Master of Data Science Online Programme Course: Linear Algebra SGA #2: Week 6

Student: Andrei Batyrov (Fall 2022 / Winter 2023) arbatyrov@edu.hse.ru

> Higher School of Economics (HSE) National Research University Faculty of Computer Science

> > February 18, 2023

Contents

Problem 2	;																						1
Solution												 	 	 									1
Answer												 	 	 									3

Problem 2

Find a decomposition $A = U\Sigma V^T$ of the matrix

$$A = \begin{pmatrix} 2 & 1 & 2 \\ -2 & -1 & -2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{pmatrix},\tag{1}$$

where Σ is a rectangular diagonal matrix of size 4×3 , U and V are orthogonal matrices, and the upper right element of V is equal to $1/\sqrt{2}$.

Solution

As per [3], we need to find the Singular Value Decomposition of (1) with the following algorithm.

1. Find matrix

$$B = A^{T}A = \begin{pmatrix} 2 & 1 & 2 \\ -2 & -1 & -2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{pmatrix}^{T} \begin{pmatrix} 2 & 1 & 2 \\ -2 & -1 & -2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 28 & 14 & 28 \\ 14 & 7 & 14 \\ 28 & 14 & 28 \end{pmatrix}.$$
 (2)

2. Find eigenvalues λ_i of (2). As per [1], eigenvalues of a matrix are the roots of the characteristic polynomial, i.e.

$$det(B - \lambda I) = 0, (3)$$

where det is a function of columns of a square matrix. For a matrix $A_{3\times3}$ the determinant is defined as $a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$. So, our characteristic equation is

$$det \begin{bmatrix} 28 & 14 & 28 \\ 14 & 7 & 14 \\ 28 & 14 & 28 \end{bmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0,$$

$$det \begin{bmatrix} 28 & 14 & 28 \\ 14 & 7 & 14 \\ 28 & 14 & 28 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = 0,$$

$$det \begin{bmatrix} 28 - \lambda & 14 & 28 \\ 14 & 7 - \lambda & 14 \\ 28 & 14 & 28 - \lambda \end{bmatrix} = 0,$$

$$-\lambda^3 + 63\lambda^2 = 0,$$

$$\lambda^2 (63 - \lambda) = 0.$$

$$(4)$$

The equation (4) has three real roots: $\lambda_1 = 63, \lambda_2 = \lambda_3 = 0$. These are the eigenvalues of (2).

3. Find singular matrix Σ of size of (1) with the diagonal elements $\sigma_i = \sqrt{\lambda_i}$ such that $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$. Since we only have three eigenvalues but four rows in (1), we need to append a row of all zeros at the bottom of Σ :

4. Find eigenvectors of (2), As per [2], each eigenvalue has a corresponding eigenvector, which is a solution vector of the linear system $Bv_i = \lambda_i v_i \Rightarrow (B - \lambda_i I)v_i = 0$. Since we have three eigenvalues, there are three eigenvectors, each of can be obtained by solving its linear system. Let's find v_1 corresponding to λ_1 :

$$\begin{bmatrix}
28 & 14 & 28 \\
14 & 7 & 14 \\
28 & 14 & 28
\end{bmatrix} - \begin{pmatrix}
63 & 0 & 0 \\
0 & 63 & 0 \\
0 & 0 & 63
\end{pmatrix} \\
v_1 = \begin{pmatrix}
-35 & 14 & 28 \\
14 & -56 & 14 \\
28 & 14 & -35
\end{pmatrix} v_1 = 0.$$
(6)

Since the matrix of (6) has rank 2, the solution has one free variable x_3 , and thus the solution

vector is
$$v_1 = x_3 \begin{pmatrix} 1 \\ 0.5 \\ 1 \end{pmatrix}$$
. By choosing $x_3 = 1, v_1 = \begin{pmatrix} 1 \\ 0.5 \\ 1 \end{pmatrix}$. For v_2 and v_3 we could construct and solve a similar system for $\lambda_2 = \lambda_3 = 0$. However since we are required to have a specific

and solve a similar system for $\lambda_2 = \lambda_3 = 0$. However since we are required to have a specific form for v_3 , namely its first element must be $1/\sqrt{2}$, for v_3 we can choose any vector satisfying this condition without finding the eigenvector for v_3 . This is valid, since the singular values for v_2 and v_3 are zeros, so in fact, it can be any vectors with the requirement of orthogonality

to v_1 . Looking at v_1 it is easy to obtain $v_3 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix}$. Obviously, v_1 and v_3 are orthogonal,

since $\langle v_1, v_3 \rangle = 0$. To find $v_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ we need to require

$$\begin{cases} \langle v_1, v_2 \rangle = 0, \\ \langle v_2, v_3 \rangle = 0 \end{cases} \Rightarrow \begin{cases} 1 \cdot x + 0.5 \cdot y + 1 \cdot z = 0, \\ \frac{1}{\sqrt{2}} \cdot x + 0 \cdot y - \frac{1}{\sqrt{2}} z = 0 \end{cases}$$
 (7)

Solving (7) yields
$$v_3 = z \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$$
. Let $z = 1$, then $x = 1$, and $y = -4$. So, $v_2 = \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$.

