(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 23 September 2004 (23.09.2004)

PCT

(10) International Publication Number WO 2004/080406 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2004/007070

(22) International Filing Date: 8 March 2004 (08.03.2004)

(25) Filing Language:

(26) Publication Language:

English

(30)

P	riority Data:		
6	0/452,682	7 March 2003 (07.03.2003)	US
6	0/454,265	12 March 2003 (12.03.2003)	US
6	0/454,962	13 March 2003 (13.03.2003)	US
60	0/455,050	13 March 2003 (13.03.2003)	US
60	0/462,894	14 April 2003 (14.04.2003)	US
60	0/463,772	17 April 2003 (17.04.2003)	US
60	0/465,665	25 April 2003 (25.04.2003)	US
60	0/465,802	25 April 2003 (25.04.2003)	US
60	0/469,612	9 May 2003 (09.05.2003)	US
60	0/493,986	8 August 2003 (08.08.2003)	US
60	0/494,597	11 August 2003 (11.08.2003)	US
60	0/506,341	26 September 2003 (26.09.2003)	US
60	0/510,246	9 October 2003 (09.10.2003)	US
60	0/510,318	10 October 2003 (10.10.2003)	US
60)/518,453	7 November 2003 (07.11.2003)	US

(71) Applicant (for all designated States except US): ALNY-LAM PHARMACEUTICALS [US/US]; 790 Memorial Drive,, Suite 202, Cambridge, MA 02139 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MANOHARAN, Muthiah [US/US]; 25 Circle Drive, Weston, MA 02493 (US). BUMCROT, David [US/US]; 30 Leicester Road, Belmont, MA 02478 (US).

(74) Agent: MYERS, Louis; Fish & Richardson P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: THERAPEUTIC COMPOSITIONS

WO 2004/080406 A2

WO 2004/080406 A2

Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published

 without international search report and to be republished upon receipt of that report

THERAPEUTIC COMPOSITIONS

RELATED APPLICATIONS

The present application claims the benefit of Application No. 60/452,682, filed

March 7, 2003; Application No. 60/462,894, filed April 14, 2003; and Application
No. 60/465,665, filed April 25, 2003; Application No. 60/463,772, filed April 17, 2003;
Application No. 60/465,802, filed April 25, 2003; Application No. 60/493,986, filed
August 8, 2003; Application No. 60/494,597, filed August 11, 2003; Application No.
60/506,341, filed September 26, 2003; Application No. 60/518,453, filed November 7, 2003;
Application No. 60/454,265, filed March 12, 2003; Application No. 60/454,962, filed March
13, 2003; Application No. 60/455,050, filed March 13, 2003; Application No. 60/469,612,
filed May 9, 2003; Application No. 60/510,246, filed October 9, 2003; Application
No. 60/510,318, filed October 10, 2003. The contents of these provisional applications are
hereby incorporated by reference in their entirety.

15

TECHNICAL FIELD

The invention relates to RNAi and related methods, e.g., methods of making and using iRNA agents.

BACKGROUND

20 RNA interference or "RNAi" is a term initially coined by Fire and co-workers to describe the observation that double-stranded RNA (dsRNA) can block gene expression when it is introduced into worms (Fire et al. (1998) Nature 391, 806-811). Short dsRNA directs gene-specific, post-transcriptional silencing in many organisms, including vertebrates, and has provided a new tool for studying gene function. RNAi may involve mRNA degradation.

SUMMARY

A number of advances related to the application of RNAi to the treatment of subjects are disclosed herein. For example, the invention features iRNA agents targeted to specific genes; palindromic iRNA agents; iRNA agents having non canonical monomer pairings; iRNA agents having particular structures or architectures e.g., the Z-X-Y or asymmetrical iRNA agents described herein; drug delivery conjugates for the delivery of iRNA agents; amphipathic substances for the delivery of iRNA agents, as well as iRNA agents having chemical modifications for optimizing a property of the iRNA agent. The invention features each of these advances broadly as well as in combinations. For example, an iRNA agent targeted to a specific gene can also include one or more of a palindrome, non canonical, Z-X-Y, or asymmetric structure. Other nonlimiting examples of combinations include an asymmetric structure combined with a chemical modification, or formulations or methods or routes of delivery combined with, e.g., chemical modifications or architectures described herein. The iRNA agents of the invention can include any one of these advances, or pairwise or higher order combinations of the separate advances.

10

15

20

25

30

In one aspect, the invention features iRNA agents that can target more than one RNA region, and methods of using and making the iRNA agents.

In another aspect, an iRNA agent includes a first and second sequence that are sufficiently complementary to each other to hybridize. The first sequence can be complementary to a first target RNA region and the second sequence can be complementary to a second target RNA region.

In one embodiment, the first and second sequences of the iRNA agent are on different RNA strands, and the mismatch between the first and second sequences is less than 50%, 40%, 30%, 20%, 10%, 5%, or 1%.

In another embodiment, the first and second sequences of the iRNA agent are on the same RNA strand, and in a related embodiment more than 50%, 60%, 70%, 80%, 90%, 95%, or 1% of the iRNA agent is in bimolecular form.

In another embodiment, the first and second sequences of the iRNA agent are fully complementary to each other.

In one embodiment, the first target RNA region is encoded by a first gene and the second target RNA region is encoded by a second gene, and in another embodiment, the first

5

10

15

20

25

30

and second target RNA regions are different regions of an RNA from a single gene. In another embodiment, the first and second sequences differ by at least 1 and no more than 6 nucleotides.

In certain embodiments, the first and second target RNA regions are on transcripts encoded by first and second sequence variants, e.g., first and second alleles, of a gene. The sequence variants can be mutations, or polymorphisms, for example.

In certain embodiments, the first target RNA region includes a nucleotide substitution, insertion, or deletion relative to the second target RNA region.

In other embodiments, the second target RNA region is a mutant or variant of the first target RNA region.

In certain embodiments, the first and second target RNA regions comprise viral, e.g., HCV, or human RNA regions. The first and second target RNA regions can also be on variant transcripts of an oncogene or include different mutations of a tumor suppressor gene transcript. In one embodiment, the oncogene, or tumor suppressor gene is expressed in the liver. In addition, the first and second target RNA regions correspond to hot-spots for genetic variation.

In another aspect, the invention features a mixture of varied iRNA agent molecules, including one iRNA agent that includes a first sequence and a second sequence sufficiently complementary to each other to hybridize, and where the first sequence is complementary to a first target RNA region and the second sequence is complementary to a second target RNA region. The mixture also includes at least one additional iRNA agent variety that includes a third sequence and a fourth sequence sufficiently complementary to each other to hybridize, and where the third sequence is complementary to a third target RNA region and the fourth sequence is complementary to a fourth target RNA region. In addition, the first or second sequence is sufficiently complementary to the third or fourth sequence to be capable of hybridizing to each other. In one embodiment, at least one, two, three or all four of the target RNA regions are expressed in the liver. Exemplary RNAs are transcribed from the apoB-100 gene, glucose-6-phosphatase gene, beta catenin gene, or an HCV gene.

In certain embodiments, the first and second sequences are on the same or different RNA strands, and the third and fourth sequences are on same or different RNA strands.

In one embodiment, the mixture further includes a third iRNA agent that is composed of the first or second sequence and the third or fourth sequence.

In one embodiment, the first sequence is identical to at least one of the second, third and fourth sequences, and in another embodiment, the first region differs by at least 1 but no more than 6 nucleotides from at least one of the second, third and fourth regions.

In certain embodiments, the first target RNA region comprises a nucleotide substitution, insertion, or deletion relative to the second, third or fourth target RNA region.

5

10

15

20

25

30

The target RNA regions can be variant sequences of a viral or human RNA, and in certain embodiments, at least two of the target RNA regions can be on variant transcripts of an oncogene or tumor suppressor gene. In one embodiment, the oncogene or tumor suppressor gene is expressed in the liver.

In certain embodiments, at least two of the target RNA regions correspond to hotspots for genetic variation.

In one embodiment, the iRNA agents of the invention are formulated for pharmaceutical use. In one aspect, the invention provides a container (e.g., a vial, syringe, nebulizer, etc) to hold the iRNA agents described herein.

Another aspect of the invention features a method of making an iRNA agent. The method includes constructing an iRNA agent that has a first sequence complementary to a first target RNA region, and a second sequence complementary to a second target RNA region. The first and second target RNA regions have been identified as being sufficiently complementary to each other to be capable of hybridizing. In one embodiment, the first and second target RNA regions are on transcripts expressed in the liver.

In certain embodiments, the first and second target RNA regions can correspond to two different regions encoded by one gene, or to regions encoded by two different genes.

Another aspect of the invention features a method of making an iRNA agent composition. The method includes obtaining or providing information about a region of an RNA of a target gene (e.g., a viral or human gene, or an oncogene or tumor suppressor, e.g., p53), where the region has high variability or mutational frequency (e.g., in humans). In addition, information about a plurality of RNA targets within the region is obtained or provided, where each RNA target corresponds to a different variant or mutant of the gene (e.g., a region including the codon encoding p53 248Q and/or p53 249S). The iRNA agent is

constructed such that a first sequence is complementary to a first of the plurality of variant RNA targets (e.g., encoding 249Q) and a second sequence is complementary to a second of the plurality of variant RNA targets (e.g., encoding 249S). The first and second sequences are sufficiently complementary to hybridize. In certain embodiments, the target gene can be a viral or human gene expressed in the liver.

5

10

15

20

25

30

In one embodiment, sequence analysis, e.g., to identify common mutants in the target gene, is used to identify a region of the target gene that has high variability or mutational frequency. For example, sequence analysis can be used to identify regions of apoB-100 or beta catenin that have high variability or mutational frequency. In another embodiment, the region of the target gene having high variability or mutational frequency is identified by obtaining or providing genotype information about the target gene from a population. In another embodiment, the genotype information can be from a population suffering from a liver disorder, such as hepatocellular carcinoma or hepatoblastoma.

Another aspect of the invention features a method of modulating expression, e.g., downregulating or silencing, a target gene, by providing an iRNA agent that has a first sequence and a second sequence sufficiently complementary to each other to hybridize. In addition, the first sequence is complementary to a first target RNA region and the second sequence is complementary to a second target RNA region.

In one embodiment, the iRNA agent is administered to a subject, e.g., a human. In another embodiment, the first and second sequences are between 15 and 30 nucleotides in length.

In one embodiment, the method of modulating expression of the target gene further includes providing a second iRNA agent that has a third sequence complementary to a third target RNA region. The third sequence can be sufficiently complementary to the first or second sequence to be capable of hybridizing to either the first or second sequence.

Another aspect of the invention features a method of modulating expression, e.g., downregulating or silencing, a plurality of target RNAs, each of the plurality of target RNAs corresponding to a different target gene. The method includes providing an iRNA agent selected by identifying a first region in a first target RNA of the plurality and a second region in a second target RNA of the plurality, where the first and second regions are sufficiently complementary to each other to be capable of hybridizing.

In another aspect of the invention, an iRNA agent molecule includes a first sequence complementary to a first variant RNA target region and a second sequence complementary to a second variant RNA target region, and the first and second variant RNA target regions correspond to first and second variants or mutants of a target gene. In certain embodiments, the target gene is an apoB-100, beta catenin, or glucose-6 phosphatase gene.

In one embodiment, the target gene is a viral gene (e.g., an HCV gene), tumor suppressor or oncogene.

5

10

15

20

25

30

In another embodiment, the first and second variant target RNA regions include allelic variants of the target gene.

In another embodiment, the first and second variant RNA target regions comprise mutations (e.g., point mutations) or polymorphisms of the target gene.

In one embodiment, the first and second variant RNA target regions correspond to hot-spots for genetic variation.

Another aspect of the invention features a plurality (e.g., a panel or bank) of iRNA agents. Each of the iRNA agents of the plurality includes a first sequence complementary to a first variant target RNA region and a second sequence complementary to a second variant target RNA region, where the first and second variant target RNA regions correspond to first and second variants of a target gene. In certain embodiments, the variants are allelic variants of the target gene.

Another aspect of the invention provides a method of identifying an iRNA agent for treating a subject. The method includes providing or obtaining information, e.g., a genotype, about a target gene, providing or obtaining information about a plurality (e.g., panel or bank) of iRNA agents, comparing the information about the target gene to information about the plurality of iRNA agents, and selecting one or more of the plurality of iRNA agents for treating the subject. Each of the plurality of iRNA agents includes a first sequence complementary to a first variant target RNA region and a second sequence complementary to a second variant target RNA region, and the first and second variant target RNA regions correspond to first and second variants of the target gene. The target gene can be an endogenous gene of the subject or a viral gene. The information about the plurality of iRNA agents can be the sequence of the first or second sequence of one or more of the plurality.

In certain embodiments, at least one of the selected iRNA agents includes a sequence capable of hybridizing to an RNA region corresponding to the target gene, and at least one of the selected iRNA agents comprises a sequence capable of hybridizing to an RNA region corresponding to a variant or mutant of the target gene.

In one aspect, the invention relates to compositions and methods for silencing genes expressed in the liver, e.g., to treat disorders of or related to the liver. An iRNA agent composition of the invention can be one which has been modified to alter distribution in favor of the liver.

5

10

15

20

25

30

In another aspect, the invention relates to iRNA agents that can target more than one RNA region, and methods of using and making the iRNA agents. In one embodiment, the RNA is from a gene that is active in the liver, e.g., apoB-100, glucose-6-phosphatase, beta-catenin, or Hepatitis C virus (HCV).

In another aspect, an iRNA agent includes a first and second sequence that are sufficiently complementary to each other to hybridize. The first sequence can be complementary to a first target RNA region and the second sequence can be complementary to a second target RNA region. For example, the first sequence can be complementary to a first target apoB-100 RNA region and the second sequence can be complementary to a second target apoB-100 RNA region.

In one embodiment, the first target RNA region is encoded by a first gene, e.g., a gene expressed in the liver, and the second target RNA region is encoded by a second gene, e.g., a second gene expressed in the liver. In another embodiment, the first and second target RNA regions are different regions of an RNA from a single gene, e.g., a single gene that is at least expressed in the liver. In another embodiment, the first and second sequences differ by at least one and no more than six nucleotides.

In another embodiment, sequence analysis, e.g., to identify common mutants in the target gene, is used to identify a region of the target gene that has high variability or mutational frequency. For example, sequence analysis can be used to identify regions of aopB-100 or beta catenin that have high variability or mutational frequency. In another embodiment, the region of the target gene having high variability or mutational frequency is identified by obtaining or providing genotype information about the target gene from a

population. In particular, the genotype information can be from a population suffering from a liver disorder, such as hepatocellular carcinoma or hepatoblastoma.

In another aspect, the invention features a method for reducing apoB-100 levels in a subject, e.g., a mammal, such as a human. The method includes administering to a subject an iRNA agent which targets apoB-100. The iRNA agent can be one described here, and can be a dsRNA that has a sequence that is substantially identical to a sequence of the apoB-100 gene. The iRNA can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

5

10

15

20

25

30

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Tables 5 and 6. In a preferred embodiment it targets both sequences of a palindromic pair provided in Tables 5 and 6. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Tables 5 and 6.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Tables 5 and 6. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Tables 5 and 6 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Tables 5 and 6 but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

The iRNA agent that targets apoB-100 can be administered in an amount sufficient to reduce expression of apoB-100 mRNA. In one embodiment, the iRNA agent is administered in an amount sufficient to reduce expression of apoB-100 protein (e.g., by at least 2%, 4%,

6%, 10%, 15%, 20%). Preferably, the iRNA agent does not reduce expression of apoB-48 mRNA or protein. This can be effected, e.g., by selection of an iRNA agent which specifically targets the nucleotides subject to RNA editing in the apoB-100 transcript.

5

10

15

20

25

30

The iRNA agent that targets apoB-100 can be administered to a subject, wherein the subject is suffering from a disorder characterized by elevated or otherwise unwanted expression of apoB-100, elevated or otherwise unwanted levels of cholesterol, and/or disregulation of lipid metabolism. The iRNA agent can be administered to an individual at risk for the disorder to delay onset of the disorder or a symptom of the disorder. These disorders include HDL/LDL cholesterol imbalance; dyslipidemias, e.g., familial combined hyperlipidemia (FCHL), acquired hyperlipidemia; hypercholestorolemia; statin-resistant hypercholesterolemia; coronary artery disease (CAD) coronary heart disease (CHD) atherosclerosis. In one embodiment, the iRNA that targets apoB-100 is administered to a subject suffering from statin-resistant hypercholesterolemia.

The apoB-100 iRNA agent can be administered in an amount sufficient to reduce levels of serum LDL-C and/or HDL-C and/or total cholesterol in a subject. For example, the iRNA is administered in an amount sufficient to decrease total cholesterol by at least 0.5%, 1%, 2.5%, 5%, 10% in the subject. In one embodiment, the iRNA agent is administered in an amount sufficient to reduce the risk of myocardial infarction the subject.

In a preferred embodiment the iRNA agent is administered repeatedly. Administration of an iRNA agent can be carried out over a range of time periods. It can be administered daily, once every few days, weekly, or monthly. The timing of administration can vary from patient to patient, depending on such factors as the severity of a patient's symptoms. For example, an effective dose of an iRNA agent can be administered to a patient once a month for an indefinite period of time, or until the patient no longer requires therapy. In addition, sustained release compositions containing an iRNA agent can be used to maintain a relatively constant dosage in the patient's blood.

In one embodiment, the iRNA agent can be targeted to the liver, and apoB expression level are decreased in the liver following administration of the apoB iRNA agent. For example, the iRNA agent can be complexed with a moiety that targets the liver, e.g., an antibody or ligand that binds a receptor on the liver.

The iRNA agent, particularly an iRNA agent that targets apoB, beta-catenin or glucose-6-phosphatase RNA, can be targeted to the liver, for example by associating, e.g., conjugating the iRNA agent to a lipophilic moiety, e.g., a lipid, cholesterol, oleyl, retinyl, or cholesteryl residue (see Table 1). Other lipophilic moieties that can be associated, e.g., conjugated with the iRNA agent include cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine. In one embodiment, the iRNA agent can be targeted to the liver by associating, e.g., conjugating, the iRNA agent to a low-density lipoprotein (LDL), e.g., a lactosylated LDL. In another embodiment, the iRNA agent can be targeted to the liver by associating, e.g., conjugating, the iRNA agent to a polymeric carrier complex with sugar residues.

5

10

15

20

25

30

In another embodiment, the iRNA agent can be targeted to the liver by associating, e.g., conjugating, the iRNA agent to a liposome complexed with sugar residues. A targeting agent that incorporates a sugar, e.g., galactose and/or analogues thereof, is particularly useful. These agents target, in particular, the parenchymal cells of the liver (see Table 1). In a preferred embodiment, the targeting moiety includes more than one galactose moiety, preferably two or three. Preferably, the targeting moiety includes 3 galactose moieties, e.g., spaced about 15 angstroms from each other. The targeting moiety can be lactose. A lactose is a glucose coupled to a galactose. Preferably, the targeting moiety includes three lactoses. The targeting moiety can also be N-Acetyl-Galactosamine, N-Ac-Glucosamine. A mannose, or mannose-6-phosphate targeting moiety can be used for macrophage targeting.

The targeting agent can be linked directly, e.g., covalently or non covalently, to the iRNA agent, or to another delivery or formulation modality, e.g., a liposome. E.g., the iRNA agents with or without a targeting moiety can be incorporated into a delivery modality, e.g., a liposome, with or without a targeting moiety.

It is particularly preferred to use an iRNA conjugated to a lipophilic molecule to conjugate to an iRNA agent that targets apoB, beta-catenin or glucose-6-phosphatase iRNA targeting agent.

In one embodiment, the iRNA agent has been modified, or is associated with a delivery agent, e.g., a delivery agent described herein, e.g., a liposome, which has been

modified to alter distribution in favor of the liver. In one embodiment, the modification mediates association with a serum albumin (SA), e.g., a human serum albumin (HSA), or a fragment thereof.

The iRNA agent, particularly an iRNA agent that targets apoB, beta-catenin or glucose-6-phosphatase RNA, can be targeted to the liver, for example by associating, e.g., conjugating the iRNA agent to an SA molecule, e.g., an HSA molecule, or a fragment thereof. In one embodiment, the iRNA agent or composition thereof has an affinity for an SA, e.g., HSA, which is sufficiently high such that its levels in the liver are at least 10, 20, 30, 50, or 100% greater in the presence of SA, e.g., HSA, or is such that addition of exogenous SA will increase delivery to the liver. These criteria can be measured, e.g., by testing distribution in a mouse in the presence or absence of exogenous mouse or human SA.

10

15

20

25

30

The SA, e.g., HSA, targeting agent can be linked directly, e.g., covalently or non-covalently, to the iRNA agent, or to another delivery or formulation modality, e.g., a liposome. E.g., the iRNA agents with or without a targeting moiety can be incorporated into a delivery modality, e.g., a liposome, with or without a targeting moiety.

It is particularly preferred to use an iRNA conjugated to an SA, e.g., an HSA, molecule wherein the iRNA agent is an apoB, beta-catenin or glucose-6-phosphatase iRNA targeting agent.

In another aspect, the invention features, a method for reducing glucose-6-phosphatase levels in a subject, e.g., a mammal, such as a human. The method includes administering to a subject an iRNA agent which targets glucose-6-phosphatase. The iRNA agent can be a dsRNA that has a sequence that is substantially identical to a sequence of the glucose-6-phosphatase gene.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Table 7. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 7. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Table 7.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Table 7. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Table 7 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Table 7_but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

5

10

15

20

25

30

Table 7 refers to sequences from human glucose-6-phosphatase. Table 8 refers to sequences from rat glucose-6-phosphatase. The sequences from table 8 can be used, e.g., in experiments with rats or cultured rat cells.

In a preferred embodiment iRNA agent can have any architecture, e.g., architecture described herein. E.g., it can be incorporated into an iRNA agent having an overhang structure, overall length, hairpin vs. two-strand structure, as described herein. In addition, monomers other than naturally occurring ribonucleotides can be used in the selected iRNA agent.

The iRNA that targets glucose-6-phosphatase can be administered in an amount sufficient to reduce expression of glucose-6-phosphatase mRNA.

The iRNA that targets glucose-6-phosphatase can be administered to a subject to inhibit hepatic glucose production, for the treatment of glucose-metabolism-related disorders, such as diabetes, e.g., type-2-diabetes mellitus. The iRNA agent can be administered to an individual at risk for the disorder to delay onset of the disorder or a symptom of the disorder.

In other embodiments, iRNA agents having sequence similarity to the following genes can also be used to inhibit hepatic glucose production. These other genes include "forkhead homologue in rhabdomyosarcoma (FKHR); glucagon; glucagon receptor; glycogen phosphorylase; PPAR-Gamma Coactivator (PGC-1); Fructose-1,6-bisphosphatase; glucose-6-phosphate locator; glucokinase inhibitory regulatory protein; and phosphoenolpyruvate carboxykinase (PEPCK).

In one embodiment, the iRNA agent can be targeted to the liver, and RNA expression levels of the targeted genes are decreased in the liver following administration of the iRNA agent.

The iRNA agent can be one described herein, and can be a dsRNA that has a sequence that is substantially identical to a sequence of a target gene. The iRNA can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length

5

10

15

20

25

30

In another aspect, the invention features a method for reducing beta-catenin levels in a subject, e.g., a mammal, such as a human. The method includes administering to a subject an iRNA agent that targets beta-catenin. The iRNA agent can be one described herein, and can be a dsRNA that has a sequence that is substantially identical to a sequence of the beta-catenin gene. The iRNA can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Table 9. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 9. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Table 9.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Table 9. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 9. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Table 9.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Table 9. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Table 9as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Table 9 but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

5

10

15

20

25

30

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

The iRNA agent that targets beta-catenin can be administered in an amount sufficient to reduce expression of beta-catenin mRNA. In one embodiment, the iRNA agent is administered in an amount sufficient to reduce expression of beta-catenin protein (e.g., by at least 2%, 4%, 6%, 10%, 15%, 20%).

The iRNA agent that targets beta-catenin can be administered to a subject, wherein the subject is suffering from a disorder characterized by unwanted cellular proliferation in the liver or of liver tissue, e.g., metastatic tissue originating from the liver. Examples include, a benign or malignant disorder, e.g., a cancer, e.g., a hepatocellular carcinoma (HCC), hepatic metastasis, or hepatoblastoma.

The iRNA agent can be administered to an individual at risk for the disorder to delay onset of the disorder or a symptom of the disorder

In a preferred embodiment the iRNA agent is administered repeatedly.

Administration of an iRNA agent can be carried out over a range of time periods. It can be administered daily, once every few days, weekly, or monthly. The timing of administration can vary from patient to patient, depending on such factors as the severity of a patient's symptoms. For example, an effective dose of an iRNA agent can be administered to a patient once a month for an indefinite period of time, or until the patient no longer requires therapy. In addition, sustained release compositions containing an iRNA agent can be used to maintain a relatively constant dosage in the patient's blood.

In one embodiment, the iRNA agent can be targeted to the liver, and beta-catenin expression level are decreased in the liver following administration of the beta-catenin iRNA

agent. For example, the iRNA agent can be complexed with a moiety that targets the liver, e.g., an antibody or ligand that binds a receptor on the liver.

5

10

15

20

25

30

In another aspect, the invention provides methods to treat liver disorders, e.g., disorders characterized by unwanted cell proliferation, hematological disorders, disorders characterized by inflammation disorders, and metabolic or viral diseases or disorders of the liver. A proliferation disorder of the liver can be, for example, a benign or malignant disorder, e.g., a cancer, e.g., a hepatocellular carcinoma (HCC), hepatic metastasis, or hepatoblastoma. A hepatic hematology or inflammation disorder can be a disorder involving clotting factors, a complement-mediated inflammation or a fibrosis, for example. Metabolic diseases of the liver can include dyslipidemias, and irregularities in glucose regulation. Viral diseases of the liver can include hepatitis C or hepatitis B. In one embodiment, a liver disorder is treated by administering one or more iRNA agents that have a sequence that is substantially identical to a sequence in a gene involved in the liver disorder.

In one embodiment an iRNA agent to treat a liver disorder has a sequence which is substantially identical to a sequence of the beta-catenin or c-jun gene. In another embodiment, such as for the treatment of hepatitis C or hepatitis B, the iRNA agent can have a sequence that is substantially identical to a sequence of a gene of the hepatitis C virus or the hepatitis B virus, respectively. For example, the iRNA agent can target the 5' core region of HCV. This region lies just downstream of the ribosomal toe-print straddling the initiator methionine. Alternatively, an iRNA agent of the invention can target any one of the nonstructural proteins of HCV: NS3, 4A, 4B, 5A, or 5B. For the treatment of hepatitis B, an iRNA agent can target the protein X (HBx) gene, for example.

In a preferred embodiment, the subject is treated with an iRNA agent which targets one of the sequences listed in Table 10. In a preferred embodiment it targets both sequences of a palindromic pair provided in Table 10. The most preferred targets are listed in descending order of preferrability, in other words, the more preferred targets are listed earlier in Table 10.

In a preferred embodiment the iRNA agent will include regions, or strands, which are complementary to a pair in Table 10. In a preferred embodiment the iRNA agent will include regions complementary to the palindromic pairs of Table 10 as a duplex region.

In a preferred embodiment the duplex region of the iRNA agent will target a sequence listed in Table 10, but will not be perfectly complementary with the target sequence, e.g., it will not be complementary at at least 1 base pair. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, in total, or per strand, which do not hybridize with the target sequence

5

10

15

20

25

30

In a preferred embodiment the iRNA agent includes overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

In another aspect, an iRNA agent can be administered to modulate blood clotting, e.g., to reduce the tendency to form a blood clot. In a preferred embodiment the iRNA agent targets Factor V expression, preferably in the liver. One or more iRNA agents can be used to target a wild type allele, a mutant allele, e.g., the Leiden Factor V allele, or both. Such administration can be used to treat or prevent venous thrombosis, e.g., deep vein thrombosis or pulmonary embolism, or another disorder caused by elevated or otherwise unwanted expression of Factor V, in, e.g., the liver. In one embodiment the iRNA agent can treat a subject, e.g., a human who has Factor V Leiden or other genetic trait associated with an unwanted tendency to form blood clots.

In a preferred embodiment administration of an iRNA agent which targets Factor V is with the administration of a second treatment, e.g, a treatment which reduces the tendency of the blood to clot, e.g., the administration of heparin or of a low molecular weight heparin.

In one embodiment, the iRNA agent that targets Factor V can be used as a prophylaxis in patients, e.g., patients with Factor V Leiden, who are placed at risk for a thrombosis, e.g., those about to undergo surgery, in particular those about to undergo high-risk surgical procedures known to be associated with formation of venous thrombosis, those about to undergo a prolonged period of relative inactivity, e.g., on a motor vehicle, train or airplane flight, e.g., a flight or other trip lasting more than three or five hours. Such a treatment can be an adjunct to the therapeutic use of low molecular weight (LMW) heparin prophylaxis.

In another embodiment, the iRNA agent that targets Factor V can be administered to patients with Factor V Leiden to treat deep vein thrombosis (DVT) or pulmonary embolism (PE). Such a treatment can be an adjunct to (or can replace) therapeutic uses of heparin or coumadin. The treatment can be administered by inhalation or generally by pulmonary routes.

In a preferred embodiment, an iRNA agent administered to treat a liver disorder is targeted to the liver. For example, the iRNA agent can be complexed with a targeting moiety, e.g., an antibody or ligand that recognizes a liver-specific receptor.

5

10

15

20

25

30

The invention also includes preparations, including substantially pure or pharmaceutically acceptable preparations of iRNA agents which silence any of the genes discussed herein and in particular for any of apoB-100, glucose-6-phosphatase, beta-catenin, factor V, or any of the HVC genes discussed herein.

The methods and compositions of the invention, e.g., the methods and compositions to treat diseases and disorders of the liver described herein, can be used with any of the iRNA agents described. In addition, the methods and compositions of the invention can be used for the treatment of any disease or disorder described herein, and for the treatment of any subject, e.g., any animal, any mammal, such as any human.

In another aspect, the invention features, a method of selecting two sequences or strands for use in an iRNA agent. The method includes:

providing a first candidate sequence and a second candidate sequence;

determining the value of a parameter which is a function of the number of palindromic pairs between the first and second sequence, wherein a palindromic pair is a nucleotide on said first sequence which, when the sequences are aligned in anti-parallel orientation, will hybridize with a nucleotide on said second sequence;

comparing the number with a predetermined reference value, and if the number has a predetermined relationship with the reference, e.g., if it is the same or greater, selecting the sequences for use in an iRNA agent. In most cases each of the two sequences will be completely complementary with a target sequence (though as described elsewhere herein that may not always be the case, there may not be perfect complementarity with one or both of the target sequences) and will have sufficient complementarity with each other to form a duplex. The parameter can be derived e.g., by directly determining the number of

palindromic pairs, e.g., by inspection or by the use of a computer program which compares or analyses sequence. The parameter can also be determined less directly, and include e.g., calculation of or measurement of the Tm or other value related to the free energy of association or dissociation of a duplex.

In a preferred embodiment the determination can be performed on a target sequence, e.g., a genomic sequence. In such embodiments the selected sequence is converted to its complement in the iRNA agent.

5

10

15

20

25

30

In a preferred embodiment the first and second sequences are selected from the sequence of a single target gene. In other embodiments the first sequence is selected from the sequence of a first target gene and the second sequence is selected from the target of a second target gene.

In a preferred embodiment the method includes comparing blocks of sequence, e.g., blocks which are between 15 and 25 nucleotides in length, and preferably 19, 20, or 21, and most preferably 19 nucleotides in length, to determine if they are suitable for use, e.g., if they possess sufficient palindromic pairs.

In a preferred embodiment the first and second sequences are divided into a plurality of regions, e.g., terminal regions and a middle region disposed between the terminal regions and where in the reference value, or the predetermined relationship to the reference value, is different for at least two regions. E.g., the first and second sequences, when aligned in anti-parallel orientation, are divided into terminal regions each of a selected number of base pairs, e.g., 2, 3, 4, 5, or 6, and a middle region, and the reference value for the terminal regions is higher than for the middle regions. In other words, a higher number or proportion of palindromic pairs is required in the terminal regions.

In a preferred embodiment the first and second sequences are gene sequences thus the complements of the sequences will be used in a iRNA agent.

In a preferred embodiment hybridize means a classical Watson-Crick pairing. In other embodiments hybridize can include non-Watson-Crick paring, e.g., parings seen in micro RNA precursors.

In a preferred embodiment the method includes the addition of nucleotides to form overhangs, e.g., 3' or 5' overhangs, preferably one or more 3' overhangs. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The

overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

In a preferred embodiment the method is used to select all or part of a iRNA agent. The selected sequences can be incorporated into an iRNA agent having any architecture, e.g., an architecture described herein. E.g., it can be incorporated into an iRNA agent having an overhang structure, overall length, hairpin vs. two-strand structure, as described herein. In addition, monomers other than naturally occurring ribonucleotides can be used in the selected iRNA agent.

5

10

15

20

25

30

Preferred iRNA agents of this method will target genes expressed in the liver, e.g., one of the genes disclosed herein, e.g., apo B, Beta catenin, an HVC gene, or glucose 6 phosphatase.

In another aspect, the invention features, an iRNA agent, determined, made, or selected by a method described herein.

The methods and compositions of the invention, e.g., the methods and iRNA compositions to treat liver-based diseases described herein, can be used with any dosage and/or formulation described herein, as well as with any route of administration described herein.

The invention also provides for the use of an iRNA agent which includes monomers which can form other than a canonical Watson-Crick pairing with another monomer, e.g., a monomer on another strand.

The use of "other than canonical Watson-Crick pairing" between monomers of a duplex can be used to control, often to promote, melting of all or part of a duplex. The iRNA agent can include a monomer at a selected or constrained position that results in a first level of stability in the iRNA agent duplex (e.g., between the two separate molecules of a double stranded iRNA agent) and a second level of stability in a duplex between a sequence of an iRNA agent and another sequence molecule, e.g., a target or off-target sequence in a subject. In some cases the second duplex has a relatively greater level of stability, e.g., in a duplex between an anti-sense sequence of an iRNA agent and a target mRNA. In this case one or more of the monomers, the position of the monomers in the iRNA agent, and the target sequence (sometimes referred to herein as the selection or constraint parameters), are

selected such that the iRNA agent duplex is has a comparatively lower free energy of association (which while not wishing to be bound by mechanism or theory, is believed to contribute to efficacy by promoting disassociation of the duplex iRNA agent in the context of the RISC) while the duplex formed between an anti-sense targeting sequence and its target sequence, has a relatively higher free energy of association (which while not wishing to be bound by mechanism or theory, is believed to contribute to efficacy by promoting association of the anti-sense sequence and the target RNA).

In other cases the second duplex has a relatively lower level of stability, e.g., in a duplex between a sense sequence of an iRNA agent and an off-target mRNA. In this case one or more of the monomers, the position of the monomers in the iRNA agent, and an off-target sequence, are selected such that the iRNA agent duplex is has a comparatively higher free energy of association while the duplex formed between a sense targeting sequence and its off-target sequence, has a relatively lower free energy of association (which while not wishing to be bound by mechanism or theory, is believed to reduce the level of off-target silencing by contribute to efficacy by promoting disassociation of the duplex formed by the sense strand and the off-target sequence).

10

15

20

25

30

Thus, inherent in the structure of the iRNA agent is the property of having a first stability for the intra-iRNA agent duplex and a second stability for a duplex formed between a sequence from the iRNA agent and another RNA, e.g., a target mRNA. As discussed above, this can be accomplished by judicious selection of one or more of the monomers at a selected or constrained position, the selection of the position in the duplex to place the selected or constrained position, and selection of the sequence of a target sequence (e.g., the particular region of a target gene which is to be targeted). The iRNA agent sequences which satisfy these requirements are sometimes referred herein as constrained sequences. Exercise of the constraint or selection parameters can be, e.g., by inspection, or by computer assisted methods. Exercise of the parameters can result in selection of a target sequence and of particular monomers to give a desired result in terms of the stability, or relative stability, of a duplex.

Thus, in one aspect, the invention features, an iRNA agent which includes: a first sequence which targets a first target region and a second sequence which targets a second target region. The first and second sequences have sufficient complementarity to each other

to hybridize, e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In a duplex region of the iRNA agent, at a selected or constrained position, the first target region has a first monomer, and the second target region has a second monomer. The first and second monomers occupy complementary or corresponding positions. One, and preferably both monomers are selected such that the stability of the pairing of the monomers contribute to a duplex between the first and second sequence will differ form the stability of the pairing between the first or second sequence with a target sequence.

5

10

15

20

25

30

Usually, the monomers will be selected (selection of the target sequence may be required as well) such that they form a pairing in the iRNA agent duplex which has a lower free energy of dissociation, and a lower Tm, than will be possessed by the paring of the monomer with its complementary monomer in a duplex between the iRNA agent sequence and a target RNA duplex.

The constraint placed upon the monomers can be applied at a selected site or at more than one selected site. By way of example, the constraint can be applied at more than 1, but less than 3, 4, 5, 6, or 7 sites in an iRNA agent duplex.

A constrained or selected site can be present at a number of positions in the iRNA agent duplex. E.g., a constrained or selected site can be present within 3, 4, 5, or 6 positions from either end, 3' or 5' of a duplexed sequence. A constrained or selected site can be present in the middle of the duplex region, e.g., it can be more than 3, 4, 5, or 6, positions from the end of a duplexed region.

The iRNA agent can be selected to target a broad spectrum of genes, including any of the genes described herein.

In a preferred embodiment the iRNA agent has an architecture (architecture refers to one or more of overall length, length of a duplex region, the presence, number, location, or length of overhangs, sing strand versus double strand form) described herein.

E.g., the iRNA agent can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length and there is a duplex region of about 19 pairs. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In some embodiment the duplex region of the iRNA agent will have, mismatches, in addition to the selected or constrained site or sites. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, which do not form canonical Watson-Crick pairs or which do not hybridize. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

The monomers can be selected such that: first and second monomers are naturally occurring ribonucleotides, or modified ribonucleotides having naturally occurring bases, and when occupying complementary sites either do not pair and have no substantial level of H-bonding, or form a non canonical Watson-Crick pairing and form a non-canonical pattern of H bonding, which usually have a lower free energy of dissociation than seen in a canonical Watson-Crick pairing, or otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing. When one (or both) of the iRNA agent sequences duplexes with a target, the first (or second) monomer forms a canonical Watson-Crick pairing with the base in the complementary position on the target, or forms a non canonical Watson-Crick pairing having a higher free energy of dissociation and a higher Tm than seen in the paring in the iRNA agent. The classical Watson-Crick pairings are as follows: A-T, G-C, and A-U. Non-canonical Watson-Crick pairings are known in the art and can include, U-U, G-G, G-Atrans, G-Acis, and GU.

The monomer in one or both of the sequences is selected such that, it does not pair, or forms a pair with its corresponding monomer in the other sequence which minimizes stability (e.g., the H bonding formed between the monomer at the selected site in the one sequence and its monomer at the corresponding site in the other sequence are less stable than the H bonds formed by the monomer one (or both) of the sequences with the respective target sequence. The monomer in one or both strands is also chosen to promote stability in one or both of the duplexes made by a strand and its target sequence. E.g., one or more of the monomers and the target sequences are selected such that at the selected or constrained position, there is are no H bonds formed, or a non canonical pairing is formed in the iRNA agent duplex, or otherwise they otherwise pair to give a free energy of association which is

less than that of a preselected value or is less, e.g., than that of a canonical pairing, but when one (or both) sequences form a duplex with the respective target, the pairing at the selected or constrained site is a canonical Watson-Crick pairing.

The inclusion of such a monomers will have one or more of the following effects: it will destabilize the iRNA agent duplex, it will destabilize interactions between the sense sequence and unintended target sequences, sometimes referred to as off-target sequences, and duplex interactions between the a sequence and the intended target will not be destabilized.

By way of example:

5

10

15

20

25

30

the monomer at the selected site in the first sequence includes an A (or a modified base which pairs with T), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., G. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

the monomer at the selected site in the first sequence includes U (or a modified base which pairs with A), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., U or G. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes a G (or a modified base which pairs with C), and the monomer in at the selected position in the second sequence is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., G, Acis, Atrans, or U. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a

monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

The monomer at the selected site in the first sequence includes a C (or a modified base which pairs with G), and the monomer in at the selected position in the second sequence is chosen a monomer which will not pair or which will form a non-canonical pairing. These will be useful in applications wherein the target sequence for the first sequence has a T at the selected position. In embodiments where both target duplexes are stabilized it is useful wherein the target sequence for the second strand has a monomer which will form a canonical Watson-Crick pairing with the monomer selected for the selected position in the second strand.

5

10

15

20

25

30

In another embodiment a non-naturally occurring or modified monomer or monomers are chosen such that when a non-naturally occurring or modified monomer occupies a positions at the selected or constrained position in an iRNA agent they exhibit a first free energy of dissociation and when one (or both) of them pairs with a naturally occurring monomer, the pair exhibits a second free energy of dissociation, which is usually higher than that of the pairing of the first and second monomers. E.g., when the first and second monomers occupy complementary positions they either do not pair and have no substantial level of H-bonding, or form a weaker bond than one of them would form with a naturally occurring monomer, and reduce the stability of that duplex, but when the duplex dissociates at least one of the strands will form a duplex with a target in which the selected monomer will promote stability, e.g., the monomer will form a more stable pair with a naturally occurring monomer in the target sequence than the pairing it formed in the iRNA agent.

An example of such a pairing is 2-amino A and either of a 2-thio pyrimidine analog of U or T.

When placed in complementary positions of the iRNA agent these monomers will pair very poorly and will minimize stability. However, a duplex is formed between 2 amino A and the U of a naturally occurring target, or a duplex is between 2-thio U and the A of a naturally occurring target or 2-thio T and the A of a naturally occurring target will have a relatively higher free energy of dissociation and be more stable. This is shown in the FIG. 1.

The pair shown in FIG. 1 (the 2-amino A and the 2-s U and T) is exemplary. In another embodiment, the monomer at the selected position in the sense strand can be a

universal pairing moiety. A universal pairing agent will form some level of H bonding with more than one and preferably all other naturally occurring monomers. An example of a universal pairing moiety is a monomer which includes 3-nitro pyrrole. (Examples of other candidate universal base analogs can be found in the art, e.g., in Loakes, 2001, NAR 29: 2437-2447, hereby incorporated by reference. Examples can also be found in the section on Universal Bases below.) In these cases the monomer at the corresponding position of the anti-sense strand can be chosen for its ability to form a duplex with the target and can include, e.g., A, U, G, or C.

5

10

15

20

25

30

In another aspect, the invention features, an iRNA agent which includes: a sense sequence, which preferably does not target a sequence in a subject, and an anti-sense sequence, which targets a target gene in a subject. The sense and anti-sense sequences have sufficient complementarity to each other to hybridize hybridize, e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In a duplex region of the iRNA agent, at a selected or constrained position, the monomers are selected such that:

the monomer in the sense sequence is selected such that, it does not pair, or forms a pair with its corresponding monomer in the anti-sense strand which minimizes stability (e.g., the H bonding formed between the monomer at the selected site in the sense strand and its monomer at the corresponding site in the anti-sense strand are less stable than the H bonds formed by the monomer of the anti-sense sequence and its canonical Watson-Crick partner or, if the monomer in the anti-sense strand includes a modified base, the natural analog of the modified base and its canonical Watson-Crick partner);

the monomer is in the corresponding position in the anti-sense strand is selected such that it maximizes the stability of a duplex it forms with the target sequence, e.g., it forms a canonical Watson-Crick paring with the monomer in the corresponding position on the target stand;

optionally, the monomer in the sense sequence is selected such that, it does not pair, or forms a pair with its corresponding monomer in the anti-sense strand which minimizes stability with an off-target sequence.

The inclusion of such a monomers will have one or more of the following effects: it will destabilize the iRNA agent duplex, it will destabilize interactions between the sense

sequence and unintended target sequences, sometimes referred to as off-target sequences, and duplex interactions between the anti-sense strand and the intended target will not be destabilized.

The constraint placed upon the monomers can be applied at a selected site or at more than one selected site. By way of example, the constraint can be applied at more than 1, but less than 3, 4, 5, 6, or 7 sites in an iRNA agent duplex.

5

10

15

20

25

30

A constrained or selected site can be present at a number of positions in the iRNA agent duplex. E.g., a constrained or selected site can be present within 3, 4, 5, or 6 positions from either end, 3' or 5' of a duplexed sequence. A constrained or selected site can be present in the middle of the duplex region, e.g., it can be more than 3, 4, 5, or 6, positions from the end of a duplexed region.

The iRNA agent can be selected to target a broad spectrum of genes, including any of the genes described herein.

In a preferred embodiment the iRNA agent has an architecture (architecture refers to one or more of overall length, length of a duplex region, the presence, number, location, or length of overhangs, sing strand versus double strand form) described herein.

E.g., the iRNA agent can be less than 30 nucleotides in length, e.g., 21-23 nucleotides. Preferably, the iRNA is 21 nucleotides in length and there is a duplex region of about 19 pairs. In one embodiment, the iRNA is 21 nucleotides in length, and the duplex region of the iRNA is 19 nucleotides. In another embodiment, the iRNA is greater than 30 nucleotides in length.

In some embodiment the duplex region of the iRNA agent will have, mismatches, in addition to the selected or constrained site or sites. Preferably it will have no more than 1, 2, 3, 4, or 5 bases, which do not form canonical Watson-Crick pairs or which do not hybridize. Overhangs are discussed in detail elsewhere herein but are preferably about 2 nucleotides in length. The overhangs can be complementary to the gene sequences being targeted or can be other sequence. TT is a preferred overhang sequence. The first and second iRNA agent sequences can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

One or more selection or constraint parameters can be exercised such that: monomers at the selected site in the sense and anti-sense sequences are both naturally occurring

ribonucleotides, or modified ribonucleotides having naturally occurring bases, and when occupying complementary sites in the iRNA agent duplex either do not pair and have no substantial level of H-bonding, or form a non-canonical Watson-Crick pairing and thus form a non-canonical pattern of H bonding, which generally have a lower free energy of dissociation than seen in a Watson-Crick pairing, or otherwise pair to give a free energy of association which is less than that of a preselected value or is less, e.g., than that of a canonical pairing. When one, usually the anti-sense sequence of the iRNA agent sequences forms a duplex with another sequence, generally a sequence in the subject, and generally a target sequence, the monomer forms a classic Watson-Crick pairing with the base in the complementary position on the target, or forms a non-canonical Watson-Crick pairing having a higher free energy of dissociation and a higher Tm than seen in the paring in the iRNA agent. Optionally, when the other sequence of the iRNA agent, usually the sense sequences forms a duplex with another sequence, generally a sequence in the subject, and generally an off-target sequence, the monomer fails to forms a canonical Watson-Crick pairing with the base in the complementary position on the off target sequence, e.g., it forms or forms a noncanonical Watson-Crick pairing having a lower free energy of dissociation and a lower Tm.

By way of example:

5

10

15

20

25

30

the monomer at the selected site in the anti-sense stand includes an A (or a modified base which pairs with T), the corresponding monomer in the target is a T, and the sense strand is chosen from a base which will not pair or which will form a noncanonical pair, e.g., G;

the monomer at the selected site in the anti-sense stand includes a U (or a modified base which pairs with A), the corresponding monomer in the target is an A, and the sense strand is chosen from a monomer which will not pair or which will form a non-canonical pairing, e.g., U or G;

the monomer at the selected site in the anti-sense stand includes a C (or a modified base which pairs with G), the corresponding monomer in the target is a G, and the sense strand is chosen a monomer which will not pair or which will form a non-canonical pairing, e.g., G, A_{cis} , A_{trans} , or U; or

the monomer at the selected site in the anti-sense stand includes a G (or a modified base which pairs with C), the corresponding monomer in the target is a C, and the sense

strand is chosen from a monomer which will not pair or which will form a non-canonical pairing.

5

10

15

20

25

30

In another embodiment a non-naturally occurring or modified monomer or monomers is chosen such that when it occupies complementary a position in an iRNA agent they exhibit a first free energy of dissociation and when one (or both) of them pairs with a naturally occurring monomer, the pair exhibits a second free energy of dissociation, which is usually higher than that of the pairing of the first and second monomers. E.g., when the first and second monomers occupy complementary positions they either do not pair and have no substantial level of H-bonding, or form a weaker bond than one of them would form with a naturally occurring monomer, and reduce the stability of that duplex, but when the duplex dissociates at least one of the strands will form a duplex with a target in which the selected monomer will promote stability, e.g., the monomer will form a more stable pair with a naturally occurring monomer in the target sequence than the pairing it formed in the iRNA agent.

An example of such a pairing is 2-amino A and either of a 2-thio pyrimidine analog of U or T. As is discussed above, when placed in complementary positions of the iRNA agent these monomers will pair very poorly and will minimize stability. However, a duplex is formed between 2 amino A and the U of a naturally occurring target, or a duplex is formed between 2-thio U and the A of a naturally occurring target or 2-thio T and the A of a naturally occurring target will have a relatively higher free energy of dissociation and be more stable.

The monomer at the selected position in the sense strand can be a universal pairing moiety. A universal pairing agent will form some level of H bonding with more than one and preferably all other naturally occurring monomers. An examples of a universal pairing moiety is a monomer which includes 3-nitro pyrrole. Examples of other candidate universal base analogs can be found in the art, e.g., in Loakes, 2001, NAR 29: 2437-2447, hereby incorporated by reference. In these cases the monomer at the corresponding position of the anti-sense strand can be chosen for its ability to form a duplex with the target and can include, e.g., A, U, G, or C.

In another aspect, the invention features, an iRNA agent which includes:

a sense sequence, which preferably does not target a sequence in a subject, and an anti-sense sequence, which targets a plurality of target sequences in a subject, wherein the targets differ in sequence at only 1 or a small number, e.g., no more than 5, 4, 3 or 2 positions. The sense and anti-sense sequences have sufficient complementarity to each other to hybridize, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme. In the sequence of the anti-sense strand of the iRNA agent is selected such that at one, some, or all of the positions which correspond to positions that differ in sequence between the target sequences, the anti-sense strand will include a monomer which will form H-bonds with at least two different target sequences. In a preferred example the anti-sense sequence will include a universal or promiscuous monomer, e.g., a monomer which includes 5-nitro pyrrole, 2-amino A, 2-thio U or 2-thio T, or other universal base referred to herein.

In a preferred embodiment the iRNA agent targets repeated sequences (which differ at only one or a small number of positions from each other) in a single gene, a plurality of genes, or a viral genome, e.g., the HCV genome.

An embodiment is illustrated in the FIGs. 2 and 3.

5

10

15

20

25

30

In another aspect, the invention features, determining, e.g., by measurement or calculation, the stability of a pairing between monomers at a selected or constrained position in the iRNA agent duplex, and preferably determining the stability for the corresponding pairing in a duplex between a sequence form the iRNA agent and another RNA, e.g., a target sequence. The determinations can be compared. An iRNA agent thus analyzed can be used in the development of a further modified iRNA agent or can be administered to a subject. This analysis can be performed successively to refine or design optimized iRNA agents.

In another aspect, the invention features, a kit which includes one or more of the following an iRNA described herein, a sterile container in which the iRNA agent is disclosed, and instructions for use.

In another aspect, the invention features, an iRNA agent containing a constrained sequence made by a method described herein. The iRNA agent can target one or more of the genes referred to herein.

iRNA agents having constrained or selected sites, e.g., as described herein, can be used in any way described herein. Accordingly, they iRNA agents having constrained or

selected sites, e.g., as described herein, can be used to silence a target, e.g., in any of the methods described herein and to target any of the genes described herein or to treat any of the disorders described herein. iRNA agents having constrained or selected sites, e.g., as described herein, can be incorporated into any of the formulations or preparations, e.g., pharmaceutical or sterile preparations described herein. iRNA agents having constrained or selected sites, e.g., as described herein, can be administered by any of the routes of administration described herein.

5

10

15

20

The term "other than canonical Watson-Crick pairing" as used herein, refers to a pairing between a first monomer in a first sequence and a second monomer at the corresponding position in a second sequence of a duplex in which one or more of the following is true: (1) there is essentially no pairing between the two, e.g., there is no significant level of H bonding between the monomers or binding between the monomers does not contribute in any significant way to the stability of the duplex; (2) the monomers are a non-canonical paring of monomers having a naturally occurring bases, i.e., they are other than A-T, A-U, or G-C, and they form monomer-monomer H bonds, although generally the H bonding pattern formed is less strong than the bonds formed by a canonical pairing; or (3) at least one of the monomers includes a non-naturally occurring bases and the H bonds formed between the monomers is, preferably formed is less strong than the bonds formed by a canonical pairing, namely one or more of A-T, A-U, G-C.

The term "off-target" as used herein, refers to a sequence other than the sequence to be silenced.

Universal Bases: "wild-cards"; shape-based complementarity

Bi-stranded, multisite replication of a base pair between difluorotoluene and adenine: confirmation by 'inverse' sequencing. Liu, D.; Moran, S.; Kool, E. T. Chem. Biol., 1997, 4, 919-926)

(Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I. Morales, J. C.; Kool, E. T. *Biochemistry*, 2000, 39, 2626-2632)

5 (Selective and stable DNA base pairing without hydrogen bonds. Matray, T, J.; Kool, E. T. J. Am. Chem. Soc., 1998, 120, 6191-6192)

10

(Difluorotoluene, a nonpolar isostere for thymine, codes specifically and efficiently for adenine in DNA replication. Moran, S. Ren, R. X.-F.; Rumney IV, S.; Kool, E. T. J. Am. Chem. Soc., 1997, 119, 2056-2057)

(Structure and base pairing properties of a replicable nonpolar isostere for deoxyadenosine. Guckian,

K. M.; Morales, J. C.; Kool, E. T. J. Org. Chem., 1998, 63, 9652-9656)

5

5

(Universal bases for hybridization, replication and chain termination. Berger, M.; Wu. Y.; Ogawa, A. K.; McMinn, D. L.; Schultz, P.G.; Romesberg, F. E. Nucleic Acids Res., 2000, 28, 2911-2914)

(1. Efforts toward the expansion of the genetic alphabet: Information storage and replication with unnatural hydrophobic base pairs. Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2000, 122, 3274-3287. 2. Rational design of an unnatural base pair with increased kinetic selectivity. Ogawa, A. K.; Wu. Y.; Berger, M.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2000, 122, 8803-8804)

5

10

15

(Efforts toward expansion of the genetic alphabet: replication of DNA with three base pairs. Tae, E. L.; Wu, Y.; Xia, G.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2001, 123, 7439-7440)

(1. Efforts toward expansion of the genetic alphabet: Optimization of interbase hydrophobic interactions. Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 2000, 122, 7621-7632. 2. Efforts toward expansion of genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. McMinn, D. L.; Ogawa. A. K.; Wu, Y.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc., 1999, 121, 11585-11586)

(A stable DNA duplex containing a non-hydrogen-bonding and non-shape complementary base couple: Interstrand stacking as the stability determining factor. Brotschi, C.; Haberli, A.; Leumann, C, J. Angew. Chem. Int. Ed., 2001, 40, 3012-3014)

(2,2'-Bipyridine Ligandoside: A novel building block for modifying DNA with intra-duplex metal complexes. Weizman, H.; Tor, Y. J. Am. Chem. Soc., 2001, 123, 3375-3376)

(Minor groove hydration is critical to the stability of DNA duplexes. Lan, T.; McLaughlin, L. W. J. Am. Chem. Soc., 2000, 122, 6512-13)

(Effect of the Universal base 3-nitropyrrole on the selectivity of neighboring natural bases. Oliver, J. S.; Parker, K. A.; Suggs, J. W. Organic Lett., 2001, 3, 1977-1980. 2. Effect of the 1-(2'-deoxy-β-D-ribofuranosyl)-3-nitropyrrol residue on the stability of DNA duplexes and triplexes. Amosova, O.; George J.; Fresco, J. R. Nucleic Acids Res., 1997, 25, 1930-1934. 3. Synthesis, structure and deoxyribonucleic acid sequencing with a universal nucleosides: 1-(2'-deoxy-β-D-ribofuranosyl)-3-nitropyrrole. Bergstrom, D. E.; Zhang, P.; Toma, P. H.; Andrews, P. C.; Nichols, R. J. Am. Chem. Soc., 1995, 117, 1201-1209)

(

10

5

(Model studies directed toward a general triplex DNA recognition scheme: a novel DNA base that binds a CG base-pair in an organic solvent. Zimmerman, S. C.; Schmitt, P. J. Am. Chem. Soc., 1995, 117, 10769-10770)

, DN

(A universal, photocleavable DNA base: nitropiperonyl 2'-deoxyriboside. J. Org. Chem., 2001, 66, 2067-2071)

15

(Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine. Nakatani, K.; Sando, S.; Saito, I. J. Am. Chem. Soc., 2000, 122, 2172-2177. b. Specific binding of 2-amino-1,8-naphthyridine into single guanine bulge as evidenced by photooxidation of GC doublet, Nakatani, K.; Sando, S.; Yoshida, K.; Saito, I. Bioorg. Med. Chem. Lett., 2001, 11, 335-337)

10

Other universal bases can have the following formulas:

$$R^{53}$$
 R^{54}
 R^{55}
 R^{55}
 R^{55}
 R^{55}
 R^{55}

$$R^{61} = R^{62} = R^{62} = R^{63} = R^{63} = R^{64} = R^{67} = R^{67} = R^{67} = R^{67} = R^{67} = R^{69} = R$$

$$R^{72}$$
 R^{68} R^{71} R^{70} R^{69} R^{69} .

wherein:

Q is N or CR⁴⁴;
 Q' is N or CR⁴⁵;
 Q'' is N or CR⁴⁷;
 Q''' is N or CR⁴⁹;
 Q^{iv} is N or CR⁵⁰;

 R^{44} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{45} forms –OCH₂O-;

 R^{45} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{44} or R^{46} forms -OCH₂O-;

5

10

15

20

25

30

 R^{46} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{45} or R^{47} forms –OCH₂O-;

 R^{47} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{46} or R^{48} forms –OCH2O-;

 R^{48} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, or when taken together with R^{47} forms –OCH2O-;

 $R^{49} R^{50}$, R^{51} , R^{52} , R^{53} , R^{54} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , R^{71} , and R^{72} are each independently selected from hydrogen, halo, hydroxy, nitro, protected hydroxy, NH_2 , NHR^b , or NR^bR^c , C_1 - C_6 alkyl, C_2 - C_6 alkynyl, C_6 - C_{10} aryl, C_6 - C_{10} heteroaryl, C_3 - C_8 heterocyclyl, $NC(O)R^{17}$, or $NC(O)R^o$;

 R^{55} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁶ forms a fused aromatic ring which may be optionally substituted;

 R^{56} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁵ forms a fused aromatic ring which may be optionally substituted;

 R^{17} is halo, NH₂, NHR^b, or NR^bR^c; R^b is C_1 - C_6 alkyl or a nitrogen protecting group; R^c is C_1 - C_6 alkyl; and

 R° is alkyl optionally substituted with halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR°, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R°.

Examples of universal bases include:

5

10

In one aspect, the invention features methods of producing iRNA agents, e.g., sRNA agents, e.g. an sRNA agent described herein, having the ability to mediate RNAi. These iRNA agents can be formulated for administration to a subject.

5

10

15

20

25

30

In another aspect, the invention features a method of administering an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, to a subject (e.g., a human subject). The method includes administering a unit dose of the iRNA agent, e.g., a sRNA agent, e.g., double stranded sRNA agent that (a) the double-stranded part is 19-25 nucleotides (nt) long, preferably 21-23 nt, (b) is complementary to a target RNA (e.g., an endogenous or pathogen target RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nucleotide long. In one embodiment, the unit dose is less than 1.4 mg per kg of bodyweight, or less than 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of bodyweight, and less than 200 nmole of RNA agent (e.g. about 4.4 x 10¹⁶ copies) per kg of bodyweight, or less than 1500, 750, 300, 150, 75, 15, 7.5, 1.5, 0.75, 0.15, 0.075, 0.015, 0.0075, 0.00015 nmole of RNA agent per kg of bodyweight.

The defined amount can be an amount effective to treat or prevent a disease or disorder, e.g., a disease or disorder associated with the target RNA. The unit dose, for example, can be administered by injection (e.g., intravenous or intramuscular), an inhaled dose, or a topical application. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight.

In a preferred embodiment, the unit dose is administered less frequently than once a day, e.g., less than every 2, 4, 8 or 30 days. In another embodiment, the unit dose is not administered with a frequency (e.g., not a regular frequency). For example, the unit dose may be administered a single time.

In one embodiment, the effective dose is administered with other traditional therapeutic modalities. In one embodiment, the subject has a viral infection and the modality is an antiviral agent other than an iRNA agent, e.g., other than a double-stranded iRNA agent, or sRNA agent. In another embodiment, the subject has atherosclerosis and the effective dose of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, is administered in combination with, e.g., after surgical intervention, e.g., angioplasty.

In one embodiment, a subject is administered an initial dose and one or more maintenance doses of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent,

(e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). The maintenance dose or doses are generally lower than the initial dose, e.g., one-half less of the initial dose. A maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 µg to 1.4 mg/kg of body weight per day, e.g., 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of bodyweight per day. The maintenance doses are preferably administered no more than once every 5, 10, or 30 days.

5

10

15

20

25

30

In one embodiment, the iRNA agent pharmaceutical composition includes a plurality of iRNA agent species. In another embodiment, the iRNA agent species has sequences that are non-overlapping and non-adjacent to another species with respect to a naturally occurring target sequence. In another embodiment, the plurality of iRNA agent species is specific for different naturally occurring target genes. In another embodiment, the iRNA agent is allele specific.

The inventors have discovered that iRNA agents described herein can be administered to mammals, particularly large mammals such as nonhuman primates or humans in a number of ways.

In one embodiment, the administration of the iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, composition is parenteral, e.g. intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser that delivers a metered dose. Selected modes of delivery are discussed in more detail below.

The invention provides methods, compositions, and kits, for rectal administration or delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes a an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of a iRNA agent described herein, e.g., a iRNA agent having a double stranded region of less than 40,

and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered rectally, e.g., introduced through the rectum into the lower or upper colon. This approach is particularly useful in the treatment of, inflammatory disorders, disorders characterized by unwanted cell proliferation, e.g., polyps, or colon cancer.

In some embodiments the medication is delivered to a site in the colon by introducing a dispensing device, e.g., a flexible, camera-guided device similar to that used for inspection of the colon or removal of polyps, which includes means for delivery of the medication.

5

10

15

20

25

30

In one embodiment, the rectal administration of the iRNA agent is by means of an enema. The iRNA agent of the enema can be dissolved in a saline or buffered solution.

In another embodiment, the rectal administration is by means of a suppository. The suppository can include other ingredients, e.g., an excipient, e.g., cocoa butter or hydropropylmethylcellulose.

The invention also provides methods, compositions, and kits for oral delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of a iRNA described herein, e.g., a iRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered orally.

Oral administration can be in the form of tablets, capsules, gel capsules, lozenges, troches or liquid syrups. In a preferred embodiment the composition is applied topically to a surface of the oral cavity.

The invention also provides methods, compositions, and kits for buccal delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and

having one or two 1-3 nucleotide single strand 3' overhangs can be administered to the buccal cavity. The medication can be sprayed into the buccal cavity or applied directly, e.g., in a liquid, solid, or gel form to a surface in the buccal cavity. This administration is particularly desirable for the treatment of inflammations of the buccal cavity, e.g., the gums or tongue, e.g., in one embodiment, the buccal administration is by spraying into the cavity, e.g., without inhalation, from a dispenser, e.g., a metered dose spray dispenser that dispenses the pharmaceutical composition and a propellant.

5

10

15

20

25

30

The invention also provides methods, compositions, and kits for ocular delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of a iRNA agent described herein, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to ocular tissue.

The medications can be applied to the surface of the eye or nearby tissue, e.g., the inside of the eyelid. It can be applied topically, e.g., by spraying, in drops, as an eyewash, or an ointment. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser that delivers a metered dose.

The medication can also be administered to the interior of the eye, and can be introduced by a needle or other delivery device which can introduce it to a selected area or structure.

Ocular treatment is particularly desirable for treating inflammation of the eye or nearby tissue.

The invention also provides methods, compositions, and kits for delivery of iRNA agents described herein to or through the skin.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or

precursor thereof) described herein, e.g., a therapeutically effective amount of a iRNA agent described herein, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and one or two 1-3 nucleotide single strand 3' overhangs can be administered directly to the skin.

The medication can be applied topically or delivered in a layer of the skin, e.g., by the use of a microneedle or a battery of microneedles which penetrate into the skin, but preferably not into the underlying muscle tissue.

5

10

15

20

25

30

In one embodiment, the administration of the iRNA agent composition is topical. In another embodiment, topical administration delivers the composition to the dermis or epidermis of a subject. In other embodiments the topical administration is in the form of transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids or powders. A composition for topical administration can be formulated as a liposome, micelle, emulsion, or other lipophilic molecular assembly.

In another embodiment, the transdermal administration is applied with at least one penetration enhancer. In other embodiments, the penetration can be enhanced with iontophoresis, phonophoresis, and sonophoresis. In another aspect, the invention provides methods, compositions, devices, and kits for pulmonary delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent, e.g., a sRNA agent having a double stranded region of less than 40, preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered to the pulmonary system. Pulmonary administration can be achieved by inhalation or by the introduction of a delivery device into the pulmonary system, e.g., by introducing a delivery device which can dispense the medication.

The preferred method of pulmonary delivery is by inhalation. The medication can be provided in a dispenser which delivers the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.

Pulmonary delivery is effective not only for disorders which directly affect pulmonary tissue, but also for disorders which affect other tissue.

5

10

15

20

25

30

iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or aerosol for pulmonary delivery.

In another aspect, the invention provides methods, compositions, devices, and kits for nasal delivery of iRNA agents described herein. Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of iRNA agent, e.g., a sRNA agent having a double stranded region of less than 40 and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered nasally. Nasal administration can be achieved by introduction of a delivery device into the nose, e.g., by introducing a delivery device which can dispense the medication.

The preferred method of nasal delivery is by spray, aerosol, liquid, e.g., by drops, of by topical administration to a surface of the nasal cavity. The medication can be provided in a dispenser which delivery of the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.

Nasal delivery is effective not only for disorders which directly affect nasal tissue, but also for disorders which affect other tissue

iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or for nasal delivery.

In another embodiment, the iRNA agent is packaged in a viral natural capsid or in a chemically or enzymatically produced artificial capsid or structure derived therefrom.

In one aspect, of the invention, the dosage of a pharmaceutical composition including a iRNA agent is administered in order to alleviate the symptoms of a disease state, e.g., cancer or a cardiovascular disease.

In another aspect, gene expression in a subject is modulated by administering a pharmaceutical composition including a iRNA agent. In other embodiments, a subject is

treated with the pharmaceutical composition by any of the methods mentioned above. In another embodiment, the subject has cancer.

An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition can be administered as a liposome. For example, the composition can be prepared by a method that includes: (1) contacting a iRNA agent with an amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form a iRNA agent and cationic lipid complex. In one embodiment, the detergent is cholate, deoxycholate, lauryl sarcosine, octanoyl sucrose, CHAPS (3-[(3-cholamidopropyl)-di-methylamine]-2-hydroxyl-1-propane), novel-β-D-glucopyranoside, lauryl dimethylamine oxide, or octylglucoside. The iRNA agent can be an sRNA agent. The method can include preparing a composition that includes a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

10

15

20

25

30

In another aspect, a subject is treated by administering a defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) composition that is in a powdered form. In one embodiment, the powder is a collection of microparticles. In one embodiment, the powder is a collection of crystalline particles. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

In one aspect, a subject is treated by administering a defined amount of a iRNA agent composition that is prepared by a method that includes spray-drying, *i.e.* atomizing a liquid solution, emulsion, or suspension, immediately exposing the droplets to a drying gas, and collecting the resulting porous powder particles. The composition can include a plurality of iRNA agents, *e.g.*, specific for one or more different endogenous target RNAs. The method can include other features described herein.

In one aspect, the iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or

precursor thereof), is provided in a powdered, crystallized or other finely divided form, with or without a carrier, e.g., a micro- or nano-particle suitable for inhalation or other pulmonary delivery. In one embodiment, this includes providing an aerosol preparation, e.g., an aerosolized spray-dried composition. The aerosol composition can be provided in and/or dispensed by a metered dose delivery device.

5

10

15

20

25

30

In another aspect, a subject is treated for a condition treatable by inhalation. In one embodiment, this method includes aerosolizing a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition and inhaling the aerosolized composition. The iRNA agent can be an sRNA. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

In another aspect, the invention features a method of treating a subject that includes: administering a composition including an effective/defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), wherein the composition is prepared by a method that includes spray-drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques

In another aspect, the invention features a method that includes: evaluating a parameter related to the abundance of a transcript in a cell of a subject; comparing the evaluated parameter to a reference value; and if the evaluated parameter has a preselected relationship to the reference value (e.g., it is greater), administering a iRNA agent (or a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes a iRNA agent or precursor thereof) to the subject. In one embodiment, the iRNA agent includes a sequence that is complementary to the evaluated transcript. For example, the parameter can be a direct measure of transcript levels, a measure of a protein level, a disease or disorder symptom or characterization (e.g., rate of cell proliferation and/or tumor mass, viral load,)

In another aspect, the invention features a method that includes: administering a first amount of a composition that comprises an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a subject, wherein the iRNA agent includes a strand substantially complementary to a target nucleic acid; evaluating an activity associated with a protein encoded by the target nucleic acid; wherein the evaluation is used to determine if a second amount should be administered. In a preferred embodiment the method includes administering a second amount of the composition, wherein the timing of administration or dosage of the second amount is a function of the evaluating. The method can include other features described herein.

10

15

20

25

30

In another aspect, the invention features a method of administering a source of a double-stranded iRNA agent (ds iRNA agent) to a subject. The method includes administering or implanting a source of a ds iRNA agent, e.g., a sRNA agent, that (a) includes a double-stranded region that is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to a target RNA (e.g., an endogenous RNA or a pathogen RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the source releases ds iRNA agent over time, e.g. the source is a controlled or a slow release source, e.g., a microparticle that gradually releases the ds iRNA agent. In another embodiment, the source is a pump, e.g., a pump that includes a sensor or a pump that can release one or more unit doses.

In one aspect, the invention features a pharmaceutical composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) including a nucleotide sequence complementary to a target RNA, e.g., substantially and/or exactly complementary. The target RNA can be a transcript of an endogenous human gene. In one embodiment, the iRNA agent (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the pharmaceutical composition can be an emulsion, microemulsion, cream, jelly, or liposome.

In one example the pharmaceutical composition includes an iRNA agent mixed with a topical delivery agent. The topical delivery agent can be a plurality of microscopic vesicles. The microscopic vesicles can be liposomes. In a preferred embodiment the liposomes are cationic liposomes.

5

10

15

20

25

30

In another aspect, the pharmaceutical composition includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) admixed with a topical penetration enhancer. In one embodiment, the topical penetration enhancer is a fatty acid. The fatty acid can be arachidonic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C₁₋₁₀ alkyl ester, monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.

In another embodiment, the topical penetration enhancer is a bile salt. The bile salt can be cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycholic acid, glycholic acid, taurocholic acid, taurodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate, polyoxyethylene-9-lauryl ether or a pharmaceutically acceptable salt thereof.

In another embodiment, the penetration enhancer is a chelating agent. The chelating agent can be EDTA, citric acid, a salicyclate, a N-acyl derivative of collagen, laureth-9, an N-amino acyl derivative of a beta-diketone or a mixture thereof.

In another embodiment, the penetration enhancer is a surfactant, e.g., an ionic or nonionic surfactant. The surfactant can be sodium lauryl sulfate, polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether, a perfluorchemical emulsion or mixture thereof.

In another embodiment, the penetration enhancer can be selected from a group consisting of unsaturated cyclic ureas, 1-alkyl-alkones, 1-alkenylazacyclo-alakanones, steroidal anti-inflammatory agents and mixtures thereof. In yet another embodiment the penetration enhancer can be a glycol, a pyrrol, an azone, or a terpenes.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a

larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a form suitable for oral delivery. In one embodiment, oral delivery can be used to deliver an iRNA agent composition to a cell or a region of the gastro-intestinal tract, e.g., small intestine, colon (e.g., to treat a colon cancer), and so forth. The oral delivery form can be tablets, capsules or gel capsules. In one embodiment, the iRNA agent of the pharmaceutical composition modulates expression of a cellular adhesion protein, modulates a rate of cellular proliferation, or has biological activity against eukaryotic pathogens or retroviruses. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methylcellulose phthalate or cellulose acetate phthalate.

5

10

15

20

25

30

In another embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer. The penetration enhancer can be a bile salt or a fatty acid. The bile salt can be ursodeoxycholic acid, chenodeoxycholic acid, and salts thereof. The fatty acid can be capric acid, lauric acid, and salts thereof.

In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.

In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent and a delivery vehicle. In one embodiment, the iRNA agent is (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nucleotides long.

In one embodiment, the delivery vehicle can deliver an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a cell by a topical route of

administration. The delivery vehicle can be microscopic vesicles. In one example the microscopic vesicles are liposomes. In a preferred embodiment the liposomes are cationic liposomes. In another example the microscopic vesicles are micelles.

In one aspect, the invention features a method for making a pharmaceutical composition, the method including: (1) contacting an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) with a amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form a iRNA agent and cationic lipid complex.

5

10

20

25

30

In another aspect, the invention features a pharmaceutical composition produced by a method including: (1) contacting an iRNA agent, *e.g.*, a double-stranded iRNA agent, or sRNA agent, (*e.g.*, a precursor, *e.g.*, a larger iRNA agent which can be processed into a sRNA agent) with a amphipathic cationic lipid conjugate in the presence of a detergent; and (2) removing the detergent to form a iRNA agent and cationic lipid complex. In one embodiment, the detergent is cholate, deoxycholate, lauryl sarcosine, octanoyl sucrose, CHAPS (3-[(3-cholamidopropyl)-di-methylamine]-2-hydroxyl-1-propane), novel-β-D-glucopyranoside, lauryl dimethylamine oxide, or octylglucoside. In another embodiment, the amphipathic cationic lipid conjugate is biodegradable. In yet another embodiment the pharmaceutical composition includes a targeting ligand.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in an injectable dosage form. In one embodiment, the injectable dosage form of the pharmaceutical composition includes sterile aqueous solutions or dispersions and sterile powders. In a preferred embodiment the sterile solution can include a diluent such as water; saline solution; fixed oils, polyethylene glycols, glycerin, or propylene glycol.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in oral dosage form. In one embodiment, the oral dosage form is selected from the group

consisting of tablets, capsules and gel capsules. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methyl cellulose phthalate or cellulose acetate phthalate. In one embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer, e.g., a penetration enhancer described herein.

5

10

15

20

25

30

In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.

In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a rectal dosage form. In one embodiment, the rectal dosage form is an enema. In another embodiment, the rectal dosage form is a suppository.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a vaginal dosage form. In one embodiment, the vaginal dosage form is a suppository. In another embodiment, the vaginal dosage form is a foam, cream, or gel.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a pulmonary or nasal dosage form. In one embodiment, the iRNA agent is incorporated into a particle, e.g., a macroparticle, e.g., a microsphere. The particle can be produced by spray

drying, lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination thereof. The microsphere can be formulated as a suspension, a powder, or an implantable solid.

5

10

15

20

25

30

In one aspect, the invention features a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition suitable for inhalation by a subject, including: (a) a therapeutically effective amount of a iRNA agent suitable for treating a condition in the subject by inhalation; (b) a pharmaceutically acceptable excipient selected from the group consisting of carbohydrates and amino acids; and (c) optionally, a dispersibility-enhancing amount of a physiologically-acceptable, water-soluble polypeptide.

In one embodiment, the excipient is a carbohydrate. The carbohydrate can be selected from the group consisting of monosaccharides, disaccharides, trisaccharides, and polysaccharides. In a preferred embodiment the carbohydrate is a monosaccharide selected from the group consisting of dextrose, galactose, mannitol, D-mannose, sorbitol, and sorbose. In another preferred embodiment the carbohydrate is a disaccharide selected from the group consisting of lactose, maltose, sucrose, and trehalose.

In another embodiment, the excipient is an amino acid. In one embodiment, the amino acid is a hydrophobic amino acid. In a preferred embodiment the hydrophobic amino acid is selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine. In yet another embodiment the amino acid is a polar amino acid. In a preferred embodiment the amino acid is selected from the group consisting of arginine, histidine, lysine, cysteine, glycine, glutamine, serine, threonine, tyrosine, aspartic acid and glutamic acid.

In one embodiment, the dispersibility-enhancing polypeptide is selected from the group consisting of human serum albumin, α -lactalbumin, trypsinogen, and polyalanine.

In one embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter (MMD) of less than 10 microns. In another embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter of less than 5 microns. In yet another embodiment the spray-dried iRNA agent composition

includes particles having a mass median aerodynamic diameter (MMAD) of less than 5 microns.

5

10

15

20

25

30

In certain other aspects, the invention provides kits that include a suitable container containing a pharmaceutical formulation of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for an iRNA agent preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit. The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.

In another aspect, the invention features a device, e.g., an implantable device, wherein the device can dispense or administer a composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), e.g., a iRNA agent that silences an endogenous transcript. In one embodiment, the device is coated with the composition. In another embodiment the iRNA agent is disposed within the device. In another embodiment, the device includes a mechanism to dispense a unit dose of the composition. In other embodiments the device releases the composition continuously, e.g., by diffusion. Exemplary devices include stents, catheters, pumps, artificial organs or organ components (e.g., artificial heart, a heart valve, etc.), and sutures.

As used herein, the term "crystalline" describes a solid having the structure or characteristics of a crystal, *i.e.*, particles of three-dimensional structure in which the plane faces intersect at definite angles and in which there is a regular internal structure. The compositions of the invention may have different crystalline forms. Crystalline forms can be prepared by a variety of methods, including, for example, spray drying.

As used herein, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between a compound of the invention and a target RNA molecule. Specific binding requires a sufficient degree of complementarity to avoid non-specific binding of the oligomeric compound to non-target sequences under conditions in which specific binding is desired, *i.e.*, under physiological conditions in the case of *in vivo* assays or therapeutic treatment, or in the case of *in vitro* assays, under conditions in which the assays are performed. The non-target sequences typically differ by at least 5 nucleotides.

5

10

15

20

25

30

In one embodiment, an iRNA agent is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the iRNA agent silences production of protein encoded by the target mRNA. In another embodiment, the iRNA agent is "exactly complementary" to a target RNA, e.g., the target RNA and the iRNA agent anneal, preferably to form a hybrid made exclusively of Watson-Crick basepairs in the region of exact complementarity. A "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA. Moreover, in some embodiments, the iRNA agent specifically discriminates a single-nucleotide difference. In this case, the iRNA agent only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single-nucleotide difference.

As used herein, the term "oligonucleotide" refers to a nucleic acid molecule (RNA or DNA) preferably of length less than 100, 200, 300, or 400 nucleotides.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. The materials, methods, and examples are illustrative only and not intended to be limiting. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, useful methods and materials are described below. Other features and advantages of the invention will be apparent from the accompanying drawings and description, and from the claims. The contents of all references, pending patent applications and published patents, cited throughout this application are hereby expressly incorporated by reference. In case of conflict, the present specification, including definitions, will control.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a structural representation of base pairing in psuedocomplementary siRNA².
- FIG. 2 is a schematic representation of dual targeting siRNAs designed to target the HCV genome.
- FIG. 3 is a schematic representation of psuedocomplementary, bifunctional siRNAs designed to target the HCV genome.

5

10

15

20

25

30

- FIG. 4 is a general synthetic scheme for incorporation of RRMS monomers into an oligonucleotide.
- FIG. 5 is a table of representative RRMS carriers. Panel 1 shows pyrroline-based RRMSs; panel 2 shows 3-hydroxyproline-based RRMSs; panel 3 shows piperidine-based RRMSs; panel 4 shows morpholine and piperazine-based RRMSs; and panel 5 shows decalin-based RRMSs. R1 is succinate or phosphoramidate and R2 is H or a conjugate ligand.
- FIG. 6A. is a graph depicting levels of luciferase mRNA in livers of CMV-Luc mice (Xanogen) following intervenous injection (iv) of buffer or siRNA into the tail vein. Each bar represents data from one mouse. RNA levels were quantified by QuantiGene Assay (Genospectra, Inc.; Fremont, CA)). The Y axis represents chemiluminescence values in counts per second (CPS).
- FIG. 6B. is a graph depicting levels of luciferase mRNA in livers of CMV-Luc mice (Xanogen). The values are averaged from the data depicted in FIG. XxxA.
- FIG. 7 is a graph depicting the pharmacokinetics of cholesterol-conjugated and unconjugated siRNA. The diamonds represent the amount of unconjugated ³³P-labeled siRNA (ALN-3000) in mouse plasma over time; the squares represent the amount of cholesterol-conjugated ³³P-labeled siRNA (ALN-3001) in mouse plasma over time. "L1163" is equivalent to ALN3000; "L1163Chol" is equivalent to ALN-3001.

DETAILED DESCRIPTION

Double-stranded (dsRNA) directs the sequence-specific silencing of mRNA through a process known as RNA interference (RNAi). The process occurs in a wide variety of organisms, including mammals and other vertebrates.

It has been demonstrated that 21-23 nt fragments of dsRNA are sequence-specific mediators of RNA silencing, e.g., by causing RNA degradation. While not wishing to be bound by theory, it may be that a molecular signal, which may be merely the specific length of the fragments, present in these 21-23 nt fragments recruits cellular factors that mediate RNAi. Described herein are methods for preparing and administering these 21-23 nt fragments, and other iRNAs agents, and their use for specifically inactivating gene function. The use of iRNAs agents (or recombinantly produced or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for silencing in mammalian cells. In addition, longer dsRNA agent fragments can also be used, e.g., as described below.

5

10

15

20

25

30

Although, in mammalian cells, long dsRNAs can induce the interferon response which is frequently deleterious, sRNAs do not trigger the interferon response, at least not to an extent that is deleterious to the cell and host. In particular, the length of the iRNA agent strands in an sRNA agent can be less than 31, 30, 28, 25, or 23 nt, e.g., sufficiently short to avoid inducing a deleterious interferon response. Thus, the administration of a composition of sRNA agent (e.g., formulated as described herein) to a mammalian cell can be used to silence expression of a target gene while circumventing the interferon response. Further, use of a discrete species of iRNA agent can be used to selectively target one allele of a target gene, e.g., in a subject heterozygous for the allele.

Moreover, in one embodiment, a mammalian cell is treated with an iRNA agent that disrupts a component of the interferon response, e.g., double stranded RNA (dsRNA)-activated protein kinase PKR. Such a cell can be treated with a second iRNA agent that includes a sequence complementary to a target RNA and that has a length that might otherwise trigger the interferon response.

In a typical embodiment, the subject is a mammal such as a cow, horse, mouse, rat, dog, pig, goat, or a primate. The subject can be a dairy mammal (e.g., a cow, or goat) or other farmed animal (e.g., a chicken, turkey, sheep, pig, fish, shrimp). In a much preferred embodiment, the subject is a human, e.g., a normal individual or an individual that has, is diagnosed with, or is predicted to have a disease or disorder.

Further, because iRNA agent mediated silencing persists for several days after administering the iRNA agent composition, in many instances, it is possible to administer the

composition with a frequency of less than once per day, or, for some instances, only once for the entire therapeutic regimen. For example, treatment of some cancer cells may be mediated by a single bolus administration, whereas a chronic viral infection may require regular administration, e.g., once per week or once per month.

A number of exemplary routes of delivery are described that can be used to administer an iRNA agent to a subject. In addition, the iRNA agent can be formulated according to an exemplary method described herein.

irna agent structure

10

15

20

25

30

5

Described herein are isolated iRNA agents, e.g., RNA molecules, (double-stranded; single-stranded) that mediate RNAi. The iRNA agents preferably mediate RNAi with respect to an endogenous gene of a subject or to a gene of a pathogen.

An "RNA agent" as used herein, is an unmodified RNA, modified RNA, or nucleoside surrogate, all of which are defined herein (see, e.g., the section below entitled RNA Agents). While numerous modified RNAs and nucleoside surrogates are described, preferred examples include those which have greater resistance to nuclease degradation than do unmodified RNAs. Preferred examples include those which have a 2' sugar modification, a modification in a single strand overhang, preferably a 3' single strand overhang, or, particularly if single stranded, a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group.

An "iRNA agent" as used herein, is an RNA agent which can, or which can be cleaved into an RNA agent which can, down regulate the expression of a target gene, preferably an endogenous or pathogen target RNA. While not wishing to be bound by theory, an iRNA agent may act by one or more of a number of mechanisms, including post-transcriptional cleavage of a target mRNA sometimes referred to in the art as RNAi, or pre-transcriptional or pre-translational mechanisms. An iRNA agent can include a single strand or can include more than one strands, e.g., it can be a double stranded iRNA agent. If the iRNA agent is a single strand it is particularly preferred that it include a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group.

The iRNA agent should include a region of sufficient homology to the target gene, and be of sufficient length in terms of nucleotides, such that the iRNA agent, or a fragment

thereof, can mediate down regulation of the target gene. (For ease of exposition the term nucleotide or ribonucleotide is sometimes used herein in reference to one or more monomeric subunits of an RNA agent. It will be understood herein that the usage of the term "ribonucleotide" or "nucleotide", herein can, in the case of a modified RNA or nucleotide surrogate, also refer to a modified nucleotide, or surrogate replacement moiety at one or more positions.) Thus, the iRNA agent is or includes a region which is at least partially, and in some embodiments fully, complementary to the target RNA. It is not necessary that there be perfect complementarity between the iRNA agent and the target, but the correspondence must be sufficient to enable the iRNA agent, or a cleavage product thereof, to direct sequence specific silencing, e.g., by RNAi cleavage of the target RNA, e.g., mRNA.

Complementarity, or degree of homology with the target strand, is most critical in the antisense strand. While perfect complementarity, particularly in the antisense strand, is often desired some embodiments can include, particularly in the antisense strand, one or more but preferably 6, 5, 4, 3, 2, or fewer mismatches (with respect to the target RNA). The mismatches, particularly in the antisense strand, are most tolerated in the terminal regions and if present are preferably in a terminal region or regions, e.g., within 6, 5, 4, or 3 nucleotides of the 5' and/or 3' terminus. The sense strand need only be sufficiently complementary with the antisense strand to maintain the over all double strand character of the molecule.

As discussed elsewhere herein, an iRNA agent will often be modified or include nucleoside surrogates in addition to the RRMS. Single stranded regions of an iRNA agent will often be modified or include nucleoside surrogates, *e.g.*, the unpaired region or regions of a hairpin structure, *e.g.*, a region which links two complementary regions, can have modifications or nucleoside surrogates. Modification to stabilize one or more 3'- or 5'-terminus of an iRNA agent, *e.g.*, against exonucleases, or to favor the antisense sRNA agent to enter into RISC are also favored. Modifications can include C3 (or C6, C7, C12) amino linkers, thiol linkers, carboxyl linkers, non-nucleotidic spacers (C3, C6, C9, C12, abasic, triethylene glycol, hexaethylene glycol), special biotin or fluorescein reagents that come as phosphoramidites and that have another DMT-protected hydroxyl group, allowing multiple couplings during RNA synthesis.

iRNA agents include: molecules that are long enough to trigger the interferon response (which can be cleaved by Dicer (Bernstein *et al.* 2001. Nature, 409:363-366) and enter a RISC (RNAi-induced silencing complex)); and, molecules which are sufficiently short that they do not trigger the interferon response (which molecules can also be cleaved by Dicer and/or enter a RISC), *e.g.*, molecules which are of a size which allows entry into a RISC, *e.g.*, molecules which resemble Dicer-cleavage products. Molecules that are short enough that they do not trigger an interferon response are termed sRNA agents or shorter iRNA agents herein. "sRNA agent or shorter iRNA agent" as used herein, refers to an iRNA agent, *e.g.*, a double stranded RNA agent or single strand agent, that is sufficiently short that it does not induce a deleterious interferon response in a human cell, *e.g.*, it has a duplexed region of less than 60 but preferably less than 50, 40, or 30 nucleotide pairs. The sRNA agent, or a cleavage product thereof, can down regulate a target gene, *e.g.*, by inducing RNAi with respect to a target RNA, preferably an endogenous or pathogen target RNA.

5

10

15

20

25

30

Each strand of an sRNA agent can be equal to or less than 30, 25, 24, 23, 22, 21, or 20 nucleotides in length. The strand is preferably at least 19 nucleotides in length. For example, each strand can be between 21 and 25 nucleotides in length. Preferred sRNA agents have a duplex region of 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, and one or more overhangs, preferably one or two 3' overhangs, of 2-3 nucleotides.

In addition to homology to target RNA and the ability to down regulate a target gene, an iRNA agent will preferably have one or more of the following properties:

- (1) it will be of the Formula 1, 2, 3, or 4 set out in the RNA Agent section below;
- (2) if single stranded it will have a 5' modification which includes one or more phosphate groups or one or more analogs of a phosphate group;
- (3) it will, despite modifications, even to a very large number, or all of the nucleosides, have an antisense strand that can present bases (or modified bases) in the proper three dimensional framework so as to be able to form correct base pairing and form a duplex structure with a homologous target RNA which is sufficient to allow down regulation of the target, e.g., by cleavage of the target RNA;
- (4) it will, despite modifications, even to a very large number, or all of the nucleosides, still have "RNA-like" properties, *i.e.*, it will possess the overall structural, chemical and physical properties of an RNA molecule, even though not exclusively, or even

partly, of ribonucleotide-based content. For example, an iRNA agent can contain, e.g., a sense and/or an antisense strand in which all of the nucleotide sugars contain e.g., 2' fluoro in place of 2' hydroxyl. This deoxyribonucleotide-containing agent can still be expected to exhibit RNA-like properties. While not wishing to be bound by theory, the electronegative fluorine prefers an axial orientation when attached to the C2' position of ribose. This spatial preference of fluorine can, in turn, force the sugars to adopt a C3'-endo pucker. This is the same puckering mode as observed in RNA molecules and gives rise to the RNAcharacteristic A-family-type helix. Further, since fluorine is a good hydrogen bond acceptor, it can participate in the same hydrogen bonding interactions with water molecules that are known to stabilize RNA structures. (Generally, it is preferred that a modified moiety at the 2' sugar position will be able to enter into H-bonding which is more characteristic of the OH moiety of a ribonucleotide than the H moiety of a deoxyribonucleotide. A preferred iRNA agent will: exhibit a C3-endo pucker in all, or at least 50, 75,80, 85, 90, or 95 % of its sugars; exhibit a C3'-endo pucker in a sufficient amount of its sugars that it can give rise to a the RNA-characteristic A-family-type helix; will have no more than 20, 10, 5, 4, 3, 2, or1 sugar which is not a C3'-endo pucker structure. These limitations are particularly preferably in the antisense strand;

5

10

15

20

25

30

(5) regardless of the nature of the modification, and even though the RNA agent can contain deoxynucleotides or modified deoxynucleotides, particularly in overhang or other single strand regions, it is preferred that DNA molecules, or any molecule in which more than 50, 60, or 70 % of the nucleotides in the molecule, or more than 50, 60, or 70 % of the nucleotides in a duplexed region are deoxyribonucleotides, or modified deoxyribonucleotides which are deoxy at the 2' position, are excluded from the definition of RNA agent.

A "single strand iRNA agent" as used herein, is an iRNA agent which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure. Single strand iRNA agents are preferably antisense with regard to the target molecule. In preferred embodiments single strand iRNA agents are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5'-monophosphate ((HO)2(O)P-O-

5'); 5'-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'); 5'-triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxygen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-). (These modifications can also be used with the antisense strand of a double stranded iRNA.)

5

10

15

20

25

30

A single strand iRNA agent should be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA. A single strand iRNA agent is at least 14, and more preferably at least 15, 20, 25, 29, 35, 40, or 50 nucleotides in length. It is preferably less than 200, 100, or 60 nucleotides in length.

Hairpin iRNA agents will have a duplex region equal to or at least 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs. The duplex region will preferably be equal to or less than 200, 100, or 50, in length. Preferred ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length. The hairpin will preferably have a single strand overhang or terminal unpaired region, preferably the 3', and preferably of the antisense side of the hairpin. Preferred overhangs are 2-3 nucleotides in length.

A "double stranded (ds) iRNA agent" as used herein, is an iRNA agent which includes more than one, and preferably two, strands in which interchain hybridization can form a region of duplex structure.

The antisense strand of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, 19 to 23, and 19 to 21 nucleotides in length.

The sense strand of a double stranded iRNA agent should be equal to or at least 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It should be equal to or less than 200, 100, or 50, nucleotides in length. Preferred ranges are 17 to 25, 19 to 23, and 19 to 21 nucleotides in length.

The double strand portion of a double stranded iRNA agent should be equal to or at least, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 40, or 60 nucleotide pairs in length. It should be equal to or less than 200, 100, or 50, nucleotides pairs in length. Preferred ranges are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.

5

10

15

20

25

30

In many embodiments, the ds iRNA agent is sufficiently large that it can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller ds iRNA agents, e.g., sRNAs agents

It may be desirable to modify one or both of the antisense and sense strands of a double strand iRNA agent. In some cases they will have the same modification or the same class of modification but in other cases the sense and antisense strand will have different modifications, e.g., in some cases it is desirable to modify only the sense strand. It may be desirable to modify only the sense strand, e.g., to inactivate it, e.g., the sense strand can be modified in order to inactivate the sense strand and prevent formation of an active sRNA/protein or RISC. This can be accomplished by a modification which prevents 5'phosphorylation of the sense strand, e.g., by modification with a 5'-O-methyl ribonucleotide (see Nykänen et al., (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321.) Other modifications which prevent phosphorylation can also be used, e.g., simply substituting the 5'-OH by H rather than O-Me. Alternatively, a large bulky group may be added to the 5'-phosphate turning it into a phosphodiester linkage, though this may be less desirable as phosphodiesterases can cleave such a linkage and release a functional sRNA 5'-end. Antisense strand modifications include 5' phosphorylation as well as any of the other 5' modifications discussed herein, particularly the 5' modifications discussed above in the section on single stranded iRNA molecules.

It is preferred that the sense and antisense strands be chosen such that the ds iRNA agent includes a single strand or unpaired region at one or both ends of the molecule. Thus, a ds iRNA agent contains sense and antisense strands, preferable paired to contain an overhang, e.g., one or two 5' or 3' overhangs but preferably a 3' overhang of 2-3

nucleotides. Most embodiments will have a 3' overhang. Preferred sRNA agents will have single-stranded overhangs, preferably 3' overhangs, of 1 or preferably 2 or 3 nucleotides in length at each end. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. 5' ends are preferably phosphorylated.

5

10

15

20

25

30

Preferred lengths for the duplexed region is between 15 and 30, most preferably 18, 19, 20, 21, 22, and 23 nucleotides in length, e.g., in the sRNA agent range discussed above. sRNA agents can resemble in length and structure the natural Dicer processed products from long dsRNAs. Embodiments in which the two strands of the sRNA agent are linked, e.g., covalently linked are also included. Hairpin, or other single strand structures which provide the required double stranded region, and preferably a 3' overhang are also within the invention.

The isolated iRNA agents described herein, including ds iRNA agents and sRNA agents can mediate silencing of a target RNA, e.g., mRNA, e.g., a transcript of a gene that encodes a protein. For convenience, such mRNA is also referred to herein as mRNA to be silenced. Such a gene is also referred to as a target gene. In general, the RNA to be silenced is an endogenous gene or a pathogen gene. In addition, RNAs other than mRNA, e.g., tRNAs, and viral RNAs, can also be targeted.

As used herein, the phrase "mediates RNAi" refers to the ability to silence, in a sequence specific manner, a target RNA. While not wishing to be bound by theory, it is believed that silencing uses the RNAi machinery or process and a guide RNA, e.g., an sRNA agent of 21 to 23 nucleotides.

As used herein, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between a compound of the invention and a target RNA molecule. Specific binding requires a sufficient degree of complementarity to avoid non-specific binding of the oligomeric compound to non-target sequences under conditions in which specific binding is desired, *i.e.*, under physiological conditions in the case of *in vivo* assays or therapeutic treatment, or in the case of *in vitro* assays, under conditions in which the assays are performed. The non-target sequences typically differ by at least 5 nucleotides.

In one embodiment, an iRNA agent is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the iRNA agent silences production of protein encoded by the target mRNA. In another embodiment, the iRNA agent is "exactly complementary" (excluding the RRMS containing subunit(s)) to a target RNA, e.g., the target RNA and the iRNA agent anneal, preferably to form a hybrid made exclusively of Watson-Crick basepairs in the region of exact complementarity. A "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA. Moreover, in some embodiments, the iRNA agent specifically discriminates a single-nucleotide difference. In this case, the iRNA agent only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single-nucleotide difference.

5

10

15

20

25

30

As used herein, the term "oligonucleotide" refers to a nucleic acid molecule (RNA or DNA) preferably of length less than 100, 200, 300, or 400 nucleotides.

RNA agents discussed herein include otherwise unmodified RNA as well as RNA which have been modified, e.g., to improve efficacy, and polymers of nucleoside surrogates. Unmodified RNA refers to a molecule in which the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are the same or essentially the same as that which occur in nature, preferably as occur naturally in the human body. The art has referred to rare or unusual, but naturally occurring, RNAs as modified RNAs, see, e.g., Limbach et al., (1994) Summary: the modified nucleosides of RNA, Nucleic Acids Res. 22: 2183-2196. Such rare or unusual RNAs, often termed modified RNAs (apparently because the are typically the result of a post transcriptionally modification) are within the term unmodified RNA, as used herein. Modified RNA as used herein refers to a molecule in which one or more of the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are different from that which occur in nature, preferably different from that which occurs in the human body. While they are referred to as modified "RNAs," they will of course, because of the modification, include molecules which are not RNAs. Nucleoside surrogates are molecules in which the ribophosphate backbone is replaced with a non-ribophosphate construct that allows the bases to the presented in the correct spatial relationship such that hybridization is substantially similar to what is seen with a ribophosphate backbone, e.g.,

non-charged mimics of the ribophosphate backbone. Examples of all of the above are discussed herein.

5

10

15

20

25

30

Much of the discussion below refers to single strand molecules. In many embodiments of the invention a double stranded iRNA agent, e.g., a partially double stranded iRNA agent, is required or preferred. Thus, it is understood that that double stranded structures (e.g. where two separate molecules are contacted to form the double stranded region or where the double stranded region is formed by intramolecular pairing (e.g., a hairpin structure)) made of the single stranded structures described below are within the invention. Preferred lengths are described elsewhere herein.

As nucleic acids are polymers of subunits or monomers, many of the modifications described below occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or the a non-linking O of a phosphate moiety. In some cases the modification will occur at all of the subject positions in the nucleic acid but in many, and infact in most cases it will not. By way of example, a modification may only occur at a 3' or 5' terminal position, may only occur in a terminal regions, e.g. at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand. A modification may occur in a double strand region, a single strand region, or in both. A modification may occur only in the double strand region of an RNA or may only occur in a single strand region of an RNA. E.g., a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal regions, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5' end or ends can be phosphorylated.

In some embodiments it is particularly preferred, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5' or 3' overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3' or 5' overhang will be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2' OH group of the ribose sugar, e.g., the use of deoxyribonucleotides, e.g., deoxythymidine, instead of ribonucleotides, and modifications

in the phosphate group, e.g., phosphothioate modifications. Overhangs need not be homologous with the target sequence.

Modifications and nucleotide surrogates are discussed below.

5

10

15

The scaffold presented above in Formula 1 represents a portion of a ribonucleic acid. The basic components are the ribose sugar, the base, the terminal phosphates, and phosphate internucleotide linkers. Where the bases are naturally occurring bases, e.g., adenine, uracil, guanine or cytosine, the sugars are the unmodified 2' hydroxyl ribose sugar (as depicted) and W, X, Y, and Z are all O, Formula 1 represents a naturally occurring unmodified oligoribonucleotide.

Unmodified oligoribonucleotides may be less than optimal in some applications, e.g., unmodified oligoribonucleotides can be prone to degradation by e.g., cellular nucleases. Nucleases can hydrolyze nucleic acid phosphodiester bonds. However, chemical

modifications to one or more of the above RNA components can confer improved properties, and, e.g., can render oligoribonucleotides more stable to nucleases. Umodified oligoribonucleotides may also be less than optimal in terms of offering tethering points for attaching ligands or other moieties to an iRNA agent.

Modified nucleic acids and nucleotide surrogates can include one or more of:

5

10

15

20

25

30

- (i) alteration, e.g., replacement, of one or both of the non-linking (X and Y) phosphate oxygens and/or of one or more of the linking (W and Z) phosphate oxygens (When the phosphate is in the terminal position, one of the positions W or Z will not link the phosphate to an additional element in a naturally occurring ribonucleic acid. However, for simplicity of terminology, except where otherwise noted, the W position at the 5' end of a nucleic acid and the terminal Z position at the 3' end of a nucleic acid, are within the term "linking phosphate oxygens" as used herein.);
- (ii) alteration, e.g., replacement, of a constituent of the ribose sugar, e.g., of the 2' hydroxyl on the ribose sugar, or wholesale replacement of the ribose sugar with a structure other than ribose, e.g., as described herein;
- (iii) wholesale replacement of the phosphate moiety (bracket I) with "dephospho" linkers;
 - (iv) modification or replacement of a naturally occurring base;
 - (v) replacement or modification of the ribose-phosphate backbone (bracket II);
- (vi) modification of the 3' end or 5' end of the RNA, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety, e.g. a fluorescently labeled moiety, to either the 3' or 5' end of RNA.

The terms replacement, modification, alteration, and the like, as used in this context, do not imply any process limitation, e.g., modification does not mean that one must start with a reference or naturally occurring ribonucleic acid and modify it to produce a modified ribonucleic acid bur rather modified simply indicates a difference from a naturally occurring molecule.

It is understood that the actual electronic structure of some chemical entities cannot be adequately represented by only one canonical form (i.e. Lewis structure). While not wishing to be bound by theory, the actual structure can instead be some hybrid or weighted average of two or more canonical forms, known collectively as resonance forms or

structures. Resonance structures are not discrete chemical entities and exist only on paper. They differ from one another only in the placement or "localization" of the bonding and nonbonding electrons for a particular chemical entity. It can be possible for one resonance structure to contribute to a greater extent to the hybrid than the others. Thus, the written and graphical descriptions of the embodiments of the present invention are made in terms of what the art recognizes as the predominant resonance form for a particular species. For example, any phosphoroamidate (replacement of a nonlinking oxygen with nitrogen) would be represented by X = 0 and Y = N in the above figure.

Specific modifications are discussed in more detail below.

The Phosphate Group

5

10

15

20

25

30

The phosphate group is a negatively charged species. The charge is distributed equally over the two non-linking oxygen atoms (i.e., X and Y in Formula 1 above). However, the phosphate group can be modified by replacing one of the oxygens with a different substituent. One result of this modification to RNA phosphate backbones can be increased resistance of the oligoribonucleotide to nucleolytic breakdown. Thus while not wishing to be bound by theory, it can be desirable in some embodiments to introduce alterations which result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.

Examples of modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. Unlike the situation where only one of X or Y is altered, the phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotides diastereomers. Diastereomer formation can result in a preparation in which the individual diastereomers exhibit varying resistance to nucleases. Further, the hybridization affinity of RNA containing chiral phosphate groups can be lower relative to the corresponding unmodified RNA species. Thus, while not wishing to be bound by theory, modifications to both X and Y which eliminate the chiral center, e.g. phosphorodithioate formation, may be desirable in that they cannot produce diastereomer mixtures. Thus, X can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl). Thus Y

can be any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl). Replacement of X and/or Y with sulfur is preferred.

The phosphate linker can also be modified by replacement of a linking oxygen (i.e., W or Z in Formula 1) with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at a terminal oxygen (position W (3') or position Z (5'). Replacement of W with carbon or Z with nitrogen is preferred.

Candidate agents can be evaluated for suitability as described below.

The Sugar Group

5

10

15

20

25

30

A modified RNA can include modification of all or some of the sugar groups of the ribonucleic acid. E.g., the 2' hydroxyl group (OH) can be modified or replaced with a number of different "oxy" or "deoxy" substituents. While not being bound by theory, enhanced stability is expected since the hydroxyl can no longer be deprotonated to form a 2' alkoxide ion. The 2' alkoxide can catalyze degradation by intramolecular nucleophilic attack on the linker phosphorus atom. Again, while not wishing to be bound by theory, it can be desirable to some embodiments to introduce alterations in which alkoxide formation at the 2' position is not possible.`

Examples of "oxy"-2' hydroxyl group modifications include alkoxy or aryloxy (OR, e.g., R = H, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar); polyethyleneglycols (PEG), O(CH₂CH₂O)_nCH₂CH₂OR; "locked" nucleic acids (LNA) in which the 2' hydroxyl is connected, e.g., by a methylene bridge, to the 4' carbon of the same ribose sugar; O-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino) and aminoalkoxy, O(CH₂)_nAMINE, (e.g., AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino). It is noteworthy that oligonucleotides containing only the methoxyethyl group (MOE), (OCH₂CH₂OCH₃, a PEG derivative), exhibit nuclease stabilities comparable to those modified with the robust phosphorothioate modification.

"Deoxy" modifications include hydrogen (i.e. deoxyribose sugars, which are of particular relevance to the overhang portions of partially ds RNA); halo (e.g., fluoro); amino

(e.g. NH_2 ; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); $NH(CH_2CH_2NH)_nCH_2CH_2$ -AMINE (AMINE = NH_2 ; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino), -NHC(O)R (R = alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), cyano; mercapto; alkyl-thio-alkyl; thioalkoxy; and alkyl, cycloalkyl, aryl, alkenyl and alkynyl, which may be optionally substituted with e.g., an amino functionality. Preferred substitutents are 2'-methoxyethyl, 2'-OCH3, 2'-O-allyl, 2'-C- allyl, and 2'-fluoro.

The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified RNA can include nucleotides containing e.g., arabinose, as the sugar.

Modified RNA's can also include "abasic" sugars, which lack a nucleobase at C-1'. These abasic sugars can also be further contain modifications at one or more of the constituent sugar atoms.

To maximize nuclease resistance, the 2' modifications can be used in combination with one or more phosphate linker modifications (e.g., phosphorothioate). The so-called "chimeric" oligonucleotides are those that contain two or more different modifications.

The modification can also entail the wholesale replacement of a ribose structure with another entity at one or more sites in the iRNA agent. These modifications are described in section entitled Ribose Replacements for RRMSs.

Candidate modifications can be evaluated as described below.

Replacement of the Phosphate Group

10

15

20

25

30

The phosphate group can be replaced by non-phosphorus containing connectors (cf. Bracket I in Formula 1 above). While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.

Examples of moieties which can replace the phosphate group include siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino,

methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino. Preferred replacements include the methylenecarbonylamino and methylenemethylimino groups.

Candidate modifications can be evaluated as described below.

Replacement of Ribophosphate Backbone

Oligonucleotide- mimicking scaffolds can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates (see Bracket II of Formula 1 above). While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize polyanions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone.

Examples include the mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates. A preferred surrogate is a PNA surrogate.

Candidate modifications can be evaluated as described below.

Terminal Modifications

5

10

15

20

25

30

The 3' and 5' ends of an oligonucleotide can be modified. Such modifications can be at the 3' end, 5' end or both ends of the molecule. They can include modification or replacement of an entire terminal phosphate or of one or more of the atoms of the phosphate group. E.g., the 3' and 5' ends of an oligonucleotide can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester). The functional molecular entities can be attached to the sugar through a phosphate group and/or a spacer. The terminal atom of the spacer can connect to or replace the linking atom of the phosphate group or the C-3' or C-5' O, N, S or C group of the sugar.

Alternatively, the spacer can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs). These spacers or linkers can include e.g., $-(CH_2)_n$, $-(CH_2)_n$, abasic sugars, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, or biotin and fluorescein reagents. When a spacer/phosphate-functional molecular entity-spacer/phosphate array is interposed between two strands of iRNA agents,

5

10

15

20

25

30

this array can substitute for a hairpin RNA loop in a hairpin-type RNA agent. The 3' end can be an -OH group. While not wishing to be bound by theory, it is believed that conjugation of certain moieties can improve transport, hybridization, and specificity properties. Again, while not wishing to be bound by theory, it may be desirable to introduce terminal alterations that improve nuclease resistance. Other examples of terminal modifications include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic carriers (e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]₂, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles).

Terminal modifications can be added for a number of reasons, including as discussed elsewhere herein to modulate activity or to modulate resistance to degradation. Terminal modifications useful for modulating activity include modification of the 5' end with phosphate or phosphate analogs. *E.g.*, in preferred embodiments iRNA agents, especially antisense strands, are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5'-monophosphate ((HO)2(O)P-O-5'); 5'-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-5'); 5'-triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)P-O-P(HO)(O)-O-5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-monodithiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-monodithiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and

triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)2(O)P-5'-CH2-), 5'-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-).

Terminal modifications useful for increasing resistance to degradation include
Terminal modifications can also be useful for monitoring distribution, and in such
cases the preferred groups to be added include fluorophores, e.g., fluorscein or an Alexa dye,
e.g., Alexa 488. Terminal modifications can also be useful for enhancing uptake, useful
modifications for this include cholesterol. Terminal modifications can also be useful for
cross-linking an RNA agent to another moiety; modifications useful for this include
mitomycin C.

Candidate modifications can be evaluated as described below.

The Bases

5

10

15

20

25

30

Adenine, guanine, cytosine and uracil are the most common bases found in RNA. These bases can be modified or replaced to provide RNA's having improved properties. E.g., nuclease resistant oligoribonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, or tubercidine) and any one of the above modifications. Alternatively, substituted or modified analogs of any of the above bases, e.g., "unusual bases" and "universal bases," can be employed. Examples include without limitation 2aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine,7-deazaadenine, N6, N6dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3-methyluracil, substituted

1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N⁴-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases. Further purines and pyrimidines include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in the Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, and those disclosed by Englisch *et al.*, Angewandte Chemie, International Edition, 1991, 30, 613.

Generally, base changes are less preferred for promoting stability, but they can be useful for other reasons, e.g., some, e.g., 2,6-diaminopurine and 2 amino purine, are fluorescent. Modified bases can reduce target specificity. This should be taken into consideration in the design of iRNA agents.

Candidate modifications can be evaluated as described below.

Evaluation of Candidate RNA's

5

10

15

20

25

30

One can evaluate a candidate RNA agent, e.g., a modified RNA, for a selected property by exposing the agent or modified molecule and a control molecule to the appropriate conditions and evaluating for the presence of the selected property. For example, resistance to a degradent can be evaluated as follows. A candidate modified RNA (and preferably a control molecule, usually the unmodified form) can be exposed to degradative conditions, e.g., exposed to a milieu, which includes a degradative agent, e.g., a nuclease. E.g., one can use a biological sample, e.g., one that is similar to a milieu, which might be encountered, in therapeutic use, e.g., blood or a cellular fraction, e.g., a cell-free homogenate or disrupted cells. The candidate and control could then be evaluated for resistance to degradation by any of a number of approaches. For example, the candidate and control could be labeled, preferably prior to exposure, with, e.g., a radioactive or enzymatic label, or a fluorescent label, such as Cy3 or Cy5. Control and modified RNA's can be incubated with the degradative agent, and optionally a control, e.g., an inactivated, e.g., heat inactivated, degradative agent. A physical parameter, e.g., size, of the modified and control molecules

are then determined. They can be determined by a physical method, e.g., by polyacrylamide gel electrophoresis or a sizing column, to assess whether the molecule has maintained its original length, or assessed functionally. Alternatively, Northern blot analysis can be used to assay the length of an unlabeled modified molecule.

5

10

15

20

25

A functional assay can also be used to evaluate the candidate agent. A functional assay can be applied initially or after an earlier non-functional assay, (e.g., assay for resistance to degradation) to determine if the modification alters the ability of the molecule to silence gene expression. For example, a cell, e.g., a mammalian cell, such as a mouse or human cell, can be co-transfected with a plasmid expressing a fluorescent protein, e.g., GFP, and a candidate RNA agent homologous to the transcript encoding the fluorescent protein (see, e.g., WO 00/44914). For example, a modified dsRNA homologous to the GFP mRNA can be assayed for the ability to inhibit GFP expression by monitoring for a decrease in cell fluorescence, as compared to a control cell, in which the transfection did not include the candidate dsRNA, e.g., controls with no agent added and/or controls with a non-modified RNA added. Efficacy of the candidate agent on gene expression can be assessed by comparing cell fluorescence in the presence of the modified and unmodified dsRNA agents.

In an alternative functional assay, a candidate dsRNA agent homologous to an endogenous mouse gene, preferably a maternally expressed gene, such as *c-mos*, can be injected into an immature mouse oocyte to assess the ability of the agent to inhibit gene expression *in vivo* (see, *e.g.*, WO 01/36646). A phenotype of the oocyte, *e.g.*, the ability to maintain arrest in metaphase II, can be monitored as an indicator that the agent is inhibiting expression. For example, cleavage of *c-mos* mRNA by a dsRNA agent would cause the oocyte to exit metaphase arrest and initiate parthenogenetic development (Colledge *et al.*). Nature 370: 65-68, 1994; Hashimoto *et al.* Nature, 370:68-71, 1994). The effect of the modified agent on target RNA levels can be verified by Northern blot to assay for a decrease in the level of target mRNA, or by Western blot to assay for a decrease in the level of target protein, as compared to a negative control. Controls can include cells in which with no agent is added and/or cells in which a non-modified RNA is added.

PCT/US2004/007070 WO 2004/080406

References

5

10

20

25

General References

The oligoribonucleotides and oligoribonucleosides used in accordance with this invention may be with solid phase synthesis, see for example "Oligonucleotide synthesis, a practical approach", Ed. M. J. Gait, IRL Press, 1984; "Oligonucleotides and Analogues, A Practical Approach", Ed. F. Eckstein, IRL Press, 1991 (especially Chapter 1, Modern machine-aided methods of oligodeoxyribonucleotide synthesis, Chapter 2, Oligoribonucleotide synthesis, Chapter 3, 2'-O--Methyloligoribonucleotide- s: synthesis and applications, Chapter 4, Phosphorothioate oligonucleotides, Chapter 5, Synthesis of oligonucleotide phosphorodithioates, Chapter 6, Synthesis of oligo-2'-deoxyribonucleoside methylphosphonates, and. Chapter 7, Oligodeoxynucleotides containing modified bases. Other particularly useful synthetic procedures, reagents, blocking groups and reaction conditions are described in Martin, P., Helv. Chim. Acta, 1995, 78, 486-504; Beaucage, S. L. and Iyer, R. P., Tetrahedron, 1992, 48, 2223-2311 and Beaucage, S. L. and Iyer, R. P., Tetrahedron, 1993, 49, 6123-6194, or references referred to therein. 15

Modification described in WO 00/44895, WO01/75164, or WO02/44321 can be used herein.

The disclosure of all publications, patents, and published patent applications listed herein are hereby incorporated by reference.

Phosphate Group References

The preparation of phosphinate oligoribonucleotides is described in U.S. Pat. No. 5.508.270. The preparation of alkyl phosphonate oligoribonucleotides is described in U.S. Pat. No. 4,469,863. The preparation of phosphoramidite oligoribonucleotides is described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. The preparation of phosphotriester oligoribonucleotides is described in U.S. Pat. No. 5,023,243. The preparation of borano phosphate oligoribonucleotide is described in U.S. Pat. Nos. 5,130,302 and 5,177,198. The preparation of 3'-Deoxy-3'-amino phosphoramidate oligoribonucleotides is described in U.S. Pat. No. 5,476,925. 3'-Deoxy-3'-methylenephosphonate oligoribonucleotides is described in An, H, et al. J. Org. Chem. 2001, 66, 2789-2801. Preparation of sulfur bridged nucleotides is

described in Sproat et al. Nucleosides Nucleotides 1988, 7,651 and Crosstick et al. Tetrahedron Lett. 1989, 30, 4693.

Sugar Group References

Modifications to the 2' modifications can be found in Verma, S. et al. Annu. Rev. Biochem. 1998, 67, 99-134 and all references therein. Specific modifications to the ribose can be found in the following references: 2'-fluoro (Kawasaki et. al., J. Med. Chem., 1993, 36, 831-841), 2'-MOE (Martin, P. Helv. Chim. Acta 1996, 79, 1930-1938), "LNA" (Wengel, J. Acc. Chem. Res. 1999, 32, 301-310).

10

15

20

25

30

5

Replacement of the Phosphate Group References

Methylenemethylimino linked oligoribonucleosides, also identified herein as MMI linked oligoribonucleosides, methylenedimethylhydrazo linked oligoribonucleosides, also identified herein as MDH linked oligoribonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified herein as amide-3 linked oligoribonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified herein as amide-4 linked oligoribonucleosides as well as mixed backbone compounds having, as for instance, alternating MMI and PO or PS linkages can be prepared as is described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677 and in published PCT applications PCT/US92/04294 and PCT/US92/04305 (published as WO 92/20822 WO and 92/20823, respectively). Formacetal and thioformacetal linked oligoribonucleosides can be prepared as is described in U.S. Pat. Nos. 5,264,562 and 5,264,564. Ethylene oxide linked oligoribonucleosides can be prepared as is described in U.S. Pat. No. 5,223,618. Siloxane replacements are described in Cormier, J.F. et al. Nucleic Acids Res. 1988, 16, 4583. Carbonate replacements are described in Tittensor, J.R. J. Chem. Soc. C 1971, 1933. Carboxymethyl replacements are described in Edge, M.D. et al. J. Chem. Soc. Perkin Trans. 1 1972, 1991. Carbamate replacements are described in Stirchak, E.P. Nucleic Acids Res. 1989, 17, 6129.

Replacement of the Phosphate-Ribose Backbone References

Cyclobutyl sugar surrogate compounds can be prepared as is described in U.S. Pat. No. 5,359,044. Pyrrolidine sugar surrogate can be prepared as is described in U.S. Pat. No.

5,519,134. Morpholino sugar surrogates can be prepared as is described in U.S. Pat. Nos. 5,142,047 and 5,235,033, and other related patent disclosures. Peptide Nucleic Acids (PNAs) are known per se and can be prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Pat. No. 5,539,083.

Terminal Modification References

Terminal modifications are described in Manoharan, M. et al. Antisense and Nucleic

10 Acid Drug Development 12, 103-128 (2002) and references therein.

Bases References

5

N-2 substitued purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,459,255. 3-Deaza purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,457,191. 5,6-Substituted pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,614,617. 5-Propynyl pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,484,908. Additional references can be disclosed in the above section on base modifications.

Preferred iRNA Agents

Preferred RNA agents have the following structure (see Formula 2 below):

$$R_7$$
 R_7
 R_7
 R_7
 R_7
 R_8
 R_8
 R_9
 R_7
 R_9
 R_7
 R_9
 R_9
 R_9

5

10

FORMULA 2

Referring to Formula 2 above, R¹, R², and R³ are each, independently, H, (*i.e.* abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and

guanines, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine,7-deazaguanine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyluracil, N3-methyluracil, substituted 1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2-thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases.

R⁴, R⁵, and R⁶ are each, independently, OR⁸, O(CH₂CH₂O)_mCH₂CH₂OR⁸;
O(CH₂)_nR⁹; O(CH₂)_nOR⁹, H; halo; NH₂; NHR⁸; N(R⁸)₂; NH(CH₂CH₂NH)_mCH₂CH₂NHR⁹;
NHC(O)R⁸; ; cyano; mercapto, SR⁸; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, or ureido; or R⁴, R⁵, or R⁶ together combine with R⁷ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

15

20

A¹ is:

5

10

15

; H; OH; OCH3; W1; an abasic nucleotide; or absent;

(a preferred A1 , especially with regard to anti-sense strands, is chosen from 5'-monophosphate ((HO)₂(O)P-O-5'), 5'-diphosphate ((HO)₂(O)P-O-P(HO)(O)-O-5'), 5'-triphosphate ((HO)₂(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-guanosine cap (7-methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-monothiophosphate (phosphorothioate; (HO)₂(S)P-O-5'), 5'-monodithiophosphate (phosphorodithioate; (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO)₂(O)P-S-5'); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)₂(O)P-NH-5', (HO)(NH₂)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(OH)(O)-O-5'-, (OH)₂(O)P-S'-CH₂-), 5'-alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH₂-), ethoxymethyl, etc., e.g. RP(OH)(O)-O-5'-)).

5

A² is:

10

A³ is:

; and

A4 is:

5

20

; H; Z⁴; an inverted nucleotide; an abasic nucleotide; or absent.

 $W^{1} \text{ is OH, } (CH_{2})_{n}R^{10}, (CH_{2})_{n}NHR^{10}, (CH_{2})_{n} \text{ OR}^{10}, (CH_{2})_{n} \text{ SR}^{10}; O(CH_{2})_{n}R^{10}; \\ O(CH_{2})_{n}OR^{10}, O(CH_{2})_{n}NR^{10}, O(CH_{2})_{n}SR^{10}; O(CH_{2})_{n}SS(CH_{2})_{n}OR^{10}, O(CH_{2})_{n}C(O)OR^{10}, \\ NH(CH_{2})_{n}R^{10}; NH(CH_{2})_{n}NR^{10}; NH(CH_{2})_{n}OR^{10}, NH(CH_{2})_{n}SR^{10}; S(CH_{2})_{n}R^{10}, S(CH_{2})_{n}NR^{10}, \\ S(CH_{2})_{n}OR^{10}, S(CH_{2})_{n}SR^{10} O(CH_{2}CH_{2}O)_{m}CH_{2}CH_{2}OR^{10}; O(CH_{2}CH_{2}O)_{m}CH_{2}CH_{2}NHR^{10}, \\ NH(CH_{2}CH_{2}NH)_{m}CH_{2}CH_{2}NHR^{10}; Q-R^{10}, O-Q-R^{10} N-Q-R^{10}, S-Q-R^{10} \text{ or -O-. } W^{4} \text{ is O, CH}_{2}, \\ NH, \text{ or S.}$

 X^1, X^2, X^3 , and X^4 are each, independently, O or S.

Y¹, Y², Y³, and Y⁴ are each, independently, OH, O⁻, OR⁸, S, Se, BH₃⁻, H, NHR⁹, N(R⁹)₂ alkyl, cycloalkyl, aralkyl, aryl, or heteroaryl, each of which may be optionally substituted.

 Z^{1} , Z^{2} , and Z^{3} are each independently O, CH₂, NH, or S. Z^{4} is OH, (CH₂)_nR¹⁰, (CH₂)_nNHR¹⁰, (CH₂)_n OR¹⁰, (CH₂)_n SR¹⁰; O(CH₂)_nR¹⁰; O(CH₂)_nOR¹⁰, O(CH₂)_nNR¹⁰, O(CH₂)_nSR¹⁰, O(CH₂)_nOR¹⁰, O(CH₂)_nC(O)OR¹⁰; NH(CH₂)_nR¹⁰; NH(CH₂)_nNR¹⁰; NH(CH₂)_nNR¹⁰; NH(CH₂)_nSR¹⁰; S(CH₂)_nR¹⁰, S(CH₂)_nNR¹⁰, S(CH₂)_nOR¹⁰, S(CH₂)_nSR¹⁰

$$\begin{split} &O(CH_{2}CH_{2}O)_{m}CH_{2}CH_{2}OR^{10},\,O(CH_{2}CH_{2}O)_{m}CH_{2}CH_{2}NHR^{10}\,,\\ &NH(CH_{2}CH_{2}NH)_{m}CH_{2}CH_{2}NHR^{10};\,Q-R^{10},\,O-Q-R^{10}\,N-Q-R^{10},\,S-Q-R^{10}. \end{split}$$

x is 5-100, chosen to comply with a length for an RNA agent described herein.

R⁷ is H; or is together combined with R⁴, R⁵, or R⁶ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

R⁸ is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar; R⁹ is NH2, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid; and R10 is H; fluorophore (pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes); sulfur, silicon, boron or ester protecting group; intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4,texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipohilic carriers (cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine) and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino; alkyl, cycloalkyl, aryl, aralkyl, heteroaryl; radiolabelled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles); or an RNA agent. m is 0-1,000,000, and n is 0-20. Q is a spacer selected from the group consisting of abasic sugar, amide, carboxy, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, biotin or fluorescein reagents.

25

5

10

15

20

30

Preferred RNA agents in which the entire phosphate group has been replaced have the following structure (see Formula 3 below):

,

5

10

FORMULA 3

Referring to Formula 3, A¹⁰-A⁴⁰ is L-G-L; A¹⁰ and/or A⁴⁰ may be absent, in which L is a linker, wherein one or both L may be present or absent and is selected from the group consisting of CH₂(CH₂)_g; N(CH₂)_g; O(CH₂)_g; S(CH₂)_g. G is a functional group selected from the group consisting of siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.

5

10

15

20

25

30

R¹⁰, R²⁰, and R³⁰ are each, independently, H, (i.e. abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine, 7-deazaadenine, 7-deazaguanine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3methyluracil substituted 1,2,4-triazoles, 2-pyridinone, 5-nitroindole, 3-nitropyrrole, 5methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2thiouracil, 5-methoxycarbonylmethyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N⁴-acetyl cytosine, 2thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases.

R⁴⁰, R⁵⁰, and R⁶⁰ are each, independently, OR⁸, O(CH₂CH₂O)_mCH₂CH₂OR⁸; O(CH₂)_nR⁹; O(CH₂)_nOR⁹, H; halo; NH₂; NHR⁸; N(R⁸)₂; NH(CH₂CH₂NH)_mCH₂CH₂R⁹; NHC(O)R⁸;; cyano; mercapto, SR⁷; alkyl-thio-alkyl; alkyl, aralkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl, each of which may be optionally substituted with halo, hydroxy, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups; or R⁴⁰, R⁵⁰, or R⁶⁰ together combine with R⁷⁰ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

x is 5-100 or chosen to comply with a length for an RNA agent described herein. R⁷⁰ is H; or is together combined with R⁴⁰, R⁵⁰, or R⁶⁰ to form an [-O-CH₂-] covalently bound bridge between the sugar 2' and 4' carbons.

R⁸ is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heteroaryl, amino acid, or sugar; and R⁹ is NH₂, alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid. m is 0-1,000,000, n is 0-20, and g is 0-2.

Preferred nucleoside surrogates have the following structure (see Formula 4 below):

5

10

15

20

25

30

SLR^{100} -(M- SLR^{200})_x-M- SLR^{300}

FORMULA 4

S is a nucleoside surrogate selected from the group consisting of mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid. L is a linker and is selected from the group consisting of CH₂(CH₂)_g; N(CH₂)_g; O(CH₂)_g; S(CH₂)_g; -C(O)(CH₂)_n-or may be absent. M is an amide bond; sulfonamide; sulfinate; phosphate group; modified phosphate group as described herein; or may be absent.

R¹⁰⁰, R²⁰⁰, and R³⁰⁰ are each, independently, H (i.e., abasic nucleotides), adenine, guanine, cytosine and uracil, inosine, thymine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, dihydrouracil, 3-deaza-5azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine, 7-deazaadenine, 7-deazaguanine, N6, N6-dimethyladenine, 2,6-diaminopurine, 5-amino-allyl-uracil, N3methyluracil substituted 1, 2, 4,-triazoles, 2-pyridinones, 5-nitroindole, 3-nitropyrrole, 5methoxyuracil, uracil-5-oxyacetic acid, 5-methoxycarbonylmethyluracil, 5-methyl-2thiouracil, 5-methoxycarbonylmethyl-2-thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3amino-3carboxypropyl)uracil, 3-methylcytosine, 5-methylcytosine, N⁴-acetyl cytosine, 2thiocytosine, N6-methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N-methylguanines, or O-alkylated bases.

x is 5-100, or chosen to comply with a length for an RNA agent described herein; and g is 0-2.

Nuclease resistant monomers

5

10

15

20

25

30

In one aspect, the invention features a nuclease resistant monomer, or a an iRNA agent which incorporates a nuclease resistant monomer (NMR), such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/469,612 (Attorney Docket No. 14174-069P01), filed on May 9, 2003, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents having a NMR and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a NMR.

An iRNA agent can include monomers which have been modifed so as to inhibit degradation, e.g., by nucleases, e.g., endonucleases or exonucleases, found in the body of a subject. These monomers are referred to herein as NRM's, or nuclease resistance promoting monomers or modifications. In many cases these modifications will modulate other properties of the iRNA agent as well, e.g., the ability to interact with a protein, e.g., a transport protein, e.g., serum albumin, or a member of the RISC (RNA-induced Silencing Complex), or the ability of the first and second sequences to form a duplex with one another or to form a duplex with another sequence, e.g., a target molecule.

While not wishing to be bound by theory, it is believed that modifications of the sugar, base, and/or phosphate backbone in an iRNA agent can enhance endonuclease and exonuclease resistance, and can enhance interactions with transporter proteins and one or more of the functional components of the RISC complex. Preferred modifications are those that increase exonuclease and endonuclease resistance and thus prolong the halflife of the iRNA agent prior to interaction with the RISC complex, but at the same time do not render

the iRNA agent resistant to endonuclease activity in the RISC complex. Again, while not wishing to be bound by any theory, it is believed that placement of the modifications at or near the 3' and/or 5' end of antisense strands can result in iRNA agents that meet the preferred nuclease resistance criteria delineated above. Again, still while not wishing to be bound by any theory, it is believed that placement of the modifications at e.g., the middle of a sense strand can result in iRNA agents that are relatively less likely to undergo off-targeting.

Modifications described herein can be incorporated into any double-standed RNA and RNA-like molecule described herein, e.g., an iRNA agent. An iRNA agent may include a duplex comprising a hybridized sense and antisense strand, in which the antisense strand and/or the sense strand may include one or more of the modifications described herein. The anti sense strand may include modifications at the 3' end and/or the 5' end and/or at one or more positions that occur 1-6 (e.g., 1-5, 1-4, 1-3, 1-2) nucleotides from either end of the strand. The sense strand may include modifications at the 3' end and/or the 5' end and/or at any one of the intervening positions between the two ends of the strand. The iRNA agent may also include a duplex comprising two hybridized antisense strands. The first and/or the second antisense strand may include one or more of the modifications described herein.

Thus, one and/or both antisense strands may include modifications at the 3' end and/or the 5' end and/or at one or more positions that occur 1-6 (e.g., 1-5, 1-4, 1-3, 1-2) nucleotides from either end of the strand. Particular configurations are discussed below.

10

15

20

25

30

Modifications that can be useful for producing iRNA agents that meet the preferred nuclease resistance criteria delineated above can include one or more of the following chemical and/or stereochemical modifications of the sugar, base, and/or phosphate backbone:

- (i) chiral (S_P) thioates. Thus, preferred NRM's include nucleotide dimers with an enriched or pure for a particular chiral form of a modified phosphate group containing a heteroatom at the nonbridging position, e.g., Sp or Rp, at the position X, where this is the position normally occupied by the oxygen. The atom at X can also be S, Se, Nr₂, or Br₃. When X is S, enriched or chirally pure Sp linkage is preferred. Enriched means at least 70, 80, 90, 95, or 99% of the preferred form. Such NRM's are discussed in more detail below;
- (ii) attachment of one or more cationic groups to the sugar, base, and/or the phosphorus atom of a phosphate or modified phosphate backbone moiety. Thus, preferred NRM's include monomers at the terminal position derivitized at a cationic group. As the 5'

end of an antisense sequence should have a terminal —OH or phosphate group this NRM is preferraly not used at th 5' end of an anti-sense sequence. The group should be attached at a position on the base which minimizes intererence with H bond formation and hybridization, e.g., away form the face which intereacts with the complementary base on the other strand, e.g, at the 5' position of a pyrimidine or a 7-position of a purine. These are discussed in more detail below;

5

10

15

20

25

30

- (iii) nonphosphate linkages at the termini. Thus, preferred NRM's include Non-phosphate linkages, e.g., a linkage of 4 atoms which confers greater resistance to cleavage than does a phosphate bond. Examples include 3' CH2-NCH₃-O-CH2-5' and 3' CH2-NH-(O=)-CH2-5'.;
- (iv) 3'-bridging thiophosphates and 5'-bridging thiophosphates. Thus, preferred NRM's can included these structures;
- (v) L-RNA, 2'-5' likages, inverted linkages, a-nucleosides. Thus, other preferred NRM's include: L nucleosides and dimeric nucleotides derived from L-nucleosides; 2'-5' phosphate, non-phosphate and modified phosphate linkages (e.g., thiophosphates, phosphoramidates and boronophosphates); dimers having inverted linkages, e.g., 3'-3' or 5'-5' linkages; monomers having an alpha linkage at the 1' site on the sugar, e.g., the structures described herein having an alpha linkage;
- (vi) conjugate groups. Thus, preferred NRM's can include e.g., a targeting moiety or a conjugated ligand described herein conjugated with the monomer, e.g., through the sugar, base, or backbone;
- (vi) abasic linkages. Thus, preferred NRM's can include an abasic monomer, e.g., an abasic monomer as described herein (e.g., a nucleobaseless monomer); an aromatic or heterocyclic or polyheterocyclic aromatic monomer as described herein.; and
- (vii) 5'-phosphonates and 5'-phosphate prodrugs. Thus, preferred NRM's include monomers, preferably at the terminal position, e.g., the 5' position, in which one or more atoms of the phosphate group is derivatized with a protecting group, which protecting group or groups, are removed as a result of the action of a component in the subject's body, e.g, a carboxyesterase or an enzyme present in the subject's body. E.g., a phosphate prodrug in which a carboxy esterase cleaves the protected molecule resulting in the production of a

thioate anion which attacks a carbon adjacent to the O of a phosphate and resulting in the production of an uprotected phosphate.

One or more different NRM modifications can be introduced into an iRNA agent or into a sequence of an iRNA agent. An NRM modification can be used more than once in a sequence or in an iRNA agent. As some NRM's interfere with hybridization the total number incorporated, should be such that acceptable levels of iRNA agent duplex formation are maintainted.

In some embodiments NRM modifications are introduced into the terminal the cleavage site or in the cleavage region of a sequence (a sense strand or sequence) which does not target a desired sequence or gene in the subject. This can reduce off-target silencing.

Chiral S_P Thioates

A modification can include the alteration, e.g., replacement, of one or both of the non-linking (X and Y) phosphate oxygens and/or of one or more of the linking (W and Z) phosphate oxygens. Formula X below depicts a phosphate moiety linking two sugar/sugar surrogate-base moities, SB₁ and SB₂.

$$X \longrightarrow P \longrightarrow Y$$
 $Z \longrightarrow SB_2$

FORMULA X

20

25

5

10

15

In certain embodiments, one of the non-linking phosphate oxygens in the phosphate backbone moiety (X and Y) can be replaced by any one of the following: S, Se, BR₃ (R is hydrogen, alkyl, aryl, etc.), C (i.e., an alkyl group, an aryl group, etc.), H, NR₂ (R is hydrogen, alkyl, aryl, etc.), or OR (R is alkyl or aryl). The phosphorus atom in an unmodified phosphate group is achiral. However, replacement of one of the non-linking

oxygens with one of the above atoms or groups of atoms renders the phosphorus atom chiral; in other words a phosphorus atom in a phosphate group modified in this way is a stereogenic center. The stereogenic phosphorus atom can possess either the "R" configuration (herein R_P) or the "S" configuration (herein S_P). Thus if 60% of a population of stereogenic phosphorus atoms have the R_P configuration, then the remaining 40% of the population of stereogenic phosphorus atoms have the S_P configuration.

5

10

15

20

25

30

In some embodiments, iRNA agents, having phosphate groups in which a phosphate non-linking oxygen has been replaced by another atom or group of atoms, may contain a population of stereogenic phosphorus atoms in which at least about 50% of these atoms (e.g., at least about 60% of these atoms, at least about 70% of these atoms, at least about 80% of these atoms, at least about 90% of these atoms, at least about 95% of these atoms, at least about 98% of these atoms, at least about 99% of these atoms) have the S_P configuration. Alternatively, iRNA agents having phosphate groups in which a phosphate non-linking oxygen has been replaced by another atom or group of atoms may contain a population of stereogenic phosphorus atoms in which at least about 50% of these atoms (e.g., at least about 60% of these atoms, at least about 70% of these atoms, at least about 80% of these atoms, at least about 90% of these atoms, at least about 95% of these atoms, at least about 98% of these atoms, at least about 99% of these atoms) have the RP configuration. In other embodiments, the population of stereogenic phosphorus atoms may have the S_P configuration and may be substantially free of stereogenic phosphorus atoms having the Rp configuration. In still other embodiments, the population of stereogenic phosphorus atoms may have the R_P configuration and may be substantially free of stereogenic phosphorus atoms having the S_P configuration. As used herein, the phrase "substantially free of stereogenic phosphorus atoms having the RP configuration" means that moieties containing stereogenic phosphorus atoms having the R_P configuration cannot be detected by conventional methods known in the art (chiral HPLC, ¹H NMR analysis using chiral shift reagents, etc.). As used herein, the phrase "substantially free of stereogenic phosphorus atoms having the S_P configuration" means that moieties containing stereogenic phosphorus atoms having the S_P configuration cannot be detected by conventional methods known in the art (chiral HPLC, ¹H NMR analysis using chiral shift reagents, etc.).

In a preferred embodiment, modified iRNA agents contain a phosphorothicate group, i.e., a phosphate groups in which a phosphate non-linking oxygen has been replaced by a sulfur atom. In an especially preferred embodiment, the population of phosphorothicate stereogenic phosphorus atoms may have the S_P configuration and be substantially free of stereogenic phosphorus atoms having the R_P configuration.

Phosphorothioates may be incorporated into iRNA agents using dimers e.g., formulas X-1 and X-2. The former can be used to introduce phosphorothioate

5

10

at the 3' end of a strand, while the latter can be used to introduce this modification at the 5' end or at a position that occurs e.g., 1, 2, 3, 4, 5, or 6 nucleotides from either end of the strand. In the above formulas, Y can be 2-cyanoethoxy, W and Z can be O, R_{2'} can be, e.g., a substituent that can impart the C-3 endo configuration to the sugar (e.g., OH, F, OCH₃), DMT is dimethoxytrityl, and "BASE" can be a natural, unusual, or a universal base.

X-1 and X-2 can be prepared using chiral reagents or directing groups that can result in phosphorothioate-containing dimers having a population of stereogenic phosphorus atoms having essentially only the R_P configuration (i.e., being substantially free of the S_P configuration) or only the S_P configuration (i.e., being substantially free of the R_P configuration). Alternatively, dimers can be prepared having a population of stereogenic phosphorus atoms in which about 50% of the atoms have the R_P configuration and about 50% of the atoms have the S_P configuration. Dimers having stereogenic phosphorus atoms with the R_P configuration can be identified and separated from dimers having stereogenic phosphorus atoms with the S_P configuration using e.g., enzymatic degradation and/or conventional chromatography techniques.

Cationic Groups

5

10

15

20

25

30

Modifications can also include attachment of one or more cationic groups to the sugar, base, and/or the phosphorus atom of a phosphate or modified phosphate backbone moiety. A cationic group can be attached to any atom capable of substitution on a natural, unusual or universal base. A preferred position is one that does not interfere with hybridization, i.e., does not interfere with the hydrogen bonding interactions needed for base pairing. A cationic group can be attached e.g., through the C2' position of a sugar or analogous position in a cyclic or acyclic sugar surrogate. Cationic groups can include e.g., protonated amino groups, derived from e.g., O-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); aminoalkoxy, e.g., O(CH₂)_nAMINE, (e.g., AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); amino (e.g. NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); or NH(CH₂CH₂NH)_nCH₂CH₂-AMINE (AMINE = NH₂; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino).

Nonphosphate Linkages

Modifications can also include the incorporation of nonphosphate linkages at the 5' and/or 3' end of a strand. Examples of nonphosphate linkages which can replace the

phosphate group include methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino. Preferred replacements include the methyl phosphonate and hydroxylamino groups.

3'-bridging thiophosphates and 5'-bridging thiophosphates; locked-RNA, 2'-5' likages, inverted linkages, α -nucleosides; conjugate groups; abasic linkages; and 5'-phosphonates and 5'-phosphate prodrugs

5

10

15

20

25

30

Referring to formula X above, modifications can include replacement of one of the bridging or linking phosphate oxygens in the phosphate backbone moiety (W and Z). Unlike the situation where only one of X or Y is altered, the phosphorus center in the phosphorodithioates is achiral which precludes the formation of iRNA agents containing a stereogenic phosphorus atom..

Modifications can also include linking two sugars via a phosphate or modified phosphate group through the 2' position of a first sugar and the 5' position of a second sugar. Also contemplated are inverted linkages in which both a first and second sugar are eached linked through the respective3' positions. Modified RNA's can also include "abasic" sugars, which lack a nucleobase at C-1'. The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified iRNA agent can include nucleotides containing e.g., arabinose, as the sugar. In another subset of this modification, the natural, unusual, or universal base may have the α-configuration. Modifications can also include L-RNA.

