OpenShift Installation & Administration

Tobias Derksen

⊘ codecentric

Über mich ...

Tobias Derksen

- DevOps Consultant @codecentric
- RedHat Partner
- OpenShift Trainer
- RedHat Certified Engineer

Vorstellung

Agenda

- Einführung in OpenShift
- Cluster Konzeption
- Installation
- Web Interface & CLI Basics
- Hochverfügbarkeit
- Networking / SDN
- Security
- Persistent Storage
- Best Practices

Einführung in OpenShift

Was ein Chaos ...

redhat. okc

kubernetes

OpenShift ist ... kubernetes plus

- Routing
- Metriken
- Logging
- Web Oberfläche
- Builds
- Image Registry
- Sicherheitsmaßnahmen
- SDN
- Templates

Mit Red Hat Subscription:

- Trusted Registry
- Security Newsletter
- Enterprise Support

Begriffe

- Container
- Pod
- Node
- Projekt
- Namespace
- etcd
- Gluster
- Ceph

- Ansible
- Inventory
- Playbook

Cluster Konzeption

Verschiedene Node Typen

Master Nodes

API - Server

ETCD

Web Console

Compute Nodes

Applikationen

Services

Datenbanken

Builds

Andere Workloads

Storage Nodes

Nur beim Elnsatz von Gluster

Nodes mit physischem Speicher

Fällt mit OpenShift 4 weg

Minimum Cluster Sizing (OpenShift 3)

Master Nodes	Infrastructure Nodes	Compute Nodes
 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 50GB disk 	 Fedora, CentOS oder RHEL 2 (v)CPU 8 GB RAM 50GB disk 	 Fedora, CentOS oder RHEL 1 (v)CPU 8 GB RAM 35GB disk

Recommended Cluster Sizing (OpenShift 3)

Master Nodes	Infrastructure Nodes	Compute Nodes
 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 100GB disk 	 Fedora, CentOS oder RHEL 4 (v)CPU 16GB RAM 100GB root disk >= 250GB registry storage 	 Fedora, CentOS oder RHEL >= 2 (v)CPU >= 8GB RAM >= 50GB disk

Mehr RAM => mehr disk (+25GB disk / 8GB RAM)

Anzahl der Nodes (OpenShift 3)

	Minimal	Development	Production	Production (HA)
Master		4	1	3
Infrastructure	1	1	1+	2+
Compute		2+	3+	6+

OpenShift 4 braucht immer 3 Master.

Und wie viele Nodes brauche ich jetzt genau?

<u>Einzelfall abhängig!</u>

Kriterien:

- Erwarteter Workload der Applikationen
- Fest allokierte Ressourcen der Applikationen
- Gewünschte Pods per Node
- Hochverfügbarkeit (HA)
- Cluster Reserven / Failover Reserven
- Automatische Skalierung
- Mehr Ressourcen sind besser als mehr Nodes

Cluster Limits (OpenShift 3.11)

Anzahl der Nodes	2.000
Anzahl der Pods	150.000
Pods per Node	250
Namespaces / Projekte	10.000
Pods per Namespace	3.000
Pods per CPU	entfallen

Installation vorbereiten

Bastion Host

- Sprung-Host f

 ür SSH
- Zentrale Verwaltung der Konfiguration
- Zentrale Verwaltung der OpenShift-Version
- Keine Ansible / Python Versionsprobleme
- Installer benötigt Abhängigkeiten

Schritt für Schritt zur Installation

- 1. Infrastruktur provisionieren
- 2. System Updates und Abhängigkeiten installieren
- 3. DNS Einträge erstellen und prüfen
- 4. Inventory erstellen
- 5. Playbook: prerequisites.yml
- 6. Playbook: deploy_cluster.yml
- 7. Zusätzliche Aufgaben nach der Installation

Besonderheiten & Abhängigkeiten

- x86_64 Architecture
- Kein Support f
 ür IPv6 cluster-intern
- SELinux benötigt (enforcing)
- NetworkManager
- firewalld (recommended)
- rngd (rng-tools)

