运动平台通讯接口手册

2025年09月

DARREN

目录

1 前言	3
1.1 文档目的	3
1.2 适用范围	3
2 定义	4
2.1 缩略语说明	4
2.2 坐标系定义	5
3 介绍	6
4 运动控制软件	7
4.1 系统状态机	7
4.1.1 指令字 (Run Command)	8
4.1.2 状态字 (Current State Value)	8
4.1.3 状态机转换逻辑	9
5 接口描述	10
5.1 UDP 协议	10
5.1.1 UDP 数据包仅包含数据	10
5.1.2 通用 UDP 信息	10
5.1.3 通讯配置	10
5.1.4 常规通讯流程	10
5.1.5 更新频率	11
5.1.6 UDP 报文头部	11
5.2 Message ID 定义说明	12
5.3 平台 DOF 指令模式	13
5.4 执行器位置指令模式	14
5.5 体感指令模式	15
5.6 文件播放模式	16
6 仿真器	17

1 前言

1.1 文档目的

本接口协议文档旨在规范 运动平台控制系统 与 用户上位机(Host) 之间的通讯方式和接口定义,确保双方在数据交换和功能实现上的一致性与兼容性。

通过本协议,用户可在其软件中快速集成运动平台控制接口,实现对平台的姿态控制、运行状态监测、故障诊断与异常处理等功能。

该文档主要面向以下人员:

- 软件开发人员:用于开发主机端应用程序,实现平台控制与数据交互。
- 测试人员:用于验证接口功能、通讯可靠性以及异常处理能力。
- 系统集成人员:用于理解平台与外部系统的交互方式,保证接口适配性。

1.2 适用范围

本文档适用于 六自由度并联机构运动平台 (DOF: Rx, Ry, Rz, Tx, Ty, Tz)。

通讯方式限定为 UDP 协议 / 局域网。

文档内容覆盖 指令字、状态字、数据结构、报文格式、通讯频率、故障码与警告码 等。

本文档不涉及硬件安装、机械设计、驱动器调试及非接口相关的软件实现。

2 定义

本章对接口协议中涉及的 术语、缩略语、坐标系及运动自由度 进行统一说明,以避免歧义。

2.1 缩略语说明

缩写	英文全称	中文含义
DOF	Degree of Freedom	自由度
UDP	User Datagram Protocol	用户数据报协议
IP	Internet Protocol	网络协议
JSON	JavaScript Object Notation	数据交换格式
RRP	Rotational Reference Point	旋转运动参考点
MPC	Moving Platform Centroid	动平台坐标系中心点
FPC	Fixed Platform Centroid	基座坐标系中心点
CRP	Cabin Reference Point	舱体眼点
COG	Center of Gravity	舱体重心

2.2 坐标系定义

运动平台采用 右手笛卡尔坐标系, 定义如下:

X 轴 (Sway): 指向平台右侧 (横向)

Y轴(Surge):指向平台前方(纵向)

Z轴 (Heave):指向平台上方(竖直方向)

旋转方向遵循右手螺旋定则,大拇指指向轴箭头方向,四指握紧方向为旋转正方向。

六自由度并联机构的运动平台具有 3 个平移自由度 和 3 个旋转自由度:

名称	英文名称	符号	定义	单位
俯仰	Pitch	Rx	绕 X 轴的转动	0
横摇	Roll	Ry	绕 Y 轴的转动	0
航向	Yaw	Rz	绕 Z 轴的转动	0
横移	Sway	Tx	沿 X 轴的平移	mm
纵移	Surge	Ту	沿 Y 轴的平移	mm
升降	Heave	Tz	沿 Z 轴的平移	mm

3 介绍

运动平台配套的软件主要包括以下几个部分:

应用名称	描述	部署位置
运动控制软件	运行在控制器实时系统中, 负责解析主机输入的数据, 并控制运动	平台控制器(实时计算
	平台的执行器。包含状态机逻辑、体感算法、运动学计算等功能。	机)
主机应用程序	运行在用户上位机中,负责生成运动命令数据并通过 UDP 协议发	用户主机
	送至平台控制器,同时接收平台状态反馈。	
平台仿真器	可在 Windows 环境下运行的仿真程序,模拟控制器功能,便于开	用户主机
	发和调试。	

4 运动控制软件

运动控制软件 (Motion Control Software) 是运动平台的核心模块,运行在实时控制器中,用于管理平台的整体行为。

其主要职责包括:

