

MÓDULO DE ESTADÍSTICA SERIES DE TIEMPO

DIPLOMADO DE MATEMÁTICAS Y ESTADÍSTICA, MIDE

Ruslán Gómez Nesterkín Noviembre 2022

Aviso: Los comentarios y opiniones expresados son solo del autor y no necesariamente reflejan a los del Banco de México.

ENCUESTAS

- A fin de tener una mayor interacción durante las presentaciones...
- Se realizarán algunas encuestas de opinión durante las sesiones...
- A través de la aplicación de celular: Telegram
- Favor de adherirse al grupo: MIDE_DIP_MATS_2022
- Liga directa: <u>https://t.me/MIDE_DIP_MATS_2022</u>

PLAN DE LA PRESENTACIÓN

PARTE 1

- * ANTECEDENTES: Series determinísticas, variables aleatorias y estimación.
- SERIES DE TIEMPO: Series Determinísticas, Series de Tiempo, Suma de Variables Aleatorias.
- DISTRIBUCIÓN DE SERIES DE TIEMPO: Límite Central, Función Característica, Caminata Aleatoria.
- CARACTERÍSTICAS DE LAS SERIES DE TIEMPO: Autocorrelación, Estacionalidad.

PARTE 2

- **DESCOMPOSICIÓN:** Descomposición de Wold.
- MODELOS DE SERIES DE TIEMPO: Función de auto-correlación, AR, MA.
- **EJEMPLO:** ¿Predicción al 75%?

PARTE 3

- * MODELOS DE SERIES DE TIEMPO: Función de auto-correlación parcial, ARMA, otras variantes.
- OTRAS CARACTERÍSTICAS: Heteroskedasticidad, Modelo ARCH, Causalidad de Granger, Cointegración.
- PRONÓSTICOS: ARMA / Box-Jenkins.

PARTE 3 PRONÓSTICOS

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- **CARACTERÍSTICAS DE LAS SERIES DE TIEMPO**

PARTE 2

- DESCOMPOSICIÓN
- **MODELOS DE SERIES DE TIEMPO**
- EJEMPLO

PARTE 3

- MODELOS DE SERIES DE TIEMPO
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

MODELOS

Motivación para análisis de series de tiempo

MODELOS ESTOCÁSTICOS

Robert F. Engle III Clive W. J. Granger

Premio Nobel <u>2003</u> en Ciencias Económicas "por métodos para el análisis económico de series de tiempo con volatilidad variable en el tiempo (ARCH)."

https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2003/press.html

- Métodos (matemáticos) para análisis de series de tiempo.
- Modelos (matemáticos) de volatilidad estocástica.
- Modelos (estadísticos) con memoria de largo plazo.
- Metodologías (estadísticas) para identificar causalidad.
- Muchas de las series de tiempo económicas son no-estacionarias.

Función de Autocorrelación Parcial (1/2) (PACF)

- La modelación con AR(p) conduce a la pregunta de cuántos términos p utilizar.
- Una característica de los modelos AR(p) en procesos estacionarios, es que su función de auto-correlación ρ_{τ} , como función del rezago τ , converge asintóticamente a cero.
- Ejemplo: Modelo AR(1) de un proceso aleatorio puro de 240 observaciones con $\alpha=0.5$:

Función de Autocorrelación Parcial (2/2) (PACF)

Asumamos una serie de valores observados $x = \{x_1, \dots, x_n\}$ y los modelos AR(p) siguientes:

$$X_{t} = \phi_{0,1} + \boxed{\phi_{1,1}} X_{t-1} + e_{1,t}$$
 $p = 1$

$$X_{t} = \phi_{0,2} + \phi_{1,2} X_{t-1} + \boxed{\phi_{2,2}} X_{t-2} + e_{2,t}$$
 $p = 2$

$$X_{t} = \phi_{0,3} + \phi_{1,3} X_{t-1} + \phi_{2,3} X_{t-2} + \boxed{\phi_{3,3}} X_{t-3} + e_{3,t}$$
 $p = 3$
:

- Para cada AR(p) es posible estimar los parámetros $\phi_{i,j}$ usando los datos x, por ejemplo mediante mínimos cuadrados, obteniendo los estimadores $\hat{\phi}_{i,j}$.
- El estimador $\hat{\phi}_{i,i}$ representa el peso del término X_{t-i} , de modo que como la auto-correlación es asintótica a cero, se esperaría que a partir de un cierto p, el estimador $\hat{\phi}_{p+s,p+s}$ sea muy cercano a cero.
- Criterio PACF: Dada una tolerancia $\varepsilon > 0$ (nivel de tolerancia preconcebido), escogemos el modelo AR(p) como aquel a partir del cual el coeficiente $\hat{\phi}_{i,i}$ sea despreciable:

$$p^* = \min\{p: |\hat{\phi}_{p+s,p+s}| < \varepsilon\}$$

Nota: Este criterio evita sobrecarga de variables (overfitting) usadas en el modelo.

Promedio Móvil Auto Regresivo: (ARMA)

• Un ARMA(p, q) se refiere a una combinación de un AR(p) y un MA(q).

$$\begin{array}{lll} X_t = & \delta & \leftarrow & \texttt{T\'ermino relativo a tendencia} \\ & + \alpha_1 X_{t-1} + \dots + \alpha_p X_{t-p} & \leftarrow & \texttt{T\'ermino relativo a AR(p)} \\ & + u_t & \leftarrow & \texttt{T\'ermino relativo a aleatoriedad (en } t) \\ & - \beta_1 u_{t-1} - \dots - \beta_q u_{t-q} & \leftarrow & \texttt{T\'ermino relativo a MA(q)} \end{array}$$

De esta manera obtenemos el modelo ARMA(1,1):

$$X_t = \delta + \alpha X_{t-1} + u_t - \beta u_{t-1}$$

EJERCICIO EN CLASE (10 minutos): En un modelo **ARMA(1,1)**, sean $\alpha=-0.8$, $\beta=0.5$, $u_t\sim N(0,1)$ y $\delta=0$. Si se observan los valores de la realización de u_t siguientes: $u_0=1$, $u_1=-1$ y $u_2=0.5$, ¿cuál sería el valor que tendrían X_1 y X_2 cuando $X_0=0$?

Responder en el grupo MIDE_DIP_MATS de TELEGRAM.

[MIDE_ST_P3_a]

Promedio Móvil Auto Regresivo: Momentos de ARMA(1,1)

(1/2)

- Calculamos el **valor esperado** del proceso estacionario X_t :
 - 1. Por definición: $\mathbb{E}[X_t] = \mathbb{E}[\delta + \alpha X_{t-1} + u_t \beta u_{t-1}] = \delta + \alpha \mathbb{E}[X_{t-1}]$
 - Como X_t es estacionario, entonces tiene el mismo valor esperado para todo t:

$$\mu = \mathbb{E}[X_t] = \mathbb{E}[X_{t-1}]$$

3. Tomando los dos resultados anteriores, resolvemos μ de la siguiente ecuación:

$$\mu = \delta + \alpha \mu \implies \mu = \frac{\delta}{(1 - \alpha)}$$

Por lo tanto el valor esperado de un ARMA(1,1) es el mismo de un AR(1).

$$\mathbb{E}[X_t] = \frac{\delta}{(1-\alpha)}$$

Promedio Móvil Auto Regresivo: Momentos de ARMA(1,1)

(2/2)

• Calculamos la auto-correlación del proceso estacionario X_t :

$$\rho_{\tau} = \mathbb{E}[X_{t-\tau} X_t] = \mathbb{E}[X_{t-\tau}(\delta + \alpha X_{t-1} + u_t - \beta u_{t-1})]$$

• Obteniendo la función de autocorrelación $ho_{ au}$ como una fórmula recursiva:

$$\begin{cases} \rho_{\tau} = \alpha \rho_{\tau - 1} \\ \rho_{1} = \frac{(\alpha - \beta)(1 - \alpha \beta)}{1 + \beta^{2} - 2\alpha \beta} \end{cases}$$

- PREGUNTAS:
- ¿Qué sucede con ρ_{τ} cuando $\alpha = \beta$?
- ¿Qué podemos decir entonces de un modelo ARMA(1,1) X_t cuando $\alpha = \beta$?

EJERCICIO EN CLASE (5 minutos): Obtener la varianza (equivalente al coeficiente de autocorrelación ρ_0) de un **ARMA(1,1)** cuando $\alpha=1$ y $\beta=0$.

