Chapter 1

Week1

1.1. Monday for MAT3040

1.1.1. Introduction to Advanced Linear Algebra

Advanced Linear Algebra is one of the most important course in MATH major, with pre-request MAT2040. This course will offer the really linear algebra knowledge.

What the content will be covered?.

- In MAT2040 we have studied the space \mathbb{R}^n ; while in MAT3040 we will study the general vector space V.
- In MAT2040 we have studied the *linear transformation* between Euclidean spaces, i.e., $T : \mathbb{R}^n \to \mathbb{R}^m$; while in MAT3040 we will study the linear transformation from vector spaces to vector spaces: $T : V \to W$
- In MAT2040 we have studied the eigenvalues of $n \times n$ matrix A; while in MAT3040 we will study the eigenvalues of a **linear operator** $T: V \to V$.
- In MAT2040 we have studied the dot product $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$; while in MAT3040 we will study the **inner product** $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$.

Why do we do the generalization?. We are studying many other spaces, e.g., $\mathcal{C}(\mathbb{R})$ is called the space of all functions on \mathbb{R} , $\mathcal{C}^{\infty}(\mathbb{R})$ is called the space of all infinitely differentiable functions on \mathbb{R} , $\mathbb{R}[x]$ is the space of polynomials of one-variable.

■ Example 1.1 1. Consider the Laplace equation $\Delta f = 0$ with linear operator Δ :

$$\Delta: \mathcal{C}^{\infty}(\mathbb{R}^3) \to \mathcal{C}^{\infty}(\mathbb{R}^3) \quad f \mapsto (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})f$$

The solution to the PDE $\Delta f = 0$ is the 0-eigenspace of Δ .

2. Consider the Schrödinger equation $\hat{H}f=Ef$ with the linear operator

$$\hat{H}: \mathcal{C}^{\infty}(\mathbb{R}^3) \to \mathbb{R}^3, \quad f \to \left[\frac{-\hbar^2}{2\mu}\nabla^2 + V(x,y,z)\right]f$$

Solving the equation $\hat{H}f=Ef$ is equivalent to finding the eigenvectors of \hat{H} . In fact, the eigenvalues of \hat{H} are discrete.

1.1.2. Vector Spaces

Definition 1.1 [Vector Space] A **vector space** over a field \mathbb{F} (in particular, $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) is a set of objects V equipped with vector addiction and scalar multiplication such that

- 1. the vector addiction + is closed with the rules:
 - (a) Commutativity: $\forall v_1, v_2 \in V$, $v_1 + v_2 = v_2 + v_1$.
 - (b) Associativity: $\mathbf{\emph{v}}_1 + (\mathbf{\emph{v}}_2 + \mathbf{\emph{v}}_3) = (\mathbf{\emph{v}}_1 + \mathbf{\emph{v}}_2) + \mathbf{\emph{v}}_3.$
 - (c) Addictive Identity: $\exists \mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$, $\forall \mathbf{v} \in V$.
- 2. the scalar multiplication is closed with the rules:
 - (a) Distributive: $\alpha(\boldsymbol{v}_1+\boldsymbol{v}_2)=\alpha\boldsymbol{v}_1+\alpha\boldsymbol{v}_2, \forall \alpha\in\mathbb{F}$ and $\boldsymbol{v}_1,\boldsymbol{v}_2\in V$
 - (b) Distributive: $(\alpha_1 + \alpha_2)\boldsymbol{v} = \alpha_1\boldsymbol{v} + \alpha_2\boldsymbol{v}$
 - (c) Compatibility: $a(b\mathbf{v}) = (ab)\mathbf{v}$ for $\forall a, b \in \mathbb{F}$ and $\mathbf{b} \in V$.
 - (d) 0v = 0, 1v = v.

Here we study several examples of vector spaces:

- **Example 1.2** For $V = \mathbb{F}^n$, we can define
 - 1. Addictive Identity:

$$\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

2. Scalar Multiplication:

$$\alpha \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

3. Vector Addiction:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

- **Example 1.3** 1. It is clear that the set $V = M_{n \times n}(\mathbb{F})$ (the set of all $m \times n$ matrices) is a vector space as well.
 - 2. The set $V = \mathcal{C}(\mathbb{R})$ is a vector space:
 - (a) Vector Addiction:

$$(f+g)(x) = f(x) + g(x), \forall f, g \in V$$

(b) Scalar Multiplication:

$$(\alpha f)(x) = \alpha f(x), \forall \alpha \in \mathbb{R}, f \in V$$

(c) Addictive Identity is a zero function, i.e., $\mathbf{0}(x) = 0$ for all $x \in \mathbb{R}$.

Definition 1.2 A sub-collection $W \subseteq V$ of a vector space V is called a **vector subspace** of V if W itself forms a vector space, denoted by $W \leq V$.

- **Example 1.4** 1. For $V = \mathbb{R}^3$, we claim that $W = \{(x,y,0) \mid x,y \in \mathbb{R}\} \leq V$
 - 2. $W = \{(x,y,1) \mid x,y \in \mathbb{R}\}$ is not the vector subspace of V.

Proposition 1.1 $W \subseteq V$ is a **vector subspace** of V iff for $\forall w_1, w_2 \in W$, we have $\alpha w_1 + \beta w_2 \in W$, for $\forall \alpha, \beta \in \mathbb{F}$.

- Example 1.5 1. For $V = M_{n \times n}(\mathbb{F})$, the subspace $W = \{A \in V \mid \boldsymbol{A}^{\mathrm{T}} = \boldsymbol{A}\} \leq V$
 - 2. For $V=\mathcal{C}^{\infty}(\mathbb{R})$, define $W=\{f\in V\mid \frac{\mathrm{d}^2}{\mathrm{d}x^2}f+f=0\}\leq V.$ For $f,g\in W$, we have

$$(\alpha f + \beta g)'' = \alpha f'' + \beta g'' = \alpha (-f) + \beta (-g) = -(\alpha f + \beta g),$$

which implies $(\alpha f + \beta g)'' + (\alpha f + \beta g) = 0$.

