2020

1.

一个公司在六个城市 c_1,c_2,\ldots,c_6 有分公司,下面的矩阵(i,j)号元素是 c_i 到 c_j 的机票价格,试为该公司制作一张 c_1 到每个城市的路线图,使得每个城市的机票价格都最便宜。

$$egin{pmatrix} 0 & 50 & \infty & 40 & 25 & 10 \ 50 & 0 & 15 & 20 & \infty & 25 \ \infty & 15 & 0 & 10 & 20 & \infty \ 40 & 20 & 10 & 0 & 10 & 25 \ 25 & \infty & 20 & 10 & 0 & 55 \ 10 & 25 & \infty & 25 & 55 & 0 \ \end{pmatrix}$$

转化为图

以 c_1 为起点 在图二上跑Dijkstra 算法。

迭代次数i	$l(v_2)$	$l(v_3)$	$l(v_4)$	$l(v_5)$	$l(v_6)$	S
0	50	∞	40	25	10	v_1
1	50	∞	50	25	10	v_1,v_6
2	35	45	35	25	10	v_1,v_5,v_6
3	35	45	35	25	10	v_1, v_2, v_5, v_6
4	35	45	35	25	10	v_1, v_2, v_4, v_5, v_6
5	35	45	35	25	10	$v_1, v_2, v_3, v_4, v_5, v_6$

路径的答案不止一种:

- $ullet v_2:v_1 o v_6 o v_2$
- *v*₃:

$$\circ$$
 $v_1
ightarrow v_5
ightarrow v_3$

$$\circ$$
 $v_1
ightarrow v_5
ightarrow v_4
ightarrow v_3$

$$\circ$$
 $v_1
ightarrow v_6
ightarrow v_4
ightarrow v_3$

 \bullet v_4 :

$$\circ$$
 $v_1
ightarrow v_5
ightarrow v_4$

$$\circ$$
 $v_1
ightarrow v_6
ightarrow v_4$

- $ullet v_5:v_1 o v_5$
- v_6 : $v_1 o v_6$

2.

- 1. 给定0.05, 0.05, 0.1, 0.1, 0.15, 0.15, 0.2, 0.2, 请求出 Huffman 树
- 2. 举例说明存在权值分布, 使得Huffman树不唯一

(1)

(2) 权值分布: 1,1,2,2

3

- 1. 证明:若 G是k 边连通图, E'是G 中 k 条边集合,则有 $w(G-E')\leq 2$
- 2. 给出一个 k连通图, 及 G 中k 个定点集合 ,使得 $w(g-V^{'})>2$

1证明:

反证法: 假设 $w(G-E')\geq 3$

则G-E'至少存在三个连通片 G_1,G_2,G_3 。

由于 $G \in \mathbb{R}$ 边连通的。所以子图 $G_1 \subseteq G - G_1$ 之间至少有K条边。

又因为|E'|=k,所以E'中的边必与 G_1 相邻,才能使 G_1 是一个联通片。所以除 G_1 外其它连通片之间无边,且 G_1 与其他联通片之间均有边。

同理分析 G_2 ,除 G_2 外其它连通片之间无边, G_2 与其他联通片之间均有边。

矛盾。

2示例:

4

- 1. 偶圈可以 2-边正常着色
- 2. 对于不是奇圈的欧拉图,存在 2-边着色方案,使得两种颜色,在所有顶点出都出现

1. 证明:

设偶圈C有2n条边, 将偶圈上的边按顺时针从 $1\sim 2n$ 编号。奇序号和偶序号的边各着一种颜色。由编号规则知,无相邻边同奇偶,即无相邻边同色。所以偶圈可以2-边正常着色。

2. 证明:

G 是欧拉图,则G 可以表示成若干个无公共边的圈之并。

- (1) 若G 没有度数大于等于4的点,则G 是一个圈,且是偶圈。由第一问的着色方法,可以证明。
- (2)若G 有度数大于等于4的点 v_i 。则从该顶点开始,选择一个该顶点所在的圈 C_i ,使用两种颜色,交替边着色。若 C_i 是偶圈,则 C_i 上的顶点已满足条件。若 C_i 是奇圈,则 C_i 中只有 v_i 目前只有一种颜色。
- (3) 对剩余的圈,从圈上一个度数大于4的顶点开始交替着色。若该顶点未被着色 ,起始色任选;若该顶点已满足条件,起始色任选;若该顶点临边只有一种颜色,则其实色使用另一种颜色。

