Avaliação da Rotação de Constelações M-QAM em Canais com Desvanecimento Rice

Carlos Danilo M. Regis danilo@iecom.org.br

Orientador: Dr. Marcelo Sampaio de Alencar

26 de maio de 2011

Sumário

- 1 Introdução
- 2 Rotação da Constelação
- 3 Canal Rice
- 4 Avaliação dos resultados
- 6 Conclusões

Introdução

 A rotação da constelação é uma técnica que melhora o desempenho de sistemas de comunicações móveis. Essa técnica esta sendo utilizada no padrão DVB-T2.

Introdução

- A rotação da constelação é uma técnica que melhora o desempenho de sistemas de comunicações móveis. Essa técnica esta sendo utilizada no padrão DVB-T2.
- A distribuição de Rice é usada na transmissão de dados para representar o sinal recebido que é composto por uma componente de visada direta e componentes de múltiplos percursos.

Introdução

 A distribuição de Rice permite simular diferentes ambientes, variando o fator de Rice K.

Ambiente	K (dB)	
Área aberta	8,0504	
Suburbana	7,0261	
Urbana baixa densidade	5,1519	
Urbana média densidade	3,9349	
Urbana alta densidade	0	

 Para verificar o desempenho do sistema ISDB-Tb com a rotação da constelação é necessário encontrar o ângulo ótimo para as diferentes situações (ambientes, esquemas de modulação).

Rotação da Constelação

Rotação da Constelação:

é a técnica que consiste em introduzir redundância por meio de uma escolha adequada do ângulo de referência de uma constelação QAM combinada com o entrelaçamento independente das componentes dos símbolos a serem transmitidos.

Rotação da Constelação

Sumário

Conclusões

Desvanecimento Rice

Modelagem Matemática

A componente especular pode ser modelada matematicamente como uma das cópias do sinal que incidem sobre o móvel

Rotação da Constelação

$$r_0 = Re\{T_0(t)e^{jw_ct}\} = A_0\cos(w_ct + w_0t + \phi_0).$$
 (1)

Como o sinal recebido é formado pela soma das componentes decorrentes do espalhamento na vizinhança do móvel com a componente especular, os coeficientes de transmissão podem ser modelados por

$$u(t) = A_0 e^{j(w_0 t + \phi_0)} + \sum_{n=1}^{M} A_n e^{j(w_n t + \phi_n)}.$$
 (2)

Desvanecimento Rice

Modelagem Matemática

O valor médio quadrático de u(t) é dado por

$$b_R = A_0^2 + 2\sigma^2.$$

A potência da componente especular é determinada por A_0^2 e a potência das componentes espalhadas é dada por $2\sigma^2$. A razão entre ambas é o fator K ou fator de Rice

$$K = \frac{A_0^2}{2\sigma^2}.$$

Desvanecimento Rice

A fdp da distribuição de Rice para $r \ge 0$, é dada por

$$f_{|u|}(r) = \frac{2r(K+1)}{b_R} \exp\left(-K - \frac{r^2(K+1)}{b_R}\right) I_0\left(2r\sqrt{\frac{K(K+1)}{b_R}}\right),$$

Sumário

Conclusões

A partir de fatores e do modelo estatístico de primeira ordem para K, é possível chegar à seguinte equação

$$K \cong F_s F_h F_b K_o d^{\gamma} (d \text{ em km}).$$

 \bullet F_s é o fator da temporada

$$F_s = \begin{cases} 1.0, & Verão (folhas), \\ 2.5, & Inverno (sem folhas) \end{cases}$$

 \bigcirc F_h é o fator da altura da antena

$$F_h = (h/3)^{0.46}$$
 (h em metros).

 \bullet \bullet \bullet \bullet fator da largura do feixe da antena

$$F_b = (b/17)^{-0.62}$$
 (b em graus (°)).

Estimação do fator K

Tabela: Fator de *K* médio [14].

