April 23, 2025 Due date: May 6, 2025

Algorithmic Game Theory

Summer Term 2025

Exercise Set 3

If you would like to present one of the solutions in class, please also send an email to rlehming@uni-bonn.de containing the **task** which you would like to present and in **which of** the tutorials you would like to do so. Deadline for the email is Tuesday, 10:00 pm. Please note that the tasks will be alloecated on a first-come-first-served basis, so sending this email earlier than Tuesday evening is highly recommended.

Exercise 1:

Consider the local search problem $Positive\ Not-All-Equal\ kSat\ (Pos-NAE-kSAT)$ which is defined the following way:

Instances: Propositional logic formula with n binary variables x_1, \ldots, x_n that is described by m clauses c_1, \ldots, c_m . Each clause c_i has a weight $w_i \in \mathbb{N}$ and consists of exactly k literals, which are all positive (i.e., the formula does not contain any negated variable \overline{x}_i).

Feasible solutions: Any variable assignment $s \in \{0,1\}^n$

Objective function: Sum of weights of clauses c_i in which not all literals are mapped to the same value.

Neighbourhood: Assignments s and s' are *neighbouring* if they differ in the assignment of a single variable.

You can assume that Pos-NAE-kSAT is in PLS. Now:

- (a) Show that Pos-NAE-2SAT \leq_{PLS} MaxCut
- (b) Show that Pos-NAE-3SAT \leq_{PLS} Pos-NAE-2SAT

Exercise 2:

We define a Congestion Game to be *symmetric*, if $\Sigma_1 = \ldots = \Sigma_n$. Let $PNE_{\text{Cong. Game}}$ and $PNE_{\text{Sym. Cong. Game}}$ be the local search problems in PLS of finding a pure Nash equilibrium of a general or symmetric Congestion Games, respectively.

Show: $PNE_{\text{Cong. Game}} \leq_{PLS} PNE_{\text{Sym. Cong. Game}}$.

Hint: Add an auxiliary resource for each player with a suitable delay function.

The following exercises require knowledge of lectures 6 and 7.

Exercise 3:

We want to derive properties of the sets of correlated and coarse correlated equilibria.

- (a) Show that the set of correlated equilibria of a cost-minimization game Γ is convex, i.e. for two correlated equilibria p, p' and $\lambda \in [0, 1]$, also $\lambda p + (1 \lambda)p'$ is a correlated equilibrium.
- (b) Show that every correlated equilibrium is also a coarse correlated equilibrium.

Exercise 4:

Consider the following regret-minimization-algorithm.

GREEDY

- Set $p_1^1 = 1$ and $p_j^1 = 0$ for all $j \neq 1$.
- In each round $t = 1, \ldots, T$:

Let
$$L^t_{min} = \min_{i \in N} L^t_i$$
 for $L^t_i = \sum_{t' \leq t} \ell^{(t')}_i$ and $S^t = \{i \in N \mid L^t_i = L^t_{min}\}$.
Set $p^{t+1}_i = 1$ for $i = \min S^t$ and $p^{t+1}_j = 0$ otherwise.

You can assume that $\ell_i^{(t)} \in \{0, 1\}$ for all i and t.

- (a) Show that the costs of Greedy are at most $N \cdot L_{min}^T + (N-1)$.
- (b) State a scheme for an example such that the stated upper bound of (a) is tight for an infinite number of values T.