

<u>EXÁMEN PARCIAL</u> <u>ÁLGEBRA LINEAL II</u>

Semestre 2018-1

- 1. a) Sea $V = \mathbb{C}^{nx1}$ con el producto interno $A, B > Tr(B^*A)$. Sea $M \in V$ fijo y consideramos el operador lineal $L_M(A) = MA, \forall A$ en V. Halle L_M^* . (2pt)
 - b) Sea V un espacio producto interno (su dimensión no necesariamente es finito) y β , γ vectores dados de V. Se tiene el operador lineal sobre V: $T\alpha = \langle \alpha, \beta \rangle \gamma$. Halle explícitamente T^* . (3pt)
- 2. Demostrar que las siguientes condiciones sobre un operador lineal $T: V \to V$, V un espacio producto interno de dimensión finita, son equivalentes: (5pt)
 - i. $T = S^2$ para algún operador autoadjunto $S: V \to V$.
 - ii. $T = M^*M$ para algún operador lineal $M: V \to V$.
 - iii. $T = T^*$ y $< Tu, u > \ge 0$, $\forall u \in V$.
- 3. Sea V y W espacios producto interno de dimensión finita que tienen la misma dimensión. Sea U: $V \to W$ un isomorfismo de productos internos. Demostrar que: (5pt)
 - a) La aplicación $\varphi(T) = UTU^{-1}$ es un isomorfismo del espacio vectorial End(V) sobre End(W).
 - b) $Traza(UTU^{-1}) = Traza(T)$ para todo T en End(V).
 - c) $UT_{\alpha,\beta}U^{-1} = T_{U\alpha,U\beta}, T_{\alpha,\beta}(\gamma) = \langle \gamma, \beta \rangle \alpha.$
 - d) Si en End(V) se tiene el P.I $< T_1, T_2 > = Traza(T_1T_2^*)$ y análogamente para End(W), entonces φ es un isomorfismo de espacios producto interno.
- 4. Sea $T:\mathbb{C}^2 \to \mathbb{C}^2$, $V=\mathbb{C}^2$ con el producto interno canónico. La matriz A es de T respecto a la base canónica, $A=\begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$ (5pt)
 - a) Exprese T en su descomposición espectral.
 - b) Exprese A en su forma exponencial (A = Nexp(iH)).