

Arbitrages and pricing of stock options

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu

http://www.ece.rochester.edu/~gmateosb/

November 28, 2016

Arbitrages

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing

Arbitrage

- ▶ Bet on different events with each outcome paying a random return
- Arbitrage: possibility of devising a betting strategy that
 - ⇒ Guarantees a positive return
 - ⇒ No matter the combined outcome of the events
- ► Arbitrages often involve operating in two (or more) different markets

Sports betting example

Ex: Booker 1 \Rightarrow Yankees win pays 1.5:1, Yankees loss pays 3:1

▶ Bet x on Yankees and y against Yankees. Guaranteed earnings?

Yankees win:
$$0.5x - y > 0 \Rightarrow x > 2y$$

Yankees loose: $-x + 2y > 0 \Rightarrow x < 2y$

 \Rightarrow Arbitrage not possible. Notice that 1/(1.5) + 1/3 = 1

Ex: Booker 2 \Rightarrow Yankees win pays 1.4:1, Yankees loss pays 3.1:1

▶ Bet *x* on Yankees and *y* against Yankees. Guaranteed earnings?

Yankees win:
$$0.4x - y > 0 \Rightarrow x > 2.5y$$

Yankees loose: $-x + 2.1y > 0 \Rightarrow x < 2.1y$

 \Rightarrow Arbitrage not possible. Notice that 1/(1.4) + 1/(3.1) > 1

Sports betting example (continued)

- ▶ First condition on Booker 1 and second on Booker 2 are compatible
- ▶ Bet x on Yankees on Booker 1, y against Yankees on Booker 2
- ▶ Guaranteed earnings possible. Make e.g., x = 2066, y = 1000

Yankees win:
$$0.5 \times 2066 - 1000 = 33$$

Yankees loose: $-2066 + 2.1 \times 1000 = 34$

- \Rightarrow Arbitrage possible. Notice that 1/(1.5) + 1/(3.1) < 1
- Sport bookies coordinate their odds to avoid arbitrage opportunities
 - ⇒ Like card counting in casinos, arbitrage betting not illegal
 - ⇒ But you will be banned if caught involved in such practices
- ▶ If you plan on doing this, do it on, e.g., currency exchange markets

Events, returns, and investment strategy

- Let events on which bets are posted be k = 1, 2, ..., K
- ▶ Let j = 1, 2, ..., J index possible joint outcomes
 - ▶ Joint realizations, also called "world realization", or "world outcome"
- ▶ If world outcome is j, event k yields return r_{jk} per unit invested (bet)
- ▶ Invest (bet) x_k in event $k \Rightarrow$ return for world j is $x_k r_{jk}$
 - \Rightarrow Bets x_k can be positive $(x_k > 0)$ or negative $(x_k < 0)$
 - \Rightarrow Positive = regular bet (buy). Negative = short bet (sell)
- ► Total earnings $\Rightarrow \sum_{k=1}^{K} x_k r_{jk} = \mathbf{x}^T \mathbf{r}_j$
 - ▶ Vectors of returns for outcome $j \Rightarrow \mathbf{r}_j := [r_{j1}, \dots, r_{jK}]^T$ (given)
 - ▶ Vector of bets \Rightarrow **x** := $[x_1, ..., x_K]^T$ (controlled by gambler)

Notation in the sports betting example

Ex: Booker 1 \Rightarrow Yankees win pays 1.5:1, Yankees loose pays 3:1

- ▶ There are K = 2 events to bet on
 - \Rightarrow A Yankees' win (k=1) and a Yankees' loss (k=2)
- ▶ Naturally, there are J = 2 possible outcomes
 - \Rightarrow Yankees won (j = 1) and Yankess lost (j = 2)
- Q: What are the returns?

Yankees win
$$(j = 1)$$
: $r_{11} = 0.5$, $r_{12} = -1$
Yankees loose $(j = 2)$: $r_{21} = -1$, $r_{22} = 2$

- \Rightarrow Return vectors are thus $\mathbf{r}_1 = [0.5, -1]^T$ and $\mathbf{r}_2 = [-1, 2]^T$
- ▶ Bet x on Yankees and y against Yankees, vector of bets $\mathbf{x} = [x, y]^T$

Arbitrage (clearly defined now)

► Arbitrage is possible if there exists investment strategy **x** such that

$$\mathbf{x}^T \mathbf{r}_i > 0$$
, for all $j = 1, \dots, J$

▶ Equivalently, arbitrage is possible if

$$\max_{\mathbf{x}} \left(\min_{j} \left(\mathbf{x}^{T} \mathbf{r}_{j} \right) \right) > 0$$

▶ Earnings $\mathbf{x}^T \mathbf{r}_j$ are the inner product of \mathbf{x} and \mathbf{r}_j (i.e., \perp projection)

 \Rightarrow Positive earnings if angle between **x** and $\mathbf{r}_i < \pi/2$ (90°)

When is arbitrage possible?

