Topic 18 Bibliometrix Analysis using R

18.1 Introduction to Bibliometric Analysis

- Bibliometric analysis is a widely used method for explorative and analytical studies of large volumes of research data.
- The analysis is helpful in discovering various evolutionary variations in a specific field of study as well as highligting emerging topics in the field.
- Bibliometrics is the application of quantitative analysis and statistics to publications such as journal articles and their accompanying citation counts. (https://en.wikipedia.org/wiki/Bibliometrix)
- Various methods are used to analyse the publication data to evaluate growth, maturity, leading authors, conceptual stuctures, trends, topical evolution etc.

18.2 R and Bibliometric analysis

R's package ecosystem is one of its major advantages, there are packages available for most widely used statistical and data analysis & visualisation techniques used several packages added almost daily on new and upcoming methods published by academic researchers or industry practitioners.

- R provide packages for various areas of interest (see https://cran.r-project.org/web/views/ for a list of task views grouping packages according to their functionality) including systematic literature review or the related field of meta analysis.
- Bibliometrix (Aria & Cuccurullo (2017)), Revtools (Westgate (2018)) and Litsearchr (E. Grames, Stillman, Tingley, & Elphick (2019), E. M. Grames, Stillman, Tingley, & Elphick (2019)) of the Metaverse (https://rmetaverse.github.io/) project, Adjutant (Crisan, Munzner, & Gardy (2018)), Metagear (Lajeunesse (2016))) are a few providing various functionality.
- Bibliometrix is by far the most popular with several publications using the package
- The package webpage (http://www.bibliometrix.org/Papers.html) provides a list of publications utilising the package. (for example see, Lajeunesse (2016); Addor & Melsen (2019)) and hence we will use the package to demonstrate some of its functionality.
- Linnenluecke, Marrone, & Singh (2020), Ahadi, Singh, Bower, & Garrett (2022) provide two examples of using Bibliometric analysis in a Systematic Literature Review

18.3 Bibliometrix Example

- Bibliometrix (https://www.bibliometrix.org/) allows R users to import a bibliography database generated using SCOPUS and Web of Science stored either as a Bibtex (.bib) or Plain Text (.txt) file.
- The package has simple functions which allows for descriptive analyses as shown in table-1 to table-3.
- The analysis can also be easily visualised as shown in figure-17.1 to 17.5.

```
library(bibliometrix) #load the package
library(pander) #other required packages
library(knitr)
library(kableExtra)
library(ggplot2)
library(bibliometrixData)
# use scopuscollection data from the package

data("scientometrics")
# M=convert2df(file='scopus.bib',format='bibtex',dbsource = 'scopus')#convert
# external data to data frame
```

18.4 Descriptive Analysis

```
# Descriptive analysis
M = scientometrics #just to reuse the other code
res1 = biblioAnalysis(M, sep = ";")
s1 = summary(res1, k = 10, pause = FALSE, verbose = FALSE)
d1 = s1$MainInformationDF #main information
d2 = s1$MostProdAuthors #Most productive Authors
d3 = s1$MostCitedPapers #most cited papers
pander(d1, caption = "Summary Information")
```

Description	Results		
MAIN INFORMATION ABOUT DATA			
Timespan	1985:2015		
Sources (Journals, Books, etc)	1		
Documents	147		
Average years from publication	14.1		
Average citations per documents	14.81		
Average citations per year per doc	0.8168		
References	4444		
DOCUMENT TYPES			
article	125		
article; proceedings paper	19		

2
2
9
7
7
46
3
9
7

18.4.1 Productive Authors

	Authors	Articles	Authors	Articles	Fractionalized
1	SMALL H	8	SMALL H		6.33
2	ZITT M	6	ZITT M		3.00
3	BASSECOULARD	E 5	JARNEVING B		2.50
4	GLANZEL W	5	GLANZEL W		2.17
5	HUANG MH	5	BASSECOULARD	E	2.00
6	THIJS B	4	LO SC		2.00
7	AHLGREN P	3	HUANG MH		1.79
8	CHEN DZ	3	THIJS B		1.67
9	JARNEVING B	3	LEYDESDORFF I		1.50
10	QIU JP	3	MILMAN BL		1.50

pander(d2, caption = "Most Productive Authors", table.split = Inf)

Authors	Articles	Authors	Articles Fractionalized
SMALL H	8	SMALL H	6.33
ZITT M	6	ZITT M	3.00
BASSECOULAR D E	5	JARNEVING B	2.50
GLANZEL W	5	GLANZEL W	2.17
HUANG MH	5	BASSECOULAR D E	2.00
THIJS B	4	LO SC	2.00
AHLGREN P	3	HUANG MH	1.79
CHEN DZ	3	THIJS B	1.67
JARNEVING B	3	LEYDESDORFF L	1.50
QIU JP	3	MILMAN BL	1.50

18.4.2 Most cited papers

pander(d3, caption = "Most Cited Papers")

Paper	DOI	TC	TCperYear	NTC
. 460				
BOYACK KW, 2005, SCIENTOMETRICS		283	15.72	3.997
SMALL H, 1985, SCIENTOMETRICS-a		148	3.89	1.065
VAN ECK NJ, 2010, SCIENTOMETRICS		142	10.92	5.004
SMALL H, 1985, SCIENTOMETRICS		130	3.42	0.935
SMALL H, 2006, SCIENTOMETRICS		83	4.88	3.487
GMUR M, 2003, SCIENTOMETRICS		78	3.90	2.806
ZITT M, 1994, SCIENTOMETRICS		60	2.07	2.353
GLANZEL W, 1996, SCIENTOMETRICS		58	2.15	1.798
DING Y, 2000, SCIENTOMETRICS		46	2.00	2.667
PONZI LJ, 2002, SCIENTOMETRICS		44	2.10	1.234

