Tutorial-4 MTL103

- 1. If x' is any feasible solution of (P) and w' is feasible for (D) such that w'(b-Ax')=0 and (w'A-c)x'=0, then show that x' is optimal for (P) and w' is optimal for (D).
 - (P) $\max z = cx$ subject to $Ax \le b$ and $x \ge 0$
 - (D) $\min y = bw$ subject to $Aw \ge c$ and $w \ge 0$
- 2. Write the dual. Then find the primal optimal solution from the optimal solution of the dual.

3. Use duality to show that the following LP has an optimal solution.

$$\min 2x_1 - x_2$$
subject to:
$$2x_1 - x_2 - x_3 \ge 3$$

$$x_1 - x_2 + x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

4. Use complementary slackness theorem to verify that $(n, 0, 0, \dots, 0)$ is an optimal solution of LPP

$$\min \sum_{j=1}^{n} jx_j$$
 subject to:
$$\sum_{j=1}^{i} x_j \ge i, \text{ where } i = 1, 2, 3....n$$

$$x_j \ge 0, \forall j$$

- 5. Are the following statements true? Give reasons for your answer.
 - The primal LP (P) and its dual LP (D), both cannot have unbounded solution.
 - The primal LP (P) and its dual LP (D), both cannot be infeasible.
 - The dual(dual(dual)) of a LPP is the primal LPP.
 - If the primal LP (P) has a unique optimal solution and the dual LP (D) is feasible, then (D) also has a unique optimal solution.
- 6. Solve the following by dual simplex algorithm:

min
$$80x_1 + 60x_2 + 80x_3$$

subject to:
 $x_1 + 2x_2 + 3x_3 \ge 4$
 $2x_1 + 3x_3 \ge 3$
 $2x_1 + 2x_2 + x_3 \ge 4$
 $4x_1 + x_2 + x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

7. Consider the primal problem

$$\min c^T x
\text{subject to: } Ax \ge 0
x > 0$$

Form the dual problem and convert it into an equivalent minimization problem. Derive a set of conditions on the matrix A and vectors b and c under which the dual is identical to the primal.

- 8. Let A be a given matrix. Show that exactly one of the following alternatives must hold -
 - (a) There exists some $x \neq 0$ such that Ax = 0, $x \geq 0$.
 - (b) There exists some p such that $p^T A > 0^T$.
- 9. Consider the following linear programming problem of minimizing $c^T x$ subject to $Ax = b, x \ge 0$. Let x^* be an optimal solution, assumed to exist, and let p^* be the optimal solution to the dual.
 - (a) Let \bar{x} be the optimal solution to the primal, when c is replaced by some \bar{c} . Show that $(\bar{c}-c)^T(\bar{x}-x^*) \leq 0$.
 - (b) Let the cost vector be fixed at c, but suppose that we now change b to \bar{b} , and let \bar{x} be a corresponding optimal solution to the primal. Prove that $(p^*)^T(\bar{b}-b) \leq c^T(\bar{x}-x^*)$.
- 10. Let A be a symmetric square matrix. Consider the linear optimization problem

Prove that if x^* satisfies $Ax^* = c$ and $x^* \ge 0$, then x^* is an optimal solution.

11. Find the minimum and maximum of $f(x, y, z) = 3x^2 + y$ subject to the constraints 4x - 3y = 9 and $x^2 + z^2 = 9$. Formulate the lagrangian dual and solve using KKT conditions.