

### Линейная регрессия

Линейные модели...

Вадим Хайтов, Марина Варфоломеева

### Мы рассмотрим

- Базовые идеи корреляционного анализа
- Проблему двух статистических подходов: "Тестирование гипотез vs. построение моделей"
- Разнообразие статистических моделей
- Основы регрессионного анализа

#### Вы сможете

- Оценить взаимосвязь между измеренными величинами
- Объяснить что такое линейная модель
- Формализовать запись модели в виде уравнения
- Подобрать модель линейной регрессии
- · Протестировать гипотезы о наличии зависимости при помощи t-критерия или F-критерия
- Оценить предсказательную силу модели

### Знакомимся с даными

### Пример: IQ и размеры мозга



Scan\_03\_11 by bucaorg(Paul\_Burnett) on Flickr

Зависит ли уровень интеллекта от размера головного мозга? (Willerman et al. 1991)

Было исследовано 20 девушек и 20 молодых людей

Пример взят из работы: Willerman, L., Schultz, R., Rutledge, J. N., and Bigler, E. (1991), "In Vivo Brain Size and Intelligence," Intelligence, 15, 223-228.

Данные представлены в библиотеке "The Data and Story Library" http://lib.stat.cmu.edu/DASL/

### Знакомство с данными

Посмотрим на датасет

```
brain <- read.csv("data/IQ brain.csv", header = TRUE)</pre>
head(brain)
    Gender FSIQ VIQ PIQ Weight Height MRINACount
##
## 1 Female
            133 132 124
                                 64.5
                                          816932
                           118
## 2
      Male
            140 150 124
                            NA
                                72.5
                                         1001121
## 3 Male 139 123 150
                           143
                               73.3 1038437
                               68.8 965353
## 4 Male 133 129 128
                           172
## 5 Female 137 132 134
                           147
                               65.0
                                          951545
## 6 Female
            99 90 110
                           146
                                 69.0
                                          928799
Есть ли пропущенные значения?
sum(!complete.cases(brain))
## [1] 2
```

### Где пропущенные значения?

#### Где именно?

```
sapply(brain, function(x) sum(is.na(x)))
      Gender
                   FSI0
                              VIO
                                         PI0
                                                 Weight
                                                            Height
                                           0
                                                      2
## MRINACount
Что это за случаи?
brain[!complete.cases(brain), ]
##
     Gender FSIQ VIQ PIQ Weight Height MRINACount
## 2
       Male 140 150 124
                                 72.5
                                         1001121
## 21 Male 83 83 86
                             NA
                                   NA
                                          892420
Каков объем выборки
nrow(brain) ## Это без учета пропущенных значений
## [1] 40
```

Цель практически любого исследования - поиск взаимосвязи величин и создание базы для предсказания неизвестного на основе имеющихся данных

### Корреляционный анализ

# Вспомним: Сила и направление связи между величинами



### Коэффициенты корреляции и условия их применимости

| Коэффициент                                            | Функция                                                        | Особенности<br>применения                                                                                 |
|--------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Коэф. Пирсона                                          | <pre>cor(x,y,method="pearson")</pre>                           | Оценивает связь двух нормально распределенных величин. Выявляет только линейную составляющую взаимосвязи. |
| Ранговые<br>коэффициенты (коэф.<br>Спирмена, Кендалла) | <pre>cor(x,y,method="spirman") cor(x,y,method="kendall")</pre> | Не зависят от формы распределения. Могут оценивать связь для любых монотонных зависимостей.               |

### Оценка достоверности коэффициентов корреляции

- Коэффициент корреляции это статистика, значение которой описывает степень взаимосвязи двух сопряженных переменных. Следовательно применима логика статистического критерия.
- Нулевая гипотеза  $H_0: r=0$
- Бывают двусторонние  $H_a: r \neq 0$  и односторонние критерии  $H_a: r > 0$  или  $H_a: r < 0$
- . Ошибка коэффициента Пирсона:  $SE_r = \sqrt{\frac{1-r^2}{n-2}}$
- · Стандартизованная величина  $t=\frac{r}{SE_r}$  подчиняется распределению Стьюдента с параметром df=n-2
- Для ранговых коэффициентов существует проблема "совпадающих рангов" (tied ranks), что приводит к приблизительной оценке r и приблизительной оценке уровня значимости.
- Достоверность коэффициента корреляции можно оценить пермутационным методом

### Задание

- Определите силу и направление связи между всеми парами исследованных признаков
- Постройте точечную диаграмму, отражающую взаимосвязь между результатами IQтеста (PIQ) и размером головного мозга (MRINACount)
- Оцените достоверность значения коэффициента корреляции Пирсона между этими двумя переменными

Hint 1: Обратите внимание на то, что в датафрейме есть пропущенные значения. Изучите, как работают с NA функции, вычисляющие коэффициенты корреляции.

