ОРГАНИЗАЦИЯ ПОСЕЛЕНИЙ Macoma balthica (Linnaeus, 1758) В ОСУШНОЙ ЗОНЕ БЕЛОГО И БАРЕНЦЕВА МОРЕЙ

София Александровна Назарова Научный руководитель: д.б.н. Н. В. Максимович

Санкт-Петербургский государственный университет

Санкт-Петербург, 2015

Введение

Обилие

Динамика численност

структура

Линейный рост

оседани

Цели и задачи

Цель. Изучение организации поселений *Macoma* balthica в условиях осушной зоны Белого и Баренцева морей.

Задачи. Для этого были изучены следующие стороны организации поселений:

- 1. биотический и абиотический фон биотопов;
- 2. структурные характеристики поселений *M. balthica* (показатели обилия, размерная структура);
- 3. многолетняя динамика поселений *M. balthica*;
- 4. скорость линейного роста моллюсков;
- 5. режим формирования спата.

Введение

Обилие

Динамика численност

Размерная структура

Линейный рост

Оседание

Обилие M. balthica в европейской части ареала

Введение

Обилие

Динамика численности

Размерная структура

Линейный рост

Оседание

Выводь

Динамика плотности поселений *M. balthica* в вершине Кандалакшского залива

По оси ординат указана средняя плотность поселения без учета спата

Введение

Обилие

Динамика численности

Размерная структура

Линейный рост

Оседание

Моделирование влияния температуры на численность *M. balthica* в Кандалакшском заливе Белого моря

$$\ln(N_{t1}) = 1,96 + 0,60 \times \ln(N_t) - 0,09 \times T_{wt1}$$

$$F = 37,04$$
; $p < 0,0001$. $R^2 = 0,6$.

 $\log(N_{t1})$ и $\log(N_{t})$ — логарифм средней численности маком в данный (t1) и предыдущий

(t) годы; T_{wt1} — среднезимняя температура в текущий год! 🗗 $^{\flat}$ ч $^{\gtrless}$ $^{\flat}$ ч $^{\gtrless}$ $^{\flat}$ $^{\flat}$ $^{\gtrless}$ $^{\flat}$ $^{\Diamond}$ $^{\Diamond}$

Введение

Обилие

Динамика численности

Размерная структура

Линейный рост

Оседание

Организация поселений *M. balthica*: динамика размерной структуры

Распространение типов динамики размерной структуры в Белом море

+поселение в г. Дальне-Зенеленцкой Баренцева моря

Чередование вариантов размерной структуры N, %

Ежегодное повторение размерной структуры

Введение

Обилие

Динамика численности

Размерная структура

Линейный рост

Оседание

Линейный рост M. balthica в европейской части ареала

Цветовые обозначения: Баренцево море, Белое море, Балтийское море, Северное море, Бискайский залив.

Введение

Обилие

Динамика численност

Размерная структура

Линейный рост

Оседание

Обилие спата Macoma balthica

Введение

Обилие

Динамика численності

Размерная структура

Линейный рост

Оседание

Выводы

1. В Кольском заливе Баренцева моря и Кандалакшском заливе Белого моря значения биомассы (до 200 г/м²) поселений *Macoma balthica* сопоставимы с аналогичным показателем в европейской части ареала, а плотность поселений нередко оказывается выше (до 8 тыс. экз./м²). Для литорали восточной части Мурманского побережья Баренцева моря типичны поселения *M. balthica* с численностью менее 100 экз./м2

- 2. Плотность поселений спата *Macoma balthica* в Белом море может варьировать на порядок в пределах незначительной акватории, и достигать десятков тысяч экз./м².
- 3. Беломорские и баренцевоморские поселения *M. balthica* не различаются по средней скорости роста моллюсков, и отличаются по этому показателю минимальными характеристиками в пределах европейской части ареала вида.

Введение

Обилие

Динамика численност

Размерная структура

Линейный рост

- седани

Выводы

4. Динамика размерной структуры поселений *Macoma balthica* в Белом и Баренцевом представлена двумя типами.

Наболее обычный вариант — чередование бимодального и мономодального распределений особей по размерам. При этом первый пик формируют молодые особи (обычно длиной до 5 мм), а второй модальный класс состоит из взрослых особей (в Белом море длиной 9–12 мм, в Баренцевом море — 10–17 мм). Как относительно редкое событие наблюдается мономодальная структура поселений с ежегодным преобладаем молоди.

5. Динамика плотности поселений *Macoma balthica* в Кандалакшском заливе Белого моря демонстрирует элементы синхронности в поселениях, расположенных на расстоянии от 1 до 100 км, что происходит на фоне резкой межгодовой неравномерности пополнения поселений молодью.

Введение

Обилие

Динамика численности Размерная

структура

Линейный рост

. . .