Scilab Textbook Companion for Signals And Systems by S. Sharma ¹

Created by
Shafquet Iftekhar
B.Tech (pursuing)
Electronics Engineering
Jamia Millia Islamia
College Teacher
Dr. Sajad A. Loan, JMI, New Delhi
Cross-Checked by
Giridharan, IITB

August 11, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Signals And Systems

Author: S. Sharma

Publisher: S. K. Kataria And Sons

Edition: 5

Year: 2006

ISBN: 81-85749-08-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Introduction to signals and systems	8
2	Linear Time Invariant System	25
3	Fourier Analysis of Periodic and APeriodic Continous Time Signal	39
4	The Discrete Time Fourier Transform	44
5	Time and Frequency characterisation of signals and systems	48
6	Sampling And Laplace Transform	50
7	The Z Transform	55
8	Discrete Fourier Transform and Fast Fourier Transform	69

List of Scilab Codes

Exa 1.1.a	Check for periodicity	8
Exa 1.1.b	Check for periodicity	8
Exa 1.4	Sketch and find power	9
Exa 1.5	Sketch and find energy	9
Exa 1.6	Sketch and find energy	10
Exa 1.8		10
Exa 1.14.a		10
Exa 1.18.a	Check for time invariant systems	11
Exa 1.18.b	Check for time invariant systems	12
Exa 1.18.c	Check for time invariant systems	12
Exa 1.19.a	Check for linear systems	13
Exa 1.19.b	Check for linear systems	14
Exa 1.20.b	Check for linear systems	15
Exa 1.21	Check for linear systems	16
Exa 1.22	Check for linear systems	17
Exa 1.25	Check for linear systems	18
Exa 1.27	Find energy of signal	19
Exa 1.28	T	19
Exa 1.30	Find energy of signal	19
Exa 1.31.a	Check for periodicity	20
Exa 1.31.b	Check for periodicity	20
Exa 1.33	Find power of signal	20
Exa 1.34		21
Exa 1.39.a	Sketch continous time signal	21
Exa 1.39.b	Sketch continous time signal	22
Exa 1.43	Check for linear systems	22
Exa 1.47		23
Exa 1 49 a		24

Exa	1.49.b	Check for periodicity
Exa	2.1	Convolution of two continous time functions
Exa	2.2	Find responce of system
Exa	2.3	Find unit step responce of system
Exa	2.4	Convolution of two continous time functions
Exa	2.5	Evaluation of output of LTI system
Exa	2.6	Find responce of system
Exa	2.7	Convolution of two discrete time signals 29
Exa	2.8	Find responce of system
Exa	2.17.a	Check for causal system
Exa	2.17.b	Check for causal system
Exa	2.17.c	Check for causal system
Exa	2.19.a	Check for linear systems
Exa	2.19.b	Check for linear systems
		Check for linear systems
		Check for linear systems
	2.25	Check for linear systems
Exa	2.59	Convolution of two discrete time signals
Exa	3.8	Fourier Transform
Exa	3.9	Fourier Transform
Exa	3.15	Fourier Transform
Exa	3.31	Fourier Transform
Exa	4.1	DTFT computation
Exa	4.2	DTFT computation
Exa	4.3	DTFT computation of unit impluse 45
Exa	4.5	DTFT computation
Exa	4.9	Sketch discrete time signal
Exa	4.10	DTFT of cosine
Exa	4.12	DTFT of unit step
Exa	4.16	DTFT computation
Exa	4.22	DTFT computation 47
Exa	5.1	Bode Plot
Exa	5.2	Bode Plot
Exa	6.1	Find nyquist rate
Exa	6.2	Find nyquist rate
Exa	6.4	Find nyquist rate
Exa	6.26	Laplace transform of signal
Exa	6.27.a	Laplace transform of function

Exa	6.27.b	Laplace transform of function
Exa	6.27.c	Laplace transform of function
Exa	6.27.d	Laplace transform of function
Exa	6.27.e	Laplace transform of function
Exa	6.48	Find responce of system
Exa	7.1	z transform
Exa	7.2	z transform of unit impulse
Exa	7.3	z transform of unit step
Exa	7.5	z transform of cosine
Exa	7.6	z transform
Exa	7.7	z transform of sequence
Exa	7.10	z transform
Exa	7.11.a	z transform
Exa	7.11.b	z transform
Exa	7.12	z transform using differentiation property
Exa	7.13	z transform
Exa	7.18	Find Discrete time input signal
Exa	7.19	Inverse Z transform
Exa	7.24.a	Inverse Z transform using long division method 60
Exa	7.36	z transform
Exa	7.37	z transform
Exa	7.38	z transform
Exa	7.39	z transform using differentiation property 61
Exa	7.42.a	z transform of sequence 62
Exa	7.42.b	z transform of sequence
	7.43	z transform
Exa	7.48.a	z transform
Exa	7.48.b	z transform
Exa	7.50	z transform of sequence
Exa	7.52	z transform of discrete signal
Exa	7.54	Inverse Z transform
Exa	7.56	Find Discrete time input signal 65
Exa	7.59.a	z transform
Exa	7.59.b	z transform
Exa	7.61.a	z transform of discrete signal
Exa	7.61.b	z transform of discrete signal
Exa	7.61.c	z transform of discrete signal
Exa	7.65	z transform

Exa	7.68.a	z transform of discrete signal
Exa	7.68.b	z transform of discrete signal
Exa	8.1	Convolution of two finite duration sequences
Exa	8.2	Responce of an FIR filter
Exa	8.3	DFT and IDFT
Exa	8.4	DFT computation
Exa	8.5	DFT computation
Exa	8.6	DFT of sequence
Exa	8.7	DFT computation
Exa	8.8	DFT computation
Exa	8.9	IDFT computation
Exa	8.10	IDFT computation
Exa	8.11	DFT computation using FFT algorithm
Exa	8.12	DFT computation using FFT algorithm
Exa	8.13	DFT computation
Exa	8.14	DFT computation
Exa	8.15	DFT computation
Exa	8.16	DFT computation
Exa	8.17	DFT computation

Chapter 1

Introduction to signals and systems

Scilab code Exa 1.1.a Check for periodicity

```
1 //Example 1.1a
2 //Determine whether the given signal is periodic or not
3 clc;
4 t=0:1/100:1
5 x=sin(15*%pi*t);
6 plot(x);
7 disp('ploting the signal and showing that it is periodic with period=2pi/15pi');
```

Scilab code Exa 1.1.b Check for periodicity

```
1 //Example 1.1b
2 //Determine whether the given signal is periodic or not
3 clc;
```

```
4 t=0:1/100:5
5 x=sin(sqrt(2)*%pi*t);
6 plot(x);
7 disp('ploting the signal and showing that itis
      periodic with period=2pi/sqrt(2)pi');
```

Scilab code Exa 1.4 Sketch and find power

```
1 //Example 1.4
2 //Sketch the signal x(t)=Asin(t)
3 clc;
4 A=0.5;
5 t=0:1/100:10
6 x=A*sin(t);
7 plot(x);
8 //since it is a periodic signal so it is power signal
9 P=(integrate('((0.5)^2)*(sin(t)^2)','t',0,2*%pi)) /(2*%pi);
```

Scilab code Exa 1.5 Sketch and find energy

```
1 //Example 1.5
2 //Sketch the signal x(t)=A[u(t+a)-u(t-a)]
3 clc;
4 A=1;
5 a=2;
6 t=-a:a
7 x=1;
8 plot(t,x)
9 //this signal is a finite duration signal so it is energy signal
10 E=integrate('1', 't', -a,a);
```

Scilab code Exa 1.6 Sketch and find energy

```
1 //Example 1.6
2 //Sketch the signal x(t)=exp(-a*t)
3 clc;
4 t=0:1/100:10;
5 x=exp(-0.5*t);
6 plot(x)
7 E=integrate('(exp(-0.5*t)^2)','t',0,10)
8 //Energy of the signal
```

