인공지능의 기초와 확산

Jongwon Choi (Dept. of Advanced Imaging & Dept. of Al, Chung-Ang Univ.)

Lecturer

- Ph.D. Jongwon Choi (최종원)
- Assistant Professor,
- Dept. of Advanced Imaging & GS of Al, Chung-Ang Univ., Seoul
- Major: Computer vision, Machine learning, Deep learning
- Research Interests: Visual tracking, Semi-supervised learning
- Projects: ETRI, NAVER Clova, Samsung SDS, Doosan etc.
- vilab.cau.ac.kr

Visual Intelligence Laboratory - CAU GSAIM

Members

박사과정

서승모

정승진

박수현

황진수

곽민지

최종욱

임형준

강영욱

신준섭

이종민

조승현

진희곤

윤종수

이재윤

Visual Intelligence Laboratory - CAU GSAIM

Research Topic

- Semi-supervision Domain Adaptation, Active Learning
- Al security Deepfake detection, Anti-spoofing
- AI+X AI+Contents, AI+Heritage, AI+Autonomous driving

Recent Studies

FrePGAN: Robust Deepfake Detection Using Frequency-level Perturbations

Yonghyun Jeong, Doyeon Kim, Youngmin Ro, <u>Iongwon Choi</u> AAAI Conference on Artificial Intelligence 2022 (AAAI2022) [Top-tier AI Conference], [**Paper] [Arxiv] [Supplementary] [Github]**

mToFNet: Object Anti-Spoofing with Mobile Time-of-Flight Data
Yonghyun Jeong, Doyeon Kim, Jaehyeon Lee, Minki Hong, Solbi Hwang, Jongwon Choi
Winter Conference on Applications of Computer Vision 2022 (WACV2022),
Paper [Supplementary [Githbu]

AAAI2022, Deepfake Detection

WACV2022, Anti-spoofing

CVPR2021, Active Learning

Rare Classes

VaB.-AL: Incorporating Class Imbalance and Difficulty with Variational Bayes for Active Learning longwoor Chol: ", Kwang Moo YI", Ikhoon Kim, Ninho Choo, Byounglip Kim, Nin-Yeop Chang, Youngjune Gwon, Hyung lin Chang

| EEEE Conference on Computer Vision and Pattern Recognition 2021 (CVPR2021) [Top-tier CV Conference],

[Paper] [Arxiv] [Supplementary] [Github]

Visual Domain Adaptation by Consensus-based Transfer to Intermediate Domain

longwon Choi, Youngjoon Choi, Iihoon Kim, Jinyeop Chang, Ilhwan Kown, Youngjune Gwon, Seungjai Min AAAI Conference on Artificial Intelligence (AAAI2020) [Top-tier Al Conference], Paper] [Supplementary] AAAI2020, Domain Adaptation

Visual Intelligence Laboratory – CAU GSAIM

R&D 국가 과제

- IITP 다목적 비디오 검색을 위한 차세대 인공신경망 기술 개발
- IITP 실제와 지각 역치 이하 수준까지 동일한 특성을 갖는 인물 영상 합성 기술 및 판별 기술 개발
- KIAT 정부청사 인근 환승형 라스트마일 서비스를 위한 지역특화 자율주행 기술 개발
- KOCCA 시리즈 애니메이션의 원터치 웹툰화 인공지능 기술 개발
- ETRI 환경 적응을 위한 인공 신경망 학습 방법 연구
- ETRI 문화유산 디지털 애셋 데이터 및 초고해상도 획득을 위한 전처리 모듈 및 GUI 개발

R&D 산학 협력 과제

- 삼성SDS AI기반 이미지 및 영상 기술 개발
- 삼성SDS Deepfake 이미지 탐색 기술 개발
- 네이버 비디오 내 군집 알고리즘 관련 기술 개발
- 두산 AI 기반 이미지 탐지 및 인식 기술 개발

인재양성과제

- BK21+ 인공지능 콘텐츠 미래산업 교육연구단
- AI대학원 인공지능대학원 인재양성 지원 사업 (중앙대학교)
- 시스템반도체 융합전문인력 육성사업 지능형 사물 에너지 시스템반도체 센터
- 문화기술 선도 대학원 사업 버추얼 프로덕션 기반 메타버스 콘텐츠 R&D 전문인력 양성

