O Algoritmo de Treinamento: Máquina de Aprendizado Extremo (Extreme Learning Machine - ELM)

Thiago Henrique Cupertino

SCE5809 - Redes Neurais

23 de Novembro de 2010

Conteúdo

- Introdução
 - Desvantagens do Back-Propagation
- Máquina de Aprendizado Extremo
 - ELM: Teoria
 - Algoritmo ELM: Características
 - Matriz Pseudo-Inversa
- Resultados de Simulações
- Extensões do ELM
 - ELM Podado
- Demais Referências

Introdução

- Tradicionalmente, todos os parâmetros de uma rede unidirecional têm que ser ajustados;
- Métodos baseados em gradiente descendente têm sido usados em vários algoritmos de treinamento (p. ex., algoritmo Back-Propagation);
- Tais métodos consomem grande tempo de treinamento devido ao ajuste iterativo dos parâmetros.

Desvantagens do Back-Propagation

- Quando a taxa de treinamento η é muito pequena, o algoritmo de treinamento converge muito lentamente. Caso contrário, quando η é muito grande, o algoritmo se torna instável e a rede diverge;
- É indesejável que o algoritmo pare em um mínimo local distante do mínimo global;

Desvantagens do Back-Propagation

- Redes Neurais podem ser super-treinadas com o algoritmo BP de maneira que a generalização fique prejudicada (overfitting);
- Aprendizado baseado em gradiente descendente pode consumir demasiado tempo de treinamento em muitas aplicações.

Máquina de Aprendizado Extremo

- Esse algoritmo contorna as desvantagens citadas anteriormente;
- Foi desenvolvido para redes com apenas duas camadas: a camada de entrada e a camada escondida;

G.-B. Huang, Q.-Y. Zhu e C.-K. Siew, Extreme Learning Machine: Theory and Applications, Neurocomputing 70, 489-501 (2006).

Máquina de Aprendizado Extremo

- Os pesos de entrada e os bias da camada escondida são escolhidos aleatoriamente;
- Os pesos da camada de saída são determinados analiticamente (i. e., não há ciclos iterativos para ajuste de parâmetros).

G.-B. Huang, Q.-Y. Zhu e C.-K. Siew, Extreme Learning Machine: Theory and Applications, Neurocomputing 70, 489-501 (2006).

 Desenvolvido para redes com 2 camadas (Single Layer Feedforward Network - SLFN):

Modelagem matemática:

$$\sum_{i=1}^{\tilde{N}} \beta_i g_i(\mathbf{x}_j) = \sum_{i=1}^{\tilde{N}} \beta_i g(\mathbf{w}_i.\mathbf{x}_j + b_i) = \mathbf{o}_j, j = 1, ..., N$$

$$\sum_{i=1}^{\tilde{N}} \beta_i g(\mathbf{w}_i.\mathbf{x}_j + b_i) = \mathbf{t}_j, j = 1, ..., N$$

- (x_i, t_i): N padrões de entrada;
- w_i: vetor peso do neurônio i da camada escondida;
- b_i: bias do neurônio i da camada escondida;
- Ñ: número de neurônios da camada escondida.
- β_i : vetor peso entre o neurônio escondido i e a camada de saída.

• Em forma matricial:

$$H\beta = T$$

$$\mathbf{H}(\mathbf{w}_1,...,\mathbf{w}_{\tilde{N}},b_1,...,b_{\tilde{N}},\mathbf{x}_1,...,\mathbf{x}_{\tilde{N}}) = \begin{bmatrix} g(\mathbf{w}_1.\mathbf{x}_1+b_1) & \cdots & g(\mathbf{w}_{\tilde{N}}.\mathbf{x}_1+b_{\tilde{N}}) \\ \vdots & & \ddots & \vdots \\ g(\mathbf{w}_1.\mathbf{x}_N+b_1) & \cdots & g(\mathbf{w}_{\tilde{N}}.\mathbf{x}_N+b_{\tilde{N}}) \end{bmatrix}$$

$$oldsymbol{eta} = \left[egin{array}{c} oldsymbol{eta}_1^T \ drapprox \ oldsymbol{eta}_{ ilde{N}}^T \end{array}
ight]_{ ilde{N} imes m}, \mathbf{T} = \left[egin{array}{c} \mathbf{t}_1^T \ drapprox \ \mathbf{t}_{ ilde{N}}^T \end{array}
ight]_{N imes m}$$

