

2/62

hCEA-LTA Nucleotide Sequence

1	ATGGAGTCTC	CCTCGGCCCC	TCCCCACAGA	TGGTGCATCC	CCTGGCAGAG
51	GCTCCTGCTC	ACAGCCTCAC	TTCTAACCTT	CTGGAACCCG	CCCACCACTG
101	CCAAGCTCAC	TATTGAATCC	ACGCCGTTCA	ATGTCGCAGA	GGGGAAGGAG
151	GTGCTTCTAC	TTGTCCACAA	TCTGCCCCAG	CATCTTTTTG	GCTACAGCTG
201	GTACAAAGGT	GAAAGAGTGG	ATGGCAACCG	TCAAATTATA	GGATATGTAA
251	TAGGAACTCA	ACAAGCTACC	CCAGGGCCCG	CATACAGTGG	TCGAGAGATA
301	ATATACCCCA	ATGCATCCCT	GCTGATCCAG	AACATCATCC	AGAATGACAC
351	AGGATTCTAC	ACCCTACACG	TCATAAAGTC	AGATCTTGTG	AATGAAGAAG
401	CAACTGGCCA	GTTCCGGGTA	TACCCGGAGC	TGCCCAAGCC	CTCCATCTCC
451	AGCAACAACT	CCAAACCCGT	GGAGGACAAG	GATGCTGTGG	CCTTCACCTG
501	TGAACCTGAG	ACTCAGGACG	CAACCTACCT	GTGGTGGGTA	AACAATCAGA
551	GCCTCCCGGT	CAGTCCCAGG	CTGCAGCTGT	CCAATGGCAA	CAGGACCCTC
601	ACTCTATTCA	ATGTCACAAG	AAATGACACA	GCAAGCTACA	AATGTGAAAC
651	CCAGAACCCA	GTGAGTGCCA	GGCGCAGTGA	TTCAGTCATC	CTGAATGTCC
701	TCTATGGCCC	GGATGCCCCC	ACCATTTCCC	CTCTAAACAC	ATCTTACAGA
751	TCAGGGGAAA	ATCTGAACCT	CTCCTGCCAC	GCAGCCTCTA	ACCCACCTGC
801	ACAGTACTCT	TGGTTTGTCA	ATGGGACTTT	CCAGCAATCC	ACCCAAGAGC
851	TCTTTATCCC	CAACATCACT	GTGAATAATA	GTGGATCCTA	TACGTGCCAA
901	GCCCATAACT	CAGACACTGG	CCTCAATAGG	ACCACAGTCA	CGACGATCAC
951	AGTCTATGCA	GAGCCACCCA	AACCCTTCAT	CACCAGCAAC	AACTCCAACC
1001	CCGTGGAGGA	TGAGGATGCT	GTAGCCTTAA	CCTGTGAACC	TGAGATTCAG
1051	AACACAACCT	ACCTGTGGTG	GGTAAATAAT	CAGAGCCTCC	CGGTCAGTCC
1101	CAGGCTGCAG	CTGTCCAATG	ACAACAGGAC	CCTCACTCTA	CTCAGTGTCA
1151	CAAGGAATGA	TGTAGGACCC	TATGAGTGTG	GAATCCAGAA	CGAATTAAGT
1201	GTTGACCACA	GCGACCCAGT	CATCCTGAAT	GTCCTCTATG	GCCCAGACGA
1251	CCCCACCATT	TCCCCCTCAT	ACACCTATTA	CCGTCCAGGG	GTGAACCTCA
1301	GCCTCTCCTG	CCATGCAGCC	TCTAACCCAC	CTGCACAGTA	TTCTTGGCTG
1351	ATTGATGGGA	ACATCCAGCA	ACACACACAA	GAGCTCTTTA	TCTCCAACAT
1401	CACTGAGAAG	AACAGCGGAC	TCTATACCTG	CCAGGCCAAT	AACTCAGCCA
1451	GTGGCCACAG	CAGGACTACA	GTCAAGACAA	TCACAGTCTC	TGCGGAGCTG
1501	CCCAAGCCCT	CCATCTCCAG	CAACAACTCC	AAACCCGTGG	AGGACAAGGA
1515	TGCTGTGGCC	TTCACCTGTG	AACCTGAGGC	TCAGAACACA	AČCTACCTGT
1601	GGTGGGTAAA	TGGTCAGAGC	CTCCCAGTCA	GTCCCAGGCT	GCAGCTGTCC
1651	AATGGCAACA	GGACCCTCAC	TCTATTCAAT	GTCACAAGAA	ATGACGCAAG
1701	AGCCTATGTA	TGTGGAATCC	AGAACTCAGT	GAGTGCAAAC	CGCAGTGACC
1751	CAGTCACCCT	GGATGTCCTC	TATGGGCCGG	ACACCCCCAT	CATTTCCCCC
1801			GGGAGCGAAC		
1851			AGTATTCTTG		
1901			TTTATCGCCA		
1951	GGGACCTATG	CCTGTTTTGT	CTCTAACTTG	GCTACTGGCC	GCAATAATTC

FIG.2A-1

2001	CATAGTCAAG	AGCATCACAG	TCTCTGCATC	TGGAACTCTA	GTTAATGGCG
2051	ACAAATTATA	CCGTGCTGAC	TCTAGACCCC	CAGATGAAAT	AAAACGTTCC
2101	GGAGGTCTTA	TGCCCAGAGG	GCATAATGAG	TACTTCGATA	GAGGAACTCA
2151	AATGAATATT	AATCTTTATG	ATCACGCGAG	AGGAACACAA	ACCGGCTTTG
2201	TCAGATATGA	TGACGGATAT	GTTTCCACTT	CTCTTAGTTT	GAGAAGTGCT
2251	CACTTAGCAG	GACAGTCTAT	ATTATCAGGA	TATTCCACTT	ACTATATATA
2301	TGTTATAGCG	${\sf ACAGCACCAA}$	ATATGTTTAA	TGTTAATGAT	GTATTAGGCG
2351	TATACAGCCC	TCACCCATAT	GAACAGGAGG	TTTCTGCGTT	AGGTGGAATA
2401	CCATATTCTC	AGATATATGG	ATGGTATCGT	GTTAATTTTG	GTGTAATTGA
2451	TGAACGATTA	CATCGTAACA	GGGAATATAG	AGACCGGTAT	TACAGAAATC
2501	TGAATATAGC	TCCGGCAGAG	GATGGTTACA	GATTAGCAGG	TTTCCCACCG
2551	GATCACCAAG	CTTGGAGAGA	AGAACCCTGG	ATTCATCATG	CACCACAAGG
2601	TTGTGGAAAT	TCATCAAGAA	CAATTACAGA	TGATACTTGT	AATGAGGAGA
2651	CCCAGAATCT	GAGCACAATA	TATCTCAGGA	AATATCAATC	AAAAGTTAAG
2701	AGGCAGATAT	TTTCAGACTA	TCAGTCAGAG	GTTGACATAT	ATAACAGAAT
	TCGGGATGAA	TTATGA (SEC) ID NO:7)		

FIG.2A-2

4/62

CEA-LTA Amino Acid Sequence

```
1
      MESPSAPPHR WCIPWQRLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE
51
       VLLLVHNLPO HLFGYSWYKG ERVDGNROII GYVIGTOOAT PGPAYSGREI
       IYPNASLLIQ NIIONDTGFY TLHVIKSDLV NEEATGOFRV YPELPKPSIS
101
       SNNSKPVEDK DAVAFTCEPE TODATYLWWV NNOSLPVSPR LOLSNGNRTL
151
201
       TLFNVTRNDT ASYKCETONP VSARRSDSVI LNVLYGPDAP TISPLNTSYR
251
       SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ
       AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIO
301
351
       NTTYLWWVNN QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS
401
       VDHSDPVILN VLYGPDDPTI SPSYTYYRPG VNLSLSCHAA SNPPAOYSWL
451
       IDGNIQQHTQ ELFISNITEK NSGLYTCQAN NSASGHSRTT VKTITVSAEL
       PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS LPVSPRLQLS
501
551
       NGNRTLTLFN VTRNDARAYV CGIONSVSAN RSDPVTLDVL YGPDTPIISP
601
       PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN
       GTYACFVSNL ATGRNNSIVK SITVSASGTL VNGDKLYRAD SRPPDEIKRS
651
701
       GGLMPRGHNE YFDRGTQMNI NLYDHARGTQ TGFVRYDDGY VSTSLSLRSA
751
       HLAGOSILSG YSTYYIYVIA TAPNMFNVND VLGVYSPHPY EQEVSALGGI
801
       PYSQIYGWYR VNFGVIDERL HRNREYRDRY YRNLNIAPAE DGYRLAGFPP
851
       DHOAWREEPW IHHAPOGCGN SSRTITDDTC NEETONLSTI YLRKYQSKVK
901
       ROIFSDYOSE VDIYNRIRDE L (SEQ ID NO:8)
```

FIG.2B

5/62

hCEA-LTB Coding Sequence

1	ATGGAGTCTC	CCTCGGCCCC	TCCCCACAGA	TGGTGCATCC	CCTGGCAGAG	
51	GCTCCTGCTC	ACAGCCTCAC	TTCTAACCTT	CTGGAACCCG	CCCACCACTG	
101	CCAAGCTCAC	TATTGAATCC	ACGCCGTTCA	ATGTCGCAGA	GGGGAAGGAG	
151	GTGCTTCTAC	TTGTCCACAA	TCTGCCCCAG	CATCTTTTTG	GCTACAGCTG	
201	GTACAAAGGT	GAAAGAGTGG	ATGGCAACCG	TCAAATTATA	GGATATGTAA	
251	TAGGAACTCA	ACAAGCTACC	CCAGGGCCCG	CATACAGTGG	TCGAGAGATA	
301	ATATACCCCA	ATGCATCCCT	GCTGATCCAG	AACATCATCC	AGAATGACAC	
351	AGGATTCTAC	ACCCTACACG	TCATAAAGTC	AGATCTTGTG	AATGAAGAAG	
401	CAACTGGCCA	GTTCCGGGTA	TACCCGGAGC	TGCCCAAGCC	CTCCATCTCC	
451	AGCAACAACT	CCAAACCCGT	GGAGGACAAG	GATGCTGTGG	CCTTCACCTG	
501	TGAACCTGAG	ACTCAGGACG	CAACCTACCT	GTGGTGGGTA	AACAATCAGA	
551	GCCTCCCGGT	CAGTCCCAGG	CTGCAGCTGT	CCAATGGCAA	CAGGACCCTC	
601	ACTCTATTCA	ATGTCACAAG	AAATGACACA	GCAAGCTACA	AATGTGAAAC	
651	CCAGAACCCA	GTGAGTGCCA	GGCGCAGTGA	TTCAGTCATC	CTGAATGTCC	
701	TCTATGGCCC	GGATGCCCCC	ACCATTTCCC	CTCTAAACAC	ATCTTACAGA	
751	TCAGGGGAAA	ATCTGAACCT	CTCCTGCCAC	GCAGCCTCTA	ACCCACCTGC	
801	ACAGTACTCT	TGGTTTGTCA	ATGGGACTTT	CCAGCAATCC	ACCCAAGAGC	
851	TCTTTATCCC	CAACATCACT	GTGAATAATA	GTGGATCCTA	TACGTGCCAA	
901	GCCCATAACT	CAGACACTGG	CCTCAATAGG	ACCACAGTCA	CGACGATCAC	
951	AGTCTATGCA	GAGCCACCCA	AACCCTTCAT	CACCAGCAAC	AACTCCAACC	
1001	CCGTGGAGGA	TGAGGATGCT	GTAGCCTTAA	CCTGTGAACC	TGAGATTCAG	
1151	AACACAACCT	ACCTGTGGTG	GGTAAATAAT	CAGAGCCTCC	CGGTCAGTCC	
1101	CAGGCTGCAG	CTGTCCAATG	ACAACAGGAC	CCTCACTCTA	CTCAGTGTCA	
1151	CAAGGAATGA	TGTAGGACCC	TATGAGTGTG	GAATCCAGAA	CGAATTAAGT	
1201	GTTGACCACA	GCGACCCAGT	CATCCTGAAT	GTCCTCTATG	GCCCAGACGA	. ~
1251	CCCCACCATT	TCCCCCTCAT	ACACCTATTA	CCGTCCAGGG	GTGAACCTCA	-
1301	GCCTCTCCTG	CCATGCAGCC	TCTAACCCAC	CTGCACAGTA	TTCTTGGCTG	
1351	ATTGATGGGA	ACATCCAGCA	ACACACACAA	GAGCTCTTTA	TCTCCAACAT	£
1401			TCTATACCTG		-	<i></i> -
1451	GTGGCCACAG	CAGGACTACA	GTCAAGACAA	TCACAGTCTC	TGCGGAGCTG	
1501			CAACAACTCC		•	
1551	TGCTGTGGCC	TTCACCTGTG	AACCTGAGGC	TCAGAACACA	ACCTACCTGT	
1601	GGTGGGTAAA	TGGTCAGAGC	CTCCCAGTCA	GTCCCAGGCT	GCAGCTGTCC	
1651			TCTATTCAAT			
1701			AGAACTCAGT			
1751			TATGGGCCGG	_		
1801			GGGAGCGAAC		•	
1851	GGCCTCTAAC	CCATCCCCGC	AGTATTCTTG	GCGTATCAAT	GGGATACCGC	

