Université de Picardie Jules Verne

UFR Sciences Année 2023-2024.

Analyse Numérique

Partiel Février 2024

Durée 2h

Exercice 1

Soient $(a,b) \in \mathbb{R}^2$, a < b, $(x_i)_{i \in \{0,\cdots n\}}$ n+1 points distincts de [a;b] et $f:[a;b] \to \mathbb{R}$. Soit P_n le polynôme de Lagrange interpolant la fonction f aux points $(x_i)_{i \in \{0,\cdots n\}}$.

1. Établir que ce polynôme existe et est unique (on en donnera une construction).

On considère la fonction f définie sur [1;2] par $f(x) = \sqrt{x}$ et $N \in \mathbb{N}^*$ ainsi que les points $x_i := 1 + i \cdot h$ où $h = \frac{1}{N}$ et $i = 0, \dots, N$.

2. Soient $i \in \{1, \dots, N-1\}$ et $x \in [x_{i-1}, x_{i+1}]$. Après avoir rappelé l'expression de l'erreur $f(x) - P_n(x)$, établir que

$$|f(x) - P_2(x)| \le \frac{3}{8} |(x - x_{i-1})(x - x_i)(x - x_{i+1})|,$$

où P_2 est le polynôme qui interpole f en x_{i-1}, x_i, x_{i+1} .

3. Montrer que

$$\max_{x \in [x_{i-1}; x_{i+1}]} |(x - x_{i-1})(x - x_i)(x - x_{i+1})| = \max_{y \in [-h; h]} |y(y^2 - h^2)|,$$

et en déduire que pour $x \in [1; 2]$,

$$|f(x) - p_2(x)| \le \frac{h^3}{24\sqrt{3}},$$

où p_2 est le polynôme qui interpole f aux trois points de l'ensemble $(x_i)_{i \in \{0, \dots N\}}$ les plus proches de x.

4. Déterminer un entier $N \ge 1$ tel que, quelque soit $x \in [1; 2]$, $p_2(x)$ approxime f(x) à 10^{-4} près.

Exercice 2

A. On considère les points $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $a \in \mathbb{R}$ et f une fonction définie sur [-3;3] telle que $f(x_0) = 2$, $f(x_1) = a$, $f(x_2) = 3$, $f(x_3) = 4$. On donne $f[x_0, x_1] = -1$.

1. Calculer a puis $f[x_0, x_1, x_2, x_3]$. Donner la valeur de $f[x_{\sigma(0)}, x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}]$ où σ est une bijection de $\{0, 1, 2, 3\}$ dans $\{0, 1, 2, 3\}$.

2. Déterminer le polynôme qui interpole f aux points $(x_i)_{i \in \{0,1,2,3\}}$.

3. Soit $x_4 = 3$. On suppose que f est un polynôme de degré 3. Donner la valeur de $f[x_0, x_1, x_2, x_3, x_4]$.

B. Soit f une fonction définie sur [0,1]. On suppose que f est dérivable sur [0,1].

1. Montrer que l'application ϕ définie par

$$\phi: \mathbb{R}_3[X] \to \mathbb{R}^4$$

 $P \mapsto (P(0), P(1), P'(0), P'(1))$

est linéaire et bijective.

2. Démontrer qu'il existe un unique polynôme P de degré inférieur ou égal à 3 tel que

$$P(0) = f(0), P'(0) = f'(0), P(1) = f(1) P'(1) = f'(1).$$

3. Pouvez-vous en donner l'expression explicite?

Exercice 3

Soit P un polynôme de degré inférieur ou égal à 3 défini sur un intervalle $[\alpha, \beta]$. On suppose connues les valeurs $P(\alpha)$, $P(\beta)$, $P''(\alpha)$ et $P''(\beta)$.

1. Montrer que

$$\frac{P''(x) - P''(\alpha)}{x - \alpha} = \frac{P''(\beta) - P''(\alpha)}{\beta - \alpha}.$$

2. Montrer qu'il existe u et v deux réels tels que

$$P(x) = u + v(x - \alpha) + \frac{P''(\alpha)}{2}(x - \alpha)^2 + \frac{P''(\beta) - P''(\alpha)}{6(\beta - \alpha)}(x - \alpha)^3.$$

3. Déterminer u et v en fonction de $P(\alpha)$, $P(\beta)$, $P''(\alpha)$ et $P''(\beta)$. Qu'en concluez-vous ?

4. Déterminer le polynôme P tel que $P(0)=1,\ P(1)=0,\ P''(0)=-1$ et P''(1)=0.