ĐẠI SỐ TUYỂN TÍNH

Chương 4: Ánh xạ tuyến tính

TS. Đặng Văn Vinh

Bộ môn Toán Ứng Dụng Khoa Khoa học Ứng dụng Đại học Bách Khoa Tp.HCM

Tài liệu: Đặng Văn Vinh. Đại số tuyến tính. NXB ĐHQG tp HCM, 2019

Ngày 10 tháng 3 năm 2020

MKHOACNCD

Vấn đề 1. Ánh xạ tuyến tính và các ví dụ.

Vấn đề 2. Biểu diễn ma trận của ánh xạ tuyến tính.

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Ánh xạ tuyến tính

Định nghĩa

Cho V, W là hai \mathbb{K} – kgv. Ánh $xaf: V \longrightarrow W$ được gọi là ánh xa tuyến tính, nếu thỏa mãn hai điều kiên sau:

$$1/\forall X,Y\in V, f(X+Y)=f(X)+f(Y),$$

$$2/\forall \alpha \in K, \forall X \in V, f(\alpha X) = \alpha f(X).$$

Ví dụ

Xét ánh xạ f là TIÀ (ối ku hếu) SU (thọ TÀP 2x trọng

không gian R². Kiểm tra trực tiếp hai tính chất của tính xạ tuyến tính

Ánh xạ tuyến tính

Định nghĩa

Cho V, W là hai \mathbb{K} – kgv. Ánh $xaf: V \longrightarrow W$ được gọi là ánh xa tuyến tính, nếu thỏa mãn hai điều kiện sau:

 $1/\forall X,Y\in V, f(X+Y)=f(X)+f(Y),$

 $2/\forall \alpha \in K, \forall X \in V, f(\alpha X) = \alpha f(X).$

Ví dụ

Xét ánh xạ f là phép đối xứng qua đường thẳng (Δ) : y = 2x trong không gian \mathbb{R}^2 . Kiểm tra trực tiếp hai tính chất của ánh xạ tuyến tính đều thỏa. Vậy f là một ánh xạ tuyến tính.

Ví du

Cho ánh xạ f là phép quay quanh gốc O ngược chiều kim đồng hồ một góc α trong mặt phẳng với hệ trục tọa độ Oxy.

Cho ánh xạ f là phép quay quanh gốc O ngược chiều kim đồng hồ một góc α trong mặt phẳng với hệ trục tọa độ Oxy.

Theo chương 1, ta có công thức tính ảnh của một véctơ OM = (a; b) là

$$f(\overrightarrow{OM}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} \Leftrightarrow f(X) = R \cdot X$$

Vây f là một ánh xa tuyên

Ví du

Cho ánh xạ f là Thờ lấy đưể lư trong Thật pol. Khi đó với $p(x) = ax^2 + bx + c$ tạ có anh tha phep biến thể lậy $\frac{1}{4}$ $\frac{1}{4}$

f là một ánh xạ tuyến từ BỞI HCMUT-CNCP

Cho ánh xạ f là phép quay quanh gốc O ngược chiều kim đồng hồ một góc α trong mặt phẳng với hệ trục tọa độ Oxy.

Theo chương 1, ta có công thức tính ảnh của một véctơ OM = (a; b) là

$$f(\overrightarrow{OM}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} \Leftrightarrow f(X) = R \cdot X$$

Vậy f là một ánh xạ tuyến tính.

Ví du

f là một ánh xạ tuyến từ phải HCMUT-CNCP

Cho ánh xạ f là phép quay quanh gốc O ngược chiều kim đồng hồ một góc α trong mặt phẳng với hệ trục tọa độ Oxy.

Theo chương 1, ta có công thức tính ảnh của một véctơ OM = (a; b) là $f(\overrightarrow{OM}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} \Leftrightarrow f(X) = R \cdot X$

Vậy f là một ánh xạ tuyến tính.

Ví du

Cho ánh xạ f là phép lấy đạo hàm trong không gian $P_2[x]$. Khi đó với $p(x) = ax^2 + bx + c$ ta có ảnh qua phép biến đổi là p'(x) = 2ax + b. f là một ánh xạ tuyến tính.

Ví dụ

Cho ánh xạ tuyến tính
$$f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$$
, $\forall x = (x_1; x_2; x_3)$, $f(x) = f(x_1; x_2; x_3) = (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3)$. Tim $f(2; 1; 3)$.

