Velocità e Matrici Jacobiame

Leggi di moto di un braccio robotico

- Avendo risolto il problema della cinematica inversa di un braccio robotico si pone quello di determinare le leggi di moto dei giunti per prescrivere un certo moto dell'effettore
 - Necessitiamo di mantenere una certa trajettoria
 - Necessitiamo di mantenere anche una certa velocità
- Esprimeremo i parametri dei giunti come leggi in funzione di *t*, soggette a determinati vincoli determinati dal moto voluto, e costruiremo quindi la versione parametrica della matrice *T*

Esempio: il braccio a C

Vogliamo che il nostro raggio sia sempre centrato sul target e quindi:

- $O_5 = (x_p, z_p)$ è fisso
- θ_2 è fissato
- Il braccio ruota a velocità costante nel suo piano per cui θ_4 = 0 e:

$$\theta_5(t) = t$$

Esempio: il braccio a C

Vogliamo che il nostro raggio sia sempre centrato sul target e quindi:

- $O_5 = (x_p, z_p)$ è fisso
- θ_2 è fissato
- Il braccio ruota a velocità costante nel suo piano per cui θ_2 = 0 e:

$$\theta_5(t) = t$$

Dobbiamo determinare il moto $d_1(t)$ e $d_3(t)$ per compensare lo spostamento di O_5 dovuto alla rotazione della C.

$$d_1(t) = a_5 \sin(t) - a_4 + z_p$$

$$d_3(t) = -a_5 \cos(t) + y_p$$

$$\dot{d}_1 = a_5 \cos(t)$$
$$\dot{d}_3 = a_5 \sin(t)$$

Esempio: il braccio a C

Se la rotazione avviene su un altro piano, allora si avrà $\theta_4(t)=\alpha$ a parità della altre condizioni:

$$d_1(t) = \cos\alpha(a_5\sin(t) - a_4) + z_p$$
$$d_3(t) = -a_5\cos(t) + y_p$$

Discretizzazione del moto

Nella pratica non serve esplicitare la legge temporale dei giunti bensì si può discretizzare il moto dell'effettore lungo una traiettoria richiesta e poi muoversi linearmente da un punto all'altro.

Esempio: passare dal punto p al punto q lungo una curva con orientazioni iniziali e finali differenti:

$$o = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} o' = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Si individuano i punti intermedi di interpolazione $m{p}_1, m{p}_2, \cdots, m{p}_n$ e le matrici intermedie $m{O}_1, m{O}_2, \cdots, m{O}_n$

Per le matrici si estraggono gli angoli di YPR (α, β, γ) da $\mathbf{0}$ e $(\alpha', \beta', \gamma')$ da $\mathbf{0}'$ Si individuano le triple di angoli YPR intermedi: $(\alpha_1, \beta_1, \gamma_1), \cdots, (\alpha_n, \beta_n, \gamma_n)$ Per ogni tripla $(\alpha_i, \beta_i, \gamma_i)$ si costruisce la matrice di rotazione $\mathbf{R}(z, \gamma_i)\mathbf{R}(y, \beta_i)\mathbf{R}(x, \alpha_i)$

Più naturale con i quaternioni!!

Definendo gli intervalli temporali t_1, t_2, \cdots, t_n è possibile approssimare le velocità del braccio e dei giunti.

Matrice Jacobiana

Consideriamo un generico punto della traiettoria del braccio.

L'effettore sarà individuato dalla matrice $\begin{pmatrix} n & o & a & p \\ 0 & 0 & 0 & 1 \end{pmatrix}$ dove $\begin{pmatrix} n & o & a \end{pmatrix}$ è la matrice 3x3 di orientazione.

Supponiamo che il robot sia un braccio a 6 giunti:

$$\mathbf{M}_{6}^{0} = \mathbf{M}_{1}^{0} \cdot \mathbf{M}_{2}^{1} \cdot \mathbf{M}_{3}^{2} \cdot \mathbf{M}_{4}^{3} \cdot \mathbf{M}_{5}^{4} \cdot \mathbf{M}_{6}^{5} = \begin{pmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

I termini della parte sinistra sono funzioni di θ_1 , θ_2 , \cdots θ_6 Abbiamo 12 equazioni a 6 incognite.

Effettuiamo le derivate parziali delle 12 equazioni rispetto alle 6 incognite.

Nella traiettoria p_1 , p_2 , \cdots , p_n consideriamo il braccio in p_i e vogliamo calcolare p_{i+1} .

