Markov Chain Monte Carlo Methods

Chapter 10. Markov Chain Monte Carlo Methods

Simulated annealing

Simulated annealing is used to explore a distribution with multiple modes, or to search the maximum value of a function.

Typical case. Consider V(x) be a nonnegative function defined on A, where x could be of multivariate dimension. We want to find $V^* = \max_{x \in A} V(x)$, and $M = \{x \in A, V(x) = V^*\}$.

Idea. Let $\lambda > 0$ and consider the following density function for $x \in A$,

$$p_{\lambda}(x) = \frac{e^{\lambda V(x)}}{\sum_{x \in A} e^{\lambda V(x)}}$$

$$= \frac{e^{\lambda (V(x) - V^*)}}{|M| + \sum_{x \neq M} e^{\lambda (V(x) - V^*)}}$$

$$\to \frac{\delta(x, M)}{|M|} \text{ as } \lambda \to \infty,$$

where

$$\delta(x, M) = \begin{cases} 1, & \text{if } x \in M, \\ 0, & \text{otherwise.} \end{cases}$$

Note:

- If λ is too large, need a very large number of transitions before limiting distribution is approached.
- ② Simulated annealing considers $\lambda_n = C \log(1+n)$ for C > 0.
- If we generate $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ as successive states. We estimate V^* by $\max_{i=1,\ldots,m} V(x^{(i)})$. If the maximum occurs at $x^{(i*)}$, then $x^{(i*)}$ is an estimated point in M.

Example. Consider samples $X_i \stackrel{iid}{\sim} N(\mu, 1)$ for i = 1, ..., n. The likelihood is

$$L(\mu|x) \propto e^{-\sum_{i=1}^{n}(X_i-\mu)^2}$$
.

The MLE estimator for μ is $\hat{\mu} = \sum_{i=1}^{n} X_i / n$.

A simple way to adopt the idea of simulated annealing to search the MLE of μ is to sample $\mu \propto \pi(\mu) = \mathrm{e}^{-\sum_{i=1}^{n}(X_i - \mu)^2}$.

The procedures to find such an estimator are summarized below.

- Start with an arbitrary $\mu^{(0)}$. Set i=1.
- ② Sample $y \sim N(\mu^{(i-1)}, 0.25)$. Calculate

$$\alpha = \min(\frac{\pi(y)}{\pi(X^{(i-1)})}, 1).$$

Update $\mu^{(i)} = y$ with probability α and $\mu^{(i)} = \mu^{(i-1)}$ with probability $(1 - \alpha)$.

- Return to Step 2 until convergence.
- Set $I = \arg\max\{i : \pi(\mu^{(i)})\}$. Then we set $\hat{\mu}_{SA} = \mu^{(I)}$ to estimate the MLE of μ .

Example 10k. The traveling salesman problem. A sales man starts at city 0 and then sequentially visit all the cities, $1, \ldots, r$. A permutation $x = (x_1, \ldots, x_r)$ of means a path of the sales man. v(i,j) is the reward if the salesman goes from i to j. Then the return is

$$V(x) = \sum_{i=1}^{r} v(x_{i-1}, x_i),$$

where $x_0 = 0$.

Two permutations are neighbors if one results from an interchange of two of the coordinates of the other.

An algorithm to find the best path using simulated annealing with $\lambda_n = \log(1+n)$.

- Start with an arbitrary permutation $X^{(0)}$. Set n = 0.
- Randomly select I and J from {1,...,r} with probability 1/C(r,2), and interchange the values of the I-th and the J-th values of X_n. Let the value be y. Set X⁽ⁿ⁺¹⁾ = y with probability

$$\alpha(X^{(n)}, y) = \min\left(\frac{(1+n)^{V(y)}}{(1+n)^{V(X^{(n)})}}, 1\right),$$

and set $X^{(n+1)} = X^{(n)}$ with probability $1 - \alpha(X^{(n)}, y)$.

