リプシッツ領域

1

定義 1.1. 開集合 $\Omega\subset\mathbb{R}^n$ は、任意の $p\in\partial\Omega$ に対して、開集合 $U_p\subset\mathbb{R}^n, V\subset\mathbb{R}^n$ と同相 $\varphi:U_p\to\mathbb{V}$ で、 φ,φ^{-1} がリプシッツ連続であり、

 $\varphi|_{U_n\cap\partial\Omega}$ は $\mathbb{R}^{n-1}\times\{0\}$ への同相写像である.

 $arphi|_{U_p\cap\Omega}$ は $\{(x',x_n)\in\mathbb{R}^n\mid x_n>0\}$ への同相写像である. を満たすものが存在するとき, リプシッツ領域であるという.

注意 1.2. つまり境界つき多様体として見做したときに, チャートのとりかたがリプシッツ連続にとれるということ. パラメータづけ φ^{-1} がリプシッツ連続になっているので, 局所的にリプシッツ関数のグラフだと思える.