1

- Measuring individual differences in the understanding of gaze cues across the lifespan
- Julia Prein¹, Manuel Bohn¹, Luke Maurits¹, Steven Kalinke¹, & Daniel M. Haun¹
- $^{\rm 1}$ Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary
- 4 Anthropology, Leipzig, Germany

Author Note

- 6 Correspondence concerning this article should be addressed to Julia Prein, Max
- Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig,
- « Germany. E-mail: julia_prein@eva.mpg.de

5

Abstract

There must be an abstract of no more than 250 words. One or two sentences providing a basic introduction to the field, comprehensible to a scientist in any discipline.

Two to three sentences of **more detailed background**, comprehensible to scientists in related disciplines.

One sentence clearly stating the **general problem** being addressed by this particular study.

One sentence summarizing the main result (with the words "here we show" or their equivalent).

Two or three sentences explaining what the **main result** reveals in direct comparison to what was thought to be the case previously, or how the main result adds to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily comprehensible to a scientist in any discipline.

24 Keywords: social cognition, individual differences, gaze cues, psychometrics

Word count: X

Measuring individual differences in the understanding of gaze cues across the lifespan

27 Introduction

- Idea for an opener :)
- Developmental psychology is facing a dilemma: many research questions are
- 30 questions about individual differences, yet, there is a lack of tasks to reliably measure these
- 31 individual differences. For example ...
- why is social cognition important
- what methods are currently been used?: wellman
- what are common issues?
- what to aim at. individual differences in developmental psychology
- what characteristics should a new task fulfill? reliable tasks, variation needed, more
- 37 trials
- goal of the current project: standardized, easy to use continuous methods
- "Recently, it was suggested that a range of cognitive tasks may reliably measure
- 40 group differences but not individual differences (Hedge et al., 2018). As cognitive tests are
- 41 commonly used to make inferences about individuals, it seems a worthwhile pursuit to
- 42 improve the reliability with which individual differences are assessed using these tests. To
- 43 judge the success of such pursuits, accurate estimates of reliability are required." (Pronk,
- 44 Molenaar, Wiers and Murre, 2021, p. 1) "Firstly, reliability is not only a function of task
- 45 and population sample but also of scoring algorithms." (Pronk, Molenaar, Wiers and
- Murre, 2021, p. 9) "Hence, we conclude that for the datasets included in our reanalysis,
- cognitive tasks may well have been able to measure individual differences, but that these
- differences may be relatively unstable over time (Kopp et al., 2021). In practice, this may
- 49 make cognitive tasks suitable for cross-sectional research of individual differences, but not
- for longitudinal research." (Pronk, Molenaar, Wiers and Murre, 2021, p. 10)

Rakoczy, H. (2022). Foundations of theory of mind and its development in early 51 childhood. Nature Reviews Psychology, 1–13. https://doi.org/10.1038/s44159-022-00037-z: 52 "The way humans view agents, be it others or themselves, differs radically from the way 53 humans view the rest of the world. This difference is because agents feel, perceive and think. Agents see the world from their own subjective perspective and they rationally plan, 55 form intentions and act accordingly. This way of seeing others as rational subjects with individual perspectives on the world is termed theory of mind (ToM)." (p. 1) "ToM also 57 has specific real-life consequences. First, the development of ToM competence goes along with general measures of children's peer social skills in early and middle childhood. (...) Second, ToM specifically predicts communicative competence. (...) Third, ToM competence is related to the quality of peer relationships: children with more advanced 61 ToM are rated as more likeable and popular among their peers. Fourth, children who are more proficient at ToM tasks tend to act more prosocially, including comforting, sharing or helping other individuals. Finally, preschool ToM competence predicts achievement in primary school, a relationship that is possibly mediated by social competence, in that 65 preschool ToM abilities enable subsequent social competence development, which in turn contributes to school achievement." (p. 2) "Evidence for an emerging understanding of perception at 9 months of age comes from various sources. For example, children begin to 68 follow the gaze of other agents in systematic and differential ways: they follow an agent's 69 head turn only when the agent can actually see (has their eyes open rather than closed, or 70 wears a transparent rather than an opaque blindfold)." (p. 2) Developmental determinants: 71 executive function, language ("that" complementations), social (SES, siblings, 72 mind-minded parents) Implicit tasks: "A third class of implicit ToM tasks is interaction tasks, in which participants are involved in a communicative or cooperative interaction with another agent. This agent forms a mental state (such as a true or false belief 75 regarding the contents of a box) and experimenters measure whether participants 76 spontaneously take the agent's belief into account in their interaction with the agent (for

instance by helping or by interpreting the agent's communicative acts accordingly)" (p. 9)

79 => reliable & valid tasks to assess coherent development of social-cognitive functions

Design of our balloon finding task

• face value of task (or maybe in intro already?)

32 Stimuli

80

81

Our newly implemented balloon finding task displays cartoon-like stimuli that are
engaging for children and adults alike. An animal character (i.e., agent; sheep, monkey, or
pig) is placed centrally in a window. A balloon (i.e., target; blue, green, yellow, or red) is
located in front of them. The target then falls to the ground. At all times, the agent's gaze
tracks the movement of the target. That is, the pupils and iris of the agent move in a way
that their center aligns with the center of the target. While the distance of the target's
flight depends on the final location, the target moves at a constant speed. Participants are
then asked to locate the target's destination: they respond by touching or clicking onto
position on the screen.

To keep participants engaged and interested, the presentation of events is
accompanied by cartoon-like effects. Each trial starts with an attention-getter: an
eye-blinking sound plays while the pupils and iris of the agent enlarge (increase to 130%)
and change in opacity (decrease to 75%) for 0.3 sec. The landing of the target is
accompanied by a tapping sound. Once the target landed, the instructor's voice asks
"Where is the balloon?". After the response is registered, a short plop sound plays and a
small orange circle confirms the participants' location choice. If no response got registered
within 5 secs after the target landed, an audio prompt reminds the participant to respond.

100 Trials

Before the test trials start, we present four training trials during which participants 101 familiarize themselves with selection positions on the screen. In the first training trial, 102 participants have full visual access to the target flight and the target's end location and are 103 simply asked to click on the visible balloon. In the second and third training trials, 104 participants have partial visual access: they witness the target flight but cannot see the 105 target's end location. They are then asked to click on the invisible balloon, i.e., the 106 location where they saw the target land. In test trials, participants have no visual access to 107 the target flight nor the end location. Participants are expected to use the agent's gaze as 108 a cue to locate the target. The first trial of each type comprises a voice-over description of 109 the presented events. The audio descriptions explicitly state that the agent is always 110 looking at the target (see Appendix for audio script). After these four training and audio 111 guided trials, participants receive 15 test trials. The complete sequence of four training trials and 15 test trials can be administered within 5-10 minutes of testing time.

