Симетрични и ермитови матрици и оператори.

Определение 1. Матрица $A \in M_{n \times n}(\mathbb{R})$ (съответно $A \in M_{n \times n}(\mathbb{C})$) е симетрична (ермитова), ако $\overline{A}^t = A$.

Твърдение 2. (i) Множеството $M^{\mathrm{sym}}_{n \times n}(\mathbb{R})$ на симетричните матрици е линейно пространство над \mathbb{R} , както и множеството $M^{\mathrm{Herm}}_{n \times n}(\mathbb{C})$ на ермитовите матрици.

- (ii) Ако $A \in M_{n \times n}(\mathbb{R})$ (съответно $A \in M_{n \times n}(\mathbb{C})$) е обратима симетрична (ермитова) матрица, то обратната матрица A^{-1} е симетрична (ермитова).
- (iii) Ако $A, B \in M_{n \times n}(\mathbb{R})$ (съответно $A, B \in M_{n \times n}(\mathbb{C})$) са симетрични (ермитови) матрици и AB = BA, то AB е симетрична (ермитова) матрица.

 ${\it Доказателство}.$ (i) Ако $\overline{A}^t=A$ и $\overline{B}^t=B$, то

$$\overline{(A+B)}^t = \overline{A}^t + \overline{B}^t = A+B,$$

така че A+B е симетрична (ермитова) матрица. За произволно $\lambda\in\mathbb{R}$ е в сила

$$\overline{(\lambda A)}^t = \overline{\lambda} \ \overline{A}^t = \lambda A$$

и затова λA е симетрична (ермитова) матрица и множеството на симетричните (ермитовите) матрици е линейно пространство над \mathbb{R} .

(ii) Чрез комплексно спрягане и транспониране на равенството $AA^{-1}=E_n$ получаваме

$$E_n = \overline{E_n}^t = \overline{(AA^{-1})}^t = (\overline{A} \ \overline{A^{-1}})^t = (\overline{A^{-1}})^t \overline{A}^t = (\overline{A^{-1}})^t A$$

съгласно $\overline{XY}=\overline{XY}$ за произволни матрици $X,Y\in M_{n\times n}(\mathbb{C})$. Последното се дължи на определението за умножение на матрици и на равенствата $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \ \overline{z_1z_2}=\overline{z_1z_2}$ за комплексни числа $z_1,z_2\in\mathbb{C}$. Единственото решение на матричното уравнение $ZA=E_n$ е A^{-1} , откъдето $(\overline{A^{-1}})^t=A^{-1}$ и A^{-1} е симетрична (ермитова) матрица.

(ііі) Съгласно

$$\overline{(AB)}^t = (overlineA \ \overline{B})^t = \overline{B}^t \overline{A}^t = BA = AB,$$

матрицата AB е симетрична (ермитова).

Определение 3. Линеен оператор $\varphi: V \to V$ в евклидово (унитарно) пространство V е симетричен (съответно, ермитов), ако

$$\langle \varphi(u),v\rangle = \langle u,\varphi(v)\rangle$$
 за произволни вектори $u,v\in V.$

Твърдение 4. Следните условия са еквивалентни за линеен оператор $\varphi: V \to V$ в n-мерно евклидово (унитарно) пространство V:

- $(i) \varphi$ е симетричен (ермитов) оператор;
- (ii) $\langle b_i, \varphi(b_j) \rangle = \langle \varphi(b_i), b_j \rangle$ за произволни вектори b_i, b_j от базис b_1, \ldots, b_n на V;
- $(iii)\ \langle e_i, \varphi(e_j) \rangle = \langle \varphi(e_i), e_j \rangle$ за произволни вектори от ортонормиран базис e_1, \dots, e_n на V;
- (iv) матрицата A на φ спрямо ортонормиран базис e_1, \ldots, e_n на V е симетрична (epмитова).

Доказателство. Ясно е, че $(i) \Rightarrow (ii) \Rightarrow (iii)$.