군 AI 입과 전 선수과목 (K-MOOC)

	필수 수강 수업	수학 보충 수업	딥러닝 보충 수업	파이썬 기초 보충 수업
0주차 (체계개발, AI인재)	(필수 없음) (각자 필요에 따라 보충 수업 위주 수강) KMOOC (최종원 교수)			**************************************
1+7[1주 - 머신러닝 표현법 2주 - 지도 학습 3주 - 확률적 구분기 4주 - 앙상블 모델 5주 - 선형 회귀 10주- 비지도 학습	KMOOC (홍병우 교수) 1주 – Vector 2주 – Vector Op. 3주 – Matrix 4주 – Matrix Op.	KMOOC (김영빈 교수) 8주 - 모델 일반화 9주 - 모델 개발 10주 - 비지도 학습	e-class (최종원 교수) 1주 – 파이썬 기초 2주 – 파이썬 고급
2주차 (AI인재)	KMOOC (최종원 교수) 7주 - Linear모델 한계 9주 - Non-linearity 11주-준/비지도 학습 12주-Gradient Descent 13주-Neural Network 14주-Deep Learning	5주 - Least Square 6주 - Linear Regression 7주 - Classification	11주 – 뉴럴넷 구조 12주 – 뉴럴넷 학습 13주 – 뉴럴넷 심화	3주 - 파이썬 응용

군 AI 입과 전 선수과목 (K-MOOC)

- KMOOC 강의 딥러닝의 깊이 있는 이해를 위한 머신러닝 (최종원 교수)
 - http://www.kmooc.kr/courses/course-v1:CAUk+CAU A02+2022 1/about
- KMOOC 강의 신경망 네트워크와 수학적 기반 (홍병우 교수)
 - http://www.kmooc.kr/courses/course-v1:CAUk+CAU_A01+2022_1/about
- KMOOC 인공지능 연구동향 (김영빈 교수)
 - http://www.kmooc.kr/courses/course-v1:CAUk+CAU_A04+2021_2/about

인공지능 기반 데이터 학습 - 1

인공지능과 스무고개놀이

인공지능이란?

- 사람의 개입 없이 컴퓨터가 사람의 일을 대신하는 시스템
 - 일반적인 세탁기도 인공지능! 알아서 빨래, 세척, 탈수를 순서대로 진행
 - 핸드폰 알람도 인공지능! 시간에 맞춰서 알람을 울림
 - 인공지능은 그 범주가 아주 넓음

머신러닝이란?

- 인공지능의 일종으로 데이터를 통해 컴퓨터가 의사결정
 - 사람의 결정을 모방하여 사람의 결정을 대신하는 시스템
 - 사람의 결정을 모방할 때 필요한 정보는 데이터를 통해 자동으로 학습

머신러닝과 데이터 마이닝?

- 데이터 마이닝이란 주어진 데이터에서 유의미한 정보를 추출하는 과정
 - 데이터를 통해 사용자에게 유의미한 정보를 제공하고 도움

머신러닝과 데이터 마이닝?

- 머신러닝이란 주어진 데이터를 활용해 사용자의 결정을 모방하기 위해 학습하는 과정
 - 데이터에 어떤 의미가 있는지보다 사용자와 똑같은 결정을 모방하는 것 에 더 관심이 있음

머신러닝은 어떻게 결정을 모방할까?

- 데이터를 활용해 사용자의 결정을 모방
- 하지만, 데이터는 너무나 복잡해서 사용자의 결정을 모방하기 위 해 어떤 정보를 활용해야하는지 컴퓨터가 이해하기 어려움
- 그렇다면, 데이터를 아주 작은 정보의 단위로 나누어보자!

➡ 스무고개놀이!

스무고개 놀이와 인공지능?

- •데이터: 스티븐 호킹에 대한 수많은 정보들 (사용자 지식)
- 활용한 작은 정보
 - 성별, 실존인물 여부, 과학자 여부, 이름에 ㅎ 포함 여부 등등...
- · 결과 : 스티븐 호킹 예측

스무고개 질문 만들어보기

- 바나나와 사과 중 어떤 것일까?
 - 껍질이 빨간색인가요?

0	사과
Х	바나나

• 동그란 모양인가요?

