CS 435: Introduction to Cryptography

Spring 2020

Homework 5 Solutions

Professor Somesh Jha

Due: April 21

1. Exercise 4.8

Let F be a pseudorandom function. Show that the following MAC for messages of length 2n is insecure: Gen outputs a uniform $k \in \{0,1\}^n$. To authenticate a message $m_1||m_2|$ with $|m_1| = |m_2| = n$, compute the tag $F_k(m_1)||F_k(F_k(m_2))$.

Solution:

Let \mathcal{A} be an adversary that queries its oracle with two messages $m=m_0||m_1$ and $m'=m'_0||m'_1$, where $m_0\neq m'_0$ and $m_1\neq m'_1$. Let $t=t_0||t_1$ and $t'=t'_0||t'_1$ be the respective responses from its oracle. \mathcal{A} then outputs the message $\tilde{m}=m_0||m'_1$ and tag $\tilde{t}=t_0||t'_1$. By the definition of Mac, it follows that \tilde{t} is a correct tag for \tilde{m} and thus $\mathsf{Vrfy}_k(\tilde{m},\tilde{t})=1$ always. Furthermore, since $m_0\neq m'_0$ and $m_1\neq m'_1$ we have that $\tilde{m}\notin\mathcal{Q}$. Thus \mathcal{A} succeeds with probability 1 and the scheme is not secure.

2. Exercise 4.1

Say $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ is a secure MAC, and for $k \in \{0,1\}^n$ the tag-generation algorithm Mac_k always outputs tags of length t(n). Prove that t must be superlogarithmic or, equivalently, that if $t(n) = \mathcal{O}(\log n)$ then Π cannot be a secure MAC.

Solution:

Assume that $t(n) = c \log n$ for some constant c. Then, consider an adversary \mathcal{A} who upon input 1^n just outputs an arbitrary m and a uniform $t \in \{0, 1\}^{t(n)}$. Adversary \mathcal{A} succeeds with probability at least $2^{-t(n)}$ since there must be *some* valid tag for m (note also that $m \notin \mathcal{Q}$ always for this \mathcal{A}). Since $t(n) = c \log n$ we have that $2^{-t(n)} = n^{-c}$ which is not negligible.

- 3. Alice has five files F_1 , F_2 , F_3 , F_4 , F_5 that she wants to store on Bob's computer (Bob just purchased a new server that has a gigantic hard disk). However, Alice is worried that Bob might corrupt or modify the files. Answer the following:
 - (a) Show the Merkle hash tree for F_1, F_2, F_3, F_4, F_5 .
 - (b) What is stored on Alice's computer?

Solution:

(a)
$$h_1 = H(F_1), h_2 = H(F_2), h_3 = H(F_3), h_4 = H(F_4), h_5 = H(F_5).$$

- (b) Alice stores the root hash (h_{12345}) on her computer.
- 4. Now Alice wants to retrieve file F_3 from Bob's computer.
 - (a) What does Bob send to Alice? Recall that Bob needs to "prove" to Alice that the file has not been modified.
 - (b) Show that it is "hard" for Bob to generate a "proof" for Alice for a file F_3 different from F_3 . We of course assume that hash functions that the Merkle hash tree is constructed from is *collision resistant*.

Solution:

(a) Bob sends the file F_3' and hashes (h_4', h_{12}', h_5') . Alice computes

$$h'_{3} = H(F'_{3})$$

$$h'_{34} = H(h'_{3}||h'_{4})$$

$$h'_{1234} = H(h'_{12}||h'_{34})$$

$$h'_{12345} = H(h'_{1234}||h'_{5}),$$

and then checks if $h'_{12345} = h_{12345}$. The latter is stored on Alice's computer.

- (b) Suppose Alice's file was F_3 . Bob gives a proof $(F'_3, h'_4, h'_{12}, h'_5)$ such that $F_3 \neq F'_3$. We prove this is not possible with high probability. Throughout, not possible means not possible with high probability.
 - $h_3' = H(F_3') = h_3 = H(F_3)$. Not possible if H is collision resistant as $F_3 \neq F_3'$.
 - $h_3' \neq h_3$, but $h_{34}' = H(h_3'||h_4') = h_{34} = H(h_3||h_4)$. Again, not possible because $h_3 \neq h_3'$ and H is collision resistant.
 - $h'_3 \neq h_3, h'_{34} \neq h_{34}$, but $h'_{1234} = h_{1234}$. Not possible reasoning as before.
 - $h_3' \neq h_3, h_{34}' \neq h_{34}, h_{1234}' \neq h_{1234}$, but $h_{12345}' = h_{12345}$. Not possible.