Operational Amplifiers and Linear Op-Amp Circuits

S. Lodha

References: L. Bobrow's book and Prof. M. B. Patil's slides

Op-Amps

- Most basic Analog IC
 - Also called linear amplifier
- Why is it better than a BJT (ac) amplifier?
 - No need of coupling and bypass capacitors
 - Low frequency response can go to dc
 - Easy fabrication
 - Smaller in size and economical
- Versatile building block for large variety of electronic circuits
 - Oscillators, comparators, rectifiers, filters etc.
- Works with dc voltages also → applications in sensing, e.g. temperature, pressure etc.
- Nearly ideal characteristics -> ckts work as per theoretical design

Op Amp 741

Internal Ckt

741 Op Amp
8-pin DIP

Inverting input 2
Non-inverting input 3
-15V rail 4

Top view

Output 6
+15V rail 7
8

The most usual 741 package

Symbol

24 BJTs, 11 resistors and a capacitor

- The user need not worry about internal details
- Easy to design circuits
 S. Lodha

Equivalent Circuit

- Compared to external resistances, $R_i \rightarrow \infty$ and $R_o \rightarrow 0$
- V_{CC} and V_{EE} are supply voltages, typically +/-15 V
- Parameters

Parameter	Ideal Op-Amp	741
A_{v}	∞	10 ⁵ (100 dB)
R _i	∞	2 ΜΩ
R _o	0	75 Ω

Op-Amp: Internal Blocks

- Differential amplifer provides high Rin
- High gain amplifier provides additional gain
- Buffer is typically an emitter follower
- Driver is a large signal (power) amplifier with low output resistance

Modes of operation

- Two modes → linear and saturation
 - Depends on magnitude of input voltage and feedback
- Output is limited to $V_{sat} \sim V_{CC}$ -1.5 V
- In linear region
 - $V_i = V_+ V_- = V_o / A_v \rightarrow 0$, hence $V_+ \sim V_-$ (V_+ and V_- are virtually the same)
 - i_{in}~0

Linear Op-Amp Circuits: Example 1

$$\begin{split} V_{-} \sim V_{+} &= 0V \Longrightarrow i_{1} = \frac{V_{i}}{R_{1}} \\ V_{o} &= V_{-} - i_{1}R_{2} = 0 - \left(\frac{R_{2}}{R_{1}}\right)V_{i} = -\left(\frac{R_{2}}{R_{1}}\right)V_{i} \\ \hline \\ V_{o} &= -\left(\frac{R_{2}}{R_{1}}\right)V_{i} \end{split}$$

- Non inverting input is at real ground.
- Inverting input is at "virtual" ground.
- Inverting amplifier
- $-\left(\frac{R_2}{R_1}\right)$ is the "closed loop" gain. "Open loop" gain is the gain of the op amp (~10⁵)
- Effective input resistance is $V_i/i_1 = R_1$

Simulation Examples

10 k

 R_2

- Adjustable gain using R₂ and R₁
 - BJT → -g_mR_T depends on biasing

 $V_{\boldsymbol{m}}=1\,V$

 $f = 25 \, \text{kHz}$

10/13/2014

1 k

 R_1

- Output rise/fall not able to keep up with high frequency signals
 - Slew rate of 741 is 0.5V/μsec

Linear Op-Amp circuits: Example 2

$$\begin{split} V_{-} &\sim V_{+} = V_{i} \Longrightarrow i_{1} = -\frac{V_{i}}{R_{1}} \\ V_{o} &= V_{i} - i_{1}R_{2} = V_{i} - \left(-\frac{V_{i}}{R_{1}}\right)V_{i} = \left(1 + \frac{R_{2}}{R_{1}}\right)V_{i} \\ V_{o} &= \left(1 + \frac{R_{2}}{R_{1}}\right)V_{i} \end{split}$$

- Non-inverting amplifier
- Swapping terminals will change the entire circuit (negative → positive) feedback
- Effective input resistance is $R_i \rightarrow \infty$

Inverting or non-inverting?

