

UESTC1008: Microelectronic Systems

Lec 8 Numbers

Dr. Guodong Zhao School of Engineering University of Glasgow

Binary Numeral System

•	Used in computers as a series of "off"	Decimal	Binary	Explanation
	and "on" switches	1	0001	0+0+0+1
	and on switches	2	0010	0+0+2+0
•	A way to write numbers using only	3	0011	0+0+2+1
	two digits ('bits'): 0 and I	4	0100	0+4+0+0
	two digits (bits). o and i	5	0101	0+4+0+1
•	Each digit's place value is twice as	6	0110	0+4+2+0
		7	0111	0+4+2+1
	much as that of the next digit to the	8	1000	8+0+0+0
	right and the place value increases by	9	1001	8+0+0+1
	a power of two (1's, 2's, 4's place,	10	1010	8+0+2+0
	etc.)	11	1011	8+0+2+1
	ccc.)	12	1100	8+4+0+0
•	In decimal, each digit holds ten values,	13	1101	8+4+0+1
	and the place value increases by a	14	1110	8+4+2+0
	,	15	1111	8+4+2+1
	power of ten (1's, 10's, 100's place,	16	10000	16+0+0+0+0
	etc.)			

Hexadecimal System

- In mathematics and computing, hexadecimal (also base 16, or hex) is a positional numeral system with a radix, or base, of 16.
- It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine, and A, B, C, D, E, F (or alternatively a–f) to represent values ten to fifteen.
- For example, the hexadecimal number 2AF3 is equal, in decimal, to(2 × 16³) + (10 × 16²) + (15 × 16¹) + (3 × 16⁰), or 10995.

Decimal -to- Binary Conversion

The Process: Successive Division

- a) Divide the Decimal Number by 2; the remainder is the LSB of Binary Number.
- b) If the quotation is zero, the conversion is complete; else repeat step (a) using the quotation as the Decimal Number. The new remainder is the next most significant bit of the *Binary Number*.

Example:

Convert the decimal number 6_{10} into its binary equivalent.

$$2\sqrt{\frac{3}{6}}$$
 r=0 ← Least Significant Bit

 $2\sqrt{\frac{1}{3}}$ r=1

∴ $6_{10} = 110_2$
 $2\sqrt{\frac{1}{1}}$ r=1 ← Most Significant Bit

Dec → Binary : Example #1

Example:

Convert the decimal number 26₁₀ into its binary equivalent.

$$\begin{array}{ccc}
\frac{13}{26} & r = 0 & \leftarrow LSB \\
2 & 13 & r = 1 \\
2 & 13 & r = 0 \\
2 & 13 & r = 1 \\
2 & 13 & r = 1 \\
2 & 13 & r = 1 & \leftarrow MSB
\end{array}$$

$$\therefore 26_{10} = 11010_2$$

Dec → Binary : Example #2

Example:

Convert the decimal number 41₁₀ into its binary equivalent.

$$2) \frac{20}{41} \quad r = 1 \leftarrow LSB$$

$$2) \frac{10}{20} \quad r = 0$$

$$2) \frac{5}{10} \quad r = 0$$

$$2) \frac{2}{5} \quad r = 1$$

$$2) \frac{1}{2} \quad r = 0$$

$$2) \frac{1}{10} \quad r = 0$$

$$\therefore$$
 41₁₀ = 101001₂

Binary -to- Decimal Process

The Process: Weighted Multiplication

- a) Multiply each bit of the *Binary Number* by it corresponding bitweighting factor (i.e. Bit-0 \rightarrow 2⁰=1; Bit-1 \rightarrow 2¹=2; Bit-2 \rightarrow 2²=4; etc).
- b) Sum up all the products in step (a) to get the *Decimal Number*.

Example:

Convert the binary number 0110₂ into its decimal equivalent.

$$\therefore$$
 0110₂ = 6₁₀

Binary → Dec : Example #1

Example:

Convert the binary number 10010₂ into its decimal equivalent.

Binary → Dec : Example #2

Example:

Convert the binary number 0110101₂ into its decimal equivalent.

$$\therefore 0110101_2 = 53_{10}$$

Four different systems for representing negative numbers have been used in digital computers

- 1. The first one is called **signed magnitude**. The leftmost bit is the sign bit (0 is + and 1 is -) and the remaining bits hold the absolute magnitude of the number.
- 2. The second system, called **one's complement**, also has a sign bit with 0 for a plus and 1 for minus. To negate a number, replace each 1 by 0 and each 0 by a 1. This holds for the sign bit as well.

- 3. The third system, called **two's complement**, also has a sign bit that is 0 for plus and 1 for minus.
 - Negating numbers is a two-step process. First, each 1 is replaced by a 0 and each 0 by a 1, just as in one's complement. Second, 1 is added to the result.
 - 00000110 (+6)
 - 10000110 (-6 in signed magnitude)
 - 11111001 (-6 in one's complement)
 - 11111010 (-6 in two's complement)

- 4. The fourth system, which for m-bit numbers is called excess 2^{m-1} , represents a number by storing it as the sum of itself and 2^{m-1} .
 - For example, for 8-bit numbers, m = 8, the system is called excess 128 and a number is stored as its true value plus 128. Thus, -3 becomes -3 + 128 = 125.
 - In this case, the numbers from -128 to +127 map onto 0 to 255.
 - This system is identical to two's complement with the sign bit reversed.

 Both signed magnitude and one's complement have two representations for zero: a plus zero, and a minus zero. This is undesirable.

The two's complement system does not have this problem

Terms

□ Byte

contains 8 bits

☐ Halfword or double byte

contains 16 bits

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

□Word

on the ARM Cortex M will have 32 bits

Terms

- □ SI-decimal abbreviations
 - ❖ International System of Units
 - ❖ Represent powers of 10
 - ❖ 2 kilovolts = 2000 volts
- □ IEC-binary abbreviations
 - ❖ International Electrotechnical Commission
 - ❖ Represent powers of 2
- □ kB
 - ❖Kilo Byte
 - ❖A unit of information or computer storage
 - $$1 \text{ kB} = 2^{10} \text{ bytes} = 1024 \text{ bytes}$
- - ❖ Mega Byte
 - ♦ 1 MB = 2²⁰ bytes = 1048576 bytes
- □ GB
 - ❖Giga Byte
 - ♦ 1 GB = 2^{30} bytes = 1,073,741,824 bytes Tera Byte (TB) 2^{40} Peta Byte (PB) 2^{50} byte