IEE239 - Procesamiento de Señales e Imágenes Digitales Laboratorio 03 - Prueba de Entrada Primer Semestre 2018

Martes, 24 de abril del 2018

- Horario 08M1
- Duración: 20 minutos.
- Está terminantemente prohibido el uso de material adicional y calculadora.
- La evaluación es estrictamente personal.
- 1. (1.5 puntos) Demostrar la propiedad de desplazamiento en frecuencia de la transformada discreta de Fourier.

$$W_N^{-ln}x[n] \iff X[((k-l))_N]$$

donde $W_N = e^{-j(2\pi/N)}$ y $((n-m))_N$ corresponde a la operación (n-m) módulo M.

Solución:

DFT:

$$x(k) = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk}$$

 ${\rm donde}\ x[n] = W_N^{-ln} x[n],$

$$X(k) = \sum_{n=0}^{N-1} W_N^{-ln} \cdot x[n] \cdot W_N^{nk}$$

$$X(k) = \sum_{n=0}^{N-1} x[n] \cdot W_N^{n(k-l)} = X[k-l] = X[((k-l))_N]$$

- 2. (2.0 puntos) Se tiene el siguiente sistema de muestreo con entrada $x_c(t)$ y la transformada de Fourier de la secuencia de entrada:
 - La frecuencia $\Omega_0 = \frac{1}{2}(\Omega_1 + \Omega_2)$ y el filtro pasa-bajos ideal $H(j\Omega)$ tiene una frecuencia de corte de $\frac{1}{2}(\Omega_1 + \Omega_2)$.
 - a. Graficar la salida del filtro $H(j\omega)$.
 - b. Si $\Omega_1 = \pi$ y $\Omega_2 = 2\pi$, determinar el periodo de muestro máximo de T de modo que no se genere aliasing.

Figura 1: (a) Sistema de muestreo. (b) Espectro en frecuencia de x(t).

Solución:

a. Una de las propiedades de la DFT establece:

$$x[n]e^{j\omega_0n}\longleftrightarrow X(\Omega-\Omega_0)$$

Entonces,

$$x_c(t) \cdot e^{-j\Omega_0 t} \longleftrightarrow X(\Omega + \Omega_0)$$

La Figura 2 muestra las señal de entrada desplazada, el filtro pasabajos $H(j\Omega)$ y la señal filtrada H_{out} .

Figura 2: Gráficas de la señal de entrada antes y después de pasar por el filtro $H(j\Omega)$.

- b. De acuerdo a los valores de Ω_1 y Ω_2 , la frecuencia de corte Ω_0 es $\frac{3\pi}{2}$. Además, la señal H_{out} tiene un ancho de banda de $\frac{\pi}{2}$. Entonces, el periodo máximo para evitar aliasing es T=1s.
- 3. (1.5 puntos) Un sistema LTI está representado por la ecuación de diferencias:

$$y[n] = \frac{1}{2}(x[n] - x[n-1])$$

a. Determinar y graficar el espectro de magnitud y fase para el intervalo de -2π a 2π .

b. ¿De qué tipo de filtro se trata?

Solución:

a. Aplicando la transformada Z:

$$Y(z) = \frac{1}{2} \cdot (X(z) - X(z)z^{-1})$$

$$H(z) = \frac{1}{2} \cdot (1 - z^{-1})$$

donde $z = e^{j\omega}$, entonces.

$$H(e^{j\omega}) = \frac{1}{2}(1 - e^{-j\omega})$$

■ Magnitud:

$$|H(e^{j\omega})| = \frac{\sqrt{2(1-\cos(\omega))}}{2}$$

• Fase:

$$\angle H(e^{j\omega}) = \arctan\left(\frac{sen(\omega)}{1 - \cos(\omega)}\right)$$

Figura 3: Magnitud y fase de $H(e^{j\omega})$.

b. Se trata de un filtro pasa-altos.