Advanced Artificial Intelligence Revision

Inference Using Full Joint Distribution

	toothache		¬toothache	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
A full joint distribution for toothache, cavity, catch world.				

Probabilistic inference is a computation from observed evidence of **posterior probabilities** for **query propositions**. One task involved for accomplishing this is to extract the distribution over a subset of variables or a single variable, hence one way to do this is through **marginal probability**.

Marginalisation/Summing Out - posterior probabilities are summed out, therefore providing the following general **marginalisation rule**:

$$P(Y) = \sum_{z} P(Y, z)$$

Otherwise can be described as, a distribution over \mathbf{Y} can be calculated by summing out the posterior probabilities from any joint distribution which contains \mathbf{Y} .

This rule can also be applied through **conditional probabilities** instead of **joint probabilities**.

$$P(Y) = \sum_{z} P(Y|z), P(z)$$

This rule is known as **conditioning**. **Marginalisation** and **conditioning** are useful for all kinds of derivations involving probability expressions. In most cases, computation of **conditional probabilities** of some variables given others is preferred.

Conditional probabilities can be found by first calculating the **product rule** to obtain an expression in terms of **unconditional probabilities** and then evaluating the expression from the **full joint distribution**.

For example, the probability of a cavity given evidence of a toothache can be calculated like the following:

$$P(cavity|toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$$

To check, the **complement** of this rule would also be calculated to check the validity of the results. The results of which should add to 1.0. Otherwise, a **normalisation constant** may be required.

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

This can also be written with a **normalisation constant** α , to ensure that the final probabilities will sum to 1.0. The previous equation can be rewritten with a normalisation constant like the following:

$$P(X|e) = \alpha P(X,e) = \alpha \sum_{y} P(X,e,y)$$

Where X == the query variable; cavity, E == set of observed evidence variables; toothache, Y == remaining unobserved variables; catch.

For example:

 $P(cavity|toothache) = \alpha P(cavity|toothache)$

 $= \alpha [P(cavity, toothache, catch) + P(cavity, toothache, \neg catch)]$

$$= \alpha [< 0.108, 0.016 > + < 0.012, 0.064 >] = \alpha < 0.12, 0.08 > = < 0.6, 0.4 >$$