1.2. Monday for MAT3006

1.2.1. Overview on uniform convergence

Definition 1.3 [Convergence] Let $f_n(x)$ be a sequence of functions on an interval I = [a,b]. Then $f_n(x)$ converges **pointwise** to f(x) (i.e., $f_n(x_0) \to f(x_0)$) for $\forall x_0 \in I$, if

$$orall arepsilon>0, \exists N_{x_0,arepsilon} ext{ such that } |f_n(x_0)-f(x_0)|$$

We say $f_n(x)$ converges uniformly to f(x), (i.e., $f_n(x) \rightrightarrows f(x)$) for $\forall x_0 \in I$, if

$$orall arepsilon>0$$
 , $\exists N_arepsilon$ such that $|f_n(x_0)-f(x_0)| , $orall n\geq N_arepsilon$$

■ Example 1.6 It is clear that the function $f_n(x) = \frac{n}{1+nx}$ converges pointwise into $f(x) = \frac{1}{x}$ on $[0,\infty)$, and it is uniformly convergent on $[1,\infty)$.

Proposition 1.2 If $\{f_n\}$ is a sequence of continuous functions on I, and $f_n(x) \rightrightarrows f(x)$, then the following results hold:

- 1. f(x) is continuous on I.
- 2. f is (Riemann) integrable with $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.
- 3. Suppose furthermore that $f_n(x)$ is **continuously differentiable**, and $f'_n(x) \Rightarrow g(x)$, then f(x) is differentiable, with $f'_n(x) \to f'(x)$.

We can put the discussions above into the content of series, i.e., $f_n(x) = \sum_{k=1}^n S_k(x)$.

Proposition 1.3 If $S_k(x)$ is continuous for $\forall k$, and $\sum_{k=1}^n S_k \Rightarrow \sum_{k=1}^\infty S_k$, then

- 1. $\sum_{k=1}^{\infty} S_k(x)$ is continuous,
- 2. The series $\sum_{k=1}^{\infty} S_k$ is (Riemann) integrable, with $\sum_{k=1}^{\infty} \int_a^b S_k(x) dx = \int_a^b \sum_{k=1}^{\infty} S_k(x) dx$
- 3. If $\sum_{k=1}^{n} S_k$ is continuously differentiable, and the derivative of which is uniform

convergent, then the series $\sum_{k=1}^{\infty} S_k$ is differentiable, with

$$\left(\sum_{k=1}^{\infty} S_k(x)\right)' = \sum_{k=1}^{\infty} S'_k(x)$$

Then we can discuss the properties for a special kind of series, say power series.

Proposition 1.4 Suppose the power series $f(x) = \sum_{k=1}^{\infty} a_k x^k$ has radius of convergence R, then

- 1. $\sum_{k=1}^{n} a_k x^k \Rightarrow f(x)$ for any [-L, L] with L < R.
- 2. The function f(x) is continuous on (-R,R), and moreover, is differentiable and (Riemann) integrable on [-L,L] with L < R:

$$\int_0^x f(t) dt = \sum_{k=1}^{\infty} \frac{a_k}{k+1} x^{k+1}$$
$$f'(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$$

1.2.2. Introduction to MAT3006

What are we going to do.

- 1. (a) Generalize our study of (sequence, series, functions) on \mathbb{R}^n into a metric space.
 - (b) We will study spaces outside \mathbb{R}^n .

Remark:

- For (a), different metric may yield different kind of convergence of sequences. For (b), one important example we will study is $X = \mathcal{C}[a,b]$ (all continuous functions defined on [a,b].) We will generalize X into $\mathcal{C}_b(E)$, which means the set of bounded continuous functions defined on $E \subseteq \mathbb{R}^n$.
- The insights of analysis is to find a **unified** theory to study sequences/series on a metric space X, e.g., $X = \mathbb{R}^n$, $\mathcal{C}[a,b]$. In particular, for $\mathcal{C}[a,b]$, we will see that
 - most functions in C[a,b] are nowhere differentiable. (repeat part of

content in MAT2006)

- We will prove the existence and uniqueness of ODEs.
- the set poly[a,b] (the set of polynomials on [a,b]) is dense in C[a,b]. (analogy: $\mathbb{Q} \subseteq \mathbb{R}$ is dense)
- 2. Introduction to the Lebesgue Integration.

For convergence of integration $\int_a^b f_n(x) dx \to \int_a^b f(x)$, we need the pre-conditions (a) $f_n(x)$ is continuous, and (b) $f_n(x) \rightrightarrows f(x)$. The natural question is that can we relax these conditions to

- (a) $f_n(x)$ is integrable?
- (b) $f_n(x) \to f(x)$ pointwisely?

The answer is yes, by using the tool of Lebesgue integration. If $f_n(x) \to f(x)$ and $f_n(x)$ is Lebesgue integrable, then $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$, which is so called the dominated convergence.

1.2.3. Metric Spaces

We will study the length of an element, or the distance between two elements in an arbitrary set X. First let's discuss the length defined on a well-structured set, say vector space.

Definition 1.4 [Normal $\|\cdot\|: X \to \mathbb{R}$ such that $1. \ \|x\| \ge 0 \text{ for } \forall x \in X, \text{ with equality iff } x = 0$ $2. \ \|\alpha x\| = |\alpha| \|x\|, \text{ for } \forall \alpha \in \mathbb{R} \text{ and } x \in X.$ $3. \ \|x + y\| \le \|x\| + \|y\| \text{ (triangular inequality)}$ **Definition 1.4** [Normed Space] Let X be a vector space. A **norm** on X is a function

Any vector space equipped with $\|\cdot\|$ is called a **normed space**.

- Example 1.7
- 1. For $X = \mathbb{R}^n$, define

$$\| {m x} \|_2 = \left(\sum_{i=1}^n x_i^2
ight)^{1/2}$$
 (Euclidean Norm)

$$\|\mathbf{x}\|_{p} = (\sum_{i=1}^{n} |x_{i}|^{p})^{1/p}$$
 (p-norm)

2. For $X = \mathcal{C}[a,b]$, define

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

Exercise: check the norm defined above are well-defined.