► There is a line that leaves all r_j vectors to one side

- ► Arbitrage possible
- ▶ Prob. vector $\mathbf{p} = [p_1, \dots, p_J]^T$ on world outcomes such that

$$\mathbb{E}_{\mathbf{p}}(\mathbf{r}) = \sum_{j=1}^J p_j \mathbf{r}_j = \mathbf{0}$$

does not exist

► There is not a line that leaves all r_j vectors to one side

- ► Arbitrage not possible
- ▶ There is prob. vector $\mathbf{p} = [p_1, \dots, p_J]^T$ on world outcomes such that

$$\mathbb{E}_{\mathbf{p}}(\mathbf{r}) = \sum_{j=1}^{J} p_{j} \mathbf{r}_{j} = \mathbf{0}$$

ightharpoonup Think of p_i as scaling factors

Arbitrage theorem

- ▶ Have demonstrated the following result, called arbitrage theorem
 - ⇒ Formal proof follows from duality theory in optimization

Theorem

Given vectors of returns $\mathbf{r}_j \in \mathbb{R}^K$ associated with random world outcomes $j=1,\ldots,J$, an arbitrage is not possible if and only if there exists a probability vector $\mathbf{p}=[p_1,\ldots,p_J]^T$ with $p_j \geq 0$ and $\mathbf{p}^T\mathbf{1}=1$, such that $\mathbb{E}_{\mathbf{p}}(\mathbf{r})=\mathbf{0}$. Equivalently,

$$\max_{\mathbf{x}} \left(\min_{j} \left(\mathbf{x}^{\mathsf{T}} \mathbf{r}_{j} \right) \right) \leq 0 \quad \Leftrightarrow \quad \sum_{i=1}^{J} p_{i} \mathbf{r}_{i} = \mathbf{0}$$

▶ Prob. vector **p** is **NOT** the prob. distribution of events j = 1, ..., J

Example: Arbitrages in sports betting

Ex: Booker 1 ⇒ Yankees win pays 1.5:1, Yankees loose pays 3:1

- ▶ There are K = 2 events to bet on, J = 2 possible outcomes
- Q: What are the returns?

Yankees win
$$(j = 1)$$
: $r_{11} = 0.5$, $r_{12} = -1$
Yankees loose $(j = 2)$: $r_{21} = -1$, $r_{22} = 2$

- \Rightarrow Return vectors are thus $\mathbf{r}_1 = [0.5, -1]^T$ and $\mathbf{r}_2 = [-1, 2]^T$
- ▶ Arbitrage impossible if there is $0 \le p \le 1$ such that

$$\mathbb{E}_{\mathbf{p}}(\mathbf{r}) = p \times \begin{bmatrix} 0.5 \\ -1 \end{bmatrix} + (1-p) \times \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \mathbf{0}$$

 \Rightarrow Straightforward to check that p=2/3 satisfies the equation

Example: Arbitrages in geometric random walk

 \blacktriangleright Consider a stock price X(nh) that follows a geometric random walk

$$X((n+1)h) = X(nh)e^{\sigma\sqrt{h}Y_n}$$

 \triangleright Y_n is a binary random variable with probability distribution

$$P(Y_n = 1) = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{h} \right), \quad P(Y_n = -1) = \frac{1}{2} \left(1 - \frac{\mu}{\sigma} \sqrt{h} \right)$$

- \Rightarrow As $h \rightarrow 0$, X(nh) becomes geometric Brownian motion
- Q: Are there arbitrage opportunities in trading this stock?
 - \Rightarrow Too general, let us consider a narrower problem

Stock flip investment strategy

- ► Consider the following investment strategy (stock flip):
 - **Buy:** Buy \$1 in stock at time 0 for price X(0) per unit of stock **Sell:** Sell stock at time h for price X(h) per unit of stock
- ▶ Cost of transaction is \$1. Units of stock purchased are 1/X(0)
 - \Rightarrow Cash after selling stock is X(h)/X(0)
 - \Rightarrow Return on investment is X(h)/X(0)-1
- ▶ There are two possible outcomes for the price of the stock at time *h*
 - \Rightarrow May have $Y_0 = 1$ or $Y_0 = -1$ respectively yielding

$$X(h) = X(0)e^{\sigma\sqrt{h}}, \qquad X(h) = X(0)e^{-\sigma\sqrt{h}}$$

Possible returns are therefore

$$r_1 = rac{X(0)e^{\sigma\sqrt{h}}}{X(0)} - 1 = e^{\sigma\sqrt{h}} - 1, \quad r_2 = rac{X(0)e^{-\sigma\sqrt{h}}}{X(0)} - 1 = e^{-\sigma\sqrt{h}} - 1$$

Present value of returns

- ▶ One dollar at time h is not the same as 1 dollar at time 0
 - ⇒ Must take into account the time value of money
- ▶ Interest rate of a risk-free investment is α continuously compounded ⇒ In practice, α is the money-market rate (time value of money)
- ▶ Prices have to be compared at their present value
- ► The present value (at time 0) of X(h) is $X(h)e^{-\alpha h}$ ⇒ Return on investment is $e^{-\alpha h}X(h)/X(0)-1$
- lacktriangle Present value of possible returns (whether $Y_0=1$ or $Y_0=-1$) are

$$r_1 = rac{e^{-lpha h}X(0)e^{\sigma\sqrt{h}}}{X(0)} - 1 = e^{-lpha h}e^{\sigma\sqrt{h}} - 1,$$
 $r_2 = rac{e^{-lpha h}X(0)e^{-\sigma\sqrt{h}}}{X(0)} - 1 = e^{-lpha h}e^{-\sigma\sqrt{h}} - 1$

