Date of issue

Equipment under Test : ANDROID SET TOP BOX WITH WLAN

Model /Type : i8000 HD

Applicant : Skytech Digital Limited

Address : Unit 04, 7/f, Bright Way Tower, No. 33, Mong Kok Road,

Kowloon

Manufacturer : Shenzhen Rich Electronics Co., Ltd.

Address : Rm701-702, D Block C Area, Baoan Internet Industry Base,

2005 Xingye Road, Xixiang Street, Baoan, Shenzhen 518101

China

Test Result according to the standards on page 4:	Positive	
---	----------	--

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

The Ctromagnetic Techno

Contents

SUMMARY	
General Remarks	
Equipment Under Test	
Short description of the Equipment under Test (EUT)	
EUT operation mode	
EUT configuration	
NOTE	
Related Submittal(s) / Grant (s)	
Modifications	
TEST ENVIRONMENT	<u>.</u>
Address of the test laboratory	
Test Facility	
Environmental conditions	
Configuration of Tested System	32
Statement of the measurement uncertainty	5-1
Equipments Used during the Test	
Summary of Test Result	
	3
TEST CONDITIONS AND RESULTS	
TEGT GONDITIONS AND RESCRIPTIONS	
Conducted Emissions Test	V - 0
Radiated Emission Test	11/2/1
6dB Bandwidth Measurement	14 5
Maximum Peak Output Power	.0'
Band Edge Measurement Power Spectral Density Measurement	~ ~
Spurious RF Conducted Emission	2
Operation Frequency Range of 20dB Bandwidth	The same
Antenna Requirement	100
The man requirement	1
TEST SETUP PHOTOS OF THE EUT	
ILUI ULIUF FIIOTOS OF THE EUT	

V1.0 Page 4 of 80 Report No.: CTL1312182003-WF

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.

ANSI C63.4-2003

KDB Publication No. 558074 D01 v03r01 Guidance on Measurements for Digital Transmission Systems

V1.0 Page 5 of 80 Report No.: CTL1312182003-WF

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Dec. 25, 2013
Testing commenced on		Dec. 25, 2013
Testing concluded on	:	Jan. 08, 2014

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	•	120V / 60 Hz	○ 115V / 60Hz
	4	0	12 V DC	○ 24 V DC
	See.	0	Other (specified in blank bel	low)

Description of the test mode

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT, but only eleventh channels used for USA.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	No.	R
6	2437	12 1	
7	2442		

2.3. Short description of the Equipment under Test (EUT) An ANDROID SET TOR BOX WITH THE

An ANDROID SET TOP BOX WITH WLAN.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

Test Mode:

1. The EUT has been tested under normal operating condition.

2. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. Channel low (2412MHz), mid (2442MHz) and high (2462MHz) with highest data rate are chosen for full testing.

3. Test Mode:

Test Mode(TM)	Description	Remark	
1	Transmitting	802.11 b	
2	Transmitting	802.11 g	
3	Transmitting	802.11 n HT20	
4	Transmitting	802.11 n HT40	

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

O - supplied by the manufacturer

supplied by the lab

Notebook PC
 Manufacturer : DELL

Model No.: PP18L

2.6. NOTE

1. The EUT is an 802.11b/g/n Tablet PC, The functions of the EUT listed as below:

	Test Standards	Reference Report
WLAN 802.11b/g, 802.11n	FCC Part 15 Subpart C (Section15.247)	CTL1312182003-WF

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
802.11b			5/1	_
802.11g	N N		711 1	_
802.11n(20MHz)	CONTRA	A HAND		_
802.11n(40MHz)	5-1			_

3. The EUT incorporates a SISO function, Physically, the EUT provides two completed transmitter and two completed receivers.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX
802.11n (40MHz)	1TX

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2ABMQA360D filing to comply with of the FCC Part 15.247 Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 7 of 80 Report No.: CTL1312182003-WF

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Bontek Compliance Testing Laboratory Ltd 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C6230, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 7631A

The 3m alternate test site of Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on March, 2011.

FCC-Registration No.: 338263

Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 24, 2008.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Connection Diagram

EUT

A

Signal Cable Type Signal cable Description

A Coaxial Cable Shielded, >5m

V1.0 Page 8 of 80 Report No.: CTL1312182003-WF

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Bontek Compliance Testing Laboratory Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Bontek laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Item	Test Equipment	Manufacturer	Model No.	Last Cal.	Due. Date
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	2013/04/14	2014/04/13
2	Radio Communication Tester	ROHDE & SCHWARZ	CMU200	2013/04/14	2014/04/13
3	Dual Directional Coupler	Agilent	778D	2013/04/14	2014/04/13
4	10dB attenuator	SCHWARZBECK	MTAIMP-136	2013/04/14	2014/04/13
5	Tunable Bandreject filter	K&L	3TNF-800	2013/04/14	2014/04/13
6	Tunable Bandreject filter	K&L	5TNF-1700	2013/04/14	2014/04/13
7	High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	2013/04/14	2014/04/13
8	High-Pass Filter	K&L	41H10- 1375/U12750- O/O	2013/04/14	2014/04/13
9	Coaxial Cable	Huber+Suhner	AC4-RF-H	2013/04/14	2014/04/13
10	AC Power Supply	IDRC	CF-500TP	2013/04/14	2014/04/13
11	DC Power Supply	IDRC	CD-035-020PR	2013/04/14	2014/04/13
12	RF Current Probe	FCC	F-33-4	2013/04/14	2014/04/13
13	Temperature /Humidity Meter	zhicheng	ZC1-2	2013/04/14	2014/04/13
14	MICROWAVE AMPLIFIER	HP /	8349B	2013/04/14	2014/04/13
15	Amplifier	HP	8447D	2013/04/14	2014/04/13
16	SIGNAL GENERATOR	HP	8647A	2013/04/14	2014/04/13
17	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	2013/04/14	2014/04/13
18	Horn Antenna	Schwarzbeck	BBHA9120A	2013/04/14	2014/04/13
19	EMI Test Receiver	R&S	ESPI	2013/04/14	2014/04/13
20	Loop Antenna	ZHINAN	ZN30900A	2013/04/14	2014/04/13
21	Horn Antenna	Schwarzbeck	BBHA9120D	2013/04/14	2014/04/13
22	Horn Antenna	Schwarzbeck	BBHA9170	2013/04/14	2014/04/13
23	Spectrum Analyzer	Agilent	E4440A	2013/05/10	2014/05/09
24	Wideband Peak Power Meter	Anritsu	ML2495A	2013/04/14	2014/04/13
25	Power Sensor	Anritsu	MA2411B	2013/04/14	2014/04/13

