Кафедра математического анализа

Справочник по теме «Определённый интеграл Римана. Несобственные интегралы от функции одной переменной»

Работу выполнили студенты II-го курса механико-математического факультета

Ахметзянов Р. Р.

Пототня Л. В.

Рябинин К. В.

Сорокин М. Л.

Справочник по теме «Определённый интеграл Римана. Несобственные интегралы от функции одной переменной»

СПРАВОЧНИК ПО ТЕМЕ " ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ РИМАНА. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ ОТ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ "

Понятие определенного интеграла Римана и Стилтьеса		
1	Понятие определенного интеграла, его геометрический	n:1,4,5,7,8,13;
	смысл	утв:1,2,23,ум;
2	Суммы Дарбу. Интегрируемые и неинтегрируемые по	n:2,3,6,9;
	Риману функции	утв:3,4,5,6;ум;
3	Свойства определенного интеграла	п;утв:7,10;ум:1.1;
4	Оценка определенного интеграла с помощью теорем о среднем	п:29;утв:22;ум:13;
5	Восстановление функции по ее производной или дифференциалу	п; утв; ум;
6	Свойства определенного интеграла с переменным верхним пределом и нахождение производной от него	п:30;утв:8,9;ум:12;
7	Условия существования и свойства интеграла Стилтьеса	n:22,23,24,31; утв:15,16,24;ум:;
	Вышеланна оппадаланного интеглала	ym6.13,10,24,ym.,
	Вычисление определенного интеграла С помощью основных свойств и формулы Ньютона-	п; утв.7,11;
8	Лейбница	,
	С помощью свойств определенного интеграла по	ум:1.1,2.2;
9	с помощью своиств определенного интеграла по симметричному промежутку от четной и нечетной	n: 11mo: 7: 11m: 1 1:
9		п; утв:7; ум:1.1;
	функции	
10	В случае, когда интегральная функция содержит знак модуля	п; утв:7; ум:1.1;
11	Интегрирование по частям в определенном интеграле	п; утв:12.2; ум:2.1;
12	Замена переменной в определенном интеграле	п; утв:12.1; ум:2.2;
	Геометрические и физические приложения определени	ного интеграла
	Вычисление площади криволинейной трапеции	n:10,11,12,13;
13		утв:13.2,13.2.1;
		ум:3.1;
14	Вычисление площади криволинейного сектора	n:32; утв:13.2.2; ум:3.2;
1.5	Вычисление длины дуги плоской кривой в случае	n:14,15.1,16,17,18,33;
15	параметрического задания кривой	утв:13.1; ум:4.1;
16	Вычисление длины дуги плоской кривой в случае явного задания кривой	n:15.2; утв; ум:4.2;
17	Вычисление длины дуги плоской кривой в случае полярного задания кривой	п:15.3; утв; ум:4.3;
18	Вычисление длины дуги плоской кривой и площади плоской фигуры в случае полярного задания кривой в виде $\varphi = \varphi(r)$	п:15.3; утв; ум:4.3;
19	Вычисление площади поверхности вращения	n:19,34; утв:13.3; ум:5;
20	Вычисление объема тела вращения	ум. 5, n:20,21; утв:13.4; ум:15;
21	Вычисление работы силы	n:35; утв; ум:6;
22	Вычисление силы давления	n:36; утв; ум:7;
23	Вычисление статического момента плоских дуг и фигур	n:37; утв; ум:8;
24	Вычисление статического момента плоских дуг и фигур	n:38; yme; ym:8;
25	<u> </u>	
۷3	Вычисление момента инерции плоских дуг и фигур	п:39; утв; ум:16;

26	Вычисление перемещения точки за определенный промежуток времени по закону скорости	п; утв; ум:9;
Несобственные интегралы		
27	Вычисление несобственных интегралов	n:25,25.1,25.2; утв:19,20; ум:10;
28	Главное значение несобственных интегралов	п:28; утв:21; ум:11;
29	Исследование несобственных интегралов 1 и 2 рода на сходимость, расходимость	n:26.1,26.2; утв:17,18; ум:14.1;
30	Исследование несобственных интегралов 1 и 2 рода на абсолютную и условную сходимости	п:27; утв; ум:14.2;

ТАБЛИЦА РАССТАНОВКИ ПОНЯТИЙ ПО УЧЕБНЫМ ЭЛЕМЕНТАМ СТРУКТУРЫ ТЕСТА МА-Т-07 «ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ РИМАНА. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ ОТ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»

№	Название понятия	Учебный элемент
1	Разбиение сегмента $[a;b]$	1
2	Измельчение разбиения	2
3	Объединение двух разбиений	2
4	п-я интегральная сумма Римана	1
5	Предел интегральной суммы	1
6	Интегрируемая по Риману на сегменте функция	2
7	Определенный интеграл Римана	1
8	Нижний и верхний предел интегрирования	1
9	Суммы Дарбу	2
10	Площадь плоской фигуры	13
11	Область	13
12	Квадрируемая фигура	13
13	Криволинейная трапеция	1, 13
14	Множество меры нуль	15
15.1	Параметрическое задание кривой	15
15.2	Явное задание кривой	16
15.3	Полярное задание кривой	17, 18
16	Натуральное уравнение кривой	15
17	Длина дуги кривой	15
18	Спрямляемая кривая	15
19	Поверхность вращения	19
20	Объем тела	20
21	Кубируемые тела	20
22	Интеграл Стилтьеса	7
23	Суммы Дарбу-Стилтьеса	7
24	Полная вариация суммы на сегменте	7
25	Несобственный интеграл	27
25.1	Несобственные интегралы 1-го рода	27
25.2	Несобственные интегралы 2-го рода	27
26.1	Сходящийся несобственный интеграл	29, 30
26.2	Расходящийся несобственный интеграл	29, 30
27	Абсолютная и условная сходимость несобственных интегралов	30
28	Главное значение несобственных интегралов	28
29	Среднее значение функции	4
30	Определённый интеграл с переменным верхним пределом	6
31	п-ая интегральная сумма Стилтьеса	7
32	Криволинейный сектор	14
33	Ломаная, вписанная в кривую	15
34	Площадь поверхности вращения	19
35	Работа силы	21
36	Давление	22
37	Статический момент	23
38	Центр тяжести	24
39	Момент инерции	25

ТАБЛИЦА РАССТАНОВКИ УТВЕРЖДЕНИЙ ПО УЧЕБНЫМ ЭЛЕМЕНТАМ СТРУКТУРЫ ТЕСТА МА-Т-07 «ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ РИМАНА. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ ОТ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ»

Nº	Название утверждения	Учебный элемент
1	Критерий квадрируемости плоской фигуры	1
2	Геометрический смысл <i>n</i> -ой интегральной суммы Римана	1
3	Необходимое условие интегрируемости функции	2
4	Свойства сумм Дарбу	2
5	Критерий интегрируемости функции	2
6	Классы интегрируемых функций	2
7	Свойства определённого интеграла	3, 8, 9, 10
8	Свойства определенного интеграла с переменным верхним пределом	6
9	Существование первообразной у непрерывной функции	6
10	Теорема о независимости определенного интеграла от выбранной первообразной	3
11	Формула Ньютона-Лейбница	8
12.1	Теорема о замене переменной	12
12.2	Формула интегрирование по частям	11
13.1	Длина дуги кривой	15
13.1.1	Теорема о нахождении длины дуги кривой в случае параметрического задания	15
13.1.2	Теорема о нахождении длины дуги кривой в случае явного задания	16
13.1.3	Теорема о нахождении длины дуги кривой в случае полярного задания	17, 18
13.2	Аксиомы площади	13
13.2.1	Теорема о нахождении площади криволинейной трапеции	13
13.2.2	Теорема о нахождении площади криволинейного сектора	14
13.3	Теорема о нахождении площади поверхности вращения	19
13.4	Теорема о нахождении объёмов тел	20
14.1	Теорема о вычислении работы силы	21
14.2	Теорема о вычислении давления силы	22
14.3	Теорема о вычислении статического момента	23
14.4.1	Теорема о вычислении координат центра тяжести плоской дуги	24
14.4.2	Теорема о вычислении координат центра тяжести плоской фигуры	24
14.5.1	Теорема о вычислении момента инерции плоской дуги	25
14.5.2	Теорема о вычислении момента инерции плоской фигуры	25
14.6	Теорема о вычислении перемещения точки за определенный промежуток времени по закону скорости	26
15	Классы интегрируемых по Стилтьесу функций	7
16	Свойства интеграла Римана-Стилтьеса	7
17	Критерий Коши сходимости несобственных интегралов	29
18	Достаточные признаки сходимости несобственных интегралов	29
19	Теорема о замене переменных под знаком несобственного интеграла	27
20	Формула интегрирования по частям в несобственных интегралах	27
21	Связь между существованием интеграла как несобственного и в смысле главного значения	28

22	Теоремы о среднем значении	4
23	Геометрический смысл определённого интеграла	1, 13
24	Критерий интегрируемости по Стилтьесу	7
25	Приближённые методы вычисления определённого интеграла	

No	Название умения	Учебный элемент
1.1	Вычисление определенного интеграла с помощью свойств	3,8,9,10
1.2	Вычисление определенного интеграла с помощью формулы Ньютона-Лейбница	8
2.1	Вычисление определенного интеграла методом интегрирования по частям	11
2.2	Вычисление определенного интеграла методом замены переменных	12
3.1	Вычисление площади плоской фигуры	13
3.2	Вычисление площади криволинейного сектора	14
4.1	Вычисление длины дуги в случае параметрического задания кривой	15
4.2	Вычисление длины дуги в случае явного задания кривой	16
4.3	Вычисление длины дуги в случае полярного задания кривой	17,18
5	Нахождение площади поверхности вращения	19
6	Нахождение работы силы	21
7	Нахождение давления силы	22
8	Нахождение статического момента и центра тяжести кривой	23,24
9	Нахождение перемещения точки за оптределенный промежуток времени по закону скорости	26
10	Вычисление несобственных интегралов 1-го и 2-го рода	27
11	Нахождение главного значения несобственных интегралов 1-го и 2-го рода	28
12	Нахождение производной от определенного интеграла с переменным верхним пределом	6
13	Оценка интеграла при помощи теорем о среднем	4
14.1	Исследование несобственных интегралов 1-го и 2-го рода на сходимость	29
14.2	Исследование несобственных интегралов 1-го и 2-го рода на абсолютную и условную сходимость	30
15	Вычисление объемов тел	20
16	Нахождение моментов инерции	25

І. Понятие определенного интеграла Римана и Стилтьеса

1. Геометрический смысл определенного интеграла

Понятия

- **1. Разбиение сегмента** [a;b] $\left(T = \{x_i\}_{i=\overline{0,n}}\right)$ это система произвольных не совпадающих друг с другом его точек x_i , $i = \overline{1,n}$, отвечающих соотношению $a = x_0 < x_1 < x_2 < ... < x_{i-1} < x_i < ... < x_n = b$ которые разбивают отрезок [a;b] на n частичных отрезков $[x_0;x_1],[x_1;x_2],...,[x_{n-1};x_n]$.
- **4.** \emph{n} -ая интегральная сумма Римана функции f на отрезке $\left[a;b\right]$ это сумма вида

$$\sigma_n = \sum_{i=1}^n f(\xi_i) \Delta x_i , \qquad (1)$$

где Δx_i — длина i-го частичного отрезка разбиения T, а ξ_i — произвольная точка из частичного отрезка $\left[x_{i-1};x_i\right],\ \sigma_n=\sigma_n\left(x_i;\xi\right).$

5. Предел интегральной суммы

$$I = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} \stackrel{\text{def}}{=} (\forall \varepsilon > 0) (\exists \delta > 0) (\forall T = \{x_{i}\}_{i=\overline{0,n}} \mid d(T) = \lambda < \delta) (\forall \xi_{i} \in [x_{i-1}; x_{i}] \mid i = \overline{1,n}) :$$

$$|I - \sigma_{n}| < \varepsilon.$$

Число I называют пределом интегральной суммы σ_n , если для любого $\varepsilon>0$ найдется $\delta>0$, такое что для любого разбиения $T=\left\{x_i\right\}_{i=\overline{0,n}}$ отрезка $\left[a;b\right]$ на части диаметр которого $d(t)<\varepsilon$ и при любом выборе точек $\xi_i\in\left[x_{i-1};x_i\right]$ выполняется условие $\left|I-\sigma_n\right|<\varepsilon$.

7, 8. Определённый интеграл Римана от функции f по отрезку [a;b] — это предел I n-ой интегральной суммы Римана этой функции при $\lambda = d(T) \to 0 : I = \int_a^b f(x) dx \stackrel{\text{def}}{=} \lim_{\lambda \to 0} \sigma_n$

$$I = \lim_{n \to 0} \sigma_n \in \mathcal{A}$$

Числа a и b называют соответственно нижним и верхним пределами интегрирования.

Функцию f подынтегральной функцией, f(x)dx – подынтегральным выражением.

13. Криволинейная трапеция — это фигура, ограниченная сверху графиком непрерывной неотрицательной функции, снизу осью абсцисс, а с боков ординатами x = a и x = b.

Криволинейная трапеция

Утверждения

1. Критерий квадрируемости плоской фигуры

Фигура Ф квадрируема тогда и только тогда, когда выполняется условие

Квадрируемая фигура

2. Геометрический смысл *n*-ой интегральной суммы Римана

Сумма вида (1) представляет собой площадь заштрихованной фигуры.

23. Геометрический смысл определённого интеграла

Геометрически определенный интеграл $\int_a^b f(x)dx$ от непрерывной и неотрицательной на отрезке [a;b] функции f представляет собой площадь криволинейной трапеции, ограниченной прямыми x=a, x=b, y=0 и графиком функции y=f(x).

Умения

1. C помощью интеграла $\int\limits_0^{\frac{\pi}{2}} \sin x dx$ вычисляется площадь фигуры, изображенной на рисунке

Решение. Функция $y = \sin x$ на промежутке $x \in \left[0; \frac{\pi}{2}\right]$ возрастает, при этом

 $y(0) = 0; y\left(\frac{\pi}{2}\right) = 1$. Данному условию удовлетворяет четвертый ответ.

2. Верно ли утверждение: "Площадь фигуры Φ_1 , ограниченная осью Ох, прямыми $x=5, \quad x=2$ и графиком функции $y=(x-4)^2+1$, равна площади фигуры Φ_2 , ограниченной прямыми $x=3, \quad x=5, \quad y=4$ и графиком функции $y=x^2-10x+28$ "?