6/62 AGCAACACA ACAAGTTCTC TTTATCGCCA AAATCACGCC AAATAATAAC 1901 GGGACCTATG CCTGTTTTGT CTCTAACTTG GCTACTGGCC GCAATAATTC 1951 CATAGTCAAG AGCATCACAG TCTCTGCATC TGGAACTCTA GATGCTCCCC 2001 AGTCTATTAC AGAACTATGT TCGGAATATC GCAACACACA AATATATACG 2051 ATAAATGACA AGATACTATC ATATACGGAA TCGATGGCAG GTAAAAGAGA 2101 2151 AATGGTTATC ATTACATTTA AGAGCGGCGC AACATTTCAG GTCGAAGTCC CGGGCAGTCA ACATATAGAC TCCCAAAAAA AAGCCATTGA AAGGATGAAG 2201 GACACATTAA GAATCACATA TCTGACCGAG ACCAAAATTG ATAAATTATG 2251 TGTATGGAAT AATAAAACCC CCAATTCAAT TGCGGCAATC AGTATGGAAA 2301 ACTAG (SEQ ID NO:9)

FIG.3A-2

7/62

CEA-LTB Amino Acid Sequence

```
MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE
  1
       VLLLVHNLPO HLFGYSWYKG ERVDGNRQII GYVIGTQQAT PGPAYSGREI
 51
       IYPNASLLIQ NIIQNDTGFY TLHVIKSDLV NEEATGQFRV YPELPKPSIS
101
151
       SNNSKPVEDK DAVAFTCEPE TQDATYLWWV NNQSLPVSPR LQLSNGNRTL
       TLFNVTRNDT ASYKCETONP VSARRSDSVI LNVLYGPDAP TISPLNTSYR
201
       SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ
251
301
       AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIQ
       NTTYLWWVNN QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIONELS
351
       VDHSDPVILN VLYGPDDPTI SPSYTYYRPG VNLSLSCHAA SNPPAOYSWL
401
       IDGNIOOHTO ELFISNITEK NSGLYTCOAN NSASGHSRTT VKTITVSAEL
451
       PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS LPVSPRLQLS
501
       NGNRTLTLFN VTRNDARAYV CGIQNSVSAN RSDPVTLDVL YGPDTPIISP
551
       PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN
601
       GTYACFVSNL ATGRNNSIVK SITVSASGTL DAPQSITELC SEYRNTQIYT
651
       INDKILSYTE SMAGKREMVI ITFKSGATFQ VEVPGSQHID SQKKAIERMK
701
       DTLRITYLTE TKIDKLCVWN NKTPNSIAAI SMEN (SEQ ID NO:10)
751
```

FIG.3B

8/62

CEAopt-LTB Nucleotide Sequence

1			CCCCCACCGC		
	CCTGCTGCTG	ACCGCCAGCC	TGCTGACCTT	CTGGAACCCC	CCCACCACCG
101	CCAAGCTGAC	CATCGAGAGC	ACCCCCTTCA	ACGTGGCCGA	GGGCAAGGAG
	GTGCTGCTGC	TGGTGCACAA	CCTGCCCCAG	CACCTGTTCG	GCTACAGCTG
201	GTACAAGGGC		ACGGCAACCG		
	TCGGCACCCA	GCAGGCCACC	CCCGGCCCCG	CCTACAGCGG	CCGCGAGATC
301	ATCTACCCCA	ACGCCAGCCT	GCTGATCCAG	AACATCATCC	AGAACGACAC
	CGGCTTCTAC	ACCCTGCACG	TGATCAAGAG	CGACCTGGTG	AACGAGGAGG
401	CCACCGGCCA	GTTCCGCGTG	TACCCCGAGC	TGCCCAAGCC	CAGCATCAGC
	AGCAACAACA	GCAAGCCCGT	GGAGGACAAG	GACGCCGTGG	CCTTCACCTG
501	CGAGCCCGAG	ACCCAGGACG	CCACCTACCT	GTGGTGGGTG	AACAACCAGA
			CTGCAGCTGA		
601	ACCCTGTTCA	ACGTGACCCG	CAACGACACC	GCCAGCTACA	AGTGCGAGAC
	CCAGAACCCC	GTGAGCGCCC	GCCGCAGCGA	CAGCGTGATC	CTGAACGTGC
701	TGTACGGCCC	CGACGCCCCC	ACCATCAGCC	CCCTGAACAC	CAGCTACCGC
	AGCGGCGAGA	ACCTGAACCT	GAGCTGCCAC	GCCGCCAGCA	ACCCCCCCGC
801	CCAGTACAGC	TGGTTCGTGA	ACGGCACCTT	CCAGCAGAGC	ACCCAGGAGC
	TGTTCATCCC	CAACATCACC	GTGAACAACA	GCGGCAGCTA	CACCTGCCAG
901	GCCCACAACA	GCGACACCGG	CCTGAACCGC	ACCACCGTGA	CCACCATCAC
	CGTGTACGCC	GAGCCCCCCA	AGCCCTTCAT	CACCAGCAAC	AACAGCAACC
1001	CCGTGGAGGA	CGAGGACGCC	GTGGCCCTGA	CCTGCGAGCC	CGAGATCCAG
	AACACCACCT	ACCTGTGGTG	GGTGAACAAC	CAGAGCCTGC	CCGTGAGCCC
1101	CCGCCTGCAG	CTGAGCAACG	ACAACCGCAC	CCTGACCCTG	CTGAGCGTGA
	CCCGCAACGA	CGTGGGCCCC	TACGAGTGCG	GCATCCAGAA	CGAGCTGAGC
1201	GTGGACCACA	GCGACCCCGT	GATCCTGAAC	GTGCTGTACG	GCCCCGACGA
	CCCCACCATC	AGCCCCAGCT	ACACCTACTA	CCGCCCCGGC	GTGAACCTGA
1301	GCCTGAGCTG	CCACGCCGCC	AGCAACCCCC	CCGCCCAGTA	CAGCTGGCTG
	ATCGACGGCA	ACATCCAGCA	GCACACCCAG	- GAGCTGTTCA	TCAGCAACAT
1401	CACCGAGAAG	AACAGCGGCC	TGTACACCTG	CCAGGCCAAC	AACAGCGCCA
	GCGGCCACAG	CCGCACCACC	GTGAAGACCA	TCACCGTGAG	CGCCGAGCTG
1501	CCCAAGCCCA	GCATCAGCAG	CAACAACAGC	AAGCCCGTGG	AGGACAAGGA
	CGCCGTGGCC	TTCACCTGCG	AGCCCGAGGC	CCAGAACACC	ACCTACCTGT
1601	GGTGGGTGAA	CGGCCAGAGC	CTGCCCGTGA	GCCCCCGCCT	GCAGCTGAGC
	AACGGCAACC	GCACCCTGAC	CCTGTTCAAC	GTGACCCGCA	ACGACGCCCG
1701					CGCAGCGACC
	CCGTGACCCT	GGACGTGCTG	TACGGCCCCG	ACACCCCCAT	CATCAGCCCC
1801					GCTGCCACAG
	CGCCAGCAAC	CCCAGCCCCC	AGTACAGCTG	GCGCATCAAC	GGCATCCCCC

1901	AGCAGCACAC	CCAGGTGCTG	TTCATCGCCA	AGATCACCCC	CAACAACAAC
	GGCACCTACG	CCTGCTTCGT	GAGCAACCTG	GCCACCGGCC	GCAACAACAG
2001	CATCGTGAAG	AGCATCACCG	TGAGCGCCAG	$CGGCACC\underline{TCT}$	<u>AGA</u> GCTCCCC
	AGACTATTAC	AGAACTATGT	TCGGAATATC	GCAACACACA	AATATATACG
2101	ATAAATGACA	AGATACTATC	ATATACGGAA	TCGATGGCAG	GCAAAAGAGA
	AATGGTTATC	ATTACATTTA	AGAGCGGCGA	AACATTTCAG	GTCGAAGTCC
2201	CGGGCAGTCA	ACATATAGAC	TCCCAGAAAA	AAGCCATTGA	AAGGATGAAG
	GACACATTAA	GAATCACATA	TCTGACCGAG	ACCAAAATTG	ATAAATTATG
2301	TGTATGGAAT	AATAAAACCC	CCAATTCAAT	TGCGGCAATC	AGTATGGAAA
	ACTAG (SEQ	ID N0:11)			

