PCT

国際 事務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 239/42, 239/46, 239/47, 239/48, 251/34, 491/048, 251/38, 413/12, A01N 43/54, 43/60, 43/66

(11) 国際公開番号

WO96/36613

A1

(43) 国際公開日

1996年11月21日(21.11.96)

(21) 国際出願番号

1

PCT/JP96/01262

(22) 国際出願日

1996年5月14日(14.05.96)

(30) 優先権データ

特願平7/145503

1995年5月19日(19.05.95)

JP

(71) 出願人(米国を除くすべての指定国について) 日本曹達株式会社(MIPPON SODA CO., LTD.)[JP//P] 〒100 東京都千代田区大手町2丁目2番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

植田昭嘉(UEDA, Akiyoshi)[JP/JP]

宮澤靖之(MIYAZAWA, Yasuyuki)[JP/JP]

佐藤大祐(SATO, Daisuke)[TP/JP]

古口正已(KOGUCHI, Masami)[JP/JP]

松本勤子(MATSUMOTO, Isoko)[JP/JP]

川名 貴(KAWANA, Takashi)[JP/JP]

〒250-02 神奈川県小田原市高田345

日本曹達株式会社 小田原研究所内 Kanagawa, (JP)

(74) 代理人

弁理士 東海裕作(TOKAI, Yusaku)

〒100 東京都千代田区大手町2丁目2番1号 日本曹達株式会社内 Tokyo, (JP)

(81) 指定国

BR, CN, JP, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, FI,

FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Tide: SUBSTITUTED BENZOIC ACID DERIVATIVES, PROCESS FOR THE PRODUCTION THEREOF, AND HERBICIDES

(54) 発明の名称 置換安息香酸誘導体、その製造方法及び除草剤

(57) Abstract

Substituted benzoic acids of general formula (I) and salts thereof. They exhibit excellent herbicidal activity and crop selectivity, and therefore compositions containing the same are useful as a herbicide, wherein A is N or a carbon atom substituted with R_3 ; Z is O or S; R_1 and R_2 are each independently H, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl or halogeno; C_6 alkyl or halogeno; C_6 alkyl, C_8 - C_6 alkyl, C_8 - C_8

(57) 要約

本発明は、一般式 [1] で表される置換安息香酸誘導体およびその塩である。 本発明化合物は、優れた除草活性、作物選択性を有するものであり、本発明化合物を含有する組成物は除草剤として有用である。

$$(CH_2)_n \xrightarrow{X_B} R_4$$

$$CH_2)_n \xrightarrow{R_4} Z \xrightarrow{N} R_1$$

$$R_2$$

〔式中、Aは窒素原子またはR。で置換された炭素原子を表し、Zは酸素原子または硫黄原子を表し、R₁、R₂は、それぞれ独立して水素原子、 C_{1-6} アルキル、 C_{1-6} アルコキシ、シアノ基等を表し、R₃は水素原子、 C_{1-6} アルキルまたはハロゲン原子を表し、R₄は、 $COOR_7$ 、CHO、 COR_8 、CH (R₈) OR₈、C (R₈) = NOR₁₀、COON= $CR_{11}R_{12}$ 、 $CR_{13}OR_{14}OR_{16}$, $CONR_{16}R_{17}$ 、またはCON=C (R₁₈) NR₁₈R₂₀を表す。

Xは、 C_{1-6} アルキル、 C_{3-7} シクロアルキル等を表し、mは0または $1\sim4$ の整数を表し、YはO、S、C R_{21} またはN R_{22} を表し、n は $0\sim3$ の整数を表す。 $\}$

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AL アルベニア AM アルメニア AT オーストリア AU オーストラリア	DE ドイツ DK デンマーク EE エスペイン FI フィンランド	LI リヒテンシュタイン LC セントルシア LK スリーンカ LR リベリア	PL ポーランド PT ポルトガル RO ルーマニア RU ロシア連邦
AZ アゼルバイジャン BA ボスニア・ヘルツェゴビナ BB バルバドス	FR フランス GA ガポン	LS レソト LT リトアニア LU ルクセンブルグ	RU ロシア連邦 SD スーダン SE スウガーボール SE スウガポール SI スロヴェニア
AZ アゼルバイジャン BA ポスニア・ヘルツェゴビナ BB ポルルドー BE ベルギー・ファソ BF ブルガリア BJ ブラジル BR ブラシル BY ベナダ	GB イギリスア GB グニン・ GR グニン・ GR ギリンプリー F ギーション・ H I E アイスラステ I I E アイタリア	LV ラトヴィア MC モナコ MD モルドヴァ共和国 MG マグガスカル	SK スロヴァキア SK セネガル SZ スワジランド
BR プラジル BY ペラルーシ CA カナダ CF 中央アフリカ共和国	HU パンガリー IE アイルランド IL イスラエル IS アイスランド	ヴィア共和国 ML マリ MN チンゴル	SK スロヴァキア コネヴァルンド コステトルンド TG タンドゴゴ タンス TM トルコ TR トルコ
CG コンゴ CH スイス CI コート・ジボアール	「T イタリテ JP 日本 KE ケーア KG ケルギスタン	MR モーリタニア MW マラウイ MX メキシコ NE メジェール NL オランダ	TT トリニダード・トパゴ
CM カメルーン CN 中国 CU キューバ CZ チェッコ共和国	KP 朝鮮民 <u>士士</u> 義人民共和国 KR 大韓民国 KZ カザフスタン	NE オラング NO ノールウェー NO ノールウェー NO ニュー・ジーランド	ÛA ウクライナ UG ウガソダ 合衆国 UZ ウズベキスタン VN ヴィェトナム

明細書

置換安息香酸誘導体、その製造方法及び除草剤

技術分野:

本発明は新規な置換安息香酸誘導体、その製造方法及び除草剤に関する。

背景技術:

農園芸作物の栽培にあたり、多大の労力を必要としてきた雑草防除に多くの除草剤が使用されるようになってきた。しかし作物に薬害を生じたり、環境に残留したり、汚染したりすることから、より低い薬量で効果が確実でしかも安全に使用できる薬剤の開発が望まれている。

本発明化合物と関連して除草活性化合物を開示したものとして、例えば、特開平1-93576号公報には、除草活性を有するある種のフェノキシピリミジン 誘導体が記載されている。

しかしながら、フェノキシピリミジン誘導体のベンゼン環の 6 位に含窒素ヘテロ環が窒素原子で結合した化合物については何ら具体的な記載はない。

本発明者らは鋭意研究した結果、フェノキシピリミジン誘導体あるいはその類 縁化合物において、ベンゼン環 6 位にモルホリン、ピペリジン、ピペラジン、ピロリジンなどの含窒素へテロ環が窒素原子で結合した化合物が、特に優れた除草 活性・作物選択性を有することを見出し、本発明を完成した。

すなわち、本発明は上記した課題を解決して優れた除草活性を有し、安全に使用できる除草剤を提供することを目的とする。

発明の開示:

以下、本発明を詳細に説明する。

本発明は、一般式〔1〕で表される化合物もしくはその塩及びこれを含有する

除草剤である。

$$(CH_2)_n N R_4 Z N R_1$$

$$R_2$$

$$[1]$$

[式中、Aは窒素原子、もしくはR。で置換された炭素原子を表し、

2は酸素、酸化されていても良い硫黄、置換されていても良い窒素、又は置換 されていても良い炭素原子を表し、

 R_1 、 R_2 は各々独立して水素、 C_{1-6} アルキル、 C_{1-6} アルコキシ、ハロ C_{1-6} アルキル、 C_{1-6} アルキルアミノ、 $\Im C_{1-6}$ アルキルアミノ、 $\Im C_{1-6}$ アルキルアミノ、 $\Im C_{1-6}$ アルキルアミノ、 $\Im C_{1-6}$ アルキルチオ、ハロゲン、シアノ基を表し、

R。は水素、C₁₋₆ アルキル、ハロゲン、ニトロ、ホルミル、アシル基を表し、又、R。とR。は一緒になって環を形成していても良く、

R₄ はCOOR₇、COSR₇、CHO、COR₆、CH(R₈)OR₉、C(R₆)=NOR₁₀、COON=CR₁₁R₁₂、CR₁₃OR₁₄OR₁₅、CONR₁₆R₁₇、及びCON=C(R₁₆)NR₁₉R₂₀を表す。又、安息香酸のアルカリ金属、アルカリ土類金属、アンモニウム塩等を表す。

キニルチオ、アシルオキシ、カルバモイルオキシ、チオカルバモイルオキシ、アミノオキシ、置換されても良いベンジル、置換されても良いフェニル、置換されても良いフェニルチオ、置換されても良いベンゾイル、又は置換されても良いヘテロ環オキシおよびヘテロ環チオ基を表し、

又、2つのXで炭素環、又は複素環を形成してもよく、mは1~4の整数を表し、

YはO、S、CO、CS、CR_s R_s、C=NR_s またはNR_s を表し、 nは0~3の整数を表し、

Rs、Rs・は各々独立して水素、 C_{1-6} アルキル、 C_{8-7} シクロアルキル、ハロ C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキルスルホニル C_{1-6} アルキル、 C_{2-6} アルキルスルホニル C_{1-6} アルキルアミノ、 C_{2-6} アルキルアミノ、 C_{2-6} アルキルアミノ、 C_{2-6} アルキルアミノ、 C_{1-6} アルキルアミノ、 C_{1-6} アルキルアミノ、 C_{1-6} アルキルアミノ、 C_{1-6} アルキルスルホニルアミノ、 C_{1-6} アルコキシルがニル、 C_{1-6} アルコキシルがニル、 C_{1-6} アルコキシ、 C_{2-6} アルカルボニル、 C_{1-6} アルカルボニル、 C_{2-6} アルケニルオキシ、 C_{2-6} アルケニルチオ、 C_{2-6} アルキニルチオ、 C_{2-6} アルキニルチオ、 C_{2-6} アルキニルチオ、 C_{2-6} アルキニルチオ、 C_{2-6} アルキニルチオ、 C_{2-6} アルキニルチオ、アシルオキシ、カルバモイルオキシ、チオカルバモイルオキシ、アミノオキシ、置換されても良いベンジル、置換されても良いフェニルスルホニル、置換されても良いベンゾイル、又は置換されても良いヘテロ環オキシおよびヘテロ環チオ基を表し、又、 C_{2-6} と C_{2-6} に 4 になって環を形成しても良く、

 R_8 は水素、 C_{1-8} アルキル、 C_{3-7} シクロアルキル、ハロ C_{1-8} アルキル、 C_{1-8} アルキル、 C_{1-8} アルキル、 C_{1-8} アルキル、 C_{1-8} アルキル、 C_{1-8} アルキル、 C_{1-8} アルキルスルホニル C_{1-8} アルキル、 C_{2-8} アルケニル、 C_{2-6} アルキニル、アシル、 C_{1-8} アルコキシカルボニル、 C_{1-8} アルキルスルホニル、 C_{2-8} アルケニルチオ、 C_{2-8} アルキニルチオ、アシルオキシ、カルバモイル、チオカルバモ

イル、置換されても良いベンジル、置換されても良いフェニル、置換されても良いヘテロ環、置換されても良いフェニルスルホニル、置換されても良いベンゾイル、又は置換されても良いヘテロ環カルボニル基を表し、

 R_1 は水素、 C_{1-6} アルキル、 C_{3-7} シクロアルキル、ハロ C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、フェノキシ C_{1-6} アルキル、 C_{1-6} アルキル、フェニルチオ C_{1-6} アルキル、 C_{1-6} アルキル、フェニルチオ C_{1-6} アルキル、 C_{1-6} アルキル、フェニルスルホニル C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、ハロ C_{1-6} アルキル、カロ C_{1-6} アルキル、カロ C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{3-6} アルキニル、シアノ C_{1-6} アルキル、 C_{1-6} アルキル C_{1-6} アルキル、 C_{1-6} アルキル C_{1-6} アルキル、 C_{1-6} アルキル C_{1-6} ア

 R_8 は C_{1-8} アルキル、 C_{8-7} シクロアルキル、ハロ C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキール、 C_{2-6} アルキニル、アシル、 C_{2-6} アルコキシカルボニル、 C_{1-6} アルキルチオ、 C_{2-6} アルケニルチオ、 C_{2-6} アルキニルチオ、 C_{2-6} アルキニル・ C_{2-6} アルナニル・ C_{2-6} アルキニル・ C_{2-6}

 R_8 及び R_{10} はそれぞれ独立して、水素、 C_{1-6} アルキル、 C_{3-7} シクロアルキル、 Ω_{1-6} アルキル、 Ω_{1-6} アルキル、 Ω_{1-6} アルキル、 Ω_{1-6} アルキル、 Ω_{1-6} アルキルスルホニル Ω_{1-6} アルキル、 Ω_{2-6} アルキル、 Ω_{2-6} アルキル、 Ω_{2-6} アルキル、 Ω_{1-6} アルキシカルボニル、 Ω_{1-6} アルキルスルホニル、 Ω_{1-6} アルキルスルホニル、カルバモイル、チオカルバモイル、置換されても良いベンジル、