Решение. Для решения данной задачи достаточно всего лишь построить фигуры (1) и (2). Мы получим две фигуры, основания и боковые стороны которых равны, а сверху обе фигуры ограничены графиками одинаковой формы. Следовательно, их площади совпадают, т.к. площадь не зависит от параллельного переноса.

Аналитически равенство площадей данных фигур можно доказать, сравнив определённые интегралы $\int\limits_{2}^{5} \left((x-4)^2 + 1 \right) dx$ и $\int\limits_{3}^{6} \left(x^2 - 10x + 28 \right) dx$, значение первого равно площади фигуры (1), значение второго соответственно площади фигуры (2).

3. На каких из приведённых ниже рисунков изображена криволинейная трапеция?

Решение:

На рисунке A изображена криволинейная трапеция, ограниченная графиком некоторой функции y = y(x) и прямыми x = a и x = b.

Фигура на рисунке E не является криволинейной трапецией, так как её часть лежит ниже оси Ox.

Фигура на рисунке B также не является криволинейной трапецией, так как она полностью лежит ниже оси Ox.

На графике Γ изображена криволинейная трапеция, ограниченная графиком некоторой функции x = x(y) и прямыми y = a и y = b.

2. Интегрируемые и неинтегрируемые по Риману функции

Понятия

- **2.** Длиной частичного отрезка $[x_{i-1};x_i](\Delta x_i)$ называется разность x_i-x_{i-1} . $d(T)\stackrel{\mathrm{def}}{=} \max\left\{\Delta x_i \mid i=\overline{1,n}\right\}$ называют диаметром разбиения, а процесс уменьшения диаметра измельчением разбиения. При этом особый интерес представляет разбиение, диаметр которого стремится к нулю, а число частичных отрезков к бесконечности.
- **3.** Два различных разбиения T_1 и T_2 отрезка [a;b] можно объединить в одно. При этом система точек получившегося разбиения будет результатом объединения систем точек разбиений T_1 и T_2 , а количество точек этой системы будет равно сумме количеств точек систем T_1 и T_2 за вычетом совпавших:

$$\begin{split} T_1 = & \{x_{j_1}\}_{j_1 = \overline{0,n}}; \ T_2 = \{x_{j_2}\}_{j_2 = \overline{0,n}}; \ T = \{x_i\}_{i = \overline{0,n}} \\ T = & T_1 \cup T_2; \ \{x_i\} = \{x_{j_1}\} \cup \{x_{j_2}\}; \ n = k_1 + k_2 - p \text{ , где } p \text{ – количество совпавших точек,} \\ i = & \overline{0,n}, \ j_1 = \overline{0,k_1} \text{ , } \ j_2 = \overline{0,k_2} \text{ .} \end{split}$$

- **6.** Функция f называется **интегрируемой по Риману на отрезке** [a;b] если существует конечный предел I интегральной суммы Римана этой функции при $\lambda = d(T) \rightarrow 0$.
 - 9. Суммы Дарбу

Верхняя сумма Дарбу (\overline{S}) — это сумма вида

$$\overline{S} = \sum_{i=1}^n M_i \Delta x_i$$
, где $M_i = \sup\{f(x) \mid x \in [x_{i-1}; x_i]\}$, $\Delta x_i = x_i - x_{i-1}$.

Нижняя сумма Дарбу (\underline{S}) — это сумма вида

$$\underline{S} = \sum_{i=1}^n m_i \Delta x_i$$
, где $m_i = \inf\{f(x) \mid x \in [x_{i-1}; x_i]\}$, $\Delta x_i = x_i - x_{i-1}$.

Верхняя и нижняя суммы Дарбу зависят от разбиения отрезка [a;b] и при фиксированном разбиении служат точной верхней и точной нижней границами для интегральных сумм.

Утверждения

3. Необходимое условие интегрируемости функции

Необходимым условием интегрируемости функции на отрезке [a;b] является ограниченность ее на этом отрезке.

4. Свойства сумм Дарбу

- 1°. При увеличении точек дробления отрезка [a;b] на части нижняя сумма Дарбу не может уменьшиться (то есть либо увеличивается, либо останется неизменной), а верхняя сумма Дарбу не может увеличиться.
- 2°. Любая нижняя сумма Дарбу не превосходит ни одной верхней суммы Дарбу, пусть даже отвечающей другому разбиению.
- 3°. $(\forall T\{x_i\}_{i=\overline{0,n}})(\forall \varepsilon > 0) (\exists \xi_i^{'}, \xi_i^{''} \in [x_{i-1}; x_i]_{i=\overline{1,n}}) : (\sigma_n\{x_i; \xi_i^{'}\} \underline{S} < \varepsilon) \& (\overline{S} \sigma_n\{x_i; \xi_i^{'}\} < \varepsilon)$ другими словами, при любом разбиении $T = \{x_i\}_{i=\overline{0,n}}$ отрезка [a;b], найдутся такие точки $\xi_i^{'}$, $\xi_i^{''} \in [x_{i-1}; x_i]$, что разность между интегральной суммой Римана и

суммами Дарбу всегда будут меньше любого наперед заданного положительного числа.

 4° . Множество всех верхних сумм Дарбу интегрируемой функции f всегда ограничено снизу.

Множество всех нижних сумм Дарбу интегрируемой функции f всегда ограничено сверху.

5. Критерий интегрируемости функции

Ограниченная на отрезке [a;b] функция интегрируема на этом отрезке тогда и только тогда, когда выполняется условие:

$$(\forall \varepsilon > 0)(\exists T = \{x_i\}_{i=\overline{0,n}}) : \overline{S} - \underline{S} < \varepsilon.$$

6. Классы интегрируемых функций

1°. Непрерывные функции.

Любая непрерывная на отрезке [a;b] функция интегрируема на этом отрезке.

2°. Разрывные функции.

Ограниченная на отрезке [a;b] функция интегрируема на этом отрезке, если все точки ее разрыва можно покрыть конечным числом интервалов, сумма длин которых может быть сделана меньше любого наперед заданно положительного числа. В частности, если ограниченная функция имеет на отрезке [a;b] конечное число точек разрыва, она интегрируема на этом отрезке.

График интегрируемой функции $y = sign\left(\sin\frac{\pi}{x}\right)$, имеющей

бесконечное количество точек разрыва

3°. Монотонные функции.

Любая монотонная на отрезке [a;b] функция интегрируема на этом отрезке.

Умения

1. Интегрируема ли по Риману функция Дирихле?

Решение. Рассмотрим функцию:

$$D(x) = \begin{cases} 1, & x \in \square \\ 0, & x \in \square \setminus \square \end{cases}$$

Возьмем в качестве сегмента [a;b] отрезок [0;1]

Очевидно, что функция D(x) – ограничена на [a;b]. Покажем, что она не является интегрируемой на [a;b].

Рассмотрим произвольное разбиение отрезка [0;1] на части.

$$T = \{x_i\}_{i=\overline{0,n}}$$

$$(\forall i = \overline{1,n}) : \xi_i \in [x_{i-1}; x_i]$$

Возьмем $\xi_i'\in [x_{i-1};x_i]\cap \square$, $\xi_i''\in [x_{i-1};x_i]\cap (\square\setminus \square)$ Если функция интегрируема, то величина предела σ_n не зависит от выбора точек ξ_i

$$\sigma_n\left\{x_i; \xi_i'\right\} = \sum_{i=1}^n D\left(\xi_i'\right) \Delta x_i = \sum_{i=1}^n 1 \cdot \Delta x_i = 1 - 0 = 1 \underset{\lambda \to 0}{\longrightarrow} 1$$

$$\sigma_{n}\left\{x_{i};\xi_{i}^{"}\right\} = \sum_{i=1}^{n} D\left(\xi_{i}^{"}\right) \Delta x_{i} = \sum_{i=1}^{n} 0 \cdot \Delta x_{i} = 0 \underset{\lambda \to 0}{\longrightarrow} 0$$

Мы получили, что величина предела σ_n зависит от выбора точек ξ_i . Значит D(x) не интегрируема на сегменте [a;b] .

3. Свойства определенного интеграла

Утверждения

7. Свойства определенного интеграла

1°.
$$\int_{a}^{a} f(x)dx = 0.$$

1°.
$$\int_{a}^{b} f(x)dx = 0.$$
2°.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

3°. Пусть функция f интегрируема на отрезке [a;b], тогда функция cf, где $c \in \square$ также интегрируема на этом отрезке, причем:

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

- 4°. Если функции f и g интегрируемы на отрезке [a;b], то функция $f \cdot g$ также интегрируема на этом отрезке.
- 5°. Если функция f интегрируема на отрезке [a;b], то она интегрируема на любом отрезке [c;d], содержащемся в [a;b].
- Если функция f интегрируема на отрезках [a;c] и[c;b], то она интегрируема и на 6°. отрезке [a;b], причем:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Пусть функции f и g интегрируемы на отрезке [a;b], тогда функции $f \pm g$ также интегрируемы на этом отрезке, причем:

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

- Если f четная функция, то $\int_{0}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$.
- 9°. Если f нечетная функция, то $\int_{0}^{a} f(x)dx = 0$
- 10° . Если f функция, принимающая на отрезке [a;b]разные знаки, и $[a;c_1]$, $[c_1;c_2]$,..., $[c_{n-1};c_n]$, $[c_n;b]$ – промежутки знакопостоянства, то

$$\int_{a}^{b} |f(x)| dx = \int_{a}^{c_{1}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \int_{c_{1}}^{c_{2}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \int_{c_{n}}^{b} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\cos(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x) dx} + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\sin(f(x)) f(x) dx}{\sin(f(x)) f(x)} + \dots + \int$$

Проще говоря, от модуля под знаком интеграла можно избавиться, расписав этот интеграл сумму интегралов по промежуткам знакопостоянства подынтегральной функции с учётом знака.

11°. Интегрирование суперпозиции.

Если f(x) и g(x) непрерывны на сегменте [a;b] и существует суперпозиция этих функций f(g(x)) на этом сегменте, т.е. $E(g) \subseteq D(f)$, то эта суперпозиция интегрируема на [a;b], т.е. существует $\int_{a}^{b} f(g(x)) dx$.

12°. Если функция y = f(x) интегрируема на отрезке [a;b], то функция y = |f(x)| тоже интегрируема на нем, причем

$$\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx.$$

13°. Значение интеграла не зависит от переменной интегрирования. $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$.

14°. Пусть функция $y=f\left(x\right)$ монотонна на отрезке $[a;b],\ m\leq f\left(x\right)\leq M$. Тогда

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a).$$

15°. Пусть функции f и g ограничены на отрезке [a;b],и $(\forall x \in [a;b])$: $f(x) \leq g(x)$, тогда

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

10. Теорема о независимости определенного интеграла от выбранной первообразной

Значение определенного интеграла не зависит от конкретного выбранного представления семейства первообразных данной функции.

Умения

1.Найти значение интеграла

$$\int_{0}^{\frac{\pi}{2}} (4x^2 + 2\cos x) dx.$$

Решение:

$$\int_{0}^{\frac{\pi}{2}} (4x^{2} + 2\cos x)dx = 4\int_{0}^{\frac{\pi}{2}} x^{2}dx + 2\int_{0}^{\frac{\pi}{2}} \cos xdx = \frac{4}{3}x^{3}\Big|_{0}^{\frac{\pi}{2}} + 2\sin x\Big|_{0}^{\frac{\pi}{2}} = \frac{\pi^{3}}{6} + 2.$$

2. Сравнить $\int_{\frac{1}{2}}^{2} \log_2 x dx \ u \int_{\frac{1}{2}}^{4} \log_2 x dx.$

Решение. Т.к. функция $\log_2 x$ монотонно возрастает и при $x \in [0;1]$ принимает отрицательные значения, а при $x \in (1;+\infty)$ лишь положительные, то очевидно, что на промежутке $x \in \left[\frac{1}{2};1\right]$ оба интеграла принимают одинаковые отрицательные значения.

Тогда достаточно сравнить лишь интегралы $\int_{1}^{2} \log_2 x dx$ и $\int_{1}^{4} \log_2 x dx$, которые

однозначно принимают положительные значения. Т.к. функция $\log_2 x$ монотонно возрастает, то площадь фигуры ограниченной ею на промежутке $x \in [1;4]$ будет больше, чем на промежутке $x \in [1;2]$. Следовательно, $\int\limits_1^2 \log_2 x dx < \int\limits_1^4 \log_2 x dx$, а т.к. из значений обоих интегралов мы вычитали одинаковое число, равное значению $\int\limits_{\frac{1}{2}}^1 \log_2 x dx$, то соотношение не изменится. $\int\limits_{\frac{1}{2}}^2 \log_2 x dx < \int\limits_{\frac{1}{2}}^4 \log_2 x dx$.

3. Сравнить $\int_{0}^{\pi} \cos x dx \ u \int_{0}^{\pi} \sin x dx$.

Решение. Т.к. функции рассматриваются на одном промежутке, то значение данных интегралов будет зависеть от поведения подынтегральных функций на этом промежутке. При $x \in [0;\pi] \sin x$ принимает лишь положительные значения, $\cos x$ же на промежутке $\left(0;\frac{\pi}{2}\right)$ положителен, а при $x \in \left(\frac{\pi}{2};\pi\right)$ принимает значения меньше нуля.

Следовательно,
$$\int_{0}^{\pi} \cos x dx < \int_{0}^{\pi} \sin x dx$$
.

4. Вычислить, при помощи свойств определенного интеграла:

$$\int_{\frac{\pi}{2}}^{\pi} \sin^2 3x dx - \frac{1}{2} \int_{\frac{\pi}{2}}^{0} (1 - \cos 6x) dx - \int_{0}^{\pi} (1 - \cos^2 3x) dx.$$

Решение. Преобразуем выражение:

$$\int_{\frac{\pi}{2}}^{\pi} \sin^2 3x dx - \frac{1}{2} \int_{\frac{\pi}{2}}^{0} (1 - \cos 6x) dx - \int_{0}^{\pi} (1 - \cos^2 3x) dx = \int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} (1 - \cos 6x) dx + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos 6x) dx + \int_{\pi}^{0} \frac{1}{2} (1 - \cos 6x) dx + \int_{0}^{\pi} \frac{1}{2} (1 - \cos 6x) dx$$

По свойствам определенного интеграла полученное выражение

$$\frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} (1 - \cos 6x) dx + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos 6x) dx + \frac{1}{2} \int_{\pi}^{0} (1 - \cos 6x) dx = 0.$$

4. Оценка определенного интеграла с помощью теорем о среднем

Понятия

29. Среднее значение интегрируемой на [a;b] функции (μ) – это значение, принимаемое функцией в некоторой точке промежутка [a;b], вычисляемое по формуле

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Утверждения

22. Теоремы о среднем значении

Первая теорема о среднем.

