Lecture 8: February 9, 2015 cs 573: Probabilistic Reasoning Professor Nevatia
Spring 2015

Review

- Assignment #2 due today
- Last lecture:
 - Conversions between BN and MN
 - Properties of chordal graphs
 - Energy functions and Log-linear models
 - Some simple models
 - Pairwise MRFs
 - Conditional random fields (CRFs)
 - Ising energy model
- Today's objective
 - Inference in graphical models
 - Variable elimination algorithm

Inference in Probabilistic Graphs

- Types of Queries
 - Conditional probability query P(Y|E=e)
 - MAP query, MAP (W|e) = arg max_w P(w, e)
 - We focus on the former first
- P(Y|E=e) = P(Y,e) / P(e)
- $P(y,e) = \sum_{w} P(y,e,w)$ where W = X Y E
 - Note that the quantity inside summation is just an entry in the joint distribution (may not be given explicitly but can be computed by using the chain rule)
- $P(\mathbf{e}) = \sum_{\mathbf{Y}} P(\mathbf{y}, \mathbf{e})$
 - Compute by summing out the joint distribution or from the calculation above
- Compute P(y,e) for various values of Y and then normalize to add to one (don't need to compute P (e) explicitly)

Worst-Case Complexity

- Solving by enumeration is exponential in the number of variables
- To decide whether P(X = x) > 0 is NP-hard
 - Shown by equivalence to satisfiability of a propositional logic formula
- To decide whether P(X =x) is #P hard (harder than NP unless P=NP)
- Even *approximate* inference, with a *guaranteed bound* on the *relative error* (precise definition in the book) is NP-hard
- In practice, for moderate size networks, many queries can be answered exactly in reasonable time. Also, good approximate algorithms for larger networks.
 - Chapters 9 and 10 are about exact inference, chapters 11 and
 12 about approximations

Inference on a Chain

- Study a chain first $A \rightarrow B \rightarrow C \rightarrow D$; assume CPDs are given
- First compute $P(B) = \sum_{a} P(a) P(B|a)$
 - Note, we compute the entire distribution of B
 - Let A have k values, B have m values. Consider computing probability of one value of B, say P(b¹)
 - Need *k* multiplications and *k-1* additions to compute
 - Repeat for each value of B, m times
 - Total complexity is $O(k \times m)$
- Next compute $P(C) = \sum_b P(b) P(C|b)$
- Then, $P(D) = \sum_{c} P(c) P(D|c)$
- Method generalizes to chain of *n* variables.
 - If each variable is k-valued, complexity is $O(nk^2)$
 - Joint distribution has k^n entries
- How about computing $P(C|d^1)$?

Another Cut: Expand the Formula

- P(A,B,C,D) = P(A) P(B|A)P(C|B)P(D|C), by chain rule
- Sum over A, B & C, to get:

$$P(D) = \sum_{C} \sum_{B} \sum_{A} P(A) P(B|A) P(C|B) P(D|C);$$

• Compute for $D = d^1$ and $D = d^2$

$$P(d^{1}) = \sum_{C} \sum_{B} \sum_{A} P(A) P(B|A) P(C|B) P(d^{1}|C)$$
;

$$P(d^2) = \sum_{C} \sum_{B} \sum_{A} P(A) P(B|A) P(C|B) P(d^2|C);$$

- Now, sum over A: consider $A=a^1$ and $A=a^2$
- $P(d^1) = \sum_{C} \sum_{B} P(a^1) P(B|a^1) P(C|B) P(d^1|C) + \sum_{C} \sum_{B} P(a^2) P(B|a^2) P(C|B) P(d^1|C)$

Similar expression for P (d²)

