Тренировочная работа по МАТЕМАТИКЕ

11 класс

22 сентября 2016 года Вариант МА10109 (профильный уровень)

Выполнена: ФИО	класс	

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10109 (профильный уровень)

Часть 1

Ответом к каждому заданию является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Флакон шампуня стоит 160 рублей. Какое наибольшее количество флаконов
	можно купить на 1000 рублей во время распродажи, когда скидка составляет
	25 %?

Ответ:

На рисунке жирными точками показана цена нефти на момент закрытия биржевых торгов во все рабочие дни с 4 по 19 апреля 2002 года. По горизонтали указываются числа месяца, по вертикали — цена барреля нефти в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наименьшую цену нефти на момент закрытия торгов в указанный период (в долларах США за баррель).

Ответ: ______.

3 На клетчатой бумаге с размером клетки 1×1 изображён квадрат. Найдите радиус описанной около него окружности.

Ответ: ______.

В кармане у Дани было четыре конфеты — «Мишка», «Маска», «Белочка» и «Взлётная», а также ключи от квартиры. Вынимая ключи, Даня случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Маска».

Ответ: ______.

© СтатГрад 2016-2017 уч. г.

5 Найдите корень уравнения $(3x+4)^2 = (3x+8)^2$.

Ответ: .

В четырёхугольник ABCD, периметр которого равен 48, вписана окружность, CD = 22. Найдите AB.

Ответ:

7 На рисунке показан график движения автобуса. На горизонтальной оси отмечено время в часах, на вертикальной оси — пройденный путь в километрах. Найдите среднюю скорость автобуса за последний час пути. Ответ дайте в километрах в час.

Ответ:

8 В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания равна $\sqrt{39}$. Найдите высоту пирамиды.

Ответ: _____

9 Найдите $-49\cos 2\alpha$, если $\cos \alpha = 0,2$.

Ответ: ______.

При температуре 0 °C рельс имеет длину $l_0 = 20$ м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^\circ) = l_0 (1 + \alpha \cdot t^\circ)$, где $\alpha = 1, 2 \cdot 10^{-5} (^\circ\text{C})^{-1}$ — коэффициент теплового расширения, t° — температура (в градусах Цельсия). При какой температуре рельс удлинится на 3 мм? Ответ выразите в градусах Цельсия.

Часть 2

Ответ: _____

Автомобиль выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 340 км. Одновременно с ним из города С в город В, расстояние между которыми равно 300 км, с постоянной скоростью выехал мотоцикл. По дороге он сделал остановку на 40 минут. В результате автомобиль и мотоцикл прибыли в город В одновременно. Найдите скорость мотоцикла, если она больше скорости автомобиля на 5 км/ч. Ответ дайте в км/ч.

Ответ: _____

Найдите наименьшее значение функции $y = x - \frac{1}{x} + 6$ на отрезке [0,5; 13].

Ответ: _______.

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $(3tg^2x-1)\sqrt{-5\cos x}=0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

© СтатГрад 2016-2017 уч. г.

- В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный (AB=BC) треугольник ABC. Точки K и M середины рёбер A_1B_1 и AC соответственно.
 - а) Докажите, что KM = KB.
 - б) Найдите угол между прямой KM и плоскостью ABB_1 , если AB=8, AC=6 и $AA_1=3$.
- 15 Решите неравенство

$$\frac{15^{x}-3^{x+1}-5^{x+1}+15}{-x^{2}+2x} \ge 0.$$

- Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.
 - а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .
 - б) Вычислите длину стороны BC и радиус данной окружности, если $\angle A$ =45°, B_1C_1 =6 и площадь треугольника AB_1C_1 в восемь раз меньше площади четырёхугольника BCB_1C_1 .
- По бизнес-плану четырёхлетний проект предполагает начальное вложение 12 млн рублей. По итогам каждого года планируется прирост вложенных средств на 15 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число *п* млн рублей в конце первого и второго года, а также целое число *m* млн рублей в конце третьего и четвёртого года. Найдите наименьшее значение *n*, при котором первоначальные вложения за два года, как минимум удвоятся, и наименьшее такое значение *m*, что при найденном ранее значении *n* первоначальные вложения за четыре года как минимум утроятся.
- Найдите все значения параметра a, при каждом из которых множество значений функции $y = \frac{5a 15x + ax}{x^2 2ax + a^2 + 25}$ содержит отрезок [0; 1].
- Будем называть четырёхзначное число *интересным*, если среди четырёх цифр в его десятичной записи нет нулей, а одна из этих цифр равна сумме трёх других из них. Например, интересным является число 3111.
 - а) Приведите пример двух интересных четырёхзначных чисел, разность между которыми равна 221.
 - б) Найдутся ли два интересных четырёхзначных числа, разность между которыми равна 2001?
 - в) Найдите наименьшее нечётное число, для которого не существует кратного ему интересного четырёхзначного числа.