Ånh của véctơ (2**Q**3) là $f(1; 1,5) = 32 \times 1 + 3; 2.2 \times 1 - 3) = (7;5).$ Mặt khác tạ có

Mat khac ta co

$$f(x) = f(x_1; x_2; x_3)$$

 $= (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3) =$

TÀI LIÊU SƯU TẤP

Suy ra $f(2;1;3) = \begin{bmatrix} 3 & \cancel{B} \mathring{\mathbf{O}} \mathring{\mathbf{I}}_{1} + \mathbf{C} \mathring{\mathbf{M}} \mathring{\mathbf{U}} \mathbf{T} + \mathbf{C} \mathring{\mathbf{N}}_{2} \mathbf{C} \mathbf{P} \end{bmatrix}$

Có nghĩa là ta có thể tìm ảnh sử dụng ma trận.

Ví dụ

Cho ánh xạ tuyến tính
$$f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$$
, $\forall x = (x_1; x_2; x_3)$, $f(x) = f(x_1; x_2; x_3) = (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3)$. Tim $f(2; 1; 3)$.

Ånh của vécto
$$(2;1;3)$$
 là $f(2;1;3) = (3.2 - 2.1 + 3; 2.2 + 4.1 - 3) = (7;5)$.

Mặt khác ta có

$$f(x) = f(x_1; x_2; x_3)$$

 $= (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3) =$

TAI LIEU SƯU TẠP

Suy ra $f(2;1;3) = \begin{bmatrix} 3 & \mathbf{B} \mathbf{\mathring{o}} \mathbf{\mathring{L}}_{1} \mathbf{H} \mathbf{C} \mathbf{M} \mathbf{\mathring{U}} \mathbf{\mathring{T}} - \mathbf{C} \mathbf{\mathring{N}}_{2} \mathbf{\mathring{C}} \mathbf{\mathring{P}} \end{bmatrix}$

Có nghĩa là ta có thể tìm ảnh sử dụng ma trận.

BACHKHOACNCP.COM

Ví dụ

Cho ánh xạ tuyến tính
$$f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$$
, $\forall x = (x_1; x_2; x_3)$, $f(x) = f(x_1; x_2; x_3) = (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3)$. Tîm $f(2; 1; 3)$.

Ånh của véctơ (2;1;3) là f(2;1;3) = (3.2-2.1+3;2.2+4.1-3) = (7;5). Mặt khác ta có $f(x) = f(x_1; x_2; x_3)$

$$= (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$$

Suy ra $f(2;1;3) = \begin{pmatrix} 3 & B & O \\ 2 & B & O \end{pmatrix}$ H C M UT - C N C P

Có nghĩa là ta có thể tìm ảnh sử dụng ma trận.

Ví du

Cho ánh xạ tuyến tính
$$f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$$
, $\forall x = (x_1; x_2; x_3)$, $f(x) = f(x_1; x_2; x_3) = (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3)$. Tîm $f(2; 1; 3)$.

Anh của vécto (2;1;3) là f(2;1;3) = (3.2 - 2.1 + 3; 2.2 + 4.1 - 3) = (7;5). Măt khác ta có

$$f(x) = f(x_1; x_2; x_3)$$

$$= (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$$
Suy ra $f(2;1;3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$.

Suy ra
$$f(2;1;3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 15 \end{pmatrix}$$

Ví du

Cho ánh xạ tuyến tính
$$f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$$
, $\forall x = (x_1; x_2; x_3)$, $f(x) = f(x_1; x_2; x_3) = (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3)$. Tîm $f(2; 1; 3)$.

Ánh của vécto (2;1;3) là f(2;1;3) = (3.2 - 2.1 + 3;2.2 + 4.1 - 3) = (7;5). Măt khác ta có

$$f(x) = f(x_1; x_2; x_3)$$

$$= (3x_1 - 2x_2 + x_3; 2x_1 + 4x_2 - x_3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$$
Suy ra $f(2;1;3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$.

Suy ra
$$f(2;1;3) = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

Có nghĩa là ta có thể tìm ảnh sử dụng ma trận.

KHOACNCD

Định nghĩa

Cho ánh xạ tuyến tính $f: V \longrightarrow W$. Gọi $E = \{e_1, e_2, ..., e_n\}$ là một cơ sở của V và $F = \{w_1, w_2, ..., w_n\}$ là một cơ sở của W. Ma trận A cỡ $m \times n$ có cột thứ i là tọa độ của $f(e_i)$ trong cơ sở F được gọi là ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, F.