Scilab code Exa 1.8 Find power of signal

```
1 //Example 1.8
2 //Find the power of the signal x(t)=Acos(Wot+theeta)
3 clc;
4 A=20;
5 Wo=(2*%pi)/4;
6 for i=1:50
7      x(i)=A*cos(Wo*i);
8 end
9 p=0;
10 for i=1:4
11      p=p+(abs(x(i)^2))/4;
12 end
13 disp(p,'The power of the given signal is =');
```

Scilab code Exa 1.14.a Check for causal system

```
1 //Example 1.14a
2 clc;
3 x = [1,2,3,4,0,4,3,2,1]
4 t=-length(x)/2:length(x)/2
5 \text{ count} = 0
6 \text{ mid=ceil}(length(x)/2)
7 y=zeros(1,length(x))
8 y(mid+1:\$)=x(\$:-1:mid+1)
9 \text{ for } t=-1:-1:-mid
        y(t+1+mid)=x(-t)
10
11 end
12 for i=1:length(x)
13
        if(y(i) == x(i))
14
             count = count +1
15
         end
16 \, \text{end}
17 if (count == length(x))
        disp ('THE GIVEN SYSTEM IS CAUSAL')
18
19 else
        disp('Since it depends on future values')
20
21
        disp('THE GIVEN SYSTEM IS NON CAUSAL')
22 \text{ end}
```

Scilab code Exa 1.18.a Check for time invariant systems

```
1 //Example 1.18a
2 clc;
3 t0=1;
4 T=10;
5 for t=1:T
6     x(t)=2*%pi*t/T;
7     y(t)=sin(x(t));
8 end
9 inputshift=sin(x(T-t0));
10 outputshift=y(T-t0);
```

```
if(inputshift==outputshift)
disp('THE GIVEN SYSTEM IS TIME INVARIANT')
else
disp('THE GIVEN SYSTEM IS TIME VARIANT');
end
```

Scilab code Exa 1.18.b Check for time invariant systems

```
1 //Example 1.18b
2 clc;
3 t0=2;
4 T = 10;
5 for t=1:T
6
      x(t)=t;
       y(t)=t*x(t);
7
8 end
9 inputshift=x(T-t0);
10 outputshift=y(T-t0);
11 if(inputshift==outputshift)
12
       disp('THE GIVEN SYSTEM IS TIME INVARIANT')
13 else
       disp('THE GIVEN SYSTEM IS TIME VARIANT');
14
15 end
```

Scilab code Exa 1.18.c Check for time invariant systems

```
1  //Example 1.18c
2  clc;
3  t0=2;
4  T=10;
5  for t=1:T
6     x(t)=t;
7  y(t)=x(t)*cos(200*%pi*t);
```

```
8 end
9 inputshift=x(T-t0);
10 outputshift=y(T-t0);
11 if(inputshift==outputshift)
12         disp('THE GIVEN SYSTEM IS TIME INVARIANT')
13 else
14         disp('THE GIVEN SYSTEM IS TIME VARIANT');
15 end
```

Scilab code Exa 1.19.a Check for linear systems

```
1 //Example 1.19a
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a = 1
6 b = 1
7 for t=1:length(x1)
        x3(t)=a*x1(t)+b*x2(t)
9 end
10 for t=1:length(x1)
       y1(t)=t*x1(t)
11
       y2(t)=t*x2(t)
12
       y3(t)=t*x3(t)
13
14 end
15 for t=1:length(y1)
        z(t)=a*y1(t)+b*y2(t)
16
17 end
18 \quad count=0
19 for n=1:length(y1)
       if(y3(t)==z(t))
20
21
            count = count +1;
22
         end
23 end
24 if (count == length (y3))
```

```
disp('It satisfy the superposition principle');
disp('THE GIVEN SYSTEM IS LINEAR');
else
disp('It does not satisfy superposition
        principle');
disp('THE GIVEN SYSTEM IS NON LINEAR');
end
```

Scilab code Exa 1.19.b Check for linear systems

```
1 //Example 1.19b
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a=1
6 b = 1
7 for t=1:length(x1)
        x3(t)=a*x1(t)+b*x2(t)
8
9 end
10 for t=1:length(x1)
11
        y1(t)=x1(t)^2
        y2(t)=x2(t)^2
12
        y3(t)=x3(t)^2
13
14 end
15 for t=1:length(y1)
        z(t)=a*y1(t)+b*y2(t)
16
17 \text{ end}
18 \quad count=0
19 for n=1:length(y1)
        if(y3(t)==z(t))
20
21
            count = count +1;
22
         end
23 end
24 if (count == length (y3))
25 disp('It satisfy the superposition principle');
```

```
26 disp('THE GIVEN SYSTEM IS LINEAR ');
27 else
28     disp('It does not satisfy superposition
        principle ');
29     disp('THE GIVEN SYSTEM IS NON LINEAR');
30 end
```

Scilab code Exa 1.20.b Check for linear systems

```
1 //Example 1.20b
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2=[2,2,2,2]
5 a=1
6 b = 1
7 for t=1:length(x1)
       x3(t)=a*x1(t)+b*x2(t)
9
  end
10 for t=1:length(x1)
       y1(t)=x1(t)^2
11
12
       y2(t)=x2(t)^2
       y3(t)=x3(t)^2
13
14 end
15 for t=1:length(y1)
       z(t)=a*y1(t)+b*y2(t)
16
17 \text{ end}
18 \text{ count=0}
19 for n=1:length(y1)
20
       if(y3(t)==z(t))
            count = count +1;
21
22
         end
23 end
24 if (count == length (y3))
25 disp('It satisfy the superposition principle');
26 disp('THE GIVEN SYSTEM IS LINEAR');
```

Scilab code Exa 1.21 Check for linear systems

```
1 //Example 1.21
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a1=1;
6 b1=1;
7 a=7;
8 b=5;
9 	ext{ for } t=1:length(x1)
10
        x3(t)=a1*x1(t)+b1*x2(t)
11 end
12 for t=1:length(x1)
13
       y1(t)=a*x1(t)+b
       y2(t)=a*x2(t)+b
14
15
       y3(t)=a*x3(t)+b
16 end
17 for t=1:length(y1)
        z(t)=a1*y1(t)+b1*y2(t)
18
19 end
20 \quad count=0
21 for n=1:length(y1)
       if(y3(t)==z(t))
22
23
            count = count +1;
24
         end
25 end
26 if (count == length (y3))
27 disp('It satisfy the superposition principle');
```

```
28 disp('THE GIVEN SYSTEM IS LINEAR ');
29 else
30         disp('It does not satisfy superposition
              principle ');
31         disp('THE GIVEN SYSTEM IS NON LINEAR');
32 end
```

Scilab code Exa 1.22 Check for linear systems

```
1 //Example 1.22
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2=[2,2,2,2]
5 a1=1
6 b1=1
7 Wc=%pi
8 for t=1:length(x1)
        x3(t)=a1*x1(t)+b1*x2(t)
9
10 \, \text{end}
11 for t=1:length(x1)
12
        y1(t)=x1(t)*cos(Wc*t)
        y2(t)=x2(t)*cos(Wc*t)
13
        y3(t) = x3(t) * cos(Wc*t)
14
15 end
16 for t=1:length(y1)
        z(t)=a1*y1(t)+b1*y2(t)
17
18 end
19 \quad \text{count=0}
20 for n=1:length(y1)
        if(y3(t)==z(t))
21
22
            count = count +1;
23
         end
24 end
25 if (count == length (y3))
26 disp('It satisfy the superposition principle');
```