3.7. Summary of Test Result

FCC PART 15		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
AC Power Conducted Emission	Normal Link	11 Mbps	1
124	11b/DSSS	11 Mbps	1/6/11
Maximum Peak Conducted Output Power Power Spectral Density	11g/OFDM	54 Mbps	1/6/11
6dB Bandwidth Spurious RF conducted emission	11n(20MHz)/OFDM	65Mbps	1/6/11
Spurious RF conducted ethission	11n(40MHz)/OFDM	150Mbps	3/6/9
Z CZ	11b/DSSS	11 Mbps	1/6/11
6 512	11g/OFDM	54 Mbps	1/6/11
Radiated Emission 30MHz~1GHz	11n(20MHz)/OFDM	65Mbps	1/6/11
19	11n(40MHz)/OFDM	150Mbps	3/6/9
	11b/DSSS	11 Mbps	1/6/11
1/en	11g/OFDM	54 Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(20MHz)/OFDM	65Mbps	1/6/11
	11n(40MHz)/OFDM	150Mbps	3/6/9
	11b/DSSS	11 Mbps	1/11
	11g/OFDM	54 Mbps	1/11
Band Edge Compliance of RF Emission	11n(20MHz)/OFDM	65Mbps	1/11
	11n(40MHz)/OFDM	135Mbps	3/9

Note1: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

V1.0 Page 11 of 80 Report No.: CTL1312182003-WF

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST CONFIGURATION

TEST PROCEDURE

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Fraguenov		Maximum RF	Line Voltage	(dBµv)
Frequency (MHz)	CLA	SS A	(CLASS B
()	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

- 1. Please follow the guidelines in ANSI C63.4-2003.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

The RBW/VBW for 150KHz to 30MHz: 9KHz

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL131225523 fin"

12/25/2013 2 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.271500	48.60	9.8	61	12.5	QP	L1	GND
0.294000	46.90	9.8	60	13.5	QP	L1	GND
0.424500	51.10	9.8	57	6.3	QP	L1	GND
0.852000	47.50	9.8	56	8.5	QP	L1	GND
1.117500	39.60	9.8	56	16.4	QP	L1	GND
1.167000	39.90	9.8	56	16.1	QP	L1	GND

MEASUREMENT RESULT: "CTL131225523 fin2"

12/25/2013 2: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.424500	33.70	9.8	47	13.7	AV	L1	GND
0.568500	30.10	9.8	46	15.9	AV	L1	GND
0.847500	28.70	9.8	46	17.3	AV	L1	GND
3.538500	28.70	9.9	46	17.3	AV	L1	GND
4.308000	30.40	9.9	46	15.6	AV	L1	GND
4.924500	30.20	10.0	46	15.8	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

Level [dBµV]

70

60

50

40

30

20

10

150k 300k 400k 600k 800k 1M 2M 3M 4M 5M 6M 8M 10M 20M 30M Frequency [Hz]

MEASUREMENT RESULT: "CTL131225583 fin"

12/25/2013	5:20PM						
Frequency				_	Detector	Line	PΕ
MHz	dBµV	dB	dBµV	dB			
0.375000	47.30	9.8	58	11.1	OB	N	GND
0.411000		9.8	58	9.7	_	N	GND
0.447000	44.50	9.8	57	12.4	QP	N	GND

MEASUREMENT RESULT: "CTL131225583 fin2"

12/25/2013 5 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.429000	33.70	9.8	47	13.6	AV	N	GND
0.582000	30.50	9.8	46	15.5	AV	N	GND
0.861000	28.90	9.8	46	17.1	AV	N	GND

V1.0 Page 14 of 80 Report No.: CTL1312182003-WF

4.2. Radiated Emission Test

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

V1.0 Page 15 of 80 Report No.: CTL1312182003-WF

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

TEST PROCEDURE

- The testing follows FCC KDB Publication No. 558074 D01 v03r01 (Measurement Guidelines of DTS), the EUT was setup according to ANSI C63.4: and tested according to ANSI C63.10 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a turn table which is 0.8m above ground plane.
- 3. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Span = wide enough to fully capture the emission being measured; RBW = 1 MHz for f >1 GHz, 120 kHz for f < 1 GHz; VBW ≧ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Repeat above procedures until all frequency measurements have been completed.

Note:

When doing emission measurement above 1GHz, the horn antenna will be bended down a little (as horn antenna has the narrow beamwidth) in order to keeping the antenna in the "cone of radiation" of EUT. The 3dB beamwidth is 60 degrees for H-plane and 90 degrees for E-plane.

LIMIT

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	"amagr	etiC40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

TEST RESULTS

802.11b

CH		Frequency	Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
		,	(dBuV/m)		(dBuV/m)	,	,	
	V	2412.0	72.6	30.8	103.4	Fundamental	1	PK
	V	307.4	12.9	14.8	27.7	46	-18.3	QP
	V	500.0	15.6	19.7	35.3	46	-10.7	QP
1	V	3200.0	42.8	-0.6	42.2	54(note3)	-11.8	PK
ı	V	4825.0	47.2	2.6	49.8	54(note3)	-4.2	PK
	V	7239.0	52.7	8.1	60.8	74	-13.2	PK
	V	7236.0	43.2	8.9	52.1	54	-1.9	AV
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2437.0	71.9	31.2	103.1	Fundamental	1	PK
	V	317.1	13.0	15.2	28.2	46	-17.8	QP
	V	571.6	13.6	21.2	34.8	46	-11.2	QP
	V	3200.0	43.6	-0.6	43.0	54(note3)	-11.0	PK
6	V	4876.0	49.2	2.8	52.0	54(note3)	-2.0	PK
	V	7315.5	53.2	8.8	62.0	74	-12.0	PK
	V	7311.0	43.9	8.8	52.7	54	-1.3	AV
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2462.0	70.5	30.9	101.4	Fundamental		PK
	V	326.3	12.6	14.9	27.5	46	-18.5	QP
	Н	582.0	12.9	21.2	34.1	46	-11.9	QP
11	V	3200.0	44.1	-0.6	43.5	54(note3)	-10.5	PK
11	V	4927.0	45.1	3.0	48.1	54(note3)	-5.9	PK
	V	7383.5	50.8	8.9	59.7	74	-14.3	PK
	V	7386.0	42.8	8.9	51.7	54	-2.3	AV
	Н	24000.0	59.4	-8.9	50.5	54(note3)	-3.5	PK

Note: 1. Measure Level = Reading Level + Factor.

