Машинное обучение

Лекция 2. Линейные модели

(12.03.2024)

Общие сведения

План

- 1. Линейная модель регрессии
- 2. Как линейные модели обучаются?
- 3. Линейная модель классификации

Что это такое?

х — баллы за экзамен по английскому 1

у — баллы за экзамен по английскому 2

X	у
1	5
3	11
9	35
10	33

Что это такое?

А какая модель нам нужна?

Интерпретация коэффициентов

Зачем нужны линейные модели?

- 1. Предсказание интересующей нас величины
- 2. Оценка влияния различных факторов на нашу целевую переменную
- 3. Линейные модели очень легко использовать и интерпретировать
- 4. Линейные модели могут восстанавливать даже **нелинейные зависимости**

А если у нас много независимых переменных?

$$y = w_0 + w_1 x + w_2 z + \ldots + w_n t + \epsilon$$

ПЛ	ющадь	число комнат	школа близко	цена квартиры
	50	2	нет	5000
	1000	7	да	11000
	30	1	нет	3500
	100	4	нет	33333

Множественная линейная регрессия дает нам плоскость

$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
0
1
2x
$3x^2$
nx^{n-1}
e^x
ke^{kx}
$\frac{1}{x}$
$\cos x$
$k\cos kx$
$-\sin x$
$-k\sin kx$

Как оценивать коэффициенты модели?

Как оценивать коэффициенты модели?

Градиентный спуск

Формулы

$$y=w_0+w_1x+\epsilon \ y=Xw$$

$$rac{dLoss}{dw} =
abla Loss = 2X^T(Xw-y)$$

$$Loss = (y - Xw)^T(y - Xw)$$

$$w = (X^T X)^{-1} X^T y$$

Градиентный спуск

$$Loss = (y - Xw)^T(y - Xw)$$
 $rac{dLoss}{dw} =
abla Loss = 2X^T(Xw - y)$

```
w = np.random.randn(m + 1)
Пока grad(Loss) != 0:
w -= \eta *
grad(Loss)
```

Отдых -> логистическая регрессия

Связь событий и признаков

В зависимости от предикторов события могут происходить чаще или реже – логика, совпадающая с логикой связи количественной переменной отклика с набором предикторов.

Например, по мере роста температуры воздуха летом чаще будут встречаться люди в шортах: событие "встретился человек в шортах" положительно связано с температурой воздуха.

Событие "проведение исследования" явно связана с предиктором "объем полученного финансирования", однако эта связь может быть совсем непростой.

А что если хотим классификацию?

Допустим бинарная классификация

Отношение шансов

Шансы (odds) часто представляют в виде отношения шансов (odds ratio)

Если отношение шансов > 1, то вероятность наступления события выше, чем вероятность того, что оно не произойдет.

Если отношение шансов < 1, то наоборот.

Если можно оценить вероятность положительного события, то отношение шансов выглядит так:

$$odds = \frac{\pi}{1-\pi}$$

Отношение шансов варьируется от 0 до +∞.

Попробуем сами

Логиты

Отношение шансов можно преобразовать в логиты(logit):

$$ln(odds) = ln(\frac{\pi}{1 - \pi})$$

- Значения логитов это трансформированные оценки вероятности события.
- Логиты варьируют от -∞ до +∞.
- Логиты симметричны относительно 0, т.е. ln(1).
- Для построения моделей в качестве зависимой переменной удобнее брать логиты.

Считаем вероятность

Дискретные значения vs вероятности

Как такое учить? BCE Loss

Качество классификации

Качество классификации. ROC кривая

рисуем свою ROC кривую

Построение ROC кривой

Деревья решений

Недостатки:

- 1. Переобучение
- 2. Не подходит для данных с большой размерностью
- 3. Беззащитны перед шумными данными

Алгоритм

- 1. s0 = вычисляем энтропию исходного множества
- 2. Если s0 == 0 значит:
 - а. Все объекты исходного набора, принадлежат к одному классу
 - b. Сохраняем этот класс в качестве листа дерева
- 3. Если s0 != 0 значит:
 - а. Перебираем все элементы исходного множества:
 - b. Для каждого элемента перебираем все его атрибуты:
 - с. На основе каждого атрибута генерируем предикат, который разбивает исходное множество на два подмножества
 - d. Рассчитываем среднее значение энтропии Вычисляем ΔS

Как будем останавливаться и формировать листья?

- 1. Стрижка
- 2. Использование остановок

Остановки

- 1. Impurity = 0
- 2. В лист попадает число объектов меньше заданного
- 3. Ограничение на количество листьев
- 4. Максимальная глубина
- 5. Вероятность классификации объекта больше заданной величины

Как подготовить данные?

- 1. Imputation
- 2. OneHotEncoder, OrdinalEncoder, custom и т.д.

Гиперпараметры

- 1. max_depth = None
- 2. min_samples_split = 2
- 3. min_samples_leaf = 1
- 4. max_features = None

Также для классификации можно в модель передать веса

Есть ещё такая штука как ccp_alpha

Model Validation

- 1. Train Test
- 2. Train Valid Test
- 3. Cross Validation

K - Fold

тй бхі д Д С