Categorical Variables

ACTL3143 & ACTL5111 Deep Learning for Actuaries
Patrick Laub

Lecture Outline

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure

Keras model methods

- compile: specify the loss function and optimiser
- fit: learn the parameters of the model
- predict: apply the model
- evaluate: apply the model and calculate a metric

```
1 random.seed(12)
2 model = Sequential()
3 model.add(Dense(1, activation="relu"))
4 model.compile("adam", "poisson")
5 model.fit(X_train, y_train, verbose=0)
6 y_pred = model.predict(X_val, verbose=0)
7 print(model.evaluate(X_val, y_val, verbose=0)
```

4.944334506988525

Scikit-learn model methods

- fit: learn the parameters of the model
- predict: apply the model
- score: apply the model and calculate a metric

```
1 model = LinearRegression()
2 model.fit(X_train, y_train)
3 y_pred = model.predict(X_val)
4 print(model.score(X_val, y_val))
```

-0.666850597951445

Scikit-learn preprocessing methods

- fit: learn the parameters of the transformation
- transform: apply the transformation
- fit_transform: learn the parameters and apply the transformation

```
fit | fit_transform
```

[1.01 0.66 1.26 0.89]

```
1 scaler = StandardScaler()
2 scaler.fit(X_train)
3 X_train_sc = scaler.transform(X_train)
4 X_val_sc = scaler.transform(X_val)
5 X_test_sc = scaler.transform(X_test)
6
7 print(X_train_sc.mean(axis=0))
8 print(X_train_sc.std(axis=0))
9 print(X_val_sc.mean(axis=0))
10 print(X_val_sc.std(axis=0))
11 print(X_val_sc.std(axis=0))
12 .97e-17 -2.18e-17 1.98e-17 -5.65e-17
[1. 1. 1. 1.]
[-0.34 0.07 -0.27 -0.82]
```

```
UNSW
```


Summary of the splitting

Dataframes & arrays

1	<pre>X_test.head(3)</pre>
---	---------------------------

	X1	X2	
83	0.075805	-0.677162	0.9751
53	0.954002	0.651391	-0.315
70	0.113517	0.662131	1.5860

```
1 X_test_sc
```

```
array([[ 0.13, -0.64, 0.89, -0.4 ],
      [1.15, 0.67, -0.44, 0.62],
      [0.18, 0.68, 1.52, -1.62],
      [0.77, -0.82, -1.22, 0.31],
      [0.06, 1.46, -0.39, 2.83],
      [2.21, 0.49, -1.34, 0.51],
      [-0.57, 0.53, -0.02, 0.86],
      [0.16, 0.61, -0.96, 2.12],
      [0.9, 0.2, -0.23, -0.57],
      [0.62, -0.11, 0.55, 1.48],
      [0., 1.57, -2.81, 0.69],
      [0.96, -0.87, 1.33, -1.81],
      [-0.64, 0.87, 0.25, -1.01],
      [-1.19, 0.49, -1.06, 1.51],
      [0.65, 1.54, -0.23, 0.22],
      [-1.13, 0.34, -1.05, -1.82],
      [0.02, 0.14, 1.2, -0.9],
       [0.68, -0.17, -0.34, 1.],
       [0.44, -1.72, 0.22, -0.66],
```


By default, when you pass sklearn a DataFrame it returns a numpy array.

Keep as a DataFrame

From scikit-learn 1.2:

```
1 from sklearn import set_config
2 set_config(transform_output="pandas")
3
4 imp = SimpleImputer()
5 imp.fit(X_train)
6 X_train_imp = imp.fit_transform(X_train)
7 X_val_imp = imp.transform(X_val)
8 X_test_imp = imp.transform(X_test)
```

	1 >	K_test_imp		
_		X1	X2	
_	83	0.075805	-0.677162	0
_	53	0.954002	0.651391	_
_	• • •	•••	•••	••
_	42	-0.245388	-0.753736	_
	69	0.199060	-0.600217	0