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

3. This limit applies for using average detector, if the test result on peak is lower than average limit, then

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

802.11g

	Antenna		Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	V	2411.9	69.7	31.9	101.6	Fundamental	1	PK
	Н	296.8	13.4	15.7	29.1	46	-17.9	QP
	Н	567.4	13.9	21.3	35.2	46	-10.8	QP
1	V	3200	50.0	-13.4	36.6	54(note3)	-17.4	PK
'	V	4824.0	43.3	2.6	45.9	54(note3)	-8.1	PK
	V	7236.0	36.7	8.9	45.6	54	-8.4	AV
	V	7239.0	50.2	8.9	59.1	74	-14.9	PK
	Η	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2437.0	70.3	31.2	101.5	Fundamental	1	PK
	V	302.6	12.7	14.8	27.5	46	-18.5	QP
	V	599.9	13.8	21.2	35.0	46	-11.0	QP
6	V	3200.0	42.5	-0.6	41.9	54(note3)	-12.1	PK
	V	4876.0	45.6	2.8	48.4	54(note3)	-5.6	PK
	V	7298.5	44.2	8.8	53.0	54(note3)	-1.0	PK
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2462.3	70.9	30.9	101.8	Fundamental	1	PK
	Н	589.7	13.7	21.2	34.9	46	-11.1	QP
	V	286.6	12.5	14.7	27.2	46	-18.8	QP
11	V	3200.0	42.7	-0.6	42.1	54(note3)	-11.9	PK
11	V	4927.0	45.9	3.0	48.9	54(note3)	-5.1	PK
	V	7386.0	37.4	8.9	46.3	54	-7.7	AV
	V	7392.0	51.8	8.9	60.7	74	-13.3	PK
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

The Ctromagnetic Technology

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

802.11n(20MHz)

	Antenna	Frequency	Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
		, ,	(dBuV/m)	, ,	(dBuV/m)	, ,	, ,	
	V	2412.1	69.4	30.7	100.1	Fundamental	/	PK
	Н	597.9	14.1	21.2	35.3	46	-10.7	QP
	Н	311.8	12.5	15.1	27.6	46	-18.4	QP
1	V	3200.0	42.4	-0.6	41.8	54(note3)	-12.2	PK
	V	4824.0	42.3	2.6	44.9	54(note3)	-9.1	PK
	V	7236.0	33.6	8.9	42.5	54	-11.5	AV
	V	7239.0	46.2	8.9	55.1	74	-18.9	PK
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2437.0	69.3	31.2	100.5	Fundamental	/	PK
	Н	561.6	13.8	21.2	35.0	46	-11.0	QP
	Н	343.3	13.2	16.0	29.2	46	-16.8	QP
	V	3200.0	42.5	-0.6	41.9	54(note3)	-12.1	PK
6	V	4876.0	45.5	2.8	48.3	54(note3)	-5.7	PK
	V	7307.0	54.6	8.8	63.4	74	-10.6	PK
	V	7310.6	41.0	8.8	49.8	54	-4.2	AV
	Η	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2462.0	70.6	30.9	101.5	Fundamental		PK
	Н	300.1	13.7	14.7	28.4	46	-17.6	QP
	Н	553.8	13.5	21.2	34.7	46	-11.3	QP
	V	3200.0	43.2	-0.6	42.6	54(note3)	-11.4	PK
11	V	4924.0	42.7	3.0	45.7	54(note3)	-8.3	PK
	V	7375.0	50.1	9.0	59.0	74	-15.0	PK
	V	7378.3	34.6	9.0	43.6	54	-10.4	AV
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

The ctromagnetic Technology

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

802.11n(40MHz)

