ABE 308 CLASS 1-16-2019 POINT 2 POINT (XII YIZ Mi DOMAIN [SOLID, LIQUID EFRAISION BOUNDARY OF THE TOMAIN AND GAS OF A Microscopic Thiof

	Di RECTION Z
	$9z = -K_z A_z dT$ dZ
	dZ
	For a 3D HEAT TRANSFER PROBLEM
	Gradient operator
	9 = 9 = -KW VT
	A
	Let's assume Isotropic moteral Kx-Ky=Kz=K
Ope	otor
1	
	$\frac{\sqrt{1}}{2} = \frac{2\pi i + 2\pi j + 2\pi k}{2}$
	DX DY DZ
	CONDUCTION IN A SPHERE
	OT 1 (2)
	$\frac{\partial L}{\partial C} = \frac{1}{K} \left[\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) - \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) + \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) \right]$
	St SC 12 SC 25,130 302 13,100
	Consuction /
	GOOD AND A REDUISTIC
	ASSUMPTION IS THAT
	donain. Temperatures charges
	donain.
	oneg will.