Bek. gem. 21. Mai 1964

47g, 47/01. 1 893 364. Unitherm Deutsche Gesellschaft für universelle Wärmetechnik m.b.H., Heidelberg-Wieblingen. | Belastetes Druckhalte- und Regelventil für Leitungen für flüssige Medien, insbesondere für Ölringleitungen. 9. 3. 64. U 4346. (T. 6; Z. 2)

Dipl.-Ing. Theodor Ungerather Patentanwalt 6900 Heidelberg Keplerstraße 54 · Telefon 42331 P.A. 174945*-9.3.64 (eidelberg den 2. März

1964/

An das

Deutsche Patentamt

München 2

Zweibrückenstr. 12

Meine Akte Nr. Unitherm

Gebrauchsmusteranmeldung

Gebrauchsmusterhilfsammeldung

Es wird hiermit die Eintragung eines **Gebrauchsmusters** für: die Firma Unitherm Deutsche Gesellschaft für universelle Wärmetechnik

m.b.H., Heidelberg-Wieblingen, Messstraße 30

auf eine Neuerung, betreffend: Belestetes Druckhalte- und Regelventil für Leitungen für flüssige Medien, insbesondere für Ölring-leitungen

beantragt.

Es wird die Prioritä	t beansprucht au	us der	Anmeldung:
----------------------	------------------	--------	------------

Land: - Nr.:

Tag:

Es mirchbeentragty die Eintregung his xur. Erledigung zier zien zeielchen: Gugenstand hemettenden: Paradamannaldung auszuserzen.

Es wird beantragt, allen amtlichen Mitteilungen – Überstücke beizufügen. Die Anmeldegebühr sowie die Kosten für die beantragten Überstücke in Höhe von insgesamt 30, –DM — werden auf das Postscheckkonto des Deutschen Patentamtes überwiesen, sobald das Aktenzeichen bekannt ist — werden durch die aufgeklebten Gebührenmarken entrichtet —.

Anlagen:

- 2 Doppel des Antrages (*** Weifach),
- Beschreibung mit 9 Schutzansprüchen zeinfach. dreifach,
- 1 Vollmacht (wird nachgereicht),
- Vollmachtsabschrift,
- Blatt Zeichnung(en) einfach (die Vorschriftsmäßigen Zeichnungen werden nachgereicht),
- vorbereitete Empfangsbescheinigung(en).

MAMM. Patentanwalt

Npi.-Ing. Theodor Ungerathen
Patentanwalt
6900 Heidelberg
Keplerstraße 54 - Telefon 42831

Unitherm 4 9 45 * - 9.3.64
Deutsche Gesellschaft für universelle Wärmetechnik m.b.H.
Heidelberg-Wieblingen
Maaßstraße 30

Belastetes Druckhelte- und Regelventil für Leitungen für flüssige Medien, insbesondere für Ölringleitungen

Die Neuerung bezieht sich auf ein belastetes Druckhalteund Regelventil für Leitungen für flüssige Medien, insbesondere für Ölringleitungen. Zweck der Neuerung ist die Schaffung eines unempfindlichen, wartungsfreien und preiswerten Ventils, das auch bei den verschiedenen im Betrieb auftretenden Verhältnissen eine genaue Aufrechterhaltung des Betriebsdrucks gewährleistet.

Die bekannten belasteten Druckhalte- und Regelventile sind Tellerventile, Kegelventile oder Hahnkükenventile.

Der Sitz dieser Ventile ist immer nur für eine bestimmte Durchgengsmenge bemessen. Bei veränderlichen Betriebsverhältnissen treten daher merkliche Druckschwenkungen auf. Der vorliegenden Neuerung liegt die Aufgabe zugrunde, diese Nachteile der bekannten Ventile zu vermeiden.

Gemäß der Neuerung ist das Druckhalte- und Regelventil als Kolbenventil mit einem innerhalb eines mit radialen Abströmbohrungen versehenen Zylinders unter dem Druck des eintretenden Mediums verschiebbaren belasteten Kolben ausgebildet. Mit diesem Ventil wird erreicht, daß auch bei veränderlichen Betriebsverhältnissen immer ein konstanter Druck aufrechterhalten werden kann. Außerdem ist dieses Ventil in seinem Gesamtaufbau einfach und preiswert herstellbar. Es ist ferner unempfindlich und wartungsfrei. Vorteilhaft erhält der Kolben eine Gewichtsbelastung. Eine solche hat gegenüber der Federbelastung bei den bekannten Ventilen den Vorteil, daß die Gewichtsbelastung einfacher und preiswerter ist und

sich zum anderen besser konstant erhalten läßt als eine Federbelastung. Ein weiterer Vorteil der Gewichtsbelastung ergibt sich, wenn diese aus mehreren auswechselbaren Gewichten besteht.

