

ЭТИКЕТКА

СЛКН.431271.009 ЭТ Микросхема интегральная 564 ЛА8В Функциональное назначение – Два логических элемента «4И-НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход	8	Свободный
2	Вход	9	Вход
3	Вход	10	Вход
4	Вход	11	Вход
5	Вход	12	Вход
6	Свободный	13	Выход
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		
тапменование наражегра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, 10 B	U_{OL}	-	0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	$ m U_{OH}$	4,99 9,99	-	
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B U_{CC} = 10 B, U_{IL} = 3,0 B	$U_{ m OHmin}$	4,2 9,0	-	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~{\rm B}$	${ m I}_{ m IL}$	-	/-0,1/	
6. Входной ток высокого уровня, мкА, при: U_{CC} = 15 В	I_{IH}	-	0,1	

Продолжение таблицы 1				
1	2	3	4	
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, U_{O} = 0,5 \; B \\ U_{CC} = 10 \; B, U_{O} = 0,5 \; B$	I _{OL}	0,5 1,0	-	
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{O} = 4.5$ B $U_{CC} = 10$ B, $U_{O} = 9.5$ B	I_{OH}	/-0,5/ /-1,0/	-	
9. Ток потребления, мкА, при: U _{CC} = 5 B U _{CC} = 10 B U _{CC} = 15 B	I _{CC}	- - -	0,05 0,1 2,0	
10. Ток потребления в динамическом режиме, мА, при: $U_{CC}=10~B,~C_L=50~\pi\Phi$	I _{occ}	-	0,17	
11. Время задержки распространения при включении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PHL}		160 80	
12. Время задержки распространения при выключении, нС, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ	t _{PLH}		160 120	
13. Входная емкость, п Φ , при: $U_{CC} = 10~B$	C _I	-	7,5	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

	золото	Γ,
в том числе:		
	золото	г/мм
на 14 выводах,	длиной	MM.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

Микросхемы 564 ЛА8В	соответствуют техническим	условиям бК0.347.064 ТУ	1/02	и признаны	годными для эксп	ілуатации.

Приняты по	OT	
(извещение, акт и др.)	(дата)
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка	произведена	(дата)
Приняты по	ОТ(дата)
Место для штампа ОТК		Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.