置換されても良いフェニル、置換されても良いヘテロ環、置換されても良いフェニルスルホニル、置換されても良いベンゾイル、又は置換されても良いヘテロ環カルボニル基を表し、

 R_{11} 及び R_{12} はそれぞれ独立して、水素、 C_{1-6} アルキル、 C_{8-7} シクロアルキル、 Ω_{1-6} アルキル、 Ω_{2-6} アルキル、 Ω_{2-6} アルキニル、 Ω_{2-6} アルキニル、アシル、 Ω_{1-6} アルコキシカルボニル、置換されても良いベンジル、置換されても良いフェニル、置換されても良いベングイル、又は置換されても良いヘテロ環カルボニル基を表し、又、 Ω_{11} と Ω_{12} で環を形成しても良い。

 R_{18} は水素、 C_{1-6} アルキル、 C_{3-7} シクロアルキル、ハロ C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキルチオ C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキルスルホニル C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、 C_{1-6} アルコキシカルボニル、置換されても良いベンジル、置換されても良いフェニル、置換されても良いヘテロ環を表し、

 R_{14} 及び R_{15} はそれぞれ独立して、 C_{1-8} アルキル、 C_{8-7} シクロアルキル、 ハロ C_{1-8} アルキル、 C_{1-8} アルコキシ C_{1-8} アルキル、 C_{1-8} アルキルチオ C_{1-8} アルキル、 C_{1-8} アルキルスルホニル C_{1-8} アルキル、 C_{2-8} アルケニル、 C_{2-8} アルキニル基を表し、又、 R_{14} と R_{15} で環を形成しても良い。

 R_{16} 及び R_{17} はそれぞれ独立して、水素、 C_{1-6} アルキル、 C_{8-7} シクロアルキル、Nロ C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{1-6} アルキル、 C_{2-6} アルキル、 C_{2-6} アルキル、 C_{2-6} アルキール、 C_{2-6} アルギール、 C_{2-6} アルギール

 R_{18} は水素、 C_{1-6} アルキル、 C_{8-7} シクロアルキル、 $\cap C_{1-6}$ アルキル、 C_{1-6} アルキル、 C_{2-6} アルキル、 C_{2-6} アルキール、 $\cap C_{2-6}$ アルキールアミノ、 $\cap C_{1-6}$ アルキールスルホニルアミノ、 $\cap C_{1-6}$ アルコキシ、 $\cap C_{2-6}$ アルケニルオキシ、 $\cap C_{2-6}$ アルカールオキシ、 $\cap C_{2-6}$ アルカールオキシ、 $\cap C_{2-6}$ アルキールオキシ、 $\cap C_{1-6}$ アルカールチオ、 $\cap C_{2-6}$ アルカールチオ、 $\cap C_{2-6}$ アルキールチオ、 $\cap C_{2-6}$ アルキールオキシ、 $\cap C_{2-6}$ アルキールオキシ、 $\cap C_{2-6}$ アルカール・ $\cap C_{2-6}$

 R_{10} 及び R_{20} はそれぞれ独立して、水素、 C_{1-6} アルキル、 C_{3-7} シクロアルキル、Nロ C_{1-6} アルキル、 C_{2-6} アルケニル、 C_{2-6} アルキニル、アシル、 C_{1-6} アルコキシカルボニル、 C_{1-6} アルキルスルホニル、カルバモイル、チオカルバモイル、置換されても良いベンジル、置換されても良いフェニル、置換されても良いヘテロ環、置換されても良いフェニルスルホニル、置換されても良いベンゾイル、又は置換されても良いヘテロ環カルボニル基を表し、又、 R_{10} と R_{20} で炭素環、又は復素環を形成しても良い。

以下、本発明の化合物を詳細に説明する。

本発明化合物は一般式〔Ⅰ〕で表される化合物もしくはその塩である。

$$(CH_2)_n \longrightarrow \begin{pmatrix} X_m \\ R_4 \\ N \longrightarrow A \end{pmatrix} \longrightarrow \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

一般式〔1〕において、R1 およびR2 は、それぞれ独立して、水素原子、メチル、エチル、プロピル、イソプロピルなどのC1~6アルキル基、メトキシ、エトキシ、プロポキシ、イソプロポキシ基などのC1~6アルコキシ基、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリクロロメチル基などのハロC1~6アルキル基、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリクロロメトキシ基などのハロC1~6アルコキシ基、メチルアミノ、エチルアミノなどのC1~6アルキルアミノ基、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノ、メチルフェニルアミノなどのジC1~6アルキルアミノ基、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオなどのC1~6アルキルチオ基、フッ素、塩素、臭素などのハロゲン原子またはシアノ基を表す。

 R_s は水素原子、メチル、エチル、プロピル、イソプロピルなどの $C_1\sim_e$ アルキル基またはフッ素、塩素、臭素などのハロゲン原子を表し、また、 R_2 と R_3 は一緒になって環を形成していても良い。

R₄は、カルボキシル基、CO₂ M (Mは、ナトリウム、カリウムなどのアルカリ金属イオン、マグネシウム、カルシウムなどのアルカリ土類金属イオン、アンモニウムイオンなどを表す。)、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル基などのCOOR₁ で表される基、メチルチオカルボニル、エチルチオカルボニル、プロピルチオカルボニル

、イソプロピルチオカルボニル基などのCOSR,で表される基、ホルミル基、 アセチル、プロピオニル基などのCOR。で表されるアシル基、ヒドロキシメチ ル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロ ピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキ シイソプロピル基、2-ヒドロキシイソプロピル基、3-ヒドロキシイソプロピ ル基などのCH(R。)OHで表される基、C(R。)=NOR₁₀で表されるオ キシム基(R10はメチル、エチル、プロピルなどのC1-6 アルキル基、アリルな どのC₂₋₈ アルケニル基を表す。)、COON=CR₁₁R₁₂で表される基(R₁₁ とRュュはそれぞれメチル、エチル、プロピルなどのCュー。 アルキル基、アリルな どの C₂-a アルケニル基を表シ、または結合して環を形成していてもよい)、メ トキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、プ ロポキシメチル基、プロポキシエチル基などのCH(R。)OR。で表される基 、ジメチルアセタール基、ジエチルアセタール基、1、3-ジオキソラン-2-イル、1, 3-ジオキソラン-2-メチルー2ーイル、<math>1, 3-ジオキソランー2-xチル-2-4ル、1, 3-3オキサン-2-4ル、1, 3-3オキサン-2-メチル-2-イル、1, 1-ジメトキシエチル基、1, 1-ジエトキシエチ ル基、1.1-ジメトキシプロピルなどのCR13OR14OR15で表されるアセタ ール基もしくはケタール基(Ris、Ris、Risはそれぞれメチル、エチル、プロ ピルなどの C 1-a アルキル基、アリルなどの C 2-a アルケニル基を表す。)、メ チルカルバモイル、ジメチルカルバモイル、エチルカルバモイル、ジエチルカル バモイルなどのCONR」。R」っで表される基(R」。、R」っはそれぞれメチル、エ チル、プロピルなどの C₁-8 アルキル基、アリルなどの C₂-8 アルケニル基を表 \mathbf{f}_{0}) \mathbf{f}_{0} \mathbf{f}_{0} メチル、エチル、プロピルなどの C 1-6 アルキル基、アリルなどの C 2-8 アルケ ニル基を表す。)で表される基を表す。

Xの例として、メチル基、エチル基、プロピル基、イソプロピル基などのアルキル基、トリフルオロメチル基などのハロアルキル基、シクロピロピル基、シク

ロヘキシル基などのシクロアルキル基、塩素原子、フッ素原子などのハロゲン原子、ジメチルアミノ基、アセチルアミノ基、メチルスルホニルアミノ基などのN-置換アミノ基、メトキシ基、エトキシ基などのアルコキシ基、トリフルオロメトキシ基などのハロアルコキシ基、メトキシカルボニル、エトキシカルボニルなどのアルコキシカルボニル基、メチルチオ、エチルチオなどのアルキルチオ基、メチルスルホニル、エチルスルホニルなどのアルキルスルホニル基、ベンジル基などのアラルキル基、フェニル基、フェニルチオ基、ベンゾイル基などが挙げられる。

また、mが2以上のとき、Xは同一又は相異なっていてもよく、2つのXで炭素環または複素環を形成してもよく、mは0または $1\sim4$ の整数を表す。

YはO、S、CO、CS、CR₅ R₅・、C=NR₆ またはNR₆ を表し、nは $0\sim3$ の整数を表す。

本発明化合物は、一般式 (I) においてベンゼン環の 6 位の位置に含窒素へテロ環がN-置換されていることにその構造状の特徴を有する。

一般式 [1] において、ベンゼン環の 6 位の位置に結合する含窒素へテロ環基 として、 5 乃至 6 員環のものが好ましく、例えば、以下の含窒素へテロ環基を挙 げることができる。

$$-N \qquad -N \qquad 0 \qquad -N \qquad N-r$$

(式中、r、r'は、それぞれ低級アルキル基、低級アルコキシ基、ハロゲン原子、アルコキシカルボニル基などを表す。)

9

発明を実施するための最良の形態:

本発明の化合物は、次の方法によって製造することが出来る。

(製造法-1)

$$(CH_{2})_{n} NH Xm$$

$$(CH_{2}$$

すなわち、一般式 [2] (式中、 R_4 は前記と同じ意味を表し、 L_1 、 L_2 は ハロゲン原子又はニトロ基を表し、好ましくは L_1 はフッ素である。)の化合物 と、一般式 [3] (式中、X、Y、m、n は前記と同じ意味を表す。)の化合物 とを、有機溶媒中で塩基の存在下カップリングさせ、一般式 [4] (式中、 R_4 、 L_2 、X、Y、m、n は前記と同じ意味を表す。)の化合物を合成する。

反応に用いられる塩基としては、水素化ナトリウム等の水素化金属類、炭酸カ リウム等の炭酸塩類、トリエチルアミン等の有機塩基類である。

また、用いられる溶媒としては、DMF、DMSO、THF、DME等が挙げ られるが、無溶媒で行うことも出来る。

反応混合物は反応が完了するまで、 $0\sim150$ \mathbb{C} 、場合によっては一般式 $\begin{bmatrix} 3 \end{bmatrix}$ (式中、X、Y、m、n は前記と同じ意味を表す。)の化合物の沸点で撹拌される。

次に、得られた一般式 [4] (式中、 R_4 、 L_2 、X、Y、m、n は前記と同じ意味を表す。)の化合物に、アルコラート(式中、R' は $C_1\sim_6$ アルキル又はベンジルを表す。)を有機溶媒中、反応させて一般式 [5] (式中、R'、R4、 L_2 、X、Y、m、n は前記と同じ意味を表す。)の化合物を得る。

又、一般式 [5] の化合物は一般式 [4] の化合物に、塩基の存在下、アルコールと反応させることによっても得ることが出来る。用いられる塩基としては、水素化ナトリウム等の水素化金属類、炭酸カリウム等の炭酸塩類、トリエチルアミン等の有機塩基類であり、溶媒としては、DMF、DMSO、THF、DME等が使用することができる。反応混合物は反応が完了するまで、0~150℃で撹拌される。

得られた一般式 [5] (式中、R'、 R_4 、 L_2 、X、Y、m、n は前記と同じ意味を表す。)の化合物を常法(例えば、H B r / 酢酸による酸分解又は還元)に従い、フェノール化合物、一般式 [6] (式中、 R_4 、 L_2 、X、Y、m、n は前記と同じ意味を表す。)の化合物へ導くことができる。

一般式 [6] (式中、R₄、L₂、X、Y、m、nは前記と同じ意味を表す。) の化合物と一般式 [7] (式中、R₁、R₂、L₃、Aは前記と同じ意味を表す。) の化合物を有機溶媒中で塩基の存在下カップリングさせ、一般式 [1 a] (式中、R₁、R₂、R₄、A、X、Y、m、nは前記と同じ意味を表す。) の化合物を製造することが出来る。塩基としては、水素化ナトリウム等の水素化金属類、炭酸カリウム等の炭酸塩類、トリエチルアミン等の有機塩基類であり、溶媒としては、DMF、DMSO、THF、DME等が挙げられる。反応混合物は反応が完了するまで、0~90℃で撹拌される。

(製造法-2)

$$(CH_{2})_{n} \xrightarrow{R_{8}} 0$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ Y \\ N \\ A \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ A \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ A \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ A \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ A \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ A \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ N \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ N \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ N \end{array}$$

$$(CH_{2})_{n} \xrightarrow{N} \begin{array}{c} X_{m} \\ N \\ N \\ N \end{array}$$

一般式 [1a] (式中、R₁、R₂、R₈、A、X、Y、m、nは前記と同じ意味を表す。)の化合物を常法に従い、ナトリウムボロハイドライドで還元することによって、アルコールである一般式 [1b] (式中、R₁、R₂、R₈、A、X、Y、m、nは前記と同じ意味を表す。)の化合物を製造することが出来る。又、一般式 [1b] (式中、R₁、R₂、R₈、A、X、Y、m、nは前記と同じ意味を表す。)の化合物は、常法に従い、例えば、"Protective Groups in Organic Synthesis"T.W.Greene編集、JOHN WILEY & SONS, N.Y.発行記載の方法で一般式 [1c] (式中、R₁、R₂、R₈、R₈、A、X、Y、m、nは前記と同じ意味を表す。)の化合物へ誘導することが出来る。

