2018W2 MT2, Q1c

For the "sampled signals" *y* and *w* used during sampling and reconstruction, as shown, explain how they differ mathematically (at least two points) and write the equation relating them to each other.

2018W2 MT2, Q1d

For signals $x(t) = \begin{cases} \cos(t), & 0 \le t \le 1 \\ 0 & \text{otherwise} \end{cases}$ and $y(t) = x\left(\frac{t}{2}\right)$, find their Fourier Transforms $X(\omega)$ and $Y(\omega)$.

2018W2 MT2, Q1e (cf WW4,Q4)

Consider an ideal low pass filter with the following frequency response:

$$|H(j\omega)| = \begin{cases} 1, & -4 \le \omega \le 4 \\ 0, & \text{otherwise} \end{cases} \qquad \angle H(j\omega) = \begin{cases} -\pi/2, & \omega \ge 0 \\ \pi/2, & \omega < 0 \end{cases}$$

$$\angle H(j\omega) = \begin{cases} -\pi/2, \ \omega \ge 0 \\ \pi/2, \ \omega < 0 \end{cases}$$

Determine the impulse response h(t) and the output for $x(t) = \sum_{k=1}^{\infty} \frac{2}{k^2} \cos(3kt/2)$.

J.Yan, ELEC 221: Tutorial for Mar 10, 2020

2018W2 MT2, Q2

A (causal) continuous time LTI system is represented by the ODE $\frac{dy(t)}{dt} = -y(t) + x(t)$ where x(t) is the input and y(t) the output.

a) Determine the system frequency response $H(j\omega)$ and impulse response h(t).

b) For input $x(t) = \frac{\sin(t)}{\pi t}$, determine the Fourier transform of the output $Y(\omega)$ and sketch a plot of $|Y(\omega)|$ vs ω (use a linear scale as this is not a Bode plot).

2018W2 MT2, Q2 (cont.)

c) If a feedback system with transfer function $H_2(s) = \frac{s}{s+2}$ is implemented as shown, determine the net transfer function $H_T(s)$.

J.Yan, ELEC 221: Tutorial for Mar 10, 2020

2018W2 MT2, Q3

Consider $x(t) = \cos(50\pi t + \frac{\pi}{11})$, $y(t) = \cos(300\pi t - \frac{\pi}{11})$, and $z(t) = 3\sin(200\pi t - \frac{\pi}{11})$.

- a) If sampled at $f_s = 400 \, Hz$, state whether the following signals are periodic or aperiodic, and if so, determine their period:
 - $p[n] = y(nT_s) + z(nT_s)$
 - $q[n] = y(nT_s)x(nT_s)$

2018W2 MT2, Q3 (cont.)

b) Compute the Nyquist sampling rate of the signal $u(t) = y(t)\cos(50\pi t)$.

c) For the continuous time signal v(t) = x(t) - y(t) + z(t), determine the discrete time signal $v_s[n] = v(nT_s)$ using a sampling rate of $f_s = 180 \ Hz$.

2018W2 MT2, Q3 (cont.)

d) From the discrete time signal $v_s[n]$ found in Part (c), determine the reconstructed signal using an ideal interpolator and a sampling interval of $T_s = \frac{1}{180}$ seconds. Indicate which, if any, frequencies have been aliased.

WW4, Q7

Let x(t) be a periodic signal of fundamental frequency $\omega_0=\frac{2\pi}{T_0}$ that has Fourier series coefficients, X_k . For each of the signals y(t) given in the table below, first determine if they are periodic or not. Then, for the periodic signals, determine their period in terms of T_0 , and calculate their Fourier coefficients Y_0 and Y_k in terms of X_0 and X_k , the corresponding Fourier coefficients of x(t).

In your answers, enter "Xk" for X_k and "X0" for X_0 , "w" for ω_0 , and "T" for T_0 . Enter "NA" for the aperiodic signals.

Signal, $y(t)$	Periodic/Aperiodic	Period	Y_0	Y_k
4x(t)-4	? •			
$x(\pi t) + 2x(t-8))$? •			
x(t-3)+3x(t)	? •			

WW5, Q3

The transfer function of a filter is $H(s)=$	$\sqrt{45}s$
The transfer function of a filter is $H(s)$ —	$\overline{s^2 + (2\sqrt{11})s + 12}$

a) Find the poles, s_1 and s_2 , and the zero, s_0 , of the system.

$s_{1,2}=$	
$s_0 =$	

Enter the poles as a list, seperated by commas

b) Find the magnetude and phase (in degrees) of the frequency response at each of the frequencies given in the table below:

ω	$ H(\omega) $	$\angle H(\omega)$ (degrees)
0		
1		
∞		

- c) What type of filter is this? ?
- d) Find the impulse response, h(t), of the filter.

$$h(t) =$$

e) This filter is connected in series with a sinusoidal signal generator which generates biased sinusoids $x(t) = B + Acos(\omega t)$ as the input to the filter. Find the frequency (or frequencies) ω_0 where the filter's output is $y(t) = Acos(\omega_0 t + \theta)$, i.e, the amplitude of the sinusoid remains the same. If there are multiple frequencies where this occurs, enter the positive frequencies only as a list, separated by commas in decreasing order.

$$\omega_0 = igg| rad/s$$

Correct Answer		
-3.31662-i, -3.31662+i		
0		
0		
0		
0.522233		
58.9091		
0		
0		
Band-pass		
$6.7082e^{-3.31662t}(\cos(t) - 3.31662\sin(t))u(t)$		
3,4		

Correct Answer