

Отказоустойчивость: Отказоустойчивость в облаке

Александр Зубарев

Председатель цикловой комиссии "Информационной безопасности инфокоммуникационных систем"

АКТ (ф) СПбГУТ

Обо мне

- Эксперт в инфраструктуре, сетях и контейнерах СКА, CCNP Enterprise, GCP Architect, RHCE;
- Построил облако в Казахстане (Транстелеком)
 и развиваю облачную платформу в Yandex.Cloud;
- Участвовал в проектировании и внедрении 100+ проектов для Enterprise и Service Provider, живущих до сих пор в продакшене.

Предисловие

На этом занятии мы:

- обсудим, зачем строить отказойчивые системы;
- рассмотрим основные сценарии отказа инфраструктуры;
- обсудим, какие механизмы для повышения доступности приложения доступны в Yandex.Cloud.

План занятия

- 1. Что такое отказоустойчивость и зачем она нужна?
- 2. <u>Из чего складывается отказоустойчивость?</u>
- 3. Почему сервис может быть недоступен?
- 4. Как снизить риски сбоя сервиса?
- 5. Как сделать отказоуйчивый сервис в Яндекс.Облаке?
- 6. Дополнительные материалы
- 7. Итоги
- 8. Домашнее задание

Что такое отказоустойчивость и зачем она нужна?

Немного терминологии

У любого сервиса есть SLA.

SLA — это набор метрик и их допустимых значений между пользователем сервиса и провайдером сервиса.

Одной из метрик* SLA для любого сервиса является его доступность.

Отказоустойчивость – способ увеличения доступности сервиса.

^{*}Помимо доступности, в SLA сервиса могут быть и другие метрики

Когда нужна отказоустойчивость?

Когда недоступность сервиса ведет к финансовым потерям в связи с:

- упущенной выручкой и прибылью;
- потерей пользователей/клиентов;
- негативной репутацией (пользователи ждут 100% Uptime);
- нарушением требований регуляторов;
- нарушением критических бизнес-процессов компании.

Но отказоустойчивость — это дополнительные затраты на сервис, поэтому очень важно применять ее тогда, когда это целесообразно.

Когда не обязательна отказоустойчивость?

Бывают ситуации, где отказоустойчивость может быть избыточной:

- среды разработки и тестирования;
- задачи у которых нет SLA по доступности (например, батч задачи).

Но важно во всех сервисах, где доступность приложения является частью SLA, договориться о метриках этой доступности, даже если от него не требуется высокая доступность.

Из чего складывается отказоустойчивость на примерах?

Из чего состоит отказоустойчивость?

- избыточность (redundancy);
- мониторинг узлов;
- реакция на сбой (failover);
- возвращение узла в кластер (failback).

Для того чтобы сделать сервис отказоустойчивым, необходимо понимать, из каких компонентов он состоит, чтобы сделать эти компоненты отказоустойчивыми.

Примеры плохой архитектуры

 Всё приложение крутится на одной ВМ. Данные реплицированы, но есть точка отказа.

Пример хорошей архитектуры

- Веб-серверы
 находятся за внешним
 балансировщиком
 нагрузки;
- Веб-серверы балансируют трафик на сервера приложений;
- Сервера приложений ходят в мастера и реплики БД.

Пример архитектуры на базе k8s

- Балансировщик защищен услугой DDoS Protection;
- Ноды кластера находятся за балансировщиком нагрузки;
- Ingress Controller
 принимает входящий
 трафик от
 балансировщика и
 направляет на сервисы;
- Сервисы ходят в мастера и реплики БД.

Почему сервис может быть недоступен?

Атака

- Dos
- DDOS

Проблемы из-за инфраструктуры

Сбой на стороне инфраструктуры:

- Отказ физического сервера / стойки;
- Отказ зоны доступности / ДЦ;
- Сетевые проблемы;
- Проблемы с дисковой подсистемой.

Превышение квот и лимитов работы инфраструктуры:

- Понимание разницы между квотами и лимитами;
- Примеры лимитов в ҮС:
 - Сеть (лимит по flow);
 - Диск (лимит на производительность).

Проблемы из-за настроек сервиса

Сбой на стороне приложения:

- Утечки памяти, утечки на ядре ОС;
- Конец свободного места в файловой системе;
- Баг в новом релизе софта;
- Баг в сторонней библиотеке.

Перегрузка:

пятница;

- Резкий всплеск активностиХабраэффект, Черная
- Постоянный рост нагрузки;
- Следствие сбоя на стороне инфраструктуры.