Scilab code Exa 1.25 Check for linear systems

```
1 //Example 1.25
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2=[2,2,2,2]
5 a1=1;
6 b1=1;
7 a=7;
8 b=3;
9 	ext{ for } t=1:length(x1)
       x3(t)=a1*x1(t)+b1*x2(t)
10
11 end
12 for t=1:length(x1)
       y1(t)=a*x1(t)+b
13
       y2(t)=a*x2(t)+b
14
15
       y3(t)=a*x3(t)+b
16 end
17 for t=1:length(y1)
        z(t)=a1*y1(t)+b1*y2(t)
18
19 end
20 count = 0
21 for n=1:length(y1)
       if(y3(t)==z(t))
22
23
            count = count +1;
24
         end
25 end
26 if (count == length (y3))
```

```
disp('It satisfy the superposition principle');
disp('THE GIVEN SYSTEM IS LINEAR');
else
disp('It does not satisfy superposition
        principle');
disp('THE GIVEN SYSTEM IS NON LINEAR');
end
```

Scilab code Exa 1.27 Find energy of signal

```
1 //Example 1.27
2 //Energy of the signal x(t)=Aexp(-a*t).u(t)
3 clc;
4 A=2;
5 a=0.5;
6 E=integrate('(A*exp(-a*t))^2', 't',0,100);//Energy of the given signal
```

Scilab code Exa 1.28 Find power of signal

```
1 //Example 1.28
2 //Power of the signal x(t)=A
3 clc;
4 A=2;
5 P=(integrate('A^2', 't', 0, 100))/(2*100)
```

Scilab code Exa 1.30 Find energy of signal

```
1 //Example 1.30
```

Scilab code Exa 1.31.a Check for periodicity

```
1 //Example 1.31a
2 //Determine whether the given signal is periodic or not
3 clc;
4 n=0:1/100:10
5 x=sin(6*%pi*n/7);
6 plot(x)//plotting the signal and showing it is periodic with period 2pi/(6pi/7);
```

Scilab code Exa 1.31.b Check for periodicity

```
1 //Example 1.31b
2 //Determine whether the given signal is periodic or not
3 clc;
4 n=0:1/1000:100
5 x=sin(n/8);
6 plot(x);//plotting the signal and showing that it is periodic with period 16pi
```

Scilab code Exa 1.33 Find power of signal

```
1 //Example 1.33
```

```
2 //Find the power of the signal x(t)=Acos(Wot+theeta)
3 clc;
4 A=10;
5 T=4;
6 Wo=(2*%pi)/T;
7 for i=1:T
        x(i)=A*cos(Wo*i);
9 end
10 p=0;
11 for i=1:T
12        p=p+(abs(x(i)^2))/T;
13 end
14 disp(p,'The power of the given signal is =');
```

Scilab code Exa 1.34 Find energy of signal

```
1 //Example 1.34
2 //Find energy of x(t)=8exp(2+i4pi)t
3 clc;
4 E=0;
5 for t=1:100
6    x(t)=8*exp((2+(%i*4*%pi))*t);
7 end
8 for t=1:100
9    E=E+x(t)^2;
10 end
```

Scilab code Exa 1.39.a Sketch continous time signal

```
1 //Example 1.39a
2 //Sketch the signal x(t)=u(t)
3 clc;
4 t=0:1/100:10
```

```
5 x=1;
6 plot(t,x);
```

Scilab code Exa 1.39.b Sketch continous time signal

```
1 //Example 1.39b
2 //Sketch the signal x(t)=tu(t)
3 clc;
4 t=0:1/100:10
5 x=t
6 plot(t,x)
```

Scilab code Exa 1.43 Check for linear systems

```
1 //Example 1.43
2 clc;
3 x1 = [1,1,1,1]
4 x2 = [2,2,2,2]
5 a=1
6 b = 1
7 for t=1:length(x1)
       x3(t)=a*x1(t)+b*x2(t)
9 end
10 for t=1:length(x1)
       y1(t)=x1(t)^2
11
12
       y2(t)=x2(t)^2
       y3(t)=x3(t)^2
13
14 end
15 for t=1:length(y1)
       z(t)=a*y1(t)+b*y2(t)
16
17 \text{ end}
18 \text{ count} = 0
19 for n=1:length(y1)
```

```
if(y3(t)==z(t))
20
21
            count = count +1;
22
        end
23 end
24 if (count == length (y3))
25 disp('It satisfy the superposition principle');
26 disp('THE GIVEN SYSTEM IS LINEAR');
27 else
       disp('It does not satisfy superposition
28
          principle ');
       disp('THE GIVEN SYSTEM IS NON LINEAR');
29
30 \text{ end}
```

Scilab code Exa 1.47 Check for time invariant systems

```
1 //Example 1.47
2 clc;
3 k0=2;
4 n0=2;
5 N = 10;
6 x=[1,2,3,4,5,6,7,8,9,10];
7 \text{ y=zeros}(1, length(x));
8 \text{ for } n=1:length(x)/k0
        y(n) = x(k0*n);
9
10 \, \text{end}
11 inputshift=x(N-n0);
12 outputshift=y(N-n0);
13 if(inputshift==outputshift)
14
        disp('THE GIVEN SYSTEM IS TIME INVARIANT')
15 else
        disp('THE GIVEN SYSTEM IS TIME VARIANT');
16
17 \text{ end}
```

Scilab code Exa 1.49.a Check for periodicity

```
1 //Example 1.49a
2 //Determine whether the signal x(n)=sin(7/9*pi*(n^2)+1)
3 clc;
4 n=0:1/100:5
5 x=sin((7/9)*%pi*(n^2)+1)
6 plot(x);
7 disp('this shows that signal is NOT periodic');
```

Scilab code Exa 1.49.b Check for periodicity

Chapter 2

Linear Time Invariant System

Scilab code Exa 2.1 Convolution of two continous time functions

```
1 / \text{Example } 2.1
2 clc;
3 t = -8:1/100:8;
4 for i=1:length(t)
      x(i) = exp(-t(i)^2);
      h(i)=3*t(i)^2;
6
8 y = convol(x,h);
9 figure
10 plot2d(t,h);
11 title('Impulse responce');
12 figure
13 plot2d(t,x);
14 title('Input signal');
15 figure
16 t2 = -16:1/100:16
17 plot2d(t2,y);
18 title('Output signal');
```

Scilab code Exa 2.2 Find responce of system

```
1 / \text{Example } 2.2
2 clc;
3 t = -8:1/100:8;
4 for i=1:length(t)
       if t(i)<0 then
            x(i)=0;
6
7
            h(i)=0;
8
       else
9
             x(i) = exp(-3.*t(i));
10
             h(i)=1;
11
       end
12 end
13 t1=t+1;
14 y = convol(x,h);
15 figure
16 plot2d(t1,h);
17 title('Impulse responce');
18 figure
19 plot2d(t,x);
20 title('Input signal');
21 figure
22 t2 = -16:1/100:16
23 plot2d(t2,y);
24 title('Output signal');
```

Scilab code Exa 2.3 Find unit step responce of system

```
1 //Example 2.3
2 clc;
3 R=100;
4 L=100;
5 t=-8:1/100:8;
6 for i=1:length(t)
```

```
if t(i)<0 then
7
8
            x(i)=0;
           h(i)=0;
9
10
       else
11
             h(i) = (R/L) * exp(-(R/L).*t(i));
12
             x(i)=1;
13
       end
14 end
15 y = convol(x,h);
16 figure
17 plot2d(t,h);
18 title('Impulse responce');
19 figure
20 plot2d(t,x);
21 title('Input signal');
22 figure
23 t2 = -16:1/100:16
24 plot2d(t2,y);
25 title('Output signal');
```

Scilab code Exa 2.4 Convolution of two continous time functions

```
14 title('Input signal');
15 figure
16 t2=-16:1/100:16
17 plot2d(t2,y);
18 title('Output signal');
```