Here we can define the distance in an arbitrary set:

Definition 1.5 A set X is a **metric space** with metric (X,d) if there exists a (distance) function $d: X \times X \to \mathbb{R}$ such that

- $1. \ d(\pmb{x},\pmb{y}) \geq 0 \ \text{for} \ \forall \pmb{x},\pmb{y} \in X, \ \text{with equality iff} \ \pmb{x} = \pmb{y}.$ $2. \ d(\pmb{x},\pmb{y}) = d(\pmb{y},\pmb{x}).$ $3. \ d(\pmb{x},\pmb{z}) \leq d(\pmb{x},\pmb{y}) + d(\pmb{y},\pmb{z}).$

- 1. If X is a normed space, then define $d(\boldsymbol{x},\boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$, which is so called the metric induced from the norm $\|\cdot\|$.
 - 2. Let X be any (non-empty) set with $\boldsymbol{x},\boldsymbol{y}\in X$, the discrete metric is given by:

$$d(\mathbf{x}, \mathbf{y}) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Exercise: check the metric space defined above are well-defined.

Adopting the infinite norm discussed in Example (1.7), we can define a metric (\mathbf{R}) on C[a,b] by

$$d_{\infty}(f,g) = \|f - g\|_{\infty} := \max_{x \in [a,b]} |f(x) - g(x)|$$

which is the correct metric to study the uniform convergence for $\{f_n\}\subseteq \mathcal{C}[a,b]$.

Definition 1.6 Let (X,d) be a metric space. An **open ball** centered at $\mathbf{x} \in X$ of radius r is the set

$$B_r(\boldsymbol{x}) = \{ \boldsymbol{y} \in X \mid d(\boldsymbol{x}, \boldsymbol{y}) < r \}.$$

■ Example 1.9 1. For $X = \mathbb{R}^2$, we can draw the $B_1(\mathbf{0})$ with respect to the metrics d_1, d_2 :

Figure 1.1: $B_1(\mathbf{0})$ w.r.t. the metric d_1

Figure 1.2: $B_1(\mathbf{0})$ w.r.t. the metric d_2

1.3. Monday for MAT4002

1.3.1. Introduction to Topology

We will study global properties of a geometric object, i.e., the distrance between 2 points in an object is totally ignored. For example, the objects shown below are essentially invariant under a certain kind of transformation:

Another example is that the coffee cup and the donut have the same topology:

However, the two objects below have the intrinsically different topologies:

In this course, we will study the phenomenon described above mathematically.

1.3.2. Metric Spaces

In order to ingnore about the distances, we need to learn about distances first.

[Metric Space] Metric space is a set X where one can measure distance between any two objects in X.

Specifically speaking, a metric space X is a non-empty set endowed with a function (distance function) $d: X \times X \to \mathbb{R}$ such that

- $\begin{aligned} &1. \ d(\pmb{x},\pmb{y}) \geq 0 \text{ for } \forall \pmb{x},\pmb{y} \in X \text{ with equality iff } \pmb{x} = \pmb{y} \\ &2. \ d(\pmb{x},\pmb{y}) = d(\pmb{y},\pmb{x}) \\ &3. \ d(\pmb{x},\pmb{z}) \leq d(\pmb{x},\pmb{y}) + d(\pmb{y},\pmb{z}) \text{ (triangular inequality)} \end{aligned}$

1. Let $X = \mathbb{R}^n$, with **■ Example 1.10**

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$d_{\infty}(\boldsymbol{x},\boldsymbol{y}) = \max_{i=1,\dots,n} |x_i - y_i|$$

2. Let X be any set, and define the discrete metric

$$d(\mathbf{x}, \mathbf{y}) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Homework: Show that (1) and (2) defines a metric.

Definition 1.8 [Open Ball] An **open ball** of radius r centered at $x \in X$ is the set

$$B_r(\mathbf{x}) = \{ \mathbf{y} \in X \mid d(\mathbf{x}, \mathbf{y}) < r \}$$

■ Example 1.11 1. The set $B_1(0,0)$ defines an open ball under the metric $(X = \mathbb{R}^2, d_2)$, or the metric $(X = \mathbb{R}^2, d_\infty)$. The corresponding diagram is shown below:

Figure 1.3: Left: under the metric $(X = \mathbb{R}^2, d_2)$; Right: under the metric $(X = \mathbb{R}^2, d_\infty)$

2. Under the metric $(X = \mathbb{R}^2, \text{discrete metric})$, the set $B_1(0,0)$ is one single point, also defines an open ball.

Definition 1.9 [Open Set] Let X be a metric space, $U \subseteq X$ is an open set in X if $\forall u \in U$, there exists $\epsilon_u > 0$ such that $B_{\epsilon_u}(u) \subseteq U$.

Definition 1.10 The **topology** induced from (X,d) is the collection of all open sets in (X,d), denoted as the symbol \mathcal{T} .

Proposition 1.5 All open balls $B_r(\mathbf{x})$ are open in (X,d).

Proof. Consider the example $X = \mathbb{R}$ with metric d_2 . Therefore $B_r(x) = (x - r, x + r)$. Take $\mathbf{y} \in B_r(\mathbf{x})$ such that $d(\mathbf{x}, \mathbf{y}) = q < r$ and consider $B_{(r-q)/2}(\mathbf{y})$: for all $z \in B_{(r-q)/2}(\mathbf{y})$, we have

$$d(\boldsymbol{x},\boldsymbol{z}) \leq d(\boldsymbol{x},\boldsymbol{y}) + d(\boldsymbol{y},\boldsymbol{z}) < q + \frac{r-q}{2} < r,$$

which implies $z \in B_r(x)$.

Proposition 1.6 Let (X, \mathbf{d}) be a metric space, and \mathcal{T} is the topology induced from (X, \mathbf{d}) , then

1. let the set $\{G_{\alpha} \mid \alpha \in A\}$ be a collection of (uncountable) open sets, i.e., $G_{\alpha} \in \mathcal{T}$,

then $\bigcup_{\alpha \in \mathcal{A}} G_{\alpha} \in \mathcal{T}$.

