TOMAWAC Reference Manual

Contents

1	Detail list of keywords	10
1.1	1D SPECTRA RESULTS FILE	10
1.2	2D RESULTS FILE	10
1.3	2D RESULTS FILE FORMAT	11
1.4	ABSCISSAE OF SPECTRUM PRINTOUT POINTS	11
1.5	AIR DENSITY	11
1.6	BAJ MODELING	11
1.7	BETA 2 SURFACE ROLLERS	12
1.8	BETA S SURFACE ROLLERS	12
1.9	BINARY CURRENTS FILE	12
1.10	BINARY CURRENTS FILE FORMAT	12
1.11	BINARY DATA FILE 1 FORMAT	13
1.12	BINARY FILE 1	13
1.13	BINARY TIDAL WATER FILE FORMAT	13
1.14	BINARY TIDAL WATER LEVEL FILE	13
1.15	BINARY WINDS FILE	14
1.16	BINARY WINDS FILE FORMAT	14
1.17	BOTTOM FRICTION COEFFICIENT	14
1.18	BOTTOM FRICTION DISSIPATION	14
1.19	BOTTOM SMOOTHINGS	15
1.20	BOTTOM TOPOGRAPHY FILE	15
1.21	BOUNDARY ANGULAR DISTRIBUTION FUNCTION	15
1.22	BOUNDARY CONDITION BEFORE TIME STEP	16
1.23	BOUNDARY CONDITIONS FILE	16
1.24	BOUNDARY DIRECTIONAL SPREAD 1	16
1.25	BOUNDARY DIRECTIONAL SPREAD 2	16

1.26	BOUNDARY MAIN DIRECTION 1	17
1.27	BOUNDARY MAIN DIRECTION 2	17
1.28	BOUNDARY MAXIMUM PEAK FREQUENCY	17
1.29	BOUNDARY MEAN FETCH VALUE	17
1.30	BOUNDARY PEAK FACTOR	18
1.31	BOUNDARY PEAK FREQUENCY	18
1.32	BOUNDARY PHILLIPS CONSTANT	18
1.33	BOUNDARY SIGNIFICANT WAVE HEIGHT	18
1.34	BOUNDARY SPECTRUM VALUE OF SIGMA-A	19
1.35	BOUNDARY SPECTRUM VALUE OF SIGMA-B	19
1.36	BOUNDARY WEIGHTING FACTOR FOR ADF	19
1.37	BULK DRAG COEFFICIENT	19
1.38	CHARNOCK CONSTANT	20
1.39	CHECKING THE MESH	20
1.40	COEFFICIENT OF THE TIME SUB-INCREMENTS FOR BREAKING	20
1.41	CONCATENATE PARTEL OUTPUT	20
1.42	CONSIDERATION OF A STATIONARY CURRENT	21
1.43	CONSIDERATION OF A WIND	21
1.44	CONSIDERATION OF PROPAGATION	21
1.45	CONSIDERATION OF SOURCE TERMS	21
1.46	CONSIDERATION OF TIDE	22
1.47	CURRENTS FILE FORMAT	22
1.48	DATE OF COMPUTATION BEGINNING	22
1.49	DEBUGGER	23
1.50	DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY	23
1.51	DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA	23
1.52	DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1	24
1.53	DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2	24
1.54	DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD	25
1.55	DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD	25
1.56	DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY	25
1.57	DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B	26
1.58	DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA	26
1.59	DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION	26
1.60	DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY	27
1.61	DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA	27

1.62	DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA	28
1.63	DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2	28
1.64	DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION	29
1.65	DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION	29
1.66	DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY	29
1.67	DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0	30
1.68	DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR	30
1.69	DEPTH-INDUCED BREAKING DISSIPATION	30
1.70	DICTIONARY	31
1.71	DIFFRACTION	31
1.72	DIFFRACTION FILTER	32
1.73	DISSIPATION BY STRONG CURRENT	32
1.74	DISSIPATION COEFFICIENT FOR STRONG CURRENT	32
1.75	ECRET FOR SMALL HEIGHT	33
1.76	FILE WITH COORDINATES OF SPECTRA TO IMPOSE	33
1.77	FILE WITH COORDINATES OF SPECTRA TO WRITE	33
1.78	FILE WITH DEFINITION OF POLYGONS	33
1.79	FINITE ELEMENT ASSEMBLY	34
1.80	FORMATTED CURRENTS FILE	34
1.81	FORMATTED FILE 1	34
1.82	FORMATTED TIDAL WATER LEVEL FILE	34
1.83	FORMATTED WINDS FILE	35
1.84	FORTRAN FILE	35
1.85	FREQUENTIAL RATIO	35
1.86	GEOMETRY FILE	35
1.87	GEOMETRY FILE FORMAT	36
1.88	GLOBAL RESULT FILE	36
1.89	GLOBAL RESULT FILE FORMAT	36
1.90	GODA COEFFICIENT FOR ANGULAR SPEADING	36
1.91	IMPLICITATION COEFFICIENT FOR SOURCE TERMS	37
1.92	IMPOSED SPECTRA FILE	37
1.93	IMPOSED SPECTRA FILE FORMAT	37
1.94	INFINITE DEPTH	38
1.95	INITIAL ANGULAR DISTRIBUTION FUNCTION	38
1.96	INITIAL DIRECTIONAL SPREAD 1	38
1.97	INITIAL DIRECTIONAL SPREAD 2	39

1.98	INITIAL MAIN DIRECTION 1	39
1.99	INITIAL MAIN DIRECTION 2	39
1.100	INITIAL MAXIMUM PEAK FREQUENCY	39
1.101	INITIAL MEAN FETCH VALUE	40
1.102	INITIAL PEAK FACTOR	40
1.103	INITIAL PEAK FREQUENCY	40
1.104	INITIAL PHILLIPS CONSTANT	40
1.105	INITIAL SIGNIFICANT WAVE HEIGHT	41
1.106	INITIAL STILL WATER LEVEL	41
1.107	INITIAL TIME SET TO ZERO	41
1.108	INITIAL VALUE OF SIGMA-A FOR SPECTRUM	41
1.109	INITIAL VALUE OF SIGMA-B FOR SPECTRUM	41
1.110	INITIAL WEIGHTING FACTOR FOR ADF	42
1.111	LIMIT SPECTRUM MODIFIED BY USER	42
1.112	LINEAR WAVE GROWTH	42
1.113	MAXIMUM VALUE OF THE RATIO HM0 ON D	43
1.114	MINIMAL FREQUENCY	43
1.115	MINIMUM WATER DEPTH	43
1.116	NAMES OF VARIABLES	43
1.117	NON-LINEAR TRANSFERS BETWEEN FREQUENCIES	44
1.118	NUMBER OF BREAKING TIME STEPS	44
1.119	NUMBER OF DIRECTIONS	44
1.120	NUMBER OF FIRST ITERATION FOR GRAPHICS PRINTOUTS	45
1.121	NUMBER OF FREQUENCIES	45
1.122	NUMBER OF ITERATIONS FOR THE SOURCE TERMS	45
1.123	NUMBER OF PLANTS M2	46
1.124	NUMBER OF PRIVATE ARRAYS	46
1.125	NUMBER OF SURFACE ROLLER TIME STEPS	46
1.126	NUMBER OF TIME STEP	46
1.127	OPTION FOR DIAGNOSTIC TAIL	46
1.128	OPTION FOR SECOND DERIVATIVES	47
1.129	ORDINATES OF SPECTRUM PRINTOUT POINTS	47
1.130	ORIGIN COORDINATES	47
1.131	PARALLEL PROCESSORS	47
1.132	PARTITIONING TOOL	48
1.133	PERIOD FOR GRAPHIC PRINTOUTS	48

1.134	PERIOD FOR LISTING PRINTOUTS	48
1.135	POROUS MEDIA	48
1.136	PREVIOUS COMPUTATION FILE	49
1.137	PREVIOUS COMPUTATION FILE FORMAT	49
1.138	PUNCTUAL RESULTS FILE	49
1.139	RANK OF THE WATER LEVEL DATA IN THE TELEMAC FILE	50
1.140	RECOVERY OF TELEMAC DATA ITEM	50
1.141	REFERENCE FILE	50
1.142	REFERENCE FILE FORMAT	51
1.143	REFLECTION	51
1.144	REFLECTION COEFFICIENT	51
1.145	SATURATION THRESHOLD FOR THE DISSIPATION	51
1.146	SETTING FOR INTEGRATION ON OMEGA1	52
1.147	SETTING FOR INTEGRATION ON OMEGA2	52
1.148	SETTING FOR INTEGRATION ON THETA 1	52
1.149	SHIFT GROWING CURVE DUE TO WIND	52
1.150	SPECTRUM ENERGY THRESHOLD	53
1.151	SPECTRUM FILE FORMAT	53
1.152	SPECTRUM TAIL FACTOR	53
1.153	SPHERICAL COORDINATES	53
1.154	STANDARD CONFIGURATION PARAMETER	53
1.155	STARTING TIME STEP FOR DIFFRACTION	54
1.156	STATIONARY WIND	54
1.157	STEERING FILE	54
1.158	STEM DIAMETER	54
1.159	SURFACE ROLLERS	55
1.160	TAKING INTO ACCOUNT SOURCE TERMS ON IMPOSED BOUNDARIES	55
1.161	THRESHOLDO FOR CONFIGURATIONS ELIMINATION	55
1.162	THRESHOLD1 FOR CONFIGURATIONS ELIMINATION	55
1.163	THRESHOLD2 FOR CONFIGURATIONS ELIMINATION	56
1.164	TIDAL WATER LEVEL FILE FORMAT	56
1.165	TIDE REFRESHING PERIOD	56
1.166	TIME INCREMENT NUMBER IN TELEMAC FILE	57
1.167	TIME SERIES COORDINATES FILE	57
1.168	TIME SERIES FILE	57
1.169	TIME SERIES FILE FORMAT	57

1.170	TIME SHIFT IN CURRENTS FILE	58
1.171	TIME SHIFT IN TIDAL WATER LEVEL FILE	58
1.172	TIME SHIFT IN WINDS FILE	58
1.173	TIME SHIFT OF IMPOSED SPECTRA FILE	58
1.174	TIME STEP	58
1.175	TIME UNIT IN CURRENTS FILE	59
1.176	TIME UNIT IN TIDAL WATER LEVEL FILE	59
1.177	TIME UNIT IN WINDS FILE	59
1.178	TIME UNIT OF IMPOSED SPECTRA FILE	59
1.179	TITLE	60
1.180	TRIAD INTERACTIONS	60
1.181	TRIADS 1 (LTA) COEFFICIENT ALPHA	60
1.182	TRIADS 1 (LTA) COEFFICIENT RFMLTA	60
1.183	TRIADS 2 (SPB) COEFFICIENT K	61
1.184	TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY	61
1.185	TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY	61
1.186	TRIGONOMETRICAL CONVENTION	62
1.187	TYPE OF BOUNDARY DIRECTIONAL SPECTRUM	62
1.188	TYPE OF INITIAL DIRECTIONAL SPECTRUM	62
1.189	VALIDATION	63
1.190	VARIABLES FOR 2D GRAPHIC PRINTOUTS	63
1.191	VARIANCE THRESHOLD FOR DIFFRACTION	65
1.192	VECTOR LENGTH	65
1.193	VEGETATION DISSIPATION COEFFICIENT	65
1.194	VEGETATION HEIGHT	65
1.195	VEGETATION TAKEN INTO ACCOUNT	66
1.196	VON KARMAN CONSTANT	66
1.197	WATER DENSITY	66
1.198	WAVE GROWTH LIMITER	66
1.199	WESTHUYSEN DISSIPATION COEFFICIENT	67
1.200	WESTHUYSEN WEIGHTING COEFFICIENT	67
1.201	WESTHUYSEN WHITE CAPPING DISSIPATION	67
1.202	WHITE CAPPING DISSIPATION	68
1.203	WHITE CAPPING DISSIPATION COEFFICIENT	68
1.204	WHITE CAPPING WEIGHTING COEFFICIENT	68
1.205	WIND DRAG COEFFICIENT	69

1.206	WIND GENERATION	69
1.207	WIND GENERATION COEFFICIENT	70
1.208	WIND MEASUREMENTS LEVEL	70
1.209	WIND VELOCITY ALONG X	70
1.210	WIND VELOCITY ALONG Y	70
1.211	WINDS FILE FORMAT	71
1.212	YAN GENERATION COEFFICIENT D	71
1.213	YAN GENERATION COEFFICIENT E	71
1.214	YAN GENERATION COEFFICIENT F	72
1.215	YAN GENERATION COEFFICIENT H	72
2	List of keywords classified according to type	73
2.1	BOUNDARY CONDITIONS	73
2.2	COMPUTATION ENVIRONMENT	73
2.2.1 2.2.2	INPUTOUTPUT	
2.3	GENERAL PARAMETERS	75
2.3.1 2.3.2 2.3.3 2.3.4 2.3.5	METEO	75 76 76
2.4	INITIAL CONDITIONS	76
2.5	INTERNAL	77
2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.6.8 2.6.9 2.6.10 2.6.11 2.6.12 2.7	SOURCE TERMS BOTTOM FRICTION BREAKING LIMITER NUMERICAL PARAMETERS POROUS QUADRUPLET INTERACTIONS STRONG CURRENT SURFACE ROLLER TRIAD TRANSFERS VEGETATION WHITE CAPPING WIND TRANSPORT DIFFRACTION PARAMETERS	77 78 78 78 78 78 78 78
3	Glossary	80
3.1	English/French glossary	80

		9
3.2	French/English glossary	86
	Bibliography	94

1. Detail list of keywords

1.1 1D SPECTRA RESULTS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACSPE)

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS SPECTRES 1D

Name of the file into which the frequential punctual spectra (integrated according to the directions) will be written.

Related keywords

PUNCTUAL RESULTS FILE

ABSCISSAE OF SPECTRUM PRINTOUT POINTS ORDINATES OF SPECTRUM PRINTOUT POINTS

PERIOD FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.2 2D RESULTS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACRES)

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS 2D

Name of the file into which the results of the two-dimensional computation will be written.

Related keywords

VARIABLES FOR 2D GRAPHIC PRINTOUTS

PERIOD FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.3 2D RESULTS FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACRES)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS 2D

Geometry file format. Possible values are:

• SERAFIN: classical single precision format in Telemac;

• SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

1.4 ABSCISSAE OF SPECTRUM PRINTOUT POINTS

Type: Real
Dimension: 2
Mnemo XLEO

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DES POINTS DE SORTIE DU SPECTRE

Array providing the abscissae of the Seraphin spectrum printout points with a maximum dimension of 99. The chosen spectrum points are the closest 2D points to the specified co-ordinates.

Related keywords

ORDINATES OF SPECTRUM PRINTOUT POINTS

PUNCTUAL RESULTS FILE

1.5 AIR DENSITY

Type: Real
Dimension: 1
Mnemo ROAIR
DEFAULT VALUE: 1.225

French keyword: DENSITE DE L'AIR

The ratio ROAIR/ROEAU is used in the wind generation source term.

Related keywords

WIND GENERATION WATER DENSITY

1.6 BAJ MODELING

Type: Integer
Dimension: 0
Mnemo CBAJ
DEFAULT VALUE: 0

French keyword: MODELISATION BAJ

Choice of the calculus of centrale frequency if its value is 0, classical choice if its value is 1,

BAJ choice proposed by Laugel (2013).

Related keywords

CONSIDERATION OF SOURCE TERMS

1.7 BETA 2 SURFACE ROLLERS

Type: Real Dimension: 1

Mnemo BETA_2_SURFROL

DEFAULT VALUE: 1.0D0

French keyword: BETA 2 ROLLERS SURFACE

Beta_2 parameter to influence the dissipation of surface rollers

1.8 BETA S SURFACE ROLLERS

Type: Real Dimension: 1

Mnemo BETA_S_SURFROL

DEFAULT VALUE: 0.1D0

French keyword: BETA S ROLLERS SURFACE

Beta_s parameter to influence the dissipation of surface rollers

1.9 BINARY CURRENTS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACCOB)

DEFAULT VALUE:

French keyword: FICHIER DES COURANTS BINAIRE

Name of the current data file (if binary).

Related keywords

CONSIDERATION OF A STATIONARY CURRENT

CONSIDERATION OF TIDE FORMATTED CURRENTS FILE CURRENTS FILE FORMAT

1.10 BINARY CURRENTS FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACCOB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES COURANTS BINAIRE

Currents binary file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.11 BINARY DATA FILE 1 FORMAT

Type: String

Dimension: 1

Mnemo WAC_FILES(WACBI1)

DEFAULT VALUE: '

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

binary data file format. Possible values are:

• SERAFIN : classical single precision format in Telemac;

• SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

1.12 BINARY FILE 1

Type: String Dimension: 0

Mnemo WAC FILES(WACBI1)

DEFAULT VALUE:

French keyword: FICHIER BINAIRE 1 Binary-coded data file made available to the user.

1.13 BINARY TIDAL WATER FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACMAB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE LA MAREE BINAIRE

binary tidal water file format. Possible values are:

• SERAFIN: classical single precision format in Telemac;

• SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

1.14 BINARY TIDAL WATER LEVEL FILE

Type: String Dimension: 0

Mnemo WAC FILES(WACMAB)

DEFAULT VALUE: '

French keyword: FICHIER DU NIVEAU DE LA MAREE BINAIRE

Name of the water level data file (if binary).

Related keywords

CONSIDERATION OF TIDE

FORMATTED TIDAL WATER LEVEL FILE

TIDAL WATER LEVEL FILE FORMAT

TIDE REFRESHING PERIOD

1.15 BINARY WINDS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACVEB)

DEFAULT VALUE:

French keyword: FICHIER DES VENTS BINAIRE

Name of wind data file (if binary).

Related keywords

CONSIDERATION OF WIND FORMATTED WINDS FILE WINDS FILE FORMAT

1.16 BINARY WINDS FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACVEB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES VENTS BINAIRE

wind data binary file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.17 BOTTOM FRICTION COEFFICIENT

Type: Real Dimension: 1

Mnemo CFROT1 DEFAULT VALUE: 0.038

French keyword: COEFFICIENT DE FROTTEMENT SUR LE FOND

Bottom friction coefficient.