No arbitrage condition

lacktriangle Arbitrage not possible if and only if there exists $0 \le q \le 1$ such that

$$qr_1+(1-q)r_2=0$$

- ⇒ Arbitrage theorem in one dimension (only one bet, stock flip)
- ightharpoonup Substituting r_1 and r_2 for their respective values

$$q\left(e^{-\alpha h}e^{\sigma\sqrt{h}}-1\right)+\left(1-q\right)\left(e^{-\alpha h}e^{-\sigma\sqrt{h}}-1\right)=0$$

 \triangleright Can be easily solved for q. Expanding product and reordering terms

$$qe^{-\alpha h}e^{\sigma\sqrt{h}}+(1-q)e^{-\alpha h}e^{-\sigma\sqrt{h}}=1$$

• Multiplying by $e^{\alpha h}$ and grouping terms with a q factor

$$q\left(e^{\sigma\sqrt{h}} - e^{-\sigma\sqrt{h}}\right) = e^{\alpha h} - e^{-\sigma\sqrt{h}}$$

No arbitrage condition (continued)

- ► Solving for q finally yields $\Rightarrow q = \frac{e^{\alpha h} e^{-\sigma \sqrt{h}}}{e^{\sigma \sqrt{h}} e^{-\sigma \sqrt{h}}}$
- ▶ For small h we have $e^{\alpha h} \approx 1 + \alpha h$ and $e^{\pm \sigma \sqrt{h}} \approx 1 \pm \sigma \sqrt{h} + \sigma^2 h/2$
- ▶ Thus, the value of q as $h \rightarrow 0$ may be approximated as

$$\begin{split} \mathbf{q} \approx & \frac{1 + \alpha h - \left(1 - \sigma \sqrt{h} + \sigma^2 h / 2\right)}{1 + \sigma \sqrt{h} - \left(1 - \sigma \sqrt{h}\right)} = \frac{\sigma \sqrt{h} + \left(\alpha - \sigma^2 / 2\right) h}{2\sigma \sqrt{h}} \\ & = \frac{1}{2} \left(1 + \frac{\alpha - \sigma^2 / 2}{\sigma} \sqrt{h}\right) \end{split}$$

- ▶ Approximation proves that at least for small h, then 0 < q < 1 \Rightarrow Arbitrage not possible
- ▶ Also, suspiciously similar to probabilities of geometric random walk

Risk neutral measure

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing

No arbitrage condition on geometric random walk

- ▶ Stock prices X(nh) follow geometric random walk (drift μ , variance σ^2)
 - \Rightarrow Risk-free investment has return α (time value of money)
- ▶ Arbitrage is not possible in stock flips if there is $0 \le q \le 1$ such that

$$q = \frac{e^{\alpha h} - e^{-\sigma\sqrt{h}}}{e^{\sigma\sqrt{h}} - e^{-\sigma\sqrt{h}}}$$

Notice that q satisfies the equation (which we'll use later on)

$$qe^{\sigma\sqrt{h}}+(1-q)e^{-\sigma\sqrt{h}}=e^{\alpha h}$$

▶ Q: Can we have arbitrage using a more complex set of possible bets?

General investment strategy

► Consider the following general investment strategy:

Observe: Observe the stock price at times $h, 2h, \ldots, nh$

Compare: Is $X(h) = x_1, X(2h) = x_2, ..., X(nh) = x_n$?

Buy: If above answer is yes, buy stock at price X(nh)

Sell: Sell stock at time mh (m > n) for price X(mh)

- ▶ Possible bets are the observed values of the stock $x_1, x_2, ..., x_n$
 - \Rightarrow There are 2^n possible bets
- ▶ Possible outcomes are value at time *mh* and observed values
 - \Rightarrow There are 2^m possible outcomes

Explanation of general investment strategy

- ▶ There are 2^n possible bets:
 - ▶ Bet 1 = n price increases in 1, ..., n
 - ▶ Bet 2 = price increases in 1, ..., n-1 and price decrease in n
 - ▶ ...
- ▶ For each bet we have 2^{m-n} possible outcomes:
 - ▶ m-n price increases in $n+1,\ldots,m$
 - ▶ Price increases in $n+1, \ldots, m-1$ and price decrease in m