- 2. let $G_1, ..., G_n \in \mathcal{T}$, then $\bigcap_{i=1}^n G_i \in \mathcal{T}$. The finite intersection of open sets is open.
- *Proof.* 1. Take $x \in \bigcup_{\alpha \in \mathcal{A}} G_{\alpha}$, then $x \in G_{\beta}$ for some $\beta \in \mathcal{A}$. Since G_{β} is open, there exists $\epsilon_x > 0$ s.t.

$$B_{\epsilon_x}(x) \subseteq G_{\beta} \subseteq \bigcup_{\alpha \in \mathcal{A}} G_{\alpha}$$

2. Take $x \in \bigcap_{i=1}^n G_i$, i.e., $x \in G_i$ for i = 1, ..., n, i.e., there exists $\epsilon_i > 0$ such that $B_{\epsilon_i}(x) \subseteq G_i$ for i = 1, ..., n. Take $\epsilon = \min\{\epsilon_1, ..., \epsilon_n\}$, which implies

$$B_{\epsilon}(x) \subseteq B_{\epsilon_i}(x) \subseteq G_i, \forall i$$

which implies $B_{\epsilon}(x) \subseteq \bigcap_{i=1}^{n} G_i$

Exercise.

- 1. let $\mathcal{T}_2, \mathcal{T}_\infty$ be topologies induced from the metrices d_2, d_∞ in \mathbb{R}^2 . Show that $J_2 = J_\infty$, i.e., every open set in (\mathbb{R}^2, d_2) is open in (\mathbb{R}^2, d_∞) , and every open set in (\mathbb{R}^2, d_∞) is open in (\mathbb{R}_2, d_2) .
- 2. Let \mathcal{T} be the topology induced from the discrete metric (X, d_{discrete}) . What is \mathcal{T} ?

1.4. Wednesday for MAT3040

1.4.1. Review

- 1. Vector Space: e.g., \mathbb{R} , $M_{n \times n}(\mathbb{R})$, $C(\mathbb{R}^n)$, $\mathbb{R}[x]$.
- 2. Vector Subspace: $W \le V$, e.g.,
 - (a) $V = \mathbb{R}^2$, the set $W := \mathbb{R}^2_+$ is not a vector subspace since W is not closed under scalar multiplication;
 - (b) the set $W = \mathbb{R}^2_+ \bigcup \mathbb{R}^2_-$ is not a vector subspace since it is not closed under addition.
 - (c) For $V = \mathbb{M}_{3\times 3}(\mathbb{R})$, the set of invertible 3×3 matrices is not a vector subspace, since we cannot define zero vector inside.
 - (d) Exercise: How about the set of all singular matrices? Answer: it is not a vector subspace since the vector addition does not necessarily hold.

1.4.2. Spanning Set

Definition 1.11 [Span] Let V be a vector space over \mathbb{F} :

1. A linear combination of a subset S in V is of the form

$$\sum_{i=1}^n \alpha_i \mathbf{s}_i, \quad \alpha_i \in \mathbb{F}, \mathbf{s}_i \in S$$

Note that the summation should be finite.

2. The **span** of a subset $S \subseteq V$ is

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{n} \alpha_{i} \boldsymbol{s}_{i} \middle| \alpha_{i} \in \mathbb{F}, \boldsymbol{s}_{i} \in S \right\}$$

3. S is a spanning set of V, or say S spans V, if

$$span(S) = V$$
.

■ Example 1.12 For $V = \mathbb{R}[x]$, define the set

$$S = \{1, x^2, x^4, \dots, x^6\},\,$$

then $2+x^4+\pi x^{106}\in \operatorname{span}(S)$, while the series $1+x^2+x^4+\cdots\notin\operatorname{span}(S)$. It is clear that $\operatorname{span}(S)\neq V$, but S is the spanning set of $W=\{p\in V\mid p(x)=p(-x)\}$.

■ Example 1.13 For $V = M_{3\times 3}(\mathbb{R})$, let $W_1 = \{ \textbf{\textit{A}} \in V \mid \textbf{\textit{A}}^T = \textbf{\textit{A}} \}$ and $W_2 = \{ \textbf{\textit{B}} \in V \mid \textbf{\textit{B}}^T = -\textbf{\textit{B}} \}$ (the set of skew-symmetric matrices) be two vector subspaces. Define the set

$$S := W_1 \bigcup W_2$$

Exercise: \boldsymbol{S} spans V.

Proposition 1.7 Let S be a subset in a vector space V.

- 1. $S \subseteq \text{span}(S)$
- 2. $\operatorname{span}(S) = \operatorname{span}(\operatorname{span}(S))$
- 3. If $\mathbf{w} \in \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \setminus \operatorname{span}\{\mathbf{v}_2, \dots, \mathbf{v}_n\}$, then

$$v_1 \in \operatorname{span}\{\boldsymbol{w}, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n\} \setminus \operatorname{span}\{\boldsymbol{v}_2, \dots, \boldsymbol{v}_n\}$$

Proof. 1. For each $\mathbf{s} \in S$, we have

$$\mathbf{s} = 1 \cdot \mathbf{s} \in \operatorname{span}(S)$$

2. From (1), it's clear that $\operatorname{span}(S) \subseteq \operatorname{span}(\operatorname{span}(S))$, and therefore suffices to show $\operatorname{span}(\operatorname{span}(S)) \subseteq \operatorname{span}(S)$:

Pick $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i \in \text{span}(\text{span}(S))$, where $\mathbf{v}_i \in \text{span}(S)$. Rewrite

$$oldsymbol{v}_i = \sum_{j=1}^{n_i} eta_{ij} oldsymbol{s}_j, \quad oldsymbol{s}_j \in S,$$

which implies

$$egin{aligned} oldsymbol{v} &= \sum_{i=1}^n lpha_i \sum_{j=1}^{n_i} eta_{ij} oldsymbol{s}_j \ &= \sum_{i=1}^n \sum_{j=1}^{n_i} (lpha_i eta_{ij}) oldsymbol{s}_j, \end{aligned}$$

i.e., v is the finite combination of elements in S, which implies $v \in \text{span}(S)$.

