FICHES DE PHYSIQUES PTSI

Noë Charlier

2021-2022

Table of Contents

1	Ana	lyse Dimensionnelle	5
	1.1	Tableau récapitulatif	5
2	Fon	dements de l'optique géométrique	6
	2.1	Milieu d'étude	6
		2.1.1 Indice de réfraction	6
	2.2	Lois de Snell-Descartes	6
3	Syst	èmes optiques usuels	7
	3.1	Grandissement	7
	3.2	Conditions de Gauss	7
	3.3	Modèle de l'oeil	7
4	Circ	uit électriques dans l'ARQS	8
	4.1	Intensité du courant électrique	8
	4.2	ARQS	8
	4.3	Pont diviseur de tension	8
	4.4	Énergie	8
5	Circ	uit linéaires du premier ordre	9
	5.1	Dipôle usuels	9
		5.1.1 Condensateur	9
		5.1.2 Bobine	9
	5.2	Circuit du 1er ordre	9
		5.2.1 Détermination de τ	9
6	Osci	illateur harmonique 1	0
	6.1	Oscillateur mécanique	0
		6.1.1 Force de rappel élastique	0
	6.2	Oscillateur harmonique	0
	6.3	Oscillateur électrique	0
7	Rég	imes transitoires des oscillateurs amortis	1
	7.1	Forces de frottements	. 1
	7.2	Fome canonique	. 1
	7.3	Résolution de l'équation différentiel	. 1
	7.4	Différents régimes	2
		7.4.1 Régime pseudo-périodique (Q>1/2)	2
		7.4.2 Régime apériodiques (Q<1/2)	2
		7.4.3 Régime critique (O=1/2)	2

8	Prop	pagation d'un signal	13
	8.1	Ondes	13
		8.1.1 Onde progressive unidimensionnelle	13
	8.2	Propagation d'une onde	13
	8.3	Vitesse de phase	14
9	Phéi	nomène d'interférences	15
	9.1	Superposition de deux signal de même fréquence	15
	9.2	Différence de marche	15
		9.2.1 Différence de marche, fente d'Young	15
10	Osci	lateurs amortis en régime sinusoïdale forcé	16
	10.1	Régime Sinusoïdal Forcé	16
	10.2	Les complexes	16
		10.2.1 Tableau récapitulatif en RSF	16
		10.2.2 Impédance équivalentes	17
		10.2.3 Ponts diviseurs	17
	10.3	Résonance	17
	10.4	Bande passante	17
11	Filtr	age linéaire en électricité	18
	11.1	Les signaux périodiques	18
	11.2	Filtrage linéaire	18
		11.2.1 Définition	18
		11.2.2 Diagramme de Bode	18
	11.3	Mémo	19
		11.3.1 ler Ordre	19
		11.3.2 2eme Ordre	19
12		ription et paramétrage du mouvement d'un point	20
		Repérage	20
	12.2	Système de coordonnées	20
13		de Newton	21
	13.1	Quantité de mouvement	21
		Lois de Newton	21
	13.3	Forces de frottements quadratiques	21
14		oche énergétique du mouvement d'un point	22
	14.1	Puissance et travail	22
		14 1 1 Puissance	22

		14.1.2	Travail	22
	14.2	Théorè	èmes énergétiques	22
		14.2.1	Théorème de de la puissance et de l'énergie cinétiques	22
		14.2.2	Théorème de de la puissance et de l'énergie mécaniques	23
	14.3	Énergi	e potentielle	23
	14.4	Énergi	e mécanique	23
15			t de particules chargées	24
	15.1	Force o	de Lorentz	24
	15.2	Mouve	ement dans un champ électrostatique uniforme	24
16	Loi d	lu mom	nent cinétique du point	25
	16.1	Mome	nt cinétique	25
		16.1.1	Moment cinétique par rapport à un point	25
		16.1.2	Moment cinétique par rapport à un axe Δ	25
	16.2	Mome	nt d'une force	25
		16.2.1	Moment d'une force par rapport à un point	25
		16.2.2	Moment d'une force par rapport à un axe Δ	25
	16.3	Loi du	moment cinétique (LMC)	26
		16.3.1	LMC par rapport à un point fixe	26
		16.3.2	LMC par rapport à un axe fixe	26
17	Mou	vement	ts dans un champ de force centrale conservatif	27
	17.1	Force of	centrale	27
		17.1.1	Loi des aires	27
	17.2	Force of	central conservative	27
		17.2.1	Conservation de l'énergie mécanique et énergie potentielle	
			effective	28
	17.3	Champ	ps newtoniens	28
		17.3.1	Lois de Kepler	28
18	Mou	vement	t d'un solide	29
	18.1	Théorè	ème du moment cinétique autour d'un axe	29
		18.1.1	Moment cinétique	29
		18.1.2	Moment d'inertie	29
		18.1.3	Moment d'une force	29
		18.1.4	Liaison pivot	29
		18.1.5	Théorème scalaire du moment cinétique	30
	18.2		che énergétique	30
		18.2.1	Puissance et travail	30
		18.2.2	Théorèmes énergétiques	30

19	Chai	mp magnetiques - description	31
	19.1	Cartes de champ magnétiques	31
	19.2	Moment magnétique	31
20	Actio	on d'un champ magnétiques	32
	20.1	Force de Laplace	32
	20.2	Moment du couple de Laplace	32
21	Circ	uit fixe dans un champ magnétique	33
	21.1	Lois de l'induction	33
		21.1.1 Flux magnétique	33
		21.1.2 Loi de Lenz-Faraday	33
		21.1.3 Loi de modération de Lenz	33
	21.2	Phénomène d'auto induction	34
		21.2.1 Flux propre et inductance propre	34
		21.2.2 Force électromotrice (f.é.m) induite	34
	21.3	Approche énergetique	34
	21.4	Induction mutuelle	34
22	Lect	ures complémentaires	35

À propos

Le but est de produire des courtes fiches pour réviser facilement les concours. L'intégralité du contenu de ce fichier et de ce dossier est gratuite pour un usage public.