Hint 2 Для построения точечной диаграммы вам понадобится geom point()

```
cor(brain[, 2:6], use = "pairwise.complete.obs")
```

```
## FSIQ VIQ PIQ Weight Height
## FSIQ 1.0000 0.9466 0.93413 -0.05148 -0.0860
## VIQ 0.9466 1.0000 0.77814 -0.07609 -0.0711
## PIQ 0.9341 0.7781 1.00000 0.00251 -0.0767
## Weight -0.0515 -0.0761 0.00251 1.00000 0.6996
## Height -0.0860 -0.0711 -0.07672 0.69961 1.0000
```

```
cor.test(brain$PIQ, brain$MRINACount, method = "pearson", alternative = "two.si"
##
## Pearson's product-moment correlation
##
## data: brain$PIQ and brain$MRINACount
## t = 3, df = 40, p-value = 0.01
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.0856 0.6232
## sample estimates:
## cor
## 0.387
```



```
pl_brain + theme_dark() +
  geom_point(aes(color = Gender), size = 4) +
  scale_color_manual(values = c("red", "blue"))
```



### Два подхода к исследованию: Тестирование гипотезы VS

### Построение модели

- Проведя корреляционный анализ, мы лишь ответили на вопрос "Существует ли статистически значимая связь между величинами?"
- Сможем ли мы, используя это знание, *предсказть* значения одной величины, исходя из знаний другой?

### Тестирование гипотезы VS построение модели

- Простейший пример
- Между путем, пройденным автомобилем, и временем, проведенным в движении, несомненно есть связь. Хватает ли нам этого знания?
- Для расчета величины пути в зависимости от времени необходимо построить модель: S = Vt, где S зависимая величина, t независимая переменная, V параметр модели.
- Зная параметр модели (скорость) и значение независимой переменной (время), мы можем рассчитать (*смоделировать*) величину пройденного пути

### Какие бывают модели?

### Линейные и нелинейные модели

Линейные модели

$$y = b_0 + b_1 x$$

$$y = b_0 + b_1 x_1 + b_2 x_2$$

Нелинейные модели

$$y = b_0 + b_1^x$$

$$y = b_0^{b_1 x_1 + b_2 x_2}$$

# Простые и многокомпонентные (множественные) модели

• Простая модель

$$y = b_0 + b_1 x$$

• Множественная модель

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_n x_n$$

### Детерминистские и стохастические модели



Модель:  $y_i = 2 + 5x_i$  Два параметра: угловой коэффициент (slope)  $b_1 = 5$ ; свободный член (intercept)  $b_0 = 2$  Чему равен y при x = 10?



Модель: = 2+5+ Появляется дополнительный член Онвводит в модель влияние неучтенных моделью факторов. Обычно считают, что  $\epsilon \in N(0, -)$ 

### Модели с дискретными предикторами



Модель для данного примера имеет такой вид

$$response = 4.6 + 5.3I_{Level2} + 9.9I_{Level3}$$

 $I_i$  - dummy variable

# Модель для зависимости величины IQ от размера головного мозга

Какая из линий "лучше" описывает облако точек?



"Essentially, all models are wrong, but some are useful" (Georg E. P. Box)

# Найти оптимальную модель позволяет регрессионный анализ

### Происхождение термина "регрессия"



Френсис Галтон (Francis Galton)

"the Stature of the adult offspring ... [is] ... more mediocre than the stature of their Parents" (цит. по Legendre & Legendre, 1998)

Рост регрессирует (возвращается) к популяционной средней Угловой коэффициент в зависимости роста потомков от роста родителей- коэффицент регресси

# Подбор линии регрессии проводится с помощью двух методов

- · С помощью метода наименьших квадратов (Ordinary Least Squares) используется для простых линейных моделей
- Через подбор функции максимального правдоподобия (Maximum Likelihood) используется для подгонки сложных линейных и нелинейных моделей.

