figure 1: current frequency

f = c / (3 a) = drive frequency in Hz

p = pulse duration = T / 3, where T = 1 / f

figure 2: phasing chart

f = c / (3 a) = drive frequency in Hz

p = pulse duration = T / 3, where T = 1 / f

figure 3: x and z separation of 2 segments, ie segment pair

figure 4: x and z separations of neighboring segments

figure 5: x and y separations in a single plate

figure 6: z and y separation in two plates

figure 7: perspective view of the two plates

figure 8: close-up perspective view of the two plates and current segments

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

figure 9: m-n segment distance relationship

figure 10: Force between current-carrying conducting wires

f current in the wires

In this theoretical description, the values of $a,\,h_1,\,h_2,\,l_1,\,l_2$ and I are variable

figure 11: Plate 1 (0,0) to Plate 2 (m,n) segment distance, B

$$z \xrightarrow{y} x$$

figure 12: timing differences

	0	1p	2p	3р	4p	5p	6р	7p	8p	9p	10p		time
		Ų	•	,	'	,	•	•	See DE	TAİLEI	DÉSCRIF		
segment (0,0)													
Plate 1 Plate 2												_	
Plate 2			_									-	
segmen	t (0,1)												
Plate 1		_											
Plate 2												_	
													
									relativ	e ove	erlap = 1	- (8 - 7	810)
segmen	t (0,2)								101011		-	= 0.	810
Plate 1		_			_			_					
Plate 2								7 040	_			_ 	7.040
								7.010		reia	tive over	ap - o · = 0.	- 7.610 19
	. (4.0)			-									
segmen	(1,0)	_			_								
Plate 1												_	
Plate 2						_							
segmen	t (1,1)								- relati	ve ov	erlap = 6	- 5.568	= 0.432
Plate 1		_			_								
Plate 2						_						_	
								-					
seament	t (1,2)								relative	over	lap = 9 -	8.718 =	0.282
Plate 1		_											
		_											
Plate 2		-				_					_	_	

figure 13: plate view

Distance a is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for a would range from 1 cm to 1 km

figure 14: Relativistic force between current-carrying conducting wires

figure 15: Lorentz length contraction

