Apellidos			Firma
Nombre	D.N.I o pasaporte	Grupo	

Modelos matemáticos I 17/18Grado en Matemáticas 2° Examen Final Temas 1 y 2

1	. Complete	los siguientes	enunciados de	e modo que	se obtenga	algo	verdadero

- a) Si $a_0 > 1$, la ecuación en diferencias $x_{n+2} + a_1 x_{n+1} + a_0 x_n = \beta$ _____ un equilibrio atractor.
- b) Sea $F \in C^1(\mathbb{R})$ tal que la ED $x_{n+1} = F(x_n)$ $n \ge 0$ define un _____ en el intervalo [0,1] y con un único equilibrio 0 < s < 1; entonces,
 - 1) Si ______ el equilibrio es asintóticamente estable (localmente)
 - 2) Si $\overline{F'}(s) = 1$ y la función F'(x) cambia de _____ a ___ a ___ el equilibrio es inestable.
- c) Todas las soluciones no constantes de una ______ de orden 2 convergen a 0 si, y sólo si, _____ .
- 2 La ecuación en diferencias

$$x_{n+1} = 0.5 + \alpha \sin(2\pi x_n), \quad 0 \le x_n < 1,$$

donde $0 \le \alpha < 0.5$, se ha uti
izado como un modelo matemático para la estimulación periódica de un oscilador biológico [Kaplan y Glass (1995)].

- a) Determine en función de α los puntos de equilibrio y analice su estabilidad (**Nota:** tenga en cuenta lo que ocurre en los intervalos [0, 1/4[, [1/4, 3/4[, [3/4, 1[).
- b) Demuestre que para $\alpha = 0.25$ existe un 2-ciclo estable.
- **3** La ecuación característica de cierta EDL es $4\lambda^3 3\lambda 1 = 0$ y la sucesión $\{1, 2, 3, ...\}$ es una solución de dicha ecuación.
 - a) Deduzca dicha EDL suponiendo que es de coeficientes constantes.
 - b) Resuelva la EDL obtenida y calcule la solución que parte de $x_0 = -2, x_1 = 5, x_2 = 3.$

Granada, 16 de enero de 2018