0	사과
Х	바나나

둘 중 하나를 찾기위해서 하나의 질문으로 충분!

스무고개 질문 만들어보기

- 바나나, 사과, 석류, 참외 중 어떤 것일까?
 - · 껍질이 빨간색인가요?

0	사과, 석류
Х	바나나, 참외

• 씨앗이 무수히 많나요?

0	석류, 참외
Х	바나나, 사과

넷 중 하나를 찾기위해서 하나의 질문은 부족..

스무고개 질문 만들어보기

- 바나나, 사과, 석류, 참외 중 어떤 것일까?
 - · 껍질이 빨간색인가요?

넷 중 하나를 찾기위해서 두개의 질문이 필요!

- 어떤 질문을 먼저 하는 것이 좋을까?
 - 바나나, 사과, 석류, 참외
 - 껍질이 빨간색인가요?
 - 동그란 모양인가요?
 - 씨앗이 있나요?
 - · 껍질에 줄무늬가 있나요?

- 어떤 질문을 먼저 하는 것이 좋을까? 바나나, 사과, 석류, 참외
 - · 껍질이 빨간색인가요?

0	사과, 석류
Х	바나나, 참외

- 동그란 모양인가요?
- 씨앗이 있나요?
- · 껍질에 줄무늬가 있나요?

- 어떤 질문을 먼저 하는 것이 좋을까? 바나나, 사과, 석류, 참외
 - · 껍질이 빨간색인가요?
 - 동그란 모양인가요?

0	석류, 참외
Х	바나나, 사과

- 씨앗이 있나요?
- 껍질에 줄무늬가 있나요?

- 어떤 질문을 먼저 하는 것이 좋을까? 바나나, 사과, 석류, 참외
 - · 껍질이 빨간색인가요?
 - 동그란 모양인가요?
 - 씨앗이 있나요?

0	사과, 석류, 참외
Х	바나나

· 껍질에 줄무늬가 있나요?

- 어떤 질문을 먼저 하는 것이 좋을까? 바나나, 사과, 석류, 참외
 - · 껍질이 빨간색인가요?
 - 동그란 모양인가요?
 - 씨앗이 있나요?
 - 껍질에 줄무늬가 있나요?

0	-
Х	바나나, 사과, 석류, 참외

• 어떤 질문을 먼저 하는 것이 좋을까? - 바나나, 사과, 석류, 참외

Good Case

0	사과, 석류
Х	바나나, 참외

한번의 추가 질문으로 답변 확정

Worse Case

0	사과, 석류, 참외
Х	바나나

O의 세 개 중 하나를 찾기 위해 두개 이상의 질문이 추가로 필요!

Good Case

0	석류, 참외
Х	바나나, 사과

한번의 추가 질문으로 답변 확정

Worst Case

0	•
Х	바나나, 사과, 석류, 참외

의미없는 질문!

• 어떤 질문을 먼저 하는 것이 좋을까? - 바나나, 사과, 석류, 참외

Good Case

0	사과, 석류
Х	바나나, 참외

Good Case

0	석류, 참외
Х	바나나, 사과

Worse Case

0	사과, 석류, 참외
Х	바나나

Worst Case

0	•
Х	바나나, 사과, 석류, 참외

모든 답변에 대해 적은 수의 질문으로도 충분하면 좋은 질문!

스무고개 질문 만들어보기 – 후속 질문

- 어떤 질문을 다음에 하는 것이 좋을까? 바나나, 사과, 석류, 참외
 - [첫 질문] 껍질이 빨간색인가요?

두 질문이 같을 경우 답변을 얻을 수 없음

스무고개 질문 만들어보기 – 후속 질문

- 어떤 질문을 다음에 하는 것이 좋을까? 바나나, 사과, 석류, 참외
 - [첫 질문] 껍질이 빨간색인가요?

앞선 질문의 답변에 따라 다른 질문을 선택해야 함!

·두번의 질문으로 충분할까?

