(그림으로이해하는) 닥터 배의 술술 보건의학통계

라가영

- 가. 생존 연구의 준비
- 나. Kaplan-Meier 생존분석
- 다. 로그순위법

생존분석

- 생존분석(survival analysis) : 시간에 따른 사망이나 재발 등의 변화를 관찰하는 분석
- 사건(event): 생존분석에서 '사망'이나 '재발'과 같이 연구자가 관심을 갖고 있는 변화
- 사건 발생까지의 시간(time to event): 생존분석에서 분석의 대상
- Kaplan-Meier 생존분석(Kaplan-Meier curve analysis): 특정 집단의 생존율을 분석
- 로그순위법(Log-rank test) : 두 집단의 생존율을 비교
- Cox의 비례위험모형(Cox's proportional hazard model): 생존율에 영향을 미치는 위험인자를 분석(II장에서 공부)

가. 생존 연구의 준비

어떤 이유로든 관찰기간 동안 event가 발생하지 않아 정확한 생존기간을 알 수 없는 중도절단된 자료

- 완전한 자료(uncensored data): 생존자료의 관찰기간 동안 사건(event)이 발생한 자료를 사건 발생까지 절단되지 않았을 경우
- 절단된 자료(censored data): 사건이 발생되기 전에 자료 수집이 종료된 모든 경우를 사건 발생 전에 관찰한 경우

가. 생존 연구의 준비

- 절단된 자료들은 사건 발생까지 걸린 시간은 알 수 없지만, 최소한 이 관찰 기간 동안 사건이 발생하지 않았다는 정보를 제공
- 개체의 총 관찰 시간을 **사건 발생까지 걸린 시간**으로 표현하고 그 기간 동안 사건이 발생하지 않았음을 표기하여 자료를 정리

가. 생존 연구의 준비

- 생존분석에서 자료를 코딩하는 방 법

- 생존분석 자료에서 관찰의 시작과 종료 시점은 중요하지 않음.
- 사건 발생 여부(censored of uncensored)와 사건 발생까지 걸린 시간(time to event)만 분석에 이용
- 다음 표는 난소암 환자 26명을 2군으로 나누어 표준 치료법을 시행한 군(n=13)과 새 치료법을 적용한 군(n=13)의 생존율을 비교한 자료

가. 생존 연구의 준비

- 생존분석에서 자료를 코딩하는 방 법 1, 표준치료법

0, Censored

2, 새 치료법

Time to event

1. Death

증례번호	치료군	관찰기간(개월)	사망
1	1	2	1
2	1	3	1
3	1	5	1
4	2	14	0
5	1	14	1
6	1	14	0
7	2	15	1

가. 생존 연구의 준비

- 생존분석에서 자료를 코딩하는 방 법

관찰 기간이 작은 순서부터 정렬 절단된 자료는 아직 사망이 발생한 것이 아니므로 기간에 +를 덧붙여서 완전한 자료와 구분

가. 생존 연구의 준비

- 생존분석에서 자료를 코딩하는 방 법 새 치료법

11, 12, 12+, 14+, 15, 15, 18, 24+, 25+, 25+, 37+, 40+, 40+

관찰기간 - 개월

관찰 기간이 작은 순서부터 정렬 절단된 자료는 아직 사망이 발생한 것이 아니므로 기간에 +를 덧붙여서 완전한 자료와 구분

- 생명표법(life table method): 일정한 간격마다 구간생존율을 구하는 방법. 표본의 크기가 50이 넘어야 적용 가능
- Kaplan-Meier 생존분석(Kaplan-Meier curve analysis): 사건(사망)이 발생한 시점마다 구간 생존율을 구하여 이들의 누적으로서 누적 생존율을 구하는 방식. 표본의 크기 가 작아도 적용 가능. 누적한계추정법(product-limit method)라고도 불림.

- 사건(사망)이 발생한 시점마다 생존율을 계산
- 관찰 기간의 순서대로 자료를 정리한 뒤 각 구간별로 관찰대상 수 중 생존자 수 의 분율로 구간생존율(P(t))를 계산
- 누적생존율(S(t))은 각 구간별 구간생존율을 차례로 곱함으로써 추정
- Kaplan-Meier 생존곡선을 통해 특정 시점의 생존율(I년, 2년 생존율)을 추정할 수 있으며, 반대로 생존율이 50%로 떨어지는 시점도 추정 가능.

$$P(t) = \frac{t \text{ 시점의 생존자수}}{t \text{ 시점의 관찰대상수}}$$

$$S(t) = S(t-1) \times P(t)$$

표준치료법

중례번호	관찰기간 (월)	이 시점의 생존자수	이 시점의 관찰대상수	구간생존율 P(t)	누적생존율 S(t)
1	2	12	13	$\frac{12}{13} = 0.923$	0.923
2	3	11	12	$\frac{11}{12} = 0.917$	0.846
3	5	10	11	10/11 = 0.909	0.769
22	8	9	10	$9/_{10} = 0.900$	0.692
23	11	8	9	8/9 = 0.889	0.615
5	14	7	8	⁷ / ₈ = 0.875	0.538
6	14+	7	7	1.0	
9	15+	6	6	1.0	
11	21	4	5	$\frac{4}{5} = 0.800$	0.431
15	26+	4	4	1.0	
16	28+	3	3	1.0	5.
17	34+	2	2	1.0	-
18	36+	1	1	1.0	

새 치료법

	게시프					
중례번호	관찰기간 (월)	이 시점의 생존자수	이 시점의 관찰대상수	구간생존율 P(t)	누적생존율 S(t)	
24	11	12	13	$\frac{12}{13} = 0.923$	0.923	
25	12	11	12	$\frac{11}{12} = 0.917$	0.846	
26	12+	11	11	1.0	*	
4	14+	10	10	1.0		
7	15	8	9	$\frac{8}{9} = 0.889$	0.752	
8	15	7	8	$\frac{7}{8} = 0.875$	0.658	
10	18	6	7	$\frac{6}{7} = 0.857$	0.563	
12	24+	6	6	1.0	-	
13	25+	5	5	1.0	*	
14	25+	4	4	1.0		
19	37+	3	3	1.0	•	
20	40+	2	2	1.0	*	
21	40+	1	1	1.0		

다. 로그순위법

- 두 군을 합한 전체 집단을 관찰 기간순으로 배열하고 이중 절단된 항목을 모두 지우고 사건(사망)이 발생한 구간만 남겨서 정리
- 각 구간의 사망에 대한 기대빈도를 계산

다. 로그순위법

다. 로그순위법

- 전체 관찰빈도와 기대빈도의 관계는 자유도가 I인 x² 분포를 따름
- 검정통계량 x²값이 3.84보다 큰 경우 귀무가설을 기각하고 두 군은 유의한 차이 를 보임
- 예) x² 값이 I.I32 < 3.84이므로 두 군의 생존곡선이 차이가 있다고 말 할 수 없음

$$\chi^2 = \sum \frac{(관찰사망수 합 - 기대사망수 합)^2}{$$
기대사망수 합
$$= \frac{(7 - 5.175)^2}{5.175} + \frac{(5 - 6.825)^2}{6.825} = 1.132 < 3.84$$

$$\rightarrow p > 0.05$$