DNS Einträge

Eintrag	Master (extern)	Master (intern)	Routes
Beispiel	master.openshift.com	internal.openshift.com	*.apps.openshift.com
Ziel	Master Nodes (8443)	Master Nodes (8443)	Infra Nodes (80, 443)
Benutzung	Externer Zugriff auf Master für CLI und Web Oberfläche.	Interne Kommunikation der Nodes mit dem Master	Eintrittspunkt für externen Traffic. Konkrete Routen werden von OpenShift generiert.


```
[OSEv3:children]
masters
nodes
etcd
[OSEv3:vars]
ansible_user=centos
ansible_become=true
ansible ssh common args='-o StrictHostKeyChecking=no'
deployment_type=origin
openshift_deployment_type=origin
openshift_release='v3.11'
openshift_disable_check=docker_storage,memory_availability
openshift_clock_enable=true
openshift_use_dnsmasq=true
os firewall use firewalld=true
ansible_service_broker_install=false
openshift enable service catalog=false
osm_use_cockpit=false
openshift_is_atomic=false
openshift_master_default_subdomain='apps.training0.cc-openshift.de'
openshift_master_cluster_hostname='internal-master.training0.cc-openshift.de'
openshift master cluster public hostname='master.training0.cc-openshift.de'
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
openshift master htpasswd users={'admin': '$apr1$zgSjCrLt$1KSuj66CggeWSv.D.BXOA1', 'user': '$apr1$.gw8w9i1$ln9bfTRiD6OwuNTG5LvW50'}
[masters]
master0.training0.cc-openshift.de openshift_node_group_name='node-config-master-infra' openshift_schedulable=true
[etcd]
master0.training0.cc-openshift.de
[nodes]
app[0:2].training0.cc-openshift.de openshift_node_group_name='node-config-compute'<u>openshift_schedulable=true</u>
master0.training0.cc-openshift.de openshift_node_group_name='node-config-master-infra' openshift_schedulable=true
```

Node Group Config

- node-config-master
- node-config-infra
- node-config-compute
- node-config-master-infra
- node-config-all-in-one

Nach der Installation

• Cluster Administrator ernennen

oc adm policy add-cluster-role-to-user cluster-admin <username>

Wichtige Cluster Komponenten

- Master API
- etcd
- Web Console
- Router
- Registry
- Metrics
- Logging

Zertifikate

- OpenShift Root CA wird bei Installation generiert
- Zertifikate werden erstellt für:
 - Nodes
 - etcd
 - Router
 - Services (Metriken, Logging, etc)

Achtet auf das Ablaufdatum!!!!!!

Erneuerung der Zertifikate mit Playbook

Nachinstallation von Komponenten

- Einige Komponenten lassen sich einfach nachinstallieren
- Man kann das "deploy_cluster" Playbook nochmal laufen lassen
- Man kann das entsprechende Komponentenplaybook starten

```
openshift_logging_install_logging=true
openshift_metrics_install_metrics=true
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
```

Ressourcen

Alles nur Ressourcen

- Der Zustand des Clusters wird mit den verschiedenen Ressourcen abgebildet.
- Cluster Ressourcen (z.B. Namespaces, Persistent Volumes)
- Projekt Ressourcen (z.B. Deployments, Builds)
- Die Ressourcen werden im etcd gespeichert
- Custom Resource Definitions (CRD)

Wichtige Objekt Typen

- Clusterroles
- Rolebindings
- Persistent Volumes
- Persistent Volume Claims
- Template
- Pod

- ConfigMap
- Secret
- Deployment
- DeploymentConfig
- Build
- Route
- Service

Web Console Basics

OpenShift CLI Basics

Skalierung & HA

Skalierung

- Master hinzufügen
- Node hinzufügen
- Node entfernen
- Node updaten (System updates)
- Cluster updaten

Hochverfügbarkeit

- min. 3 Master Nodes
- min. 2 Infrastructure Nodes
- Genug Compute Nodes um die Workload zu übernehmen
- Loadbalancer f
 ür Infrastructure Nodes
- Loadbalancer f
 ür Master API
- Vorsicht vor DNS Problemen
- HA im DNS
- HA im Storage System
- HA im Netzwerk / Rechenzentrum

Zones & Region

- /etc/origin/master/scheduler.json
- Zone: Anti-Affinität
- Region: Affinität
- Custom Configuration:
 - Racks
 - Build Nodes
 - Enforce Labeling