(製造法-3)

$$(CH_2)_{\scriptscriptstyle D} \stackrel{R_8}{\longrightarrow} 0$$

$$(CH_2)_{\scriptscriptstyle D} \stackrel{R_8}{\longrightarrow} 0$$

$$(CH_2)_{\scriptscriptstyle D} \stackrel{N}{\longrightarrow} \stackrel{R_8}{\longrightarrow} NOR_{\scriptscriptstyle 10}$$

$$(CH_2)_{\scriptscriptstyle D} \stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow} \stackrel{R_8}{\longrightarrow} NOR_{\scriptscriptstyle 10}$$

一般式 [la] (式中、R₁、R₂、R₈、A、X、Y、m、nは前記と同じ意味を表す。)の化合物を、常法に従い、例えば、"Protective Groups in Organic Synthesis"T. W. Greene編集、JOHN WILEY & SONS, N. Y. 発行記載の方法で、一般式 [8] (式中、R₁₀は前記と同じ意味を表す。)で表されるアルコキシアミン類と有機溶媒中で塩基の存在下カップリングさせ、一般式 [ld] (式中、R₁、R₂、R₄、R₈、R₁₀、A、X、Y、m、nは前記と同じ意味を表す。)の化合物を製造することが出来る。

反応に使用される塩基としては、水素化ナトリウム等の水素化金属類、炭酸カリウム等の炭酸塩類、トリエチルアミン等の有機塩基類であり、溶媒としては、 DMF、DMSO、THF、DME等が挙げられる。反応混合物は反応が完了するまで、0~90℃で撹拌される。

(製造法-4)

$$(CH_2)_n \longrightarrow (CH_2)_n \longrightarrow (CH_2)_n$$

一般式 $[1\ a]$ (式中、 R_1 、 R_2 、A、X、Y、m、n は前記と同じ意味を表す。)の化合物を、常法に従い、例えば、過マンガン酸カリウム等の酸化剤を用いて酸化し、一般式 $[1\ e]$ (式中、 R_1 、 R_2 、 R_8 、X、Y、m、n は前記と同じ意味を表す。)の化合物を製造することが出来る。

得られた一般式 [le] (式中、 R_1 、 R_2 、 R_8 、X、Y、m、n は前記と同じ意味を表す。)の化合物は、常法に従い、カルボニルジイミダゾールと反応させ、活性アシル化体である一般式 [lf] (式中、 R_1 、 R_2 、A、X、Y、W、m、n は前記と同じ意味を表す。)の化合物へ導くことが出来る。

次いで、得られた一般式 [1 f] (式中、R₁、R₂、A、X、Y、m、nは前記と同じ意味を表す。)の化合物は、アルコール類又はアミン類と反応させて一般式 [1 g] (式中、R₁、R₂、R₇、A、X、Y、m、nは前記と同じ意味を表す。)の化合物及び一般式 [1 h] (式中、R₁、R₂、R₁₆、R₁₇、A、X、Y、m、nは前記と同じ意味を表す。)の化合物を製造することが出来る

また、一般式 [1e] (式中、R₁、R₂、A、X、Y、m、nは前記と同じ意味を表す。)で表される安息香酸誘導体の塩として、リチウム、ナトリウム、カリウムなどのアルカリ金属、カルシウム、マグネシウムなどのアルカリ土類金属、アンモニウム塩等が挙げられるが、これらの塩は慣用の方法で製造し得る。

本発明化合物の構造は、IR, NMR、MS等から決定した。

【実施例】

以下に実施例をあげ、本発明を更に詳細に説明する。

[実施例1]

2-(4,6-ジメトキシ-2-ピリミジルオキシ)-6-モルホリノベンズアルデヒド(化合物番号1-14)の合成

6-モルホリノサリチルアルデヒド 3.28g、4.6-ジメトキシー2-メチルスルホニルピリミジン 3.44g、および炭酸カリウム 4.36gの DMF混合液(<math>50m1)を60℃で16時間撹拌した。反応終了後、水を加え、酢酸エチルで抽出した。有機層を水洗、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(溶出液ヘキサン:酢酸エチル=2:1)で精製して、黄色結晶の目的物 3.2gを得た。

[実施例2]

2-(4,6-ジメトキシ-2-ピリミジルオキシ)-6-モルホリノベンジル アルコール (化合物番号<math>1-24) の合成

2-(4,6-ジメトキシー2-ピリミジルオキシ)-6-モルホリノベンズ アルデヒド 0.4gのTHF(5ml)溶液に、0℃で水素化ホウ素ナトリウム 0.022gの水溶液(0.5ml)を滴下した。同温度で1時間撹拌後、水を加え、酢酸エチルで抽出した。有機層を水洗、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。得られた残留物をヘキサンで処理することにより目的物の結晶、0.36gを得た。

[実施例3]

2- (4, 6-ジメトキシー2-ピリミジルオキシ)-6-モルホリノ安息香酸 (化合物番号1-4)の合成

2-(4,6-ジメトキシー2-ピリミジルオキシ)-6-モルホリノベンズアルデヒド 1.93gのアセトン(40ml)溶液に、室温で過マンガン酸カリウム 0.883gの水溶液(20ml)を滴下した。滴下後、室温で20時間撹拌した。反応液を濾過助剤(セライト)で濾過し、得られた水溶液をエーテルで抽出し、未反応の原料を除いた。水層を塩酸でpH3に調整し、酢酸エチルで抽出した。有機層を水洗、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥

し、溶媒を減圧下留去した。得られた残留物をエーテル処理することにより淡黄 色結晶の目的物 0.15gを得た。

[実施例4]

2-(4,6-ジメトキシ-2-ピリミジルオキシ)-6-モルホリノベンゾニトリル (化合物番号1-34)の合成

2-ヒドロキシー6-モルホリノベンゾニトリル 0.12g、4.6-ジメトキシー2-メタンスルホニルピリミジン 0.128g、および炭酸カリウム 0.162gのDMF混合液(3ml)を80℃で16時間撹拌した。反応後、水を加え、酢酸エチルで抽出した。有機層を水洗、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製して、目的物の結晶 0.06gを得た。

以上の実施例を含め、本発明の化合物の具体例を以下の表1、表2および表3 に示す。 第 1 表

*a 物性値は融点、もしくは屈折率

								-		
No.	R ₁	R2	R₃	R_4	Xm	Y	n	. А	Z	物性値 ‡a
1-1	OMe	OMe	H	соон	Н	CH ₂	0	CR ₃	0	
.1-2	OMe	OMe	H	СООН	H	CH2	1	CR ₃	0	
1-3	OMe	OMe	H	COOH	H	CH ₂	2	CR ₃	0	
1-4	OMe	OMe	H	соон	H	S	1	CR ₃	0	171-172
1-5	OMe	OMe	H	COOH	H	S	1	CRs	S	152-154
1-6	OMe	OMe	H	COOH	H.	SO	1	.CR _a	0	
1-7	OMe	OMe	H	COOH	H	SO ₂	1	CR ₃	0	
1-8	OMe	OMe	H	СООН	H	ни	1	CR ₉	0	
1-9	OMe	OMe	H	СООН	H	CO	1	CR ₃	0	146-148
1-10	OMe	ОМе	H	COOH	H	. 0	1	N	0	165-168
1-11	OMe	0Me	H	COOH	H	0	1	CR ₃	0	172-174
1-12	OMe	Me	H	COOH	H	0	1	CR3	0	134-137
1-13	OPr'	OPr'	H	COOH	H	0	1	CR ₃	0	137-139
1-14	Me	Me	H	COOH	H	0	l	CR ₉	0	150-151
1-15	CF ₃	-OCH 2 C	H 2 ~	СООН	H	0	1	CR ₃	0	182-185
1-16	OBt	OBt	H	COOH	H	0	. 1	CR ₃	0	128-130
1-17	0Pr	0Pr	H	СООН	H	0	1	CR ₃	0	89-90
										•

第 1 表 (続き)

No.	Rı	R ₂	Ra	R ₄	Xm	Y	n	A	2	物性值 ‡a
1-18	OMe	OEt	H	COOH	Н	0	1	CR ₃	0	141-144
1-19	OMe	OMe	H	COOH	Н	S	1	CR ₃	0	163-165
1-20	OMe	-OCH 2	CH 2 -	СООН	H	0	1	CR ₃	0	104-105
1-21	OMe	OMe	H	СООН	Н	0	1	CR ₃	S	139-142
1-22	OMe	OMe	H	COOH	3-Me.5-Me	0	1	CR ₃	0	140-141
1-23	OMe	OMe		СООН	H	CH ₂	1	N	0	
1-24	OMe	OMe		СООН	Н	0	1	N	0	
1-25	OMe	OMe	H	СООН	Н	0	0	CR ₃	0	114-117
1-26	OMe	OMe	H	соон	Н С=	NOMe	0	CR ₃	0	149-152
1-27	OMe	OMe	H	СНО	Н	CH ₂	0	CR ₃	0	•
1-28	ОМе	OMe	H	СНО	Н	CH ₂	1	CR ₃	0	
1-29	OMe	-OCH ₂	CH 2 -	СНО	Н	CH2	1	CR ₃	0	
1-30	OMe	OMe	H	CHO	. Н	CH2	2	CR ₃	0	
1-31	OMe	OMe	H	CHO	·H	0	1	CR ₃	0	108-110
1-32	OMe	OMe	H	CHO	Н	S	1	CR ₃	0	
1-33	OMe	OMe	H	CHO	H	SO	1	CR ₃	0	
1-34	OMe	OMe	H	СНО	H	SO ₂	1	CR3	0	,
1-35	OMe	OMe	H	СНО	H	NH	1	CR ₃	0	
1-36	OMe	OMe	. Н	СНО	H	CO	1	CRa	0	
1-37	OMe	OMe	Н	СНО	3-Me, 5-Me	0	1	CR ₃	0	
1-38	OMe	OPr	Н	СНО	H	CH ₂	0	CR ₃	0	

第 1 表 (続き)

						-				
No.	R ₁	R ₂	Rs	R ₄	Xm	Y	n	A	Z	物性值 ‡a
1-39	OMe	OPr'	H	СНО	H	CH ₂	1	CR 3	0	
1-40	OMe	OMe		CHO	H	CH ₂	1	N	0	
1-41	OMe	OMe		СНО	Н	0	1	N	0	
1-42	0Me	OMe	H	СНО	H	CH2	1	CR ₃	0	
1-43	OMe	OMe	H	CH ₂ OH	H	CH ₂	1	CR ₃	0	
1-44	OMe	OMe	H	CH ₂ OH	H	CH ₂	0	CRs	0	
1-45	OMe ·	OMe	H	CH ₂ OH	H	CH2	i	CR ₃	0	
1-46	0Me	OMe	H	CH ₂ OH	Н	CH2	2	CR ₃	0	
1-47	OMe	OMe	H	CH ₂ OH	Н	0	1	CRs	0	174-177
1-48	OMe	OMe	H	CH 2 OH	Н	S	1	CR ₃	Ò	
1-49	OMe	OMe	H.	CH ₂ OH	H	S 0	1	CRs	0	
1-50	OMe	OMe	H	CH ₂ OH	Н	S0 ₂	1	CRs	0	•
1-51	OMe	OMe	H	CH2OH	. н	NH	1	CR ₃	0	
1-52	OMe	OMe	Н	CH2OH	H	CO	1	CR3	0	
1-53	OMe	OMe	H	CH ₂ OH	Me, 5-Me	0	1	CR ₃	0	
1-54	OMe	OMe	H	CH2OH	H	CH2	0	CRa	0	
1-55	OMe	OMe	H	CH ₂ OH	H	CH ₂	1	CR ₃	0	
1-56	OMe	OMe		CH2OH	H	CH2	1	N	0	
1-57	OMe	OMe		CH2OH	H	0	1	N	0	
1-58	OMe	OMe	H	CH2OH	H	CH ₂	1	CRs	S	
1-59	OMe	OMe	H	CH ₂ OH	H	0	1	CR 3	S	
1-60	OMe	OMe	H	CN	H	CH ₂	0	CR s	0	
1-61	OMe	OMe	H	CN	H	CH ₂	1	CR 3	0	
1-62	OMe	OMe	H	CN	H	CH ₂	2	CR ₃	0	
1-63	OMe	OMe	H	CN	Н	.0	1	CR s	0	128-130

第 1 表 (続き)