114 Study versions

We designed two study versions which can be chosen according to the researchers' 115 need: there is a continuous hedge version and a discrete box version. Both versions use the 116 same first training trial and then differ in the consecutive training and test trials. In the 117 hedge version, participants have to indicate their estimated target location directly on a 118 hedge (i.e., hedge version). Here, the dependent variable is imprecision, which is defined as the absolute difference between the target's true x coordinate and the x coordinate of the participant's click. In the box version, participants are asked to click on a box that hides the target. Researchers have the choice of how many boxes are shown: one up to eight 122 boxes can be displayed as potential hiding locations. Here, we use a categorical outcome 123 (i.e., which box was clicked) to calculate the proportion of correct responses. Note that in

the test trials of both study versions, the target flight is covered by a hedge. In the *hedge* version, the hedge then shrinks to a minimum height required to cover the target's end location. In the *box* version, the hedge shrinks completely. The boxes then hide the target's final destination.

Figure 1. Study setup. (a) Infrastructure for online testing. (i) Subjects aged 3 – 99+ can participate. Data collection can take place anywhere: at home, in kindergartens or research institutes. (ii) The task is presented as a website that works across devices. (iii) The scripts for the website and the recorded data are stored on secure local servers. (b) Continuous hedge version of the balloon finding task. (i) The agent stands in a window with the target in front of them. (ii) A hedge grows and covers the target. (iii) The target falls to a random location on the ground. The agent's eyes track the movement of the target. (c) Discrete box version of the balloon finding task. Number of boxes (min. 1; max. 8) as potential hiding locations can be set individually.

129 Randomization

All agents and target colors appear equally often and are not repeated in more than
two consecutive trials. The randomization of the target end location depends on the study
version. In the *hedge* version, the full width of the screen is divided into ten bins. Exact
coordinates within each bin are then randomly generated. In the *box* version, the target
randomly lands in one of the boxes. As with agent and color choice, each bin/box occurs
equally often and can only occur twice in a row.

136 Implementation

Our balloon finding task is presented as an interactive web-app. The task is portable 137 across devices and web browsers and does not require any installation. A great advantage 138 of online testing is that our testing procedure is standardized across participants. By using 139 pre-recorded study instructions, no interaction with the experimenter is necessary during 140 the study. The code is open-source (https://github.com/ccp-eva/gafo-demo) and a live 141 demo version can be found under: https://ccp-odc.eva.mpg.de/gafo-demo/. The web-app 142 was programmed in JavaScript (ECMAScript 2015, i.e., ES6), HTML5, CSS and PHP. We 143 utilized the zero configuration bundler Parcel to enable a live server for debugging, easy imports and minified scripts in order to save data storage. For stimulus presentation, a 145 scalable vector graphic (SVG) composition was parsed. This way, the composition scales 146 according to the user's view port without loss of quality, while keeping the aspect ratio and relative object positions constant. Furthermore, SVGs allow us to define all composite parts of the scene (e.g., pupil of the agent) individually. This is needed for precisely calculating exact pupil and target locations and sizes. Additionally, it makes it easy to 150 adjust the stimuli and, for example, add another agent to the scene. The GreenSock 151 Animation Platform (GSAP; Greensock (2022)) library was used to animate the movement 152 of single SVG elements. We use URL parameters to capture the participant's ID, language 153

and study version. The web-app generates two file types: (1) a text file (.json) containing 154 meta-data, trial specifications and participants' click responses, and (2) a video file 155 (.webm) of the participant's webcam recording. For our samples described in this paper, 156 we deployed the web-app on servers located in Leipzig, Germany. Data got automatically 157 collected and safely stored on these in-house servers. If no internet connection or server is 158 available, researchers could download a local version of the experiment which stores the 159 generated data automatically on the used device. For child samples, we upload safety 160 copies of the already collected responses after the fourth test trial. In cases where children 161 want to stop participation earlier, no responses get lost. 162

Does the balloon finding task induce variation?

Our first aim was to assess whether our balloon finding task induces interindividual 164 variation in a child and adult sample. Furthermore, we were interested in how the data collection mode influences responses.

The pre-registrations can be found here: https://osf.io/snju6 (child sample) and here: 167 https://osf.io/r3bhn (adult sample). Participants were equally distributed across the two 168 study versions. The study was approved by an internal ethics committee at the Max 169 Planck Institute for Evolutionary Anthropology. Data was collected between May and 170 October 2021.

Participants 172

163

166

We collected data from an in-person child sample, a remote child sample, and a 173 remote adult sample. In-person testing with children took place in kindergartens in Leipzig 174 and surroundings that cooperate with the Max Planck Institute for Evolutionary 175 Anthropology. The in-person child sample consisted of 120 children, including 40 176 3-year-olds (mean = 41.45 months, SD = 3.85, range = 36 - 47, 22 girls), 40 4-year-olds 177

 $_{178}$ (mean = 54.60 months, SD = 3.10, range = 48 - 59, 19 girls), and 40 5-year-olds (mean = $_{179}$ 66.95 months, SD = 3.39, range = 60 - 71, 22 girls).

For our remote child sample, we recruited families on a voluntary basis via email from 180 the institute's internal database. Our remote child sample included 147 children, including 181 45 3-year-olds (mean = 42.62 months, SD = 3.35, range = 36 - 47, 14 girls), 47 4-year-olds182 (mean = 52.64 months, SD = 3.40, range = 48 - 59, 25 girls), and 55 5-vear-olds (mean =183 65.11 months, SD = 3.77, range = 60 - 71, 27 girls). Children in our sample grow up in an 184 industrialized, urban Central-European context. Information on socioeconomic status was 185 not formally recorded, although the majority of families come from mixed, mainly mid to 186 high socioeconomic backgrounds with high levels of parental education. 187

In addition, we recruited a remote adult sample by advertising the study on *Prolific*. 188 Prolific is an online participant recruitment service from the University of Oxford with a 189 predominantly European and US-american subject pool. Participants consisted of 100 190 English-speakers with an average age of 31.34 years (SD = 10.77, range = 18 - 63, 64191 females). For completing the study, subjects were payed above the fixed minimum wage (in 192 average £10.00 per hour). Prolific distributed our study link to potential participants, 193 while the hosting of the online study was done by local servers in the Max Planck Institute 194 for Evolutionary Anthropology, Leipzig, Germany. 195