Analyse Dimensionnelle

L'analyse dimensionnelle est essentiel en physique, elle permet de vérifier l'homogénéité!

1.1 Tableau récapitulatif

Grandeur	Unité SI	Dimension
Longueur	mètre(m)	L
Masse	kilogramme(kg)	M
Durée	seconde(s)	Т
Température	kelvin(K)	θ
Intensité éclectique	ampère(A)	I
Quantité de matière	mole(mol)	N
Intensité lumineuse	candela(Cd)	J

Table 1: Unité du Système International (USI)

Fondements de l'optique géométrique

Loi de Snell Descartes, Spectres d'émission, Indice optique...

2.1 Milieu d'étude

On s'intéressera à la propagation de la lumière dans des milieux qualifiés de **Transparents, Linéaires, Homogènes et Isotropes.**

2.1.1 Indice de réfraction

$$n = \frac{c}{v}$$

Avec: n l'indice, c la célérité, et v la vitesse dans le milieu.

2.2 Lois de Snell-Descartes

Definition 2.2.1

- Rayon réflechi et réfracté sur le même plan d'incidence.
- Le rayon est symétrique par rapport à la normal au dioptre.
- Le rayon réfracté vérifie: $n_1 \sin(i_1) = n_2 \sin(i_2)$

SECTION

Systèmes optiques usuels

Lentille mince convergente/divergente, distance focale, relation de conjugaison.

3.1 Grandissement

Le grandissement transversal est le rapport entre la taille de l'image et celle de l'objet:

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

3.2 Conditions de Gauss

Definition 3.2.1

- Le rayon est proche de l'axe optique.
- Le rayon est peu inclé par rapport à l'axe optique.

Les rayons sont paraxiaux

3.3 Modèle de l'oeil

- Le **cristallin** est la lentille.
- la **pupille** est le diaphragme.
- la **rétine** est l'écran.

Limite de **résolution angulaire pour l'oeil**: 1 minutes d'arc.

Circuit électriques dans l'ARQS

4.1 Intensité du courant électrique

C'est le débit de charge (en Coulomb (USI: C)) à travers une section de conducteur:

$$i = \frac{\delta q}{dt}$$

Unité: A

4.2 ARQS

Il s'agit de **l'appromixation des régimes quasi-satationnaires** vérifie lorsque le retard est négligable devant la période T:

$$\Delta t << T$$

Avec le retard: $\Delta t = \frac{L}{c}$ avec L distance de deux points du circuit.

4.3 Pont diviseur de tension

On a les relations suivantes:

4.4 Énergie

L'énergie échangée entre les instants t_1 et t_2 est:

$$E = \int_{t_1}^{t_2} P(t) dt$$
$$P(t) = \frac{dE}{dt}$$

Circuit linéaires du premier ordre

5.1 Dipôle usuels

5.1.1 Condensateur

Definition 5.1.1

- Relation charge-tension: $q(t) = Cu_c(t)$
- Relation courant-tension: $i = C \frac{du_c}{dt}$
- En **RP**: $u_c = cte$ et i = 0

5.1.2 Bobine

Definition 5.1.2

- Relation courant-tension: $u_l = L \frac{di}{dt}$
- En **RP**: $u_l = 0$ et i = cte

5.2 Circuit du 1er ordre

On peut déterminer l'équation différentiel en faisant une **loi des mailles**, on la résout ensuite cf. **Complément Mathématiques**.

On étudie un circuit RC:

Equation différentiel: $\frac{du_c}{dt} + \frac{u_c}{\tau} = \frac{E}{\tau}$ Avec $\tau = RC$ On a une fonction de la forme: $u_c(t) = E(1 - exp(-\frac{t}{\tau})$

5.2.1 Détermination de τ

- Méthode graphique:
 - On calcule $u_c = 63\%E$
 - Le point d'ordonnée 63%E a pour abscisse $t = \tau$
- Par le calcul: $\tau = RC$

Oscillateur harmonique

Oscillateur mécanique 6.1

6.1.1 Force de rappel élastique

Definition 6.1.1

$$\overrightarrow{F_e} = -k(l-l_0)\overrightarrow{u_{ext}}$$

Avec:

- k la constante du ressort $(N.m^{-1})$
- l_0 la longueur à vide
- $\overrightarrow{u_{ext}}$ le vecteur unitaire dirigé vers l'extérieur du ressort.

Definition 6.1.2

Énergie potentielle élastique:

$$E_p = \frac{1}{2}k(l - l_0)^2(+cte)$$

6.2 Oscillateur harmonique

Definition 6.2.1

Il s'agit d'un système physique décrit par une grandeur x(t) vérifiant l'équation différentiel suivante:

$$\ddot{x} + \omega_0^2 x = cte$$

Pour la résolution, voir Complément Mathématiques.

Oscillateur électrique 6.3

On étudie un circuit LC:

Equation différentiel: $u_c + \frac{u_c}{LC} = 0$ Avec : $\omega_0 = \frac{1}{\sqrt{LC}}$, solution: $u(t) = X_m cos(\omega_0 t + \phi)$.