No.	Rı	R ₂	Rs	R ₄	Xm	Y	n	A	Z	物性値	*2
1-64	OMe	OMe	H	CN	Н	S	1	CR ₃	0		
1-65	OMe	OMe	H	CN	Н	SO	1	CR ₃	0		
1-66	OMe	OMe	H	CN	Н	SO ₂	1	CRs	0		
1-67	OMe	OMe	H	CN	Н	NH	1	CRa	0		
1-68	OMe	OMe	H	CN	H	CO	1	CRs	0		
1-69	OMe	OMe	H	CN	3-Me, 5-Me	0	1	CR ₃	0		
1-70	OMe	OPr i	H	CN	H	CH ₂	0	CR ₃	0		
1-71	OMe	OPr i	H	CN	H	CH ₂	1	CR ₃	0		
1-72	OMe	OMe	H	CONH2	Н	CH ₂	0	CR ₃	0		
1-73	OMe	OMe	H	CONH ₂	Н	CH ₂	1	CR ₃	0		
1-74	OMe	OMe	H	CONH ₂	Н	CH ₂	2	CR ₃	0		
1-75	OMe	OMe	H	CONH ₂	H	0	1	CR ₃	0		
1-76	OMe	OMe	H	CONH ₂	H	S	1	CR ₃	0		
1-77	OMe	OMe	H	CONH ₂	Н	SO	1	CR ₃	0		
1-78	OMe	OMe	H	CONH 2	H	SO ₂	. 1	CR ₃	0		
1-79	OMe	OMe	H	CONH ₂	Н	NH	1	N	0		٠
1-80	OMe	OMe	H	CONH ₂	H	CO	1	N	0		
1-81	OMe	OPr'	H	CONH2	3-Me, 5-Me	0	1	CR ₃	0		
1-82	OMe	OPr i	H	CONH2	0	CH ₂	0	CR3	0		
1-83	OMe	OMe	H	CONH ₂	0	CH ₂	1	CR3	0		
1-84	OMe	OMe		CONH ₂	Н	0	1	N	0 .		
1-85	OMe	OMe		CONH ₂	Н	CH ₂	1	N	0		
1-86	OMe	OMe	H	CONH 2	Н	CH ₂	1	CR ₃	S		
1-87	OMe	OMe	H	соон	Н	0	1	CR ₃	S		

		4a 物性値は融点、もしくは屈折率 n A Z 物性値 4a					154-156				112-113	
		融点、	0	0	0		0	0	0	0	0	0
		商 A	CR3	CR3	CR3	CR.	CR.	ck.	ck.	CR,	CR3	c _s
		物 性	-	-	-	-	-	-	-	-	-	-
	a.	# *	0	0	0	0	0	0	0	0	0	0
嵌	Z N N N	R ₂	H	≖.		æ	æ		æ	=	æ	H
**************************************	(CH ₂), S Xm 6 COR	œ	Me	Bt	Bn	CH2Ph-4-C1	imidazolyl	morpholino	piperidino	pyrrolidinyl	N(CH ₃) ₂	N (OMe) SO ₂ Me
		8	=	=	Н	æ	H	H	æ	æ	æ	=
		R ₂	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	OMe	ОМе
		R.	OMe	OMe	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	ОМе
		No.	2-01	2-03	2-03	2-04	2-02	2-06	2-07	2-08	2-09	2-10

				第2数(7	(しんな)					
No.	ж	R ₂	<u>م</u>	~	Хш	Y	=	¥	2	物性值 #8
2-11	OMe	OMe	=	N=C(Me)N(Me) ₂	Н	0	-	CR3	0	
2-12	OMe	0Me	=	NHCH2 CH2 OMe	×	0	-	CR3	0	
2-13	OMe	OMe	H	NHCOMe	H	0		CR.	0	
2-14	OMe	0Me	Ħ	NHCONHBt	#	0	-	CR _s	0	
2-15	OMe	OMe	=	NHCOOMe	æ	0	-	CR3	0	
2-16	ОМе	OMe	==	NHNH2	æ	0	-	CR3	0	
2-17	ОМе	0Me	==	NHOCH2CH=CH2	æ	0		CR3	0	
2-18	ОМе	OMe	==	NHOCH ₂ COOMe	×	0	-	CR3	0	
2-19	OMe	OMe	Ħ	NHOH	H	0	-	CR ₈	0	
2-20	OMe	OMe	=	NHOMe	æ.	0		CR3	0	
2-21	OMe	OMe	×	NHPh	· #	0		CR3	0	
2-52	OMe	OMe	×	NHSO ₂ CF ₃	æ	0	-	CR3	0	86-88
2-23	OMe	OMe	н	NHSO ₂ CH ₃	æ	0		CR3	0	189
2-24	ОМе	OMe	Ħ	NHSO ₂ Ph	H	0	-	CR3	0	63-66
2-52	ОМе	OMe	æ	NHSO2Ph-4-C1	=	0		CR3	0	
2-26	ОМе	OMe	æ	NMe (OMe)	æ	0	-	CR3	0	
2-27	OMe	0Me	×	O(CH2CH2O)2CH3	æ	0	-	CR3	0	81-83
2-28	o Me	OMe	==	O-N=C(C2Hs)2	==	0	-	CR3	0	115-116
2-29	OMe	OMe	æ	O-N=C(CH ₃)(CH ₂) _e CH ₃	н	0	-	CR3	0	1.5145(23)

				第2数(力	(しんな)					
No.	R _i	R2	R ₃	æ	Хш	γ	=	A	2	物性值 ‡a
2-30	OWe	OMe	Ŧ	O-N=C(CH ₃)C ₂ H ₅	Н	0	-	8	0	ang.
2-31	OMe	OMe	=	0-N=C(CH ₃)Ph	×	0	-	ಜ್ಞ	0	54-57
2-32	ОМе	OMe	=	0-N=C(Pr-i);	×	0	-	CR.	0	un 8
2-33		OMe	=	0-N=CHPh	=	0		CR3	0	137-138
2-34		OMe	=	OBn .	=	0	_	CR3	0	<i>11-19</i>
2-35		OMe	=	OBn	×	0	-	z	0	105-106
2-36		Me	×	. ugo	æ	0	-	క్ష	0	82-84
2-37	OPr-i	OPr-i	Ħ	0gu	×	0	-	క ్త	0	103-105
2-38		Me	×	OBn	×	0	-	CR3	0	68-71
2-39		OCH 2 CH 2 -		0Bn	≠	0	-	CR3	0	Bun
2-40		OMe	=	OBu-i	×	0	-	CR.	0	
2-41		0Me	=	OBu-n	, #	0	-	CR3	0	
2-42		ОЖе	×	S-ngo	#	0	-	CR3	0	
2-43	OMe	ОЖе	=	OBu-t	=	0	-	CR3	0	
2-44		OMe	=	OCH (Bu-i) OCOOC2Hs	×	.	-	CR3	0	wn8
2-45		0Me	=	OCH(CH3)OCOBu-t	×	0	—	CR3	0	125-127
2-46	OMe	OMe	×	OCH(CH3)OCON(C2H3)2	==	0	-	ж ж	0	114-117
2-47	OMe	OMe	×	0CH(CH3)0C00C2H5	æ	0	-	CR.	0	115-116
2-48	OMe	OMe	=	0CH(CH3)0C00C4H3	×	0	_	CR3	0	93-95
2-49	Olike	ОМе	×	0CH(CH3)0C00CH3	×	0	-	CR3	0	81-83

MX H
: EE:
I
Œ
Œ
Ħ
æ
₹~.
pc
_

				第 2 被	(つづき)	(¥)					
No.	R.	R ₂	R ₃	R	Xm	Χm	V	a l	Ą	2	物性值 #8
2-70	OMe	OMe	H	OCH2C00Bu-t	H	н	0	-	CR,	0	
2-71	OMe	OMe .	н	OCH 2 COOH	æ	Ħ	0	-	CR3	0	167-169
2-72	OMe	OMe	H	OCH 2 COOMe	==	×	0	1	CR,	0	94-97
2-73	OMe	OMe	н	OCH ₂ N(C ₂ H ₅) ₂	·==	×	0		CR3	0	B um
2-74	OMe	OMe	×	OCH2OCOBu-t	×	×	0	-	CR,	0	98-100
2-75	Me	Me	×	OCH2OCOBu-t	æ	×	0	-	CR3	0	84-86
2-76	OMe		×	OCH2OCOBu-t	=	 ==	0	-	CR3	0	90-91
2-77	OPr-i		æ	OCH ₂ OCOBu-t	×	×	0	-	CR _s	0	88-90
2-78	ج چ			OCH2OCOBu-t	==	×	0	-	CR3	0	ang
2-79	OMe	0Me	=	OCH 2 OCOBu-t	×	3-CH ₃ , 5-CH ₃	0	-	CR3	0	1, 5045(24)
2-80	OEt	OBt	H	OCH2OCOBu-t	=	×	0	-	CR3	0	16-79
2-81	OPr	OPr	×	0CH20C0Bu-t	=	Ħ	0	_	CR3	0	1.5040(23)
2-83	Æ	0Bt	×	OCH20C0Bu-t	=	Ħ	0	-	CR3	0	1.5149(21)
2-83	Me	OPr	×	OCH2OCOBu-t	Ħ	==	0	-	CR3	0	1.5118(21)
2-84	Me	NMe ₂	H	OCH2OCOBu-t	=	=	0	-	CR3	0	ans
2-85	Æ	NBt 2	×	OCH2OCOBu-t	=	×	0	-	CR3	0	gnm
2-86	OMe	OMe	×	OCH2OCOBu-t	=	=	0	-	CR3	0	81-82
2-87	Me	OC2H4OMe	H	OCH2OCOBu-t	=	æ	0	-	cz.	0	104-106
2-88	Æ	OMe	×	OCH2OCOBu-t	×	×	0	-	CR3	0	1. 5220(24)
2-89	OMe	-0CH2CH2-		OCH2OCOBu-t	×	=	0		CR3	0	рождег

. :	,		(2000年					ı	;
No.	κ.	R ₂	R3	R	Xm	γ.	=	¥.	2	物性值 ‡a
2-90	OMe	Oxe	H	0CH20COBu-t	H	S	-	ж	0	1.5158(23.5)
2-91	OMe	OMe	×	OCH ₂ OCOBu-t	=	0	-	CR3	တ	92-94
26-2	OMe	OMe	æ	0CH20C0Bu-t	==	တ		CR4	တ	81-84
2-93	OMe	OMe	=	OCH2OCOC(C2H5) 2Ph(4-C1)	=	0		CR,	0	114-116
2-94	OMe	OMe	×	OCH20COC(CH3)2C2H5	==	0		CR3	0	74-76
2-95	OMe	OMe	×	OCH2OCOC(CH3)2CH2OPh	=	0		CR3	0	@n8
3-96	OMe	OMe	×	OCH2 OCOC (CH8) 2 CH2 SCH8	=	0		CR3	0	70-72
2-97	OMe	OMe	×	OCH2OCOC(CH3)2CH2SO2CH3	=	0	-	CR3	0	En 8
2-98	OMe	OMe	=	OCH2OCOC(CH3)2CH2SO2Ph	=	0	-	CR ₃	0	₩n8
5- 99	OMe	OMe	=	OCH2OCOC(CH3)2CH2SPh	×	0	-	CR _s	0	wn8
2-100	OMe	OMe	×	OCH20COC(CH3)20Ph	æ	0		CR ₃	0	mn8
2-101	OMe	OMe	Ħ	OCH2OCOC(CH3)20Ph(2-C1)	Œ	0		CR3	0	⊞n8
2-102	OMe	OMe	Œ	OCH20C0C(CH3)2Ph	Ħ	0	-	CR,	0	un 8
2-103	OMe	OMe	=	OCH20COC(CH3)2Ph(2-C1, 4-C1)	E	0		CR3	0	153-154
2-104	OMe	OMe	Ħ	OCH2 OCOC (CH3) 2Ph (4-OCH3)	E	0		CR3	0	un8
2-105	OMe .	OMe	=	OCH20COC(C1)2CH8	æ	0	-	CR3	0	wng
2-106	OMe	OMe	Œ	OCH ₂ OCOC (Ph) ₂ CH ₃	æ	0	-	CR3	0	ung
2-107	OMe	OMe	×	OCH20C0C2Hs	=	0		CR3	0	117-119
2-108	OMe	OMe	=	OCH2OCOCH(C2H5)Ph	=	0	-	CR.	0	Bum
2-109	OMe	OMe	=	OCH2OCOCH(CHs)Ph	=	0		CR3	0	un 8

