Advanced Computer Organisation and Architecture

Smruti R. Sarangi

May 22, 2020

Contents

1	\mathbf{Intr}	oducti	on	11
	1.1	Moving	g from In-order to Out-of-order Pipelines	13
	1.2	Moving	g to Multi-core Processors	15
		1.2.1	GPUs	16
		1.2.2	Large Multicore Processors	17
	1.3	High F	Performance Memory System	17
	1.4	Power,	Temperature, Variation, and Reliability	18
	1.5	Securit	ty	19
Ι	\mathbf{Pr}	ocesso	or Design	21
2	Out	-of-ord	ler Pipelines	23
	2.1	Overvi	ew of In-Order Pipelines	24
		2.1.1	Processor Design	24
		2.1.2	Notion of Pipelining	28
		2.1.3	Interlocks	31
		2.1.4	Forwarding	37
	2.2	Perform	mance Considerations	42
		2.2.1	The Performance Equation	42
		2.2.2	Multi-issue In-order Pipelines	44
	2.3	Overvi	ew of Out-of-order Pipelines	47
		2.3.1	Motivation	47
		2.3.2	Program Order vs Data Dependence Order	49
		2.3.3	Basics of an Out-of-order Machine	51
	2.4	Summa	ary and Further Reading	59
		2.4.1	Summary	59
		2.4.2	Further Reading	60
3	The	Fetch	and Decode Stages	63
	3.1	Instruc	ction Delivery from the I-Cache	64
	3.2	Proble	m 1: Is an instruction with a given PC a branch?	67
		3.2.1	Recording the Type of the Branch	70
	3.3	Proble	m 2: Is a branch taken or not taken?	71
		3.3.1	Bimodal Predictor	71
		3.3.2	Predictor with Saturating Counters	74
		3.3.3	Loop Predictor	76
		3.3.4	Predictors with Global History	76
		3.3.5	A 2-Level Predictor	78
		3.3.6	GAg, GAp, PAg, and PAp Predictors	79

(a)	Smruti R.	Common		PLEASE	DO	NOT	DICTDI	DITTE
(;)	Smriiti K.	Sarangi	_	PLEASE	1)()	$\mathbf{N}(\mathbf{O})$	DISTRE	おしょた

<u>©</u>	Smr	uti R. S	Sarangi – PLEASE DO NOT DISTRIBUTE	2
		3.3.7	GShare Predictor	83
		3.3.8	Tournament Predictor	84
	3.4	Proble	em 3: What is the Target of a Branch?	86
		3.4.1	Branch Target Buffer (BTB)	86
		3.4.2	Call and Return Instructions	86
	3.5	The D	Oecode Stage	88
		3.5.1	Pre-decoding CISC Instructions	89
		3.5.2	Decode Time Optimisation: Optimising Operations on	
			the Stack Pointer	90
		3.5.3	Instruction Compression	93
	3.6	Summ	ary and Further Reading	96
		3.6.1	Summary	96
		3.6.2	Further Reading	97
4	The	Issue	, Execute, and Commit Stages	99
	4.1			100
		4.1.1	Overview of Renaming with Virtual Registers	101
		4.1.2	Renaming using Physical Registers	
		4.1.3	The Rename Table	
		4.1.4	Dependence Check Logic	
		4.1.5	The Free List	
	4.2		ction Dispatch, Wakeup, and Select	
		4.2.1	Instruction Window	
		4.2.2	Broadcast and Wakeup	
		4.2.3	Instruction Select	
		4.2.4	Early Broadcast	
		4.2.5	Tricky Issues with Early Broadcast	
	4.3		oad-Store Queue (LSQ)	
	1.0	4.3.1	Memory Dependencies	
		4.3.2	Conceptually Handling Loads and Stores	
		4.3.3	Design of the LSQ	
	4.4	1.0.0	ction Commit	
	1.1	4.4.1	Notion of Precise Exceptions and In-order Commit 1	
		4.4.2	The Reorder Buffer (ROB)	
		4.4.3	Releasing Resources and Bookkeeping	
		4.4.4	Checkpointing and Restoring State	
	4.5		ary and Further Reading	
	1.0	4.5.1	Summary	
		4.5.2	Further Reading	
5	A 1+ a	mnotis	ve Approaches to Issue and Commit 1	.59
U	5.1			. 59 159
	5.1	5.1.1		160
	5.2	-		160
	J.∠	5.2.1	-	160
		5.2.1 $5.2.2$		
		5.2.2	-	162 164
		5.2.3 $5.2.4$	• •	164
			Latency Speculation 1 Value Prediction 1	169
		5.2.5	varue i reuremon	LIU

