Partial Differential Equations

2dayclean

2025/09/04

Contents

1	$\mathbf{W}\mathbf{h}$	ere PDEs come from	1
	1.1	What is PDE	1
	1.2	Homogenity and Linearity of PDE	1
		1.2.1 First order linear equations	3
	1.3	Flows, Vibrations, and Diffusion	4

1 Where PDEs come from

1.1 What is PDE

편미분방정식, PDE를 살펴보면 다음과 같은 요소가 있음을 알 수 있습니다. (1) 하나보다 많은 독립변수들이 있습니다. (x,y,z,\cdots,t,\cdots) (2) 우리가 알고 싶어하는 함수 u가 있어서 이 독립변수들에 의해 나타납니다. 따라서, PDE란다음과 같습니다.

Definition

 \mathbf{PDE} 는 독립변수들과 미지의 함수 u, 그리고 u의 편도함수 사이의 identity(혹은 equation)이다.

또한, 이러한 PDE의 order는 식에 나타나는 도함수의 가장 높은 order를 의미합니다.

Example

PDE에는 다음과 같은 예시들이 있습니다.

- 1. $u_x + u_y = 0$ (transport equation), 더 일반적으로는, $u_x + yu_y = 0$ 이나 $u_x + a(x,y)u_y = 0$ 역시 transport equation 이라고 불립니다.
- 2. $u_{xx} + u_{yy} = 0$ (Laplace equation), $\nabla^2 u = 0$ 과 같이 쓰기도 합니다.
- 3. $u_{tt} u_{xx} = 0$ (Wave equation)
- 4. $u_t u_{xx} = 0$ (Heat equation)

1.2 Homogenity and Linearity of PDE

앞으로도 거의 계속, 2-dimensional한 case에 대해서만 다룹니다.

일반적으로, PDE를 $F(x,y,u_x,u_y,u_{xx},u_{xy},u_{yy},\cdots)=g(x,y)$ 라고 쓸 수 있을 것입니다. 이를, $\mathcal{L}[u]=g$ 와 같이 표현하면 좋을 것입니다. 특히, 일반성을 잃지 않고, $\mathcal{L}[0]=0$ 이 되도록 \mathcal{L} 을 조작할 수 있습니다. 이러한 \mathcal{L} 은 다음과

같이 set of function에서 set of function으로의 mapping으로 생각할 수 있습니다.

$$\mathcal{L}: \{\text{functions}\} \to \{\text{functions}\}$$
$$v \mapsto \mathcal{L}[v] = F(x, y, v_x, v_y, \cdots)$$

특히, domain과 codomain을 $C^{\infty}(\Omega)$ 와 같이 쓰면, \mathcal{L} 은 일종의 operator가 됩니다.

Definition 1.1

Operator $\mathcal{L}: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$ 가 linear하다는 것은 다음을 만족하는 것입니다.

1.
$$\mathcal{L}[u+v] = \mathcal{L}[u] + \mathcal{L}[v]$$

2.
$$\mathcal{L}[cu] = c \cdot \mathcal{L}[u]$$

특히, \mathcal{L} 이 linear하다면, $\mathcal{L}[u] = 0$ 은 homogeneous linear equation이라고 하고, $\mathcal{L}[u] = g(g \not\equiv 0)$ 은 inhomogeneous linear equation이라고 합니다.

Example

다음은 전부 homogeneous linear equation입니다.

1.
$$u_x + u_y = 0$$
, of $\mathfrak{M} \mathcal{L} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$

$$2. \ u_{xx} + u_{yy} = 0, \ \circ \ \mathbb{H} \ \mathcal{L} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

3.
$$u_{tt} - u_{xx} = 0$$
, of III $\mathcal{L} = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$

4.
$$u_t - u_{xx} = 0$$
, of $\mathbb{H} \mathcal{L} = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$

Example

Transport equation의 일종인 $u_x+yu_y=0$ 은 $\mathcal{L}=\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}$ 로 나타나며 linear하고 homogeneous합니다. 반면, Burger's equation이라고 불리는 $u_x+uu_y=0$ 은 linear하지 않습니다.

Example

PDE $\cos(xy^2)u_x - y^2u_y = \tan(x^2 + y^2)$ 는 $\mathcal{L} = \cos(xy^2)\frac{\partial}{\partial x} - y^2\frac{\partial}{\partial y}$ 와 같이 나타나며 linear하고 inhomogeneous 합니다.

Proposition 1.2

Superposition Principle : Linear한 \mathcal{L} 에 대해 u_1, u_2, \cdots, u_n 이 $\mathcal{L}[u] = 0$ 의 solution이라면, constants c_1, \cdots, c_n 에 대해 $\sum_{i=1}^n c_i u_i$ 또한 $\mathcal{L}[u] = 0$ 의 solution입니다.

이는 딱히 증명할 필요는 없을 것 같습니다.

Example 1.3

u = u(x, y)에 대해, $u_{xx} = 0$ 의 해를 찾아 봅시다.

Recall : u = u(x)이고 u'' = 0이라면, $u(x) = c_1 x + c_2$ 이다.

