Esercizi 2-categorie

Secondo foglio: cofini, estensioni di Kan, limiti pesati

• Dimostrare che ogni volta che esiste una aggiunzione parametrica

$$\mathcal{A}(F_A(X), Y) \cong \mathcal{B}(X, G_A(Y))$$

per due funtori $F: \mathcal{A} \times \mathcal{X} \to \mathcal{B}, G: \mathcal{B} \times \mathcal{A}^{\mathrm{op}} \to \mathcal{B}$, allora l'unità $\eta: 1 \Rightarrow G_A F_A$ è un cuneo in A, e la counità un cocuneo. Sono anche universali?

• Dimostrare che l'insieme delle trasformazioni naturali $F\Rightarrow G$ è l'equalizzatore

$$\operatorname{Nat}(F,G) \xrightarrow{\quad \longrightarrow \quad} \prod_{C \in \mathcal{C}} \mathcal{D}(FC,GC) \xrightarrow{\quad \longrightarrow \quad} \prod_{f:C \to C'} \mathcal{D}(FC,GC')$$

per opportune mappe α, β .

- Mostrare che il limite di $F: \mathcal{A} \to \mathbf{Set}$ pesato da $G: \mathcal{A} \to \mathbf{Set}$ è l'insieme delle trasformazioni naturali $F \Rightarrow G$.
- Dimostrare il teorema di Brouwer (per assurdo, se esiste una retrazione del disco sulla sfera...).
- Dimostrare che $\operatorname{Lan}_{GG'} \cong \operatorname{Lan}_{G} \circ \operatorname{Lan}_{G'}$ per due funtori componibili G', G.
- Se $C = \mathbf{Vect}$ è la categoria degli spazi vettoriali, mostrare che il funtore $V \mapsto \int^W W^* \otimes V \otimes W$ è la parte sugli oggetti di una monade su C.
- L'oggetto comma di un diagramma $X \xrightarrow{f} Z \xleftarrow{g} Y$ di categorie è un oggetto $X \xleftarrow{p} (f/g) \xrightarrow{q} Y$ terminale con una trasformazione naturale $fp \Rightarrow gq$. Trovare un peso $W : \{0 \to 1 \leftarrow 2\} \to \mathbf{Cat}$ per cui $(f/g) \cong \lim^W F$, se F è il diagramma $X \xrightarrow{f} Z \xleftarrow{g} Y$.
- Mostrare che dato un funtore $F: \mathcal{A} \to \mathbf{Set}$ esiste un'aggiunzione $\operatorname{Lan}_y F \dashv \operatorname{Lan}_F y$ dove $y: \mathcal{A} \to [\mathcal{A}^{\operatorname{op}}, \mathbf{Set}]$ è l'embedding di Yoneda; mostrare se se F preserva i limiti finiti, lo stesso fa $\operatorname{Lan}_y F$. Il funtore $\operatorname{Lan}_y F$ si chiama $\operatorname{realizzazione}$ di F, e il funtore $\operatorname{Lan}_F y$ si chiama F-nervo.
- Se R è un anello commutativo, $M \otimes_R N$ è la cofine di una opportuna coppia di funtori \bar{M}, \bar{N} .
- Generalizzare l'aggiunzione tra realizzazione e F-nervo al caso di un funtore multilineare: dato $F: \mathcal{C}_1 \times \cdots \times \mathcal{C}_n \to \mathbf{Set}$, dove ogni \mathcal{C}_i è piccola, mostrare che esiste un'equivalenza di categorie

$$\mathbf{Cat}(\mathcal{C}_1 \times \cdots \times \mathcal{C}_n, \mathbf{Set}) \cong \mathsf{Mult}(\widehat{\mathcal{C}}_1 \times \cdots \times \widehat{\mathcal{C}}_n, \mathbf{Set})$$

dove $\mathsf{Mult}(_,_)$ è la categoria dei funtori cocontinui in ogni variabile una volta che tutte le altre sono state fissate (lo si dimostri per induzione, componen do successive estensioni di Kan). Data $\theta \in \mathbf{Cat}(\mathcal{C}_1 \times \cdots \times \mathcal{C}_n, \mathbf{Set})$, descrivere l'aggiunto destro di cias cun $\theta(c_1, \dots, c_i^\circ, \dots, c_n) \colon \widehat{\mathcal{C}}_i \to \mathbf{Set}$ (c_i° significa che tutti gli oggetti c_j sono fissi per $j \neq i$ e $c_i \in \mathcal{C}$ è libero di variare). Tutti questi funtori hanno un 'nervo vettoriale' $N\colon \mathbf{Set}\to \widehat{\mathcal{C}}_1\times\cdots\times\widehat{\mathcal{C}}_n$.