### Кратко о методе максимального правдоподобия



### Кратко о методе максимального правдоподобия

Симулированный пример с использованием geom violin()



### Метод наименьших квадратов



Остатки (Residuals):

= -

Линия регрессии (подобранная модель) - это та линия, у которой  $\sum$  минимальна.

# Подбор модели методом наменьших квадратов с помощью функци lm()

fit <- lm(formula, data)</pre>

Модель записывается в виде формулы

| Модель                                                                        | Формула                         |
|-------------------------------------------------------------------------------|---------------------------------|
| Простая линейная регрессия $\hat{y_i} = b_0 + b_1 x_i$                        | Y ~ X<br>Y ~ 1 + X<br>Y ~ X + 1 |
| Простая линейная регрессия (без $b_0$ , "no intercept") $\hat{y_i} = b_1 x_i$ | Y ~ -1 + X<br>Y ~ X - 1         |
| Уменьшенная простая линейная регрессия $\hat{y_i} = b_0$                      | Y ~ 1<br>Y ~ 1 - X              |
| Множественная линейная регрессия $\hat{y_i} = b_0 + b_1 x_i + b_2 x_2$        | Y ~ X1 + X2                     |

# Подбор модели методом наменьших квадратов с помощью функци lm()

fit <- lm(formula, data)</pre>

Элементы формул для записи множественных моделей

| Элемент формулы | Значение                                                                                                              |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| :               | Взаимодействие предикторов<br>Y ~ X1 + X2 + X1:X2                                                                     |
| *               | Обозначает полную схему взаимодействий Y ~ X1 * X2 * X3 аналогично Y ~ X1 + X2 + X3+ X1:X2 + X1:X3 + X2:X3 + X1:X2:X3 |
| •               | Y ~ .<br>В правой части формулы записываются все<br>переменные из датафрейма, кроме Y                                 |

# Подберем модель, наилучшим образом описывающую зависимость результатов IQ-теста от размера головного мозга

```
brain_model <- lm(PIQ ~ MRINACount, data = brain)
brain_model

##
## Call:
## lm(formula = PIQ ~ MRINACount, data = brain)
##
## Coefficients:
## (Intercept) MRINACount
## 1.74376 0.00012</pre>
```

## Как трактовать значения параметров регрессионной модели?



# Как трактовать значения параметров регрессионной модели?

- Угловой коэффициент (slope) показывает на сколько единиц изменяется предсказанное значение  $\hat{y}$  при изменении на одну единицу значения предиктора (x)
- Свободный член (*intercept*) величина во многих случаях не имеющая "смысла", просто поправочный коэффициент, без которого нельзя вычислить  $\hat{y}$ . *NB!* В некоторых линейных моделях он имеет смысл, например, значения  $\hat{y}$  при x=0.
- · Остатки (residuals) характеризуют влияние неучтенных моделью факторов.

### Вопросы:

- 1. Чему равны угловой коэффициент и свободный член полученной модели brain model?
- 2. Какое значение IQ-теста предсказывает модель для человека с объемом мозга равным 900000
- 3. Чему равно значение остатка от модели для человека с порядковым номером 10?

#### Ответы

```
coefficients(brain_model) [1]
## (Intercept)
## 1.74

coefficients(brain_model) [2]
## MRINACount
## 0.00012
```

#### Ответы

```
as.numeric(coefficients(brain_model) [1] + coefficients(brain_model) [2] * 9000
## [1] 110
```

### Ответы

```
brain$PIQ[10] - fitted(brain_model)[10]
## 10
## 30.4
residuals(brain_model)[10]
## 10
## 30.4
```

#### Углубляемся в анализ модели: функция summary()

summary(brain model) ## ## Call: ## lm(formula = PIO ~ MRINACount, data = brain) ## ## Residuals: Min 10 Median 30 Max ## ## -39.6 -17.9 -1.6 17.0 42.3 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 1.7437570 42.3923825 0.04 0.967 ## MRINACount 0.0001203 0.0000465 2.59 0.014 \* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 21 on 38 degrees of freedom ## Multiple R-squared: 0.15, Adjusted R-squared: 0.127

## F-statistic: 6.69 on 1 and 38 DF, p-value: 0.0137

## Что означают следующие величины?

Estimate Std. Error t value Pr(>|t|)