		5.3.1	Pipeline Flushing
		5.3.2	Non-Selective Replay
		5.3.3	Methods to Replay Instructions
		5.3.4	Delayed Selective Replay
		5.3.5	Token Based Replay
	5.4		er OOO Processor without a Register File
	0.1	5.4.1	Overview of the Design
		5.4.2	Detailed Design
		5.4.2 $5.4.3$	Comparison
	5.5		iler Based Techniques
	0.0	5.5.1	Data Flow Optimisations
		5.5.2	Loop Optimisations
		5.5.2	Software Pipelining
	5.6		Processors
	5.0	5.6.1	Pros and Cons of EPIC/VLIW Processors
		5.6.2	Difference between VLIW and EPIC Processors 210
	5.7		of the Intel Itanium Processor
	5.1	5.7.1	Overview of the Constraints
		5.7.1 $5.7.2$	Fetch Stage
		5.7.2 $5.7.3$	Instruction Dispersal Stage
		5.7.4	Register Remapping Stage
		5.7.4 $5.7.5$	High Performance Execution Engine
		5.7.6	Support for Aggressive Speculation
	5.8		ary and Further Reading
	0.0	5.8.1	Summary
		5.8.2	Further Reading
		0.0.2	Turinor reading
6	Gra	phics	Processors 229
	6.1		ional Technologies
		6.1.1	ASICs and ASIPs
		6.1.2	FPGAs
	6.2	Tradit	ional GPUs
		6.2.1	Early Days of GPUs
		6.2.2	High Level View of a Graphics Pipeline
		6.2.3	Vertex Processor
		6.2.4	Polymorph Engine
		6.2.5	Rasterisation
		6.2.6	Fragment Processor
		6.2.7	Pixel Engine
		6.2.8	Other Uses of a GPU
	6.3	Progra	amming GPGPUs
		6.3.1	GPU ISAs
		6.3.2	Kernels, Threads, Blocks, and Grids 245
		6.3.3	Memory Access
		6.3.4	Streams, Graphs, and Events
	6.4	Gener	al Purpose Graphics Processors
			Overview of the Architecture of a GPU
		6.4.1	Overview of the Architecture of a GFU
		6.4.1 $6.4.2$	Structure of a GPC

<u>©</u>	Smr	uti R. S	Sarangi – PLEASE DO NOT DISTRIBUTE	4
	6.5	6.4.5 6.4.6 6.4.7 Summ 6.5.1 6.5.2	ary and Further Reading	264 266 266 266
II	\mathbf{T}	he M	emory System 2	71
7	Cac	\mathbf{hes}	2	273
	7.1	Memo	ry Hierarchy and the Notion of Caches	274
		7.1.1	Temporal and Spatial Locality	
		7.1.2	Notion of a Cache	
		7.1.3		279
		7.1.4	Organisation of a Cache	280
		7.1.5		287
		7.1.6		290
		7.1.7	Optimising the Cache Design	291
	7.2	Virtua	al Memory	293
		7.2.1	Overlap and Size Problems	294
		7.2.2	Implementation of Virtual Memory	296
	7.3	Model	ling and Designing a Cache	301
		7.3.1	Memory Technologies used in a Cache: SRAM and CAM	
			Arrays	301
		7.3.2	Designing a Cache	312
		7.3.3	Circuit Level Modelling of a Cache: Elmore Delay Model	317
	7.4	Advan	aced Cache Design	327
		7.4.1	Pipelined Caches	327
		7.4.2	Non-blocking Caches	328
		7.4.3	Skewed Associative Caches	330
		7.4.4	Way Prediction	332
		7.4.5	1 0	333
		7.4.6	Virtually Indexed Physically Tagged (VIPT) Caches	336
	7.5			339
		7.5.1	8	340
		7.5.2	1	343
	7.6		· · · · · · · · · · · · · · · · · · ·	345
		7.6.1	G	346
		7.6.2	© .	346
		7.6.3	1 0	348
		7.6.4	11	350
	7.7		0	351
		7.7.1	O Company	351
		7.7.2	9	354
	_ ^	7.7.3	•	355
	7.8		v	358
		7.8.1	Summary	358

