人工智能

—进化算法

王晓丽

计算机科学与技术学院 副教授

	月	三月				四月				五月					六月				七月			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
星课	日期	1	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28	5	12	19
星場期	次	 7	 14	21	28	4/4	 11	 18	25	2/5	9	 16	23	30	6/6	13	20	 27	 4/7	 11	 18	25
_	1—2																					
	3—4						清			智	劳	智	智	智	智	智	端		期			
	5—6						明				动						#		**			
	7—8						#				曹						#		考试			
	晚									,,,,,,,,,,,												
=	1—2									期	排								期			
	3—4									中	课								*			
	5—6									考	调								***			
	7—8									斌	体								考试			
	晚										111			智	智	智			(PAN			
Ξ	1—2									1111	排								期			
	3—4								77J	- 20	课								未		玉	
	5—6								动	- T - ¥¥	调											
	7—8								会	7 1 4	体								考试		际	
	晚																	,,,,,,,,,,	***			
<u>121</u>	1—2								_									##	期		双	
	3—4								运动									4	来			
	5—6								动									**	4		创	
	7—8								益									73 3-33	试			
	晚																	MA	111		实	
	1—2																	ĦЯ	ĦП			
	3—4	- 			<u>.</u>																践	

传统优化方法

$$\max f(x) = x^3 - 60x^2 + 900x + 100 \qquad x \in [0,30]$$

$$f'(x) = 3x^2 - 120x + 900 = 0$$
$$(x - 10)(x - 30) = 0$$

$$f''(x) = 6x - 120$$

 $x = 10, f''(x) < 0$ 最大值
 $x = 30, f''(x) > 0$ 最小值

传统优化方法

- ▶ 在进化算法出现之前已经出现的优化方法,我们暂时称它们为传统优化方法,它们求解问题的迭代步骤为:
 - 给定一个初始点 x_0 ,令 $x_{k+1} = x_k + a_k d_k$,其中 d_k 为f(x)在 x_k 处的一个下降方向, a_k 为搜索步长。
 - 取不同的 d_k ,就会产生不同的算法。通常要用f(x)的梯度信息。

传统优化方法

- ▶上世纪60-90年代,传统优化方法得到了很大的发展,涌 现出了很多新方法,如:
 - 最速下降法
 - 拟牛顿法
 - 共轭梯度法
 - 投影梯度法
- ▶ 这些方法对解决实际优化问题起到了很大的作用,具有如下优点:
 - 收敛速度快
 - 效率高

- > 但这些传统优化方法也存在以下缺点:
 - 需要用到函数的导数,而这些导数信息是由极限确定的,只能反映相关函数的局部特性,不可能反映距离当前解较远处函数的特征,因此,利用导数构造出的算法通常难以求出函数的全局最优解,往往只能求出局部最小值点(局部最优点)。而大量实际问题要求全局最优点。

● 对函数的一阶导数、二阶导数等信息不容易求得或无法求得 的实际问题,传统优化方法**无法使用**。

求函数: $f(x,y) = \left| \frac{\sin(\pi(x-3))}{\pi(x-3)} \right| \bullet \left| \frac{\sin(\pi(y-3))}{\pi(y-3)} \right|$ 的极值。

货郎担问题(Travelling Salesman Problem, 简记为TSP): 设有n个城市,城市i和城市j之间的距离为d(i,j)。TSP问题是寻找最短的一条回路,要求该回路能够遍访每个城市且每个城市仅访问一次。

如果有n个城市, 共有多少种可能的解?

货郎担问题(Travelling Salesman Problem, 简记为TSP): 设有n个城市,城市i和城市j之间的距离为d(i,j)。TSP问题是寻找最短的一条回路,要求该回路能够遍访每个城市且每个城市仅访问一次。

TSP问题可以表述为:

$$\min \left\{ \sum_{i=1}^{n-1} d(C_i, C_{i+1}) + d(C_n, C_1) \right\}$$

其中 $C=(C_1, C_2, ..., C_n)$ 是1, 2, 3, ..., n的一个全排列。

- ▶ 进化算法就是为了克服传统优化方法的缺点而设计的 一类算法。
- ▶ 它研究的问题是: 函数的导数不存在或无法求得,要求函数的全局最优解的问题。
- > 它是对传统优化方法的一种补充,而不是替代。

- □ 进化算法是模拟生物进化与遗传原理而设计的一类随机 搜索的优化算法(属于不确定优化方法)。
- □ 进化算法是以达尔文的进化论为基础,基本思想是: 自然界的进化是一个优胜劣汰、适者生存的最优化过程。如果在算法设计过程中能模仿自然界的进化过程,也许会构造出好的优化算法。进化算法就是这种背景下产生的。