Если функция y = f(x) интегрируема на [a;b] и $M = \sup\{f(x) | x \in [a;b]\}$, $m = \inf\{f(x) | x \in [a;b]\}$, то

$$(\exists \mu \in [m;M]): \int_a^b f(x)dx = \mu(b-a).$$

В частности, если f непрерывна на $\left[a;b\right]$, то

$$\left(\exists \xi \in [a;b]\right) : \int_{a}^{b} f(x) dx = f(\xi)(b-a).$$

Обобщённая теорема о среднем.

Если функции f и g интегрируемы на отрезке [a;b] и функция g знакопостоянна на этом отрезке, и

$$M = \sup\{f(x) | x \in [a;b]\}, m = \inf\{f(x) | x \in [a;b]\}.$$

то найдётся число $\mu \in [m;M]$, такое, что

$$\int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx.$$

В частности, если что f непрерывна на отрезке [a;b], то можно утверждать, что

$$\left(\exists \xi \in [a;b]\right) : \int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

Вторая теорема о среднем. (Теорема Бонне)

Если функция f непрерывна на отрезке [a;b], а функция g монотонна и непрерывно дифференцируема на этом отрезке, то

$$\left(\exists \xi \in [a;b]\right) : \int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx + g(b) \int_{\xi}^{b} f(x)dx$$

Умения

1. Оценить интеграл $\int_{0}^{\frac{\pi}{2}} \sin x \cos x dx$.

Решение

$$\int\limits_{0}^{\frac{\pi}{2}} \sin x \cos x dx = \mu \int\limits_{0}^{\frac{\pi}{2}} \cos x dx = \mu \sin x \Big|_{0}^{\frac{\pi}{2}} = \mu \,, \quad \sin \pi/2 = 1 \quad \sin 0 = 0 \quad, \quad \text{отсюда} \quad \mu \in \left[0;1\right] \quad \text{и}$$

$$0 \leq \int\limits_{0}^{\frac{\pi}{2}} \sin x \cos x dx \leq 1 \,.$$

2. Оценить интеграл
$$\int_{0}^{5} 2^{(\sin 3x \cos x + \cos 3x \sin x)^{2007}} dx$$
.

Peшение. По теореме о среднем значении данный интеграл находится в промежутке [m(b-a); M(b-a)], где b, a — соответственно верхний и нижний пределы интегрирования; M, m — соответственно верхняя и нижняя грани подынтегральной функции f. Преобразуем подынтегральную функцию f:

$$2^{(\sin 3x \cos x + \cos 3x \sin x)^{2007}} = 2^{(\sin 4x)^{2007}}$$

Оценим получившуюся функцию: т.к. при любых значениях $x-1 \le \sin 4x \le 1$, следовательно $-1 \le \left(\sin 4x\right)^{2007} \le 1$, а значит $\frac{1}{2} \le 2^{\left(\sin 4x\right)^{2007}} \le 2$.

Тогда
$$\frac{1}{2}(5-0) \le \int_{0}^{5} 2^{\left(\sin 3x \cos x + \cos 3x \sin x\right)^{2007}} dx \le 2(5-0);$$

$$2\frac{1}{2} \le \int_{0}^{5} 2^{\left(\sin 3x \cos x + \cos 3x \sin x\right)^{2007}} dx \le 10.$$

3. Определить среднее значение функции $f(x) = x^2$ на сегменте [0;1].

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
$$\mu = \frac{1}{1-0} \int_{0}^{1} x^{2} dx = \frac{1}{3} x^{3} \Big|_{0}^{1} = \frac{1}{3}.$$

5. Восстановление функции по ее производной или дифференциалу

Умения

1. Найти значения коэффициентов a и b, при которых функция $f(x) = a \sin x + b$ удовлетворяет условиям

$$f'\left(\frac{\pi}{4}\right) = 1; \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(x) dx = \frac{5}{4}$$

Решение

$$f'\left(\frac{\pi}{4}\right) = a\cos\left(\frac{\pi}{4}\right) = 1 \Leftrightarrow a\frac{\sqrt{2}}{2} = 1 \Rightarrow a = \sqrt{2}$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(x) dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (a \sin x + b) dx = (-a \cos x + bx) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{5}{4} \iff$$

$$\Leftrightarrow -a \cdot 0 + \frac{\pi}{2}b + \frac{\sqrt{2}}{2}a - \frac{\pi}{4}b = \frac{5}{4} \Rightarrow b = \frac{1}{\pi}.$$

2. Найти значение т, при котором функция

$$f(x) = mx^2 + 2x + \ln x + arctg(x)$$
 удовлетворяет условию $f'(1) = 9\frac{1}{2}$.

Решение. Найдем
$$f'(x)$$
. Получим, $f'(x) = 2mx + 2 + \frac{1}{x} + \frac{1}{1+x^2}$.

Подставив в производную
$$x=1$$
, имеем $f'(1)=2m+2+1+\frac{1}{2}$

Так как
$$f'(1) = 9\frac{1}{2}$$
, то, решая уравнение $2m+2+1+\frac{1}{2}=9\frac{1}{2}$, находим, что $m=3$.

6. Свойства определенного интеграла с переменным верхним пределом и нахождение производной от него

Понятия

30. Определённый интеграл с переменным верхним пределом — это функция вида

$$F(x) = \int_{a}^{x} f(t)dt.$$

Утверждения

8. Свойства определенного интеграла с переменным верхним пределом

$$F(x) = \int_{a}^{x} f(t)dt$$
, где $x \in [a;b]$.

- 1 °. Если функция f интегрируема на отрезке [a;b], то F будет непрерывна на этом же отрезке.
- 2 °. Если функция f непрерывна на отрезке [a;b], то функция F дифференцируема на этом отрезке, причем

$$F'(x) = f(x)$$
.

Cледствие. Если f непрерывна на [a;b], а функции $y = \varphi(x)$, $y = \psi(x)$

дифференцируемы на
$$[a;b]$$
, то $\left(\int\limits_{\varphi(x)}^{\psi(x)}f\left(t\right)dt\right)'=f\left(\psi(x)\right)\cdot\psi'(x)-f\left(\varphi(x)\right)\cdot\varphi'(x)$.

9. Существование первообразной у непрерывной функции

Любая непрерывная на сегменте [a;b] функция f имеет на этом сегменте первообразную. В общем случае, эта первообразная имеет вид

$$F(x) = \int_{a}^{x} f(t)dt + C$$
, где $C \in \square$.

Умения

1. Найти производную от интеграла

$$\int_{0}^{x} e^{t} dt.$$

Решение:

$$\frac{d}{dx}\int_{0}^{x}e^{t}dt=e^{x}.$$

2. Найти производную функции

$$F(x) = \int_{\sqrt{x^3}}^{\ln x} (2t - 1)dt.$$

Решение:

$$F'(x) = \left(\int_{\sqrt{x^3}}^{\ln x} (2t - 1)dt\right)' = \left(\int_{\sqrt{x^3}}^{0} (2t - 1)dt\right)' + \left(\int_{0}^{\ln x} (2t - 1)dt\right)' =$$

$$= \left(\int_{0}^{\ln x} (2t - 1)dt\right)' - \left(\int_{0}^{\sqrt{x^3}} (2t - 1)dt\right)' = \frac{2\ln x - 1}{x} - \frac{3\sqrt{x}\left(2\sqrt{x^3} - 1\right)}{2}.$$

3. Найти производную функции

$$F(x) = \int_{2x}^{x^3} \frac{\cos t dt}{1 + \sin t}.$$

$$F'(x) = \left(\int_{2x}^{x^3} \frac{\cos t dt}{1 + \sin t}\right)' = 3x^2 \frac{\cos(x^3)}{1 + \sin(x^3)} - \frac{2\cos 2x}{1 + \sin 2x}.$$

7. Условия существования и свойства интеграла Стилтьеса

Понятия

31. n-ая интегральная сумма Стилтьеса для функций f и g — это сумма вида

$$\sum_{i=1}^{n} f(\xi_{i}) (g(x_{i}) - g(x_{i-1})),$$

где x_{i-1} , x_i — границы i-го частичного отрезка разбиения $T = \{x_i\}_{i=\overline{0,n}}$ сегмента [a;b] на части, а ξ_i — произвольная точка из частичного отрезка $[x_{i-1};x_i]$.

22. Интеграл Стилтьеса от функции f и g по отрезку [a;b] — это конечный предел I n-ой интегральной суммы Стилтьеса при $\lambda = d(T) \rightarrow 0$, т.е.

$$I = \int_{a}^{b} f(x)d\left(g(x)\right) \stackrel{\text{def}}{=} \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i)\left(g(x_i) - g(x_{i-1})\right),$$

где $\lambda = d(T)$ — диаметр разбиения T отрезка[a;b], а ξ_i — произвольная точка из частичного отрезка $[x_{i-1};x_i]$.

23. Верхняя сумма Дарбу-Стилтьеса (\overline{S}) — это сумма вида

$$\overline{S} = \sum_{i=1}^n M_i (g(x_i) - g(x_{i-1}))$$
, где $M_i = \sup\{f(x) \mid x \in [x_{i-1}; x_i]\}$.

Нижняя сумма Дарбу-Стилтьеса (\underline{S}) — это сумма вида

$$\underline{S} = \sum_{i=1}^{n} m_i (g(x_i) - g(x_{i-1})),$$
 где $m_i = \inf\{f(x) \mid x \in [x_{i-1}; x_i]\}.$

24. Полная вариация функции f на сегменте [a;b] (\bigvee_{a}^{b}) — это супремум множества сумм разностей значений функции f в граничных точках частичных отрезков разбиения $T = \{x_i\}_{i=\overline{0,n}}$ сегмента [a;b], т.е.

$$\bigvee_{b}^{a} f(x) = \sup \left\{ \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \right\},$$

где x_{i-1} , x_i — граничные точки i-го частичного отрезка разбиения $T = \{x_i\}_{i=\overline{0,n}}$ сегмента [a;b].

Утверждения

15. Классы интегрируемых по Стилтьесу функций

- 1. Интеграл Стилтьеса $\int_{a}^{b} f(x)du(x)$ существует, если функция f непрерывна на сегменте [a;b], а функция u возрастает на этом сегменте.
- 2. Интеграл Стилтьеса $\int_{a}^{b} f(x)du(x)$ существует, если выполняются два условия:
 - а) f интегрируема по Риману на сегменте [a, b].
 - б) и удовлетворяет на этом сегменте условию Липшица, т.е.

$$(\forall c \in \Box)(\forall x_1, x_2 \in [a;b]): |u(x_1) - u(x_2)| \le c|x_1 - x_2|.$$

3. Если f интегрируема по Риману на отрезке [a;b], а функция u может быть представлена в виде интеграла с переменным верхним пределом, т.е.

$$u(x) = A + \int_{a}^{x} \varphi(\xi) d\xi$$
,

где $\varphi(\xi)$ — интегрируемая по Риману на отрезке [a;b] функция, то интеграл Стилтьеса $\int\limits_{a}^{b}f(x)du(x)$ существует.

4. В ряде случаев интеграл Стилтьеса можно свести к интегралу Римана по формуле:

$$\int_{a}^{b} f(x)du(x) = \int_{a}^{b} f(x)\varphi(x)dx$$

Если функция u имеет на отрезке [a;b] интегрируемую по Риману производную u'(x), то интеграл Стилтьеса можно свести к интегралу Римана:

$$\int_{a}^{b} f(x)du(x) = \int_{a}^{b} f(x)u'(x)dx.$$

16. Свойства интеграла Римана-Стилтьеса

- 1°. Линейность.
 - а) относительно интегрируемой функции:

$$\int_{a}^{b} (\alpha f_1 \pm \beta f_2) du = \alpha \int_{a}^{b} f_1 du \pm \beta \int_{a}^{b} f_2 du$$

б) относительно интегрирующей функции:

$$\int_{a}^{b} f d[\alpha u_1 \pm \beta u_2] = \alpha \int_{a}^{b} f du_1 \pm \beta \int_{a}^{b} f du_2$$

При условии существования каждого интеграла Стилтьеса правой части.

2°. Пусть a < c < b, тогда

$$\int_{a}^{b} f(x)du(x) = \int_{a}^{c} f(x)du(x) + \int_{c}^{b} f(x)du(x),$$

при условии существования всех трех интегралов.

Заметим, что из существования интегралов правой части равенства еще не следует существование интеграла левой части.

3°. Для интеграла Стилтьеса справедлива формула среднего значения.

$$\left(\exists \mu \in [m;M]\right) : \int_{a}^{b} f(x) du(x) = \mu[u(b) - u(a)],$$

где
$$m = \inf \{f(x) | x \in [a;b] \}$$
, $M = \sup \{f(x) | x \in [a;b] \}$.

