

国家级物理实验教学示范中心

National Demonstration Center for Experimental Physics Education (Jilin University)

实验成绩	
教师签字	
批改日期	

实 验 报 告

普通物理实验

实验题目: _		混合法测量冰的熔解热				
学	院:	数学学院				
学	号:	10230524				
姓	名:	黎瀚文				
组	别:	A2 实验台号: 3				
时	间:					

1 实验内容

- 1. 擦干量热器内筒和搅拌器后称其质量 M_1 , 并读出室温 θ
- 2. 将水盛到内筒总容积的 $\frac{1}{2}$ 处,加热至比室温高 $8\pm10^{\circ}C$
- 3. 称量热器内筒、搅拌器和水的总质量 M_2
- 4. 取两块冰放在干毛巾上。放好内筒进入量热器,组装好温度计、搅拌器等后立即开始计时。每隔 30s 记录一次温度计温度,同时不停搅拌并观察水温随时间的变化,共记录 6 次共 6 个点
- 5. 用干布擦干干冰表面的水,在不能溅起水花的前提下将冰迅速放入内筒水中;同时记录混合水系统初温 T_1 °C 与时间,继续不停搅拌,每 15s 记录一次温度,直至系统温度降至末温 T_2 °C
- 6. 仍继续进行搅拌并观察水温随时间 t 的变化,每隔 30s 记录一次共记录 5 次
- 7. 将内筒取出称其质量,并计算水及冰的质量

2 原始数据

表 1: 1atm 下实验环境数据

温度	$24^{\circ}C$
湿度	68%

表 2: 质量的测量数据

内筒和搅拌器质量 m ₁ /g	173.81
内筒、搅拌器和水的质量 22/g	393.60
内筒、搅拌器、水和冰的质量 $3_3/g$	453.35

表 3: 仪器精确度

	电子天平	数字温度计
精确度	0.01g	$0.1^{\circ}C$

表 4: 记录搅拌数据

时间	0"	30"	1'	1'30"	2'	2'30"	3'	
温度°C	33.3	33.2	33.1	33.1	33.0	32.9	26.7	
时间	3'30"	3'45"	4'	4'15"	4'30"	4'45"	5'	5′15″
温度 °C	23.2	20.3	17.9	16.6	15.7	15.1	14.6	14.1
时间	5′30″	5'45"	6'	6'15"	6'30"	6'45"	7'	7′15″
温度 °C	13.8	13.4	13.1	12.7	12.4	12.1	11.9	11.7
时间	7′30″	7'45"	8'	8'15"	8'30"	8'45"	9'	9'15"
温度 °C	11.6	11.5	11.3	11.1	11.1	11.1	11.0	11.0
时间	9'30"	9'45"	10'	10'15"	10'30"	10'45"	11'	11'15"
温度 °C	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9
时间	11'30"	11'45"						
温度 °C	10.9	11.0						
时间	12'	12'30"	13'	13'30"	14'	14'30"		
温度°C	11.0	11.0	11.1	11.1	11.2	11.3		

3 数据处理与分析

3.1 作系统温度随时间变化曲线图并修正初温、末温

由图解修正法得到修正后的系统初温 $T_1=32.5^{\circ}C$,系统末温 $T_2=10.0^{\circ}C$

3.2 冰的熔化热计算

由实验室测量原始数据及图解修正得到的数据如下:

水的质量 m' = 393.60g - 173.81g = 219.79g

冰的质量 m = 453.35g - 393.60g = 59.75g

由图解修正法得到的系统初温 $T_1 = 32.5$ °C,系统末温 $T_2 = 10.0$ °C

查阅资料得到水的比热容为 $c=4.181J/(g\ ^{\circ}C)$,假设量热器内筒和搅拌器的材质相

同,得到量热器的内筒和搅拌器的比热容 $c_1=0.39J/(g\ ^{\circ}C)$

综合上述数据代入公式

$$L = \frac{m'c + m_1c_1}{m}(T_1 - T_2) - cT_2$$

得到 L = 329.76J/g

3.3 计算 L 的扩展不确定度

3.3.1 计算质量的不确定度

由于量热器内筒和搅拌器质量 m_1 、以及其和水总质量 m_2 、其与水和冰的总质量 m_3 均由电子天平测量得到,则它们的 A 类测量不确定度均假设为 0

假设误差均匀分布,则其 B 类不确定度

$$u_B(m_1) = u_B(m_2) = u_B(m_3) = \frac{0.01}{\sqrt{3}}g = 0.00577g$$

由合成标准不确定度 $u_C(i) = \sqrt{u_A(i)^2 + u_B(i)^2}$ 得到

$$u_C(m_1) = u_C(m_2) = u_C(m_3) = 0.00577g$$

已知水和冰的质量的计算公式如下:

$$m' = m_2 - m_1$$
$$m = m_3 - m_2$$

根据不确定度传递公式 $u_C(y) = \sqrt{\sum_{i=1}^n (\frac{\partial y}{\partial x_i})^2 u_C(x_i)^2}$ 可得

$$u_C(m') = \sqrt{u_C(m_2)^2 + u_C(m_1)^2}$$
$$u_C(m) = \sqrt{u_C(m_3)^2 + u_C(m_2)^2}$$

