Chapter 13: Linear Programming: The Simplex
Linear Programming
In standard form: O min cTx, subject to Ax=b, x>0. —®
where: c, x are vectors in RM,
b is a vector in RM,
A is an mxn matrix. Transforming to standard form:
Transform min c'x, subject to Ax > b. to standard form.
step 1. Rewrite using extra variables z: min Cx , subject to: $Ax-z=b$, $z \ge 0$.
But x can be positive or negative. This is addressed in step 2. Step 2. Define x by:
x = x - x, $x > 0$
xt = max(x,0), $xc = max(-x,0)$
Step 3. $\begin{bmatrix} C \end{bmatrix} \begin{bmatrix} x^{+} \\ x^{-} \end{bmatrix}$ such that: $\begin{bmatrix} A - A - I \end{bmatrix} \begin{bmatrix} x^{+} \\ x^{-} \end{bmatrix} = b$ min $\begin{bmatrix} 0 \\ 4 \end{bmatrix} \begin{bmatrix} x^{+} \\ 2 \end{bmatrix} = and \begin{bmatrix} x^{+} \\ x^{-} \end{bmatrix} \ge 0$.

```
Notes:
```

For
$$x \leq u$$
, use:

$$x+\omega=u, \omega>0.$$

Use
$$x = x^+ - x^-$$
:

$$x^{+}-x^{-}+\omega=u\wedge \mathscr{R}$$

Return to the standard form:

(1)
$$c^{T}x = c^{T}x^{+} + (-c)^{T}x^{-}$$

$$\frac{1}{2}$$

computed, then:

$$x = x^{+} - x^{-}$$
.

 $E \times \frac{2-2}{4} \quad A \propto + y = b, \quad y \geq 0$

Ex2-3 To do: max cTx, use min (-cT) x.

Assume m<n in Ax=b $\mathcal{W}^{\times}N$ $N^{\times}I$ $N^{\times}I$ So that we have fewer equations than the number of unknowns. Otherwise, eg for Ax=b, A nxn, we could simply compute $x = A^{-1}b$, or there may not exist a solution.

13.1 Optimality and Duality io form the Lagrangian, we note that we need: Ax=b, $x \ge 0$, multipliers: TT, S: Then: $d(x,\pi,s) = c^{T}x - \pi^{T}(Ax - b) - s^{T}x$. $\delta_{\infty}(x,\pi,s) = C^{T} - \pi^{T}A - s^{T} = 0$ $= D C^T = TT^T A + S^T$ $= \sum_{AX=b} C = A^T \pi + S$ $= \sum_{AX=b} AX = b$ $= \sum_{X>0} for inequality constraint.$ $= \sum_{X>0} (i=1,2,--,N)$ Linequality constraint. multiplier: Ox is zero for ox on boundary, or 2) Si is zero for solution inside. Cleary: xTs=0 also Since sci, si>0, then xTs=0 => xisi=0.

Also note fact: $CTx^* = (ATT^* + S^*)^Tx^*$ From: $C = ATT^* + S^*$ $= \left| \left(\prod^{*} \right)^{\mathsf{T}} A + \left| S^{*} \right|^{\mathsf{T}} \right| > 0$ $= (\pi^*)^\top A \times + (S^*)^\top \times$ = (TT X) T A SC Note that this is a number. So $\left[\left(\pi^* \right)^T A x \right]^T = x^T A^T \left(\pi^* \right)$ $= (Ax)^T \pi^*$ We thus get: $C^T x^* = (Ax^*)^T \pi^* = b^T \pi^*$ 42(x=p The dual Problem max bTTT subject to ATTT < C ~ ** which is the same as:

min -bTT subject to c-ATT>0. to match our Lagrangian formulation.

Lagrangian: $f(u,x) = -b \pi u - x (c - A \pi)$ inequality constraint. what we are trying to minimize $\delta_{\pi}(\pi, x) = -b^{T} + x^{T}A' = 0$ $\Rightarrow (Ax = b, A'\pi \leq C, x \geq 0)$ $\left\{ x_{i}\left(c-A^{T}\pi\right),=0,\ i=1,2,\ldots,N\right.$ which can be matched to the primal problem using s=c-ATT (see book). Thm 13.1 (Duality Thm of LP)

* if either the primal (x) or the dual problem & has a solution with finite optimal objective value, then so does the other, and the objective values are equal. if either problem has an unbounded objective, then the other problem has no feasible points.

Note that the Lagrange multiplians 7
Note that the Lagrange multipliers 7 (TT, S) for an optimal x* is also called
sensitivity analysis.
13.2 Geometry of the Feasible Set
$A \leq S(\lambda) M(C)$.
A has full row rank.
The assumption is that the yours are
independent.
suppose: * x is a feasible point
1 - wos w von Eero
$\frac{1}{2}$
1 2 cst of 3 1, 5,)
* $\exists B(x)$, an index sold $x \in \mathbb{R}$ such that: > $\exists B(x)$, an index sold $x \in \mathbb{R}$ such that: > $\exists B(x)$, an index sold $x \in \mathbb{R}$ indices > $\exists B(x)$, an index sold $x \in \mathbb{R}$ indices > $\exists B(x)$, an index sold $x \in \mathbb{R}$ indices > $\exists B(x)$, an index sold $x \in \mathbb{R}$ indices > $\exists B(x)$, an index sold $x \in \mathbb{R}$ indices > $\exists B(x)$, an indices
$\rightarrow B(x)$ Control $X = 0$
$\rightarrow (410(00))$
$\sim \pm 1/6$ W \sim W
$B = [A_i]_{i \in B(x)}$, A_i is the it column of A
is non-singular.
is non-singular. nen x is called a basic feasible point

The simplex method generares iterates xx that are basic feasible g

Thm 13.2 Fundamental Thm of LP

* if there is a feasible point, then there is a basic feasible point.

* if we have solutions, then at-least one of them is a basic optimal point.

* If the problem is feasible and bounded, then it has an optimal solution.

Thm 13.3 All basic feasible points are vertices of the feasible polytope: $3x \mid Ax = b$, $x \ge 0$?

and vice-versa.

