Mathematik für Informatiker 2 – SS 2024 Studiengang Angewandte Informatik

Gemischte Übungen 7: Reihen und Taylorreihen

1 Übung: Wert einer (verallgemeinerten) geometrischen Reihe berechnen

Reihe	Rechenweg angeben!	Kontrolle
1.1	$\sum_{k=0}^{\infty} \frac{3}{4^k}$	4
1.2	$\sum_{k=0}^{\infty} \frac{(-3)^k}{4^k}$	$\frac{4}{7}$
1.3	$\sum_{k=1}^{\infty} (-1)^k \frac{1}{4^k}$	$-\frac{1}{5}$
1.4	$\sum_{i=2}^{\infty} 12 \cdot \left(\frac{1}{4}\right)^{i-1}$	4
1.5	$\sum_{i=1}^{\infty} \left(12 \cdot \left(\frac{1}{4}\right)^{i-1} + \left(\frac{1}{7}\right)^{i} \right)$	97 6
1.6	$\sum_{n=1}^{\infty} \frac{(-2)^{3n+1}}{4^{2n+1}}$	$\frac{1}{6}$

2 Übung: Konvergenzkriterien für Reihen anwenden

Reihe: konvergent (endlicher Wert)?		Tipp: Nutzen Sie folgendes Konvergenzkriterium	Kontrolle
2.1	$\sum_{n=1}^{\infty} \frac{n^3}{n^3 + 1}$	Liegt überhaupt Nullfolge vor?	Divergent
2.2	$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}$	Majorantenkriterium	Konvergent
2.3	$\sum_{k=1}^{\infty} \frac{(k+1)^2}{k!}$	Quotientenkriterium	Konvergent
2.4	$\sum_{k=1}^{\infty} \frac{k^4 + 1}{k^5 - 1}$	Grenzwertkriterium	Divergent
2.5	$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$		Konvergent
2.6	$\sum_{n=1}^{\infty} \frac{n^2 - n - 1}{2^n}$	Quotientenkriterium	Konvergent
2.7	$\sum_{n=1}^{\infty} \frac{n^2 - n - 1}{2n^4 + n}$	Grenzwertkriterium mit dem Wissen dass $\sum \frac{1}{n^2} < \infty$	Konvergent
2.8	$\sum_{k=1}^{\infty} \frac{100^k}{k!}$	Quotientenkriterium	Konvergent
2.9	$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n^9}$	Naheliegend Leibniz. Aber liegt überhaupt Nullfolge vor?	Divergent

3 Übung: Taylorpolynome bzw. Potenzreihenentwicklung über Ableitungen berechnen

3.1	Ermitteln Sie die Näherungsparabel 2. Grades der Funktion $f(x) = \sin^2(3x)$ in einer Umgebung von $x_0 = 0$.	
3.2	a) Leiten Sie die folgende Näherungsformel her. Skizzieren Sie die Funktion $f(x)$ und das Näherungspolynom. $f(x) = \frac{1}{\sqrt{1-x}} \approx 1 + \frac{x}{2} \qquad \text{(für kleine } x\text{)}$ b) Verbessern Sie die Näherungsformel (für kleine x).	[Teschl 2, S. 106] $T_1(x) = 1 + \frac{x}{2}$ $T_2(x) = 1 + \frac{1}{2}x + \frac{3}{8}x^2$
3.3	Geben Sie für die Funktion $f(x) = \frac{1}{\sqrt{x}}$ ihr Taylorpolynom 2. Ordnung um $x_0 = 1$ an.	$T_2(x) = \frac{15}{8} - \frac{5}{4}x + \frac{3}{8}x^2$
3.4	Ermitteln Sie die Näherungsparabel 2. Grades der Funktion $f(x) = \left[1 - e^{-(x-2)}\right]^2$ in einer Umgebung von $x_0 = 2$.	$f(x)\approx (x-2)^2.$
3.5	Beim freien Fall unter Berücksichtigung des Luftwiderstands besteht folgender Zusammenhang zwischen Geschwindigkeit und Zeit: $v(t) = v_E \cdot \tanh\left(\frac{g}{v_E}t\right).$ Entwickeln Sie $f(x) = \tanh x$ in eine Potenzreihe bis zur 3. Potenz um die Entwicklungsstelle $x_0 = 0$ und bestimmen Sie hiermit die Näherungen 1. und 3. Grades der Geschwindigkeit $v(t)$. Verwenden Sie die Ableitungen $(\tanh x)' = \frac{1}{\cosh^2 x} ; (\cosh x)' = \sinh x$	a) $v(t) \approx g \cdot t$ b) $v(t) \approx g \cdot t - \frac{1}{3} \frac{g^3}{v_E^2} t^3$

