

Tianyu Du

January 27, 2020

Contents

1	Private Value Auctions	5
	1.1 Standard Auctions	5

4 CONTENTS

Chapter 1

Private Value Auctions

1.1 Standard Auctions

Definition 1.1.1. An auction is an informational environment consisting of

- (i) a valuation structure for the bidders;
- (ii) a distribution of information available to the bidders.

Assumption 1.1.1. In this chapter, we shall impose the following assumption on bidders' valuations:

(i) Each bidder's valuation is independently and identically distributed on some interval $[0, \omega]$ according to a distribution function F:

$$V_i \overset{i.i.d.}{\sim} F \ s.t. \ \text{supp}(F) = \mathbb{R}_+$$
 (1.1.1)

- (ii) F belongs to the common knowledge in this system;
- (iii) Bidders' valuations have finite expectations:

$$\mathbb{E}[V_i] < \infty \tag{1.1.2}$$

Assumption 1.1.2. Moreover, we assume bidders' behaviours to satisfy the following properties:

- (i) Bidders are risk neutral, they are maximizing expected profits;
- (ii) Each bidder it both willing and able to pay up to his or her value.

Definition 1.1.2. A strategy of a bidder is a mapping from the space of his/her valuation to a bid:

$$s: [0, \omega] \to \mathbb{R}_+ \tag{1.1.3}$$

Definition 1.1.3. An equilibrium of auction is **symmetric** if all bidders are following the same bidding strategy s.

Proposition 1.1.1. In a symmetric equilibrium of the <u>second-price</u> auction, s(v) = v is a weakly dominant strategy.

Proof. For a fixed valuation $v_i \in [0, \omega]$ of bidder i.

Let $p := \max_{j \neq i} b_j$ be highest bidding price by other bidders.

Let $\pi_i(b,p)$ denote bidder i's profit when bidding b given the highest price from other bidders to be p.

Part 1: consider another bidding $z_i < v_i$, the following cases are possible:

- (i) $v_i (bidder i losses anyway).$
- (ii) $v_i = p \implies \pi_i(v_i, p) = \pi_i(z_i, p) = 0$ (bidder *i* is indifferent).
- (iii) $v_i > p$:
 - (a) $v_i > z_i > p \implies \pi_i(v_i, p) = \pi_i(z_i, p) = v_i p;$
 - (b) $v_i > z_i = p \implies \pi_i(v_i, p) \ge \pi_i(z_i, p);$
 - (c) $v_i > p > z_i \implies \pi_i(v_i, p) > \pi_i(z_i, p)$.

Hence, bidding v_i weakly dominates bidding any value below it.

Part 2: for $z_i > v_i$, the following cases are possible:

(i) TODO:

Therefore, bidding v_i weakly dominates bidding any other values.

Proposition 1.1.2. In a symmetric equilibrium of the $\underline{\text{first-price}}$ auction, equilibrium bidding strategies are given by

$$s(v_i) = \mathbb{E}[\max_{j \neq i} v_j | v_j \le v_i]$$
(1.1.4)

which is the expected second highest valuation conditional on v_i being the highest valuation.

Proof. Let s(v) denote an equilibrium strategy.

Lemma 1.1.1. For any agent, bidding more than $s(\omega)$ can never be optimal. Bidding $b > s(\omega)$ makes this agent win for sure. In such case, bidding $b' \in (s(\omega), b)$ strictly dominates bidding b.

Lemma 1.1.2. For any agent, s(0) = 0. Bidding any positive number would cause negative payoff with positive probability, and therefore, leads to a negative expected profit.

Lemma 1.1.3. Because s is monotonically increasing, therefore,

$$\max_{j \neq i} s(v_j) = s(\max_{j \neq i} v_j) \tag{1.1.5}$$

Let p denote the highest price among all other N-1 bidders and let $F^{(N-1)}(x)$ denote the distribution of p. The expected profit of bidder i by bidding an arbitrary $b \in \mathbb{R}_+$ is

$$\pi_i(b, v_i) = P(b > p)(v_i - s(v_i)) + P(b = p)(v_i - s(v_i)) + P(b < p)0 \tag{1.1.6}$$

Note that $b > p = s(\max_{i \neq i} v_i)$ if and only if $s^{-1}(b) > \max_{i \neq i} v_i$. It follows

$$P(b > p) = P(\max_{j \neq i} v_j < s^{-1}(b)) = F^{(N-1)}(s^{-1}(b))$$
(1.1.7)

Therefore,

$$\pi_i(b, v_i) = F^{(N-1)}(s^{-1}(b))(v_i - b) \tag{1.1.8}$$

The first order condition implies

$$\frac{\partial \pi_i}{\partial b} \pi_i(b, v_i) = \frac{\partial \pi_i}{\partial b} F^{N-1}(s^{-1}(b)) v_i - F^{N-1}(s^{-1}(b)) b \tag{1.1.9}$$

$$= f^{(N-1)}(s^{-1}(b))\frac{v_i - b}{s'(v_i)} - F^{(N-1)}(s^{-1}(b)) = 0$$
(1.1.10)

For a symmetric equilibrium, all other bidders are following the same strategy s so that $s(v_i) = b$, therefore,

$$f^{(N-1)}(s^{-1}(b))\frac{v_i - b}{s'(v_i)} - F^{(N-1)}(s^{-1}(b)) = 0$$
(1.1.11)

$$\implies f^{(N-1)}(s^{-1}(b))(v_i - b) - F^{(N-1)}(s^{-1}(b))s'(v_i) = 0$$
(1.1.12)

$$\implies f^{(N-1)}(s^{-1}(b))v_i = F^{(N-1)}(s^{-1}(b))s'(v_i) + f^{(N-1)}(s^{-1}(b))s(v_i)$$
(1.1.13)

$$\implies f^{(N-1)}(v_i)v_i = \frac{d}{dv_i} \left[F^{(N-1)}(v_i)s(v_i) \right] \tag{1.1.14}$$

$$\implies \int_0^{v_i} f^{(N-1)}(y)y \ dy = F^{(N-1)}(v_i)s(v_i) - F^{(N-1)}(0)s(0) \tag{1.1.15}$$

$$\implies F^{(N-1)}(v_i)s(v_i) = \int_0^{v_i} f^{(N-1)}(y)y \ dy \tag{1.1.16}$$

$$\implies s(v_i) = \frac{1}{F^{(N-1)}(v_i)} \int_0^{v_i} f^{(N-1)}(y)y \ dy \tag{1.1.17}$$

$$\implies s(v_i) = \mathbb{E}\left[\max_{j \neq i} v_j \middle| \max_{j \neq i} v_j < v_i\right]$$
 (1.1.18)