3 Set n = n + 1, return to Step 2 until convergence.

SIR

Idea:

- Consider a random vector X with target mass function $f(x) = C_1 f_0(x)$.
- ② Conduct a Markov chain Monte Carlo algorithm with limiting mass distribution $g(x) = C_2g_0(x)$. Let y_1, \ldots, y_m be the values of the Markov chain Monte Carlo algorithm.
- **3** Set $w_i = \frac{f_0(y_i)}{g_0(y_i)}$ for i = 1, ..., m.
- Generate a random vector X such that $P(X = y_j) = \frac{w_j}{\sum_{i=1}^m w_i}$. Then X has a mass distribution f.

Proposition. The distribution of the vector X obtained by the SIR method converges as $m \to \infty$ to f.

The proof is left as homework.

To estimate $E_f[h(X)]$, suppose we first generate Y_1, \ldots, Y_m from the Markov chain with limiting mass distribution g, and generate X_1, \ldots, X_k based on

$$P(X = Y_j) = \frac{W_j}{\sum_{i=1}^m W_i},$$

where $W_j = f_0(Y_j)/g_0(Y_j)$. We can use the following two estimators for estimating $E_f[h(X)]$:

- $\bullet \quad \frac{1}{k} \sum_{i=1}^k h(X_i),$

Homework: Which estimator is better? Why?

Example 10I. Bayesian inference. Let sample $X \sim F(\theta)$, where $\theta = (\theta_1, \dots, \theta_p)$ is a *p*-variate vector for some distribution F.

Bayesian inference considers:

- Prior density: $p(\theta)$,
- 2 Likelihood: $f(x|\theta)$,
- **3** Posterior density: $p(\theta|X) = \frac{f(X|\theta)p(\theta)}{\int f(x|\theta)p(\theta)d\theta} \propto f(x|theta)p(\theta)$.

To explore the posterior density, SIR generates θ from $p(\theta)$, and set $w(\theta) = f(x|\theta)$. That is to say, SIR sets

- **1** Target mass function $f_0(\theta) = C_1 f_0(\theta) = C_1 f(x|\theta) p(\theta)$.
- **3** Generate θ with a Makov chain with limiting mass distribution $g(\theta) = C_2 g_0(\theta) = p(\theta)$.

Generate a large number m of random vectors from $p(\theta)$. Let the values be $\theta^{(1)}, \ldots, \theta^{(m)}$. Then, we can estimate $E[h(\theta)|x]$ by

$$\sum_{j=1}^{m} \alpha_j h(\theta^{(j)}), \quad \alpha_j = \frac{f(x|\theta^{(j)})}{\sum_{i=1}^{m} f(x|\theta^{(i)})},$$

and estimate $P(\theta \in A|x)$ by $\sum_{j=1}^{m} \alpha_j \mathbf{1}_{\{\theta^{(j)} \in A\}}$.

The E-M Algorithm

Dempster, Laird and Rubin (1977). JRSSB.

- A general approach to iterative computation of MLE.

Each iteration consists of

i) E-Step: Expectation.

ii) M-Step: Maximization.

Ex. 197 animals are distributed into 4 categories. Let

 $\mathbf{Y} = (y_1, y_2, y_3, y_4)$, such that

$$\mathbf{Y} \sim \textit{Multinomial}\left(\sum_{i=1}^{4} y_{i}; \frac{1}{2} + \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right), 0 \leq \theta \leq 1.$$

For observed **Y** = (125, 18, 20, 34), MLE of $\theta = ?$

We want to maximize

$$I(heta|\mathbf{y}) \propto \left(rac{1}{2} + rac{ heta}{4}
ight)^{y_1} \left(rac{1}{4}(1- heta)
ight)^{y_2} \left(rac{1}{4}(1- heta)
ight)^{y_3} \left(rac{ heta}{4}
ight)^{y_4},$$

a polynomial in θ of degree 197, $\hat{\theta}$ =???

Split y_1 into x_1 and x_2 (such that $x_1 + x_2 = y_1$) with cell probabilities 1/2 and $\theta/4$, respectively.

Split y_1 into x_1 and x_2 (such that $x_1 + x_2 = y_1$) with cell probabilities 1/2 and $\theta/4$, respectively.

Let $y_2 = x_3$, $y_3 = x_4$ and $y_4 = x_5$, then $\mathbf{X} = (x_1, x_2, x_3, x_4, x_5)$, is the **complete** data and

Split y_1 into x_1 and x_2 (such that $x_1 + x_2 = y_1$) with cell probabilities 1/2 and $\theta/4$, respectively.