실제 인공지능에서는 어떨까? cs. stanford.edu/people/karpathy/cnnembed/

- ImageNet 이미지 정보를 학습하기 위한 데이터
 - 200만장 이상의 사진, 1000개 이상의 분류 방법

- 다음 중 어떤 것일까?
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

- 다음 중 어떤 것일까? 정답: 사과
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
 - 1. 사과인가? 끝

- 1. 고추인가?
- 2. 토마토인가?
- 3. 감인가?
- 4. 배인가?
- 5. 귤인가?
- 6. 딸기인가?
- 7. 참외인가?
- 8. 수박인가?
- 9. 석류인가?
- 10. 사과인가? 끝

최악의 경우 열번의 질문이 필요! - 비효율적

- 다음 중 어떤 것일까? 정답: 사과
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

1. 껍질이 빨간색인가?

• 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

2. 과일인가?

• 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

3. 과육이 하얀색인가?

• 바나나, **사과**, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

- 다음 중 어떤 것일까? 정답: 사과
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 1. 과육이 하얀색인가? O
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 2. 과일인가? O
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 3. 껍질이 빨간색인가? O
 - • 바나나, **사과**, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

순서와 상관없이 세번만에 사과를 찾을 수 있음

- 다음 중 어떤 것일까? 정답: 사과
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 1. 과육이 하얀색인가? O
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 2. 과일인가? O
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 3. 껍질이 빨간색인가? O
 - • 바나나, **사과**, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

그렇다면 이 질문이 최선의 질문인가?

- 다음 중 어떤 것일까? 정답: 사과
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 1. 과육이 하얀색인가? O
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 2. 껍질이 빨간색인가? O
 - * 바나나, **사과**, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

단 두번의 질문으로 답변 탐색 가능!

- 다음 중 어떤 것일까? 정답: 사과
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 1. 과육이 하얀색인가? O
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 2. 껍질이 빨간색인가? O
 - * 바나나, **사과**, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

그렇다면 이 질문이 최선의 질문인가?

- 다음 중 어떤 것일까? 정답: 고추
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 1. 과육이 하얀색인가? X
 - +_바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추
- 2. 껍질이 빨간색인가? O
 - +_바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

질문을 두번했음에도 네개의 답변이 가능 -> 제한적인 질문들

스무고개 놀이와 인공지능?

- 인공지능에게 중요한 것은 무엇일까?
 - 높은 정확도
 - 빠른 예측 속도
 - 적은 예측 계산량
 - · 적은 메모리 사용량

높은 계산 효율성이 인공지능에게 가장 중요!

질문을 준비해야하는 전략 - 요약

- •모든 답변을 적은 개수의 질문으로 찾을 수 있어야 한다
- 앞선 질문의 답변에 따라 적절한 질문을 해야 한다

• 모든 답변을 적은 개수의 질문으로 찾을 수 있어야 한다

바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

바나나인가?

바나나 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

사과인가?

사과 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

석류인가?

석류 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

10번 질문 필요!

토마토

고추

• 모든 답변을 적은 개수의 질문으로 찾을 수 있어야 한다

바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

• 모든 답변을 적은 개수의 질문으로 찾을 수 있어야 한다

바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

- 앞선 질문의 답변에 따라 적절한 질문을 해야한다
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

껍질이 빨간색인가?

사과, 석류, 딸기, 토마토

바나나, 수박, 참외, 귤, 배, 감, 고추

- 앞선 질문의 답변에 따라 적절한 질문을 해야한다
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

후속 질문의 같을 경우 질문이 비효율적

- 앞선 질문의 답변에 따라 적절한 질문을 해야한다
 - 바나나, 사과, 석류, 수박, 참외, 딸기, 귤, 배, 감, 토마토, 고추

후속 질문이 주어진 답변에 대해서 최적화

여러분들만의 의사결정나무를 만들어보세요!

• 강아지, 고양이, 말, 소, 돼지, 닭, 오리, 거위

여러분들만의 의사결정나무를 만들어보세요!

• 서울, 부산, 대구, 대전, 포항, 울산, 광주, 제주

인공지능 기반 데이터 학습 – 2

데이터와 의사결정나무

스무고개 놀이와 인공지능?

- 인공지능이 직접 정보를 나눌 수 있을까?
 - "스티븐 호킹" : https://en.wikipedia.org/wiki/Stephen Hawking

나눌까? – 인공지능에겐 어려운 기술

스무고개 놀이와 인공지능?