Related keywords

INFINITE DEPTH

BOTTOM FRICTION-INDUCED DISSIPATION

1.18 BOTTOM FRICTION DISSIPATION

Type: Integer
Dimension: 0
Mnemo SFROT
DEFAULT VALUE: 0

French keyword: DISSIPATION PAR FROTTEMENT SUR LE FOND

Selection of the modelling type of the bottom friction source term. If its value is 0, the bottom friction dissipation is ignored; if its value is 1, it is integrated in accordance with a formula that

is similar to that of WAM cycle 4.

Related keywords

INFINITE DEPTH

BOTTOM FRICTION COEFFICIENT

1.19 BOTTOM SMOOTHINGS

Type: Integer

Dimension: 1

Mnemo LISFON

DEFAULT VALUE: 0

French keyword: LISSAGES DU FOND

Number of smoothings made on bottom features. Each smoothing, being made by means of a mass matrix, is conservative. To be used when the bathymetric data yield too irregular data after interpolation. Also refer to the CORFON subroutine.

1.20 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACFON)

DEFAULT VALUE: "

French keyword: FICHIER DES FONDS

Name of any file containing the bathymetric data associated to the SINUSX-formatted grid. It this keyword is used, these bathymetric data shall be used for the computation.

1.21 BOUNDARY ANGULAR DISTRIBUTION FUNCTION

Type: Integer Dimension: 0

Mnemo FRABL

DEFAULT VALUE: 1

French keyword: FONCTION DE REPARTITION ANGULAIRE AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum. Allow the computation of the angular distribution function

- 1 : $cos^{2s}(T T0)$; with T in [T0-pi/2;T0+pi/2]
- 2 : $exp(-0.5((T-T0)/s)^2)$; with T in [T0-pi/2;T0+pi/2]
- 3 : $cos^{2s}((T-T0)/2)$ (of type Mitsuyasu)
- 4 : Mitsuyasu with $s = (F/fp)^5$ or $s = (F/fp)^{-2.5}$

where s is the boundary directionnal spread (SPRE1L or SPRE2L)

Related keywords

BOUNDARY CONDITION BEFORE TIME STEP 1.22

Type: Logical Dimension: 0 Mnemo **AVANT** DEFAULT VALUE: .FALSE.

French keyword: CONDITION LIMITE AVANT LE PAS DE TEMPS

Indicates whether boundary condition is taken into account before or after time step

1.23 BOUNDARY CONDITIONS FILE

Type: String Dimension: 0

WAC_FILES(WACCLI) Mnemo

DEFAULT VALUE:

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is automatically filled by the grid generator by means of colours that are assigned to the boundary nodes in the computational domain.

BOUNDARY DIRECTIONAL SPREAD 1

Type: Real Dimension: Mnemo

SPRE1L

DEFAULT VALUE:

French keyword: ETALEMENT DIRECTIONNEL 1 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.25 BOUNDARY DIRECTIONAL SPREAD 2

Type: Real Dimension: 1

SPRE2L Mnemo

DEFAULT VALUE:

French keyword: ETALEMENT DIRECTIONNEL 2 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

1.26 BOUNDARY MAIN DIRECTION 1

Type: Real Dimension: 1

Mnemo TETA1L

DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 1 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.27 BOUNDARY MAIN DIRECTION 2

Type: Real Dimension: 1

Mnemo TETA2L

DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 2 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.28 BOUNDARY MAXIMUM PEAK FREQUENCY

Type: Real Dimension: 1

Mnemo FPMAXL DEFAULT VALUE: 0.2

French keyword: FREQUENCE DE PIC MAXIMALE AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.29 BOUNDARY MEAN FETCH VALUE

Type: Real Dimension: 1

Mnemo FETCHL DEFAULT VALUE: 30000.

French keyword: VALEUR MOYENNE DU FETCH AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

1.30 BOUNDARY PEAK FACTOR

Type: Real Dimension: 1

Mnemo GAMMAL

DEFAULT VALUE: 3.3

French keyword: FACTEUR DE PIC AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.31 BOUNDARY PEAK FREQUENCY

Type: Real
Dimension: 1
Mnemo FPICL
DEFAULT VALUE: 0.067

French keyword: FREQUENCE DE PIC AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.32 BOUNDARY PHILLIPS CONSTANT

Type: Real Dimension: 1

Mnemo APHILL DEFAULT VALUE: 0.0081

French keyword: CONSTANTE DE PHILLIPS AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.33 BOUNDARY SIGNIFICANT WAVE HEIGHT

Type: Real
Dimension: 1
Mnemo HM0L
DEFAULT VALUE: 1.

French keyword: HAUTEUR SIGNIFICATIVE AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

1.34 BOUNDARY SPECTRUM VALUE OF SIGMA-A

Type: Real Dimension: 1

Mnemo SIGMAL DEFAULT VALUE: 0.07

French keyword: VALEUR AUX LIMITES DE SIGMA-A POUR SPECTRE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.35 BOUNDARY SPECTRUM VALUE OF SIGMA-B

Type: Real Dimension: 1

Mnemo SIGMBL DEFAULT VALUE: 0.09

French keyword: VALEUR AUX LIMITES DE SIGMA-B POUR SPECTRE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.36 BOUNDARY WEIGHTING FACTOR FOR ADF

Type: Real Dimension: 1

Mnemo XLAMDL

DEFAULT VALUE: 1.

French keyword: FACTEUR DE PONDERATION POUR FRA AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.37 BULK DRAG COEFFICIENT

Type: Real
Dimension: 1
Mnemo BDC
DEFAULT VALUE: 0.2

French keyword: COEFFICIENT DE TRAINEE

constant used in the vegetation source term

Related keywords

VEGETATION TAKEN INTO ACCOUNT VEGETATION DISSIPATION CO-EFFICIENT NUMBER OF PLANTS M2 STEM DIAMETER VEGETATION HEIGHT

1.38 CHARNOCK CONSTANT

Type: Real Dimension: 1

Mnemo ALPHA DEFAULT VALUE: 0.01

French keyword: CONSTANTE DE CHARNOCK

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.39 CHECKING THE MESH

Type: Logical

Dimension: 1

Mnemo CHECK_MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

if this key word is equal to yes, a call to subroutine checkmesh will look for errors in the mesh, superimposed points, etc.

1.40 COEFFICIENT OF THE TIME SUB-INCREMENTS FOR BREAKING

Type: Real Dimension: 1

Mnemo XDTBRK DEFAULT VALUE: 1.45

French keyword: COEFFICIENT POUR LES SOUS-PAS DE TEMPS POUR LE DEFERLEMENT

Geometrical ratio of the time sub-increments for the depth-induced breaking

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION NUMBER OF BREAKING TIME STEPS

1.41 CONCATENATE PARTEL OUTPUT

Type: Logical

Dimension: 1

Mnemo CONCAT_PARTEL

DEFAULT VALUE: NO

French keyword: CONCATENATION SORTIE PARTEL

With this option partel no more generates a file (GEO/CLI/PAR) per process but a single concatenate file of them, associated to an index file. Then instead of having partel generating 3P files, it only generates 6 files.

1.42 CONSIDERATION OF A STATIONARY CURRENT

Type: Logical

Dimension: 1

Mnemo COUSTA DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE D'UN COURANT STATIONNAIRE

Indicates whether a stationary current is taken into account, either in a file or in condiw.f.

Related keywords

CURRENTS FILE

1.43 CONSIDERATION OF A WIND

Type: Logical

Dimension: 1
Mnemo VENT
DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE DU VENT

Indicates whether a wind is taken into account, either in a file or in venuti.f

Related keywords

WINDS FILE

1.44 CONSIDERATION OF PROPAGATION

Type: Logical Dimension: 0 Mnemo PROP DEFAULT VALUE: .TRUE.

French keyword: PRISE EN COMPTE DE LA PROPAGATION

Indicates whether propagation is taken into account.

1.45 CONSIDERATION OF SOURCE TERMS

Type: Logical Dimension: 1 Mnemo TSOU DEFAULT VALUE: .TRUE.

French keyword: PRISE EN COMPTE DES TERMES SOURCES Indicates whether the source terms are taken into account or not.

Related keywords

WIND GENERATION

BOTTOM FRICTION DISSIPATION

WHITE CAPPING DISSIPATION

DEPTH-INDUCED BREAKING DISSIPATION

WAVE BLOCKING DISSIPATION

NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

TRIAD INTERACTION

1.46 CONSIDERATION OF TIDE

Type: Logical

Dimension: 1

Mnemo MAREE DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE DE LA MAREE

Indicates whether a current is taken into account, either in a file or in cdicow.f.

Related keywords

FORMATTED TIDAL WATER LEVEL FILE

BINARY TIDAL WATER LEVEL FILE

TIDAL WATER LEVEL FILE FORMAT

TIDE REFRESHING PERIOD

1.47 CURRENTS FILE FORMAT

Type: Integer
Dimension: 0
Mnemo INDIC
DEFAULT VALUE: 3

French keyword: FORMAT DU FICHIER DES COURANTS

Selection of the type of currents file format:

- 3 = selafin, TELEMAC type
- 4 = user format (the couuti.f procedure should then be amended)

Related keywords

CURRENTS BINARY FILE CURRENTS FORMATTED FILE

1.48 DATE OF COMPUTATION BEGINNING

Type: Real
Dimension: 1
Mnemo DDC
DEFAULT VALUE: 0

French keyword: DATE DE DEBUT DU CALCUL

Gives the date of the computation beginning. The format is yyyymmddhhmm, as an exemple 199310241524 means the 24 october 93 at 15h24. This date gives a reference for reading the wind file.

Related keywords

BINARY WIND FILE FORMATTED WIND FILE WIND FILE FORMAT 1.49 DEBUGGER 23

1.49 DEBUGGER

Type: Integer Dimension: 1

Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing

1.50 DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRBJ
DEFAULT VALUE: 2

French keyword: DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method)
- 6 : Frequency Fread ordre 8 (peak frequency, 8th order Read method)

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

1.51 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA

Type: Real Dimension: 1

Mnemo ALFABJ

DEFAULT VALUE: 1.

French keyword: DEFERLEMENT 1 (BJ) CONSTANTE ALPHA

ALPHA constant for the Battjes and Janssen model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1 DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2

1.52 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1

Type: Real Dimension: 1

Mnemo GAMBJ1 DEFAULT VALUE: 0.88

French keyword: DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1

GAMMA1 constant of the Battjes and Janssen model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

DEFERLEMENT 1 (BJ) CONSTANTE ALPHA DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2

1.53 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

Type: Real Dimension: 1

Mnemo GAMBJ2
DEFAULT VALUE: 0.8

French keyword: DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2

GAMMA1 constant of the Battjes and Janssen model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

DEFERLEMENT 1 (BJ) CONSTANTE ALPHA DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1

1.54 DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

Type: Integer
Dimension: 0
Mnemo IHMBJ

DEFAULT VALUE: 1

French keyword: DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

Selection of the depth-induced breaking criterium giving the breaking wave height (1 : Hm = GAMMA*D; 2 : Hm given the Miche criterium).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

1.55 DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD

Type: Integer
Dimension: 0
Mnemo IQBBJ
DEFAULT VALUE: 2

French keyword: DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB Selection of the method for the resolution of the implicit equation for QB.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

1.56 DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRTG
DEFAULT VALUE: 5

French keyword: DEFERLEMENT 2 (TG) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2: Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method)

• 6 : Frequency Fread ordre 8 (peak frequency, 8th order Read method)

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION DEPTH-INDUCED BREAKING 2 (TG) CO-EFFICIENT B DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

1.57 DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

Type: Real Dimension: 1

Mnemo BORETG DEFAULT VALUE: 1.0

French keyword: DEFERLEMENT 2 (TG) CONSTANTE B

Coefficient B of the Thornton and Guza model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

1.58 DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

Type: Real Dimension: 1

Mnemo GAMATG
DEFAULT VALUE: 0.42

French keyword: DEFERLEMENT 2 (TG) CONSTANTE GAMMA

Coefficient GAMMA of the Thornton and Guza model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

1.59 DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION

Type: Integer
Dimension: 0
Mnemo IWHTG

DEFAULT VALUE: 2

French keyword: DEFERLEMENT 2 (TG) FONCTION DE PONDERATION

Selection of the expression for the weighting function based on a probability distribution of the

wave heights.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

1.60 DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRRO
DEFAULT VALUE: 5

French keyword: DEFERLEMENT 3 (RO) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method)
- 6 : Frequency Fread ordre 8 (peak frequency, 8th order Read method)

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.61 DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

Type: Real Dimension: 1

Mnemo ALFARO

DEFAULT VALUE: 1.

French keyword: DEFERLEMENT 3 (RO) CONSTANTE ALPHA

Coefficient ALPHA of the Roelvink model (1993).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.62 DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

Type: Real Dimension: 1

Mnemo GAMARO

DEFAULT VALUE: 0.54

French keyword: DEFERLEMENT 3 (RO) CONSTANTE GAMMA

Coefficient GAMMA of the Roelvink model (1993).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.63 DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

Type: Real Dimension: 1

Mnemo GAM2RO DEFAULT VALUE: 0.65

French keyword: DEFERLEMENT 3 (RO) CONSTANTE GAMMA2

Coefficient GAMMA2 of the Roelvink model (1993).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

1.64 DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

Type: Integer Dimension: 1

Mnemo IEXPRO

DEFAULT VALUE: 10

French keyword: DEFERLEMENT 3 (RO) EXPOSANT FONCTION DE PONDERATION

n exponent of the weighting function used in the Roelvink breaking model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.65 DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

Type: Integer

Dimension: 0

Mnemo IDISRO

DEFAULT VALUE: 1

French keyword: DEFERLEMENT 3 (RO) DISTRIBUTION DES HAUTEURS DE HOULE Selection of the wave height distribution for the Roelvink breaking model: 1...Weibull, 2...Rayleigh.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.66 DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRIH

DEFAULT VALUE: 5

French keyword: DEFERLEMENT 4 (IH) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method)

• 6 : Frequency Fread ordre 8 (peak frequency, 8th order Read method)

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

1.67 DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETAO

Type: Real Dimension: 1

Mnemo BETAIH
DEFAULT VALUE: 1.8

French keyword: DEFERLEMENT 4 (IH) CONSTANTE BETA0 coefficient BETA0 of the Izumiya and Horikawa model (1984).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

1.68 DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

Type: Real Dimension: 1

Mnemo EM2SIH DEFAULT VALUE: 0.009

French keyword: DEFERLEMENT 4 (IH) CONSTANTE M2STAR coefficient M2STAR of the Izumiya and Horikawa model (1984).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0

1.69 DEPTH-INDUCED BREAKING DISSIPATION

Type: Integer
Dimension: 0
Mnemo SBREK

DEFAULT VALUE: 0

French keyword: DISSIPATION PAR DEFERLEMENT

Selection of the modelling type of the bathymetric-induced breaking dissipation source term:

- 0 : Breaking is ignored.
- 1 : Battjes and Janssen model (1978).

1.70 DICTIONARY 31

- 2: Thornton and Guza model (1983).
- 3 : Roelvink model (1993).

• 4 : Izumiya and Horikawa model (1984).

Related keywords

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

1.70 DICTIONARY

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'tomawac.dico' French keyword: DICTIONNAIRE

Key word dictionary.

1.71 DIFFRACTION

Type: Integer
Dimension: 0
Mnemo DIFFRA

DEFAULT VALUE: 0

French keyword: DIFFRACTION

Caution: We do not guarantee the modele of diffraction. Selection of the model used to represent the diffraction:

- 0 : Diffraction is not taken into account
- 1 : Mild Slope Equation model (Berkhoff 1972)

• 2 : Revised Mild Slope Equation model (Porter - 2003)

The phase-decoupled approach proposed by Holthuijsen (2003) is used to simulate diffraction in TOMAWAC

Related keywords

STARTING TIME STEP FOR DIFFRACTION VARIANCE THRESHOLD FOR DIFFRACTION DIFFRACTION FILTER

1.72 DIFFRACTION FILTER

Type: Logical
Dimension: 0
Mnemo FLTDIF
DEFAULT VALUE: .FALSE.

French keyword: FILTRE POUR DIFFRACTION

If diffraction is considered, the keyword indicates whether the local amplitudes of the directional spectra are filtered to compute the diffraction parameter and the transfer rates.

Related keywords

DIFFRACTION

VARIANCE THRESHOLD FOR DIFFRACTION STARTING TIME STEP FOR DIFFFRACTION

1.73 DISSIPATION BY STRONG CURRENT

Type: Integer
Dimension: 0
Mnemo SDSCU
DEFAULT VALUE: 0

French keyword: DISSIPATION PAR FORT COURANT

When wave-blocking effects are present (wave stopped by a strong opposing current), two options are possible. If its value is 1, an upper limit is imposed to the spectrum, using a Phillips (1977) shape. If its value is 2, a dissipative term is added, following Van der Westhuysen (2012).

Related keywords

DISSIPATION COEFFICIENT FOR STRONG CURRENT

1.74 DISSIPATION COEFFICIENT FOR STRONG CURRENT

Type: Real Dimension: 1

Mnemo CDSCUR DEFAULT VALUE: 0.65

French keyword: COEFFICIENT DE DISSIPATION PAR FORT COURANT

Dissipation coefficient for waves stopped by a strong opposing current (wave blocking effects). Van der Westhuysen (2012) expression: Cds,cur.

Related keywords

DISSIPATION BY STRONG CURRENT

1.75 ECRET FOR SMALL HEIGHT

Type: Logical
Dimension: 0
Mnemo ECRET
DEFAULT VALUE: .TRUE.

French keyword: ECRETAGE POUR HAUTEUR PETITE
Indicates whether wave height is null for very small height of water

1.76 FILE WITH COORDINATES OF SPECTRA TO IMPOSE

Type: String Dimension: 0

Mnemo WAC FILES(LEOIXY)

DEFAULT VALUE:

French keyword: FICHIER DES COORDONNEES DE SPECTRES A IMPOSER

Text file following the DAT format of Salome with the coordinates of the spectra that will be imposed on the boundary.

