

TECHNOLOGIECAMPUS DE NAYER SINT-KATELIJNE-WAVER

Automated visual fruit detection for harvest estimation and robotic harvesting

Steven Puttemans¹ (presenting author), Yasmin Vanbrabant², Laurent Tits³, Toon Goedemé¹

¹EAVISE Research Group, KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium ² KU Leuven, Department of Earth and Environmental Sciences, Division Forest, Nature and Landscape, Celestijnenlaan 200E, BE-3001 Leuven, Belgium ³ Flemisch Institute for Technological Research (VITO), Remote Sensing Unit, Boeretang 200, BE-2400 Mol, Belgium

Introduction

- ✓ Rising trend in agriculture -> autonomous robotic harvesting of fruit and vegetables
 - Robotics & grippers: mechanicly solved problem
 - Robustly localizing objects: still a major challenge
 - Variations: size, occlusion, lighting conditions, ...
 - Up till now: segmentation based approaches
- ✓ Object categorization: detect a complete object class with single object model, including intra-class variance (shape, size, colour, texture, etc.)

Introduction

- ✓ We propose
 - A fully automated semi-supervised system(during learning phase)
 - Able to identify unique object instances
 - In unseen images / scenes
- ✓ Furthermore suggest techniques to
 - Improve separation of clusters into individual objects
 - Speed up the progress using scene specific knowledge

Related Work

✓ Fruit detection and localisation

2D segmentation based approaches

Add information layer using LWIR, hyperspectral, ...

Move to 3D scanning techniques

- => good segmentation = tedious job of parameter fine tuning
- => extra info = rise computational complexity
- => expensive hardware @ limited resolutions
- => controlled lab environments

Datasets

- ✓ Data collected in cooperation with Octinion, VITO & Research Center for Fruit.
- ✓ Strawberry dataset
 - AVT Manta camera (1292x964)
 - Trinocular stereo setup
 - Bottom-up and side-view
- ✓ Apple cultivar dataset
 - Samsung NX3000 (3648x5472)
 - 2 different cultivars: Gala & Red Delicious
- ✓ All data annotated by domain experts

Table 1. Data overview for both applications: number of images, number of annotations, model dimensions and the amount of negative window samples.

		strawberry		appleGala		appleRedDelicious	
		train	test	train	test	train	test
pos	#images	205	750	30	30	32	32
	#labeled	1500	/	1595	625	1075	1160
	dimensions	35x38		65x65		62x66	
neg	#images	200	/	30	/	30	/
	#windows	5000	/	4000	/	3000	/

Suggested Approach: Cascade of weak classifiers

- ✓ Detection model is learned using the Viola & Jones boosted cascade of weak classifiers technique (OpenCV implementation)
 - Features = Local Binary Patterns
 - Boosting type = AdaBoost
 - Pre-processing: histogram equalization

✓ Two models trained

- Ripe + unripe strawberries as object training data
 - · Mediocre results in separating objects from background
 - Does not solve goal of detecting only ripe strawberries
 - False positive detections still a large issue
- Ripe strawberries as object training data and unripe strawberries as background training data
 - Colour information ignored by algorithm \rightarrow greyscale feature descriptor
 - No ability to separate data robustly

Introduction

Suggested Approach: Scene specific information

- ✓ How to incorporate colour information into grayscale feature descriptor?
 - Based on work of Dollar et al., incorporating colour channels.
 - Incorporate a pre-filter based on a specific colour transformation.

$$I_{RG} \begin{cases} 0 & if \ I_R - I_G < 0 \\ I_R - I_G \ if \ I_R - I_G > 0 \end{cases} \label{eq:IRG}$$

- Support red regions, while ignoring greener regions in the image.
- Projecting the RGB colour space on an axis between G(0,1,0) and R(1,0,0).
- Can be incorporated as a
 - Post-filter: OTSU + 50% white pixels = good detection \rightarrow less false positives
 - lacktriangledown Pre-filter: apply rule to training data and learn model from that I_{RG} data
 - → more true positives + less false positives

Suggested Approach: Scene specific information

✓ Difference between scene constraint post- and pre-filtering

Trained on RGB

 $\begin{array}{l} \text{Trained on RGB} \\ \text{+ } I_{\text{RG}} \text{ post-processing} \end{array}$

Trained on RGB $+ I_{RG}$ pre-processing

Introduction Related Work

Dataset

Suggested Approach

Results

Conclusion

Suggested Approach: Splitting clusters in object instances

- ✓ A re-occuring issue in object detection using segmentation is the existence of object clusters.
 - ✓ We propose to use the output of the detector to separate objects inside a cluster efficiently, since it already focusses on single objects
 - ✓ <u>Suggestion 1</u>: Watershed based segmentation
 - OTSU thresholded I_{RG} image
 - Merge blobs together inside single detection
 - Use detection centres as seed points
 + random background seed point
 - Split larger blobs into individual blobs

DOWNSIDE: harsh separation boundaries and objects not found by the detector will not initialize a seed point for the segmentation.

Suggested Approach: Splitting clusters in object instances

- ✓ A re-occuring issue in object detection using segmentation is the existence of object clusters.
 - ✓ We propose to use the output of the detector to separate objects inside a cluster efficiently, since it already focusses on single objects
 - ✓ Suggestion 2: Trinocular stereo triangulation based segmentation
 - Calibrated trinocular stereo setup
 - Detector in 2D images
 - Use a Difference of Gaussians filter to find the strawberry seeds
 - 3D triangulations on seeds
 - Resulting depth edges can be combined with I_{RG} OTSU image

DOWNSIDE: needs a texture inside objects you want to detect.

Results: Strawberry test case

- ✓ We had no ground truth data for strawberry case, due to no consensus on what is defined as `ripe` strawberry.
- ✓ Sticked to visual detection results for this case.
 - Train and detect on IRG filtered input image
 - Then visualized as detections and detection centres on input image

Results: Apple cultivar test case

- ✓ Ground truth data for test set available
- ✓ Qualitative accuracy analysis using precision recall curves
- ✓ Compared to basic background segmentation approach

Introduction

Related Work Dataset Suggested Approach

Results

Conclusion

Results: Apple cultivar test case

✓ Visual results – Gala

Introduction Related Work

Dataset

Suggested Approach

Results

Conclusion

Discussion and conclusion

- ✓ We smartly combine object categorization with scene and application specific pre-filtering creating a promising pipeline for automated fruit harvesting.
- ✓ Several parts can be further improved:
 - Investigate influence of adding more training data to the models and tweaking the training parameters.
 - Consider deep learning techniques as a newer learning algorithm.
 - Improving the separation of object clusters, in order to avoid damaging the food as less as possible by retrieving robust outlines/contours.

Thank you for your attention!

Contact:

- steven.puttemans@kuleuven.be
- toon.goedeme@kuleuven.be

More info:

- http://www.eavise.be
- http://stevenputtemans.github.io

