RAMAN Spectroscopy of liver tissue samples

A pilot study

Raman principle

https://en.wikipedia.org/wiki/Raman_spectroscopy

Advantages

- Optical, non contact, non invasive, non destructive technique
- Vibrational spectroscopy technique specific to chemical bonds
- Provides a fingerprint to identify molecules (Label-free technique)
- Mapping possibilities through XYZ scanning
- Can provide reference spectra to CARS and SRS imaging for increased spatial resolution

Instrumentation

Horiba LabRAM HR

Located at IESL

Optimizations:

- i) +785 nm laser source
- ii) +9 high refl. mirrors
- iii) obj lens 60X NA:1.2 W
- iv) Trans illumination
- v) temp stabilization

The study...

Samples:

1 normal liver slice (8um thickness on CaF2 substrate)

1 malignant liver slice (8um thickness on CaF2 substrate)

Questions:

Can Raman spectroscopy differentiate them?

What more can we learn from it?

Measurement settings

Laser source: 532nm, 100mW

Objective lens: x50, NA 0.50, air

Spot size: 1.3um spatial, 1.6um axial

Energy on the sample: 13mW

Exposure time: 30 sec/point, 9 accumulations

Spatial resolution: 3X9, 5um step

Measurement time: 2 hours

Measurement

Raman spectrum from normal liver tissue

Mapping

Pseudocolor imaging on individual tissue samples

Normal

Pseudocolor imaging on individual tissue samples

Malignant

Solutions

- Laser line at 785 nm (minimize autofluorescence <70%) to be tested soon
- Water immersion objective lens (increase signal by 3.5 times) under testing
- Surface tracing algorithms in progress
- Develop advanced machine learning algorithms under testing
- Develop the calibration methodology in progress
- Develop the reference spectra database in progress

Problems, problems, problems...

- 1. Raman is 10E-6 of the emitted signal so everything matters
- 2. Focal distance affects signal intensity
- 3. Background is different on every point due to AF
- 4. There is no calibration process to secure quantitative measurements
- 5. There is no specific reference database
- 6. Classification is currently performed on peaks comparison, manually

Preliminary results from machine learning algorithms

Work on progress...

Robust PCA (advanced signal processing)

Machine learning algorithms to extract repetitive information from large datasets.

Each color line represents a random point on the image map

Robust PCA (advanced signal processing)

Identification of common Raman signal within the 27 spatial points of the map

Robust PCA (advanced signal processing)

Raman signal differences between the 27 spatial points of the map

Thank you for your attention!