Scilab code Exa 2.5 Evaluation of output of LTI system

```
1 //Example 2.5
2 clc;
3 Max_Limit=10;
4 h=ones(1, Max_Limit);
5 N2=0: length(h)-1;
6 a=0.5; //constant a>0
7 for t=1:Max_Limit
8 x(t) = \exp(-a*(t-1));
9 end
10 N1=0: length(x)-1;
11 y = convol(x,h) - 1;
12 \text{ N=0:length(x)+length(h)-2;}
13 figure
14 a=gca();
15 plot2d(N2,h)
16 xtitle('Impulse Response', 't', 'h(t)');
17 a.thickness=2;
18 figure
19 a=gca();
20 \text{ plot2d}(N1,x)
21 xtitle('Input Response', 't', 'x(t)');
22 a.thickness=2;
23 figure
24 \ a = gca \ ();
25 plot2d(N(1:Max_Limit),y(1:Max_Limit))
26 xtitle('Output Response', 't', 'y(t)');
27 a.thickness=2;
```

Scilab code Exa 2.6 Find responce of system

```
1 / Example 2.6
2 clc;
3 t = -8:1/100:8;
4 for i=1:length(t)
       if t(i)<0 then
            x(i) = exp(2.*t(i));
6
7
           h(i)=0;
8
       else
9
             x(i)=0;
10
            h(i)=1;
11
       end
12 end
13 t1=t+3;
14 y = convol(x,h);
15 figure
16 plot2d(t1,h);
17 title('Impulse responce');
18 figure
19 plot2d(t,x);
20 title('Input signal');
21 figure
22 t2 = -16:1/100:16
23 plot2d(t2,y);
24 title('Output signal');
```

Scilab code Exa 2.7 Convolution of two discrete time signals

```
1 //Example 2.7
2 clc;
```

```
3 n = -8:1:8;
4 for i=1:length(n)
            x(i) = exp(-n(i)^2);
            h(i)=3.*n(i)^2;
6
7 end
8 y = convol(x,h);
9 figure
10 plot2d3(n,h);
11 title('Impulse responce');
12 figure
13 plot2d3(n,x);
14 title('Input signal');
15 figure
16 n1=-16:1:16
17 plot2d3(n1,y);
18 title('Output signal');
```

Scilab code Exa 2.8 Find responce of system

```
1 / \text{Example } 2.8
2 clc;
3 n = -8:1:8;
4 for i=1:length(n)
5
       if n(i)<0 then
            x(i)=2^n(i);
6
7
            h(i) = 0;
8
       else
9
             x(i)=0;
10
             h(i)=1;
11
        end
12 end
13 y = convol(x,h);
14 figure
15 plot2d3(n,h);
16 title('Impulse responce');
```

```
17 figure
18 plot2d3(n,x);
19 title('Input signal');
20 figure
21 n1=-16:1:16
22 plot2d3(n1,y);
23 title('Output signal');
```

Scilab code Exa 2.17.a Check for causal system

```
1 //Example 2.17a
2 clc;
3 disp(' y[n]=3x[n-2]+3x[n+2] ');
4 disp('THE GIVEN SYSTEM IS NON-CAUSAL');
5 disp('Since the value of output depends on future input');
```

Scilab code Exa 2.17.b Check for causal system

```
1 //Example 2.17b
2 clc;
3 disp(' y[n]=x[n-1]+a*x[n-2] ');
4 disp('THE GIVEN SYSTEM IS CAUSAL');
5 disp('Since the value of output doesnot depends on future input');
```

Scilab code Exa 2.17.c Check for causal system

```
1 //Example 2.17c 2 clc;
```

```
3 disp(' y[n]=x[-n] ');
4 disp('THE GIVEN SYSTEM IS NON-CAUSAL');
5 disp('Since the value of output depends on future input');
```

Scilab code Exa 2.19.a Check for linear systems

```
1 //Example 2.19a
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a=1
6 b=1
7 a1=0.5
8 b1=0.5
9 for n=1:length(x1)
       x3(n)=a*x1(n)+b*x2(n)
10
11 end
12 for n=1:length(x1)
       y1(n)=a1*n*x1(n)+b1
13
14
       y2(n)=a1*n*x2(n)+b1
       y3(n)=a1*n*x3(n)+b1
15
16 \text{ end}
17 for n=1:length(y1)
       z(n)=a*y1(n)+b*y2(n)
18
19 end
20 \quad count=0
21 for n=1:length(y1)
22
       if(y3(n)==z(n))
            count = count +1;
23
24
         end
25 end
26 if (count == length (y3))
27 disp('It satisfy the superposition principle');
28 disp('THE GIVEN SYSTEM IS LINEAR');
```

```
29 else
30     disp('It does not satisfy superposition
         principle ');
31     disp('THE GIVEN SYSTEM IS NON LINEAR');
32 end
```

Scilab code Exa 2.19.b Check for linear systems

```
1 //Example 2.19b
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a = 1
6 b = 1
7 for n=1:length(x1)
       x3(n)=a*x1(n)+b*x2(n)
8
9 end
10 for n=1:length(x1)
       y1(n) = exp(x1(n))
12
       y2(n) = exp(x2(n))
13
       y3(n) = exp(x3(n))
14 end
15 for n=1:length(y1)
       z(n)=a*y1(n)+b*y2(n)
16
17 end
18 \text{ count=0}
19 for n=1:length(y1)
       if(y3(n)==z(n))
20
21
            count = count +1;
22
        end
23 end
24 if(count == length(y3))
25 disp('It satisfy the superposition principle');
26 disp('THE GIVEN SYSTEM IS LINEAR');
27 else
```

Scilab code Exa 2.21.a Check for linear systems

```
1 //Example 2.21
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a=1
6 b=1
7 for t=1:length(x1)
       x3(t)=a*x1(t)+b*x2(t)
9 end
10 for t=1:length(x1)
       y1(t) = 5*sin(x1(t))
11
       y2(t)=5*sin(x2(t))
12
13
       y3(t)=5*sin(x3(t))
14 end
15 for t=1:length(y1)
       z(t)=a*y1(t)+b*y2(t)
16
17 end
18 \quad count=0
19 for n=1:length(y1)
       if(y3(t)==z(t))
20
21
            count = count +1;
22
        end
23 end
24 if (count == length (y3))
25 disp('It satisfy the superposition principle');
26 disp('THE GIVEN SYSTEM IS LINEAR');
27 else
28
       disp('It does not satisfy superposition
```

```
principle ');
29 disp('THE GIVEN SYSTEM IS NON LINEAR');
30 end
```

Scilab code Exa 2.21.b Check for linear systems

```
1 //Example 2.21b
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a=1
6 b = 1
7 for t=1:length(x1)
        x3(t)=a*x1(t)+b*x2(t)
9 end
10 for t=1:length(x1)
        y1(t) = 7 * x1(t) + 5
11
        y2(t) = 7 * x2(t) + 5
12
        y3(t) = 7 * x3(t) + 5
13
14 end
15 for t=1:length(y1)
        z(t)=a*y1(t)+b*y2(t)
16
17 \text{ end}
18 \quad count=0
19 for n=1:length(y1)
        if(y3(t)==z(t))
20
            count = count + 1;
21
22
         end
23 end
24 if (count == length (y3))
25 disp('It satisfy the superposition principle');
26 disp('THE GIVEN SYSTEM IS LINEAR');
27 else
        disp('It does not satisfy superposition
28
           principle ');
```

```
29     disp('THE GIVEN SYSTEM IS NON LINEAR');
30  end
```

Scilab code Exa 2.25 Check for linear systems

```
1 //Example 2.25
2 clc;
3 \times 1 = [1, 1, 1, 1]
4 x2 = [2,2,2,2]
5 a=1
6 b = 1
7 for n=1:length(x1)
       x3(n)=a*x1(n)+b*x2(n)
9 end
10 for n=1:length(x1)
            y1(n)=x1(n)^2
11
            y2(n)=x2(n)^2
12
            y3(n)=x3(n)^2
13
14 end
15 for n=1:length(y1)
16
       z(n)=a*y1(n)+b*y2(n)
17 \text{ end}
18 \text{ count=0}
19 for n=1:length(y1)
       if(y3(n)==z(n))
20
21
            count = count +1;
22
        end
23 end
24 if(count == length(y3))
25 disp('It satisfy the superposition principle');
26 disp('THE GIVEN SYSTEM IS LINEAR');
27 else
       disp('It does not satisfy superposition
28
           principle ');
       disp('THE GIVEN SYSTEM IS NON LINEAR');
29
```

