2024-03-21

Rappels

 $h \subseteq g$: sous algèbre de Cartan

$$g = h \bigoplus_{\alpha \in R} g_{\alpha} \quad R \subseteq h^*$$

$$\mathfrak{s}_{\alpha} = \left\langle \underbrace{X_{\alpha}}_{\in q_{\alpha}}, \underbrace{Y_{\alpha}}_{\in q_{-\alpha}}, \underbrace{H_{\alpha}}_{\in h} \right\rangle \cong \mathfrak{sl}(3, \mathbb{C})$$

V-représentation de $\mathfrak g$

$$V = \bigoplus V_{\alpha}$$

$$\Lambda_W = \{ \beta \in h^* | \beta(H_\alpha) \in \mathbb{Z} \forall \alpha \in R \}$$

$$\Lambda_R = \mathbb{Z}R \subseteq \Lambda_W$$

Réflexion dans une racine α

$$W_{\alpha}(\beta) = \beta - \beta(H_{\alpha})\alpha$$

$$\mathcal{W} = \langle W_{\alpha} \rangle_{\alpha \in R}$$
 groupe de Weyl

les poids de V sont stalbes par \mathscr{W}

On fixe $\ell: h^* \to \mathbb{R}$

. . .

Proposition:

- (i) Toute représentation a un vecteur de plus haut poids
- (ii) Les sous-espace $W\subseteq V$ engendré par V et applications successive de $\{X_\alpha\}_{\alpha\in R^-}$ et une sous représentation irréductible
- (iii) Toute représentation irréductible admet une unique vecteur de plus haut poids

Démonstration:

(i) Soit α maximal parmis les $V_{\alpha} \neq \{0\}$ pour l'ordre partiel

$$\alpha > \beta$$

ssi $\ell(\alpha) > \ell(\alpha)$ et soit $v \in V_{\alpha}$

S'il existe $X \in \mathfrak{g}_{\beta}$ avec $\beta \in R^+$ et $X \cdot v \neq 0$ alors $X \cdot \in V_{\alpha+\beta}$ et $\ell(\alpha+\beta) = \ell(\alpha) + \ell(\beta) > \ell(\alpha)$ considérant la maximalité

Parmis les racines de R^+ on dit que $\alpha \in R^+$ est une racine simple s'il n'existe pas de $\beta_1, \beta_2 \in R^+$ t.q. $\alpha = \beta_1 + \beta_2$

<u>Lemme</u>: Si α, β sont simples alors $\alpha - \beta$ et $\beta - \alpha$ ne sont pas des racines

Figure 1 – Resaux

<u>Dém :</u>

• • •

(ii) W est aussi engendré par V et ses images successives par $\{X_{-\alpha}\}_{\alpha \in S}, S \subseteq R^+$: racins simples - W est stable par $\{X_{\alpha}\}_{\alpha \in R^-}$ - W est stable par $H \in \mathcal{H}$

Reste à montrer que W est stable par $\{X_{\alpha}\}_{{\alpha}\in S}$

 $W_n \subseteq W$ sous-espace où on applique des monts de longeure $\leq n$

Par récurence on montre que $X_{\alpha}W_{n}\subseteq W_{n}$ $\alpha\in S$

Soit $u \in W_n$ un générateur

$$\implies u = X_{\beta}u' \quad \text{où} \quad u' \in W_{n-1}$$
$$-\beta \in S$$

Soit

$$X_{\alpha}$$
 pour $\alpha \in S$

Alors
$$X_{\alpha}u = X_{\alpha}X_{\beta}u' = (X_{\beta}X_{\alpha} + [X_{\alpha}, X_{\beta}])u'$$

$$= X_{\beta}X_{\alpha}u' + [X_{\alpha}, X_{\beta}]u'$$

Étape 8:

Classifier les représentations irréductibles

Dans le sous-espace réal de h^* engendré par R, on note $\mathcal{C} = \{\beta | \beta(H_{\alpha}) \geq 0 \forall \alpha \in R\}$

On appelle cela une chambre de Weyl

$\underline{\text{Th\'eor\`eme}}$:

Pour tout poids $\alpha in \mathcal{C} \cap \Lambda_W$ il existe une unique représentation irréductible de \mathfrak{g} ayant α comme plus haut poids.