- For inverting amp, R_{in}=V_s/i₁=R₁
- For non-inverting amp, $R_{in}^{\sim}R_{i}$, which is a few M Ω . Hence if large Rin is needed, non-inverting is preferred

Linear Op-amp circuits: Example 3

$$V_o = \left(1 + \frac{R_2}{R_1}\right) V_i = V_i$$

- Modified non-inverting amp, $R_1 = \infty$, $R_2 = 0$
- Unity-gain amplifier / voltage follower / buffer

Use of Buffer/voltage follower: Avoid Loading

• Buffer/voltage follower provides both $R_i \to \infty$

$$R_i \to \infty$$

$$R_o \to 0$$

R_{in} and R_o of Buffer

- Current from V_s is small \rightarrow High input resistance due to high input resistance of the amplifier
- Output resistance is R'=R $_{\rm o}$ \rightarrow low because the output resistance of the amplifier is low

Use of buffer

$$i_1 \approx 0, V_{o1} = V_s$$

$$i_2 \approx 0, V_{o2} = A_{v}V_{s}$$

$$V_o = V_{o2} = A_v V_s$$

Irrespective of R_s and R_L

10/13/2014

Linear Op-Amp circuits: Example 4

$$V_o = -\left(\frac{R_f}{R_1}V_{i1} + \frac{R_f}{R_2}V_{i2} + \frac{R_f}{R_3}V_{i3}\right) = -\frac{R_f}{R}(V_{i1} + V_{i2} + V_{i3})$$

$$R_1=R_2=R_3=R=1k\Omega$$

 $R_f=2k\Omega$

"Summer" if R₁=R₂=R₃

- A bridge circuit for sensing changes in temperature, pressure etc.
- ΔR is converted to a signal voltage by bridge, amplified and used for display/control

$$R_a = R_b = R_c = R$$

$$R_d = R + \Delta R$$
 \leftarrow

Varies with quantity to be measured

$$v_1 = \frac{R}{R+R} V_{CC} = \frac{1}{2} V_{CC}$$

$$v_2 = \frac{(R + \Delta R)}{R + (R + \Delta R)} V_{CC} = \frac{1}{2} \frac{1 + x}{1 + x/2} V_{CC} \approx \frac{1}{2} (1 + x) (1 - \frac{x}{2}) V_{CC} = \frac{1}{2} (1 + \frac{x}{2}) V_{CC}$$

$$x = \frac{\Delta R}{R}$$

Example: V_{CC} =15V, R=1k, Δ R=0.01k

$$v_1 = \frac{1}{2}V_{CC}$$

$$v_2 = \frac{1}{2}(1 + \frac{x}{2})V_{CC}$$

$$x = \frac{\Delta R}{2}$$

 $v_1 = 7.5V$

 $v_2 = 7.5 + 0.0375 \text{ V}$

Amplifier should only amplify $0.0375V \rightarrow signal from \Delta R$

Define:

$$v_c = \frac{1}{2}(v_1 + v_2)$$
 Common-mode voltage

$$v_d = (v_2 - v_1)$$

 $v_d = (v_2 - v_1)$ Differential-mode voltage

$$v_1 = v_c - \frac{v_d}{2}$$

In example,

$$v_2 = v_c + \frac{v_d}{2}$$
 $v_c \sim 7.5 \text{ V, } v_d \sim 0.0375 \text{V}$

Common-mode rejection

Ideally,

$$v_o = A_d (v_+ - v_-) = A_d v_d$$
 $A_d = Differential gain$

In practice

$$v_o = A_d v_d + A_c v_c$$
 A_c = Common-mode gain

Ability to reject common-mode signal

$$CMRR = \frac{A_d}{A_c}$$

Common Mode Rejection Ratio

For the 741 Op Amp, CMRR=90dB (~30,000)

Linear Op-Amps: Example 5 (Difference Amplifier)

Difference Amplifier

Linear Op-Amps: Example 5 (Difference Amplifier)