	<i>X</i> (<i>h</i>)	X(2h)	X(3h)	X(nh)	 X((n+1)h)	X((n+2)h)	X(mh)
bet 1	$e^{\sigma\sqrt{h}}$	$e^{2\sigma\sqrt{h}}$	$e^{3\sigma\sqrt{h}}$	$e^{n\sigma\sqrt{h}}$	$X(nh)e^{\sigma\sqrt{h}}$	$X(nh)e^{2\sigma\sqrt{h}}$	$X(nh)e^{m\sigma\sqrt{h}}$
bet 2	$e^{\sigma\sqrt{h}}$	$e^{2\sigma\sqrt{h}}$	$e^{3\sigma\sqrt{h}}$	$e^{(n-2)\sigma\sqrt{h}}$	$X(nh)e^{\sigma\sqrt{h}}$	$X(nh)e^{2\sigma\sqrt{h}}$	 $X(nh)e^{(m-2)\sigma\sqrt{h}}$
bet 2 ⁿ	$e^{-\sigma\sqrt{h}}$	$e^{-2\sigma\sqrt{h}}$	$e^{-3\sigma\sqrt{h}}$	 $e^{-n\sigma\sqrt{h}}$	$X(nh)e^{-\sigma\sqrt{h}}$	$X(nh)e^{-2\sigma\sqrt{h}}$	 $X(nh)e^{-m\sigma\sqrt{h}}$

outcomes per each bet

▶ Table assumes X(0) = 1 for simplicity

Candidate no arbitrage probability measure

- ▶ Define the prob. distribution **q** over possible outcomes as follows
- ▶ Start with a sequence of i.i.d. binary RVs Y_n , probabilities

$$P(Y_n = 1) = q, P(Y_n = -1) = 1 - q$$

$$\Rightarrow$$
 With $q=\left(e^{lpha h}-e^{-\sigma\sqrt{h}}
ight)/\left(e^{\sigma\sqrt{h}}-e^{-\sigma\sqrt{h}}
ight)$ as in slide 18

▶ Joint prob. distribution **q** on $X(h), X(2h), \dots, X(mh)$ from

$$X((n+1)h) = X(nh)e^{\sigma\sqrt{h}Y_n}$$

- \Rightarrow Recall this is **NOT** the prob. distribution of X(nh)
- ▶ Will show that expected value of earnings with respect to **q** is null
 - \Rightarrow By arbitrage theorem, arbitrages are not possible

Return for given outcome

- ▶ Consider a time 0 unit investment in given arbitrary outcome
- \triangleright Stock units purchased depend on the price X(nh) at buying time

Units bought
$$=\frac{1}{X(nh)e^{-\alpha nh}}$$

- \Rightarrow Have corrected X(nh) to express it in time 0 values
- ▶ Cash after selling stock given by price X(mh) at sell time m

Cash after sell
$$=\frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}}$$

- ► Return is then $\Rightarrow r(X(h),...,X(mh)) = \frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} 1$
 - \Rightarrow Depends on X(mh) and X(nh) only

Expected return with respect to measure q

Expected value of all possible returns with respect to q is

$$\mathbb{E}_{\mathbf{q}}\left[r(X(h),\ldots,X(mh))\right] = \mathbb{E}_{\mathbf{q}}\left[\frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1\right]$$

▶ Condition on observed values X(h), ..., X(nh)

$$\begin{split} \mathbb{E}_{\mathbf{q}} \left[r(X(h), \dots, X(mh)) \right] \\ &= \mathbb{E}_{\mathbf{q}(1:n)} \left[\mathbb{E}_{\mathbf{q}(n+1:m)} \left[\frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1 \, \middle| \, X(h), \dots, X(nh) \right] \right] \end{split}$$

▶ In innermost expectation X(nh) is given. Furthermore, process X is Markov, so conditioning on $X(h), \ldots, X((n-1)h)$ is irrelevant. Thus

$$\mathbb{E}_{\mathbf{q}}\left[r(X(h),\ldots,X(mh))\right] = \mathbb{E}_{\mathbf{q}(1:n)}\left[\frac{\mathbb{E}_{\mathbf{q}(n+1:m)}\left[X(mh)\mid X(nh)\right]e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1\right]$$

Expected value of future values (measure q)

- ▶ Need to find expectation of future value $\mathbb{E}_{\mathbf{q}(n+1:m)} [X(mh) | X(nh)]$
- From recursive relation for X(nh) in terms of Y_n sequence

$$X(mh) = X((m-1)h)e^{\sigma\sqrt{h}Y_{m-1}}$$

$$= X((m-2)h)e^{\sigma\sqrt{h}Y_{m-1}}e^{\sigma\sqrt{h}Y_{m-2}}$$

$$\vdots$$

$$= X(nh)e^{\sigma\sqrt{h}Y_{m-1}}e^{\sigma\sqrt{h}Y_{m-2}}\dots e^{\sigma\sqrt{h}Y_{n}}$$

 \triangleright All the Y_n are independent. Then, upon taking expectations

$$\mathbb{E}_{\mathbf{q}(n+1:m)}\left[X(mh)\,\big|\,X(nh)\right] = X\big(nh\big)\mathbb{E}\left[e^{\sigma\sqrt{h}Y_{m-1}}\right]\mathbb{E}\left[e^{\sigma\sqrt{h}Y_{m-2}}\right]\dots\mathbb{E}\left[e^{\sigma\sqrt{h}Y_{n}}\right]$$