- 인공지능이 직접 정보를 나눌 수 있을까?
 - "스티븐 호킹": https://en.wikipedia.org/wiki/Stephen Hawking

	여자?	남자?	과학자?	이름에 ㅎ?	한국인?	상대성이론?	실존인물?
스티븐 호킹	0	1	1	1	0	0	1

사람의 개입이 필요 – 데이터 정리와 수집!

데이터

• 여러 위인들을 정해진 규칙에 따라 정리

	여자?	남자?	과학자?	이름에 ㅎ?	한국인?	상대성이론?	실존인물?
스티븐 호킹	0	1	1	1	0	0	1
유관순	1	0	0	0	1	0	1
홍길동	0	1	0	1	1	0	0
퀴리	1	0	1	0	0	0	1

의사결정나무를 위 데이터를 활용해 만들어보자!

Data Sample = Feature Values + Label

Question: Sample is chosen?

	А	В	С	D	Е	F	선택여부
7	0	0	0	0	0	1	1
L.	1	0	0	0	1	0	1
=	1	0	0	0	1	0	1
=	0	0	0	0	1	0	1
•	1	1	0	1	0	0	0
н	1	0	0	1	0	0	0
٨	1	1	0	1	0	0	0
•	0	0	1	0	0	0	0

E=1? ㄴ,ㄷ,ㄹ

Everything's good!

ᄀ, ㅁ, ㅂ, ㅅ, ㅇ

Question: Sample is good?

	А	В	С	D	E	F	선택여부
7	0	0	0	0	0	1	1
L	1	0	0	0	1	0	1
=	1	0	0	0	1	0	1
2	0	0	0	0	1	0	1
	1	1	0	1	0	0	0
H	1	0	0	1	0	0	0
٨	1	1	0	1	0	0	0
•	0	0	1	0	0	0	0

E=1?

	А	В	С	D	Е	F	선택여부
7	0.1	0.1	0.1	0.1	0.1	0.8	1
L	0.9	0.2	0.4	0.2	0.8	0.2	1
_	0.6	0.1	0.2	0.3	0.7	0.3	1
=	0.1	0.3	0.1	0.4	0.6	0.1	1
	0.8	0.8	0.3	0.9	0.4	0.2	0
ш	0.9	0.1	0.2	0.8	0.3	0.3	0
٨	0.8	0.8	0.9	0.9	0.4	0.1	0
0	0.1	0.2	0.8	0.1	0.1	0.2	0

Question: Sample is good?

	А	В	С	D	Е	F	선택여부
7	0.1	0.1	0.1	0.1	0.1	0.8	1
L .	0.9	0.2	0.4	0.2	0.8	0.2	1
_	0.6	0.1	0.2	0.3	0.7	0.3	1
2	0.1	0.3	0.1	0.4	0.6	0.1	1
	0.8	0.8	0.3	0.9	0.4	0.2	0
н	0.9	0.1	0.2	0.8	0.3	0.3	0
٨	0.8	0.8	0.9	0.9	0.4	0.1	0
•	0.1	0.2	0.8	0.1	0.1	0.2	0

E>0.5 ?

ㄴ,ㄷ,ㄹ

つ, ロ, ㅂ, 人, ㅇ

Everything's good!

					Que	estion: Sample	is good?
	А	В	С	D	Е	F	선택여부
7	0.1	0.1	0.1	0.1	0.1	0.8	1
L	0.9	0.2	0.4	0.2	0.8	0.2	1
_	0.6	0.1	0.2	0.3	0.7	0.3	1
2	0.1	0.3	0.1	0.4	0.6	0.1	1
	0.8	0.8	0.3	0.9	0.4	0.2	0
ш	0.9	0.1	0.2	0.8	0.3	0.3	0
٨	0.8	0.8	0.9	0.9	0.4	0.1	0
•	0.1	0.2	0.8	0.1	0.1	0.2	0

E>0.5?

