Mathematik I WS 15/16

Thomas $Dinges^1$ Jonas Wolf ²

27. Januar 2016

Inoffizielles Skript für die Vorlesung Mathematik I im WS 15/16, bei Britta Dorn. Alle Angaben ohne Gewähr. Fehler können gerne via E-Mail gemeldet werden.

¹thomas.dinges@student.uni-tuebingen.de

²mail@jonaswolf.de

Inhaltsverzeichnis

1	Logi	k	6				
	1.1	Negation	6				
	1.2	Konjunktion	7				
	1.3	Disjunktion	7				
	1.4	XOR	8				
	1.5		8				
	1.6	Äquivalenz	9				
	1.7		9				
	1.8	Definition (logische Äquivalenz)	0				
	1.9	Satz (Eigenschaften logischer Aussagen)					
	1.10	Bemerkung	2				
		Bemerkung (Logisches Umformen)					
		Definition (Tautologie, Kontradiktion, Erfüllbarkeit)	3				
		Beispiel	3				
		Definition (Prädikatenlogik)					
		Beispiel / Bemerkung					
		Negation von All- und Existenzaussagen					
2	Men	gen 1	7				
	2.1	Definition (Georg Cantor, 1845-1918)	7				
	2.2	Bemerkung (Verallgemeinerung von Vereinigung und Durchschnitt) 2	0				
	2.3	Definition (kartesisches Produkt)	0				
	2.4	Beispiel	1				
	2.5	Satz (Rechenregeln für Mengen)					
า	D.		. 1				
3		eismethoden 2					
	3.1	Direkter Beweis					
	3.2	Beweis durch Kontraposition					
	3.3	Beweis durch Widerspruch, indirekter Beweis					
	3.4	Vollständige Induktion					
		3.4.1 Prinzip der vollständigen Induktion					
		3.4.2 Bemerkung					
		3.4.3 Verschärftes Induktionsprinzip					
	3.5	Schubfachprinzip					
		3.5.1 Idee					
		3.5.2 Satz (Schubfachprinzip, engl.: pigeon hole principle) 3					
		3.5.3 Beispiel					
	3.6	Weitere Beweistechniken (Werkzeugkiste)	9				

4	Abbi	ildungen 35
	4.1	Definition
	4.2	Beispiele
	4.3	Beispiele
	4.4	Definition (Gleichheit von Abbildungen)
	4.5	Beispiel
	4.6	Definition (Bild, Urbild, Injektivität, Surjektivität, Bijektivität) 36
	4.7	Beispiele
	4.8	Definition (Umkehrfunktion)
	4.9	Beispiel
		Bemerkung
	4.11	Definition (Hintereinanderausführung/Komposition)
		Beispiel
		Satz (Eigenschaften der Komposition)
		Satz (Charakterisierung bijektiver Abbildungen) 40
		Bemerkung / Definition (Endlichkeit, Mächtigkeit) 41
		Satz (Wichtiger Satz für endliche Mengen)
		Das Prinzip der rekursiven Definition von Abbildungen 43
		Beispiel
		Bemerkung
	4.20	Beispiel (Fibonacci-Zahlen)
5	Rela	tionen 46
J	5.1	Definition
	5.2	Beispiel
	5.3	Definition (Ordnungsrelation, partielle/totale/vollständige/lineare
	0.0	Ordnung)
	5.4	Beispiele
	5.5	Definition (Äquivalenzrelation)
	5.6	Beispiele
	5.7	Definition (Äquivalenzklassen)
	5.8	Beispiel
	5.9	Definition (paarweise disjunkte Mengen, disjunkte Vereinigung, Zer-
		legung/Partition)
	5.10	Satz (Klasseneinteilung, Zerlegung durch Äquivalenzklassen) 50
		Satz zu Äquivalenzrelationen
		Definition (Repräsentantensystem)
		Beispiel
c	121	7.11
6		nentare Zahlentheorie 54 Definition (Teiler und Vielfaches)
	0.1	- 125HHHHHHHH TEHEL UHU VIEHAUHES)

	6.2	Satz (Betrag, Eigenschaften von Teiler und Vielfachem) 5	4
	6.3	Satz und Definition: Division mit Rest	5
	6.4	Beispiel	5
	6.5	Definition (Gaußklammer / Ab- und Aufrundungsfunktion) 5	7
	6.6	Beispiel	7
	6.7	Satz (b-adische Darstellung)	7
	6.8	Beispiel	8
	6.9	Korollar	0
	6.10	Beispiel	0
	6.11	Satz (Rechenregeln für modulo) 6	i1
	6.12	Bemerkung	i2
	6.13	Beispiele	i2
	6.14	Definition (Kongruenzrelationen modulo m) 6	4
	6.15	Satz (zu Kongruenzrelationen) 6	4
	6.16	Beispiel	5
	6.17	Satz und Definition (Äquivalenzklassen, Kongruenzrelation,	
		Repräsentantensysteme)	6
	6.18	Satz (Eigenschaften der Kongruenzrelation) 6	6
	6.19	Beispiel	7
	6.20	Definition (größter gemeinsamer Teiler, kleinste gemeinsame Viel-	
		fache)	7
	6.21	Bemerkung	8
	6.22	Definition (teilerfremd, paarweise teilerfremd) 6	8
	6.23	Lemma (Bestimmung des ggT) 6	8
	6.24	Euklidischer Algorithmus	9
	6.25	Satz (Bachét de Mérirac (1581 - 1638))	0
	6.26	Erweiterter Euklidischer Algorithmus	1
	6.27	Korollar	2
	6.28	Bemerkung	2
	6.29	Definition (Primzahl)	3
		Satz	′3
	6.31	Fundamentalsatz der elementaren Zahlentheorie	3
	6.32	Korollar (Euklids Lemma)	4
	6.33	Korollar	5
7	Kom	binatorik 7	6
	7.1	Satz	6
	7.2	Beispiel	6
	7.3	Geordnete Auswahl ohne Wiederholung	7
	7.4	Definition	7
	7.5	Satz	8

7.6	Beispiel	78
7.7	Korollar	79
7.8	Definition	79
7.9	Geordnete Auswahl mit Wiederholung	79
7.10	Satz	80
7.11	Bemerkung / Korollar	80
7.12	Ungeordnete Auswahl ohne Wiederholung	80
7.13	Definition (Binomialkoeffizient)	80
7.14	Bemerkung/Satz (Pascal'sches Dreieck)	81
7.15	Satz (Anzahl ungeordneter Auswahlen)	81
7.16	Beispiel (Lotto 6 aus 49)	82
7.17	Satz (Binomialsatz / binomischer Lehrsatz)	82
7.18	Ungeordnete Anzahl mit Wiederholung	83
7.19	Satz	83
7.20	Beispiel (IKEA)	83

1 Logik

Aussagenlogik

Eine **logische Aussage** ist ein Satz, der entweder wahr oder falsch (also nie beides zugleich) ist. Wahre Aussagen haben den Wahrheitswert 1 (auch wahr, w, true, t), falsche den Wert 0 (auch falsch, f, false).

Notation: Aussagenvariablen $A, B, C, ...A_1, A_2$.

Beispiele:

- 2 ist eine gerade Zahl (1)
- Heute ist Montag (1)
- 2 ist eine Primzahl (1)
- 12 ist eine Primzahl (0)
- Es gibt unendlich viele Primzahlen (1)
- Es gibt unendlich viele Primzahlzwillinge (Aussage, aber unbekannt, ob 1 oder 0)
- 7 (keine Aussage)
- Ist 173 eine Primzahl? (keine Aussage)

Aus einfachen Aussagen kann man durch logische Verknüpfungen (**Junktoren**, z.B. und, oder, ...) kompliziertere bilden. Diese werden Ausdrücke genannt (auch Aussagen sind Ausdrücke). Durch sogenannte **Wahrheitstafeln** gibt man an, wie der Wahrheitswert der zusammengesetzten Aussage durch die Werte der Teilaussagen bedingt ist. Im folgenden seien A, B Aussagen.

Die wichtigsten Junktoren:

1.1 Negation

Verneinung von A: $\neg A$ (auch \bar{A}), $nicht\ A$, ist die Aussage, die genau dann wahr ist, wenn A falsch ist.

Wahrheitstafel:

A	$\neg A$
1	0
0	1

Beispiele:

• A: 6 ist durch 3 teilbar. (1)

• $\neg A$: 6 ist nicht durch 3 teilbar. (0)

• B: 4,5 ist eine gerade Zahl (0)

• $\neg B$: 4,5 ist keine gerade Zahl. (1)

1.2 Konjunktion

Verknüpfung von A und B durch $und \colon A \wedge B$ ist genau dann wahr, wenn A und B gleichzeitig wahr sind.

Wahrheitstafel:

Α	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

Beispiele:

•
$$\underbrace{6 \text{ ist eine gerade Zahl}}_{A(1)}$$
 und $\underbrace{\text{durch 3 teilbar}}_{B(1)}$. (1)

•
$$\underbrace{9 \text{ ist eine gerade Zahl}}_{A(0)}$$
 und $\underbrace{\text{durch 3 teilbar}}_{B(1)}$. (0)

1.3 Disjunktion

 $oder: A \vee B$

Wahrheitstafel:

Α	В	$A \lor B$
1	1	1
1	0	1
0	1	1
0	0	0

↑ Einschließendes oder, kein entweder…oder.

Beispiele:

• 6 ist gerade oder durch 3 teilbar. (1)

- 9 ist gerade oder durch 3 teilbar. (1)
- 7 ist gerade oder durch 3 teilbar. (0)

1.4 XOR

entweder oder: A xor B, $A \oplus B$ (ausschließendes oder, exclusive or).

Wahrheitstafel:

A	В	$A \oplus B$
1	1	0
1	0	1
0	1	1
0	0	0

1.5 Implikation

wenn, dann, $A \Rightarrow B$:

- wenn A gilt, dann auch B
- A impliziert B
- aus A folgt B
- A ist <u>hinreichend</u> für B,
- B ist notwendig für A

Wahrheitstafel:

Α	В	$A \Rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

Merke: ex falso quodlibet: aus einer falschen Aussage kann man alles folgern!

(Die Implikation $A\Rightarrow B$ sagt nur, dass B wahr sein muss, <u>falls</u> A wahr ist. Sie sagt nicht, dass B tatsächlich war ist.)

Beispiele:

• Wenn 1 = 0, bin ich der Papst. (1)

1.6 Äquivalenz

 $genau\ dann\ wenn,\ A\Leftrightarrow B$ (dann und nur dann wenn, g.d.w, äquivalent, if and only if, iff)

Wahrheitstafel:

Α	В	$A \Leftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

Beispiele:

- Heute ist Montag genau dann wenn morgen Dienstag ist. (1)
- Eine natürliche Zahl ist durch 6 teilbar g. d. w. sie durch 3 teilbar ist. (0) $A \Rightarrow B \ (1)$ $B \Rightarrow A \ (0)$

Festlegung

 \neg bindet stärker als alle anderen Junktoren: $(\neg A \land B)$ heißt $(\neg A) \land B$

1.7 Beispiel

a)

Wann ist der Ausdruck $(A \lor B) \land \neg (A \land B)$ wahr?

 \rightarrow Wahrheitstafel

1	A	В	$(A \vee B)$	$(A \wedge B)$	$\neg (A \land B)$	$(A \vee B) \wedge \neg (A \wedge B)$
	1	1	1	1	0	0
	1	0	1	0	1	1
(0	1	1	0	1	1
	0	0	0	0	1	0

∧ Klammerung relevant

Welche Wahrheitswerte ergeben sich für

• $A \lor (B \land \neg A) \land B)$?

• $A \vee B \wedge \neg A \wedge B$?

 $(A \vee B) \wedge \neg (A \wedge B)$ und $(A \oplus B)$ haben dieselben Wahrheitstafeln. Ausdrücke sehen unterschiedlich aus (Syntax), aber haben dieselbe Bedeutung (Semantik). Dies führt zu 1.8 Definition.

b)

Wann ist $(A \wedge B) \Rightarrow \neg (C \vee A)$ falsch?

 \rightarrow Wahrheitstafel: <u>alle</u> möglichen Belegungen von A, B, C mit 0/1

Α	В	С	$(A \wedge B)$	$\neg(C \lor A)$	$(A \land B) \Rightarrow \neg(C \lor A)$
1	1	1	1	0	0
1	1	0	1	0	0
1	0	1	0	0	1
1	0	0	0	0	1
0	1	1	0	0	1
0	1	0	0	1	1
0	0	1	0	0	1
0	0	0	0	1	1

oder überlegen:

$$(A \wedge B) \Rightarrow \neg (C \vee A)$$
 ist nur 0, wenn

$$(A \wedge B) = 1$$
, also $A = 1$ und $B = 1$

und

$$\neg (C \lor A) = 0 \text{ ist.}$$

(Wissen: A = 1), also $\underline{C} = 0$ oder $\underline{C} = 1$ möglich.

1.8 Definition

Haben zwei Ausdrücke α und β bei jeder Kombination von Wahrheitswerten ihrer Aussagevariablen den gleichen Wahrheitswert, so heißen sie <u>logisch äquivalent</u>; man schreibt $\alpha \equiv \beta$. (' \equiv ' ist kein Junktor, entspricht '=')

Es gilt: Falls $\alpha \equiv \beta$ gilt, hat der Ausdruck $\alpha \Leftrightarrow \beta$ immer den Wahrheitswert 1.

1.9 Satz

Seien $A,\,B,\,C$ Aussagen. Es gelten folgende logische Äquivalenzen:

- a) Doppelte Negation: $A \equiv \neg(\neg A)$
- b) Kommutativität von \land , \lor , \oplus , \Leftrightarrow :
 - $(A \wedge B) \equiv (B \wedge A)$
 - $(A \lor B) \equiv (B \lor A)$
 - $(A \oplus B) \equiv (B \oplus A)$
 - $(A \Leftrightarrow B) \equiv (B \Leftrightarrow A)$

 \bigwedge gilt nicht für ' \Rightarrow ' !! $(A \Rightarrow B \not\equiv B \Rightarrow A)$

- c) Assoziativität von \land , \lor , \oplus , \Leftrightarrow :
 - $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
 - $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - $(A \oplus B) \oplus C \equiv A \oplus (B \oplus C)$
 - $(A \Leftrightarrow B) \Leftrightarrow C \equiv A \Leftrightarrow (B \Leftrightarrow C)$
- d) Distributivität:
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
- e) Regeln von DeMorgan:

 - $\neg (A \lor B) \equiv \neg A \land \neg B$
- f) $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- $\mathbf{g)} \ A \Rightarrow B \equiv \neg A \vee B$
- **h)** $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

(Alle Äquivalenzen gelten auch, wenn die Aussagevariablen durch Ausdrücke ersetzt werden.)

Beweis: Jeweils mittels Wahrheitstafel (Übung!), zum Beispiel:

	A	$\neg A$	$\neg(\neg A)$
a)	1	0	1
	0	1	0

	Α	В	$(A \wedge B)$	$\neg (A \land B)$	$\neg A$	$\neg B$	$(\neg A \lor \neg B)$
	1	1	1	0	0	0	0
e)	1	0	0	1	0	1	1
	0	1	0	1	1	0	1
	0	0	0	1	1	1	1

Bemerkung 1.10

(1.9 f):
$$(A \Rightarrow B) \equiv \underbrace{(\neg B \Rightarrow \neg A)}_{\text{wird } \underline{\text{Kontraposition}}}$$
 genannt, wichtig für Beweis. Wird im Sprachgebrauch oft falsch verwendet.

Beispiel: Pit ist ein Dackel. \Rightarrow Pit ist ein Hund.

äquivalent zu: $(\neg B) \Rightarrow (\neg A)$

Pit ist kein Hund. \Rightarrow Pit ist kein Dackel.

aber nicht zu: $B \Rightarrow A$

Pit ist ein Hund. \Rightarrow Pit ist ein Dackel.

und nicht zu: $\neg A \Rightarrow \neg B$

Pit ist kein Dackel. \Rightarrow Pit ist kein Hund.

Beispiel: Sohn des Logikers / bellende Hunde $(\rightarrow$ Folien)

Bemerkung (Logisches Umformen) 1.11

Sei α ein Ausdruck. Ersetzen von Teilausdrücken von α durch logisch äquivalente Ausdrücke liefert einen zu α äquivalenten Ausdruck. So erhält man eventuell kürzere/einfachere Ausdrücke, zum Beispiel:

$$\neg(A\Rightarrow B)\underset{1.9\text{ g})}{\equiv}\neg(\neg A\vee B)\underset{1.9\text{ e})}{\equiv}\neg(\neg A)\wedge(\neg B)\underset{1.9\text{ a})}{\equiv}A\wedge\neg B$$

1.12 Definition

Ein Ausdruck heißt <u>Tautologie</u>, wenn er für jede Belegung seiner Aussagevariablen, immer den Wert 1 <u>annimmt</u>. Hat er immer den Wert 0, heißt er <u>Kontradiktion</u>. Gibt es mindestens eine Belegung der Aussagevariablen, so dass der Ausdruck Wert 1 hat, heißt er erfüllbar.

1.13 Beispiel

- a) $A \vee \neg A$ Tautologie $A \wedge \neg A$ Kontradiktion
- b) $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$ Tautologie (vergleiche Beispiel in 1.11). $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$ Tautologie (vergleiche Beispiel in 1.9g).
- c) $A \wedge \neg B$ ist erfüllbar (durch A = 1, B = 0).