- 运行主状态机:根据 Run Command 控制平台在各个工作状态之间切换,并保证状态转换的安全性与可预测性。
- 执行体感算法 (Motion Cueing): 将来自主机的加速度、角速度等信号转换为平台运动,使驾驶员获得逼真的运动感受。
- 执行实时位置/姿态控制: 在绕过体感算法时, 直接接收用户设定的 6 自由度姿态指令并驱动平台运动。
- 处理运动学计算:包含六自由度并联机构的逆运动学求解,将平台期望姿态转换为各执行器的目标位置。
- **管理执行器与驱动器**:生成各缸的控制信号,监控扭矩、位置、速度等状态,确保运行安全。
- 故障与安全保护: 监控输入数据、硬件状态与安全回路, 发生异常时自动进入 Fault 或 Emergency 状态。
- **可选功能**:支持动作文件回放 (File Playback)、点到点运动 (PTP Mode)、以及增强体验的特殊效果模式 (如振动、颠簸模拟)。

4.1 系统状态机

运动平台的运行逻辑由 主状态机 (Main State Machine) 驱动。

每个状态对应不同的系统行为, 状态转换由 事件 (Event) 触发, 这些事件可以是 外部 Run Command 指令或 内部信号 (如安全回路、硬件故障、急停按钮)。

当前状态机的状态由 Status Word 反馈, 用户可通过报文实时读取。

4.1.1 指令字 (Run Command)

Run Command 为 16 位整型参数,位于 HostToMotion 报文中,用于驱动状态机转换。

值	指令名称	描述				
1	Neutral	平台运行至中位位置				
2	Run	平台进入运行状态,接受用户姿态或体感输入				
3	Descend	平台下降至底位				
5	Hold	平台保持当前位置				
6	File Play	平台执行内部动作文件				
8	Reset	从故障状态恢复				
9	Emergency	急停,平台立即停止所有运动并锁定				

4.1.2 状态字 (Current State Value)

Status Word 用于描述当前状态机状态,位于 MotionToHost 报文中。

值	状态名称	描述
0	Init	初始化状态
1	Powered Up	系统上电
2	Zeroing	平台寻零点,所有电动缸回到底位
3	Origin	平台处于零点
4	Ascend	平台由零点向中位运行
5	Neutral	平台处于中位
6	Running	正常运行,响应用户姿态/加速度输入
7	Moving To Neutral	从运行状态返回中位
9	Descending	平台由中位下降到零点
10	Holding	平台保持静止
11	Fault	故障状态,系统禁止运动
12	Emergency	急停状态,执行器立即断电制动

4.1.3 状态机转换逻辑

正常工作流程:

PoweredUp \rightarrow Zeroing \rightarrow Origin \rightarrow Ascend \rightarrow Neutral \rightarrow Running

保持与恢复:

Running ↔ Holding

Fault → Reset → PoweredUp

异常路径:

任意状态 → Emergency (急停)

任意状态 → Fault (检测到故障)

状态机转换的典型逻辑如下图所示:

5 接口描述

5.1 UDP 协议

运动平台控制系统与用户主机之间的标准通讯方式为 **UDP** (User Datagram Protocol),通过以太网进行数据交换。UDP 提供一种轻量级的、基于数据报的进程间通讯机制,适合高频率、实时性要求高的运动控制应用。

5.1.1 UDP 数据包仅包含数据

本协议中, UDP 数据报仅传输 用户数据区, 不附带其他应用层协议头。

报文结构由 Packet Header (报头) 和 Data Payload (数据负载) 两部分组成:

• 报头 (Header): 包含包长、序列号、消息 ID、指令字等基本字段。

数据负载 (Payload): 包含姿态指令、加速度输入、执行器位置、状态反馈等内容。

5.1.2 通用 UDP 信息

协议类型: IPv4 + UDP

字节序: 小端模式 (Little-Endian)

校验方式: 由 UDP 协议栈保证,不额外添加 CRC

丢包容忍: 系统对单个丢包不敏感, 因数据周期性刷新, 下一包将自动覆盖旧数据

5.1.3 诵讯配置

设备 IP 地址: 192.168.1.150

设备端口号: 10000

主机 IP 地址: 192.168.1.200

主机端口号: 10010

连接方式: 点对点静态 IP

配置完成后,主机和平台控制器之间即可进行周期性数据交换。

5.1.4 常规通讯流程

控制器周期性发送 MotionToHost 数据包,包含平台当前状态、实际位置、执行器数据、故障与警告信息。 主机周期性发送 HostToMotion 数据包至平台控制器,包含控制字与期望姿态/加速度等。 在正常运行条件下,通信双方均以 固定周期 100 Hz 刷新。