FIG.4B

10/62

hCEA-LTBopt Coding Sequence

1				TGGTGCATCC	
				CTGGAACCCC	
101				ACGTGGCCGA	
				CACCTGTTCG	
201		'		CCAGATCATC	
	TCGGCACCCA	GCAGGCCACC	CCCGGCCCCG	CCTACAGCGG	CCGCGAGATC
301	ATCTACCCCA	ACGCCAGCCT	GCTGATCCAG	AACATCATCC	AGAACGACAC
				CGACCTGGTG	
401	CCACCGGCCA	GTTCCGCGTG	TACCCCGAGC	TGCCCAAGCC	CAGCATCAGC
	AGCAACAACA	GCAAGCCCGT	GGAGGACAAG	GACGCCGTGG	CCTTCACCTG
501				GTGGTGGGTG	
				GCAACGGCAA	
601				GCCAGCTACA	
	CCAGAACCCC	GTGAGCGCCC	GCCGCAGCGA	CAGCGTGATC	CTGAACGTGC
701	TGTACGGCCC	CGACGCCCCC	ACCATCAGCC	CCCTGAACAC	CAGCTACCGC
	AGCGGCGAGA	ACCTGAACCT	GAGCTGCCAC	GCCGCCAGCA	ACCCCCCCCC
801	CCAGTACAGC	TGGTTCGTGA	ACGGCACCTT	CCAGCAGAGC	ACCCAGGAGC
	TGTTCATCCC	CAACATCACC	GTGAACAACA	GCGGCAGCTA	CACCTGCCAG
901	GCCCACAACA	GCGACACCGG	CCTGAACCGC	ACCACCGTGA	CCACCATCAC
	CGTGTACGCC	GAGCCCCCCA	AGCCCTTCAT	CACCAGCAAC	AACAGCAACC
1001	CCGTGGAGGA	CGAGGACGCC	GTGGCCCTGA	CCTGCGAGCC	CGAGATCCAG
	AACACCACCT	ACCTGTGGTG	GGTGAACAAC	CAGAGCCTGC	CCGTGAGCCC
1101	CCGCCTGCAG	CTGAGCAACG	ACAACCGCAC	CCTGACCCTG	CTGAGCGTGA
	CCCGCAACGA	CGTGGGCCCC	TACGAGTGCG	GCATCCAGAA	CGAGCTGAGC
1201	GTGGACCACA	GCGACCCCGT	GATCCTGAAC	GTGCTGTACG	GCCCCGACGA
	CCCCACCATC	AGCCCCAGCT	ACACCTACTA	CCGCCCCGGC	GTGAACCTGA
1301	GCCTGAGCTG	CCACGCCGCC	AGCAACCCCC	CCGCCCAGTA	CAGCTGGCTG
	ATCGACGGCA	ACATCCAGCA	GCACACCCAG	GAGCTGTTCA	TCAGCAACAT
1401	CACCGAGAAG	AACAGCGGCC	TGTASACÇTG	CCAGGCCAAC	AACAGCGCCA
	GCGGCCACAG	CCGCACCACC	GTGAAGACCA	TCACCGTGAG	CGCCGAGCTG
1501	CCCAAGCCCA	GCATCAGCAG	CAACAACAGC	AAGCCCGTGG	AGGACAAGGA
	CGCCGTGGCC	TTCACCTGCG	AGCCCGAGGC	CCAGAACACC	ACCTACCTGT
1601	GGTGGGTGAA	CGGCCAGAGC	CTGCCCGTGA	GCCCCCGCCT	GCAGCTGAGC
	AACGGCAACC	GCACCCTGAC	CCTGTTCAAC	GTGACCCGCA	ACGACGCCCG
1701	CGCCTACGTG	TGCGGCATCC	AGAACAGCGT	GAGCGCCAAC	CGCAGCGACC
				ACACCCCCAT	-
1801				CTGAACCTGA	
	CGCCAGCAAC	CCCAGCCCCC	AGTACAGCTG	GCGCATCAAC	GGCATCCCCC

1901	AGCAGCACAC	CCAGGTGCTG	TTCATCGCCA	AGATCACCCC	CAACAACAAC
	GGCACCTACG	CCTGCTTCGT	GAGCAACCTG	GCCACCGGCC	GCAACAACAG
2001	CATCGTGAAG	AGCATCACCG	TGAGCGCCAG	$CGGCACC\underline{TCT}$	<u>AGA</u> GCCCCCC
	AGAGCATCAC	CGAGCTGTGC	AGCGAGTACC	GGAACACCCA	GATCTACACC
2101	ATCAACGACA	AGATCCTGAG	CTACACCGAG	${\sf AGCATGGCCG}$	GCAAGAGGGA
	GATGGTGATC	ATCACCTTCA	AGAGCGGCGC	CACCTTCCAG	GTGGAGGTGC
2201	CCGGCAGCCA	GCACATCGAC	AGCCAGAAGA	${\sf AGGCCATCGA}$	GCGGATGAAG
	GACACCCTGC	GGATCACCTA	CCTCACCGAG	ACCAAGATCG	ACAAGCTGTG
2301	CGTGTGGAAC	AACAAGACCC	CCAACAGCAT	CGCCGCCATC	AGCATGGAGA
	ATTGATAA (S	SEQ ID NO:12	2)		

FIG.5A-2

12/62

hCEA-LTB Amino Acid Sequence

```
1
        MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE
51
        VLLLVHNLPO HLFGYSWYKG ERVDGNRQII GYVIGTOOAT PGPAYSGREI
101
        IYPNASLLIQ NIIONDTGFY TLHVIKSDLV NEEATGQFRV YPELPKPSIS
151
        SNNSKPVEDK DAVAFTCEPE TQDATYLWWV NNQSLPVSPR LQLSNGNRTL
201
        TLFNVTRNDT ASYKCETONP VSARRSDSVI LNVLYGPDAP TISPLNTSYR
251
        SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNI VNNSGSYTCQ
301
        AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIO
351
        NTTYLWWVNN QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS
401
        VDHSDPVILN VLYGPDDPTI SPSYTYYRPG VNLSLSCHAA SNPPAQYSWL
451
        IDGNIQQHTQ ELFISNITEK NSGLYTCQAN NSASGHSRTT VKTITVSAEL
501
        PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS LPVSPRLQLS
551
        NGNRTLTLFN VTRNDARAYV CGIONSVSAN RSDPVTLDVL YGPDTPIISP
601
        PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN
651
        GTYACFVSNL ATGRNNSIVK SITVSASGTS RAPQSITELC SEYRNTQIYT
701
        INDKILSYTE SMAGKREMVI ITFKSGATFQ VEVPGSQHID SQKKAIERMK
751
        DTLRITYLTE TKIDKLCVWN NKTPNSIAAI SMEN (SEQ ID N0:13)
```

FIG.5B

13/62

Rhesus CEAopt-LTBopt Coding Sequence

GTTCCGCGTG GACGCCGTGG GCCCACAACA CTGAGCAACG AGCAACCCCG AACCCCATCG ACGTGGCCGA AGAGCGACAC CTGAACGTGC CCAGCAGAGC AGCCCTACAT CGAGACCCAG AGACCCAGAA CAACGACACC ACCTGAACCT GCCTGCCCG CCCCACCAT(CCTGCTGCTG CGCCCCTTCA GCTACATCTG CCACCGGCCA GGAGGACAAG CATGTGCCAG GAGCTGCCCA CCTGCGAGCC CAGAGCCTGA GCGTGAGCAG CCGCCTGGAG TACGAGTGCG AACAACCAGA CCGGCCTGAA CAACAACAGC GCAGATCACC AACGTGACCC ACATCCCCCG GCCGGCGAGA ACGGCACCTT GCCCCGACGC CCACGCCGCC CCCCGTGACC AACGAGGAGG GTGGTGGGTG GAGAACCTGA ACCTGAGCTG GAGCACCCAG CCCAAGCCCT ACATCAGCAG CCTGGCAGAC CATCGAGAGC AACCTGTTCG TCCGCACCCA GCTGATCCAC GCAACCCCGT ACCGTGTTCA TGGTTCGTGA GCGCCAGCTA CGTGTACGCC GTGACCCTGA CACCACCTTC GTGCTGTACG AACAGCGCCA GCCGCAGCGA CCCCTACCGC GTGAACAACA CAAGGACGCC TGGTGCATCC CGTGAGCCAG AGCTGCGTGA GGACCTGGTG CCGCACCCTG GTGAGCGTGC CCCTGAACAC CCAGTACTTC CCGCCATCAC CCCGCAACGA GACCCTGAAC CCTTCCAGCA CCAGGCCCAC AGCAACAACA CCCAGCTGAC ACGCCAGCCT CCACCTACCT CCGCATCGGC ATCGACTTCA ACCACCGTGA CCATCGAGGA GGTGAACAAC CCCACCACCG TGGCCCACAA TGATCAAGGA CTACATCAGC CAACATCACC CCTGCACCGC **ACCCAGGACA** GCAGCGACAA CCAGAACCCC ACCATCAGCC ACCCCACCGC TCAACATCC GCGCCCCGT GTGAACGGCA ACACCCCTA ACCTGTGGTG CCAGCGCCCC **ACGCCAGCCG** ACCATCCAGG TGCCCAAGCC CTGGAGCTGA AGTGCGAGAC GCCGCCAGCA AACAGCAACC CTGGAACCCC GTGCTGCTGC CCGCGAGACC CGAGCCCGAG CGACGCCCC TGTTCATCCC CCTGAACCGC CCTGACCGTG GTGCGCGCA **ATGGGCAGCC** ACCAGCTACA GCGCCACCGG GGCAAGGAG SAGCGCGTGG CCACAGCGG CCCTGACCTG TGTACGGCCC GACCTGCCAC ACCCAGGAGC CACCAGCAAC CGCCAGCTAC GAGCCCCCGC ACAÁCCGCAC CCCGTGAGC AGCCCCCTGA CCCCAGTA CACCGTGAAC **ACCCCGAGC** SACACCACCT GCTGACCT1

FIG.6A-1

GGCGCCTACG GCACATCGAC AGCCAGAGA AGGCCATCGA ACCAAGATCG ACAAGCTGTG CGTGTGGAAC CTGACCTGCG AGCCCGTGGC CGAGAACACC ACCTACCTGT GGTGGGTGAA GCTACCGCAG TGAGCAGCGG AGCGAGTACC GGAACACCCA GATCTACACC CTACACCGAG AGCATGGCCG GCAAGAGGA GATGGTGATC ATCACCTTCA GCTGATCAAC CCTGCTGAGC CGCAGCGACC CCAACAGCAT CGCCGCCATC AGCATGGAGA ATTGATAA (SEQ ID N0:14) CATCGTGAAG AACATCAGCG CCCAGCCCCC AGTACAGCTG GCATCCTGAC GAGCGCCAAG CCCGACCTGA AGATCACCAG CAACAACAGC CATCAGCCCC AACGGCAACC AGAACAGCGA GCAACAACAG AGAGCATCAC CGAGCTGTGC CCTCACCGAG TTCATCAGCA CCGGCAGCCA CGACAGCAAC TGCGGCATCC GCAGCTGAGC ACACCCCCAT TACGGCCCCG GCCACCGGCC GCTGCCACAG GGATCACCTA CCAGGTGCTG CCCCTACGAG GTGGAGGTGC GCCCCGCCT GAGCAACCTG CTGAACCTGA AGAGCCCCC GACACCCTGC CGCCGTGACC GAACGTGACC GCCAGCACAC AGATCCTGAG CACCTTCCAG **ACGACACCGG** CTGAGCGTĠA GCGGATGAAG **ACAAGACCC ATCAACGACA** AGGACAAGGA GTGACCCGCA CGCCCCAAC **3GCACCCTGC** CCTGCTTCGT CGACAGCTCT **AGAGCGGCGC** CAACCAGAGC CCGTGACCCT