Related keywords

IMPOSED SPECTRA FILE IMPOSED SPECTRA FILE FORMAT TIME UNIT OF IMPOSED SPECTRA FILE TIME SHIFT OF IMPOSED SPECTRA FILE

1.77 FILE WITH COORDINATES OF SPECTRA TO WRITE

Type: String Dimension: 0

Mnemo WAC_FILES(LEOWXY)

DEFAULT VALUE:

French keyword: FICHIER DES COORDONNEES DE SPECTRES A ECRIRE

Text file following the DAT format of Salome with the coordinates of the spectra to output.

1.78 FILE WITH DEFINITION OF POLYGONS

Type: String Dimension: 0

Mnemo WAC_FILES(WACZON)

DEFAULT VALUE: '

French keyword: FICHIER DE DEFINITION DES POLYGONES

Text file containing a list of polygons.

Related keywords

1.79 FINITE ELEMENT ASSEMBLY

Type: Integer Dimension: 0

Mnemo MODASS

DEFAULT VALUE:

French keyword: ASSEMBLAGE EN ELEMENTS FINIS

1: normal 2: with I8 integers

1.80 FORMATTED CURRENTS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACCOF)

DEFAULT VALUE: '

French keyword: FICHIER DES COURANTS FORMATE

Name of the current data file (if formatted).

Related keywords

CONSIDERATION OF A STATIONARY CURRENT

CONSIDERATION OF TIDE BINARY CURRENTS FILE CURRENTS FILE FORMAT

1.81 FORMATTED FILE 1

Type: String Dimension: 0

Mnemo WAC_FILES(WACFO1)

DEFAULT VALUE:

French keyword : FICHIER FORMATE 1 Formatted data file made available to the user.

1.82 FORMATTED TIDAL WATER LEVEL FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACMAF)

DEFAULT VALUE: '

French keyword: FICHIER DU NIVEAU DE LA MAREE FORMATE

Name of the tidal data file (if formatted).

Related keywords

CONSIDERATION OF TIDE

BINARY TIDAL WATER LEVEL FILE TIDAL WATER LEVEL FILE FORMAT

TIDE REFRESHING PERIOD

1.83 FORMATTED WINDS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACVEF)

DEFAULT VALUE: '

French keyword: FICHIER DES VENTS FORMATE

Name of wind data file (if formatted).

Related keywords

CONSIDERATION OF WIND

BINARY WINDS FILE WINDS FILE FORMAT

1.84 FORTRAN FILE

Type: String Dimension: 1

Mnemo NOMFOR

DEFAULT VALUE: '

French keyword: FICHIER FORTRAN Name of FORTRAN file to be submitted.

1.85 FREQUENTIAL RATIO

Type: Real
Dimension: 1
Mnemo RAISF
DEFAULT VALUE: 1.1

French keyword: RAISON FREQUENTIELLE

Define the ratio between 2 successive discretised frequencies

Related keywords

MINIMAL FREQUENCY NUMBER OF FREQUENCIES SPECTRUM TAIL FACTOR

1.86 GEOMETRY FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACGEO)

DEFAULT VALUE: '

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh of the computation to be made.

Related keywords

GEOMETRY FILE FORMAT

1.87 GEOMETRY FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACGEO)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Geometry file format. Possible values are:

- SERAFIN: classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.88 GLOBAL RESULT FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACRBI)

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS GLOBAUX

Name of the file in which the table F (density spectrum) is written at the end of the computation in order to realise a next computation.

Related keywords

GLOBAL RESULT FILE FORMAT

1.89 GLOBAL RESULT FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACRBI)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS GLOBAUX

Previous computation results file format. Possible values are:

- SERAFIN: classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.90 GODA COEFFICIENT FOR ANGULAR SPEADING

Type: Real
Dimension: 1
Mnemo SMAX
DEFAULT VALUE: 25.

French keyword: COEFFICIENT DE GODA POUR LOI DE REPARTITION ANGULAIR Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field. This coefficient is in the formula of Goda formulation. It should be 10Wind

waves, 25 swell short decay, 75 long decay but other values are accepted.

Related keywords

INITIAL ANGULAR DISTRIBUTION FUNCTION

1.91 IMPLICITATION COEFFICIENT FOR SOURCE TERMS

Type: Real Dimension: 1

Mnemo CIMPLI DEFAULT VALUE: 0.5

French keyword: COEFFICIENT IMPLICITATION POUR TERMES SOURCES Implicitation coefficient for the source terms integration, included between 0 et 1.

• CIMPLI=0. : explicit

• CIMPLI=0.5 : semi-implicit

• CIMPLI=1. : implicit.

Related keywords

CONSIDERATION OF SOURCE TERMS

1.92 IMPOSED SPECTRA FILE

Type: String Dimension: 0

Mnemo WAC_FILES(IMPSPE)

DEFAULT VALUE:

French keyword: FICHIER DES SPECTRES IMPOSES Name of the file containing the mesh with the imposed spectra.

Related keywords

IMPOSED SPECTRA FILE FORMAT TIME UNIT OF IMPOSED SPECTRA FILE TIME SHIFT OF IMPOSED SPECTRA FILE FILE WITH COORDINATES OF SPECTRA TO IMPOSE

1.93 IMPOSED SPECTRA FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(IMPSPE)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES SPECTRES IMPOSES

Imposed spectra file format. Possible values are:

• SERAFIN : classical single precision format in Telemac;

• SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

IMPOSED SPECTRA FILE TIME UNIT OF IMPOSED SPECTRA FILE TIME SHIFT OF IMPOSED SPECTRA FILE FILE WITH COORDINATES OF SPECTRA TO IMPOSE

1.94 INFINITE DEPTH

Type: Logical

Dimension: 1

Mnemo PROINF DEFAULT VALUE: .FALSE.

French keyword: PROFONDEUR INFINIE

Indicates whether an infinite depth is assumed. If so, bottom friction is inhibited.

1.95 INITIAL ANGULAR DISTRIBUTION FUNCTION

Type: Integer Dimension: 0

Mnemo FRABI

DEFAULT VALUE: 1

French keyword: FONCTION DE REPARTITION ANGULAIRE INITIALE

Is part of the set of constants used for computing the initial directional spectrum. Allow the computation of the angular distribution function

- 1 : $cos^{2s}(T-T0)$; with T in [T0-pi/2;T0+pi/2]
- 2: $exp(-0.5((T-T0)/s)^2)$; with T in [T0-pi/2;T0+pi/2]
- $3 : cos^{2s}((T-T0)/2)$ (of type Mitsuyasu)
- 4 : Mitsuyasu with $s = (F/fp)^5$ or $s = (F/fp)^{-2.5}$

where *s* is the boundary directionnal spread (SPRED1 or SPRED2)

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.96 INITIAL DIRECTIONAL SPREAD 1

Type: Real Dimension: 1

Mnemo SPRED1

DEFAULT VALUE: 2.

French keyword: ETALEMENT DIRECTIONNEL 1 INITIAL

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.97 INITIAL DIRECTIONAL SPREAD 2

Type: Real Dimension: 1

Mnemo SPRED2

DEFAULT VALUE: 2.

French keyword: ETALEMENT DIRECTIONNEL 2 INITIAL

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.98 INITIAL MAIN DIRECTION 1

Type: Real
Dimension: 1
Mnemo TETA1
DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 1 INITIALE

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.99 INITIAL MAIN DIRECTION 2

Type: Real
Dimension: 1
Mnemo TETA2
DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 2 INITIALE

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.100 INITIAL MAXIMUM PEAK FREQUENCY

Type: Real Dimension: 1

Mnemo FREMAX

DEFAULT VALUE: 0.2

French keyword: FREQUENCE DE PIC MAXIMALE INITIALE

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.101 INITIAL MEAN FETCH VALUE

Type: Real Dimension: 1

Mnemo FETCH DEFAULT VALUE: 30000.

French keyword: VALEUR MOYENNE DU FETCH INITIAL

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.102 INITIAL PEAK FACTOR

Type: Real Dimension: 1

Mnemo GAMMA

DEFAULT VALUE: 3.3

French keyword: FACTEUR DE PIC INITIAL

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.103 INITIAL PEAK FREQUENCY

Type: Real
Dimension: 1
Mnemo FPIC
DEFAULT VALUE: 0.067

French keyword: FREQUENCE DE PIC INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.104 INITIAL PHILLIPS CONSTANT

Type: Real
Dimension: 1
Mnemo ALPHIL

Mnemo ALPHII DEFAULT VALUE: 0.0081

French keyword: CONSTANTE DE PHILLIPS INITIALE

Is part of the set of constants used for computing the initiale directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.105 INITIAL SIGNIFICANT WAVE HEIGHT

Type: Real
Dimension: 1
Mnemo HM0I
DEFAULT VALUE: 1.

French keyword: HAUTEUR SIGNIFICATIVE INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.106 INITIAL STILL WATER LEVEL

Type: Real Dimension: 1

Mnemo ZREPOS

DEFAULT VALUE: 0.

French keyword: COTE INITIALE DU PLAN D'EAU AU REPOS

Parameter used in the computation of the initial water DEPTH: DEPTH=ZREPOS-ZF.

1.107 INITIAL TIME SET TO ZERO

Type: Logical

Dimension: 1

Mnemo RAZTIM DEFAULT VALUE: NO

French keyword: REMISE A ZERO DU TEMPS

Initial time set to zero in case of restart

1.108 INITIAL VALUE OF SIGMA-A FOR SPECTRUM

Type: Real Dimension: 1

Mnemo SIGMAA DEFAULT VALUE: 0.07

French keyword: VALEUR INITIALE DE SIGMA-A POUR SPECTRE

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.109 INITIAL VALUE OF SIGMA-B FOR SPECTRUM

Type: Real Dimension: 1

Mnemo SIGMAB
DEFAULT VALUE: 0.09

French keyword: VALEUR INITIALE DE SIGMA-B POUR SPECTRE

Is part of the set of constants used for computing the initial directional spectrum as a function

of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.110 INITIAL WEIGHTING FACTOR FOR ADF

Type: Real Dimension: 1

Mnemo XLAMDA

DEFAULT VALUE: 1.

French keyword: FACTEUR DE PONDERATION POUR FRA INITIALE

Is part of the set of constants used for computing the initial directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.111 LIMIT SPECTRUM MODIFIED BY USER

Type: Logical
Dimension: 0
Mnemo SPEULI
DEFAULT VALUE: .FALSE.

French keyword: SPECTRE AUX LIMITES MODIFIE PAR L'UTILISATEUR

Indicates whether the user wants to modify the boundary spectrum. He should then retrieve the limwac.f subroutine, if the spectrum is frequency discretized, or the spelim.f subroutine, otherwise.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.112 LINEAR WAVE GROWTH

Type: Integer
Dimension: 0
Mnemo LVENT
DEFAULT VALUE: 0

French keyword: CROISSANCE LINEAIRE DES VAGUES

Possibility to add a linear wave growth term to the wind generation source term. If its value is 0, the linear wave growth is ignored; if its value is 1, it is added to the source term, as in the formula of Cavaleri and Malanotte-Rizzoli (1981).

Related keywords

CONSIDERATION OF A WIND

WINDS FILE

1.113 MAXIMUM VALUE OF THE RATIO HMO ON D

Type: Real Dimension: 1

Mnemo COEFHS

DEFAULT VALUE: 1.

French keyword: VALEUR MAXIMALE DU RAPPORT HMO SUR D

At the beginning of the integration of the source terms, the wave height is lopped in order to satisfy the specified criterium.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

1.114 MINIMAL FREQUENCY

Type: Real Dimension: 1 Mnemo F1

DEFAULT VALUE: MANDATORY

French keyword: FREQUENCE MINIMALE

Define the minimal frequency in Hz. The discretised frequencies are computed from the FRE-QUENTIAL RATIO r and the NUMBER OF FREQUENCIES NF by the relation $f = f_0 * r^{k-1}$ k=1,NF.

Related keywords

FREQUENTIAL RATIO

NUMBER OF FREQUENCIES SPECTRUM TAIL FACTOR

1.115 MINIMUM WATER DEPTH

Type: Real Dimension: 1

Mnemo PROMIN

DEFAULT VALUE: 0.1

French keyword: PROFONDEUR D'EAU MINIMALE

Defines the minimum water depth below which bottom elevations are regarded as dry.

1.116 NAMES OF VARIABLES

Type: String Dimension: 5

Mnemo NAMEU, NAMEV, NAMEWY, NAMEWY, NAMEH

DEFAULT VALUE: 'VELOCITY U M/S;

VELOCITY V M/S; WIND ALONG X M/S; WIND ALONG Y M/S; WATER DEPTH M'

French keyword: NOMS DES VARIABLES Names of variables in SERAFIN format files

• 1: Velocity U

- 2: Velocity V
- 3: Wind velocity along X
- 4: Wind velocity along Y
- 5: Depth

1.117 NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

Type: Integer
Dimension: 0
Mnemo STRIF
DEFAULT VALUE: 0

French keyword: TRANSFERTS NON LINEAIRES INTER-FREQUENCES

Selection of the modelling type of the non-linear transfert source term. If its value is 0, the non-linear transfers are ignored; if its value is 1, they are integrated in accordance with the formula of WAM cycle 4 (DIA method), if its value is 2, the MDIA (Multiple DIA) method is used to calculate the non linear transfer term, if its value is 3, the non linear transfer term is calculated with the exact GQM method.

Related keywords

STANDARD CONFIGURATION PARAMETER SETTING FOR INTEGRATION ON OMEGA1

SETTING FOR INTEGRATION ON THETA1

SETTING FOR INTEGRATION ON OMEGA2

THRESHOLD0 FOR CONFIGURATIONS ELIMINATION

THRESHOLD1 FOR CONFIGURATIONS ELIMINATION

THRESHOLD2 FOR CONFIGURATIONS ELIMINATION

1.118 NUMBER OF BREAKING TIME STEPS

Type: Integer Dimension: 1

Mnemo NDTBRK

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-PAS DE TEMPS POUR LE DEFERLEMENT

Number of time steps for the breaking source term. These time steps are in a geometric progression

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

COEFFICIENT FOR THE BREAKING TIME STEPS

1.119 NUMBER OF DIRECTIONS

Type: Integer
Dimension: 1

Mnemo NDIRE DEFAULT VALUE: 12

French keyword: NOMBRE DE DIRECTIONS

Defines the number of wave propagation directions. The propagation directions are evenly distributed from 0 to 360 degrees.

1.120 NUMBER OF FIRST ITERATION FOR GRAPHICS PRINTOUTS

Type: Integer Dimension:

Mnemo

GRADEB DEFAULT VALUE:

NUMERO DE LA PREMIERE ITERATION POUR LES SORTIES GRAPHIOUES French keyword:

Determines the number of iterations over mean angular frequency from which the results are first written into the 2D RESULTS FILE and the PUNCTUAL RESULTS FILE.

Related keywords

PERIOD FOR GRAPHIC PRINTOUTS

VARIABLES FOR 2D GRAPHIC PRINTOUTS

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

2D RESULTS FILE

PUNCTUAL RESULTS FILE

NUMBER OF FREQUENCIES 1.121

Type: Integer Dimension: 1 Mnemo NF DEFAULT VALUE: 15

French keyword: NOMBRE DE FREQUENCES

Defines the number of wave propagation frequencies. The propagation frequencies are geometrically distributed as a fonction of the MINIMAL FREQUENCY OF THE COMPUTATION and the FREQUENTIAL REASON

Related keywords

FREQUENTIAL RATIO SPECTRUM TAIL FACTOR

1.122 NUMBER OF ITERATIONS FOR THE SOURCE TERMS

Type: Integer Dimension: 1 Mnemo **NSITS** DEFAULT VALUE:

French keyword: NOMBRE DE SOUS-ITERATIONS POUR LES TERMES SOURCES Number of sub-iterations for the computation of the source terms. The time step considered in the integration of the source terms is the ratio between the TIME STEP and the NUMBER OF SUB-ITERATIONS FOR THE SOURCE TERMS

Related keywords

TIME STEP

1.123 NUMBER OF PLANTS M2

Type: Real Dimension: 1

Mnemo NUMPLAM2

DEFAULT VALUE: 20.

French keyword: NOMBRE DE PLANTES M2 Number of plants per m2 for the vegetation source term

Related keywords

VEGETATION TAKEN INTO ACCOUNT VEGETATION DISSIPATION CO-EFFICIENT STEM DIAMETER BULK DRAG COEFFICIENT VEGETATION

HEIGHT

1.124 NUMBER OF PRIVATE ARRAYS

Type: Integer
Dimension: 1
Mnemo NPRIV
DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of private arrays used by the user

1.125 NUMBER OF SURFACE ROLLER TIME STEPS

Type: Integer Dimension: 1

Mnemo SUBSTEP_SURFROL

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-PAS DE TEMPS POUR LE ROULEAU

Number of time steps for surface rollers.

1.126 NUMBER OF TIME STEP

Type: Integer
Dimension: 1
Mnemo NIT

DEFAULT VALUE: MANDATORY

French keyword: NOMBRE DE PAS DE TEMPS

Define the number of time step.

Related keywords

TIME STEP

1.127 OPTION FOR DIAGNOSTIC TAIL

Type: Integer
Dimension: 0
Mnemo DIAGHF

DEFAULT VALUE: 1

French keyword: OPTION POUR LA QUEUE DIAGNOSTIQUE

Option to treat the spectrum diagnotic tail.