Tức là A = $(f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]$.

Công thức dùng để tìm ảnh của một véctơ: $\forall x \in V$, $[f(x)]_F = A \cdot [x]_E$

BOI HCMUT-CNCP

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$.

Với ánh xạ tuyến tính $f: V \rightarrow \mathbf{O}$ An Given trận của f trong cặp cơ sở E, F là $A = \begin{pmatrix} [f(e_1)]_F & \downarrow \mathbf{X}(e_2)]_F & \downarrow \cdots & \downarrow [f(G_t)]_F \end{pmatrix}$. $\Leftrightarrow A = \begin{bmatrix} F^{-1} \cdot f(e_1) & \downarrow F^{-1} \cdot f(e_2) & \downarrow & \downarrow F^{-1} \cdot f(e_t) \end{bmatrix}$ $\downarrow F^{-1} \cdot f(e_t) = F^{-1} \begin{bmatrix} f(e_1) & \downarrow & \downarrow & \downarrow F^{-1} \cdot f(e_t) \end{bmatrix}$ Nếu $\forall x \in V, f(x) = M \cdot x$, thus $A = F^{-1} \begin{bmatrix} M \cdot e_1 & \downarrow & M \cdot e_2 & \downarrow & \downarrow F^{-1} & f(e_t) \end{bmatrix}$ $A = F^{-1} \cdot M \cdot \begin{bmatrix} e_1 & \downarrow & e_2 & \downarrow & \ddots & \downarrow F^{-1} & f(e_t) &$

TÀI LIÊU SƯU TẬP

Công thức dùng để tính ảnh của véctơ khi biết ma trậ $\forall x \in V, [f(x)]_F = A[x]_E \Leftrightarrow \mathring{\mathbf{G}} \Vdash \mathbf{H} \ \mathbf{C} \ \mathbf{M} \ \mathbf{U} \ \mathbf{T} \vdash \mathbf{C} \ \mathbf{N} \ \mathbf{C} \ \mathbf{P}$

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \text{ là } A = ([f(e_1)]_F \mid [f(e_2)]_F \mid \cdots \mid [f(e_n)]_F]).$

 $A = F^{-1} \left[M \cdot e_1 \mid M \cdot e_2 \right]$

BACHKHOACNCP.COM

7 / 10

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở E, F là $A = \begin{pmatrix} [f(e_1)]_F & [f(e_2)]_F & \cdots & [f(e_n)]_F \end{pmatrix}$. $\Leftrightarrow A = \begin{bmatrix} F^{-1} \cdot f(e_1) & F^{-1} \cdot f(e_2) & \cdots & F^{-1} \cdot f(e_n) \end{bmatrix}$.

Nếu $\forall x \in V, f(x) = M \cdot x$, thu: $A = F^{-1} \begin{bmatrix} M \cdot e_1 & M \cdot e_2 \end{bmatrix}$

 $A = F^{-1} \cdot M \cdot \left[\begin{array}{ccc|c} e_1 & e_2 & \cdots \end{array} \right]$

TÀI LIÊU SƯU TẬP

Công thức dùng để tính ảnh của vécto khi biết ma tra $\forall x \in V, [f(x)]_F = A[x]_E$ B $\ref{eq: P}$ HCMUAT-CNCP

Vây:

BACHKHOACNCP.COM

(2)

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \text{ là } A = ([f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]).$ $\Leftrightarrow A = \left[F^{-1} \cdot f(e_1) \mid F^{-1} \cdot f(e_2) \mid \cdots \mid F^{-1} \cdot f(e_n) \right].$ $= F^{-1} [f(e_1) \mid f(e_2) \mid \cdots \mid f(e_n)].$ Nếu $\forall x \in V, f(x) = M \cdot x, \text{ th}$: $A = F^{-1} \left[M \cdot e_1 \mid M \cdot e_2 \right]$

 $A = F^{-1} \cdot M \cdot \left[\begin{array}{ccc|c} e_1 & e_2 & \cdots \end{array} \right]$