3. By hypothesis, $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$ with $\alpha_1 \neq 0$, which implies

$$oldsymbol{v}_1 = -rac{lpha_2}{lpha_1}oldsymbol{v}_2 + \cdots + \left(-rac{1}{lpha_1}oldsymbol{w}
ight)$$

which implies $v_1 \in \text{span}\{w, v_2, ..., v_n\}$. It suffices to show $v_1 \notin \text{span}\{v_2, ..., v_n\}$. Suppose on the contrary that $v_1 \in \text{span}\{v_2, ..., v_n\}$. It's clear that $\text{span}\{v_1, ..., v_n\} = \text{span}\{v_2, ..., v_n\}$. (left as exercise). Therefore,

$$\emptyset = \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\} \setminus \operatorname{span}\{\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\},$$

which is a contradiction.

1.4.3. Linear Independence and Basis

Definition 1.12 [Linear Independence] Let S be a (not necessarily finite) subset of V. Then S is **linearly independent** (l.i.) on V if for any finite subset $\{s_1, \ldots, s_k\}$ in S,

$$\sum_{i=1}^{k} \alpha_i \mathbf{s}_i = 0 \Longleftrightarrow \alpha_i = 0, \forall i$$

16

- lacksquare Example 1.14 For $V=\mathcal{C}(\mathbb{R})$,
 - 1. let $S_1 = \{\sin x, \cos x\}$, which is l.i., since

$$\alpha \sin x + \beta \cos x = \mathbf{0}$$
 (means zero function)

Taking x=0 both sides leads to $\beta=0$; taking $x=\frac{\pi}{2}$ both sides leads to $\alpha=0$.

2. let $S_2 = \{\sin^2 x, \cos^2 x, 1\}$, which is linearly dependent, since

$$1 \cdot \sin^2 x + 1 \cdot \cos^2 x + (-1) \cdot 1 = 0, \forall x$$

3. Exercise: For $V = \mathbb{R}[x]$, let $S = \{1, x, x^2, x^3, \dots, \}$, which is l.i.: Pick $x^{k_1}, \dots, x^{k_n} \in S$ with $k_1 < \dots < k_n$. Consider that the euqation

$$\alpha_1 x^{k_1} + \dots + \alpha_n x^{k_n} = \mathbf{0}$$

holds for all x, and try to solve for $\alpha_1, \ldots, \alpha_n$ (one way is differentation.)

Definition 1.13 [Basis] A subset S is a basis of V if

- Example 1.15 1. For $V = \mathbb{R}^n$, $S = \{e_1, ..., e_n\}$ is a basis of V
 - 2. For $V=\mathbb{R}[x]$, $S=\{1,x,x^2,\dots\}$ is a basis of V3. For $V=M_{2\times 2}(\mathbb{R})$,

$$S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

is a basis of V

 \bigcirc Note that there can be many basis for a vector space V.

Proposition 1.8 Let $V = \text{span}\{v_1, ..., v_m\}$, then there exists a subset of $\{v_1, ..., v_m\}$, which is a basis of V.

Proof. If $\{v_1, ..., v_m\}$ is l.i., the proof is complete.

Suppose not, then $\alpha_1 v_1 + \cdots + \alpha_m v_m = 0$ has a non-trivial solution. w.l.o.g., $\alpha_1 \neq 0$, which implies

$$\boldsymbol{v}_1 = -\frac{\alpha_2}{\alpha_1} \boldsymbol{v}_2 + \dots + \left(\frac{\alpha_m}{\alpha_1}\right) \boldsymbol{v}_m \implies \boldsymbol{v}_1 \in \operatorname{span}\{\boldsymbol{v}_2, \dots, \boldsymbol{v}_m\}$$

By the proof in (c), Proposition (1.7),

$$\mathrm{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\}=\mathrm{span}\{\boldsymbol{v}_2,\ldots,\boldsymbol{v}_m\},$$

which implies $V = \text{span}\{\boldsymbol{v}_2, \dots, \boldsymbol{v}_m\}$.

Continuse this argument finitely many times to guarantee that $\{v_i, v_{i+1}, ..., v_m\}$ is l.i., and spans V. The proof is complete.

Corollary 1.1 If $V = \text{span}\{v_1, ..., v_m\}$ (i.e., V is finitely generated), then V has a basis. (The same holds for non-finitely generated V).

Proposition 1.9 If $\{v_1,...,v_n\}$ is a basis of V, then every $v \in V$ can be expressed uniquely as

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_n \boldsymbol{v}_n$$

Proof. Since $\{v_1,...,v_n\}$ spans V, so $v \in V$ can be written as

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \dots + \alpha_n \boldsymbol{v}_n \tag{1.1}$$

Suppose further that

$$\boldsymbol{v} = \beta_1 \boldsymbol{v}_1 + \dots + \beta_n \boldsymbol{v}_n, \tag{1.2}$$

it suffices to show that $\alpha_i = \beta_i$ for $\forall i$:

Subtracting (1.1) into (1.2) leads to

$$(\alpha_1 - \beta_1)\boldsymbol{v}_1 + \cdots + (\alpha_n - \beta_n)\boldsymbol{v}_n = 0.$$

By the hypothesis of linear independence, we have $\alpha_i - \beta_i = 0$ for $\forall i$, i.e., $\alpha_i = \beta_i$.

1.5. Wednesday for MAT3006

Reviewing.

- Normed Space: a norm on a vector space
- Metric Space
- Open Ball

1.5.1. Convergence of Sequences

Since \mathbb{R}^n and $\mathcal{C}[a,b]$ are both metric spaces, we can study the convergence in \mathbb{R}^n and the functions defined on [a,b] at the same time.

Definition 1.14 [Convergence] Let (X,d) be a metric space. A sequence $\{x_n\}$ in X is **convergent** to x if $\forall \varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$d(x_n, x) < \varepsilon, \forall n \ge N.$$

We can denote the convergence by

$$x_n \to x$$
, or $\lim_{n \to \infty} x_n = x$, or $\lim_{n \to \infty} d(x_n, x) = 0$

Proposition 1.10 If the limit of $\{x_n\}$ exists, then it is unique.

R Note that the proposition above does not necessarily hold for topology spaces.

