Module-12: Chemical Nomenclature

NAMING IONIC COMPOUNDS

- The first step in naming ionic compounds is to recognize which are ionic compounds, remember that ionic compounds are formed between metal and non-metals. Exceptions are ammonium salts, which are ionic, but they do not contain a metal ion.
- Before naming, correctly identifying charge on the metal is essential in naming ionic compounds. The rules that we follow for nomenclature depends whether we are naming ionic compounds formed by metal ions that have fixed oxidation states (charges) or variable oxidation states.

- The main group metal ions display fixed oxidation states (except Sn & Pb), and the charges on the metal ions in the main group is equal to the group numbers.
- The transitions metal ions display variable oxidation states and we cannot assign oxidation states based on the group numbers.

IA																	VIIIA
H ⁺	IIA											IIIA	IVA	VA	VIA	VIIA	
Li ⁺														N3-	O ²⁻	F ⁻	
Na ⁺	Mg ²⁺	IIIB	IVB	VB	VIB	VIIB /		VIII		IB	IIB	Al ³⁺		P3-	S ²⁻	CI-	
K+	Ca ²⁺				Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ⁺	Zn ²⁺					Br ⁻	
Rb ⁺	Sr ²⁺									Ag+	Cd ²⁺		Sn ²⁺ Sn ⁴⁺			I-	
Cs+	Ba ²⁺										Hg ₂ ²⁺ Hg ²⁺		Pb ²⁺				

- First, we will name the ionic compounds that are formed by the main group metal ions, more specifically binary inorganic compounds. These are compounds comprised of only two different elements.
- Binary ionic compounds formed by main group metallic elements are named by following this simple rule.

Example: 1

- ♦ NaCl sodium chloride
- ♦ KCl potassium chloride
- ♦ Na₂O sodium oxide
- ◆ CaO calcium oxide

- ♦ K₂S potassium sulfide
- ♦ CaCl₂ calcium chloride
- ♦ BeBr₂ beryllium bromide
- ♦ Al₂S₃ aluminum sulfide
- As mentioned earlier, the anions, end with suffix, *ide*, the following table lists common anions with the appropriate names.

Some Common Anions

Nonmetal	Symbol for lon	Base Name	Anion Name
Fluorine	F^-	fluor	Fluoride
Chlorine	Cl^-	chlor	Chloride
Bromine	Br^-	brom	Bromide
Iodine	I^-	iod	Iodide
Oxygen	O^{2-}	OX	Oxide
Sulfur	S^{2-}	sulf	Sulfide
Nitrogen	N^{3-}	nitr	Nitride
Phosphorus	P ³⁻	phosph	Phosphide

Next, let us learn how to name ionic compounds that are formed by metal ions with variable oxidation states. The following rule is employed to name such ionic compounds.

name of cation (metal) in roman numerals in parentheses base name of anion (nonmetal) + -ide

Example: 2

- ♦ FeCl₂ iron(II) chloride
- ♦ FeCl₃ iron(III) chloride
- ◆ CuCl₂ copper(II) chloride
- ◆ CrCl₃ chromium(III) chloride
- ◆ AuCl₃ gold(III) chloride

- ◆ Cu₂O copper(I) oxide
- ♦ CuO copper(II) oxide
- ◆ TiBr₄ titanium(IV) bromide
- ♦ SnCl₂ tin(II) chloride
- ♦ SnCl₄ tin(IV) chloride

Metals Whose Charge Is Invariant from One Compound to Another

Metal	lon	Name	Group Number
Li	Li ⁺	Lithium	1A
Na	Na ⁺	Sodium	1A
K	K^{+}	Potassium	1A
Rb	Rb^+	Rubidium	1A
Cs	Cs ⁺	Cesium	1A
Be	Be ²⁺	Beryllium	2A
Mg	Mg^{2+}	Magnesium	2A
Ca	Ca ²⁺	Calcium	2A
Sr	Sr^{2+}	Strontium	2A
Ba	Ba ²⁺	Barium	2A
Al	Al^{3+}	Aluminum	3A
Zn	Zn^{2+}	Zinc	*
Sc	Sc ³⁺	Scandium	*
Ag**	Ag^+	Silver	*

^{*} The charge of these metals cannot be inferred from their group number.