Modifications can also include 5'-phosphonates, e.g., $P(O)(O')_2$ -X- $C^{5'}$ -sugar (X= CH2, CF2, CHF and 5'-phosphate prodrugs, e.g., $P(O)[OCH2CH2SC(O)R]_2CH_2C^{5'}$ -sugar. In the latter case, the prodrug groups may be decomposed *via* reaction first with carboxy esterases. The remaining ethyl thiolate group via intramolecular S_N2 displacement can depart as episulfide to afford the underivatized phosphate group.

Modification can also include the addition of conjugating groups described elsequere herein, which are prefereably attached to an iRNA agent through any amino group available for conjugation.

Nuclease resistant modifications include some which can be placed only at the terminus and others which can go at any position. Generally the modifications that can inhibit hybridization so it is preferably to use them only in terminal regions, and preferrable to not use them at the cleavage site or in the cleavage region of an sequence which targets a subject sequence or gene.. The can be used anywhere in a sense sequence, provided that sufficient hybridization between the two sequences of the iRNA agent is maintained. In some embodiments it is desirabable to put the NRM at the cleavage site or in the cleavage region of a sequence which does not target a subject sequence or gene, as it can minimize off-target silencing.

5

10

15

20

25

30

In addition, an iRNA agent described herein can have an overhang which does not form a duplex structure with the other sequence of the iRNA agent—it is an overhang, but it does hybridize, either with itself, or with another nucleic acid, other than the other sequence of the iRNA agent.

In most cases, the nuclease-resistance promoting modifications will be distributed differently depending on whether the sequence will target a sequence in the subject (often referred to as an anti-sense sequence) or will not target a sequence in the subject (often referred to as a sense sequence). If a sequence is to target a sequence in the subject, modifications which interfer with or inhibit endonuclease cleavage should not be inserted in the region which is subject to RISC mediated cleavage, e.g., the cleavage site or the cleavage region (As described in Elbashir *et al.*, 2001, Genes and Dev. 15: 188, hereby incorporated by reference, cleavage of the target occurs about in the middle of a 20 or 21 nt guide RNA, or about 10 or 11 nucleotides upstream of the first nucleotide which is complementary to the guide sequence. As used herein cleavage site refers to the nucleotide on either side of the cleavage site, on the target or on the iRNA agent strand which hybridizes to it. Cleavage region means an nucleotide with 1, 2, or 3 nucletides of the cleave site, in either direction.)

Such modifications can be introduced into the terminal regions, e.g., at the terminal position or with 2, 3, 4, or 5 positions of the terminus, of a sequence which targets or a sequence which does not target a sequence in the subject.

An iRNA agent can have a first and a second strand chosen from the following: a first strand which does not target a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

a first strand which does not target a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a first strand which does not target a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

5

10

15

20

25

30

a first strand which does not target a sequence and which has an NRM modification at the cleavage site or in the cleavage region;

a first strand which does not target a sequence and which has an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end; and

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end (5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand);

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a second strand which targets a sequence and which preferably does not have an an NRM modification at the cleavage site or in the cleavage region;

a second strand which targets a sequence and which does not have an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end(5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand).

An iRNA agent can also target two sequences and can have a first and second strand chosen from:

a first strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

5

10

15

20

25

30

a first strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end (5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand);

a first strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a first strand which targets a sequence and which preferably does not have an an NRM modification at the cleavage site or in the cleavage region;

a first strand which targets a sequence and which dose not have an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end(5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand) and

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end;

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end (5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand);

a second strand which targets a sequence and which has an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end and which has a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end;

a second strand which targets a sequence and which preferably does not have an an NRM modification at the cleavage site or in the cleavage region;

a second strand which targets a sequence and which dose not have an NRM modification at the cleavage site or in the cleavage region and one or more of an NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 3' end, a NRM modification at or within 1, 2, 3, 4, 5, or 6 positions from the 5' end, or NRM modifications at or within 1, 2, 3, 4, 5, or 6 positions from both the 3' and the 5' end(5' end NRM modifications are preferentially not at the terminus but rather at a position 1, 2, 3, 4, 5, or 6 away from the 5' terminus of an antisense strand).

Ribose Mimics

5

10

15

20

25

30

In one aspect, the invention features a ribose mimic, or an iRNA agent which incorporates a ribose mimic, such as those described herein and those described in copending co-owned United States Provisional Application Serial No. 60/454,962 (Attorney Docket No. 14174-064P01), filed on March 13, 2003, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents having a ribose mimic and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a ribose mimic.

Thus, an aspect of the invention features an iRNA agent that includes a secondary hydroxyl group, which can increase efficacy and/or confer nuclease resistance to the agent. Nucleases, e.g., cellular nucleases, can hydrolyze nucleic acid phosphodiester bonds, resulting in partial or complete degradation of the nucleic acid. The secondary hydroxy group confers nuclease resistance to an iRNA agent by rendering the iRNA agent less prone to nuclease degradation relative to an iRNA which lacks the modification. While not wishing to be bound by theory, it is believed that the presence of a secondary hydroxyl group on the iRNA agent can act as a structural mimic of a 3' ribose hydroxyl group, thereby causing it to be less susceptible to degradation.

The secondary hydroxyl group refers to an "OH" radical that is attached to a carbon atom substituted by two other carbons and a hydrogen. The secondary hydroxyl group that confers nuclease resistance as described above can be part of any acyclic carbon-containing group. The hydroxyl may also be part of any cyclic carbon-containing group, and preferably one or more of the following conditions is met (1) there is no ribose moiety between the hydroxyl group and the terminal phosphate group or (2) the hydroxyl group is not on a sugar moiety which is coupled to a base. The hydroxyl group is located at least two bonds (e.g., at least three bonds away, at least four bonds away, at least five bonds away, at least six bonds away, at least seven bonds away, at least eight bonds away, at least nine bonds away, at least ten bonds away, etc.) from the terminal phosphate group phosphorus of the iRNA agent. In preferred embodiments, there are five intervening bonds between the terminal phosphate group phosphorus and the secondary hydroxyl group.

10

15

20

Preferred iRNA agent delivery modules with five intervening bonds between the terminal phosphate group phosphorus and the secondary hydroxyl group have the following structure (see formula Y below):

Referring to formula Y, A is an iRNA agent, including any iRNA agent described herein. The iRNA agent may be connected directly or indirectly (e.g., through a spacer or linker) to "W" of the phosphate group. These spacers or linkers can include e.g., -(CH₂)_n-, -

 $(CH_2)_nN$ -, $-(CH_2)_nO$ -, $-(CH_2)_nS$ -, $O(CH_2CH_2O)_nCH_2CH_2OH$ (e.g., n=3 or 6), abasic sugars, amide, carboxy, amine, oxyamine, oxyimine, thioether, disulfide, thiourea, sulfonamide, or morpholino, or biotin and fluorescein reagents.

The iRNA agents can have a terminal phosphate group that is unmodified (e.g., W, X, Y, and Z are O) or modified. In a modified phosphate group, W and Z can be independently NH, O, or S; and X and Y can be independently S, Se, BH₃-, C₁-C₆ alkyl, C₆-C₁₀ aryl, H, O, O-, alkoxy or amino (including alkylamino, arylamino, etc.). Preferably, W, X and Z are O and Y is S.

5

10

15

20

25

30

 R_1 and R_3 are each, independently, hydrogen; or C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl.

 R_2 is hydrogen; C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl; or, when n is 1, R_2 may be taken together with with R_4 or R_6 to form a ring of 5-12 atoms.

 R_4 is hydrogen; C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl; or, when n is 1, R_4 may be taken together with with R_2 or R_5 to form a ring of 5-12 atoms.

 R_5 is hydrogen, C_1 - C_{100} alkyl optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl; or, when n is 1, R_5 may be taken together with with R_4 to form a ring of 5-12 atoms.

 R_6 is hydrogen, C_1 - C_{100} alkyl, optionally substituted with hydroxyl, amino, halo, phosphate or sulfate and/or may be optionally inserted with N, O, S, alkenyl or alkynyl, or, when n is 1, R_6 may be taken together with with R_2 to form a ring of 6-10 atoms;

 R_7 is hydrogen, C_1 - C_{100} alkyl, or $C(O)(CH_2)_qC(O)NHR_9$; T is hydrogen or a functional group; n and q are each independently 1-100; R_8 is C_1 - C_{10} alkyl or C_6 - C_{10} aryl; and R_9 is hydrogen, C1-C10 alkyl, C6-C10 aryl or a solid support agent.

Preferred embodiments may include one of more of the following subsets of iRNA agent delivery modules.

In one subset of RNAi agent delivery modules, A can be connected directly or indirectly through a terminal 3' or 5' ribose sugar carbon of the RNA agent.

In another subset of RNAi agent delivery modules, X, W, and Z are O and Y is S.

In still yet another subset of RNAi agent delivery modules, n is 1, and R_2 and R_6 are taken together to form a ring containing six atoms and R_4 and R_5 are taken together to form a ring containing six atoms. Preferably, the ring system is a *trans*-decalin. For example, the RNAi agent delivery module of this subset can include a compound of Formula (Y-1):

5

10

15

20

25

The functional group can be, for example, a targeting group (e.g., a steroid or a carbohydrate), a reporter group (e.g., a fluorophore), or a label (an isotopically labelled moiety). The targeting group can further include protein binding agents, endothelial cell targeting groups (e.g., RGD peptides and mimetics), cancer cell targeting groups (e.g., folate Vitamin B12, Biotin), bone cell targeting groups (e.g., bisphosphonates, polyglutamates, polyaspartates), multivalent mannose (for e.g., macrophage testing), lactose, galactose, N-acetyl-galactosamine, monoclonal antibodies, glycoproteins, lectins, melanotropin, or thyrotropin.

As can be appreciated by the skilled artisan, methods of synthesizing the compounds

of the formulae herein will be evident to those of ordinary skill in the art. The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization.

Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P.G.M.

Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and

Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L.

Sons (1994); and L. Paquette, ed., *Encyclopedia of Reagents for Organic Synthesis*, John Wiley and Sons (1995), and subsequent editions thereof.

Ribose Replacement Monomer Subunits

5

10

15

20

25

30

iRNA agents can be modified in a number of ways which can optimize one or more characteristics of the iRNA agent. In one aspect, the invention features a ribose replacement monomer subunit (RRMS), or a an iRNA agent which incorporates a RRMS, such as those described herein and those described in one or more of United States Provisional Application Serial No. 60/493,986 (Attorney Docket No. 14174-079P01), filed on August 8, 2003, which is hereby incorporated by reference; United States Provisional Application Serial No. 60/494,597 (Attorney Docket No. 14174-080P01), filed on August 11, 2003, which is hereby incorporated by reference; United States Provisional Application Serial No. 60/506,341 (Attorney Docket No. 14174-080P02), filed on September 26, 2003, which is hereby incorporated by reference; and in United States Provisional Application Serial No. 60/158,453 (Attorney Docket No. 14174-080P03), filed on November 7, 2003, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents having a RRMS and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an archtecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a RRMS.

The ribose sugar of one or more ribonucleotide subunits of an iRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier. A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring system, i.e., all ring atoms are carbon atoms, or a heterocyclic ring system, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused

rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.

The carriers further include (i) at least two "backbone attachment points" and (ii) at least one "tethering attachment point." A "backbone attachment point" as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A "tethering attachment point" as used herein refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a ligand, e.g., a targeting or delivery moiety, or a moiety which alters a physical property, e.g., lipophilicity, of an iRNA agent. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, it will include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.

10

15

20

25

Incorporation of one or more RRMSs described herein into an RNA agent, e.g., an iRNA agent, particularly when tethered to an appropriate entity, can confer one or more new properties to the RNA agent and/or alter, enhance or modulate one or more existing properties in the RNA molecule. E.g., it can alter one or more of lipophilicity or nuclease resistance. Incorporation of one or more RRMSs described herein into an iRNA agent can, particularly when the RRMS is tethered to an appropriate entity, modulate, e.g., increase, binding affinity of an iRNA agent to a target mRNA, change the geometry of the duplex form of the iRNA agent, alter distribution or target the iRNA agent to a particular part of the body, or modify the interaction with nucleic acid binding proteins (e.g., during RISC formation and strand separation).

Accordingly, in one aspect, the invention features, an iRNA agent preferably comprising a first strand and a second strand, wherein at least one subunit having a formula (R-1) is incorporated into at least one of said strands.

$$R^{2}$$
 X
 R^{6}
 R^{2}
 R^{3}
 R^{4}

(R-1)

Referring to formula (R-1), X is N(CO)R⁷, NR⁷ or CH₂; Y is NR⁸, O, S, CR⁹R¹⁰, or absent; and Z is CR¹¹R¹² or absent.

Each of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is, independently, H, OR^a , OR^b , $(CH_2)_nOR^a$, or $(CH_2)_nOR^b$, provided that at least one of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is OR^a or OR^b and that at least one of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} is $(CH_2)_nOR^a$, or $(CH_2)_nOR^b$ (when the RRMS is terminal, one of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} will include R^a and one will include R^b ; when the RRMS is internal, two of R^1 , R^2 , R^3 , R^4 , R^9 , and R^{10} will each include an R^b); further provided that preferably OR^a may only be present with $(CH_2)_nOR^b$ and $(CH_2)_nOR^a$ may only be present with OR^b .

Each of R^5 , R^6 , R^{11} , and R^{12} is, independently, H, C_1 - C_6 alkyl optionally substituted with 1-3 R^{13} , or C(O)NHR⁷; or R^5 and R^{11} together are C_3 - C_8 cycloalkyl optionally substituted with R^{14} .

 R^7 is C_1 - C_{20} alkyl substituted with NR^cR^d ; R^8 is C_1 - C_6 alkyl; R^{13} is hydroxy, C_1 - C_4 alkoxy, or halo; and R^{14} is NR^cR^7 .

Ra is:

20

5

10

15

R^b is:

Each of A and C is, independently, O or S.

B is OH, O', or

5

10

20

R^c is H or C1-C6 alkyl; R^d is H or a ligand; and n is 1-4.

In a preferred embodiment the ribose is replaced with a pyrroline scaffold, and X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is absent.

In other preferred embodiments the ribose is replaced with a piperidine scaffold, and X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is $CR^{11}R^{12}$.

In other preferred embodiments the ribose is replaced with a piperazine scaffold, and X is $N(CO)R^7$ or NR^7 , Y is NR^8 , and Z is $CR^{11}R^{12}$.

In other preferred embodiments the ribose is replaced with a morpholino scaffold, and X is $N(CO)R^7$ or NR^7 , Y is O, and Z is $CR^{11}R^{12}$.

In other preferred embodiments the ribose is replaced with a decalin scaffold, and X isCH₂; Y is CR⁹R¹⁰; and Z is CR¹¹R¹²; and R⁵ and R¹¹ together are C⁶ cycloalkyl.

In other preferred embodiments the ribose is replaced with a decalin/indane scafold and , and X is CH_2 ; Y is CR^9R^{10} ; and Z is $CR^{11}R^{12}$; and R^5 and R^{11} together are C^5 cycloalkyl.

In other preferred embodiments, the ribose is replaced with a hydroxyproline scaffold.

RRMSs described herein may be incorporated into any double-stranded RNA-like molecule described herein, e.g., an iRNA agent. An iRNA agent may include a duplex

comprising a hybridized sense and antisense strand, in which the antisense strand and/or the sense strand may include one or more of the RRMSs described herein. An RRMS can be introduced at one or more points in one or both strands of a double-stranded iRNA agent. An RRMS can be placed at or near (within 1, 2, or 3 positions) of the 3' or 5' end of the sense strand or at near (within 2 or 3 positions of) the 3' end of the antisense strand. In some embodiments it is preferred to not have an RRMS at or near (within 1, 2, or 3 positions of) the 5' end of the antisense strand. An RRMS can be internal, and will preferably be positioned in regions not critical for antisense binding to the target.

In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand. In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand and at (or within 1, 2, or 3 positions of) the 3' end of the sense strand. In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand and an RRMS at the 5' end of the sense strand, in which both ligands are located at the same end of the iRNA agent.

10

15

20

25

30

In certain embodiments, two ligands are tethered, preferably, one on each strand and are hydrophobic moieties. While not wishing to be bound by theory, it is believed that pairing of the hydrophobic ligands can stabilize the iRNA agent *via* intermolecular van der Waals interactions.

In an embodiment, an iRNA agent may have an RRMS at (or within 1, 2, or 3 positions of) the 3' end of the antisense strand and an RRMS at the 5' end of the sense strand, in which both RRMSs may share the same ligand (e.g., cholic acid) via connection of their individual tethers to separate positions on the ligand. A ligand shared between two proximal RRMSs is referred to herein as a "hairpin ligand."

In other embodiments, an iRNA agent may have an RRMS at the 3' end of the sense strand and an RRMS at an internal position of the sense strand. An iRNA agent may have an RRMS at an internal position of the sense strand; or may have an RRMS at an internal position of the antisense strand; or may have an RRMS at an internal position of the sense strand and an RRMS at an internal position of the antisense strand.

In preferred embodiments the iRNA agent includes a first and second sequences, which are preferably two separate molecules as opposed to two sequences located on the

same strand, have sufficient complementarity to each other to hybridize (and thereby form a duplex region), e.g., under physiological conditions, e.g., under physiological conditions but not in contact with a helicase or other unwinding enzyme.

It is preferred that the first and second sequences be chosen such that the ds iRNA agent includes a single strand or unpaired region at one or both ends of the molecule. Thus, a ds iRNA agent contains first and second sequences, preferable paired to contain an overhang, e.g., one or two 5' or 3' overhangs but preferably a 3' overhang of 2-3 nucleotides. Most embodiments will have a 3' overhang. Preferred sRNA agents will have single-stranded overhangs, preferably 3' overhangs, of 1 or preferably 2 or 3 nucleotides in length at each end. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. 5' ends are preferably phosphorylated.

10

15

20

25

30

An RNA agent, e.g., an iRNA agent, containing a preferred, but nonlimiting RRMS is presented as formula (R-2) in FIG. 4. The carrier includes two "backbone attachment points" (hydroxyl groups), a "tethering attachment point," and a ligand, which is connected indirectly to the carrier via an intervening tether. The RRMS may be the 5' or 3' terminal subunit of the RNA molecule, i.e., one of the two "W" groups may be a hydroxyl group, and the other "W" group may be a chain of two or more unmodified or modified ribonucleotides.

Alternatively, the RRMS may occupy an internal position, and both "W" groups may be one or more unmodified or modified ribonucleotides. More than one RRMS may be present in a RNA molecule, e.g., an iRNA agent.

The modified RNA molecule of formula (R-2) can be obtained using oligonucleotide synthetic methods known in the art. In a preferred embodiment, the modified RNA molecule of formula (II) can be prepared by incorporating one or more of the corresponding RRMS monomer compounds (RRMS monomers, see, e.g., A, B, and C in FIG. 4) into a growing sense or antisense strand, utilizing, e.g., phosphoramidite or H-phosphonate coupling strategies.

The RRMS monomers generally include two differently functionalized hydroxyl groups (OFG¹ and OFG² above), which are linked to the carrier molecule (see A in FIG. 4), and a tethering attachment point. As used herein, the term "functionalized hydroxyl group" means that the hydroxyl proton has been replaced by another substituent. As shown in representative structures B and C, one hydroxyl group (OFG¹) on the carrier is functionalized

with a protecting group (PG). The other hydroxyl group (OFG²) can be functionalized with either (1) a liquid or solid phase synthesis support reagent (solid circle) directly or indirectly through a linker, L, as in B, or (2) a phosphorus-containing moiety, e.g., a phosphoramidite as in C. The tethering attachment point may be connected to a hydrogen atom, a tether, or a tethered ligand at the time that the monomer is incorporated into the growing sense or antisense strand (see R in Scheme 1). Thus, the tethered ligand can be, but need not be attached to the monomer at the time that the monomer is incorporated into the growing strand. In certain embodiments, the tether, the ligand or the tethered ligand may be linked to a "precursor" RRMS after a "precursor" RRMS monomer has been incorporated into the strand.

The (OFG¹) protecting group may be selected as desired, e.g., from T.W. Greene and P.G.M. Wuts, *Protective Groups in Organic Synthesis*, 2d. Ed., John Wiley and Sons (1991). The protecting group is preferably stable under amidite synthesis conditions, storage conditions, and oligonucleotide synthesis conditions. Hydroxyl groups, -OH, are nucleophilic groups (i.e., Lewis bases), which react through the oxygen with electrophiles (i.e., Lewis acids). Hydroxyl groups in which the hydrogen has been replaced with a protecting group, e.g., a triarylmethyl group or a trialkylsilyl group, are essentially unreactive as nucleophiles in displacement reactions. Thus, the protected hydroxyl group is useful in preventing e.g., homocoupling of compounds exemplified by structure C during oligonucleotide synthesis. A preferred protecting group is the dimethoxytrityl group.

When the OFG² in **B** includes a linker, e.g., a long organic linker, connected to a soluble or insoluble support reagent, solution or solid phase synthesis techniques can be employed to build up a chain of natural and/or modified ribonucleotides once OFG¹ is deprotected and free to react as a nucleophile with another nucleoside or monomer containing an electrophilic group (e.g., an amidite group). Alternatively, a natural or modified ribonucleotide or oligoribonucleotide chain can be coupled to monomer **C** via an amidite group or H-phosphonate group at OFG². Subsequent to this operation, OFG¹ can be deblocked, and the restored nucleophilic hydroxyl group can react with another nucleoside or monomer containing an electrophilic group (see FIG. 1). R' can be substituted or unsubstituted alkyl or alkenyl. In preferred embodiments, R' is methyl, allyl or 2-

cyanoethyl. R'' may a C_1 - C_{10} alkyl group, preferably it is a branched group containing three or more carbons, e.g., isopropyl.

OFG² in B can be hydroxyl functionalized with a linker, which in turn contains a liquid or solid phase synthesis support reagent at the other linker terminus. The support reagent can be any support medium that can support the monomers described herein. The monomer can be attached to an insoluble support via a linker, L, which allows the monomer (and the growing chain) to be solubilized in the solvent in which the support is placed. The solubilized, yet immobilized, monomer can react with reagents in the surrounding solvent; unreacted reagents and soluble by-products can be readily washed away from the solid support to which the monomer or monomer-derived products is attached. Alternatively, the monomer can be attached to a soluble support moiety, e.g., polyethylene glycol (PEG) and liquid phase synthesis techniques can be used to build up the chain. Linker and support medium selection is within skill of the art. Generally the linker may be -C(O)(CH₂)_qC(O)-, or -C(O)(CH₂)_qS-, preferably, it is oxalyl, succinyl or thioglycolyl. Standard control pore glass solid phase synthesis supports can not be used in conjunction with fluoride labile 5' silyl protecting groups because the glass is degraded by fluoride with a significant reduction in the amount of full-length product. Fluoride-stable polystyrene based supports or PEG are preferred.

Preferred carriers have the general formula (R-3) provided below. (In that structure preferred backbone attachment points can be chosen from R¹ or R²; R³ or R⁴; or R⁹ and R¹⁰ if Y is CR⁹R¹⁰ (two positions are chosen to give two backbone attachment points, e.g., R¹ and R⁴, or R⁴ and R⁹. Preferred tethering attachment points include R⁷; R⁵ or R⁶ when X is CH₂. The carriers are described below as an entity, which can be incorporated into a strand. Thus, it is understood that the structures also encompass the situations wherein one (in the case of a terminal position) or two (in the case of an internal position) of the attachment points, e.g., R¹ or R²; R³ or R⁴; or R⁹ or R¹⁰ (when Y is CR⁹R¹⁰), is connected to the phosphate, or modified phosphate, e.g., sulfur containing, backbone. E.g., one of the above-named R groups can be CH2-, wherein one bond is connected to the carrier and one to a backbone atom, e.g., a linking oxygen or a central phosphorus atom.)

25

5

10

15

20

$$R^2$$
 X
 X
 R^6
 R^8
 R^4

(R-3)

5

10

15

20

25

X is N(CO)R⁷, NR⁷ or CH₂; Y is NR⁸, O, S, CR⁹R¹⁰; and Z is CR¹¹R¹² or absent. Each of R¹, R², R³, R⁴, R⁹, and R¹⁰ is, independently, H, OR^a, or (CH₂)_nOR^b, provided that at least two of R¹, R², R³, R⁴, R⁹, and R¹⁰ are OR^a and/or (CH₂)_nOR^b.

Each of R⁵, R⁶, R¹¹, and R¹² is, independently, a ligand, H, C₁-C₆ alkyl optionally substituted with 1-3 R¹³, or C(O)NHR⁷; or R⁵ and R¹¹ together are C₃-C₈ cycloalkyl optionally substituted with R¹⁴.

 R^7 is H, a ligand, or C_1 - C_{20} alkyl substituted with NR^cR^d ; R^8 is H or C_1 - C_6 alkyl; R^{13} is hydroxy, C_1 - C_4 alkoxy, or halo; R^{14} is NR^cR^7 ; R^{15} is C_1 - C_6 alkyl optionally substituted with cyano, or C_2 - C_6 alkenyl; R^{16} is C_1 - C_{10} alkyl; and R^{17} is a liquid or solid phase support reagent.

L is $-C(O)(CH_2)_qC(O)$ -, or $-C(O)(CH_2)_qS$ -; R^a is CAr_3 ; R^b is $P(O)(O^*)H$, $P(OR^{15})N(R^{16})_2$ or L- R^{17} ; R^c is H or C_1 - C_6 alkyl; and R^d is H or a ligand.

Each Ar is, independently, C_6 - C_{10} aryl optionally substituted with C_1 - C_4 alkoxy; n is 1-4; and q is 0-4.

Exemplary carriers include those in which, e.g., X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is absent; or X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is $CR^{11}R^{12}$; or X is $N(CO)R^7$ or NR^7 , Y is NR^8 , and Z is $CR^{11}R^{12}$; or X is $N(CO)R^7$ or NR^7 , Y is O, and Z is $CR^{11}R^{12}$; or X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_6 cycloalkyl (**H**, z=2), or the indane ring system, e.g., X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_5 cycloalkyl (**H**, z=1).

In certain embodiments, the carrier may be based on the pyrroline ring system or the 3-hydroxyproline ring system, e.g., X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is absent (D). OFG¹ is preferably attached to a primary carbon, e.g., an exocyclic alkylene

5

10

15

20

group, e.g., a methylene group, connected to one of the carbons in the five-membered ring (-CH₂OFG¹ in **D**). OFG² is preferably attached directly to one of the carbons in the five-membered ring (-OFG² in **D**). For the pyrroline-based carriers, -CH₂OFG¹ may be attached to C-2 and OFG² may be attached to C-3; or -CH₂OFG¹ may be attached to C-3 and OFG² may be attached to C-4. In certain embodiments, CH₂OFG¹ and OFG² may be geminally substituted to one of the above-referenced carbons. For the 3-hydroxyproline-based carriers, -CH₂OFG¹ may be attached to C-2 and OFG² may be attached to C-4. The pyrroline- and 3-hydroxyproline-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, CH₂OFG¹ and OFG² may be *cis* or *trans* with respect to one another in any of the pairings delineated above Accordingly, all *cis/trans* isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. The tethering attachment point is preferably nitrogen.

In certain embodiments, the carrier may be based on the piperidine ring system (E), e.g., X is $N(CO)R^7$ or NR^7 , Y is CR^9R^{10} , and Z is $CR^{11}R^{12}$. OFG¹ is preferably

attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group (n=1) or ethylene group (n=2), connected to one of the carbons in the six-membered ring [-(CH₂)_nOFG¹ in E]. OFG² is preferably attached directly to one of the carbons in the sixmembered ring (-OFG² in E). -(CH₂)_nOFG¹ and OFG² may be disposed in a geminal manner on the ring, i.e., both groups may be attached to the same carbon, e.g., at C-2, C-3, or C-4. Alternatively, -(CH₂)_nOFG¹ and OFG² may be disposed in a vicinal manner on the ring, i.e., both groups may be attached to adjacent ring carbon atoms, e.g., -(CH₂)_nOFG¹ may be attached to C-2 and OFG² may be attached to C-3; -(CH₂), OFG¹ may be attached to C-3 and OFG² may be attached to C-2; -(CH₂)_nOFG¹ may be attached to C-3 and OFG² may be attached to C-4; or -(CH₂)_nOFG¹ may be attached to C-4 and OFG² may be attached to C-3. The piperidine-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, -(CH₂)_nOFG¹ and OFG² may be cis or trans with respect to one another in any of the pairings delineated above. Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. The tethering attachment point is preferably nitrogen.

10

15

20

In certain embodiments, the carrier may be based on the piperazine ring system (F), e.g., X is $N(CO)R^7$ or NR^7 , Y is NR^8 , and Z is $CR^{11}R^{12}$, or the morpholine ring system (G), e.g., X is $N(CO)R^7$ or NR^7 , Y is O, and Z is $CR^{11}R^{12}$. OFG¹ is preferably

attached to a primary carbon, e.g., an exocyclic alkylene group, e.g., a methylene group, connected to one of the carbons in the six-membered ring (-CH₂OFG¹ in F or G). OFG² is preferably attached directly to one of the carbons in the six-membered rings (-OFG² in F or G). For both F and G, -CH₂OFG¹ may be attached to C-2 and OFG² may be attached to C-3; or *vice versa*. In certain embodiments, CH₂OFG¹ and OFG² may be geminally substituted to one of the above-referenced carbons. The piperazine- and morpholine-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, CH₂OFG¹ and OFG² may be *cis* or *trans* with respect to one another in any of the pairings delineated above. Accordingly, all *cis/trans* isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. R''' can be, e.g., C₁-C₆ alkyl, preferably CH₃. The tethering attachment point is preferably nitrogen in both F and G.

In certain embodiments, the carrier may be based on the decalin ring system, e.g., X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_6 cycloalkyl (H, z = 2), or the indane ring system, e.g., X is CH_2 ; Y is CR^9R^{10} ; Z is $CR^{11}R^{12}$, and R^5 and R^{11} together form C_5 cycloalkyl (H, z = 1). OFG¹ is preferably attached to a primary carbon,

5

10

15

20

25

$$z^{\begin{pmatrix} C_7 & C_6 & C_5 \\ C_4 & C_2 \\ C_1 & C_2 \end{pmatrix}} C_{1} C_{2} C_{3} C_{1} C_{2}$$

e.g., an exocyclic methylene group (n=1) or ethylene group (n=2) connected to one of C-2, C-3, C-4, or C-5 [-(CH₂)_nOFG¹ in H]. OFG² is preferably attached directly to one of C-2, C-3, C-4, or C-5 (-OFG² in H). -(CH₂)_nOFG¹ and OFG² may be disposed in a geminal manner on the ring, i.e., both groups may be attached to the same carbon, e.g., at C-2, C-3, C-4, or C-5. Alternatively, -(CH₂)_nOFG¹ and OFG² may be disposed in a vicinal manner on the ring, i.e., both groups may be attached to adjacent ring carbon atoms, e.g., -(CH₂)_nOFG¹ may be attached to C-2 and OFG² may be attached to C-3; -(CH₂)_nOFG¹ may be attached to C-3 and OFG² may be attached to C-2; -(CH₂)_nOFG¹ may be attached to C-3 and OFG² may be attached to C-4; or -(CH₂)_nOFG¹ may be attached to C-4 and OFG² may be attached to C-3; -(CH₂)_nOFG¹ may be attached to C-4 and OFG² may be attached to C-5; or -(CH₂)_nOFG¹ may be attached to C-5 and OFG² may be attached to C-4. The decalin or indane-based monomers may therefore contain linkages (e.g., carbon-carbon bonds) wherein bond rotation is restricted about that particular linkage, e.g. restriction resulting from the presence of a ring. Thus, -(CH₂)_nOFG¹ and OFG² may be cis or trans with respect to one another in any of the pairings delineated above. Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. In a preferred embodiment, the substituents at C-1 and C-6 are trans with respect to one another. The tethering attachment point is preferably C-6 or C-7.

PCT/US2004/007070 WO 2004/080406

Other carriers may include those based on 3-hydroxyproline (J). Thus, $-(CH_2)_nOFG^1$ and OFG² may be cis or trans with respect to one another. Accordingly, all cis/trans isomers are expressly included. The monomers may also contain one or more asymmetric centers

2
GFO(CH₂)_n OFG₁

5

10

15

20

and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of the monomers are expressly included. The tethering attachment point is preferably nitrogen.

Representative carriers are shown in FIG. 5.

In certain embodiments, a moiety, e.g., a ligand may be connected indirectly to the carrier via the intermediacy of an intervening tether. Tethers are connected to the carrier at the tethering attachment point (TAP) and may include any C₁-C₁₀₀ carbon-containing moiety, (e.g. C₁-C₇₅, C₁-C₅₀, C₁-C₂₀, C₁-C₁₀, C₁-C₆), preferably having at least one nitrogen atom. In preferred embodiments, the nitrogen atom forms part of a terminal amino group on the tether, which may serve as a connection point for the ligand. Preferred tethers (underlined) include TAP-(CH₂)_nNH₂; TAP-C(O)(CH₂)_nNH₂; or TAP-NR" (CH₂)_nNH₂, in which n is 1-6 and $R^{""}$ is C_1 - C_6 alkyl. and R^d is hydrogen or a ligand. In other embodiments, the nitrogen may form part of a terminal oxyamino group, e.g., -ONH2, or hydrazino group, -NHNH2. The tether may optionally be substituted, e.g., with hydroxy, alkoxy, perhaloalkyl, and/or optionally inserted with one or more additional heteroatoms, e.g., N, O, or S. Preferred tethered ligands may include, e.g., TAP-(CH2), NH(LIGAND), $TAP-C(O)(CH_2)_nNH(LIGAND)_i$, or $TAP-NR'''(CH_2)_nNH(LIGAND)_i$; TAP-(CH2),ONH(LIGAND), TAP-C(O)(CH2),ONH(LIGAND), or TAP-NR''''(CH2), ONH(LIGAND); TAP-(CH2), NHNH2(LIGAND),

 $TAP-C(O)(CH_2)_0NHNH_2(LIGAND)$, or $TAP-NR''''(CH_2)_0NHNH_2(LIGAND)$. 25

In other embodiments the tether may include an electrophilic moiety, preferably at the terminal position of the tether. Preferred electrophilic moieties include, e.g., an aldehyde, alkyl halide, mesylate, tosylate, nosylate, or brosylate, or an activated carboxylic acid ester, e.g. an NHS ester, or a pentafluorophenyl ester. Preferred tethers (underlined) include TAP-(CH₂)_nCHO; TAP-C(O)(CH₂)_nCHO; or TAP-NR''''(CH₂)_nCHO, in which n is 1-6 and R'''' is C₁-C₆ alkyl; or TAP-(CH₂)_nC(O)ONHS; TAP-C(O)(CH₂)_nC(O)ONHS; or TAP-NR''''(CH₂)_nC(O)ONHS, in which n is 1-6 and R'''' is C₁-C₆ alkyl; TAP-(CH₂)_nC(O)OC₆F₅; TAP-C(O)(CH₂)_nC(O)OC₆F₅; or TAP-NR''''(CH₂)_nC(O)OC₆F₅, in which n is 1-6 and R'''' is C₁-C₆ alkyl (LG can be a leaving group, e.g., halide, mesylate, tosylate, nosylate, brosylate). Tethering can be carried out by coupling a nucleophilic group of a ligand, e.g., a thiol or amino group with an electrophilic group on the tether.

Tethered Entities

5

10

15

20

25

30

A wide variety of entities can be tethered to an iRNA agent, e.g., to the carrier of an RRMS. Examples are described below in the context of an RRMS but that is only preferred, entities can be coupled at other points to an iRNA agent.

Preferred moieties are ligands, which are coupled, preferably covalently, either directly or indirectly via an intervening tether, to the RRMS carrier. In preferred embodiments, the ligand is attached to the carrier via an intervening tether. As discussed above, the ligand or tethered ligand may be present on the RRMS monomer when the RRMS monomer is incorporated into the growing strand. In some embodiments, the ligand may be incorporated into a "precursor" RRMS after a "precursor" RRMS monomer has been incorporated into the growing strand. For example, an RRMS monomer having, e.g., an amino-terminated tether (i.e., having no associated ligand), e.g., TAP-(CH₂)_nNH₂ may be incorporated into a growing sense or antisense strand. In a subsequent operation, i.e., after incorporation of the precursor monomer into the strand, a ligand having an electrophilic group, e.g., a pentafluorophenyl ester or aldehyde group, can subsequently be attached to the precursor RRMS by coupling the electrophilic group of the ligand with the terminal nucleophilic group of the precursor RRMS tether.

In preferred embodiments, a ligand alters the distribution, targeting or lifetime of an iRNA agent into which it is incorporated. In preferred embodiments a ligand provides an enhanced affinity for a selected target, e.g, molecule, cell or cell type, compartment, e.g., a cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Preferred ligands will not take part in duplex pairing in a duplexed nucleic acid.

Preferred ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified oligoribonucleotide, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.

Ligands in general can include therapeutic modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; and nuclease-resistance conferring moieties. General examples include lipids, steroids, vitamins, sugars, proteins, peptides, polyamines, and peptide mimics.

10

15

20

25

30

Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.

Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, bone cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent

lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, or an RGD peptide or RGD peptide mimetic.

5

10

15

20

25

30

Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g., cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]₂, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine-imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.

Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetylgalactosamine, N-acetyl-gulucosamine multivalent mannose, or multivalent fucose. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.

The ligand can be a substance, e.g, a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.

The ligand can increase the uptake of the iRNA agent into the cell by activating an inflammatory response, for example. Exemplary ligands that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, or gamma interferon.

5

10

15

20

25

30

In one aspect, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule preferably binds a serum protein, e.g., human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. Preferably, the target tissue is the liver, preferably parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a seru protein, e.g., HSA.

A lipid based ligand can be used to modulate, e.g., control the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.

In a preferred embodiment, the lipid based ligand binds HSA. Preferably, it binds HSA with a sufficient affinity such that the conjugate will be preferably distributed to a non-kidney tissue. However, it is preferred that the affinity not be so strong that the HSA-ligand binding cannot be reversed.

In another preferred embodiment, the lipid based ligand binds HSA weakly or not at all, such that the conjugate will be preferably distributed to the kidney. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.

In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HSA and low density lipoprotein (LDL).

In another aspect, the ligand is a cell-permeation agent, preferably a helical cell-permeation agent. Preferably, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is preferably an alpha-helical agent, which preferably has a lipophilic and a lipophobic phase.

5

10

The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The attachment of peptide and peptidomimetics to iRNA agents can affect pharmacokinetic distribution of the iRNA, such as by enhancing cellular recognition and absorption. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long (see Table 1, for example).

Table 1. Exemplary Cell Permeation Peptides

Cell Permeation Peptide	Amino acid Sequence	Reference
Penetratin	RQIKIWFQNRRMKWKK (SEQ ID NO:6737)	Derossi <i>et al.</i> , J. Biol. Chem. 269:10444, 1994
Tat fragment (48-60)	GRKKRRQRRRPPQC (SEQ ID NO:6738)	Vives et al., J. Biol. Chem., 272:16010, 1997
Signal Sequence- based peptide	GALFLGWLGAAGSTMGAWSQPKKKRKV (SEQ ID NO:6738)	Chaloin et al., Biochem. Biophys. Res. Commun., 243:601, 1998
PVEC	LLIILRRRIRKQAHAHSK (SEQ ID NO:6739)	Elmquist et al., Exp. Cell Res., 269:237, 2001
Transportan	GWTLNSAGYLLKINLKALAALAKKIL (SEQ ID NO:6740)	Pooga et al., FASEB J., 12:67, 1998
Amphiphilic model peptide	KLALKLALKALKAALKLA (SEQ ID NO:6741)	Oehlke <i>et al.</i> , Mol. Ther., 2:339, 2000
Arg ₉	RRRRRRRR (SEQ ID NO:6742)	Mitchell <i>et al.</i> , J. Pept. Res., 56:318, 2000
Bacterial cell wall permeating	KFFKFFKFFK (SEQ ID NO:6743)	
LL-37	LLGDFFRKSKEKIGKEFKRIVQRIKDFLRN LVPRTES (SEQ ID NO:6744)	
Cecropin P1	SWLSKTAKKLENSAKKRISEGIAIAIQGGP R (SEQ ID NO:6745)	
α-defensin	ACYCRIPACIAGERRYGTCIYQGRLWAFC C (SEQ ID NO:6746)	
b-defensin	DHYNCVSSGGQCLYSACPIFTKIQGTCYR GKAKCCK (SEQ ID NO:6747)	
Bactenecin	RKCRIVVIRVCR (SEQ ID NO:6748)	
PR-39	RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPP RFPPRFPGKR-NH2 (SEQ ID NO:6749)	
Indolicidin	ILPWKWPWWPWRR-NH2 (SEQ ID NO:6750)	

A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked

5

peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO:6751). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP (SEQ ID NO:6752)) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a "delivery" peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ (SEQ ID NO:6753)) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK (SEQ ID NO:6754)) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-beadone-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Preferably the peptide or peptidomimetic tethered to an iRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.

10

15

20

25

30

An RGD peptide moiety can be used to target a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an iRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing $\alpha_V \beta_3$ (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).

Peptides that target markers enriched in proliferating cells can be used. E.g., RGD containing peptides and peptidomimetics can target cancer cells, in particular cells that exhibit an $\alpha_{\nu}\beta_{3}$ integrin. Thus, one could use RGD peptides, cyclic peptides containing RGD, RGD peptides that include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the α_{ν} - β_{3} integrin ligand. Generally,

5

10

15

20

25

30

such ligands can be used to control proliferating cells and angiogeneis. Preferred conjugates of this type include an iRNA agent that targets PECAM-1, VEGF, or other cancer gene, e.g., a cancer gene described herein.

A "cell permeation peptide" is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α -helical linear peptide (e.g., LL-37 or Ceropin P1), a disulfide bond-containing peptide (e.g., α -defensin, β -defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-1 gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).

In one embodiment, a targeting peptide tethered to an RRMS can be an amphipathic α -helical peptide. Exemplary amphipathic α -helical peptides include, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, *S. clava* peptides, hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H_2A peptides, Xenopus peptides, esculentinis-1, and caerins. A number of factors will preferably be considered to maintain the integrity of helix stability. For example, a maximum number of helix stabilization residues will be utilized (*e.g.*, leu, ala, or lys), and a minimum number helix destabilization residues will be utilized (*e.g.*, proline, or cyclic monomeric units. The capping residue will be considered (for example Gly is an exemplary N-capping residue and/or C-terminal amidation can be used to provide an extra H-bond to stabilize the helix. Formation of salt bridges between residues with opposite charges, separated by $i \pm 3$, or $i \pm 4$ positions can provide stability. For example, cationic residues such as lysine, arginine, homo-arginine, ornithine or histidine can form salt bridges with the anionic residues glutamate or aspartate.

Peptide and petidomimetic ligands include those having naturally occurring or modified peptides, e.g., D or L peptides; α , β , or γ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides.

Methods for making iRNA agents

5

10

15

20

25

30

iRNA agents can include modified or non-naturally occuring bases, e.g., bases described in copending and coowned United States Provisional Application Serial No. 60/463,772 (Attorney Docket No. 14174-070P01), filed on April 17, 2003, which is hereby incorporated by reference and/or in copending and coowned United States Provisional Application Serial No. 60/465,802 (Attorney Docket No. 14174-074P01), filed on April 25, 2003, which is hereby incorporated by reference. Monomers and iRNA agents which include such bases can be made by the methods found in United States Provisional Application Serial No. 60/463,772 (Attorney Docket No. 14174-070P01), filed on April 17, 2003, and/or in United States Provisional Application Serial No. 60/465,802 (Attorney Docket No. 14174-074P01), filed on April 25, 2003.

In addition, the invention includes iRNA agents having a modified or non-naturally occurring base and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a modified or non-naturally occurring base.

The synthesis and purification of oligonucleotide peptide conjugates can be performed by established methods. See, for example, Trufert *et al.*, Tetrahedron, 52:3005, 1996; and Manoharan, "Oligonucleotide Conjugates in Antisense Technology," in <u>Antisense</u> Drug Technology, ed. S.T. Crooke, Marcel Dekker, Inc., 2001.

In one embodiment of the invention, a peptidomimetic can be modified to create a constrained peptide that adopts a distinct and specific preferred conformation, which can increase the potency and selectivity of the peptide. For example, the constrained peptide can be an azapeptide (Gante, Synthesis, 405-413, 1989). An azapeptide is synthesized by replacing the α-carbon of an amino acid with a nitrogen atom without changing the structure of the amino acid side chain. For example, the azapeptide can be synthesized by using

hydrazine in traditional peptide synthesis coupling methods, such as by reacting hydrazine with a "carbonyl donor," e.g., phenylchloroformate.

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be an N-methyl peptide. N-methyl peptides are composed of N-methyl amino acids, which provide an additional methyl group in the peptide backbone, thereby potentially providing additional means of resistance to proteolytic cleavage. N-methyl peptides can by synthesized by methods known in the art (see, for example, Lindgren et al., Trends Pharmacol. Sci. 21:99, 2000; Cell Penetrating Peptides:

Processes and Applications, Langel, ed., CRC Press, Boca Raton, FL, 2002; Fische et al., Bioconjugate. Chem. 12: 825, 2001; Wander et al., J. Am. Chem. Soc., 124:13382, 2002).

For example, an Ant or Tat peptide can be an N-methyl peptide.

5

10

15

20

25

30

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be a β -peptide. β -peptides form stable secondary structures such as helices, pleated sheets, turns and hairpins in solutions. Their cyclic derivatives can fold into nanotubes in the solid state. β -peptides are resistant to degradation by proteolytic enzymes. β -peptides can be synthesized by methods known in the art. For example, an Ant or Tat peptide can be a β -peptide.

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be a oligocarbamate. Oligocarbamate peptides are internalized into a cell by a transport pathway facilitated by carbamate transporters. For example, an Ant or Tat peptide can be an oligocarbamate.

In one embodiment of the invention, a peptide or peptidomimetic (e.g., a peptide or peptidomimetic tethered to an RRMS) can be an oligourea conjugate (or an oligothiourea conjugate), in which the amide bond of a peptidomimetic is replaced with a urea moiety. Replacement of the amide bond provides increased resistance to degradation by proteolytic enzymes, e.g., proteolytic enzymes in the gastrointestinal tract. In one embodiment, an oligourea conjugate is tethered to an iRNA agent for use in oral delivery. The backbone in each repeating unit of an oligourea peptidomimetic can be extended by one carbon atom in comparison with the natural amino acid. The single carbon atom extension can increase peptide stability and lipophilicity, for example. An oligourea peptide can therefore be advantageous when an iRNA agent is directed for passage through a bacterial cell wall, or

when an iRNA agent must traverse the blood-brain barrier, such as for the treatment of a neurological disorder. In one embodiment, a hydrogen bonding unit is conjugated to the oligourea peptide, such as to create an increased affinity with a receptor. For example, an Ant or Tat peptide can be an oligourea conjugate (or an oligothiourea conjugate).

The siRNA peptide conjugates of the invention can be affiliated with, e.g., tethered to, RRMSs occurring at various positions on an iRNA agent. For example, a peptide can be terminally conjugated, on either the sense or the antisense strand, or a peptide can be bisconjugated (one peptide tethered to each end, one conjugated to the sense strand, and one conjugated to the antisense strand). In another option, the peptide can be internally conjugated, such as in the loop of a short hairpin iRNA agent. In yet another option, the peptide can be affiliated with a complex, such as a peptide-carrier complex.

A peptide-carrier complex consists of at least a carrier molecule, which can encapsulate one or more iRNA agents (such as for delivery to a biological system and/or a cell), and a peptide moiety tethered to the outside of the carrier molecule, such as for targeting the carrier complex to a particular tissue or cell type. A carrier complex can carry additional targeting molecules on the exterior of the complex, or fusogenic agents to aid in cell delivery. The one or more iRNA agents encapsulated within the carrier can be conjugated to lipophilic molecules, which can aid in the delivery of the agents to the interior of the carrier.

A carrier molecule or structure can be, for example, a micelle, a liposome (e.g., a cationic liposome), a nanoparticle, a microsphere, or a biodegradable polymer. A peptide moiety can be tethered to the carrier molecule by a variety of linkages, such as a disulfide linkage, an acid labile linkage, a peptide-based linkage, an oxyamino linkage or a hydrazine linkage. For example, a peptide-based linkage can be a GFLG peptide. Certain linkages will have particular advantages, and the advantages (or disadvantages) can be considered depending on the tissue target or intended use. For example, peptide based linkages are stable in the blood stream but are susceptible to enzymatic cleavage in the lysosomes.

Targeting

5

10

15

20

25

30

The iRNA agents of the invention are particularly useful when targeted to the liver.

An iRNA agent can be targeted to the liver by incorporation of an RRMS containing a ligand

that targets the liver. For example, a liver-targeting agent can be a lipophilic moiety. Preferred lipophilic moieties include lipid, cholesterols, oleyl, retinyl, or cholesteryl residues. Other lipophilic moieties that can function as liver-targeting agents include cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-

O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine.

An iRNA agent can also be targeted to the liver by association with a low-density lipoprotein (LDL), such as lactosylated LDL. Polymeric carriers complexed with sugar residues can also function to target iRNA agents to the liver.

10

15

20

25

30

A targeting agent that incorporates a sugar, e.g., galactose and/or analogues thereof, is particularly useful. These agents target, in particular, the parenchymal cells of the liver. For example, a targeting moiety can include more than one or preferably two or three galactose moieties, spaced about 15 angstroms from each other. The targeting moiety can alternatively be lactose (e.g., three lactose moieties), which is glucose coupled to a galactose. The targeting moiety can also be N-Acetyl-Galactosamine, N-Ac-Glucosamine. A mannose or mannose-6-phosphate targeting moiety can be used for macrophage targeting.

Conjugation of an iRNA agent with a serum albumin (SA), such as human serum albumin, can also be used to target the iRNA agent to the liver.

An iRNA agent targeted to the liver by an RRMS targeting moiety described herein can target a gene expressed in the liver. For example, the iRNA agent can target p21(WAF1/DIP1), P27(KIP1), the α-fetoprotein gene, beta-catenin, or c-MET, such as for treating a cancer of the liver. In another embodiment, the iRNA agent can target apoB-100, such as for the treatment of an HDL/LDL cholesterol imbalance; dyslipidemias, e.g., familial combined hyperlipidemia (FCHL), or acquired hyperlipidemia; hypercholesterolemia; statin-resistant hypercholesterolemia; coronary artery disease (CAD); coronary heart disease (CHD); or atherosclerosis. In another embodiment, the iRNA agent can target forkhead homologue in rhabdomyosarcoma (FKHR); glucagon; glucagon receptor; glycogen phosphorylase; PPAR-Gamma Coactivator (PGC-1); Fructose-1,6-bisphosphatase; glucose-6-phosphatase; glucose-6-phosphate translocator; glucokinase inhibitory regulatory protein; or phosphoenolpyruvate carboxykinase (PEPCK), such as to inhibit hepatic glucose

production in a mammal, such as a human, such as for the treatment of diabetes. In another embodiment, an iRNA agent targeted to the liver can target Factor V, e.g., the Leiden Factor V allele, such as to reduce the tendency to form a blood clot. An iRNA agent targeted to the liver can include a sequence which targets hepatitis virus (e.g., Hepatitis A, B, C, D, E, F, G, or H). For example, an iRNA agent of the invention can target any one of the nonstructural proteins of HCV: NS3, 4A, 4B, 5A, or 5B. For the treatment of hepatitis B, an iRNA agent can target the protein X (HBx) gene, for example.

Preferred ligands on RRMSs include folic acid, glucose, cholesterol, cholic acid, Vitamin E, Vitamin K, or Vitamin A.

10 Definitions

5

15

20

25

The term "halo" refers to any radical of fluorine, chlorine, bromine or iodine.

The term "alkyl" refers to a hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C₁-C₁₂ alkyl indicates that the group may have from 1 to 12 (inclusive) carbon atoms in it. The term "haloalkyl" refers to an alkyl in which one or more hydrogen atoms are replaced by halo, and includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkyl). Alkyl and haloalkyl groups may be optionally inserted with O, N, or S. The terms "aralkyl" refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group. Examples of "aralkyl" include benzyl, 9-fluorenyl, benzhydryl, and trityl groups.

The term "alkenyl" refers to a straight or branched hydrocarbon chain containing 2-8 carbon atoms and characterized in having one or more double bonds. Examples of a typical alkenyl include, but not limited to, allyl, propenyl, 2-butenyl, 3-hexenyl and 3-octenyl groups. The term "alkynyl" refers to a straight or branched hydrocarbon chain containing 2-8 carbon atoms and characterized in having one or more triple bonds. Some examples of a typical alkynyl are ethynyl, 2-propynyl, and 3-methylbutynyl, and propargyl. The sp² and sp³ carbons may optionally serve as the point of attachment of the alkenyl and alkynyl groups, respectively.

The term "alkoxy" refers to an -O-alkyl radical. The term "aminoalkyl" refers to an alkyl substituted with an aminoThe term "mercapto" refers to an -SH radical. The term "thioalkoxy" refers to an -S-alkyl radical.

The term "alkylene" refers to a divalent alkyl (i.e., -R-), e.g., -CH₂-, -CH₂CH₂-, and -CH₂CH₂-CH₂-. The term "alkylenedioxo" refers to a divalent species of the structure -O-R-O-, in which R represents an alkylene.

5

10

15

20

25

30

The term "aryl" refers to an aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system, wherein any ring atom capable of substitution can be substituted by a substituent. Examples of aryl moieties include, but are not limited to, phenyl, naphthyl, and anthracenyl.

The term "cycloalkyl" as employed herein includes saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon groups having 3 to 12 carbons, wherein any ring atom capable of substitution can be substituted by a substituent. The cycloalkyl groups herein described may also contain fused rings. Fused rings are rings that share a common carbon-carbon bond. Examples of cycloalkyl moieties include, but are not limited to, cyclohexyl, adamantyl, and norbornyl.

The term "heterocyclyl" refers to a nonaromatic 3-10 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein any ring atom capable of substitution can be substituted by a substituent. The heterocyclyl groups herein described may also contain fused rings. Fused rings are rings that share a common carbon-carbon bond. Examples of heterocyclyl include, but are not limited to tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholino, pyrrolinyl and pyrrolidinyl.

The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein any ring atom capable of substitution can be substituted by a substituent.

The term "oxo" refers to an oxygen atom, which forms a carbonyl when attached to carbon, an N-oxide when attached to nitrogen, and a sulfoxide or sulfone when attached to sulfur.

The term "acyl" refers to an alkylcarbonyl, cycloalkylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, or heteroarylcarbonyl substituent, any of which may be further substituted by substituents.

The term "substituents" refers to a group "substituted" on an alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group. Suitable substituents include, without limitation, alkyl, alkenyl, alkynyl, alkoxy, halo, hydroxy, cyano, nitro, amino, SO₃H, sulfate, phosphate, perfluoroalkyl, perfluoroalkoxy, methylenedioxy, ethylenedioxy, carboxyl, oxo, thioxo, imino (alkyl, aryl, aralkyl), S(O)_nalkyl (where n is 0-2), S(O)_n aryl (where n is 0-2), S(O)_n heteroaryl (where n is 0-2), S(O)_n heterocyclyl (where n is 0-2), amine (mono-, di-, alkyl, cycloalkyl, aralkyl, heteroaralkyl, and combinations thereof), ester (alkyl, aralkyl, heteroaralkyl), amide (mono-, di-, alkyl, aralkyl, heteroaralkyl, and combinations thereof), sulfonamide (mono-, di-, alkyl, aralkyl, heteroaralkyl, and combinations thereof), unsubstituted aryl, unsubstituted heteroaryl, unsubstituted heterocyclyl, and unsubstituted cycloalkyl. In one aspect, the substituents on a group are independently any one single, or any subset of the aforementioned substituents.

The terms "adeninyl, cytosinyl, guaninyl, thyminyl, and uracilyl" and the like refer to radicals of adenine, cytosine, guanine, thymine, and uracil.

As used herein, an "unusual" nucleobase can include any one of the following:

2-methyladeninyl,

5

10

15

20

N6-methyladeninyl,

25 2-methylthio-N6-methyladeninyl,

N6-isopentenyladeninyl,

2-methylthio-N6-isopentenyladeninyl,

N6-(cis-hydroxyisopentenyl)adeninyl,

2-methylthio-N6-(cis-hydroxyisopentenyl) adeninyl,

N6-glycinylcarbamoyladeninyl,

N6-threonylcarbamoyladeninyl,

2-methylthio-N6-threonyl carbamoyladeninyl,

N6-methyl-N6-threonylcarbamoyladeninyl,

N6-hydroxynorvalylcarbamoyladeninyl,

2-methylthio-N6-hydroxynorvalyl carbamoyladeninyl,

N6,N6-dimethyladeninyl,

3-methylcytosinyl,

5-methylcytosinyl,

2-thiocytosinyl,

5-formylcytosinyl,

10

15

5

N4-methylcytosinyl,

5-hydroxymethylcytosinyl,

1-methylguaninyl,

N2-methylguaninyl,

7-methylguaninyl,

N2,N2-dimethylguaninyl,

N2,7-dimethylguaninyl,

5

PCT/US2004/007070 WO 2004/080406

N2, N2, 7-trimethylguaninyl, 1-methylguaninyl, 7-cyano-7-deazaguaninyl, 5 7-aminomethyl-7-deazaguaninyl, pseudouracilyl, dihydrouracilyl, 5-methyluracilyl, 1-methylpseudouracilyl, 10 2-thiouracilyl, 4-thiouracilyl, 2-thiothyminyl 5-methyl-2-thiouracilyl, 3-(3-amino-3-carboxypropyl)uracilyl, 15 5-hydroxyuracilyl, 5-methoxyuracilyl, uracilyl 5-oxyacetic acid, uracilyl 5-oxyacetic acid methyl ester, 5-(carboxyhydroxymethyl)uracilyl, 20 5-(carboxyhydroxymethyl)uracilyl methyl ester, 5-methoxycarbonylmethyluracilyl, 5-methoxycarbonylmethyl-2-thiouracilyl, 5-aminomethyl-2-thiouracilyl, 5-methylaminomethyluracilyl, 5-methylaminomethyl-2-thiouracilyl, 25

5-methylaminomethyl-2-selenouracilyl,

5-carbamoylmethyluracilyl,

5-carboxymethylaminomethyluracilyl,

5-carboxymethylaminomethyl-2-thiouracilyl,

30 3-methyluracilyl,

1-methyl-3-(3-amino-3-carboxypropyl) pseudouracilyl,

5-carboxymethyluracilyl,

5-methyldihydrouracilyl, or

3-methylpseudouracilyl.

5 Asymmetrical Modifications

10

15

20

25

30

In one aspect, the invention features an iRNA agent which can be asymmetrically modified as described herein.

In addition, the invention includes iRNA agents having asymmetrical modifications and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates an asymmetrical modification.

iRNA agents of the invention can be asymmetrically modified. An asymmetrically modified iRNA agent is one in which a strand has a modification which is not present on the other strand. An asymmetrical modification is a modification found on one strand but not on the other strand. Any modification, e.g., any modification described herein, can be present as an asymmetrical modification. An asymmetrical modification can confer any of the desired properties associated with a modification, e.g., those properties discussed herein. E.g., an asymmetrical modification can: confer resistance to degradation, an alteration in half life; target the iRNA agent to a particular target, e.g., to a particular tissue; modulate, e.g., increase or decrease, the affinity of a strand for its complement or target sequence; or hinder or promote modification of a terminal moiety, e.g., modification by a kinase or other enzymes involved in the RISC mechanism pathway. The designation of a modification as having one property does not mean that it has no other property, e.g., a modification referred to as one which promotes stabilization might also enhance targeting.

While not wishing to be bound by theory or any particular mechanistic model, it is believed that asymmetrical modification allows an iRNA agent to be optimized in view of the different or "asymmetrical" functions of the sense and antisense strands. For example, both

strands can be modified to increase nuclease resistance, however, since some changes can inhibit RISC activity, these changes can be chosen for the sense stand. In addition, since some modifications, e.g., targeting moieties, can add large bulky groups that, e.g., can interfere with the cleavage activity of the RISC complex, such modifications are preferably placed on the sense strand. Thus, targeting moieties, especially bulky ones (e.g. cholesterol), are preferentially added to the sense strand. In one embodiment, an asymmetrical modification in which a phosphate of the backbone is substituted with S, e.g., a phosphorothioate modification, is present in the antisense strand, and a 2' modification, e.g., 2' OMe is present in the sense strand. A targeting moiety can be present at either (or both) the 5' or 3' end of the sense strand of the iRNA agent. In a preferred example, a P of the backbone is replaced with S in the antisense strand, 2'OMe is present in the sense strand, and a targeting moiety is added to either the 5' or 3' end of the sense strand of the iRNA agent.

5

10

15

20

25

30

In a preferred embodiment an asymmetrically modified iRNA agent has a modification on the sense strand which modification is not found on the antisense strand and the antisense strand has a modification which is not found on the sense strand.

Each strand can include one or more asymmetrical modifications. By way of example: one strand can include a first asymmetrical modification which confers a first property on the iRNA agent and the other strand can have a second asymmetrical modification which confers a second property on the iRNA. E.g., one strand, e.g., the sense strand can have a modification which targets the iRNA agent to a tissue, and the other strand, e.g., the antisense strand, has a modification which promotes hybridization with the target gene sequence.

In some embodiments both strands can be modified to optimize the same property, e.g., to increase resistance to nucleolytic degradation, but different modifications are chosen for the sense and the antisense strands, e.g., because the modifications affect other properties as well. E.g., since some changes can affect RISC activity these modifications are chosen for the sense strand.

In an embodiment one strand has an asymmetrical 2' modification, e.g., a 2' OMe modification, and the other strand has an asymmetrical modification of the phosphate backbone, e.g., a phosphorothicate modification. So, in one embodiment the antisense strand has an asymmetrical 2' OMe modification and the sense strand has an asymmetrical

phosphorothioate modification (or vice versa). In a particularly preferred embodiment the RNAi agent will have asymmetrical 2'-O alkyl, preferably, 2'-OMe modifications on the sense strand and asymmetrical backbone P modification, preferably a phosphothioate modification in the antisense strand. There can be one or multiple 2'-OMe modifications, e.g., at least 2, 3, 4, 5, or 6, of the subunits of the sense strand can be so modified. There can be one or multiple phosphorothioate modifications, e.g., at least 2, 3, 4, 5, or 6, of the subunits of the antisense strand can be so modified. It is preferable to have an iRNA agent wherein there are multiple 2'-OMe modifications on the sense strand and multiple phophorothioate modifications on the antisense strand. All of the subunits on one or both strands can be so modified. A particularly preferred embodiment of multiple asymmetric modification on both strands has a duplex region about 20-21, and preferably 19, subunits in length and one or two 3' overhangs of about 2 subunits in length.

10

15

20

25

30

Asymmetrical modifications are useful for promoting resistance to degradation by nucleases, e.g., endonucleases. iRNA agents can include one or more asymmetrical modifications which promote resistance to degradation. In preferred embodiments the modification on the antisense strand is one which will not interfere with silencing of the target, e.g., one which will not interfere with cleavage of the target. Most if not all sites on a strand are vulnerable, to some degree, to degradation by endonucleases. One can determine sites which are relatively vulnerable and insert asymmetrical modifications which inhibit degradation. It is often desirable to provide asymmetrical modification of a UA site in an iRNA agent, and in some cases it is desirable to provide the UA sequence on both strands with asymmetrical modification. Examples of modifications which inhibit endonucleolytic degradation can be found herein. Particularly favored modifications include: 2' modification, e.g., provision of a 2' OMe moiety on the U, especially on a sense strand; modification of the backbone, e.g., with the replacement of an O with an S, in the phosphate backbone, e.g., the provision of a phosphorothioate modification, on the U or the A or both, especially on an antisense strand; replacement of the U with a C5 amino linker; replacement of the A with a G (sequence changes are preferred to be located on the sense strand and not the antisense strand); and modification of the at the 2', 6', 7', or 8' position. Preferred embodiments are those in which one or more of these modifications are present on the sense

but not the antisense strand, or embodiments where the antisense strand has fewer of such modifications.

5

10

15

20

25

30

Asymmetrical modification can be used to inhibit degradation by exonucleases. Asymmetrical modifications can include those in which only one strand is modified as well as those in which both are modified. In preferred embodiments the modification on the antisense strand is one which will not interfere with silencing of the target, e.g., one which will not interfere with cleavage of the target. Some embodiments will have an asymmetrical modification on the sense strand, e.g., in a 3' overhang, e.g., at the 3' terminus, and on the antisense strand, e.g., in a 3' overhang, e.g., at the 3' terminus. If the modifications introduce moieties of different size it is preferable that the larger be on the sense strand. If the modifications introduce moieties of different charge it is preferable that the one with greater charge be on the sense strand.

Examples of modifications which inhibit exonucleolytic degradation can be found herein. Particularly favored modifications include: 2' modification, e.g., provision of a 2' OMe moiety in a 3' overhang, e.g., at the 3' terminus (3' terminus means at the 3' atom of the molecule or at the most 3' moiety, e.g., the most 3' P or 2' position, as indicated by the context); modification of the backbone, e.g., with the replacement of a P with an S, e.g., the provision of a phosphorothioate modification, or the use of a methylated P in a 3' overhang, e.g., at the 3' terminus; combination of a 2' modification, e.g., provision of a 2' O Me moiety and modification of the backbone, e.g., with the replacement of a P with an S, e.g., the provision of a phosphorothioate modification, or the use of a methylated P, in a 3' overhang, e.g., at the 3' terminus; modification with a 3' alkyl; modification with an abasic pyrolidine in a 3' overhang, e.g., at the 3' terminus; modification with naproxene, ibuprofen, or other moieties which inhibit degradation at the 3' terminus. Preferred embodiments are those in which one or more of these modifications are present on the sense but not the antisense strand, or embodiments where the antisense strand has fewer of such modifications.

Modifications, e.g., those described herein, which affect targeting can be provided as asymmetrical modifications. Targeting modifications which can inhibit silencing, e.g., by inhibiting cleavage of a target, can be provided as asymmetrical modifications of the sense strand. A biodistribution altering moiety, e.g., cholesterol, can be provided in one or more, e.g., two, asymmetrical modifications of the sense strand. Targeting modifications which

introduce moieties having a relatively large molecular weight, e.g., a molecular weight of more than 400, 500, or 1000 daltons, or which introduce a charged moiety (e.g., having more than one positive charge or one negative charge) can be placed on the sense strand.

Modifications, e.g., those described herein, which modulate, e.g., increase or decrease, the affinity of a strand for its compliment or target, can be provided as asymmetrical modifications. These include: 5 methyl U; 5 methyl C; pseudouridine, Locked nucleic acids ,2 thio U and 2-amino-A. In some embodiments one or more of these is provided on the antisense strand.

5

10

15

20

25

30

iRNA agents have a defined structure, with a sense strand and an antisense strand, and in many cases short single strand overhangs, e.g., of 2 or 3 nucleotides are present at one or both 3' ends. Asymmetrical modification can be used to optimize the activity of such a structure, e.g., by being placed selectively within the iRNA. E.g., the end region of the iRNA agent defined by the 5' end of the sense strand and the 3'end of the antisense strand is important for function. This region can include the terminal 2, 3, or 4 paired nucleotides and any 3' overhang. In preferred embodiments asymmetrical modifications which result in one or more of the following are used: modifications of the 5' end of the sense strand which inhibit kinase activation of the sense strand, including, e.g., attachments of conjugates which target the molecule or the use modifications which protect against 5' exonucleolytic degradation; or modifications of either strand, but preferably the sense strand, which enhance binding between the sense and antisense strand and thereby promote a "tight" structure at this end of the molecule.

The end region of the iRNA agent defined by the 3' end of the sense strand and the 5'end of the antisense strand is also important for function. This region can include the terminal 2, 3, or 4 paired nucleotides and any 3' overhang. Preferred embodiments include asymmetrical modifications of either strand, but preferably the sense strand, which decrease binding between the sense and antisense strand and thereby promote an "open" structure at this end of the molecule. Such modifications include placing conjugates which target the molecule or modifications which promote nuclease resistance on the sense strand in this region. Modification of the antisense strand which inhibit kinase activation are avoided in preferred embodiments.

Exemplary modifications for asymmetrical placement in the sense strand include the following:

(a) backbone modifications, e.g., modification of a backbone P, including replacement of P with S, or P substituted with alkyl or allyl, e.g., Me, and dithioates (S-P=S); these modifications can be used to promote nuclease resistance;

5

10

15

20

25

30

- (b) 2'-O alkyl, e.g., 2'-OMe, 3'-O alkyl, e.g., 3'-OMe (at terminal and/or internal positions); these modifications can be used to promote nuclease resistance or to enhance binding of the sense to the antisense strand, the 3' modifications can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (c) 2'-5' linkages (with 2'-H, 2'-OH and 2'-OMe and with P=O or P=S) these modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (d) L sugars (e.g., L ribose, L-arabinose with 2'-H, 2'-OH and 2'-OMe); these modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (e) modified sugars (e.g., locked nucleic acids (LNA's), hexose nucleic acids (HNA's) and cyclohexene nucleic acids (CeNA's)); these modifications can be used to promote nuclease resistance or to inhibit binding of the sense to the antisense strand, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC;
- (f) nucleobase modifications (e.g., C-5 modified pyrimidines, N-2 modified purines, N-7 modified purines, N-6 modified purines), these modifications can be used to promote nuclease resistance or to enhance binding of the sense to the antisense strand;
- (g) cationic groups and Zwitterionic groups (preferably at a terminus), these modifications can be used to promote nuclease resistance;
- (h) conjugate groups (preferably at terminal positions), e,g., naproxen, biotin, cholesterol, ibuprofen, folic acid, peptides, and carbohydrates; these modifications can be used to promote nuclease resistance or to target the molecule, or can be used at the 5' end of the sense strand to avoid sense strand activation by RISC.

Exemplary modifications for asymmetrical placement in the antisense strand include the following:

- (a) backbone modifications, e.g., modification of a backbone P, including replacement of P with S, or P substituted with alkyl or allyl, e.g., Me, and dithioates (S-P=S);
 - (b) 2'-O alkyl, e.g., 2'-OMe, (at terminal positions);

5

10

15

20

25

30

- (c) 2'-5' linkages (with 2'-H, 2'-OH and 2'-OMe) e.g., terminal at the 3' end); e.g., with P=O or P=S preferably at the 3'-end, these modifications are preferably excluded from the 5' end region as they may interfere with RISC enzyme activity such as kinase activity;
- (d) L sugars (e.g, L ribose, L-arabinose with 2'-H, 2'-OH and 2'-OMe); e.g., terminal at the 3' end; e.g., with P=O or P=S preferably at the 3'-end, these modifications are preferably excluded from the 5' end region as they may interfere with kinase activity;
- (e) modified sugars (e.g., LNA's, HNA's and CeNA's); these modifications are preferably excluded from the 5' end region as they may contribute to unwanted enhancements of paring between the sense and antisense strands, it is often preferred to have a "loose" structure in the 5' region, additionally, they may interfere with kinase activity;
- (f) nucleobase modifications (e.g., C-5 modified pyrimidines, N-2 modified purines, N-7 modified purines, N-6 modified purines);
- (g) cationic groups and Zwitterionic groups (preferably at a terminus); conjugate groups (preferably at terminal positions), e.g., naproxen, biotin, cholesterol, ibuprofen, folic acid, peptides, and carbohydrates, but bulky groups or generally groups which inhibit RISC activity should are less preferred.
- The 5'-OH of the antisense strand should be kept free to promote activity. In some preferred embodiments modifications that promote nuclease resistance should be included at the 3' end, particularly in the 3' overhang.
- In another aspect, the invention features a method of optimizing, e.g., stabilizing, an iRNA agent. The method includes selecting a sequence having activity, introducing one or more asymmetric modifications into the sequence, wherein the introduction of the asymmetric modification optimizes a property of the iRNA agent but does not result in a decrease in activity.
- The decrease in activity can be less than a preselected level of decrease. In preferred embodiments decrease in activity means a decrease of less than 5, 10, 20, 40, or

50 % activity, as compared with an otherwise similar iRNA lacking the introduced modification. Activity can, e.g., be measured in vivo, or in vitro, with a result in either being sufficient to demonstrate the required maintenance of activity.

The optimized property can be any property described herein and in particular the properties discussed in the section on asymmetrical modifications provided herein. The modification can be any asymmetrical modification, e.g., an asymmetric modification described in the section on asymmetrical modifications described herein. Particularly preferred asymmetric modifications are 2'-O alkyl modifications, e.g., 2'-OMe modifications, particularly in the sense sequence, and modifications of a backbone O, particularly phosphorothioate modifications, in the antisense sequence.

5

10

15

In a preferred embodiment a sense sequence is selected and provided with an asymmetrical modification, while in other embodiments an antisense sequence is selected and provided with an asymmetrical modification. In some embodiments both sense and antisense sequences are selected and each provided with one or more asymmetrical modifications.

Multiple asymmetric modifications can be introduced into either or both of the sense and antisense sequence. A sequence can have at least 2, 4, 6, 8, or more modifications and all or substantially all of the monomers of a sequence can be modified.

Table: 2. Some examples of Asymmetric Modification

This table shows examples having strand I with a selected modification and strand II with a selected modification.

Strand I	Strand II
Nuclease Resistance (e.g. 2'-OMe)	Biodistribution (e.g., P=S)
Biodistribution conjugate (e.g. Lipophile)	Protein Binding Functionality (e.g. Naproxen)
Tissue Distribution Functionality (e.g. Carbohydrates)	Cell Targeting Functionality (e.g. Folate for cancer cells)
Tissue Distribution Functionality (e.g. Liver Cell Targeting Carbohydrates)	Fusogenic Functionality (e.g. Polyethylene imines)
Cancer Cell Targeting (e. g. RGD peptides and imines)	Fusogenic Functionality (e.g. peptides)
Nuclease Resistance (e.g. 2'-OMe)	Increase in binding Affinity (5-Me-C, 5-Me-U, 2-thio-U, 2-amino-A, G-clamp, LNA)
Tissue Distribution Functionality	RISC activity improving Functionality
Helical conformation changing Functionalities	Tissue Distribution Functionality (P=S; lipophile, carbohydrates)

Z-X-Y Architecture

5

10

15

20

25

30

In one aspect, the invention features an iRNA agent which can have a Z-X-Y architecture or structure such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/510,246 (Attorney Docket No. 14174-079P02), filed on October 9, 2003, which is hereby incorporated by reference, and in copending, co-owned United States Provisional Application Serial No. 60/510,318 (Attorney Docket No. 14174-079P03), filed on October 10, 2003, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents having a Z-X-Y structure and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates a Z-X-Y architecture.

The invention provides an iRNA agent having a first segment, the Z region, a second segment, the X region, and optionally a third region, the Y region:

Z-X-Y.

It may be desirable to modify subunits in one or both of Zand/or Y on one hand and X on the other hand. In some cases they will have the same modification or the same class of modification but it will more often be the case that the modifications made in Z and/or Y will differ from those made in X.

The Z region typically includes a terminus of an iRNA agent. The length of the Z region can vary, but will typically be from 2-14, more preferably 2-10, subunits in length. It typically is single stranded, i.e., it will not base pair with bases of another strand, though it may in some embodiments self associate, e.g., to form a loop structure. Such structures can be formed by the end of a strand looping back and forming an intrastrand duplex. E.g., 2, 3,

4, 5 or more intra-strand bases pairs can form, having a looped out or connecting region, typically of 2 or more subunits which do not pair. This can occur at one or both ends of a strand. A typical embodiment of a Z region is a single strand overhang, e.g., an over hang of the length described elsewhere herein. The Z region can thus be or include a 3' or 5' terminal single strand. It can be sense or antisense strand but if it is antisense it is preferred that it is a 3- overhang. Typical inter-subunit bonds in the Z region include: P=O; P=S; S-P=S; P-NR₂; and P-BR₂. Chiral P=X, where X is S, N, or B) inter-subunit bonds can also be present. (These inter-subunit bonds are discussed in more detail elsewhere herein.) Other preferred Z region subunit modifications (also discussed elsewhere herein) can include: 3'-OR, 3'SR, 2'-OMe, 3'-OMe, and 2'OH modifications and moieties; alpha configuration bases; and 2' arabino modifications.

5

10

15

20

25

30

The X region will in most cases be duplexed, in the case of a single strand iRNA agent, with a corresponding region of the single strand, or in the case of a double stranded iRNA agent, with the corresponding region of the other strand. The length of the X region can vary but will typically be between 10-45 and more preferably between 15 and 35 subunits. Particularly preferred region X's will include 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs, though other suitable lengths are described elsewhere herein and can be used. Typical X region subunits include 2'-OH subunits. In typical embodiments phosphate inter-subunit bonds are preferred while phophorothioate or non-phosphate bonds are absent. Other modifications preferred in the X region include: modifications to improve binding, e.g., nucleobase modifications; cationic nucleobase modifications; and C-5 modified pyrimidines, e.g., allylamines. Some embodiments have 4 or more consecutive 2'OH subunits. While the use of phosphorothioate is sometimes non preferred they can be used if they connect less than 4 consecutive 2'OH subunits.

The Y region will generally conform to the parameters set out for the Z regions. However, the X and Z regions need not be the same, different types and numbers of modifications can be present, and infact, one will usually be a 3' overhang and one will usually be a 5' overhang.

In a preferred embodiment the iRNA agent will have a Y and/or Z region each having ribonucleosides in which the 2'-OH is substituted, e.g., with 2'-OMe or other alkyl; and an X

region that includes at least four consecutive ribonucleoside subunits in which the 2'-OH remains unsubstituted.

The subunit linkages (the linkages between subunits) of an iRNA agent can be modified, e.g., to promote resistance to degradation. Numerous examples of such modifications are disclosed herein, one example of which is the phosphorothioate linkage. These modifications can be provided bewteen the subunits of any of the regions, Y, X, and Z. However, it is preferred that their occureceis minimized and in particular it is preferred that consecutive modified linkages be avoided.

5

10

15

20

25

30

In a preferred embodiment the iRNA agent will have a Y and Z region each having ribonucleosides in which the 2'-OH is substituted, e.g., with 2'-OMe; and an X region that includes at least four consecutive subunits, e.g., ribonucleoside subunits in which the 2'-OH remains unsubstituted.

As mentioned above, the subunit linkages of an iRNA agent can be modified, e.g., to promote resistance to degradation. These modifications can be provided between the subunits of any of the regions, Y, X, and Z. However, it is preferred that they are minimized and in particular it is preferred that consecutive modified linkages be avoided.

Thus, in a preferred embodiment, not all of the subunit linkages of the iRNA agent are modified and more preferably the maximum number of consecutive subunits linked by other than a phospodiester bond will be 2, 3, or 4. Particularly preferred iRNA agents will not have four or more consecutive subunits, e.g., 2'-hydroxyl ribonucleoside subunits, in which each subunits is joined by modified linkages – i.e. linkages that have been modified to stabilize them from degradation as compared to the phosphodiester linkages that naturally occur in RNA and DNA.

It is particularly preferred to minimize the occurrence in region X. Thus, in preferred embodiments each of the nucleoside subunit linkages in X will be phosphodiester linkages, or if subunit linkages in region X are modified, such modifications will be minimized. E.g., although the Y and/or Z regions can include inter subunit linkages which have been stabilized against degradation, such modifications will be minimized in the X region, and in particular consecutive modifications will be minimized. Thus, in preferred embodiments the maximum number of consecutive subunits linked by other than a phospodiester bond will be 2, 3, or 4. Particulary preferred X regions will not have four or more consecutive subunits,

e.g., 2'-hydroxyl ribonucleoside subunits, in which each subunits is joined by modified linkages – i.e. linkages that have been modified to stabilize them from degradation as compared to the phosphodiester linkages that naturally occur in RNA and DNA.

In a preferred embodiment Y and /or Z will be free of phosphorothioate linkages, though either or both may contain other modifications, e.g., other modifications of the subunit linkages.

5

15

20

25

30

In a preferred embodiment region X, or in some cases, the entire iRNA agent, has no more than 3 or no more than 4 subunits having identical 2' moieties.

In a preferred embodiment region X, or in some cases, the entire iRNA agent, has no more than 3 or no more than 4 subunits having identical subunit linkages.

In a preferred embodiment one or more phosphorothioate linkages (or other modifications of the subunit linkage) are present in Y and/or Z, but such modified linkages do not connect two adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., a 2'-O-alkyl moiety. E.g., any adjacent 2'-O-alkyl moieties in the Y and/or Z, are connected by a linkage other than a a phosphorothioate linkage.

In a preferred embodiment each of Y and/or Z independently has only one phosphorothioate linkage between adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides. If there is a second set of adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides, in Y and/or Z that second set is connected by a linkage other than a phosphorothioate linkage, e.g., a modified linkage other than a phosphorothioate linkage.

In a prefered embodiment each of Y and/orZ independently has more than one phosphorothioate linkage connecting adjacent pairs of subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides, but at least one pair of adjacent subunits, e.g., nucleosides, having a 2' modification, e.g., 2'-O-alkyl nucleosides, are be connected by a linkage other than a phosphorothioate linkage, e.g., a modified linkage other than a phosphorothioate linkage.

In a prefered embodiment one of the above recited limitation on adjacent subunits in Y and or Z is combined with a limitation on the subunits in X. E.g., one or more phosphorothicate linkages (or other modifications of the subunit linkage) are present in Y and/or Z, but such modified linkages do not connect two adjacent subunits, e.g., nucleosides,

having a 2' modification, e.g., a 2'-O-alkyl moiety. E.g., any adjacent 2'-O-alkyl moieties in the Y and/or Z, are connected by a linkage other than a a phosporothioate linkage. In addition, the X region has no more than 3 or no more than 4 identical subunits, e.g., subunits having identical 2' moieties or the X region has no more than 3 or no more than 4 subunits having identical subunit linkages.

A Y and/or Z region can include at least one, and preferably 2, 3 or 4 of a modification disclosed herein. Such modifications can be chosen, independently, from any modification described herein, e.g., from nuclease resistant subunits, subunits with modified bases, subunits with modified intersubunit linkages, subunits with modified sugars, and subunits linked to another moiety, e.g., a targeting moiety. In a preferred embodiment more than 1 of such subunits can be present but in some emobodiments it is preferred that no more than 1, 2, 3, or 4 of such modifications occur, or occur consecutively. In a preferred embodiment the frequency of the modification will differ between Yand /or Z and X, e.g., the modification will be present one of Y and/or Z or X and absent in the other.

An X region can include at least one, and preferably 2, 3 or 4 of a modification disclosed herein. Such modifications can be chosen, independently, from any modification desribed herein, e.g., from nuclease resistant subunits, subunits with modified bases, subunits with modified intersubunit linkages, subunits with modified sugars, and subunits linked to another moiety, e.g., a targeting moiety. In a preferred embodiment more than 1 of such subunits can b present but in some emobodiments it is preferred that no more than 1, 2, 3, or 4 of such modifications occur, or occur consecutively.

An RRMS (described elswhere herein) can be introduced at one or more points in one or both strands of a double-stranded iRNA agent. An RRMS can be placed in a Y and/or Z region, at or near (within 1, 2, or 3 positions) of the 3' or 5' end of the sense strand or at near (within 2 or 3 positions of) the 3' end of the antisense strand. In some embodiments it is preferred to not have an RRMS at or near (within 1, 2, or 3 positions of) the 5' end of the antisense strand. An RRMS can be positioned in the X region, and will preferably be positioned in the sense strand or in an area of the antisense strand not critical for antisense binding to the target.

25

5

10

15

20

Differential Modification of Terminal Duplex Stability

5

10

15

20

25

30

In one aspect, the invention features an iRNA agent which can have differential modification of terminal duplex stability (DMTDS).

In addition, the invention includes iRNA agents having DMTDS and another element described herein. E.g., the invention includes an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent having a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having an architecture or structure described herein, an iRNA associated with an amphipathic delivery agent described herein, an iRNA associated with a drug delivery module described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, which also incorporates DMTDS.

iRNA agents can be optimized by increasing the propensity of the duplex to disassociate or melt (decreasing the free energy of duplex association), in the region of the 5' end of the antisense strand duplex. This can be accomplished, e.g., by the inclusion of subunits which increase the propensity of the duplex to disassociate or melt in the region of the 5' end of the antisense strand. It can also be accomplished by the attachment of a ligand that increases the propensity of the duplex to disassociate of melt in the region of the 5'end. While not wishing to be bound by theory, the effect may be due to promoting the effect of an enzyme such as helicase, for example, promoting the effect of the enzyme in the proximity of the 5' end of the antisense strand.

The inventors have also discovered that iRNA agents can be optimized by decreasing the propensity of the duplex to disassociate or melt (increasing the free energy of duplex association), in the region of the 3' end of the antisense strand duplex. This can be accomplished, e.g., by the inclusion of subunits which decrease the propensity of the duplex to disassociate or melt in the region of the 3' end of the antisense strand. It can also be accomplished by the attachment of ligand that decreases the propensity of the duplex to disassociate of melt in the region of the 5'end.

Modifications which increase the tendency of the 5' end of the duplex to dissociate can be used alone or in combination with other modifications described herein, e.g., with modifications which decrease the tendency of the 3' end of the duplex to dissociate.

Likewise, modifications which decrease the tendency of the 3' end of the duplex to dissociate can be used alone or in combination with other modifications described herein, e.g., with modifications which increase the tendency of the 5' end of the duplex to dissociate.

Decreasing the stability of the AS 5' end of the duplex

Subunit pairs can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation:

A:U is preferred over G:C;

5

10

15

20

25

30

G:U is preferred over G:C;

I:C is preferred over G:C (I=inosine);

mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings;

pairings which include a universal base are preferred over canonical pairings.

A typical ds iRNA agent can be diagrammed as follows:

S 5' R₁ N₁ N₂ N₃ N₄ N₅ [N] N_{.5} N_{.4} N_{.3} N_{.2} N_{.1} R₂ 3'

AS 3' R₃ N₁ N₂ N₃ N₄ N₅ [N] N₋₅ N₋₄ N₋₃ N₋₂ N₋₁ R₄ 5'

S:AS P₁ P₂ P₃ P₄ P₅ [N] P₋₅P₋₄P₋₃P₋₂P₋₁ 5'

S indicates the sense strand; AS indicates antisense strand; R₁ indicates an optional (and nonpreferred) 5' sense strand overhang; R₂ indicates an optional (though preferred) 3' sense overhang; R₃ indicates an optional (though preferred) 3' antisense sense overhang; R₄ indicates an optional (and nonpreferred) 5' antisense overhang; N indicates subunits; [N] indicates that additional subunit pairs may be present; and P_x, indicates a paring of sense N_x and antisense N_x. Overhangs are not shown in the P diagram. In some embodiments a 3' AS overhang corresponds to region Z, the duplex region corresponds to region X, and the 3' S strand overhang corresponds to region Y, as described elsewhere herein. (The diagram is not

meant to imply maximum or minimum lengths, on which guidance is provided elsewhere herein.)

It is preferred that pairings which decrease the propensity to form a duplex are used at 1 or more of the positions in the duplex at the 5' end of the AS strand. The terminal pair (the most 5' pair in terms of the AS strand) is designated as P₋₁, and the subsequent pairing positions (going in the 3' direction in terms of the AS strand) in the duplex are designated, P₋₂, P₋₃, P₋₄, P₋₅, and so on. The preferred region in which to modify to modulate duplex formation is at P₋₅ through P₋₁, more preferably P₋₄ through P₋₁, more preferably P₋₃ through P₋₁. Modification at P₋₁, is particularly preferred, alone or with modification(s) other position(s), e.g., any of the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of one of the recited regions be chosen independently from the group of:

A:U

5

10

15

20

25

30

G:U

I:C

mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base.

In preferred embodiments the change in subunit needed to achieve a pairing which promotes dissociation will be made in the sense strand, though in some embodiments the change will be made in the antisense strand.

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are pairs which promote disociation.

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are A:U. In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are G:U. In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are I:C.

In a preferred embodiment the at least 2, or 3, of the pairs in P_{-1} , through P_{-4} , are mismatched pairs, e.g., non-canonical or other than canonical pairings pairings.

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are pairings which include a universal base.

Increasing the stability of the AS 3' end of the duplex

Subunit pairs can be ranked on the basis of their propensity to promote stability and inhibit dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting duplex stability:

G:C is preferred over A:U

Watson-Crick matches (A:T, A:U, G:C) are preferred over non-canonical or other than canonical pairings

analogs that increase stability are preferred over Watson-Crick matches (A:T, A:U, G:C)

2-amino-A:U is preferred over A:U

2-thio U or 5 Me-thio-U:A are preferred over U:A

G-clamp (an analog of C having 4 hydrogen bonds):G is preferred over C:G guanadinium-G-clamp:G is preferred over C:G psuedo uridine:A is preferred over U:A

sugar modifications, e.g., 2' modifications, e.g., 2'F, ENA, or LNA, which enhance binding are preferred over non-modified moieties and can be present on one or both strands to enhance stability of the duplex. It is preferred that pairings which increase the propensity to form a duplex are used at 1 or more of the positions in the duplex at the 3' end of the AS strand. The terminal pair (the most 3' pair in terms of the AS strand) is designated as P₁, and the subsequent pairing positions (going in the 5' direction in terms of the AS strand) in the duplex are designated, P₂, P₃, P₄, P₅, and so on. The preferred region in which to modify to modulate duplex formation is at P₅ through P₁, more preferably P₄ through P₁, more preferably P₃ through P₁. Modification at P₁, is particularly preferred, alone or with mdification(s) at other position(s), e.g.,any of the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of the recited regions be chosen independently from the group of:

30

25

5

15

20

G:C

a pair having an analog that increases stability over Watson-Crick matches (A:T, A:U, G:C)

2-amino-A:U

2-thio U or 5 Me-thio-U:A

G-clamp (an analog of C having 4 hydrogen bonds):G

guanadinium-G-clamp:G

psuedo uridine:A

a pair in which one or both subunits has a sugar modification, e.g., a 2' modification, e.g., 2'F, ENA, or LNA, which enhance binding.

10

15

20

25

30

5

In a preferred embodiment the at least 2, or 3, of the pairs in P₋₁, through P₋₄, are pairs which promote duplex stability.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are G:C.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are a pair having an analog that increases stability over Watson-Crick matches.

In a preferred embodiment the at least 2, or 3, of the pairs in P_1 , through P_4 , are 2-amino-A:U.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are 2-thio U or 5 Me-thio-U:A.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are G-clamp:G.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are guanidinium-G-clamp:G.

In a preferred embodiment the at least 2, or 3, of the pairs in P_1 , through P_4 , are psuedo uridine: A.

In a preferred embodiment the at least 2, or 3, of the pairs in P₁, through P₄, are a pair in which one or both subunits has a sugar modification, e.g., a 2' modification, e.g., 2'F, ENA, or LNA, which enhances binding.

G-clamps and guanidinium G-clamps are discussed in the following references:

Holmes and Gait, "The Synthesis of 2'-O-Methyl G-Clamp Containing Oligonucleotides and
Their Inhibition of the HIV-1 Tat-TAR Interaction," Nucleosides, Nucleotides & Nucleic

Acids, 22:1259-1262, 2003; Holmes et al., "Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2'-O-methyl G-clamp ribonucleoside analogues," Nucleic Acids Research, 31:2759-2768, 2003; Wilds, et al., "Structural basis for recognition of guanosine by a synthetic tricyclic cytosine analogue: Guanidinium G-clamp," Helyetica Chimica Acta, 86:966-978, 2003; Rajeev, et al., "High-Affinity Peptide Nucleic Acid Oligomers Containing Tricyclic Cytosine Analogues," Organic Letters, 4:4395-4398, 2002; Ausin, et al., "Synthesis of Amino- and Guanidino-G-Clamp PNA Monomers," Organic Letters, 4:4073-4075, 2002; Maier et al., "Nuclease resistance of oligonucleotides containing the tricyclic cytosine analogues phenoxazine and 9-(2-aminoethoxy)-phenoxazine ("G-clamp") and origins of their nuclease resistance properties," Biochemistry, 41:1323-7, 2002; Flanagan, et al., "A cytosine analog that confers enhanced potency to antisense oligonucleotides," Proceedings Of The National Academy Of Sciences Of The United States Of America, 96:3513-8, 1999.

15

20

25

5

10

Simultaneously decreasing the stability of the AS 5'end of the duplex and increasing the stability of the AS 3' end of the duplex

As is discussed above, an iRNA agent can be modified to both decrease the stability of the AS 5'end of the duplex and increase the stability of the AS 3' end of the duplex. This can be effected by combining one or more of the stability decreasing modifications in the AS 5' end of the duplex with one or more of the stability increasing modifications in the AS 3' end of the duplex. Accordingly a preferred embodiment includes modification in P₋₅ through P₋₁, more preferably P₋₄ through P₋₁ and more preferably P₋₃ through P₋₁. Modification at P₋₁, is particularly preferred, alone or with other position, e.g., the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of one of the recited regions of the AS 5' end of the duplex region be chosen independently from the group of:

A:U

30 G:U

I:C

mismatched pairs, e.g., non-canonical or other than canonical pairings which include a universal base; and

a modification in P₅ through P₁, more preferably P₄ through P₁ and more preferably P₃ through P₁. Modification at P₁, is particularly preferred, alone or with other position, e.g., the positions just identified. It is preferred that at least 1, and more preferably 2, 3, 4, or 5 of the pairs of one of the recited regions of the AS 3' end of the duplex region be chosen independently from the group of:

G:C

a pair having an analog that increases stability over Watson-Crick matches (A:T, A:U, G:C)

2-amino-A:U

2-thio U or 5 Me-thio-U:A

G-clamp (an analog of C having 4 hydrogen bonds):G guanadinium-G-clamp:G

psuedo uridine:A

a pair in which one or both subunits has a sugar modification, e.g., a 2' modification, e.g., 2'F, ENA, or LNA, which enhance binding.

20

25

30

10

15

The invention also includes methods of selecting and making iRNA agents having DMTDS. E.g., when screening a target sequence for candidate sequences for use as iRNA agents one can select sequences having a DMTDS property described herein or one which can be modified, preferably with as few changes as possible, especially to the

AS strand, to provide a desired level of DMTDS.

The invention also includes, providing a candidate iRNA agent sequence, and modifying at least one P in P₋₅ through P₋₁ and/or at least one P in P₅ through P₁ to provide a DMTDS iRNA agent.

DMTDS iRNA agents can be used in any method described herein, e.g., to silence any gene disclosed herein, to treat any disorder described herein, in any formulation described herein, and generally in and/or with the methods and compositions described

elsewhere herein. DMTDS iRNA agents can incorporate other modifications described herein, e.g., the attachment of targeting agents or the inclusion of modifications which enhance stability, e.g., the inclusion of nuclease resistant monomers or the inclusion of single strand overhangs (e.g., 3' AS overhangs and/or 3' S strand overhangs) which self associate to form intrastrand duplex structure.

Preferably these iRNA agents will have an architecture described herein.

Other Embodiments

5

10

15

20

25

30

In vivo Delivery

An iRNA agent can be linked, e.g., noncovalently linked to a polymer for the efficient delivery of the iRNA agent to a subject, e.g., a mammal, such as a human. The iRNA agent can, for example, be complexed with cyclodextrin. Cyclodextrins have been used as delivery vehicles of therapeutic compounds. Cyclodextrins can form inclusion complexes with drugs that are able to fit into the hydrophobic cavity of the cyclodextrin. In other examples, cyclodextrins form non-covalent associations with other biologically active molecules such as oligonucleotides and derivatives thereof. The use of cyclodextrins creates a water-soluble drug delivery complex, that can be modified with targeting or other functional groups. Cyclodextrin cellular delivery system for oligonucleotides described in U.S. Pat. No. 5,691,316, which is hereby incorporated by reference, are suitable for use in methods of the invention. In this system, an oligonucleotide is noncovalently complexed with a cyclodextrin, or the oligonucleotide is covalently bound to adamantine which in turn is noncovalently associated with a cyclodextrin.

The delivery molecule can include a linear cyclodextrin copolymer or a linear oxidized cyclodextrin copolymer having at least one ligand bound to the cyclodextrin copolymer. Delivery systems, as described in U.S. Patent No. 6,509,323, herein incorporated by reference, are suitable for use in methods of the invention. An iRNA agent can be bound to the linear cyclodextrin copolymer and/or a linear oxidized cyclodextrin copolymer. Either or both of the cyclodextrin or oxidized cyclodextrin copolymers can be crosslinked to another polymer and/or bound to a ligand.

A composition for iRNA delivery can employ an "inclusion complex," a molecular compound having the characteristic structure of an adduct. In this structure, the "host

molecule" spatially encloses at least part of another compound in the delivery vehicle. The enclosed compound (the "guest molecule") is situated in the cavity of the host molecule without affecting the framework structure of the host. A "host" is preferably cyclodextrin, but can be any of the molecules suggested in U.S. Patent Publ. 2003/0008818, herein incorporated by reference.

Cyclodextrins can interact with a variety of ionic and molecular species, and the resulting inclusion compounds belong to the class of "host-guest" complexes. Within the host-guest relationship, the binding sites of the host and guest molecules should be complementary in the stereoelectronic sense. A composition of the invention can contain at least one polymer and at least one therapeutic agent, generally in the form of a particulate composite of the polymer and therapeutic agent, e.g., the iRNA agent. The iRNA agent can contain one or more complexing agents. At least one polymer of the particulate composite can interact with the complexing agent in a host-guest or a guest-host interaction to form an inclusion complex between the polymer and the complexing agent. The polymer and, more particularly, the complexing agent can be used to introduce functionality into the composition. For example, at least one polymer of the particulate composite has host functionality and forms an inclusion complex with a complexing agent having guest functionality. Alternatively, at least one polymer of the particulate composite has guest functionality and forms an inclusion complex with a complexing agent having host functionality. A polymer of the particulate composite can also contain both host and guest functionalities and form inclusion complexes with guest complexing agents and host complexing agents. A polymer with functionality can, for example, facilitate cell targeting and/or cell contact (e.g., targeting or contact to a liver cell), intercellular trafficking, and/or cell entry and release.

10

15

20

25

30

Upon forming the particulate composite, the iRNA agent may or may not retain its biological or therapeutic activity. Upon release from the therapeutic composition, specifically, from the polymer of the particulate composite, the activity of the iRNA agent is restored. Accordingly, the particulate composite advantageously affords the iRNA agent protection against loss of activity due to, for example, degradation and offers enhanced bioavailability. Thus, a composition may be used to provide stability, particularly storage or solution stability, to an iRNA agent or any active chemical compound. The iRNA agent may

be further modified with a ligand prior to or after particulate composite or therapeutic composition formation. The ligand can provide further functionality. For example, the ligand can be a targeting moiety.

Physiological Effects

5

10

15

20

25

30

The iRNA agents described herein can be designed such that determining therapeutic toxicity is made easier by the complementarity of the iRNA agent with both a human and a non-human animal sequence. By these methods, an iRNA agent can consist of a sequence that is fully complementary to a nucleic acid sequence from a human and a nucleic acid sequence from at least one non-human animal, e.g., a non-human mammal, such as a rodent, ruminant or primate. For example, the non-human mammal can be a mouse, rat, dog, pig, goat, sheep, cow, monkey, Pan paniscus, Pan troglodytes, Macaca mulatto, or Cynomolgus monkey. The sequence of the iRNA agent could be complementary to sequences within homologous genes, e.g., oncogenes or tumor suppressor genes, of the non-human mammal and the human. By determining the toxicity of the iRNA agent in the non-human mammal, one can extrapolate the toxicity of the iRNA agent in a human. For a more strenuous toxicity test, the iRNA agent can be complementary to a human and more than one, e.g., two or three or more, non-human animals.

The methods described herein can be used to correlate any physiological effect of an iRNA agent on a human, e.g., any unwanted effect, such as a toxic effect, or any positive, or desired effect.

Delivery Module

In one aspect, the invention features a drug delivery conjugate or module, such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/454,265, filed on March 12, 2003, which is hereby incorporated by reference.

In addition, the invention includes iRNA agents described herein, e.g., a palindromic iRNA agent, an iRNA agent hving a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having a chemical modification described herein, e.g., a modification which enhances resistance to degradation,

an iRNA agent having an architecture or structure described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, combined with, associated with, and delivered by such a drug delivery conjugate or module.

The iRNA agents can be complexed to a delivery agent that features a modular complex. The complex can include a carrier agent linked to one or more of (preferably two or more, more preferably all three of): (a) a condensing agent (e.g., an agent capable of attracting, e.g., binding, a nucleic acid, e.g., through ionic or electrostatic interactions); (b) a fusogenic agent (e.g., an agent capable of fusing and/or being transported through a cell membrane, e.g., an endosome membrane); and (c) a targeting group, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell or bone cell.

5

10

15

20

25

30

An iRNA agent, e.g., iRNA agent or sRNA agent described herein, can be linked, e.g., coupled or bound, to the modular complex. The iRNA agent can interact with the condensing agent of the complex, and the complex can be used to deliver an iRNA agent to a cell, e.g., in vitro or in vivo. For example, the complex can be used to deliver an iRNA agent to a subject in need thereof, e.g., to deliver an iRNA agent to a subject having a disorder, e.g., a disorder described herein, such as a disease or disorder of the liver.

The fusogenic agent and the condensing agent can be different agents or the one and the same agent. For example, a polyamino chain, e.g., polyethyleneimine (PEI), can be the fusogenic and/or the condensing agent.

The delivery agent can be a modular complex. For example, the complex can include a carrier agent linked to one or more of (preferably two or more, more preferably all three of):

- (a) a condensing agent (e.g., an agent capable of attracting, e.g., binding, a nucleic acid, e.g., through ionic interaction),
 - (b) a fusogenic agent (e.g., an agent capable of fusing and/or being transported through a cell membrane, e.g., an endosome membrane), and
 - (c) a targeting group, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, bone cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent

galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, Neproxin, or an RGD peptide or RGD peptide mimetic.

5

10

15

20

25

30

Carrier agents

The carrier agent of a modular complex described herein can be a substrate for attachment of one or more of: a condensing agent, a fusogenic agent, and a targeting group. The carrier agent would preferably lack an endogenous enzymatic activity. The agent would preferably be a biological molecule, preferably a macromolecule. Polymeric biological carriers are preferred. It would also be preferred that the carrier molecule be biodegradable..

The carrier agent can be a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), or globulin); carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or lipid. The carrier molecule can also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Other useful carrier molecules can be identified by routine methods.

A carrier agent can be characterized by one or more of: (a) is at least 1 Da in size; (b) has at least 5 charged groups, preferably between 5 and 5000 charged groups; (c) is present in the complex at a ratio of at least 1:1 carrier agent to fusogenic agent; (d) is present in the complex at a ratio of at least 1:1 carrier agent to condensing agent; (e) is present in the complex at a ratio of at least 1:1 carrier agent to targeting agent.

Fusogenic agents

A fusogenic agent of a modular complex described herein can be an agent that is responsive to, e.g., changes charge depending on, the pH environment. Upon encountering the pH of an endosome, it can cause a physical change, e.g., a change in osmotic properties

which disrupts or increases the permeability of the endosome membrane. Preferably, the fusogenic agent changes charge, e.g., becomes protonated, at pH lower than physiological range. For example, the fusogenic agent can become protonated at pH 4.5-6.5. The fusogenic agent can serve to release the iRNA agent into the cytoplasm of a cell after the complex is taken up, e.g., via endocytosis, by the cell, thereby increasing the cellular concentration of the iRNA agent in the cell.

5

10

15

20

25

30

In one embodiment, the fusogenic agent can have a moiety, e.g., an amino group, which, when exposed to a specified pH range, will undergo a change, e.g., in charge, e.g., protonation. The change in charge of the fusogenic agent can trigger a change, e.g., an osmotic change, in a vesicle, e.g., an endocytic vesicle, e.g., an endosome. For example, the fusogenic agent, upon being exposed to the pH environment of an endosome, will cause a solubility or osmotic change substantial enough to increase the porosity of (preferably, to rupture) the endosomal membrane.

The fusogenic agent can be a polymer, preferably a polyamino chain, e.g., polyethyleneimine (PEI). The PEI can be linear, branched, synthetic or natural. The PEI can be, e.g., alkyl substituted PEI, or lipid substituted PEI.

In other embodiments, the fusogenic agent can be polyhistidine, polyimidazole, polypyridine, polypropyleneimine, mellitin, or a polyacetal substance, e.g., a cationic polyacetal. In some embodiment, the fusogenic agent can have an alpha helical structure. The fusogenic agent can be a membrane disruptive agent, e.g., mellittin.

A fusogenic agent can have one or more of the following characteristics: (a) is at least 1Da in size; (b) has at least 10 charged groups, preferably between 10 and 5000 charged groups, more preferably between 50 and 1000 charged groups; (c) is present in the complex at a ratio of at least 1:1 fusogenic agent to carrier agent; (d) is present in the complex at a ratio of at least 1:1 fusogenic agent to condensing agent; (e) is present in the complex at a ratio of at least 1:1 fusogenic agent to targeting agent.

Other suitable fusogenic agents can be tested and identified by a skilled artisan. The ability of a compound to respond to, e.g., change charge depending on, the pH environment can be tested by routine methods, e.g., in a cellular assay. For example, a test compound is combined or contacted with a cell, and the cell is allowed to take up the test compound, e.g., by endocytosis. An endosome preparation can then be made from the contacted cells and the

endosome preparation compared to an endosome preparation from control cells. A change, e.g., a decrease, in the endosome fraction from the contacted cell vs. the control cell indicates that the test compound can function as a fusogenic agent. Alternatively, the contacted cell and control cell can be evaluated, e.g., by microscopy, e.g., by light or electron microscopy, to determine a difference in endosome population in the cells. The test compound can be labeled. In another type of assay, a modular complex described herein is constructed using one or more test or putative fusogenic agents. The modular complex can be constructed using a labeled nucleic acid instead of the iRNA. The ability of the fusogenic agent to respond to, e.g., change charge depending on, the pH environment, once the modular complex is taken up by the cell, can be evaluated, e.g., by preparation of an endosome preparation, or by microscopy techniques, as described above. A two-step assay can also be performed, wherein a first assay evaluates the ability of a test compound alone to respond to, e.g., change charge depending on, the pH environment; and a second assay evaluates the ability of a modular complex that includes the test compound to respond to, e.g., change charge depending on, the pH environment.

Condensing agent

5

10

15

20

25

30

The condensing agent of a modular complex described herein can interact with (e.g., attracts, holds, or binds to) an iRNA agent and act to (a) condense, e.g., reduce the size or charge of the iRNA agent and/or (b) protect the iRNA agent, e.g., protect the iRNA agent against degradation. The condensing agent can include a moiety, e.g., a charged moiety, that can interact with a nucleic acid, e.g., an iRNA agent, e.g., by ionic interactions. The condensing agent would preferably be a charged polymer, e.g., a polycationic chain. The condensing agent can be a polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quarternary salt of a polyamine, or an alpha helical peptide.

A condensing agent can have the following characteristics: (a) at least 1Da in size; (b) has at least 2 charged groups, preferably between 2 and 100 charged groups; (c) is present in the complex at a ratio of at least 1:1 condensing agent to carrier agent; (d) is present in the

complex at a ratio of at least 1:1 condensing agent to fusogenic agent; (e) is present in the complex at a ratio of at least 1:1 condensing agent to targeting agent.

Other suitable condensing agents can be tested and identified by a skilled artisan, e.g., by evaluating the ability of a test agent to interact with a nucleic acid, e.g., an iRNA agent. The ability of a test agent to interact with a nucleic acid, e.g., an iRNA agent, e.g., to condense or protect the iRNA agent, can be evaluated by routine techniques. In one assay, a test agent is contacted with a nucleic acid, and the size and/or charge of the contacted nucleic acid is evaluated by a technique suitable to detect changes in molecular mass and/or charge. Such techniques include non-denaturing gel electrophoresis, immunological methods, e.g., immunoprecipitation, gel filtration, ionic interaction chromatography, and the like. A test agent is identified as a condensing agent if it changes the mass and/or charge (preferably both) of the contacted nucleic acid, compared to a control. A two-step assay can also be performed, wherein a first assay evaluates the ability of a test compound alone to interact with, e.g., bind to, e.g., condense the charge and/or mass of, a nucleic cid; and a second assay evaluates the ability of a modular complex that includes the test compound to interact with, e.g., bind to, e.g., condense the charge and/or mass of, a nucleic acid.

Amphipathic Delivery Agents

5

10

15

20

25

30

In one aspect, the invention features an amphipathic delivery conjugate or module, such as those described herein and those described in copending, co-owned United States Provisional Application Serial No. 60/455,050 (Attorney Docket No. 14174-065P01), filed on March 13, 2003, which is hereby incorporated by reference.

In addition, the invention include an iRNA agent described herein, e.g., a palindromic iRNA agent, an iRNA agent hving a non canonical pairing, an iRNA agent which targets a gene described herein, e.g., a gene active in the liver, an iRNA agent having a chemical modification described herein, e.g., a modification which enhances resistance to degradation, an iRNA agent having an architecture or structure described herein, an iRNA agent administered as described herein, or an iRNA agent formulated as described herein, combined with, associated with, and delivered by such an amphipathic delivery conjugate.

An amphipathic molecule is a molecule having a hydrophobic and a hydrophilic region. Such molecules can interact with (e.g., penetrate or disrupt) lipids, e.g., a lipid

bylayer of a cell. As such, they can serve as delivery agent for an associated (e.g., bound) iRNA (e.g., an iRNA or sRNA described herein). A preferred amphipathic molecule to be used in the compositions described herein (e.g., the amphipathic iRNA constructs described herein) is a polymer. The polymer may have a secondary structure, e.g., a repeating secondary structure.

5

10

15

20

25

30

One example of an amphipathic polymer is an amphipathic polypeptide, e.g., a polypeptide having a secondary structure such that the polypeptide has a hydrophilic and a hybrophobic face. The design of amphipathic peptide structures (e.g., alpha-helical polypeptides) is routine to one of skill in the art. For example, the following references provide guidance: Grell et al. (2001) Protein design and folding: template trapping of self-assembled helical bundles J Pept Sci 7(3):146-51; Chen et al. (2002) Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix J Pept Res 59(1):18-33; Iwata et al. (1994) Design and synthesis of amphipathic 3(10)-helical peptides and their interactions with phospholipid bilayers and ion channel formation J Biol Chem 269(7):4928-33; Cornut et al. (1994) The amphipathic alpha-helix concept. Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin FEBS Lett 349(1):29-33; Negrete et al. (1998) Deciphering the structural code for proteins: helical propensities in domain classes and statistical multiresidue information in alpha-helices. Protein Sci 7(6):1368-79.

Another example of an amphipathic polymer is a polymer made up of two or more amphipathic subunits, e.g., two or more subunits containing cyclic moieties (e.g., a cyclic moiety having one or more hydrophilic groups and one or more hydrophobic groups). For example, the subunit may contain a steroid, e.g., cholic acid; or a aromatic moiety. Such moieties preferably can exhibit atropisomerism, such that they can form opposing hydrophobic and hydrophilic faces when in a polymer structure.

The ability of a putative amphipathic molecule to interact with a lipid membrane, e.g., a cell membrane, can be tested by routine methods, e.g., in a cell free or cellular assay. For example, a test compound is combined or contacted with a synthetic lipid bilayer, a cellular membrane fraction, or a cell, and the test compound is evaluated for its ability to interact with, penetrate or disrupt the lipid bilayer, cell membrane or cell. The test compound can labeled in order to detect the interaction with the lipid bilayer, cell membrane or cell. In

another type of assay, the test compound is linked to a reporter molecule or an iRNA agent (e.g., an iRNA or sRNA described herein) and the ability of the reporter molecule or iRNA agent to penetrate the lipid bilayer, cell membrane or cell is evaluated. A two-step assay can also be performed, wherein a first assay evaluates the ability of a test compound alone to interact with a lipid bilayer, cell membrane or cell; and a second assay evaluates the ability of a construct (e.g., a construct described herein) that includes the test compound and a reporter or iRNA agent to interact with a lipid bilayer, cell membrane or cell.

An amphipathic polymer useful in the compositions described herein has at least 2, preferably at least 5, more preferably at least 10, 25, 50, 100, 200, 500, 1000, 2000, 50000 or more subunits (e.g., amino acids or cyclic subunits). A single amphipathic polymer can be linked to one or more, e.g., 2, 3, 5, 10 or more iRNA agents (e.g., iRNA or sRNA agents described herein). In some embodiments, an amphipathic polymer can contain both amino acid and cyclic subunits, e.g., aromatic subunits.

10

15

20

25

30

The invention features a composition that includes an iRNA agent (e.g., an iRNA or sRNA described herein) in association with an amphipathic molecule. Such compositions may be referred to herein as "amphipathic iRNA constructs." Such compositions and constructs are useful in the delivery or targeting of iRNA agents, e.g., delivery or targeting of iRNA agents to a cell. While not wanting to be bound by theory, such compositions and constructs can increase the porosity of, e.g., can penetrate or disrupt, a lipid (e.g., a lipid bilayer of a cell), e.g., to allow entry of the iRNA agent into a cell.

In one aspect, the invention relates to a composition comprising an iRNA agent (e.g., an iRNA or sRNA agent described herein) linked to an amphipathic molecule. The iRNA agent and the amphipathic molecule may be held in continuous contact with one another by either covalent or noncovalent linkages.

The amphipathic molecule of the composition or construct is preferably other than a phospholipid, e.g., other than a micelle, membrane or membrane fragment.

The amphipathic molecule of the composition or construct is preferably a polymer. The polymer may include two or more amphipathic subunits. One or more hydrophilic groups and one or more hydrophobic groups may be present on the polymer. The polymer may have a repeating secondary structure as well as a first face and a second face. The distribution of the hydrophilic groups and the hydrophobic groups along the repeating

secondary structure can be such that one face of the polymer is a hydrophilic face and the other face of the polymer is a hydrophobic face.

The amphipathic molecule can be a polypeptide, e.g., a polypeptide comprising an α -helical conformation as its secondary structure.

In one embodiment, the amphipathic polymer includes one or more subunits containing one or more cyclic moiety (e.g., a cyclic moiety having one or more hydrophilic groups and/or one or more hydrophobic groups). In one embodiment, the polymer is a polymer of cyclic moieties such that the moieties have alternating hydrophobic and hydrophilic groups. For example, the subunit may contain a steroid, e.g., cholic acid. In another example, the subunit may contain an aromatic moiety. The aromatic moiety may be one that can exhibit atropisomerism, e.g., a 2,2'-bis(substituted)-1-1'-binaphthyl or a 2,2'-bis(substituted) biphenyl. A subunit may include an aromatic moiety of Formula (M):

$$R_4$$
 R_4
 R_4
 R_4
 R_1

(M)

5

10

15

20

The invention features a composition that includes an iRNA agent (e.g., an iRNA or sRNA described herein) in association with an amphipathic molecule. Such compositions may be referred to herein as "amphipathic iRNA constructs." Such compositions and constructs are useful in the delivery or targeting of iRNA agents, e.g., delivery or targeting of iRNA agents to a cell. While not wanting to be bound by theory, such compositions and

constructs can increase the porosity of, e.g., can penetrate or disrupt, a lipid (e.g., a lipid bilayer of a cell), e.g., to allow entry of the iRNA agent into a cell.

In one aspect, the invention relates to a composition comprising an iRNA agent (e.g., an iRNA or sRNA agent described herein) linked to an amphipathic molecule. The iRNA agent and the amphipathic molecule may be held in continuous contact with one another by either covalent or noncovalent linkages.

The amphipathic molecule of the composition or construct is preferably other than a phospholipid, e.g., other than a micelle, membrane or membrane fragment.

The amphipathic molecule of the composition or construct is preferably a polymer. The polymer may include two or more amphipathic subunits. One or more hydrophilic groups and one or more hydrophobic groups may be present on the polymer. The polymer may have a repeating secondary structure as well as a first face and a second face. The distribution of the hydrophilic groups and the hydrophobic groups along the repeating secondary structure can be such that one face of the polymer is a hydrophilic face and the other face of the polymer is a hydrophobic face.

10

15

20

25

The amphipathic molecule can be a polypeptide, e.g., a polypeptide comprising an α -helical conformation as its secondary structure.

In one embodiment, the amphipathic polymer includes one or more subunits containing one or more cyclic moiety (e.g., a cyclic moiety having one or more hydrophilic groups and/or one or more hydrophobic groups). In one embodiment, the polymer is a polymer of cyclic moieties such that the moieties have alternating hydrophobic and hydrophilic groups. For example, the subunit may contain a steroid, e.g., cholic acid. In another example, the subunit may contain an aromatic moiety. The aromatic moiety may be one that can exhibit atropisomerism, e.g., a 2,2'-bis(substituted)-1-1'-binaphthyl or a 2,2'-bis(substituted) biphenyl. A subunit may include an aromatic moiety of Formula (M):

$$R_3$$
 R_4
 R_4
 R_4
 R_3
 R_4
 R_3
 R_4
 R_4
 R_5
 R_6

5

10

15

Referring to Formula M, R_1 is C_1 - C_{100} alkyl optionally substituted with aryl, alkenyl, alkynyl, alkoxy or halo and/or optionally inserted with O, S, alkenyl or alkynyl; C_1 - C_{100} perfluoroalkyl; or OR_5 .

R₂ is hydroxy; nitro; sulfate; phosphate; phosphate ester; sulfonic acid; OR₆; or C₁-C₁₀₀ alkyl optionally substituted with hydroxy, halo, nitro, aryl or alkyl sulfinyl, aryl or alkyl sulfonyl, sulfate, sulfonic acid, phosphate, phosphate ester, substituted or unsubstituted aryl, carboxyl, carboxylate, amino carbonyl, or alkoxycarbonyl, and/or optionally inserted with O, NH, S, S(O), SO₂, alkenyl, or alkynyl.

R₃ is hydrogen, or when taken together with R₄ froms a fused phenyl ring.

 R_4 is hydrogen, or when taken together with R_3 froms a fused phenyl ring.

 R_5 is C_1 - C_{100} alkyl optionally substituted with aryl, alkenyl, alkynyl, alkoxy or halo and/or optionally inserted with O, S, alkenyl or alkynyl; or C_1 - C_{100} perfluoroalkyl; and R_6 is C_1 - C_{100} alkyl optionally substituted with hydroxy, halo, nitro, aryl or alkyl sulfinyl, aryl or alkyl sulfonyl, sulfate, sulfonic acid, phosphate, phosphate ester, substituted or unsubstituted

aryl, carboxyl, carboxylate, amino carbonyl, or alkoxycarbonyl, and/or optionally inserted with O, NH, S, S(O), SO₂, alkenyl, or alkynyl.

Increasing cellular uptake of dsRNAs

A method of the invention that can include the administration of an iRNA agent and a drug that affects the uptake of the iRNA agent into the cell. The drug can be administered before, after, or at the same time that the iRNA agent is administered. The drug can be covalently linked to the iRNA agent. The drug can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-kB. The drug can have a transient effect on the cell.

The drug can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.

The drug can also increase the uptake of the iRNA agent into the cell by activating an inflammatory response, for example. Exemplary drug's that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, or gamma interferon.

iRNA conjugates

An iRNA agent can be coupled, e.g., covalently coupled, to a second agent. For example, an iRNA agent used to treat a particular disorder can be coupled to a second therapeutic agent, e.g., an agent other than the iRNA agent. The second therapeutic agent can be one which is directed to the treatment of the same disorder. For example, in the case of an iRNA used to treat a disorder characterized by unwanted cell proliferation, e.g., cancer, the iRNA agent can be coupled to a second agent which has an anti-cancer effect. For example, it can be coupled to an agent which stimulates the immune system, e.g., a CpG motif, or more generally an agent that activates a toll-like receptor and/or increases the production of gamma interferon.

5

10

15

20

25

iRNA Production

5

10

15

20

25

30

An iRNA can be produced, e.g., in bulk, by a variety of methods. Exemplary methods include: organic synthesis and RNA cleavage, e.g., in vitro cleavage.

Organic Synthesis

An iRNA can be made by separately synthesizing each respective strand of a double-stranded RNA molecule. The component strands can then be annealed.

A large bioreactor, e.g., the OligoPilot II from Pharmacia Biotec AB (Uppsala Sweden), can be used to produce a large amount of a particular RNA strand for a given iRNA. The OligoPilotII reactor can efficiently couple a nucleotide using only a 1.5 molar excess of a phosphoramidite nucleotide. To make an RNA strand, ribonucleotides amidites are used. Standard cycles of monomer addition can be used to synthesize the 21 to 23 nucleotide strand for the iRNA. Typically, the two complementary strands are produced separately and then annealed, e.g., after release from the solid support and deprotection.

Organic synthesis can be used to produce a discrete iRNA species. The complementary of the species to a particular target gene can be precisely specified. For example, the species may be complementary to a region that includes a polymorphism, e.g., a single nucleotide polymorphism. Further the location of the polymorphism can be precisely defined. In some embodiments, the polymorphism is located in an internal region, e.g., at least 4, 5, 7, or 9 nucleotides from one or both of the termini.

dsRNA Cleavage

iRNAs can also be made by cleaving a larger ds iRNA. The cleavage can be mediated *in vitro* or *in vivo*. For example, to produce iRNAs by cleavage *in vitro*, the following method can be used:

In vitro transcription. dsRNA is produced by transcribing a nucleic acid (DNA) segment in both directions. For example, the HiScribe™ RNAi transcription kit (New England Biolabs) provides a vector and a method for producing a dsRNA for a nucleic acid segment that is cloned into the vector at a position flanked on either side by a T7 promoter. Separate templates are generated for T7 transcription of the two complementary strands for the dsRNA. The templates are transcribed *in vitro* by addition of T7 RNA polymerase and

dsRNA is produced. Similar methods using PCR and/or other RNA polymerases (e.g., T3 or SP6 polymerase) can also be used. In one embodiment, RNA generated by this method is carefully purified to remove endotoxins that may contaminate preparations of the recombinant enzymes.

In vitro cleavage. dsRNA is cleaved in vitro into iRNAs, for example, using a Dicer or comparable RNAse III-based activity. For example, the dsRNA can be incubated in an in vitro extract from Drosophila or using purified components, e.g. a purified RNAse or RISC complex (RNA-induced silencing complex). See, e.g., Ketting et al. Genes Dev 2001 Oct 15;15(20):2654-9. and Hammond Science 2001 Aug 10;293(5532):1146-50.

dsRNA cleavage generally produces a plurality of iRNA species, each being a particular 21 to 23 nt fragment of a source dsRNA molecule. For example, iRNAs that include sequences complementary to overlapping regions and adjacent regions of a source dsRNA molecule may be present.

Regardless of the method of synthesis, the iRNA preparation can be prepared in a solution (e.g., an aqueous and/or organic solution) that is appropriate for formulation. For example, the iRNA preparation can be precipitated and redissolved in pure double-distilled water, and lyophilized. The dried iRNA can then be resuspended in a solution appropriate for the intended formulation process.

Synthesis of modified and nucleotide surrogate iRNA agents is discussed below.

20 FORMULATION

5

10

15

25

30

The iRNA agents described herein can be formulated for administration to a subject For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.

A formulated iRNA composition can assume a variety of states. In some examples, the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (e.g., less than 80, 50, 30, 20, or 10% water). In another example, the iRNA is in an aqueous phase, e.g., in a solution that includes water.

The aqueous phase or the crystalline compositions can, e.g., be incorporated into a delivery vehicle, e.g., a liposome (particularly for the aqueous phase) or a particle (e.g., a

microparticle as can be appropriate for a crystalline composition). Generally, the iRNA composition is formulated in a manner that is compatible with the intended method of administration (see, below).

In particular embodiments, the composition is prepared by at least one of the following methods: spray drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques; or sonication with a lipid, freeze-drying, condensation and other self-assembly.

A iRNA preparation can be formulated in combination with another agent, e.g., another therapeutic agent or an agent that stabilizes a iRNA, e.g., a protein that complexes with iRNA to form an iRNP. Still other agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg²⁺), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.

In one embodiment, the iRNA preparation includes another iRNA agent, e.g., a second iRNA that can mediated RNAi with respect to a second gene, or with respect to the same gene. Still other preparation can include at least 3, 5, ten, twenty, fifty, or a hundred or more different iRNA species. Such iRNAs can mediated RNAi with respect to a similar number of different genes.

In one embodiment, the iRNA preparation includes at least a second therapeutic agent (e.g., an agent other than an RNA or a DNA). For example, a iRNA composition for the treatment of a viral disease, e.g. HIV, might include a known antiviral agent (e.g., a protease inhibitor or reverse transcriptase inhibitor). In another example, a iRNA composition for the treatment of a cancer might further comprise a chemotherapeutic agent.

Exemplary formulations are discussed below:

Liposomes

10

15

20

25

30

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA s agents, and such practice is within the invention. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be

formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term "liposome" refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the iRNA composition. The lipophilic material isolates the aqueous interior from an aqueous exterior, which typically does not include the iRNA composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the iRNA are delivered into the cell where the iRNA can specifically bind to a target RNA and can mediate RNAi. In some cases the liposomes are also specifically targeted, e.g., to direct the iRNA to particular cell types.

A liposome containing a iRNA can be prepared by a variety of methods.

10

15

20

25

30

In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The iRNA preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the iRNA and condense around the iRNA to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal preparation of iRNA.

If necessary a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). pH can also adjusted to favor condensation.

Further description of methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are described in, e.g., WO 96/37194. Liposome formation can also include one or more aspects of exemplary methods described in Felgner, P. L. et al., Proc. Natl.

Acad. Sci., USA 8:7413-7417, 1987; U.S. Pat. No. 4,897,355; U.S. Pat. No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238, 1965; Olson, et al. Biochim. Biophys. Acta 557:9, 1979; Szoka, et al. Proc. Natl. Acad. Sci. 75: 4194, 1978; Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984; Kim, et al. Biochim. Biophys. Acta 728:339, 1983; and Fukunaga, et al. Endocrinol. 115:757, 1984. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer, et al. Biochim. Biophys. Acta 858:161, 1986). Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew, et al. Biochim. Biophys. Acta 775:169, 1984). These methods are readily adapted to packaging iRNA preparations into liposomes.

5

10

15

20

25

30

Liposomes that are pH-sensitive or negatively-charged, entrap nucleic acid molecules rather than complex with them. Since both the nucleic acid molecules and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid molecules are entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 19, (1992) 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Examples of other methods to introduce liposomes into cells *in vitro* and *in vivo* include U.S. Pat. No. 5,283,185; U.S. Pat. No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, *J. Biol. Chem.* 269:2550, 1994; Nabel, *Proc. Natl. Acad. Sci.* 90:11307, 1993; Nabel, *Human Gene Ther.* 3:649, 1992; Gershon, *Biochem.* 32:7143, 1993; and Strauss *EMBO J.* 11:417, 1992.

In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages *in vivo* and can be used to deliver iRNAs to macrophages.

5

10

15

20

25

30

Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated iRNAs in their internal compartments from metabolism and degradation (Rosoff, in "Pharmaceutical Dosage Forms," Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of iRNA (see, e.g., Felgner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987 and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).

A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. Lipofectin™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane ("DOTAP") (Boehringer Mannheim, Indianapolis, Indiana) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.

Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide ("DOGS") (TransfectamTM, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide ("DPPES") (see, *e.g.*, U.S. Pat. No. 5,171,678).

Another cationic lipid conjugate includes derivatization of the lipid with cholesterol ("DC-Chol") which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., Biochim. Biophys. Res. Commun. 179:280, 1991). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., Biochim. Biophys. Acta 1065:8, 1991). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, California) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.

Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer iRNA, into the skin. In some implementations, liposomes are used for delivering iRNA to epidermal cells and also to enhance the penetration of iRNA into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., Journal of Drug Targeting, 1992, vol. 2,405-410 and du Plessis et al., Antiviral Research, 18, 1992, 259-265; Mannino, R. J. and Fould-Fogerite, S., Biotechniques 6:682-690, 1988; Itani, T. et al. Gene 56:267-276. 1987; Nicolau, C. et al. Meth. Enz. 149:157-176, 1987; Straubinger, R. M. and Papahadjopoulos, D. Meth. Enz. 101:512-527, 1983; Wang, C. Y. and Huang, L., Proc. Natl. Acad. Sci. USA 84:7851-7855, 1987).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with iRNA are useful for treating a dermatological disorder.

Liposomes that include iRNA can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of deformable liposomes.

Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include iRNA can be delivered, for example, subcutaneously by infection in order to deliver iRNA to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading. The iRNA agents can include an RRMS tethered to a moiety which improves association with a liposome.

Surfactants

5

10

15

20

25

30

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes (see above). iRNA (or a precursor, e.g., a larger dsRNA which can be processed into a iRNA, or a DNA which encodes a iRNA or precursor) compositions can include a surfactant. In one embodiment, the iRNA is formulated as an emulsion that includes a surfactant. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group provides the most useful means for categorizing

the different surfactants used in formulations (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).

5

10

15

20

25

30

If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines and phosphatides.

The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in "Pharmaceutical Dosage Forms," Marcel Dekker, Inc., New York, NY, 1988, p. 285).

Micelles and other Membranous Formulations

For ease of exposition the micelles and other formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these micelles and other formulations, compositions and methods

can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. The iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)) composition can be provided as a micellar formulation. "Micelles" are defined herein as a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.

5

10

15

20

25

30

A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the iRNA composition, an alkali metal C₈ to C₂₂ alkyl sulphate, and a micelle forming compounds. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali metal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingredients but vigorous mixing is preferred in order to provide smaller size micelles.

In one method a first micellar composition is prepared which contains the iRNA composition and at least the alkali metal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the iRNA composition, the alkali metal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.

Phenol and/or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Alternatively, phenol and/or m-cresol

may be added with the micelle forming ingredients. An isotonic agent such as glycerin may also be added after formation of the mixed micellar composition.

For delivery of the micellar formulation as a spray, the formulation can be put into an aerosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingredients are adjusted so that the aqueous and propellant phases become one, *i.e.* there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensing a portion of the contents, *e.g.* through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.

The preferred propellants are hydrogen-containing chlorofluorocarbons, hydrogen-containing fluorocarbons, dimethyl ether and diethyl ether. Even more preferred is HFA 134a (1,1,1,2 tetrafluoroethane).

The specific concentrations of the essential ingredients can be determined by relatively straightforward experimentation. For absorption through the oral cavities, it is often desirable to increase, e.g. at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.

The iRNA agents can include an RRMS tethered to a moiety which improves association with a micelle or other membranous formulation.

Particles

5

10

15

20

25

30

For ease of exposition the particles, formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these particles, formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. In another embodiment, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparations may be incorporated into a particle, e.g., a microparticle. Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination of these techniques. See below for further description.

Sustained -Release Formulations. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein can be formulated for controlled, e.g., slow release. Controlled release can be achieved by disposing the iRNA within a structure or substance which impedes its release. E.g., iRNA can be disposed within a porous matrix or in an erodable matrix, either of which allow release of the iRNA over a period of time.

Polymeric particles, e.g., polymeric in microparticles can be used as a sustained-release reservoir of iRNA that is taken up by cells only released from the microparticle through biodegradation. The polymeric particles in this embodiment should therefore be large enough to preclude phagocytosis (e.g., larger than 10 μm and preferably larger than 20 μm). Such particles can be produced by the same methods to make smaller particles, but with less vigorous mixing of the first and second emulsions. That is to say, a lower homogenization speed, vortex mixing speed, or sonication setting can be used to obtain particles having a diameter around 100 μm rather than 10 μm. The time of mixing also can be altered.

10

15

20

25

30

Larger microparticles can be formulated as a suspension, a powder, or an implantable solid, to be delivered by intramuscular, subcutaneous, intradermal, intravenous, or intraperitoneal injection; via inhalation (intranasal or intrapulmonary); orally; or by implantation. These particles are useful for delivery of any iRNA when slow release over a relatively long term is desired. The rate of degradation, and consequently of release, varies with the polymeric formulation.

Microparticles preferably include pores, voids, hollows, defects or other interstitial spaces that allow the fluid suspension medium to freely permeate or perfuse the particulate boundary. For example, the perforated microstructures can be used to form hollow, porous spray dried microspheres.

Polymeric particles containing iRNA (e.g., a sRNA) can be made using a double emulsion technique, for instance. First, the polymer is dissolved in an organic solvent. A preferred polymer is polylactic-co-glycolic acid (PLGA), with a lactic/glycolic acid weight ratio of 65:35, 50:50, or 75:25. Next, a sample of nucleic acid suspended in aqueous solution

is added to the polymer solution and the two solutions are mixed to form a first emulsion. The solutions can be mixed by vortexing or shaking, and in a preferred method, the mixture can be sonicated. Most preferable is any method by which the nucleic acid receives the least amount of damage in the form of nicking, shearing, or degradation, while still allowing the formation of an appropriate emulsion. For example, acceptable results can be obtained with a Vibra-cell model VC-250 sonicator with a 1/8" microtip probe, at setting #3.

5

10

15

20

25

30

Spray-Drying. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof)) can be prepared by spray drying. Spray dried iRNA can be administered to a subject or be subjected to further formulation. A pharmaceutical composition of iRNA can be prepared by spray drying a homogeneous aqueous mixture that includes a iRNA under conditions sufficient to provide a dispersible powdered composition, e.g., a pharmaceutical composition. The material for spray drying can also include one or more of: a pharmaceutically acceptable excipient, or a dispersibility-enhancing amount of a physiologically acceptable, water-soluble protein. The spray-dried product can be a dispersible powder that includes the iRNA.

Spray drying is a process that converts a liquid or slurry material to a dried particulate form. Spray drying can be used to provide powdered material for various administrative routes including inhalation. See, for example, M. Sacchetti and M. M. Van Oort in: Inhalation Aerosols: Physical and Biological Basis for Therapy, A. J. Hickey, ed. Marcel Dekkar, New York, 1996.

Spray drying can include atomizing a solution, emulsion, or suspension to form a fine mist of droplets and drying the droplets. The mist can be projected into a drying chamber (e.g., a vessel, tank, tubing, or coil) where it contacts a drying gas. The mist can include solid or liquid pore forming agents. The solvent and pore forming agents evaporate from the droplets into the drying gas to solidify the droplets, simultaneously forming pores throughout the solid. The solid (typically in a powder, particulate form) then is separated from the drying gas and collected.

Spray drying includes bringing together a highly dispersed liquid, and a sufficient volume of air (e.g., hot air) to produce evaporation and drying of the liquid droplets. The

preparation to be spray dried can be any solution, course suspension, slurry, colloidal dispersion, or paste that may be atomized using the selected spray drying apparatus. Typically, the feed is sprayed into a current of warm filtered air that evaporates the solvent and conveys the dried product to a collector. The spent air is then exhausted with the solvent. Several different types of apparatus may be used to provide the desired product. For example, commercial spray dryers manufactured by Buchi Ltd. or Niro Corp. can effectively produce particles of desired size.

5

10

15

20

25

30

Spray-dried powdered particles can be approximately spherical in shape, nearly uniform in size and frequently hollow. There may be some degree of irregularity in shape depending upon the incorporated medicament and the spray drying conditions. In many instances the dispersion stability of spray-dried microspheres appears to be more effective if an inflating agent (or blowing agent) is used in their production. Particularly preferred embodiments may comprise an emulsion with an inflating agent as the disperse or continuous phase (the other phase being aqueous in nature). An inflating agent is preferably dispersed with a surfactant solution, using, for instance, a commercially available microfluidizer at a pressure of about 5000 to 15,000 psi. This process forms an emulsion, preferably stabilized by an incorporated surfactant, typically comprising submicron droplets of water immiscible blowing agent dispersed in an aqueous continuous phase. The formation of such dispersions using this and other techniques are common and well known to those in the art. The blowing agent is preferably a fluorinated compound (e.g. perfluorohexane, perfluorooctyl bromide, perfluorodecalin, perfluorobutyl ethane) which vaporizes during the spray-drying process, leaving behind generally hollow, porous aerodynamically light microspheres. As will be discussed in more detail below, other suitable blowing agents include chloroform, freons, and hydrocarbons. Nitrogen gas and carbon dioxide are also contemplated as a suitable blowing agent.

Although the perforated microstructures are preferably formed using a blowing agent as described above, it will be appreciated that, in some instances, no blowing agent is required and an aqueous dispersion of the medicament and surfactant(s) are spray dried directly. In such cases, the formulation may be amenable to process conditions (e.g., elevated temperatures) that generally lead to the formation of hollow, relatively porous microparticles. Moreover, the medicament may possess special physicochemical properties (e.g., high

crystallinity, elevated melting temperature, surface activity, etc.) that make it particularly suitable for use in such techniques.

5

10

15

20

25

30

The perforated microstructures may optionally be associated with, or comprise, one or more surfactants. Moreover, miscible surfactants may optionally be combined with the suspension medium liquid phase. It will be appreciated by those skilled in the art that the use of surfactants may further increase dispersion stability, simplify formulation procedures or increase bioavailability upon administration. Of course combinations of surfactants, including the use of one or more in the liquid phase and one or more associated with the perforated microstructures are contemplated as being within the scope of the invention. By "associated with or comprise" it is meant that the structural matrix or perforated microstructure may incorporate, adsorb, absorb, be coated with or be formed by the surfactant.

Surfactants suitable for use include any compound or composition that aids in the formation and maintenance of the stabilized respiratory dispersions by forming a layer at the interface between the structural matrix and the suspension medium. The surfactant may comprise a single compound or any combination of compounds, such as in the case of cosurfactants. Particularly preferred surfactants are substantially insoluble in the propellant, nonfluorinated, and selected from the group consisting of saturated and unsaturated lipids, nonionic detergents, nonionic block copolymers, ionic surfactants, and combinations of such agents. It should be emphasized that, in addition to the aforementioned surfactants, suitable (i.e. biocompatible) fluorinated surfactants are compatible with the teachings herein and may be used to provide the desired stabilized preparations.

Lipids, including phospholipids, from both natural and synthetic sources may be used in varying concentrations to form a structural matrix. Generally, compatible lipids comprise those that have a gel to liquid crystal phase transition greater than about 40° C. Preferably, the incorporated lipids are relatively long chain (i.e. C₆-C₂₂) saturated lipids and more preferably comprise phospholipids. Exemplary phospholipids useful in the disclosed stabilized preparations comprise egg phosphatidylcholine, dilauroylphosphatidylcholine, dioleylphosphatidylcholine, dipalmitoylphosphatidyl-choline, disteroylphosphatidylcholine, short-chain phosphatidylcholines, phosphatidylethanolamine, dioleylphosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol,

phosphatidylinositol, glycolipids, ganglioside GM1, sphingomyelin, phosphatidic acid, cardiolipin; lipids bearing polymer chains such as, polyethylene glycol, chitin, hyaluronic acid, or polyvinylpyrrolidone; lipids bearing sulfonated mono-, di-, and polysaccharides; fatty acids such as palmitic acid, stearic acid, and oleic acid; cholesterol, cholesterol esters, and cholesterol hemisuccinate. Due to their excellent biocompatibility characteristics, phospholipids and combinations of phospholipids and poloxamers are particularly suitable for use in the stabilized dispersions disclosed herein.

Compatible nonionic detergents comprise: sorbitan esters including sorbitan trioleate (SpansTM 85), sorbitan sesquioleate, sorbitan monooleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, and polyoxyethylene (20) sorbitan monooleate, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, glycerol esters, and sucrose esters. Other suitable nonionic detergents can be easily identified using McCutcheon's Emulsifiers and Detergents (McPublishing Co., Glen Rock, N.J.). Preferred block copolymers include diblock and triblock copolymers of polyoxyethylene and polyoxypropylene, including poloxamer 188 (Pluronic.RTM. F68), poloxamer 407 (Pluronic.RTM. F-127), and poloxamer 338. Ionic surfactants such as sodium sulfosuccinate, and fatty acid soaps may also be utilized. In preferred embodiments, the microstructures may comprise oleic acid or its alkali salt.

10

15

20

25

30

In addition to the aforementioned surfactants, cationic surfactants or lipids are preferred especially in the case of delivery of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). Examples of suitable cationic lipids include: DOTMA, N-[-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium-chloride; DOTAP,1,2-dioleyloxy-3-(trimethylammonio)propane; and DOTB, 1,2-dioleyl-3-(4'-trimethylammonio)butanoyl-sn-glycerol. Polycationic amino acids such as polylysine, and polyarginine are also contemplated.

For the spraying process, such spraying methods as rotary atomization, pressure atomization and two-fluid atomization can be used. Examples of the devices used in these processes include "Parubisu [phonetic rendering] Mini-Spray GA-32" and "Parubisu Spray Drier DL-41", manufactured by Yamato Chemical Co., or "Spray Drier CL-8," "Spray Drier

L-8," "Spray Drier FL-12," "Spray Drier FL-16" or "Spray Drier FL-20," manufactured by Okawara Kakoki Co., can be used for the method of spraying using rotary-disk atomizer.

While no particular restrictions are placed on the gas used to dry the sprayed material, it is recommended to use air, nitrogen gas or an inert gas. The temperature of the inlet of the gas used to dry the sprayed materials such that it does not cause heat deactivation of the sprayed material. The range of temperatures may vary between about 50°C to about 200°C, preferably between about 50°C and 100°C. The temperature of the outlet gas used to dry the sprayed material, may vary between about 0°C and about 150°C, preferably between 0°C and 90°C, and even more preferably between 0°C and 60°C.

