MULTI-ARMED BANDITS

Mohit Pandey mpandey@bu.edu

Chapter 2 of Sutton and Barto

WHAT IS MULTI-ARMED BANDIT?

One-Armed Bandit =
Slot Machine

source: walmart.com

WHAT IS MULTI-ARMED BANDIT?

- Multi-Armed Bandit = Multiple Slot Machine= more than one possible actions at each step
- Objective: maximize reward in a casino

source: Microsoft Research

PROBLEM SETTING

- # of actions K , # of time steps T
- For each time step t = 1, ..., T
 - the reward vector $r_t = (r_{1,t}, ..., r_{K,t})$ is generated
 - the agent chooses an action $\mathbf{a}_{t} \in \{1, \ldots, K\}$
 - the agent receives the reward r (a₊)
- Remark: rewards of unchosen actions are not revealed

PROBLEM SETTING

- # of actions K , # of time steps T
- For each time step t = 1, ..., T
 - the reward vector $r_t = (r_{1,t}, \ldots, r_{K,t})$ is generated
 - ∘ the agent chooses an action $\mathbf{a}_{+} \in \{1, \ldots, K\}$
 - \circ the agent receives the reward r (a_{+})
- Remark: rewards of unchosen actions are not revealed

WHICH ACTION TO CHOOSE?

- Value of an action: Expected reward after that action is chosen
- $q_*(a) = Exp(R_t | A_t = a)$
- We don't know q_x(a)
- Estimate of value of action $Q_{+}(a)$

$$Q_{t}(a) = \frac{\text{sum of rewards when } a \text{ was taken prior to t}}{\text{Number of times } a \text{ was taken prior to t}}$$

WHICH ACTION TO CHOOSE?

 $Q_t(a) = \frac{\text{sum of rewards when } a \text{ was taken prior to t}}{\text{Number of times } a \text{ was taken prior to t}}$

For example, if an action has been taken n-1 times, then estimate of the value of that action will be:

$$Q_n(a) = \frac{R_1 + R_2 + ... + R_{n-1}}{n-1}$$

EXAMPLE: K=4 BANDIT PROBLEM

Exercise 2.2

- Possible Actions: left (A=1), right (A=2), up (A=3), down (A=4)
- Let's suppose Q₁(a)=0 for all actions a
- Let's suppose this is how three steps are taken with their corresponding rewards:
 - \circ A₁=1,R₁=4
 - \circ A₂=3, R₂=-1
 - \circ $A_3 = 1, R_3 = 2$
- Q function for each step:
 - \circ Q₁(a)=0 for all actions a
 - \circ Q₂(A=1)=4 and Q₂(A=a)=0 for all other actions
 - \circ $Q_3(A=1)=4$, $Q_3(A=2)=3$ and $Q_3(A=a)=0$ for all other actions

WHICH ACTION TO CHOOSE?

- Let's try greedy action: A_t = arg max Q_t(a)
 - Maximize immediate reward by exploiting present knowledge
 - What if there is a better action which is unexplored?
- We need to also explore

EXPLORATION-EXPLOITATION DILEMA

Fundamental question of RL: How to balance between exploration and exploitation?

source: RSM Discovery

EXPLORATION-EXPLOITATION DILEMMA

- Example: finding the best restaurant in town:
 - Exploitation: keep going to your favorite restaurant
 - Exploration: taking the risk of trying a new one
- Two Naïve Algorithms
 - Random (= full exploration): choose action randomly
 - Greedy (= full exploitation): choose the best action according to your present knowledge

METHODS

- ullet Greedy method and arepsilon greedy method
- Optimistic Initial values
- Upper confidence bound action selection
- Gradient bandit algorithms

METHODS

- ullet Greedy method and arepsilon greedy method
- Optimistic Initial values
- Upper confidence bound action selection
- Gradient bandit algorithms

GREEDY & E- GREEDY METHODS

- Greedy method
 - Always choose an action whose Q(a) is maximum
- ε -greedy method
 - \circ Exploration: with probability \mathcal{E} , choose action randomly
 - \circ Exploitation: with probability 1- \mathcal{E} , be greedy

GREEDY & E- GREEDY METHODS

A simple bandit algorithm

```
\begin{aligned} &\text{Initialize, for } a = 1 \text{ to } k: \\ &Q(a) \leftarrow 0 \\ &N(a) \leftarrow 0 \end{aligned} Loop forever: &A \leftarrow \left\{ \begin{array}{ll} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{array} \right. \end{aligned} \text{(breaking ties randomly)} \\ &R \leftarrow bandit(A) \\ &N(A) \leftarrow N(A) + 1 \\ &Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[ R - Q(A) \right] \end{aligned}
```

GREEDY & E- GREEDY METHODS

A simple bandit algorithm

```
Initialize, for a=1 to k: Q(a) \leftarrow 0 N(a) \leftarrow 0 Loop forever: A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1-\varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases} (breaking ties randomly) R \leftarrow bandit(A) N(A) \leftarrow N(A) + 1 Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[ R - Q(A) \right]
```

HOW TO DETERMINE REWARDS?

10-ARMED BANDIT

Choose a bandit problem \rightarrow For each step, choose action so as to maximize the total expected reward $q_*(a)$

- 1. Step 1: For each bandit problem, action values $q_{\star}(a)$ are chosen from normal distribution with mean=0 and variance=1
- 2. Step 2: Once the problem is determined, learning method chooses an action, whose R_t is selected from normal distribution with mean=q₊(a) and variance=1

HOW TO DETERMINE REWARDS?

10-ARMED BANDIT

RESULTS: AVERAGE REWARDS & OPTIMAL ACTION

MY RESULTS: AVERAGE REWARDS

MY RESULTS: OPTIMAL ACTION

Thank you! mpandey@bu.edu

https://github.com/mohitpandey92/counterdia batic-driving/blob/master/papers/machine%20 learning/jupyter_code/sutton_book_ex/k_arm_ bandit.ipynb