Some Metals That Form Cations with Different Charges

		•		
Metal	lon	Name	Older Name*	
Chromium	Cr ²⁺	Chromium(II)	Chromous	
	Cr ³⁺	Chromium(III)	Chromic	
Iron	Fe ²⁺	Iron(II)	Ferrous	
	Fe ³⁺	Iron(III)	Ferric	
Cobalt	Co ²⁺	Cobalt(II)	Cobaltous	
	Co ³⁺	Cobalt(III)	Cobaltic	
Copper	Cu ⁺	Copper(I)	Cuprous	
	Cu ²⁺	Copper(II)	Cupric	
Tin	Sn ²⁺	Tin(II)	Stannous	
	Sn ⁴⁺	Tin(IV)	Stannic	
Mercury	Hg_2^{2+}	Mercury(I)	Mercurous	
	Hg ²⁺	Mercury(II)	Mercuric	
Lead	Pb ²⁺	Lead(II)	Plumbous	
	Pb ⁴⁺	Lead(IV)	Plumbic	

^{*}An older naming system substitutes the names found in this column for the name of the metal and its charge. Under this system, chromium(II) oxide is named chromous oxide. In this system, the suffix -ous indicates the ion with the lesser charge and -ic indicates the ion with the greater charge. We will not use the older system in this text.

^{**} Silver does sometimes form compounds with other charges, but these are rare.

 <u>Polyatomic ions:</u> There are ions which contain more than one atom, and in most cases more than one element, these are called polyatomic ions.

Some Common Polyatomic Ions

Name	Formula	Name	Formula
Acetate	$C_2H_3O_2^{-}$	Hypochlorite	ClO ⁻
Carbonate	CO_3^{2-}	Chlorite	${\rm ClO_2}^-$
Hydrogen carbonate (or bicarbonate)	HCO ₃ ⁻	Chlorate	ClO ₃
Hydroxide	OH^-	Perchlorate	${\rm ClO_4}^-$
Nitrite	NO_2^-	Permanganate	$\mathrm{MnO_4}^-$
Nitrate	NO_3^-	Sulfite	50_3^{2-}
Chromate	CrO ₄ ²⁻	Hydrogen sulfite (or bisulfite)	HSO ₃
Dichromate	$\mathrm{Cr_2O_7}^{2-}$	Sulfate	SO_4^{2-}
Phosphate	PO ₄ ³⁻	Hydrogen sulfate (or bisulfate)	HSO ₄
Hydrogen phosphate	$\mathrm{HPO_4}^{2-}$	Cyanide	CN ⁻
Dihydrogen phosphate	$\mathrm{H_2PO_4}^-$	Peroxide	O_2^{2-}
Ammonium	$\mathrm{NH_4}^+$		

• Ionic compounds formed by polyatomic ions are named as usual like any ionic compounds, cation is named first and then the anion.

Example: 3

- ♦ NaNO₂ sodium nitrite
- ♦ NaNO₃ sodium nitrate
- ♦ Na₂SO₄ sodium sulfate
- ♦ K₃PO₄ potassium phosphate
- ♦ Fe(NO₃)₃ iron(III) nitrate
- ♦ NH₄Cl ammonium chloride

- ♦ Na₂CO₃ sodium carbonate
- ♦ CaCO₃ calcium carbonate
- ◆ CuCO₃ copper(II) carbonate
- ♦ FeSO₄ iron(II) sulfate
- ightharpoonup Fe₂(SO₄)₃ iron(III) sulfate
- ♦ (NH₄)₂SO₄ ammonium sulfate

NAMING MOLECULAR COMPOUNDS

Unlike ionic compounds, it is not easy to predict the ratio in which the elements combine
to form the molecular compounds. For example, nitrogen and oxygen combine in many
different ways.

