Assessment of Herbicide Efficiency on Treating Invasive Species

CS29: Jack McConnell and Mason Hall with partner Bogdan Strimbu

Introduction

- Reed Canary grass is an invasive species present in Oregon
- Herbicides are the only practical method of treatment
- New EPA regulations restrict use of many herbicides
- An ongoing project is underway to test herbicides within regulations

Introduction

- Our task was to analyze data provided from the team testing these herbicides
- Our product was not a program,
 but the results of this data analysis
- The actual analysis was in the form of image classification

Example of image classification (not our data)

Our Methods: QGIS

- QGIS: A Geographic Information System
- Stores visual information alongside other data (in our case, reflectance on 4 wavelengths)
- Used both to manipulate images and to analyze them

Example of Raster Images (.tif) (not our image)

Our Methods: QGIS

- We first used this to crop the overall image into individual treatment plots
- Later we also used QGIS to gather statistics on each plot's reflectance data

Example of Raster Images (.tif) (not our image)

Our Methods: Python

- Thousands of images
- Each image needed to be both organized and manipulated
- Python scripts were used for both tasks
- Later we used Python to implement MLE (more details on that later)

Name	Date modified	
convert_all_tifs_to_jpg.py	12/10/2020 11:10 AM	
convert_all_tifs_to_png.py	1/21/2021 6:43 PM	
copy_folder_structure.py	1/21/2021 6:41 PM	
copy_folder_structure_PNG.py	1/21/2021 6:26 PM	
move JPGs to new.py	1/4/2021 12:57 PM	
move_PNGs_to_new.py	1/21/2021 6:59 PM	
rint_all_tifs.py	12/10/2020 11:08 AM	
Name ^	Date modified	Туре
2019-04-03	3/7/2021 2:52 PM	File folder
2019-04-17	3/2/2021 1:25 PM	File folder
2019-05-01	3/2/2021 1:56 PM	File folder
2019-05-17	3/2/2021 1:30 PM	File folder
2019-05-29	11/12/2020 11:32 AM	File folder
2019-06-12	11/12/2020 11:32 AM	File folder
2019-07-24	11/12/2020 11:32 AM	File folder
2019-08-08	11/12/2020 11:33 AM	File folder
2019-08-22	11/12/2020 11:33 AM	File folder
2019-09-04	11/12/2020 11:33 AM	File folder
2 019-09-19	11/12/2020 11:33 AM	File folder
2019-10-09	11/12/2020 11:33 AM	File folder
2019-10-23	2/26/2021 11:15 AM	File folder
JPGs	1/4/2021 12:38 PM	File folder

The Technique: Spectral Signature Analysis

- Our .tif flyover images were taken in 4 wavelengths
- Each wavelength has a reflectance value for each pixel
- Each pixel's four values create a "spectral signature"
- This signature is used to classify each pixel

- Maximum Likelihood Estimation is a method used to estimate which of several classes an object is actually in
- MLE uses multiple variables to place the objects of interest into one of several classes
- Provided images that captured 4 bands (4 different wavelengths of light),
 our MLE implementation used 4 variables
- To accomplish this, sections of images known to be in certain categories were identified

- Known objects in each class are identified, known as regions of interest (ROIs)
- Statistics of all 4 variables within each ROI are recorded
- These statistics are used to estimate which class every pixel in the image would most likely fall into

- Known objects in each class are identified, known as regions of interest (ROIs)
- Statistics of all 4 variables within each ROI are recorded
- These statistics are used to estimate which class every pixel in the image would most likely fall into

- Known objects in each class are identified, known as regions of interest (ROIs)
- Statistics of all 4 variables within each ROI are recorded
- These statistics are used to estimate which class every pixel in the image would most likely fall into

- For each class, identify regions that should have been placed in that class
- Check how many pixels in these regions were actually placed into that class
- With some math, this yields an estimate on the overall accuracy

- For each class, identify regions | that should have been placed in that class
- Check how many pixels in these regions were actually placed into that class
- With some math, this yields an estimate on the overall accuracy

- For each class, identify regions that should have been placed in that class
- Check how many pixels in these regions were actually placed into that class
- With some math, this yields an estimate on the overall accuracy

- For each class, identify regions that should have been placed in that class
- Check how many pixels in these regions were actually placed into that class
- With some math, this yields an estimate on the overall accuracy

```
2019-10-09:

1 (Light Green):
2 (Dark Green):
3 [ 1109] [ 14 ] [ 0 ]
3 (Light Purple):
4 (Dark Purple):
[ 0 ] [ 94 ] [ 211 ] [ 721 ]

K: 0.8618322399680964
```

Overview of Methods: Flowchart

Demo: QGIS

Demo: MLE

Our Github

Thank you! Any questions?