SECTION

Régimes transitoires des oscillateurs amortis

7.1 Forces de frottements

Definition 7.1.1

Solide en mouvement dans un fluide à une vitesse \vec{v} , la force de frottements est \vec{f} :

$$\overrightarrow{f} = -\alpha \overrightarrow{v}$$

Unité SI: $kg.s^{-1}$

7.2 Fome canonique

Definition 7.2.1

De la forme canonique suivante:

$$\ddot{X} + \frac{\omega_0}{Q}\dot{X} + \omega_0^2 X = cte$$

Avec Q le facteur de qualité et ω_0 la pulsation propre.

Comparaison des deux systèmes amortis:

MécaniqueElectrique
$$Q = \frac{\sqrt{km}}{a}$$
 $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$ $\omega_0 = \sqrt{\frac{k}{m}}$ $\omega_0 = \frac{1}{\sqrt{LC}}$

7.3 Résolution de l'équation différentiel

Équation caractéristique : $r^2 + \frac{\omega_0}{Q}r + \omega_0^2 = 0$

Signe de Δ	$\Delta > 0$	$\Delta = 0$	Δ < 0
Facteur de qualité	Q < 1/2	Q = 1/2	Q > 1/2
Régime transitoire	Apériodique	Critique	Pseudo-périodique
Solution de l'EC	$r_{1,2} = -\frac{\omega_0}{2Q} \pm \frac{\omega_0}{2Q} \sqrt{1 - 4Q^2}$	$r = -\frac{\omega_0}{2Q} = -\omega_0$	$r_{1,2} = -\frac{\omega_0}{2Q} \pm j \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1}$ $= -\frac{1}{\tau} \pm j\Omega$
Solutions homogène	$Ae^{r_1t} + Be^{r_2t}$	$(At+B)e^{-\omega_0 t}$	$e^{-t/\tau}[A\cos(\Omega t) + B\sin(\Omega t)]$

7.4 Différents régimes

7.4.1 Régime pseudo-périodique (Q>1/2)

Speudo-période: $T = \frac{2\pi}{\Omega} = \frac{2\pi}{\frac{\omega_0}{4Q}\sqrt{4Q^2-1}}$

Durée du régime transitoire: $tr = \frac{10Q}{\omega_0}$ Nombre d'oscillations: $N = \frac{10}{4\pi} \sqrt{4Q^2 - 1}$

7.4.2 Régime apériodiques (Q<1/2)

Durée du régime transitoire: $tr = 5\tau_{max}$

7.4.3 Régime critique (Q=1/2)

Durée du régime transitoire: $tr = S \frac{1}{\omega_0}$

Propagation d'un signal

8.1 Ondes

Definition 8.1.1

Ondes: Propagation spatiale d'une perturbation local d'une grandeur physique.

- Ondes transversales, la direction de la perturbation est orthogonale à la direction de propagation.
- Ondes longitudinales, la direction de la perturbation est identique à la direction de propagation.

Elle peut être modélisée par:

$$s(t) = S_m cos(\omega t + \Phi)$$

Avec S_m , l'amplitude, Φ , la phase, ω la pulsation ($\omega = 2\pi f$, et $\frac{1}{T} = \frac{\omega}{2\pi}$).

8.1.1 Onde progressive unidimensionnelle

Conditions:

- illimité: pas de réflexion.
- non dispersif: la vitesse de propagation de dépend pas de la fréquence.
- transparent: le milieu n'absorbe pas l'énergie transporté par l'onde.
- linéaire: le signal se propage sans modification de sa fréquence.

8.2 Propagation d'une onde

Definition 8.2.1

Onde dans le sens des x croissant:

- Retard $\Delta t = \frac{x}{c}$ est la duré su trajet de l'onde entre 0 et x.
- Le signal en M à t
 est identique au signal en O à $t-\Delta t$
- Le signal en M s'écrit: $s(x, t) = f(f \frac{x}{c})$
- Le signal se déplace d'une distance $\delta = st$, soit s(x, t) = F(x ct)

8.3 Vitesse de phase

Definition 8.3.1

La **vitesse de phase** est la vitesse tel que la vitesse de phase soit constant, défini par:

$$v_p = \frac{\omega}{k}$$

Lien entre **déphasage** et **retard temporel**:

$$\Delta \Phi = -\omega \Delta t$$

Conditions signaux en **phase**:

$$\Delta\Phi = 2p\pi, p \in \mathbb{N}$$

Conditions signaux en opposition de phase:

$$\Delta\Phi = (2p+1)\pi, p \in \mathbb{N}$$

Phénomène d'interférences

Nb: la formule de Fresnel sera à connaître et à redémontrer en deuxième année.

9.1 Superposition de deux signal de même fréquence

L'amplitude A en un point M du signal associé à l'onde s résultant de la superposition de deux ondes s_1 (resp. s_2) ont des amplitudes A_1 (resp. A_2) et de même fréquence s'écrit:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2cos(\Delta\Phi_{1/2}^M)}$$

Démo à connaître.

9.2 Différence de marche

Definition 9.2.1

On note **chemin optique** entre deux points A et B:

$$(AB) = \int_{S} n ds$$

Il s'agit de la notation général, deuxième année.

La différence de marche est une différence de chemin optique.

9.2.1 Différence de marche, fente d'Young

Démonstration à connaître:

$$\delta_M = \frac{nax}{D}$$

Avec: n l'indice du milieu, a la distance entre les fentes, D, la distance entre le dispositif et l'écran.