Let $y_2 = x_3$, $y_3 = x_4$ and $y_4 = x_5$, then $\mathbf{X} = (x_1, x_2, x_3, x_4, x_5)$, is the **complete** data and

$$X \sim \textit{Multinomial}\left(197; 1/2, \theta/4, (1-\theta)/4, \frac{1}{4}(1-\theta), \theta/4\right).$$

$$I(\theta|\mathbf{x}) \propto (\frac{1}{2})^{x_1} (\frac{\theta}{4})^{\mathbf{x_2}} (1-\theta)^{x_3+x_4} \theta^{x_5} \propto \theta^{\mathbf{x_2}+x_5} (1-\theta)^{x_3+x_4},$$

$$I(\theta|\mathbf{x}) \propto (\frac{1}{2})^{\mathsf{x}_1} (\frac{\theta}{4})^{\mathbf{x}_2} (1-\theta)^{\mathsf{x}_3+\mathsf{x}_4} \theta^{\mathsf{x}_5} \propto \theta^{\mathbf{x}_2+\mathsf{x}_5} (1-\theta)^{\mathsf{x}_3+\mathsf{x}_4},$$

and

$$\hat{\theta} = \frac{\mathbf{x_2} + x_5}{\mathbf{x_2} + x_3 + x_4 + x_5}.$$

$$I(\theta|\mathbf{x}) \propto (\frac{1}{2})^{\mathsf{x}_1} (\frac{\theta}{4})^{\mathbf{x}_2} (1-\theta)^{\mathsf{x}_3+\mathsf{x}_4} \theta^{\mathsf{x}_5} \propto \theta^{\mathbf{x}_2+\mathsf{x}_5} (1-\theta)^{\mathsf{x}_3+\mathsf{x}_4},$$

and

$$\hat{\theta} = \frac{\mathbf{x_2} + x_5}{\mathbf{x_2} + x_3 + x_4 + x_5}.$$

But, what is the augmented data $x_2 = ?$

(i) **E-Step**: "Estimate" the sufficient statistics of **x** based on **y**.

(i) **E-Step**: "Estimate" the sufficient statistics of **x** based on **y**.

Note that
$$x_1 + x_2 = y_1$$
, $x_2 = 0, 1, \dots, y_1$, so

$$\mathbf{X}_2|\mathbf{y}_1 \sim bin(y_1, \frac{\theta/4}{\frac{1}{2} + \frac{\theta}{4}}) \equiv bin(\mathbf{y}_1, \frac{\theta}{2+\theta}).$$

Hence,

$$E(X_2|\mathbf{y},\theta) = y_1\theta/(2+\theta).$$

(i) E-Step: "Estimate" the sufficient statistics of x based on y.

Note that
$$x_1 + x_2 = y_1$$
, $x_2 = 0, 1, \dots, y_1$, so

$$\mathbf{X_2}|\mathbf{y_1} \sim bin(y_1, \frac{\theta/4}{\frac{1}{2} + \frac{\theta}{4}}) \equiv bin(\mathbf{y_1}, \frac{\theta}{\mathbf{2} + \theta}).$$

Hence,

$$E(X_2|\mathbf{y},\theta)=y_1\theta/(2+\theta).$$

$$\therefore \hat{\mathbf{x}_2} = \frac{y_1 \theta}{2 + \theta}.$$

(ii) M-Step: Estimate θ by the MLE as though the **estimated** 'complete' data were the observed data.

(ii) M-Step: Estimate θ by the MLE as though the **estimated** 'complete' data were the observed data.

$$\therefore \hat{\theta} = \frac{\hat{\mathbf{x}}_2 + x_5}{\hat{\mathbf{x}}_2 + x_3 + x_4 + x_5}.$$

Starting with $\theta^{(0)}=$ 0.5, say, then cycling back and forth between (i) and (ii). i.e.

Starting with $heta^{(0)}=0.5$, say, then cycling back and forth between

(i) and (ii). i.e.