- 0 : No diagnostic tail
- 1 : A decrease in f^{-TAILF} is imposed beyond max(4fPM;2.5fmoy)

SPECTRUM TAIL FACTOR NUMBER OF FREQUENCIES FREQUENTIAL RATIO

1.128 OPTION FOR SECOND DERIVATIVES

Type: Integer

Dimension: 0

OPTDER Mnemo

DEFAULT VALUE:

OPTION POUR LES DERIVEES SECONDES French keyword:

1: Freemesh method 2: two simple derivatives

1.129 ORDINATES OF SPECTRUM PRINTOUT POINTS

Type: Real Dimension: Mnemo YLEO

DEFAULT VALUE: MANDATORY

ORDONNEES DES POINTS DE SORTIE DU SPECTRE French keyword:

Array providing the ordinates of the Seraphin spectrum printout points with a maximum dimension of 99. The spectrum printout points are the closest 2D points to the specified co-ordinates

Related keywords

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

PUNCTUAL RESULT FILE

1.130 ORIGIN COORDINATES

Type: Integer

Dimension:

I_ORIG,J_ORIG Mnemo

DEFAULT VALUE: 0:0

COORDONNEES DE L'ORIGINE French keyword:

Value in metres, used to avoid large real numbers, added in Selafin format, but so far no other

treatment

1.131 PARALLEL PROCESSORS

Type: Integer Dimension: 1

Mnemo **NCSIZE**

DEFAULT VALUE:

French keyword: PROCESSEURS PARALLELES

NUMBER OF PROCESSORS FOR PARALLEL PROCESSING 0: 1 machine, compiling

without parallel library 1: 1 machine, compiling with a parallel library 2: 2 processors or machines in parallel etc....

1.132 PARTITIONING TOOL

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR PARTITIONING TOOL SELECTION

• 1: METIS

• 2: SCOTCH

• 3: PARMETIS

• 4: PTSCOTCH

1.133 PERIOD FOR GRAPHIC PRINTOUTS

Type: Integer Dimension: 1

Mnemo GRAPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES GRAPHIQUES

Determines the printing period, in number of time step of the VARIABLES FOR 2D GRAPHIC PRINTOUTS in the 2D RESULTS FILE and the PUNCTUAL RESULTS FILE.

Related keywords

VARIABLES FOR 2D GRAPHIC PRINTOUTS

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

2D RESULTS FILE

PUNCTUAL RESULTS FILE

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.134 PERIOD FOR LISTING PRINTOUTS

Type: Integer

Dimension: 1

Mnemo LISPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES LISTING

Determines the period, in number of time step of the software messages in the listing file.

1.135 POROUS MEDIA

Type: Logical

Dimension: 1

Mnemo POROUS
DEFAULT VALUE: NO

DEFROEF VILLEE: NO

French keyword: MILIEU POREUX

If YES, subroutine QPOROS will be called, it contains data on POROUS MEDIA that are case-specific and must thus be modified

1.136 PREVIOUS COMPUTATION FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACPRE)

DEFAULT VALUE:

French keyword: FICHIER DU CALCUL PRECEDENT

Name of the file containing the global results of a previous computation realised with the same mesh. This file gives the initial conditions for a next computation.

Related keywords

BINARY OF THE PREVIOUS COMPUTATION FILE

1.137 PREVIOUS COMPUTATION FILE FORMAT

Type: String Dimension: 1

Mnemo WAC FILES(WACPRE)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU CALCUL PRECEDENT

Previous computation results file format. Possible values are only:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.138 PUNCTUAL RESULTS FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACLEO)

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS PONCTUELS Name of the file into which the punctual spectra will be written.

Related keywords

SPECTRUM FILE FORMAT

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

PERIOD FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.139 RANK OF THE WATER LEVEL DATA IN THE TELEMAC FILE

Type: Integer

Dimension:

Mnemo IDHMA

DEFAULT VALUE: 4

French keyword: RANG DU NIVEAU DE LA MAREE DANS LE FICHIER TELEMAC

Rank of the water level data in the TELEMAC file

Related keywords

CONSIDERATION OF TIDE

BINARY TIDAL WATER LEVEL FILE FORMATTED TIDAL WATER LEVEL FILE

TIDE REFRESHING PERIOD

1.140 RECOVERY OF TELEMAC DATA ITEM

Type: Logical Dimension: 0

Mnemo DONTEL DEFAULT VALUE: .FALSE.

French keyword: RECUPERATION DE DONNEE TELEMAC

Indicates whether TELEMAC data are recovered in LECDON. If so, a proper-formatted CUR-RENTS FILE should be used and the rank of the respective variable should be entered into the TELEMAC file.

Related keywords

BINARY CURRENTS FILE

FORMATTED CURRENTS FILE

CURRENTS FILE TYPE

RANK OF THE TELEMAC DATA ITEM TO BE RECOVERED

TIME INCREMENT NUMBER IN TELEMAC FILE

1.141 REFERENCE FILE

Type: String Dimension: 0

Mnemo WAC_FILES(WACREF)

DEFAULT VALUE: '

French keyword: FICHIER DE REFERENCE

Name of validation data file

Related keywords

VALIDATION

1.142 REFERENCE FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACREF)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE Previous computation results file format. Possible values are:

- SERAFIN: classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.143 REFLECTION

Type: Logical

Dimension: 1

Mnemo REFLECTION

DEFAULT VALUE: NO

French keyword: REFLEXION

If YES, subroutine REFLECT will be called and the reflection boundary condition will be calculated

Related keywords

REFLECTION COEFFICIENT

1.144 REFLECTION COEFFICIENT

Type: Real Dimension: 1

Mnemo COEREF

DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE REFLEXION Reflection coefficient applied when reflection is active

Related keywords

REFLECTION

1.145 SATURATION THRESHOLD FOR THE DISSIPATION

Type: Real Dimension: 1

Mnemo CMOUT4 DEFAULT VALUE: 0.00175

French keyword: SEUIL DE SATURATION POUR LA DISSIPATION

White capping dissipation coefficient of van der Westhuysen (2007): Br (saturation threshold).

WHITE CAPPING DISSIPATION

WESTHUYSEN DISSIPATION COEFFICIENT

WESTHUYSEN WHITE CAPPING DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1.146 SETTING FOR INTEGRATION ON OMEGA1

Type: Integer

Dimension: 0

Mnemo IQ_OM1

DEFAULT VALUE: 3

French keyword: REGLAGE POUR INTEGRATION SUR OMEGA1

Choice of setting giving the number of integration points on omega1 when the non linear trans-

fer term is calculated with the exact GQM method: rough 3; medium 1; fine 2

1.147 SETTING FOR INTEGRATION ON OMEGA2

Type: Integer Dimension: 0

Mnemo NQ_OM2

DEFAULT VALUE: 6

French keyword: REGLAGE POUR INTEGRATION SUR OMEGA2

Number of integration points on omega2 when the non linear transfer term is calculated with the exact GQM method: rough 6; medium 8; fine 12

1.148 SETTING FOR INTEGRATION ON THETA 1

Type: Integer
Dimension: 0
Mnemo NQ_TE1

DEFAULT VALUE: 3

French keyword: REGLAGE POUR INTEGRATION SUR THETA1

Choice of setting giving the number of integration points on theta1 (number of integration points= $2*NQ_TE1$) when the non linear transfer term is calculated with the exact GQM method:

rough 3; medium 4; fine 8

1.149 SHIFT GROWING CURVE DUE TO WIND

Type: Real
Dimension: 1
Mnemo DEC.

Mnemo DECAL DEFAULT VALUE: 0.011

French keyword: DECALAGE COURBE DE CROISSANCE DUE AU VENT

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.150 SPECTRUM ENERGY THRESHOLD

Type: Real Dimension: 1

Mnemo E2FMIN DEFAULT VALUE: 1.E-30

French keyword: SEUIL D'ENERGIE CONSIDERE POUR LE SPECTRE

For initial conditions, the energy on a frequency-direction component lower to this threshold is taken to 0. Useful for comparisons with WAM cycle 4.

1.151 SPECTRUM FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACLEO)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE SPECTRE

Spectrum results file format. Possible values are:

- SERAFIN: classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.152 SPECTRUM TAIL FACTOR

Type: Real
Dimension: 1
Mnemo TAILF
DEFAULT VALUE: 5.

French keyword: FACTEUR DE QUEUE DU SPECTRE decay order of the hight frequencies (Beyond cut off frequency)

Related keywords

NUMBER OF FREQUENCIES FREQUENTIAL RATIO

1.153 SPHERICAL COORDINATES

Type: Logical
Dimension: 0
Mnemo SPHE
DEFAULT VALUE: .FALSE.

French keyword: COORDONNEES SPHERIQUES

Indicates whether the coordinates are spherical (unit= degree) or cartesian (unit = meter).

1.154 STANDARD CONFIGURATION PARAMETER

Type: Real Dimension: 1

Mnemo XLAMD DEFAULT VALUE: 0.25

French keyword: PARAMETRE DE LA CONFIGURATION STANDARD

Parameter defining the standard configuration for the quadruplet interactions in the DIA method.

Related keywords

NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.155 STARTING TIME STEP FOR DIFFRACTION

Type: Integer

Dimension: 1

Mnemo NPTDIF

DEFAULT VALUE: 1

French keyword: PAS DE TEMPS DEBUT DIFFRACTION

Number of the time step from which the diffraction is taken into account until the end of the simulation.

Related keywords

DIFFRACTION

VARIANCE THRESHOLD FOR DIFFRACTION

DIFFRACTION FILTER

1.156 STATIONARY WIND

Type: Logical

Dimension: 0

Mnemo VENSTA DEFAULT VALUE: .FALSE.

French keyword: VENT STATIONNAIRE

Indicates whether the wind evolves temporally and requires to be updated

Related keywords

CONSIDERATION OF A WIND

1.157 STEERING FILE

Type: String Dimension: 0

Mnemo WACCAS

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation to be made.

1.158 STEM DIAMETER

Type: Real Dimension: 1

Mnemo STEMDIAM

DEFAULT VALUE: 0.25

French keyword: DIAMETRE DES TIGES stem diameter in the vegetation source term

VEGETATION TAKEN INTO ACCOUNT VEGETATION DISSIPATION COEFFICIENT NUMBER OF PLANTS M2 BULK DRAG COEFFICIENT VEGETATION HEIGHT

1.159 SURFACE ROLLERS

Type: Logical

Dimension: 1

Mnemo SURF_ROL DEFAULT VALUE: .FALSE.

French keyword: ROLLERS SURFACE

Switches surface rollers on

1.160 TAKING INTO ACCOUNT SOURCE TERMS ON IMPOSED BOUNDARIES

Type: Logical

Dimension: 0

Mnemo SOURCE_ON_BND

DEFAULT VALUE: .TRUE.

French keyword: PRISE EN COMPTE DES TERMES SOURCES SUR LES FRONTIERES IMPOSEES

Indicates whether source terms are taken into account on imposed boundaries.

1.161 THRESHOLDO FOR CONFIGURATIONS ELIMINATION

Type: Real
Dimension: 1
Mnemo SEUIL
DEFAULT VALUE: 0.00

French keyword: SEUILO ELIMINATION DE CONFIGURATIONS

Choice of threshold for configurations elimination when the non linear transfer term is calculated with the exact GQM method

Related keywords

THRESHOLD1 FOR CONFIGURATIONS ELIMINATION THRESHOLD2 FOR CONFIGURATIONS ELIMINATION NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.162 THRESHOLD1 FOR CONFIGURATIONS ELIMINATION

Type: Real
Dimension: 1
Mnemo SEUIL1
DEFAULT VALUE: 10000000000.0

French keyword: SEUIL1 ELIMINATION DE CONFIGURATIONS

Choice of threshold1 for configurations elimination when the non linear transfer term is calcu-

lated with the exact GQM method

THRESHOLDO FOR CONFIGURATIONS ELIMINATION THRESHOLD2 FOR CONFIGURATIONS ELIMINATION NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.163 THRESHOLD2 FOR CONFIGURATIONS ELIMINATION

Type: Real Dimension: 1
Mnemo SEU

Mnemo SEUIL2 DEFAULT VALUE: 0.15

French keyword: SEUIL2 ELIMINATION DE CONFIGURATIONS

Choice of threshold2 for configurations elimination when the non linear transfer term is calculated with the exact GQM method: rough 0.15; medium 0.01; fine 0.001

Related keywords

THRESHOLDO FOR CONFIGURATIONS ELIMINATION THRESHOLDO FOR CONFIGURATIONS ELIMINATION NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.164 TIDAL WATER LEVEL FILE FORMAT

Type: Integer
Dimension: 0
Mnemo INDIM

DEFAULT VALUE: 3

French keyword: FORMAT DU FICHIER DU NIVEAU DE LA MAREE

Selection of the type of tidal water level file format:

- 3 = selafin, TELEMAC type
- 4 = user format (the maruti.f procedure should then be amended)

Related keywords

CONSIDERATION OF TIDE

BINARY TIDAL WATER LEVEL FILE FORMATTED TIDAL WATER LEVEL FILE

FURMATIED TIDAL WATER LEVEL FILE

TIDE REFRESHING PERIOD

1.165 TIDE REFRESHING PERIOD

Type: Integer
Dimension: 1
Mnemo LAM
DEFAULT VALUE: 1

French keyword: PERIODE D'ACTUALISATION DE LA MAREE

Determines the period in number of iterations to update the tidal currents and the water depth.

CONSIDERATION OF TIDE

BINARY TIDAL WATER LEVEL FILE

FORMATTED TIDAL WATER LEVEL FILE

FORMAT DU FICHIER DU NIVEAU DE LA MAREE

1.166 TIME INCREMENT NUMBER IN TELEMAC FILE

Type: Integer
Dimension: 1
Mnemo NPTT
DEFAULT VALUE: -1

French keyword: NUMERO DU PAS DE TEMPS DU FICHIER TELEMAC

Indicates the number of the time increment in the TELEMAC results file (currents file) corresponding to the desired time for data recovery.

Related keywords

RANK OF THE TELEMAC DATA ITEM TO BE RECOVERED

RECOVERY OF TELEMAC DATA ITEM

1.167 TIME SERIES COORDINATES FILE

Type: String Dimension: 1

Mnemo WAC FILES(WACCOO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE COORDONNEES DES SERIES TEMPORELLES

Name of the file containing points coordinates and periods of time where time series are extracted in the TIME SERIES FILE.

1.168 TIME SERIES FILE

Type: String Dimension: 1

Mnemo WAC FILES(WACHI2)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES SERIES TEMPORELLES

Name of the file into which 2D time series are written at the points defined in the TIME SERIES COORDINATES FILE.

1.169 TIME SERIES FILE FORMAT

Type: String Dimension: 1

Mnemo WAC_FILES(WACHI2)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES SERIES TEMPORELLES

Format of the TIME SERIES FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.170 TIME SHIFT IN CURRENTS FILE

Type: Real Dimension: 1

Mnemo PHASCOB

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DES COURANTS
Will be withdrawn from the time read in the file. The unit is that of the file

1.171 TIME SHIFT IN TIDAL WATER LEVEL FILE

Type: Real Dimension: 1

Mnemo PHASMAB

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DU NIVEAU DE LA MAREE Will be withdrawn from the time read in the file. The unit is that of the file

1.172 TIME SHIFT IN WINDS FILE

Type: Real Dimension: 1

Mnemo PHASVEB

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DES VENTS

Will be withdrawn from the time read in the file. The unit is that of the file

1.173 TIME SHIFT OF IMPOSED SPECTRA FILE

Type: Real Dimension: 0

Mnemo PHASSPE

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DES SPECTRES IMPOSES Will be withdrawn from the time read in the file. The unit is that of the file.

Related keywords

IMPOSED SPECTRA FILE IMPOSED SPECTRA FILE FORMAT TIME UNIT OF IMPOSED SPECTRA FILE FILE WITH COORDINATES OF SPECTRA TO IMPOSE

1.174 TIME STEP

Type: Real
Dimension: 1
Mnemo DT

DEFAULT VALUE: MANDATORY French keyword: PAS DE TEMPS

Define the time step in seconds.

Related keywords

NUMBER OF TIME STEPS

1.175 TIME UNIT IN CURRENTS FILE

Type: Real Dimension: 1

Mnemo UNITCOB

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DES COURANTS

Unit given in seconds, for example 3600. if time is given in hours

1.176 TIME UNIT IN TIDAL WATER LEVEL FILE

Type: Real Dimension: 1

Mnemo UNITMAB

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DU NIVEAU DE LA MAREE

Unit given in seconds, for example 3600. if time is given in hours

1.177 TIME UNIT IN WINDS FILE

Type: Real Dimension: 1

Mnemo UNITVEB

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DES VENTS Unit given in seconds, for example 3600. if time is given in hours

1.178 TIME UNIT OF IMPOSED SPECTRA FILE

Type: Real Dimension: 0

Mnemo UNITSPE

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DES SPECTRES IMPOSES

Unit given in seconds, for example 3600. if time is given in hours.

Related keywords

IMPOSED SPECTRA FILE IMPOSED SPECTRA FILE FORMAT TIME SHIFT OF IMPOSED SPECTRA FILE FILE WITH COORDINATES OF SPECTRA TO IMPOSE

1.179 TITLE

Type: String Dimension: 0

Mnemo TITCAS

DEFAULT VALUE: 'SET A TITLE!!!'

French keyword: TITRE Title of the case being studied.

1.180 TRIAD INTERACTIONS

Type: Integer
Dimension: 0
Mnemo STRIA
DEFAULT VALUE: 0

French keyword: TRANSFERTS ENTRE TRIPLETS DE FREQUENCES

Selection of the triad interaction model:

- 0 : no triad interactions
- 1 : LTA model (Eldeberky, 1996)
- 2 : SPB model (Becq, 1998)

Related keywords

TRIADS 1 (LTA) COEFFICIENT ALPHA

TRIADS 1 (LTA) COEFFICIENT RFMLTA

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY

TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

1.181 TRIADS 1 (LTA) COEFFICIENT ALPHA

Type: Real Dimension: 1

Mnemo ALFLTA DEFAULT VALUE: 0.5

French keyword: TRIADS 1 (LTA) CONSTANTE ALPHA

Coefficient alpha of the LTA model proposed by Eldeberky(1996). If alpha=0, no energy transfers. The energy transfers increase with alpha.

