Ph.D. Qualifying Exam, Real Analysis Spring 2017, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Does the fact that $\lim_{a\to 0} \int_a^1 f \, dx$ exists guarantee that f is in $L^1[0,1]$? Prove this or give a counterexample.
 - **b.** Suppose that $f: \mathbb{R} \to \mathbb{R}$ and for each $x \in \mathbb{R}$ there exists a quadratic polynomial P_x , $P_x(y) = a_x(y-x)^2 + b_x(y-x) + c_x$, such that $\lim_{y\to x} |y-x|^{-2}|f(y)-P_x(y)| = 0$. Does this imply that f is twice differentiable? Prove this or give a counterexample.
- Let $T_t: L^2(\mathbb{R}) \to L^2(\mathbb{R}), t \in \mathbb{R}$, be the operator given by $(T_t f)(x) = f(x-t)$.
 - **a.** Suppose that $||T_t T_s|| < 2$, where the norm is that of $\mathcal{L}(L^2(\mathbb{R}))$, the space of bounded operators on $L^2(\mathbb{R})$. Show that t = s.
 - **b.** Give (with proof) a locally convex topology on $\mathcal{L}(L^2(\mathbb{R}))$ in which the map $\mathbb{R}\ni t\mapsto T_t\in\mathcal{L}(L^2(\mathbb{R}))$ is continuous.
- 3 Let ℓ^{∞} , resp. ℓ^2 , denote the vector spaces of bounded, resp. square summable, complex valued sequences with the standard norms.
 - **a.** Let $\{a_n\}_{n\in\mathbb{N}}\in\ell^\infty$. Define $T:\ell^2\to\ell^2$ by $(Tx)_n=a_nx_n$. Find (with proof) $\sigma(T)$ (the spectrum of T).
 - **b.** Let K be a closed bounded non-empty subset of \mathbb{C} . Show that there exist H a Hilbert space and $T: H \to H$ a bounded linear map such that $\sigma(T) = K$.
- Let $H^1([0,\infty))$ (Sobolev space on the half line) denote the completion of $C^1_c([0,\infty))$ (C^1 functions on $[0,\infty)$ which vanish outside a compact set, but not necessarily at 0) in the norm $\|f\|_{H^1([0,\infty))} = \|f\|_{L^2([0,\infty))} + \|f'\|_{L^2([0,\infty))}$, and $H^1(\mathbb{R})$ be the standard Sobolev space (consisting of functions in $L^2(\mathbb{R})$ whose Fourier transform satisfies $\int (1+|\xi|^2)|\mathcal{F}f(\xi)|^2 d\xi < \infty$).
 - **a.** Show that the restriction map $R: C_c^1(\mathbb{R}) \to C_c^1([0,\infty))$ extends to a continuous linear map (still denoted by $R: H^1(\mathbb{R}) \to H^1([0,\infty))$.
 - **b.** Show that there is a continuous linear map $E: H^1([0,\infty)) \to H^1(\mathbb{R})$ such that RE = I (identity map). (Hint: consider a map of the form Ef(x) = f(x) when $x \ge 0$, $Ef(x) = \sum_{j=1}^k a_j f(-jx)$ when x < 0, where k and a_j are appropriately chosen.)
- Suppose that A is a bounded operator on a Hilbert space H and K be a compact operator on H.
 - **a.** If A has closed range, finite dimensional kernel and infinite dimensional cokernel, then show that A + K also has all the same properties.
 - **b.** If A has closed range, infinite dimensional kernel, finite dimensional cokernel, then show that A+K has same properties.
 - **c.** Is it true that if A has closed range but kernel and cokernel both infinite dimensional, then A + K still has closed range? Prove or give a counterexample.

Ph.D. Qualifying Exam, Real Analysis Spring 2017, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Suppose that X is a Banach space. Show that every closed subspace of X (closed with respect to the norm topology) is weakly closed.
 - **b.** Let X, Y, Z be Banach spaces, $T: X \to Y, S: Y \to Z$ be linear maps. Suppose $S \circ T$ is bounded and S is both bounded and injective. Show that T is bounded.
- Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of measurable functions on a measurable space (E,\mathcal{E}) . Show that the following functions are also measurable: $\inf_n f_n$, $\sup_n f_n$, $\liminf_n f_n$, $\lim\sup_n f_n$. Show also that $\{x\in E: f_n(x) \text{ converges as } n\to\infty\}\in\mathcal{E}$.
- 3 Let $C^{\infty}(\mathbb{T})$ denote the vector space of infinitely differentiable complex-valued functions on $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$, and let $\|\phi\|_{C^k(\mathbb{T})}=\sum_{j\leq k}\sup|\partial^j\phi|,\ \phi\in C^{\infty}(\mathbb{T})$, be the C^k norm of ϕ . Let \mathcal{T} be the weakest topology on $C^{\infty}(\mathbb{T})$ in which the functions

$$f_{k,\psi}(\phi) = \|\phi - \psi\|_{C^k(\mathbb{T})} : C^{\infty}(\mathbb{T}) \to [0,\infty),$$

 $k \geq 0, \psi \in C^{\infty}(\mathbb{T})$, are continuous.

- **a.** Show that \mathcal{T} is metrizable, and write down an explicit metric giving rise to the topology \mathcal{T} .
- **b.** Show that there exists no norm $\|.\|$ on $C^{\infty}(\mathbb{T})$ such that \mathcal{T} is the topology given by the norm $\|.\|$.
- Suppose $f \in C^{\infty}(\mathbb{R}^n)$ complex-valued with $\operatorname{Im} f \geq 0$ and $K \subset \mathbb{R}^n$ is compact. Suppose that for all points $x \in K$ with $\operatorname{Im} f(x) = 0$, the differential of f does not vanish at x. Show that for all $u \in C^{\infty}(\mathbb{R}^n)$ with support in K and for all $N \geq 0$ there is C > 0 such that

$$\left| \int e^{i\omega f(x)} u(x) \, dx \right| \le C\omega^{-N}, \ \omega > 1.$$

Let X_j , $j=1,2,\ldots$, be real-valued, independent and identically distributed random variables, such that the probability density p(x) of each X_j is a Schwartz class function, and set $Z_n = \frac{X_1 + \cdots + X_n}{n}$. Show that the probability distribution function of Z_n is $p_Z(x) = n[p \star p \star \dots p](nx)$, and there exists a constant s such that for any Schwartz function g(x) we have $E(g(Z_n)) \to g(s)$.

A word on notation: a random variable X is a measurable function on a measure space Ω equipped with a (non-negative) measure μ such that $\int_{\Omega} d\mu = 1$. A Borel measurable function p(x) is the probability density of X if for any Borel set $B \subseteq \mathbb{R}$ we have $\mu(\omega \in \Omega : X(\omega) \in B) = \int_B p(x) dx$. The expected value of a random variable Z is $E(Z) = \int_{\mathbb{R}} x p(x) dx$. Finally, random variables X_1, X_2, \ldots, X_n are independent if for any collection of the Borel sets B_1, \ldots, B_n we have

$$\mu(\omega \in \Omega : X_1(\omega) \in B_1, \dots, X_n(\omega) \in B_n) = \mu(\omega \in \Omega : X_1(\omega) \in B_1) \dots \mu(\omega \in \Omega : X_n(\omega) \in B_n).$$