Teorema 2.1.Dada uma SLFN com N neurônios na camada escondida e função de ativação $g: R \to R$ infinitamente diferenciável em qualquer intervalo, para N exemplos de treinamento distintos $(\mathbf{x}_i, \mathbf{t}_i), \mathbf{x}_i \in R^n$ e $\mathbf{t}_i \in R^m$, para quaisquer \mathbf{w}_i e b_i aleatoriamente selecionados dentro de quaisquer intervalos R^n e R, respectivamente, por qualquer função de distribuição de probabilidade, então com probabilidade l, a matrix de saída da camada escondida l da SLFN l inversível e $|l \mathbf{H} \mathbf{\beta} - \mathbf{T}|| = 0$.

S. Tamura e M. Tateishi, Capabilities of a Four-Layered Feedforward Neural Network: Four Layers Versus Three, IEEE Trans. Neural Networks 8 (2), 251-255 (1997).

G.-B. Huang, Learning Capability and Storage Capacity of Two-Hidden-Layer Feedforward Networks, IEEE Trans. Neural Networks 14 (2), 274-281 (2003).

 Se o número de neurônios Ñ da camada escondida é igual ao número N de exemplos de treinamento, $N = \tilde{N}$, então a matriz H é quadrada e inversível quando o vetor de pesos w, e os bias b, são aleatoriamente escolhidos e, assim, as a SLFNs podem aprender estes exemplos de treinamento com erro zero.

- Entretanto, na maioria dos casos o número de neurônios da camada escondida é muito menor do que o número de exemplos distintos de treinamento, Ñ << N, e a matrix H não é quadrada;
- Solução de mínimos quadrados com a menor norma: β = H[†]T;
- H[†]: matriz inversa generalizada de Moore-Penrose da matriz H (pseudo inversa).

C. R. Rao e S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York (1971).

Algoritmo ELM

- INÍCIO
- Passo 1: Selecionar aleatoriamente valores para os pesos w_i e os bias b_i, i = 1, ..., N;
- Passo 2: Calcular a matriz de saída H da camada escondida.
- Passo 3: Calcular os pesos de saída $\beta = H^{\dagger}T$.
- FIM

Algoritmo ELM: Características

- Menor erro de treinamento: A solução β = H[†]T é uma das soluções de mínimos quadrados de um sistema linear geral Hβ = T, o que significa que o menor erro de treinamento pode ser encontrado por esta solução.
- Menor norma dos pesos: Além disso, a solução β =
 H[†]T tem a menor norma entre todas as soluções de
 mínimos quadrados de Hβ = T.
- A solução de menor norma é única.

P. L. Bartlett, The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network, IEEE Trans. Inf. Theory 44 (2), 525-537 (2003).

Algoritmo ELM: Matriz Pseudo Inversa

- H[†] satisfaz as seguintes propriedades:
- 1. $H H^{\dagger} H = H$
- 2. $H^{\dagger} H H^{\dagger} = H^{\dagger}$
- 3. $(H H^{\dagger})^{T} = H H^{\dagger}$
- 4. $(H^{\dagger} H)^{T} = H^{\dagger} H$
- Pode ser calculada eficientemente pelo método da Decomposição por Valores Singulares (Singular Value Decomposition -SVD).

Resultados de Simulações: sinc(x)

Função sinc(x):

$$y(x) = \left\{ \begin{array}{ll} seno(x)/x, & x \neq 0 \\ 1, & x = 0. \end{array} \right\}$$

Algorithms	Time (s)				
	Training	Testing			
ELM	0.125	0.031			
BP	21.26	0.032			
SVR	1273.4	5.9087			

 ELM: 170 vezes mais rápido do que BP e 10000, do que SVR.

Resultados de Simulações: sinc(x)

Algorithms	Training	
	RMS	Dev
ELM	0.1148	0.0037
BP	0.1196	0.0042
SVR	0.1149	0.0007

Algorithms	Testing		No of SVs/nodes		
	RMS	Dev			
ELM	0.0097	0.0028	20		
BP	0.0159	0.0041	20		
SVR	0.0130	0.0012	2499.9		

Resultados de Simulações: sinc(x)

Resultados de Simulações: Vegetações Florestais

 Compreende em 581.012 instâncias e 54 atributos para cada instância. Classificação consistiu em separar a classe 2 das demais 6 classes.

