⑲ 日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

昭61 - 14881

(int Cl.4

識別記号

庁内整理番号

2040公告 昭和61年(1986)5月9日

B 60 G 1/02

8009-3D

(全3頁)

図考案の名称 車輌の前車軸支持装置

> ②実 願 昭56-35789

⑮公 開 昭57-148509

❷出 願 昭56(1981)3月13日

@昭57(1982)9月18日

堺市石津北町64番地 久保田鉄工株式会社堺製造所内 ⑰考 案 者 幹 男 木 下 ⑪出 願 人 久保田鉄工株式会社 大阪市浪速区敷津東1丁目2番47号

20代 理 人 弁理士 安田 敏 雄

審査官 千 馬 隆之

996多考文献 米国特許3044799(US, A)

砂実用新案登録請求の範囲

左右両端に前輪16を有する前車軸18を車体 6に対して揺動自在に備えた車輌において、車体 6の両側に位置するように左右一対のリンク19 端部を車体6の両側に前後方向の枢支軸23によ り左右揺動自在に枢支すると共に、 該各リンク1 9の下端部を前記枢支軸23よりも左右方向外方 位置で前車軸18に前後方向の枢支軸25により 左右揺動自在に枢支したことを特徴とする車輌の 10 前車軸支持装置。

考案の詳細な説明

本考案は、トラクタ等各種車輌の前車軸支持装 置に関し、比較的簡単な構造で似つて前車輪の強 の向上を図ることを目的とする。

トラクタ等の車輌において、前車軸を支持する 場合、従来は第1図に示すような構造を採用して いたので、前車軸の中央部の強度が低下すると共 に、転倒角が小さく安定性に欠ける欠点があつ 20 た。即ち、従来は、第1図に示す如く前車軸1の 左右両端にキングピン等を介して前輪2を設ける と共に、この前車軸1を前後方向のセンター軸3 で車体 4 に揺動自在に枢支する支持構造を取つて ントの分布を見た場合、第6図Aに示すようにな り、前車軸1の中央部の強度が著しく低下すると 云う欠点があつた。特に前輪駆動方式とした場

合、前車軸1の中央部に、前輪デフ装置を収容し たケースが位置し、そのケースの両側に筒軸をボ ルト結合するため、その結合部分の強度が非常に 大きな問題となる。また車体4が横転する場合の を正面視八字状に配置し、この各リンク19の上 5 転倒角は、前車軸1の揺動点に関係し、この揺動 点が高い程転倒角は大となり、車体4の安定性が 向上するが、従来はセンター軸3が低い位置にあ るため、車体4の安定性も悪く、前輪2のトレツ ドを大にする必要があつた。

本考案は、このような従来の問題点を解消した ものであって、その特徴とする処は、左右両端に 前輪を有する前車軸を車体に対して揺動自在に備 えた車輛において、車体の両側に位置するように 左右一対のリンクを正面視八字状に配置し、この 度を向上させると共に、転倒角を大きくし安定性 15 各リンクの上端部を車体の両側に前後方向の枢支 軸により左右揺動自在に枢支すると共に、該各リ ンクの下端部を前記枢支軸よりも左右方向外方位 置で前車軸に前後方向の枢支軸により左右揺動自 在に枢支した点にある。

以下、図示の実施例について本考案を詳述する と、第2図乃至第4図において、6はトラクタ車 体で、前車軸フレーム7、エンジン8、ミツショ ンケース9等を構造体として成り、このトラクタ 車体6の後部両側方には、該トラクタ車体6に固 いる。従つて、この前車軸 1 に対する曲げモーメ 25 着された前車軸ケース 10 等を介して後輪 1 1 が 設けられている。12はエンジン8等を覆うボン ネツト、13はハンドル、14は運転席、15は 後輪フェンダーである。16は前輪であり、キン

(2)

実公 昭 61-14881

3

グピン、キングピン筒17等を介して前車軸18 の両端に支持されている。前車軸 18は左右一対 のリンク19を介してトラクタ車体6の前車軸フ. レーム7に揺動自在に支持されている。即ち、左 右一対のリンク19は車体6の前車軸フレーム7 5 のトラクタを例示したが、前輪駆動型でも同様に の両側に位置するように正面視八字状に配置たれ ている。そして各リンク19は両端に筒状のボス 部20,21を有し、該各リンク19は一方のボ ス部20を前車軸フレーム7の外側に突設された 前後一対のブラケット22間に挿入して枢支軸2 10 3により左右揺動自在に枢支されると共に、他方 のボス部21を前車軸18上に突設された前後一 対のブラケット24間に挿入して枢支軸25によ り左右揺動自在に枢支されている。前車軸 18 側 ット22よりも横方向外方に位置し、従つて、左 右一対のリンク19は正面視ハ字状にあり、各リ ンク19の延長線上の交点が前車軸18の仮想揺 動点Oとなる。なお、各リンク19の下側面には 6 が設けられている。

上記構成によれば、前車軸18をリンク19を 介してトラクタ車体6に支持しているので、この 場合に前車軸18に作用す曲げモーメントの分布 る局部的な荷重の集中をなくし強度を増大させる ことができる。また傾斜地等では各リンク19は 第5図に示すように運動するので、前輪16を必 ず地面の起伏等に追従させることができる。しか も、この場合の仮想揺動点Oは左右一対のリンク 30 揺動点。

19の延長線の交点となり、従来のセンター軸3 に比較して高くなるので、転倒角が大となり、安 定性が向上する。

なお実施例は、前輪16を駆動輪としない形式 実施可能である。また左右一対のリンク19は前 後に夫々2分割しても良い。勿論、トラクタ以外 の車輛でも実施可能であることは云うまでもな

本考案では、左右一対のリンクを介して前車軸 を車体に揺動自在に支持しているので、前車軸の 強度を増大させることができ、また構造的にも比 較的簡単である。しかも左右--対のリンクがハ字 状であり、その延長線上の交点が仮想揺動点とな のブラケット24は前車軸フレーム1側のブラケ 15 るため、車体の転倒角が大となり、傾斜地での作 業に際しても安定性が良くなる。また左右一対の リンクは、その上端部が枢支軸により車体に、下 **端部が枢支軸により前車軸に夫々枢支されている** ので、車体が前車軸に対して不安定に左右移動す ボス部20,21間を連絡するように補強リブ220ることがなく、この点でも車体の安定性が向上す

図面の簡単な説明

第1図は従来例を示す正面図、第2図は本考案 の一実施例を示す全体の側面図、第3図は同要部 は第6図Bに通すようになり、前車軸18に対す25の側面断面図、第4図は同要部の正面断面図、第 5図は同作用説明図、第6図は曲げモーメント図 である。

> 6…トラクタ車体, 7…前車軸フレーム, 16 …前輪, 18…前車軸, 19…リンク, O…仮想