6 Procedure

Children in our in-person sample were tested on a tablet in a quiet room in their
daycare center. An experimenter accompanied the child and helped them navigate through
the online study. Children in the remote sample received a personalized link to the study
websites and families could participate at any time or location they wanted. In the
beginning of the online study, families were invited to enter our "virtual institute" and
were welcomed by an introductory video of the study leader, shortly describing the

research background and further procedure. Then, caregivers were informed about data 203 security and were asked for their informed consent. They were asked to enable the sound 204 and seat their child centrally in front of their device. Before the study started, families 205 were instructed how to setup their webcam and enable the recording permissions. We 206 stressed that caregivers should not help their children. Study participation was video 207 recorded whenever possible in order to ensure that the answers were generated by the 208 children themselves. Depending on the participant's device, the website automatically 200 presented the hedge or box version of the study. For families that used a tablet with 210 touchscreen, the hedge version was shown. Here, children could directly click on the 211 touchscreen themselves to indicate where the target is. For families that used a computer 212 without touchscreen, the website presented the box version of the task. We assumed that 213 younger children in our sample would not be acquainted with the usage of a computer mouse. Therefore, we asked children to point to the screen, while caregivers were asked to 215 act as the "digital finger" of their children and click on the indicated box. 216

Our adult sample participated remotely without supervision.

All participants received 15 test trials that were displayed as described above. In the
box version, we decided to adjust the task difficulty according to the sample: children were
presented with five boxes while adults were presented with eight boxes as possible target
locations.

$_{222}$ Analysis

217

227

All test trials without voice over description were included in our analyses. We ran all analyses in R version 4.1.3 (2022-03-10) (R Core Team, 2022). Regression models were fit as Bayesian generalized linear mixed models (GLMMs) with default priors for all analyses, using the function brm from the package brms (Bürkner, 2017, 2018).

To estimate the developmental trajectory of gaze cue understanding and the effect of

data collection mode, we fit a GLMM predicting the task performance by age (in months, z-transformed) and data collection mode (reference category: in-person supervised). The 229 model included random intercepts for each participant and each target position, and a 230 random slope for symmetric target position within participants (model notation in R: 231 performance ~ age + datacollection + (symmetricPosition | subjID) + (1 | 232 targetPosition)). Here, targetPosition refers to the absolute bin/box of the target, 233 while symmetricPosition refers to the distance from the stimulus center (i.e., smaller 234 value meaning more central target position). We expected that trials could differ in their 235 difficulty depending on the target centrality and that these these item effects could vary 236 between participants. 237

For the hedge version, performance was defined as the absolute click distance between
the target center and the click X coordinate, scaled according to target widths, and
modeled by a lognormal distribution. For the box version, the model predicted correct
responses (0/1) using a Bernoulli distribution with a logit link function. We inspected the
posterior distribution (mean and 95% Confidence Interval (CI)) for the age and data
collection estimates.

244 Results

We captured a developmental trajectory of gaze cue understanding: with increasing
age, participants got more and more accurate in locating the target. In the hedge version,
children's click imprecision droped with age, while, congruently, the proportion of correct
responses increased in the box version (see Figure 2 A and F). Most participants in the box
version performed above chance level. By the end of their sixth year of life, children came
close to the adult's proficiency level. We found interindividual variation across study
versions and age groups. For instance, this can be seen in that some three-year-olds were
more precise in their responses than some five-year-olds.

Figure 2. Measuring interindividual variation. (a) Developmental trajectory in continuous hedge version. Performance is measured as average imprecision, i.e., the absolute distance between the target's center and the participant's click. The unit of imprecision is counted in the width of the target, i.e., a participant with an imprecision of 1 clicked in average one target width to the left or right of the true target center. (b) Internal consistency (odd-even split) in hedge child sample. (c) Internal consistency in hedge adult sample. (d) Test-retest reliability in hedge child sample. (e) Test-retest reliability in hedge adult sample. (f) Developmental trajectory in discrete box version. Performance is measured as the proportion of correct responses, i.e., how many times the participant clicked on the box that actually contained the target. Dotted black line shows level of performance expected by chance (for child sample 20%, i.e., 1 out of 5 boxes; for adult sample 12.5%, i.e., 1 out of 8 boxes). (g) Internal consistency (odd-even split) in box child sample. (h) Internal consistency in box adult sample. (i) Test-retest reliability in box child sample. (j) Test-retest reliability in box adult sample. Regression lines with 95% CI show product-moment-correlations with Pearson's correlation coefficient r. Large data points with 95% CI (based on non-parametric bootstrap) represent performance means by age group (binned by year). Small data points show the mean performance for each subject. Shape of data points represents data collection mode: opaque round circles stand for in-person supervised data collection, translucent diamonds stand for remote unsupervised data collection. Color of data points represent each age group (binned by year).

As Figure 2 A and F show, our remotely collected child data resembled the data from
the kindergarten sample. We found evidence that responses of children participating
remotely were slightly more precise. This difference was mainly driven by the younger
participants and especially prominent in the box version of the task. It is conceivable that
caregivers were especially prone to influence the behavior of younger children. In the box
version, caregivers might have had more opportunities to interfere since they carried out
the clicking for their children.¹

Our GLMM analysis corroborated the effects of age and data collection mode that we already identified by visual inspection: in the hedge version, we found an estimate of age of -0.33 (95% CI [-0.42; -0.23]) and an estimate of data collection mode of -0.32 (95% CI [-0.50; -0.14]). In the box version, the estimate of age was 0.64 (95% CI [0.40; 0.88]) and the estimate of data collection mode was 1.16 (95% CI [0.72; 1.61]). Note that the effect of data collection appears to be present, but confidence intervals are wide.

Discussion

267

268

269

270

271

Study 1 showed that our newly implemented balloon finding task can be used to study gaze cue understanding in both children and adults. With increasing age, participants got more and more precise in locating the target. We found interindividual variation across all age groups. Furthermore, we found a comparable developmental trajectory for an unsupervised remote child sample. This underlines how flexibly our new task can be used.

 $^{^1}$ In an exploratory analysis, we coded parental behavior and environmental factors during remote unsupervised testing. We focused on the subsample with the greatest performance difference between data collection modes: the three-year-olds in the box version of the task (n = 16). We reasoned that if parental interference cannot explain the greatest performance difference in our sample, the effects would be negligible in the remaining sample. Based on our model comparison, we conclude that there is no clear evidence of a stable effect of parental interference. See Supplements for further detail.

Can we capture variation reliably?

