

ETHEREAL CRYPTO

ADVENTURES IN MACHINE LEARNING, DASHBOARDING & DAY TRADING

BY: LORI HARRIS

TABLE OF CONTENTS

About the Project

Overview of project scope

01

O

04

Machine Learning & Analysis

How we chose our model and a closer look at our charts.

Choosing a Crypto

How we decided on ETC

02

İţİ

05

Visualization Dashboard

Local deployment of live feed charts using Panel, HVPlot and Streamz

Major Requirements

Project requirements and their implementations

03

06

Final Thoughts

How we did, and what we'd like to work on

PROJECT OVERVIEW

- Make a small initial investment/purchase of Ethereum Classic crypto currency.
- Use machine learning algorithms to predict when to buy/sell.
- Complete the project with a servable dashboard to showcase the success (or failure!) of the predictions made.

WHY CHOOSE ETHEREUM CLASSIC?

AFFORDABLE

With an initial investment reserve of \$50, only certain crypto currencies made sense. Crypto under \$4 per coin allowed for maximum purchase.

ACCESSIBLE

Originally we chose Stellar Lumen at only \$.08 per coin, but access to an exchange (Kraken) took too long, so we chose ETC which is more widely available.

RELIABLE - ISH?

Though work only a small fraction of its original value, ETC is still what Ethereum as we know it today was born from, so of all the 'cheap' crypto this one seemed most reliable.

PURCHASING ETHEREUM CLASSIC

- Kraken required lots of documentation to begin trading with USD.
- Through research, Robinhood was discovered.
- Robinhood allows near instant deposit of USD and free trading.

MAJOR REQUIREMENTS

ETL & ANALYSIS

Using Jupyter Notebook, data imported, cleaned, and loaded for analysis and machine learning.

MACHINE LEARNING

After playing with several models, the SciKit Learn Gradient Boosting Regressor was chosen.

VISUALIZATIONS

Interactive
visualizations were
produced using
Streamz, HVPlot, and
Panel.

MACHINE LEARNING

FEATURE IMPORTANCES

FEATURE IMPORTANCES


```
1 # Create GradientBoostingClassifier model
    #Changed from .75 to .25 11/8
    #on 11/8 .75 gave an accuracy score of .929
    #model0
    model = GradientBoostingRegressor(
        n estimators=500,
       learning rate=.25,
        max features=5,
        max depth=3,
        random state=0)
10
11
   # Fit the model
    model.fit(X train_scaled,y_train.ravel())
14
   # Score the model
    print("Accuracy score (training): {0:.3f}".format(
17
        model.score(
18
           X train scaled,
19
            y train)))
    print("Accuracy score (validation): {0:.3f}".format(
        model.score(
           X test scaled,
           y test)))
```

```
Accuracy score (training): 1.000
Accuracy score (validation): 0.973
```

MODEL SUCCESS!

BOLLINGER BAR ANALYSIS

LIVE BOLLINGER BAR ANALYSIS

I saw these in my research incorporated with candlestick charts, and would like to refine these.

Attempting a live price bollinger band series with BTC and ETC. They need finessing to gain usefulness.

ETC DASHBOARD

BTC DASHBOARD

SUBSCRIBE

SEE IT IN ACTION!

SO - HOW'D WE DO?

FROM "WHOA!" TO "OH NO!"

CURRENT APP

LACKS LIVE DEPLOYMENT

NOT ALL DATA IS DYNAMIC

MODEL NEEDS REFINEMENT

FUTURE APP

FULLY DEPLOYED WEB APP

AUTOMATED MODEL SIGNALS

IMPROVED INTERFACE

WRAPPING UP

THANKS!

Does anyone have any questions?

CREDITS

This is where you give credit to the ones who are part of this project.

- TEMPLATE by Slidesgo
- Static data from Coinmetrics free downloads
- Live data from Kraken API
- Icons by Flaticon
- Infographics by Freepik
- Images created by Freepik
- Author introduction slide photo created by Freepik
- Text & Image slide photo created by Freepik