CSC110 Lecture 23: More Running-Time Analysis

David Liu and Tom Fairgrieve, Department of Computer Science

Navigation tip for web slides: press? to see keyboard navigation controls.

Announcements, Reminders and Today's Plan

Announcements

- Assignment 4 has been posted
 - Due in 9 days!
 - Check out the A4 FAQ (+ corrections)
 - Additional TA office hours start today!
 - Review advice on academic integrity
- The Final Exam schedule has been posted.
 Report any Exam Conflicts ASAP!

Before reading week ...

- learned to describe the growth of a function $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$
 - using Big-O, Omega and Theta
 - learned a few properties and The Function Growth Hierarcy
- started to analyze the running time of our programs
 - can't predict the required clock time
 - instead model the running time and describe it's growth
 - can then predict how the running time changes as the input size increases

Today you'll learn to...

- 1. Analyse the running time of code containing nested loops.
- 2. Analyse the running time of code containing comprehensions and while loops.
- 3. Perform running-time analyses by finding bounds on the running-time function (rather than finding an exact expression).

But first, more review.

Example 1 - no iteration

Analyse the running time of the following function.

```
def f(numbers: list[int]) -> bool:
    x = len(numbers) + 1
    y = x * 3
    return len(numbers) + y > 9000
```

Analysis. Let n be the length of the input list numbers.

All expressions and statements in the body of f are constant time operations, so we count the whole body as 1 step.

So $RT_{\rm f}(n)=1$, which is $\Theta(1)$. We say f is a constant time function.

Note: Even if we count 3 steps, we still describe as $\Theta(1)$!

Example 2 - simple iteration

```
def print_items(numbers: list[int]) -> None:
    for number in numbers:
        print(number)
```

Analysis. Let n be the length of the input numbers.

- The for loop has n iterations
- A single iteration takes 1 step (since calling print on a number is constant time)

So the total number of steps is $n \cdot 1 = n$.

The total running time is $RT_{\text{print_items}}(n) = n$, which is $\Theta(n)$.

Example 3 - simple iteration and more

When you see a mixture of constant-time and non-constant-time statements, calculate the number of steps for each statement separately and add the result.

```
def my_sum(numbers: list[int]) -> int:  # Line 1
    sum_so_far = 0  # Line 2
    # Line 3
    for number in numbers:  # Line 4
        sum_so_far = sum_so_far + number  # Line 5
        # Line 6
    return sum_so_far  # Line 7
```

Example 3 - simple iteration and more

```
def my_sum(numbers: list[int]) -> int:  # Line 1
    sum_so_far = 0  # Line 2
    # Line 3
    for number in numbers:  # Line 4
        sum_so_far = sum_so_far + number  # Line 5
        # Line 6
    return sum_so_far  # Line 7
```

Analysis. Let n be the length of the input list numbers.

- 1. (Line 2) sum so far = 0 takes 1 step (constant time)
- 2. (Line 4-5) the for loop takes n steps, because:
 - it takes *n* iterations
 - each iteration takes 1 step (constant time)
- 3. (Line 7) return sum so far takes 1 step (constant time)

So the total running time is 1 + n + 1 = n + 2 steps, which is $\Theta(n)$.

Nested for loops

From Worksheet 22, Exercise 2

```
def f3(numbers: list[int]) -> None:
    for i in range(0, len(numbers) ** 2 + 5):
        for number in numbers:
        print(number * i)
```

When analyzing a nested loop, start with the inner loop first.

```
def f3(numbers: list[int]) -> None:
    for i in range(0, len(numbers) ** 2 + 5):
        for number in numbers:
        print(number * i)
```

Analysis. Let n be the length of numbers.

For the inner loop:

- *n* iterations
- each iteration takes 1 step
- So, a total of $n \cdot 1 = n$ steps for a fixed iteration of the outer loop

For the outer loop:

- $n^2 + 5$ iterations
- each iteration takes n steps
- A total of $(n^2 + 5) \cdot n = n^3 + 5n$ steps

So the total running time is $RT_{\mathrm{f3}}(n)=n^3+5n$, which is $\Theta(n^3)$.

```
def f4(numbers: list[int]) -> None:
    for i in range(0, len(numbers) ** 2 + 5):
        for j in range(0, i): # Note the range here!
        print(i + j)
```

Analysis. Let n be the length of numbers.

