EE2703 - Applied Programming Lab Assignment-6: Trapezoidal rule integration: Python, Cython and Numpy

Prajwal Vijay EE23B057 October 2024

1 Introduction

In this assignment our goal was to perform and optimize the trapezoidal integration method, using cython, python and numpy. Here we try to perform the definite integration of a function, by approximating the area under the function f(x), using a bunch of trapezoids. Divide the interval [a,b] into n sub-intervals and sum them up to get a trapezoid.

2 Problem Description

We are given a function f(x), the interval [a, b] and the number of trapezoids n. Given all this info, our tasks are as follows:

- Find the definite integral over the given parameters, for the given function f(x)
- This integral must be calculated using cython, python and numpy.
- For cython, try to optimize the code as much as possible by using syntaxx thats closer to C, for numpy use the *np.trapz* function.
- Test the accuracy of your results against the expected results of analytical integration.

3 Details of the Implementation

- In python, I just divide the interval [a,b],into n parts,and find the area of trapezoids, under each of them.
- I have written the entire cython code, in one cell, since this maintains the benefits of cdef, keeps related code together, and avoids linking issues.

- I have defined a pointer to the function_type data. This helps in passing functions as parameters in C, python functions cannot be directly passed this way. Only functions defined by cdef, can be passed.
- In order to access our Cython functions from outside, we define wrapper functions
- Numpy based functions were also defined, they use the np.trapz function for performing integration

4 Results

All times mentioned below are per loop.

f(x)	n	a	b	$time_{py}$	$time_{cy}$	$time_{np}$
x^2	10^{7}	0	1	$3.63~\mathrm{s}\pm76.2~\mathrm{ms}$	$15~\mathrm{ms}\pm126~\mathrm{\mu s}$	$143~\mathrm{ms}\pm258~\mathrm{\mu s}$
sin(x)	10^{7}	0	π	$15.2~\mathrm{s}\pm203~\mathrm{ms}$	$220~\mathrm{ms}\pm1.47~\mathrm{ms}$	$231~\mathrm{ms}\pm1.02~\mathrm{ms}$
e^x	10^{7}	0	1	$14.7~\mathrm{s}\pm239~\mathrm{ms}$	$151~\mathrm{ms}\pm584~\mathrm{\mu s}$	$196 \text{ ms} \pm 1.21 \text{ ms}$
1/x	10^{7}	1	2	$2.99~\mathrm{s}\pm78.5~\mathrm{ms}$	$24.1~\mathrm{ms}\pm328~\mathrm{\mu s}$	$142~\mathrm{ms}\pm1.13~\mathrm{ms}$

Table 1: Timing results for different functions

	f(x)	n	a	b	$Accuracy_{py}(\%)$	$Accuracy_{cy}(\%)$	$Accuracy_{np}(\%)$
	x^2	10^{7}	0	1	7.693e-12	7.693e-12	5.162e-13
	sin(x)	10^{7}	0	π	2.398e-12	2.375e-12	8.992e-13
İ	e^x	10^{7}	0	1	1.421e-12	1.421e-12	5.169e-14
	1/x	10^{7}	1	2	2.053e-11	2.053e-11	1.762e-13

Table 2: Accuracy results for different functions

f(x)	n	a	b	$time_{py}$	$time_{cy}$	$time_{np}$
x^2	10^{7}	0	10	$4.11 \text{ s} \pm 188 \text{ ms}$	$15.9 \text{ ms} \pm 116 \text{ µs}$	$158~\mathrm{ms}\pm1.37~\mathrm{ms}$

Table 3: Accuracy results for the given test case

f(x)	n	a	b	$Accuracy_{py}(\%)$	$Accuracy_{cy}(\%)$	$Accuracy_{np}(\%)$
x^2	10^{7}	0	10	7.693e-12	7.693e-12	5.162e-13

Table 4: Accuracy results for the given test case

5 Challenges Encountered in the process of optimization

- Initially I performed the basic optimization procedure of just using cython and annotating the cell with it, but it did not give great results
- Then I tried to cdef the function itself, but this meant I could not access the function from outside the cell, so wrappers were defined.
- Also I had to figure out a way to pass functions in C, this was done by defining a new **func_type** datatype.

6 References

- 1. Creating Latex Document
- 2. The Python3 Documentation
- 3. The Cython Documentation
- 4. Details on the implementation of function pointers in C