Al Analysis of Grades of Portuguese High School Students

By: John Cervone and William Pitera

Executive Summary Pt 1

- Predicting student performance using machine learning to identify factors influencing academic success.
- Developing a predictive model to analyze student demographics, social conditions, and academic records to forecast final grades.

Executive Summary Pt 2

- Utilizes the Student Performance Dataset and follows a comprehensive pipeline.
- Preprocesses data to ensure clean and structured input for the model.
- Builds and optimizes machine learning models, including Random Forest and Gradient Boosting, for high accuracy.
- Evaluates the model's predictive power, targeting 75% classification accuracy or an R-squared of 0.80.

Executive Summary Pt 3

- Explores key factors impacting performance, including prior academic scores, study time, and absences, offering actionable recommendations for educators and policymakers.
- Demonstrates how machine learning enhances educational outcomes and identifies at-risk students.
- Paves the way for targeted interventions and future research in education.

Overview of Data Collection, Cleanup, & Exploration Processes

AIL

- Uses the Student Performance
 Dataset from the UCI Machine
 Learning Repository.
- Includes data on students'
 demographics, social factors, and
 academic performance in Portuguese
 and mathematics classes.

Overview of Data Collection, Cleanup, & Exploration Processes

- AII
- Contains 33 attributes, including prior grades (G1, G2), study time, parental education, and absences.
- Uses the final grade (G3) as the target variable for prediction.

- Minimal missing data in the dataset.
- Basic checks confirmed completeness, eliminating the need for imputation.

- Encoded categorical features like school, sex, address, and parental status using one-hot encoding.
- Ensured compatibility with machine learning models.

- Normalized numerical variables such as G1, G2, and absences.
- Ensured consistent scales to enhance model performance.

- Conducted correlation analysis to identify impactful features influencing final grades.
- Key predictors included prior grades (G1, G2), study time, and family education levels.

Data Exploration

- Performed descriptive analysis to understand distributions, averages, and variability across attributes.
 - Identified strong positive correlations
 between G1, G2, and G3 scores.

Data Exploration

...

 Used histograms and box plots to reveal patterns and outliers in numerical features like absences and grades.

Data Exploration

- Class Imbalance: The target variable (G3) displayed slight imbalances, with more students clustering in mid-performance ranges.
- Informed the choice of evaluation metrics and model selection.

The Approach

...

- Followed a systematic and iterative approach to predict student performance and identify key factors influencing academic outcomes.
- The process was structured as follows:

Approach to Data Preprocessing

- Exploration: Explored the dataset to understand its structure, key variables, and potential challenges (e.g., missing data or outliers).
- Cleaning: Cleaned the data by encoding categorical variables (e.g., school, address) using one-hot encoding and scaling numerical variables (e.g., grades, absences) for standardization.
- Feature Selection: Performed correlation analysis to prioritize features with the most predictive power, focusing on prior grades, study time, and family education levels.

Approach to Model Development

- Baseline Model: Implemented a simple Logistic Regression model to establish a baseline accuracy for classification.
- Advanced Models: Explored an advanced model, Random Forest, to improve predictive performance.
- Hyperparameter Tuning: Fine-tuned parameters like the number of trees and depth for the Random Forest model using grid search and cross-validation to achieve optimal results.

Approach to Model Evaluation

- Metrics: Evaluated model
 performance using accuracy,
 precision, recall, and F1-score for
 classification tasks, and R-squared
 for regression tasks.
- Visualization: Used confusion matrices and feature importance plots to gain insights into model behavior and identify influential variables.

Approach to Documentation & Presentation

- GitHub Repository: Documented the entire workflow, from data preprocessing to model evaluation, in a clean, organized repository. Included a polished README file with an overview of the project.
- Result Analysis: Summarized the final results, including the best-performing model and key takeaways, for the presentation.

Approach to Iterative Refinement Pt 1

- Iterative Approach: Regularly revisited earlier steps, refining data preprocessing, feature engineering, and model selection to address issues and enhance performance.
- Outcome: The iterative approach ensured a robust final solution that exceeded project benchmarks.

Approach to Iterative Refinement Pt 2

- Approach: Combined data exploration, advanced modeling techniques, and rigorous evaluation.
- Outcome: Successfully achieved project goals and gained valuable insights into factors driving student performance.

- Analyzing Additional Factors:
 - a. Incorporate external data sources
 (e.g., school funding,
 teacher-student ratios,
 neighborhood socioeconomic
 status) to understand their
 influence on academic performance.
 - b. Study the impact of psychological and emotional factors (e.g., stress levels, peer pressure, motivation) that were not included in the dataset.

- Investigating Longitudinal Trends:
 - Conduct a longitudinal analysis to track how student performance evolves over multiple academic years.
 - Identify early warning signs for at-risk students.

- Exploring Intervention Strategies:
 - Research how targeted interventions (e.g., extra tutoring, counseling, or parental engagement) impact academic performance.
 - Simulate and compare potential outcomes of different educational strategies using predictive modeling.

- Advancing Modeling Techniques:
 - Experiment with deep learning models,
 such as neural networks, to capture
 more complex relationships in the data.
 - Incorporate Explainable AI (XAI)
 techniques to better interpret and
 communicate the model's predictions to
 educators and policymakers.

Findings and Results To Questions

How does a student pursuing extracurricular activities affect the students final grades?

By: John

Does the mothers education level affect the students grades?

By: Will

What is the relationship between number of failures and grades?

By: John

Does the fathers education level affect the students grades?

By: Will

Does going out with friends correlate to good grades?

By: John

Does the mothers jobs affect the students grades?

By: Will

Does age correlate to grades?

By: John

Does the fathers jobs affect the students grades?

By: Will

Thank You For Listening!

Any Questions?