In p_1 l'affermazione è vera perché possiamo leggere gli encoder del nostro braccio e quindi conoscere i valori θ_i .

Per il braccio a 6 giunti otteniamo lo Jacobiano:

$$\boldsymbol{J} = \begin{pmatrix} \frac{\partial m_{11}}{\partial \theta_1} & & \frac{\partial m_{11}}{\partial \theta_6} \\ \frac{\partial m_{21}}{\partial \theta_1} & \dots & \frac{\partial m_{21}}{\partial \theta_6} \\ \vdots & \dots & \vdots \\ \frac{\partial m_{34}}{\partial \theta_1} & & \frac{\partial m_{34}}{\partial \theta_6} \end{pmatrix}$$

Possiamo scrivere:

$$\begin{pmatrix} dn_{x} \\ dn_{y} \\ \vdots \\ dp_{z} \end{pmatrix} = J \begin{pmatrix} d\theta_{1} \\ d\theta_{2} \\ \vdots \\ d\theta_{6} \end{pmatrix}$$

Questa equazione ci permette di calcolare gli angoli ai giunti in $m{p}_{i+1}$ noti gli angoli in $m{p}_i$

Parte a sinistra dell'equazione:

passando da $m{p}_i$ a $m{p}_{i+1}$ conosciamo dp_x , dp_y , dp_z e dobbiamo calcolare dn_x , dn_y , \cdots , da_z

Caso semplice, posa invariata: $dn_x=dn_y=\cdots=da_z=0$

Oppure si calcola $oldsymbol{o}_{i+1} - oldsymbol{o}_i$ e si estraggono i valori dn_x , dn_y , \cdots , da_z

Altro metodo: si parte dai 3 incrementi angolari $d\alpha$, $d\beta$, $d\gamma$ e si calcola:

$$(\mathbf{n} + d\mathbf{n} \quad \mathbf{o} + d\mathbf{o} \quad \mathbf{a} + d\mathbf{a}) = \mathbf{D} \cdot (\mathbf{n} \quad \mathbf{o} \quad \mathbf{a})$$

$$\mathbf{D} = R(z, d\gamma)R(y, d\beta)R(x, d\alpha) = \begin{pmatrix} c_{d\gamma} & -s_{d\gamma} & 0 \\ s_{d\gamma} & c_{d\gamma} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{d\beta} & 0 & s_{d\beta} \\ 0 & 1 & 0 \\ -s_{d\beta} & 0 & c_{d\beta} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{d\alpha} & -s_{d\alpha} \\ 0 & s_{d\alpha} & c_{d\alpha} \end{pmatrix}$$

Siccome gli incrementi angolari sono piccoli possiamo fare le seguenti approssimazioni:

$$c_{d\alpha} = c_{d\beta} = c_{d\gamma} = 1$$
; $s_{d\alpha} = d\alpha$; $s_{d\beta} = d\beta$; $s_{d\gamma} = d\gamma$

Abbiamo quindi
$$m{D} = \begin{pmatrix} 1 & -d\gamma & d\beta \\ d\gamma & 1 & -d\alpha \\ -d\beta & d\alpha & 1 \end{pmatrix}$$

$$D \cdot (n \quad o \quad a) = (n + dn \quad o + do \quad a + da)$$
$$(D - I) \cdot (n \quad o \quad a) = (dn \quad do \quad da)$$

Da cui abbiamo:

$$\begin{pmatrix} 0 & -d\gamma & d\beta \\ d\gamma & 0 & -d\alpha \\ -d\beta & d\alpha & 0 \end{pmatrix} \begin{pmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{pmatrix} = \begin{pmatrix} dn_x & do_x & da_x \\ dn_y & do_y & da_y \\ dn_z & do_z & da_z \end{pmatrix}$$

Da questa equazione possiamo calcolare dn_x , dn_y , \cdots , da_z e quindi applicare l'equazione:

$$\begin{pmatrix} dn_x \\ dn_y \\ \vdots \\ dp_z \end{pmatrix} = J \begin{pmatrix} d\theta_1 \\ d\theta_2 \\ \vdots \\ d\theta_6 \end{pmatrix}$$

per calcolare $d\theta_1$, $d\theta_2$, $\cdots d\theta_6$

Questo metodo può essere utilizzato per calcolare la cinematica inversa del braccio in forma numerica

Moto dei manipolatori complessi: two-link sub-assembly

I manipolatori complessi che abbiamo visto in precedenza sono spesso realizzati come assemblaggio ripetitivo di componenti più semplici.

