

Introducción a la arquitectura de computadores.

Análisis de prestaciones.

Arquitectura de Computadores

Grado en Ingeniería Informática

Problema 1

Sean dos implementaciones diferentes de un mismo repertorio de instrucciones. Este repertorio tiene cuatro tipos de instrucciones A, B, C y D donde:

	F	CPI _A	CPI _B	CPI _C	CPI _D
CPU ₁	1,5 GHz	1	2	3	4
CPU ₂	2 GHz	2	2	2	2

Sea un programa con 10⁶ instrucciones donde el 10% es del tipo A, el 20% de tipo B, 50 % de tipo C y el 20% de tipo D.

- 1.- ¿Qué implementación es más rápida?
- 2.- ¿Cuál es el CPIGIOBAI de cada implementación?
- 3.- ¿Cuántos ciclos tarda el programa en cada implementación?

Problema 2

Sea un programa con los siguientes tipos de instrucciones y CPIs:

	Aritméticas	Almacenamiento	Carga	Saltos
Nº instrucciones	500	50	100	50
СРІ	1	5	5	2

- 1.- ¿Cuál es el tiempo de ejecución en un procesador de 2 GHz?
- 2.- Calcula el CPI_{global}
- 3.- Si el número de instrucciones de carga se reduce a la mitad ¿en qué factor se incrementa la velocidad? ¿cuál es el nuevo CPI_{global}?

Problema 3

Sean dos programas diferentes con el siguiente número de instrucciones:

	Aritméticas	Almacenamiento	Carga	Saltos
Programa 1	1000	400	100	50
Programa 2	1500	300	100	100

- 1.- Suponiendo que las instrucciones aritméticas necesitan 1 ciclo, las de carga y almacenamiento 10 ciclos y los saltos 3 ciclos. ¿Cuál es el tiempo de ejecución de cada programa en un procesador de 3 GHz?
- 2.- Suponiendo que las instrucciones de aritméticas necesitan 1 ciclo, las de carga y almacenamiento 2 ciclos y los saltos 3 ciclos. ¿Cuál es el tiempo de ejecución de cada programa en un procesador de 3 GHz?
- 3.- Suponiendo que las instrucciones aritméticas necesitan 1 ciclo, las de carga y almacenamiento 10 ciclos y los saltos 3 ciclos. ¿Cuál es la aceleración de un programa si el número de instrucciones aritméticas se reduce a la mitad?

 -Problema obtenido de [PATT11]-

Problema 4

Sea un programa con 10⁶ instrucciones y dos procesadores diferentes:

	F CPI _{global}	
CPU ₁	4 GHz	1,25
CPU ₂	3 GHz	0,75

- 1.- Es un error considerar que el procesador de frecuencia más elevada siempre va a tener mejores prestaciones. ¿Qué ocurre en este problema?
- 2.- Otro error habitual se produce al utilizar la medida MIPS para comprobar las prestaciones de dos procesadores, y considerar que el procesador con el MIPS más elevado es siempre el que tiene mejores prestaciones. ¿Qué ocurre en este problema?

Problema 5

Un programa que se ejecuta en cuatro computadores diferentes.

		Nº de instrucciones por núcleo			СРІ			
	NÚCLEOS	Aritméticas	Carga/almac.	Saltos	Aritméticas	Carga/almac.	Saltos	
COMPUTADOR 1	1	2560	1280	256	1	4	2	
COMPUTADOR 2	2	1280	640	128	1	4	2	
COMPUTADOR 3	4	640	320	64	1	4	2	
COMPUTADOR 4	8	320	160	32	1	4	2	

- 1.- ¿Cuál es el número total de instrucciones que se ejecutan en cada núcleo de cada computador?
- 2.- ¿Cuál es el número total de instrucciones que se ejecutan en cada computador?
- 3.- Si la frecuencia de cada núcleo es de 2 GHz ¿Cuánto tarda en ejecutarse el programa en cada computador?

Problema 6

Un programa que se ejecuta en dos computadores diferentes.

		Nº de instrucciones por núcleo				СРІ			
	NÚCLEOS	Aritméticas Ent.	Aritméticas PF	Carga/ Almacen.	Saltos	Aritméticas Ent.	Aritméticas PF	Carga/ Almacen.	Saltos
COMPUTADOR 1	1	2000 * 10 ⁶	560 * 10 ⁶	1280 * 10 ⁶	256 * 10 ⁶	1	1	4	2
COMPUTADOR 2	8	240 * 10 ⁶	80 * 10 ⁶	160 * 10 ⁶	32 * 10 ⁶	1	1	4	2

Si la frecuencia de cada núcleo es de 2 GHz ¿Cuánto mejora el tiempo de ejecución si el CPI de las instrucciones ENT y PF se reduce en un 40% y EL CPI de las instrucciones CARGA/ALMAEN. y SALTO se reduce en un 30%?