Expanded Formulas

$$P(d^{1}) = P(a^{1}) \quad P(b^{1} | a^{1}) \quad P(c^{1} | b^{1}) \quad P(d^{1} | c^{1}) \\ + P(a^{2}) \quad P(b^{1} | a^{2}) \quad P(c^{1} | b^{1}) \quad P(d^{1} | c^{1}) \\ + P(a^{1}) \quad P(b^{2} | a^{1}) \quad P(c^{1} | b^{2}) \quad P(d^{1} | c^{1}) \\ + P(a^{2}) \quad P(b^{2} | a^{2}) \quad P(c^{1} | b^{2}) \quad P(d^{1} | c^{1}) \\ + P(a^{1}) \quad P(b^{1} | a^{1}) \quad P(c^{2} | b^{1}) \quad P(d^{1} | c^{2}) \\ + P(a^{2}) \quad P(b^{1} | a^{2}) \quad P(c^{2} | b^{1}) \quad P(d^{1} | c^{2}) \\ + P(a^{1}) \quad P(b^{2} | a^{1}) \quad P(c^{2} | b^{2}) \quad P(d^{1} | c^{2}) \\ + P(a^{2}) \quad P(b^{2} | a^{2}) \quad P(c^{2} | b^{2}) \quad P(d^{1} | c^{2}) \\ + P(a^{2}) \quad P(b^{2} | a^{2}) \quad P(c^{2} | b^{2}) \quad P(d^{1} | c^{2}) \\ \end{pmatrix}$$

Note that the first two lines have common terms (third and fourth entries), so we do not need to compute twice; see below for factorized form.

$$\begin{array}{c} (P(a^1)P(b^1\mid a^1) + P(a^2)P(b^1\mid a^2)) & P(c^1\mid b^1) & P(d^1\mid c^1) \\ + & (P(a^1)P(b^2\mid a^1) + P(a^2)P(b^2\mid a^2)) & P(c^1\mid b^2) & P(d^1\mid c^1) \\ + & (P(a^1)P(b^1\mid a^1) + P(a^2)P(b^1\mid a^2)) & P(c^2\mid b^1) & P(d^1\mid c^2) \\ + & (P(a^1)P(b^2\mid a^1) + P(a^2)P(b^2\mid a^2)) & P(c^2\mid b^2) & P(d^1\mid c^2) \end{array}$$

Similar expression for $P(d^2)$

Factorized Expressions

$$P(d^{1}) = \begin{pmatrix} (P(a^{1})P(b^{1} \mid a^{1}) + P(a^{2})P(b^{1} \mid a^{2})) & P(c^{1} \mid b^{1}) & P(d^{1} \mid c^{1}) \\ + & (P(a^{1})P(b^{2} \mid a^{1}) + P(a^{2})P(b^{2} \mid a^{2})) & P(c^{1} \mid b^{2}) & P(d^{1} \mid c^{1}) \\ + & (P(a^{1})P(b^{1} \mid a^{1}) + P(a^{2})P(b^{1} \mid a^{2})) & P(c^{2} \mid b^{1}) & P(d^{1} \mid c^{2}) \\ + & (P(a^{1})P(b^{2} \mid a^{1}) + P(a^{2})P(b^{2} \mid a^{2})) & P(c^{2} \mid b^{2}) & P(d^{1} \mid c^{2}) \end{pmatrix}$$

$$P(d^{2}) = \begin{pmatrix} P(a^{1})P(b^{1} \mid a^{1}) + P(a^{2})P(b^{1} \mid a^{2}) & P(c^{1} \mid b^{1}) & P(d^{2} \mid c^{1}) \\ + & (P(a^{1})P(b^{2} \mid a^{1}) + P(a^{2})P(b^{2} \mid a^{2})) & P(c^{1} \mid b^{2}) & P(d^{2} \mid c^{1}) \\ + & (P(a^{1})P(b^{1} \mid a^{1}) + P(a^{2})P(b^{1} \mid a^{2})) & P(c^{2} \mid b^{1}) & P(d^{2} \mid c^{2}) \\ + & (P(a^{1})P(b^{2} \mid a^{1}) + P(a^{2})P(b^{2} \mid a^{2})) & P(c^{2} \mid b^{2}) & P(d^{2} \mid c^{2}) \end{pmatrix}$$

Note that sums are repeated several times: call the first sum, row1 above $\tau_1(b^1)$, second row $\tau_1(b^2)$; together $\tau_1(B)$; note that each is repeated four times. Rewritten on next slide.

