6ª aula

7 de abril de 2021 11:00

- 4. Considere o alfabeto $A = \{a, b, c\}$.
 - (a) Indique um autómato finito que reconheça o conjunto de todas as palavras sobre ${\cal A}$ que verificam:
 - i. ab é um fator; ii. ab não é fator; iii. existe uma única ocorrência de ab.
 - (b) Identifique a tabela das transições de cada um dos autómatos que desenhou.
 - (c) Classifique os autómatos que desenhou.
 - (d) Para cada linguagem da alínea anterior, indique uma expressão regular que a represente.

ii) A linguagen é At \ L é numbeude por Az

lii)	b _i c oa	Ob, c	h=1/1 a b b c1. a a c1 (
$\mathcal{A}_{\mathfrak{Z}}$	$\rightarrow (1)$ $a \rightarrow (2)$ $b \rightarrow (2)$	(3)	2 (5) () + 5 H 3
	C	a 7 (a) & a	5 6 2 a,b,c & 3

b)	5,	1	2	3
ı')	a	41,29	Ø	3 }
	b	117	(3)	135
	С	115	\not	135

ا 51	1	2	3
a.	\ {z }	{ z }	139
<u>5</u>	11/	ላ 3ነ	43 }
С	145	} 1 }	{ 3 }

NOTA:
$$\delta_1 = \delta_2$$

$$\delta_2 \mid 1 \quad 2$$

b | 11 | 13 | 131 | 131 |
$$\frac{\delta_{2}}{a}$$
 | $\frac{1}{12}$ |

6. Use o Lema da Iteração para provar que não são reconhecíveis as seguintes linguagens sobre o alfabeto $A=\{a,b\}.$

(c)
$$\{w \in A^* \mid w^I = w\}.$$

(d)
$$\{a^p \mid p \in \mathbb{N} \text{ e } p \text{ \'e primo}\}.$$

c)
$$\Gamma = \{ M \in V_A \mid M_{\perp} = M \}$$

$$(abbaa)^{\overline{I}} = aabba$$

$$W = \mu V \qquad W^{\overline{I}} = V^{\overline{I}} u^{\overline{I}}$$

$$[a] \quad [a] \quad [b] \quad [a] \quad [a]$$

Entas $u \in L$, |u| > n e se u = xyz em qu $|xy| \le n$ e $y \ne \varepsilon$, entas $x = a^{n_1}$, $y = a^{n_2}$ em qu $n_1 > 0$, $0 < n_2$ e $n_1 + n_2 \le n$.

Consequentement, $n \le n \le n$ and $n_1 \ge n$ and $n_2 \le n$ and $n_3 \ge n$ and $n_4 \ge n$ and

en que $\frac{n_1+n_2+n_3}{2}=n$ e $\frac{1}{2}$ e $\frac{1}{2}$ \frac

7. Use o Lema da Iteração para provar que não são reconhecíveis as seguintes linguagens sobre o alfabeto $A = \{a, b, c\}$.

(a) $\{a^n b^2 c^n \mid n \in \mathbb{N}\}.$ (b) $\{a^i b^j c^k \mid j = i + k \land i, j, k \in \mathbb{N}_0\}. \supseteq \bigcup$

nyk z =

8. Considere-se $A=\{a,b\}$ e $L=\{a^nb^m: m\geq n\geq 0\}$. Sejam $n\in\mathbb{N},$ e $u=a^nb^n$ uma palavra de L. Qualquer que seja o prefixo xy de u tal que $|xy|\leq n$ e $y\neq \varepsilon$, tem-se que $x=a^i,\ y=a^j$ com $i+j\leq n,\ i\geq 0$ e $j\geq 1$. Então $|u|\geq n,\ u=xyz$ com $z=a^{n-i-j}b^n$. Se k=2, então $xy^kz=a^{n+j}b^n$ pelo que xy^kz não é uma palavra de L.

De entre as afirmações abaixo diga qual é a afirmação verdadeira.

 \mathcal{M} Com base no Lema da Iteração, a argumentação apresentada não permite concluir que a linguagem L não é regular.

com base no Lema da Iteração, a argumentação apresentada prova que L é uma linguagem regular.

(iii) Com base no Lema da Iteração, a argumentação apresentada prova que L não é uma linguagem regular.

Com base no Lema da Iteração. 5 poderíamos concluir que L não é uma linguagem regular se, para quadro $k \geq 0$, xy^kz não fosse uma palavra de L.

basta um valor de le

Temo que decidir entre i) e iii)