Titrage iodométrique de la vitamine C

Situation: La vitamine C est le nom couramment utilisé pour parler de l'**acide ascorbique**. La vitamine C est indispensable à la vie, elle a aussi des propriétés anti-scorbutiques et anti-infectieuses. Les besoins en vitamine C sont de 75 mg/jour, mais le corps humain ne la peut synthétiser naturellement, elle doit donc être apportée par le biais de l'alimentation (fruits et légumes notamment citron, orange, kiwi, tomate, etc).

En pharmacie, on trouve couramment des comprimés de vitamine C contenant 500 mg ou 1000 mg d'acide ascorbique.

Chez vous, vous trouvez des comprimés de vitamine C mais sans leur emballage, vous ne savez donc pas s'ils contiennent 500 mg ou 1000 mg d'acide ascorbique.

Problématique : Les comprimés contiennent-ils 500 mg ou 1000 mg d'acide ascorbique ?

Information: Pour y arriver, vous décidez de dissoudre **un comprimé dans 200 mL d'eau distillée,** un échantillon de cette solution de vitamine C est présente sur votre paillasse dans le bécher noté «VITAMINE C».

1. Ci-dessous sont représentées les structures moléculaires de 6 vitamines : les vitamines A, B₂, B₅, B₆, C et E. Vous savez que l'acide ascorbique contient dans sa structure uniquement **4 groupements alcool** et **un groupement ester**. **Identifier** la structure de l'acide ascorbique.

alcool, aldéhyde, cétone, acide carboxylique et ester présents.
3. Donner la formule brute de l'acide ascorbique.
4. En vous aidant de la classification périodique des éléments fournie, calculer la masse molaire moléculaire M_A de l'acide ascorbique. Faire une phrase .
5. Relier par des flèches (ou numéroter) les différentes étapes du raisonnement à mettre en œuvre
pour répondre à la problématique :
Déterminer expérimentalement la Calculer la quantité de matière en acide assorbique présente
concentration dans le volume
ascorbique dans le volume donné
Calculer la masse d'acide ascorbique
d'acide ascorbique présente dans présente dans le 200 mL de solution
volume donné
Calculer la masse
d'acide ascorbique présente dans un
comprimé
Afin de détermine en éviment de mant le consentation median en evide constitue de la colonia
Afin de déterminer expérimentalement la concentration molaire en acide ascorbique dans le volume donné, vous allez réaliser 2 titrages iodométriques en utilisant une solution de diiode notée
« DIIODE » obtenue en dissolvant 3 170 mg de diiode (de formule brute I ₂) dans 250 mL d'eau distillée.
6.1. Relier par des flèches les différentes étapes du raisonnement à mettre en œuvre pour connaître
la concentration molaire en diiode dans la solution notée « DIIODE »
Connaissant la masse de
diiode présente dans la solution notée « DIIODE »,
molaire moléculaire calculer la quantité de matière de diiode dans la solution noté
sa formule brute « DIIODE »
Connaissant le volume de la
solution notée « DIIODE », calculer la concentration
molaire en diiode dans la

solution notée « DIIODE »

2. En utilisant des couleurs différentes, entourer sur les 6 molécules précédentes les groupements

6.2. En vous aidant de la classification périodique des éléments fournie, calculer la masse molaire moléculaire M_D du diiode de formule brute I_2 (en g/mol). Faire une phrase .		
6.3. La solution notée « DIIODE » a été obtenue en dissolvant 3 170 mg de diiode dans 250 mL d'eau distillée. Calculer la quantité de matière n _D (en mol) en diiode présente dans la solution notée « DIIODE ». Donner le résultat en écriture scientifique. Arrondir au centième. Faire une phrase.		
6.4. En déduire la concentration molaire C_D (en mol/L) en diiode présente dans la solution notée « DIIODE ». Donner le résultat en écriture scientifique. Arrondir au centième. Faire une phrase .		
7. Choisir le protocole de titrage colorimétrique permettant de titrer la solution d'aspirine :		
Solution de vitamine C 20 mL de diiode 0,05 mol/L + une pointe de spatule de iodex 20 mL de solution de vitamine C + une pointe de spatule de iodex		
8. A l'aide du schéma choisi, définir le réactif titré et le réactif titrant. Justifier .		
9. Numéroter de 1 à 6 dans l'ordre chronologique les étapes du protocole du titrage iodométrique présentes en ANNEXE.		
10. Réaliser les différentes étapes du protocole.		
11. Indiquer le volume de diiode ajouté au changement de couleur : $V_D =$		

12. Plus lentement, recommencer une seconde fois le titrage iodométrique et indiquer le nouveau volume de diiode ajouté au changement de couleur : $V_D =$
13. Entourer le volume de diiode que vous choisissez de conserver pour la suite de l'activité.
14. Calculer la concentration molaire C_A en acide ascorbique dans les 20 mL de solution de vitamine $C_D \times V_D$
C en utilisant la formule : $C_A = \frac{C_D \times V_D}{V_A}$. Donner le résultat en écriture scientifique. Arrondir au
centième. Faire une phrase.
15. Calculer la quantité de matière n_A en acide ascorbique présente dans les 20 mL de solution de vitamine C. Donner le résultat en écriture scientifique. Arrondir au centième. Faire une phrase.
16. Calculer la masse m_A en acide ascorbique présente dans les 20 mL de solution de vitamine C. Donner le résultat en écriture scientifique. Arrondir au dixième. Faire une phrase.
17. Calculer la masse m en acide ascorbique présente dans les 200 mL de solution de vitamine C. Donner le résultat en mg. Arrondir à l'unité. Faire une phrase.
18. Répondre à la problématique. Justifier.

ANNEXE

Formulaire:
$$C = \frac{n}{V}$$
 et $n = \frac{m}{M}$

Étapes du protocole du titrage iodométrique :

n°	Étapes du protocole du titrage iodométrique
	Mise en place du dispositif : Placer le bécher « DOSAGE » contenant la solution de vitamine C sous la burette contenant la solution de diiode (C_D = 0,05 mol/L).
	Observation : Observer la couleur de la solution dans le bécher « DOSAGE » en fonction du volume de solution de diiode ajouté.
	Préparation de la solution dans la burette : Remplir la burette graduée avec une solution de diiode (C_D = 0,05 mol/L).
	Réalisation du titrage : Ajouter la solution de diiode mL par mL en agitant et observer le changement de couleur de la solution de vitamine C en fonction du volume de solution de diiode versé.
	Préparation de la solution à titrer : Prélever un échantillon V_A de 20 mL de la solution de
	vitamine C. L'introduire dans le bécher « DOSAGE », ajouter une pointe de spatule de iodex.
	Collecte d'information : Une fois la solution de diiode ajoutée, relever le volume à l'équivalent V_S de cette solution correspondant au changement de couleur de la solution de
	vitamine C.