△ 若主机发送频率过低 (小于 50 Hz), 可能触发 通讯超时, 系统将自动停止运动并进入安全状态。

5.1.5 更新频率

推荐最小更新频率: 60 Hz

标准运行频率: 100 Hz

超时保护: 若连续丢失 >200 ms 的主机数据, 控制器进入安全停机状态

5.1.6 UDP 报文头部

为保证兼容性,报文头包含以下字段:

字段名	类型	描述
Packet_length	Uint32	数据包总长度,固定 128 字节
Packet_sequence_count	Uint32	数据包序号,每次递增
Reserved	Uint32	保留位
Message_ID	Uint32	消息 ID,用于区分不同控制模式

后续数据区定义依照 Message_ID 选择相应的数据格式。

5.2 Message ID 定义说明

Message ID 用于标识不同的数据包类型。所有 UDP 报文均包含 **Message ID 字段 (Uint32)**,接收方根据该值解析对应的数据结构。

1. Host → Motion Controller

Message ID	名称	描述
1	Connect Request	主机请求建立与运动控制器的通讯连接。
2	Disconnect Request	主机请求断开与运动控制器的通讯连接。
100	Platform DOF Command Mode Data	平台自由度模式: 报文包含 6 个姿态 (Pitch,
		Roll, Yaw, Surge, Sway, Heave) 的目标值。
101	Actuator Position Command Mode Data	执行器位置模式: 报文包含 6 个电动缸的目标
		位置。
102	Motion Cueing Mode Data	体感模式: 报文包含车辆加速度、角速度等输入
		信号。
103	Playback Mode Data	动作文件播放模式:报文指定 Playback File ID,
		执行预录制的动作。

2. Motion Controller → Host

Message ID	名称	描述
11	Request ACK	控制器确认接收到连接/断开请求。
12	Request NACK	控制器拒绝连接/断开请求(例如已有其他 Host 已连接)。
200	Status Data	状态数据:包含 Status Word、平台实际姿态、执行器反馈、驱动器状态、故障
		码与警告码。

☆ 说明:

- 1. 在 HostToMotion 报文中,Message ID 由用户设定,用于选择控制模式。
- 2. 在 MotionToHost 报文 中, Message ID 固定为 200, 用于表示状态反馈。
- 3. Message ID 与 **Command Word(指令字)**配合使用,Command Word 控制状态机动作,Message ID 确定报文结构。

5.3 平台 DOF 指令模式

在 Platform DOF Command Mode 下,所有六自由度指令均相对于 中位 (Neutral Position) 进行定义。

• 表示平台处于中位位置;

• 正值表示沿相应轴的 正方向偏移(按照右手坐标系定义, Z 轴正向为上, Y 轴正向为前, X 轴正向为右)。

该模式适用于需要直接控制平台姿态和位移的场景,例如飞行模拟、车辆模拟、振动测试等。

Message: Platform DOF Command Mode Data

Message ID: 100

字节大小	字段名	类型	单位	描述
16	Message Header	-	-	报文头部,包含长度、序列号、保留字段、Message ID 等。
2	Command Word	Uint16	-	指令字(Run Command),用于驱动状态机转换。
2	Reserved	Uint16	-	保留位
4	Reserved4	Uint32	-	保留位
4	Reserved5	Uint32	-	保留位
4	Pitch Command	float32	0	俯仰角目标值(绕 X 轴旋转)
4	Roll Command	float32	0	横摇角目标值(绕 Y 轴旋转)
4	Yaw Command	float32	0	航向角目标值(绕 Z 轴旋转)
4	Sway Command (X)	float32	mm	横移目标值(沿 X 轴平移)
4	Surge Command (Y)	float32	mm	纵移目标值(沿 Y 轴平移)
4	Heave Command (Z)	float32	mm	升降目标值(沿 Z 轴平移)
72	ReservedArray[18]	float32	-	保留区,用于扩展

5.4 执行器位置指令模式

在 Actuator Position Command Mode 下,主机直接给出 六个执行器的目标位置,用于控制平台姿态。

• 表示执行器处于中位位置(Neutral Position)。

• 正值表示执行器相对于中位位置 伸出, 负值表示 收缩。

该模式适用于需要直接精确控制电动缸行程的场景,例如硬件标定、平台结构调试等。

Message: Actuator Position Command Mode Data

Message ID: 101

字节大小	字段名	类型	单位	描述
16	Message Header	-	-	报文头部,包含长度、序列号、保留字段、Message ID 等
2	Command Word	Uint16	-	指令字(Run Command),用于驱动状态机转换
2	Reserved	Uint16	-	保留位
4	Reserved4	Uint32	-	保留位
4	Reserved5	Uint32	-	保留位
4	Actuator Position A	float32	mm	第 1 号执行器目标位置
4	Actuator Position B	float32	mm	第 2 号执行器目标位置
4	Actuator Position C	float32	mm	第 3 号执行器目标位置
4	Actuator Position D	float32	mm	第 4 号执行器目标位置
4	Actuator Position E	float32	mm	第 5 号执行器目标位置
4	Actuator Position F	float32	mm	第 6 号执行器目标位置
72	ReservedArray[18]	float32	-	保留区,用于扩展

