Distributional Semantics

COMP90042
Natural Language Processing
Lecture 10

Lexical Databases - Problems

- Manually constructed
 - Expensive
 - Human annotation can be biased and noisy
- Language is dynamic
 - New words: slang, terminology, etc.
 - New senses
- The Internet provides us with massive amounts of text. Can we use that to obtain word meanings?

Distributional Hypothesis

- "You shall know a word by the company it keeps" (Firth, 1957)
- Document co-occurrence often indicative of topic (document as context)
 - E.g. *voting* and *politics*
- Local context reflects a word's semantic class (word window as context)
 - E.g. eat a pizza, eat a burger

Guessing Meaning from Context

- Learn unknown word from its usage
- E.g., tezgüino
- (14.1) A bottle of ____ is on the table.
- (14.2) Everybody likes ____.
- (14.3) Don't have ____ before you drive.
- (14.4) We make ____ out of corn.
- Look at other words in same (or similar) contexts

	(14.1)	(14.2)	(14.3)	(14.4)	•••
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	0	

COMP90042 L10

Word Vectors

	(14.1)	(14.2)	(14.3)	(14.4)	•••
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	0	

- Each row can be thought of a word vector
- It describes the distributional properties
- Capture all sorts of semantic relationships (synonymy, analogy, etc)

Word Embeddings?

- We've seen word vectors before: word embeddings!
- Here we will learn other ways to produce word vectors
 - Count-based methods
 - More efficient neural methods designed just for learning word vectors

Count-Based Methods

COMP90042

The Vector Space Model

- Fundamental idea: represent meaning as a vector
- Consider documents as context
- One matrix, two viewpoints
 - Documents represented by their words
 - Words represented by their documents

	•••	state	fun	heaven	•••
•••					
425		0	1	0	
426		3	0	0	
427		0	0	0	
•••••					

Manipulating the VSM

- Weighting the values (beyond frequency)
- Creating low-dimensional dense vectors
- Comparing vectors

Tf-idf

Standard weighting scheme for information retrieval

$$idf_w = \log \frac{|D|}{df_w}$$

Discounts common words

	•••	the	country	hell	•••
•••					
425		43	5	1	
426		24	1	0	
427		37	0	3	
•••					
df		500	14	7	

	•••	the	country	hell	•••
•••					
425		0	26.0	6.2	
426		0	5.2	0	
427		0	0	18.6	
• • •					

tf-idf matrix

Dimensionality Reduction

- Term-document matrices are very sparse
- Dimensionality reduction: create shorter, denser vectors
- More practical (less features)
- Remove noise (less overfitting)

COMP90042

Singular Value Decomposition

 $A = U\Sigma V^{I}$

(new term matrix)

m

(singular values)

m

VT

(new document matrix)

|D|

 $|V| \begin{bmatrix} 2.2 & 0.3 & 8.7 \\ 5.5 & -2.8 & \cdots & 0.1 \\ -1.3 & 3.7 & & 3.5 \\ \vdots & \ddots & \vdots \\ 2.9 & -2.1 & \cdots & -1.9 \end{bmatrix} m \begin{bmatrix} 9.1 & 0 & 0 & & 0 \\ 0 & 4.4 & 0 & \cdots & 0 \\ 0 & 0 & 2.3 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0.1 \end{bmatrix} m \begin{bmatrix} -0.2 & 4.0 & & -1.3 \\ -4.1 & 0.6 & \cdots & -0.2 \\ 2.6 & 6.1 & & 1.4 \\ \vdots & & \ddots & \vdots \\ -1.9 & -1.8 & \cdots & 0.3 \end{bmatrix}$

Truncating – Latent Semantic Analysis

- Truncating U, Σ , and V to k dimensions produces best possible k rank approximation of original matrix
- So truncated, U_k (or V_{k^T}) is a new low dimensional representation of the word
- Typical values for k are 100-5000

Words as Context

- Lists how often words appear with other words
 - In some predefined context (usually a window)
- The obvious problem with raw frequency: dominated by common words

	•••	the	country	hell	•••
•••					
state		1973	10	1	
fun		54	2	0	
heaven		55	1	3	
••••					

Pointwise Mutual Information

- For two events x and y, PMI computes the discrepancy between:
 - Their joint distribution
 - Their individual distributions (assuming independence)

$$PMI(x, y) = \log_2 \frac{p(x, y)}{p(x)p(y)}$$

COMP90042 L10

Calculating PMI

	•••	the	country	hell	•••	Σ
state		1973	10	1		12786
tun		54	2	0		633
heaven		55	1	3		627
•••						
Σ		1047519	3617	780		15871304

$$p(x,y) = count(x,y) / \Sigma$$

$$p(x) = \Sigma_x / \Sigma$$

$$p(y) = \Sigma_y / \Sigma$$

```
x = state, y = country

p(x,y) = 10/15871304 = 6.3 \times 10^{-7}

p(x) = 12786/15871304 = 8.0 \times 10^{-4}

p(y) = 3617/15871304 = 2.3 \times 10^{-4}

p(x) = \log_2(6.3 \times 10^{-7})/((8.0 \times 10^{-4}) (2.3 \times 10^{-4}))

= 1.78
```

PMI Matrix

- PMI does a better job of capturing interesting semantics
 - ▶ E.g. *heaven* and *hell*
- But it is obviously biased towards rare words
- And doesn't handle zeros well

	•••	the	country	hell	•••
•••					
state		1.22	1.78	0.63	
fun		0.37	3.79	-inf	
heaven		0.41	2.80	6.60	
•••••					

PMI Tricks

- Zero all negative values (PPMI)
 - Avoid –inf and unreliable negative values
- Counter bias towards rare events
 - Smooth probabilities