TÀI LIÊU SƯU TẬP

Công thức dùng để tính ảnh củ

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \text{ là } A = ([f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]).$ $\Leftrightarrow A = \left[F^{-1} \cdot f(e_1) \mid F^{-1} \cdot f(e_2) \mid \cdots \mid F^{-1} \cdot f(e_n) \right].$ $= F^{-1} \left[f(e_1) \mid f(e_2) \mid \cdots \mid f(e_n) \right].$ Nếu $\forall x \in V, f(x) = M \cdot x$, thì: $A = F^{-1} \cdot M \cdot | e_1 | e_2 | \cdots | e$

TÀI LIÊU SƯU TẬP

Công thức dùng để tính ảnh củ

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \text{ là } A = ([f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]).$ $\Leftrightarrow A = \left[F^{-1} \cdot f(e_1) \mid F^{-1} \cdot f(e_2) \mid \cdots \mid F^{-1} \cdot f(e_n) \right].$ $= F^{-1} \left[f(e_1) \mid f(e_2) \mid \cdots \mid f(e_n) \right].$ Nếu $\forall x \in V, f(x) = M \cdot x$, thì: $A = F^{-1} \cdot M \cdot \left[\begin{array}{cccc} e_1 & e_2 & \cdots & e_n \end{array} \right].$ Suy ra:

TÀI LIÊU SƯU TẬP

Công thức dùng để tính ảnh của véctơ khi biết ma trận $\forall x \in V, [f(x)]_F = A[x]_E \Leftrightarrow O^{\parallel} H \subseteq M \cup T = C \cap C_P$ Vâv:

BACHKHOACNCP.COM

(2)

Trong chương 2, ta đã biết tọa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \text{ là } A = ([f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]).$ $\Leftrightarrow A = \left[F^{-1} \cdot f(e_1) \mid F^{-1} \cdot f(e_2) \mid \cdots \mid F^{-1} \cdot f(e_n) \right].$ $= F^{-1} \left[f(e_1) \mid f(e_2) \mid \cdots \mid f(e_n) \right].$ Nếu $\forall x \in V, f(x) = M \cdot x$, thì: $A = F^{-1} \cdot M \cdot \left[\begin{array}{ccc|c} e_1 & e_2 & \cdots & e_n \end{array} \right].$ Suy ra:

$$A = F^{-1} \cdot M \cdot E$$
 (1)

Công thức dùng để tính ảnh của véctơ khi biết ma trận $\forall x \in V, [f(x)]_F = A[x]_E \Leftrightarrow \mathbf{F}^{\bullet} \vdash \mathbf{H}_{\mathbf{C}} + \mathbf{M} \cup \mathbf{A} \vdash \mathbf{C} + \mathbf{N} \subset \mathbf{P}$ Vâv:

BACHKHOACNCP.COM

(2)

Trong chương 2, ta đã biết toa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \text{ là } A = ([f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]).$ $\Leftrightarrow A = \left[F^{-1} \cdot f(e_1) \mid F^{-1} \cdot f(e_2) \mid \cdots \mid F^{-1} \cdot f(e_n) \right].$ $= F^{-1} \left[f(e_1) \mid f(e_2) \mid \cdots \mid f(e_n) \right].$ Nếu $\forall x \in V, f(x) = M \cdot x$, thì: $A = F^{-1} \cdot M \cdot \left[\begin{array}{ccc|c} e_1 & e_2 & \cdots & e_n \end{array} \right].$ Suy ra:

$$A = F^{-1} \cdot M \cdot E \tag{1}$$

Công thức dùng để tính ảnh của véctơ khi biết ma trân: $\forall x \in V, [f(x)]_F = A[x]_F \Leftrightarrow F^{-1} \cdot f(x) = A \cdot E^{-1} \cdot x.$

Trong chương 2, ta đã biết toa độ của véctơ x trong cơ sở E là $E^{-1} \cdot x$. Với ánh xạ tuyến tính $f: V \longrightarrow W$, ta có ma trận của f trong cặp cơ sở $E, F \stackrel{.}{la} A = ([f(e_1)]_F | [f(e_2)]_F | \cdots | [f(e_n)]_F]).$ $\Leftrightarrow A = \left[F^{-1} \cdot f(e_1) \mid F^{-1} \cdot f(e_2) \mid \cdots \mid F^{-1} \cdot f(e_n) \right].$ $= F^{-1} \left[f(e_1) \mid f(e_2) \mid \cdots \mid f(e_n) \right].$ Nếu $\forall x \in V, f(x) = M \cdot x$, thì: $A = F^{-1} \cdot M \cdot \left[\begin{array}{cccc} e_1 & e_2 & \cdots & e_n \end{array} \right].$ Suy ra:

