МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Лабораторная работа №3

По курсу «Вычислительные методы алгебры»

Метод Зейделя

Вариант №5

Работу выполнил: студент 3 курса 7 группы **Шатерник Артём** Преподаватель: **Будник А. М**.

1. Постановка задачи.

Найти решение системы линейных алгебраических уравнений Ax = b с расширенной матрицей вида

		\boldsymbol{A}			b
0.5757	-0.0758	0.0152	0.0303	0.1061	3.5148
0.0788	0.9014	0.0000	-0.0606	0.0606	3.8542
0.0455	0.0000	0.7242	-0.2121	0.1212	-4.9056
-0.0909	0.1909	0.0000	0.7121	-0.0303	2.3240
0.3788	0.0000	0.1364	0.0152	0.8484	0.1818

применяя метод Зейделя. Вычислить невязки и сравнить с методом Гаусса и отражений по точности и экономичности.

2. Алгоритм решения.

Предварительные преобразования.

Для использования метода Зейделя систему уравнений нужно привести к каноническому виду x = Bx + g.

Чтобы построить матрицу B для начала приведём матрицу A к симметричному виду. Воспользуемся трансформацией Гаусса:

- Вычислим A^T .
- Умножим систему слева на A^T : $A^TAx = A^Tb$.
- Полученная матрица $\bar{A} = A^T A$ будет симметричной, а система будет иметь вид $\bar{A} x = \bar{b}$

Матрицу *B* будем строим по формуле $B = E - C\bar{A}$, при этом $C = \frac{1}{||A||}$.

При таком построении собственные значения матрицы B будут меньше единицы и метод Зейделя будет сходиться по необходимому и достаточному условию. **Метод Зейделя.**

$$x_i^{(k+1)} = \sum_{j=1}^{i-1} b_{ij} x_j^{(k+1)} + \sum_{j=1}^{i-1} b_{ij} x_j^{(k)} + g_i, \quad i = 1, ..., n; \quad k = 0, 1, ...$$

Критерий остановки процесса: $||x^{k+1}-x^k|| \le \varepsilon$, где $\varepsilon=10^{-5}$.

3. Листинг программы.

```
int main() {
        setlocale(LC_ALL, "Russian");
        // Ввод данных
        int size = 5;
        std::vector <std::vector <long double>> x result(size, std::vector <long double>(1));
        std::vector <std::vector <long double>> a matrix(size, std::vector <long double>(size));
        std::vector <std::vector <long double>> b vector(size, std::vector <long double>(1));
        std::ifstream input("input.txt");
        for (int i = 0; i < size; i++) {
                for (int j = 0; j < size; j++) {
                        input >> a_matrix[i][j];
                }
        }
        for (int i = 0; i < size; i++) {
                input >> b_vector[i][0];
        }
        // Приводим матрицу к симметричному виду
        // Симметричный вид
        auto b vector sim = matrix product(transpose(a matrix), b vector);
        auto a_matrix_sim = matrix_product(transpose(a_matrix), a_matrix);
        long double c = 1 / first_matrix_norm(a_matrix_sim);
        //B = E - c * A sim
        std::vector <std::vector <long double>> b_matrix(size, std::vector <long double>(size));
        for (int i = 0; i < size; i++) {
                b_matrix[i] = -c * a_matrix_sim[i];
                b_matrix[i][i] = 1 + b_matrix[i][i];
        }
        //g = c * b sim
        std::vector <std::vector <long double>> g_vector(size, std::vector <long double>(1));
        g_vector = c * b_vector_sim;
        // Точность
        long double e = 1e-5;
        // Метод Зейделя
        x_result = b_vector;
        int i = 0;
        auto x_result_new = x_result;
        while(true) {
                i++;
                for (int i = 0; i < size; i++) {
                        long double sum = 0;
                        for (int j = 0; j < size; j++) {
                                sum += b_matrix[i][j] * x_result_new[j][0];
                        }
                        x_result_new[i][0] = sum + g_vector[i][0];
                if (first_matrix_norm(x_result - x_result_new) <= e) {</pre>
                        break;
                } else {
                        x_result = x_result_new;
                }
```

```
}
                   // Вывод данных
                   std::cout << "x = (";
                   for (int i = 0; i < size; i++) {
                           std::cout << std::setw(8) << round(x_result_new[i][0] * 10000) / 10000 << std::setw(8);
                   }
                   std::cout << std::setw(1) << ")" << std::endl;
                   std::cout << "Колличество итераций: " << i << std::endl;
                   std::vector <std::vector <long double>> r = matrix_product(a_matrix, x_result_new) - b_vector;
                   std::cout << std::endl << "Heвязка r = Ax - b:" << std::endl << "( " << std::setw(5);
                   for (int i = 0; i < size; i++) {
                           std::cout << std::setw(14) << r[i][0] << std::setw(14);
                   }
                   std::cout << std::setw(5) << ")" << std::endl;
                   std::cout << std::endl << "Норма невязки r = " << first_matrix_norm(r) << std::endl;
                   return 0;
           }
               4. Результат и его анализ.
            x = (7.0011)
                                     3.9999
                                                      -6.0003
                                                                          2.9998
                                                                                               -2.0007)
           Количество итераций: 65
           Невязка r = Ax - b:
(-2.45592e-05
                        -1.66302e-06
                                                 -6.71944e-06
                                                                          -2.94597e-06
                                                                                                  9.22789e-06)
```

Норма невязки r = 2.455922e-05 (первая норма)

Экономичность:

Сходится со скоростью геометрической прогрессии. При данном методе построения матрицы B её норма получилась больше единицы, поэтому чтобы определить знаменатель этой прогрессии потребуются формулы использующие собственные значения, которые не приводились на лекциях.

Точность:

Метод является итерационным и даёт наперёд заданную точность. Ценой большей точности является большее количество итераций и соответственно большее количество операций. Однако, как и при методах Гаусса и отражений мы не можем получить точность выше 10^{-15} без изменения типа хранимых данных.