COMP90042 L10

SVD

	•••	the	country	hell	•••
•••					
425		0	26.0	6.2	
426		0	5.2	0	
427		0	0	18.6	
• • •					

	•••	the	country	hell	•••
•••					
state		1.22	1.78	0.63	
fun		0.37	3.79	0	
heaven		0.41	2.80	6.60	
•••••					

tf-idf matrix

PPMI matrix

 Regardless of whether we use document or word as context, SVD can be applied to create dense vectors

Similarity

- Word similarity = comparison between word vectors (e.g. cosine similarity)
- Find synonyms, based on proximity in vector space
 - automatic construction of lexical resources
- Use vectors as features in classifier more robust to different inputs (*movie* vs *film*)

Neural Methods

Word Embeddings

- We've seen word embeddings used in neural networks (feedforward or recurrent)
- But these models are designed for other tasks:
 - Classification
 - Language modelling
- Word embeddings is just one part of the model

Neural Models for Embeddings

- Can we design neural networks whose goal is to learn word embeddings?
- Desiderata:
 - Unsupervised
 - Efficient
 - Useful representation

Word2Vec

- Neural network inspired approaches seek to learn vector representations of words and their contexts
- Key idea
 - Word embeddings should be similar to embeddings of neighbouring words
 - And dissimilar to other words that don't occur nearby
- Using vector dot product for vector 'comparison'

$$\bullet \ \mathbf{u} \cdot \mathbf{v} = \sum_{j} \mathbf{u}_{j} \mathbf{v}_{j}$$

Word2Vec

- Framed as learning a classifier
 - Skip-gram: predict words in local context surrounding given word

- CBOW: predict word in centre, given words in the local surrounding context
- Local context means words within L positions, L=2 above

Skip-gram Model

Generates each word in context given centre word

P(he | rests) P(in | rests)

P(life | rests)

P(peace | rests)

- Total probability defined as
 - $\begin{array}{lll} \bullet & \text{Where subscript} & & \mathbf{1} \, \mathbf{1} \\ \text{denotes position in} & & & & \\ \text{running text} & & & \\ \end{array}$

$$\prod_{l \in -L, \dots, -1, 1, \dots, L} P(w_{t+l}|w_t)$$

 Using a logistic regression model

$$P(w_k|w_j) = \frac{\exp(c_{w_k} \cdot v_{w_j})}{\sum_{w' \in V} \exp(c_{w'} \cdot v_{w_j})}$$

COMP90042 L10

Embedding parameterisation

 Two parameter matrices, with d-dimensional embedding for all words

Fig 19.17, JM3

 Words are numbered, e.g., by sorting vocabulary and using word location as its index

Skip-gram model

Fig 19.18, JM3

Training the skip-gram model

- Train to maximise likelihood of raw text
- Too slow in practice, due to normalisation over IVI

$$P(w_k|w_j) = \frac{\exp(c_{w_k} \cdot v_{w_j})}{\sum_{w' \in V} \exp(c_{w'} \cdot v_{w_j})}$$

- Reduce problem to binary classification, distinguish real context words from non-context words aka "negative samples"
 - words drawn randomly from V

Negative Sampling

... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 t c3 c4

positive examples +

apricot tablespoon apricot of apricot jam apricot a

negative examples -

t	c	t	c
apricot	aardvark	apricot	seven
apricot	my	apricot	forever
apricot	where	apricot	dear
apricot	coaxial	apricot	if

$$P(+|t,c) = \frac{1}{1 + e^{-t \cdot c}} \longleftarrow$$

maximise similarity between target word and real context words

$$P(-|t,c) = 1 - \frac{1}{1 + e^{-t \cdot c}}$$

minimise similarity between target word and non-context words

Skip-gram Loss

$$L(\theta) = \sum_{(t,c)\in +} \log P(+|t,c) + \sum_{(t,c)\in -} \log P(-|t,c)$$

In practice, use k negative examples

$$L(\theta) = \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i)$$

COMP90042 L10

Training Illustration

- Iterative process (stochastic gradient descent)
 - each step moves embeddings closer for context words
 - and moves embeddings apart for noise samples

Source: JM3 Ch 6

Desiderata

- Unsupervised
 - Raw, unlabelled corpus
- Efficient
 - Negative sampling (avoid softmax over full vocabulary)
 - Scales to very very large corpus
- Useful representation:
 - How do we evaluate word vectors?

Evaluating Word Vectors

- Lexicon style tasks
 - WordSim-353 are pairs of nouns with judged relatedness
 - SimLex-999 also covers verbs and adjectives
 - TOEFL asks for closest synonym as multiple choice
 - **)** ...
- Test compatibility of word pairs using cosine similarity in vector space

COMP90042

Embeddings Exhibit Meaningful Geometry

- Word analogy task
 - ▶ Man is to King as Woman is to ???
 - \vee v(Man) v(King) = v(Woman) v(???)
 - \vee v(???) = v(Woman) v(Man) + v(King)

Evaluating Word Vectors

- Best evaluation is in other downstream tasks
 - Use bag-of-word embeddings as a feature representation in a classifier
 - First layer of most deep learning models is to embed input text; use pre-trained word vectors as embeddings
- Recently contextual word vectors shown to work even better
 - ELMO & BERT (next lecture!)

Pointers to Software

- Word2Vec
 - C implementation of Skip-gram and CBOW https://code.google.com/archive/p/word2vec/
- GenSim
 - Python library with many methods include LSI, topic models and Skip-gram/CBOW https://radimrehurek.com/gensim/index.html
- GLOVE
 - http://nlp.stanford.edu/projects/glove/

Further Reading

▶ JM3, Ch 6