FIG.6A-2

15/62

RhCEAopt-LTBopt Amino Acid Sequence

```
MGSPSAPLHR WCIPWQTLLL TASLLTFWNP PTTAQLTIES RPFNVAEGKE
 1
 51
       VLLLAHNVSO NLFGYIWYKG ERVDASRRIG SCVIRTQQIT PGPAHSGRET
101
       IDFNASLLIH NVTQSDTGSY TIQVIKEDLV NEEATGOFRV YPELPKPYIS
       SNNSNPVEDK DAVALTCEPE TQDTTYLWWV NNQSLPVSPR LELSSDNRTL
151
201
       TVFNIPRNDT TSYKCETQNP VSVRRSDPVT LNVLYGPDAP TISPLNTPYR
251
       AGENLNLTCH AASNPTAQYF WFVNGTFQQS TQELFIPNIT VNNSGSYMCQ
301
       AHNSATGLNR TTVTAITVYA ELPKPYITSN NSNPIEDKDA VTLTCEPETO
351
       DTTYLWWVNN QSLSVSSRLE LSNDNRTLTV FNIPRNDTTF YECETQNPVS
401
       VRRSDPVTLN VLYGPDAPTI SPLNTPYRAG ENLNLSCHAA SNPAAQYSWF
451
       VNGTFQQSTQ ELFIPNITVN NSGSYMCQAH NSATGLNRTT VTAITVYVEL
501
       PKPYISSNNS NPIEDKDAVT LTCEPVAENT TYLWWVNNQS LSVSPRLQLS
551
       NGNRILTLLS VTRNDTGPYE CGIONSESAK RSDPVTLNVT YGPDTPIISP
601
       PDLSYRSGAN LNLSCHSDSN PSPQYSWLIN GTLRQHTQVL FISKITSNNS
651
       GAYACFVSNL ATGRNNSIVK NISVSSGDSS RAPQSITELC SEYRNTQIYT
701
       INDKILSYTE SMAGKREMVI ITFKSGATFQ VEVPGSQHID SQKKAIERMK
751
       DTLRITYLTE TKIDKLCVWN NKTPNSIAAI SMEN (SEQ ID NO:15)
```

FIG.6B

 $\begin{tabular}{ll} $16/62$ \\ Nucleotide Sequence of First Rhesus Monkey CEA \\ \end{tabular}$

1	ATCCCCTCTC	CCTCACCCCC	TCTTCACAGA	TGGTGCATCC	CCTCCCAGAC
51				CTGGAACCCG	
101				ATGTTGCAGA	
151				AATCTTTTTG	
201				TCGAATTGGA	
251				CACACAGCGG	
301				AATGTCACCC	
351				AGATCTTGTG	
401				TGCCCAAGCC	
451				GATGCTGTGG	
501				GTGGTGGGTA	
551				CCAGTGACAA	
601				ACATCCTACA	
651				CCCAGTCACC	
701				CTCTAAACAC	
751				GCAGCCTCTA	
801				CCAGCAATCC	
851				GCGGATCCTA	
901			-	ACCACAGTCA	
951				CACCAGCAAC	
1001				CCTGTGAACC	
1051				CAGAGCCTCT	
1101				CCTCACTGTA	
1151				AGACCCAGAA	
1201				GTCCTCTATG	
1251				CAGAGCAGGG	
1301					CTCTTGGTTT.
1351				GAGCTCTTTA	
1401					AACTCAGCCA
1451				TCACAGTCTA	
1501				AACCCCATAG	· ·
1551				TGAGAACACA	
1601					GCAGCTCTCC
1651	AATGGCAACA	GGATCCTCAC	TCTACTCAGT	GTCACACGGA	ATGACACAGG
1701					CGCAGTGACC
1751					CATATCCCCC
1801	CCAGACTTGT	CTTACCGTTC	GGGAGCAAAC	CTCAACCTCT	CCTGCCACTC

FIG.7A-1

17/62

1851	GGACTCTAAC	CCATCCCCGC	AGTATTCTTG	GCTTATCAAT	GGGACACTGC
1901	GGCAACACAC	ACAAGTTCTC	TTTATCTCCA	AAATCACATC	AAACAATAGC
1951	GGGGCCTATG	CCTGTTTTGT	CTCTAACTTG	GCTACCGGTC	GCAATAACTC
2001	CATAGTCAAG	AACATCTCAG	TCTCCTCTGG	CGATTCAGCA	CCTGGAAGTT
2051	CTGGTCTCTC	AGCTAGGGCT	ACTGTCGGCA	TCATAATTGG	AATGCTGGTT
2101	GGGGTTGCTC	TGATGTAG (S	SEQ ID NO:16	5)	

FIG.7A-2

18/62

Nucleotide Sequence of Second Rhesus Monkey CEA

1	ATGGGGTCTC	CCTCAGCCCC	TCTTCACAGA	TGGTGCATCC	CCTGGCAGAC
51		ACAGCCTCAC			
101		TATTGAATCC	-		*-
151		TTGCCCACAA			
201		GAAAGAGTGG			
251		ACAAATTACC			
301		ATGCATCCCT			
351	AGGATCCTAC	ACCATACAAG	TCATAAAGGA	AGATCTTGTG	AATGAAGAAG
401	CAACTGGCCA	GTTCCGGGTA	TACCCGGAGC	TGCCCAAGCC	CTACATCTCC
451	AGCAACAACT	CCAACCCCGT	GGAGGACAAG	GATGCTGTGG	CCTTAACCTG
501	TGAACCTGAG	ACTCAGGACA	CAACCTACCT	GTGGTGGGTA	AACAATCAGA
551	GCCTCCCGGT	CAGTCCCAGG	CTGGAGCTGT	CCAGTGACAA	CAGGACCCTC
601	ACTGTATTCA	ATATTCCAAG	AAATGACACA	ACATCCTACA	AATGTGAAAC
651	CCAGAACCCA	GTGAGTGTCA	GACGCAGCGA	CCCAGTCACC	CTGAACGTCC
701	TCTATGGCCC	GGATGCGCCC	ACCATTTCCC	CTCTAAACAC	ACCTTACAGA
751	GCAGGGGAAA	ATCTGAACCT	CACCTGCCAC	GCAGCCTCTA	ACCCAACTGC
801	ACAGTACTTT	TGGTTTGTCA	ATGGGACGTT	CCAGCAATCC	ACACAAGAGC
851	TCTTTATACC	CAACATCACC	GTGAATAATA	GCGGATCCTA	TATGTGCCAA
901	GCCCATAACT	CAGCCACTGG	CCTCAATAGG	ACCACAGTCA	CGGCGATCAC
951	AGTCTACGCG	GAGCTGCCCA	AGCCCTACAT	CACCAGCAAC	AACTCCAACC
1001		CAAGGATGCT			
1051		ACCTGTGGTG			
1101		CTGTCCAATG			
1151	CAAGAAACGA	CACAACGTTC	TACGAATGTG	AGACCCAGAA	CCCAGTGAGT
1201		GCGACCCAGT			-
1251	GCCCACCATT	TCCCCTCTAA	ACACACCTTA	CAGAGCAGGG	GAAAATCTGA
1301		CCACGCAGCC			
1351		CGTTCCAGCA			
1401		AATAGCGGAT			
1451		TAGGACCACA			
1501		ACATCTCCAG			
1551		TTAACCTGTG			
1601		CAATCAGAGC			
1651		GGATCCTCAC			
1701		TGTGGAATCC			
1751		GAATGTCACC			
1801	CCAGACTTGT	CTTACCGTTC	GGGAGCAAAC	CTCAACCTCT	CCTGCCACTC

19/62

1851	GGACTCTAAC	CCATCCCCGC	AGTATTCTTG	GCTTATCAAT	GGGACACTGC
1901	GGCAACACAC	ACAAGTTCTC	TTTATCTCCA	AAATCACATC	AAACAATAAC
1951	GGGGCCTATG	CCTGTTTTGT	CTCTAACTTG	GCTACCGGTC	GCAATAACTC
2001	CATAGTCAAG	AACATCTCAG	TCTCCTCTGG	CGATTCAGCA	CCTGGAAGTT
2051	CTGGTCTCTC	AGCTAGGGCT	ACTGTCGGCA	TCATAATTGG	AATGCTGGTT
2101	GGGGTTGCTC	TGATGTAG (S	SEQ ID NO:17	7)	

FIG.7B-2

20/62

Amino Acid Sequence of First Rhesus Monkey CEA Protein

1	MGSPSAPLHR	WCIPWQTLLL	TASLLTFWNP	PTTAQLTIES	RPFNVAEGKE
51	VLLLAHNVSQ	NLFGYIWYKG	ERVDASRRIG	SCVIRTQQIT	PGPAHSGRET
101	IDFNASLLIH	NVTQSDTGSY	TIQVIKEDLV	NEEATGQFRV	YPELPKPYIS
151	SNNSNPVEDK	DAVALTCEPE	TQDTTYLWWV	NNQSLPVSPR	LELSSDNRTL
201	TVFNIPRNDT	TSYKCETQNP	VSVRRSDPVT	LNVLYGPDAP	TISPLNTPYR
251	AGENLNLTCH	AASNPTAQYF	WFVNGTFQQS	TQELFIPNIT	VNNSGSYMCQ
301	AHNSATGLNR	TTVTAITVYA	ELPKPYITSN	NSNPIEDKDA	VTLTCEPETQ
351	DTTYLWWVNN	QSLSVSSRLE	LSNDNRTLTV	FNIPRNDTTF	YECETQNPVS
401	VRRSDPVTLN	VLYGPDAPTI	SPLNTPYRAG	ENLNLSCHAA	SNPAAQYSWF
451	VNGTFQQSTQ	ELFIPNITVN	NSGSYMCQAH	NSATGLNRTT	VTAITVYVEL
501	PKPYISSNNS	NPIEDKDAVT	LTCEPVAENT	TYLWWVNNQS	LSVSPRLQLS
551	NGNRILTLLS	VTRNDTGPYE	CGIQNSESAK	RSDPVTLNVT	YGPDTPIISP
601	PDLSYRSGAN	LNLSCHSDSN	PSPQYSWLIN	GTLRQHTQVL	FISKITSNNS
651	GAYACFVSNL	ATGRNNSIVK	NISVSSGDSA	PGSSGLSARA	TVGIIIGMLV
701	GVALM (SEQ	ID N0:18)			

FIG.7C

Amino Acid Sequence of Second Rhesus Monkey CEA Protein

```
1
       MGSPSAPLHR WCIPWQTLLL TASLLTFWNP PTTAQLTIES RPFNVAEGKE
51
       VLLLAHNVSQ NLFGYIWYKG ERVDASRRIG SCVIRTQQIT PGPAHSGRET
       IDFNASLLIH NVTOSDTGSY TIQVIKEDLV NEEATGOFRV YPELPKPYIS
101
       SNNSNPVEDK DAVALTCEPE TODTTYLWWV NNQSLPVSPR LELSSDNRTL
151
201
       TVFNIPRNDT TSYKCETONP VSVRRSDPVT LNVLYGPDAP TISPENTPYR
251
       AGENLNLTCH AASNPTAQYF WFVNGTFQQS-TQELFIPNIT VNNSGSYMCQ
301
       AHNSATGLNR TTVTAITVYA ELPKPYITSN NSNPIEDKDA VTLTGEPÆTO
351
       DTTYLWWVNN QSLSVSSRLE LSNDNRTLTV FNIPRNDTTF YECETONPVS
401
       VRRSDPVTLN VLYGPDAPTI SPLNTPYRAG ENLNLSCHAA SNPAAQYFWF
451
       VNGTFOOSTO ELFIPNITVN NSGSYMCOAH NSATGLNRTT VTAITVYVEL
501
       PKPYISSNNS NPIEDKDAVT LTCEPVAENT TYLWWVNNQS LSVSPRLQLS
       NGNRILTLLS VTRNDTGPYE CGIQNSESAK RSDPVTLNVT YGPDTPIISP
551
601
       PDLSYRSGAN LNLSCHSDSN PSPQYSWLIN GTLROHTQVL FISKITSNNN
651
       GAYACFVSNL ATGRNNSIVK NISVSSGDSA PGSSGLSARA TVGIIIGMLV
701
       GVALM (SEQ ID N0:19)
```