5

10

15

20

25

30

The spray drying is done under conditions that result in substantially amorphous powder of homogeneous constitution having a particle size that is respirable, a low moisture content and flow characteristics that allow for ready aerosolization. Preferably the particle size of the resulting powder is such that more than about 98% of the mass is in particles having a diameter of about 10 μ m or less with about 90% of the mass being in particles having a diameter less than 5 μ m. Alternatively, about 95% of the mass will have particles with a diameter of less than 10 μ m with about 80% of the mass of the particles having a diameter of less than 5 μ m.

The dispersible pharmaceutical-based dry powders that include the iRNA preparation may optionally be combined with pharmaceutical carriers or excipients which are suitable for respiratory and pulmonary administration. Such carriers may serve simply as bulking agents when it is desired to reduce the iRNA concentration in the powder which is being delivered to a patient, but may also serve to enhance the stability of the iRNA compositions and to improve the dispersibility of the powder within a powder dispersion device in order to provide more efficient and reproducible delivery of the iRNA and to improve handling characteristics of the iRNA such as flowability and consistency to facilitate manufacturing and powder filling.

Such carrier materials may be combined with the drug prior to spray drying, *i.e.*, by adding the carrier material to the purified bulk solution. In that way, the carrier particles will be formed simultaneously with the drug particles to produce a homogeneous powder.

Alternatively, the carriers may be separately prepared in a dry powder form and combined with the dry powder drug by blending. The powder carriers will usually be crystalline (to

avoid water absorption), but might in some cases be amorphous or mixtures of crystalline and amorphous. The size of the carrier particles may be selected to improve the flowability of the drug powder, typically being in the range from 25 μ m to 100 μ m. A preferred carrier material is crystalline lactose having a size in the above-stated range.

Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use. For use as pharmaceuticals and other purposes, it will frequently be desirable to disrupt any agglomerates which may have formed by screening or other conventional techniques. For pharmaceutical uses, the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below. Alternatively, the powders may be packaged in multiple-dose containers.

Methods for spray drying hydrophobic and other drugs and components are described in U.S. Pat. Nos. 5,000,888; 5,026,550; 4,670,419, 4,540,602; and 4,486,435. Bloch and Speison (1983) Pharm. Acta Helv 58:14-22 teaches spray drying of hydrochlorothiazide and chlorthalidone (lipophilic drugs) and a hydrophilic adjuvant (pentaerythritol) in azeotropic solvents of dioxane-water and 2-ethoxyethanol-water. A number of Japanese Patent application Abstracts relate to spray drying of hydrophilic-hydrophobic product combinations, including JP 806766; JP 7242568; JP 7101884; JP 7101883; JP 71018982; JP 7101881; and JP 4036233. Other foreign patent publications relevant to spray drying hydrophilic-hydrophobic product combinations include FR 2594693; DE 2209477; and WO 88/07870.

LYOPHILIZATION.

5

10

15

20

25

30

An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) preparation can be made by lyophilization. Lyophilization is a freezedrying process in which water is sublimed from the composition after it is frozen. The particular advantage associated with the lyophilization process is that biologicals and pharmaceuticals that are relatively unstable in an aqueous solution can be dried without

elevated temperatures (thereby eliminating the adverse thermal effects), and then stored in a dry state where there are few stability problems. With respect to the instant invention such techniques are particularly compatible with the incorporation of nucleic acids in perforated microstructures without compromising physiological activity. Methods for providing lyophilized particulates are known to those of skill in the art and it would clearly not require undue experimentation to provide dispersion compatible microstructures in accordance with the teachings herein. Accordingly, to the extent that lyophilization processes may be used to provide microstructures having the desired porosity and size, they are conformance with the teachings herein and are expressly contemplated as being within the scope of the instant invention.

Targeting

5

10

15

20

25

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNAs. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention.

In some embodiments, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is targeted to a particular cell. For example, a liposome or particle or other structure that includes a iRNA can also include a targeting moiety that recognizes a specific molecule on a target cell. The targeting moiety can be a molecule with a specific affinity for a target cell. Targeting moieties can include antibodies directed against a protein found on the surface of a target cell, or the ligand or a receptor-binding portion of a ligand for a molecule found on the surface of a target cell. For example, the targeting moiety can recognize a cancer-specific antigen (e.g., CA15-3, CA19-9, CEA, or HER2/neu.) or a viral antigen, thus delivering the iRNA to a cancer cell or a virus-infected cell. Exemplary targeting moieties include antibodies (such as IgM, IgG, IgA, IgD, and the like, or a functional portions thereof), ligands for cell surface receptors (e.g., ectodomains thereof).

Table 3 provides a number of antigens which can be used to target selected cells. Table 3.

ANTIGEN	Exemplary tumor tissue
CEA (carcinoembryonic antigen)	colon, breast, lung
PSA (prostate specific antigen)	prostate cancer
CA-125	ovarian cancer
CA 15-3	breast cancer
CA 19-9	breast cancer
HER2/neu	breast cancer
α-feto protein	testicular cancer, hepatic cancer
β-HCG (human chorionic gonadotropin)	testicular cancer, choriocarcinoma
MUC-1	breast cancer
Estrogen receptor	breast cancer, uterine cancer
Progesterone receptor	breast cancer, uterine cancer
EGFr (epidermal growth factor receptor)	bladder cancer

5

10

20

In one embodiment, the targeting moiety is attached to a liposome. For example, US 6,245,427 describes a method for targeting a liposome using a protein or peptide. In another example, a cationic lipid component of the liposome is derivatized with a targeting moiety. For example, WO 96/37194 describes converting N-glutaryldioleoylphosphatidyl ethanolamine to a N-hydroxysuccinimide activated ester. The product was then coupled to an RGD peptide.

GENES AND DISEASES

In one aspect, the invention features, a method of treating a subject at risk for or afflicted with unwanted cell proliferation, e.g., malignant or nonmalignant cell proliferation.

15 The method includes:

providing an iRNA agent, e.g., an sRNA or iRNA agent described herein, e.g., an iRNA having a structure described herein, where the iRNA is homologous to and can silence, e.g., by cleavage, a gene which promotes unwanted cell proliferation;

administering an iRNA agent, e.g., an sRNA or iRNA agent described herein to a subject, preferably a human subject,

thereby treating the subject.

In a preferred embodiment the gene is a growth factor or growth factor receptor gene, a kinase, e.g., a protein tyrosine, serine or threonine kinase gene, an adaptor protein gene, a gene encoding a G protein superfamily molecule, or a gene encoding a transcription factor.

In a preferred embodiment the iRNA agent silences the PDGF beta gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PDGF beta expression, *e.g.*, testicular and lung cancers.

5

10

15

20

25

30

In another preferred embodiment the iRNA agent silences the Erb-B gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Erb-B expression, e.g., breast cancer.

In a preferred embodiment the iRNA agent silences the Src gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Src expression, e.g., colon cancers.

In a preferred embodiment the iRNA agent silences the CRK gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted CRK expression, e.g., colon and lung cancers.

In a preferred embodiment the iRNA agent silences the GRB2 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted GRB2 expression, e.g., squamous cell carcinoma.

In another preferred embodiment the iRNA agent silences the RAS gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted RAS expression, e.g., pancreatic, colon and lung cancers, and chronic leukemia.

In another preferred embodiment the iRNA agent silences the MEKK gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MEKK expression, e.g., squamous cell carcinoma, melanoma or leukemia.

In another preferred embodiment the iRNA agent silences the JNK gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted JNK expression, *e.g.*, pancreatic or breast cancers.

In a preferred embodiment the iRNA agent silences the RAF gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted RAF expression, e.g., lung cancer or leukemia.

In a preferred embodiment the iRNA agent silences the Erk1/2 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Erk1/2 expression, e.g., lung cancer.

In another preferred embodiment the iRNA agent silences the PCNA(p21) gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PCNA expression, e.g., lung cancer.

5

10

15

20

25

30

In a preferred embodiment the iRNA agent silences the MYB gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MYB expression, e.g., colon cancer or chronic myelogenous leukemia.

In a preferred embodiment the iRNA agent silences the c-MYC gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted c-MYC expression, e.g., Burkitt's lymphoma or neuroblastoma.

In another preferred embodiment the iRNA agent silences the JUN gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted JUN expression, e.g., ovarian, prostate or breast cancers.

In another preferred embodiment the iRNA agent silences the FOS gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted FOS expression, e.g., skin or prostate cancers.

In a preferred embodiment the iRNA agent silences the BCL-2 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted BCL-2 expression, e.g., lung or prostate cancers or Non-Hodgkin lymphoma.

In a preferred embodiment the iRNA agent silences the Cyclin D gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Cyclin D expression, e.g., esophageal and colon cancers.

In a preferred embodiment the iRNA agent silences the VEGF gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted VEGF expression, e.g., esophageal and colon cancers.

In a preferred embodiment the iRNA agent silences the EGFR gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted EGFR expression, e.g., breast cancer.

In another preferred embodiment the iRNA agent silences the Cyclin A gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Cyclin A expression, e.g., lung and cervical cancers.

In another preferred embodiment the iRNA agent silences the Cyclin E gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Cyclin E expression, e.g., lung and breast cancers.

5

10

15

20

25

30

In another preferred embodiment the iRNA agent silences the WNT-1 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted WNT-1 expression, e.g., basal cell carcinoma.

In another preferred embodiment the iRNA agent silences the beta-catenin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted beta-catenin expression, e.g., adenocarcinoma or hepatocellular carcinoma.

In another preferred embodiment the iRNA agent silences the c-MET gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted c-MET expression, e.g., hepatocellular carcinoma.

In another preferred embodiment the iRNA agent silences the PKC gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PKC expression, e.g., breast cancer.

In a preferred embodiment the iRNA agent silences the NFKB gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted NFKB expression, e.g., breast cancer.

In a preferred embodiment the iRNA agent silences the STAT3 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted STAT3 expression, e.g., prostate cancer.

In another preferred embodiment the iRNA agent silences the survivin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted survivin expression, e.g., cervical or pancreatic cancers.

In another preferred embodiment the iRNA agent silences the Her2/Neu gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Her2/Neu expression, e.g., breast cancer.

In another preferred embodiment the iRNA agent silences the topoisomerase I gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted topoisomerase I expression, e.g., ovarian and colon cancers.

In a preferred embodiment the iRNA agent silences the topoisomerase II alpha gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted topoisomerase II expression, e.g., breast and colon cancers.

5

10

15

20

25

30

In a preferred embodiment the iRNA agent silences mutations in the p73 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p73 expression, e.g., colorectal adenocarcinoma.

In a preferred embodiment the iRNA agent silences mutations in the p21(WAF1/CIP1) gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p21(WAF1/CIP1) expression, e.g., liver cancer.

In a preferred embodiment the iRNA agent silences mutations in the p27(KIP1) gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p27(KIP1) expression, e.g., liver cancer.

In a preferred embodiment the iRNA agent silences mutations in the PPM1D gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PPM1D expression, e.g., breast cancer.

In a preferred embodiment the iRNA agent silences mutations in the RAS gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted RAS expression, *e.g.*, breast cancer.

In another preferred embodiment the iRNA agent silences mutations in the caveolin I gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted caveolin I expression, e.g., esophageal squamous cell carcinoma.

In another preferred embodiment the iRNA agent silences mutations in the MIB I gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MIB I expression, e.g., male breast carcinoma (MBC).

In another preferred embodiment the iRNA agent silences mutations in the MTAI gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MTAI expression, e.g., ovarian carcinoma.

In another preferred embodiment the iRNA agent silences mutations in the M68 gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted M68 expression, e.g., human adenocarcinomas of the esophagus, stomach, colon, and rectum.

In preferred embodiments the iRNA agent silences mutations in tumor suppressor genes, and thus can be used as a method to promote apoptotic activity in combination with chemotherapeutics.

5

10

15

20

25

In a preferred embodiment the iRNA agent silences mutations in the p53 tumor suppressor gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted p53 expression, e.g., gall bladder, pancreatic and lung cancers.

In a preferred embodiment the iRNA agent silences mutations in the p53 family member DN-p63, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted DN-p63 expression, e.g., squamous cell carcinoma

In a preferred embodiment the iRNA agent silences mutations in the pRb tumor suppressor gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted pRb expression, e.g., oral squamous cell carcinoma

In a preferred embodiment the iRNA agent silences mutations in the APC1 tumor suppressor gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted APC1 expression, e.g., colon cancer.

In a preferred embodiment the iRNA agent silences mutations in the BRCA1 tumor suppressor gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted BRCA1 expression, e.g., breast cancer.

In a preferred embodiment the iRNA agent silences mutations in the PTEN tumor suppressor gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PTEN expression, e.g., hamartomas, gliomas, and prostate and endometrial cancers.

In a preferred embodiment the iRNA agent silences MLL fusion genes, e.g., MLL-AF9, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted MLL fusion gene expression, e.g., acute leukemias.

In another preferred embodiment the iRNA agent silences the BCR/ABL fusion gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted BCR/ABL fusion gene expression, e.g., acute and chronic leukemias.

In another preferred embodiment the iRNA agent silences the TEL/AML1 fusion gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted TEL/AML1 fusion gene expression, e.g., childhood acute leukemia.

In another preferred embodiment the iRNA agent silences the EWS/FLI1 fusion gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted EWS/FLI1 fusion gene expression, e.g., Ewing Sarcoma.

In another preferred embodiment the iRNA agent silences the TLS/FUS1 fusion gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted TLS/FUS1 fusion gene expression, e.g., Myxoid liposarcoma.

In another preferred embodiment the iRNA agent silences the PAX3/FKHR fusion gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted PAX3/FKHR fusion gene expression, e.g., Myxoid liposarcoma.

In another preferred embodiment the iRNA agent silences the AML1/ETO fusion gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted AML1/ETO fusion gene expression, e.g., acute leukemia.

In another aspect, the invention features, a method of treating a subject, e.g., a human, at risk for or afflicted with a disease or disorder that may benefit by angiogenesis inhibition e.g., cancer. The method includes:

providing an iRNA agent, e.g., an iRNA agent having a structure described herein, which iRNA agent is homologous to and can silence, e.g., by cleavage, a gene which mediates angiogenesis:

administering the iRNA agent to a subject, thereby treating the subject.

5

10

15

20

25

In a preferred embodiment the iRNA agent silences the alpha v-integrin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted alpha V integrin, e.g., brain tumors or tumors of epithelial origin.

In a preferred embodiment the iRNA agent silences the Flt-1 receptor gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted Flt-1 receptors, eg. Cancer and rheumatoid arthritis.

In a preferred embodiment the iRNA agent silences the tubulin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted tubulin, eg. Cancer and retinal neovascularization.

5

10

15

20

25

30

In a preferred embodiment the iRNA agent silences the tubulin gene, and thus can be used to treat a subject having or at risk for a disorder characterized by unwanted tubulin, eg. Cancer and retinal neovascularization.

In another aspect, the invention features a method of treating a subject infected with a virus or at risk for or afflicted with a disorder or disease associated with a viral infection.

The method includes:

providing an iRNA agent, e.g., and iRNA agent having a structure described herein, which iRNA agent is homologous to and can silence, e.g., by cleavage, a viral gene of a cellular gene which mediates viral function, e.g., entry or growth;

administering the iRNA agent to a subject, preferably a human subject, thereby treating the subject.

Thus, the invention provides for a method of treating patients infected by the Human Papilloma Virus (HPV) or at risk for or afflicted with a disorder mediated by HPV, e.g, cervical cancer. HPV is linked to 95% of cervical carcinomas and thus an antiviral therapy is an attractive method to treat these cancers and other symptoms of viral infection.

In a preferred embodiment, the expression of a HPV gene is reduced. In another preferred embodiment, the HPV gene is one of the group of E2, E6, or E7.

In a preferred embodiment the expression of a human gene that is required for HPV replication is reduced.

The invention also includes a method of treating patients infected by the Human Immunodeficiency Virus (HIV) or at risk for or afflicted with a disorder mediated by HIV, e.g., Acquired Immune Deficiency Syndrome (AIDS).

In a preferred embodiment, the expression of a HIV gene is reduced. In another preferred embodiment, the HIV gene is CCR5, Gag, or Rev.

In a preferred embodiment the expression of a human gene that is required for HIV replication is reduced. In another preferred embodiment, the gene is CD4 or Tsg101.

The invention also includes a method for treating patients infected by the Hepatitis B Virus (HBV) or at risk for or afflicted with a disorder mediated by HBV, e.g., cirrhosis and heptocellular carcinoma.

5

10

15

20

25

30

In a preferred embodiment, the expression of a HBV gene is reduced. In another preferred embodiment, the targeted HBV gene encodes one of the group of the tail region of the HBV core protein, the pre-cregious (pre-c) region, or the cregious (c) region. In another preferred embodiment, a targeted HBV-RNA sequence is comprised of the poly(A) tail.

In preferred embodiment the expression of a human gene that is required for HBV replication is reduced.

The invention also provides for a method of treating patients infected by the Hepatitis A Virus (HAV), or at risk for or afflicted with a disorder mediated by HAV.

In a preferred embodiment the expression of a human gene that is required for HAV replication is reduced.

The present invention provides for a method of treating patients infected by the Hepatitis C Virus (HCV), or at risk for or afflicted with a disorder mediated by HCV, e.g., cirrhosis

In a preferred embodiment, the expression of a HCV gene is reduced.

In another preferred embodiment the expression of a human gene that is required for HCV replication is reduced.

The present invention also provides for a method of treating patients infected by the any of the group of Hepatitis Viral strains comprising hepatitis D, E, F, G, or H, or patients at risk for or afflicted with a disorder mediated by any of these strains of hepatitis.

In a preferred embodiment, the expression of a Hepatitis, D, E, F, G, or H gene is reduced.

In another preferred embodiment the expression of a human gene that is required for hepatitis D, E, F, G or H replication is reduced.

Methods of the invention also provide for treating patients infected by the Respiratory Syncytial Virus (RSV) or at risk for or afflicted with a disorder mediated by

RSV, e.g, lower respiratory tract infection in infants and childhood asthma, pneumonia and other complications, e.g., in the elderly.

In a preferred embodiment, the expression of a RSV gene is reduced. In another preferred embodiment, the targeted HBV gene encodes one of the group of genes N, L, or P.

In a preferred embodiment the expression of a human gene that is required for RSV replication is reduced.

5

10

15

20

25

30

Methods of the invention provide for treating patients infected by the Herpes Simplex Virus (HSV) or at risk for or afflicted with a disorder mediated by HSV, e.g, genital herpes and cold sores as well as life-threatening or sight-impairing disease mainly in immunocompromised patients.

In a preferred embodiment, the expression of a HSV gene is reduced. In another preferred embodiment, the targeted HSV gene encodes DNA polymerase or the helicase-primase.

In a preferred embodiment the expression of a human gene that is required for HSV replication is reduced.

The invention also provides a method for treating patients infected by the herpes Cytomegalovirus (CMV) or at risk for or afflicted with a disorder mediated by CMV, e.g., congenital virus infections and morbidity in immunocompromised patients.

In a preferred embodiment, the expression of a CMV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for CMV replication is reduced.

Methods of the invention also provide for a method of treating patients infected by the herpes Epstein Barr Virus (EBV) or at risk for or afflicted with a disorder mediated by EBV, e.g., NK/T-cell lymphoma, non-Hodgkin lymphoma, and Hodgkin disease.

In a preferred embodiment, the expression of a EBV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for EBV replication is reduced.

Methods of the invention also provide for treating patients infected by Kaposi's Sarcoma-associated Herpes Virus (KSHV), also called human herpesvirus 8, or patients at risk for or afflicted with a disorder mediated by KSHV, e.g., Kaposi's sarcoma, multicentric Castleman's disease and AIDS-associated primary effusion lymphoma.

In a preferred embodiment, the expression of a KSHV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for KSHV replication is reduced.

The invention also includes a method for treating patients infected by the JC Virus (JCV) or a disease or disorder associated with this virus, e.g., progressive multifocal leukoencephalopathy (PML).

In a preferred embodiment, the expression of a JCV gene is reduced.

5

10

15

20

25

30

In preferred embodiment the expression of a human gene that is required for JCV replication is reduced.

Methods of the invention also provide for treating patients infected by the myxovirus or at risk for or afflicted with a disorder mediated by myxovirus, e.g., influenza.

In a preferred embodiment, the expression of a myxovirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for myxovirus replication is reduced.

Methods of the invention also provide for treating patients infected by the rhinovirus or at risk for of afflicted with a disorder mediated by rhinovirus, e.g., the common cold.

In a preferred embodiment, the expression of a rhinovirus gene is reduced.

In preferred embodiment the expression of a human gene that is required for rhinovirus replication is reduced.

Methods of the invention also provide for treating patients infected by the coronavirus or at risk for of afflicted with a disorder mediated by coronavirus, e.g., the common cold.

In a preferred embodiment, the expression of a coronavirus gene is reduced.

In preferred embodiment the expression of a human gene that is required for coronavirus replication is reduced.

Methods of the invention also provide for treating patients infected by the flavivirus West Nile or at risk for or afflicted with a disorder mediated by West Nile Virus.

In a preferred embodiment, the expression of a West Nile Virus gene is reduced. In another preferred embodiment, the West Nile Virus gene is one of the group comprising E, NS3, or NS5.

In a preferred embodiment the expression of a human gene that is required for West Nile Virus replication is reduced.

Methods of the invention also provide for treating patients infected by the St. Louis Encephalitis flavivirus, or at risk for or afflicted with a disease or disorder associated with this virus, e.g., viral haemorrhagic fever or neurological disease.

In a preferred embodiment, the expression of a St. Louis Encephalitis gene is reduced. In a preferred embodiment the expression of a human gene that is required for St.

Louis Encephalitis virus replication is reduced.

5

10

15

20

25

30

Methods of the invention also provide for treating patients infected by the Tick-borne encephalitis flavivirus, or at risk for or afflicted with a disorder mediated by Tick-borne encephalitis virus, e.g., viral haemorrhagic fever and neurological disease.

In a preferred embodiment, the expression of a Tick-borne encephalitis virus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Tickborne encephalitis virus replication is reduced.

Methods of the invention also provide for methods of treating patients infected by the Murray Valley encephalitis flavivirus, which commonly results in viral haemorrhagic fever and neurological disease.

In a preferred embodiment, the expression of a Murray Valley encephalitis virus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Murray Valley encephalitis virus replication is reduced.

The invention also includes methods for treating patients infected by the dengue flavivirus, or a disease or disorder associated with this virus, e.g., dengue haemorrhagic fever.

In a preferred embodiment, the expression of a dengue virus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for dengue virus replication is reduced.

Methods of the invention also provide for treating patients infected by the Simian Virus 40 (SV40) or at risk for or afflicted with a disorder mediated by SV40, e.g., tumorigenesis.

In a preferred embodiment, the expression of a SV40 gene is reduced.

In a preferred embodiment the expression of a human gene that is required for SV40 replication is reduced.

The invention also includes methods for treating patients infected by the Human T Cell Lymphotropic Virus (HTLV), or a disease or disorder associated with this virus, e.g., leukemia and myelopathy.

5

10

20

25

30

In a preferred embodiment, the expression of a HTLV gene is reduced. In another preferred embodiment the HTLV1 gene is the Tax transcriptional activator.

In a preferred embodiment the expression of a human gene that is required for HTLV replication is reduced.

Methods of the invention also provide for treating patients infected by the Moloney-Murine Leukemia Virus (Mo-MuLV) or at risk for or afflicted with a disorder mediated by Mo-MuLV, e.g., T-cell leukemia.

In a preferred embodiment, the expression of a Mo-MuLV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mo-MuLV replication is reduced.

Methods of the invention also provide for treating patients infected by the encephalomyocarditis virus (EMCV) or at risk for or afflicted with a disorder mediated by EMCV, e.g. myocarditis. EMCV leads to myocarditis in mice and pigs and is capable of infecting human myocardial cells. This virus is therefore a concern for patients undergoing xenotransplantation.

In a preferred embodiment, the expression of a EMCV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for EMCV replication is reduced.

The invention also includes a method for treating patients infected by the measles virus (MV) or at risk for or afflicted with a disorder mediated by MV, e.g. measles.

In a preferred embodiment, the expression of a MV gene is reduced.

In a preferred embodiment the expression of a human gene that is required for MV replication is reduced.

The invention also includes a method for treating patients infected by the Vericella zoster virus (VZV) or at risk for or afflicted with a disorder mediated by VZV, e.g. chicken pox or shingles (also called zoster).

In a preferred embodiment, the expression of a VZV gene is reduced.

5

10

15

20

25

30

In a preferred embodiment the expression of a human gene that is required for VZV replication is reduced.

The invention also includes a method for treating patients infected by an adenovirus or at risk for or afflicted with a disorder mediated by an adenovirus, e.g. respiratory tract infection.

In a preferred embodiment, the expression of an adenovirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for adenovirus replication is reduced.

The invention includes a method for treating patients infected by a yellow fever virus (YFV) or at risk for or afflicted with a disorder mediated by a YFV, e.g. respiratory tract infection.

In a preferred embodiment, the expression of a YFV gene is reduced. In another preferred embodiment, the preferred gene is one of a group that includes the E, NS2A, or NS3 genes.

In a preferred embodiment the expression of a human gene that is required for YFV replication is reduced.

Methods of the invention also provide for treating patients infected by the poliovirus or at risk for or afflicted with a disorder mediated by poliovirus, e.g., polio.

In a preferred embodiment, the expression of a poliovirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for poliovirus replication is reduced.

Methods of the invention also provide for treating patients infected by a poxvirus or at risk for or afflicted with a disorder mediated by a poxvirus, e.g., smallpox

In a preferred embodiment, the expression of a poxvirus gene is reduced.

In a preferred embodiment the expression of a human gene that is required for poxvirus replication is reduced.

In another, aspect the invention features methods of treating a subject infected with a pathogen, e.g., a bacterial, amoebic, parasitic, or fungal pathogen. The method includes:

providing a iRNA agent, e.g., a siRNA having a structure described herein, where siRNA is homologous to and can silence, e.g., by cleavage of a pathogen gene;

administering the iRNA agent to a subject, prefereably a human subject, thereby treating the subject.

The target gene can be one involved in growth, cell wall synthesis, protein synthesis, transcription, energy metabolism, e.g., the Krebs cycle, or toxin production.

Thus, the present invention provides for a method of treating patients infected by a plasmodium that causes malaria.

5

10

15

20

25

30

In a preferred embodiment, the expression of a plasmodium gene is reduced. In another preferred embodiment, the gene is apical membrane antigen 1 (AMA1).

In a preferred embodiment the expression of a human gene that is required for plasmodium replication is reduced.

The invention also includes methods for treating patients infected by the Mycobacterium ulcerans, or a disease or disorder associated with this pathogen, e.g. Buruli ulcers.

In a preferred embodiment, the expression of a Mycobacterium ulcerans gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycobacterium ulcerans replication is reduced.

The invention also includes methods for treating patients infected by the Mycobacterium tuberculosis, or a disease or disorder associated with this pathogen, *e.g.* tuberculosis.

In a preferred embodiment, the expression of a Mycobacterium tuberculosis gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycobacterium tuberculosis replication is reduced.

The invention also includes methods for treating patients infected by the Mycobacterium leprae, or a disease or disorder associated with this pathogen, e.g. leprosy.

In a preferred embodiment, the expression of a Mycobacterium leprae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycobacterium leprae replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Staphylococcus aureus, or a disease or disorder associated with this pathogen, e.g. infections of the skin and muscous membranes.

In a preferred embodiment, the expression of a Staphylococcus aureus gene is reduced.

5

10

15

20

25

30

In a preferred embodiment the expression of a human gene that is required for Staphylococcus aureus replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Streptococcus pneumoniae, or a disease or disorder associated with this pathogen, *e.g.* pneumonia or childhood lower respiratory tract infection.

In a preferred embodiment, the expression of a Streptococcus pneumoniae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Streptococcus pneumoniae replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Streptococcus pyogenes, or a disease or disorder associated with this pathogen, e.g. Strep throat or Scarlet fever.

In a preferred embodiment, the expression of a Streptococcus pyogenes gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Streptococcus pyogenes replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Chlamydia pneumoniae, or a disease or disorder associated with this pathogen, e.g. pneumonia or childhood lower respiratory tract infection

In a preferred embodiment, the expression of a Chlamydia pneumoniae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Chlamydia pneumoniae replication is reduced.

The invention also includes methods for treating patients infected by the bacteria Mycoplasma pneumoniae, or a disease or disorder associated with this pathogen, e.g. pneumonia or childhood lower respiratory tract infection

In a preferred embodiment, the expression of a Mycoplasma pneumoniae gene is reduced.

In a preferred embodiment the expression of a human gene that is required for Mycoplasma pneumoniae replication is reduced.

In one aspect, the invention features, a method of treating a subject, e.g., a human, at risk for or afflicted with a disease or disorder characterized by an unwanted immune response, e.g., an inflammatory disease or disorder, or an autoimmune disease or disorder. The method includes:

providing an iRNA agent, e.g., an iRNA agent having a structure described herein, which iRNA agent is homologous to and can silence, e.g., by cleavage, a gene which mediates an unwanted immune response;

administering the iRNA agent to a subject,

thereby treating the subject.

5

10

15

20

25

30

In a preferred embodiment the disease or disorder is an ischemia or reperfusion injury, e.g., ischemia or reperfusion injury associated with acute myocardial infarction, unstable angina, cardiopulmonary bypass, surgical intervention e.g., angioplasty, e.g., percutaneous transluminal coronary angioplasty, the response to a transplantated organ or tissue, e.g., transplanted cardiac or vascular tissue; or thrombolysis.

In a preferred embodiment the disease or disorder is restenosis, e.g., restenosis associated with surgical intervention e.g., angioplasty, e.g., percutaneous transluminal coronary angioplasty.

In a prefered embodiment the disease or disorder is Inflammatory Bowel Disease, e.g., Crohn Disease or Ulcerative Colitis.

In a prefered embodiment the disease or disorder is inflammation associated with an infection or injury.

In a prefered embodiment the disease or disorder is asthma, lupus, multiple sclerosis, diabetes, e.g., type II diabetes, arthritis, e.g., rheumatoid or psoriatic.

In particularly preferred embodiments the iRNA agent silences an integrin or coligand thereof, e.g., VLA4, VCAM, ICAM.

In particularly preferred embodiments the iRNA agent silences a selectin or co-ligand thereof, e.g., P-selectin, E-selectin (ELAM), I-selectin, P-selectin glycoprotein-1 (PSGL-1).

In particularly preferred embodiments the iRNA agent silences a component of the complement system, e.g., C3, C5, C3aR, C5aR, C3 convertase, C5 convertase.

In particularly preferred embodiments the iRNA agent silences a chemokine or receptor thereof, e.g., TNFI, TNFJ, IL-1I, IL-1J, IL-2, IL-2R, IL-4R, IL-4R, IL-5, IL-6, IL-8, TNFRI, TNFRII, IgE, SCYA11, CCR3.

In other embodiments the iRNA agent silences GCSF, Gro1, Gro2, Gro3, PF4, MIG, Pro-Platelet Basic Protein (PPBP), MIP-1I, MIP-1J, RANTES, MCP-1, MCP-2, MCP-3, CMBKR1, CMBKR2, CMBKR3, CMBKR5, AIF-1, I-309.

In one aspect, the invention features, a method of treating a subject, e.g., a human, at risk for or afflicted with acute pain or chronic pain. The method includes:

providing an iRNA agent, which iRNA is homologous to and can silence, e.g., by cleavage, a gene which mediates the processing of pain;

administering the iRNA to a subject,

thereby treating the subject.

5

10

15

20

25

30

In particularly preferred embodiments the iRNA agent silences a component of an ion channel.

In particularly preferred embodiments the iRNA agent silences a neurotransmitter receptor or ligand.

In one aspect, the invention features, a method of treating a subject, e.g., a human, at risk for or afflicted with a neurological disease or disorder. The method includes:

providing an iRNA agent which iRNA is homologous to and can silence, e.g., by cleavage, a gene which mediates a neurological disease or disorder;

administering the to a subject,

thereby treating the subject.

In a prefered embodiment the disease or disorder is Alzheimer Disease or Parkinson Disease.

In particularly preferred embodiments the iRNA agent silences an amyloid-family gene, e.g., APP; a presentilin gene, e.g., PSEN1 and PSEN2, or I-synuclein.

In a preferred embodiment the disease or disorder is a neurodegenerative trinucleotide repeat disorder, e.g., Huntington disease, dentatorubral pallidoluysian atrophy or a spinocerebellar ataxia, e.g., SCA1, SCA2, SCA3 (Machado-Joseph disease), SCA7 or SCA8.

5

10

15

20

25

30

In particularly preferred embodiments the iRNA agent silences HD, DRPLA, SCA1, SCA2, MJD1, CACNL1A4, SCA7, SCA8.

The loss of heterozygosity (LOH) can result in hemizygosity for sequence, e.g., genes, in the area of LOH. This can result in a significant genetic difference between normal and disease-state cells, e.g., cancer cells, and provides a useful difference between normal and disease-state cells, e.g., cancer cells. This difference can arise because a gene or other sequence is heterozygous in euploid cells but is hemizygous in cells having LOH. The regions of LOH will often include a gene, the loss of which promotes unwanted proliferation, e.g., a tumor suppressor gene, and other sequences including, e.g., other genes, in some cases a gene which is essential for normal function, e.g., growth. Methods of the invention rely, in part, on the specific cleavage or silencing of one allele of an essential gene with an iRNA agent of the invention. The iRNA agent is selected such that it targets the single allele of the essential gene found in the cells having LOH but does not silence the other allele, which is present in cells which do not show LOH. In essence, it discriminates between the two alleles, preferentially silencing the selected allele. In essence polymorphisms, e.g., SNPs of essential genes that are affected by LOH, are used as a target for a disorder characterized by cells having LOH, e.g., cancer cells having LOH.

E.g., one of ordinary skill in the art can identify essential genes which are in proximity to tumor suppressor genes, and which are within a LOH region which includes the tumor suppressor gene. The gene encoding the large subunit of human RNA polymerase II, POLR2A, a gene located in close proximity to the tumor suppressor gene p53, is such a gene. It frequently occurs within a region of LOH in cancer cells. Other genes that occur within LOH regions and are lost in many cancer cell types include the group comprising replication protein A 70-kDa subunit, replication protein A 32-kD, ribonucleotide reductase, thymidilate synthase, TATA associated factor 2H, ribosomal protein S14, eukaryotic initiation factor 5A, alanyl tRNA synthetase, cysteinyl tRNA synthetase, NaK ATPase, alpha-1 subunit, and transferrin receptor.

Accordingly, the invention features, a method of treating a disorder characterized by LOH, e.g., cancer. The method includes:

optionally, determining the genotype of the allele of a gene in the region of LOH and preferably determining the genotype of both alleles of the gene in a normal cell;

providing an iRNA agent which preferentially cleaves or silences the allele found in the LOH cells;

administerning the iRNA to the subject, thereby treating the disorder.

The invention also includes a iRNA agent disclosed herein, e.g, an iRNA agent which can preferentially silence, e.g., cleave, one allele of a polymorphic gene

In another aspect, the invention provides a method of cleaving or silencing more than one gene with an iRNA agent. In these embodiments the iRNA agent is selected so that it has sufficient homology to a sequence found in more than one gene. For example, the sequence AAGCTGGCCCTGGACATGGAGAT (SEQ ID NO:6736) is conserved between mouse lamin B1, lamin B2, keratin complex 2-gene 1 and lamin A/C. Thus an iRNA agent targeted to this sequence would effectively silence the entire collection of genes.

The invention also includes an iRNA agent disclosed herein, which can silence more than one gene.

ROUTE OF DELIVERY

5

10

15

20

25

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A composition that includes a iRNA can be delivered to a subject by a variety of routes. Exemplary routes include: intravenous, topical, rectal, anal, vaginal, nasal, pulmonary, ocular.

The iRNA molecules of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically include one or more species of iRNA and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the

compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, transdermal), oral or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, or intrathecal or intraventricular administration.

The route and site of administration may be chosen to enhance targeting. For example, to target muscle cells, intramuscular injection into the muscles of interest would be a logical choice. Lung cells might be targeted by administering the iRNA in aerosol form. The vascular endothelial cells could be targeted by coating a balloon catheter with the iRNA and mechanically introducing the DNA.

10

15

20

25

30

Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions for oral administration include powders or granules, suspensions or solutions in water, syrups, elixirs or non-aqueous media, tablets, capsules, lozenges, or troches. In the case of tablets, carriers that can be used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch, and lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc, are commonly used in tablets. For oral administration in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the nucleic acid compositions can be combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents can be added.

Compositions for intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.

Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a

reservoir. For intravenous use, the total concentration of solutes should be controlled to render the preparation isotonic.

For ocular administration, ointments or droppable liquids may be delivered by ocular delivery systems known to the art such as applicators or eye droppers. Such compositions can include mucomimetics such as hyaluronic acid, chondroitin sulfate, hydroxypropyl methylcellulose or poly(vinyl alcohol), preservatives such as sorbic acid, EDTA or benzylchronium chloride, and the usual quantities of diluents and/or carriers.

Topical Delivery

5

10

15

20

25

30

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. In a preferred embodiment, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) is delivered to a subject via topical administration. "Topical administration" refers to the delivery to a subject by contacting the formulation directly to a surface of the subject. The most common form of topical delivery is to the skin, but a composition disclosed herein can also be directly applied to other surfaces of the body, e.g., to the eye, a mucous membrane, to surfaces of a body cavity or to an internal surface. As mentioned above, the most common topical delivery is to the skin. The term encompasses several routes of administration including, but not limited to, topical and transdermal. These modes of administration typically include penetration of the skin's permeability barrier and efficient delivery to the target tissue or stratum. Topical administration can be used as a means to penetrate the epidermis and dermis and ultimately achieve systemic delivery of the composition. Topical administration can also be used as a means to selectively deliver oligonucleotides to the epidermis or dermis of a subject, or to specific strata thereof, or to an underlying tissue.

The term "skin," as used herein, refers to the epidermis and/or dermis of an animal. Mammalian skin consists of two major, distinct layers. The outer layer of the skin is called the epidermis. The epidermis is comprised of the stratum corneum, the stratum granulosum,

the stratum spinosum, and the stratum basale, with the stratum corneum being at the surface of the skin and the stratum basale being the deepest portion of the epidermis. The epidermis is between 50 μ m and 0.2 mm thick, depending on its location on the body.

Beneath the epidermis is the dermis, which is significantly thicker than the epidermis. The dermis is primarily composed of collagen in the form of fibrous bundles. The collagenous bundles provide support for, inter alia, blood vessels, lymph capillaries, glands, nerve endings and immunologically active cells.

5

10

15

20

25

30

One of the major functions of the skin as an organ is to regulate the entry of substances into the body. The principal permeability barrier of the skin is provided by the stratum corneum, which is formed from many layers of cells in various states of differentiation. The spaces between cells in the stratum corneum is filled with different lipids arranged in lattice-like formations that provide seals to further enhance the skins permeability barrier.

The permeability barrier provided by the skin is such that it is largely impermeable to molecules having molecular weight greater than about 750 Da. For larger molecules to cross the skin's permeability barrier, mechanisms other than normal osmosis must be used.

Several factors determine the permeability of the skin to administered agents. These factors include the characteristics of the treated skin, the characteristics of the delivery agent, interactions between both the drug and delivery agent and the drug and skin, the dosage of the drug applied, the form of treatment, and the post treatment regimen. To selectively target the epidermis and dermis, it is sometimes possible to formulate a composition that comprises one or more penetration enhancers that will enable penetration of the drug to a preselected stratum.

Transdermal delivery is a valuable route for the administration of lipid soluble therapeutics. The dermis is more permeable than the epidermis and therefore absorption is much more rapid through abraded, burned or denuded skin. Inflammation and other physiologic conditions that increase blood flow to the skin also enhance transdermal adsorption. Absorption via this route may be enhanced by the use of an oily vehicle (inunction) or through the use of one or more penetration enhancers. Other effective ways to deliver a composition disclosed herein via the transdermal route include hydration of the skin and the use of controlled release topical patches. The transdermal route provides a

potentially effective means to deliver a composition disclosed herein for systemic and/or local therapy.

In addition, iontophoresis (transfer of ionic solutes through biological membranes under the influence of an electric field) (Lee *et al.*, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 163), phonophoresis or sonophoresis (use of ultrasound to enhance the absorption of various therapeutic agents across biological membranes, notably the skin and the cornea) (Lee *et al.*, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 166), and optimization of vehicle characteristics relative to dose position and retention at the site of administration (Lee *et al.*, Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 168) may be useful methods for enhancing the transport of topically applied compositions across skin and mucosal sites.

The compositions and methods provided may also be used to examine the function of various proteins and genes *in vitro* in cultured or preserved dermal tissues and in animals. The invention can be thus applied to examine the function of any gene. The methods of the invention can also be used therapeutically or prophylactically. For example, for the treatment of animals that are known or suspected to suffer from diseases such as psoriasis, lichen planus, toxic epidermal necrolysis, ertythema multiforme, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, Kaposi's sarcoma, pulmonary fibrosis, Lyme disease and viral, fungal and bacterial infections of the skin.

20

25

30

15

5

10

Pulmonary Delivery

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. A composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can be administered to a subject by pulmonary delivery. Pulmonary delivery compositions can be delivered by inhalation by the patient of a dispersion so that the composition, preferably iRNA, within the dispersion can reach the lung where it can be

readily absorbed through the alveolar region directly into blood circulation. Pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs.

5

10

15

20

25

30

Pulmonary delivery can be achieved by different approaches, including the use of nebulized, aerosolized, micellular and dry powder-based formulations. Delivery can be achieved with liquid nebulizers, aerosol-based inhalers, and dry powder dispersion devices. Metered-dose devices are preferred. One of the benefits of using an atomizer or inhaler is that the potential for contamination is minimized because the devices are self contained. Dry powder dispersion devices, for example, deliver drugs that may be readily formulated as dry powders. A iRNA composition may be stably stored as lyophilized or spray-dried powders by itself or in combination with suitable powder carriers. The delivery of a composition for inhalation can be mediated by a dosing timing element which can include a timer, a dose counter, time measuring device, or a time indicator which when incorporated into the device enables dose tracking, compliance monitoring, and/or dose triggering to a patient during administration of the aerosol medicament.

The term "powder" means a composition that consists of finely dispersed solid particles that are free flowing and capable of being readily dispersed in an inhalation device and subsequently inhaled by a subject so that the particles reach the lungs to permit penetration into the alveoli. Thus, the powder is said to be "respirable." Preferably the average particle size is less than about 10 μ m in diameter preferably with a relatively uniform spheroidal shape distribution. More preferably the diameter is less than about 7.5 μ m and most preferably less than about 5.0 μ m. Usually the particle size distribution is between about 0.1 μ m and about 5 μ m in diameter, particularly about 0.3 μ m to about 5 μ m.

The term "dry" means that the composition has a moisture content below about 10% by weight (% w) water, usually below about 5% w and preferably less it than about 3% w. A dry composition can be such that the particles are readily dispersible in an inhalation device to form an aerosol.

The term "therapeutically effective amount" is the amount present in the composition that is needed to provide the desired level of drug in the subject to be treated to give the anticipated physiological response.

The term "physiologically effective amount" is that amount delivered to a subject to give the desired palliative or curative effect.

The term "pharmaceutically acceptable carrier" means that the carrier can be taken into the lungs with no significant adverse toxicological effects on the lungs.

The types of pharmaceutical excipients that are useful as carrier include stabilizers such as human serum albumin (HSA), bulking agents such as carbohydrates, amino acids and polypeptides; pH adjusters or buffers; salts such as sodium chloride; and the like. These carriers may be in a crystalline or amorphous form or may be a mixture of the two.

Bulking agents that are particularly valuable include compatible carbohydrates, polypeptides, amino acids or combinations thereof. Suitable carbohydrates include monosaccharides such as galactose, D-mannose, sorbose, and the like; disaccharides, such as lactose, trehalose, and the like; cyclodextrins, such as 2-hydroxypropyl-.beta.-cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; alditols, such as mannitol, xylitol, and the like. A preferred group of carbohydrates includes lactose, threhalose, raffinose maltodextrins, and mannitol. Suitable polypeptides include aspartame. Amino acids include alanine and glycine, with glycine being preferred.

Additives, which are minor components of the composition of this invention, may be included for conformational stability during spray drying and for improving dispersibility of the powder. These additives include hydrophobic amino acids such as tryptophan, tyrosine, leucine, phenylalanine, and the like.

Suitable pH adjusters or buffers include organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, and the like; sodium citrate is preferred.

Pulmonary administration of a micellar iRNA formulation may be achieved through metered dose spray devices with propellants such as tetrafluoroethane, heptafluoroethane, dimethylfluoropropane, tetrafluoropropane, butane, isobutane, dimethyl ether and other non-CFC and CFC propellants.

Oral or Nasal Delivery

5

10

15

20

25

30

For ease of exposition the formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. Both the oral and

nasal membranes offer advantages over other routes of administration. For example, drugs administered through these membranes have a rapid onset of action, provide therapeutic plasma levels, avoid first pass effect of hepatic metabolism, and avoid exposure of the drug to the hostile gastrointestinal (GI) environment. Additional advantages include easy access to the membrane sites so that the drug can be applied, localized and removed easily.

In oral delivery, compositions can be targeted to a surface of the oral cavity, e.g., to sublingual mucosa which includes the membrane of ventral surface of the tongue and the floor of the mouth or the buccal mucosa which constitutes the lining of the cheek. The sublingual mucosa is relatively permeable thus giving rapid absorption and acceptable bioavailability of many drugs. Further, the sublingual mucosa is convenient, acceptable and easily accessible.

The ability of molecules to permeate through the oral mucosa appears to be related to molecular size, lipid solubility and peptide protein ionization. Small molecules, less than 1000 daltons appear to cross mucosa rapidly. As molecular size increases, the permeability decreases rapidly. Lipid soluble compounds are more permeable than non-lipid soluble molecules. Maximum absorption occurs when molecules are un-ionized or neutral in electrical charges. Therefore charged molecules present the biggest challenges to absorption through the oral mucosae.

A pharmaceutical composition of iRNA may also be administered to the buccal cavity of a human being by spraying into the cavity, without inhalation, from a metered dose spray dispenser, a mixed micellar pharmaceutical formulation as described above and a propellant. In one embodiment, the dispenser is first shaken prior to spraying the pharmaceutical formulation and propellant into the buccal cavity.

<u>Devices</u>

5

10

15

20

25

30

For ease of exposition the devices, formulations, compositions and methods in this section are discussed largely with regard to unmodified iRNA agents. It should be understood, however, that these devices, formulations, compositions and methods can be practiced with other iRNA agents, e.g., modified iRNA agents, and such practice is within the invention. An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or

precursor thereof) can be disposed on or in a device, e.g., a device which implanted or otherwise placed in a subject. Exemplary devices include devices which are introduced into the vasculature, e.g., devices inserted into the lumen of a vascular tissue, or which devices themselves form a part of the vasculature, including stents, catheters, heart valves, and other vascular devices. These devices, e.g., catheters or stents, can be placed in the vasculature of the lung, heart, or leg.

5

10

15

20

25

30

Other devices include non-vascular devices, e.g., devices implanted in the peritoneum, or in organ or glandular tissue, e.g., artificial organs. The device can release a therapeutic substance in addition to a iRNA, e.g., a device can release insulin.

Other devices include artificial joints, e.g., hip joints, and other orthopedic implants.

In one embodiment, unit doses or measured doses of a composition that includes iRNA are dispensed by an implanted device. The device can include a sensor that monitors a parameter within a subject. For example, the device can include pump, e.g., and, optionally, associated electronics.

Tissue, e.g., cells or organs can be treated with An iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) ex vivo and then administered or implanted in a subject.

The tissue can be autologous, allogeneic, or xenogeneic tissue. E.g., tissue can be treated to reduce graft v. host disease. In other embodiments, the tissue is allogeneic and the tissue is treated to treat a disorder characterized by unwanted gene expression in that tissue. E.g., tissue, e.g., hematopoietic cells, e.g., bone marrow hematopoietic cells, can be treated to inhibit unwanted cell proliferation.

Introduction of treated tissue, whether autologous or transplant, can be combined with other therapies.

In some implementations, the iRNA treated cells are insulated from other cells, e.g., by a semi-permeable porous barrier that prevents the cells from leaving the implant, but enables molecules from the body to reach the cells and molecules produced by the cells to enter the body. In one embodiment, the porous barrier is formed from alginate.

In one embodiment, a contraceptive device is coated with or contains an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). Exemplary devices include condoms, diaphragms, IUD (implantable uterine devices, sponges, vaginal sheaths, and birth control devices. In one embodiment, the iRNA is chosen to inactive sperm or egg. In another embodiment, the iRNA is chosen to be complementary to a viral or pathogen RNA, e.g., an RNA of an STD. In some instances, the iRNA composition can include a spermicide.

DOSAGE

5

10

15

20

25

30

In one aspect, the invention features a method of administering an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, to a subject (e.g., a human subject). The method includes administering a unit dose of the iRNA agent, e.g., a sRNA agent, e.g., double stranded sRNA agent that (a) the double-stranded part is 19-25 nucleotides (nt) long, preferably 21-23 nt, (b) is complementary to a target RNA (e.g., an endogenous or pathogen target RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nucleotide long. In one embodiment, the unit dose is less than 1.4 mg per kg of bodyweight, or less than 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of bodyweight, and less than 200 nmole of RNA agent (e.g. about 4.4 x 10¹⁶ copies) per kg of bodyweight, or less than 1500, 750, 300, 150, 75, 15, 7.5, 1.5, 0.75, 0.15, 0.075, 0.015, 0.0075, 0.0015, 0.00075, 0.00015 nmole of RNA agent per kg of bodyweight.

The defined amount can be an amount effective to treat or prevent a disease or disorder, e.g., a disease or disorder associated with the target RNA. The unit dose, for example, can be administered by injection (e.g., intravenous or intramuscular), an inhaled dose, or a topical application. Particularly preferred dosages are less than 2, 1, or 0.1 mg/kg of body weight.

In a preferred embodiment, the unit dose is administered less frequently than once a day, e.g., less than every 2, 4, 8 or 30 days. In another embodiment, the unit dose is not administered with a frequency (e.g., not a regular frequency). For example, the unit dose may be administered a single time.

In one embodiment, the effective dose is administered with other traditional therapeutic modalities. In one embodiment, the subject has a viral infection and the modality is an antiviral agent other than an iRNA agent, e.g., other than a double-stranded iRNA agent, or sRNA agent,. In another embodiment, the subject has atherosclerosis and the effective dose of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, is administered in combination with, e.g., after surgical intervention, e.g., angioplasty.

5

10

15

20

25

30

In one embodiment, a subject is administered an initial dose and one or more maintenance doses of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). The maintenance dose or doses are generally lower than the initial dose, e.g., one-half less of the initial dose. A maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 µg to 1.4 mg/kg of body weight per day, e.g., 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of bodyweight per day. The maintenance doses are preferably administered no more than once every 5, 10, or 30 days. Further, the treatment regimen may last for a period of time which will vary depending upon the nature of the particular disease, its severity and the overall condition of the patient. In preferred embodiments the dosage may be delivered no more than once per day, e.g., no more than once per 24, 36, 48, or more hours, e.g., no more than once for every 5 or 8 days. Following treatment, the patient can be monitored for changes in his condition and for alleviation of the symptoms of the disease state. The dosage of the compound may either be increased in the event the patient does not respond significantly to current dosage levels, or the dose may be decreased if an alleviation of the symptoms of the disease state is observed, if the disease state has been ablated, or if undesired side-effects are observed.

The effective dose can be administered in a single dose or in two or more doses, as desired or considered appropriate under the specific circumstances. If desired to facilitate repeated or frequent infusions, implantation of a delivery device, e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir may be advisable.

In one embodiment, the iRNA agent pharmaceutical composition includes a plurality of iRNA agent species. In another embodiment, the iRNA agent species has sequences that

5

10

15

20

25

30

are non-overlapping and non-adjacent to another species with respect to a naturally occurring target sequence. In another embodiment, the plurality of iRNA agent species is specific for different naturally occurring target genes. In another embodiment, the iRNA agent is allele specific.

In some cases, a patient is treated with a iRNA agent in conjunction with other therapeutic modalities. For example, a patient being treated for a viral disease, e.g. an HIV associated disease (e.g., AIDS), may be administered a iRNA agent specific for a target gene essential to the virus in conjunction with a known antiviral agent (e.g., a protease inhibitor or reverse transcriptase inhibitor). In another example, a patient being treated for cancer may be administered a iRNA agent specific for a target essential for tumor cell proliferation in conjunction with a chemotherapy.

Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the compound of the invention is administered in maintenance doses, ranging from $0.01~\mu g$ to 100~g per kg of body weight (see US 6,107,094).

The concentration of the iRNA agent composition is an amount sufficient to be effective in treating or preventing a disorder or to regulate a physiological condition in humans. The concentration or amount of iRNA agent administered will depend on the parameters determined for the agent and the method of administration, e.g. nasal, buccal, pulmonary. For example, nasal formulations tend to require much lower concentrations of some ingredients in order to avoid irritation or burning of the nasal passages. It is sometimes desirable to dilute an oral formulation up to 10-100 times in order to provide a suitable nasal formulation.

Certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) can include a single treatment or, preferably, can include a series of treatments. It will also be appreciated that the effective

dosage of a iRNA agent such as a sRNA agent used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein. For example, the subject can be monitored after administering a iRNA agent composition. Based on information from the monitoring, an additional amount of the iRNA agent composition can be administered.

Dosing is dependent on severity and responsiveness of the disease condition to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compounds, and can generally be estimated based on EC50s found to be effective in *in vitro* and *in vivo* animal models. In some embodiments, the animal models include transgenic animals that express a human gene, *e.g.* a gene that produces a target RNA. The transgenic animal can be deficient for the corresponding endogenous RNA. In another embodiment, the composition for testing includes a iRNA agent that is complementary, at least in an internal region, to a sequence that is conserved between the target RNA in the animal model and the target RNA in a human.

The inventors have discovered that iRNA agents described herein can be administered to mammals, particularly large mammals such as nonhuman primates or humans in a number of ways.

In one embodiment, the administration of the iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, composition is parenteral, e.g. intravenous (e.g., as a bolus or as a diffusible infusion), intradermal, intraperitoneal, intramuscular, intrathecal, intraventricular, intracranial, subcutaneous, transmucosal, buccal, sublingual, endoscopic, rectal, oral, vaginal, topical, pulmonary, intranasal, urethral or ocular. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. Selected modes of delivery are discussed in more detail below.

5

10

15

20

25

The invention provides methods, compositions, and kits, for rectal administration or delivery of iRNA agents described herein.

Accordingly, an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes a an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) described herein, e.g., a therapeutically effective amount of a iRNA agent described herein, e.g., a iRNA agent having a double stranded region of less than 40, and preferably less than 30 nucleotides and having one or two 1-3 nucleotide single strand 3' overhangs can be administered rectally, e.g., introduced through the rectum into the lower or upper colon. This approach is particularly useful in the treatment of, inflammatory disorders, disorders characterized by unwanted cell proliferation, e.g., polyps, or colon cancer.

5

10

15

20

25

30

The medication can be delivered to a site in the colon by introducing a dispensing device, e.g., a flexible, camera-guided device similar to that used for inspection of the colon or removal of polyps, which includes means for delivery of the medication.

The rectal administration of the iRNA agent is by means of an enema. The iRNA agent of the enema can be dissolved in a saline or buffered solution. The rectal administration can also by means of a suppository, which can include other ingredients, e.g., an excipient, e.g., cocoa butter or hydropropylmethylcellulose.

Any of the iRNA agents described herein can be administered orally, e.g., in the form of tablets, capsules, gel capsules, lozenges, troches or liquid syrups. Further, the composition can be applied topically to a surface of the oral cavity.

Any of the iRNA agents described herein can be administered buccally. For example, the medication can be sprayed into the buccal cavity or applied directly, e.g., in a liquid, solid, or gel form to a surface in the buccal cavity. This administration is particularly desirable for the treatment of inflammations of the buccal cavity, e.g., the gums or tongue, e.g., in one embodiment, the buccal administration is by spraying into the cavity, e.g., without inhalation, from a dispenser, e.g., a metered dose spray dispenser that dispenses the pharmaceutical composition and a propellant.

Any of the iRNA agents described herein can be administered to ocular tissue. For example, the medications can be applied to the surface of the eye or nearby tissue, e.g., the inside of the eyelid. They can be applied topically, e.g., by spraying, in drops, as an

eyewash, or an ointment. Administration can be provided by the subject or by another person, e.g., a health care provider. The medication can be provided in measured doses or in a dispenser which delivers a metered dose. The medication can also be administered to the interior of the eye, and can be introduced by a needle or other delivery device which can introduce it to a selected area or structure. Ocular treatment is particularly desirable for treating inflammation of the eye or nearby tissue.

Any of the iRNA agents described herein can be administered directly to the skin. For example, the medication can be applied topically or delivered in a layer of the skin, e.g., by the use of a microneedle or a battery of microneedles which penetrate into the skin, but preferably not into the underlying muscle tissue. Administration of the iRNA agent composition can be topical. Topical applications can, for example, deliver the composition to the dermis or epidermis of a subject. Topical administration can be in the form of transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids or powders. A composition for topical administration can be formulated as a liposome, micelle, emulsion, or other lipophilic molecular assembly. The transdermal administration can be applied with at least one penetration enhancer, such as iontophoresis, phonophoresis, and sonophoresis.

10

15

20

25

30

Any of the iRNA agents described herein can be administered to the pulmonary system. Pulmonary administration can be achieved by inhalation or by the introduction of a delivery device into the pulmonary system, e.g., by introducing a delivery device which can dispense the medication. A preferred method of pulmonary delivery is by inhalation. The medication can be provided in a dispenser which delivers the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.

Pulmonary delivery is effective not only for disorders which directly affect pulmonary tissue, but also for disorders which affect other tissue.

iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or aerosol for pulmonary delivery.

Any of the iRNA agents described herein can be administered nasally. Nasal administration can be achieved by introduction of a delivery device into the nose, e.g., by introducing a delivery device which can dispense the medication. Methods of nasal delivery

include spray, aerosol, liquid, e.g., by drops, or by topical administration to a surface of the nasal cavity. The medication can be provided in a dispenser with delivery of the medication, e.g., wet or dry, in a form sufficiently small such that it can be inhaled. The device can deliver a metered dose of medication. The subject, or another person, can administer the medication.

Nasal delivery is effective not only for disorders which directly affect nasal tissue, but also for disorders which affect other tissue

iRNA agents can be formulated as a liquid or nonliquid, e.g., a powder, crystal, or for nasal delivery.

An iRNA agent can be packaged in a viral natural capsid or in a chemically or enzymatically produced artificial capsid or structure derived therefrom.

5

10

15

20

25

30

The dosage of a pharmaceutical composition including a iRNA agent can be administered in order to alleviate the symptoms of a disease state, e.g., cancer or a cardiovascular disease. A subject can be treated with the pharmaceutical composition by any of the methods mentioned above.

Gene expression in a subject can be modulated by administering a pharmaceutical composition including an iRNA agent.

A subject can be treated by administering a defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent) composition that is in a powdered form, e.g., a collection of microparticles, such as crystalline particles. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

A subject can be treated by administering a defined amount of an iRNA agent composition that is prepared by a method that includes spray-drying, *i.e.* atomizing a liquid solution, emulsion, or suspension, immediately exposing the droplets to a drying gas, and collecting the resulting porous powder particles. The composition can include a plurality of iRNA agents, *e.g.*, specific for one or more different endogenous target RNAs. The method can include other features described herein.

The iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA

which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), can be provided in a powdered, crystallized or other finely divided form, with or without a carrier, e.g., a micro- or nano-particle suitable for inhalation or other pulmonary delivery. This can include providing an aerosol preparation, e.g., an aerosolized spray-dried composition. The aerosol composition can be provided in and/or dispensed by a metered dose delivery device.

5

10

15

20

25

30

The subject can be treated for a condition treatable by inhalation, e.g., by aerosolizing a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition and inhaling the aerosolized composition. The iRNA agent can be an sRNA. The composition can include a plurality of iRNA agents, e.g., specific for one or more different endogenous target RNAs. The method can include other features described herein.

A subject can be treated by, for example, administering a composition including an effective/defined amount of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), wherein the composition is prepared by a method that includes spray-drying, lyophilization, vacuum drying, evaporation, fluid bed drying, or a combination of these techniques

In another aspect, the invention features a method that includes: evaluating a parameter related to the abundance of a transcript in a cell of a subject; comparing the evaluated parameter to a reference value; and if the evaluated parameter has a preselected relationship to the reference value (e.g., it is greater), administering a iRNA agent (or a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes a iRNA agent or precursor thereof) to the subject. In one embodiment, the iRNA agent includes a sequence that is complementary to the evaluated transcript. For example, the parameter can be a direct measure of transcript levels, a measure of a protein level, a disease or disorder symptom or characterization (e.g., rate of cell proliferation and/or tumor mass, viral load,)

In another aspect, the invention features a method that includes: administering a first amount of a composition that comprises an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a subject, wherein the iRNA agent includes a strand substantially complementary to a target nucleic acid; evaluating an activity associated with a protein encoded by the target nucleic acid; wherein the evaluation is used to determine if a second amount should be administered. In a preferred embodiment the method includes administering a second amount of the composition, wherein the timing of administration or dosage of the second amount is a function of the evaluating. The method can include other features described herein.

In another aspect, the invention features a method of administering a source of a double-stranded iRNA agent (ds iRNA agent) to a subject. The method includes administering or implanting a source of a ds iRNA agent, e.g., a sRNA agent, that (a) includes a double-stranded region that is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to a target RNA (e.g., an endogenous RNA or a pathogen RNA), and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the source releases ds iRNA agent over time, e.g. the source is a controlled or a slow release source, e.g., a microparticle that gradually releases the ds iRNA agent. In another embodiment, the source is a pump, e.g., a pump that includes a sensor or a pump that can release one or more unit doses.

In one aspect, the invention features a pharmaceutical composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) including a nucleotide sequence complementary to a target RNA, e.g., substantially and/or exactly complementary. The target RNA can be a transcript of an endogenous human gene. In one embodiment, the iRNA agent (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nt long. In one embodiment, the pharmaceutical composition can be an emulsion, microemulsion, cream, jelly, or liposome.

5

10

15

20

25

30

In one example the pharmaceutical composition includes an iRNA agent mixed with a topical delivery agent. The topical delivery agent can be a plurality of microscopic vesicles. The microscopic vesicles can be liposomes. In a preferred embodiment the liposomes are cationic liposomes.

In another aspect, the pharmaceutical composition includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) admixed with a topical penetration enhancer. In one embodiment, the topical penetration enhancer is a fatty acid. The fatty acid can be arachidonic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C₁₋₁₀ alkyl ester, monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.

In another embodiment, the topical penetration enhancer is a bile salt. The bile salt can be cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate, polyoxyethylene-9-lauryl ether or a pharmaceutically acceptable salt thereof.

In another embodiment, the penetration enhancer is a chelating agent. The chelating agent can be EDTA, citric acid, a salicyclate, a N-acyl derivative of collagen, laureth-9, an N-amino acyl derivative of a beta-diketone or a mixture thereof.

In another embodiment, the penetration enhancer is a surfactant, e.g., an ionic or nonionic surfactant. The surfactant can be sodium lauryl sulfate, polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether, a perfluorchemical emulsion or mixture thereof.

In another embodiment, the penetration enhancer can be selected from a group consisting of unsaturated cyclic ureas, 1-alkyl-alkones, 1-alkenylazacyclo-alakanones, steroidal anti-inflammatory agents and mixtures thereof. In yet another embodiment the penetration enhancer can be a glycol, a pyrrol, an azone, or a terpenes.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a

larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a form suitable for oral delivery. In one embodiment, oral delivery can be used to deliver an iRNA agent composition to a cell or a region of the gastro-intestinal tract, e.g., small intestine, colon (e.g., to treat a colon cancer), and so forth. The oral delivery form can be tablets, capsules or gel capsules. In one embodiment, the iRNA agent of the pharmaceutical composition modulates expression of a cellular adhesion protein, modulates a rate of cellular proliferation, or has biological activity against eukaryotic pathogens or retroviruses. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methylcellulose phthalate or cellulose acetate phthalate.

5

10

15

20

25

30

In another embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer. The penetration enhancer can be a bile salt or a fatty acid. The bile salt can be ursodeoxycholic acid, chenodeoxycholic acid, and salts thereof. The fatty acid can be capric acid, lauric acid, and salts thereof.

In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.

In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent and a delivery vehicle. In one embodiment, the iRNA agent is (a) is 19-25 nucleotides long, preferably 21-23 nucleotides, (b) is complementary to an endogenous target RNA, and, optionally, (c) includes at least one 3' overhang 1-5 nucleotides long.

In one embodiment, the delivery vehicle can deliver an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) to a cell by a topical route of

administration. The delivery vehicle can be microscopic vesicles. In one example the microscopic vesicles are liposomes. In a preferred embodiment the liposomes are cationic liposomes. In another example the microscopic vesicles are micelles. In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in an injectable dosage form. In one embodiment, the injectable dosage form of the pharmaceutical composition includes sterile aqueous solutions or dispersions and sterile powders. In a preferred embodiment the sterile solution can include a diluent such as water; saline solution; fixed oils, polyethylene glycols, glycerin, or propylene glycol.

10

15

20

25

30

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in oral dosage form. In one embodiment, the oral dosage form is selected from the group consisting of tablets, capsules and gel capsules. In another embodiment, the pharmaceutical composition includes an enteric material that substantially prevents dissolution of the tablets, capsules or gel capsules in a mammalian stomach. In a preferred embodiment the enteric material is a coating. The coating can be acetate phthalate, propylene glycol, sorbitan monoleate, cellulose acetate trimellitate, hydroxy propyl methyl cellulose phthalate or cellulose acetate phthalate. In one embodiment, the oral dosage form of the pharmaceutical composition includes a penetration enhancer, e.g., a penetration enhancer described herein.

In another embodiment, the oral dosage form of the pharmaceutical composition includes an excipient. In one example the excipient is polyethyleneglycol. In another example the excipient is precirol.

In another embodiment, the oral dosage form of the pharmaceutical composition includes a plasticizer. The plasticizer can be diethyl phthalate, triacetin dibutyl sebacate, dibutyl phthalate or triethyl citrate.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a

larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a rectal dosage form. In one embodiment, the rectal dosage form is an enema. In another embodiment, the rectal dosage form is a suppository.

5

10

15

20

25

30

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a vaginal dosage form. In one embodiment, the vaginal dosage form is a suppository. In another embodiment, the vaginal dosage form is a foam, cream, or gel.

In one aspect, the invention features a pharmaceutical composition including an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) in a pulmonary or nasal dosage form. In one embodiment, the iRNA agent is incorporated into a particle, e.g., a macroparticle, e.g., a microsphere. The particle can be produced by spray drying, lyophilization, evaporation, fluid bed drying, vacuum drying, or a combination thereof. The microsphere can be formulated as a suspension, a powder, or an implantable solid.

In one aspect, the invention features a spray-dried iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof) composition suitable for inhalation by a subject, including: (a) a therapeutically effective amount of a iRNA agent suitable for treating a condition in the subject by inhalation; (b) a pharmaceutically acceptable excipient selected from the group consisting of carbohydrates and amino acids; and (c) optionally, a dispersibility-enhancing amount of a physiologically-acceptable, water-soluble polypeptide.

In one embodiment, the excipient is a carbohydrate. The carbohydrate can be selected from the group consisting of monosaccharides, disaccharides, trisaccharides, and polysaccharides. In a preferred embodiment the carbohydrate is a monosaccharide selected

5

10

15

20

25

from the group consisting of dextrose, galactose, mannitol, D-mannose, sorbitol, and sorbose. In another preferred embodiment the carbohydrate is a disaccharide selected from the group consisting of lactose, maltose, sucrose, and trehalose.

In another embodiment, the excipient is an amino acid. In one embodiment, the amino acid is a hydrophobic amino acid. In a preferred embodiment the hydrophobic amino acid is selected from the group consisting of alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine. In yet another embodiment the amino acid is a polar amino acid. In a preferred embodiment the amino acid is selected from the group consisting of arginine, histidine, lysine, cysteine, glycine, glutamine, serine, threonine, tyrosine, aspartic acid and glutamic acid.

In one embodiment, the dispersibility-enhancing polypeptide is selected from the group consisting of human serum albumin, α-lactalbumin, trypsinogen, and polyalanine.

In one embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter (MMD) of less than 10 microns. In another embodiment, the spray-dried iRNA agent composition includes particles having a mass median diameter of less than 5 microns. In yet another embodiment the spray-dried iRNA agent composition includes particles having a mass median aerodynamic diameter (MMAD) of less than 5 microns.

In certain other aspects, the invention provides kits that include a suitable container containing a pharmaceutical formulation of an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof). In certain embodiments the individual components of the pharmaceutical formulation may be provided in one container. Alternatively, it may be desirable to provide the components of the pharmaceutical formulation separately in two or more containers, e.g., one container for an iRNA agent

formulation separately in two or more containers, e.g., one container for an iRNA agent preparation, and at least another for a carrier compound. The kit may be packaged in a number of different configurations such as one or more containers in a single box. The different components can be combined, e.g., according to instructions provided with the kit.

The components can be combined according to a method described herein, e.g., to prepare and administer a pharmaceutical composition. The kit can also include a delivery device.

In another aspect, the invention features a device, e.g., an implantable device, wherein the device can dispense or administer a composition that includes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, (e.g., a precursor, e.g., a larger iRNA agent which can be processed into a sRNA agent, or a DNA which encodes an iRNA agent, e.g., a double-stranded iRNA agent, or sRNA agent, or precursor thereof), e.g., a iRNA agent that silences an endogenous transcript. In one embodiment, the device is coated with the composition. In another embodiment the iRNA agent is disposed within the device. In another embodiment, the device includes a mechanism to dispense a unit dose of the composition. In other embodiments the device releases the composition continuously, e.g., by diffusion. Exemplary devices include stents, catheters, pumps, artificial organs or organ components (e.g., artificial heart, a heart valve, etc.), and sutures.

As used herein, the term "crystalline" describes a solid having the structure or characteristics of a crystal, *i.e.*, particles of three-dimensional structure in which the plane faces intersect at definite angles and in which there is a regular internal structure. The compositions of the invention may have different crystalline forms. Crystalline forms can be prepared by a variety of methods, including, for example, spray drying.

The invention is further illustrated by the following examples, which should not be construed as further limiting.

20 EXAMPLES

5

10

15

25

Example 1: Inhibition of endogenous ApoM gene expression in mice

Apolipoprotein M (ApoM) is a human apolipoprotein predominantly present in high-density lipoprotein (HDL) in plasma. ApoM is reported to be expressed exclusively in liver and in kidney (Xu N et al., Biochem J Biol Chem 1999 Oct 29;274(44):31286-90). Mouse ApoM is a 21kD membrane associated protein, and, in serum, the protein is associated with HDL particles. ApoM gene expression is regulated by the transcription factor hepatocyte nuclear factor 1 alpha (Hnf-1 α), as Hnf-1 α - $^{-1}$ - mice are ApoM deficient. In humans, mutations in the HNF-1 alpha gene represent a common cause of maturity-onset diabetes of the young (MODY).

A variety of test iRNAs were synthesized to target the mouse ApoM gene. This gene was chosen in part because of its high expression levels and exclusive activity in the liver and kidney.

Three different classes of dsRNA agents were synthesized, each class having different modifications and features at the 5' and 3' ends, see Table 4.

Table 4

Targeted ORF's

5 The23mer: AAGTTTGGGCAGCTCTGCTCT (SEQ ID NO:6708)

5

- 19 The23mer: AAGTGGACATACCGATTGACT (SEQ ID MO:6709)
- 25 The23mer: AACTCAGAACTGAAGGGCGCC (SEQ ID NO:6710)
- 10 27 The23mer: AAGGGCGCCCAGACATGAAAA (SEQ ID NO:6711)
 - 3'-UTR (beginning at 645)
 - 42: AAGATAGGAGCCCAGCTTCGA (SEQ ID NO:6712)

15

Class I

21-nt iRNAs, t, deoxythymidine; p, phosphate

pGUUUGGGCAGCUCUGCUCUtt (SEQ ID NO:6712) #1

20 pAGAGCAGAGCUGCCCAAACtt (SEQ ID NO:6713)

pGUGGACAUACCGAUUGACUtt (SEQ ID NO:6714) #2 pAGUCAAUCGGUAUGUCCACtt (SEQ ID NO:6715)

25 pCUCAGAACUGAAGGGCGCCtt (SEQ ID NO:6716) #3

pGGCGCCCUUCAGUUCUGAGtt (SEQ ID NO:6717)

pGAUAGGAGCCCAGCUUCGAtt (SEQ ID NO:6718) #4

pucgaagcugggcuccuauctt (seg ID No:6719)

30

Class II

21-nt iRNAs, t, deoxythymidine; p, phosphate; ps, thiophosphate

5 pGUUUGGGCAGCUCUGCUCpsUpstpst (SEQ ID NO:6720) #11
pAGAGCAGAGCUGCCCAAApsCpstpst (SEQ ID NO:6721)

pguggacauaccgauugacpsupstpst (SEQ ID NO:6722) #13
pagucaauccgguauguccapscpstpst (SEQ ID NO:6723)

10

pCUCAGAACUGAAGGGCGCpsCpstpst (SEQ ID NO:6724) #15 pGGCGCCCUUCAGUUCUGApsGpstpst (SEQ ID NO:6725)

pGAUAGGAGCCCAGCUUCGpsApstpst (SEQ ID NO:6726) #17

pUCGAAGCUGGGCUCCUAUpsCpstpst (SEQ ID NO:6727)

Class III

23-nt antisense, 21-nt sense, blunt-ended 5'-as

20 GUUUGGGCAGCUCUGCUCUCU (SEQ ID NO:6728) #19
AGAGAGCAGAGCUGCCCAAACUU (SEQ ID NO:6729)

GUGGACAUACCGAUUGACUGA (SEQ ID NO:6730) #21 UCAGUCAAUCGGUAUGUCCACUU (SEQ ID NO:6731)

25

CUCAGAACUGAAGGGCGCCCA (SEQ ID NO:6732) #23
PUGGGCGCCCUUCAGUUCUGAGUU (SEQ ID NO:6733)

GAUAGGAGCCCAGCUUCGAGU (SEQ ID NO:6734) #25
30 ACUCGAAGCUGGGCUCCUAUCUU (SEQ ID NO:6735)

Class I dsRNAs consisted of 21 nucleotide paired sense and antisense strands. The sense and antisense strands were each phosphorylated at their 5' ends. The double stranded 235

region was 19 nucleotides long and consisted of ribonucleotides. The 3' end of each strand created a two nucleotide overhang consisting of two deoxyribonucleotide thymidines. See constructs #1-4 in Table 4.

Class II dsRNAs were also 21 nucleotides long, with a 19 nucleotide double strand region. The sense and antisense strands were each phosphorylated at their 5' ends. The three 3' terminal nucleotides of the sense and antisense strands were phosphorothioate deoxyribonucleotides, and the two terminal phosphorothioate thymidines were unpaired, creating a 3' overhang region at each end of the iRNA molecule. See constructs 11, 13, 15, and 17 in Table 4.

Class III dsRNAs included a 23 ribonucleotide antisense strand and a 21 ribonucleotide sense strand, to form a construct having a blunt 5'and a 3' overhang region. See constructs 19, 21, 23, and 25 in Table 4.

Within each of the three classes of iRNAs, the four dsRNA molecules were designed to target four different regions of the ApoM transcript. dsRNAs 1, 11, and 19 targeted the 5' end of the open reading frame (ORF). dsRNAs 2, 13, and 21, and 3, 15, and 23, targeted two internal regions (one 5' proximal and one 3' proximal) of the ORF, and the 4, 17, and 25 iRNA constructs targeted to a region of the 3' untranslated sequence (3' UTS) of the ApoM mRNA. This is summarized in Table 5.

Table 5. iRNA molecules targeted to mouse ApoM

5

10

15

20

25

	iRNA targeted to 5' end of ORF	iRNA targeted to middle ORF (5' proximal)	iRNA targeted to middle ORF (3' proximal)	iRNA targeted to 3'UTS
Class I	1	2	3	4
Class II	11	13	15	17
Class III	19	21	23	25

CD1 mice (6-8 weeks old, ~35g) were administered one of the test iRNAs in PBS solution. Two hundred micrograms of iRNA in a volume of solution equal to 10% body weight (~5.7mg iRNA/kg mouse) was administered by the method of high pressure tail vein injection, over a 10-20 sec. time interval. After a 24h recovery period, a second injection was performed using the same dose and mode of administration as the first injection, and

5

10

15

20

25

following another 24h, a third and final injection was administered, also using the same dose and mode of administration. After a final 24h recovery, the mouse was sacrificed, serum was collected and the liver and kidney harvested to assay for an affect on ApoM gene expression. Expression was monitored by quantitative RT-PCR and Western blot analyses. This experiment was repeated for each of the iRNAs listed in table 4.

Class I iRNAs did not alter ApoM RNA levels in mice, as indicated by quantitative RT-PCR. This is in contrast to the effect of these iRNAs in cultured HepG2 cells. Cells cotransfected with a plasmid expressing exogenous ApoM RNA under a CMV promoter and a class I iRNA demonstrated a 25% or greater reduction in ApoM RNA concentrations as compared to control transfections. The iRNA molecules 1, 2 and 3 each caused a 75% decrease in exogenous ApoM mRNA levels.

Class II iRNAs reduced liver and kidney ApoM mRNA levels by ~30-85%. The iRNA molecule "13" elicited the most dramatic reduction in mRNA levels; quantitative RT-PCR indicated a decrease of about 85% in liver tissue. Serum ApoM protein levels were also reduced as was evidenced by Western blot analysis. The iRNAs 11, 13 and 15, reduced protein levels by about 50%, while iRNA 17 had the mildest effect, reducing levels only by ~15-20%.

Class III iRNAs (constructs 19, 21, and 23) reduced serum Apo levels by ~40-50%.

To determine the effect of dosage on iRNA mediated ApoM inhibition, the experiment described above was repeated with three injections of $50\mu g$ iRNA "11" (~1.4mg iRNA/kg mouse). This lower dosage of iRNA resulted in a reduction of serum ApoM levels of about 50%. This is compared with the reduction seen with the $200\mu g$ injections, which reduced serum levels by 25-45%. These results indicated the lower dosage amounts of iRNAs were effective.

In an effort to increase iRNA uptake by cells, iRNAs were precomplexed with lipofectamine prior to tail vein injections. ApoM protein levels were about 50% of wildtype levels in mice injected with iRNA "11" when the molecules were preincubated with lipofectamine; ApoM levels were also about 50% of wildtype when mice were injected with iRNA "11" that was not precomplexed with lipofectamine.

These experiments revealed that modified iRNAs can greatly influence RNAimediated gene silencing. As demonstrated herein, modifications including phosphorothicate nucleotides are particularly effective at decreasing target protein levels.

5

10

15

20

25

30

Example 2: apoB protein as a therapeutic target for lipid-based diseases

Apolipoprotein B (apoB) is a candidate target gene for the development of novel therapies for lipid-based diseases.

Methods described herein can be used to evaluate the efficacy of a particular siRNA as a therapeutic tool for treating lipid metabolism disorders resulting elevated apoB levels. Use of siRNA duplexes to selectively bind and inactivate the target apoB mRNA is an approach totreat these disorders.

Two approaches:

- i) Inhibition of apoB in ex-vivo models by transfecting siRNA duplexes homologous to human apoB mRNA in a human hepatoma cell line (Hep G2) and monitor the level of the protein and the RNA using the Western blotting and RT-PCR methods, respectively. siRNA molecules that efficiently inhibit apoB expression will be tested for similar effects in vivo.
- ii) In vivo trials using an apoB transgenic mouse model (apoB100 Transgenic Mice, C57BL/6NTac-TgN (APOB100), Order Model #'s:1004-T (hemizygotes), B6 (control)). siRNA duplexes are designed to target apoB-100 or CETP/apoB double transgenic mice which express both cholesteryl ester transfer protein (CETP) and apoB. The effect of the siRNA on gene expression in vivo can be measured by monitoring the HDL/LDL cholesterol level in serum. The results of these experiments would indicate the therapeutic potential of siRNAs to treat lipid-based diseases, including hypercholesterolemia, HDL/LDL cholesterol imbalance, familial combined hyperlipidemia, and acquired hyperlipidemia.

Background Fats, in the form of triglycerides, are ideal for energy storage because they are highly reduced and anhydrous. An adipocyte (or fat cell) consists of a nucleus, a cell membrane, and triglycerides, and its function is to store triglycerides.

The lipid portion of the human diet consists largely of triglycerides and cholesterol (and its esters). These must be emulsified and digested to be absorbed. Specifically, fats

(triacylglycerols) are ingested. Bile (bile acids, salts, and cholesterol), which is made in the liver, is secreted by the gall bladder. Pancreatic lipase digests the triglycerides to fatty acids, and also digests di-, and mono-acylglycerols, which are absorbed by intestinal epithelial cells and then are resynthesized into triacylglycerols once inside the cells. These triglycerides and some cholesterols are combined with apolipoproteins to produce chylomicrons. Chylomicrons consist of approximately 95% triglycerides. The chylomicrons transport fatty acids to peripheral tissues. Any excess fat is stored in adipose tissue.

Lipid transport and clearance from the blood into cells, and from the cells into the blood and the liver, is mediated by the lipoprotein transport proteins. This class of approximately 17 proteins can be divided into three groups: Apolipoproteins, lipoprotein processing proteins, and lipoprotein receptors.

10

15

20

25

30

Apolipoproteins coat lipoprotein particles, and include the A-I, A-II, A-IV, B, CI, CII, CIII, D, E, Apo(a) proteins. Lipoprotein processing proteins include lipoprotein lipase, hepatic lipase, lecithin cholesterol acyltransferase and cholesterol ester transfer protein. Lipoprotein receptors include the low density lipoprotein (LDL) receptor, chylomicron-remnant receptor (the LDL receptor like protein or LDL receptor related protein - LRP) and the scavenger receptor.

Lipoprotein Metabolism Since the triglycerides, cholesterol esters, and cholesterol absorbed into the small intestine are not soluble in aqueous medium, they must be combined with suitable proteins (apolipoproteins) in order to prevent them from forming large oil droplets. The resulting lipoproteins undergo a type of metabolism as they pass through the bloodstream and certain organs (notably the liver).

Also synthesized in the liver is high density lipoprotein (HDL), which contains the apoproteins A-1, A-2, C-1, and D; HDL collects cholesterol from peripheral tissues and blood vessels and returns it to the liver. LDL is taken up by specific cell surface receptors into an endosome, which fuses with a lysosome where cholesterol ester is converted to free cholesterol. The apoproteins (including apo B-100) are digested to amino acids. The receptor protein is recycled to the cell membrane.

The free cholesterol formed by this process has two fates. First, it can move to the endoplasmic reticulum (ER), where it can inhibit HMG-CoA reductase, the synthesis of

HMG-CoA reductase, and the synthesis of cell surface receptors for LDL. Also in the ER, cholesterol can speed up the degradation of HMG-CoA reductase. The free cholesterol can also be converted by acyl-CoA and acyl transferase (ACAT) to cholesterol esters, which form oil droplets.

ApoB is the major apolipoprotein of chylomicrons of very low density lipoproteins (VLDL, which carry most of the plasma triglyceride) and low density lipoprotein (LDL, which carry most of the plasma cholesterol). ApoB exists in human plasma in two isoforms, apoB-48 and apoB-100.

5

10

15

20

25

ApoB-100 is the major physiological ligand for the LDL receptor. The ApoB precursor has 4563 amino acids, and the mature apoB-100 has 4536 amino acid residues. The LDL-binding domain of ApoB-100 is proposed to be located between residues 3129 and 3532. ApoB-100 is synthesized in the liver and is required for the assembly of very low density lipoproteins VLDL and for the preparation of apoB-100 to transport triglycerides (TG) and cholesterol from the liver to other tissues. ApoB-100 does not interchange between lipoprotein particles, as do the other lipoproteins, and it is found in IDL and LDL particles. After the removal of apolipoproteins A, E and C, apoB is incorporation into VLDL by hepatocytes. ApoB-48 is present in chylomicrons and plays an essential role in the intestinal absorption of dietary fats. ApoB-48 is synthesized in the small intestine. It comprises the N-terminal 48% of apoB-100 and is produced by a posttranscriptional apoB-100 mRNA editing event at codon 2153 (C to U). This editing event is a product of the apoBEC-1b enzyme, which is expressed in the intestine. This editing event creates a stop codon instead of a glutamine codon, and therefore apoB-48, instead of apoB-100 is expressed in the intestine (apoB-100 is expressed in the liver).

There is also strong evidence that plasma apoB levels may be a better index of the risk of coronary artery disease (CAD) than total or LDL cholesterol levels. Clinical studies have demonstrated the value of measuring apoB in hypertriglyceridemic, hypercholesterolemic and normalipidemic subjects.

Table 6. Reference Range Lipid level in the Blood

Lipid	Range (mmols/ L)
Plasma Cholesterol	3.5-6.5
Low density lipoprotein	1.55-4.4
Very low density lipoprotein	0.128-0.645
High density lipoprotein/ triglycerides	0.5-2.1
Total lipid	4.0-10g / L

Molecular genetics of lipid metabolism in both humans and induced mutant mouse models Elevated plasma levels of LDL and apoB are associated with a higher risk for atherosclerosis 5 and coronary heart disease, a leading cause of mortality. ApoB is the mandatory constituent of LDL particles. In addition to its role in lipoprotein metabolism, apoB has also been implicated as a factor in male infertility and fetal development. Furthermore, two quantitative trait loci regulating plasma apoB levels have been discovered, through the use of transgenic mouse models. Future experiments will facilitate the identification of human 10 orthologous genes encoding regulators of plasma apoB levels. These loci are candidate therapeutic targets for human disorders characterized by altered plasma apoB levels. Such disorders include non-apoB linked hypobetalipoproteinemia and familial combined hyperlipidemia. The identification of these genetic loci would also reveal possible new pathways involved in the regulation of apoB secretion, potentially providing novel sites for 15 pharmacological therapy.

Diseases and Clinical Pharmacology Familial combined hyperlipemia (FCHL) affects an estimated one in 10 Americans. FCHL can cause premature heart disease.

Familial Hypercholesterolemia (high level of apo B) A common genetic disorder of lipid metabolism. Familial hypercholesterolemia is characterized by elevated serum TC in association with xanthelasma, tendon and tuberous xanthomas, accelerated atherosclerosis, and early death from myocardial infarction (MI). It is caused by absent or defective LDL cell receptors, resulting in delayed LDL clearance, an increase in plasma LDL levels, and an accumulation of LDL cholesterol in macrophages over joints and pressure points, and in blood vessels.

Atherosclerosis (high level of apo B) Atherosclerosis develops as a deposition of cholesterol and fat in the arterial wall due to disturbances in lipid transport and clearance from the blood into cells and from the cells to blood and the liver.

Clinical studies have demonstrated that elevation of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and apoB-100 promote human atherosclerosis. Similarly, decreased levels of high – density lipoprotein cholesterol (HDL-C) are associated with the development of atherosclerosis.

ApoB may be factor in the genetic cause of high cholesterol.

The risk of coronary artery disease (CAD) (high level of apo B) Cardiovascular disease, including coronary heart disease and stroke, is a leading cause of death and disability. The major risk factors include age, gender, elevated low-density lipoprotein cholesterol blood levels, decreased high-density lipoprotein cholesterol levels, cigarette smoking, hypertension, and diabetes. Emerging risk factors include elevated lipoprotein (a), remnant lipoproteins, and C reactive protein. Dietary intake, physical activity and genetics also impact cardiovascular risk. Hypertension and age are the major risk factors for stroke.

Abetalipoproteinemia, an inherited human disease characterized by a near-complete absence of apoB-containing lipoproteins in the plasma, is caused by mutations in the gene for microsomal triglyceride transfer protein (MTP).

20

25

30

5

10

15

Model for human atherosclerosis (Lipoprotein A transgenic mouse) Numerous studies have demonstrated that an elevated plasma level of lipoprotein(a) (Lp(a)) is a major independent risk factor for coronary heart disease (CHD). Current therapies, however, have little or no effect on apo(a) levels and the homology between apo(a) and plasminogen presents barriers to drug development. Lp(a) particles consist of apo(a) and apoB-100 proteins, and they are found only in primates and the hedgehog. The development of LPA transgenic mouse requires the creation of animals that express both human apoB and apo(a) transgenes to achieve assembly of LP(a). An atherosclerosis mouse model would facilitate the study of the disease process and factors influencing it, and further would facilitate the development of therapeutic or preventive agents. There are several strategies for gene-oriented therapy. For

example, the missing or non-functional gene can be replaced, or unwanted gene activity can be inhibited.

Model for lipid Metabolism and Atherosclerosis DNX Transgenic Sciences has demonstrated that both CETP/ApoB and ApoB transgenic mice develop atherosclerotic plaques.

Model for apoB-100 overexpression The apoB-100 transgenic mice express high levels of human apoB-100. They consequently demonstrate elevated serum levels of LDL cholesterol. After 6 months on a high-fat diet, the mice develop significant foam cell accumulation under the endothelium and within the media, as well as cholesterol crystals and fibrotic lesions.

Model for Cholesteryl ester transfer protein over expression The apoB-100 transgenic mice express the human enzyme, CETP, and consequently demonstrate a dramatically reduced level of serum HDL cholesterol.

Model for apoB-100 and CETP overexpression The apoB-100 transgenic mice express both CETP and apoB-100, resulting in mice with a human like serum HDL/LDL distribution. Following 6 months on a high-fat diet these mice develop significant foam cell accumulation underlying the endothelium and within the media, as well as cholesterol crystals and fibrotic lesions.

ApoB100 Transgenic Mice (Order Model #'s:1004-T (hemizygotes), B6 (control))

These mice express high levels of human apoB-100, resulting in mice with elevated serum levels of LDL cholesterol. These mice are useful in identifying and evaluating compounds to reduce elevated levels of LDL cholesterol and the risk of atherosclerosis. When fed a high fat cholesterol diet, these mice develop significant foam cell accumulation underly the endothelium and within the media, and have significantly more complex atherosclerotic lesions than control animals.

30

10

15

20

25

Double Transgenic Mice, CETP/ApoB100 (Order Model #: 1007-TT) These mice express both CETP and apoB-100, resulting in a human-like serum HDL/LDL distribution. These mice are useful for evaluating compounds to treat hypercholesterolemia or HDL/LDL cholesterol imbalance to reduce the risk of developing atherosclerosis. When fed a high fat high cholesterol diet, these mice develop significant foam cell accumulation underlying the endothelium and within the media, and have significantly more complex atherosclerotic lesions than control animals.

ApoE gene knockout mouse Homozygous apoE knockout mice exhibit strong hypercholesterolemia, primarily due to elevated levels of VLDL and IDL caused by a defect in lipoprotein clearance from plasma. These mice develop atherosclerotic lesions which progress with age and resemble human lesions (Zhang et al., Science 258:46-71, 1992; Plump et al., Cell 71:343-353, 1992; Nakashima et al., Arterioscler Thromp. 14:133-140, 1994; Reddick et al., Arterioscler Tromb. 14:141-147, 1994). These mice are a promising model for studying the effect of diet and drugs on atherosclerosis.

Low density lipoprotein receptor (LDLR) mediates lipoprotein clearance from plasma through the recognition of apoB and apoE on the surface of lipoprotein particles. Humans, who lack or have a decreased number of the LDL receptors, have familial hypercholesterolemia and develop CHD at an early age.

20

25

30

10

15

ApoE Knockout Mice (Order Model #: APOE-M) The apoE knockout mouse was created by gene targeting in embryonic stem cells to disrupt the apoE gene. ApoE, a glycoprotein, is a structural component of very low density lipoprotein (VLDL) synthesized by the liver and intestinally synthesized chylomicrons. It is also a constituent of a subclass of high density lipoproteins (HDLs) involved in cholesterol transport activity among cells. One of the most important roles of apoE is to mediate high affinity binding of chylomicrons and VLDL particles that contain apoE to the low density lipoprotein (LDL) receptor. This allows for the specific uptake of these particles by the liver which is necessary for transport preventing the accumulation in plasma of cholesterol-rich remnants. The homozygous inactivation of the apoE gene results in animals that are devoid of apoE in their sera. The mice appear to develop normally, but they exhibit five times the normal serum plasma cholesterol and

spontaneous atherosclerotic lesions. This is similar to a disease in people who have a variant form of the apoE gene that is defective in binding to the LDL receptor and are at risk for early development of atherosclerosis and increased plasma triglyceride and cholesterol levels. There are indications that apoE is also involved in immune system regulation, nerve regeneration and muscle differentiation. The apoE knockout mice can be used to study the role of apoE in lipid metabolism, atherogenesis, and nerve injury, and to investigate intervention therapies that modify the atherogenic process.

5

10

15

20

25

Apoe4 Targeted Replacement Mouse (Order Model #: 001549-M) ApoE is a plasma protein involved in cholesterol transport, and the three human isoforms (E2, E3, and E4) have been associated with atherosclerosis and Alzheimer's disease. Gene targeting of 129 ES cells was used to replace the coding sequence of mouse apoE with human APOE4 without disturbing the murine regulatory sequences. The E4 isoform occurs in approximately 14% of the human population and is associated with increased plasma cholesterol and a greater risk of coronary artery disease. The Taconic apoE4 Targeted Replacement model has normal plasma cholesterol and triglyceride levels, but altered quantities of different plasma lipoprotein particles. This model also has delayed plasma clearance of cholesterol-rich lipoprotein particles (VLDL), with only half the clearance rate seen in the apoE3 Targeted Replacement model. Like the apoE3 model, the apoE4 mice develop altered plasma lipoprotein values and atherosclerotic plaques on an atherogenic diet. However, the atherosclerosis is more severe in the apoE4 model, with larger plaques and cholesterol apoE and apoB-48 levels twice that seen in the apoE3 model. The Taconic apoE4 Targeted Replacement model, along with the apoE2 and apoE3 Targeted Replacement Mice, provide an excellent tool for in vivo study of the human apoE isoforms.

CETP Transgenic Mice (Order Model #: 1003-T) These animals express the human plasma enzyme, CETP, resulting in mice with a dramatic reduction in serum HDL cholesterol. The mice can be useful in identifying and evaluating compounds that increase the levels of HDL cholesterol for reducing the risk of developing atherosclerosis

Transgene/Promoter: human apolipoprotein A-I These mice produce mouse HDL cholesterol particles that contain human apolipoprotein A-I. Transgenic expression is life-

long in both sexes (Biochemical Genetics and Metabolism Laboratory, Rockefeller University, NY City).

5

10

15

20

25

30

A Mouse Model for Abetalipoproteinemia Abetalipoproteinemia, an inherited human disease characterized by a near-complete absence of apoB-containing lipoproteins in the plasma, is caused by mutations in the gene for microsomal triglyceride transfer protein (MTP). Gene targeting was used to knock out the mouse MTP gene (Mttp). In heterozygous knockout mice ($Mttp^{+/-}$), the MTP mRNA, protein, and activity levels were reduced by 50% in both liver and intestine. Recent studies with heterozygous MTP knockout mice have suggested that half-normal levels of MTP in the liver reduce apoB secretion. They hypothesized that reduced apoB secretion in the setting of half-normal MTP levels might be caused by a reduced MTP:apoB ratio in the endoplasmic reticulum, which would reduce the number of apoB-MTP interactions. If this hypothesis were true, half-normal levels of MTP might have little impact on lipoprotein secretion in the setting of half-normal levels of apoB synthesis (since the ratio of MTP to apoB would not be abnormally low) and might cause an exaggerated reduction in lipoprotein secretion in the setting of apoB overexpression (since the ratio of MTP to apoB would be even lower). To test this hypothesis, they examined the effects of heterozygous MTP deficiency on apoB metabolism in the setting of normal levels of apoB synthesis, half-normal levels of apoB synthesis (heterozygous Apob deficiency), and increased levels of apoB synthesis (transgenic overexpression of human apoB). Contrary to their expectations, half-normal levels of MTP reduced plasma apoB-100 levels to the same extent (~25-35%) at each level of apoB synthesis. In addition, apoB secretion from primary hepatocytes was reduced to a comparable extent at each level of apoB synthesis. Thus, these results indicate that the concentration of MTP within the endoplasmic reticulum, rather than the MTP:apoB ratio, is the critical determinant of lipoprotein secretion. Finally, heterozygosity for an apoB knockout mutation was found to lower plasma apoB-100 levels more than heterozygosity for an MTP knockout allele. Consistent with that result, hepatic triglyceride accumulation was greater in heterozygous apoB knockout mice than in heterozygous MTP knockout mice. Cre/loxP tissue-specific recombination techniques were also used to generate liver-specific Mttp knockout mice. Inactivation of the Mttp gene in the liver caused a striking reduction in very low density lipoprotein (VLDL) triglycerides and

large reductions in both VLDL/low density lipoproteins (LDL) and high density lipoprotein cholesterol levels. Histologic studies in liver-specific knockout mice revealed moderate hepatic steatosis. Currently being tested is the hypothesis that accumulation of triglycerides in the liver renders the liver more susceptible to injury by a second insult (e.g.,

5 lipopolysaccharide).

10

15

20

25

30

Human apo B (apolipoprotein B) Transgene mice show apo B locus may have a causative role male infertility The fertility of apoB (apolipoprotein B) (+/-) mice was recorded during the course of backcrossing (to C57BL/6J mice) and test mating. No apparent fertility problem was observed in female apoB (+/-) and wild-type female mice, as was documented by the presence of vaginal plugs in female mice. Although apoB (+/-) mice mated normally, only 40% of the animals from the second backcross generation produced any offspring within the 4-month test period. Of the animals that produced progeny, litters resulted from < 50% of documented matings. In contrast, all wild-type mice (6/6--i.e., 100%) tested were fertile. These data suggest genetic influence on the infertility phenotype, as a small number of male heterozygotes were not sterile. Fertilization in vivo was dramatically impaired in male apoB (+/-) mice. 74% of eggs examined were fertilized by the sperm from wild-type mice, whereas only 3% of eggs examined were fertilized by the sperm from apoB (+/-) mice. The sperm counts of apoB (+/-) mice were mildly but significantly reduced compared with controls. However, the percentage of motile sperm was markedly reduced in the apoB (+/-) animals compared with that of the wild-type controls. Of the sperm from apoB (+/-) mice, 20% (i.e., 4.9% of the initial 20% motile sperm) remained motile after 6 hr of incubation, whereas 45% (i.e., 33.6% of the initial 69.5%) of the motile sperm retained motility in controls after this time. In vitro fertilization yielded no fertilized eggs in three attempts with apo B (+/-) mice, while wild-type controls showed a fertilization rate of 53%. However, sperm from apoB (+/-) mice fertilized 84% of eggs once the zona pellucida had been removed. Numerous sperm from apoB (+/-) mice were seen binding to zona-intact eggs. However, these sperm lost their motility when observed 4-6 hours after binding, showing that sperm from apoB (+/-) mice were unable to penetrate the zona pellucida but that the interaction between sperm and egg was probably not direct. Sperm binding to zona-free oocytes was abnormal. In the apoB (+/-) mice, sperm binding did not attenuate, even after

pronuclei had clearly formed, suggesting that apoB deficiency results in abnormal surface interaction between the sperm and egg.

Knockout of the mouse apoB gene resulted in embryonic lethality in homozygotes, protection against diet-induced hypercholesterolemia in heterozygotes, and developmental abnormalities in mice.

Model of insulin resistance, dyslipidemia & overexpression of human apoB It was shown that the livers of apoB mice assemble and secrete increased numbers of VLDL particles.

Example 3. Treatment of Diabetes Type-2 with iRNA

5

20

25

Introduction The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level. Pathological changes in the glucose production of the liver are a central characteristic in type-2-diabetes. For example, the fasting hyperglycemia observed in patients with type-2-diabetes reflects the lack of inhibition of hepatic gluconeogenesis and glycogenolysis due to the underlying insulin resistance in this disease.
Extreme conditions of insulin resistance can be observed for example in mice with a liver-

specific insulin receptor knockout ('LIRKO'). These mice have an increased expression of the two rate-limiting gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and the glucose-6-phosphatase catalytic subunit (G6Pase). Insulin is known to repress both PEPCK and G6Pase gene expression at the transcriptional level and the signal transduction involved in the regulation of G6Pase and PEPCK gene expression by insulin is only partly understood. While PEPCK is involved in a very early step of hepatic gluconeogenesis (synthesis of phosphoenolpyruvate from oxaloacetate), G6Pase catalyzes the terminal step of both, gluconeogenesis and glycogenolysis, the cleavage of glucose-6-phosphate into phosphate and free glucose, which is then delivered into the blood stream.

The pharmacological intervention in the regulation of expression of PEPCK and G6Pase can be used for the treatment of the metabolic aberrations associated with diabetes. Hepatic glucose production can be reduced by an iRNA-based reduction of PEPCK and G6Pase enzymatic activity in subjects with type-2-diabetes.

Targets for iRNA

Glucose-6-phosphatase (G6Pase)

G6Pase mRNA is expressed principally in liver and kidney, and in lower amounts in the small intestine. Membrane-bound G6Pase is associated with the endoplasmic reticulum. Low activities have been detected in skeletal muscle and in astrocytes as well.

G6Pase catalyzes the terminal step in gluconeogenesis and glycogenolysis. The activity of the enzyme is several fold higher in diabetic animals and probably in diabetic humans. Starvation and diabetes cause a 2-3-fold increase in G6Pase activity in the liver and a 2-4-fold increase in G6Pase mRNA.

10

15

5

Phosphoenolpyruvate carboxykinase (PEPCK)

Overexpression of PEPCK in mice results in symptoms of type-2-diabetes mellitus. PEPCK overexpression results in a metabolic pattern that increases G6Pase mRNA and results in a selective decrease in insulin receptor substrate (IRS)-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression.

Table 7. Other targets to inhibit hepatic glucose production

Target	Comment
FKHR	good evidence for antidiabetic phenotype
	(Nakae et al., Nat Genetics 32:245(2002)
Glucagon	
Glucagon receptor	
Glycogen phosphorylase	
PGC-1 (PPAR-Gamma Coactivator)	regulates the cAMP response (and probably the PKB/FKHR-regulation) on PEPCK/G6Pase
Fructose-1,6-bisphosphatase	
Glucose-6-phospate translocator	
Glucokinase inhibitory	
regulatory protein	

20

Materials and Methods

Animals: BKS.Cg-m +/+ Lepr db mice, which contain a point mutation in the leptin receptor gene are used to examine the efficacy of iRNA for the targets listed above.

BKS.Cg-m +/+ Lepr db are available from the Jackson Laboratory (Stock Number 000642). These animals are obese at 3-4 weeks after birth, show elevation of plasma insulin at 10 to 14 days, elevation of blood sugar at 4 to 8 weeks, and uncontrolled rise in blood sugar. Exogenous insulin fails to control blood glucose levels and gluconeogenic activity increases.

The following numbers of male animals (age>12 weeks) would ideally be tested with the following iRNAs:

PEPCK, 2 sequences, 5 animals per sequence

G6Pase, 2 sequences, 5 animals per sequence

1 nonspecific sequence, 5 animals

1 control group (only injected, no siRNA), 5 animals

1 control group (not injected, no siRNA), 5 animals

Reagents: Necessary reagents would ideally include a Glucometer Elite XL (Bayer,

Pittsburgh, PA) for glucose quantification, and an Insulin Radioimmunoassay (RIA) kit

(Amersham, Piscataway, NJ) for insulin quanitation

Assays:

5

10

20

G6P enzyme assays and PEPCK enzyme assays are used to measure the activity of the enzymes. Northern blotting is used to detect levels of G6Pase and PEPCK mRNA. Antibody-based techniques (e.g., immunoblotting, immunofluorescence) are used to detect levels of G6Pase and PEPCK protein. Glycogen staining is used to detect levels of glycogen in the liver. Histological analysis is performed to analyze tissues.

25 Gene information:

G6Pase GenBank® No.: NM_008061, Mus musculus glucose-6-phosphatase, catalytic (G6pc), mRNA 1..2259, ORF 83..1156;

GenBank® No: U00445, Mus musculus glucose-6-phosphatase mRNA, complete cds 1..2259, ORF 83..1156

30 GenBank® No: BC013448

PEPCK

GenBank® No: NM_011044, Mus musculus phosphoenolpyruvate carboxykinase 1,

cytosolic (Pck1), mRNA.1..2618, ORF 141..2009

GenBank® No: AF009605.1

5 Administration of iRNA:

iRNA corresponding to the genes described above would be administered to mice with hydrodynamic injection. One control group of animals would be treated with Metformin as a positive control for reduction in hepatic glucose levels.

10 Experimental Protocol

Mice would be housed in a facility in which there is light from 7:00 AM to 7:00 PM. Mice would be fed *ad libidum* from 7:00 PM to 7:00 AM and fast from 7:00 AM to 7:00 PM.

Day 0: 7:00 PM: Approximately 100 μl blood would be drawn from the tail. Serum would be isolated to measure glucose, insulin, HbA1c (EDTA-blood), glucagon, FFAs, lactate, corticosterone, serum triglycerides.

Day 1-7: Blood glucose would be measured daily at 8:00 AM and 6:00 PM (approx. 3-5 μ l; measured with a Haemoglucometer)

Day 8: Blood glucose would be measured daily at 8:00 AM and 6:00 PM. iRNA would be injected between 10:00 AM and 2:00 PM

20

25

15

Day 9-20: Blood glucose would be measured daily at 8:00 AM and 6:00 PM.

Day 21: Mice would be sacrificed after 10 hours of fasting.

Blood would be isolated. Glucose, insulin, HbA1c (EDTA-blood), glucagon, FFAs, lactate, corticosterone, serum triglycerides would be measured. Liver tissue would be isolated for histology, protein assays, RNA assays, glycogen quantitation, and enzyme assays.

Example 4: Inhibition of Glucose-6-Phosphatase iRNA in vivo

iRNA targeted to the Glucose-6-Phosphatase (G6P) gene was used to examine the effects of inhibition of G6P expression on glucose metabolism *in vivo*.

Female mice, 10 weeks of age, strain BKS.Cg-m +/+ Lepr db (The Jackson Laboratory) were used for *in vivo* analysis of enzymes of the hepatic glucose production. Mice were housed under conditions where it was light from 6:30 am to 6:30 pm. Mice were fed (ad libidum) during the night period and fasted during the day period.

On day 1, approximately 100µl of blood was collected from test animals by puncturing the retroorbital plexus. On days 1-7, blood glucose was measured in blood obtained from tail veins (approximately 3-5 µl) using a Glucometer (Elite XL, Bayer). Blood glucose was sampled daily at 8 am and 6 pm.

On day 7 at approximately 2pm, GL3 plasmid (10 µg) and siRNAs (100 µg G6Pase specific, Renilla nonspecific or no siRNA control) were delivered to animals using hydrodynamic coinjection.

On day 8, GL3 expression was analyzed by injection of luceferin (3 mg) after anaesthesia with avertin and imaging. This was done to control for successful hydrodynamic delivery.

On days 8-10, blood glucose was measured in blood obtained from tail veins (approximately 3-5 ml) using a Glucometer (Elite XL, Bayer).

On day 10, mice were sacrificed after 10 hours of fasting. Blood and liver were isolated from sacrificed animals.

Results: Coinjection of GL3 plasmid and G6Pase iRNA (G6P4) reduced blood glucose levels for the short term. Coinjection of GL3 plasmid and Renilla nonspecific iRNA had no effect on blood glucose levels.

25

5

10

15

20

Example 5: Selected Palindromic Sequences

Tables 8-13 below provide selected palindromic sequences from the following genes: human ApoB, human glucose-6-phosphatase, rat glucose-6-phosphatase, β -catenin, and hepatitis C virus (HCV).

Table	8. Selected palindromi								
	Source	Start Index	End Index		Match	Start Index	End Index	#	В
SEQ ID NO: 1	ggccattccagaagggaag	509	528	SEQ ID NO: 1004	cttccgttctgtaatggcc	5795	5814	1	9
SEQ ID NO: 2	tgccatctcgagagttcca	4099	4118	SEQ ID NO: 1005	tggaactctctccatggca	10876	10895	1	8
SEQ ID NO: 3	catgtcaaacactttgtta	7056	7075	SEQ ID NO: 1006	taacaaattccttgacatg	7358	7377	1	8
SEQ ID NO: 4	tttgttataaatcttattg	7068	7087	SEQ ID NO: 1007	caataagatcaatagcaaa	8990	9009	1	8
SEQ ID NO: 5	tctggaaaagggtcatgga	8880	8899	SEQ ID NO: 1008	tccatgtcccatttacaga	11356	11375	1	8
SEQ ID NO: 6	cagctcttgttcaggtcca	10900	10919	SEQ ID NO: 1009	tggacctgcaccaaagctg	13952	13971	1	8
SEQ ID NO: 7	ggaggttccccagctctgc	356	375	SEQ ID NO: 1010	gcagccctgggaaaactcc	6447	6466	1	7
SEQ ID NO: 8	ctgttttgaagactctcca	1081	1100	SEQ ID NO: 1011	tggagggtagtcataacag	10327	10346	1	7
SEQ ID NO: 9	agtggctgaaacgtgtgca	1297	1316	SEQ ID NO: 1012	tgcagagctttctgccact	13508	13527	1	7
SEQ ID NO: 10	ccaaaatagaagggaatct	2068	2087	SEQ ID NO: 1013	agattcctttgccttttgg	4000	4019	1	7
SEQ ID NO: 11	tgaagagaagattgaattt	3620	3639	SEQ ID NO: 1014	aaattctcttttcttttca	9212	9231	1	7
SEQ ID NO: 12	agtggtggcaacaccagca	4230	4249	SEQ ID NO: 1015	tgctagtgaggccaacact	10649	10668	1	7
SEQ ID NO: 13	aaggctccacaagtcatca	5950	5969	SEQ ID NO: 1016	tgatgatatctggaacctt	10724	10743	1	7
SEQ ID NO: 14	gtcagccaggtttatagca	7725	7744	SEQ ID NO: 1017	tgctaagaaccttactgac	7781	7800	1	7
SEQ ID NO: 15	tgatatctggaaccttgaa	10727	10746	SEQ ID NO: 1018	ttcactgttcctgaaatca	7863	7882	1	7
SEQ ID NO: 16	gtcaagttgagcaatttct	13423	13442	SEQ ID NO: 1019	agaaaaggcacaccttgac	11072	11091	1	7
SEQ ID NO: 17	atccagatggaaaagggaa	13480	13499	SEQ ID NO: 1020	ttccaatttccctgtggat	3680	3699	1	7
SEQ ID NO: 18	atttgtttgtcaaagaagt	4543	4562	SEQ ID NO: 1021	acttcagagaaatacaaat	11401	11420	4	6
SEQ ID NO: 19	ctggaaaatgtcagcctgg	204	223	SEQ ID NO: 1022	ccagacttccgtttaccag	8235	8254	2	6
SEQ ID NO: 20	accaggaggttcttcttca	1729	1748	SEQ ID NO: 1023	tgaagtgtagtctcctggt	5089	5108	2	6
SEQ ID NO: 21	aaagaagttctgaaagaat	1956	1975	SEQ ID NO: 1024	attccatcacaaatccttt	9661	9680	2	6
SEQ ID NO: 22	gctacagcttatggctcca	3570	3589	SEQ ID NO: 1025	tggatctaaatgcagtagc	11623	11642	2	6
SEQ ID NO: 23	atcaatattgatcaatttg	6414	6433	SEQ ID NO: 1026	caaagaagtcaagattgat	4553	4572	2	6
SEQ ID NO: 24	gaattatcttttaaaacat	7326	7345	SEQ ID NO: 1027	atgtgttaacaaaatattc	11494	11513	2	6
SEQ ID NO: 25	cgaggcccgcgctgctggc	130	149	SEQ ID NO: 1028	gccagaagtgagatcctcg	3507	3526	1	6
SEQ ID NO: 26	acaactatgaggctgagag	271	290	SEQ ID NO: 1029	ctctgagcaacaaatttgt	10309	10328	1	6
SEQ ID NO: 27	gctgagagttccagtggag	282	301	SEQ ID NO: 1030	ctccatggcaaatgtcagc	10885	10904	1	6
SEQ ID NO: 28	tgaagaaaaccaagaactc	448	467	SEQ ID NO: 1031	gagtcattgaggttcttca	4929	4948	1	6
SEQ ID NO: 29	cctacttacatcctgaaca	558	577	SEQ ID NO: 1032	tgttcataagggaggtagg	12766	12785	1	6
SEQ ID NO: 30	ctacttacatcctgaacat	559	578	SEQ ID NO: 1033	atgttcataagggaggtag	12765	12784	1	6
SEQ ID NO: 31	gagacagaagaagccaag	615	634	SEQ ID NO: 1034	gcttggttttgccagtctc	2459	2478	1	6
SEQ ID NO: 32	cactcactttaccgtcaag	671	690	SEQ ID NO: 1035	cttgaacacaaagtcagtg	6000	6019	1	6
SEQ ID NO: 33	ctgatcagcagcagccagt	822	841	SEQ ID NO: 1036	actgggaagtgcttatcag	5237	5256	1	6
SEQ ID NO: 34	actggacgctaagaggaag	854	873	SEQ ID NO: 1037	cttccccaaagagaccagt	2890	2909	1	6

SEQ ID NO: 35	agaggaagcatgtggcaga	865	884	SEQ ID NO: 1038	tctggcatttactttctct	5921	5940	1	6
SEQ ID NO: 36	tgaagactctccaggaact	1087	1106	SEQ ID NO: 1039	agttgaaggagactattca	7216	7235	1	6
SEQ ID NO: 37	ctctgagcaaaatatccag	1121	1140	SEQ ID NO: 1040	ctggttactgagctgagag	1161	1180	1	6
SEQ ID NO: 38	atgaagcagtcacatctct	1189	1208	SEQ ID NO: 1041	agagetgecagteetteat	10016	10035	1	6
SEQ ID NO: 39	ttgccacagctgattgagg	1209	1228	SEQ ID NO: 1042	cctcctacagtggtggcaa	4222	4241	1	6
SEQ ID NO: 40	agctgattgaggtgtccag	1216	1235	SEQ ID NO: 1043	ctggattccacatgcagct	11847	11866	1	6
SEQ ID NO: 41	tgctccactcacatcctcc	1278	1297	SEQ ID NO: 1044	ggaggctttaagttcagca	7601	7620	1	6
SEQ ID NO: 42	tgaaacgtgtgcatgccaa	1303	1322	SEQ ID NO: 1045	ttgggagagacaagtttca	6500	6519	1	6
SEQ ID NO: 43	gacattgctaattacctga	1503	1522	SEQ ID NO: 1046	tcagaagctaagcaatgtc	7232	7251	1	6
SEQ ID NO: 44	ttcttcttcagactttcct	1738	1757	SEQ ID NO: 1047	aggagagtccaaattagaa	8498	8517	1	6
SEQ ID NO: 45	ccaatatcttgaactcaga	1903	1922	SEQ ID NO: 1048	tctgaattcattcaattgg	6485	6504	1	6
SEQ ID NO: 46	aaagttagtgaaagaagtt	1946	1965	SEQ ID NO: 1049	aactaccctcactgccttt	2132	2151	1	6
SEQ ID NO: 47	aagttagtgaaagaagttc	1947	1966	SEQ ID NO: 1050	gaacctctggcatttactt	5916	5935	1	6
SEQ ID NO: 48	aaagaagttctgaaagaat	1956	1975	SEQ ID NO: 1051	attctctggtaactacttt	5482	5501	1	6
SEQ ID NO: 49	tttggctataccaaagatg	2322	2341	SEQ ID NO: 1052	catcttaggcactgacaaa	4997	5016	1	6
SEQ ID NO: 50	tgttgagaagctgattaaa	2381	2400	SEQ ID NO: 1053	tttagccatcggctcaaca	5700	5719	1	6
SEQ ID NO: 51	caggaagggctcaaagaat	2561	2580	SEQ ID NO: 1054	attcctttaacaattcctg	9492	9511	1	6
SEQ ID NO: 52	aggaagggctcaaagaatg	2562	2581	SEQ ID NO: 1055	cattcctttaacaattcct	9491	9510	1	6
SEQ ID NO: 53	gaagggctcaaagaatgac	2564	2583	SEQ ID NO: 1056	gtcagtcttcaggctcttc	7914	7933	1	6
SEQ ID NO: 54	caaagaatgactttttct	2572	2591	SEQ ID NO: 1057	agaaggatggcatttttg	14000	14019	1	6
SEQ ID NO: 55	catggagaatgcctttgaa	2603	2622	SEQ ID NO: 1058	ttcagagccaaagtccatg	7119	7138	1	6
SEQ ID NO: 56	ggagccaaggctggagtaa	2679	2698	SEQ ID NO: 1059	ttactccaacgccagctcc	3050	3069	1	6
SEQ ID NO: 57	tcattccttccccaaagag	2884	2903	SEQ ID NO: 1060	ctctctggggcatctatga	5139	5158	1	6
SEQ ID NO: 58	acctatgagetecagagag	3165	3184	SEQ ID NO: 1061	ctctcaagaccacagaggt	12976	12995	1	6
SEQ ID NO: 59	gggcaaaacgtcttacaga	3365	3384	SEQ ID NO: 1062	tctgaaagacaacgtgccc	12317	12336	1	6
SEQ ID NO: 60	accctggacattcagaaca	3387	3406	SEQ ID NO: 1063	tgttgctaaggttcagggt	5675	5694	1	6
SEQ ID NO: 61	atgggcgacctaagttgtg	3429	3448	SEQ ID NO: 1064	cacaaattagtttcaccat	8941	8960	1	6
SEQ ID NO: 62	gatgaagagaagattgaat	3618	3637	SEQ ID NO: 1065	attccagcttccccacatc	8330	8349	1	6
SEQ ID NO: 63	caatgtagataccaaaaaa	3656	3675	SEQ ID NO: 1066	ttttttggaaatgccattg	8643	8662	1	6
SEQ ID NO: 64	gtagataccaaaaaaatga	3660	3679	SEQ ID NO: 1067	tcatgtgatgggtctctac	4371	4390	1	6
SEQ ID NO: 65	gcttcagttcatttggact	4509	4528	SEQ ID NO: 1068	agtcaagaaggacttaagc	5304	5323	1	6
SEQ ID NO: 66	tttgtttgtcaaagaagtc	4544	4563	SEQ ID NO: 1069	gacttcagagaaatacaaa	11400	11419	1	6
SEQ ID NO: 67	ttgtttgtcaaagaagtca	4545	4564	SEQ ID NO: 1070	tgacttcagagaaatacaa	11399	11418	1	6
SEQ ID NO: 68	tggcaatgggaaactcgct	5846	5865	SEQ ID NO: 1071	agcgagaatcaccctgcca	8219	8238	1	6
SEQ ID NO: 69	aacctctggcatttacttt	5917	5936	SEQ ID NO: 1072	aaaggagatgtcaagggtt	10599	10618	1	6
SEQ ID NO: 70	catttactttctctcatga	5926	5945	SEQ ID NO: 1073	tcatttgaaagaataaatg	7026	7045	1	6
SEQ ID NO: 71	aaagtcagtgccctgctta	6009	6028	SEQ ID NO: 1074	taagaaccttactgacttt	7784	7803	1	6

SEQ ID NO:	72	tcccattttttgagacctt	6322	6341	SEQ ID NO: 1075	aaggacttcaggaatggga	12004	12023	1	6
SEQ ID NO:	73	catcaatattgatcaattt	6413	6432	SEQ ID NO: 1076	aaattaaaaagtcttgatg	6732	6751	1	6
SEQ ID NO:	74	taaagatagttatgattta	6665	6684	SEQ ID NO: 1077	taaaccaaaacttggttta	9019	9038	1	6
SEQ ID NO:	75	tattgatgaaatcattgaa	6713	6732	SEQ ID NO: 1078	ttcaaagacttaaaaaata	8007	8026	1	6
SEQ ID NO:	76	atgatctacatttgtttat	6790	6809	SEQ ID NO: 1079	ataaagaaattaaagtcat	7380	7399	1	6
SEQ ID NO:	7 7	agagacacatacagaatat	6919	6938	SEQ ID NO: 1080	atatattgtcagtgcctct	13382	13401	1	6
SEQ ID NO:	78	gacacatacagaatataga	6922	6941	SEQ ID NO: 1081	tctaaattcagttcttgtc	11327	11346	1	6
SEQ ID NO:	79	agcatgtcaaacactttgt	7054	7073	SEQ ID NO: 1082	acaaagtcagtgccctgct	6007	6026	1	6
SEQ ID NO:	80	tttttagaggaaaccaagg	7515	7534	SEQ ID NO: 1083	cctttgtgtacaccaaaaa	11230	11249	1	6
SEQ ID NO:	81	ttttagaggaaaccaaggc	7516	7535	SEQ ID NO: 1084	gcctttgtgtacaccaaaa	11229	11248	1	6
SEQ ID NO:	82	ggaagatagacttcctgaa	9307	9326	SEQ ID NO: 1085	ttcagaaatactgttttcc	12824	12843	1	6
SEQ ID NO:	83	cactgtttctgagtcccag	9334	9353	SEQ ID NO: 1086	ctgggacctaccaagagtg	12523	12542	1	6
SEQ ID NO:	84	cacaaatcctttggctgtg	9668	9687	SEQ ID NO: 1087	cacatttcaaggaattgtg	10063	10082	1	6
SEQ ID NO:	85	ttcctggatacactgttcc	9853	9872	SEQ ID NO: 1088	ggaactgttgactcaggaa	12569	12588	1	6
SEQ ID NO:	86	gaaatctcaagctttctct	10042	10061	SEQ ID NO: 1089	agagccaggtcgagctttc	11044	11063	1	6
SEQ ID NO:	87	tttcttcatcttcatctgt	10210	10229	SEQ ID NO: 1090	acagctgaaagagatgaaa	13055	13074	1	6
SEQ ID NO:	88	tctaccgctaaaggagcag	10521	10540	SEQ ID NO: 1091	ctgcacgctttgaggtaga	11761	11780	1	6
SEQ ID NO:	89	ctaccgctaaaggagcagt	10522	10541	SEQ ID NO: 1092	actgcacgctttgaggtag	11760	11779	1	6
SEQ ID NO:	90	agggcctctttttcaccaa	10831	10850	SEQ ID NO: 1093	ttggccaggaagtggccct	10957	10976	1	6
SEQ ID NO:	91	ttctccatccctgtaaaag	11265	11284	SEQ ID NO: 1094	ctttttcaccaacggagaa	10838	10857	1	6
SEQ ID NO:	92	gaaaaacaaagcagattat	11816	11835	SEQ ID NO: 1095	ataaactgcaagattttc	13600	13619	1	6
SEQ ID NO:	93	actcactcattgattttct	12682	12701	SEQ ID NO: 1096	agaaaatcaggatctgagt	14027	14046	1	6
SEQ ID NO:	94	taaactaatagatgtaatc	12890	12909	SEQ ID NO: 1097	gattaccaccagcagttta	13578	13597	1	6
SEQ ID NO:	95	caaaacgagcttcaggaag	13200	13219	SEQ ID NO: 1098	cttcgtgaagaatattttg	13260	13279	1	6
SEQ ID NO:	96	tggaataatgctcagtgtt	2366	2385	SEQ ID NO: 1099	aacacttacttgaattcca	10662	10681	3	5
SEQ ID NO:	97	gatttgaaatccaaagaag	2400	2419	SEQ ID NO: 1100	cttcagagaaatacaaatc	11402	11421	3	5
SEQ ID NO:	98	atttgaaatccaaagaagt	2401	2420	SEQ ID NO: 1101	acttcagagaaatacaaat	11401	11420	3	5
SEQ ID NO:	99	atcaacagccgcttctttg	990	1009	SEQ ID NO: 1102	caaagaagtcaagattgat	4553	4572	2	5
SEQ ID NO:	100	tgttttgaagactctccag	1082	1101	SEQ ID NO: 1103	ctggaaagttaaaacaaca	6955	6974	2	5
SEQ ID NO:	101	cccttctgatagatgtggt	1324	1343	SEQ ID NO: 1104	accaaagctggcaccaggg	13961	13980	2	5
SEQ ID NO:	102	tgagcaagtgaagaacttt	1868	1887	SEQ ID NO: 1105	aaagccattcagtctctca	12963	12982	2	5
SEQ ID NO:	103	atttgaaatccaaagaagt	2401	2420	SEQ ID NO: 1106	actitictaaactigaaat	9055	9074	2	5
SEQ ID NO:	104	atccaaagaagtcccggaa	2408	2427	SEQ ID NO: 1107	ttccggggaaacctgggat	12721	12740	2	5
SEQ ID NO:	105	agagectaceteegeatet	2430	2449	SEQ ID NO: 1108	agatggtacgttagcctct	11921	11940	2	5
SEQ ID NO:	106	aatgcctttgaactcccca	2610	2629	SEQ ID NO: 1109	tgggaactacaatttcatt	7012	7031	2	5
SEQ ID NO:	107	gaagtccaaattccggatt	3297	3316	SEQ ID NO: 1110	aatcttcaatttattcttc	13815	13834	2	5
SEQ ID NO:	108	tgcaagcagaagccagaag	3496	3515	SEQ ID NO: 1111	cttcaggttccatcgtgca	11376	11395	2	5
SEQ ID NO:	109	gaagagaagattgaatttg	3621	3640	SEQ ID NO: 1112	caaaacctactgtctcttc	10459	10478	2	5

SEQ ID NO: 110	atgctaaaggcacatatgg	4597	4616	SEQ ID NO: 1113	ccatatgaaagtcaagcat	12656	12675	2	5
SEQ ID NO: 111	teecteacetecacetetg	4737	4756	SEQ ID NO: 1114	cagattctcagatgaggga	8912	8931	2	5
SEQ ID NO: 112	atttacagctctgacaagt	5427	5446	SEQ ID NO: 1115	acttttctaaacttgaaat	9055	9074	2	5
SEQ ID NO: 113	aggagcctaccaaaataat	5594	5613	SEQ ID NO: 1116	attatgttgaaacagtcct	11830	11849	2	5
SEQ ID NO: 114	aaagctgaagcacatcaat	6401	6420	SEQ ID NO: 1117	attgttgctcatctccttt	10194	10213	2	5
SEQ ID NO: 115	ctgctggaaacaacgagaa	9418	9437	SEQ ID NO: 1118	ttctgattaccaccagcag	13574	13593	2	5
SEQ ID NO: 116	ttgaaggaattcttgaaaa	9582	9601	SEQ ID NO: 1119	ttttaaaagaaatcttcaa	13805	13824	2	5
SEQ ID NO: 117	gaagtaaaagaaaattttg	10743	10762	SEQ ID NO: 1120	caaaacctactgtctcttc	10459	10478	2	5
SEQ ID NO: 118	tgaagaagatggcaaattt	11984	12003	SEQ ID NO: 1121	aaatgtcagctcttgttca	10894	10913	2	5
SEQ ID NO: 119	aggatctgagttattttgc	14035	14054	SEQ ID NO: 1122	gcaagtcagcccagttcct	10920	10939	2	5
SEQ ID NO: 120	gtgcccttctcggttgctg	18	37	SEQ ID NO: 1123	cagccattgacatgagcac	5740	5759	1	5
SEQ ID NO: 121	ggcgctgcctgcgctgctg	146	165	SEQ ID NO: 1124	cagetecacagaeteegee	3062	3081	1	5
SEQ ID NO: 122	ctgcgctgctgctgct	154	173	SEQ ID NO: 1125	agcagaaggtgcgaagcag	3224	3243	1	5
SEQ ID NO: 123	gctgctggcgggcgccagg	170	189	SEQ ID NO: 1126	cctggattccacatgcagc	11846	11865	1	5
SEQ ID NO: 124	aagaggaaatgctggaaaa	193	212	SEQ ID NO: 1127	tttttcttcactacatctt	2584	2603	1	5
SEQ ID NO: 125	ctggaaaatgtcagcctgg	204	223	SEQ ID NO: 1128	ccagacttccacatcccag	3915	3934	1	5
SEQ ID NO: 126	tggagtccctgggactgct	296	315	SEQ ID NO: 1129	agcatgcctagtttctcca	9945	9964	1	5
SEQ ID NO: 127	ggagtccctgggactgctg	297	316	SEQ ID NO: 1130	cagcatgcctagtttctcc	9944	9963 :	1	5
SEQ ID NO: 128	tgggactgctgattcaaga	305	324	SEQ ID NO: 1131	tettecateaettgaeeca	2042	2061	1.	5
SEQ ID NO: 129	ctgctgattcaagaagtgc	310	329	SEQ ID NO: 1132	gcacaccttgacattgcag	11079	11098	1	5
SEQ ID NO: 130	tgccaccaggatcaactgc	326	345	SEQ ID NO: 1133	gcaggctgaactggtggca	2717	2736	1	5
SEQ ID NO: 131	gccaccaggatcaactgca	327	346	SEQ ID NO: 1134	tgcaggctgaactggtggc	2716	2735	1	5
SEQ ID NO: 132	tgcaaggttgagctggagg	342	361	SEQ ID NO: 1135	cctccacctctgatctgca	4744	4763	1	5
SEQ ID NO: 133	caaggttgagctggaggtt	344	363	SEQ ID NO: 1136	aacccctacatgaagcttg	13755	13774	1	5
SEQ ID NO: 134	ctctgcagcttcatcctga	369	388	SEQ ID NO: 1137	tcaggaagcttctcaagag	13211	13230	1	5
SEQ ID NO: 135	cagcttcatcctgaagacc	374	393	SEQ ID NO: 1138	ggtcttgagttaaatgctg	4977	4996	1	5
SEQ ID NO: 136	gcttcatcctgaagaccag	376	395	SEQ ID NO: 1139	ctggacgctaagaggaagc	855	874	1	5
SEQ ID NO: 137	tcatcctgaagaccagcca	379	398	SEQ ID NO: 1140	tggcatggcattatgatga	3604	3623	1	5
SEQ ID NO: 138	gaaaaccaagaactctgag	452	471	SEQ ID NO: 1141	ctcaaccttaatgattttc	8286	8305	1	5
SEQ ID NO: 139	agaactctgaggagtttgc	460	479	SEQ ID NO: 1142	gcaagctatacagtattct	8377	8396	1	5
SEQ ID NO: 140	tctgaggagtttgctgcag	465	484	SEQ ID NO: 1143	ctgcaggggatcccccaga	2526	2545	1	5
SEQ ID NO: 141	tttgctgcagccatgtcca	474	493	SEQ ID NO: 1144	tggaagtgtcagtggcaaa	10372	10391	1	5
SEQ ID NO: 142	caagagggcatcatttct	578	597	SEQ ID NO: 1145	agaataaatgacgttcttg	7035	7054	1	5
SEQ ID NO: 143	tcactttaccgtcaagacg	674	693	SEQ ID NO: 1146	cgtctacactatcatgtga	4360	4379	1	5
SEQ ID NO: 144	tttaccgtcaagacgagga	678	697	SEQ ID NO: 1147	tccttgacatgttgataaa	7366	7385	1	5
SEQ ID NO: 145	cactggacgctaagaggaa	853	872	SEQ ID NO: 1148	ttccagaaagcagccagtg	12498	12517	1	5
SEQ ID NO: 146	aggaagcatgtggcagaag	867	886	SEQ ID NO: 1149	cttcatacacattaatcct	9988	10007	1	5
SEQ ID NO: 147	caaggagcaacacctcttc	893	912	SEQ ID NO: 1150	gaagtagtactgcatcttg	6835	6854	1	5

SEQ ID NO: 148	acagactttgaaacttgaa	959	978	SEQ ID NO: 1151	ttcaattcttcaatgctgt	1050	0 10519	9 1	5
SEQ ID NO: 149	tgatgaagcagtcacatct	1187	1206	SEQ ID NO: 1152	e agatttgaggattccatca	7976	7995	1	5
SEQ ID NO: 150	agcagtcacatctctcttg	1193	1212	SEQ ID NO: 1153	caaggagaaactgactgct	6524	6543	1	5
SEQ ID NO: 151	ccagccccatcactttaca	1231	1250	SEQ ID NO: 1154	tgtagtctcctggtgctgg	5094	5113	1	5
SEQ ID NO: 152	ctccactcacatcctccag	1280	1299	SEQ ID NO: 1155	ctggagcttagtaatggag	8709	8728	1	5
SEQ ID NO: 153	catgccaacccccttctga	1314	1333	SEQ ID NO: 1156		8919	8938	1	5
SEQ ID NO: 154	gagagatetteaacatgge	1390	1409	SEQ ID NO: 1157			10888	3 1	5
SEQ ID NO: 155	tcaacatggcgagggatca	1399	1418	SEQ ID NO: 1158	tgatcccacctctcattga	2965	2984		5
SEQ ID NO: 156	ccaccttgtatgcgctgag	1429	1448	SEQ ID NO: 1159	-	8187	8208	1	5
SEQ ID NO: 157	gtcaacaactatcataaga	1455	1474	SEQ ID NO: 1160		4979	4998	1	5
SEQ ID NO: 158	tggacattgctaattacct	1501	1520	SEQ ID NO: 1161	aggtatattcgaaagtcca		12818	-	5
SEQ ID NO: 159	ggacattgctaattacctg	1502	1521	SEQ ID NO: 1162	-		12817		5
SEQ ID NO: 160	ttctgcgggtcattggaaa	1573	1592	SEQ ID NO: 1163		6514	6533	1	5
SEQ ID NO: 161	ccagaactcaagtcttcaa	1620	1639	SEQ ID NO: 1164		5088	5107	1	5
SEQ ID NO: 162	agtottcaatcctgaaatg	1630	1649	SEQ ID NO: 1165	• • •	7757	7776	1	5
SEQ ID NO: 163	tgagcaagtgaagaacttt	1868	1887	SEQ ID NO: 1166	aaagtgccacttttactca	6183	6202	1	5
SEQ ID NO: 164	agcaagtgaagaactttgt	1870	1889	SEQ ID NO: 1167	acaaagtcagtgccctgct	6007		1	5
SEQ ID NO: 165	tctgaaagaatctcaactt	1964	1983	SEQ ID NO: 1168	aagtccataatggttcaga		12830	-	5
SEQ ID NO: 166	actgtcatggacttcagaa	1986	2005	SEQ ID NO: 1169	ttctgaatatattgtcagt		13395		5
SEQ ID NO: 167	acttgacccagcctcagcc	2051	2070	SEQ ID NO: 1170	ggctcaccctgagagaagt		12410		5
SEQ ID NO: 168	tccaaataactaccttcct	2096	2115	SEQ ID NO: 1171	aggaagatatgaagatgga	4712	4731		5 :
SEQ ID NO: 169	actaccctcactgcctttg	2133	2152	SEQ ID NO: 1172	caaatttgtggagggtagt		10338		5
SEQ ID NO: 170	ttggatttgcttcagctga	2149	2168	SEQ ID NO: 1173	tcagtataagtacaaccaa	9392		1	5
SEQ ID NO: 171	ttggaagctctttttggga	2211	2230	SEQ ID NO: 1174	tcccgattcacgcttccaa		11596		5
SEQ ID NO: 172	ggaagctctttttgggaag	2213	2232	SEQ ID NO: 1175	cttcagaaagctaccttcc	7929		1	5
SEQ ID NO: 173	tttttcccagacagtgtca	2238	2257	SEQ ID NO: 1176	tgacettetetaageaaaa	4876		1	5
SEQ ID NO: 174	agacagtgtcaacaaagct	2246	2265	SEQ ID NO: 1177	agcttggttttgccagtct	2458		1	5
SEQ ID NO: 175	ctttggctataccaaagat	2321	2340	SEQ ID NO: 1178	atctcgtgtctaggaaaag	5968	5987		5
SEQ ID NO: 176	caaagatgataaacatgag	2333	2352	SEQ ID NO: 1179	ctcaaggataacgtgtttg		12628		5
SEQ ID NO: 177	gatatggtaaatggaataa	2355	2374	SEQ ID NO: 1180	ttatcttattaattatatc		13098		5
SEQ ID NO: 178	ggaataatgctcagtgttg	2367	2386	SEQ ID NO: 1181	caacacttacttgaattcc		10680		5
SEQ ID NO: 179	tttgaaatccaaagaagtc	2402	2421	SEQ ID NO: 1182	gacttcagagaaatacaaa		11419		5
SEQ ID NO: 180	gatccccagatgattgga	2534	2553	SEQ ID NO: 1183	tccaatttccctgtggatc			1	5
SEQ ID NO: 181	cagatgattggagaggtca	2541	2560	SEQ ID NO: 1184	tgaccacacaaacagtctg			1	5
SEQ ID NO: 182	agaatgactttttcttca	2575	2594	SEQ ID NO: 1185	tgaagtccggattcattct		11034		5
SEQ ID NO: 183	gaactccccactggagctg	2619	2638	SEQ ID NO: 1186	cagctcaaccgtacagttc		11880		5
SEQ ID NO: 184	atatetteatetggagtea	2652	2671	SEQ ID NO: 1187	tgacttcagtgcagaatat		11985		5
SEQ ID NO: 185	gtcattgctcccggagcca	2667	2686	SEQ ID NO: 1188	tggcccgtttaccatgac				5
								•	-

SEQ ID NO: 186	gctgaagtttatcattcct	2873	2892	SEQ ID NO: 1189	aggaggctttaagttcagc	7600	7619	1	5
SEQ ID NO: 187	attccttccccaaagagac	2886	2905	SEQ ID NO: 1190	gtctcttcctccatggaat	10470	10489	1	5
SEQ ID NO: 188	ctcattgagaacaggcagt	2976	2995	SEQ ID NO: 1191	actgactgcacgctttgag	11756	11775	1	5
SEQ ID NO: 189	ttgagcagtattctgtcag	3142	3161	SEQ ID NO: 1192	ctgagagaagtgtcttcaa	12399	12418	1	5
SEQ ID NO: 190	accttgtccagtgaagtcc	3285	3304	SEQ ID NO: 1193	ggacggtactgtcccaggt	12784	12803	1	5
SEQ ID NO: 191	ccagtgaagtccaaattcc	3292	3311	SEQ ID NO: 1194	ggaaggcagagtttactgg	9148	9167	1	5
SEQ ID NO: 192	acattcagaacaagaaaat	3394	3413	SEQ ID NO: 1195	atttcctaaagctggatgt	11167	11186	1	5
SEQ ID NO: 193	gaaaaatcaagggtgttat	3463	3482	SEQ ID NO: 1196	ataaactgcaagatttttc	13600	13619	1	5
SEQ ID NO: 194	aaatcaagggtgttatttc	3466	3485	SEQ ID NO: 1197	gaaacaatgcattagattt	9745	9764	1	5
SEQ ID NO: 195	tggcattatgatgaagaga	3609	3628	SEQ ID NO: 1198	tctcccgtgtataatgcca	11781	11800	1	5
SEQ ID NO: 196	aagagaagattgaatttga	3622	3641	SEQ ID NO: 1199	tcaaaacctactgtctctt	10458	10477	1	5
SEQ ID NO: 197	aaatgacttccaatttccc	3673	3692	SEQ ID NO: 1200	gggaactacaatttcattt	7013	7032	1	5
SEQ ID NO: 198	atgacttccaatttccctg	3675	3694	SEQ ID NO: 1201	caggctgattacgagtcat	4917	4936	1	5
SEQ ID NO: 199	acttccaatttccctgtgg	3678	3697	SEQ ID NO: 1202	ccacgaaaaatatggaagt	10360	10379	1	5
SEQ ID NO: 200	agttgcaatgagctcatgg	3803	3822	SEQ ID NO: 1203	ccatcagttcagataaact	7989	8008	1	5
SEQ ID NO: 201	tttgcaagaccacctcaat	3860	3879	SEQ ID NO: 1204	attgacctgtccattcaaa	13671	13690	1	5
SEQ ID NO: 202	gaaggagttcaacctccag	3884	3903	SEQ ID NO: 1205	ctggaattgtcattccttc	11728	11747	1	5
SEQ ID NO: 203	acttccacatcccagaaaa	3919	3938	SEQ ID NO: 1206	ttttaacaaaagtggaagt	6821	6840	1	5
SEQ ID NO: 204	ctcttcttaaaaagcgatg	3939	3958	SEQ ID NO: 1207	catcactgccaaaggagag	8486	8505	1	5
SEQ ID NO: 205	aaaagcgatggccgggtca	3948	3967	SEQ ID NO: 1208	tgactcactcattgatttt	12680	12699	1	5
SEQ ID NO: 206	ttcctttgccttttggtgg	4003	4022	SEQ ID NO: 1209	ccacaaacaatgaagggaa	9256	9275	1	5
SEQ ID NO: 207	caagtctgtgggattccat	4079	4098	SEQ ID NO: 1210	atgggaaaaaacaggcttg	9566	9585	1	5
SEQ ID NO: 208	aagtocctacttttaccat	4117	4136	SEQ ID NO: 1211	atgggaagtataagaactt	4834	4853	1	5
SEQ ID NO: 209	tgcctctcctgggtgttct	4159	4178	SEQ ID NO: 1212	agaaaaacaaacacaggca	9643	9662	1	5
SEQ ID NO: 210	accagcacagaccatttca	4242	4261	SEQ ID NO: 1213	tgaagtgtagtctcctggt	5089	5108	1	5
SEQ ID NO: 211	ccagcacagaccatttcag	4243	4262	SEQ ID NO: 1214	ctgaaatacaatgctctgg	5511	5530	1	5
SEQ ID NO: 212	actatcatgtgatgggtct	4367	4386	SEQ ID NO: 1215	agacacctgattttatagt	7948	7967	1	5
SEQ ID NO: 213	accacagatgtctgcttca	4496	4515	SEQ ID NO: 1216	tgaaggctgactctgtggt	4282	4301	1	5
SEQ ID NO: 214	ccacagatgtctgcttcag	4497	4516	SEQ ID NO: 1217	ctgagcaacaaatttgtgg	10311	10330	1	5
SEQ ID NO: 215	tttggactccaaaaagaaa	4520	4539	SEQ ID NO: 1218	tttctctcatgattacaaa	5933	5952	1	5
SEQ ID NO: 216	tcaaagaagtcaagattga	4552	4571	SEQ ID NO: 1219	tcaaggataacgtgtttga	12610	12629	1	5
SEQ ID NO: 217	atgagaactacgagctgac	4798	4817	SEQ ID NO: 1220	gtcagatattgttgctcat	10187	10206	1	5
SEQ ID NO: 218	ttaaaatctgacaccaatg	4818	4837	SEQ ID NO: 1221	cattcattgaagatgttaa	7342	7361	1	5
SEQ ID NO: 219	gaagtataagaactttgcc	4838	4857	SEQ ID NO: 1222	ggcaaatttgaaggacttc	11994	12013	1	5
SEQ ID NO: 220	aagtataagaactttgcca	4839	4858	SEQ ID NO: 1223	tggcaaatttgaaggactt	11993	12012	1	5
SEQ ID NO: 221	ttcttcagcctgctttctg	4941	4960	SEQ ID NO: 1224	cagaatccagatacaagaa	6884	6903	1	5
SEQ ID NO: 222	ctggatcactaaattccca	4957	4976	SEQ ID NO: 1225	tgggtctttccagagccag	11033	11052	1	5
SEQ ID NO: 223	aaattaatagtggtgctca	5014	5033	SEQ ID NO: 1226	tgagaagccccaagaattt	6248	6267	1	5