▶ Need to determine expectation of relative price change $\mathbb{E}\left[e^{\sigma\sqrt{h}Y_n}\right]$

Expectation of relative price change (measure q)

lacktriangle The expected value of the relative price change $\mathbb{E}\left[e^{\sigma\sqrt{h}Y_n}
ight]$ is

$$\mathbb{E}\left[e^{\sigma\sqrt{h}Y_n}\right] = e^{\sigma\sqrt{h}} \Pr\left[Y_n = 1\right] + e^{-\sigma\sqrt{h}} \Pr\left[Y_n = -1\right]$$

► According to definition of measure **q**, it holds

$$Pr[Y_n = 1] = q, \qquad Pr[Y_n = -1] = 1 - q$$

lacksquare Substituting in expression for $\mathbb{E}\left[e^{\sigma\sqrt{h}Y_n}
ight]$

$$\mathbb{E}\left[e^{\sigma\sqrt{h}Y_n}\right] = e^{\sigma\sqrt{h}}\,q + e^{-\sigma\sqrt{h}}\,(1-q) = e^{\alpha h}$$

- \Rightarrow Follows from definition of probability q [cf. slide 18]
- ► Reweave the quilt:
 - (i) Use expected relative price change to compute expected future value
 - (ii) Use expected future value to obtain desired expected return

Reweave the quilt

lacksquare Plug $\mathbb{E}\left[e^{\sigma\sqrt{h}Y_n}
ight]=e^{lpha h}$ into expression for expected future value

$$\mathbb{E}_{\mathbf{q}(n+1:m)}\left[X(mh)\,\big|\,X(nh)\right] = X(nh)\,e^{\alpha h}e^{\alpha h}\dots e^{\alpha h} = X(nh)\,e^{\alpha(m-n)h}$$

Substitute result into expression for expected return

$$\mathbb{E}_{\mathbf{q}}\left[r(X(h),\ldots,X(mh))\right] = \mathbb{E}_{\mathbf{q}(1:n)}\left[\frac{X(nh)e^{\alpha(m-n)h}e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1\right]$$

Exponentials cancel out, finally yielding

$$\mathbb{E}_{\mathbf{q}}\left[r(X(h),\ldots,X(mh))\right] = \mathbb{E}_{\mathbf{q}(1:n)}\left[1-1\right] = 0$$

 \Rightarrow Arbitrage not possible if $0 \le q \le 1$ exists (true for small h)

What if prices follow a geometric Brownian motion?

▶ Suppose stock prices follow a geometric Brownian motion, i.e.,

$$X(t) = X(0)e^{Y(t)}$$

- $\Rightarrow Y(t)$ Brownian motion with drift μ and variance σ^2
- ▶ Q: What is the no arbitrage condition?
- ▶ Approximate geometric Brownian motion by geometric random walk
 - \Rightarrow Approximation arbitrarily accurate by letting $h \rightarrow 0$
- ▶ No arbitrage measure **q** exists for geometric random walk
 - This requires h sufficiently small
 - Notice that prob. distribution $\mathbf{q} = \mathbf{q}(h)$ is a function of h
- Existence of the prob. distribution $\mathbf{q} := \lim_{h \to 0} \mathbf{q}(h)$ proves that
 - ⇒ Arbitrages are not possible in stock trading

No arbitrage probability distribution

- ► Recall that as $h \to 0 \ \Rightarrow q \approx \frac{1}{2} \left(1 + \frac{\alpha \sigma^2/2}{\sigma} \sqrt{h} \right)$ $\Rightarrow 1 q \approx \frac{1}{2} \left(1 \frac{\alpha \sigma^2/2}{\sigma} \sqrt{h} \right)$
- ▶ Thus, measure $\mathbf{q} := \lim_{h \to 0} \mathbf{q}(h)$ is a geometric Brownian motion
 - \Rightarrow Variance σ^2 (same as stock price)
 - \Rightarrow Drift $\alpha \sigma^2/2$
- ▶ Measure showing arbitrage impossible a geometric Brownian motion
 - \Rightarrow Which is also the way stock prices evolve as $h \to 0$
- ▶ Furthermore, the variance is the same as that of stock prices
 - \Rightarrow Different drifts $\Rightarrow \mu$ for stocks and $\alpha \sigma^2/2$ for no arbitrage

Expected investment growth

- ightharpoonup Compute expected return on an investment on stock X(t)
 - \Rightarrow Buy 1 share of stock at time 0. Cash invested is X(0)
 - \Rightarrow Sell stock at time t. Cash after sell is X(t)
- ightharpoonup Expected value of cash after sell given X(0) is

$$\mathbb{E}\left[X(t)\,|\,X(0)\right] = X(0)e^{(\mu+\sigma^2/2)t}$$

- ▶ Alternatively, invest X(0) risk free in the money market
 - \Rightarrow Guaranteed cash at time t is $X(0)e^{\alpha t}$
- ▶ Invest in stock only if $\mu + \sigma^2/2 > \alpha$ ⇒ "Risk premium" exists

Proof of expected return formula

- ► Stock prices follow a geometric Brownian motion $X(t) = X(0)e^{Y(t)}$ ⇒ Y(t) Brownian motion with drift μ and variance σ^2
- Q: What is the expected return $\mathbb{E}[X(t)|X(0)]$?
- ▶ Note first that $\mathbb{E}\left[X(t) \mid X(0)\right] = X(0)\mathbb{E}\left[e^{Y(t)} \mid X(0)\right]$
- Using that Y(t) has independent increments

$$\mathbb{E}\left[e^{Y(t)} \mid X(0)\right] = \mathbb{E}\left[e^{Y(t)}\right]$$

 \Rightarrow Next we focus on computing $\mathbb{E}\left[e^{Y(t)}
ight]$

Proof of expected return formula (cont.)

