2D Articulated Human Pose Estimation Using Explainable Artificial Intelligence

André Oskar Andersen wpr684

Datalogisk Institut, Københavns Universitet

2021

 Articulated Human Pose Estimation og explainable artificial intelligence

- Articulated Human Pose Estimation og explainable artificial intelligence
- ► Få kilder udforsker pose estimation algoritmer

- Articulated Human Pose Estimation og explainable artificial intelligence
- Få kilder udforsker pose estimation algoritmer

- ► Hvorfor gør brug af XAI?
 - 1. Forbedrer præstation
 - Bygger tillid styrker og svagheder
 - Vi kan lære af modellen

- Articulated Human Pose Estimation og explainable artificial intelligence
- Få kilder udforsker pose estimation algoritmer

- Hvorfor gør brug af XAI?
 - 1. Forbedrer præstation
 - Bygger tillid styrker og svagheder
 - Vi kan lære af modellen
- Problem definition
 - 1. Implementer Stacked Hourglass af Newell *et al.*
 - Udforsk Stacked Hourglass
 - Modificer Stacked Hourglass vha. viden

Data

- 2017 Microsoft COCO
- ➤ Træning + validering: 69.000 billeder
- ► Flere personer i hvert billede
- ▶ 17 keypoints per person
- Centrerer billede omkring hver person
- ► Laver 17 heatmaps

Stacked hourglass

- Stacked hourglass
 - Stakker hourglasses
 - ▶ Input: 256 × 256 billede der downsample inden første hourglass
 - ▶ Output: $17 \times 64 \times 64$ heatmaps

Stacked hourglass

- Stacked hourglass
 - Stakker hourglasses
 - ▶ Input: 256 × 256 billede der downsample inden første hourglass
 - ▶ Output: $17 \times 64 \times 64$ heatmaps
- Hourglass
 - ► Residuale modules

Stacked hourglass

- Stacked hourglass
 - Stakker hourglasses
 - ▶ Input: 256 × 256 billede der downsample inden første hourglass
 - ▶ Output: $17 \times 64 \times 64$ heatmaps
- Hourglass
 - Residuale modules
- Loss- og activationfunction

► Kun ét hourglass

- ► Kun ét hourglass
- ► Følger ellers Newell et al. og Camilla Olsen

- Kun ét hourglass
- ► Følger ellers Newell et al. og Camilla Olsen
- Overfit

- ► Kun ét hourglass
- ► Følger ellers Newell et al. og Camilla Olsen
- Overfit
- ▶ Validation PCK accuracy: 0.433. Test PCK accuracy: 0.441

Fortolkning af modellen 1 - Effekt af skip-connections

▶ Påstand: anvendes til at "redde" information

Fortolkning af modellen 1 - Effekt af skip-connections

- ▶ Påstand: anvendes til at "redde" information
- Fremgang: SHG med skip-connection vs SHG uden skip-connection

Fortolkning af modellen 1 - Effekt af skip-connections

- ▶ Påstand: anvendes til at "redde" information
- Fremgang: SHG med skip-connection vs SHG uden skip-connection
- Resultat

Fortolkning af modellen 2 - Effekt af principal komponenter

Formål: effekt af *latent spaces* principal komponenter

Fortolkning af modellen 2 - Effekt af principal komponenter

- Formål: effekt af *latent spaces* principal komponenter
- lackbox PCA og "Gå" ud af gennemsnitspunkt med stepsize $=c\cdot\sqrt{\lambda}$

Fortolkning af modellen 2 - Effekt af principal komponenter

- Formål: effekt af *latent spaces* principal komponenter
- ightharpoonup PCA og "Gå" ud af gennemsnitspunkt med stepsize $= c \cdot \sqrt{\lambda}$

Fortolkning af modellen 3 - Clustering af latent space

► Formål: Har modellen lært at relatere lignende datapunkter til hinanden?