SEQ ID NO: 224	agtgcaacgaccaacttga	5073	5092	SEQ ID NO: 1227	tcaaattcctggatacact	9848	9867	1	5
SEQ ID NO: 225	ctgggaagtgcttatcagg	5238	5257	SEQ ID NO: 1228	cctgaccttcacataccag	8310	8329	1	5
SEQ ID NO: 226	gcaaaaacattttcaactt	5278	5297	SEQ ID NO: 1229	aagtaaaagaaaattttgc	10744	10763	1	5
SEQ ID NO: 227	aaaaacattttcaacttca	5280	5299	SEQ ID NO: 1230	tgaagtaaaagaaaatttt	10742	10761	1	5
SEQ ID NO: 228	tcagtcaagaaggacttaa	5302	5321	SEQ ID NO: 1231	ttaaggacttccattctga	13363	13382	1	5
SEQ ID NO: 229	tcaaatgacatgatgggct	5325	5344	SEQ ID NO: 1232	agcccatcaatatcattga	6205	6224	1	5
SEQ ID NO: 230	cacacaaacagtctgaaca	5367	5386	SEQ ID NO: 1233	tgtttcaactgcctttgtg	11219	11238	1	5
SEQ ID NO: 231	tcttcaaaacttgacaaca	5409	5428	SEQ ID NO: 1234	tgttttcctatttccaaga	12835	12854	1	5
SEQ ID NO: 232	caagttttataagcaaact	5441	5460	SEQ ID NO: 1235	agttattttgctaaacttg	14043	14062	1	5
SEQ ID NO: 233	tggtaactactttaaacag	5488	5507	SEQ ID NO: 1236	ctgtttttagaggaaacca	7512	7531	1	5
SEQ ID NO: 234	aacagtgacctgaaataca	5502	5521	SEQ ID NO: 1237	tgtatagcaaattcctgtt	5890	5909	1	5
SEQ ID NO: 235	gggaaactacggctagaac	5544	5563	SEQ ID NO: 1238	gttccttccatgatttccc	10933	10952	1	5
SEQ ID NO: 236	aacacatctatgccatctc	5620	5639	SEQ ID NO: 1239	gagacagcatcttcgtgtt	11204	11223	1	5
SEQ ID NO: 237	tcagcaagctataaagcag	5652	5671	SEQ ID NO: 1240	ctgctaagaaccttactga	7780	7799	1	5
SEQ ID NO: 238	gcagacactgttgctaagg	5667	5686	SEQ ID NO: 1241	cctttcaagcactgactgc	11746	11765	1	5
SEQ ID NO: 239	tctggggagaacatactgg	5866	5885	SEQ ID NO: 1242	ccaggttttccacaccaga	8038	8057	1	5
SEQ ID NO: 240	ttctctcatgattacaaag	5934	5953	SEQ ID NO: 1243	ctttttcaccaacggagaa	10838	10857	1	5
SEQ ID NO: 241	ctgagcagacaggcacctg	6034	6053	SEQ ID NO: 1244	caggaggctttaagttcag	7599	7618	1	5
SEQ ID NO: 242	caatttaacaacaatgaat	6066	6085	SEQ ID NO: 1245	attccttcctttacaattg	8082	8101	1	5
SEQ ID NO: 243	tggacgaactctggctgac	6140	6159	SEQ ID NO: 1246	glcagcccagttccttcca	10924	10943	1	5
SEQ ID NO: 244	cttttactcagtgagccca	6192	6211	SEQ ID NO: 1247	tgggctaaacgtatgaaag	7827	7846	1	5
SEQ ID NO: 245	tcattgatgctttagagat	6217	6236	SEQ ID NO: 1248	atcttcataagttcaatga	13174	13193	1	5
SEQ ID NO: 246	aaaaccaagatgttcactc	6295	6314	SEQ ID NO: 1249	gagtgaaatgctgtttttt	8630	8649	1	5
SEQ ID NO: 247	aggaatcgacaaaccatta	6357	6376	SEQ ID NO: 1250	taatgattttcaagttcct	8294	8313	1	5
SEQ ID NO: 248	tagttgtactggaaaacgt	6376	6395	SEQ ID NO: 1251	acgttagcctctaagacta	11928	11947	1	5
SEQ ID NO: 249	ggaaaacgtacagagaaag	6386	6405	SEQ ID NO: 1252	cttttacaattcattttcc	13014	13033	1	5
SEQ ID NO: 250	gaaaacgtacagagaaagc	6387	6406	SEQ ID NO: 1253	gctttctcttccacatttc	10052	10071	1	5
SEQ ID NO: 251	aaagctgaagcacatcaat	6401	6420	SEQ ID NO: 1254	attgatgttagagtgcttt	6984	7003	1	5
SEQ ID NO: 252	aagctgaagcacatcaata	6402	6421	SEQ ID NO: 1255	tattgatgttagagtgctt	6983	7002	1	5
SEQ ID NO: 253	tgaagcacatcaatattga	6406	6425	SEQ ID NO: 1256	tcaaccttaatgattttca	8287	8306	1	5
SEQ ID NO: 254	atcaatattgatcaatttg	6414	6433	SEQ ID NO: 1257	caaagccatcactgatgat	1660	1679	1	5
SEQ ID NO: 255	taatgattatctgaattca	6476	6495	SEQ ID NO: 1258	tgaaatcattgaaaaatta	6719	6738	1	5
SEQ ID NO: 256	gattatctgaattcattca	6480	6499	SEQ ID NO: 1259	tgaagtagctgagaaaatc	7094	7113	1	5
SEQ ID NO: 257	aattgggagagacaagttt	6498	6517	SEQ ID NO: 1260	aaacattcctttaacaatt	9488	9507	1	5
SEQ ID NO: 258	aaaatagctattgctaata	6693	6712	SEQ ID NO: 1261	tattgaaaatattgatttt	6806	6825	1	5
SEQ ID NO: 259	aaaattaaaaagtcttgat	6731	6750	SEQ ID NO: 1262	atcatatccgtgtaatttt	6757	6776	1	5
SEQ ID NO: 260	ttgaaaatattgattttaa	6808	6827	SEQ ID NO: 1263	ttaatcttcataagttcaa	13171	13190	1	5
SEQ ID NO: 261	agacatccagcacctagct	6938	6957	SEQ ID NO: 1264	agettggttttgccagtet	2458	2477	1	5

SEQ ID NO: 262	caatttcatttgaaagaat	7021	7040	SEQ ID NO: 1265	atteetteetttacaattg	8082	8101	1	5
SEQ ID NO: 263	aggttttaatggataaatt	7174	7193	SEQ ID NO: 1266	aattgttgaaagaaaacct	13147	13166	1	5
SEQ ID NO: 264	cagaagctaagcaatgtcc	7233	7252	SEQ ID NO: 1267	ggacaaggcccagaatctg	12545	12564	1	5
SEQ ID NO: 265	taagataaaagattacttt	7262	7281	SEQ ID NO: 1268	aaagaaaacctatgcctta	13155	13174	1	5
SEQ ID NO: 266	aaagattactttgagaaat	7269	7288	SEQ ID NO: 1269	atttettaaacatteettt	9481	9500	1	5
SEQ ID NO: 267	gagaaattagttggattta	7281	7300	SEQ ID NO: 1270	taaagccattcagtctctc	12962	12981	1	5
SEQ ID NO: 268	atttattgatgatgctgtc	7295	7314	SEQ ID NO: 1271	gacatgttgataaagaaat	7371	7390	1	5
SEQ ID NO: 269	gaattatcttttaaaacat	7326	7345	SEQ ID NO: 1272	atgtatcaaatggacattc	7677	7696	1	5
SEQ ID NO: 270	ttaccaccagtttgtagat	7403	7422	SEQ ID NO: 1273	atctggaaccttgaagtaa	10731	10750	1	5
SEQ ID NO: 271	ttgcagtgtatctggaaag	7540	7559	SEQ ID NO: 1274	cttttcacattagatgcaa	8412	8431	1	5
SEQ ID NO: 272	cattcagcaggaacttcaa	7691	7710	SEQ ID NO: 1275	ttgaaggacttcaggaatg	12001	12020	1	5
SEQ ID NO: 273	acacctgattttatagtcc	7950	7969	SEQ ID NO: 1276	ggactcaaggataacgtgt	12606	12625	1	5
SEQ ID NO: 274	ggattccatcagttcagat	7984	8003	SEQ ID NO: 1277	atcttcaatgattatatcc	13116	13135	1	5
SEQ ID NO: 275	ttgtagaaatgaaagtaaa	8104	8123	SEQ ID NO: 1278	tttatgattatgtcaacaa	12352	12371	1	5
SEQ ID NO: 276	ctgaacagtgagctgcagt	8148	8167	SEQ ID NO: 1279	actggacttctctagtcag	8801	8820	1	5
SEQ ID NO: 277	aatccaatctcctctttc	8399	8418	SEQ ID NO: 1280	gaaaaatgaagtccggatt	11009	11028	1	5
SEQ ID NO: 278	attttgattttcaagcaaa	8524	8543	SEQ ID NO: 1281	tttgcaagttaaagaaaat	14015	14034	1	5
SEQ ID NO: 279	ttttgattttcaagcaaat	8525	8544	SEQ ID NO: 1282	atttgatttaagtgtaaaa	9814	9633	1	5
SEQ ID NO: 280	tgattttcaagcaaatgca	8528	8547	SEQ ID NO: 1283	tgcaagttaaagaaaatca	14017	14036	1	5
SEQ ID NO: 281	atgctgttttttggaaatg	8637	8656	SEQ ID NO: 1284	cattggtaggagacagcat	11195	11214	1	5
SEQ ID NO: 282	tgctgttttttggaaatgc	8638	8657	SEQ ID NO: 1285	gcattggtaggagacagca	11194	11213	1	5
SEQ ID NO: 283	aaaaaaatacactggagct	8698	8717	SEQ ID NO: 1286	agctagagggcctcttttt	10825	10844	1	5
SEQ ID NO: 284	actggagcttagtaatgga	8708	8727	SEQ ID NO: 1287	tccactcacatcctccagt	1281	1300	1	5
SEQ ID NO: 285	cttctggaaaagggtcatg	8878	8897	SEQ ID NO: 1288	catgaacccctacatgaag	13751	13770	1	5
SEQ ID NO: 286	ggaaaagggtcatggaaat	8883	8902	SEQ ID NO: 1289	atttgaaagttcgttttcc	9274	9293	1	5
SEQ ID NO: 287	gggcctgcccagattctc	8902	8921	SEQ ID NO: 1290	gagaacattatggaggccc	9432	9451	1	5
SEQ ID NO: 288	ttctcagatgagggaacac	8916	8935	SEQ ID NO: 1291	gtgtcttcaaagctgagaa	12408	12427	1	5
SEQ ID NO: 289	gatgagggaacacatgaat	8922	8941	SEQ ID NO: 1292	attocagettececacate	8330	8349	1	5
SEQ ID NO: 290	ctttggactgtccaataag	8978	8997	SEQ ID NO: 1293	cttatgggatttcctaaag	11159	11178	1	5
SEQ ID NO: 291	gcatccacaaacaatgaag	9252	9271	SEQ ID NO: 1294	cttcatctgtcattgatgc	10219	10238	1	5
SEQ ID NO: 292	cacaaacaatgaagggaat	9257	9276	SEQ ID NO: 1295	attccctgaagttgatgtg	11480	11499	1	5
SEQ ID NO: 293	ccaaaatttctctgctgga	9407	9426	SEQ ID NO: 1296	tccatcacaaatcctttgg	9663	9682	1	5
SEQ ID NO: 294	caaaatttctctgctggaa	9408	9427	SEQ ID NO: 1297	ttccatcacaaatcctttg	9662	9681	1	5
SEQ ID NO: 295	tctgctggaaacaacgaga	9417	9436	SEQ ID NO: 1298	tctcaagagttacagcaga	13221	13240	1	5
SEQ ID NO: 296	ctgctggaaacaacgagaa	9418	9437	SEQ ID NO: 1299	ttctcaagagttacagcag	13220	13239	1	5
SEQ ID NO: 297	agaacattatggaggccca	9433	9452	SEQ ID NO: 1300	tgggcctgccccagattct	8901	8920	1	5
SEQ ID NO: 298	agaagcaaatctggatttc	9467	9486	SEQ ID NO: 1301	gaaatcttcaatttattct		13832		5
SEQ ID NO: 299	tttctctctatgggaaaaa	9557	9576	SEQ ID NO: 1302	tttttgcaagttaaagaaa	14013	14032	1	5

SEQ ID NO: 300	tcagagcatcaaatccttt	9704	9723	SEQ ID NO: 1303	aaagaaaatcaggatctga	14025	14044	1	5
SEQ ID NO: 301	cagaaacaatgcattagat	9743	9762	SEQ ID NO: 1304	atctatgccatctcttctg	5625	5644	1	5
SEQ ID NO: 302	tacacattaatcctgccat	9993	10012	SEQ ID NO: 1305	atggagtctttattgtgta	14081	14100	1	5
SEQ ID NO: 303	agtcagatattgttgctca	10186	10205	SEQ ID NO: 1306	tgagaactacgagctgact	4799	4818	1	5
SEQ ID NO: 304	ggagggtagtcataacagt	10328	10347	SEQ ID NO: 1307	actggtggcaaaaccctcc	2726	2745	1	5
SEQ ID NO: 305	caaaagccgaaattccaat	10396	10 415	SEQ ID NO: 1308	attgaagtacctacttttg	8358	8377	1	5
SEQ ID NO: 306	aaaagccgaaattccaatt	10397	10416	SEQ ID NO: 1309	aattgaagtacctactttt	8357	8376	1	5
SEQ ID NO: 307	ttcaagcaagaacttaatg	10428	10447	SEQ ID NO: 1310	cattatggcccttcgtgaa	13250	13269	1	5
SEQ ID NO: 308	cctcttacttttccattga	10570	10589	SEQ ID NO: 1311	tcaaaagaagcccaagagg	12939	12958	1	5
SEQ ID NO: 309	tgaggccaacacttacttg	10655	10674	SEQ ID NO: 1312	caagcatctgattgactca	12668	12687	1	5
SEQ ID NO: 310	cacttacttgaattccaag	10664	10683	SEQ ID NO: 1313	cttgaacacaaagtcagtg	6000	6019	1	5
SEQ ID NO: 311	gaagtaaaagaaaattttg	10743	10762	SEQ ID NO: 1314	caaaaacatttcaacttc	5279	5298	1	5
SEQ ID NO: 312	cctggaactctctccatgg	10874	10893	SEQ ID NO: 1315	ccatttacagatcttcagg	11364	11383	1	5
SEQ ID NO: 313	agctggatgtaaccaccag	11176	11195	SEQ ID NO: 1316	ctggattccacatgcagct	11847	11866	1	5
SEQ ID NO: 314	aaaattccctgaagttgat	11477	11496	SEQ ID NO: 1317	atcatatccgtgtaatttt	6757	6776	1	5
SEQ ID NO: 315	cagatggcattgctgcttt	11605	11624	SEQ ID NO: 1318	aaagctgagaagaaatctg	12416	12435	1	5
SEQ ID NO: 316	agatggcattgctgctttg	11606	11625	SEQ ID NO: 1319	caaagctgagaagaaatct	12415	12434	1	5
SEQ ID NO: 317	tgttgaaacagtcctggat	11834	11853	SEQ ID NO: 1320	atccaagatgagatcaaca	13095	13114	1	5
SEQ ID NO: 318	catattcaaaactgagttg	12221	12240	SEQ ID NO: 1321	caactctctgattactatg	13623	13642	1	5
SEQ ID NO: 319	aaagatttatcaaaagaag	12930	12949	SEQ ID NO: 1322	cttcaatttattcttcttt	13818	13837	1	5
SEQ ID NO: 320	attttccaactaatagaag	13026	13045	SEQ ID NO: 1323	cttcaaagacttaaaaaat	8006	8025	1	5
SEQ ID NO: 321	aattatatccaagatgaga	13089	13108	SEQ ID NO: 1324	tctcttcctccatggaatt	10471	10490	1	5
SEQ ID NO: 322	ttcaggaagcttctcaaga	13210	13229	SEQ ID NO: 1325	tcttcataagttcaatgaa	13175	13194	1	5
SEQ ID NO: 323	ttgagcaatttctgcacag	13429	13448	SEQ ID NO: 1326	ctgttgaaagatttatcaa	12924	12943	1	5
SEQ ID NO: 324	ctgatatacatcacggagt	13704	13723	SEQ ID NO: 1327	actcaatggtgaaattcag	7457	7476	1	5
SEQ ID NO: 325	acatcacggagttactgaa	13711	13730	SEQ ID NO: 1328	ttcagaagctaagcaatgt	7231	7250	1	5
SEQ ID NO: 326	actgcctatattgataaaa	13874	13893	SEQ ID NO: 1329	ttttggcaagctatacagt	8372	8391	1	5
SEQ ID NO: 327	aggatggcattttttgcaa	14003	14022	SEQ ID NO: 1330	ttgcaagcaagtctttcct	3005	3024	1	5
SEQ ID NO: 328	ttttttgcaagttaaagaa	14012	14031	SEQ ID NO: 1331	ttctctctatgggaaaaaa	9558	9577	1	5
SEQ ID NO: 329	tccagaactcaagtcttca	1619	1638	SEQ ID NO: 1332	tgaaatgctgttttttgga	8633	8652	3	4
SEQ ID NO: 330	agttagtgaaagaagttct	1948	1967	SEQ ID NO: 1333	agaatctgtaccaggaact	12556	12575	3	4
SEQ ID NO: 331	atttacagctctgacaagt	5427	5446	SEQ ID NO: 1334	acttcagagaaatacaaat	11401	11420	3	4
SEQ ID NO: 332	gattatetgaatteattea	6480	6499	SEQ ID NO: 1335	tgaaaccaatgacaaaatc	7421	7440	3	4
SEQ ID NO: 333	gtgcccttctcggttgctg	18	37	SEQ ID NO: 1336	cagctgagcagacaggcac	6031	6050	2	4
SEQ ID NO: 334	attcaagcacctccggaag	245	264	SEQ ID NO: 1337	cttcataagttcaatgaat	13176	13195	2	4
SEQ ID NO: 335	gactgctgattcaagaagt	308	327	SEQ ID NO: 1338	acttcccaactctcaagtc	13407	13426	2	4
SEQ ID NO: 336	ttgctgcagccatgtccag	475	494	SEQ ID NO: 1339	ctgggcagctgtatagcaa	5881	5900	2	4
SEQ ID NO: 337	agaaagatgaacctactta	547	566	SEQ ID NO: 1340	taagtatgatttcaattct	10490	10509	2	4

SEQ ID NO: 338	tgaagactctccaggaact	1087	1106	SEQ ID NO: 1341	agttcaatgaatttattca	13183	13202	2	4
SEQ ID NO: 339	atctctcttgccacagctg	1202	1221	SEQ ID NO: 1342	cagcccagccatttgagat	9229	9248	2	4
SEQ ID NO: 340	tctctcttgccacagctga	1203	1222	SEQ ID NO: 1343	tcagccagccatttgaga	9228	9247	2	4
SEQ ID NO: 341	tgaggtgtccagccccatc	1223	1242	SEQ ID NO: 1344	gatgggaaagccgccctca	5208	5227	2	4
SEQ ID NO: 342	ccagaactcaagtcttcaa	1620	1639	SEQ ID NO: 1345	ttgaaagcagaacctctgg	5907	5926	2	4
SEQ ID NO: 343	ctgaaaaagttagtgaaag	1941	1960	SEQ ID NO: 1346	ctttctcgggaatattcag	10623	10642	2	4
SEQ ID NO: 344	tttttcccagacagtgtca	2238	2257	SEQ ID NO: 1347	tgacaggcattttgaaaaa	9722	9741	2	4
SEQ ID NO: 345	ttttcccagacagtgtcaa	2239	2258	SEQ ID NO: 1348	ttgacaggcattttgaaaa	9721	9740	2	4
SEQ ID NO: 346	cattcagaacaagaaaatt	3395	3414	SEQ ID NO: 1349	aattccaattttgagaatg	10406	10425	2	4
SEQ ID NO: 347	tgaagagaagattgaattt	3620	3639	SEQ ID NO: 1350	aaatgtcagctcttgttca	10894	10913	2	4
SEQ ID NO: 348	tttgaatggaacacaggca	3636	3655	SEQ ID NO: 1351	tgccagtttgaaaaacaaa	11807	11826	2	4
SEQ ID NO: 349	ttctagattcgaatatcaa	4399	4418	SEQ ID NO: 1352	ttgacatgttgataaagaa	7369	7388	2	4
SEQ ID NO: 350	gattogaatatcaaattca	4404	4423	SEQ ID NO: 1353	tgaagtagaccaacaaatc	7154	7173	2	4
SEQ ID NO: 351	tgcaacgaccaacttgaag	5075	5094	SEQ ID NO: 1354	cttcaggttccatcgtgca	11376	11395	2	4
SEQ ID NO: 352	ttaagctctcaaatgacat	5317	5336	SEQ ID NO: 1355	atgttgataaagaaattaa	7374	7393	2	4
SEQ ID NO: 353	caatttaacaacaatgaat	6066	6085	SEQ ID NO: 1356	attcaaactgcctatattg	13868	13887	2	4
SEQ ID NO: 354	tgaatacagccaggacttg	6080	6099	SEQ ID NO: 1357	caagagcacacggtcttca	10679	10698	2	4
SEQ ID NO: 355	catcaatattgatcaattt	6413	6432	SEQ ID NO: 1358	aaattccctgaagttgatg	11478	11497	2	4
SEQ ID NO: 356	ttgagcatgtcaaacactt	7051	7070	SEQ ID NO: 1359	aagtaagtgctaggttcaa	9373	9392	2	4
SEQ ID NO: 357	tgaaggagactattcagaa	7219	7238	SEQ ID NO: 1360	ttctgcacagaaatattca	13438	13457	2	4
SEQ ID NO: 358	ttcaggctcttcagaaagc	7921	7940	SEQ ID NO: 1361	gettgetaacetetetgaa	12304	12323	2	4
SEQ ID NO: 359	tccacaaattgaacatccc	8779	8798	SEQ ID NO: 1362	gggacctaccaagagtgga	12525	12544	2	4
SEQ ID NO: 360	tgaataccaatgctgaact	10159	10178	SEQ ID NO: 1363	agttcaatgaatttattca	13183	13202	2	4
SEQ ID NO: 361	taaactaatagatgtaatc	12890	12909	SEQ ID NO: 1364	gattactatgaaaaattta	13632	13651	2	4
SEQ ID NO: 362	ttgacctgtccattcaaaa	13672	13691	SEQ ID NO: 1365	ttttaaaagaaatcttcaa	13805	13824	2	4
SEQ ID NO: 363	gggctgagtgcccttctcg	11	30	SEQ ID NO: 1366	cgaggccaggccgcagccc	76	95	1	4
SEQ ID NO: 364	ggctgagtgcccttctcgg	12	31	SEQ ID NO: 1367	ccgaggccaggccgcagcc	75	94	1	4
SEQ ID NO: 365	ctgagtgcccttctcggtt	14	33	SEQ ID NO: 1368	aaccgtgcctgaatctcag	11549	11568	1	4
SEQ ID NO: 366	teteggttgetgeegetga	25	44	SEQ ID NO: 1369	tcagctgacctcatcgaga	2160	2179	1	4
SEQ ID NO: 367	caggccgcagcccaggagc	82	101	SEQ ID NO: 1370	gctctgcagcttcatcctg	368	387	1	4
SEQ ID NO: 368	gctggcgctgcctgcgctg	143	162	SEQ ID NO: 1371	cagcacagaccatttcagc	4244	4263	1	4
SEQ ID NO: 369	tgctgctggcgggcgccag	169	188	SEQ ID NO: 1372	ctggatgtaaccaccagca	11178	11197	1	4
SEQ ID NO: 370	ctggtctgtccaaaagatg	219	238	SEQ ID NO: 1373	catcctgaagaccagccag	380	399	1	4
SEQ ID NO: 371	ctgagagttccagtggagt	283	302	SEQ ID NO: 1374	actcaccctggacattcag	3383	3402	1	4
SEQ ID NO: 372	tccagtggagtccctggga	291	310	SEQ ID NO: 1375	tcccggagccaaggctgga	2675	2694	1	4
SEQ ID NO: 373	aggttgagctggaggttcc	346	365	SEQ ID NO: 1376	ggaaccctctccctcacct	4728	4747	1	4
SEQ ID NO: 374	tgagetggaggtteeceag	350	369	SEQ ID NO: 1377	ctgggaggcatgatgctca	9163	9182	1	4
SEQ ID NO: 375	tctgcagcttcatcctgaa	370	389	SEQ ID NO: 1378	ttcaaatataatcggcaga	3261	3280	1	4

SEQ ID NO:	376	gccagtgcaccctgaaaga	394	413	SEQ ID NO: 1379	tcttccgttctgtaatggc	5794	5813	1	4
SEQ ID NO:	377	ctctgaggagtttgctgca	464	483	SEQ ID NO: 1380	tgcaagaatattttgagag	6340	6359	1	4
SEQ ID NO:	378	aggtatgagctcaagctgg	492	511	SEQ ID NO: 1381	ccagtttccggggaaacct	12716	12735	1	4
SEQ ID NO:	379	tcctttacccggagaaaga	535	554	SEQ ID NO: 1382	tctttttgggaagcaagga	2219	2238	1	4
SEQ ID NO:	380	catcaagagggcatcatt	575	594	SEQ ID NO: 1383	aatggtcaagttcctgatg	2277	2296	1	4
SEQ ID NO:	381	tcctggttcccccagagac	601	620	SEQ ID NO: 1384	gtctctgaactcagaagga	13988	14007	1	4
SEQ ID NO:	382	aagaagccaagcaagtgtt	622	641	SEQ ID NO: 1385	aacaaataaatggagtctt	14072	14091	1	4
SEQ ID NO:	383	aagcaagtgttgtttctgg	630	649	SEQ ID NO: 1386	ccagagccaggtcgagctt	11042	11061	1	4
SEQ ID NO:	384	tctggataccgtgtatgga	644	663	SEQ ID NO: 1387	tccatgtcccatttacaga	11356	11375	1	4
SEQ ID NO:	385	ccactcactttaccgtcaa	670	689	SEQ ID NO: 1388	ttgattttaacaaaagtgg	6817	6836	1	4
SEQ ID NO:	386	aggaagggcaatgtggcaa	693	712	SEQ ID NO: 1389	ttgcaagcaagtctttcct	3005	3024	1	4
SEQ ID NO:	387	gcaatgtggcaacagaaat	700	719	SEQ ID NO: 1390	atttccataccccgtttgc	3480	3499	1	4
SEQ ID NO:	388	caatgtggcaacagaaata	701	720	SEQ ID NO: 1391	tattcttcttttccaattg	13826	13845	1	4
SEQ ID NO:	389	tggcaacagaaatatccac	706	725	SEQ ID NO: 1392	gtggcttcccatattgcca	1887	1906	1	4
SEQ ID NO:	390	agagacctgggccagtgtg	729	748	SEQ ID NO: 1393	cacattacatttggtctct	2930	2949	1	4
SEQ ID NO:	391	tgtgatcgcttcaagccca	744	763	SEQ ID NO: 1394	tgggaaagccgccctcaca	5210	5229	1	4
SEQ ID NO:	392	gtgatcgcttcaagcccat	745	764	SEQ ID NO: 1395	atgggaaagccgccctcac	5209	5228	1	4
SEQ ID NO:	393	cagcccacttgctctcatc	776	795	SEQ ID NO: 1396	gatgctgaacagtgagctg	8144	8163	1	4
SEQ ID NO:	394	gctctcatcaaaggcatga	786	805	SEQ ID NO: 1397	tcataacagtactgtgagc	10337	10356	1	4
SEQ ID NO:	395	ccttgtcaactctgatcag	811	830	SEQ ID NO: 1398	ctgagtgggtttatcaagg	12445	12464	1	4
SEQ ID NO:	396	cttgtcaactctgatcagc	812	831	SEQ ID NO: 1399	gctgagtgggtttatcaag	12444	12463	1	4
SEQ ID NO:	397	agccatctgcaaggagcaa	884	903	SEQ ID NO: 1400	ttgcaatgagctcatggct	3805	3824	1	4
SEQ ID NO:	398	gccatctgcaaggagcaac	885	904	SEQ ID NO: 1401	gttgcaatgagctcatggc	3804	3823	1	4
SEQ ID NO:	399	etteetgeettteteetae	908	927	SEQ ID NO: 1402	gtaggaataaatggagaag	9453	9472	1	4
SEQ ID NO:	400	ctttctcctacaagaataa	916	935	SEQ ID NO: 1403	ttattgctgaatccaaaag	13648	13667	1	4
SEQ ID NO:	401	gatcaacagccgcttcttt	989	1008	SEQ ID NO: 1404	aaagccatcactgatgatc	1661	1680	1	4
SEQ ID NO:	402	atcaacagccgcttctttg	990	1009	SEQ ID NO: 1405	caaagccatcactgatgat	1660	1679	1	4
SEQ ID NO:	403	acageegettetttggtga	994	1013	SEQ ID NO: 1406	tcacaaatcctttggctgt	9667	9686	1	4
SEQ ID NO:	404	aagatgggcctcgcatttg	1023	1042	SEQ ID NO: 1407	caaaatagaagggaatctt	2069	2088	1	4
SEQ ID NO:	405	tgttttgaagactctccag	1082	1101	SEQ ID NO: 1408	ctggtaactactttaaaca	5487	5506	1	4
SEQ ID NO:	406	ttgaagactctccaggaac	1086	1105	SEQ ID NO: 1409	gttcaatgaatttattcaa	13184	13203	1	4
SEQ ID NO:	407	aactgaaaaaactaaccat	1102	1121	SEQ ID NO: 1410	atggcattttttgcaagtt	14006	14025	1	4
SEQ ID NO:	408	ctgaaaaaactaaccatct	1104	1123	SEQ ID NO: 1411	agattgatgggcagttcag	4564	4583	1	4
SEQ ID NO:	409	aaaactaaccatctctgag	1109	1128	SEQ ID NO: 1412	ctcaaagaatgactttttt	2570	2589	1	4
SEQ ID NO:	410	tgagcaaaatatccagaga	1124	1143	SEQ ID NO: 1413	tctccagataaaaaactca	12201	12220	1	4
SEQ ID NO:	411	caataagctggttactgag	1154	1173	SEQ ID NO: 1414	ctcagatcaaagttaattg	12265	12284	1	4
SEQ ID NO:	412	tactgagctgagaggcctc	1166	1185	SEQ ID NO: 1415	gagggtagtcataacagta	10329	10348	1	4
SEQ ID NO:	413	gcctcagtgatgaagcagt	1180	1199	SEQ ID NO: 1416	actgttgactcaggaaggc	12572	12591	1	4

SE	Q ID NO:	414	agtcacatctctcttgcca	1196	1215	SEQ ID NO: 1417	tggccacatagcatggact	8858	8877	1	4
SE	EQ ID NO:	415	atctctcttgccacagctg	1202	1221	SEQ ID NO: 1418	cagetgaceteategagat	2161	2180	1	4
SE	EQ ID NO:	416	tctctcttgccacagctga	1203	1222	SEQ ID NO: 1419	tcagctgacctcatcgaga	2160	2179	1	4
ŞE	EQ ID NO:	417	tgccacagctgattgaggt	1210	1229	SEQ ID NO: 1420	acctgcaccaaagctggca	13955	13974	1	4
SE	EQ ID NO:	418	gccacagctgattgaggtg	1211	1230	SEQ ID NO: 1421	caccaaaaaccccaatggc	11240	11259	1	4
SE	EQ ID NO:	419	tcactttacaagccttggt	1240	1259	SEQ ID NO: 1422	accagatgctgaacagtga	8140	8159	1	4
SE	EQ ID NO:	420	cccttctgatagatgtggt	1324	1343	SEQ ID NO: 1423	accacttacagctagaggg	10816	10835	1	4
S	EQ ID NO:	421	gtcacctacctggtggccc	1341	1360	SEQ ID NO: 1424	gggcgacctaagttgtgac	3431	3450	1	4
SE	EQ ID NO:	422	ccttgtatgcgctgagcca	1432	1451	SEQ ID NO: 1425	tggctggtaacctaaaagg	5578	5597	1	4
SI	EQ ID NO:	423	gacaaaccctacagggacc	1472	1491	SEQ ID NO: 1426	ggtcctttatgattatgtc	12347	12366	1	4
SI	EQ ID NO:	424	tgctaattacctgatggaa	1508	1527	SEQ ID NO: 1427	ttcccaaaagcagtcagca	9930	9949	1	4
SI	EQ ID NO:	425	tgactgcactggggatgaa	1538	1557	SEQ ID NO: 1428	ttcaggtccatgcaagtca	10909	10928	1	4
SI	EQ ID NO:	426	actgcactggggatgaaga	1540	1559	SEQ ID NO: 1429	tcttgaacacaaagtcagt	5999	6018	1	4
S	EQ ID NO:	427	atgaagattacacctattt	1552	1571	SEQ ID NO: 1430	aaatgaaagtaaagatcat	8110	8129	1	4
SI	EQ ID NO:	428	accatggagcagttaactc	1602	1621	SEQ ID NO: 1431	gagtaaaccaaaacttggt	9016	9035	1	4
SI	EQ ID NO:	429	gcagttaactccagaactc	1610	1629	SEQ ID NO: 1432	gagttactgaaaaagctgc	13719	13738	1	4
SI	EQ ID NO:	430	cagaactcaagtcttcaat	1621	1640	SEQ ID NO: 1433	attggatatccaagatctg	1925	1944	1	4
SI	EQ ID NO:	431	caggctctgcggaaaatgg	1695	1714	SEQ ID NO: 1434	ccatgacctccagctcctg	2477	2496	1	4
SI	EQ ID NO:	432	ccaggaggttcttcttcag	1730	1749	SEQ ID NO: 1435	ctgaaatacaatgctctgg	5511	5530	1	4
SI	EQ ID NO:	433	ggttcttcttcagactttc	1736	1755	SEQ ID NO: 1436	gaaaaacttggaaacaacc	4431	4450	1	4
SI	EQ ID NO:	434	tttccttgatgatgcttct	1751	1770	SEQ ID NO: 1437	agaatccagatacaagaaa	6885	6904	1	4
SI	EQ ID NO:	435	ggagataagcgactggctg	1773	1792	SEQ ID NO: 1438	cagcatgcctagtttctcc	9944	9963	1	4
Si	EQ ID NO:	436	gctgcctatcttatgttga	1788	1807	SEQ ID NO: 1439	tcaatatcaaaagcccagc	12037	12056	1	4
S	EQ ID NO:	437	actttgtggcttcccatat	1882	1901	SEQ ID NO: 1440	atatotggaacottgaagt	10729	10748	1	4
SI	EQ ID NO:	438	gccaatatcttgaactcag	1902	1921	SEQ ID NO: 1441	ctgaactcagaaggatggc	13992	14011	1	4
S	EQ ID NO:	439	aatatettgaactcagaag	1905	1924	SEQ ID NO: 1442	cttccattctgaatatatt	13370	13389	1	4
SI	EQ ID NO:	440	ctcagaagaattggatatc	1916	1935	SEQ ID NO: 1443	gataaaagattactttgag	7265	7284	1	4
SI	EQ ID NO:	441	aagaattggatatccaaga	1921	1940	SEQ ID NO: 1444	tetteaatttattettett	13817	13836	1	4
S	EQ ID NO:	442	agaattggatatccaagat	1922	1941	SEQ ID NO: 1445	atetteaatttattettet	13816	13835	1	4
S	EQ ID NO:	443	tggatatccaagatctgaa	1927	1946	SEQ ID NO: 1446	ttcacataccagaattcca	8317	8336	1	4
S	EQ ID NO:	444	atatccaagatctgaaaaa	1930	1949	SEQ ID NO: 1447	tttttaaccagtcagatat	10177	10196	1	4
S	EQ ID NO:	445	tatccaagatctgaaaaag	1931	1950	SEQ ID NO: 1448	ctttttaaccagtcagata	10176	10195	1	4
S	EQ ID NO:	446	caagatctgaaaaagttag	1935	1954	SEQ ID NO: 1449	ctaaattcccatggtcttg	4965	4984	1	4
S	EQ ID NO:	447	aagatctgaaaaagttagt	1936	1955	SEQ ID NO: 1450	actaaattcccatggtctt	4964	4983	1	4
S	EQ ID NO:	448	tgaaaaagttagtgaaaga	1942	1961	SEQ ID NO: 1451	tctttctcgggaatattca		10641		4
S	EQ ID NO:	449	tccaactgtcatggacttc	1982	2001	SEQ ID NO: 1452	gaagcacatatgaactgga		13956	1	4
S	EQ ID NO:	450	tcagaaaattctctcggaa	1999	2018	SEQ ID NO: 1453	ttcctttaacaattcctga	9493		1	4
S	EQ ID NO:	451	ttccatcacttgacccagc	2044	2063	SEQ ID NO: 1454	gctgacatagggaatggaa	8433	8452	1	4

	SEQ ID NO:	452	cccagcctcagccaaaata	2057	2076	SEQ ID NO: 1455	tattctatccaagattggg	7812	7831	1	4
	SEQ ID NO:	453	agcctcagccaaaatagaa	2060	2079	SEQ ID NO: 1456	ttctatccaagattgggct	7814	7833	1	4
	SEQ ID NO:	454	atcttatatttgatccaaa	2083	2102	SEQ ID NO: 1457	tttgaaaaacaaagcagat	11813	11832	1	4
	SEQ ID NO:	455	tcttatatttgatccaaat	2084	2103	SEQ ID NO: 1458	atttttgcaagttaaaga	14011	14030	1	4
	SEQ ID NO:	456	cttcctaaagaaagcatgc	2109	2128	SEQ ID NO: 1459	gcatggcattatgatgaag	3606	3625	1	4
	SEQ ID NO:	457	ctaaagaaagcatgctgaa	2113	2132	SEQ ID NO: 1460	ttcagggtgtggagtttag	5686	5705	1	4
	SEQ ID NO:	458	taaagaaagcatgctgaaa	2114	2133	SEQ ID NO: 1461	tttcttaaacattccttta	9482	9501	1	4
	SEQ ID NO:	459	gagattggcttggaaggaa	2175	2194	SEQ ID NO: 1462	ttccctccattaagttctc	11701	11720	1	4
	SEQ ID NO:	460	ctttgagccaacattggaa	2198	2217	SEQ ID NO: 1463	ttccaatgaccaagaaaag	11060	11079	1	4
	SEQ ID NO:	461	cagacagtgtcaacaaagc	2245	2264	SEQ ID NO: 1464	gcttactggacgaactctg	6134	6153	1	4
	SEQ ID NO:	462	cagtgtcaacaaagctttg	2249	2268	SEQ ID NO: 1465	caaattcctggatacactg	9849	9868	1	4
	SEQ ID NO:	463	agtgtcaacaaagctttgt	2250	2269	SEQ ID NO: 1466	acaagaatacgtctacact	4351	4370	1	4
	SEQ ID NO:	464	ctgatggtgtctctaaggt	2290	2309	SEQ ID NO: 1467	accteggaacaateeteag	3325	3344	1	4
	SEQ ID NO:	465	tgatggtgtctctaaggtc	2291	2310	SEQ ID NO: 1468	gacctgcgcaacgagatca	8823	8842	1	4
	SEQ ID NO:	466	aaacatgagcaggatatgg	2343	2362	SEQ ID NO: 1469	ccatgatctacatttgttt	6788	6807	1	4
	SEQ ID NO:	467	gaagctgattaaagatttg	2387	2406	SEQ ID NO: 1470	caaaaacattttcaacttc	5279	5298	1	4
	SEQ ID NO:	468	aaagatttgaaatccaaag	2397	2416	SEQ ID NO: 1471	ctttaagttcagcatcttt	7606	7625	1	4
	SEQ ID NO:	469	gatgggtgcccgcactctg	2510	2529	SEQ ID NO: 1472	cagatttgaggattccatc	7975	7994	1	4
	SEQ ID NO:	470	gggatcccccagatgattg	2532	2551	SEQ ID NO: 1473	caatcacaagtcgattccc	9075	9094	1	4
	SEQ ID NO:	471	ttttcttcactacatcttc	2585	2604	SEQ ID NO: 1474	gaagtgtcagtggcaaaaa	10374	10393	1	4
;	SEQ ID NO:	472	tcttcactacatcttcatg	2588	2607	SEQ ID NO: 1475	catggcattatgatgaaga	3607	3626	1	4
į	SEQ ID NO:	473	tacatcttcatggagaatg	2595	2614	SEQ ID NO: 1476	cattatggaggcccatgta	9437	9456	1	4
;	SEQ ID NO:	474	ttcatggagaatgcctttg	2601	2620	SEQ ID NO: 1477	caaaatcaactttaatgaa	6599	6618	1	4
;	SEQ ID NO:	475	tcatggagaatgcctttga	2602	2621	SEQ ID NO: 1478	tcaacacaatcttcaatga	13108	13127	1	4
;	SEQ ID NO:	476	tttgaactccccactggag	2616	2635	SEQ ID NO: 1479	ctcccaggacctttcaaa	9834	9853	1	4
;	SEQ ID NO:	477	ttgaactccccactggagc	2617	2636	SEQ ID NO: 1480	gctccccaggacctttcaa	9833	9852	1	4
;	SEQ ID NO:	478	tgaactccccactggagct	2618	2637	SEQ ID NO: 1481	agctccccaggacctttca	9832	9851	1	4
;	SEQ ID NO:	479	cactggagctggattacag	2627	2646	SEQ ID NO: 1482	ctgtttctgagtcccagtg	9336	9355	1	4
;	SEQ ID NO:	480	actggagctggattacagt	2628	2647	SEQ ID NO: 1483	actgtttctgagtcccagt	9335	9354	1	4
;	SEQ ID NO:	481	agttgcaaatatcttcatc	2644	2663	SEQ ID NO: 1484	gatgatgccaaaatcaact	6591	6610	1	4
,	SEQ ID NO:	482	gttgcaaatatcttcatct	2645	2664	SEQ ID NO: 1485	agatgatgccaaaatcaac	6590	6609	1	4
,	SEQ ID NO:	483	aaatatcttcatctggagt	2650	2669	SEQ ID NO: 1486	actcagaaggatggcattt	13996	14015	1	4
,	SEQ ID NO:	484	taaaactggaagtagccaa	2695	2714	SEQ ID NO: 1487	ttggttacaggaggcttta	7592	7611	1	4
,	SEQ ID NO:	485	ggctgaactggtggcaaaa	2720	2739	SEQ ID NO: 1488	ttttcttttcagcccagcc	9220	9239	1	4
5	SEQ ID NO:	486	tgtggagtttgtgacaaat	2750	2769	SEQ ID NO: 1489	attttcaagcaaatgcaca			1	4
5	SEQ ID NO:	487	ttgtgacaaatatgggcat	2758	2777	SEQ ID NO: 1490	atgcgtctaccttacacaa			1	4
5	SEQ ID NO:	488	atgaacaccaacttcttcc	2811	2830	SEQ ID NO: 1491	ggaagctgaagtttatcat			1	4
5	SEQ ID NO:	489	cttccacgagtcgggtctg	2825	2844	SEQ ID NO: 1492	cagagctatcactgggaag	5227	5246	1	4

SEQ ID NO:	490	gagtcgggtctggaggctc	2832	2851	SEQ ID NO: 1493	gagettactggaegaaete	6132	6151	1	4
SEQ ID NO:	491	cctaaaagctgggaagctg	2858	2877	SEQ ID NO: 1494	cagcctccccagccgtagg	12112	12131	1	4
SEQ ID NO:	492	agctgggaagctgaagttt	2864	2883	SEQ ID NO: 1495	aaactgttaatttacagct	5455	5474	1	4
SEQ ID NO:	493	ccagattagagctggaact	3106	3125	SEQ ID NO: 1496	agittccggggaaacctgg	12718	12737	1	4
SEQ ID NO:	494	ggataccctgaagtttgta	3200	3219	SEQ ID NO: 1497	tacagtattctgaaaatcc	8385	8404	1	4
SEQ ID NO:	495	ctgaggctaccatgacatt	3244	3263	SEQ ID NO: 1498	aatgagctcatggcttcag	3809	3828	1	4
SEQ ID NO:	496	tgtccagtgaagtccaaat	3289	3308	SEQ ID NO: 1499	attttgagaggaatcgaca	6349	6368	1	4
SEQ ID NO:	497	aattccggattttgatgtt	3305	3324	SEQ ID NO: 1500	aacacatgaatcacaaatt	8930	8949	1	4
SEQ ID NO:	498	ttccggattttgatgttga	3307	3326	SEQ ID NO: 1501	tcaaaacgagcttcaggaa	13199	13218	1	4
SEQ ID NO:	499	cggaacaatcctcagagtt	3329	3348	SEQ ID NO: 1502	aacttgtacaactggtccg	4203	4222	1	4
SEQ ID NO:	500	tcctcagagttaatgatga	3337	3356	SEQ ID NO: 1503	tcatcaattggttacagga	7585	7604	1	4
SEQ ID NO:	501	ctcaccctggacattcaga	3384	3403	SEQ ID NO: 1504	tctgcagaacaatgctgag	12431	12450	1	4
SEQ ID NO:	502	cattcagaacaagaaaatt	3395	3414	SEQ ID NO: 1505	aattgactttgtagaaatg	8096	8115	1	4
SEQ ID NO:	503	actgaggtcgccctcatgg	3414	3433	SEQ ID NO: 1506	ccatgcaagtcagcccagt	10916	10935	1	4
SEQ ID NO:	504	ttatttccataccccgttt	3478	3497	SEQ ID NO: 1507	aaactgcctatattgataa	13872	13891	1	4
SEQ ID NO:	505	gtttgcaagcagaagccag	3493	3512	SEQ ID NO: 1508	ctggacttctcttcaaaac	5400	5419	1	4
SEQ ID NO:	506	tttgcaagcagaagccaga	3494	3513	SEQ ID NO: 1509	tctgggtgtcgacagcaaa	5264	5283	1	4
SEQ ID NO:	507	ttgcaagcagaagccagaa	3495	3514	SEQ ID NO: 1510	ttctgggtgtcgacagcaa	5263	5282	1	4
SEQ ID NO:	508	ctgcttctccaaatggact	3546	3565	SEQ ID NO: 1511	agtcaagattgatgggcag	4559	4578	1	4
SEQ ID NO:	509	tgctacagcttatggctcc	3569	3588	SEQ ID NO: 1512	ggaggctttaagttcagca	7601	7620	1	4
SEQ ID NO:	510	acagcttatggctccacag	3573	3592	SEQ ID NO: 1513	ctgtatagcaaattcctgt	5889	5908	1	4
SEQ ID NO:	511	tttccaagagggtggcatg	3592	3611	SEQ ID NO: 1514	catggacttcttctggaaa	8869	8888	1	4
SEQ ID NO:	512	ccaagagggtggcatggca	3595	3614	SEQ ID NO: 1515	tgcccagcaagcaagttgg	9353	9372	1	4
SEQ ID NO:	513	gtggcatggcattatgatg	3603	3622	SEQ ID NO: 1516	cateettaacacettecae	8063	8082	1	4
SEQ ID NO:	514	tgatgaagagaagattgaa	3617	3636	SEQ ID NO: 1517	ttcactgttcctgaaatca	7863	7882	1	4
SEQ ID NO:	515	gaagagaagattgaatttg	3621	3640	SEQ ID NO: 1518	caaaaacattttcaacttc	5279	5298	1	4
SEQ ID NO:	516	gagaagattgaatttgaat	3624	3643	SEQ ID NO: 1519	attcataatcccaactctc	8270	8289	1	4
SEQ ID NO:	517	tttgaatggaacacaggca	3636	3655	SEQ ID NO: 1520	tgcctttgtgtacaccaaa	11228	11247	1	4
SEQ ID NO:	518	aggcaccaatgtagatacc	3650	3669	SEQ ID NO: 1521	ggtaacctaaaaggagcct	5583	5602	1	4
SEQ ID NO:	519 _,	caaaaaaatgacttccaat	3668	3687	SEQ ID NO: 1522	attgaagtacctacttttg	8358	8377	1	4
SEQ ID NO:	520	aaaaaaatgacttccaatt	3669	3688	SEQ ID NO: 1523	aattgaagtacctactttt	8357	8376	1	4
SEQ ID NO:	521	aaaaaatgacttccaattt	3670	3689	SEQ ID NO: 1524	aaatccaatctcctctttt	8398	8417	1	4
SEQ ID NO:	522	cagagtccctcaaacagac	3752	3771	SEQ ID NO: 1525	gtctgtgggattccatctg	4082	4101	1	4
SEQ ID NO:	523	aaattaatagttgcaatga	3795	3814	SEQ ID NO: 1526	tcataagttcaatgaattt	13178	13197	1	4
SEQ ID NO:	524	ttcaacctccagaacatgg	3891	3910	SEQ ID NO: 1527	ccattgaccagatgctgaa	8134	8153	1	4
SEQ ID NO:	525	tgggattgccagacttcca	3907	3926	SEQ ID NO: 1528	tggaaatgggcctgcccca	8895	8914	1	4
SEQ ID NO:	526	cagtttgaaaattgagatt	3986	4005	SEQ ID NO: 1529	aatcacaactcctccactg	9533	9552	1	4
SEQ ID NO:	527	gaaaattgagattcctttg	3992	4011	SEQ ID NO: 1530	caaaactaccacacatttc	13686	13705	1	4

SEQ ID NO: 528	tttgccttttggtggcaaa	4007	4026	SEQ ID NO: 1531	tttgagaggaatcgacaaa	6351	6370	1	4
SEQ ID NO: 529	ctccagagatctaaagatg	4028	4047	SEQ ID NO: 1532	catcaattggttacaggag	7586	7605	1	4
SEQ ID NO: 530	tctaaagatgttagagact	4037	4056	SEQ ID NO: 1533	agteetteatgteeetaga	10025	10044	1	4
SEQ ID NO: 531	ctgtgggattccatctgcc	4084	4103	SEQ ID NO: 1534	ggcattttgaaaaaaacag	9727	9746	1	4
SEQ ID NO: 532	atctgccatctcgagagtt	4096	4115	SEQ ID NO: 1535	aactctcaaaccctaagat	8548	8567	1	4
SEQ ID NO: 533	tctcgagagttccaagtcc	4104	4123	SEQ ID NO: 1536	ggacattcctctagcgaga	8207	8226	1	4
SEQ ID NO: 534	agtccctacttttaccatt	4118	4137	SEQ ID NO: 1537	aatgaatacagccaggact	6078	6097	1	4
SEQ ID NO: 535	acttttaccattcccaagt	4125	4144	SEQ ID NO: 1538	actttgtagaaatgaaagt	8101	8120	1	4
SEQ ID NO: 536	cattcccaagttgtatcaa	4133	4152	SEQ ID NO: 1539	ttgaaggacttcaggaatg	12001	12020	1	4
SEQ ID NO: 537	accacatgaaggetgactc	4276	4295	SEQ ID NO: 1540	gagtaaaccaaaacttggt	9016	9035	1	4
SEQ ID NO: 538	tttcctacaatgtgcaagg	4309	4328	SEQ ID NO: 1541	cctttaacaattcctgaaa	9495	9514	1	4
SEQ ID NO: 539	ctggagaaacaacatatga	4330	4349	SEQ ID NO: 1542	tcattctgggtctttccag	11027	11046	1	4
SEQ ID NO: 540	atcatgtgatgggtctcta	4370	4389	SEQ ID NO: 1543	tagaattacagaaaatgat	6557	6576	1	4
SEQ ID NO: 541	catgtgatgggtctctacg	4372	4391	SEQ ID NO: 1544	cgtaggcaccgtgggcatg	12125	12144	1	4
SEQ ID NO: 542	ttctagattcgaatatcaa	4399	4418	SEQ ID NO: 1545	ttgatgatgctgtcaagaa	7300	7319	1	4
SEQ ID NO: 543	tggggaccacagatgtctg	4491	4510	SEQ ID NO: 1546	cagaattccagcttcccca	8326	8345	1	4
SEQ ID NO: 544	ctaacactggccggctcaa	4636	4655	SEQ ID NO: 1547	ttgaggctattgatgttag	6976	6995	1	4
SEQ ID NO: 545	taacactggccggctcaat	4637	4656	SEQ ID NO: 1548	attgaggctattgatgtta	6975	6994	1	4
SEQ ID NO: 546	aacactggccggctcaatg	4638	4657	SEQ ID NO: 1549	cattgaggctattgatgtt	6974	6993	1	4
SEQ ID NO: 547	ctggccggctcaatggaga	4642	4661	SEQ ID NO: 1550	tctccatctgcgctaccag	12065	12084	1	4
SEQ ID NO: 548	agataacaggaagatatga	4705	4724	SEQ ID NO: 1551	tcatctcctttcttcatct	10202	10221	1	4
SEQ ID NO: 549	tccctcacctccacctctg	4737	4756	SEQ ID NO: 1552	cagatatatatctcaggga	8176	8195	1	4
SEQ ID NO: 550	agctgactttaaaatctga	4810	4829	SEQ ID NO: 1553	tcaggctcttcagaaagct	7922	7941	1	4
SEQ ID NO: 551	ctgactttaaaatctgaca	4812	4831	SEQ ID NO: 1554	tgtcaagataaacaatcag	8732	8751	1	4
SEQ ID NO: 552	caagatggatatgaccttc	4865	4884	SEQ ID NO: 1555	gaagtagtactgcatcttg	6835	6854	1	4
SEQ ID NO: 553	gctgcgttctgaatatcag	4901	4920	SEQ ID NO: 1556	ctgagtcccagtgcccagc	9342	9361	1	4
SEQ ID NO: 554	cgttctgaatatcaggctg	4905	4924	SEQ ID NO: 1557	cagcaagtacctgagaacg	8603	8622	1	4
SEQ ID NO: 555	aattcccatggtcttgagt	4968	4987	SEQ ID NO: 1558	actcagatcaaagttaatt	12264	12283	1	4
SEQ ID NO: 556	tggtcttgagttaaatgct	4976	4995	SEQ ID NO: 1559	agcacagtacgaaaaacca	10801	10820	1	4
SEQ ID NO: 557	cttgagttaaatgctgaca	4980	4999	SEQ ID NO: 1560	tgtccctagaaatctcaag	10034	10053	1	4
SEQ ID NO: 558	ttgagttaaatgctgacat	4981	5000	SEQ ID NO: 1561	atgtccctagaaatctcaa	10033	10052	1	4
SEQ ID NO: 559	tgagttaaatgctgacatc	4982	5001	SEQ ID NO: 1562	gatggaaccctctccctca	4725	4744	1	4
SEQ ID NO: 560	acttgaagtgtagtctcct	5086	5105	SEQ ID NO: 1563	aggaaactcagatcaaagt	12259	12278	1	4
SEQ ID NO: 561	agtgtagtctcctggtgct	5092	5111	SEQ ID NO: 1564	agcagccagtggcaccact	12506	12525	1	4
SEQ ID NO: 562	gtgctggagaatgagctga	5106	5125	SEQ ID NO: 1565	tcagccaggtttatagcac	7726	7745	1	4
SEQ ID NO: 563	ctggggcatctatgaaatt	5143	5162	SEQ ID NO: 1566	aatttctgattaccaccag	13571	13590	1	4
SEQ ID NO: 564	atggccgcttcagggaaca	5170	5189	SEQ ID NO: 1567	tgttttttggaaatgccat	8641	8660	1	4
SEQ ID NO: 565	ttcagtctggatgggaaag	5199	5218	SEQ ID NO: 1568	ctttgacaggcattttgaa	9719	9738	1	4

SEQ ID NO: 566	ccatgattctgggtgtcga	5257	5276	SEQ ID NO: 1569	tcgatgcacatacaaatgg	5830	5849	1	4
SEQ ID NO: 567	aaaacattttcaacttcaa	5281	5300	SEQ ID NO: 1570	ttgatgttagagtgctttt	6985	7004	1	4
SEQ ID NO: 568	cttaagctctcaaatgaca	5316	5335	SEQ ID NO: 1571	tgtcctacaacaagttaag	7247	7266	1	4
SEQ ID NO: 569	ttaagctctcaaatgacat	5317	5336	SEQ ID NO: 1572	atgtcctacaacaagttaa	7246	7265	1	4
SEQ ID NO: 570	catgatgggctcatatgct	5333	5352	SEQ ID NO: 1573	agcatctttggctcacatg	7616	7635	1	4
SEQ ID NO: 571	tgggctcatatgctgaaat	5338	5357	SEQ ID NO: 1574	atttatcaaaagaagccca	12934	12953	1	4
SEQ ID NO: 572	actggacttctcttcaaaa	5399	5418	SEQ ID NO: 1575	ttttggcaagctatacagt	8372	8391	1	4
SEQ ID NO: 573	acttctcttcaaaacttga	5404	5423	SEQ ID NO: 1576	tcaattgggagagacaagt	6496	6515	1	4
SEQ ID NO: 574	ctgacaagttttataagca	5437	5456	SEQ ID NO: 1577	tgctttgtgagtttatcag	9685	9704	1	4
SEQ ID NO: 575	aagttttataagcaaactg	5442	5461	SEQ ID NO: 1578	cagtcatgtagaaaaactt	4421	4440	1	4
SEQ ID NO: 576	ctgttaatttacagctaca	5458	5477	SEQ ID NO: 1579	tgtactggaaaacgtacag	6380	6399	1	4
SEQ ID NO: 577	ttacagctacagccctatt	5466	5485	SEQ ID NO: 1580	aatattgatcaatttgtaa	6417	6436	1	4
SEQ ID NO: 578	tctggtaactactttaaac	5486	5505	SEQ ID NO: 1581	gtttgaaaaacaaagcaga	11812	11831	1	4
SEQ ID NO: 579	tttaaacagtgacctgaaa	5498	5517	SEQ ID NO: 1582	tttcatttgaaagaataaa	7024	7043	1	4
SEQ ID NO: 580	ttaaacagtgacctgaaat	5499	5518	SEQ ID NO: 1583	atttcaagcaagaacttaa	10426	10445	1	4
SEQ ID NO: 581	cagtgacctgaaatacaat	5504	5523	SEQ ID NO: 1584	attggcgtggagcttactg	6123	6142	1	4
SEQ ID NO: 582	tgtggctggtaacctaaaa	5576	5595	SEQ ID NO: 1585	ttttgctggagaagccaca	10757	10776	1	4
SEQ ID NO: 583	ttatcagcaagctataaag	5649	5668	SEQ ID NO: 1586	ctttgcactatgttcataa	12756	12775	1	4
SEQ ID NO: 584	ggttcagggtgtggagttt	5684	5703	SEQ ID NO: 1587	aaacacctaagagtaaacc	9006	9025	1	4
SEQ ID NO: 585	attcagactcactgcattt	5767	5786	SEQ ID NO: 1588	aaatgctgacatagggaat	8429	8448	1	4
SEQ ID NO: 586	ttcagactcactgcatttc	5768	5787	SEQ ID NO: 1589	gaaatattatgaacttgaa	13304	13323	1	4
SEQ ID NO: 587	tacaaatggcaatgggaaa	5840	5859	SEQ ID NO: 1590	tttcctaaagctggatgta	11168	11187	1	4
SEQ ID NO: 588	gctgtatagcaaattcctg	5888	5907	SEQ ID NO: 1591	caggtccatgcaagtcagc	10911	10930	1	4
SEQ ID NO: 589	tgagcagacaggcacctgg	6035	6054	SEQ ID NO: 1592	ccagcttccccacatctca	8333	8352	1	4
SEQ ID NO: 590	ggcacctggaaactcaaga	6045	6064	SEQ ID NO: 1593	tcttcgtgtttcaactgcc	11213	11232	1	4
SEQ ID NO: 591	tgaatacagccaggacttg	6080	6099	SEQ ID NO: 1594	caagtaagtgctaggttca	9372	9391	1	4
SEQ ID NO: 592	gaatacagccaggacttgg	6081	6100	SEQ ID NO: 1595	ccaacacttacttgaattc	10660	10679	1	4
SEQ ID NO: 593	ctggacgaactctggctga	6139	6158	SEQ ID NO: 1596	tcagaaagctaccttccag	7931	7950	1	4
SEQ ID NO: 594	ttttactcagtgagcccat	6193	6212	SEQ ID NO: 1597	atggacttcttctggaaaa	8870	8889	1	4
SEQ ID NO: 595	gatgagagatgccgttgag	6233	6252	SEQ ID NO: 1598	ctcatctcctttcttcatc	10201	10220	1	4
SEQ ID NO: 596	aattgttgcttttgtaaag	6269	6288	SEQ ID NO: 1599	cttttctaaacttgaaatt	9056	9075	1	4
SEQ ID NO: 597	cttttgtaaagtatgataa	6277	6296	SEQ ID NO: 1600	ttatgaacttgaagaaaag	13310	13329	1	4
SEQ ID NO: 598	tttgtaaagtatgataaaa	6279	6298	SEQ ID NO: 1601	ttttcacattagatgcaaa	8413	8432	1	4
SEQ ID NO: 599	tccattaacctcccatttt	6312	6331	SEQ ID NO: 1602	aaaattgatgatatctgga	10719	10738	1	4
SEQ ID NO: 600	ccattaacctcccattttt	6313	6332	SEQ ID NO: 1603	aaaagggtcatggaaatgg	8885	8904	1	4
SEQ ID NO: 601	cttgcaagaatattttgag	6338	6357	SEQ ID NO: 1604	ctcaattttgattttcaag	8520	8539	1	4
SEQ ID NO: 602	agaatattttgagaggaat	6344	6363	SEQ ID NO: 1605	attocctccattaagttct	11700	11719	1	4
SEQ ID NO: 603	attatagttgtactggaaa	6372	6391	SEQ ID NO: 1606	tttcaagcaagaacttaat	10427	10446	1	4

	SEQ ID NO: 604	gaagcacatcaatattgat	6407	6426	SEQ ID NO: 1607	atcagttcagataaacttc	7991	8010	1	4
	SEQ ID NO: 605	acatcaatattgatcaatt	6412	6431	SEQ ID NO: 1608			9 1149		4
	SEQ ID NO: 606	gaaaactcccacagcaagc	6457	6476	SEQ ID NO: 1609	gctttctcttccacatttc		2 1007		4
	SEQ ID NO: 607	ctgaattcattcaattggg	6486	6505	SEQ ID NO: 1610	cccatttacagatcttcag		3 1138		4
	SEQ ID NO: 608	tgaattcattcaattggga	6487	6506	SEQ ID NO: 1611	tcccatttacagatcttca		2 1138		4
	SEQ ID NO: 609	aactgactgctctcacaaa	6532	6551	SEQ ID NO: 1612	tttgaggattccatcagtt	7979	7998		4
	SEQ ID NO: 610	aaaagtatagaattacaga	6550	6569	SEQ ID NO: 1613	tctggctccctcaactttt	9042	9061		4
	SEQ ID NO: 611	atcaactttaatgaaaaac	6603	6622	SEQ ID NO: 1614	gtttattgaaaatattgat	6803		-	4
	SEQ ID NO: 612	tgatttgaaaatagctatt	6686	6705	SEQ ID NO: 1615	aatattattgatgaaatca	6708	6727	1	4
	SEQ ID NO: 613	atttgaaaatagctattgc	6688	6707	SEQ ID NO: 1616	gcaagaacttaatggaaat	10433	3 10452		4
	SEQ ID NO: 614	attgctaatattattgatg	6702	6721	SEQ ID NO: 1617	catcacactgaataccaat	10151	1 10170) 1	4
	SEQ ID NO: 615	gaaaaattaaaaagtcttg	6729	6748	SEQ ID NO: 1618	caagagcttatgggatttc	11153	3 11172	2 1	4
	SEQ ID NO: 616	actatcatatccgtgtaat	6754	6773	SEQ ID NO: 1619	attactttgagaaattagt	7273	7292	1	4
	SEQ ID NO: 617	tattgattttaacaaaagt	6815	6834	SEQ ID NO: 1620	acttgacttcagagaaata	1139€	3 11415	5 1	4
	SEQ ID NO: 618	ctgcagcagcttaagagac	6906	6925	SEQ ID NO: 1621	gtcttcagtgaagctgcag	10691	10710) 1	4
	SEQ ID NO: 619	aaaacaacacattgaggct	6965	6984	SEQ ID NO: 1622	agcctcacctcttactttt	10563	3 10582	2 1	4
	SEQ ID NO: 620	ttgagcatgtcaaacactt	7051	7070	SEQ ID NO: 1623	aagtagctgagaaaatcaa	7096	7115	1	4
	SEQ ID NO: 621	tttgaagtagctgagaaaa	7092	7111	SEQ ID NO: 1624	ttttcacattagatgcaaa	8413	8432	1	4
	SEQ ID NO: 622	ttagtagagttggcccacc	7191	7210	SEQ ID NO: 1625	ggtggactcttgctgctaa	7768	7787	1	4
	SEQ ID NO: 623	tgaaggagactattcagaa	7219	7238	SEQ ID NO: 1626	ttctcaattttgattttca	8518	8537	1	4
	SEQ ID NO: 624	gagactattcagaagctaa	7224	7243	SEQ ID NO: 1627	ttagccacagctctgtctc	10293	10312	: 1	4
	SEQ ID NO: 625	aattagttggatttattga	7285	7304	SEQ ID NO: 1628	tcaagaagcttaatgaatt	7312	7331	1	4
	SEQ ID NO: 626	gcttaatgaattatctttt	7319	7338	SEQ ID NO: 1629	aaaacgagcttcaggaagc	13201	13220	1	4
	SEQ ID NO: 627	ttaacaaattccttgacat	7357	7376	SEQ ID NO: 1630	atgtcctacaacaagttaa	7246	7265	1	4
	SEQ ID NO: 628	aaattaaagtcatttgatt	7386	7405	SEQ ID NO: 1631	aatcctttgacaggcattt	9715	9734	1	4
	SEQ ID NO: 629	gactcaatggtgaaattca	7456	7475	SEQ ID NO: 1632	tgaaattcaatcacaagtc	9068	9087	1	4
	SEQ ID NO: 630	gaaattcaggctctggaac	7467	7486	SEQ ID NO: 1633	gttctcaattttgattttc	8517	8536	1	4
	SEQ ID NO: 631	actaccacaaaaagctgaa	7484	7503	SEQ ID NO: 1634	ttcaggaactattgctagt	10637	10656	1	4
	SEQ ID NO: 632	ccaaaataaccttaatcat	7570	7589	SEQ ID NO: 1635	atgatttccctgaccttgg	10942	10961	1	4
	SEQ ID NO: 633	aaataaccttaatcatcaa	7573	7592	SEQ ID NO: 1636	ttgaagtaaaagaaaattt	10741	10760	1	4
	SEQ ID NO: 634	tttaagttcagcatctttg	7607	7626	SEQ ID NO: 1637	caaatctggatttcttaaa	9472	9491	1	4
	SEQ ID NO: 635	caggtttatagcacacttg	7731	7750	SEQ ID NO: 1638	caagggttcactgttcctg	7857	7876	1	4
	EQ ID NO: 636	gitcactgitcctgaaatc	7862	7881	SEQ ID NO: 1639	gattctcagatgagggaac	8914	8933	1	4
	EQ ID NO: 637	cactgttcctgaaatcaag	7865	7884	SEQ ID NO: 1640	cttgaacacaaagtcagtg	6000	6019	1	4
	EQ ID NO: 638	-	7866	7885	SEQ ID NO: 1641	tcttgaacacaaagtcagt	5999	6018	1	4
	EQ ID NO: 639		7901	7920	SEQ ID NO: 1642	actgttgactcaggaaggc	12572	12591	1	4
	EQ ID NO: 640		7972	7991	SEQ ID NO: 1643	ggaagetteteaagagtta	13214	13233	1	4
0	EQ ID NO: 641	gttttccacaccagaattt	8042	8061	SEQ ID NO: 1644	aaatttctctgctggaaac	9410	9429	1	4

SEQ ID NO: 642	tcagaaccattgaccagat	8128	8147	SEQ ID NO: 1645	atctgcagaacaatgctga	12430	12449	1	4
SEQ ID NO: 643	tagcgagaatcaccctgcc	8218	8237	SEQ ID NO: 1646	ggcagcttctggcttgcta	12293	12312	1	4
SEQ ID NO: 644	ccttaatgattttcaagtt	8291	8310	SEQ ID NO: 1647	aactgttgactcaggaagg	12571	12590	1	4
SEQ ID NO: 645	acataccagaattccagct	8320	8339	SEQ ID NO: 1648	agctgccagtccttcatgt	10018	10037	1	4
SEQ ID NO: 646	aatgctgacatagggaatg	8430	8449	SEQ ID NO: 1649	cattaatcctgccatcatt	9997	10016	1	4
SEQ ID NO: 647	atgctgacatagggaatgg	8431	8450	SEQ ID NO: 1650	ccatttgagatcacggcat	9237	9256	1	4
SEQ ID NO: 648	aaccacctcagcaaacgaa	8450	8469	SEQ ID NO: 1651	ttcgttttccattaaggtt	9283	9302	1	4
SEQ ID NO: 649	agcaggtatcgcagcttcc	8468	8487	SEQ ID NO: 1652	ggaagtggccctgaatgct	10964	10983	1	4
SEQ ID NO: 650	tgcacaactctcaaaccct	8543	8562	SEQ ID NO: 1653	agggaaagagaagattgca	13493	13512	1	4
SEQ ID NO: 651	aggagtcagtgaagttctc	8584	8603	SEQ ID NO: 1654	gagaacttactatcatcct		13799		4
SEQ ID NO: 652	tttttggaaatgccattga	8644	8663	SEQ ID NO: 1655	tcaatgaatttattcaaaa		13205		4
SEQ ID NO: 653	aatggagtgattgtcaaga	8721	8740	SEQ ID NO: 1656	tcttttcagcccagccatt	9223	9242		4
SEQ ID NO: 654	gtcaagataaacaatcagc	8733	8752	SEQ ID NO: 1657	gctgactttaaaatctgac	4811	4830	1	4
SEQ ID NO: 655	tccacaaattgaacatccc	8779	8798	SEQ ID NO: 1658	gggatttcctaaagctgga	11164	11183	1	4
SEQ ID NO: 656	ttgaacatccccaaactgg	8787	8806	SEQ ID NO: 1659	ccagtttccagggactcaa	12595	12614	1	4
SEQ ID NO: 657	acatececaaactggaett	8791	8810	SEQ ID NO: 1660	aagtogattoccagcatgt		9101		4
SEQ ID NO: 658	acttctctagtcaggctga	8806	8825	SEQ ID NO: 1661	tcagatggaaaaatgaagt	11002	11021	1	4
SEQ ID NO: 659	tgaatcacaaattagtttc	8936	8955	SEQ ID NO: 1662	gaaagtccataatggttca	12809	12828	1	4
SEQ ID NO: 660	agaaggacccctcacttcc	8960	8979	SEQ ID NO: 1663	ggaagaagaggcagcttct	12284	12303	1	4
SEQ ID NO: 661	ttggactgtccaataagat	8980	8999	SEQ ID NO: 1664	atctaaatgcagtagccaa	11626	11645	1	4
SEQ ID NO: 662	actgtccaataagatcaat	8984	9003	SEQ ID NO: 1665	attgataaaaccatacagt	13883	13902	1	4
SEQ ID NO: 663	ctgtccaataagatcaata	8985	9004	SEQ ID NO: 1666	tattgataaaaccatacag	13882	13901	1	4
SEQ ID NO: 664	gtttatgaatctggctccc	9033	9052	SEQ ID NO: 1667	gggaatctgatgaggaaac	12247	12266	1	4
SEQ ID NO: 665	atgaatctggctccctcaa	9037	9056	SEQ ID NO: 1668	ttgagttgcccaccatcat	11659	11678	1	4
SEQ ID NO: 666	ctcaacttttctaaacttg	9051	9070	SEQ ID NO: 1669	caagatcgcagactttgag	11645	11664	1	4
SEQ ID NO: 667	ctaaaggcatggcactgtt	9121	9140	SEQ ID NO: 1670	aacagaaacaatgcattag	9741	9760	1	4
SEQ ID NO: 668	aaggcatggcactgtttgg	9124	9143	SEQ ID NO: 1671	ccaagaaaaggcacacctt	11069	11088	1	4
SEQ ID NO: 669	atccacaaacaatgaaggg	9254	9273	SEQ ID NO: 1672	ccctaacagatttgaggat	7969	7988	1	4
SEQ ID NO: 670	ggaatttgaaagttcgttt	9271	9290	SEQ ID NO: 1673	aaacaaacacaggcattcc	9647	9666	1	4
SEQ ID NO: 671	aataactatgcactgtttc	9324	9343	SEQ ID NO: 1674	gaaatactgttttcctatt	12828	12847	1	4
SEQ ID NO: 672	gaaacaacgagaacattat	9424	9443	SEQ ID NO: 1675	ataaactgcaagatttttc	13600	13619	1	4
SEQ ID NO: 673	ttcttgaaaacgacaaagc	9591	9610	SEQ ID NO: 1676	gctttccaatgaccaagaa	11057	11076	1	4
SEQ ID NO: 674	ataagaaaaacaaacacag	9640	9659	SEQ ID NO: 1677	ctgtgctttgtgagtttat	9682	9701 ·	1	4
SEQ ID NO: 675	aaaacaaacacaggcattc	9646	9665	SEQ ID NO: 1678	gaatttgaaagttcgtttt	9272	9291 ·	1	4
SEQ ID NO: 676	gcattccatcacaaatcct	9659	9678	SEQ ID NO: 1679	aggaagtggccctgaatgc	10963	10982	1	4
SEQ ID NO: 677	tttgaaaaaaacagaaaca	9732	9751	SEQ ID NO: 1680	tgttgaaagatttatcaaa	12925	12944	1	4
SEQ ID NO: 678	caatgcattagattttgtc	9749	9768	SEQ ID NO: 1681	gacaagaaaaaggggattg	10271	10290 ·	1	4
SEQ ID NO: 679	caaagctgaaaaatctcag	9809	9828	SEQ ID NO: 1682	ctgagaacttcatcatttg	11430	11449	1	4

	SEQ ID NO: 680	cctggatacactgttccag	9855	9874	SEQ ID NO: 1683	ctggacttctctagtcagg	8802	8821	1	4
	SEQ ID NO: 681	gttgaagtgtctccattca	9882	9901	SEQ ID NO: 1684	tgaatctggctccctcaac	9038	9057	1	4
	SEQ ID NO: 682	tttctccatcctaggttct	9956	9975	SEQ ID NO: 1685	agaatccagatacaagaaa	6885	6904	1	4
	SEQ ID NO: 683	ttctccatcctaggttctg	9957	9976	SEQ ID NO: 1686	cagaatccagatacaagaa	6884	6903	1	4
	SEQ ID NO: 684	tcattagagctgccagtcc	10011	10030	SEQ ID NO: 1687	ggacagtgaaatattatga	13297	13316	1	4
	SEQ ID NO: 685	tgctgaactttttaaccag	10169	10188	SEQ ID NO: 1688	ctggatgtaaccaccagca	11178	11197	1	4
	SEQ ID NO: 686	ctcctttcttcatcttcat	10206	10225	SEQ ID NO: 1689	atgaagettgeteeaggag	13764	13783	1	4
	SEQ ID NO: 687	tgtcattgatgcactgcag	10226	10245	SEQ ID NO: 1690	ctgcgctaccagaaagaca	12072	12091	1	4
	SEQ ID NO: 688	tgatgcactgcagtacaaa	10232	10251	SEQ ID NO: 1691	tttgagttgcccaccatca	11658	11677	1	4
	SEQ ID NO: 689	agctctgtctctgagcaac	10301	10320	SEQ ID NO: 1692	gttgaccacaagcttagct	10539	10558	1	4
	SEQ ID NO: 690	agccgaaattccaattttg	10400	10419	SEQ ID NO: 1693	caaagctggcaccagggct	13963	13982	1	4
	SEQ ID NO: 691	ttgagaatgaatttcaagc	10416	10435	SEQ ID NO: 1694	gcttcaggaagcttctcaa	13208	13227	1	4
	SEQ ID NO: 692	aaacctactgtctcttcct	10461	10480	SEQ ID NO: 1695	aggaaggccaagccagttt	12583	12602	1	4
	SEQ ID NO: 693	tactittccattgagtcat	10575	10594	SEQ ID NO: 1696	atgattatgtcaacaagta	12355	12374	1	4
	SEQ ID NO: 694	tcaggtccatgcaagtcag	10910	10929	SEQ ID NO: 1697	ctgacatcttaggcactga	4993	5012	1	4
	SEQ ID NO: 695	atgcaagtcagcccagttc	10918	10937	SEQ ID NO: 1698	gaactcagaaggatggcat	13994	14013	1	4
	SEQ ID NO: 696	tgaatgctaacactaagaa	10975	10994	SEQ ID NO: 1699	ttctcaattttgattttca	8518	8537	1	4
	SEQ ID NO: 697	agaagatcagatggaaaaa	10996	11015	SEQ ID NO: 1700	ttttctaaatggaacttct	12165	12184	1	4
	SEQ ID NO: 698	ggctattcattctccatcc	11256	11275	SEQ ID NO: 1701	ggatctaaatgcagtagcc	11624	11643	1	4
	SEQ ID NO: 699	aaagttttggctgataaat	11280	11299	SEQ ID NO: 1702	atttcttaaacattccttt	9481	9500	1	4
	SEQ ID NO: 700	agttttggctgataaattc	11282	11301	SEQ ID NO: 1703	gaatctggctccctcaact	9039	9058	1	4
	SEQ ID NO: 701	ctgggctgaaactaaatga	11308	11327	SEQ ID NO: 1704	tcattctgggtctttccag	11027	11046	1	4
	SEQ ID NO: 702	cagagaaatacaaatctat	11405	11424	SEQ ID NO: 1705	atagcatggacttcttctg	8865	8884	1	4
	SEQ ID NO: 703	gaggtaaaattccctgaag	11472	11491	SEQ ID NO: 1706	cttctggcttgctaacctc	12298	12317	1	4
	SEQ ID NO: 704	cttttttgagataaccgtg	11537	11556	SEQ ID NO: 1707	cacggagttactgaaaaag	13715	13734	1	4
	SEQ ID NO: 705	gctggaattgtcattcctt	11727	11746	SEQ ID NO: 1708	aaggcatctccacctcagc	12094	12113	1	4
	SEQ ID NO: 706	gtgtataatgccacttgga	11787	11806	SEQ ID NO: 1709	tccaagatgagatcaacac	13096	13115	1	4
	SEQ ID NO: 707	attccacatgcagctcaac '	11851	11870	SEQ ID NO: 1710	gttgagaagccccaagaat	6246	6265	1	4
	SEQ ID NO: 708	tgaagaagatggcaaattt	11984	12003	SEQ ID NO: 1711	aaattctcttttcttttca	9212	9231	1	4
;	SEQ ID NO: 709	atcaaaagcccagcgttca	12042	12061	SEQ ID NO: 1712	tgaaagtcaagcatctgat	12661	12680	1	4
	SEQ ID NO: 710	gtgggcatggatatggatg	12135	12154	SEQ ID NO: 1713	catcettaacacettecae	8063	8082	1	4
;	SEQ ID NO: 711	aaatggaacttctactaca	12171	12190	SEQ ID NO: 1714	tgtaccataagccatattt	10080	10099	1	4
į	SEQ ID NO: 712	aaaaactcaccatattcaa	12211	12230	SEQ ID NO: 1715	ttgatgttagagtgctttt	6985	7004	1	4
;	SEQ ID NO: 713	ctgagaagaaatctgcaga	12420	12439	SEQ ID NO: 1716	tctgcacagaaatattcag	13439	13458	1	4
;	SEQ ID NO: 714	acaatgctgagtgggttta	12439	12458	SEQ ID NO: 1717	taaatggagtctttattgt	14078			4
;	SEQ ID NO: 715	caatgctgagtgggtttat	12440	12459	SEQ ID NO: 1718	ataaatggagtctttattg	14077	14096	1	4
;	SEQ ID NO: 716	ttaggcaaattgatgatat	12469	12488	SEQ ID NO: 1719	atattgtcagtgcctctaa	13384			4
ţ	SEQ ID NO: 717	ataaactaatagatgtaat	12889	12908	SEQ ID NO: 1720	attactatgaaaaatttat	13633	13652	1	4

SEQ ID NO:	718	ccaactaatagaagataac	13031	13050	SEQ ID NO: 1721	gttattttgctaaacttgg	14044	14063	1	4
SEQ ID NO:	719	ttaattatatccaagatga	13087	13106	SEQ ID NO: 1722	tcatcctctaattttttaa	13792	13811	1	4
SEQ ID NO:	720	tttaaattgttgaaagaaa	13143	13162	SEQ ID NO: 1723	tttcatttgaaagaataaa	7024	7043	1	4
SEQ ID NO:	721	aagttcaatgaatttattc	13182	13201	SEQ ID NO: 1724	gaataccaatgctgaactt	10160	10179	1	4
SEQ ID NO:	722	ttgaagaaaagatagtcag	13318	13337	SEQ ID NO: 1725	ctgagagaagtgtcttcaa	12399	12418	1	4
SEQ ID NO:	723	acttccattctgaatatat	13369	13388	SEQ ID NO: 1726	atatotggaacottgaagt	10729	10748	1	4
SEQ ID NO:	724	cacagaaatattcaggaat	13443	13462	SEQ ID NO: 1727	attccctgaagttgatgtg	11480	11499	1	4
SEQ ID NO:	725	ccattgcgacgaagaaaat	13552	13571	SEQ ID NO: 1728	atttttattcctgccatgg	10095	10114	1	4
SEQ ID NO:	726	tataaactgcaagattttt	13599	13618	SEQ ID NO: 1729	aaaattcaaactgcctata	13865	13884	1	4
SEQ ID NO:	727	tctgattactatgaaaaat	13629	13648	SEQ ID NO: 1730	atttgtaagaaaatacaga	6428	6447	1	4
SEQ ID NO:	728	ggagttactgaaaaagctg	13718	13737	SEQ ID NO: 1731	cagcatgcctagtttctcc	9944	9963	1	4
SEQ ID NO:	729	tgaagettgeteeaggaga	13765	13784	SEQ ID NO: 1732	teteetttetteatettea	10205	10224	1	4
SEQ ID NO:	730	tgaactggacctgcaccaa	13947	13966	SEQ ID NO: 1733	ttggtagagcaagggttca	7848	7867	1	4
SEQ ID NO:	731	ttgctaaacttgggggagg	14050	14069	SEQ ID NO: 1734	cctcctacagtggtggcaa	4222	4241	1	4
SEQ ID NO:	732	gattcgaatatcaaattca	4404	4423	SEQ ID NO: 1735	tgaaaacgacaaagcaatc	9595	9614	3	3
SEQ ID NO:	733	atttgtttgtcaaagaagt	4543	4562	SEQ ID NO: 1736	acttttctaaacttgaaat	9055	9074	3	3
SEQ ID NO:	734	tctcggttgctgccgctga	25	44	SEQ ID NO: 1737	tcagcccagccatttgaga	9228	9247	2	3
SEQ ID NO:	735	gctgaggagcccgcccagc	39	58	SEQ ID NO: 1738	gctggatgtaaccaccagc	11177	11196	2	3
SEQ ID NO:	736	ctggtctgtccaaaagatg	219	238	SEQ ID NO: 1739	catcagaaccattgaccag	8126	8145	2	3
SEQ ID NO:	737	ctgagagttccagtggagt	283	302	SEQ ID NO: 1740	actcaatggtgaaattcag	7457	7476	2	3
SEQ ID NO:	738	cagtgcaccctgaaagagg	396	415	SEQ ID NO: 1741	cctcacttcctttggactg	8969	8988	2	3
SEQ ID NO:	739	ctctgaggagtttgctgca	464	483	SEQ ID NO: 1742	tgcaaacttgacttcagag	11391	11410	2	3
SEQ ID NO:	740	acatcaagaggggcatcat	574	593	SEQ ID NO: 1743	atgacgttcttgagcatgt	7042	7061	2	3
SEQ ID NO:	741	ctgatcagcagcagccagt	822	841	SEQ ID NO: 1744	actggacttctctagtcag	8801	8820	2	3
SEQ ID NO:	742	ggacgctaagaggaagcat	857	876	SEQ ID NO: 1745	atgcctacgttccatgtcc	11346	11365	2	3
SEQ ID NO:	743	agctgttttgaagactctc	1079	1098	SEQ ID NO: 1746	gagaagtgtcttcaaagct	12403	12422	2	3
SEQ ID NO:	744	tgaaaaaactaaccatctc	1105	1124	SEQ ID NO: 1747	gagatcaacacaatcttca	13104	13123	2	3
SEQ ID NO:	745	ctgagctgagaggcctcag	1168	1187	SEQ ID NO: 1748	ctgaattactgcacctcag	3027	3046	2	3
SEQ ID NO:	746	tgaaacgtgtgcatgccaa	1303	1322	SEQ ID NO: 1749	ttggtagagcaagggttca	7848	7867	2	3
SEQ ID NO:	747	ccttgtatgcgctgagcca	1432	1451	SEQ ID NO: 1750	tggcactgtttggagaagg	9130	9149	2	3
SEQ ID NO:	748	aggagctgctggacattgc	1492	1511	SEQ ID NO: 1751	gcaagtcagcccagttcct	10920	10939		3
SEQ ID NO:	749	atttgattctgcgggtcat	1567	1586	SEQ ID NO: 1752	atgaaaccaatgacaaaat	7420	7439	2	3
SEQ ID NO:	750	tccagaactcaagtcttca	1619	1638	SEQ ID NO: 1753	tgaaatacaatgctctgga	5512	5531	2	3
SEQ ID NO:	751	ggttcttcttcagactttc	1736	1755	SEQ ID NO: 1754	gaaataccaagtcaaaacc	10447	10466	2	3
SEQ ID NO:	752	gttgatgaggagtccttca	1802	1821	SEQ ID NO: 1755	tgaaaaagctgcaatcaac	13726	13745	2	3
SEQ ID NO:	753	tccaagatctgaaaaagtt	1933	1952	SEQ ID NO: 1756	aactgcttctccaaatgga	3544	3563	2	3
SEQ ID NO:	754	agttagtgaaagaagttct	1948	1967	SEQ ID NO: 1757	agaattcataatcccaact	8267		2	3
SEQ ID NO:	755	gaagggaatcttatatttg	2076	2095	SEQ ID NO: 1758	caaaacctactgtctcttc	10459	10478	2	3

s	EQ ID NO:	756	ggaagctctttttgggaag	2213	2232	SEQ ID NO: 1759	cttcacataccagaattcc	8316	8335	2	3
S	EQ ID NO:	757	tggaataatgctcagtgtt	2366	2385	SEQ ID NO: 1760	aacaaacacaggcattcca	9648	9667	2	3
S	EQ ID NO:	758	gatttgaaatccaaagaag	2400	2419	SEQ ID NO: 1761	cttcatgtccctagaaatc	10029	10048	2	3
S	EQ ID NO:	759	tccaaagaagtcccggaag	2409	2428	SEQ ID NO: 1762	cttcagcctgctttctgga	4943	4962	2	3
S	EQ ID NO:	760	aggaagggctcaaagaatg	2562	2581	SEQ ID NO: 1763	cattagagctgccagtcct	10012	10031	2	3
S	EQ ID NO:	761	agaatgactttttcttca	2575	2594	SEQ ID NO: 1764	tgaagatgacgacttttct	12152	12171	2	3
S	EQ ID NO:	762	tttotgacaaatatgggca	2757	2776	SEQ ID NO: 1765	tgccagtttgaaaaacaaa	11807	11826	2	3
s	EQ ID NO:	763	ctgaggctaccatgacatt	3244	3263	SEQ ID NO: 1766	aatgtcagctcttgttcag	10895	10914	2	3
S	EQ 1D NO:	764	gtagataccaaaaaaatga	3660	3679	SEQ ID NO: 1767	tcatttgccctcaacctac	11442	11461	2	3
s	EQ ID NO:	765	aaatgacttccaatttccc	3673	3692	SEQ ID NO: 1768	gggaactgttgaaagattt	12919	12938	2	3
S	EQ ID NO:	766	atgacttccaatttccctg	3675	3694	SEQ ID NO: 1769	caggagaacttactatcat	13777	13796	2	3
S	EQ ID NO:	767	atctgccatctcgagagtt	4096	4115	SEQ ID NO: 1770	aactcctccactgaaagat	9539	9558	2	3
S	EQ ID NO:	768	attigtttgtcaaagaagt	4543	4562	SEQ ID NO: 1771	acttccgtttaccagaaat	8239	8258	2	3
S	EQ ID NO:	769	gcagagcttggcctctctg	5127	5146	SEQ ID NO: 1772	cagagetttetgecaetge	13510	13529	2	3
S	EQ ID NO:	770	atatgctgaaatgaaattt	5345	5364	SEQ ID NO: 1773	aaattcaaactgcctatat	13866	13885	2	3
S	EQ ID NO:	771	tcaaaacttgacaacattt	5412	5431	SEQ ID NO: 1774	aaatacttccacaaattga	8772	8791	2	3
S	EQ ID NO:	772	cagtgacctgaaatacaat	5504	5523	SEQ ID NO: 1775	attgaacatccccaaactg	8786	8805	2	3
S	EQ ID NO:	773	tacaaatggcaatgggaaa	5840	5859	SEQ ID NO: 1776	tttcaactgcctttgtgta	11221	11240	2	3
S	EQ ID NO:	774	cttttgtaaagtatgataa	6277	6296	SEQ ID NO: 1777	ttattgctgaatccaaaag	13648	13667	2	3
S	EQ ID NO:	775	ttgtaaagtatgataaaaa	6280	6299	SEQ ID NO: 1778	ttttcaagcaaatgcacaa	8531	8550	2	3
S	EQ ID NO:	776	tccattaacctcccatttt	6312	6331	SEQ ID NO: 1779	aaaagaaaattttgctgga	10748	10767	2	3
S	EQ ID NO:	777	gattatctgaattcattca	6480	6499	SEQ ID NO: 1780	tgaagtagaccaacaaatc	7154	7173	2	3
S	EQ ID NO:	778	aattgggagagacaagttt	6498	6517	SEQ ID NO: 1781	aaactaaatgatctaaatt	11316	11335	2	3
S	EQ ID NO:	779	atttgaaaatagctattgc	6688	6707	SEQ ID NO: 1782	gcaatttctgcacagaaat	13433	13452	2	3
SI	EQ ID NO:	780	tgagcatgtcaaacacttt	7052	7071	SEQ ID NO: 1783	aaagccattcagtctctca	12963	12982	2	3
SI	EQ ID NO:	781	ttgaagatgttaacaaatt	7348	7367	SEQ ID NO: 1784	aattccatatgaaagtcaa	12652	12671	2	3
SI	EQ ID NO:	782	acttgtcacctacatttct	7745	7764	SEQ ID NO: 1785	agaatattttgatccaagt	13268	13287	2	3
SI	EQ ID NO:	783	gttttccacaccagaattt	8042	8061	SEQ ID NO: 1786	aaatctggatttcttaaac	9473	9492	2	3
SI	EQ ID NO:	784	ataagtacaaccaaaattt	9397	9416	SEQ ID NO: 1787	aaataaatggagtctttat	14075	14094	2	3
S	EQ ID NO:	785	cgggacctgcggggctgag	0	19	SEQ ID NO: 1788	ctcagttaactgtgtcccg	11563	11582	1	3
S	EQ ID NO:	786	agtgcccttctcggttgct	17	36	SEQ ID NO: 1789	agcatctgattgactcact	12670	12689	1	3
SI	EQ ID NO:	787	gctgaggagcccgcccagc	39	58	SEQ ID NO: 1790	gctgattgaggtgtccagc	1217	1236	1	3
SI	EQ ID NO:	788	gaggagcccgcccagccag	42	61	SEQ ID NO: 1791	ctggatcacagagtccctc	3744	3763	1	3
SI	EQ ID NO:	789	gggccgcgaggcc	64	83	SEQ ID NO: 1792	ggccctgatccccgagccc	1355	1374	1	3
SI	EQ ID NO:	790	ccaggccgcagcccaggag	81	100	SEQ ID NO: 1793	ctcccggagccaaggctgg	2674	2693	1	3
SI	EQ ID NO:	791	ggagccgccccaccgcagc	96	115	SEQ ID NO: 1794	gctgttttgaagactctcc	1080	1099	1	3
SI	EQ ID NO:	792	gaagaggaaatgctggaaa	192	211	SEQ ID NO: 1795	tttcaagttcctgaccttc	8301	8320	1	3
S	EQ ID NO:	793	caaaagatgcgacccgatt	229	248	SEQ ID NO: 1796	aatcttattggggattttg	7077	7096	1	3

	SEQ ID NO:	794	attcaagcacctccggaag	245	264	SEQ ID NO: 1797	cttccacatttcaaggaat	10059	10078	3 1	3
	SEQ ID NO:	795	gttccagtggagtccctgg	289	308	SEQ ID NO: 1798	ccagcaagtacctgagaac	8602	8621	1	3
	SEQ ID NO:	796	gactgctgattcaagaagt	308	327	SEQ ID NO: 1799	acttgaagaaaagatagtc	13316	13335	i 1	3
	SEQ ID NO:	797	gtgccaccaggatcaactg	325	344	SEQ ID NO: 1800	cagtgaagctgcagggcac	10696	10715	i 1	3
	SEQ ID NO:	798	gatcaactgcaaggttgag	335	354	SEQ ID NO: 1801	ctcacctccacctctgatc	4740	4759	1	3
	SEQ ID NO:	799	actgcaaggttgagctgga	340	359	SEQ ID NO: 1802	tccactcacatcctccagt	1281	1300	1	3
	SEQ ID NO:	800	ccagctctgcagcttcatc	365	384	SEQ ID NO: 1803	gatgtggtcacctacctgg	1335	1354	1	3
	SEQ ID NO:	801	agcttcatcctgaagacca	375	394	SEQ ID NO: 1804	tggtgctggagaatgagct	5104	5123	1	3
	SEQ ID NO:	802	cttcatcctgaagaccagc	377	396	SEQ ID NO: 1805	gctggagtaaaactggaag	2688	2707	1	3
	SEQ ID NO:	803	ccagccagtgcaccctgaa	391	410	SEQ ID NO: 1806	ttcaagatgactgcactgg	1531	1550	1	3
	SEQ ID NO:	804	cagtgcaccctgaaagagg	396	415	SEQ ID NO: 1807	cctcacagagctatcactg	5222	5241	1	3
	SEQ ID NO:	805	tggcttcaaccctgagggc	419	438	SEQ ID NO: 1808	gcccactggtcgcctgcca	3525	3544	1	3
	SEQ ID NO:	806	cttcaaccctgagggcaaa	422	441	SEQ ID NO: 1809	tttgagccaacattggaag	2199	2218	1	3
	SEQ ID NO:	807	ttcaaccctgagggcaaag	423	442	SEQ ID NO: 1810	ctttgacaggcattttgaa	9719	9738	1	3
	SEQ ID NO:	808	cttgctgaagaaaaccaag	443	462	SEQ ID NO: 1811	cttgaaattcaatcacaag	9066	9085	1	3
	SEQ ID NO:	809	tgctgaagaaaaccaagaa	445	464	SEQ ID NO: 1812	ttctgctgccttatcagca	5639	5658	1	3
	SEQ ID NO:	810	ttgctgcagccatgtccag	475	494	SEQ ID NO: 1813	ctggtcagtttgcaagcaa	2996	3015	1	3
	SEQ ID NO:	811	tgctgcagccatgtccagg	476	495	SEQ ID NO: 1814	cctggtcagtttgcaagca	2995	3014	1	3
	SEQ ID NO:	812	agccatgtccaggtatgag	482	501	SEQ ID NO: 1815	ctcacatcctccagtggct	1285	1304	1	3
	SEQ ID NO:	813	agctcaagctggccattcc	499	518	SEQ ID NO: 1816	ggaactaccacaaaaagct	7481	7500	1	3
	SEQ ID NO:	814	agaagggaagcaggttttc	518	537	SEQ ID NO: 1817	gaaatcttcaatttattct	13813	13832	1	3
	SEQ ID NO:	815	aagggaagcaggttttcct	520	539	SEQ ID NO: 1818	aggacaccaaaataacctt	7564	7583	1	3
	SEQ ID NO:	816	agaaagatgaacctactta	547	566	SEQ ID NO: 1819	taagaactttgccacttct	4844	4863	1	3
	SEQ ID NO:	817	atcctgaacatcaagaggg	567	586	SEQ ID NO: 1820	ccctaacagatttgaggat	7969	7988	1	3
	SEQ ID NO:	818	tcctgaacatcaagagggg	568	587	SEQ ID NO: 1821	cccctaacagatttgagga	7968	7987	1	3
	SEQ ID NO:	819	ctgaacatcaagaggggca	570	589	SEQ ID NO: 1822	tgcctgcctttgaagtcag	7900	7919	1	3
	SEQ ID NO:	820	aacatcaagaggggcatca	573	592	SEQ ID NO: 1823	tgataaaaaccaagatgtt	6290	6309	1	3
	SEQ ID NO:	821	acatcaagagggcatcat	574	593	SEQ ID NO: 1824	atgataaaaaccaagatgt	6289	6308	1	3
	SEQ ID NO:	822	teatttetgeeeteetggt	589	608	SEQ ID NO: 1825	accaccagtttgtagatga	7405	7424	1	3
	SEQ ID NO:	823	ttccccagagacagaaga	607	626	SEQ ID NO: 1826	tcttccacatttcaaggaa	10058	10077	1	3
	SEQ ID NO:	824	gaagaagccaagcaagtgt	621	640	SEQ ID NO: 1827	acaccttccacattccttc	8071	8090	1	3
	SEQ ID NO:	825	ttgtttctggataccgtgt	639	658	SEQ ID NO: 1828	acactaaatacttccacaa	8767	8786	1	3
	SEQ ID NO:	826	tgtatggaaactgctccac	655	674	SEQ ID NO: 1829	gtggaggcaacacattaca	2920	2939	1	3
	SEQ ID NO:		aaactgctccactcacttt	662	681	SEQ ID NO: 1830	aaagaaacagcatttgttt	4532	4551	1	3
	SEQ ID NO:	828	actcactttaccgtcaaga	672	691	SEQ ID NO: 1831	tcttacttttccattgagt	10572	10591	1	3
	SEQ ID NO:		ctttaccgtcaagacgagg	677	696	SEQ ID NO: 1832	cctccagctcctgggaaag		2502		3
	SEQ ID NO:		ttaccgtcaagacgaggaa	679	698	SEQ ID NO: 1833	ttcctaaagctggatgtaa	11169	11188	1	3
;	SEQ ID NO:	831	acgaggaagggcaatgtgg	690	709	SEQ ID NO: 1834	ccacaagtcatcatctcgt		5975		3

	SEQ ID NO): 832	cgaggaagggcaatgtggc	691	710	SEQ ID NO: 1835	gccagaagtgagatcctcg	3507	3526	1	3
	SEQ ID NO): 833	gaggaagggcaatgtggca	692	711	SEQ ID NO: 1836	tgccagtctccatgacctc	2468	2487	1	3
	SEQ ID NO): 834	ggaagggcaatgtggcaac	694	713	SEQ ID NO: 1837	gttgctcttaaggacttcc	13356	13375	1	3
	SEQ ID NO	: 835	gaagggcaatgtggcaaca	695	714	SEQ ID NO: 1838	tgttgatgaggagtccttc	1801	1820	1	3
	SEQ ID NO	: 836	caggcatcagcccacttgc	769	788	SEQ ID NO: 1839	gcaagtctttcctggcctg	3011	3030	1	3
	SEQ ID NO	: 837	aggcatcagcccacttgct	770	789	SEQ ID NO: 1840	agcaagtctttcctggcct	3010	3029	1	3
	SEQ ID NO	: 838	tcagcccacttgctctcat	775	794	SEQ ID NO: 1841	atgaaagtcaagcatctga	12660	12679	1	3
	SEQ ID NO	: 839	gtcaactctgatcagcagc	815	834	SEQ ID NO: 1842	gctgactttaaaatctgac	4811	4830	1	3
	SEQ ID NO	: 840	ggacgctaagaggaagcat	857	876	SEQ ID NO: 1843	atgcactgtttctgagtcc	9331	9350	1	3
	SEQ ID NO	: 841	aaggagcaacacctcttcc	894	913	SEQ ID NO: 1844	ggaatatcttagcatcctt	13457	13476	1	3
	SEQ ID NO	: 842	aggagcaacacctcttcct	895	914	SEQ ID NO: 1845	aggaatatcttagcatcct	13456	13475	1	3
;	SEQ ID NO	: 843	caacacctcttcctgcctt	900	919	SEQ ID NO: 1846	aaggetgactetgtggttg	4284	4303	1	3
:	SEQ ID NO	: 844	aacacctcttcctgccttt	901	920	SEQ ID NO: 1847	aaagcaggccgaagctgtt	1067	1086	1	3
;	SEQ ID NO	: 845	acaagaataagtatgggat	925	944	SEQ ID NO: 1848	atccatgatctacatttgt	6786	6805	1	3
;	SEQ ID NO	: 846	caagaataagtatgggatg	926	945	SEQ ID NO: 1849	catcactttacaagccttg	1238	1257	1	3
,	SEQ ID NO	: 847	tagcacaagtgacacagac	946	965	SEQ ID NO: 1850	gtctcttcgttctatgcta	4584	4603	1	3
;	SEQ ID NO	: 84 8	agcacaagtgacacagact	947	966	SEQ ID NO: 1851	agtotottogttotatgot	4583	4602	1	3
;	SEQ ID NO	: 849	gcacaagtgacacagactt	948	967	SEQ ID NO: 1852	aagtgtagtctcctggtgc	5091	5110	1	3
;	SEQ ID NO	: 850	aacttgaagacacaccaaa	970	989	SEQ ID NO: 1853	tttgaggattccatcagtt	7979	7998	1	3
,	SEQ ID NO	: 851	gcttctttggtgaaggtac	1000	1019	SEQ ID NO: 1854	gtacctacttttggcaagc	8364	8383	1	3
5	SEQ ID NO	: 852	ctttggtgaaggtactaag	1004	1023	SEQ ID NO: 1855	cttatgggatttcctaaag	11159	11178	1	3
,	SEQ ID NO	: 853	tactaagaagatgggcctc	1016	1035	SEQ ID NO: 1856	gagggtagtcataacagta	10329	10348	1	3
	SEQ ID NO		tttgagagcaccaaatcca	1038	1057	SEQ ID NO: 1857	tggaagtgtcagtggcaaa	10372	10391	1	3
	SEQ ID NO		agagcaccaaatccacatc	1042	1061	SEQ ID NO: 1858	gatggatatgaccttctct	4868	4887	1	3
5	SEQ ID NO	856	agctgttttgaagactctc	1079	1098	SEQ ID NO: 1859	gagaacatactgggcagct	5872	5891	1	3
5	SEQ ID NO	857	tgaaaaaactaaccatctc	1105	1124	SEQ ID NO: 1860	gagaaaatcaatgccttca	7104	7123	1	3
5	SEQ ID NO	858	gaaaaaactaaccatctct	1106	1125	SEQ ID NO: 1861	agagccaggtcgagctttc	11044	11063	1	3
S	SEQ ID NO	859	tctgagcaaaatatccaga	1122	1141	SEQ ID NO: 1862	tctgatgaggaaactcaga	12252	12271	1	3
	SEQ ID NO		tctcttcaataagctggtt	1148	1167	SEQ ID NO: 1863	aacctcccattttttgaga	6318	6337	1	3
S	SEQ ID NO:	861	ctgagctgagaggcctcag	1168	1187	SEQ ID NO: 1864	ctgatccccgagccctcag	1359	1378	1	3
S	SEQ ID NO:	862	tgaagcagtcacatctctc	1190	1209	SEQ ID NO: 1865	gagaaaatcaatgccttca	7104	7123	1	3
S	SEQ ID NO:	863	aagcagtcacatctctctt	1192	1211	SEQ ID NO: 1866	aagaggcagcttctggctt	12289	12308	1	3
	SEQ ID NO:		ctctcttgccacagctgat	1204	1223	SEQ ID NO: 1867	atcaaaagaagcccaagag	12938	12957	1	3
S	SEQ ID NO:	865	tcttgccacagctgattga	1207	1226	SEQ ID NO: 1868	tcaaagttaattgggaaga	12271	12290	1	3
	EQ ID NO:		cttgccacagctgattgag	1208	1227	SEQ ID NO: 1869	ctcaattttgattttcaag	8520	8539	1	3
	EQ ID NO:		tgaggtgtccagccccatc	1223	1242	SEQ ID NO: 1870	gatggaaccctctccctca	4725	4744	1	3
	EQ ID NO:		tcagtgtggacagcctcag	1259	1278	SEQ ID NO: 1871	ctgacatcttaggcactga	4993	5012	1	3
S	EQ ID NO:	869	acatectecagtggetgaa	1288	1307	SEQ ID NO: 1872	ttcagaagctaagcaatgt	7231	7250	1	3

SEQ ID NO	: 870	gcacagcagctgcgagaga	1377	1396	SEQ ID NO: 1873	tctctgaaagacaacgtgc	12315	12334	1 1	3
SEQ ID NO	: 871	cagcagctgcgagagatct	1380	1399	SEQ ID NO: 1874	agataacattaaacagctg	13043	13062	1	3
SEQ ID NO	: 872	gcgagggatcagcgcagcc	1407	1426	SEQ ID NO: 1875	ggctcaacacagacatcgc	5710	5729	1	3
SEQ ID NO	: 873	aagacaaaccctacaggga	1470	1489	SEQ ID NO: 1876	tcccagaaaacctcttctt	3928	3947	1	3
SEQ ID NO	: 874	caggagctgctggacattg	1491	1510	SEQ ID NO: 1877	caatggagagtccaacctg	4652	4671	1	3
SEQ ID NO	: 875	aggagctgctggacattgc	1492	1511	SEQ ID NO: 1878	gcaagggttcactgttcct	7856	7875	1	3
SEQ ID NO	: 876	ctgctggacattgctaatt	1497	1516	SEQ ID NO: 1879	aattgggaagaagaggcag	12279	12298	1	3
SEQ ID NO	: 877	gattacacctatttgattc	1557	1576	SEQ ID NO: 1880	gaatattttgagaggaatc	6345	6364	1	3
SEQ ID NO	: 878	atttgattctgcgggtcat	1567	1586	SEQ ID NO: 1881	atgaagtagaccaacaaat	7153	7172	1	3
SEQ ID NO	: 879	tctgcgggtcattggaaat	1574	1593	SEQ ID NO: 1882	atttgtaagaaaatacaga	6428	6447	1	3
SEQ ID NO	: 880	aaccatggagcagttaact	1601	1620	SEQ ID NO: 1883	agtttctccatcctaggtt	9954	9973	1	3
SEQ ID NO		ggagcagttaactccagaa	1607	1626	SEQ ID NO: 1884	ttctgaaaatccaatctcc	8392	8411	1	3
SEQ ID NO	: 882	actccagaactcaagtctt	1617	1636	SEQ ID NO: 1885	aagatcgcagactttgagt	11646	11665	1	3
SEQ ID NO	: 883	tccagaactcaagtcttca	1619	1638	SEQ ID NO: 1886	tgaactcagaagaattgga	1912	1931	1	3
SEQ ID NO	: 884	aagtacaaagccatcactg	1655	1674	SEQ ID NO: 1887	cagtcatgtagaaaaactt	4421	4440	1	3
SEQ ID NO	: 885	gccatcactgatgatccag	1664	1683	SEQ ID NO: 1888	ctggaactctctccatggc	10875	10894	1	3
SEQ ID NO	886	ccatcactgatgatccaga	1665	1684	SEQ ID NO: 1889	tctgaactcagaaggatgg	13991	14010	1	3
SEQ ID NO	887	atccagaaagctgccatcc	1677	1696	SEQ ID NO: 1890	ggatttcctaaagctggat	11165	11184	1	3
SEQ ID NO	888	cagaaagctgccatccagg	1680	1699	SEQ ID NO: 1891	cctgaaatacaatgctctg	5510	5529	1	3
SEQ ID NO		acaaggaccaggaggttct	1723	1742	SEQ ID NO: 1892	agaaacagcatttgtttgt	4534	4553	1	3
SEQ ID NO	890	aggaccaggaggttcttct	1726	1745	SEQ ID NO: 1893	agaagctaagcaatgtcct	7234	7253	1	3
SEQ ID NO	891	accaggaggttcttcttca	1729	1748	SEQ ID NO: 1894	tgaaggctgactctgtggt	4282	4301	1	3
SEQ ID NO:	892	tcttcagactttccttgat	1742	1761	SEQ ID NO: 1895	atcaggaagggctcaaaga	2559	2578	1	3
SEQ ID NO		ttcagactttccttgatga	1744	1763	SEQ ID NO: 1896	tcattactcctgggctgaa	11299	11318	1	3
SEQ ID NO:	894	gttgatgaggagtccttca	1802	1821	SEQ ID NO: 1897	tgaatctggctccctcaac	9038	9057	1	3
SEQ ID NO:	895	cttcacaggcagatattaa	1816	1835	SEQ ID NO: 1898	ttaatcgagaggtatgaag	7140	7159	1	3
SEQ ID NO:		ttcacaggcagatattaac	1817	1836	SEQ ID NO: 1899	gttaatcgagaggtatgaa	7139	7158	1	،3
SEQ ID NO:		ggcagatattaacaaaatt	1823	1842	SEQ ID NO: 1900	aattgcattagatgatgcc	6581	6600	1	3
SEQ ID NO:	898	atattaacaaaattgtcca	1828	1847	SEQ ID NO: 1901	tggagtttgtgacaaatat	2752	2771	1	3
SEQ ID NO:		acaaaattgtccaaattct	1834	1853	SEQ ID NO: 1902	agaaacagcatttgtttgt	4534	4553	1	3
SEQ ID NO:	900	gagcaagtgaagaactttg	1869	1888	SEQ ID NO: 1903	caaatgacatgatgggctc	5326	5345	1	3
SEQ ID NO:		gtgaagaactttgtggctt	1875	1894	SEQ ID NO: 1904	aagcatctgattgactcac	12669	12688	1	3
SEQ ID NO:	902	agaactttgtggcttccca	1879	1898	SEQ ID NO: 1905	tgggcctgcccagattct	8901	8920	1	3
SEQ ID NO:		tttgtggcttcccatattg	1884	1903	SEQ ID NO: 1906	caataagatcaatagcaaa	8990	9009	1	3
SEQ ID NO:		tggcttcccatattgccaa	1888	1907	SEQ ID NO: 1907	ttggctcacatgaaggcca	7623	7642	1	3
SEQ ID NO:		ttcccatattgccaatatc	1892	1911	SEQ ID NO: 1908	gatatacactagggaggaa	12737	12756	1	3
SEQ ID NO:		tcccatattgccaatatct	1893	1912	SEQ ID NO: 1909	agatcaaagttaattggga	12268	12287	1	3
SEQ ID NO:	907	ttgccaatatcttgaactc	1900	1919	SEQ ID NO: 1910	gagtcccagtgcccagcaa	9344	9363	1	3

SEQ ID NO: 908	ttggatatccaagatctga	1926	1945	SEQ ID NO: 1911	tcagtataagtacaaccaa	9392	9411	1	3
SEQ ID NO: 909	tccaagatctgaaaaagtt	1933	1952	SEQ ID NO: 1912	aacttccaactgtcatgga	1978	1997	1	3
SEQ ID NO: 910	ctgaaaaagttagtgaaag	1941	1960	SEQ ID NO: 1913	ctttgaagtcagtcttcag	7907	7926	1	3
SEQ ID NO: 911	agttagtgaaagaagttct	1948	1967	SEQ ID NO: 1914	agaatctcaacttccaact	1970	1989	1	3
SEQ ID NO: 912	aatotoaacttccaactgt	1972	1991	SEQ ID NO: 1915	acaggggtcctttatgatt	12342	12361	1	3
SEQ ID NO: 913	gtcatggacttcagaaaat	1989	2008	SEQ ID NO: 1916	atttgaaagaataaatgac	7028	7047	1	3
SEQ ID NO: 914	tcaactctacaaatctgtt	2021	2040	SEQ ID NO: 1917	aacacattgaggctattga	6970	6989	1	3
SEQ ID NO: 915	aactctacaaatctgtttc	2023	2042	SEQ ID NO: 1918	gaaaaaggggattgaagtt	10276	10295	1	3
SEQ ID NO: 916	aaatagaagggaatcttat	2071	2090	SEQ ID NO: 1919	ataagcaaactgttaattt	5449	5468	1	3
SEQ ID NO: 917	agaagggaatcttatattt	2075	2094	SEQ ID NO: 1920	aaatgcactgctgcgttct	4892	4911	1	3
SEQ ID NO: 918	gaagggaatcttatatttg	2076	2095	SEQ ID NO: 1921	caaaaacattttcaacttc	5279	5298	1	3
SEQ ID NO: 919	tgatccaaataactacctt	2093	2112	SEQ ID NO: 1922	aaggaagaaagaaaatca	3453	3472	1	3
SEQ ID NO: 920	tggatttgcttcagctgac	2150	2169	SEQ ID NO: 1923	gtcagcccagttccttcca	10924	10943	1	3
SEQ ID NO: 921	tttgcttcagctgacctca	2154	2173	SEQ ID NO: 1924	tgaggaaactcagatcaaa	12257	12276	1	3
SEQ ID NO: 922	cttggaaggaaaaggcttt	2183	2202	SEQ ID NO: 1925	aaagcattggtagagcaag	7842	7861	1	3
SEQ ID NO: 923	tggaaggaaaaggctttga	2185	2204	SEQ ID NO: 1926	tcaagtctgtgggattcca	4078	4097	1	3
SEQ ID NO: 924	ggctttgagccaacattgg	2196	2215	SEQ ID NO: 1927	ccaagaggtatttaaagcc	12950	12969	1	3
SEQ ID NO: 925	tgagccaacattggaagct	2201	2220	SEQ ID NO: 1928	agetttetgeeactgetea	13513	13532	1	3
SEQ ID NO: 926	gagccaacattggaagctc	2202	2221	SEQ ID NO: 1929	gagetttetgecaetgete	13512	13531	1	3
SEQ ID NO: 927	aacattggaagctcttttt	2207	2226	SEQ ID NO: 1930	aaaagaaacagcatttgtt -	4531	4550	1	3
SEQ ID NO: 928	tggaagctctttttgggaa	2212	2231	SEQ ID NO: 1931	ttccggcacgtgggttcca	3777	3796	1	3
SEQ ID NO: 929	ctctttttgggaagcaagg	2218	2237	SEQ ID NO: 1932	ccttactgactttgcagag	7790	7809	1	3
SEQ ID NO: 930	tttttgggaagcaaggatt	2221	2240	SEQ ID NO: 1933	aatcattgaaaaattaaaa	6722	6741	1	3
SEQ ID NO: 931	ttttcccagacagtgtcaa	2239	2258	SEQ ID NO: 1934	ttgatgaaatcattgaaaa	6715	6734	1	3
SEQ ID NO: 932	ttggctataccaaagatga	2323	2342	SEQ ID NO: 1935	tcattgctcccggagccaa	2668	2687	1	3
SEQ ID NO: 933	ataccaaagatgataaaca	2329	2348	SEQ ID NO: 1936	tgttgcttttgtaaagtat	6272	6291	1	3
SEQ ID NO: 934	gagcaggatatggtaaatg	2349	2368	SEQ ID NO: 1937	catttcagccttcgggctc	4254	4273	1	3
SEQ ID NO: 935	atggtaaatggaataatgc	2358	2377	SEQ ID NO: 1938	gcatgcctagtttctccat	9946	9965	1	3
SEQ ID NO: 936	tggtaaatggaataatgct	2359	2378	SEQ ID NO: 1939	agcacagtacgaaaaacca	10801	10820	1	3
SEQ ID NO: 937	taaatggaataatgctcag	2362	2381	SEQ ID NO: 1940	ctgaaagagatgaaattta	13059	13078	1	3
SEQ ID NO: 938	tggaataatgctcagtgtt	2366	2385	SEQ ID NO: 1941	aacagatttgaggattcca	7973	7992	1	3
SEQ ID NO: 939	tcagtgttgagaagctgat	2377	2396	SEQ ID NO: 1942	atcacaactcctccactga	9534	9553	1	3
SEQ ID NO: 940	cagtgttgagaagctgatt	2378	2397	SEQ ID NO: 1943	aatcacaactcctccactg	9533	9552	1	3
SEQ ID NO: 941	agtgttgagaagctgatta	2379	2398	SEQ ID NO: 1944	taatcacaactcctccact	9532	9551	1	3
SEQ ID NO: 942	gattaaagatttgaaatcc	2393	2412	SEQ ID NO: 1945	ggatactaagtaccaaatc	6866	6885	1	3
SEQ ID NO: 943	gatttgaaatccaaagaag	2400	2419	SEQ ID NO: 1946	cttccgtttaccagaaatc	8240	8259	1	3
SEQ ID NO: 944	atttgaaatccaaagaagt	2401	2420	SEQ ID NO: 1947	acttccgtttaccagaaat	8239	8258	1	3
SEQ ID NO: 945	atccaaagaagtcccggaa	2408	2427	SEQ ID NO: 1948	ttccaatttccctgtggat	3680	3699	1	3

SEQ ID NO: 946	tccaaagaagtcccggaag	2409	2428	SEQ ID NO: 1949	cttccaatttccctgtgga	3679	3698	1	3
SEQ ID NO: 947	agagcctacctccgcatct	2430	2449	SEQ ID NO: 1950	agattaatccgctggctct	8563	8582	1	3
SEQ ID NO: 948	gagcetaceteegcatett	2431	2450	SEQ ID NO: 1951	aagattaatccgctggctc	8562	8581	1	3
SEQ ID NO: 949	cttgggagaggagcttggt	2447	2466	SEQ ID NO: 1952	accactgggacctaccaag	12519	12538	1	3
SEQ ID NO: 950	ggagettggttttgccagt	2456	2475	SEQ ID NO: 1953	actggtggcaaaaccctcc	2726	2745	1	3
SEQ ID NO: 951	ttggttttgccagtctcca	2461	2480	SEQ ID NO: 1954	tggagaagccacactccaa	10763	10782	1	3
SEQ ID NO: 952	cagtetecatgacetecag	2471	2490	SEQ ID NO: 1955	ctggtcgcctgccaaactg	3530	3549	1	3
SEQ ID NO: 953	ctccatgacctccagctcc	2475	2494	SEQ ID NO: 1956	ggagtcattgctcccggag	2664	2683	1	3
SEQ ID NO: 954	ctgggaaagctgcttctga	2493	2512	SEQ ID NO: 1957	tcagaaagctaccttccag	7931	7950	1	3
SEQ ID NO: 955	gaggtcatcaggaagggct	2553	2572	SEQ ID NO: 1958	agccagaagtgagatcctc	3506	3525	1	3
SEQ ID NO: 956	aagaatgactttttcttc	2574	2593	SEQ ID NO: 1959	gaaggcatctgggagtctt	3827	3846	1	3
SEQ ID NO: 957	cttttttcttcactacatc	2582	2601	SEQ ID NO: 1960	gatgcttacaacactaaag	6099	6118	1	3
SEQ ID NO: 958	catcttcatggagaatgcc	2597	2616	SEQ ID NO: 1961	ggcacttccaaaattgatg	10710	10729	1	3
SEQ ID NO: 959	cttcatggagaatgccttt	2600	2619	SEQ ID NO: 1962	aaagttaattgggaagaag	12273	12292	1	3
SEQ ID NO: 960	aatgcctttgaactcccca	2610	2629	SEQ ID NO: 1963	tgggctggcttcagccatt	5729	5748	1	3
SEQ ID NO: 961	gcctttgaactccccactg	2613	2632	SEQ ID NO: 1964	cagtctgaacattgcaggc	5375	5394	1	3
SEQ ID NO: 962	caaggctggagtaaaactg	2684	2703	SEQ ID NO: 1965	cagtgcaacgaccaacttg	5072	5091	1	3
SEQ ID NO: 963	tggagtaaaactggaagta	2690	2709	SEQ ID NO: 1966	tactccaacgccagctcca	3051	3070	1	3
SEQ ID NO: 964	ggaagtagccaacatgcag	2702	2721	SEQ ID NO: 1967	ctgccatctcgagagttcc	4098	4117	1	3
SEQ ID NO: 965	tttgtgacaaatatgggca	2757	2776	SEQ ID NO: 1968	tgcctttgtgtacaccaaa	11228	11247	1	3
SEQ ID NO: 966	tgtgacaaatatgggcatc	2759	2778	SEQ ID NO: 1969	gatgggtctctacgccaca	4377	4396	1	3
SEQ ID NO: 967	ggacttcgctaggagtggg	2786	2805	SEQ ID NO: 1970	cccaaggccacaggggtcc	12333	12352	1	3
SEQ ID NO: 968	gtggggtccagatgaacac	2800	2819	SEQ ID NO: 1971	gtgttctagacctctccac	4171	4190	1	3
SEQ ID NO: 969	ttccacgagtcgggtctgg	2826	2845	SEQ ID NO: 1972	ccagaatctgtaccaggaa	12554	12573	1	3
SEQ ID NO: 970	agtcgggtctggaggctca	2833	2852	SEQ ID NO: 1973	tgagaactacgagctgact	4799	4818	1	3
SEQ ID NO: 971	tcgggtctggaggctcatg	2835	2854	SEQ ID NO: 1974	catgaaggccaaattccga	7631	7650	1	3
SEQ ID NO: 972	aaaagctgggaagctgaag	2861	2880	SEQ ID NO: 1975	cttccagacacctgatttt	7943	7962	1	3
SEQ ID NO: 973	aagctgaagtttatcattc	2871	2890	SEQ ID NO: 1976	gaatttacaattgttgctt	6261	6280	1	3
SEQ ID NO: 974	gagaccagtcaagctgctc	2900	2919	SEQ ID NO: 1977	gagetteaggaagettete	13206	13225	1	3
SEQ ID NO: 975	gcaacacattacatttggt	2926	2945	SEQ ID NO: 1978	accagtcagatattgttgc	10183	10202	1	3
SEQ ID NO: 976	acattacatttggtctcta	2931	2950	SEQ ID NO: 1979	tagaatatgaactaaatgt	11881 ⁻	11900	1	3
SEQ ID NO: 977	cattacatttggtctctac	2932	2951	SEQ ID NO: 1980	gtagctgagaaaatcaatg	7098	7117	1	3
SEQ ID NO: 978	aaacggaggtgatcccacc	2956	2975	SEQ ID NO: 1981	ggtggataccctgaagttt	3197	3216	1	3
SEQ ID NO: 979	attgagaacaggcagtcct	2979	2998	SEQ ID NO: 1982	aggaaaagcgcacctcaat	12023	12042	1	3
SEQ ID NO: 980	tgagaacaggcagtcctgg	2981	3000	SEQ ID NO: 1983	ccagcttccccacatctca	8333	8352	1	3
SEQ ID NO: 981	ctgcacctcaggcgcttac	3035	3054	SEQ ID NO: 1984	gtaagaaaatacagagcag	6432	6451	1	3
SEQ ID NO: 982	tccacagactccgcctcct	3066	3085	SEQ ID NO: 1985	aggacagagccttggtgga	3184	3203	1	3
SEQ ID NO: 983	ctgaccggggacaccagat	3093	3112	SEQ ID NO: 1986	atctgatgaggaaactcag	12251	12270	1	3

SEQ ID NO:	984	tagagctggaactgaggcc	3112	3131	SEQ I	D NO:	1987	ggcctctctggggcatcta	5136	5155	1	3
SEQ ID NO:	985	ctatgagctccagagagag	3167	3186	SEQ I	D NO:	1988	ctctcacaaaaaagtatag	6541	6560	1	3
SEQ ID NO:	986	cttggtggataccctgaag	3194	3213	SEQ I	D NO:	1989	cttcaggaagcttctcaag	13209	13228	1	3
SEQ ID NO:	987	ttgtaactcaagcagaagg	3214	3233	SEQI	D NO:	1990	ccttacacaataatcacaa	9522	9541	1	3
SEQ ID NO:	988	taactcaagcagaaggtgc	3217	3236	SEQ I	D NO:	1991	gcacctagctggaaagtta	6947	6966	1	3
SEQ ID NO:	989	gcagaaggtgcgaagcaga	3225	3244	SEQ I	D NO:	1992	totgtgggattccatctgc	4083	4102	1	3
SEQ ID NO:	990	cagaaggtgcgaagcagac	3226	3245	SEQI			gtctgtgggattccatctg	4082	4101	1	3
SEQ ID NO:	991	gtatgacettgtccagtga	3280	3299	SEQ I			tcaccaacggagaacatac		10862		3
SEQ ID NO:	992	tatgaccttgtccagtgaa	3281	3300	SEQI			ttcaccaacggagaacata		10861		3
SEQ ID NO:	993	gaagtccaaattccggatt	3297	3316	SEQI							-
SEQ ID NO:		gagggcaaaacgtcttaca	3363	3382	SEQ II			aatotcaagotttototto				3
SEQ ID NO:		agggcaaaacgtcttacag	3364	3383				tgtacaactggteegeete	4207		1	3
SEQ ID NO:		•			SEQ II			ctgttaggacaccagccct	4054		1	3
		gactcaccetggacattca	3382	3401	SEQ II			tgaaattcaatcacaagtc	9068	9087	1	3
SEQ ID NO:		ctggacattcagaacaaga	3390	3409	SEQ II	D NO:	2000	tcttttcttttcagcccag	9218	9237	1	3
SEQ ID NO:		tcatgggcgacctaagttg	3427	3446	SEQ II	D NO:	2001	caactgcagacatatatga	6627	6646	1	3
SEQ ID NO:		tgggcgacctaagttgtga	3430	3449	SEQ II	D NO:	2002	tcactccattaacctccca	6308	6327	1	3
SEQ ID NO:	1000	agttgtgacacaaaggaag	3441	3460	SEQ II	D NO:	2003	cticttttccaattgaact	13830	13849	1	3
SEQ ID NO:	1001	tgacacaaaggaagaaaga	3446	3465	SEQ II	D NO:	2004	tcttcatcttcatctgtca	10212	10231	1	3
SEQ ID NO:	1002	gacacaaaggaagaaagaa	3447	3466	SEQ II	D NO:	2005	ttetteatetteatetgte		10230		3
SEQ ID NO:	1003	ggaagaaagaaaaatcaag	3455	3474	SEQ II	O NO:	2006	cttgtcatgcctacgttcc		11359		3
								or and a surger an	11010		•	•
SEQ ID NO:	2007	aaaaagcgatggccgggtc	3947	3966 _S	EQ ID	NO.	2313g	accttgcaagaatatttt	6335	6354	1 :	3
SEQ ID NO:	2008	gtcaaatataccttgaaca	3963	39825	EQ ID	NO:	2314t	gttaacaaattccttgac	7355	7374 1	1 3	3
SEQ ID NO:		tgaacaagaacagtttgaa	3976	3995S	EQ ID	NO:		caagtteetgacettea	8302			3
SEQ ID NO:		agtttgaaaattgagattc	3987	40065			2316 g	aatctggctccctcaact	9039	9058 1	1 3	3
SEQ ID NO:		gtttgaaaattgagattcc	3988	4007S	EQ ID I	NO:		gaaataccaagtcaaaac	104461	0465 1	1 3	3
SEQ ID NO:		ttgaaaattgagattcctt	3990	4009S			2318a	aggaaaagcgcacctcaa	120221	2041 1	1 3	3
SEQ ID NO:		ctaaagatgttagagactg	4038	4057S	EQ ID	NO:		agttgaccacaagcttag	105371	0556 1	1 3	3
SEQ ID NO:		atgttagagactgttagga	4044	4063S				ccttaacaccttccacat	8065	8084 1	1 3	3
SEQ ID NO:		cagocotocacttcaagtc	4066	40858				acttctctagtcaggctg	8805	8824 1	1 3	3
SEQ ID NO:		agccctccacttcaagtct	4067	40868				gacatcgctgggctggct		5739 1	_	3
SEQ ID NO:		ccatctgccatctcgagag	4094	41135	EQ ID I	NO:		tctcaaatgacatgatgg	5322	5341 1	3	3
SEQ ID NO:		attoccaagtigtatcaac	4134	41535	EQ ID I	NO:	2324g	ttgagaagccccaagaat		6265 1		3
SEQ ID NO:		tcaactgcaagtgcctctc		41675	EQ ID I	NO:		agatcaagacactgttga		8854 1		
SEQ ID NO:		ggtgttctagacctctcca	4170	41895	EQ ID I	NO:		ggaaccctctccctcacc		4746 1		
SEQ ID NO:		ctccacgaatgtctacagc	4184	42035				ctggtaacctaaaaggag		5599 1		
SEQ ID NO: SEQ ID NO:		cacgaatgtctacagcaac	4187				_	ttgcccaccatcatcgtg	116631			
SEQ ID NO:		acgaatgtctacagcaact	4188	4207SI	EQIDI	NO:		gttgcccaccatcatcgt	116621			
SEQ ID NO:		tcctacagtggtggcaaca cgttaccacatgaaggctg		42435	EQ ID I	NO:	-	gttagttgctcttaagga	133511			
SEQ ID NO:		gaaggetgaetetgtggtt	4272					agcaagtacctgagaacg		8622 1	_	
SEQ ID NO:		gaaggetgaetetgtggtt lglggttgaeetgetttee	4283	43025				acctatgccttaatcttc	131611			
SEQ ID NO:		cctgctttcctacaatgtg	4295 4304	43145				gaaagttaaaacaacaca		6976 1		
CLG ID NO.	2020	gorriooraoaaryry	-1304	4323 SI	ין עו גי	NO:	2334C	acaccttgacattgcagg	110801	1099 1	3	•

SEQ ID NO:	2029 ctg cttt cctaca at gtg c	4305		2335gcacaccttgacattgcag	1107911098 1 3
SEQ ID NO:	2030 tcctacaatgtgcaaggat	4311	4330 SEQ ID NO:	2336 atccgctggctctgaagga	8569 8588 1 3
SEQ ID NO:	2031 tatgaccacaagaatacgt	4344	4363 SEQ ID NO:	2337 acgtccgtgtgccttcata	9976 9995 1 3
SEQ ID NO:	2032 atgaccacaagaatacgtc	4345	4364 SEQ ID NO:	2338 gacgtccgtgtgccttcat	9975 9994 1 3
SEQ ID NO:	2033gaatacgtctacactatca	4355	4374 SEQ ID NO:	2339tgattatctgaattcattc	6479 6498 1 3
SEQ ID NO:	2034tttctagattcgaatatca	4398	4417 SEQ ID NO:	2340 tgatttacatgatttgaaa	6677 6696 1 3
SEQ ID NO:	2035gattcgaatatcaaattca	4404	4423SEQ ID NO:	2341 tgaagtagctgagaaaatc	7094 7113 1 3
SEQ ID NO:	2036gaaacaacccagtctcaaa	4441	4460 SEQ ID NO:	2342tttgaaaaattctcttttc	9206 9225 1 3
SEQ ID NO:	2037cccagtctcaaaaggttta	4448	4467 SEQ ID NO:	2343 taaattcattactcctggg	1129411313 1 3
SEQ ID NO:	2038 ctcaaaaggtttactaata	4454	4473SEQ ID NO:	2344 tattcaaaactgagttgag	1222312242 1 3
SEQ ID NO:	2039tcaaaaggtttactaatat	4455	4474SEQ ID NO:	2345 atattcaaaactgagttga	1222212241 1 3
SEQ ID NO:	2040aaaaggtttactaatattc	4457	4476 SEQ ID NO:	2346gaatttgaaagttcgtttt	9272 9291 1 3
SEQ ID NO:	2041 gaaacagcatttgtttgtc	4535	4554 SEQ ID NO:	2347 gacagcatcttcgtgtttc	1120611225 1 3
SEQ ID NO:	2042 attigttigtcaaagaagt	4543	4562 SEQ ID NO:	2348 acttaaaaaatataaaaat	8014 8033 1 3
SEQ ID NO:	2043tcaagattgatgggcagtt	4561	4580 SEQ ID NO:	2349 aactotcaagtcaagttga	1341413433 1 3
SEQ ID NO:	2044 ttcagagtctcttcgttct	4578	4597 SEQ ID NO:	2350agaagatggcaaatttgaa	1198712006 1 3
SEQ ID NO:	2045 cagagtetettegttetat	4580	4599SEQ ID NO:	2351 atagcatggacttcttctg	8865 8884 1 3
SEQ ID NO:	2046atgctaaaggcacatatgg	4597	4616SEQ ID NO:	2352ccatttgagatcacggcat	9237 9256 1 3
SEQ ID NO:	2047 gcacatatggcctgtcttg	4606	4625SEQ ID NO:	2353caagttggcaagtaagtgc	9364 9383 1 3
SEQ ID NO:	2048gagtccaacctgaggttta	4659	4678SEQ ID NO:	2354taaagtgccacttttactc	6182 6201 1 3
SEQ ID NO:	2049agtccaacctgaggtttaa	4660	4679SEQ ID NO:	2355 ttaacagggaagatagact	9300 9319 1 3
SEQ ID NO:	2050cctacctccaaggcaccaa	4684	4703SEQ ID NO:	2356ttggcaagtaagtgctagg	9368 9387 1 3
SEQ ID NO:	2051 gaagatggaaccctctccc	4722	4741 SEQ ID NO:	2357gggaagaagaggcagcttc	1228312302 1 3
SEQ ID NO:	2052tgatctgcaaagtggcatc	4754	4773SEQ ID NO:	2358gatgaggaaactcagatca	1225512274 1 3
SEQ ID NO:	2053gatctgcaaagtggcatca	4755	4774SEQ ID NO:	2359tgatgaggaaactcagatc	1225412273 1 3
SEQ ID NO:	2054gcttccctaaagtatgaga	4785	4804 SEQ ID NO:	2360 tctcgtgtctaggaaaagc	5969 5988 1 3
SEQ ID NO:	2055gtatgagaactacgagctg	4796	4815SEQ ID NO:	2361 cagcttaagagacacatac	6912 6931 1 3
SEQ ID NO:	2056tctaacaagatggatatga	4860	4879SEQ ID NO:	2362 tcattttccaactaataga	1302413043 1 3
SEQ ID NO:	2057ctgctgcgttctgaatatc	4899	4918SEQ ID NO:	2363 gatacaagaaaaactgcag	6893 6912 1 3
SEQ ID NO:	2058tcattgaggttcttcagcc	4932	4951 SEQ ID NO:	2364ggctcatatgctgaaatga	5340 5359 1 3
SEQ ID NO:	2059ttctggatcactaaattcc	4955	4974SEQ ID NO:	2365ggaaggacaaggcccagaa	1254112560 1 3
SEQ ID NO:	2060ccatggtcttgagttaaat	4973	4992 SEQ ID NO:	2366 atttttattcctgccatgg	1009510114 1 3
SEQ ID NO:	2061 tottaggcactgacaaaat	4999	5018SEQ ID NO:	2367 attitttgcaagttaaaga	1401114030 1 3
SEQ ID NO:	2062acaaggcgacactaaggat	5032	5051 SEQ ID NO:	2368 atccatgatctacatttgt	6786 6805 1 3
SEQ ID NO:	2063tgcaacgaccaacttgaag	5075	5094SEQ ID NO:	2369 ctt cagggaacacaatgca	5177 5196 1 3
SEQ ID NO:	2064 caacttgaagtgtagtctc	5084	5103SEQ ID NO:	2370gagatgagagatgccgttg	6231 6250 1 3
SEQ ID NO:	2065gctggagaatgagctgaat	5108	5127 SEQ ID NO:	2371 attetettttetttteage	9214 9233 1 3
SEQ ID NO:	2066gcagagcttggcctctctg	5127	5146SEQ ID NO:	2372 cagatacaagaaaaactgc	6891 6910 1 3
SEQ ID NO:	2067tctctggggcatctatgaa		5159SEQ ID NO:	2373ttcattcaattgggagaga	
SEQ ID NO:	2068tctggggcatctatgaaat	5142	5161 SEQ ID NO:	2374atttgtaagaaaatacaga	
SEQ ID NO:	2069aacacaatgcaaaattcag	5185	5204SEQ ID NO:	2375ctgaagcattaaaactgtt	
SEQ ID NO:	2070ctcacagagctatcactgg	5223	5242SEQ ID NO:		7498 7517 1 3
SEQ ID NO:	2071tgggaagtgcttatcaggc	5239	5258SEQ ID NO:	2376ccagatgctgaacagtgag	8141 8160 1 3
SEQ ID NO:	2072ttcaaggtcagtcaagaag		5314SEQ ID NO:	2377 gcctacgttccatgtccca	1134811367 1 3
SEQ ID NO:	2073aatgacatgatgggctcat			2378cttcagtgcagaatatgaa	1196911988 1 3
SEQ ID NO:	2074gctcatatgctgaaatgaa	5341	5347SEQ ID NO:	2379atgattatctgaattcatt	6478 6497 1 3
SEQ ID NO:	2075atatgctgaaatgaaattt		5360 SEQ ID NO:	2380ttcagccattgacatgagc	5738 5757 1 3
SEQ ID NO:	2076tctgaacattgcaggctta		5364SEQ ID NO:	2381aaatagctattgctaatat	6694 6713 1 3
SEQ ID NO:	2077 gaacattgcaggcttatca		5397 SEQ ID NO:	2382taagaaccagaagatcaga	1098811007 1 3
SEQ ID NO:	2077 gaacattgcaggcttatca		5400SEQ ID NO:	2383tgatatcgacgtgaggttc	1248212501 1 3
CEG ID NO:	2070 igoaggottalcaciggac	000/	5406SEQ ID NO:	2384gtcctggattccacatgca	1184411863 1 3