As a next step, we aimed at investigating whether the variation that we captured
with our balloon finding task is reliable (i.e., systematically order individuals in the same
way). For this aim, we assessed the internal consistency, as calculated by splithalf
reliability, and the test-retest reliability. The pre-registrations can be found here:
https://osf.io/xqm73 (child sample) and here: https://osf.io/nu62m (adult sample).

Participants were equally distributed across the two study versions. The study was
approved by an internal ethics committee at the Max Planck Institute for Evolutionary
Anthropology. Data was collected between July 2021 and April 2022.

281 Participants

272

For our child sample, we went to kindergartens in Leipzig and surroundings. The
child sample consisted of 93 children, including 24 3-year-olds (mean = 42.49 months, SD
= 2.99, range = 38 - 47, 13 girls), 38 4-year-olds (mean = 53.77 months, SD = 3.16, range
= 48 - 59, 19 girls), and 31 5-year-olds (mean = 66 months, SD = 3.42, range = 61 - 71, 17
girls).

The adult sample was recruited over Prolific and consisted of 136 English-speakers with an average age of 25.74 years (SD = 8.11, range = 18 - 71, 87 females).

Procedure Procedure

We applied the same procedure as in the first study, with the following differences.

Participants completed the study twice, with a delay of 14 ± 3 days. The target locations

as well as the succession of agents and target colors was randomized once and then held

constant across participants. The child sample received 15 test trials. In the hedge version,

each bin occurred once, making up ten of the test trials. For the remaining five test trials,

we repeated one out of two adjacent bins (i.e., randomly chose between bin 1 & 2, bin 3 &

4, etc). In the box version, we ensured that each of the five boxes occurred exactly three times. For the remaining training trials, we repeated a fixed order of four random bins/boxes. Adults in the hedge version received 30 test trials, each of the ten bin occurring exactly three times. Adults in the box version received 32 test trials with each of the eight boxes occurring exactly four times.

n Analysis

We assessed reliability in two ways. First, we focused on the internal consistency by 302 calculating splithalf reliability coefficients. For each subject, trials were split into odd and 303 even and performance scores per part were correlated against each other using *Pearson* 304 correlation coefficients. We took the data of the first test day and defined performance 305 according to study version: in the hedge version, performance referred to the absolute 306 difference between the target center and the click coordinate, scaled according to target 307 widths; in the box version, we computed the proportion of correct choices. As a recent 308 paper by Pronk, Molenaar, Wiers, and Murre (2021) suggested, there are various less 300 well-known split-half methods that differ in how the trials are split into parts and whether 310 they are combined with stratification by task design. To compare our traditional approach 311 of a simple odd-even split, we additionally calculated reliability estimates using 312 first-second, odd-even, permutated, and Monte Carlo splits without and with stratification 313 by target position. First-second and odd-even splits belong to single sample methods, since 314 each participant has a single pair of performance scores, while permutated (without 315 replacement) and Monte Carlo (with replacement) splits make use of resampling. Analyses were run using the function by splitfrom the splithalfr package (Pronk et al., 2021). 317 Second, we assessed the test-retest reliability. We calculated performance scores (depending 318 on study version as described above) for each individual in each test session and correlated 319 those using *Pearson* correlation coefficients. Furthermore, for our child sample we report 320 an age-corrected correlation between the two test days using a GLMM based approach. We 321

fit trial by trial data with a fixed effect of age, a random intercept for each subject and a random slope for test day (model notation in R: performance ~ age (0 + reliday | 323 subjID)). For the hedge version, performance was modeled by a lognormal distribution, 324 while the model for the box version used a Bernoulli distribution with a logit link function. 325 The model computes a correlation between the participant specific estimates for each test 326 day. This can be interpreted as the test-retest reliability. By using this approach, we do 327 not need to compromise on data aggregation and, therefore, loss of information. Most 328 importantly, the model allows us to get an age-independent estimate for reliability. This 329 rules out the possibility that a high correlation between test days arises from domain 330 general cognitive maturation processes instead of study-specific inter-individual differences. 331

332 Results

346

We found that our balloon finding task induced systematic variation: splithalf and test-retest reliability was high for most samples.

For the internal consistency, we show traditional odd-even splits on our data and the corresponding *Pearson* correlation coefficients in Figure 2 B, C, G and H.

Figure 3 compares splithalf reliability coefficients by splitting and stratification 337 method, following Pronk et al. (2021). In the hedge version, the splithalf reliability 338 coefficients ranged from 0.61 to 0.92. In the box version, splithalf reliability coefficients 339 ranged from 0.40 to 0.87. Similarly to the results of Pronk et al. (2021), we found that 340 more robust splitting methods that are less prone to task design or time confounds yielded 341 higher reliability coefficients. In the majority of cases, stratifying by target position lead to 342 similar or even higher estimates compared to no stratification. As might be expected, we 343 found higher coefficients for the samples with higher variation, i.e., for our continuous 344 hedge version of the task. 345

For the test-retest reliability, we show the association between raw performance

Figure 3. Internal Consistency. Reliability coefficients per splitting method, stratification level, study version and age group. Error bars show the 95% confidence intervals of the coefficient estimates, calculated with the function by_split from the splithalfr package (Pronk et al., 2021).

scores of the two test days and corresponding Pearson correlation coefficients in Figure 2 D, E, I and J.²

Taking age into account in our GLMM based approach yielded similar results. The
age-independent retest reliability estimate in the hedge version amounted to 0.88 (95% CI
[0.61;1.00]). In the box version of the task, the age-independent correlation between
participant specific test day estimates was 0.89 (95% CI [0.63;1.00]). The results suggest
that our novel balloon finding task did capture individual differences beyond general
cognitive maturation processes. This corroborates what we already see in Figure 2: there
was a clear overlap between age groups, indicating that age is predictive of performance for
the mean, but is not the driving force accounting for individual differences.

Discussion

357

Our results indicated that the measured variation was systematic. As could be
expected, the continuous measure of the hedge version yielded higher reliability estimates
than the discrete box version.

² In the hedge version, we excluded one 5-year-old child from the test-retest analysis. The performance of the mentioned child lay 3 standard deviations above the mean on both test days. Including the child yielded a *Pearson* correlation coefficient of r = 0.87.

Exploring the external validity of our task

Our third aim was to assess whether the captured individual variation in gaze cue understanding relates to factors in children's real live social surroundings.

Participants

361

For this exploratory analysis, we included all children of the aforementioned samples where families filled out a short demographic questionnaire. This subsample consisted of 130 children, including 39 3-year-olds (mean = 43.02 months, SD = 3.20, range = 37 - 47, 20 girls), 44 4-year-olds (mean = 54.43 months, SD = 2.77, range = 48 - 59, 26 girls), and 47 5-year-olds (mean = 66.13 months, SD = 3.55, range = 60 - 71, 23 girls).

