Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – II

Question Paper

Degree & Branch	B.E CSE				Semester	V	
Subject Code & Name	UCS1505 & INTRODUCTION TO CRYPTOGRAPHIC TECHNIQUES			Regulation: 2018			
Academic Year	2022-23 ODD	Batch	2020-24	Date	19.10.2022	FN	
Time: 8.15 – 9.45 AM (90 Minutes)	Answer All Questions			Maximum	mum: 50 Marks		

 $Part - A (6 \times 2 = 12 Marks)$

K1	1. What is diffusion and confusion?	CO1	1.4.1
K2	2. Explain the avalanche effect.	CO1	1.3.1
К3	3. Apply Fermat's little theorem to find 2 ³⁴⁵ mod 11.	СОЗ	1.4.1
K2	4. Compare DES and AES	CO1	1.3.1 1.4.1
K3	5. Apply Euclid's algorithm to find the gcd (1076, 1970)	CO3	1.3.1 2.1.3
K2	6. Explain any two algebraic structures used in cryptographic algorithms.	CO3	1.4.1

Part – B $(3\times6 = 18 \text{ Marks})$

K2	7. What is a message authentication code? What is the difference between a message authentication code and a one-way hash function?	CO1	1.4.1
1	8. Solve using Euler's Totient function Ø(440), Ø(27) and Ø(231)	СОЗ	1.4.1 13.3.1
К3	9. Apply extended Euclid algorithm to find the multiplicative inverse of 23 mod 100.	CO3	1.4.1 13.3.1

Part – $C_1(2 \times 10 = 20 \text{ Marks})$

10. Alice wants to send message M to Bob, without Eve observing it. Alice and 1.4.1				
	1.4.1			
	1.00			
COL				
001				
OR				
	CO1			

K2	11. What is double DES? What kind of attack on double DES makes it useless? What is triple DES?	CO1	1.4.1
К3	12. Apply the Chinese remainder Theorem to solve the following congruences and explain the algorithm. $x \equiv 1 \mod 3$ $x \equiv 4 \mod 5$ $x \equiv 6 \mod 7$	CO2	2.1.3 13.3.1
	OR		
К3	13. Make use of a Feistel cipher composed of sixteen rounds with a block length of 128 bits and a key length of 128 bits. Suppose that, for a given k, the key scheduling algorithm determines values for the first eight round keys, $k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9 = k_8, k_{10} = k_7, k_{11} = k_6, k_{12} = k_5, k_{13} = k_4, k_{14} = k_3, k_{15} = k_2, k_{16} = k_1,$ Suppose you have a ciphertext <i>C</i> . Explain how, with access to an encryption oracle, you can decrypt <i>C</i> and determine <i>m</i> using just a single oracle query. (5 Marks) b. Consider a notion of indistinguishable encryption for multiple distinct messages, i.e., where a scheme need not hide whether the same message is encrypted twice. Give a suitable definition	CO3	2.1.3 13.3.1

Prepared By	Reviewed By	Approved By
V. Blanks	Lam	Jenh
Course Coordinator	PAC Team	HOD

ζ.