## Оценки параметров регрессионной модели

| Параметр             | Оценка                                                                                                                                 | Стандартная ошибка                                                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $eta_1$ Slope        | $b_1 = rac{\sum_{i=1}^n \left[ (x_i - ar{x})(y_i - ar{y})  ight]}{\sum_{i=1}^n (x_i - ar{x})^2}$ или проще $b_0 = r rac{sd_y}{sd_x}$ | $SE_{b_1} = \sqrt{\frac{MS_e}{\sum_{i=1}^n (x_i - \bar{x})^2}}$                                    |
| $eta_0$<br>Intercept | $b_0 = \bar{y} - b_1 \bar{x}$                                                                                                          | $SE_{b0} = \sqrt{MS_e\left[\frac{1}{n} + \frac{\bar{x}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right]}$ |
| $\epsilon_i$         | $e_i = y_i - \hat{y}_i$                                                                                                                | $pprox \sqrt{MS_e}$                                                                                |

### Для чего нужны стандартные ошибки?

- Они нужны, поскольку мы оцениваем параметры по выборке
- Они позволяют построить доверительные интервалы для параметров
- Их используют в статистических тестах

### Графическое представление результатов



Доверительная зона регрессии. В ней с 95% вероятностью лежит регрессионная прямая, описывающая связь в генеральной совокупности.

Возникает из-за неопределенности оценок коэффициентов модели, вследствие выборочного характера оценок.

## Симулированный пример

Линии регрессии, полученные для 100 выборок (по 20 объектов в каждой), взятых из одной и той же генеральной совокупности



# Доверительные интервалы для коэффициентов уравнения регрессии

```
coef(brain_model)

## (Intercept) MRINACount
## 1.74376 0.00012

confint(brain_model)

## 2.5 % 97.5 %
## (Intercept) -84.0751348 87.562649
## MRINACount 0.0000261 0.000214
```

# Для разных $\alpha$ можно построить разные доверительные интервалы



#### Важно!

Если коэффициенты уравнения регрессии - лишь приблизительные оценки параметров, то предсказать значения зависимой переменной можно только *с некоторой вероятностью*.

## Какое значение IQ можно ожидать у человека с размером головного мозга 900000?

```
newdata <- data.frame(MRINACount = 900000)
predict(brain_model, newdata, interval = "prediction", level = 0.95, se = TRUE)
## fit lwr upr
## 1 110 66.9 153</pre>
```

• При размере мозга 900000 среднее значение IQ будет, с вероятностью 95%, находиться в интервале от 67 до 153.

# Отражаем на графике область значений, в которую попадут 95% предсказанных величин IQ

Подготавливаем данные

```
brain_predicted <- predict(brain_model, interval="prediction")
brain_predicted <- data.frame(brain, brain_predicted)
head(brain predicted)</pre>
```

```
Gender FSIQ VIQ PIQ Weight Height MRINACount fit lwr upr
##
## 1 Female 133 132 124
                         118
                              64.5
                                       816932 100 56.1 144
     Male 140 150 124
                             72.5
                                      1001121 122 78.2 166
                          NA
## 3 Male 139 123 150
                         143 73.3
                                      1038437 127 81.9 171
## 4 Male 133 129 128
                         172 68.8 965353 118 74.5 161
                        147 65.0
## 5 Female 137 132 134
                                      951545 116 73.0 159
## 6 Female 99 90 110
                         146
                              69.0
                                       928799 113 70.4 157
```

# Отражаем на графике область значений, в которую попадут 95% предсказанных величин IQ



#### Важно!

Модель "работает" только в том диапазоне значений независимой переменной (x), для которой она построена (интерполяция). Экстраполяцию надо применять с большой осторожностью.



### Итак, что означают следующие величины?

- Estimate
- Оценки праметров регрессионной модели
- · Std. Error
- Стандартная ошибка для оценок
- · Осталось решить, что такое t value, Pr(>|t|)

### Тестирование гипотез с помощью линейных моделей

#### Два равноправных способа

- · Проверка достоверности оценок коэффициента  $b_1$  (t-критерий).
- Оценка соотношения описанной и остаточной дисперсии (F-критерий).