- ✓ 在一个资源有限的、种群稳定的世界中,每个生物个体都会与其他生物个体为了生存而竞争。拥有优良性状的个体会更加容易获得生存和繁殖的机会,它的性状也更易于传给后代。这些优良性状被下一代继承,经过一段时间便成为种群中的主要性状。
- ✓ 在幼年生物体的发育过程中,随机事件会导致幼年生物体性状的随机改变。如果新出现的性状有益于生物体,则该生物体获得生存的概率会有所提高。

□ 现代遗传学的奠基人: 孟德尔

- ✓ 在1857年,孟德尔通过对植物进行一系列仔细的实验 发现植物的父母单独地把自身的性状传递给子代。
- ✓ 至关重要的是,他还发现性状不是单纯地混合在一起 ,而是保持着独立性:一株高的植物和一株矮的植物 繁殖出来的后代要么是高的,要么是矮的,而不是介 于两者之间。表明性状是分开独立地遗传给下一代, 后来这称为遗传基因。

- □ 新达尔文主义
 - ✓ 在将<u>达尔文进化论和孟德尔-摩根基因</u>相结合,成为现 被广泛接受的<u>新达尔文主义</u>。
 - ✓ 新达尔文主义认为,只用种群上和物种内的少量统计 过程就可以充分地解释大多数生命历史,这些过程就 是繁殖、变异、竞争、选择。
- □ 如何将进化的过程抽象出来,建立一个优化模型,设计一种优化方法,并利用计算机来模拟这个过程,就是进化算法需要解决的问题。

□ 进化算法的迭代形式不像传统优化方法那样从一个点

 x_k 到另一个点 $x_{k+1} = x_k + a_k d_k$ 移动,而是从一群点

 $pop(k) = \{x_1^k, x_2^k, ..., x_N^k\}$, 通过进化算子移动到另

一群点 $pop(k+1) = \{x_1^{k+1}, x_2^{k+1}, \dots, x_N^{k+1}\}$ 。

□ 进化算法的特点:

- 形象的讲,进化算法就是并行地搜索多个山谷,因而往往可以求出全局最优点。(袋鼠找山顶)
- 进化算法不需要目标函数的连续、可微等条件,只利用适应 度函数的信息(它可以由目标函数确定),因而可以用于不 可微、不连续的复杂优化问题(包含许多局部最优解的优化

问题)

- 口注意:整个群体的进化过程可以看成是一个优化过程,但单个个体的进化轨迹未必是一个优化过程。
- □ 例如:对于整个人类而言,随着时间的推移,会越来越聪明和简单,但对单个个人而言,其后代未必比其祖先更聪明和健康。

进化模拟器

进化算法的分支

- □ 进化算法的4个经典分支为:
 - ✓ 遗传算法 Genetic Algorithm, GA
 - ✓ 进化策略 Evolution Strategies, ES
 - ✓ 进化规划 Evolution Programming, EP
 - ✓ 遗传程序设计 Genetic Programming, GP

进化算法的分支

□ 这4个分支有很多相似之处,他们的算法框架可以统一描述为:

- **□** 步骤1: 产生初始种群 $p(0) = \{x_1, ..., x_N\}$, 令t=0。
- \Box 步骤2: 计算p(t)中每个个体的适应度来评价个体的优劣。
- □ 步骤3: 用进化算子产生新一代群体p(t+1), 令t=t+1。
- □ 步骤3: 若终止条件成立, 停止; 否则, 转步骤2。

总结

- □ 进化算法现状:
 - 理论不完善, 缺乏完整的理论体系。
 - 算法的效率不高
- □ 进化算法趋势:
 - 传统的四大分支的界限和区别越来越不明显;一个 算法可能同时具有几个分支的特点。
 - 新的计算模型不断涌现

总结

□ 新模型:

- PSO: Particle Swarm Optimization 粒子群优化
- ACO: Ant Colony Optimization 蚁群优化
- CAs: Cultural Algorithms 文化算法
- ICA: Immune and colon Algorithms 免疫与克隆
- DE: Differential Evolution 差分进化
- Co-evolution Algorithms 协同进化
- Decomposition-based Algorithms 基于分解的算法

总结

□ 新模型:

- Population migration algorithm 人口迁移算法
- Firefly algorithm 萤火虫算法
- Cuckoo search 布谷鸟算法
- Bat algorithm 蝙蝠算法
- Bacterial foraging algorithm 细菌觅食算法
- Artificial fish swarm algorithm 人工鱼群算法