Prädikatenlogik

Eine <u>Aussageform</u> ist ein sprachliches Gebilde, dass formal wie eine Aussage aussieht, aber eine oder mehrere Variablen enthält.

Beispiel:
$$P(x)$$
 : $\underbrace{x}_{Variable} \leq \underbrace{10}_{Pr"adikat (Eigenschaft)}$

Q(x): x studiert Informatik

R(y): y ist Primzahl und $y^2 + 2$ ist Primzahl.

Eine Aussageform P(x) wird zur Aussage, wenn man die Variable durch ein konkretes Objekt ersetzt. Diest ist nur dann sinnvoll, wenn klar ist, welche Werte für x erlaubt sind, daher wird oft die zugelassene Wertemenge mit angegeben. (hier Vorgriff auf Kapitel Mengen)

Im Beispiel:

P(3) ist wahr, P(42) falsch.

R(2) ist falsch, R(3) ist wahr.

Oft ist die Frage interessant, ob es wenigstens ein x gibt, für das P(x) wahr ist, oder ob P(x) sogar für alle zugelassenen x wahr ist.

1.14 Definition

Sei P(x) eine Aussageform.

a) Die Aussage Für alle x (aus einer bestimmten Menge M) gilt P(x). ist wahr genau dann wenn P(x) für alle in Frage kommenden x wahr ist.

Schreibweise:
$$\forall x \in M$$
 : $P(x)$ für alle, für jedes aus der Menge M gilt Eigenschaft

auch
$$\bigvee_{x \in M} P(x)$$
.

Das Symbol ∀ heißt All- Quantor, die Aussage All- Aussage.

b) Die Aussage Es gibt (mindestens) ein x aus M, das die Eigenschaft P(x) besitzt. ist wahr, g.d.w P(x) für mindestens eines der in Frage kommenden x wahr ist.

Schreibweise:
$$\exists x \in M \quad \vdots \quad P(x)$$
.

∃ heißt Existenzquantor, die Aussage Existenzmenge.

1.15 Beispiel / Bemerkung

Übungsgruppe G:
$$\underbrace{a}_{Anna}\underbrace{b}_{Bob}\underbrace{c}_{Clara}$$

$$B(x) : x$$
 ist blond.
 $W(x) : x$ ist weiblich.

$$B(a) = 1$$
$$W(b) = 0$$

1. Alle Studenten der Gruppe sind blond. (1)

$$\forall x \in G$$
: x ist blond

$$\forall x \in G: B(x) (1)$$

Das bedeutet: a blond \wedge b blond \wedge c blond

$$\underbrace{B(a)}_{1} \wedge \underbrace{B(b)}_{1} \wedge \underbrace{B(c)}_{1}$$

∀ ist also eine Verallgemeinerung der Konjunktion.

2. Alle Studenten der Gruppe sind weiblich. (0)

$$\underbrace{W(a)}_{1} \wedge \underbrace{W(b)}_{0} \wedge \underbrace{W(c)}_{1} (0)$$

3. Es gibt einen Studenten der Gruppe, der weiblich ist. (1)

$$\exists x \in G: W(x) (1)$$

be
deutet:
$$\underbrace{W(a)}_{1} \lor \underbrace{W(b)}_{0} \lor \underbrace{W(c)}_{1} = 1$$

 \exists ist verallgemeinerte Disjunktion.

4. Aussage A: Alle Studenten der Gruppe sind weiblich. (0)

Verneinung von A? $\neg A$

∧ Nicht korrekt wäre: Alle Studenten der Gruppe sind männlich. (Wahrheitswert ist auch 0)

Korrekt: Nicht alle Studenten der Gruppe sind weiblich (1) Es gibt (mindestens) einen Studenten der Gruppe, der nicht weiblich ist. (1)

allgemeiner:

1.16 Negation von All- und Existenzaussagen

a)
$$\neg(\forall x \in M : P(x)) \equiv \exists x \in M : \neg P(x)$$

b)
$$\neg(\exists x \in M : P(x)) \equiv \forall x \in M : \neg P(x)$$

(Verallgemeinerung der Regeln von DeMorgan) (vergleiche Beispiel 1.15, 4):

$$\neg(\forall x \in G: W(x))$$

$$\equiv \neg(W(a) \land W(b) \land W(c))$$

$$\underbrace{\equiv}_{DeMorgan} (\neg W(a)) \vee (\neg W(b)) \vee (\neg W(c))$$

$$\equiv \exists x \in G : \neg W(x)$$

Bemerkung

Aussageformen können auch mehrere Variablen enthalten, Aussagen mit mehreren Quantoren sind möglich.

Zum Beispiel:

```
 \begin{aligned} &\exists x \in X & \exists y \in Y : P(x,y) \\ &\exists x \in X & \forall y \in Y : P(x,y) \\ &\forall x \in X & \exists y \in Y : P(x,y) \\ &\forall x \in X & \forall y \in Y : P(x,y) \end{aligned}
```

Negation dann durch mehrfaches Anwenden von 1.16, zum Beispiel:

```
\neg(\forall x \in X \quad \forall y \in Y \quad \exists z \in Z : P(x, y, z)) 

\equiv \exists x \in X : \neg(\forall y \in Y \quad \exists z \in Z : P(x, y, z)) 

\equiv \exists x \in X \quad \exists y \in Y : \neg(\exists z \in Z : P(x, y, z)) 

\equiv \exists x \in X \quad \exists y \in Y \quad \forall z \in Z : \neg P(x, y, z))
```

Also:

ändere \exists in \forall , \forall in \exists , verneine Prädikat.

2 Mengen

2.1 Definition (Georg Cantor, 1845-1918)

Eine <u>Menge</u> ist eine Zusammenfassung von bestimmten, wohlunterscheidbaren Objekten (<u>Elementen</u>) unserer Anschauung oder unseres Denkens zu einem Ganzen.

Im Folgenden seien A, B Mengen.

- a) $x \in A : x$ ist Element der Menge A $x \notin A : x$ ist nicht Element der Menge A oder auch: $A \ni x : x$ ist Element der Menge A $A \not\ni x : x$ ist nicht Element der Menge A
- **b)** Eine Menge kann beschrieben werden durch:
 - Aufzählung ihrer Elemente, zum Beispiel: $M_1 = \{a, b, c\}$ $(=\{c, a, b\}, d.h.$ Reihenfolge spielt keine Rolle) **Achtung:** Keine Wiederholungen! $M_2 = \{ \odot, \odot \}$ $M_3 = \{ 3, \{1, 2\}, \underline{M_1} \}$ geht nur bei endlichen Mengen oder bestimmten unendlichen Mengen, zum Beispiel: $\mathbb{N} = \{1, 2, 3, 4, ...\}$ Menge der natürlichen Zahlen $\mathbb{N}_0 = \{0, 1, 2, 3, 4, ...\}$ Menge der natürlichen Zahlen mit der Null $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$ Menge der ganzen Zahlen
 - Charakterisierung ihrer Elemente: $A = \{x \mid x \text{ besitzt die Eigenschaft } E\}, \text{ z.B.:}$ $A = \{n \mid n \in \mathbb{N} \text{ und n ist gerade}\}$ sprich: "mit der Eigenschaft"

sprich: "mit der Eigenschaft"
$$= \{2, 4, 6, 8, ...\}$$

$$= \{x \mid \exists k \in \mathbb{N} \text{ mit } x = 2 \cdot k\} = \{2k \mid k \in \mathbb{N}\}$$

Bsp: $\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$ Menge der rationalen Zahlen

- c) Mit \emptyset bezeichnen wir die Menge ohne Elemente (leere Menge)
- d) Mit |A| bezeichnen wir die Anzahl der Elemente der Menge A (Kardinalität oder <u>Mächtigkeit</u> von A), zum Beispiel:

$$\big|\big\{1,a,*\big\}\big|=3,\quad \big|\emptyset\big|=0,\quad |\mathbb{N}|=\infty,\quad \big|\big\{\mathbb{N}\big\}\big|=1$$

e) $A \cap B := \{x \mid x \in A \land x \in B\}$ heißt <u>Durchschnitt</u> oder <u>Schnittmenge</u> von A und B.

Grafische Veranschaulichung: Venn-Diagramm ($\underline{\wedge}$ gilt nicht als Beweis)

f) $A \cup B := \{x \mid x \in A \lor x \in B\}$ heißt Vereinigung von A und B.

Beispiele: $A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{4\}$

$$\begin{split} A \cap B &= \{2,3\}, \\ A \cap C &= \emptyset, \\ B \cap C &= \{4\} = C, \\ A \cup B &= \{1,2,3,4\} \end{split}$$

g) A und Bheißen disjunkt, falls gilt $A\cap B=\emptyset$

h) A heißt Teilmenge von $B, A \subseteq B$, falls gilt: $x \in A \Rightarrow x \in B$

Oder in Worten: Jedes Element von A ist auch Element von B.

Dasselbe bedeutet die Notation

$$B \supseteq A$$

(B ist Obermenge von A)

Beispiel: $\{1,2\} \subseteq \{1,2,3\} \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{R}$ (reelle Zahlen)

Es gilt: $\emptyset \subseteq A$ für jede Menge A.

Achtung: Unterschied $\subseteq, \in !$

Zum Beispiel:

 $A = \{1, \mathbb{N}\}\$ (hier ist die Menge \mathbb{N} ein Element von A, keine Teilmenge!)

 $1 \in A$, $\mathbb{N} \in A$, $\mathbb{N} \nsubseteq A$, $2 \notin A$, $\{1\} \subseteq A$

i) Zwei Mengen A, B heißen gleich $(A = B, \text{ falls gilt: } A \subseteq B \text{ und } B \subseteq A \text{ (also } x \in A \Rightarrow / \Leftarrow / \Leftrightarrow x \in B.$

Darin liegt ein Beweisprinzip: Man zeigt A = B, indem man zeigt:

- $x \in A \Rightarrow x \in B$
- $x \in B \Rightarrow x \in A \text{ (mehr später)}$

Beispiel:

$$A = \{2, 3, 4\}, \qquad B = \{x \in \mathbb{N} \mid x > 1 \text{ und } x < 5\}$$

$$A = B$$

j) $A \subsetneq B(A \subsetneq B)$ bedeutet $A \subseteq B$, aber $A \neq B$.

(d.h.
$$\exists x \in B \text{ mit } x \notin A, \text{ aber } x \in B$$
)

(A ist <u>echte</u> Teilmenge von B.)

k) Mit $P(A) := \{B \mid B \text{ ist eine Teilmenge von A}\} = \{B \mid B \subseteq A\}$ bezeichnen wir die Menge aller (echten oder nicht echten) Teilmengen von A, die sogenannte Potenzmenge von A. $(\emptyset \subseteq A \forall A, A \subseteq A \forall A)$

Beispiel:

$$A=\{1,\}, P(A)=\{\emptyset,\{\underbrace{1}_A\}\}$$

$$B = \{1, 2\}, P(B) = \{\emptyset, \{1\}, \{2\}, \{\underbrace{1, 2}_{B}\}\}$$

$$C = \{1, 2, 3\}, P(C) = \dots$$
 (8 Elemente)

$$P(\emptyset) = \{\emptyset\}$$

Was ist
$$P(P(A))$$
?
 $P(P(A)) = P(\{\emptyset, \{1\}\}) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset, \{1\}\}\}$

1) $A \setminus B := \{x \mid x \in A \text{ und } x \notin B\}$ heißt die <u>Differenz</u> (A ohne B).

Ist $A \subseteq X$ mit einer Obermenge X, so heißt $X \setminus A$ das Komplement von A (bezüglich X). Wir schreiben A_X^C oder kurz A^C (wenn X aus dem Kontext klar ist).

m) $A \triangle B := (A \backslash B) \cup (B \backslash A)$ heißt die symmetrische Differenz von A und B.

2.2 Bemerkung

Verallgemeinerung der Vereinigung und des Durchschnitts:

$$A_1 \cap A_2 \cap \dots \cap A_n = \{x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n\}$$

$$=:\bigcap_{i=1}^n A_i$$

$$A_1 \cup ... \cup A_n = \{x \mid x \in A_1 \vee ... \vee x \in A_n\}$$

$$=:\bigcup_{i=1}^n A_i$$

Beziehungsweise noch allgemeiner:

Sei S eine Menge von Mengen (System von Mengen)

2.3 Definition

 $A \in S$

Seien A, B Mengen.

$$A \underset{Kreuz}{\times} B := \{(a, b) \mid a \in A, b \in B\}$$

Die Menge aller geordneten Paare, heißt <u>kartesisches Produkt</u> von A und B (nach René Descartes, 1596 - 1650).

Dabei legen wir fest: (a,b) = (a',b') mit $(a,a' \in A,b,b' \in B)$: $\Leftrightarrow a = a'$ und b = b'.

Allgemein sei für Mengen $A_1, ... A_n (n \in \mathbb{N})$ $A_1 \times A_2 \times ... \times A_n := \{a_1, a_2, ..., a_n) \mid a_i \in A_i, \forall i = 1...n\}$ die Menge aller geordneten n-Tupel (mit analoger Gleichheitsdefinition).

$$(n = 2 : Paare, n = 3 : Tripel)$$

Schreibweise:

$$A_1 \times ... \times A : n =: \sum_{i=1}^n A_i$$

Ist eine der Mengen $A_1, ... A_n$ leer, setzen wir $A_1 \times ... \times A_n = \emptyset$.

Statt $A \times A$ schreiben wir auch A^2 , statt $\underbrace{A \times ... \times A}_{n-Faktoren} = A^n$.

2.4 Beispiel

$$A = \{1, 2, 3\}, B = \{3, 4\}$$

$$(1,3) \in A \times B, \underbrace{(3,1)}_{B \times A} \notin A \times B,$$

$$(\underbrace{3}_{B\times B},\underbrace{3}_{A\times A})\in A\times B\in B\times A$$

$$(1,2)\in A\times B,\in A\times A$$

$$A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$$

$$B \times A = \dots$$

$$B\times B=B^2=\{(3,3),(3,4),(4,3),(4,4)\}$$

2.5 Satz (Rechenregeln für Mengen)

Seien A, B, C, X Mengen. Dann gilt:

a)
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$
(Kommutativgesetz)

b)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$
(Assoziativgesetz)

c)
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
(Disbributivgesetz)

d)
$$A, B \subseteq X$$
, dann $(A \cap B)_X^C = A_X^C \cup B_X^C$ $(A \cup B)_X^C = A_X^C \cap B_X^C$ (Regeln von DeMorgan)

e)
$$A \subseteq X$$
, dann $(A_X^C)_X^C = A$

f)
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

 $(= \{x \mid x \in A \oplus x \in B\})$

g)
$$A \cap B = A$$
 genau dann, wenn $A \subseteq B$ $(A \cap B) = A \iff A \subseteq B$

h)
$$A \cup B = A \iff B \subseteq A$$

Beweis

a)
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

= $\{x \mid x \in B \lor x \in A\} = B \cup A$

 $A \cap B$ analog

b), c) Übung, wie a) benutze Assoziativgesetz (1.9 c)) bzw. Distributivgesetz (1.9 d)) für logische

Äquivalenzen.

$$\begin{aligned} \operatorname{d}) & & (A \cap B)_X^C \\ & = \{x \mid x \in X \setminus (A \cap B)\} \\ & = \{x \mid x \in X \wedge (x \notin (A \cap B))\} \\ & = \{x \mid x \in X \wedge \neg (x \in (A \cap B))\} \\ & = \{x \mid x \in X \wedge \neg (x \in A \wedge x \in B)\} \\ & = \{x \mid x \in X \wedge \neg (x \notin A \wedge x \notin B)\} \\ & = \{x \mid (x \in X \wedge (x \notin A \vee x \notin B)\} \\ & = \{x \mid ((x \in X) \wedge (x \notin A)) \vee ((x \in X) \wedge (x \notin B))\} \\ & = A_X^C \cup B_X^C \end{aligned}$$

- 2. Regel analog
- e) ähnlich
- f) g) h) später

3 Beweismethoden

Ein mathematischer <u>Beweis</u> ist die Herleitung der Wahrheit (oder Falschheit) einer Aussage aus einer Menge von <u>Axiomen</u> (nicht beweisbare Grundtatsachen) oder bereits bewiesenen Aussagen nmittels logischen Folgerungen.

Bewiesene Aussagen werden Sätze genannt.

<u>Lemma</u> - Hilfssatz, der nur als Grundlage für wichtigeren Satz formuliert und bewiesen wird.

<u>Theorem</u> - wichtiger Satz

Korollar - einfache Folgerung aus Satz, z.B. Spezialfall

<u>Definition</u> - Benennung/Bestimmung eines Begriffs/Symbols

□ - Zeichen für Beweisende (■, q.e.d., wzbw...)

Mathematische Sätze haben oft die Form:

Wenn V (Voraussetzung) gilt, dann gilt auch B (Behauptung)

 $(V, B: Aussagen), kurz: V \Rightarrow B$

Zu zeigen ist also, dass $V \Rightarrow B$ eine wahre Aussage ist.

