Sequence alignment

Alignment with affine gap penalty functions

Outline

- Affine gap penalty functions
- Affine gap global alignment algorithm
- Example run of the affine gap global alignment algorithm
- Affine gap local alignment algorithm
- More general gap penalty functions

Motivation for more complex gap penalty functions

With linear gap scoring scheme: match = +1, mismatch = -1, space = -2

Alignment 1 AC-G--C ACTGAGC

Alignment 2 ACTGAGC

Both alignments have score -2, but is one more biologically plausible than the other?

More complex gap penalty functions

- a gap of length k is more probable than k gaps of length 1
 - a gap may be due to a single mutational event that inserted/deleted a stretch of characters
 - separated gaps are probably due to distinct mutational events
- a linear gap penalty function treats these cases the same
- it is more common to use gap penalty functions involving two terms
 - a penalty g associated with opening a gap
 - a smaller penalty s for <u>extending</u> the gap

Gap Penalty Functions

• linear

$$w(k) = sk$$

• affine

$$w(k) = g + sk$$

Dynamic Programming for the Affine Gap Penalty Case

• to do in $O(n^2)$ time, need 3 matrices instead of 1

M(i,j) best score given that x[i] is aligned to y[j] $I_x(i,j)$ best score given that x[i] is aligned to a gap $I_y(i,j)$ best score given that y[j] is aligned to a gap

aligned to a gap

Why Three Matrices Are Needed

• consider aligning the sequences **FW** and **WFP** using g = -4, s = -1 and the following values from the BLOSUM-62 substitution matrix:

$$S(\mathbf{F}, \mathbf{W}) = 1$$
 $S(\mathbf{W}, \mathbf{W}) = 11$
 $S(\mathbf{F}, \mathbf{F}) = 6$ $S(\mathbf{W}, \mathbf{P}) = -4$
 $S(\mathbf{F}, \mathbf{P}) = -4$

• the matrix shows the highest-scoring partial alignment for each pair of prefixes

Global Alignment DP for the Affine Gap Penalty Case

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + S(x_i, y_j) \\ I_x(i-1,j-1) + S(x_i, y_j) \\ I_y(i-1,j-1) + S(x_i, y_j) \end{cases}$$

$$I_{x}(i,j) = \max \begin{cases} M(i-1,j) + g + s \\ I_{x}(i-1,j) + s \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + g + s \\ I_{y}(i,j-1) + s \end{cases}$$

Global Alignment DP for the Affine Gap Penalty Case

initialization

$$M(0,0) = 0$$

 $I_x(i,0) = g + s \times i$
 $I_y(0,j) = g + s \times j$
other cells in top row and leftmost column $= -\infty$

- traceback
 - start at largest of $M(m,n), I_x(m,n), I_y(m,n)$
 - stop at any of $M(0,0), I_x(0,0), I_v(0,0)$
 - note that pointers may traverse all three matrices

Global Alignment Example

(Affine Gap Penalty)

Global Alignment Example (Continued)

three optimal alignments:

ACACT

ACACT

ACACT¹¹

Local Alignment DP for the Affine Gap Penalty Case

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + S(x_i,y_j) \\ I_x(i-1,j-1) + S(x_i,y_j) \\ I_y(i-1,j-1) + S(x_i,y_j) \\ 0 \end{cases}$$

$$I_{x}(i,j) = \max \begin{cases} M(i-1,j) + g + s \\ I_{x}(i-1,j) + s \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + g + s \\ I_{y}(i,j-1) + s \end{cases}$$

Local Alignment DP for the Affine Gap Penalty Case

initialization

```
M(0,0) = 0

M(i,0) = 0

M(0,j) = 0

cells in top row and leftmost column of I_x, I_y = -\infty
```

- traceback
 - start at largest M(i, j)
 - stop at M(i, j) = 0

Gap Penalty Functions

• linear: w(k) = sk

• affine:

$$w(k) = g + sk$$

• concave: a function for which the following holds for all $k, l, m \ge 0$

$$w(k+m+l) - w(k+m) \le w(k+l) - w(k)$$

$$w(k) = g + s \times \log(k)$$

Concave Gap Penalty Functions

Computational Complexity and Gap Penalty Functions

• linear: $O(n^2)$

• affine: $O(n^2)$

• concave $O(n^2)$

• general: $O(n^3)$

Alignment (Global) with General Gap Penalty Function

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + S(x_i,y_j) \\ F(k,j) + \gamma(i-k) \\ F(i,k) + \gamma(j-k) \end{cases}$$
 consider every previous element in the row consider every previous element in the column

Summary

- Affine gap penalty functions are more biologically realistic
- Similar dynamic programming algorithms are available for the affine gap case
 - involve three matrices instead of one
- The time complexity remains $O(n^2)$ for the affine gap and even concave gap cases
- Only an O(n³) algorithm is available for arbitrary gap functions