4 Übung: Aus bekannten Taylorreihen neue Potenzreihendarstellungen und somit Näherungspolynome gewinnen

4.1	$f(x) = \cosh{(x)} \coloneqq \frac{e^x + e^{-x}}{2}$ Bestimmen Sie die Taylorreihe mit Entwicklungspunkt $x_0 = 0$, indem Sie die Taylorreihe von e^x benutzen (d.h. vermeiden Sie den Aufwand, die Taylorkoeffizienten durch Ableiten zu bestimmen!).	$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$
4.2	 f(x) = cos(2x) a) Geben Sie die Taylorreihe von mit Entwicklungspunkt x₀ = 0 an. Anleitung: Bestimmen Sie die Taylorkoeffizienten nicht durch Ableiten, sondern verwenden Sie die bekannte Portenzreihe der Grundfunktion cos x. b) Bestimmen Sie für cos(2x) das "Schmiegungspolynom" 2. Grades für x₀ = 0 und skizzieren Sie cos(2x) und diese Parabelnäherung. Tipp: Aus (a) kennen Sie schon die gesamte Taylorreihe. c) Bestimmen Sie das Taylorpolynom 4. Grades für x₀ = π/2 	b) $1-2x^2$ c) $-1+2\left(x-\frac{\pi}{2}\right)^2-\frac{2}{3}\left(x-\frac{\pi}{2}\right)^4$
4.3	$f(x) = \frac{e^{2x} - 1}{x}$ a) Lösbar ohne Integralrechnung: Bestimmen Sie die Taylorreihe und das Taylorpolynom 3. Grades von f, in dem Sie die bekannte Potenzreihendarstellung von e^x benutzen (Formelsammlung) b) Man berechne näherungsweise das Integral $\int_0^{0.1} \frac{e^{2x} - 1}{x} dx$ mittels Potenzreihendarstellung des Integranden. Brechen Sie die Näherungsberechnung ab, wenn das Ergebnis auf zwei Nachkommastellen stabil bleibt.	

4.4	Entwickeln Sie die Funktion $f(x) = (x^2 + 5x - 7) \ln(x + 3)$	
4.5	an der Stelle $x_0=-2$ in eine Taylorreihe bis zum Glied $n=4$. $f(x)=\arctan x$ Bestimmen Sie die Taylorreihe der Ableitung $f'(x)$ um $x_0=0$ unter Zuhilfenahme der geometrischen Reihe. Bestimmen Sie ihren Konvergenzbereich. Integrieren Sie die gefundene Potenzreihe (gliedweise) und bestimmen Sie die Integrationskonstante so, dass sich eine Potenzreihendarstellung von $f(x)=\arctan x$ um $x_0=0$ ergibt. Für welche x ist die Darstellung gültig?	

5 Fortgeschrittene Übungen zu Taylor-Reihen

5.1	Verwenden Sie die Taylorreihen von e^x , $\sin x$, $\cos x$ um damit e^z für komplexe Werte $z=x+iy\in\mathbb{C}$ zu definieren. Zeigen Sie damit, dass die Euler'sche Formel $e^{i\varphi}=\cos\varphi+i\sin\varphi (\varphi\in\mathbb{R}$) gilt.	
5.2	Leiten Sie die Taylorreihe von $\sin(x)$ mit Entwicklungspunkt $x_0 = 0$ gliedweise ab und zeigen Sie dadurch, dass $(\sin(x))' = \cos(x)$.	
5.3	Bestimmen Sie folgende Grenzwerte mittels Potenzreihenentwicklungen: a) $\lim_{x\to 0} \frac{e^x-1}{x}$ b) $\lim_{x\to 0} \left(\frac{1}{x}-\frac{1}{\sin x}\right)$	a) 1 b) 0
5.4	Entwickeln Sie die Funktion $f(x)=(x^2+5x-7)\ln(x+3)$ an der Stelle $x_0=-2$ in eine Taylorreihe bis zum Glied $n=4$.	