

Блок

FEATURE ENGINEERING

EFOP CAYKO

Lead Data Scientist Сбербанк

МАТЕРИАЛЫ ПО БЛОКУ

МАТЕРИАЛЫ ПО БЛОКУ

"Learning scikit-learn:
Machine Learning in Python"
Raul Garreta,
Guillermo Moncecchi,
2013,
Packt

"Hands-On Machine
Learning with Scikit-Learn
and Tensorflow:
Concepts, Tools and
Techniques to Build
Intelligent Systems"
Geron, A., 2017, O'Reilly Media

"Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists"

Zheng, A., Casari, A., 2018, O'Reilly Media <u>blog.kaggle.com/ -</u> <u>No Free Hunch</u>

Занятие 1 ПРОБЛЕМЫ КАЧЕСТВА И РАЗМЕРНОСТИ ДАННЫХ

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ СМОЖЕТЕ

2 Осуществлять Использовать поиск регуляризацию подмножества признаков

Уменьшать пространство фич Оценивать **значимость переменных**

Использовать sklearn для Feature selection

ЧТО БУДЕМ ОБСУЖДАТЬ

план занятия

Обзор домашнего задания Сокращение размерности пространства данных

Первичный анализ данных **Р**егуляризация

Оценка значимости переменных Часть 1-2

Обзор домашнего задания Первичный анализ данных

Training & Test

Разбиваем на Training и Test сеты как можно раньше

B Data snooping bias

Training set — выбор, тренировка и тюнинг моделей

Testing set — оценка финальной модели

Балансировка данных

Перекос данных

- 90 % данных класс А,
 10 % данных класс В
- Модель всегда отвечает
 A accuracy 90 %

Как бороться? Часть методов

- Oversampling and undersampling
- Синтетические данные
- Другие метрики *AUC, F1-score*
- Другие способы <u>machinelearningmastery.com/</u>
 <u>tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset</u>

Масштабирование и нормализация

Масштабирование

• Standard $x' = \frac{x - \overline{x}}{\overline{o}}$

• Min-Max
$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Нормализация

L1, L2, ...

Трансформация данных

Feature **SELECTION**

Feature **ENGINEERING**

Заключение

Подготовка данных ≈ тренировка моделей

Поиск аномалий и способы их решений — только training set

- Полученные решения применяются к данным в обучающую модель
- Test set
- Новые данные

Практика **АНАЛИЗ БАНКОВСКИХ ТРАНЗАКЦИЙ**

Часть 3

Оценка значимости переменных

Датасет

- Продажи продукта [~] рекламные бюджеты на разные медиа
- Медиа: ТВ, радио и газеты
- URL: http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv

Цель

Создать маркетинговый план на следующий год на основе данных из датасета, так, чтобы продажи продукта были высокими.

На какие вопросы пытаемся ответить?

- Есть ли связь между рекламным бюджетом и продажами?
- Насколько сильна связь между бюджетом и продажами?
 Можем ли мы предсказывать продажи на основе бюджета?
- Какие медиа способствуют продажам?
- Насколько точно мы можем предсказывать будущие продажи?
- Линейная ли зависимость между бюджетом и продажами?
- Есть ли эффект взаимодействия (synergy/interaction effect) между медийными бюджетами?

Линейная регрессия

$$sales = \beta_0 + \beta_1 * TV + \beta_2 * Radio + \beta_3 * Newspaper$$

- Предположим, что медийные бюджеты не зависят друг от друга
- Определим β_0 , β_1 , β_2 , β_3

Standard error

• Интересно знать насколько точна наша аппроксимация

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

- Доверительные интервалы
- Например, 95% значений β_0 будут в интервале [2.324,3.554]

Проверка гипотезы

- Нулевая и альтернативная гипотезы
 - Но: между хі и у нет зависимости
 - На: между хі и у есть зависимость
- Для проверки гипотезы используется t-test

