2ECDE62 Computer Vision

Prof Bhupendra Fataniya Assistant Professor, EC,IT,NU

Outline

- Introduction to Computer Vision
- Why Computer Vision
- Applications of Computer Vision
- Specific of this Course
- Computer Vision Publications
 - Journals
 - Conferences

26-07-2021

What is Computer Vision?

- Computer Graphics: Models to Images
- Comp. Photography: Images to Images
- Computer Vision: Images to Models

- Make computers understand images and video.
- The goal of computer vision is to develop algorithms that allow computer to "see".

26-07-2021

Computer Vision vs. Graphics

• 3D→2D implies information loss

- sensitivity to errors
- need for models

Computer Vision vs. Machine Learning

- Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to change behavior based on data, such as from sensor data or databases (from Wikipedia)
- A major focus of machine learning research is to automatically learn to recognize complex patterns and make intelligent decisions based on data.

Computer Vision vs. Machine Learning

- Machine Learning is very useful for Computer Vision (e.g., learning for vision)
- Computer Vision is more than just learning
 - Modeling
 - Example based learning
- In Machine Learning, it usually does not care about how to obtain the data or sensors
- In Computer Vision, we care how to obtain the visual data (sensor design, active vision), how to represent the visual data, and others

Vision

 Vision is the process of discovering what is present in the world and where it is by looking.

Computer Vision

 Computer Vision is the study of analysis of pictures and videos in order to achieve results similar to those as by people.

Why Computer Vision

- An image is worth 1000 words
- Many biological systems rely on vision
- The world is 3D and dynamic
- Cameras and computers are cheap
- ...

Why computer vision matters

Safety

Health

Security

Comfort

Fun

Access

Computer Vision Examples

Finding People in images

Problem 1: Given an image I

Question: Does image I contain an image of a person?

"Yes" Instances

"No" Instances

One Very Successful Example

- Face detection in a digital camera
 - The camera detects faces in a scene and then automatically focuses (AF) and optimizes exposure (AE) and, if needed, flash output.

Ridiculously brief history of computer vision

- 1966: Minsky assigns computer vision as an undergrad summer project
- 1960's: interpretation of synthetic worlds
- 1970's: some progress on interpreting selected images
- 1980's: ANNs come and go; shift toward geometry and increased mathematical rigor
- 1990's: face recognition; statistical analysis in vogue
- 2000's: broader recognition; large annotated datasets available; video processing starts
- 2010's: Deep learning with ConvNets
- 2030's: robot uprising?

Guzman '68

Ohta Kanade '78

Turk and Pentland '91

How vision is used now

Examples of real world applications

Some of the following slides by Steve Seitz

Industrial Application

Figure 1.4 Some industrial applications of computer vision: (a) optical character recognition (OCR) http://yann.lecun.com/exdb/lenet/; (b) mechanical inspection http://www.cognitens.com/; (c) retail http://www.evoretail.com/; (d) medical imaging http://www.clarontech.com/; (e) automotive safety http://www.mobileye.com/; (f) surveillance and traffic monitoring http://www.boneywellvideo.com/, courtesy of Honeywell International Inc.

Source: Computer Vision Algorithms and Application by Richard Szeliski

26-07-2021

Figure 1.5 Some consumer applications of computer vision: (a) image stitching: merging different views (Szeliski and Shum 1997) © 1997 ACM; (b) exposure bracketing: merging different exposures; (c) morphing: blending between two photographs (Gomes, Darsa, Costa et al. 1999) © 1999 Morgan Kaufmann; (d) turning a collection of photographs into a 3D model (Sinha, Steedly, Szeliski et al. 2008) © 2008 ACM.

Source: Computer Vision Algorithms and Application by Richard Szeliski

26-07-2021

Optical character recognition (OCR) Technology to convert scanned docs to text

If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face detection

Digital cameras detect faces

Smile detection

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the <u>story</u> <u>wikipedia</u>

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

Object recognition (in mobile phones)

Point & Find, Nokia Google Goggles

Sports

Sportvision first down line
Nice explanation on www.howstuffworks.com

http://www.sportvision.com/video.html

Medical imaging

3D imaging MRI, CT

Image guided surgery
Grimson et al., MIT

Slide content courtesy of Amnon Shashua

Smart cars

- Mobileye
 - Market Capitalization: 11 Billion dollars

Google cars

Oct 9, 2010. "Google Cars Drive Themselves, in Traffic". The New York Times. John Markoff

June 24, 2011. "Nevada state law paves the way for driverless cars". Financial Post. Christine Dobby

Aug 9, 2011, "Human error blamed after Google's driverless car sparks five-vehicle crash". The Star (Toronto)

Interactive Games: Kinect

- Object Recognition: <u>http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o</u>
- Mario: http://www.youtube.com/watch?v=8CTJL5|UjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Industrial robots

Vision-guided robots position nut runners on wheels

Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Augmented Reality and Virtual Reality

Magic Leap, Oculus, Hololens, etc.

State of the art today?

With enough training data, computer vision nearly matches human vision at most recognition tasks

Deep learning has been an enormous disruption to the field. More and more techniques are being "deepified".

