1 By considering the Fourier pair $\psi(x,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ Show directly that if ψ Satisfies the Schrödinger equation in coordinate space, namely $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{+ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{-ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{-ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{-ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{-ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{-ikx} dk, \quad \varphi(k,t) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} \psi(x,t) e^{-ikx} dx,$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k,t) e^{-ikx}$

 $i\hbar \frac{\partial}{\partial t} \psi(x,t) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x,t),$

then & satisfies the counterpart momentum space equation if $\frac{\partial}{\partial t} \varphi(k,t) = \left[\frac{\hbar' k}{2m} + V(i \frac{\partial}{\partial k}) \right] \varphi(k,t)$.

Clearly state the assumptions which must be made concerning the behavior of Ψ and the potential function V.

- ② For a one-dimensional system described by the Hamiltonian: $H = (\beta^2/2m) + V(x)$, obtain an expression for the time rate of Change of kinetic energy, $d(\beta^2/2m)/dt$. Give your answer in terms of the force F acting on the particle. What relation does your result have to the Classical work-linergy theorem?
 - 3 The total energy of a one-dimensional harmonic oscillator (mass m, natural frequency ω) can be written as; $E = (\beta^2/2m) + \frac{1}{2}m\omega^2 x^2$, where β is the momentum and α is the position. Use the Uncertainty Relations to estimate the minimum energy of the oscillator.
 - 4 A particle is in a state described by the wave function $\psi(x) = A(a^2-x^2)$, for $-a \le x \le +a$; $\psi(x) \equiv 0$, for |x| > a.

Here A is a normalization constant. What is the probability that a measurement of the particle's position will yield a value between $-\frac{1}{2}a$ and $+\frac{1}{2}a$?