5. Find matrix V. Since, we have found all three vectors for V, now we only need to normalize each of them to get V:

$$V = \left[\frac{v_1}{||v_1||} \left| \frac{v_2}{||v_2||} \right| \frac{v_3}{||v_3||} \right] = \begin{pmatrix} \frac{2}{3} & \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3} & -\frac{4}{3\sqrt{2}} & 0 \\ \frac{2}{3} & \frac{1}{3\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$
(8)

6. Find matrix U by computing its columns as $u_i = \frac{Av_i}{\sigma_i}$:

$$u_1 = \frac{1}{3\sqrt{7}} \begin{pmatrix} 2 & 1 & 2\\ -2 & -1 & -2\\ 4 & 2 & 4\\ 2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2/3\\ 1/3\\ 2/3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{7}\\ -1/\sqrt{7}\\ 2/\sqrt{7}\\ 1/\sqrt{7} \end{pmatrix}.$$

Now, since the rest two singular values are zeros and the fourth singular value is absent since (2) is the 3×3 matrix, we cannot compute u_2, u_3 , and u_4 directly and need to obtain these vectors. Ideally u_2, u_3, u_4 are orthonormalized eigenvectors of matrix AA^T , and we could repeat the steps 1-5 above to obtain such vectors. However, it is easily seen that since all other singular values are zeros, when composing matrix A back, the matrix product $U\Sigma$ will have only one non-zero column corresponding to the first singular value $3\sqrt{7}$, i.e. the first column. That means that u_2, u_3 , and u_4 can be any orthonormal vectors. It easily seen that

for
$$u_2$$
 we can take $\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$ and for u_3 we can take $\begin{pmatrix} -1\\0\\1\\-1 \end{pmatrix}$. To find u_4 we can apply the same

technique used for finding v_2 above by constructing and solving a linear system that satisfies the condition of orthogonality (the equation for u_1 was multiplied by its denominator $\sqrt{7}$):

$$\begin{cases} \langle u_1, u_4 \rangle = 0, \\ \langle u_2, u_4 \rangle = 0, \\ \langle u_3, u_4 \rangle = 0 \end{cases} \Rightarrow \begin{cases} 1 \cdot x - 1 \cdot y + 2 \cdot w + 1 \cdot z = 0, \\ -1 \cdot x + 0 \cdot y + 0 \cdot w + 1 \cdot z = 0, \\ -1 \cdot x + 0 \cdot y + 1 \cdot w - 1 \cdot z = 0 \end{cases}$$
(9)

Solving (7) yields
$$u_4 = z \begin{pmatrix} 1 \\ 6 \\ 2 \\ 1 \end{pmatrix}$$
. Let $z = 1$, then $x = 1$, $y = 6$, and $w = 2$. So, $u_4 = \begin{pmatrix} 1 \\ 6 \\ 2 \\ 1 \end{pmatrix}$.

After normalizing u_2 , u_3 , and u_4 (u_1 is already normalized, since we obtained it from v_1),

$$U = \begin{pmatrix} 1/\sqrt{7} & -1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{42} \\ -1/\sqrt{7} & 0 & 0 & 6/\sqrt{42} \\ 2/\sqrt{7} & 0 & 1/\sqrt{3} & 2/\sqrt{42} \\ 1/\sqrt{7} & 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{42} \end{pmatrix}.$$
 (10)

Finally, let's check our decomposition by composing (1) back:

Answer

The required decomposition of (1) is:

References

- [1] Vsevolod Chernyshev. *Characteristic polynomial*. Faculty of Computer Science, Higher School of Economics. URL: https://smartedu.hse.ru/mod/page/0/701025.
- [2] Vsevolod Chernyshev. *Eigenvectors and eigenvalues*. Faculty of Computer Science, Higher School of Economics. URL: https://smartedu.hse.ru/mod/page/0/701022.
- [3] Dmitry Piontkovski. Algorithm for finding SVD. Faculty of Computer Science, Higher School of Economics. URL: https://smartedu.hse.ru/mod/page/0/701062.