2019-04-23 Minimum Spanning Trees

Tuesday, April 23, 2019 9:03 AM

- Goal of an MST: Reduce a graph to just its components such that the graph remains connected in the most efficient manner
- Efficiency is measured by the sum of each edge's weight
- An aside on edge weight...

Depending on application domain, weights might represent

- Cost (\$)
- Distance
- Time
- Throughput

Aside: How do we represent edge weights programmatically?

- Adjacency matrix: store edge weight in cell rather than always 1
- Edge list: store both edge and edge cost (typically as a HT)
 - Key: edge*, Value: edge weight

Back to MSTs...

 Goal of MST is to minimize total edge cost of graph such that all vertices remain somehow connected

Idea #1: Put all edges into a min PQ

- 1. AE (1)
- 2. BF (2)
- 3. AC(2)
- 4. EC(2)
- 5. AD (3)
- 6.
- DF (3)
- 7. BC (4)
- 8. DE (4)
- 9. BE (4)
- 10. EF (5)
- 11. DB (5)
- 12. CF (7)
- 13. AB (8)

Idea:

- 1. Pop edge off
- 2. Check for redundancy. If none, fill graph

- Problem: How do we determine done-ness?
 - When #edges + 1 = #vertices, done.
- And how do we determine if two vertices are connected?
 - o Basic approach: graph search (DFS, BFS) -> SLOW
 - Better approach is to use set operations
 - The disjoint set data structure can perform tests of inclusion and unions in almost O(1) (Log*N which is different and much faster than LogN)
- This algorithm is formally called Kruskal's MST algorithm

Idea #2: Also uses a min PQ

visited previously, take edge. Add its outgoing edges into PQ.

• This algorithm is called Prim's MST

Articulation Point Analysis

- Defined: An articulation point is a "weak point" in the graph such that removing that vertex would create two disconnected graphs.
- Example:

- Examples from class discussion
 - Network router outage
 - o Roads
 - o Emergency building exits
 - o Internet speeds
- In order to programmatically find an articulation point, we must construct a depth-first search tree from our graph
- From above...