Oscilateurs amortis en régime sinusoïdale forcé

10.1 Régime Sinusoïdal Forcé

Definition 10.1.1

Équation différentiel de la forme:

$$\ddot{s} + \frac{\omega_0}{Q}\dot{s} + \omega_0^2 s = D\cos(\omega t)$$

Avec: Q facteur de qualité, $D=\frac{F_0}{m}$ (resp. $\omega_0^2 E_0$) (F_0 l'amplitude de la force, m la masse, (resp. E_0 l'amplitude)), ω_0 la pulsation propre, et ω la pulsation de l'excitation.

10.2 Les complexes

Definition 10.2.1

Relation importantes:

- $\frac{dx}{dt} = j\omega x$
- $\int \underline{x} dt = \frac{1}{j\omega}\underline{x}$

Definition 10.2.2

Impédance:

$$\underline{Z} = \frac{\underline{U}}{\underline{i}}$$

USI: Ohm

On peut se rappeler que l'impédance est comme la résistance, soit U=RI

10.2.1 Tableau récapitulatif en RSF

A partir des relations de la page 9, on retrouve:

Dipôle	Condensateur idéal	Bobine idéal
Relation courant-tension	$i = C \frac{du_c}{dt}$	$u_c = L \frac{di}{dt}$
Notation complexe	$\underline{i} = j\omega C \underline{u}_c$	$\underline{u}_c = j\omega L\underline{i}$
Impédance complexe	$ \underline{Z} = \frac{1}{j\omega C} $	$\underline{Z} = j\omega L$

Déphasage Basses fréquences Haute fréquences

 $arg Z = -\pi/2$ Interrupteur ouvert Interrupteur fermé $arg Z = \pi/2$ Interrupteur fermé Interrupteur ouvert

10.2.2 Impédance équivalentes

Definition 10.2.3

- En série: $Z_{eq} = \sum Z_k$
- En parallèle: $\frac{1}{Z_{eq}} = \sum \frac{1}{Z_k}$

10.2.3 Ponts diviseurs

Definition 10.2.4

- De tension: $\underline{u}_1 = \frac{Z_1}{Z_1 + Z_2} \underline{u}$
- De courant: $i_{\underline{1}} = \frac{Z_2}{Z_1 + Z_2} \underline{i}$

10.3 Résonance

Definition 10.3.1

Dans un circuit RLC en RSF, il existe une pulsation avec une amplitude maximale:

$$\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}, \ Q \ge \frac{1}{\sqrt{2}}$$

10.4 Bande passante

Definition 10.4.1

La bande passante est la bande de fréquence pour l'amplitude de réponse est supérieure ou égale à l'amplitude maximale divisée par $\sqrt{2}$.

 $\Delta\omega$ est la largeur de la bande passante à -3dB.

SECTION

Filtrage linéaire en électricité

11.1 Les signaux périodiques

Definition 11.1.1

- Un signal périodique de période T: s(t) = s(t+T).
- Valeur moyenne:

$$< s(t) > = s_0 = \frac{1}{T} \int_0^T s(t) dt$$

• Valeur efficace:

$$S_{eff} = \sqrt{< s^2(t)>}$$

La valeur efficace correspond à une tension constante dans un circuit pour dissiper la même puissance dans une résistance.

11.2 Filtrage linéaire

11.2.1 Définition

Definition 11.2.1

- Linéaire: la sortie est l'entrée est linéaire (ω constant)
- L'ordre: l'ordre de dérivation le plus élevé.
- Fonction de transfert *H*:

$$\underline{H}\omega = \frac{\underline{s}}{\underline{e}}$$

- Le module: $G(\omega) = |\underline{H}(\omega)|$
- L'argument: $arg(\underline{H}) = \phi_s \phi_e$
- Le gain en dB: $G_{dB} = 20 log(G(\omega))$

11.2.2 Diagramme de Bode

Il s'agit d'un digramme souvent asymptotique où l'on trace les asymptotes de G_{dB} et ϕ en fonction de ω .

Pulsation de coupure:

$$G(\omega_c) = \frac{G_{max}}{\sqrt{2}}$$

11.3 Mémo

11.3.1 1er Ordre

Pente de -20dB par décades.

• Passe-bas: R(C), L(R) série

$$\underline{H} = \frac{H_o}{1 + jx}$$

• Passe-haut: C(R), R(L) série

$$\underline{H} = \frac{jxH_o}{1+jx}$$

11.3.2 2eme Ordre

- Pente de -40dB par décades; $\omega_0 = \frac{1}{\sqrt{LC}}$
 - Passe-bas: RLC série

$$\underline{H} = \frac{H_0}{1 - x^2 + \frac{jx}{Q}}$$

- Passe-haut: RCL série

$$\underline{H} = \frac{H_0}{1 - \frac{1}{x^2} + \frac{j}{Ox}}$$

- Pente de -20dB par décades; $\omega_0 = \frac{1}{\sqrt{LC}}$
 - Passe-bande: CLR série

$$\underline{H} = \frac{H_0}{1 + jQ(x - \frac{1}{x})}$$

- Coupe-bande: R(CL) série

$$\underline{H} = \frac{H_0}{1 - \frac{j}{Q(x - \frac{1}{x})}}$$

SECTION

Description et paramétrage du mouvement d'un point

Comment représenter l'espace?

12.1 Repérage

Definition 12.1.1

Référentiel: Un choix des points de l'espace à partir desquels on repère le mouvement des corps, le référentiel doit être suivi d'un horloge permettant de définir le temps.