In terms of τ_1 (B)

$$P(d^{1}) = \begin{cases} \tau_{1}(b^{1}) & P(c^{1} \mid b^{1}) & P(d^{1} \mid c^{1}) \\ + & \tau_{1}(b^{2}) & P(c^{1} \mid b^{2}) & P(d^{1} \mid c^{1}) \\ + & \tau_{1}(b^{1}) & P(c^{2} \mid b^{1}) & P(d^{1} \mid c^{2}) \\ + & \tau_{1}(b^{2}) & P(c^{2} \mid b^{2}) & P(d^{1} \mid c^{2}) \end{cases}$$

$$P(d^{2}) = \begin{cases} \tau_{1}(b^{1}) & P(c^{1} \mid b^{1}) & P(d^{2} \mid c^{1}) \\ + & \tau_{1}(b^{2}) & P(c^{1} \mid b^{2}) & P(d^{2} \mid c^{1}) \\ + & \tau_{1}(b^{1}) & P(c^{2} \mid b^{1}) & P(d^{2} \mid c^{2}) \\ + & \tau_{1}(b^{2}) & P(c^{2} \mid b^{2}) & P(d^{2} \mid c^{2}) \end{cases}$$

Now, factorize $P(d^{1}|c^{1})$, $P(d^{1}|c^{2})$, $P(d^{2}|c^{1})$, $P(d^{2}|c^{2})$

Factorize Again

$$P(d^{1}) = \begin{pmatrix} (\tau_{1}(b^{1})P(c^{1} \mid b^{1}) + \tau_{1}(b^{2})P(c^{1} \mid b^{2})) & P(d^{1} \mid c^{1}) \\ + (\tau_{1}(b^{1})P(c^{2} \mid b^{1}) + \tau_{1}(b^{2})P(c^{2} \mid b^{2})) & P(d^{1} \mid c^{2}) \end{pmatrix}$$

Note repeated sums again; define $\tau_2(C)$ to simplify and avoid repeated computations

$$\tau_2(c^1) = \tau_1(b^1)P(c^1 \mid b^1) + \tau_1(b^2)P(c^1 \mid b^2)
\tau_2(c^2) = \tau_1(b^1)P(c^2 \mid b^1) + \tau_1(b^2)P(c^2 \mid b^2)$$

In terms of τ_2 (C)

$$P(d^{1}) = \begin{array}{ccc} & \tau_{2}(c^{1}) & P(d^{1} \mid c^{1}) \\ + & \tau_{2}(c^{2}) & P(d^{1} \mid c^{2}) \end{array}$$

$$P(d^{2})= \begin{array}{cccc} & \tau_{2}(c^{1}) & P(d^{2} \mid c^{1}) \\ + & \tau_{2}(c^{2}) & P(d^{2} \mid c^{2}) \end{array}$$

Note: total number of operations (for binary variables) is 18: 4 multiplies and 2 adds for each of $\tau_1(B)$, for $\tau_2(C)$, and for P(D); computation of joint distribution requires 48 multiplies and 14 adds.

A Numerical Example

- Let P(A) = <.6, .4>, P(B|A) = <.8, .2>, <.3, .7>,P(C|B) = <.9, .1>, <.2, .8>, P(D|C) = <.6, .4>, <.1, .9>
- τ_1 (b¹) = .6 x .8 + .4 *.3 = .6, τ_1 (b²) = .4
- $\tau_2(c^1) = .6 \times .9 + .4 * .2 = .62, \tau_2(c^2) = .38$
- etc.

VE Algorithm on a Chain: Compact Form

- $P(D) = \sum_{C} \sum_{B} \sum_{A} P(A) P(B|A) P(C|B) P(D|C)$
- Rewrite as $\sum_{C} P(D|C) \sum_{B} P(C|B) \sum_{A} P(A) P(B|A)$
- Let $\psi_1(A,B) = P(A) P(B|A)$, $\tau_1(B) = \sum_A \psi_1(A,B)$
- ψ_2 (B,C)= τ_1 (B) P (C|B), τ_2 (C) = $\sum_B \psi_2$ (B,C)
- ψ_3 (C, D)= τ_2 (C) P (D|C), P(D) = $\sum_C \psi_3$ (C,D)
- Dynamic programming: computes inner expressions first, "inside out"

Factor Marginalization

• $\psi(\mathbf{X}) = \sum_{\mathbf{Y}} \phi(\mathbf{X}, \mathbf{Y})$; **X** is set of variables, Y is a single variable (not in set **X**)

a^1	b^1	c^1	0.25				
a^1	b^1	c^2	0.35				
a^1	b^2	c^1	0.08				
a^1	b^2	c^2	0.16		a^1	c^1	0.33
a^2	b^1	c^1	0.05		a^1	c^2	0.51
a^2	b^1	c^2	0.07		a^2	c^1	0.05
a^2	b^2	c^1	0		a^2	c^2	0.07
a^2	b^2	c^2	0		a^3	c^1	0.24
a^3	b^1	c^1	0.15		a^3	c^2	0.39
a^3	b^1	c^2	0.21	<i>-// '</i>			
a^3	b^2	c^1	0.09				
a^3	b^2	c^2	0.18				

