G-steerability of Equivariant Neural Networks

for (Hyper-)Nuclear Physics

Andrea Di Donna May 28, 2025 andrea.didonna@unitn.it TIFPA - Trento University

Punti rilevanti

- 1 Due paradigmi di convoluzione ⇒ un unico obiettivo
 - Definizione di equivarianza
 Una mappa lineare $F: \mathcal{F}_{in} \to \mathcal{F}_{out}$ è G-equivariante se

$$F(T_G f) = T_G F(f), \quad \forall g \in G, f \in \mathcal{F}_{in},$$

dove T_{Q} è l'azione del gruppo sul feature field (nel nostro caso: traslazione dello spazio e rotazione del vettore).

Group Convolution

$$(k \star_G f)(g) = \int_G k(g^{-1}h) f(h) dh, \quad k, f: G \to V.$$

 $\star_{G} \text{ è automaticamente equivariante} \left[(L_{g'} \, k) \star_{G} (L_{g'} \, f) = L_{g'} (k \star_{G} f) \right], \text{ma l'integrale su } SO(3) \text{ è oneroso.}$

Osservazione — Cohen et al. (2018)

La doppia integrazione richiesta da \star_G su SO(3) (dominio e kernel) è impraticabile in una rete deep; meglio vincolare analiticamente il kernel in modo steerable e integrare solo sullo dominio fisico.

■ G-steerable Convolution (spazio fisico)

$$(k \star f)(\mathbf{x}) = \int_{\mathbb{R}^3} K(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}, \quad K(R\hat{\mathbf{r}}) = R K(\hat{\mathbf{r}}) R^{\mathsf{T}}.$$
L'equivarianza è *impacchettata* nella forma chiusa di *K*.

- *Group convolution*★_G: integra sia sul dominio che sul gruppo.
- G-steerable convolution: integra solo sul dominio; la parte angolare è incorporata analiticamente nel kernel.
- Equivalenza teorica: un kernel G-steerable che soddisfa $K(R\hat{r}) = RK(\hat{r})R^{T}$ implementa la stessa trasformazione indotta da \star_{G} , ma con costo computazionale ridotto.

Kernel sferico e Steerability

$$K(\mathbf{r}) = \sum_{J=0}^{2} \varphi_{J}(r) \sum_{m=-J}^{J} Y_{Jm}(\hat{\mathbf{r}}) Q_{Jm}^{\ell,\ell_{\hat{\mathbf{f}}}n}, \qquad \hat{\mathbf{r}} = \frac{\mathbf{r}}{\|\mathbf{r}\|}.$$

- Separazione radiale/angolare: $\varphi_J(r)$ è la parte learnable (solo raggio), $Y_{Jm}(\hat{\mathbf{r}})$ sono basi fisse sul S^2 .
- Steerability:

$$Y_{Jm}(R\,\hat{\mathbf{r}}) = \sum_{m'=-J}^{J} D_{m'm}^{J}(R) \, Y_{Jm'}(\hat{\mathbf{r}})$$
$$\implies K(R\hat{\mathbf{r}}) = R \, K(\hat{\mathbf{r}}) \, R^{\mathsf{T}}.$$

lacksquare Q_{Jm} sono i coefficienti di Clebsch–Gordan che accoppiano $\ell_{\rm in}=\ell_{\rm out}=1$ ai tre canali angolari J=0,1,2.

 $K \star f$ è automaticamente SO(3)-equivariante

Equivalenza dei kernel (TFN ↔ contratto)

$$\underbrace{\sum_{J=0}^{2} \varphi_{J}(r) \sum_{m=-J}^{J} Y_{Jm}(\hat{\mathbf{r}}) \, Q_{m}^{(J)}}_{\text{kernel TFN per } \ell_{\text{in}} = \ell_{\text{out}} = 1} = \underbrace{\mathbf{a}(r)I \, + \, b(r)[\hat{r}]_{\times} \, + \, c(r)Q(\hat{r})}_{\text{kernel contratto}}$$

- lacksquare La somma sui coefficienti di Clebsch–Gordan $Q_m^{(J)}$ contratta gli indici m.
- Produce tre tensori cartesiani ortogonali: I, $[\hat{r}]_{\times}$, $Q(\hat{r})$.
- Le funzioni radiali corrispondono: $a \propto \varphi_0$, $b \propto \varphi_1$, $c \propto \varphi_2$.
- Stessa legge di trasformazione ⇒ stessa equivarianza.