25 rows × 4 columns

Lecture Outline

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure

French motor dataset

Download the dataset if we don't have it already.

```
from pathlib import Path
from sklearn.datasets import fetch_openml

if not Path("french-motor.csv").exists():
    freq = fetch_openml(data_id=41214, as_frame=True).frame
    freq.to_csv("french-motor.csv", index=False)

else:
    freq = pd.read_csv("french-motor.csv")

freq
```


French motor dataset

	IDpol	ClaimNb	Exposure	Area	VehPower	VehA
O	1.0	1.0	0.10000	D	5.0	0.0
1	3.0	1.0	0.77000	D	5.0	0.0
2	5.0	1.0	0.75000	В	6.0	2.0
• • •	•••	•••	•••	• • •	•••	• • •
678010	6114328.0	0.0	0.00274	D	6.0	2.0
678011	6114329.0	0.0	0.00274	В	4.0	0.0
678012	6114330.0	0.0	0.00274	В	7.0	6.0

678013 rows × 12 columns

Data dictionary

- IDpol: policy number (unique identifier)
- **ClaimNb**: number of claims on the given policy
- **Exposure**: total exposure in yearly units
- Area: area code (categorical, ordinal)
- VehPower: power of the car (categorical, ordinal)
- VehAge: age of the car in years
- DrivAge: age of the (most common) driver in years

- BonusMalus: bonus-malus level between 50 and 230 (with reference level 100)
- VehBrand: car brand (categorical, nominal)
- VehGas: diesel or regular fuel car (binary)
- **Density**: density of inhabitants per km² in the city of the living place of the driver
- Region: regions in France (prior to 2016)

The model

Have $\{(\mathbf{x}_i, y_i)\}_{i=1,...,n}$ for $\mathbf{x}_i \in \mathbb{R}^{47}$ and $y_i \in \mathbb{N}_0$.

Assume the distribution

$$Y_i \sim \mathsf{Poisson}(\lambda(\mathbf{x}_i))$$

We have $\mathbb{E}Y_i = \lambda(\mathbf{x}_i)$. The NN takes $\mathbf{x}_i \ \mathcal{E}$ predicts $\mathbb{E}Y_i$.

(i) Note

For insurance, this is a bit weird. The exposures are different for each policy.

 $\lambda(\mathbf{x}_i)$ is the expected number of claims for the duration of policy i's contract.

Normally, Exposure_i $\notin \mathbf{x}_i$, and $\lambda(\mathbf{x}_i)$ is the expected rate *per year*, then

$$Y_i \sim \mathsf{Poisson}(\mathrm{Exposure}_i imes \lambda(\mathbf{x}_i)).$$

Where are things defined?

In Keras, string options are used for convenience to reference specific functions or settings.

```
1 model = Sequential([
2     Dense(30, activation="relu"),
3     Dense(1, activation="exponential")
4 ])
```

is the same as

```
from keras.activations import relu, exponential

model = Sequential([
    Dense(30, activation=relu),
    Dense(1, activation=exponential)

x = [-1.0, 0.0, 1.0]
print(relu(x))
print(exponential(x))

tf.Tensor([0. 0. 1.], shape=(3,), dtype=float32)
tf.Tensor([0.37 1. 2.72], shape=(3,), dtype=float32)
```


String arguments to .compile

When we run

```
1 model.compile(optimizer="adam", loss="poisson")
```

it is equivalent to

```
1 from keras.losses import poisson
2 from keras.optimizers import Adam
3
4 model.compile(optimizer=Adam(), loss=poisson)
```

Why do this manually? To adjust the object:

```
1 optimizer = Adam(learning_rate=0.01)
2 model.compile(optimizer=optimizer, loss="poisson")
```

or to get help.

