

COMP 2019

Week 9
Neural Nets and Computer Vision

Learning Objectives

- Understand the principles of Neural Computing (CO3)
- Explain how Deep Neural Nets work (CO3)
- Explain how Deep Learning is applied to solve Computer Vision tasks (CO3)

Handwriting Recognition

Object Classification

Object Tracking

Neuron

- Simplified physical structure:
 - One axon that branches
 - Dendritic tree that collects input from other neurons
- Axons contact dendritic trees at synapses
 - A spike of activity in the axon causes charge to be injected into the post-synaptic neuron
 - Effectiveness of the synapses can be changed
- Spike generation:
 - An axon hillock generates a spike whenever enough charge has flowed in from dendritic tree

http://en.wikipedia.org/wiki/Neuron

The Brain

- Each neuron receives inputs from other neurons
- The effect of each input on the neuron is controlled by a synaptic weight (positive or negative)
- The weights adapt so that the network learns
- We have about 10¹¹ neurons each with about 10⁴ weights
- Massive parallelism, much better than a computer
- Computer models are different from how the actual brain works
 - Real numbers instead of spikes, structure of connections, etc

Linear Neuron

- Output y is a weighted linear combination of the inputs $x_1,...,x_n$
 - Weights w₁,...,w_n can be positive or negative

ReLU

$$z = b + \sum_{i} x_i w_i$$

Outputs

- z if z > 0
- 0 otherwise

Feed Forward Architecture

- Layered
 - First (bottom) layer is the input
 - Last (top) layer is the output
 - The layer(s) in-between are called "hidden"
 - If there are >1 hidden layers, the network is called "Deep"
- The output of the neurons in each layer are a non-linear function of the inputs in the layer below
 - No connections within layers

Neural Network Output

- Regression: predict a real number
 - One output unit
 - The price of a stock next week
- Classification: predict a class label
 - Two classes
 - » One output unit
 - » Is the tumor carcinogenic (yes/no)?
 - Multiple classes
 - » Multiple output units, one per class
 - » Which digit is shown in the image? (0,...,9)

http://neuralnetworksanddeeplearning.com/chap1.html

Deep Neural Nets

Training

- Learning as error minimization
 - Assign (small) initial weights at random
 - Determine the error the net makes on the training samples
 - Change the weights a little to reduce that error
 - 4. Repeat 2&3 until error is small enough

Backpropagation

- Loss function measures how well the net is doing
- Defines an error surface as a function of the weights
- Find the minimum on that surface by following the direction of steepest descent (gradient descent)
- Gradient: a vector of partial derivatives w.r.t. the weights
- Backpropagation: change each weight proportional to the gradient

Training inputs

Batches and Epochs

Preventing Overfitting

Preventing Overfitting: Regularisation

http://playground.tensorflow.org/

Factors Affecting Results

- Network Architecture
- Number of epochs to train
- Batch size
- learning rate
- Learning rate schedule/decay
- Dropout & regularisation
- Early stopping conditions

Computer Vision

Computer Vision Pipeline (until 2012)

Object recognition 2006-2012

SIFT K-means Sparse Coding Pooling Classifier supervised

Low-level Mid-level Features Features

Computer Vision Pipeline (now)

Image Representation

Convolution

Image

4	თ	4
2	4	3
2	3	4

Convolved Feature

Max Pooling (3x3)

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

CNN: Handwriting Recognition

Summary

- Neural nets are inspired by how the brain works
- Deep learning is at the core of computer vision, language processing, and reinforcement learning approaches
- Trained on huge datasets using error minimisation
- CNNs have revolutionised image and video processing
- Creating effective neural architectures is still a "black art"
- NNs are complex use simpler models if possible

University of South Australia

Questions?