▶ Since $Y(t) \sim \mathcal{N}(\mu t, \sigma^2 t)$

$$\mathbb{E}\left[e^{Y(t)}\right] = \frac{1}{\sqrt{2\pi\sigma^2t}} \int_{-\infty}^{\infty} e^{y} e^{-\frac{(y-\mu t)^2}{2\sigma^2t}} dy$$

▶ Completing the squares in the argument of the exponential we have

$$y - \frac{(y - \mu t)^2}{2\sigma^2 t} = \frac{-y^2 + 2(\mu + \sigma^2)ty - \mu^2 t^2}{2\sigma^2 t}$$
$$= -\frac{(y - (\mu + \sigma^2)t)^2}{2\sigma^2 t} + \frac{2\mu\sigma^2 t^2 + \sigma^4 t^2}{2\sigma^2 t}$$

▶ The blue term does not depend on y, red integral equals 1

$$\mathbb{E}\left[e^{Y(t)}\right] = e^{\left(\mu + \frac{\sigma^2}{2}\right)t} \times \frac{1}{\sqrt{2\pi\sigma^2t}} \int_{-\infty}^{\infty} e^{-\frac{\left(y - (\mu + \sigma^2)t\right)^2}{2\sigma^2t}} dy = e^{\left(\mu + \frac{\sigma^2}{2}\right)t}$$

Putting the pieces together, we obtain

$$\mathbb{E}\left[X(t)\,\big|\,X(0)\right] = X(0)\mathbb{E}\left[e^{Y(t)}\right] = X(0)e^{(\mu+\sigma^2/2)t}$$

Risk neutral measure

- ► Compute expected return as if **q** were the actual distribution
 - ⇒ Recall that **q** is NOT the actual distribution
 - \Rightarrow As before, cash invested is X(0) and cash after sale is X(t)
- ▶ Expected cash value is different because prob. distribution is different

$$\mathbb{E}_{\mathbf{q}}\left[X(t) \,|\, X(0)\right] = X(0)e^{(\alpha - \sigma^2/2 + \sigma^2/2)t} = X(0)e^{\alpha t}$$

- ⇒ Same return as risk-free investment regardless of parameters
- ► Measure **q** is called risk neutral measure
 - ⇒ Risky stock investments yield same return as risk-free one
 - ⇒ "Alternate universe", investors do not demand risk premiums
- Pricing of derivatives, e.g., options, is always based on expected returns with respect to risk neutral valuation (pricing in alternate universe)
 - ⇒ Basis for Black-Scholes formula for option pricing

Martingale as basis for fair pricing

▶ A continuous-time process X(t) is a martingale if for $t, s \ge 0$

$$\mathbb{E}\left[X(t+s)\,\big|\,X(u),0\leq u\leq t\right]=X(t)$$

- ⇒ Expected future value = present value, even given process history
- ▶ Model of a fair, e.g., gambling game. Excludes winning strategies
 - ⇒ Even with prior info. of outcomes (cards drawn from the deck)
- ▶ For risk-neutral measure **q**, time 0 prices $e^{-\alpha t}X(t)$ form a martingale

$$\mathbb{E}_{\mathbf{q}}\left[e^{-\alpha(t+s)}X(t+s)\,\big|\,e^{-\alpha u}X(u),0\leq u\leq t\right]=e^{-\alpha t}X(t)$$

▶ **Key principle:** stock price = expected discounted return

$$X(0) = \mathbb{E}_{\mathbf{q}} \left[e^{-\alpha t} X(t) \, \big| \, X(0) \right]$$

⇒ Fair pricing, cannot devise a winning strategy (arbitrage)

Stock prices form a martingale under \mathbf{q} (proof)

- ▶ Recall measure **q** is a geometric Brownian motion $X(t) = e^{Y(t)}$
 - \Rightarrow Variance σ^2 (same as stock price)
 - \Rightarrow Drift $\alpha \sigma^2/2$

Proof.

