Lecture 1.3: Span, Linear dependency and dimension

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Linear combination and span
- 2. Linear dependency
- 3. Basis and dimension

Linear combination & Span

Linear combination

Let V be a vector space (think for instance $V = \mathbb{R}^n$).

Definition

We say that $y \in V$ is a *linear combination* of the vectors $x_1, \ldots, x_k \in V$ if there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ such that

$$y = \sum_{i=1}^{k} \alpha_i x_i = \alpha_1 x_1 + \dots + \alpha_k x_k.$$

Remarks

- A linear combination is always a finite sum.
- If S is a subspace of V, then any linear combination of vectors x_1, \ldots, x_k of S is also in S:
 - « Subspaces are closed under linear combinations. »

Span

Definition

Let x_1, \ldots, x_k be vectors of V. We define the *linear span* of x_1, \ldots, x_k as the set of all linear combinations of these vectors:

$$\operatorname{Span}(x_1,\ldots,x_k) \stackrel{\operatorname{def}}{=} \left\{ \alpha_1 x_1 + \cdots + \alpha_k x_k \,\middle|\, \alpha_1,\ldots,\alpha_k \in \mathbb{R} \right\}.$$

Linear dependency

Linear dependency 5/11

Linear dependency

Definition

Vectors $x_1, \ldots x_k \in V$ are linearly dependent is there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ that are not all zero such that

$$\alpha_1 x_1 + \dots + \alpha_k x_k = 0.$$

They are said to be linearly independent otherwise.

Key observation: « x_1, \ldots, x_k are linearly dependent » is equivalent to « one of the vectors x_1, \ldots, x_k can be obtained as a linear combination of the others.»

Linear dependency 6/

Why?

Linear dependency 7/11

Basis, dimension

Basis, dimension 8/11

Basis

Definition

A family (x_1, \ldots, x_n) of vectors of V is a basis of V if

- 1. x_1, \ldots, x_n are linearly independent,
- 2. Span $(x_1, ..., x_n) = V$.

This means that (x_1, \ldots, x_n) is a basis of V if

- 1. None of the x_i is a linear combination of the others $(x_j)_{j\neq i}$.
- 2. Any vector of V can be expressed as a linear combination of (x_1, \ldots, x_n) .

Basis, dimension 9/11

Example: the canonical basis of \mathbb{R}^n

Let us define the vectors $e_1, \ldots, e_n \in \mathbb{R}^n$ by

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

One can verify (exercise!) that the family (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . This basis is called the "canonical basis" of \mathbb{R}^n . We conclude that \mathbb{R}^n has dimension n.

Basis, dimension

Dimension

Theorem

Let V be a vector space.

- If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.
- Otherwise, we say that V has infinite dimension: $\dim(V) = +\infty$.

Example:

- \mathbb{R}^n has dimension n, because the canonical basis (e_1, \dots, e_n) is a basis of \mathbb{R}^n with n vectors.
- $\{f \mid f : \mathbb{R} \to \mathbb{R}\}$ has infinite dimension.

Basis, dimension 11/11