데이터와 의사결정나무 - 테스트

	А	В	С	D	Е	F	선택여부
E	0.2	0.4	0.3	0.9	0.2	0.6	??
			E				
			E>0.5	?			
				E	ŀ		
		Everything's	good!	F>0	.5 ?		
				E			
			Everythin	g's good!	Everythir	ng's not good!	
	A	В	С	D	Е	F	선택여부
=	0.2	0.4	0.3	0.9	0.2	0.6	1

데이터와 의사결정나무 - 테스트

	А	В	С	D	Е	F	선택여부
7	0.9	0.3	0.8	0.7	0.2	0.1	??
			=				
			E>0.5	?			
				=	I		
		Everything's	good!	F>0	.5 ?		
						=	
			Everythin	g's good!	Everythir	ng's not good!	
	А	В	С	D	Е	F	선택여부
=	0.9	0.3	0.8	0.7	0.2	0.1	0

데이터와 의사결정나무 – 모호한 학습

	А	В	С	D	Е	F	선택여부
7	0.1	0.1	0.1	0.1	0.1	0.8	1
L	0.9	0.2	0.4	0.2	0.8	0.2	1
_	0.6	0.1	0.2	0.3	0.7	0.3	1
2	0.1	0.3	0.1	0.4	0.6	0.1	1
	0.8	0.8	0.3	0.9	0.4	0.2	0
ㅂ	0.9	0.1	0.2	0.8	0.3	0.3	0
٨	0.8	0.8	0.9	0.9	0.4	0.1	0
0	0.1	0.2	0.8	0.1	0.1	0.2	0
~	0.6	0.1	0.2	0.3	0.7	0.3	0
*	0.1	0.3	0.1	0.4	0.6	0.1	0

데이터와 의사결정나무 – 모호한 학습

데이터와 의사결정나무 – 모호한 학습

데이터와 의사결정나무 – 테스트

Question: Sample is good?

							선택여구
п	0.9	0.3	0.8	0.7	0.3	0.1	??
				п			
			E:	>0.5 ?			
						ш	
	F>	0.1 ?			F>(0.5 ?	
100%		00/))()	100	0/	4000/ **	I
100% {	good: 5	0% good! / 50	% not good!	100	% good!	100% F	not good!
	А	В	С	D	E	F	선택여부
π	0.9	0.3	0.8	0.7	0.3	0.1	0

데이터와 의사결정나무 – 테스트

	А	В	С	D	Е	F	선택여부
÷	0.9	0.3	0.8	0.7	0.6	0.1	??
				ㅎ -			
			E	>0.5 ?			
		÷			_		
	F	>0.1 ?			F>(0.5 ?	
100		>0.1 ? 50% good! / 50		100	F>0		not good!
100				100			not good!
100				100			not good! 선택여부

의사결정나무 구현해보기 - 데이터

학습 데이터

	E	F	선택여부
7	0.1	0.8	1
	0.8	0.2	1
=	0.7	0.3	1
2	0.6	0.1	1
-	0.4	0.2	0
н	0.3	0.3	0
^	0.4	0.1	0
•	0.1	0.2	0

테스트 데이터

	E	F	선택여부
ᄌ	0.2	0.9	?
大	0.7	0.1	?
E	0.5	0.2	?

의사결정나무 구현해보기 - 학습

0. 준비 과정

	Е	F	선택여부
7	0.1	0.8	1
L	0.8	0.2	1
_	0.7	0.3	1
2	0.6	0.1	1
-	0.4	0.2	0
ы	0.3	0.3	0
٨	0.4	0.1	0
•	0.1	0.2	0

- Which Feature?
 - E / F
- Which Threshold?
 - 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
- What is the best?
 - Divide the samples by half

의사결정나무 구현해보기 - 학습

1. Feature 와 Threshold 모든 조합에 대해서 테스트

ㄴ, ㄷ, ㄹ, ㅁ, ㅅ

				⊐,	ㄴ, ㄷ, ㄹ, ㅁ, ㅂ	, ሊ, ዕ	ㄱ, ㄴ, ㄷ, ㄹ	. п. н. д.
	E	F	선택여부				, , ,	, , , ,
7	0.1	0.8	1		E>0.1 ?		E>	0.5 ?
L	0.8	0.2	1	ㄴ, ㄷ, ㄹ, ㅣ	ㅁ, ㅂ, ㅅ	٦, ٥	∟, ⊏, ≡	٦, ٥
_	0.7	0.3	1	٦,	L, C, 2, 0, H	, ᆺ, ㅇ ̄		<u></u> 초
2	0.6	0.1	1		E>0.2 ?			
•	0.4	0.2	0		E>0.2 !		1	
ш	0.3	0.3	0	ㄴ, ㄷ, ㄹ, ㅌ	ㅁ, ㅂ, ㅅ	╗, 0		
٨	0.4	0.1	0		_, ㄷ, ㄹ, ㅁ, ㅂ,	٨.٥	¬, ∟, ⊏, ≥, ı	пыло
0	0.1	0.2	0	-, -	-, -, -, -, -,	, -	-, -, -, -,	_, _,, •
					E>0.3 ?		F>0.	9 ?