3.1 Direkter Beweis

Gehe davon aus, dass V wahr ist, folgere daraus, dass B wahr ist.

$$[\text{ Sei } V \text{ wahr}, \Rightarrow \dots \\ \Rightarrow \dots \\ \Rightarrow \dots \\ \vdots \\ \Rightarrow B \text{ ist wahr }]$$

Beispiel: Sei $n \in \mathbb{N}$. Ist n gerade, so ist auch n^2 gerade.

$$\Rightarrow n^2 = (2 \cdot k)^2 = 4 \cdot k^2 = 2 \cdot (2k^2)$$

$$\Rightarrow n^2 \text{ ist gerade.}$$
// B ist wahr

3.2 Beweis durch Kontraposition

vgl. Satz 1.9 f)
$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

Statt $V \Rightarrow B$ zu zeigen, können wir also auch $\neg B \Rightarrow \neg V$ zeigen.

[Es gelte
$$\neg B \Rightarrow \dots$$

 $\Rightarrow \dots$
 $\Rightarrow \dots$
 \vdots
 \Rightarrow es gilt $\neg V$]

Beispiel: Sei $n \in \mathbb{N}$.

$$\underbrace{\text{Ist } n^2 \text{ gerade}}_{V}, \underbrace{\text{so ist auch } n \text{ gerade}}_{B}.$$

Beweis durch Kontraposition:

3.3 Beweis durch Widerspruch, indirekter Beweis

Zu zeigen ist Aussage A. Wir gehen davon aus, dass A <u>nicht</u> gelte ($\neg A$ ist wahr) und folgern durch logische Schlüsse eine zweite Aussage B, von der wir wissen, dass sie falsch ist. Wenn alle logischen Schlüsse korrekt waren, muss also $\neg A$ falsch gewesen sein, also A wahr.

$$(((\neg A \Rightarrow B) \land (\neg B)) \Rightarrow A \text{ ist Tautologie})$$

Beispiel: [Euklid] $\sqrt{2} \notin \mathbb{Q}$

<u>Beweis:</u> Wir nehmen an, dass die Aussage falsch ist, also $\sqrt{2} \in \mathbb{Q}$ gilt, das heißt $\sqrt{2} = \frac{p}{q}$ mit p, $q \in \mathbb{Z}(q \neq 0)$ teilerfremd (vollständig gekürzter Bruch)

$$\Rightarrow 2 = \frac{p^2}{q^2}$$

 $\Rightarrow p^2 = 2q^2$, also ist p^2 gerade, damit aber auch p
 gerade (Beispiel in 3.2), also $p = 2 \cdot r \text{ mit } r \in \mathbb{Z}.$

$$\Rightarrow p^2 = (2r)^2 = 2q^2$$

$$\Rightarrow 4r^2 = 2q^2$$

$$\Rightarrow 2r^2 = q^2$$

$$\Rightarrow q^2 \text{ gerade}$$

$$\Rightarrow 4r^2 = 2q^2$$

$$\Rightarrow 2r^2 = q^2$$

$$\Rightarrow \overline{q^2 \text{ gerade}}$$

$$\Rightarrow q$$
 gerade

Also: p gerade, q gerade, Widerspruch zu p, q teilerfremd.

Also war die Annahme falsch, es muss $\sqrt{2} \notin \mathbb{Q}$ gelten. \square

Vollständige Induktion 3.4

Eine Methode, um Aussagen über natürliche Zahlen zu beweisen.

Beispiel: Gauß

$$1 + 2 + \dots + 100 = ?$$

$$50 \cdot 101 = 5050$$

$$(=\frac{100}{2}\cdot 101)$$

Allgemein:

Allgemein:
$$\frac{1+2+3+\ldots+n}{1+2+3+\ldots+n} = \frac{n(n+1)}{2}$$
$$(n \in \mathbb{N})$$

3.4.1 Prinzip der vollständigen Induktion

Sei $n_0 \in \mathbb{N}$ fest vorgegeben (oft $n_0 = 1$).

Für jedes $n \geq n_0, n \in \mathbb{N}$, sei A(n) eine Aussage, die von n abhängt.

Es gelte:

- 1. $A(n_0)$ ist wahr (Induktionsanfang)
- 2. $\forall n \in \mathbb{N}, n \ge n_0$: IstA(n)wahr, so istA(n+1)wahr. (Induktionsschritt)

 Induktionsvorraussetzung Induktionsbehauptung

Dann ist die Aussage A(n) für alle $n \ge n_0$ wahr. (Dominoprinzip)

(<u>Bemerkung</u>: gilt auch für \mathbb{N}_0 ($n_0 = 0$ auch möglich) und für $n_0 \in \mathbb{Z}$, Behauptung gilt dann für alle $n \in \mathbb{Z}$ mit $n \geq n_0$).

Beispiel:

a) Kleiner Gauß
$$1+2+...+n=\frac{n(n+1)}{2} \forall n \in \mathbb{N}$$

Beweis:

$$A(n): 1+2+...+n = \frac{n(n+1)}{2}$$

- Induktionsanfang $(n = 1) : A(1) : 1 = \frac{1 \cdot (1+1)}{2}$
- Induktionsschritt:

Induktionsvorraussetzung:

sei
$$n \ge 1$$
. Es gelte $A(n)$, d.h. $1 + ... + n = \frac{n(n+1)}{2}$

Induktionsbehauptung:

Es gilt
$$A(n+1)$$
, d.h. $1 + ... + n + (n+1) = \frac{(n+1)(n+1+1)}{2}$

Beweis:
$$\underbrace{1+2+...+n}_{Ind.vor.} + (n+1) \underbrace{= \frac{n(n+1)}{2}}_{Ind.vor.} + (n+1)$$

$$= \frac{n^2+n+2n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$A(n+1)$$

- **b)** $A(n): 2^n \ge n \forall n \in \mathbb{N}$
 - Induktionsanfang: (n = 1) : A(1) gilt: $2^1 \ge 1$

• Induktionsschritt:

Induktionsvorraussetzung: Sei $n \ge 1$. Es gelte A(n), d.h. $2^n \ge n$ Induktionsbehauptung: (Zu zeigen!): Es gilt A(n+1), d.h. $2^{2+1} \ge n+1$. Beweis: $2^{n+1} = 2 \cdot 2^n \underbrace{\ge}_{Ind.vor.} 2 \cdot n$ = n+n> n+1,

also $2^{n+1} \ge n+1$

3.4.2 Bemerkung

Für Formeln wie in Beispiel 3.4.1a) benutzen wir das Summenzeichen Σ (Sigma, großes griechisches S)

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \ 1 + 2 + 3 + \dots + n \ k = 1k = 2k = 3k = n$$

weitere Bsp:

$$\sum_{k=1}^{n} 2k = 2 \cdot 1 + 2 \cdot 2 + \dots + 2 \cdot n \sum_{k=4}^{n} 2k = 2 \cdot 4 + 2 \cdot 5 + \dots + 2 \cdot n$$

$$\sum_{k=1}^{3} 7 = 7 + 7 + 7 = 21$$
allg.
$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_n \ (a_m, a_{m+1}, \dots a - n \in \mathbb{R})$$

k heißt Summationsindex

$$\sum_{k=m}^{n} a_k = \sum_{i=m}^{n} a_i$$

Schreibweisen:

$$\sum_{k=1}^{n} a_k, \sum_{k=1}^{n} a_k, \sum_{k\in\mathbb{N}} a_k, \sum_{k=1, k\neq 2}^{4} a_k = a_1 + a_3 + a_4$$

Für n < m setzt man

$$\sum_{k=m}^{n} a_k = 0$$
 (leere Summe), z.B. $\sum_{k=7}^{3} k = 0$

Produktzeichen Π (Pi, großes griechisches P)

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \dots a_n,$$

für
$$n < m$$
 setze $\prod_{k=m}^{n} a_k = 1$

Rechenregeln für Summen (zu beweisen z.B. durch vollständige Induktion)

a)

$$\sum_{k=m}^{n} a = (n - m + 1) \cdot a$$
$$(\sum_{k=3}^{5} a = a + a + a = (5 - 3 + 1) \cdot a)$$

b)

$$\sum_{k=m}^{n} (c \cdot a_k) = c \cdot \sum_{k=m}^{n} a_k$$

c) Indexverschiebung

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots a_n$$

$$= a_{(m+e)-e} + a_{(m+e+1)-e} + \dots + a_{(n+e)-e}$$
neuer Summationsindex $j := k + e$
(k durchläuft Werte: $m, m + 1, \dots, n$,
j durchläuft Werte: $m + e, m + e + 1, \dots, n + e$)
also gilt $\sum_{k=m}^{n} a_k = \sum_{j=m+e}^{n+e} a_{j-e}$
(Beispiel: $\sum_{k=0}^{5} a_k \cdot x^{k+2} = \sum_{j=2}^{7} a_{j-2} \cdot x^j$)

d) Addition von Summen gleicher Länge

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

e) Aufspalten

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{l} a_k + \sum_{k=l+1}^{n} a_k$$
 für $m < l < n$

f) Teleskopsumme

$$\sum_{k=m}^{n} (a_k - a_{k+1}) = a_m - a_{m+1}$$

$$\sum_{k=m}^{n} (a_k - a_{k+1}) = (a_m - a_{m+1} + (a_{m+1} - a_{m+2} + (a_{m+2}...) + (a_n - a_{m+1})))$$

g) Doppelsummen

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}$$

$$= \sum_{i=1}^{n} (a_{i1} + a_{i2} + \dots + a_{im})$$

$$= a_{11} + a_{12} + a_{13} + \dots + a_{1m}$$

$$+a_{21} + a_{22} + a_{2m}$$

+...
 $+a_{n1} + a_{n2} + ... + a_{nm}$
 $\sum_{j=1}^{m} \sum_{i=1}^{n} a_{j}$

3.4.3 Verschärftes Induktionsprinzip

 $A(n), n_0$ wie in 3.4.1

Es gelte:

- (1) $A(n_0)$ ist wahr
- (2) $\forall n \geq n_0$: Sind $A(n_0)$, ..., A(n) wahr, so ist A(n+1) wahr. (d.h. $A(n_0) \wedge A(n_0+1) \wedge ... \wedge A(n) \Rightarrow A(n+1)$)

Dann ist A(n) wahr für <u>alle</u> $n \in \mathbb{N}, n \ge n_0$

Beispiel: A(n): Jede natürliche Zahl n > 1 ist Primzahl oder Produkt von Primzahlen.

Beweis:

Induktionsanfang: $(n_0 = 2)$. n = 2 ist Primzahl \checkmark

Induktionsschritt: Sei $n \ge n_0$ $(n \ge 2)$

• Induktionsvoraussetzung:

Aussage gilt für 2, 3, 4, ..., n

$$(A(2), A(3), A(4), ..., A(n) \text{ wahr})$$

• Induktionsbehauptung:

A(n+1) gilt, d.h. n+1 ist Primzahl oder Produkt von Primzahlen.

Beweis:

- falls n+1 Primzahl, so gilt A(n+1)
- falls n+1 keine Primzahl, dann ist $n+1 = k \cdot l$, für $k, l \in \mathbb{N}$, 1 < k < n+1, 1 < l < n+1 (k = l möglich).

Nach Induktionsvoraussetzung:

Aussage gilt für k und $l \Rightarrow n+1$ ist Produkt von Primzahlen. A(n+1) ist wahr.

3.5 Schubfachprinzip

3.5.1 Idee

In einem Schrank befinden sich n verschiedene Paar Schuhe. Wie viele Schuhe muss man maximal herausziehen, bis man sicher ein zusammenpassendes Paar hat?

(Antwort: n+1)

3.5.2 Satz (Schubfachprinzip, engl.: pigeon hole principle)

Seien $k, n \in \mathbb{N}$.

Verteilt man n Objekte auf k Fächer, so gibt es ein Fach, das mindestens $\lceil \frac{n}{k} \rceil$ Objekte enthält.

(Dabei bezeichnet $\lceil x \rceil$ die kleinste ganze Zahl z mit $x \leq z$.)

<u>Beweis</u> (durch Kontraposition):

$$(\underbrace{n \text{ Objekte, } k \text{ Fächer}}_A \Rightarrow \underbrace{\exists \text{ Fach mit mind. } \lceil \frac{n}{k} \rceil \text{ Objekten}}_B$$

statt $A \Rightarrow B$ zeige $\neg B \Rightarrow \neg A$

 $(\neg B)$ Jedes Fach enthalte höchstens $\lceil \frac{n}{k} \rceil - 1$ Objekte.

Dann ist die Gesamtzahl von Objekten höchstens

$$k \cdot \underbrace{\left(\left\lceil \frac{n}{k} \right\rceil - 1 \right)}_{< \frac{n}{k}} < k \cdot \frac{n}{k} = n$$

 $(\neg A)$ es gibt also weniger als n Objekte

3.5.3 Beispiel

a) Wieviele Menschen müssen auf einer Party sein, damit <u>sicher</u> 2 am selben Tag Geburtstag haben?

367

b) Auf jeder Party mit mindestens 2 Gästen gibt es 2 Personen, die dieselbe Anzahl <u>Freunde</u> auf der Party haben.

Beweis: Sei n die Anzahl der Partygäste. Jeder Gast kann mit 0, 1, 2, ..., n-1 Gästen befreundet sein (n Möglichkeiten).

Aber: Es kann nicht sein, dass ein Gast 0 Freunde hat und gleichzeitig ein Gast n-1 (=alle) Freunde hat.

 \Rightarrow Es gibt n-1mögliche Werte für die Anzahl der Freunde, entspricht n-1 Fächern.

Jeder der n Gäste trägt sich in ein Fach ein \Rightarrow mindestens 2 Gäste sind im selben Fach.

c) In Berlin gibt es mindestens 2 Personen, die genau dieselbe Anzahl Haare auf dem Kopf haben.

Beweis: Anzahl Haare im Durchschnitt:

blond 150.000 braun 110.000 schwarz 100.000 rot 90.000

zur Sicherheit: maximal 1 Millionen Haare möglich entspricht 1 Mio Fächer.

Anzahl Einwohner in Berlin: 3,5 Millionen \Rightarrow Behauptung 3.5.2

3.6 Weitere Beweistechniken (Werkzeugkiste)

- a) Wichtigste Technik: Ersetzen eines mathematischen Begriffs durch seine Definition (und umgekehrt). $A(\subset B = \{x \mid x \in A \lor x \in B\})$
- b) Aussagen der Form $\forall a \in S$ gilt P(a): beginne mit: Sei $a \in S$, zeige P(a).

- c) Aussage der Form $\exists a \in S \text{ mit } P(a)$ oft: finde/gebe konkretes Element a an, für dass P(a) gilt.
- d) Gleichheit von Mengen zeigt man oft mittels Inklusion (vgl. Definition 2.1(i))

Zu zeigen:
$$A = B$$
 $(A, B \text{ Mengen})$ zeige: $A \subseteq B$ (Sei $a \in A \Rightarrow ... \Rightarrow ... \Rightarrow a \in B$) 2.1 (i)) und $B \subseteq A$ (Sei $b \in B \Rightarrow ... \Rightarrow ... \Rightarrow b \in A$) $\subseteq ...$ $\supseteq ...$

Beispiel: 2.5f)

$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

Beweis:

- \subseteq Sei $x \in A \triangle B = (A \backslash B) \cup (B \backslash A)$
 - 1. Fall:

$$x \in A \backslash B$$
, dann gilt $x \in A$, also $x \in A \cup B$

Außerdem $x \notin B$, also gilt auch $x \notin A \cap B$

$$\Rightarrow x \in (A \cup B) \setminus (A \cap B)$$

2.Fall

Ist $x \in B \setminus A$, so argumentiere analog.

- \supseteq Sei $x \in (A \cup B) \setminus (A \cap B)$ $\Rightarrow x \in A \text{ oder } x \in B.$
 - 1.Fall

$$x \in A$$
, so ist $x \notin B$, da $x \notin A \cap B$
 $\Rightarrow x \in A \setminus B \subseteq (A \setminus B) \cup (B \setminus A)$
 $= A \triangle B$,
d.h. $x \in A \triangle B$.

2.
Fall (1. Fall analog)
$$x \in B, \text{ so } x \notin A, \text{ da } x \notin A \cap B$$

$$\Rightarrow x \in B \backslash A \subseteq A \triangle B$$
 Also $x \in A \triangle B$

e) Äquivalenzen ($A \Leftrightarrow B, A, B$ Aussagen) werden meist in 2 Schritten bewiesen:

Hinrichtung zeigt $A \Rightarrow B$, Rückrichtung zeigt $B \Rightarrow A$.

(oft auch eine von beiden mittels Kontraposition)

Beispiel: 2.5g)
$$A \cap B = A \Leftrightarrow A \subseteq B$$

Beweis:

$$\Rightarrow$$
: Sei $A \cap B = A$. Dann ist $A = A \cap B \subseteq B$

$$\Leftarrow:$$
 Sei $A\subseteq B.$ Dann ist $A\subseteq A$ und $A\subseteq B,$

also ist
$$A\subseteq A\cap B$$

außerdem
$$A \cap B \subseteq A$$

$$\Rightarrow A = A \cap B$$

2.5h) analog.

f) Äquivalenzen der Form:

Sei Dann sind folgende Aussagen äquivalent:

- a) ...
- b) ...
- c) ..
- d) ...

Zeigt man durch Ringschluss:

Zeige
$$a$$
) \Rightarrow b) \Rightarrow c) \Rightarrow d) \Rightarrow a)

(oder andere Reihenfolge, soll Ring geben.)

