MIDS W207 Applied Machine Learning

Week 07 Live Session Slides

Setosa Versicolor Virginica

Digit Classification

Digit Classification

• Test set size = 10,000 digits

k = 1; Euclidean ((L2)	distance
--------------------	------	----------

Training	Error %	Time (secs)
100	30.0	0.38
1,000	12.1	2.34
10,000	5.3	28.7
60,000	2.7	2202
Deskewing	2.3	
Blurring	1.8	
Pixel shifting	1.2	

Decision Trees

Decision Tree: Customer Churn Example

Variable Explanation

COLLEGE Is the customer college-educated?

INCOME Annual income

OVERAGE Average overcharges per month

LEFTOVER Average number of leftover minutes per month

HOUSE Estimated value of dwelling (from census tract)

HANDSET_PRICE Cost of phone

LONG_CALLS_PER_MONTH Average number of long calls (15 min or over) per

month

AVERAGE_CALL_DURATION Average duration of a call

REPORTED_SATISFACTION Reported level of satisfaction

REPORTED_USAGE_LEVEL Self-reported usage level

LEAVE Target variable: Did the customer stay or leave

(churn)?

Decision Tree: Customer Churn Example

Decision Tree: Customer Churn Example

Decision Tree: Entropy and Information Gain

Entropy is the measure of uncertainty

The more uncertainty there is about a random variable, the more information is conveyed about the value

Entropy is maximized when there is complete uncertainty through uniform distribution 0 when there is complete certainty

1

outlook	temperature	humidity	wind	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cold	normal	false	yes
rainy	cold	normal	true	no
overcast	cold	normal	true	yes
sunny	mild	high	false	no
sunny	cold	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

The H(X) Shannon-entropy of a dicrete random variable X with possible values $x_1x_2...x_n$ and probability mass function P(X) is defined as:

$$H(X) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$$

For a homogeneous dataset (all TRUE or all FALSE values, entropy is 0 For a dataset that is equally distributed (same amount of TRUEs and FALSEs, entropy is 1

A branch with entropy more than 1 needs splitting

outlook	temperature	humidity	wind	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cold	normal	false	yes
rainy	cold	normal	true	no
overcast	cold	normal	true	yes
sunny	mild	high	false	no
sunny	cold	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

PLAYING GOLF

- → 9 times YES
- → 5 times NO

We just have to use the Shannon-entropy formula to calculate the **H(x)** values

outlook	temperature	humidity	wind	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cold	normal	false	yes
rainy	cold	normal	true	no
overcast	cold	normal	true	yes
sunny	mild	high	false	no
sunny	cold	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

$$E(T,X) = \sum_{x} P(x) E(x)$$

We have to calculate the entropy with respect to a given predictor/feature in order to be able to calculate information gain

		PLAY GOLF	
		YES	NO
	sunny	2	3
OUTLOOK	overcast	4	0
	rainy	3	2

(PlayGolf,Outlook) = P(sunny)E(2,3) + P(overcast)E(4,0) + P(rainy)E(3,2)

$$\frac{5}{14}$$
 0.971 + $\frac{4}{14}$ 0 + $\frac{5}{14}$ 0.971 = 0.6936

<u>Information gain</u>: the decrease in entropy after a dataset is split on an attribute/feature

→ feature/attribute with the highest information gain will be the root node in the tree

		PLAY GOLF	
		YES	NO
	sunny	2	3
OUTLOOK	overcast	4	0
	rainy	3	2

<u>Information gain</u>: the decrease in entropy after a dataset is split on an attribute/feature

→ feature/attribute with the highest information gain will be the root node in the tree

Information Gain (outlook) = 0.247

Information Gain (temperature) = 0.029

Information Gain (humidity) = 0.152

Information Gain (wind) = 0.048

outlook	temperature	humidity	wind	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cold	normal	false	yes
rainy	cold	normal	true	no
overcast	cold	normal	true	yes
sunny	mild	high	false	no
sunny	cold	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Decision Tree: Overfitting

Decision Tree: Overfitting

Decision Tree: Overfitting

Decision Tree: Ensemble: Bagging

Decision Tree: Ensemble: Random Forests

Decision Tree: Ensemble: Boosting

Code Review