24. Критерий интегрируемости по Стилтьесу

Для того чтобы ограниченная на сегменте [a;b] функция f была интегрируема на этом сегменте по возрастающей функции u необходимо и достаточно, чтобы выполнялось условие:

$$(\forall \varepsilon > 0) (\exists T \{x_i\}_{i=\overline{0,n}}) : \overline{S} - \underline{S} < \varepsilon.$$

Умения

1. Оценить интеграл

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\sin x}{\sqrt{1-x^3}}.$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\sin x}{\sqrt{1 - x^3}} = \mu \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\sin x = \mu \sin x \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \mu \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\right)$$

$$\frac{1}{\sqrt{1-(\pi/3)^3}} = \frac{1}{\sqrt{1-\frac{\pi^3}{27}}}; \frac{1}{\sqrt{1-(\pi/4)^3}} = \frac{1}{\sqrt{1-\frac{\pi^3}{64}}} \text{, откуда } \mu \in \left[\frac{1}{\sqrt{1-\frac{\pi^3}{64}}}, \frac{1}{\sqrt{1-\frac{\pi^3}{27}}}\right]$$
 и

$$\frac{1}{\sqrt{1 - \frac{\pi^3}{64}}} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\sin x}{\sqrt{1 - x^3}} \le \frac{1}{\sqrt{1 - \frac{\pi^3}{27}}}.$$

II. Вычисление определенного интеграла

8. С помощью основных свойств и формулы Ньютона-Лейбница

Утверждения

7 Свойства определённого интеграла

11. Формула Ньютона-Лейбница

Если f интегрируема на отрезке [a;b], а F – любая непрерывная первообразная функции f на [a;b], то

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a), \text{ где } F'(x) = f(x).$$

Умения

1. Вычислить

$$\int_{1}^{5} \frac{x^2}{x+2} dx.$$

Решение

$$\int_{1}^{5} \frac{x^{2}}{x+2} dx = \int_{1}^{5} \frac{(x^{2}-4)+4}{x+2} dx = \int_{1}^{5} \frac{(x-2)(x+2)+4}{x+2} dx = \int_{1}^{5} \left(x-2+\frac{4}{x+2}\right) dx =$$

$$= \int_{1}^{5} x dx - \int_{1}^{5} 2 dx + \int_{1}^{5} \frac{4}{x+2} dx = \frac{x^{2}}{2} \Big|_{1}^{5} - 2x \Big|_{1}^{5} + \ln|x+2| \Big|_{1}^{5} = 4 + 4\ln 7 + 4\ln 3.$$

2. Вычислить значение интеграла

$$\int_{0}^{\frac{\pi}{3}} \operatorname{tg} x dx.$$

$$\int_{0}^{\frac{\pi}{3}} \operatorname{tg} x dx = \int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} dx = \int_{0}^{\frac{\pi}{3}} \frac{d \cos x}{\cos x} = \ln \cos x \Big|_{0}^{\frac{\pi}{3}} = \ln \frac{1}{2}.$$

9. С помощью свойств определенного интеграла по симметричному промежутку от четной и нечетной функции

Утверждения

7 Свойства определенного интеграла чётной и нечётной функции

8°. если
$$f$$
 – четная функция, то $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ 9°. если f – нечетная функция, то $\int_{-a}^{a} f(x) dx = 0$

9°. если
$$f$$
 – нечетная функция, то $\int_{-a}^{a} f(x)dx = 0$

Умения

1. Вычислить значение интеграла

$$\int_{4}^{4} x^2 dx.$$

Pешение. Так как x^2 четная функция, то пределы интегрирования можно сменить на 0 и 4, а сам интеграл домножить на 2:

$$\int_{-4}^{4} x^2 dx = 2 \int_{0}^{4} x^2 dx = 2 \frac{x^3}{3} \bigg|_{0}^{4} = \frac{128}{3}.$$

2. Вычислить интеграл

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^2 \arcsin x dx.$$

Решение. Т.к. подынтегральная функция нечетная, то по свойству определенного интеграла, интеграл от нечетной функции по симметричному

промежутку равен нулю:
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^2 \arcsin x dx = 0.$$

3. Верно ли равенство

$$\int_{-\frac{1}{2}}^{\frac{1}{\pi}} x \arcsin x dx = 2 \int_{0}^{\frac{1}{\pi}} x \arcsin x dx.$$

Решение. Данное равенство будут верным тогда и только тогда, когда подынтегральная функция четная (по свойству определенного интеграла об интегрируемости четных функций по симметричному отрезку). Функция $y = x \arcsin x$ – четная функция, следовательно

$$\int_{-\frac{1}{\pi}}^{\frac{1}{\pi}} x \arcsin x dx = 2 \int_{0}^{\frac{1}{\pi}} x \arcsin x dx,$$

т.е. равенство верно.

Также данное тождество можно доказать «напрямую», найдя интегралы левой и правой части (используя метод интегрирования по частям).

10. В случае, когда интегральная функция содержит знаки модуля

Утверждения

7 Свойства определённого интеграла от модуля функции

10°. Если f — функция, принимающая на отрезке [a;b] разные знаки, и $[a;c_1],[c_1;c_2],...,[c_{n-1};c_n],[c_n;b]$ — промежутки знакопостоянства, то

$$\int_{a}^{b} |f(x)| dx = \int_{a}^{c_{1}} \frac{\operatorname{sign}}{x \in [a, c_{1}]} (f(x)) f(x) dx + \int_{c_{1}}^{c_{2}} \frac{\operatorname{sign}}{x \in [c_{1}, c_{2}]} (f(x)) f(x) dx + \dots + \int_{c_{n-1}}^{c_{n}} \frac{\operatorname{sign}}{x \in [c_{n-1}, c_{n}]} (f(x)) f(x) dx + \int_{c_{n}}^{b} \frac{\operatorname{sign}}{x \in [c_{n}, b]} (f(x)) f(x) dx$$

Проще говоря, от модуля под знаком интеграла можно избавиться, расписав этот интеграл на сумму интегралов по промежуткам знакопостоянства подынтегральной функции с учётом знака.

Умения

1. Вычислить

$$\int_{-3}^{5} (|x-3|+|x+2|) dx.$$

Решение. Разобьем интеграл на сумму интегралов и по пределам интегрирования раскроем модули:

$$\int_{-3}^{5} (|x-3|+|x+2|)dx = \int_{3}^{5} (|x-3|+|x+2|)dx + \int_{-2}^{3} (|x-3|+|x+2|)dx + \int_{-3}^{-2} (|x-3|+|x+2|)dx + \int_{-3}^{-2} (|x-3|+|x+2|)dx =$$

$$= \int_{3}^{5} (x-3+x+2)dx + \int_{-2}^{3} (3-x+x+2)dx + \int_{-3}^{-2} (3-x-2-x)dx = (x^{2}-x|)_{3}^{5} + 5x|_{-2}^{3} +$$

$$+(x-x^{2})|_{-3}^{-2} = 14+5+3=22.$$

2. Вычислить

$$\int_{-1}^{1} \left(\left| \frac{x}{2} \right| + 2 \right) dx.$$

Решение:

 $\int\limits_{-1}^{1} \left(\left| \frac{x}{2} \right| + 2 \right) dx$ — интеграл четной функции по симметричному промежутку,

следовательно

$$\int_{-1}^{1} \left(\left| \frac{x}{2} \right| + 2 \right) dx = 2 \int_{0}^{1} \left(\frac{x}{2} + 2 \right) dx = \frac{x^{2}}{2} \Big|_{0}^{1} + 4x \Big|_{0}^{1} = \frac{9}{2}.$$

3. Вычислить интеграл

$$I = \int_{-\pi}^{\pi} \frac{2\cos^2 x - 8x\cos 3x - x^2 \sin x + 4x^3 \cos x + x^4 \cos^2 x}{x^4 + 2} dx.$$

Решение. Сгруппируем четные и нечетные слагаемые в числителе подынтегральной функции и представим интеграл в виде суммы:

$$I = \int_{-\pi}^{\pi} \frac{2\cos^2 x + x^4 \cos^2 x}{x^4 + 2} dx + \int_{-\pi}^{\pi} \frac{-8x\cos 3x - x^2 \sin x + 4x^3 \cos x}{x^4 + 2} dx.$$

Подынтегральная функция второго из данных интегралов нечетная, этот интеграл равен 0.

Вычислим первый интеграл:

$$I = \int_{-\pi}^{\pi} \frac{2\cos^2 x + x^4 \cos^2 x}{x^4 + 2} dx = \int_{-\pi}^{\pi} \frac{(2 + x^4)\cos^2 x}{x^4 + 2} dx = \int_{-\pi}^{\pi} \cos^2 dx = \int_{-\pi}^{\pi} \frac{1 + \cos 2x}{2} dx = \pi.$$
 Таким образом,

$$I = \int_{-\pi}^{\pi} \frac{2\cos^2 x - 8x\cos 3x - x^2 \sin x + 4x^3 \cos x + x^4 \cos^2 x}{x^4 + 2} dx = \pi.$$

11. Интегрирование по частям в определенном интеграле

Утверждения

12. Правила вычисления определенного интеграла

12.2. Интегрирование по частям.

Пусть функции u = u(x), v = v(x) дифференцируемы на [a;b] и существует один из интегралов $\int_a^b u(x)v'(x)dx$ или $\int_a^b v(x)u'(x)dx$, тогда существует и другой, при этом справедливо равенство

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{b}^{a} - \int_{a}^{b} v(x)u'(x)dx,$$

или, что то же самое

$$\int_{a}^{b} u(x) dv(x) = u(x)v(x)\Big|_{b}^{a} - \int_{a}^{b} v(x) du(x).$$

Три группы интегралов, берущихся по частям

Интеграл берется по частям, если

- 1. подынтегральная функция содержит в качестве сомножителя одну из следующих функций: $\ln x$, $\operatorname{arctg} x$, $\operatorname{arccig} x$, \operatorname
- 2. подынтегральное выражение имеет вид: $(ax+b)^n \varphi(x) dx$, где в качестве $\varphi(x)$ могут выступать функции $\sin cx$, $\cos cx$, e^{cx} , $a,b,c \in \square$, $n \in \square$. Правило интегрирования по частям необходимо применить в этом случае n раз. За u принимается $(ax+b)^n$, за dv все остальное.
- 3. подынтегральное выражение имеет вид: $\sin(\ln(x))dx$, $\cos(\ln(x))dx$, $e^{ax}\sin bx dx$, $e^{ax}\cos bx dx$. Правило интегрирования по частям необходимо применить в этом случае два раза. Обозначив исходный интеграл за некоторую неизвестную, получим линейное уравнение относительно этой неизвестной.

Умения

1. Вычислить значение интеграла $\int\limits_0^{\frac{\pi}{2}} x^2 \sin 2x \ dx$.

$$\int_{0}^{\frac{\pi}{2}} x^{2} \sin 2x \, dx = \begin{vmatrix} u = x^{2} & dv = \sin 2x \, dx \\ du = 2x \, dx & v = -\frac{1}{2} \cos 2x \end{vmatrix} = -\frac{1}{2} x^{2} \cos 2x \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} x \cos 2x \, dx =$$

$$= \begin{vmatrix} u = x & dv = \cos 2x \, dx \\ du = dx & v = \frac{1}{2} \sin 2x \end{vmatrix} = -\frac{1}{2} x^{2} \cos 2x \Big|_{0}^{\frac{\pi}{2}} + \frac{1}{2} x \sin 2x \Big|_{0}^{\frac{\pi}{2}} + \frac{1}{4} \cos 2x \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi^{2} - 4}{8}.$$

1. Вычислить интеграл $\int_{2}^{1} \ln x dx$.

Решение:

$$\int_{2}^{1} \ln x dx = -\int_{1}^{2} \ln x dx = \begin{vmatrix} u = \ln x & du = \frac{dx}{x} \\ dv = dx & v = x \end{vmatrix} = -\left(x \ln x \Big|_{1}^{2} - \int_{1}^{2} x \frac{dx}{x}\right) = -2\ln 2 + x \Big|_{1}^{2} = -2\ln 2 + 2 - 1 =$$

$$= -2\ln 2 + 1.$$

2. Вычислить интеграл $\int_{0}^{1} e^{x} \cos x \, dx.$

$$\int_{0}^{1} e^{x} \cos x \, dx = \begin{vmatrix} u = e^{x}, \, du = e^{x} \, dx \\ dv = \cos x \, dx, \, v = \sin x \end{vmatrix} = e^{x} \sin x \Big|_{0}^{1} - \int_{0}^{1} e^{x} \sin x \, dx = \begin{vmatrix} u = e^{x}, \, du = e^{x} \, dx \\ dv = \sin x \, dx, \, v = -\cos x \end{vmatrix} =$$

$$= e^{x} \sin x \Big|_{0}^{1} + e^{x} \cos x \Big|_{0}^{1} - \int_{0}^{1} e^{x} \cos x \, dx.$$

Тогда, интеграл
$$\int_{0}^{1} e^{x} \cos x \, dx$$
 равен $\int_{0}^{1} e^{x} \cos x \, dx = \frac{e^{x} \sin x \Big|_{0}^{1} + e^{x} \cos x \Big|_{0}^{1}}{2} = \frac{e(\sin 1 + \cos 1) - 1}{2}$.

12. Замена переменного в определенном интеграле

Утверждения

12. Правила вычисления определенного интеграла.

12.1. Замена переменной.

Пусть функция y = f(x) непрерывна, а функция $x = \varphi(t)$ удовлетворяет следующим условиям:

- 1) φ взаимнооднозначна, непрерывна и непрерывно дифференцируема на отрезке $[\alpha;\beta];$
- 2) область значений φ содержится в области определения f, т.е. $[\alpha; \beta] \subset [a; b]$;
- 3) $\varphi(\alpha) = a, \varphi(\beta) = b;$

Тогда:

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt,$$

или, что то же самое:

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) d(\varphi(t)).$$

Умения

1. Вычислить

$$I = \int_0^\pi \sin x \sqrt{1 + \cos^2 x} dx.$$

Сделаем замену переменной
$$t = \cos x$$
 и проинтегрируем по частям
$$I = \int_0^\pi \sin x \sqrt{1 + \cos^2 x} dx = \begin{vmatrix} t = \cos x & (\cos x)' = -\sin x \\ x = \arccos t & \arccos \pi = -1 & \arccos 0 = 1 \end{vmatrix} = \int_{-1}^1 \sqrt{1 + t^2} dt = \int_{-1}^1 \sqrt{1 + t^2} dt = \int_{-1}^1 \sqrt{1 + t^2} dt = \ln(t + \sqrt{1 + t^2}) \Big|_{-1}^1 + \int_{-1}^1 t d\sqrt{1 + t^2} = \ln(t + \sqrt{1 + t^2}) \Big|_{-1}^1 + \int_{-1}^1 t d\sqrt{1 + t^2} = \ln(t + \sqrt{1 + t^2}) \Big|_{-1}^1 + \int_{-1}^1 t d\sqrt{1 + t^2} dt = 2\ln(1 + \sqrt{2}) + 2\sqrt{2} - I$$

$$I = \ln(1 + \sqrt{2}) + \sqrt{2}.$$

2. Вычислить

$$\int_{0}^{1} \sqrt{1-x^2} dx.$$

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \begin{vmatrix} x = \sin t \Rightarrow & \sqrt{1 - x^{2}} = \cos t \\ x = 0 \Rightarrow t = 0 \\ x = 1 \Rightarrow t = \frac{\pi}{2} \end{vmatrix} dx = \cos t dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{1}{2} \left(t + \frac{1}{2} \sin t \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}$$

III. Геометрические и физические приложения определенного интеграла

13. Вычисление площади криволинейной трапеции

Понятия

10, 12. Верхняя площадь фигуры Φ ($\mu^*(\Phi)$) – это нижняя грань множества площадей многоугольников, содержащих эту фигуру (P^*) .т.е. $\mu^*(\Phi) = \min \left\{ \mu(P^*) \middle| P^* \supseteq \Phi \right\}.$

Нижняя площадь фигуры Φ ($\mu_*(\Phi)$) — это верхняя грань множества площадей многоугольников, содержащихся в этой фигуре (P_*).т.е. $\mu_*(\Phi) = \max \left\{ \mu(P_*) \middle| P_* \subseteq \Phi \right\}$. Если верхняя и нижняя площади фигуры совпадают, то их общее значение называют **площадью фигуры** Φ , саму фигуру при этом называют квадрируемой.