Proof. Suppose $x_n \to x$ and $x_n \to y$, which implies

$$0 \le d(x,y) \le d(x,x_n) + d(x_n,y), \forall n$$

Taking the limit $n \to \infty$ both sides, we imply d(x,y) = 0, i.e., x = y.

- Example 1.16
- 1. Consider the metric space (\mathbb{R}^k, d_∞) and study the convergence

$$\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x} \iff \lim_{n \to \infty} \left(\max_{i=1\dots,k} |x_{n_i} - x_i| \right) = 0$$

$$\iff \lim_{n \to \infty} |x_{n_i} - x_i| = 0, \forall i = 1,\dots,k$$

$$\iff \lim_{n \to \infty} x_{n_i} = x_i,$$

i.e., the convergence defined in d_{∞} is the same as the convergence defined in d_2 .

2. Consider the convergence in the metric space $(C[a,b],d_{\infty})$:

$$\begin{split} \lim_{n \to \infty} f_n &= f \Longleftrightarrow \lim_{n \to \infty} \left(\max_{[a,b]} |f_n(x) - f(x)| \right) = 0 \\ &\iff \forall \varepsilon > 0, \forall x \in [a,b], \exists N_\varepsilon \text{ such that } |f_n(x) - f(x)| < \varepsilon, \forall n \ge N_\varepsilon \end{split}$$

which is equivalent to the uniform convergence of functions, i.e., the convergence defined in d_2 .

Definition 1.15 [Equivalent metrics] Let d and ρ be metrics on X.

1. We say ρ is **stronger** than d (or d is **weaker** than ρ) if

$$\exists K > 0$$
 such that $d(x,y) \leq K\rho(x,y), \forall x,y \in X$

2. The metrics d and ρ are equivalent if there exists $K_1, K_2 > 0$ such that

$$d(x,y) \le K_1 \rho(x,y) \le K_2 d(x,y)$$

ightharpoonup The strongerness of ρ than d is depiected in the graph below:

Figure 1.4: The open ball $(B_r(x), \rho)$ is contained by the open ball $(B_{Kr}(x), d)$

For each $x \in X$, consider the open ball $(B_r(x), \rho)$ and the open ball $(B_{Kr}(x), d)$:

$$B_r(x) = \{ y \mid \rho(x,y) < r \}, \quad B_{Kr}(x) = \{ z \mid d(x,z) < Kr \}.$$

For $y \in (B_r(x), \rho)$, we have $d(x,y) < K\rho(x,y) < Kr$, which implies $y \in (B_{Kr}(x), d)$, i.e, $(B_r(x), \rho) \subseteq (B_{Kr}(x), d)$ for any $x \in X$ and r > 0.

■ Example 1.17 1. d_1, d_2, d_∞ in \mathbb{R}^n are equivalent

$$d_1(\boldsymbol{x},\boldsymbol{y}) \leq d_{\infty}(\boldsymbol{x},\boldsymbol{y}) \leq nd_1(\boldsymbol{x},\boldsymbol{y})$$

$$d_2(\boldsymbol{x},\boldsymbol{y}) \leq d_{\infty}(\boldsymbol{x},\boldsymbol{y}) \leq \sqrt{n}d_2(\boldsymbol{x},\boldsymbol{y})$$

We use two relation depiected in the figure below to explain these two inequalities:

Figure 1.5: The diagram for the relation $(B_1(x),d_1)\subseteq (B_\infty(x),d_\infty)\subseteq (B_2(x),d_1)$ on \mathbb{R}^2

Figure 1.6: The diagram for the relation $(B_1(x),d_2)\subseteq (B_\infty(x),d_\infty)\subseteq (B_{\sqrt{2}}(x),d_2)$ on \mathbb{R}^2

It's easy to conclude the simple generalization for example (1.16):

Proposition 1.11 If d and ρ are equivalent, then

$$\lim_{n\to\infty}d(x_n,x)=0\Longleftrightarrow\lim_{n\to\infty}\rho(x_n,x)=0$$

Note that this does not necessarily hold for topology spaces.

2. Consider d_1, d_{∞} in C[a, b]:

$$d_1(f,g) := \int_a^b |f - g| \, \mathrm{d}x \le \int_a^b \sup_{[a,b]} |f - g| \, \mathrm{d}x = (b - a) d_\infty(f,g),$$

i.e., d_{∞} is stronger than d_1 . Question: Are they equivalent? No.

Justification. Consider $f_n(x) = n^2 x^n (1 - x)$. Check that

$$\lim_{n\to\infty} d_1(f_n(x),1) = 0, \quad \text{but } d_\infty(f_n(x),1) \to \infty$$

The peak of f_n may go to infinite, while the integration converges to zero. Therefore d_1 and d_{∞} have different limits. We will discuss this topic at Lebsegue integration again.

1.5.2. Continuity

Definition 1.16 [Continuity] Let $f:(X,d)\to (Y,d)$ be a function and $x_0\in X$. Then f is continuous at x_0 if $\forall \varepsilon>0$, there exists $\delta>0$ such that

$$d(x,x_0) < \delta \implies \rho(f(x),f(x_0)) < \varepsilon$$

The function f is continuous in X if f is continuous for all $x_0 \in X$.

Proposition 1.12 The function f is continuous at x if and only if for all $\{x_n\} \to x$ under d, $f(x_n) \to f(x)$ under ρ .

Proof. Necessity: Given $\varepsilon > 0$, by continuity,

$$d(x, x') < \delta \implies \rho(f(x'), f(x)) < \varepsilon.$$
 (1.3)

Consider the sequence $\{x_n\} \to x$, then there exists N such that $d(x_n, x) < \delta$ for $\forall n \ge N$. By applying (1.3), $\rho(f(x_n), f(x)) < \varepsilon$ for $\forall n \ge N$, i.e., $f(x_n) \to f(x)$. *Sufficiency*: Assume that f is not continuous at x, then there exists ε_0 such that for $\delta_n = \frac{1}{n}$, there exists x_n such that

$$d(x_n, x) < \delta_n$$
, but $\rho(f(x_n), f(x)) > \varepsilon_0$.

Then $\{x_n\} \to x$ by our construction, while $\{f(x_n)\}$ does not converge to f(x), which is a contradiction.