Kernel TFN ≡ Kernel contratto (nostro)

Il nostro kernel equivariante

$$K(\mathbf{r}) = a(r)I + b(r)[\hat{\mathbf{r}}]_{\times} + c(r)Q(\hat{\mathbf{r}}), \qquad \hat{\mathbf{r}} = \frac{\mathbf{r}}{\|\mathbf{r}\|}.$$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad [\hat{\mathbf{r}}]_{\times} = \begin{pmatrix} 0 & -\hat{r}_{z} & \hat{r}_{y} \\ \hat{r}_{z} & 0 & -\hat{r}_{x} \\ -\hat{r}_{y} & \hat{r}_{x} & 0 \end{pmatrix}, \quad Q(\hat{\mathbf{r}}) = 3\begin{pmatrix} \hat{r}_{x}^{2} & \hat{r}_{x}\hat{r}_{y} & \hat{r}_{x}\hat{r}_{z} \\ \hat{r}_{y}\hat{r}_{x} & \hat{r}_{y}^{2} & \hat{r}_{y}\hat{r}_{z} \\ \hat{r}_{z}\hat{r}_{x} & \hat{r}_{z}\hat{r}_{y} & \hat{r}_{z}^{2} \end{pmatrix} - I.$$

- Caso particolare $\ell_{in} = \ell_{out} = 1$ del kernel TFN.
- Tre canali angolari $J = 0, 1, 2 \Rightarrow$ tre funzioni radiali a, b, c.
- Equivarianza garantita da $K(R\hat{r}) = R K(\hat{r})R^{\top} \ \forall R \in SO(3)$.

$(\ell_{\text{out}} = 1)$ proof of $[r]_{\times}$ equivariance

Lemma

 $\textit{Equivarianza del termine } b(r) \ [\hat{r}] \times \textit{f Sia R} \in SO(3), \ \hat{r} = \frac{\textit{f}}{|\vec{r}|} \ e \ [\hat{r}]_{\times, ij} = \varepsilon_{ijk} \ \hat{r}_k \ . \ \textit{Definiamo } g = b(|\ r\ |) \ [\hat{r}]_{\times} \textit{f} \in \mathbb{R}^3. \ \textit{Allora, per } \textit{f'} = \textit{Rf} \ e \ \hat{r'} = \textit{Rf$

$$g' := b(|r|)[\hat{r}']_{\times}f' = Rg,$$

cioè g trasforma come un vettore ($\ell=1$).

Proof.

Poiché b(|r|) dipende solo da |r|, è invariante per rotazioni. In indici

$$([\hat{r}']_{\times})_{ij} \; = \; \varepsilon_{ijk} \; \hat{r}'_k \; = \; \varepsilon_{ijk} \; R_{k\ell} \; \hat{r}_\ell.$$

Usiamo l'invarianza del simbolo di Levi-Civita sotto rotazioni proprie,

$$R_{ip}R_{iq}R_{kr} \varepsilon_{pqr} = \varepsilon_{iik}$$
,

che è equivalente a $[Rv]_{\times} = R[v]_{\times}R^{\top}$. Allora

$$([\hat{r}'] \times)_{ij} = R_{ip}R_{jq} \, \varepsilon_{pq\ell} \, \hat{r}_{\ell} = (R[\hat{r}] \times R^{\top})_{ij}.$$

Quindi

$$g_i' = b(\mid r \mid) \left(\left[\hat{r}' \right] \times \right)_{ij} f_j' = b(\mid r \mid) \left(R[\hat{r}] \times R^\top \right)_{ij} R_{jm} f_m = b(\mid r \mid) R_{ip} \left[\hat{r} \right] \times pm f_m = (Rg)_i,$$

dove abbiamo usato $R^{\top}R = I$. Pertanto q' = Rq.

$(\ell_{out} = 1)$ proof of $Q(\hat{r})$ equivariance

Lemma (Equivarianza del termine $\overline{c(r)}Q(\hat{r})f$)

Sia $Q_{ij}(\hat{r})=3\,\hat{r}_i\hat{r}_j-\delta_{ij}$. Definiamo $h=c(\mid r\mid)\,Q(\hat{r})\,f\in\mathbb{R}^3$. Allora, per f'=Rf e $\hat{r}'=R\hat{r}$,

$$h' := c(|r|) Q(\hat{r}') f' = R h,$$

cioè h trasforma come un vettore ($\ell=1$).

Proof.

Poiché c(|r|) dipende solo da |r|, è invariante per rotazioni. In indici,

$$Q_{ij}(\hat{r}') = 3 \hat{r}_i' \hat{r}_j' - \delta_{ij} = 3 R_{ik} \hat{r}_k R_{j\ell} \hat{r}_\ell - \delta_{ij} = R_{ik} R_{j\ell} (3 \hat{r}_k \hat{r}_\ell - \delta_{k\ell}) = (RQ(\hat{r})R^\top)_{ij}.$$

Quindi

$$h_{i}' = c(\mid r \mid) O_{ij}(\hat{r}') t_{j}' = c(\mid r \mid) (ROR^{\top})_{ij} R_{jm} t_{m} = c(\mid r \mid) R_{ik} O_{k\ell} \underbrace{(R^{\top}R)_{\ell m} t_{m}}_{I}$$

$$=R_{ik}(Qf)_k=(Rh)_i$$

Ne segue h' = Rh.

