Homework Week 4

MATHEMATICS OF DEEP LEARNING MASH & IASD 2025

Lecturer: Bruno Loureiro, bruno.loureiro@di.ens.fr

Instructions: This homework is due on Monday 17/02/2025. Please send your solutions in a PDF file named HW4_Nom_Prenom.pdf to the above address with the subject "[MATHSDL2025] Homework 4". Formats accepted: LaTeX or a readable scan of handwritten solutions.

1 Exercises

Exercise 1.

Consider a two-layer neural network with ReLU activation $\sigma(x) = x_+$:

$$f(\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{\sqrt{p}} \sum_{j=1}^{p} a_{j} \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle). \tag{1}$$

Assume that the weights are initialised as $a_i^0 \sim \text{Unif}(\{-1,1\}), \ \boldsymbol{w}^0 \sim \mathcal{N}(0, \boldsymbol{I}_d).$

(a) Show that the NTK kernel is given by:

$$K_{\text{NTK}}(\boldsymbol{x}, \boldsymbol{x}') := \langle \boldsymbol{x}, \boldsymbol{x}' \rangle \mathbb{E}_{a, \boldsymbol{w}} \left[a^2 \sigma'(\langle \boldsymbol{w}, \boldsymbol{x}_i) \sigma'(\langle \boldsymbol{w}, \boldsymbol{x}_j \rangle) \right]$$
$$= \frac{1}{2} - \frac{1}{2\pi} \arccos \left(\frac{\langle \boldsymbol{x}, \boldsymbol{x}' \rangle}{||\boldsymbol{x}||_2 \cdot ||\boldsymbol{x}'||_2} \right)$$
(2)

(b) Let $\mathbf{x}_i \in \mathbb{R}^d$ denote a batch of n independently sampled covariates, and assume $\mathbf{x}_i \in B(0,1)$. Using Hoeffding's inequality, show that if $p \geq \Omega(\epsilon^{-2}n^2 \log n/\delta)$, then with probability at least $1 - \delta$ over the random initialisation we have:

$$||\hat{K}_{\text{NTK}} - K_{\text{NTK}}||_{\text{F}} \le \epsilon \tag{3}$$

where $\hat{\boldsymbol{K}}_{\mathrm{NTK}}, \boldsymbol{K}_{\mathrm{NTK}} \in \mathbb{R}^{n \times n}$ with:

$$\hat{\mathbf{K}}_{\text{NTK},ij} = \frac{\langle \mathbf{x}, \mathbf{x}' \rangle}{p} \sum_{j=1}^{p} a_j^2 \sigma'(\langle \mathbf{w}_j, \mathbf{x}_i) \sigma'(\langle \mathbf{w}_j, \mathbf{x}_j \rangle),$$

$$\mathbf{K}_{\text{NTK},ij} = K_{\text{NTK}}(\mathbf{x}, \mathbf{x}') \tag{4}$$

(c) Conclude that for large enough width p, we have that $\lambda_{\min}(\hat{\mathbf{K}}_{\text{NTK}}) > 0$ with high-probability.

Exercise 2.

Let $g(f(\boldsymbol{x};\boldsymbol{\theta})) = \phi(f(\boldsymbol{x};\boldsymbol{\theta}))$ where ϕ is a twice differentiable function as $f(\boldsymbol{x};\boldsymbol{\theta})$ a two-layer neural network:

$$f(\boldsymbol{x};\boldsymbol{\theta}) = \frac{1}{\sqrt{p}} \sum_{j=1}^{p} a_j \sigma(\langle \boldsymbol{w}_j, \boldsymbol{x} \rangle)$$
 (5)

where σ is a twice-differentiable function.

(a) Considering a_j to be fixed, show that for any θ , the Hessian matrix \mathbf{H}_g of g can be related to the Hessian matrix $\mathbf{H}(\theta)$ of f by:

$$\boldsymbol{H}_g(\boldsymbol{\theta}) = \phi'(f(\boldsymbol{x}; \boldsymbol{\theta}))\boldsymbol{H}(\boldsymbol{\theta}) + \phi''(f(\boldsymbol{x}; \boldsymbol{\theta}))\nabla_{\boldsymbol{w}}f(\boldsymbol{x}; \boldsymbol{\theta})\nabla_{\boldsymbol{w}}f(\boldsymbol{x}; \boldsymbol{\theta})^{\top}$$
(6)

DATE: 17/02/2025

- (b) Under standard initialisation $a^0 \sim \text{Unif}([-1,1])$, what is the scaling in p of the operator norm of each of the terms above?
- (c) Conclude that $g(x; \theta)$ does not linearise as $p \to \infty$.

Exercise 3.

Generalise the argument leading to Proposition 1 to the case where the second layer weights a_j are not fixed.