Consider two covariance matrices $A_{n\times n}$ and $B_{n\times n}$. We say that A is *bigger* than B, often denoted by $A \ge B$ or $A \ge B$, if A - B is semi-positive definite. Why do we use the "definiteness" of a matrix to compare the size of two covariance matrices?

First, notice that a covariance matrix is not only symmetrical, but also semi-positive definite. Consider a random vector $\mathbf{x} = (x_1, ..., x_n)^{\mathsf{T}}$. The covariance matrix is defined by

$$\mathbf{K} := \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\mathsf{T}}].$$

Given any constant vector \mathbf{v} of length n, we have

$$\mathbf{v}^{\mathsf{T}}\mathbf{K}\mathbf{v} = \mathbb{E}[\mathbf{v}^{\mathsf{T}}(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{v}^{\mathsf{T}}(\mathbf{x} - \mathbb{E}[\mathbf{x}]))^{\mathsf{T}}] \ge 0$$

by the definition of K. Therefore, the covariance matrix K is semi-positive definite. In fact, $\mathbf{v}^{\mathsf{T}} K \mathbf{v}$ is zero iff \mathbf{x} has no variance at all.

There is another intuitive way of interpreting the definiteness described above. Consider the same vector \mathbf{v} and the random vector \mathbf{x} . The dot product $\mathbf{v}^{\mathsf{T}}\mathbf{x}$ is the projection of the random vector from n-dimensional space on a one-dimensional space along the direction of \mathbf{v} , i.e., this collapse the n-dimensional random variable to a one-dimensional random variable through some linear combination. If we calculate the variance of the one-dimensional random variable $\mathbf{v}^{\mathsf{T}}\mathbf{x}$, we obtain

$$Var[\mathbf{v}^{\mathsf{T}}\mathbf{x}] = \mathbb{E}[\mathbf{v}^{\mathsf{T}}\mathbf{x}(\mathbf{v}^{\mathsf{T}}\mathbf{x})^{\mathsf{T}}] - \mathbb{E}[\mathbf{v}^{\mathsf{T}}\mathbf{x}] \mathbb{E}[\mathbf{v}^{\mathsf{T}}\mathbf{x}]^{\mathsf{T}}$$
$$= \mathbf{v}^{\mathsf{T}} (\mathbb{E}[\mathbf{x}\mathbf{x}^{\mathsf{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{\mathsf{T}})\mathbf{v}$$
$$= \mathbf{v}^{\mathsf{T}}\mathbf{K}\mathbf{v}.$$

Notice that the variance assumes the exact form as before. And since variance is non-negative, it is clear that the covariance matrix must be semi-positive definite. That is, for any direction **v**, the variance of "**x** projected on that direction" is (clearly) non-negative.

Motivated by the intuitive interpretation, lets now compare two covariance matrices. Let $\mathbf{x} = (x_1, ..., x_n)^{\mathsf{T}}$ and $\mathbf{y} = (y_1, ..., y_n)^{\mathsf{T}}$ be random vectors with mean $(0, ..., 0)^{\mathsf{T}}$ for simplicity. Let $\mathbf{A} = \mathbb{E}[\mathbf{x}\mathbf{x}^{\mathsf{T}}]$ and $\mathbf{B} = \mathbb{E}[\mathbf{y}\mathbf{y}^{\mathsf{T}}]$ be the covariance matrices. Our goal is to compare \mathbf{A} and \mathbf{B} in some meaningful way. We can project \mathbf{x} and \mathbf{y} on a vector \mathbf{v} , and then compare the variance (nonnegative real number) of the two projections. To make

the comparison meaningful, it is reasonable to compare *all* possible projections, i.e., consider all possible choices of **v**

Formally, consider any vector \mathbf{v} . The projection of \mathbf{x} on \mathbf{v} is $\mathbf{v}^{\mathsf{T}}\mathbf{x}$. The variance of $\mathbf{v}^{\mathsf{T}}\mathbf{x}$ is

$$\mathbb{E}[(\mathbf{v}^{\mathsf{T}}\mathbf{x})^{2}] = \mathbb{E}[\mathbf{v}^{\mathsf{T}}\mathbf{x}\mathbf{x}^{\mathsf{T}}\mathbf{v}]$$
$$= \mathbf{v}^{\mathsf{T}}\mathbb{E}[\mathbf{x}\mathbf{x}^{\mathsf{T}}]\mathbf{v} = \mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v}$$

where **A** is the covariance matrix. Similarly, consider the same for **y**. If we find that \forall **v**,

$$\mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v} - \mathbf{v}^{\mathsf{T}}\mathbf{B}\mathbf{v} = \mathbf{v}^{\mathsf{T}}(\mathbf{A} - \mathbf{B})\mathbf{v} \ge 0,$$

then, by definition, $\mathbf{A} - \mathbf{B}$ is semi-positive definite. Now we know why we say \mathbf{A} is *larger* than \mathbf{B} when $\mathbf{A} - \mathbf{B}$ is positive definite:

If A - B is positive definite, then *for all possible directions* \mathbf{v} , the variance of \mathbf{x} is larger than \mathbf{y} 's. ^a

^aThis order of semi-positive definite matrices is called the Löwner ordering.

This interpretation of the partial ordering can be understood easily through visualisation. The following are representations of the distributions \mathbf{x} and \mathbf{y} where the two random vectors are two-dimensional:

Let \mathbf{x} with covariance matrix \mathbf{A} be the blue distribution and \mathbf{y} with covariance matrix \mathbf{B} be the red distribution. It is clear that in case 1, \mathbf{A} is *bigger* than \mathbf{B} since the variance of \mathbf{x} is bigger that \mathbf{y} 's in *every* direction. (every possible direction of projection) However, the same statement is not true in case 2. In some directions (e.g. \mathbf{v}_1), the variance of \mathbf{x} is larger; in other directions (e.g. \mathbf{v}_2), the variance of \mathbf{y} is larger. Thus, \mathbf{A} and \mathbf{B} are not comparable by the partial order in case 2.