Keras' "poisson" loss

```
1 help(keras.losses.poisson)
Help on function poisson in module keras.src.losses.losses:
poisson(y_true, y_pred)
    Computes the Poisson loss between y_true and y_pred.
    Formula:
    ```python
 loss = y_pred - y_true * log(y_pred)
 Args:
 y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`.
 y pred: The predicted values. shape = `[batch size, d0, .. dN]`.
 Returns:
 Poisson loss values with shape = `[batch_size, d0, .. dN-1]`.
 Example:
```





#### **Lecture Outline**

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure





## Subsample and split

```
freq = freq.drop("IDpol", axis=1).head(25_000)

X_train, X_test, y_train, y_test = train_test_split(
freq.drop("ClaimNb", axis=1), freq["ClaimNb"], random_state=2023)

Reset each index to start at 0 again.
X_train = X_train.reset_index(drop=True)
X_test = X_test.reset_index(drop=True)
```





### What values do we see in the data?

```
1 X_train["Area"].value_counts()
2 X_train["VehBrand"].value_counts()
3 X_train["VehGas"].value_counts()
4 X_train["Region"].value_counts()
```

Name: count, Length: 22, dtype: int64

```
VehBrand
Area
 5507
 В1
 5069
 4113
 B2
 4838
 3527
 B12
 3708
 2769
 2359
 336
 B13
 475
 B11
 284
Name: count, dtype: int64
 B14
 136
 Name: count, Length: 11, dtype: int64
VehGas
 Region
Regular
 10773
 R24
 6498
Diesel
 7977
 R82
 2119
Name: count, dtype: int64
 R11
 1909
 R21
 90
 R42
 55
 R43
 26
```





### Ordinal & binary categories are easy

```
1 from sklearn.preprocessing import OrdinalEncoder
 2 oe = OrdinalEncoder()
 3 oe.fit(X train[["Area", "VehGas"]])
 4 oe.categories
[array(['A', 'B', 'C', 'D', 'E', 'F'], dtype=object),
 array(['Diesel', 'Regular'], dtype=object)]
 1 for i, area in enumerate(oe.categories_[0]):
 print(f"The Area value {area} gets turned into {i}.")
The Area value A gets turned into 0.
The Area value B gets turned into 1.
The Area value C gets turned into 2.
The Area value D gets turned into 3.
The Area value E gets turned into 4.
The Area value F gets turned into 5.
 1 for i, gas in enumerate(oe.categories_[1]):
 print(f"The VehGas value {gas} gets turned into {i}.")
The VehGas value Diesel gets turned into 0.
The VehGas value Regular gets turned into 1.
```





### Ordinal encoded values

```
1 X_train_ord = oe.transform(X_train[["Area", "VehGas"]])
2 X_test_ord = oe.transform(X_test[["Area", "VehGas"]])
```

1 X\_train[["Area", "VehGas"]].head()

1 X\_train\_ord.head()

	Area	VehGas
О	C	Diesel
1	C	Regular
2	E	Regular
3	D	Diesel
4	A	Regular

	Area	VehGas
О	2.0	0.0
1	2.0	1.0
2	4.0	1.0
3	3.0	0.0
4	0.0	1.0





### Train on ordinal encoded values

```
random.seed(12)
model = Sequential([
 Dense(1, activation="exponential")
])

model.compile(optimizer="adam", loss="poisson")

es = EarlyStopping(verbose=True)
hist = model.fit(X_train_ord, y_train, epochs=100, verbose=0,
 validation_split=0.2, callbacks=[es])
hist.history["val_loss"][-1]
```

Epoch 22: early stopping 0.7821308970451355

What about adding the continuous variables back in? Use a sklearn *column transformer* for that.





### Preprocess ordinal & continuous

```
from sklearn.compose import make_column_transformer

ct = make_column_transformer(
 (OrdinalEncoder(), ["Area", "VehGas"]),
 ("drop", ["VehBrand", "Region"]),
 remainder=StandardScaler()

)

X_train_ct = ct.fit_transform(X_train)
```

1 X\_train.head(3)

1 X\_train\_ct.head(3)

	Exposure	Area	VehPower		ordinalencoderArea	ord
0	1.00	C	6.0	О	2.0	0.0
_1	0.36	C	4.0	1	2.0	1.0
2	0.02	E	12.0	2	4.0	1.0