4 Abbildungen

4.1 Definition

a) Eine Abbildung (oder Funktion)

$$f \colon A \to B$$

besteht aus

– zwei nicht-leeren Mengen:

A, dem <u>Definitionsbereich</u> von f

B, dem <u>Bildbereich</u> von f

– und einer Zuordnungsvorschrift, die jedem Element $a \in A$ genau ein Element $b \in B$ zuordnet

Wir schreiben dann b = f(a), nennen b das <u>Bild</u> oder den <u>Funktionswert</u> von a (unter f), und a (ein) <u>Urbild</u> von b (unter f).

Notation:

$$f \colon A \to B$$

 $a \mapsto f(a)$

b) Die Menge $G_f := \{(a, f(a)) \mid a \in A\} \subseteq A \times B$ heißt der <u>Graph</u> von f.

4.2 Beispiele

Siehe Folien!

4.3 Beispiele

a) A Menge

$$id_A \colon A \to A$$

 $x \mapsto x$

identische Abbildung

b) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ ist Abbildung (aus der Schule bekannt als $f(x) = x^2$) c) \wedge kann als Abbildung aufgefasst werden, + ebenso:

Allgemein bezeichnet man eine Abbildung $\{0,1\}^n \to \{0,1\}^m \ (n,m\in\mathbb{N})$ als boolesche Funktion.

4.4 Definition

Zwei Abbildungen $f\colon A\to B,\ g\colon C\to D$ heißen gleich (in Zeichen: f=g), wenn:

- \bullet A = C
- \bullet B=D
- f(a) = g(a)

$$\forall a \in A (= C)$$

4.5 Beispiel

$$f: \{0, 1\} \to \{0, 1\}, x \mapsto x$$
$$g: \{0, 1\} \to \{0, 1\}, x \mapsto x^2$$
$$f = g$$

4.6 Definition

Sei $f: A \to B$, seien $A_1 \subseteq A, B_1 \subseteq B$ Teilmengen.

Dann heißt

a)
$$f(A_1) := \{f(a) \mid a \in A_1\} \subseteq B \text{ das } \underline{\text{Bild}} \text{ von } A_1 \text{ (unter } f) \text{ (Bildmenge)}.$$

$$(\text{Beispiel: } f : \mathbb{N} \to \mathbb{N}$$

$$x \mapsto 2x$$

$$A_1 = \{1, 3\}$$

$$f(A_1) = \{f(1), f(3)\} = \{2, 6\} \text{)}$$

b) $f^{-1}(B_1) := \{a \in A \mid f(a) \in B_1\} \subseteq A$ das Urbild von B_1 (unter f).

(Beispiel oben:
$$B_1 = \{8, 14, 100\}, f^{-1}(B_1) = \{4, 7, 50\}$$

 $B_2 = \{3\}, f^{-1}(B_2) = \emptyset$)

c) f surjektiv, falls gilt: f(a) = B

(d.h.
$$\forall b \in B \exists a \in A : f(a) = b$$
)

[alle Elemente von B werden getroffen]

d) f injektiv, falls gilt:

$$\forall a_1, a_2 \in A \text{ mit } a_1 \neq a_2 \text{ gilt } f(a_1) \neq f(a_2)$$

(äquivalent:
$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$
)

[kein Element von B wird doppelt getroffen]

e) f bijektiv, falls f surjektiv und injektiv (f ist Bijektion).

[jedes Element wird genau einmal getroffen]

4.7 Beispiele

siehe Folien

- a) f aus Beispiel in 4.6 a) ist injektiv, aber nicht surjektiv:
 - $f(\mathbb{N})$ ist Menge der geraden natürlichen Zahlen, nicht $\mathbb{N}.$

b)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2$

nicht surjektiv:

$$f(\mathbb{R}) = \mathbb{R}_0^+ = \{ x \in \mathbb{R} \mid x \ge 0 \} \ne \mathbb{R}$$

nicht injektiv:

$$f(1) = f(-1) = 1$$

$$f(2) = f(-2) = 4$$

$$g \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
$$x \mapsto x^2$$

injektiv, surjektiv, bijektiv

c)
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 2x + 1$
ist surjektiv:
Sei $y \in \mathbb{R}$. Zeige: $\exists x \in \mathbb{R}$ mit $y = 2x + 1$ (vgl. 3.6 b))
Wähle $x = \frac{y-1}{2}$
 f ist injektiv:
angenommen, es gibt $x_1, x_2 \in \mathbb{R}$
mit $f(x_1) = f(x_2)$, d.h.
 $2x_1 + 1 = 2x_2 + 1$,
dann folgt $x_1 = x_2$.

4.8 Definition

Sei $f \colon A \to B$ bijektiv. Dann definieren wir die <u>Umkehrfunktion</u>.

 $f^{-1} \colon B \to A,$ indem wir jedem $b \in B$ dasjenige $a \in A$ zuordnen, für das f(a) = b gilt.

4.9 Beispiel

$$A(a_1, a_2, a_3)$$
 $B(b_1, b_2, b_3)$
 $f: (A \to B)$ bijektiv
 $a_1 \to b_2$
 $a_2 \to b_3$
 $a_3 \to b_1$

$$f^{-1}: B \to A$$

 $b_1 \to a_3$
 $b_2 \to a_1$
 $b_3 \to a_2$

4.10 Bemerkung

Man kann jedem $b \in B$ wirklich ein $a \in A$ zuordnen, das f(a) = b erfüllt, denn f ist surjektiv. Nur <u>ein</u> solches a, denn f ist injektiv.

4.11 Definition

Seien $g \colon A \to B$ $f \colon B \to C$ Abbildungen.

Dann heißt die Abbildung: $f \circ g \colon A \to C$ $a \to (f \circ g)(a) :=$ $f(g(a)) \forall a \in A$

die Hintereinanderausführung oder Komposition von f mit g.

f nach g

$$A \underset{g}{\longrightarrow} B \underset{f}{\longrightarrow} C$$

4.12 Beispiel

 $A = B = C = \mathbb{R}$

$$\begin{array}{ll} f\colon \mathbb{R} \to \mathbb{R} & g\colon \mathbb{R} \to \mathbb{R} \\ x \to x+1 & x \to 2x \end{array}$$

$$(f \circ g)(x) = f(g(x)) = f(2x) = 2x + 1$$

$$(g \circ f)(x) = g(f(x)) = g(x+1) = 2 \cdot (x+1)$$

= 2x + 2

hier also $f \circ g \neq g \circ f!$

4.13 Satz

Die Komposition {inj., surj., bij} Abbildungen ist {inj., surj., bij}

Beweis: Pü / Ü

4.14 Satz (Charakterisierung bijektiver Abbildungen)

Sei $f: A \to B$ eine Abbildung.

f ist bijektiv genau dann, wenn es eine Abbildung $g \colon B \to A$ gibt mit $g \circ f = id_A$ und $f \circ g = id_B$.

Diese Abbildung g ist eindeutig und genau die Umkehrfunktion von f, also $g = f^{-1}$.

 f^{-1} ist ebenfalls bijektiv und es gilt $(f^{-1})^{-1} = f$

Beweis:

" \Rightarrow " Sei f bijektiv. Dann existiert für jedes $b \in B$ genau ein $a \in A$ mit b = f(a).

Definiere nun also $g: B \to A$ mit g(b) = a, dann gilt die Aussage:

$$(g \circ f)(a) = g(f(a)) = g(\underline{b}) = a = id_A(a)$$

$$(f \circ g)(b) = f(g(b)) = f(\underline{a}) = b = id_B(b)$$

" \Leftarrow " Es existiere Abbildung g wie angegeben (zu zeigen: f ist bijektiv)

- f surjektiv: Sei $b \in B$. Dann ist $g(b) \in A$, $f(\underline{g(b)}) = id_B(b) = b$, d.h. das ist das gesuchte a! (a := g(b)) g(b) ist Urbild von b unter f.
- f injektiv:

Sei
$$f(a_1) = f(a_2)$$

Dann ist
$$\underline{\underline{a_1}} = g(\underline{f(a_1)}) = g(f(a_2)) = \underline{\underline{a_2}}$$

• Eindeutigkeit von g:

Angenommen es gäbe Abbildungen g_1, g_2 mit angegebenen Eigenschaften.

Sei $b \in B$. Dann gibt es genau ein $a \in A$ mit f(a) = b.

Also
$$g_1(b) = g_1(\underline{f(a)}) = a = g_2(\underline{f(a)}) = g_2(\underline{b}),$$

d.h. $g_1 = g_2$

• f^{-1} bijektiv, $(f^{-1})^{-1} = f$:

folgt aus $f \circ f^{-1} = id_B$, $f^{-1} \circ f = id_A$, wende Aussage des Satzes auf f^{-1} an.

4.15 Bemerkung / Definition

Bijektivität erlaubt präzise Definition der Endlichkeit / Unendlichkeit von Mengen:

- a) Menge $M \neq \emptyset$ heißt endlich $\Leftrightarrow \exists n \in \mathbb{N} : \exists$ bijektive Abbildung $f : \{1, ..., n\} \rightarrow M$.
 - (∅ wird auch als endlich bezeichnet).

Andernfalls heißt M unendlich.

[Hilberts Hotel]

b) Zwei Mengen M_1, M_2 heißen gleichmächtig, falls es eine bijektive Abbildung $g: M_1 \to M_2$ gibt.

Beispiel: N, 2N (alle geraden natürlichen Zahlen) gleichmächtig:

$$g: \mathbb{N} \to 2\mathbb{N}$$

$$n \mapsto 2n$$

ist bijektiv.

c) Menge M heißt <u>abzählbar unendlich</u>, wenn M gleichmächtig ist wie \mathbb{N} , d.h. \exists bijektive Abbildung.

$$h: \mathbb{N} \to M$$
.

Beispiel:

- N abzählbar unendlich: $h = id_{\mathbb{N}}$
- \mathbb{N} abzählbar unendlich: $h: \mathbb{N} \to \mathbb{N}_0(x \to x 1)$ ist bijektiv.
- $\mathbb Z$ ist abzählbar unendlich: (Geschichte vom Teufel: $h \to \mathbb Z$
 - $1 \to 0$
 - $2 \rightarrow 1$
 - $3 \rightarrow -1$
 - $4 \rightarrow 2$
 - $\underbrace{5}_{Tag} \to \underbrace{-2}_{Zahl}$

allgemein:

$$x \to \begin{cases} k & \text{falls } x = 2k + 1 (\text{für } k = 0, 1, 2, ...) \\ -k & \text{falls } x = 2k (\text{für } k = 1, 2, 3, ...) \end{cases}$$

• \mathbb{Q} ist abzählbar unendlich:

$$\frac{1}{1}\frac{1}{2}\frac{1}{3}\frac{1}{4}\frac{1}{5}...$$

$$\frac{2}{1}\frac{2}{2}\frac{2}{3}\frac{2}{4}\frac{2}{5}...$$

$$\frac{3}{1}\frac{3}{2}\frac{3}{3}\frac{3}{4}\frac{3}{5}...$$
:

Cantorsches Diagonalverfahren.

- \mathbb{R} ist <u>nicht</u> abzählbar unendlich! (Beweis von Cantor, 2. Diagonalisierungsargument) \rightarrow eventuell später
- $P(\mathbb{N} \text{ ist nicht abz\"{a}hlbar unendlich (allgemein: } | A | < | P(A) | Satz von Cantor.)$

4.16 Satz (Wichtiger Satz für endliche Mengen)

Seien $A, B \neq \emptyset$ endliche Mengen, |A| = |B|, und $f : A \rightarrow B$ eine Abbildung. Dann gilt f injektiv $\Leftrightarrow f$ surjektiv $\Leftrightarrow f$ bijektiv.

Beweis:

Wir setzen n:|A|=|B|. Es genügt zu zeigen f injektiv $\Leftrightarrow f$ surjektiv.

 \Rightarrow Sei f injektiv, d.h. falls $a_1, a_2 \in A$ mit $a_1 \neq a_2$, dann gilt $f(a_1) \neq f(a_2)$.

D.h., verschiedene Elemente aus A werden auf verschiedene Elemente aus B abgebildet, die n Elemente aus A also auf n verschiedene Elemente aus B. Da B genau n Elemente besitzt, ist f surjektiv. (f(A) = B).

[formaler: d.h.
$$| f(A) | = | A | = | B |$$
.
Da $f(A) \subseteq B$ endlich, folgt $f(A) = B$.

4.17 Das Prinzip der rekursiven Definition von Abbildungen

Sei
$$B \neq \emptyset$$
 Menge, $n_0 \in \mathbb{N}$, $A = \{n \in \mathbb{N} \mid n \geq n_0\}$.

Man kann eine Funktion $f: A \to B$ definieren durch

- Angabe des Startwerts $f(n_0)$
- Beschreibung, wie man für jedes $n \in A$ den Funktionswert f(n+1) aus f(n) berechnet (Rekursionsschritt).

4.18 Beispiel

- a) Die Fakultätsfunktion: $f: \mathbb{N}_0 \to \mathbb{N}$ mit f(0) = 0 $\underbrace{!}_{\text{Fakultät}} = 1$ (Startwert) $f(n+1) = (n+1)! = n!(n+1) \text{ für alle } n \ge 0$ Also: $f(1) = 1! = 0! \cdot 1$ $f(2) = 2! = 1! \cdot 2 = 1 \cdot 2 = 2$ $f(3) = 3! = 2! \cdot 3 = 1 \cdot 2 \cdot 3$ $f(4) = 4! = 3! \cdot 4 = 1 \cdot 2 \cdot 3 \cdot 4$ \vdots $f(70) = 70! \approx 1, 2 \cdot 10^{100}$
- **b)** Potenzen: für festes $x \in \mathbb{R}$ definiere $x^0 = 1$ $x^{n+1} = x^n \cdot x$ für alle $n \ge 0$ $(Px : \mathbb{N}_0 \to \mathbb{R} \qquad n \to x^n)$
- c) Eine Pflanze verdopple jeden Tag die Anzahl ihrer Knospen und produziere eine zusätzliche.

 $f: \mathbb{N} \to \mathbb{N}$ beschreibe die Anzahl der Knospen nach n Tagen.

$$f(1) = 1$$

$$f(2) = 2 \cdot 1 + 1 = 3$$

$$f(3) = 2 \cdot 3 + 1 = 7$$

$$f(4) = 2 \cdot 7 + 1 = 15$$

$$\vdots$$

$$f(n+1) = 2 \cdot f(n) + 1$$

Wieviele Knospen gibt es nach 100 Tagen? \Rightarrow Geschlossene / explizite Form von f gefragt.

Vermutung: $f(n) = 2^n - 1$

(Bemerkung: bessere Methoden (statt vermuten / raten) in der Vorlesung Algorithmen, dort z.B. auch mathematische Strukturen wie oben, diese werden $B\ddot{a}ume$ (Graphen) genannt.

Beweis: vollständige Induktion

Induktionsanfang:

$$f(1) = 2^1 - 1 = 1$$

Induktionsschritt:

Indunktionsvorraussetzung:

sei
$$f(n) = 2^n - 1 \forall n \ge 1$$

Induktionsbehauptung:

$$f(n+1) = 2^{n+1} - 1$$

Beweis:

$$f(n+1) = 2 \cdot f(n) + 1$$

$$= 2(2^{n} - 1) + 1$$

$$= 2^{n+1} - 2 + 1$$

$$= 2^{n+1} - 1$$

4.19 Bemerkung

Die rekursive Definition kann verallgemeinert werden: benutze zur Definition von f(n+1) die vorigen $k(k \in \mathbb{N}$ Werte von f, also $\underbrace{f(n), f(n-1), ..., f(n-k+1)}_{\text{k Stück}}$

und gebe k Startwerte $f(n_0), f(n_0 + 1), ..., f(n_0 + k - 1)$

4.20 Beispiel (Fibonacci-Zahlen)

k = 2

$$f(1) = 1$$

$$f(2) = 1$$

$$f(n+1) = f(n) + f(n+1)$$

$$(f(3) = f(2) + f(1) = 1 + 1 = 2,$$

$$f(4) = 2 + 1 = 3,$$

$$f(5) = 3 + 2 = 5,$$

$$f(6) = 8,$$

$$f(7) = 13...)$$

explizite Form:

$$f(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

5 Relationen

5.1 Definition

Seien $M_1, ..., M_n$ nicht leere Mengen $(n \in \mathbb{N}).$

- a) Eine n-stellige Relation über $M_1, ..., M_n$ ist eine Teilmenge von $M_1 \times ... \times M_n$. Ist $M_1 = ... = M_n = M$, d.h. $R \supseteq M^n$, so spricht man von einer n-stelligen Relation auf M.
- (speziell: n=2, zweistellige Relation auf M: Sei $M \neq \emptyset$ Menge. Eine Teilmenge $R_{\sim} \subseteq M \times M$ heißt (zweistellige) Relation auf M. Statt $(a,b) \in R_{\sim}$ (mit $a,b \in M$) schreibt man kurz $aR_{\sim}b$ oder $a \sim b$ (a steht in Relation zu b)

5.2 Beispiel

- a) Relationale Datenbanken (\rightarrow Folie)
- b) $M = \{1, 2, 3\},$ $R_{\sim} = \{(1, 2), (1, 3), (2, 3)\}$ also: $1 \sim 2, 1 \sim 3, 2 \sim 3$

Hierfür sind wir die Notation < gewohnt: 1 < 2, 1 < 3, 2 < 3 (*Kleiner-Relation*)

Ähnlich: \geq auf $M: R_{\geq} = \{(1,1), (2,1), (3,1), (2,2), (3,2), (3,3)\}$

all gemeiner: kleiner-Relation auf \mathbb{Z} : $R_{\leq}\{(x,y) \mid x,y \in \mathbb{Z}, x < y\}$

 $R_{\leq}...\leq$

Teiler-Relation R, auf \mathbb{Z} : $R_{\parallel} = \{(x,y) \mid x,y \in \mathbb{Z} \text{ und } \exists k \in \mathbb{Z} \text{ mit } x \mid y \text{ (x teilt y)}$

z.B.
$$6|42$$
, $3|-27$, $7|0$

d) Sei M die Menge aller Menschen, $R_m = \{(a, b) \mid a, b \in M \text{ und } a \text{ und } b \text{ haben dieselbe Mutter } \}$

Zwei wichtige Typen von Relationen auf einer Menge: Ordnungsrelationen und Äquivalenzrelationen.