Как снизить риски сбоя сервиса?

Атака

Dos:

- Анализируйте приложение на уязвимости. Примеры сканеров: Burp Suite, acunetix, nessus;
- Можно заказать pen test от Лаборатории Kacпepcкого, GroupIB, BiZone;
- Web application Firewall: Imperva, F5, Nginx plus, Wallarm, Cloudflare.

DDos:

- Яндекс.Облако, Qrator,
 Cloudflare, Akamai;
- Автомасштабирование:
 Instance Groups, Managed k8s.

Сбой на стороне инфраструктуры

Сбой сервера:

- Балансировка нагрузки с использованием healthchecks;
- Anti-affinity правила гарантия того, что копии сервиса запускаются.

Сбой дата центра:

- Балансировка нагрузки на несколько дата-центров;
- Disaster recovery.

Сбой из-за лимитов

Сеть:

- Читайте документацию;
- Используйте средства для уменьшения паразитной нагрузки;
- Горизонтально масштабируйте нагрузку.

Диски:

- Читайте документацию;
- Увеличивайте размер диска и число дисков;
- Горизонтально масштабируйте нагрузку.

Сбой на стороне приложения

OC:

- Мониторинг ОС (потребление RAM, CPU, свободного места);
- Обновление ОС и ядра;
- Масштабирование места на диске.

Баги:

- Dev/stage среды;
- Юнит тесты, интеграционные тесты;
- Возможность сделать rollback;
- Современные методики деплоя;
- Учения;
- Feature-флаги.

Перегрузка

- **Сайзинг** приложение должно полноценно уметь обрабатывать нагрузку:
 - При падении нескольких узлов;
 - При падении дата-центра;
- Готовьтесь к возможной неравномерной балансировке;
- Делайте мониторинг нагрузки;
- Делайте нагрузочное тестирование перед вводом в production;

- Приложение должно уметь горизонтально масштабировать входящую нагрузку: автоматически или вручную;
- Аккуратно комбинируйте резервирование и автомасштабирование алгоритмы автоскейлинга могут не успеть смасштабировать нагрузку при высоких всплесках нагрузки.

Как сделать отказоустойчивый сервис в Яндекс.Облаке?

Yandex Compute Cloud

- ВМ и диск сущность зоны доступности;
- Группа размещения
 (placement groups)
 позволяет гарантировать,
 что ВМ будут находиться
 в разных стойках.

Yandex Load Balancer

- Стабильный статический IP адрес;
- Можно подключить Anti-DDoS;
- Cross AZ балансировка нагрузки;
- Трафик на зоны доступности приходит с помощью ECMP;
- Трафик внутри зоны доступности использует consistent hashing.

Virtual Private Cloud

- Зона доступности независимый дата-центр;
- VPC обеспечивает полную IP связность между зонами доступности;
- Latency между зонами;
- Сервис позволяет защитить виртуальные машины с помощью Anti-DDoS.

Instance Groups

- Управляемый сервис для работы с группой виртуальных машин;
- Горизонтальное масштабирование на несколько AZ;
- Автоматическое масштабирование;
- Rolling Update;
- Интеграция с Load Balancer.

Yandex Managed Kubernetes

- Managed Kubernetes:
 - Отказоустойчивые мастеры;
 - Много нативной функциональности для доступности и масштабирования контейнеров;
 - Интеграция с балансировщиком нагрузки;
- Авто масштабирование узлов;
- Интеграция с Containter Registry, Load Balancer.

Managed Databases

- Виды конфигураций:
 - Кластер (минимум 2 узла)– разные AZ;
 - Возможность масштабирования вверх.

Yandex Object Storage

- Бесконечно масштабируемый по нагрузке Object Storage;
- Данные реплицированы на 3 ЦОД;

- Есть поддержка SSL и кастомного домена;
- Есть интеграция с CDN.

Дополнительные материалы

Посмотреть

Public Cloud — Гайд по масштабированию.

https://youtu.be/1fmFjOj4H-4

Настройка отказоустойчивой архитектуры в Яндекс.Облаке - Глеб Мищенко.

https://www.youtube.com/watch
?v=40FZ27fUaKo

Почитать

Google SRE Books

https://sre.google/books/

Итоги

Итоги

Сегодня мы:

- поняли, что такое отказоустойчивость и зачем она нужна;
- обсудили сценарии, от которых надо защищать приложение;
- прошлись по базовым сервисам Yandex.Cloud, которые позволяют увеличить доступность вашего сервиса

Домашнее задание

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Александр Зубарев