Add terms that "match up"

Factor Operations

•
$$\phi_1 \cdot \phi_2 = \phi_2 \cdot \phi_1$$

•
$$\sum_{X} \sum_{Y} \phi = \sum_{Y} \sum_{X} \phi$$

•
$$(\phi_1 \cdot \phi_2) \cdot \phi_3 = \phi_1 \cdot (\phi_2 \cdot \phi_3)$$

• $\sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$, if X is not in scope $[\phi_1]$

VE Algorithm (General Version)

- $P(A,B,C,D) = \phi_A \cdot \phi_B \cdot \phi_C \cdot \phi_D$; nodes are not necessarily arranged in a chain
- $P(D) = \sum_{C} \sum_{B} \sum_{A} P(A, B, C, D)$; marginalize the joint distribution $= \sum_{C} \sum_{B} \sum_{A} \phi_{A} \cdot \phi_{B} \cdot \phi_{C} \cdot \phi_{D}$; express joint as a factor product $= \sum_{C} \sum_{B} \phi_{C} \cdot \phi_{D} \left(\sum_{A} \phi_{A} \cdot \phi_{B} \right)$; sum out A $= \sum_{C} \phi_{D} \cdot \left(\sum_{B} \phi_{C} \cdot \left(\sum_{A} \phi_{A} \cdot \phi_{B} \right) \right)$; sum out B then C

Note: any order of variable elimination gives correct answer.

In general, compute $\sum_{Z} \Pi_{\phi \epsilon \Phi} \phi$; Z is the set of variables to be eliminated

Sum-Product algorithm (we have reversed the order of product and sum from the original definition)

Sum Product VE Algorithm (9.1)

Algorithm 9.1 Sum-product variable elimination algorithm

```
Procedure Sum-Product-VE (
      \Phi, // Set of factors
     Z, // Set of variables to be eliminated
     \prec // Ordering on Z
    Let Z_1, \ldots, Z_k be an ordering of Z such that
   Z_i \prec Z_j if and only if i < j
    for i = 1, \ldots, k
     \Phi \leftarrow \text{Sum-Product-Eliminate-Var}(\Phi, Z_i)
    \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
     return \phi^*
  Procedure Sum-Product-Eliminate-Var (
      \Phi, // Set of factors
     Z // Variable to be eliminated
\Phi' \leftarrow \{\phi \in \Phi : Z \in \mathit{Scope}[\phi]\}
\Phi'' \leftarrow \Phi - \Phi'
                                                                                         Note: A factor is used
\begin{array}{ll} \psi \leftarrow & \prod_{\phi \in \Phi'} \phi \\ \tau \leftarrow & \sum_{Z} \psi \end{array}
                                                                                                only once
    return \Phi'' \cup \{\tau\}
```

Theorem 9.5

- VE Algorithm can also be applied to general graphs
 - Example to follow
- X is a set of variables, Φ is a set of factors whose scope is $\subseteq X$
- Let $Y \subset X$ be a set of query variables
- Let Z = X Y (set of other variables, to be eliminated)
- For any ordering \prec over \mathbf{Z} , Sum-Product-VE $(\Phi, \prec, \mathbf{Z})$ returns $\phi^*(\mathbf{Y}) = \sum_{\mathbf{Z}} \Pi_{\phi \in \Phi} \phi$
- If Φ is the set of all factors (one factor associated with each variable X_i , derived from the CPD of X_i) then above gives P(Y).
- Same algorithm also applies to Markov Networks
 - Initial factors are clique potentials
 - If original factors are not normalized, we also need to compute a partition function.