• The following method of nomenclature is followed while naming molecular compounds:

• The number of each type of atom in a binary molecule is specified with Greek prefixes.

(Greek Prefixes			
	mono-	= 1 (often omitted)	hexa-	= 6
	di-	= 2	hepta-	= 7
	tri-	= 3	octa-	= 8
	tetra-	= 4	nona-	= 9
	penta-	= 5	deca-	= 10

Example: 4

PF_5	= phosphorus pentafluoride	$PCl_3 = phosphorus trichloride$
N_2O	= dinitrogen monoxide	SO_2 = sulfur dioxide
NI_3	= nitrogen triiodide	CCl ₄ = carbon tetrachloride
N_2O_4	= dinitrogen tetraoxide	NO_2 = nitrogen dioxide
CO	= carbon monoxide	CO_2 = carbon dioxide

NAMING COMPOUNDS THAT ARE HYDRATED

- Hydrates are ionic compounds containing a specific number of water molecules in each formula unit. The names of hydrates contain the name of the ionic compounds first followed by the part that indicates the number of water molecules.
- For example, the formula for Epsom salt is MgSO₄•7H₂O, the systematic name is magnesium sulfate heptahydrate.

Example: 5

 $CaSO_4.\%$ H_2O : calcium sulfate hemihydrate $BaCl_2.6$ H_2O : barium chloride hexahydrate $CuSO_4.5$ H_2O : copper(II) sulfate pentahydrate

NAMING ACIDS

• Acids are broadly divided into binary and oxyacids.

• Naming binary acids is simple; they are named as illustrated below

Example: 6

HCl – hydrochloric acid

HBr – hydrobromic acid

HF – hydrofluoric acid

HI – hydroiodic acid

• The oxyacids with corresponding anions ending with *ite* and *ate* are named as illustrated below.

Example: 7

Practice Problems

(e) Sn₃(PO₄)₄

1. Give the systematic names for the following ionic binary compounds.
(a) Na ₂ S
(b) K ₂ O
(c) Al_2O_3
(d) CaBr ₂
(e) BaS
(f) FeS
(g) Fe_2S_3
(h) SnCl ₂
(i) SnCl ₄
(j) CuS
(k) CuBr
(l) CuCl ₂
2. Write chemical formula for the binary ionic compounds. (a) lead(II) iodide (b) potassium bromide (c) nickel(II) oxide (d) calcium fluoride (e) manganese(IV) oxide (f) chromium(III) oxide
3. Give the systematic names for the following ionic compounds formed by polyatomic ions.
(a) Na_2CrO_4
(b) $Cu(ClO_4)_2$
(c) $Mn_3(PO_4)_2$
(d) Cs_2CO_3
(e) $Au_2(SO_4)_3$
(f) Ag_2CO_3

(h) sodium peroxide	
(i) nickel(II) nitrate	
(j) nickel(II) nitrite	
5. Name the following molecular compounds.	
(a) PF ₃	
(b) BCl ₃	
(c) SiO_2	
(d) BrF_5 :	
(e) SO_2	
(f) SO_3	
(g) SF_6	
(h) XeF ₄	
(i) N_2F_2	
6. Write the molecular formula for the following compounds.	
(a) chlorine dioxide	
(b) nitrogen trichloride	
(c) disulfur dichloride	
(d) silicon tetrabromide	

4. Write the chemical formula for the ionic compounds formed by polyatomic ions.

(a) ammonium sulfate

(b) iron(II) phosphate

(d) zinc(II) carbonate

(e) sodium phosphate

(f) calcium phosphate

(g) sodium sulfite

(c) chromium(II) sulfate

	(a) H_3AsO_4		
	(b) H ₃ AsO ₃		
	(c) HClO		
	(d) HClO ₂		
	(e) HClO ₃		
	(f) HClO ₄		
8. The	formula of an oxyaci	d is H ₂ XO ₄ , ide	entify the element is X?
(A) C	(B) Se	(C) N	(D) B

7. Name the following oxyacids