Color Colo		111(401011		D !!	l- ,		1		D ()
Color Colo	CH	Antenna							Detector
V 2423.6 68.1 31.8 99.9 Fundamental / PK H 341.9 14.7 16.0 30.7 46 -15.3 QF H 564.0 14.5 21.2 35.7 46 -10.3 QF V 3200.0 42.5 -0.6 41.9 54(note3) -12.1 PK V 4844.0 44.2 2.6 46.8 54(note3) -7.2 PK V 7290.0 44.0 8.8 52.8 54(note3) -1.2 PK H 24000.0 59.1 -8.9 50.2 54(note3) -1.2 PK H 2437.0 64.6 31.2 95.8 Fundamental / PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6			(MHZ)		(dB)		(dBuV/m)	(dB)	
H 341.9 14.7 16.0 30.7 46 -15.3 QF H 564.0 14.5 21.2 35.7 46 -10.3 QF V 3200.0 42.5 -0.6 41.9 54(note3) -12.1 PK V 4844.0 44.2 2.6 46.8 54(note3) -7.2 PK V 7290.0 44.0 8.8 52.8 54(note3) -1.2 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 294.3 13.4 14.8 28.2 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -9.2 PK V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK									
H 564.0 14.5 21.2 35.7 46 -10.3 QF V 3200.0 42.5 -0.6 41.9 54(note3) -12.1 PK V 4844.0 44.2 2.6 46.8 54(note3) -7.2 PK V 7290.0 44.0 8.8 52.8 54(note3) -1.2 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2437.0 64.6 31.2 95.8 Fundamental / PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0		V	2423.6	68.1	31.8	99.9	Fundamental	1	PK
3 V 3200.0 42.5 -0.6 41.9 54(note3) -12.1 PK V 4844.0 44.2 2.6 46.8 54(note3) -7.2 PK V 7290.0 44.0 8.8 52.8 54(note3) -1.2 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 <		Н	341.9	14.7	16.0	30.7	46	-15.3	QP
V 4844.0 44.2 2.6 46.8 54(note3) -7.2 PK V 7290.0 44.0 8.8 52.8 54(note3) -1.2 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2437.0 64.6 31.2 95.8 Fundamental / PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 2453.6 64.7 30.9 95		Н	564.0	14.5	21.2	35.7	46	-10.3	QP
V 7290.0 44.0 8.8 52.8 54(note3) -1.2 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2437.0 64.6 31.2 95.8 Fundamental / PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6	3	V	3200.0	42.5	-0.6	41.9	54(note3)	-12.1	PK
H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2437.0 64.6 31.2 95.8 Fundamental / PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -9.2 PK		V	4844.0	44.2	2.6	46.8	54(note3)	-7.2	PK
V 2437.0 64.6 31.2 95.8 Fundamental / PK H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 4904.0 41.9 2.9 44.8		V	7290.0	44.0	8.8	52.8	54(note3)	-1.2	PK
H 291.9 12.9 14.8 27.7 46 -18.3 QF H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 4904.0 41.9 2.9 44.8		Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
H 553.3 13.6 21.2 34.8 46 -11.2 QF V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 PK V 4904.0 41.9 2.9 4		V	2437.0	64.6	31.2	95.8	Fundamental	/	PK
6 V 3200.0 42.1 -0.6 41.5 54(note3) -12.5 PK V 4874.0 41.6 2.8 44.4 54(note3) -9.6 PK V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK		Н	291.9	12.9	14.8	27.7	46	-18.3	QP
V 4874.0 41.6 2.8 44.4 54(note3) -9.6 Pk V 7349.2 32.0 9.0 40.9 54 -13.1 Av V 7358.0 46.6 9.0 55.6 74 -18.4 Pk H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 Pk V 2453.6 64.7 30.9 95.6 Fundamental / Pk H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 Pk V 4904.0 41.9 2.9 44.8 54(note3) -9.2 Pk		Н	553.3	13.6	21.2	34.8	46	-11.2	QP
V 4874.0 41.6 2.8 44.4 54(note3) -9.6 Pk V 7349.2 32.0 9.0 40.9 54 -13.1 AV V 7358.0 46.6 9.0 55.6 74 -18.4 Pk H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 Pk V 2453.6 64.7 30.9 95.6 Fundamental / Pk H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 Pk V 4904.0 41.9 2.9 44.8 54(note3) -9.2 Pk	6	V	3200.0	42.1	-0.6	41.5	54(note3)	-12.5	PK
V 7358.0 46.6 9.0 55.6 74 -18.4 PK H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 PK V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK	0	V	4874.0	41.6	2.8	44.4	54(note3)	-9.6	PK
H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 PK V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK		V	7349.2	32.0	9.0	40.9	54	-13.1	AV
V 2453.6 64.7 30.9 95.6 Fundamental / PK H 586.3 14.1 21.2 35.3 46 -10.7 QF H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 PK V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK		V	7358.0	46.6	9.0	55.6	74	-18.4	PK
9 V 3200.0 42.6 -0.6 42.0 54(note3) -9.2 PK		Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
9 H 294.3 13.4 14.8 28.2 46 -17.8 QF V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 PK V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK		V	2453.6	64.7	30.9	95.6	Fundamental	1	PK
9 V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 PK V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK		Н	586.3	14.1	21.2	35.3	46	-10.7	QP
9 V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK		Н	294.3	13.4	14.8	28.2	46	-17.8	QP
V 4904.0 41.9 2.9 44.8 54(note3) -9.2 PK	0	V	3200.0	42.6	-0.6	42.0	54(note3)	-12.0	PK
	9	V	4904.0	41.9	2.9	44.8	54(note3)	-9.2	PK
V 7349.4 32.2 9.0 41.2 54 -12.8 AV		V	7349.4	32.2	9.0	41.2	54	-12.8	AV
V 7349.5 45.6 9.0 54.5 74 -19.5 PK		V	7349.5	45.6	9.0	54.5	74	-19.5	PK
H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 PK		Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

Critic Technology of the Comagnetic Technolog

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

The worst case of Radiated Emission below 1GHz:

SCAN TABLE: "test Field(30M-1G)QP"
Short Description: Field Strength(30M-1G)
Start Stop Step Detector Meas. IF
Frequency Frequency Width Time Bandw.
30.0 MHz 1.0 GHz 60.0 kHz QuasiPeak 1.0 s 120 kHz Transducer

60.0 kHz QuasiPeak 1.0 s 120 kHz JB1

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
432.380000	37.10	-8.6	46.0	8.9	OP	100.0	176.00	VERTICAL
622.880000	36.40	-4.0	46.0	9.6	QP	100.0	12.00	VERTICAL
634.540000	38.30	-3.4	46.0	7.7	QP	100.0	7.00	VERTICAL
663.700000	39.60	-3.0	46.0	6.4	QP	100.0	7.00	VERTICAL
729.790000	38.00	-2.7	46.0	8.0	QP	100.0	163.00	VERTICAL
797.830000	38.10	-0.8	46.0	7.9	QP	100.0	338.00	VERTICAL

SCAN TABLE: "test Field(30M-1G)OP"
Short Description: Field Strength(30M-1G)
Start Stop Step Detector Meas.

Detector Meas. IF Time Bandw. Start Step Stop Transducer

Frequency Frequency Width Time Bandw. 30.0 MHz 1.0 GHz 60.0 kHz QuasiPeak 1.0 s 120 kHz JB1

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
64.980000	28.60	-18.2	40.0	11.4	QP	300.0	162.00	HORIZONTAL
298.250000	34.90	-10.9	46.0	11.1	QP	100.0	293.00	HORIZONTAL
381.840000	33.70	-9.1	46.0	12.3	QP	100.0	279.00	HORIZONTAL
424.600000	34.50	-8.6	46.0	11.5	QP	100.0	259.00	HORIZONTAL
797.830000	40.80	-0.8	46.0	5.2	QP	100.0	192.00	HORIZONTAL
813.380000	36.00	-0.8	46.0	10.0	QP	100.0	245.00	HORIZONTAL

V1.0 Page 22 of 80 Report No.: CTL1312182003-WF

4.3. 6dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

- 1. The testing follows FCC KDB Publication No. 558074 D01 v03r01 (Measurement Guidelines of DTS).
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.
- 4. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST RESULTS

Product	• •	ANDROID SET TOP BOX WITH WLAN
Test Item	• •	6dB Occupied Bandwidth
Test Mode	• •	Mode 1: Transmit by 802.11b