若G是连通平面图,没有奇圈,且顶点数大于等于3,证明: $\epsilon \leq 2v-4$

证明: (类比书上定理)

G是平面图,所以 $\sum_{f \in F} deg(f) = 2\epsilon, \underline{\mathbb{H}}v - \epsilon + \varphi = 2$

G 没有奇圈,所以 $\forall f \in F, deg(f) \geq 4$

所以 $2\epsilon \geq 4arphi$, $arphi = 2 + \epsilon - v$

得 $\epsilon \leq 2v-4$

6

- 1. 求下网络的最大流;
- 2. 假定每条有向变的容量都大于0,证明:网络中存在从源s到汇t的有向轨道,等价于最大流量大于0

1. 2F算法:

计算出一条可增载轨道 $P_0(S,T)=Sv_3v_4T,$ 且 $l(P_0)=3$

计算出一条可增载轨道 $P_1(S,T)=Sv_1v_3v_4v_2T$, 且 $l(P_1)=2$

此时无可增载轨道。得 $Var(f^*) = Var(f_2) = 6$

2. 网络中存在从源s到汇t的有向轨道 =>> 最大流量大于0:

网络中存在从源s到汇t的有向轨道P(s,t),设轨道上的边的容量的最小值为b,则b>0。

设 f_0 表示每条边载量为0 的流函数, $Var(f_0)=0, l(P)\geq b$,所以将P(s,t)上每条边增载b 之后得流函数 f_1

 $Var(f^*) \geq Var(f_1) = b > 0$ 。即最大流量大于0。

最大流量大于0 => 网络中存在从源s到汇t的有向轨道:

使用反证法:假设网络中不存在存在从源s到汇t的有向轨道。

设 f_0 表示每条边载量为0 的流函数,对于任意一条无向轨道P(s,t) ,存在反向边 e_0 ,且 $f_0(e_0)=0$,所以 $l(P)\leq l(e_0)=f(e_0)=0$ 。所以无可增载轨道。所以 $Var(f^*)=Var(f_0)=0$,这与最大流量大于零矛盾。

7

- 1. 给出下图的邻接矩阵,并通过邻接矩阵求出可达矩阵,由此给出该图的强连通片
- 2. 假设有向图D是单向连通图。证明:任给 $S\subseteq V(D), S\neq\varnothing$ 都存在顶点 $v\in S$,使得v 可达S中的任意一个顶点.

1. 邻接矩阵:
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Warshall 算法计算可达性矩阵: $\nu=4$

即可达性矩阵为
$$R(D) = egin{pmatrix} 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \end{pmatrix}$$

强连通片为 v_2, v_3, v_4 的顶点导出子图。

2. 证明:

由于有向图D是单向连通图,所以可达性矩阵的满足 $r_{ij} \lor r_{ji} = 1$ 。

不妨设 $S = \{v_1, v_2, \dots, v_s\}$ 。下面只考虑可达性矩阵的前s 行的前s 列即可,记为A 。

证明存在顶点 $v \in S$,使得v可达S中的任意一个顶点. 即证,A中存在一行,除对角线位置外全为1.

考虑第i 行,若除对角线位置外全为1.得证。否则不妨设 $a_{ij}=0$,则 v_i 可达的顶点,均不可达 v_j ,即若 $a_{ix}=1$ 则 $a_{xj}=0$,则 $a_{jx}=1$ 。 又 \therefore $a_{ij}=0$, \therefore $a_{ji}=1$ 。至此得到第j行的1至少比第i 行多一个。 若第j 行不是除对角线位置外全为1,则可重复上述分析,找到比第j行还多的行 , 依次类推,s-1 步之内 可得必有一行除对角线位置外全为1.得证

若M与 M' 都是图G 的完备匹配,则边导出子图 $G[M \oplus M']$ 的每个连通片都是M与M'交替出现的偶圈.