Related keywords

TRIAD INTERACTIONS

TRIADS 1 (LTA) COEFFICIENT RFMLTA

1.182 TRIADS 1 (LTA) COEFFICIENT RFMLTA

Type: Real Dimension: 1

Mnemo RFMLTA

DEFAULT VALUE: 2.5

French keyword: TRIADS 1 (LTA) CONSTANTE RFMLTA

RFMLTA determines the upper frequency on which the energy transfers may occur. The maximal frequency is calculated as the product of the constant RFMLTA by the peak frequency of the spectrum.

Related keywords

TRIAD INTERACTIONS

TRIADS 1 (LTA) COEFFICIENT ALPHA

1.183 TRIADS 2 (SPB) COEFFICIENT K

Type: Real
Dimension: 1
Mnemo KSPB
DEFAULT VALUE: 0.34

French keyword: TRIADS 2 (SPB) CONSTANTE K

coefficient K of the SPB model

Related keywords

TRIAD INTERACTIONS

TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

1.184 TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY

Type: Real Dimension: 1

Mnemo BDISPB

DEFAULT VALUE: 0.

French keyword: TRIADS 2 (SPB) BORNE DIRECTIONNELLE INFERIEURE

Lower directional boundary of the SPB model

Related keywords

TRIAD INTERACTIONS

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

1.185 TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

Type: Real Dimension: 1

Mnemo BDSSPB DEFAULT VALUE: 360.

French keyword: TRIADS 2 (SPB) BORNE DIRECTIONNELLE SUPERIEURE

Upper directional boundary of the SPB model

Related keywords

TRIAD INTERACTIONS

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY

1.186 TRIGONOMETRICAL CONVENTION

Type: Logical
Dimension: 0
Mnemo TRIGO
DEFAULT VALUE: .FALSE.

French keyword: CONVENTION TRIGONOMETRIQUE

True if the wave directions are measured counterclockwise from the positive x-axis, false if they are measured clockwise fron geographic North

1.187 TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

Type: Integer
Dimension: 0
Mnemo LIMSPE

DEFAULT VALUE: 0

French keyword: TYPE DE SPECTRE DIRECTIONNEL AUX LIMITES

If this keyword is set to 0, a non-existent spectrum is speci fied at the inlet boundaries of the domain. If it ranges from 1 to 7, a JONSWAP (or TMA) -typed spectrum is specified at these very points as a function of the initial wind field and/or of the values of the following keywords

Related keywords

BOUNDARY SIGNIFICANT WAVE HEIGHT

BOUNDARY PEAK FREQUENCY

BOUNDARY PEAK FACTOR

BOUNDARY VALUE OF SIGMA-A FOR SPECTRUM

BOUNDARY VALUE OF SIGMA-B FOR SPECTRUM

BOUNDARY PHILLIPS CONSTANT

BOUNDARY MEAN FETCH VALUE

BOUNDARY MAXIMUM PEAK FREQUENCY

BOUNDARY MAIN DIRECTION 1

BOUNDARY DIRECTIONAL SPREAD 1

BOUNDARY MAIN DIRECTION 2

BOUNDARY DIRECTIONAL SPREAD 2

BOUNDARY WEIGHTING FACTOR FOR ADF

1.188 TYPE OF INITIAL DIRECTIONAL SPECTRUM

Type: Integer
Dimension: 0
Mnemo INISPE
DEFAULT VALUE: 0

French keyword: TYPE DE SPECTRE DIRECTIONNEL INITIAL

If this keyword is set to 0, a non-existent spectrum is speci fied at the initial time step. If it ranges from 1 to 7, a JONSWAP (or TMA)-typed spectrum is specified as a function of the initial wind field and/or of the values of the following keywords

1.189 VALIDATION 63

Related keywords

INITIAL SIGNIFICANT WAVE HEIGHT

INITIAL PEAK FREQUENCY

INITIAL PEAK FACTOR

INITIAL VALUE OF SIGMA-A FOR SPECTRUM

INITIAL VALUE OF SIGMA-B FOR SPECTRUM

INITIAL PHILLIPS CONSTANT

INITIAL MEAN FETCH VALUE

INITIAL MAXIMUM PEAK FREQUENCY

INITIAL MAIN DIRECTION 1

INITIAL DIRECTIONAL SPREAD 1

INITIAL MAIN DIRECTION 2

INITIAL DIRECTIONAL SPREAD 2

INITIAL WEIGHTING FACTOR FOR ADF

1.189 VALIDATION

Type: Logical
Dimension: 0
Mnemo VALID
DEFAULT VALUE: .FALSE.
French keyword: VALIDATION
True if the computation is a validation

Related keywords

REFERENCE FILE

1.190 VARIABLES FOR 2D GRAPHIC PRINTOUTS

Type: String Dimension: 1

Mnemo SORT2D DEFAULT VALUE: 'HM0;DMOY'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES 2D

Codes of the variables the user wants to write into the 2D RESULTS FILE. The available variables are as follows

• M0: Total variance

• HM0: Spectral significant wave height

• DMOY: Mean wave direction

• SPD: Mean directional spreading

• ZF : Sea bottom level

• WD: Water depth

• UX : Current along X

• UY : Current along Y

• VX : Wind along X

• VY: Wind along Y

• FX : Driving force along X

• FY : Driving force along Y

• SXX : Radiation stress along xx

• SYY : Radiation stress along yy

• SXY : Radiation stress along xy

• UWB : Bottom celerity

• POW: Wave power (per meter along wave crest)

• FMOY : Mean frequency FMOY

• FM01: Mean frequency FM01

• FM02 : Mean frequency FM02

• FPD: Discrete peak frequency

• FPR5: Peak frequency by Read method of order 5

• FPR8: Peak frequency by Read method of order 8

• US : Surface friction velocity u*

• CD: Surface drag coefficient CD

• Z0: Surface roughness length Z0

• WS : Surface wave stress

• TMOY : Mean period Tmoy

• TM01 : Mean period Tm01

• TM02 : Mean period Tm02

• TPD: Discrete peak period

• TPR5: Peak period by Read method of order 5

• TPR8: Peak period by Read method of order 8

• PRI : Private table

• BETA: Breaking waves rate

• BETAWC : White Capping rate

• SRE: Surface roller Energy

• DBR: Wave breaking dissipation

• DSR: Surface roller dissipation

Related keywords

2D RESULTS FILE

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

PERIOD FOR GRAPHIC PRINTOUTS

1.191 VARIANCE THRESHOLD FOR DIFFRACTION

Type: Real Dimension: 1

Mnemo F2DIFM DEFAULT VALUE: 1.E-12

French keyword: SEUIL DE VARIANCE CONSIDEREE POUR DIFFRACTION Minimum spectral variance threshold taken into account when diffraction is considered

Related keywords

DIFFRACTION

STARTING TIME STEP FOR DIFFRACTION

DIFFRACTION FILTER

1.192 VECTOR LENGTH

Type: Integer
Dimension: 0
Mnemo LVMAC

DEFAULT VALUE: 1

French keyword: LONGUEUR DU VECTEUR

Indicates the vector length of the vectorial machine being used.

1.193 VEGETATION DISSIPATION COEFFICIENT

Type: Real Dimension: 1

Mnemo COEVEG

DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE DISSIPATION PAR VEGETATION

Dissipation coefficient in the vegetation source term

Related keywords

VEGETATION TAKEN INTO ACCOUNT NUMBER OF PLANTS M2 STEM DIAMETER BULK DRAG COEFFICIENT VEGETATION HEIGHT

1.194 VEGETATION HEIGHT

Type: Real
Dimension: 1
Mnemo VEGH
DEFAULT VALUE: 1.

French keyword: HAUTEUR DE VEGETATION

constant used in the vegetation source term

Related keywords

VEGETATION TAKEN INTO ACCOUNT VEGETATION DISSIPATION COEF-FICIENT NUMBER OF PLANTS M2 STEM DIAMETER BULK DRAG COEF-**FICIENT**

1.195 VEGETATION TAKEN INTO ACCOUNT

Type: Logical

Dimension: 1

Mnemo **VEGETATION**

DEFAULT VALUE: NO

French keyword: PRISE EN COMPTE DE LA VEGETATION

If YES, subroutine QVEG will be called, it contains data on vegetation that are case-specific and must thus be modified

1.196 VON KARMAN CONSTANT

Type: Real Dimension: 1

Mnemo **XKAPPA** DEFAULT VALUE: 0.41

French keyword: CONSTANTE DE VON KARMAN

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.197 WATER DENSITY

Type: Real Dimension: Mnemo **ROEAU** DEFAULT VALUE: 1000.

French keyword: DENSITE DE L'EAU

The ratio ROAIR/ROEAU is used in the wind generation source term.

Related keywords

WIND GENERATION

AIR DENSITY

1.198 WAVE GROWTH LIMITER

Type: Integer Dimension: 0 Mnemo **LIMIT**

DEFAULT VALUE:

French keyword: LIMITEUR DE CROISSANCE

Choice of the wave growth limiter.

- If LIMIT=0, no wave growth limiter.
- If LIMIT=1, WAM 4 original limiter.
- If LIMIT=2, Hersbach et Janssen (1999) limiter.
- If LIMIT=3, Laugel BAJ limiter.

CONSIDERATION OF SOURCE TERMS

1.199 WESTHUYSEN DISSIPATION COEFFICIENT

Type: Real Dimension: 1

Mnemo CMOUT3
DEFAULT VALUE: 0.00005

French keyword: COEFFICIENT DE DISSIPATION DE WESTHUYSEN White capping dissipation coefficient of van der Westhuysen (2007): Cdis,break.

Related keywords

WHITE CAPPING DISSIPATION

SATURATION THRESHOLD FOR THE DISSIPATION WESTHUYSEN WHITE CAPPING DISSIPATION WESTHUYSEN WEIGHTING COEFFICIENT

1.200 WESTHUYSEN WEIGHTING COEFFICIENT

Type: Real Dimension: 1

Mnemo CMOUT6

DEFAULT VALUE: 0.0

French keyword: COEFFICIENT DE PONDERATION DE WESTHUYSEN White capping dissipation coefficient of van der Westhuysen (2007): delta.

Related keywords

WHITE CAPPING DISSIPATION

WESTHUYSEN DISSIPATION COEFFICIENT

SATURATION THRESHOLD FOR THE DISSIPATION WESTHUYSEN WHITE CAPPING DISSIPATION

1.201 WESTHUYSEN WHITE CAPPING DISSIPATION

Type: Real Dimension: 1

Mnemo CMOUT5
DEFAULT VALUE: 3.29

French keyword: DISSIPATION PAR MOUTONNEMENT DE WESTHUYSEN White capping dissipation coefficient of van der Westhuysen (2007): Cdis,non-break.

WHITE CAPPING DISSIPATION

WESTHUYSEN DISSIPATION COEFFICIENT

SATURATION THRESHOLD FOR THE DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1,202 WHITE CAPPING DISSIPATION

Type: Integer
Dimension: 0
Mnemo SMOUT

DEFAULT VALUE: 0

French keyword: DISSIPATION PAR MOUTONNEMENT

Selection of the modelling type of the white capping source term. If its value is 0, the white capping dissipation is ignored; if its value is 1, it is integrated in accordance with a formula that is similar to that of WAM cycle 4; if its value is 2, it is integrated in accordance with the formula of van der Westhuysen (2007).

Related keywords

WHITE CAPPING DISSIPATION COEFFICIENT WHITE CAPPING WEIGHTING COEFFICIENT

WESTHUYSEN DISSIPATION COEFFICIENT

SATURATION THRESHOLD FOR THE DISSIPATION

WESTHUYSEN WHITE CAPPING DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1.203 WHITE CAPPING DISSIPATION COEFFICIENT

Type: Real Dimension: 1

Mnemo CMOUT1 DEFAULT VALUE: 4.5

French keyword: COEFFICIENT DE DISSIPATION PAR MOUTONNEMENT

White capping dissipation coefficient.

Related keywords

WHITE CAPPING DISSIPATION

WHITE CAPPING WEIGHTING COEFFICIENT

1.204 WHITE CAPPING WEIGHTING COEFFICIENT

Type: Real Dimension: 1

Mnemo CMOUT2

DEFAULT VALUE: 0.5

French keyword: COEFFICIENT DE PONDERATION POUR LE MOUTONNEMENT

White capping weighting coefficient.

WHITE CAPPING DISSIPATION

WHITE CAPPING DISSIPATION COEFFICIENT

1.205 WIND DRAG COEFFICIENT

Type: Real Dimension: 1

CDRAG Mnemo DEFAULT VALUE: 1.2875E-3

French keyword: COEFFICIENT DE TRAINEE DE VENT

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.206 WIND GENERATION

Type: Integer Dimension: **SVENT** Mnemo

DEFAULT VALUE: 0

APPORTS DUS AU VENT French keyword:

Selection of the type of modelling of the wind generation source term. If its value is 0, the wind generation is ignored; if its value is 1, it is integrated in accordance with the WAM cycle 4 formula; if its value is 2, it is integrated in accordance with the WAM cycle 3 formula; if its value is 3, it is integrated in accordance with the Yan (1987) expression.

Related keywords

CONSIDERATION OF A WIND

WINDS FILE

AIR DENSITY

WATER DENSITY

WIND GENERATION COEFFICIENT

VON KARMAN CONSTANT

CHARNOCK CONSTANT

SHIFT GROWING CURVE DUE TO WIND

WIND MEASUREMENTS LEVEL

WIND DRAG COEFFICIENT

WIND GENERATION COEFFICIENT A

WIND GENERATION COEFFICIENT B

WIND GENERATION COEFFICIENT C

WIND GENERATION COEFFICIENT D

WIND GENERATION COEFFICIENT TM

1.207 WIND GENERATION COEFFICIENT

Type: Real Dimension: 1

Mnemo BETAM DEFAULT VALUE: 1.2

French keyword: COEFFICIENT DE GENERATION PAR LE VENT

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.208 WIND MEASUREMENTS LEVEL

Type: Real Dimension: 1

Mnemo ZVENT DEFAULT VALUE: 10.

French keyword: COTE DE MESURE DES VENTS

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.209 WIND VELOCITY ALONG X

Type: Real Dimension: 1

Mnemo VX_CTE

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT X Wind velocity along X axis, constant and homogeneous (m/s)

Related keywords

CONSIDERATION OF A WIND

STATIONARY WIND

1.210 WIND VELOCITY ALONG Y

Type: Real Dimension: 1

Mnemo VY_CTE

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT Y Wind velocity along Y axis, constant and homogeneous (m/s)

Related keywords

CONSIDERATION OF A WIND

STATIONARY WIND

1.211 WINDS FILE FORMAT

Type: Integer
Dimension: 0
Mnemo INDIV
DEFAULT VALUE: 3

French keyword: FORMAT DU FICHIER DES VENTS

Selection of winds file format type:

- 3 = selafin, TELEMAC type
- 4 = user format (the venuti.f procedure should then be amended)

Related keywords

WINDS FILE TYPE WINDS FILE

1.212 YAN GENERATION COEFFICIENT D

Type: Real Dimension: 1

Mnemo COEFWD DEFAULT VALUE: 0.04

French keyword: COEFFICIENT DE GENERATION DE YAN D

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT E YAN GENERATION COEFFICIENT H YAN GENERATION COEFFICIENT H

1.213 YAN GENERATION COEFFICIENT E

Type: Real Dimension: 1

Mnemo COEFWE DEFAULT VALUE: 0.00552

French keyword: COEFFICIENT DE GENERATION DE YAN E

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT D YAN GENERATION COEFFICIENT H YAN GENERATION COEFFICIENT H

1.214 YAN GENERATION COEFFICIENT F

Type: Real Dimension: 1

Mnemo COEFWF DEFAULT VALUE: 0.000052

French keyword: COEFFICIENT DE GENERATION DE YAN F

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT D YAN GENERATION COEFFICIENT E YAN GENERATION COEFFICIENT H

1.215 YAN GENERATION COEFFICIENT H

Type: Real Dimension: 1

Mnemo COEFWH DEFAULT VALUE: -0.000302

French keyword: COEFFICIENT DE GENERATION DE YAN H

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT D YAN GENERATION COEFFICIENT E YAN GENERATION COEFFICIENT F

2. List of keywords classified according to type

2.1 BOUNDARY CONDITIONS

BOUNDARY ANGULAR DISTRIBUTION FUNCTION

BOUNDARY DIRECTIONAL SPREAD 1

BOUNDARY DIRECTIONAL SPREAD 2

BOUNDARY MAIN DIRECTION 1

BOUNDARY MAIN DIRECTION 2

BOUNDARY MAXIMUM PEAK FREQUENCY

BOUNDARY MEAN FETCH VALUE

BOUNDARY PEAK FACTOR

BOUNDARY PEAK FREQUENCY

BOUNDARY PHILLIPS CONSTANT

BOUNDARY SIGNIFICANT WAVE HEIGHT

BOUNDARY SPECTRUM VALUE OF SIGMA-A

BOUNDARY SPECTRUM VALUE OF SIGMA-B

BOUNDARY WEIGHTING FACTOR FOR ADF

LIMIT SPECTRUM MODIFIED BY USER

REFLECTION

REFLECTION COEFFICIENT

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

2.2 COMPUTATION ENVIRONMENT

2.2.1 INPUT

FILE WITH DEFINITION OF POLYGONS NAMES OF VARIABLES

BOUNDARY CONDITION FILE

FILE WITH COORDINATES OF SPECTRA TO IMPOSE IMPOSED SPECTRA FILE IMPOSED SPECTRA FILE FORMAT TIME SHIFT OF IMPOSED SPECTRA FILE

TIME UNIT OF IMPOSED SPECTRA FILE

CURRENT FILE

BINARY CURRENTS FILE
BINARY CURRENTS FILE FORMAT
CURRENTS FILE FORMAT
FORMATTED CURRENTS FILE
TIME INCREMENT NUMBER IN TELEMAC FILE
TIME SHIFT IN CURRENTS FILE
TIME UNIT IN CURRENTS FILE

DATA

BINARY DATA FILE 1 FORMAT
BINARY FILE 1
BOTTOM SMOOTHINGS
BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORMATTED FILE 1
FORTRAN FILE
GEOMETRY FILE
GEOMETRY FILE FORMAT
PREVIOUS COMPUTATION FILE
PREVIOUS COMPUTATION FILE FORMAT
REFERENCE FILE
REFERENCE FILE FORMAT
TIME SERIES COORDINATES FILE