Tali componenti sono quelle in cui separiamo il manipolatore per determinare la cinematica inversa (ad es. il manipolatore a tre giunti)

Seguiremo qui l'esempio del manipolatore planare a due giunti ovvero two-link sub-assembly.

Come muovere θ_1 e θ_2 per produrre un moto lineare di \boldsymbol{p} Supponiamo che $l_1=l_2$: le due velocità ai giunti si devono compensare

Moto dei manipolatori complessi: two-link sub-assembly

La rotazione complessiva è $\theta_1 + \theta_2$

$$\boldsymbol{M}_{2}^{0} = \begin{pmatrix} c_{12} & -s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{bmatrix} l_{2}c_{12} + l_{1}c_{1} \\ l_{2}s_{12} + l_{1}s_{1} \\ 0 \\ 1 \end{pmatrix}$$

Da questa equazione otteniamo:

$$x = l_2 c_{12} + l_1 c_1$$
$$y = l_2 s_{12} + l_1 s_1$$

Derivando si ottiene:

$$\dot{x} = -l_1 s_1 \dot{\theta}_1 - l_2 s_{12} (\dot{\theta}_1 + \dot{\theta}_2)$$

$$\dot{y} = l_1 c_1 \dot{\theta}_1 + l_2 c_{12} (\dot{\theta}_1 + \dot{\theta}_2)$$

La traslazione di I_1 dipende solo da θ_1 mentre quella di I_2 dipende da $\theta_1 + \theta_2$

Moto dei manipolatori complessi: two-link sub-assembly

Esprimiamo le equazioni in forma matriciale:

$$\boldsymbol{p} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \dot{\theta} = \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix} \qquad \boldsymbol{J} = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \end{pmatrix}$$

Si ha: $\dot{p} = J\dot{\theta}$

E quindi:
$$\dot{\theta} = \mathbf{J}^{-1}\dot{\mathbf{p}}$$
 dove $\mathbf{J}^{-1} = \frac{1}{l_1 l_2 s_2} \begin{pmatrix} l_2 c_{12} & l_2 s_{12} \\ -l_1 c_1 - l_2 c_{12} & -l_1 s_1 - l_2 s_{12} \end{pmatrix}$

Considerando il moto uniforme su x: $\dot{p} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ otteniamo:

$$\dot{\theta} = \mathbf{J}^{-1}\dot{\mathbf{p}} = \begin{pmatrix} \frac{c_{12}}{l_1s_2} \\ -\frac{c_1}{l_2s_2} - \frac{c_{12}}{l_1s_2} \end{pmatrix} \qquad \text{Quando } \theta_2 \to 0 \text{ si ha che } \dot{\theta} \to \infty$$

$$\boldsymbol{J} = \begin{pmatrix} \frac{\partial m_{11}}{\partial \theta_1} & & \frac{\partial m_{11}}{\partial \theta_6} \\ \frac{\partial m_{21}}{\partial \theta_1} & \dots & \frac{\partial m_{21}}{\partial \theta_6} \\ \vdots & \dots & \vdots \\ \frac{\partial m_{34}}{\partial \theta_1} & & \frac{\partial m_{34}}{\partial \theta_6} \end{pmatrix}$$

Jacobiano ottenuto differenziando rispetto $\theta_1, \theta_2, \cdots \theta_6$

Jacobiano **geometrico** ottenuto *differenziando esplicitamente rispetto t*

$$\pmb{J} = \begin{pmatrix} -l_1s_1 - l_2s_{12} & -l_2s_{12} \\ l_1c_1 + l_2c_{12} & l_2c_{12} \end{pmatrix} \quad \text{E' una matrice quadrata e invertibile}$$

Si possono ricavare le velocità esplicite ai giunti

Formulazione generale standard:

Nello spazio \mathbb{R}^3 di lavoro del manipolatore, si dovranno trovare due matrici J_v , J_ω di dimensione 3 x n (angoli ai giunti) che mettono in relazione le velocità ai giunti in forma vettoriale $\dot{\theta}$ rispettivamente con la velocità *lineare* e *angolare* dell'effettore

La velocità ai giunti è:
$$\dot{\theta} = \begin{pmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{pmatrix}$$

Dato un asse di rotazione a si ha: $\omega = \dot{\theta}a$ La velocità lineare è data da: $v = \omega \times p = a \times p\dot{\theta}$