Some Computer Vision Topics

Imaging Geometry

Camera Modeling

- Pinhole Cameras
- Lenses
- Camera Parameters and Calibration

Figure 1.16 The first photograph on record, *la table servie*, obtained by Nicéphore Niepce in 1822. *Collection Harlinge–Viollet*.

Image Filtering and Enhancing

- Linear Filters and Convolution
- Image Smoothing
- Edge Detection
- Pyramids

Image Filtering and Enhancing (cont.)

Region Segmentation

Color

4.1 NEWTON'S SUMMARY DRAWING of his experiments with light. Using a point source of light and a prism, Newton separated sunlight into its fundamental components. By reconverging the rays, he also showed that the decomposition is reversible.

Texture

Image Restoration

Original

Synthetic

Shape Analysis

Stereo

Motion and Optical Flow

Course Syllabus (tentative)

Link: Course: Computer Vision(DE5) (nirmauni.ac.in)

https://lms.nirmauni.ac.in/course/view.php?id=5074

Course Assessment

Assessme	CE				LPW		SEE
nt scheme							
Compone	40%				20%		40%
nt	Class	Sessional	Additional	Term Paper/	Experiments	Viva	
weightage	Test	Exam	Test	Innovative		Voce	
				Assignment			
	0.7	0.5	0.7				100
	35	35	35	30	75	25	100

<u>Continuous Evaluation (CE), Laboratory and Project Work (LPW) & Semester End Examination (SEE)</u>

Course Outcomes

- At the end of the course, students will be able to –
- Apply mathematical modeling methods for low, intermediate and high-level Image processing tasks.
- Comprehend the geometric relationships between 2D Images and the 3D world.
- Apply motion and shape analysis algorithms for computer vision applications.
- Perform experiments on computer vision problems

26-07-2021 49

Course Topics

- Depth estimation and Multi-camera views
 - Projective geometry, Single-view and Multi-view geometry
 - Pinhole Camera model, camera calibration
- Basics of Image Processing and Feature Extraction
 - Fundamentals of Image formation, Image transformation and Image filtering, edge detection algorithms
- Image Segmentation
 - How can we group pixels into meaningful regions?
- Motion Analysis
- Shape from X
- Applications of Computer Vision

Textbook

Computer Vision: Algorithms and Applications

© 2010 Richard Szeliski, Microsoft Research

http://szeliski.org/Book/

Optional Textbook

 Computer Vision: A Modern Approach, 2th Edition, by David Forsyth and Jean Ponce, Prentice Hall, 2003

Optional Textbook

 Introductory Techniques for 3-D Computer Vision, E. Trucco and A. Verri, Prentice Hall, 1998. ISBN 0-13-261108-2

Prerequisites

- Linear algebra, basic calculus, and probability
- Experience with image processing or Matlab will help but is not necessary

About You ...

What do you know already?

- C/C++ (Visual C++)
- Matlab
- Images
- Python
- OpenCV

http://sourceforge.net/projects/opencvlibrary/

Install Python, Anaconda and OpenCV in your PC or laptop,

Read the manual introduction

Try to load and save images (homework #0)

Projects

- Image Filtering and Hybrid Images
- Local Feature Matching
- Camera Calibration and Fundamental Matrix Estimation with RANSAC
- Scene Recognition with Bag of Words
- Object Detection with a Sliding Window
- Recognition with Deep Learning

Project 1: Image Filtering and Hybrid Images

- Implement image filtering to separate high and low frequencies
- Combine high frequencies and low frequencies from different images to create an image with scale-dependent interpretation

Project 2: Local Feature Matching

 Implement interest point detector, SIFT-like local feature descriptor, and simple matching algorithm.

Project 3: Scene Recognition with Bag of Words

 Quantize local features into a "vocabulary", describe images as histograms of "visual words", train classifiers to recognize scenes based on these histograms.

Project 4: Object Detection with a Sliding Window

 Train a face detector based on positive examples and "mined" hard negatives, detect faces at multiple scales and suppress duplicate detections.

Project 5: panorama stitching

Indri Atmosukarto, 576 08sp

Project 6: Face Recognition

Final Project

- Open-ended project of your choosing
- (in teams of two)

Computer Vision Publications

- Journals
 - IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
 - #1 IEEE, Thompson-ISI impact factor: 5.96
 - #1 in both electrical engineering and artificial intelligence
 - #3 in all of computer science
 - Internal Journal of Computer Vision (IJCV)
 - ISI impact factor: 5.358, Rank 2 of 94 in "CS, artificial intelligence
 - IEEE Trans. on Image Processing
 - ...

Importance of CV

- From these major journal rankings, we can see the importance of Computer Vision research in the whole areas of
 - Computer Science
 - Electrical Engineering

Computer Vision Publications

- Conferences
 - International Conference on Computer Vision (ICCV), once every two years
 - Conf. of Computer Vision and Pattern Recognition (CVPR), once a year
 - Europe Conference on Computer Vision (ECCV), once every two years
 - ...

26-07-2021