Case 1 (Inverting Amp)

$$V_{o1} = -\frac{R_2}{R_1} V_{i1}$$

Case 2 (Non-inverting amp)

$$V_{o2} = (1 + \frac{R_2}{R_1})V_+ = \frac{R_4}{R_3 + R_4}(1 + \frac{R_2}{R_1})V_{i2}$$

$$V_o = V_{o1} + V_{o2} = -\frac{R_2}{R_1}V_{i1} + \frac{R_4}{R_3 + R_4}(1 + \frac{R_2}{R_1})V_{i2} = \frac{R_2}{R_1}(V_{i2} - V_{i1}) \text{ for } \frac{R_3}{R_4} = \frac{R_1}{R_2}$$

Difference Amplifier

Difference Amplifier: Problem 1

$$\begin{vmatrix} \mathbf{v}_{i1} = \mathbf{v}_{c} - \mathbf{v}_{d}/2 \\ \mathbf{v}_{i2} = \mathbf{v}_{c} + \mathbf{v}_{d}/2 \end{vmatrix} v_{o} = \frac{R_{2}}{R_{1}} (v_{i2} - v_{i1}) = A_{d} v_{d}$$

Common-mode gain A_c=0

If
$$R_3 = R_1 + \Delta R$$

$$v_o = -\frac{R_2}{R_1}v_{i1} + \frac{R_2}{R_1 + \Delta R + R_2}(1 + \frac{R_2}{R_1})v_{i2}$$

$$v_o \cong \frac{R_2}{R_1} (v_d - xv_c) \longrightarrow x = \frac{\Delta R}{R_1 + R_2}$$

$$\left|A_c\right| = x \frac{R_2}{R_1} << \left|A_d\right| = \frac{R_2}{R_1}$$

Even though A_c is small w.r.t A_d (x~0.01), v_c >> v_d and hence common-mode amplification cannot be ignored

Difference Amplifier: Problem 1

$$v_{i1} = v_{c} - v_{d}/2$$
$$v_{i2} = v_{c} + v_{d}/2$$

$$\begin{aligned} \mathbf{v_{i1}} &= \mathbf{v_C} - \mathbf{v_d}/2 & \text{If} \quad R_3 &= R_1 + \Delta R \\ \mathbf{v_{i2}} &= \mathbf{v_C} + \mathbf{v_d}/2 & \\ & v_o &\cong \frac{R_2}{R_*} \left(v_d - x v_c \right) \end{aligned}$$

$$|A_c| = x \frac{R_2}{R_1}, |A_d| = \frac{R_2}{R_1}, x = \frac{\Delta R}{R_1 + R_2}$$

$$v_d = 0.0375V, v_c = 7.5V$$

$$R_1 = 1k, R_2 = 10k, x = 0.01$$

$$|A_c v_c| = x \frac{R_2}{R_1} v_c = 0.75V$$

$$|A_d v_d| = \frac{R_2}{R_1} v_d = 0.375V$$

Substantial common-mode contribution at the output

Difference Amplifier: Problem 2

- Resistance seen from v_2 is $R_3 + R_4 \rightarrow$ small enough to cause v_2 to change
- Need higher input resistance

Improved Difference Amplifier: Instrumentation Amplifier

$$V_A = V_{i1,} V_B = V_{i2} \Longrightarrow i_1 = \frac{V_{i1} - V_{i2}}{R_1}$$

$$V_{o1} - V_{o2} = i_1(R_1 + 2R_2) = \frac{V_{i1} - V_{i2}}{R_1}(R_1 + 2R_2) = (V_{i1} - V_{i2})(1 + \frac{2R_2}{R_1})$$

$$V_o = \frac{R_4}{R_3} (V_{o2} - V_{o1}) = \frac{R_4}{R_3} (1 + \frac{2R_2}{R_1})(V_{i2} - V_{i1})$$

Input Resistance?

- Input resistance seen from V_{i1} and V_{i2} is large
- Does not "load" the bridge circuit
 - v₂ does not change

Common mode contribution?

- What happens to the large common-mode component v_c?
- Gets cancelled (even if R₂ and R₂' are not matched)

Current > Voltage Conversion

$$V_{o1} = I_s R$$
 Ideally

$$V_{o1} = I_s(R_i \parallel R)$$
 In reality, R_i affects V_{o1}

Some circuits produce current output that needs to be converted to voltage to simplify further processing

If next stage is an amplifier, it can modify $V_{o1} \rightarrow$ not desirable.