370 Procedure

Families of our kindergarten and online child sample were asked to fill out a brief
demographic questionnaire (print out / online questionnaire). We asked for (1) the total
number of household members, (2) the number of children, (3) age of the other children,
(4) whether the child was in day care, and if yes, (5) since when and (6) for how long on an
average day.

376 Analysis

To estimate the effects of social surrounding on gaze cue understanding, we fit

GLMMs predicting the task performance by each of our questionnaire variables, controlling

for age (in months, z-transformed), data collection mode (reference category: in-person

supervised) and study version (reference category: hedge version). The models included

random intercepts for each participant and each target position, and a random slope for

symmetric target position within participants. Therefore, our null model closely resembled

the structure from our first analysis (section *Does the balloon finding task induce*

variation?; here: performance ~ age + datacollection + studyversion + 384 (symmetricPosition | subjID) + (1 | targetPosition)). In order to combine data of 385 our two study versions, we transformed continuous click responses from the hedge version 386 into a discrete outcome. For the target position, we categorized two adjacent bins as one 387 imaginary box. To measure participants' performance, we created imaginary box 388 boundaries around the target's landing position and examined whether the participant's 380 click response fell into this imaginary box. Across the two study versions, we could 390 consequently model the participant's correct response (0/1) using a Bernoulli distribution 391 with a logit link function. For model comparisons, we respectively added the following 392 predictors as fixed effects to the null model: number of household members, number of 393 children aged 0-18 in household, number of children aged 1-12 in household, hours spent in 394 childcare each day, and age when subject entered childcare. In addition, we calculated three index scores. First, we calculated a sibling variety score according to Peterson (2000). Second, we implemented the modified version of Cassidy, Fineberg, Brown, and Perkins (2005) (for more details, see Supplements). Third, based on our own data exploration, we 398 calculated the amount of peer exposure determined as the number of siblings and the 390 average hours spent in childcare (both z-transformed). We compared the models using WAIC (widely applicable information criterion) scores and weights. As an indicator of 401 out-of-sample predictive accuracy, lower WAIC scores stand for a better model fit. WAIC 402 weights represent the probability that the model in question provides the best 403 out-of-sample prediction compared to the other models. 404

405 Results

The model including our peer exposure index, as defined as the number of other
children in the household and average hours spent in childcare, showed the best
out-of-sample predictive accuracy. Note that we did not find a great difference in WAIC
scores between the compared models (see Supplements for WAIC scores and weights). The

model estimates were all considerably smaller than estimates of age, study version and 410 data collection, and all 95% CIs included zero. For example, for our winning model, we 411 found an estimate of 0.18 (95% CI [-0.01; 0.36]), with the estimates of age being 0.59 (95% 412 CI [0.40; 0.79]), data collection mode being 0.93 (95% CI [0.54; 1.34]), and study version 413 1.84 (95% CI [0.14; 3.47]). Nevertheless, a general direction of effect can be seen: there 414 seems to be small evidence that a social surrounding positively influenced children's gaze 415 cue understanding. The number of people and, more specifically, children, as well as the 416 more diverse their age, the more likely children were to follow the agent's gaze. The only 417 predictor resulting in a negative estimate was the age at which a participant entered 418 childcare, i.e., the later a child entered, the more likely children found the target. 419

Figure 4. External validity of the balloon finding task. Factors of children's social surroundings and their influence on the probability of responding correctly. Models are ordered according to their WAIC scores, with the uppermost winning the model comparison. The graph shows the estimated density curves of a model's predictor coefficients. Red tails display the 2.5% and 97.5% quantiles, respectively.

Discussion

Factors of children's social surrounding influenced their gaze cue understanding
performance only slightly. Nevertheless, it is remarkable that we were able to detect
relationships between this fundamental social-cognitive ability and very distant, real life
variables at all.

425 Discussion

We were able to show that our balloon finding task measures inter-individual
variation between children and adults, alike. Our results suggest that the measured
variation is systematic during the course of the same and different test days. Impressively,
the ability that our task measures related to factors in children's everyday life experience.

430 Limitations

Future development / extending the task

432 Conclusion

433 Declarations

Open practices statement

The web application (https://ccp-odc.eva.mpg.de/gafo-demo/) described here is open source (https://github.com/ccp-eva/gafo-demo). The datasets generated during and/or analysed during the current study are available in the [gazecues-methods] repository, (https://github.com/jprein/gazecues-methods). All experiments were preregistered (https://osf.io/zjhsc/).

440 Funding

This study was funded by the Max Planck Society for the Advancement of Science, a noncommercial, publicly financed scientific organization (no grant number). We thank all the children and parents who participated in the study.

444 Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

447 Consent to participate

Informed consent was obtained from all individual participants included in the study or their legal guardians.

450 Consent for publication

451 Open access

452 Authors' contributions

optional: please review the submission guidelines from the journal whether statements are mandatory

455	References
456	Bürkner, PC. (2017). Brms: An R Package for Bayesian Multilevel Models Using
457	Stan. Journal of Statistical Software, $80(1)$.
458	https://doi.org/10.18637/jss.v080.i01
459	Bürkner, PC. (2018). Advanced Bayesian Multilevel Modeling with the R Package
460	brms. The R Journal, $10(1)$, 395. https://doi.org/10.32614/RJ-2018-017
461	Cassidy, K. W., Fineberg, D. S., Brown, K., & Perkins, A. (2005). Theory of Mind
462	May Be Contagious, but You Don't Catch It from Your Twin. Child
463	Development, $76(1)$, $97-106$.
464	Greensock. (2022). GSAP (GreenSock Animation Platform).
465	Peterson, C. C. (2000). Kindred spirits: Influences of siblings' perspectives on
466	theory of mind. Cognitive Development, 15(4), 435–455.
467	https://doi.org/10.1016/S0885-2014(01)00040-5
468	Pronk, T., Molenaar, D., Wiers, R. W., & Murre, J. (2021). Methods to split
469	cognitive task data for estimating split-half reliability: A comprehensive review
470	and systematic assessment. Psychonomic Bulletin & Review.
471	https://doi.org/10.3758/s13423-021-01948-3
472	R Core Team. (2022). R: A language and environment for statistical computing
473	[Manual] Vienna Austria: R Foundation for Statistical Computing