$$\begin{split} \mathbb{E}_{\mathbf{q}} \left[e^{-\alpha(t+s)} e^{Y(t+s)} \mid e^{-\alpha u} e^{Y(u)}, 0 \leq u \leq t \right] \\ &= \mathbb{E}_{\mathbf{q}} \left[e^{-\alpha(t+s)} e^{Y(t+s)} \mid e^{-\alpha t} e^{Y(t)} \right] \\ &= \mathbb{E}_{\mathbf{q}} \left[e^{-\alpha(t+s)} e^{[Y(t+s)-Y(t)]+Y(t)} \mid e^{-\alpha t} e^{Y(t)} \right] \\ &= e^{-\alpha t} e^{Y(t)} \mathbb{E}_{\mathbf{q}} \left[e^{-\alpha s} e^{[Y(t+s)-Y(t)]} \right] \\ &= e^{-\alpha t} X(t) \mathbb{E}_{\mathbf{q}} \left[e^{-\alpha s} e^{Y(s)} \right] \\ &= e^{-\alpha t} X(t) \end{split}$$

Y(t) is Markov

Add and subtract Y(t)

Independent increments

Stationary increments

$$\mathbb{E}_{\mathbf{q}}\left[e^{Y(s)}\right] = e^{(\mu + \sigma^2/2)s} = e^{\alpha s}$$

Black-Scholes formula for option pricing

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing

Options

- ▶ An option is a contract to buy shares of a stock at a future time
 - Strike time t = Convened time for stock purchase
 - ightharpoonup Strike price K =Price at which stock is purchased at strike time
- ▶ At time t, option holder may decide to
 - \Rightarrow Buy a stock at strike price K = exercise the option
 - ⇒ Do not exercise the option
- May buy option at time 0 for price c
- ▶ Q: How do we determine the option's worth, i.e., price c at time 0?
- ▶ A: Given by the Black-Scholes formula for option pricing

Stock price model

- \blacktriangleright Let $e^{\alpha t}$ be the compounding of a risk-free investment
- ▶ Let X(t) be the stock's price at time t
 - \Rightarrow Modeled as geometric Brownian motion, drift μ , variance σ^2
- ▶ Risk neutral measure **q** is also a geometric Brownian motion
 - \Rightarrow Drift $\alpha \sigma^2/2$ and variance σ^2

Return of option investment

- \blacktriangleright At time t, the option's worth depends on the stock's price X(t)
- ▶ If stock's price smaller or equal than strike price $\Rightarrow X(t) \le K$ \Rightarrow Option is worthless (better to buy stock at current price)
- lacktriangle Since had paid c for the option at time 0, lost c on this investment
 - \Rightarrow Return on investment is r = -c
- ▶ If stock's price larger than strike price $\Rightarrow X(t) > K$ \Rightarrow Exercise option and realize a gain of X(t) - K
- ▶ To obtain return express as time 0 values and subtract c

$$r = e^{-\alpha t} (X(t) - K) - c$$

► May combine both in single equation $\Rightarrow r = e^{-\alpha t} (X(t) - K)_+ - c$ $\Rightarrow (\cdot)_+ := \max(\cdot, 0)$ denotes projection onto positive reals \mathbb{R}_+

Option pricing

▶ Select option price *c* to prevent arbitrage opportunities

$$\mathbb{E}_{\mathbf{q}}\left[e^{-\alpha t}\big(X(t)-K\big)_{+}-c\right]=0$$

- ⇒ Expectation is with respect to risk neutral measure **q**
- ▶ From above condition, the no-arbitrage price of the option is

$$c = e^{-\alpha t} \mathbb{E}_{\mathbf{q}} \left[\left(X(t) - K \right)_{+} \right]$$

- ⇒ Source of Black-Scholes formula for option valuation
- \Rightarrow Rest of derivation is just evaluating $\mathbb{E}_{\mathbf{q}}\left[\left(X(t)-K
 ight)_{+}
 ight]$
- ▶ Same argument used to price any derivative of the stock's price

Use fact that **q** is a geometric Brownian motion

- ▶ Let us evaluate $\mathbb{E}_{\mathbf{q}}\left[\left(X(t)-K\right)_{+}\right]$ to compute option's price c
- ▶ Recall **q** is a geometric Brownian motion $\Rightarrow X(t) = X_0 e^{Y(t)}$
 - $\Rightarrow X_0 = \text{price at time } 0$
 - \Rightarrow Y(t) BMD, μ (= $\alpha \sigma^2/2$) and variance σ^2
- ► Can rewrite no arbitrage condition as

$$c = e^{-\alpha t} \mathbb{E}_{\mathbf{q}} \left[\left(X_0 e^{Y(t)} - K \right)_+ \right]$$

▶ Y(t) is a Brownian motion with drift. Thus, $Y(t) \sim \mathcal{N}(\mu t, \sigma^2 t)$

$$c = e^{-lpha t} rac{1}{\sqrt{2\pi\sigma^2 t}} \int_{-\infty}^{\infty} (X_0 e^y - K)_+ e^{-(y-\mu t)^2/(2\sigma^2 t)} \, dy$$

Evaluation of the integral

- ▶ Note that $(X_0e^{Y(t)} K)_+ = 0$ for all values $Y(t) \le \log(K/X_0)$
- ▶ Because integrand is null for $Y(t) \le \log(K/X_0)$ can write

$$c = e^{-\alpha t} \frac{1}{\sqrt{2\pi\sigma^2 t}} \int_{\log(K/X_0)}^{\infty} (X_0 e^y - K) e^{-(y-\mu t)^2/(2\sigma^2 t)} dy$$