Ответы на тренировочные варианты 10109-10112 (профильный уровень) от 22.09.2016

	1	2	3	4	5	6	7	8	9	10	11	12
10109	8	23	3	0,25	- 2	2	40	6	45,08	12,5	90	4,5
10110	9	12000	4	0,25	1,5	9	36	5	- 7	37,5	54	2,5
10111	22	20	3	0,09	- 0,5	6	4	30	0,25	0,8	80	7
10112	6	10	2	0,02	- 0,35	4	3	80	64	0,48	120	12

-2π

Критерии оценивания заданий с развёрнутым ответом

13 а) Решите уравнение $(3tg^2x-1)\sqrt{-5\cos x}=0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi \right]$.

Решение.

a) Имеем
$$(3tg^2x - 1)\sqrt{-5\cos x} = 0$$
;
$$\begin{cases} tg^2x = \frac{1}{3}, \\ \cos x < 0, \end{cases}$$

откуда
$$\frac{5\pi}{6} + 2\pi n$$
 или $-\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$.

б) Корни, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$, отберём с помощью единичной окружности. Получаем $-\frac{19\pi}{6}$ и $-\frac{17\pi}{6}$.

Ответ: a)
$$\pm \frac{5\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$; 6) $-\frac{19\pi}{6}$; $-\frac{17\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения обоих	
пунктов — пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный (AB = BC) треугольник ABC. Точки K и M — середины рёбер A_1B_1 и AC соответственно.

- а) Докажите, что KM = KB.
- б) Найдите угол между прямой $K\!M$ и плоскостью ABB_1 , если AB=8, AC=6 и $AA_1=3$.

Решение.

- а) Пусть L середина ребра AB. Треугольник AMB прямоугольный, поэтому его медиана LM равна половине гипотенузы и равна LB. Из равенства треугольников KLM и KLB следует, что KM = KB.
- б) Пусть MH высота в треугольнике AMB. Имеем $MH \perp AB$ и $MH \perp BB_1$, следовательно. $MH \perp ABB_1$, угол HKM искомый. Вычисляя двумя способами площадь треугольника AMB, получим $MH \cdot AB = MA \cdot MB$,

откуда
$$MH = \frac{MA \cdot MB}{AB} = \frac{3\sqrt{8^2 - 3^2}}{8} = \frac{3\sqrt{55}}{8}$$
, поэтому
$$\sin \angle HKM = \frac{HM}{KM} = \frac{HM}{\sqrt{3^2 + 4^2}} = \frac{3\sqrt{55}}{40} = \frac{3\sqrt{11}}{8\sqrt{5}}.$$

Ответ: б) $\arcsin \frac{3\sqrt{11}}{8\sqrt{5}}$

Содержание критерия	
Имеется верное доказательство утверждения пункта а, и обосно-	2
ванно получен верный ответ в пункте δ	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
Обоснованно получен верный ответ в пункте δ	
Решение не соответствует ни одному из критериев, перечис-	
ленных выше	
Максимальный балл	2

15 Решите неравенство

$$\frac{15^x - 3^{x+1} - 5^{x+1} + 15}{-x^2 + 2x} \ge 0.$$

Решение.

Преобразуем неравенство:

$$\frac{15^{x} - 3^{x+1} - 5^{x+1} + 15}{-x^{2} + 2x} \ge 0;$$

$$\frac{\left(5^{x} - 3\right)\left(3^{x} - 5\right)}{x(2 - x)} \ge 0;$$

$$\begin{bmatrix} 0 < x \le \log_{5} 3, \\ \log_{3} 5 \le x < 2. \end{bmatrix}$$

Other: $0 < x \le \log_5 3$; $\log_3 5 \le x < 2$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

16 Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.