Supplements

75 Child sample

474

Webcam coding. Comparing the performances of children across our two data 476 collection modes, we found that children participating remotely were slightly more precise. 477 This difference was especially prominent in younger participants in the box version of the task. It is conceivable that caregivers were especially prone to influence the behavior of younger children. In the box version, caregivers might have had more opportunities to 480 interfere since they carried out the clicking for their children. In an exploratory analysis, 481 we coded parental behavior and environmental factors during remote unsupervised testing. 482 Due to the incredible time consuming nature of hand coding videos frame by frame, we 483 focused on the subsample with the greatest performance difference between data collection 484 modes: the three-year-olds in the box version of the task (n = 16). We reasoned that if 485 parental interference cannot explain the greatest performance difference in our sample, the 486 effects would be negligible in the remaining sample. A trial was defined as the time 487 between two eye blinking sounds. We transcribed all utterances by parents and children 488 and counted the words uttered by each. We then classified the utterances into several 480 categories: question asked by child, repeated testquestion by caregiver, hints towards 490 agents (how many times the caregivers guided the child's attention to the agent), hints 491 towards eyes (how many times the caregivers guided the child's attention to the agent's 492 eyes), verification of choice (how many times the caregiver questioned or double checked 493 the child's response), mentioning of screen (how many times the caregiver verbally guided the child's attention to the screen), pointing to screen (how many times the caregiver pointed towards the screen), positive & negative feedback, motivational statements, and incomprehensible utterances. In addition, we coded how many adults and children were present, whether a response click was obviously conducted by the caregiver themselves, and 498 whether children took a break during the trial. We conducted a model comparison to 490

estimate the effects of parental interference. Our null model explained the response 500 behavior by age, while including random effects for subject and target position (model 501 notation in R: correct ~ age + (1 | subjID) + (1 | targetPosition). We 502 compared this null model to models including the number of words uttered by the 503 caregiver, number of repeated testquestions, verification of choice, or hints towards eyes as 504 fixed effects. Furthermore, we calculated an parental interference index by summing up 505 number of repeated testquestions, verification of choice, and hints towards eves, with the 506 sign matching the variable's direction of effect. Remaining variables that we coded for were 507 not included since there was not enough variation and/or occurrences in our sample. We 508 compared models using WAIC (widely applicable information criterion) scores and weights. 509 As an indicator of out-of-sample predictive accuracy, lower WAIC scores stand for a better 510 model fit. WAIC weights represent the probability that the model in question provides the best out-of-sample prediction compared to the other models. On the trial level, the model 512 including the verification of choice as a main effect won: here, the less the caregivers asked 513 for children's responses again, the more likely children clicked on the correct box. 514 Interestingly, the effect reversed on a subject level - possibly due to greatest learning effects 515 for the children that were most likely to click incorrectly in the beginning and then 516 receiving most parental comments. On the subject level, the model including number of 517 repeated testquestions won: the more caregivers asked again where the target landed, the 518 more likely children were to respond to the incorrect box. In all cases, however, ELPD 519 difference scores were smaller than their standard errors. Similarly, 95% CI of the model 520 estimates included zero and were rather wide. Therefore, we conclude that no stable effect 521 of parental interference could be confirmed in this exploratory analysis. 522

model	waic	waic_weight	elpd_diff	se_diff
mPerTrialVerificationChoice	263.24183	0.6469352	0.0000000	0.000000
mPerTrialNull	263.74712	0.3530572	-0.2526455	1.202097
mPerTrialPI	264.34608	0.0000048	-0.5521261	0.978696
${\it mPerTrialRepeatedTest question}$	265.43452	0.0000011	-1.0963445	1.272427
mPerTrialHintsEyes	265.67182	0.0000014	-1.2149955	1.255888
mPerTrialParentSpeech	266.45389	0.0000003	-1.6060301	1.211500
m Per Subject Repeated Test question	83.52517	0.7033000	0.0000000	0.000000
mPerSubjectPI	88.25288	0.0000019	-2.3638570	3.596520
mPerSubjectNull	89.25650	0.0000003	-2.8656662	3.608723
${\bf mPerSubjectVerificationChoice}$	89.85833	0.2966959	-3.1665822	4.484388
${\it mPerSubjectParentSpeech}$	90.44632	0.0000018	-3.4605795	4.204938
mPerSubjectHintsEyes	92.76122	0.0000001	-4.6180264	3.773420

Appendix to external validity section.

Scoring of sibling variety scores. For assessing the external validity of our balloon finding task, we calculated two sibling variety scores based on the existing Theory of Mind literature. First, we followed the approach by Peterson (2000). Here, only-children as well as firstborns with siblings under one year scored 0 points; lastborns with siblings above 12 years scored 0.5 points; children with twins, firstborns with siblings over one year, and lastborns with at least one sibling under 13 years scored 1 point, middleborns with at least one older and younger sibling aged one to 12 years scored 2 points.

Second, we implemented the sibling variety score by Cassidy et al. (2005). The authors adjusted the original score of Peterson (2000) in the following way: only-children scored 0 points; children with a sibling under one year or above 12 years, and twins with no other sibling scored 0.5 points; children with a sibling above one year or under 13 years scored 1 point; middleborns with at least one older and younger sibling aged one to 12

years scored 2 points. Twins with additional siblings scored depending on the age and number of their siblings.

The reasoning was that children between one and 13 years of age would engage in sibling play, while the youngest and most mature siblings would be less likely to participate in such. However, teenage siblings might provide opportunities for interesting discussions (Peterson, 2000).

WAIC scores and weights of the model comparison. As can be seen, ELPD
difference scores are smaller than their respective standard errors. WAIC scores between
models don't differ substantially. All effects except when a child entered childcare
positively influence performance.

model	waic	waic_weight	elpd_diff	se_diff
PE	2390.222	0.5405439	0.0000000	0.0000000
siblingsVarietyScoreP	2390.429	0.3408146	-0.1032133	1.0951621
ccHours	2391.667	0.0001320	-0.7222674	1.0449378
hhTotal	2391.965	0.0001205	-0.8716164	0.9255789
hhSibs	2392.245	0.0000189	-1.0114203	0.9762202
sibsChildAged	2392.407	0.0000134	-1.0924575	1.0418509
ccAge	2392.445	0.1182920	-1.1114913	1.6858011
null	2392.618	0.0000583	-1.1978484	1.2901087
${\rm siblingsVarietyScoreW}$	2392.952	0.0000064	-1.3648559	1.0877168

$_{548}$ ${f Adult\ sample}$

547

Recruitment. We recruited participants using the online participant recruitment
service Prolific from the University of Oxford. Prolific's subject pool consists of a mostly
European and US-american sample although subjects from all over the world are included.
The recruitment platform realises ethical payment of participants, which requires
researchers to pay participants a fixed minimum wage of £5.00 (around US\$6.50 or €6.00)

per hour. We decided to pay all participants the same fixed fee which was in relation to the 554 estimated average time taken to complete the task. Prolific distributed our study link to 555 potential participants, while the hosting of the online study was done by local servers in 556 the Max Planck Institute for Evolutionary Anthropology, Leipzig. Therefore, study data 557 was saved only on our internal servers, while *Prolific* provided demographic information of 558 the participants. Participants' Prolific ID was forwarded to our study website using URL 550 parameters. This way, we could match participant demographic data to our study data. 560 The same technique was used to confirm study completion: we redirected participants from 561 our study website back to the *Prolific* website using URL parameters. We used *Prolific*'s 562 inbuilt prescreening filter to include only participants who were fluent in English and could 563 therefore properly understand our written and oral study instructions.

