Report 3

Task:

Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this.

Unit Test:

Relationship:

```
"C:\Program Files\Java\jdk1.8.0_301\bin\java.exe" ...

n = 500 conection = 1477

n = 1000 conection = 4118

n = 2000 conection = 7979

n = 4000 conection = 15431

n = 8000 conection = 43701

n = 16000 conection = 103614

Process finished with exit code 0
```

n		pairs	1/2nlogn	nlnn
	500	1477	2240	3105
	1000	4118	4930	6900
	2000	7979	10910	15200
	4000	15431	23920	33160
	8000	43701	51840	71840
	16000	103614	111680	154880

After observing, I found the relationship is very close to m = n*In(n) or m = 1/2n*log(n)

What I think might be going on:

There a n objects, to connect all of them, (n-1) of connections are needed. For the first iteration, the possibility of fulfilling a connection is 100% so the pairs that need to generate is 1.

For the second iteration, there are (n-2) remaining connections need to be union, which means the possibility is (n-2)/(n-1), according to geometric distribution, the

attempts(pairs) will be (n-1)/(n-2), thus, to connect all the sites, we need total pairs of:

$$1 + (n-1)/(n-2) + (n-1)/(n-3) + \cdots + (n-1)/1$$

Which is close to (n-1)*In(n-1).