Pumped Hydro Storage Enabler to reliable renewable energy

References throughout the world

Currently adding ~4 GW of GE's hydro storage projects - incl ~2 GW with variable speed technology

Large range of expertise and experience

30+% of hydro storage plants equipped with GE technology

Range of Pump Turbine Experience

Range of Generator Experience

Power, Energy & Influence of Site Parametres

Round trip efficiency above 80% ... over whole plant lifetime

Pumped Hydro Storage Technologies

Costs and benefits

Capital costs per kWh

- PHS CAPEX vary widely due to site-specific costs; ~20-30% of total CAPEX linked to Electromechanical equipment.
 Median price for PHS fixed speed ~25% lower than PHS Variable speed
- Broad range of batteries costs linked to capacity sizing (from 30 min up to 4+ hours)
- Prices for energy storage systems vary a lot depending on the **power-to-energy ratio**: largescale storage capacity of PHS has positive impact on \$/kWh whereas more limited storage capacity of batteries negatively impact \$/kWh

Source: GE RE Marketing, BNEF 2020 (4-hour duration Li-ion batteries)

PHS' large-scale effect ensures competitiveness for long durations

Key considerations for developers and investors

Site Selection Considerations

- Water: ideally use one or more existing storages
- Head: ideally 200-600m (~the higher the better)
- Waterway: ideally length <10x the head (the lower the better)
- **Grid Connection**: ideally <20km from transmission (the lower the better)
- **Site Access**: ideally <20km from roads (the lower the better)
- Land use: environmental and cultural considerations

Source: GE Hydro Analysis

Project Design Considerations

- What type of equipment should be used? Fixed vs variable speed, etc
- Over how many units should the capacity be spread?
- What should capacity and duration be?
- What should the powerhouse position along the waterway be?
- Overland vs underground waterway?
- What should the powerhouse type be (shaft vs cavern)?
- What is the optimal siting and shape of the reservoirs?

Mainly Civils

Mainly OEMs

Capital costs of pumped hydro projects around the world

Capex by Year of Completion

Total Capex per MWh (2019 USD) 400 000 300 000 200 000 Ave: US\$86k 100 000 2000 2005 2010 2015 2020 2025 **Year of Completion**

Capex vs Total Plant Capacity

 $Source: GE\ Marketing, Global Data$

Notes: Active, Under Construction or Announced projects; Prices escalated according to inflation; 31 projects with available data

A worked example

Hypothetical Project Data

Capacity	2x 125MW					
Duration	10 hours					
Head	250m					
Waterway	1250m					
Upper Res	Turkey Nest					
Lower Res	Existing reservoir					

Key Sensitivities

Est. Total Capex per MWh Installed

Source: GE Hydro – Pumped Hydro Capex Model

Site fundamentals (and hence site selection) is key!!!

Economies of scale, duration and head

Capex per MWh vs Plant Capacity

Source: GE Hydro - Pumped Hydro Capex Model

GE Renewable Energy

Capex per MWh vs Duration

Capex per MWh vs Head

Electro-Mechanical vs Overall Cost (New Hydro Project)

Illustrative Cost Breakdown

Overall Project Capital Cost1

Total: \$2,230 / kW +50%

Powerhouse (Electromechanical) Capital Cost²

500MW, 5000MWh, 1 existing reservoir, 242m head, L:H ratio of 2.5

Sources: 1 Black & Veatch NREL report, 2011; 2 GE Project Experience

Third Party Assessments

Pumped Storage Hydro 2020 & 2030 Cost & Performance Estimates

			100 MW				1,000 MW			
			4 hr		10 hr		4 hr		10 hr	
	Parameter	Units	2020	2030	2020	2030	2020		2020	2030
ESS Cost	Reservoir Construction & Infrastructure	\$/kWh	[73 - 89]		[68 - 83]		[61 - 75]		[57 - 70]	
			81		76		68		64	
	Powerhouse Construction & Infrastructure	\$/kW	[321 - 817] 742		[321 - 817] 742		[270 - 686] 623		[270 - 686] 623	
	Electro-mechanical \$/kW	[420 - 513]		[420 - 513]		[353 - 431]		[353 - 431]		
		77	467		467		392		392	
	Total ESS Installed Cost*	\$/kW	[1034 - 1688]		[1424 - 2164]		[868 - 1417]		[1195 - 1817]	
			\$1,534		\$1,967		\$1,288		\$1,651	
		\$/kWh	[259 - 422]		[142 - 216]		[217 - 354]		[120 - 182]	
			\$384		\$197		\$322		\$165	
	Total ESS Installed Cost + Contingency Fee*	\$/kW	[1301 - 2250]		[1792 - 2885]		[1093 - 1889]		[1504 - 2422]	
		3/KVV	\$2,0)46	\$2,	623	\$1,7	717	\$2,	202
		\$/kWh	[325 - 563]		[179 - 289]		[273 - 472]		[150 - 242]	
			\$511		\$262		\$429		\$220	

Source: 2020 Grid Energy Storage Technology Cost and Performance Assessment

https://www.pnnl.gov/sites/default/files/media/file/Final%20-%20ESGC%20Cost%20Performance%20Report%2012-11-2020.pdf

Equipment Value, selected projects 2012-18

Pump-Turbine

Motor-Generator

\$

Increasing diameter I

Increasing Power/speed

Dimensioning a PSP Unit

(excluding efficiency)

MOTOR-GENERATOR

Overspeed speed (rpm)
Inertia / GD²
Power Factor (cos phi)
Grid Frequency 50/60Hz

PUMP-TURBINE

Flow (Discharge) m3/s
Maximum Head (m)
Specific speed (ns/nq)
Circuit
Hump

BOTH

Power (MW / unit)*
Nominal speed (rpm)
N° / position of bearings
Plant Layout
Lifetime

GE Renewable Energy

Optimizing investment through PHS extensions

PHS extension since 2000:

50+ units

10+_{GW}

Mainly located in : Europe / China / APAC

KEY ADVANTAGES

Shorter delivery time

Lower CAPEX

Limited environmental impact

Simplified permitting process

Performance / efficiency optimization

Several configurations

- New units in existing power plant /
 New power plant utilizing existing reservoir(s)
- Similar configuration to existing units / Adding PHS to conventional units

Pumped Hydro Storage Enabling the energy transition

GE can support with:

- 100+ years experience with 45+ GW installed base
- Advanced technology for higher flexibility (# of cycles, partial load), reactivity, efficiency,
 stability
 - Fast transition time machines (standstill to 100% power in < 70 sec)
 - 3 GW of variable speed technology installed or under construction with complete integration with GE converter, motor generator, pump turbine, protection and control
 - Solution for short delivery time (down to 36 months)
 - Global and local organization

Thank you

