```
part2
1
(a) A^+ = ABCDEFGH Because A is a superkey, A \to CF does not violate BCNF BCG^+ = BCDG Because BCG is NOT a superkey, BCG \to D violates BCNF CF^+ = ABCDEFGH Because CF is a superkey, CF \to AH does not violate BCNF D^+ = DB Because D is NOT a superkey, D \to B violates BCNF H^+ = BDEGH Because H is NOT a superkey, H \to DEG violates BCNF (b)
```

- Decompose R using FD $BCG \rightarrow D$. $BCG^+ = BCDG$, so this yields two relations: R1 = BCDG and R2 = ABCEFGH.
- Project the FDs onto R1 = BCDG. $B^+ = B$, $C^+ = C$, $G^+ = G$, $D^+ = DB$, so we need to decompose further because $D \to B$ violates BCNF.
- Decompose R1 using FD $D \rightarrow B$. $D^+ = DB$, so this yields two relations: R3 = BD, R4 = CDG
- Project the FDs onto R3 = BD. $D \rightarrow B$, so D is a superkey. This relation satisfies BCNF.
- Project the FDs onto R4 = CDG. $C^+ = C$, $G^+ = G$, $D^+ = DB$, $CG^+ = CG$, $CD^+ = CD$, $DG^+ = DG$, so there is no more FDs that we can use to decompose. This relation satisfies BCNF.
- Project the FDs onto R2 = ABCEFGH. We know that $C^+ = C$, $G^+ = G$, $D^+ = DB$, $CG^+ = CG$, $H^+ = HBDEG$, and those FDs violates BCNF. So this yields two relations: R5 = BEGH, R6 = ACFH
- Project the FDs onto R5 = BEGH. We know that $B^+ = B, E^+ = E, G^+ = G, H^+ = BDEGH$, so H is the superkey. This satisfies BCNF.
- Project the FDs onto R6 = ACFH. We know $A^+ = ACFH$, $C^+ = C$, $F^+ = F$, $H^+ = BDEG$, A is the superkey so this FD satisfies BCNF.
- Final decomposition:
 - (a) R3 = BD with FD $D \rightarrow B$
 - (b) R4 = CDG with no FDs
 - (c) R5 = BEGH with FD $H \rightarrow BEG$
 - (d) R6 = ACFH with FD $A \rightarrow CFH$

```
2. (a) S = \{AB \rightarrow EF, B \rightarrow CEF, BCD \rightarrow AF, BCDE \rightarrow A, BCE \rightarrow D, DF \rightarrow C\} AB^+ = ABCDEF B^+ = ABCDEF BCD^+ = ABCDEF BCDE^+ = ABCDEF BCE^+ = ABCDEF BCE^+ = ABCDEF
```

So the key is B because B is the smallest superkey

(b)Set
$$AB \rightarrow E \qquad As (1)$$

$$AB \rightarrow F \qquad As (2)$$

$$B \rightarrow C \qquad As (3)$$

$$B \rightarrow E \qquad As (4)$$

$$B \rightarrow F \qquad As (5)$$

$$BCDE \rightarrow A \qquad As (6)$$

$$BCD \rightarrow F \qquad As (7)$$

$$BCD \rightarrow A \qquad As (8)$$

$$BCE \rightarrow D \qquad As (9)$$

$$DF \rightarrow C \qquad As (10)$$

Then we can use the FDs above to compute the closure:

$$AB^{+}_{S-(1)} = ABE$$
 we can get rid of (1)

$$AB^{+}_{S-(1)-(2)} = ABF$$
 we can get rid of (2)

$$B^+_{S-(1)-(2)-(3)} = B$$

$$B^+_{S-(1)-(2)-(4)} = B$$

$$B^+_{S-(1)-(2)-(5)} = B$$

$$BCDE^{+}_{S-(1)-(2)-(6)} = BCDEA$$
 we can get rid of (6)

$$BCD^{+}_{S-(1)-(2)-(6)-(7)} = BCDF$$
 we can get rid of (7)

$$BCD^{+}_{S-(1)-(2)-(6)-(7)-(8)} = BCD$$

$$BCE^{+}_{S-(1)-(2)-(6)-(7)-(9)} = BCE$$

$$DF^{+}_{S-(1)-(2)-(6)-(7)-(10)} = DF$$

As a result we have:

$$B \rightarrow C$$
 As (3)
 $B \rightarrow E$ As (4)
 $B \rightarrow F$ As (5)
 $BCD \rightarrow A$ As (8)
 $BCE \rightarrow D$ As (9)
 $DF \rightarrow C$ As (10)

We can simplify this result furthermore by reducing multiple attributes on the LHS:

We can reduce the LHS to (8) because $B^+ = ABCDEF$

$$R \rightarrow A$$

We can reduce the LHS to (9) because $B^+ = ABCDEF$

$$B \to D$$

After the change:

$$B \rightarrow C$$

$$B \rightarrow E$$

$$B \rightarrow F$$

$$B \rightarrow A$$

$$B \rightarrow D$$

$$DF \rightarrow C$$

Without $B \to C$, we can also get C by other FDs. Remove $B \to C$.

In conclusion, the minimal basis is:

$$B \rightarrow E$$

$$B \rightarrow F$$

$$B \rightarrow A$$

$$B \rightarrow D$$

$$DF \rightarrow C$$

(c)

Recall the revised FDs:

$$B \rightarrow ADEF$$

$$DF \rightarrow C$$

The set of relations that would result would have these attributes:

So the final set of relation is

$$R1(A, B, D, E, F)$$
 $R2(C, D, F)$

(D)

We cannot find a relation that violates BCNF after doing all the full projections:

$$B^+ = ABCDEF$$

B is the key of R1

$$DF^+ = CDF$$

DF is the superkey of R2.

So this schema does not allow redundancy.