

**Smith-Colin Equity Policy &** Jianhui Wang Energy Research Group

# A Unified Equity Metric for Data-Driven Decision Making: A Tract-Level Case Study for Electric Vehicle (EV) Policy Recommendations

Zhi "Owen" Li, Ph.D.; Janille Smith-Colin, Ph.D., P.E.; Jianhui Wang, Ph.D.

Department of Civil & Environmental Engineering, Southern Methodist University, Dallas, TX, U.S. Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, U.S.



### INTRODUCTION

#### **OBJECTIVE**

- To propose a unified equity index for Census tract level typology analysis
- To make policy recommendations for improving equitable EV infrastructure planning
- To provide a foundation for future data driven simulations of EV scenarios

#### WHY UNIFIED EQUITY METRIC

- Enabling Data-Driven Simulations
- Ever-increasing availability of data and data-driven techniques.
- Subjectivity (Domain knowledge) vs Objectivity (Data-driven)
- Domain knowledge is crucial but could be influenced by individual biases and interpretations.
- Enhancing Communication and Coordination
  - Policymakers, stakeholders, and experts from diverse fields can provide data (get involved).

#### UNIFIED EQUITY METRIC

EVCS Equity Index (EVCSEI) = tanh [ $\alpha \times EVCS_index - TCAI(var_1, var_2, ....var_k)$ ]

- EVCS\_index is a function of the number of EV charging stations (EVCS);
- Tract Composite Attribute Indicator (TCAI), is designed to represent a given tract's composite attribute which considers attributes (var<sub>1</sub>,var<sub>2</sub>, ....var<sub>k</sub>) of the tract and converts to one value;
- The *tanh* function is used to map the input to a bounded range between -1 and 1;
- The  $\alpha$  is a scaling factor that can be adjusted to control the sensitivity of the equation.

#### WORKFLOW



# UNIFIED EQUITY METRIC & CLUSTER ANALYSIS





- Proposed equity metric aligns well "visually with USDOT Justice 40 geographies
- Most advantaged areas Dallas uptown, Frisco, Keller
- Most disadvantaged areas South-eastern Dallas, South-Eastern Fort Worth
- Unified Equity Metric typologies named Developed, Developing, and Disadvantaged (3D's).

#### MODEL EVALUATION





t-SNE Visualization

relationships between data points by illustrating their clustering and similarity in a tree-like structure. • It indicates the good number of clusters is three.

Silhouette coefficient

Silhouette Plot

- 2. Silhouette plot provides a graphical representation of the quality and separation of clusters in a dataset • The best silhouette score is 0.555 for 3 clusters.
- 3. <u>t-SNE visualization</u> transforms high-dimensional data into a simpler two-dimensional representation, where similar data points are placed closer together It shows three well separated typologies

### EV ADOPTION RATES & EVCS ACCESSIBILITY

#### EV adoption rates and EVCS Accessibility for each typology

| Typology      | Count | EVCS count |      |     | Population |      |         | EV count |       |                  | Accessibility       |                      |
|---------------|-------|------------|------|-----|------------|------|---------|----------|-------|------------------|---------------------|----------------------|
|               |       | mean       | std  | sum | mean       | std  | sum     | mean     | sum   | EV Adoption rate | Population Per EVCS | EV count Per<br>EVCS |
| Developed     | 583   | 0.744      | 2.08 | 434 | 4527       | 1803 | 2639414 | 21.4     | 12454 | 0.47%            | 6081                | 13.6                 |
| Developing    | 528   | 0.718      | 2.07 | 379 | 4389       | 2021 | 2317389 | 64.0     | 33807 | 1.46%            | 6114                | 89.2                 |
| Disadvantaged | 593   | 0.489      | 1.85 | 290 | 4362       | 1445 | 2586537 | 6.7      | 3944  | 0.15%            | 8919                | 11.2                 |

- Developing communities have the highest EV adoption rates but lower accessibility to EVCS.
  - Disadvantaged communities despite having sufficient accessibility to EVCS, exhibit the lowest EV adoption rates.
  - Developed/advantaged communities characterized by advantaged socioeconomic demographics, show adequate accessibility to EVCS; however, exhibit low EV adoption rates.

# TYPOLOGY ANALYSIS

### Radar plots for each typology







Disadvantaged



Developed

- Developing typology displays a more diverse mix of occupations, educational levels, and income brackets
- Disadvantaged typology exhibits variation in sociodemographic characteristics, including educational attainment, lower internet and computing resources. The workforce tends to engage in blue-collar and lower-income occupations.
- Developed/advantaged typology highly advantaged socio-demographic characteristics. Educational attainment is notably high, with the largest population holding bachelor's degrees. The workforce tends to engage in white-collar occupations.

### POLICY RECOMMENDATIONS

- Developing typology requires additional EV infrastructure to accommodate growing EV ownership.
- Disadvantaged typology EV registration should be prioritized by policymakers and EV usage encouraged.
- Developed/advantaged typology shows adequate accessibility to EVCS but relatively low EV adoption rates, potentially influenced by factors such as remote work trends and range concerns.

# CONTRIBUTIONS & FUTURE WORK

- Research develops data-driven, objective Unified Equity Metric for EV planning.
- Proposed Unified Equity Metric produces 3 distinct EV typologies.
- Proposed Equity Metric typologies leverage tract-level features and are aligned well with USDOT Justice 40 disadvantaged tracts (ground truth) for the Dallas-Fort Worth area.
- EVCS and EV planning supported by typology-based (i.e., developing, disadvantaged, developed/advantaged) policy recommendations.
- Research provides comparison of the EV adoption rates and EVCS accessibility at Census tract level.
- Unified Equity metric can narrow miscommunication and coordination gaps, and support decision making across diverse stakeholder groups.
- <u>Future work</u> will integrate the Unified Equity Metric into data-driven simulations such as Agent Based Modeling and Reinforcement Learning.

# FURTHER INFORMATION

- Scan the second QR code to get in touch with
- Google Scholar ■ For more information, please reach out via the emails below:
- Zhi "Owen" Li: <u>oli@smu.edu</u>
- Janille Smith-Colin: jsmithcolin@smu.edu
- Jianhui Wang: <u>Jianhui@smu.edu</u>



Zhi "Owen" Li

Zhi "Owen" Li LinkedIn page

