# Using a Batter's Offensive Statistics to Predict Their Last Season Played Batting Average, Runs Batted-In (RBI's) and Homeruns



**DSI Capstone Project** 

Mario Sanchez, Jr.

August 27, 2019

#### **Question:**

Can regression models be created to accurately predict a players batting average, runs batted-in (RBI's) and homeruns of their last season played?

#### Objectives:

- Obtain baseball data from trusted sources.
- Learn how to aggregate the multiple csv files into the form I need.
- Pick multiple regression models and compare their performance on unseen data.
  - Which model performed best for each metric (HR's, RBI's, AVE)?
  - Determine which features are most important to predicting each target.
- WRIGLEY FIELD CHICAGO CUBS CUBS WINI

- How can we use this information to improve our ability to predict a players performance using historical data?

## Description of the Data

#### Sources:

- Chadwick Baseball Bureau (http://www.chadwick-bureau.com)
- Lahman Baseball Database, version 2015-01-24, which is Copyright (C) 1996-2015 by Sean Lahman.
- The tables Parks.csv and HomeGames.csv are based on the game logs and park code table published by Retrosheet. This
  information is available free of charge from and is copyrighted by Retrosheet. Interested parties may contact Retrosheet at
  http://www.retrosheet.org.

Final DataFrames containing years: 1900-2018 and players with at least 5 years in the league:

- All Players Between 1900-2018:
   batter and change FINAL DataFrame has 41,745 rows and 84 columns
- All Previous Years Played: previous\_years\_FINAL DataFrame has 38,908 rows and 84 columns
- The Last Year of a Players Career:
  last\_year\_df\_FINAL DataFrame has 2837 rows and 84 columns



# **Description of the Data Continued**





## All Players 1900-2018

|       | G            | AB           | AVE          | RBI          | HR           |
|-------|--------------|--------------|--------------|--------------|--------------|
| count | 41745.000000 | 41745.000000 | 41745.000000 | 41745.000000 | 41745.000000 |
| mean  | 88.017056    | 281.305258   | 0.244268     | 34.771757    | 6.466427     |
| std   | 45.520339    | 192.072007   | 0.057721     | 30.504605    | 8.674031     |
| min   | 20.000000    | 20.000000    | 0.000000     | 0.000000     | 0.000000     |
| 25%   | 42.000000    | 94.000000    | 0.217252     | 9.000000     | 0.000000     |
| 50%   | 88.000000    | 250.000000   | 0.253886     | 27.000000    | 3.000000     |
| 75%   | 132.000000   | 459.000000   | 0.282353     | 53.000000    | 9.000000     |
| max   | 165.000000   | 716.000000   | 0.485714     | 191.000000   | 73.000000    |

## **Previous Years**

| G            | AB                                                                                          | AVE                                                                                                                                                                      | RBI                                                                                                                                                                                                                                                                                                                                                                                                   | HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38908.000000 | 38908.000000                                                                                | 38908.000000                                                                                                                                                             | 38908.000000                                                                                                                                                                                                                                                                                                                                                                                          | 38908.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90.117097    | 290.678087                                                                                  | 0.245869                                                                                                                                                                 | 36.113858                                                                                                                                                                                                                                                                                                                                                                                             | 6.755269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45.643573    | 192.978232                                                                                  | 0.057828                                                                                                                                                                 | 30.875618                                                                                                                                                                                                                                                                                                                                                                                             | 8.855580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20.000000    | 20.000000                                                                                   | 0.000000                                                                                                                                                                 | 0.000000                                                                                                                                                                                                                                                                                                                                                                                              | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 43.000000    | 98.000000                                                                                   | 0.220000                                                                                                                                                                 | 9.000000                                                                                                                                                                                                                                                                                                                                                                                              | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 92.000000    | 268.000000                                                                                  | 0.255735                                                                                                                                                                 | 29.000000                                                                                                                                                                                                                                                                                                                                                                                             | 3.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 134.000000   | 471.000000                                                                                  | 0.283665                                                                                                                                                                 | 55.000000                                                                                                                                                                                                                                                                                                                                                                                             | 10.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 165.000000   | 716.000000                                                                                  | 0.485714                                                                                                                                                                 | 191.000000                                                                                                                                                                                                                                                                                                                                                                                            | 73.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 38908.000000<br>90.117097<br>45.643573<br>20.000000<br>43.000000<br>92.000000<br>134.000000 | 38908.000000 38908.000000<br>90.117097 290.678087<br>45.643573 192.978232<br>20.000000 20.000000<br>43.000000 98.000000<br>92.000000 268.000000<br>134.000000 471.000000 | 38908.000000         38908.000000         38908.000000           90.117097         290.678087         0.245869           45.643573         192.978232         0.057828           20.000000         20.000000         0.000000           43.000000         98.000000         0.220000           92.000000         268.000000         0.255735           134.000000         471.000000         0.283665 | 38908.000000         38908.000000         38908.000000         38908.000000           90.117097         290.678087         0.245869         36.113858           45.643573         192.978232         0.057828         30.875618           20.000000         20.000000         0.000000         0.000000           43.000000         98.000000         0.220000         9.000000           92.000000         268.000000         0.255735         29.000000           134.000000         471.000000         0.283665         55.000000 |