证明:

考虑G 的子图 $G'=M\cup M'$ 。在G'中对边着色,属于M中的边着红色,M' 中的边着蓝色,去掉染了两种颜色的边,再去掉度数为0的点,得到的图即是 $G[M\oplus M']$ 。

在M 中每个点的度数均为1,即每个点只有一条邻边。在M' 中同样 。所以在G' 中每个点的邻边最多为2,即G' 中顶点度数最大为2。

不妨设 $deg_{G'}(u)=1$, u 关联的边为e=uv。则 $e\in M$ 且 $e\in M',$ $deg_{G'}(v)=1$, e 被着两种颜色,所以u,v,e 被从G'中去掉。由u 的任意性。所以 $G[M\oplus M']$ 中点的度数均为2,所以 $G[M\oplus M']$ 的每个连通片均是圈。

由于 $G[M\oplus M']$ 中每个顶点的两个邻边分别来自M,M',所以被染了两种不同颜色。所以 $G[M\oplus M']$ 可以2-边正常着色,所以 $G[M\oplus M']$ 不含奇圈,所以 $G[M\oplus M']$ 的每个连通片均是偶圈。

又由染色结果可知, $G[M \oplus M']$ 的每个连通片都是M与M'交替出现的偶圈.

2018

1

1.给了一个带权有向图,求最大流并找一个最小截;把有向边改成无向边,再求一棵最小生成树。

求最小生成树算法。

2

2.(1)已知一个图有 1 个 8 次顶、 6 个 6 次顶、 8 个 4 次顶,证明它不是平面图。 (3)证明 $n \ge 5$ 时,圈 Cn 的补图是 Hamilton 图。

2. G 是简单图,且 $\nu(G)\geq 3, \delta(G)\geq \nu(G)/2,$ 则G是Hamilton图 三个定理

3

- 1)设树的 2,3,...,k 次顶的个数为 n2,n3,...,nk, 求一次顶的个数。
- (2)n 个顶的树的最大度数Δ最小是多少? 最大是多少? 并求出最小和最大时对应什么树。
- (3)证明树的最长轨的端点为叶。

4

已知有8种药品要用容器运输,给出它们的互斥关系(互斥的药品不能放在同一个容器内),问最少用几个容器?建立图论模型并使用图论知识解决问题。

点着色

5

(1)二分图 G 满足|X|=|Y|=n,且最小度数 $\delta\geq n/2$,证明 G 有完备匹配。 (2)证明 : G 中任意一条边都包含于 G 的一个完备匹配,当且仅当对 X 的任一非空真子集 S, $|N(S)|\geq |S|+1$ 。

1. 证明:

任取 $S\subseteq X$ 若 $|S|\le n/2$,则 $|N(S)|\ge n/2\ge |S|$,若|S|>n/2 ,则Y 中的点均与S 相邻,否则该点的度数小于 δ 。 即 $|N(S)|=n\ge |S|$ 。 由Hall 定理,得G有完备匹配。

2. 证明:

"**=**"

任取 $e=uv\in G$,令, $G'=G-\{u,v\}$ 。只需证G' 有完备匹配即可 。 在G'中任取 $S\subset X',N'(S)$ 表示G'中S 的邻顶集合, $|N'(S)|\geq |N(S)|-1\geq |S|$,由Hall 定理得G' 有完备匹配。即 G 中任意一条边都包含于G 的一个完备匹配。

"⇒"

G 中任意一条边都包含于G 的一个完备匹配。 即任取 $e=uv\in G$,令, $G'=G-\{u,v\}$,G' 也有完备匹配。因为G 有完备匹配, 在G中任取 $S\subset X, |N(S)|\geq |S|$,在图中去掉 $\{u,v\}$ 后, S变为S', N(S) 变为N'(S'),有四种变化可能,|S|=|S'|, |N(S)|=N'(S');或 |S'|=|S|, |N'(S')|=N(S)-1;或 |S'|=|S|-1, |N'(S')|=N(S);或 |S'|=|S|-1, |N'(S')|=N(S)-1;。因为G' 有完备匹配,应有 $|N'(S')|\geq |S'|$,对上述四种情况均满足,所以 $|N(S)|\geq |S|+1$ 。