Responder en el grupo MIDE_DIP_MATS de TELEGRAM.

[MIDE_ST_P3_b]

Promedio Móvil Auto Regresivo (2/2) Momentos de ARMA(1,1)

Ejemplo: Considérese a un proceso ARMA(1,1) generado con u_t v.a.'s i.i.d dadas por procesos aleatorios puros. Se muestran a continuación las funciones de auto-correlación ρ_{τ} para diferentes combinaciones de α y β tomando valores 0.8, 0.5, -0.5 y -0.8.

RECESO

5 minutos ...

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- **CARACTERÍSTICAS DE LAS SERIES DE TIEMPO**

PARTE 2

- DESCOMPOSICIÓN
- **MODELOS DE SERIES DE TIEMPO**
- EJEMPLO

PARTE 3

- **MODELOS DE SERIES DE TIEMPO**
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

Causalidad (de Granger)

- Correlación: Al considerar a dos v.a.'s X y Y, su correlación refleja que cambios de una v.a. se deben reflejar también en la otra.
- Correlaciones espurias: Hay ejemplos para los cuales la correlación no hace sentido y se denominan espurias.
- Alternativa: Concepto de causalidad.

- Los modelos ARMA para X_t , tienen como consideración implícita el uso óptimo de información pasada $D_t^x = \{x_{t-1}, x_{t-2}, \dots, x_0\}$.
- La idea consiste en que si un proceso X causa a Y, los valores actuales y rezagados de X_t deben contener información D_t^x que al usarse permita mejorar la predicción de $Y_{t+\tau}$, para $\tau>0$.
- Otra forma de entender la idea anterior es que la información para predecir $Y_{t+\tau}$ no está solo contenida en su historia, sino también en la historia o distribución D_t^x del proceso X_t .

Cointegración: Grado de Integración

Partamos de la regresión lineal siguiente, con u_t proceso aleatorio puro:

- Tenemos que y_t depende de x_t y del ruido generado por u_t .
- Conforme a Granger (1981), una simulación del lado derecho debe reproducir las propiedades de la variable observada y_t .
- Si por ejemplo y_t muestra ciclicidad, entonces x_t debe presentar también dicha ciclicidad, ya que la aleatoriedad de u_t no la incorporaría.
- Se define el concepto de **grado de integración** I(d) a partir de la idea de que diferenciando d veces una variable y_t pueda hacerse estacionaria. En tal caso se dirá que y_t tiene **grado de integración de orden** d:

Si $y_t \sim I(d)$ significa que $\Delta_d y_t$ es estacionaria.

Cointegración: Método de Representación de Granger

- Propiedades del Grado de Integración :
 - Si y_t es débilmente estacionaria entonces $y_t \sim I(0)$.
 - Si $y_t \sim I(1)$ entonces $\Delta_1 y_t = y_t y_{t-1} \sim I(0)$.
 - Si $y_t \sim I(1)$ y $z_t \sim I(0)$ entonces $y_t + z_t \sim I(1)$ normalmente.
- Variables Cointegradas: Se refiere a que dos procesos I(1) al sumarlos resulten I(0).
- **Ejemplo:** Sea $y_t = \alpha + \beta x_t + u_t$ con u_t proceso aleatorio puro y supongamos que $y_t \sim I(1)$ y $x_t \sim I(1)$. Entonces:
 - 1. Sabemos que $u_t \sim I(0)$ por ser estacionario.
 - 2. Resulta que $y_t \beta x_t \sim I(0)$ por como definimos a y_t .
 - 3. Del caso anterior, β es única para que se presente esta situación, ya que:

