预训练 & Elmo

Syllabus

- 预训练在图像领域的应用
- ELMO: 基于上下文的word-embedding

· 对于图像来说一般是CNN的多层叠加网络结构,可以先用某个训练集合比如训练集合A或者训练集合B对这个网络进行预先训练,在A 任务上或者B任务上学会网络参数,然后存起来以备后用。

预训练在图像领域的应用

· 假设我们面临第三个任务C,网络结构采取相同的网络结构,在比较浅的几层CNN结构,网络参数初始化的时候可以加载A任务或者E 任务学习好的参数,其它CNN高层参数仍然随机初始化。之后我们用C任务的训练数据来训练网络.

- Frozen: 浅层加载的参数在训练C任务过程中不动
- · Fine-Tuning: 底层网络参数尽管被初始化了,在C任务训练过程中仍然随着训练的进程不断改变,更好地把参数进行调整使得更适应 当前的C任务

为什么预训练可行

ImageNet

- ImageNet http://www.image-net.org/ 是图像领域里有超多事先标注好训练数据的数据集合
- ImageNet有1000类图像数据始于2009年,当时李飞飞教授等在CVPR2009上发表了一篇名为《ImageNet: A Large-Scale Hierarchica Image Database》的论文,之后就是基于ImageNet数据集的7届ImageNet挑战赛. ImageNet是根据WordNet层次结构组织的图像数据集。

词作为NLP的基本要素,比像素的抽象程度更高,已经加入了人类数万年进化而来的抽象经验。所以之前的NLP预训练工作主要集中于 对词的表示。

NAACL 2018 最佳论文: Deep contextualized word representations

• Deep and Contextualised: 网络结构采用了双层双向LSTM,目前**语言模型**训练的任务目标是**根据单词 W_i 的上下文去正确预测单词 W_i**, W_i 之前的单词序列Context-before称为上文,之后的单词序列Context-after称为下文

NAACL 2018 最佳论文: Deep contextualized word representations

• 左端的前向双层LSTM代表正方向编码器,输入的是从左到右顺序的除了预测单词外 W_i 的上文Context-before;右端的逆向双层 LSTM代表反方向编码器,输入的是从右到左的逆序的句子下文Context-after;每个编码器的深度都是两层LSTM叠加。

NAACL 2018 最佳论文: Deep contextualized word representations

如果训练好这个网络后,输入一个新句子 Snew,句子中每个单词都能得到对应的三个Embedding,ELMO的预训练过程不仅仅学会词的Word Embedding,还学会了一个双层双向的LSTM网络结构,而这两者后面都有用。

NAACL 2018 最佳论文: Deep contextualized word representations

比如我们的下游任务仍然是QA问题,此时对于问句X可以先**将句子X作为预训练好的ELMO网络的输入**,这样句子X中每个单词在 **ELMO网络中都能获得对应的三个Embedding**,之后给予这三个Embedding中的每一个Embedding一个权重a,这个权重可以学习得来,根据各自权重累加求和,**将三个Embedding整合成一个**。然后将整合后的这个Embedding作为X句在自己任务的那个网络结构中对应单词的输入,**以此作为补充的新特征给下游任务使用**。对于上图所示下游任务QA中的回答句子Y来说也是如此处理。因为ELMO给下游提供的是每个单词的特征形式,所以这一类预训练的方法被称为"Feature-based Pre-Training"。

ELMO: 多义词问题解决了吗?

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

不仅解决了, 词性也能对应起来!

使用ELMO,根据上下文动态调整后的embedding不仅能够找出对应的"演出"的相同语义的句子,而且还可以保证找出的句子中的play 对应的词性也是相同的,第一层LSTM编码了很多句法信息,这在这里起到了重要作用。

ELMO: 效果如何?

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

6个NLP任务: 5%到25%的提高!