Study 1 - Validation hedge version. The aim of Study 1 was to validate the
hedge version of our balloon finding task. The pre-registration can be found here:
https://osf.io/r3bhn. We recruited participants online by advertising the study on *Prolific*.

50 adults participated in the study. One additional subject returned their submission, 568 i.e., decided to leave the study early or withdrew their submission after study completion. 569 Data collection took place in May 2021. Participants were compensated with £1.25 for 570 completing the study. We estimated an average completion time of 6 minutes, resulting in 571 an estimated hourly rate of £10.00. In average, participants took 05:56min to complete the 572 study. Participants were required to complete the study on a tablet or desktop. 573 Participation on mobile devices was disabled since the display would be too small and 574 would harm click precision. It was indicated that the study required audio sound. 575

We stored *Prolific*'s internal demographic information, while not asking for additional personal information.

Study 2 - Validation box version. As in study 1, we recruited participants on *Prolific*, and employed the same methodology. However, this time we focussed on

596

597

validating the box version of the task in an adult sample. Participants were presented with 580 eight boxes in which the target could land. 50 adults participated in the study. One 581 additional subject returned their submission, i.e., decided to leave the study early or 582 withdrew their submission after study completion. Data collection took place in June 2021. 583 Participants were compensated with £1.00 for completing the study. We estimated an 584 average completion time of 6 minutes, resulting in an estimated hourly rate of £10.00. In 585 average, participants took 04:43min to complete the study. 586

Study 3 - Reliability hedge version. In study 3 and 4, we assessed the 587 test-retest reliability of our balloon-finding task in an adult sample. The pre-registration 588 can be found here: https://osf.io/nu62m. We tested the same participants twice with a 589 delay of two weeks. The testing conditions were as specified in Study 1 and 2. However, 590 the target locations as well as the succession of animals and target colors was randomized 591 once. Each participant then received the same fixed randomized order of target location, 592 animal, and target color. Participants received 30 test trials without voice-over description, 593 so that each of the ten bins occurred exactly three times. 594

In addition to the beforementioned prescreening settings, we used a whitelist. *Prolific* 595 has a so-called *custom allowlist prescreening filter* where one can enter the *Prolific IDs* of participants who completed a previous study. Only these subjects are then invited to participate in a study. This way, repeated measurements can be implemented, collecting data from the same subjects at different points in time.

In a first round, 60 participants took part on the first testday. Additional two 600 subjects returned their submission, i.e., decided to leave the study early or withdrew their submission after study completion. One additional participant timed out, i.e., did not finish the survey within the allowed maximum time. The maximum time is calculated by Prolific, based on the estimated average completion time. For this study, the maximum time amounted to 41 minutes. For the first testday, participants were compensated with 605 £1.25. We estimated an average completion time of 9 minutes, resulting in an estimated 606

607 hourly rate of £8.33. In average, participants took 07:11min to complete the first part.

Of the 60 participants that completed testday 1, 41 subjects finished testday 2. One additional participant timed out, i.e., did not finish the survey within the allowed maximum time. Participants were compensated with £1.50 for completing the second part of the study. We estimated an average completion time of 9 minutes, resulting in an estimated hourly rate of £10. In average, participants took 06:36min to complete the second part of the study.

Since we aimed for a minimum sample size of 60 subjects participating on both 614 testdays, we reran the first testday with additional 50 participants. Additional seven 615 subjects returned their submission, i.e., decided to leave the study early or withdrew their 616 submission after study completion. Two additional participants timed out, i.e., did not 617 finish the survey within the allowed maximum time. Again, participants were compensated 618 with £1.25 for completing the first part of the study (estimated average completion time 9) 619 minutes, estimated hourly rate of £8.33). In average, participants took 06:51min to 620 complete the first part. 621

Of the additional 50 participants that completed testday 1, 29 subjects finished testday 2. Again, participants were compensated with £1.50 for completing the second part of the study (estimated average completion time 9 minutes, estimated hourly rate of £10). In average, participants took 06:26min to complete the second part of the study.

Study 4 - Reliability box version. As in study 3, we recruited participants on Prolific, and employed the same methodology. However, this time participants were presented with the box version of the task. Participants received 32 test trials without voice-over description, so that each of the eight boxes occurred exactly four times. As in study 2, we employed eight boxes in which the target could land.

In a first round, 60 participants took part on the first testday. Additional five subjects returned their submission, i.e., decided to leave the study early or withdrew their

submission after study completion. For the first testday, participants were compensated with £1.25. We estimated an average completion time of 9 minutes, resulting in an estimated hourly rate of £8.33. In average, participants took 07:33min to complete the first part.

Of the 60 participants that completed testday 1, 41 subjects finished testday 2.

Participants were compensated with £1.50 for completing the second part of the study. We
estimated an average completion time of 9 minutes, resulting in an estimated hourly rate of
£10. In average, participants took 07:50min to complete the second part of the study.

Since we aimed for a minimum sample size of 60 subjects participating on both testdays, we reran the first testday with additional 50 participants. Additional eight subjects returned their submission, i.e., decided to leave the study early or withdrew their submission after study completion. One additional participant timed out, i.e., did not finish the survey within the allowed maximum time. Again, participants were compensated with £1.25 for completing the first part of the study (estimated average completion time 9 minutes, estimated hourly rate of £8.33). In average, participants took 07:37min to complete the first part.

Of the additional 50 participants that completed testday 1, 28 subjects finished
testday 2. Additional three subjects returned their submission, i.e., decided to leave the
study early or withdrew their submission after study completion. One additional
participant timed out, i.e., did not finish the survey within the allowed maximum time.
Again, participants were compensated with £1.50 for completing the second part of the
study (estimated average completion time 9 minutes, estimated hourly rate of £10). In
average, participants took 06:30min to complete the second part of the study.

