Contrôle continu n°1 en Mathématiques

ESIR, semestre 1, année 2011-2012

(aucun document n'est autorisé)

Soit \mathcal{M}_2 l'ensemble des matrices de taille (2×2) à composantes réelles. On notera $M_{m,n}$ la composante située à la m-ième ligne et à la n-ième colonne de la matrice M de \mathcal{M}_2 . Soit \mathcal{S}_2 le sous-ensemble de \mathcal{M}_2 des matrices symétriques à composantes positives dont les deux composantes diagonales sont égales : $\mathcal{S}_2 = \{M \in \mathcal{M}_2 \mid M_{1,1} = M_{2,2}, M_{1,2} = M_{2,1}, M_{1,1} \geq 0 \text{ et } M_{1,2} \geq 0\}$. Soit \mathcal{S}_2^* le sous-ensemble des matrices non nulles de \mathcal{S}_2 . Soit ψ l'application de \mathcal{M}_2 dans \mathbb{R}^+ définie par :

$$\forall \mathbf{M} \in \mathcal{M}_2, \quad \psi(\mathbf{M}) = \sqrt{(M_{1,1})^2 + (M_{1,2})^2}$$
 (1)

1. Démontrer que l'application ψ est une norme sur S_2 .

Montrons que chacun des trois axiomes caractérisant une norme est vérifié. Tout d'abord, on a bien $\psi(\lambda \mathbf{M}) = |\lambda| \psi(\mathbf{M})$ pour toute matrice \mathbf{M} de S_2 et tout λ de \mathbb{R}^+ d'après l'équation (1) :

$$\psi(\lambda \mathbf{M}) = \sqrt{\lambda^2((M_{1,1})^2 + (M_{1,2})^2)} = |\lambda|\sqrt{((M_{1,1})^2 + (M_{1,2})^2)} = |\lambda|\psi(\mathbf{M})$$
(2)

Ensuite, l'équation $\psi(\mathbf{M}) = 0$ implique bien que \mathbf{M} est la matrice nulle d'après la définition de $\psi(\mathbf{M})$ donnée par l'équation (1). Ce résultat découle du fait qu'une somme de termes positifs est nulle si et seulement si chacun des termes est lui-même nul. Enfin, il reste à démontrer que quelles que soient deux matrices \mathbf{A} et \mathbf{B} de S_2 , on a $\psi(\mathbf{A} + \mathbf{B}) \leq \psi(\mathbf{A}) + \psi(\mathbf{B})$. Puisque les nombres $\psi(\mathbf{A} + \mathbf{B})$ et $\psi(\mathbf{A}) + \psi(\mathbf{B})$ sont tous deux positifs, en remarquant que la fonction qui à x associe x^2 est croissante sur \mathbb{R}^+ , il est équivalent de démontrer que $\psi(\mathbf{A} + \mathbf{B})^2 \leq (\psi(\mathbf{A}) + \psi(\mathbf{B}))^2$. Il faut donc montrer que quelles que soient deux matrices \mathbf{A} et \mathbf{B} de S_2 , on a :

$$(A_{1,1})^{2} + (B_{1,1})^{2} + (A_{1,2})^{2} + (B_{1,2})^{2} + 2A_{1,1}B_{1,1} + 2A_{1,2}B_{1,2} \le$$

$$(A_{1,1})^{2} + (A_{1,2})^{2} + (B_{1,1})^{2} + (B_{1,2})^{2} + 2\sqrt{((A_{1,1})^{2} + (A_{1,2})^{2})((B_{1,1})^{2} + (B_{1,2})^{2})}$$
(3)

c'est-à-dire:

$$A_{1,1}B_{1,1} + A_{1,2}B_{1,2} \le \sqrt{((A_{1,1})^2 + (A_{1,2})^2)((B_{1,1})^2 + (B_{1,2})^2)}$$

$$\tag{4}$$

Les deux membres de l'inégalité (4) étant tous deux positifs (la positivité du premier membre découle du fait que les composantes de toute matrice de S₂ sont positives), il est équivalent de démontrer que :

$$(A_{1,1}B_{1,1} + A_{1,2}B_{1,2})^2 \le ((A_{1,1})^2 + (A_{1,2})^2)((B_{1,1})^2 + (B_{1,2})^2)$$
(5)

c'est-à-dire :

$$(A_{1,1})^{2}(B_{1,1})^{2} + (A_{1,2})^{2}(B_{1,2})^{2} + 2A_{1,1}B_{1,1}A_{1,2}B_{1,2} \le (A_{1,1})^{2}(B_{1,1})^{2} + (A_{1,2})^{2}(B_{1,1})^{2} + (A_{1,1})^{2}(B_{1,2})^{2} + (A_{1,2})^{2}(B_{1,2})^{2}$$

$$(6)$$

c'est-à-dire:

$$2A_{1,1}B_{1,1}A_{1,2}B_{1,2} \le (A_{1,2})^2(B_{1,1})^2 + (A_{1,1})^2(B_{1,2})^2 \tag{7}$$

c'est-à-dire:

$$0 \le (A_{1,2})^2 (B_{1,1})^2 + (A_{1,1})^2 (B_{1,2})^2 - 2A_{1,1}B_{1,1}A_{1,2}B_{1,2}$$
(8)

c'est-à-dire:

$$0 \le (A_{1,2}B_{1,1} + A_{1,1}B_{1,2})^2 \tag{9}$$

La dernière inégalité étant vraie, les précédentes le sont également par équivalence. On a donc bien vérifié les trois axiomes, l'application ψ est donc bien une norme sur S_2 .

- 2. L'application ψ est-elle une norme sur M₂? Justifiez votre réponse. Il suffit que l'un des trois axiomes ne soit pas vérifé sur M₂ pour que l'application ψ ne soit pas une norme sur M₂. En particulier, si M appartient à M₂, ψ(M) = 0 n'implique pas que toutes composantes de M sont nulles, plus particulièrement M_{2,2} et M_{2,1} ne sont pas nécessairement nulles. En conséquence, si M appartient à M₂, ψ(M) = 0 n'implique pas M = 0. L'application ψ n'est donc pas une norme sur M₂.
- 3. Calculer les dérivées partielles d'ordre un de ψ au point $\boldsymbol{M}^{(0)}$ de S_2^* . On a :

$$\frac{\partial \psi}{\partial M_{1,1}}(\mathbf{M}^{(0)}) = \frac{\partial \psi}{\partial M_{2,2}}(\mathbf{M}^{(0)}) = \frac{M_{1,1}^{(0)}}{\psi(\mathbf{M}^{(0)})}$$
(10)

$$\frac{\partial \psi}{\partial M_{1,2}}(\mathbf{M}^{(0)}) = \frac{\partial \psi}{\partial M_{2,1}}(\mathbf{M}^{(0)}) = \frac{M_{1,2}^{(0)}}{\psi(\mathbf{M}^{(0)})}$$
(11)

4. L'application ψ est-elle différentiable sur \mathcal{S}_2^* ? Justifiez votre réponse sans faire de calcul. On constate que les dérivées partielles d'ordre un de ψ sont continues sur l'ensemble \mathcal{S}_2^* (le seul point qui aurait posé problème est la matrice nulle de \mathcal{M}_2 , mais elle n'appartient pas à \mathcal{S}_2^*). Par conséquent, l'application ψ est différentiable sur \mathcal{S}_2^* .