Channel No.	Frequency	Occupied Bandwidth	Limit	Result		
	(MHz)	(kHz)	(kHz)			
01	2412	9100	500	Pass		
06	2437	8800	500	Pass		
11	2462	9100	500	Pass		
Tilectromagnetic Technic						

Channel 01 (2412MHz)

Date: 7.JAN.2014 04:36:06

Date: 7.JAN.2014 04:34:38

Channel 11 (2462MHz)

Date: 7.JAN.2014 04:37:54

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		6dB Occupied Bandwidth
Test Mode		Mode 2: Transmit by 802.11g

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
01	2412	16500	500	Pass
06	2437	16600	500	Pass
11	2462	16600	500	Pass

Channel 01 (2412MHz)

Date: 7.JAN.2014 04:29:40

Channel 06 (2437MHz)

Date: 7.JAN.2014 04:28:56

Date: 7.JAN.2014 04:27:19

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		6dB Occupied Bandwidth
Test Mode	:	Mode 3: Transmit by 802.11n (20MHz)

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
01	2412	17800	500	Pass
06	2437	17700	500	Pass
11	2462	17800	500	Pass

Channel 01 (2412MHz)

Date: 7.JAN.2014 04:24:53

Channel 06 (2437MHz)

Date: 7.JAN.2014 04:25:27

Date: 7.JAN.2014 04:26:10

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		6dB Occupied Bandwidth
Test Mode	:	Mode 4: Transmit by 802.11n (40MHz)

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
03	2422	35800	500	Pass
06	2437	36000	500	Pass
09	2452	36000	500	Pass

Channel 03 (2422MHz)

Date: 7.JAN.2014 04:20:25

Channel 06 (2437MHz)

Date: 7.JAN.2014 04:22:06

Date: 7.JAN.2014 04:23:24

V1.0 Page 31 of 80 Report No.: CTL1312182003-WF

4.4. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to C63.10 -2009 and KDB558074 D01 v03r01, The EUT was directly connected to the power meter / spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

Use the wideband power meter to test peak power and record the result.

LIMIT

The Peak Output Power Measurement limits are 30dBm.

TEST RESULTS

Product	• •	ANDROID SET TOP BOX WITH WLAN
Test Item	• •	Power Output
Test Mode	:	Mode 1: Transmit by 802.11b

Channel No.	Frequency	Measurement	Limit	Result
	(MHz)	Power Output	(dBm)	
		(dBm)		
1	2412	12.48	30.00	Pass
6	2437	12.37	30.00	Pass
11	2462	12.41	30.00	Pass

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item	:	Power Output
Test Mode	:	Mode 2: Transmit by 802.11g

Channel No.	Frequency	Measurement	Limit	Result
	(MHz)	Power Output	(dBm)	
		(dBm)		
1	2412	12.09	30.00	Pass
6	2437	11.87	30.00	Pass
11	2462	12.01	30.00	Pass

Product	:	ANDROID SET TOP BOX WITH WLAN			
Test Item	• •	Power Output			
Test Mode	:	Mode 3: Transmit by 802.11n(20MHz)			

Channel No.	Frequency	Measurement	Limit	Result
	(MHz)	Power Output	(dBm)	
		(dBm)		
1	2412	11.59	30.00	Pass
6	2437	11.47	30.00	Pass
11	2462	11.53	30.00	Pass

Product	:	ANDROID SET TOP BOX WITH WLAN	
Test Item	• •	Power Output	1.
Test Mode	:	Mode 4: Transmit by 802.11n(40MHz)	100

Channel No.	Frequency	Measurement	Limit	Result
	(MHz) Power Output		(dBm)	
		(dBm)		
3	2422	11.87	30.00	Pass
6	2437	11.64	30.00	Pass
9	2452	11.52	30.00	Pass

V1.0 Page 33 of 80 Report No.: CTL1312182003-WF

4.5. Band Edge Measurement

TEST CONFIGURATION

TEST PROCEDURE

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 and FCC KDB Publication No. 558074 D01 v03r01 (Measurement Guidelines of DTS) with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength.

The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW and VBW to 100 kHz, to measure the conducted peak band edge.

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- Span: Set Span for minimum 50 MHz Reference Level: 110 dB μ V (corrected for gains and losses of test antenna factor, preamp gain and cable loss) Attenuation: 10 dB
- Sweep Time: Coupled Resolution Bandwidth: Up to and including 1 GHz = ≥ 100 kHz
- Resolution Bandwidth: Above 1 GHz = 1 MHz Video Bandwidth: Below 1 GHz = 300 kHz
- Video Bandwidth: Up to and including 1 GHz = ≥ 3 MHz for peak and 10 Hz for average
- Detector: Peak

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209(see Section 15.205(c)).

Frequency (MHz)	Limit Average (dBuv/m)	Limit Peak (dBuv/m)
Below 2390 or Above 2483.5	54	74

TEST RESULTS

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 17:43
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2412MHz by 802.	.11b

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	49.158	18.418	-24.842	74.000	30.740	PK
2		*	2412.536	97.198	66.403	N/A	N/A	30.795	PK
				Zh			180	00	

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 19:16
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2412MHz by 802.	11b

	0	
		2
ĵį	0	
Level(dBuV/m)	0	
Level	0	
	0	\sim
	0	1
	0	
	0 2310 2315 2320 2325 2330 2335 2340 2345 2350 23.	

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Type
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
				(dBuV/m)					
1			2390.000	37.804	7.064	-16.196	54.000	30.740	AV
2		*	2412.704	93.986	63.191	N/A	N/A	30.795	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 19:21
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2412MHz by 802.11b	

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
				(dBuV/m)	10	THE STATE OF THE S		-	
1			2390.000	53.484	22.744	-20.516	74.000	30.740	PK
2		*	2412.032	102.719	71.926	N/A	N/A	30.793	PK
			((D)	11/2		CIV	market.	
				2 6		CTI			
						Vin 10 10 10 10 10 10 10 10 10 10 10 10 10		0	

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 19:22
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Maded Transmit at abancal 2412MHz by 002.1	16

			2
			1
(hm)	0		
Level(dBuV/m)	70		
Leve	60		
	io		\sim \sim
	0	 	
	0		
	10		

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	40.283	9.543	-13.717	54.000	30.740	AV
2		*	2411.304	97.878	67.087	N/A	N/A	30.791	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 19:45
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Model: Transmit at abannol 2462MHz by 902	11h