5.5 体感指令模式

在 Motion Cueing Command Mode 下,主机向控制器传输 车辆/飞行器的运动学数据,包括 线加速度 和角速度。控制器使用 体感算法将这些输入信号转换为平台姿态,从而使操作者获得逼真的运动感受。

该模式适用于 飞行模拟器、驾驶模拟器、船舶摇摆模拟器 等。

报文定义

Message: Motion Cueing Mode Data

Message ID: 102

字节大小	字段名	类型	单位	描述
16	Message Header	-	-	报文头部,包含长度、序列号、保留字段、Message ID 等
2	Command Word	Uint16	-	指令字(Run Command),用于驱动状态机转换
2	SubCmd	Uint16	-	子控制字
4	Reserved4	Uint32	-	保留位
4	Reserved5	Uint32	-	保留位
4	Pitch Angular Velocity	float32	°/s	绕 X 轴角速度
4	Roll Angular Velocity	float32	°/s	绕 Y 轴角速度
4	Yaw Angular Velocity	float32	°/s	绕 Z 轴角速度
4	Sway (X) Acceleration	float32	m/s²	沿 X 轴加速度
4	Surge (Y) Acceleration	float32	m/s²	沿 Y 轴加速度
4	Heave (Z) Acceleration	float32	m/s²	沿 Z 轴加速度
72	ReservedArray[18]	float32	-	保留区,用于扩展

5.6 文件播放模式

在 Playback Mode 下,主机不再直接发送姿态或加速度指令,而是通过报文指定 **动作文件 ID** (Playback File **ID**),由控制器加载并执行内部存储的动作文件。

- 动作文件通常预先存储于控制器的 TF 卡或内部存储器中。
- 文件可包含一系列预定义的轨迹、振动曲线或实验工况。
- 当动作文件执行完成后,平台将 自动回到中位位置 (Neutral Position)。

该模式适用于 标准化测试、演示动作、预定义的运动脚本执行 等场景。

报文定义

Message: Playback Mode Data

Message ID: 103

字节大小	字段名	类型	单位	描述
16	Message Header	-	-	报文头部,包含长度、序列号、保留字段、Message ID 等
2	Command Word	Uint16	-	指令字(Run Command),用于驱动状态机转换
2	Playback File ID	Uint16	-	文件 ID,用于指定要运行的动作文件
2	Reserved2	Uint16	-	保留位
2	Reserved3	Uint16	-	保留位
4	Reserved4	Uint32	-	保留位
4	Reserved5	Uint32	-	保留位
24	ReservedArray[6]	float32	-	保留区,用于扩展
72	ReservedArray[18]	float32	-	保留区,用于扩展

6 仿真器

仿真器是一种运行在 **用户主机 (Host PC)**上的软件工具,用于在没有真实运动平台硬件的情况下,模拟运动控制系统的接口和行为。

主界面如下

功能特点

• 3D 动画

- 三维模型展示,包括上平台、下平台、执行器、坐标系和原点;
- 实时动画渲染,用户输入指令在模型上实时呈现,便于观察运动效果。

• 通讯协议完全一致

- 仿真器严格遵循 UDP 协议及报文格式规范,支持所有 Message ID 的数据交换。
- 用户主机可无缝切换目标,从真实控制器转向仿真器,而无需修改代码。

• 状态机模拟

- o 支持完整的 **Run Command** 与 **Status Word** 流程,包括 Neutral、Run、Descend、Hold、Fault、Emergency 等状态。
- 可在仿真环境下测试指令字对状态机的控制效果。

• 运动学模型

- 内部包含简化的六自由度平台运动学模型,能根据 DOF 指令或执行器指令计算平台的模拟反馈数据。
- MotionToHost 报文中的姿态值、执行器位置等均由模型实时生成。

• 体感算法调试

- 可加载体感算法,接受加速度与角速度输入,并输出相应的姿态模拟。
- 便于用户在开发阶段进行参数调校,而无需依赖真实硬件。

使用场景

软件开发阶段: 在平台硬件尚未交付时, 开发人员即可进行接口调试与逻辑验证。

系统集成测试:可在实验室环境下验证主机软件与控制接口的正确性,降低联调风险。

培训与演示:在无需启动真实平台的情况下,演示完整的控制流程和数据交互。