### Preprocess ordinal & continuous II

```
from sklearn.compose import make_column_transformer

ct = make_column_transformer(
 (OrdinalEncoder(), ["Area", "VehGas"]),
 ("drop", ["VehBrand", "Region"]),
 remainder=StandardScaler(),
 verbose_feature_names_out=False
)

X_train_ct = ct.fit_transform(X_train)
```

1 X\_train.head(3)

1 X\_train\_ct.head(3)

	<b>Exposure</b>	Area	VehPower		Area	VehGas	Exposure
О	1.00	C	6.0	O	2.0	0.0	1.126979
1	0.36	C	4.0	1	2.0	1.0	-0.590896
2	0.02	E	12.0	2	4.0	1.0	-1.503517





### **Lecture Outline**

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure





# Region column









# One-hot encoding

```
1 oe = OneHotEncoder(sparse_output=False)
2 X_train_oh = oe.fit_transform(X_train[["Region"]])
3 X_test_oh = oe.transform(X_test[["Region"]])
4 print(list(X_train["Region"][:5]))
5 X_train_oh.head()
```

['R24', 'R93', 'R11', 'R42', 'R24']

	Region_R11	Region_R21	Region_R22	Region_R23	Region
О	0.0	0.0	0.0	0.0	1.0
1	0.0	0.0	0.0	0.0	0.0
2	1.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	1.0

5 rows × 22 columns





### Train on one-hot inputs

```
num_regions = len(oe.categories_[0])

random.seed(12)

model = Sequential([
 Dense(2, input_dim=num_regions),
 Dense(1, activation="exponential")

])

model.compile(optimizer="adam", loss="poisson")

es = EarlyStopping(verbose=True)

hist = model.fit(X_train_oh, y_train, epochs=100, verbose=0,
 validation_split=0.2, callbacks=[es])

hist.history["val_loss"][-1]
```

```
Epoch 12: early stopping 0.7526934146881104
```





# Consider the first layer

```
1 every_category = pd.DataFrame(np.eye(num_regions), columns=oe.categories_[0])
2 every_category.head(3)
```

	<b>R11</b>	<b>R21</b>	R22	R23	R24	R25	R26	R31	R41	R42	•••	<b>R53</b>	R54	R72	R73	R74	R
О	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0	Ο.
1	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0	Ο.
2	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0	0.

#### 3 rows × 22 columns

```
1 # Put this through the first layer of the model
2 X = every_category.to_numpy()
3 model.layers[0](X)
```

```
<tf.Tensor: shape=(22, 2), dtype=float32, numpy=
array([[-0.21, -0.14],
 [0.21, -0.17],
 [-0.22, 0.1],
 [-0.83, 0.1],
 [-0.01, -0.66],
 [-0.65, -0.13],
 [-0.36, -0.41],
 [0.21, -0.03],
 [-0.93, -0.57],
 [0.2, -0.41],
 [-0.43, -0.21],
 [-1.13, -0.33],
 [0.17, -0.68],
 [-0.88, -0.55],
 [-0.13, 0.05],
 [0.11, 0.],
 [-0.46, -0.38],
 [-0.62, -0.37],
 [-0.19, -0.28],
 [-0.22, 0.15],
```



### The first layer

```
1 layer = model.layers[0]
 2 W, b = layer.get weights()
 3 X.shape, W.shape, b.shape
((22, 22), (22, 2), (2,))
 1 \times 0 \times + b
 1 W + b
array([[-0.21, -0.14],
 array([[-0.21, -0.14],
 [0.21, -0.17],
 [0.21, -0.17],
 [-0.22, 0.1],
 [-0.22, 0.1],
 [-0.83, 0.1],
 [-0.83, 0.1],
 [-0.01, -0.66],
 [-0.01. -0.66].
 [-0.65, -0.13],
 [-0.65, -0.13],
 [-0.36, -0.41],
 [-0.36, -0.41],
 [0.21, -0.03],
 [0.21, -0.03],
 [-0.93, -0.57],
 [-0.93, -0.57]
 [0.2, -0.41],
 [0.2, -0.41],
 [-0.43, -0.21],
 [-0.43, -0.21],
 [-1.13, -0.33],
 [-1.13, -0.33],
 [0.17, -0.68],
 [0.17, -0.68],
 [-0.88, -0.55],
 [-0.88, -0.55],
 [-0.13, 0.05],
 [-0.13, 0.05],
 [0.11, 0.],
 [0.11, 0.],
 [-0.46, -0.38],
 [-0.46, -0.38],
 [-0.62, -0.37],
 [-0.62, -0.37],
 [-0.19, -0.28],
 [-0.19, -0.28],
```