## Last Year

|       | G           | AB          | AVE         | RBI         | HR          |
|-------|-------------|-------------|-------------|-------------|-------------|
| count | 2837.000000 | 2837.000000 | 2837.000000 | 2837.000000 | 2837.000000 |
| mean  | 59.216073   | 152.761720  | 0.222320    | 16.365527   | 2.505111    |
| std   | 32.068875   | 119.929253  | 0.051430    | 15.963043   | 3.842233    |
| min   | 20.000000   | 20.000000   | 0.000000    | 0.000000    | 0.000000    |
| 25%   | 32.000000   | 62.000000   | 0.194118    | 5.000000    | 0.000000    |
| 50%   | 51.000000   | 114.000000  | 0.226131    | 11.000000   | 1.000000    |
| 75%   | 81.000000   | 206.000000  | 0.256228    | 22.000000   | 3.000000    |
| max   | 157.000000  | 629.000000  | 0.388889    | 127.000000  | 38.000000   |

# Feature Engineering

- Wrote a function to assign an era label to each player dependent on when they played the game and then what percentage of their career they played in that era.
- Assigned a year label to each player and created dummy columns from these labels.
- Assigned a decade label to indicate which decades the player had played in.
- The above columns were created to account for the different era's that have occurred over the last 119 years.
- Created a binary column to indicate if a player batted and threw right handed.
- Created AVE, OBP, Slug\_Percent, and OPS columns.
- Computed a players experience by subtracting the current year from the debut year.
- Split my final dataframe into previous years and final year so that I can test my models on unseen data and compare their results.

| Columns Name | Description               |
|--------------|---------------------------|
| player(D)    | unique identifier         |
| yearlD       | year for that row         |
| teamID       | team played on            |
| stint        | stint                     |
| G            | games played              |
| AB           | at-bats                   |
| R            | runs                      |
| Н            | hits                      |
| 28           | doubles                   |
| 38           | triples                   |
| HR           | homeruns                  |
| RBI          | runs batted in            |
| SB           | stolen bases              |
| cs           | caught stealing           |
| BB           | base on balls             |
| SO           | strike out                |
| 188          | intentional walk          |
| НВР          | hit by pitch              |
| SH           | sacrifice hit             |
| SF           | sacrifice fly             |
| GIDP         | grounded into double pla  |
| nameFirst    | first name                |
| nameLast     | last name                 |
| bats         | left or right             |
| throws       | left or right             |
| debut        | first year played         |
| finalGame    | last year played          |
| percent      | percent spent in that era |
| era          | binary era                |
| decade       | binary decade             |
| throws R     | 1 if throws R             |
| bats R       | 1 if bats R               |
| AVE          | average                   |
| OBP          | on base percentage        |
| Slug Percent | slugging percentage       |
| OPS          | on base + slugging        |
| debutYear    | first year played         |
| currentYear  | year of that row          |
| YRSPRO       | experience                |
| chg          | change from previous yea  |
| KMeans label | cluster label             |

#### **Model Preparation:**

- Used previous years to train and test on
- Made sure that columns such as G, H, AB were left out
- Scaled my train, test and unseen data for some of the regression models
- Created polynomial features to my X variable to provide more data to my models
- Grid search over several parameters for each model
- Created a pickle file of each fit and trained model for future evaluation.

