

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики
Кафедра прикладной математики и экономико-математических методов **ОТЧЁТ**

по дисциплине:

«Математическое моделирование»

на тему:

«Динамические модели. Модель Лотки-Вольтерра.»

Направление (специальность)	01.03.02	
	(код, наименование)	
Обучающийся	Бронников Егор Игоревич	
	(Ф.И.О. полностью)	
ГруппаПМ-1901 (номер группы)		

Часть 1. Анализ модели в AnyLogic

В качестве параметров возьмём X = Nx = 10, Y = Ny = 5, $\alpha = 0.3$, b = 0.1, c = 0.7, d = 0.1. То есть мы имеем 10 жертв (зайцев) и 5 хищников (волков).

В накопителях пишем соответствующие формулы:

■ Свойства 🛭		T	000	-	
□ X - Накопитель					
Имя:	Χ				
🗹 Отображать имя 🗌	Исключить				
Отображается на верхнем агенте					
Видимость:	💿 да				
Цвет:	По умол	~			
Массив					
Начальное значение:	Nx				
Режим задания уравнени	я: ОКлассиче	ский 🤇	Пр	оизв	ольні
d(X)/dt =					
a*X-b*Y*X					
 Размерности массива 					
Специфические					
• Описание					

Модель построенная в AnyLogic соответствует теоретическим представлениям о её поведении.

Часть 2. Численный анализ модели.

Можно решить данную систему дифференциальных уравнений методом Рунге-Кутта. Для этого воспользуемся функциями, которые у нас уже имеются и добавим ещё одну переменную.

Функция возвращает количество симулируемых дней, количество жертв, количество хищников.

```
def runge_kutta(fs: Tuple[Callable], n: int, h: float, t: float, x: float, y: float) -> Tuple[float, float, float]:
            Численный метод решения систем обыкновенных дифференциальных уравнений методом Рунге-Кутта
            :param fs: кортеж из первого и второго уравнений
            :type fs: Tuple[Callable]
            :рагат п: количество итераций (дней)
            :type n: int
            :param h: шаг
            :type h: float
            :param t: начальная точка `t`
            :type t: float
            :рагат х: начальная точка `х`
            :type x: float
           :param у: начальная точка `y`
:type у: float
     :return: решение ДУ
:rtype: Tuple[float, float, float]
      def k(k1, k2, k3, k4):
                return (k1 + 2*k2 + 2*k3 + k4)/6
     for _ in range(n):
    k11, k21 = map(lambda f: h * f(t, x, y), fs)
    k12, k22 = map(lambda f: h * f(t + h/2, x + k11/2, y + k21/2), fs)
    k13, k23 = map(lambda f: h * f(t + h/2, x + k12/2, y + k22/2), fs)
    k14, k24 = map(lambda f: h * f(t + h/2, x + k12/2, y + k22/2), fs)
    k1, k2 = k(k11, k12, k13, k14), k(k21, k22, k23, k24)
    t, x, y = t + h, x + k1, y + k2
    return t, x, y
              in range(n):
```

Таким образом, подставив в данную функцию наши значения, мы получим следующий результат, который соответствует данным полученным из AnyLogic:

```
[3]: def f(t, x, y, *, a=0.3, b=0.1):
    return a*x - b*x*y

[4]: def g(t, x, y, *, c=0.7, d=0.1):
    return -c*y + d*x*y

[5]: runge_kutta((f, g), 13, 1, 0, 10, 5)

[5]: (13, 11.358768572154627, 3.079252468099681)
```

