Lecture #5

Identification of Point Treatment Causal Parameters

A roadmap for causal inference

- 1. Specify **Causal Model** representing <u>real</u> background knowledge
- 2. Specify Causal Question
- 3. Specify Observed Data and link to causal model
- 4. Identify: Knowledge + data sufficient?
- 5. Commit to an **estimand** as close to question as possible, and a **statistical model** representing real knowledge.
- 6. Estimate
- 7. Interpret Results

Overview: Identifiability of point treatment effects

- 1. Randomization Assumption
- 2. Back door criterion
- 3. G-computation formula
- 4. Working SCMs or ("what to do when your knowledge is not sufficient to identify the causal effect you care about")
- 5. Positivity Assumption

References

- TLB. Chapter 2
- Pearl. "An Introduction to Causal Inference" *Int J Biostat*, 6(2): Article 7, 2010.
- Greenland and Pearl. "Causal Diagrams" in S. Boslaugh, editor, <u>Encyclopedia of Epidemiology</u>. Sage Publications, Thousand Oaks, CA, 2007
- Greenland, Pearl and Robins. "Causal Diagrams for Epidemiologic Research" *Epidemiology*, 10(1): 37-48, 1999.
- Robins and Hernan. "Estimation of the causal effects of time-varying exposures" In Fitzmaurice, Davidian, Verbeke, Molenberghs, editors, Longitudinal Data Analysis, chapter 23. Chapman & Hall/CRC Press, Boca Raton, FL, 2009
- Glymour. "Using casual diagrams to understand common problem in social epidemiology" In: Methods in Social Epidemiology
- Petersen, et al. "Diagnosing and responding to violations in the positivity assumption" *Statistical Methods in Medical Research*, 21(1):31-54, 2012

Overview of Identifiability

• What we want (target of inference): $\Psi^F(P_{U,X})$

$$-Ex.$$
 $\Psi^F(P_{U,X}) = E_{U,X}(Y_1 - Y_0)$

- What we have: a sample from the observed data distribution
 - Ex. n i.i.d. observations of $O^{\sim}P_0$
 - Can use this to make inferences about <u>parameters</u> of the observed data distribution: $\Psi(P_0)$

Overview: Identifiability

• Identifiability in a nutshell: Can we write $\Psi^F(P_{U,X})$ as $\Psi(P_0)$?

• Slightly more formally, we need that: For each $P_{U,X}$ in $\mathcal{M}^{\mathcal{F}}$ (each $P_{U,X}$ compatible with the SCM) we have that $\Psi^{F}(P_{U,X}) = \Psi(P_{0})$ for some Ψ

Overview: Identifiability

- Lots of work (across many disciplines) has gone into identifiability problems
 - In the SEM framework
 - In the missing data framework
 - In the causal graph framework
- Theorems exist that tell us what assumptions are sufficient for a given identifiability result to hold
 - See Shpitser 2008; Tian 2002

Simple Example: What is needed for identifiability?

- Target: $\Psi^F(P_{U,X})=E_{U,X}(Y_1-Y_0)$
- Observe: $O=(A,Y)^P_0$
- What do we need to assume to be able to write $\Psi^F(P_{U,x})$ as $\Psi(P_0)$?

Simple Example: Identifiability

What assumption would give us the following

$$P_{0}(Y=y|A=a)=P_{U,X}(Y_{a}=y)?$$

$$\Psi(P_{0})$$

$$\Psi^{F}(P_{U,X})$$

- $P_0(Y=y|A=a)=P_{U,X}(Y_a=y|A=a)$
 - By definition of counterfactuals
- $P_{U,X}(Y_a=y|A=a)=P_{U,X}(Y_a=y)$
 - If Y_a independent of A
 - When does the SCM imply that this holds?

Simple Example: Identifiability

When is Y_a independent of A?

- $-Y_a(U)=f_Y(a,U_Y)$
- Once you set a, Y_a is only a function of its error U_Y
- ightharpoonup If U_{γ} is independent of A, then Y_{a} is independent of A
- ➤ If U_Y independent of U_{A_A} then Y_a is independent of A, and $E_{U,X}(Y_a)$ is identified as a parameter of P_0

Intuition for this result

- We need that $E(Y|A=1)-E(Y|A=0) = E(Y_1-Y_0)$
- For this to hold we must be sure that <u>all</u> of any <u>observed</u> association between A and Y is due to the causal effect we are interested in
 - Thus we need that there are no additional potential sources of association between A and Y
 - In other words, no unmeasured common causes
 - This is the basic Epi concept of confounding

Identifiability results

- We've derived what we need for one simple example...
- What if things get more complicated?
 - Ex. Measure more covariates
 - Ex. Multiple intervention nodes
- We can do the same sort of exercise and figure out what assumptions we need
- For many common problems, helpful theorems have been developed

