Wissensicherung

Asha Schwegler

24. März 2022

Inhaltsverzeichnis

1	LEC	01	2
	1.1	Was ist Software Engineering?	2
	1.2	Was für Prozesse bzw. Disziplinen können im Software Engineering unterschieden	
		werden?	2
	1.3	Was sind die Charakteristiken eines iterativ-inkrementellen Softwarenentwicklungs- prozesses?	2
	1.4	Warum wird im Software Engineering modelliert und was für Modelle werden	
		erstellt?	3
	1.5	Welche Artefakte werden in der Anforderungsanalyse erstellt und wozu werden sie	
		gebraucht?	3
2			3
	2.1	Was ist Usability und Usability-Engineering?	3
	2.2	Was ist Usability-Engineering und was sind seine Ziele?	3
	2.3	Welche 7 Usability-Aspekte sind gemäss ISO EN 9241-110 wichtig und was fordern	
		sie?	4

1 LE01

1.1 Was ist Software Engineering?

- Herstellung oder Entwicklung von Software, Organisation und Modellierung der zugehörigen Datenstrukturen und dem Betrieb von Softwaresystemen.
- Anhand eines strukturierten (Projekt-)Planes. (Schritte, Phasen, Meilensteine)
- Schritte während Entw.Prozess eng miteinander verzahnt.

1.2 Was für Prozesse bzw. Disziplinen können im Software Engineering unterschieden werden?

Kernprozesse

- Anforderungserhebung
- Systemdesign/technische Konzeption
- Implementierung
- Softwaretest
- Softwareeinführung
- Wartung/Pflege

Unterstützungsprozesse

- Projektmanagement
- Qualitätsmanagement
- Risikomanagement

1.3 Was sind die Charakteristiken eines iterativ-inkrementellen Softwarenentwicklungsprozesses?

- Abwicklung in Iterationen
- Inkrement = In jeder Iteration ein Stück SW entwickelt
- Ziele sind Risiko-getrieben
- Iterationsreviews mit Learnings für nächste Iteration

1.4 Warum wird im Software Engineering modelliert und was für Modelle werden erstellt?

Analyse- und Designentwürfe : diskutieren, abstimmen, dokumentieren und kommunizieren.

- Verstehen eines Gebildes
- Kommunizieren
- Gedankliches Hilfsmittel
- Kritisieren
- Experimentieren
- Aufstellen und Prüfen von Hypothesen
- in OOP:
 - Statische Modelle:
 - * Klassen und Assoziationen
 - Dynamische Modelle:
 - * Abläufe und Verhalten

1.5 Welche Artefakte werden in der Anforderungsanalyse erstellt und wozu werden sie gebraucht?

- Systemabgrenzung und Systemkontextdiagramm
- Use-Case-Modell und UI-Sketches
- Qualitätsanforderungen und Randbedingungen
- Domänenmodell

2 LE02

2.1 Was ist Usability und Usability-Engineering?

Usability: Die Effektivität, Effizienz und Zufriedenheit mit der die adressierten Benutzer ihre Ziele erreichen in ihren spezifischen Kontexten.

Usability Engineering: Software entwickeln, die die drei Anforderungen von Usability erfüllen.

2.2 Was ist Usability-Engineering und was sind seine Ziele?

- Usability-Engineering = Software-Ergonomie
- Ziel: SW-Produkte entwickeln, die effektiv, effizient und zufriedenstellend sind.

2.3 Welche 7 Usability-Aspekte sind gemäss ISO EN 9241-110 wichtig und was fordern sie?

- 1. Aufgabenangemessenheit
 - Aufwand im Vergleich zu Aufgaben und Ziele sollte angemessen sein.
- 2. Selbstbeschreibungsfähigkeit
 - Wissen wo in der SW man ist und was man tun muss/kann und was das System tut.
- 3. Kontrolle
 - Kontrolle über Interaktion mit System haben.
- 4. Erwartungskonformität
 - Funktionalität
 - Interaktion
 - Design
 - Struktur
 - Ansprechen der Komplexität
- 5. Fehlertoleranz
 - Fehler vermeiden
 - Fehler und Ursache erkennen
 - Fehler korrigieren
- 6. Inidividualisierbarkeit
 - Anpassbar auf Bedürfnisse (Laien, Experten, Benutzer mit besondeen Bedürfnisse)
- 7. Lernförderlichkeit
 - Informationen über unterliegende Konzepte, Reglen, Verfahren und neue Funktionalitäten/Interaktionsmöglichkeiten