Vogliamo:

$$\mathbf{v} = \mathbf{J}_{v}\dot{\theta}$$
$$\omega = \mathbf{J}_{\omega}\dot{\theta}$$

Robot a 1 giunto

Velocità angolare ω attorno z_0 : $\dot{\theta}_1 z_0$

Velocità lineare \boldsymbol{v} del gripper: $\dot{\theta}_1 z_0 \times \boldsymbol{p}_1$

Al crescere della lunghezza del giunto $oldsymbol{v}$ cresce e ω resta invariata

Robot planare a n giunti

Valgono anche in 3D

Supponiamo che si muova il solo giunto i attorno l'asse z_{i-1} (DH) parallelo a z_0

La velocità angolare del giunto i sarà:

$$\omega = \dot{\theta}_i z_{i-1}$$

La velocità lineare di p_n per effetto della rotazione del giunto i sarà:

$$v = \omega \times (\boldsymbol{p}_n - \boldsymbol{p}_{i-1}) = z_{i-1} \times (\boldsymbol{p}_n - \boldsymbol{p}_{i-1}) \dot{\theta}_i$$

NOTA: la velocità lineare \boldsymbol{v} si riferisce ad un punto (l'origine) mentre la velocità angolare si riferisce al sistema di riferimento del giunto i

Composizione di velocità angolari

Velocità angolare e velocità lineare sono vettori.

Per comporre due velocità angolari, queste devono essere riferite al sistema base di riferimento.

Supponiamo di avere un sistema S_1 che ruota a velocità angolare ω_0 rispetto al sistema base S_0 e un sistema S_2 che ruota a velocità angolare ω_1 rispetto S_1

La velocità angolare complessiva sarà:

$$\omega = \omega_0 + \mathbf{R}_1^0(\theta)\omega_1$$

dove $R_1^0(\theta)$ è la matrice che esprime la rotazione di S_1 rispetto S_0

Esempio

Robot a 4 giunti con le seguenti rotazioni:

- 1. Giunto 1 ruota attorno l'asse z del sistema base S_0 di un angolo $\alpha(t)$
- 2. Giunto 2 ruota attorno l'asse x del sistema S_1 di un angolo $\beta(t)$
- 3. Giunto 3 ruota attorno l'asse x del sistema S_2 di un angolo $-\beta(t)$
- 4. Giunto 4 ruota attorno l'asse z del sistema base S_3 di un angolo $-\alpha(t)$

Intuitivamente, la rotazione complessiva è nulla.

Supponiamo per semplicità $\alpha(t) = t$; $\beta(t) = t$

$$\omega_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; \omega_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \omega_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}; \omega_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

Esprimiamo ω_1 in termini di S_0 : $R(z, \alpha(t))\omega_1$

Esprimiamo ω_2 in termini di S_0 : $R(z, \alpha(t))R(x, \beta(t))\omega_2$

Esprimiamo ω_3 in termini di S_0 : $\mathbf{R}(z,\alpha(t))\mathbf{R}(x,\beta(t))\mathbf{R}(x,-\beta(t))\omega_3 = \mathbf{R}(z,\alpha(t))\omega_3$

Abbiamo: $\omega = \omega_0 + \mathbf{R}(z, \alpha(t))\omega_1 + \mathbf{R}(z, \alpha(t))\mathbf{R}(x, \beta(t))\omega_2 + \mathbf{R}(z, \alpha(t))\omega_3$

Sviluppiamo $\omega = \omega_0 + \mathbf{R}(z, \alpha(t))\omega_1 + \mathbf{R}(z, \alpha(t))\mathbf{R}(x, \beta(t))\omega_2 + \mathbf{R}(z, \alpha(t))\omega_3$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} c_{\alpha} & -s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} c_{\alpha} & -s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\beta} & -s_{\beta} \\ 0 & s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} c_{\alpha} & -s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Teorema

Ricordiamo che dobbiamo trovare due matrici J_{ν} , J_{ω} di dimensione 3 x n (angoli ai giunti) che mettono in relazione le velocità ai giunti con la velocità dell'effettore

$$\mathbf{v} = \mathbf{J}_{v}\dot{\theta}$$
$$\omega = \mathbf{J}_{\omega}\dot{\theta}$$

Posto
$$J = \begin{pmatrix} J_v \\ I_\omega \end{pmatrix}$$
 possiamo scrivere le due equazioni come $\begin{pmatrix} v \\ \omega \end{pmatrix} = J\dot{\theta}$