7, ⊟, 0

의사결정나무 구현해보기 - 학습

2. 최적의 조합 선택 및 데이터 분리

	E	F	선택여부
7	0.1	0.8	1
_	0.8	0.2	1
=	0.7	0.3	1
=	0.6	0.1	1
-	0.4	0.2	0
н	0.3	0.3	0
٨	0.4	0.1	0
0	0.1	0.2	0

ㄴ, ㄷ, ㄹ

	E	F	선택여 부
L	0.8	0.2	1
_	0.7	0.3	1
2	0.6	0.1	1

질문 더 이상 필요 없음 -> 분류 끝

	E	F	선택여부
7	0.1	0.8	1
•	0.4	0.2	0
H	0.3	0.3	0
٨	0.4	0.1	0

ᄀ, ㅁ, ㅂ, ㅅ, ㅇ

분류 더 필요 -> 추가 질문

의사결정나무 구현해보기 - 학습

3. 추가 질문을 위한 최적의 조합을 테스트

	E	F	선택여부
7	0.1	0.8	1
	0.4	0.2	0
н	0.3	0.3	0
٨.	0.4	0.1	0
0	0.1	0.2	0

최적의 조합!

의사결정나무 구현해보기 - 학습 요약

100% not good

의사결정나무 구현해보기 – 학습 완료

의사결정나무 구현해보기 - 테스트

	E	F	선택여 부		
~	0.2	0.9	?		
*	0.7	0.1	?		
E	0.5	0.2	?		
E>0.5 ?					

최종 결과

	Е	F	선택여 부
~	0.2	0.9	1
*	0.7	0.1	1
E	0.5	0.2	0

History of Al

Artificial Intelligence comes in waves of hype

- 1. Al **Spring** is a time period when new technology prompts a period of inten se funding and research around Al
- 2. A breaking point where expectations fail to meet reality
- 3. Al **Winter** is a time period when much lower funding is given to Al and res earch is slower or more incremental.

Ancient automaton

Ancient Greek myth of Pygmalion

"... by discovering the true nature of the gods, man has been able to reproduce it."

maybe some guy named Hermes Trismegistus < 200 BC

Dreams of Robots 1860s - 1940s

"R.U.R" a 1920 play

"...the time will come when the machines will hold the real supremacy over the world." - 1863 article by Samuel Butler

.

1942 Asimov's Laws

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

1956 - 1971 We can teach innate knowledge through rules

Symbolism vs. Connectionism

1956 - 1971 We can teach innate knowledge through rules

Symbolism: formal logic systems can represent intelligent action

```
(RULE 5
     (IF (PCS-SCS HEAT TRANSFER INADEQUATE)
        (LOW FEEDWATER FLOW))
     (THEN (ACCIDENT IS LOSS OF FEEDWATER)))
(RULE 6
     (IF (SG INVENTORY INADEQUATE)
        (LOW FEEDWATER FLOW))
     (THEN (ACCIDENT IS LOSS OF FEEDWATER)))
(RULE 7
     (1F (PCS INTEGRITY CHALLENGED)
         (CONTAINMENT INTEGRITY CHALLENGED))
     (THEN (ACCIDENT IS LOCA)))
(RULE 8
     (IF (PCS INTEGRITY CHALLENGED)
        (SG LEVEL INCREASING))
     (THEN (ACCIDENT IS STEAM GENERATOR TUBE
     RUPTURE)))
(RULE 9
     (IF (SG INVENTORY INADEQUATE)
         (HIGH STEAM FLOW))
     THEN (ACCIDENT IS STEAM LINE BREAK))))
   Figure 2. Event-oriented IF-THEN rules.
```