18.5 Information Plots

p1 = plot(res1, pause = FALSE)

18.5.1 Summary Plot-1 (Most Porductive Authors)

```
library(ggplot2)
theme_set(theme_bw())

p1[[1]] + theme_bw() + scale_x_discrete(limits = rev(levels(as.factor(p1[[1]]$data$AU))))
```


Figure 18.1: Most Productive Authors

18.5.2 Summary Plot-2 (Most Productive Countries)

p1[[2]]

Figure 18.2: Most Productive Countries

18.5.3 Summary Plot-3 (Annual Scientific Production)

p1[[3]]

Figure 18.3: Annual Scientific Production

18.5.4 Summary Plot-4 (Average Article Citation)

p1[[4]]

Figure 18.4: Average Article Citation

18.5.5 Summary Plot-5 (Author Production Over Time)

- A graph for author statistics over time can also be produced.
- Figure-17.5 shows a graph of top 10 authors over time. The information from these plots can be easily extracted to summarise them in a table.

Figure 18.5: Author Production Over Time

18.5.6 Sankey plot

 Bibliometrix provides another useful function to plot a Sankey diagram to visualise multiple attributes at the same time. For example, figure-9 provides a three fields plot for Author, Author Keywords and Cited References.

```
threeFieldsPlot(M, fields = c("DE", "AU", "AU CO"))
```

bibliographic couplingbibliometricsco-citation analysisco-citationcitation analysiscluster analysisauthor co-citation analysisresearch frontsscience mappingtext miningintellectual structuredocument co-citation analysishybrid clusteringsmall hzitt mbassecoulard eglanzel whuang mhthijs bahlgren pchen dzjarneving bqiu jptsay myzhang jzhao ryboyack kwchang cpchen cmdastidar pgdwivedi ykguan jcingwersen

pchinausafrancebelgiumnetherlandsswedenhungarygermanyunited kingdomindiadenmarkaustria

Figure 18.6: Sankey Diagram

18.6 Co-word Analysis

- Analysis of the conceptual structure among the articles analysed.
- Bibliomentrix can conduct a co-word analysis to map the conceptual structure of a framework using the word co-occurrences in a bibliographic database.
- The analysis in Figure-2 is conducted using the Correspondence Analysis and K-Means clustering using Author's keywords. This analysis includes Natural Language Processing and is conducted without stemming.

```
library(gridExtra)
CS = conceptualStructure(M, field = "DE", method = "CA", minDegree = 4, clust =
"auto",
    stemming = FALSE, labelsize = 8, documents = 10, graph = FALSE)
grid.arrange(CS[[4]], CS[[5]], ncol = 2, nrow = 1)
```


Figure 18.7: Conceptual Structures-1

18.7 Author collaboration network

```
NetMatrix <- biblioNetwork(M, analysis = "collaboration", network = "authors",
sep = ";")
net = networkPlot(NetMatrix, n = 50, Title = "Author collaboration", type =
"auto",</pre>
```


Figure 18.8: Author Collaboration Network

18.8 Keyword co-occurance

```
Netmatrix2 = biblioNetwork(M, analysis = "co-occurrences", network =
"keywords",
    sep = ";")
```

```
# Plot the network
net = networkPlot(Netmatrix2, normalize = "association", weighted = T, n = 50,
Title = "Keyword Co-occurrences",
    type = "fruchterman", size = T, edgesize = 5, labelsize = 0.7)
```


Figure 18.9: Keyword co-occurance

18.9 Thematic Map

Co-word analysis draws clusters of keywords. They are considered as themes, whose density and centrality can be used in classifying themes and mapping in a two-dimensional diagram.

Thematic map is a very intuitive plot and we can analyze themes according to the quadrant in which they are placed: (1) upper-right quadrant: motor-themes; (2) lower-right quadrant: basic themes; (3) lower-left quadrant: emerging or disappearing themes; (4) upper-left quadrant: very specialized/niche themes.

```
Map = thematicMap(M, field = "ID", n = 1000, minfreq = 5, stemming = FALSE,
size = 0.5,
    n.labels = 4, repel = TRUE)
plot(Map$map)
```


Figure 18.10: Thematic Map

Finally there is a shiny based GUI also available biblioshiny()

References

Addor, N., & Melsen, L. (2019). Legacy, rather than adequacy, drives the selection of hydrological models. *Water Resources Research*, *55*(1), 378–390.

Ahadi, A., Singh, A., Bower, M., & Garrett, M. (2022). Text mining in education—a bibliometrics-based systematic review. *Education Sciences*, *12*(3).

https://doi.org/10.3390/educsci12030210

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An r-tool for comprehensive science mapping analysis. *Journal of Informetrics*, *11*(4), 959–975. Retrieved from https://doi.org/10.1016/j.joi.2017.08.007

Crisan, A., Munzner, T., & Gardy, J. L. (2018). Adjutant: An r-based tool to support topic discovery for systematic and literature reviews. *Bioinformatics*, *35*(6), 1070–1072. Grames, E. M., Stillman, A. N., Tingley, M. W., & Elphick, C. S. (2019). An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. *Methods in Ecology and Evolution*, *0*(ja).

https://doi.org/10.1111/2041-210X.13268

Grames, E., Stillman, A., Tingley, M., & Elphick, C. (2019). *Litsearchr: Automated* search term selection and search strategy for systematic reviews.

Lajeunesse, M. J. (2016). Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for r. *Methods in Ecology and Evolution*, 7(3), 323–330.

Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. *Australian Journal of Management*, *45*(2), 175–194. https://doi.org/10.1177/0312896219877678

Westgate, M. J. (2018). Revtools: Bibliographic data visualization for evidence synthesis in r. *bioArXiv*. https://doi.org/10.1101/262881