

Sammanfattning av modul MA1

Rekursion

- Dela upp problemet i (ett eller flera) delproblem av samma slag men mindre.
- · Lös delproblemen.
- Kombinera lösningarna av delproblemen till en lösning av ursprungsproblemet.

Det måste finnas ett eller flera basfall.

Det blir vanligtvis bäst kod om man använder de enklaste basfallen (t.ex. 0 i stället för 1 i Hanois torn eller en tom lista i stället för en lista med ett element).

Varför rekursion

- Generell teknik för problemlösning.
- Lätt att hitta lösningen.
- Lätt att hitta effektiva lösningar.
- Naturligt i många sammanhang.
- Särskilt bra vid rekursivt definierade strukturer.

Men

- Lätt att producera hopplöst långsamma program.
- Problem med rekursionsdjup.

Vad är avgörande?

Avgörande är antalet delproblem och storleken på delproblemen.

- Om vi har två eller fler delproblem med nästan samma storlek som ursprungsproblemet så har vi en exponentiell tillväxt.
 Exempel: Hanois torn, Fibonacci.
- Oftast bättre med två delproblem som har halva storleken är ett delproblem som är nästan lika stort som ursprungsproblemet.
 Exempel: mergesort – instickssortering
- I regel bra att balansera storleken på delproblemen.
- Undvik rekursion över långa strukturer problem med stackdjupet.

Asymptotisk notation

Ett sätt att beskriva hur tiden för en algoritm växer med problemstorleken oberoende av dator, programmeringsspråk etc.

När använder man \mathcal{O} , Θ , repektive Ω ?

- Θ ger mest information.
- O är en övre gräns (ej nödvändigtvis "tät").
- Ω är en *undre* gräns.

Ordo, Omega eller Theta?

- Om du har en "bra" \mathcal{O} -funktion kan den användas för att säga att en algoritm är bra.
 - Exempel: Om du hittat på en sorteringsalgoritm är det bra att kunna säga att den är $\mathcal{O}(n \log n)$ men meningslöst att säga att den är $\mathcal{O}(n^2)$.
- Om du vill säga att en algoritm är dålig kan du använda Ω . Exempel: Om någon kommer med en sorteringsalgoritm kan du säga att den är inte så bra om den är $\Omega(n^2)$ och att den är usel om den är $\Omega(n^3)$. Det är dock meningslöst att säga att den är $\Omega(n \log n)$.
- Θ är mest informativ. Använd om möjligt.

Vad är bra och vad är dåligt?

- $\Theta(a^n)$ är dåligt om a > 1.
- $\Theta(\log n)$ är mycket bättre än $\Theta(n)$.
- $\Theta(n \log n)$ är *mycket bättre* än $\Theta(n^2)$.
- $\Theta(n)$ är inte så mycket bättre än $\Theta(n \log n)$.

Tiduppskattningar

Om vi vet att en algoritm är $\Theta(f(n))$ så kan vi uppskatta tidsåtgången t(n) för stora problem med uttrycket

$$t(n) = c \cdot f(n)$$

och uppskatta konstanten genom att mäta tiden för något n.

Man bör verifiera modellen genom att mäta tiden för några olika n.

Använd inte för små n – det blir säkrare uppskattningar ju större värden man mäter för.

Exempel

För att verifiera komplexiteten för en viss algoritm är det bra att ha strategi för hur n ska varieras.

Att dubbla värdet passar bra om man har (tror sig ha) polynomial komplexitet:

- För en $\Theta(n)$ -algoritm så bör tiden dubblas om n dubblas.
- För en $\Theta(n^2)$ -algoritm så gäller $\frac{t(2n)}{t(n)} = \frac{c \cdot (2n)^2}{c \cdot n^2} = 4$
- För en $\Theta(n^3)$ -algoritm så gäller $\frac{t(2n)}{t(n)} = \frac{c \cdot (2n)^3}{c \cdot n^3} = 8$

Exempel

• För en $\Theta(\log n)$ -algoritm så är det bra att kvadrera: $\frac{\log n^2}{\log n} = 2$

• För en $\Theta(n \log n)$ -algoritm är en dubblering användbar:

$$\frac{t(2n)}{t(n)} = \frac{c \cdot 2n \log 2n}{c \cdot n \log n} = 2 \cdot \frac{\log 2 + \log n}{\log n} = 2 + \frac{1}{\log n} \approx 2 \text{ för stora } n.$$

• För en exponentiell komplexitet, dvs $\Theta(a^n)$ så passar $n \operatorname{och} n + 1$:

$$\frac{c \cdot a^{n+1}}{c \cdot a^n} = a$$

Behöver vi bry oss?

Ja! Det finns fortfarande många problem där datorkraften begränsar oss.

Ett axplock:

- fysik och teknik: aerordynamik, väderprognoser, ...
- biologi: bioinfomatik, genomsekvensering, ...
- realtidssystem: robotar, självkörande bilar, ...
- animation: datorspel, filmindustri, ...
- infomationssökning: google, ...

Men

Citat från "The elements of programming style" av Kernighan och Ritchie:

- Correctness is much more important than speed!
- Do not sacrifice clarity for small efficiency gains!
- Do not sacrifice simplicity for small efficiency gains!
- Do not sacrifice modifiability for small efficiency gains!
- If the program is too slow: Find a better algorithm!

Några nya Python-detaljer

Man kan deklarera funktioner inuti funktioner.

Första exemplet:

```
def power(x, n):
    def sqr(x):
        return x*x

    if n<0:
        return 1./power(x, -n)
    elif n==0:
        return 1
    elif n%2==0:
        return sqr(power(x, n//2))
    else:
        return x*sqr(power(x, (n-1)//2))</pre>
```


Nya Python-detaljer

Andra exemplet:

```
def fib(n):
    memory = {0:0, 1:1}

    def _fib(n):
        if n not in memory:
            memory[n] = _fib(n-1) + _fib(n-2)
        return memory[n]

    return _fib(n)
```


Nya Python-detaljer

Funktioner är *objekt* som kan lagras i variabler, listor, lexikon, ...

```
sort_functions = [ins_sort_iter, merge_sort, psort, sorted]
for sort in sort functions[1:]:
    print(f'\n ***{sort. name }***')
   for n in [100000, 200000, 400000, 800000]:
       lst = []
       for i in range(n):
            lst.append(random.random())
        tstart = time.perf counter()
       lst = sort(lst)
       tstop = time.perf_counter()
        print(f" Time for {n}\t : {tstop - tstart:4.2f}")
```


Theend