FIG.7D

21/62

Amino Acid Sequence of Human CEA Protein

```
MESPSAPPHR WCIPWQRLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE
  1
 51
       VLLLVHNLPQ HLFGYSWYKG ERVDGNRQII GYVIGTQQAT PGPAYSGREI
       IYPNASLLIQ NIIQNDTGFY TLHVIKSDLV NEEATGQFRV YPELPKPSIS
101
151
       SNNSKPVEDK DAVAFTCEPE TQDATYLWWV NNOSLPVSPR LOLSNGNRTL
       TLFNVTRNDT ASYKCETQNP VSARRSDSVI LNVLYGPDAP TISPLNTSYR
201
251
       SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ
301
       AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCFPFIO
351
       NTTYLWWVNN QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS
401
       VDHSDPVILN VLYGPDDPTI SPSYTYYRPG VNLSLSCHAA SNPPAOYSWL
451
       IDGNIQQHTQ ELFISNITEK NSGLYTCQAN NSASGHSRTT VKTITVSAEL
501
       PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS LPVSPRLQLS
551
       NGNRTLTLFN VTRNDARAYV CGIONSVSAN RSDPVTLDVL YGPDTPIISP
601
       PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN
651
       GTYACFVSNL ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGULVGVA
701
      LI (SEQ ID N0:20)
```

FIG.7E

140 120 100 80 60 40 20 CEA_{opt}LTB CEA_{opt} pVIJ derivatives FIG.8B

FIG.10A

FIG.10B-1

FIG.11

FIG. 1.2

FIG.14A

FIG.14B

FIG.14C

FIG.17A

FIG.17B

FIG.18A

FIG.18B

FIG.19A

FIG.19B

FIG.20B

FIG.21A

FIG.21B

FIG.21C

FIG.21D

FIG.22A

FIG.22B

FIG.23

46/62

MESPSAPPHR WCIP WQR. ATGGAGAGCC CCAGCGCCCC CCCCCACCGC TGGTGCATCC CCTGGCAGCG 1 ·LLLTASLLTFWNPPTTA CCTGCTGCTG ACCGCCAGCC TGCTGACCTT CTGGAACCCC CCCACCACCG 51 · KITIES TPFN V A E G K E CCAAGCTGAC CATCGAGAGC ACCCCCTTCA ACGTGGCCGA GGGCAAGGAG 101 V L L L V H N L P Q H L F G Y S W · GTGCTGCTGC TGGTGCACAA CCTGCCCCAG CACCTGTTCG GCTACAGCTG 151 ·YKGFRVDGNROIIGYVI GTACAAGGC GAGCGCGTGG ACGGCAACCG CCAGATCATC GGCTACGTGA 201 · G T O O A T P G P A Y S G RFI TCGGCACCCA GCAGGCCACC CCCGGCCCCG CCTACAGCGG CCGCGAGATC 251 I Y P N A S L L I Q N I I Q N D T · ATCTACCCCA ACGCCAGCCT GCTGATCCAG AACATCATCC AGAACGACAC 301 · G F Y T L H V I K S D L V N E E A CGGCTTCTAC ACCCTGCACG TGATCAAGAG CGACCTGGTG AACGAGGAGG 351 TGO FRV YPEL PKP CCACCGGCCA GTTCCGCGTG TACCCCGAGC TGCCCAAGCC CAGCATCAGC 401 SNNS KPV EDK DAVAFTC: AGCAACAACA GCAAGCCCGT GGAGGACAAG GACGCCGTGG CCTTCACCTG 451 · F P F T O D A T Y L W W V N N O S CGAGCCCGAG ACCCAGGACG CCACCTACCT GTGGTGGGTG AACAACCAGA 501 · L P V S P R L Q L S N G N R T L 551 GCCTGCCCGT GAGCCCCCGC CTGCAGCTGA GCAACGGCAA CCGCACCCTG TLFN V TR N D T A S Y K C E T · ACCCTGTTCA ACGTGACCCG CAACGACACC GCCAGCTACA AGTGCGAGAC 601 · O N P V S A R R S D S V I L N V L CCAGAACCCC GTGAGCGCC GCCGCAGCGA CAGCGTGATC CTGAACGTGC 651 SYR YGPDAPTISPLNT TGTACGGCCC CGACGCCCCC ACCATCAGCC CCCTGAACAC CAGCTACCGC 701 S G E N L N L S C H A A S N P P A · AGCGGCGAGA ACCTGAACCT GAGCTGCCAC GCCGCCAGCA ACCCCCCCGC 751 · O Y S W F V N G T F O O S T O E L CCAGTACAGC TGGTTCGTGA ACGGCACCTT CCAGCAGAGC ACCCAGGAGC 801 · FIPNIT VNNS GSYTCQ TGTTCATCCC CAACATCACC GTGAACAACA GCGGCAGCTA CACCTGCCAG 851 AHNS DIG LNR TIVI TIIT. GCCCACAACA GCGACACCGG CCTGAACCGC ACCACCGTGA CCACCATCAC 901 · V Y A E P P K P F I T S N N S N P CGTGTACGCC GAGCCCCCCA AGCCCTTCAT CACCAGCAAC AACAGCAACC 951 · VEDEDA VALT CEPEIO

```
CCGTGGAGGA CGAGGACGCC GTGGCCCTGA CCTGCGAGCC CGAGATCCAG
     NTTYLWWVNNOSLPVSP.
    AACACCACCT ACCTGTGGTG GGTGAACAAC CAGAGCCTGC CCGTGAGCCC
1051
    · R L Q L S N D N R T L T L L S V T ·
    CCGCCTGCAG CTGAGCAACG ACAACCGCAC CCTGACCCTG CTGAGCGTGA
1101
       RND V G P Y E C G I O N E L S
    CCCGCAACGA CGTGGGCCCC TACGAGTGCG GCATCCAGAA CGAGCTGAGC
1151
     V D H S D P V I L N V L Y G P D D.
    GTGGACCACA GCGACCCCGT GATCCTGAAC GTGCTGTACG GCCCCGACGA
1201
              S P S Y T Y Y R P G V N L S ·
    CCCCACCATC AGCCCCAGCT ACACCTACTA CCGCCCCGGC GTGAACCTGA
1251
    · L S C H A A S N P P A O Y S W L
    GCCTGAGCTG CCACGCCGCC AGCAACCCCC CCGCCCAGTA CAGCTGGCTG
1301
     IDGN IOO HTO ELFI SNI:
    ATCGACGCA ACATCCAGCA GCACACCCAG GAGCTGTTCA TCAGCAACAT
1351
    · T E K N S G L Y T C O A N N S A S ·
    CACCGAGAAG AACAGCGGCC TGTACACCTG CCAGGCCAAC AACAGCGCCA
1401
       G H S R T T V K T I T V S A E L
    GCGGCCACAG CCGCACCACC GTGAAGACCA TCACCGTGAG CGCCGAGCTG
1451
     PKPS ISS NNS KPVE DKD.
    CCCAAGCCCA GCATCAGCAG CAACAACAGC AAGCCCGTGG AGGACAAGGA
1501
    · A V A F T C E P E A O N T T Y L W ·
    CGCCGTGGCC TTCACCTGCG AGCCCGAGGC CCAGAACACC ACCTACCTGT
1551
       W V N G Q S L P V S P R L Q L S
    GGTGGGTGAA CGGCCAGAGC CTGCCCGTGA GCCCCCGCCT :GCAGCTGAGC
     NGNRTLT L FN V TRN D.A R.
    AACGGCAACC GCACCCTGAC CCTGTTCAAC GTGACCCGCA ACGACGCCCG
     · A Y V C G I Q N S V S A N R S · D · P · ·
    CGCCTACGTG TGCGGCATCC AGAACAGCGT GAGCGCCAAC GGGAGCGACC --
1701
       V T'L D V L Y G P D T P I I S.:P .
    CCGTGACCCT GGACGTGCTG TACGGCCCCG ACACCCCCAT;CATCAGCCCC
     PDSSYLSGANLNLSC.H<sub>1</sub>S·-
     CCCGACAGCA GCTACCTGAG CGGCGCCAAC CTGAACCTGA GCTGCCACAG
1801
     · A S N P S P O Y S W R I N G I P O :-
     CGCCAGCAAC CCCAGCCCCC AGTACAGCTG GCGCATCAAC GGCATCCCCC
1851
       Q H T Q V L F I A K I T P N N N
     AGCAGCACAC CCAGGTGCTG TTCATCGCCA AGATCACCCC CAACAACAAC
1901
     GTYACEV SNLATGRNNS.
     GGCACCTACG CCTGCTTCGT GAGCAACCTG GCCACCGGCC GCAACAACAG
1951
     ·IVKSITVSASGTS
                                        R S T P ·
     CATCGTGAAG AGCATCACCG TGAGCGCCAG CGGCACCTCT AGAAGCACCC
2001
     · I P F S Y S K N L D C W V D N E
```


FIG.26A-3

49/62

MESPSAPPHR WCIP WQR LLL 1 ATGGAGAGCC CCAGCGCCCC CCCCCACCGC TGGTGCATCC CCTGGCAGCG CCTGCTGCTG TASL L T F W N P P T T A K L T I E 61 ACCGCCAGCC TGCTGACCTT CTGGAACCCC CCCACCACCG CCAAGCTGAC CATCGAGAGC TPFN V A E G K E V L L L V H N L P O 121 ACCCCCTTCA ACGTGGCCGA GGGCAAGGAG GTGCTGCTGC TGGTGCACAA CCTGCCCCAG H L F G Y S W Y K G E R V D G N R O I I 181 CACCTGTTCG GCTACAGCTG GTACAAGGGC GAGCGCGTGG ACGGCAACCG CCAGATCATC G Y V I G T Q Q A T P G P A Y S G R E I 241 GGCTACGTGA TCGGCACCCA GCAGGCCACC CCCGGCCCCG CCTACAGCGG CCGCGAGATC I Y P N A S L L I O N I I O N D T G F Y 301 ATCTACCCCA ACGCCAGCCT GCTGATCCAG AACATCATCC AGAACGACAC CGGCTTCTAC TLHV IKS DLV NEEA TGQ FRV 361 ACCCTGCACG TGATCAAGAG CGACCTGGTG AACGAGGAGG CCACCGGCCA GTTCCGCGTG Y P E L P K P S I S S N N S K P V E D K 421 TACCCCGAGC TGCCCAAGCC CAGCATCAGC AGCAACAACA GCAAGCCCGT GGAGGACAAG D A V A F T C E P E T O D A T Y L 481 GACGCCGTGG CCTTCACCTG CGAGCCCGAG ACCCAGGACG CCACCTACCT GTGGTGGGTG N N Q S L P V S P R L Q L S N G N 541 AACAACCAGA GCCTGCCCGT GAGCCCCCGC CTGCAGCTGA GCAACGGCAA CCGCACCCTG TLFN V TR N D T A S Y K C E T O N P 601 ACCCTGTTCA ACGTGACCCG CAACGACACC GCCAGCTACA AGTGCGAGAC CCAGAACCCC V S A R R S D S V I L N V L Y G P D A P 661 GTGAGCGCCC GCCGCAGCGA CAGCGTGATC CTGAACGTGC TGTACGGCCC CGACGCCCCC TISPLNTSYRSGENLNL 721 ACCATCAGCC CCCTGAACAC CAGCTACCGC AGCGGCGAGA ACCTGAACCT GAGCTGCCAC AASN PPA OYS W F V N G T F 781 GCCGCCAGCA ACCCCCCGC CCAGTACAGC TGGTTCGTGA ACGGCACCTT, CCAGCAGAGC TQELFIPNIT VNNS~G~S~Y~T~~C~Q~ 841 ACCCAGGAGC TGTTCATCCC CAACATCACC GTGAACAACA GCGGCAGCTALCACCTGCCAG AHNS DTGLNRTTVT2TIET.-WYYEAT-901 GCCCACAACA GCGACACCGG CCTGAACCGC ACCACCGTGA CCACCATCAC CGTGTACGCC EPPK PFI TSN NSN P V E D E D A 961 GAGCCCCCA AGCCCTTCAT CACCAGCAAC AACAGCAACC CCGTGGAGGA CGAGGACGCC VALT CEPEIO NTTYALWW VNNS 1021 GTGGCCCTGA CCTGCGAGCC CGAGATCCAG AACACCACCT ACCTGTGGTG GGTGAACAAC QSLP V S P R L Q L S N D · N R · T L T L 1081 CAGAGCCTGC CCGTGAGCCC CCGCCTGCAG CTGAGCAACG ACAACCGCAC CCTGACCCTG LSVT RND V G P Y E C G I O N E L S 1141 CTGAGCGTGA CCCGCAACGA CGTGGGCCCC TACGAGTGCG GCATCCAGAA CGAGCTGAGC V D H S D P V I L N V L Y G P D D P T I