[root@ip-10-1-5-240 master]# oc label node master-1 zone="zone-1" region="frankfurt"

```
"argument": {
        "serviceAntiAffinity":{
           "label": "zone"
        "name": "Zone",
        "weight":2
     "argument":{
        "serviceAffinity":{
           "label": "region"
        "name": "Region",
        "weight":2
```

Health Checks

Liveness Probe

Checks whether the container is alive

If fail, container is restarted

- HTTP GET
- Shell command
- Open TCP ports

Readiness Probe

Checks whether the container is able to accept traffic

If fail, container will not get any traffic from service layer

Failing is a totally valid option

- Expect that any pod is killed by kubernetes <u>at any time</u>
- Allow your container to fail ... as early as possible

Reasons why a pod is killed:

- Manual interaction (Admin, Developer, etc)
- Node failure or maintenance
- Network issues
- Pod / Container out-of-memory
- Node out-of-memory

Hochverfügbarkeit done right

- Replicas
- Storage
- externe Abhängigkeiten
- Resource Allocation / Quality of Service
- PodDisruptionBudget
- Deployment Strategy
- Health Checks

User Management

OpenShift Identity Provider

Möglichkeiten zur User Verwaltung

ЦΤ	D/	SS	W	
пі	Γ	100	٧V	$\boldsymbol{\nu}$

Hard-coded Passwörter im htpasswd Format welche lokal auf den Mastern liegen.

LDAP

Generischer LDAP Authenticator. Kann mit jedem handelsüblichen LDAP Server verbunden werden.

Social Logins

Github
Gitlab
Google

OpenID Connect

Generischer OpenID Connect Authenticator. Kann jeden OAuth2 oder OIDC Provider anbinden.

LDAP Anbindung im Inventory

LDAP Gruppen synchronisieren

- Mapping von LDAP Gruppen auf OpenShift Rollen
- Manuelle Konfiguration
- Manuelles Synchronisieren
- https://docs.okd.io/3.11/install_config/syncing_groups_with_ldap.html

oc adm groups sync --sync-config=config.yaml --confirm

Security

Übersicht

- Role based access control (RBAC)
- Security Context Constraints (SCC)
- PodSecurityPolicy (PSP)

Rollen & Rechte

- Cluster Rollen
- Projekt Rollen
- Rechte bestehen aus <u>Verb + Objekttype</u> (Beispiel: get projects)
- Rechte eines Accounts = Summe aller erlaubten Aktionen
- Serviceaccounts

Cluster Rollen:

- cluster-admin
- cluster-reader
- self-provisioner

Projekt Rollen:

- admin
- edit
- view

Security Context Constraints (SCC)

- Kontrolliert die Rechte eines Pods.
- Ohne SCC werden erweiterte Rechte vom Scheduler zurückgewiesen
- Erlaubt Pods:
 - Zugriff auf Host Dateisystem
 - Zugriff auf Host Netzwerk
 - Starten als spezifischer User, bzw Root
 - Setzen von SELinux context
 - Erweiterte Möglichkeiten mit Gruppen
 - Erlauben bestimmter Linux Capabilities

Was man **NIEMALS** tun sollte ...

- Rechte an den default Service Account geben
- SCC an den default Service Account geben
- "privileged" SCC vergeben
- Container als root laufen lassen weil man zu faul ist es richtig zu machen

oc adm policy add-scc-to-user privileged -z default

OpenShift SDN

Network Plugins (OpenShift 3)

- ovs-subnet
- ovs-networkpolicy
- ovs-multitenant
- Unterschiede in Isolationsgrade

os sdn network plugin name='redhat/openshift-ovs-networkpolicy'

Ingress Network Policy (OpenShift 3)

- Objekttyp: NetworkPolicy
- Kontrolliert eingehenden Traffic per Pod
- Kann einzelne Pods im **selben** Namespace freischalten
- Kann **ganze** externe Namespaces freischalten

```
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
    name: allow-http-and-https
spec:
    podSelector:
        matchLabels:
        role: frontend
ingress:
    - ports:
        - protocol: TCP
        port: 80
        - protocol: TCP
        port: 443
```

Egress Network Policy (OpenShift 3)

