ISE-529 Predictive Analytics

Mid-Term Examination – July 25, 2022

Instructions

- You are to complete the exam by typing your answers into this PowerPoint as indicated.
- You will have 90 minutes to complete the exam and submit it to GradeScope (in the same manner as done for homework assignments). Late submissions will be penalized.
- The exam is open-book / open-notes. You may consult any resource except another person.
- Good luck!

Linear Model Analysis

For this problem we will be working with the following dataset:

	X1	X2	X3	Y
0	41.702200	127.052130	Blue	352.327637
1	0.011437	15.493819	Red	220.868508
2	14.675589	49.839131	Blue	73.675966
3	18.626021	72.941849	Red	248.822223
4	39.676747	111.277323	Blue	443.526663
_		_	-	_
95	26.329677	71.214407	Red	220.116425
96	73.506596	220.472502	Red	393.102431
97	90.781585	237.429245	Blue	588.924642
98	1.395157	-17.347437	Red	162.037595
99	61.677836	201.901295	Blue	365.474951
100	rows × 4 (columns		

First, we create three models using X1, X2, and the combination of X1 & X2 to predict Y:

OLS Regression Re	sults					
Dep. Variable	:		Υ	R-	equared:	0.448
Model		(OLS	Adj. R-	equared:	0.442
Method	Lea	st Squa	res	F-	statistic:	79.41
Date	Sat,	23 Jul 2	022 P	rob (F-s	statistic):	2.79e-14
Time		12:38	3:45	Log-LI	ellhood:	-625.91
No. Observations	:		100		AIC:	1256.
Df Residuals	:		98		BIC:	1261.
Df Model	:		1			
Covariance Type:		nonrot	oust			
coef s	td err	t	P≻iti	TO.025	0.9751	
const 94.6329				•	•	
X1 3.6648	0.411	8.911	0.000	2.849	4.481	
Omnibus:	2.101	Dur	bin-VVa	atson:	1.834	
Prob(Omnibus):	0.350	Jarqu	ie-Bera	ı (JB):	1.494	
Skew:	-0.045		Prol	b(JB):	0.474	
Kurtosis:	2.408		Con	d. No.	96.0	

OLS Regression Re	esults							
Dep. Variable	C C		Υ	F	t-squ	ared:	0.371	
Mode	l:	O	LS A	Adj. R	t-squ	ared:	0.365	
Method	l: Lea	st Squar	es	ı	-sta	tistic:	57.89	
Date	: Sat, 2	23 Jul 20	22 Pr	ob (F	-stat	istic):	1.72e-11	
Time	C C	12:38:	45 L	.og-L	lkelli	nood:	-632.37	
No. Observations	SC	1	00			AIC:	1269.	
Df Residuals	i:	!	98			BIC:	1274.	
Df Mode	l:		1					
Covariance Type	i:	nonrobu	ust					
	-4-4		n. de					
COST	std err	τ	həld	[0.0	25	0.975]		
const 108.9723	23.992	4.542	0.000	61.3	61	156.584		
X2 1.0954	0.144	7.608	0.000	0.8	10	1.381		
Omnibus:	2.699	Durbl	n-VVats	on:	1.78	14		
Prob(Omnibus):	0.259	Jarque	-Bera (.	JB1:	1.71	6		
	0.013		Prob(•				
Kurtosis:				•				

OLS Regression R	tesults				
Dep. Variab	le:	Y	R-	squared:	0.464
Mod	el:	OLS	Adj. R	equared:	0.453
Metho	d: Lea	st Squares	F	-statistic:	42.01
Dat	te: Sat,:	23 Jul 2022	Prob (F-	statistic):	7.22e-14
Tim	10:	12:38:45	Log-Li	kellhood:	-624.38
No. Observation	15:	100		AIC:	1255.
Df Residua	16:	97		BIC:	1263.
Df Mod	el:	2			
Covariance Typ	ie:	nonrobust			
coef	std err	t P	> t [0.028	0.975]	
const 99.2494	22.390	4.433 0.	000 54.81	143.688	
X1 6.1752	1.507	4.099 0.	000 3.188	9.165	
X2 -0.8557	0.494	-1.731 0.	087 -1.837	0.126	
Omnibus	0.856	Durbin-	-VVatson:	1.870	
Prob(Omnibus):	0.652	Jarque-B	Bera (JB):	0.870	
Skew	-0.038	F	Prob(JB):	0.647	
Kurtosis	2.549	C	Cond. No.	310.	