Scilab code Exa 2.59 Convolution of two discrete time signals

```
1 //Example 2.59
2 clc;
3 n = -8:1:8;
4 for i=1:length(n)
       if n(i)<0 then
6
           x(i)=0;
7
           h(i)=0;
8
       else
            x(i)=1;
9
            h(i)=2^n(i);
10
11
       end
12 end
13 y = convol(x,h);
14 figure
15 a=gca();
16 plot2d3(n,h);
17 a.x_location='origin';
18 a.y_location='origin';
19 title('Impulse responce');
20 figure
21 a=gca();
22 plot2d3(n,x);
23 a.x_location='origin';
24 a.y_location='origin';
25 title('Input signal');
26 figure
27 a=gca();
28 \quad n1 = -16:1:16
29 plot2d3(n1,y);
30 a.x_location='origin';
31 a.y_location='origin';
```

32 title('Output signal');

Chapter 3

Fourier Analysis of Periodic and APeriodic Continous Time Signal

Scilab code Exa 3.8 Fourier Transform

```
1 clc;
2 close;
3 // Analog S i g n a l
4 A =1; // Ampl i tude
5 \text{ Dt} = 0.005;
6 t = 0: Dt : 10;
7 xt = \exp(-A*t);
8 Wmax = 2* %pi *1; // Analog Fr equency = 1Hz
9 K = 4;
10 k = 0: (K / 1000) : K;
11 W = k* Wmax / K;
12 XW = xt* exp (- sqrt (-1)*t'*W) * Dt;
13 \text{ XW\_Mag} = abs(XW);
14 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega f rom
      Wmax to Wmax
15 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
16 [ XW_Phase ,db] = phasemag (XW);
```

```
17 XW_Phase = [-mtlb_fliplr(XW_Phase), XW_Phase(2:1001)];
18 // Plotting Continuous Time Signal
19 figure
20 \ a = gca \ ();
21 a.y_location = "origin";
22 plot (t,xt);
23 xlabel ( 't in sec. ');
24 ylabel ( 'x ( t ) ')
25 title ( 'Continuous Time Signal ')
26 figure
27 // Pl o t t i n g Magni tude Re spons e o f CTS
28 subplot (2 ,1 ,1);
29 \ a = gca \ ();
30 a.y_location = "origin";
31 plot (W, XW_Mag);
32 xlabel ('Fr equency in Radians /
      Seconds
                         > W');
33 ylabel ( 'abs (X(jW)) ')
34 title ('Magni tude Re spons e (CTFT)')
35 // Pl o t t i n g Phase Reponse o f CTS
36 subplot (2 ,1 ,2);
37 \ a = gca \ ();
38 a.y_location = "origin";
39 a.x_location = "origin";
40 plot (W, XW_Phase *%pi /180);
41 xlabel ( 'Fr equency in Radians /
                         > W');
      Seconds
42 ylabel ( ^{\prime}<X(^{\prime}JW) ^{\prime} )
43 title ( ' Phase Re spons e (CTFT) i n Radians ')
```

Scilab code Exa 3.9 Fourier Transform

```
1 //Example 3.9
2 clc;
3 clear;
```

```
4 A = 1;
5 Dt = 0.005;
6 T1 = 4;
7 t=-T1/2:Dt:T1/2;
8 for i=1:length(t)
9 \text{ xt(i)} = A;
10 \text{ end}
11 Wmax = 2 * %pi * 1;
12 K = 4;
13 k=0:(K/1000):K;
14 W=k*Wmax/K;
15 xt=xt';
16 XW=xt*exp(-sqrt(-1)*t',*W)*Dt;
17 XW_Mag=real(XW);
18 W=[-mtlb_fliplr(W),W(2:1001)];
19  XW_Mag=[mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
20 subplot (2,1,1);
21 a=gca();
22 a.data_bounds=[-4,0;4,2];
23 a.y_location="origin";
24 plot(t,xt);
25 xlabel('t in sec.');
26 title('Continous Time Signal x(t)');
27 subplot(2,1,2);
28 \ a = gca();
29 a.y_location="origin";
30 plot(W, XW_Mag);
31 xlabel('Frequency in Radians/Seconds');
32 title('Continuous time Fourier Transform X(jW)');
```

Scilab code Exa 3.15 Fourier Transform

```
1 //Example 3.15
2 clc;
3 clear;
```

```
4 T1=2;
5 T = 4 * T1;
6 Wo=2*\%pi/T;
7 W = [-Wo, 0, Wo];
8 ak=(2*%pi*Wo*T1/%pi)/sqrt(-1);
9 XW = [-ak, 0, ak];
10 ak1 = (2*\%pi*Wo*T1/\%pi);
11 XW1=[ak1,0,ak1];
12 figure
13 a=gca();
14 a.y_location="origin";
15 a.x_location="origin";
16 plot2d3('gnn',W,XW1,2);
17 poly1=a.children(1).children(1);
18 poly1.thickness=3;
19 xlabel('W');
20 title('CTFT of cos(Wot)');
```

Scilab code Exa 3.31 Fourier Transform

```
1 //Example 3.31
2 clc;
3 clear;
4 R=10^3;
5 C=10^-3;
6 A=1/(R*C);
7 Dt=0.005;
8 t=0:Dt:10;
9 xt=A*exp(-A*t);
10 Wmax=2*%pi*1;
11 K=4;
12 k=0:(K/1000):K;
13 W=k*Wmax/K;
14 XW=xt*exp(-sqrt(-1)*t'*W)*Dt;
15 XW_Mag=abs(XW);
```

```
16 W=[-mtlb_fliplr(W),W(2:1001)];
17 XW_Mag=[mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
18 [XW_Phase,db]=phasemag(XW);
19 XW_Phase=[-mtlb_fliplr(XW_Phase),XW_Phase(2:1001)];
20 figure
21 a=gca();
22 a.y_location="origin";
23 plot(t,xt);
24 xlabel('t in sec.');
25 ylabel('x(t)');
26 title('Continuous Time Signal');
27 figure
28 subplot(2,1,1);
29 a=gca();
30 a.y_location="origin";
31 plot(W,XW_Mag);
32 xlabel('Frequency in Radians/Seconds>W');
33 ylabel('abs(X(jW))');
34 title('Magnitude Response (CTFT)');
35 subplot(2,1,2);
36 a=gca();
37 a.y_location="origin";
38 a.x_location="origin";
39 plot(W, XW_Phase * %pi/180) ;
40 xlabel(' Frequency in Radians/Seconds
                                                     > W
     ');
41 ylabel('<X(jW)')
42 title ('Phase Response (CTFT) in Radians');
```

Chapter 4

The Discrete Time Fourier Transform

Scilab code Exa 4.1 DTFT computation

```
1 //Example 4.1
2 //Find the DTFT of (a^n)u[n], for |a|<1
3 clc;
4 syms w a n;
5 x=a^n;
6 X=symsum(x*exp(-%i*w*n),n,0,%inf);</pre>
```

Scilab code Exa 4.2 DTFT computation

```
1 //Example 4.2
2 //Find DTFT of x[n]=(a^n)u[-(n+1)]
3 clc;
4 syms w a n;
5 x=a^n;
6 X=symsum(x*exp(-%i*w*n),n,-%inf,-1);
```

Scilab code Exa 4.3 DTFT computation of unit impluse

```
//Example 4.3
//Find DTFT of unit impluse
clc;
syms w n;
x=1;
X=symsum(x*exp(-%i*w*n),n,0,0);
```

Scilab code Exa 4.5 DTFT computation

```
1 //Example 4.5
2 //Find DTFT of x[n]=a^|n| for -1<a<1
3 clc;
4 syms w a n;
5 x1=a^n;
6 x2=a^(-n);
7 X1=symsum(x1*exp(-%i*w*n),n,0,%inf);
8 X2=symsum(x2*exp(-%i*w*n),n,-%inf,-1);
9 X=X1+X2;
10 disp(X,'X(e^jw)=');</pre>
```