SEQ ID NO:	2079 tcaaaacttgacaacattt	5412		2385aaattccttgacatgttga	7362 7381 1	3
SEQ ID NO:	2080 attlacagctctgacaagt	5427	5446 SEQ ID NO:	2386acttaaaaaatataaaaat	8014 8033 1	3
SEQ ID NO:	2081 ctctgacaagttttataag	5435	5454 SEQ ID NO:	2387 cttacttgaattccaagag	1066610685 1	3
SEQ ID NO:	2082gttaatttacagctacagc	5460	5479 SEQ ID NO:	2388gctgcatgtggctggtaac	5570 5589 1	3
SEQ ID NO:	2083 ttototggtaactacttta	5483	5502 SEQ ID NO:	2389taaaagattactttgagaa	7267 7286 1	3
SEQ ID NO:	2084 cctaaaaggagcctaccaa	5588	5607 SEQ ID NO:	2390ttggcaagtaagtgctagg	9368 9387 1	3
SEQ ID NO:	2085 aaaaggagcctaccaaaat	5591	5610 SEQ ID NO:	2391 atttacaattgttgctttt	6263 6282 1	3
SEQ ID NO:	2086 aggagectaceaaaataat	5594	5613 SEQ ID NO:	2392 attacctatgatttctcct	1011910138 1	3
SEQ ID NO:	2087 ataatgaaataaaacacat	5608	5627 SEQ ID NO:	2393 atgtcaaacactttgttat	7057 7076 1	3
SEQ ID NO:	2088 aaaacacatctatgccatc	5618	5637 SEQ ID NO:	2394 gatgaagatgacgactttt	1215012169 1	3
SEQ ID NO:	2089tgctaaggttcagggtgtg	5678	5697 SEQ ID NO:	2395 cacaagtegatteccagea	9079 9098 1	3
SEQ ID NO:	2090gagtttagccatcggctca	5697	5716 SEQ ID NO:	2396tgaggtgactcagagactc	7442 7461 1	3
SEQ ID NO:	2091 gctggcttcagccattgac	5732	5751 SEQ ID NO:	2397 gtcagtgaagttctccagc	8588 8607 1	3
SEQ ID NO:	2092atttcagcaatgtcttccg	5782	5801 SEQ ID NO:	2398 cggagcatgggagtgaaat	8620 8639 1	3
SEQ ID NO:	2093tttcagcaatgtcttccgt	5783	5802 SEQ ID NO:	2399acggagcatgggagtgaaa	8619 8638 1	3
SEQ ID NO:	2094ttcagcaatgtcttccgtt	5784	5803 SEQ ID NO:	2400aacggagcatgggagtgaa	8618 8637 1	3
SEQ ID NO:	2095 cagcaatgtcttccgttct	5786	5805 SEQ ID NO:	2401 agaagtgtcttcaaagctg	1240412423 1	3
SEQ ID NO:	2096tgtcttccgttctgtaatg	5792	5811 SEQ ID NO:	2402 cattcaattgggagagaca	6493 6512 1	3
SEQ ID NO:	2097gtcttccgttctgtaatgg	5793	5812 SEQ ID NO:	2403 ccattcagtctctcaagac	1296712986 1	3
SEQ ID NO:	2098atgggaaactcgctctctg	5851	5870 SEQ ID NO:	2404 cagataaaaaaactcaccat	1220512224 1	3
SEQ ID NO:	2099ggagaacatactgggcagc	5871	5890 SEQ ID NO:	2405gctgttttgaagactctcc	1080 1099 1	3
SEQ ID NO:	2100gttgaaagcagaacctctg	5906	5925 SEQ ID NO:	2406 cagaattcataatcccaac	8266 8285 1	3
SEQ ID NO:	2101gtctaggaaaagcatcagt	5975	5994 SEQ ID NO:	2407 actgcaagatttttcagac	1360413623 1	3
SEQ ID NO:	2102agcatcagtgcagctcttg	5985	6004 SEQ ID NO:	2408 caagaacctgttagttgct	1334313362 1	3
SEQ ID NO:	2103ttgaacacaaagtcagtgc	6001	6020 SEQ ID NO:	2409gcacatcaatattgatcaa	6410 6429 1	3
SEQ ID NO:	2104gcagacaggcacctggaaa	6038	6057 SEQ ID NO:	2410tttcagatggcattgctgc	1160211621 1	3
SEQ ID NO:	2105gaaactcaagacccaattt	6053	6072 SEQ ID NO:	2411 aaatcccatccaggttttc	8029 8048 1	3
SEQ ID NO:	2106acaatgaatacagccagga	6076	6095 SEQ ID NO:	2412 tcctttggctgtgctttgt	9674 9693 1	3
SEQ ID NO:	2107cttggatgcttacaacact	6095	6114SEQ ID NO:	2413 agtgaagttctccagcaag	8591 8610 1	3
SEQ ID NO:	2108ttggcgtggagcttactgg	6124	6143 SEQ ID NO:	2414ccagaattcataatcccaa	8265 8284 1	3
SEQ ID NO:	2109cacttttactcagtgagcc	6190	6209 SEQ ID NO:	2415ggctattgatgttagagtg	6980 6999 1	3
SEQ ID NO:	2110tttagagatgagagatgcc	6227	6246 SEQ ID NO:	2416ggcatgatgctcatttaaa	9169 9188 1	3
SEQ ID NO:	2111gagaagccccaagaattta	6249	6268 SEQ ID NO:	2417 taaagccattcagtctctc	1296212981 1	3
SEQ ID NO:	2112caattgttgcttttgtaaa	6268	6287 SEQ ID NO:	2418tttaaccagtcagatattg	1017910198 1	3
SEQ ID NO:	2113ttttgteaagtatgataaa	6278	6297 SEQ ID NO:	2419tttattgctgaatccaaaa	1364713666 1	3
SEQ ID NO:	2114ttgtaaagtatgataaaaa	6280	6299 SEQ ID NO:	2420ttttgagaggaatcgacaa	6350 6369 1	3
SEQ ID NO:	2115ttcactccattaacctccc	6307	6326 SEQ ID NO:	2421gggaaaaaacaggcttgaa	9568 9587 1	3
SEQ ID NO:	2116ttttgagaccttgcaagaa	6329	6348 SEQ ID NO:	2422ttctctctatgggaaaaaa	9558 9577 1	3
SEQ ID NO:	2117accttgcaagaatattttg	6336	6355 SEQ ID NO:	2423 caaaagaagcccaagaggt	1294012959 1	3
SEQ ID NO:	2118tcaatattgatcaattigt	6415	6434 SEQ ID NO:	2424acaaagcagattatgttga	1182111840 1	3
SEQ ID NO:	2119cagagcagccctgggaaaa	6443	6462 SEQ ID NO:	2425tttcagaccaactctctg	1361413633 1	3
SEQ ID NO:	2120cctgggaaaactcccacag	6452	6471SEQ ID NO:	2426 ctgtctctggtcagccagg	7716 7735 1	3
SEQ ID NO:	2121actcccacagcaagctaat	6461	6480 SEQ ID NO:	2427 attacacttcctttcgagt	1286112880 1	3
SEQ ID NO:	2122aattcattcaattgggaga	6489	6508 SEQ ID NO:	2428 totottoctocatggaatt	1047110490 1	3
SEQ ID NO:	2123ttcaattgggagagacaag	6495	6514 SEQ ID NO:	2429cttggagtgccagtttgaa	1180011819 1	3
SEQ ID NO:	2124aggagaaactgactgctct	6526	6545 SEQ ID NO:	2430 agagettatgggattteet	1115511174 1	3
SEQ ID NO:	2125actgactgctctcacaaaa	6533	6552 SEQ ID NO:	2431 tittggcaagctatacagt	8372 8391 1	3
SEQ ID NO:	2126gactgctctcacaaaaaag	6536	6555 SEQ ID NO:	2432 cttlgtgagtttatcagtc	9687 9706 1	3
SEQ ID NO:	2127cagacatatatgatacaat	6633	6652 SEQ ID NO:	2433 attggatatccaagatctg	1925 1944 1	3
SEQ ID NO:	2128aatttgatcagtatattaa	6649	6668 SEQ ID NO:	2434ttaaaagaaatcttcaatt	1380713826 1	3
			0 = 4 ID IVO.			-

SEQ ID NO:	2129tatgatttacatgatttga	6675	6694 SEQ ID NO:	2435tcaatgattatatcccata	1312013139 1 3	3
SEQ ID NO:	2130tttgaaaatagctattgct	6689	6708 SEQ ID NO:	2436 agcacagaaaaaaattcaaa	1385613875 1 3	3
SEQ ID NO:	2131ttgaaaatagctattgcta	6690	8709 SEQ ID NO:	2437 tagcacagaaaaaattcaa	1385513874 1 3	3
SEQ ID NO:	2132aatagctattgctaatatt	6695	6714 SEQ ID NO:	2438 aataaatggagtctttatt	1407614095 1 3	3
SEQ ID NO:	2133attattgatgaaatcattg	6711	6730 SEQ ID NO:	2439 caataccagaattcataat	8260 8279 1 3	3
SEQ ID NO:	2134aaagtottgatgagcacta	6739	6758 SEQ ID NO:	2440tagtgattacacttccttt	1285612875 1 3	3
SEQ ID NO:	2135 aagtettgatgageaetat	6740	6759 SEQ ID NO:	2441 atagcaacactaaatactt	8761 8780 1 3	3
SEQ ID NO:	2136ttgatgagcactatcatat	6745	6764 SEQ ID NO:	2442 atatccaagatgagatcaa	1309313112 1 3	3
SEQ ID NO:	2137taattttagtaaaaacaat	6769	6788 SEQ ID NO:	2443 attgagattccctccatta	1169411713 1 3	3
SEQ ID NO:	2138ttttagtaaaaacaatcca	6772	6791SEQ ID NO:	2444 tggagtgccagtttgaaaa	1180211821 1 3	3
SEQ ID NO:	2139acattigittatigaaaat	6797	6816 SEQ ID NO:	2445 atttcctaaagctggatgt	1116711186 1 3	3
SEQ ID NO:	2140 attgattttaacaaaagtg	6816	6835 SEQ ID NO:	2446 cactgttccagttgtcaat	9863 9882 1 3	3
SEQ ID NO:	2141 attttaacaaaagtggaag	6820	6839 SEQ ID NO:	2447 cttcaaagacttaaaaaat	8006 8025 1 3	3
SEQ ID NO:	2142 aaatcagaatccagataca	6880	6899 SEQ ID NO:	2448tgtaccataagccatattt	1008010099 1 3	3
SEQ ID NO:	2143gaatccagatacaagaaaa	6886	6905 SEQ ID NO:	2449 ttttctaaacttgaaattc	9057 9076 1 3	3
SEQ ID NO:	2144ttaagagacacatacagaa	6916	6935SEQ ID NO:	2450ttcttaaacattcctttaa	9483 9502 1 3	3
SEQ ID NO:	2145atccagcacctagctggaa	6942	6961 SEQ ID NO:	2451ttccaatttccctgtggat	3680 3699 1 3	3
SEQ ID NO:	2146tgagcatgtcaaacacttt	7052	7071SEQ ID NO:	2452aaagtgccacttttactca	6183 6202 1 3	3
SEQ ID NO:	2147gagcatgtcaaacactttg	7053	7072 SEQ ID NO:	2453 caaatgacatgatgggctc	5326 5345 1 3	3
SEQ ID NO:	2148aaacactttgttataaatc	7062	7081 SEQ ID NO:	2454 gattatatcccatatgttt	1312513144 1 3	
SEQ ID NO:	2149tgagaaaatcaatgccttc	7103	7122 SEQ ID NO:	2455 gaaggaaaagcgcacctca	1202112040 1 3	
SEQ ID NO:	2150tatgaagtagaccaacaaa	7152	7171SEQ ID NO:	2456tttgtggagggtagtcata	1032310342 1 3	
SEQ ID NO:	2151aagtagaccaacaaatcca	7156	7175 SEQ ID NO:	2457tggatgaagatgacgactt	1214812167 1 3	
SEQ ID NO:	2152aagttgaaggagactattc	7215	7234 SEQ ID NO:	2458gaataccaatgctgaactt	1016010179 1 3	
SEQ ID NO:	2153acaagttaagataaaagat	7256	7275 SEQ ID NO:	2459 atctaaattcagttcttgt	1132611345 1 3	
SEQ ID NO:	2154aagataaaagattactttg	7263	7282 SEQ ID NO:	2460 caaaatagaagggaatctt	2069 2088 1 3	
SEQ ID NO:	2155gattactttgagaaattag	7272	7291 SEQ ID NO:	2461 cteaacttgaaattcaatc	9061 9080 1 3	
SEQ ID NO:	2156tgagaaattagttggattt	7280	7299 SEQ ID NO:	2462 aaatccgtgaggtgactca	7435 7454 1 3	
SEQ ID NO:	2157aaattagttggatttattg	7284	7303 SEQ ID NO:	2463 caattttgagaatgaattt	1041110430 1 3	
SEQ ID NO:	2158tggatttattgatgatgct	7292	7311SEQ ID NO:	2464 agcatgcctagtttctcca	9945 9964 1 3	ż
SEQ ID NO:	2159tcattgaagatgttaacaa	7345	7364 SEQ ID NO:	2465ttgtagatgaaaccaatga	7414 7433 1 3	
SEQ ID NO:	2160 cattgaagatgttaacaaa	7346	7365 SEQ ID NO:	2466 tttgtagatgaaaccaatg	7413 7432 1 3	
SEQ ID NO:	2161 attgaagatgttaacaaat	7347	7366 SEQ ID NO:	2467 atttaagtatgatttcaat	1048710506 1 3	
SEQ ID NO:	2162ttgaagatgttaacaaatt	7348	7367 SEQ ID NO:	2468 aatttaagtatgatttcaa	1048610505 1 3	5
SEQ ID NO:	2163tgaagatgitaacaaattc	7349	7368 SEQ ID NO:	2469 gaatttaagtatgatttca	1048510504 1 3	
SEQ ID NO:	2164 acatgttgataaagaaatt	7372	7391SEQ ID NO:	2470aattccctgaagttgatgt	1147911498 1 3	
SEQ ID NO:	2165tttgattaccaccagtttg	7398	7417 SEQ ID NO:	2471 caaattgaacatccccaaa	8783 8802 1 3	
SEQ ID NO:	2166 caaaatccgtgaggtgact	7433	7452 SEQ ID NO:	2472 agtccccctaacagatttg	7964 7983 1 3	
SEQ ID NO:	2167aaaatccgtgaggtgactc	7434	7453 SEQ ID NO:	2473 gagtgaaatgctgtttttt	8630 8649 1 3	
SEQ ID NO:	2168aggtgactcagagactcaa	7444	7463 SEQ ID NO:	2474ttgatgatatctggaacct	1072310742 1 3	
SEQ ID NO:	2169gtgaaattcaggctctgga	7465	7484 SEQ ID NO:	2475 tocaatotoctottttcac	8401 8420 1 3	
SEQ ID NO:	2170gttgcagtgtatctggaaa	7539	7558 SEQ ID NO:	2476 tttcaagcaaatgcacaac	8532 8551 1 3	
SEQ ID NO:	2171ttaagttcagcatctttgg	7608	7627 SEQ ID NO:	2477 ccaatgctgaactttttaa	1016510184 1 3	
SEQ ID NO:	2172tgaaggccaaattccgaga	7633	7652 SEQ ID NO:	2478 tctcctttcttcatcttca	1020510224 1 3	ļ
SEQ ID NO:	2173aatgtatcaaatggacatt	7676	7695 SEQ ID NO:	2479aatgaagtccggattcatt	1101311032 1 3	
SEQ ID NO:	2174attcagcaggaacttcaac	7692	7711SEQ ID NO:	2480 gttgagaagccccaagaat	6246 6265 1 3	
SEQ ID NO:	2175acctgtctctggtcagcca	7714	7733 SEQ ID NO:	2481 tggcaagtaagtgctaggt	9369 9388 1 3	
SEQ ID NO:	2176 cctgtctctggtcagccag	7715	7734 SEQ ID NO:	2482 ctggacttctctagtcagg	8802 8821 1 3	
SEQ ID NO:	2177ggtcagccaggtttatagc	7724	7743 SEQ ID NO:	2483 gctaaaggagcagttgacc	1052710546 1 3	
SEQ ID NO:	2178ccaggtttatagcacactt	7730	7749 SEQ ID NO:	2484 aagtccggattcattctgg	1101711036 1 3	

SEQ ID NO:	2179gtttatagcacacttgtca	7734	7753 SEQ ID NO:	2485 tgacctgtccattcaaaac	1367313692 1	3
SEQ ID NO:	2180acttgtcacctacatttct	7745	7764 SEQ ID NO:	2486 agaaaaaggggattgaagt	1027510294 1	3
SEQ ID NO:	2181 ctgattggtggactcttgc	7762	7781 SEQ ID NO:	2487 gcaagttaaagaaaatcag	1401814037 1	3
SEQ ID NO:	2182atgaaagcattggtagagc	7839	7858 SEQ ID NO:	2488 gctcatctcctttcttcat	1020010219 1	3
SEQ ID NO:	2183tgaaagcattggtagagca	7840	7859 SEQ ID NO:	2489 tgctcatctcctttcttca	1019910218 1	3
SEQ ID NO:	2184gggttcactgttcctgaaa	7860	7879 SEQ ID NO:	2490tttcaccatagaaggaccc	8951 8970 1	3
SEQ ID NO:	2185tcaagaccatccttgggac	7879	7898 SEQ ID NO:	2491 gtccccctaacagatttga	7965 7984 1	3
SEQ ID NO:	2186ccttgggaccatgcctgcc	7889	7908 SEQ ID NO:	2492ggcaccagggctcggaagg	1397013989 1	3
SEQ ID NO:	2187ttcaggctcttcagaaagc	7921	7940 SEQ ID NO:	2493 gcttgaaggaattcttgaa	9580 9599 1	3
SEQ ID NO:	2188 ttcagataaacttcaaaga	7996	8015SEQ ID NO:	2494 tcttcataagttcaatgaa	1317513194 1	3
SEQ ID NO:	2189acttcaaagacttaaaaaa	8005	8024SEQ ID NO:	2495ttttaacaaaagtggaagt	6821 6840 1	3
SEQ ID NO:	2190atcccatccaggttttcca	8031	8050 SEQ ID NO:	2496tggagaagcaaatctggat	9464 9483 1	3
SEQ ID NO:	2191 gaatttaccatccttaaca	8055	8074SEQ ID NO:	2497 tgttgaagtgtctccattc	9881 9900 1	3
SEQ ID NO:	2192 caticottcctttacaatt	8081	8100 SEQ ID NO:	2498 aattccaattttgagaatg	1040610425 1	3
SEQ ID NO:	2193ttgaccagatgctgaacag	8137	8156 SEQ ID NO:	2499 ctgttgaaagatttatcaa	1292412943 1	3
SEQ ID NO:	2194aatcaccctgccagacttc	8225	8244 SEQ ID NO:	2500 gaagttctcaattttgatt	8514 8533 1	3
SEQ ID NO:	2195tgaccttcacataccagaa	8312	8331 SEQ ID NO:	2501 ttcttctggaaaagggtca	8876 8895 1	3
SEQ ID NO:	2196ttccagcttccccacatct	8331	8350 SEQ ID NO:	2502 agattotcagatgagggaa	8913 8932 1	3
SEQ ID NO:	2197aagctatacagtattctga	8379	8398 SEQ ID NO:	2503tcagatggcattgctgctt	1160411623 1	3
SEQ ID NO:	2198attctgaaaatccaatctc	8391	8410 SEQ ID NO:	2504 gagataaccgtgcctgaat	1154411563 1	3
SEQ ID NO:	2199tttcacattagatgcaaat	8414	8433 SEQ ID NO:	2505 attttgaaaaaaaacagaaa	9730 9749 1	3
SEQ ID NO:	2200 caaatgctgacatagggaa	8428	8447 SEQ ID NO:	2506ttccatcacaaatcctttg	9662 9681 1	3
SEQ ID NO:	2201 gagagtccaaattagaagt	8500	8519 SEQ ID NO:	2507 actttacttcccaactctc	1340213421 1	3
SEQ ID NO:	2202 agagtccaeattagaagtt	8501	8520 SEQ ID NO:	2508 aactitacticccaactct	1340113420 1	3
SEQ ID NO:	2203tctcaattttgattttcaa	8519	8538 SEQ ID NO:	2509ttgattcccttttttgaga	1152911548 1	3
SEQ ID NO:	2204 caattttgattttcaagca	8522	8541 SEQ ID NO:	2510tgctgaatccaaaagattg	1365213671 1	3
SEQ ID NO:	2205aatgcacaactctcaaacc	8541	8560 SEQ ID NO:	2511 ggtttatcaaggggccatt	1245212471 1	3
SEQ ID NO:	2206 agttctccagcaagtacct	8596	8615 SEQ ID NO:	2512aggttccatcgtgcaaact	1138011399 1	3
SEQ ID NO:	2207 agtacctgagaacggagca	8608	8627 SEQ ID NO:	2513tgctccaggagaacttact	1377213791 1	3
SEQ ID NO:	2208tcaaacacagtggcaagtt	8670	8689 SEQ ID NO:	2514aactctcaagtcaagttga	1341413433 1	3
SEQ ID NO:	2209acaatcagcttaccctgga	8743	8762 SEQ ID NO:	2515tccattctgaatatattgt	1337213391 1	3
SEQ ID NO:	2210 ctggatagcaacactaaat	8757	8776 SEQ ID NO:	2516 attttctgaacttccccag	1269412713 1	3
SEQ ID NO:	2211 ctgacctgcgcaacgagat	8821	8840 SEQ ID NO:	2517atctgatgaggaaactcag	1225112270 1	3
SEQ ID NO:	2212agatgagggaacacatgaa	8921	8940 SEQ ID NO:	2518ttcatgtccctagaaatct	1003010049 1	3
SEQ ID NO:	2213tcaacttttctaaacttga	9052	9071 SEQ ID NO:	2519tcaaggataacgtgtttga	1261012629 1	3
SEQ ID NO:	2214ttctaaacttgaaattcaa	9059	9078 SEQ ID NO:	2520ttgatgatgctgtcaagaa	7300 7319 1	3
SEQ ID NO:	2215gaaattcaatcacaagtcg	9069	9088 SEQ ID NO:	2521 cgacgaagaaaataatttc	1355813577 1	3
SEQ ID NO:	2216cactgtttggagaagggaa	9133	9152 SEQ ID NO:	2522ttccagaaagcagccagtg	1249812517 1	3
SEQ ID NO:	2217 actgtttggagaagggaag	9134	9153 SEQ ID NO:	2523cttccccaaagagaccagt	2890 2909 1	3
SEQ ID NO:	2218aattctcttttcttttcag	9213	9232 SEQ ID NO:	2524ctgattactatgaaaaatt	1363013649 1	3
SEQ ID NO:	2219ttcttttcagcccagccat	9222	9241 SEQ ID NO:	2525 atggaaaagggaaagagaa	1348613505 1	3
SEQ ID NO:	2220tttgaaagttcgttttcca	9275	9294 SEQ ID NO:	2526tggaagtgtcagtggcaaa	1037210391 1	3
SEQ ID NO:	2221 cagggaagatagacttcct	9304	9323 SEQ ID NO:	2527aggacctttcaaattcctg	9840 9859 1	3
SEQ ID NO:	2222 ataagtacaaccaaaattt	9397		2528aaatcaggatctgagttat	1403014049 1	
SEQ ID NO:	2223 acaacgagaacattatgga	9427	9446 SEQ ID NO:	2529tccattctgaatatattgt	1337213391 1	3
SEQ ID NO:	2224 aggaataaatggagaagca	9455	9474 SEQ ID NO:	2530tgctggaattgtcattcct	1172611745 1	
SEQ ID NO:	2225 agcaaatctggatttctta	9470	9489 SEQ ID NO:	2531 taagttctctgtacctgct	1171111730 1	
SEQ ID NO:	2226 tcctttaacaattcctgaa	9494	9513 SEQ ID NO:	2532ttcaaaacgagettcagga	1319813217 1	
SEQ ID NO:	2227 tttaacaattcctgaaatg	9497	9516 SEQ ID NO:	2533catttgatttaagtgtaaa	9613 9632 1	3
SEQ ID NO:	2228 acacaataatcacaactcc	9526	9545 SEQ ID NO:	2534ggagacagcatcttcgtgt	1120311222 1	3
				- -		

SEQ ID NO:	2229aagatttetetetatggga	9553 95728	EQ ID NO:	2535tcccagaaaacctcttctt	3928 3947	1	3
SEQ ID NO:	2230gaaaaaacaggcttgaagg		EQ ID NO:	2536 ccttttacaattcattttc	1301313032	1	3
SEQ ID NO:	2231ttgaaggaattcttgaaaa	9582 96018	EQ ID NO:	2537 ttttgagaatgaatttcaa	1041410433		3
SEQ ID NO:	2232 tgaaggaattettgaaaac	9583 96028	EQ ID NO:	2538 gttttggctgataaattca	1128311302		3
SEQ ID NO:	2233 agctcagtataagaaaaac		EQ ID NO:	2539 gtttgataagtacaaagct	9797 9816		3
SEQ ID NO:	2234tcaaatcctttgacaggca	9712 9731S	EQ ID NO:	2540tgcctgagcagaccattga	1168011699		3
SEQ ID NO:	2235atgaaacaaaaattaagtt	9781 9800s	EQ ID NO:	2541 aactttgcactatgttcat	1275412773		3
SEQ ID NO:	2236aattcctggatacactgtt	9851 9870S	EQ ID NO:	2542 aacacatgaatcacaaatt	8930 8949		3
SEQ ID NO:	2237ttccagttgtcaatgttga		EQ ID NO:	2543 tcaaaacgagcttcaggaa	1319913218		3
SEQ ID NO:	2238aagtgtctccattcaccat	9886 99058	EQ ID NO:	2544 atgggaagtataagaactt	4834 4853		3
SEQ ID NO:	2239gtcagcatgcctagtttct	9942 99618	EQ ID NO:	2545 agaaaaggcacaccttgac	1107211091		3
SEQ ID NO:	2240ctgccatgggcaatattac	10105 101248	EQ ID NO:	2546 gtaagaaaatacagagcag	6432 6451	1	3
SEQ ID NO:	2241tgaataccaatgctgaact	10159 101785	EQ ID NO:	2547 agttgaaggagactattca	7216 7235	-	3
SEQ ID NO:	2242 tattgttgctcatctcctt	10193 102125	EQ ID NO:	2548 aaggaaacataaactaata	1288112900		3
SEQ ID NO:	2243tgttgctcatctcctttct	10196 102158	EQ ID NO:	2549 agaagaaatctgcagaaca	1242312442		3
SEQ ID NO:	2244 tctgtcattgatgcactgc	10224 102435	EQ ID NO:	2550gcagtagactataagcaga	1392013939		3
SEQ ID NO:	2245ccacagetetgtetetgag	10297 10316s	EQ ID NO:	2551 ctcagggatctgaaggtgg	8187 8206		3
SEQ ID NO:	2246atttgtggagggtagtcat	10322 103415	EQ ID NO:	2552 atgaagtagaccaacaaat	7153 7172		3
SEQ ID NO:	2247atatggaagtgtcagtggc	10369 103885	EQ ID NO:	2553 gccacactccaacgcatat	1077010789		3
SEQ ID NO:	2248tggaaataccaagtcaaaa	10445 1046451	EQ ID NO:	2554ttttacaattcattttcca	1301513034		3
SEQ ID NO:	2249aagtcaaaacctactgtct	10455 104745	EQ ID NO:	2555 agacctagtgattacactt	1285112870		3
SEQ ID NO:	2250actgtctcttcctccatgg	10467 10486SI	EQ ID NO:	2556 ccatgcaagtcagccagt	1091610935		3
SEQ ID NO:	2251 cttcctccatggaatttaa	10474 1049381	EQ ID NO:	2557ttaatcgagaggtatgaag	7140 7159		3
SEQ ID NO:	2252attcttcaatgctgtactc	10504 1052381	EQ ID NO:	2558gagttgagggtccgggaat	1223412253		3
SEQ ID NO:	2253ttgaccacaagcttagctt	10540 10559SI	EQ ID NO:	2559aagcgcacctcaatatcaa	1202812047	-	3
SEQ ID NO:	2254cctcacctcttacttttcc	10565 1058481	EQ ID NO:	2560ggaactattgctagtgagg	1064110660	•	3
SEQ ID NO:	2255agctgcagggcacttccaa	10702 107218	EQ ID NO:	2561ttgggaagaagaggcagct	1228112300		3
SEQ ID NO:	2256ttccaaaattgatgatatc	10715 107348	Q ID NO:	2562 gatatacactagggaggaa	1273712756		3
SEQ ID NO:	2257gagaacatacaagcaaagc	10852 108718	EQ ID NO:	2563gcttggttttgccagtctc	2459 2478		3
SEQ ID NO:	2258atggcaaatgtcagctctt	10889 10908SE	Q ID NO:	2564aagaggtatttaaagccat	1295212971		3
SEQ ID NO:	2259tggcaaatgtcagctcttg	10890 10909SE	EQ ID NO:	2565caagaggtatttaaagcca	1295112970		3
SEQ ID NO:	2260ttgttcaggtccatgcaag	10906 10925SE	Q ID NO:	2566cttggggggggggggacaa	1405814077		3
SEQ ID NO:	2261 tgttcaggtccatgcaagt	10907 10926SE	Q ID NO:	2567acttgggggaggaggaaca	1405714076		3
SEQ ID NO:	2262 agttccttccatgatttcc	10932 10951SE	Q ID NO:	2568ggaatctgatgaggaaact	1224812267		3
SEQ ID NO:	2263 tgctaacactaagaaccag	10979 10998SE	Q ID NO:	2569ctggatgtaaccaccagca	1117811197		3
SEQ ID NO:	2264 actaagaaccagaagatca	10986 11005SE	Q ID NO:	2570tgatcaagaacctgttagt	1333913358		3
SEQ ID NO:	2265 ctaagaaccagaagatcag	10987 11006SE	Q ID NO:	2571 ctgatcaagaacctgttag	1333813357		3
SEQ ID NO:	2266 cagaagatcagatggaaaa	10995 11014SE	Q ID NO:	2572ttttcagaccaactctctg		1	3
SEQ ID NO:	2267aaaaatgaagtccggattc	11010 11029SE		2573gaatttgaaagttcgtttt	9272 9291	1	3
SEQ ID NO:	2268 gattcattctgggtctttc	11024 11043 SE	Q ID NO:	2574gaaaacctatgccttaatc	1315813177	-	3
SEQ ID NO:	2269 aagaaaaggcacaccttga	11071 11090 SE	Q ID NO:	2575tcaaaacctactgtctctt	1045810477		3
SEQ ID NO:	2270 aaggacacctaaggttcct	11107 11126 SE	Q ID NO:	2576aggacaccaaaataacctt		1	3
SEQ ID NO:	2271 ccagcattggtaggagaca	11191 11210SE	Q ID NO:	2577tgtcaacaagtaccactgg	1236212381	-	3
SEQ ID NO:	2272 ctttgtgtacaccaaaaac	11231 11250 SE	Q ID NO:	2578gtttttaaattgttgaaag	1314013159		3
SEQ ID NO:	2273 ccatccctgtaaaagtitt	11269 11288 SE	Q ID NO:	2579aaaagggtcatggaaatgg	8885 8904		3
SEQ ID NO:	2274 tgatctaaattcagttctt	11324 11343 SE	Q ID NO:	2580aagatagtcagtctgatca	1332613345		3
SEQ ID NO:	2275 aagaagctgagaacttcat	11424 11443 SE	Q ID NO:	2581 atgagatcaacacaatctt	1310213121		3
SEQ ID NO:	2276 tttgccctcaacctaccaa	11445 11464 SE	Q ID NO:	2582ttggtacgagttactcaaa	1263312652		3
SEQ ID NO:	2277 cttgattcccttttttgag	11528 11547 SE	Q ID NO:	2583ctcaatittgattttcaag	8520 8539		3
SEQ ID NO:	2278 ttcacgcttccaaaaagtg	11583 11602 SE	Q ID NO:	2584cactcattgattttctgaa	1268512704		3
		<u>-</u>				•	-

SEQ ID NO:	2279tgtttcagatggcattgct	11600 11619SEQ ID NO:	2585agcagattatgttgaaaca	1182511844 1 3
SEQ ID NO:	2280aatgcagtagccaacaaga	11631 11650SEQ ID NO:	2586tcttttcagcccagccatt	9223 9242 1 3
SEQ ID NO:	2281 ctgagcagaccattgagat	11683 11702SEQ ID NO:	2587 atctgatgaggaaactcag	1225112270 1 3
SEQ ID NO:	2282tgagcagaccattgagatt	11684 11703SEQ ID NO:	2588eatctgatgaggaaactca	1225012269 1 3
SEQ ID NO:	2283ttgagattccctccattaa	11695 11714SEQ ID NO:	2589ttaatcttcataagttcaa	1317113190 1 3
SEQ ID NO:	2284acttggagtgccagtttga	11799 11818SEQ ID NO:	2590tcaattgggagagacaagt	6496 6515 1 3
SEQ ID NO:	2285caaatttgaaggacttcag	11996 12015SEQ ID NO:	2591 ctgagaacttcatcatttg	1143011449 1 3
SEQ ID NO:	2286 agcccagcgttcaccgatc	12048 12067 SEQ ID NO:	2592gatccaagtatagttggct	1327813297 1 3
SEQ ID NO:	2287 cagcgttcaccgatctcca	12052 12071 SEQ ID NO:	2593tggacctgcaccaaagctg	1395213971 1 3
SEQ ID NO:	2288ctccatctgcgctaccaga	12066 12085SEQ ID NO:	2594tctgatatacatcacggag	1370313722 1 3
SEQ ID NO:	2289atgaggaaactcagatcaa	12256 12275SEQ ID NO:	2595ttgagttgcccaccatcat	1165911678 1 3
SEQ ID NO:	2290aggcagcttctggcttgct	12292 12311 SEQ ID NO:	2596agcaagtctttcctggcct	3010 3029 1 3
SEQ ID NO:	2291tgaaagacaacgtgcccaa	12319 12338SEQ ID NO:	2597ttgggagagacaagtttca	6500 6519 1 3
SEQ ID NO:	2292tatgattatgtcaacaagt	12354 12373SEQ ID NO:	2598actttgcactatgttcata	1275512774 1 3
SEQ ID NO:	2293cattaggcaaattgatgat	12467 12486SEQ ID NO:	2599atcaacacaatcttcaatg	1310713126 1 3
SEQ ID NO:	2294 ttgactcaggaaggccaag	12576 12595SEQ ID NO:	2600 cttggtacgagttactcaa	1263212651 1 3
SEQ ID NO:	2295gaaacctgggatatacact	12728 12747SEQ ID NO:	2601 agtgattacacttcctttc	1285712876 1 3
SEQ ID NO:	2296tcctttcgagttaaggaaa	12869 12888SEQ ID NO:	2602tttctgccactgctcagga	1351613535 1 3
SEQ ID NO:	2297gccattcagtctctcaaga	12966 12985SEQ ID NO:	2603 tcttccgttctgtaatggc	5794 5813 1 3
SEQ ID NO:	2298gtgctacgtaatcttcagg	12993 13012SEQ ID NO:	2604 cctgcaccaaagctggcac	1395613975 1 3
SEQ ID NO:	2299agctgaaagagatgaaatt	13057 13076SEQ ID NO:	2605aatttattcaaaacgagct	1319213211 1 3
SEQ ID NO:	2300aatttacttatcttattaa	13072 13091 SEQ ID NO:	2606 ttaaaagaaatcttcaatt	1380713826 1 3
SEQ ID NO:	2301 ttttaaattgttgaaagaa	13142 13161 SEQ ID NO:	2607 ttctctctatgggaaaaaa	9558 9577 1 3
SEQ ID NO:	2302taatcttcataagttcaat	13172 13191SEQ ID NO:	2608 attgagattccctccatta	1169411713 1 3
SEQ ID NO:	2303atattttgatccaagtata	13271 13290SEQ ID NO:	2609 tataagcagaagcacatat	1392913948 1 3
SEQ ID NO:	2304tgaaatattatgaacttga	13303 13322SEQ ID NO:	2610tcaaccttaatgattttca	8287 8306 1 3
SEQ ID NO:	2305caatttctgcacagaaata	13434 13453SEQ ID NO:	2611 tattettettiteeaattg	1382613845 1 3
SEQ ID NO:	2306agaagattgcagagctitc	13501 13520SEQ ID NO:	2612 gaaatottcaatttattot	1381313832 1 3
SEQ ID NO:	2307gaagaaaataatttctgat	13562 13581 SEQ ID NO:	2613atcagttcagataaacttc	7991 8010 1 3
SEQ ID NO:	2308ttgacctgtccattcaaaa	13672 13691SEQ ID NO:	2614ttttgagaatgaatttcaa	1041410433 1 3
SEQ ID NO:	2309tcaaaactaccacacattt	13685 13704 SEQ ID NO:	2615aaatteettgacatgttga	7362 7381 1 3
SEQ ID NO:	2310tttttaaaagaaatcttc	13803 13822 SEQ ID NO:	2616gaagtgtcagtggcaaaaa	1037410393 1 3
SEQ ID NO:	2311aggatctgagttattttgc	14035 14054 SEQ ID NO:	2617gcaagggttcactgttcct	7856 7875 1 3
SEQ ID NO:	2312tttgctaaacttgggggag	14049 14068 SEQ ID NO:	2618 ctccccaggacctttcaaa	9834 9853 1 3

= Match Number

B = Middle Matching Bases

Table 9. Selected palindromic sequences from human ApoB

	Table	9. Selected parmuton	ne seq	nences mon name	an Apob					
		Source	Start I		Match	Start Index	End index	#	В	
SEQ ID NO:	2619	ggccattccagaagggaag	517	536 SEQ ID NO:	3948 cttccgttctgtaatggcc	5803		1	l	9
SEQ ID NO:	2620	tgccatctcgagagttcca	4107	4126 SEQ ID NO:	3949tggaactctctccatggca	10884	10903	1	J	8
SEQ ID NO:	2621	catgtcaaacactttgtta	7064	7083 SEQ ID NO:	3950taacaaattccttgacatg	7366	7385	1	ı	8
SEQ ID NO:	2622	tttgttataaatcttattg	7076	7095 SEQ ID NO:	3951 caataagatcaatagcaaa	8998	9017	1	I	8
SEQ ID NO:	2623	tctggaaaagggtcatgga	8888	8907 SEQ ID NO:	3959tccatgtcccatttacaga	11364	11383	1	l	8
SEQ ID NO:	2624	cagctcttgttcaggtcca	10908	10927 SEQ ID NO:	3960 tggacctgcaccaaagctg	13980	13979	1	ı	8
SEQ ID NO:	2625	ggaggttccccagctctgc	364	383 SEQ ID NO:	3961 gcagccctgggaaaactcc	6455	6474	1	ŀ	7
SEQ ID NO:	2626	ctgttttgaagactctcca	1089	1108 SEQ ID NO:	3962tggagggtagtcataacag	10335	10354	1	ı	7
SEQ ID NO:	2627	agtggctgaaacgtgtgca	1305	1324 SEQ ID NO:	3963tgcagagctttctgccact	13516	13535	1	I	7
SEQ ID NO:	2628	ccaaaatagaagggaatct	2076	2095 SEQ ID NO:	3964 agattcctttgccttttgg	4008	4027	1	i	7
SEQ ID NO:	2629	tgaagagaagattgaattt	3628	3647 SEQ ID NO:	3965 aaattotottttotttoa	9220	9239	1	I	7
SEQ ID NO:	2630	agtggtggcaacaccagca	4238	4257 SEQ ID NO:	3966 tgctagtgaggccaacact	10657	10676	1	ì	7
SEQ ID NO:	2631	aaggctccacaagtcatca	5958	5977 SEQ ID NO:	3967 tgatgatatctggaacctt	10732	10751	1	I	7
SEQ ID NO:	2632	gtcagccaggtttatagca	7733	7752 SEQ ID NO:	3968 tgctaagaaccttactgac	7789	7808	1	1	7
SEQ ID NO:	2633	tgatatctggaaccttgaa	10735	10754 SEQ ID NO:	3969 ttcactgttcctgaaatca	7871	7890	1	i	7
SEQ ID NO:	2634	gtcaagttgagcaatttct	13431	13450 SEQ ID NO:	3970 agaaaaggcacaccttgac	11080	11099	1	!	7
SEQ ID NO:	2635	atccagatggaaaagggaa	13488	13507 SEQ ID NO:	3971 ttccaatttccctgtggat	3688	3707	1	1	7
SEQ ID NO:	2636	atttgtttgtcaaagaagt	4551	4570 SEQ ID NO:	3972 acttcagagaaatacaaat	11409	11428	4	1	6
SEQ ID NO:	2637	ctggaaaatgtcagcctgg	212	231 SEQ ID NO:	3973 ccagacttccgtttaccag	8243	8262	2	2	6
SEQ ID NO:	2638	accaggaggttcttcttca	1737	1756 SEQ ID NO:	3974tgaagtgtagtctcctggt	5097	5116	2	2	6
SEQ ID NO:	2639	aaagaagttctgaaagaat	1964	1983 SEQ ID NO:	3975 attccatcacaaatccttt	9669	9688	2	2	6
SEQ ID NO:	2640	gctacagcttatggctcca	3578	3597 SEQ ID NO:	3976 tggatctaaatgcagtagc	11631	11650	2	2	6
SEQ ID NO:	2641	atcaatattgatcaatttg	6422	6441 SEQ ID NO:	3977 caaagaagtcaagattgat	4561	4580	- 2	2	6
SEQ ID NO:	2642	gaattatcttttaaaacat	7334	7353 SEQ ID NO:	3978 atgtgttaacaaaatattc	11502	11521	2	2	6
SEQ ID NO:	2643	cgaggcccgcgctgctggc	138	157 SEQ ID NO:	3979gccagaagtgagatcctcg	3515	3534	1	1	6
SEQ ID NO:	2644	acaactatgaggctgagag	279	298 SEQ ID NO:	3980 ctctgagcaacaaatttgt	10317	10336	. 1	1	6
SEQ ID NO:	2645	gctgagagttccagtggag	290	309 SEQ ID NO:	3981 ctccatggcaaatgtcagc	10893	10912	1	1	в
SEQ ID NO:	2646	tgaagaaaaccaagaactc	456	475 SEQ ID NO:	3982 gagtcattgaggttcttca	4937	4956	- 1	1	6
SEQ ID NO:	2647	cctacttacatcctgaaca	566	585 SEQ ID NO:	3983 tgttcataagggaggtagg	12774	12793	1	1	6
SEQ ID NO:	2648	ctacttacatcctgaacat	567	586 SEQ ID NO:	3984 atgttcataagggaggtag	12773	12792	1	1	6
SEQ ID NO:	2649	gagacagaagaagccaagc	623	642 SEQ ID NO:	3985 gcttggttttgccagtctc	2467	2486	1	1	6
SEQ ID NO:	2650	cactcactttaccgtcaag	679	698 SEQ ID NO:	3986 cttgaacacaaagtcagtg	6008	6027	1	1	6
SEQ ID NO:	2651	ctgatcagcagcagccagt	830	849 SEQ ID NO:	3987 actgggaagtgcttatcag	5245			1	6
SEQ ID NO:	2652	actggacgctaagaggaag	862	881 SEQ ID NO:	3988 cttccccaaagagaccagt	2898	2917	1	1	6
SEQ ID NO:	2653	agaggaagcatgtggcaga	873	892 SEQ ID NO:	3989tctggcatttactttctct	5929			1	6
SEQ ID NO:	2654	tgaagactctccaggaact	1095	1114 SEQ ID NO:	3990 agttgaaggagactattca	7224			1	6
SEQ ID NO:	2655	ctctgagcaaaatatccag	1129	1148 SEQ ID NO:	3991 ctggttactgagctgagag	1169				6
SEQ ID NO:	2656	atgaagcagtcacatctct	1197	1216 SEQ ID NO:	3992 agagetgecagtectteat	10024				6
SEQ ID NO:	2657	ttgccacagctgattgagg	1217	1236 SEQ ID NO:	3993 cctcctacagtggtggcaa	4230			1	6
SEQ ID NO:	2658	agctgattgaggtgtccag	1224	1243 SEQ ID NO:	3994 ctggattocacatgcagct	11855			1	6
SEQ ID NO:	2659	tgctccactcacatcctcc	1286	1305 SEQ ID NO:	3995ggaggctttaagttcagca	7609				6
SEQ ID NO:	2660	tgeeecgtgtgcatgccee	1311		3996ttgggagagacaagtttca	6508				8
SEQ ID NO:	2661	gacattgctaattacctga	1511	1530 SEQ ID NO:	3997tcagaagctaagcaatgtc	7240				6
SEQ ID NO:	2662	ttcttcttcagactttcct	1746	1765 SEQ ID NO:	3998 aggagagtccaaattagaa	8506				6
SEQ ID NO:	2663	ccaatatcttgaactcaga	1911	1930 SEQ ID NO:	3999tctgaattcattcaattgg	6493				8
SEQ ID NO:	2664	aaagttagtgaaagaagtt	1954		4000 aactaccctcactgccttt	2140			1	6
SEQ ID NO:	2665	aagttagtgaaagaagttc	1955	1974 SEQ ID NO:	4001 gaacctctggcatttactt	5924			1	6
SEQ ID NO:	2666	aaagaagttotgaaagaat	1964	1983 SEQ ID NO:	4002 attototoggtaactacttt	5490				6
OLG ID NO:	2000			TOEU ID NO.		0.00	5000		•	•

SEQ ID NO:	2667	tttggctataccaaagatg	2330	2349 SEQ ID NO:	4003 catcttaggcactgacaaa	5005	5024	1	6
SEQ ID NO:	2668	tgttgagaagctgattaaa	2389	2408 SEQ ID NO:	4004tttagccatcggctcaaca	5708	5727	1	6
SEQ ID NO:	2669	caggaagggctcaaagaat	2569	2588 SEQ ID NO:	4005 attectta a ca attectg	9500	9519	1	6
SEQ ID NO:	2670	aggaagggctcaaagaatg	2570	2589SEQ ID NO:	4006 cattecttta acaatteet	9499	9518	1	6
SEQ ID NO:	2671	gaagggctcaaagaatgac	2572	2591 SEQ ID NO:	4007 gtcagtcttcaggctcttc	7922	7941	1	6
SEQ ID NO:	2672	caaagaatgactittttct	2580	2599 SEQ ID NO:	4008 aga aggatggcatttttg	14008	14027	1	6
SEQ ID NO:	2673	catggagaatgcctttgaa	2611	2630 SEQ ID NO:	4009ttcagagccaaagtccatg	7127	7146	1	6
SEQ ID NO:	2674	ggagccaaggctggagtaa	2687	2706 SEQ !D NO:	4010ttactccaacgccagctcc	3058	3077	1	6
SEQ ID NO:	2675	tcattccttccccaaagag	2892	2911 SEQ ID NO:	4011 ctctctggggcatctatga	5147	5166	1	6
SEQ ID NO:	2676	acctatgagctccagagag	3173	3192 SEQ ID NO:	4012ctctcaagaccacagaggt	12984	13003	1	6
SEQ ID NO:	2677	gggcaaaacgtcttacaga	3373	3392 SEQ ID NO:	4013tctgaaagacaacgtgccc	12325	12344	1	6
SEQ ID NO:	2678	accctggacattcagaaca	3395	3414 SEQ ID NO:	4014tgttgctaaggttcagggt	5683	5702	1	6
SEQ ID NO:	2679	atgggcgacctaagttgtg	3437	3456 SEQ ID NO:	4015cacaaattagtttcaccat	8949	8968	1	в
SEQ ID NO:	2680	gatgaagagaagattgaat	3626	3645 SEQ ID NO:	4016attccagcttccccacatc	8338	8357	1	6
SEQ ID NO:	2681	caatgtagataccaaaaaa	3664	3683 SEQ ID NO:	4017ttttttggaaatgccattg	8651	8670	1	6
SEQ ID NO:	2682	gtagataccaaaaaaaatga	3668	3687 SEQ ID NO:	4018tcatgtgatgggtctctac	4379	4398	1	6
SEQ ID NO:	2683	gcttcagttcatttggact	4517	4536 SEQ ID NO:	4019agtcaagaaggacttaagc	5312	5331	1	6
SEQ ID NO:	2684	tttgtttgtcaaagaagtc	4552	4571 SEQ ID NO:	4020gacttcagagaaatacaaa	11408	11427	1	6
SEQ ID NO:	2685	ttgtttgtcaaagaagtca	4553	4572 SEQ ID NO:	4021tgacttcagagaaatacaa	11407	11426	1	6
SEQ ID NO:	2686	tggcaatgggaaactcgct	5854	5873 SEQ ID NO:	4022agcgagaatcaccctgcca	8227	8246	1	6
SEQ ID NO:	2687	aacctctggcatttacttt	5925	5944 SEQ ID NO:	4023aaaggagatgtcaagggtt	10607	10626	1	6
SEQ ID NO:	2688	catttactttctctcatga	5934	5953 SEQ ID NO:	4024tcatttgaaagaataaatg	7034	7053	1	6
SEQ ID NO:	2689	aaagtcagtgccctgctta	6017	6036 SEQ ID NO:	4025taagaaccttactgacttt	7792	7811	1	8
SEQ ID NO:	2690	tcccattttttgagacctt	6330	6349 SEQ ID NO:	4026aaggacttcaggaatggga	12012	12031	1	6
SEQ ID NO:	2691	catcaatattgatcaattt	6421	6440 SEQ ID NO:	4027 aaattaaaaagtettgatg	6740	6759	1	6
SEQ ID NO:	2692	taaagatagttatgattta	6673	6692 SEQ ID NO:	4028taaaccaaaacttggttta	9027	9048	1	6
SEQ ID NO:	2693	tattgatgaaatcattgaa	6721	6740 SEQ ID NO:	4029ttcaaagacttaaaaaata	8015	8034	1	6
SEQ ID NO:	2694	atgatctacatttgtttat	6798	6817 SEQ ID NO:	4030 ataaagaaattaaagtcat	7388	7407	1	6
SEQ ID NO:	2695	agagacacatacagaatat	6927	6946 SEQ ID NO:	4031 atatattgtcagtgcctct	13390	13409	1	6
SEQ ID NO:	2696	gacacatacagaatataga	6930	6949 SEQ ID NO:	4032 totaaatteagttettgte	11335	11354	1	6.
SEQ ID NO:	2697	agcatgtcaaacactttgt	7062		4033 acaaagtcagtgccctgct	6015	6034	1	6
SEQ ID NO:	2698	ttttagaggaaaccaagg	7523	7542 SEQ ID NO:	4034 cctttgtgtacaccaaaaa	11238	11257	1	6
SEQ ID NO:	2699	ttttagaggaaaccaaggc	7524		4035 gcctttgtgtacaccaaaa	11237	11256	1	6
SEQ ID NO:	2700	ggaagatagacttcctgaa	9315	9334 SEQ ID NO:	4036ttcagaaatactgttttcc	12832	12851	1	6
SEQ ID NO:	2701	cactgittctgagtcccag	9342		4037 ctgggacctaccaagagtg	12531	12550	1	6
SEQ ID NO:	2702	cacaaatcctttggctgtg	9676	9695 SEQ ID NO:	4038 cacatttcaaggaattgtg	10071	10090	1	6
SEQ ID NO:	2703	ttcctggatacactgttcc		9880 SEQ ID NO:	4039ggaactgttgactcaggaa	12577	12596	1	6
SEQ ID NO:	2704	gaaatctcaagctttctct	10050	10069 SEQ ID NO:	4040 agagccaggtcgagctttc	11052	11071	1	6
SEQ ID NO:	2705	tticticatcticatctgt	10218	10237 SEQ ID NO:	4041 acagctgaaagagatgaaa	13063	13082	1	6
SEQ ID NO:	2706	tctaccgctaaaggagcag	10529	10548 SEQ ID NO:	4042 ctgcacgctttgaggtaga	11769	11788	1	6
SEQ ID NO:	2707	ctaccgctaaaggagcagt	10530	10549 SEQ ID NO:	4043 actgcacgctttgaggtag	11768	11787	1	6
SEQ ID NO:	2708	agggcctctttttcaccaa	10839	10858 SEQ !D NO:	4044 ttggccaggaagtggccct	10965	10984	1	6
SEQ ID NO:	2709	ttctccatccctgtaaaag		11292 SEQ ID NO:	4045cttttcaccaacggagaa	10846	10865	1	8
SEQ ID NO:		gaaaaacaaagcagattat		11843 SEQ ID NO:	4046 ataaactgcaagattttc	13608	13627	1	6
SEQ ID NO:	2710 2711	actcactcattgattttct	12690	12709 SEQ ID NO:	4047 agaaaatcaggatctgagt	14035	14054	1	6
SEQ ID NO:	2711	taaactaatagatgtaatc	12898	12917 SEQ ID NO:	4048 gattaccaccagcagttta	13586	13605	1	6
	2713	caaaacgagcticaggaag	13208	13227 SEQ ID NO:	4049 cttcgtgaagaatattttg	13268	13287	1	6
SEQ ID NO: SEQ ID NO:		tggaataatgctcagtgtt	2374	2393 SEQ ID NO:	4050 aacacttacttgaattcca	10670	10689	3	5
SEQ ID NO:	2714	gatttgaaatccaaagaag	2408	2427 SEQ ID NO:	4051 cttcagagaaatacaaatc	11410	11429	3	5
	2715	atttgaaatccaaagaagt	2400	2428 SEQ ID NO:	4052 acttcagagaaatacaaat	11409	11428	3	5
SEQ ID NO:	2716	amgaaatocaaagaagt	4700	~~~SEQ ID NO:	-voz acitoayayaaatacaaat	11703	11720	J	9

SEQ ID NO:	2717	atcaacagccgcttctttg	998	1017 SEQ ID NO:	4053 caaagaagtcaagattgat	4561	4580	2	5
SEQ ID NO:	2718	tgttttgaagactctccag	1090	1109 SEQ ID NO:	4054 ctggaaagttaaaacaaca	6963	6982	2	5
SEQ ID NO:	2719	cccttctgatagatgtggt	1332	1351 SEQ ID NO:	4055 accasagctggcaccaggg	13969	13988	2	5
SEQ ID NO:	2720	tgagcaagtgaagaacttt	1876	1895 SEQ ID NO:	4056 aaagccattcagtctctca	12971	12990	2	5
SEQ ID NO:	2721	atttgaaatccaaagaagt	2409	2428 SEQ ID NO:	4057 acttttctaaacttgaaat	9063	9082	2	5
SEQ ID NO:	2722	atccaaagaagtcccggaa	2416	2435 SEQ ID NO:	4058ttccggggaaacctgggat	12729	12748	2	5
SEQ ID NO:	2723	agagcctacctccgcatct	2438	2457 SEQ ID NO:	4059 agatggtacgttagcctct	11929	11948	2	5
SEQ ID NO:	2724	aatgcctttgaactcccca	2618	2637 SEQ ID NO:	4060 tgggaactacaatttcatt	7020	7039	2	5
SEQ ID NO:	2725	gaagtccaaattccggatt	3305	3324 SEQ ID NO:	4061 aatcttcaatttattcttc	13823	13842	2	5
SEQ ID NO:	2726	tgcaagcagaagccagaag	3504	3523 SEQ ID NO:	4062 cttcaggttccatcgtgca	11384	11403	2	5
SEQ ID NO:	2727	gaagagaagattgaatttg	3629	3648 SEQ ID NO:	4063 caaaacctactgtctcttc	10467	10486	2	5
SEQ ID NO:	2728	atgctaaaggcacatatgg	4605	4824 SEQ ID NO:	4064 ccatatgaaagtcaagcat	12664	12683	2	5
SEQ ID NO:	2729	teecteaectecaectetg	4745	4764 SEQ ID NO:	4065 cagatteteagatgaggga	8920	8939	2	5
SEQ ID NO:	2730	atttacagctctgacaagt	5435	5454 SEQ ID NO:	4066 acttitctaaacttgaaat	9063	9082	2	5
SEQ ID NO:	2731	aggagectaceaaaataat	5602	5621 SEQ ID NO:	4067 attatgttgaaacagtcct	11838	11857	2	5
SEQ ID NO:	2732	aaagctgaagcacatcaat	6409	6428 SEQ ID NO:	4068 attgttgctcatctccttt	10202	10221	2	5
SEQ ID NO:	2733	ctgctggaaacaacgagaa	9426	9445SEQ ID NO:	4069ttctgattaccaccagcag	13582	13601	2	5
SEQ ID NO:	2734	ttgaaggaattcttgaaaa	9590	9609 SEQ ID NO:	4070 ttttaaaagaaatcttcaa	13813	13832	2	5
SEQ ID NO:	2735	gaagtaaaagaaaattttg	10751	10770 SEQ ID NO:	4071 caaaacctactgtctcttc	10467	10486	2	5
SEQ ID NO:	2736	tgaagaagatggcaaattt	11992	12011 SEQ ID NO:	4072 aaatgtcagctcttgttca	10902	10921	2	5
SEQ ID NO:	2737	aggatctgagttattttgc	14043	14062 SEQ ID NO:	4073 gcaagtcagcccagttcct	10928	10947	2	5
SEQ ID NO:	2738	gtgcccttctcggttgctg	26	45SEQ ID NO:	4074 cagccattgacatgagcac	5748	5767	1	5
SEQ ID NO:	2739	ggcgctgcctgcgctgctg	154	173 SEQ ID NO:	4075 cagctccacagactccgcc	3070	3089	1	5
SEQ ID NO:	2740	ctgcgctgctgctgctgct	162	181 SEQ ID NO:	4076agcagaaggtgcgaagcag	3232	3251	1	5
SEQ ID NO:	2741	gctgctggcgggcgccagg	178	197 SEQ ID NO:	4077 cctggattccacatgcagc	11854	11873	1	5
SEQ ID NO:	2742	aagaggaaatgctggaaaa	201	220 SEQ ID NO:	4078tttttcttcactacatctt	2592	2611	1	5
SEQ ID NO:	2743	ctggaaaatgtcagcctgg	212	231 SEQ ID NO:	4079 ccagacttccacatcccag	3923	3942	1	5
SEQ ID NO:	2744	tggagtccctgggactgct	304	323 SEQ ID NO:	4080 agcatgcctagtttctcca	9953	9972	1	5
SEQ ID NO:	2745	ggagtccctgggactgctg	305	324 SEQ ID NO:	4081 cagcatgcctagtttctcc	9952	9971	1	5
SEQ ID NO:	2746	tgggactgctgattcaaga	313	332 SEQ ID NO:	4082 tottocatcacttgaccca	2050	2069	1	5
SEQ ID NO:	2747	ctgctgattcaagaagtgc	318	337 SEQ ID NO:	4083gcacaccttgacattgcag	11087	11106	1	5
SEQ ID NO:	2748	tgccaccaggatcaactgc	334	353 SEQ ID NO:	4084gcaggctgaactggtggca	2725	2744	1	5
SEQ ID NO:	2749	gccaccaggatcaactgca	335	354 SEQ ID NO:	4085tgcaggctgaactggtggc	2724	2743	1	5
SEQ ID NO:	2750	tgcaaggttgagctggagg	350	369 SEQ ID NO:	4086 cctocacctctgatctgca	4752	4771	1	5
SEQ ID NO:	2751	caaggttgagctggaggtt	352	371 SEQ ID NO:	4089aacccctacatgaagcttg	13763	13782	1	5
SEQ ID NO:	2752	ctctgcagcttcatcctga	377	396 SEQ ID NO:	4090tcaggaagcttctcaagag	13219	13238	1	5
SEQ ID NO:	2753	cagcttcatcctgaagacc	382	401 SEQ ID NO:	4091 ggtcttgagttaaatgctg	4985	5004	1	5
SEQ ID NO:	2754	gcttcatcctgaagaccag	384	403 SEQ ID NO:	4092 ctggacgctaagaggaagc	863	882	1	5
SEQ ID NO:	2755	tcatcctgaagaccagcca	387	406 SEQ ID NO:	4093tggcatggcattatgatga	3612	3631	1	5
SEQ ID NO:	2756	gaaaaccaagaactctgag	460	479 SEQ ID NO:	4094 ctcaaccttaatgattttc	8294	8313	1	5
SEQ ID NO:	2757	agaactctgaggagtttgc	468	487 SEQ ID NO:	4095 gcaagctatacagtattct	8385	8404	1	5
SEQ ID NO:	2758	tctgaggagtttgctgcag	473	492 SEQ ID NO:	4096 ctgcaggggatcccccaga	2534	2553	1	5
SEQ ID NO:	2759	tttgctgcagccatgtcca	482	501 SEQ ID NO:	4097tggaagtgtcagtggcaaa	10380	10399	1	5
SEQ ID NO:	2760	caagaggggcatcatttct	586	605 SEQ ID NO:	4098 agaataaatgacgttcttg	7043	7062	1	5
SEQ ID NO:	2761	tcactttaccgtcaagacg	682	701 SEQ ID NO:	4099 cgtctacactatcatgtga	4368	4387	1	5
SEQ ID NO:	2762	tttaccgtcaagacgagga	686	705 SEQ ID NO:	4100 teettgacatgttgataaa	7374	7393	1	5
SEQ ID NO:	2763	cactggacgctaagaggaa	861	880 SEQ ID NO:	4101ttccagaaagcagccagtg	12506	12525	1	5
SEQ ID NO:	2764	aggaagcatgtggcagaag	875	894 SEQ ID NO:	4102 citcatacacattaatcct	9996	10015	1	5
SEQ ID NO:	2765	caaggagcaacacctcttc	901	920SEQ ID NO:	4103 gaagtagtactgcatcttg	6843	6862	1	5
					· •				

SEQ ID NO:	2766	acagactttgaaacttgaa	967	986 SEQ ID NO:	4104ttcaattcttcaatgctgt	10508	10527	1	5
SEQ ID NO:	2767	tgatgaagcagtcacatct	1195	1214 SEQ ID NO:	4105 agatttgaggattccatca	7984	8003	1	5
SEQ ID NO:	2768	agcagtcacatctctcttg	1201	1220 SEQ ID NO:	4106 caaggagaaactgactgct	6532	6551	1	5
SEQ ID NO:	2769	ccagececateaetttaca	1239	1258 SEQ ID NO:	4107tgtagtctcctggtgctgg	5102	5121	1	5
SEQ ID NO:	2770	ctccactcacatcctccag	1288	1307 SEQ ID NO:	4108 ctggagcttagtaatggag	8717	8736	1	5
SEQ ID NO:	2771	catgccaaccccttctga	1322	1341 SEQ ID NO:	4109 tcagatgagggaacacatg	8927	8946	1	5
SEQ ID NO:	2772	gagagatcttcaacatggc	1398	1417 SEQ ID NO:	4110 gccaccetggaactetete	10877	10896	1	5
SEQ ID NO:	2773	tcaacatggcgagggatca	1407	1426 SEQ ID NO:	4111 tgatcccacctctcattga	2973	2992	1	5
SEQ ID NO:	2774	ccaccttgtatgcgctgag	1437		4112 ctcagggatctgaaggtgg	8195	8214	1	5
SEQ ID NO:	2775	gtcaacaactatcataaga	1463	1482 SEQ ID NO:	4113 tcttgagttaaatgctgac	4987	5006	1	5
SEQ ID NO:	2776	tggacattgctaattacct	1509	1528 SEQ ID NO:	4114 aggtatattcgaaagtcca	12807	12826	1	5
SEQ ID NO:	2777	ggacattgctaattacctg	1510	1529 SEQ ID NO:	4115 caggtatattcgaaagtcc	12806	12825	1	5
SEQ ID NO:	2778	ttctgcgggtcattggaaa	1581	1600 SEQ ID NO:	4116tttcacatgccaaggagaa	6522	6541	1	5
SEQ ID NO:	2779	ccagaactcaagtcttcaa	1628	1647 SEQ ID NO:	4117ttgaagtgtagtctcctgg	5096	5 1 15	1	5
SEQ ID NO:	2780	agicticaatcctgaaatg	1638	1657 SEQ ID NO:	4118 cattlctgattggtggact	7765	7784	1	5
SEQ ID NO:	2781	tgagcaagtgaagaacttt	1876	1895 SEQ ID NO:	4119 anagtgccacttttactca	6191	6210	1	5
SEQ ID NO:	2782	agcaagtgaagaactttgt	1878	1897 SEQ ID NO:	4120acaaagtcagtgccctgct	6015	6034	1	5
SEQ ID NO:	2783	tctgaaagaatctcaactt	1972	1991 SEQ ID NO:	4121 aagtccataatggttcaga	12819	12838	1	5
SEQ ID NO:	2784	actgtcatggacttcagaa	1994	2013 SEQ ID NO:	4122ttctgaatatattgtcagt	13384	13403	1	5
SEQ ID NO:	2785	acttgacccagcctcagcc	2059	2078 SEQ ID NO:	4123 ggctcaccctgagagaagt	12399	12418	1	5
SEQ ID NO:	2786	tccaaataactaccttcct	2104	2123 SEQ ID NO:	4124 aggaagatatgaagatgga	4720	4739	1	5
SEQ ID NO:	2787	actaccctcactgcctttg	2141	2160 SEQ ID NO:	4125 caaatttgtggagggtagt	10327	10346	1	5
SEQ ID NO:	2788	ttggatttgcttcagctga	2157	2176 SEQ ID NO:	4126tcagtataagtacaaccaa	9400	9419	1	5
SEQ ID NO:	2789	ttggaagctctttttggga	2219	2238 SEQ ID NO:	4127tcccgattcacgcttccaa	11585	11604	1	5
SEQ ID NO:	2790	ggaagctctttttgggaag	2221	2240 SEQ ID NO:	4128 cttcagaaagctaccttcc	7937	7956	1	5
SEQ ID NO:	2791	tttttcccagacagtgtca	2246	2265 SEQ ID NO:	4129tgaccttctctaagcaaaa	4884	4903	1	5
SEQ ID NO:	2792	agacagtgtcaacaaagct	2254	2273 SEQ ID NO:	4130 agcttggttttgccagtct	2466	2485	1	5
SEQ ID NO:	2793	cittggctataccaaagat	2329	2348 SEQ ID NO:	4131 atctcgtgtctaggaaaag	5976	5995	1	5
SEQ ID NO:	2794	caaagatgataaacatgag	2341	2360 SEQ ID NO:	4132 ctcaaggataacgtgtttg	12617	12636	1	5
SEQ ID NO:	2795	gatatggtaaatggaataa	2363	2382 SEQ ID NO:	4133ttatcttatteattatatc	13087	13106	1	5
SEQ ID NO:	2796	ggaataatgctcagtgttg	2375	2394 SEQ ID NO:	4134 caacacttacttgaattcc	10669	10688	1	5
SEQ ID NO:	2797	tttgaaatccaaagaagtc	2410	2429 SEQ ID NO:	4135 gacttcagagaaatacaaa	11408	11427	1	5
SEQ ID NO:	2798	gatcccccagatgattgga	2542	2561 SEQ ID NO:	4136tccaatttcctgtggatc	3689	3708	1	5
SEQ ID NO:	2799	cagatgattggagaggtca	2549	2568 SEQ ID NO:	4137tgaccacacaaacagtctg	5371	6390	1	5
SEQ ID NO:	2800	agaatgactttttcttca	2583	2602 SEQ ID NO:	4138tgaagtccggattcattct	11023	11042	1	5
SEQ ID NO:	2801	gaactccccactggagctg	2627	2646 SEQ ID NO:	4139 cagctcaaccgtacagttc	11869	11888	1	5
SEQ ID NO:	2802	atatcttcatctggagtca	2660	2679 SEQ ID NO:	4140tgacttcagtgcagaatat	11974	11993	1	5
SEQ ID NO:	2803	gtcattgctcccggagcca	2675	2694 SEQ ID NO:	4141 tggccccgtttaccatgac	5817	5836	1	5
SEQ ID NO:	2804	gctgaagtttatcattcct	2881	2900 SEQ ID NO:	4142 aggaggctttaagttcagc	7608	7627	1	5
SEQ ID NO:	2805	attecttecceaaagagae	2894	2913 SEQ ID NO:	4143 gtctcttcctccatggaat	10478	10497	1	5
SEQ ID NO:	2806	ctcattgagaacaggcagt	2984	3003 SEQ ID NO:	4144 actgactgcacgctttgag	11764	11783	1	5
SEQ ID NO:	2807	ttgagcagtattctgtcag	3150	3169 SEQ ID NO:	4145 ctgagagaagtgtcttcaa	12407	12426	1	5
SEQ ID NO:	2808	accttgtccagtgaagtcc	3293	3312SEQ ID NO:	4146ggacggtactgtcccaggt	12792	12811	1	5
SEQ ID NO:	2809	ccagtgaagtccaaattcc	3300	3319 SEQ ID NO:	4147ggaaggcagagtttactgg	9156	9175	1	5
SEQ ID NO:	2810	acattcagaacaagaaaat		3421 SEQ ID NO:	4148 atttcctaaagctggatgt	11175	11194	1	5
SEQ ID NO:	2811	gaaaatcaagggtgttat	3471	3490 SEQ ID NO:	4149ataaactgcaagatttttc	13608	13627	1	5
SEQ ID NO:	2812	aaatcaagggtgttatttc	3474	3493 SEQ ID NO:	4150 gaaacaatgcattagattt	9753	9772	1	5
SEQ ID NO:	2813	tggcattatgatgaagaga	3617	3636SEQ ID NO:	4151 totocogtgtataatgcca	11789	11808	1	5
SEQ ID NO:	2814	aagagaagattgaatttga	3630	3649 SEQ ID NO:	4152tcaaaacctactgtctctt	10466	10485	1	5
SEQ ID NO:	2815	aaatgacttccaatttccc		3700 SEQ ID NO:	4153gggaactacaatttcattt	7021	7040	1	5
OLG ID NO.	2010			again in NO.	Jo gggaacavaatttoattt	1041	, 070	'	J

SEQ ID NO:	2816	atgacttccaatttccctg	3683	3702 SEQ ID NO:	4154 caggctgattacgagtcat	4925	4944	1	5
SEQ ID NO:	2817	acticcaatticcctgtgg	3686	3705 SEQ ID NO:	4155 ccacgaaaaatatggaagt	10368	10387	1	5
SEQ ID NO:	2818	agttgcaatgagctcatgg	3811	3830 SEQ ID NO:	4156 ccatcagttcagataaact	7997	8016	1	5
SEQ ID NO:	2819	tttgcaagaccacctcaat	3868	3887 SEQ ID NO:	4157attgacctgtccattcaaa	13679	13698	1	5
SEQ ID NO:	2820	gaaggagttcaacctccag	3892	3911 SEQ ID NO:	4158 ctggaattgtcattccttc	11736	11755	1	5
SEQ ID NO:	2821	acttccacatcccagaaaa	3927	3946 SEQ ID NO:	4159ttttaacaaaagtggaagt	6829	6848	1	5
SEQ ID NO:	2822	ctcttcttaaaaagcgatg	3947	3966 SEQ ID NO:	4160 catcactgccaaaggagag	8494	8513	1	5
SEQ ID NO:	2823	aaaagcgatggccgggtca	3956	3975 SEQ ID NO:	4161tgactcactcattgatttt	12688	12707	1	5
SEQ ID NO:	2824	ttcctttgccttttggtgg	4011	4030 SEQ ID NO:	4162 ccacaaacaatgaagggaa	9264	9283	1	5
SEQ ID NO:	2825	caagtctgtgggattccat	4087	4106 SEQ ID NO:	4163 atgggaaaaaacaggcttg	9574	9593	1	5
SEQ ID NO:	2826	aagtocctacttttaccat	4125	4144 SEQ ID NO:	4164 atgggaagtataagaactt	4842	4861	1	5
SEQ ID NO:	2827	tgcctctcctgggtgttct	4167	4186 SEQ ID NO:	4165 agaaaaacaaacacaggca	9651	9670	1	5
SEQ ID NO:	2828	accagcacagaccatttca	4250	4269 SEQ ID NO:	4166tgaagtgtagtctcctggt	5097	5116	1	5
SEQ ID NO:	2829	ccagcacagaccatticag	4251	4270 SEQ ID NO:	4167 ctgaaatacaatgctctgg	5519	5538	1	5
SEQ ID NO:	2830	actatcatgtgatgggtct	4375	4394 SEQ ID NO:	4168 agacacctgattttatagt	7956	7975	1	5
SEQ ID NO:	2831	accacagatgtctgcttca	4504	4523 SEQ ID NO:	4169tgaaggctgactctgtggt	4290	4309	1	5
SEQ ID NO:	2832	ccacagatgtctgcttcag	4505	4524 SEQ ID NO:	4170 ctgagcaacaaatttgtgg	10319	10338	1	5
SEQ ID NO:	2833	tttggactccaaaaagaaa	4528	4547 SEQ ID NO:	4171 tttctctcatgattacaaa	5941	5960	1	5
SEQ ID NO:	2834	tcaaagaagtcaagattga	4560	4579 SEQ ID NO:	4172tcaaggataacgtgtttga	12618	12637	1	5
SEQ ID NO:	2835	atgagaactacgagctgac	4806	4825 SEQ ID NO:	4173gtcagatattgttgctcat	10195	10214	1	5
SEQ ID NO:	2836	ttaaaatctgacaccaatg	4826	4845 SEQ ID NO:	4174 cattcattgaagatgttaa	7350	7369	1	5
SEQ ID NO:	2837	gaagtataagaactttgcc	4846	4865 SEQ ID NO:	4175ggcaaatttgaaggacttc	12002	12021	1	5
SEQ ID NO:	2838	aagtataagaactttgcca	4847	4866 SEQ ID NO:	4176tggcaaatttgaaggactt	12001	12020	1	5 :
SEQ ID NO:	2839	ttcttcagcctgctttctg	4949	4968 SEQ ID NO:	4177 cagaatocagatacaagaa	6892	6911	1	5
SEQ ID NO:	2840	ctggatcactaaattccca	4965	4984 SEQ ID NO:	4178 tgggtctttccagagccag	11041	11060	1	5
SEQ ID NO:	2841	aaattaatagtggtgctca	5022	5041 SEQ ID NO:	4179tgagaagocccaagaattt	6256	6275	1	5.
SEQ ID NO:	2842	agtgcaacgaccaacttga	5081	5100 SEQ ID NO:	4180tcaaattcctggatacact	9856	9876	1	5
SEQ ID NO:	2843	ctgggaagtgcttatcagg	5246	5265 SEQ ID NO:	4181 cctgaccttcacataccag	8318	8337	1	5
SEQ ID NO:	2844	gcaaaaacattttcaactt	5286	5305 SEQ ID NO:	4182aagtaaaagaaaattttgc	10752	10771	1	5
SEQ ID NO:	2845	aaaaacatttcaacttca	5288	5307 SEQ ID NO:	4183tgaagtaaaagaaaatttt	10750	10769	1	5
SEQ ID NO:	2846	tcagtcaagaaggacttaa	5310		4184ttaaggacttccattctga	13371	13390	1	5
SEQ ID NO:	2847	tcaaatgacatgatgggct	5333	5352 SEQ ID NO:	4185 agcccatcaatatcattga	6213	6232	1	5
SEQ ID NO:	2848	cacacaaacagtctgaaca	5375	5394 SEQ ID NO:	4186tgtttcaactgcctttgtg	11227	11246	1	5
SEQ ID NO:	2849	tcttcaaaacttgacaaca	5417	5436 SEQ ID NO:	4187tgttttcctatttccaaga	12843	12862	1	5
SEQ ID NO:	2850	caagttttataagcaaact	5449	5468 SEQ ID NO:	4188 agttattttgctaaacttg	14051	14070	1	5
SEQ ID NO:	2851	tggtaactactttaaacag	5496	5515 SEQ ID NO:	4189ctgtttttagaggaaacca	7520	7539	1	5
SEQ ID NO:	2852	aacagtgacctgaaataca	5510		4190tgtatagcaaattcctgtt	5898	5917	1	5
SEQ ID NO:	2853	gggaaactacggctagaac	5552	5571 SEQ ID NO:	4191 gttccttccatgatttccc	10941	10960	1	5
SEQ ID NO:	2854	aacacatctatgccatctc	5628	5647 SEQ ID NO:	4192 gagacagcatcttcgtgtt	11212	11231	1	5
SEQ ID NO:	2855	tcagcaagctataaagcag	5660	5679 SEQ ID NO:	4193 ctgctaagaaccttactga	7788	7807	1	5
SEQ ID NO:	2856	gcagacactgttgctaagg	5675	5694 SEQ ID NO:	4194 cctitcaagcactgactgc	11754	11773	1	5
SEQ ID NO:	2857	tctggggagaacatactgg	5874	5893 SEQ ID NO:	4195ccaggttttccacaccaga	8046	8065	1	5
SEQ ID NO:	2858	ttctctcatgattacaaag	5942	5961 SEQ ID NO:	4196 ctttttcaccaacggagaa	10846	10865	1	5
SEQ ID NO:	2859	ctgagcagacaggcacctg	6042	6061 SEQ ID NO:	4197 caggaggctttaagttcag	7607	7626	1	5
SEQ ID NO:	2860	caatttaacaacaatgaat	6074	6093 SEQ ID NO:	4198 attocttoctttacaattg	8090	8109	1	5
SEQ ID NO:	2861	tggacgaactctggctgac	6148	6167 SEQ ID NO:	4199 gtcagcccagttccttcca	10932	10951	1	5
SEQ ID NO:	2862	cttttactcagtgagccca	6200	6219 SEQ ID NO:	4200 tgggctaaacgtatgaaag	7835	7854	1	5
SEQ ID NO:	2863	tcattgatgctttagagat	6225	6244 SEQ ID NO:	4201 atcttcateagttcaatga	13182	13201	1	5
SEQ ID NO:	2864	aaaaccaagatgttcactc	6303	6322 SEQ ID NO:	4202 gagtgaaatgctgtttttt	8638	8657	1	5
					= =				

SEQ ID NO:	2865	aggaatcgacaaaccatta	6365	6384 SEQ ID NO:	4203 taatgattttcaagttcct	8302	8321	1	5
SEQ ID NO:	2866	tagttgtactggaaaacgt	6384	6403 SEQ ID NO:	4204 acgttagcctctaagacta	11936	11955	1	5
SEQ ID NO:	2867	ggaaaacgtacagagaaag	6394	6413 SEQ ID NO:	4205 cttttacaattcattttcc	13022	13041	1	5
SEQ ID NO:	2868	gaaaacgtacagagaaagc	6395	6414 SEQ ID NO:	4206 gctttctcttccacatttc	10060	10079	1	5
SEQ ID NO:	2869	aaagotgaagoacatcaat	6409	6428 SEQ ID NO:	4207 attgatgttagagtgcttt	6992	7011	1	5
SEQ ID NO:	2870	aagctgaagcacatcaata	6410	6429 SEQ ID NO:	4208 tattgatgttagagtgctt	6991	7010	1	5
SEQ ID NO:	2871	tgaagcacatcaatattga	6414	6433 SEQ ID NO:	4209tcaaccttaatgattttca	8295	8314	1	5
SEQ ID NO:	2872	atcaatattgatcaatttg	6422	6441 SEQ ID NO:	4210 canage cate act gat gat	1668	1687	1	5
SEQ ID NO:	2873	taatgattatctgaattca	6484	6503 SEQ ID NO:	4211 tgaaatcattgaaaaatta	6727	6746	1	5
SEQ ID NO:	2874	gattatctgaattcattca	6488	6507 SEQ ID NO:	4212tgaagtagctgagaaaatc	7102	7121	1	5
SEQ ID NO:	2875	aattgggagagacaagttt	6506	6525 SEQ ID NO:	4213aaacattccittaacaatt	9496	9515	1	5
SEQ ID NO:	2876	aaaatagctattgctaata	6701	6720 SEQ ID NO:	4214tattgaaaatattgatttt	6814	6833	1	5
SEQ ID NO:	2877	aaaattaaaaagtottgat	6739	6758 SEQ ID NO:	4215atcatatccgtgtaatttt	6765	6784	1	5
SEQ ID NO:	2878	ttgaaaatattgattttaa	6816	6835 SEQ ID NO:	4216ttaatcttcataagttcaa	13179	13198	1	5
SEQ ID NO:	2879	agacatccagcacctagct	6946	6965 SEQ ID NO:	4217 agcttggttttgccagtct	2466	2485	1	5
SEQ ID NO:	2880	caatttcatttgaaagaat	7029	7048 SEQ ID NO:	4218 attocttoctttacaattg	8090	8109	1	5
SEQ ID NO:	2881	aggitttaatggataaatt	7182		4219aattgttgaaagaaaacct	13155	13174	1	5
SEQ ID NO:	2882	cagaagctaagcaatgtcc	7241	7260 SEQ ID NO:	4220ggacaaggcccagaatctg	12553	12572	1	5
SEQ ID NO:	2883	teegateaeagattacttt	7270		4221 aaagaaaacctatgcctta	13163	13182	1	5
SEQ ID NO:	2884	aaagattactttgagaaat	7277	7296 SEQ ID NO:	4222 atttcttaaacattccttt	9489	9508	1	5
SEQ ID NO:	2885	gagaaattagttggattta	7289	7308 SEQ ID NO:	4223taaagccattcagtctctc	12970	12989	1	5
SEQ ID NO:	2886	atttattgatgatgctgtc	7303	7322SEQ ID NO:	4224 gacatgttgataaagaaat	7379	7398	1	5
SEQ ID NO:	2887	gaattatctttaaaacat	7334	7353 SEQ ID NO:	4225 atgtatcaaatggacattc	7685	7704	1	5
SEQ ID NO:	2888	ttaccaccagtttgtagat	7411	7430 SEQ ID NO:	4226atctggaaccttgaagtaa	10739	10758	1	5
SEQ ID NO:	2889	ttgcagtgtatctggaaag	7548	7567 SEQ ID NO:	4227cttttcacattagatgcaa	8420	8439	1	5
SEQ ID NO:	2890	cattcagcaggaacttcaa	7699	7718SEQ ID NO:	4228ttgaaggacttcaggaatg	12009	12028	1	5
SEQ ID NO:	2891	acacctgatttlatagtcc	7958	7977 SEQ ID NO:	4229ggactcaaggataacgtgt	12614	12633	1	5
SEQ ID NO:	2892	ggattccatcagttcagat	7992	8011 SEQ ID NO:	4230atcttcaatgattatatcc	13124	13143	1	5
SEQ ID NO:	2893	ttgtagaaatgaaagtaaa	8112	8131 SEQ ID NO:	4231 tttatgattatgtcaacaa	12360	12379	1	5
SEQ ID NO:	2894	ctgaacagtgagctgcagt	8156	8175SEQ ID NO:	4232 actggacttctctagtcag	8809	8828	1	5
SEQ ID NO:	2895	aatccaatctcctctttc	8407	8426 SEQ ID NO:	4233gaaaaatgaagtccggatt	11017	11036	1	5
SEQ ID NO:	2896	attttgattttcaagcaaa	8532	8551 SEQ ID NO:	4234tttgcaagttaaagaaaat	14023	14042	1	5
SEQ ID NO:	2897	ttttgattttcaagcaaat	8533	8552 SEQ ID NO:	4235 atttgatttaagtgtaaaa	9622	9641	1	5
SEQ ID NO:	2898	tgattttcaagcaaatgca	8536	8555 SEQ ID NO:	4236tgcaagttaaagaaaatca	14025	14044	1	5
SEQ ID NO:	2899	atgctgttttttggaaatg	8645	8664 SEQ ID NO:	4237 cattggtaggagacagcat	11203	11222	1	5
SEQ ID NO:	2900	tgctgttttttggaaatgc	8646	8665 SEQ ID NO:	4238gcattggtaggagacagca	11202	11221	1	5
SEQ ID NO:	2901	aaaaaaatacactggagct	8706	8725SEQ ID NO:	4239agctagagggcctcttttt	10833	10852	1	5
SEQ ID NO:	2902	actggagcttagtaatgga	8716	8735 SEQ ID NO:	4240tccactcacatcctccagt	1289	1308	1	5
SEQ ID NO:	2903	cttctggaaaagggtcatg	8886	8905SEQ ID NO:	4241 catgaacccctacatgaag	13759	13778	1	5
SEQ ID NO:	2904	ggaaaagggtcatggaaat	8891	8910 SEQ ID NO:	4242 atttgaaagttcgttttcc	9282	9301	1	5
SEQ ID NO:	2905	gggcctgcccagattctc	8910	8929 SEQ ID NO:	4243 gagaacattatggaggccc	9440	9459	1	5
SEQ ID NO:	2906	ttctcagatgagggaacac	8924	8943 SEQ ID NO:	4244 gtgtcttcaaagctgagaa	12416	12435	1	5
SEQ ID NO:	2907	gatgagggaacacatgaat	8930	8949SEQ ID NO:	4245attccagcttccccacatc	8338	8357	1	5
SEQ ID NO:	2908	ctttggactgtccaataag	8986	9005 SEQ ID NO:	4246 cttatgggatttcctaaag	11167	11186	1	6
SEQ ID NO:	2909	gcatccacaaacaatgaag	9260	9279 SEQ ID NO:	4247 cttcatctgtcattgatgc	10227	10246	1	5
SEQ ID NO:	2910	cacaaecaatgaagggaat	9265	9284 SEQ ID NO:	4248 attocctgaagttgatgtg	11488	11507	1	5
SEQ ID NO:	2911	ccaaaatttctctgctgga	9415	9434SEQ ID NO:	4249tccatcacaaatcctttgg	9671	9890	1	5
SEQ ID NO:	2912	caaaatttctctgctggaa	9416	9435SEQ ID NO:	4250ttccatcacaaatcctttg	9670	9689	1	5
SEQ ID NO:	2913	tctgctggaaacaacgaga	9425	9444 SEQ ID NO:	4251 tctcaagagttacagcaga	13229	13248	1	5

SEQ ID NO:	2914	ctgctggaaacaacgagaa	9426 9445 SEQ ID NO:	4252ttctcaagagttacagcag	13228	13247	1	5
SEQ ID NO:	2915	agaacattatggaggccca	9441 9460 SEQ ID NO:	4253tgggcctgcccagattct	8909	8928	1	5
SEQ ID NO:	2916	agaagcaaatctggatttc	9475 9494 SEQ ID NO:	4254 gaaatcttcaatttattct	13821	13840	1	5
SEQ ID NO:	2917	tttctctctatgggaaaaa	9565 9584 SEQ ID NO:	4255 tttttgcaagttaaagaaa	14021	14040	1	5
SEQ ID NO:	2918	tcagagcatcaaatccttt	9712 9731 SEQ ID NO:	4256aaagaaaatcaggatctga	14033	14052	1	5
SEQ ID NO:	2919	cagaaacaatgcattagat	9751 9770 SEQ ID NO:	4257 atctatgccatctcttctg	5633	5652	1	5
SEQ ID NO:	2920	tacacattaatcctgccat	10001 10020 SEQ ID NO:	4258 atggagtctttattgtgta	14089	14108	1	5
SEQ ID NO:	2921	agtcagatattgttgctca	10194 10213 SEQ ID NO:	4259tgagaactacgagctgact	4807	4826	1	5
SEQ ID NO:	2922	ggagggtagtcataacagt	10336 10355 SEQ ID NO:	4260 actggtggcaaaaccctcc	2734	2753	1	5
SEQ ID NO:	2923	caaaagccgaaattccaat	10404 10423 SEQ ID NO:	4261 attgaagtacctacttttg	8366	8385	1	5
SEQ ID NO:	2924	aaaagccgaaattccaatt	10405 10424 SEQ ID NO:	4262 aattgaagtacctactitt	8365	8384	1	5
SEQ ID NO:	2925	ttcaagcaagaacttaatg	10436 10455 SEQ ID NO:	4263 cattatggcccttcgtgaa	13258	13277	1	5
SEQ ID NO:	2926	cctcttacttttccattga	10578 10597 SEQ ID NO:	4264tcaaaagaagcccaagagg	12947	12966	1	5
SEQ ID NO:	2927	tgaggccaacacttacttg	10663 10682 SEQ ID NO:	4265 caagcatctgattgactca	12676	12695	1	5
SEQ ID NO:	2928	cacttacttgaattccaag	10672 10691 SEQ ID NO:	4266 cttgaacacaaagtcagtg	6008	6027	1	5
SEQ ID NO:	2929	gaagtaaaagaaaattttg	10751 10770 SEQ ID NO:	4267 caaaaacattttcaacttc	5287	5306	1	5
SEQ ID NO:	2930	cctggaactctctccatgg	10882 10901 SEQ ID NO:	4268 ccatttacagatcttcagg	11372	11391	1	5
SEQ ID NO:	2931	agctggatgtaaccaccag	11184 11203 SEQ ID NO:	4269 ctggattccacatgcagct	11855	11874	1	5
SEQ ID NO:	2932	aaaattccctgaagttgat	11485 11504 SEQ ID NO:	4270 atcatalccgtgtaatttt	6765	6784	1	5
SEQ ID NO:	2933	cagatggcattgctgcttt	11613 11632 SEQ ID NO:	4271 aaagcigagaagaaatctg	12424	12443	1	5
SEQ ID NO:	2934	agatggcattgctgctttg	11614 11633 SEQ ID NO:	4272 caaagctgagaagaaatct	12423	12442	1	5
SEQ ID NO:	2935	tgttgaaacagtcctggat	11842 11861 SEQ ID NO:	4273 atccaagatgagatcaaca	13103	13122	1	5
SEQ ID NO:	2936	catattcassactgagttg	12229 12248 SEQ ID NO:	4274 caactctctgattactatg	13631	13650	1	5
SEQ ID NO:	2937	aaagatttatcaaaagaag	12938 12957 SEQ ID NO:	4275 cttcaattlattcttcttt	13826	13845	1	5
SEQ ID NO:	2938	attitccaactaatagaag	13034 13053 SEQ ID NO:	4276 cttcaaagacttaaaaaat	8014	8033	1	5
SEQ ID NO:	2939	aattatatccaagatgaga	13097 13116 SEQ ID NO:	4277 tctcttcctccatggaatt	10479	10498	1	5
SEQ ID NO:	2940	ttcaggaagctictcaaga	13218 13237 SEQ ID NO:	4278 tcttcataagttcaatgaa	13183	13202	1	5
SEQ ID NO:	2941	ttgagcaatttctgcacag	13437 13456 SEQ ID NO:	4279 ctgttgaaagatttatcaa	12932	12951	1	5
SEQ ID NO:	2942	ctgatatacatcacggagt	13712 13731 SEQ ID NO:	4280 actcaatggtgaaattcag	7465	7484	1	5
SEQ ID NO:	2943	acatcacggagttactgaa	13719 13738 SEQ ID NO:	4281 ttcagaagctaagcaatgt	7239	7258	1	5
SEQ ID NO:	2944	actgcctatattgataaaa	13882 13901 SEQ ID NO:	4282 ttttggcaagctatacagt	8380	8399	1	5
SEQ ID NO:	2945	aggatggcattitttgcaa	14011 14030 SEQ ID NO:	4283 ttgcaagcaagtctttcct	3013	3032	1	5
SEQ ID NO:	2946	tttttgcaagttaaagaa	14020 14039 SEQ ID NO:	4284 ttctctctatgggaaaaaa	9566	9585	1	5
SEQ ID NO:	2947	tecagaactcaagtettca	1627 1646 SEQ ID NO:	4285tgaaatgctgtittttgga	8641	8660	3	4
SEQ ID NO:	2948	agttagtgaaagaagttct	1956 1975 SEQ ID NO:	4286 agaalct glaccaggaact	12564	12583	3	4
SEQ ID NO:	2949	atttacagctctgacaagt	5435 5454 SEQ ID NO:	4287 acttcagagaaatacaaat	11409	11428	3	4
SEQ ID NO:	2950	gattatctgaattcattca	6488 6507 SEQ ID NO:	4288 tgaaaccaatgacaaaatc	7429	7448	3	4
SEQ ID NO:	2951	gtgcccttctcggttgctg	26 45 SEQ ID NO:	4289 cagctgagcagacaggcac	6039	6058	2	4
SEQ ID NO:	2952	attcaagcacctccggaag	253 272 SEQ ID NO:	4290 cttcataagttcaatgaat	13184	13203	2	4
SEQ ID NO:	2953	gactgctgattcaagaagt	316 335 SEQ ID NO:	4291 acttcccaactctcaagtc	13415	13434	2	4
SEQ ID NO:	2954	ttgctgcagccatgtccag	483 502 SEQ ID NO:	4292 ctgggcagctgtatagcaa	5889	5908	2	4
SEQ ID NO:	2955	agaaagatgaacctactta	555 574 SEQ ID NO:	4293 taagtatgatttcaattct	10498	10517	2	4
SEQ ID NO:	2956	tgaagactctccaggaact	1095 1114 SEQ ID NO:	4294 agttcaatgaatttattca	13191	13210	2	4
SEQ ID NO:	2957	atetetettgecacagetg	1210 1229 SEQ ID NO:	4295 cagcccagccatttgagat	9237	9256	2	4
SEQ ID NO:	2958	tctctcttgccacagctga	1211 1230 SEQ ID NO:	4296 tcagcccagccatttgaga	9236	9255	2	4
SEQ ID NO:	2959	tgaggtgtccagccccatc	1231 1250 SEQ ID NO:	4297 gatgggaaagccgccctca	5216	5235	2	4
SEQ ID NO:	2960	ccagaactcaagtcticaa	1628 1647 SEQ ID NO:	4298 ttgaaagcagaacctctgg	5915	5934	2	4
SEQ ID NO:	2961	ctgaaaaagttagtgaaag	1949 1968 SEQ ID NO:	4299 ctttctcgggaatattcag	10631	10650	2	4
SEQ ID NO:	2962	tttttcccagacagtgtca	2246 2265 SEQ ID NO:	4300 tgacaggcattttgaaaaa	9730	9749	2	4
SEQ ID NO:	2963	ttttcccagacagtgtcaa	2247 2266 SEQ ID NO:	4301 ttgacaggcattttgaaaa	9729	9748	2	4

SEQ ID NO:	2984	cattcagaacaagaaaatt	3403	3422 SEQ ID NO:	4302 aattocaattttgagaatg	10414	10433	2	4
SEQ ID NO:	2965	tgaagagaagattgaattt	3628		4303 aaatgtcagctcttgttca	10902	10921	2	4
SEQ ID NO:	2966	tttgaatggaacacaggca	3644		4304tgccagtttgaaaaacaaa	11815	11834	2	4
SEQ ID NO:	2967	tictagaticgaatatcaa	4407		4305ttgacatgttgataaagaa	7377	7396	2	4
SEQ ID NO:	2968	gattcgaatatcaaattca	4412	4431 SEQ ID NO:	4306tgaagtagaccaacaaatc	7162	7181	2	4
SEQ ID NO:	2969	tgcaacgaccaacttgaag	5083		4307 cttcaggttccatcgtgca	11384	11403	2	4
SEQ ID NO:	2970	ttaagctctcaaatgacat		5344 SEQ ID NO:	4308 atgttgataaagaaattaa	7382	7401	2	4
SEQ ID NO:	2971	caatttaacaacaatgaat	6074	6093 SEQ ID NO:	4309attcaaactgcctatattg	13876	13895	2	4
SEQ ID NO:	2972	tgaatacagccaggacttg			4310 caagagcacacggtcttca	10687	10706	2	4
SEQ ID NO:	2973	catcaatattgatcaattt	6421	6440 SEQ ID NO:	4311 aaattccctgaagttgatg	11486	11505	2	4
SEQ ID NO:	2974	ttgagcatgtcaaacactt	7059	7078 SEQ ID NO:	4312 aagtaagtgctaggttcaa	9381	9400	2	4
SEQ ID NO:	2975	tgaaggagactattcagaa	7227		4313ttctgcacagaaatattca	13446	13465	2	4
SEQ ID NO:	2976	ttcaggctcttcagaaagc	7929		4314 gcttgctaacctctctgaa	12312	12331	2	4
SEQ ID NO:	2977	tecacaaattgaacateee	8787	8806 SEQ ID NO:	4315gggacctaccaagagtgga	12533	12552	2	4
SEQ ID NO:	2978	tgaataccaatgctgaact	10167	10186 SEQ ID NO:	4316 agttcaatgaatttattca	13191	13210	2	4
SEQ ID NO:	2979	taaacteatagatgtaatc	12898 1	12917 SEQ ID NO:	4317 gattactatgaaaaattta	13640	13659	2	4
SEQ ID NO:	2980	ttgacctgtccattcaaaa	136801	13699 SEQ ID NO:	4318ttttaaaagaaatcttcaa	13813	13832	2	4
SEQ ID NO:	2981	gggctgagtgcccttctcg	19	38 SEQ ID NO:	4319 cgaggccaggccgcagccc	84	103	1	4
SEQ ID NO:	2982	ggctgagtgecettetegg	20	39 SEQ ID NO:	4320ccgaggccaggccgcagcc	83	102	1	4
SEQ ID NO:	2983	ctgagtgcccttctcggtt	22	41 SEQ ID NO:	4321 aaccgtgcctgaatctcag	11557	11576	1	4
SEQ ID NO:	2984	tctcggttgctgccgctga	33	52 SEQ ID NO:	4322tcagctgacctcatcgaga	2168	2187	1	4
		caggccgcagcccaggagc	90		4323gctctgcagcttcatcctg	376	395	1	4
SEQ ID NO:	2985			¹⁰⁹ SEQ ID NO:				, ,	
SEQ ID NO:	2986	gctggcgctgcctgcgctg	151	170 SEQ ID NO:	4324 cagcacagaccatticagc	4252	4271	1	4
SEQ ID NO:	2987	tgctgctggcgggggcgccag	177 227	196 SEQ ID NO:	4325 ctggatgtaaccaccagca	11186	11205	1	4
SEQ ID NO:	2988	ctggtctgtccaaaagatg ctgagagttccagtggagt		246 SEQ ID NO:	4326 catccigaagaccagccag	388	407	1	4
SEQ ID NO:	2989		291 299	310 SEQ ID NO:	4327actcaccctggacattcag	3391	3410	1	4
SEQ ID NO:	2990	tccagtggagtccctggga		318 SEQ ID NO:	4328tcccggagccaaggctgga	2683	2702	1	4
SEQ ID NO:	2991	aggttgagctggaggttcc	354 358	373 SEQ ID NO:	4329ggaaccctctccctcacct	4736	4755	1	4
SEQ ID NO:	2992	tgagctggaggttccccag		377 SEQ ID NO:	4330 ctgggaggcatgatgctca	9171	9190	1	4
SEQ ID NO:	2993	tctgcagcttcatcctgaa	378	397 SEQ ID NO:	4331ttcaaatataatcggcaga	3269	3288	1	4
SEQ ID NO:	2994	gccagtgcaccctgaaaga	402	421 SEQ ID NO:	43321cttccgttctgtaatggc	5802	5821	1	4
SEQ ID NO:	2995	ctctgaggagtttgctgca	472	491 SEQ ID NO:	4333 tgcaagaatattttgagag	6348	6367	1	4
SEQ ID NO:	2996	aggtatgagctcaagctgg	500	519 SEQ ID NO:	4334 ccagttlccggggaaacct	12724	12743	1	4
SEQ ID NO:	2997	teetttaeeeggagaaaga	543	562 SEQ ID NO:	4335 tctttttgggaagcaagga	2227	2246	1	4
SEQ ID NO:	2998	catcaagaggggcatcatt	583	602 SEQ ID NO:	4336 aatggtcaagttcctgatg	2285	2304	1	4
SEQ ID NO:	2999	tectggttececeagagae	609	628 SEQ ID NO:	4337 gtctctgaactcagaagga	13996	14015	1	4
SEQ ID NO:	3000	aagaagccaagcaagtgtt	630	649 SEQ ID NO:	4338 aacaaataaatggagtctt	14080	14099	1	4
SEQ ID NO:	3001	aagcaagtgttgtttctgg	638	657 SEQ ID NO:	4339ccagagccaggtcgagctt	11050	11069	1	4
SEQ ID NO:	3002	tctggataccgtgtatgga	652	671 SEQ ID NO:	4340tccatglcccatttacaga	11364	11383	1	4
SEQ ID NO:	3003	ccactcactttaccgtcaa	678	697SEQ ID NO:	4341 tigattitaacaaaagtgg	6825	6844	1	4
SEQ ID NO:	3004	aggaagggcaalgtggcaa	701	720 SEQ ID NO:	4342ttgcaagcaagtctttcct	3013	3032	1	4
SEQ ID NO:	3005	gcaatgtggcaacagaaat	708	727 SEQ ID NO:	4343 atttccataccccgtttgc	3488	3507	1	4
SEQ ID NO:	3006	caatgtggcaacagaaata	709	728 SEQ ID NO:	4344tattcttcttttccaattg	13834	13853	1	4
SEQ ID NO:	3007	tggcaacagaaatatccac	714	733 SEQ ID NO:	4345gtggcttcccatattgcca	1895	1914	1	4
SEQ ID NO:	3008	agagacctgggccagtgtg	737	756 SEQ ID NO:	4346cacattacatttggtctct	2938	2957	1	4
SEQ ID NO:	3009	tglgatcgcttcaagccca	752	771 SEQ ID NO:	4349tgggaaagecgeceteaca	5218	5237	1	4
SEQ ID NO:	3010	gtgatcgcttcaagcccat	753	772 SEQ ID NO:	4350 atgggaaagccgccctcac	5217	5236	1	4
SEQ ID NO:	3011	cageceacttgeteteate	784	803 SEQ ID NO:	4351 gatgctgaacagtgagctg	8152	8171	1	4
SEQ 1D NO:	3012	gctctcatcaaaggcatga	794	813 SEQ ID NO:	4352tcataacagtactgtgagc	10345	10364	1	4

SEQ ID NO:	3013	ccttgtcaactctgatcag	819	838 SEQ ID NO:	4353 ctgagtgggtttatcaagg	12453	12472	1	4
SEQ ID NO:	3014	cttgtcaactctgatcagc	820	839 SEQ ID NO:	4354 gctgagtgggtttatcaag	12452	12471	1	4
SEQ ID NO:	3015	agccatctgcaaggagcaa	892	911 SEQ ID NO:	4355 ttgcaatgagctcatggct	3813	3832	1	4
SEQ ID NO:	3016	gccatctgcaaggagcaac	893	912SEQ ID NO:	4356 gitgcaatgagctcatggc	3812	3831	1	4
SEQ ID NO:	3017	cttcctgcctttctcctac	916	935 SEQ ID NO:	4357 gtaggaataaatggagaag	9461	9480	1	4
	3018	cttlctcctacaagaataa	924	943 SEQ ID NO:	4358ttattgctgaatccaaaag	13656	13675	1	4
SEQ ID NO:	3019	gatcaacagccgcttcttt	997	1016SEQ ID NO:	4359aaagccatcactgatgatc	1669	1688	1	4
SEQ ID NO:	3020	atcaacagccgcttctttg	998	1017SEQ ID NO:	4360 caaagccatcactgatgat	1668	1687	1	4
SEQ ID NO: SEQ ID NO:	3020	acagccgcttctttggtga	1002	1021 SEQ ID NO:	4361 tcacaaatcctttggctgt	9675	9694	1	4
	3021	aagatgggcctcgcatttg	1031	1050 SEQ ID NO:	4362 caaaatagaagggaatctt	2077	2096	1	4
SEQ ID NO:	3022	tgttttgaagactctccag	1090	1109 SEQ ID NO:	4363 ctggtaactactttaaaca	5495	5514	1	4
SEQ ID NO:		ttgaagactctccaggaac	1094	1113 SEQ ID NO:	4364gttcaatgaatttattcaa	13192	13211	1	4
SEQ ID NO:	3024 3025	aactgaaaaaactaaccat	1110	1129 SEQ ID NO:	4365atggcattttttgcaagtt	14014	14033	1	4
SEQ ID NO:		ctgaaaaaactaaccatct	1112	1131 SEQ ID NO:	4366 agattgatgggcagttcag	4572	4591	1	4
SEQ ID NO:	3026	aaaactaaccatcictgag	1117	1136 SEQ ID NO:	4367ctcaaagaatgacttttt	2578	2597	1	4
SEQ ID NO:	3027	tgagcaaaatatccagaga	1132	1151 SEQ ID NO:	4368 totocagataaaaaactoa	12209	12228	1	4
SEQ ID NO:	3028	caataagctggttactgag		1181 SEQ ID NO:	4369ctcagatcaaagttaattg	12273	12292	1	4
SEQ ID NO:	3029	tactgagctgagaggcctc	1174	1193 SEQ ID NO:	4370 gagggtagtcataacagta	10337	10356	1	4
SEQ ID NO:	3030	gcctcagtgatgaagcagt	1188	1207 SEQ ID NO:	4371 actgttgactcaggaaggc	12580	12599	1	4
SEQ ID NO:	3031	agteacatetetettgcca	1204	1223 SEQ ID NO:	4372tggccacatagcatggact	8866	8885	1	4
SEQ ID NO:	3032	atctctcttgccacagctg	1210	1229 SEQ ID NO:	4373 cagetgaectcategagat	2169	2188	1	4
SEQ ID NO:	3033	tctctcttgccacagctga	1211	1230 SEQ ID NO:	4374tcagctgacctcatcgaga	2168	2187	1	4
SEQ ID NO:	3034	tgccacagctgattgaggt		1237 SEQ ID NO:	4375 acctgcaccaaagctggca	13963	13982	1	4
SEQ ID NO:	3035	gccacagctgattgaggtg	1219	1238 SEQ ID NO:	4376 caccaaaaaccccaatggc	11248	11267	1	4
SEQ ID NO:	3036	tcactttacaagccttggt	1248		4377 accagatgctgaacagtga	8148	8167	1	4
SEQ ID NO:	3037	cccttctgatagatgtggt		1351 SEQ ID NO:	4378 accacttacagctagaggg	10824	10843	1	4
SEQ ID NO:	3038 3039	gtcacctacctggtggccc	1349		4379gggcgacctaagtigtgac	3439	3458	1	4
SEQ ID NO:	3040	ccttgtatgcgctgagcca	1440		4380 tggctggtaacctaaaagg	5586	5605	1	4
SEQ ID NO: SEQ ID NO:	3041	gacaaaccctacagggacc	1480	1499 SEQ ID NO:	4381 ggtcctttatgattatgtc	12355	12374	1	4
SEQ ID NO:	3042	tgctaattacctgatggaa	1516		4382ttcccaaaagcagtcagca	9938	9957	1	4
SEQ ID NO:	3043	tgactgcactggggatgaa	1546	1565 SEQ ID NO:	4383ttcaggtccatgcaagtca	10917	10936	1	4
SEQ ID NO:	3044	actgcactggggatgaaga	1548		4384tcttgaacacaaagtcagt	6007	6026	1	4
SEQ ID NO:	3045	atgaagattacacctatti	1560		4385aaatgaaagtaaagatcat	8118	8137	1	4
SEQ ID NO:	3046	accatggagcagttaactc	1610		4386 gagtaaaccaaaacttggt	9024	9043	1	4
SEQ ID NO:	3047	gcagttaactccagaactc	1618		4387 gagttactgaaaaagctgc	13727	13746	1	4
SEQ ID NO:	3048	cagaactcaagtcttcaat	1629		4388 attggatatccaagatctg	1933	1952	1	4
SEQ ID NO:	3049	caggetetgeggaaaatgg	1703		4389ccatgacctccagctcctg	2485	2504	1	4
SEQ ID NO:	3050	ccaggaggttcttcttcag	1738		4390ctgaaatacaatgctctgg	5519	5538	1	4
SEQ ID NO:	3051	ggttcttcttcagactttc	1744		4391 gaaaaacttggaaacaacc	4439	4458	1	4
SEQ ID NO:	3052	tttccttgatgatgcttct	1759		4392 agaatccagatacaagaaa	6893	6912	1	4
SEQ ID NO:	3053	ggagataagcgactggctg	1781	1800 SEQ ID NO:	4393 cagcatgcctagtttctcc	9952	9971	1	4
SEQ ID NO:	3054	gctgcctatcttatgttga	1796	1815 SEQ ID NO:	4394tcaatatcaaaagcccagc	12045	12064	1	4
SEQ ID NO:	3055	acttigtggcttcccatat		1909 SEQ ID NO:	4395 atatetggaacettgaagt	10737	10756	1	4
SEQ ID NO:	3058	gccaatatcttgaactcag	1910	1929 SEQ ID NO:	4396 ctgaactcagaaggatggc	14000	14019	1	4
SEQ ID NO:	3057	aatatottgaactcagaag		1932 SEQ ID NO:	4397 cticcattctgaatatatt	13378	13397	1	4
SEQ ID NO:	3058	ctcagaagaattggatatc	1924		4398 gataaaagattactttgag	7273	7292	1	4
SEQ ID NO:	3059	aagaattggatatcceage	1929		4399 tcttcaatttattcttctt	13825	13844	1	4
SEQ ID NO:		agaattggatatccaagat	1930		4400 atcttcaatttattcttct	13824	13843	1	4
SEQ ID NO:		tggatatccaagatctgaa	1935		4401 ttcacataccagaattcca	8325		1	4
SEQ ID NO:		atatccaagatctgaaaaa	1938		4402 ttittaaccagtcagatat	10185	10204	1	4
JEG 15 110.									

SEQ ID NO:	3063	tatccaagatctgaaaaag	1939	1958 SEQ ID NO:	4403 ctttttaaccagtcagata	10184	10203	1	4
SEQ ID NO:	3064	caagatctgaaaaagttag	1943	1962 SEQ ID NO:	4404 ctaaattcccatggtcttg	4973	4992	1	4
SEQ ID NO:	3065	aagatotgaaaaagtlagt	1944	1963 SEQ ID NO:	4405 actaaattcccatggtctt	4972	4991	1	4
SEQ ID NO:	3066	tgaaaaagttagtgaaaga	1950	1969 SEQ ID NO:	4406 tetttetegggaatattea	10630	10649	1	4
SEQ ID NO:	3067	tecaactgtcatggacttc	1990	2009 SEQ ID NO:	4407 gaagcacatatgaactgga	13945	13964	1	4
SEQ ID NO:	3068	tcagaaaattctctcggaa	2007	2026 SEQ ID NO:	4408 ttcctttaacaattcctga	9501	9520	1	4
SEQ ID NO:	3069	ttccatcacttgacccagc	2052	2071 SEQ ID NO:	4409 gctgacatagggaatggaa	8441	8460	1	4
SEQ ID NO:	3070	cccagcctcagccaaaata	2065	2084 SEQ ID NO:	4410 tattctatccaagattggg	7820	7839	1	4
SEQ ID NO:	3071	agcctcagccaaaatagaa	2068	2087 SEQ ID NO:	4411 ttctatccaagattgggct	7822	7841	1	4
SEQ ID NO:	3072	atcttatatttgatccaaa	2091	2110 SEQ ID NO:	4412tttgaaaaacaaagcagat	11821	11840	1	4
SEQ ID NO:	3073	tcttatatttgatccaaat	2092	2111 SEQ ID NO:	4413 atttttgcaagttaaaga	14019	14038	1	4
SEQ ID NO:	3074	cttcctaaagaaagcatgc	2117	2136 SEQ ID NO:	4414 gcatggcattatgatgaag	3614	3633	1	4
SEQ ID NO:	3075	ctaaagaaagcatgctgaa	2121	2140 SEQ ID NO:	4415ttcagggtgtggagtttag	5694	6713	1	4
SEQ ID NO:	3076	taaagaaagcatgctgaaa	2122	2141 SEQ ID NO:	4416tttcttaaacattccttta	9490	9509	1	4
SEQ ID NO:	3077	gagattggcttggaaggaa	2183	2202 SEQ ID NO:	4417ttccctccattaagttctc	11709	11728	1	4
SEQ ID NO:	3078	ctttgagccaacattggaa	2206	2225 SEQ ID NO:	4418ttccaatgaccaagaaaag	11068	11087	1	4
SEQ ID NO:	3079	cagacagtgtcaacaaagc	2253	2272 SEQ ID NO:	4419gcttactggacgaactctg	6142	6161	1	4
SEQ ID NO:	3080	cagtgtcaacaaagctttg	2257	2276 SEQ ID NO:	4420 caaattcctggatacactg	9857	9876	1	4
SEQ ID NO:	3081	agtgtcaacaaagctitgt	2258	2277 SEQ ID NO:	4421 acaagaatacgtctacact	4359	4378	1	4
SEQ ID NO:	3082	ctgatggtgtctctaaggt	2298	2317 SEQ ID NO:	4422 accteggaacaatecteag	3333	3352	1	4
SEQ ID NO:	3083	tgatggtgtctctaaggtc	2299	2318 SEQ ID NO:	4423 gacctgcgcaacgagatca	8831	8850	1	4
SEQ ID NO:	3084	aaacatgagcaggatatgg	2351	2370 SEQ ID NO:	4424 ccatgatctacatttgttt	6796	8815	1	4
SEQ ID NO:	3085	gaagctgattaaagatttg	2395	2414SEQ ID NO:	4425 caaaaacattticaacttc	5287	5306	1	4
	3086	aaagatttgaaatccaaag	2405	2424 SEQ ID NO:	4426 ctttaagttcagcatcttt	7614	7633	1	4
SEQ ID NO:	3087	gatgggtgcccgcactctg	2518	2537 SEQ ID NO:	4427 cagatttgaggattccatc	7983	8002	1	4
SEQ ID NO:	3088	gggatccccagatgattg	2540		4428 caatcacaagtcgattccc	9083	9102	1	4
SEQ ID NO:		ttticticactacatctic	2593		4429gaagtgtcagtggcaaaaa	10382	10401	1	4
SEQ ID NO:	3089	tetteactacatetteatg	2596		4430catggcattatgatgaaga	3615	3634	1	4
SEQ ID NO:	3090	tacatcttcatggagaatg	2603		4431 cattatggaggcccatgta	9445	9464	1	4
SEQ ID NO:	3091	ttcatggagaatgccttig	2609	2628 SEQ ID NO:	4432 caaaatcaactttaatgaa	6607	6626	1	4
SEQ ID NO:	3092	tcatggagaatgcctitga	2610		4433tcaacacaatcttcaatga	13116	13135	1	4
SEQ ID NO:	3093	tttgaactccccactggag	2624		4434ctccccaggacctttcaaa	9842	9861	1	4
SEQ ID NO:	3094	ttgaactccccactggagc	2625		4435gctccccaggacctttcaa	9841	9860	1	4
SEQ ID NO:	3095	tgaactccccactggagct	2626	2645.550 ID NO:	4436agctccccaggacctttca	9840	9859	1	4
SEQ ID NO:	3096	cactggagctggattacag	2635	OEG 19 110.	4437 ctgtttctgagtcccagtg	9344	9363	1	4
SEQ ID NO:	3097	actggagctggattacagt	2636	O-4 (D 114)	4438actgtttctgagtcccagt	9343	9362	1	4
SEQ ID NO:	3098		2652	OEG (D 110)	4439gatgatgccaaaatcaact	6599	6618	•	4
SEQ ID NO:	3099	agttgcaaatatcttcatc gttgcaaatatcttcatct	2653		4440agatgatgccaaaatcaac	6598	6617	1	4
SEQ ID NO:	3100	aaatatottoatotggagt	2658	OHW 10 1101	4441 actcagaaggatggcattt	14004	14023	1	4
SEQ ID NO:	3101	taaaactggaagtagccaa	2703	O O . 1101	4442tiggttacaggaggcttta	7600	7619	1	4
SEQ ID NO:	3102	** * *	2728	O O O	4443ttttcttttcagcccagcc	9228	9247	1	4
SEQ ID NO:	3103	ggctgaactggtggcaaaa	2758	Q_Q 15 110.	4444 attiticaagcaaatgcaca	8538	8557	1	4
SEQ ID NO:	3104	tgtggagtttgtgacaaat		0_q 15 110.	4445atgcgtctaccttacacaa	9521	9540	1	4
SEQ ID NO:	3105	ttgtgacaaatatgggcat		2785 SEQ ID NO:	4445atgcgtctaccttacacaa 4446ggaagctgaagtttatcat	2877	2896	1	4
SEQ ID NO:	3106	atgaacaccaacttcttcc	2819	0-0,10,10.		5235	5254	1	4
SEQ ID NO:	3107	cttccacgagtcgggtctg	2833	024,210,	4447 cagagetateactgggaag 4448 gagettactggaegaacte	6140	6159	1	4
SEQ ID NO:	3108	gagtcgggtctggaggctc	2840			12120	12139	1	4
SEQ ID NO:	3109	cctasaagctgggaagctg	2866		4449 cagcotocccagcogtagg	5463	5482	1	4
SEQ ID NO:	3110	agctgggaagctgaagttt	2872	OH4 10 1101	4450 aaactgttaatttacagct	12726	12745	1	4
SEQ ID NO:	3111	ccagattagagctggaact	3114		4451 agittlecggggaaacctgg	8393	12745 8412	1	4
SEQ ID NO:	3112	ggataccctgaagtttgta	3208	3227 SEQ ID NO:	4452 tacagtattctgaaaatcc	0393	0412	•	4

SEQ ID NO:	3113	ctgaggctaccatgacatt	3252	2 3271 SEQ ID NO:	4453 aatgagctcatggcttcag	3817	3836	1	4
SEQ ID NO:	3114		3297	3316 SEQ ID NO:	4454 attttgagaggaatcgaca	6357	6376	1	4
SEQ ID NO:	3115		3313	3332 SEQ ID NO:	4455aacacatgaatcacaaatt	8938	8957	1	4
SEQ ID NO:			3315	3334 SEQ ID NO:	4456tcaaaacgagcttcaggaa	13207	13226	1	4
SEQ ID NO:	3117	cggaacaatcctcagagtt	3337	3356 SEQ ID NO:	4457aacttgtacaactggteeg	4211	4230	1	4
SEQ ID NO:	3118	tcclcagagttaatgatga	3345	3364 SEQ ID NO:	4458tcatceattggttacagga	7593	7612	1	4
SEQ ID NO:	3119	ctcaccctggacattcaga	3392	3411 SEQ ID NO:	4459tctgcagaacaatgctgag	12439	12458	1	4
SEQ ID NO:	3120	cattcagaacaagaaaatt	3403	3422 SEQ ID NO:	4460eattgactttgtagaeatg	8104	8123	1	4
SEQ ID NO:	3121	actgaggtcgccctcatgg	3422	3441 SEQ ID NO:	4461 ccatgcaagtcagcccagt	10924	10943	1	4
SEQ ID NO:	3122	ttatttccataccccgttt	3486	3505 SEQ ID NO:	4462 aaact gcctatatt gataa	13880	13899	1	4
SEQ ID NO:	3123	gtttgcaagcagaagccag	3501	3520 SEQ ID NO:	4463ctggacttctcttcaaaac	5408	5427	1	4
SEQ ID NO:	3124	tttgcaagcagaagccaga	3502	3521 SEQ ID NO:	4464tctgggtgtcgacagcaaa	5272	5291	1	4
SEQ ID NO:	3125	ttgcaagcagaagccagaa	3503	3522 SEQ ID NO:	4465ttctgggtgtcgacagcaa	5271	5290	1	4
SEQ ID NO:	3126	ctgcttctccaaatggact	3554	³⁵⁷³ SEQ ID NO:	4466 agt caagatt gatgggcag	4567	4586	1	4
SEQ ID NO:	3127	tgctacagcttatggctcc	3577	3596 SEQ ID NO:	4467ggaggctttaagttcagca	7609	7628	1	4
SEQ ID NO:	3128	acagcttatggctccacag	3581	3600 SEQ ID NO:	4468 ctgtatagcaaattcctgt	5897	5916	1	4
SEQ ID NO:	3129	tttccaagagggtggcatg	3600	3619 SEQ ID NO:	4469 catggacttcttctggaaa	8877	8896	1	4
SEQ ID NO:	3130	ccaagagggtggcatggca	3603	3622 SEQ ID NO:	4470tgcccagcaagcaagttgg	9361	9380	1	4
SEQ ID NO:	3131	gtggcatggcattatgatg	3611	3630 SEQ ID NO:	4471 catccttaacaccttccac	8071	8090	1	4
SEQ ID NO:	3132	tgatgaagagaagattgaa	3625	3644 SEQ ID NO:	4472ttcactgttcctgaaatca	7871	7890	4	4
SEQ ID NO:	3133	gaagagaagattgaatttg	3629	3648 SEQ ID NO:	4473caaaaacattttcaacttc	5287	5306	4	4
SEQ ID NO:	3134	gagaagattgaatttgaat	3632	3651 SEQ ID NO:	4474 attcateatccceactctc	8278	8297	1	4
SEQ ID NO:	3135	tttgaatggaacacaggca	3644	3663 SEQ ID NO:	4475tgcctttgtgtacaccaaa	11236	11255	1	4
SEQ ID NO:	3136	aggcaccaatgtagatacc	3658	3677 SEQ ID NO:	4476ggtaacctaaaaggagcct	5591	5610	1	4
SEQ ID NO:	3137	caaaaaaatgacttccaat	3676	3695 SEQ ID NO:	4477 attgaagtacctacttttg	8366	8385	1	4
SEQ ID NO:	3138	aaaaaaatgacttccaatt	3677	3696 SEQ ID NO:	4478 aattgaagtacctactttt	8365	8384	1	
SEQ ID NO:	3139	aaaaaatgacttccaattt	3678	3697 SEQ ID NO:	4479aaatccaatctcctctttt	8406	8425	1	4
SEQ ID NO:	3140	cagagtocctcaaacagac	3760	3779 SEQ ID NO:	4480gtctgtgggattccatctg	4090	4109	1	4
SEQ ID NO:	3141	aaattaatagttgcaatga	3803	3822 SEQ ID NO:	4481 tcataagttcaatgaattt	13186	13205	1	4
SEQ ID NO:	3142	ttcaacctccagaacatgg	3899	3918 SEQ ID NO:	4482 ccattgaccagatgctgaa	8142	8161	1	4
SEQ ID NO:	3143	tgggattgccagacttcca	3915	3934 SEQ ID NO:	4483tggaaatgggcctgcccca	8903	8922		4
SEQ ID NO:	3144	cagtttgaaaattgagatt	3994	4013 SEQ ID NO:	4484 aatcacaactcctccactg	9541		1	4
SEQ ID NO:	3145	gaaaattgagattcctttg	4000	4019 SEQ ID NO:	4485 caaaactaccacacatttc	13694	9560 13713	1	4
SEQ ID NO:	3146	tttgccttttggtggcaaa	4015	4034 SEQ ID NO:	4486tttgagaggaatcgacaaa	6359	13713	1	4
SEQ ID NO:	3147	ctccagagatctaaagatg	4036	4055 SEQ ID NO:	4487 catcaattggttacaggag	7594	6378	1	4
SEQ ID NO:	3148	tctaaagatgttagagact	4045	4064 SEQ ID NO:	4488 agtocttcatgtccctaga	10033	7613	1	4
SEQ ID NO:	3149	ctgtgggattccatctgcc	4092	4111 SEQ ID NO:	4489ggcattttgaaaaaaacag	9735	10052	1	4
SEQ ID NO:	3150	atctgccatctcgagagtt	4104	4123 SEQ ID NO:	4490aactctcaaaccctaagat	8556	9754	1	4
SEQ ID NO:	3151	tctcgagagttccaagtcc		4131 SEQ ID NO:	4491ggacattcctctagcgaga		8575	1	4
SEQ ID NO:	3152	agtocctacttttaccatt	4126	4145 SEQ ID NO:	4492aatgaatacagccaggact	8215 6086	8234	1	4
SEQ ID NO:	3153	actittaccattcccaagt	4133	4152 SEQ ID NO:	4493actitgtagaaatgaaagt		6105	1	4
SEQ ID NO:	3154	cattcccaagttgtatcaa	4141	4160 SEQ ID NO:	4494ttgaaggacttcaggaatg	8109	8128	7	4
SEQ ID NO:	3155	accacatgaaggctgactc	4284	4303 SEQ ID NO:	4495gagtaaaccaaaacttggt	12009	12028	1	4
SEQ ID NO:	3156	tttcctacaatgtgcaagg	4317	4336 SEQ ID NO:	4498 cctttaacaattcctgaaa	9024	9043	1	4
SEQ ID NO:	3157	ctggagaaacaacatatga	4338	4357 SEQ ID NO:	4497tcattctgggtctttccag	9503 44025	9522	1	4
SEQ ID NO:	3158	atcatgtgatgggtctcta	4378	4397 SEQ ID NO:	4498tagaattacagaaaatgat	11035	11054	1	4
SEQ ID NO:	3159	catgigatgggtctctacg	4380	4399 SEQ ID NO:	4499cgtaggcaccgtgggcatg	6565	6584	1	4
SEQ ID NO:	3160	tictagattcgaatatcaa	4407	4426 SEQ ID NO:	4500ttgatgatgctgtcaagaa	12133	12152	1	4
SEQ ID NO:	3161	tggggaccacagatgictg	4499	4518 SEQ ID NO:	4501 cagaattocagettoccca	7308	7327	1	4
SEQ ID NO:	3162	ctaacactggccggctcaa	4644	4663 SEQ ID NO:	4502ttgaggctattgatgttag	8334 8084	8353	1	4
				יייין עו עו איט:		6984	7003	1	4

									4
SEQ ID NO:	3163	taacactggccggctcaat	4645	4664 SEQ ID NO:	4503 attgaggctattgatgtta	6983	7002	1	4
SEQ ID NO:	3164	aacactggccggctcaatg	4646	4665 SEQ ID NO:	4504 cattgaggctattgatgtt	6982	7001	1	
SEQ ID NO:	3165	ctggccggctcaatggaga	4650	4669 SEQ ID NO:	4505 tctccatctgcgctaccag	12073	12092	1	4
SEQ ID NO:	3166	agataacaggaagatatga	4713	4732 SEQ ID NO:	4506 teateteetttetteatet	10210	10229	1	4
SEQ ID NO:	3167	teecteaectecaectetg	4745	4764 SEQ ID NO:	4507 cagatatatatctcaggga	8184	8203	1	4
SEQ ID NO:	3168	agctgactttaaaatctga	4818	4837 SEQ ID NO:	4508 teaggetetteagaaaget	7930	7949	1	4 4
SEQ ID NO:	3169	ctgactttaaaatctgaca	4820	4839 SEQ ID NO:	4509tgtcaagataaacaatcag	8740	8759	1	
SEQ ID NO:	3170	caagatggatatgaccttc	4873	4892 SEQ ID NO:	4510gaagtagtactgcatcttg	6843	6862	1	4
SEQ ID NO:	3171	gctgcgttctgaatatcag	4909	4928 SEQ ID NO:	4511 ctgagtoccagtgcccagc	9350	9369	1	4
SEQ ID NO:	3172	cgttctgaatatcaggctg	4913	4932 SEQ ID NO:	4512cagcaagtacctgagaacg	8611	8630	1	4
SEQ ID NO:	3173	aattcccatggtcttgagt	4976	4995 SEQ ID NO:	4513actcagatcaaagttaatt	12272	12291	1	4
SEQ ID NO:	3174	tggtcttgagttaaatgct	4984	5003 SEQ ID NO:	4514agcacagtacgaaaaacca	10809	10828	1	4
SEQ ID NO:	3175	cttgagttaaatgctgaca	4988	5007 SEQ ID NO:	4515tglccctagaaatctcaag	10042	10061	1	4
SEQ ID NO:	3176	ttgagttaaatgctgacat	4989	5008 SEQ ID NO:	4518atgtccctagaaatctcaa	10041	10060	1	4
SEQ ID NO:	3177	tgagttaaatgctgacatc	4990	5009 SEQ ID NO:	4517gatggaaccctctccctca	4733	4752	1	4
SEQ ID NO:	3178	acttgaagtgtagtctcct	5094	5113 SEQ ID NO:	4518 aggaaactcagatcaaagt	12267	12286	1	4
SEQ ID NO:	3179	agtgtagtctcctggtgct	5100	5119 SEQ ID NO:	4519 agcagccagtggcaccact	12514	12533	1	4
SEQ ID NO:	3180	gtgctggagaatgagctga	5114	5133 SEQ ID NO:	4520tcagccaggtttatagcac	7734	7753	1	4
SEQ ID NO:	3181	ctggggcatctatgaaatt	5151	5170 SEQ ID NO:	4521 aattictgattaccaccag	13579	13598	1	4
SEQ ID NO:	3182	atggccgcttcagggaaca	5178	5197 SEQ ID NO:	4522 tgttttttggaaatgccat	8649	8668	1	4
SEQ ID NO:	3183	ttcagtctggatgggaaag	5207	5226 SEQ ID NO:	4523 ctttgacaggcattttgaa	9727	9746	1	4
SEQ ID NO:	3184	ccatgattctgggtgtcga	5265	5284 SEQ ID NO:	4524 togatgcacatacaaatgg	5838	5857	1	4
SEQ ID NO:	3185	aaaacattttcaacttcaa	5289		4525ttgatgttagagtgctttt	6993	7012	1	4
SEQ ID NO:	3186	cttaagctctcaaatgaca	5324	5343 SEQ ID NO:	4526 tgtcctacaacaagttaag	7255	7274	1	4
SEQ ID NO:	3187	ttaagctctcaaatgacat	5325		4527 atgtoctacaacaagttaa	7254	7273	1	4
SEQ ID NO:	3188	catgatgggctcatatgct	5341	5360 SEQ ID NO:	4528 agcatctttggctcacatg	7624	7643	1	4
SEQ ID NO:	3189	tgggctcatatgctgaaat	5348		4529 atttatcaaaagaagccca	12942	12961	1	4
SEQ ID NO:	3190	actggacttctcttcaaaa	5407		4530ttttggcaagctatacagt	8380	8399	1	4
SEQ ID NO:	3191	acttctcttcaaaacttga	5412		4531 tcaattgggagagacaagt	6504	6523	1	4
SEQ ID NO:	3192	ctgacaagttttataagca	5445		4532 tgctttgtgagtttatcag	9693	9712	1	4
SEQ ID NO:	3193	aagttttataagcaaactg	5450		4533 cagicatgtagaaaaactt	4429	4448	1	4
SEQ ID NO:	3194	ctgttaatttacagctaca	5466		4534tgtactggaaaacgtacag	6388	6407	1	4
SEQ ID NO:	3195	ttacagctacagccctatt	5474		4535 aatattgatcaatttgtaa	6425	6444	1	4
SEQ ID NO:	3196	tctggtaactactttaaac	5494		4536gtttgaaaaacaaagcaga	11820	11839	1	4
SEQ ID NO:	3197	tttaaacagtgacctgaaa	5508		4537tttcattigaaagaataaa	7032	7051	1	4
SEQ ID NO:	3198	ttaaacagtgacctgaaat	5507		4538 atttcaagcaagaacttaa	10434	10453	1	4
SEQ ID NO:	3199	cagtgacctgaaatacaat	5512		4539attggcgtggagcttactg	6131	6150	1	4
SEQ ID NO:	3200	tgtggctggtaacctaaaa	5584		4540ttttgctggagaagccaca	10765	10784	1	4
SEQ ID NO:	3201	tiatcagcaagctataaag	5657		4541 ctttgcactatgttcataa	12764	12783	1	4
SEQ ID NO:	3202	ggttcagggtgtggagttt	5692		4542 aaacacctaagagtaaacc	9014	9033	1	4
SEQ ID NO:	3203	attcagactcactgcattt	5775		4543 aaatgctgacatagggaat	8437	8456	1	4
SEQ ID NO:	3204	ttcagactcactgcatttc	5776		4544 gaaatattatgaacttgaa	13312	13331	1	4
SEQ ID NO:	3205	tacaaatggcaatgggaaa	5848		4545tttcctaaagctggatgta	11176	11195	1	4
SEQ ID NO:	3206	gctgtatagcaaattcctg		5 5915 SEQ ID NO:	4546 caggtccatgcaagtcagc	10919	10938	1	4
SEQ ID NO:	3207	tgagcagacaggcacctgg	6043	6062 SEQ ID NO:	4547 ccagettecceacatetea	8341	8360	1	4
	3208	ggcacctggaaactcaaga		6072 SEQ ID NO:	4548 tcttcgtgtttcaactgcc	11221	11240	1	4
SEQ ID NO: SEQ ID NO:	3209	tgaatacagccaggacttg		6107 SEQ ID NO:	4549 caagtaagtgctaggttca	9380	9399	1	4
SEQ ID NO:	3210	gaatacagccaggacttgg		6108 SEQ ID NO:	4550 ccaacacttacttgaattc	10668	10687	1	4
	3210	ctggacgaactctggctga		7 6166 SEQ ID NO:	4551 tcagaaagctaccttccag	7939	7958	1	4
SEQ ID NO:	3211	tttactcagtgagcccat	620		4552 atggacttcttctggaaaa	8878	8897	1	4
SEQ ID NO:	3212			GEG ID NO.					

SEQ ID NO:	3213	gatgagagatgccgttgag	6241	000,10110,	4553 cleateteetttetteate	10209	10228	1	4
SEQ ID NO:	3214	aattgttgcttttgtaaag	6277	6296 SEQ ID NO:	4554 cttttctaaacttgaaatt	9064	9083	1	4
SEQ ID NO:	3215	cttttgtaaagtatgataa	6285	6304 SEQ ID NO:	4555ttatgaacttgaagaaaag	13318	13337	1	4
SEQ ID NO:	3216	tttgtaaagtatgataaaa	6287	6306 SEQ ID NO:	4556ttttcacattagatgcaaa	8421	8440	1	4
SEQ ID NO:	3217	tccattaacctcccaitit	6320	6339 SEQ ID NO:	4557 aaaattgatgatatctgga	10727	10746	1	4
SEQ ID NO:	3218	ccattaacctcccattttt	6321	6340 SEQ ID NO:	4558 aaaagggtcatggaaatgg	8893	8912	1	4
SEQ ID NO:	3219	cttgcaagaatattttgag	6346	6365 SEQ ID NO:	4559 ctcaattitgattttcaag	8528	8547	1	4
SEQ ID NO:	3220	agaatatittgagaggaat	6352	6371 SEQ ID NO:	4560 attecetecatta agitet	11708	11727	1	4
SEQ ID NO:	3221	attatagttgtactggaaa	6380	6399 SEQ ID NO:	4561 tttcaagcaagaacttaat	10435	10454	1	4
SEQ ID NO:	3222	gaagcacatcaatattgat	6415	6434 SEQ ID NO:	4562 atcagttcagataaacttc	7999	8018	1	4
SEQ ID NO:	3223	acatcaatattgatcaatt	6420	6439 SEQ ID NO:	4563 aattccctgaagttgatgt	11487	11506	1	4
SEQ ID NO:	3224	gaaaactcccacagcaagc	6465	6484 SEQ ID NO:	4564 gctttctcttccacatttc	10060	10079	1	4
SEQ ID NO:	3225	ctgaattcattcaattggg	6494	6513SEQ ID NO:	4565cccatttacagatettcag	11371	11390	1	4
SEQ ID NO:	3226	tgaattcattcaattggga	6495	6514 SEQ ID NO:	4586tcccatttacagatcttca	11370	11389	1	4
SEQ ID NO:	3227	aactgactgctctcacaaa	6540	6559 SEQ ID NO:	4567tttgaggattccatcagtt	7987	8006	1	4
SEQ ID NO:	3228	aaaagtatagaattacaga	6558	6577 SEQ ID NO:	4568 tctggctccctcaactttt	9050	9069	1	4
SEQ ID NO:	3229	atcaactttaatgaaaaac	6611	6630 SEQ ID NO:	4569 gtttattgaaaatattgat	6811	6830	1	4
SEQ ID NO:	3230	tgatttgaaaatagctatt	6694	6713 SEQ ID NO:	4570aatattattgatgaaatca	6716	6735	1	4
SEQ ID NO:	3231	atttgaaaatagctattgc	6696	6715SEQ ID NO:	4571 gcaagaacttaatggaaat	10441	10460	1	4
SEQ ID NO:	3232	attgctaatattattgatg	6710	6729 SEQ ID NO:	4572 catcacactgaataccaat	10159	10178	1	4
SEQ ID NO:	3233	gaaaaattaaaaagtcttg	6737	⁶⁷⁵⁶ SEQ ID NO:	4573 caagag cttatgggatttc	11161	11180	1	4
SEQ ID NO:	3234	actatcatatccgtgtaat	6762	6781 SEQ ID NO:	4574attactttgagaaattagt	7281	7300	1	4
SEQ ID NO:	3235	tattgattttaacaaaagt	6823	6842SEQ ID NO:	4575 acttgacttcagagaaata	11404	11423	1	4
SEQ ID NO:	3236	ctgcagcagcttaagagac	6914	6933SEQ ID NO:	4576 gtcttcagtgaagctgcag	10699	10718	1	4
SEQ ID NO:	3237	aaaacaacacattgaggct	6973	6992SEQ ID NO:	4577 agcctcacctcttactttt	10571	10590	1	4
SEQ ID NO:	3238	ttgagcatgtcaaacactt	7059	7078SEQ ID NO:	4578 aagtagctgagaaaatcaa	7104	7123	1	4
SEQ ID NO:	3239	tttgaagtagctgagaaaa	7100	7119SEQ ID NO:	4579ttttcacattagatgcaaa	8421	8440	1	4
SEQ ID NO:	3240	ttagtagagttggcccacc	7199	7218 SEQ ID NO:	4580 ggtggactcttgctgctaa	7776	7795	1	4
SEQ ID NO:	3241	tgaaggagactattcagaa	7227	⁷²⁴⁶ SEQ ID NO:	4581 tictcaattitgattitca	8526	8545	1	4
SEQ ID NO:	3242	gagactattcagaagctaa	7232	7251 SEQ ID NO:	4582ttagccacagetetgtete	10301	10320	1	4
SEQ ID NO:	3243	aattagttggattlattga	7293	7312 SEQ ID NO:	4583tcaagaagcttaatgaatt	7320	7339	1	4
SEQ ID NO:	3244	gcttaatgaattatctttt	7327	7346 SEQ ID NO:	4584 aaaacgagcttcaggaagc	13209	13228	1	4
SEQ ID NO:	3245	ttaacaaattoottgacat	7365	7384 SEQ ID NO:	4585 atgtcctacaacaagttaa	7254	7273	1	4
SEQ ID NO:	3246	aaattaaagtcatttgatt	7394	7413 SEQ ID NO:	4586 aatcctttgacaggcattt	9723	9742	1	4
SEQ ID NO:	3247	gactcaatggtgaaattca	7464	7483 SEQ ID NO:	4587tgaaattcaatcacaagtc	9076	9095	1	4.
SEQ ID NO:	3248	gaaattcaggctctggaac	7475	7494 SEQ ID NO:	4588 gttctcaattttgattttc	8525	8544	1	4
SEQ ID NO:	3249	actaccacaaaaagctgaa	7492	7511 SEQ ID NO:	4589ttcaggaactattgctagt	10645	10664	1	4
SEQ ID NO:	3250	ccaaaataaccttaatcat	7578	7597 SEQ ID NO:	4590 atgatttccctgaccttgg	10950	10969	1	4
SEQ ID NO:	3251	aaataaccttaatcatcaa	7581	7600 SEQ ID NO:	4591 ttgaagtaaaagaaaattt	10749	10768	1	4
SEQ ID NO:	3252	tttaagttcagcatctttg	7615	7634 SEQ ID NO:	4592 caaatctggatttcttaaa	9480	9499	1	4
SEQ ID NO:	3253	caggittatagcacactig	7739	7758 SEQ ID NO:	4593 caagggttcactgttcctg	7865	7884	1	4
SEQ ID NO:	3254	gttcactgttcctgaaatc	7870	7889 SEQ ID NO:	4594 gattctcagatgagggaac	8922	8941	1	4
SEQ ID NO:	3255	cactgttcctgaaatcaag	7873	7892 SEQ ID NO:	4595 citgaacacaaagtcagtg	6008	6027	1	4
SEQ ID NO:	3256	actgttcctgaaatcaaga	7874	7893 SEQ ID NO:	4596 tcttgaacacaaagtcagt	6007	6026	1	4
SEQ ID NO:	3257	gcctgcctttgaagtcagt	7909	7928 SEQ ID NO:	4597 actgttgactcaggaaggc	12580	12599	1	4
SEQ ID NO:	3258	taacagatttgaggattcc	7980	7999SEQ ID NO:	4598 ggaagetteteaagagtta	13222	13241	1	4
SEQ ID NO:	3259	gttttccacaccagaattt	8050	8069 SEQ ID NO:	4599aaattictctgctggaaac	9418	9437	1	4
SEQ ID NO:	3260	tcagaaccattgaccagat	8136	8155 SEQ ID NO:	4600 atctgcagaacaatgctga	12438	12457	1	4
SEQ ID NO:	3261	tagcgagaatcaccctgcc	8226	8245 SEQ ID NO:	4601 ggcagcttctggcttgcta	12301	12320	1	4
SEQ ID NO:	3262	ccttaatgattttcaagtt	8299	8318 SEQ ID NO:	4602 aactgttgactcaggaagg	12579	12598	1	4

SEQ ID NO:	3263	acataccagaattccagct	8328	8347 SEQ ID NO:	4603 agctgccagtccttcatgt	10026	10045	1	4
SEQ ID NO:	3264	aatgctgacatagggaatg	8438	8457 SEQ ID NO:	4604 cetta at cct g c cat catt	10005	10024	1	4
SEQ ID NO:	3265	atgctgacatagggaatgg	8439	8458 SEQ ID NO:	4605 ccatttgagatcacggcat	9245	9264	1	4
SEQ ID NO:	3266	aaccacctcagcaaacgaa	8458	8477 SEQ ID NO:	4606ttcgttttccattaaggtt	9291	9310	1	4
SEQ ID NO:	3267	agcaggtatogcagcttcc	8476	8495 SEQ ID NO:	4607ggaagtggccctgaatgct	10972	10991	1	4
SEQ ID NO:	3268	tgcacaactctcaaaccct	8551	8570 SEQ ID NO:	4608 agggaaagagaagattgca	13501	13520	1	4
SEQ ID NO:	3269	aggagtcagtgaagttctc	8592	8611 SEQ ID NO:	4809gagaacttactatcatcct	13788	13807	1	4
SEQ ID NO:	3270	tttttggaaatgccattga	8652	8671 SEQ ID NO:	4610tcaatgaatttattcaaaa	13194	13213	1	4
SEQ ID NO:	3271	aatggagtgattgtcaaga	8729	8748 SEQ ID NO:	4611 tcttttcagcccagccatt	9231	9250	1	4
SEQ ID NO:	3272	gtcaagataaacaatcagc	8741	8760 SEQ ID NO:	4612gctgactttaaaatctgac	4819	4838	1	4
SEQ ID NO:	3273	tccacaaattgaacatccc	8787	8806 SEQ ID NO:	4613gggatttcctaaagctgga	11172	11191	1	4
SEQ ID NO:	3274	ttgaacatccccaaactgg	8795	8814 SEQ ID NO:	4614 ccagtttccagggactcaa	12603	12622	1	4
SEQ ID NO:	3275	acatccccaaactggactt	8799	8818 SEQ ID NO:	4615 aagtogattoccagcatgt	8080	9109	1	4
SEQ ID NO:	3276	acttetetagteaggetga	8814	8833 SEQ ID NO:	4616tcagatggaaaaatgaagt	11010	11029	1	4
SEQ ID NO:	3277	tgaatcacaaattagtttc	8944	8963 SEQ ID NO:	4617 gaaagtccataatggttca	12817	12836	1	4
SEQ ID NO:	3278	agaaggacccctcacttcc	8968	8987 SEQ ID NO:	4618ggaagaagaggcagcttct	12292	12311	1	4
SEQ ID NO:	3279	ttggactgtccaataagat	8988	9007 SEQ ID NO:	4619 atctaaatgcagtagccaa	11634	11653	1	4
SEQ ID NO:	3280	actgtccaataagatcaat	8992	9011 SEQ ID NO:	4620 attgateaeaccatacagt	13891	13910	1	4
SEQ ID NO:	3281	ctgtccaataagatcaata	8993		4621 tattgataaaaccatacag	13890	13909	1	4
SEQ ID NO:	3282	gtttatgaatctggctccc	9041		4622 gggaatctgatgaggaaac	12255	12274	1	4
SEQ ID NO:	3283	atgaatctggctccctcaa	9045		4623ttgagttgcccaccatcat	11667	11686	1	4
SEQ ID NO:	3284	ctcaacttttctaaacttg	9059		4624 caagatcgcagactttgag	11653	11672	1	4
SEQ ID NO:	3285	ctaaaggcatggcactgtt	9129		4625 aacagaaacaatgcattag	9749	9768	1	4
SEQ ID NO:	3286	aaggcatggcactgtttgg	9132		4626 ccaagaaaaggcacacctt	11077	11098	1	4
SEQ ID NO:	3287	atccacaaacaatgaaggg	9262		4627 ccctaacagatttgaggat	7977	7996	1	4
SEQ ID NO:	3288	ggaatttgaaagttcgttt	9279		4628 aaacaaacacaggcattcc	9655	9874	1	4
SEQ ID NO:	3289	aataactatgcactgtttc	9332		4629 gaaatactgttttcctatt	12836	12855	1	4
SEQ ID NO:	3290	gaaacaacgagaacattat	9432		4630ataaacigcaagattttc	13608	13627	1.	4
SEQ ID NO:	3291	ttcttgaaaacgacaaagc	9599		4631 gctttccaatgaccaagaa	11065	11084	1	4
SEQ ID NO:	3292	ataagaaaaacaaacacag	9648		4632 ctgtgctttgtgagtttat	9690	9709	1	4
SEQ ID NO:	3293	aaaacaaacacaggcattc	9654		4633gaatttgaaagttogtttt	9280	9299	1	4
SEQ ID NO:	3294	gcattccatcacaaatcct	9667		4634 aggaagtggccctgaatgc	10971	10990	1	4
SEQ ID NO:	3295	tttgaaaaaaacagaaaca	9740		4635tgttgaaagatttatcaaa	12933	12952	1	4
SEQ ID NO:	3296	caatgcattagattttgtc	9757		4636gacaagaaaaaggggattg	10279	10298	1	4
SEQ ID NO:	3297	caaagctgaaaaatctcag	9817		4637 ctgagaacttcatcatttg	11438	11457	1	4
SEQ ID NO:	3298	cctggatacactgttccag	9863		4638 ctggacttctctagtcagg	8810	8829	1	4
SEQ ID NO:	3299	gttgaagtgtctccattca	9890		4639tgaatctggctccctcaac	9046	9065	1	4
SEQ ID NO:	3300	tttctccatcctaggttct	9964	9983 SEQ ID NO:	4640 aga atccagataca aga aa	6893	6912	1	4
SEQ ID NO:	3301	ttctccatcctaggttctg		9984 SEQ ID NO:	4641 cagaatccagatacaagaa	6892	6911	1	4
SEQ ID NO:	3302	tcattagagctgccagtcc	10019	10038 SEQ ID NO:	4642ggacagtgaaatattatga	13305	13324	1	4
SEQ ID NO:	3303	tgctgaactttttaaccag	10177	10196 SEQ ID NO:	4643 ctggatgtaaccaccagca	11186	11205	1	4
SEQ ID NO:	3304	ctcctttcttcatcttcat	10214	10233 SEQ ID NO:	4644 atgaagettgeteeaggag	13772	13791	1	4
SEQ ID NO:	3305	tgtcattgatgcactgcag	10234	10253 SEQ ID NO:	4845 ctgcgctaccagaaagaca	12080	12099	1	4
SEQ ID NO:	3308	tgatgcactgcagtacaaa	10240	10259 SEQ ID NO:	4646 tttgagttgcccaccatca	11666	11685	1	4
SEQ ID NO:	3307	agetetgtetetgageaac	10309	10328 SEQ ID NO:	4647 gttgaccacaagcttagct	10547	10566	1	4
SEQ ID NO:	3308	agccgaaattccaattttg		3 10427 SEQ ID NO:	4648 caaagctggcaccagggct	13971	13990	1	4
SEQ ID NO:	3309	ttgagaatgaatttcaagc		10443 SEQ ID NO:	4649 gcttcaggaagcttctcaa	13216	13235	1	4
SEQ ID NO:	3310	aaacctactgtctcttcct	10469	10488 SEQ ID NO:	4650 aggaaggccaagccagtit	12591	12610	1	4
SEQ ID NO:	3311	tacttttccattgagtcat	10583	3 10602 SEQ ID NO:	4651 atgattatgtcaacaagta	12363	12382	1	4
SEQ ID NO:	3311	tcaggtccatgcaagtcag	10918	3 10937 SEQ ID NO:	4652 ctgacatcttaggcactga	5001	5020	1	4
JUG ID NO.	JJ 12	-03		J. W. ID 110.					

