Substrings

An array of characters v_2 with length l_2 is a **substring** of another array of characters v_1 with length l_1 , $0 < l_2 \le l_1 \le 100$, if all the elements in array v_2 are contained in array v_1 in the same order and in consecutive positions.

Our purpose is to develop a recursive algorithm that checks whether v_2 is a substring of v_1 or not.

In addition to coding the solution, you have to specify the algorithm and calculate its complexity. What happens if $l_1/2 < l_2 \le l_1 \le 1000$?

Input

Each test case is described in three lines. The first one contains the length of arrays v_1 and v_2 , the second contains the characters of array v_1 and the third contains the characters of array v_2 .

The input ends when both arrays are empty (and it must not be processed).

Output

The output of each case is an independent line saying YES if v_2 is a substring of v_1 and NO otherwise.

Sample input

3 1	
a b c	
a	
3 2	
a b c	
d c	
3 1	
a b c	
b	
3 2	
a b c	
b c	
3 2	
a b c	
a c	
3 3	
a a c	
a a c	
0 0	

Sample output

YES NO		
NO		
YES YES NO YES		
YES		
NO		
YES		

Notes

This exercise must be understood in the context of the *Data Structures and Algorithms* course, FDI-UCM 2016/2017 (prof. Gonzalo Méndez). Therefore, the only valid solutions are those that use the concepts studied in this course. Additional remarks may be provided in class.