

Universidad de Granada Escuela Internacional de Posgrado Máster en Estadística Aplicada

Materia: Análisis de datos. Técnicas aplicadas a datos de proximidad.

Alumno: Francisco Javier Márquez Rosales

Tema 3: MDS métrico y no métrico:

Ejercicios:

Ejercicios de Tema 3: MDS métrico y no métrico.

Ejercicio 3.1

Efectuar MDS métrico usando SMACOF par los datos eurodist. Compara los resultados con los obtenidos mediante el procedimiento clásico.

Ejercicio 3.2:

Efectuar un análisis no métrico de los datos eurocitis de la Tabla 1 usando SMACOF. Compara los resultados obtenidos con los de la solución métrica.

Ejercicio 3.1

Efectuar MDS métrico usando SMACOF par los datos eurodist. Compara los resultados con los obtenidos mediante el procedimiento clásico.

Solución

En primer lugar

```
str(eurodist)
## 'dist' num [1:210] 3313 2963 3175 3339 2762 ...
## - attr(*, "Size") = num 21
## - attr(*, "Labels") = chr [1:21] "Athens" "Barcelona" "Brussels" "C alais" ...
summary(eurodist)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 158 808 1312 1505 2064 4532
```

Luego obtenemos las matriz de distancias a partir de los valores iniciales. Por propósitos prácticos se muestra una fracción de los datos incluidos en la matriz (6 ciudades de 21).

```
eurodist2=as.dist(eurodist)
eurodist2
##
                Athens Barcelona Brussels Calais Cherbourg Cologne
## Barcelona
                 3313
## Brussels
                 2963
                           1318
## Calais
                 3175
                           1326
                                    204
## Cherbourg
             3339
                           1294
                                    583 460
```

```
## Cologne 2762 1498 206 409 785
```

Para poder realizar la comparación, primero se calculan los valores propios mediante la solución clásica .

```
cmdscale(eurodist2, k = 20, eig = TRUE, add = FALSE, x.ret = FALSE)$ei
g
## [1] 1.953838e+07 1.185656e+07 1.528844e+06 1.118742e+06 7.893
472e+05
## [6] 5.816552e+05 2.623192e+05 1.925976e+05 1.450845e+05 1.079
673e+05
## [11] 5.139484e+04 -3.259629e-09 -9.496124e+03 -5.305820e+04 -1.322
166e+05
## [16] -2.573360e+05 -3.326719e+05 -5.162523e+05 -9.191491e+05 -1.006
504e+06
## [21] -2.251844e+06
```

Se aprecia que los datos no son distancias Euclídeas.

Ahora, realizamos un análisis de escalamiento multidimensional métrico usando el paquete 'smacof'.

```
library("smacof")
resm.eurodist2 <- smacofSym(eurodist2,2,)
resm.eurodist2
##
## Call:
## smacofSym(delta = eurodist2, ndim = 2)
##
## Model: Symmetric SMACOF
## Number of objects: 21
## Stress-1 value: 0.072
## Number of iterations: 17</pre>
```

Obtenemos los valores de las configuraciones obtenidas por cada ciudad y de los valores de puntos de estrés .

## Configurations:				
	D1 D2			
## Athens				
## Barcelona				
## Brussels				
## Calais				
## Cherbourg				
## Cologne				
## Copenhagen				
## Geneva				
## Gibraltar				
## Hamburg				
## Hook of Holland				
## Lisbon				
## Lyons				
## Madrid				
## Marseilles	-0.1683 0.2898			
## Milan				
## Munich	0.3295 0.0534			
## Paris	-0.0949 -0.1354			
## Rome	0.3846 0.5830			
## Stockholm	0.5136 -0.9996			
## Vienna	0.5843 0.1144			
## Stress per poin	t (in %):			
## Athens	Barcelona	Brussels	Calais	Cherbourg
## 13.59	1.57	0.45	1.58	5.31
## Cologne	Copenhagen	Geneva	Gibraltar	Hamburg
## 11.15	5.50	11.22	2.14	1.32
## Hook of Holland	Lisbon	Lyons	Madrid	Marseilles
## 3.86	7.60	6.87	1.60	1.75
## Milan	Munich	Paris	Rome	Stockholm
## 1.66	1.43	0.42	12.47	5.66
## Vienna				
‡# 2 . 85				

Finalmente, obtenemos el gráfico con las dos primeras dimensiones obtenidas a partir del análisis y podemos comprobar como la dispersión resultante encaja con la realidad, sólo bastaría hacer una rotación al superponerla en un mapa.

smacofSym(eurodist2,2)

Ejercicio 3.2:

Efectuar un análisis no métrico de los datos eurocitis de la Tabla 1 usando SMACOF. Compara los resultados obtenidos con los de la solución métrica.

Solución

En primer lugar hacemos lectura de los datos a analizar y sobre los mismos aplicamos el análisis MDS no métrico. Lo primero a tomar en cuenta es que no es necesario la transformación sim2diss() porque ya los datos son disimilaridades. Aplicamos la función 'mds' con la opción type="ordinal" indicando que el análisis es no métrico.

```
tabla1<-read.csv("tabla1.csv", header = T)
resnm.tabla1=mds(tabla1, ndim=2, type = "ordinal")
resnm.tabla1
##
## Call:
## mds(delta = tabla1, ndim = 2, type = "ordinal")
##
## Model: Symmetric SMACOF
## Number of objects: 10
## Stress-1 value: 0
## Number of iterations: 1</pre>
```

Obtenemos los valores de las configuraciones obtenidas por cada ciudad y de los valores de puntos de estrés.

```
## Configurations:

## D1 D2

## 1 0.0347 -0.2863

## 2 1.0085 -0.0695

## 3 -1.1181 -0.0847

## 4 -0.8135 0.0927

## 5 -0.0735 -0.0647

## 6 0.2286 -0.1353

## 7 0.4832 0.1508

## 8 0.3756 0.3190
```

```
## 9 -0.1395 0.6968

## 10 0.0139 -0.6189

##

##

## Stress per point (in %):

## 1 2 3 4 5 6 7 8 9 10

## 5.92 16.35 18.97 12.45 5.11 5.78 7.85 7.70 10.61 9.26
```

Como resultado obtenemos la siguiente gráfica.

smacofSym(tabla1.diss,ndim=2,metric=FALSE)

La cual en forma vemos como es muy parecida al análisis métrico obtenido en el ejercicio 3.1