Scilab code Exa 4.9 Sketch discrete time signal

```
1 //Example 4.9
2 clc;
3 syms w a n;
4 x=a^n;
5 pi=22/7;
```

```
6  X=symsum(x*exp(-%i*w*n),n,0,%inf);
7  n1=0:10;
8  a=0.5;
9  x1=a^n1;
10  plot2d3(n1,x1);
11  xtitle('Discrete Time Signal','n','x[n]');
12  a.thickness=2;
```

Scilab code Exa 4.10 DTFT of cosine

```
1 //Example 4.10
2 //Find DTFT of x[n]=cos(Won) with Wo=(2*pi/5)
3 clc;
4 syms w n;
5 x1=exp(%i*(2*%pi*n/5));
6 x2=exp(-%i*(2*%pi*n/5));
7 X1=symsum(x1*exp(-%i*w*n),n,0,%inf);
8 X2=symsum(x2*exp(-%i*w*n),n,0,%inf);
9 X=(X1+X2)/2;
```

Scilab code Exa 4.12 DTFT of unit step

```
1 //Example 4.12
2 //Find DTFT of x[n]=u[n]
3 clc;
4 syms w n;
5 x=1;
6 X=symsum(x*exp(-%i*w*n),n,0,%inf);
```

Scilab code Exa 4.16 DTFT computation

```
1 //Example 4.16
2 //Find DTFT of x[n]=(a^n)u[n], for 0<a<1
3 clc;
4 syms w a n;
5 x=a^n;
6 X=symsum(x*exp(-%i*w*n),n,0,%inf);</pre>
```

Scilab code Exa 4.22 DTFT computation

```
1 //Example 4.22
2 //Find DTFT of x[n]=((1/2)^(n-1))u[n-1]
3 clc;
4 syms w n;
5 x=(1/2)^(n-1);
6 X=symsum(x*exp(-%i*w*n),n,1,%inf);
```

Chapter 5

Time and Frequency characterisation of signals and systems

Scilab code Exa 5.1 Bode Plot

```
1 //Example 5.1
2 //Obtain the Bode plot
3 clc;
4 s=%s;
5 H=syslin('c',2*10^4/(s^2+100*s+10^4));
6 bode(H,0.1,10000);
7 funcprot(0);
```

Scilab code Exa 5.2 Bode Plot

```
1 //Example 5.2
2 //Obtain the Bode plot
3 clc;
4 s=%s;
```

```
5 H=syslin('c',100*(1+s)/((10+s)*(100+s)));
6 bode(H,0.01,2000);
```

Chapter 6

Sampling And Laplace Transform

Scilab code Exa 6.1 Find nyquist rate

```
1 / Example 6.1
2 clc;
3 disp('x(t)=3\cos(50\%\text{pi}*t)+10\sin(300\%\text{pi}*t)-\cos(100\%\text{pi}*t)
      t)');
4 \text{ w1=50*\%pi};
5 w2=300*\%pi;
6 \text{ w3} = 100 * \% \text{pi};
7 f1=w1/(2*\%pi);
8 f2=w2/(2*\%pi);
9 f3=w3/(2*\%pi);
10 if f1>f2 then
11
        if f1>f3 then
12
             disp(2*f1, 'Nyquist rate=');
13
        else
             disp(2*f3, 'Nyquist rate=');
14
15
        end
16 else
17
        if f2>f3 then
             disp(2*f2, 'Nyquist rate=');
```

Scilab code Exa 6.2 Find nyquist rate

```
1 //Example 6.2
2 clc;
3 disp('x(t)=(1/2\%pi)\cos(4000\%pi*t)\cos(1000\%pi*t)');
4 \text{ w1}=5000*\%\text{pi};
5 w2=3000*\%pi;
6 f1=w1/(2*\%pi);
7 f2=w2/(2*\%pi);
8 if f1>f2 then
9
       nyquist_rate=2*f1;
10 else
11
       nyquist_rate=2*f2;
12 end
13 nyquist_interval=1/nyquist_rate;
14 disp(nyquist_rate, 'Nyquist rate=');
15 disp(nyquist_interval, 'Nyquist interval in seconds')
```

Scilab code Exa 6.4 Find nyquist rate

```
1  //Example 6.4
2  clc;
3  disp('x(t)=6cos(50%pi*t)+20sin(300%pi*t)-10cos(100%pi*t)');
4  w1=50*%pi;
5  w2=300*%pi;
6  w3=100*%pi;
```

```
7 f1=w1/(2*\%pi);
8 f2=w2/(2*\%pi);
9 f3=w3/(2*\%pi);
10 if f1>f2 then
11
        if f1>f3 then
12
            disp(2*f1, 'Nyquist rate=');
13
        else
            disp(2*f3, 'Nyquist rate=');
14
15
        end
16 else
17
        if f2>f3 then
            disp(2*f2, 'Nyquist rate=');
18
19
        else
            disp(2*f3, 'Nyquist rate=');
20
21
        end
22 \text{ end}
```

Scilab code Exa 6.26 Laplace transform of signal

Scilab code Exa 6.27.a Laplace transform of function

```
1 //Example 6.27a
2 //Laplace transform of x(t)=t^3+3*t^2-6*t+4
3 clc;
4 syms t;
```

```
5 x=t^3+3*t^2-6*t+4;
6 X=laplace(x);
```

Scilab code Exa 6.27.b Laplace transform of function

```
1 //Example 6.27b
2 //x(t)=(cos(3t))^3
3 clc;
4 syms t;
5 x=(cos(3*t))^3;
6 X=laplace(x);
```

Scilab code Exa 6.27.c Laplace transform of function

```
1 //Example 6.27c
2 clc;
3 syms a b t;
4 x=sin(a*t)*cos(b*t);
5 X=laplace(x);
```

Scilab code Exa 6.27.d Laplace transform of function

```
1 //Example 6.27d
2 clc;
3 syms t a;
4 x=t*sin(a*t);
5 X=laplace(x);
```

Scilab code Exa 6.27.e Laplace transform of function

```
1 //Example 6.27e
2 clc;
3 syms t s;
4 x1=1-%e^t;
5 X1=laplace(x1);
6 X=integ(X1,s,s,%inf);
```

Scilab code Exa 6.48 Find responce of system

```
1 //Example 6.48
2 clc;
3 syms t s;
4 x=1+%e^(-3*t)-%e^(-t);
5 X=laplace(x);
6 H=1/((s+1)*(s^2+s+1));
7 Y=X*H;
8 y=ilaplace(Y);
```

Chapter 7

The Z Transform

Scilab code Exa 7.1 z transform

```
1 //Example 7.1
2 clc;
3 syms a z n;
4 x=a^n;
5 X=symsum(x*(z^-n),n,0,%inf);
6 disp(X,'X(z)=');
```

Scilab code Exa 7.2 z transform of unit impulse

```
1 //Example 7.2
2 clc;
3 syms n z;
4 x=1;
5 X=symsum(x*(z^-n),n,0,0);
6 disp(X,'X(z)=');
```

Scilab code Exa 7.3 z transform of unit step

```
1 clc;
2 syms n;
3 x=ones(1);
4 X=symsum(x*(z^-n),n,0,%inf);
5 disp(X,'X(z)=');
```

Scilab code Exa 7.5 z transform of cosine

```
1 //Example 7.5
2 clc;
3 syms Wo n z;
4 x1=exp(sqrt(-1)*Wo*n);
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=exp(-sqrt(-1)*Wo*n);
7 X2=symsum(x2*(z^-n),n,0,%inf);
8 X=(X1+X2)/2;
9 disp(X,'X(z)=');
```

Scilab code Exa 7.6 z transform

```
1 //Example 7.6
2 clc;
3 syms n z;
4 x=1;
5 X=symsum(x*(z^-n),n,-%inf,0);
6 disp(X,'X(z)=');
```