Corollary 1.2 If the function $f:(X,d)\to (Y,\rho)$ is continuous at x, the function $g:(Y,\rho)\to (Z,m)$ is continuous at f(x), then $g\circ f:(X,d)\to (Z,m)$ is continuous at x.

Proof. Note that

$$\{x_n\} \to x \stackrel{(a)}{\Longrightarrow} \{f(x_n)\} \to f(x) \stackrel{(b)}{\Longrightarrow} \{g(f(x_n))\} \to g(f(x)) \stackrel{(c)}{\Longrightarrow} g \circ f \text{ is continuous at } x.$$

where (a), (b), (c) are all by proposition (1.12).

1.5.3. Open and Closed Sets

We have open/closed intervals in \mathbb{R} , and they are important in some theorems (e.g, continuous functions bring closed intervals to closed intervals).

Definition 1.17 [Open] Let (X,d) be a metric space. A set $U\subseteq X$ is open if for each $x\in U$, there exists $\rho_x>0$ such that $B_{\rho_x}(x)\subseteq U$. The empty set \varnothing is defined to be open.

■ Example 1.18 Let $(\mathbb{R}, d_2 \text{ or } d_\infty)$ be a metric space. The set U = (a, b) is open.

Proposition 1.13 1. Let (X,d) be a metric space. Then all open balls $B_r(x)$ are open 2. All open sets in X can be written as a union of open balls.

Proof. 1. Let $y \in B_r(x)$, i.e., d(x,y) := q < r. Consider the open ball $B_{(r-q)/2}(y)$. It

suffices to show $B_{(r-q)/2}(y) \subseteq B_r(x)$. For any $z \in B_{(r-q)/2}(y)$,

$$d(x,z) \le d(x,y) + d(y,z) < q + \frac{r-q}{2} = \frac{r+q}{2} < r.$$

The proof is complete.

2. Let $U \subseteq X$ be open, i.e., for $\forall x \in U$, there exists $\varepsilon_x > 0$ such that $B_{\varepsilon_x}(x) \subseteq U$. Therefore

$$\{x\} \subseteq B_{\varepsilon_x}(x) \subseteq U, \forall x \in U$$

which implies

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} B_{\varepsilon_x}(x) \subseteq U,$$

i.e., $U = \bigcup_{x \in U} B_{\varepsilon_x}(x)$.

26

1.6. Wednesday for MAT4002

Reviewing.

- Metric Space (*X*,*d*)
- Open balls and open sets (note that the emoty set \emptyset is open)
- Define the collection of open sets in X, say \mathcal{T} is the topology.

Exercise.

1. Show that the \mathcal{T}_2 under $(X = \mathbb{R}^2, d_2)$ and \mathcal{T}_∞ under $(X = \mathbb{R}^2, d_\infty)$ are the same.

Ideas. Follow the procedure below:

An open ball in d_2 -metric is open in d_{∞} ;

Any open set in d_2 -metric is open in d_{∞} ;

Switch d_2 and d_{∞} .

2. Describe the topology $\mathcal{T}_{\text{discrete}}$ under the metric space $(X = \mathbb{R}^2, d_{\text{discrete}})$.

Outlines. Note that $\{x\} = B_{1/2}(x)$ is an open set.

For any subset $W \subseteq \mathbb{R}^2$, $W = \bigcup_{w \in W} \{w\}$ is open.

Therefore $\mathcal{T}_{discrete}$ is all subsets of \mathbb{R}^2 .

1.6.1. Forget about metric

Next, we will try to define closedness, compactness, etc., without using the tool of metric:

Definition 1.18 [closed] A subset $V \subseteq X$ is closed if $X \setminus V$ is open.

Example 1.19 Under the metric space (\mathbb{R}, d_1) ,

 $\mathbb{R}\setminus [b,a]=(a,\infty)\bigcup (-\infty,b)$ is open $\implies [b,a]$ is closed

Proposition 1.14 Let *X* be a metric space.

- 1. \emptyset , *X* is closed in *X*
- 2. If F_{α} is closed in X, so is $\bigcap_{\alpha \in A} F_{\alpha}$.
- 3. If $F_1, ..., F_k$ is closed, so is $\bigcup_{i=1}^k F_i$.
- *Proof.* 1. Note that X is open in X, which implies $\emptyset = X \setminus X$ is closed in X; Similarly, \emptyset is open in X, which implies $X = X \setminus \emptyset$ is closed in X;
 - 2. The set F_{α} is closed implies there exists open $U_{\alpha} \subseteq X$ such that $F_{\alpha} = X \setminus U_{\alpha}$. By De Morgan's Law,

$$\bigcap_{\alpha\in A}F_{\alpha}=\bigcap_{\alpha\in A}(X\setminus U_{\alpha})=X\setminus (\bigcup_{\alpha\in A}U_{\alpha}).$$

By part (a) in proposition (1.6), the set $\bigcup_{\alpha \in A} U_{\alpha}$ is openm which implies $\bigcap_{\alpha \in A} F_{\alpha}$ is closed.

3. The result follows from part (b) in proposition (1.6) by taking complements.

We illustrate examples where open set is used to define convergence and continuity.

1. Convergence of sequences:

Definition 1.19 [Convergence] Let (X,d) be a metric space, then $\{x_n\} \to x$ means

$$\forall \varepsilon > 0, \exists N \text{ such that } d(x_n, x) < \varepsilon, \forall n \geq N.$$

We will study the convergence by using open sets instead of metric.

Proposition 1.15 Let X be a metric space, then $\{x_n\} \to x$ if and only if for \forall open set $U \ni x$, there exists N such that $x_n \in U$ for $\forall n \geq N$.

Proof. Necessity: Since $U \ni x$ is open, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$. Since $\{x_n\} \to x$, there exists N such that $d(x_n, x) < \varepsilon$, i.e., $x_n \in B_{\varepsilon}(x) \subseteq U$ for $\forall n \ge N$.