On obtiens une bijections entre les représentations irréductible de \mathfrak{g} et $\mathcal{C} \cap \Lambda_W$

<u>Démonstration</u>: ON démontre l'unicité seulement

Soient U, V deux représentation irréductible ayant α comme plus haut poids. Soient $u \in U_{\alpha}$, $v \in V_{\alpha}$ comme plus haut poids. Alors $(u, v) \in U \oplus V$ est une vecteur de plus haut poids α dans $U \oplus V$

 $\implies (u, v)$ engendre une sous-espace

$$W \subseteq U \otimes W$$

irréductible

$$\pi_u:W\to u$$

$$\pi_v:W\to v$$

sont des isomorphismes de représentation (par le lemme de Shur)

$$\implies U \cong V$$

La forme de Killing

On définit $B:\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$

Par la formule $B(x,y) = \operatorname{tr}(\operatorname{ad} X \circ \operatorname{ad} Y)$

Observation:

$$X \in \mathfrak{g}_{\alpha}, Y \in g_{\beta}$$

avec
$$\beta \neq \pm \alpha$$

Alors, pour tout $Z \in g_{\gamma}$

on a $(adX \circ adY)(Z)$

$$= [X, [Y, Z] \in g_{\gamma + \alpha + \beta} \neq g_{\gamma}]$$

En particuleier [X,[Y,Z]]n'as pas de composante en Z

$$\implies B(X,Y) = 0$$

Autrement dit $g_{\alpha} \perp g_{\beta}$ si $\beta \neq -\alpha$

La décomposition $g = h \oplus \left(\bigoplus_{\alpha \in R^+} (g_\alpha \oplus g_{-\alpha})\right)$

est orthogonale pour B

Si $X, Y \in h$ alors $Z \in \mathfrak{g}_{\alpha}$

$$(\operatorname{ad} X \circ \operatorname{ad} Y)(Z) = [X, [Y, Z]] = \alpha(Y)[X, Z] = \alpha(X)\alpha(Y)Z$$

$$\implies \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y) = \sum_{\alpha \in R} \alpha(X)\alpha(Y)$$

sur le sous-esapce réel engendré par les H_α

B est définie positive

$$B(H_{\alpha}, H_{\beta}) = \underbrace{\sum_{\gamma \in R} \gamma(H_{\alpha}) \gamma(H_{\beta})}_{\in \mathbb{Z}}$$

si
$$H \in \mathbb{R} \langle H_{\alpha} \rangle_{\alpha \in R}$$

alors
$$B(H, H) = \sum_{\alpha \in R} \alpha(H)^2 \ge 0$$

$$\operatorname{si} B(H,H) = 0$$

$$\alpha(H) = 0 \forall \alpha \in R$$

$$H = 0$$

car R engendre h^*

Porp : B([X, Y], Z) = B(X, [Y, Z])

 $\underline{\text{D\'emonstration}}$:

. . .

Proposition : si g est simple alors B est non dégénéré

(rappel : B est dégénérée si $Ker(B) \neq \{0\}$ $\operatorname{Ker}(B) = \{X \in g | B(x,y) = 0 \forall y \in g\}$

 $\underline{\text{D\'emonstration}}: \text{Supposons qu'il existe } X \in \mathcal{B}, X \neq 0$

Alorsm pour tout Y et tout $Z \in g$

$$B([X,Y],Z) = B(X,[Y,Z]) = 0$$

$$\implies [X,Y] \in \ker B$$

$$\implies B \subseteq g$$

est un ideal