The homeworks were good, but here is a good proof of

conditions, involving h and k, for q to be a homomorphism.

(p is a homomorphism () thand k commute; hk = kh

Proof.

 φ is a homomorphism $\Leftrightarrow \varphi((2;2)) = \varphi((1,1)), \varphi((1,1))$ $\Leftrightarrow h^2 k^2 = (hk)(hk)$ $\Leftrightarrow h^2 [h^2 k^2] k^{-1} = h^{-1} [hkhk] k^{-1}$ $\Leftrightarrow hk = kh$

54. 15 similar. G must be Abelian.

if, and only if, $\forall x,y \in G$, we have $xyx^{-1}y^{-1} \in \ker \varphi$.

Proof: For short, let Ke Kernel 4. Then

 $\varphi[G]$ is Abelian (=) $\forall x,y \in G$, $\psi(x)\psi(y) = \psi(y)\psi(x)$ $\Leftrightarrow \forall x,y \in G$, $\psi(x)\psi(y)\psi(x)^{-1}\psi(y)^{-1} = e_H$ $\Leftrightarrow \forall x,y \in G$, $\psi(xyx^{-1}y^{-1}) = e_H$ since ψ is a homomorphism $\Leftrightarrow xyx^{-1}y^{-1} \in K$. \square