УНИВЕРСИТЕТ ИТМО

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>М3111</u>	К работе допущен		
Студент <u>Акберов Р.Х.</u>	Работа выполнена		
Преподаватель Прохорова У. В.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №

Исследование распределения случайной величины.

1. **Цель работы.**

- Провести многократные измерения определенного интервала времени.
- Построить гистограмму распределения результатов измерения.
- Вычислить среднее значение и дисперсию полученной выборки.
- Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

2. Задачи, решаемые при выполнении работы.

Получение выборки (выборочная совокупность) для дискретной величины и исследовать закон распределения этой случайной величины.

3. Объект исследования.

Результат измерения заданного промежутка времени.

4. Метод экспериментального исследования.

С помощью стрелочного секундомера задают некоторый промежуток времени t (5сек) и многократно измеряют его достаточно точным цифровым секундомером.

5. Рабочие формулы и исходные данные.

- 1) «Плотность вероятности случайной величины» $\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \lambda \to \infty}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}.$
- $\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t \langle t \rangle)^2}{2\sigma^2}\right)$ 2) Функция Гаусса:
- 3) Выборочное среднее как результатов измерения:

Выборочное среднее как среднеарифметическое всех
$$\langle t \rangle_N = \frac{1}{N} \left(t_1 + t_2 + ... + t_N \right) = \frac{1}{N} \sum_{i=1}^N t_i$$

4) Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

5) Максимальная плотность нормального распределения:

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}$$

6) Соотношение для вероятности попадания результата измерения в интервал [t1, t2]:

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t)dt \approx \frac{N_{12}}{N}$$

7) Вероятность:

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], \quad P_{\sigma} \approx 0.683$$

 $t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], \quad P_{2\sigma} \approx 0.954$
 $t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], \quad P_{3\sigma} \approx 0.997$

8) Приближенные значения вероятностей:

$$\begin{aligned} & \left[\left\langle t \right\rangle_N - \sigma_N, \left\langle t \right\rangle_N + \sigma_N \right], \\ & \left[\left\langle t \right\rangle_N - 2\sigma_N, \left\langle t \right\rangle_N + 2\sigma_N \right], \\ & \left[\left\langle t \right\rangle_N - 3\sigma_N, \left\langle t \right\rangle_N + 3\sigma_N \right], \end{aligned}$$

9) Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

10) Доверительный интервал для промежутка времени с коэффициентом Стьюдента:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

11) Доверительный

$$lpha = P\left(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]
ight)$$
 интервал:

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер цифровой	Секундомер	5 c.	Сотые
2	секундомер стрелочный	Секундомер	5 c.	Сотые

7. Схема установки (перечень схем, которые составляют Приложение 1).

В работе используются устройства или прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей Герца (стрелочный секундомер) и цифровой секундомер с ценой деления не более 0.01 секунды. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером.

8. **Результаты прямых измерений и их обработки** (таблицы. примеры расчетов).

Nº	$t_{i. extsf{c}}$	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	4.90	-0.02	0.00
2	4.94	0.02	0.00
3	4.68	-0.24	0.06
4	4.87	-0.05	0.00
5	4.89	-0.03	0.00
6	4.85	-0.07	0.00
7	4.81	-0.11	0.01
8	4.84	-0.08	0.01
9	4.94	0.01	0.00
10	4.97	0.05	0.00
11	5.00	0.08	0.01
12	4.84	-0.08	0.01
13	4.87	-0.05	0.00
14	4.79	-0.13	0.02
15	4.84	-0.09	0.01
16	4.79	-0.13	0.02
17	4.88	-0.04	0.00
18	5.06	0.14	0.02
19	5.00	0.08	0.01
20	4.94	0.02	0.00
21	4.72	-0.2	0.04
22	<mark>4.65</mark>	-0.27	0.07
23	4.97	0.05	0.00
24	5.00	0.08	0.01
25	4.85	-0.07	0.00
26	5.04	0.12	0.01
27	4.96	0.04	0.00
28	5.03	0.11	0.01
29	5.06	0.14	0.02
30	4.97	0.05	0.00
31	4.76	-0.16	0.03
32	4.75	-0.17	0.03
33	5.00	0.08	0.01
34	5.03	0.11	0.01
35	5.12	0.20	0.04
36	5.00	0.08	0.01
37	5.00	0.08	0.01
38	5.00	0.08	0.01
39	5.00	0.08	0.01
40	4.94	0.02	0.00
41	4.94	0.02	0.00
42	4.90	-0.02	0.00
43	5.05	0.13	0.02
44	4.94	0.02	0.00
45	4.94	0.02	0.00
46	5.20	0.28	0.08
47	4.85	-0.07	0.00
48	4.81	-0.11	0.01
49	5.03	0.11	0.01
50	4.97	0.05	0.00
	< t > N = 4.92	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0.17 c$	$\sigma_N = 0.11 \ c$
	152 11 1102	$\Delta_{l=1}(v_{l}) = 0.170$	$\rho_{max} = 3.63 c^{-1}$
L]		pmax - 3.03 C

