I claim:

1	1.	A soπ tissue coagulation device, comprising:	
2		a shaft defining a distal end and including an outer structure	
3	formed from	material that is relatively high in thermally conductivity and	
4	substantially	electrically nonconductive;	
5		at least one energy transmission device supported on the outer	
6	structure in spaced relation to the distal end of the shaft; and		
7		at least one fluid lumen defined by the outer structure and	
8	located such that a portion thereof is aligned with the at least one energy		
9	transmission	device.	
1	2.	A device as claimed in claim 1, wherein the shaft is relatively	
2	short.		
1	3.	A device as claimed in claim 1, wherein at least a portion of the	
2	shaft is relati	vely stiff.	
1	4.	A device as claimed in claim 3, wherein the shaft includes a	
2	malleable m	andrel and the outer structure is mounted on the malleable	
3	mandrel.		
1	5.	A device as claimed in claim 3, wherein the shaft includes a	
2	tubular member defining a distal end and the outer structure extends distally		
3	from the dist	al end of the tubular member.	
1	6.	A device as claimed in claim 1, wherein the shaft include a	
2	proximal por	tion and a distal portion, the device further comprising:	
3		a steering apparatus that deflects the distal portion relative to	
4	the proximal portion.		
1	7.	A device as claimed in claim 1, wherein the shaft includes a pre-	
2	bent portion.		

2

3

1	8. A device as claimed in claim 1, wherein the at least one fluid		
2	lumen comprises an inlet lumen and an outlet lumen.		
1	9. A device as claimed in claim 8, wherein the inlet lumen and the		
2	outlet lumen define respective distal ends, the device further comprising:		
3	a non-conductive tip member defining a lumen that connects the		
4	distal ends of the inlet lumen and outlet lumen.		
1	10. A device as claimed in claim 1, wherein the at least one fluid		
2	lumen includes inner and outer lumen surfaces defining a distance		
3	therebetween, the outer structure includes a wall defining a wall thickness		
4	between the at least one energy transmission device and the at least one fluid		
5	lumen, and the distance between the inner and outer lumen surfaces is		
6	greater than the wall thickness.		
1	11. A device as claimed in claim 1, wherein the at least one energy		
2	transmission device comprises a plurality of longitudinally spaced energy		
3	transmission devices.		
1	12. A device as claimed in claim 1, wherein the at least one energy		
2	transmission device comprises an electrode.		
1	13. A surgical probe as claimed in claim 1, wherein outer structure		
2	defines a perimeter, the at least one energy transmission device extends		
3	around less than the entire perimeter, the at least one fluid lumen comprises		
4	inlet and outlet lumens, and the inlet lumen is between a substantial portion of		
5	at least one the energy transmission device and the outlet lumen.		
1	14. A surgical probe as claimed in claim 13, wherein the outlet		
2	lumen includes thermal insulation.		
1	15. A soft tissue coagulation device, comprising:		

formed from material that is substantially electrically nonconductive;

a shaft defining a distal end and including an outer structure

4	at least one energy transmission device supported on the outer		
5	structure in spaced relation to the distal end of the shaft; and		
6	at least one fluid lumen defined by the outer structure such that		
7	a wall having a wall thickness is between the at least one fluid lumen and the		
8	at least one energy transmission device, located such that a portion thereof is		
9	aligned with the at least one energy transmission device, and including inner		
0	and outer lumen surfaces defining a distance therebetween that is greater		
1	than the wall thickness.		
1	16. A device as claimed in claim 15, wherein the shaft is relatively		
2	short.		
1	17. A device as claimed in claim 15, wherein at least a portion of the		
2	shaft is relatively stiff.		
1	18. A device as claimed in claim 15, wherein the shaft includes a		
2	malleable mandrel and the outer structure is mounted on the malleable		
3	mandrel.		
1	19. A device as claimed in claim 15, wherein the shaft includes a		
2	tubular member defining a distal end and the outer structure extends distally		
3	from the distal end of the tubular member.		
1	20. A device as claimed in claim 15, wherein the shaft include a		
2	proximal portion and a distal portion, the device further comprising:		
3	a steering apparatus that deflects the distal portion relative to		
4	the proximal portion.		
1	21. A device as claimed in claim 15, wherein the shaft includes a		
2	pre-bent portion.		

lumen comprises an inlet lumen and an outlet lumen.

22.

1

2

A device as claimed in claim 15, wherein the at least one fluid

1	23. A device as cialmed in cialm 22, wherein the inlet furner and the		
2	outlet lumen define respective distal ends, the device further comprising:		
3	a non-conductive tip member defining a lumen that connects the		
4	distal ends of the inlet lumen and outlet lumen.		
	0.4 A Lucius and in claim 15 whorein the at least and anaray		
1	24. A device as claimed in claim 15, wherein the at least one energy		
2	transmission device comprises a plurality of longitudinally spaced energy		
3	transmission devices.		
1	25. A device as claimed in claim 15, wherein the at least one energy		
2	transmission device comprises an electrode.		
1	26. A surgical probe as claimed in claim 15, wherein outer structure		
2	defines a perimeter, the at least one energy transmission device extends		
3	around less than the entire perimeter, the at least one fluid lumen comprises		
4	inlet and outlet lumens, and the inlet lumen is between a substantial portion of		
5	at least one the energy transmission device and the outlet lumen.		
J	at least one the shorty denomination derives and the		
1	27. A surgical probe as claimed in claim 26, wherein the outlet		
2	lumen includes thermal insulation.		
1	28. A surgical probe as claimed in claim 15, wherein the distance		
2	between the inner and outer lumen surfaces is at least two times greater than		
3	the wall thickness.		
4	29. A method of coagulating soft tissue with an apparatus including		
1	an elongate energy transmission device and an inner lumen, comprising the		
2	-		
3	steps of:		
4	positioning the elongate energy transmission device in electrical		
5	contact with tissue;		
6	transmitting energy to the tissue with the energy transmission		
7	device; and		
8	passing fluid through the inner lumen such that heat is		
9	transferred from the energy transmission device to the fluid.		

1

2

- 1 30. A method as claimed in claim 29, wherein the step of positioning 2 the elongate energy transmission device comprises positioning a plurality of 3 spaced electrodes in electrical contact with tissue.
 - 31. A method as claimed in claim 29, wherein the step of passing fluid through the inner lumen comprises passing fluid through an inlet lumen and an outlet lumen.