PUCP

FACULTAD DE CIENCIAS SOCIALES

MATEMÁTICAS PARA ECONOMISTAS

PRÁCTICA DIRIGIDA 3

PROFESOR: JORGE R. CHÁVEZ

JEFES DE PRÁCTICA: JOAQUÍN RIVADENERYA & MARCELO GALLARDO

SEMESTRE 2022-2

FECHA 27-09-2022

Funciones cuasiconvexas, cuasicóncavas y aplicaciones.

- 1. Pruebe que la función $f(x) = e^{-x^2}$, $x \in \mathbb{R}$ es cuasicóncava.
- 2. Pruebe que las funciones $f(x) = x^3$ y g(x) = -2x son cuasiconvexas. Sin embargo, pruebe que f(x) + g(x) no es cuasiconvexa ni cuasicóncava.
- 3. Pruebe que $f:[-2,2] \to \mathbb{R}$ es cuasiconvexa, donde

$$f(x) = \begin{cases} \sqrt{|x|}, & \text{si } -2 \le x \le 0\\ x^2 & \text{si } 0 \le x \le 2. \end{cases}$$

- 4. Pruebe que la función del ejercicio anterior no es convexa.
- 5. Sea $U = U(x_1, x_2)$ una función de utilidad. Pruebe que

$$TMS = \frac{U_1}{U_2} = \frac{\partial U/\partial x_1}{\partial U/\partial x_2}$$

es decreciente si U es cuasicóncava. ¿Qué puede deducir sobre la cuasiconcavidad y la convexidad de las preferencias? Asuma que x_2 se puede escribir como una función diferenciable de x_1 y se opera sobre una curva de indiferencia.

6. Analice la cuasiconvexidad o cuasiconcavidad de las siguientes funciones. Luego, identifique cuales pueden ser usadas como **funciones de utilidad**.

1

- 6.1) $f(x_1, x_2) = \sqrt{x_1 + x_2}$.
- 6.2) $f(x_1, x_2) = \exp(x_1 x_2)$.
- 6.3) $f(x_1, x_2) = \ln(x_1 x_2)$.
- 6.4) $f(x_1, x_2) = x_2 e^{x_1}$.

6.5)
$$f(x_1, x_2) = Ax_1^{0.5}x_2^{0.5}, A > 0.$$

6.6)
$$f(x_1, x_2) = \min \left\{ \frac{x_1}{\alpha_1}, \frac{x_2}{\alpha_2} \right\}, \quad \alpha_i > 0.$$

6.7)
$$f(x_1, x_2) = (x_1^{1/3} + x_2^{1/3})^3$$

6.8)
$$f(x_1, x_2, x_3) = \min\{x_1 + x_2, x_3\}.$$

7. Sea f una función positiva y cóncava, determine si la funciones $g(x) = \ln[f(x)]$ y $h(x) = e^{f(x)}$ son cuasicóncavas. ¿Puede deducir algún resultado en general?

Introducción a la optimización.

- 8. Encuentre los puntos estacionarios de las siguientes funciones (en caso existan) y determine su naturaleza aplicando el criterio de la matriz Hessiana.
- 8.1) $f(x) = e^x x$.
- 8.2) $f(x_1, x_2) = x_1^2 + x_2^2$.
- 8.3) $f(x_1, x_2, x_3) = x_1^3 x_2^4 + 2x_1 2x_2$.
- 8.4) $f(x_1, x_2) = e^{1+ax_1^2+bx_2^2}$.
- 8.5) $f(x_1, x_2) = x_1^4 x_1^2 x_2^2 + x_2^3 18x_1^2 + 3x_2^2$
- 8.6) $f(x_1, x_2) = x_1 x_2 \ln(x_1^2 + x_2^2)$.
- 9. Determine gráficamente la solución a los siguientes problemas de optimización e identifíquelos como un problema de maximización de la utilidad ¿cómo deben ser los parámetros? ¿qué tipo de preferencias representan?

9.1)
$$\begin{cases} \text{máx} & u(x_1, x_2) = x_1 x_2 \\ \text{s.a.} & ax_1 + bx_2 = 2. \end{cases}$$

9.2)
$$\begin{cases} \text{máx} & u(x_1, x_2) = \theta x_1 + \eta x_2 \\ \text{s.a.} & x_1 + x_2 = 2. \end{cases}$$

- **10.** Si x^* es un mínimo de f, pruebe que x^* es un máximo de -f.
- **11.** Considere las funciones $f: S \subset \mathbb{R}^n \to \mathbb{R}$ y $h: \mathbb{R} \to \mathbb{R}$ definamos $g: S \to \mathbb{R}$ por g = h(f(x)). Pruebe que, si h es creciente y x^* maximiza (o minimiza) f sobre S, entonces x^* maximiza (o minimiza) g sobre S.
- 12. Si x^* es un punto óptimo de f analice el punto óptimo de g para
- 12.1) g(x) = af(x) + b, $a, b \in \mathbb{R}$, a > 0.