8			hip Network	361
	8.1		riew of an NoC	
		8.1.1	Nodes and Links	
		8.1.2	Network Topology	
	8.2		ge Transmission	
		8.2.1	Basic Concepts	
		8.2.2	Flow Control across a Single Link	
		8.2.3	Message Based Flow Control	
		8.2.4	Packet Based Flow Control: Store and Forward (SAF)	
		8.2.5	Packet Based Flow Control: Virtual Cut Through (VCT)	
		8.2.6	Flit based Flow Control: Wormhole Switching	
		8.2.7	Flit based Flow Control: Virtual Channel Based	
	8.3	Routin	ng	390
		8.3.1	Handling Starvation and Livelocks	
		8.3.2	Deadlocks in Routing Algorithms	395
		8.3.3	Dimension Ordered Routing	399
		8.3.4	Oblivious Routing	400
		8.3.5	Adaptive Routing	
		8.3.6	Preventing Deadlocks by using Virtual Channels	406
	8.4	Design	n of a Router	409
		8.4.1	Input Buffering	410
		8.4.2	Route Computation	411
		8.4.3	Virtual Channel Allocation	414
		8.4.4	Switch Allocation	414
		8.4.5	Switch Traversal	416
		8.4.6	Allocators and Arbiters	419
		8.4.7	The Router's Pipeline	429
	8.5	Non-U	Jniform Cache Architectures	
		8.5.1	Static NUCA(S-NUCA)	435
		8.5.2	Dynamic NUCA(D-NUCA)	
		8.5.3	Advanced Schemes	
	8.6	Perfor	rmance Aspects	441
		8.6.1	Evaluation Metrics	
		8.6.2	Simulation Methodologies	
	8.7	Summ	nary and Further Reading	
		8.7.1	Summary	
		8.7.2	Further Reading	
9	Мы	lticoro	Systems: Coherence, Consistency, and Transactiona	.1
J		mory	systems. Concrence, Consistency, and Transactiona	449
	9.1	•	lel Programming	450
		9.1.1	Shared Memory	
		9.1.2	Message Passing	
		9.1.3	Amdahl's Law	
		9.1.4	Gustafson-Barsis's Law	
		9.1.5	Design Space of Multiprocessors	
	9.2		riew of Issues in Parallel Hardware	
	J. <u>_</u>	9.2.1	Shared and Distributed Caches	
		9.2.1	Memory Consistency	
	93	-	• Coherence	463