12.2 Système de coordonnées

	En coordonnées cartésiennes	En coordonnées cylindriques	En coordonnées sphériques
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} z \\ \hline e z \\ O \\ H \end{array} $ $ \begin{array}{c} H \\ \hline e \theta \\ \hline e r \end{array} $	\vec{e}_r M \vec{e}_{θ} \vec{e}_{ϕ} \vec{e}_{ϕ}
\overrightarrow{OM}	$x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$	$r\vec{e}_r + z\vec{e}_z$	$rec{e}_r$
$d\overrightarrow{OM}$	$dx\vec{e}_x + dy\vec{e}_y + dz\vec{e}_z$	$dr\vec{e}_r + rd\theta\vec{e}_\theta + dz\vec{e}_z$	$dr\vec{e}_r + rd\theta\vec{e}_\theta + r\sin\theta d\varphi\vec{e}_\varphi$
\overrightarrow{v}	$\dot{x}\vec{e}_x + \dot{y}\vec{e}_y + \dot{z}\vec{e}_z$	$\dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta + \dot{z}\vec{e}_z$	$\dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta + r\sin\theta\dot{\varphi}\vec{e}_\varphi$

Remarque: Vous devez également savoir établir l'expression du vecteur accélération \vec{a} dans le cas des coordonnées cartésiennes et cylindriques. Pour cela on retiendra surtout qu'avec les coordonnées cylindriques:

$$\boxed{\frac{d\vec{e}_r}{dt} = \dot{\theta}\vec{e}_{\theta}}$$

$$\frac{d\vec{e}_{\theta}}{dt} = -\dot{\theta}\,\vec{e}_r$$

SECTION

Lois de Newton

13.1 Quantité de mouvement

Definition 13.1.1

• Quantité de mouvement:

$$\vec{p}(M)_{/R} = m\vec{v}(M)_{/R}$$

• Centre de masse:

$$\overrightarrow{mOG} = \sum_{k=1}^{N} m_k \overrightarrow{OM}_k$$

13.2 Lois de Newton

Definition 13.2.1

- **ler principe:** tout corps conservera son état de repos ou de mouvement uniforme en ligne droite dans lequel il se trouve, à moins qu'une force ne soit appliquée sur ce corps. (Principe vérifié pour un repère galiléen).
- **2eme principe** (PFD):

$$\sum_{i} \overrightarrow{F}_{ext \to M, i} = m\vec{a}$$

• **3eme principe** (Actions réciproques):

$$\overrightarrow{F}_{A \to B} = -\overrightarrow{F}_{B \to A}$$

13.3 Forces de frottements quadratiques

Definition 13.3.1

Solide en mouvement dans un fluide à une vitesse importante \overrightarrow{v} , la force de frottements est \overrightarrow{f} :

$$\overrightarrow{f} = -\beta ||\overrightarrow{v}||\overrightarrow{v}$$

* Avec β le coefficient de frottement.

Unité SI: $kg.s^{-1}$

Voir page 11, pour les frottements linéaires.

Approche énergétique du mouvement d'un point

14.1 Puissance et travail

14.1.1 Puissance

Definition 14.1.1

La **puissance** d'une force \vec{F} , appliquée au point matériel M, d'une vitesse \vec{v} , dans le référentiel \mathcal{R} :

$$\mathscr{P}(\vec{F})_R = \vec{F} \cdot \vec{v}(M)_R$$

USI: W(Watt)

14.1.2 Travail

Definition 14.1.2

- Travail élémentaire: $\delta W(\vec{F})_R = P(\vec{F})_R dt = \vec{F} \cdot d\overrightarrow{OM}$
- Travail entre t_1 et t_2 :

$$W_{M_1 \to M_2}(\vec{F})_R = \int_{M_1}^{M_2} \delta W(\vec{F})_R = \int_{M_1}^{M_2} = F \cdot d\overrightarrow{OM}$$

USI: Joule (J)

14.2 Théorèmes énergétiques

14.2.1 Théorème de de la puissance et de l'énergie cinétiques

Definition 14.2.1

• Puissance cinétique:

$$\frac{dE_c}{dt} = \sum_i P(\vec{F}_i)$$

• Énergie cinétique:

$$\Delta E_c = \sum_i W_{M_1 \to M_2}(\vec{F}_1) = E_c(t_2) - E_c(t_1)$$

 M_1 (resp. M_2) aux instants t_1 (resp. t_2)

14.2.2 Théorème de de la puissance et de l'énergie mécaniques

Definition 14.2.2

• Puissance mécanique:

$$\frac{dE_m}{dt} = \sum P(\vec{F}_{nc})$$

Avec P_{nc} la puissance des forces non conservatives: $P(\vec{F}_{nc}) = \vec{F}_{nc} \cdot \vec{v}$

• Énergie mécanique:

$$\Delta E_m(M) = \sum_k W_{M_1 \to M_2}(\vec{F}_{nc,k}) = W_{nc}$$

14.3 Énergie potentielle

Definition 14.3.1

Si une force est conservative (indépendant du chemin suivi), on a

$$\delta W(\vec{F}) = \vec{F} \cdot d\overrightarrow{OM} = -dE_p$$

L'énergie potentielle E_p d'une force conservative \vec{F} est: $\vec{F} = -\overrightarrow{grad}E_p$

14.4 Énergie mécanique

Definition 14.4.1

L'énergie potentielle E_p du point M correspond à la somme des énergies potentielles associées aux forces conservatives. L'énergie mécanique E_m du point M est:

$$E_m(M) = E_c(M) + E_p(M)$$

Mouvement de particules chargées

dans des champs électriques et magnétiques uniformes et stationnaires.

