1st International Workshop on **S**calable **W**orkflow **E**nactment **E**ngines and **T**echnologies

EVALUATING PARAMETER SWEEP WORKFLOWS IN HIGH PERFORMANCE COMPUTING

Fernando Chirigati*, Vítor Silva, Eduardo Ogasawara, Daniel de Oliveira, Jonas Dias, Fábio Porto, Patrick Valduriez and Marta Mattoso

COPPE / Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

LNCC, Rio de Janeiro, Brazil INRIA & LIRMM, Montpellier, France

^{*} Currently at Polytechnic Institute of NYU

Motivation

Parameter Sweep (PS)

- Each iteration is often time-consuming
- Experiments have a large space of parameter values
- Candidate for High Performance Computing (HPC)
 - But it is not that simple...
 - There are different execution models
 - It significantly depends on the experiment (e.g., different workloads)

Simulation Framework

- Goal: Which execution model is more suitable for my experiment?
- Focus
 - PS workflows
 - Different patterns
 - Different activities
 - Different workload configurations
 - Measure and compare different execution models
 - Measure scalability

Characterization of PS Workflows

A Model of Scientific Workflow

- Data-centric workflow
 - Set of activities
 - Set of data
- Dependency order
 - Output of an activity is consumed as input by another activity
 - Execution needs to follow this dependency

PS Workflows

PS Workflow Patterns

Related to workflow patterns (Russell et al. 2006)

Evaluation Framework

Evaluation Framework

Three main steps

1 Workload Configuration

2 Definition of PS Workflows

3 Performance Metrics

1 Workload Configuration

Definition of scaling factors

- Instance Scale Factor (ISF)
 - Cardinality of input parameter space

- Activity Cost Factor (ACF)
 - Duration of activities

2 PS Workflows

3 Performance Metrics

- Related to execution time
 - Elapsed Time (T_E)
 - Speedup (S)

$$S = \frac{T_1}{T_E}$$

Efficiency (E)

$$E = \frac{S}{p}$$

Score (S_E)

$$S_E = \frac{1}{x} \sum_{i=1}^{x} E_i$$

Experimental Evaluation

Experimental Evaluation

- Total of 4 analysis
 - SGI Altix ICE 8200 distributed memory shared-disk cluster (32 nodes with 2 quadcore processors and 8 GB of memory each)
- Comparison of four execution models
 - Combination of two characteristics
 - Task dispatching strategy: STA and DYN
 - Data transfer strategy: FAF (blocking) and FTF (pipeline)

	Static	Dynamic
First Activity First	STA_FAF	DYN_FAF
First Tuple First	STA_FTF	DYN_FTF

First Analysis

ACF = 1 / ISF = 1

Second Analysis

ACF = 6 / ISF = 1

Third Analysis

Fourth Analysis

Related Work

Related Work

- Characterization of workflows
 - Bharathi et al. 2008
 - Thain et al. 2003 and Ostermann et al. 2008
- Benchmarks
 - Gillman et al. 2000
 - Goderis et al. 2005
 - Yahoo! Cloud Serving Benchmark

Conclusion and Current Work

Conclusion

- Performance comparison for PS workflows
 - Characterization of PS Workflows
 - Evaluation Framework
 - PS workflow patterns workload configuration performance metrics
- Experiments
 - Four different execution models
 - Four analysis
- Step towards a benchmark

Current Work

- Optimizer for workflow engines
 - Algebraic approach
 - Based on relational algebra
 - More details
 - "An Algebraic Approach for Data-Centric Scientific Workflows"
 VLDB 2011

1st International Workshop on **S**calable **W**orkflow **E**nactment **E**ngines and **T**echnologies

EVALUATING PARAMETER SWEEP WORKFLOWS IN HIGH PERFORMANCE COMPUTING

Fernando Chirigati*, Vítor Silva, Eduardo Ogasawara, Daniel de Oliveira, Jonas Dias, Fábio Porto, Patrick Valduriez and Marta Mattoso

Thank you!

COPPE / Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

LNCC, Rio de Janeiro, Brazil INRIA & LIRMM, Montpellier, France

^{*} Currently at Polytechnic Institute of NYU

Workload Configuration

- Instance Scale Factor (ISF)
 - 2^{ISF+8}, ISF ≥ 1

- Activity Cost Factor (ACF)
 - Gamma distribution $\Gamma(\kappa, \theta)$, where $\kappa = 2^{ACF}$ and $\theta = 1$, ACF ≥ 1

OrthoMCL

Risers Fatigue Analysis

Map

Broadcast

Split Map

Join

Reduce

Input Parameters

Мар	k _i	t _a	t _b	p	_		
Broadcast	k _i	t _c	t _d	t _e	р	_	
Split Map	k _i	X _f					
Join	k _i	t _h	р	_	k _i	t _i	р
Reduce	k _i	t _i	р				

Map ISF=2 / ACF=1

k _i	t _a	t_b	р
1	6413	1513	2420
2	4963	7011	9645
3	6670	3620	2956
		:	
	•	•	
1024	4191	3083	1952

Programs

Name	Input	Output	Command line
M.jar	k, t, p_i	p_o	java –jar A.jar -K= k -T= t -P= p_i
S.jar	k, x_f	x_{ff}	java -jar S.jar -K= k -X= x_f
J.jar	j_a, j_b	j_o	java -jar J.jar -J= j_a , j_b
R.jar	r_i	ν	java -jar R.jar -R= r_i