Нека $e=(e_1,\ldots,e_n)$ е ортонормиран базис на V и A е матрицата на φ спрямо базиса e. Условието (iii) е в сила точно когато

$$\overline{a_{i,j}} = \sum_{s=1}^{n} \overline{a_{s,j}} \langle e_i, e_s \rangle = \langle e_i, \sum_{s=1}^{n} a_{s,j} e_s \rangle = \langle e_i, \varphi(e_j) \rangle =$$

$$= \langle \varphi(e_i), e_j \rangle = \langle \sum_{s=1}^{n} a_{s,i} e_s, e_j \rangle = \sum_{s=1}^{n} a_{s,i} \langle e_s, e_j \rangle = a_{j,i}$$

за всички $1 \leq i, j \leq n$. Това е еквивалентно на симетричността (ермитовостта) на матрицата A, така че $(iii) \Leftrightarrow (iv)$.

За $(iii) \Rightarrow (i)$ да предположим, че e_1, \ldots, e_n е ортонормиран базис на V с $\langle e_i, \varphi(e_j) \rangle = \langle \varphi(e_i), e_j \rangle$ за всички $1 \leq i, j \leq n$. Тогава произволни вектори $u = \sum_{i=1}^n x_i e_i$ и $v = \sum_{j=1}^n y_j e_j$ изпълняват равенствата

$$\langle u, \varphi(v) \rangle = \langle \sum_{i=1}^{n} x_i e_i, \varphi\left(\sum_{j=1}^{n} y_j e_j\right) \rangle = \langle \sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j \varphi(e_j) \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle e_i, \varphi(e_j) \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle \varphi(e_i), e_j \rangle = \langle \sum_{i=1}^{n} x_i \varphi(e_i), \sum_{j=1}^{n} y_j e_j \rangle = \langle \varphi\left(\sum_{i=1}^{n} x_i e_i\right), \sum_{j=1}^{n} y_j e_j \rangle = \langle \varphi(u), v \rangle,$$

така че $\varphi: V \to V$ е симетричен (ермитов) оператор.

Твърдение 5. Всички характеристични корени на симетричен (ермитов) оператор в крайномерно пространство V са реални числа.

Доказателство. Собствените стойности λ на ермитов оператор $\varphi: V \to V$ са реални числа, защото съответните им собствени вектори $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ изпълняват равенствата

$$\overline{\lambda}||v||^2 = \langle v, \lambda v \rangle = \langle v, \varphi(v) \rangle = \langle \varphi(v), v \rangle = \langle \lambda v, v \rangle = \lambda ||v||^2,$$

откъдето $(\overline{\lambda} - \lambda)||v||^2 = 0$ с $||v||^2 \in \mathbb{R}^{>0}$ и $\overline{\lambda} = \lambda \in \mathbb{R}$.

Характеристичните корени на линеен оператор φ в крайномерно пространство V над $\mathbb C$ съвпадат със собствените стойности на φ , така че характеристичните корени на ермитов оператор $\varphi:V\to V$ в крайномерно унитарно пространство V са реални числа.

Всяка ермитова матрица A се реализира като матрица на ермитов оператор спрямо ортонормиран базис. По-точно, ако $e=(e_1,\ldots,e_n)$ е ортонормиран базис на n-мерно унитарно пространство и $\varphi:V\to V$ е линейният оператор с матрица A спрямо e, то φ е унитарен оператор и всички характеристични корени на φ са реални числа. Характеристичните корени на φ и са реалани числа.

Всяка симетрична матрица е ермитова и затова характеристичните и корени са реални числа.

В резултат, всички характеристични корени на симетричен оператор $\varphi:V\to V$ в крайномерно евклидово пространство V са реални числа, защото матрицата на φ спрямо ортонормиран базис е симетрична.

Твърдение 6. Нека $\varphi: V \to V$ е симетричен (ермитов) оператор в евклидово (унитарно) пространство V. Тогава:

- (i) собствени вектори u, v, отговарящи на различни собствени стойности λ, μ са ортогонални помежду cu;
- (ii) ортогоналното допълнение U^\perp на φ -инвариантно подпространство U на V е φ -инвариантно.

В частост, ако e_1, \ldots, e_k е ортонормиран базис на U и e_{k+1}, \ldots, e_n е ортонормиран базис на U^{\perp} , то $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ е ортонормиран базис на V, спрямо който матрицата на φ е от вида

$$\begin{pmatrix} A_1 & \mathbb{O}_{k\times(n-k)} \\ \mathbb{O}_{(n-k)\times k} & A_2 \end{pmatrix},$$

където A_1 е матрицата на $\varphi: U \to U$ спрямо базиса e_1, \ldots, e_k , а A_2 е матрицата на $\varphi: U^\perp \to U^\perp$ спрямо базиса e_{k+1}, \ldots, e_n на U^\perp .