		9.3.1	Theoretical Fundamentals	463
		9.3.2	Write-Update Protocol using a Bus	
		9.3.3	Write-Invalidate Protocol using a Bus	
		9.3.4	MESI Protocol	
		9.3.5	MOESI Protocol	
		9.3.6	Write-Invalidate Protocol using a Directory	
		9.3.7	Optimisations and Corner Cases in the Directory Protocol	
		9.3.8	Atomic Operations	
		9.3.9	Lock-free Algorithms using Atomic Operations	
	9.4	Memor	ry Consistency	
		9.4.1	Sequential Consistency	
		9.4.2	Basic Terminology	
		9.4.3	Memory Models	
		9.4.4	Safety Conditions for Accesses to a Single Location	
		9.4.5	Safety Conditions for Data and Control Dependencies	
		9.4.6	Correctness of Executions	
	9.5	Data F	Races	
		9.5.1	Critical Sections and Concurrency Bugs	
		9.5.2	Data Races in the Context of Memory Models	
		9.5.3	Properly Labelled Programs	
		9.5.4	Lock Set Algorithm	
		9.5.5	Data Race Detection with Vector Clocks	
	9.6	Transa	actional Memory	
		9.6.1	Basic Fundamentals	
		9.6.2	Correctness Conditions	
		9.6.3	Software Transactional Memory	
		9.6.4	Hardware Transactional Memory	
	9.7	Summa	ary and Further Reading	
		9.7.1	Summary	
		9.7.2	Further Reading	579
10	Mai	n Men	nory	581
			uction	581
			nic RAMs: Devices, Circuits, and Systems	
			DRAM Cell	
			Capacitors used in DRAM Cells	
			Array of DRAM Cells	
		10.2.4	A Computer System with DRAM Cells	593
	10.3	Design	Space of DRAMs	598
		10.3.1	DRAM Access Protocols	598
			DDR Generations and Timing	603
		10.3.3	Buffered DIMMs	606
	10.4		I Timing	611
			State Diagram	611
			Activate and Precharge Commands	613
			Read Operation	615
			Write Operation	617
			Interaction between the Read, Write, and Precharge Op-	610
		10.46	erations	618
		10.4.0	Refresh Operation	619

		10.4.7	Example of a Protocol
	10.5	Memor	ry Controller
		10.5.1	DRAM Transaction Scheduling 622
			Address Mapping
			Command Scheduling
	10.6		ing Memory Technologies
			Flash Memory
			Ferroelectric RAM (FeRAM) 634
			MRAM
			Phase Change Memory (PCM) 640
			Resistive RAM (ReRAM)
			3-D and Embedded Memory Technologies 646
	10.7		ne Model
	10.1		Overview
			Adding Ceilings
			Uses of the Roofline Model
	10.0		
	10.0		ary and Further Reading
			Summary
		10.8.2	Further Reading
III	Γ /	dvan	ced Topics 659
111	L 1	ra van	ced Topics 000
11	Pow	er and	Temperature 661
			Consumption Model
			Dynamic Power
			Leakage Power
			Summary
	11.2		rature Model
		_	Overview of the System
			Basic Physics
			The Finite Difference Method (FDM) 678
			Electrical Analogue of a Heat Transfer Problem 679
			The Finite Element Method (FEM) 680
			Green's Functions
	11 3		Management
	11.0		Managing Dynamic Power
			Managing Leakage Power
	11 /		
	11.4		rature Management
	11 5		
	11.5		ary and Further Reading
			Summary
		11.5.2	Further Reading
12	Reli	ability	695
14			uction
		Soft E	
	14.4	2010 1	Physics of Soft Errors
			Circuit and Device Level Techniques to Mitigate Soft Errors 700
			Architecture Level Techniques to Mitigate Soft Errors 702
		14.4.3	Architecture Level rechinques to Mitigate Soft Effors 102

