HIGHT Algorithm Specification

2009.07

1. HIGHT

The HIGHT algorithm is a symmetric block cipher that can process data blocks of 64 bits, using a cipher key with length of 128 bits.

2. HIGHT encryption

The encryption operation is as shown in Figure 1. The transformation of a 64-bit block *P* into a 64-bit block *C* is defined as follows:

(1)
$$P = P_7 /\!\!/ P_6 /\!\!/ P_5 /\!\!/ P_4 /\!\!/ P_3 /\!\!/ P_2 /\!\!/ P_1 /\!\!/ P_0$$
 (*P*_i are plaintext bytes)

(2)
$$X_{0,0} = P_0 \quad \boxplus \quad WK_0, \qquad X_{0,1} = P_1,$$

$$X_{0,2} = P_2 \oplus WK_1,$$
 $X_{0,3} = P_3,$

$$X_{0,4} = P_4 \boxplus WK_2, X_{0,5} = P_5,$$

$$X_{0,6} = P_6 \oplus WK_3,$$
 $X_{0,7} = P_{7.}$

(3) for i = 0 to 30:

$$X_{i+1,0} = X_{i,7} \oplus (F_0(X_{i,6}) \boxplus SK_{4i+3}),$$
 $X_{i+1,1} = X_{i,0},$ $X_{i+1,2} = X_{i,1} \boxplus (F_1(X_{i,0}) \oplus SK_{4i}),$ $X_{i+1,3} = X_{i,2},$ $X_{i+1,4} = X_{i,3} \oplus (F_0(X_{i,2}) \boxplus SK_{4i+1}),$ $X_{i+1,5} = X_{i,4},$ $X_{i+1,6} = X_{i,5} \boxplus (F_1(X_{i,4}) \oplus SK_{4i+2}),$ $X_{i+1,7} = X_{i,6}.$

for i = 31:

$$X_{i+1,0} = X_{i,0},$$
 $X_{i+1,1} = X_{i,1} \boxplus (F_1(X_{i,0}) \oplus SK_{124}),$
 $X_{i+1,2} = X_{i,2},$ $X_{i+1,3} = X_{i,3} \oplus (F_0(X_{i,2}) \boxplus SK_{125}),$
 $X_{i+1,4} = X_{i,4},$ $X_{i+1,5} = X_{i,5} \boxplus (F_1(X_{i,4}) \oplus SK_{126}),$
 $X_{i+1,6} = X_{i,6},$ $X_{i+1,7} = X_{i,7} \oplus (F_0(X_{i,6}) \boxplus SK_{127}).$

(4)
$$C_0 = X_{32,0} \oplus WK_4$$
, $C_1 = X_{32,1}$,

$$C_2 = X_{32,2} \oplus WK_5,$$
 $C_3 = X_{32,3},$ $C_4 = X_{32,4} \boxplus WK_6,$ $C_5 = X_{32,5},$

$$C_6 = X_{32.6} \oplus WK_7$$
, $C_7 = X_{32.7}$

(5)
$$C = C_7 \parallel C_6 \parallel C_5 \parallel C_4 \parallel C_3 \parallel C_2 \parallel C_1 \parallel C_0$$
 (C_i are ciphertext bytes)

Figure 1. Encryption procedure of HIGHT

3. HIGHT decryption

The decryption operation is identical in operation to encryption apart from the following two modifications.

- (1) All $ext{ } ext{ } ext$
- (2) The order in which the keys WK_i and SK_i are applied is reversed.

4. HIGHT functions

4.1 The functions F_0 and F_1

The HIGHT algorithm uses two functions, namely, F_0 and F_1 which are now defined.

4.2 Function F₀

The F_0 function is used for encryption and decryption. The function F_0 is defined as follows:

$$F_0(x) = (x <<<_1) \oplus (x <<<_2) \oplus (x <<<_7)$$

4.3 Function F₁

The F_1 function is used for encryption and decryption. The function F_1 is defined as follows:

$$F_1(x) = (x <<<_3) \oplus (x <<<_4) \oplus (x <<<_6)$$

5. HIGHT key schedule

The key scheduling part accepts a 128-bit master key $K=K_{15} \parallel K_{14} \parallel \cdots \parallel K_0$ and yields 8 whitening key bytes WK_i and 128 subkey bytes SK_i , as shown below.

The generation of whitening keys is defined as follows.

for
$$i = 0, 1, 2, 3$$
:
 $WK_i = K_{i+12}$
for $i = 4, 5, 6, 7$:
 $WK_i = K_{i-4}$

The 128 subkeys are used for encryption and decryption, 4 subkeys per round. The generation of subkeys is defined as follows.

(1)
$$s_0 = 0$$
, $s_1 = 1$, $s_2 = 0$, $s_3 = 1$, $s_4 = 1$, $s_5 = 0$, $s_6 = 1$

$$\delta_0 = s_6 \parallel s_5 \parallel s_4 \parallel s_3 \parallel s_2 \parallel s_1 \parallel s_0$$
(2) for $i = 1$ to 127:

$$S_{i+6} = S_{i+2} \oplus S_{i-1}$$

$$\delta_i = \varsigma_{i+6} \parallel \varsigma_{i+5} \parallel \varsigma_{i+4} \parallel \varsigma_{i+3} \parallel \varsigma_{i+2} \parallel \varsigma_{i+1} \parallel \varsigma_i$$

(3) for
$$i = 0$$
 to 7:

for
$$j = 0$$
 to 7:

$$SK_{16 \cdot i + j} = K_{j \cdot i \mod 8} \quad \boxplus \quad \delta_{16 \cdot i + j}$$

for
$$j = 0$$
 to 7:

$$SK_{16 \cdot i + j + 8} = K_{(j - i \mod 8) + 8} \boxplus \delta_{16 \cdot i + j + 8}$$