数学サブゼミ e 修了認定試験

ベクトル解析: ナヴィエ=ストークス方程式の変形

気体や液体のことを流体と呼ぶ。気体は縮む流体であ り、液体は縮まない流体である。流体の運動は右に示した ナヴィエ=ストークス (Navier-Stokes) 方程式と連続の方程 式 (equation of continuity) に支配される。

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\frac{1}{\rho} \operatorname{grad} \ p + \frac{\mu}{\rho} \nabla^2 \mathbf{v} + f \\ \frac{\partial \rho}{\partial t} + \operatorname{div} \ (\rho \mathbf{v}) = 0 \end{cases}$$

ただし、 $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)^T$ 、 $\mathbf{v} = (v_x, v_y, v_z)^T$ 、 ρ は流体の密度、 μ は流体の粘性係数、p は圧力、f は

- (1) $\operatorname{div} \mathbf{v}$ を求めなさい。ただし、 $\operatorname{div} \mathbf{v} = \nabla \cdot \mathbf{v}$ である (記号・はスカラー積)。
- $(1) ext{ div } \mathbf{v}$ を求めなさい。ただし、 $ext{div } \mathbf{v} = \mathbf{v} \cdot \mathbf{v}$ であり、ベクトル積は $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} e_x & e_y & e_z \\ a_x & a_y & a_z \\ b_x & b_u & b_z \end{vmatrix}$ である。
- (3) grad q^2 を計算しなさい。ただし、 $q = |\mathbf{v}|$ で、grad $q^2 = \nabla q^2$ である。
- (4) 粘性がない場合 ($\mu=0$) のナヴィエ=ストークス方程式をオイラーの運動方程式と言う。(2) および (3) の結果を用いてオイラーの運動方程式の左辺 $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v}$ が $\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{2} \operatorname{grad} q^2 - \mathbf{v} \times \omega$ と書き換えられることを示しなさい。ただし $\omega = \operatorname{rot} \mathbf{v}$ である。
- (5) 以下の手順に従い、(4) の形のオイラーの運動方程式から渦度方程式 $\frac{\partial \omega}{\partial t} = \mathrm{rot}\; (\mathbf{v} \times \omega)$ を導きなさい。 ω を渦度と言い、 $\omega = \text{rot } \mathbf{v}$ である。
 - (a) 外力を保存力と仮定すると $f=-\mathrm{grad}\;\Omega$ と書ける。これをオイラーの運動方程式に代入しなさい。
 - (b) 密度 ρ が圧力 p だけの関数と仮定すると、 $\frac{1}{\rho}\operatorname{grad} p = \operatorname{grad} P$ と書ける。これをオイラーの方程式に 代入しなさい。
 - (c) (5a) \sim (5b) によって導かれた式の両辺の rot をとりなさい。ただし、 $rot(\operatorname{grad} f)=0$ である。
- (6) $\omega=0$ のとき流れは渦無しと呼ばれ、流速ベクトルは $\mathbf{v}=\mathrm{grad}\ \Phi$ と書ける $(\cdot : \omega=\mathrm{rot}\ \mathbf{v}=\mathrm{rot}\ (\mathrm{grad}\ \Phi)=0$ 0)。 Φ を速度ポテンシャルと呼ぶ。渦度方程式に $\mathbf{v} = \operatorname{grad} \Phi$ を代入し、一般化ベルヌーイの定理 $rac{\partial \Phi}{\partial t} + rac{1}{2}q^2 + P + \Omega = f(t)$ を導きなさい。
- (7) 縮まない流体 (
 ho=-定) のを想定し、連続の方程式 $rac{\partial
 ho}{\partial t}+{
 m div}\;
 ho{f v}=0$ からラプラス方程式 $abla^2\Phi=0$ を導きなさい。 ${f v}={
 m grad}\;\Phi$ 、 ${
 m div}({
 m grad}\;f)=
 abla^2f$ である。

多变量解析I 2

- 2.1 判別分析
- クラスター分析

進化系統樹