SEQ ID NO:	3313	atgcaagtcagcccagttc	10926 10945 SEQ ID NO:	4653gaactcagaaggatggcat	14002	14021	1	4
SEQ ID NO:	3314	tgaatgctaacactaagaa	10983 11002 SEQ ID NO:	4654ttctcaattttgattttca	8526	8545	1	4
SEQ ID NO:	3315	agaagatcagatggaaaaa	11004 11023 SEQ ID NO:	4655ttttctaaatggaacttct	12173	12192	1	4
SEQ ID NO:	3316	ggctattcattctccatcc	11264 11283 SEQ ID NO:	4656ggatctaaatgcagtagcc	11632	11651	1	4
SEQ ID NO:	3317	aaagttttggctgataaat	11288 11307 SEQ ID NO:	4657 atttcttaaacattccttt	9489	9508	1	4
SEQ ID NO:	3318	agttttggctgataaattc	11290 11309 SEQ ID NO:	4658 gaatet ggeteect caact	9047	9066	1	4
SEQ ID NO:	3319	ctgggctgaaactaaatga	11316 11335 SEQ ID NO:	4659tcattctgggtctttccag	11035	11054	1	4
SEQ ID NO:	3320	cagagaaatacaaatctat	11413 11432 SEQ ID NO:	4660atagcatggacttcttctg	8873	8892	1	4
SEQ ID NO:	3321	gaggtasaattccctgaag	11480 11499 SEQ ID NO:	4662 cttctggcttgctaacctc	12306	12325	1	4
SEQ ID NO:	3322	cttttttgagataaccgtg	11545 11584 SEQ ID NO:	4663cacggagttactgaaaaag	13723	13742	1	4
SEQ ID NO:	3323	gctggaattgtcattcctt	11735 11754 SEQ ID NO:	4664 aaggcatctccacctcagc	12102	12121	1	4
SEQ ID NO:	3324	gtgtataatgccacttgga	11795 11814 SEQ ID NO:	4665tccaagatgagatcaacac	13104	13123	1	4
SEQ ID NO:	3325	attccacatgcagctcaac	11859 11878 SEQ ID NO:	4666gttgagaagccccaagaat	6254	6273	1	4
SEQ ID NO:	3326	tgaagaagatggcaaattt	11992 12011 SEQ ID NO:	4667 aa attotottitottitoa	9220	9239	1	4
SEQ ID NO:	3327	atcaaaagcccagcgttca	12050 12069 SEQ ID NO:	4668tgaaagtcaagcatctgat	12669	12688	1	4
SEQ ID NO:	3328	gtgggcatggatatggatg	12143 12162 SEQ ID NO:	4669 cateetta a cacette cac	8071	8090	1	4
SEQ ID NO:	3329	aaatggaacttctactaca	12179 12198 SEQ ID NO:	4670tgtaccataagccatattt	10088	10107	1	4
SEQ ID NO:	3330	aaaaactcaccatattcaa	12219 12238 SEQ ID NO:	4671 ttgatgttagagtgctttt	6993	7012	1	4
SEQ ID NO:	3331	ctgagaagaaatctgcaga	12428 12447 SEQ ID NO:	4672tctgcecegeaetettceg	13447	13466	1	4
SEQ ID NO:	3332	acaatgctgagtgggttta	12447 12466 SEQ ID NO:	4673taaatggagtctttattgt	14086	14105	1	4
SEQ ID NO:	3333	caatgctgagtgggtttat	12448 12467 SEQ ID NO:	4674 ataaalggagtctttattg	14085	14104	1	4
SEQ ID NO:	3334	ttaggcaaattgatgatat	12477 12496 SEQ ID NO:	4675 atattgtcagtgcctctaa	13392	13411	1	4
SEQ ID NO:	3335	ataaactaatagatgtaat	12897 12916 SEQ ID NO:	4676 attactatgaaaaatttat	13641	13660	1	4
SEQ ID NO:	3336	ccaactaatagaagataac	13039 13058 SEQ ID NO:	4677 gttattttgctaaacttgg	14052	14071	1	4
SEQ ID NO:	3337	ttaattatatccaagatga	13095 13114 SEQ ID NO:	4678 tcatcctctaatttittaa	13800	13819	1	4
SEQ ID NO:	3338	tttaaattgttgaaagaaa	13151 13170 SEQ ID NO:	4679tttcatttgaaagaataaa	7032	7051	1	4
SEQ ID NO:	3339	aagttcaatgaatttattc	13190 13209 SEQ ID NO:	4680 gaataccaatgctgaactt	10168	10187	1	4
SEQ ID NO:	3340	ttgaagaaaagatagtcag	13326 13345 SEQ ID NO:	4681 ctgagagaagtgtcttcaa	12407	12426	1	4
SEQ ID NO:	3341	acticcattctgaatatat	13377 13396 SEQ ID NO:	4682 atatctggaaccttgaagt	10737	10756	1	4
SEQ ID NO:	3342	cacagaaatattcaggaat	13451 13470 SEQ ID NO:	4683 attocctgaagttgatgtg	11488	11507	1	4
SEQ ID NO:	3343	ccattgcgacgaagaaaat	13560 13579 SEQ ID NO:	4684 attitiaticctgccatgg	10103	10122	1	4
SEQ ID NO:	3344	tataaactgcaagattttt	13607 13626 SEQ ID NO:	4685 aaaattcaaactgcctata	13873	13892	1	4
SEQ ID NO:	3345	tctgattactatgaaaaat	13637 13656 SEQ ID NO:	4686 attigtaagaaaatacaga	6436	6455	1	4
SEQ ID NO:	3346	ggagttactgaaaaagctg	13726 13745 SEQ ID NO:	4687 cagcatgcctagtttctcc	9952	9971	1	4
SEQ ID NO:	3347	tgaagcttgctccaggaga	13773 13792 SEQ ID NO:	4888 totootitoitoatottoa	10213	10232	1	4
SEQ ID NO:	3348	tgaactggacctgcaccaa	13955 13974 SEQ ID NO:	4689ttggtagagcaagggttca	7856	7875	1	4
SEQ ID NO:	3349	ttgctaaacttgggggagg	14058 14077 SEQ ID NO:	4690 cctcctacagtggtggcaa	4230	4249	1	4
SEQ ID NO:	3350	gattcgaatatcaaattca	4412 4431 SEQ ID NO:	4691 tgaaaacgacaaagcaatc	9603	9622	3	3
SEQ ID NO:	3351	attigttigtcaaagaagt	4551 4570 SEQ ID NO:	4692 actitictaaactigaaat	9063	9082	3	3
SEQ ID NO:	3352	tctcggttgctgccgctga	33 52 SEQ ID NO:	4693 tcagcccagccatttgaga	9236	9255	2	3
SEQ ID NO:	3353	gctgaggagcccgcccagc	47 66 SEQ ID NO:	4694 gctggatgtaaccaccagc	11185	11204	2	3
SEQ ID NO:	3354	ctggtctgtccaaaagatg	227 246 SEQ ID NO:	4695 catcagaaccattgaccag	8134	8153	2	3
SEQ ID NO:	3355	ctgagagttccagtggagt	291 310 SEQ ID NO:	4696 actcaatggtgaaattcag	7465	7484	2	3
SEQ ID NO:	3356	cagtgcaccctgaaagagg	404 423 SEQ ID NO:	4697 cctcacttcctttggactg	8977	8996	2	3
SEQ ID NO:	3357	ctctgaggagtttgctgca	472 491 SEQ ID NO:	4698 tgcaeacttgacttcagag	11399	11418	2	3
SEQ ID NO:	3358	acatcaagagggcatcat	582 601 SEQ ID NO:	4699 atgacgttcttgagcatgt	7050	7069	2	3
SEQ ID NO:	3359	ctgatcagcagcagccagt	830 849 SEQ ID NO:	4700 actggacttctctagtcag	8809	8828	2	3
SEQ ID NO:	3360	ggacgctaagaggaagcat	865 884 SEQ ID NO:	4701 atgcctacgttccatgtcc	11354	11373	2	3
SEQ ID NO:	3361	agcigittigaagacictc	1087 1106 SEQ ID NO:	4702 gagaagtgtcttcaaagct	12411	12430	2	3
SEQ ID NO:	3362	tgaaaaaactaaccatctc	1113 1132 SEQ ID NO:	4703 gagatcaacacaatcttca	13112	13131	2	3

SEQ ID NO:	3363	ctgagctgagaggcctcag	1176	1195 SEQ ID NO:	4704 ctgaattactgcacctcag	3035	3054	2	3
SEQ ID NO:	3364	tgaaacgtgtgcatgccaa	1311		4705ttggtagagcaagggttca	7856	7875	2	3
SEQ ID NO:	3365	ccttgtatgcgctgagcca	1440	1459 SEQ ID NO:	4706tggcactgtttggagaagg	9138	9157	2	3
SEQ ID NO:	3366	aggagctgctggacattgc	1500	1519 SEQ ID NO:	4707gcaagtcagcccagttcct	10928	10947	2	3
SEQ ID NO:	3367	atttgattctgcgggtcat	1575	1594 SEQ ID NO:	4708 atgaaaccaatgacaaaat	7428	7447	2	3
SEQ ID NO:	3368	tccagaactcaagtcttca	1627	1646 SEQ ID NO:	4709tgaaatacaatgctctgga	5520	5539	2	3
SEQ ID NO:	3369	ggttcttcttcagactttc	1744	1763 SEQ ID NO:	4710gaaataccaagtcaaaacc	10455	10474	2	3
SEQ ID NO:	3370	gttgatgaggagtccttca	1810	1829 SEQ ID NO:	4711tgaaaaagctgcaatcaac	13734	13753	2	3
SEQ ID NO:	3371	tccaagatctgaaaaagtt	1941	1960 SEQ ID NO:	4712aactgcttctccaaatgga	3552	3571	2	3
SEQ ID NO:	3372	agttagtgaaagaagttct	1956	1975 SEQ ID NO:	4713agaattcataatcccaact	8275	8294	2	3
SEQ ID NO:	3373	gaagggaatcttatatttg	2084	2103 SEQ ID NO:	4714caaaacctactgtctcttc	10467	10486	2	3
SEQ ID NO:	3374	ggaagctctttttgggaag	2221	2240 SEQ ID NO:	4715cttcacataccagaattcc	8324	8343	2	3
SEQ ID NO:	3375	tggaataatgctcagtgtt	2374		4716aacaaacacaggcattcca	9656	9675	2	3
SEQ ID NO:	3376	gatttgaaatccaaagaag	2408	2427 SEQ ID NO:	4717cttcatgtccctagaaatc	10037	10056	2	3
SEQ ID NO:	3377	tccaaagaagtcccggaag	2417		4718 cttcagcctgctttctgga	4951	4970	2	3
SEQ ID NO:	3378	aggaagggctcaaagaatg	2570	2589 SEQ ID NO:	4719cattagagctgccagtcct	10020	10039	2	3
SEQ ID NO:	3379	agaatgactttttcttca	2583	2602 SEQ ID NO:	4720tgaagatgacgacttttct	12160	12179	2	3
SEQ ID NO:	3380	tttgtgacaaatatgggca	2765	2784 SEQ ID NO:	4721tgccagtttgaaaaacaaa	11815	11834	2	3
SEQ ID NO:	3381	ctgaggctaccatgacatt	3252	3271 SEQ ID NO:	4722 aatgtcagctcttgttcag	10903	10922	2	3
SEQ ID NO:	3382	gtagataccaaaaaaaatga	3668	3687 SEQ ID NO:	4723tcatttgccctcaacctac	11450	11469	2	3
SEQ ID NO:	3383	aaatgacttccaatttccc	3681	3700 SEQ ID NO:	4724gggaactgttgaaagattt	12927	12946	2	3
SEQ ID NO:	3384	atgacttccaatttccctg	3683	3702 SEQ ID NO:	4725 caggaga acttactatcat	13785	13804	2	3
SEQ ID NO:	3385	atctgccatctcgagagtt	4104	4123 SEQ ID NO:	4726aactcctccactgaaagat	9547	9566	2	3
SEQ ID NO:	3386	atttgtttgtcaaagaagt	4551	4570 SEQ ID NO:	4727acttccgtttaccagaaat	8247	8266	2	3
SEQ ID NO:	3387	gcagagcttggcctctctg	5135	5154 SEQ ID NO:	4728 cagagetttetgecactge	13518	13537	2	3
SEQ ID NO:	3388	atatgctgaaatgaaattt	5353	5372 SEQ ID NO:	4729aaattcaaactgcctatat	13874	13893	2	3
SEQ ID NO:	3389	tcaeaacttgacaacattt	5420	5439 SEQ ID NO:	4730aaatacttccacaaattga	8780	8799	2	3
SEQ ID NO:	3390	cagtgacctgaaatacaat	5512	5531 SEQ ID NO:	4731 attgaacatccccaaactg	8794	8813	2	3
SEQ ID NO:	3391	tacaaatggcaatgggaaa	5848	5867 SEQ ID NO:	4732tttcaactgcctttgtgta	11229	11248	2	3
SEQ ID NO:	3392	cttttgtaaagtatgataa	6285	6304 SEQ ID NO:	4733ttattgctgaatccaaaag	13656	13675	2	3
SEQ ID NO:	3393	ttgtaaagtatgataaaaa	6288	6307 SEQ ID NO:	4734ttttcaagcaaatgcacaa	8539	8558	2	3
SEQ ID NO:	3394	tccattaacctcccatttt	6320	6339 SEQ ID NO:	4735aaaagaaaattttgctgga	10756	10775	2	3
SEQ ID NO:	3395	gattatctgaattcattca	6488	6507 SEQ ID NO:	4736tgaagtagaccaacaatc	7162	7181	2	3
SEQ ID NO:	3396	aattgggagagacaagttt	6506	6525 SEQ ID NO:	4737aaactaaatgatctaaatt	11324	11343	2	3
SEQ ID NO:	3397	atttgaaaatagctattgc	6696	6715SEQ ID NO:	4738gcaatttctgcacagaaat	13441	13460	2	3
SEQ ID NO:	3398	tgagcatgtcaaacacttt	7060	7079 SEQ ID NO:	4739aaagccattcagtctctca	12971	12990	2	3
SEQ ID NO:	3399	ttgaagatgttaacaaatt	7356	7375 SEQ ID NO:	4740 aattocatatgaaagtoaa	12660	12679	2	3
SEQ ID NO:	3400	actigtcacctacatttct	7753	7772 SEQ ID NO:	4741 agaatattttgatccaagt	13276	13295	2	3
SEQ ID NO:	3401	gttttccacaccagaattt	8050	8069 SEQ ID NO:	4742 aaatctggatttcttaaac	9481	9500	2	3
SEQ ID NO:	3402	ataagtacaaccaaaattt	9405	9424 SEQ ID NO:	4743 aaataaatggagtctttat	14083	14102	2	3
SEQ ID NO:	3403	cgggacctgcggggctgag	8	27 SEQ ID NO:	4744 ctcagttaactgtgtcccg	11571	11590	1	3
SEQ ID NO:	3404	agtgcccttctcggttgct	25	44 SEQ ID NO:	4745 agcatctgattgactcact	12678	12697	1	3
SEQ ID NO:	3405	gctgaggagcccgcccagc	47	66 SEQ ID NO:	4746gctgattgaggtgtccagc	1225	1244	1	3
SEQ ID NO:	3406	gaggagcccgcccagccag	50	69SEQ ID NO:	4747 ctggatcacagagtccctc	3752	3771	1	3
SEQ ID NO:	3407	gggccgcgaggccgaggcc	72	91 SEQ ID NO:	4748 ggccctgatccccgagccc	1363	1382	1	3
SEQ ID NO:	3408	ccaggccgcagcccaggag	89	108 SEQ ID NO:	4749 ctcccggagccaaggctgg	2682	2701	1	3
SEQ ID NO:	3409	ggagccgccccaccgcagc	104	123 SEQ ID NO:	4750gctgttttgaagactctcc	1088	1107	1	3 :
SEQ ID NO:	3410	gaagaggaaatgctggaaa	200	219 SEQ ID NO:	4751 tttcaagttcctgaccttc	8309	8328	1	3
SEQ ID NO:	3411	caaaagatgcgacccgatt	237	256 SEQ ID NO:	4752 aatcttattggggattttg	7085	7104	1	3
SEQ ID NO:	3412	attcaagcacctccggaag	253	272 SEQ ID NO:	4753 cttccacatttcaaggaat	10067	10086	1	3
				,,,				•	-

SEQ ID NO:	3413	gttccagtggagtccctgg	297	316 SEQ ID NO:	4754 ccagcaagtacctgagaac	8610	8629	1	3
SEQ ID NO:	3414	gactgctgattcaagaagt	316	335 SEQ ID NO:	4755 acttgaagaaaagatagtc	13324	13343	1	3
SEQ ID NO:	3415	gtgccaccaggatcaactg	333	352 SEQ ID NO:	4756 cagtgaagctgcagggcac	10704	10723	1	3
SEQ ID NO:	3416	gatcaactgcaaggttgag	343	362 SEQ ID NO:	4757 ctcacctccacctctgatc	4748	4767	1	3
SEQ ID NO:	3417	actgcaaggttgagctgga	348	367 SEQ ID NO:	4758 tocactcacatcctccagt	1289	1308	1	3
SEQ ID NO:	3418	ccagctctgcagcttcatc	373	392 SEQ ID NO:	4759 gatgtggtcacctacctgg	1343	1362	1	3
SEQ ID NO:	3419	agcttcatcctgaagacca	383	402 SEQ ID NO:	4760tggtgctggagaatgagct	5112	5131	1	3
SEQ ID NO:	3420	cttcatcctgaagaccagc	385	404 SEQ ID NO:	4761 gctggagtaaaactggaag	2696	2715	1	3
SEQ ID NO:	3421	ccagccagtgcaccctgaa	399	418 SEQ ID NO:	4762ttcaagatgactgcactgg	1539	1558	1	3
SEQ ID NO:	3422	cagtgcaccctgaaagagg	404	423 SEQ ID NO:	4763 cctcacagagctatcactg	5230	5249	1	3
SEQ ID NO:	3423	tggcttcaaccctgagggc	427	446 SEQ ID NO:	4764 gcccactggtcgcctgcca	3533	3552	1	3
SEQ ID NO:	3424	cttcaaccctgagggcaaa	430	449 SEQ ID NO:	4765 tttgagccaacattggaag	2207	2226	1	3
SEQ ID NO:	3425	ttcaaccctgagggcaaag	431	450 SEQ ID NO:	4766 ctttgacaggcattttgaa	9727	9746	1	3
SEQ ID NO:	3426	cttgctgaagaaaaccaag	451	470 SEQ ID NO:	4767 cttgaaattcaatcacaag	9074	9093	1	3
SEQ ID NO:	3427	tgctgaagaaaaccaagaa	453	472 SEQ ID NO:	4768 ttctgctgccttatcagca	5647	5666	1	3
SEQ ID NO:	3428	ttgctgcagccatgtccag	483	502 SEQ ID NO:	4769 ctggtcagtttgcaagcaa	3004	3023	1	3
SEQ ID NO:	3429	tgctgcagccatgtccagg	484	503 SEQ ID NO:	4770 cctggtcagtttgcaagca	3003	3022	1	3
SEQ ID NO:	3430	agccatgtccaggtatgag	490	509 SEQ ID NO:	4771 ctcacatcctccagtggct	1293	1312	1	3
SEQ ID NO:	3431	agctcaagctggccattcc	507	526 SEQ ID NO:	4772 ggaactaccacaaaaagct	7489	7508	1	3
SEQ ID NO:	3432	agaagggaagcaggtttc	526	545 SEQ ID NO:	4773gaaatcttcaatttattct	13821	13840	1	3
SEQ ID NO:	3433	aagggaagcaggttttcct	528	547 SEQ ID NO:	4774 aggacaccaaaataacctt	7572	7591	1	3
SEQ ID NO:	3434	agaaagatgaacctactta	555	574 SEQ ID NO:	4775taagaactttgccacttct	4852	4871	1	3
SEQ ID NO:	3435	atcctgaacatcaagaggg	575	594 SEQ ID NO:	4776 ccctaacagatttgaggat	7977	7996	1	3
SEQ ID NO:	3436	tectgaacatcaagagggg	576	595 SEQ ID NO:	4777 cccctaacagatttgagga	7976	7995	1	3
SEQ ID NO:	3437	ctgaacatcaagaggggca	578	597 SEQ ID NO:	4778tgcctgcctttgaagtcag	7908	7927	1	3
SEQ ID NO:	3438	aacatcaagaggggcatca	581	600 SEQ ID NO:	4779tgataaaaaccaagatgtt	6298	6317	1	3
SEQ ID NO:	3439	acatcaagaggggcatcat	582	601 SEQ ID NO:	4780atgataaaaaccaagatgt	6297	6316	1	3
SEQ ID NO:	3440	tcatttctgccctcctggt	597	616SEQ ID NO:	4781 accaccagtttgtagatga	7413	7432	1	3
SEQ ID NO:	3441	ttcccccagagacagaaga	615	634 SEQ ID NO:	4782tcttccacatttcaaggaa	10066	10085	1	3
SEQ ID NO:	3442	gaagaagccaagcaagtgt	629	648 SEQ ID NO:	4783acaccttccacattccttc	8079	8098	1	3
SEQ ID NO:	3443	ttgtttctggataccgtgt	647	666 SEQ ID NO:	4784 acactaaatacttccacaa	8775	8794	1	3
SEQ ID NO:	3444	tgtatggaaactgctccac	663	682 SEQ ID NO:	4785gtggaggcaacacattaca	2928	2947	1	3
SEQ ID NO:	3445	aaactgctccactcacttt	670	689 SEQ ID NO:	4786aaagaaacagcatttgttt	4540	4559	1	3
SEQ ID NO:	3446	actcactttaccgtcaaga	680	699 SEQ ID NO:	4787tcttacttttccattgagt	10580	10599	1	3
SEQ ID NO:	3447	ctttaccgtcaagacgagg	685	704 SEQ ID NO:	4788 cctccagctcctgggaaag	2491	2510	1	3
SEQ ID NO:	3448	ttaccgtcaagacgaggaa	687	706 SEQ ID NO:	4789ttcctaaagctggatgtaa	11177	11196	1	3
SEQ ID NO:	3449	acgaggaagggcaatgtgg	698	717 SEQ ID NO:	4790ccacaagtcatcatctcgt	5964	5983	1	3
SEQ ID NO:	3450	cgaggaagggcaatgtggc	699	718 SEQ ID NO:	4791 gccagaagtgagatcctcg	3515	3534	1	3
SEQ ID NO:	3451	gaggaagggcaatgtggca	700	719 SEQ ID NO:	4792tgccagtctccatgacctc	2476	2495	1	3
SEQ ID NO:	3452	ggaagggcaatgtggcaac	702	721 SEQ ID NO:	4793gttgctcttaaggacttcc	13364	13383	1	3
SEQ ID NO:	3453	gaagggcaatgtggcaaca	703	722 SEQ ID NO:	4794tgttgatgaggagtccttc	1809	1828	1	3
SEQ ID NO:	3454	caggcatcagcccacttgc	777	798 SEQ ID NO:	4795gcaagtctttcctggcctg	3019	3038	1	3
SEQ ID NO:	3455	aggcatcagcccacttgct	778	797 SEQ ID NO:	4796agcaagtctttcctggcct	3018	3037	1	3
SEQ ID NO:	3456	tcagcccacttgctctcat	783	802 SEQ ID NO:	4797atgaaagtcaagcatctga	12668	12687	1	3
SEQ ID NO:	3457	gtcaactctgatcagcagc	823	842 SEQ ID NO:	4798gctgactttaaaatctgac	4819	4838	1	3
SEQ ID NO:	3458	ggacgctaagaggaagcat	865	884SEQ ID NO:	4799etgcactgtttctgagtcc	9339	9358	1	3
SEQ ID NO:	3459	aaggagcaacacctcttcc	902	921 SEQ ID NO:	4800ggaatatcttagcatcctt	13465	13484	1	3
SEQ ID NO:	3460	aggagcaacacctcttcct	903	922 SEQ ID NO:	4801 aggaatatcttagcatcct	13464	13483	1	3
SEQ ID NO:	3461	caacacctcttcctgcctt	908	927 SEQ ID NO:	4802aaggctgactctgtggttg	4292	4311	1	3
SEQ ID NO:	3462	aacacctcttcctgccttt	909	928 SEQ ID NO:	4803aaagcaggccgaagctgtt	1075	1094	1	3

									. 1	
SEQ ID NO:	3463	acaagaataagtatgggat	933	952 SEQ ID NO:	4804 atccatgatctacatttgt	6794	6813	1	3	
SEQ ID NO:	3464	caagaataagtatgggatg	934	953 SEQ ID NO:	4805 catcactttacaagccttg	1246	1265	1	3	
SEQ ID NO:	3465	tagcacaagtgacacagac	954	973 SEQ ID NO:	4806 gtctcttcgttctatgcta	4592	4611	1	3	1
SEQ ID NO:	3466	agcacaagtgacacagact	955	974 SEQ ID NO:	4807 agtetettegttetatget	4591	4610	1	3	,
SEQ ID NO:	3467	gcacaagtgacacagactt	956	975 SEQ ID NO:	4808 aagtgtagtctcctggtgc	5099	5118	1	3	1
SEQ ID NO:	3468	aacttgaagacacaccaaa	978	997 SEQ ID NO:	4809tttgaggattccatcagtt	7987	8006	1	3	
SEQ ID NO:	3469	gcttctttggtgaaggtac	1008	1027 SEQ ID NO:	4810gtacctacttttggcaagc	8372	8391	1	3	
SEQ ID NO:	3470	ctttggtgaaggtactaag	1012	1031 SEQ ID NO:	4811 cttatgggatttcctaaag	11167	11186	1	3	1
SEQ ID NO:	3471	tactaagaagatgggcctc	1024	1043 SEQ ID NO:	4812 gagggtagtcataacagta	10337	10356	1	3	1
SEQ ID NO:	3472	tttgagagcaccaaatcca	1046	1065 SEQ ID NO:	4813tggaagtgtcagtggcaaa	10380	10399	1	3	1
SEQ ID NO:	3473	agagcaccaaatccacatc	1050	1069 SEQ ID NO:	4814 gatggatatgaccttctct	4876	4895	1	3	1
SEQ ID NO:	3474	agctgttttgaagactctc	1087	1106 SEQ ID NO:	4815 gagaacatactgggcagct	5880	5899	1	3	,
SEQ ID NO:	3475	tgaaaaaactaaccatctc	1113	1132 SEQ ID NO:	4816 gagaaaatcaatgccttca	7112	7131	1	3	
SEQ ID NO:	3476	gaaaaaactaaccatctct	1114	1133 SEQ ID NO:	4817 agagccaggtcgagctttc	11052	11071	1	3	
SEQ ID NO:	3477	tctgagcaaaatatccaga	1130	1149SEQ ID NO:	4818 tctgatgaggaaactcaga	12260	12279	1	3	
SEQ ID NO:	3478	tctcttcaataagctggtt	1156	1175 SEQ ID NO:	4819aacctcccatttittgaga	6326	6345	1	3	
SEQ ID NO:	3479	ctgagctgagaggcctcag	1176	1195 SEQ ID NO:	4820 ctgatccccgagccctcag	1367	1386	1	3	
SEQ ID NO:	3480	tgaagcagtcacatctctc	1198	1217 SEQ ID NO:	4821 gagaaaatcaatgccttca	7112	7131	1	3	
SEQ ID NO:	3481	aagcagtcacatctctctt	1200	1219 SEQ ID NO:	4822 aagaggcagcttctggctt	12297	12316	1	3	
SEQ ID NO:	3482	ctctcttgccacagctgat	1212	1231 SEQ ID NO:	4823 atcaaaagaagcccaagag	12946	12965	1	3	
SEQ ID NO:	3483	tcttgccacagctgattga	1215	1234 SEQ ID NO:	4824tcaaagttaattgggaaga	12279	12298	1	3	
SEQ ID NO:	3484	cttgccacagctgattgag	1216	1235 SEQ ID NO:	4825ctcaattttgattttcaag	8528	8547	1	3	
SEQ ID NO:	3485	tgaggtgtccagccccatc	1231	1250 SEQ ID NO:	4826gatggaaccctctccctca	4733	4752	1	3	
SEQ ID NO:	3486	tcagtgtggacagcctcag	1267	1286 SEQ ID NO:	4827 ctgacatcttaggcactga	5001	5020	1	3	
SEQ ID NO:	3487	acatectecagtggetgaa	1296	1315 SEQ ID NO:	4828ttcagaagctaagcaatgt	7239	7258	1	3	
SEQ ID NO:	3488	gcacagcagctgcgagaga	1385	1404 SEQ ID NO:	4829tctctgaaagacaacgtgc	12323	12342	1	3	
SEQ ID NO:	3489	cagcagctgcgagagatct	1388	1407 SEQ ID NO:	4830agataacattaaacagctg	13051	13070	1	3	
SEQ ID NO:	3490	gcgagggatcagcgcagcc	1415	1434 SEQ ID NO:	4831 ggctcaacacagacatcgc	5718	5737	1	3	
SEQ ID NO:	3491	aagacaaaccctacaggga	1478	1497 SEQ ID NO:	4832tcccagaaaacctcttctt	3936	3955	1	3	
SEQ ID NO:	3492	caggagctgctggacattg	1499	1518 SEQ ID NO:	4833 caatggagagtccaacctg	4660	4679	1	3	
SEQ ID NO:	3493	aggagctgctggacattgc	1500	1519 SEQ ID NO:	4834gcaagggttcactgttcct	7864	7883	1	3	
SEQ ID NO:	3494	ctgctggacattgctaatt	1505	1524 SEQ ID NO:	4835aattgggaagaagaggcag	12287	12306	1	3	
SEQ ID NO:	3495	gattacacctatttgattc	1565	1584 SEQ ID NO:	4836gaatattttgagaggaatc	6353	6372	1	3	
SEQ ID NO:	3496	attigattctgcgggtcat	1575	1594 SEQ ID NO:	4837 atgaagtagaccaacaaat	7161	7180	1	3	
SEQ ID NO:	3497	tctgcgggtcattggaaat	1582	1601 SEQ ID NO:	4838 atttgtaagaaaatacaga	6436	6455	1	3	
SEQ ID NO:	3498	aaccatggagcagttaact	1609	1628 SEQ ID NO:	4839agtttctccatcctaggtt	9962	9981	1	3	
SEQ ID NO:	3499	ggagcagttaactccagaa	1615	1634 SEQ ID NO:	4840ttctgaaaatccaatctcc	8400	8419	1	3	
SEQ ID NO:	3500	actccagaactcaagtctt	1625	1644 SEQ ID NO:	4841aagatogcagactttgagt	11654	11673	1	3	
SEQ ID NO:	3501	tocagaactcaagtcttca	1627	1646 SEQ ID NO:	4842 tgaactcagaagaattgga	1920	1939	1	3	
SEQ ID NO:	3502	aagtacaaagccatcactg	1663	1682 SEQ ID NO:	4843 cagtcatgtagaaaaactt	4429	4448	1	3	
SEQ ID NO:	3503	gccatcactgatgatccag	1672	1691 SEQ ID NO:	4844 ctggaactctctccatggc	10883	10902	1	3	
SEQ ID NO:	3504	ccatcactgatgatccaga	1673	1692 SEQ ID NO:	4845tctgaactcagaaggatgg	13999	14018	1	3	
SEQ ID NO:	3505	atccagaaagctgccatcc	1685	1704 SEQ ID NO:	4846ggatticctaaagctggat	11173	11192	1	3	
SEQ ID NO:	3506	cagaaagctgccatccagg	1688		4847 cctgaaatacaatgctctg	5518	5537	1	3	
SEQ ID NO:	3507	acaaggaccaggaggttct	1731	1750 SEQ ID NO:	4848 agaaacagcatttgtttgt	4542	4561	1	3	
SEQ ID NO:	3508	aggaccaggaggttcttct	1734		4849 aga agcta agca at gtcct	7242	7261	1	3	
SEQ ID NO:	3509	accaggaggttcttcttca	1737	1756 SEQ ID NO:	4850tgaaggctgactctgtggt	4290	4309	1	3	
SEQ ID NO:	3510	tcttcagactttccttgat		1769 SEQ ID NO:	4851 atcaggaagggctcaaaga	2567	2586	1	3	
SEQ ID NO:	3511	ttcagactttccttgatga	1752	1771 SEQ ID NO:	4852tcattactcctgggctgaa	11307	11326	1	3	
SEQ ID NO:	3512	gttgatgaggagtccttca	1810	1829 SEQ ID NO:	4853tgaatctggctccctcaac	9046	9065	1	3	

SEQ ID NO:	3513	cttcacaggcagatattaa	1824	OLG ID NO.	4854ttaatcgagaggtatgaag	7148	7167	1	3
SEQ ID NO:	3514	ttcacaggcagatattaac	1825	01.Q (D 110.	4855 gttaatcgagaggtatgaa	7147	7166	1	3
SEQ ID NO:	3515	ggcagatattaacaaaatt	1831	OLG ID NO.	4856aattgcattagatgatgcc	6589	6608	1	3
SEQ ID NO:	3516	atattaacaaaattgtcca	1836	OLG ID NO.	4857tggagtttgtgacaaatat	2760	2779	1	3
SEQ ID NO:	3517	acaaaattgtccaaattct	1842	OLUCIO,	4858 agaaacagcatttgtttgt	4542	4561	1	3
SEQ ID NO:	3518	gagcaagtgaagaactttg	1877	OLG ID NO.	4859 caaatgacatgatgggctc	5334	5353	1	3
SEQ ID NO:	3519	gtgaagaactttgtggctt	1883	OF 0 10 140.	4860 aagcatctgattgactcac	12677	12696	1	3
SEQ ID NO:	3520	agaactttgtggcttccca	1887	OLGIDING.	4861 tgggcctgcccagattct	8909	8928	1	3
SEQ ID NO:	3521	tttgtggcttcccatattg	1892	OLG ID NO.	4862 caataagatcaatagcaaa	8998	9017	1	3
SEQ ID NO:	3522	tggcttcccatattgccaa	1896	OLG ID NO.	4863ttggctcacatgaaggcca	7631	7650	1	3
SEQ ID NO:	3523	ttcccatattgccaatatc	1900	OLG ID NO.	4864 gatatacactagggaggaa	12745	12764	1	3
SEQ ID NO:	3524	tcccatattgccaatatct	1901	¹⁹²⁰ SEQ ID NO:	4865 agatcaaagttaattggga	12276	12295	1	3
SEQ ID NO:	3525	ttgccaatatcttgaactc	1908	¹⁹²⁷ SEQ ID NO:	4866 gagteccagtgcccagcaa	9352	9371	1	3
SEQ ID NO:	3526	ttggatatccaagatctga	1934	OLG ID NO.	4867tcagtataagtacaaccaa	9400	9419	1	3
SEQ ID NO:	3527	tccaagatctgaaaaagtt	1941	¹⁹⁶⁰ SEQ ID NO:	4868aacttccaactgtcatgga	1986	2005	1	3
SEQ ID NO:	3528	ctgaaaaagttagtgaaag	1949	1968 SEQ ID NO:	4869ctttgaagtcagtcttcag	7915	7934	1	3
SEQ ID NO:	3529	agttagtgaaagaagttct	1956	¹⁹⁷⁵ SEQ ID NO:	4870agaatctcaacttccaact	1978	1997	1	3
SEQ ID NO:	3530	aatctcaacttccaactgt	1980	¹⁹⁹⁹ SEQ ID NO:	4871 acaggggtcctttatgatt	12350	12369	1	3
SEQ ID NO:	3531	gtcatggacttcagaaaat	1997	2016 SEQ ID NO:	4872 atttgaaagaataaatgac	7036	7055	1	3
SEQ ID NO:	3532	tcaactctacaaatctgtt	2029	2048 SEQ ID NO:	4873aacacattgaggctattga	6978	6997	1	3
SEQ ID NO:	3533	aactctacaaatctgtttc	2031	2050 SEQ ID NO:	4874gaaaaaggggattgaagtt	10284	10303	1	3
SEQ ID NO:	3534	aaatagaagggaatcttat	2079	2098 SEQ ID NO:	4875ataagcaaactgttaattt	5457	5476	1	3
SEQ ID NO:	3535	agaagggaatcttatattt	2083	2102 SEQ ID NO:	4876aaatgcactgctgcgttct	4900	4919	1	3
SEQ ID NO:	3536	gaagggaatcttatatttg	2084	2103 SEQ ID NO:	4877caaaaacattttcaacttc	5287	5306	1	3
SEQ ID NO:	3537	tgatccaaataactacctt	2101	2120 SEQ ID NO:	4878aaggaagaaagaaaatca	3461	3480	1	3
SEQ ID NO:	3538	tggatttgcttcagctgac	2158	2177 SEQ ID NO:	4879gtcagcccagttccttcca	10932	10951	1	3
SEQ ID NO:	3539	tttgcttcagctgacctca	2162	2181 SEQ ID NO:	4880tgaggaaactcagatcaaa	12265	12284	1	3
SEQ ID NO:	3540	cttggaaggaaaaggcttt	2191	2210 SEQ ID NO:	4881aaagcattggtagagcaag	7850	7869	1	3
SEQ ID NO:	3541	tggaaggaaaaggctttga	2193	2212SEQ ID NO:	4882tcaagtctgtgggattcca	4086	4105	1	3
SEQ ID NO:	3542	ggctttgagccaacattgg	2204	2223 SEQ ID NO:	4883ccaagaggtatttaaagcc	12958	12977	1	3
SEQ ID NO:	3543	tgagccaacattggaagct	2209	2228SEQ ID NO:	4884agctttctgccactgctca	13521	13540	1	3
SEQ ID NO:	3544	gagccaacattggaagctc	2210	2229 SEQ ID NO:	4885gagctttctgccactgctc	13520	13539	1	3
SEQ ID NO:	3545	aacattggaagctcttttt	2215	2234 SEQ ID NO:	4886aaaagaaacagcatttgtt	4539	4558	1	3
SEQ ID NO:	3546	tggaagctctttttgggaa	2220	2239 SEQ ID NO:	4887ttccggcacgtgggttcca	3785	3804	1	3
SEQ ID NO:	3547	ctcttttgggaagcaagg	2226	2245 SEQ ID NO:	4888 ccttactgactttgcagag	7798	7817	1	3
SEQ ID NO:	3548	tttttgggaagcaaggatt	2229	2248 SEQ ID NO:	4889aatcattgaaaaattaaaa	6730	6749	1	3
SEQ ID NO:	3549	ttttcccagacagtgtcaa	2247	2266SEQ ID NO:	4890ttgatgaaatcattgaaaa	6723	6742	1	3
SEQ ID NO:	3550	ttggctataccaaagatga	2331	2350 SEQ ID NO:	4891 tcattgctcccggagccaa	2676	2695	1	3
SEQ ID NO:	3551	ataccaaagatgataaaca	2337	2356SEQ ID NO:	4892 tgttgcttttgtaaagtat	6280	6299	1	3
SEQ ID NO:	3552	gagcaggatatggtaaatg	2357	2376 SEQ ID NO:	4893 cattle ageette gggete	4262	4281	1	3
SEQ ID NO:	3553	atggtaaatggaataatgc	2366	2385 SEQ ID NO:	4894 gcatgcctagtttctccat	9954	9973	1	3
SEQ ID NO:	3554	tggtaaatggaataatgct	2367	2386 SEQ ID NO:	4895 agcacagtacgaaaaacca	10809	10828	1	3
SEQ ID NO:	3555	taaatggaataatgctcag	2370	2389 SEQ ID NO:	4896ctgaaagagatgaaattta	13067	13086	1	3
SEQ ID NO:	3556	tggaataatgctcagtgtt	2374	2393 SEQ ID NO:	4897aacagatttgaggattcca	7981	8000	1	3
SEQ ID NO:	3557	tcagtgttgagaagctgat	2385	2404 SEQ ID NO:	4898 atcacaactcctccactga	9542	9561	1	3
SEQ ID NO:	3558	cagtgttgagaagctgatt	2386	2405 SEQ ID NO:	4899 aat cacaact cct ccactg	9541	9560	1	3
SEQ ID NO:	3559	agtgttgagaagctgatta	2387	2406 SEQ ID NO:	4900 taatcacaactcctccact	9540	9559	1	3
SEQ ID NO:	3560	gattaaagatttgaaatcc	2401	2420 SEQ ID NO:	4901 ggatactaagtaccaaatc	6874	6893	1	3
SEQ ID NO:	3561	gatttgaaatccaaagaag	2408	2427 SEQ ID NO:	4902 cttccgtttaccagaaatc	8248	8267	1	3
SEQ ID NO:	3562	atttgaaatccaaagaagt	2409	²⁴²⁸ SEQ ID NO:	4903 acttccgtttaccagaaat	8247	8266	1	3
									ì

SEQ ID NO:	3563	atccaaagaagtcccggaa	2416	2435 SEQ ID NO:	4904ttccaatttccctgtggat	3688	3707	1	3
SEQ ID NO:	3564	tccaaagaagtcccggaag	2417	2436 SEQ ID NO:	4905 cttccaatttccctgtgga	3687	3706	1	3
SEQ ID NO:	3565	agagcctacctccgcatct	2438		4906 agattaatccgctggctct	8571	8590	1	3
SEQ ID NO:	3566	gagcctacctccgcatctt	2439		4907 aagattaatccgctggctc	8570	8589	1	3
SEQ ID NO:	3567	cttgggagaggagcttggt	2455	2474 SEQ ID NO:	4908 accactgggacctaccaag	12527	12546	1	3
SEQ ID NO:	3568	ggagcttggttttgccagt	2464	2483 SEQ ID NO:	4909actggtggcaaaaccctcc	2734	2753	1	3
SEQ ID NO:	3569	ttggttttgccagtctcca	2469	2488 SEQ ID NO:	4910tggagaagccacactccaa	10771	10790	1	3
SEQ ID NO:	3570	cagtctccatgacctccag	2479	2498 SEQ ID NO:	4911 ctggtcgcctgccaaactg	3538	3557	1	3
SEQ ID NO:	3571	ctccatgacctccagctcc	2483		4912ggagtcattgctcccggag	2672	2691	1	3
SEQ ID NO:	3572	ctgggaaagctgcttctga	2501	2520 SEQ ID NO:	4913tcagaaagctaccttccag	7939	7958	1	3
SEQ ID NO:	3573	gaggtcatcaggaagggct	2561	2580 SEQ ID NO:	4914agccagaagtgagatcctc	3514	3533	1	3
SEQ ID NO:	3574	aagaatgactttttcttc	2582	2601 SEQ ID NO:	4915gaaggcatctgggagtctt	3835	3854	1	3
SEQ ID NO:	3575	ctttttcttcactacatc	2590	2609 SEQ ID NO:	4916gatgcttacaacactaaag	6107	6126	1	3
SEQ ID NO:	3576	catcitcatggagaatgcc	2605		4917ggcacttccaaaattgatg	10718	10737	1	3
SEQ ID NO:	3577	cttcatggagaatgccttt	2608		4918aaagttaattgggaagaag	12281	12300	1	3
SEQ ID NO:	3578	aatgcctttgaactcccca	2618		4919tgggctggcttcagccatt	5737	5756	1	3
SEQ ID NO:	3579	gcctttgaactccccactg	2621	2640 SEQ ID NO:	4920cagtctgaacattgcaggc	5383	5402	1	3
SEQ ID NO:	3580	caaggctggagtaaaactg	2692	2711 SEQ ID NO:	4921 cagtgcaacgaccaacttg	5080	5099	1	3
SEQ ID NO:	3581	tggagtaaaactggaagta	2698	2717SEQ ID NO:	4922 tactccaacgccagctcca	3059	3078	1	3
SEQ ID NO:	3582	ggaagtagccaacatgcag	2710	2729 SEQ ID NO:	4923ctgccatctcgagagttcc	4106	4125	1	3
SEQ ID NO:	3583	tttgtgacaaatatgggca	2765		4924tgcctttgtgtacaccaaa	11236	11255	1	3
SEQ ID NO:	3584	tgtgacaaatatgggcatc	2767	2786 SEQ ID NO:	4925gatgggtctctacgccaca	4385	4404	1	3
SEQ ID NO:	3585	ggacttcgctaggagtggg	2794	2813 SEQ ID NO:	4926 cccaaggccacaggggtcc	12341	12360	1	3
SEQ ID NO:	3586	gtggggtccagatgaacac	2808	²⁸²⁷ SEQ ID NO:	4927 gtgttctagacctctccac	4179	4198	1	3
SEQ ID NO:	3587	ttccacgagtcgggtctgg	2834	2853 SEQ ID NO:	4928 ccagaatctgtaccaggaa	12562	12581	1	3
SEQ ID NO:	3588	agtogggtotggaggotca	2841	2860 SEQ ID NO:	4929tgagaactacgagctgact	4807	4826	1	3
SEQ ID NO:	3589	tcgggtctggaggctcatg	2843	2862 SEQ ID NO:	4930 catgaaggccaaattccga	7639	7658	1	3
SEQ ID NO:	3590	aaaagctgggaagctgaag	2869	2888 SEQ ID NO:	4931 cttccagacacctgatttt	7951	7970	1	3
SEQ ID NO:	3591	aagctgaagttiatcattc	2879	2898 SEQ ID NO:	4932 gaatttacaattgttgctt	6269	6288	1	3
SEQ ID NO:	3592	gagaccagtcaagctgctc	2908	²⁹²⁷ SEQ ID NO:	4933 gagcttcaggaagcttctc	13214	13233	1	3
SEQ ID NO:	3593	gcaacacattacatttggt	2934	2953SEQ ID NO:	4934 accagtcagatattgttgc	10191	10210	1	3
SEQ ID NO:	3594	acattacatttggtctcta	2939	2958 SEQ ID NO:	4935 tagaatatgaactaaatgt	11889	11908	1	3
SEQ ID NO:	3595	cattacatttggtctctac	2940	2959 SEQ ID'NO:	4936 gtagctgagaaaatcaatg	7108	7125	1	3
SEQ ID NO:	3596	aaacggaggtgatcccacc	2964	2983 SEQ ID NO:	4937ggtggataccctgaagttt	3205	3224	1	3
SEQ ID NO:	3597	attgagaacaggcagtcct	2987	3006 SEQ ID NO:	4938 aggaaaagcgcacctcaat	12031	12050	1	3
SEQ ID NO:	3598	tgagaacaggcagtcctgg	2989	3008 SEQ ID NO:	4939 ccagcttccccacatctca	8341	8360	1	3
SEQ ID NO:	3599	ctgcacctcaggcgcttac	3043	3062 SEQ ID NO:	4940 gtaagaaaatacagagcag	6440	6459	1	3
SEQ ID NO:	3600	tccacagactccgcctcct	3074	3093 SEQ ID NO:	4941 aggacagagccttggtgga	3192	3211	1	3
SEQ ID NO:	3601	ctgaccggggacaccagat	3101	3120 SEQ ID NO:	4942 atctgatgaggaaactcag	12259	12278	1	3
SEQ ID NO:	3602	tagagctggaactgaggcc	3120	3139 SEO ID NO:	4943ggcctctctggggcatcta	5144	5163	1	3
SEQ ID NO:	3603	ctatgagctccagagagag	3175	3194 SEQ ID NO:	4944 ctctcacaaaaaagtatag	6549	6568	1	3
SEQ ID NO:	3604	cttggtggataccctgaag	3202	3221 SEQ ID NO:	4945 cttcaggaagcttctcaag	13217	13236	1	3
SEQ ID NO:	3605	ttgtaactcaagcagaagg	3222	3241 SEQ ID NO:	4946 ccttacacaataatcacaa	9530	9549	1	3
SEQ ID NO:	3606	taactcaagcagaaggtgc	3225	3244 SEQ ID NO:	4947 gcacctagctggaaagtta	6955	6974	1	3
SEQ ID NO:	3607	gcagaaggtgcgaagcaga	3233	3252 SEQ ID NO:	4948tctgtgggattccatctgc	4091	4110	1	3
SEQ ID NO:	3608	cagaaggtgcgaagcagac	3234	3253 SEQ ID NO:	4949 gtctgtgggattccatctg	4090	4109	1	3
SEQ ID NO:	3609	gtatgaccttgtccagtga	3288	3307 SEQ ID NO:	4950tcaccaacggagaacatac	10851	10870	1	3
SEQ ID NO:	3610	tatgaccttgtccagtgaa	3289	3308 SEQ ID NO:	4951 ttcaccaacggagaacata	10850	10869	1	3
SEQ ID NO:	3611	gaagtccaaattccggatt	3305	3324 SEQ ID NO:	4952 aatctcaagctttctcttc	10052	10071	1	3
SEQ ID NO:	3612	gagggcaaaacgtcttaca	3371	3390 SEQ ID NO:	4953 tgtacaactggtccgcctc	4215	4234	1	3

	SEQ ID NO:	3613	agggcaaaacgtcttacag	3372	2 3391 SEQ ID NO:	4954 ctgttaggacaccagccct	4062	4081	1	3
	SEQ ID NO:	3614	gactcaccctggacattca	3390	3409 SEQ ID NO:	4955 tgaaattcaatcacaagtc	9076	9095	1	3
	SEQ ID NO:	3615	ctggacattcagaacaaga	3398	3417 SEQ ID NO:	4956 tcttttcttttcagcccag	9226	9245	1	3
	SEQ ID NO:	3616	tcatgggcgacctaagttg	3435	3454 SEQ ID NO:	4957 caactgcagacatatatga	6635	6654	1	3
	SEQ ID NO:	3617	tgggcgacctaagttgtga	3438	3457 SEQ ID NO:	4958 toactocattaacctccca	6316	6335	1	3
	SEQ ID NO:	3618	agttgtgacacaaaggaag	3449		4959 cttcttttccaattgaact	13838	13857	1	3
	SEQ ID NO:	3619	tgacacaaaggaagaaaga	3454		4960 tcttcatcttcatctgtca	10220	10239	1	3
	SEQ ID NO:	3620	gacacaaaggaagaaagaa	3455		4961 ttcttcatcttcatctgtc	10219	10238	1	3
	SEQ ID NO:	3621	ggaagaaagaaaatcaag	3463		4962 cttgtcatgcctacgttcc	11348	11367	1	3
	SEQ ID NO:	3622	aaaatcaagggtgttattt	3473		4963 aaatcttattggggatttt	7084	7103	1	3
	SEQ ID NO:	3623	tccataccccgtttgcaag	3491		4964 citggattcaaaatgtgga	6858	6877	1	3
	SEQ ID NO:	3624	tgcaagcagaagccagaag	3504		4965 cttcagggaacacaatgca	5185	5204	1	3
	SEQ ID NO:	3625	cagaagccagaagtgagat	3510	3529 SEQ ID NO:	4966 atctatgccatctcttctg	5633	5652	1	3
	SEQ ID NO:	3626	tgagatcctcgcccactgg	3523		4967 ccagcttccccacatctca	8341	8360	1	3
	SEQ ID NO:	3627	ggtcgcctgccaaactgct	3540	3559 SEQ ID NO:	4968 agcacatatgaactggacc	13947	13966	1	3
	SEQ ID NO:	3628	tgcttctccaaatggactc	3555	3574 SEQ ID NO:	4969 gagtttatcagtcagagca	9701	9720	1	3
	SEQ ID NO:	3629	tggactcatctgctacagc	3567	3586 SEQ ID NO:	4970gctgcagtggcccgttcca	8167	8186	1	3
	SEQ ID NO:	3630	gctacagcttatggctcca	3578	3597 SEQ ID NO:	4971 tggaggacattcctctagc	8211	8230	1	3
	SEQ ID NO:	3631	ggtggcatggcattatgat	3610		4972atcacaaattagtttcacc	8947	8966	1	3
	SEQ ID NO:	3632	agagaagattgaatttgaa	3631		4973ttcaacgatacctgtctct	7713	7732	1	3
	SEQ ID NO:	3633	caggcaccaatgtagatac	3657		4974gtatgctaatagactcctg	3736	3755	1	3
	SEQ ID NO:	3634	gacttccaatttccctgtg	3685		4975 cacaatgcaaaattcagtc	5195	5214	1	3
	SEQ ID NO:	3635	gtccctcaaacagacatga	3764		4976tcataagggaggtagggac	12777	12796	1	3
	SEQ ID NO:	3636	caaacagacatgactttcc	3770	3789 SEQ ID NO:	4977ggaactacaatttcatttg	7022	7041	1	3
	SEQ ID NO:	3637	atagttgcaatgagctcat	3809	3828 SEQ ID NO:	4978 atgatttgaaaatagctat	6693	6712	1	3
	SEQ ID NO:	3638	gcttcagaaggcatctggg	3829	3848 SEQ ID NO:	4979cccaagaggtatttaaagc	12957	12976	1	3
	SEQ ID NO:	3639	ggagttcaacctccagaac	3895		4980gttcactccattaacctcc	6314	6333	1	3
	SEQ ID NO:	3640	agaaaacctcttcttaaaa	3940	3959 SEQ ID NO:	4981 ttttctaaatggaacttct	12173	12192	•	3
	SEQ ID NO:	3641	aaaacctcttcttaaaaag	3942	3961 SEQ ID NO:	4982 ctttgaaaaattctctttt	. 9213	9232	1	3
	SEQ ID NO:	3642	aaaaagcgatggccgggtc	3955	3974 SEQ ID NO:	4983gaccttgcaagaatatttt	6343	6362	1	3
	SEQ ID NO:	3643	gtcaaatataccttgaaca	3971	3990 SEQ ID NO:	4984 tgttaacaaattccttgac	7363	7382	1	3.
	SEQ ID NO:	3644	tgaacaagaacagtttgaa	3984	4003 SEQ ID NO:	4985ttcaagttcctgaccttca	8310	8329	1	3
	SEQ ID NO:	3645	agtttgaaaattgagattc	3995	4014 SEQ ID NO:	4986 gaat ctggctcctcaact	9047	9066	1	3
	SEQ ID NO:	3646	gtttgaaaattgagattcc	3996	4015 SEQ ID NO:	4987ggaaataccaagtcaaaac	10454	10473	1	3
	SEQ ID NO:	3647	ttgaaaattgagattcctt	3998	4017SEQ ID NO:	4988aaggaaaagcgcacctcaa	12030	12049	1	3
	SEQ ID NO:	3648	ctaaagatgttagagactg	4046	4085 SEQ ID NO:	4989 cagttgaccacaagcttag	10545	10564	1	3
	SEQ ID NO:	3649	atgttagagactgttagga	4052	4071 SEQ ID NO:	4990 teettaacacetteeacat	8073	8092	1	3
:	SEQ ID NO:	3650	cagccctccacttcaagtc	4074	4093 SEQ ID NO:	4991 gacttctctagtcaggctg	8813	8832	1	3
	SEQ ID NO:	3651	agccctccacttcaagtct	4075	4094 SEQ ID NO:	4992 agacatcgctgggctggct	5728	5747	1	3
;	SEQ ID NO:	3652	ccatctgccatctcgagag	4102	4121 SEQ ID NO:	4993 ctctcaaatgacatgatgg	5330	5349	1	3
;	SEQ ID NO:	3653	attcccaagttgtatcaac	4142	4161 SEQ ID NO:	4994 gttgagaagccccaagaat	6254	6273	1	3
:	SEQ ID NO:	3654	tcaactgcaagtgcctctc	4156	4175 SEQ ID NO:	4995 gagatcaagacactgttga	8843	8862	1	3
	SEQ ID NO:	3655	ggtgttctagacctctcca	4178	4197 SEQ ID NO:	4996tggaaccctctccctcacc	4735	4754	1	3
	SEQ ID NO:	3656	ctccacgaatgtctacagc	4192	4211 SEQ ID NO:	4997 gctggtaacctaaaaggag	5588	5607	1	3
	SEQ ID NO:	3657	cacgaatgtctacagcaac	4195	4214 SEQ ID NO:	4998 gttgcccaccatcatcgtg	11671	11690	1	3
	SEQ ID NO:	3658	acgaatgtctacagcaact	4196	4215 SEQ ID NO:	4999 agttgcccaccatcatcgt	11670	11689	1	3
	SEQ ID NO:	3659	tcctacagtggtggcaaca	4232	4251 SEQ ID NO:	5000tgttagttgctcttaagga	13359	13378	i	3
	SEQ ID NO:	3660	cgttaccacatgaaggctg	4280	4299 SEQ ID NO:	5001 cagcaagtacctgagaacg	8611	8630	1	3
8	SEQ ID NO:	3661	gaaggctgactctgtggtt	4291	4310 SEQ ID NO:	5002 aacctatgccttaatcttc	13169	13188	1	3
	SEQ ID NO:	3662	tgtggttgacctgctttcc	4303	4322 SEQ ID NO:	5003ggaaagttaaaacaacaca	6965	6984	1	3
					ID 110,		2000	5557	•	5

SEQ ID NO:	3663	cctgctttcctacaatgtg	4312	4331 SEQ ID NO:	5004 cacaccttgacattgcagg	11088	11107	1	3
SEQ ID NO:	3664	ctgctttcctacaatgtgc	4313	4332 SEQ ID NO:	5005 gcacaccttgacattgcag	11087	11106	1	3
SEQ ID NO:	3665	tcctacaatgtgcaaggat	4319		5006atccgctggctctgaagga	8577	8596	1	3
SEQ ID NO:	3666	tatgaccacaagaatacgt	4352		5007 acgtccgtgtgccttcata	9984	10003	1	3
SEQ ID NO:	3667	atgaccacaagaatacgtc	4353		5008 gacgtccgtgtgccttcat	9983	10002	1	3
SEQ ID NO:	3668	gaatacgictacactatca	4363		5009 tgattatctgaattcattc	6487	6506	1	3
SEQ ID NO:	3669	tttctagattcgaatatca	4406		5010tgatttacatgatttgaaa	6685	6704	1	3
SEQ ID NO:	3670	gattcgaatatcaaattca	4412	4431 SEQ ID NO:	5011 tgaagtagctgagaaaatc	7102	7121	1	3
SEQ ID NO:	3671	gaaacaacccagtctcaaa	4449	4468 SEQ ID NO:	5012tttgaaaaattctcttttc	9214	9233	1	3
SEQ ID NO:	3672	cccagtctcaaaaggttta	4456		5013taaattcattactcctggg	11302	11321	1	3
SEQ ID NO:	3673	ctcaaaaggtttactaata	4462	4481 SEQ ID NO:	5014tattcaaaactgagttgag	12231	12250	1	3
SEQ ID NO:	3674	tcaaaaggtttactaatat	4463		5015atattcaaaactgagttga	12230	12249	1	3
SEQ ID NO:	3675	aaaaggtttactaatattc	4465	4484 SEQ ID NO:	5016gaatttgaaagttcgtttt	9280	9299	1	3
SEQ ID NO:	3676	gaaacagcatttgtttgtc	4543		5017 gacagcatcttcgtgtttc	11214	11233	1	3
SEQ ID NO:	3677	attigttigtcaaagaagt	4551		5018 acttaaaaaatataaaaat	8022	8041	1	3
SEQ ID NO:	3678	tcaagattgatgggcagtt	4569	4588 SEQ ID NO:	5019aactctcaagtcaagttga	13422	13441	1	3
SEQ ID NO:	3679	ttcagagtctcttcgttct	4586		5020agaagatggcaaatttgaa	11995	12014	1	3
SEQ ID NO:	3680	cagagtctcttcgttctat	4588		5021 atagcatggacttcttctg	8873	8892	1	3
SEQ ID NO:	3681	atgctaaaggcacatatgg	4605		5022 ccatttgagatcacggcat	9245	9264	1	3
SEQ ID NO:	3682	gcacatatggcctgtcttg	4614	4633 SEQ ID NO:	5023 caagttggcaagtaagtgc	9372	9391	1	3
SEQ ID NO:	3683	gagtccaacctgaggttta	4667		5024 taaagtgccacttttactc	6190	6209	1	3
SEQ ID NO:	3684	agtccaacctgaggtttaa	4668	4687 SEQ ID NO:	5025ttaacagggaagatagact	9308	9327	1	3
SEQ ID NO:	3685	cctacctccaaggcaccaa	4692	4711 SEQ ID NO:	5026ttggcaagtaagtgctagg	9376	9395	1	3
SEQ ID NO:	3686	gaagatggaaccctctccc	4730		5027 gggaagaagaggcagcttc	12291	12310	1	3 .
SEQ ID NO:	3687	tgatctgcaaagtggcatc	4762	4781 SEQ ID NO:	5028 gatgaggaaactcagatca	12263	12282	1	3
SEQ ID NO:	3688	gatctgcaaagtggcatca	4763	4782 SEQ ID NO:	5029tgatgaggaaactcagatc	12262	12281	1	3
SEQ ID NO:	3689	gcttccctaaagtatgaga	4793	4812 SEQ ID NO:	5030tctcgtgtctaggaaaagc	5977	5996	1	3
SEQ ID NO:	3690	gtatgagaactacgagctg	4804	4823 SEQ ID NO:	5031 cagcttaagagacacatac	6920	6939	1	3
SEQ ID NO:	3691	tctaacaagatggatatga	4868	4887 SEQ ID NO:	5032tcattttccaactaataga	13032	13051	1	3
SEQ ID NO:	3692	ctgctgcgttctgaatatc	4907	4926 SEQ ID NO:	5033 gatacaagaaaaactgcag	6901	6920	1	3
SEQ ID NO:	3693	tcattgaggttcttcagcc	4940	⁴⁹⁵⁹ SEQ ID NO:	5034ggctcatatgctgaaatga	5348	5367	1	3
SEQ ID NO:	3694	ttctggatcactaaattcc	4963	⁴⁹⁸² SEQ ID NO:	5035ggaaggacaaggcccagaa	12549	12568	1	3
SEQ ID NO:	3695	ccatggtcttgagttaaat	4981	5000 SEQ ID NO:	5036 attittatteetgecatgg	10103	10122	1	3
SEQ ID NO:	3696	tcttaggcactgacaaaat	5007	5026 SEQ ID NO:	5037 attitttgcaagttaaaga	14019	14038	1	3
SEQ ID NO:	3697	acaaggcgacactaaggat	5040	5059 SEQ ID NO:	5038 atccatgatctacatttgt	6794	6813	1	3
SEQ ID NO:	3698	tgcaacgaccaacttgaag	5083	5102 SEQ ID NO:	5039 cttcagggaacacaatgca	5185	5204	1	3
SEQ ID NO:	3699	caacttgaagtgtagtctc	5092	5111 SEQ ID NO:	5040 gagatgagagatgccgttg	6239	6258	1	3
SEQ ID NO:	3700	gctggagaatgagctgaat	5116	5135 SEQ ID NO:	5041 attetetttettteage	9222	9241	1	3
SEQ ID NO:	3701	gcagagcttggcctctctg	5135	5154 SEQ ID NO:	5042 cagatacaagaaaaactgc	6899	6918	1	3
SEQ ID NO:	3702	tctctggggcatctatgaa	5148	5167 SEQ ID NO:	5043ttcattcaattgggagaga	6499	6518	1	3
SEQ ID NO:	3703	tctggggcatctatgaaat	5150	5169 SEQ ID NO:	5044 atttgtaagaaaatacaga	6436	6455	1	3
SEQ ID NO:	3704	aacacaatgcaaaattcag	5193	5212 SEQ ID NO:	5045 ctgaagcattaaaactgtt	7506	7525	1	3
SEQ ID NO:	3705	ctcacagagctatcactgg	5231	5250 SEQ ID NO:	5046 ccagatgctgaacagtgag	8149	8168	1	3
SEQ ID NO:	3706	tgggaagtgcttatcaggc	5247	OLG 10 110.	5047 gcctacgttccatgtccca	11356	11375	1	3
SEQ ID NO:	3707	ttcaaggtcagtcaagaag	5303	5322 SEQ ID NO:	5048 cttcagtgcagaatatgaa	11977	11996	1	3
SEQ ID NO:	3708	aatgacatgatgggctcat	5336	5355 SEQ ID NO:	5049 atgattatctgaattcatt	6486	6505	1	3
SEQ ID NO:	3709	gctcatatgctgaaatgaa	5349	5368 SEQ ID NO:	5050ttcagccattgacatgagc	5746	5765	1	3
SEQ ID NO:	3710	atatgctgaaatgaaattt	5353	5372 SEQ ID NO:	5051 aaatagctattgctaatat	6702	6721	1	3
SEQ ID NO:	3711	tctgaacattgcaggctta	5386	5405 SEQ ID NO:	5052taagaaccagaagatcaga	10996	11015	1	3
SEQ ID NO:	3712	gaacattgcaggcttatca	5389	5408 SEQ ID NO:	5053tgatatcgacgtgaggttc	12490	12509	1	3

SEQ ID NO:	3713	tgcaggcttatcactggac	5395	5414SEQ ID NO:	5054 gtcctggattccacatgca	11852	11871	1	3
SEQ ID NO:	3714	tcaaaacttgacaacattt	5420	5439 SEQ ID NO:	5055 aaatteettgacatgttga	7370	7389	1	3
SEQ ID NO:	3715	atttacagctctgacaagt	5435	5454 SEQ ID NO:	5056 acttaaaaaatataaaaat	8022	8041	1	3
SEQ ID NO:	3716	ctctgacaagttttataag	5443		5057 cttacttgaattccaagag	10674	10693	1	3
SEQ ID NO:	3717	gltaatttacagctacagc	5468	5487 SEQ ID NO:	5058 gctgcatgtggctggtaac	5578	5597	1	3
SEQ ID NO:	3718	ttctctggtaactacttta	54,91	5510 SEQ ID NO:	5059taaaagattactttgagaa	7275	7294	1	3
SEQ ID NO:	3719	cctaaaaggagcctaccaa	5596	5615 SEQ ID NO:	5060ttggcaagtaagtgctagg	9376	9395	1	3
SEQ ID NO:	3720	aaaaggagcctaccaaaat	5599	5618 SEQ ID NO:	5061 atttacaattgttgctttt	6271	6290	1	3
SEQ ID NO:	3721	aggagcctaccaeaeteat	5602	⁵⁶²¹ SEQ ID NO:	5062attacctatgatttctcct	10127	10146	1	3
SEQ ID NO:	3722	ataatgaaataaaacacat	5616	⁵⁶³⁵ SEQ ID NO:	5063 at gt caaacacttt gttat	7065	7084	1	3
SEQ ID NO:	3723	aaaacacatctatgccatc	5626	⁵⁶⁴⁵ SEQ ID NO:	5064 gatgaagatgacgactttt	12158	12177	1	3
SEQ ID NO:	3724	tgctaaggttcagggtgtg	5686	5705 SEQ ID NO:	5065 cacaagtcgattcccagca	9087	9106	1	3
SEQ ID NO:	3725	gagtttagccatcggctca	5705	5724 SEQ ID NO:	5066tgaggtgactcagagactc	7450	7469	1	3
SEQ ID NO:	3726	gctggcttcagccattgac	5740	5759 SEQ ID NO:	5067gtcagtgaagttctccagc	8596	8615	1	3
SEQ ID NO:	3727	atticagcaatgtcttccg	5790	5809 SEQ ID NO:	5068 cggagcatgggagtgaaat	8628	8647	1	3
SEQ ID NO:	3728	tttcagcaatgtcttccgt	5791	5810 SEQ ID NO:	5069acggagcatgggagtgaaa	8627	8646	1	3
SEQ ID NO:	3729	ttcagcaatgtcttccgtt	5792	5811 SEQ ID NO:	5070aacggagcatgggagtgaa	8626	8645	1	3
SEQ ID NO:	3730	cagcaatgtcttccgttct	5794	5813 SEQ ID NO:	5071 agaagtgtcttcaaagctg	12412	12431	1	3
SEQ ID NO:	3731	tgtcttccgttctgtaatg	5800	⁵⁸¹⁹ SEQ ID NO:	5072 cattcaattgggagagaca	6501	6520	1	3
SEQ ID NO:	3732	gtcttccgttctgtaatgg	5801	5820 SEQ ID NO:	5073ccattcagtctctcaagac	12975	12994	1	3
SEQ ID NO:	3733	atgggaaactcgctctctg	5859	5878 SEQ ID NO:	5074 cagataaaaaaactcaccat	12213	12232	1	3
SEQ ID NO:	3734	ggagaacatactgggcagc	5879	⁵⁸⁹⁸ SEQ ID NO:	5075gctgttttgaagactctcc	1088	1107	1	3
SEQ ID NO:	3735	gttgaaagcagaacctctg	5914	5933 SEQ ID NO:	5076 cagaattcataatcccaac	8274	8293	1	3
SEQ ID NO:	3736	gtctaggaaaagcatcagt	5983	6002 SEQ ID NO:	5077actgcaagatttttcagac	13612	13631	1	3
SEQ ID NO:	3737	agcatcagtgcagctcttg	5993	6012SEQ ID NO:	5078 caagaacctgttagttgct	13351	13370	1	3
SEQ ID NO:	3738	ttgaacacaaagtcagtgc	6009	6028 SEQ ID NO:	5079gcacatcaatattgatcaa	6418	6437	1	3
SEQ ID NO:	3739	gcagacaggcacctggaaa	6046	6065SEQ ID NO:	5080tttcagatggcattgctgc	11610	11629	1	3
SEQ ID NO:	3740	gaaactcaagacccaattt	6061	6080 SEQ ID NO:	5081 aaatcccatccaggttttc	8037	8056	1	3
SEQ ID NO:	3741	acaatgaatacagccagga	6084	6103SEQ ID NO:	5082tcctttggctgtgctttgt	9682	9701	1	3
SEQ ID NO:	3742	cttggatgcttacaacact	6103	6122 SEQ ID NO:	5083 agtgaagtteteeageaag	8599	8618	1	3
SEQ ID NO:	3743	ttggcgtggagcttactgg	6132	6151 SEQ ID NO:	5084ccagaattcataatcccaa	8273	8292	1	3
SEQ ID NO:	3744	cacttttactcagtgagcc	6198	6217 SEQ ID NO:	5085ggctattgatgttagagtg	6988	7007	1	3
SEQ ID NO:	3745	tttagagatgagatgcc	6235	6254 SEQ ID NO:	5086ggcatgatgctcatttaaa	9177	9196	1	3
SEQ ID NO:	3746	gagaagccccaagaattta	6257	6276SEQ ID NO:	5087taaagccattcagtctctc	12970	12989	1	3
SEQ ID NO:	3747	caattgttgcttttgtaaa	6276	6295 SEQ ID NO:	5088tttaaccagtcagatattg	10187	10206	1	3
SEQ ID NO:	3748	ttttgtaaagtatgataaa	6286	6305 SEQ ID NO:	5089tttattgctgaatccaaaa	13655	13674	1	3
SEQ ID NO:	3749	ttgtaaagtatgataaaaa	6288	6307 SEQ ID NO:	5090ttttgagaggaatcgacaa	6358	6377	1	3
SEQ ID NO:	3750	ticactccattaacctccc	6315	6334SEQ ID NO:	5091 gggaaaaaacaggcttgaa	9576	9595	1	3
SEQ ID NO:	3751	ttttgagaccttgcaagaa	6337	6356SEQ ID NO:	5092ttctctctatgggaaaaaa	9566	9585	1	3
SEQ ID NO:	3752	accttgcaagaatattttg	6344	6363 SEQ ID NO:	5093caaaagaagcccaagaggt	12948	12967	1	3
SEQ ID NO:	3753	tcaatattgatcaatttgt	6423	6442SEQ ID NO:	5094 acaaagcagattatgttga	11829	11848	1	3
SEQ ID NO:	3754	cagagcagccctgggaaaa	6451	6470SEQ ID NO:	5095ttttcagaccaactctctg	13622	13641	1	3
SEQ ID NO:	3755	cctgggaaaactcccacag	6460	6479SEQ ID NO:	5096 ctgtctctggtcagccagg	7724	7743	1	3
SEQ ID NO:	3756	actcccacagcaagctaat	6469	6488SEQ ID NO:	5097 attacacttcctttcgagt	12869	12888	1	3
SEQ ID NO:	3757	aattcattcaattgggaga	6497	6516SEQ ID NO:	5098 tctcttcctccatggaatt	10479	10498	1	3
SEQ ID NO:	3758	ttcaattgggagagacaag	6503	6522SEQ ID NO:	5099 cttggagtgccagtttgaa	11808	11827	1	3
SEQ ID NO:	3759	aggagaaactgactgctct	6534	6553SEQ ID NO:	5100 agagettatgggattteet	11163	11182	1	3
SEQ ID NO:	3760	actgactgctctcacaaaa	6541	6560 SEQ ID NO:	5101 ttttggcaagctatacagt	8380	8399	1	3
SEQ ID NO:	3761	gactgctctcacaaaaaag	6544	6563 SEQ ID NO:	5102 cittgtgagtttatcagtc	9695	9714	1	3
SEQ ID NO:	3762	cagacatatatgatacaat	6641	6660 SEQ ID NO:	5103 attggatatccaagatctg	1933	1952	1	3
									- !

SEQ ID NO:	3763	aatttgatcagtatattaa	6657		5104ttaaaagaaatcttcaatt	13815	13834	1	3
SEQ ID NO:	3764	tatgatttacatgatttga	6683	6702 SEQ ID NO:	5105tcaatgattatatcccata	13128	13147	1	3
SEQ ID NO:	3765	tttgaaaatagctattgct	6697	6716 SEQ ID NO:	5106agcacagaaaaaattcaaa	13864	13883	1	3
SEQ ID NO:	3766	ttgaaaatagctattgcta	6698	6717 SEQ ID NO:	5107tagcacagaaaaaattcaa	13863	13882	1	3
SEQ ID NO:	3767	aatagctattgctaatatt	6703		5108aataaatggagtctttatt	14084	14103	1	3
SEQ ID NO:	3768	attattgatgaaatcattg	6719	6738 SEQ ID NO:	5109 caataccagaattcataat	8268	8287	1	3
SEQ ID NO:	3769	aaagtcttgatgagcacta	6747	6766 SEQ ID NO:	5110tagtgattacacttccttt	12864	12883	1	3
SEQ ID NO:	3770	aagtcttgatgagcactat	6748	6767 SEQ ID NO:	5111 atagcaacactaaatactt	8769	8788	1	3
SEQ ID NO:	3771	ttgatgagcactatcatat	6753	6772 SEQ ID NO:	5112 atatcca agatgagatca a	13101	13120	1	3
SEQ ID NO:	3772	taattttagtaaaaacaat	6777		5113attgagattccctccatta	11702	11721	1	3
SEQ ID NO:	3773	ttttagtaaaaacaatcca	6780	6799 SEQ ID NO:	5114tggagtgccagtttgaaaa	11810	11829	1	3
SEQ ID NO:	3774	acatttgtttattgaaaat	6805	6824 SEQ ID NO:	5115atttcctaaagctggatgt	11175	11194	1	3
SEQ ID NO:	3775	attgattttaacaaaagtg	6824	6843 SEQ ID NO:	5116 cactgttccagttgtcaat	9871	9890	1	3
SEQ ID NO:	3776	attttaacaaaagtggaag	6828	6847 SEQ ID NO:	5117 cttcaaagacttaaaaaat	8014	8033	1	3
SEQ ID NO:	3777	aaatcagaatccagataca	6888	6907 SEQ ID NO:	5118tgtaccataagccatattt	10088	10107	1	3
SEQ ID NO:	3778	gaatccagatacaagaaaa	6894		5119ttttctaaacttgaaattc	9065	9084	1	3
SEQ ID NO:	3779	ttaagagacacatacagaa	6924	6943 SEQ ID NO:	5120ttcttaaacattcctttaa	9491	9510	1	3
SEQ ID NO:	3780	atccagcacctagctggaa	6950	6969 SEQ ID NO:	5121ttccaatttccctgtggat	3688	3707	1	3
SEQ ID NO:	3781	tgagcatgtcaaacacttt	7060	7079 SEQ ID NO:	5122aaagtgccacttttactca	6191	6210	1	3
SEQ ID NO:	3782	gagcatgtcaaacactttg	7061	7080 SEQ ID NO:	5123 caaatgacatgatgggctc	5334	5353	1	3
SEQ ID NO:	3783	aaacactttgttataaatc	7070	7089 SEQ ID NO:	5124 gattatatcccatatgttt	13133	13152	1	3
SEQ ID NO:	3784	tgagaaaatcaatgccttc	7111	7130 SEQ ID NO:	5125gaaggaaaagcgcacctca	12029	12048	1	3
SEQ ID NO:	3785	tatgaagtagaccaacaaa	7160	7179 SEQ ID NO:	5126tttgtggagggtagtcata	10331	10350	1	3
SEQ ID NO:	3786	aagtagaccaacaaatcca	7164	7183 SEQ ID NO:	5127tggatgaagatgacgactt	12156	12175	1	3
SEQ ID NO:	3787	aagttgaaggagactattc	7223	7242 SEQ ID NO:	5128 gaataccaatgctgaactt	10168	10187	1	3
SEQ ID NO:	3788	acaagttaagataaaagat	7264	7283 SEQ ID NO:	5129atctaaattcagttcttgt	11334	11353	1	3
SEQ ID NO:	3789	aagataaaagattactttg	7271	7290 SEQ ID NO:	5130caaaatagaagggaatctt	2077	2096	1	3
SEQ ID NO:	3790	gattactttgagaaattag	7280	7299 SEQ ID NO:	5131 ctaaacttgaaattcaatc	9069	9088	1	3
SEQ ID NO:	3791	tgagaaattagttggattt	7288	7307 SEQ ID NO:	5132aaatccgtgaggtgactca	7443	7462	1	3
SEQ ID NO:	3792	aaattagttggatttattg	7292	7311 SEQ ID NO:	5133caattttgagaatgaattt	10419	10438	1	3
SEQ ID NO:	3793	tggatttattgatgatgct	7300	7319 SEQ ID NO:	5134agcatgcctagtttctcca	9953	9972	1	3
SEQ ID NO:	3794	tcattgaagatgttaacaa	7353	7372 SEQ ID NO:	5135ttgtagatgaaaccaatga	7422	7441	1	3
SEQ ID NO:	3795	cattgaagatgttaacaaa	7354	7373 SEQ ID NO:	5136tttgtagatgaaaccaatg	7421	7440	1	3
SEQ ID NO:	3796	attgaagatgttaacaaat	7355	7374 SEQ ID NO:	5137atttaagtatgatttcaat	10495	10514	1	3
SEQ ID NO:	3797	ttgaagatgttaacaaatt	7356	7375 SEQ ID NO:	5138aatttaagtatgatttcaa	10494	10513	1	3
SEQ ID NO:	3798	tgeagatgtteacaaattc	7357	7376 SEQ ID NO:	5139gaatttaagtatgatttca	10493	10512	1	3
SEQ ID NO:	3799	acatgttgataaagaaatt	7380	7399 SEQ ID NO:	5140aattccctgaagttgatgt	11487	11506	1	3
SEQ ID NO:	3800	titgattaccaccagtttg	7406	7425 SEQ ID NO:	5141 caaattgaacatccccaaa	8791	8810	1	3
SEQ ID NO:	3801	caaaatccgtgaggtgact	7441	7460 SEQ ID NO:	5142agtcccctaacagatttg	7972	7991	1	3
SEQ ID NO:	3802	aaaatcogtgaggtgactc	7442	7461 SEQ ID NO:	5143gagtgaaatgctgtttttt	8638	8657	1	3
SEQ ID NO:	3803	aggtgactcagagactcaa	7452	7471 SEQ ID NO:	5144ttgatgatatctggaacct	10731	10750	1	3
SEQ ID NO:	3804	gtgaaattcaggctctgga	7473	7492 SEQ ID NO:	5145tccaatctcctcttttcac	8409	8428	1	3
SEQ ID NO:	3805	gttgcagtgtatctggaaa	7547	7566 SEQ ID NO:	5146tttcaagcaaatgcacaac	8540	8559	1	3
SEQ ID NO:	3806	ttaagttcagcatctttgg	7616	7635 SEQ ID NO:	5147 ccaatgctgaactttttaa	10173	10192	1	3
SEQ ID NO:	3807	tgaaggccaaattccgaga	7641	7660 SEQ ID NO:	5148tctcctttcttcatcttca	10213	10232	1	3
SEQ ID NO:	3808	aatgtatcaaatggacatt	7684	7703 SEQ ID NO:	5149aatgaagtccggattcatt	11021	11040	1	3
SEQ ID NO:	3809	attcagcaggaacttcaac	7700	7719SEQ ID NO:	5150gttgagaagccccaagaat	6254	6273	1	3
SEQ ID NO:	3810	accigictciggtcagcca	7722	7741 SEQ ID NO:	5151tggcaagtaagtgctaggt	9377	9396	1	3
SEQ ID NO:	3811	cctgtctctggtcagccag	7723	7742 SEQ ID NO:	5152ctggacttctctagtcagg	8810	8829	1	3
SEQ ID NO:	3812	ggtcagccaggtttatagc	7732	7751 SEQ ID NO:	5153gctaaaggagcagttgacc	10535	10554	1	3

SEQ ID NO:	3813	ccaggtttatagcacactt	7738	7757 SEQ ID NO:	5154 aagteeggatteattetgg	11025	11044	1	3
SEQ ID NO:	3814	gtttatagcacacttgtca	7742		5155tgacctgtccattcaaaac	13681	13700	1	3
SEQ ID NO:	3815	acttgtcacctacatttct	7753		5156 agaaaaaggggattgaagt	10283	10302	1	3
SEQ ID NO:	3816	ctgattggtggactcttgc	7770		5157gcaagttaaagaaaatcag	14026	14045	1	3
SEQ ID NO:	3817	atgaaagcattggtagagc	7847		5158 geteateteetttetteat	10208	10227	1	3
SEQ ID NO:	3818	tgaaagcattggtagagca	7848		5159tgctcatctcctttcttca	10207	10226	1	3
SEQ ID NO:	3819	gggttcactgttcctgaaa	7868		5160tttcaccatagaaggaccc	8959	8978	1	3
SEQ ID NO:	3820	tcaagaccatccttgggac	7887		5161 gtcccctaacagatttga	7973	7992	1	3
SEQ ID NO:	3821	ccttgggaccatgcctgcc	7897		5162ggcaccagggctcggaagg	13978	13997	1	3
SEQ ID NO:	3822	ttcaggctcttcagaaagc	7929	7948 SEQ ID NO:	5163 gcttgaaggaattcttgaa	9588	9607	1	3
SEQ ID NO:	3823	ttcagataaacttcaaaga	8004		5164tcttcataagttcaatgaa	13183	13202	1	3
SEQ ID NO:	3824	acttcaaagacttaaaaaa	8013	8032 SEQ ID NO:	5165ttttaacaaaagtggaagt	6829	6848	1	3
SEQ ID NO:	3825	atcccatccaggttttcca	8039		5166tggagaagcaaatctggat	9472	9491	1	3
SEQ ID NO:	3826	gaatttaccatccttaaca	8063	8082 SEQ ID NO:	5167tgttgaagtgtctccattc	9889	9908	1	3
SEQ ID NO:	3827	cattccttcctttacaatt	8089	8108 SEQ ID NO:	5168 aattccaattttgagaatg	10414	10433	1	3
SEQ ID NO:	3828	ttgaccagatgctgaacag	8145	8164 SEQ ID NO:	5169 ctgttgaaagatttatcaa	12932	12951	1	3
SEQ ID NO:	3829	aatcaccctgccagacttc	8233		5170 gaagttctcaattttgatt	8522	8541	1	3
SEQ ID NO:	3830	tgaccttcacataccagaa	8320	8339 SEQ ID NO:	5171ttcttctggaaaagggtca	8884	8903	1	3
SEQ ID NO:	3831	ttccagcttccccacatct	8339	8358 SEQ ID NO:	5172 agattctcagatgagggaa	8921	8940	1	3
SEQ ID NO:	3832	aagctatacagtattctga	8387		5173tcagatggcattgctgctt	11612	11631	1	3
SEQ ID NO:	3833	attotgaaaatocaatoto	8399	8418 SEQ ID NO:	5174 gagataaccgtgcctgaat	11552	11571	1	3
SEQ ID NO:	3834	tttcacattagatgcaaat	8422		5175 attitgaaaaaaacagaaa	9738	9757	1	3
SEQ ID NO:	3835	caaatgctgacatagggaa	8436		5176 ttccatcacaaatcctttg	9670	9689	1	3
SEQ ID NO:	3836	gagagtccaaattagaagt	8508	8527 SEQ ID NO:	5177 actitacticccaactctc	13410	13429	1	3
SEQ ID NO:	3837	agagtccaaattagaagtt	8509	8528 SEQ ID NO:	5178 aactttacttcccaactct	13409	13428	1	3
SEQ ID NO:	3838	tctcaattttgattttcaa	8527	8546 SEQ ID NO:	5179ttgattcccttttttgaga	11537	11556	1	3
SEQ ID NO:	3839	caattitgattttcaagca	8530	8549 SEQ ID NO:	5180 tgctgaatccaaaagattg	13660	13679	1	3
SEQ ID NO:	3840	aatgcacaactctcaaacc	8549	8568 SEQ ID NO:	5181 ggtttatcaaggggccatt	12460	12479	1	3
SEQ ID NO:	3841	agttctccagcaagtacct	8604	8623 SEQ ID NO:	5182 aggttccatcgtgcaaact	11388	11407	1	3
SEQ ID NO:	3842	agtacctgagaacggagca	8616	8635 SEQ ID NO:	5183tgctccaggagaacttact	13780	13799	1	3
SEQ ID NO:	3843	tcaaacacagtggcaagtt	8678	8697 SEQ ID NO:	5184 aactotcaagtcaagttga	13422	13441	1	3
SEQ ID NO:	3844	acaatcagcttaccctgga	8751	8770 SEQ ID NO:	5185tccattctgaatatattgt	13380	13399	1	3
SEQ ID NO:	3845	ciggatagcaacactaaat	8765	8784 SEQ ID NO:	5186 attitctgaacttccccag	12702	12721	1	3
SEQ ID NO:	3846	ctgacctgcgcaacgagat	8829	8848 SEQ ID NO:	5187 atctgatgaggaaactcag	12259	12278	1	3
SEQ ID NO:	3847	agatgagggaacacatgaa	8929	8948 SEQ ID NO:	5188ttcatgtccctagaaatct	10038	10057	1	3
SEQ ID NO:	3848	tcaacttttctaaacttga	9060	9079 SEQ ID NO:	5189tcaaggataacgtgtttga	12618	12637	1	3
SEQ ID NO:	3849	ttctaaacttgaaattcaa	9067	9086 SEQ ID NO:	5190ttgatgatgctgtcaagaa	7308	7327	1	3
SEQ ID NO:	3850	gaaattcaatcacaagtcg	9077	9096 SEQ ID NO:	5191 cgacgaagaaaataatttc	13566	13585	1	3
SEQ ID NO:	3851	cactgtttggagaagggaa	9141	9160 SEQ ID NO:	5192ttccagaaagcagccagtg	12506	12525	1	3
SEQ ID NO:	3852	actgtttggagaagggaag	9142	9161 SEQ ID NO:	5193 cttccccaaagagaccagt	2898	2917	1	3
SEQ ID NO:	3853	aattctcttttcttttcag	9221	9240 SEQ ID NO:	5194 ctgattactatgaaaaatt	13638	13657	1	3
SEQ ID NO:	3854	ttcttttcagcccagccat	9230	9249 SEQ ID NO:	5195atggaaaagggaaagagaa	13494	13513	1	3
SEQ ID NO:	3855	tttgaaagttcgttttcca	9283	9302 SEQ ID NO:	5196tggaagtgtcagtggcaaa	10380	10399	1	3
SEQ ID NO:	3856	cagggaagatagacttcct	9312	9331 SEQ ID NO:	5197 aggacetttcaaatteetg	9848	9867	1	3
SEQ ID NO:	3857	ataagtacaaccaaaattt	9405	9424 SEQ ID NO:	5198 aaatcaggatctgagttat	14038	14057	1	3
SEQ ID NO:	3858	acaacgagaacattatgga	9435	9454 SEQ ID NO:	5199tccattctgaatatattgt	13380	13399	1	3
SEQ ID NO:	3859	aggaataaatggagaagca	9463	9482 SEQ ID NO:	5200 tgctggaattgtcattcct	11734	11753	1	3
SEQ ID NO:	3860	agcaaatctggatttctta	9478	9497 SEQ ID NO:	5201 taagttetetgtacetget	11719	11738	1	3
SEQ ID NO:	3861	tcctttaacaattcctgaa	9502	9521 SEQ ID NO:	5202ttcaaaacgagcttcagga	13206	13225	1	3
SEQ ID NO:	3862	tttaacaattcctgaaatg	9505	9524 SEQ ID NO:	5203 catttgatttaagtgtaaa	9621	9640	1	3

SEQ ID NO:	3863	acacaataatcacaactcc	9534 9553 SEQ ID NO:	5204ggagacagcatcttcgtgt	11211	11230	1	3
SEQ ID NO:	3864	aagatttctctctatggga	9561 9580 SEQ ID NO:	5205 tcccagaaaacctcttctt	3936	3955	1	3
SEQ ID NO:	3865	gaaaaaacaggcttgaagg	9578 9597 SEQ ID NO:	5206 ccttttacaattcattttc	13021	13040	1	3
SEQ ID NO:	3866	ttgaaggaattcttgaaaa	9590 9609 SEQ ID NO:	5207ttttgagaatgaatttcaa	10422	10441	1	3
SEQ ID NO:	3867	tgaaggaattettgaaaae	9591 9810 SEQ ID NO:	5208 gttttggctgataaattca	11291	11310	1	3
SEQ ID NO:	3868	agctcagtataagaaaaac	9640 9659 SEQ ID NO:	5209 gtttgataagtacaaagct	9805	9824	1	3
SEQ ID NO:	3869	tcaaatcctttgacaggca	9720 9739 SEQ ID NO:	5210tgcctgagcagaccattga	11688	11707	1	3
SEQ ID NO:	3870	atgaaacaaaaattaagtt	9789 9808 SEQ ID NO:	5211 aactttgcactatgttcat	12762	12781	1	3
SEQ ID NO:	3871	aattcctggatacactgtt	9859 9878 SEQ ID NO:	5212 aacacatgaatcacaaatt	8938	8957	1	3
SEQ ID NO:	3872	ttccagttgtcaatgttga	9876 9895 SEQ ID NO:	5213tcaaaacgagcttcaggaa	13207	13226	1	3
SEQ ID NO:	3873	aagtgtctccattcaccat	9894 9913 SEQ ID NO:	5214atgggaagtataagaactt	4842	4861	1	3
SEQ ID NO:	3874	gtcagcatgcctagtttct	9950 9969 SEQ ID NO:	5215 aga a agg cacaccttgac	11080	11099	1	3
SEQ ID NO:	3875	ctgccatgggcaatattac	10113 10132 SEQ ID NO:	5216gtaagaaaatacagagcag	6440	6459	1	3
SEQ ID NO:	3876	tgaataccaatgctgaact	10167 10186 SEQ ID NO:	5217agttgaaggagactattca	7224	7243	1	3
SEQ ID NO:	3877	tattgttgctcatctcctt	10201 10220 SEQ ID NO:	5218aaggaaacataaactaata	12889	12908	1	3
SEQ ID NO:	3878	tgttgctcatctcctttct	10204 10223 SEQ ID NO:	5219agaagaaatctgcagaaca	12431	12450	1	3
SEQ ID NO:	3879	tctgtcattgatgcactgc	10232 10251 SEQ ID NO:	5220gcagtagactataagcaga	13928	13947	1	3
SEQ ID NO:	3880	ccacagctctgtctctgag	10305 10324 SEQ ID NO:	5221 ctcagggatctgaaggtgg	8195	8214	1	3
SEQ ID NO:	3881	atttgtggagggtagtcat	10330 10349 SEQ ID NO:	5222atgaagtagaccaacaaat	7161	7180	1	3
SEQ ID NO:	3882	atatggaagtgtcagtggc	10377 10396 SEQ ID NO:	5223gccacactccaacgcatat	10778	10797	1	3
SEQ ID NO:	3883	tggaaataccaagtcaaaa	10453 10472 SEQ ID NO:	5224ttttacaattcattttcca	13023	13042	1	3
SEQ ID NO:	3884	aagtcaaaacctactgtct	10463 10482 SEQ ID NO:	5225agacctagtgattacactt	12859	12878	1	3
SEQ ID NO:	3885	actgtctcttcctccatgg	10475 10494 SEQ ID NO:	5226 ccatgcaagtcagcccagt	10924	10943	1	3
SEQ ID NO:	3886	cttcctccatggaatttaa	10482 10501 SEQ ID NO:	5227ttaatcgagaggtatgaag	7148	7167	1	3
SEQ ID NO:	3887	attetteaatgetgtacte	10512 10531 SEQ ID NO:	5228 gagttgagggtccgggaat	12242	12261	1	3
SEQ ID NO:	3888	ttgaccacaagcttagctt	10548 10567 SEQ ID NO:	5231 aagcgcacctcaatatcaa	12036	12055	1	3
SEQ ID NO:	3889	cctcacctcttacttttcc	10573 10592 SEQ ID NO:	5232ggaactattgctagtgagg	10649	10668	1	3
SEQ ID NO:	3890	agctgcagggcacttccaa	10710 10729 SEQ ID NO:	5233ttgggaagaagaggcagct	12289	12308	1	3
SEQ ID NO:	3891	ttccaaaattgatgatatc	10723 10742 SEQ ID NO:	5234 gatatacactagggaggaa	12745	12764	1	3
SEQ ID NO:	3892	gagaacatacaagcaaagc	10860 10879 SEQ ID NO:	5235 gcttggttttgccagtctc	2467	2486	1	3
SEQ ID NO:	3893	atggcaaatgtcagctctt	10897 10916 SEQ ID NO:	5236aagaggtatttaaagccat	12960	12979	1	3
SEQ ID NO:	3894	tggcaaatgtcagctcttg	10898 10917 SEQ ID NO:	5237 caagaggtatttaaagcca	12959	12978	1	3
SEQ ID NO:	3895	ttgttcaggtccatgcaag	10914 10933 SEQ ID NO:	5238 cttggggggggggggacaa	14066	14085	1	3
SEQ ID NO:	3896	tgttcaggtccatgcaagt	10915 10934 SEQ ID NO:	5239 acttggggggggggggaaca	14065	14084	1	3
SEQ ID NO:	3897	agttccttccatgatttcc	10940 10959 SEQ ID NO:	5240ggaatctgatgaggaaact	12256	12275	1	3
SEQ ID NO:	3898	tgctaacactaagaaccag	10987 11006 SEQ ID NO:	5241 ctggatgtaaccaccagca	11186	11205	1	3
SEQ ID NO:	3899	actaagaaccagaagatca	10994 11013 SEQ ID NO:	5242tgatcaagaacctgttagt	13347	13366	1	3
SEQ ID NO:	3900	ctaagaaccagaagatcag	10995 11014 SEQ ID NO:	5243 ctgatcaagaacctgttag	13346	13365	1	3
SEQ ID NO:	3901	cagaagatcagatggaaaa	11003 11022 SEQ ID NO:	5244ttttcagaccaactctctg	13622	13641	1	3
SEQ ID NO:	3902	aaaaatgaagtccggattc	11018 11037 SEO ID NO:	5245 gaatttgaaagttcgtttt	9280	9299	1	3
SEQ ID NO:	3903	gattcattctgggtctttc	11032 11051 SEQ ID NO:	5246 gaaaacctatgccttaatc	13166	13185	1	3
SEQ ID NO:	3904	aagaaaaggcacaccttga	11079 11098 SEQ ID NO:	5247tcaaaacctactgtctctt	10466	10485	1	3
SEQ ID NO:	3905	aaggacacctaaggttcct	11115 11134 SEQ ID NO:	5248 aggacaccaaaataacctt	7572	7591	1	3
SEQ ID NO:	3906	ccagcattggtaggagaca	11199 11218 SEQ ID NO:	5249tgtcaacaagtaccactgg	12370	12389	1	3
SEQ ID NO:	3907	ctttgtgtacaccaaaaac	11239 11258 SEQ ID NO:	5250gtttttaaattgttgaaag	13148	13167	1	3
SEQ ID NO:	3908	ccatccctgtaaaagtttt	11277 11296 SEQ ID NO:	5251 aaaagggtcatggaaatgg	8893	8912	1	3
SEQ ID NO:	3909	tgatctaaattcagttctt	11332 11351 SEQ ID NO:	5252 aagatagtcagtctgatca	13334	13353	1	3
SEQ ID NO:	3910	aagaagctgagaacttcat	11432 11451 SEQ ID NO:	5253 atgagatcaacacaatctt	13110	13129	1	3
SEQ ID NO:	3911	tttgccctcaacctaccaa	11453 11472 SEQ ID NO:	5254ttggtacgagttactcaaa	12641	12660	1	3
SEQ ID NO:	3912	cttgattcccttttttgag	11536 11555 SEQ ID NO:	5255 ctcaattttgattttcaag	8528	8547	1	3
				-				-

SEQ ID NO:	3913	ttcacgcttccaaaaagtg	11591 11610 SEQ ID NO:	5256 cactcattgattttctgaa	12693	12712	1	3
SEQ ID NO:	3914	tgtttcagatggcattgct	11608 11627 SEQ ID NO:	5257 agcagattatgttgaaaca	11833	11852	1	3
SEQ ID NO:	3915	aatgcagtagccaacaaga	11639 11658 SEQ ID NO:	5258 tcttttcagcccagccatt	9231	9250	1	3
SEQ ID NO:	3916	ctgagcagaccattgagat	11691 11710 SEQ ID NO:	5259 atctgatgaggaaactcag	12259	12278	1	3
SEQ ID NO:	3917	tgagcagaccattgagatt	11692 11711 SEQ ID NO:	5260 aatctgatgaggaaactca	12258	12277	1	3
SEQ ID NO:	3918	ttgagattccctccattaa	11703 11722 SEQ ID NO:	5261 ttaatcttcataagttcaa	13179	13198	1	3
SEQ ID NO:	3919	acttggagtgccagtttga	11807 11826 SEQ ID NO:	5262tcaattgggagagacaagt	6504	6523	1	3
SEQ ID NO:	3920	caaatttgaaggacttcag	12004 12023 SEQ ID NO:	5263 ctgagaacttcatcatttg	11438	11457	1	3
SEQ ID NO:	3921	agcccagcgttcaccgatc	12056 12075 SEQ ID NO:	5264 gatccaagtatagttggct	13286	13305	1	3
SEQ ID NO:	3922	cagogttcaccgatctcca	12060 12079 SEQ ID NO:	5265tggacctgcaccaaagctg	13960	13979	1	3
SEQ ID NO:	3923	ctccatctgcgctaccaga	12074 12093 SEQ ID NO:	5266tctgatatacatcacggag	13711	13730	1	3
SEQ ID NO:	3924	atgaggaaactcagatcaa	12264 12283 SEQ ID NO:	5267ttgagttgcccaccatcat	11667	11686	1	3
SEQ ID NO:	3925	aggcagcttctggcttgct	12300 12319 SEQ ID NO:	5268 agcaagtctttcctggcct	3018	3037	1	3
SEQ ID NO:	3926	tgaaagacaacgtgcccaa	12327 12346 SEQ ID NO:	5269ttgggagagacaagtttca	6508	6527	1	3
SEQ ID NO:	3927	tatgattatgtcaacaagt	12362 12381 SEQ ID NO:	5270 actitgcactatgttcata	12763	12782	1	3
SEQ ID NO:	3928	cattaggcaaattgatgat	12475 12494 SEQ ID NO:	5271 atcaacacaatcttcaatg	13115	13134	1	3
SEQ ID NO:	3929	ttgactcaggaaggccaag	12584 12603 SEQ ID NO:	5272 cttggtacgagttactcaa	12640	12659	1	3
SEQ ID NO:	3930	gaaacctgggatatacact	12736 12755 SEQ ID NO:	5273 agtgattacacttcctttc	12865	12884	1	3
SEQ ID NO:	3931	tcctttcgagttaaggaaa	12877 12896 SEQ ID NO:	5274tttctgccactgctcagga	13524	13543	1	3
SEQ ID NO:	3932	gccattcagtctctcaaga	12974 12993 SEQ ID NO:	5275 tcttccgttctgtaatggc	5802	5821	1	3
SEQ ID NO:	3933	gtgctacgtaatcttcagg	13001 13020 SEQ ID NO:	5276 cctgcaccaaagctggcac	13964	13983	1	3
SEQ ID NO:	3934	agctgaaagagatgaaatt	13065 13084 SEQ ID NO:	5277 aatttattcaaaacgagct	13200	13219	1	3
SEQ ID NO:	3935	aatttacttatcttattaa	13080 13099 SEQ ID NO:	5278ttaaaagaaatcttcaatt	13815	13834	1	3
SEQ ID NO:	3936	ttttaaattgttgaaagaa	13150 13169 _{SEQ ID NO:}	5279ttctctctatgggaaaaaa	9566	9585	1	3
SEQ ID NO:	3937	taatcttcataagttcaat	13180 13199 SEQ ID NO:	5280 attgagattccctccatta	11702	11721	1	3
SEQ ID NO:	3938	atattttgatccaagtata	13279 13298 SEQ ID NO:	5281 tataagcagaagcacatat	13937	13956	1	3
SEQ ID NO:	3939	tgaaatattatgaacttga	13311 13330 SEQ ID NO:	5282tcaaccttaatgattttca	8295	8314	1	3
SEQ ID NO:	3940	caatttctgcacagaaata	13442 13461 SEQ ID NO:	5283tattcttcttttccaattg	13834	13853	1	3
SEQ ID NO:	3941	agaagattgcagagctttc	13509 13528 SEQ ID NO:	5284 gaaatcttcaatttattct	13821	13840	1	3
SEQ ID NO:	3942	gaagaaaataatttctgat	13570 13589 SEQ ID NO:	5285 at cagtt cagata a a cttc	7999	8018	1	3
SEQ ID NO:	3943	ttgacctgtccattcaaaa	13680 13699 SEQ ID NO:	5286ttttgagaatgaatttcaa	10422	10441	1	3
SEQ ID NO:	3944	tcaaaactaccacacattt	13693 13712 SEQ ID NO:	5287aaattoottgacatgttga	7370	7389	1	3
SEQ ID NO:	3945	ttttttaaaagaaatcttc	13811 13830 SEQ ID NO:	5288 gaagtgtcagtggcaaaaa	10382	10401	1	3
SEQ ID NO:	3946	aggatctgagttattttgc	14043 14062 SEQ ID NO:	5289 gcaagggttcactgttcct	7864	7883	1	3
SEQ ID NO:	3947	tttgctaaacttgggggag	14057 14076 SEQ ID NO:	5290 ctccccaggacctttcaaa	9842	9861	1	3

Table 10. Selected palindromic sequences from human glucose-6-phosphatase

		Source	Start E		Watch	Start Index		#	В
95	Q ID NO:	5291 tocatcttcaggaagctgt	222	241 SEQ ID NO:	5369acagactctttcagatgga	1340	1359	1	6
	Q ID NO:	5292 ccatcttcaggaagctgtg	223	242 SEQ ID NO:	5370cacagactctttcagatgg	1339	1358	1	6
		5293 cctctggccatgccatggg	417	436SEQ ID NO:	5371cccattttgaggccagagg		1511	1	6
	Q ID NO:	5294 ctctggccatgccatgggc	418	437 SEQ ID NO:	5372gcccattttgaggccagag	1491		1	6
	Q ID NO:	5295ttgaatgtcattttgtggt	521	540 SEQ ID NO:	5373accatacattatcattcaa		2964	1	6
	Q ID NO:	5296 tcagtaatgggggaccagc	1886	1905SEQ ID NO:	5374gctggtctcgaactcctga	2731	2750	1	6
	Q ID NO:	5297 ttttactgtgcatacatgt	1956	1975SEQ ID NO:	5375acatctttgaaaagaaaaa	2983		1	6
	Q ID NO:		50	69SEQ ID NO:	5376tcatgtctcagcctcctca	2620		1	5
	Q ID NO:	5298tgaggtgccaaggaaatga	51	70SEQ ID NO:	5377 ctcatgtctcagcctcctc		2638	1	5
	Q ID NO:	5299 gaggtgccaaggaaatgag	487	506SEQ ID NO:	5378ggtcgcctggcttattccc		1314	1	5
	Q ID NO:	5300gggaaagataaagccgacc	598	617SEQ ID NO:	5379aacatctttgaaaagaaaa		3001	1	5
	Q ID NO:	5301 ttttcctcatcaagttgtt	651	670 SEQ ID NO:	5380ctgtggactctggagaaag	773		1	5
	Q ID NO:	5302 ctttcagccacatccacag	776		5381 gggctggctctcaactcca	884		1	5
	Q ID NO:	5303tggactctggagaaagccc		795SEQ ID NO:			2126	1	5
SE	Q ID NO:	5304 agcctcctcaagaacctgg	848	867SEQ ID NO:	5382ccagattcttccactggct	2801		1	5
SE	Q ID NO:	5305ggcctggggctggctctca	878	⁸⁹⁷ SEQ ID NO:	5383tgagccaccgcaccgggcc			•	
SE	Q ID NO:	5306gagctcactcccactggaa	1439	1458SEQ ID NO:	5384ttccaggtagggccagctc		1695	1	5
SE	Q ID NO:	5307 agctaatgaagctattgag	1572	1591 SEQ ID NO:	5385ctcagcctcctcagtagct	2626		1	5
SE	Q ID NO:	5308gctaatgaagctattgaga	1573	1592SEQ ID NO:	5386 tctcagcctcctcagtagc		2644	1	5
SE	Q ID NO:	5309 ctaaatggctttaattata	1854	1873 SEQ ID NO:	5387 tatatttttagaattttag		2702	1	5
SE	Q ID NO:	5310 ctgctttlctttttttttc	2509	2528 SEQ ID NO:	5388 gaaaaatatatatgtgcag		3015	1	5
ŞE	Q ID NO:	5311 caatcaccaccaagcctgg	0	19SEQ ID NO:	5389 ccagaatgggtccacattg	812		1	4
	Q ID NO:	5312agcctggaataactgcaag	12	31 SEQ ID NO:	5390 cttggatttctgaatggct	1987		1	4
	Q ID NO:	5313gttccatcttcaggaagct	220	239 SEQ ID NO:	5391 agctcactcccactggaac	. 1440		1	4
	Q ID NO:	5314tggtgggttttggatactg	326	345 SEQ ID NO:	5392 cagtoctoccaccotacca	2425	2444	1	4
	Q ID NO:	5315acctgtgagactggaccag	392	411 SEQ ID NO:	5393 ctggagaaagcccagaggt	782	801	1	4
	Q ID NO:	5316gctgttacagaaactttca	638	657 SEQ ID NO:	5394tgaatggtcttctgccagc	1474	1493	1	4
	Q ID NO:	5317acagcatctataatgccag	666	685 SEQ ID NO:	5395 ctgggtgtagacctcctgt	758	777	1	4
	Q ID NO:	5318gggtgtagacctcctgtgg	760	779 SEQ ID NO:	5396 ccacattgacaccacaccc	823	842	1	4
-	Q ID NO:	5319 ggtgtagacctcctgtgga	761	780 SEQ ID NO:	5397 tccacattgacaccacacc	822	841	1	4
	Q ID NO:	5320gtgtagacctcctgtggac	762	781 SEQ ID NO:	5398 gtccacattgacaccacac	821	840	1	4
	Q ID NO:	5321 gacctcctgtggactctgg	767	786 SEQ ID NO:	5399 ccagatattgcactaggtc	2014	2033	1	4
	Q ID NO:	5322 cetgggeaegetetttgge	862	881 SEQ ID NO:	5400 gccagctcacaagcccagg	1687	1706	1	4
	Q ID NO:	5323 etgggeaegetetttggee	863	882 SEQ ID NO:	5401 ggccagctcacaagcccag	1686	1705	1	4
	Q ID NO:	5324 ctggtcttctacgtcttgt	1028	1047 SEQ ID NO:	5402 acaaaagcaagacttccag	1663	1682	1	4
	Q ID NO:	5325agagtgcggtagtgcccct	1056	1075 SEQ ID NO:	5403 agggccaggattcctctct	2229	2248	1	4
	Q ID NO:	5326tgggcactggtatttggag	1217	1236 SEQ ID NO:	5404 ctcccactggaacagccca	1446	1465	1	4
	Q ID NO:	5327 gaattaaatcacggatggc	1267	1286 SEQ ID NO:	5405 gccaaccaagagcacattc	2311	2330	1	4
	Q ID NO:	5328 tgttgctagaagttgggtt	1598	1617 SEQ ID NO:	5406 aaccatectgeteataaca	2967	2986	1	4
	Q ID NO:	5329 aggagctctgaatctgata	1764	1783 SEQ ID NO:	5407 tatcacattacatcatcct		2082	1	4
	Q ID NO:	5330 taaatggctttaattatat	1855	1874 SEQ ID NO:	5408 atatatgtgcagtatttta		3022	1	4
		5331 aaaatgacaaggggagggc		2234 SEQ ID NO:	5409gccctccttgcctgttttt		2836	1	4
	EQ ID NO:	5332ttaaaggaaaagtcaacat	2330	2349 SEQ ID NO:	5410 atgtgcagtattttattaa		3026	1	4
	EQ ID NO:	5333 acatettetetetttttt	2345	2364 SEQ ID NO:	5411 aaaagaaaaatatatatgt		3011	1	4
	Q ID NO:	5334 ttctacgtcctcttcccca	197	216 SEQ ID NO:	5412tgggccagccgcacaagaa		1135	1	3
	Q ID NO:		257	276SEQ ID NO:	5413 ctcccactggaacagccca		1465	1	
SE	EQ ID NO:	5335 tgggtagctgtgattggag	, 201	FIVSEW ID NO:	O-F O O COO COO COO COO COO COO COO COO C	1-10	. 100	•	•

SEQ ID NO:	5336 gctgtgattggagactggc	263	282 SEQ ID NO:	5414gccatgccatgggcacagc	423	442	1	3
SEQ ID NO:	5337 cacttccgtgcccctgata	358	377 SEQ ID NO:	5415tatcacccaggctggagtg		2567	1	3
SEQ ID NO:	5338acatctactctttccatct	464	483 SEQ ID NO:	5416agatgggatttcatcatgt	2705	2724	1	3
SEQ ID NO:	5339 ctactctttccatctttca	468	487 SEQ ID NO:	5417tgaatactctcacaagtag	1419	1438	1	3
SEQ ID NO:	5340 agataaagccgacctacag	492	511 SEQ ID NO:	5418 ctgtttttcaatctcatct	2828	2847	1	3
SEQ ID NO:	5341 tgtgcagctgaatgtctgt	553	572SEQ ID NO:	5419acagaaactttcagccaca	644	663	1	3
SEQ ID NO:	5342 atgtctgtctgtcacgaat	564	583 SEQ ID NO:	5420attcaggtatagctgacat	2038	2057	1	3
SEQ ID NO:	5343 ctgtcacgaatctaccttg	572	591 SEQ ID NO:	5421 caaggtgctaggattacag			1	3
SEQ ID NO:	5344 atcaagttgttgctggagt	606	625SEQ ID NO:	5422 actectgaceteaagtgat	2742		1	3
SEQ ID NO:	5345 cagaaacttt cagccacat	645	664 SEQ ID NO:	5423 atgtttcaattaggctctg		2204	1	3
SEQ ID NO:	5346 actttcagccacatccaca	650	669SEQ ID NO:	5424tgtggcgtatcatgcaagt	1818	1837	1	3
SEQ ID NO:	5347 atgccagcctcaagaaata	678	697 SEQ ID NO:	5425tattttttttactgtgcat	1950	1969	1	3
SEQ ID NO:	5348agaaatattttctcattac	690	709SEQ ID NO:	5426gtaaatatgactcctttct		2302	1	3
SEQ ID NO:	5349gaaatattttctcattacc	691	710SEQ ID NO:	5427 ggtaaatatgactcctttc		2301	1	3
SEQ ID NO:	5350tgctgctcaagggactggg	744	⁷⁶³ SEQ ID NO:	5428 cccaagccaaccaagagca	2306	2325	1	3
SEQ ID NO:	5351 cctgtggactctggagaaa	772	791 SEQ ID NO:	5429tttcatcatgttggccagg		2732	1	3
SEQ ID NO:	5352ggagaaagcccagaggtgg	784	803 SEQ ID NO:	5430 ccaccgcaccgggccctcc		2824	1	3
SEQ ID NO:	5353ttgaaacccccatcccaag	1004	1023 SEQ ID NO:	5431 cttgaattcctgggctcaa	2405		1	3
SEQ ID NO:	5354 cagatggaggtgccatatc	1351	1370 SEQ ID NO:	5432gatatgcagagtatttctg		2866	1	3
SEQ ID NO:	5355ggagctcactcccactgga	1438	1457 SEQ ID NO:	5433tccacctgccttggcctcc		2779	1	3
SEQ ID NO:	5356ttgggtaatgtttttgaaa	1553	1572 SEQ ID NO:	5434tttctctatcccaagccaa		2316	1	3
SEQ ID NO:	5357gaagttgggttgttctgga	1606	1625SEQ ID NO:	5435tccaccccactggatcttc	2131		1	3
SEQ ID NO:	5358aaaagaaggctgcctaagg	1785	1804 SEQ ID NO:	5436 cettgeetgettttetttt	2503		1	3
SEQ ID NO:	5359aaagaaggctgcctaagga	1786	1805 SEQ ID NO:	5437 teettgeetgettttettt		2521	1	3
SEQ ID NO:	5360 aagaaggctgcctaaggag	1787	1806 SEQ ID NO:	5438 ctccttgcctgcttttctt	2501	2520	1	3
SEQ ID NO:	5361 agaaggetgeetaaggagg	1788	1807 SEQ ID NO:	5439 cctccttgcctgcttttct	2500		1	3
SEQ ID NO:	5362atttccttggatttctgaa	1982	2001 SEQ ID NO:	5440ttcaattaggctctgaaat	2189		1	3
SEQ ID NO:	5363 teettataageceagetet	2081	2100 SEQ ID NO:	5441 agagcacattcttaaagga	2319	2338	1	3
SEQ ID NO:	5364 ataagcccagctctgcttt	2086	2105 SEQ ID NO:	5442 aaagctgaagcctatttat	2889	2908	1	3
SEQ ID NO:	5365ggccaggattcctctctca	2231	2250 SEQ ID NO:	5443tgagccaccgcaccgggcc	2801	2820	1	3
SEQ ID NO:	5366gccaactcctccttgcctg	2493	2512 SEQ ID NO:	5444 caggctggagtggagtggc	2555		1	3
SEQ ID NO:	5367 tttttttttttttttgag	2519	2538 SEQ ID NO:	5445 ctcataacatctttgaaaa	2977		1	3
SEQ ID NO:	5368 ccggcgtgcaccaccatgc	2652	2671 SEQ ID NO:	5446 gcatgagccaccgcaccgg	2798	2817	1	3

Table 11. Selected palindromic sequences from rat glucose-6-phosphatase								
-		Start E		Match	Start	End	#	В
		Index I	ndex		Index			
SEQ ID NO:	5447 ctgactattacagcaacag	301	320SEQ ID NO:	5471 ctgtggctgaaactttcag	598	617	1	6
SEQ ID NO:	5448 ctcttggggttggggctgg	831	850SEQ ID NO:	5472ccagcatgtaccgcaagag	859	878	1	6
SEQ ID NO:	5449 tgcaaaggagaactgcgca	879	898SEQ ID NO:	5473tgcgaccgtcccctttgca	1019	1038	1	6
SEQ ID NO:	5450 cctcgggccatgccatggg	376	395SEQ ID NO:	5474cccagtgtggggccagagg	1171	1190	1	5
SEQ ID NO:	5451 ttgagcaaaccatatgcaa	1478	1497SEQ ID NO:	5475 ttgcagagtgtgtcttcaa	2057	2076	1	5
SEQ ID NO:	5452 cagcttcctgaggtaccaa	2	21 SEQ ID NO:	5476 ttggtgtctgtgatcgctg	123	142	1	4
SEQ ID NO:	5453 ggtaccaaggaggaaggat	13	32SEQ ID NO:	5477 atccagtcgactcgctacc	66	85	1	4
SEQ ID NO:	5454 ctccacgactttgggatcc	51	70SEQ ID NO:	5478 ggatcgggaggaggggag		1467	1	4
SEQ ID NO:	5455 caggactggtttgtcttgg	108	127 SEQ ID NO:	5479 ccaagcccgactgtgcctg	2018		1	4
SEQ ID NO:	5456 cttctatgtcctctttccc	155	174SEQ ID NO:	5480 gggacagacacacaagaag	1076	1095	1	4
SEQ ID NO:	5457 ttctatgtcctctttccca	156	175 SEQ ID NO:	5481 tgggacagacacacaagaa	1075	1094	1	4
SEQ ID NO:	5458 tggttccacattcaagaga	177	196SEQ ID NO:	5482 tctcaataatgatagacca	1549	1568	1	4
SEQ ID NO:	5459 tgcctctgataaaacagtt	325	344 SEQ ID NO:	5483 aactctgagatcttgggca	1868	1887	1	4
SEQ ID NO:	5460 agcccggctcctgggacag	1064	1083 SEQ ID NO:	5484 ctgtcctccagcctgggct	2034		1	4
SEQ ID NO:	5461 agtototgacacaagtoag	1111	1130SEQ ID NO:	5485 ctgaatggtaatggtgact	1659	1678	1	4
SEQ ID NO:	5462 aaaaaggtgaatttttaaa	1237	1256 SEQ ID NO:	5486 tttattaaaacgacatttt	2201	2220	1	4
SEQ ID NO:	5463 acactctcaataatgatag	1545	1564 SEQ ID NO:	5487 ctatgaatgatgcctgtgt	2121	2140	1	4
SEQ ID NO:	5464 aaagaatgaacgtgctcca	37	56 SEQ ID NO:	5488 tggacctcctgtggacttt	724	743	1	3
SEQ ID NO:	5465 ctttgggatccagtcgact	59	78SEQ ID NO:	5489 agtcagcggccgtgcaaag	1124		1	3
SEQ ID NO:	5466 gtgatcgctgacctcagga	132	151 SEQ ID NO:	5490 tecteteteaaaggteae	1911	1930	1	3
SEQ ID NO:	5467 ggaacgccttctatgtcct	148	167 SEQ ID NO:	5491 aggactcatcactgcttcc	1748	1767	1	3
SEQ ID NO:	5468 gactgtgggcatcaatctc	194	213 SEQ ID NO:	5492 gagactggaccagggagtc	357	376	1	3
SEQ ID NO:	5469 ggacactgactattacagc	296	315SEQ ID NO:	5493 gctgaacgtctgtctgtcc	518	537	1	3
SEQ ID NO:	5470 aagcccccgtcccagattg	966	985 SEQ ID NO:	5494 caattgtttgctggtgctt	1833	1852	1	3

Table 12. Selected palindromic sequences from human B-catenin								
		Start I		Match	Start E		#	В
		Index			Index I			_
SEQ ID NO:	5495agcagcttcagtccccgcc	70	89SEQ ID NO:	5542ggcgacatatgcagctgct	2152	2171	1	5
SEQ ID NO:	5496 ccattctggtgccactacc	304	323 SEQ ID NO:	5543ggtatggaccccatgatgg	2387	2406	1	5
SEQ ID NO:	5497tccttctctgagtggtaaa	328	347 SEQ ID NO:	5544tttattacatcaagaagga	985	1004	1	5
SEQ ID NO:	5498 totgagtggtaaaggcaat	334	353 SEQ ID NO:	5545attgtacgtaccatgcaga	791	810	1	5
SEQ ID NO:	5499 cagagggtacgagctgcta	473	492 SEQ ID NO:	5546tagctgcaggggtcctctg	2037	2056	1	5
SEQ ID NO:	5500 ctaaatgacgaggaccagg	677	696SEQ ID NO:	5547 cctgtaaatcatcctttag	2539	2558	1	5
SEQ ID NO:	5501 teaatgacgaggaccaggt	678	697 SEQ ID NO:	5548acctgtaaatcatccttta	2538	2557	1	5
SEQ ID NO:	5502glcctgtatgagtgggaac	383	402 SEQ ID NO:	5549gttccgaatgtctgaggac	2176	2195	2	4
SEQ ID NO:	5503cccagcgccgtacgtccat	1839	1858SEQ ID NO:	5550 atgggctgccagatctggg	2451	2470	2	4
SEQ ID NO:	5504tcccctgagggtatttgaa	143	162SEQ ID NO:	5551ttcacatcctagctcggga	1929	1948	1	4
SEQ ID NO:	5505 gggtatttgaagtatacca	151	170 SEQ ID NO:	5552tggttaagctcttacaccc	1680	1699	1	4
SEQ ID NO:	5506 gctgttagtcactggcagc	260	²⁷⁹ SEQ ID NO:	5553gctgcctccaggtgacagc	2494	2513	1	4
SEQ ID NO:	5507 gtcctgtatgagtgggaac	383	402SEQ ID NO:	5554gttcgccttcactatggac.	1652	1671	1	4
SEQ ID NO:	5508 tcctgtatgagtgggaaca	384	403 SEQ ID NO:	5555tgttccgaatgtctgagga	2175	2194	1	4
SEQ ID NO:	5509 gtatgcaatgactcgagct	454	473SEQ ID NO:	5556agctggcctggtttgatac	2517	2536	1	4
SEQ ID NO:	5510gtccagcgtttggctgaac	563	582 SEQ ID NO:	5557gttcgccttcactatggac	1652	1671	1	4
SEQ ID NO:	5511 tatcaagatgatgcagaac	· 623	642 SEQ ID NO:	5558gttcgtgcacatcaggata	1820	1839	1	4
SEQ ID NO:	5512tatggtccatcagctttct	718	737 SEQ ID NO:	5559agaaagcaagctcatcata	1126	1145	1	4
SEQ ID NO:	5513 ccctggtgaaaatgcttgg	915	934 SEQ ID NO:	5560ccaaagagtagctgcaggg	2029	2048	1	4
SEQ ID NO:	5514 agctttaggacttcacctg	1291	1310 SEQ ID NO:	5561 caggtgacagcaatcagct	2502	2521	1	4
SEQ ID NO:	5515ggaatctttcagatgctgc	1356	1375 SEQ ID NO:	5562gcagctgctgttttgttcc	2162	2181	1	. 4
SEQ ID NO:	5516tgtccttcgggctggtgac		¹⁵⁶⁸ SEQ ID NO:	5563gtcatctgaccagccgaca	1605	1624	1	4
SEQ ID NO:	5517 cacagetectetgacagag			5564 ctctaggaatgaaggtgtg	2134	2153	1	4
SEQ ID NO:	5518ccagacagaaaagcggctg	245	264 SEQ ID NO:	5565 cagctcgttgtaccgctgg	828	847	2	3
SEQ ID NO:	5519 cagcagcgttggcccggcc	4	23 SEQ ID NO:	5566ggccaccacctggtgctg	2420	2439	1	3
SEQ ID NO:	5520 aggtctgaggagcagcttc	60	79SEQ ID NO:	5567 gaagaggatgtggatacct	359	378	1	3
SEQ ID NO:	5521 actgttttgaaaatccagc	174	193 SEQ ID NO:	5568 gctgatattgatggacagt	437	456	1	3
SEQ ID NO:	5522 ctgatttgatggagttgga	213	232 SEQ ID NO:	5569 tccaggtgacagcaatcag	2500	2519	1	3
SEQ ID NO:	5523 ccagacagaaaagcggctg	245	²⁶⁴ SEQ ID NO:	5570 cagcaacagtcttacctgg	275	294	1	3
SEQ ID NO:	5524 acageteettetetgagtg	323	342 SEQ ID NO:	5571 cactgagcctgccatctgt	1579	1598	1	3
SEQ ID NO:	5525tggatacctcccaagtcct	369	388 SEQ ID NO:	5572 aggactaaataccattcca	1972	1991	1	3
SEQ ID NO:	5526tcaagaacaagtagctgat	424	443SEQ ID NO:	5573 atcagctggcctggtttga	2514	2533	1	3
SEQ ID NO:	5527 agctcagagggtacgagct	469	488SEQ ID NO:	5574 agctggtggaatgcaagct	. 1276	1295	1	3
SEQ ID NO:	5528 gcatgcagatcccatctac	516	535SEQ ID NO:	5575 gtagaagctggtggaatgc	1271	1290	1	3
SEQ ID NO:	5529 ccacacgtgcaatccctga	645	664 SEQ ID NO:	5576 tcagatgatataaatgtgg	1430	1449	1	3
SEQ ID NO:	5530 cacacgtgcaatccctgaa	646	665SEQ ID NO:	5577 ttcagatgatataaatgtg	1429	1448	1	3
SEQ ID NO:	5531 ggaccttgcataacctttc	846	865SEQ ID NO:	5578 gaaatcttgccctttgtcc	1743	1762	1	3
SEQ ID NO:	5532ctccacaaccttttattac	974	993 SEQ ID NO:	5579 gtaaatcatcctttaggag	2542	2561	1	3
SEQ ID NO:	5533cagagtgctgaaggtgcta	1222	1241 SEQ ID NO:	5580 tagetgeaggggteetetg	2037	2056	1	3
SEQ ID NO:	5534ggactctcaggaatctttc	1347	1366SEQ ID NO:	5581 gaaatcttgccctttgtcc	1743	1762	1	3
SEQ ID NO:	5535tgatataaatgtggtcacc	1435	1454 SEQ ID NO:	5582ggtgacagggaagacatca	1562	1581	1	3
SEQ ID NO:			1858SEQ ID NO:	5583 atggccaggatgccttggg	2370	2389	1	3
SEQ ID NO:			1871SEQ ID NO:	5584 ctgtgaacttgctcaggac	2053	2072	1	3
SEQ ID NO:			1934SEQ ID NO:	5585gtgaacttgctcaggacaa	2055	2074	1	3
SEQ ID NO:	. 		1981 SEQ ID NO:	5586 tttaggagtaacaatacaa	2553	2572	1	3

SEQ ID NO: 5540gaagctattgaagctgagg 2084 2103 SEQ ID NO: 5587 cctctgacagagttacttc 2114 2133 1 3 SEQ ID NO: 5541tcagaacagagccaatggc 2247 2266 SEQ ID NO: 5588 gccaccaccctggtgctga 2421 2440 1 3

Table 13. Selected palindromic sequences from human hepatitis C virus (HCV)

	Source	Start	End	Match	Start	End index	#	В
	7500	Index	Index	O: 6135taccatcacccagctgctg	6196		1	9
SEQ ID NO:	5589 cagcacctgggtgctggta	5314 1682	5333 SEQ ID N		8202	8221		8
SEQ ID NO:	5590 aactcgtccggatgcccgg	1049	1701 SEQ ID N		6151	6170		7
SEQ ID NO:	5591 cgctgctgggtagcgctca		1068 SEQ ID N	·	6053	6072		7
SEQ ID NO:	5592ctccggatcccacaagccg	1352	1371 SEQ ID N		6871	6890	- 	-
SEQ ID NO:	5593tgtaacatcggggggggtcg	2048	2067 SEQ ID N		6870	6889	╌╢	-
SEQ ID NO:	5594gtaacatcggggggggtcgg	2049	2068 SEQ ID N		9254	9273		-
SEQ ID NO:	5595cagccaccaagcaggcgga	5556	5575 SEQ ID N		6291	6310	1	$-\frac{7}{7}$
SEQ ID NO:	5596 ctcaccacccagaacaccc	5744	5763 SEQ ID N		5832	5851		 -
SEQ ID NO:	5597 ccagccttaccatcaccca	6189	6208 SEQ ID N		6830	6849		7
SEQ ID NO:	5598 ctacgccgtgttccggctc	6249	6268 SEQ ID N		6829	6848		
SEQ ID NO:	5599 tacgccgtgttccggctcg	6250	6269 SEQ ID N		8634	8653	1	7
SEQ ID NO:	5600 gagttcctggtaaaagcct	8216	8235 SEQ ID N		9019		2	. ,
SEQ ID NO:	5601 atggcggggaactgggcta	1430	1449 SEQ ID N		4115		- 4	- 6
SEQ ID NO:	5602 aaccaaacgtaacaccaac	370	389 SEQ ID N			5753	1	. 6
SEQ ID NO:	5603 ggtggtcagatcgttggtg	419	438 SEQ ID N		5734			
SEQ ID NO:	5604 ccttggccctctatggca	584	603 SEQ ID N		6374	6393	- 1	6
SEQ ID NO:	5605taccccggccacgcgtcag	1265	1284 SEQ ID N		8465	8484	1	6
SEQ ID NO:	5606gggcacgctgcccgcctca	1508	1527SEQ ID N		4759	4778		6
SEQ ID NO:	5607 ctgcaatgactccctccag	1624	1643 SEQ ID N		2594			6
SEQ ID NO:	5608 aaccgatcgtctcggcaac	1897	1916 <mark>SEQIDN</mark>		4115		_]	6
SEQ ID NO:	5609gtgcggggccccccgtgt	2032	2051 <mark>SEQ ID N</mark>		6537	6556		6
SEQ ID NO:	5610atgtggggggggtggagca	2238	2257 SEQ ID N		7610	7629	1	6
SEQ ID NO:	5611ggagagcgttgcaacttgg	2288	2307 SEQ ID N		9207	9226		6
SEQ ID NO:	5612 cgtccgttgccggagcgca	2613	2632 SEQ ID N	IO: 6158tgcgagcccgaaccggacg	6827	6846	1	6
SEQ ID NO:	5613 gtctggcattattgacctt	2817	2836 SEQ ID N		7763	7782	1	. 6
SEQ ID NO:	5614tctttgatatcaccaaact	2997	3016SEQ ID N		5454	5473	1	6
SEQ ID NO:	5615 cttctgattgccatactcg	3014	3033 SEQ ID N		5518	5537		· 6
SEQ ID NO:	5616gcggcgtgtggggacatca	3314	3333 SEQ ID N		7641	7660	1	6
SEQ ID NO:	5617gggacatcatcctgggcct	3324	3343 SEQ ID N		3915		1	6
SEQ ID NO:	5618gggcgtcttccgggccgct	3874	3893 SEQ ID N	IO: 6164 agcggcacggcgaccgccc			1	• 6
SEQ ID NO:	5619ggcgtcttccgggccgctg	3875	3894 SEQ ID N	IO: 6165 cageggeaeggegaeegee			1	6
SEQ ID NO:	5620 gcgtcttccgggccgctgt	3876	3895SEQ ID N		7631	7650	1	
SEQ ID NO:	5621gtccccggtcttcacagac	3961	3980 SEQ ID N		7252	7271	1	_
SEQ ID NO:	5622catcaggactggggtaagg	4174	4193SEQ ID N		8155		1	6
SEQ ID NO:	5623ccgacggtggttgctccgg	4245	4264 SEQ ID N		4853	4872	1	6
SEQ ID NO:	5624ggggggaaggcacctcatt	4501	4520SEQ ID N		8334	8353	1	6
SEQ ID NO:	5625ccgagcaattcaagcagaa	5517	5536 SEQ ID N		3015	3034	1	6
SEQ ID NO:	5626agatgaaggcaaaggcgtc	7821	7840 SEQ ID N		8564	8583	1	
SEQ ID NO:	5627 cccctagggggggcgctgcca	767			3674	3693	3	5
SEQ ID NO:	5628ctcccggcctagttggggc	646		· - · · · · · · · · · · · · · · · · · ·	7519	7538	2	5
SEQ ID NO:	5629ttccgctcgtcggcggccc	750			7923	7942		
SEQ ID NO:	5630 cccctagggggcgctgcca	767	786SEQIDIN	· - · , , , , , , , , , , , , , , , , , , 	1383	1402	2	
SEQ ID NO:	5631gcccgccggcatgcgaca	1222			9147			
SECTIONO:	and igocoogooggoatgogaca	1					تــــ	لتــــــا