### Just a look-up operation

```
display(list(oe.categories_[0]))
 W + b
['R11',
 array([[-0.21, -0.14],
 [0.21, -0.17],
'R21',
'R22',
 [-0.22, 0.1],
'R23',
 [-0.83, 0.1],
'R24',
 [-0.01, -0.66],
 'R25',
 [-0.65, -0.13],
'R26',
 [-0.36, -0.41],
'R31',
 [0.21, -0.03],
'R41',
 [-0.93, -0.57],
 [0.2, -0.41],
'R42',
'R43',
 [-0.43, -0.21],
'R52',
 [-1.13, -0.33],
 [0.17, -0.68],
'R53',
 [-0.88, -0.55],
'R54',
'R72',
 [-0.13, 0.05],
'R73',
 [0.11, 0.],
'R74',
 [-0.46, -0.38],
 [-0.62, -0.37],
'R82',
'R83',
 [-0.19, -0.28],
```





# Turn the region into an index

```
1 oe = OrdinalEncoder()
2 X_train_reg = oe.fit_transform(X_train[["Region"]])
3 X_test_reg = oe.transform(X_test[["Region"]])
4
5 for i, reg in enumerate(oe.categories_[0][:3]):
6 print(f"The Region value {reg} gets turned into {i}.")
```

The Region value R11 gets turned into 0. The Region value R21 gets turned into 1. The Region value R22 gets turned into 2.



# Embedding

```
from keras.layers import Embedding
num_regions = len(np.unique(X_train[["Region"]]))

random.seed(12)
model = Sequential([
Embedding(input_dim=num_regions, output_dim=2),
Dense(1, activation="exponential")
])
model.compile(optimizer="adam", loss="poisson")
```





# Fitting that model

```
1 es = EarlyStopping(verbose=True)
2 hist = model.fit(X_train_reg, y_train, epochs=100, verbose=0,
3 validation_split=0.2, callbacks=[es])
4 hist.history["val_loss"][-1]
```

Epoch 5: early stopping 0.7526668906211853

```
1 model.layers
```

[<Embedding name=embedding, built=True>, <Dense name=dense\_8, built=True>]





### Keras' Embedding Layer

```
model.layers[0].get_weights()[0]
array([[-0.12, -0.11],
 [0.03, -0.],
 [-0.02. 0.01].
 [-0.25, -0.14],
 [-0.28, -0.32].
 [-0.3, -0.22],
 [-0.31, -0.28].
 [0.1, 0.07],
 [-0.61, -0.51],
 [-0.06, -0.12],
 [-0.17, -0.14],
 [-0.6, -0.46],
 [-0.22, -0.27],
 [-0.59, -0.5],
 [-0., 0.02],
 [0.07, 0.06],
 [-0.31, -0.28],
 [-0.4, -0.34],
 [-0.16, -0.15],
```

```
1 X_train["Region"].head(4)
 R24
 R93
 R11
 R42
Name: Region, dtype: object
 1 X_sample = X_train_reg[:4].to_numpy()
 2 X_sample
array([[4.],
 [20.],
 [0.],
 [9.11)
 1 enc_tensor = model.layers[0](X_sample)
 2 keras.ops.convert_to_numpy(enc_tensor).
array([[-0.28, -0.32],
 [0.08, 0.03],
 [-0.12, -0.11],
 [-0.06, -0.12], dtype=float32)
```





# The learned embeddings

```
points = model.layers[0].get_weights()[0]
plt.scatter(points[:,0], points[:,1])
for i in range(num_regions):
 plt.text(points[i,0]+0.01, points[i,1] , s=oe.categories_[0][i])
```







# Entity embeddings



Embeddings will gradually improve during training.





