Braços Robóticos: Sistemas de movimentação

Alunos:

Elison Maiko

Gustavo Moro

Kamylo Porto

Lucas Bernardino

Pedro Dantas

Roteiro de Apresentação

- 1. Motivação e Contextualização
- 2. História
- 3. Tipos e suas aplicações
- 4. Patentes e elementos inovadores
- 5. Informações para replicar os produtos
- 6. Tabela comparativa de características
- 7. Conclusão
- 8. Referências Bibliográficas

1. Motivação e Contextualização

Esfera de graduação

Tendências de mercado

Suporta altas cargas

Horas ininterruptas de trabalho

Maior precisão

2. História

Unimate na indústria automobilística

Stanford Arm (1969)

 Desenvolvido por Victor Scheinman.

Unimate (1961)

- Desenvolvido por George Devol.
- Implementado pela 1ª vez na GM.

2.1 Atualidade

Cirurgias

ROVs

Indústria Farmacêutica

Icebot

3. Tipos e suas aplicações

3.1. Braço Cartesiano

- Atuadores lineares em X, Y e Z
- Aplicado em CNC e Impressoras
 3D

3.2. SCARA

- Soldagem de componentes eletrônicos
- Maior velocidade e precisão
- Maior custo

3.3. Braço Robótico Articulado

- Movimentação semelhante à humana
- Mais comum na indústria

3.4. Braço do Tipo Delta

- Extremamente veloz
- Operações com baixo peso

3.5. Braço Colaborativo

- Interação Humana
- Sensores para prevenir colisões
- Construção arredondada

4. Patentes e elementos Inovadores

4.1. A Laparoscopic Surgical Instrument with 4 Degree of Freedom

4.2. Surgical Arm

- Controle do Laparoscópio
- 6 Graus de Liberdade
- Conferem maior estabilidade no auxílio das cirurgias

4.3. Curved Cannula Surgical

Vista da Máquina

Vista do operador

- Realização completa de cirurgias
- 4 Braços com 7 graus de liberdade cada
- Versatilidade de aplicações

4.3. Curved Cannula Surgical

- Diferentes finalidades
- Uso integrado de ferramentas
- Manuseio altamente flexível e suave
- Precisão milimétrica

4.4. Mobile Robot Morphology

- 7 Graus de Liberdade
- Atividades domésticas
- Estrutura em forma de torre empilhada
 - Coluna de montagem, junta rotacional e caixa de sensores
 - Facilita a percepção do ambiente

4.5. Both Arms Transport Positioning Robot

Manuseio de Materiais na indústria

• 10 Graus de Liberdade

 Juntas rotativas controladas separadamente

> Mais precisão e flexibilidade nos movimentos

movimentos

4.6. Bath Substrate Handling

- Trabalho em vácuo heterogêneo
 - Wafers de silício, mídias de disco (CD, DVD), semicondutores
- 2 Braços robóticos conectados
 - Flexibilidade na configuração
 - Single end effector, batch end effector

5. Informações para replicar o produto

- As patentes s\u00e3o conceitos de produtos
- Não há desenhos técnicos dos componentes
- Não há informações profundas sobre as peças

6. Tabela comparativa de características

Fatores analisados:

- Capacidade de carga
- Alcance
- Graus de liberdade
- Integração com outros sistemas
- Aplicação

6.1. Capacidade de carga e Alcance

Modelo	Capacidade de Carga	Alcance
Laparoscopic Surgical Instrument	Baixa	Curto
Surgical Arm	Baixa	Médio
Curved Cannula Surgical	Média	Médio
Mobile Robot Morphology	Média	Médio
Both Arms Transport	Alta	Curto
Bath Substrate Handling	Baixa	Curto

6.2. Graus de Liberdade

Modelo	Ombro	Braço	Pulsos
Laparoscopic Surgical Instrument	1	0	3
Surgical Arm	2	2	2
Curved Cannula Surgical	2	5	0
Mobile Robot Morphology	2	3	2
Both Arms Transport	2	4	4
Bath Substrate Handling	0	5	0

6.3. Aplicação e Integração com outros Sistemas

Modelo	Aplicação	Integração com outros sistemas	
Laparoscopic Surgical Instrument	Operação de Laparoscopia		
Surgical Arm	Realização de tarefas cirúrgicas	Assistidos e controlados pelo cirurgião	
Curved Cannula Surgical	Procedimentos Cirúrgicos		
Mobile Robot Morphology	Auxiliar nas tarefas domésticas	Redes 4.0	
Both Arms Transport	Transporte de itens, principalmente barras	Controlado por operador ou	
Bath Substrate Handling	Movimentos em ambientes heterogêneos	integrado a outros robôs	

7. Referências Bibliográficas

BERKOWITZ, Ben. MOBILE ROBOT MORPHOLOGY. . US n. US 20200376656 A1.

Depósito: 27 maio 2020. Concessão: 03 dez. 2020.

HARES, Luke David Ronald; RANDLE, Steven James. **SURGICAL ARM**. . EP n. EP 3 113 707 B1. Depósito: 28 nov. 2014. Concessão: 11 jan. 2017.

曙神摟. Both arms transport positioning robot. . CN n. CN211916865U. Depósito: 19 dez. 2019. Concessão: 13 nov. 2020.

읔쀕샜. A laparoscopic surgical instrument with 4 degree of freedom. . KR n. KR20100110134A. Depósito: abr. 02. Concessão: 12 out. 2010.

ロヅ°ッペ, マリア プリスコ. **Curved cannula surgical system**. . JP n. JP6000382B2. Depósito: 19 jan. 2019. Concessão: 23 abr. 2015.

7. Referências Bibliográficas

MEULEN, Peter van Der. **BATCH SUBSTRATE HANDLING**. . SS n. US 8,950,998 B2.

Depósito: 21 ago. 2008. Concessão: 10 fev. 2015.

ODURO, Joseph. Robotic Arm: Components, Types, Working & Applications. 2024.

Disponível em: https://automationswitch.com/robot-arm/. Acesso em: 19 abr. 2024.

UNIVERSAL ROBOTS. ROBOTIC ARM. 2022. Disponível em:

https://www.universal-robots.com/in/blog/robotic-arm/. Acesso em: 18 abr. 2024.

HOW TO ROBOT. ROBOTIC ARMS. 2022. Disponível em:

https://howtorobot.com/expert-insight/robotic-arms/. Acesso em: 18 abr. 2024.