Intro	Coctone	3	2.	(
+NT10	Culture	3		•

what is an ordinary differential equation (ODE)?

>* what is a differential equation?

· In coalculus: It's an equation that has derivatives in it.

$$\underbrace{Ex'}$$
 ① $\frac{dq}{dx} = x + y$

function & has only one war (3) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = \sin(x+t)$. Ju(x,t) func of

o In ODE: It's an equation that has differentials

to mala sense of this, you Wadgeplow (Modelt look at dx, dt, whose inputs are

b . vectors are

 $Ex' = \frac{4}{x} dt \sim \frac{dx}{dt} = \frac{2}{x^2}$ etc, as functions

$$\frac{dx}{dt} = \frac{2}{x^2}$$

y(x) is only

(5) $x^2 \frac{dx}{dt} = \sin(x) \cos(t) = \infty$ $\frac{x^2}{\sin x} dx = \cos t dt$

tangent vectors "undo" tangency

by integrating

where integral is is a line integral.

2) This is all in the background & not toood important (to understanding of the class.

Ly * what is ordinary?

· No partial derivatives (e.g. none of Ex 3).

what does it mean "to Solve" an ODE? Ly an ode has 1 an independent variable (e.g. x) and a function which depends on it (e.g. y=y60) Ex: y"+y"+y" = 0

$$\frac{Ex!}{dx''} + y'' + y'' + y'' = 0$$

$$\left(\frac{d^{4}y}{dx''} + \dots + \frac{dy}{dx} = 0\right).$$

Ly The Solution to an ODE is a function y which satisfies the ODE.

Grandle
$$Ex'$$
: D GDE: $\frac{dy}{dx} = 7$

Solution: $y(x) = 7x + C$
 $\frac{dy}{dx} = 7 \Rightarrow dy = 7dx$
 $\frac{dy}{dx} = 7x + C$
 $\frac{dy}{dx} = 7x \Rightarrow dy = 7xdx$
 $\frac{dy}{dx} = 7x \Rightarrow dy = 7xdx$

Solution: $y(x) = \frac{7x}{2x^2} + C \int \frac{dy}{dx} = \frac{7x}{2x^2} = \frac{7x}{2x^$ "x part => y===x+C

• Do all GDES have a solution? L> Almost always yes, but if you're thinking like

the above examplex: Almost always no.

Ex': $\frac{dy}{dx} = e^{-x^2}$ $\Rightarrow dy = e^{-x^2} dx \Rightarrow \int dy = \int e^{-x^2} dx + C$ Show slope field view integral.

Ex: $\frac{dy}{dx} = y^2 - \infty$ < Even though things are easily integrated independently, this thing neguines some extremely difficult tricluration.

(show M-; then VF)

• A good philosophy for this course / ODEs in general:

ODEs define functions & the object of this course
is to develop the methods for understanding.

(maybe computing, maybe not) these functions.

Recall:

- A solution to an ODE is an equation/function y = ... whose derivatives satisfy the ODE.
- To verify whether an equation/function is a solution to an ODE, you take its derivatives & see if they make the apprentional ODE true,

Ex! ① True or false: $y=x^2$ is a solution to the ODE x dy = 2y.

Ly $\frac{dy}{dx} = 2x \Rightarrow \frac{LHS = x(2x)}{RHS = 2y = 2(x^2)}$ Since LHS = RHS, $y = x^2$ is a solution.

2) T or F: $y = x^2$ is a solution to y'' + y' = 0.

• y' = 2x + y'' = 2

=> LHS= 2+2x] Not always equal, RHS= 0] so y=x2 not a solution.

4