Fundamentals of Machine Learning for Predictive Data Analytics

Chapter 8: Evaluation Sections 8.1, 8.2, 8.3

John Kelleher and Brian Mac Namee and Aoife D'Arcy

john.d.kelleher@dit.ie

brian.macnamee@ucd.ie

aoife@theanalyticsstore.com

- Big Idea
- **Fundamentals**
- **Standard Approach: Measuring Misclassification Rate** on a Hold-out Test Set
- **Summary**

Big Idea **Fundamentals**

> The most important part of the design of an evaluation experiment for a predictive model is ensuring that the data used to evaluate the model is not the same as the data used to train the model.

- The purpose of evaluation is threefold:
 - 1 to determine which model is the most suitable for a task
 - 2 to estimate how the model will perform
 - 1 to convince users that the model will meet their needs

Standard Approach: Measuring Misclassification Rate on a Hold-out Test Set

Figure: The process of building and evaluating a model using a hold-out test set.

Table: A sample test set with model predictions.

ID	Target	Pred.	Outcome	ID	Target	Pred.	Outcome
1	spam	ham	FN	11	ham	ham	TN
2	spam	ham	FN	12	spam	ham	FN
3	ham	ham	TN	13	ham	ham	TN
4	spam	spam	TP	14	ham	ham	TN
5	ham	ham	TN	15	ham	ham	TN
6	spam	spam	TP	16	ham	ham	TN
7	ham	ham	TN	17	ham	spam	FP
8	spam	spam	TP	18	spam	spam	TP
9	spam	spam	TP	19	ham	ham	TN
 10	spam	spam	TP	20	ham	spam	FP

$$misclassification \ rate = \frac{number \ incorrect \ predictions}{total \ predictions} \qquad (1)$$

misclassification rate =
$$\frac{\text{number incorrect predictions}}{\text{total predictions}}$$
 (1)

misclassification rate
$$=\frac{(2+3)}{(6+9+2+3)}=0.25$$

- For binary prediction problems there are 4 possible outcomes:
 - True Positive (TP)
 - True Negative (TN)
 - False Positive (FP)
 - False Negative (FN)

Table: The structure of a confusion matrix.

		Prediction		
		positive	negative	
Tarant	positive	TP	FN	
Target	negative	FP	TN	

Table: A confusion matrix for the set of predictions shown in Table 1 [7]

		Prediction		
		'spam'	'ham'	
Target	'spam'	6	3	
Target	'ham'	2	9	

misclassification accuracy =
$$\frac{(FP + FN)}{(TP + TN + FP + FN)}$$
 (2)

misclassification accuracy =
$$\frac{(FP + FN)}{(TP + TN + FP + FN)}$$
 (2)

misclassification accuracy =
$$\frac{(2+3)}{(6+9+2+3)}$$
 = 0.25

classification accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)}$$
 (3)

classification accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)}$$
 (3)

classification accuracy =
$$\frac{(6+9)}{(6+9+2+3)} = 0.75$$

Summary

- Big Idea
- 2 Fundamentals
- Standard Approach: Measuring Misclassification Rate on a Hold-out Test Set
- Summary