(i)
$$\mathbf{x_2^{(k)}} = \frac{125\theta^{(k)}}{2 + \theta^{(k)}}$$
,

Starting with $\theta^{(0)}=0.5$, say, then cycling back and forth between (i) and (ii). i.e.

(i)
$$\mathbf{x_2^{(k)}} = \frac{125\theta^{(k)}}{2 + \theta^{(k)}}$$
,

(ii)
$$\theta^{(k)} = \frac{\mathbf{x_2^{(k)}} + 34}{\mathbf{x_2^{(k)}} + 72}$$
, $k = 0, 1, 2, ...$, until $\theta^{(k+1)} \approx \theta^{(k)}$.

Starting with $\theta^{(0)}=0.5$, say, then cycling back and forth between (i) and (ii). i.e.

(i)
$$\mathbf{x_2^{(k)}} = \frac{125\theta^{(k)}}{2 + \theta^{(k)}}$$
,

(ii)
$$\theta^{(k)} = \frac{\mathbf{x_2^{(k)}} + 34}{\mathbf{x_2^{(k)}} + 72}$$
, $k = 0, 1, 2, ...$, until $\theta^{(k+1)} \approx \theta^{(k)}$.

Answer: $\theta^{(8)} = 0.626821484$.

The solution of θ indeed is

$$\theta^* = \frac{\frac{125\theta^*}{2+\theta^*} + 34}{\frac{125\theta^*}{2+\theta^*} + 73}$$

The solution of θ indeed is

$$\theta^{\star} = \frac{\frac{125\theta^{\star}}{2+\theta^{\star}} + 34}{\frac{125\theta^{\star}}{2+\theta^{\star}} + 73} \Longleftrightarrow a\theta^{\star^{2}} + b\theta^{\star} + c = 0.$$

The solution of θ indeed is

$$\theta^{\star} = \frac{\frac{125\theta^{\star}}{2+\theta^{\star}} + 34}{\frac{125\theta^{\star}}{2+\theta^{\star}} + 73} \Longleftrightarrow a\theta^{\star^{2}} + b\theta^{\star} + c = 0.$$

$$\theta^{\star} = 0.6268214980.$$

 $\mathbf{Y} \sim f(\cdot | \theta)$ and $\mathbf{Y} = \mathbf{y}$, observed (incomplete) data;

 $\mathbf{Y} \sim f(\cdot|\theta)$ and $\mathbf{Y} = \mathbf{y}$, observed (incomplete) data;

Z: latent (augmented) data, so that

X = (Y, Z) is the **complete** data.

Assume $p(z|\theta, y)$ is known.

 $\mathbf{Y} \sim f(\cdot|\theta)$ and $\mathbf{Y} = \mathbf{y}$, observed (incomplete) data;

Z: latent (augmented) data, so that

X = (Y, Z) is the **complete** data.

Assume $p(z|\theta, y)$ is known.

Define

$$Q(\theta, \theta^{i}) = \int \log I(\theta|\mathbf{y}, z) p(z|\theta^{i}, \mathbf{y}) dz$$
$$= E^{\mathbf{Z}[\theta^{i}, \mathbf{y}]} [\log I(\theta|\mathbf{y}, \mathbf{Z})].$$

(i) **E-Step**:

$$Q(\theta, \theta^i) = E^{Z|\theta^i, \mathbf{y}} \log [I(\theta|\mathbf{y}, Z)].$$

$$Q(\theta, \theta^i) = E^{Z|\theta^i, \mathbf{y}} \log [I(\theta|\mathbf{y}, Z)].$$

(ii) M-Step:

$$Q(\theta, \theta^i) = E^{Z|\theta^i, \mathbf{y}} \log [I(\theta|\mathbf{y}, Z)].$$

(ii) M-Step: Maximize $Q(\theta, \theta^i)$ with respect to θ , i.e. solve

$$Q(\theta, \theta^i) = E^{Z|\theta^i, \mathbf{y}} \log [I(\theta|\mathbf{y}, Z)].$$

(ii) M-Step: Maximize $Q(\theta, \theta^i)$ with respect to θ , i.e. solve

$$\frac{\partial Q(\theta, \theta^i)}{\partial \theta} = 0$$

for θ , call it θ^{i+1} .

$$Q(\theta, \theta^i) = E^{Z|\theta^i, \mathbf{y}} \log [I(\theta|\mathbf{y}, Z)].$$

(ii) M-Step: Maximize $Q(\theta, \theta^i)$ with respect to θ , i.e. solve

$$\frac{\partial Q(\theta, \theta^i)}{\partial \theta} = 0$$

for θ , call it θ^{i+1} .

