Section-B JEE Main-Quadratic Equations

AI24BTECH11021 - Manvik Muthyapu

- 1) The number of real solutions of the equation $x^2 3|x| + 2 = 0$ is
 - a) 3
 - b) 2
 - c) 4
 - d) 1
- 2) The real number x when added to its inverse gives the minimum value of the sum at x equal to [2003]
 - a) -2
 - b) 2
 - c) 1
 - d) -1
- 3) Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation [2004]
 - a) $x^2 18x 16 = 0$
 - b) $x^2 18x + 16 = 0$
 - c) $x^2 + 18x 16 = 0$
 - d) $x^2 + 18x + 16 = 0$
- 4) If (1 p) is a root of quadratic equation $x^2 + px + (1 p) = 0$ then its root are [2004]
 - a) -1, 2
 - b) -1, 1
 - c) 0, -1
 - d) 0, 1
- 5) If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, then the value of 'q' is [2004]
 - a) 4
 - b) 12
 - c) 3
 - d) $\frac{49}{4}$
- 6) In a triangle PQR, $\angle R = \frac{\pi}{2}$. If $\tan\left(\frac{P}{2}\right)$ and $-\tan\left(\frac{Q}{2}\right)$ are the roots of $ax^2 + bx + c = 0$, $a \ne 0$ then [2005]
 - a) a = b + c
 - b) c = a + b
 - c) b = c
 - d) b = a + c

7) If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then k lies in the interval [2005]

1

- a) [5, 6)
- b) $(6, \infty)$
- c) $(-\infty,4)$
- d) [4,5]
- 8) If the roots of the quadratic equation $x^2 + px + q = 0$ are $\tan 30^\circ$ and $\tan 15^\circ$, respectively, then the value of 2 + q p is [2006]
 - a) 2
 - b) 3
 - c) 0
 - d) 1
- 9) All the values of m for which both roots of the equation $x^2 2mx + m^2 1 = 0$ are greater than -2 but less than 4, lie in the interval [2006]
 - a) -2 < m < 0
 - b) m > 3
 - c) -1 < m < 3
 - d) 1 < m < 4
- 10) If *x* is real, the maximum value of $\frac{3x^2+9x+17}{3x^2+9x+7}$ is [2006]
 - a) $\frac{1}{2}$
 - b) 41
 - c) 1
 - d) $\frac{17}{7}$
- 11) If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is [2007]
 - a) $(3, \infty)$
 - b) $(-\infty, -3)$
 - c) (-3,3)
 - d) $(-3, \infty)$
- 12) **Statement-1**: For every natural number $n \ge 2$,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

Statement-2: For every natural number $n \ge 2$,

$$\sqrt{n(n+1)} < n+1$$

[2008]

- a) Statement-1 is false, Statement-2 is true
- b) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
- c) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
- d) Statement-1 is true, Statement-2 is false
- 13) The quadratic equations $x^2 6x + a = 0$ and $x^2 cx + 6 = 0$ have one root in common. The roots of the first and second equations are integers in the ratio 4:3. Then the common root is [2009]
 - a) 1
 - b) 4
 - c) 3
 - d) 2
- 14) If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all the real values of x, the expression

$$3b^2x^2 + 6bcx + 2c^2$$
 is: [2009]

- a) less than 4ab
- b) greater than -4ab
- c) less than -4ab
- d) greater than 4ab
- 15) If $\left|z \frac{4}{z}\right| = 2$, then the maximum value of |Z| is equal to: [2009]
 - a) $\sqrt{5} + 1$
 - b) 2
 - c) $2 + \sqrt{2}$
 - d) $\sqrt{3} + 1$
- 16) If α and β are the roots of the equation $x^2 x + 1 = 0$, then $\alpha^{2009} + \beta^{2009} = [2010]$
 - a) -1
 - b) 1
 - c) 2
 - d) -2