Identifiability for Point Treatment

- Focus today on identifiability for the effect of a single intervention (point treatment) when baseline covariates have been measured
- We will focus on one identifiability result:
 - "G-computation formula"
- Holds under
 - Randomization assumption
 - Backdoor criterion

Example: Identifiability Problem

- SCM $\mathcal{M}^{\mathcal{F}}$:
 - $-X=(W,A,Y); U=(U_W,U_A,U_Y)^P_U$
 - No exclusion restrictions or independence assumptions
- Observe: O=(W,A,Y)~P₀
- Statistical model ${\mathcal M}$ is non-parametric
- Target: $\Psi^F(P_{U,X})=E_{U,X}(Y_1-Y_0)$
- Can we write $\Psi^F(P_{U,X,0})$ as a parameter of P_0 ?

What can we assume that will identify our target causal parameter as a parameter of of the observed data distribution?

• Randomization Assumption: $Y_a \perp A|W$

- 1. Why is this sufficient?
- 2. When will it hold?
 - What independence assumptions are needed?
 - How can we assess whether it holds based on the graph?

Identifiability of Point Treatment Effects under the Randomization Assumption

Randomization Assumption (RA):

$$Y_a \perp A|W$$

Identifiability Result

$$P_0(Y = y | A = a, W = w) = P_{U,X}(Y_a = y | A = a, W = w)$$

By definition of counterfactuals

$$= P_{U,X}(Y_a = y|W = w)$$

Under the randomization assumption

Identifiability of Point Treatment Effects under the Randomization Assumption

• If the Randomization Assumption $Y_a \perp A|W$ holds then:

$$E_{U,X}(Y_a|W=w) = E_0(Y|A=a, W=w)$$

This gives us the G-computation formula

$$E_{U,X}(Y_a) = \sum_w E_0(Y|A=a,W=w)P_0(W=w)$$

$$\Psi^{\mathsf{F}}(\mathsf{P}_{U,Y})$$

$$\Psi(\mathsf{P}_0)\text{: "estimand"}$$

Backdoor criterion

- Plausibility of the randomization assumption can be hard to assess.
 - What variables to include in W? Are they sufficient?
- Alternative: Graphical criteria for establishing whether a given adjustment set is sufficient
 - If W satisfies backdoor criterion, the effect of A on Y is identified via the G-computation formula

$$E_{U,X}(Y_a) = \sum_{w} E_0(Y|A=a, W=w)P_0(W=w)$$

$$\Psi^{\mathsf{F}}(\mathsf{P}_{\mathsf{U},V})$$

The Back-door Criterion

 Conditional on W, we want to be sure that any observed association between A and Y is due to the effect of A on Y we are interested in

$$E_0(Y|A=1,W) - E_0(Y|A=0,W) = E_{U,X}(Y_1|W) - E_{U,X}(Y_0|W)$$

- This means we need W to
- 1. Block all spurious sources of association
- 2. Not create any new spurious sources of association
- 3. Leave the path we are interested in unperturbed

The Back-door Criterion

 Conditional on W, we want to be sure that any observed association between A and Y is due to the effect of A on Y we are interested in

- This tells us what characteristics W should have
- 1. W does block any association between A and Y that arises from unmeasured common causes
- 2. W does <u>not</u> create any new non-causal associations between A and Y
- 3. W does <u>not</u> block any of the effect of A on Y

Back-door criterion

- A set of variables W satisfies the back door criterion with respect to (A,Y) if
 - 1. No node in W is a descendent of A
 - Motivation:
 - 1. Avoid blocking the path of interest
 - 2. Avoid introducing spurious sources of dependence
 - 2. W blocks all "backdoor" paths from A to Y
 - Backdoor path= path with arrow into A
 - Motivation: Block all sources of spurious association between A and Y

Recall: when is a path blocked?

If it has a non-collider that has been conditioned on

or

 If it has a collider and neither the collider nor a descendent of the collider has been conditioned on

 Back door criterion satisfied for the effect of A on Y by:

Why are descendents of A excluded?

- 1. Avoid blocking the path we are interested in
 - Does {} satisfy the back-door criterion?
 - Does B satisfy the back door criterion?

Why are descendents of A excluded?