50/62

1201 GTGGACCACA GCGACCCCGT GATCCTGAAC GTGCTGTACG GCCCCGACGA CCCCACCATC S P S Y T Y Y R P G V N L S L S C 1261 AGCCCCAGCT ACACCTACTA CCGCCCCGGC GTGAACCTGA GCCTGAGCTG CCACGCCGCC SNPP A O Y SWL I D G N I O O H T O 1321 AGCAACCCC CCGCCCAGTA CAGCTGGCTG ATCGACGGCA ACATCCAGCA GCACACCCAG ELFI SNI TEKN SGL Y T C 1381 GAGCTGTTCA TCAGCAACAT CACCGAGAAG AACAGCGGCC TGTACACCTG CCAGGCCAAC N S A S G H S R T T V K T I T V S 1441 AACAGCGCCA GCGGCCACAG CCGCACCACC GTGAAGACCA TCACCGTGAG CGCCGAGCTG PKPS ISS NNS KPVE DKD AVA 1501 CCCAAGCCCA GCATCAGCAG CAACAACAGC AAGCCCGTGG AGGACAAGGA CGCCGTGGCC FTCE PEA QNT TYLW W V N 1561 TTCACCTGCG AGCCCGAGGC CCAGAACACC ACCTACCTGT GGTGGGTGAA CGGCCAGAGC L P V S P R L O L S N G N R T L T L F N 1621 CTGCCCGTGA GCCCCCGCCT GCAGCTGAGC AACGGCAACC GCACCCTGAC CCTGTTCAAC V T R N D A R A Y V C G I O N S V 1681 GTGACCCGCA ACGACGCCCG CGCCTACGTG TGCGGCATCC AGAACAGCGT GAGCGCCAAC R S D P V T L D V L Y G P D T P I ISP 1741 CGCAGCGACC CCGTGACCCT GGACGTGCTG TACGGCCCCG ACACCCCCAT CATCAGCCCC PDSS YLS GAN LNLS CHS 1801 CCCGACAGCA GCTACCTGAG CGGCGCCAAC CTGAACCTGA GCTGCCACAG CGCCAGCAAC PSPQ YSW RINGIPQ QHT QV L 1861 CCCAGCCCC AGTACAGCTG GCGCATCAAC GGCATCCCCC AGCAGCACAC CCAGGTGCTG I T P N N N G T Y A C F V FIAK 1921 TTCATCGCCA AGATCACCCC CAACAACAAC GGCACCTACG CCTGCTTCGT GAGCAACCTG ATGRNNS IVK SITV SAS 1981 GCCACCGGCC GCAACAACAG CATCGTGAAG AGCATCACCG TGAGCGCCAG CGGCACC<u>TCT</u> RKTH T C P P C P A P E L L G G 2041 AGAAAGACCC ACACCTGCCC CCCTTGCCCT GCCCCTGAGC TGCTGGGCGG ACCCAGCGTG F L F P P K P K D T L M I S R T P E V T 2101 TTCCTGTTCC CCCCCAAGCC TAAGGACACC CTCATGATCA GCAGAACCCC CGAGGTGACC CVVVDVSHEDPEVKFNW[YXV3D" 2161 TGCGTGGTGG TGGACGTGAG CCACGAGGAT CCCGAGGTGA AGTTCAACTG GTACGTGGAC G V E V H N A K T K P R E E O Y N 2221 GGCGTGGAGG TGCACAATGC CAAGACCAAG CCCAGAGAGG AGCAGTACAA CAGCACCTAC R V V S . V L T V L H O D W L N G K 2281 AGAGTGGTGA GCGTGCTCAC CGTGCTGCAC CAGGATTGGC TGAACGGCAA GGAGTACAAG CKVS NKA LPAPIEK TIS 2341 TGCAAGGTGA GCAACAAGGC CCTGCCTGCC CCCATCGAGA AAACCATCAG CAAGGCCAAG GOPREPOVYT LPPS RDE LTK

2401	GGCCA	GCCCA	4 G/	4GAG	CCC	CA	GGT)AT	CACC	CTG	CCC	CCT	Α	GCAG	AGAT	ΓGA	GTT(GACC	CAAG
	N Q	V	S	L	Ţ	C	L	V	Κ	G	F	Υ	Р	S	D	I	Α	V	E
2461	AACCA	GGTG/	4 G(CCTC	ACA	TG	CCT	GGT	S AAG	GGC	TTC	CTAC	CC	CCAG	CGA	CAT	CGC	CGT	GAG
	W E	S	N	G	Q	Р	Ε	N	Ν	Υ	K	T	Τ	Р	Р	V	L	D	S
2521	TGGGA	GAGC	A A	CGGC	CAG	GCC	CGA	GAA	CAAC	TAC	CAA	GAC	CA	CCCC	CCC	TGT	GCT	GGA	CAGC
	D G	S	F	F	L	Y	S	K	L	T	٧	D	Κ	S	R	W	Q	Q	G
2581	GATGG	CAGC	T	CTTC	CTO	AT	CAG	CAA	GCTC	AC(CGT	GGA	CA	AGAG	GCAG	ATG	GCA	GCA	GGGC
	N V	F	S	С	S	V	Μ	Н	Ε	Α	L	Н	Ν	Н	Υ	T	Q	K	S
2641	AACGT	GTTC.	A G	CTGC	AGC	CGT	GAT	GCA	CGAG	GC(CCT	GCA	CA	ATCA	ACTA	CAC	CCA	GAA	GAGC
	L S	L	S	Р	G	Κ	*	(S	EQ I	D NO):4	6)							
2701	CTGAG	CCTG	A G	CCCC	GGC	CAA	GTA	A	(SE	Q II) N	0:2	5)						

FIG.27A-3

			J J			
	cctcggcccc					
	ttctaacctt					
	atgtcgcaga					
	gctacagctg					
	taggaactca					
	atgcatccct			•		
	tcataaagtc					
	tgcccaagcc					
	ccttcacctg					
	gcctcccggt					
	atgtcacaag					
	ggcgcagtga					
	ctctaaacac					
	acccacctgc					
	tctttatccc					
gcccataact	cagacactgg	cctcaatagg	accacagtca	cgacgatcac	agtctatgca	960
	aacccttcat					
	cctgtgaacc					
cagagcctcc	cggtcagtcc	caggctgcag	ctgtccaatg	acaacaggac	cctcactcta	1140
ctcagtgtca	caaggaatga	tgtaggaccc	tatgagtgtg	gaatccagaa	cgaattaagt	1200
	gcgacccagt					
	acacctatta					
	ctgcacagta					
	tctccaacat					
	gtggccacag					
cccaagccct	ccatctccag	caacaactcc	aaacccgtgg	aggacaagga	tgctgtggcc	1560
	aacctgaggc					
	gtcccaggct					
gtcacaagaa	atgacgcaag	agcctatgta	tgtggaatcc	agaactcagt	gagtgcaaac	1740
cgcagtgacc	cagtcaccct	ggatgtcctc	tatgggccgg	acacccccat	catttccccc	1800
ccagactcgt	cttacctttc	gggagcgaac	ctcaacctct	cctgccactc	ggcctctaac	1860
	agtattcttg					
tttatcgcca	aaatcacgcc	aaataataac	gggacctatg	cctgttttgt	ctctaacttg	1980
gctactggcc	gcaataattc	catagtcaag	agcatcacag	tctctgcatc	tggaact(SÊ	Q ID NO:22)
						

FIG.28A

1	MESPSAPPHR	WCIPWQRLLL	TASLLTFWNP	PTTAKLTIES	TPFNVAEGKE
51	VLLLVHNLPQ	HLFGYSWYKG	ERVDGNRQII	GYVIGTQQAT	PGPAYSGREI
101	IYPNASLLIQ	NIIQNDTGFY	TLHVIKSDLV	NEEATGQFRV	YPELPKPSIS
151	SNNSKPVEDK	DAVAFTCEPE	TQDATYLWWV	NNQSLPVSPR	LQLSNGNRTL
201	TLFNVTRNDT	ASYKCETQNP	VSARRSDSVI	LNVLYGPDAP	TISPLNTSYR
251	SGENLNLSCH	AASNPPAQYS	WFVNGTFQQS	TQELFIPNIT	VNNSGSYTCQ
301	AHNSDTGLNR	TTVTTITVYA	EPPKPFITSN	NSNPVEDEDA	VALTCEPEIQ
351	NTTYLWWVNN	QSLPVSPRLQ	LSNDNRTLTL	LSVTRNDVGP	YECGIQNELS
401	VDHSDPVILN	VLYGPDDPTI	SPSYTYYRPG	VNLSLSCHAA	SNPPAQYSWL
451	IDGNIQQHTQ	ELFISNITEK	NSGLYTCQAN	NSASGHSRTT	VKTITVSÆEL
501	PKPSISSNNS	KPVEDKDAVA	FTCEPEAQNT	TYLWWVNGQS	LPVSPRLQLS
551	NGNRTLTLFN	VTRNDARAYV	CGIQNSVSAN	RSDPVTLDVL	YGPDTPIISP
601	PDSSYLSGAN	LNLSCHSASN	PSPQYSWRIN	GIPQQHTQVL	FIAKITPNNN
651	GTYACFVSNL	ATGRNNSIVK	SITVSASGT	(SEQ ID NO:2	23)

