mhd-hermes Documentation

Release 0.1

Ondrej Certik

CONTENTS

1	Installation instructions	3 5			
2	MHD Equations				
	2.1 Introduction	4			
	2.2 Derivation	(
	2.3 Finite Element Formulation	(
3	3 Indices and tables				

Contents:

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

INSTALLATION INSTRUCTIONS

Install hermes2d, so that you can import hermes2d from Python:

```
In [1]: import hermes2d
```

In [2]:

Once this works, then just run:

cmake . make

and that's it (cmake will ask the hermes2d module where all the \star .h and \star .pxd files are).

MHD EQUATIONS

2.1 Introduction

The magnetohydrodynamics (MHD) equations are:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \tag{2.1}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla p + \frac{1}{\mu} (\nabla \times \mathbf{B}) \times \mathbf{B} + \rho \mathbf{g}$$
 (2.2)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$
 (2.3)

$$\nabla \cdot \mathbf{B} = 0 \tag{2.4}$$

assuming η is constant. See the next section for a derivation. We can now apply the following identities (we use the fact that $\nabla \cdot \mathbf{B} = 0$):

$$\begin{split} [(\nabla \times \mathbf{B}) \times \mathbf{B}]_i &= \varepsilon_{ijk} (\nabla \times \mathbf{B})_j B_k = \varepsilon_{ijk} \varepsilon_{jlm} (\partial_l B_m) B_k = (\delta_{kl} \delta_{im} - \delta_{km} \delta_{il}) (\partial_l B_m) B_k = \\ &= (\partial_k B_i) B_k - (\partial_i B_k) B_k = \left[(\mathbf{B} \cdot \nabla) \mathbf{B} - \frac{1}{2} \nabla |\mathbf{B}|^2 \right]_i \\ (\nabla \times \mathbf{B}) \times \mathbf{B} &= (\mathbf{B} \cdot \nabla) \mathbf{B} - \frac{1}{2} \nabla |\mathbf{B}|^2 = (\mathbf{B} \cdot \nabla) \mathbf{B} + \mathbf{B} (\nabla \cdot \mathbf{B}) - \frac{1}{2} \nabla |\mathbf{B}|^2 = \nabla \cdot (\mathbf{B} \mathbf{B}^T) - \frac{1}{2} \nabla |\mathbf{B}|^2 \\ \nabla \times (\mathbf{v} \times \mathbf{B}) &= (\mathbf{B} \cdot \nabla) \mathbf{v} - \mathbf{B} (\nabla \cdot \mathbf{v}) + \mathbf{v} (\nabla \cdot \mathbf{B}) - (\mathbf{v} \cdot \nabla) \mathbf{B} = \nabla \cdot (\mathbf{B} \mathbf{v}^T - \mathbf{v} \mathbf{B}^T) \\ \nabla \cdot (\rho \mathbf{v} \mathbf{v}^T) &= (\nabla \cdot (\rho \mathbf{v})) \mathbf{v} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = -\mathbf{v} \frac{\partial \rho}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} \end{split}$$

So the MHD equations can alternatively be written as:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \tag{2.5}$$

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}^T) = -\nabla p + \frac{1}{\mu} \left(\nabla \cdot (\mathbf{B} \mathbf{B}^T) - \frac{1}{2} \nabla |\mathbf{B}|^2 \right) + \rho \mathbf{g} \tag{2.6}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \cdot (\mathbf{B} \mathbf{v}^T - \mathbf{v} \mathbf{B}^T) + \eta \nabla^2 \mathbf{B}$$
 (2.7)

$$\nabla \cdot \mathbf{B} = 0 \tag{2.8}$$

One can also introduce a new variable $p^* = p + \frac{1}{2}\nabla |\mathbf{B}|^2$, that simplifies (2.6) a bit.

2.2 Derivation

The above equations can easily be derived. We have the continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Navier-Stokes equations (momentum equation) with the Lorentz force on the right-hand side:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right) = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$

where the current density \mathbf{j} is given by the Maxwell equation (we neglect the displacement current $\frac{\partial \mathbf{E}}{\partial t}$):

$$\mathbf{j} = \frac{1}{\mu} \nabla \times \mathbf{B}$$

and the Lorentz force:

$$\frac{1}{\sigma}\mathbf{j} = \mathbf{E} + \mathbf{v} \times \mathbf{B}$$

from which we eliminate E:

$$\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \frac{1}{\sigma} \mathbf{j} = -\mathbf{v} \times \mathbf{B} + \frac{1}{\sigma \mu} \nabla \times \mathbf{B}$$

and put it into the Maxwell equation:

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

so we get:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times \left(\frac{1}{\sigma \mu} \nabla \times \mathbf{B}\right)$$

assuming the magnetic diffusivity $\eta=\frac{1}{\sigma\mu}$ is constant, we get:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \eta \nabla \times (\nabla \times \mathbf{B}) = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \left(\nabla^2 \mathbf{B} - \nabla (\nabla \cdot \mathbf{B}) \right) = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

where we used the Maxwell equation:

$$\nabla \cdot \mathbf{B} = 0$$

2.3 Finite Element Formulation

We solve the following ideal MHD equations (we use $p^* = p + \frac{1}{2}\nabla |\mathbf{B}|^2$, but we drop the star):