해는 따라서 다음과 같습니다.

$$(u_x)_x = \frac{\partial}{\partial x}(u_x) = 0 \Longrightarrow u_x(x,y) = f(y)$$

 $\Longrightarrow u(x,y) = f(y)x + g(y)$

Example 1.4

u = u(x, y)에 대해, $u_{xx} + u = 0$ 의 해를 찾아봅시다.

u'' + u = 0의 해가 $u(x) = c_1 \cos x + c_2 \sin x$ 임을 recall하고 나면, $u(x,y) = f(y) \cos x + g(y) \sin x$

Example 1.5

u = u(x,y)에 대해, $u_{xy} = 0$ 의 해를 찾아보면,

$$u_{xy} = 0 \implies (u_x)_y = 0$$

 $\implies u_x(x,y) = g(x)$
 $\implies u(x,y) = \int g(x)dx + F(y) = G(x) + F(y)$

즉, 해는 u(x,y) = G(x) + F(y)와 같이 나타납니다.

1.2.1 First order linear equations

u=u(x,y) 꼴의 함수에 대해, $au_x+bu_y=0$ (*) 꼴의 transport equation이 주어져 있다고 합시다. 이 때, $a,b\neq 0$ 은 상수입니다. 그러면, $\mathcal{L}=a\frac{\partial}{\partial x}+b\frac{\partial}{\partial y}$ 인 1차 homogeneous linear equation인데, 이를 다음과 같은 두 가지 방법으로 풀어봅시다.

Geometric Method. 우선, v=(a,b)와 같이 표현합시다. 그러면, u의 v 방향으로의 directional derivative는 $D_v(u)=\frac{1}{\|v\|}(au_x+bu_y)$ 이고, 주어진 미분방정식 (*)은 u(x,y)가 v 방향으로의 line에 대해 전부 constant함을 의미합니다. 그리고, v 방향을 가지는 직선은 bx-ay=c 꼴입니다. u(x,y)의 값은 이 c에만 의존하게 될 것이며, 따라서 arbitary한 function f에 대해 u=f(c)=f(bx-ay)가 됩니다.

Coordinate Method. 좌표계 (x',y')를 잡아서 $au_x+bu_y=u_{x'}$ 와 같이 만들 수 있다면 문제가 아주 쉬워질 것입니다. 간단하게, y'=bx-ay, 그리고 x'=ax+by와 같이 좌표계를 설정합시다. (이는 Method 1에 전적으로 의존합니다.) 그러면, chain rule에 의하여,

$$\frac{\partial}{\partial x}u(x',y') = \frac{\partial u}{\partial x'}\frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'}\frac{\partial y'}{\partial x} = au_{x'} + bu_{y'}$$
$$\frac{\partial}{\partial y}u(x',y') = bu_{x'} - au_{y'}$$

가 성립하고, 따라서 $u_{x'}=0$ 으로 쓸 수 있습니다. 이제, u=f(y')=f(bx-ay)라고 쓸 수 있습니다.

Example

$$u_x + yu_y = 0$$

주어진 미분방정식은 $(1,y)\cdot \nabla u(x,y)=0$ 으로 쓸 수 있습니다. 즉, u의 (x,y) 점에서 (1,y) 방향으로의 도함수가 0입니다. 따라서, $\frac{dy}{dx}=\frac{y}{1}$ 인 curve에서 constant하고, 이 curve는 $y=Ce^x$ 와 같이 나타납니다. 이제 u의 값은 이 C에 의해서만 결정되므로, $u(x,y)=f(C)=f(y\cdot e^{-x})$ 라고 쓸 수 있습니다.

2dayclean

Example

$$4u_x - 3u_y = 0$$
, initial condition : $u(0, y) = y^3$

주어진 미분방정식의 일반적인 해는 u(x,y)=f(-3x-4y)입니다. 조건에 의해 $u(0,y)=f(-4y)=y^3$ 이므로, $f(\omega)=-\frac{\omega^3}{64}$ 이고, 따라서 $u(x,y)=\frac{1}{64}(3x+4y)^3$ 입니다.

Example

$$au_x + bu_y + cu = 0$$

주어진 미분방정식에 대해 x' = ax + by와 y' = bx - ay를 통해 좌표 변환을 시행하면,

$$(a^2 + b^2)u_{x'}(x', y') + cu(x', y') = 0$$

을 얻습니다. 따라서,
$$u(x',y')=f(y')\exp\left[-\frac{c}{a^2+b^2}x'\right]$$
이고, 최종적으로는

$$u(x,y) = f(bx - ay) \exp\left[-\frac{c}{a^2 + b^2}(ax + by)\right]$$

가 됩니다.

Example

$$u_x + 2xy^2 u_y = 0$$

이젠 기계적으로 풀 수 있을 것 같습니다. $\frac{dy}{dx}=\frac{2xy^2}{1}$ 인 curve는 $C=x^2+\frac{1}{y}$ 처럼 나타나고, 따라서 $u=f(x^2+\frac{1}{y})$ 가 됩니다.

Example

$$yu_x + xu_y = 0$$
, initial condition : $u(0, y) = e^{-y^2}$
마찬가지로, 결과만 쓰면 : $u(x, y) = \exp(x^2 - y^2)$

1.3 Flows, Vibrations, and Diffusion