### Тестирование гипотез с помощью t-критерия

Зависимость есть, если  $\beta_1 \neq 0$ 

Нулевая гипотеза  $H_0: \beta = 0$ 

Тестируем гипотезу

$$t = \frac{b_1 - 0}{SE_{b_1}}$$

Число степеней свободы: df = n - 2

- >- Итак.
- >- t value Значение t-критерия
- >- Pr(>|t|) Уровень значимости

#### Зависит ли IQ от размера головного мозга?

PIQ = 1.744 + 0.0001202MRINACount

```
summary(brain model)
##
## Call:
## lm(formula = PIO ~ MRINACount, data = brain)
##
## Residuals:
  Min 10 Median 30 Max
##
## -39.6 -17.9 -1.6 17.0 42.3
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7437570 42.3923825
                                     0.04
                                            0.967
## MRINACount 0.0001203 0.0000465 2.59 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21 on 38 degrees of freedom
## Multiple R-squared: 0.15, Adjusted R-squared: 0.127
## F-statistic: 6.69 on 1 and 38 DF, p-value: 0.0137
```

### Тестирование гипотез с помощью F-критерия







Объясненная дисперсия

$$SS_{Regression} = \sum (\hat{y} - \bar{y})^2$$

$$df_{Regression} = 1$$

$$MS_{Regression} = \frac{SS_{Regression}}{df}$$

Остаточная дисперсия

$$SS_{Residual} = \sum (\hat{y} - y_i)^2$$

$$df_{Residual} = n - 2$$

$$MS_{Residual} = \frac{SS_{Residual}}{df_{Residual}}$$

Полная дисперсия

$$SS_{Total} = \sum (\bar{y} - y_i)^2$$

$$df_{Total} = n - 1$$

$$MS_{Total} = \frac{SS_{Total}}{df_{Total}}$$

### **F** критерий

Если зависимости нет, то  $MS_{Regression} = MS_{Residual}$ 

$$F = \frac{MS_{Regression}}{MS_{Residual}}$$

Логика та же, что и с t-критерием



Форма F-распределения зависит от двух параметров:  $df_{Regression}=1$  и  $df_{Residual}=n-2$ 

# Оценка качества подгонки модели с помощью коэффициента детерминации

В чем различие между этми двумя моделями?



# Оценка качества подгонки модели с помощью коэффициента детерминации

Коэффициент детерминации описывает какую долю дисперсии зависимой переменной объясняет модель

$$R^{2} = \frac{SS_{Regression}}{SS_{Total}}$$

$$0 < R^{2} < 1$$

$$R^{2} = r^{2}$$

### Еще раз смотрим на результаты регрессионного анализа зависимости IQ от размеров мозга

```
summary(brain model)
##
## Call:
## lm(formula = PIQ ~ MRINACount, data = brain)
##
## Residuals:
## Min 10 Median 30 Max
## -39.6 -17.9 -1.6 17.0 42.3
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7437570 42.3923825 0.04 0.967
## MRINACount 0.0001203 0.0000465 2.59 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21 on 38 degrees of freedom
## Multiple R-squared: 0.15, Adjusted R-squared: 0.127
## F-statistic: 6.69 on 1 and 38 DF, p-value: 0.0137
```

# Adjusted R-squared - скорректированный коэффициет детерминации

Применяется если необходимо сравнить две модели с разным количеством параметров

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k}$$

k - количество параметров в модели

Вводится штраф за каждый новый параметр

# Как записываются результаты регрессионного анлиза в тексте статьи?

Мы показали, что связь между результатами теста на IQ описывается моделью вида IQ = 1.74 + 0.00012 MRINACount ( $F_{1,38}$  = 6.686, p = 0.0136,  $R^2$  = 0.149)

#### **Summary**

- Модель простой линейной регрессии  $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- Параметры модели оцениваются на основе выборки
- В оценке коэффициентов регрессии и предсказанных значений существует неопределенность: необходимо вычислять доверительный интервал.
- Доверительные интервалы можно расчитать, зная стандартные ошибки.
- Гипотезы о наличии зависимости можно тестировать при помощи t- или F-теста.  $(H_0:\beta_1=0)$
- · Качество подгонки модели можно оценить при помощи коэффициента детерминации  $(R^2)$

#### Что почитать

- Гланц, 1999, стр. 221-244
- · Open Intro to Statistics: Chapter 7. Introduction to linear regression, pp. 315-353.
- · Quinn, Keough, 2002, pp. 78-110