5.3 Definition

Sei $M \neq \emptyset, R_{\prec}$ (oder \preceq) eine Relation auf M mit folgenden Eigenschaften:

- 1. $\forall x \in M : x \leq x$ (Reflexivität)
- 2. $\forall x, y \in M : (x \leq y \land y \leq x) \Rightarrow x = y \text{ (Antisymmetrie)}$
- 3. $\forall x, y, z \in M : (x \leq y \land y \leq z) \Rightarrow x \leq z$ (Transitivität)

Dann heißt \leq Ordnungsrelation oder (partielle) Ordnung auf M.

Gilt zusätzlich:

4. $\forall x, y \in M : x \leq y$ oder $y \leq x$, so heißt \leq eine <u>totale</u> (oder <u>vollständige</u>, oder <u>lineare</u>) Ordnung.

Ist $x \leq y$ und $x \neq y$, so schreibt man $x \prec y$.

5.4 Beispiele

a) R_{\leq} auf \mathbb{Z} (Beispiel 5.2 b)) ist totale Ordnung auf \mathbb{Z} , ebenso auf \mathbb{Q}, \mathbb{R} .

 R_{\leq} ist <u>keine</u> partielle Ordnung; (1),(4) nicht erfüllt:

- (1): für kein $x \in \mathbb{Z}$ gilt x < x
- (4): für x = y gilt weder x < y noch y < x.
- b) R_{\parallel} (5.2 c)) auf N ist partielle Ordnung, nicht total (zum Beispiel gilt für $3, 4 \in \mathbb{N}$ weder 3|4 noch 4|3.).

 R_{\parallel} auf \mathbb{Z} ist <u>keine</u> partielle Ordnung; nicht antisymmetrisch:

z.B.
$$-3|3, 3| - 3$$
, aber $3 \neq -3$

c) Teilmengenrelation (\subseteq) auf $\mathcal{P}(M)$ ist partieller Ordnung, für |M| > 1 nicht total (Übung).

d) Beispiel für Relation, die (1),(2) erfüllt, aber nicht (3):

$$M = \{1, 2, 3\}$$

$$R = \{\underbrace{(1, 1), (2, 2), (3, 3)}_{\text{reflexiv}}, (1, 2), * (2, 3)\}$$

* Achtung: $(2,1) \notin R$, sonst müsste 2=1 gelten (wegen Antisymmetrie).

$$(1,2) \in R, (2,3) \in R, \text{ aber } (1,3) \notin R$$

 \Rightarrow nicht transitiv.

$$(1, 2), (2, 2)$$
 $(1, 2)\checkmark$ $(1, 1), (1, 2)$ $(1, 2)\checkmark$

e) Sei \leq partielle Ordnung auf $M, n \in \mathbb{N}$.

Dann definiere die lexikographische Ordnung \leq_{lex} auf M^n wie folgt:

$$x = (x_1, ..., x_n) \leq_{lex} y = (y_1, ..., y_n) :\Leftrightarrow$$

 $x = y \text{ oder } x_i < y_i \text{ für das kleinste } i \text{ mit } x_i \neq y_i$

(Übung: \leq_{lex} ist partielle Ordnung)

(Falls \leq totale Ordnung auf M ist, dann \leq_{lex} totale Ordnung auf M^n , vgl. Wörterbuch)

Beispiel: $M = \{a, b, c\}$ a < b < c dann ist z.B. auf M^4

$$(a, a, a, a) \leq_{lex} (a, a, a, b) \leq_{lex} \dots \leq_{lex} (a, b, a, c) \leq_{lex} \dots \leq_{lex} (a, b, b, a) \leq_{lex} \dots \leq_{lex} (c, c, c, c)$$

Äquivalenzrelationen:

2 Elemente äquivalent, falls sie sich bezüglich einer Eigenschaft gleichen/ähnlich sind, z.b. Farbe, gleiche Übungsgruppe, gleicher Rest bei Division durch 3, ...

5.5 Definition

Eine Relation \sim auf einer Menge $M \neq \emptyset$ heißt Äquivalenz
relation falls gilt:

- (1) Reflexivität: $x \sim x$ für alle $x \in M$.
- (2) Symmetrie: $\forall x, y \in M : x \sim y \Rightarrow y \sim x$
- (3) **Transitivität:** Für alle $x, y, z \in M$ gilt: falls $x \sim y$ und $y \sim z$, dann ist auch $x \sim z$.

5.6 Beispiele

- a) <-Relation (Beispiel 5.2 b)) ist keine Äquivalenzrelation (nicht reflexiv, nicht symmetrisch, transitiv).
 - ≥ keine Äquivalenzrelation (reflexiv, nicht symmetrisch, transitiv)
- b) $M \neq \emptyset$ beliebig, $a \sim b :\Leftrightarrow a = b$

Gleichheit ist eine Äquivalenzrelation

$$(= := \{(a, a) \mid a \in M\})$$

- c) R_m (Mutter-Relation) aus Beispiel 5.2 d) ist Äquivalenzrelation
- d) $M = \mathbb{Z}, a \sim b : \Leftrightarrow b a \text{ ist gerade},$ d.h. $\exists k \in \mathbb{Z} \text{ mit } b - a = 2 \cdot k.$
 - \sim ist Äquivalenzrelation:
 - reflexiv: Sei $a \in M$, dann gilt $a \sim a$, denn $a a = 0 = 2 \cdot 0$
 - symmetrisch: Sei $a \sim b$ $\Rightarrow b - a = 2 \cdot k$ für ein $k \in \mathbb{Z}$ $\Rightarrow a - b = -2 \cdot k = 2 \cdot \underbrace{(-k)}_{\in \mathbb{Z}}$ $\Rightarrow b \sim a$
 - transitiv: seien $a \sim b, b \sim c \Rightarrow \exists k, l \in \mathbb{Z}$: $b - a = 2 \cdot k, \quad c - b = 2 \cdot l$ $\Rightarrow c - a = (c - b) + (b - a) = 2l + 2k = 2 \cdot (\underbrace{l + k}_{\in \mathbb{Z}})$ $\Rightarrow a \sim c$
- e) analog: wähle $r \in \mathbb{N}$ fest, $M = \mathbb{Z}$ $a \sim b :\Leftrightarrow b-a$ ist durch r teilbar (d.h. $\exists k \in \mathbb{Z}$ mit $b-a=r \cdot k$) \sim ist Äquivalenzrelation.

5.7 Definition

Sei \sim eine Äquivalenz relation auf $M \neq \emptyset$.

Dann heißt für $x \in M$ die Menge

 $[x] := \{ y \in M \mid y \sim x \}$ die Äquivalenzklasse von x (bzgl. \sim) auf M.

5.8 Beispiel

a) Gleichheit liefert triviale, nämlich einelementige Äquivalenzen:

$$[x] = \{x\} \forall x \in M$$

b) vgl. Beispiel 5.6d), $M = \mathbb{Z}, a \sim b \Leftrightarrow b - a$ gerade $[0] = \{b \in \mathbb{Z} \mid b - 0 \text{ gerade }\} = \text{Menge der geraden Zahlen}$ $= [2] = [4] = [-2] = \dots$

$$[1] = \{b \in \mathbb{Z} \mid b-1 \text{ gerade }\} = \text{Menge der ungeraden Zahlen}$$

$$= [3] = [5] = [-1] = \dots$$

Es gilt: $[0] \cup [1] = \mathbb{Z}$, und $[0] \cap [1] = \emptyset$ (disjunkte Vereinigung, Zerlegung von \mathbb{Z} , siehe folgende Definition.)

5.9 Definition

Sei $M \neq \emptyset, Z \subseteq \mathcal{P}(M)$ eine Menge von Teilmengen von M.

Die Elemente von Z seien <u>paarweise disjunkt</u> , d.h. $\forall A, B \in Z$ mit $A \neq B$ gilt $A \cap B = \emptyset$.

$$(Beispiel: M := \{1, 2, 3, 4, 5\},\ Z' := \{\{1\}, \{1, 2\}, \{3, 4\}\}\}\ Z := \{\{1\}, \{2, 3\}, \{4, 5\}\}$$

Elemente von Z' nicht paarweise disjunkt, aber Elemente von Z paarweise disjunkt.)

Dann heißt die Vereinigung $\bigcup_{A\in Z}A$ auch <u>disjunkte Vereinigung</u>, Notation: $\bigcup_{A\in Z}A$ (oder $\biguplus_{A\in Z}A$).

Gilt zusätzlich $\bigcup_{A \in \mathbb{Z}} A$, so heißt Z Zerlegung oder Partition von M.

5.10 Satz (Klasseneinteilung, Zerlegung durch Äquivalenzklassen)

Sei \sim Äquivalenz relation auf $M \neq \emptyset$. Dann gilt: (1) für jedes $x \in M$ ist $[x] \neq \emptyset$

$$(2) \bigcup_{x \in M} [x] = M$$

(3)
$$\forall x, y \in M$$
 gilt entweder $[x] = [y]$ oder $[x] \cap [y] = \emptyset$

In Worten: Über \sim wird M zerlegt in nicht leere, paarweise disjunkte Mengen (die Äquivalenzklassen).

Beweis:

(1)
$$x \sim x \quad \forall x \in M \text{ (Reflexivität)}$$

 $\Rightarrow x \in [x]$

(2) zeige =, also
$$\subseteq$$
, \supseteq :

$$\subseteq \bigcup_{x \in M} [x]_{\subseteq M} \subseteq M \text{ (nach Definition)}.$$

$$\supseteq M = \bigcup_{x \in M} \{x\} \underbrace{\subseteq}_{(1)} \bigcup_{x \in M} [x],$$

also
$$M \subseteq \bigcup_{x \in M} [x]$$
.

(3) wir zeigen:
$$[x] \cap [y] \neq \emptyset \Rightarrow [x] = [y]$$

Sei dazu $z \in [x] \cap [y]$ (denn Schnitt $\neq \emptyset$)

$$\Rightarrow z \sim x \text{ und } z \sim y \text{ (*)}$$

$$\Rightarrow x \sim z \text{ und } y \sim z \text{ (**)}$$

wir zeigen: [x] = [y]

- $[x] \subseteq [y]$: sei $u \in [x]$
 - $\Rightarrow u \sim x$
 - $\Rightarrow u \sim z$

Transitivität, $x \sim z$ (**)

$$\Rightarrow u \sim y$$

Transitivität, $z \sim y$ (*)

$$\Rightarrow u \in [y].$$

• $[x] \supseteq [y]$: sei $u \in [y]$

$$\Rightarrow u \sim y$$

$$\Rightarrow u \sim z$$

(Transitivität, $y \sim z$ (**))

$$\Rightarrow u \sim x$$

Transitivität,
$$z \sim x$$
 (*)
 $\Rightarrow u \in [x]$
Also insgesamt $[x] = [y]$.

Eine Äquivalzenzrelation auf einer Menge M liefert also eine Zerlegung von M. Es gilt auch die Umkehrung.

5.11 Satz

Sei $M \neq \emptyset$ eine Menge, Z eine Zerlegung von $M,\, M = \bigcup_{A \in Z} A.$

Definiere für $x, y \in M$:

 $x \sim y : \Leftrightarrow x \text{ und } y \text{ liegen in derselben Menge } A \in Z.$

Dann ist \sim eine Äquivalenz
relation auf M, und die Äquivalenzklassen bezüglich
 \sim sind genau die Mengen $A \in \mathbb{Z}$.

Beweis:

• \sim ist reflexiv:

 $\Rightarrow x \sim x$

Sei
$$x \in M = \bigcup_{A \in Z} A$$

 $\Rightarrow x \in A$ für ein $A \in Z$

• \sim ist symmetrisch:

Sei
$$x \sim y$$
, d.h. $x, y \in A$ für ein $A \in Z$.
$$\Rightarrow y \sim x$$

• \sim ist transitiv:

Seien
$$x \sim y, y \sim x$$
, d.h. $x, y \in A$ und $y, z \in B$ für passende $A, B \in Z$
$$y \in A \cap B \Rightarrow A = B \text{ (Zerlegung ist \underline{disjunkte} Vereinigung)}$$

$$\Rightarrow x, z \in A$$

$$\Rightarrow x \sim z$$

• Äquivalenzklassen: folgt aus Definition von \sim .

5.12 Definition

Sei \sim eine Äquivalenz relation auf M.

Eine Teilmenge von M, die aus jeder Äquivalenzklasse bezüglich \sim genau ein Element (einen sogenannten Repräsentanten) enthält, nennt man ein Repräsentantensystem von \sim .

5.13 Beispiel

Beispiel 5.6 d / 5.8 b:

 $a \sim b \Leftrightarrow b - a$ gerade.

Äquivalenzklassen waren [0], [1]

Repräsentantensysteme sind zum Beispiel $\{0,1\}$ oder $\{2,9\}$ oder $\{-42,3\}$.

6 Elementare Zahlentheorie

6.1 Definition

Seien $a, b \in \mathbb{Z}, b \neq 0$.

b heißt <u>Teiler von a</u> (b teilt a, b | a), falls $q \in \mathbb{Z}$ existiert mit $a = q \cdot b$.

$$(d.h. \ \frac{a}{b} = q \in \mathbb{Z})$$

a heißt dann <u>Vielfaches</u> von b.

 $(b \nmid a \text{ bedeutet: } b \text{ ist kein Teiler von } a)$

(Beispiel: 6 | 42 , -5 | 10 , $5 \nmid 42$, $1 \mid -1$, $1 \mid 0$, 0 ist nie Teiler einer Zahl.)

6.2 Satz

Seien $a, b, c, d \in \mathbb{Z}$

- a) Ist $b \mid a$, dann auch $|b| \mid a$, $b \mid |a|$ und $|b| \mid |a|$.
 - (|b|) bezeichnet den Betrag von b,

$$|b| = \begin{cases} b & \text{, falls } b \ge 0\\ -b & \text{, falls } b < 0 \end{cases}$$

- b) Falls $b \mid c$ und $b \mid d$, dann $b \mid k \cdot c + l \cdot d$ $\forall k, l \in \mathbb{Z}$
- c) Ist $b \mid a$ und $a \neq 0$, dann $|b| \leq |a|$
- d) Ist $b \mid a$ und $a \mid b$, dann $a = \pm b$

Beweis:

- a) Sei $b \mid a$.
 - Ist b > 0, so ist |b| = b, also gilt |b| |a.
 - Ist b < 0, so ist |b| = -b $b \mid a$, d.h. $\exists q \in \mathbb{Z}$ mit $a = q \cdot b = (-q) \cdot (-b) = (-q) \cdot |b|$. $(-q) \in \mathbb{Z}$, also gilt $|b| \mid a$.

Restliche Behauptung analog!

b)
$$b \mid c$$
, d.h. $\exists q \in \mathbb{Z} \text{ mit } c = q \cdot b$

$$\Rightarrow k \cdot c = k \cdot q \cdot b \qquad \forall k \in \mathbb{Z}$$

 $b \mid d$, d.h. $\exists m \in \mathbb{Z} \text{ mit } d = m \cdot b$

$$\Rightarrow l \cdot d = l \cdot m \cdot b \qquad \forall l \in \mathbb{Z}.$$

$$\Rightarrow \underline{k \cdot c} + \underline{l \cdot d} = \underline{k \cdot q \cdot b} + \underline{l \cdot m \cdot b} = \underbrace{(k \cdot q + l \cdot m)}_{\in \mathbb{Z}} \cdot b \qquad \forall k, l \in \mathbb{Z}$$

$$\Rightarrow b \mid k \cdot c + l \cdot d$$
 $\forall k, l \in \mathbb{Z}$

c) $b \mid a$, nach Teil a) also $|b| \mid |a|$

$$\Rightarrow |a| = \underbrace{q} \cdot |b| = \underbrace{|b| + |b| + \ldots + |b|}_{q \text{ Summanden}} \ge |b|$$
 $\in \mathbb{N}, \text{ da } |a|, |b| \ge 0 \text{ und } a \ne 0$

d) Da $b \mid a$ und $a \mid b$, sind $a, b \neq 0$

Nach c):
$$|b| \le |a|$$
 und $|a| \le |b| \Rightarrow |a| = |b|$, d.h. $a = \pm b$.