SEQ ID NO:	5632 aggacgaccgggtcctttc	178	197SEQ ID NO: _	6178gaaaaaggacggttgtcct	7341		1	5 5
SEQ ID NO:	5633 ggacgaccgggtcctttct	179	198SEQ ID NO:	6179agaaaaaggacggttgtcc	7340	7359	1	
SEQ ID NO:	5634aaaaccaaacgtaacacca	368	387 SEQ ID NO:_	6180 tggttttttttttttttt	9443	9462	1	5
SEQ ID NO:	5635 caaccgccgcccacaggac	385	404 SEQ ID NO:	6181 gtcctgaacccgtctgttg	4100	4119	1	5
SEQ ID NO:	5636 cggtggtcagatcgttggt	418	437 SEQ ID NO:	6182 accattgagacgacgaccg	4754	4773	1	5
SEQ ID NO:	5637 acctgttgccgcgcagggg	444	463 SEQ ID NO:	6183 ccccggccacgcgtcaggt	1267	1286	1	5
SEQ ID NO:	5638tgccgcgcaggggccccag	450	469 SEQ ID NO:	6184ctgggcgcgctgacgggca	3164	3183	1	5
SEQ ID NO:	5639gggccccaggttgggtgtg	460	479 SEQ ID NO:	6185 cacagectgtetegtgeee	9296	9315	1	5
SEQ ID NO:	5640 gttggggccccacggaccc	657	676SEQ ID NO: _	6186 gggtgggtagccgcccaac	5783	5802	1	5
SEQ ID NO:	5641 ttggggccccacggacccc	658	677 SEQ ID NO:	6187 ggggtgggtagccgcccaa	5782	5801	1	5
SEQ ID NO:	5642 tggggccccacggaccccc	659	678SEQ ID NO:	6188 gggggtgggtagccgccca	5781	5800	1	5
SEQ ID NO:	5643 cctcacatgcggcctcgcc	715	734 SEQ ID NO:	6189ggcgggggacaatagagg	3774	3793	1	5
SEQ ID NO:	5644cacatgcggcctcgccgac	718	737SEQ ID NO:	6190gtcgtcggagtcgtgtgtg	6020	6039	1	- 5
SEQ ID NO:	5645 teegetegteggeggeece	751	770 SEQ ID NO:	6191 ggggcaaaggacgtccgga	7922	7941	1	5
SEQ ID NO:	5646ggcgctgccagggccttgg	776	795 SEQ ID NO:	6192ccaagccacagtgtgcgcc	5110	5129	1	5
SEQ ID NO:	5647 ccatgtcacgaacgactgc	943	962 SEQ ID NO:	6193gcagcaacacgtggcatgg	6498	6517	1	5
SEQ ID NO:	5648 gtgccctgcgttcgggagg	1019	1038 SEQ ID NO:	6194 cctcacaacgggggggcac	1495	1514	1	5
SEQ ID NO:	5649tgccctgcgttcgggaggg	1020	1039 SEQ ID NO:	6195ccctcacaacgggggggca	1494	1513	1	-5
SEQ ID NO:	5650gccctgcgttcgggagggt	1021	1040 SEQ ID NO:	6196accctcacaacgggggggc	1493	1512	1	. 5
SEQ ID NO:	5651 aggaatgctaccatcccca	1085	1104 SEQ ID NO:	6197tgggcatcggcacagtcct	4323	4342	1	5
SEQ ID NO:	5652 tccccactacgacaatacg	1098	1117 SEQ ID NO:	6198cgtattcccagatttggga	8092	8111	1	5
SEQ ID NO:	5653atacgacaccacgtcgatt	1112	1131 SEQ ID NO:	6199aatcaatgctgtagcgtat	4576	4595	1	5
SEQ ID NO:	5654 atttgctcgttggggcggc	1128	1147 SEQ ID NO:	6200gccgccacttgcggcaaat	9164	9183	1	5
SEQ ID NO:	5655ccttctcgcccgccggca	1215	1234 SEQ ID NO:	6201 tgccaacgtgggtacaagg	6374	6393	1	5
SEQ ID NO:	5656accccggccacgcgtcagg	1266	1285 SEQ ID NO:	6202 cctgccgcggttaccgggt	6340	6359	1	5
SEQ ID NO:	5657gccctcgtagtgtcgcagt	1331	1350 SEQ ID NO:	6203actgcgtcggcatgtgggc	6046	6065	-1	5
SEQ ID NO:	5658gccgtctcagagaatccag	1558	1577 SEQ ID NO:	6204ctggtatcgctggtgcggc	5838	5857	1	5
SEQ ID NO:	5659 ctgaactgcaatgactccc	1619	1638 SEQ ID NO:	6205gggacagatcggagctcag	2313	2332	1	5
SEQ ID NO:	5660 agactgggtttcttgccgc	1641	1660 SEQ ID NO:	6206gcggcgagcctacgagtct	8609	8628	1	5
SEQ ID NO:	5661 tcgtccggatgcccggagc	1685	1704 SEQ ID NO:	6207gctccggggggcgcttacga	4257	4276	1	5
SEQ ID NO:	5662 ccagggatggggtcctatc	1738	1757 SEQ ID NO:	6208gataacttccctacctgg	5084	5103	1	5
SEQ ID NO:	5663 gacaaccgatcgtctcggc	1894	1913 SEQ ID NO:	6209gccgcggttaccgggtgtc	6343	6362	1	5
SEQ ID NO:	5664 caagacgtgcggggcccc	2026	2045 SEQ ID NO:	6210ggggtctccccctcttg	6919	6938	1	5
SEQ ID NO:	5665acgtgcggggccccccgt	2030	2049 SEQ ID NO:	6211acgggcgccccattacgt	4202	4221	1	5
SEQ ID NO:	5666ccggaagcaccccgaggcc	2101	2120 SEQ ID NO:	6212ggccgctgtatgcacccgg	3886	3905	1	5
SEQ ID NO:	5667 aggccacgtactcaaaatg	2115	2134 SEQ ID NO:	6213 cattatgtccaaatggcct	3137	3156	1	5
SEQ ID NO:	5668 tgtatgtggggggggtgga	2235	2254 SEQ ID NO:	6214tccaagtggcccatctaca	4011	4030	1	5
SEQ ID NO:	5669 gagtggcaggttctgccct	2354	2373SEQ ID NO:	6215agggcaggggtggcgactc	3400	3419	1	-5
SEQ ID NO:	5670tcctttgcaatcaaatggg	2474	2493SEQ ID NO:	6216cccaccttatgggcaagga	8861	8880	1	5
SEQ ID NO:	5671 agcccaggccgaggccgcc	2566	2585 SEQ ID NO:	6217ggcgtccacagtcaaggct		7853	1	5
SEQ ID NO:	5672ggcggcatatgctttctat	2698	2717SEQ ID NO:	6218 atagaagaagcctgccgcc		7884	1	5
SEQ ID NO:	5673 gcggcatatgctttctatg	2699	2718 SEQ ID NO:	6219catagaagaagcctgccgc	7864	7883	1	5
SEQ ID NO:	5674 cggcatatgctttctatgg	2700	2719 SEQ ID NO:	6220ccatagaagaagcctgccg	7863	7882	1	5
SEQ ID NO:	5675 tgcatgtgtgggttcccc	2913	2932 SEQ ID NO:	6221 ggggggacggcatcatgca		6421	1	5
SEQ ID NO:	5676 ccccctcaacgtccgggg	2928	2947 SEQ ID NO:	6222ccccaatcgatgaacgggg		9395	1	5
SEQ ID NO:	5677 gggcaggggtggcgactcc	3401	3420 SEQ ID NO:	6223ggaggccgcaagccagccc		8085	1	5
SEQ ID NO:	5678 atgttggactgtctaccat	3574	3593 SEQ ID NO:	6224atggtaccgaccctaacat		4177	1	5
SEQ ID NO:	5679tgttggactgtctaccatg	3575	3594 SEQ ID NO:	6225 catggtaccgaccctaaca		4176		<u> </u>
,	0.00					٠٩	_:	

		acorl	2744050 10 NO.	6226 tgcacgatgctcgtgaacg	8543	8562	1	5
SEQ ID NO:	5680 cgttccctgacaccatgca	3695	3714 SEQ ID NO:_	6227tgccgcggttaccgggtgt	6342	6361	1	5
SEQ ID NO:	5681 acaccatgcacctgtggca	3704	3723 SEQ ID NO:_	6228 ctgccgcggttaccgggtg	6341	6360	1	5
SEQ ID NO:	5682 caccatgcacctgtggcag	3705	3724 SEQ ID NO:	6229 ccaggattgcccgtttgcc	4979	4998	1	5
SEQ ID NO:	5683 ggcatcggcacagtcctgg	4325	4344 SEQ ID NO:_	6230 getecceccagegetgett	5804	5823	1	5
SEQ ID NO:	5684 aagcggagacggctggagc	4347	4366 SEQ ID NO:_		7443	7462	-	5
SEQ ID NO:	5685 ggagcgcggcttgtcgtgc	4361	4380 SEQ ID NO:_	6231 gcacggcgaccgccctcc		5825	-	- 5
SEQ ID NO:	5686 cgaagccatcaagggggga	4489	_4508 SEQ ID NO:_	6232tcccccagcgctgcttcg	5806		╌╬	-5
SEQ ID NO:	5687tggaagtgtctcatacggc	5165	_5184 SEQ ID NO:_	6233gccggattacaatcctcca	7225	7244	1	-5
SEQ ID NO:	5688gggtgctggtaggcggagt	5322	_5341 SEQ ID NO:_	6234actcgcgatcccaccaccc	8765	8784		5
SEQ ID NO:	5689gtgggtaggatcatcttgt	5390	5409 SEQ ID NO:_	6235acaacatggtctacgccac	7713	7732	- ¦	5
SEQ ID NO:	5690 cgccgagcaattcaagcag	5515	_5534 SEQ ID NO:_	6236 ctgcacgccttccccggcg	6550	6569	╌╫	5
SEQ ID NO:	5691 tggagtccaagtggcgagc	5592	_5611 SEQ ID NO:_	6237 gctcctcatacggattcca	8175	8194	-¦	5
SEQ ID NO:	5692tggcgagctttggagacct	5603	_5622 SEQ ID NO:_	6238 aggtgccctgatcacgcca	7633	7652		
SEQ ID NO:	5693 gcccgctcaccacccagaa	5739	5758SEQ ID NO:_	6239 ttctggcgggctatggggc	5895	5914		5
SEQ ID NO:	5694 tgagtgacttcaagacctg	6306	_6325 SEQ ID NO:_	6240 caggctataaaatcgctca	8363	8382	- }	
SEQ ID NO:	5695atgtcaaaaacggttccat	6456	_6475 <mark>SEQ ID NO:</mark> _	6241 atggtaccgaccctaacat	4158	4177		5
SEQ ID NO:	5696ccgaaaacctgcagcaaca	6488	_6507 SEQ ID NO:_	6242 tgttcctccaatgtgtcgg	8708	8727		5 5
SEQ ID NO:	5697ggcgccaaactattccaag	6565	6584 SEQ ID NO:_	6243 cttgaaagcctctgccgcc	8500	8519	-1	
SEQ ID NO:	5698gccctccttgagggcgaca	6967	6986 <mark>SEQ ID NO:_</mark>	6244 tgtctcctacttgaagggc	3814	3833		5
SEQ ID NO:	5699cacccgcgtggagtcggag	7078	7097 <mark>SEQ ID NO:</mark> _	6245 ctccggtggtacacgggtg	7278	7297		5
SEQ ID NO:	5700ggagggggatgagaatgaa	7138	7157SEQ ID NO:_	6246ttcatgctgtgcctactcc	9326	9345		5
SEQ ID NO:	5701 gcggcgatacccatatggg	7202	7221 SEQ ID NO:	6247 cccaggggggggggggccgc	9150	9169	1	5
SEQ ID NO:	5702ttgccacctgtcaaggccc	7301	7320 SEQ ID NO:	6248 gggccgccacttgcggcaa	9162	9181	1	5
SEQ ID NO:	5703ccccccttgaggggagc	7520	7539 SEQ ID NO:	6249gctcccggcctagttgggg	645	664	1	5
SEQ ID NO:	5704 ctgctgctcaatgtcctac	7606	7625SEQ ID NO:	6250gtaggactggcaggggcag	4809	4828	1	5
SEQ ID NO:	5705catggacaggtgccctgat	7626	7645SEQ ID NO:	6251 atcattgaacgactccatg	8996	9015	1	5
SEQ ID NO:	5706 atggacaggtgccctgatc	7627	7646SEQ ID NO:	6252gatcattgaacgactccat	8995	9014	1	5
SEQ ID NO:	5707ggctatgactaggtactcc	8635	8654SEQ ID NO:	6253ggagcaacttgaaaaagcc	8920	8939	1	5
SEQ ID NO:	5708 caccatagatcactcccct	27	46SEQ ID NO:	6254 agggccttggcacatggtg	785	804	2	4
SEQ ID NO:	5709 agctgttcaccttctcgcc	1206	1225SEQ ID NO:	6255ggcgtgctgacgactagct	8459	8478	2	4
SEQ ID NO:	5710 ctgcaatgactccctccag	1624	1643 SEQ ID NO:	6256ctggtgcggctgttggcag	5847	5866	2	4
SEQ ID NO:	5711atgtggggggggtggagca	2238	2257SEQ ID NO:	6257tgctgcgccatcacaacat	7701	7720	2 2	4
SEQ ID NO:	5712tggggacatcatcctgggc	3322	3341 SEQ ID NO:	6258 gcccaactcgctccccca	5795	5814		
SEQ ID NO:	5713gggacatcatcctgggcct	3324	3343 SEQ ID NO:	6259 aggcaggagataacttccc	5076	5095	2	4
SEQ ID NO:	5714gggagatactcctggggcc	3366	3385 SEQ ID NO:	6260ggccctgcacgccttccc	6545	6564	2	4
SEQ ID NO:	5715 atgttggactgtctaccat	3574	3593SEQ ID NO:	6261 atggtctacgccacgacat	7718	7737	2	4
SEQ ID NO:	5716ccagccttaccatcaccca	6189		6262tgggtacaagggagtctgg	6382	6401	2	4
SEQ ID NO:	5717gccctccttgagggcgaca	6967		6263tgtcccaggggggggggggc	9147	9166	2	4
	5718ccagccccgattgggggc	1		6264 gcccgagggcagggcctgg	550	569	1	4
SEQ ID NO:	5719accatagatcactcccctg	28		6265 cagggccttggcacatggt	784	803	1	4
SEQ ID NO:		95		6266 gaggccgcgatgccatcat	2946	2965	1	4
SEQ ID NO:	5720 atgagtgtcgtgcagcctc	104		6267 gggggacggcatcatgcac	6403	6422	1	4
SEQ ID NO:		104		6268 ggggggacggcatcatgca	6402	6421	1	—
SEQ ID NO:		113			9255	9274	1	
SEQ ID NO:		118		6270 ctctcatgccaacgtgggt	6368		1	
SEQ ID NO:		121		6271 tggcaatgagggcatgggg	598	617	1	
SEQ ID NO:		243		6272actatgcggtccccggtct	3953	3972	1	4
SEQ ID NO:		251	·		3656		1	
SEQ ID NO:	5727agccgagtagtgttgggtc	251	270 SEQ ID NO:	OZ / OBCOLLEGACIONOS	1 - 5 - 5			لــــا

SEQ ID NO:		299	318SEQ	ID NO	: 6274 cggggccttggttgacacc	2139	2158	1 1	4
SEQ ID NO:		306	325SEQ	ID NO	: 6275 gaccccggcgtaggtcgc	671		-	4
SEQ ID NO:		331	350SEQ	ID NO	: 6276 cgtgcaatacctgtacggt	2437	2456	1	
SEQ ID NO:		412	431 SEQ	ID NO:	: 6277 gatcatgcatactcccggg	997	1016	1	
SEQ ID NO:	* *******		470SEQ			6549	6568	1	4
SEQ ID NO:			530SEQ			3891	3910	1	4
SEQ ID NO:						3890	3909	1	4
SEQ ID NO:		528				t 553	572	1	4
SEQ ID NO:		531	550 SEQ			5418		1	4
SEQ ID NO:	5737 tatccccaaggctcgccgg	532	551SEQ	ID NO:	6283 ccggctgtcgttcccgata	5417	5436	1	4
SEQ ID NO:	5738 cgggtatccttggcccctc	577	⁵⁹⁶ SEQ	ID NO:	6284 gaggccgcaagccagccc	g 8067	8086	1	4
SEQ ID NO:	5739 gcatggggtgggcaggatg	609	628SEQ	ID NO:	6285 catcgataccctcacatgc	706	725	1	4
SEQ ID NO:	5740tcctgtcacccgcggctc	630	649SEQ			8523	8542	1	4
SEQ ID NO:	5741 gggccccacggacccccgg	661	680SEQ			4064	4083	1	4
SEQ ID NO:	5742ggccccacggacccccggc	662	681 SEQ			4063	4082	1	4
SEQ ID NO:	5743 cggcctcgccgacctcatg	724	743SEQ			6472	6491	1	4
SEQ ID NO:	5744 ggcctcgccgacctcatgg	725	744SEQ			6471	6490	1	4
SEQ ID NO:	5745 ggccccctagggggcgctg	764	783SEQ			7414	7433	1	4
SEQ ID NO:	5746tggcacatggtgtccgggt	792	811 SEQ			5188	5207	1	4
SEQ ID NO:	5747 cttcctcttggctctgctg	868	887SEQ			5863	5882	1	4
SEQ ID NO:	5748 catgtcacgaacgactgct	944	963SEQ			6847	6866	1	4
SEQ ID NO:	5749 gaggcggcggacttgatca	983	1002SEQ I			5712	5731	1	4
SEQ ID NO:	5750 catccccactacgacaata	1096	1115SEQ I			4592	4611	1	4
SEQ ID NO:	5751 gctgttcaccttctcgccc	1207	1226 SEQ I				8812	1	4
SEQ ID NO:	5752gcccgccggcatgcgaca	1222	1241 SEQ I			3814	3833	_1	4
SEQ ID NO: SEQ ID NO:	5753tggcctgggacatgatgat	1293	1312 SEQ I			5981	6000	_1	4
SEQ ID NO:	5754 cacaageegteategacat 5755 ageegteategacatggtg	1362 1366	1381 SEQ I			6279	6298	_1	4
	5756 ggtggcgggggcccactgg	1381	1385 SEQ I				5579	_1	4
SEQ ID NO: SEQ ID NO:	5757 gggggcccactggggagtc		1400 SEQ I	D NO:	6302 ccagggctcaggcccacc	5127	5146	1	4
SEQ ID NO:	5758 atggcggggaactgggcta	1387 1430	1406SEQ I		6303 gactaggtactccgcccc	8641	8660	_1	4
SEQ ID NO:	5759ttgattgtgatgctacttt	1454	1449SEQ I		6304 tagcagtgctcacttccat	6846	6865	1	4
SEQ ID NO:	5760 caacggggggggacgctgc	1500	1473SEQ I 1519SEQ I		6305 aaagcaagctgcccatcaa	7665	7684	1	4
SEQ ID NO:	5761 acgctgcccgcctcaccag	1512	1531SEQ II		6306gcagaaggcgctcgggttg	5530	5549	1	4
SEQ ID NO:	5762tcagagaatccagcttata	1564	1583 SEQ II		6307 ctggacccgaggagagcgt 6308 tatatcgggggtcccctga	2278 8393	2297 8412	1	4
SEQ ID NO:	5763accaatggcagttggcaca	1586	1605 SEQ II	D NO.	6309 tgtggctcggggccttggt	+	2151	1 1	4
SEQ ID NO:	5764ccaatggcagttggcacat	1587	1606 SEQ II	D NO:	6310 atgtggctcggggccttgg		2150	+	-7
SEQ ID NO:	5765gtcctatcacttatgctga	1749	1768SEQ II	D NO:	6311tcaggactggggtaaggac	4176			- - -
SEQ ID NO:	5766ctgagcctacaaaagaccc	1764	1783 SEQ II	D NO:	6312gggtggcttcatgcctcag	9063		1	4
SEQ ID NO:	5767 caggtgtgtgtgtccagtgt	1844	1863 SEQ II	D NO:	6313acactccagttaactcctg	 	8836	1	<u>_</u>
SEQ ID NO:	5768tgtggtccagtgtattgct	1850	1869 SEQ II	J NO.	6314agcagggccatcaaccaca		7968	1	4
SEQ ID NO:	5769 gcttcaccccaagtcctgt	1866	1885 SEQ II	O D NO:	6315acagcagaggcggctaagc		6906	1	4
SEQ ID NO:	5770 ctgttgtcgtggggacaac	1881	1900 SEQ II) NO:	6316 gttgcaacttggacgacag		2314	1	_
SEQ ID NO:	5771 gccgccgcaaggcaactgg	1972	1991 SEQ II		6317 ccagttggacttatccggc		9260	1	4
SEQ ID NO:	5772 ggcaactggttcggctgta	1982	2001 SEQ II		6318tacacgggtgcccattgcc	 	7306	1	4
SEQ ID NO:	5773 gcaactggttcggctgtac	1983	2002 SEQ II		6319gtacacgggtgcccattgc	····	7305	1	4
SEQ ID NO:	5774 ccccgtgtaacatcggggg	2043	2062SEQ 10		6320 ccccaatcgatgaacgggg		9395	1	4
			**	_					

050 ID NO:	5775 ggactgcttccggaagcac	2092	2111 SEQ ID NO:	6321 gtgctggtaggcggagtcc	5324	5343	1	4
SEQ ID NO:	5776 gactgcttccggaagcacc	2093	2112SEQ ID NO:	6322 ggtgctggtaggcggagtc	5323	5342	ᇻ	4
SEQ ID NO:	5777 tccggaagcaccccgaggc	2100	2119SEQ ID NO:	6323gcctacgagtcttcacgga	8616	8635	1	4
SEQ ID NO:	5778 actcaaaatgtggctcggg	2124	2143SEQ ID NO:	6324cccgggcagcgggtcgagt	8201	8220	-귀	4
SEQ ID NO:	5779 ggccttggttgacacctag	2142	2161 SEQ ID NO:	6325ctagccggcccaaaaggcc	3611	3630	1	-4
SEQ ID NO:	5780 aggagagcgttgcaacttg	2287	2306 SEQ ID NO:	6326 caagccgtgatgggctcct	8162	8181	1	4
SEQ ID NO:	5781 ggacagatcggagctcagc	2314	2333 SEQ ID NO:	6327gctgggggtcattatgtcc	3128	3147	-	<u> </u>
SEQ ID NO:	5782 cagatoggageteageceg	2317	2336 SEQ ID NO:	6328 cgggtggcccactgctctg	3837	3856	ᇻ	4
SEQ ID NO:		2323	2342 SEQ ID NO:	6329cagctgctgaagaggctcc	6206	6225	1	4
SEQ ID NO:	5783 ggageteagecegetgetg	2383	2402 SEQ ID NO:	6330ggactgggtgtgcacggtg	6286	6305	- 김	<u> </u>
SEQ ID NO:	5784 cacctaccggctctgtcc 5785 cggctctgtccactggctt	2391		6331aagcaggcggaggctgccg	5564	5583	1	<u></u>
SEQ ID NO:		2419	2410 <mark>SEQ ID NO: _</mark> 2438SEQ ID NO:	6332gtccccgttgagtccatgg	3929	3948		_
SEQ ID NO:	5786 ccatcagaacatcgtggac				8875	8894		-
SEQ ID NO:	5787 ggtcagcggttgtctcctt	2460 2579	2479 SEQ ID NO:_	6333 aaggatgattctgatgacc	9241	9260		-7
SEQ ID NO:	5788 gccgccttagagaacctgg	2582	2598 SEQ ID NO:	6334ccagttggacttatccggc	5559	5578	╣	-
SEQ ID NO:	5789 gccttagagaacctggtgg		2601 SEQ ID NO:_	6335ccaccaagcaggcggaggc	3214	3233	- #	
SEQ ID NO:	5790 gccggagcgcacggcatcc	2621	2640 SEQ ID NO:_	6336ggattgggcccacgccggc	7726	7745	- #	7
SEQ ID NO:	5791 gctgcatcgtgcggaggcg	2786	2805 SEQ ID NO:_	6337 cgccacgacatcccgcagc			_;	
SEQ ID NO:	5792 attattgaccttgtcgcca	2824	_2843 SEQ ID NO:_	6338 tggcaacagacgctctaat	4647	4666	1	4
SEQ ID NO:	5793 tcgccatattacaaggtgt	2837	2856 SEQ ID NO:_	6339 acacaatctttcctggcga	3539	3558	- 1	-4
SEQ ID NO:	5794 cgccatattacaaggtgtt	2838	2857 SEQ ID NO:_	6340 aacacaatctttcctggcg	3538	3557	7	4
SEQ ID NO:	5795gtccggggaggccgcgatg	2939	2958 SEQ ID NO:_	6341 catcggcacagtcctggac	4327	4346		4
SEQ ID NO:	5796tcaccccactgcgggattg	3201	3220 SEQ ID NO:_	6342 caatttaccaatgttgtga	8325	8344	-1	4
SEQ ID NO:	5797ttgggcccacgccggccta	3217	3236 SEQ ID NO:_	6343 taggetaggggccgtccaa	5221	5240	1	4
SEQ ID NO:	5798 ctacgggaccttgcggtag	3233	3252 SEQ ID NO:_	6344 ctactcctactttctgtag	9338	9357	1	4
SEQ ID NO:	5799 cctgtcgtcttctctgaca	3260	3279 SEQ ID NO:_	6345 tgtcctacacatggacagg	7617	7636	- 1	4
SEQ ID NO:	5800 ctgtcgtcttctctgacat	3261	3280 SEQ ID NO:_	6346 atgtcctacacatggacag	7616	7635	1	4
SEQ ID NO:	5801 cctggggggcagacaccgc	3297	3316 SEQ ID NO:_	6347gcggggtaggactggcagg	4804	4823	-1	4
SEQ ID NO:	5802 gggggcagacaccgcggcg	3301	3320 SEQ ID NO:_	6348 cgcccaactcgctccccc	5794	5813	1	4
SEQ ID NO:	5803 ggcgtgtggggacatcatc	3316	3335SEQ ID NO:_	6349 gatgttattccggtgcgcc	3755	3774	1	4
SEQ ID NO:	5804 tggggccggccgatagtct	3378	3397 <mark>SEQ ID NO:</mark> _	6350 agacgacgaccgtgcccca	4761	4780	1	4
SEQ ID NO:	5805 gaaccaggtcgagggggag	3499	_3518 <mark>SEQ ID NO:</mark> _	6351 ctccacctatggcaagttc	4222	4241	_1	4
SEQ ID NO:	5806 gagggggggggttcaagtgg	3509	3528 SEQ ID NO:	6352 ccacctgtcaaggcccctc	7304	7323	1	4
SEQ ID NO:	5807 aggcccaatcgcccagatg	3625	3644 <mark>SEQ ID NO:_</mark>	6353 catcccgcagcgcgggcct	7734	7753	_1	4
SEQ ID NO:	5808ggcccaatcgcccagatgt	3626	3645 <mark>SEQ ID NO:_</mark>	6354 acatecegeagegegegee	7733	7752	_1	4
SEQ ID NO:	5809caggatctcgtcggctggc	3659	3678 SEQ ID NO:_	6355 gccaataggccatttcctg	9410	9429	_1	4
SEQ ID NO:	5810aggatctcgtcggctggcc	3660	3679SEQ ID NO:	6356 ggccaataggccatttcct	9409	9428	_1	4
SEQ ID NO:	5811 gccccccggggcgcgttcc	3682	3701 SEQ ID NO:_	6357 ggaacctatccagcagggc	7938	7957	_1	4
SEQ ID NO:	5812gcacctgtggcagctcgga	3711	3730 SEQ ID NO:	6358tccggtggtacacgggtgc	7279	7298	_1	4
SEQ ID NO:	5813ctgtggcagctcggacctt	3715	³⁷³⁴ SEQ ID NO:_	6359 aaggcaaaggcgtccacag	7826	7845	_1	4
SEQ ID NO:	5814gcggggcgacaatagaggg	3775	3794SEQ ID NO:	6360 ccctgcctgggaaccccgc	5682	5701	1	4
SEQ ID NO:	5815ggagcttgctctccccag	3792	3811SEQ ID NO:	6361 ctggttgggtcacagctcc	6806	6825	1	4
SEQ ID NO:	5816gagettgetetececagg	3793	3812 SEQ ID NO:	6362 cctggttgggtcacagctc	6805	6824	1	4
SEQ ID NO:	5817acttgaagggctcttcggg	3822	3841 SEQ ID NO:	6363cccgtggtggagtccaagt	5585	5604	_1	4
SEQ ID NO:	5818tgtccccgttgagtccatg	3928	3947 SEQ ID NO:	6364 catggtctacgccacgaca	7717	7736	_1	4
SEQ ID NO:	5819 gaaactactatgcggtccc	3947	3966 SEQ ID NO:	6365gggaaggcacctcattttc	4504	4523	_1	4
SEQ ID NO:	5820aaactactatgcggtcccc	3948	3967 SEQ ID NO:	6366ggggggcatatacaggttt	4828	4847	1	4
SEQ ID NO:	5821 ctcccactggcagcggcaa	4032	4051 SEQ ID NO:	6367ttgccaggaccatctggag	4993	5012	_1	4
SEQ ID NO:	5822ggcgtatatgtctaaagca	4138	4157 SEQ ID NO:	6368 tgctcgccaccgctacgcc	4377	4396	_1	4

SEQ ID NO:	5823 gcgtatatgtctaaagcac	4139	4158SEQ ID NO:	6369gtgctcgccaccgctacgc	4376	4395	1	4
SEQ ID NO:	5824tggggtaaggaccattacc	4183	4202SEQ ID NO:	6370 ggtaaccatgtctcccca	6119	6138	1	4
SEQ ID NO:	5825 accattaccacgggcgccc	4193	4212SEQ ID NO:	6371 gggcgctggtatcgctggt	5833	5852	1	4
SEQ ID NO:	5826 cgtactccacctatggcaa	4218	4237 SEQ ID NO:	6372ttgccccaaccagaatacg	8669	8688	1	4
SEQ ID NO:	5827 cagtcctggaccaagcgga	4335	4354 SEQ ID NO:	6373tccgtgagccgcatgactg	9560	9579	1	4
SEQ ID NO:	5828 aggggggaaggcacctcat	4500	4519SEQ ID NO:	6374 atgagcggcgaggcgccct	5948	5967	1	4
SEQ ID NO:	5829 cactccaagaagaagtgcg	4526	4545SEQ ID NO:	6375 cgcatgactgcagagagtg	9569	9588	1	4
SEQ ID NO:	5830atcaatgctgtagcgtatt	4577	4596SEQ ID NO:	6376 aatacgacttggagttgat	8682	8701	1	4
SEQ ID NO:	5831 cataccgaccagcggagac	4618	4637SEQ ID NO:	6377 gtctccccacgcactatg	6128	6147	1	4
SEQ ID NO:	5832 aggactggcagggcaggg	4811	4830SEQ ID NO:	6378 ccctgccatcctctctct	5992	6011	1	4
SEQ ID NO:	5833gggaacggccctcgggcat	4857	4876SEQ ID NO:	6379 atgeteaccgacccctccc	6863	6882	1	4
SEQ ID NO:	5834 cgggcatgttcgattcctc	4869	4888 SEQ ID NO:	6380 gaggccgcaagccagcccg	8067	8086	1	4
SEQ ID NO:	5835 tggtacgagctcaccccg	4922	4941 SEQ ID NO:	6381 cggggacttgccccaacca	8662	8681	1	4
SEQ ID NO:	5836gggcttacctaaatacacc	4962	4981 SEQ ID NO:	6382 ggtggctccatcttagccc	9518	9537	1	4
SEQ ID NO:	5837ggcttacctaaatacacca	4963	4982 SEQ ID NO:	6383 tggtggctccatcttagcc	9517	9536	1	4
SEQ ID NO:	5838gagataacttcccctacct	5082	5101 SEQ ID NO:	6384 aggttggccagggggtctc	6908	6927	1	4
SEQ ID NO:	5839cccacctccatcgtgggat	5140	5159 SEQ ID NO:	6385 atccaagtttggctatggg	7906	7925	1	4
SEQ ID NO:	5840 catggcatgcatgtcggcc	5278	5297 SEQ ID NO:	6386 ggcctctctgcagatcatg	9596	9615	1	4
SEQ ID NO:	5841 ggccgacctggaagtcgtc	5293	5312 SEQ ID NO:	6387 gacgcccccacattcggcc	7885	7904	-1	4
SEQ ID NO:	5842gccgacctggaagtcgtca	5294	5313 SEQ ID NO:	6388tgacgccccacattcggc	7884	7903	. 1	. 4
SEQ ID NO:	5843 tggaagtcgtcaccagcac	5301	5320 SEQ ID NO:	6389 gtgcccatgtcaggttcca	6676	6695	1	4
SEQ ID NO:	5844gcacctgggtgctggtagg	5316	5335SEQ ID NO:	6390 cctacacatggacaggtgc	7620	7639	- 1	4
SEQ ID NO:	5845 ggttatcgtgggtaggatc	5383	5402SEQ ID NO:	6391 gatcatcgggccgaaaacc	6478	6497	1	4
SEQ ID NO:	5846 cccgatagggaagtcctct	5429	5448 SEQ ID NO:	6392 agagcggctttatatcggg	8383	8402	-#	4
SEQ ID NO:	5847tgaaatggaagaatgcgcc	5461	5480 SEQ ID NO:	6393 ggcgcgctcgtggccttca	5924	5943	ᇻ	4
SEQ ID NO:	5848ccaagtggcgagctttgga	5598	5617SEQ ID NO:	6394 tccattgttagagtcttgg	7240	7259	- 1	4
SEQ ID NO:	5849ttcatcagcgggatacagt	5645	5664 SEQ ID NO:	6395 actgcacgatgctcgtgaa	8541	8560		4
SEQ ID NO:	5850agcgggcttatccaccctg	5668	5687 SEQ ID NO:	6396 caggggtggctggcgcgct	5913	5932	1	4
SEQ ID NO:	5851 ccagcccgctcaccaccca	5736	5755SEQ ID NO:	6397 tgggcgctggtatcgctgg	5832	5851		4
SEQ ID NO:	5852gtgggcgctggtatcgctg	5831	5850 SEQ ID NO:	6398 cagcagggccatcaaccac	7948	7967		4
SEQ ID NO:	5853ggaaggtgctagtggacat	5877	5896SEQ ID NO:	6399 atgtggtctccacccttcc	8142	8161		-
SEQ ID NO:	5854 ggtcatgagcggcgaggcg	5944	5963SEQ ID NO:	6400 cgccctcctgaccagacc	7453	7472	╌╬	-7
SEQ ID NO:	5855 catgtgggcccgggagagg	6056	6075SEQ ID NO:	6401 cctccttgagggcgacatg	6969	6988	-	-7
SEQ ID NO:	5856 atgtgggcccgggagaggg	6057	6076 SEQ ID NO:	6402 ccctccttgagggcgacat	6968	6987		
SEQ ID NO:	5857 ggggccgtgcagtggatga	6074	6093 SEQ ID NO:	6403 tcatgctcctctatgcccc	7505	7524		-#
SEQ ID NO:	5858 gcgttcgcttcgcggggta	6104	6123SEQ ID NO:	6404 taccaccacgagettacge	2751	2770		-7
	5859 ggggtaaccatgtctcccc	6117	6136	6405 gggggagccgggggacccc	7531	7550		-7
SEQ ID NO:			6136 SEQ ID NO:				_'	
SEQ ID NO:	5860 catcacccagctgctgaag	6199	6218 SEQ ID NO:	6406 cttcgagcggagggggatg		7149	_1	4
SEQ ID NO:	5861 aggactgttctacgccgtg	6240	6259 SEQ ID NO:_	6407 cacggcgaccgccctcct		7463	1	4
SEQ ID NO:	5862 ttcaagacctggctccagt	6314	6333 SEQ ID NO:	6408 actgcacgatgctcgtgaa		8560	1	4
SEQ ID NO:	5863 ctcctgccgcggttaccgg	6338	6357 SEQ ID NO:_	6409ccgggacgtgcttaaggag		7823	_1	4
SEQ ID NO:	5864 caccacgggccctgcacg	6538	6557SEQ ID NO:_	6410 cgtggaggtcacgcgggtg		6632	1	4
SEQ ID NO:	5865 ggaggtcacgcgggtgggg	6616	6635 SEQ ID NO:	6411 ccctccaataccacctcc		7336	1	4
SEQ ID NO:	5866 gaggtcacgcgggtggggg	6617	6636SEQ ID NO:_	6412 ccctcctgaccagacctc		7474	1	4
SEQ ID NO:	5867 atgtcaggttccagctcct	6682	6701 SEQ ID NO:_	6413 aggagatgggcggaaacat		7078	_1	4
SEQ ID NO:	5868 atgaaatatccattgcggc	7152	7171 SEQ ID NO:_	6414 gccgtgatgggctcctcat		8184	1	4
SEQ ID NO:	5869 ctccattgttagagtcttg	7239	7258 SEQ ID NO:_	6415 caagtggcgagctttggag		5618	1	4
SEQ ID NO:	5870tgcccattgccacctgtca	7295	7314 SEQ ID NO: _	6416 tgactaattcaaaagggca	8409	8428	_1	4

WO 2004/080406

SEQ ID NO:	5871 accacctccacggagaaaa	7327	7346 SEQ ID NO:		9502	9521] 1	4
SEQ ID NO:	5872 ccacctccacggagaaaaa	7328	7347 SEQ ID NO:	6418 ttttccctctttatggtgg	9504	9523	1	4
SEQ ID NO:	5873 acctccacggagaaaaagg		7349 SEQ ID NO:	6419 cctttgacagactgcaggt	7770	7789	1	4
SEQ ID NO:	5874 ggttgtcctgacggactcc	7351	7370 SEQ ID NO:	6420 ggagctcgctaccaaaacc	7390	7409	1	4
SEQ ID NO:	5875 cctgaccagacctccgaca	7460	7479SEQ ID NO:	6421 tgtcctacacatggacagg	7617	7636	1	4
SEQ ID NO:	5876 agcaagctgcccatcaacg	7667	7686SEQ ID NO:	6422 cgttgagcaactctttgct	7686	7705	1	4
SEQ ID NO:	5877 ggatgaccattaccgggac	7792	7811 SEQ ID NO:	6423 gtcccagttggacttatcc	9238	9257	1	4
SEQ ID NO:	5878tggcaaagaatgaggtttt	8028	8047 SEQ ID NO:	6424aaaaagccctggattgcca	8931	8950	1	4
SEQ ID NO:	5879 ggcaaagaatgaggttttc	8029	8048 SEQ ID NO:	6425 gaaaaagccctggattgcc	8930	8949	1	4
SEQ ID NO:	5880gggcagcgggtcgagttcc	8204	8223 SEQ ID NO:	6426ggaagaaagcaagctgccc	7660	7679	1	4
SEQ ID NO:	5881 gactagctgcggtaatacc	8470	8489 SEQ ID NO:	6427 ggtaccgcccttgcgagtc	9091	9110	1	4
SEQ ID NO:	5882 ctcgcgatcccaccacccc	8766	8785 SEQ ID NO:	6428ggggtaccgccttgcgag	9089	9108	1	4
SEQ ID NO:	5883 aggatgattctgatgaccc	8876	8895 SEQ ID NO:	6429gggtcagcggttgtctcct	2459	2478	1	4
SEQ ID NO:	5884 agccacttgacctacctca	8976	8995 SEQ ID NO:	6430 tgagatcaatagggtggct	9052	9071	1	4
SEQ ID NO:	5885 gggtaccgccttgcgagt	9090	9109 SEQ ID NO:	6431 actogogatocoaccacco	8765	8784	1	4
SEQ ID NO:	5886 ctgcaatgactccctccag	1624	1643 SEQ ID NO:	6432 ctggcgggctatggggcag	5897	5916	3	3
SEQ ID NO:	5887 ccagcccccgattgggggc	1	20 SEQ ID NO:	6433gcccactggggagtcctgg	1391	1410	2	3
SEQ ID NO:	5888 aaggcgacagcctatcccc	520	539 SEQ ID NO:	6434gggggtctccccctctt	6918	6937	2	3
SEQ ID NO:	5889ggccccacggacccccggc	662	681 SEQ ID NO:	6435 gccgcaaagctgtcaggcc	4553	4572	2	3 3 3 3
SEQ ID NO:	5890 gaggcggcggacttgatca	983	1002 SEQ ID NO:	6436tgataacatcatgttcctc	8697	8716		3
SEQ ID NO:	5891 ctgcaattgttcgatctac	1249	1268 SEQ ID NO:	6437 gtaggcggagtcctcgcag	5330	5349	2	3
SEQ ID NO:	5892 ctccagactgggtttcttg	1637	1656SEQ ID NO:	6438caagtggcgagctttggag	5599	5618	2	3
SEQ ID NO:	5893 tcgtacctgcgtcgcaggt	1830	1849 SEQ ID NO:	6439acctcagatcattgaacga	8989	9008	2	3
SEQ ID NO:	5894 caagacgtgcggggccccc	2026	2045 SEQ ID NO:	6440 gggggagggccgccacttg	9156	9175	2	3
SEQ ID NO:	5895aatgctgcatgcaactgga	2264	2283 SEQ ID NO:	6441 tccaggccaataggccatt	9405	9424	2	3 3
SEQ ID NO:	5896 caccctaccggctctgtcc	2383	2402 SEQ ID NO:	6442 ggactacgtccctccggtg	7267	7286	2	3
SEQ ID NO:	5897 cgccatattacaaggtgtt	2838	2857 SEQ ID NO:	6443 aacagccaccaagcaggcg	5554	5573	2	3
SEQ ID NO:	5898cgaagccatcaagggggga	4489	4508 SEQ ID NO:	6444tcccagatttgggagttcg	8097	8116	2	3
SEQ ID NO:	5899ccagecegeteaceacea	5736	5755SEQ ID NO:	6445tgggtacaagggagtctgg	6382	6401	2	3
SEQ ID NO:	5900 ggctatgactaggtactcc	8635	8654 SEQ ID NO:	6446ggagacatatatcacagcc	9284	9303	2	3
SEQ ID NO:	5901 ctccaccatagatcactcc	· 24	43 SEQ ID NO:	6447ggagacatcgggccaggag	9111	9130	1	3
SEQ ID NO:	5902tccaccatagatcactccc	25	44SEQ ID NO:	6448gggagttcgatgaaatgga	5451	5470	1	3
SEQ ID NO:	5903 caccatagatcactcccct	27	46SEQ ID NO:	6449aggggcccaggttgggtg	458	477	1	3
SEQ ID NO:	5904 tcactccctgtgaggaac	36	55SEQ ID NO:	6450gttctggaggacggcgtga	809	828	1	3
SEQ ID NO:	5905 cgttagtatgagtgtcgtg	88	107 SEQ ID NO:	6451 cacgctgcacgggccaacg	5191	5210	1	3
SEQ ID NO:	5906 tgtcgtgcagcctccagga	100	119 SEQ ID NO:	6452tcctgttgtcgtggggaca	1879	1898	1	3
SEQ ID NO:	5907 cccccctcccgggagagc	119	138 SEQ ID NO:	6453gctcccggcctagttgggg	645	664	1	3
SEQ ID NO:	5908 ggagagccatagtggtctg	131	150 SEQ ID NO:	6454 cagatcattgaacgactcc	8993	9012	-i	3
SEQ ID NO:	5909gagccatagtggtctgcgg	134	153 SEQ ID NO:	6455ccgctgctgggtagcgctc			1	3
SEQ ID NO:	5910gtggtctgcggaaccggtg	142	161 SEQ ID NO:	6456 cacccatatagatgcccac	5038	5057	1	3
SEQ ID NO:	5911agtacaccggaattgccag	161	180 SEQ ID NO:	6457 ctggcgggccttgcctact	1406	1425	-1	3
SEQ ID NO:	5912ggtcctttcttggatcaac	188	207 SEQ ID NO:	6458gttgagtgacttcaagacc	6304	6323	1	3
SEQ ID NO:	5913ttcttggatcaacccgctc	194	213 SEQ ID NO:	6459gagcggagggggatgagaa	7134	7153	1	3
SEQ ID NO:	5914ctcaatgcctggagatttg	210	229SEQ ID NO:	6460 caaagactccgacgctgag		7505	1	3
SEQ ID NO:	5915tgcctggagatttgggcgt	215	234SEQ ID NO:	6461 acgcggccgccgcaaggca	1967	1986		3
SEQ ID NO:	5916gcctggagatttgggcgtg	216	235 SEQ ID NO:	6462 cacgcggccgccgcaaggc		1985	1	3
SEQ ID NO:	5917gagatttgggcgtgcccc	221	240SEQ ID NO:	6463ggggacaaccgatcgtctc		1910	1	3
,,,,,		'	YPEW ID NO:_	0-100 ggggacaaccgatcgtctc	1091	1910	_!_	3

SEQ ID NO: 5919aggoctigloglactocc		1				. ,			_1
SEQ D NO	SEQ ID NO:	5918 aaaggccttgtggtactgc	273	292SEQ ID NO:	6464 gcagaagaaggtcaccttt			1	3
SEQ ID NO:	SEQ ID NO:	5919aaggccttgtggtactgcc							
SEQ ID NO 5922 5922	SEQ ID NO:	5920gtggtactgcctgataggg	282	301SEQ ID NO:	6466 ccctaccggctctgtccac				
SEQ ID NO:	SEQ ID NO:	5921 cctgatagggtgcttgcga	291	310 SEQ ID NO:	6467 tcgccggcccgagggcagg	544	563	1	
SEQ ID NO:		5922 cgagtgccccgggaggtct	307	326SEQ ID NO:	6468 agacgcagtgtcgcgctcg	4780	4799	1	
SEQ ID NO: 5924 1	SEQ ID NO:	5923gcccgggaggtctcgtag	312	331 SEQ ID NO:	6469ctaccttaggttttggggc	4122	4141	1	3
SEQ ID NO:		5924ttacctgttgccgcgcagg	442	461 SEQ ID NO:	6470 cctgcgttcgggagggtaa	1023	1042	1	
SEQ ID NO: S925 Cightgeogeogeogeogeogeogeogeogeogeogeogeogeog		5925tacctgttgccgcgcaggg	443	462 SEQ ID NO:		1022	1041	1	
SEQ ID NO: 5927tcjtttpccgcgaeggggc 446 465 SEQ ID NO: 6473ggccccagagccaggccagaccag 8347 8366 1 3 SEQ ID NO: 5928tcgagacggtggaaacccctgtggaag 504 523 SEQ ID NO: 6474/ggggcaaaggaegacgca 7941 1 3 SEQ ID NO: 5929tgtgcaaacccctgtggaag 504 523 SEQ ID NO: 6476/ccttcaccattgagacgac 4748 4768 1 3 SEQ ID NO: 5931agaggcacaccctatcccc 520 5398 SEQ ID NO: 6477 gaggacatggctcagggcctt 774 793 1 3 SEQ ID NO: 5932agagctataccccagggctt 527 546 SEQ ID NO: 6478 gagcatggcatggtcaggctt 5020 5039 1 3 SEQ ID NO: 5933agaggcatgggctaggcctggctc 554 573 SEQ ID NO: 6480aggcattggcaaagtctt 5020 5039 1 3 SEQ ID NO: 5935aggcatgggatcaggcacggg 559 578 SEQ ID NO: 6481 ccgccccatatgcaggcct 4064 4083 1 3 SEQ ID NO: 5935agggcatggggtagggaggg 590 609 SEQ ID NO: 6481 ccgccctattgcacactcaggg 4			445	464 SEQ ID NO:	6472 gccccgaagccagacagg	8348	8367	1	3
SEQ ID NO: 5928[cogagogglogoaacccc 497 516] EQ ID NO: 6474[goggcaaaggagglogoaaccgg] 7921 1 1 3 SEQ ID NO: 5929[gotgcaaccccgtggaagg 504 523] EQ ID NO: 6476[cottcaccattgagagacc 3268 3287 1 3 SEQ ID NO: 5930[gogaaccccctgtggaagg 505 524] SEQ ID NO: 6476[cottcaccattgagacgac 4749 4768 1 3 SEQ ID NO: 5932[cagcctatcccccaaggctc 520 538] SEQ ID NO: 6477[gagggctcagggctct] 774 793 1 3 SEQ ID NO: 5932[caggcdcaggcctgggctcagcccc 556 578] SEQ ID NO: 6479[gaggcttdtcacggctccggcccc] 502 5039 1 3 3 3 3 3 3 3 44343 1 3 3 3 3 3 44343 1 3 3 3 3 3 44343 1 3 3 44343 1 3 3 3 44343 1 3 44343 1 3 3 44343 1 3 3		5927 ctgttgccgcgcaggggcc	446	465 SEQ ID NO:	6473 ggcccccgaagccagacag	8347	8366	1	3
SEQ ID NO: 5930gtggaaccccgtggaagg 505 524seq ID NO: 6476cttcaccattgagagac 4748 4768 1 3 SEQ ID NO: 5931aaggcgacagcctatcccc 520 539seq ID NO: 6477gggggcgtggcagggctgaggctt 774 793 1 3 SEQ ID NO: 5932aggcctatcccaaggctc 527 546seq ID NO: 6478gagcacaggttatatgctg 2252 2271 1 3 SEQ ID NO: 5933aagggcagggctgggctcagccc 554 573seQ ID NO: 6478gagcacaggtatatgcgccc 5020 5039 1 3 SEQ ID NO: 5935gggcctgggctcagcccgg 556 578seQ ID NO: 6480gggcatcgggcacagtcctg 4324 4343 1 3 SEQ ID NO: 5936ctgggctcagcccgggt 564 583seQ ID NO: 6482laccagactatacgggccc 404 4083 1 3 SEQ ID NO: 5938gaggcatggggdgggggggggggggggggggggggggggg	SEQ ID NO:	5928 tccgagcggtcgcaacccc	497		6474 ggggcaaaggacgtccgga	7922	7941	1	3
SEQ ID NO: 5931 aggggacagcctatccc 520 539 SEQ ID NO: 6477 ggggcgctgccagggctt 774 793 1 3 SEQ ID NO: 5932 cagcctatccccaaggctc 527 546SEQ ID NO: 6478 gagcacaggcttaatgctg 2252 2271 1 3 SEQ ID NO: 5933 gagggcatgggctcagccc 554 573 SEQ ID NO: 6478 gagcacttaccaaggctc 5020 6039 1 SEQ ID NO: 5934 cagggcctgggctcagccc 555 578 SEQ ID NO: 6480 ggggcatgggcacagtcct 5020 6039 1 SEQ ID NO: 5935 gggcctgggctcagcccgg 561 580 SEQ ID NO: 6481 caggccgcatatgcggcacagtcct 4324 4343 1 3 SEQ ID NO: 5937 cccctcatagcaaggggggg 560 569 SEQ ID NO: 6481 caggccgcacatcatgggccc 4064 4083 1 3 SEQ ID NO: 5937 gagggcatggggtgggggggggggggggggggggggggg	SEQ ID NO:	5929ggtcgcaaccccgtggaag	504	523SEQ ID NO:	6475 cttctctgacatggagacc	3268	3287	1	
SEQ ID NO: 5931 aggggacagctatcccc 520 539 SEQ ID NO: 6477 gagggcgctgcagggcct 774 793 1 3 3 3 3 3 3 3 3	SEQ ID NO:	5930gtcgcaaccccgtggaagg	505	524 SEQ ID NO:	6476 ccttcaccattgagacgac	4749	4768	1	
SEQ ID NO: 5933 gagggcatgggctc 554 573 SEQ ID NO: 5934 6479 gaggctttcacaggcctc 5020 5039 1 3 SEQ ID NO: 5934 6393 656 580 FEQ ID NO: 6480 6481 cagcacatatacaggacacagtcctg 4324 4343 1 3 SEQ ID NO: 5935 5935 6935 6481 6481 cagcacacacacacacacacacacacacacacacacaca		5931aaggcgacagcctatcccc	520	539SEQ ID NO:	6477gggggggtgccagggcctt	774	793	1	3
SEQ ID NO: 5933 gagggcagggctgggctc 554 573 SEQ ID NO: 6479 gaggctttcacaggcctc 5020 5039 1 3 SEQ ID NO: 5934 5934 gaggcctgggctcagcccg 556 580 SEQ ID NO: 6481 caggcacatatgcagcacct 4064 4083 1 3 SEQ ID NO: 5936 ctrop of the company of the	SEQ ID NO:	5932 cagcctatccccaaggctc	527	546 SEQ ID NO:	6478 gagcacaggettaatgetg	2252	2271	1	3
SEQ ID NO: 5934		5933gagggcagggcctgggctc	554	573SEQ ID NO:	6479gagcgtcttcacaggcctc	5020	5039	• 1	3
SEQ ID NO: 5935 Segeotaggetaggetaggetaggetaggetaggetagget			559		6480 gggcatcggcacagtcctg	4324	4343	1	3
SEQ ID NO: 5936 cctgggctcagccgggta 564 583 SEQ ID NO: 6482 taccgcctacacacacagg 4162 4181 1 3 SEQ ID NO: 5937 cccctctatggcaatgagg 590 609 SEQ ID NO: 6483 ctcgcgactctatggggg 727 746 1 3 SEQ ID NO: 5939 agggcatggggtgggcagg 605 624 SEQ ID NO: 6484 ctgcgctctttttcaccacct 2370 2389 1 3 SEQ ID NO: 5940 agggatggctctgtacccc 622 641 SEQ ID NO: 6486 6486 6486 2478 1 3 SEQ ID NO: 5942 tgtcaccccgcggctccccg 633 652 SEQ ID NO: 6488 6488 6388 3707 1 3 SEQ ID NO: 5942 tgcaccccggctcccgggctcacc 634 653 SEQ ID NO: 6488 6489 6388 3707 1 3 SEQ ID NO: 5945 tcccccggctcagttg 642 661 SEQ ID NO: 6490 <td></td> <td></td> <td>561</td> <td>580 SEQ ID NO:</td> <td></td> <td>4064</td> <td>4083</td> <td>1</td> <td>3</td>			561	580 SEQ ID NO:		4064	4083	1	3
SEQ ID NO: 5937			564			4162	4181	1	
SEQ ID NO: 5938 gagggcatggggtgggcag								1	
SEQ ID NO: 5939agggcatgggtgggagg 606 625 SEQ ID NO: 6485ctgtcttttaccaccct 2370 2389 1 3 SEQ ID NO: 5940aggatggctctgtcaccc 622 641SEQ ID NO: 6486 gggtcagcggttgtcct 2459 2478 1 3 SEQ ID NO: 5941gatggctctgtcacccg 624 643SEQ ID NO: 6487 cggggggcggttcctgaca 3688 3707 1 3 SEQ ID NO: 5942gtgcacccgggctcccgg 634 653SEQ ID NO: 6489 cgggggcgggggggggggggggggggggggggggggg	-							1	
SEQ ID NO: 5940 aggatggctctgtcaccc 622 641 SEQ ID NO: 6486 gggtcaccggttgtctct 2459 2478 1 3 SEQ ID NO: 5941 gatggctcctgtcacccg 624 643 SEQ ID NO: 6487 cgggggcgcttacgacatc 4261 4280 1 3 SEQ ID NO: 5942 tgtaccccgggctcccgg 633 652 SEQ ID NO: 6488 cgggggcgcgttccctgac 3688 3707 1 3 SEQ ID NO: 5943 ggcgctccggctcagttg 642 661 SEQ ID NO: 6490 caacgtccggggaggcgttccctgac 2935 2954 1 3 SEQ ID NO: 5945 ctcccggcctagttggggc 646 665 SEQ ID NO: 6491 gaccatggggagcactggag 2935 2954 1 3 SEQ ID NO: 5948 atacctcacatggggccc 750 769 SEQ ID NO: 6492 aggacaatggggacatggggg 5644 1 3 SEQ ID NO: 5948 gcacctagggggacctgcc 750 769 SEQ ID NO:								1	
SEQ ID NO: 5941 gatggetectgteaceceg 624 643 SEQ ID NO: 6487 cgggggcgettacgacate 4261 4280 1 3 SEQ ID NO: 5942 tgteacecegggeteceg 633 652 SEQ ID NO: 6488 cgggggcggttecetgaea 3688 3707 1 3 SEQ ID NO: 5943 gteacecegggetecegg 634 653 SEQ ID NO: 6489 cgggggcggttecetgae 3687 3706 1 3 SEQ ID NO: 5944 gcggeteceggcetagttgggge 642 661 SEQ ID NO: 6490 caacgtecgggggggggggggggggggggggggggggggg	-							1	
SEQ ID NO: 5942tgtcacccgcggctcccg 633 652 SEQ ID NO: 6488cggggcgcgttccctgaca 3688 3707 1 3 SEQ ID NO: 5943gtcaccccgcggctcccgg 634 653 SEQ ID NO: 6489cggggcgcgttccctgac 3687 3706 1 3 SEQ ID NO: 5944gcggctcccggctagttg 642 661 SEQ ID NO: 6490 caacgtccggggaggcgcc 2935 2954 1 3 SEQ ID NO: 5945ctcccggcctagttggggc 646 665 SEQ ID NO: 6491 gccctgtcgaacactggag 4439 4458 1 3 SEQ ID NO: 5946ataccctcacatgcggcct 711 730 SEQ ID NO: 6492 aggcaacactattcatgtat 8839 8858 1 3 SEQ ID NO: 5947ttccgctcgtgggggcgctgcca 750 768 SEQ ID NO: 6493 gggcaaagcacattgtgga 5625 5644 1 3 SEQ ID NO: 5948cccctaggggaactgcggggta 922 941 SEQ ID NO: 6494 ggcaatgagggcatgggg 598 617 1 3 SEQ ID NO: 5950 gcgtaacggttcggggta 922 941 SEQ ID NO: 6495 gggctcattcgtgtcattacgg 2751 2770 1 3 SEQ ID NO: 5952 ccacagcttgtgtttgtgggg 968 987 SEQ ID NO: 6497 cctctatgccccccttga 7512 7531								1	
SEQ ID NO: 5943 gtcacccgcggctccgg 634 653 SEQ ID NO: 6489 cggggcgcgttccctgac 3687 3706 1 3 SEQ ID NO: 5944 gcggctcccggctagttg 642 661 SEQ ID NO: 6490 caacgtccggggaggccgc 2935 2954 1 3 SEQ ID NO: 5945 ctcccggcctagttggggc 646 665 SEQ ID NO: 6491 gcccttggaacactgggg 4439 4458 1 3 SEQ ID NO: 5946 ataccctcacatgcggccc 750 769 SEQ ID NO: 6492 aggcaacattatcatgtat 8839 8858 1 3 SEQ ID NO: 5948 ccctagggggcgctgcca 767 786 SEQ ID NO: 6494 tggcaatgaggggatgggg 598 617 1 3 SEQ ID NO: 5949 tgcaacagggaactgccc 832 851 SEQ ID NO: 6495 aggctcattcgtggagg 598 617 1 3 SEQ ID NO: 5950 gcgtaacatgtgtttggggggcctcccgggggggggggg	-							\rightarrow	
SEQ ID NO: 5944 geggeteceggectagitg 642 661 SEQ ID NO: 6490 caacgtecggggaggcec 2935 2954 1 3 SEQ ID NO: 5945 ctcceggcctagitggggc 646 665 SEQ ID NO: 6491 gccctgtggaacactgggg 4439 4458 1 3 SEQ ID NO: 5946 ataccctcacatggggccc 750 769 SEQ ID NO: 6492 aggcaacattatcatgtat 8839 8858 1 3 SEQ ID NO: 5947 ttccgctegtegggggccc 750 769 SEQ ID NO: 6493 gggcaacattgtggga 5625 5644 1 3 SEQ ID NO: 5948 ccctcagggggacctgccc 767 786 SEQ ID NO: 6494 tggcaatgagggcatgggg 598 617 1 3 SEQ ID NO: 5950 tggataacggggaactgccc 832 851 SEQ ID NO: 6496 taccaccacagagttagca 2751 2770 1 3 SEQ ID NO: 5951 tccaacgctegggccaggaaggactagggggggggggggg									
SEQ ID NO: 5945 SEQ ID NO: 5946 Attaccctcacatgcggcct 711 730 SEQ ID NO: 6491 SEQ ID NO: 6492 SEQ ID NO: 6492 SEQ ID NO: 6493 SEQ ID NO: 6494 SEQ ID NO: 5947 SEQ ID NO: 5947 SEQ ID NO: 5948 SEQ ID NO: 5948 SEQ ID NO: 5949 SEQ ID NO: 5950 SEQ ID NO: 5950 SEQ ID NO: 5950 SEQ ID NO: 5950 SEQ ID NO: 5951 SEQ ID NO: 5951 SEQ ID NO: 5951 SEQ ID NO: 5952 SEQ ID NO: 5953 SEQ ID NO: 5954 SEQ ID NO: 5954 SEQ ID NO: 5955 SEQ ID NO: 5954 SEQ ID NO: 5955 SEQ ID NO: 5956 SEQ ID NO: 5956 SEQ ID NO: 5957 SEQ ID NO: 5957 SEQ ID NO: 5958 CEQ ID NO: 5958 CEQ ID NO: 5958 CEQ ID NO: 5959 SEQ ID NO:								1	
SEQ ID NO: 5946 ataccctcacatgcggcct 711 730 SEQ ID NO: 6492 aggcaacattatcatgtat 8839 8858 1 3 SEQ ID NO: 5947 ttccgctcgtcgcggcgcc 750 769 SEQ ID NO: 6493 gggcaaagacattgtggaa 5625 5644 1 3 SEQ ID NO: 5948 ccctaggggggcgtgcca 767 786 SEQ ID NO: 6494 tggcaatgagggcatgggg 598 617 1 3 SEQ ID NO: 5949 tgcaacaggggaactgccc 832 851 SEQ ID NO: 6495 gggctcattcgtgcatgca 3092 3111 1 3 SEQ ID NO: 5950 gcgtaacgcgtccggggta 922 941 SEQ ID NO: 6496 taccaccacagagcttacgc 2751 2770 1 3 SEQ ID NO: 5951 tcaagcattgtgtttgagg 968 987 SEQ ID NO: 6496 taccaccacagagcttacgc 2751 2770 1 3 SEQ ID NO: 5952 ccacagctcgcggcagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatcttggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtgggcg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 gggcgggtgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtggggggacctctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgacg 2615 2634 1 3 SEQ ID NO: 5958 ctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5958 ctgttcaccttctcgccc 1208 1227 SEQ ID NO: 6505 gtagggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggagactgagggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctacc 1249 1268 SEQ ID NO: 6506 ccggcccaaaagggccaat 3615 3634 1 3									
SEQ ID NO: 5947 ttccgctcgtcggcgccc 750 769 SEQ ID NO: 6493 gggcaaagcacatgtggaa 5625 5644 1 3 SEQ ID NO: 5948 ccctaggggggcgtgcca 767 786 SEQ ID NO: 6494 tggcaatgagggcatgggg 598 617 1 3 SEQ ID NO: 5949 tgcaacagggaacctgccc 832 851 SEQ ID NO: 6495 gggctcattcgtgcatgca 3092 3111 1 3 SEQ ID NO: 5950 gcgtaacgcgtccggggta 922 941 SEQ ID NO: 6496 taccaccacgagcttacgc 2751 2770 1 3 SEQ ID NO: 5951 tcaagcattgtgttgagg 968 987 SEQ ID NO: 6497 cctctatgcccccccttga 7512 7531 1 3 SEQ ID NO: 5952 cccacgctcgcggccagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatcttggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtcggccg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 gggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacactctgcgcg 1106 1125 SEQ ID NO: 6502 tccgttgccggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttctcgccc 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtagggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5950 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtagggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5950 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3			L						
SEQ ID NO: 5948 cccctagggggcgctgcca 767 786 SEQ ID NO: 6494tggcaatgagggcatgggg 598 617 1 3 SEQ ID NO: 5949 tgcaacagggaacctgccc 832 851 SEQ ID NO: 6495 gggctcattcgtgcatgca 3092 3111 1 3 SEQ ID NO: 5950 gcgtaacgcgtccggggta 922 941 SEQ ID NO: 6496 taccaccacgagcttacgc 2751 2770 1 3 SEQ ID NO: 5951 tcaagcattgtgtttgagg 968 987 SEQ ID NO: 6497 cctctatgcccccccttga 7512 7531 1 3 SEQ ID NO: 5952 cccacgctcgcggccagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatcttggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtcggccg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 gggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacactctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggacactaataccaa 9282 9301 1 3 SEQ ID NO: 5950 attgttcgatctacc 1249 1268 SEQ ID NO: 6505 gtaggactcaaaagggccaat 3615 3634 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									
SEQ ID NO: 5949 tgcaacagggaacctgccc 832 851 SEQ ID NO: 6495 gggctcattcgtgcatgca 3092 3111 1 3 SEQ ID NO: 5950 gcgtaacgcgtccggggta 922 941 SEQ ID NO: 6496 taccaccacgagcttacgc 2751 2770 1 3 SEQ ID NO: 5951 tcaagcattgtgtttgagg 968 987 SEQ ID NO: 6497 cctctatgccccccttga 7512 7531 1 3 SEQ ID NO: 5952 cccacgctcgcggccagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatcttggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtcggccg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtggggacaaccgatgt 1888 1907 1 3 SEQ ID NO: 5955 gggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacctctcggga 1168 1187 SEQ ID NO: 6502 tccgttgcggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6504 ggggagacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5950 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6505 gtaggaccaaaagggcccaat 3615 3634 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									_3
SEQ ID NO: 5950 gcgtaacgcgtccggggta 922 941 SEQ ID NO: 6496 taccaccacgagcttacgc 2751 2770 1 3 SEQ ID NO: 5951 tcaagcattgtgtttgagg 968 987 SEQ ID NO: 6497 cctctatgcccccccttga 7512 7531 1 3 SEQ ID NO: 5952 cccacgctcgcggccagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatcttggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtcggccg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtgggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 gggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacactctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttctcgccc 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									
SEQ ID NO: 5951 caagcattgtgtttgagg 968 987 SEQ ID NO: 6497 cctctatgccccccttga 7512 7531 1 3 SEQ ID NO: 5952 cccacgctcgcggccagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatcttggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtcggccg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 gggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacacctctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6504 ggggagacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3			\longrightarrow						
SEQ ID NO: 5952 cccacgetegegecagga 1070 1089 SEQ ID NO: 6498 tcctgtttaacatettggg 5763 5782 1 3 SEQ ID NO: 5953 cggccaggaatgetaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgteggecg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtggggacaaccgategt 1888 1907 1 3 SEQ ID NO: 5955 ggggcggetgetetetgete 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagecc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacactetgegga 1168 1187 SEQ ID NO: 6502 tccgttgecggagegeacg 2615 2634 1 3 SEQ ID NO: 5957 agetgttcaccttetegec 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggaget 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttetegece 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3								- ¦	
SEQ ID NO: 5953 cggccaggaatgctaccat 1080 1099 SEQ ID NO: 6499 atggcatgcatgtcggccg 5279 5298 1 3 SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtgggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 gggcgggtgtctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacctctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgtcaccttctcgcccc 1208 1227 SEQ ID NO: 6504 ggggagaccatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcagggcaat 3615 3634 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									
SEQ ID NO: 5954 acgacaatacgacaccacg 1106 1125 SEQ ID NO: 6500 cgtgggggacaaccgatcgt 1888 1907 1 3 SEQ ID NO: 5955 ggggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtggggggacctctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttctcgccc 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3								- 	
SEQ ID NO: 5955 gggcggctgctctctgctc 1140 1159 SEQ ID NO: 6501 gagcaacttgaaaaagccc 8921 8940 1 3 SEQ ID NO: 5956 cgtgggggacctctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttctcgcccc 1208 1227 SEQ ID NO: 6504 ggggagacaatatacacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3								—∔-	
SEQ ID NO: 5956 cgtgggggacctctgcgga 1168 1187 SEQ ID NO: 6502 tccgttgccggagcgcacg 2615 2634 1 3 SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttctcgccc 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									
SEQ ID NO: 5957 agctgttcaccttctcgcc 1206 1225 SEQ ID NO: 6503 ggcgacaatagagggagct 3779 3798 1 3 SEQ ID NO: 5958 ctgttcaccttctcgcccc 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3								_	
SEQ ID NO: 5958 ctgttcaccttctcgcccc 1208 1227 SEQ ID NO: 6504 ggggagacatatatcacag 9282 9301 1 3 SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									3
SEQ ID NO: 5959 ctgcaattgttcgatctac 1249 1268 SEQ ID NO: 6505 gtaggactggcaggggcag 4809 4828 1 3 SEQ ID NO: 5960 attgttcgatctaccccgg 1254 1273 SEQ ID NO: 6506 ccggcccaaaaaggcccaat 3615 3634 1 3									
									3
									_3
SEQ ID NO: 5961 atctaccccggccacgcgt 1262 1281 SEQ ID NO: 6507 acgccatggaccgggagat 2766 2785 1 3								_1	
SEQ ID NO: 5962 cggccacgcgtcaggtcac 1270 1289 SEQ ID NO: 6508 gtgatgctactttttgccg 1460 1479 1 3								1	
SEQ ID NO: 5963 ccgcatggcctgggacatg 1288 1307 SEQ ID NO: 6509 catggaaactactatgcgg 3943 3962 1 3								_‡	
SEQ ID NO: 5964 cgcagttactccggatccc 1344 1363 SEQ ID NO: 6510 gggaacccaggaggatgcg 8593 8612 1 3	SEQ ID NO:	5964cgcagttactccggatccc	1344	SEQ ID NO:	651Ugggaacccaggaggatgcg	8593	8612	_1	3

SEQ ID NO:	5965 cccacaagccgtcatcgac	1360	1379 SEQ ID NO:	6511 gtcgtcaccagcacctggg	5306	5325	1	3
SEQ ID NO:	5966ctggggagtcctggcgggc	1396	1415 SEQ ID NO:	6512 gcccggagcgcatggccag	1695	1714	1	3
SEQ ID NO:	5967ggcgggccttgcctactat	1408	1427 SEQ ID NO:	6513atagaagaagcctgccgcc	7865	7884	1	3
SEQ ID NO:	5968tttgccggcgttgacgggc	1472	1491SEQ ID NO:	6514gccccacattcggccaaa	7888	7907	1	3
SEQ ID NO:	5969caccctcacaacggggggg	1492	1511 SEQ ID NO:	6515ccccaatatcgaggaggtg	4420	4439	1	3
SEQ ID NO:	5970gggggggcacgctgcccgc	1504	1523 SEQ ID NO:	6516gcggcacggcgaccgcccc	7440	7459	1	3
SEQ ID NO:	5971ggggcacgctgcccgcctc	1507	1526 SEQ ID NO:	6517 gagggagettgetetece	3789	3808	1	3
	5972gcccgcctcaccagcgggt	1517	1536 SEQ ID NO:	6518accctcacaacgggggggc	1493	1512	1	3
SEQ ID NO: SEQ ID NO:	5973atccagcttataaacacca	1571	1590 SEQ ID NO:	6519tggttatcgtgggtaggat	5382	5401	1	3
	5974 ctccagactgggtttcttg	1637	1656 SEQ ID NO:	6520caagcggagacggctggag	4346	4365	1	3
SEQ ID NO: SEQ ID NO:	5975cccggagcgcatggccagc	1696	1715 SEQ ID NO:	6521gctgtgggcgtcttccggg	3869	3888	1	3
SEQ ID NO:	5976 ctgccgctccattgacaag	1714	1733 SEQ ID NO:	6522cttggtacatcaagggcag	2667	2686	1	3
SEQ ID NO:	5977 aagttcgaccagggatggg	1730	1749 SEQ ID NO:	6523 cccaaccagaatacgactt	8673	8692	1	3
SEQ ID NO:	5978ggggtcctatcacttatgc	1746	1765 SEQ ID NO:	6524 gcatgtgtgggttccccc	2914	2933	1	3
SEQ ID NO:	5979ccagaggccttattgctgg	1786	1805 SEQ ID NO:	6525 ccaggatctcgtcggctgg	3658	3677	1	3
SEQ ID NO:	5980cccacctcaacaatgtggt	1810	1829 SEQ ID NO:	6526accaagatcatcacctggg	3284	3303	1	3
SEQ ID NO:	5981 tcgtacctgcgtcgcaggt	1830	1849 SEQ ID NO:	6527accttcaccattgagacga	4748	4767	1	3
SEQ ID NO:	5982tgcgtcgcaggtgtgtggt	1837	1856SEQ ID NO:	6528 accatgtctccccacgca	6123	6142	1	3
SEQ ID NO:	5983tggggacaaccgatcgtct	1890	1909 SEQ ID NO:	6529 agacgacgaccgtgccca	4761	4780	1	3
SEQ ID NO:	5984cagctggggggagaacgat	1924	1943 SEQ ID NO:	6530 atcggagctcagcccgctg	2320	2339	1	3:
SEQ ID NO:	5985cgccgcaaggcaactggtt	1974	¹⁹⁹³ SEQ ID NO:	6531 aacccaggaggatgcggcg	8596	8615	1	3
SEQ ID NO:	5986gccgcaaggcaactggttc	1975	1994 SEQ ID NO:	6532 gaacccaggaggatgcggc	8595	8614	1	3
SEQ ID NO:	5987ctgtacatggatgaatagc	1996	2015 SEQ ID NO:	6533 gctataaaatcgctcacag	8366	8385	1	3
SEQ ID NO:	5988tgtacatggatgaatagca	1997	2016 SEQ ID NO:	6534tgctgctcaatgtcctaca	7607	7626	1	3
	5989gttcaccaagacgtgcggg	2020	2039 SEQ ID NO:	6535 cccgctcaccacccagaac	5740	5759	1	3
SEQ ID NO: SEQ ID NO:	5990agacgtgcggggcccccc	2028	2047 SEQ ID NO:	6536ggggaggttcaagtggtct	3512	3531	1	3
SEQ ID NO:	5991 ccccgtgtaacatcgggg	2042	2061 SEQ ID NO:	6537 ccccaatcgatgaacgggg	9376	9395	1	3
SEQ ID NO:	5992taacaccttgacctgcccc	2071	2090 SEQ ID NO:	6538ggggacgaccttgtcgtta	8561	8580	1	3
SEQ ID NO:	5993ggctctggcactacccctg	2184	2203 SEQ ID NO:	6539 caggaggatgcggcgagcc	8600	8619	1	3
SEQ ID NO:	5994tgcactgtcaacttctcca	2201	2220 SEQ ID NO:	6540tggatggggtgcggttgca	6717	6736	1	3
SEQ ID NO:	5995caggcttaatgctgcatgc	2257	2276 SEQ ID NO:	6541 gcatcatgcacaccacctg	6411	6430	1	3
SEQ ID NO:	5996aatgctgcatgcaactgga	2264	2283 SEQ ID NO:	6542tccatggtcttagcgcatt	9009	9028	1	3
SEQ ID NO:	5997 ctgcatgcaactggacccg	2268	2287 SEQ ID NO:	6543 cgggaccttgcggtagcag	3236	3255	1	3
SEQ ID NO:	5998caactggacccgaggagag	2275	2294 SEQ ID NO:	6544 ctcttacgggatgaggttg	6761	6780	1	3
SEQ ID NO:	5999gacagggacagatcggagc	2309	2328 SEQ ID NO:	6545 gctctccccaggcctgtc	3799	3818	1	3
SEQ ID NO:	6000gacagatcggagctcagcc	2315	2334SEQ ID NO:	6546ggctggagcgcggcttgtc	4357	4376	_ 1	3
SEQ ID NO:	6001 acagatcggagctcagccc	2316	2335SEQ ID NO:	6547gggccaacgccctgctgt	5201	5220	1	3
SEQ ID NO:	6002 actggcttgatccacctcc	2402		6548 ggagagggggccgtgcagt	6068		1	3
SEQ ID NO:	6003ggcttgatccacctccatc	2405		6549 gatgatgctgctgatagcc	2551	2570	1	3
SEQ ID NO:	6004gtcagcggttgtctccttt	2461	2480 SEQ ID NO:	6550 aaaggacggttgtcctgac	7344	7363	1	3
SEQ ID NO:	6005gagtatgtcgtgttgcttt	2492	2511 SEQ ID NO:	6551 aaagaccaagctcaaactc	9202	9221	1	3
SEQ ID NO:	6006tgtggatgatgctgctgat	2547	2566SEQ ID NO:	6552 atcactgatggcattcaca	5707	5726	1	3
SEQ ID NO:	6007ccgaggccgccttagagaa	2574	2593 SEQ ID NO:	6553 ttctgattgccatactcgg	3015	3034	1	3
SEQ ID NO:	6008agaacctggtggccctcaa	2589	2608 SEQ ID NO:	6554 ttgatatcaccaaacttct	3000	3019	_1	3
SEQ ID NO:	6009tacatcaagggcaggctgg	2672	2691 SEQ ID NO:		3637	3656	1	3
SEQ ID NO:	6010 caagggcaggctggtccct	2677	2696 SEQ ID NO:	6556 aggggtaggcatctacttg	9355	9374	_1	3
SEQ ID NO:	6011 gcatggccgctgctcctgc	2720	2739 SEQ ID NO:	6557 gcagtgctcacttccatgc	6848	6867	_1	3

SEQ ID NO:	6012 catggccgctgctcctgct	2721	2740 SEQ ID NO:	6558 agcagtgctcacttccatg	6847	6866	1	3
SEQ ID NO:	6013gccgctgctcctgctcctc	2725	2744 SEQ ID NO:	6559 gagggccgccacttgcggc	9160	9179	1	3
SEQ ID NO:	6014ggagatggctgcatcgtgc	2779	2798 SEQ ID NO:	6560 gcacggcgaccgccctcc	7443	7462	1	3
SEQ ID NO:	6015atggctgcatcgtgcggag	2783	2802 SEQ ID NO:	6561 ctccaggccaataggccat	9404	9423	1	3
SEQ ID NO:	6016ggcgcggtttttgtgggtc	2801	2820 SEQ ID NO:	6562 gaccattaccacgggcgcc	4192	4211	1	3
SEQ ID NO:	6017tcttatcaccagagctgag	2887	_2906 SEQ ID NO: _	6563 ctcacaggccgggacaaga	3482	3501	1	3
SEQ ID NO:	6018gtgtgggttcccccctca	2918	2937SEQ ID NO:	6564tgaggtcaccctcacacac	5242	5261	1	3
SEQ ID NO:	6019tcccccctcaacgtccgg	2926	2945 SEQ ID NO:_	6565 ccggctcgtggctgaggga	6261	6280	1	3
SEQ ID NO:	6020ctcaacgtccggggaggcc	2933	2952 SEQ ID NO:	6566 ggcctgttactccattgag	8959	8978	1	3
SEQ ID NO:	6021 accaaacttctgattgcca	3008	3027 SEQ ID NO:	6567 tggctctctacgatgtggt	8130	8149	1	3
SEQ ID NO:	6022 caaacttctgattgccata	3010 3032	3029 SEQ ID NO:	6568 tatgacacccgctgttttg	8267 7171	8286 7190	1	3
SEQ ID NO:	6023ggaccgctcatggtgctcc 6024gaccgctcatggtgctcca	3033	3051 SEQ ID NO: 3052 SEQ ID NO:	6569 ggagatcctgcggaagtcc 6570 tggaaactactatgcggtc	3945	3964		3
SEQ ID NO: SEQ ID NO:	6025 atgcatgttagtgcggaaa	3106	3125 SEQ ID NO:	6571 tttctgtaggggtaggcat	9348	9367		3
SEQ ID NO:	6026ttatgtccaaatggccttc	3139	3158 SEQ ID NO:	6572 gaagccagacaggctataa	8354	8373	- 1	3
SEQ ID NO:	6027ccaaatggccttcatgaga	3145	3164 SEQ ID NO:	6573tctcagcgacgggtcttgg	7552	7571	1	3
SEQ ID NO:	6028ccttcatgagactgggcgc	3153	3172 SEQ ID NO:	6574gcgctcgtggccttcaagg	5927	5946	1	3
SEQ ID NO:	6029 ccttgcggtagcagtggag	3241	3260 SEQ ID NO:	6575ctccgcccgaaggggaagg	3349	3368	1	3
SEQ ID NO:	6030tgtcgtcttctctgacatg	3262	3281 SEQ ID NO:	6576 catggtctacgccacgaca	7717	7736	1	3
SEQ ID NO:	6031tggggggcagacaccgcgg	3299	3318 SEQ ID NO:	6577ccgccttatcgtattccca	8083	8102	1	3
SEQ ID NO:	6032gggggggagacaccgcggc	3300	3319 SEQ ID NO:	6578gccgcccaactcgctcccc	5792	5811	1	3
SEQ ID NO:	6033gtggggacatcatcctggg	3321	3340 SEQ ID NO:	6579 cccatctacacgctcccac	4020	4039	1	3
SEQ ID NO:	6034tggggacatcatcctgggc	3322	3341 SEQ ID NO:	6580 gcccatctacacgctccca	4019	4038	1	3
SEQ ID NO:	6035ggggacatcatcctgggcc	3323	3342SEQ ID NO:	6581 ggccagggggtctccccc	6913	6932	1	3
SEQ ID NO:	6036acctgtctccgcccgaagg	3343	3362SEQ ID NO:	6582 cctttgacagactgcaggt	7770	7789	1	3
SEQ ID NO:	6037tgtctccgcccgaagggga	3346	3365SEQ ID NO: _	6583 tccccggtcttcacagaca	3962	3981	1	3
SEQ ID NO:	6038gggagatactcctggggcc	3366	3385 SEQ ID NO:_	6584 ggcccatctacacgctccc	4018	4037		3
SEQ ID NO:	6039 ctcccaacagacccggggc	3439	3458 SEQ ID NO:	6585 gccccccttgagggggag	7519	7538	1	3
SEQ ID NO:	6040tccaccgcaacacaatctt	3530 3540	3549 SEQ ID NO:	6586aagaggctccaccagtgga	6215 6020	6039	1	3
SEQ ID NO: SEQ ID NO:	6041 cacaatctttcctggcgac 6042 ggctggccggcgcccccg	3671	3559SEQ ID NO: 3690SEQ ID NO:	6587 gtcgtcggagtcgtgtg 6588 cgggttgttgcaaacagcc	5542	5561		3
SEQ ID NO:	6043 ccccggggcgcgttcctg	3685	3704 SEQ ID NO:	6589caggtttgtaactccgggg	4840	4859	1	3
SEQ ID NO:	6044tccctgacaccatgcacct	3698	3717 SEQ ID NO:	6590 aggtcacgcgggtggggga	6618	6637	1	3
SEQ ID NO:	6045ttccggtgcgccggcgggg	3762	3781 SEQ ID NO:	6591ccccgttgagtccatggaa	3931	3950	1	3
SEQ ID NO:	6046ctccccaggcctgtctcc	3802	3821 SEQ ID NO:	6592ggagacatcgggccaggag	9111	9130	1	3
SEQ ID NO:	6047gggggttgcaaaggcggtg	3904	3923SEQ ID NO:	6593caccctgcctgggaacccc	5680	5699	1	3
SEQ ID NO:	6048tttgtcccgttgagtcca	3926	3945 SEQ ID NO:	6594tggagaccttctgggcaaa	5613	5632	1	3
SEQ ID NO:	6049 ccgtaccgcaaacattcca	3996	4015 SEQ ID NO:	6595 tggattgccaaatctacgg	8940	8959	1	3
SEQ ID NO:	6050 caagtggcccatctacacg	4013	4032SEQ ID NO:	6596 cgtgggtaggatcatcttg	5389	5408	1	3
SEQ ID NO:	6051 cacgctcccactggcagcg	4028	4047SEQ ID NO:	6597 cgctgcttcggctttcgtg	5815	5834	1	3
SEQ ID NO:	6052 ccgcatatgcggcccaagg	4068	4087 SEQ ID NO:	6598 ccttcaaggtcatgagcgg	5937	5956	1	3 3 3
SEQ ID NO:	6053 cgtatatgtctaaagcaca	4140	_4159 <mark>SEQ ID NO:_</mark>	6599tgtggaagtgtctcatacg		5182	_1	3
SEQ ID NO:	6054 gtatatgtctaaagcacat	4141	_4160 SEQ ID NO:_	6600 atgtggaagtgtctcatac	5162	5181	_1	3
SEQ ID NO:	6055ggaccattaccacgggcgc	4191	4210SEQ ID NO:_	6601 gcgcgtgtcactcaggtcc	6167	6186	_1	3
SEQ ID NO:	6056 ccccattacgtactccac	4209	4228 SEQ ID NO:	6602gtgggcccgggagaggggg	6059	6078	_1	3
SEQ ID NO:	6057 agttccttgccgacggtgg	4236	_4255 <mark>SEQ ID NO:_</mark>	6603ccacagtcaaggctaaact	7839	7858	_1	3
SEQ ID NO:	6058gagacggctggagcgcggc	4352	_4371 SEQ ID NO:_	6604gccgggggaccccgatctc	7537	7556	_1	3

SEQ ID NO:	605	9 caccgctacgcctccagga	4384	440	3 SEC	ON OI S	. 660	5tcctacacatggacaggtg	7619	7638	. le	d o
SEQ ID NO:		Otggagagatccccttctac	4453	447	2SFC	D NO		6gtagcagtgctcacttcca	6845	1		1 3 1 3
SEQ ID NO:	606	1 agccatccccatcgaagcc	4477			D NO		7ggctggttcgttgctggct	9257	9276		3
SEQ ID NO:	606	2tccccatcgaagccatcaa	4482			ID NO		8ttgagggggagccggggga	7527	7546		3
SEQ ID NO:	606	3ccccatcgaagccatcaag	4483			D NO		9cttgagggggagccggggg	7526	1		3
SEQ ID NO:	606	1ggcctcggaatcaatgctg	4568			ID NO		0cagctccgaattgtcggcc	7414			3
SEQ ID NO:	606	gtccgtcataccgaccagc	4612	463	1SEC	ID NO		1gctgagggatgtttgggac	6271	6290		3
SEQ ID NO:	6066	gtcataccgaccagcggag	4616	463	5 SEC	ID NO	661	2ctccattgagccacttgac	8968			3
SEQ ID NO:	6067	cgggctataccggtgactt	4668			ID NO		3aagtccaagaagttccccg	7184			3 3
SEQ ID NO:	6068	Sctttgattcagtgatcgac	4684			ID NO		4gtcgagttcctggtaaaag	8213			_
SEQ ID NO:	6069	acagtcgacttcagcttgg	4724	474	3 SEQ	ID NO	661	ccaaatctacggggcctgt	8947	8966		3
SEQ ID NO:	6070	cttggaccccaccttcacc	4738	475	7SEQ	ID NO	661	Sggtgttgagtgacttcaag	6301	6320		3
SEQ ID NO:	6071	gagacgacgaccgtgcccc	4760	477	SEQ	ID NO:	661	/ggggacaaccgatcgtctc	1891	1910		3
SEQ ID NO:	6072	2ggggtaggactggcagggg	4806	482	SEQ	ID NO		3cccccggggacttgccc	8657	8676		
SEQ ID NO:	6073	gggcatatacaggtttgta.	4831			ID NO:		tacacatggacaggtgccc	7622	7641	1	
SEQ ID NO:	6074	gggggaacggccctcgggc	4855			ID NO:		gccctgcacgccttcccc	6546	6565		
SEQ ID NO:	6075	tgacgcgggctgtgcttgg	4906	492	SEQ	ID NO:	662	ccaattgacaccaccgtca	8009	8028		
SEQ ID NO:	6076	gacgcgggctgtgcttggt	4907	492	6SEQ	ID NO:		accaattgacaccaccgtc	8008	8027	1	
SEQ ID NO:	6077	tgcttggtacgagctcacc	4918			ID NO:		ggtgcggctgttggcagca	5849	5868	1	
SEQ ID NO:	6078	tgcccacttcctgtcccag	5050			ID NO:		ctgggcgcgctgacgggca	3164	3183	1	3
SEQ ID NO:		ggtggcataccaagccaca	5101			ID NO:		tgtgacaccaattgacacc	8002	8021	1	
SEQ ID NO:	6080	gggctcaggccccacctcc	5130	5149	SEQ	ID NO:	6626	ggaggccgcaagccagccc	8066	8085	1	
SEQ ID NO:	6081	ccatcgtgggatcaaatgt	5147	5160	SEQ	ID NO:		acattctggcgggctatgg	5892	5911	1	3
SEQ ID NO:	6082	tcatacggctaaaacccac	5175			ID NO:		gtggccttcaaggtcatga	5933	5952	1	3
SEQ ID NO:	6083	tgctgtataggctaggggc	5214			ID NO:		gcccgaaccggacgtagca	6832	6851	1	3
SEQ ID NO:	6084	ccaaatacatcatggcatg	5268	5287	SEQ	ID NO:		catgcctcaggaaacttgg	9072	9091		3
SEQ ID NO:	6085	ggagtcctcgcagctctgg	5336			ID NO:		ccagctgtctgcgccctcc	6955	6974		3
SEQ ID NO:		gcctgacaacaggcagtgt	5364	5383	SEQ	ID NO:		acactccaggccaataggc	9401	9420		3
SEQ ID NO:	6087	agccaccaagcaggcggag	5557			ID NO:		ctccagitaactcctggct	8820	8839	-	3
SEQ ID NO:		catgtggaatttcatcagc	5635			ID NO:		gctgcgccatcacaacatg	7702	7721	- 1	3
SEQ ID NO:	6089	ctctatcaccagcccgctc	5728			ID NO:		gagccgcatgactgcagag	9565	9584	1	3
SEQ ID NO:	6090	cccagaacaccctcctgtt	5751			ID NO:		aacatcttgggggggtggg	5771	5790	1	3
SEQ ID NO:	6091	ctcctgtttaacatcttgg	5762			ID NO:		ccaatcgatgaacggggag	9378	9397	ᇻ	-3
SEQ ID NO:	6092	ttgggggggtgggtagccg	5777	5796	SEQ	ID NO:		cggcgccaaactattccaa	6564	6583	1	3
SEQ ID NO:	6093	tgetteggetttegtggge	5818	5837	SEQ	ID NO:		gcccgaaccggacgtagca	6832	6851	1	3
SEQ ID NO:	6094	tegtgggegetggtatege	5829	5848	SEQ	ID NO:		gcgagcggcgtgctgacga	8453	8472	1	
SEQ ID NO:		cgctggtgcggctgttggc	5845	5864	SEO	ID NO:		gccacgacatcccgcagcg	7727	7746	1	3
SEQ ID NO:		cggctgttggcagcatagg	5853	5872	SEO	ID NO:		cctagactctttcgagccg		7130		
SEQ ID NO:		ggggcaggggtggctggcg	5909	5928	SEO	ID NO:		cgcccaactcgctccccc		5813	+	9
SEQ ID NO:		ctggcgcgctcgtggcctt	5922	5941	SEO	ID NO:		aagggaggccgcaagccag		8082		3
SEQ ID NO:		ggcgcgctcgtggccttc	5923	5942	פבע	ID NO:		gaagggaggccgcaagcca		8081	1	3
SEQ ID NO:		gagcggcgaggcgccctct	5950	5060		ID NO: 〔					1	3
SEQ ID NO:		gggcccgggagagggggc	6060			ID NO:		agagcgtcgtctgctgctc	7596		1	3
SEQ ID NO:		eggetgatagegttegett	6095			ID NO: [gcccatctacacgctccca		4038	1	3
SEQ ID NO:		gtgcctgagagcgacgccg	6146	6166	3EU	יטאו חו:"		aagcaggcggaggctgccg		5583	1	3
SEQ ID NO:		atgaggactgttctacgcc		6056	SEQ	D NO:		cggccgccgacagcggcac		7447	1	3
SEQ ID NO:		atgaggactgitctacgcc gtccaagctcctgccgcgg	6237 6331			D NO:		ggcggggggacggcatcat		6418	1	3
OLG ID NO:	J , UJE	grova a goroor igoog og g	0001	0000	SEQ I	D NO:	0051	ccgctccgtgtgggaggac	7969	7988	_1	3

SEQ ID NO:	610	6acagatcgccggacatgtc	6442	6461	SEQ ID NO	6652	gacatatatcacagcctgt	9287	9306	1 1	3
SEQ ID NO:	610	7acgtggcatggaacattcc	6506	6525	SEQ ID NO		3ggaagaacccggactacgt		7276	+	3
SEQ ID NO:	610	Bgggcccctgcacgccttcc	6544	6563	SEQ ID NO	6654	ggaagaaagcaagctgcc				3
SEQ ID NO:	6109	agtgcccatgtcaggttcc	6675	6694	SEQ ID NO	6655	ggaaacagctagacacact	8803	8822	1	3
SEQ ID NO:	6110	tgcccatgtcaggttccag	6677	6696	SEQ ID NO		ctgggcgcgctgacgggca	3164			-
SEQ ID NO:	6111	cagctcctgagtttttcac	6693		SEQ ID NO		gtgagagcgtcgtctgctg	7593			3
SEQ ID NO:	6112	2tcacggaggtggatggggt	6708	6727	SEQ ID NO:		accettecteaageegtga	8153			3
SEQ ID NO:		cacggaggtggatggggtg	6709	6728	SEQ ID NO:	6659	caccettecteaageegtg	8152	8171	1	3
SEQ ID NO:	6114	gacccctcccacattacag	6872	6891	SEQ ID NO:		ctgttttgactcaacggtc	8278	8297	1	3
SEQ ID NO:		ttggccagggggtctcccc	6911		SEQ ID NO:		ggggtgggtagccgcccaa	5782	5801	1	3
SEQ ID NO:		ccttgagggcgacatgcac	6972	6991	SEQ ID NO:		gtgcttaaggagatgaagg	7811	7830	1	3
SEQ ID NO:		ggagatgggcggaaacatc	7060	7079	SEQ ID NO:	6663	gatgacccatttcttctcc	8887	8906	1	3
SEQ ID NO:		gagatgggcggaaacatca	7061	7080	SEQ ID NO:	6664	tgatgacccatttcttctc	8886	8905	1	3
SEQ ID NO:		ctagactctttcgagccgc	7112	7131	SEQ ID NO:	6665	gcggcgtgctgacgactag	8457	8476	-1	3
SEQ ID NO:		tagactctttcgagccgct	7113	7132	SEQ ID NO:	6666	agcgacgggtcttggtcta	7556	7575	-1	3
SEQ ID NO:		agaatgaaatatccattgc	7149	7168	SEQ ID NO:	6667	gcaaagaatgaggttttct	8030	8049	1	3
SEQ ID NO:		ttgcggcggagatcctgcg	7164	7183	SEQ ID NO:		cgcacgatgcatctggcaa	8730	8749	1	3
SEQ ID NO:		agcgaggaggctggtgaga	7580	7599	SEQ ID NO:		tctcgtgcccgaccccgct	9305	9324	1	3
SEQ ID NO:		tgagagcgtcgtctgctgc	7594	7613	SEQ ID NO:		gcagtaaagaccaagctca	9197	9216	1	3
SEQ ID NO:		gtcgtctgctgctcaatgt	7601	7620	SEQ ID NO:		acatggtctacgccacgac	7716	7735	1	3
SEQ ID NO:		tgcgccatcacaacatggt	7704	7723	SEQ ID NO:		accatgtctccccacgca	6123	6142	1	3
SEQ ID NO:		cagaagaaggtcacctttg	7757	7776	SEQ ID NO:	6673	caaagaatgaggttttctg	8031	8050	1	3
SEQ ID NO:		cctggatgaccattaccgg	7789	7808	SEQ ID NO:		ccggaacctatccagcagg	7936	7955	1	3
SEQ ID NO:		ggacgtgcttaaggagatg	7807		SEQ ID NO:		catcgggccaggagcgtcc	9116	9135	1	3
SEQ ID NO:		aaagaatgaggttttctgc	8032	8051	SEQ ID NO:		gcagaagaaggtcaccttt	7756	7775	1	3
SEQ ID NO:	6131	agttcgtgtatgcgagaag	8110		SEQ ID NO:		cttcatgcctcaggaaact	9069	9088	1	3
SEQ ID NO:		ggctataaaatcgctcaca	8365	8384	SEQ ID NO:		gtgaaaggtccgtgagcc	9551	9570	1	3
SEQ ID NO:		ttctccatccttctagctc	8900	8919	SEQ ID NO:		gagcggaggggatgagaa	7134	7153	1	3
SEQ ID NO:	6134	tgtctcgtgcccgaccccg	9303	9322	SEQ ID NO:		ggggcgcgttccctgaca		3707	1	3
					-						

PCT/US2004/007070

Table 14. Sequences from human hepatitis C virus (HCV) (Direct Match Type)

	Source	Start	End		Match	Start	End	Match
		Index	Index			Index	Index	#
SEQ ID NO: 6755	tttttttttttttt	9446	9465	SEQ ID NO:6758	tttttttttttttttttt	9466	9485	2
SEQ ID NO: 6756		9446	9465	SEQ ID NO:6759	tttttttttttttttt	9465	9484	1
<u> </u>	tttttttttttttt	9447	9466	SEQ ID NO:6760	tttttttttttttttt	9466	9485	1

5 Table 15. Sequences of Exemplary Gene Targets

gi|4502152|ref|NM 000384.1| Homo sapiens apolipoprotein B (including Ag(x) antigen) (APOB), mRNA CAGGGCCGCGAGGCCGAGGCCGCAGCCCAGGAGCCGCCCCACCGCAGCTGGCGATGGACCCGCCG 10 AAGAGGAAATGCTGGAAAATGTCAGCCTGGTCTGTCCAAAAGATGCGACCCGATTCAAGCACCTCCGGAA GTACACATACAACTATGAGGCTGAGAGTTCCAGTGGAGTCCCTGGGACTGCTGATTCAAGAAGTGCCACC CCCTGAAAGAGGTGTATGGCTTCAACCCTGAGGGCAAAGCCTTGCTGAAGAAAACCAAGAACTCTGAGGA GTTTGCTGCAGCCATGTCCAGGTATGAGCTCAAGCTGGCCATTCCAGAAGGGAAGCAGGTTTTCCTTTAC 15 CCGGAGAAAGATGAACCTACTTACATCCTGAACATCAAGAGGGGCATCATTTCTGCCCTCCTGGTTCCCC CGTCAAGACGAGGAAGGGCAATGTGGCAACAGAAATATCCACTGAAAGAGACCTGGGGCAGTGTGATCGC TTCAAGCCCATCCGCACAGGCATCAGCCCACTTGCTCTCATCAAAGGCATGACCCGCCCCTTGTCAACTC TGATCAGCAGCCAGTCCTGTCAGTACACACTGGACGCTAAGAGGAAGCATGTGGCAGAAGCCATCTG CAAGGAGCAACACCTCTTCCTGCCTTTCTCCTACAACAATAAGTATGGGATGGTAGCACAAGTGACACAG ACTTTGAAACTTGAAGACACCAAAGATCAACAGCCGCTTCTTTGGTGAAGGTACTAAGAAGATGGGCC TCGCATTTGAGAGCACCAAATCCACATCACCTCCAAAGCAGGCCGAAGCTGTTTTGAAGACTCTCCAGGA ACTGAAAAACTAACCATCTCTGAGCAAAATATCCAGAGAGCTAATCTCTTCAATAAGCTGGTTACTGAG CTGAGAGGCCTCAGTGATGAAGCAGTCACATCTCTCTTGCCACAGCTGATTGAGGTGTCCAGCCCCATCA 25 CTTTACAAGCCTTGGTTCAGTGTGGACAGCCTCAGTGCTCCACTCACATCCTCCAGTGGCTGAAACGTGT GCATGCCAACCCCTTCTGATAGATGTGGTCACCTACCTGGTGGCCCTGATCCCCGAGCCCTCAGCACAG CAGCTGCGAGAGATCTTCAACATGGCGAGGGATCAGCGCAGCCGAGCCACCTTGTATGCGCTGAGCCACG CGGTCAACAACTATCATAAGACAAACCCTACAGGGACCCAGGAGCTGCTGGACATTGCTAATTACCTGAT GGAACAGATTCAAGATGACTGCACTGGGGATGAAGATTACACCTATTTGATTCTGCGGGTCATTGGAAAT 30 ATGGGCCAAACCATGGAGCAGTTAACTCCAGAACTCAAGTCTTCAATCCTCAAATGTGTCCAAAGTACAA AGCCATCACTGATGATCCAGAAAGCTGCCATCCAGGCTCTGCGGAAAATGGAGCCTAAAGACAAGGACCA GGAGGTTCTTCTTCAGACTTTCCTTGATGATGCTTCTCCGGGAGATAAGCGACTGGCTGCCTATCTTATG TTGATGAGGAGTCCTTCACAGGCAGATATTAACAAAATTGTCCAAATTCTACCATGGGAACAGAATGAGC AAGTGAAGAACTTTGTGGCTTCCCATATTGCCAATATCTTGAACTCAGAAGAATTGGATATCCAAGATCT GAAAAAGTTAGTGAAAGAAGCTCTGAAAGAATCTCAACTTCCAACTGTCATGGACTTCAGAAAATTCTCT CGGAACTATCAACTCTACAAATCTGTTTCTCTTCCATCACTTGACCCAGCCTCAGCCAAAATAGAAGGGA TTTGGGAAGCAAGGATTTTTCCCAGACAGTGTCAACAAAGCTTTGTACTGGGTTAATGGTCAAGTTCCTG 40 ATGGTGTCTCTAAGGTCTTAGTGGACCACTTTGGCTATACCAAAGATGATAAACATGAGCAGGATATGGT AAATGGAATAATGCTCAGTGTTGAGAAGCTGATTAAAGATTTGAAATCCAAAGAAGTCCCGGAAGCCAGA GCCTACCTCCGCATCTTGGGAGAGGAGCTTGGTTTTGCCAGTCTCCATGACCTCCAGCTCCTGGGAAAGC TGCTTCTGATGGGTGCCCGCACTCTGCAGGGGATCCCCCAGATGATTGGAGAGGTCATCAGGAAGGGCTC AAAGAATGACTTTTTTCTTCACTACATCTTCATGGAGAATGCCTTTGAACTCCCCACTGGAGCTGGATTA

CAGTTGCAAATATCTTCATCTGGAGTCATTGCTCCCGGAGCCAAGGCTGGAGTAAAACTGGAAGTAGCCA ACATGCAGGCTGAACTGGTGGCAAAACCCTCCGTGTCTGTGGAGTTTGTGACAAATATGGGCATCATCAT TCCGGACTTCGCTAGGAGTGGGGTCCAGATGAACACCAACTTCTTCCACGAGTCGGGTCTGGAGGCTCAT GAGGCAACACTTACATTTGGTCTCTACCACCAAAACGGAGGTGATCCCACCTCTCATTGAGAACAGGCA GTCCTGGTCAGTTTGCAAGCAAGTCTTTCCTGGCCTGAATTACTGCACCTCAGGCGCTTACTCCAACGCC AGCTCCACAGACTCCGCCTCCTACTATCCGCTGACCGGGGACACCAGATTAGAGCTGGAACTGAGGCCTA TACCCTGAAGTTTGTAACTCAAGCAGAAGGTGCGAAGCAGACTGAGGCTACCATGACATTCAAATATAAT CGGCAGAGTATGACCTTGTCCAGTGAAGTCCAAATTCCGGATTTTGATGTTGACCTCGGAACAATCCTCA 10 GAGTTAATGATGAATCTACTGAGGGCAAAACGTCTTACAGACTCACCCTGGACATTCAGAACAAGAAAAT TACTGAGGTCGCCCTCATGGGCCACCTAAGTTGTGACACAAAGGAAGAAAAAAATCAAGGGTGTTATT TCCATACCCCGTTTGCAAGCAGAAGCCAGAAGTGAGATCCTCGCCCACTGGTCGCCTGCCAAACTGCTTC TCCAAATGGACTCATCTGCTACAGCTTATGGCTCCACAGTTTCCAAGAGGGTGGCATGGCATTATGATGA AGAGAAGATTGAATTGAATGGAACACAGGCACCAATGTAGATACCAAAAAAATGACTTCCAATTTCCCT 15 AAACAGACATGACTTTCCGGCACGTGGGTTCCAAATTAATAGTTGCAATGAGCTCATGGCTTCAGAAGGC ATCTGGGAGTCTTCCTTATACCCAGACTTTGCAAGACCACCTCAATAGCCTGAAGGAGTTCAACCTCCAG AACATGGGATTGCCAGACTTCCACATCCCAGAAAACCTCTTCTTAAAAAGCGATGGCCGGGTCAAATATA CCTTGAACAAGAACAGTTTGAAAATTGAGATTCCTTTGCCTTTTGGTGGCAAATCCTCCAGAGATCTAAA 20 GATGTTAGAGACTGTTAGGACACCAGCCCTCCACTTCAAGTCTGTGGGATTCCATCTGCCATCTCGAGAG TTCCAAGTCCCTACTTTTACCATTCCCAAGTTGTATCAACTGCAAGTGCCTCTCCTGGGTGTTCTAGACC TCTCCACGAATGTCTACAGCAACTTGTACAACTGGTCCGCCTCCTACAGTGGTGGCAACACCAGCACAGA CCATTTCAGCCTTCGGGCTCGTTACCACATGAAGGCTGACTCTGTGGTTGACCTGCTTTCCTACAATGTG CAAGGATCTGGAGAAACAACATATGACCACAAGAATACGTTCACACTATCATGTGATGGGTCTCTACGCC 25 ACAAATTTCTAGATTCGAATATCAAATTCAGTCATGTAGAAAAACTTGGAAACAACCCAGTCTCAAAAGG TTTACTAATATTCGATGCATCTAGTTCCTGGGGACCACAGATGTCTGCTTCAGTTCATTTGGACTCCAAA AAGAAACAGCATTTGTTTGTCAAAGAAGTCAAGATTGATGGGCAGTTCAGAGTCTCTTCGTTCTATGCTA AAGGCACATATGGCCTGTCTTGTCAGAGGGATCCTAACACTGGCCGGCTCAATGGAGAGTCCAACCTGAG GTTTAACTCCTCCTACCTCCAAGGCACCAACCAGATAACAGGAAGATATGAAGATGGAACCCTCTCCCTC 30 ACCTCCACCTCTGATCTGCAAAGTGGCATCATTAAAAATACTGCTTCCCTAAAGTATGAGAACTACGAGC TGACTTTAAAATCTGACACCAATGGGAAGTATAAGAACTTTGCCACTTCTAACAAGATGGATATGACCTT CTCTAAGCAAAATGCACTGCTGCGTTCTGAATATCAGGCTGATTACGAGTCATTGAGGTTCTTCAGCCTG CTTTCTGGATCACTAAATTCCCATGGTCTTGAGTTAAATGCTGACATCTTAGGCACTGACAAAATTAATA GTGGTGCTCACAAGGCGACACTAAGGATTGGCCAAGATGGAATATCTACCAGTGCAACGACCAACTTGAA 35 GTGTAGTCTCCTGGTGCTGGAGAATGAGCTGAATGCAGAGCTTGGCCTCTCTGGGGCATCTATGAAATTA ACAACAAATGGCCGCTTCAGGGAACACAATGCAAAATTCAGTCTGGATGGGAAAGCCGCCCTCACAGAGC TATCACTGGGAAGTGCTTATCAGGCCATGATTCTGGGTGTCGACAGCAAAAACATTTTCAACTTCAAGGT CAGTCAAGAAGGACTTAAGCTCTCAAATGACATGATGGGCTCATATGCTGAAATGAAATTTGACCACACA AACAGTCTGAACATTGCAGGCTTATCACTGGACTTCTCTTCAAAACTTGACAACATTTACAGCTCTGACA 40 AGTTTTATAAGCAAACTGTTAATTTACAGCTACAGCCCTATTCTCTGGTAACTACTTTAAACAGTGACCT GAAATACAATGCTCTGGATCTCACCAACAATGGGAAACTACGGCTAGAACCCCTGAAGCTGCATGTGGCT GGTAACCTAAAAGGAGCCTACCAAAATAATGAAATAAAACACATCTATGCCATCTCTTCTGCTGCCTTAT CAGCAAGCTATAAAGCAGACACTGTTGCTAAGGTTCAGGGTGTGGAGTTTAGCCATCGGCTCAACACAGA CATCGCTGGGCTGGCCTCAGCCATTGACATGAGCACAAACTATAATTCAGACTCACTGCATTTCAGCAAT 45 GTCTTCCGTTCTGTAATGGCCCCGTTTACCATGACCATCGATGCACATACAAATGGCAATGGGAAACTCG CTCTCTGGGGAGAACATACTGGGCAGCTGTATAGCAAATTCCTGTTGAAAGCAGAACCTCTGGCATTTAC TTTCTCTCATGATTACAAAGGCTCCACAAGTCATCATCTCGTGTCTAGGAAAAGCATCAGTGCAGCTCTT GAACACAAAGTCAGTGCCCTGCTTACTCCAGCTGAGCAGACAGGCACCTGGAAACTCAAGACCCAATTTA ACAACAATGAATACAGCCAGGACTTGGATGCTTACAACACTAAAGATAAAATTGGCGTGGAGCTTACTGG ACGAACTCTGGCTGACCTAACTCTACTAGACTCCCCAATTAAAGTGCCACTTTTACTCAGTGAGCCCATC AATATCATTGATGCTTTAGAGATGAGAGATGCCGTTGAGAAGCCCCAAGAATTTACAATTGTTGCTTTTG TAAAGTATGATAAAAACCAAGATGTTCACTCCATTAACCTCCCATTTTTTTGAGACCTTGCAAGAATATTT TGAGAGGAATCGACAAACCATTATAGTTGTAGTGGAAAACGTACAGAGAAACCTGAAGCACATCAATATT GATCAATTTGTAAGAAAATACAGAGCAGCCCTGGGAAAACTCCCACAGCAAGCTAATGATTATCTGAATT 55 TACAGAAAATGATATACAAATTGCATTAGATGATGCCAAAATCAACTTTAATGAAAAACTATCTCAACTG

CAGACATATATGATACAATTTGATCAGTATATTAAAGATAGTTATGATTTACATGATTTGAAAATAGCTA TTGCTAATATTATTGATGAAATCATTGAAAAATTAAAAAGTCTTGATGAGCACTATCATATCCGTGTAAA TTTAGTAAAACAATCCATGATCTACATTTGTTTATTGAAAATATTGATTTTAACAAAAGTGGAAGTAGT ACTGCATCCTGGATTCAAAATGTGGATACTAAGTACCAAATCAGAATCCAGATACAAGAAAAACTGCAGC **AGCTTAAGAGACACATACAGAATATAGACATCCAGCACCTAGCTGGAAAGTTAAAACAACACATTGAGGC** ${\tt TATTGATGTTAGAGGTGCTTTTAGATCAATTGGGAACTACAATTTCATTTGAAAGAATAAATGATGTTCTT}$ GAGCATGTCAAACACTTTGTTATAAATCTTATTGGGGATTTTGAAGTAGCTGAGAAAATCAATGCCTTCA GAGCCAAAGTCCATGAGTTAATCGAGAGGTATGAAGTAGACCAACAAATCCAGGTTTTAATGGATAAATT AGTAGAGTTGACCCACCAATACAAGTTGAAGGAGACTATTCAGAAGCTAAGCAATGTCCTACAACAAGTT AAGATAAAAGATTACTTTGAGAAATTGGTTGGATTTATTGATGATGCTGTGAAGAAGCTTAATGAATTAT CTTTTAAAACATTCATTGAAGATGTTAACAAATTCCTTGACATGTTGATAAAGAAATTAAAGTCATTTGA TTACCACCAGTTTGTAGATGAAACCAATGACAAAATCCGTGAGGTGACTCAGAGACTCAATGGTGAAATT CAGGCTCTGGAACTACCACAAAAAGCTGAAGCATTAAAACTGTTTTTAGAGGAAACCAAGGCCACAGTTG CAGTGTATCTGGAAAGCCTACAGGACACCAAAATAACCTTAATCATCAATTGGTTACAGGAGGCTTTAAG 15 TTCAGCATCTTTGGCTCACATGAAGGCCAAATTCCGAGAGACTCTAGAAGATACACGAGACCGAATGTAT CAAATGGACATTCAGCAGGAACTTCAACGATACCTGTCTCTGGTAGGCCAGGTTTATAGCACACTTGTCA CCTACATTTCTGATTGGTGGACTCTTGCTGCTAAGAACCTTACTGACTTTGCAGAGCAATATTCTATCCA AGATTGGGCTAAACGTATGAAAGCATTGGTAGAGCAAGGGTTCACTGTTCCTGAAATCAAGACCATCCTT GGGACCATGCCTTTGAAGTCAGTCTTCAGGCTCTTCAGAAAGCTACCTTCCAGACACCTGATTTTA 20 TAGTCCCCCTAACAGATTTGAGGATTCCATCAGTTCAGATAAACTTCAAAGACTTAAAAAATATAAAAAT CCCATCCAGGTTTTCCACACCAGAATTTACCATCCTTAACACCTTCCACATTCCTTTACAATTGAC TTTGTCGAAATGAAAGTAAAGATCATCAGAACCATTGACCAGATGCAGAACAGTGAGCTGCAGTGGCCCG TTCCAGATATATCTCAGGGATCTGAAGGTGGAGGACATTCCTCTAGCGAGAATCACCCTGCCAGACTT CCGTTTACCAGAATCGCAATTCCAGAATTCATAATCCCAACTCTCAACCTTAATGATTTTCAAGTTCCT 25 TATACAGTATTCTGAAAATCCAATCTCCTCTTTTCACATTAGATGCAAATGCTGACATAGGGAATGGAAC CACCTCAGCAAACGAAGCAGGTATCGCAGCTTCCATCACTGCCAAAGGAGAGTCCAAATTAGAAGTTCTC AATTTTGATTTCAAGCAAATGCACAACTCTCAAACCCTAAGATTAATCCGCTGGCTCTGAAGGAGTCAG TGAAGTTCTCCAGCAAGTACCTGAGAACGGAGCATGGGAGTGAAATGCTGTTTTTTGGAAATGCTATTGA 30 GGGAAAATCAAACACAGTGGCAAGTTTACACACAGAAAAAAATACACTGGAGCTTAGTAATGGAGTGATT GTCAAGATAAACAATCAGCTTACCCTGGATAGCAACACTAAATACTTCCACAAATTGAACATCCCCAAAC TGGACTTCTCTAGTCAGGCTGACCTGCGCAACGAGATCAAGACACTGTTGAAAGCTGGCCACATAGCATG GACTTCTTCTGGAAAAGGGTCATGGAAATGGGCCTGCCCCAGATTCTCAGATGAGGGAACACATGAATCA CAAATTAGTTTCACCATAGAAGGACCCCTCACTTCCTTTGGACTGTCCAATAAGATCAATAGCAAACACC TAAGAGTAAACCAAAACTTGGTTTATGAATCTGGCTCCCTCAACTTTTCTAAACTTGAAATTCAATCACA AGTCGATTCCCAGCATGTGGGCCACAGTGTTCTAACTGCTAAAGGCATGGCACTGTTTGGAGAAGGGAAG GCAGAGTTTACTGGGAGGCATGATGCTCATTTAAATGGAAAGGTTATTGGAACTTTGAAAAATTCTCTTT ATTAAGGTTAACAGGGAAGATAGACTTCCTGAATAACTATGCACTGTTTCTGAGTCCCAGTGCCCAGCAA 40 GCAAGTTGGCAAGTAAGTGCTAGGTTCAATCAGTATAAGTACAACCAAAATTTCTCTGCTGGAAACAACG AGAACATTATGGAGGCCCATGTAGGAATAAATGGAGAAGCAAATCTGGATTTCTTAAACATTCCTTTAAC AATTCCTGAAATGCGTCTACCTTACACAATAATCACAACTCCTCCACTGAAAGATTTCTCTCTATGGGAA AAAACAGGCTTGAAGGAATTCTTGAAAACGACAAAGCAATCATTTGATTTAAGTGTAAAAGCTCAGTATA 45 CAAATCCTTTGACAGGCATTTTGAAAAAAACAGAAACAATGCATTAGATTTTGTCACCAAATCCTATAAT GAAACAAAATTAAGTTTGATAAGTACAAAGCTGAAAAATCTCACGACGAGCTCCCCAGGACCTTTCAAA TTCCTGGATACACTGTTCCAGTTGTCAATGTTGAAGTGTCTCCATTCACCATAGAGATGTCGGCATTCGG CTATGTGTTCCCAAAAGCAGTCAGCATGCCTAGTTTCTCCATCCTAGGTTCTGACGTCCGTGTGCCTTCA TACACATTAATCCTGCCATCATTAGAGCTGCCAGTCCTTCATGTCCCTAGAAATCTCAAGCTTTCTCTTC 50 CACATTTCAAGGAATTGTGTACCATAAGCCATATTTTTATTCCTGCCATGGGCAATATTACCTATGATTT CTCCTTTAAATCAAGTGTCATCACACTGAATACCAATGCTGAACTTTTTAACCAGTCAGATATTGTTGCT CATCTCCTTTCTTCATCTTCATCTGTCATTGATGCACTGCAGTACAAATTAGAGGGCACCACAAGATTGA CAAGAAAAAGGGGATTGAAGTTAGCCACAGCTCTGTCTCTGAGCAACAAATTTGTGGAGGGTAGTCATAA CAGTACTGTGAGCTTAACCACGAAAAATATGGAAGTGTCAGTGGCAAAAACCACAAAAGCCGAAATTCCA 55 ATTTTGAGAATGAATTTCAAGCAAGAACTTAATGGAAATACCAAGTCAAAACCTACTGTCTCCTCCCA TGGAATTTAAGTATGATTTCAATTCTTCAATGCTGTACTCTACCGCTAAAGGAGCAGTTGACCACAAGCT TAGCTTGGAAAGCCTCACCTCTTACTTTTCCATTGAGTCATCTACCAAAGGAGATGTCAAGGGTTCGGTT

CTTCAGTGAAGCTGCAGGGCACTTCCAAAATTGATGATATCTGGAACCTTGAAGTAAAAGAAAATTTTGC TGGAGAAGCCACACTCCAACGCATATATTCCCTCTGGGAGCACAGTACGAAAAACCACTTACAGCTAGAG GGCCTCTTTTTCACCAACGGAGAACATACAAGCAAAGCCACCCTGGAACTCTCTCCATGGCAAATGTCAG $\tt CTCTTGTTCAGGTCCATGCAGGTCAGCCCAGTTCCTTCCATGATTTCCCTGACCTTGGCCAGGAAGTGGC$ CAGAGCCAGGTCGAGCTTTCCAATGACCAAGAAAAGGCACCTTGACATTGCAGGATCCTTAGAAGGAC ACCTAAGGTTCCTCAAAAATATCATCCTACCAGTCTATGACAAGAGCTTATGGGATTTCCTAAAGCTGGA TGTAACCACCAGCATTGGTAGGAGACAGCATCTTCGTGTTTCAACTGCCTTTGTGTACACCAAAAACCCC AATGGCTATTCATTCTCCATCCCTGTAAAAGTTTTGGCTGATAAATTCATTACTCCTGGGCTGAAACTAA ATGATCTAAATTCAGTTCTTGTCATGCCTACGTTCCATGTCCCATTTACAGATCTTCAGGTTCCATCGTG CAAACTTGACTTCAGAGAAATACAAATCTATAAGAAGCTGAGAACTTCATCATTTTGCCCTCAACCTACCA ACACTCCCCGAGGTAAAATTCCCTGAAGTTGATGTGTTAACAAAATATTCTCAACCAGAAGACTCCTTGA TTCCCTTTTTTGAGATAACCGTGCCTGAATCTCAGTTAACTGTGTCCCAGTTCACGCTTCCAAAAAGTGT 15 TTCAGATGCCATTGCTGCTTTGGATCTAAATGCAGTAGCCAACAAGATCGCAGACTTTGAGTTGCCCACC ATCATCGTGCCTGAGCAGACCATTGAGATTCCCTCCATTAAGTTCTCTGTACCTGCTGGAATTGTCATTC CTTCCTTTCAAGCACTGACTGCACGCTTTGAGGTAGACTCTCCCGTGTATAATGCCACTTGGAGTGCCAG TTTGAAAAACAAAGCAGATTATGTTGAAACAGTCCTGGATTCCACATGCAGCTCAACCGTACAGTTCCTA GAATATGAACTAAATGTTTTGGGAACACACAAAATCGAAGATGGTACGTTAGCCTCTAAGACTAAAGGAA 20 CACTTGCACACCGTGACTTCAGTGCAGAATATGAAGAAGATGGCAAATTTGAAGGACTTCAGGAATGGGA AGGAAAAGCGCACCTCAATATCAAAAGCCCAGCGTTCACCGATCTCCATCTGCGCTACCAGAAAGACAAG AAAGGCATCTCCACCTCAGCAGCCTCCCCAGCCGTAGGCACCGTGGGCATGGATATGGATGAAGATGACG ACTTTTCTAAATGGAACTTCTACTACAGCCCTCAGTCCTCCAGATAAAAAACTCACCATATTCAAAAC TGAGTTGAGGGTCCGGGAATCTGATGAGGAAACTCAGATCAAAGTTAATTGGGAAGAAGAGGCAGCTTCT 25 GGCTTGCTAACCTCTCTGAAAGACAACGTGCCCAAGGCCACAGGGGTCCTTTATGATTATGTCAACAAGT ACCACTGGGAACACACAGGGCTCACCCTGAGAGAGTGTCTTCAAAGCTGAGAAGAATCTGCAGAACAA TGCTGAGTGGGTTTATCAAGGGGCCATTAGGCAAATTGATGATATCGACGTGAGGTTCCAGAAAGCAGCC AGTGGCACCACTGGGACCTACCAAGAGTGGAAGGACAAGGCCCAGAATCTGTACCAGGAACTGTTGACTC AGGAAGGCCAAGCCAGTTTCCAGGGACTCAAGGATAACGTGTTTGATGGCTTGGTACGAGTTACTCAAAA 30 ATTCCATATGAAAGTCAAGCATCTGATTGACTCACTCATTGATTTTCTGAACTTCCCCAGATTCCAGTTT CCGGGGAAACCTGGGATATACACTAGGGAGGAACTTTGCACTATGTTCATAAGGGAGGTAGGGACGGTAC TGTCCCAGGTATATTCGAAAGTCCATAATGGTTCAGAAATACTGTTTTCCTATTTCCAAGACCTAGTGAT TACACTTCCTTTCGAGTTAAGGAAACATAAACTAATAGATGTAATCTCGATGTATAGGGAACTGTTGAAA GATTTATCAAAAGAAGCCCAAGAGGTATTTAAAGCCATTCAGTCTCTCAAGACCACAGAGGTGCTACGTA ATCTTCAGGACCTTTTACAATTCATTTTCCAACTAATAGAAGATAACATTAAACAGCTGAAAGAGATGAA ATTTACTTATCTTATTATTATCCAAGATGAGATCAACACAATCTTCAATGATTATATCCCATATGTT TTTAAATTGTTGAAAGAAAACCTATGCCTTAATCTTCATAAGTTCAATGAATTTATTCAAAACGAGCTTC AGGAAGCTTCTCAAGAGTTACAGCAGATCCATCAATACATTATGGCCCTTCGTGAAGAATATTTTGATCC 40 TTAGTTGCTCTTAAGGACTTCCATTCTGAATATATTGTCAGTGCCTCTAACTTTACTTCCCAACTCTCAA GTCAAGTTGAGCAATTTCTGCACAGAAATATTCAGGAATATCTTAGCATCCTTACCGATCCAGATGGAAA AGGGAAAGAGATTGCAGAGCTTTCTGCCACTGCTCAGGAAATAATTAAAAGCCAGGCCATTGCGACG AAGAAAATAATTTCTGATTACCACCAGCAGTTTAGATATAAACTGCAAGATTTTTCAGACCAACTCTCTG 45 TCTGATATACATCACGGAGTTACTGAAAAAGCTGCAATCAACCACAGTCATGAACCCCTACATGAAGCTT GCTCCAGGAGAACTTACTATCATCCTCTAATTTTTTAAAAGAAATCTTCATTTATTCTTCTTTTTCCAATT CAGTAGGCAGTAGACTATAAGCAGAAGCACATATGAACTGGACCTGCACCAAAGCTGGCACCAGGGCTCG GAAGGTCTCTGAACTCAGAAGGATGGCATTTTTTTGCAAGTTAAAGAAAATCAGGATCTGAGTTATTTTGC 50 TAAACTTGGGGGAGGAGCAACAATAAATGGAGTCTTTATTGTGTATCATA (SEQ ID NO:6681)

55

 $>gi|4557442|ref|NM_000078.1|$ Homo sapiens cholesteryl ester transfer protein, plasma (CETP), mRNA

CATCGTGTGCCGCATCACCAAGCCTGCCTCCTGGTGTTGAACCACGAGACTGCCAAGGTGATCCAGACC GCCTTCCAGCGAGCCAGCTACCCAGATATCACGGGCGAGAAGGCCATGATGCTCCTTGGCCAAGTCAAGT GTCCATTGATGTCTCCATTCAGAACGTGTCTGTGGTCTTCAAGGGGACCCTGAAGTATGGCTACACCACT GCCTGGTGGCTGGGTATTGATCAGTCCATTGACTTCGAGATCGACTCTGCCATTGACCTCCAGATCAACA CACAGCTGACCTGTGACTCTGGTAGAGTGCGGACCGATGCCCCTGACTGCTACCTGTCTTTCCATAAGCT GCTCCTGCATCTCCAAGGGGAGCGAGAGCCTGGGTGGATCAAGCAGCTGTTCACAAATTTCATCTCCTTC ACCCTGAAGCTGGTCCTGAAGGGACAGATCTGCAAAGAGATCAACGTCATCTCTAACATCATGGCCGATT TTGTCCAGACAAGGGCTGCCAGCATCCTTTCAGATGGAGACATTGGGGTGGACATTTCCCTGACAGGTGA TCCCGTCATCACAGCCTCCTACCTGGAGTCCCATCACAAGGGTCATTTCATCTACAAGAATGTCTCAGAG GACCTCCCCTCCCCACCTTCTCGCCCACACTGCTGGGGGGACTCCCGCATGCTGTACTTCTGGTTCTCTG AGCGAGTCTTCCACTCGCTGGCCAAGGTAGCTTTCCAGGATGGCCGCCTCATGCTCAGCCTGATGGGAGA GGCTTCCCCAGCCAGGCCCAAGTCACCGTCCACTGCCTCAAGATGCCCCAAGATCTCCTGCCAAAACAAGG GAGTCGTGGTCAATTCTTCAGTGATGGTGAAATTCCTCTTTCCACGCCCAGACCAGCCAACATTCTGTAGC TTACACATTTGAAGAGGATATCGTGACTACCGTCCAGGCCTCCTATTCTAAGAAAAAGCTCTTCTTAAGC GCTTCCTGCAGTCAATGATCACCGCTGTGGGCATCCCTGAGGTCATGTCTCGGCTCGAGGTAGTGTTTAC AGCCCTCATGAACAGCAAAGGCGTGAGCCTCTTCGACATCATCAACCCTGAGATTATCACTCGAGATGGC TTCCTGCTGCTGCAGATGGACTTTGGCTTCCCTGAGCACCTGCTGGTGGATTTCCTCCAGAGCTTGAGCT AGAAGTCTCCAAGGAGGTCGGGATGGGGCTTGTAGCAGAAGGCAAGCACCAGGCTCACAGCTGGAACCCT GGTGTCTCCTCCAGCGTGGTGGAAGTTGGGTTAGGAGTACGGAGATGGAGATTGGCTCCCAACTCCTCCC TATCCTAAAGGCCCACTGGCATTAAAGTGCTGTATCCAAG (SEQ ID NO:6682)

25

55

10

15

>gi|414668|emb|X75500.1|HSMTP H.sapiens mRNA for microsomal triglyceride transfer protein TGCAGTTGAGGATTGCTGGTCAATATGATTCTTCTTGCTGTGCTTTTTCTCTGCTTCATTTCCTCATATT CAGCTTCTGTTAAAGGTCACACAACTGGTCTCTCATTAAATAATGACCGGCTGTACAAGCTCACGTACTC CACTGAAGTTCTTCTTGATCGGGGCAAAGGAAAACTGCAAGACAGCGTGGGCTACCGCATTTCCTCCAAC GTGGATGTGGCCTTACTATGGAGGAATCCTGATGGTGATGATGACCAGTTGATCCAAATAACGATGAAGG AATAATGGGAAAGGAAAACTTGGAAGCTCTGCAAAGACCTACGCTCCTTCATCTAATCCATGGAAAGGTC AAAGAGTTCTACTCATATCAAAATGAGGCAGTGGCCATAGAAAATATCAAGAGAGGTCTGGCTAGCCTAT 35 TTCAGACACAGTTAAGCTCTGGAACCACCAATGAGGTAGATATCTCTGGAAATTGTAAAGTGACCTACCA GGCTCATCAAGACAAAGTGATCAAAATTAAGGCCTTGGATTCATGCAAAATAGCGAGGTCTGGATTTACG ACCCCAAATCAGGTCTTGGGTGTCAGTTCAAAAGCTACATCTGTCACCACCTATAAGATAGAAGACAGCT TTGTTATAGCTGTGCTGCTGAAGAAACACACAATTTTGGACTGAATTTCCTACAAACCATTAAGGGGAA AATAGTATCGAAGCAGAAATTAGAGCTGAAGACAACCGAAGCAGGCCCAAGATTGATGTCTGGAAAGCAG 40 GCTGCAGCCATAATCAAAGCAGTTGATTCAAAGTACACGGCCATTCCCATTGTGGGGCAGGTCTTCCAGA GCCACTGTAAAGGATGTCCTTCTCTCTCGGAGCTCTGGCGGTCCACCAGGAAATACCTGCAGCCTGACAA GAGATCCTTCAAATACTAAAGATGGAAAATAAGGAAGTATTACCTCAGCTGGTGGATGCTGTCACCTCTG CTCAGACCTCAGACTCATTAGAAGCCATTTTGGACTTTTTGGATTTCAAAAGTGACAGCAGCATTATCCT 45 CCAGGAGAGGTTTCTCTATGCCTGTGGATTTGCTTCTCATCCCAATGAAGAACTCCTGAGAGCCCTCATT AGTAAGTTCAAAGGTTCTATTGGTAGCAGTGACATCAGAGAAACTGTTATGATCATCACTGGGACACTTG TCAGAAAGTTGTGTCAGAATGAAGGCTGCAAACTCAAAGCAGTAGTGGAAGCTAAGAAGTTAATCCTGGG AGGACTTGAAAAAGCAGAGAAAAAAGAGGACACCAGGATGTATCTGCTGGCTTTGAAGAATGCCCTGCTT CCAGAAGGCATCCCAAGTCTTCTGAAGTATGCAGAAGCAGGAGAAGGGCCCATCAGCCACCTGGCTACCA 50 CTGCTCTCCAGAGATATGATCTCCCTTTCATAACTGATGAGGTGAAGAACACTTAAACAGAATATACCA CCAAAACCGTAAAGTTCATGAAAAGACTGTGCGCACTGCTGCAGCTGCTATCATTTTAAATAACAATCCA AATGGTCGCTCACAATTATGACCGTTTCTCCAGGAGTGGATCTTCTTCTGCCTACACTGGCTACATAGAA

CGTAGTCCCCGTTCGGCATCTACTTACAGCCTAGACATTCTCTACTCGGGTTCTGGCATTCTAAGGAGAA

GTAACCTGAACATCTTTCAGTACATTGGGAAGGCTGGTCTTCACGGTAGCCAGGTGGTTATTGAAGCCCA AGGACTGGAAGCCTTAATCGCAGCCACCCCTGACGAGGGGGAGGAGCCTTGACTCCTATGCTGGTATG TCAGCCATCCTCTTGATGTTCAGCTCAGACCTGTCACCTTTTTCAACGGATACAGTGATTTGATGTCCA AAATGCTGTCAGCATCTGGCGACCCTATCAGTGTGGTGAAAGGACTTATTCTGCTAATAGATCATTCTCA GGAACTTCAGTTACAATCTGGACTAAAAGCCAATATAGAGGTCCAGGGTGGTCTAGCTATTGATATTTCA GGTGCAATGGAGTTTAGCTTGTGGTATCGTGAGTCTAAAACCCGAGTGAAAAATAGGGTGACTGTGGTAA TAACCACTGACATCACAGTGGACTCCTCTTTTGTGAAAGCTGGCCTGGAAACCAGTACAGAAACAGAAGC GATGAAGCTCCATTCAGGCAATTTGAGAAAAGTACGAAAGGCTGTCCACAGGCAGAGGTTATGTCTCTC AGAAAAGAAAAGAAAGCGTATTAGCAGGATGTGAATTCCCGCTCCATCAAGAGAACTCAGAGATGTGCAA 10 AGTGGTGTTTGCCCCTCAGCCGGATAGTACTTCCAGCGGATGGTTTTGAAACTGACCTGTGATATTTTAC TTGAATTTGTCTCCCCGAAAGGGACACAATGTGGCATGACTAAGTACTTGCTCTCTGAGAGCACAGCGTT TACATATTTACCTGTATTTAAGATTTTTGTAAAAAGCTACAAAAAACTGCAGTTTGATCAAAATTTGGGTA TATGCAGTATGCTACCCACAGCGTCATTTTGAATCATCATGTGACGCTTTCAACAACGTTCTTAGTTTAC **AAAAACAAAATAAAAACAAAACCACACAGGAGAACCCAATTTTGTTTCAACAATTTTTGATCAATGTA** TATGAAGCTCTTGATAGGACTTCCTTAAGCATGACGGGAAAACCAAACACGTTCCCTAATCAGGAAAAAA AAAAAAAAAAAAGTAAGACACAAACAAACCATTTTTTTCTCTTTTTTTGGAGTTGGGGGCCCAGGGAG AAGGGACAAGGCTTTTAAAAGACTTGTTAGCCAACTTCAAGAATTAATATTTTATGTCTCTGTTATTGTTA 20 GTTTTAAGCCTTAAGGTAGAAGGCACATAGAAATAACATC (SEQ ID NO:6683)

>gi|1217638|emb|X91148.1|HSMTTP H.sapiens mRNA for microsomal triglyceride transfer protein

25

35

40

50

TGCAGTTGAGGATTGCTGGTCAATATGATTCTTCTTGCTGTGCTTTTTCTCTGCTTCATTTCCTCATATT CAGCTTCTGTTAAAGGTCACACAACTGGTCTCTCATTAAATAATGACCGGCTGTACAAGCTCACGTACTC GTGGATGTGGCCTTACTATGGAGGAATCCTGATGGTGATGATGACCAGTTGATCCAAATAACGATGAAGG AATAATGGGAAAGGAAAACTTGGAAGCTCTGCAAAGACCTACGCTCCTTCATCTAATCCATGGAAAGGTC AAAGAGTTCTACTCATATCAAAATGAGGCAGTGGCCATAGAAAATATCAAGAGAGGTCTGGCTAGCCTAT TTCAGACACAGTTAAGCTCTGGAACCACCAATGAGGTAGATATCTCTGGAAATTGTAAAGTGACCTACCA GGCTCATCAAGACAAAGTGATCAAAATTAAGGCCTTGGATTCATGCAAAATAGCGAGGTCTGGATTTACG ACCCCAAATCAGGTCTTGGGTGTCAGTTCAAAAGCTACATCTGTCACCACCTATAAGATAGAAGACAGCT TTGTTATAGCTGTGCTTGCTGAAGAAACACACAATTTTGGACTGAATTTCCTACAAACCATTAAGGGGAA AATAGTATCGAAGCAGAAATTAGAGCTGAAGACAACCGAAGCAGGCCCAAGATTGATGTCTGGAAAGCAG GCTGCAGCCATAATCAAAGCAGTTGATTCAAAGTACACGGCCATTCCCATTGTGGGGCAGGTCTTCCAGA GCCACTGTAAAGGATGTCCTTCTCTCTCGGAGCTCTGGCGGTCCACCAGGAAATACCTGCAGCCTGACAA GAGATCCTTCAAATACTAAAGATGGAAAATAAGGAAGTATTACCTCAGCTGGTGGATGCTGTCACCTCTG CTCAGACCTCAGACTCATTAGAAGCCATTTTGGACTTTTTGGATTTCAAAAGTGACAGCAGCATTATCCT CCAGGAGAGGTTTCTCTATGCCTGTGGATTTGCTTCTCATCCCAATGAAGAACTCCTGAGAGCCCTCATT AGTAAGTTCAAAGGTTCTATTGGTAGCAGTGACATCAGAGAAACTGTTATGATCATCACTGGGACACTTG TCAGAAAGTTGTGTCAGAATGAAGGCTGCAAACTCAAAGCAGTAGTGGAAGCTAAGAAGTTAATCCTGGG ${\tt AGGACTTGAAAAAGCAGAAAAAAGAGGACACCAGGATGTATCTGCTGGCTTTGAAGAATGCCCTGCTT}$ CCAGAAGGCATCCCAAGTCTTCTGAAGTATGCAGAAGCAGGAGAAGGGCCCATCAGCCACCTGGCTACCA CTGCTCTCCAGAGATATGATGCTCCCTTTCATAACTGATGAGGTGAAGAAGACCTTAAACAGAATATACC ACCAAAACCGTAAAGTTCATGAAAAGACTGTGCGCACTGCTGCAGCTGCTATCATTTTAAATAACAATCC AAATGGTCGCTCACAATTATGACCGTTTCTCCAGGAGTGGATCTTCTTCTGCCTACACTGGCTACATAGA ACGTAGTCCCCGTTCGGCATCTACTTACAGCCTAGACATTCTCTACTCGGGTTCTGGCATTCTAAGGAGA AGTAACCTGAACATCTTTCAGTACATTGGGAAGGCTGGTCTTCACGGTAGCCAGGTGGTTATTGAAGCCC AAGGACTGGAAGCCTTAATCGCAGCCACCCCTGACGAGGGGGGAGGAACCTTGACTCCTATGCTGGTAT GTCAGCCATCCTCTTTGATGTTCAGCTCAGACCTGTCACCTTTTTCAACGGATACAGTGATTTGATGTCC AAAATGCTGTCAGCATCTGGCGACCCTATCAGTGTGGTGAAAGGACTTATTCTGCTAATAGATCATTCTC AGGAACTTCAGTTACAATCTGGACTAAAAGCCAATATAGAGGTCCAGGGTGGTCTAGCTATTGATATTTC

AGGTGCAATGGAGTTTAGCTTGTGGTATCGTGAGTCTAAAACCCGAGTGAAAAATAGGGTGACTGTGGTA ATAACCACTGACATCACAGTGGACTCCTCTTTTGTGAAAGCTGGCCTGGAAACCAGTACAGAAACAGAAG GGATGAAGCTCCATTCAGGCAATTTGAGAAAAAGTACGAAAGGCTGTCCACAGGCAGAGGTTATGTCTCT CAGAAAAGAAAAGAAAGCGTATTAGCAGGATGTGAATTCCCGCTCCATCAAGAGAACTCAGAGATGTGCA AAGTGGTGTTTGCCCCTCAGCCGGATAGTACTTCCAGCGGATGGTTTTGAAACTGACCTGTGATATTTTA CTTGAATTTGTCTCCCCGAAAGGGACACAATGTGGCATGACTAAGTACTTGCTCTCTGAGAGCACAGCGT TTACATATTTACCTGTATTTAAGATTTTTGTAAAAAGCTACAAAAAACTGCAGTTTGATCAAATTTGGGT ATATGCAGTATGCTACCCACAGCGTCATTTTGAATCATCATGTGACGCTTTCAACAACGTTCTTAGTTTA CTTATACCTCTCAAATCTCATTTGGTACAGTCAGAATAGTTATTCTCTAAGAGGAAACTAGTGTTTGT TAAAAACAAAATAAAAACAAAACCACACAAGGAGAACCCAATTTTGTTTCAACAATTTTTGATCAATGT ATATGAAGCTCTTGATAGGACTTCCTTAAGCATGACGGGAAAACCAAACACGTTCCCTAATCAGGAAAAA AAAAAAAAAGAAAAGTAAGACAAACAAACCATTTTTTTCTCTTTTTTTGGAGTTGGGGGCCCAGGG AGAAGGGACAAGGCTTTTAAAAGACTTGTTAGCCAACTTCAAGAATTAATATTTATGTCTCTGTTATTGT TAGTTTTAAGCCTTAAGGTAGAAGGCACATAGAAATAACATCTCATCTTTCTGCTGACCATTTTAGTGAG GTTGTTCCAAAGAGCATTCAGGTCTCTACCTCCAGCCCTGCAAAAATATTGGACCTAGCACAGAGGAATC AGGAAAATTAATTTCAGAAACTCCATTTGATTTTTCTTTTGCTGTGTCTTTTTTTGAGACTGTAATATGGT ACACTGTCCTCTAAGGACATCCTCATTTTATCTCACCTTTTTTGGGGGTGAGAGCTCTAGTTCATTTAACT GTACTCTGCACAATAGCTAGGATGACTAAGAGAACATTGCTTCAAGAAACTGGTTGGATTTGGATTTCCAA AATATGAAATAAGGAGAAAAATGTTTTTATTTGTATGAATTAAAAGATCCATGTTGAACATTTGCAAATA TTTATTAATAAACAGATGTGGTGATAAACCCAAAACAAATGACAGGTGCTTATTTTCCACTAAACACAGA TGTAGAAATCAAAAAAAAAAAAAAAAAAA (SEQ ID NO: 6684)

25

35

45

50

15

20

>qi|21361125|ref|NM 001467.2| Homo sapiens glucose-6-phosphatase, transport (glucose-6-phosphate) protein 1 (G6PT1), mRNA GGCACGAGGGCCACCGAGGCGCTGTCCCTGACCACCAGGACCCCTTTCTATCGCGCCAGTCCTG TGGTCTCCGCACCTCTCCAGCTCCTGCACCCCCGGCCCCCGTGGTTCCCAGCCGCACAGTAGCGTGTCCT TCCTCCTCTCCCGCCGCCGCCTGGCCTCCCCTACCAGGCTGAGCCTCTGGCTGCCAGAAGCGCGGGGC CTCCGGGAGAATACGTGCGGTCGCCCGCTCCGCGTGCGCCTACGCCTTCTGCTCCAGTTGCTTTCCCAAT TGAGCGGAAAAGCCGGGGCATGTTGCCGGGGCCCTGGGCGGACGGTTGTGCCCTGCAGCCCGAAGCCCG CCGGGGCACCTTCCCGCCCACGAGCTGCCCAGTCCCTCTGCTTGCGGCCCCTGCCAACGTCCCACAGGAC ACTGGGTCCCCTTGGAGCCTCCCCAGGCTTAATGATTGTCCAGAAGGCGGCTATAAAGGGAGCCTGGGAG GCTGGGTGGAGGAGGAGCAGAAAAAACCCAACTCAGCAGATCTGGGAACTGTGAGAGCGGCAAGCAGGA ACTGTGGTCAGAGGCTGTGCGTCTTGGCTGGTAGGGCCTGCTCTTTTCTACCATGGCAGCCCAGGGCTAT GGCTATTATCGCACTGTGATCTTCTCAGCCATGTTTGGGGGCTACAGCCTGTATTACTTCAATCGCAAGA CCTTCTCCTTTGTCATGCCATCATTGGTGGAAGAGATCCCTTTGGACAAGGATGATTTGGGGTTCATCAC CAGCAGCCAGTCGGCAGCTTATGCTATCAGCAAGTTTGTCAGTGGGGTGCTGTCTGACCAGATGAGTGCT CGCTGGCTCTTCTCTTGGGCTGCTCCTGGTTGGCCTGGTCAACATATTCTTTGCCTGGAGCTCCACAG TACCTGTCTTTGCTGCCCTCTGGTTCCTTAATGGCCTGGCCCAGGGGCTGGCCCCCATGTGGGAA GGTCCTGCGGAAGTGGTTTGAGCCATCTCAGTTTGGCACTTGGTGGGCCATCCTGTCAACCAGCATGAAC CTGGCTGGAGGGCTGGGCCCTATCCTGGCAACCATCCTTGCCCAGAGCTACAGCTGGCGCAGCACGCTGG CCCTATCTGGGGCACTGTGTGTGTGTCTCCTTCCTCTGTCTCCTGCTCACACAATGAACCTGCTGA TGTTGGACTCCGCAACCTGGACCCCATGCCCTCTGAGGGCAAGAAGGGCTCCTTGAAGGAGGAGAGCACC CTGCAGGAGCTGCTGCTGTCCCTTACCTGTGGGTGCTCTCCACTGGTTACCTTGTGGTGTTTGGAGTAA CTCCTACATGAGTGCCCTGGAAGTTGGGGGCCCTTGTAGGCAGCATCGCAGCTGGCTACCTGTCAGACCGG GCCATGGCAAAGGCGGGACTGTCCAACTACGGGAACCCTCGCCATGGCCTGTTGCTGTTCATGATGGCTG GCATGACAGTGTCCATGTACCTCTTCCGGGTAACAGTGACCAGTGACTCCCCCAAGCTCTGGATCCTGGT ATTGGGAGCTGTATTTGGTTTCTCCTCGTATGGCCCCATTGCCCTGTTTGGAGTCATAGCCAACGAGAGT GCCCCTCCCAACTTGTGTGGCACCTCCCACGCCATTGTGGGACTCATGGCCAATGTGGGCGGCTTTCTGG CTGGGCTGCCCTTCAGCACCATTGCCAAGCACTACAGTTGGAGCACAGCCTTCTGGGTGGCTGAAGTGAT TTGTGCGGCCAGCACGGCTGCCTTCTTCCTCCTACGAAACATCCGCACCAAGATGGGCCGAGTGTCCAAG