### Embeddings & other inputs



Illustration of a neural network with both continuous and categorical inputs.

We can't do this with Sequential models...





#### **Lecture Outline**

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure





#### Converting Sequential models

```
1 from keras.models import Model
2 from keras.layers import Input
```

```
1 random.seed(12)
2
3 model = Sequential([
4 Dense(30, "leaky_relu"),
5 Dense(1, "exponential")
6])
7
8 model.compile(
9 optimizer="adam",
10 loss="poisson")
11
12 hist = model.fit(
13 X_train_ord, y_train,
14 epochs=1, verbose=0,
15 validation_split=0.2)
16 hist.history["val_loss"][-1]
```

```
random.seed(12)
 3 inputs = Input(shape=(2,))
 4 x = Dense(30, "leaky relu")(inputs)
 5 out = Dense(1, "exponential")(x)
 6 model = Model(inputs, out)
 model.compile(
 optimizer="adam",
 loss="poisson")
10
11
12 hist = model.fit(
 X_train_ord, y_train,
14
 epochs=1, verbose=0,
 validation split=0.2)
16 hist.history["val loss"][-1]
```

0.782660961151123

0.782660961151123

See one-length tuples.





#### Wide & Deep network



An illustration of the wide & deep network architecture.

Add a *skip connection* from input to output layers.

```
from keras.layers \
 import Concatenate
 inp = Input(shape=X_train.shape[1:])
 hidden1 = Dense(30, "leaky_relu")(inp)
 hidden2 = Dense(30, "leaky_relu")(hidden1)
 concat = Concatenate()(
 [inp, hidden2])
 output = Dense(1)(concat)
 model = Model(
 inputs=[inp],
11
 outputs=[output])
12
```



### Naming the layers

For complex networks, it is often useful to give meaningul names to the layers.

```
input_ = Input(shape=X_train.shape[1:], name="input")
hidden1 = Dense(30, activation="leaky_relu", name="hidden1")(input_)
hidden2 = Dense(30, activation="leaky_relu", name="hidden2")(hidden1)
concat = Concatenate(name="combined")([input_, hidden2])
output = Dense(1, name="output")(concat)
model = Model(inputs=[input_], outputs=[output])
```





## Inspecting a complex model

1 from keras.utils import plot\_model

plot\_model(model, she

1 model.summary(line\_length=75)



#### Model: "functional\_10"

Layer (type)	Output Shape	Param #	Connected
input (InputLaye	er) (None, 10)	0	-
hidden1 (Dense)	(None, 30)	330	input[0][
hidden2 (Dense)	(None, 30)	930	hidden1[@
combined (Concatenate)	(None, 40)	0	input[0][ hidden2[0
output (Dense)	(None, 1)	41	combined[

Total params: 1,301 (5.08 KB)
Trainable params: 1,301 (5.08 KB)
Non-trainable params: 0 (0.00 B)



#### **Lecture Outline**

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure





#### The desired architecture



Illustration of a neural network with both continuous and categorical inputs.





### Preprocess all French motor inputs

Transform the categorical variables to integers:

```
num_brands, num_regions = X_train.nunique()[["VehBrand", "Region"]]

ct = make_column_transformer(
 (OrdinalEncoder(), ["VehBrand", "Region", "Area", "VehGas"]),
 remainder=StandardScaler(),
 verbose_feature_names_out=False

)

X_train_ct = ct.fit_transform(X_train)

X_test_ct = ct.transform(X_test)
```

Split the brand and region data apart from the rest:

```
1 X_train_brand = X_train_ct["VehBrand"]; X_test_brand = X_test_ct["VehBrand"]
2 X_train_region = X_train_ct["Region"]; X_test_region = X_test_ct["Region"]
3 X_train_rest = X_train_ct.drop(["VehBrand", "Region"], axis=1)
4 X_test_rest = X_test_ct.drop(["VehBrand", "Region"], axis=1)
```





### Organise the inputs

Make a Keras Input for: vehicle brand, region, & others.

```
veh_brand = Input(shape=(1,), name="vehBrand")
region = Input(shape=(1,), name="region")
other_inputs = Input(shape=X_train_rest.shape[1:], name="otherInputs")
```

Create embeddings and join them with the other inputs.