- 11. Область это открытое связное множество.
- **13. Криволинейная трапеция** это фигура, ограниченная сверху графиком непрерывной неотрицательной функции, снизу осью абсцисс, а с боков ординатами x = a и x = b.

Утверждения

23. Геометрический смысл определённого интеграла

Геометрически определенный интеграл $\int_a^b f(x)dx$ от непрерывной и неотрицательной на отрезке [a;b] функции f представляет собой площадь криволинейной трапеции, ограниченной прямыми x=a, x=b, y=0 и графиком функции y=f(x).

13.2. Аксиомы площади:

- Площадь неотрицательна;
- Площадь обладает свойством аддитивности:

- Площадь не зависит от параллельного переноса.
- Если фигура Φ_1 содержится в фигуре Φ_2 , то $\mu(\Phi_1) \leq \mu(\Phi_2)$.

13.2.1. Теорема о нахождении площади криволинейной трапеции

Площадь фигуры, ограниченной прямыми x=a и x=b, непрерывными на отрезке [a;b] кривыми $y=f_1(x)$ и $y=f_2(x)$ (пусть, для определенности, $(\forall x\in [a;b]): (f_1(x)\leq f_2(x))$, т.е. график f_2 на отрезке [a;b] находится выше чем график функции f_1), равна

$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx.$$

В частности, площадь криволинейной трапеции, ограниченной на отрезке [a, b] функцией y = f(x), находится по формуле:

$$S = \int_{a}^{b} f(x) dx.$$

Если фигура ограничена кривой, заданной параметрически: $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ где $t \in [0,T]$, то площадь такой фигуры вычисляется по формуле:

$$S = \int_{0}^{T} x(t)y'(t)dt,$$

или

$$S = -\int_{0}^{T} y(t)x'(t)dt.$$

Умения

1. Найти площадь, образованную одной аркой синусоиды. Решение:

$$S = \int_{0}^{\pi} \sin x dx = -\cos x \Big|_{0}^{\pi} = 2.$$

2. Найти площадь криволинейной трапеции, ограниченной графиком функции $y = \frac{1}{x}$, на отрезке $x \in [1; 5]$.

$$S = \int_{1}^{5} \frac{dx}{x} = \ln x \Big|_{1}^{5} = \ln 5 - \ln 1 = \ln 5.$$

3. Найти площадь фигуры, ограниченной кривыми

$$y = 2^{x-1}, x = 3 \text{ M } y = \frac{1}{x}.$$

Решение:

Построим данную фигуру.

Составим интеграл:

$$\int_{1}^{3} \left(2^{x-1} - \frac{1}{x} \right) dx = \frac{2^{x-1}}{\ln 2} \Big|_{1}^{3} - \ln x \Big|_{1}^{3} = \frac{3}{\ln 2} - \ln 3.$$

14. Вычисление площади криволинейного сектора

Понятия

32. Криволинейный сектор – это множество точке плоскости, ограниченных двумя лучами $\varphi = \alpha$, $\varphi = \beta$ и графиком непрерывной кривой $r = r(\varphi)$, где $\varphi \in [\alpha; \beta]$.

Криволинейный сектор

Утверждения

13.2.2. Теорема о нахождении площади криволинейного сектора

В полярных координатах площадь сектора, ограниченного двумя лучами $\varphi_1 = \alpha$, $\varphi_2 = \beta$ и непрерывной прямой $r = r(\varphi)$, равна

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi.$$

Если фигура в полярных координатах ограничена кривой, заданной уравнением $\varphi = \varphi(r)$, $r \in [r_1, r_2]$, то площадь данной фигуры равна:

$$S = \frac{1}{2} \int_{\eta}^{r_2} r^2 \varphi'(r) dr.$$

Умения

1. Найти площадь фигуры, ограниченной кривой $r = \sqrt{2}(1 + \cos \varphi)$ при $\varphi \in [0; \pi]$. Решение:

$$S = 2 \cdot \frac{1}{2} \int_{0}^{\pi} (1 + \cos \varphi)^{2} d\varphi = \int_{0}^{\pi} \left(1 + 2\cos \varphi + \frac{1 + \cos 2\varphi}{2} \right) d\varphi = \left(\varphi + 2\sin \varphi + \frac{1}{2} \left(\varphi + \frac{1}{2} \sin 2\varphi \right) \right) \Big|_{0}^{\pi} = \frac{3\pi}{2}$$

2. Найти площадь фигуры, ограниченной кривой $r^2 = a^2 \cos(2\varphi)$ (a > 0) и лучами $\varphi = 0$, $\varphi = \frac{\pi}{4}$.

Peшение. Заданная функция непрерывна на отрезке $\left[0,\frac{\pi}{4}\right]$ и площадь этой

фигуры будет равна
$$S = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} a^2 \cos(2\varphi) d\varphi = \frac{1}{4} a^2 \sin(2\varphi) \Big|_{0}^{\frac{\pi}{4}} = \frac{1}{4} a^2.$$

15. Вычисление длины дуги плоской кривой в случае параметрического задания кривой

Понятия

14. Множество меры нуль — это множество X , для которого выполняется условие

$$(\forall \varepsilon > 0)(\exists P$$
 – многоугольник $|P \supset X)$: $\mu(P) < \varepsilon$.

15.1. Параметрическое задание кривой – это задание кривой в виде:

$$\Gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases},$$

где $t \in [\alpha; \beta]$.

16. Натуральное уравнение кривой – это уравнение кривой вида

$$\begin{cases} y = y(l) \\ x = x(l) \end{cases}$$

где l — натуральный параметр.

33. Ломаная называется **вписанной** в кривую и отвечающей определённому разбиению T отрезка $[\alpha; \beta]$, если она проведена через точки $M_0, M_1, ..., M_n$ данной кривой, соответствующие разбиению отрезка $[\alpha; \beta]$ точками $\alpha = t_0 < t_1 < ... < t_n = \beta$.

Ломаная, вписанная в кривую

Пусть кривая Г задана параметрически

$$\Gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

где $t \in [\alpha; \beta]$, а функции $x = \varphi(t)$, $y = \psi(t)$ непрерывны на $[\alpha; \beta]$, $T = \{t_i\}_{i = \overline{0,n}}$ – любое разбиение отрезка $[\alpha; \beta]$ на части, $M_i(x(t_i); y(t_i))$, $i = \overline{1,n}$, тогда длина этой ломаной равна

$$L(T) = \sum_{i=1}^{n} \sqrt{((\varphi(t_i) - \varphi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1}))^2}.$$

17. Длина дуги кривой — это верхняя грань множества длин вписанных в данную кривую ломаных, т.е.

$$l = \sup \left\{ l\left(T\right) \mid T = \left\{t_i\right\}_{i=\overline{0,n}} \right\}.$$

18. Спрямляемая кривая — это кривая, для которой множество длин вписанных в неё ломаных, отвечающих всевозможным разбиениям T отрезка $[\alpha; \beta]$, является ограниченным сверху.

Утверждения

13.1. Длина дуги кривой

Длину кривой можно определить тогда и только тогда, когда данная кривая является спрямляемой, т.е. множество длин всевозможных ломаных, полученных в результате разбиения $T\{t_i\}_{i=0,n}$ данной кривой, ограничено сверху.

13.1.1. Если кривая задана параметрически, т.е. $L = \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, причем функции φ и ψ дифференцируемы на некотором отрезке $[\alpha; \beta]$, то ее длина вычисляется по формуле:

$$L = \int_{\alpha}^{\beta} \sqrt{\varphi'^2(t) + \psi'^2(t)} dt.$$

Умения

1. Вычислить длину астроиды $x = a\cos^3 t$, $y = a\sin^3 t$.

Решение. В силу симметричности астроиды относительно координатных осей, ее длина равна длине ее части, лежащей на отрезке $\left[0; \frac{\pi}{2}\right]$, увеличенной в четыре раза.

$$x' = -3a\cos^2 t \sin t \quad y' = 3a\sin^2 t \cos t$$
$$(x')^2 = 9a^2 \cos^4 t \sin^2 t$$

$$(y')^2 = 9a^2 \sin^4 t \cos^2 t$$

$$l = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{9a^{2} \cos^{4} t \sin^{2} t + 9a^{2} \sin^{4} t \cos^{2} t} dt = 6a \int_{0}^{\frac{\pi}{2}} \sin 2t dt = -\frac{1}{2} 6a \cos 2t \Big|_{0}^{\pi/2} = 6a.$$

2. Вычислить длину дуги кривой, заданной параметрически

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$

0 \le t \le 2\pi.

$$x' = a - a\cos t$$
, тогда $x'^2 = a^2 - 2a^2\cos t + a^2\cos^2 t$,

$$y' = a \sin t$$
, тогда $y'^2 = a^2 \sin^2 t$.

$$L = \int_{0}^{2\pi} \sqrt{a^2 - 2a^2 \cos t + a^2 \cos^2 t + a^2 \sin^2 t} dt = a \int_{0}^{2\pi} \sqrt{2 - 2 \cos t} dt = 2a \int_{0}^{2\pi} \sqrt{\sin^2 \frac{t}{2}} dt = 2a \int_{0}^{2\pi} |\sin t| dt = a \int_{0}^{2\pi} \sqrt{2 - 2 \cos t} dt$$

$$=4a\int_{0}^{\pi}\sin tdt = 4a\cos t\Big|_{0}^{\pi} = 4a + 4a = 8a$$

16. Вычисление длины дуги плоской кривой в случае явного задания кривой

Понятия

15.2. Явное задание кривой — это задание кривой в аналитическом виде в декартовых координатах: $\Gamma \colon y = f(x)$.

Утверждения

13.1.2. Теорема о нахождении длины дуги кривой в случае явного задания

Если кривая задана уравнением y = f(x), $x \in [a;b]$, где f – непрерывно дифференцируема на [a;b], то

$$L = \int_{a}^{b} \sqrt{1 + f'^{2}(x)} dx.$$

Умения

1. Вычислить длину дуги $y = x^{\frac{3}{2}}$, $0 \le x \le 4$.

Решение.

$$l = \int_{0}^{4} \sqrt{1 + \left(\frac{3}{2}x^{\frac{1}{2}}\right)^{2}} dx = \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} dx = \frac{8}{27} \sqrt{\left(1 + \frac{9}{4}x\right)^{3}} \Big|_{0}^{4} = \frac{8}{27} \left(10\sqrt{10} - 1\right).$$

2. Найти длину участка кривой $y = \ln(1-x^2)$, если $x \in [0, 0.5]$.

Решение.

Применяем формулу

$$l = \int_{0}^{0.5} \sqrt{1 + \left(\frac{-2x}{1 - x^2}\right)^2} dx = \int_{0}^{0.5} \sqrt{\frac{1 - 2x^2 + x^4 + 4x^2}{(1 - x^2)^2}} dx = \int_{0}^{0.5} \frac{1 + x^2}{1 - x^2} dx = \int_{0}^{0.5} \left(\frac{2}{1 - x^2} - 1\right) dx =$$

$$= -2 \int_{0}^{0.5} \frac{dx}{x^2 - 1} - \int_{0}^{0.5} dx = -\ln\left|\frac{x - 1}{x + 1}\right|_{0}^{0.5} - x\Big|_{0}^{0.5} = \ln 3 - 0.5.$$

17. Вычисление длины дуги плоской кривой в случае полярного задания кривой

Понятия

15.3. Полярное задание кривой – это задание кривой в полярных координатах: $r = r(\varphi), \ r \ge 0, \ 0 \le \varphi \le 2\pi$

Связь декартовых и полярных координат:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \varphi = \operatorname{arctg} \frac{y}{x} \end{cases} \begin{cases} x = r \cos \varphi & r \ge 0 \\ y = r \sin \varphi & 0 \le \varphi \le 2\pi \end{cases}$$

Утверждения

13.1.3. Теорема о нахождении длины дуги кривой в случае полярного задания

Если кривая задана в полярных координатах:

$$r = r(\varphi), (\alpha \le \varphi \le \beta)$$
и $r(\varphi) \in C[\alpha; \beta]$, то

$$L = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi.$$

Если кривая задана в полярных координатах уравнением $\varphi = \varphi(r)$, при $r \in [\alpha; \beta]$, то

$$L = \int_{\alpha}^{\beta} \sqrt{1 + (r\varphi'(r))^2} dr.$$

Умения

1. Вычислить длину дуги, заданной уравнением $r = a \varphi$, где $0 \le \varphi \le 2\pi$ (спираль Архимеда).