- Objekttyp: EgressNetworkPolicy
- Kontrolliert cluster-externen Traffic
- Ein Policy Objekt pro Namespace
- Kann mit einigen Techniken umgangen werden

```
kind: EgressNetworkPolicy
apiVersion: v1
metadata:
   name: default
spec:
   egress:
   - type: Allow
        to:
        cidrSelector: 1.2.3.0/24
   - type: Allow
        to:
        dnsName: www.foo.com
   - type: Deny
        to:
        cidrSelector: 0.0.0.0/0
```

Third-Party-Plugins

https://docs.okd.io/3.11/architecture/networking/network_plugins.html

Backup & Restore

Backup Möglichkeiten

- 1. Snapshot der Maschinen
- 2. Backup der Konfigurationen und wichtigen Daten
- 3. etcd Backup
- Objekt-Export als YAML oder JSON
- **5**. Infrastructure-as-Code

https://github.com/lukeelten/openshift-backup

https://velero.io

etcd Backup

- Backup der etcd Datenbank
- Bringt den Cluster in den **exakt** selben Zustand wie zur Zeit des Backups

DR Szenarien

- 1. Node(s) fällt aus
- 2. Master fällt aus
- 3. Projekt(e) wird gelöscht / verschwindet
- 4. Rechenzentrum fällt aus (mit HA)
- 5. Cluster fällt aus
- 6. etcd fehlerhaft

Persistent Storage

Persistent Storage Provider

- HostPath
- EmptyDir (Ephemeral Storage)
- GlusterFS / OpenShift Container Storage 3
- NFS (unsupported)
- iSCSI
- Ceph / OpenShift Container Storage 4
- Diverse Cloud Mechanismen (AWS, GCE, Azure, etc)
- Dynamic Provisioning

Access Modes

- Read Only (ROX)
- Read Write Once (RWO)
- Read Write Many (RWX)

Best Practices

Externe Image Registry

Vorteile:

- Keine Abhängigkeiten an die interne Registry
- Hochverfügbarkeit wird ausgelagert

Nachteile:

- Wartung
- evt. Lizenzkosten
- Hardware

Best Practices - Cluster betreiben

- Nicht alle Applikationen eignen sich dafür
 - Monolithen -> schlechte Skalierung
 - Datenbanken -> von schneller Storage abhängig
 - Nicht HTTP basierter Traffic
- Infrastructure-as-Code
- "/var/log" läuft schnell voll
- Monitoring der Ressourcen und Kapazitäten
- RedHat Subscription
- Trennen von Development und Production

Best Practices - Security

- SELinux nicht deaktivieren
- Cluster Nodes nur intern (über Bastion) erreichbar
- non-root Container
- Container Scanning nach Sicherheitslücken
- Blocken von offenen Registries (Docker Hub, Quay.io)
- EgressIP f
 ür Firewalls / Network Policies
- Traffic Encryption (Service Mesh)
- Regelmäßige Updates im Cluster
- Regelmäßige Updates der Base Images

Continuous Deployment

CD Tools / GitOps

- Jenkins
- Flux
- ArgoCD
- Bash Scripte
- Manuelle Befehle

Ende

Upcoming Events

Wer weiß wann das wieder geht

- OpenShift Anwender Treffen (openshift-anwender.de)
- OpenShift Slack DE (openshift-de.slack.com)
- kubecon Europe / North America

Stay connected

- Adresse codecentric AG Am Mittelhafen 14 48155 Münster
- Contact Info
 E-Mail: tobias.derksen@codecentric.de
 www.codecentric.de
- Telephone
 Telefon: +49 (0) 170 2295 733

CodeReady Workspaces

Container-native Anwendungen

- Konfiguration
 - Environment
 - ConfigMaps
 - Secrets
- Service Discovery
- Statelessness
- Microservices
- Sidecars
- CI/CD
- 12-Factor https://12factor.net/de/

HA for Applications

cc_primary template colours (included in master template)

#FFFFFF #15584C #000000 #1FB18A #F0F6F4 #2CE6AF #004452 Link colour #007891 #D6B32C #00AED2 #9C954E #03BDEC

cc_secondary template colours (you need to build by yourself)

cc_icons

(0) $\langle \times \rangle$ 日 中 江 江 汀 汀 汀 汀 郊 动宿 动宿 负载 (\mathscr{O}) $\begin{bmatrix} + - \\ \times = \end{bmatrix}$