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2461.984	100.009	69.077	N/A	N/A	30.932	PK
2			2483.500	56.406	25.420	-17.594	74.000	30.985	PK

Engineer: Brgant	CTLT						
Site: AC5	Time: 2014/01/06 - 19:50						
Limit: FCC_Part15.209_RE(3m)	Margin: 0						
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal						
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz						
Note: Mode1:Transmit at channel 2462MHz by 802 11b							

	No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре	
Ī	1		*	2462.800	96.268	65.334	N/A	N/A	30.933	AV	
	2			2483.500	43.915	12.930	-10.085	54.000	30.985	AV	

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:09
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2462MHz by 802.11	b

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
				(dBuV/m)	10	THE REAL PROPERTY.			
1		*	2461.984	101.417	70.485	N/A	N/A	30.932	PK
2			2483.500	57.397	26.411	-16.603	74.000	30.985	PK
				VD.			CIVE	married and a second	
				2	30 V	CTI		A	
				NI NI		No. 1 Co. 1011			

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:15
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2462MHz by 802.11b	, O. /

	1				
	~ *				
00					
70 Tevel(dBa/Wm)	4				
70	1				
vel(d					
చి 60					
50		1 ~	2		
30		V			
40			T X		
30					
20					
	2462 2464 2466 2468 2	470 0470 0474 0476	2470 2400 2402 24	04 2406 2400 2400	2492 2494 2496 2498 2

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2462.728	96.074	65.140	N/A	N/A	30.933	AV
2			2483.500	43.887	12.902	-10.113	54.000	30.985	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:27
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2412MHz by 802.11g	

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	65.736	34.996	-8.264	74.000	30.740	PK
2		*	2411.808	103.738	72.946	N/A	N/A	30.792	PK

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:34
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Made 2: Transport at abanya 2412MI = h; 002.1	10

	120																	T
(a	80																2	
Level(dBuV/m)	70													سا				+
Leve	60											1						
	50											*						
	40																	+
	30																	$+ \ $
	20 2310 231!	5 2320 232	25 2330	2335	2340	2345 2	350 2	355 :	2365 2 sency(M	375 2	380 23	85 239	0 2395	2400	2405	2410	2415	2422

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	52.695	21.955	-1.305	54.000	30.740	AV
2		*	2412.872	94.319	63.523	N/A	N/A	30.795	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:35
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2412MHz by 802.11	

120 80 70 40 30 20 210 2315 2320 2325 2330 2335 2340 2345 2350 2355 2960 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2422 Frequency(MHz)

No	Fla	Ma	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
	_			(dBuV/m)	10	Tin a trail		-	
1			2390.000	64.154	33.414	-9.846	74.000	30.740	PK
2		*	2411.920	100.460	69.667	N/A	N/A	30.793	PK
				(D)			CIVE I	market.	
				2 6	38 V (1)	C T		100	
						No. 10 Inc. 101			

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:38
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2412MHz by 802.11g	0.

											2	
										~	~	1
	80											
Level(dBuV/m)	00											
dBu.	70											
evel(
1	60								1			
	50							ر	*			
							 	-				
	40											
	30											
	20 2310 2315	2320 23	25 2330							2405 24	 410 2415	5

١	No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1				2390.000	50.512	19.772	-3.488	54.000	30.740	AV
2	2		*	2413.040	91.683	60.887	N/A	N/A	30.796	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06- 20:48
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz

			(dBuV/m)	AL AND DE	A A ST IN IN IN INCIDENCE.	B			
1	*	2461.744	104.423	73.492	N/A	N/A	30.932	PK	
2		2483.500	64.251	33.266	-9.749	74.000	30.985	PK	
			VD:	31/2			- Annual		
			2		CTL				
Engi	neer: Bro	rant	N.		No.		0		

Engineer: Brgant	A STATE OF THE STA
Site: AC5	Time: 2014/01/06 - 20:52
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2462MHz by 802 13	10

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2462.512	93.831	62.898	N/A	N/A	30.933	AV
2			2483.500	51.234	20.249	-2.766	54.000	30.985	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 20:53
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2462MHz by 802.11g	

a				Reading Level	Over Limit	Limit	Factor	Type
9 1	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
			(dBuV/m)	16	A STATE OF THE STA			
	*	2462.272	101.784	70.851	N/A	N/A	30.932	PK
		2483.500	61.806	30.821	-12.194	74.000	30.985	PK
		2483.752	64.740	33.754	-9.260	74.000	30.987	PK
			2 6		CTI		184	
			N			1/12/9	0	
		*	2483.500	* 2462.272 101.784 2483.500 61.806	* 2462.272 101.784 70.851 2483.500 61.806 30.821	* 2462.272 101.784 70.851 N/A 2483.500 61.806 30.821 -12.194	* 2462.272 101.784 70.851 N/A N/A 2483.500 61.806 30.821 -12.194 74.000	* 2462.272 101.784 70.851 N/A N/A 30.932 2483.500 61.806 30.821 -12.194 74.000 30.985

Engineer: Brgant	1270
Site: AC5	Time: 2014/01/06 - 20:55
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2462MHz by 802	110

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2462.800	92.573	61.639	N/A	N/A	30.933	AV
2			2483.500	49.016	18.030	-4.984	54.000	30.985	AV

Engineer: Brgant					
Site: AC5	Time: 2014/01/06 - 21:07				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal				
EUT: ANDROID SET TOP BOX WITH WLAN Power: AC 120V/60Hz					
Note: Mode3:Transmit at channel 2412MHz by 802.11n20MHz					

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
	_			(dBuV/m)	10	THE REAL PROPERTY.			
1			2390.000	65.005	34.265	-8.995	74.000	30.740	PK
2		*	2412.928	101.610	70.814	N/A	N/A	30.795	PK
				U.	11/2	1	CIV.	- St.	
				2 6		CTI			
						No. 11 No. 111			

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 21:10
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Made 2: Transmit at about al 2412MI = by 002	44-20MI

										2
									~	
द	80									
Level(dBuV/m)										
E)(GB	70									
Leve	60							كسر		
	50			_			1	and the same of th		
	30									
	40		-	-						
	30									
	20	30 2325 2330		10 2345 2	2360 2365	5 2380 238			105 2410	2415