Largura de feixe da antena	Verão (Folhas)			erno Folhas)
	h = 3m	h = 10m	h = 3m	h = 10m
17°	6,0 dB	8,0 dB	10,0 dB	12,5 dB
30°	4,5 dB	7,5 dB	9,0 dB	11,0 dB
65°	2,5 dB	5,0 dB	6,0 dB	8,5 dB

Avaliação dos resultados

- Apresenta-se o ângulo ótimo de rotação para os esquemas de modulação 4-QAM, 16-QAM e 64-QAM.
 - Ambiente de área aberta;
 - Ambiente de área suburbana;
 - Ambiente urbana de baixa densidade;
 - Ambiente urbana de média densidade;
 - Ambiente urbana de alta densidade.
- Mostra-se a avaliação da BER para os esquemas modulação 4-QAM, 16-QAM e 64-QAM.

Avaliação do angulo ótimo de rotação

Figura: Gráfico do angulo ótimo para o esquema de modulação 4-QAM em um canal Rice. Lado esquerdo para K=0 e lado direito para K=8,05.

Avaliação do angulo ótimo de rotação

Figura: Gráfico do angulo ótimo para o esquema de modulação 16-QAM em um canal Rice. Lado esquerdo para K=0 e lado direito para K=8,05.

Avaliação do angulo ótimo de rotação

Figura: Gráfico do angulo ótimo para o esquema de modulação 64-QAM em um canal Rice. Lado esquerdo para K=0 e lado direito para K=8,05.

Avaliação da BER para o ângulo ótimo

Figura: Gráfico da BER para o esquema de modulação 4-QAM em um canal Rice. Lado esquerdo para K = 0 e lado direito para K = 8,05.

Avaliação da BER para o ângulo ótimo

Figura: Gráfico da BER para o esquema de modulação 16-QAM em um canal Rice. Lado esquerdo para K = 0 e lado direito para K = 8,05.

Avaliação da BER para o ângulo ótimo

Figura: Gráfico da BER para o esquema de modulação 64-QAM em um canal Rice. Lado esquerdo para K = 0 e lado direito para K = 8,05.

4-QAM

- os melhores resultados foram 27°, 28° e 29°,
- ullet ganho de 11 dB, para $heta=0^\circ$,
- Não há diferença na BER.

4-QAM

- os melhores resultados foram 27°, 28° e 29°,
- ganho de 11 dB, para $\theta = 0^{\circ}$,
- Não há diferença na BER.

16-QAM

- os melhores resultados foram para os ângulos 16,8°, 21° e 31°,
- ganho de 8 dB, para $\theta = 0^{\circ}$,
- Só existe diferença na BER para SNR > 10 dB.

Sumário Introdução Rotação da Constelação Canal Rice Avaliação dos resultados Conclusões

Conclusões

4-QAM

- os melhores resultados foram 27°, 28° e 29°,
- ganho de 11 dB, para $\theta = 0^{\circ}$,
- Não há diferença na BER.

16-QAM

- os melhores resultados foram para os ângulos 16,8°, 21° e 31°,
- ganho de 8 dB, para $\theta = 0^{\circ}$,
- Só existe diferença na BER para SNR > 10 dB.

64-QAM

- os melhores resultados obtidos foram 16,8°, 21° e 31°,
- ganho de 6 dB, para $\theta = 0^{\circ}$,
- Só existe diferença na BER para SNR > 15 dB.

Comparação com o DVB-T2

Modulação	DVB-T2	Simulação	Ganho
4-QAM	29°	27°, 28° e 29°	_
16-QAM	16,8°	31°	<< 1dB
64-QAM	8,6°	31°	1 dB para $K=0$
			> 2 dB

Trabalhos Futuros

- Aumentar a precisão em torno dos pontos ótimos;
- 2 Verificar o erro de estimação de fase para a escolha do ângulo;

3 Verificar o *Jitter* de fase para a escolha do ângulo.