► Change of variables $z = (y - \mu t)/\sqrt{\sigma^2 t}$. Associated replacements

Variable:
$$y \Rightarrow \sqrt{\sigma^2 t} z + \mu t$$

Differential: $dy \Rightarrow \sqrt{\sigma^2 t} dz$
Integration limit: $\log(K/X_0) \Rightarrow a := \frac{\log(K/X_0) - \mu t}{\sqrt{\sigma^2 t}}$

► Option price then given by

$$c = e^{-\alpha t} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \left(X_0 e^{\sqrt{\sigma^2 t} z + \mu t} - K \right) e^{-z^2/2} dz$$

Split in two integrals

► Separate in two integrals $c = e^{-\alpha t}(I_1 - I_2)$ where

$$I_1 := rac{1}{\sqrt{2\pi}} \int_a^\infty X_0 e^{\sqrt{\sigma^2 t} z + \mu t} e^{-z^2/2} dz$$
 $I_2 := rac{K}{\sqrt{2\pi}} \int_a^\infty e^{-z^2/2} dz$

▶ Gaussian Φ function (ccdf of standard normal RV)

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-z^2/2} dz$$

- \Rightarrow Comparing last two equations we have $l_2 = K\Phi(a)$
- ▶ Integral I_1 requires some more work

Evaluation of the first integral

 \triangleright Reorder terms in integral I_1

$$I_1 := \frac{1}{\sqrt{2\pi}} \int_a^\infty X_0 e^{\sqrt{\sigma^2 t} z + \mu t} e^{-z^2/2} \, dz = \frac{X_0 e^{\mu t}}{\sqrt{2\pi}} \int_a^\infty e^{\sqrt{\sigma^2 t} z - z^2/2} \, dz$$

▶ The exponent can be written as a square minus a "constant" (no z)

$$-\left(z - \sqrt{\sigma^2 t}\right)^2 / 2 + \sigma^2 t / 2 = -z^2 / 2 + \sqrt{\sigma^2 t} z - \sigma^2 t / 2 + \sigma^2 t / 2$$

▶ Substituting the latter into *I*₁ yields

$$I_{1} = \frac{X_{0}e^{\mu t}}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\left(z - \sqrt{\sigma^{2}t}\right)^{2}/2 + \sigma^{2}t/2} dz$$
$$= \frac{X_{0}e^{\mu t + \sigma^{2}t/2}}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\left(z - \sqrt{\sigma^{2}t}\right)^{2}/2} dz$$

Evaluation of the first integral (continued)

► Change of variables $u = z - \sqrt{\sigma^2 t}$ $\Rightarrow du = dz$ and integration limit

$$a \Rightarrow b := a - \sqrt{\sigma^2 t} = \frac{\log(K/X_0) - \mu t}{\sqrt{\sigma^2 t}} - \sqrt{\sigma^2 t}$$

▶ Implementing change of variables in I_1

$$I_1 = \frac{X_0 e^{\mu t + \sigma^2 t/2}}{\sqrt{2\pi}} \int_b^\infty e^{-u^2/2} du = X_0 e^{\mu t + \sigma^2 t/2} \Phi(b)$$

▶ Putting together results for I_1 and I_2

$$c = e^{-\alpha t}(I_1 - I_2) = e^{-\alpha t}X_0e^{\mu t + \sigma^2 t/2}\Phi(b) - e^{-\alpha t}K\Phi(a)$$

For non-arbitrage stock prices (measure **q**) $\Rightarrow \alpha = \mu + \sigma^2/2$ \Rightarrow Substitute to obtain Black-Scholes formula

Black-Scholes

▶ Black-Scholes formula for option pricing. Option cost at time 0 is

$$c = X_0 \Phi(b) - e^{-\alpha t} K \Phi(a)$$

$$\Rightarrow a := \frac{\log(K/X_0) - \mu t}{\sqrt{\sigma^2 t}}$$
 and $b := a - \sqrt{\sigma^2 t}$

▶ Note further that $\mu = \alpha - \sigma^2/2$. Can then write *a* as

$$a = \frac{\log(K/X_0) - (\alpha - \sigma^2/2) t}{\sqrt{\sigma^2 t}}$$

- $\Rightarrow X_0 = \text{stock price at time } 0, \ \sigma^2 = \text{volatility of stock}$
- $\Rightarrow K =$ option's strike price, t = option's strike time
- $\Rightarrow \alpha = \text{benchmark risk-free rate of return (cost of money)}$
- lacksquare Black-Scholes formula independent of stock's mean tendency μ

Glossary

- Arbitrage
- ▶ Investment strategy
- ▶ Bets, events, outcomes
- ► Returns and earnings
- ► Arbitrage theorem
- ► Geometric Brownian motion
- Stock flip
- Time value of money
- Continuously-compounded interest
- Present value

- Risk-free investment
- Expected return
- ▶ Risk premium
- ► Risk neutral measure
- Pricing of derivatives
- Stock option
- Strike time and price
- Option price
- Stock volatility
- ► Black-Scholes formula