FIG.28B

54/62

D S T P I P F S Y S KNLDCWV GATTCAACAC CAATTCCATT TTCTTATTCT AAAAATCTGG ATTGTTGGGT TGATAATGAA 1 K K S V Ţ L TILN L D Ι N NGAAGATATAG ATGTTATATT AAAAAAGAGT ACAATTTTAA ATTTAGATAT TAATAATGAT SVIT I S G F N S Υ Р D ATTATATCAG ATATATCTGG GTTTAATTCA TCTGTAATAA CATATCCAGA TGCTCAATTG 121 A I H LVNN Ε S N G K V P G I GTGCCCGGAA TAAATGGCAA AGCAATACAT TTAGTAAACA ATGAATCTTC TGAAGTTATA 181 EYN DMFN NFT M D I GTGCATAAAG CTATGGATAT TGAATATAAT GATATGTTTA ATAATTTTAC CGTTAGCTTT 241 Y G T WLRV PKV S A S HLEQ TGGTTGAGGG TTCCTAAAGT ATCTGCTAGT CATTTAGAAC AATATGGCAC AAATGAGTAT 301 SMKKHS LSIG S G W S V S IIS TCAATAATTA GCTCTATGAA AAAACATAGT CTATCAATAG GATCTGGTTG GAGTGTATCA 361 N L I WTL K D S A G E V R Q ICTTAAAGGTA ATAACTTAAT ATGGACTTTA AAAGATTCCG CGGGAGAAGT TAGACAAATA N K W VFI L P D KFN AYLA TFRD ACTITTAGGG ATTTACCTGA TAAATTTAAT GCTTATTTAG CAAATAAATG GGTTTTTATA 481 NLYI N G V TITN D R L SSA ACTATTACTA ATGATAGATT ATCTTCTGCT AATTTGTATA TAAATGGAGT ACTTATGGGA REDN NIT SAÉI T G L G A I AGTGCAGAAA TTACTGGTTT AGGAGCTATT AGAGAGGATA ATAATATAAC ATTAAAACTA 601 O Y VSIDKFRI N N NGATAGATGTA ATAATAATAA TCAATACGTT TCTATTGATA AATTTAGGAT ATTTTGCAAA EKL YTSY L S ALNP KEI GCATTAAATC CAAAAGAGAT TGAAAAATTA TACACAAGTT ATTTATCTAT AACCTTTTTA 721 *(SEO ID NO:48) -RDFW GNPLRY DTDR AGAGACTTCT GGGGAAACCC TTTACGATAT GATACAGATA GGTAG (SEQ ID_NQ:47)-781

FIG.29

1	ATGGAGTCTC	CCTCGGCCCC	TCCCCACAGA	TGGTGCATCC	CCTGGCAGAG	GCTCCTGCTC
61	ACAGCCTCAC	TTCTAACCTT	CTGGAACCCG	CCCACCACTG	CCAAGCTCAC	TATTGAATCC
121	ACGCCGTTCA	ATGTCGCAGA	GGGGAAGGAG	GTGCTTCTAC	TTGTCCACAA	TCTGCCCCAG
181	CATCTTTTTG	GCTACAGCTG	GTACAAAGGT	GAAAGAGTGG	ATGGCAACCG	TCAAATTATA
241	GGATATGTAA	TAGGAACTCA	ACAAGCTACC	CCAGGGCCCG	CATACAGTGG	TCGAGAGATA
301	ATATACCCCA	ATGCATCCCT	GCTGATCCAG	AACATCATCC	AGAATGACAC	AGGATTCTAC
361	ACCCTACACG	TCATAAAGTC	AGATCTTGTG	AATGAAGAAG	CAACTGGCCA	GTTCCGGGTA
421	TACCCGGAGC	TGCCCAAGCC	CTCCATCTCC	AGCAACAACT	CCAAACCCGT	GGAGGACAAG
481	GATGCTGTGG	CCTTCACCTG	TGAACCTGAG	ACTCAGGACG	CAACCTACCT	GTGGTGGGTA
541	AACAATCAGA	GCCTCCCGGT	CAGTCCCAGG	CTGCAGCTGT	CCAATGGCAA	CAGGACCCTC
601	ACTCTATTCA	ATGTCACAAG	AAATGACACA	GCAAGCTACA	AATGTGAAAC	CCAGAACCCA
661	GTGAGTGCCA	GGCGCAGTGA	TTCAGTCATC	CTGAATGTCC	TCTATGGCCC	GGATGCCCCC
721	ACCATTTCCC	CTCTAAACAC	ATCTTACAGA	TCAGGGGAAA	ATCTGAACCT	CTCCTGCCAC
781	GCAGCCTCTA	ACCCACCTGC	ACAGTACTCT	TGGTTTGTCA	ATGGGACTTT	CCAGCAATCC
841	ACCCAAGAGC	TCTTTATCCC	CAACATCACT	GTGAATAATA	GTGGATCCTA	TACGTGCCAA
901	GCCCATAACT	CAGACACTGG	CCTCAATAGG	ACCACAGTCA	CGACGATCAC	AGTCTATGCA
961	GAGCCACCCA	AACCCTTCAT	CACCAGCAAC	AACTCCAACC	CCGTGGAGGA	TGAGGATGCT
1021	GTAGCCTTAA	CCTGTGAACC	TGAGATTCAG	AACACAACCT	ACCTGTGGTG	GGTAAATAAT
1081	CAGAGCCTCC	CGGTCAGTCC	CAGGCTGCAG	CTGTCCAATG	ACAACAGGAC	CCTCACTCTA
1141	CTCAGTGTCA	CAAGGAATGA	TGTAGGACCC	TATGAGTGTG	GAATCCAGAA	CGAATTAAGT
1201	GTTGACCACA	GCGACCCAGT	CATCCTGAAT	GTCCTCTATG	GCCCAGACGA	CCCCACCATT
1261	TCCCCCTCAT	ACACCTATTA	CCGTCCAGGG	GTGAACCTCA	GCCTCTCCTG	CCATGCAGCC
1321	TCTAACCCAC	CTGCACAGTA	TTCTTGGCTG	ATTGATGGGA	ACATCCAGCA	ACACACACAA
1381	GAGCTCTTTA	TCTCCAACAT	CACTGAGAAG	AACAGCGGAC	TCTATACCTG	CCAGGCCAAT
1441	AACTCAGCCA	GTGGCCACAG	CAGGACTACA	GTCAAGACAA	TCACAGTCTC	TGCGGAGCTG
1501	CCCAAGCCCT	CCATCTCCAG	CAACAACTCC	AAACCCGTGG	AGGACAAGGA	TGCTGTGGCC
1561	TTCACCTGTG	AACCTGAGGC	TCAGAACACA	ACCTACCTGT	GGTGGGTAAA	TGGTCAGAGC
1621	CTCCCAGTCA	GTCCCAGGCT	GCAGCTGTCC	AATGGCAACA	GGACCCTCAC	TCTATTCAAT
1681					AGAACTCAGT	
1741					ACACCCCCAT	
1801	CCAGACTCGT	CTTACCTTTC	GGGAGCGAAC	CTCAACCTCT	CCTGCCACTC	GGCCTCTAAC
1861					AGCAACACAC	
1921	TTTATCGCCA	AAATCACGCC	AAATAATAAC	GGGACCTATG	CCTGTTTTGT	CTCTAACTTG
1981	GCTACTGGCC	GCAATAATTC	CATAGTCAAG	AGCATCACAG	TCTCTGCATC	TGGAACTCTA
2041	GATTCAACAC	CAATTCCATT	TTCTTATTCT	AAAAATCTGG	ATTGTTGGGT	TGATAATGAA
2101	GAAGATATAG	ATGTTATATT	AAAAAAGAGT	ACAATTTTAA	ATTTAGATAT	TAATAATGAT
2161	ATTATATCAG	ATATATCTGG	GTTTAATTCA	TCTGTAATAA	CATATCCAGA	TGCTCAATTG
2221					ATGAATCTTC	
2281	GTGCATAAAG	CTATGGATAT	TGAATATAAT	GATATGTTTA	ATAATTTTAC	CGTTAGCTTT
2341					AATATGGCAC	
2401	TCAATAATTA	GCTCTATGAA	AAAACATAGT	CTATCAATAG	GATCTGGTTG	GAGTGTATCA

56/62

2461	CTTAAAGGTA	ATAACTTAAT	ATGGACTTTA	AAAGATTCCG	CGGGAGAAGT	TAGACAAATA
2521	ACTTTTAGGG	ATTTACCTGA	TAAATTTAAT	GCTTATTTAG	${\sf CAAATAAATG}$	GGTTTTTATA
2581	ACTATTACTA	ATGATAGATT	ATCTTCTGCT	AATTTGTATA	TAAATGGAGT	ACTTATGGGA
2641	AGTGCAGAAA	TTACTGGTTT	AGGAGCTATT	${\sf AGAGAGGATA}$	ATAATATAAC	ATTAAAACTA
2701	GATAGATGTA	AATAATAATA	TCAATACGTT	TCTATTGATA	AATTTAGGAT	ATTTTGCAAA
2761	GCATTAAATC	CAAAAGAGAT	TGAAAAATTA	TACACAAGTT	ATTTATCTAT	AACCTTTTTA
2821	AGAGACTTCT	GGGGAAACCC	TTTACGATAT	GATATAG (SE	EQ ID NO:49))

FIG.30A-2

1	ATGGGCAGCC	CCAGCGCCCC	CCTGCACCGC	TGGTGCATCC	CCTGGCAGAC
	CCTGCTGCTG	ACCGCCAGCC	TGCTGACCTT	CTGGAACCCC	CCCACCACCG
101	CCCAGCTGAC	CATCGAGAGC	CGCCCCTTCA	ACGTGGCCGA	GGGCAAGGAG
	GTGCTGCTGC	TGGCCCACAA	CGTGAGCCAG	AACCTGTTCG	GCTACATCTG
201	GTACAAGGGC	GAGCGCGTGG	ACGCCAGCCG	CCGCATCGGC	AGCTGCGTGA
	TCCGCACCCA	GCAGATCACC	CCCGGCCCCG	CCCACAGCGG	CCGCGAGACC
301	ATCGACTTCA	ACGCCAGCCT	GCTGATCCAC	AACGTGACCC	AGAGCGACAC
	CGGCAGCTAC	ACCATCCAGG	TGATCAAGGA	GGACCTGGTG	AACGAGGAGG
401	CCACCGGCCA	GTTCCGCGTG	TACCCCGAGC	TGCCCAAGCC	CTACATCAGC
	AGCAACAACA	GCAACCCCGT	GGAGGACAAG	GACGCCGTGG	CCCTGACCTG
501	CGAGCCCGAG	ACCCAGGACA	CCACCTACCT	GTGGTGGGTG	AACAACCAGA
	GCCTGCCCGT	GAGCCCCCGC	CTGGAGCTGA	GCAGCGACAA	CCGCACCCTG
601	ACCGTGTTCA	ACATCCCCCG	CAACGACACC	ACCAGCTACA	AGTGCGAGAC
	CCAGAACCCC	GTGAGCGTGC	GCCGCAGCGA	CCCCGTGACC	CTGAACGTGC
701	TGTACGGCCC	CGACGCCCCC	ACCATCAGCC	CCCTGAACAC	CCCCTACCGC
	GCCGGCGAGA	ACCTGAACCT	GACCTGCCAC	GCCGCCAGCA	ACCCCACCGC
801	CCAGTACTTC	TGGTTCGTGA	ACGGCACCTT	CCAGCAGAGC	ACCCAGGAGC
	TGTTCATCCC	CAACATCACC	GTGAACAACA	GCGGCAGCTA	CATGTGCCAG
901	GCCCACAACA	GCGCCACCGG	CCTGAACCGC	ACCACCGTGA	CCGCCATCAC
	CGTGTACGCC	GAGCTGCCCA	AGCCCTACAT	CACCAGCAAC	AACAGCAACC
1001	CCATCGAGGA	CAAGGACGCC	GTGACCCTGA	CCTGCGAGCC	CGAGACCCAG
	GACACCACCT	ACCTGTGGTG	GGTGAACAAC	CAGAGCCTGA	GCGTGAGCAG
1101		CTGAGCAACG			
	CCCGCAACGA	CACCACCTTC	TACGAGTGCG	AGACCCAGAA	CCCCGTGAGC
1201	GTGCGCCGCA	GCGACCCCGT	GACCCTGAAC	GTGCTGTACG	GCCCCGACGC
	CCCCACCATC	AGCCCCCTGA	ACACCCCCTA	CCGCGCCGGC	GAGAACCTGA
1301	ACCTGAGCTG	CCACGCCGCC	AGCAACCCCG	CCGCCCAGTA	CAGCTGGTTC
		CCTTCCAGCA			
1401		AACAGCGGCA			
	CCGGCCTGAA	CCGCACCACC	GTGACCGCCA	TCACCGTGTA	CGTGGAGCTG
1501		ACATCAGCAG			
		CTGACCTGCG			
1601		CAACCAGAGC			
		GCATCCTGAC			
1701		TGCGGCATCC			
		GAACGTGACC			
1801		GCTACCGCAG			
		CCCAGCCCCC		· - · -	
1901		CCAGGTGCTG			
0007					GCAACAACAG
2001				· ·	AGAAGCACCC
	CCATCCCATT	CAGCTACAGC	AAGAACCTGG	ACTGCTGGGT	GGACAACGAG