10

15

20

30

45

50

55

 $gi|4503130|ref|NM_001904.1|$ Homo sapiens catenin (cadherin-associated protein), beta 1, 88kDa (CTNNB1), mRNA

AAGCCTCTCGGTCTGTGGCAGCAGCGTTGGCCCGGGCCCCGGGAGCGGAGAGCGAGGGGAGAGGCGAGACGG AGGAAGGTCTGAGGAGCAGCTTCAGTCCCCGCCGAGCCGCCACCGCAGGTCGAGGACGGTCGGACTCCCG $\tt CGGCGGGAGGAGCCTGTTCCCCTGAGGGTATTTGAAGTATACCATACAACTGTTTTGAAAATCCAGCGTG$ AGTCACTGGCAGCAACAGTCTTACCTGGACTCTGGAATCCATTCTGGTGCCACTACCACAGCTCCTTCTC TGAGTGGTAAAGGCAATCCTGAGGAAGAGGATGTGGATACCTCCCAAGTCCTGTATGAGTGGGAACAGGG ATTTTCTCAGTCCTTCACTCAAGAACAAGTAGCTGATATTGATGGACAGTATGCAATGACTCGAGCTCAG AGGGTACGAGCTGCTATGTTCCCTGAGACATTAGATGAGGGCATGCAGATCCCATCTACACAGTTTGATG $\tt CTGCTCATCCCACTAATGTCCAGCGTTTGGCTGAACCATCACAGATGCTGAAACATGCAGTTGTAAACTT$ GATTAACTATCAAGATGATGCAGAACTTGCCACACGTGCAATCCCTGAACTGACAAAACTGCTAAATGAC GAGGACCAGGTGGTGGTTAATAAGGCTGCAGTTATGGTCCATCAGCTTTCTAAAAAGGAAGCTTCCAGAC AACAGCTCGTTGTACCGCTGGGACCTTGCATAACCTTTCCCATCATCGTGAGGGCTTACTGGCCATCTTT AAGTCTGGAGGCATTCCTGCCCTGGTGAAAATGCTTGGTTCACCAGTGGATTCTGTGTTTTTATGCCA TTACAACTCTCCACAACCTTTTATTACATCAAGAAGGAGCTAAAATGGCAGTGCGTTTAGCTGGTGGGCT GCAGAAAATGGTTGCCTTGCTCAACAAAACAAATGTTAAATTCTTGGCTATTACGACAGACTGCCTTCAA ATTTTAGCTTATGGCAACCAAGAAAGCAAGCTCATCATACTGGCTAGTGGTGGACCCCAAGCTTTAGTAA ATATAATGAGGACCTATACTTACGAAAAACTACTGTGGACCACAAGCAGAGTGCTGAAGGTGCTATCTGT CTGCTCTAGTAATAAGCCGGCTATTGTAGAAGCTGGTGGAATGCAAGCTTTAGGACTTCACCTGACAGAT CCAAGTCAACGTCTTGTTCAGAACTGTCTTTGGACTCTCAGGAATCTTTCAGATGCTGCAACTAAACAGG AAGGGATGGAAGGTCTCCTTGGGACTCTTGTTCAGCTTCTGGGTTCAGATGATAAAATGTGGTCACCTG TGCAGCTGGAATTCTTTCTAACCTCACTTGCAATAATTATAAGAACAAGATGATGGTCTGCCAAGTGGGT GGTATAGAGGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGAAGACATCACTGAGCCTGCCATCT GTGCTCTTCGTCATCTGACCAGCCGACACCAAGAAGCAGAGATGGCCCAGAATGCAGTTCGCCTTCACTA TGGACTACCAGTTGTGGTTAAGCTCTTACACCCACCATCCCACTGGCCTCTGATAAAGGCTACTGTTGGA • TTGATTCGAAATCTTGCCCTTTGTCCCGCAAATCATGCACCTTTGCGTGAGCAGGGTGCCATTCCACGAC ATTTGTGGAGGGGTCCGCATGGAAGAATAGTTGAAGGTTGTACCGGAGCCCTTCACATCCTAGCTCGG CCATTGAAAACATCCAAAGAGTAGCTGCAGGGGTCCTCTGTGAACTTGCTCAGGACAAGGAAGCTGCAGA ${\tt AGCTATTGAAGCTGAGGGAGCCACAGCTCCTCTGACAGAGTTACTTCACTCTAGGAATGAAGGTGTGGCG}$ ACATATGCAGCTGCTGTTTTGTTCCGAATGTCTGAGGACAAGCCACAAGATTACAAGAAACGGCTTTCAG TTGAGCTGACCAGCTCTCTCTCAGAACAGAGCCAATGGCTTGGAATGAGACTGCTGATCTTGGACTTGA TATTGGTGCCCAGGAGAACCCCTTGGATATCGCCAGGATGATCCTAGCTATCGTTCTTTTCACTCTGGT GGATATGGCCAGGATGCCTTGGGTATGGACCCCATGATGGAACATGAGATGGGTGGCCACCACCCTGGTG TGACAGCAATCAGCTGGCCTGGTTTGATACTGACCTGTAAATCATCCTTTAGCTGTATTGTCTGAACTTG ${\tt CATTGTGATTGGCCTGTAGAGTTGCTGAGAGGGGCTCGAGGGGTGGGCTGGTATCTCAGAAAGTGCCTGAC}$ ${\tt ACACTAACCAAGCTGAGTTTCCTATGGGAACAATTGAAGTAAACTTTTTGTTCTGGTCCTTTTTGGTCGA}$ GGAGTAACAATACAAATGGATTTTGGGAGTGACTCAAGAAGTGAAGAATGCACAAGAATGGATCACAAGA

10 gi|18104977|ref|NM_002827.2| Homo sapiens protein tyrosine phosphatase, non-receptor type 1 (PTPN1), mRNA GTGATGCGTAGTTCCGGCTGCCGGTTGACATGAAGAAGCAGCAGCGGCTAGGGCGGCGGTAGCTGCAGGG GTCGGGGATTGCAGCGGGCCTCGGGGCTAAGAGCGCGACGCGGCCTAGAGCGGCAGACGCCCAGTGGGC CGAGAAGGAGGCGCAGCAGCCGCCCTGGCCCGTCATGGAGATAGGAAAAGGAGTTCGAGCAGATCGACAAG 15 TCCGGGAGCTGGGCGGCCATTTACCAGGATATCCGACATGAAGCCAGTGACTTCCCATGTAGAGTGGCCA AGCTTCCTAAGAACAAAAACCGAAATAGGTACAGAGACGTCAGTCCCTTTGACCATAGTCGGATTAAACT ACATCAAGAAGATAATGACTATATCAACGCTAGTTTGATAAAAATGGAAGAAGCCCAAAGGAGTTACATT CTTACCCAGGGCCCTTTGCCTAACACATGCGGTCACTTTTGGGAGATGGTGTGGGAGCAGAAAAGCAGGG GTGTCGTCATGCTCAACAGAGTGATGGAGAAAGGTTCGTTAAAATGCGCACAATACTGGCCACAAAAAGA 20 AGAAAAAGAGATGATCTTTGAAGACACAAATTTGAAATTAACATTGATCTCTGAAGATATCAAGTCATAT TATACAGTGCGACAGCTAGAATTGGAAAACCTTACAACCCAAGAAACTCGAGAGATCTTACATTTCCACT AGAGTCAGGGTCACTCAGCCCGGAGCACGGGCCCGTTGTGGTGCACTGCAGTGCAGGCATCGGCAGGTCT GGAACCTTCTGGCTGATACCTGCCTCTTGCTGATGGACAAGAGACAAGACCCTTCTTCCGTTGATA 25 TCAAGAAAGTGCTGTTAGAAATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGCCGACCAGCTGCGCTT CTCCTACCTGGCTGTGATCGAAGGTGCCAAATTCATCATGGGGGACTCTTCCGTGCAGGATCAGTGGAAG GAGCTTTCCCACGAGGACCTGGAGCCCCCACCCGAGCATATCCCCCCACCTCCCGGCCACCCAAACGAA GGAGGATAAAGACTGCCCCATCAAGGAAGAAAAAGGAAGCCCCTTAAATGCCGCACCCTACGGCATCGAA AGCATGAGTCAAGACACTGAAGTTAGAAGTCGGGTCGTGGGGGGAAGTCTTCGAGGTGCCCAGGCTGCCT 30 CCCCAGCCAAAGGGGAGCCGTCACTGCCCGAGAAGGACGAGCACCATGCACTGAGTTACTGGAAGCCCTT AGCAACACATAGCCTGACCCTCCTCCACCTCCACCCCACTGTCCGCCTCTGCCCGCAGAGCCCACG 35 GTTGGTTCTGCACTAAAACCCATCTTCCCCGGATGTGTGTCTCACCCCTCATCCTTTTACTTTTTGCCCC TTCCACTTTGAGTACCAAATCCACAAGCCATTTTTTGAGGAGAGTGAAAGAGAGTACCATGCTGGCGGCG ATTTTTTCCCCAAAGGCATCCATAGTGCACTAGCATTTTCTTGAACCAATAATGTATTAAAAATTTTTTGA 40 TGTCAGCCTTGCATCAAGGGCTTTATCAAAAAGTACAATAATAAATCCTCAGGTAGTACTGGGAATGGAA GGCTTTGCCATGGGCCTGCTGCGTCAGACCAGTACTGGGAAGGACGGCTTGTTAAGCAGTTGTTATTTA GTGATATTGTGGGTAACGTGAGAAGATAGAACAATGCTATAATATATAATGAACACGTGGGTATTTAATA AGAAACATGATGTGAGATTACTTTGTCCCGCTTATTCTCCCCTGTTATCTGCTAGATCTAGTTCTCAA TCACTGCTCCCCGTGTGTATTAGAATGCATGTAAGGTCTTCTTGTGTCCTGATGAAAAATATGTGCTTG 45 GATCATTACATGGCTGTGGTTCCTAAGCCTGTTGCTGAAGTCATTGTCGCTCAGCAATAGGGTGCAGTTT ${\tt TCCAGGAATAGGCATTTGCCTAATTCCTGGCATGACACTCTAGTGACTTCCTGGTGAGGCCCAGCCTGTC}$ CTGGTACAGCAGGGTCTTGCTGTAACTCAGACATTCCAAGGGTATGGGAAGCCATATTCACACCTCACGC 50 AGTCAACACTCTTCTTGAGCAGACCGTGATTTGGAAGAGAGGCACCTGCTGGAAACCACACTTCTTGAAA CAGCCTGGGTGACGGTCCTTTAGGCAGCCTGCCGCCGTCTCTGTCCCGGTTCACCTTGCCGAGAGAGGCG CGTCTGCCCCACCCTCAAACCCTGTGGGGCCTGATGGTGCTCACGACTCTTCCTGCAAAGGGAACTGAAG ${\tt ACCTCCACATTAAGTGGCTTTTTAACATGAAAAACACGGCAGCTGTAGCTCCCGAGCTACTCTTTGCCA}$ ${\tt GCATTTTCACATTTTGCCTTTCTCGTGGTAGAAGCCAGTACAGAGAAATTCTGTGGTGGGAACATTCGAG}$ GTGTCACCCTGCAGAGCTATGGTGAGGTGTGGATAAGGCTTAGGTGCCAGGCTGTAAGCATTCTGAGCTG 55

5

10

15

20

30

35

45

50

gi|12831192|gb|AF333324.1| Hepatitis C virus type 1b polyprotein mRNA, complete cds GCCAGCCCCGATTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGCA GAAAGCGTCTAGCCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTCCCGGGAGAGCCA TAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCCG $\tt CTCAATGCCTGGAGATTTGGGCGTGCCCCGCGAGACTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCC$ TTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCATCATGAGCACA AATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCACAGGACGTTAAGTTCCCGGGCG GTGGTCAGATCGTTGGTGGAGTTTACCTGTTGCCGCGCAGGGGCCCCAGGTTGGGTGTGCGCGCGACTAG GAAGACTTCCGAGCGGTCGCAACCTCGTGGAAGGCGACAACCTATCCCCAAGGCTCGCCGGCCCGAGGGT AGGACCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGCAACGAGGGTATGGGGTGGGCAGGATGGC TCCTGTCACCCCGTGGCTCTCGGCCTAGTTGGGGCCCCACAGACCCCCGGCGTAGGTCGCGTAATTTGGG TAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCATGGGGGTACATTCCGCTTGTCGGCGCCCCC CTAGGAGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCGGGTTCTGGAGGACGGCGTGAACTATGCAACAG GGAATCTGCCCGGTTGCTCTTTCTCTATCTTCCTCTTAGCTTTGCTGTCTTGTTTTGACCATCCCAGCTTC GTTGCTGGGTAGCGCTCACTCCCACGCTCGCGGCCAGGAACAGCAGCATCCCCACCACGACAATACGACG GTTTTTCTCGTCTCCCAGCTGTTCACCTTCTCACCTCGCCGGTATGAGACGGTACAAGATTGCAATTGCT CAATCTATCCCGGCCACGTATCAGGTCACCGCATGGCTTGGGATATGATGATGACTGGTCACCTACAAC GGCCCTAGTGGTATCGCAGCTACTCCGGATCCCACAAGCCGTCGTGGACATGGTGGCGGGGGCCCACTGG ${\tt GGTGTCCTAGCGGGCCTTGCCTACTATTCCATGGTGGGGAACTGGGCTAAGGTCTTGATTGTGATGCTAC}$ TCTTTGCTGGCGTTGACGGCACACCCACGTGACAGGGGGAAGGGTAGCCTCCAGCACCCAGAGCCTCGT GTCCTGGCTCTCACAAGGGCCATCTCAGAAAATCCAACTCGTGAACACCAACGGCAGCTGGCACATCAAC AGGACCGCTCTGAATTGCAATGACTCCCTCCAAACTGGGTTCATTGCTGCGCTGTTCTACGCACACGGT TCCCATCACTCACGTTGTGCCTAACATCTCGGACCAGAGGCCTTATTGCTGGCACTATGCACCCCAACCG $\tt TGCGGTATTGTACCCGGGTCGCAGGTGTGTGGCCCAGTGTATTGCTTCACCCCGAGTCCTGTTGTGGTGG$ CAACACGCGGCCGCCAAGGCAACTGGTTCGGCTGTACATGGATGAATAGCACCGGGTTCACCAAGACG $\tt TGCGGGGGCCCCCGTGTAACATCGGGGGGGTTGGCAACAACACCTTGATTTGCCCCACGGATTGCTTCC$ GAAAGCACCCGAGGCCACTTACACCAAATGCGGCTCGGGTCCTTGGTTGACACCTAGGTGTCTAGTTGA CTACCCATACAGACTTTGGCACTACCCCTGCACTATCAATTTTACCATCTTCAAGGTCAGGATGTACGTG GGGGGCGTGGAGCACAGGCTCAACGCCGCGTGCAATTGGACCCGAGGAGAGCGCTGTGACCTGGAGGACA GGGATAGATCAGAGCTTAGCCCGCTGCTATTGTCTACAACGGAGTGGCAGGTACTGCCCTGTTCCTTTAC CACCCTACCGGCTCTGTCCACTGGATTGATCCACCTCCATCAGAATATCGTGGACGTGCAATACCTGTAC GGTGTAGGGTCAGTGGTTGTCTCCGTCGTAATCAAATGGGAGTATGTTCTGCTGCTCTTCTCCTGG $\tt CGGACGCGCGCGTCTGTGCCTGTTGTGGATGATGCTGCTGATAGCCCAGGCTGAGGCCACCTTAGAGAA$ CCTGGTGGTCCTCAATGCGGCGTCTGTGGCCGGAGCGCATGGCCTTCTCTCCTCCTCGTGTTCTTCTGC GCCGCCTGGTACATCAAAGGCAGGCTGGTCCCTGGGGCGCATATGCTCTCTATGGCGTATGGCCGTTGC

TCCTGCTCTTGCTGGCTTTACCACCACGAGCTTATGCCATGGACCGAGAGATGGCTGCATCGTGCGGAGGCCGGGTTTTTGTAGGTCTGGTACTCTTGACCTTGTCACCATACTATAAGGTGTTCCTCGCTAGGCTCATA

ATCACCTGGGGACACACCGCGGCGTGTGGGGACATCATCTTGGGTCTGCCCGTCTCCGCCCGAAGGG GANAGGAGATACTCCTGGGCCCGGCCGATAGTCTTGAAGGGCGGGGGTGGCGACTCCTCGCGCCCATCAC GGCCTACTCCCAACAGACGCGGGGCCTACTTGGTTGCATCATCACTAGCCTTACAGGCCGGGACAAGAAC TGTGTTGGACCGTTTACCATGGTGCTGGCTCAAAGACCTTAGCCGGCCCAAAGGGGCCAATCACCCAGAT GTACACTAATGTGGACCAGGACCTCGTCGGCTGGCAGGCGCCCCCCGGGGCGCGTTCCTTGACACCATGC ACCTGTGGCAGCTCAGACCTTTACTTGGTCACGAGACATGCTGACGTCATTCCGGTGCGCCGGCGGGGGCG ACAGTAGGGGGAGCCTGCTCCCCCAGGCCTGTCTCCTACTTGAAGGGCTCTTCGGGTGGTCCACTGCT CTGCCCTTCGGGGCACGCTGTGGGCATCTTCCGGGCTGCCGTATGCACCCGGGGGGTTGCGAAGGCGGTG GACTTTGTGCCCGTAGAGTCCATGGAAACTACTATGCGGTCTCCGGTCTTCACGGACAACTCATCCCCCC 10 CGGCCGTACCGCAGTCATTTCAAGTGGCCCACCTACACGCTCCCACTGGCAGCGGCAAGAGTACTAAAGT TTTGGGGCGTATATGTCTAAGGCACACGGTATTGACCCCAACATCAGAACTGGGGTAAGGACCATTACCA CAGGCGCCCCGTCACATACTCTACCTATGGCAAGTTTCTTGCCGATGGTGGTTGCTCTGGGGGCGCTTA TGACATCATAATATGTGATGAGTGCCATTCAACTGACTCGACTACAATCTTGGGCATCGGCACAGTCCTG 15 GACCAAGCGGAGACGGCTGGAGCGCGGCTTGTCGTGCTCGCCACCGCTACGCCTCCGGGATCGGTCACCG TGCCACACCCAAACATCGAGGAGGTGGCCCTGTCTAATACTGGAGAGATCCCCTTCTATGGCAAAGCCAT CCCCATTGAAGCCATCAGGGGGGGAAGGCATCTCATTTTCTGTCATTCCAAGAAGAAGTGCGACGAGCTC GCCGCAAAGCTGTCAGGCCTCGGAATCAACGCTGTGGCGTATTACCGGGGGCTCGATGTGTCCGTCATAC CAACTATCGGAGACGTCGTTGTCGTGGCAACAGACGCTCTGATGACGGGCTATACGGGCGACTTTGACTC AGTGATCGACTGTAACACATGTGTCACCCAGACAGTCGACTTCAGCTTGGATCCCACCTTCACCATTGAG ACGACGACCGTGCCTCAAGACGCAGTGTCGCGCTCGCAGCGGGGGTAGGACTGGCAGGGGTAGGAGAG GCATCTACAGGTTTGTGACTCCGGGAGAACGGCCCTCGGGCATGTTCGATTCCTCGGTCCTGTGTGAGTG CTATGACGCGGGCTGTGCTTGGTACGAGCTCACCCCGCCGAGACCTCGGTTAGGTTGCGGGCCTACCTG AACACCAGGGTTGCCCGTTTGCCAGGACCACCTGGAGTTCTGGGAGAGTGTCTTCACAGGCCTCACCC 25 AGCCACGGTGTGCGCCAGGGCTCAGGCCCCACCTCCATCATGGGATCAAATGTGGAAGTGTCTCATACGG CTGAAACCTACGCTGCACGGGCCAACACCCTTGCTGTACAGGCTGGGAGCCGTCCAAAATGAGGTCACCC TCACCCACCCATAACCAAATACATCATGGCATGCATGTCGGCTGACCTGGAGGTCGTCACTAGCACCTG GGTGCTGGTGGGCGGAGTCCTTGCAGCTCTGGCCGCGTATTGCCTGACAACAGGCAGTGTGGTCATTGTG 30 GGTAGGATTATCTTGTCCGGGAGGCCGGCTATTGTTCCCGACAGGGAGCTTCTCTACCAGGAGTTCGATG AAATGGAAGAGTGCGCCACGCACCTCCCTTACATTGAGCAGGGAATGCAGCTCGCCGAGCAGTTCAAGCA GAAAGCGCTCGGGTTACTGCAAACAGCCACCAAACAAGCGGAGGCTGCTGCTCCCGTGGTGGAGTCCAAG TGGCGAGCCCTTGAGACATTCTGGGCGAAGCACATGTGGAATTTCATCAGCGGGATACAGTACTTAGCAG 35 GCTTATCCACTCTGCCTGGGAACCCCGCAATAGCATCATTGATGGCATTCACAGCCTCTATCACCAGCCC AGCGCCGCTTCGGCTTTCGTGGGCGCCGGCATCGCCGGTGCGGCTGTTGGCAGCATAGGCCTTGGGAAGG TGCTTGTGGACATTCTGGCGGGTTATGGAGCAGGAGTGGCCGGCGCGCTCGTGGCCTTTAAGGTCATGAG GTCGGGGTCGTGTGCAGCAATACTGCGTCGGCACGTGGGTCCGGGAGAGGGGGCTGTGCAGTGGATGA 40 ACCGGCTGATAGCGTTCGCCTCGCGGGGTAATCACGTTTCCCCCACGCACTATGTGCCTGAGAGCGACGC CGCAGCGCGTGTTACTCAGATCCTCTCCAGCCTTACCATCACTCAGCTGCTGAAAAGGCTCCACCAGTGG ATTAATGAGGACTGCTCCACACCGTGTTCCGGCTCGTGGCTAAGGGATGTTTGGGACTGGATATGCACGG TGTTGACTGACTTCAAGACCTGGCTCCAGTCCAAGCTCCTGCCGCAGCTACCGGGAGTCCCTTTTTTCTC GTGCCAACGCGGGTACAAGGGAGTCTGGCGGGGAGACGGCATCATGCAAACCACCTGCCCATGTGGAGCA 45 CAGATCACCGGACATGTCAAAAACGGTTCCATGAGGATCGTCGGGCCTAAGACCTGCAGCAACACGTGGC ATGGAACATTCCCCATCAACGCATACACCACGGGCCCCTGCACACCCTCTCCAGCGCCAAACTATTCTAG GGCGCTGTGGCGGTGGCCGCTGAGGAGTACGTGGAGGTCACGCGGGTGGGGGATTTCCACTACGTGACG GGCATGACCACTGACAACGTAAAGTGCCCATGCCAGGTTCCGGCTCCTGAATTCTTCTCGGAGGTGGACG GAGTGCGGTTGCACAGGTACGCTCCGGCGTGCAGGCCTCTCCTACGGGAGGAGGTTACATTCCAGGTCGG 50 GCTCAACCAATACCTGGTTGGGTCACAGCTACCATGCGAGCCCGAACCGGATGTAGCAGTGCTCACTTCC ATGCTCACCGACCCCTCCCACATCACAGCAGAAACGGCTAAGCGTAGGTTGGCCAGGGGGTCTCCCCCCT 55 GTGGAGTCGGAGAACAAGGTGGTAGTCCTGGACTCTTTCGACCGGTCGAGGAGGAGGATGAGAGGG AAGTATCCGTTCCGGCGGAGATCCTGCGGAAATCCAAGAAGTTCCCCGCAGCGATGCCCATCTGGGCGCG CCCGGATTACAACCCTCCACTGTTAGAGTCCTGGAAGGACCCGGACTACGTCCCTCCGGTGGTGCACGGG

TGCCCGTTGCCACCTATCAAGGCCCCTCCAATACCACCTCCACGGAGAAAGAGGACGGTTGTCCTAACAG AGTCCTCCGTGTCTTCTGCCTTAGCGGAGCTCGCTACTAAGACCTTCGGCAGCTCCGAATCATCGGCCGT CGACAGCGGCACGGCGCCCTTCCTGACCAGGCCTCCGACGTGACAAAGGATCCGACGTTGAG TCGTACTCCTCCATGCCCCCCTTGAGGGGGAACCGGGGGACCCCGATCTCAGTGACGGGTCTTGGTCTA CCGTGAGCGAGGAAGCTAGTGAGGATGTCGTCTGCTGCTCAATGTCCTACACATGGACAGGCGCCTTGAT CACGCCATGCGCTGCGGAGGAAAGCAAGCTGCCCATCAACGCGTTGAGCAACTCTTTGCTGCGCCACCAT AACATGGTTTATGCCACAACATCTCGCAGCGCAGGCCTGCGGCAGAAGAAGGTCACCTTTGACAGACTGC AAGTCCTGGACGACCACTACCGGGACGTGCTCAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAA ${\tt ACTCCTATCCGTAGAGGAAGCCTGCAAGCTGACGCCCCCACATTCGGCCAAATCCAAGTTTGGCTATGGG}$ GCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTAACCACTCCACTCCGTGTGGAAGGACTTGCTGG AAGACACTGTGACACCAATTGACACCACCATCATGGCAAAAAATGAGGTTTTCTGTGTCCAACCAGAGAA AGGAGGCCGTAAGCCAGCCCGCCTTATCGTATTCCCAGATCTGGGAGTCCGTGTATGCGAGAAGATGGCC CTCTATGATGTGGTCTCCACCCTTCCTCAGGTCGTGATGGGCTCCTCATACGGATTCCAGTACTCTCCTG GGCAGCGAGTCGAGTTCCTGGTGAATACCTGGAAATCAAAGAAAAACCCCATGGGCTTTTCATATGACAC TCGCTGTTTCGACTCAACGGTCACCGAGAACGACATCCGTGTTGAGGAGTCAATTTACCAATGTTGTGAC TTGGCCCCGAAGCCAGACAGGCCATAAAATCGCTCACAGAGCGGCTTTATATCGGGGGGTCCTCTGACTA ATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGCGCGGGCGTGCTGACGACTAGCTGCGGTAA CACCCTCACATGTTACTTGAAGGCCTCTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGCTC GTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGCGCGGGAACCCAAGAGGACGCGGCGAGCCTACGAG TCTTCACGGAGGCTATGACTAGGTACTCTGCCCCCCCGGGGACCCGCCCCAACCAGAATACGACTTGGA GCTGATAACATCATGTTCCTCCAATGTGTCGGCCCACGATGCATCAGGCAAAAGGGTGTACTACCTC ACCCGTGATCCCACCCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACTCCAGTTAACTCCT GGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATGACTCACTTCTTCTC CATCCTTCTAGCACAGGAGCAACTTGAAAAAGCCCTGGACTGCCAGATCTACGGGGCCTGTTACTCCATT GAGCCACTTGACCTACCTCAGATCATTGAACGACTCCATGGCCTTAGCGCATTTTCACTCCATAGTTACT CTCCAGGTGAGATCÀATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCACCCTTGCGAGTCTGGAG CCGGCTGGTTCGTTGCTGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGCTG GTTCATGCTGTGCCTACTCCTACTTTCTGTAGGGGTAGGCATCTACCTGCTCCCCAACCGATGAACGGGG TTTCCTTCTTTTCCCTTTTTCTTCCTTCTTTAATGGTGGCTCCATCTTAGCCCTAGTCACGGCTA GCTGTGAAAGGTCCGTGAGCCGCATGACTGCAGAGAGTGCTGATACTGGCCTCTCTGCAGATCATGT (SEQ ID NO:6688)

35

40

50

15

20

25

30

gi|306286|gb|M96362.1|HPCUNKCDS Hepatitis C virus mRNA, complete cds TGCCAGCCCCGATTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGC AGAAAGCGTCTAGCCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTCCCGGGAGAGCC ATAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCC GCTCAATGCCTGGAGATTTGGGCGTGCCCCCGCGAGACTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGC CTTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCACCATGAGCAC GAATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCCACAGGATATTAAGTTCCCGGGC GGTGGTCAGATCGTTGGTGGAGTTTACTTGTTGCCGCGCAGGGGCCCCAGGTTGGGTGTGCGCGCGACTA GGAAGACTTCCGAGCGGTCGCAACCTCGTGGAAGGCGACAGCCTATCCCCAAGGCTCGCCGGCCCGAGGG CAGGGCCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGCAATGAGGGCTTGGGGTGGGCAGGATGG CTCCTGTCACCCCGCGGCCTCCGGCCTAGTTGGGGCCCCACGGACCCCCGGCGTAAGTCGCGTAATTTGG GTAAGGTCATCGACACCCTCACATGCGGCTTCGCCGACCTCATGGGGTACATTCCGCTCGTCGGCGCCCC CCTAGGGGGCGTTGCCAGGGCCCTGGCACATGGTGTCCGGGTGCTGGAGGACGGCGTGAACTATGCAACA GGGAATCTGCCCGGTTGCTCTTTCTCTATCTTCCTCTTGGCTCTGCTGTTTTGACCACCCCAGTTT GTATGAGGCAGCGGACATGATCATGCACACTCCCGGGTGCCTGCGTTCGGGAGGACAACTCCTCC CGTTGCTGGGTGGCACTTACTCCCACGCTCGCGGCCAGGAATGCCAGCGTCCCCACTACGACATTGCGAC GCCATGTCGACTTGCTCGTTGGGGTAGCTGCTTTCTGTTCCGCTATGTACGTGGGGGACCTCTGCGGATC TGTTTTCCTTGTTTCCCAGCTGTTCACCTTTTCGCCTCGCCGGCATGAGACGGTACAGGACTGCAACTGC TCAATCTATCCCGGCCGCGTATCAGGTCACCGCATGGCCTGGGATATGATGATGAACTGGTCGCCTACAA CAGCCCTAGTGGTATCGCAGCTACTCCGGATCCCACAAGCTGTCGTGGACATGGTGACAGGGTCCCACTG

GGGAATCCTGGCGGGCCTTGCCTACTATTCCATGGTGGGGAACTGGGCTAAGGTCTTAATTGCGATGCTA CGTCCCTCTTTAGCCCTGGGCCGGTTCAGCACCTCCAGCTCATAAACACCAACGGCAGCTGGCATATCAA CAGGACCGCCTGAGCTGCAATGACTCCCTCAACACTGGGTTTGTTGCCGCGCTGTTCTACAAATACAGG 5 TTCAACGCGTCCGGGTGCCCGGAGCGCTTGGCCACGTGCCCCCCATTGATACATTCGCGCAGGGGTGGG GTCCCATCACTTACACTGAGCCTCATGATTTGGATCAGAGGCCCTATTGCTGGCACTACGCGCCTCAACC GTGTGGTATTGTGCCCACGTTGCAGGTGTGTGGCCCAGTATACTGCTTCACCCCGAGTCCTGTTGCGGTG ACAACGCCGGCCGCCAAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACTGGGTTCACCAAGAC 10 ATGTGGGGGCCCCCGTGTAACATCGGGGGGGTCGCCACAACAATACCTTGACCTGCCCCACGGACTGCTTC CGAAAGCACCCGGGGCCACTTACACCAAATGCGGTTCGGGGCCTTGGTTAACACCCCAGGTGCTTAGTCG ACTACCCGTACAGGCTCTGGCATTACCCCTGCACTGTCAACTTTACCATCTTTAAGGTTAGGATGTACGT GGGGGGCGCGGAGCACAGGCTCGACGCCGCATGCAACTGGACTCGGGGAGAGCGTTGTGACCTGGAGGAC AGGGATAGGTCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGAGTGGCAGGTACTGCCCTGTTCCTTCA CAACCCTACCGGCTCTGTCCACTGGTTTGATTCATCTCCATCAGAACATCGTGGACATACAATACCTGTA CGGTATAGGGTCGCCGTTGTCTCTTTGCGATCAAATGGGAGTATATTGTGCTGCTCTTCTTCTTCTG GCGGACGCGCGTCTGCGCTTGCTGGATGATGCTGCTGGTAGCGCAAGCCGAGGCCGCCTTAGAGA TGCTGCCTGGTACATCAAGGGCAGGCTGGTTCCCGGAGCGGCATACGCCCTCTATGGCGTATGGCCGCTG 20 CTTCTGCTTCTGCTGGCGTTACCACCACGGGCGTACGCCATGGACCGGGAGATGGCCGCATCGTGCGGAG GCGCGGTTTTTGTAGGTCTGGTACTCTTGACCTTGTCACCACACTATAAAGTGTTCCTTGCCAGGTTCAT ATGGTGGCTACAATATCTCATCACCAGAACCGAAGCGCATCTGCAAGTGTGGGTCCCCCCTCTCAACGTT CGGGGGGGTCGCGATGCCATCATCCTCACATGCGTGGTCCACCCAGAGCTAATCTTTGACATCACAA AATATTTGCTCGCCATATTCGGCCCGCTCATGGTGCTCCAGGCCGGCATAACTAGAGTGCCGTACTTCGT 25 GCGCGCACAAGGGCTCATTCGTGCATGCATGTTGGCGCGGAAAGTCGTGGGGGGGTCATTACGTCCAAATG GTCTTCATGAAGCTGGCCGCACTAGCAGGTACGTACGTTTATGACCATCTTACTCCACTGCGAGATTGGG CTCACACGGGCTTACGAGACCTTGCAGTGGCAGTAGAGCCCGTTGTCTCTCTGACATGGAGACCAAAGT CATCACCTGGGGGCAGACACCGCGGCGTGCGGGGACATCATCTTGGCCCTGCTTCCGCCCGAAGG GGGAAGGAGATACTTCTGGGACCGGCCGATAGTCTTGAAGGACAGGGGTGGCGACTCCTTGCGCCCATCA ${\tt CGGCCTACTCCCAACAAACGCGAGGCCTGCTTGGTTGCATCATCACTAGCCTTACAGGCCGGGACAAGAA}$ 30 CCAGGTTGAGGGGGAGGTTCAAGTGGTTTCCACCGCAACACAATCTTTCCTGGCGACCTGCATCAATGGC GTGTGTTGGACTGTCTTCCACGGCGCCGGCTCAAAGACCCTAGCCGGCCCAAAGGGTCCAATCACCCAAA TGTACACCAATGTAGACCAGGACCTTGTTGGCTGGCGGCACCTCCTGGGGCGCGTTCCCTGACACCATG CACTTGCGGCTCCTCGGACCTTTACCTGGTCACGAGACATGCTGATGTCATTCCGGTGCGCCGGGGGGT GACGGTAGGGGGAGCCTACTCCCCCCAGGCCTGTCTCCTACTTGAAGGGCTCCTCGGGTGGTCCACTGC TCTGCCCTTCGGGGCACGCTGTCGGCATACTTCCGGCTGCTGTATGCACCCGGGGGGTTGCCATGGCGGT GGAATTCATACCCGTTGAGTCTATGGAAACTACTATGCGGTCTCCCGGTCTTCACGGACAATCCGTCTCCC CCGGCTGTACCGCAGACATTCCAAGTGGCCCACTTACACGCTCCCACCGGCAGCGCAAGAGCACTAGGG 40 TTTTGGGGCGTATATGTCCAAGGCACATGGTATCGACCCCAACCTTAGAACTGGGGTAAGGACCATCACC ACAGGTGCCCTATCACATACTCCACCTATGGCAAGTTCCTTGCCGACGGTGGCGGCTCCGGGGGCGCCT ATGACATCATAATGTGTGATGAGTGCCACTCAACTGACTCGACTACCATTTATGGCATCGGCACAGTCCT GGACCAAGCGGAGACGGCTGGAGCGCGCTCGTGGTGCTCTCCACCGCTACGCCTCCGGGATCGGTCACC GTGCCACACCTCAATATCGAGGAGGTGGCCCTGTCTAATACTGGAGAGATCCCCTTCTACGGCAAAGCCA 45 TTCCCATCGAGGCTATCAAGGGGGGAAGGCATCTCATTTTCTGCCATTCCAAGAAGAAGTGTGACGAACT CGCCGCAAAGCTGTCAGGCCTCGGACTCAATGCCGTAGCGTATTACCGGGGTCTTGACGTGTCCGTCATA CCGACCAGCGGAGACGTTGTTGTCGTGGCGACGGACGTCTAATGACGGCCTTTACCGGCGACTTTGACT CAGTGATCGACTGTAATACGTGTGTCACCCAGACAGTCGATTTCAGCTTGGACCCCACCTTCACCATTGA GACGACGACGTGCCCCAAGACGCAGTGTCGCGCTCGCAGAGGCGAGGCAGGACTGGTAGGGGCAGGGCT 50 GGCATATACAGGTTTGTGACTCCAGGAGAACGGCCCTCGGGCATGTTCGATTCTTCGGTCCTGTGAGT GTTATGACGCGGGTTGTGCGTGGTACGAACTCACGCCCGCTGAGACCTCGGTTAGGTTGCGGGCGTACCT AAACACCAGGGTTGCCCGTCTGCCAGGACCATCTGGAGTTCTCGGAGGGTGTCTTCACAGGCCTCACC AGGCTACAGTGTGCGCCAGGGCTCAAGCCCCACCTCCATCGTGGGATGAAATGTGGAGGTGTCTCATACG 55 GCTGAAACCTACGCTGCACGGGCCAACACCCCTGCTGTATAGGTTAGGAGCCGTCCAAAATGAGGTCACC CTCACACCCCCATAACCAAATTCATCATGACATGTATGTCGGCTGACCTGGAGGTCGTCACCAGCACCT GGGTGCTGGTAGGCGGAGTCCTCGCAGCTCTGGCCGCGTACTGCCTGACAACAGGCAGCGTGGTCATTGT

GGGCAGGATCATCCTGTCCGGGAAGCCGGCTATCATCCCCGATAGGGAAGTTCTCTACCAGGAGTTCGAC GAGATGGAGGAGTGTGCCTCACACCTCCCTTACTTCGAACAGGGAATGCAGCTCGCCGAGCAATTCAAAC AGAAGGCGCTCGGGTTGCTGCAAACAGCCACCAAGCAGGCGGAGGCTGCTGCTCCCGTGGTGGAGTCCAA GTGGCGAGCCCTTGAGACCTTCTGGGCGAAGCACATGTGGAACTTCATTAGTGGGATACAGTACTTGGCA 5 GGCTTGTCCACTCTGCCTGGGAACCCCGCAATACGATCACCGATGGCATTCACAGCCTCCATCACCAGCC CGCTCACCACCCAGCATACCCTCTTGTTTAACATCTTGGGGGGATGGGTGGCTGCCCAACTCGCCCCCCC CAGCGCTGCCTCAGCTTTCGTGGGCGCCGGCATCGCTGGAGCCGCTGTTGGCACGATAGGCCTTGGGAAG GTGCTTGTGGACATTCTGGCAGGTTATGGAGCAGGGGTGGCGGCGCCACTTGTGGCCTTTAAGATCATGA GCGGCGAGATGCCTTCAGCCGAGGACATGGTCAACTTACTCCCTGCCATCCTTTCTCCCGGTGCCCTGGT 10 CGTCGGGATTGTGTGCAGCAATACTGCGTCGGCATGTGGGCCCAGGGGAAGGGGCTGTGCAGTGGATG CTGCAGCGCGTGTTACCCAGATCCTTTCCAGCCTCACCATCACTCAGCTGTTGAAGAGACTCCACCAGTG GATTAATGAGGACTGCTCTACGCCATGCTCCAGCTCGTGGCTAAGGGAGATTTGGGACTGGATCTGCACG GTGTTGACTGACTTCAAGACCTGGCTCCAGTCCAAGCTCCTGCCGCGATTACCGGGAGTCCCTTTTTTCT CATGCCAACGCGGTATAAGGGAGTCTGGCGGGGGGACGCATCATGCACACCACCTGCCCATGCGGAGC ACAGATCACCGGACACGTCAAAAACGGTTCCATGAGGATCGTTGGGCCTAAAACCTGCAGCAACACGTGG TACGGGACATTCCCCATCAACGCGTACACCACGGGCCCCTGCACACCCTCCCCGGCGCCCAAACTATTCCA AGGCATTGTGGAGAGTGCCGCTGAGGAGTACGTGGAGGTCACGCGGGTGGGAGATTTTCACTACGTGAC GGGCATGACCACTGACAACGTGAAGTGTCCATGCCAGGTTCCGGCCCCCGAATTCTTCACGGAGGTGGAT 20 GGAGTGCGGTTGCACAGGTACGCTCCGGCGTGCAGACCTCTCCTACGGGAGGAGGTCGTATTCCAGGTCG GGCTCCACCAGTACCTGGTCGGGTCACAGCTCCCATGCGAGCCCGAACCGGATGTAGCAGTGCTCACTTC CATGCTCACTGACCCCTCCCACATTACAGCAGAGACGCCTAAGCGTAGGCTGGCCAGGGGGTCTCCCCCC ACTCCCGGACGCTGACCTCATTGAGGCCAACCTCTTGTGGCGGCAAGAGATGGGCGGGAACATCACCCG 25 CGTGGAGTCAGAGAATAAGGTGGTAATCCTGGACTCTTTCGACCCGCTCCGAGCGGAGGATGATGAGGGG GAAATATCCGTTCCGGCGGAGATCCTGCGGAAATCCAGGAAATTCCCCCCAGCGCTGCCCATATGGGCGC CGCCGGATTACAACCCTCCGCTGCTAGAGTCCTGGAAGGACCCGGACTACGTTCCTCCGGTGGTACACGG GTGCCCGTTGCCGCCCACCAAGGCCCCTCCAATACCACCTCCACGGAGGAAGAGGACGGTTGTCCTGACA GAATCCACCGTGTCTTCTGCCTTGGCGGAGCTCGCTACTAAGACCTTCGGCAGCTCCGGATCGTCGGCCA 30 TCGACAGCGGTACGCCACCCCCCCTCCTGACCAAGCCTCCGGTGACGGCGACAGAGAGTCCGACGTTGA GTCGTTCTCCTCCATGCCCCCCTTGAGGGAGAGCCGGGGGACCCCGATCTCAGCGACGGATCTTGGTCC ACCGTGAGCGAGGAGGCTAGTGAGGACGTCGTCTGCTGTTCGATGTCCTACACATGGACAGGCGCCCTGA TCACGCCATGCGCTGCGGAGGAAAGCAAGTTGCCCATCAACCCGTTGAGCAATTCTTTGCTACGTCACCA CAACATGGTCTATGCTACAACATCCCGCAGCGCAGGCCTGCGGCAGAAGAAGGTCACCTTTGACAGACTG 35 CAAGTCCTGGACGACCACTACCGGGACGTGCTTAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTA ${\tt AACTTCTATCTGTAGAAGAAGCCTGCAAACTGACGCCCCCACATTCGGCCAAATCCAAATTTGGCTACGG}$ GGCGAAGGACGTCCGGAGCCTATCCAGCAGGGCCGTTACCCACATCCGCTCCGTGTGGAAGGACCTGCTG GAAGACACTGAAACACCAATTAGCACTACCATCATGGCAAAAAATGAGGTTTTCTGTGTCCAACCAGAGA AGGGAGGCCGCAGCCCGCCTTATCGTGTTCCCAGATCTGGGAGTTCGTGTATGCGAGAAGATGGC 40 CCTTTATGACGTGGTCTCCACCCTTCCTCAGGCCGTGATGGGCTCCTCATACGGATTCCAGTACTCTCCT AAGCAGCGGGTCGAGTTCCTGGTGAATACCTGGAAATCAAAGAAATGCCCCATGGGCTTCTCATATGACA CCCGCTGTTTTGACTCAACGGTCACTGAGAATGACATCCGTGTTGAGGAGTCAATTTACCAATGTTGTGA CTTGGCCCCGAAGCCAAACTGGCCATAAAGTCGCTCACAGAGCGGCTCTATATCGGGGGTCCCCTGACT AATTCAAAAGGCAGAACTGCGGTTACCGCCGGTGCCGCGAGCGGCGTGCTGACGACTAGCTGCGGTA 45 ATACCCTCACATGTTACCTGAAAGCCACTGCGGCCTGTCGAGCTGCGAAGCTCCGGGACTGCACGATGCT CGTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGCGCGGGAACCCAAGAGGATGCGGCGAGCCTACGA GTCTTCACGGAGGCTATGACTAGGTACTCTGCCCCCCTGGGGACCCGCCTCAACCGGAATACGACTTGG AGTTGATAACATCATGTTCCTCCAATGTGTCGGTCGCACACGATGCATCTGGTAAAAGGGTGTACTACCT CACCCGTGACCCTACCACCCCCTTGCACGGGCTGCGTGGGAGACAGCTAGACACACTCCAGTCAACTCC 50 TGGCTAGGCAACATCATGTATGCGCCCACCTTATGGGCAAGGATGATTCTGATGACTCATTTCTTCT CCATCCTTCTAGCTCAGGAGCAACTTGAAAAAACCCTAGATTGTCAGATCTACGGGGCCTGTTACTCCAT TGAACCACTTGATCTACCTCAGATCATTGAGCGACTCCATGGTCTTAGCGCATTTTCACTCCATAGTTAC TCTCCAGGCGAGATCAATAGGGTGGCTTCATGCCTCAGAAAACTTGGGGTACCACCCTTGCGAGCCTGGA 55 TCCGGCTGGTTCGTTGCTGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGCT GGTTCATGTTGTGCCTACTCCTACTTTCCGTGGGGGTAGGCATCTACCTGCTCCCCAACCGATGAATGGG

GAGCTAAACACTCCAGGCCAATAGGCCGTTTCTC (SEQ ID NO:6689)

gi|329739|gb|L02836.1|HPCCGENOM Hepatitis C China virus complete genome ATTGGGGGCGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGCAGAAAGCGTCTA 5 GCCATGGCGTTAGTATGAGTGTCGTGCAGCCTCCAGGACCCCCCCTCCCGGGAGAGCCATAGTGGTCTGC GGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCCGCTCAATGCCTG GAGATTTGGGCGTGCCCCGCGAGACTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTG CCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCACCATGAGCACGAATCCTAAACC TCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCACAGGACGTCAAGTTCCCGGGCGGTGGTCAGATC 10 GTTGGTGGAGTTTACCTGTTGCCGCGCAGGGGCCCCAGGTTGGGTGTGCGCGCGACTAGGAAGACTTCCG AGCGGTCGCAACCTCGTGGAAGGCGACAACCTATCCCCAAGGCTCGCCGACCCGAGGGCAGGACCTGGGC CGCGGCTCCCGGCCTAGTTGGGGCCCCACGGACCCCCGGCGTAGGTCGCGTAATTTGGGTAAGGTCATCG ATACCCTCACATGCGGCTTCGCCGACCTCATGGGGTACATTCCGCTCGTCGGCGCCCCCTTGGGGGGGCGC TGCCAGGGCCCTGGCACATGGTGTCCGGGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCC GGTTGCTCTTTCTCTTTTTAGCCTTGCTATCCTGTTTGACCACCCCAGCTTCCGCTTACGAAG TGCGTAACGTGTCCGGGATATACCATGTCACGAACGACTGCTCCAACTCAAGCATTGTGTATGAGGCAGC GGACCTGATCATGCATACCCCTGGGTGCGTGCCCTGCGTTCGGGAAGGCAACTCCTCCCGTTGCTGGGTA GCGCTCACTCCCACGCTCGCGGCCAGGAACGCCACGATCCCCACTGCGACAGTACGACGGCATGTCGATC 20 TGCTCGTTGGGGCGGCTGCTTTCTCTTCCGCCATGTACGTGGGGGATCTCTGCGGATCTGTTTTCCTTGT CTCTCAGCTGTTCACCTTCTCGCCTCGCCGGTATGAGACAATACAGGACTGCAATTGCTCAATCTATCCC GGCCACGTAACAGGTCACCGCATGGCTTGGGATATGATGATGAACTGGTCGCCTACAACAGCTCTAGTGG TGTCGCAGTTACTCCGGATCCTCAAGCCGTCATGGACATGGTGGTGGGGGGCCCACTGGGGAGTCCTGGC ${\tt GGGCCTTGCCTACTATGCCATGGTGGGGAATTGGGCTAAGGTTTTGATTGTGATGCTACTCTTCGCCGGC}$ 25 CACCTGGGGCCTCTCAGAAGATCCAGCTTATAAATACCAATGGTAGCTGGCATATCAACAGGACTGCCCT GAACTGCAATGACTCCCTCAATACTGGGTTTCTTGCCGCGCTGTTCTATACACACAGGTTCAACGCGTCC GGATGCGCAGAGCGCATGGCCAGCTGCCGCCCCATTGATACATTCGATCAGGGCTGGGGCCCCATCACTT ATACTGAGCCTGATAGCTCGGACCAGAGGCCTTATTGCTGGCACTACGCGCCTCGAAAGTGCGGCATCGT ACCTGCGTCGGAGGTGTGCGGTCCAGTGTATTGTTTCACCCCAAGCCCTGTCGTCGTGGGGACGACCGAT TCCGTGTAACATCGGGGGGGTCGGCAACACTTTGACTTGCCCCACGGATTGCTTTCGGAAGCACCCC GAGGCTACGTATACAAGGTGTGGTTCGGGGCCTTGGCTGACACCTAGGTGCTTAGTTGACTACCCATACA 35 GCACAGGCTCGATGCTGCATGCAACTGGACTCGAGGAGAGCGCTGTAACTTGGAGGACAGGGATAGATCA GAACTCAGCCCGCTGCTACTGTCTACAACAGAGTGGCAGATACTACCCTGCGCCTTCACCACCCTACCGG CTCTGTCCACTGGTTTAATCCATCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTATAGGGTC AGCGGTTGCCTCTTTGCAATTAAATGGGAGTATGTCTTGTTGCTTTTCCTTCTACTAGCAGACGCGCGC 40 GTATGTGCCTGCTTGTGGATGATGCTGCTGATAGCCCAGGCCGAGGCCGCCTTAGAGAACCTGGTGGTCC CATTAAGGGCAGGCTGGTCCCCGGGGCAGCATACGCTTTCTACGGCGTGTGGCCGCTGCTCCTGCTCCTG CTGACATTACCACCACGAGCTTACGCCATGGACCGGGAGATGGCTGCATCGTGCGGAGGCGCGGTTTTTG TAGGTCTGGTATTCCTGACTTTGTCACCATACTACAAGGTGTTCCTCGCTAGGCTCATATGGTGGTTGCA ATACTTCCTCACCATAGCCGAGGCGCACCTGCAAGTGTGGATCCCCCCTCTCAACATTCGAGGGGGCCGC GATGCCATCATCCTCACGTGTGCAATCCACCCAGAGTCAATCTTTGACATCACCAAACTCCTGCTCG CCACGCTCGGTCCTCGTGCTTCAGGCTGGCATAACTAGAGTGCCGTACTTTGTGCGCGCTCATGG GCTCATTCGCGCGTGCATGCTATTGCGGAAAGTTGCTGGGGGTCATTATGTCCAAATGGCCTTCATGAAG CTGGGCGCACTGACAGGTACGTCTATAACCATCTTACTCCGCTGCAGTATTGGCCACGCGCGGGTT 50 TACGAGAACTCGCGGTGGCAGTAGAGCCCGTCATCTTCTCTGACATGGAGACCAAGATTATCACCTGGGG GGCAGACACTGCAGCGTGTGGAGACATCATCTTGGGTTTACCCGTCTCCGCCCGAAGGGGAAAGGAGATA CTCCTGGGGCCGGCCGATAGTCTTGAAGGGCAGGGGTGGCGACTCCTTGCGCCCATCACGGCCTACTCCC AACAGACGCGGGGCTTACTTGGTTGCATCATCACTAGCCTCACAGGCCGAGACAAGAACCAGGTCGAGGG 55

GTCTATCATGGCGCCGGCTCAAAAACCTTAGCCGGCCCAAAGGGCCCCAATCACCCAAATGTACACCAATG TAGACCAGGACCTCGTCGGCTGGCACCGGCCCCCGGGGCGCGTTCCCTAACACCATGCACCTGCGGCAG $\tt CTCGGACCTTTACTTGGTCACGAGACATGCTGATGTCATTCCGGTGCGCCGTCGAGGCGACAGTAGGGGG$ AGTTTACTCTCCCCAGGCCTGTCTCCTACCTGAAGGGCTCGTCGGGGGGGCCCACTGCTCTGCCCCTTCG GGCACGTTGCAGGCATCTTCCGGGCTGCTGTGTGCACCCGGGGGGTTGCGAAGGCGGTGGATTTTATACC CGTTGAGACCATGGAAACTACCATGCGGTCCCCGGTCTTCACGGACAACTCATCCCCTCCTGCCGTACCG CAGACATTCCAAGTGGCCCATCTACACGCTCCCACTGGCAGCGCCAAAAGCACCAAGGTGCCGGCTGCAT ATGCAGCCCAAGGGTACAAGGTACTTGTCTTGAACCCGTCTGTTGCCGCCACTTTAGGTTTTGGGGCGTA TATGTCTAAGGCACATGGTGTCGACCCCAACATTAGAACCGGGGTAAGGACCATCACCACGGGCGCCCCC 10 ATCACATACTCTACCTATGGCAAGTTCCTTGCTGATGGTGGTTGCTCTGGGGGTGCCTATGACATTATAA TATGTGATGAGTGCCATTCAACTGACTCGACTACCATCTTGGGCATCGGCACGGTCCTGGACCAAGCGGA GACGGCTGGAGCGCGCTTGTCGTGCTCGCCACCGCTACGCCTCCGGGATCGGTCACCGTGCCACATCCA CCATCAGGGGGGGAAGGCATCTCATTTTCTGCCACTCCAAGAAGAAGTGTGACGAGCTTGCTGCAAAGCT ATCATCGCTCGGGCTCAACGCTGTGGCGTACTACCGGGGGCCTTGATGTGTCCGTCATACCATCTAGCGGA 15 GACGTCGTTGTCGTGGCAACGGACGCTCTAATGACGGGCTTTTACGGGCGACTTTGACTCAGTGATCGACT GTAACACATGTGTTACCCAAACAGTCGATTTCAGCTTGGACCCCACCTTCACCATCGAGACAACGACCGT GCCCCAAGACGCGGTGTCGCGCCCCCAGCGGCGAGGTAGGACTGGCAGGGGTAGGGAAGGCATCTACAGG TTTGTTACTCCAGGAGAACGGCCCTCGGGCATGTTCGACTCCTCAGTCCTGTGTGAGTGCTATGACGCGG GCTGTGCTTGGTACGAGCTCACGCCGGCTGAGACCACGGTTAGGTTGCGGGCTTACCTAAATACACCAGG 20 GTTGCCCGTCTGCCAGGACCATCTGGAGTTCTGGGAGGGCGTCTTCACAGGTCTCACCCATATAGACGCT ${\tt CACTTTCTGTCCCAGACCAAGCAAGCAGGAGACAACTTCCCCTACCTGGTAGCATACCAAGCTACAGTGT}$ GTGCCAAGGCTCAGGCCCCACCTCCATCGTGGGATCAAATGTGGAAGTGCCTCACACGGCTAAAGCCTAC GCTGCAGGGACCAACACCCCTGCTGTATAGGCTAGGAGCCGTCCAAAATGAGGTCACCCTCACACCCCC 25 ATAACTAAATACATCATGACATGCATGTCGGCTGACCTGGAGGTCGTCACCAGCACCTGGGTGCTGGTGG GCGGAGTCCTTGCAGCTCTGGCCGCGTATTGCCTGACAACGGGCAGCGTGGTCATTGTGGGTAGGATTGT CTTGTCCGGAAGTCCGGCTATTGTTCCTGACAGGGAAGTTCTTTACCAAGACTTCGACGAGATGGAAGAG TGTGCCTCACACCTCCCTTACATCGAACAGGGAATGCAGCTCGCCGAGCAGTTCAAGCAGAAGGCGCTCG GGTTGCTGCAAACAGCCACCAAGCAAGCGGAGGCTGCTGCTCCCGTGGTGGAGTCCAAGTGGCGAGCCCT CGAGACATTTTGGGAAAAACACATGTGGAATTTCATCAGCGGGATACAGTACTTAGCAGGCTTATCCACT 30 CTGCCTGGGAACCCCGCAATGGCATCACTGATGGCATTCACAGCTTCTATCACCAGCCCGCTCACTACCC AACACACCCTCCTGTTTAACATCTTGGGTGGATGGGTGGCTGCCCAACTCGCTCCCCCAGCGCCGCTTC GGCCTTTGTGGGCGCCGGCATTGCCGGTGCGGCTGTTGGCAGCATAGGCCTTGGGAAGGTGCTTGTGGAC ATCCTGGCGGGTTATGGGGCGGGGGTGGCTGGCGCACTCGTGGCCTTTAAGGTCATGAGTGGCGAAATGC GTGCGCAGCAATACTGCGCCGACACGTGGGCCCGGGAGAGGGGGGCTGTGCAGTGGATGAACCGGCTGATA GCGTTCGCTTCGCGGGGTAACCATGTCTCCCCCACGCACTATGTGCCTGAAAGTGACGCCGCAGCGCGTG TTACCCAGATCCTCTCCAGCCTTACCATCACTCAGCTGCTGAAAAGACTTCACCAGTGGATTAATGAGGA CTGTTCCACCCTGCTCCGGCTCGTGGCTAAGGGATGTTTGGGATTGGATATGCACGGTGTTGACCGAT 40 TTCAAGACCTGGCTCCAGTCCAAGCTCCTGCCGCGGTTGCCCGGAGTCCCTTTCCTCTCATGCCAACGCG GGTACAAGGGAGTCTGGCGGGGGGACGGTATTATGCAAACCACCTGTCCATGTGGAGCACAGATTACTGG ACATGTCAAAAACGGTTCCATGAGAATCGTTGGGCCTAAGACTTGTAGCAACACGTGGCATGGAACATTC CCCATCAACGCGTACACCACGGGCCCCTGCACACCCTCCCCGGCGCGAACTATTCCAGGGCGCTGTGGC GGGTGGCTCCTGAGGAGTACGTGGAGGTTACGCGGGTGGGGGGATTTCCACTACGTGACGGCATGACCAC 45 ${\tt CACAGGTACGCTCCGGCGTGCAAACCTCTCCTACGGGAGGAGGTCGTGTTCCAGGTCGGGCTCAACCAAT}$ ACCTGGTTGGATCACAGCTCCCATGCGAGCCCGAGCCGGACGTAACAGTGCTCACTTCCATGCTTACCGA CCCCTCCCACATCACAGCAGAGACGGCCAAGCGTAGGCTGGCCAGGGGGGTCTCCCCCCTCCTTGGCCAGC TCTTCAGCTAGCCAATTGTCTGCGCCTTCTTTGAAGGCGACATGTACTACCCATCATGACTCCCCGGACG 50 CCGACCTCATTGAGGCCAACCTCCTGTGGCGGCAGGAGATGGGCGGAAACATCACCCGTGTGGAGTCAGA GCGGCGGAGATCCTGCGGAAATCCAGGAAGTTCCCCTCAGCGCTGCCCATATGGGCACGCCCAGACTACA ${\tt ACCCTCCACTGCTAGAGTCCTGGAAGGACCCAGATTATGTCCCTCCGGTGGTACACGGGTGCCCGTTGCC}$ GCCTACCACGGCCCCTCCAGTACCACCTCCACGGAGAAAAAGGACGGTCGTCCTAACAGAGTCATCCGTG 55 TCTTCTGCCTTGGCGGAGCTCGCTACTAAGACCTTCGGCAGCTCTGAATCGTCGGCCGTCGACAGCGGCA CGGCGACTGCCCTCCTGACGAGGCCTCCGGCGGCGCGACAAAGGATCCGACGTTGAGTCGTACTCCTC

GAGGCCAGTGAGGACGTCGTCTGCTGCTCAATGTCCTATACATGGACAGGCGCCTTGATCACGCCATGTG CTGCGGAGGAGAGCAAGCTGCCCATCAACCCGCTGAGCAACTCCTTGCTGCGTCACCACAACATGGTCTA TGCTACAACATCCCGCAGTGCAAGCCTACGGCAGAAGAAGGTCGCTTTTGACAGAATGCAAGTCCTGGAC GACCACTACCGGGACGTGCTCAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAAACTCCTATCCA TAGAAGAGGCCTGCAAGCTGACGCCCCCACATTCAGCCAAATCCAAATTTGGCTATGGGGCAAAAGACGT CCGGAACCTATCCAGCAAGGCCGTTAACCACATCCGCTCCGTGTGGAAGGACTTGTTGGAAGACAATGAG ACACCAATCAATACCACCATCATGGCAAAAAATGAGGTTTTCTGCGTCCAACCAGAGAAAGGAGGCCGTA AGCCAGCTCGCCTTATCGTATTCCCAGACTTGGGAGTCCGTGTGTGCGAGAAGATGGCCCTTTATGACGT GGTCTCCACCCTTCCTCAGCCCGTGATGGGCTCCTCATACGGATTCCAGTACTCTCCTGGGCAGCGGGTC GAATTCCTGCTAAATGCCTGGAAATCAAAGGAAAACCCTATGGGCTTCTCATATGACACCCGCTGTTTTG ACTCAACGGTCACTCAGAACGACATCCGTGTTGAGGAGTCAATTTACCAATGTTGTGACTTGGCCCCCGA ${\tt GGCCAGACGGGCCATAAAGTCGCTCACAGAGCGGCTCTATATCGGGGGGTCCCCTGACTAATTCAAAAGGG}$ ${\tt CAGAACTGCGGTTATCGCCGGTGCCGCGCAAGTGGCGTGCTGACGACCAGCTGCGGTAATACCCTTACAT}$ GTTACTTGAAGGCCTCTGCGGCCTGTCGAGCTGCGAAGCTGCAGGACTGCACGATGCTCGTGAACGGAGA CGACCTTGTCGTTATCTGTGAAAGCGCGGGAACTCAAGAGGATGCGGCGAGCCTACGAGTCTTCACGGAG GCTATGACTAGGTACTCTGCCCCCCTGGGGACCTGCCCCAACCAGAATACGACTTGGAGCTAATAACAT CACCATCCCCTCGCGGGGCTGCGTGGGAGACAGCTAGACACTCCAGTCAACTCCTGGCTAGGCAAC ATCATCATGTATGCGCCCACTCTATGGGCAAGGATGATTCTGATGACTCACTTCTTCTCCATCCTTCTAG CTCAGGAGCAACTTGAGAAAGCCCTGGATTGCCAAATCTACGGGGCCTACTACTCCATTGAGCCACTTGA 20 CCTACCTCAGATCATTGAACGACTCCATGGCCTTAGCGCATTTTCACTCCATAGTTACTCTCCAGGTGAG ATCAATAGGGTGGCGTCATGTCTCAGGAAACTTGGGGTACCACCCTTGCGAGTCTGGAGACATCGGGCCA GGCAGTAAAGACCAAGCTTAAACTCACTCCAATCCCGGCTGCGTCCCGGTTGGACTTGTCCGGCTGGTTC GTTGCTGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGTTGGTTCATGTTGT 25 GCCTACTCCTACTTTCTGTAGGGGTAGGCATCTACCTGCTCCCCAACCGATGAACGGGGAGATAAACACT (SEQ ID NO:6690) CCAGGCCAATAGGCCATCCC

qi|15422182|qb|AY051292.1| Hepatitis C virus from India polyprotein mRNA, 30 complete cds GCCAGCCCCTGATGGGGGGGACACTCCACCATAGATCACTCCCCTGTGAGGAACTACTGTCTTCACGCA TAGTGGTCTGCGGAACCGGTGAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATCAACCCG $\verb|CTCAATGCCTGGAGATTTGGGCGTGCCCCCGCAAGACTGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCC| \\$ TTGTGGTACTGCCTGATAGGGTGCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCACCATGAGCACG AATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGACGCCCACAGAACGTTAAGTTCCCGGGTG GCGGCCAGATCGTTGGCGGAGTTTGCTTGTTGCCGCGCAGGGGTCCCAGAGTGGGTGTGCGCGCGACGAG GAAGACTTCCGAGCGGTCACAACCTCGCGGAAGGCGTCAGCCTATTCCCAAGGCCCGACCCGAGGGC 40 TCTTGTCCCCCGGGGTCCCGGCCTAGTCGGGGCCCCTCTGACCCCCGGCGCAGGTCACGCAATTTGGG TAAGGTCATCGATACCCTCACGTGTGGCTTCGCCGACCTCATGGGGTACATCCCGCTCGTCGGTGCTCCT $\tt CTAGGGGGCGCTGCTAGGGCTCTGGCACATGGTGTTAGGGTTCTAGAAGACGGCGTAAATTACGCAACAG$ GGCCGTCGAAGTGCGCAACTCTTCGGGGATCTACCATGTCACCAATGATTGCCCCCAATGCGTCTGTTGTG 45 TACGAGACAGATAGCTTGATCATACATCTGCCCGGGTGTGTGCCCTGCGTACGCGAGGGCAACGCTTCGA GGTGCTGGGTCTCCCTTAGTCCTACTGTTGCCGCTAAGGATCCGGGCGTCCCCGTCAACGAGATTCGGCG ATCTTCCTCGTTGGCCAGCTTTTCACCCTCTCCCCTAGGCGCCACTGGACACACAAGACTGTAATTGCT CCATCTACCCAGGACATGTGACAGGCCATCGAATGGCTTGGGACATGATGATGAATTGGTCACCTACTGG 50 $\tt CGCTTTGGTGGTAGCGCAGCTACTCCGGATCCCACAAGCCGTCTTGGATATGATAGCCGGTGCCCACTGG$ GGTGTCCTAGCGGGCCCGGCATACTACTCCATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGCTACTGC TCTTCGCTGGCGTCGATGCAACCACCCAAGTCACAGGTGGCACCGCGGGCCGTAATGCATATAGATTGGC TAGCCTCTTCTCCACCGGCCCCAGCCAAAATATCCAGCTCATAAACTCCAATGGCAGCTGGCACATTAAC AGGACTGCCCTGAATTGCAATGACAGCCTGCACACCGGCTGGGTAGCAGCGCTGTTCTACTCCCACAAGT

TCAACTCTTCGGGCCGTCCTGAGAGGATGGCTAGTTGTCGGCCTCTTACCGCCTTCGACCAAGGGTGGGG ${\tt GCCCATCACTTACGGGGGGAAAGCTAGTAACGACCAGCGGCCGTATTGCTGGCACTATGCCCCACGCCCG}$ TGCGGTATCGTGCCGGCGAAAGAGGTTTGCGGGCCTGTATACTGTTTCACACCCCAGTCCCGTGGTAGTGG GGACGACGGACAAGTACGGCGTTCCTACCCTACACATGGGGCGAGAATGAGACGGATGTACTGCTCCTTAA CAACTCTAGGCCGCCAATAGGGAATTGGTTCGGGTGTACGTGGATGAATTCCACTGGTTTCACCAAGACG TGCGGGGCTCCTGCCTGTAACGTCGGCGGGGGCGAGCCAACACCCTGTCGTGCCCCACAGATTGCTTCC GCAGACATCCGGACGCAACATACGCTAAGTGCGGCTCTGGCCCTTGGCTTAACCCTCGATGCATGGTGGA CTACCCTTACAGGCTCTGGCACTATCCCTGCACAGTCAATTACACCATATTCAAGATCAGGATGTTCGTG GGCGGGATTGAGCACAGGCTCACCGCCGCGTGCAACTGGACGCGGGGAGAGCGCTGCGACTTGGACGACA 10 GGGATCGTGCCGAGTTGAGCCCGCTGTTGCTGTCCACCACGCAATGGCAGGTCCTCCCCTGCTCATTCAC GGGTTGAGCTCGGTAGTTACATCCTGGGCCATAAGGTGGGAGTATGTCGTGCTCCTTTTCTTGCTGTTAG CAGATGCCCGCATTTGTGCCTGCCTTTGGATGATGCTTCTCATATCCCAGGTAGAGGCGGCGCTGGAGAA CCTGATAGTCCTCAACGCTGCTTCCCTGGCTGGGACACACGGCATCGTCCCTTTCTTCATCTTTTTTGT GCAGCCTGGTATCTGAAAGGCAAGTGGGCCCCTGGACTCGTCTACTCCGTCTACGGAATGTGGCCGCTGC TCCTGCTTCTCCTGGCGTTGCCCCAACGGGCGTACGCCTTGGATCAGGAGTTGGCCGCGTCGTGTGGGGC CGTGGTCTTCATCAGCCTAGCGGTACTTACCCTGTCGCCGTACTACAAACAGTACATGGCCCGCGGCATC TGGTGGCTGCAGTACATGCTGACCAGAGCGGAGGCGCTCCTGCACGTCTGGGTCCCCTCGCTCAACGCCC GGGGAGGCGTGATGGTGCCATACTGCTCATGTGTGTGCTCCACCCGCACTTGCTCTTTGACATCACCAA 20 AATCATGCTGGCCATTCTCGGGCCCCTGTGGATCTTGCAGGCCAGTCTGCTCAGGGTGCCGTACTTCGTG CTCTGTTGAAGCTGGGGGCACTTACTGGCACTTACATTTACAACCACCTTTCCCCACTCCAAGACTGGGC TCATGGCAGCTTGCGTGATCTAGCGGTGGCCACCGAGCCCGTCATCTTCTCCCGGATGGAGATCAAGACT ATCACCTGGGGGGCAGACACCGCGGCCTGTGGAGACATCATCAACGGGCTGCCTGTTTCTGCTCGGAGGG 25 AGCTTACGCCCAACAGACACGAGGTCTCTTGGGCTGTATTGTCACCAGCCTCACCGGTCGGGACAAAAAT CAAGTGGAGGGGAAATCCAGATTGTCTACCGCAACCCAGACGTTCTTGGCCACTTGCATCAACGGAG CTTGCTGGACTGTTTATCATGGGGCCGGATCGAGGACCATCGCTTCGGCGTCGGGTCCTGTGGTCCGGAT GTACACCAATGTGGACCAGGATTTGGTGGGCTGGCCAGCGCCTCAGGGAGCGCGCTCCCTGACGCCGTGC 30 ACGTGCGGTGCCTCGGATCTGTACTTGGTCACGAGGCACGCGGATGTCATCCCAGTGCGGCGTCGAGGCG ATAACAGGGGAAGCTTGCTTTCTCCCCGGCCCATCTCATACCTAAAAGGATCCTCGGGAGGCCCTCTGCT CTGCCCCATGGGACATGTCGCGGGCATTTTTAGGGCCGCGGTGTGCACCCGTGGGGTTGCAAAGGCGGTC GACTTTGTGCCCGTTGAGTCCTTAGAGACCACCATGAGGTCCCCAGTGTTTACTGACAATTCCAGCCCTC CAACAGTGCCCCAGAGTTACCAGGTGGCACATCTACATGCACCCACTGGGAGTGGCAAGAGCACGAAGGT 35 GCCGCCGCTTACGCAGCTCAAGGGTACAAGGTACTTGTGCTGAACCCGTCTGTTGCTGCCACCTTAGGG TTCGGTGCTTATATGTCAAAGGCCCATGGGATTGACCCAAACGTCAGGACCGGCGTGAGGACCATTACCA CAGGCTCCCCCATCACCTACTCCACCTACGGGAAATTTTTGGCTGATGGCGGATGCCCAGGAGGTGCGTA CGACATCATAATATGTGACGAATGTCACTCAGTGGACGCCACCTCGATTCTGGGCATAGGGACCGTCTTG GACCAAGCGGAGACGCGGGGGTTAGGCTCACTGTCCTTGCCACCGCTACACCACCTGGCTTGGTCACCG 40 TGCCACATTCCAACATCGAGGAAGTTGCACTGTCCGCTGACGGGGAGAAACCATTTTATGGTAAGGCCAT CCCCCTAAACTACATCAAGGGGGGGGGGGCATCTCATTTCTGTCATTCCAAGAAGAAGTGCGACGAGCTC GCTGCAAAGCTGGTCGGTCTGGGCGTCAACGCGGTGGCCTTTTACCGTGGCCTCGACGTATCTGTCATTC CAACTACAGGAGACGTCGTTGTTGTAGCGACCGACGCCTTGATGACTGGCTTCACCGGCGATTTCGACTC TGTGATAGACTGCAACACCTGTGTCGTCCAGACAGTCGACTTCAGCCTAGACCCTATATTCTCTATTGAG 45 ACTTCCACCGTGCCCCAGGACGCCGTGTCCCGCTCCCAACGGAGGGTAGGACCGGTCGAGGGAAGCATG GTATTTACAGATATGTGTCACCCGGGGAGCGGCCGTCTGGCATGTTCGACTCCGTGGTCCTCTGTGAGTG CTATGACGCGGGTTGTGCTTGGTACGAGCTTACACCCGCCGAGACCACAGTCAGGCTACGGGCATACCTT AACACCCCAGGATTGCCCGTGTGCCAGGACCACTTGGAGTTCTGGGAGAGTGTCTTCACCGGCCTCACCC 50 AGCCACCGTGTGCGCTAGAGCTAGAGCTCCTCCCCCGTCATGGGACCAAATGTGGAAGTGCCTGATACGG CTCAAGCCCACCCTCACTGGGGCTACCCCATTACTATACAGACTGGGTAGTGTACAGAATGAGATCACCT TAACACCCCAATCACCCCAATACATCATGGCTTGCATGTCGGCGGACCTGGAGGTCGTCACTAGCACGTG GGTGTTGGTGGGCGCGTCTAGCCGCTTTGGCCGCTTACTGCCTGTCCACAGGCAGCGTGGTCATAGTG GGCAGGATAATCCTAGGTGGGAAGCCGGCAGTCATACCTGACAGGGAGGTTCTCTACCGAGAGTTTGATG AGATGGAGGAGTGCCCCCACGTCCCCTACCTCGAGCAGGGGATGCATTTGGCTGGACAGTTCAAGCA GAAAGCTCTCGGGTTGCTCCAGACAGCATCCAAGCAGCGAGACGATCACTCCCACTGTCCGCACCAAC TGGCAGAAACTCGAGTCCTTCTGGGCTAAGCACATGTGGAACTTCGTTAGCGGGATACAATACCTGGCGG

PCT/US2004/007070 WO 2004/080406

GCCTGTCAACGCTGCCCGGGAACCCCGCTATAGCGTCGCTGATGTCGTTTACGGCCGCGGTGACGAGTCC GCTGCCGCTACTGCTTTTGTCGGTGCTGGTATTACTGGCGCCGTTGTTGGCAGTGTGGGCCTAGGGAAGG ACCGCTGATAGCGTTTGCTTCTCGGGGTAACCACGTCTCCCCTACACACTACGTGCCGGAGAGCGACGC GTCGGCTCGTGTCACACAAATTCTCACCAGCCTCACTGTTACTCAGCTTCTGAAAAGGCTCCACGTGTGG ATAAGCTCGGATTGCATCGCCCCGTGTGCTAGTTCTTGGCTTAAAGATGTCTGGGACTGGATATGCGAGG 10 TGCTGAGCGACTTCAAGAATTGGCTGAAGGCCAAACTTGTACCACAACTGCCCGGGATCCCATTCGTATC CTGCCAACGCGGGTACCGTGGGGTCTGGCGGGCGAGGCCATCGTGCACACTCGTTGCCCGTGTGGGGCC AATATAACTGGACATGTCAAGAACGGTTCGATGAGAATCGTCGGGCCTAAGACTTGCAGCAACACCTGGC GTGGGTCGTTCCCCATTAACGCTTACACTACAGGCCCGTGCACGCCCCCCCGGCGCCCGAACTATACGTT CGCGCTATGGAGGGTGTCTGCAGAGGAGTATGTGGAGGTAAGGCGGCTGGGGGACTTCCATTACGTCACG GGGGTGACCACTGATAAACTCAAGTGTCCATGCCAGGTCCCCTCACCCGAGTTCTTCACAGAGGTGGACG GGGTGCGCCTGCATAGGTACGCCCCCCCTGCAAACCCCTGCTGCGAGAAGAGGTGACGTTTAGCATCGG GCTCAATGAATACTTGGTGGGGTCCCAGTTGCCCTGCGAGCCCGAGCCAGACGTAGCTGTACTGACATCA ATGCTTACAGACCCCTCCCACATCACTGCAGAGACGGCAGCGCGTAGGCTGAAGCGGGGGTCTCCCCCCT CCCTGGCCAGCTCTTCCGCCAGCTGTCCGCGCCGTCACTGAAGGCAACATGCACCACTCACCACGA 20 CTCTCCAGACGCTGACCTCATAGAAGCCAACCTCCTGTGGAGACAGGAGATGGGGGGGAACATCACTAGG GTGGAGTCGGAGAACAAGATTGTCGTTCTGGATTCTTTCGACCCGCTCGTAGCGGAGGAGGATGATCGGG AGATCTCTATTCCAGCTGAGATTCTGCGGAAGTTCAAGCAGTTTCCTCCCGCTATGCCCATATGGGCACG GCCAGATTATAATCCTCCCCTTGTGGAACCGTGGAAGCGCCCGGACTATGAGCCACCCTTAGTCCACGGG TGCCCCTACCACCTCCCAAGCCAACTCCGGTGCCGCCACCCCGGAGAAAGAGGACGGTGGTGCTGGACG 25 AGTCTACAGTATCATCTGCTCTGGCTGAGCTTGCCACTAAGACCTTCGGCAGCTCTACAACCTCAGGCGT GACAAGTGGTGAAGCGACTGAATCGTCCCCGGCGCCCTCCTGCGGCGGTGAGCTGGACTCCGAAGCTGAA TCTTACTCCTCCATGCCCCCTCTCGAGGGGGAGCCGGGGGACCCCGATCTCAGCGACGGGTCTTGGTCTA CCGTGAGCAGTGATGGTGGCACGGAAGACGTTGTGTGCTCCTCGATGTCTTACTCGTGGACGGCCGCTTT AATCACGCCCTGTGCCTCAGAGGAAGCCAAGCTCCCTATCAACGCATTGAGCAACTCGCTGCTGCGCCAC 30 CACAACTTGGTGTATTCCACCACCTCTCGCAGCGCTGGCCAGAGACAGAAAAAAGTCACATTTGACAGAG TGCAAGTCCTGGACGACCATTACCGGGACGTGCTCAAGGAGGCTAAGGCCAAGGCATCCACGGTGAAGGC TAGACTGCTATCCGTTGAGGAAGCGTGTAGCCTGACGCCCCACACTCCGCCAGATCAAAATTTGGCTAT GGGGCGAAGGATGTCCGAAGCCATTCCAGTAAGGCTATACGCCACATCAACTCCGTGTGGCAGGACCTTC TGGAGGACAATACAACACCCATAGACACTACCATCATGGCAAAGAATGAGGTCTTCTGTGTGAAGCCCGA 35 AAAGGGGGCCGCAAGCCCGCTCGTCTTATCGTGTACCCCGACCTGGGAGTGCGCGTATGCGAGAAGAGG GCTTTGTATGACGTAGTCAAACAGCTCCCCATTGCCGTGATGGGAGCCTCCTACGGGTTCCAGTACTCAC CAGCGCAGCGGGTCGACTTCCTGCTTAAAGCGTGGAAATCTAAGAAAGTCCCCATGGGGTTTTCCTATGA CACCCGTTGCTTTGACTCAACAGTCACTGAGGCTGATATCCGTACGGAGGAAGACCTCTACCAATCTTGT GACCTGGCCCCTGAGGCTCGCATAGCCATAAGGTCCCTCACAGAGAGGCTTTACATCGGGGGCCCACTCA CCAATTCTAAGGGACAAAACTGCGGCTATCGGCGATGCCGCCAAGCGGCGTGCTGACCACTAGCTGCGG TAACACCATAACCTGCTTCCTCAAAGCCAGTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACCATG CTCGTGTGCGGCGACGCCTCGTCGTTATCTGTGAGAGCGCCGGTGTCCAGGAGGACGCTGCGAGCCTGA GAGCCTTCACGGAGGCTATGACCAGGTACTCCGCCCCCCGGGAGACCCGCCTCAACCAGAATACGACTT 45 CCTGGCTAGGCAACATCATCATGTTTGCCCCCACTCTGTGGGTACGGATGGTCCTCATGACCCATTTTTT CTCCATACTCATAGCTCAGGAGCACCTTGGAAAGGCTCTAGATTGTGAAATCTATGGAGCCGTACACTCC GTCCAACCGTTGGACTTACCTGAAATCATCCAAAGACTCCACAGCCTCAGCGCGTTTTCGCTCCACAGTT ACTCTCCAGGTGAAATCAATAGGGTGGCTGCATGCCTCAGGAAGCTTGGGGTTCCGCCCTTGCGAGCTTG 50 TGTCCAACTGGTTCACGGGCGGTTACAGCGGGGGAGACATTTATCACAGCGTGTCTCATGCCCGGCCCCG GNTGGGCAACCACTCCGGGTCTTTAGGCCCTATTTAAACACTCCAGGCCTTTAGGCCCCGT 55

(SEQ ID NO:6691)

gi|23510419|ref|NM 000043.3| Homo sapiens tumor necrosis factor receptor superfamily, member 6 (TNFRSF6), transcript variant 1, mRNA CCTACCCGCGCGCGAGCCAAGTTGCTGAATCAATGGAGCCCTCCCCAACCCGGGCGTTCCCCAGCGAGGC TTCCTTCCCATCCTCCTGACCACCGGGGCTTTTCGTGAGCTCGTCTCTGATCTCGCGCAAGAGTGACACA CAGGTGTTCAAAGACGCTTCTGGGGAGTGAGGGAAGCGGTTTACGAGTGACTTGGCTGGAGCCTCAGGGG CGGGCACTGGCACGGAACACCCTGAGGCCAGCCCTGGCTGCCCAGGCGGAGCTGCCTCTTCTCCCGCG GGTTGGTGGACCCGCTCAGTACGGAGTTGGGGAAGCTCTTTCACTTCGGAGGATTGCTCAACAACCATGC TGGGCATCTGGACCCTCCTACCTCTGGTTCTTACGTCTGTTGCTAGATTATCGTCCAAAAGTGTTAATGC CCAAGTGACTGACATCAACTCCAAGGGATTGGAATTGAGGAAGACTGTTACTACAGTTGAGACTCAGAAC TTGGAAGGCCTGCATCATGATGGCCAATTCTGCCATAAGCCCTGTCCTCCAGGTGAAAGGAAAGCTAGGG 10 ACTGCACAGTCAATGGGGATGAACCAGACTGCGTGCCCTGCCAAGAAGGGAAGGAGTACACAGACAAAGC CCATTTTTCTTCCAAATGCAGAAGATGTAGATTGTGTGATGAAGGACATGGCTTAGAAGTGGAAATAAAC TGCACCCGGACCCAGAATACCAAGTGCAGATGTAAACCAAACTTTTTTTGTAACTCTACTGTATGTGAAC ACTGTGACCCTTGCACCAAATGTGAACATGGAATCATCAAGGAATGCACACCCAGCCAACACCAAGTG CAAAGAGGAAGGATCCAGATCTAACTTGGGGTGGCTTTGTCTTCTTCTTTTTGCCAATTCCACTAATTGTT 15 TGGGTGAAGAAAGGAAAGTACAGAAAACATGCAGAAAGCACAGAAAGGAAAACCAAGGTTCTCATGAAT CTCCAACCTTAAATCCTGAAACAGTGGCAATAAATTTATCTGATGTTGACTTGAGTAAATATATCACCAC TATTGCTGGAGTCATGACACTAAGTCAAGTTAAAGGCTTTGTTCGAAAGAATGGTGTCAATGAAGCCAAA ATAGATGAGATCAAGAATGACAATGTCCAAGACACAGCAGAACAGAAAGTTCAACTGCTTCGTAATTGGC ATCAACTTCATGGAAAGAAGAAGCGTATGACACATTGATTAAAGATCTCAAAAAAAGCCAATCTTTGTAC 20 TCTTGCAGAGAAATTCAGACTATCATCCTCAAGGACATTACTAGTGACTCAGAAAATTCAAACTTCAGA AATGAAATCCAAAGCTTGGTCTAGAGTGAAAAACAACAAATTCAGTTCTGAGTATATGCAATTAGTGTTT GAAAAGATTCTTAATAGCTGGCTGTAAATACTGCTTGGTTTTTTACTGGGTACATTTTATCATTTATTAG CGCTGAAGAGCCAACATATTTGTAGATTTTTAATATCTCATGATTCTGCCTCCAAGGATGTTTAAAATCT AGTTGGGAAAACAAACTTCATCAAGAGTAAATGCAGTGGCATGCTAAGTACCCAAATAGGAGTGTATGCA 25 GAGGATGAAAGATTAAGATTATGCTCTGGCATCTAACATATGATTCTGTAGTATGAATGTAATCAGTGTA TGTTAGTACAAATGTCTATCCACAGGCTAACCCCACTCTATGAATCAATAGAAGAAGCTATGACCTTTTG CTGAAATATCAGTTACTGAACAGGCAGGCCACTTTGCCTCTAAATTACCTCTGATAATTCTAGAGATTTT ACCATATTTCTAAACTTTGTTTATAACTCTGAGAAGATCATATTTATGTAAAGTATATGTATTTGAGTGC AGAATTTAAATAAGGCTCTACCTCAAAGACCTTTGCACAGTTTATTGGTGTCATATTATACAATATTTCA 30 ATTGTGAATTCACATAGAAAACATTAAATTATAATGTTTGACTATTATATATGTGTATGCATTTTACTGG CTCAAAACTACCTACTTCTTCTCAGGCATCAAAAGCATTTTGAGCAGGAGAGTATTACTAGAGCTTTGC CACCTCTCCATTTTTGCCTTGGTGCTCATCTTAATGGCCTAATGCACCCCCAAACATGGAAATATCACCA AAAAATACTTAATAGTCCACCAAAAGGCAAGACTGCCCTTAGAAATTCTAGCCTGGTTTGGAGATACTAA CTGCTCTCAGAGAAAGTAGCTTTGTGACATGTCATGAACCCATGTTTGCAATCAAAGATGATAAAATAGA 35 TTCTTATTTTTCCCCCACCCCGAAAATGTTCAATAATGTCCCATGTAAAACCTGCTACAAATGGCAGCT TATACATAGCAATGGTAAAATCATCATCTGGATTTAGGAATTGCTCTTGTCATACCCCCAAGTTTCTAAG ATTTAAGATTCTCCTTACTACTATCCTACGTTTAAATATCTTTGAAAGTTTGTATTAAATGTGAATTTTA AGAAATAATATTTATATTTCTGTAAATGTAAACTGTGAAGATAGTTATAAACTGAAGCAGATACCTGGAA CCACCTAAAGAACTTCCATTTATGGAGGATTTTTTTGCCCCTTGTGTTTTGGAATTATAAAATATAGGTAA (SEQ ID NO: 6692) AAAAAAAAAAAAAAAAAAAAAAA

TAAGATTTGATTTTTTGGATCCATTCTTTCTCTCAATAACAGTCTTTCCATTCCTCATCCCAATTCTTGA AGTATTAAATATCTGTGTGTTTCCAAGAGAAGTTACAAATTTTTTAAGAAAATCTGTAAAAAGGATGAAA GAAAGTCGCCTCGAAGATACACAAAAGCACCGAGTGGATTTCCTTCAGCTGATGATTGACTCTCAGAATT TACAGATGGAGTATCTTGACATGGTGGTGAATGAAACGCTCAGATTATTCCCAATTGCTATGAGACTTGA AGCTATGCTCTTCACCGTGACCCAAAGTACTGGACAGAGCCTGAGAAGTTCCTCCCTGAAAGATTCAGCA AGAAGAACAAGGACAACATAGATCCTTACATATACACACCCTTTGGAAGTGGACCCAGAAACTGCATTGG 10 CATGAGGTTTGCTCTCATGAACATGAAACTTGCTCTAATCAGAGTCCTTCAGAACTTCTCCTTCAAACCT TGTAAAGAAACACAGATCCCCCTGAAATTAAGCTTAGGAGGACTTCTTCAACCAGAAAAACCCGTTGTTC TAAAGGTTGAGTCAAGGGATGGCACCGTAAGTGGAGCCTGAATTTTCCTAAGGACTTCTGCTTTGCTCTT CAAGAAATCTGTGCCTGAGAACACCAGAGACCTCAAATTACTTTGTGAATAGAACTCTGAAATGAAGATG 15 GGCTTCATCCAATGGACTGCATAAATAACCGGGGATTCTGTACATGCATTGAGCTCTCTCATTGTCTGTG TAGAGTGTTATACTTGGGAATATAAAGGAGGTGACCAAATCAGTGTGAGGAGGTAGATTTGGCTCCTCTG CTTCTCACGGGACTATTTCCACCACCCCAGTTAGCACCATTAACTCCTCCTGAGCTCTGATAAGAGAAT CAACATTTCTCAATAATTTCCTCCACAAATTATTAATGAAAATAAGAATTATTTTGATGGCTCTAACAAT ${\tt GACATTTATATCACATGTTTTCTCTGGAGTATTCTATAGTTTATGTTAAATCAATAAAGACCACTTTAC}$ AAAAGTATTATCAGATGCTTTCCTGCACATTAAGGAGAATCTATAGAACTGAATGAGAACCAACAAGTAA 20 ATATTTTTGGTCATTGTAATCACTGTTGGCGTGGGGCCTTTGTCAGAACTAGAATTTGATTATTAACATA TTGATCAGGCACATGGCTCACGCCTGTAATCCTAGCAGTTTGGGAGGCTGAGCCGGGTGGATCGCCTGAG GTCAGGAGTTCAAGACAAGCCTGGCCTACATGGTGAAACCCCATCTCTACTAAAAATACACAAATTAGCT 25 AGGCATGGTGGACTCGCCTGTAATCTCACTACACAGGAGGCTGAGGCAGGAGAATCACTTGAACCTGGGA GGCGGATGTTGAAGTGAGCTGAGATTGCACCACTGCACTCCAGTCTGGGTGAGAGTGAGACTCAGTCTTA AAAAAATATGCCTTTTTGAAGCACGTACATTTTGTAACAAAGAACTGAAGCTCTTATTATTATTAGTT TTGATTTAATGTTTTCAGCCCATCTCCTTTCATATTTCTGGGAGACAGAAAACATGTTTCCCTACACCTC TTGCTTCCATCCTCAACACCCAACTGTCTCGATGCAATGAACACTTAATAAAAAAACAGTCGATTGGTCAA 30 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO:6693)

gi|339549|gb|M19154.1|HUMTGFB2A Human transforming growth factor-beta-2 mRNA, complete cds

35 GCCCTCCCGTCAGTTCGCCAGCTGCCAGCCCCGGGACCTTTTCATCTCTTCCCTTTTGGCCGGAGGAGC CGAGTTCAGATCCGCCACTCCGCACCCGAGACTGACACTGAACTCCACTTCCTCCTCTTAAATTTATT TCTACTTAATAGCCACTCGTCTCTTTTTTTCCCCATCTCATTGCTCCAAGAATTTTTTTCTTCTTACTCG CCAAAGTCAGGGTTCCCTCTGCCCGTCCCGTATTAATATTTCCACTTTTGGAACTACTGGCCTTTTCTTT TTAAAGGAATTCAAGCAGGATACGTTTTTCTGTTGGGCATTGACTAGATTGTTTGCAAAAGTTTCGCATC AAAAACAACAACAAAAAAACCAAACAACTCTCCTTGATCTATACTTTGAGAATTGTTGATTTCTTTTT 40 TTTATTCTGACTTTTAAAAACAACTTTTTTTTCCACTTTTTTAAAAAATGCACTACTGTGTGCTGAGCGC TTTTCTGATCCTGCATCTGGTCACGGTCGCGCTCAGCCTGTCTACCTGCAGCACACTCGATATGGACCAG TTCATGCGCAAGAGGATCGAGGCGATCCGCGGGCAGATCCTGAGCAAGCTGAAGCTCACCAGTCCCCCAG AAGACTATCCTGAGCCCGAGGAAGTCCCCCCGGAGGTGATTTCCATCTACAACAGCACCAGGGACTTGCT CCAGGAGAGGCCGAGCCGGCCGCCTGCGAGCGCGAGAGGAGCGACGAAGAGTACTACGCCAAG 45 GAGGTTTACAAAATAGACATGCCGCCCTTCTTCCCCTCCGAAACTGTCTGCCCAGTTGTTACAACACCCT CTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCCATCCCGCC CACTTTCTACAGACCCTACTTCAGAATTGTTCGATTTGACGTCTCAGCAATGGAGAAGAATGCTTCCAAT TTGGTGAAAGCAGAGTTCAGAGTCTTTCGTTTGCAGAACCCAAAAGCCAGAGTGCCTGAACAACGGATTG 50 AGCTATATCAGATTCTCAAGTCCAAAGATTTAACATCTCCAACCCAGCGCTACATCGACAGCAAAGTTGT GAAAACAAGAGCAGAAGGCGAATGGCTCTCCTTCGATGTAACTGATGCTGTTCATGAATGGCTTCACCAT AAAGACAGGAACCTGGGATTTAAAATAAGCTTACACTGTCCCTGCTGCACTTTTGTACCATCTAATAATT ACATCATCCCAAATAAAAGTGAAGAACTAGAAGCAAGATTTGCAGGTATTGATGGCACCTCCACATATAC

55

ATGTTATTGCCCTCCTACAGACTTGAGTCACAACAGACCAACCGGCGGAAGAAGCGTGCTTTGGATGCGG

CCTATTGCTTTAGAAATGTGCAGGATAATTGCTGCCTACGTCCACTTTACATTGATTTCAAGAGGGATCT AGGGTGGAAATGGATACACGAACCCAAAGGGTACAATGCCAACTTCTGTGCTGGAGCATGCCCGTATTTA TGGAGTTCAGACACTCAGCACAGCAGGGTCCTGAGCTTATATAATACCATAAATCCAGAAGCATCTGCTT CTCCTTGCTGCGTGTCCCAAGATTTAGAACCTCTAACCATTCTCTACTACATTGGCAAAACACCCAAGAT TGAACAGCTTTCTAATATGATTGTAAAGTCTTGCAAATGCAGCTAAAATTCTTGGAAAAGTGGCAAGACC AAAATGACAATGATGATGATGATGATGATGACGACGACAACGATGATGCTTGTAACAAGAAAACATAAGA GAGCCTTGGTTCATCAGTGTTAAAAAATTTTTGAAAAGGCGGTACTAGTTCAGACACTTTGGAAGTTTGT GTTCTGTTTGTTAAAACTGGCATCTGACACAAAAAAAGTTGAAGGCCTTATTCTACATTTCACCTACTTT GTAAGTGAGAGAGACAAGCAAATTTTTTTTAAAGAAAAAAATAAACACTGGAAGAATTTATTAGTGT TAATTATGTGAACAACGACAACAACAACAACAACAACAGGAAAATCCCATTAAGTGGAGTTGCTGT ACGTACCGTTCCTATCCCGCGCCTCACTTGATTTTTCTGTATTGCTATGCAATAGGCACCCTTCCCATTC TTACTCTTAGAGTTAACAGTGAGTTATTTATTGTGTGTTACTATATAATGAACGTTTCATTGCCCTTGGA AACTCAAACGAGCCAGAAAAAAAGAGGTCATATTAATGGGATGAAAACCCAAGTGAGTTATTATATGACC 15 GAGAAAGTCTGCATTAAGATAAAGACCCTGAAAACACATGTTATGTATCAGCTGCCTAAGGAAGCTTCTT (SEQ ID NO:6694)

gi|186624|gb|J04111.1|HUMJUNA Human c-jun proto oncogene (JUN), complete 20 cds, clone hCJ-1 CCCGACTGTAGGAGGGCAGCGGAGCATTACCTCATCCCGTGAGCCTCCGCGGGCCCAGAGAAGAATCTTC TAGGGTGGAGTCTCCATGGTGACGGGCGGCCCCCCCCTGAGAGCGACGCGAGCCAATGGGAAGGCCT TGGGGTGACATCATGGGCTATTTTTAGGGGTTGACTGGTAGCAGATAAGTGTTGAGCTCGGGCTGGATAA 25 AGACAGACACCAGCCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTCACCTT CTCTCTAACTGCCCAGAGCTAGCGCCTGTGGCTCCCGGGCTGGTGGTTCGGGAGTGTCCAGAGAGCCTTG TCTCCAGCCGGCCCCGGAGGAGAGCCCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTAC CCCACGCCCCCCGGGGGACGTCGGCGAGCGCTGCAGCAACAACTTTCCCGGCGGGGAGGACCG GAGACAAGTGGCAGAGTCCCGGAGCGAACTTTTGCAAGCCTTTCCTGCGTCTTAGGCTTCTCCACGGCGG TGTTGAACTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCCCCCTAGCAGCGGAGGAGGGGACA GCGGGGAGAGCCGCTGCTCTGGGAAGTGAGTTCGCCTGCGGACTCCGAGGAACCGCTGCGCCCCGAAGAGC 35 GCTCAGTGAGTGACCGCGACTTTTCAAAGCCGGGTAGCGCGCGAGTCGACAAGTAAGAGTGCGGGAGG CATCTTAATTAACCCTGCGCTCCCTGGAGCGAGCTGGTGAGGAGGGCGCAGCGGGGACGCCAGCGG GTGCGTGCGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGGCGCGGGTGTCCCCCGCTTGCCAG AGCCCTGTTGCGGCCCCGAAACTTGTGCGCGCACGCCAAACTAACCTCACGTGAAGTGACGGACTGTTCT ATGACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCG GACCTTATGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGG GAGCCTGAAGCCGCACCTCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAG CTGGCGTCGCCCGAGCTGGAGCGCCTGATAATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCC CCACCCAGTTCCTGTGCCCCAAGAACGTGACAGATGAGCAGGAGGGGTTCGCCGAGGGCTTCGTGCGCGC CCTGGCCGAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCA 45 GGCATGGTGGCTCCCGCGGTAGCCTCGGTGGCAGGGGGCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGC ACAGCGAGCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCGCTGAGCAGCGGCGGCGGGGGG GCCCTCCTACGGCGCGGCCTGGCCTTTCCCGCGCAACCCCAGCAGCAGCAGCAGCCGCCGCACCAC CTGCCCCAGCAGATGCCCGTGCAGCACCCGCGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCG AGATGCCCGGCGAGACACCGCCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAG 50 GAAGCGCATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTG GAGGAAAAAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCTCAGGGAAC AGGTGGCACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCA CAGACTTGAGAACTTGACAAGTTGCGACGGAGAAAAAAAGAAGTGTCCGAGAACTAAAGCCAAGGGTAT 55 CCAAGTTGGACTGGGTTCGGTCTGACGGCGCCCCCAGTGTGCACGAGTGGGAAGGACTTGGTCGCCCCCT

CCCTTGGCGTGGAGCCAGGGAGCGGCCGCCTGCGGGCTGCCCCGCTTTGCGGACGGGCTGTCCCCGCGCG AACGGAACGTTGGACTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTA TTAAAGGGGGGAGGGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTA TGCCCAGTGTTGTTGTAAATAAGAGATTTGGAGCACTCTGAGTTTACCATTTGTAATAAAGTATATAAT TGCTCGATAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAGACTTAGAA 10 ATAAATGTACCTGATGTACCTGATGCTATGTCAGGCTTCATACTCCACGCTCCCCCAGCGTATCTATATG GAATTGCTTACCAAAGGCTAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGTTGCAGTGGAGAGGGAC AGCCCACTGAGAAGTCAAACATTTCAAAGTTTGGATTGCATCAAGTGGCATGTGCTGTGACCATTTATAA TGTTAGAAATTTTACAATAGGTGCTTATTCTCAAAGCAGGAATTGGTGGCAGATTTTACAAAAGATGTAT 15 CCTTCCAATTTGGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGTCTTATGAATATTTA TAACAGCATTCTGTCACAATAAATGTATTCAAATACCAATAACAGATCTTGAATTGCTTCCCTTTACTAC TTTTTTGTTCCCAAGTTATATACTGAAGTTTTTATTTTTAGTTGCTGAGGTT (SEQ ID NO:6695)

qi|179982|qb|M57729.1|HUMCCC5 Human complement component C5 mRNA, complete 20 $\verb|CTACCTCCAACCATGGGCCTTTTGGGAATACTTTGTTTTTTAATCTTCCTGGGGAAAACCTGGGGACAGG|\\$ AGCAAACATATGTCATTTCAGCACCAAAAATATTCCGTGTTGGAGCATCTGAAAATATTGTGATTCAAGT TTATGGATACACTGAAGCATTTGATGCAACAATCTCTATTAAAAGTTATCCTGATAAAAAATTTAGTTAC TCCTCAGGCCATGTTCATTTATCCTCAGAGAATAAATTCCAAAACTCTGCAATCTTAACAATACAACCAA 25 AACAATTGCCTGGAGGACAAAACCCAGTTTCTTATGTGTATTTGGAAGTTGTATCAAAGCATTTTTCAAA TCTTAACCTTCATAGATCCTGAAGGATCAGAAGTTGACATGGTAGAAGAAATTGATCATATTGGAATTAT CTCTTTTCCTGACTTCAAGATTCCGTCTAATCCTAGATATGGTATGTGGACGATCAAGGCTAAATATAAA 30 GAGGACTTTTCAACAACTGGAACCGCATATTTTGAAGTTAAAGAATATGTCTTGCCACATTTTTCTGTCT CAATCGAGCCAGAATATAATTTCATTGGTTACAAGAACTTTAAGAATTTTGAAAATTACTATAAAAAGCAAG ATATTTTTATAAAAGTAGTCACTGAGGCTGACGTTTATATCACATTTGGAATAAGAGAAGACTTAAAA GATGATCAAAAAGAAATGATGCAAACAGCAATGCAAAACACAATGTTGATAAATGGAATTGCTCAAGTCA CATTTGATTCTGAAACAGCAGTCAAAGAACTGTCATACTACAGTTTAGAAGATTTAAACAACAACAAGTACCT 35 TTATATTGCTGTAACAGTCATAGAGTCTACAGGTGGATTTTCTGAAGAGGCAGAAATACCTGGCATCAAA TATGTCCTCTCCCTACAAACTGAATTTGGTTGCTACTCCTCTTTTCCTGAAGCCTGGGATTCCATATC CCATCAAGGTGCAGGTTAAAGATTCGCTTGACCAGTTGGTAGGAGGAGTCCCAGTAATACTGAATGCACA AACAATTGATGTAAACCAAGAGACATCTGACTTGGATCCAAGCAAAAGTGTAACACGTGTTGATGATGGA GTAGCTTCCTTTGTGCTTAATCTCCCATCTGGAGTGACGGTGCTGGAGTTTAATGTCAAAACTGATGCTC 40 CAGATCTTCCAGAAGAAAATCAGGCCAGGGAAGGTTACCGAGCAATAGCATACTCATCTCTCAGCCAAAG TTACCTTTATATTGATTGGACTGATAACCATAAGGCTTTGCTAGTGGGAGAACATCTGAATATTATTGTT ACCCCCAAAGCCCATATATTGACAAAATAACTCACTATAATTACTTGATTTTATCCAAGGGCAAAATTA TCCATTTTGGCACGAGGGAGAAATTTTCAGATGCATCTTATCAAAGTATAAACATTCCAGTAACACAGAA CATGGTTCCTTCATCCCGACTTCTGGTCTATTATATCGTCACAGGAAACAGAACAGAATTAGTGTCT 45 GATTCAGTCTGGTTAAATATTGAAGAAAAATGTGGCAACCAGCTCCAGGTTCATCTGTCTCCTGATGCAG ATGCATATTCTCCAGGCCAAACTGTGTCTCTTAATATGGCAACTGGAATGGATTCCTGGGTGGCATTAGC AGCAGTGGACAGTGCTGTGTATGGAGTCCAAAGAGGAGCCAAAAAGCCCTTGGAAAGAGTATTTCAATTC ${\tt TTAGAGAAGAGTGATCTGGGGCTGTGGGGCAGGTGGTGGCCTCAACAATGCCAATGTGTTCCACCTAGCTG}$ GACTTACCTTCCTCACTAATGCAAATGCAGATGACTCCCAAGAAAATGATGAACCTTGTAAAGAAATTCT 50 CAGGCCAAGAAGAACGCTGCAAAAGAAGATAGAAGAAATAGCTGCTAAATATAAACATTCAGTAGTGAAG AAATGTTGTTACGATGGAGCCTGCGTTAATAATGATGAAACCTGTGAGCAGCGAGCTGCACGGATTAGTT TAGGGCCAAGATGCATCAAAGCTTTCACTGAATGTTGTCGTCGCAAGCCAGCTCCGTGCTAATATCTC AGTTATTTTCCAGAAAGCTGGTTGTGGGAAGTTCATCTTGTTCCCAGAAGAAAACAGTTGCAGTTTGCCC 55

TACCTGATTCTCTAACCACCTGGGAAATTCAAGGCATTGGCATTTCAAACACTGGTATATGTGTTGCTGA TACTGTCAAGGCAAAGGTGTTCAAAGATGTCTTCCTGGAAATGAATATACCATATTCTGTTGTACGAGGA GAACAGATCCAATTGAAAGGAACTGTTTACAACTATAGGACTTCTGGGATGCAGTTCTGTGTTAAAATGT $\verb|CTGCTGTGGAGGGAATCTGCACTTCGGAAAGCCCAGTCATTGATCATCAGGGCACAAAGTCCTCCAAATG|\\$ TGTGCGCCAGAAAGTAGAGGGCTCCTCCAGTCACTTGGTGACATTCACTGTGCTTCCTCTGGAAATTGGC CTTCACAACATCAATTTTTCACTGGAGACTTGGTTTGGAAAAGAAATCTTAGTAAAAACATTACGAGTGG TGCCAGAAGGTGTCAAAAGGGAAAGCTATTCTGGTGTTACTTTGGATCCTAGGGGTATTTATGGTACCAT TAGCAGACGAAAGGAGTTCCCATACAGGATACCCTTAGATTTGGTCCCCAAAACAGAAATCAAAAGGATT TTGAGTGTAAAAGGACTGCTTGTAGGTGAGATCTTGTCTGCAGTTCTAAGTCAGGAAGGCATCAATATCC ${\tt TAACCCACCTCCCCAAAGGGAGTGCAGAGGCGGAGCTGATGAGCGTTGTCCCAGTATTCTATGTTTTTCA}$ 10 $\verb|CTACCTGGAAACAGGAAATCATTGGAACATTTTTCATTCTGACCCATTAATTGAAAAGCAGAAACTGAAG|$ AAAAAATTAAAAGAAGGGATGTTGAGCATTATGTCCTACAGAAATGCTGACTACTCTTACAGTGTGTGGA AGAGCAGAACCAAAATTCAATTTGTAATTCTTTATTGTGGCTAGTTGAGAATTATCAATTAGATAATGGA TCTTTCAAGGAAAATTCACAGTATCAACCAATAAAATTACAGGGTACCTTGCCTGTTGAAGCCCGAGAGA ACAGCTTATATCTTACAGCCTTTACTGTGATTGGAATTAGAAAGGCTTTCGATATATGCCCCCTGGTGAA AATCGACACGCTCTAATTAAAGCTGACAACTTTCTGCTTGAAAATACACTGCCAGCCCAGAGCACCTTT ACATTGGCCATTTCTGCGTATGCTCTTTCCCTGGGAGATAAAACTCACCCACAGTTTCGTTCAATTGTTT CAGCTTTGAAGAGAGACTTTGGTTAAAGGTAATCCACCCATTTATCGTTTTTGGAAAGACAATCTTCA 20 GCATAAAGACAGCTCTGTACCTAACACTGGTACGGCACGTATGGTAGAAACAACTGCCTATGCTTTACTC ACCAGTCTGAACTTGAAAGATATAAATTATGTTAACCCAGTCATCAAATGGCTATCAGAAGAGCAGAGGT ATGGAGGTGGCTTTTATTCAACCCAGGACACCATCAATGCCATTGAGGGCCTGACGGAATATTCACTCCT GGTTAAACAACTCCGCTTGAGTATGGACATCGATGTTTCTTACAAGCATAAAGGTGCCTTACATAATTAT AAAATGACAGACAAGAATTTCCTTGGGAGGCCAGTAGAGGTGCTTCTCAATGATGACCTCATTGTCAGTA 25 CAGGATTTGGCAGTGGCTTGGCTACAGTACATGTAACAACTGTAGTTCACAAAACCAGTACCTCTGAGGA AGTTTGCAGCTTTTATTTGAAAATCGATACTCAGGATATTGAAGCATCCCACTACAGAGGCTACGGAAAC TCTGATTACAAACGCATAGTAGCATGTGCCAGCTACAAGCCCAGCAGGGAAGAATCATCATCTGGATCCT CTCATGCGGTGATGGACATCTCCTTGCCTACTGGAATCAGTGCAAATGAAGAAGACTTAAAAGCCCTTGT GGAAGGGGTGGATCAACTATTCACTGATTACCAAATCAAAGATGGACATGTTATTCTGCAACTGAATTCG 30 ATTCCCTCCAGTGATTTCCTTTGTGTACGATTCCGGATATTTGAACTCTTTGAAGTTGGGTTTCTCAGTC CTGCCACTTTCACAGTTTACGAATACCACAGACCAGATAAACAGTGTACCATGTTTTATAGCACTTCCAA TATCAAAATTCAGAAAGTCTGTGAAGGAGCCGCGTGCAAGTGTGTAGAAGCTGATTGTGGGCAAATGCAG CTTATAAAGTTAGCATCACATCCATCACTGTAGAAAATGTTTTTTGTCAAGTACAAGGCAACCCTTCTGGA 35 TATCTACAAAACTGGGGAAGCTGTTGCTGAGAAAGACTCTGAGATTACCTTCATTAAAAAGGTAACCTGT ACTAACGCTGAGCTGGTAAAAGGAAGACAGTACTTAATTATGGGTAAAGAAGCCCTCCAGATAAAATACA ATTTCAGTTTCAGGTACATCTACCCTTTAGATTCCTTGACCTGGATTGAATACTGGCCTAGAGACACAAC ATGTTCATCGTGTCAAGCATTTTTAGCTAATTTAGATGAATTTGCCGAAGATATCTTTTTAAATGGATGC TAAAATTCCTGAAGTTCAGCTGCATACAGTTTGCACTTATGGACTCCTGTTGTTGAAGTTCGTTTTTTTG TTTTCTTCTTTTTTAAACATTCATAGCTGGTCTTATTTGTAAAGCTCACTTTACTTAGAATTAGTGGCA CTTGCTTTTATTAGAGAATGATTTCAAATGCTGTAACTTTCTGAAATAACATGGCCTTGGAGGGCATGAA GACAGATACTCCTCCAAGGTTATTGGACACCGGAAACAATAAATTGGAACACCTCCTCAAACCTACCACT CAGGAATGTTTGCTGGGGCCGAAAGAACAGTCCATTGAAAGGGAGTATTACAAAAACATGGCCTTTGCTT GAAAGAAAATACCAAGGAACAGGAAACTGATCATTAAAGCCTGAGTTTGCTTTC (SEQ ID NO:6696)

45

50

55

AAAGCGTTCAATGCCAGGTTCCCAGGGTGCATGAAAGGTCGCACCATGTACGTCATCCCATTCAGCATGG GGCCGCTGGGCTCACCTCTGTCGAAGATCGGCATCGAGCTGACGGATTCGCCCTACGTGGTGGCCAGCAT GCGGATCATGACGCGGATGGGCACGCCCGTCCTGGAAGCACTGGGCGATGGGGAGTTTGTCAAATGCCTC CATTCTGTGGGGTGCCCTCTGCCTTTACAAAAGCCTTTGGTCAACAACTGGCCCTGCAACCCGGAGCTGA CGCTCATCGCCCACCTGCCTGACCGCAGAGAGATCATCTCCTTTGGCAGTGGGTACGGCGGGAACTCGCT CACATGCTGATTCTGGGTATAACCAACCCTGAGGGTGAGAAGAAGTACCTGGCGGCCGCATTTCCCAGCG CCTGCGGGAAGACCAACCTGGCCATGATGAACCCCAGCCTCCCCGGGTGGAAGGTTGAGTGCGTCGGGGA TGACATTGCCTGGATGAAGTTTTGACGCACAAGGTCATTTAAGGGCCATCAACCCAGAAAATGGCTTTTTC GGTGTCGCTCCTGGGACTTCAGTGAAGACCAACCCCAATGCCATCAAGACCATCCAGAAGAACACAATCT TTACCAATGTGGCCGAGACCAGCGACGGGGGCGTTTACTGGGAAGGCATTGATGAGCCGCTAGCTTCAGG CGTCACCATCACGTCCTGGAAGAATAAGGAGTGGAGCTCAGAGGATGGGGAACCTTGTGCCCACCCCAAC TCGAGGTTCTGCACCCCTGCCAGCCAGTGCCCCATCATTGATGCTGCCTGGGAGTCTCCGGAAGGTGTTC CCATTGAAGGCATTATCTTTGGAGGCCGTAGACCTGCTGGTGTCCCTCTAGTCTATGAAGCTCTCAGCTG 15 GCAACATGGAGTCTTTGTGGGGGCGGCCATGAGATCAGAGGCCACAGCGGCTGCAGAACATAAAGGCAAA ATCATCATGCATGACCCCTTTGCCATGCGGCCCTTCTTTGGCTACAACTTCGGCAAATACCTGGCCCACT GGCTTAGCATGGCCCAGCACCCAGCAGCCAAACTGCCCAAGATCTTCCATGTCAACTGGTTCCGGAAGGA CAAGGAAGGCAAATTCCTCTGGCCAGGCTTTGGAGAGAACTCCAGGGTGCTGGAGTGGATGTTCAACCGG ATCGATGGAAAAGCCAGCACCAACGTCACGCCCATAGGCTACATCCCCAAGGAGGATGCCCTGAACCTGA 20 AAGGCCTGGGGCACATCAACATGATGGAGCTTTTCAGCATCTCCAAGGAATTCTGGGACAAGGAGGTGGA GCCTTGAAGCAAGAATAAGCCAGATGTAATCAGGGCCTGAGAATAAGCCAGATGTAATCAGGGCCTGAG TGCTTTACCTTTAAAATCATTAAATTAAAATCCATAAGGTGCAGTAGGAGCAAGAGAGGGCAAGTGTTCC CAAATTGACGCCACCTAATAATCATCACCACACCGGGAGCAGATCTGAAGGCACACTTTGATTTTTTAA 25 GGATAAGAACCACAGAACACTGGGTAGTAGCTAATGAAATTGAGAAGGGAAATCTTAGCATGCCTCCAAA AATTCACATCCAATGCATACTTTGTTCAAATTTAAGGTTACTCAGGCATTGATCTTTTCAGTGTTTTTTC GTGTGTGTGTGTGTGTGTGCATGTATGTGCACATGTGTCTGTGTGATATTTGGTATGTGTATTTGT ATGTACTGTTATTCAAAATATATTTAATACCTTTGGAAAATCTTGGGCAAGATGACCTACTAGTTTTCCT 30 TGAAAAAAGTTGCTTTGTTATTAATATTGTGCTTAAATTATTTTTTATACACCATTGTTCCTTACCTTTA CATAATTGCAATATTTCCCCCTTACTACTTCTTGGAAAAAATTAGAAAATGAAGTTTATAGAAAAG (SEQ ID NO:6697)

35 gi|6679892|ref|NM 008061.1| Mus musculus glucose-6-phosphatase, catalytic AGCAGAGGGATCGGGGCCAACCGGGCTTGGACTCACTGCACGGGCTCTGCTGGCAGCTTCCTGAGGTACC AAGGGAGGAAGGAAGGAATGAACATTCTCCATGACTTTGGGATCCAGTCGACTCGCTATCTCC AAGTGAATTACCAAGACTCCCAGGACTGGTTCATCCTTGTGTCTGTGATTGCTGACCTGAGGAACGCCTT 40 CTATGTCCTCTTTCCCATCTGGTTCCATCTTAAAGAGACTGTGGGCATCAATCTCCTCTGGGTGGCAGTG GTCGGAGACTGGTTCAACCTCGTCTTCAAGTGGATTCTGTTTGGACAACGCCCGTATTGGTGGGTCCTGG ACACCGACTACTACAGCAACAGCTCCGTGCCTATAATAAAGCAGTTCCCTGTCACCTGTGAGACCGGACC AGGAAGTCCCTCTGGCCATGCCATGGGCGCAGCAGGTGTATACTATGTTATGGTCACTTCTACTCTTGCT ATCTTTCGAGGAAAGAAAAGCCAACGTATGGATTCCGGTGTTTGAACGTCATCTTGTGGTTTGGGATTCT 45 GGGCTGTGCAGCTGAACGTCTGTCCCGGATCTACCTTGCTGCTCACTTTCCCCACCAGGTCGTGGC TGGAGTCTTGTCAGGCATTGCTGTGGCTGAAACTTTCAGCCACATCCGGGGCATCTACAATGCCAGCCTC CGGAAGTATTGTCTCATCACCATCTTCTTGTTTGGTTTCGCGCTTTGGATTCTACCTGCTACTAAAAGGGC TAGGGGTGGACCTCCTGTGGACTTTGGAGAAAGCCAAGAGATGGTGTGAGCGGCCAGAATGGGTCCACCT TGACACTACACCCTTTGCCAGCCTCTTCAAAAACCTGGGAACCCTCTTGGGGTTGGGGCTGGCCCTCAAC 50 TCCAGCATGTACCGGAAGAGCTGCAAGGGAGAACTCAGCAAGTCGTTCCCATTCCGCTTCGCCTTGCATTG TGGCTTCCTTGGTCCTCCTGCATCTCTTTGACTCTCTGAAGCCCCCATCCCAGGTTGAGTTGATCTTCTA CATCTTGTCTTCTGCAAGAGCGCAACAGTTCCCTTTGCATCTGTCAGTCTTATCCCATACTGCCTAGCC CGGATCCTGGGACAGACACACAAGAAGTCTTTGTAAGGCATGCAGAGTCTTTGGTATTTAAAGTCAACCG CCATGCAAAGGACTAGGAACAACTAAAGCCTCTGAAACCCATTGTGAGGCCAGAGGTGTTGACATCGGCC CTGGTAGCCCTGTCTTTCTTTGCTATCTTAACCAAAAGGTGAATTTTTACAAAGCTTACAGGGCTGTTTG

AGGAAAGTGTGAATGCTGGAAACTGAGTCATTCTGGATGGTTCCCTGAAGATTCGCTTACCAGCCTCCTG TCAGATACAGAAGAGCAAGCCCAGGCTAGAGATCCCAACTGAGAATGCTCTTGCGGTGCAGAATCTTCCG TTTATGTATCGAGCAAACCAGATGCAATCTATGTCTAACCGGCTTCAGTTGTGTCTGCGTCTTTAGATAC GACACACTCAATAATAATAATAGACCAACTAGTGTAATGAGTAGCCAGTTAAAGGCGATTAATTCTGCTT CCAGATAGTCTCCACTGTACATAAAAGTCACACTGTGTGCTTGCATTCCTGTATGGTAGTGGTGACTGTC TCTCACACCACCTTCTCTATCACGTCACAGTTTTCTCCTCCTCAGCCTATGTCTGCATTCCCCAGAATTC TAGGGTTAAGTTAAACTCTGAGATCTTGGGCAAAATGGCAAGGAGACCCAGGATTCTTCTCTCCAAAGGT CTCTCATTCTTAGAAGAAAAGGCAGCCCCTTGGTGCCTGTCCTCCTCCTCGGCTGATTTGCAGAGTACT TCTTCAAAAAGAAAAAATGGTAAAGCTATTTATTAAAAATTCTTTGTTTTTTTGCTACAAATGATGCATA TATTTTCACCCACACCAAGCACTTTGTTTCTAATATCTTTGATAAGAAAACTACATGTGCAGTATTTTAT TAAAGCAACATTTTATTTA (SEQ ID NO:6698)

15

40

55

10

gi|7110682|ref|NM 011044.1| Mus musculus phosphoenolpyruvate carboxykinase 1, cytosolic (Pck1), mRNA

ACAGTTGGCCTTCCCTCTGGGAACACACCCTCGGTCAACAGGGGAAATCCGGCAAGGCGCTCAGCGATCT 20 CTGATCCAGACCTTCCAAAAGGAAGAAGGTGGCACCAGAGTTCCTGCCTCTCTCCACACCATTGCAATT ATGCCTCCTCAGCTGCATAACGGTCTGGACTTCTCTGCCAAGGTTATCCAGGGCAGCCTCGACAGCCTGC CCCAGGCAGTGAGGAAGTTCGTGGAAGGCAATGCTCAGCTGTGCCAGCCGGAGTATATCCACATCTGCGA TGGCTCCGAGGAGGAGTACGGGCAGTTGCTGGCCCACATGCAGGAGGAGGGTGTCATCCGCAAGCTGAAG AAATATGACAACTGTTGGCTGGCTCTCACTGACCCTCGAGATGTGGCCAGGATCGAAAGCAAGACAGTCA 25 GTCGGAAGAGGACTTTGAGAAAGCATTCAACGCCAGGTTCCCAGGGTGCATGAAAGGCCGCACCATGTAT GTCATCCCATTCAGCATGGGCCACTGGGCTCGCCGCTGGCCAAGATTGGTATTGAACTGACAGACTCGC CCTATGTGGTGGCCAGCATGCGGATCATGACTCGGATGGGCATATCTGTGCTGGAGGCCCTGGGAGATGG GGAGTTCATCAAGTGCCTGCACTCTGTGGGGTGCCCTCTCCCCTTAAAAAAGCCTTTGGTCAACAACTGG 30 GCCTGCAACCCTGAGCTGACCCTGATCGCCCACCTCCCGGACCGCAGAGAGATCATCTCCTTTGGAAGCG GATATGGTGGGAACTCACTACTCGGGAAGAAATGCTTTGCGTTGCGGATCGCCAGCCGTCTGGCTAAGGA GCCGCAGCCTTCCCTAGTGCCTGTGGGAAGACTAACTTGGCCATGATGAACCCCAGCCTGCCCGGGTGGA AGGTCGAATGTGTGGGCGATGACATTGCCTGGATGAAGTTTGATGCCCAAGGCAACTTAAGGGCTATCAA 35 CCCAGAAAACGGGTTTTTTGGAGTTGCTCCTGGCACCTCAGTGAAGACAAATCCAAATGCCATTAAAACC ATCCAGAAAAACACCATCTTCACCAACGTGGCCGAGACTAGCGATGGGGGTGTTTACTGGGAAGGCATCG ATGAGCCGCTGGCCCCGGGAGTCACCATCACCTCCTGGAAGAACAAGGAGTGGAGACCGCAGGACGCGGA GAATCTCCAGAAGGAGTACCCATTGAGGGTATCATCTTTGGTGGCCGTAGACCTGAAGGTGTCCCCCTTG TCTATGAAGCCCTCAGCTGGCAGCATGGGGTGTTTGTAGGAGCCACAGCATGAGATCTGAGGCCACAGCTGC TGCAGAACACAAGGGCAAGATCATCATGCACGACCCCTTTGCCATGCGACCCTTCTTCGGCTACAACTTC GGCAAATACCTGGCCCACTGGCTGAGCATGGCCCACCGCCCAGCAGCCAAGTTGCCCAAGATCTTCCATG TCAACTGGTTCCGGAAGGACAAAGATGGCAAGTTCCTCTGGCCAGGCTTTGGCGAGAACTCCCGGGTGCT GGAGTGGATGTTCGGGCGGATTGAAGGGGAAGACAGCGCCAAGCTCACGCCCATCGGCTACATCCCTAAG 45 GAAAACGCCTTGAACCTGAAAGGCCTGGGGGGGCGTCAACGTGGAGGAGCTGTTTGGGATCTCTAAGGAGT TCTGGGAGAAGGAGGTGGAGGATCGACAGGTATCTGGAGGACCAGGTCAACACCGACCTCCCTTACGA AATTGAGAGGGAGCTCCGAGCCCTGAAACAGAGAATCAGCCAGATGTAAATCCCAATGGGGGCGTCTCGA GCGGCACAATCGTGAGTAGATCAGAAAAGCACCTTTTAATAGTCAGTTGAGTAGCACAGAGAACAGGCTA GGGGCAAATAAGATTGGGAGGGGAAATCACCGCATAGTCTCTGAAGTTTGCATTTGACACCAATGGGGGT TTTGGTTCCACTTCAAGGTCACTCAGGAATCCAGTTCTTCACGTTAGCTGTAGCAGTTAGCTAAAATGCA TGTGTGTGTGTGTGTGTGTGTGTGTGTGTACATGCCTGTCCCATTGTCCACAGTATATTTAA AACCTTTGGGGAAAAATCTTGGGCAAATTTGTAGCTGTAACTAGAGAGTCATGTTGCTTTGTTGCTAGTA

CTTCTTGGGAAAAAATTACAAAATAAA (SEQ ID NO:6699)

Example 6 siRNAs decrease mRNA levels in vivo

Male CMV-Luc mice (8-10 weeks old) from Xenogen (Cranbury, NJ) were administered cholesterol conjugated siRNA (see Table 16).

Table 16. Solutions adminstered to mice

5

10

15

20

25

Group	n	Injection Mix
1	7	Buffer (PBS [pH 7.4])
		Cholesterol conjugated siRNA
2	8	(ALN-3001)

Table 17. Test iRNA agents targeting Luciferase

<u>siRNA</u>	Sequence
	5'-GAA CUG UGU GUG AGA GGU CCU-3' (SEQ ID NO:6700)
ALN-1070	3'-CG CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:6701)
	5'-GAA CUG UGU GUG AGA GGU CCU-GS-3' (SEQ ID NO:6702)
ALN-1000	3'-CG CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:6703)
	5'-GAA CUG UGU GUG AGA GGU CCU-3' (SEQ ID NO:6704)
ALN-3000	3'-Cs1Gs1 CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:6705)
	5'-GAA CUG UGU GUG AGA GGU CCU-chol.2-3' (SEQ ID NO:6706)
ALN-3001	3'-Cs1Gs1 CUU GAC ACA CAC UCU CCA GGA-5' (SEQ ID NO:6707)

¹2' O-Me group is attached to the nucleotide <u>and</u> the nucleotides have phosphorothioate linkages (indicated by "s")

Animals were injected (tail vein) with a volume of 200-250 μ l test solution containing buffer or an siRNA solution. Group 1 received buffer and group 2 received cholesterol conjugated siRNA (ALN-3001) at a dose of 50 mg/kg body weight. Twenty-two hours after injection, animals were sacrificed and livers collected. Organs were snap frozen on dry ice, then pulverized in a mortar and pestle.

For Luciferase mRNA analysis (by the QuantiGene Assay (Genospectra, Inc.; Fremont, CA)), approximately 10 mg of tissue powder was resuspended in tissue lysis buffer, and processed according to the manufacturer's protocol. Samples of the lysate were hybridized with probes specific for Luciferase or GAPDH (designed using ProbeDesigner software (Genospectra, Inc., Fremont, CA) in triplicate, and processed for luminometric analysis. Values for Luciferase were normalized to GAPDH. Mean values were plotted with error bars corresponding to the standard deviation of the Luciferase measurements.

² cholesterol is conjugated to the antisense strand via the linker: U-pyrroline carrier-C(O)-(CH₂)₅-NHC(O)-cholesterol (via cholesterol C-3 hydroxyl).

Results indicated that the level of luciferase RNA in animals injected with cholesterol conjugated siRNA was reduced by about 70% as compared to animals injected with buffer (see FIGs 6A and 6b).

In Vitro Activity

5

10

15

20

25

HeLa cells expressing luciferase were transfected with each of the siRNAs listed in Table 17. ALN-1000 siRNAs were most effective at decreasing luciferase mRNA levels (~0.6 nM siRNA decreased mRNA levels to about ~65% the original expression level, and 1.0 nM siRNA decreased levels to about ~20% the original expression level); ALN-3001 siRNAs were least effective (~0.6 nM siRNA had a negligible mRNA levels, and 1.0 nM siRNA decreased levels to about ~40% the original expression level).

Pharmacokinetics/Biodistribution

Pharmacokinetic analyses were performed in mice and rats. Test siRNA molecules were radioactively labeled with ³³P on the antisense strand by splint ligation. Labeled siRNAs (50mg/kg) were administered by tail vein injection, and plasma levels of siRNA were measured periodically over 24 hrs by scintillation counting. Cholesterol conjugated siRNA (ALN-3001) was discovered to circulate in mouse plasma for a longer period time than unconjugated siRNA (ALN-3000) (FIG. 7). RNAse protection assays indicated that cholesterol-conjugated siRNA (ALN-3001) was detectable in mouse plasma 12 hours after injection, whereas unconjugated siRNA (ALN-3000) was not detectable in mouse plasma within two hours following injection. Similar results were observed in rats.

Mouse liver was harvested at varying time points (ranging from 0.08-24 hours) following injection with siRNA, and siRNA localized to the liver was quantified. Over the time period tested, the amount of cholesterol-conjugated siRNA (ALN-3001) detected in the liver ranged from 14.3-3.55 percent of the total dose administered to the mouse. The amount of unconjugated siRNA (ALN-3000) detected in the liver was lower, ranging from 3.91–1.75 percent of the total dose administered.

Detection of siRNA in Different Tissues

5

10

15

20

25

Various tissues and organs (fat, heart, kidney, liver, and spleen) were harvested from two CMV-Luc mice 22 hours following injection with 50 mg/kg ALN-3001. The antisense strand of the siRNA was detected by RNAse protection assay. The liver contained the greatest concentration of siRNA (~8-10 µg siRNA/g tissue); the spleen, heart and kidney contained lesser amounts of siRNA (~2-7 µg siRNA/g tissue); and fat tissue contained the least amount of siRNA (<~1 µg siRNA/g tissue).

Glucose-6-phosphatase siRNA detection by RNAse Protection Assay

Balbc mice were injected with U/U, 3'C/U, or 3' C/3' C siRNA (4 mg/kg) targeting glucose-6-phosphatase (G6Pase) (see Table 18). Administration was by hydrodynamic tail vein injection (hd) or non-hydrodynamic tail vein injection (iv), and siRNA was subsequently detected in the liver by RNAse protection assay.

Table 18. Test iRNA agents targeting glucose-6-phosphatase

siRNA	Description			
U/U	No cholesterol; dinucleotide 3' overhangs on sense and antisense strands			
3′C/U	dinucleotide 3' overhangs on sense and antisense strands; cholesterol conjugated to 3' end of sense strand (mono-conjugate)			
3'C/3'C	dinucleotide 3' overhangs on sense and antisense strands; cholesterol conjugated to 3' end of both sense and antisense strands (bis-conjugate)			

Unconjugated siRNA (U/U) delivered by hd was detected by 15 min. post-injection (the earliest determined time-point) and was still detectable in the liver 18 hours post-injection.

Delivery by normal iv administration resulted in the greatest concentration of 3'C/3'C siRNA (the bis-cholesterol-conjugate) in the liver 1 hour post injection (as compared to the mono-cholesterol-conjugate 3'C/3'U siRNA). At 18 hours post injection, 3'C/3'C siRNAs and 3'C/U siRNA were still detectable in the liver with the bis-conjugate at higher levels compared to the mono-conjugate.

While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various

changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

WHAT IS CLAIMED IS:

5

20

30

1. An iRNA agent comprising a sense sequence and an antisense sequence, wherein the sense sequence has one or more asymmetrical 2'-O alkyl modifications and the antisense sequence has one or more asymmetrical phosphorothicate modifications, and the antisense sequence targets a human gene sequence.

- 2. The iRNA agent of claim 1, wherein at least one of said 2'-O-alkyl modifications is a 2'-OMe modification.
 - 3. The iRNA agent of claim 1, wherein the sense sequence has at least 2 asymmetrical 2'-O alkyl modifications.
- 4. The iRNA agent of claim 1, wherein the sense has at least 4 asymmetrical 2'-O alkyl modifications.
 - 5. The iRNA agent of claim 4, wherein the asymmetrical modifications are 2'-OMe modifications.
 - 6. The iRNA agent of claim 1, wherein the sense sequence has at least 6 asymmetrical 2'-O alkyl modifications.
- 7. The iRNA agent of claim 6, wherein the asymmetrical modifications are 2'-OMe modifications.
 - 8. The iRNA agent of claim 1, wherein the sense sequence has at least 8 asymmetrical 2'-O alkyl modifications.
 - The iRNA agent of claim 8, wherein the asymmetrical modifications are 2'-OMe modifications.

10. The iRNA agent of claim 1, wherein all of the subunits of the sense sequence have an asymmetrical 2'-O alkyl modification.

- 5 11. The iRNA agent of claim 10, wherein the asymmetrical modifications are 2'-OMe modifications.
 - 12. The iRNA agent of claim 1, wherein the antisense sequence has at least 2 asymmetrical phosphorothicate modifications.
 - 13. The iRNA agent of claim 1, wherein the antisense sequence has at least 4 asymmetrical phosphorothioate modifications.

10

25

- 14. The iRNA agent of claim 1, wherein the antisense sequence has at least 6asymmetrical phosphorothioate modifications.
 - 15. The iRNA agent of claim 1, wherein the antisense sequence has at least 8 asymmetrical phosphorothioate modifications.
- 16. The iRNA agent of claim 1, wherein all of the subunits of the sense sequence have an asymmetrical phosphorothicate modification.
 - 17. The iRNA agent of claim 1, wherein the sense and antisense sequences are on different RNA strands.
 - 18. The iRNA agent of claim 1, wherein the sense and antisense sequences are on the same RNA strand.
- 19. The iRNA agent of claim 1, wherein the sense and antisense sequences are fully complementary to each other.

- 20. The iRNA agent of claim 1, further comprising a cholesterol moiety.
- 21. The iRNA agent of claim 20, wherein said cholesterol moiety is coupled to a sense strand.

5

- 22. The iRNA agent of claim 20, further comprising a second cholesterol moiety.
- 23. The iRNA agent of claim 22, wherein said second cholesterol moiety is coupled to a sense strand.

10

- 24. The iRNA agent of claim 1, wherein said human gene is an oncogene.
- 25. The iRNA agent of claim 1, wherein said human gene is the apoB-100 gene.
- 15 26. The iRNA agent of claim 1, wherein said human gene is the glucose-6-phosphatase gene.
 - 27. The iRNA agent of claim 1, wherein the said human gene is the beta catenin gene.

20

25

- 28. The iRNA agent of claim 1, wherein the iRNA agent is at least 21 nucleotides in length, and the duplex region of the iRNA is about 19 nucleotides in length.
- 29. The iRNA agent of claim 1, having a duplex region of about 19 subunits in length and one or two 3' overhangs of about 2 subunits in length.
 - 30. A pharmaceutical preparation comprising the iRNA agent of claim 1.
- 31. A method for reducing apoB-100 levels in a subject comprising administering to a subject an iRNA agent comprising a sense strand sequence and an antisense sequence, wherein the sense sequence has at least 4 asymmetrical 2'-O alkyl modifications and the

antisense sequence has at least 4 asymmetrical phosphorothioate modifications, and the antisense sequence targets apoB-100.

- 32. The method of claim 31, wherein the subject is suffering from a disorder characterized by elevated or otherwise unwanted expression of apoB-100, elevated or otherwise unwanted levels of cholesterol, and/or disregulation of lipid metabolism.
 - 33. The method of claim 32, wherein said disorder is chosen form the group of HDL/LDL cholesterol imbalance; dyslipidemias; hypercholestorolemia; statin-resistant hypercholesterolemia; coronary artery disease (CAD) coronary heart disease (CHD) atherosclerosis

10

15

30

- 34. A method for reducing glucose-6-phosphatase levels in a subject comprising administering to a subject an iRNA agent comprising a sense strand sequence and an antisense sequence, wherein the sense sequence has at least 4 asymmetrical 2'-O alkyl modifications and the antisense sequence has at least 4 asymmetrical phosphorothioate modifications, and the antisense sequence targets glucose-6-phosphatase.
- 35. The method of claim 34, wherein the iRNA agent is administered to a subject to inhibit hepatic glucose production, or for the treatment of a glucose-metabolism-related disorder.
 - 36. The method of claim 35, wherein said disorder is diabetes.
- 25 37. The method of claim 35, wherein said disorder is type-2 diabetes.
 - 38. A method of making an iRNA agent, the method comprising:
 providing a sense strand sequence having at least 4 asymmetrical 2'-O alkyl
 modifications and an antisense sequence having at least 4 asymmetrical phosphorothioate
 modifications, and allowing the sense and antisense strand to hybridize.

39. A method of stabilizing an iRNA agent, comprising selecting a sequence with activity, and introducing one or more asymmetrical modification in said sequence, wherein said modification decreases nuclease sensitivity while not decreasing activity.

Figure 1

Figure 2

Figure 3

FIG. 4

FIG. 5

FIG. 5 (Cont'd)

FIG. 5 (Cont'd)

FIG. 5 (Cont'd)

CPS (x10e3)

Figure 7

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 23 September 2004 (23.09.2004)

(10) International Publication Number WO 2004/080406 A3

(51) International Patent Classification7: C07H 21/04, C12Q 1/68

A61K 48/00,

(21) International Application Number:

PCT/US2004/007070

(22) International Filing Date: 8 March 2004 (08.03.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/452,682	7 March 2003 (07.03.2003)	US
60/454,265	12 March 2003 (12.03.2003)	US
60/454,962	13 March 2003 (13.03.2003)	US
60/455,050	13 March 2003 (13.03.2003)	US
60/462,894	14 April 2003 (14.04.2003)	US
60/463,772	17 April 2003 (17.04.2003)	US
60/465,665	25 April 2003 (25.04.2003)	US
60/465,802	25 April 2003 (25.04.2003)	US
60/469,612	9 May 2003 (09.05.2003)	US
60/493,986	8 August 2003 (08.08.2003)	US
60/494,597	11 August 2003 (11.08.2003)	US
60/506,341	26 September 2003 (26.09.2003)	US
60/510,246	9 October 2003 (09.10.2003)	US
60/510,318	10 October 2003 (10.10.2003)	US
60/518,453	7 November 2003 (07.11.2003)	US

(71) Applicant (for all designated States except US): ALNY-LAM PHARMACEUTICALS [US/US]; 790 Memorial Drive,, Suite 202, Cambridge, MA 02139 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MANOHARAN, Muthiah [US/US]; 25 Circle Drive, Weston, MA 02493

(US). BUMCROT, David [US/US]; 30 Leicester Road, Belmont, MA 02478 (US).

- (74) Agent: MYERS, Louis; Fish & Richardson P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 6 October 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THERAPEUTIC COMPOSITIONS

(57) Abstract: Therapeutic sRNA agents and methods of making and using are enclosed.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US04/0707.

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : A61K 48/00; CO7H 21/04; C12Q 1/68 US CL : 514/44; 536/24.5; 435/6								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols) U.S.: 514/44; 536/24.5; 435/6								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EAST, STN: siRNA, RNA interference, phosphorothicate, 2'O-alkyl, 2' O-Methyl, ApoB100, glucose 6-phosphate								
C. DOCI								
Category *	Citation of document, with indication, where a	Relevant to claim No.						
Y	PARRISH, S. et al. Functional Anatomy of a dsRNA Trigger: Differential Requirement for the Two Trigger Strands in RNA Interference. Molecular Cell. November 2000, vol 6, pages 1077-1087, especially figures 5 and 6.							
Y	ELBASHIR, S. et al. Functional Anatomy of siRNAs Drosophila melanogaster embryo lysate. The EMBO 6888, see entire document.	1-30, 38, 39						
Y	US 20020037555 A1 (Chen) 28 March 2002 (28.03.	34-37						
Y	HAMMOND et al. Post-Transcriptional Gene Silence Reviews Genetics February 2001, Vol. 2, pages 110	34-37						
	•							
Further documents are listed in the continuation of Box C. See patent family annex.								
Special categories of cited documents:			later document published after the intern and not in conflict with the application b	ational filing date or priority date ut cited to understand the				
			principle or theory underlying the invent					
"B., osujersbi	particular relevance oarlier application or patent published on or after the international filing date		document of particular relevance; the old considered movel or cannot be considered when the document is taken alone	imed invention cannot be d to involve an inventive step				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		«Y»	y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious					
"O" document	O" document referring to an oral disclosure, use, exhibition or other means		to a person skilled in the art					
"P" document published prior to the international filing date but later than the priority date claimed		"&" document member of the same potent family						
Date of the actual completion of the international search			Date of mailing of the international search report					
27 May 2005 (27.05.2005) Name and mailing address of the ISA/US			ed officer	Roll Han				
Mail Stop PCT, Attn: ISA/US			Authorized officer Talmu Belf Hame					
Commissioner for Patents P.O. Box 1450								
Alexandria, Virginia 223 13-1450			10 No (571)272-16	,0 D				
Facsimile No. (703) 305-3230								