15.1 Force de Lorentz

Definition 15.1.1

Une particule chargée de charge q, animée d'une vitesse \vec{v} dans un référentiel \mathcal{R} subit, en présence d'un champ électrique \vec{E} et d'un champ mangnétique \vec{B} , la force de Lorentz dont l'expression est:

$$\vec{F} = q(\vec{E} + \vec{v} \wedge \vec{B})$$

On a aussi: $\vec{F}_m = q\vec{v} \wedge \vec{B}$ la force magnétique et est orthogonale à \vec{v} ; et \vec{F}_e la force électrique.

- La **force magnétique** est orthogonale à la vitesse, la puissance et le travail sont nuls. Elle **ne peut pas dévier** la particule chargée.
- La **force électrique** peut délivrer une puissance à une particule chargée. Elle peut **agir sur** la norme et la direction de la particule chargée.

15.2 Mouvement dans un champ électrostatique uniforme

Le vecteur accélération est constant

Definition 15.2.1

Potentiel électrostatique (V): $\vec{E} = -\overrightarrow{grad}V$ On a donc l'énergie potentiel: $E_p = qV$

Loi du moment cinétique du point

16.1 Moment cinétique

16.1.1 Moment cinétique par rapport à un point

Definition 16.1.1

Un point M de masse m et de vitesse \vec{v} , dans un référentiel \mathcal{R} . Le **moment cinétique du point M par rapport au point A** dans le référentiel \mathcal{R} est:

$$\vec{L}_A(M) = \overrightarrow{AM} \wedge \vec{p}(M) = m\overrightarrow{AM} \wedge \vec{v}(M)_R$$

USI: $kg \cdot m^{-1} \cdot s^{-1}$

16.1.2 Moment cinétique par rapport à un axe Δ

Definition 16.1.2

Soit (Δ) un axe orienté par un vecteur unitaire \vec{u}_{Δ} et A un point de cet axe. Le **moment cinétique** $L_{\Delta}(M)$ de M dans \mathcal{R} par rapport à (Δ) est le projeté orthogonal de $\vec{L}_A(M)$ sur (Δ):

$$L_{\Delta}(M)_R = \vec{L}_A(M)_R \cdot \vec{u}_{\delta}$$

16.2 Moment d'une force

16.2.1 Moment d'une force par rapport à un point

Definition 16.2.1

Il s'agit de:

$$\overrightarrow{\mathcal{M}}_A(\vec{F}) = \overrightarrow{AM} \wedge \vec{F}$$

USI: N.m

16.2.2 Moment d'une force par rapport à un axe Δ

Definition 16.2.2

Il s'agit de:

$$\mathcal{M}_{\Lambda}(\vec{F}) = \mathcal{M}_{A}(\vec{F}) \cdot \vec{u}_{\Lambda}$$

16.3 Loi du moment cinétique (LMC)

16.3.1 LMC par rapport à un point fixe

Definition 16.3.1

Soit un point matériel M de masse m mobile dans un référentiel **galiléen**. Soit un point A **fixe** dans \mathcal{R} .

$$\frac{d\vec{L}_A(M)}{dt} = \sum_i \overrightarrow{\mathcal{M}}_A(\vec{F}_i) = \overrightarrow{\mathcal{M}}_A(\sum_i F_i)$$

16.3.2 LMC par rapport à un axe fixe

Definition 16.3.2

Soit un point maétriel M de masse m mobile dans un référentiel **galiléen**. Soit un axe Δ **fixe** dans \mathcal{R} .

$$\frac{dL_{\Delta}(M)}{dt} = \sum_{i} \mathcal{M}_{\Delta}(\vec{F}_{i}) = \mathcal{M}_{\Delta} \cdot \sum_{i} (\vec{F}_{i})$$

SECTION

Mouvements dans un champ de force centrale conservatif

17.1 Force centrale

Definition 17.1.1

Une force \vec{F} s'appliquant au point M est dite de **centrale de centre O** si quelle que soit la position de M, \vec{F} est dirigée selon \overrightarrow{OM}

Exemples: Si un point M est soumis à une force centrale alors $\vec{L}_0(M)$ est constante

Force	gravitationnelle	électrostatique	élastique	frottement fluide
	$\vec{F}_{O/M} = -G \frac{m_0 m \overrightarrow{OM}}{\overrightarrow{OM}^3}$	$\vec{F}_{q_0/q_p} = \frac{1}{4\pi\epsilon_0} \frac{q_0 q \overrightarrow{OM}}{\overrightarrow{OM}^3}$	$\vec{F}_{el} = -k(r - l_0)\vec{u}_r$	$\vec{f} = -h\dot{r}\vec{u}_r$

Le mouvement à force force centrale est don plan.