T-Statistics & P-value

$$t = \frac{\hat{\beta}_i - 0}{SE(\hat{\beta}_i)}$$

- Если между x_i и у нет зависимости, то t соответсвует tраспределению с n-2 степенями свободы
- p-value вероятность того, что при известном распределении наблюдаемое значение \geq ltl (при условии, что $\beta_i = 0$)
- Если p-value достаточно маленький (< 1%), то мы можем отклонить H₀

Бюджеты и продажи

• 4 независимые гипотезы:

•
$$H_0$$
: $\beta_i = 0$

H_A: β_i ≠ 0

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.9389	0.312	9.422	0.000	2.324	3.554
TV	0.0458	0.001	32.809	0.000	0.043	0.049
Radio	0.1885	0.009	21.893	0.000	0.172	0.206
Newspaper	-0.0010	0.006	-0.177	0.860	-0.013	0.011

• Недостаток t-statistics: оценка важности каждого атрибута производится независимо от других

RSS & RSE

• RSS - Residual Sum of Squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• RSE - Residual Standard Error

$$RSE = \sqrt{\frac{1}{n-p-1}RSS}$$

- р количество predictor-ов
- RSE штрафует модели, которым нужно больше predictor-ов для достижения одинаковых значения RSS

R^2

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}, \quad TSS = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

- TSS Total Sum of Squares
- R² показывает, какой процент вариативности (variance) объяснен моделью
- $R^2 \in [0, 1]$ относительная величина, чем ближе к 1, тем лучше

F-Statistics

- Зависят ли продажи как минимум от одного из медиа ресурсов?
 - H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$
 - H_A : как минимум один из $\beta_i \neq 0$
- Проверить такую гипотезу можно с помощью F-теста

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

F-Test

- Аналогичен t-тесту, только используется Fраспределение
- F-тест для проверки равенства 0 только части параметров (q параметров из p)

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p-1)}$$

RSS₀ - модель, в которой q параметров равны 0

Практика **АНАЛИЗ РЕКЛАМНЫХ БЮДЖЕТОВ**

Часть 4

Сокращение размерности пространства данных

Сокращение размерности пространства данных

- Обучение с выбором подмножества фич (subset selection)
- Обучение с регуляризаций (shrinkage или regularization)
- Обучение с уменьшением размерности фич (dimensionality reduction)

Выбор подмножества фич

- Brute force (найти все комбинации, выбрать лучшую)
- Классические способы (эффективные)
 - Forward selection
 - Backward selection
 - Mixed selection

Forward stepwise selection

- 1. Рассмотрим модель M₀, которая не содержит предикторы
- 2. For k=0, ..., p-1:
 - 1. Рассмотрим р k моделей, которые дополняют M_k одним дополнительным предиктором
 - 2. Выбираем лучшую модель среди р k моделей (меньший RSS или больший R^2), назовем ее M_{k+1}
- 3. Выбираем лучшую модель из M_0 , ..., M_p используя кроссвалидацию или метрики косвенной оценки

Backward stepwise selection

- 1. Рассмотрим модель M_p , которая содержит все предикторы
- 2. For k=p, p-1, ...,1:
 - 1. Рассмотрим k моделей, которые содержат k-1 предиктор модели M_k
 - 2. Выбираем лучшую модель среди k моделей (меньший RSS или больший R^2), назовем ее M_{k-1}
- 3. Выбираем лучшую модель из M_0 , ..., M_p используя кроссвалидацию или метрики косвенной оценки

00

Mixed selection

- Paботает как forward stepwise selection
- В конце каждом шага может сделать backward stepwise selection

Часть 5 Регуляризация

Регуляризация

Регуляризация

• Линейная регрессия
$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j * x_{ij})^2$$

Ridge

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j * x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Lasso

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j * x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

Как оценивать **значимость переменных**

Как устроена **линейная регрессия**

Какие существуют типы **регуляризации**

Как осуществить **отбор признаков**

СПАСИБО ЗА ВНИМАНИЕ