Решение:

$$l = \int_{0}^{2\pi} \sqrt{a^{2} \varphi^{2} + a^{2}} d\varphi = a \int_{0}^{2\pi} \sqrt{\varphi^{2} + 1} d\varphi = a \left(\frac{\varphi}{2} \sqrt{\varphi^{2} + 1} + \frac{1}{2} \ln \left| \varphi + \sqrt{\varphi^{2} + 1} \right| \right) \Big|_{0}^{2\pi} =$$

$$= \pi a \sqrt{1 + 4\pi^{2}} + \frac{a}{2} \ln \left(2\pi + \sqrt{1 + 4\pi^{2}} \right).$$

2. Найти длину дуги заданной кривой $r = a(1 + \cos \varphi)$, где a > 0.

$$l = 2\int_{0}^{\pi} \sqrt{a^{2}(1+\cos\varphi)^{2} + a^{2}\sin^{2}\varphi} d\varphi = 2a\int_{0}^{\pi} \sqrt{2+2\cos\varphi} d\varphi = 2\sqrt{2}a\int_{0}^{\pi} \sqrt{1+\cos\varphi} = 2\sqrt{2}a\int_{0}^{\pi} \sqrt{2\cos^{2}\frac{\varphi}{2}} d\varphi = 4a\int_{0}^{\pi}\cos\frac{\varphi}{2} d\varphi = 8a\sin\frac{\varphi}{2}\Big|_{0}^{\pi} = 8a.$$

18. Вычисление длины дуги плоской кривой и площади плоской фигуры в случае полярного задания кривой в виде $\phi = \phi(r)$

Понятия

15.3. Полярное задание кривой — это задание кривой в полярных координатах: $r = r(\varphi), \ r \ge 0, \ 0 \le \varphi \le 2\pi$

Связь декартовых и полярных координат:

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \varphi = \arctan \frac{y}{x} \end{cases} \begin{cases} x = r \cos \varphi & r \ge 0 \\ y = r \sin \varphi & 0 \le \varphi \le 2\pi \end{cases}$$

Утверждения

3.1.3. Теорема о нахождении длины дуги кривой в случае полярного задания

Если кривая задана в полярных координатах: $r=r(\varphi)$, $(\alpha \le \varphi \le \beta)$ и $r(\varphi) \in C[\alpha,\beta]$, то

$$L = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi.$$

Если кривая задана в полярных координатах уравнением $\, \varphi = \varphi(r) \, , \,$ при $\, r \in [\alpha, \beta] \, , \,$ то

$$L = \int_{\alpha}^{\beta} \sqrt{1 + (r\varphi'(r))^2} dr.$$

Умения

1. Найти длину дуги кривой заданной в виде $\varphi = \frac{1}{2} \left(r + \frac{1}{r} \right)$, где $1 \le r \le 3$.

$$l = \int_{1}^{3} \sqrt{1 + \left(r\left(\frac{1}{2} - \frac{1}{2 \cdot r^{2}}\right)\right)^{2}} dr = \int_{1}^{3} \sqrt{1 + \left(\frac{r}{2} - \frac{1}{2 \cdot r}\right)^{2}} dr = \int_{1}^{3} \sqrt{\frac{1}{2} + \frac{r^{2}}{4} + \frac{1}{4r^{2}}} dr = \int_{1}^{3} \sqrt{\frac{\left(r^{2} + 1\right)^{2}}{4r^{2}}} dr = \frac{1}{2} \int_{1}^{3} \frac{r^{2} + 1}{r} dr = \frac{1}{2} \int_{1}^{3} \left(r + \frac{1}{r}\right) dr = \frac{1}{2} \left(\frac{r^{2}}{2} + \ln|r|\right) \Big|_{1}^{3} = \frac{1}{2} \left(\frac{9}{2} + \ln 3 - \frac{1}{2} - \ln 1\right) = 2 + \frac{1}{2} \ln 3.$$

19. Вычисление площади поверхности вращения

Понятия

19. Поверхность вращения — это поверхность, образованная вращением плоской непрерывной кривой вокруг фиксированной прямой (оси), лежащей в её плоскости.

34. Пусть y = f(x) — непрерывная на отрезке [a;b] функция, $T = \{x_i\}_{i=\overline{0,n}}$ — любое разбиение этого отрезка, $\lambda = d(T)$ — диаметр данного разбиения, $A_i(x_i; f(x_i))$, $l_i = (\overline{A_{i-1}; A_i})$ — длина звена $[A_{i-1}; A_i]$. Тогда **площадью поверхности вращения** называют конечный предел суммы площадей боковых поверхностей усечённых конусов, вписанных в данную поверхность, отвечающих разбиению $T(P_T)$.

$$P = \lim_{\lambda \to 0} P_T ,$$

где

$$P_{T} = \pi \sum_{i=1}^{n} (f(x_{i-1}) + f(x_{i})) l_{i}.$$

$$A_{0}$$

$$A_{i-1}$$

$$A_{i}$$

$$X_{0} = a$$

$$X_{i-1}$$

$$X_{i} = b$$

Утверждения

13.3. Теорема о нахождение площади поверхности вращения

Если тело получено вращением графика непрерывной гладкой на отрезке [a;b] функции y = f(x) вокруг оси Ox, то площадь поверхности вращения находится по формуле:

$$S=2\pi\int_{a}^{b} f(x)\sqrt{1+f'^{2}(x)}dx.$$

Умения

1. Найти площадь поверхности вращения, полученной вращением вокруг оси Ox одной арки синусоиды $y = \sin x$.

Решение:

$$S = 2\pi \int_{0}^{\pi} \sin x \sqrt{1 + \cos^2 x} dx.$$

Сделаем замену переменной $t = \cos x$ и проинтегрируем по частям

$$I = \int_{0}^{\pi} \sin x \sqrt{1 + \cos^{2} x} dx = \begin{vmatrix} t = \cos x & (\cos x)^{7} = -\sin x \\ x = \arccos t & \arccos \pi = -1 & \arccos 0 = 1 \end{vmatrix} = \int_{-1}^{1} \sqrt{1 + t^{2}} dt =$$

$$\int_{-1}^{1} \frac{1 + t^{2}}{\sqrt{1 + t^{2}}} dt = \int_{-1}^{1} \frac{dt}{\sqrt{1 + t^{2}}} + \int_{-1}^{1} t \frac{t dt}{\sqrt{1 + t^{2}}} = \ln\left(t + \sqrt{1 + t^{2}}\right)\Big|_{-1}^{1} + \int_{-1}^{1} t d\sqrt{1 + t^{2}} =$$

$$= \ln\frac{\sqrt{2} + 1}{\sqrt{2} - 1} + t\sqrt{1 + t^{2}}\Big|_{-1}^{1} - \int_{-1}^{1} \sqrt{1 + t^{2}} dt = 2\ln\left(1 + \sqrt{2}\right) + 2\sqrt{2} - I$$

$$I = \ln\left(1 + \sqrt{2}\right) + \sqrt{2}$$

$$S = 2\pi \int_{-1}^{\pi} \sin x \sqrt{1 + \cos^{2} x} dx = 2\pi \left(\ln(1 + \sqrt{2}) + \sqrt{2}\right).$$

20. Вычисление объема тела вращения

Понятия

20, 21. Верхний объём тела (\overline{V}) — это нижняя грань множества объёмов многогранников, содержащих это тело.

Нижний объём тела (\underline{V}) — это верхняя грань множества объёмов многогранников, содержащихся в этом теле.

Если верхний и нижний объемы совпадают, то их общее значение называют объемом тела, т.е. $\overline{V} = V = V$. Само тело при этом называют кубируемым.

Утверждения

13.4. Теоремы о нахождение объемов тел

Если заданное тело кубируемо, и S = S(x) – площадь сечения тела плоскостью, перпендикулярной оси Ox в точке x, где $x \in [a;b]$, то

$$V = \int_{a}^{b} S(x) dx.$$

Объем тела, образованного вращением вокруг оси Ox криволинейной трапеции, заданной непрерывной, неотрицательной на отрезке [a;b] функцией f, находится по формуле:

$$V = \pi \int_{a}^{b} f^{2}(x) dx.$$

Объём тела, образованного вращением вокруг оси Ox непрерывных неотрицательных на отрезке [a;b] функций $y=f\left(x\right)$ и $y=g\left(x\right)$ (пусть для определенности $\left(\forall x\in \left[a;b\right]\right):f\left(x\right)\geq g\left(x\right)$) вычисляется по формуле:

$$V = \int_{a}^{b} \left(f^{2}(x) - g^{2}(x) \right) dx.$$

Тело, полученное вращением кривой вокруг оси Ох

Объем тела, образованного вращением вокруг оси Oy плоской фигуры, ограниченной по Ox прямыми x = a и x = b, по Oy прямой y = 0 и непрерывной на отрезке [a, b] функцией y = f(x), находится по формуле:

$$V_{y} = 2\pi \int_{a}^{b} x f(x) dx.$$

Объем тела, образованного вращением вокруг полярной оси плоской фигуры $r = r(\varphi)$, $\varphi \in [0; \pi]$ вычисляется по формуле:

$$V = \frac{2}{3}\pi \int_{\alpha}^{\beta} r^{3}(\varphi) \sin \varphi \, d\varphi.$$

Умения

1. Найти объем тела, полученного вращением вокруг оси Ox одной арки синусоиды $y = \sin x$.

Решение:

$$V = \pi \int_{0}^{\pi} \sin^{2} x dx = \frac{\pi}{2} \int_{0}^{\pi} dx - \frac{\pi}{2} \int_{0}^{\pi} \cos 2x dx = \frac{\pi^{2}}{2}.$$

2. Найти объем тела, полученного вращением вокруг оси Ox плоской фигуры, ограниченной графиками функций $y = x^2 - 2x + 1$ и y = 2x - 1 на промежутке [1;3].

Решение. Т.к. на промежутке [1;3] график функции y = 2x - 1 находится выше графика функции $y = x^2 - 2x + 1$, то объем искомого тела будет равен

$$\int_{1}^{3} \left((2x-1)^{2} - \left(x^{2} - 2x + 1 \right)^{2} \right) dx = \int_{1}^{3} \left(-x^{4} + 4x^{3} - 2x^{2} \right) dx = \left(-\frac{x^{5}}{5} + x^{4} - \frac{2}{3}x^{3} \right) \Big|_{1}^{3} = \frac{214}{15}.$$

3.

Найти объем конуса (или что то же самое – объем вращения образующей конуса).

$$V = \pi \int_{0}^{h} f^{2}(x) dx = \pi \int_{0}^{h} \left(x \frac{r}{h} \right)^{2} dx = \frac{\pi r}{h} \frac{x^{3}}{3} \Big|_{0}^{h} = \frac{\pi r^{2}}{3h}$$

21. Вычисление работы силы

Понятия

35. Работа силы — физическая скалярная величина, мера механического действия силы при перемещении точки ее приложения.

Утверждения

14.1. Теорема о нахождение работы силы

Пусть s_0 — начальное положение материальной точки M, а s_1 — ее конечное положение. Тогда каждому значению S из промежутка $[s_0;s_1]$ соответствует определенное значение непрерывной силы F(S) по перемещению материальной точки из положения s_0 в s_1 . Тогда работа находится по формуле:

$$A = \int_{s_0}^{s_1} F(s) ds.$$

Умения

6 Нахождение работы силы

Пусть под действием некоторой силы F материальная точка (M) проходит путь S. Из школьного курса механики известно, что работа силы (A) находится по формуле: A = FS. Однако на практике величина F не остается постоянной, а непрерывно меняется. Поэтому работа силы F на промежутке $[s_0;s]$ выражается через определенный интеграл.

Пусть s_0 — начальное положение материальной точки M, а s — ее конечное положение. Тогда каждому значению S из промежутка $[s_0;s]$ соответствует определенное значение величины F и ее, следовательно, можно представить как функцию от S. Тогда работа находится по формуле:

$$A = \int_{s_0}^{s} F(s) ds.$$

1. Найти работу, совершаемую грузовиком при перевозке груза, если т-масса груза 2 т S-длина пути 5 км.

Решение:

 $F(S) = F_T \cdot S$; $F_T = m \cdot g$ (сила тяжести);

 $g = 9.8 \text{ KF/(M/c)}^2$;

$$F(S) = m \cdot g \cdot S$$
;

$$A = \int_{0}^{5000} F(S)dS = mg \cdot \frac{S^2}{2} \bigg|_{0}^{5000} = 2 \cdot 10^3 \cdot 9, 8 \cdot 125 \cdot 10^5 = 240, 2 \cdot 10^9$$
 Дж.

2. Какую работу нужно затратить, чтобы растянуть пружину на 5 сантиметров, если сила в 100 H растягивает эту пружину на 1 сантиметр?

Решение. По закону Гука упругая сила, растягивающая пружину, пропорциональна этому растяжению x, т.е. F = kx, где k — коэффициент пропорциональности. Согласно условию задачи, сила F = 100 Н растягивает пружину на x = 0,01 метра, следовательно,

$$100 = k \cdot 0,01 \Longrightarrow k = 10000 \Longrightarrow F = 10000x$$
.

Найдём работу этой силы:
$$A = \int_{0}^{0.05} 10000 x dx = 5000 x^2 \Big|_{0}^{0.05} = 12,5$$
 (Дж).

22. Вычисление силы давления

Понятия

36. Давление — физическая скалярная величина, равная отношению перпендикулярной составляющей силы, равномерно распределенной по поверхности тела к площади этой поверхности.

Утверждения

14.2. Теорема о вычисление силы давления

Выберем некоторую ось. Пусть давление P меняется как непрерывная функция P = P(x), где x — расстояние от некоторой фиксированной на оси точки. Пусть при этом начальному положению будет соответствовать x = a, а конечному — x = a. Тогда сила давления будет вычисляться по формуле:

$$F = \int_{a}^{b} P(x) \cdot ds,$$

где s — площадь, зависящая от x, на которую давит сила.

Умения

1. Найти силу давления воды на вертикальную стенку, имеющую форму трапеции, которая находится под водой, если а-нижнее основание трапеции 10 м

b- верхнее основание трапеции 6 м

h-высота трапеции 5 м

с-уровень погружения 20 м

Решение. Пусть x — высота бесконечно малого прямоугольника.

Пусть l — половина длины нижнего основания бесконечно малого прямоугольника. Пусть l_* — длина нижней стороны треугольника, отсеченного высотой бесконечно малого прямоугольника.

Пусть S — площадь бесконечно малого прямоугольника.

Из подобия заключаем, что

$$\frac{x}{5} = \frac{l_*}{2} \quad l = \frac{2x}{5} + 3 \quad 2l = \frac{4x}{5} + 6$$
$$S = x \cdot \left(\frac{4x}{5} + 6\right) = \frac{4x^2}{5} + 6x$$

$$P = \int_{0}^{5} \left(\frac{4x}{5} + 6\right)(x + 15)dx = \int_{0}^{5} \left(\frac{4x^{2}}{5} + 18x + 90\right)dx = \frac{4x^{3}}{15} + 9x^{2} + 90x\Big|_{0}^{5} = 708\frac{1}{3}.$$

23. Вычисление статического момента плоских дуг и фигур

Понятия

37. Статический момент материальной точки массы m с координатами x и y относительно оси — это произведение массы этой точки на соответствующую координату.

Утверждения

14.3. Теорема о нахождение статических моментов

Рассмотрим плоскую фигуру, ограниченную сверху графиком непрерывной на отрезке $[a,\ b]$ функции f. Подразумевая, что масса любой части данной фигуры измеряется ее площадью (т.е. для вычислений не нужно учитывать плотность), определим статические моменты K_{ν} и K_{ν} относительно осей координат.

$$K_{x} = \frac{1}{2} \int_{a}^{b} f^{2}(x) dx;$$
$$K_{y} = \int_{a}^{b} x f(x) dx.$$

Умения

1. Найти статический момент треугольной пластинки, где

b – основание треугольника

h – высота треугольника

Решение:

Пусть l – половина основания бесконечно малого прямоугольника.

Пусть x — высота бесконечно малого прямоугольника.

