Application for Supporting Hyperplane Theorem:

Never Best Response and Strictly Dominated

Strategies in Normal Form Game (Recitation 1 & 2)

Genyu Li

August 31, 2025

Additional knowledge:

Theorem 1 (Supporting Hyperplane Theorem). Let C be a convex set in \mathbb{R}^n and x_0 be a point on the boundary of C, there exists $a \in \mathbb{R}^n$, s.t. $ax \leq ax_0, \forall x \in C$ Here begins the application.

Definition 1 (Normal Form Game). A Normal Form Game is a triplet (N, A, u)

- $N = \{1, 2, ..., n\}$ is a finite set of player
- $A = A_1 \times A_2 \times ... \times A_n$ and A_i is set of actions of player i
- $u=(u_1,u_2,...,u_n)$ and $u_i:A\mapsto\mathbb{R}$ is pay-off function of player i

For any (measurable) space X, let $\Delta(X)$ be the set of probability measures defined on X.

Definition 2 (Strategy). A (mixed) strategy σ_i of player i is a measure defined on A_i ; i.e. $\sigma_i \in \Delta(A_i)$

Let
$$A_{-i} = A_1 \times A_2 \times ... \times A_{i-1} \times A_{i+1} \times ... \times A_n$$

Definition 3 (Belief). A belief σ_{-i} of player i is a measure defined on A_{-i} ; i.e. $\sigma_{-i} \in \Delta(A_{-i})$. A belief is independent if $\sigma_{-i} \in \Delta(A_1) \times \Delta(A_2) \dots \times \Delta(A_{i-1}) \times \Delta(A_{i+1}) \times \dots \times \Delta(A_n)$.

Note: This is abuse of notation. Conventionally, $\sigma_{-i} = (\sigma_1, ..., \sigma_{i-1}, \sigma_{i+1}, ..., \sigma_n)$ denotes the strategy profile of all players but i. Yet here, it is just the belief of player i. They usually coincides in Nash Equilibrium.

Think of von Neumann–Morgenstern preference over $\Delta(A)$; that is, player i cares about $u_i(\sigma) = \mathbb{E}_{\sigma}[u_i] = \sum_{a \in A} \sigma(a)u_i(a)$ of strategy profile σ or equivalently, strategy profile σ is better than σ' to player i when $u_i(\sigma) \geq u_i(\sigma')$.

Example 1 (Prisoner Dilemma). $N = 2, A_i = \{C_i, D_i\}$ and u described by

$$\begin{array}{c|cccc}
 & C_2 & D_2 \\
\hline
C_1 & 1,1 & -1,2 \\
\hline
D_1 & 2,-1 & 0,0
\end{array}$$

Example Strategies of player 1:

- Always cooperates: $\sigma_1(C_1) = 1$, we tend to write C_1
- Always defects: $\sigma_1(D_1) = 1$, we tend to write D_1
- Half-half: $\sigma_1(C_1) = \sigma(D_1) = \frac{1}{2}$, we tend to write $\frac{1}{2}C_1 + \frac{1}{2}D_1$

Example Beliefs of player 1:

• Always cooperates: $\sigma_{-1}(C_2) = 1$

• Always defects: $\sigma_{-1}(D_2) = 1$

• Half-half: $\sigma_{-1}(C_2) = \sigma_{-1}(D_2) = \frac{1}{2}$

Some strategy profiles $(C_1, C_2), (\frac{1}{2}C_1 + \frac{1}{2}D_1, D_2),$

Player 1 prefers strategy profile $(\frac{1}{2}C_1 + \frac{1}{2}D_1, D_2)$ than (C_1, C_2) as

$$u_1(\frac{1}{2}C_1 + \frac{1}{2}D_1, C_2) = \frac{1}{2}u_1(C_1, C_2) + \frac{1}{2}u_1(D_1, C_2) = \frac{3}{2}$$

$$u_1(C_1, C_2) = 1$$

If someone else have a belief about what strategy profile will be played in this game, belief $\frac{1}{2}(C_1, C_2) + \frac{1}{2}(D_1, D_2)$ is not independent, while belief $\frac{1}{4}(C_1, C_2) + \frac{1}{4}(C_1, D_2) + \frac{1}{4}(D_1, C_2) + \frac{1}{4}(D_1, D_2) = (\frac{1}{2}C_1 + \frac{1}{2}D_1) \times (\frac{1}{2}C_2 + \frac{1}{2}D_2)$ is independent.

Definition 4 (Best Response). A strategy σ_i of player i is a best response to belief σ_{-i} of player i if for arbitrary strategy σ'_i of player i, $u(\sigma_i, \sigma_{-i}) \geq u(\sigma'_i, \sigma_{-i})$

Definition 5. A strategy σ_i of player i is strictly dominated if there exists a strategy σ'_i , such that $u(\sigma'_i, a_{-i}) > u(\sigma_i, a_{-i}), \forall a_{-i} \in A_{-i}$

Theorem 2. In a finite (action) game, a strategy is never a best response to any (potentially correlated) belief if and only if it is strictly dominated.

