Topos Theory I: Presheaf Categories and Related Constructions

Robbert Liu

September 18, 2022

Some text.

• Presheaf Categories

2/9

Some text.

- Presheaf Categories
- Pullbacks

2/9

Robbert Liu Topos Theory I

Some text.

- Presheaf Categories
- Pullbacks
- Subobject Classifers

Robbert Liu Topos Theory I

2/9

Some text.

- Presheaf Categories
- Pullbacks
- Subobject Classifers
- Colimits

Robbert Liu Topos Theory I

• Functor Categories

3/9

- Functor Categories
- Pullbacks

3/9

- Functor Categories
- Pullbacks
- Subobject Classifers

3/9

Robbert Liu Topos Theory I

- Functor Categories
- Pullbacks
- Subobject Classifers
- Colimits

3/9

Robbert Liu Topos Theory I

 \bullet Functor \leftrightarrow continuous map.

4/9

- Functor \leftrightarrow continuous map.
- Natural transformation \leftrightarrow homotopy.

4/9

- Functor \leftrightarrow continuous map.
- Natural transformation \leftrightarrow homotopy.
- Consider the space of continuous maps $X \to Y$ and homotopies between them:

Robbert Liu Topos Theory I

- Functor \leftrightarrow continuous map.
- Natural transformation \leftrightarrow homotopy.
- Consider the space of continuous maps $X \to Y$ and homotopies between them:

• Analogously... a functor $F: \mathbf{J} \to \mathbf{C}$ is a "drawing" of \mathbf{J} in \mathbf{C} .

Robbert Liu Topos Theory I

- Functor \leftrightarrow continuous map.
- Natural transformation \leftrightarrow homotopy.
- Consider the space of continuous maps $X \to Y$ and homotopies between them:

- Analogously... a functor $F: \mathbf{J} \to \mathbf{C}$ is a "drawing" of \mathbf{J} in \mathbf{C} .
- ullet A functor category ${f C}^{f J}$ considers all such "drawings" along with compatible maps between them.

Definition

The category of presheaves on C is a functor category $\hat{\mathbf{C}} := \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$.

• Examples:

5/9

Definition

The category of presheaves on C is a functor category $\hat{C} := \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}$.

- Examples:
 - Set = $\hat{1}$

5/9

Definition

The category of presheaves on C is a functor category $\hat{C} := \mathbf{Set}^{C^{\mathrm{op}}}$.

- Examples:
 - Set = $\hat{1}$

▶ $\mathbf{Set}^n = \hat{\mathbf{C}}$, where **C** is the discrete category of size n.

5/9

Definition

The category of presheaves on C is a functor category $\hat{C} := \mathbf{Set}^{C^{\mathrm{op}}}$.

- Examples:
 - Set = $\hat{1}$

$$\begin{array}{ccc}
F(1) \longrightarrow G(1) \\
 & & \\
F(1) \longrightarrow G(1)
\end{array}$$

- Setⁿ = Ĉ, where C is the discrete category of size n.
 Set^N = N̂^{op}, where N is the total order category of N.

$$\begin{array}{cccc}
p_n & & & & & & & & & \\
\downarrow & & & & & & & & \\
q_n & & & & & & & \\
\end{array}$$

Pullbacks, briefly

• Pullbacks and final objects exist in **Set**...

6/9

Pullbacks, briefly

- Pullbacks and final objects exist in **Set**...
- \bullet ... and in $\hat{\mathbf{C}}$, since limits are computed pointwise.

$$(X \times_B Y)(C) \cong X(C) \times_{B(C)} Y(C)$$
$$1(C) \cong 1$$

6/9

Pullbacks, briefly

- Pullbacks and final objects exist in **Set**...
- \bullet ... and in $\hat{\mathbf{C}}$, since limits are computed pointwise.

$$(X \times_B Y)(C) \cong X(C) \times_{B(C)} Y(C)$$
$$1(C) \cong 1$$

• All finite limits can be constructed from equalizers and products:

• A subset $S \subseteq X$ can be thought of as either...

- A subset $S \subseteq X$ can be thought of as either...
 - ${\color{gray} \blacktriangleright}$ a monomorphism $S \rightarrowtail X$ given by inclusion, or

- A subset $S \subseteq X$ can be thought of as either...
 - ightharpoonup a monomorphism $S \rightarrow X$ given by inclusion, or
 - ▶ a characteristic function $\phi_S: X \to 2$ defined by $\phi_S(x) = 0 \iff x \in S$.

7/9

- A subset $S \subseteq X$ can be thought of as either...
 - ▶ a monomorphism $S \rightarrowtail X$ given by inclusion, or
 - ▶ a characteristic function $\phi_S: X \to 2$ defined by $\phi_S(x) = 0 \iff x \in S$.
- If we define true: $1 \hookrightarrow 2$, then S can be recovered from ϕ_S by pulling back along true.

- A subset $S \subseteq X$ can be thought of as either...
 - ▶ a monomorphism $S \rightarrowtail X$ given by inclusion, or
 - a characteristic function $\phi_S: X \to 2$ defined by $\phi_S(x) = 0 \iff x \in S$.
- If we define true: $1 \hookrightarrow 2$, then S can be recovered from ϕ_S by pulling back along true.

• *Idea*: generalize the set 2 to an object $\Omega \in \mathbf{C}$ of "truth values" for a general category \mathbf{C} .

Definition

In a category ${\bf C}$ with finite limits, a **subobject classifer** is a monomorphism $true: 1 \to \Omega$ such that for every monomorphism $S \rightarrowtail X$, we get a unique morphism ϕ forming a pullback square

8/9

Definition

In a category ${\bf C}$ with finite limits, a **subobject classifer** is a monomorphism $true: 1 \to \Omega$ such that for every monomorphism $S \rightarrowtail X$, we get a unique morphism ϕ forming a pullback square

• Remark: there is a functor $Sub_{\mathbf{C}}: \mathbf{C}^{op} \to Set:$

8/9

Definition

In a category ${\bf C}$ with finite limits, a **subobject classifer** is a monomorphism $true: 1 \to \Omega$ such that for every monomorphism $S \mapsto X$, we get a unique morphism ϕ forming a pullback square

- Remark: there is a functor $Sub_{\mathbf{C}}: \mathbf{C}^{op} \to Set:$
 - ▶ $Sub_{\mathbf{C}}(X)$ is the set of subobjects $S \rightarrowtail X$.

8/9

Definition

In a category **C** with finite limits, a **subobject classifer** is a monomorphism $true: 1 \to \Omega$ such that for every monomorphism $S \rightarrowtail X$, we get a unique morphism ϕ forming a pullback square

- Remark: there is a functor $Sub_{\mathbf{C}}: \mathbf{C}^{op} \to Set:$
 - ▶ $Sub_{\mathbf{C}}(X)$ is the set of subobjects $S \rightarrowtail X$.
 - ▶ For $f: S' \to S$, Sub_{**C**} $(f)(S \mapsto X)$ is the (monic) pullback $S' \mapsto X'$ of $S \mapsto X$ along f.

8/9

Proposition

A locally small category \mathbf{C} with finite limits has a subobject classifer iff $\mathrm{Sub}_{\mathbf{C}}$ is representable: there exists an object Σ and a natural isomorphism:

$$\theta_X : \mathrm{Sub}_{\mathbf{C}}(X) \cong \mathrm{Hom}_{\mathbf{C}}(X, \Omega).$$

If this holds, then **C** is well-powered: $Sub_{\mathbf{C}}(X)$ is isomorphic to a small set for all X.