Teilbarkeit in Z ist im Allgemeinen nicht erfüllt. Daher ist Teilen mit Rest wichtig.

6.3 Satz und Definition: Division mit Rest

Seien $a, b \in \mathbb{Z}, b \neq 0$.

Dann existieren eindeutig bestimmte $q, r \in \mathbb{Z}$ mit

(1)
$$a = q \cdot b + r$$

(2) $0 \le r < |b|$ Division mit Rest

q wird Quotient genannt, r Rest.

Bezeichnung: $q = a \operatorname{div} b$ $r = a \mod b \pmod{allo}$

Es gilt also
$$\underbrace{a \mod b}_{Rest} = 0 \Leftrightarrow b \mid a$$

6.4 **Beispiel**

•
$$a = 22, b = 5, 22 = 4 \cdot 5 + 2$$

22 div $5 = 4, 22 \mod 5 = 2$

•
$$a = 22, b = -5, 22 = -4 \cdot (-5) + 2$$

 $22 \text{ div } (-5) = -4, 22 \text{ mod } (-5) = 2$

•
$$a = -22, b = 5, -22 = -5 \cdot 5 + 3$$

($\land (0 \le r < 5)!$)
 $-22 \text{ div } 5 = -5, -22 \text{ mod } 5 = 3$

•
$$a = -22, b = -5, -22 = 5 \cdot (-5) + 3$$

 $-22 \text{ div } (-5) = 5, -22 \text{ mod } (-5) = 3$

Beweis von 6.3:

• Existenz von q und r mit (1), (2):

1. Fall:
$$b > 0$$

Sei q die größte ganze Zahl mit $q \le \frac{a}{b}$ $(q = \lfloor \frac{a}{b} \rfloor)$
Dann ist $b \cdot q \le a$ $(\text{da } b > 0 !)$
Setze $r := a - b \cdot q$ es gilt also $r \ge 0$ $\Rightarrow a = q \cdot b + r$ ((1) gilt)
Zu zeigen bleibt noch: $r < |b| = b$
Widerspruchsbeweis: angenommen, $r \ge b$. Dann ist $r = b + s$ für ein $s \ge 0$, d.h. $a = q \cdot b + (b + s)$ $b(q + 1) + s = a$ $\Rightarrow q + 1 + \frac{s}{b} = \frac{a}{b}$

$$b(q+1) + s = a$$

$$\Rightarrow q+1 + \underbrace{\frac{s}{b}}_{\geq 0} = \frac{a}{b}$$

$$\Rightarrow q+1 \leq \frac{a}{b} \text{ zur Wahl von } q \quad \mathbf{f}$$
Also gilt $0 \leq r < b$

$$\begin{aligned} &\text{für } b < 0: \\ &a = q \cdot (-b) + r \\ &= (-q) \cdot b + r \end{aligned}$$

• q, r sind eindeutig bestimmt:

angenommen,
$$\exists q_1, q_2, r_1, r_2 \in \mathbb{Z}$$
, so dass $a = \underline{q_1 \cdot b + r_1 = q_2 \cdot b + r_2}$ $0 \le r_1, r_2 < |b|$.

Sei o.B.d.A (ohne Beschränkung der Allgemeinheit) $r_2 \geq r_1$

Dann ist
$$(q_1 - q_2) \cdot b = r_2 - r_1 \ge 0$$
, also $b \mid (r_2 - r_1)$

wir zeigen $(r_2 - r_1 = 0)$ durch Widerspruch:

angenommen,
$$r_2 - r_1 \neq 0$$
.
 $b \mid (r_2 - r_1), (r_2 - r_1 \neq 0)$
 $\Rightarrow |b| \leq |r_2 - r_1| = r_2 - r_1 < r_2 < |b|$
Also gilt $r_1 = r_2$.
Wegen (*), da $b \neq 0, q_1 = q_2$.

6.5 Definition

Sei $x \in \mathbb{R}$.

 $\lceil x \rceil =$ kleinste ganze Zahl z mit $z \geq x$ (ceiling-Funktion, aufrunden)

 $\lfloor x \rfloor = \text{gr\"{o}Bte ganze Zahl } z \text{ mit } z \leq x \text{ (floor-Funktion, abrunden)}$

6.6 Beispiel

$$\lceil 3 \rceil = 3, \lceil \tfrac{4}{3} \rceil = 2, \lfloor \tfrac{4}{3} \rfloor = 1, \lceil -\tfrac{4}{3} \rceil = -1, \lfloor -\tfrac{4}{3} \rfloor = -2$$

Anwendung: Stellenwertsysteme zur Basis $b \ (b \in \mathbb{N}, b > 1)$

b=2: Binärsystem

b = 8: Oktalsystem

b = 10: Dezimalsystem

b = 16: Hexadezimalsystem

6.7 Satz (b-adische Darstellung)

Sei $b \in \mathbb{N}, b > 1$. Jede natürliche Zahl $n \in \mathbb{N}_0$, lässt sich <u>eindeutig</u> darstellen in der Form:

$$n = \sum_{i=0}^{k} x_j \cdot b^i$$
, wobei für k und x_i gilt:

(1)
$$k = 0$$
 für $n = 0$
 $b^k \le n < b^{k+1}$ für $n > 0$
(2) $x_i \in \mathbb{N}_0, 0 \le x_j \le b - 1, x_k \ne 0$ für $n \ne 0$.
(Die x_i heißen Ziffern von n bzgl. b.
Schreibweise: $n = (x_k...x_0)_b$
oder, falls b klar (z.B. $b = 10$)

6.8 Beispiel

 $n = x_k ... x_0$

$$b = 2 \text{ (Binärsystem)}$$

$$6 = 1 \cdot \underbrace{2^2}_{b^2} + 1 \cdot \underbrace{2^1}_{b^1} + 0 \cdot \underbrace{2^0}_{b^0} (k = 2)$$

$$(6)_{10} = (110)_2$$

$$9 = 1 \cdot 2^3 + 0 \cdot 2^2 \cdot 0 \cdot 2^1 + 1 \cdot 2^0 (9)_{10} = (1001)_2$$

$$0 = (0)_2$$

$$1 = (1)_2$$

$$2 = (10)_2$$

$$3 = (11)_2$$

$$4 = (100)_2$$

$$5 = (101)_2$$

$$\vdots$$

Ziffern für b = 16: 0, 1, ...9, A, B, C, D, E, F

$$(11)_{10} = (B)_{16}$$

Beweis (6.7):

verschärfte Induktion nach n:

Induktionsanfang: n = 0 (hat Darstellung $(0)_b$)

Induktionsschritt: sei n > 0.

- Induktionsvorraussetzung: Die Aussage gelte für alle $n' \in \mathbb{N}_0$ mit n' < n,
- \bullet Induktionsbehauptung: Die Aussage gilt für n.
- Beweis:

Nach Satz über Division mit Rest (6.3) gilt $\exists q, r \in \mathbb{Z} \text{ mit } n = q \cdot b + r$ Setze $x_0 = r$ (also $x_0 = n \mod b$ und n' = q und $n' = \frac{n - x_0}{b}$), dann ist $0 \le n' < n$

Nach Induktionsvorraussetzung gilt also $n' = \sum_{i=0}^k x_i' \cdot b^i, k, x_i'$ mit (1), (2)

setze
$$x_{i+1} = x'_i$$
 für $i = 0, 1, ..., k$

Dann ist
$$n = n' \cdot b + x_0$$

$$= \sum_{i=0}^{k} x_i' \cdot b^{i+1} + x_0$$

$$= \sum_{i=1}^{k+1} x_i \cdot b^i + x_0$$

$$= \sum_{i=0}^{k+1} x'i \cdot b^i$$

- -(1) und (2) gelten:
- (2) gilt nach Konstruktoren der x_i (1):

-falls
$$n' = 0$$
, $[z.z : b^0 \le n < b^1]$
dann ist $n = x_0$.
wegen $x_0 < b$ ist $b^0 = 1 \le n < b^1$

- falls
$$n'>0$$
 [z.Z: $b^{k+1} \leq n < b^{k+2}]$ dann gilt (Ind.Vor.) $b+ \leq n' < b^{k+1}$

$$\Rightarrow b^{k+1} \le b \cdot n' \le \underbrace{b \cdot n' + x_0}_{n}$$

zeige II: Es ist
$$n' \leq b^{k+1} - 1$$
, also $bn' \leq b^{k+2} - b$

$$\Rightarrow \underbrace{bn' + x_0}_{n} \le b^{k+2} - b + x_0 < b^{k+2}$$

- Darstellung ist eindeutig:

Sei
$$nj = \sum_{i=0}^{k} x_i \cdot b^i = \sum_{i=0}^{l} y_i \cdot b^i$$
 $(x_i, y_i, k, l \text{ mit } (1), (2))$

Dann ist
$$x_0 = n \mod b = y_0$$
 wende Ind. Vor. an auf $n' = \frac{n - x_0}{b} = \frac{n - y_0}{b}$, Beh. folgt. \square

6.9 Korollar

Der Beweis liefert ein Verfahren zur Bestimmung der Darstellung von $n \in \mathbb{N}_0$ zur Basis b > 1:

$$n_0 \coloneqq n, \quad x_0 \coloneqq n_0 \bmod b$$

$$n_1 \coloneqq \frac{n_0 - x_0}{b}, \quad x_1 \coloneqq n_1 \bmod b$$

$$\vdots$$

$$n_k \coloneqq \frac{n_{k-1} - x_{k-1}}{b}, \quad x_k \coloneqq n_k \bmod b$$
solange, bis $n_k < b \pmod x$
Dann $n = (n_k n_{k-1} \dots n_0)_b$

6.10 Beispiel

a) $(41)_{10}$ im Binärsystem (b=2) (mit Algorithmus aus 6.9)

$$\begin{array}{l} 41 \bmod 2 = 1 \\ \frac{41-1}{2} = 20, \quad 20 \bmod 2 = 0 \\ \frac{20-0}{2} = 10, \quad 10 \bmod 2 = 0 \\ \frac{10-0}{2} = 5, \quad 5 \bmod 2 = 1 \\ \frac{5-1}{2} = 2, \quad 2 \bmod 2 = 0 \\ \frac{2-0}{1} = 1 < b(=2), \text{ fertig.} \\ \text{also } (41)_{10} = (101001)_2 \\ \end{array}$$

oder (gut bei kleinen Zahlen):

höchste 2er-Potenz
$$\leq 41$$
 ist $\underline{2}^5 = 32$
 $41 - 32 = 9$
höchste 2er-Potenz ≤ 9 ist $\underline{2}^3 = \underline{8}$
 $9 - 8 = \underline{1} = \underline{2}^0$
 $(41)_{10} = \underline{2}^5 + \underline{2}^3 + \underline{2}^0 = (101001)_2$

b) $(41)_{10}$ im Hexadezimalsystem:

$$41 \mod 16 = 9$$
 | 9 | 29

$$(41)_{10} = (29)_{16}$$
[oder: $(41)_{10} = (10 \ 1001)_2$

$$= (0010 \ 1001)_2 = (29)_{16}$$

$$(0010)_2 = (2)_{10} = (2)_{16}$$

$$(1001)_2 = (9)_{10} = (9)_{16}$$

c) $(41)_5$ im 3er-System:

$$(41)_5 = 4 \cdot 5^1 + 1 \cdot 5^0 = (21)_{10}$$

$$21 \mod 3 = 0 \qquad | 0$$

$$\frac{21-0}{3} = 7, \quad 7 \mod 3 = 1$$

$$\frac{7-1}{3} = 2 < 3, \text{ fertig}$$

$$(41)_5 = (210)_3$$

$$| 210$$

6.11 Satz (Rechenregeln für modulo)

Seien $a, b \in \mathbb{Z}, m \in \mathbb{N}$

- $(a \mod m) \mod m) = a \mod m$ M(M(a)) = M(a)
- Platzhalter $*: +, -, \cdot$

Dann
$$(a * b) \mod m \stackrel{(i)}{=} [(a \mod m) * (b \mod m)] \mod m$$

 $\stackrel{(ii)}{=} [(a * (b \mod m)] \mod m$
 $\stackrel{(iii)}{=} [(a \mod m) * b] \mod m$

<u>Beweis</u>

a)
$$a = q \cdot m + \underbrace{r}_{a \mod m} r = 0 \cdot m + \underbrace{r}_{r \mod m}$$

b) (i) • für +
$$a = q_1 \cdot m + r_1$$

$$b = q_2 \cdot m + r_2$$

$$r_1 = a \mod m$$

$$r_2 = b \mod m$$

Wir haben

(1)
$$a + b = (q_1 + q_2) \cdot m + r_1 + r_2$$

(2)
$$r_1 + r_2 = q \cdot m + s$$

$$(1, 2) (3) a + b = (q_1 + q_2 + q) \cdot m + s$$

also $(a+b) \mod m = s = (r_1 + r_2) \mod m$

- für $* \cong -$ analog
- $f\ddot{u}r * \cong \cdot$

$$a \cdot b = (q_1 \cdot q_2 \cdot m + r_1 \cdot q_1 + r_2 \cdot q_2) \cdot m + r_1 \cdot r_2.$$

$$\Rightarrow (a \cdot b) \mod m = [r_1 \cdot r_2] \mod m$$

$$= [(a \mod m) \cdot (b \mod m)]$$

$$= 6.11 \text{ a})$$

 $[(a \cdot b) \bmod m] \bmod m$

(ii) $[a*(b \mod m)]m \mod m = [a \mod m(*(b \mod m) \mod m) \mod m] \mod m$

$$\underbrace{=}_{6.11a)}[(a \bmod m) * (b \bmod m)] \bmod m$$

6.12 Bemerkung

6.11 gilt auch für mehr als 2 Summanden / Faktoren.

z.B.
$$(a \cdot b \cdot c) \mod m = [(a \mod m)b \cdot (c \mod m)] \mod m$$

6.11 wiederholt anwenden

6.13 Beispiele

- a = 10, b = 7, m = 4 $a \mod m = 2, b \mod m = 3$
 - (+) $[(a \mod m) + (b \mod m)] \mod m = (2+3) \mod 4 = 1$ $(a+b) \mod m = 17 \mod 4 = 1$

(-)
$$[(a \mod m) - (b \mod m)] \mod m = (2-3) \mod 4 = 3$$

 $(a-b) \mod m = (10-7) \mod 4 = 3$

(·)
$$[(a \mod m) \cdot (b \mod m)] \mod m = (2 \cdot 3) \mod 4 = 2$$

 $(a \cdot b) \mod m = 70 \mod 4 = 2$

Beobachtung: mod-Regeln können große Zwischenergebnisse vermeiden

•
$$(11 \cdot 12 \cdot 13) \mod 7$$
?
 $(11 \cdot 12 \cdot 13) \mod 7 = 11 \cdot 12 \cdot 13) \mod 7 = (1716) \mod 7 = 1$
oder $(11 \cdot 12 \cdot 13) \mod 7 = [(11 \mod 7)(12 \mod 7)(13 \mod 7)] \mod 7$
 $= (4 \cdot 5 \cdot 6) \mod 7$
 $= 120 \mod 7 = 1$
oder $(11 \cdot 12 \cdot 13) \mod 7 = [((-3) \mod 7) \cdot ((-2) \mod 7) \cdot ((-1) \mod 7)] \mod 7$
 $= ((-3)\dot{(}-2) \cdot (-1)) \mod 7$
 $= (-6) \mod 7 = 1$

• Welchen Rest lässt (214936)¹⁵¹⁷⁴³³ bei Division durch 7?

$$[(214936)^{1517433}] \mod 7 = \begin{bmatrix} 210000 \\ +4900 \\ +35 \\ +1 \end{bmatrix} \mod 7$$

$$= (1 \mod 7)^{1517433} \mod 7 = 1$$

- Welchen Rest lässt $(214935)^{1517433}$ mod 7 → Rest 0.
- Welchen Rest lässt $(214934)^{1517433} \mod 7$ $(214935 - 1)^{1517433} \mod 7$ = $(-1)^{1517433} \mod 7 = (-1) \mod 7 = 6$

$$- (214937)^{1517433} \mod 7 = (2^{3 \cdot 505811}) \mod 7$$
$$= ((2^3)^{505811}) \mod 7$$
$$= (8^{505811}) \mod 7$$
$$= 1^{505811} \mod 7 = 1$$

• Teilbarkeit und Quersummen

Satz: Sei
$$a\in\mathbb{N}, n\geq 1, t\in\mathbb{N}, t\mid n$$

$$a=\sum_{i=0}^k a(n+1)^i \qquad (n+1) \text{ addische Darstellung}$$

$$8 = 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 = (1000)_2$$

Quersumme

$$Q_{n+1}(a)\sum_{i=0}^{k} a_i$$

Es gilt $t \mid a \Leftrightarrow t \mid Q(a)$

- 3-Regel. 123 durch 3 teilbar
- 9-Regel 51111 durch 9 teilbar.
- ISBN-10 (veraltet) Internationale Standard-Buch-Nr
 Kennziffern, 10. Stelle (Prüfziffer)
 a₁ a₂a₃a₄ a₅a₆a₇a₈a₉ a₁0

$$a_{10} = (\sum_{i=0}^{9} a_i \cdot i) \mod 11$$
 $a_{10} = 10, \rightarrow a_{10} = x$