Công thức dùng để tính ảnh của vécto khi biết ma trận: $\forall x \in V$, $[f(x)]_F = A[x]_E \Leftrightarrow F^{-1} f(x) = A \cdot E^{-1} \cdot x$. Vậy:

$$f(x) := F + A A E \mathbb{N}^1 G x. C O M$$
 (2)

7/10

Định nghĩa

Cho ánh xạ tuyến tính $f: V \longrightarrow V$. Gọi $E = \{e_1, e_2, ..., e_n\}$ là một cơ sở của V. Ma trận A vuông cấp n có cột thứ i là tọa độ của $f(e_i)$ trong cơ sở E được gọi là ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, E, hay thường gọi ma trận của f trong một cơ sở E.

Tức là $A = ([f(e_1)]_E \mid f(e_2)]_E \mid \cdots \mid f(e_n)]_E]$.

Ta có công thức $\forall x \in V, [f(x)]_E \longrightarrow V$

TÀI LIÊU SƯU TẬP

Công thức dùng để tính ảnh của vécto khi biết ma trận:

 $f(x) = E \cdot A \cdot E^{-1} \cdot x$

Định nghĩa

Cho ánh xạ tuyến tính $f: V \longrightarrow V$. Gọi $E = \{e_1, e_2, ..., e_n\}$ là một cơ sở của V. Ma trận A vuông cấp n có cột thứ i là tọa độ của $f(e_i)$ trong cơ sở E được gọi là ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, E, hay thường gọi ma trận của f trong một cơ sở E.

Tức là $A = ([f(e_1)]_E \mid f(e_2)]_E \mid \cdots \mid f(e_n)]_E]$.

Ta có công thức $\forall x \in V, [f(x)]_E = A \cdot [x]_E$.

$$A = E^{-1} \cdot M \cdot E$$
 (3)

Công thức dùng để tính ảnh của vécto khi biết ma trận:

BACHKHOACNCBCC

Định nghĩa

Cho ánh xạ tuyến tính $f: V \longrightarrow V$. Gọi $E = \{e_1, e_2, ..., e_n\}$ là một cơ sở của V. Ma trận A vuông cấp n có cột thứ i là tọa độ của $f(e_i)$ trong cơ sở E được gọi là ma trận của ánh xạ tuyến tính f trong cặp cơ sở E, E, hay thường gọi ma trận của f trong một cơ sở E.

Tức là
$$A = ([f(e_1)]_E \mid f(e_2)]_E \mid \cdots \mid f(e_n)]_E]$$
.

Ta có công thức $\forall x \in V, [f(x)]_E = A \cdot [x]_E$.

$$A = E^{-1} \cdot M \cdot E$$
 (3)

Công thức dùng để tính ảnh của véctơ khi biết ma trận:

$$f(x) = E \cdot A \cdot E^{-1} \cdot x \tag{4}$$

Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết $\forall x = (x_1; x_2; x_3), f(x) = f(x_1; x_2; x_3) = (x_1 + x_2 - 2x_3; 2x_1 + x_2 - 5x_3, 3x_1 + 2x_2 - 7x_3).$ 21 Tìm ma trận A của f trong cơ sở $E = \{(1; 2; -1), (2; 5; -3), (3; 7; -5)\}.$ 2/ Sử dụng A, tính f(6; 4; 5).

$$1/f(x) = \begin{pmatrix} 1 & 1 & 7 \\ 2 & 1 & 5 \\ 3 & 2 & -7 \end{pmatrix}$$

Theo công thức (3) ta có A = E

-18 -48 -7BÖI HCMUT-CNCP

2/ Theo công thức (4) ta có $f(6;4;5) = E \cdot A \cdot E^{-1} \cdot 4$ BACHKHOACNCP.COM 5

Ví du

Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết $\forall x = (x_1; x_2; x_3), f(x) =$ $f(x_1; x_2; x_3) = (x_1 + x_2 - 2x_3; 2x_1 + x_2 - 5x_3, 3x_1 + 2x_2 - 7x_3).$ 21 Tìm ma trận A của f trong cơ sở $E = \{(1, 2, -1), (2, 5, -3), (3, 7, -5)\}.$ 2/ Sử dụng *A*, tính *f* (6; 4; 5).

$$1/f(x) = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -5 \\ 3 & 2 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$$