#### Complete the model and fit it

Feed the combined embeddings & continuous inputs to some normal dense layers.

0.6692155599594116





## Plotting this model

1 plot\_model(model, show\_layer\_names=True)









### Why we need to reshape

1 plot\_model(model, show\_layer\_names=True, show\_shapes=True)









#### **Lecture Outline**

- Preprocessing
- French Motor Claims & Poisson Regression
- Ordinal Variables
- Categorical Variables & Entity Embeddings
- Keras' Functional API
- French Motor Dataset with Embeddings
- Scale By Exposure







#### Two different models

Have  $\{(\mathbf{x}_i, y_i)\}_{i=1,...,n}$  for  $\mathbf{x}_i \in \mathbb{R}^{47}$  and  $y_i \in \mathbb{N}_0$ .

**Model 1:** Say  $Y_i \sim \mathsf{Poisson}(\lambda(\mathbf{x}_i))$ .

But, the exposures are different for each policy.  $\lambda(\mathbf{x}_i)$  is the expected number of claims for the duration of policy i's contract.

**Model 2:** Say  $Y_i \sim \mathsf{Poisson}(\mathsf{Exposure}_i \times \lambda(\mathbf{x}_i))$ .

Now, Exposure<sub>i</sub>  $\notin \mathbf{x}_i$ , and  $\lambda(\mathbf{x}_i)$  is the rate *per year*.





### Just take continuous variables

```
1 ct = make_column_transformer(
2 ("passthrough", ["Exposure"]),
3 ("drop", ["VehBrand", "Region", "Area", "VehGas"]),
4 remainder=StandardScaler(),
5 verbose_feature_names_out=False
6)
7 X_train_ct = ct.fit_transform(X_train)
8 X_test_ct = ct.transform(X_test)
```

#### Split exposure apart from the rest:

```
1 X_train_exp = X_train_ct["Exposure"]; X_test_exp = X_test_ct["Exposure"]
2 X_train_rest = X_train_ct.drop("Exposure", axis=1)
3 X_test_rest = X_test_ct.drop("Exposure", axis=1)
```

#### Organise the inputs:

```
1 exposure = Input(shape=(1,), name="exposure")
2 other_inputs = Input(shape=X_train_rest.shape[1:], name="otherInputs")
```





#### Make & fit the model

Feed the continuous inputs to some normal dense layers.

```
1 random.seed(1337)
 2 x = Dense(30, "relu", name="hidden1")(other inputs)
 3 x = Dense(30, "relu", name="hidden2")(x)
 4 lambda = Dense(1, "exponential", name="lambda")(x)
 1 from keras.layers import Multiply
 3 out = Multiply(name="out")([lambda_, exposure])
 model = Model([exposure, other inputs], out)
 model.compile(optimizer="adam", loss="poisson")
 es = EarlyStopping(patience=10, restore best weights=True, verbose=1)
 8 hist = model.fit((X train exp, X train rest),
 y_train, epochs=100, verbose=0,
 callbacks=[es], validation split=0.2)
 11 np.min(hist.history["val loss"])
Epoch 40: early stopping
Restoring model weights from the end of the best epoch: 30.
0.8829042911529541
```





#### Plot the model

1 plot\_model(model, show\_layer\_names=True)









## Package Versions

```
1 from watermark import watermark
2 print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch
```

Python implementation: CPython Python version : 3.11.9
IPython version : 8.24.0

keras : 3.3.3
matplotlib: 3.9.0
numpy : 1.26.4
pandas : 2.2.2
seaborn : 0.13.2
scipy : 1.11.0
torch : 2.3.1
tensorflow: 2.16.1
tf\_keras : 2.16.0





# Glossary

- entity embeddings
- Input layer
- Keras functional API

- Reshape layer
- skip connection
- wide & deep network structure



