CSOPT : Calcul scientifique et optimisation Travaux pratiques Optimisation sans contraintes

Yassine Jamoud Samy Haffoudhi 26 septembre 2021

1 Minimisation de la fonction de Rosenbrock

$$f_0(x) = \sum_{i=1}^{n-1} b(x_{i+1} - x_i^2)^2 + (1 - x_i)^2, \quad \forall x \in \mathbb{R}^n \text{ et b } \in \mathbb{R}^+.$$

Travail préliminaire 1.1

1. De manière générale

$$\nabla f(x) = \begin{bmatrix} -4bx_1(x_2 - x_1^2) - 2(1 - x_1) \\ 2b(x_2 - x_1^2) - 4bx_2(x_3 - x_2) - 2(1 - x_2) \\ \vdots \\ 2b(x_n - x_{n-1}^2) - 4bx_n(x_{n+1} - x_n^2) - 2(1 - x_n) \end{bmatrix} \quad \nabla^2 f(x) = \begin{bmatrix} -4bx_1(x_2 - x_1^2) - 2(1 - x_1) \\ \vdots \\ 2b(x_n - x_{n-1}^2) - 4bx_n(x_{n+1} - x_n^2) - 2(1 - x_n) \end{bmatrix}$$

Soit pour n = 2, $f_0(x) = b(x_2 - x_1^2)^2 + (1 - x_1)^2$, $\forall x \in \mathbb{R}^2 \text{ et } b \in \mathbb{R}^+$.

$$\nabla f(x) = \left[\begin{array}{c} -4bx_1(x_2-x_1^2) - 2(1-x_1) \\ 2b(x_2-x_1^2) \end{array} \right] \ \nabla^2 f(x) = \left[\begin{array}{cc} -4b(x_2-x_1^2) + 8bx_1^2 + 2 & -4bx_1 \\ -4bx_1 & 2b \end{array} \right]$$

2. Pour trouver le minimiseur, on cherche à annuler le gradient :

$$\nabla f_0(x_0) = 0 \quad \Rightarrow \quad \left\{ \begin{array}{cc} -4bx_1(x_2 - x_1^2) - 2(1 - x_1) = 0 \\ 2b(x_2 - x_1^2) = 0 \end{array} \right. \Rightarrow \quad \left\{ \begin{array}{c} x_2 = x_1^2 \\ 1 - x_1 = 0 \end{array} \right.$$

D'où
$$x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 avec $f_0(x_0) = 0$

3. On pose f_0 sous la forme d'un critère de moindres carrés non-linéaires tel que $f_0(x) = \frac{1}{2}r_1^2(x) + \frac{1}{2}r_2^2(x)$

On a alors
$$r(x) = \begin{bmatrix} \sqrt{2b}(x_2 - x_1^2) \\ \sqrt{2}(1 - x_1) \end{bmatrix}$$

On a alors
$$r(x) = \begin{bmatrix} \sqrt{2b}(x_2 - x_1^2) \\ \sqrt{2}(1 - x_1) \end{bmatrix}$$

Le Jacobien s'exprime comme $J = \begin{bmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} \\ \\ \frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} \end{bmatrix}$

Après calcul on obtient alors:

$$J = \begin{bmatrix} -2x_1\sqrt{2b} & \sqrt{2b} \\ -\sqrt{2} & 0\frac{\partial r_1}{\partial x_2} \end{bmatrix}$$

1.2 Visualisation de la fonction objectif

On trouve alors pour $x_1 \in [-4, 4]$ et $x_2 \in [-5, 20]$

(a) Visualisation de la fonction de Rosen- (b) Visualisation des lignes de niveaux de brock en 3D $\,$ la fonction

1.3 Minimisation par descente itérative

Pour commencer, on utilise la méthode de descente de plus forte pente avec un pas fixe. On obtient alors en 1000 itérations les différents figures :

FIGURE 2 – Descente de pas 1

FIGURE 3 – Descente de pas 10^{-2}

FIGURE 4 – Descente de pas 10^{-4}

On remarque qu'avec le pas de 10^{-4} , les 1000 itérations ne sont pas suffisante pour tendre vers x_h .

On ajoute alors une recherche de pas par une technique de rebroussement avec un taux $\beta=0.75$ pour assurer la condition d'Armijo avec $c=10^-4$

2 Ajustement d'une courbe non-linéaire

3 Débruitage d'un signal par minimisation d'un critère composite

4 Inversion numérique d'une transformée de Laplace par optimisation sous contraintes