得到
$$u_C(m') = 8.16 \times 10^{-3} g$$
、 $u_C(m) = 8.16 \times 10^{-3} g$

3.3.2 计算温度的不确定度

由于系统初温 $T_1 = 32.5$ °C,系统末温 $T_2 = 10.0$ °C 均为由图解法修正过后的温度,均为由线性拟合得到的数据而非实验测得

由于作图取纵坐标温度 T 最小分度为 $0.25^{\circ}C$,同时假设概率密度满足均匀分布,则 其测量得到的 A 类标准不确定度均为 0 ,同时得到

$$u_C(T_1) = u_C(T_2) = u_B(T_1) = u_B(T_2) = \frac{0.25^{\circ}C}{\sqrt{3}} = 0.144337^{\circ}C$$

3.3.3 计算比热容的不确定度

在实验室室温、湿度不改变的情况下假设比热容不变。故不考虑其不确定度

3.3.4 计算合成标准不确定度

根据不确定度传递公式, 合成标准不确定度

$$u_C(L) = \sqrt{\sum (\frac{\partial L}{\partial x_i})^2 u_C(x_i)^2}$$

$$u_{C}(L)^{2} = \left(\frac{c(T_{1} - T_{2})}{m}u_{C}(m')\right)^{2} + \left(\frac{c_{1}(T_{1} - T_{2})}{m}u_{C}(m_{1})\right)^{2} + \left(\frac{m'c + m_{1}c_{1}}{m^{2}}(T_{1} - T_{2})u_{C}(m)\right)^{2} + \left(\frac{m'c + m_{1}c_{1}}{m}u_{C}(T_{1})\right)^{2} + \left(\frac{m'c + m_{1}c_{1} - cm}{m}u_{C}(T_{2})\right)^{2}$$

得到其合成标准不确定度 $u_C(L)=1.19115J/g$ 取置信概率为 $p=0.955,\,K_p=2$,代入扩展不确定度计算公式

$$U(L) = K_p \times u_C(L)$$

= 2 × 1.19115 $J/q = 2.38230J/q$

保留两位小数得到 U(L) = 2.38J/g

3.3.5 汇总表示

由上分析可得冰的熔化热 $L=\pm$ 置信概率 p=0.955, $K_p=2$ 综上所述得到冰的熔化热为 $329.76\pm2.38J/g$

测量数据

计算指标	i	$u_A(i)$	$u_B(i)$	$u_C(i)$	U(i)	$i = \bar{i} \pm U(i)$
m_1	173.81	0	5.7710^{-3}	5.77×10^{-3}		
m_2	393.60	0	5.7710^{-3}	5.77×10^{-3}		
m_3	453.35	0	5.7710^{-3}	5.77×10^{-3}		
m'	219.79			8.16×10^{-3}		
m	59.75			8.16×10^{-3}		
T_1	32.5		0.144337	0.144337		
T_2	10.0		0.144337	0.144337		
L	329.76			1.19115	2.38	329.76 ± 2.38

由于表格篇幅所限,上述计算以及结果单位未标出,故在此进行补充。质量 m_1 、 m_2 、 m_3 、m'、m 及其对应指标的单位为 g,温度 T_1 、 T_2 及其对应指标的单位均为 $^{\circ}C$,冰的熔化热 L 及其指标的单位为 J/g

4 思考题

4.1 物体传递热量的方式

物体传递热量的方式共三种,分别是热传导、热对流以及热辐射

4.2 本实验的""热力学系统"组成

- 1. 本实验中的"热力学系统"由量热器内筒、搅拌器、温度计组成
- 2. 外筒不参与热交换, 故不属于上述热力学系统

4.3 讨论各方面对实验结果的影响并阐述原因

4.3.1 测 T₂ 前搅拌不均匀或没有搅拌

由于温度计测量的是内筒中下部分水的温度,若不搅拌会导致测量出的温度 T_2 偏高,从而使计算出的 L 偏低

4.3.2 测 T_1 后没有很快放入冰,而是隔了一段时间

 T_2 的测量修正了系统误差,故若图像绘制正确,得到的 T_2 数据偏差不大或无影响,故对实验结果影响不大

4.3.3 搅拌过程中水溅到了量热器的盖子上

冰融化吸热,溅出的水不在内筒水中,故不会带走热量,导致整体溶剂减少,从而导致冰在吸热过程中测得的 T_2 的值偏小,造成 L 偏大

4.3.4 冰中含水或冰上有没有擦干的水

冰上有水会使需要融化冰的热量减少,从而使 L 偏小

4.4 确定实验室结露温度

- 1. 读取实验室温度和相对湿度,温度为 $24^{\circ}C$,相对湿度为 68%
- 2. 根据温度查水的饱和蒸汽压表,得到该温度下水的饱和蒸汽压值为 2.9850kPa
- 3. 用所查得的温度下的水的饱和蒸汽压乘以相对湿度,得到空气中水汽的分压 2.0298kPa
- 4. 根据空气中水汽分压差水的饱和蒸汽压表,该分压对应的温度为露点 $17.73^{\circ}C$
- 5. 综上得到实验室的结露温度为 17.73°C