656

Instructions and voice over descriptions

This is the content of our audio recordings that were played as instructions and during voice over trials.

Timeline	German	English	Filename
welcome	Hallo! Schön, dass	Hello! Great that	welcome.mp3
	du da bist. Wir	you're here. We'll	
	spielen jetzt das	now play a balloon	
	Ballon-Spiel! Siehst	game. Can you see	
	du die Tiere auf dem	the animals in the	
	Bild da? Wir	picture over there?	
	möchten gleich	We want to play	
	zusammen mit den	together with the	
	Tieren mit einem	animals using the	
	Ballon spielen. Was	balloon. We'll now	
	genau passiert,	talk you through	
	erklären wir dir jetzt	exactly what will	
	ganz in Ruhe.	happen.	

touch	Schau mal, da steht	Look, an animal is	touch-1.mp3
	ein Tier im Fenster.	standing in the	
	Und siehst du den	window. And can	
	Ballon da? Der	you see the balloon	
	Ballon fällt immer	over there? The	
	runter und landet	balloon always falls	
	auf dem Boden. Und	down and lands on	
	du musst ihn dann	the ground. And you	
	finden. Das Tier	have to find it! The	
	hilft Dir und schaut	animal helps you	
	immer den Ballon	and always looks at	
	an.	the balloon.	
	Wo ist der Ballon?	Where is the	prompt-touch-
	Drück auf den	balloon? Click on	long.mp3
	Ballon!	the balloon!	

fam - HEDGE	Klasse, das war	Perfect, that was	fam-hedge-1.mp3
	super! Jetzt spielen	great! Now, we'll	
	wir weiter. Siehst du	continue playing.	
	wieder das Tier und	Can you see the	
	den Ballon da? Der	animal and the	
	Ballon fällt wieder	balloon again? The	
	runter. Diesmal fällt	balloon will fall	
	er hinter eine Hecke.	down again. This	
	Du musst ihn wieder	time, it will fall	
	finden. Das Tier	behind a hedge. And	
	hilft dir und schaut	you have to find it!	
	immer den Ballon	The animal helps	
	an.	you and looks at the	
		balloon.	
	Wo ist der Ballon?	Where is the	prompt-hedge-
	Drücke auf die Hecke	balloon? On the	long.mp3
	- wo der Ballon ist.	hedge, click where	
		the balloon is.	

fam - BOX	Klasse, das war	Perfect, that was	fam-box-1.mp3
	super! Jetzt spielen	great! Now, we'll	
	wir weiter. Siehst du	continue playing.	
	wieder das Tier und	Can you see the	
	den Ballon da? Der	animal and the	
	Ballon fällt wieder	balloon again? The	
	runter. Diesmal fällt	balloon falls down	
	er in eine Kiste. Du	again. This time, it	
	musst ihn wieder	falls into a box. And	
	finden. Das Tier	you have to find it!	
	hilft dir und schaut	The animal helps	
	immer den Ballon	you and looks at the	
	an.	balloon.	
	Wo ist der Ballon?	Where is the	prompt-box-
	Drücke auf die Kiste	balloon? Click on	long.mp3
	mit dem Ballon.	the box with the	
		balloon.	
test - HEDGE	Klasse , das hast du	Nice, good job!	test-hedge-1.mp3
	toll gemacht! Nun	Now, we'll continue	
	spielen wir weiter.	playing. There is the	
	Da sind wieder der	balloon, the animal	
	Ballon, das Tier und	and the hedge. The	
	die Hecke. Die Hecke	hedge is growing a	
	wächst jetzt hoch.	bit now.	

	Der Ballon ist nun	The balloon is	test-hedge-2.mp3
	hinter der Hecke. Du	behind the hedge	
	kannst das nicht	now. You can't see	
	sehen - das Tier	it - but the animal	
	aber! Jetzt fällt der	can! The balloon	
	Ballon auf den	falls to the ground	
	Boden und du musst	and you have to find	
	ihn wieder finden.	it. Remember - the	
	Denk dran - das Tier	animal always looks	
	schaut immer den	at the balloon!	
	Ballon an.		
	Dann schrumpft die	Now, the hedge is	test-hedge-3.mp3
	Hecke. Drücke auf	shrinking. On the	
	die Hecke - wo der	hedge, click where	
	Ballon ist.	the balloon is.	
test - BOX	Klasse , das hast du	Nice, good job!	test-box-1.mp3
	toll gemacht! Nun	Now, we'll continue	
	spielen wir weiter.	playing. There is the	
	Da sind wieder der	balloon and the	
	Ballon, das Tier und	animal. Now, a	
	die Kisten. Jetzt	hedge is growing.	
	wächst eine Hecke		
	hoch.		

	Der Ballon ist nun	The balloon is	test-box-2.mp3
	hinter der Hecke. Du	behind the hedge	
	kannst das nicht	now. You can't see	
	sehen - das Tier	it - but the animal	
	aber! Jetzt fällt der	can! The balloon	
	Ballon in eine Kiste	falls into a box and	
	und du musst ihn	you have to find it.	
	wieder finden. Denk	Remember - the	
	dran - das Tier	animal always looks	
	schaut immer den	at the balloon!	
	Ballon an.		
	Dann schrumpft die	Now, the hedge is	test-box-3.mp3
	Hecke. Drücke auf	shrinking. Click on	
	die Kiste mit dem	the box with the	
	Ballon.	balloon.	
goodbye	Geschafft! Die Tiere	The animals are	goodbye.mp3
	sind schon ganz	super happy after	
	glücklich vom	playing. Thanks a	
	Spielen! Vielen	lot for your help!	
	Dank für deine Hilfe!	See you soon and	
	Bis zum nächsten	goodbye from the	
	Mal und liebe Grüße	pig, monkey and	
	vom Schwein, Affen	sheep	
	und Schaf		
general prompt	Wo ist der Ballon?	Where is the	prompt-general.mp3
		balloon?	

touch - no	Drück auf den	Click on the balloon!	prompt-touch.mp3
response	Ballon!		
hedge - no	Drücke auf die Hecke	On the hedge, click	prompt-hedge.mp3
response	- wo der Ballon ist!	where the balloon is!	
box - no response	Drücke auf die Kiste	Click on the box	prompt-box.mp3
	mit dem Ballon!	with the balloon!	
landing sound of	-	-	balloon-lands.mp3
balloon			
sound of blinking	-	-	blink.mp3
eyes			
sound for target	-	-	positive-
click			feedback.mp3