TEOREMA: Per un robot con n giunti di rivoluzione, lo Jacobiano geometrico è dato da:

$$J = \begin{pmatrix} J_v \\ J_\omega \end{pmatrix} = \begin{pmatrix} z_0 \times (\boldsymbol{p}_n - \boldsymbol{p}_0) & z_1 \times (\boldsymbol{p}_n - \boldsymbol{p}_1) & \cdots & z_{n-1} \times (\boldsymbol{p}_n - \boldsymbol{p}_{n-1}) \\ z_0 & z_1 & z_{n-1} \end{pmatrix}$$

Dove p_i è l'origine del sistema di riferimento i ricavabile dall'ultima colonna di M_i^0 e $z_i = R_i^0 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, con R_i^0 parte rotazionale di M_i^0 .

Teorema

TEOREMA: Per un robot con n giunti di rivoluzione, lo Jacobiano geometrico è dato da:

$$J = \begin{pmatrix} J_v \\ J_\omega \end{pmatrix} = \begin{pmatrix} z_0 \times (\boldsymbol{p}_n - \boldsymbol{p}_0) & z_1 \times (\boldsymbol{p}_n - \boldsymbol{p}_1) & \cdots & z_{n-1} \times (\boldsymbol{p}_n - \boldsymbol{p}_{n-1}) \\ z_0 & z_1 & z_{n-1} \end{pmatrix}$$

Dove p_i è l'origine del sistema di riferimento i ricavabile dall'ultima colonna di M_i^0 e $z_i = R_i^0 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, con R_i^0 parte rotazionale di M_i^0 .

La prova si deriva semplicemente considerando che sia le velocità angolari sia quelle lineari si sommano tra loro. In entrambi i casi, però, il sistema di riferimento è S_0 di DH.

La seconda riga è di immediata derivazione, mentre la prima tiene conto del fatto che i centri di rotazione per ogni velocità angolare sono i singoli p_i .

Se il giunto i è prismatico, la colonna corrispondente è $\binom{z_{i-1}}{0}$ infatti non c'è rotazione per cui $\omega_{i-1}=0$ mentre la velocità lineare è $v_{i-1}=z_{i-1}\dot{d}_i$ per la convenzione DH.

Esempi

Robot a 1 giunto

$$\boldsymbol{p}_n = \boldsymbol{p}_1 = \begin{pmatrix} c_1 \\ s_1 \\ 0 \end{pmatrix} \qquad z_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 Da cui

$$\boldsymbol{J}_{v1} = z_0 \times (\boldsymbol{p}_1 - \boldsymbol{p}_0) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} c_1 \\ s_1 \\ 0 \end{pmatrix} = \begin{pmatrix} -s_1 \\ c_1 \\ 0 \end{pmatrix}$$

Velocità lineare $\boldsymbol{v} = \begin{pmatrix} -s_1 \\ c_1 \\ 0 \end{pmatrix} \dot{\theta}_1$

$$J_{\omega 1} = z_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Velocità angolare $\omega = \begin{pmatrix} 0 \\ 0 \\ \dot{\theta}_1 \end{pmatrix}$

Jacobiano geometrico:
$$J = \begin{pmatrix} J_v \\ J_\omega \end{pmatrix} = \begin{pmatrix} c_1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Esempi

Robot a 2 giunti

$$J = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Generalizzazione dell'esempio precedente

Analogamente si trova lo Jacobiano per 3, 4, ... giunti

Calcoliamolo!!

Jacobiano geometrico per C-Arm

Versione semplificata: $\theta_2=\theta_4=0$

i	α_i	a_i	d_i	$ heta_i$
1	-90	0	d_1	0
2	90	a_4	d_3	-90
3	90	a_5	0	θ ₅ +90

$$\mathbf{M}_{1}^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{M}_{2}^{1} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & -a_{4} \\ 0 & 1 & 0 & d_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{3}^{2} = \begin{pmatrix} -s_{5} & 0 & c_{5} & -a_{5}s_{5} \\ c_{5} & 0 & s_{5} & a_{5}c_{5} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Jacobiano geometrico per C-Arm