Scilab code Exa 7.7 z transform of sequence

```
1 //Example 7.7
2 clc;
3 syms n z;
4 X1 = 0;
5 X2 = 0;
6 \text{ for } i=0:2:4
        x1=(1/2)^i;
        X1 = X1 + x1 * z^{-i};
8
9 end
10 for i=1:2:5
        x2=(1/3)^i;
11
12
        X2 = X2 + x2 * z^{-i};
13 end
14 x3=2^n;
15 X3 = symsum(x3*(z^-n),n,-\%inf,1);
16 \quad X = X1 + X2 + X3;
17 disp(X, 'X(z)=');
```

Scilab code Exa 7.10 z transform

```
1 //Example 7.10
2 //Z-transform of (2^n)u[n-2]
3 clc;
4 syms n z;
5 x=2^n;
6 X=symsum(x*(z^-n),n,2,%inf);
7 disp(X,'X(z)=');
```

Scilab code Exa 7.11.a z transform

```
1  //Example 7.11a
2  //Z transform of (a^n)cos(Wo*n)
3  clc;
```

```
4 syms Wo n z a;
5 x1=(a^n)*exp(sqrt(-1)*Wo*n);
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 x2=(a^n)*exp(-sqrt(-1)*Wo*n);
8 X2=symsum(x2*(z^-n),n,0,%inf);
9 X=(X1+X2)/2;
10 disp(X,'X(z)=');
```

Scilab code Exa 7.11.b z transform

```
1 //Example 7.11b
2 //Z transform of (a^n)sin(Wo*n)
3 clc;
4 syms Wo n z a;
5 x1=(a^n)*exp(sqrt(-1)*Wo*n);
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 x2=(a^n)*exp(-sqrt(-1)*Wo*n);
8 X2=symsum(x2*(z^-n),n,0,%inf);
9 X=(X1-X2)/(2*%i);
10 disp(X,'X(z)=');
```

Scilab code Exa 7.12 z transform using differentiation property

```
1 //Example 7.12
2 //Ztransform of x[n]=(n^2)*u[n] done by
        Diffrentiation property
3 clc;
4 syms z n;
5 x=1;
6 X1=symsum(x*(z^-n),n,0,%inf);
7 X2=(-z)*(diff(X1,z));
8 X=(-z)*(diff(X2,z));
9 disp(X, 'X(z)=');
```

Scilab code Exa 7.13 z transform

```
1 //Example 7.13
2 // Diffrentiation property is used here
3 clc;
4 syms n z;
5 x1=((-1/2)^n);
6 x2=(1/4)^-n;
7 X1=symsum(x1*(z^-n),n,0,%inf);
8 X3=(-z)*diff(X1,z);
9 X2=symsum(x2*(z^-n),n,-%inf,0);
10 X=X3*X2;
11 disp(X,'X(z)=');
```

Scilab code Exa 7.18 Find Discrete time input signal

```
1 //Example 7.18
2 // Determine the input x[n] if h[n] = [1,2,3] and y[n]
      =[1,1,2,-1,3]
3 \text{ clc};
4 clear;
5 function[za]=ztransfer(sequence,n)
       z=poly(0,'z','r')
6
7
       za=sequence*(1/z)^n'
8 endfunction
9 z=poly(0, 'z');
10 h=[1,2,3];
11 n1=0:length(h)-1;
12 H=ztransfer(h,n1);
13 y = [1, 1, 2, -1, 3];
14 n2=0: length(y)-1;
```

```
15 Y=ztransfer(y,n2);
16 X=Y/H;
17 funcprot(0);
18 funcprot(0);
19 x=ldiv(z^2-z+1,z^2,3);
20 disp(x,'x[n]=');
```

Scilab code Exa 7.19 Inverse Z transform

```
1 //Example 7.19
2 //Find the inverse Z-transform using long division
    method
3 clc;
4 clear;
5 z=poly(0, 'z');
6 x=ldiv(z^2,z^2-(3/2)*z+(1/2),4);
7 disp(x, 'x[n]=');
```

Scilab code Exa 7.24.a Inverse Z transform using long division method

```
1 //Example 7.24a
2 //Inverse Z-transform using long division method
3 clc;
4 clear;
5 z=poly(0,'z');
6 x=ldiv(2*z^3+3*z^2,(z+1)*(z+0.5)*(z-0.25),4);
7 disp(x,'x[n]=');
```

Scilab code Exa 7.36 z transform

```
1 //Example 7.36
2 clc;
3 syms z n;
4 x1=2^n;
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=3^n;
7 X2=symsum(x2*(z^-n),n,0,%inf);
8 X=3*X1-4*X2;
```

Scilab code Exa 7.37 z transform

```
1 //Example 7.37
2 clc;
3 syms z n;
4 x=(1/2)^n;
5 X=symsum(x*(z^-n),n,0,%inf);
```

Scilab code Exa 7.38 z transform

```
1 //Example 7.38
2 clc;
3 syms a z n;
4 x=-(a^n);
5 X=symsum(x*(z^-n),n,-%inf,-1);
```

Scilab code Exa 7.39 z transform using differentiation property

```
1 //Example 7.39
2 clc;
3 syms z n a;
```

```
4 x1=(a^n);

5 X1=symsum(x1*(z^-n),n,0,%inf);

6 X=(-z)*(diff(X1,z));
```

Scilab code Exa 7.42.a z transform of sequence

```
1 //Example 7.42a
2 clc;
3 function[za]=ztransfer(sequence,n)
4     z=poly(0, 'z', 'r')
5     za=sequence*(1/z)^n'
6 endfunction
7 x=[1,2,3,4,5,0,7];
8 n1=0:length(x)-1;
9 X=ztransfer(x,n1);
10 funcprot(0);
```

Scilab code Exa 7.42.b z transform of sequence

```
1 //Example 7.42b
2 clc;
3 function[za]=ztransfer(sequence,n)
4     z=poly(0, 'z', 'r')
5     za=sequence*(1/z)^n'
6 endfunction
7 x=[1,2,3,4,5,0,7];
8 n1=-3:length(x)-4;
9 X=ztransfer(x,n1);
10 funcprot(0);
```

Scilab code Exa 7.43 z transform

```
1 //Example 7.43
2 clc;
3 syms z n;
4 x1=(-1/3)^n;
5 x2=(1/2)^n;
6 X1=symsum(x1*(z^-n),n,0,%inf);
7 X2=symsum(x2*(z^-n),n,-%inf,-1);
8 X=X1-X2;
```

Scilab code Exa 7.48.a z transform

```
1 //Example 7.48a
2 clc;
3 syms z n;
4 x1=2^n;
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=(1/2)^n;
7 X2=symsum(x2*(z^-n),n,0,%inf);
8 X=X1+(3*X2);
```

Scilab code Exa 7.48.b z transform

```
1 //Example 7.48b
2 clc;
3 syms z n;
4 x1=(-1/2)^n;
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=(3)^n;
7 X2=symsum(x2*(z^-n),n,-%inf,-1);
8 X=(3*X1)-(2*X2);
```

Scilab code Exa 7.50 z transform of sequence

```
1 //Example 7.50
2 \text{ clc};
3 syms n z;
4 X1 = 0;
5 X2=0;
6 \text{ for } i=0:2:4
        x1=(1/2)^i;
8
        X1 = X1 + x1 * z^{-1};
9 end
10 for i=1:2:5
11
        x2=(1/3)^i;
        X2 = X2 + x2 * z^-i;
12
13 end
14 \times 3 = (2)^n;
15 X3 = symsum(x3*(z^-n),n,-\%inf,1);
16 \quad X = X1 + X2 + X3;
```

Scilab code Exa 7.52 z transform of discrete signal

```
1 //Example 7.52
2 //Z transform of x[n]=(2^n)u[n-2]
3 clc;
4 syms z n;
5 x=2^n;
6 X=symsum(x*(z^-n),n,2,%inf);
```