For the inner loop:

- *i* iterations
- each iteration takes 1 step
- So, a total of $i \cdot 1 = i$ steps for a fixed iteration of the outer loop

For the outer loop:

- $n^2 + 5$ iterations
- each iteration takes... i steps?

```
def f4(numbers: list[int]) -> None:
    for i in range(0, len(numbers) ** 2 + 5):
        for j in range(0, i): # Note the range here!
        print(i + j)
```

The total number of steps from all iterations of the outer loop is

$$0+1+2+\cdots+(n^2+4)=\sum_{i=0}^{n^2+4}i_i$$

A summation formula (see Appendix C.1): $\sum_{i=0}^{m} i = \frac{m(m+1)}{2}$

So the total number of steps taken is

$$\sum_{i=0}^{n^2+4} i = rac{(n^2+4)(n^2+5)}{2}, ext{which is } \Theta(n^4).$$

Running time of comprehensions

```
def square_all(numbers: list[int]) -> list[int]:
    """Return a list containing the squares of
    the given numbers.
    """
    return [x ** 2 for x in numbers]
```

Same as for loops:

- the "number of iterations" is the length of the collection, and
- the "steps per iteration" is the steps for the expression x ** 2.

So using similar analysis to before, $RT_{ ext{square_all}} \in \Theta(n)$, where n is the length of numbers.

Running time of while loops

```
def sum_powers_of_two(n: int) -> int:
    """Precondition: n > 1
    """
    sum_so_far = 0
    i = 1

while i < n:
        sum_so_far = sum_so_far + i
        i = i * 2

return sum_so_far</pre>
```

Analyzing a while loop

1. Identify a pattern for how the loop variable i changes.

Iteration	i
0	1
1	2
2	4
3	8
4	16
•••	• • •

In general, the value of i after k iterations is $i_k = 2^k$.

Analyzing a while loop

2. Find the smallest value of k such that i_k makes the loop condition False.

Know: $i_k = 2^k$

Want: $i_k \geq n$

 $2^k \geq n$

 $k \ge \log_2 n$

Smallest value: $k = \lceil \log_2 n \rceil$

```
def sum_powers_of_two(n: int) -> int:
    sum_so_far = 0
    i = 1

while i < n:
        sum_so_far = sum_so_far + i
        i = i * 2

return sum_so_far</pre>
```

Analysis.

- First two statements count as 1 step.
- While loop takes $\lceil \log_2 n \rceil$ iterations, with 1 step per iteration.
- Last statement counts as 1 step.

Total number of steps is $1+\lceil\log_2 n\rceil+1=\lceil\log_2 n\rceil+2$, which is $\Theta(\log_2 n)$.

Exercise 1: Analysing running time of while loops

Exercise 2: Analysing nested loops

A Twisted Example:

we can't always determine the exact running time!

Analysis.

- First two lines are constant time (count as 1 step).
- Final return statement is 1 step.
- The loop body is constant time (1 step).
- The number of iterations is...?

Focus on the loop:

```
x = n

while x > 1:

if x % 2 == 0: # even

x = x // 2

else: # odd

x = 2 * x - 2
```

twisty(11)

Iteration	x
0	11
1	20
2	10
3	5
4	8
5	4
6	2
7	1

Claim. For any integer value of x greater than 2, after two iterations of the while loop in twisty, the value of x has decreased by at least one.

Or, as an inequality:

$$x_2 \leq x_0 - 1$$

where x_0 is the starting value of x, and x_2 is the value of x after two iterations.

Proof. Use a proof by cases. Can do cases based on even/odd (with subcases), or use four separate cases (based on $x_0 \% 4$).

See course notes for details.

How does this help?

- After 0 iterations, x == n
- After 2 iterations, x <= n 1
- After 4 iterations, x <= n 2
- After 6 iterations, x <= n 3

Let x_{2k} be the value of x after 2k iterations. Then $x_{2k} \leq n - k$.

The while loop stops when x>1 is False. That is, when $x_{2k}\leq 1$.

When $k=n-1, x_{2k}$ must be ≤ 1 . (Since n-(n-1)=1.)

(And x_{2k} could be ≤ 1 much earlier.)

So the while loop must stop after at most 2(n-1) iterations.

Back to our analysis

Analysis. First two lines are constant time (1 step), final return statement is 1 step.

The loop body is constant time (1 step). The number of iterations is at most 2(n-1).

So the total running time is at most 1 + 2(n-1) + 1 = 2n steps.

Or, $RT_{\mathrm{twisty}}(n) \leq 2n$.

This leads to an **upper bound** of $\mathcal{O}(n)$. (Not $\Theta(n)$!)

So... all that work, and we just got an upper bound of $RT_{\mathrm{twisty}}(n) \in \mathcal{O}(n)$.

But we want Theta!

In fact, you can show:

$$RT_{ ext{twisty}}(n) \in \mathcal{O}(\log n) \wedge RT_{ ext{twisty}}(n) \in \Omega(\log n)$$

So:

$$RT_{ ext{twisty}}(n) \in \Theta(\log n)$$

Deducing this requires a more careful analysis!

See the course notes for the exciting end to this twisty story.

Summary

Today you learned to...

- 1. Analyse the running time of code containing nested loops.
- 2. Analyse the running time of code containing comprehensions and while loops.
- 3. Perform running-time analyses by finding bounds on the running-time function (rather than an exact expression).

Homework

- Readings:
 - From today: 9.6
 - Tomorrow:: 9.7
- Work on Assignment 4