VE Applied to General Graph (Ex 9.1)

Goal is to compute P(J)

$$P(C, D, I, G, S, L, J, H) = P(C)P(D \mid C)P(I)P(G \mid I, D)P(S \mid I)$$

$$P(L \mid G)P(J \mid L, S)P(H \mid G, J)$$

$$= \phi_C(C)\phi_D(D, C)\phi_I(I)\phi_G(G, I, D)\phi_S(S, I)$$

$$\phi_L(L, G)\phi_J(J, L, S)\phi_H(H, G, J).$$

Elimination Steps

- Use elimination ordering C, D, I, H, G, S, L
- 1. Eliminate C

$$\psi_1(C,D) = \phi_C(C) \cdot \phi_D(D,C)$$

$$\tau_1(D) = \sum_C \psi_1.$$

• 2. Eliminate D: Note ϕ_D (D,C) already eliminated

$$\psi_2(G,I,D) = \phi_G(G,I,D) \cdot \tau_1(D)$$

$$\tau_2(G,I) = \sum_D \psi_2(G,I,D).$$

• 3. Eliminate I:

$$\psi_3(G,I,S) = \phi_I(I) \cdot \phi_S(S,I) \cdot \tau_2(G,I)$$

$$\tau_3(G,S) = \sum_I \psi_3(G,I,S).$$

Elimination Steps

• 4. Eliminate H

$$\psi_4(G, J, H) = \phi_H(H, G, J)$$

$$\tau_4(G, J) = \sum_H \psi_4(G, J, H).$$

• 5. Eliminate G

$$\psi_5(G, J, L, S) = \tau_4(G, J) \cdot \tau_3(G, S) \cdot \phi_L(L, G)$$

$$\tau_5(J, L, S) = \sum_G \psi_5(G, J, L, S).$$

• 6. Eliminate S

$$\psi_6(J, L, S) = \tau_5(J, L, S) \cdot \phi_J(J, L, S)$$

$$\tau_6(J, L) = \sum_S \psi_6(J, L, S).$$

• 7. Eliminate L

$$\psi_7(J,L) = \tau_6(J,L)$$

$$\tau_7(J) = \sum_L \psi_7(J,L).$$

Note: that τ_4 is $\equiv 1$ as we are just computing $\sum_H P(H|G,J)$ so this step serves little purpose but complicates the next elimination

Table Summarizing Elimination for P(J)

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$ au_2(G,I)$
3	1	$\phi_I(I), \phi_S(S,I), \tau_2(G,I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J),\tau_3(G,S),\phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Table 9.1 A run of variable elimination for the query P(J)

Another Elimination Order

• Note: order affects the size of factors generated, and hence the complexity of the computation.

Step	Variable eliminated	Factors used	Variables involved	New factor
1	G	$\phi_G(G,I,D), \phi_L(L,G), \phi_H(H,G,J)$	G, I, D, L, J, H	$ au_1(I,D,L,J,H)$
2	I	$\phi_I(I), \phi_S(S,I), \tau_1(I,D,L,S,J,H)$	S, I, D, L, J, H	$ au_2(D,L,S,J,H)$
3	S	$\phi_J(J,L,S)$, $\tau_2(D,L,S,J,H)$	D, L, S, J, H	$ au_3(D,L,J,H)$
4	L	$ au_3(D,L,J,H)$	D, L, J, H	$ au_4(D,J,H)$
5	H	$ au_4(D,J,H)$	D, J, H	$ au_5(D,J)$
6	C	$\tau_5(D,J), \phi_C(C), \phi_D(D,C)$	D, J, C	$ au_6(D,J)$
7	D	$ au_6(D,J)$	D, J	$ au_{7}(J)$

Table 9.2 A different run of variable elimination for the query P(J)

Complexity and how to choose elimination order will be discussed a bit later.

Next Class

• Read sections 9.3.2,9.4, 10.1 of the KF book

Just for formatting

- Message from C_i to C_j is given by
 - V_T vertices of T be ε_T the edges
 - If X is in C_i and also in C_j then X is also in every cluster in the path between C_i and C_j .
 - Implies that $S_{i,j} = C_i \cap C_j$.
 - Family preserving: Each factor φ must be associated with some cluster, say C_i , called α (φ). scope [φ] ⊆ C_i
 - Each edge between two nodes, say C_i and C_j , is associated with a set of nodes, called a sepset, $S_{i,j}$, $S_{i,j} \subseteq C_i \cap C_j$.
- $\delta_{i \to j} \Sigma$
- $P(D) = \sum_{C} \sum_{B} \sum_{A} P(A, B, C, D)$
- D ⊥ J

USC CS573: Prob Reasoning, Spring 2015