12.2)
$$g(x) = e^{f(x)}$$
.

12.3)
$$g(x) = \sqrt{f(x)}$$
.

13. Con respecto a la función

$$f(x_1, x_2) = 2x_1^2 + 2x_2^2 + 8x_1x_2 + 4x_1x_3 + 4x_2x_3, (x_1, x_2, x_3) \in \mathbb{R}^3$$

analice si f posee mínimo o máximo locales. Determine si es posible aplicar el Teorema de Weierstrass.

- **14.** ¿Es posible que una función convexa posea más de un mínimo global? ¿Y si es estrictamente convexa?
- **15.** Con respecto a la función $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x_1, x_2) = (x_1 - a)^{2m} + (x_2 - b)^{2n} + c,$$

a, b, c constantes y $m, n \in \mathbb{N}$, se le pide que resuelva las siguientes cuestiones.

- 15.1) ¿Cuál es el punto mínimo de la función?
- 15.2) ¿Cuál es valor mínimo de la función?
- 15.3) ¿Tiene puntos máximos la función f?
- 16. Defina la función de producción tipo CES (Constant Elasticity of Substitution)

$$f(k,\ell) = (\alpha_1 k^{-\rho} + \alpha_2 \ell^{-\rho})^{-\sigma/\rho}.$$

Demuestre que el punto óptimo (k^*, ℓ^*) del problema del productor satisface la relación

$$\frac{r}{w} = \frac{\alpha_1 k^{-\rho - 1}}{\alpha_2 \ell^{-\rho - 1}}.$$

17. Resuelva el problema del productor para una especificación Cobb-Douglas, es decir, resuelva

$$\text{máx } \Pi = px_1^{\alpha}x_2^{\beta} - wx_1 - rx_2,$$

donde x_1 es el trabajo y x_2 el capital. Considere $x_2 = \overline{x}_2$ fijo (enfoque a corto plazo).

18. Resuelva el siguiente problema del monopolista

$$\max_{y^d, y^m} \Pi = (100 - y^d)y^d + 60y^m - 0.5(y^m + y^d)^2.$$

3

Aquí p=60 es el precio en el mercado mundial del bien y, $p=100-y^d$ es la demanda doméstica, y $0.5(y^m+y^d)^2$ son los costos de producción.

19. La siguiente función

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

representa la función de densidad de la distribución normal con media μ y varianza σ^2 . Demuestre que $x^* = \mu$ es un máximo global.

20. En relación al problema del consumidor en su expresión más general

$$\max u(x)$$
$$px \le I$$
$$x \in \mathbb{R}^n_+.$$

¿Qué condiciones sobre las preferencias impondría para que la solución es única? ¿En qué casos podría tenerse más de una solución? ¿Infinitas?

Ejercicios no evaluables en PCs

1. En el caso de una regresión lineal simple, los estimadores obtenidos vía Mínimos Cuadrados Ordinarios se obtienen resolviendo el siguiente problema de optimización:

$$\min_{(\beta_0,\beta_1)} \sum_{i=1}^n u_i^2 = Q(\beta_0,\beta_1) = \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)^2.$$

Demuestre que la solución es

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}.$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})(X_i - \overline{X})}{\sum_{i=1}^n (X_i - \overline{X})^2}.$$

Luego, pruebe que se trata efectivamente de un mínimo global.

2. Sea $(x_1, x_2, ..., x_n)$ una muestra aleatoria correspondiente a una distribución normal $\mathcal{N}(\mu, \sigma^2)$. Se define la función de verosimilitud por:

$$L(x_1, x_2, ..., x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}.$$
 (1)

Se denominan los estimadores de máxima verosimilitud de μ y σ^2 (que se denotan por $\hat{\mu}$ y $\hat{\sigma}^2$) a los valores para los que se alcanza el máximo valor de la función definida en (1). Calcular $\hat{\mu}$ y $\hat{\sigma}^2$, comprobando que se trata de un máximo. Asuma que no todos los x_i son iguales.

3. Muestre que el siguiente problema tiene solución $(A \in \mathcal{M}_{n \times n})$

$$\mathcal{P}: \begin{cases} \text{máx} & \text{Tr}(A) = \sum_{i=1}^{n} a_{ii} \\ \text{s.a.} & AA^{T} = I. \end{cases}$$

4. Demuestre que la siguiente función (Cobb-Douglas para n bienes) es cuasicóncava

$$u(x_1, ..., x_n) = A \prod_{i=1}^n x_i^{\alpha_i}, \ \alpha_i \in (0, 1), \ A > 0.$$