	物性值 ‡a	ang	ang	an8	88-90	136-138	83-85	127-128	04-89	124-126	80-85	114-116	73-75	64-65	Bum	76-78	136-138	92-94	130-131	118-121	120-121
	2	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
	Ä	CR3	CR3	ಜ್ಜಿ	CR ₃	ж 3	CR,	ck.	CR3	cg.	CR3	c _k	cg.	CR3	CR ₃	CR3	cg.	CR3	CR3	CR3	CR3
	п	-		-	-	-	_	-		-	-	-	-	_	-	_	-	-	-	-	-
٠.	Y	0		0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
₩ ₩	Хm	H	=	=	Ħ	==	=	=	=	=	Ħ	Ħ	=	#	==	H	H	×	==	=	×
第2数(つづき)	R	OCH2OCOCH (OCH3) Ph	OCH2OCOCH(Pr-i)Ph(4-C1)	OCH 2 OCOCH = CHCOOC 2 H 5	OCH2OCOCH2CH=CH2	0CH2 0COCH3	0CH20C00CH3	OCH 2 OCOPh	OCH2OCOPh(2-Bn)	OCH2OCOPh(2-CF3, 6-CF3)	· OCH2OCOPh(2-CF3)	OCH2OCOPh(2-CH3, 6-CH3).	OCH2OCOPh(2-CH3, 6-CH3)	OCH ₂ OCOPh(2-CH ₃ , 6-CH ₃)	OCH20COPh(2-CH3, 6-CH3)	OCH20COPh(2-CH3, 6-CH3)	OCH2OCOPh(2-CH3)	OCH20COPh(2-C1, 3-C1, 6-C1)	OCH20COPh(2-C1, 4-C1, 6-C1)	0CH ₂ 0COPh(2-C1, 4-F)	OCH2OCOPh(2-C1, 4-SCH3)
	R3	=	=	Ħ	==	==	=	=	=	Ħ	=	=	=	==	==	=	=	Ħ	==	==	=
	Rz	ОМе	OMe	OMe	OWe	OMe	ОМе	ОМе	OMe	OMe	OMe	ОМе	OMe	OMe	ОМе	OMe	OMe	OMe	OMe	ОМе	OMe
	R,	ОМе	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe	OMe.	OMe	OMe	OMe	OMe
	No.	2-110	2-111	2-112	2-113	2-114	2-115	2-116	2-117	2-118	2-119	2-120	2-121	2-122	2-123	.2-124	2-125	2-126	2-127	2-128	2-129

				第 2 板 (りがき)	(水) (水)					
No.	ž.	2	გ.	2	Хш	Y	=	٧.	2	物性值 *a
2-130	OWe	OMe	=	0CH ₂ 0COPh(2-C1, 6-C1)	H	0		CR3	0	139-141
2-131	OMe	OMe	æ	OCH ₂ OCOPh(2-C1, 6-F)	Ħ	0	-	CR _s	.0	99-100
2-132	OMe	OMe	×	0CH20COPh(2-C1)	==	O	-	CR3	0	109-111
2-133	ONe	OMe	æ	OCH20C0Ph(2-C00Bn)	=	0	-	ಜ್ಞ	0	B C III
2-134	OMe	ОМе	æ	OCH ₂ 0C0Ph(2-F, 6-F)	=	0	.=	CR3	0	121-123
2-135	OMe	OMe	æ	OCH ₂ OCOPh(2-Me, 4-Me, 6-Me)	æ	0	-	CR3	0	95-97
2-136	ONe	OMe	=	OCH20COPh(2-0Bn, 6-0Bn)	æ	0.	-	CR3	0	142-144
2-137	OMe	OMe	æ	OCH20COPh(2-0C2H5, 6-0C2H5)	÷	0	-	£	0	68-70
2-138	OWe	OMe	æ	OCH20COPh(2-0C4Hs, 6-0C4Hs)	==	0	-	CR3	0	1. 5792(25)
2-139	OWe	OMe	×	0CH20COPh(2-0C0CH3)	=	0		CR3	0	138-140
2-140	OMe	OMe	×	0CH20COPh(2-0H, 6-0H)	=	0	-	CR3	0	120-122
2-141	OMe	OMe	æ	OCH20COPh(2-0Me, 6-0Me)	=	0	-	cz,	0	146-147
2-142	OMe	OMe	×	OCH20COPh(2-OPr-i, 6-OPr-i)	=	0	-	cz,	0	1, 5230(23)
2-143	OMe	OMe	æ	0CH ₂ 0C0Ph(2-Ph)	=	0	—	CR3	0	74-76
2-144	OMe	OMe	×	OCH2OCOPh(2-Pr-i)	=	0	_	CR3	0	. 06-68
2-145	OMe	OMe	Ħ	OCH2OCOPh(3-NH2)	==	0	$\overline{\cdot}$	CR3	0	129-131
2-146	OMe	OMe	×	OCH2OCOPh(3-NHCOCH3)	=	Ó	-	CR _s	0	89-99
2-147	OMe	OMe	×	OCH2OCOPh(4-Bu-t)	==	0	-	ಜ್ಞ	0	113-115
2-148	OMe	ОМе	H	OCH2OCOPh(4-NH2)	æ	0	-	CR3	0	167-169
2-149	OMe	OMe	Ħ	OCH ₂ OCOPh (4-NHCOCH ₃)	==	0	-	CR3	0	178-180

OME OOME OOME OOME OOME OOME OOME OOME					第2数(うんが)	₩0 •					
OME OME H OCCH2OCOPh (4-NHCONHC2H6) H OME H OCH2OCOPh (4-NHCOOC2H6) H OME OME H OCH2OCOPh (4-NHCO H OME OME H OCH2OCOPh (4-Ph) H OME H OCH2OCPh (4-Ph) H H OME H OCH2OCPh (4-Ph) H H OME H OCH2OCPh (4-Ph) H H OME H OCH2SCHS H H OME H OME H <	No.	R ₁	R2	Rs	æ	Xm	Y	=	¥	7	物性值 ‡a
OME H OCH2OCOPh(4-NHCOOC2H5) H OME H OCH2OCOPh(4-NMe2) H OME H OCH2OCOPh(4-DH3) H OME H OCH2OCOPh(4-DH3) H OME H OCH2OCPh(4-Ph3) H OME H OME H </td <td>2-150</td> <td>OMe</td> <td>OMe</td> <td>=</td> <td>OCH2OCOPh(4-NHCONHC2H5)</td> <td>н</td> <td>0</td> <td>1</td> <td>CR3</td> <td>0</td> <td>66-70</td>	2-150	OMe	OMe	=	OCH2OCOPh(4-NHCONHC2H5)	н	0	1	CR3	0	66-70
OME H OCH2OCOPh(4-NMe2) H OME H OCH2OCOPh(4-NMe2) H OME H OCH2OCOPh(4-Ph) H OME H OCH2OCH2Ph-4-C1 H OME H OCH2SPh-4-C1 H OME H OCH2SPh-4-C1 H OME H OCH2SPh-7-C1 H OME H OCH2SPh-7-C1 H OME H OMEx-C H OME H OME H OME	2-151	OMe	OMe		OCH2OCOPh(4-NHCOOC2H5)	Ħ	0	-	CR3	0	133-135
OME H OCH2OCOPh(4-OCH3) H OME H OCH2OCOPh(4-Ph) H OME H OCH2OME H OME OME H OCH2SCH3 H OME H OCH2SCH3 H H OME H OCH2SPh-n H H OME H OCH2SPr-n H H OME H OCH2SPr-n H H OME H OCH2SPr-n H H OME H OCME H H OME H OCME H H	2-152	OMe	OMe	æ	OCH2OCOPh(4-NMe2)	æ	0	-	CR.	0	151-153
OME H OCCH2OCOPh (4-Ph) H OME H OCH2OME H OME H OCH2Ph-4-C1 H OME H OCH2SCH3 H OME H OCH2SCH3 H OME H OCH2SPh-n H OME H OMEx-n H OME H OME H <	2-153	OMe	OMe	æ	OCH20C0Ph(4-0CH3)	=	0	-	CR3	0	125-126
OME H OCCH2OME H OME H OCCH2Ph-4-C1 H OME H OCCH2SCHs H OME H OCCH2SPh H OME H OME H	2-154	OMe	OMe	æ	OCH20COPh(4-Ph)	æ	0	-	cr.	0	166-168
OME H OCH2Ph-4-C1 H OME H OCH2SCH3 H OME H OCH2SPh H OME H OCH2SPr-n H OME H OMEx-c H OME H OME H M OME H OME M OME H OME	2-155	OMe	ОМе	×	OCH2OMe	×	0	-	CR,	0	
OME H OCH2SCH3 H OME H OCH2SPh H OME H OCH2SPrn H OME H OCH2SPrn H OME H ORE H OME H OME H	2-156	0Me	OMe	æ	OCH2Ph-4-C1	×	0		CR3	0	
OME H OCH2SPh H OME H OCH2SPr-n H OME H OBt H OME H OHEX-c H OME H OHEX-n H OME H OME H	2-157		OMe	×	OCH2 SCH3	=	0		ಜ್ಞ	0	1, 5606(25)
OME H OCH ₂ SPr-n H OME H OBt H OME H OHex-c H OME H OHex-n H OME H OMe H	2-158		OMe	æ	OCH ₂ SPh	Ħ	0		CRs	0	97-99
OMe H OBt H OMe H OHex-c H OMe H OHex-n H OMe H OMe H	2-159		OMe	æ	OCH ₂ SPr-n	=	0	-	CR3	0	107-109
OMe H OHex-c H OMe H OHex-n H OMe H OMe H	2-160		OMe	Ŧ	OBt	#	0	-	CR3	0	117-118
OMe H OHex-n H OMe H OMe H	2-161		OMe	Ŧ	OHex-c	æ	0	_	CR3	0	
OMe H OMe H	2-162	OMe	OMe	=	OHex-n	æ	0	-	CR3	0	
OMe H OMe H	2-163	OMe	OMe	=	OMe	=	0	-	CR3	0	135-136
OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H	2-164	OMe	OMe	=	OMe	æ	CH2	0	CR3	0	
OMe H OMe H OMe OMe H OMe H OMe OMe H H H	2-165		OMe	æ	ОМе	æ	CH2		CR3	0	
OMe ONe H OMe H	2-166		OMe	æ	OMe	æ	œ.	2	ಜ್ಜ	0	
OMe H OMe H	2-167	OMe	OMe	æ	OMe	æ	တ		ಜ್ಞ	0	
	2-168	OMe	OMe	×	ОЖе	æ	S	-	CR3	0	

Rs	2 物性值 #a
H	c
H	c
E	c
æ	c
=	<u>د</u>
) NO H	
H DNCW	 C
H ON CW	c
H ON=C	0 98-101
H ON=C(Pr-n),	0
NO H	0 0
10 H	000
NO H	0000
H ONH	•
NO H	00000
H OF	000000
H OP1	0000000
н 00	
æ	000000000
S H	CR ₃ 0 98-101 CR ₃ 0 CR ₃ 0 CR ₃ 0 CR ₃ 0 CR ₃ 0 CR ₃ 0 123-124 CR ₃ 0 98-100 CR ₃ 0 98-100

	A Z 物性值 *a	0	0	0	.R _s 0 185(dec)	0	OR 0	CRs O	crs o	0	0	0	0	0	CRs 0 1.5422(25)	တ	0	0	CR _s 0 88-89	c	•
	u	1 C	-		-	_	_	_		_	_	-	-	-	-	-	_	_	_	-	4
	Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	v	9
(つんき)	Χm	æ	Ħ	×	, ,	×	==	=	×	×	#	æ	≠	×	=	=	×	==	×	ח	=
第2股(œ	SCH2CH2CH2C1	SEt	ON(C.H.) Bn	ON(CH ₈)	! *	*	£.	*	* 5	9#	L*	**) 6 ;	*10	*10	*11	*15	1 1		£13
	بر د	H	: ==	: =	: =	: ==	==	=	Ħ	×) pc	: =	: =	: =	: =	=	: =	: .=	: =	= :	=
	22	OMe	OWe	OW O	a de	OMe	OMe	OMe	OMe	OMe	OMe	a Mil	2 2		OM O	JW J	OMo		o o		OMe
		§							_		1			_							OMe
	Š.	9-180	9-100	9-101	9-109	2-193	2-194	2-195	2-196	2-197	2-198	2-100	000-0	2-201	606-6	202-6	702 2	#04 G	0000	007-7	2-207