1956 - 1971 We can teach computers to learn

Connectionism: computers should mimic how the brain works

- Neurons make thousands of links with other neurons, making trillions of possible connections in the brain
- An individual neuron will fire if specific input reaches a certain threshold of electricity, otherwise no
- Threshold for a neuron to fire = activation weights in a neural network

1956 - 1971 We can teach computers to learn

The Perceptron: designed by Frank Rosenblatt 1958

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." - NYT 1958

$$f(\mathbf{x}) = egin{cases} 1 & ext{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \ 0 & ext{otherwise} \end{cases}$$

Don't make promises you can't keep

First Al Winter

Funding is lost due to unmet promises

- X Lighthill Report 1973 shuts down funding in UK
- ➤ Dreyfus at MIT argues lots of human reasoning is *not based on logic rules*, involving instinct and unconscious reasoning
 - ♣ (No AI researcher will eat lunch with Dreyfus for the next decade)
- X Sussman: "using precise language to describe essentially imprecise conce pts doesn't make them any more precise."

First Al Winter

Funding is lost due to unmet promises and **fundamental** limitations

- 1. Computational power of the day limits most applications
- 2. Lots of infighting
- 3. Limitations with logic rules
 - a. All the possibilities
 - b. Common sense reasoning
 - c. Intractability & Combinatorial Explosion

1990s - 2000s Al undercover

- Many, many, many advances in computer science, probability theory, statistical learning, etc.
- "Computer scientists and software engineers avoided the term artificial intelligence for fear of being viewed as wild-eyed dreamers." NYT 2005
- Machine Learning as a field distances itself from AI

2010s - wait... now we can Machine Learn at scale Machine learning now immensely powerful

- Neural networks now practical, many earlier inventions in neural networ ks like back propagation in the 1980s are re-discovered
- Deep learning gives big performance leaps in almost all application areas overnight
- \$\$\$ massive funding is back

AI & Ownership

Problem of GAN – Generated Artwork

https://deepdreamgenerator.com/

Problem of GAN – Generated Artwork

https://deepdreamgenerator.com/

Problem of GAN – Generated Artwork

https://magenta.tensorflow.org/music-vae

Problem of GAN – Who Owns Them?

- Artist who runs the code?
- Artist who drew the first image?
- Artist who drew the second image?
- · Code developer?
- Algorithm researcher?
- Cloud server maintainer?

https://deepdreamgenerator.com/

Problem of GAN – Who Owns Them?

"Computer-generated Works" in UK Legislation

- The computer-generated artworks are owned by the <u>person who arranges necessarily the</u> <u>creation of the artwork</u>. This person can be a programmer, an artist, or both, which depends on the contribution they offer to their creation.

Risk of Al

Uncertainty & Unpredictability for users

- Relinquishing control to an AI/ML agent can be helpful, but can be much harder to correct or understand if things go wrong
- "Unpredictability" can be joyful in one kind of experience, and a terrible idea in another

Risk: Severe Failure

Twitter taught Microsoft's AI chatbot to be a racist asshole in less than a day

By James Vincent | Mar 24, 2016, 6:43am EDT Via The Guardian | Source Tayand You (Twitter)

What was the error?: Severe Failure

➤ Tay had no *moral agency*. To her, words like **Hitler** or **Holocaust** are not different from words like **cha ir** or **Oklahoma**

Mitigating: Severe Failure

2017 Tay used some black-listing of 'bad words' but could make no moral judgements.

2018 Zoe uses both black-listing of 'bad words' and makes moral judgements.

Error of Al

ML/Al error: Poor model performance

- Usually solvable by acquiring more training data for the situations the model is weakest at
- **Data is expensive** to collect, and your company or organization has limite d resources. Prioritizing *what* specific data to collect is essential
- Designers can use rule or non-ML based fallbacks to still deliver the user some value when model performance isn't good enough for some cases

ML/Al error: Low confidence or *false* High confidence in a prediction

- Low confidence predictions can mean that the model has lower perform ance, or the phenomena itself is just... less predictable
- Communicating with the user or providing good non-AI/ML fallbacks is k ey
- High confidence (when the model is really wrong) is worse
 Unknown unknown errors
- Need to give the user some error correction or feedback method to deal when this happens

THANKS!

Do you have any question? choijw@cau.ac.kr vilab.cau.ac.kr

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