Fortolkning af modellen 3 - Clustering af latent space

- ► Formål: Har modellen lært at relatere lignende datapunkter til hinanden?
- Resultater

Fortolkning af modellen 3 - Clustering af latent space

- ► Formål: Har modellen lært at relatere lignende datapunkter til hinanden?
- Resultater

Formål: Anvende viden fra XAI til at optimere model

- Formål: Anvende viden fra XAI til at optimere model
- Forbedringspunkter:
 - 1. Støj
 - 2. Misklassificeringer

- Formål: Anvende viden fra XAI til at optimere model
- Forbedringspunkter:
 - 1. Støj
 - 2. Misklassificeringer
- ► Løsning: Autoencoder

Resultat

▶ Bedre performance

Resultat

- ▶ Bedre performance
- ► Plateau

Resultat

- ► Bedre performance
- Plateau
- ► Validation PCK accuracy: 0.467 (+7.8%/0.034)
- ► Testing PCK accuracy: 0.474 (+7.48%/0.033)

► Camilla Olsen (kun synlige keypoints)

Beskrivelse	# Stakke	Testing accuracy
Olsen - 2A	2	0.72
Olsen - 2B	2	0.81
Olsen - 2M	2	0.83
Min SHG	1	0.469
Min modificeret SHG	1	0.576

Camilla Olsen (kun synlige keypoints)

Beskrivelse	# Stakke	Testing accuracy
Olsen - 2A	2	0.72
Olsen - 2B	2	0.81
Olsen - 2M	2	0.83
Min SHG	1	0.469
Min modificeret SHG	1	0.576

- Forskelle
 - 1. Antal stakke
 - 2. Trænet kun på synlige keypoints

- ► Newell et al.
 - ► Ét hourglass: keypoints ikke forbundet til overkrop/hoved under træning: 0.65
 - ► Mine:
 - 1. Standard SHG: 0.32
 - 2. Modificeret SHG: 0.38

- ► Newell et al.
 - ▶ Ingen accuracy for alle keypoints, dog for keypoints ikke forbundet til overkrop/hoved, maximeres løbende accuracy ved 0.65
 - Min:
 - 1. Standard SHG: 0.32
 - 2. Modificeret SHG: 0.38
- Forskelle:
 - 1. Forskellig data
 - 2. Forskelligt setup skyldet manglende information

Diskussion 2 - Hvorfor hjalp autoencoderen?

1. Clustering

Figure: Top: SHG. Bund: SHG + AE

Diskussion 2 - Hvorfor hjalp autoencoderen?

- 1. Clustering
- 2. Fjernet støj i latent space

Figure: Venstre: SHG. Højre: SHG + AE

Future work

1. Effekt af at stakke flere modificeret hourglasses

Future work

- 1. Effekt af at stakke flere modificeret hourglasses
- 2. Redudans andre steder + introduktion af redudans ved flere hourglasses

Future work

- 1. Effekt af at stakke flere modificeret hourglasses
- 2. Redudans andre steder + introduktion af redudans ved flere hourglasses
- 3. Forbedring ved yderligere korrektion af misklassification

Konklusion

 $1. \ \ Implementer et \ Stacked \ hourglass$

Konklusion

- 1. Implementeret Stacked hourglass
- 2. Udforsket model
 - 2.1 Bekræftet påstand om skip-connections
 - 2.2 Effekt af første principal komponent, samt støj
 - 2.3 Seperation

Konklusion

- 1. Implementeret Stacked hourglass
- 2. Udforsket model
 - 2.1 Bekræftet påstand om skip-connections
 - 2.2 Effekt af første principal komponent, samt støj
 - 2.3 Seperation
- 3. Brugt opnået viden til at forbedre Stacked hourglass

1. Normalfordeling

$$\mathcal{N}\left(\mu,\sigma^2\right)$$

- 1. Normalfordeling
- 2. Nearest Neighbour Upsampling

Algorithm 1 Nearest Neighbour Upsampling

Require: Input image X of size $m \times n$

Require: Wanted output size $xm \times yn$, where $x, y \in \mathbb{Z}^+$

- 1: Create empty image O of size $xm \times yn$
- 2: **for all** pixel $p \in X$ **do**
- 3: i, j = index of p in X
- 4: Insert p at index (|xi|, |yj|) in O
- 5: **for all** empty pixel $p \in O$ **do**
- 6: Let p be the value of the nearest neighbour
- 7: return O

- 1. Normalfordeling
- 2. Nearest Neighbour Upsampling
- 3. Effekt af principal komponenter

- 1. Normalfordeling
- 2. Nearest Neighbour Upsampling
- 3. Effekt af principal komponenter
- 4. Batch normalization bruges ikke for at undgå overfitting