	e5 ##	_	0	=			(38)	3		3		51 (23)	(23)	(23) (23) (10	(23) (23) 10 10	51 (23) (23) 10 10 5	(23) (23) (23) (23) (20) (20)	(23) (23) (23) (23) (27)	(23) (23) (23) (23) 5 (27)
:	物性値	78-80	108-1]	120-15	91-92	73-7		1.5835	1. 5835 (3) 80-82	1. 5835 80-8% 149-1	1. 5835 (80 - 83 149 - 13 54 - 53	1. 5835 (80 - 82 149 - 19 54 - 51 1. 5337	1. 5835 (32) 80-82 149-151 54-55 1. 5337 (23) 108-110	1. 5835 (80-8% 149-19 54-51 1. 5337 110-1	1. 5835 (80-8% (149-14 (54-51 (1. 5337 (108-1 (110-1 (138-1 (1	1. 5835 (32) 80-82 149-151 54-55 1. 5337 (23) 108-110 110-112 138-140	1. 5835 (32 80-82 149-151 54-55 1. 5337 (23 108-110 110-112 138-140 73-75	1. 5835 (32) 80-82 149-151 54-55 1. 5337 (23) 108-110 110-112 138-140 73-75 118-120 1. 5832 (27)	1. 5835 (80-82 149-19 1. 5337 (1. 5337 (1. 110-1) 1. 118-19 1. 5832 1. 5832
	7	0	0	0	0	0	(0	0 0	000	0 0 0	0 0 0 0	00000						
	۷	CR ₃	CR3	CR.	CR3	CR3	6	ÇĶ	g g	£ £ £	* * * * * * * * * * * * * * * * * * *	£ £ £ £		E E E E E E E E E E E E E E E E E E E	CR C	CR3 CR3 CR3 CR3 CR3 CR3	CR3 CR3 CR3 CR3 CR3 CR3	CR3 CR3 CR3 CR3 CR3 CR3 CR3	CR3 CR3 CR3 CR3 CR3 CR3 CR3
	=	_	-			-													
	-	0	0	0	0	0		0	0 0	000	0000	00000	00000	000000	0000000	00000000	00000000	0000000000	0000000000
χυ Σ	χm	×	=	=	H	=		=	= =	= =									
(J) 08					•														
ĸ											·	·	· .	· .	· .		· .	•	· .
? Æ	~	14	‡ 15	116	17	118		£19	r 19 r 20	+19 +20 +21	#19 #20 #21	#19 #20 #21 #22	#19 #20 #21 #23 #24	#19 #21 #23 #24 #25	#19 #22 #23 #24 #25	#22 #23 #24 #25 #25 #27	#19 #22 #24 #25 #25 #26 #27	119 120 121 123 124 125 126 127 128	#19 #21 #23 #24 #25 #26 #28 #29
		•	**	•	-	•													
	Rs						_												
	~	=	×	=	==	==	:	: ==	: = =	: = = =	: = = = =	: = = = = =	: = = = = =	: = = = = = =	: = = = = = = =	: = = = = = = = = = = = = = = = = = = =	: = = = = = = = = = = = = = = = = = = =	: = = = = = = = = = = = = = = = = = = =	: = = = = = = = = = = = = = = = = = = =
	₹ 2	0Me	OMe	OMe	OMe	OMe		OMe	OMe OMe	оме Оме Оме	OMe OMe OMe	OMe OMe OMe OMe	OMe OMe OMe OMe	OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe OMe
	₹ -	OMe	OMe	OMe	OMe	OMe		OMe	OMe OMe	OMe OMe OMe	OMe OMe OMe	OMe OMe OMe	ОМе ОМе ОМе ОМе	OMe OMe OMe OMe	ONE ONE ONE ONE	ONE ONE ONE ONE ONE	ONE ONE ONE ONE ONE	OMe OMe OMe OMe OMe OMe OMe	ONE ONE ONE ONE ONE ONE
	No.	2-208	602-	-210	2-211	2-212		213	-213	-213 -214 -215	213 214 215 216	2-213 2-214 2-215 2-216 2-217	-213 -214 -215 -216 -217	-213 -214 -215 -216 -217 -218	-213 -214 -215 -216 -217 -218 -219	-213 -214 -215 -216 -217 -217 -218 -219 -220	-213 -214 -215 -216 -217 -218 -219 -220	-213 -214 -215 -216 -217 -218 -219 -220 -221	2-213 2-214 2-215 2-216 2-217 2-218 2-219 2-220 2-220 2-221 2-223 2-223

R ₁	R ₂	R s	2 4	Χm	X	= .	٧.	2	物性値 *a
2-226 OMe	OMe	⊨	*32	æ	0	-	CR ₃	0	88-90
	OMe	æ	*33	===	0	-	CR3	0	84-85
2-228 OMe	OMe	==	\$ 34	:= :	0	-	CR3	0	un 8
	OMe	=	* 35	æ	0	~	CR3	0	57-59
	OMe	=	* 36	=	0	-	CR3	0	105-107
	OMe	æ	*37	æ	0	-	CR,	0	183-185
2-232 OMe	OMe	æ	*38	æ	0	-	CR3	0	123-125
	OMe	æ	*39	æ	0	~	CR3	0	78-79
	OMe	æ	*40	=	0	-	CR ₃	0	157-159
	ОМе	æ	*41	.	0		CR3	0	38-40
2-236 OMe	OMe	==	* 42	×	0	-	S.	0	88-98

	*4 0 0 0 · · · · · · · · · · · · · · · ·	0 - N - O	*12 0 CH ₃ C1	#16 CHs
数(つんや)	£3	*7 0CH2CH2	*111 0 0 0	*15
無	*2	→ N − 0	*10 CH ₃ CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*114
		.5 N − 0	0 - N - CH 3	#13

	00-00	#24 0 NHCOPh	*28 CH3 0 0
第 2 扱 (うんか)	*19	#23 0 0 0 0	*27 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	#18 0 0	22#	#26 0 0 0 0 0
	#17 0 CFs	#21 0 0	*25 0 0

	*32 0 0 0 CH s 0	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*40 0 CH ₈ N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
扱 (つづき)	#31 0 0 0 0 CH ₈ CH ₈	#35 CH _s	#39 0 0	
* 3 無	CH ₃	*34 CHs	#38 0 CH ₃ N	*42 - C1 0
	CH ₃ 0 N O CH ₃ 000C	#33	*37 0 0	141

‡a 物性値は融点、もしくは屈折率

No.	R ₁	R ₂	Rs	R	Xm	Y	ħ	A	Z	物性值‡a
3-1	0Me	OMe	Н	COMe	Н	0	1	CR3	0	
3-2	OMe	OMe	H	CORt	H	0	1	CR3	0	
3-3	OMe	0Me	H	COPr-n	H	0	1	CR3	0	
3-4	0Me	OMe	H	COPr-i	H	Ó	1	CR3	0	
3-5	0Me	OMe	H	COBu-n	H	0	1	CR3	0	
3-6	OMe	OMe	H	COBu-i	H	0	1	CR3	0	
3-7	OMe	OMe	H	COBu-s	H	0	1	CR3	0	
3-8	OMe	OMe	H	COBu-t	H	0	1	CR3	0	
3-9	OMe	OMe	H	COHex-n	H	0	1	CR3	0	
3-10	OMe	OMe	H	COHex-c	H	0	1	CR3	0	
3-11	OMe	OMe	H	COC ₈ H ₁₇	H	0	1	CR3	0	
3-12	0Me	0Me	H	COBn	H	Ó	1	CR3	0	
3-13	OMe	OMe	H	COCH ₂ Ph-4-Cl	H	0	1	CR3	0	
3-14	0Me	OMe	H	COCH ₂ Ph-4-OMe	H	0	1	CR3	0	
3-15	OMe	OMe	H	COCH2Ph-4-Me	H	0	1	CR3	0	
3-16	OMe	OMe	H	COCH ₂ Ph-2-C1-4-C1	H	0	1	CR3	0	
3-17	OMe	OMe	H	COPh	H	0	1	CR3	0	
3-18	OMe	OMe	H	COPh-2-C1	H	0	1	CR3	0	
3-19	OMe	OMe	H	COPh-4-C1	H	0	1	CR3	0	

				第 3 表	(続き)					
No.	R ₁	R2	Ra	R	Xm	Y	ח	A	Z	物性值‡a
3-20	OMe	OMe	H	COPh-2-C1-4-C1	Н	0	1	CR3	0	
3-21	OMe	OMe	H	COPh-2-C1-6-C1	Н	0	1	CR3	0	
3-22	OMe	OMe	H	COPh-4-Me	Н	0	1	CR3	0	
3-23	OMe	OMe	H	COPh-4-CF ₃	Н	0	1	CR3	0	
3-24	OMe	OMe	H	COPh-4-NO2	H	0	1	CR3	0	
3-25	OMe	OMe	H	COPh-4-OMe	H	0	1	CR3	0	
3-26	0Me	OMe	H	COPh-4-F	Н	0	. 1	CR3	0	
3-27	OMe	OMe	H	COPh-2-Me-6-Me	Н	0	1	CR3	0	
3-28	OMe	0Me	H	COPh-2-Me-4-Cl	H	0	1	CR3	0	
3-29	OMe	OMe	H	CONHEt	H	0	1	CR3	0	
3-30	OMe	OMe	H	CONHPh	Н	0	1	CR3	0	
3-31	OMe	OMe	H	CONHPh-3-C1	Н	0	1	CR3	0	
3-32	OMe	OMe	H	CONHPh-4-Br	Н	0	1	CR3	0	
3-33	OMe	OMe	H	COOMe	Н	0	1	CR3	0	
3-34	0Me	OMe	H	COOBu-t	H	0	1	CR3	0	
3-35	OMe	OMe	H	CSNHPh	H	0	1	CR3	0	
3-36	OMe	OMe	H	CSNHPh-4-CI	H	0	1	CR3	0	
3-37	OMe	OMe	H	COCH ₂ C1	H	0	1	CR3	0	
3-38	OMe	OMe	H	COCHC ₁₂	H	0	1	CR3	0	
3-39	OMe	OMe	H	COCH ₂ OMe	H	0	1	CR3	0	
3-40	OMe	OMe	H	COCH ₂ SMe	H	0	1	CR3	0	
3-41	OMe	OMe	H	COCH ₂ SO ₂ Me	H	0	1	CR3	0	
3-42	OMe	OMe	H	SO₂Me	Н	0	1	CR3	0	
3-43	OMe	OMe	H	SO ₂ Ph	H	0	1	CR3	0	
3-44	OMe	OMe	H	SO2NHMe	H	0	1	CR3	0	
3-45	OMe	OMe	H	COCF ₃	H	0	1	CR3	0	
3-46	OMe	OMe	H	CONH ₂	Н	0	1	CR3	0	
3-47	OMe	OMe	H	Me	Н	0	1	CR3	0	
3-48	OMe	OMe	H	Et	Н	0	1	CR3	0	
3-49	OMe	OMe	H	Pr-n	H	0	1	CR3	0	
3-50	OMe	OMe	H .	Pr-i	H	0	1	CR3	0	

				第	3	表	(続き)					
No.	R ₁	R ₂	Rs		R		Xm	Y	n	A	Z	物性値‡a
3-51	OMe	ОМе	H		Bu-n		Н	0	1	CR3	0	•
3-52	OMe	OMe	H	1	Bu-i		H	0	1	CR3	0	
3-53	OMe	OMe	H	. 1	Bu-s		H	0	1	CR3	0	
3-54	ОМе	OMe	H	J	Bu-t		H	0	1	CR3	0	
3-55	0Me	OMe	H	ì	Hex-	n	Н	0	1	CR3	0	
3-56	OMe	0Me	H	ì	Hex-	С	H	0	1	CR3	0	
3-57	OMe	OMe	H	Cl	H ₂ OM	e	H	0	1	CR3	0	
3-58	OMe	0Me	H	Cl	H ₂ SM	le	Н	0	1	CR3	0	
3-59	OMe	OMe	H	CH	₂ SO ₂	Me -	H	0	1	CR3	0	
3-60	ОМе	0Me	H	CH2	CH ₂ O	Me	H	0	1	CR3	0	
3-61	ОМе	OMe	H	C	H ₂ CN	!	H	0	1	CR3	0	
3-62	OMe	OMe	H	·	Bn		H.	0	1	CR3	0	
3-63	OMe	OMe	H	CHz	Ph-4	-C1	H	0	1	CR3	0	,
3-64	ОМе	OMe	H	CH ₂	Ph-4	-OMe	H	0	1	CR3	0	
3-65	OMe	OMe	H	CH ₂	Ph-4	-Me	H	0	1	CR3	0	
3-66	OMe	OMe	H		CHO		H	0	1	CR3	0	
3-67	OMe	OMe.	H		*1		H	0	1	CR3	0	
3-68	ОМе	OMe	H	CH ₂	CH=C	H 2	H	0	1	CR3	0	
3-69	OMe	ОМе	H	CH	₂ CCH	Ī	H	0	1.	CR3	S	
3-70	0Me	OMe	H	CH 2 C	H=CH	IC I	H	0	1	CR3	S	
3-71	OMe	OMe	H		* 2		H	0	1	CR3	S	
3-72	OMe	OMe	Н	CH2	COOM	le	H	0	1	CR3	S	

CH(Me)COOMe

COMe

COMe

COMe

3-73 OMe OMe H

OMe H

0Me

3-74 OMe

3-75 OMe

3-76 OMe OMe

1 CR3 S

N

1 . N

1

CR3 S

0

S .

