

"CULTIVATING EXCELLENCE IN EVERY STUDENT"

RAKESH KUMAR M.Sc. (Chemistry) B.Ed. CTET, PSTET, HPTET qualified

	+917973739678 +919814516618	thakurkumar82@gmail.com
ш	+919814516618	thakurkumar82@gmail.com

<u>Class:-</u>XII (Sci.) Subject:- Chemistry Name of Student.....

10 YEAR QUSTIONS Chapter-10

Haloalkanes & Haloarenes

- 1. (a) Define the following terms: (i) Enantiomers (ii) Racemic mixture (b) Why is chlorobenzene resistant to nucleophilic substitution reaction?
- 2. Write the reaction involved in the Hoffmann bromamide degradation reaction.
- 3. Give reasons for the following: (a) the presence of -NO₂ group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution reactions. (b) p-dicholorobenzene has higher melting point than that of ortho or meta isomer. (c) Thionyl chloride method is preferred for preparing alkyl chloride from alcohols.
- **4.** (a) Write equation for preparation of 1-iodobutane from 1-chlorobutane. (b) Out of 2-bromopentane, 2-bromo-2-methylbutane and 1-bromopentane, which compound is most reactive towards elimination reaction and why?
- **5.** Why is chloroform kept in dark coloured bottles?
- **6.** (a) Out of Cl and CH_2-Cl , which one is more reactive towards S_N^2 reaction and why?
 - (b) Out of \bigcirc Cl and O₂N \bigcirc Cl which one is more reactive towards nucleophilic substitution reaction and why?
 - (c) Out of hich one is optically active and why?
- 7. Out of Chlorobenzene and Cyclohexyl chloride, which one is more reactive towards nucleophilic substitution reaction and why?
- 8. Among all the isomers of molecular formula C₄H₉Br, identify (a) the one isomer which is optically active. (b) The one isomer which is highly reactive towards S_N². (c) The two isomers which give same product on dehydrohalogenation with alcoholic KOH.

- **9.** (i) Out of (CH₃)₃C–Br and (CH₃)₃C–I, which one is more reactive towards S_N¹ and why? (ii) Write the product formed when p-nitrochlorobenzene is heated with aqueous NaOH at 443 K followed by acidification. (iii) Why dextro and laevo rotatory isomers of Butan-2-ol are difficult to separate by fractional distillation?
- **10.**An aromatic compound 'A' on heating with Br₂ and KOH forms a compound 'B' of molecular formula C₆H₇N which on reacting with CHCl₃ and alcoholic KOH produces a foul smelling compound 'C'. Write the structures and IUPAC names of compounds A, B and C.
- **11.**Predict the major product formed when sodium ethoxide reacts with tert.Butyl chloride.
- **12.**Which one of the following compounds is more reactive towards S_N² reaction and why? CH₃CH(C*l*)CH₂CH₃ or CH₃CH₂CH₂C*l*
- 13. Write the product(s) formed when
 - (i) 2-Bromopropane undergoes dehydrohalogenation reaction.
 - (ii) Chlorobenzene undergoes nitration reaction.
 - (iii) Methyl bromide is treated with KCN.
- **14.** Draw the structures of the major monohalo product for each of the following reactions:

(a)
$$CH_2 - CH_3$$
 Br_2 , heat ?

(b) CH_3 $+ HBr \longrightarrow ?$

(c) $HO - CH_2$ $OH \longrightarrow ?$

- **15.**Following compounds are given to you: 2-Bromopentane, 2-Bromo-2-methylbutane, 1-Bromopentane (i) write the compound which is most reactive towards S_N^2 reaction. (ii) Write the compound which is optically active.
 - (iii) Write the compound which is most reactive towards β -elimination reaction.
- 16. Out of $CH_2 = CH CH_2Cl$ and $CH_3 CH_2 CH_2Cl$, which is more reactive towards S_N1 reaction ?

17. What happens when:

- (i) 2, 4, 6 trinitrochlorobenzene is treated with warm water.
- (ii) 2-chlorobutane is treated with alcoholic KOH.
- (iii) ethyl chloride is treated with Na metal in presence of dry ether. Write the equation involved in the above reactions.

- 18. What happens when:
 - n-butyl chloride is treated with alcoholic KOH.
 - (ii) 2-chloropropane is treated with sodium in the presence of dry ether.
 - (iii) Chlorobenzene is treated with CH₃Cl in the presence of anhydrous AlCl₃. Write the chemical equations involved in the above reactions.
- **19.**Give reasons: (i) C–Cl bond length in chlorobenzene is shorter than C–Cl bond length in CH₃-Cl. (ii) The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride. (iii) SN1 reactions are accompanied by racemization in optically active alkyl halides.
- 20. Write the structure of the major product in each of the following reactions:

- 21. Give reasons: (a) n-Butyl bromide has higher boiling point than t-butyl bromide.
 - (b) Racemic mixture is optically inactive. (c) The presence of nitro group (-NO₂) at o/p positions increases the reactivity of haloarenes towards nucleophilic substitution reactions. Rakesh Kumar"