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - (\mathbf{B} \cdot \nabla)\mathbf{B} + \nabla p = 0$$
(2.9)

$$\frac{\partial \mathbf{B}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{B} - (\mathbf{B} \cdot \nabla) \mathbf{u} = 0 \tag{2.10}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2.11}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{2.12}$$

We discretize in time by introducing a small time step τ and we also linearize the convective terms:

$$\frac{\mathbf{u}^n - \mathbf{u}^{n-1}}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla)\mathbf{u}^n - (\mathbf{B}^{n-1} \cdot \nabla)\mathbf{B}^n + \nabla p = 0$$
(2.13)

$$\frac{\mathbf{B}^{n} - \mathbf{B}^{n-1}}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla)\mathbf{B}^{n} - (\mathbf{B}^{n-1} \cdot \nabla)\mathbf{u}^{n} = 0$$
(2.14)

$$\nabla \cdot \mathbf{u}^n = 0 \tag{2.15}$$

$$\nabla \cdot \mathbf{B}^n = 0 \tag{2.16}$$

Testing (2.13) by the velocity test functions (v_1, v_2) , (2.14) by the magnetic field test functions (C_1, C_2) , (2.15) and (2.16) by the pressure test function q, we obtain the following weak formulation:

$$\int_{\Omega} \frac{u_1 v_1}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla) u_1 v_1 - (\mathbf{B}^{n-1} \cdot \nabla) B_1 v_1 - p \frac{\partial v_1}{\partial x} \, d\mathbf{x} = \int_{\Omega} \frac{u_1^{n-1} v_1}{\tau} \, d\mathbf{x}
\int_{\Omega} \frac{u_2 v_2}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla) u_2 v_2 - (\mathbf{B}^{n-1} \cdot \nabla) B_2 v_2 - p \frac{\partial v_2}{\partial y} \, d\mathbf{x} = \int_{\Omega} \frac{u_2^{n-1} v_2}{\tau} \, d\mathbf{x}$$
(2.17)

$$\int_{\Omega} \frac{B_1 C_1}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla) B_1 C_1 - (\mathbf{B}^{n-1} \cdot \nabla) u_1 C_1 \, \mathrm{d}\mathbf{x} = \int_{\Omega} \frac{B_1^{n-1} C_1}{\tau} \, \mathrm{d}\mathbf{x}
\int_{\Omega} \frac{B_2 C_2}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla) B_2 C_2 - (\mathbf{B}^{n-1} \cdot \nabla) u_2 C_2 \, \mathrm{d}\mathbf{x} = \int_{\Omega} \frac{B_2^{n-1} C_2}{\tau} \, \mathrm{d}\mathbf{x}$$
(2.18)

$$\int_{\Omega} \frac{\partial u_1}{\partial x} q + \frac{\partial u_2}{\partial y} q \, d\mathbf{x} = 0 \tag{2.19}$$

$$\int_{\Omega} \frac{\partial B_1}{\partial x} q + \frac{\partial B_2}{\partial y} q \, d\mathbf{x} = 0 \tag{2.20}$$

Now we write it in the block form:

so we get the following nonzero forms:

$$a_{11}(u,v) = a_{22}(u,v) = a_{44}(u,v) = a_{55}(u,v) = \int_{\Omega} \frac{uv}{\tau} + (\mathbf{u}^{n-1} \cdot \nabla)uv \, d\mathbf{x}$$

$$a_{13}(p,v) = -a_{31}(v,p) = -a_{34}(v,p) = \int_{\Omega} -p \frac{\partial v}{\partial x} \, d\mathbf{x}$$

$$a_{23}(p,v) = -a_{32}(v,p) = -a_{35}(v,p) = \int_{\Omega} -p \frac{\partial v}{\partial y} \, d\mathbf{x}$$

$$a_{14}(B,v) = a_{25}(B,v) = a_{41}(v,B) = a_{52}(v,B) = -\int_{\Omega} (\mathbf{B}^{n-1} \cdot \nabla)Bv \, d\mathbf{x}$$

$$l_{1}(v) = \int_{\Omega} \frac{u_{1}^{n-1}v}{\tau} \, d\mathbf{x}$$

$$l_{2}(v) = \int_{\Omega} \frac{u_{2}^{n-1}v}{\tau} \, d\mathbf{x}$$

$$l_{4}(v) = \int_{\Omega} \frac{B_{1}^{n-1}v}{\tau} \, d\mathbf{x}$$

$$l_{5}(v) = \int_{\Omega} \frac{B_{2}^{n-1}v}{\tau} \, d\mathbf{x}$$

CHAPTER

THREE

INDICES AND TABLES

- Index
- Module Index
- Search Page