Sufficiency: Let $\varepsilon > 0$ be given. Take the open set $U = B_{\varepsilon}(x) \ni x$, then there exists *N* such that $x_n \in U = B_{\varepsilon}(x)$ for $\forall n \geq N$, i.e., $d(x_n, x) < \varepsilon$, $\forall n \geq N$.

2. Continuity:

Definition 1.20 [Continuity] Let (X,d) and (Y,ρ) be given metric spaces. Then f:X o Y is continuous at $x_0\in X$ if $\forall \varepsilon>0, \exists \delta>0 \text{ such that } d(x,x_0)<\delta \implies \rho(f(x),f(x_0))<\varepsilon.$

$$\forall \varepsilon > 0, \exists \delta > 0$$
 such that $d(x, x_0) < \delta \implies \rho(f(x), f(x_0)) < \varepsilon$.

The function f is continuous on X if f is continuous for all $x_0 \in X$.

We can get rid of metrics to study continuity:

(a) The function f is continuous at x if and only if for all **Proposition 1.16** open $U \ni f(x)$, there exists $\delta > 0$ such that the set $B(x, \delta) \subseteq f^{-1}(U)$.

(b) The function f is continuous on X if and only if $f^{-1}(U)$ is open in X for each open set $U \subseteq Y$.

During the proof we will apply a small lemma:

Proposition 1.17 *f* is continuous at *x* if and only if for all $\{x_n\} \to x$, we have $\{f(x_n)\} \to f(x).$

Proof. (a) Necessity:

Due to the openness of $U \ni f(x)$, there exists a ball $B(f(x), \varepsilon) \subseteq U$.

Due to the continuity of f at x, there exists $\delta > 0$ such that $d(x,x') < \delta$ implies $d(f(x), f(x')) < \varepsilon$, which implies

$$f(B(x,\delta)) \subseteq B(f(x),\varepsilon) \subseteq U$$
,

which implies $B(x,\delta) \subseteq f^{-1}(U)$.

Sufficiency:

Let $\{x_n\} \to x$. It suffices to show $\{f(x_n)\} \to f(x)$. For each open $U \ni f(x)$,

by hypothesis, there exists $\delta > 0$ such that $B_{\delta}(x) \subseteq f^{-1}(U)$. Since $\{x_n\} \to x$, there exists N such that

$$x_n \in B_{\delta}(x) \subseteq f^{-1}(U), \forall n \ge N \implies f(x_n) \in U, \forall n \ge N$$

Let $\varepsilon > 0$ be given, and then construct the $U = B_{\varepsilon}(f(x))$. The argument above shows that $f(x_n) \in B_{\varepsilon}(f(x))$ for $\forall n \geq N$, which implies $\rho(f(x_n), f(x)) < \varepsilon$, i.e., $\{f(x_n)\} \to f(x)$.

- (b) For the forward direction, it suffices to show that each point x of $f^{-1}(U)$ is an interior point of $f^{-1}(U)$, which is shown by part (a); the converse follows trivially by applying (a).
- As illustracted above, convergence, continuity, (and compactness) can be defined by using open sets \mathcal{T} only.

1.6.2. Topological Spaces

Definition 1.21 A topological space (X, \mathcal{T}) consists of a (non-empty) set X, and a family of subsets of X ("open sets" \mathcal{T}) such that

 Ø, X ∈ T
 U, V ∈ T implies U ∩ V ∈ T
 If U_α ∈ T for all α ∈ A, then ∪_{α∈A} U_α ∈ T. The elements in \mathcal{T} are called **open subsets** of X. The \mathcal{T} is called a **topology** on X.

■ Example 1.20 1. Let (X,d) be any metric space, and

 $\mathcal{T} = \{\text{all open subsets of } X\}$

It's clear that \mathcal{T} is a topology on X.

2. Define the discrete topology

$$\mathcal{T}_{\mathsf{dis}} = \{\mathsf{all} \; \mathsf{subsets} \; \mathsf{of} \; X\}$$

It's clear that \mathcal{T}_{dis} is a topology on X, (which also comes from the discrete metric $(X, d_{discrete})$).

- We say (X, \mathcal{T}) is induced from a metric (X, d) (or it is **metrizable**) if \mathcal{T} is the faimly of open subsets in (X, d).
- 3. Consider the indiscrete topology $(X, \mathcal{T}_{\mathsf{indis}})$, where X contains more than one element:

$$\mathcal{T}_{\mathsf{indis}} = \{\emptyset, X\}.$$

Question: is $(X,\mathcal{T}_{\mathsf{indis}})$ metrizable? No. For any metric d defined on X, let x,y be distinct points in X, and then $\varepsilon := d(x,y) > 0$, hence $B_{\frac{1}{2}\varepsilon}(x)$ is a open set belonging to the corresponding induced topology. Since $x \in B_{\frac{1}{2}\varepsilon}(x)$ and $y \notin B_{\frac{1}{2}\varepsilon}(y)$, we conclude that $B_{\frac{1}{2}\varepsilon}(x)$ is neither \emptyset nor X, i.e., the topology induced by any metric d is not the indiscrete topology.

4. Consider the cofinite topology (X, \mathcal{T}_{cofin}) :

$$\mathcal{T}_{\mathsf{cofin}} = \{ U \mid X \setminus U \text{ is a finite set} \} \bigcup \{\emptyset\}$$

Question: is (X, \mathcal{T}_{cofin}) metrizable?

Definition 1.22 [Equivalence] Two metric spaces are **topologically equivalent** if they give rise to the same topology.

Example 1.21 Metrics d_1, d_2, d_∞ in \mathbb{R}^n are topologically equivalent.

1.6.3. Closed Subsets

Definition 1.23 [Closed] Let (X, \mathcal{T}) be a topology space. Then $V \subseteq X$ is closed if $X \setminus V \in J$

■ Example 1.22 Under the topology space $(\mathbb{R}, \mathcal{T}_{\mathsf{usual}})$, $(b, \infty) \cup (-\infty, a) \in \mathcal{T}$. Therefore,

$$[a,b] = \mathbb{R} \setminus \Big((b,\infty) \bigcup (-\infty,a) \Big)$$

is closed in ${\rm I\!R}$ under usual topology.

R It is important to say that V is **closed in** X. You need to specify the underlying the space X.