17.1.1 Loi des aires

Definition 17.1.2

 Pour un mouvement à force force centrale dans le plan en coordonées polaires, l'origine le centre de la force, on définit la constante des aires:

$$C = r^2 \dot{\theta}$$

USI: $m^2 \cdot s^{-1}$

• Les aires balayées par le rayon vecteur pendant des intervalles de temps égaux Δt valent:

 $\Delta \mathscr{A} = \frac{1}{2}C\Delta t$

17.2 Force central conservative

Soit \vec{F} une force centrale, elle est conservative si $\vec{F} = -\overrightarrow{grad}E_p$. Soit:

Definition 17.2.1

Une **force centrale conservative** et son énergie potentielle ne dépendent que de la première coordonnée sphérique ($||\overrightarrow{OM}||$) r du point M:

$$\vec{F} = F(r)\vec{u}_r = -\frac{dE_p}{dr}\vec{u}_r$$

Exemples:

Force	gravitationnelle	électrostatique	élastique
	$E_p = -G\frac{m_0 m}{r} + cte$	$E_p = \frac{q_0 q}{4\pi\epsilon_0} + cte$	$E_p = \frac{1}{2}k(r - l_0)^2 + cte$

17.2.1 Conservation de l'énergie mécanique et énergie potentielle effective

Definition 17.2.2

L'énergie mécanique est **invariant du mouvement**:

$$Em = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}m\frac{C^2}{r^2} + E_p(r)$$

On définit **l'énergie potentielle effective** comme étant la somme des énergie cinétique orthoradial et potentielle:

$$E_{pff} = \frac{1}{2} m \frac{C^2}{r^2} + E_p(r)$$

Tout se passe comme si le système ne dépendait que d'une seule variable r.

17.3 Champs newtoniens

Definition 17.3.1

Une force centrale **newtonienne** est de la forme $\vec{F} = -\frac{K}{r^2}\vec{u}_r$, avec K une constante.

- attractive si K > 0
- répulsive si K < 0

17.3.1 Lois de Kepler

Definition 17.3.2

- 1er loi: Les planètes du système solaire décrivent des trajectoires elliptiques dont le Soleil occupe l'un des foyers
- 2ème loi (Loi des aires): Le rayon vecteur Soleil-planète \overrightarrow{SP} balaie des aires égales pendant des intervalles de temps égaux.
- 3ème loi: La période de révolution T et le demi-grand axe a de l'ellipse sont tels que $\frac{T^2}{a^3}$ a la même valeur pour toutes les planètes du système solaire.

Mouvement d'un solide

Un solide est un système matériel **indéformable**. La distance entre les points matériels reste constante.

18.1 Théorème du moment cinétique autour d'un axe

18.1.1 Moment cinétique

Soit Δ un axe orienté fixe et S un solide en rotation autour de cet axe, le solide S modélisé par un ensemble de point M_k . Le moment cinétique du solide par rapport à l'axe est:

$$L_{\Delta} = \sum_{k} L_{\Delta}(M_k)$$

18.1.2 Moment d'inertie

Definition 18.1.1

Le **moment d'inertie** du solide S par rapport à l'axe Δ est:

$$\sum_{k} m_k r_k^2$$

Avec r_k la distance entre le point M_k et l'axe

Le **moment cinétique** d'un solide en rotation à vitesse ω autour d'un axe fixe (Δ)**orienté** par le vecteur unitaire \vec{u}_{Δ} est:

$$L_{\Delta}(S)=J_{\Delta}\omega$$

18.1.3 Moment d'une force

Definition 18.1.2

Pour un solide S, le moment d'une force \vec{F} , subie par le point M_k (point d'application de la force) par rapport à l'axe orienté Δ est:

$$\mathcal{M}_{\Delta}(\vec{F}) = (\overrightarrow{AM_k} \wedge \vec{F}) \cdot \vec{u}_{\Delta}$$

18.1.4 Liaison pivot

L'action mécanique d'une liaison pivot parfaite a un moment nul:

$$\mathcal{M}_{\Delta(laisonid\'eale)} = 0$$

18.1.5 Théorème scalaire du moment cinétique

Definition 18.1.3

Mouvement d'un solide S en rotation autour de ' Δ fixe dans un référentiel galiléen, moment d'inertie J_{Δ} , vitesse angulaire $\omega = \dot{\theta}$.

$$\frac{dL_{\Delta}}{dt} = J_{\Delta} \frac{d\omega}{dt} = \mathcal{M}_{\Delta}^{ext}$$

18.2 Approche énergétique

L'énergie cinétique d'un solide S en rotation s'écrit:

$$E_c(S) = \frac{1}{2}J_\Delta\dot{\theta}^2 = \frac{1}{2}J_\Delta\omega^2$$

18.2.1 Puissance et travail

Definition 18.2.1

La **puissance** d'une Force \vec{F} en M_k d'un solide S est:

$$\mathscr{P}(\vec{F}) = \vec{F} \cdot \vec{v}_k$$

Dans le cas où le solide est en rotation autour de Δ :

$$\mathscr{P}(\vec{F}) = \mathscr{M}_{\Lambda}(\vec{F})\omega$$

Le **travail** est:

$$\delta W(\vec{F}) = \vec{F} \cdot d\overrightarrow{OM}_k = P(\vec{F})dt$$

18.2.2 Théorèmes énergétiques

Definition 18.2.2

Soit S un solide indéformable.

Théorème de l'énergie cinétique:

$$\Delta E_c(S) = W^{ext}$$

Théorème de la puissance cinétique:

$$\frac{dE_c(S)}{dt} = \mathcal{P}^{ext}$$

Avec $\mathcal{P}^{ext} = \mathcal{M}_{\Delta}^{ext} \omega$

Champ magnétiques - description

Un **champ magnétique**, noté $\vec{B}(M,t)$ est un **champ vectoriel**. USI: Tesla(T).

19.1 Cartes de champ magnétiques

Definition 19.1.1

- Une **ligne de champ** est une courbe **tangente au champ magnétique** en chacun de ces points et **orientée** dans le sens du camp.
- Un **spectre de champ** est un ensemble de lignes de champ magnétique.
- Les lignes de champs (l.d.c) sortent par le pôle nord et entrent par le pôle sud à l'extérieur de la source.
- Le champ est plus intense dans les zones où les l.d.c se rapprochent.
- Les l.d.c parallèles révèlent d'un champ uniforme.