## Models

For each target, HR's, RBI's, and AVE, I fit each of the following models:

- Linear Regression
- Ridge
- Lasso
- ElasticNet
- RandomForest



## **RandomForest Scores**

|               | AVE    | RBI    | HR     |
|---------------|--------|--------|--------|
| Train R2      | 0.9936 | 0.9887 | 0.9914 |
| Test R2       | 0.9543 | 0.9362 | 0.9566 |
| New Data R2   | 0.8939 | 0.8933 | 0.9323 |
| New Data RMSE | 0.0167 | 5.21   | 0.9998 |

## **Best Model Results**



# Feature Importance

#### RandomForest AVE

| features         | importance |
|------------------|------------|
| OBP Slug_Percent | 0.672240   |
| OPS OBP          | 0.180931   |
| OPS Slug_Percent | 0.015534   |
| BB Slug_Percent  | 0.012084   |
| BB HR            | 0.010909   |
| BB SO            | 0.007599   |
| 2B OBP           | 0.004799   |
| OPS BB           | 0.003709   |
| 2B RBI           | 0.003132   |
| BB GIDP          | 0.002926   |
| 2B SH            | 0.002197   |
| 2B 3B            | 0.002035   |
| Slug_Percent^2   | 0.001979   |
| OBP^2            | 0.001820   |
| ORP              | 0.001776   |

#### RandomForest RBI

features importance

| leatures          | importance |
|-------------------|------------|
| 2B Slug_Percent   | 0.600547   |
| 2B HR             | 0.165273   |
| 2B BB             | 0.080705   |
| HR AVE            | 0.029625   |
| 2B 3B             | 0.012446   |
| 3B HR             | 0.003488   |
| SF GIDP           | 0.003295   |
| HR SF             | 0.003104   |
| B 1920-41_percent | 0.002910   |
| 2B AVE            | 0.002892   |
| HR GIDP           | 0.002810   |
| 3B SH             | 0.002161   |
| 2B SH             | 0.001597   |
| HR SH             | 0.001431   |
| BB GIDP           | 0.001331   |

## RandomForest HR

| features              | importance |
|-----------------------|------------|
| RBI SO                | 0.593223   |
| RBI Slug_Percent      | 0.155370   |
| Slug_Percent          | 0.065035   |
| Slug_Percent^2        | 0.062440   |
| SO Slug_Percent       | 0.017111   |
| AVE^2                 | 0.011973   |
| AVE                   | 0.011102   |
| SO GIDP               | 0.009086   |
| 3B AVE                | 0.003270   |
| 2B 3B                 | 0.002999   |
| 2B AVE                | 0.001984   |
| RBI GIDP              | 0.001636   |
| 3B KMeans_label       | 0.001598   |
| OBP AVE               | 0.001483   |
| throws_R Slug_Percent | 0.001343   |







## Conclusions

### **Primary Findings:**

- The RandomForest Regression model performed the best on predicting all metrics.
- Many of the models performed well on test data but poorly on unseen data.
- This indicated to me that using an ensemble model was a better approach at more accurately predicting my targets.
- I believe that I can achieve even better results if I log transform my target variable since there was a skewed distribution for two of the three targets.
- The information obtained from the models such as the most important features can then be leveraged to direct scouting reports and help teams better evaluate their players performance. These models allow for a players past history as well as others from around the league to determine what type of batter they are.
- This can then allow for a better forecast of a team's performance broken down by player.

#### **Limitations and Assumptions:**

- More feature engineering can improve the models.
- It is possible that there may have been some data leakage, further investigation is needed.
- Computing power becomes an issue when fitting certain models. This greatly influences how much tuning can go into each model.
- The results are encouraging and I believe they can by extended to predict many other offensive metrics.

#### Future Analysis:

- Explore other models such as ExtraTreesRegressor, AdaBoostRegressor and BaggingRegressor.
- Test models on other offensive metrics such as on-base percentage (OBP), or Slugging Percent and see if they can generalize
  well to these metrics.
- Test the models on select subsets of players such as by position or by era. This may reveal very interesting findings.
- There is truly a mountain of available data for baseball as well as other sports and am excited to apply what I have learned in this project to future projects.