Asumiendo que $y_t = \beta_1 x_t + u_{1,t}$ y $y_t = \beta_2 x_t + u_{2,t}$, entonces resulta que $\beta_2 = \beta_1$:

$$(\beta_2 - \beta_1)x_t = u_{1,t} - u_{2,t}$$

Teorema de Representación de Granger

- Definición formal de causalidad de Granger (1969):
 - **Supuestos:** Sea $D_t^x = \{x_t, x_{t-1}, ..., x_0\}$ la información de proceso X_t al tiempo t, D_t^y la correspondiente al proceso Y_t y $D_t^* = \{x_t, ..., x_0, y_t, ..., y_0\}$ la información total de ambos procesos.
 - **Métrica para errores:** Sea $\sigma^2(y_{t+1})$ la varianza del error por predicción de y_{t+1} en el tiempo t: $\sigma^2(y_{t+1}) = \mathbb{E}[(\hat{y}_{t+1} y_{t+1})^2]$
 - Causalidad de Granger: x causa a y si y solo si la predicción óptima lineal cumple:

$$\sigma^{2}(y_{t+1}|D_{t}^{*}) < \sigma^{2}(y_{t+1}|D_{t}^{y})$$

• Interpretación: Los valores de y pueden predecirse mejor al adicionar la información actual y anterior de x.

Teorema de Representación de Granger

Ilustración del Teorema de Representación de Granger y Weiss (1983)

Considérese el siguiente sistema de AR(p), con $u_{1,t}$ y $u_{2,t}$ procesos aleatorios puros:

$$x_{t} = \sum_{j=1}^{p} a_{1,j} x_{t-j} + \sum_{j=1}^{p} b_{1,j} y_{t-j} + u_{1,t}$$

$$y_{t} = \sum_{j=1}^{p} a_{2,j} x_{t-j} + \sum_{j=1}^{p} b_{2,j} y_{t-j} + u_{2,t}$$

Si x_t y y_t son I(1) y cointegradas, entonces el sistema puede reescribirse como:

$$\Delta x_{t} = \alpha_{1}(y_{t-1} - \beta x_{t-1}) \sum_{\substack{j=1 \ p-1}}^{p-1} a_{1,j}^{*} \Delta x_{t-j} + \sum_{\substack{j=1 \ p-1}}^{p-1} b_{1,j}^{*} \Delta y_{t-j} + u_{1,t}$$

$$\Delta y_{t} = \alpha_{2}(y_{t-1} - \beta x_{t-1}) \sum_{j=1}^{p-1} a_{2,j}^{*} \Delta x_{t-j} + \sum_{j=1}^{p-1} b_{2,j}^{*} \Delta y_{t-j} + u_{2,t}$$

con al menos algún α_1 o α_2 distinto de cero.

En este caso se tiene que ambas partes de las ecuaciones están equilibradas y tienen orden de integración I(0).

Heteroskedasticidad: Antecedentes

- Heteroskedasticidad proviene del griego antigüo hetero "diferente" y skedasis "dispersión" (https://en.wikipedia.org/wiki/Heteroscedasticity)
- La **heteroskedasticidad** es una característica observada en muchas series de tiempo de datos reales, con la volatilidad (dispersión) variando en el tiempo.
- **Ejemplo:** Tomemos el índice accionario del mercado alemán (DAX), consistente en 842 observaciones diarias del 2/01/1996 al 19/05/1999:

a) German Stock Market Index: Data

b) German Stock Market Index: Continuous returns

Heteroskedasticidad: Ejemplo

- Se aprecia en el histograma que la distribución de los rendimientos presenta <u>kurtosis</u> de 6.3, superior al 3.0 que se esperaría para una distribución normal.
- El correlograma o ACF muestra un orden 2 de auto-correlación.
- Al estimar un modelo AR(2) para los rendimientos observados, se obtienen la siguiente estimación:

$$\Delta \ln(\text{DAX}_t) = 0.001 - 0.090 \,\Delta \ln(\text{DAX}_{t-2}) + \varepsilon_t$$

Pero cuando se calcula la ACF para el cuadrado de los residuos \mathcal{E}_t^2 , se observa que los datos no son estacionarios. Esto indica que hay un segundo momento (varianza) con autocorrelación.

c) German Stock Market Index: Histogram of the continuous returns

d) Estimated autocorrelations of the residuals

e) Estimated autocorrelations of the squared residuals

(Modelo: $\begin{cases} Y_t = \beta X_t + \varepsilon_t \\ \varepsilon_t^2 = \alpha_0 + \sum_{j=1}^q \alpha_0 \varepsilon_{t-j}^2 + \omega_t \end{cases}$

Modelo ARCH: Introducción

(Auto Regresive Conditional Heteroskedasticity)