N	o Fla g	a Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	49.579	18.839	-4.421	54.000	30.740	AV
2		*	2412.872	90.855	60.059	N/A	N/A	30.795	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 21:14
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode3:Transmit at channel 2412MHz by 802.1	1n20MHz

No	Fla	Ma	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Type
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
	_			(dBuV/m)	10	Tin a trail			
1			2390.000	64.974	34.234	-9.026	74.000	30.740	PK
2		*	2412.144	99.850	69.057	N/A	N/A	30.793	PK
				U.	11/2		01/2	- Annual Prince of the Prince	
				2 6		CTI		100	
						No. 10 No. 101			

Engineer: Brgant	AL NUMBER OF THE PROPERTY OF T
Site: AC5	Time: 2014/01/06 - 21:16
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Made 2: Transmit at about al 2442MHz by 0024	IA-20MI I-

	120	T	7	T	7		- 1	T	- 1			- 1			-1	- 1			-		-1	- 17	
																					3	2	
																					N		
																							7
7/m)	80																						1
Level(dBuV/m)	70						4																- 1
evel(J				1
À	60																1	-				30 .	
	50															-						9	12
	40																						
	40																						
	30							-										-	-				+
	20																						
		2315	2320	2325	2330	2335	2340	2345	2350	2355	2360	2365	2370	2375	2380	2385	2390	2395	2400	2405	2410	2415	242
												equency											

N	lo	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1				2390.000	50.392	19.652	-3.608	54.000	30.740	AV
2			*	2412.648	90.387	59.592	N/A	N/A	30.795	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 21:29
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode3:Transmit at channel 2462MHz by 802.11	n20MHz

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре	
1		*	2461.768	102.700	71.769	N/A	N/A	30.932	PK	
2			2483.500	64.513	33.528	-9.487	74.000	30.985	PK	
				90.		CTL4	- 6	-:	1	

Engineer: Brgant	
Site: AC5	Time: 2014/01/06- 21:31
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode2:Transmit at abanyal 2462MUz by 902.1	4 n 20 N M L n

	120											
				1								
			-	***************************************								
					Low							
द्व	80 /		_		1			-				
αVΔ					1							
I(dB	70					(
Level(dBuV/m)	60					ham						
							- serveran		2			
	50							-	- major			
	40									100		 -
	40											
	30											
	30											
	20	2456 245		8 8 8					2			

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2462.656	92.026	61.092	N/A	N/A	30.933	AV
2			2483.500	49.746	18.761	-4.254	54.000	30.985	AV

Engineer: Brgant						
Site: AC5	Time: 2014/01/06 - 21:33					
Limit: FCC_Part15.209_RE(3m)	Margin: 0					
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical					
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz					
Note: Mode3:Transmit at channel 2462MHz by 802.11n20MHz						

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Type
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
				(dBuV/m)	10	TARREST OF THE PARTY OF			
1		*	2462.008	101.013	70.081	N/A	N/A	30.932	PK
2			2483.500	60.657	29.672	-13.343	74.000	30.985	PK
			2400.000	1 00:007	20.012	10.040	14.000	00.000	
				D 5		ALC: U.S. S.		1	
				N.I		See Line Annual Control			

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 21:34
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Made 2: Transport at abandal 24C2MHz by 002	14×20MI

				1								
			-	 	 							
	223	1										
(F)	80					1						
BuV	70					1						
Level(dBuV/m)	10/						1					
Ę	60						Lame	 +				
								 warmen .		2		
	50								-	******	 -	
	40											
	30											
	20											

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2462.656	91.901	60.967	N/A	N/A	30.933	AV
2			2483.500	49.578	18.593	-4.422	54.000	30.985	AV

Engineer: Brgant							
Site: AC5	Time: 2014/01/06 - 22:04						
Limit: FCC_Part15.209_RE(3m)	Margin: 0						
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal						
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz						
Note: Mode4:Transmit at channel 2422MHz by 802.11n40MHz							

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1			2390.000	62.569	31.829	-11.431	74.000	30.740	PK
2		*	2423.124	98.456	67.630	N/A	N/A	30.825	PK

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 22:07
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Made 4: Transposit at about 1 0400MHz by 000 4	4 - 40M I -

	120										
									2		
									*		
_	80										-
aV/hm											
J(dB)	70										
Level(dBuV/m)	60							1			
	-						1	<u> </u>			
	50						-				
	40										
	30										
	20										
	2310 2320	2330	2340	2350 23	60 2370	2380	2390 240	0 2410	2420	2430	2

	No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
I	1			2390.000	50.026	19.286	-3.974	54.000	30.740	AV
	2		*	2423.454	88.067	57.240	N/A	N/A	30.827	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 22:10
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode4:Transmit at channel 2422MHz by 802.11r	n40MHz

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	(dBuV)	(dB)	(dBuV/m)	Factor	Туре
1			2390.000	66.517	35.777	-7.483	74.000	30.740	PK
2		*	2423.586	96.046	65.219	N/A	N/A	30.827	PK

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 22:12
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode4:Transmit at channel 2422MHz by 802.11	n40MHz

	30								
	200000								
	40			-					
	50								
Leve	60								
Level(dBuV/m)	70								
/m)	80						~		\sim

	No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
Ī	1			2390.000	50.247	19.507	-3.753	54.000	30.740	AV
	2		*	2423.454	86.032	55.205	N/A	N/A	30.827	AV

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 22:24
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode4:Transmit at channel 2452MHz by 802.11	n40MHz

Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
			(dBuV/m)	100	TARREST .			
	*	2453.284	97.222	66.316	N/A	N/A	30.906	PK
		2483.500	62.481	31.496	-11.519	74.000	30.985	PK
		2484.462	65.735	34.747	-8.265	74.000	30.988	PK
			2		CTI			
			N				0	
	_		g rk (MHz) * 2453.284 2483.500	g rk (MHz) Level (dBuV/m) * 2453.284 97.222 2483.500 62.481	g rk (MHz) Level (dBuV) * 2453.284 97.222 66.316 2483.500 62.481 31.496	g rk (MHz) Level (dBuV) (dB) * 2453.284 97.222 66.316 N/A 2483.500 62.481 31.496 -11.519	g rk (MHz) Level (dBuV) (dB) (dBuV/m) * 2453.284 97.222 66.316 N/A N/A 2483.500 62.481 31.496 -11.519 74.000	g rk (MHz) Level (dBuV) (dB) (dBuV/m) * 2453.284 97.222 66.316 N/A N/A 30.906 2483.500 62.481 31.496 -11.519 74.000 30.985