а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .

б) Вычислите длину стороны BC и радиус данной окружности, если $\angle A$ =45°, B_1C_1 =6 и площадь треугольника AB_1C_1 в восемь раз меньше площади четырёхугольника BCB_1C_1 .

Решение.

а) Заметим, что $\angle AB_1C_1 + \angle C_1B_1C = 180^\circ$. Четырёхугольник BCB_1C_1 вписан в окружность, поэтому $\angle C_1BC + \angle C_1B_1C = 180^\circ$. Значит,

$$\angle AB_1C_1 = \angle C_1BC = \angle ABC$$
.

Следовательно, треугольники ABC и AB_1C_1 подобны по двум углам.

б) Площадь треугольника AB_1C_1 в восемь раз меньше площади четырёхугольника BCB_1C_1 , поэтому площадь треугольника ABC в девять раз больше площади треугольника AB_1C_1 и коэффициент подобия этих треугольников равен 3. Отсюда следует, что $BC = 3B_1C_1 = 18$.

Пусть $AB_1 = x$, тогда AB = 3x. Найдём BB_1 по теореме косинусов:

$$BB_1^2 = x^2 + 9x^2 - 6x \cdot x \cdot \cos 45^\circ = x^2 (10 - 3\sqrt{2}).$$

Следовательно.

$$BB_1 = x\sqrt{10 - 3\sqrt{2}}$$
.

Теперь по теореме синусов из треугольника ABB_1 получаем

$$\frac{AB}{\sin \angle AB_1B} = \frac{BB_1}{\sin \angle A}; \quad \sin \angle AB_1B = \frac{AB}{BB_1}\sin \angle A.$$

Ho $\sin \angle AB_1B = \sin \angle BB_1C$, поскольку синусы смежных углов равны. Получаем

$$\sin \angle BB_1C = \frac{AB}{BB_1}\sin \angle A = \frac{3x}{x\sqrt{10 - 3\sqrt{2}}} \cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2\sqrt{10 - 3\sqrt{2}}}.$$

Теперь находим радиус окружности, описанной около треугольника BB_1C

$$2R = \frac{BC}{\sin \angle BB_1 C} = 6\sqrt{20 - 6\sqrt{2}} \; ; \quad R = 3\sqrt{20 - 6\sqrt{2}} \; .$$

Ответ: б) 18; $3\sqrt{20-6\sqrt{2}}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-	
за вычислительной ошибки	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

По бизнес-плану четырёхлетний проект предполагает начальное вложение $12\,\mathrm{mn}$ рублей. По итогам каждого года планируется прирост вложенных средств на $15\,\%$ по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей в конце первого и второго года, а также целое число m млн рублей в конце третьего и четвёртого года. Найдите наименьшее значение n, при котором первоначальные вложения за два года, как минимум удвоятся, и наименьшее такое значение m, что при найденном ранее значении n первоначальные вложения за четыре года как минимум утроятся.

Решение.

17

5

К началу второго года получится $1,15\cdot 12+n$, а к началу третьего года — $1,15\cdot 1,15\cdot 12+2,15n$ млн вложений.

По условию 15,87+2,15n>24. Наименьшее целое решение этого неравенства — n=4.

При найденном значении n к началу 4-го года имеем $1,15 \cdot 24,47+m$ млн вложений, а в конце проекта — $1,15 \cdot 1,15 \cdot 24,47+2,15m=1,3225 \cdot 24,47+2,15m$. Из условия следует, что $1,3225 \cdot 24,47+2,15m>36$, то есть

$$32,361575+2,15m>36$$
;

значит, 2,15
$$m > 3,638425$$
; $m > \frac{3,638425}{2,15}$.

Наименьшее целое решение этого неравенства - m = 2.

Ответ: 4 и 2 млн руб.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель и решение сведено	1
к исследованию этой модели, при этом решение не завершено или	
имеется верный ответ без обоснования	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

18

Найдите все значения параметра a, при каждом из которых множество значений функции $y = \frac{5a - 15x + ax}{x^2 - 2ax + a^2 + 25}$ содержит отрезок [0;1].

Решение.