	12.3	Inductive Noise	
		12.3.1 Basic Physics	
		12.3.2 Implementation Issues	
	12.4	Faults due to Inherent Nondeterminism $\ \ldots \ \ldots \ \ldots \ \ldots$	
		12.4.1 Sources of Nondeterminism	709
		12.4.2 Methods to Enforce Determinism	710
	12.5	Design Faults	711
		12.5.1 Verification and Validation	712
		12.5.2 Nature of Design Faults	714
		12.5.3 Using Signals for Debugging and Post-Silicon Validation .	
	12.6	Faults due to Parameter Variation	
		12.6.1 Introduction to Different types of Parameter Variation	718
		12.6.2 A Mathematical Model of Parameter Variation	
		12.6.3 Methods to Mitigate Parameter Variation at the Archi-	
		tectural Level	
	12.7	Hard Errors and Ageing	
		12.7.1 Ageing	
		12.7.2 Hard Errors	
		12.7.3 Failure Rate of the Entire System	
		12.7.4 Methods to Reduce or Tolerate Hard Errors	
	12.8	Summary and Further Reading	
	12.0	12.8.1 Summary	
		12.8.2 Further Reading	
		12.0.2 Turmer reading	102
13	Secu	re Processor Architectures	735
	13.1	Data Encryption	736
		13.1.1 AES Block Cipher	
		13.1.2 RC4 Stream Cipher	
		13.1.3 Hardware Implementation	
		13.1.4 Symmetric and Asymmetric Ciphers	
		13.1.5 Session Keys	
	13.2	Hashing and Data Integrity	
		13.2.1 Common Cryptographic Attacks	
		13.2.2 SHA based Hashing	
		13.2.3 Message Authentication Code (MAC)	
		13.2.4 Preventing Replay Attacks	
	13 3	Secure Architectures	
	10.0	13.3.1 Security in Traditional Processors	740
		13.3.2 Hardware Security: Key Concepts	
		13.3.3 Design of a Secure Processor	
		13.3.4 The Software Environment	
		13.3.5 Oblivious RAM	760
	13 /	Side-Channel Attacks	762
	10.4	13.4.1 Classification of Side Channels	763
		13.4.1 Classification of Side Chamlels	763
		13.4.2 Type 1: Attacker Monitoring risen	100
		V1 0 1 0	765
		using Software Techniques	100
			765
		Accessing the System	765 766
		13 4 5 Countermeasures	/nr

9_	© Smruti R. Sarangi – PLEA	SE DO NOT DISTRIBUTE
	13.5 Summary and Further Reading	766
	13.5.1 Summary	
	13.5.2 Further Reading	768
14	4 Architectures for Machine Learning	771
	14.1 Basics of Deep Learning	772
	14.1.1 Formal Model of the Learning Pro	olem 773
	14.1.2 Neural Networks	
	14.1.3 Convolutional Neural Networks (C	NNs) 778
	14.2 Design of a CNN	781
	14.2.1 Overview	781
	14.2.2 Design Space of Loop Transformat	ions 785
	14.2.3 Hardware Architectures	788
	14.3 Intra-PE Parallelism	794
	14.3.1 1-D Convolution	794
	14.3.2 2-D Convolution	798
	14.4 Optimisations	800
	14.4.1 Reduction of the Computing Time	801
	14.4.2 Reduction of the Memory Access T	Sime 802
	14.5 Memory System Organisation	803
	14.5.1 DRAM+SRAM based Organisation	a 803
	14.5.2 Processing in Memory	805
	14.6 Summary and Further Reading	807
	14.6.1 Summary	807
	14.6.2 Further Reading	809
I	${ m V}$ Appendix	811
\mathbf{A}	SimpleRisc ISA	813
В	Tejas Architectural Simulator	815
	B.1 Overview	815
	B.2 Tejas Architectural Simulator	816

	14.6.1 Summary	
IV	Appendix	8
A Sir	$mpleRisc \; ext{ISA}$	8
В Те	as Architectural Simulator	8
B.1	Overview	. :
B.2	Tejas Architectural Simulator	
	B.2.1 Design of Tejas	
	B.2.2 Semi-event Driven Simulation	
	B.2.3 Optimisations and Corner Cases	. :
	B.2.4 Parallelisation	. :
	B.2.5 Evaluation	. :
C Int	el Processors	8
C.1	Sunny Cove Microarchitecture	. :
	C.1.1 ISA Extensions	. :
	C.1.2 Processor Design	. :
C.2	Tremont Microarchitecture	. :
C.3	Lakefield Processor	. :

© Smruti R. Sarangi – PLEASE DO NOT DISTRIBUTE 10)
D AMD Processors 827 D.1 Zen2 Microarchitecture 827 D.1.1 Fetch and Decode Logic 827 D.1.2 Scheduling and Execution 828 D.1.3 Data Caches 828 D.1.4 Instruction Retirement 829	7 7 8 8
D.2 Matisse Chip	L
F Bibliography 835	5

859

Index