Algorithms	Time (min)				
	Training	Testing			
	12/12/12	0.7105			
ELM	1.6148	0.7195			
ELM SLFN	1.6148 12	0./195 N/A			

Tempo ELM 430 vezes menor do que SVM.

R. Collobert, S. Bengio e Y. Bengio, A Parallel Mixtures of SVMs for Very Large Scale Problems, Neural Comput. 14, 1105-1114 (2002).

Resultados de Simulações: Vegetações Florestais

Algorithms	Success rate		
	Training		
	Rate	Dev	
ELM	92.35	0.026	
SLFN	82.44	N/A	
SVM	91.70	N/A	

Algorithms			# SVs/nodes	
	Testing			
	Rate	Dev		
ELM	90.21	0.024	200	
SLFN	81.85	N/A	100	
SVM	89.90	N/A	31,806	

Generalização do ELM é melhor.

Extensões do ELM

- ELM com Critérios de Poda: melhora casos de overfitting, underfitting e generalização;
- ELM Evolutivo: melhora generalização e diminui tamaho da rede;
- ELM Baseado em Método de Otimização: estudo teórico comparando ELM e SVM.
- Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten e A. Lendasse, OP-ELM: Optimally Pruned Extreme Learning Machine, IEEE Trans. Neural Networks 21 (1), 158-162 (2010).
- H. J. Rong, Y.-S. Ong, A.-W. Tan e Z. Zhu, A Fast Pruned-Extreme Learning Machine for Classification Problem, Neurocomputing 72 (1-3), 359-366 (2008).
- Q.-Y. Zhu, A. K. Qin, P. N. Suganthan e G.-B. Huang, Evolutionary Extreme Learning Machine, Pattern Recognition 38, 1759-1763 (2005).
- G.-B. Huang, X. Ding e H. Zhou, Optimization Method Based Extreme Learning Machine for Classification, Neurocomputing (Article in Press), (2010).

Optimally Pruned ELM

Erro Médio Quadrático (negrito) e Desvio Padrão

	Abalone	Ailerons	Elevators	Computer	Auto P.	CPU	Servo	Breast C.	Bank	Stocks	Boston
SVM	4.5	1.3e-7	6.2e-6	1.2e+2	2.8e+7	6.5e+3	6.9e-1	1.2e+3	2.7e-2	5.1e-1	3.4e+1
	2.7e-1	2.6e-8	6.8e-7	8.1e+1	8.4e+7	5.1e+3	3.3e-1	7.2e-1	8.0e-4	9.0e-2	3.1e+1
OPELM	4.9	2.8e-7	2.0e-6	3.1e+1	9.5e+7	5.3e+3	8.0e-1	1.4e+3	1.1e-3	9.8e-1	1.9e+1
82	6.6e-1	1.5e-9	5.4e-8	7.4	4.0e+6	5.2e+3	3.3e-1	3.6e+2	1.0e-6	1.1e-1	2.9
ELM	8.3	3.3e-8	2.2e-6	4.9e+2	7.9e+9	4.7e+4	7.1	7.7e+3	6.7e-3	3.4e+1	1.2e+2
92	7.5e-1	2.5e-9	7.0e-8	6.2e+1	7.2e + 9	2.5e+4	5.5	2.0e+3	7e-4	9.35	2.1e+1
GP	4.5	2.7e-8	2.0e-6	7.7	2.0e+7	6.7e+3	4.8e-1	1.3e+3	8.7e-4	4.4e-1	1.1e+1
440 1000 0000	2.4e-1	1.9e-9	5.0e-8	2.9e-1	1.0e+7	6.6e+3	3.5e-1	1.9e+2	5.1e-5	5.0e-2	3.5
MLP	4.6	2.7e-7	2.6e-6	9.8	2.2e+7	1.4e+4	2.2e-1	1.5e+3	9.1e-4	8.8e-1	2.2e+1
	5.8e-1	4.4e-9	9.0e-8	1.1	9.8e + 6	1.8e+4	8.1e-2	4.4e+2	4.2e-5	2.1e-1	8.8

Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten e A. Lendasse, OP-ELM: Optimally Pruned Extreme Learning Machine, IEEE Trans. Neural Networks 21 (1), 158-162 (2010).

Outras Referências

- Artigos, conferências e códigos-fonte:
- http://www3.ntu.edu.sg/home/egbhuang/

FIM