Расчет $\langle t \rangle_N$ по формуле 3):

$$\langle t \rangle_{50} = \frac{1}{50} \sum_{i=1}^{50} t_i = \frac{246.17}{50} \approx 4.92 \text{ c.}$$

Расчет σ_N по формуле 4):

$$\sigma_{50} = \sqrt{\frac{1}{50-1}\sum_{i=1}^{50}(t_i-\langle t \rangle_{50})^2} = \sqrt{0.0204\cdot 0.6157} pprox 0.11$$
 с. нуле 5):

Расчет ρ_{max} по формуле 5):

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} = \frac{1}{0.11 * \sqrt{2\pi}} \approx 3.63 \text{ c}^{-1}$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Границы интервалов	ΔN (количество результатов, попавших в интервал $[t;t+\Delta t].)$	$\frac{\Delta N}{N\Delta t}, c^{-1}$ (доля результатов, попавших в указанный интервал, и характеризует вероятность попадания в него результата отдельного измерения)	t, c	ρ , c^{-1}
4.65	4	0.8	4.7	0.49
4.75				
4.76	3	2	4.78	1.61
4.79				
4.81	12	3	4.85	2.96
4.89				
4.90	9	4.5	4.92	3.63
4.94				
4.96	13	6.5	4.98	3.13
5.00				
5.03	7	4.67	5.05	1.81
5.06				
5.12	2	0.5	5.16	0.34
5.20				

Стандартные доверительные интервалы

	Интервал, с		ΔN	ΔN	Р
	От	До		\overline{N}	
$\langle t \rangle_N \pm \sigma_N$	4,81	5,03	37	0,74	≈0,68
$\langle t \rangle_N \pm 2\sigma_N$	4,70	5,14	47	0,94	≈0,95
$\langle t \rangle_N \pm 3\sigma_N$	4,59	5,25	50	1	≈1

Расчет среднеквадратичного отклонения среднего значения по формуле 9:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{2450} \sum_{i=1}^{50} (t_i - 4.92)^2} = \sqrt{0.000408 \cdot 0.6157} \approx 0.015853 \text{ c}$$

По таблице находим коэффициент Стьюдента $\alpha=0.95$ (доверительная вероятность). Он равен ≈ 2.01 , где N = 50, а число степеней свободы 49.

Расчет доверительного интервала для промежутка времени:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2,01 \cdot 0,015853 \approx 0,031864.$$

Расчет погрешностей измерений (для прямых и косвенных измерений).

Рассчитываем относительную погрешность для измерений:

$$Y = \frac{4,92 - 5,00}{4,92} \cdot 100\% \approx 2\%$$

10. Графики (перечень графиков, которые составляют Приложение 2).

11. Окончательные результаты.

Разброс промежутка времени, заданный человеком при помощи секундомера, не превышает нескольких десятых секунды.

12. Выводы и анализ результатов работы.

Получилось надежно выявить закономерности в распределении значений случайной величины.

13. Дополнительные задания.

- 1. Являются ли, по вашему мнению, случайными следующие физические величины:
 - плотность алмаза при 20∘С
 - напряжение сети
 - сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением
 - число молекул в 1см3 при нормальных условиях?

Приведите другие примеры случайных и неслучайных физических величин.

- 2. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких измерений получились такие результаты (в вольтах): 1,50; 1,49; 1,50; 1,50; 1,49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента?
- **3.** При обработке результатов измерений емкости партии конденсаторов получено: $\langle \mathcal{C} \rangle = 1,1$ мкФ, $\sigma = 0,1$ мкФ. Если взять коробку со 100 конденсаторами из этой партии, то сколько среди них можно ожидать конденсаторов с емкостью меньше 1 мкФ? больше 1,3 мкФ?

14. Выполнение дополнительных заданий.

1)

- 1. Не случайная величина
- 2. Случайная
- 3. Случайная
- 4. Не случайная (число Авогадро)
- 5. A
 - 1) Бросание игральной кости не случайна
 - 2) Распад радиоактивного ядра случайна
- 2) Имеет смысл, чтобы сделать выборку больше. Ничего не изменять.
- 3) $[\langle C \rangle_{100} \sigma_{100}, \langle C \rangle_{100} + \sigma_{100}] = [1,00~;~1,2]$ почти все будут в диапазоне 1 мк $\Phi \leq C \leq 1,2$ мк Φ
- 15. Замечания преподавателя (исправления, вызванные замечаниямипреподавателя. также помещают в этот пункт).

Примечание:

- 1. Пункты 1–13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. Для построения графиков используют только миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.