Vorteilhaft liegen ferner die Abströmbohrungen paarweise einander gegenüber. Hierdurch wird ein Verkanten des in der Bohrung des Ventilzylinders verschiebbaren Kolbens ausgeschlossen. Zweckmäßig sind die Abströmbohrungen stufenweise gegeneinander versetzt, ferner aufeinanderfolgende Abströmbohrungen um den Bohrungsradius in der Höhe gegeneinander versetzt. Auf diese Weise wird bei einer Verschiebung des Ventilkolbens immer eine etwa gleich große Durchtrittsfläche der Abströmbohrungen freigegeben.

Die Anordnung ist vorteilhaft ferner so getroffen, daß eine Abströmbohrung für den Durchlaß von maximal etwa 5 % des im Leitungssystem insgesamt zirkulierenden Mediums bemessen ist. Auf diese Weise wird zuverlässig erreicht, daß bei einer Verschiebung des Kolbens immer nur möglichst geringe Querschnitte für den Öldurchlaß freigegeben oder verschlossen werden, so daß keine plötzlichen unerwünscht hohen Druckänderungen nach oben oder unten auftreten können, wie das bei den bekannten Ventilen leicht geschehen kann. Dabei ist zweckmäßig die Gesamtzahl der Abströmbohrungen für den Durchlaß des im Leitungssystem insgesamt zirkulierenden Mediums bemessen, so daß bei Ausfall der Abnahmestellen trotzdem die gesamte Flüssigkeitsmenge aus der Ringleitung abströmen kann. Aus den gleichen Gründen ist zweckmäßig die Bohrung des Zylinders für den Durchlaß des im Leitungssystem insgesamt zirkulierenden Mediums bemessen.

In der Zeichnung ist das Druckhalte- und Regelventil nach der Neuerung durch ein Ausführungsbeispiel veranschaulicht.

- Fig. 1 ist ein Vertikalschnitt durch das Ventil.
- Fig. 2 ist ein Querschnitt nach der Linie II-II der Fig. 1.
- Fig. 3 zeigt in Abwicklung die Anordnung der Abströmbohrungen.
- Fig. 4 zeigt den Verlauf des Flächendifferentials bei versetzt zueinander angeordneten Abströmbohrungen.

Bei dem in Fig. 1 dargestellten Ausführungsbeispiel hat das Druckhalte- und Regelventil für Ölleitungen nach der Neuerung ein vertikal angeordnetes zylindrisches Gehäuse 1. An seiner Unterseite ist das Gehäuse 1 durch die Deckel 2 und 3 und an seiner Oberseite durch den Deckel 4 verschlossen. Dem Deckel 4 ist noch ein an das Gehäuse 1 angeschweißter Flansch 5 vorgeschaltet. Der Deckel 4 ist mittels der Schrauben 6 mit dem Flansch 5 fest verbunden. In gleicher Weise ist der Deckel 2 an das Gehäuse 1 angeschweißt, während der Deckel 3 mit dem Deckel 2 durch die Schrauben 7 verbunden ist. Das Öl tritt durch den Stutzen 8 in das Ventil ein, während das überströmende Öl das Ventil durch den Stutzen 9 verläßt. Innerhalb des Gehäuses 1 ist nun ein mit radial angeordneten Abströmbohrungen lo versehener Zylinder 11 angeordnet, in dessen zentraler Bohrung 12 die Kolbenstange 13 verschiebbar ist, welche durch die auswechselbaren Gewichte 14 belastet ist. Das obere Ende der Kolbenstange 13 ist in der zentral am Deckel 4 angeordneten Büchse 15 geführt. Das untere Ende des Zylinders 11 ist durch die Verschraubung 16 mit dem Deckel 2 fest verbunden.

