Earth Science

Where Nish meets NLP meets UAH

Problem Statement

Approach 1

Approach 1 (Inference)

Approach 2

Approach 2 (Inference Metric)

Jaccard Similarity

Overlans?

Approach 3 (Hierarchical Classifiers)

Approach 4 (Level classifiers)

Approach 5 (Flat Classification)

Tag Analysis (level=0, root)

Tag Analysis (level=1)

Tag Analysis (Level=2)

Tag Analysis (Level=-1, leaves)

Tag Analysis (Tree)

Data Analysis

Model Architecture

BERT + Linear Layer

```
(output): BertOutput(
          (dense): Linear(in features=3072, out features=768, bias=True)
         (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
 (pooler): BertPooler(
   (dense): Linear(in features=768, out features=768, bias=True)
   (activation): Tanh()
(classifier): Linear(in features=768, out features=22, bias=True)
(criterion): BCEWithLogitsLoss()
```

- After 10 epochs 402/402 [05:34<00:00, 1.20it/s, loss=0.0512, v_num=7, train_loss=0.0128, val_loss=0.0812]
- [{'test_loss': 0.07667940109968185}]

Sorry, couldn't get the proper log graph for training. :(

Jaccard Metrics

```
In [22]: 1 res = eval_jaccard_json("outputs/inference.json")
In [23]: 1 np.mean([p[-1] for p in res])
Out[23]: 0.861666666666667
```

Jaccard Metrics

NeuralNLP-NeuralClassifier framework

NeuralNLP-NeuralClassifier framework

Figure 3: Architecture of NeuralClassifier. There are four layers: an input layer, an embedding layer, an encoder

Evaluation after 25 epoch (best model at 23 epoch)

```
Performance is precision: 0.607306, recall: 0.441860, fscore: 0.511538, right: 266, predict: 438, standard: 602.
```

Train/Val Performance

- Train performance at epoch 25 is precision: 0.830596, recall: 0.889321, fscore: 0.858956, macro-fscore: 0.751426, right: 4805, predict: 5785, standard: 5403.
 Loss is: 0.003939
 - Validate performance at epoch 25 is precision: 0.505576, recall: 0.451827, fscore: 0.477193, macro-fscore: 0.047105, right: 272, predict: 538, standard: 602.
 Loss is: 0.007875.

Jaccard Similarity between Ground Truth and Predictions

(at different levels)

```
2021-07-30 11:11:44.999
                          DEBUG
                                       main :<module>:4 - [Level=0]
                                                                        0.616111111111111
                                       main :<module>:4 - [Level=1]
2021-07-30 11:11:45.007
                          DEBUG
                                                                        0.4543849206349207
                                       main :<module>:4 - [Level=2]
2021-07-30 11:11:45.013
                          DEBUG
                                                                        0.32370591676841676
2021-07-30 11:11:45.020
                          DEBUG
                                       main
                                            :<module>:4 - [Level=3]
                                                                        0.19290151515151516
2021-07-30 11:11:45.024
                          DEBUG
                                       main :<module>:4 - [Level=4]
                                                                        0.184270833333333333
```

Improvements

- Representation Learning?
- Longformer?
- Improve training loop in NeuralNLP-NeuralClassifier?

Reference

- loss function for multi-label classification
- multi-label classification using BERT
- <u>Longformer</u>
- Google's paper on representation learning for 2d documents
- NeuralClassifier: An Open-source Neural Hierarchical Multi-label Text Classification Toolkit
- NeuraClassifier GitHub
- Recursive regularization for large-scale classification with hierarchical and graphical dependencies
- Large Scale Hierarchical classification

Final Thoughts

- This was tedious (yet fun)
- It was difficult (challenging) because of "hierarchies". Interesting problem nevertheless.