UGA

ÉCONOMÉTRIE 2 : L3 MIASH, S2

DEVOIR 2

(Cette version: 24 mars 2023)

MICHAL URDANIVIA 1

^{1.} Contact : michal.wong-urdanivia@univ-grenoble-alpes.fr, Université de Grenoble Alpes, Faculté d'Économie, GAEL.

UGA	ÉCONOMÉTRIE 2 : L3 MIASH, S2	M. Urdanivia
	Table des matières	
1.	Régression et Projection Linéaires	2
2.	Théorème de Frisch-Waugh Lovell	2
2.1	. Illustration numérique/empirique	2

1. Régression et Projection Linéaires

On considère un échantillon i.i.d., $\{(y_i, \mathbf{x}_i), i = 1, ..., N\}$ et on se propose d'étudier la relation entre $y_i \in \mathbb{R}$ et $\mathbf{x}_i \in \mathbb{R}^K$ en commençant par considérer que cette relation soit représentée par :

$$y_i = \mathbf{x}_i' \mathbf{a}_0 + u_i, \ \mathbf{E}[u_i] \equiv 0,$$
 (1.1)

où $\mathbf{a}_0 \in \mathbb{R}^K$ est un vecteur de coefficients, u_i est une variable inobservable par l'économètre, et on suppose aussi que le vecteur \mathbf{x}_i contient un élément constant.

- (1) Indiquez la condition qu'on doit imposer à u_i pour que (1.1) soit l'équation d'un modèle de régression linéaire.
- (2) Sans que forcément la condition de la question précédente ne soit imposée et en considérant que $\mathbf{x}'_i \mathbf{a}_0$ est la projection linéaire de y_i sur \mathbf{x}_i :
 - (a) Indiquez comment \mathbf{a}_0 est défini et donnez en une expression en termes de moments de \mathbf{x}_i et y_i .
 - (b) Indiquez ce que dans ce cas la relation entre ξ et u_i vérifierait.
 - (c) Proposez un estimateur convergent de \mathbf{a}_0 .
 - (d) S'agit t-il aussi d'un estimateur convergent de **a**₀ lorsque l'on considère un modèle de régression linéaire? Argumentez votre réponse.

2. Théorème de Frisch-Waugh Lovell

Dans cette partie on commence par une illustration numérique/empirique de ce résultat qu'on dérive théoriquement par la suite en utilisant les propriétés des projections linéaires.

2.1. **Illustration numérique/empirique.** Nous allons utiliser des données qui sont disponible sur le site que Bruce Hansen. Plus précisément, nous allons utiliser des données extraites du *Current Population Survey*(CPS) de 2009. Une description du fichier est ici.

On considère la version suivante de (1.1):

$$lwage = \alpha_0 + b_{1,0}education + b_{2,0}exper + b_{3,0}exper^2 + b_{4,0}female + b_{5,0}black + u_i.$$
 (2.1)

où *education* et le nombre d'années d'études, *lwage* est le salaire horaire en logarithme, *exper* est une approximation de l'expérience sur le marché du travail, *female* et *black* des indicatrices d'être respectivement une femme, et une personne afro-américaine.

- (a) Estimez les coefficients de (2.1) par MCO et indiquez dans quels cas il estiment les coefficient d'un projection linéaire et/ou ceux d'une régression linéaire. Discutez cela dans le cadre de cette application.
- (b) Appliquez la procédure suivante :
 - (1) Estimez la projection linéaire de *female* sur les autres régresseurs et calculez le vecteur des valeurs prédites, et le vecteur des résidus estimés.
 - (2) Estimez la projection linéaire de *lwage* sur les régresseurs de (2.1) sans *female* et calculez le vecteur des valeurs prédites, et le vecteur des résidus estimés.
 - (3) Estimez la projection linéaire du vecteur des résidus estimés de l'étape (2) sur ceux de l'étape (1) et comparez votre résultat à celui de la première question. Que constatez vous ?