TIDAL FILE

BINARY TIDAL WATER FILE FORMAT
BINARY TIDAL WATER LEVEL FILE
FORMATTED TIDAL WATER LEVEL FILE
RANK OF THE WATER LEVEL DATA IN THE TELEMAC FILE
TIDAL WATER LEVEL FILE FORMAT
TIME SHIFT IN TIDAL WATER LEVEL FILE
TIME UNIT IN TIDAL WATER LEVEL FILE

WIND FILE

BINARY WINDS FILE BINARY WINDS FILE FORMAT FORMATTED WINDS FILE TIME SHIFT IN WINDS FILE TIME UNIT IN WINDS FILE WINDS FILE FORMAT

2.2.2 OUTPUT

LISTING

PERIOD FOR LISTING PRINTOUTS

RESULTS

1D SPECTRA RESULTS FILE

2D RESULTS FILE

2D RESULTS FILE FORMAT

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

FILE WITH COORDINATES OF SPECTRA TO WRITE

GLOBAL RESULT FILE

GLOBAL RESULT FILE FORMAT

NUMBER OF FIRST ITERATION FOR GRAPHICS PRINTOUTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

PERIOD FOR GRAPHIC PRINTOUTS

PUNCTUAL RESULTS FILE

SPECTRUM FILE FORMAT

TIME SERIES FILE

TIME SERIES FILE FORMAT

VARIABLES FOR 2D GRAPHIC PRINTOUTS

2.3 GENERAL PARAMETERS

2.3.1 METEO

CONSIDERATION OF A STATIONARY CURRENT

CONSIDERATION OF A WIND

CONSIDERATION OF TIDE

STATIONARY WIND

TIDE REFRESHING PERIOD

WIND VELOCITY ALONG X

WIND VELOCITY ALONG Y

2.3.2 MISCELLANEOUS

CHECKING THE MESH

CONSIDERATION OF PROPAGATION

DEBUGGER

FINITE ELEMENT ASSEMBLY

NUMBER OF PRIVATE ARRAYS

PARALLEL PROCESSORS

PARTITIONING TOOL

RECOVERY OF TELEMAC DATA ITEM

SURFACE ROLLERS

TITLE

VALIDATION

2.3.3 OTHER DOMAIN DEFINITIONS

INFINITE DEPTH
MINIMUM WATER DEPTH
ORIGIN COORDINATES
SPHERICAL COORDINATES
TRIGONOMETRICAL CONVENTION

2.3.4 SPECTRAL DISCRETISATION

FREQUENTIAL RATIO
MINIMAL FREQUENCY
NUMBER OF DIRECTIONS
NUMBER OF FREQUENCIES
OPTION FOR DIAGNOSTIC TAIL
SPECTRUM ENERGY THRESHOLD
SPECTRUM TAIL FACTOR

2.3.5 TIME

DATE OF COMPUTATION BEGINNING INITIAL TIME SET TO ZERO NUMBER OF TIME STEP TIME STEP

2.4 INITIAL CONDITIONS

GODA COEFFICIENT FOR ANGULAR SPEADING

INITIAL ANGULAR DISTRIBUTION FUNCTION

INITIAL DIRECTIONAL SPREAD 1

INITIAL DIRECTIONAL SPREAD 2

INITIAL MAIN DIRECTION 1

INITIAL MAIN DIRECTION 2

INITIAL MAXIMUM PEAK FREQUENCY

INITIAL MEAN FETCH VALUE

INITIAL PEAK FACTOR

INITIAL PEAK FREQUENCY

INITIAL PHILLIPS CONSTANT

INITIAL SIGNIFICANT WAVE HEIGHT

INITIAL STILL WATER LEVEL

INITIAL VALUE OF SIGMA-A FOR SPECTRUM

INITIAL VALUE OF SIGMA-B FOR SPECTRUM

INITIAL WEIGHTING FACTOR FOR ADF

TYPE OF INITIAL DIRECTIONAL SPECTRUM

2.5 INTERNAL 77

2.5 INTERNAL

BOUNDARY CONDITION BEFORE TIME STEP
CONCATENATE PARTEL OUTPUT
DICTIONARY
ECRET FOR SMALL HEIGHT
STEERING FILE
VECTOR LENGTH

2.6 SOURCE TERMS

BAJ MODELING
CONSIDERATION OF SOURCE TERMS
TAKING INTO ACCOUNT SOURCE TERMS ON IMPOSED BOUNDARIES

2.6.1 BOTTOM FRICTION

BOTTOM FRICTION COEFFICIENT BOTTOM FRICTION DISSIPATION

2.6.2 BREAKING

COEFFICIENT OF THE TIME SUB-INCREMENTS FOR BREAKING DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2 DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2 DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETAO DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR DEPTH-INDUCED BREAKING DISSIPATION MAXIMUM VALUE OF THE RATIO HMO ON D NUMBER OF BREAKING TIME STEPS

2.6.3 LIMITER

WAVE GROWTH LIMITER

2.6.4 NUMERICAL PARAMETERS

IMPLICITATION COEFFICIENT FOR SOURCE TERMS NUMBER OF ITERATIONS FOR THE SOURCE TERMS

2.6.5 POROUS

POROUS MEDIA

2.6.6 QUADRUPLET INTERACTIONS

NON-LINEAR TRANSFERS BETWEEN FREQUENCIES
SETTING FOR INTEGRATION ON OMEGA1
SETTING FOR INTEGRATION ON OMEGA2
SETTING FOR INTEGRATION ON THETA1
STANDARD CONFIGURATION PARAMETER
THRESHOLDO FOR CONFIGURATIONS ELIMINATION
THRESHOLD1 FOR CONFIGURATIONS ELIMINATION
THRESHOLD2 FOR CONFIGURATIONS ELIMINATION

2.6.7 STRONG CURRENT

DISSIPATION BY STRONG CURRENT
DISSIPATION COEFFICIENT FOR STRONG CURRENT

2.6.8 SURFACE ROLLER

BETA 2 SURFACE ROLLERS
BETA S SURFACE ROLLERS
NUMBER OF SURFACE ROLLER TIME STEPS

2.6.9 TRIAD TRANSFERS

TRIAD INTERACTIONS

TRIADS 1 (LTA) COEFFICIENT ALPHA

TRIADS 1 (LTA) COEFFICIENT RFMLTA

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY

TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

2.6.10 VEGETATION

BULK DRAG COEFFICIENT NUMBER OF PLANTS M2 STEM DIAMETER 2.7 TRANSPORT 79

VEGETATION DISSIPATION COEFFICIENT VEGETATION HEIGHT VEGETATION TAKEN INTO ACCOUNT

2.6.11 WHITE CAPPING

SATURATION THRESHOLD FOR THE DISSIPATION
WESTHUYSEN DISSIPATION COEFFICIENT
WESTHUYSEN WEIGHTING COEFFICIENT
WESTHUYSEN WHITE CAPPING DISSIPATION
WHITE CAPPING DISSIPATION
WHITE CAPPING DISSIPATION COEFFICIENT
WHITE CAPPING WEIGHTING COEFFICIENT

2.6.12 WIND

AIR DENSITY
CHARNOCK CONSTANT
LINEAR WAVE GROWTH
SHIFT GROWING CURVE DUE TO WIND
VON KARMAN CONSTANT
WATER DENSITY
WIND DRAG COEFFICIENT
WIND GENERATION
WIND GENERATION COEFFICIENT
WIND MEASUREMENTS LEVEL
YAN GENERATION COEFFICIENT D
YAN GENERATION COEFFICIENT E
YAN GENERATION COEFFICIENT F
YAN GENERATION COEFFICIENT F

2.7 TRANSPORT

2.7.1 DIFFRACTION PARAMETERS

DIFFRACTION
DIFFRACTION FILTER
OPTION FOR SECOND DERIVATIVES
STARTING TIME STEP FOR DIFFRACTION
VARIANCE THRESHOLD FOR DIFFRACTION

3. Glossary

3.1 English/French glossary

1D SPECTRA RESULTS FILE	FICHIER DES RESULTATS SPECTRES 1D
2D RESULTS FILE	FICHIER DES RESULTATS 2D
2D RESULTS FILE FORMAT	FORMAT DU FICHIER DES RESULTATS 2D
ABSCISSAE OF SPECTRUM PRINTOUT	ABSCISSES DES POINTS DE SORTIE DU
POINTS	SPECTRE
AIR DENSITY	DENSITE DE L'AIR
BAJ MODELING	MODELISATION BAJ
BETA 2 SURFACE ROLLERS	BETA 2 ROLLERS SURFACE
BETA S SURFACE ROLLERS	BETA S ROLLERS SURFACE
BINARY CURRENTS FILE	FICHIER DES COURANTS BINAIRE
BINARY CURRENTS FILE FORMAT	FORMAT DU FICHIER DES COURANTS
	BINAIRE
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES BINAIRE
	1
BINARY FILE 1	FICHIER BINAIRE 1
BINARY TIDAL WATER FILE FORMAT	FORMAT DU FICHIER DE LA MAREE
	BINAIRE
BINARY TIDAL WATER LEVEL FILE	FICHIER DU NIVEAU DE LA MAREE
	BINAIRE
BINARY WINDS FILE	FICHIER DES VENTS BINAIRE
BINARY WINDS FILE FORMAT	FORMAT DU FICHIER DES VENTS BINAIRE
BOTTOM FRICTION COEFFICIENT	COEFFICIENT DE FROTTEMENT SUR LE
	FOND
BOTTOM FRICTION DISSIPATION	DISSIPATION PAR FROTTEMENT SUR LE
	FOND
BOTTOM SMOOTHINGS	LISSAGES DU FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY ANGULAR DISTRIBUTION	FONCTION DE REPARTITION ANGULAIRE
FUNCTION	AUX LIMITES
BOUNDARY CONDITION BEFORE TIME STEP	CONDITION LIMITE AVANT LE PAS DE
	TEMPS

BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX LIMITES
BOUNDARY DIRECTIONAL SPREAD 1	ETALEMENT DIRECTIONNEL 1 AUX LIMITES
BOUNDARY DIRECTIONAL SPREAD 2	ETALEMENT DIRECTIONNEL 2 AUX LIMITES
BOUNDARY MAIN DIRECTION 1	DIRECTION PRINCIPALE 1 AUX LIMITES
BOUNDARY MAIN DIRECTION 2	DIRECTION PRINCIPALE 2 AUX LIMITES
BOUNDARY MAXIMUM PEAK FREQUENCY	FREQUENCE DE PIC MAXIMALE AUX
	LIMITES
BOUNDARY MEAN FETCH VALUE	VALEUR MOYENNE DU FETCH AUX LIMITES
BOUNDARY PEAK FACTOR	FACTEUR DE PIC AUX LIMITES
BOUNDARY PEAK FREQUENCY	FREQUENCE DE PIC AUX LIMITES
BOUNDARY PHILLIPS CONSTANT	CONSTANTE DE PHILLIPS AUX LIMITES
BOUNDARY SIGNIFICANT WAVE HEIGHT	HAUTEUR SIGNIFICATIVE AUX LIMITES
BOUNDARY SPECTRUM VALUE OF SIGMA-A	VALEUR AUX LIMITES DE SIGMA-A POUR
BOOKBIKT STECTROIT VILLE OF STGIM IN	SPECTRE SPECTRE
BOUNDARY SPECTRUM VALUE OF SIGMA-B	VALEUR AUX LIMITES DE SIGMA-B POUR
Total of Delical Village of Ordini B	SPECTRE SPECTRE
BOUNDARY WEIGHTING FACTOR FOR ADF	FACTEUR DE PONDERATION POUR FRA AUX
DOUBLING THEIGHT ON ADI	LIMITES
BULK DRAG COEFFICIENT	COEFFICIENT DE TRAINEE
CHARNOCK CONSTANT	CONSTANTE DE CHARNOCK
CHECKING THE MESH	VERIFICATION DU MAILLAGE
COEFFICIENT OF THE TIME	COEFFICIENT POUR LES SOUS-PAS DE
SUB-INCREMENTS FOR BREAKING	TEMPS POUR LE DEFERLEMENT
CONCATENATE PARTEL OUTPUT	CONCATENATION SORTIE PARTEL
CONSIDERATION OF A STATIONARY	PRISE EN COMPTE D'UN COURANT
CURRENT	STATIONNAIRE
CONSIDERATION OF A WIND	PRISE EN COMPTE DU VENT
CONSIDERATION OF A WIND CONSIDERATION OF PROPAGATION	PRISE EN COMPTE DE LA PROPAGATION
CONSIDERATION OF SOURCE TERMS	PRISE EN COMPTE DES TERMES SOURCES
CONSIDERATION OF TIDE	PRISE EN COMPTE DE LA MAREE
CURRENTS FILE FORMAT	FORMAT DU FICHIER DES COURANTS
DATE OF COMPUTATION BEGINNING	DATE DE DEBUT DU CALCUL
DEBUGGER	DEBUGGER
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CHOIX FREQUENCE
CHARACTERISTIC FREQUENCY	CARACTERISTIQUE
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CONSTANTE ALPHA
COEFFICIENT ALPHA	
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1
COEFFICIENT GAMMA1	
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2
COEFFICIENT GAMMA2	
DEPTH-INDUCED BREAKING 1 (BJ) HM	DEFERLEMENT 1 (BJ) MODE DE CALCUL DE
COMPUTATION METHOD	HM
DEPTH-INDUCED BREAKING 1 (BJ) QB	DEFERLEMENT 1 (BJ) MODE DE CALCUL DE
COMPUTATION METHOD	QB
DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) CHOIX FREQUENCE
CHARACTERISTIC FREQUENCY	CARACTERISTIQUE
	I.

DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) CONSTANTE B
COEFFICIENT B	
DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) CONSTANTE GAMMA
COEFFICIENT GAMMA	
DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) FONCTION DE
WEIGHTING FUNCTION	PONDERATION
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CHOIX FREQUENCE
CHARACTERISTIC FREQUENCY	CARACTERISTIQUE
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CONSTANTE ALPHA
COEFFICIENT ALPHA	
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CONSTANTE GAMMA
COEFFICIENT GAMMA	DESERVENCE 3 (DO) CONCEANES CANNAD
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CONSTANTE GAMMA2
COEFFICIENT GAMMA2	PETER EVENT 3 (PO) EVENCANT FOVETON
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) EXPOSANT FONCTION
EXPONENT WEIGHTING FUNCTION	DE PONDERATION
DEPTH-INDUCED BREAKING 3 (RO) WAVE	DEFERLEMENT 3 (RO) DISTRIBUTION DES
HEIGHT DISTRIBUTION	HAUTEURS DE HOULE
DEPTH-INDUCED BREAKING 4 (IH)	DEFERLEMENT 4 (IH) CHOIX FREQUENCE
CHARACTERISTIC FREQUENCY DEPTH-INDUCED BREAKING 4 (IH)	CARACTERISTIQUE
COEFFICIENT BETAO	DEFERLEMENT 4 (IH) CONSTANTE BETAO
	DEFERLEMENT 4 (IH) CONSTANTE M2STAR
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR	DEFERLEMENT 4 (IH) CONSTANTE M2STAR
DEPTH-INDUCED BREAKING DISSIPATION	DISSIPATION PAR DEFERLEMENT
DICTIONARY	DICTIONNAIRE
DIFFRACTION	DIFFRACTION
DIFFRACTION FILTER	FILTRE POUR DIFFRACTION
DISSIPATION BY STRONG CURRENT	DISSIPATION PAR FORT COURANT
DISSIPATION COEFFICIENT FOR STRONG	COEFFICIENT DE DISSIPATION PAR FORT
CURRENT	COURANT
ECRET FOR SMALL HEIGHT	ECRETAGE POUR HAUTEUR PETITE
FILE WITH COORDINATES OF SPECTRA TO	FICHIER DES COORDONNEES DE SPECTRES
IMPOSE	A IMPOSER
FILE WITH COORDINATES OF SPECTRA TO	FICHIER DES COORDONNEES DE SPECTRES
WRITE	A ECRIRE
FILE WITH DEFINITION OF POLYGONS	FICHIER DE DEFINITION DES POLYGONES
FINITE ELEMENT ASSEMBLY	ASSEMBLAGE EN ELEMENTS FINIS
FORMATTED CURRENTS FILE	FICHIER DES COURANTS FORMATE
FORMATTED FILE 1	FICHIER FORMATE 1
FORMATTED TIDAL WATER LEVEL FILE	FICHIER DU NIVEAU DE LA MAREE
	FORMATE
FORMATTED WINDS FILE	FICHIER DES VENTS FORMATE
FORTRAN FILE	FICHIER FORTRAN
FREQUENTIAL RATIO	RAISON FREQUENTIELLE
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE

GLOBAL RESULT FILE	FICHIER DES RESULTATS GLOBAUX
GLOBAL RESULT FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
GLODAL KLSOLI TILL TOKNAT	GLOBAUX
GODA COEFFICIENT FOR ANGULAR	COEFFICIENT DE GODA POUR LOI DE
SPEADING	REPARTITION ANGULAIR
IMPLICITATION COEFFICIENT FOR SOURCE	COEFFICIENT IMPLICITATION POUR
TERMS	TERMES SOURCES
IMPOSED SPECTRA FILE	FICHIER DES SPECTRES IMPOSES
IMPOSED SPECTRA FILE FORMAT	FORMAT DU FICHIER DES SPECTRES
IMPOSED SPECIKA FILE FORMAT	
THETHITE DEDTH	IMPOSES PROCONDEUR INFINITE
INFINITE DEPTH	PROFONDEUR INFINIE
INITIAL ANGULAR DISTRIBUTION	FONCTION DE REPARTITION ANGULAIRE
FUNCTION	INITIALE
INITIAL DIRECTIONAL SPREAD 1	ETALEMENT DIRECTIONNEL 1 INITIAL
INITIAL DIRECTIONAL SPREAD 2	ETALEMENT DIRECTIONNEL 2 INITIAL
INITIAL MAIN DIRECTION 1	DIRECTION PRINCIPALE 1 INITIALE
INITIAL MAIN DIRECTION 2	DIRECTION PRINCIPALE 2 INITIALE
INITIAL MAXIMUM PEAK FREQUENCY	FREQUENCE DE PIC MAXIMALE INITIALE
INITIAL MEAN FETCH VALUE	VALEUR MOYENNE DU FETCH INITIAL
INITIAL PEAK FACTOR	FACTEUR DE PIC INITIAL
INITIAL PEAK FREQUENCY	FREQUENCE DE PIC INITIALE
INITIAL PHILLIPS CONSTANT	CONSTANTE DE PHILLIPS INITIALE
INITIAL SIGNIFICANT WAVE HEIGHT	HAUTEUR SIGNIFICATIVE INITIALE
INITIAL STILL WATER LEVEL	COTE INITIALE DU PLAN D'EAU AU REPOS
INITIAL TIME SET TO ZERO	REMISE A ZERO DU TEMPS
INITIAL VALUE OF SIGMA-A FOR	VALEUR INITIALE DE SIGMA-A POUR
SPECTRUM	SPECTRE
INITIAL VALUE OF SIGMA-B FOR	VALEUR INITIALE DE SIGMA-B POUR
SPECTRUM	SPECTRE
INITIAL WEIGHTING FACTOR FOR ADF	FACTEUR DE PONDERATION POUR FRA
	INITIALE
LIMIT SPECTRUM MODIFIED BY USER	SPECTRE AUX LIMITES MODIFIE PAR
	L'UTILISATEUR
LINEAR WAVE GROWTH	CROISSANCE LINEAIRE DES VAGUES
MAXIMUM VALUE OF THE RATIO HMO ON D	VALEUR MAXIMALE DU RAPPORT HMO SUR D
MINIMAL FREQUENCY	FREQUENCE MINIMALE
MINIMUM WATER DEPTH	PROFONDEUR D'EAU MINIMALE
NAMES OF VARIABLES	NOMS DES VARIABLES
NON-LINEAR TRANSFERS BETWEEN	TRANSFERTS NON LINEAIRES
FREQUENCIES	INTER-FREQUENCES
NUMBER OF BREAKING TIME STEPS	NOMBRE DE SOUS-PAS DE TEMPS POUR LE
	DEFERLEMENT
NUMBER OF DIRECTIONS	NOMBRE DE DIRECTIONS
NUMBER OF FIRST ITERATION FOR	NUMERO DE LA PREMIERE ITERATION POUR
GRAPHICS PRINTOUTS	LES SORTIES GRAPHIQUES
NUMBER OF FREQUENCIES	NOMBRE DE FREQUENCES

NUMBER OF ITERATIONS FOR THE SOURCE	NOMBRE DE SOUS-ITERATIONS POUR LES
TERMS	TERMES SOURCES
NUMBER OF PLANTS M2	NOMBRE DE PLANTES M2
NUMBER OF PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES
NUMBER OF SURFACE ROLLER TIME STEPS	NOMBRE DE SOUS-PAS DE TEMPS POUR LE ROULEAU
NUMBER OF TIME STEP	NOMBRE DE PAS DE TEMPS
OPTION FOR DIAGNOSTIC TAIL	OPTION POUR LA QUEUE DIAGNOSTIQUE
OPTION FOR SECOND DERIVATIVES	OPTION POUR LES DERIVEES SECONDES
ORDINATES OF SPECTRUM PRINTOUT POINTS	ORDONNEES DES POINTS DE SORTIE DU SPECTRE
ORIGIN COORDINATES	COORDONNEES DE L'ORIGINE
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARTITIONING TOOL	PARTITIONNEUR
PERIOD FOR GRAPHIC PRINTOUTS	PERIODE POUR LES SORTIES GRAPHIQUES
PERIOD FOR LISTING PRINTOUTS	PERIODE POUR LES SORTIES LISTING
POROUS MEDIA	MILIEU POREUX
PREVIOUS COMPUTATION FILE	FICHIER DU CALCUL PRECEDENT
PREVIOUS COMPUTATION FILE FORMAT	FORMAT DU FICHIER DU CALCUL
	PRECEDENT
PUNCTUAL RESULTS FILE	FICHIER DES RESULTATS PONCTUELS
RANK OF THE WATER LEVEL DATA IN THE	RANG DU NIVEAU DE LA MAREE DANS LE
TELEMAC FILE	FICHIER TELEMAC
RECOVERY OF TELEMAC DATA ITEM	RECUPERATION DE DONNEE TELEMAC
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
REFLECTION	REFLEXION
REFLECTION COEFFICIENT	COEFFICIENT DE REFLEXION
SATURATION THRESHOLD FOR THE	SEUIL DE SATURATION POUR LA
DISSIPATION	DISSIPATION
SETTING FOR INTEGRATION ON OMEGA1	REGLAGE POUR INTEGRATION SUR OMEGA1
SETTING FOR INTEGRATION ON OMEGA2	REGLAGE POUR INTEGRATION SUR OMEGA2
SETTING FOR INTEGRATION ON THETA1	REGLAGE POUR INTEGRATION SUR THETA1
SHIFT GROWING CURVE DUE TO WIND	DECALAGE COURBE DE CROISSANCE DUE AU VENT
SPECTRUM ENERGY THRESHOLD	SEUIL D'ENERGIE CONSIDERE POUR LE SPECTRE
SPECTRUM FILE FORMAT	FORMAT DU FICHIER DE SPECTRE
SPECTRUM TAIL FACTOR	FACTEUR DE QUEUE DU SPECTRE
SPHERICAL COORDINATES	COORDONNEES SPHERIQUES
STANDARD CONFIGURATION PARAMETER	PARAMETRE DE LA CONFIGURATION
	STANDARD
STARTING TIME STEP FOR DIFFRACTION	PAS DE TEMPS DEBUT DIFFRACTION
STATIONARY WIND	VENT STATIONNAIRE
STEERING FILE	FICHIER DES PARAMETRES
STEM DIAMETER	DIAMETRE DES TIGES
SURFACE ROLLERS	ROLLERS SURFACE

TAKING INTO ACCOUNT SOURCE TERMS ON	PRISE EN COMPTE DES TERMES SOURCES
IMPOSED BOUNDARIES	SUR LES FRONTIERES IMPOSEES
THRESHOLDO FOR CONFIGURATIONS	SEUILO ELIMINATION DE CONFIGURATIONS
ELIMINATION	SECTED ELIMINATION DE COMPTONICIONE
THRESHOLD1 FOR CONFIGURATIONS	SEUIL1 ELIMINATION DE CONFIGURATIONS
ELIMINATION	SECTED ELIMINATION BE CONFIGURATIONS
THRESHOLD2 FOR CONFIGURATIONS	SEUIL2 ELIMINATION DE CONFIGURATIONS
ELIMINATION	SHOTEL ELITIMITION DE CONTIGUNITIONS
TIDAL WATER LEVEL FILE FORMAT	FORMAT DU FICHIER DU NIVEAU DE LA
	MAREE
TIDE REFRESHING PERIOD	PERIODE D'ACTUALISATION DE LA MAREE
TIME INCREMENT NUMBER IN TELEMAC	NUMERO DU PAS DE TEMPS DU FICHIER
FILE	TELEMAC
TIME SERIES COORDINATES FILE	FICHIER DE COORDONNEES DES SERIES
	TEMPORELLES
TIME SERIES FILE	FICHIER DES SERIES TEMPORELLES
TIME SERIES FILE FORMAT	FORMAT DU FICHIER DES SERIES
	TEMPORELLES
TIME SHIFT IN CURRENTS FILE	DEPHASAGE DU FICHIER DES COURANTS
TIME SHIFT IN TIDAL WATER LEVEL FILE	DEPHASAGE DU FICHIER DU NIVEAU DE LA
	MAREE
TIME SHIFT IN WINDS FILE	DEPHASAGE DU FICHIER DES VENTS
TIME SHIFT OF IMPOSED SPECTRA FILE	DEPHASAGE DU FICHIER DES SPECTRES
	IMPOSES
TIME STEP	PAS DE TEMPS
TIME UNIT IN CURRENTS FILE	UNITE DE TEMPS DU FICHIER DES
	COURANTS
TIME UNIT IN TIDAL WATER LEVEL FILE	UNITE DE TEMPS DU FICHIER DU NIVEAU
	DE LA MAREE
TIME UNIT IN WINDS FILE	UNITE DE TEMPS DU FICHIER DES VENTS
TIME UNIT OF IMPOSED SPECTRA FILE	UNITE DE TEMPS DU FICHIER DES
	SPECTRES IMPOSES
TITLE	TITRE
TRIAD INTERACTIONS	TRANSFERTS ENTRE TRIPLETS DE
	FREQUENCES
TRIADS 1 (LTA) COEFFICIENT ALPHA	TRIADS 1 (LTA) CONSTANTE ALPHA
TRIADS 1 (LTA) COEFFICIENT RFMLTA	TRIADS 1 (LTA) CONSTANTE RFMLTA
TRIADS 2 (SPB) COEFFICIENT K	TRIADS 2 (SPB) CONSTANTE K
TRIADS 2 (SPB) LOWER DIRECTIONAL	TRIADS 2 (SPB) BORNE DIRECTIONNELLE
BOUNDARY	INFERIEURE
TRIADS 2 (SPB) UPPER DIRECTIONAL	TRIADS 2 (SPB) BORNE DIRECTIONNELLE
BOUNDARY	SUPERIEURE
TRIGONOMETRICAL CONVENTION	CONVENTION TRIGONOMETRIQUE
TYPE OF BOUNDARY DIRECTIONAL	TYPE DE SPECTRE DIRECTIONNEL AUX
SPECTRUM	LIMITES
TYPE OF INITIAL DIRECTIONAL SPECTRUM	TYPE DE SPECTRE DIRECTIONNEL INITIAL
VALIDATION	VALIDATION

VARIABLES FOR 2D GRAPHIC PRINTOUTS	VARIABLES POUR LES SORTIES
	GRAPHIQUES 2D
VARIANCE THRESHOLD FOR DIFFRACTION	SEUIL DE VARIANCE CONSIDEREE POUR
	DIFFRACTION
VECTOR LENGTH	LONGUEUR DU VECTEUR
VEGETATION DISSIPATION COEFFICIENT	COEFFICIENT DE DISSIPATION PAR
	VEGETATION
VEGETATION HEIGHT	HAUTEUR DE VEGETATION
VEGETATION TAKEN INTO ACCOUNT	PRISE EN COMPTE DE LA VEGETATION
VON KARMAN CONSTANT	CONSTANTE DE VON KARMAN
WATER DENSITY	DENSITE DE L'EAU
WAVE GROWTH LIMITER	LIMITEUR DE CROISSANCE
WESTHUYSEN DISSIPATION COEFFICIENT	COEFFICIENT DE DISSIPATION DE
	WESTHUYSEN
WESTHUYSEN WEIGHTING COEFFICIENT	COEFFICIENT DE PONDERATION DE
	WESTHUYSEN
WESTHUYSEN WHITE CAPPING DISSIPATION	DISSIPATION PAR MOUTONNEMENT DE
	WESTHUYSEN
WHITE CAPPING DISSIPATION	DISSIPATION PAR MOUTONNEMENT
WHITE CAPPING DISSIPATION	COEFFICIENT DE DISSIPATION PAR
COEFFICIENT	MOUTONNEMENT
WHITE CAPPING WEIGHTING COEFFICIENT	COEFFICIENT DE PONDERATION POUR LE
	MOUTONNEMENT
WIND DRAG COEFFICIENT	COEFFICIENT DE TRAINEE DE VENT
WIND GENERATION	APPORTS DUS AU VENT
WIND GENERATION COEFFICIENT	COEFFICIENT DE GENERATION PAR LE
	VENT
WIND MEASUREMENTS LEVEL	COTE DE MESURE DES VENTS
WIND VELOCITY ALONG X	VITESSE DU VENT SUIVANT X
WIND VELOCITY ALONG Y	VITESSE DU VENT SUIVANT Y
WINDS FILE FORMAT	FORMAT DU FICHIER DES VENTS
YAN GENERATION COEFFICIENT D	COEFFICIENT DE GENERATION DE YAN D
YAN GENERATION COEFFICIENT E	COEFFICIENT DE GENERATION DE YAN E
YAN GENERATION COEFFICIENT F	COEFFICIENT DE GENERATION DE YAN F
YAN GENERATION COEFFICIENT H	COEFFICIENT DE GENERATION DE YAN H

3.2 French/English glossary

ABSCISSES DES POINTS DE SORTIE DU	ABSCISSAE OF SPECTRUM PRINTOUT
SPECTRE	POINTS
APPORTS DUS AU VENT	WIND GENERATION
ASSEMBLAGE EN ELEMENTS FINIS	FINITE ELEMENT ASSEMBLY
BETA 2 ROLLERS SURFACE	BETA 2 SURFACE ROLLERS
BETA S ROLLERS SURFACE	BETA S SURFACE ROLLERS
COEFFICIENT DE DISSIPATION DE	WESTHUYSEN DISSIPATION COEFFICIENT
WESTHUYSEN	
COEFFICIENT DE DISSIPATION PAR FORT	DISSIPATION COEFFICIENT FOR STRONG
COURANT	CURRENT

COEFFICIENT DE DISSIPATION PAR	WHITE CAPPING DISSIPATION
MOUTONNEMENT	COEFFICIENT
COEFFICIENT DE DISSIPATION PAR	VEGETATION DISSIPATION COEFFICIENT
VEGETATION	
COEFFICIENT DE FROTTEMENT SUR LE	BOTTOM FRICTION COEFFICIENT
FOND	
COEFFICIENT DE GENERATION DE YAN D	YAN GENERATION COEFFICIENT D
COEFFICIENT DE GENERATION DE YAN E	YAN GENERATION COEFFICIENT E
COEFFICIENT DE GENERATION DE YAN F	YAN GENERATION COEFFICIENT F
COEFFICIENT DE GENERATION DE YAN H	YAN GENERATION COEFFICIENT H
COEFFICIENT DE GENERATION PAR LE	WIND GENERATION COEFFICIENT
VENT	
COEFFICIENT DE GODA POUR LOI DE	GODA COEFFICIENT FOR ANGULAR
REPARTITION ANGULAIR	SPEADING
COEFFICIENT DE PONDERATION DE	WESTHUYSEN WEIGHTING COEFFICIENT
WESTHUYSEN	
COEFFICIENT DE PONDERATION POUR LE	WHITE CAPPING WEIGHTING COEFFICIENT
MOUTONNEMENT	
COEFFICIENT DE REFLEXION	REFLECTION COEFFICIENT
COEFFICIENT DE TRAINEE	BULK DRAG COEFFICIENT
COEFFICIENT DE TRAINEE DE VENT	WIND DRAG COEFFICIENT
COEFFICIENT IMPLICITATION POUR	IMPLICITATION COEFFICIENT FOR SOURCE
TERMES SOURCES	TERMS
COEFFICIENT POUR LES SOUS-PAS DE	COEFFICIENT OF THE TIME
TEMPS POUR LE DEFERLEMENT	SUB-INCREMENTS FOR BREAKING
CONCATENATION SORTIE PARTEL	CONCATENATE PARTEL OUTPUT
CONDITION LIMITE AVANT LE PAS DE	BOUNDARY CONDITION BEFORE TIME STEP
TEMPS	
CONSTANTE DE CHARNOCK	CHARNOCK CONSTANT
CONSTANTE DE PHILLIPS AUX LIMITES	BOUNDARY PHILLIPS CONSTANT
CONSTANTE DE PHILLIPS INITIALE	INITIAL PHILLIPS CONSTANT
CONSTANTE DE VON KARMAN	VON KARMAN CONSTANT
CONVENTION TRIGONOMETRIQUE	TRIGONOMETRICAL CONVENTION
COORDONNEES DE L'ORIGINE	ORIGIN COORDINATES
COORDONNEES SPHERIQUES	SPHERICAL COORDINATES
COTE DE MESURE DES VENTS	WIND MEASUREMENTS LEVEL
COTE INITIALE DU PLAN D'EAU AU REPOS	INITIAL STILL WATER LEVEL
CROISSANCE LINEAIRE DES VAGUES	LINEAR WAVE GROWTH
DATE DE DEBUT DU CALCUL	DATE OF COMPUTATION BEGINNING
DEBUGGER	DEBUGGER
DECALAGE COURBE DE CROISSANCE DUE AU	SHIFT GROWING CURVE DUE TO WIND
VENT	
DEFERLEMENT 1 (BJ) CHOIX FREQUENCE	DEPTH-INDUCED BREAKING 1 (BJ)
CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 1 (BJ) CONSTANTE ALPHA	DEPTH-INDUCED BREAKING 1 (BJ)
	COEFFICIENT ALPHA

DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1	DEPTH-INDUCED BREAKING 1 (BJ)
	COEFFICIENT GAMMA1
DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2	DEPTH-INDUCED BREAKING 1 (BJ)
	COEFFICIENT GAMMA2
DEFERLEMENT 1 (BJ) MODE DE CALCUL DE	DEPTH-INDUCED BREAKING 1 (BJ) HM
HM	COMPUTATION METHOD
DEFERLEMENT 1 (BJ) MODE DE CALCUL DE	DEPTH-INDUCED BREAKING 1 (BJ) QB
QB	COMPUTATION METHOD
DEFERLEMENT 2 (TG) CHOIX FREQUENCE	DEPTH-INDUCED BREAKING 2 (TG)
CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 2 (TG) CONSTANTE B	DEPTH-INDUCED BREAKING 2 (TG)
	COEFFICIENT B
DEFERLEMENT 2 (TG) CONSTANTE GAMMA	DEPTH-INDUCED BREAKING 2 (TG)
	COEFFICIENT GAMMA
DEFERLEMENT 2 (TG) FONCTION DE	DEPTH-INDUCED BREAKING 2 (TG)
PONDERATION	WEIGHTING FUNCTION
DEFERLEMENT 3 (RO) CHOIX FREQUENCE	DEPTH-INDUCED BREAKING 3 (RO)
CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 3 (RO) CONSTANTE ALPHA	DEPTH-INDUCED BREAKING 3 (RO)
	COEFFICIENT ALPHA
DEFERLEMENT 3 (RO) CONSTANTE GAMMA	DEPTH-INDUCED BREAKING 3 (RO)
	COEFFICIENT GAMMA
DEFERLEMENT 3 (RO) CONSTANTE GAMMA2	DEPTH-INDUCED BREAKING 3 (RO)
	COEFFICIENT GAMMA2
DEFERLEMENT 3 (RO) DISTRIBUTION DES	DEPTH-INDUCED BREAKING 3 (RO) WAVE
HAUTEURS DE HOULE	HEIGHT DISTRIBUTION
DEFERLEMENT 3 (RO) EXPOSANT FONCTION	DEPTH-INDUCED BREAKING 3 (RO)
DE PONDERATION	EXPONENT WEIGHTING FUNCTION
DEFERLEMENT 4 (IH) CHOIX FREQUENCE	DEPTH-INDUCED BREAKING 4 (IH)
CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 4 (IH) CONSTANTE BETAO	DEPTH-INDUCED BREAKING 4 (IH)
	COEFFICIENT BETAO
DEFERLEMENT 4 (IH) CONSTANTE M2STAR	DEPTH-INDUCED BREAKING 4 (IH)
	COEFFICIENT M2STAR
DENSITE DE L'AIR	AIR DENSITY
DENSITE DE L'EAU	WATER DENSITY
DEPHASAGE DU FICHIER DES COURANTS	TIME SHIFT IN CURRENTS FILE
DEPHASAGE DU FICHIER DES SPECTRES	TIME SHIFT OF IMPOSED SPECTRA FILE
IMPOSES	TIME SHITT OF THE COLD STEETING THE
DEPHASAGE DU FICHIER DES VENTS	TIME SHIFT IN WINDS FILE
DEPHASAGE DU FICHIER DU NIVEAU DE LA	TIME SHIFT IN TIDAL WATER LEVEL FILE
MAREE	TIME CHILL IN TIPHE WHILK DEVEL THE
DIAMETRE DES TIGES	STEM DIAMETER
DICTIONNAIRE	DICTIONARY
DIFFRACTION	DIFFRACTION
DIRECTION PRINCIPALE 1 AUX LIMITES	BOUNDARY MAIN DIRECTION 1
DIRECTION PRINCIPALE 1 INITIALE	INITIAL MAIN DIRECTION 1

DIRECTION PRINCIPALE 2 AUX LIMITES	BOUNDARY MAIN DIRECTION 2
DIRECTION PRINCIPALE 2 INITIALE	INITIAL MAIN DIRECTION 2
DISSIPATION PAR DEFERLEMENT	DEPTH-INDUCED BREAKING DISSIPATION
DISSIPATION PAR FORT COURANT	DISSIPATION BY STRONG CURRENT
DISSIPATION PAR FROTTEMENT SUR LE	BOTTOM FRICTION DISSIPATION
FOND	
DISSIPATION PAR MOUTONNEMENT	WHITE CAPPING DISSIPATION
DISSIPATION PAR MOUTONNEMENT DE	WESTHUYSEN WHITE CAPPING DISSIPATION
WESTHUYSEN	
ECRETAGE POUR HAUTEUR PETITE	ECRET FOR SMALL HEIGHT
ETALEMENT DIRECTIONNEL 1 AUX LIMITES	BOUNDARY DIRECTIONAL SPREAD 1
ETALEMENT DIRECTIONNEL 1 INITIAL	INITIAL DIRECTIONAL SPREAD 1
ETALEMENT DIRECTIONNEL 2 AUX LIMITES	BOUNDARY DIRECTIONAL SPREAD 2
ETALEMENT DIRECTIONNEL 2 INITIAL	INITIAL DIRECTIONAL SPREAD 2
FACTEUR DE PIC AUX LIMITES	BOUNDARY PEAK FACTOR
FACTEUR DE PIC INITIAL	INITIAL PEAK FACTOR
FACTEUR DE PONDERATION POUR FRA AUX	BOUNDARY WEIGHTING FACTOR FOR ADF
LIMITES	
FACTEUR DE PONDERATION POUR FRA	INITIAL WEIGHTING FACTOR FOR ADF
INITIALE	
FACTEUR DE QUEUE DU SPECTRE	SPECTRUM TAIL FACTOR
FICHIER BINAIRE 1	BINARY FILE 1
FICHIER DE COORDONNEES DES SERIES	TIME SERIES COORDINATES FILE
TEMPORELLES	TIME CENTED COORDINATES THE
FICHIER DE DEFINITION DES POLYGONES	FILE WITH DEFINITION OF POLYGONS
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DES CONDITIONS AUX LIMITES	BOUNDARY CONDITIONS FILE
FICHIER DES COORDONNEES DE SPECTRES	FILE WITH COORDINATES OF SPECTRA TO
A ECRIRE	WRITE
FICHIER DES COORDONNEES DE SPECTRES	FILE WITH COORDINATES OF SPECTRA TO
A IMPOSER	IMPOSE
FICHIER DES COURANTS BINAIRE	BINARY CURRENTS FILE
FICHIER DES COURANTS FORMATE	FORMATTED CURRENTS FILE
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES FONDS FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES PARAMETRES FICHIER DES RESULTATS 2D	2D RESULTS FILE
FICHIER DES RESULTATS GLOBAUX	GLOBAL RESULT FILE
FICHIER DES RESULTATS GLOBAUX FICHIER DES RESULTATS PONCTUELS	
	PUNCTUAL RESULTS FILE
FICHIER DES RESULTATS SPECTRES 1D	1D SPECTRA RESULTS FILE
FICHIER DES SERIES TEMPORELLES	TIME SERIES FILE
FICHIER DES SPECTRES IMPOSES	IMPOSED SPECTRA FILE
FICHIER DES VENTS BINAIRE	BINARY WINDS FILE
FICHIER DES VENTS FORMATE	FORMATTED WINDS FILE
FICHIER DU CALCUL PRECEDENT	PREVIOUS COMPUTATION FILE
FICHIER DU NIVEAU DE LA MAREE	BINARY TIDAL WATER LEVEL FILE
BINAIRE	

	DODALETED MED I MARED I FINDI DELLE
FICHIER DU NIVEAU DE LA MAREE	FORMATTED TIDAL WATER LEVEL FILE
FORMATE FICHIER FORMATE 1	FORMATTED FILE 1
FICHIER FORTRAN	FORTRAN FILE
FILTRE POUR DIFFRACTION	DIFFRACTION FILTER
FONCTION DE REPARTITION ANGULAIRE AUX LIMITES	BOUNDARY ANGULAR DISTRIBUTION FUNCTION
FONCTION DE REPARTITION ANGULAIRE	INITIAL ANGULAR DISTRIBUTION
INITIALE	FUNCTION
FORMAT DU FICHIER DE DONNEES BINAIRE	BINARY DATA FILE 1 FORMAT
1	DINAKI DATA TILL I TOKIMI
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE LA MAREE	BINARY TIDAL WATER FILE FORMAT
BINAIRE	
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DE SPECTRE	SPECTRUM FILE FORMAT
FORMAT DU FICHIER DES COURANTS	CURRENTS FILE FORMAT
FORMAT DU FICHIER DES COURANTS	BINARY CURRENTS FILE FORMAT
BINAIRE	
FORMAT DU FICHIER DES RESULTATS 2D	2D RESULTS FILE FORMAT
FORMAT DU FICHIER DES RESULTATS	GLOBAL RESULT FILE FORMAT
GLOBAUX	
FORMAT DU FICHIER DES SERIES	TIME SERIES FILE FORMAT
TEMPORELLES	
FORMAT DU FICHIER DES SPECTRES	IMPOSED SPECTRA FILE FORMAT
IMPOSES	
FORMAT DU FICHIER DES VENTS	WINDS FILE FORMAT
FORMAT DU FICHIER DES VENTS BINAIRE	BINARY WINDS FILE FORMAT
FORMAT DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE FORMAT
PRECEDENT	
FORMAT DU FICHIER DU NIVEAU DE LA	TIDAL WATER LEVEL FILE FORMAT
MAREE FROMENCE DE DIC AUX LIMITES	DOUNDARY REAL EREQUENCY
FREQUENCE DE PIC AUX LIMITES FREQUENCE DE PIC INITIALE	BOUNDARY PEAK FREQUENCY INITIAL PEAK FREQUENCY
FREQUENCE DE PIC MAXIMALE AUX	BOUNDARY MAXIMUM PEAK FREQUENCY
LIMITES	DOONDAKT HAATHUH FEAK PREQUENCT
FREQUENCE DE PIC MAXIMALE INITIALE	INITIAL MAXIMUM PEAK FREQUENCY
FREQUENCE MINIMALE	MINIMAL FREQUENCY
HAUTEUR DE VEGETATION	VEGETATION HEIGHT
HAUTEUR SIGNIFICATIVE AUX LIMITES	BOUNDARY SIGNIFICANT WAVE HEIGHT
HAUTEUR SIGNIFICATIVE INITIALE	INITIAL SIGNIFICANT WAVE HEIGHT
LIMITEUR DE CROISSANCE	WAVE GROWTH LIMITER
LISSAGES DU FOND	BOTTOM SMOOTHINGS
LONGUEUR DU VECTEUR	VECTOR LENGTH
MILIEU POREUX	POROUS MEDIA
MODELISATION BAJ	BAJ MODELING
NOMBRE DE DIRECTIONS	NUMBER OF DIRECTIONS
	<u> </u>

NOMBRE DE FREQUENCES	NUMBER OF FREQUENCIES
NOMBRE DE PAS DE TEMPS	NUMBER OF TIME STEP
NOMBRE DE PLANTES M2	NUMBER OF PLANTS M2
NOMBRE DE SOUS-ITERATIONS POUR LES	NUMBER OF ITERATIONS FOR THE SOURCE
TERMES SOURCES	TERMS
NOMBRE DE SOUS-PAS DE TEMPS POUR LE	NUMBER OF BREAKING TIME STEPS
DEFERLEMENT	
NOMBRE DE SOUS-PAS DE TEMPS POUR LE	NUMBER OF SURFACE ROLLER TIME STEPS
ROULEAU	
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMS DES VARIABLES	NAMES OF VARIABLES
NUMERO DE LA PREMIERE ITERATION POUR	NUMBER OF FIRST ITERATION FOR
LES SORTIES GRAPHIQUES	GRAPHICS PRINTOUTS
NUMERO DU PAS DE TEMPS DU FICHIER	TIME INCREMENT NUMBER IN TELEMAC
TELEMAC	FILE
OPTION POUR LA QUEUE DIAGNOSTIQUE	OPTION FOR DIAGNOSTIC TAIL
OPTION POUR LES DERIVEES SECONDES	OPTION FOR SECOND DERIVATIVES
ORDONNEES DES POINTS DE SORTIE DU	ORDINATES OF SPECTRUM PRINTOUT
SPECTRE SECTION OF SPECTRE	POINTS
PARAMETRE DE LA CONFIGURATION	STANDARD CONFIGURATION PARAMETER
STANDARD	STIMBING CONTIGURATION TIMESTER
PARTITIONNEUR	PARTITIONING TOOL
PAS DE TEMPS	TIME STEP
PAS DE TEMPS DEBUT DIFFRACTION	STARTING TIME STEP FOR DIFFRACTION
PERIODE D'ACTUALISATION DE LA MAREE	TIDE REFRESHING PERIOD
PERIODE POUR LES SORTIES GRAPHIQUES	PERIOD FOR GRAPHIC PRINTOUTS
PERIODE POUR LES SORTIES GRAPHIQUES PERIODE POUR LES SORTIES LISTING	PERIOD FOR GRAPHIC PRINTOUTS PERIOD FOR LISTING PRINTOUTS
PRISE EN COMPTE D'UN COURANT	CONSIDERATION OF A STATIONARY
STATIONNAIRE	CONSTREPATION OF TIPE
PRISE EN COMPTE DE LA MAREE	CONSIDERATION OF TIDE
PRISE EN COMPTE DE LA PROPAGATION	CONSIDERATION OF PROPAGATION
PRISE EN COMPTE DE LA VEGETATION	VEGETATION TAKEN INTO ACCOUNT
PRISE EN COMPTE DES TERMES SOURCES	CONSIDERATION OF SOURCE TERMS
PRISE EN COMPTE DES TERMES SOURCES	TAKING INTO ACCOUNT SOURCE TERMS ON
SUR LES FRONTIERES IMPOSEES	IMPOSED BOUNDARIES
PRISE EN COMPTE DU VENT	CONSIDERATION OF A WIND
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PROFONDEUR D'EAU MINIMALE	MINIMUM WATER DEPTH
PROFONDEUR INFINIE	INFINITE DEPTH
RAISON FREQUENTIELLE	FREQUENTIAL RATIO
RANG DU NIVEAU DE LA MAREE DANS LE	RANK OF THE WATER LEVEL DATA IN THE
FICHIER TELEMAC	TELEMAC FILE
RECUPERATION DE DONNEE TELEMAC	RECOVERY OF TELEMAC DATA ITEM
REFLEXION	REFLECTION
REGLAGE POUR INTEGRATION SUR OMEGA1	SETTING FOR INTEGRATION ON OMEGA1
REGLAGE POUR INTEGRATION SUR OMEGA2	SETTING FOR INTEGRATION ON OMEGA2
REGLAGE POUR INTEGRATION SUR THETA1	SETTING FOR INTEGRATION ON THETA1
REGLAGE POUR INTEGRATION SUR OMEGA2	SETTING FOR INTEGRATION ON OMEGA2

DEMICE A ZEDO DU TEMPO	THITTAL TIME CET TO ZEDO
REMISE A ZERO DU TEMPS	INITIAL TIME SET TO ZERO
ROLLERS SURFACE	SURFACE ROLLERS
SEUIL D'ENERGIE CONSIDERE POUR LE	SPECTRUM ENERGY THRESHOLD
SPECTRE	
SEUIL DE SATURATION POUR LA	SATURATION THRESHOLD FOR THE
DISSIPATION	DISSIPATION
SEUIL DE VARIANCE CONSIDEREE POUR	VARIANCE THRESHOLD FOR DIFFRACTION
DIFFRACTION	
SEUILO ELIMINATION DE CONFIGURATIONS	THRESHOLDO FOR CONFIGURATIONS
	ELIMINATION
SEUIL1 ELIMINATION DE CONFIGURATIONS	THRESHOLD1 FOR CONFIGURATIONS
	ELIMINATION
SEUIL2 ELIMINATION DE CONFIGURATIONS	THRESHOLD2 FOR CONFIGURATIONS
	ELIMINATION
SPECTRE AUX LIMITES MODIFIE PAR	LIMIT SPECTRUM MODIFIED BY USER
L'UTILISATEUR	
TITRE	TITLE
TRANSFERTS ENTRE TRIPLETS DE	TRIAD INTERACTIONS
FREQUENCES	
TRANSFERTS NON LINEAIRES	NON-LINEAR TRANSFERS BETWEEN
INTER-FREQUENCES	FREQUENCIES
TRIADS 1 (LTA) CONSTANTE ALPHA	TRIADS 1 (LTA) COEFFICIENT ALPHA
TRIADS 1 (LTA) CONSTANTE REFILTA	TRIADS 1 (LTA) COEFFICIENT RFMLTA
TRIADS 2 (SPB) BORNE DIRECTIONNELLE	TRIADS 2 (SPB) LOWER DIRECTIONAL
INFERIEURE	BOUNDARY
TRIADS 2 (SPB) BORNE DIRECTIONNELLE	TRIADS 2 (SPB) UPPER DIRECTIONAL
SUPERIEURE	BOUNDARY
TRIADS 2 (SPB) CONSTANTE K	TRIADS 2 (SPB) COEFFICIENT K
TYPE DE SPECTRE DIRECTIONNEL AUX	TYPE OF BOUNDARY DIRECTIONAL
LIMITES	SPECTRUM
TYPE DE SPECTRE DIRECTIONNEL INITIAL	TYPE OF INITIAL DIRECTIONAL SPECTRUM
UNITE DE TEMPS DU FICHIER DES	TIME UNIT IN CURRENTS FILE
COURANTS	
UNITE DE TEMPS DU FICHIER DES	TIME UNIT OF IMPOSED SPECTRA FILE
SPECTRES IMPOSES	
UNITE DE TEMPS DU FICHIER DES VENTS	TIME UNIT IN WINDS FILE
UNITE DE TEMPS DU FICHIER DU NIVEAU	TIME UNIT IN TIDAL WATER LEVEL FILE
DE LA MAREE	
VALEUR AUX LIMITES DE SIGMA-A POUR	BOUNDARY SPECTRUM VALUE OF SIGMA-A
SPECTRE	
VALEUR AUX LIMITES DE SIGMA-B POUR	BOUNDARY SPECTRUM VALUE OF SIGMA-B
SPECTRE	
VALEUR INITIALE DE SIGMA-A POUR	INITIAL VALUE OF SIGMA-A FOR
SPECTRE	SPECTRUM
VALEUR INITIALE DE SIGMA-B POUR	INITIAL VALUE OF SIGMA-B FOR
SPECTRE	SPECTRUM
VALEUR MAXIMALE DU RAPPORT HMO SUR D	MAXIMUM VALUE OF THE RATIO HMO ON D

Bibliography 93

VALEUR MOYENNE DU FETCH AUX LIMITES	BOUNDARY MEAN FETCH VALUE
VALEUR MOYENNE DU FETCH INITIAL	INITIAL MEAN FETCH VALUE
VALIDATION	VALIDATION
VARIABLES POUR LES SORTIES	VARIABLES FOR 2D GRAPHIC PRINTOUTS
GRAPHIQUES 2D	
VENT STATIONNAIRE	STATIONARY WIND
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VITESSE DU VENT SUIVANT X	WIND VELOCITY ALONG X
VITESSE DU VENT SUIVANT Y	WIND VELOCITY ALONG Y

[1] J-M. HERVOUET. Hydrodynamics of free surface flows. Modelling with the finite element method. John Wiley & Sons, Ltd, Paris, 2007.