H

H

H

0

0

0

本発明化合物は畑作条件で、土壌処理、茎葉処理のいずれの方法でも高い除草 活性を示し、アキノエノコログサ、イチビ、イヌビユ、オナモミ等の各種畑雑草 に有効で、トウモロコシ、ムギ、大豆、ワタ等の作物に選択性を示す化合物も含 まれている。

本発明化合物は、作物、観賞用植物、果樹等の有用植物に対し、生育抑制作用等の植物成長調節作用を有するものも含まれている。

また、本発明化合物は、ノビエ、タマガヤツリ、オモダカ、ホタルイ等の各種水田雑草に対し、優れた殺草効力を有し、イネに選択性を示す化合物も含まれている。

更に本発明化合物は果樹園、芝生、線路端、空き地等の雑草の防除にも適用することができる。

更にまた、本発明化合物の中間体化合物の中には除草活性を有するものも含まれる。

〔除草剤〕

本発明除草剤は、本発明化合物の1種又は2種以上を有効成分として含有する。本発明化合物を実際に施用する際には他成分を加えず純粋な形で使用できるし、また農薬として使用する目的で一般の農薬のとり得る形態、即ち、水和剤、粒剤、粉剤、乳剤、水溶剤、懸濁剤、フロアブル等の形態で使用することもできる。添加剤および担体としては固型剤を目的とする場合は、大豆粉、小麦粉等の植物性粉末、珪藻土、燐灰石、石こう、タルク、ベントナイト、パイロフィライト、クレイ等の鉱物性微粉末、安息香酸ソーダ、尿素、芒硝等の有機及び無機化合物が使用される。液体の剤型を目的とする場合は、ケロシン、キシレンおよびソルベントナフサ等の石油留分、シクロヘキサン、シクロヘキサノン、ジメチルホルムアミド、ジメチルスルホキシド、アルコール、アセトン、トリクロルエチレン、メチルイソプチルケトン、鉱物油、植物油、水等を溶剤として使用する。これらの製剤において均一かつ安定な形態をとるために、必要ならば界面活性剤を

添加することもできる。

本発明除草剤における有効成分濃度は前述した製剤の形により種々の濃度に変化するものであるが、例えば、水和剤に於いては、 $5\sim90\%$ 、好ましくは $10\sim85\%$:乳剤に於いては、 $3\sim70\%$ 、好ましくは $5\sim60\%$:粒剤に於いては、 $0.01\sim50\%$ 、好ましくは、 $0.05\%\sim10\%$ の濃度が用いられる。

このようにして得られた水和剤、乳剤は水で所定の濃度に希釈して懸濁液或いは乳濁液として、粒剤はそのまま雑草の発芽前又は発芽後に土壌に散布処理もしくは混和処理される。実際に本発明除草剤を適用するに当たっては1ヘクタール当たり有効成分0.1g以上の適当量が施用される。

又、本発明除草剤は公知の殺菌剤、殺虫剤、殺ダニ剤、除草剤、植物成長調整 削等と混合して使用することも出来る。特に、除草剤と混合使用することにより 、使用薬量を減少させることが可能である。又、省力化をもたらすのみならず、 混合薬剤の相乗作用により一層高い効果も期待できる。その場合、複数の公知除 草剤との組合せも可能である。

本発明除草剤と混合使用するにふさわしい薬剤としては、ベンチオカーブ、モリネート、ジメピペレート等のカーバメイト系除草剤、チオカーバメイト系除草剤、
カロメトキシニル、ピフェノックス等のジフェニルエーテル系除草剤、アトラジン、シアナジン等のトリアジン系除草剤、クロルスルフロン、スルホメチュロンーメチル等のスルホニルウレア系除草剤、MCP、MCPB等のフェノキシアルカンカルボン酸系除草剤、ジクロホップーメチル等のフェノキシプロピオン酸系除草剤、フルアジホップブチル等のピリジルオキシフェノキシプロピオン酸系除草剤、トリフルラリン、ペンジメタリン等のジニトロアニリン系除草剤、リニュロン、ジウロン等のウレア系除草剤、ベンゾイルプロップエチル、フランプロップエチル等のベンゾイルアミノプロピオン酸系除草剤、イマザキン等のイミダゾリノン系除草剤、その他として、ピペロホス、ダイムロン、ベンタゾン、ダイフェンゾコート、ナプロアニリド、エトベンザミド、トリアゾフェナミ

ド、キンクロラック、更に、セトキシジム、クレソジム等のシクロヘキサンジオン系の除草剤等が挙げられる。又、これらの組み合わせた物に植物油及び油濃縮物を添加することも出来る。

【実施例】

〔除草剤〕

次に、本発明除草剤に関する製剤例を若干示すが、有効成分化合物、添加物及 び添加割合は、本実施例にのみ限定されることなく、広い範囲で変更可能である 。製剤実施例中の部は重量部を示す。

実施例 5 水和剤

本発明化合物	2	0	部
ホワイトカーボン	2	0	部
ケイソウ土	5	2	部
アルキル硫酸ソーダ		8	部

以上を均一に混合、微細に粉砕して、有効成分20%の水和剤を得た。

実施例 6 乳剤

	本発明化合物	2	0	部	\$
	キシレン	5	5	部	,
	ジメチルホルムアミド	1	5	部	,
	ポリオキシエチレンフェニルエーテル	1	0	部	5
Ľ	以上を混合、 恣解して有効成分? 0 %の到剤を得た。				

実施例7 粒剤

本発明化合物	5 部
タルク	40部

クレー3 8部ベントナイト1 0部

アルキル硫酸ソーダ

7部

以上を均一に混合して微細に粉砕後、直径 0.5~1.0 mmの粒状に造粒して有効成分 5%の粒剤を得た。

発明の効果:

次に本発明除草剤の効果に関する試験例を示す。

除草効果は下記の調査基準に従って調査し、殺草指数で表した。

調査基準

殺	草		率				殺	草	指	数
	•	0 %	•						0	
2 0	~ 2	9 %	•	•					. 2	
4 0	~ 4	9 %	•						4	
6 0	∼ 6	9 %	•						6	-
8 0	~ 8	9 %	,						8	
	1 0	0 %	;						1 0	•

また、1、3、5、7、9の数値は、各々0と2、2と4、4と6、6と8、 8と10の中間の値を示す。

(無処理区の地上部生草重 - 処理区の地上部生草重)
殺草率 (%) = ----×100
無処理区の地上部生草重

試験例1 茎葉散布処理

200cm2のポットに土壌を充塡し、表層にアキノエノコログサ、イヌビユ

、イチビ、オナモミの各種子を播き、軽く覆土後温室内で生育させた。各雑草が 5~10cmの草丈に生育した時点で供試化合物の実施例6で示した乳剤の水希 釈液を有効成分が63g/haになるように小型噴霧器にて雑草の茎葉部に散布 した。3週間後に雑草の除草効果を調査し、その結果を第4表に示した。

第 4 表

化合物番号	薬量	アキノ	イチビ	イヌビユ	オナモミ
	g/h a	エノコログサ		·	
1 - 1 1	6 3	1 0	1 0	1 Ò	1 0
2 - 5	6 3	1 0	8	1 0	8
2 - 1 0 5	6 3	1 0	8	9	1 0
2 - 1 1 3	6 3	1 0	8	1 0	8
2 - 2 1 5	6 3	1 0	1 0	1 0	1 0
$2 - 2 \ 3 \ 2$	6 3	8	1 0	9	8
$2 - 2 \ 3 \ 3$	6 3	9	9	1 0	1 0
比較例A	6 3	7	0	7	5

試験例2 畑土壌処理

表面積が250cm²のプラスチックポットに畑土壌を充塡し、これに雑草として、アキノエノコログサ、イチビ、イヌビユの種子を播種し、その上に0.5cmの覆土をした。翌日実施例5に示した水和剤の希釈液を、その有効成分が63g/haとなるように覆土上に均一に散布し、処理20日後に除草効果を調査し、その結果を第5表に示した。

第 5 表

	•				
化合物番号	薬 量 g/h a	アキノ エノコログサ	イチビ	イヌビユ	
1 - 1 0	6 3	1 0	8	1 0	
1 - 11	6 3	1 0	8	1 0	
2 – 5	6 3	9	8	9	
2 - 28	6 3	1 0	1 0	1 0	
2 - 74	6 3	9	8	9	
2 - 9 7	6 3	. 8	8	9 .	
2 - 9 9	6 3	8	8	9	
2 - 1 0 4	6 3	9	8	9	
2 - 1 1 0	6 3	8	8	9	
2 - 1 2 3	6 3	8	. 8	9	
$2 - 1 \ 4 \ 5$	6 3	8	8	8	
$2 - 1 \ 4 \ 9$	6 3	1 0	1 0	1 0	
2 - 1 5 2	6 3	1 0	1 0	1 0	
2 - 1 5 4	6 3	. 9	8	8	
2 - 157	6 3	1 0	1,0	9	
2 - 177	6 3	. 8	8	8	
2 - 191	6 3	8	8	8	
2 - 2 0 8	6 3	8	8	1 0	
2 - 2 0 9	6 3	8	8 .	8	
2 - 2 1 0	6 3	9	8	1 0	
2 - 2 1 2	6 3	8	8	9	
比較例 A	6 3	6	6	8	

試験例3 水田茎葉処理

表面積が100cm²のポットに水田土壌を充塡し、代掻後、ノビエ、ホタルイおよびオモダカの種子を播種したのち、2葉期のイネを移植した。これを温室内で生育させ、各雑草が1~1.5葉期になった時点で水深3cmに湛水したのち、各供試化合物の実施例5で示した水和剤の希釈液を有効成分が16g/haとなるように滴下処理した。処理3週間後に除草効果およびイネの薬害の程度を調査し、結果を第6表に示した。

第 6 表

化合物番号	薬 量 g/ha	ノビエ	オモダカ	ホタルイ	イネ
2 - 1 8	1 6	8	8	7	2
2 - 28	1 6	8	8	8	1
2 - 3 0	1 6	1 0	9	7	* 2
2 - 3 1	1 6	1 0	9	8	2
2 - 47	1 6	1 0	9	7	2
2 - 48	1 6	9	. 8	8	1
2 - 4 9	1 6	8	8	8	1
2 - 5 4	1 6	8	9	8	0
2 - 65	1 6	1 0	9	8	2
2 - 86	1 6	9	8	8	0
2 - 95	1 6	9	8	8	0
2 - 9 6	16	9	8	8	1
2 - 97	1 6	8	8	8	2
2 - 98	1 6	9	9	9	1
2 - 1 0 0	1 6	9	9	8	1
2 - 1 0 1	1 6	9	9	8	0

第 6 表(続き)

化合物番号	薬 量 g/ha	ノビエ	オモダカ	ホタルイ	イネ
2 - 1 0 2	1 6	1 0	9	8	2
2 - 1 0 8	1 6	9	8	8	1
2 - 1 0 9	1 6	9	8	8	0
2 - 1 1 0	1 6	8	8	8	2
2 - 1 2 1	1 6	8	9	8	2
2 - 1 2 3	1 6	8	9	8	2
$2 - 1 \ 3 \ 0$	1 6	1 0	9	7	0
$2 - 1 \ 3 \ 1$	1 6	9	9	8 ·	2
2 - 1 3 3	1 6	8	8	8	0
$2 - 1 \ 3 \ 9$	1 6	8	8	. 8	2
$2 - 1 \ 4 \ 4$	1 6	1 0	8	7	0
$2 - 1 \ 4 \ 9$	1 6	1 0	8	8	2
2 - 1 5 1	1 6	9	8	8	2
2 - 198	1 6	- 8	9	7	2
2 - 2 0 1	1 6	8	8	8	2
2 - 2 0 5	1 6	1 0	8	8	0
2 - 2 0 6	1 6	1 0	8	8	1 .

第 6 表(続き)

化合物番号	薬 量 g/ha	ノビエ	オモダカ	ホタルイ	イネ
2 - 2 1 0	1 6	1 0	9	8	2
2 - 2 1 1	1 6	1 0	9	.7	2
2 - 2 1 6	1 6	8	8	7	1 .
2 - 2 2 1	1 6	9	9	7	1
2 - 2 2 2	1 6	9	8	8	2.
$2 - 2 \ 3 \ 3$	1 6	9	. 9	7	2
比較例 A	1 6	6	8	5	2

比較例A (特開平1-93576号記載の化合物)

請求の範囲

1. 式 [[] で表される化合物、またはその農園芸学上許容される塩。

$$(CH_2)_{n} \longrightarrow \begin{pmatrix} R_4 \\ R_4 \end{pmatrix} Z \longrightarrow \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

〔式中、Aは窒素原子、もしくはR。で置換された炭素原子を表し、2は酸素原子、酸化されても良いい硫黄原子、置換されていても良い窒素原子又は置換されていても良い炭素原子を表し、

 R_1 、 R_2 は、各々独立して水素原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロ C_{1-6} アルコキシ基、ハロ C_{1-6} アルキルアミノ基、ジ C_{1-6} アルキルアミノ基、 C_{1-6} アルキルアミノ基、ハロゲン原子またはシアノ基を表し、

R。は水素原子、 C_{1-6} アルキル基、ハロゲン原子、ニトロ基、ホルミル基またはアシル基を表し、また、R。とR。は一緒になって環を形成していても良い

 R_4 は $COOR_7$ 、 $COSR_7$ 、CHO、 COR_6 、CH (R_8) OR_9 、C (R_8) = NOR_{10} 、COON = $CR_{11}R_{12}$ 、 $CR_{18}OR_{14}OR_{15}$ 、 $CONR_{16}$ R_{17} 、またはCON = C (R_{18}) $NR_{19}R_{20}$ を表し、

Xは水素原子、 C_{1-6} アルキル基、 C_{3-7} シクロアルキル基、 $\cap C_{1-6}$ アルキル基、 C_{1-6} アルキル基、 O_{1-6} アルキル基、 O_{1-6} アルキル基、 O_{1-6} アルキル基、 O_{2-6} アルキルスルホニル O_{1-6} アルキル基、 O_{2-6} アルケニル基、 O_{2-6} アルキニル基、 O_{1-6} アルキルスルホニルアミノ基、 O_{1-6} アルキルスルホニルアミノ基、 O_{1-6} アルキルスルホニルアミノ基、 O_{1-6} アルキルスルボニルアミノ基、 O_{1-6} アルドロキシル基、 O_{1-6} アルコキシカルボニル基、 O_{1-6} アル

