Counterexamples related to the Sato-Tate conjecture

Daniel Miller

21 April 2017

Cornell University

Outline

Motivation

Discrepancy and Dirichlet series

Main theorem

Idea of the proof

Motivation

Sato-Tate Conjecture

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, $a_p = \operatorname{tr} \rho_I(\operatorname{fr}_p) \in \mathbf{Z}$, $|a_p| \leqslant 2\sqrt{p}$.

Satake parameter: $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$ (Haar measure on $SU(2)^{\natural}$).

Theorem (Taylor et. al.)

 $\{\theta_p\}$ is equidistributed with respect to ST.

Quantify rate of convergence of $\frac{1}{\pi(N)} \sum_{p \leqslant N} \delta_{\theta_p}$ to ST.

Use discrepancy (Kolmogorov-Smirnov statistic).

Akiyama-Tanigawa Conjecture

$$D_{N} = \sup_{x \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0,x)}(\theta_{p}) - \int_{0}^{x} dST \right|.$$

Conjecture (Akiyama-Tanigawa)

$$D_N \ll N^{-\frac{1}{2}+\epsilon}$$
.

There is a variant of this conjecture for CM elliptic curve.

Theorem (Akiyama-Tanigawa)

Akiyama–Tanigawa conjecture \Rightarrow Riemann Hypothesis for E.

Theorem (Mazur)

Akiyama–Tanigawa conjecture \Rightarrow Riemann Hypothesis for sym^k E

Context

Pande: is the Sato-Tate conjecture a Galois-theoretic result?

Theorem (Pande)

Let $\epsilon > 0$. Then there exists an infinitely ramified representation $\rho \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$ such that $\theta_p \in B_{\epsilon}(\pi/2)$ for a density one set of primes.

Theorem (Khare-Rajan)

Any $\rho \colon G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_I)$ is ramified at a density zero set of primes.

Question (Serre): can you a priori control the ratio $\frac{\pi_{\text{ram}(\rho)}(x)}{\pi(x)}$?

Answer (Khare-Larsen-Ramakrishna): no!

5

Questions

- Q1. Can Pande's results be strengthened to yield equidistribution?
- Q2. If so, can the measure be specified?
- **Q3.** Can the rate of convergence of empirical measures to the true measure be specified?
- **Q4.** Can the ratio $\frac{\pi_{\text{ram}(\rho)}(x)}{\pi(x)}$ be controlled?
- **Q5.** Can anything be said about the *L*-functions associated with ρ ?

Answer: Yes! to Q1-Q5.

Discrepancy and Dirichlet series

Discrepancy

Definition

Let $\{\theta_p\}$ be a sequence in $[0,\pi]$, μ a measure on $[0,\pi]$. The discrepancy is

$$D_{N}(\{\theta_{p}\}, \mu) = \sup_{x \in [0, \pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0, x)}(\theta_{p}) - \int_{0}^{x} d\mu \right|.$$

 $\{\theta_p\}$ are μ -equidistributed if and only if $D_N \to 0$.

Fact: $\frac{\log N}{N} \ll D_N$. The van der Corput sequence achieves this.

7

Dirichlet series

Definition

For $k \geqslant 1$,

$$L(\operatorname{sym}^k \rho, s) = \prod_{\rho} \det \left(1 - \operatorname{sym}^k \begin{pmatrix} e^{i\theta_{\rho}} & 0 \\ 0 & e^{-i\theta_{\rho}} \end{pmatrix} p^{-s} \right)^{-1}$$

Definition

For $f: [0,\pi] \to \mathbf{C}$ of bounded variation with $\mu(f) = 0$,

$$L_f(s) = \prod_p \left(1 - f(\theta_p)p^{-s}\right)^{-1}$$

Example: $L_{sgn}(s) = \prod_{p} (1 - sgn(a_p)p^{-s})^{-1}$.

Dirichlet series—results

Theorem

If $\left|\sum_{p\leqslant N} f(\theta_p)\right| \ll N^{\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Corollary

If $D_N \ll N^{-\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Definition

$$U_k(\theta) = \frac{\sin((k+1)\theta)}{\sin \theta} = \operatorname{tr} \operatorname{sym}^k \left(\begin{smallmatrix} e^{i\theta_p} & 0 \\ 0 & e^{-i\theta_p} \end{smallmatrix} \right).$$

Theorem

If $\left|\sum_{p\leqslant N} U_k(\theta_p)\right| \ll N^{\alpha+\epsilon}$, then L(sym^k ρ, s) admits a nonvanishing analytic continuation to $\Re > \alpha$.

Main theorem

Ingredients

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely, weight 2 representation
- $\bar{\rho} \colon G_{\mathbf{Q}} \to \mathsf{GL}_2(\mathbf{F}_l)$. ρ will be a lift of $\bar{\rho}$.
- 3. Fix a function $h: \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity. We will have $\pi_{\mathsf{ram}(\varrho)}(x) \ll h(x)$.
- 4. Fix an absolutely continuous measure μ on $[0, \pi]$, with bounded probability density function. The angles $\{\theta_p\}$ will be μ -equidistributed.
- 5. Fix $\alpha \in (0, \frac{1}{2})$. The discrepancy D_N will decay like $\pi(N)^{-\alpha}$.

Theorem

Let I, $\bar{\rho}$, h, μ , and α be as above. Then there exists $\rho\colon G_{\mathbf{Q}}\to \mathrm{GL}_2(\mathbf{Z}_I)$ such that

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4.)
- 3. For each unramified p, $a_p = \operatorname{tr} \rho(\operatorname{fr}_p) \in \mathbf{Z}$ and satisfies the Hasse bound.
- 4. $D_N(\{\theta_p\}, \mu) = \Theta(\pi(x)^{-\alpha})$. (Yes to Q1–Q3.)
- 5. If $(\theta \mapsto \pi \theta)_* \mu = \mu$, then for each odd k, $L(\operatorname{sym}^k \rho, s)$ satisfies the Riemann hypothesis. (Yes to Q5.)

Idea of the proof

Prescribing discrepancy decay

Theorem

If $\alpha \in (0, \frac{1}{2})$, there exists a sequence (x_2, x_3, x_5, \dots) in [-1, 1] such that $|D_N - \pi(N)^{-\alpha}| \ll \pi(N)^{-1}$.

Fact: Discrepancy is invariant under pushforward by \cos and \cos^{-1} .

Idea: Construct ρ so that $\frac{a_p}{2\sqrt{p}} \approx x_p$.

Fact: If $(x_p^{(1)})$ is a sequence with $|x_p - x_p^{(1)}| \ll p^{-1/2 + \epsilon}$, then $D_N^{(1)} = \Theta(\pi(N)^{-\alpha})$.

Lifting Galois representations

What is a deformation?

Weight?

What does it take to lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} ?

Lifting Galois representations—first stage

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Lifting Galois representations—inductive step

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Consequences

If $f \in C([0,\pi])$, $f \circ \cos^{-1}: [-1,1] \to \mathbf{C}$ is Lipschitz, and $f(\pi-\theta)=-f(\theta)$, then $L_f(\rho,s)$ has a nonvanishing analytic continuation to $\Re > \frac{1}{2}$ (Riemann hypothesis).

Questions?