12 Infinite Sequences and Series

12.1Sequences

A sequence is called <u>monotonic</u> if it is either increasing or decreasing, not both.

A sequence is <u>bounded above</u> if there exists M such that $a_n \leq M$ for all $n \geq 1$.

A sequence is <u>bounded below</u> if there exists m such that $a_n \ge m$ for all $n \ge 1$.

Every bounded, monotonic sequence is convergent.

12.2 Series

Geometric Series: $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$ Convergent if |r| < 1, then sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$

Divergent if |r| > 1.

Telescoping Series: Write out several terms and look for a pattern of cancellation.

Test for Divergence: If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

WARNING: The Test for Divergence cannot prove that a series is convergent.

12.3The Integral Tests and Estimates of Sums

Integral Test:

Preconditions: f(x) is continuous, positive, and decreasing on $[1, \infty)$.

If $\int_{1}^{\infty} f(x)dx$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $\int_{1}^{\infty} f(x)dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. P-Series Test: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1, diverges if $p \le 1$ Remainder Estimate for the Integral Test: $\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$

12.4The Comparison Tests

Comparison Test:

Preconditions: $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ converges.

If $\sum b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ diverges.

Limit Comparison Test:

Preconditions: $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n} = C$ where \overline{C} is finite and C>0, then both series either converge or both diverge.

12.5**Alternating Series**

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b-b_2+b_3-b_4+\ldots$$
 If $b_{n+1} \leq b_n$ for all n and $\lim_{n \to \infty} b_n = 0$ then the series converges.

12.6Absolute Convergence and the Ratio and Root Tests

A series is absolutely convergent if $\sum |a_n|$ is convergent.

A series is conditionally convergent if it is convergent but not absolutely convergent.

If a series is absolutely convergent, then it is convergent.

Ratio Test:

If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$, then the Ratio Test is inconclusive.

Root Test:

If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|}$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, then the Root Test is inconclusive.