- 1A) For the two simple (single-predictor) models, are the predictors X1 & X2 significant?
- Yes
- 1B) For the multiple regression model, which predictors are significant?
- Only X1
- 1C) How do you interpret what is going on here?
- It is likely that X1 and X2 are correlated and that X1 is the better predictor. Once the information from X1 is incorporated into the model, X2 is no longer significant

Now we incorporate the categorical variable into the model by creating a dummy variable "Blue" and incorporate it into the model as shown:

	X1	X2	X3	Y	Blue		
0	41.702200	127.052130	Blue	352.327637	1		
1	0.011437	15.493819	Red	220.868508	0		
2	14.675589	49.839131	Blue	73.675966	1		
3	18.626021	72.941849	Red	248.822223	0		
4	39.676747	111.277323	Blue	443.526663	1		
_	_	_	-	_	_		
95	26.329677	71.214407	Red	220.116425	0		
96	73.506596	220.472502	Red	393.102431	0		
97	90.781585	237.429245	Blue	588.924642	1		
98	1.395157	-17.347437	Red	162.037595	0		
99	61.677836	201.901295	Blue	365.474951	1		
100	100 rows × 5 columns						

OLS Reg	gression Re	esults					
De	ep. Varlable	9:		Υ	R-60	uared:	0.547
	Mode	l:	OL	S A	dj. R-sq	uared:	0.533
	Method	f: Leas	st Square	16	F-st	atistic:	38.72
	Date	e: Sat, 2	3 Jul 202	2 Pro	b (F-sta	tistic):	1.74e-16
	Time	9:	12:38:4	5 L	og-Likel	lhood:	-615.93
No. Ob	servations	5 :	10	00		AIC:	1240.
D	f Residuals	s:	9	6		BIC:	1250.
	Df Mode	l:		3			
Cova	riance Type) :	nonrobu	st			
	coef	std err	t	Politi	TO 025	0.975	1
const	67.6893				-	111.364	
X1	5.6652	1.397	4.055	0.000	2.892	8.438	3
Х2	-0.7817	0.457	-1.710	0.090	-1.689	0.125	5
Blue	100.7294	23.956	4.205	0.000	53.177	148.282	2
	Omnibus:	0.739	Durbl	n-VVata	ion: 2.	058	
Prob(C	Omnibus):	0.691	Jarque	-Bera (JB): 0.	808	
	Skew:	-0.196		Prob(JB): 0.	668	
	Kurtosis:	2.797		Cond.	No. 4	101.	

- 1D) Does adding this categorical variable to the model improve it's overall performance? Why or why not?
- Yes, we see that the model \mathbb{R}^2 has improved from 0.464 to 0.547

1E) Looking at this color-coded scatterplot of X1 vs Y, do you see any indication of an interaction effect between X1 and X3? Why or why not?

 Yes, it appears that the slop of the lines for the blue and red observations may be different

1E) Looking at these model results, do you see any indication of an interaction effect between X1 and X3? Why or why not?

Dep. Variable:	Υ	R-square	d: 0.654
Model:	OLS	Adj. R-square	d: 0.639
Method:	Least Squares	F-statisti	c: 44.90
Date:	Sat, 23 Jul 2022	Prob (F-statistic): 4.07e-21
Time:	12:38:46	Log-Likelihoo	d: -602.51
No. Observations:	100	Alk	C: 1215.
Df Residuals:	95	BIG	C: 1228.
Df Model:	4		
Covariance Type:	nonrobust		
coef	std err t	P> t [0.025	0.975]
const 127.7721	22.302 5.729	0.000 83.497	172.047
X1 3.0043	1.323 2.271	0.025 0.378	5.630
X2 -0.4081	0.408 -1.001	0.319 -1.217	0.401
Blue -72.5923	38.341 -1.893	0.061 -148.708	3.523
X1*Blue 3.7415	0.692 5.409	0.000 2.368	5.115
Omnibus:	1.397 Durbin-	VVatson: 2.041	
Prob(Omnibus):	0.497 Jarque-B	era (JB): 1.468	
Skew:	-0.252 P	rob(JB): 0.480	
Kurtosis:	2.687 C	ond. No. 708.	

Yes, the p-value for the interaction term is less than 0.05

After completing your modeling analysis, you decide to use the model

shown below:

OLS Regre	ssion Res	ulits				
Dep.	Variable:		Y		R-square	d: 0.650
	Model:		OLS	Adj.	R-square	d: 0.639
	Method:	Least	Squares		F-statist	lc: 59.53
	Date:	Sat, 23	Jul 2022	Prob (F-statistic	c): 7.89e-22
	Time:		12:38:46	Log	-Likelihoo	d : -603.03
No. Obser	rvations:		100		Al	C: 1214.
Df R	esiduals:		96		В	C: 1224.
0	of Model:		3			
Covaria	псе Туре:	n	onrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	127.2703	22.297	5.708	0.000	83.012	171.529
X1	1.7555	0.441	3.985	0.000	0.881	2.630
Blue	-77.2287	38.060	-2.029	0.045	-152.778	-1.679
X1*Blue	3.8588	0.682	5.661	0.000	2.506	5.212
Om	inibus:	1.610	Durbin-	VVatson	1.994	
Prob(Omi	nibus):	0.447 J	Jarque-B	era (JB)	1.657	
	Skew:	-0.286	P	rob(JB)): 0.437	
Ku	irtosis:	2.733	С	ond. No	o. 250.	

