GIẢI TÍCH HÀM (Bang Nguyen)

October 3, 2024

1 Giải tích hàm

- Xác định:
 - Cái đã có.
 - Cái cần chứng minh.
 - Từ đó \rightarrow Cái cần **tìm**.
- Giả thuyết \rightarrow Kết quả.
 - Giả thuyết \rightarrow **đã có**.
 - Kết quả \rightarrow **cần tìm**.

1.1 Các phép toán trên tập hợp

1.1.1 Phép giao

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

- Note
 - $-A \cap B = B \cap A$
 - $-A \cap B \subset A$
 - $-A \cap B \subset B$
 - $(A \cap B) \cap C = A \cap (B \cap C)$

1.1.2 Phép hợp

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

- Note
 - $-A \cup B = B \cup A$
 - $-A \subset A \cup B$
 - $-B \subset A \cup B$
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

1.1.3 Phép trừ

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

• Note

$$-A \subset X, B \subset X.$$

$$-A \setminus B = A \cap (X \setminus B)$$

$$-X \setminus (X \setminus A) = A$$

$$-X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$

$$-X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

• De Morgan

$$\begin{array}{l} - \ \overline{A \cup B} = \overline{A} \cap \overline{B} \\ - \ \overline{A \cap B} = \overline{A} \cup \overline{B} \end{array}$$

1.2 Định nghĩa

1.2.1 Metric

• TXĐ: $X \neq \emptyset$

• $\forall x, y, z \in X$:

$$-d(x,y) \ge 0, d(x,y) = 0 \Leftrightarrow x = y$$

- d(x,y) = d(y,x)

$$- d(x,y) \le d(x,z) + d(z,y)$$

1.2.2 Tập

• TXĐ:

-(X,d) là không gian metric

 $-a \in X$

- r > 0

 $-A \subset X$

• Quả cầu mở (tâm a, bán kính r) trong X:

$$B(a; r) = \{ x \in X | d(a, x) < r \}$$

• Quả cầu đóng (tâm a, bán kính r) trong X:

$$B'(a;r) = \{x \in X | d(a,x) \le r\}$$

• Mặt cầu (tâm a, bán kính r) trong X:

$$S(a;r) = \{x \in X | d(a,x) = r\}$$

Tập mở

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ a\in X\ r>0}$ $A\subset X$	A là tập mở (trong X)	\Leftrightarrow	$\forall x \in A \ \exists r > 0$ $B(x;r) \subset A$

Tập đóng

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ a\in X\ r>0}$	A là tập đóng	⇔	$X \setminus A$ tập mở
$A \subset X$	(trong X)		
(X,d) $a \in X$ $r > 0$	A là tập đóng	\Leftrightarrow	$A = \overline{A}$ (phần dính)
$A \subset X$	(trong X)		
(X,d) $a \in X$ $r > 0$	A là tập đóng	\Leftrightarrow	$\forall (x_n) \subset A: x_n \to$
$A \subset X$	(trong X)		$x \in X \Rightarrow x \in A$
(X,d) $A \subset Y \subset X$	A đóng trong Y	\Leftrightarrow	A đóng trong X
Y đóng trong X			

Tập bị chặn

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ a\in X\ r>0}$ $A\subset X$	A là tập bị chặn	\Leftrightarrow	$\exists a \in X \ \exists r > 0$ $A \subset B(a; r)$

1.2.3 Dãy

Dãy hội tụ

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$(X,d) (x_n)$	(x_n) hội tụ (trong X)	⇔	$\forall \epsilon > 0$ $\exists n_0 \in \mathbb{N} : \forall n \ge n_0$ $d(x_n, x) < \epsilon$
(X,d) (x_n)	(x_n) hội tụ (trong	\Leftrightarrow	$\exists x \in X : x_n \to x \text{ khi} $ $n \to \infty$
$(X,d)\ (x_n)$	$egin{pmatrix} (x_n) & \mathbf{hội} & \mathbf{tụ} & (\mathrm{trong} \ X) \end{pmatrix}$	\Leftrightarrow	$\begin{array}{l} n \to \infty \\ \exists x \in X : d(x_n, x) \to \\ 0 \text{ khi } n \to \infty \end{array}$

Dãy Cauchy

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
(X,d) (x_n)	(x_n) dãy Cauchy $(\operatorname{trong} X)$	\Leftrightarrow	$\begin{aligned} &\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}: \\ &\forall m,n \geq n_0 \\ &d(x_m,x_n) < \epsilon \end{aligned}$

Dãy bị chặn

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ (x_n)}$	(x_n) dãy bị chặn $(\operatorname{trong} X)$	\Leftrightarrow	$\exists a \in X \ \exists r > 0 : $ $(x_n) \subset B(a; r)$

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)(x_n)}$	(x_n) dãy bị chặn $(\operatorname{trong} X)$	\Leftrightarrow	$\forall n \in \mathbb{N} \ x_n \in B(a;r)$

1.2.4 Đầy đủ

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
(X,d)	(X,d) đầy đủ	\Leftrightarrow	$\forall (x_n) \subset X \ (x_n) \ \mathrm{day}$ Cauchy $\Rightarrow (x_n)$ hội tụ

• Tip

- Lấy $(x_n)\subset X$
- $-(x_n)$ dãy Cauchy
- C/m (x_n) hội tụ.

