Tecnologies disruptives

IGD Tech & Drinks - Setembre 2019

Dario Castañé

- Enginyer informàtic: Engisoft Cloud Services
- Pirates de Catalunya
- Blockchain Catalunya
- Fundació Inceptum
- Divulgador

Xerrades

- 2014: Techno Politics
- **2014-...:** Tallers de defensa digital personal
- 2016: Municipi i tecnologia: On som i futurs possibles
- 2018-...: IGD Tech & Drinks: Blockchain, contenidors, etc.
- **2019:** Espiadas y vendidas
- 2019: Estònia estat digital. Realitat o ficció?
- Més a dario.im

</falca>

Què entenem per disruptiu?

- Innovació que genera nous mercats
- Que irromp en els ja establerts
- No necessàriament és radicalment nova: evolució

Exemples

- Cotxe: carruatges de tracció animal
- PC: màquina d'escriure i formes de comunicació
- **Smartphone:** PDAs, càmares, reproductors, etc.

Hype cycle

O cicle de sobreexpectació

zk-SNARKs

Què són?

- Tècnica criptogràfica
- Proves de coneixement zero (Zero Knowledge)
- Permet que algú demostri a altri que quelcom és cert, sense revelar informació

notation $[\![s]\!]_p^m$ to binary strings $s \in \{0,1\}^n$ with n < m bits via padding: $[\![s]\!]_p^m := [\![s0^{m-n}]\!]_p^m$.

2.3 Quadratic arithmetic programs

Our zk-SNARK leverages quadratic arithmetic programs (QAPs), introduced by Gennaro et al. [GGPR13].

Definition 2.2. A quadratic arithmetic program of size m and degree d over \mathbb{F} is a tuple $(\vec{A}, \vec{B}, \vec{C}, Z)$, where $\vec{A}, \vec{B}, \vec{C}$ are three vectors, each of m+1 polynomials in $\mathbb{F}^{\leq d-1}[z]$, and $Z \in \mathbb{F}[z]$ has degree exactly d.

Like a circuit, a QAP induces a satisfaction problem:

Definition 2.3. The **satisfaction problem** of a size-m QAP $(\vec{A}, \vec{B}, \vec{C}, Z)$ is the relation $\mathcal{R}_{(\vec{A}, \vec{B}, \vec{C}, Z)}$ of pairs (\vec{x}, \vec{s}) such that (i) $\vec{x} \in \mathbb{F}^n$, $\vec{s} \in \mathbb{F}^m$, and $n \leq m$; (ii) $x_i = s_i$ for $i \in [n]$ (i.e., \vec{s} extends \vec{x}); and (iii) the polynomial Z(z) divides the following one:

$$(A_0(z) + \sum_{i=1}^m s_i A_i(z)) \cdot (B_0(z) + \sum_{i=1}^m s_i B_i(z)) - (C_0(z) + \sum_{i=1}^m s_i C_i(z)).$$

We denote by $\mathcal{L}_{(\vec{A},\vec{B},\vec{C},Z)}$ the language of $\mathcal{R}_{(\vec{A},\vec{B},\vec{C},Z)}$.

Gennaro et al. [GGPR13] showed that circuit satisfiability can be efficiently reduced to QAP satisfiability (which can then be proved and verified using zk-SNARKs):

Lemma 2.4. There exist two polynomial-time algorithms QAPinst, QAPwit that work as follows. For any

Quina utilitat tenen?

- Identitats sobiranes: IdentiCAT
- Votació electrònica: Vocdoni
- Transaccions econòmiques: Zcash

Per què és disruptiva?

- Desintermediació
- Sobirania de dades personals

Deep fakes

Què són?

• Aplicació pràctica del deep learning

Per què és disruptiva?

- Impacte social: fake news
- Industria cinematogràfica

APM?

Gràcies!

- i@dario.im
- @im_dario
- github.com/imdario
- @dario@mastodon.social
- keybase.io/dario