If $|\theta^{i+1} - \theta^i|$ is small, stop; otherwise, return to (i).

Standard errors in EM:

(1)
$$Var \ \hat{\theta} \approx -\left(\frac{\partial^2 \log l(\theta|\mathbf{y})}{\partial \theta^2}|_{\theta=\hat{\theta}}\right)^{-1}$$
.

(2)
$$-\frac{\partial^2 \log I(\mathbf{y}|\theta)}{\partial \theta^2} =$$

$$-\int \frac{\partial^2 \log I(\theta|\mathbf{y},z)}{\partial \theta^2} p(z|\theta,\mathbf{y}) dz - Var^Z \left[\frac{\partial \log I(\theta|\mathbf{y},Z)}{\partial \theta} \right].$$

$$\underline{\mathbf{Ex}}(\mathsf{Cont'd}).\ I(\theta|\mathbf{y},z) \propto \theta^{x_2+x_5}(1-\theta)^{x_3+x_4}.\ \mathsf{So}$$

$$\underline{\mathbf{Ex}}(\mathsf{Cont'd}). \ I(\theta|\mathbf{y},z) \propto \theta^{x_2+x_5} (1-\theta)^{x_3+x_4}. \ \mathsf{So}$$

$$\frac{\partial \log I(\theta|\mathbf{y},z)}{\partial \theta} = \frac{x_2+x_5}{\theta} - \frac{x_3+x_4}{1-\theta},$$

$$\underline{\mathbf{Ex}}(\mathsf{Cont'd}). \ I(\theta|\mathbf{y},z) \propto \theta^{x_2+x_5} (1-\theta)^{x_3+x_4}. \ \mathsf{So}$$

$$\frac{\partial \log I(\theta|\mathbf{y},z)}{\partial \theta} = \frac{x_2+x_5}{\theta} - \frac{x_3+x_4}{1-\theta},$$

$$-\frac{\partial^2 Q(\theta,\hat{\theta})}{\partial \theta^2}\big|_{\theta=\hat{\theta}} = \frac{E(\mathbf{X_2}|\hat{\theta},\mathbf{y}) + x_5}{\hat{\theta}^2} + \frac{x_3 + x_4}{(1-\hat{\theta})^2},$$

$$-\frac{\partial^2 Q(\theta,\hat{\theta})}{\partial \theta^2}\big|_{\theta=\hat{\theta}} = \frac{E(\mathbf{X_2}|\hat{\theta},\mathbf{y}) + x_5}{\hat{\theta}^2} + \frac{x_3 + x_4}{(1-\hat{\theta})^2},$$

$$Var\left(rac{\partial \log I(heta|\mathbf{y},Z)}{\partial heta}
ight)|_{ heta=\hat{ heta}}=$$

$$-\frac{\partial^2 Q(\theta,\hat{\theta})}{\partial \theta^2}\big|_{\theta=\hat{\theta}} = \frac{E(\mathbf{X_2}|\hat{\theta},\mathbf{y}) + x_5}{\hat{\theta}^2} + \frac{x_3 + x_4}{(1-\hat{\theta})^2},$$

$$Var\left(rac{\partial \log I(heta|\mathbf{y},Z)}{\partial heta}
ight)|_{ heta=\hat{ heta}}=rac{Var(\mathbf{X_2}|\hat{ heta},\mathbf{y})}{\hat{ heta}^2}=$$

$$\underline{\mathbf{Ex}}(\mathsf{Cont'd}).\ I(\theta|\mathbf{y},z) \propto \theta^{x_2+x_5}(1-\theta)^{x_3+x_4}.\ \mathsf{So}$$

$$\frac{\partial \log I(\theta|\mathbf{y},z)}{\partial \theta} = \frac{x_2 + x_5}{\theta} - \frac{x_3 + x_4}{1 - \theta},$$