Scilab code Exa 7.54 Inverse Z transform

```
1 //Example 7.54
2 clc;
3 clear;
4 z=poly(0,'z');
5 X=[2;3*z^-1;4*z^-2];
6 n=0:2;
7 ZI=z^n';
8 x=numer(X.*ZI);
9 disp(x,'x[n]=');
```

Scilab code Exa 7.56 Find Discrete time input signal

```
1 //Example 7.56
2 // Determine the input x[n] if h[n] = [1,2,3] and y[n]
      =[1,1,2,-1,3]
3 clc;
4 clear;
5 function[za] = ztransfer(sequence, n)
       z=poly(0, 'z', 'r')
7
        za=sequence*(1/z)^n'
8 endfunction
9 z=poly(0, 'z');
10 h=[1,2,3];
11 n1=0:length(h)-1;
12 H=ztransfer(h,n1);
13 y = [1, 1, 2, -1, 3];
14 n2=0: length(y)-1;
15 Y=ztransfer(y,n2);
16 \quad X = Y / H;
17 funcprot(0);
18 funcprot(0);
19 x = 1 \text{div} (1 - z + z^2, z^2, 3);
20 disp(x, 'x[n]=');
```

Scilab code Exa 7.59.a z transform

```
1 //Example 7.59a
2 //Z transform of x[n]=-(a^n)u[-n-1]
3 clc;
4 syms a n z;
5 x=-(a^n);
6 X=symsum(x*(z^-n),n,-%inf,-1);
```

Scilab code Exa 7.59.b z transform

```
1 //Example 7.59b
2 //Z transform of x[n]=(a^-n)u[-n-1]
3 clc;
4 syms a n z;
5 x=(a^-n);
6 X=symsum(x*(z^-n),n,-%inf,-1);
```

Scilab code Exa 7.61.a z transform of discrete signal

```
1 //Example 7.61a
2 clc;
3 syms z n;
4 x1=(1/2)^n;
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=(1/3)^n;
7 X2=symsum(x2*(z^-n),n,0,%inf);
8 X=X1+X2;
```

Scilab code Exa 7.61.b z transform of discrete signal

```
1 //Example 7.61b
2 clc;
3 syms z n;
4 x1=(1/3)^n;
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=(1/2)^n;
7 X2=symsum(x2*(z^-n),n,-%inf,-1);
8 X=X1+X2;
```

Scilab code Exa 7.61.c z transform of discrete signal

```
1 //Example 7.61c
2 clc;
3 syms z n;
4 x1=(1/2)^n;
5 X1=symsum(x1*(z^-n),n,0,%inf);
6 x2=(1/3)^n;
7 X2=symsum(x2*(z^-n),n,-%inf,-1);
8 X=X1+X2;
```

Scilab code Exa 7.65 z transform

```
1 //Example 7.65
2 clc;
3 syms z n;
4 h1=(1/2)^n;
5 H1=symsum(h1*(z^-n),n,0,%inf);
```

```
6 h2=(-1/4)^n;
7 H2=symsum(h2*(z^-n),n,0,%inf);
8 H=(H1+H2)/2;
```

Scilab code Exa 7.68.a z transform of discrete signal

```
1 //Example 7.68a
2 //Z transform of x[n]=u[n]
3 clc;
4 syms n z;
5 x=1;
6 X=symsum(x*(z^-n),n,0,%inf);
```

Scilab code Exa 7.68.b z transform of discrete signal

```
1 //Example 7.68b
2 //Z transform of x[n]=-u[-n-1]
3 clc;
4 syms n z;
5 x=-1;
6 X=symsum(x*(z^-n),n,-%inf,-1);
```

Chapter 8

Discrete Fourier Transform and Fast Fourier Transform

Scilab code Exa 8.1 Convolution of two finite duration sequences

```
1 //Example 8.1
2 // Determine the convolution of the two finite
      duration sequence
3 clc;
4 x = [1, 1, 1];
5 n1 = -1:1;
6 h = [1, 1, 1];
7 n2 = -1:1;
8 y = convol(x,h);
9 n = -2:1:2;
10 disp(y, 'y[n]=');
11 a = gca();
12 a.y_location = "origin";
13 a.x_location = "origin";
14 plot2d3(n,round(y),5);
15 poly1=a.children(1).children(1);
16 poly1.thickness=2;
17 xtitle('Plot of sequence y[n]', 'n', 'y[n]');
18 funcprot(0);
```

Scilab code Exa 8.2 Responce of an FIR filter

```
1  //Example 8.2
2  //Find the response of an FIR filter with impulse
    response h[n]=[1,2,4] //to the input sequence x[n
    ]=[1,2]
3  clc;
4  x=[1,2];
5  h=[1,2,4];
6  Y=convol(x,h);
7  disp(Y,'y[n]=');
```

Scilab code Exa 8.3 DFT and IDFT

Scilab code Exa 8.4 DFT computation

```
1 //Example 8.4
2 //Compute DFT of the following sequence
3 clc;
4 x=[0.25,0.25,0.25];
```

```
5 X=fft(x,-1);
6 disp(X,'X[k]=');
```

Scilab code Exa 8.5 DFT computation

```
1 //Example 8.5
2 //Find the DFT of the following sequence
3 clc;
4 x=[0.2,0.2,0.2];
5 n=-1:1;
6 X=fft(x,-1);
7 disp(X, 'X[k]=');
```

Scilab code Exa 8.6 DFT of sequence

```
1 //Example 8.6
2 //Determine the DFT of the following sequence
3 clc;
4 x=[1,1,2,2,3,3];
5 X=fft(x,-1);
6 disp(X, 'X[k]=');
```

Scilab code Exa 8.7 DFT computation

```
1 //Example 8.7
2 //DFT of x[n]=a.^n
3 clc;
4 a=0.5;//Say for a=0.5
5 n=0:4;
6 x=a.^n;
```

```
7 X=fft(x,-1);
8 disp(X, 'X[k]=');
```

Scilab code Exa 8.8 DFT computation

Scilab code Exa 8.9 IDFT computation

```
1 //Example 8.9
2 //Computing IDFT of the following sequence
3 clc;
4 X=[1,2,3,4];
5 x=fft(X,1);
6 disp(x,'x[n]=');
```

Scilab code Exa 8.10 IDFT computation

```
1 //Example 8.10
2 //Find the IDFT of the following sequence
3 clc;
4 i=sqrt(-1);
```

```
5 X=[3,2+i,1,2-i];
6 x=fft(X,1);
7 disp(x,'x[n]=');
```

Scilab code Exa 8.11 DFT computation using FFT algorithm

Scilab code Exa 8.12 DFT computation using FFT algorithm

Scilab code Exa 8.13 DFT computation

```
1 //Example 8.13
2 //Find the DFT of the following sequence
3 clc;
4 h=[1/3,1/3,1/3];
```

```
5 H=fft(h,-1);
6 disp(H,'H[k]=');
```

Scilab code Exa 8.14 DFT computation

```
1 //Example 8.14
2 //Find the DFT of the following sequence
3 clc;
4 h=[1/3,1/3,1/3];
5 H=fft(h,-1);
6 disp(H, 'H[k]=');
```

Scilab code Exa 8.15 DFT computation

```
1 //Example 8.15
2 //Obtain the DFT of x[n]=(a^n).u[n]
3 clc;
4 a=0.5;
5 for i=0:1:7
6     x(i+1)=a.^i;
7 end
8 X=fft(x,-1);
9 disp(X,'X[k]=');
```

Scilab code Exa 8.16 DFT computation

```
4 x=[1,1,1,1,1,1,0];

5 X=fft(x,-1);

6 disp(X, 'X[k]=');
```

Scilab code Exa 8.17 DFT computation

```
1 //Example 8.17
2 //Determine the DFT of the following sequence
3 clc;
4 x=[0,0,1,1,1,1,1,0,0,0];
5 X=fft(x,-1);
6 disp(X,'X[k]=');
```