1 Curry-Howard Correspondence III

1.1 Introduction

How can we formalise the notion of a proof? For example, we can say that $\Gamma \vdash M : \phi$, where Γ is the context, M is a proof and ϕ is some statement. Now we can denote an inference path as follows:

- $\Gamma \vdash M : \phi \rightarrow \psi, \ \Gamma \vdash N : \phi$
- $\Gamma \vdash (MN) : \psi$

We can also write our presuppositions before the proof and the statement, thus identifying explicitly elements of the context.

We can also parametrise our proofs with the language of abstractions:

- $\bullet \ \Gamma, x : \phi \vdash M : \psi$
- $\Gamma \vdash (\lambda x : \phi.M) : \phi \rightarrow \psi$

1.2 Types

Let $\Phi(\to)$ denote the implicative fragment of intuitionistic λ -calculus. Call them *simple types*.

Let $\Gamma = \{x_1 : \tau_1, \dots, x_n : \tau_n\}$, where x_i are variables and τ_i are simple types, be our context. Let range(Γ) be the set of all types.

Now, let M be a λ -term. If M is of type τ , we write $\Gamma \vdash M : \tau$.

If we know from the context that x has a type τ , we write $\Gamma, x : \tau \vdash x : \tau$. Denote this rule as Var.

We also introduce the Abs rule:

- $\Gamma, x : \tau \vdash M : \sigma$
- $\Gamma \vdash (\lambda x.M) : \tau \to \sigma$

Similarly, we give a rule for application:

- $\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau$
- $\Gamma \vdash (MN) : \sigma$

Example 1.1

Given the context $t : \tau_1, s : \tau_2$, we write $t : \tau_1, s : \tau_2 \vdash (\lambda x.t)s : \tau_1$.

Example 1.2

We can also write the following deduction:

- $t : \tau_1, s : \tau_2 \vdash t : \tau_1$
- $\bullet \ t:\tau_1,s:\tau_2 \vdash (\lambda x.t):\tau_2 \rightarrow \tau_1 \ , \ t:\tau_1,s:\tau_2 \vdash s:\tau_2$
- $t : \tau_1, s : \tau_2 \vdash (\lambda x.t)s : \tau_1$

Simple typed λ -calculus is denoted as λ_{\rightarrow} . In our case, we have constructed λ_{\rightarrow} in the interpretation of Curry.

A similar construction λ_{\rightarrow} was developed by Church.

Now, consider a spreading combinator $S = \lambda x.\lambda y.\lambda z.xz(yz)$. Having made it typed, we can write it as

$$\lambda x: p \rightarrow q \rightarrow r. \\ \lambda y: p \rightarrow q. \\ \lambda z: p. \\ xz(yz): (p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r.$$

If some λ -term M is typed and β -convertible, then the type is conserved.

1.3 Curry-Howard Correspondence

Theorem 1.3

- If $\Gamma \vdash M : \phi : \phi$ in λ_{\rightarrow} , then $\Gamma \vdash \phi$ in the implicative fragment of the intuitionistic λ -calculus.
- If $\Delta \vdash \phi$, then there exists a term and a context Γ such that range(Γ) = Δ : $F \vdash M : \phi$.

1.4 Extensions

For a pair of λ -terms, we can define another λ -term with a combined type:

$$\langle M, N \rangle : \sigma \times \tau$$

Thus, $\pi_1(\langle M, N \rangle) \to_{\beta} M$ and $\pi_2(\langle M, N \rangle) \to_{\beta} N$. We can write:

- $\Gamma \vdash M : \sigma, \Gamma \vdash N : \tau$
- $\Gamma \vdash \langle M, N \rangle : \sigma \times \tau$

Moreover,

- $\Gamma \vdash M : \sigma \times \tau$
- $\Gamma \vdash \pi_1(M) : \sigma$.

How can we assign a type to a disjunction?

We can define constructors:

$$\iota_1^{\sigma \vee \tau}(M) : \sigma \vee \tau \tag{1}$$

$$\iota_2^{\sigma \vee \tau}(N) : \sigma \vee \tau \tag{2}$$

To decide what to do with a λ -term, we can define a decision rule in the form

case M of
$$[x]P$$
 or $[y]Q$

Thus, for example, for the disjunctive λ -term we can write

case
$$\iota_1^{\sigma \vee \tau}(M)$$
 of $[x]P$ or $[y]Q \to_{\beta} [M/x]P$

For further information, see Lectures on Curry-Howard Isomorphism.