Пусть S — площадь бесконечно малого прямоугольника.

$$\frac{h-x}{h} = \frac{l}{b}$$

$$S = b\left(1 - \frac{x}{h}\right)$$

$$M = \int_{0}^{h} xb\left(1 - \frac{x}{h}\right)dx = b\int_{0}^{h} \left(x - \frac{x^{2}}{h}\right)dx = b\left(\frac{x^{2}}{2}\Big|_{0}^{h} - \frac{x^{3}}{3h}\Big|_{0}^{h}\right) = \frac{bh^{2}}{2} - \frac{h^{2}}{3}.$$

24. Вычисление координат центра тяжести

Понятия

38. Центр тяжести кривой (фигуры) — это точка плоскости, обладающая таким свойством, что если в неё поместить материальную точку массы, равной массе кривой (фигуры), то эта точка и данная кривая (фигура) относительно оси абсцисс и оси ординат будут иметь одинаковые статические моменты.

Утверждения

14.4.1. Теорема о вычислении координат центра тяжести плоской дуги

Найдем координаты $(x_0; y_0)$ центра тяжести фигуры. Пусть P – площадь (она же масса) заданной фигуры. Тогда:

$$x_0 = \frac{K_y}{P} = \frac{\int_a^b x f(x) dx}{P};$$

$$y_0 = \frac{K_x}{P} = \frac{1}{2} \int_a^b f^2(x) dx$$

14.4.2. Теорема о вычислении координат центра тяжести плоской фигуры

Координаты центра тяжести плоской кривой y = f(x) на отрезке [a;b] находятся по формулам

$$x_0 = \frac{1}{L} \int_a^b x dL$$
$$y_0 = \frac{1}{L} \int_a^b y dL,$$

где L - длина дуги $dL = \sqrt{1 + {y'}^2(x)} dx$.

Умения

1. Найти координаты центра тяжести дуги плоской кривой $f(x) = x^2$ на промежутке [0;4].

$$L = \int_{0}^{4} \sqrt{1 + 4x^{2}} dx = 2 \left(x \sqrt{1 + 4x^{2}} + \frac{1}{2} \ln \left| x + \sqrt{1 + 4x^{2}} \right| \right)_{0}^{4} = 2 \left(4 \sqrt{17} + \frac{1}{2} \ln \left(4 + \sqrt{17} \right) \right)$$

$$M_{y} = \int_{0}^{4} x \sqrt{1 + 4x^{2}} dx = \frac{1}{8} \int_{0}^{4} \sqrt{1 + 4x^{2}} d4x^{2} = \frac{1}{48} \sqrt{\left(1 + 4x^{2} \right)^{3}} \right|_{0}^{4} = \frac{1}{48} \left(65^{\frac{3}{2}} - 1 \right)$$

$$M_{x} = \int_{0}^{4} x^{2} \sqrt{1 + 4x^{2}} dx = \frac{1}{16} \left(\frac{x}{4} (8x^{2} + 1) \sqrt{1 + 4x^{2}} - \frac{1}{8} \ln \left| x + \sqrt{1 + 4x^{2}} \right| \right)_{0}^{4} = \frac{1}{16} \left(33\sqrt{65} - \frac{1}{8} \ln \left(4 + \sqrt{65} \right) \right)$$

$$x = \frac{M_y}{L} = \frac{\frac{1}{48}(65^{\frac{3}{2}} - 1)}{2\left(4\sqrt{17} + \frac{1}{2}\ln\left(4 + \sqrt{17}\right)\right)}$$
$$y = \frac{M_x}{L} = \frac{\frac{1}{16}\left(33\sqrt{65} - \frac{1}{8}\ln\left(4 + \sqrt{65}\right)\right)}{2\left(4\sqrt{17} + \frac{1}{2}\ln\left(4 + \sqrt{17}\right)\right)}.$$

2. Найти ординату центра тяжести однородного полукруга $x + y \le R$, $y \ge 0$, плотность которого равна 1.

Решение. В силу симметрии данного круга относительно оси *Oy* $x_c = 0$.

Площадь полукруга равна $\frac{\pi R^2}{2}$.

$$y_c = \frac{S_x}{\rho S} = \frac{S_x}{S}.$$

Найдём S_r :

$$S_{x} = \frac{1}{2} \int_{-R}^{R} \left(\sqrt{R^{2} - x^{2}} \right)^{2} dx = \frac{1}{2} \left(R^{2} x - \frac{x^{3}}{3} \right) \Big|_{-R}^{R} = \frac{1}{2} \left(R^{3} + R^{3} - \frac{R^{3}}{3} - \frac{R^{3}}{3} \right) = \frac{2}{3} R^{3}.$$

$$y_{c} = \frac{2R^{3}}{3 \frac{\pi R^{3}}{2}} = \frac{3R}{4\pi}.$$

Следовательно, координаты цента тяжести $\left(0; \frac{4R}{3\pi}\right)$.

25. Вычисление момента инерции плоских дуг и фигур

Понятия

39. Момент инерции материальной точки массы m с координатами x и y относительно оси — это произведение массы этой точки на квадрат соответствующей координаты.

Утверждения

14.5.1. Теорема о вычислении момента инерции плоской дуги

Пусть на спрямляемой плоской кривой L длины l распределена масса с плотностью $\rho(s)$, являющаяся функцией длины дуги s. Моменты инерции кривой относительно оси Ox и Oy вычисляются по следующим формулам:

$$l_x = \int_0^l y^2(s) \rho(s) ds$$
$$l_y = \int_0^l x^2(s) \rho(s) ds.$$

14.5.2. Теорема о вычислении момента инерции плоской фигуры

Пусть плоская фигура Φ задана неравенствами $y_1 \le y \le y_2$, $a \le x \le b$, где $y_1(x)$, $y_2(x)$ — непрерывные на [a;b] функции. Пусть на Φ распределена масса с плотностью $\rho(s)$. Моменты инерции фигуры относительно оси Ox и Oy вычисляются по следующим формулам:

$$I_{x} = \frac{1}{3} \int_{a}^{b} (y_{2}^{3}(x) - y_{1}^{3}(x)) \rho(x) dx$$
$$I_{y} = \int_{a}^{b} x^{2} (y_{2}^{3}(x) - y_{1}^{3}(x)) \rho(x) dx.$$

В частности, если плоская фигура ограничена одной стороны осью абсцисс и имеет плотность, равную 1, формулы примут вид

$$I_{x} = \frac{1}{3} \int_{a}^{b} y^{3}(x) dx$$
$$I_{y} = \int_{a}^{b} x^{2} y(x) dx.$$

Умения

1. Найти момент инерции относительно оси Оу площади фигуры, ограниченной графиком функции $f(x) = x^{\frac{5}{2}}$ на промежутке [1;2].

$$I_{y} = \int_{1}^{2} x^{2} \sqrt{1 + \left(\frac{5}{2} x^{\frac{3}{2}}\right)^{2}} dx = \frac{42}{75} \int_{1}^{2} \sqrt{1 + \frac{25}{42} x^{3}} dx = \frac{42}{42} \cdot \frac{2}{3} \sqrt{\left(1 + \frac{25}{42} x^{3}\right)^{3}} \Big|_{1}^{2} = \frac{84}{225} \left(\sqrt{\left(1 + \frac{200}{42}\right)^{3}} - \sqrt{\left(1 + \frac{25}{42}\right)^{3}}\right).$$

2.Найти момент инерции площади эллипса

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$

относительно оси Оу.

$$I_{y} = \int_{a}^{b} x^{2} dS = \int_{a}^{b} x^{2} y dx = 4 \int_{0}^{\frac{\pi}{2}} a^{2} \cos^{2} t \cdot b \sin t \cdot a \cdot (-\sin t) dt = 4a^{3}b \int_{0}^{\frac{\pi}{2}} \cos^{2} t \cdot \sin^{2} t dt = 4a^{3}b \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2} 2t dt dt dt = 4a^{3}b \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2} 2t dt dt =$$

$$= a^{3}b \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 4t}{2} dt = \frac{a^{3}b}{2} \left(\int_{0}^{\frac{\pi}{2}} dx - \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \cos 4t dt \right) = \frac{a^{3}b}{2} x \Big|_{0}^{\frac{\pi}{2}} + \frac{a^{3}b}{8} \sin 4t \Big|_{0}^{\frac{\pi}{2}} = \frac{a^{3}b\pi}{4}.$$

26. Вычисление перемещения точки за определенный промежуток времени по закону скорости

Утверждения

14.6. Теорема о вычислении перемещения точки за определенный промежуток времени по закону скорости

Если материальная точка движется со скоростью v, где v = v(t) — дифференцируемая функция, то путь, пройденный за промежуток времени от t_1 до t_2 вычисляется по формуле:

$$S = \int_{t}^{t_2} v(t) dt.$$

Умения

9 Вычисление перемещения точки за определенный промежуток времени по закону скорости

Если материальная точка движется со скоростью v, где v=v(t) – дифференцируемая функция, то путь, пройденный за промежуток времени от t_1 до t_2 вычисляется по формуле:

$$S = \int_{t_1}^{t_2} v(t) dt$$

1. Найти перемещение материальной точки, скорость которой задана уравнением v(t) = 5 + 3t , где $t \in [3,9]$.

Решение:

$$S(t) = \int_{3}^{9} (5+3t) dt = \left(5t + \frac{3t^2}{2}\right)\Big|_{3}^{9} = 45 + \frac{243}{2} - 15 - \frac{27}{2} = 30 + 108 = 138.$$

2. Найти перемещение материальной точки от начала движения до момента остановки, скорость которой задана уравнением $v(t) = at - 3t^2$, если она двигалась в течение 5 сек.

Решение. Найдем значение параметра a, приравняв уравнение скорости к нулю. v(5) = 5a - 75

$$5a-75=0 \Rightarrow a=15$$

Найдем путь, пройденный точкой:

$$S(t) = \int_{0}^{5} \left(15t - 3t^{2} \right) dt = \left(\frac{15}{2} t^{2} - t^{3} \right) \Big|_{0}^{5} = \frac{125}{2}.$$

IV. Несобственные интегралы

27. Вычисление несобственных интегралов 1 и 2 рода

Понятия

25. Несобственный интеграл — это интеграл с неограниченной областью интегрирования (несобственный интеграл 1-го рода) или интеграл от неограниченной на области интегрирования функции (несобственный интеграл 2-го рода).

25.1. Несобственный интеграл 1-го рода — это интеграл вида

$$\int\limits_a^\infty f(x)dx\,,$$
 при этом для любого $A\!\in\! \left[a;+\infty\right)$ существует Римановский интеграл вида
$$\int\limits_a^A f(x)dx\,.$$

$$\int_{a}^{+\infty} f(x)dx \stackrel{\text{def}}{=} \lim_{A \to +\infty} \int_{a}^{A} f(x)dx$$

$$\int_{-\infty}^{a} f(x)dx \stackrel{\text{def}}{=} \lim_{A \to \infty} \int_{-A}^{a} f(x)dx$$

$$\int_{-\infty}^{+\infty} f(x)dx \stackrel{\text{def}}{=} \lim_{A' \to +\infty} \int_{-A''}^{A'} f(x)dx.$$

25.2. Несобственный интеграл 2-го рода — это интеграл вида

 $\int\limits_{a}^{b} f(x) dx$, где b — особая точка, т. е. точка, в которой функция f не ограничена.

$$\int_{a}^{|\underline{b}|} f(x)dx \stackrel{\text{def}}{=} \lim_{\varepsilon \to +0} \int_{a}^{b-\varepsilon} f(x)dx,$$

в общем случае

$$\int_{a}^{b} f(x)dx \stackrel{\text{def}}{=} \lim_{\substack{\varepsilon' \to +0 \\ \varepsilon'' \to +0}} \left(\int_{a}^{c-\varepsilon'} f(x)dx + \int_{c+\varepsilon''}^{b} f(x)dx \right),$$
где c — особая точка, $c \in [a;b]$.

Утверждения

- **19.** Теорема о замене переменных под знаком несобственного интеграла Пусть:
- 1. функция f непрерывна на полуоси $[a; +\infty)$.
- 2. x = g(t) строго монотонная функция, заданная на интервале $[\alpha; \beta)$, имеющая на нем непрерывную производную, причем $E(x) \subset D(f)$.
- 3. $g(\alpha) = a$, $\lim_{t \to \beta} g(t) = +\infty$ тогда

$$\int_{a}^{+\infty} f(x)dx = \int_{\alpha}^{+\infty} f(g(t))g'(t)dt.$$

20. Формула интегрирования по частям в несобственных интегралах

Пусть функции u и v имеют непрерывные производные на полупрямой $[a,+\infty)$, и предел их произведения существует и конечен, т.е. $\lim_{x\to\infty}(u(x)v(x))=L\in\Box$. Тогда из сходимости хотя бы одного из интегралов

$$\int_{a}^{+\infty} u(x)v'(x)dx \text{ } \text{ } \text{ } \text{ } \text{ } \int_{a}^{+\infty} u'(x)v(x)dx$$

следует сходимость второго, а так же справедливость следующей формулы:

$$\int_{a}^{+\infty} u(x)v'(x)dx = L - u(a)v(a) - \int_{a}^{+\infty} v(x)u'(x)dx.$$

Умения

1. Вычислить несобственный интеграл

$$\int_{1}^{+\infty} \frac{dx}{1+x^2}.$$

Решение:

$$\int_{1}^{+\infty} \frac{dx}{1+x^2} = \lim_{A \to +\infty} \int_{1}^{A} \frac{dx}{1+x^2} = \lim_{A \to +\infty} \left[\arctan(x) \right]_{1}^{A} = \lim_{A \to +\infty} \left(\arctan(x) \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

2. Вычислить несобственные интегралы

$$\int_{0}^{1} \frac{dx}{x^{\alpha}}, \int_{1}^{+\infty} \frac{dx}{x^{\alpha}}, \text{при } \alpha \in (0,1) \cup (1,+\infty).$$

Решение:

a)
$$\int_{0}^{1} \frac{dx}{x^{\alpha}} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} x^{-\alpha} dx = \lim_{\varepsilon \to 0} \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{\varepsilon}^{1} = \left\{ \frac{1}{1-\alpha}, \alpha < 1 + \infty, \alpha > 1 \right\};$$

$$6) \int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \int_{1}^{\eta} x^{-\alpha} dx = \lim_{\eta \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{\eta} = \begin{cases} +\infty & \alpha < 1 \\ \frac{1}{1-\alpha}, & \alpha > 1 \end{cases}.$$

3. Вычислить интеграл $\int_{-1}^{2} \frac{dx}{\sqrt[3]{(x-1)}}$.

$$\lim_{\eta \to +0} \left(\int_{-1}^{1-\eta} \frac{dx}{\sqrt[3]{(x-1)}} + \int_{1+\eta}^{2} \frac{dx}{\sqrt[3]{(x-1)}} \right) = \lim_{\eta \to +0} \left(\int_{-1}^{1-\eta} (x-1)^{\frac{-2}{3}} d(x-1) + \int_{1+\eta}^{2} (x-1)^{\frac{-2}{3}} d(x-1) \right) =$$

$$= \lim_{\eta \to +0} \left(\frac{3 \cdot (x-1)^{\frac{1}{3}}}{1} \Big|_{-1}^{1-\eta} + \frac{3 \cdot (x-1)^{\frac{1}{3}}}{1} \Big|_{1+\eta}^{2} \right) = \lim_{\eta \to +0} \left(3 \cdot (1-\eta-1)^{\frac{1}{3}} - 3 \cdot (-1-1)^{\frac{1}{3}} + 3 - 3 \cdot (1+\eta-1)^{\frac{1}{3}} \right) =$$

$$= 3 \cdot \sqrt[3]{2} + 3.$$

28. Главное значение несобственных интегралов 1 и 2 рода

Понятия

28. Главное значение несобственного интеграла (V. р., от франц. «Valeur principal» – «главное значение») – это величина

$$V.p. \int_{-\infty}^{+\infty} f(x)dx \stackrel{\text{def}}{=} \lim_{A \to +\infty} \int_{-A}^{A} f(x)dx$$

для несобственных интегралов 1-го рода и величина

$$V.p. \int_{a}^{b} f(x)dx \stackrel{\text{def}}{=} \lim_{\varepsilon \to +0} \left(\int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx \right)$$

для несобственных интегралов 2-го рода (где c – особая точка, $c \in [a;b]$).