Other implementations

			Canali irred. usati
ℓ_{out}	$K(\hat{\mathbf{r}},r)$ (forma del kernel)	Azione su $f_b \in \mathbb{R}^3$	$(\ell_{in}^{=1} \otimes \ell_{ker} \rightarrow \ell_{out})$
0	$K_{\mathcal{D}}(\hat{\mathbf{r}}, r) = \alpha(r) \hat{r}_{\mathcal{D}} (\ell_f = 1)$	$y = K_b f_b = \alpha(r) \hat{\mathbf{r}} \cdot \mathbf{f}$	$1 \otimes 1 \rightarrow 0$ $(\ell_f = 1)$
1	$a(r) \delta_{ab} (\ell_f = 0) +$	$g_a = K_{ab} f_b$	1 ⊗ 0 → 1
	$K_{ab}(\hat{\mathbf{r}},r) = b(r) \epsilon_{abc} \hat{r}_{C} (\ell_{f} = 1) +$		$1\otimes 1\to 1$
	$c(r) Q_{ab}(\hat{\mathbf{r}}) (\ell_f = 2)$		$1 \otimes 2 \rightarrow 1$
2	$K_{ab,c}(\hat{\mathbf{r}},r) = \alpha(r) \operatorname{ST}(\hat{\mathbf{r}}_a \delta_{bc} + \hat{\mathbf{r}}_b \delta_{ac}) (\ell_f = 1) +$	$T_{ab} = K_{ab,c} f_c$	1⊗1→2
	$\beta(r) \operatorname{ST}(Q_{ab}(\hat{\mathbf{r}}) \hat{r}_{C}) (\ell_{f} = 2)$		$1\otimes 2\to 2$

Table: Kernel equivariante per $\ell_{\text{In}}=1 \to \ell_{\text{out}} \in \{0,1,2\}$. Si usa $Q_{ab}(\hat{\mathbf{r}})=3\,\hat{\imath}_a\hat{\imath}_b-\delta_{ab}$ e $\mathrm{ST}(X_{ab})=\frac{1}{2}(X_{ab}+X_{ba})-\frac{1}{3}\delta_{ab}\,X_{cc}$. Le funzioni radiali α,β,a,b,c dipendono da $r=\|\mathbf{r}\|$. I tag ($\ell_f=\cdot$) indicano il grado del pezzo angolare del kernel.

Dal continuo al discreto (\mathbb{R}^3 campionato)

$$(K\star f)(\mathbf{x}) = \int_{\mathbb{R}^3} K(\mathbf{x}-\mathbf{y}) f(\mathbf{y}) d\mathbf{y} \longrightarrow \sum_{j=1}^N K(\mathbf{x}-\mathbf{x}_j) f_j w_j.$$

- Campionamento fisico: in chimica e point-cloud il campo f è noto solo su un set finito di posizioni (x_j)
 (atomi, particelle, voxel).
- Riemann sum: l'integrale viene approssimato da una somma con pesi w_j (volume o 1 se densità uniforme).
- Equivarianza preservata: se ruoti insieme posizioni e feature, la stessa somma commuta con la rotazione come faceva l'integrale.
- Efficienza: evita la quadratura numerica su SO(3); costo O(N) (o $O(N^2)$ con tutti i vicini, riducibile via cutoff/sparse).

Integrale continuo $\,pprox\,$ somma discreta su punti campionati

Confronto con Tensor Field Networks

	TFN (generale)	Nostro caso
Input/Output irreps	$\ell_{\sf in}, \ell_{\sf out}$ arbitr.	$\ell_{in} = \ell_{out} = 1$
Canali angolari J	$ \ell_{in} - \ell_{out} \le J \le \ell_{in} + \ell_{out}$	0, 1, 2
Parte angolare	$\sum_{m} Y_J^m Q_{Jm}^{\ell k}$	$I, [\hat{r}]_{\times}, Q$
Radiale learnable	$\hat{arphi}_J^{\ell k}(r)$	a(r),b(r),c(r)
Costo	$O(NC_{in}C_{out}(2\ell_{max}+1)^2)$	$O(NC_{in}C_{out}\times 3)$

Messaggio chiave

Sintesi

Il nostro layer è la versione *tascabile* di TFN: mantiene la correttezza teorica (equivarianza SO(3)) con soli tre canali angolari. La parte radiale è appresa via MLP 1-D, la parte angolare è codificata in tre tensori fissi — nessun campionamento del gruppo, costo costante.