Доказателство. (i) От определението за симетричност (ермитовост) на $\varphi: V \to V$, приложено към собствените вектори $u, v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ получаваме

$$\mu\langle u,v\rangle = \overline{\mu}\langle u,v\rangle = \langle u,\mu v\rangle = \langle u,\varphi(v)\rangle = \langle \varphi(u),v\rangle = \langle \lambda u,v\rangle = \lambda\langle u,v\rangle,$$

вземайки предвид, че собствените стойности на ермитов оператор са реални числа. Следователно $(\lambda-\mu)\langle u,v\rangle=0$ с $\lambda\neq\mu$, така че $\langle u,v\rangle=0$ и векторите u,v са ортогонални помежду си.

(ii) За произволни вектори $u \in U$ и $v \in U^{\perp}$ е в сила

$$\langle u, \varphi(v) \rangle = \langle \varphi(u), v \rangle = 0,$$

съгласно $\varphi(u)\in U$. Следователно $\varphi(v)\in U^\perp$ и U^\perp е φ -инварианатно подпространство на V.

Твърдение 7. За произволен симетричен (ермитов) оператор $\varphi: V \to V$ в п-мерно евклидово (унитарно) пространство V съществува ортонормиран базис e_1, \ldots, e_n на V, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

е диагонална.

Доказателство. С индукция по $n=\dim V$, за n=1 няма какво да се доказва. В общия случай, $\varphi:V\to V$ има собствен вектор $v_1\in V\setminus\{\overrightarrow{\mathcal{O}}_V\}$. За унитарен оператор φ това е в сила поради наличието на собствен вектор за произволен линеен оператор в крайномерно пространство над полето $\mathbb C$ на комплексните числа. За симетричен оператор φ използваме, че всички характеристични корени на φ са реални числа, а оттам и собствени стойности на φ , така че съществува собствен вектор $v_1\in V\setminus\{\overrightarrow{\mathcal{O}}_V\}$, отговарящ на собствената стойност λ_1 . Заменяме v_1 с единичен вектор $e_1=\frac{1}{\|v_1\|}v_1\in l(v_1)$ и забелязваме, че $U:=l(e_1)=l(v_1)$ е 1-мерно φ -инвариантно подпространство на V, върху което действието на φ се свежда до умножение със собствената стойност λ_1 , отговаряща на

 v_1 . Ортогоналното допълнение U^{\perp} на U е (n-1)-мерно φ -инвариантно подпространство на V. По индукционно предположение съществува ортонормиран базис e_2, \ldots, e_n на U^{\perp} , в който матрицата

$$D' = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 \\ 0 & \lambda_3 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

на $\varphi:U^{\perp}\to U^{\perp}$ е диагонална. Сега e_1,e_2,\ldots,e_n е ортонормиран базис на $V=U\oplus U^{\perp},$ в който матрицата

$$D = \begin{pmatrix} \lambda_1 & \mathbb{O}_{1 \times (n-1)} \\ \mathbb{O}_{(n-1) \times 1} & D' \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

на $\varphi:V \to V$ е диагонална.

Следствие 8. За произволна симетрична (ермитова) матрица съществува ортогонална (унитарна) матрица T, така че $D = T^{-1}AT = \overline{T}^tAT$ е диагонална матрица.

Доказателство. Фиксираме ортонормиран базис $f=(f_1,\ldots,f_n)$ на евклидово (унитарно) пространство V и разглеждаме линейния оператор $\varphi:V\to V$ с матрица A спрямо f. Тогава φ е симетричен (ермитов) оператор и съществува ортонормиран базис $e=(e_1,\ldots,e_n)$ на V, в който матрицата D на φ е диагонална. Матрицата на прехода T от ортонормирания базис f на V към ортонормирания базис e на e0 е ортогонална (унитарна) и e1 г e2 г e3 г e4 г e4 г e4 г e4 г e6 г e7 г e8 г e8 г e9 г ортогонална (унитарна) и e1 г e1 г e2 г e3 г e4 г e6 г e8 г e9 г ортогонална (унитарна) и e9 г e9 г