Запишем функцию в виде $y = \frac{5a - (15 - a)x}{(x - a)^2 + 25}$. Если при некоторых

значениях a существуют такие числа x_0 , x_1 , что выполняются равенства $0 = \frac{5a - (15 - a)x_0}{(x_0 - a)^2 + 25}$ и $1 = \frac{5a - (15 - a)x_1}{(x_1 - a)^2 + 25}$, то отрезок [0; 1] будет принадле-

жать множеству значений данной функции.

Первое уравнение: $0 = \frac{5a - (15 - a)x}{(x - a)^2 + 25}$; (15 - a)x = 5a. Уравнение имеет

решение при любом $a \ne 15$

Второе уравнение:
$$1 = \frac{5a - (15 - a)x}{(x - a)^2 + 25}$$
; $x^2 + 3(5 - a)x + a^2 - 5a + 25 = 0$.

Уравнение имеет решения тогда и только тогда, когда его дискриминант неотрицателен: $D = 9(5-a)^2 - 4(a^2 - 5a + 25) \ge 0$; $5(a^2 - 14a + 25) \ge 0$; $(a-7+2\sqrt{6})(a-7-2\sqrt{6}) \ge 0$. Pemenue этого $\left(-\infty;\ 7-2\sqrt{6}\right],\ \left[7+2\sqrt{6};+\infty\right)$. Следовательно, условию задачи удовлетворяют все значения a, принадлежащие множеству $\left(-\infty; 7-2\sqrt{6}\right]$, $[7+2\sqrt{6};15), (15;+\infty)$, и только они

Other: $\left(-\infty; 7-2\sqrt{6}\right], \left[7+2\sqrt{6};15\right), \left(15; +\infty\right).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого конечным числом точек	
С помощью верного рассуждения получены все граничные точки	2
искомого множества значений а	
Верно найдена хотя бы одна граничная точка искомого множества	1
значений а	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

- 19 Будем называть четырёхзначное число интересным, если среди четырёх цифр в его десятичной записи нет нулей, а одна из этих цифр равна сумме трёх других из них. Например, интересным является число 3111.
 - а) Приведите пример двух интересных четырёхзначных чисел, разность между которыми равна 221.
 - б) Найдутся ли два интересных четырёхзначных числа, разность между которыми равна 2001?
 - в) Найдите наименьшее нечётное число, для которого не существует кратного ему интересного четырёхзначного числа.

Решение.

7

- а) Примером таких чисел являются числа 2916 и 3137.
- б) Предположим, что такие числа существуют. Рассмотрим какие-либо два таких интересных числа. Пусть *abcd* — десятичная запись большего из них, pqrs — десятичная запись меньшего из них, а k — та из цифр a, b, c и d, которая равна сумме трёх других. Тогда сумма цифр этого числа равна 2k, то есть чётна. Аналогично получаем, что сумма цифр меньшего из рассматриваемых интересных чисел также чётна. Так как $d \neq 0$, следует, что $s \neq 9$, откуда получаем, что d = s + 1, c = r, b = q.

Так как оба числа четырёхзначные, a = p + 2, значит, числа a + b + c + d и p + q + r + s разной чётности. Приходим к противоречию.

в) Покажем, что искомое число равно 11. Для этого сначала приведём пример интересного четырёхзначного числа, кратного 3, 5, 7 и 9, — это число 9135.

Пусть abcd — десятичная запись какого-либо интересного числа, кратного 11. Тогда abcd = 1000a + 100b + 10c + d = 11(91a + 9b + c) + (b - a + d - c).

Получаем, что число b-a+d-c кратно 11. Поскольку a, b, c и d цифры, отсюда следует, что либо b+d=a+c, либо эти две суммы отличаются на 11. Составим две пары чисел: a и c, b и d. Пусть k — та из цифр a, b, c и d, которая равна сумме трёх других, l — та из них, которая в паре с k. Пусть также m и n — две оставшиеся из цифр a, b, c и d. Поскольку k = l + m + n, имеем k + l > m + n. Значит, k + l = m + n + 11. Вычитая из этого равенства равенство k=l+m+n, получаем l=11-l, и, следовательно, 2l = 11. Пришли к противоречию. Значит, не существует интересных четырёхзначных чисел, кратных 11.

Ответ: а) 2916 и 3137; б) нет; в) 11.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
- пример в п. a ,	
$-$ обоснованное решение в п. δ ,	
– искомая оценка в п. в,	
$-$ пример в п. ϵ , обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	
выше	
Максимальный балл	4