 $1/f(x) = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -5 \\ 3 & 2 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$ Theo công thức (3) ta có $A = E^{-1}ME$, với $E = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -1 & -3 & -5 \end{pmatrix}$

$$A = \begin{pmatrix} 25 & 65 & 100 \\ 17 & 46 & 74 \\ -18 & -48 & -76 \end{pmatrix}$$
 ÊU SU'U TÂP

2/ Theo công thức (4) ta có $f(6;4;5) = E \cdot A \cdot E^{-1} \cdot | 4$

Ví du

Cho ánh xa tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_3$, biết $\forall x = (x_1; x_2; x_3), f(x) =$ $f(x_1; x_2; x_3) = (x_1 + x_2 - 2x_3; 2x_1 + x_2 - 5x_3, 3x_1 + 2x_2 - 7x_3).$ 21 Tìm ma trận A của f trong cơ sở $E = \{(1, 2, -1), (2, 5, -3), (3, 7, -5)\}.$ 2/ Sử dụng *A*, tính *f* (6; 4; 5).

$$1/f(x) = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -5 \\ 3 & 2 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$$

 $1/f(x) = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -5 \\ 3 & 2 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = MX$ Theo công thức (3) ta có $A = E^{-1}ME$, với $E = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -1 & -3 & -5 \end{pmatrix}$

2/ Theo công thức (4) ta có $f(6;4;5) = E \cdot A \cdot E^{-1} \cdot \begin{vmatrix} 0 \\ 4 \\ 5 \end{vmatrix} = \begin{vmatrix} 0 \\ -9 \\ -9 \end{vmatrix}$

Ví dụ

Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$, biết ma trận của ánh xạ f trong cặp cơ sở $E = \{(1;2;1), (1;1;1), (2;1;1)\}$ và $F = \{(1;1), (3;4)\}$ là

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -3 & 5 \end{pmatrix}.$$

1/ Tinh f(4;1;5).

$$2/ \forall x = (x_1; x_2; x_3) \in \mathbb{R}_3$$
, $tinh f(x)$.

1/ Ta có
$$f(x) = F \cdot A \cdot E^{-1} \cdot x$$
, với $E = \begin{bmatrix} 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$, $F = \begin{bmatrix} 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$, $F = \begin{bmatrix} 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$ $\Rightarrow f(4;1;5) = (-145) \begin{bmatrix} 1 & 2 \\ 1 & 45 \end{bmatrix}$ IỆU SƯU TẬP

 $\Leftrightarrow f(x) = (27x_1 + 17x_2 - 54x_3; 35x_1 + 22x_2 - 70x_3)$

Ví du

Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$, biết ma trận của ánh xa f trong cặp cơ sở $E = \{(1, 2, 1), (1, 1, 1), (2, 1, 1)\}$ và $F = \{(1, 1), (3, 4)\}$ là

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -3 & 5 \end{pmatrix}.$$

1/ T inh f(4;1;5).

$$2/ \forall x = (x_1; x_2; x_3) \in \mathbb{R}_3$$
, $tinh f(x)$.

1/ Ta có
$$f(x) = F \cdot A \cdot E^{-1} \cdot x$$
, với $E = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}$.
 $\Rightarrow f(4;1;5) = (-145; -188)$.

$$\Rightarrow f(4;1;5) = (-145; -188).$$

BOT HEMUT-CNEP

Ví du

Cho ánh xạ tuyến tính $f: \mathbb{R}_3 \longrightarrow \mathbb{R}_2$, biết ma trận của ánh xạ f trong cặp cơ sở $E = \{(1, 2, 1), (1, 1, 1), (2, 1, 1)\}$ và $F = \{(1, 1), (3, 4)\}$ là

$$A = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 2 & -3 & 5 \end{array}\right).$$

1/ T inh f(4;1;5).

$$2/ \forall x = (x_1; x_2; x_3) \in \mathbb{R}_3$$
, $tinh f(x)$.

1/ Ta có
$$f(x) = F \cdot A \cdot E^{-1} \cdot x$$
, với $E = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}$.
 $\Rightarrow f(4;1;5) = (-145; -188)$.

$$\Rightarrow f(4;1;5) = (-145; -188).$$

$$2/f(x) = F \cdot A \cdot E^{-1} \cdot x = \begin{pmatrix} 27 & 17 & -54 \\ 35 & 22 & -70 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$