1.2.5 Compắc

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
(X,d)	(X,d) compắc	⇔	$ \forall (x_n) \subset X \\ \exists (x_{n_k}) \subset (x_n) : \\ (x_{n_k}) \text{ hội tụ} $

• Tip

- Lấy $(x_n)\subset X$
- C/m (x_n) có dãy con $(x_{n_k})\subset (x_n)$ sao cho (x_{n_k}) hội tụ.

1.3 Kết quả

1.3.1 Giao/hợp các tập mở (đóng)

- TXD:
 - -(X,d)
 - $\ \forall i \in I$
- $\begin{array}{c} \text{$\cdot$} & \text{$\cdot$} & \text{$\cdot$} \\ & (A_i)_{i \in I} \subset X \\ & A_i = \emptyset \ \# \# \# \# \ \text{M} \\ \text{\bullet} & A_i \ \text{m} \\ \text{\circ} & \Rightarrow \bigcup_{i \in I} A_i \ \text{m} \\ \end{array}$
- A_i mở (I hữu hạn) $\Rightarrow \bigcap_{i \in I} A_i$ mở #### Đóng
- A_i đóng $\Rightarrow \bigcap_{i \in I} A_i$ đóng
- A_i đóng (I hữu hạn) $\Rightarrow \bigcup_{i \in I} A_i$ đóng ### Phần dính, phần trong #### Phần dính (\overline{A})

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
(X,d) $A \subset X$ $a \in X$	$x \in \overline{A}$	\Leftrightarrow	$\forall r > 0$
$(X,d)\ A \subset X\ a \in X$	$x \in \overline{A}$	\Leftrightarrow	$B(x,r) \cap A \neq \emptyset$ $\exists (x_n) \subset A : x_n \to x \in X \Rightarrow x \in A$
$x \in X (X, d) \ A \subset X \ x \in X$	$x \in \overline{A}$	\Leftrightarrow	$x \in A \Rightarrow x \in A$ $\exists (x_n) \subset A : x_n \to x \text{ khi } n \to \infty$

• Note

 \overline{A} là tập đóng & là tập đóng nhỏ nhất chứa A

Phần trong $(\stackrel{\circ}{A})$

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ A\subset X\ a\in X}$	$x \in \mathring{A}$	\Leftrightarrow	$\exists r > 0 \ B(x,r) \subset A$

• Note

- $-\stackrel{\circ}{A}$ là tập mở & là tập mở lớn nhất chứa trong A
- $-\stackrel{\circ}{A}\subset A\subset \overline{A}$

1.3.2 Vết của tập mở (đóng)

• Note

$$\begin{split} - \ \forall a \in Y, \ \forall r > 0 \\ * \ B_Y(a,r) = Y \cap B_X(a,r) \\ - \ V \subset X, \ V \cap Y \ \text{là } \textbf{v\'et} \ \text{của} \ V \ \text{lên} \ Y \end{split}$$

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ A\subset Y\subset X}$	A mở trong Y	\Leftrightarrow	$\exists V \text{ m\'o trong } X$
$Y \neq \emptyset$			$A = V \cap Y$
(X,d) $A \subset Y \subset X$	A đóng trong Y	\Leftrightarrow	$\exists F$ đóng trong X
$Y \neq \emptyset$			$A = F \cap Y$
(X,d) $A \subset Y \subset X$	$A \text{ m\'o } (\text{d\'ong}) \text{ trong}$	\Leftrightarrow	A là vết của tập mở
$Y \neq \emptyset$	Y		(đóng) trong X lên
			Y
(X,d) $A \subset Y \subset X$	$A \text{ m\'o } (\text{d\'ong}) \text{ trong}$	\Rightarrow	A mở (đóng) trong
$Y \neq \emptyset$	X		Y
(X,d) $A \subset Y \subset X$	$A \text{ m\'o } (\text{d\'ong}) \text{ trong}$	\Rightarrow	A mở (đóng) trong
$Y \neq \emptyset$	$Y \ Y \ \mathbf{m}$ ở (đóng)		X
	$\operatorname{trong} X$		

1.3.3~K
gian metric con đầy đủ, com
pắc

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
$\overline{(X,d)\ Y\subset X}$	Y đầy đủ	\Rightarrow	Y đóng trong X
$(X,d) \ Y \subset X$	Y đóng trong X X đầy đủ	\Rightarrow	Y đầy đủ
$(X,d) \ \emptyset \neq Y \subset X$	Y compac	\Rightarrow	Y đầy đủ Y bị chặn (tập đóng)
$(X,d) \ \emptyset \neq Y \subset X$	Y đóng trong X X compac	\Rightarrow	Y compac

1.3.4 Tiền compắc

ĐIỀU KIỆN	VÉ TRÁI		VÉ PHẢI
(X,d)	X tiền compac	\Leftrightarrow	$\forall \epsilon > 0$
			$\exists x_1, x_2, \dots, x_n \in X$
			$X \subset \bigcup^n B(x_i,\epsilon)$
(X,d)	X compac	\Leftrightarrow	X tiền compac X
· · · · · · · · · · · · · · · · · · ·			đầy đủ