Linear Op-Amps: Example 6 Current → Voltage Conversion

- Output voltage is -I_sR irrespective of R_L, i.e. irrespective of the next stage
- Practical Example

 Photocurrent detector (V_o=I_sR)

Linear Op-Amps: Example 7 Integrator

$$i_{1} = \frac{V_{i}}{R} = C \frac{dV_{C}}{dt} = C \frac{d(0 - V_{o})}{dt} = -C \frac{dV_{o}}{dt}$$

$$\Rightarrow V_{o} = -\frac{1}{RC} \int V_{i} dt$$

t (msec)

10/13/2014

S. Lodha

Linear Op-Amps: Example 8 Differentiator

$$-\frac{V_{out}}{R_f} = C \frac{dV_{in}}{dt}$$

$$\Rightarrow V_{out} = -R_f C \frac{dV_{in}}{dt}$$

Linear Op-Amps: Example 9 Logarithmic Amplifer

Assume V_{in} is always positive \rightarrow V_{out} will be negative and diode will be forward biased

$$-\frac{V_{in}}{R} = I_o e^{-\frac{qV_{out}}{kT}}$$

$$\Rightarrow V_{out} = -\frac{kT}{q} \ln \left(\frac{V_{in}}{RI_o} \right)$$

Filters using Op-Amps

Ideal Filters

Ideal Filters

Practical filters

- A_{max} is called the maximum pass band ripple, e.g. A_{max}=1dB
- A_{min} is the minimum attenuation provided by the filter, e.g. A_{min} =60dB
- $\omega_s \rightarrow$ edge of stop band
- $\omega_s/\omega_c \rightarrow$ selectivity/sharpness of the filter
- $\omega_{\rm C} < \omega < \omega_{\rm s} \rightarrow$ transition band of the filter

Practical filters

• A low pass filter
$$H(s) = \frac{1}{\sum_{i=0}^{n} a_i (s/\omega_C)^i}$$

- E.g. 5th order low pass filter $H(s) = \frac{1}{a_5 s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$
- Commonly used approximations (polynomials) are:
 - Butterworth, Chebyshev, Bessel and elliptic functions
- Butterworth filters: $|H(j\omega)| = \frac{1}{\sqrt{1+\varepsilon^2(\omega/\omega_c)^{2n}}}$

Chebyshev filters:
$$|H(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 C_n^2 (\omega/\omega_C)^{2n}}}$$

$$C_n = \cos[n\cos^{-1}(x)] x \le 1$$

$$C_n = \cos[n\cosh^{-1}(x)] x \ge 1$$

High pass filter can be obtained from low pass filter by replacing s/ ω_c with ω_c/s

Practical low-pass filters

Butterworth filters:

Chebyshev filters:

Practical high-pass filters

Butterworth filters:

Chebyshev filters:

Passive low pass filter

$$H(s) = \frac{1}{1 + s/RC} = \frac{1}{1 + s/\omega_o}$$
$$\omega_o = RC$$

Passive band pass filter

$$H(s) = \frac{s(L/R)}{1 + s(L/R) + s^2 LC}$$

$$\omega_o = 1/\sqrt{LC}$$

R=100 Ω , C=4 μ F, L=0.1 mH

10/13/2014

Op-Amp "Active" Filters

Advantages

- No inductors (bulky, expensive, non-linear)
- "Gain" in pass-band
- Easy to integrate in ICs
- High input impedance and low output impedance

Limitations

- No gain at High frequencies (MHz)
- Not good for high power requirement

Op-Amp Active Low Pass Filter

Op-Amp Active High Pass Filter

$$H(s) = -\frac{sR_2C}{1 + sR_1C}$$

$$\omega_o = 1/R_1C$$

Op-Amp Active Band Pass Filter

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1+sR_1C_1)(1+sR_2C_2)}$$

$$\omega_L = 1/R_1C_1, \omega_H = 1/R_2C_2$$

Example of a Graphic Equalizer

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

- Adjustable gain around a center frequency
- Array of such narrow-band filters

Example of a Notch Filter

10/1_, ___.