- 2. Avoid introducing new sources of spurious association between A and Y
 - Does {} satisfy the back-door criterion?
 - Does Z satisfy the back door criterion?
 - What happens if you condition on Z?
 - Not part of the causal pathway of interest

O=(W,A,Y)

- Is there a subset of the observed covariates that satisfies the back door criterion?
- What is it?
- E[Y₁-Y₀] identified?
- If, so, what is the target parameter of the observed data distribution (estimand)?

$$O=(W,A,Y)$$

- Is there a subset of the observed covariates that satisfies the back door criterion?
- What is it?
- E[Y₁-Y₀] identified?
- If, so, what is the target parameter of the observed data distribution (estimand)?

$$O=(W,A,Y)$$

- Is there a subset of the observed covariates that satisfies the back door criterion?
- What is it?
- E[Y₁-Y₀] identified?
- If, so, what is the target parameter of the observed data distribution (estimand)?

$$O=(W,A,Y)$$

- Is there a subset of the observed covariates that satisfies the back door criterion?
- What is it?
- E[Y₁-Y₀] identified?
- If, so, what is the target parameter of the observed data distribution (estimand)?

Summary: Identifiability for Point Treatment Effects with basic structure

 Under what sets of independence assumptions will the G-computation identifiability result hold?

$$O=(W,A,Y)$$

- Is there a subset of the observed covariates that satisfies the back door criterion?
- What is it?
- E[Y₁-Y₀] identified?
- If so, what is the target parameter of the observed data distribution?

- Is there a subset of the observed covariates that satisfies the back door criterion?
- What is it?
- E[Y₁-Y₀] identified?
- If so, what is the target parameter of the observed data distribution?

In Summary: Conditioning on the whole past and only the past is not always a good idea...

- Ex 1. O=(W,A,Y); Z occurs before A
 - RA fails conditional on W
 - RA holds conditional on {}

- Ex 2. O=(W,A,L,Y); L occurs after A
 - RA fails conditional on W
 - RA holds conditional on (W,L) Z

Where are we?

- We specified a structural causal model: $\mathcal{M}^{\mathcal{F}}$
 - (U,X) $^{\sim}$ P $_{\mathsf{U.X}}$ in $\mathcal{M}^{\mathcal{F}}$
- We specified counterfactuals and a target parameter of their distribution
 - $Ex. \Psi^{F}(P_{U,X}) = E_{U,X}(Y_1 Y_0)$
- We specified our observed data and statistical model
 - $O^{P_0} in \mathcal{M}$
- We established assumptions under which $\Psi^F(P_{U,X})=\Psi(P_0)$ for some Ψ
 - For one class of target parameter indexed by a static intervention on a single variable

A Roadmap....

2. Question

Translate the scientific question into a formal causal quantity (using counterfactuals)

Our initial model assumptions are not sufficient. Now what?

- If we are honest with ourselves about the limits of what we know, this happens a lot!
 - $-\Psi^{\mathsf{F}}(\mathsf{P}_{\mathsf{U},\mathsf{X}})$ is not identified under $\mathcal{M}^{\mathcal{F}}$
- Options
 - Go get some more data/background research
 - Give up
- But.... Lots of questions require a timely "best guess" to inform ongoing decisions !?!
 - Goal: Get the best answer you can and be honest and transparent when interpreting results

Our initial model assumptions are not sufficient. Now what?

- $\Psi^{\mathsf{F}}(\mathsf{P}_{\mathsf{U},\mathsf{X}})$ is not identified under $\mathcal{M}^{\mathcal{F}}$
 - We know which additional assumptions would serve to identify $\Psi^F(P_{U,x})$
- We will use $\mathcal{M}^{\mathcal{F}^*}$ to refer to the original SCM + these additional assumptions
- This gives us a way to proceed, while keeping separate our real knowledge and our wished for identifiability assumptions
 - Useful in the interpretation stage!

Example: Identifiability Problem

- $\mathcal{M}^{\mathcal{F}}$: X=(W,A,Y), U=(U_W,U_A,U_Y)
 - No exclusion restrictions or independence assumptions: non-parametric model
- Observe: O=(W,A,Y)~P₀
- Target: $\Psi^F(P_{U,X})=E_{U,X}(Y_1-Y_0)$
- Do we have $\Psi^F(P_{U,X})=\Psi(P_0)$ for some Ψ ?

Example: A "working" SCM; O=(W,A,Y)

Original SCM: $\mathcal{M}^{\mathcal{F}}$

 $\mathcal{M}^{\mathcal{F}}$ + additional assumptions= $\mathcal{M}^{\mathcal{F}^*}$

Example: Working SCM

• $\Psi^{\rm F}({\rm P_{U,X}})$ is identified under $\mathcal{M}^{\mathcal{F}^*}$ using the G computation formula

$$E_{U,X}(Y_a) = \sum_{w} E_0(Y|A = a, W = w)P_0(W = w)$$

$$\Psi^{\mathsf{F}}(\mathsf{P}_{\mathsf{U},\mathsf{X}})$$

$$\Psi(\mathsf{P}_0)$$

- Also have us a statistical model ${\mathcal M}$
 - Prefer model implied by $\mathcal{M}^{\mathcal{F}}$ versus $\mathcal{M}^{\mathcal{F}^*}$
 - Ensure statistical model contains the truth
- We can now proceed to estimation...

