

Contrastive Learning with Synthetic Positives

Dewen Zeng¹, Yawen Wu¹, Xinrong Hu¹, Xiaowei Xu² and Yiyu Shi¹ University of Notre Dame, ² Guangdong Provincial People's Hospital

Contrastive learning with positives beyond simple data augmentation

- (a) Using nearest neighbor identified on-the-fly [1]
- (b) Using synthetic positives generated by unconditional diffusion model (Ours)
- Contrastive learning benefits from additional positives
- Latent embedding contains semantic information in unconditional diffusion model, which enables embedding-guided diffusion sampling
- The synthetic positives generated by unconditional diffusion model are diverse and "harder"

Hard positive generation with feature interpolation

$$\mathcal{L}_{clsp} = \mathcal{L}_{simclr} + \lambda \sum_{i \in [1,N]} ||z_i^2 - z_i^3||_2^2$$

the additional similarity loss

Experiments

linear evaluation

Method	Cifar10	Cifar100	STL10	ImageNet100
SimCLR	91.47	65.78	90.63	75.75
MoCoV2	92.94	69.89	92.20	78.00
NNCLR	91.88	69.62	90.78	77.43
All4One	93.24	72.17	92.21	79.09
CLSP-SimCLR	94.37	72.01	93.74	79.62
CLSP-MoCoV2	94.41	71.76	93.69	79.11

• transfer to downstream (pre-trained on STL-10)

Method	Cifar10	Cifar100	Pets	Flowers	DTD	Caltech101
NNCLR	81.60	53.94	56.31	61.93	43.51	78.24
All4One	83.33	55.49	56.65	57.52	46.13	76.62
CLSP-SimCLR	84.98	56.83	56.75	57.52	46.76	80.01
CLSP-MoCoV2	86.58	57.97	55.82	50.20	44.68	79.42

ablation on the feature interpolation weight ω

[1] With a little help from my friends: Nearest-neighbor contrastive learning of visual representations. ICCV'21