WHK:

$$3 - 540 - 20521 - 7$$

$$3 - 5402052 - 5$$

$$1 - 54020523 - 1$$

6.14 Definition (Kongruenzrelationen modulo m)

Sei $m \in \mathbb{N}$. Für $a, b \in \mathbb{Z}$ definiere $a \equiv b \pmod{m} : \Leftrightarrow m \mid (a - b)$

"a kongruent b modulo m"

Beispiel: $17 \equiv -4 \pmod{7}$ $17 \neq \mod -4 \mod 7 = 3$

Beachte:

- \equiv (mod m) ist Relation auf \mathbb{Z}
- mod $m : \mathbb{Z} \to \{0, 1, ..., m 1\}$ $a \to a \mod m$

6.15 Satz

a) $a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$

- b) $a \equiv 0 \pmod{m} \Leftrightarrow m \mid a$
- c) $a \mod m \equiv a \pmod{m}$
- d) Kongruenzrelation modulo m ist Äquivalenzrelation
- e) $a \equiv b \pmod{m}, c \in \mathbb{Z} \Rightarrow c \cdot a \equiv c \cdot b \pmod{m}$

6.16 Beispiel

- $17 \mod 7 = 3$ $17 \equiv 3 \pmod{7}$ $17 \equiv 10 \pmod{7}$ $17 \equiv -4 \pmod{7}$
- $2 \cdot 3 \equiv 2 \cdot 2 \pmod{2}$ $6 \equiv 4 \pmod{2}$ aber $3 \not\equiv 2 \pmod{2}$

Beweis zu 6.15)

- a) " \Rightarrow " $a \equiv b \pmod{m} \Leftrightarrow a = km + b \text{ für } k \in \mathbb{Z}$ $\Rightarrow a \mod m = (k \cdot m) \mod m + b \mod m = b \mod m$ " \Leftarrow " $a \mod m = b \mod m \Rightarrow$ $a = a_1 \cdot m + r \pmod{1}$ $b = a_2 \cdot m + r \pmod{2}$ $(1,2)a - b = (a_1 - a_2) \cdot m$ $\Rightarrow m(a - b)$
- b) Spezialfall von a) (b=0)
- c) zu zeigen: $a \mod m \equiv a \pmod{m}$ $\stackrel{\text{a)}}{\Leftrightarrow} (a \mod m) \mod m \stackrel{6.11 \text{ a})}{=} a \mod m$
- d) reflexiv? symmetrie, transitivität?

$$m \mid (a-a)\checkmark$$
 $m \mid (a-b)\checkmark$ $\Leftrightarrow m \mid (b-a)$
 $m \mid (a-b), \quad m \mid (b-c) \Rightarrow m \mid \underbrace{(a-b) + (b-c)}_{(a-c)}$

e)
$$m \mid (a - b) \Rightarrow a - b = k \cdot m \quad k \in \mathbb{Z}$$

 $\Rightarrow ca - cb = c \cdot k \cdot m = kc \cdot m$
 $m \mid (ca - cb)$

Wiederholung: Kongruenz modulo m $m \in \mathbb{N}$ $a, b \in \mathbb{Z}$ $a \equiv b \pmod{m}$ $\Leftrightarrow m \mid (a - b)$

6.17 Satz und Definition

Die Äquivalenzklassen der Kongruenzrelation modulo m sind genau die Mengen

$$\{k \cdot m : k \in \mathbb{Z}\}, \{1 + km : k \in \mathbb{Z}\}, ... \{(m-1) + km : k \in \mathbb{Z}\}$$

Kurzschreibweise: $r + m\mathbb{Z}$ r = 0, ..., m - 1

Die Menge $\mathbb{Z}_m = \{0, 1, ..., m-1\}$ ein Repräsentantensystem.

Beispiel: mod2 gerade und ungerade $\mathbb{Z}_2 = \{0, 1\}$

Beispiel 6.16:

$$x \equiv 3 \pmod{7}$$

 $3 \equiv 3 \pmod{7}$
 $10 \equiv 3 \pmod{7}$
 $17 \equiv 3 \pmod{7}$

6.18 Satz

Seien $a_1 \equiv a_2 \pmod{m}$ und $*: +, -, \cdot b_1 \equiv b_2 \pmod{m}$

 $Dann \ a_1*b_1 \equiv a_2*b_2 \ (\text{mod} \ m)$

Beweis: Nach 6.14 a)

$$a_1 \bmod m = a_2 \bmod m \tag{1}$$

$$b_1 \bmod m = b_2 \bmod m \tag{2}$$

Dann
$$(a_1 * b_1) \mod m \stackrel{6.11b}{=} [(a_1 \mod m) * (b_1 \mod m)] \mod m$$

$$\stackrel{(1,2)}{=} [(a_2 \mod m) * (b_2 \mod m)] \mod m$$

$$\stackrel{6.11b)}{=} (a_2 * b_2) \mod m$$

6.19 Beispiel

a) Welche Zahlen erfüllen die Voraussetzung?

$$2x + 1 \equiv 5 \pmod{6}$$
$$1 \equiv 1 \pmod{6}$$
$$2x \equiv 4 \pmod{6}$$

Welche $x \in \{0, ..., 5\} = \mathbb{Z}_6$ erfüllen die Kongruenzrelation?

$$x = 2,$$
 $x = 5$

$$2x \equiv 4 \pmod{6} \Leftrightarrow 2 \cdot (x \bmod{6}) \equiv 4 \pmod{6}$$

Lösungsmenge: $(2 + 6\mathbb{Z}) \cup (5 + 6\mathbb{Z})$

b)
$$x^2 + 3y = 3z^2$$
 $x, y, z \in \mathbb{Z}$

Trick Mod-Reihe:

$$(x \bmod 3)^2 \equiv 2 \pmod 3$$
$$0^2 \equiv 0 \pmod 3$$
$$1^2 \equiv 1 \pmod 3$$
$$2^2 \equiv 1 \pmod 3$$

Gleichung hat keine Lösung!

6.20 Definition

Seien $a_1, ..., a_r \in \mathbb{Z}$

- a) Ist mindestens ein $a \neq 0$, so ist der größte gemeinsame Teiler $ggT(a_1, ..., a_r)$ die größte <u>natürliche</u> Zahl, die alle a_i teilt.
- b) Sind alle $a \neq 0$, so ist das <u>kleinste gemeinsame Vielfache</u> $kgV(a_1, ..., a_r)$ die kleinste <u>natürliche</u> Zahl die von allen a_i geteilt wird.

6.21 Bemerkung

a) $ggT(a_1,...,a_r)$ existiert und ist eindeutig.

$$1 \mid a_i \quad \forall i \in \{1, ..., r\} \quad t \leq |a_i|$$

b) $kgV(a_1,...,a_r)$ existiert und ist eindeutig.

 $|a_1| \cdot \ldots \cdot |a_r|$ wird von allen a_i geteilt.

c)
$$ggT(a_1,...,a_r) = ggT(|a_1|,...,|a_r|) kgV(a_1,...,a_r) = kgV(|a_1|,...,|a_r|).$$

6.22 Definition

Ist $ggT(a_1,...,a_r)=1$, so heißen $a_1,...,a_r$ teilerfremd.

Ist $ggT(a_i, a_j) = 1$ für alle $i \neq j$, so heißen $a_1, ..., a_r$ paarweise teilerfremd.

Stärker als Teilerfremd

6, 10, 15 ggT(6, 10) = 2 ggT(10, 15) = 5ggT(6, 15) = 3

qqT(6,10,15) = 1

Berechnung des ggT zweier Zahlen mit Euklidischem Algorithmus (Euklid 365 v.Chr. - 300 v.Chr.)

Grundprinzipien im folgenden Lemma:

6.23 Lemma

Seien $a, b, q \in \mathbb{Z}$ $b \neq 0$. Dann ist

$$ggT(a,b) = ggT(q \cdot a + b, a).$$

[Beachte für den zweiten ggT: ist a = 0, so ist $q \cdot a + b = b \neq 0$]

Beweis:
$$t \mid (q \cdot a + b) \wedge t \mid a \stackrel{6.2 \text{ b}}{\Leftrightarrow} t \mid a \wedge t \mid b$$

Gegeben seien jetzt a, b, nicht beide 0, O.B.d.A $b \neq 0$

Wir wollen ggT(a, b) bestimmen.

Setze
$$a_0 = a$$
, $a_1 = b$
 $a_0 = q_1 a_1 + a_2$ (Division mit Rest)
 $a_1 = q_2 a_2 + a_3$ (Division mit Rest)
 \vdots
 $a_{n-1} = q_n a_n + 0$ erstes Mal Rest 0

Nun ist
$$ggT(a,b) = ggT(a_0, a_1) \stackrel{6.23}{=} ggT(a_1, a_2) = \dots = ggT(a_{n-1}, a_n) = |a_n|.$$

Beachte: Ist $n \geq 2$, so auch $a_n > 0$, d.h. $ggT(a_{n-1}, a_n) = a_n$.

D.h. nur für n = 1, d.h. $b \mid a$, muss man Betrag verwenden (falls b < 0).

Beweis für Euklidischen Algorithmus ✓

6.24 Euklidischer Algorithmus

Input: $a, b \in \mathbb{Z}$ nicht beide 0

IF
$$b = 0$$
, then $y := |a|$

IF
$$b \neq 0$$
 and $b \mid a$, then $y := |b|$

IF
$$b \neq 0$$
 and $b \nmid a$ then $x := a$, $y := b$ while $x \mod y \neq 0$ do

$$r \coloneqq x \mod y, \quad x \coloneqq y, \quad y \coloneqq r$$

Output y (= ggT(a, b))

Beispiel:

a)
$$ggT(-20,0) = 20$$

b)
$$ggT(-20, -10) = 10$$

c)
$$a = 48$$
, $b = -30$
also $x = 48$, $y = -30$
 $48 \mod (-30) = 18 \neq 0$ $x = -30$, $y = 18$
 $(-30) \mod 18 = 6 \neq 0$ $x = 18$, $y = 6$

$$18 \mod 6 = 0$$

 $\rightarrow ggT(48, -30) = 6$

6.25 Satz (Bachét de Mérirac (1581 - 1638))

Seien $a, b \in \mathbb{Z}$, nicht beide 0. Dann existieren s, t mit ggT(a, b) = sa + tbAnmerkung: In Literatur auch Lemma von Bezont.

Beweis:

Ist b = 0, $ggT(a, b) = |a| = s \cdot a + t \cdot b$ mit

$$s = \begin{cases} 1 & \text{falls } a > 0 \\ -1 & \text{falls } a < 0 \end{cases}$$

Ist $b \neq 0$, b|a so $ggT(a,b) = |b| = s \cdot a + t \cdot b$ mit

$$t = \begin{cases} 1 & \text{falls } b > 0 \\ -1 & \text{falls } b < 0 \end{cases}$$

$$Ist b \neq 0, b \nmid a \qquad a_0 = a, a_1 = b$$

EA:
$$a_0 = q_1 \cdot a_1 + a_2$$
,
 $a_1 = q_1 \cdot a_2 + a_3$, ..., $a_{n-1} = q_n a_n + 0$
 $ggT(a, b) = a_n$

Zeige durch Induktion nach j die Existenz von $s_j, t_j \in \mathbb{Z}$ mit $A(J): a_j = s_j \cdot a_0 + t_0 \cdot a_1$

beachte die Induktion läuft nur solange wie a_j definiert ist.

I.A:

$$A(0): j = 0: s_0 = 1, t_0 = 0$$
 $a_0 = 1 \cdot a_0 + 0 \cdot a_1 \checkmark$

$$A(1): j = 1: s_1 = 0, t_1 = 1$$
 $a_1 = 0 \cdot a_0 + 1 \cdot a_1 \checkmark$

I.S:

I.V: Sei $2 \le j \le n$ und es gelte:

$$A(j-2): a_{j-2} = s_{j-2} \cdot a_b + t_{j-2} \cdot a_1 \ A(j-1): a_{j-1} = s_{j-1} \cdot a_b + t_{j-1} \cdot a_1$$

I.B:
$$A(j)(A(j-2) \wedge A(j-1) \Rightarrow A(j))$$

EA

$$a_{j} = a_{j-2} - q_{j-1} \cdot a_{j-1}$$

$$= \underbrace{s_{j-2} \cdot a_{0} + t_{j-2} \cdot a_{1} - q_{j-1} \cdot (s_{j-1} + t_{j-1}a_{1})}_{I.V.}$$

$$= \underbrace{(s_{j-2} - q_{j-1} \cdot s_{j-1})}_{=:s_{j}} \cdot a_{0} + \underbrace{(t_{j-2} - q_{j-1} \cdot t_{j-1})}_{=:t_{j}} \cdot a_{1}$$

$$\Rightarrow \text{Satz folgt mit } j = n \text{ und } s = s_{n}, t = t_{n}$$

6.26 Erweiterter Euklidischer Algorithmus

Input
$$a, b \in \mathbb{Z}$$
 (nicht beide 0)

IF
$$b = 0$$
 then $y := |a|$, if $a > 0$ then $s := 1$ else $s := -1$ $t = 0$

IF
$$b \neq 0$$
 and $b \mid a$ then $y := |b|$, $s = 0$, if $b > 0$ then $t := 1$ else $t := -1$

IF
$$b \neq 0$$
 and $b \nmid a$ then
$$x := a, \ y := b, s_1 := 1, s_2 := 0, t_1 := 0, t_2 := 1$$
while $x \mod y \neq 0$ do
$$q := x \operatorname{div} y, \ r = x \mod y,$$

$$s = s_1 - q \cdot s_2, \qquad t := t_1 - q \cdot t_2,$$

$$s_1 = s_2, \ s_2 = s, \qquad t_1 = t_2, \ t_2 = t,$$

$$x = y, \ y = r$$

Output:
$$y(ggT(a,b))$$
 : $y(=ggT(a,b)), s, t(y=s\cdot a+t\cdot b)$
 $s, t(y=s\cdot a+t\cdot b)$

Beispiel: a = 48, b = -30

	X	У	s_1	s_2	s	t_1	t_2	t	q	r	
	48	-30	1	0		0	1				
$0 \neq 18 = 48 \mod (-30) = 18 \neq 0$	-30	18	0	1	1	1	1	1	-1	18	
$= 6 \neq 0$ (-30) mod 18	18	6	1	2	2	1	3	3	_2	6	
$(-30) \bmod 18$	10		1		=		3	=	-2		
	$6 = 2 \cdot 48 + 3 \cdot (-30) \rightarrow \text{nicht eindeutig}$										
	$48 = (-1) \cdot (-30) + 18$ $s = s_1 - q \cdot s_2$ $t = t_1 - q$										

Beachte: Darstellung ist nicht eindeutig!

$$6 = 7 \cdot 48 + 11 \cdot (-30)$$

6.27 Korollar

(Seien $a, b, c \in \mathbb{Z}$ und $m \in \mathbb{N}$.

- a) Sind a, b nicht beide 0, so gilt: a und b teilerfremd $\Leftrightarrow \exists s, t \in \mathbb{Z} : s \cdot a + t \cdot b = 1$
- b) Sind a, b nicht beide 0. So gilt: Ist c|a und c|b, so gilt c|ggT(a,b)
- c) Ist ggT(a, b) = 1 und $a|b \cdot c$, so a|c
- d) Ist ggT(c, m) = 1 und $c \cdot a \equiv c \cdot b \pmod{m}$ so gilt $a \equiv b \pmod{m}$

Beweis:

- a) \Rightarrow : 6.25 $\Leftarrow d = ggT(a, b)$ nach 6.2.b): $d|\underbrace{sa + tb}_{1} \Rightarrow d = 1$
- b) $6.25 \ ggT(a,b) = s \cdot a + t \cdot b$ $c|a \wedge c|b \underset{6.2b)}{\Longrightarrow} c|sa + tb$
- c) $6.25 \exists s, t \in \mathbb{Z} \text{ mit } 1 = s \cdot a + t \cdot b$ also $c = s \cdot c \cdot a + t \cdot c \cdot b$ Da a|a und a|bc, folgt (6.2b) $a|sca + tbc \Rightarrow a|c$
- d) m|c(a-b), ggT(c, m) = 1 $\Rightarrow m|(a-b) \text{ also } a \equiv b \pmod{m}$ Vergleiche: 6.15e).

6.28 Bemerkung

- a) Ist k > 2, so $ggT(a_1, ..., a_k) = ggT(ggT(a_1, ...a_k), a_k)$
- b) $\exists s_1, ... s_k, s \in \mathbb{Z}$ mit $ggT(a_1, ... a_k) = s_1 a_1 + - + s_k a_k$ (Beweis per Induktion)
- c) 6.27c) Verallgemeinerbar auf k Zahlen: $c|a_1,...,a_k \Rightarrow c|ggT(a_1,...,a_k)$
- d) Ist k > 2, so $kgV(a_1, ..., a_k) = kgV(kgV(a_1, ..., a_k), a_k)a_{k-1}$ und $a \neq 0$ (alle nicht 0)

6.29 Definition

Eine natürliche Zahl p > 1 heißt Primzahl, wenn 1 und p die einzigen natürlichen Zahlen sind, die p teilen.