Engineer: Brgant	100
Site: AC5	Time: 2014/01/06 - 22:27
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mada4: Transmit at abannal 2452MHz by 902	11p40MHz

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2450.666	87.877	56.979	N/A	N/A	30.898	AV
2			2483.500	47.367	16.382	-6.633	54.000	30.985	AV

Engineer: Brgant					
Site: AC5	Time: 2014/01/06 - 22:29				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical				
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz				
Note: Mode4:Transmit at channel 2452MHz by 802.11n40MHz					

No	Fla	Ма	Frequency	Measure	Reading Level	Over Limit	Limit	Factor	Туре
	g	rk	(MHz)	Level	(dBuV)	(dB)	(dBuV/m)		
				(dBuV/m)	16	TARRAGE TO			
1		*	2453.590	95.623	64.716	N/A	N/A	30.907	PK
2			2483.500	58.344	27.359	-15.656	74.000	30.985	PK
3			2485.788	62.028	31.036	-11.972	74.000	30.992	PK
				2		CTIT		1.41	
				N			1/12/9/	0	
				garagest (1)		V (M) (20)		46.00	

Engineer: Brgant	
Site: AC5	Time: 2014/01/06 - 22:31
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: ANDROID SET TOP BOX WITH WLAN	Power: AC 120V/60Hz
Note: Mode 4: Transmit at abannal 2452MHz by 902 1	154014

No	Fla g	Ma rk	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor	Туре
1		*	2453.420	86.346	55.440	N/A	N/A	30.906	AV
2			2483.500	46.700	15.714	-7.300	54.000	30.985	AV

V1.0 Page 50 of 80 Report No.: CTL1312182003-WF

4.6. Power Spectral Density Measurement

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r01 for compliance to FCC 47CFR 15.247 requirements.

Set RBW= 3 kHz, VBW ≥ 10KHz, SPAN to 1.5 times greater than the EBW,.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Power Spectral Density
Test Mode	:	Mode 1: Transmit by 802.11b

Channel No.	Frequency (MHz)	Measurement PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
01	2412	-4.40	8	Pass
06	2437	-4.20	8	Pass
11	2462	-4.21	8	Pass
		'ectroma	ignetic T	30,

Channel 01 (2412MHz)

Date: 7.JAN.2014 04:41:49

Date: 7.JAN.2014 04:41:06

Channel 11 (2462MHz)

Date: 7.JAN.2014 04:40:26

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Power Spectral Density
Test Mode		Mode 2: Transmit by 802.11g

Channel No.	Frequency (MHz)	Measurement PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
01	2412	-13.06	8	Pass
06	2437	-12.56	8	Pass
11	2462	-11.66	8	Pass

Date: 7.JAN.2014 04:42:53

Date: 7.JAN.2014 04:43:18

Date: 7.JAN.2014 04:43:45

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Power Spectral Density
Test Mode	:	Mode 3: Transmit by 802.11n (20MHz)

Channel No.	Frequency (MHz)	Measurement PSD (dBm/3KHz)	Limit (dBm3KHz)	Result
01	2412	-11.52	8	Pass
06	2437	-11.67	8	Pass
11	2462	-11.77	8	Pass

Date: 7.JAN.2014 04:45:42

Date: 7.JAN.2014 04:45:27

Date: 7.JAN.2014 04:44:53

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Power Spectral Density
Test Mode		Mode 4: Transmit by 802.11n (40MHz)

Channel No.	Frequency (MHz)	Measurement PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
03	2422	-16.30	8	Pass
06	2437	-14.00	8	Pass
09	2452	-13.82	8	Pass

Date: 7.JAN.2014 04:47:21

Date: 7.JAN.2014 04:47:51

Date: 7.JAN.2014 04:48:14

V1.0 Page 59 of 80 Report No.: CTL1312182003-WF

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r01 for compliance to FCC 47CFR 15.247 requirements. The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measure frequeny range from 30MHz to 26.5GHz.

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

TEST RESULTS

Product	ANDROID SET TOP BOX WITH WLAN
Test Item	RF Antenna Conducted Spurious
Test Mode	Mode 1: Transmit by 802.11b

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		RF Antenna Conducted Spurious
Test Mode	:	Mode 2: Transmit by 802.11g

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		RF Antenna Conducted Spurious
Test Mode		Mode 3: Transmit by 802.11n (20MHz)

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		RF Antenna Conducted Spurious
Test Mode	:	Mode 4: Transmit by 802.11n (40MHz)

Channel 09 (2452MHz)

V1.0 Page 67 of 80 Report No.: CTL1312182003-WF

4.8. Operation Frequency Range of 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r01 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

LIMIT

20 dB bandwidth of the emission is contained within the operation frequency band.

TEST RESUTL

Product	• •	ANDROID SET TOP BOX WITH WLAN
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	10	Mode 1: Transmit by 802.11b

Channel 01 (2412MHz)

Date: 7.JAN.2014 05:01:29

Channel 11 (2462MHz)

Date: 7.JAN.2014 05:02:53

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	:	Mode 2: Transmit by 802.11g

Channel 01 (2412MHz)

Date: 7.JAN.2014 04:59:42

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	:	Mode 3: Transmit by 802.11n (20MHz)

Channel 01 (2412MHz)

Date: 7.JAN.2014 04:55:36

Product	:	ANDROID SET TOP BOX WITH WLAN
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	:	Mode 4: Transmit by 802.11n (40MHz)

Channel 03 (2422MHz)

Date: 7.JAN.2014 04:54:07

V1.0 Page 72 of 80 Report No.: CTL1312182003-WF

4.9. Antenna Requirement

STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

ANTENNA CONNECTED CONSTRUCTION

The directional gains of antenna used for transmitting is 2 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

5. Test Setup Photos of the EUT

V1.0 Page 75 of 80 Report No.: CTL1312182003-WF

6. External and Internal Photos of the EUT

External Photos of EUT

V1.0 Page 78 of 80 Report No.: CTL1312182003-WF

Internal Photos of EUT