コキシ基、置換されても良いベンジルオキシ基、 C 2-6 アルケニルオキシ基、 C 2-6 アルキニルオキシ基、ハロ C 1-6 アルコキシ基、 C 1-6 アルキルチオ基、 C 1-6 アルキルスルホニル基、 C 2-6 アルケニルチオ基、 C 2-6 アルキニルチオ基、 アシルオキシ基、カルバモイルオキシ基、チオカルバモイルオキシ基、アミノオキシ基、 置換されても良いベンジル基、 置換されても良いフェニル基、 置換されても良いフェニル基、 置換されても良いフェニルメルホニル基、 置換されても良いベンゾイル基、 置換されても良いベンゾイル基、 置換されても良いベンゾイル基、 置換されても良いベテロ環オキシ基またはヘテロ環チオ基を表し、

又、2つのXで炭素環、又は複素環を形成してもよく、mは1~4の整数を表し、

YはO、S、CO、CS、CR_s R_s、C=NR_s またはNR_s を表し、 nは0~3の整数を表し、

R₅、R₅・は、各々独立して水素原子、C₁₋₆ アルキル基、C₃₋₇ シクロアルキル基、ハロC₁₋₆ アルキル基、C₁₋₆ アルコキシC₁₋₆ アルキル基、C₁₋₆ アルキル基、C₁₋₆ アルキル基、C₁₋₆ アルキル基、C₁₋₆ アルキル基、C₂₋₆ アルキル基、C₂₋₆ アルキール基、ハロゲン原子、シアノ基、ニトロ基、アミノ基、C₁₋₆ アルキルアミノ基、アシルアミノ基、C₁₋₆ アルキルスルホニルアミノ基、ヒドロキシル基、カルボキシル基、C₁₋₆ アルコキシカルボニル基、C₁₋₆ アルコキシ基、置換されても良いベンジルオキシ基、C₂₋₆ アルキールオキシ基、C₂₋₆ アルキールオキシ基、C₁₋₆ アルキールオキシ基、C₂₋₆ アルキールオキシ基、C₁₋₆ アルキールオキシ基、アミノオキシ基、置換されても良いベンジル基、置換されても良いフェニル基、アミノオキシ基、置換されても良いベンジル基、置換されても良いフェニルスルホニル基、置換されても良いフェニルスルホニル基、置換されても良いベンゾイル基、置換されても良いへテロ環オキシ基またはヘテロ環チオ基を表し、又、R₅ とR₅・は一緒になって環を形成しても良く、

R。は水素原子、C1-8 アルキル基、C3-7 シクロアルキル基、ハロC1-8 ア

ルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、 C_{1-6} アルキルチオ C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、 C_{2-6} アルカールボニル基、 C_{1-6} アルキールチオ基、 C_{2-6} アルケニルチオ基、 C_{2-6} アルキールチオ基、 C_{2-6} アルキールチオ基、アシルオキシ基、カルバモイル基、チオカルバモイル基、置換されても良いベンジル基、置換されても良いフェニル基、置換されても良いヘテロ環基、置換されても良いフェニルスルホニル基、置換されても良いベンゾイル基又は置換されても良いヘテロ環カルボニル基を表し、

 R_7 は水素原子、 C_{1-6} アルキル基、 C_{8-7} シクロアルキル基、 $\cap C_{1-6}$ アルキル基、 C_{1-6} アルキルスルホニル C_{1-6} アルキルスルホニル C_{1-6} アルキルスルホニル C_{1-6} アルキル基、 C_{2-6} アルキール基、 C_{3-6} アルキニル基、シアノ C_{1-6} アルキル基、 C_{2-6} アルキル基、 C_{1-6} アルキニル基、 C_{1-6} アルキル基、 C_{1-6} アルキル 基、 C_{1-

 R_6 は C_{1-6} アルキル基、 C_{8-7} シクロアルキル基、ハロ C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{2-6} アルキルスルホニル C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、アシル基、 C_{1-6} アルコキシカルボニル基、 C_{1-6} アルキルチオ基、 C_{2-6} アルケニルチオ基、 C_{2-6} アルキニルチオ基、置換されても良いベンジル基、置換されても良いフェニル基、置換されても良いヘテロ環基、置換されても良いベンゾイル基または置換されても良いヘテロ環カルボニル基を表し、

R。及びR₁₀はそれぞれ独立して、水素原子、 C_{1-6} アルキル基、 C_{3-7} シクロアルキル基、ハロ C_{1-6} アルキル基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、アシル基、 C_{1-6} アルコキシカルボニル基、 C_{1-6} アルキルスルホニル基、カルバモイル基、チオカルバモイル基、置換されても良いベンジル基、置換されても良いフェニル基、置換されても良いベンゾイル基または置換されても良いヘテロ環カルボニル基を表し、

 R_{11} 及び R_{12} はそれぞれ独立して、水素原子、 C_{1-6} アルキル基、 C_{3-7} シクロアルキル基、 $N \cap C_{1-6}$ アルキル基、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、アシル基、 C_{1-6} アルコキシカルボニル基、置換されても良いベンジル基、置換されても良いフェニル基、置換されても良いヘテロ環基、置換されても良いベンゾイル基又は置換されても良いヘテロ環カルボニル基を表し、又、 R_{11} と R_{12} で環を形成しても良い。

 R_{13} は水素原子、 C_{1-6} アルキル基、 C_{3-7} シクロアルキル基、ハロ C_{1-6} アルキル基、 C_{1-6} アルキル基、 C_{1-6} アルキルチオ C_{1-6} アルキル基、 C_{1-6} アルキルスルホニル C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{2-6} アルキニル基、 C_{2-6} アルキニル基、 C_{2-6} アルカンボニル基、置換されても良いベンジル基、置換されても良いフェニル基または置換されても良いヘテロ環基を表し、

 R_{14} 及び R_{15} はそれぞれ独立して、 C_{1-6} アルキル基、 C_{3-7} シクロアルキル基、 C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、 C_{1-6} アルキルチオ C_{1-6} アルキル基、 C_{1-6} アルキルスルホニル C_{1-6} アルキル基、 C_{2-6} アルケニル基または C_{2-6} アルキニル基を表し、又、 R_{14} と R_{15} で環を形成しても良い。

 R_{16} 及び R_{17} はそれぞれ独立して、水素原子、 C_{1-6} アルキル基、 C_{3-7} シクロアルキル基、ハロ C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、 C_{1-6}

1-6 アルキルチオC1-6 アルキル基、C1-6 アルキルスルホニルC1-6 アルキル基、C2-6 アルケニル基、C2-6 アルキニル基、アシル基、C1-6 アルコキシカルボニル基、C1-6 アルキルスルホニル基、カルバモイル基、チオカルバモイル基、置換されても良いベンジル基、置換されても良いフェニル基、置換されても良いベンゾイル基又は置換されても良いヘテロ環カルボニル基を表し、又、R16とR17で環を形成しても良い。

R₁₈は水素原子、C₁₋₆ アルキル基、C₈₋₇ シクロアルキル基、ハロC₁₋₆ アルキル基、C₁₋₆ アルコキシC₁₋₆ アルキル基、C₁₋₆ アルキルチオC₁₋₆ アルキル基、C₁₋₆ アルキルスルホニルC₁₋₆ アルキル基、C₂₋₆ アルケニル基、C₂₋₆ アルキニル基、ハロゲン原子、シアノ基、アミノ基、C₁₋₆ アルキルアミノ基、アシルアミノ基、C₁₋₆ アルキルスルホニルアミノ基、ヒドロキシル基、C₁₋₆ アルコキシカルボニル基、C₁₋₆ アルコキシ基、置換されても良いベンジルオキシ基、C₂₋₆ アルケニルオキシ基、C₂₋₆ アルキニルオキシ基、ハロC₁₋₆ アルコキシ基、C₁₋₆ アルキルチオ基、C₁₋₆ アルキルスルホニル基、C₂₋₆ アルケニルチオ 基、C₁₋₆ アルキンメルホニル 基、C₂₋₆ アルケニルチオ 基、アシルオキシ 基、カルバモイルオキシ 基、チオカルバモイルオキシ 基、アミノオキシ 基、置換されても良いベンジル 基、置換されても良いフェニル 基、置換されても良いベンジル 良いフェニルチオ 基、置換されても良いフェニルスルホニル 基、置換されても良いベンゾイル 基、置換されても良いヘテロ環チオ 基を表し、

R10及びR20はそれぞれ独立して、水素原子、C1-6 アルキル基、C3-7 シクロアルキル基、ハロC1-6 アルキル基、C1-6 アルコキシC1-6 アルキル基、C1-6 アルキルスルホニルC1-6 アルキル基、C1-6 アルキルスルホニルC1-6 アルキル基、C2-6 アルケニル基、C2-6 アルキニル基、アシル基、C1-6 アルコキシカルボニル基、C1-6 アルキルスルホニル基、カルバモイル基、チオカルバモイル基、置換されても良いベンジル基、置換されても良いフェニル基、置換されても

良いヘテロ環基、置換されても良いフェニルスルホニル基、置換されても良いベンゾイル基又は置換されても良いヘテロ環カルボニル基を表し、R₁₈とR₂₀で炭素環若しくは複素環を形成しても良い。〕

2. 一般式 [1] で表される化合物を含有することを特徴とする除草剤。

$$(CH_2)_n \xrightarrow{R_4} Z \xrightarrow{N} \xrightarrow{R_1} [1]$$

(式中、A、Z、R₁、R₂, R₄, X, Y, m及びnは前記と同じ意味を表す。)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/01262

A. CLASSIFICATION OF SUBJECT MATTER Int C07D239/47, C07D239/48, C07D25	1/34. C07D491/048. C07D251/38.				
C07D413/12, A01N43/54, A01N43/60, A01N43/66 According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int. Cl ⁶ C07D239/42, C07D239/46, C07D239/47, C07D239/48, C07D251/34, C07D491/048, C07D251/38, C07D413/12, A01N43/54, A01N43/60, A01N43/66					
Documentation searched other than minimum documentation to the	extent that such documents are included in the fields searched				
Electronic data base consulted during the International search (name CAS ONLINE	of data base and, where practicable, search terms used)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where a					
X JP, 2-164862, A (Mitsui Tod June 25, 1990 (25. 06. 90) Claim (Family: none)	atsu Chemicals, Inc.), 1 - 2				
·					
Further documents are listed in the continuation of Box C.	See ratent family annex				
Further documents are listed in the continuation of Box C. See patent family annex. The later document published after the international filling date or priority.					
"A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other					
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is means					
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
July 23, 1996 (23. 07. 96)	July 30, 1996 (30. 07. 96)				
Name and mailing address of the ISA/	Authorized officer				
Japanese Patent Office					
Facsimile No.	Telephane No.				

Form PCT/ISA/210 (second sheet) (July 1992)

	属する分野の分類(国際特許分類(1 PC) cl' C07D239/42, C07D23 C07D251/34, C07D45 , A01N43/54, A01N43	19/46, C07D239/47, C0° 11/048, C07D251/38, C	
			··
	デッた分野 		
	艮小限資料(国際特許分類(IPC)) c 1	10/46 C07D020/47 C0	77000 / 40
1111		19/40, C07D239/47, C0 11/048, C07D251/38, C	
	, A01N43/54, A01N43		0 1 0 4 1 3 / 1 2
最小限資料以外	4の資料で調査を行った分野に含まれるもの		
	·		
			•
国際調査では B	目した電子データベース(データベースの名	新 相本には出した田鉾(
四次時点で大力	はした電子グーグペース(グータペースの名)	か、両重に使用した用語/	•
	CAS ONLINE		•
		·	
	6と認められる文献		
引用文献の	Coloredado do trata dos acomos soumas se		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連す	るときは、その関連する箇所の表示	請求の範囲の番号
x	JP, 2-164862, A (三井東圧化	学株式会社) 25 6日 19 9 0	1 – 2
,	(25.06.90), 特許請求の範囲(
		-	i
			,
	•		
	e and ministration in the server of		
し、し個の転ぎ	らにも文献が列挙されている。 	パテントファミリーに関する別	川粃を参照。
* 引用文献の		の日の後に公表された文献	
	18のある文献ではなく、一般的技術水準を示		された文献であって
もの		て出願と矛盾するものではなく	
	まではあるが、 国際出願日以後に公表された		
の - 5 *		「X」特に関連のある文献であって、	
	E張に疑義を提起する文献又は他の文献の発 、は他の特別な理由を確立するために引用す		えられるもの
	旧を付す)	る 「Y」特に関連のある文献であって、 上の文献との、当業者にとって	ヨ談人献と他の1以 白朋でもで知る事に
	る開示、使用、展示等に言及する文献	よって進歩性がないと考えられ	日切でのる組合でに、 スもの
	田前で、かつ優先権の主張の基礎となる出		000
国際調査を完了	-	国際調査報告の発送日	•
ı	23.07.96	30.0	7.96
F3000000000000000000000000000000000000	AHR HE-PA		
)名称及びあて先 3特許庁(ISA/JP)	特許庁審査官(権限のある職員) 内藤 伸一	4C 8615
	9付計り(13A/JF) B便番号100	. ram 141—	ios .
	第千代田区霞が関三丁目 4番 3号	電話番号 03-3581-1101	内線 3 4 5 2