1F) Write out the algebraic expression for this model (you do not need to include the error term):

- Y = 127.3 + 1.76X1 77.2 * Blue + 3.86(X1 * Blue)
- 1G) Write out the simplified algebraic expression for this model for the Blue observations
- Y = 127.3 + 1.76X1 77.2 + 3.3X1
- Y = 50.1 + 5.7X1
- 1H) Write out the simplified algebraic expression for this model for the Red observations
- Y = 127.3 + 1.76X1

- We have developed a model to predict the sales (in thousands of dollars) at a new store our company may decide to open in a new city and we define and fit a model with five predictors:
 - X_P : Population of the city (in thousands of people)
 - X_I : Average income of the city (in thousands of dollars per adult)
 - X_T : Type of store (1 for downtown store, 0 for a mall store)
 - X_{PI} : Interaction between population and average income (in thousands)
 - X_{IT} : Interaction between average income (in thousands) and store type

In the cities we are evaluating, the average income is generally less than \$100,000 and the cities are in the size range of 0-500,000 people

After fitting this model using a linear regression, we get the following coefficients: $\hat{\beta}_0 = 10$, $\hat{\beta}_P = 20$, $\hat{\beta}_I = 50$, $\hat{\beta}_T = 350$, $\hat{\beta}_{PI} = 0.05$, $\hat{\beta}_{IT} = -5$

2a) Which answer is correct:

- a) For a fixed value of population and average income, a downtown store would on average have greater sales than a mall store
- b) For a fixed value of population and average income, a mall store would on average have greater sales than a downtown store
- c) For a fixed value of population and average income, a downtown store would on average have more sales than a mall store provided that the average income is high enough
- d) For a fixed value of population and average income, a mall store would on average have more sales than a downtown store provided that the average income is high enough

Response: D

- 2B) What is the predicted sales for a downtown store in a city with a population of 100,000 and an average income of \$50,000?
- \$4,860K
- 2C) Is this statement true or false and why: "Since the coefficient of the interaction term between population and average income is very small, there is very little evidence of an interaction effect:
- False. The scale of the interaction variable is much larger than the scales of the other predictors.

- 2D) Which predictor has the larger impact on sales, income or city population? Explain your answer
- The population variable has a scale that is 5 times greater than the income variable. Thus, after scaling, the effect of population is approximately twice as large as income.

You are assessing four candidate models (M1 through M4). You try training the models ten different times with different population samples and then assessing those models against test partitions by calculating their mean squared errors (MSE). The results of those tests are summarized on the following page.

Complete the figure on the bottom of the following page with one model for each of the four boxes.

	Low Variance	High Variance
Low Bias	M3	M1
High Bias	M2	M4

- 4A) Explain in your own words how k-fold cross-validation is implemented
- The dataset is divided into K equal-sized parts
- One at a time, one of the parts is held out for validation and the other
 K-1 are used for training
- The overall assessment is the weighted average of each of the individual assessments

4B) Provide one advantage and one disadvantage of k-fold cross validation relative to:

- The validation set approach?
 - Advantage: K-fold CV uses more of the available data for training (with decreased bias)
 - Disadvantage: K-fold CV is more computationally expensive
- Leave-Out-One-Cross-Validation?
 - Advantage:
 - K-fold CV is less computationally expnsive
 - K-fold CV has lower model variance (because each training iteration with LOOCV uses almost the same dataset
 - Disadvantage: K-fold CV has greater bias due to using less data for training

Residuals Analysis

The following pages present a residuals diagram and a residuals histogram for each of six different models. For each model, identify the apparent problem(s) with the model and provide one technique that you might use to remediate (correct) the problem.

5A - Model 1

Residuals Analysis

Model Issue: Model has outliers

Possible remediation: Remove outliers or otherwise deal with them

Residuals Analysis

Model Issue: No apparent issues

Possible remediation: N/A

Residuals Analysis

Model Issue: Model has a positive bias term. The residuals appear to be centered at around 20 instead of 0

Possible remediation: Include missing variable or perform transformation

Residuals Analysis

Model Issue: Residuals are not independent (pattern to the data)

Possible remediation: Include missing variable or perform transformation

Residuals Analysis

Model Issue: Heteroscadicity

Possible remediation: Perform transformation

Residuals Analysis

Model Issue: Residuals are not independent (pattern to the data)

Possible remediation: Include missing variable or perform transformation