A Roadmap....

Summary: G-computation formula for point treatment effects

 When the backdoor criterion is satisfied by some subset of observed variables W we have the Gcomputation formula:

$$E_{U,X}(Y_a) = \sum_{w} E_0(Y|A=a, W=w)P_0(W=w)$$

- Also holds under the randomization assumption $Y_a \perp A|W$
- Covers a large category of target causal parameters
 - Parameters of counterfactual distributions indexed by a static intervention on a single node
 - "point treatment" effects
 - Not limited to the average treatment effect

Positivity Assumption

 In order to identify E(Y_a) using the G computation formula, need E(Y|A=a,W=w) to be well-defined for all possible values (a,w)

$$E_{U,X}(Y_a) = \sum E_0(Y|A=a, W=w)P_0(W=w)$$

- In non-parametric model, each treatment of interest must occur with some positive probability for each possible covariate history
- Positivity Assumption
 - Assumption of experimental treatment assignment (ETA)

$$\min_{a \in \mathcal{A}} P_0(A = a | W = w) > 0,$$
for all w for which $P_0(W = w) > 0$

Example: Positivity Violation

- We want to know the average treatment effect of an exposure in a population that contains men and women
- O=(W,A,Y)~P₀
 W=I(woman); 0<P₀(W=1)<1
- Target causal quantity: E(Y₁-Y₀)
- Assume: W blocks all backdoor paths from A to Y
- Estimand: $E_{0w}[E_0(Y|A=1,W)-E_0(Y|A=0,W)]$ = $[E_0(Y|A=1,W=1)-E_0(Y|A=0,W=1)]*P_0(W=1)+$ $[E_0(Y|A=1,W=0)-E_0(Y|A=0,W=0)]*P_0(W=0)$

Example: Positivity Violation

- We want to know the average treatment effect of an exposure in a population that contains men and women
- Estimand: $E_{0w}[E_0(Y|A=1,W)-E_0(Y|A=0,W)]$
 - $[E_0 (Y|A=1,W=1)-E_0 (Y|A=0,W=1)]*P_0 (W=1)+$ $[E_0 (Y|A=1,W=0)-E_0 (Y|A=0,W=0)]*P_0 (W=0)$
- No women in this population get the exposure
 - $-P_0(A=1|W=1)=0$
- No information about outcomes of exposed women
 - $E_0(Y|A=1,W=1)=????$

Example: Positivity Violation

- When would the ATE be identified in such a case?
- 1. Different target parameter
 - Ex. the effect of the exposure among menE(Y|A=1,W=0)-E(Y|A=0,W=0)
 - Changes target population....
- 2. Additional model assumptions
 - Ex. exposure has the same effect in women as in men
 E(Y|A=1,W=0)-E(Y|A=0,W=0)
 - =E(Y|A=1,W=1)-E(Y|A=0,W=1)
 - $=E_W(E(Y|A=1,W)-E(Y|A=0,W))$

"Practical violations" of the positivity assumption

- Even if the positivity assumption holds for P_0 , it may be "practically violated" for a given sample P_n from P_0
- Example
 - Probability of getting the exposure if you are a woman is positive in the underlying population
 - $P_0(A=1|W=1)>0$
 - In a given sample from P₀, by chance there are no women who were exposed
 - $P_n(A=1|W=1)=0$
 - No information in our sample about the outcomes of exposed women

Positivity Assumption

- The extent to which the identifiability of the target parameter is threatened by positivity violations will depend on
 - The observed data distribution P₀
 - The statistical model ${\mathcal M}$
 - The parameter $\Psi(P_0)$
- The impact of positivity violations and near violations on estimator performance also depends on the estimator...
 - More coming up...

Identifiability results are parameterspecific

- New identifiability results are needed for target parameters indexed by
 - Interventions on more than one node
 - Longitudinal treatment effects
 - Direct effects
 - Interventions that respond to patient characteristics
 - Dynamic regimes

A given parameter can have more than one identifiability result

- A point treatment effect may still be identified when there are no sets of observed covariates that satisfy the back door criterion
- Examples:
 - Instrumental Variables
 - Front Door criterion ("mediating instrumental variables")

Key Points 1

- The distribution of a counterfactual outcome under an intervention on a single node is identified by the G-computation formula
 - Under the Randomization Assumption
 - Graphically, under the backdoor criterion
- Often our knowledge alone is not sufficient for identifiability
 - Could stop there
 - If want to proceed, figure out what minimal assumptions are needed

Key Points 2

- Identifiability also relies on having sufficient support in the data
 - Positivity assumption: some positive probability of each treatment level of interest, given each possible covariate value
 - In practice, in finite samples may still have sparse or empty cells
 - How different estimators handle this problem: coming up