19.2 Moment magnétique

Definition 19.2.1

Soit un circuit filiforme plan constitué d'un boucle parcourue par un courant I. Le moment magnétique $\overrightarrow{\mathcal{M}}$ en $(A.m^2)$ du circuit est défini par:

$$\overrightarrow{\mathcal{M}}=i\vec{S}$$

où $\vec{S} = S\vec{n}$ le vecteur surface de norme S et de normal \vec{n} , **orthogonal** au plan contenant le circuit, et **orienté** par le sens du courant.

Action d'un champ magnétiques

20.1 Force de Laplace

Definition 20.1.1

Dans le cas d'une barre conductrice MN placée dans un champ magnétique extérieur uniforme \vec{B} parcouru par un courant d'intensité i et stationnaire, l'expression de la **résultante des forces de Laplace** est:

$$\vec{F}_L = \int_M^N i \, \vec{d} \, l \wedge \vec{B} = \boxed{i \, \overrightarrow{MN} \wedge \vec{B}}$$

Le vecteur \overrightarrow{MN} est orienté par la convention choisie pour le courant i La puissance vaut:

$$P_l = (i\overrightarrow{MN} \wedge \vec{B}) \cdot \vec{v}$$

20.2 Moment du couple de Laplace

Definition 20.2.1

Soit une spire **rectangulaire** en rotation autour de Oz, axe de symétrie, placé dans un champ magnétique extérieur uniforme et stationnaire orthogonal Oz.

- La résultante des forces de Laplace exercée sur la spire est nulle.
- Le couple des actions de Laplace vaut:

$$\vec{\Gamma} = \overrightarrow{\mathcal{M}} \wedge \vec{B}$$

Avec $\overrightarrow{\mathcal{B}}$ le vecteur magnétique de la spire rectangulaire.

• La puissance tournant à une vitesse **angulaire** ω autour de (Oz):

$$P = \Gamma \cdot \omega = \omega(\overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}) \cdot \overrightarrow{u}_z$$

Le couple des actions mécaniques tend à orienter le moment magnétique d'un aimant, selon la direction de \vec{B} .

Circuit fixe dans un champ magnétique

21.1 Lois de l'induction

21.1.1 Flux magnétique

Definition 21.1.1

Soit une surface plane (S), de normale \vec{n} , fixe sur un contour orienté (règle de la main droite) et un champ magnétique **uniforme** traversant cet surface dépendant du temps $\vec{B}(t)$. Le flux magnétique est:

$$\Phi(t) = \vec{B}(t) \cdot \vec{S} = \vec{B}(t) \cdot \vec{n}S = BScos(\vec{B}, \vec{S})$$

USI: Weber (Wb).

Le flux de \vec{B} uniforme à travers une bobine de N spires de même surface S est: $\Phi = N\vec{B} \cdot \vec{n}S$

21.1.2 Loi de Lenz-Faraday

Definition 21.1.2

La force électromotrice, e (en Volt; V), induite par le champ magnétique \vec{B} dans un circuit électrique filiforme fermé et orienté arbitraiement est:

$$e(t) = -\frac{d\Phi(t)}{dt}$$

21.1.3 Loi de modération de Lenz

Definition 21.1.3

Par leurs effets, les phénomènes d'induction s'opposent aux causes qui leur ont donné naissance.

Le circuit peut se déformer ou se déplacer en présence d'un champ magnétique permanent ; c'est l'induction de Lorentz. L'inducteur peut produire un champ magnétique variable à travers un circuit fixe c'est l'induction de Neumann.

21.2 Phénomène d'auto induction

21.2.1 Flux propre et inductance propre

Definition 21.2.1

On considère un circuit parcouru par un courant i. Le champ magnétique \vec{B}_p crée est le **champ propre**. Le propre est le flux de B_p à travers une surface S, noté Φ_p . Soit:

$$L = \frac{\Phi_p}{i}$$

L est une constante nommée inductance propre en Henry.

21.2.2 Force électromotrice (f.é.m) induite

Definition 21.2.2

Lorsque le courant i(t) dans un circuit fixe et indéformable est variable, le flux propre varie. Il s'agit de **l'auto-induction.**

$$e = -\frac{d\Phi_p}{dt} = -\frac{dLi}{dt} = -L\frac{di}{dt}$$

21.3 Approche énergetique

Definition 21.3.1

L'énergie magnétique stockée grâce aux phénomènes d'auto-induction dans un circuit d'inductance propre L parcourue par un courant i est égale à: $\frac{1}{2}Li^2$

21.4 Induction mutuelle

Definition 21.4.1

Le flux mutuel est le flux générée par un circuit inducteur sur le circuit induit.

$$\Phi_{1\to2}(t)=M_{12}i_1(t); \Phi_{2\to1}(t)=M_{21}i_2(t)$$

34

Théorème de Neumann: $M_{12} = M_{21} = M$

Avec M, le coefficient d'inductance mutuelle en Henry (H).

On a: $E_{mag} = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 + Mi_1i_2$

Avec Mi_1i_2 l'énergie de couplage magnétique entre les circuits.

Lectures complémentaires

Je fais plusieurs fois référence au Complément Mathématiques!

Merci à mes professeurs de physiques:

- Emillien Mallet, pour les cours et la fourniture d'éléments en LATEX!
- Claire Delacour, pour les cours de deuxième année, une couche supplémentaire à la compréhension!

Note:		
Venez ei	n nréna !	