Das vorher beschriebene Druckhalte- und Regelventil ist beim Einbau in Ölleitungen mit seinem Eintrittsstutzen 8 auf der Druckseite der Ölpumpe angeschlossen, während der Austrittsstutzen 9 entweder mit der Saugseite der Pumpe oder mit der Rücklaufleitung verbunden ist. Hierbei wirkt der Druck in der Ölleitung auf die Fläche des Kolbens 13. Der erforderliche Gegendruck wird durch die Gewichtsbelastung 14 erzeugt. Wenn sich nun der Druck in der Ölringleitung durch eine mehr oder weniger große Abnahme an Öl ändert, dann verschiebt sich der Kolben 13 innerhalb der Bohrung 12 und gibt entweder mehr Abströmbohrungen lo frei oder verschließt Abströmbohrungen lo, und zwar in solcher Weise, daß der gewünschte Druck aufrechterhalten bleibt.

Die Abströmbohrungen lo sind nun, wie aus Fig. 2 und 3 ersichtlich, in besonderer Weise angeordnet. Aus Fig. 2 ist ersichtlich, daß die Abströmbohrungen lo paarweise einander

gegenüberliegen. Ferner zeigt Fig. 3, wie die Bohrungen lo stufenweise gegeneinander versetzt sind, wobei aufeinander-folgende Abströmbohrungen um den Bohrungsradius in der Höhe gegeneinander versetzt sind. Bei dem dargestellten Ausführungsbeispiel liegen jeweils die erste und vierte aufeinander-folgende Bohrung auf der gleichen Höhe. Dies sind paarweise einander gegenüberliegende Bohrungen. Durch diese besondere Versetzung der Bohrungen gegeneinander werden bei jeder Verschiebung des Kolbens 13 innerhalb der Bohrung 12 des Zylinders 11 nahezu gleich große Durchgangsquerschnitte der Bohrungen lo freigegeben. Hierdurch wiederum wird im gesamten Leitungssystem ein konstanter Druck aufrechterhalten.

Die in Fig. 4 dargestellten Kurven a zeigen dabei den Verlauf der Freigabe des Querschnitts mehrerer hintereinander angeordneter Abströmbohrungen lo, während die Kurve b zeigt, welche Resultierende sich bei versetzt zueinander angeordneten Abströmbohrungen lo ergibt.

9 Schutzansprüche

Dipl.-Ing. Theodor Ungerathen
Patentanwalt
6900 Heidelberg
Keplerstraße 54 Telefon 42331

Unitherm 174945*-9.3.64
Deutsche Gesellschaft für universelle Wärmetechnik m.b.H.
Heidelberg-Wieblingen
Maaßstraße 30

Schutzansprüche:

- 1. Belastetes Druckhalte- und Regelventil für Leitungen für flüssige Medien, insbesondere für Ölringleitungen, dadurch gekennzeichnet, daß es als Kolbenventil mit einem innerhalb eines mit radialen Abströmbohrungen (lo) versehenen Zylinders (ll) unter dem Druck des eintretenden Mediums verschiebbaren belasteten Kolben (13) ausgebildet ist.
- 2. Belastetes Druckhalte- und Regelventil nach Anspruch 1, dadurch gekennzeichnet, daß der Kolben (13) eine Gewichts- belastung hat.
- 3. Belastetes Druckhalte- und Regelventil nach Anspruch 2, dadurch gekennzeichnet, daß die Gewichtsbelastung aus mehreren auswechselbaren Gewichten (14) besteht.
- 4. Belastetes Druckhalte- und Regelventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Abströmbohrungen (lo) paarweise einander gegenüberliegen.
- 5. Belastetes Druckhalte- und Regelventil nach Anspruch 4, dadurch gekennzeichnet, daß die Abströmbohrungen (lo) stufenweise gegeneinander versetzt sind.
- 6. Belastetes Druckhalte- und Regelventil nach Anspruch 5, dadurch gekennzeichnet, daß aufeinanderfolgende Abströmbohrungen (lo) um den Bohrungsradius in der Höhe gegeneinander versetzt sind.
- 7. Belastetes Druckhalte- und Regelventil nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß eine Abströmbohrung (lo) für den Durchlaß von maximal etwa 5 %

des im Leitungssystem insgesamt zirkulierenden Mediums bemessen ist.

- 8. Belastetes Druckhalte- und Regelventil nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Gesamt-zahl der Abströmbohrungen (lo) für den Durchlaß des im Leitungssystem insgesamt zirkulierenden Mediums bemessen ist.
- 9. Belastetes Druckhalte- und Regelventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Bohrung (12) des Zylinders (11) für den Durchlaß des im Leitungssystem insgesamt zirkulierenden Mediums bemessen ist.