Proof. "If" side is trivial. If a strategy σ_i is strictly dominated by σ'_i , σ_i is never best response to any belief as σ'_i is always going to be a strictly better response.

"Only if" side is equivalent to the statement "any strategy that is not strictly dominated is a best response to some (potentially correlated) belief". Suppose a strategy σ_i^0 is not strictly dominated, we are going to construct such a belief to which σ_i^0 is best response.

Consider the following set

$$C = \{x \in \mathbb{R}^{|A_{-i}|} : \exists \sigma_i \in \Delta(A_i), x \leq u_i(\sigma_i) = (u(\sigma_i, a_{-i}))_{a_{-i} \in A_{-i}} \}$$

C is convex. If $x_1, x_2 \in C$, then there exists $\sigma_i^{(1)}, \sigma_i^{(2)} \in \Delta(A_i)$, such that $x_1 \leq u(\sigma_i^{(1)}), x_2 \leq u(\sigma_i^{(2)})$. Then,

$$\alpha x_1 + (1 - \alpha)x_2 \le \alpha u(\sigma_i^{(1)}) + (1 - \alpha)u(\sigma_i^{(2)}) = u(\alpha \sigma_i^{(1)}) + (1 - \alpha)\sigma_i^{(2)}, \forall \alpha \in [0, 1]$$

and $\alpha \sigma_i^{(1)} + (1 - \alpha) \sigma_i^{(2)} \in \Delta(A_i)$. That is to say, $\alpha x_1 + (1 - \alpha) x_2 \in C$.

 $u(\sigma_i^0)$ is on the boundary of C. Otherwise, $u(\sigma_i^0)$ is in the interior of C. But if it is in the interior of C, then there exists $\varepsilon, x \in \mathbb{R}^{|A_{-i}|}$, where x >> 0 and $u_i(\sigma_i^0) = x + \varepsilon \le u_i(\sigma_i^x) + \varepsilon$ for some $\sigma_i^x \in \Delta(A_1)$ determined by x. That is to say, σ_i^0 is strictly dominated by σ_i^x . This conflicts with σ_0^i is not strictly dominated.

Combining the previous two observations, by Supporting Hyperplane Theorem, we can find $a \in \mathbb{R}^{|A_{-i}|}$, such that $au_i(\sigma_0^i) \geq ax, \forall x \in C$. As in every direction, $-\infty$ is in C, we have a > 0. The belief can then be constructed by $\frac{a}{||a||}$. σ_i^0 is a best response to $\frac{a}{||a||}$.

Example 2 (Numerical Example for the Proof). Consider a case where $n = 2, A_1 = \{a, b, c, d\}, A_2 = \{x, y\}$

$u_1(a_1,a_2)$	x	$\mid y \mid$
\overline{a}	3	0
$\overline{}$	0	3
\overline{c}	2	2
$\overline{}$	1	1

White area (extending outside the graph) depicts C. Payoff vectors of strategies that are not strictly dominated lie on the red curve. Belief is a direction on the graph.

Example 3 (Strategies Never Best Response to Independent Belief may not be Strictly Dominated). $N = 2, A_1 = \{U, D\}, A_2 = \{L, R\}, A_3 = \{a, b, c, d\}$ and u_3 is described by

d is not best response to any **independent** belief. Suppose Player 1 uses pU + (1-p)D and player 2 uses qL + (1-q)D. Need to show d cannot be better than a, b, c at the same time. Expected payoff of using d is 6(pq + (1-p)(1-q)); expected

payoff of using a is 9pq; expected payoff of using b is 9p(1-q)+9q(1-p); expected payoff of using c is 9(1-p)(1-q). d better than a requires

$$6(pq + (1-p)(1-q)) \ge 9pq \Rightarrow \frac{pq}{(1-p)(1-q)} \le 2$$

d better than c requires

$$6(pq + (1-p)(1-q)) \ge 9(1-p)(1-q) \Rightarrow \frac{pq}{(1-p)(1-q)} \ge \frac{1}{2}$$

d better than b requires

$$6(pq + (1-p)(1-q)) \ge 9p(1-q) + 9q(1-p) \Rightarrow 3\frac{p}{1-p} + 3\frac{q}{1-q} - 2\frac{pq}{(1-p)(1-q)} \le 2p(1-q) + 3p(1-q) = 3p(1-q) + 3p(1-q) = 3p(1-q) + 3p(1-q) = 3p(1-q) + 3p(1-q) = 3p(1-q$$

The last one implies

$$6\sqrt{\frac{pq}{(1-p)(1-q)}} - 2\frac{pq}{(1-p)(1-q)} \le 2$$

It can be easily verified the three inequalies cannot hold at the same time.

And d is not strictly dominated. To strictly dominate d, a strategy needs to put more than $\frac{2}{3}$ probability on both a and c, but that is more than 1.