2101	GAGGACATCG A	ACGTGATCCT	GAAGAAGAGC	ACCATCCTGA	ACCTGGACAT
	CAACAACGAC A	ATCATCAGCG	ACATCAGCGG	CTTCAACAGC	AGCGTGATCA
2201	CCTACCCCGA C	CGCCCAGCTG	GTGCCCGGCA	TCAACGGCAA	GGCCATCCAC
	CTGGTGAACA A	ACGAGAGCAG	CGAGGTGATC	GTGCACAAGG	CCATGGACAT
2301	CGAGTACAAC G	SACATGTTCA	ACAACTTCAC	CGTGAGCTTC	TGGCTGAGAG
	TGCCTAAGGT C	AGCGCCAGC	CACCTGGAGC	AGTACGGCAC	CAACGAGTAC
2401	AGCATCATCA G	GCAGCATGAA	GAAGCACAGC	CTGAGCATCG	GCAGCGGCTG
	GAGCGTGAGC C	CTGAAGGGCA	ACAACCTCAT	CTGGACCCTG	AAGGATAGCG
2501	CCGGAGAGGT 0	GAGACAGATC	ACCTTCAGAG	ACCTGCCCGA	CAAGTTCAAT
	GCCTACCTGG C	CCAACAAGTG	GGTGTTCATC	ACCATCACCA	ACGACAGACT
2601	GAGCAGCGCC A	ACCTGTACA	TCAACGGCGT	GCTCATGGGC	AGCGCCGAGA
	TCACCGGCCT 6	GGCGCCATC	AGAGAGGACA	ACAACATCAC	CCTGAAGCTG
2701	GACAGATGCA A	ACAACAACAA	CCAGTACGTG	AGCATCGACA	AGTTCCGGAT
	CTTCTGCAAG G	CCCTGAACC	CCAAGGAGAT	CGAGAAGCTG	TACACCAGCT
2801	ACCTGAGCAT C	CACCTTCCTG	AGAGACTTCT	GGGCAACCC	CCTGAGATAC
	GACACCTAG (S	SEQ ID NO:5	50)		

FIG.31A-2

59/62

1	MGSPSAPLHR	WCIPWQTLLL	TASLLTFWNP	PTTAQLTIES	RPFNVAEGKE
51	VLLLAHNVSQ	NLFGYIWYKG	ERVDASRRIG	SCVIRTQQIT	PGPAHSGRET
101	IDFNASLLIH	NVTQSDTGSY	TIQVIKEDLV	NEEATGQFRV	YPELPKPYIS
151	SNNSNPVEDK	DAVALTCEPE	TQDTTYLWWV	NNQSLPVSPR	LELSSDNRTL
201	TVFNIPRNDT	TSYKCETQNP	VSVRRSDPVT	LNVLYGPDAP	TISPLNTPYR
251	AGENLNLTCH	AASNPTAQYF	WFVNGTFQQS	TQELFIPNIT	VNNSGSYMCQ
301	AHNSATGLNR	TTVTAITVYA	ELPKPYITSN	NSNPIEDKDA	VTLTCEPETQ
351	DTTYLWWVNN	QSLSVSSRLE	LSNDNRTLTV	FNIPRNDTTF	YECETQNPVS
401	VRRSDPVTLN	VLYGPDAPTI	SPLNTPYRAG	ENLNLSCHAA	SNPAAQYSWF
451	VNGTFQQSTQ	ELFIPNITVN	NSGSYMCQAH	NSATGLNRTT	VTAITVYVEL
501	PKPYISSNNS	NPIEDKDAVT	LTCEPVAENT	TYLWWVNNQS	LSVSPRLQLS
551	NGNRILTLLS	VTRNDTGPYE	CGIQNSESAK	RSDPVTLNVT	YGPDTPIISP
601	PDLSYRSGAN	LNLSCHSDSN	PSPQYSWLIN	GTLRQHTQVL	FISKITSNNS ·
651	GAYACFVSNL	ATGRNNSIVK	NISVSSGDSS	RSTPIPFSYS	KNLDCWVDNE
701	EDIDVILKKS	TILNLDINND	IISDISGFNS	SVITYPDAQL	VPGINGKAIH
751	LVNNESSEVI	VHKAMDIEYN	DMFNNFTVSF	WLRVPKVSAS	HLEQYGTNEY
801	SIISSMKKHS	LSIGSGWSVS	LKGNNLIWTL	KDSAGEVRQI	TFRDLPDKFN
851	AYLANKWVFI	TITNDRLSSA	NLYINGVLMG	SAEITGLGAI	REDNNITLKL
901	DRCNNNNQYV	SIDKFRIFCK	ALNPKEIEKL	YTSYLSITFL	RDFWGNPLRY
951	DT* (SEQ II	NO:51)			

FIG.31B

			60/6	62	
1	ATGGGCAGCC	CCAGCGCCCC	CCTGCACCGC	TGGTGCATCC	CCTGGCAGAC
			TGCTGACCTT		
101	CCCAGCTGAC	CATCGAGAGC	CGCCCTTCA	ACGTGGCCGA	GGGCAAGGAG
	GTGCTGCTGC	TGGCCCACAA	CGTGAGCCAG	AACCTGTTCG	GCTACATCTG
201	GTACAAGGGC	GAGCGCGTGG	ACGCCAGCCG	CCGCATCGGC	AGCTGCGTGA
	TCCGCACCCA	GCAGATCACC	CCCGGCCCCG	CCCACAGCGG	CCGCGAGACC
301	ATCGACTTCA	ACGCCAGCCT	GCTGATCCAC	AACGTGACCC	AGAGCGACAC
	CGGCAGCTAC	ACCATCCAGG	TGATCAAGGA	GGACCTGGTG	AACGAGGAGG
401	CCACCGGCCA	GTTCCGCGTG	TACCCCGAGC	TGCCCAAGCC	CTACATCAGC
			GGAGGACAAG		
501			CCACCTACCT		
			CTGGAGCTGA		
601			CAACGACACC		
			GCCGCAGCGA		
701			ACCATCAGCC		
		· · · •	GACCTGCCAC		
801			ACGGCACCTT		
			GTGAACAACA		
901		*·	CCTGAACCGC		
			AGCCCTACAT		
1001			GTGACCCTGA		
			GGTGAACAAC		
1101			ACAACCGCAC		
			TACGAGTGCG		
1201			GACCCTGAAC		
	T		ACACCCCCTA		
1301					CAGCTGGTTC
					TCCCCAACAT
1401					AACAGCGCCA
1501					CGTGGAGCTG.
1501					AGGACAAGGA;
1.01					ACCTACCTGT. GCAGCTGAGC
1601					ACGACACCGG
1701					CGCAGCGACC
1701					CATCAGCCCC
1001					GCTGECACAG
1801					GGCACCCTGC
1901					CAACAACAGC
1301					GCAACAACAG
2001					AGAACCCCTC
700T					GATCTACACC
	HUMHUMIUMU	COMICIOIO	accunuince	HUNTURUUM	unicinonoc

FIG.32A-1

61/62

2101	CTGAACGACA	AGATCTTCAG	CTACACCGAG	AGCCTGGCCG	GCAAGAGAGA
	GATGGCCATC	ATCACCTTCA	AGAACGGCGC	CATCTTCCAG	GTGGAGGTGC
2201	CCGGCAGCCA	GCACATCGAC*	AGCCAGAAGA	AGGCCATCGA	GCGGATGAAG
	GACACCCTGC	GGATCGCCTA	CCTCACCGAG	GCCAAGGTGG	AGAAGCTGTG
2301	CGTGTGGAAC	AACAAGACCC	CTCACGCCAT	CGCCGCCATC	AGCATGGCCA
	ATTGATAAG (SEQ ID NO:5	52)		

FIG.32A-2

1	MGSPSAPLHR	WCIPWQTLLL	TASLLTFWNP	PTTAQLTIES	RPFNVAEGKE
51	VLLLAHNVSQ	NLFGYIWYKG	ERVDASRRIG	SCVIRTQQIT	PGPAHSGRET
101	IDFNASLLIH	NVTQSDTGSY	TIQVIKEDLV	NEEATGQFRV	YPELPKPYIS
151	SNNSNPVEDK	DAVALTCEPE	TQDTTYLWWV	NNQSLPVSPR	LELSSDNRTL
201	TVFNIPRNDT	TSYKCETQNP	VSVRRSDPVT	LNVLYGPDAP	TISPLNTPYR
251	AGENLNLTCH	AASNPTAQYF	WFVNGTFQQS	TQELFIPNIT	VNNSGSYMCO
301	AHNSATGLNR	AYVTIATVTT	ELPKPYITSN	NSNPIEDKDA	VTLTCEPETO
351	DTTYLWWVNN	QSLSVSSRLE	LSNDNRTLTV	FNIPRNDTTF	YECETQNPVS
401	VRRSDPVTLN	VLYGPDAPTI	SPLNTPYRAG	ENLNLSCHAA	SNPAAQYSWF
451	VNGTFQQSTQ	ELFIPNITVN	NSGSYMCQAH	NSATGLNRTT	VTAITVYVEL
501	PKPYISSNNS	NPIEDKDAVT	LTCEPVAENT	TYLWWVNNQS	LSVSPRLQLS
551	NGNRILTLLS	VTRNDTGPYE	CGIQNSESAK	RSDPVTLNVT	YGPDTPIISP
601	PDLSYRSGAN	LNLSCHSDSN	PSPQYSWLIN	GTLRQHTQVL	FISKITSNNS
651	GAYACFVSNL	ATGRNNSIVK	NISVSSGDSS	RTPQNITDLC	AEYHNTQIYT
701	LNDKIFSYTE	SLAGKREMAI	ITFKNGAIFQ	VEVPGSQHID	SQKKAIERMK
751	DTLRIAYLTE	AKVEKLCVWN	NKTPHAIAAI	SMAN** (SEC) ID NO:53)

FIG.32B