Функция f называется интегрируемой по Коши на [a;b], если существует и конечно $\mathrm{V.p.}\int\limits_{a}^{b}f(x)dx$.

Утверждения

21. Связь между существованием интеграла как несобственного в смысле главного значения

Если интеграл сходится как несобственный, то он сходится в смысле главного значения. Обратное, вообще говоря, не верно.

Умения

1. Найти главное значение интеграла

$$\int_{-\infty}^{+\infty} \sin x dx.$$

Решение:

$$V.p. \int_{-\infty}^{+\infty} \sin x dx = \lim_{A \to +\infty} \int_{-A}^{A} \sin x dx = \lim_{A \to +\infty} (-\cos x \Big|_{-A}^{A}) = \lim_{A \to +\infty} (-\cos A + \cos A) = 0.$$

2. Вычислить интеграл в смысле главного значения $\int_{-1}^{2} \frac{1}{x} dx$.

Решение:

$$V.p. \int_{-1}^{2} \frac{1}{x} dx = \lim_{\eta \to +0} \left(\int_{-1}^{\eta} \frac{1}{x} dx + \int_{\eta}^{2} \frac{1}{x} dx \right) = \lim_{\eta \to +0} \left(\ln |\eta| - \ln 1 + \ln 2 - \ln \eta \right) = \lim_{\eta \to +0} \left(\ln \left| \frac{\eta}{\eta} \right| + \ln 2 \right) = \ln 2.$$

Из этого примера видно, что если интеграл расходится как несобственный, то он может сходиться в смысле Коши.

3. Найти главное значение несобственного интеграла

$$\int_{0}^{+\infty} \frac{dx}{x^2 - 3x + 2}.$$

Решение:

Квадратный трёхчлен $y = x^2 - 3x + 2$ имеет действительные корни $x_1 = 1$ и $x_2 = 2$, следовательно

$$V.p. \int_{0}^{+\infty} \frac{dx}{x^{2} - 3x + 2} = V.p. \int_{0}^{3} \frac{dx}{x^{2} - 3x + 2} + \int_{0}^{+\infty} \frac{dx}{x^{2} - 3x + 2} =$$

$$= \lim_{\substack{\varepsilon' \to 0 \\ \varepsilon'' \to 0}} \left(\int_{0}^{1 - \varepsilon'} \frac{dx}{x^{2} - 3x + 2} + \int_{1 + \varepsilon'}^{2 - \varepsilon''} \frac{dx}{x^{2} - 3x + 2} + \int_{2 + \varepsilon''}^{3} \frac{dx}{x^{2} - 3x + 2} \right) + \lim_{A \to +\infty} \int_{3}^{A} \frac{dx}{x^{2} - 3x + 2} =$$

$$= \lim_{\substack{\varepsilon' \to 0 \\ \varepsilon'' \to 0}} \left(\ln \left(\frac{x - 2}{x - 1} \right) \Big|_{0}^{1 - \varepsilon'} + \ln \left(\frac{x - 2}{x - 1} \right) \Big|_{1 + \varepsilon'}^{2 - \varepsilon''} + \ln \left(\frac{x - 2}{x - 1} \right) \Big|_{2 + \varepsilon''}^{3} \right) + \lim_{A \to +\infty} \ln \left(\frac{x - 2}{x - 1} \right) \Big|_{3}^{A} =$$

$$= -\ln 2 + \lim_{\substack{\varepsilon' \to 0 \\ \varepsilon'' \to 0}} \left(\ln \frac{1 + \varepsilon'}{1 - \varepsilon'} + \ln \frac{1 + \varepsilon''}{1 - \varepsilon''} \right) + \lim_{A \to +\infty} \ln \frac{A - 2}{A - 1} = \ln \frac{1}{2}.$$

29. Исследование несобственных интегралов 1 и 2 рода на сходимость, расходимость

Понятия

26.1. Сходящийся несобственный интеграл 1-го рода — это несобственный интеграл вида $\int_{a}^{\infty} f(x)dx$, для которого существует конечный предел $\lim_{A \to +\infty} \int_{a}^{A} f(x)dx$, или несобственный интеграл вида $\int_{-\infty}^{a} f(x)dx$, для которого существует конечный предел $\lim_{A \to +\infty} \int_{-A}^{a} f(x)dx$. В общем случае, несобственный интеграл вида $\int_{-\infty}^{+\infty} f(x)dx$, называют сходящимся, если существует конечный предел $\lim_{A' \to +\infty} \int_{-A''}^{A'} f(x)dx$. Если данный предел не существует или равен $\pm \infty$, то несобственный интеграл называется расходящимся.

26.2. Сходящийся несобственный интеграл **2-го рода** — это несобственный интеграл **2-го рода** $\int_a^b f(x)dx$, где $c \in [a;b]$ — особая точка, для которого существует конечный предел $\lim_{\substack{c' \to +0 \\ \varepsilon'' \to +0}} \left(\int_a^{c-\varepsilon'} f(x)dx + \int_{c+\varepsilon''}^b f(x)dx \right)$. Если данный предел не существует или равен $\pm \infty$, то несобственный интеграл называется **расходящимся**.

Утверждения

17. Критерий Коши сходимости несобственных интегралов

Несобственный интеграл первого рода $\int_{a}^{+\infty} f(x)dx$ сходится тогда и только тогда, когда выполняется следующее условие:

$$(\forall \varepsilon > 0)(\exists B > a)(\forall A_1, A_2 \in \Box \mid A_2 > A_1 > B): \left| \int_{A_1}^{A_2} f(x) dx \right| < \varepsilon$$

Несобственный интеграл второго рода $\int_a^b f(x)dx$, где b- особая точка сходится тогда и только тогда, когда выполняется следующее условие:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall \alpha, \alpha'' \mid 0 < \alpha' < \alpha'' < \delta) : \left| \int_{b-\alpha'}^{b-\alpha''} f(x) dx \right| < \varepsilon.$$

Если функция y = f(x) интегрируема на любом отрезке $[a;b] \subset (-\infty;+\infty)$, то $\int_{-\infty}^{+\infty} f(x) dx$ всегда сходится по Коши.

18. Достаточные признак сходимости несобственных интегралов

Пусть f задана на полупрямой $[a;+\infty)$ и для любого A>a существует интеграл $\int\limits_{-A}^{A}f(x)dx$.

1. Общий признак сравнения.

Пусть на полупрямой $[a, +\infty)$ выполняется условие: $|f(x)| \le g(x)$,

тогда из сходимости интеграла $\int_{a}^{+\infty} g(x)dx$ следует сходимость интеграла $\int_{a}^{+\infty} f(x)dx$.

2. Частный признак сравнения.

Пусть на полупрямой $[a;+\infty)$ функция удовлетворяет соотношению $|f(x)| \le \frac{c}{x^{\lambda}}$, где c,

 $\lambda = const$, $\lambda > 1$. Тогда интеграл $\int\limits_a^{+\infty} f(x) dx$ сходится. Если же найдется такая постоянная

c>0, что на полупрямой $[a;+\infty)$ справедливо соотношение $f(x)\geq \frac{c}{x^{\lambda}}$, в котором $\lambda\leq 1$, то интеграл $\int\limits_{-\infty}^{+\infty}f(x)dx$ расходится.

3. Признак Дирихле-Абеля.

Пусть выполняются следующие условия:

- а) функция f непрерывна на полупрямой $[a, +\infty)$ имеет на ней ограниченную первообразную.
- b) функция g определена и монотонно не возрастает на полупрямой $[a;+\infty)$, и $\lim_{x\to\infty}g(x)=0$.

Тогда несобственный интеграл $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Умения

1. Выяснить, сходится ли несобственный интеграл

$$\int_{0}^{1} \frac{x^3}{\sqrt[4]{1-x^2}} dx.$$

Решение:

$$\begin{split} f(x) &= \frac{x^3}{\sqrt[4]{1-x^2}} = \frac{x^3}{\sqrt[4]{1+x}} \frac{1}{\sqrt[4]{1-x}} \, \Box \, \frac{1}{\sqrt[4]{2}(1-x)^{1/4}} \, , \text{ при } x \to 1 \\ &\lim_{\eta \to +0} \int\limits_0^{1-\eta} \frac{dx}{\sqrt[4]{2}(1-x)^{1/4}} = -\frac{1}{\sqrt[4]{2}} \lim_{\eta \to +0} \int\limits_0^{1-\eta} \frac{d\left(1-x\right)}{\sqrt[4]{2}(1-x)^{1/4}} = -\frac{4}{5\sqrt[4]{2}} \lim_{\eta \to +0} \left(1-x\right)^{5/4} \Big|_0^{1-\eta} = \\ &= -\frac{4}{5\sqrt[4]{2}} \lim_{\eta \to +0} \left(\eta^{5/4}-1\right) = \frac{4}{5\sqrt[4]{2}} \, , \end{split}$$

следовательно интеграл $\int_0^1 \frac{1}{(1-x)^{1/4}} dx$ сходится, тогда сходится и исходный интеграл.

2. Исследовать сходимость интеграла $\int\limits_{1}^{+\infty} \frac{dx}{x \cdot \sqrt[3]{x^2 + 1}}$.

Решение. Воспользуемся следствием из общего признака сравнения. Подынтегральная функция $f(x) = \frac{1}{x \cdot \sqrt[3]{x^2 + 1}}$. Рассмотрим функцию $g(x) = \frac{1}{x^{\frac{5}{3}}}$. Из частного признака сравнения несобственных интегралов 1 рода получаем, что $\int_{-\infty}^{+\infty} g(x) dx$ сходится.

Рассмотрим их предел при $x \to \infty$.

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^{\frac{5}{3}}}{x \cdot \sqrt[3]{x^2 + 1}} = 1.$$

Т.к. предел конечен, то по следствию из общего признака сравнения получаем, что интеграл $\int\limits_{1}^{+\infty} \frac{dx}{x \cdot \sqrt[3]{x^2+1}}$ сходится.

30. Исследование несобственных интегралов 1 и 2 рода на абсолютную, условную сходимости

Понятия

- **26.1.** Сходящийся несобственный интеграл 1-го рода это несобственный интеграл вида $\int_{a}^{\infty} f(x)dx$, для которого существует конечный предел $\lim_{A \to +\infty} \int_{a}^{A} f(x)dx$, или несобственный интеграл вида $\int_{-\infty}^{a} f(x)dx$, для которого существует конечный предел $\lim_{A \to +\infty} \int_{-A}^{a} f(x)dx$. В общем случае, несобственный интеграл вида $\int_{-\infty}^{+\infty} f(x)dx$, называют сходящимся, если существует конечный предел $\lim_{A' \to +\infty} \int_{-A''}^{A'} f(x)dx$. Если данный предел не существует или равен $\pm \infty$, то несобственный интеграл называется расходящимся.
- **26.2.** Сходящийся несобственный интеграл **2-го рода** это несобственный интеграл **2-го рода** $\int_a^b f(x)dx$, где $c \in [a;b]$ особая точка, для которого существует конечный предел $\lim_{\substack{c' \to +0 \\ c'' \to +0}} \left(\int_a^{c-c'} f(x)dx + \int_{c+c''}^b f(x)dx \right)$. Если данный предел не существует или равен $\pm \infty$, то несобственный интеграл называется расходящимся.
- **27.** Несобственный интеграл $\int_{a}^{[b]} f(x) dx$ называется **абсолютно сходящимся**, сходится и интеграл $\int_{a}^{[b]} |f(x)| dx$.

Если же исходный интеграл сходится, а интеграл $\int_{a}^{|b|} |f(x)| dx$ расходится, то данный интеграл называют **условно сходящимся**.

Умения

1. Исследовать на абсолютную сходимость интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx.$$

Решение.

$$\left|\sin x\right| \ge \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\int_{1}^{\eta} \frac{|\sin x|}{x} dx \ge \frac{1}{2} \int_{1}^{\eta} \frac{dx}{x} - \frac{1}{2} \int_{1}^{\eta} \frac{\cos 2x}{x} dx$$
 для любого $\eta > 0$.

Интеграл $\int\limits_{1}^{+\infty} \frac{dx}{x}$ расходится, а интеграл $\int\limits_{1}^{+\infty} \frac{\cos 2x}{x} dx$ сходится, отсюда следует, что $\int\limits_{1}^{+\infty} \frac{|\sin x|}{x} dx$ расходится.

2. Исследовать интеграл $\int_{1}^{+\infty} \frac{\cos x}{x^2} dx$ на абсолютную и условную сходимость.

Т.к.
$$\left| \frac{\cos x}{x^2} \right| \le \frac{1}{x^2}$$
 и интеграл $\int_1^{+\infty} \frac{dx}{x^2}$ сходится, то по признаку сравнения следует и сходимость интеграла $\int_1^{+\infty} \left| \frac{\cos x}{x^2} \right| dx$. Значит, интеграл $\int_1^{+\infty} \frac{\cos x}{x^2} dx$ сходится абсолютно.