$$-\frac{\partial^2 Q(\theta,\hat{\theta})}{\partial \theta^2}\big|_{\theta=\hat{\theta}} = \frac{E(\mathbf{X_2}|\hat{\theta},\mathbf{y}) + x_5}{\hat{\theta}^2} + \frac{x_3 + x_4}{(1-\hat{\theta})^2},$$

$$Var\left(\frac{\partial \log I(\theta|\mathbf{y},Z)}{\partial \theta}\right)|_{\theta=\hat{\theta}} = \frac{Var(\mathbf{X_2}|\hat{\theta},\mathbf{y})}{\hat{\theta}^2} = \frac{y_1\frac{\hat{\theta}}{2+\hat{\theta}}\frac{2}{2+\hat{\theta}}}{\hat{\theta}^2}.$$

$$\therefore Var \ \hat{\theta} \approx (435.8 - 57.8)^{-1} = .05.$$

- **Note**: 1. θ^i converge to a *stationary point* of $I(\theta|\mathbf{y})$ if the limit exists.
 - 2. The convergence could be a **local** maximum, so multiple starting points are recommended.

Ex. (Cont'd.) Bayesian Method.

Ex. (Cont'd.) Bayesian Method.

Consider the uniform prior on θ , i.e. $\theta \sim U(0,1)$. Then the posterior of θ given the data \mathbf{y} is

Ex. (Cont'd.) Bayesian Method.

Consider the uniform prior on θ , i.e. $\theta \sim U(0,1)$. Then the posterior of θ given the data \mathbf{y} is

$$\pi(heta|\mathbf{y}) \propto I(heta|\mathbf{y}) \propto \left(rac{1}{2} + rac{ heta}{4}
ight)^{y_1} \left(rac{1}{4}(1- heta)
ight)^{y_2} \left(rac{1}{4}(1- heta)
ight)^{y_3} \left(rac{ heta}{4}
ight)^{y_4}.$$

However, given the *complete* data $\mathbf{X} = (\mathbf{Y}, Z) = \mathbf{x}$,

$$\pi(\theta|\mathbf{x}) \propto (\frac{1}{2})^{x_1} (\frac{\theta}{4})^{\mathbf{x_2}} (1-\theta)^{x_3+x_4} \theta^{x_5} \propto \theta^{\mathbf{x_2}+x_5} (1-\theta)^{x_3+x_4}.$$

However, given the *complete* data $\mathbf{X} = (\mathbf{Y}, Z) = \mathbf{x}$,

$$\pi(\theta|\mathbf{x}) \propto (\frac{1}{2})^{x_1} (\frac{\theta}{4})^{\mathbf{x_2}} (1-\theta)^{x_3+x_4} \theta^{x_5} \propto \theta^{\mathbf{x_2}+x_5} (1-\theta)^{x_3+x_4}.$$

Q: How to impute the *latent variable* x_2 ?

 x_2 given θ is

 x_2 given θ is $bin(y_1, \theta/(2+\theta))$;

$$x_2$$
 given θ is $bin(y_1, \theta/(2+\theta))$;

and the conditional distribution of

$$\theta$$
 given x_2 is $beta(x_2 + x_5 + 1, x_3 + x_4 - 1)$.

$$x_2$$
 given θ is $bin(y_1, \theta/(2+\theta))$;

and the conditional distribution of

$$\theta$$
 given x_2 is $beta(x_2 + x_5 + 1, x_3 + x_4 - 1)$.

Hence, one can perform the **Gibbs sampler** by generating θ and x_2 from their **conditional posteriors** iteratively to approximate the posterior distribution of θ , namely

$$x_2$$
 given θ is $bin(y_1, \theta/(2+\theta))$;

and the conditional distribution of

$$\theta$$
 given x_2 is $beta(x_2 + x_5 + 1, x_3 + x_4 - 1)$.

Hence, one can perform the **Gibbs sampler** by generating θ and x_2 from their **conditional posteriors** iteratively to approximate the posterior distribution of θ , namely

$$p(\theta|\mathbf{y}, x_2) \sim beta(x_2 + 35, 39),$$

$$p(x_2|\mathbf{y},\theta) \sim bin(125,\theta/(2+\theta)).$$