(D.h.
$$ggT(k, p) = 1$$
 für alle $1 \le k \le p$)

6.30 Satz

Ist p eine Primzahl, $a_1, ..., a_k \in \mathbb{Z}$ und $p|a_1 \cdot a_2 \cdot, ... \cdot a_k$ so existiert $1 \le j \le k$ mit $p|a_j$

Beweis: Induktion nach k:

IA:

k=1

IS:

 $k-1 \to k \text{ Gilt } p|a_k \checkmark$

Ist $p \nmid a_k$ so $ggT(p, a_k) = 1$ (P Primzahl)

Nach 6.27c): $p|a_1 \cdot ... \cdot a_{k-1}|$

 $\Rightarrow p|a_j$ für ein $1 \le j \le k-1$

6.31 Fundamentalsatz der elementaren Zahlentheorie

Zu jeder natürlichen Zahl $a \geq 2$ gibt es endlich viele verschiedene Primzahlen $p_1,...,p_n$ und natürliche Zahlen $e_1,...,e_n$ mit $a=p_1^{e_1}\cdot...\cdot p_n^{e_n}$ Die p_i heißen Primfaktoren von a. Die Darstellung von a als Produkt von Primzahlen ist bist auf die Reihenfolge eindeutig.

$$a = \prod_{i=1}^{n} p_i^{e_i} = p_1^{e_1} \cdot \dots \cdot p_n^{e_n}$$

Beweis: Existenz (per Induktion)

IA: a=2

IS: IV: Aussage gilt für 2, ..., a-1

> IB: Aussage gilt für a.

Beweis:

Fall 1: a Primzahl ✓

Fall 2: a keine Primzahl

$$a = b \cdot c$$
 für $1 \lneq b, c \lneq a$

wende I.V. auf b und c an \rightarrow fertig.

Eindeutigkeit (per Induktion) über $s(a) := \sum_{i=1}^{n} e_i$ s(2) = 1, s(4) = 2

IA: $s(a) = 1 \Rightarrow a$ Primzahl \checkmark

IV: Aussage gelte für alle a', s(a') < s(a)

IB: Aussage gilt auch für a

Beweis:

$$a = p_1 \cdot \dots \cdot p_m = q_1 \cdot \dots \cdot q_e \qquad |s(a)| = m \le l$$

 p_i, q_i Primzahl (nicht unbedingt verschieden)

 \checkmark

$$p_1 \mid a \Rightarrow p_1 \mid q_1 \cdot \ldots \cdot q_e \stackrel{6.30}{\Rightarrow} p_1 \mid q_j$$
 für ein j

$$\stackrel{q_j \text{ Prim}}{\Rightarrow} p_1 = q_j \to a' = p_1 \cdot \dots \cdot p_n = q_1 \cdot q_{q-1} \cdot q_{q+1} \cdot \dots \cdot q_e$$

wende I.V: auf a' an, fertig

6.32 Korollar (Euklids Lemma)

Es gibt unendlich viele Primzahlen.

Beweis: Angenommen es gibt nur unendlich viele Primzahlen $p_1,...,p_n$

$$a = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1$$

$$\stackrel{6.31}{\Rightarrow} \exists p_i \quad p_i \mid a \quad q = p_i \quad 1 \le i \le n$$

Dann gilt nach 6.2 b)
$$q \mid \underbrace{a - p_1 \cdot \dots \cdot p_n}_{=1}$$

$$\Rightarrow q = 1$$
 ?

6.33 Korollar

Seien $a, b \in \mathbb{N}$ $a, b \ge 2$

Seien P(a) und P(b) die Menge der Primteiler von a und b, d.h.

$$a = \prod_{p \in P(a)} p^{n(p)} b = \prod_{p \in P(b)} p^{m(p)} \qquad n(p), m(p) \in \mathbb{N}$$

Dann ist

$$ggT(a,b) = \prod_{p \in P(a) \cap P(b)} p^{\min(n(p), m(p))}$$

(Hinweis: Leeres Produkt = 1)

$$KgV(a,b) = \prod_{p \in P(a) \backslash P(b)} p^{n(p)} \cdot \prod_{p \in P(a) \cap P(b)} p^{\max(n(p),m(p))} \cdot \prod_{p \in P(b) \backslash P(a)} p^{m(p)}$$

insbesondere $a \cdot b = ggT(a, b) \cdot KgV(a, b)$

Beispiel

$$a = 1248 = 2^5 \cdot 3 \cdot 13$$

$$b = 3780 = 2^2 \cdot 3^3 \cdot 5 \cdot 7$$

$$qqT(a,b) = 2^2 \cdot 3^1 = 12$$

$$KgV(a,b) = 2^5 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13 = 393120$$

7 Kombinatorik

Ziel: Anzahlbestimmungen von endlich vielen verschiedenen Objekten (Kombinationen).

7.1 Satz

a) Seien A, B endliche Mengen.

Dann gilt: $|A \cup B| = |A| + |B| - |A \cap B|$

b) $A_1, ..., A_n$ endliche Mengen.

Dann $|A_1 \times ... \times A_n| = \prod_{i=1}^n |A_i|$

$$(q_1,...,q_n) \in \prod_{i=1}^n A_i$$

Beweis: klar

Bemerkung: a) lässt sich verallgemeinern → Ein-/Ausschlussprinzip (WHK 2.32)

Beweis (per Induktion):

IA:
$$n = 1$$

IS: $n \to n+1$

$$|A_1 \times ... \times A_n \times A_{n+1}| = \sum_{a \in A_{n+1}} |A_1 \times ... \times A_n \times \{a\}| = |A_{n+1}| \cdot |A_1 \times ... \times A_n| \stackrel{I.V.}{=} |A_{n+1}| \cdot \prod_{i=1}^n |A_i| \checkmark$$

7.2 Beispiel

- a) Wieviele "Wörter" der Länge n gibt es über dem "Alphabet" $\{0,1\}$
 - \rightarrow Wort der Länge $n \cong$ n-Tupel.

$$\left|\{0,1\}^n\right|=2^n$$

$$\left| \{0,1\}^3 \right| = \left| \{(0,0,0),(0,0,1),\ldots\} \right| = 8$$

b) Wie viele Folgen der Länge 1000 aus den Symbolen A,G,C,T gibt es?

Auswahlanzahlen

Anzahl an möglichen Auswahlen von k Objekten aus einer Menge mit n Objekten.

- Reihenfolge relevant oder nicht
- Wiederholung möglich oder nicht
- \rightarrow 4 Typen von Auswahlen

7.3 Geordnete Auswahl ohne Wiederholung

Fragestellung I

Menge B ("Urne") mit n verschiedenen Objekten $b_1, ..., b_n$. Wähle nacheinander k davon aus und lege sie der Reihenfolge nach aus.

$$\sim (b_{i_1}, b_{i_2}, ..., b_{i_k})$$
 Dabei $i_j \neq i_l \quad j \neq l$

Wie viele solcher k-Tupel sind möglich?

Fragestellung II (nur andere Interpretation)

Wie viele injektive Abbildungen
$$\pi = \begin{pmatrix} 1 & \dots & k \\ b_{i_1} & \dots & b_{i_k} \end{pmatrix}$$

$$\pi(a) = \pi(b) \stackrel{\pi \text{ injektiv}}{\Rightarrow} a = b$$

7.4 Definition

Setze für $k, n \in \mathbb{N}$

$$(n)_k := n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$$

Also
$$(n)_1 = n$$
 und für $k > n$, $(n)_k = 0$

(Rekursive Definition
$$(n)_k := (n)_{k-1} \cdot \underbrace{(n-k+1)}_{=n-(k-1)}$$
)

Für
$$k \le n : (n)_k = \frac{n!}{(n-k)!}$$

Insbesondere $(n)_n = n!$

7.5 Satz

Es gibt genau $(n)_k$ viele Auswahlen von k Objekten aus einer Menge B mit n Objekten, wenn keine Wiederholungen möglich sind und die Anordnung berücksichtigt wird.

Beispiel: Erste 3 Plätze bei einem Rennen mit 12 Teilnehmern.

Beweis Sei $n \in \mathbb{N}$ beliebig, aber fest. Induktion nach k:

Ind.anf.: k = 1: n Möglichkeiten $(n)_1 = n$

Ind.schritt: Sei $k \geq 1$.

Ind.vor: Aussage sei wahr für k

<u>Ind.beh</u>: Die Aussage gelte für k+1, d.h. bei k+1 Objekten gibt es $(n)_{k+1}$ Möglichkeiten.

Beweis:

- falls k + 1 > n, dann 0 Möglichkeiten = $(n)_{k+1}$
- falls $k+1 \le n$: Nach Ind.vor. gibt es $(n)_k$ Möglichkeiten, k Elemente aus B auf die Plätze 1, ..., k zu verteilen.

Für jede davon gibt es n-k Möglichkeiten, Platz k+1 zu besetzen.

 \Rightarrow insgesamt $(n)_k \cdot (n-k)$

$$\underbrace{(n)_k}_{\substack{n\cdot(n-1)\cdot\dots\cdot(n-k+1)\\k \text{ Faktoren}}}\cdot(n-k) = (n)_{k+1}$$

7.6 Beispiel

a) Beispiel 7.3 Pferderennen:

 $12 \cdot 11 \cdot 10 = 1320$ Möglichkeiten für die ersten drei Plätze.

b) Anzahl der Wörter der Länge 3 über $\{a, b, ..., z\}$, die keinen Buchstaben enthalten:

 $26 \cdot 25 \cdot 24 = 15600$

Wie viele davon enthalten ein x?

$$26 \cdot 25 \cdot 24 - \underbrace{25 \cdot 24 \cdot 23}_{\text{ohne } x} = 25 \cdot 24 \cdot (26 - 23) = 1800$$

(vergleiche: Anzahl aller Wörter der Länge 3 (7.1b)) = $26^3 = 17576$)

Aus 7.3 und 7.5 folgt:

7.7 Korollar

 $A, B \neq \emptyset$ endliche Mengen mit |A| = k, |B| = n, dann gibt es genau $(n)_k$ injektive Abbildungen $A \rightarrow B$.

$$|A| = k$$
, $|B| = n$
 $(n)_k$ injektive Abbildungen $A \to B$

Insbesondere: |A| = |B| = n, dann gibt es $(n)_n = n!$

Bijektionen $A \to B$

7.8 Definition

Eine bijektive Abbildung $A \to B$ heißt Permutation auf A.

Anzahl der Permutationen auf endlicher Menge A = |A|! (Korollar 7.7)

speziell:
$$A = \{1, ..., n\}, |A| = n$$

Dann bezeichnet S_n die Menge aller Permutationen auf A, es gilt also $|S_n| = n!$

7.9 Geordnete Auswahl mit Wiederholung

Wähle k mal ein Objekt aus der Urne mit n Objekten aus, dabei wird die Reihenfolge der Ziehungen notiert und das Objekt nach der Auswahl wieder in die Urne zurückgelegt.

Beispiel:

Ziehen einer Losnummer, (Erstellung eines Autokennzeichens)

Oder: Färbe die Objekte 1, ..., k mit jeweils einer von n Farben, die Farbe darf dabei mehrfach verwendet werden.

7.10 Satz

Es gibt genau n^k geordnete Auswahlen mit möglicher Wiederholung von k Elementen aus einer Menge B mit n Elementen.

Beweis:

$$\overline{\text{Menge aller Auswahlen ist }} \underbrace{B \times B \times ... \times B}_{k} = B^{k}$$

Nach 7.1 gilt
$$|B^k| = |B|^k = n^k$$
.

7.11 Bemerkung / Korollar

Schreibe Auswahl als
$$\begin{pmatrix} 1 & 2 & \dots & k \\ b_1 & b_2 & \dots & b_k \end{pmatrix}$$

 $(b_i \in B,$ nicht notwendig verschieben), dann ist die Anzahl der Auswahlen in 7.10 genau die Anzahl aller Abbildungen $\{1,...,k\} \to B$

Also gibt es genau n^k Abbildungen $A \to B$, wenn |A| = k, |B| = n.

7.12 Ungeordnete Auswahl ohne Wiederholung

Urne mit n Objekten, wähle k Objekte aus, Reihenfolge ist unerheblich (Korb). Wie viele Möglichkeiten (verschiedene Korbfüllungen) gibt es?

Beispiel:

Lotto
$$(n = 49, k = 6)$$

Feuerwehrproblem

d.h. wie viele k-elementige Teilmengen besitzt eine n-elementige Menge?

7.13 Definition

$$n, k \in \mathbb{N}_0$$

$$\binom{n}{k} := \begin{cases} 0 & \text{, falls } k > n \\ \frac{n!}{k! \cdot (n-k)!} & \text{, falls } 0 \le k \le n \end{cases}$$

("n über k")

<u>Binomialkoeffizie</u>nt

(für
$$n, k \in \mathbb{N}$$
 gilt also $\binom{n}{k} = \frac{(n)_k}{k!}$)

$$\binom{n}{0} = 1 = \binom{n}{n}$$

$$\binom{n}{1} = n = \binom{n}{n-1}$$

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

7.14 Bemerkung / Satz

a)
$$\binom{n}{k} = \binom{n}{n-k}$$

b)
$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$
 (Übung)

 \sim Pascal'sches Dreieck

7.15 Satz

Die Anzahl der ungeordneten Auswahlen ohne Wiederholung von k Elementen aus einer Menge B mit n Elementen ist $\binom{n}{k}$.

Dies ist genau die Anzahl der k-elementigen Teilmengen von B.

Beweis

- Satz gilt für $\underbrace{k > n}_{\sim 0}$ und $\underbrace{k = 0}_{\sim 1}$
- Sei $1 \le k \le n$.

Anzahl geordneter Auswahlen ohne Wiederholung

$$=$$
 $(n)_k$

$$((a,b,c),(b,a,c),(c,a,b),\ldots)$$

$$\searrow \quad \downarrow \quad \swarrow \qquad \} \ 3!$$

$$\{a,b,c\} \qquad \leftarrow \text{ungeordnete Menge (Urne)}$$

je k! dieser geordneten Auswahlen führen zur selben ungeordneten Auswahl, erhalte als $\frac{(n)_k}{k!}=\binom{n}{k}$

7.16 Beispiel

a) Lotto 6 aus 49

$$\binom{49}{6} = \frac{49!}{6! \cdot 43!} = 13.983.816$$

Wahrscheinlichkeit für 6 Richtige im Lotto: $\frac{1}{13.983.816}$

b) Anzahl Möglichkeiten für genau 4 Richtige:

von 6 Gewinnzahlen 4 anzukreuzen

von 43 Nicht-Gewinnzahlen 2 anzukreuzen

Wahrscheinlichkeit für 4 Richtige: $\frac{13.540}{13.983.816}\approx 0,00097(\approx 0,1\%)$

b) Wie viele Binärzahlen der Länge n gibt es, die an genau k Stellen eine 1 haben?

(Urne mit den Stellen 1, ..., n, ziehe k Stellen (Anordnung egal), die mit 1 gelegt werden $\rightsquigarrow \binom{n}{k}$)

7.17 Satz (Binomialsatz / binomischer Lehrsatz)

 $a, b \in \mathbb{R}, n \in \mathbb{N}_0$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

$$= \underbrace{\binom{n}{0}}_{1} \cdot a^n \underbrace{b^0}_{1} + \binom{n}{1} a^{n-1} \cdot b^1 + \binom{n}{2} a^{n-1} b^2 + \dots + \binom{n}{n-1} a^1 b^{n-1} + \binom{n}{n} \cdot a^0 \cdot b^n$$

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = \underline{1}a^{2} + \underline{2}ab + \underline{1}b^{2}$$

$$(a+b)^{3} = \underline{1}a^{3} + \underline{3} \cdot a^{2}b + \underline{3}ab^{2} + \underline{1} \cdot b^{3}$$

Unterstrichene Zahlen: siehe Pascal'sches Dreieck (7.14)

Beweis: mittels Induktion über n und 7.14 b), siehe WHK 2.28

7.18 Ungeordnete Anzahl mit Wiederholung

Wähle k Objekte aus n Objekten aus, Wiederholungen erlaubt, Reihenfolge nicht relevant. Wie viele verschiedene Korbfüllungen gibt es?

7.19 Satz

Die Anzahl der Möglichkeiten, aus n Objekten k Objekte auszuwählen, wenn Wiederholungne erlaubt sind und die Reihenfolge irrelevant ist, ist $\binom{n+k-1}{k}$.

<u>Beweis:</u> Wir können m_1 mal das erste Objekt, m_2 mal das 2. Objekt, usw. ..., m_n mal das n. Objekt wählen, wobei $m_1 + m_2 + ... + m_n = k$ gelten muss.

Jede solche Wahl entspricht einer (n+k-1)-stelligen Binärzahl mit k Einsen und n-1 Nullen:

$$\underbrace{\left(\underbrace{1...1}_{m_1} \quad \underbrace{0}_{\text{Trennzeichen}} \quad \underbrace{1...1}_{m_2} \quad 0 \ \dots \ 0 \ \underbrace{1...1}_{m_n}\right)}_{m_n}$$

Wie viele Binärzahlen dieser Art (k mal 1, n-1 mal 0) gibt es?

vgl. Beispiel 7.16 c)
$$\binom{n+k-1}{k}$$

7.20 Beispiel

IKEA hat 3 verschiedene Arten von Schrauben.

Wie viele Möglichkeiten gibt es, Päckchen aus 10 Schrauben zusammenzustellen?

$$\begin{pmatrix} 3+10-1\\10 \end{pmatrix}$$