$$\mathbf{M}_{1}^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{1}^{0} \cdot \mathbf{M}_{2}^{1} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & d_{3} \\ 1 & 0 & 0 & a_{4} + d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{1}^{0} \cdot \mathbf{M}_{2}^{1} \cdot \mathbf{M}_{3}^{2} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ c_{5} & 0 & s_{5} & a_{5}c_{5} + d_{3} \\ -s_{5} & 0 & c_{5} & -a_{5}s_{5} + a_{4} + d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$z_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; z_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; z_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}; z_3 = \begin{pmatrix} 0 \\ s_5 \\ c_5 \end{pmatrix}$$

$$\boldsymbol{p}_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\boldsymbol{p}_1 = \begin{pmatrix} 0 \\ 0 \\ d_1 \end{pmatrix}$$

$$\boldsymbol{p}_2 = \begin{pmatrix} 0 \\ d_3 \\ a_4 + d_1 \end{pmatrix}$$

$$\mathbf{p}_3 = \begin{pmatrix} 0 \\ a_5 c_5 + d_3 \\ -a_5 s_5 + a_4 + d_1 \end{pmatrix}$$

I primi due giunti sono prismatici: $\boldsymbol{J}_v = \begin{pmatrix} z_1 & z_2 \times (\boldsymbol{p}_3 - \boldsymbol{p}_2) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -a_5 s_5 \\ 1 & 0 & -a_5 c_5 \end{pmatrix}$

Abbiamo $\dot{\boldsymbol{p}} = \boldsymbol{J}_{v}\dot{\boldsymbol{\theta}}$

Durante le acquisizioni radiologiche $\dot{p}=0$ perché p deve essere fissato Inoltre la velocità di rotazione del C-Arm è tenuta costante $\dot{\theta}_5=1$ L'equazione $\dot{p}=I_{\nu}\dot{\theta}$ diventa:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -a_5 s_5 \\ 1 & 0 & -a_5 c_5 \end{pmatrix} \begin{pmatrix} \dot{d}_1 \\ \dot{d}_3 \\ \dot{\theta}_5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -a_5 s_5 \\ 1 & 0 & -a_5 c_5 \end{pmatrix} \begin{pmatrix} \dot{d}_1 \\ \dot{d}_3 \\ 1 \end{pmatrix}$$

Da qui ritroviamo le equazioni viste precedentemente:

$$\dot{d}_1 = a_5 \cos(t)$$

$$\dot{d}_3 = a_5 \sin(t)$$

Singolarità e destrezza

Se J non è invertibile, allora non è possibile calcolare $\dot{\theta} = J^{-1}\dot{p}$ In questo caso si parla di singolarità dello Jacobiano Es. manipolatore a 2 giunti:

$$\boldsymbol{J}^{-1} = \frac{1}{l_1 l_2 s_2} \begin{pmatrix} l_2 c_{12} & l_2 s_{12} \\ -l_1 c_1 - l_2 c_{12} & -l_1 s_1 - l_2 s_{12} \end{pmatrix}$$

Se $s_2=0$ non esiste ${\pmb J}^{-1}$. Questo corrisponde a $\theta_2=0$ oppure $\theta_2=\frac{\pi}{2}$: i due bracci sono allineati

Si ha una singolarità quando \boldsymbol{J} è una matrice $n \times m$, n < m con rango minore di m

In generale $m{J}$ non è quadrata e si considera il determinante di $m{J}^Tm{J}$

$$d = \sqrt{|\det(\mathbf{J}^T \mathbf{J})|}$$
 E' una misura locale di destrezza:

calcolato a partire da una certa configurazione dei giunti, se è grande, indica elevata destrezza nell'intorno di p_n . Al contrario, indica bassa destrezza nella postura attuale del manipolatore.

Traiettorie nello spazio delle configurazioni

Problema di interpolare la traiettoria del robot da \boldsymbol{p} a \boldsymbol{q} Punti intermedi di interpolazione, detti anche punti di via: $\boldsymbol{p}_1, \boldsymbol{p}_2, \cdots, \boldsymbol{p}_n$ Per ogni punto di via si definisce anche la velocità ai giunti.

Esempio per il giunto θ_1 che deve passare dalla configurazione a_1 a t=0 alla configurazione b_1 a t=1 con velocità iniziali e finali nulle:

$$\theta_1(0) = a_1$$

 $\theta_1(1) = b_1$
 $\dot{\theta}_1(0) = 0$
 $\dot{\theta}_1(1) = 0$

Si usa un polinomio di terzo grado:

$$\theta_1(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$$

Sostituendo si ottiene un sistema di 4 equazioni nelle 4 incognite c_0 , c_1 , c_2 , c_3