Herbst 24 Themennummer 1 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Geben Sie jeweils an, ob die folgende Aussage richtig oder falsch ist, und führen Sie eine kurze Begründung oder ein Gegenbeispiel an.

- a) Es gibt eine holomorphe Funktion $f: \mathbb{C}\backslash\{0\} \to \mathbb{C}$, so dass $e^{f(z)}=z$ für alle $z\in\mathbb{C}\backslash\{0\}$ gilt.
- b) Sei $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph und nicht konstant, dann ist das Bild $f(U) \subset \mathbb{C}$ offen.
- c) Es gibt keine holomorphe Funktion $f: \mathbb{D} \to \mathbb{C}$ mit $|f(z)| = \sin(\pi|z|)$ für alle $z \in \mathbb{D}$. (Hier ist $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ die offene Einheitskreisscheibe in der komplexen Ebene.)

Lösungsvorschlag:

a) Diese Aussage ist falsch. Gäbe es eine solche Funktion, so müsste nach dem Satz über implizite Funktionen oder durch direktes Differenzieren $f'(z)e^{f(z)}=1$, also wegen der Voraussetzung auch $f'(z)=\frac{1}{z}$ für alle $z\in\mathbb{C}\setminus\{0\}$ folgt, d. h. f wäre Stammfunktion von $\frac{1}{z}$. Dies ist aber unmöglich, weil

$$\int_{\gamma} \frac{1}{z} \, \mathrm{d}z = \int_{0}^{2\pi} i \, \mathrm{d}t = 2\pi i \neq 0$$

gilt, wobei $\gamma:[0,2\pi]\to\mathbb{C}, \gamma(t)=e^{it}$ ist und Wegintegrale über geschlossene Kurven von Funktionen, die eine Stammfunktion besitzen, verschwinden müssen.

b) Diese Aussage ist falsch. Wir betrachten $U := \{z \in \mathbb{C} : \Re(z) \neq 0\}$. Diese Menge ist offen (Urbild der offenen Menge $\mathbb{R} \setminus \{0\}$ unter der stetigen Realteilabbildung) und die Funktion

$$f(z) = \operatorname{sgn}(\Re(z)) = \begin{cases} -1, & \Re(z) < 0 \\ 1, & \Re(z) > 0 \end{cases}$$

Diese ist lokalkonstant und damit holomorph aber nicht konstant. Das Bild ist gegeben durch $\{-1,1\}$ und damit nicht offen (für kein $\varepsilon > 0$ liegt $1+\varepsilon$ im Bild). **Bemerkung:** Wäre die Voraussetzung gewesen, dass f auf keiner Zusammenhangskomponente von U konstant ist, so wäre die Aussage genau der Satz von der offenen Abbildung und damit wahr gewesen!

c) Diese Aussage ist wahr. Angenommen es gäbe eine holomorphe Funktion f mit obigen Eigenschaften. Die Menge $\mathbb D$ ist ein Gebiet (offen und zusammenhängend) und f darauf holomorph. Der Punkt $z_0 = \frac{1}{2}$ liegt in $\mathbb D$ und erfüllt $|f(z_0)| = \sin(\frac{\pi}{2}) = 1 \ge \sin(\pi|z|) = |f(z)|$ für alle $z \in \mathbb D$, weil die Sinusfunktion auf der reellen Achse betragsmäßig durch 1 beschränkt ist. Nach dem Maximumsprinzip muss f konstant sein, aber $f(0) = 0 \ne 1 = f(z_0)$. Dies liefert einen Widerspruch und eine solche Funktion existiert nicht.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$