Un ejemplo de modelo ARCH estaría dado por la siguiente relación lineal:

$$y_t = \beta x_t + \varepsilon_t$$

Con la posibilidad de que la variable x_t pueda contener variables endógenas con rezago:

$$x_t = \sum_{j=1}^p a_j x_{t-j}$$

• El término de error \mathcal{E}_t tiene media cero y varianza estacionarias:

$$\mathbb{E}[\varepsilon_t] = 0, \qquad \mathbb{E}[\varepsilon_t] = \sigma^2$$

Se asume que $\frac{\varepsilon_t}{t}$ no es auto-correlacionada, sin embargo $\frac{\varepsilon_t^2}{t}$ si presenta auto-correlación, representada por un modelo AR(q):

$$\varepsilon_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_0 \varepsilon_{t-j}^2 + \omega_t$$

con ω_t un proceso aleatorio puro, $\alpha_0>0$, $\alpha_q>0$ y $\alpha_i\geq 0$ para i=1 , ... q-1 .

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- **CARACTERÍSTICAS DE LAS SERIES DE TIEMPO**

PARTE 2

- DESCOMPOSICIÓN
- **MODELOS DE SERIES DE TIEMPO**
- EJEMPLO

PARTE 3

- **MODELOS DE SERIES DE TIEMPO**
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

Predicción con ARMA: mediante mínimos cuadrados. (1/2)

- En los años 1970 tuvo gran auge el enfoque predictivo propuesto por **Box-Jeknins** que se describe a continuación debido a la simplicidad del método comparado otros modelos econométricos con muchas variables, resultando estos últimos más engorrosos.
- Se asumirá que todas las observaciones previas y hasta el tiempo t son conocidas:

Serie de datos conocidos:
$$\{x_t, x_{t-1}, ..., x_0\}$$

- Denotaremos a $\hat{X}_t(au)$ como el estimador en el periodo t, de la serie au periodos en el futuro correspondientes a $x_{t+ au}$.
- El estimador $\hat{X}_t(\tau)$ se obtiene de forma recursiva...

Predicción con ARMA: mediante mínimos cuadrados. (2/2)

Realizando la predicción a un periodo, quedaría el estimador de la siguiente manera:

$$\hat{X}_t(1) = \delta + \alpha x_t - \beta u_t$$

Si consideramos que

$$\widehat{X}_0(1) = \delta + \alpha x_0 - \beta u_0$$

Tomado al error de la predicción $u_1 = x_1 - \widehat{X}_0(1)$, resulta al combinarlos que:

$$\hat{X}_1(1) = \delta(1+\beta) + (\alpha - \beta)x_1 + \alpha\beta x_0 - \beta^2 u_0$$

Procediendo de esta forma para los siguientes periodos de tiempo t se obtiene que:

$$\widehat{X}_{t}(1) = \delta \sum_{j=0}^{t} \beta^{j} + \sum_{j=0}^{t-1} \beta^{j} (\alpha - \beta) x_{t-j} + \beta^{t} \alpha x_{0} - \beta^{t+1} u_{0}$$

CONCLUSIONES

REFLEXIONES FINALES

- Series de tiempo e inferencia estadística: Se volvieron un estándar en la modelación de fenómenos económicos o econometría (Haavelmo et. al.) y en otras disciplinas también (medicina, farmacéutica, psicología, etc.).
- Modelos Autoregresivos: Resultaron ser útiles para representar fenómenos económicos más complejos (Engle y Granger et. al.).
- Predicción: Se antoja extrapolar al futuro con esto modelos...
 Causalidad vs Predicción (Granger et. al.)
- Paradojas sobre predicción: Es fundamental la independencia de las v.a.'s (ejemplo de Sornette y Andersen). Si se pudiera predecir ahora, cualquier incorporación de dicha predicción en la práctica implicaría cambios en el futuro, afectándose la veracidad de la predicción original...
- Conclusión: ... ¡Hay que tomar en cuenta la información disponible! ... ¡y saber utilizarla!

"Si sale sol, le ponemos un bypas cuádruple. Si cae águila, se toma un desenfriolito."

MÓDULO DE ESTADÍSTICA SERIES DE TIEMPO

DIPLOMADO DE MATEMÁTICAS Y ESTADÍSTICA, MIDE

Ruslán Gómez Nesterkín Noviembre 2021