Final project

Jared Adam

12/6/2024

Packages

Data import and wrangling

```
set.seed(654321)
s21 <- read_csv('data/2021 Sentinel Prey Assessment.csv')</pre>
s22 <- read csv("data/PSA CE2 SentinelPrey.csv")</pre>
s23 <- read_csv('data/PSA_Sent.prey.2023.csv')</pre>
# I need to get total predation into a column as a binary. 1 = predation, 0 =
not
# 2021 cleaning
s21
## # A tibble: 5,281 × 17
                        n.weather d.weather growth_stage plot_id rep.block
##
      location date
treatment
##
      <chr>
                <chr>>
                             <dbl> <chr>>
                                              <chr>>
                                                               <dbl>
                                                                          <dbl>
<dbl>
                6/16/2...
                              15.3 18.44
##
   1 PA
                                              V3
                                                                 101
                                                                              1
## 2 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 101
                                                                              1
1
## 3 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 101
                                                                              1
1
## 4 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 101
                                                                              1
1
                6/16/2...
                              15.3 18.44
                                                                              1
##
   5 PA
                                              V3
                                                                 101
1
## 6 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 101
                                                                              1
1
## 7 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 102
                                                                              1
3
## 8 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 102
                                                                              1
3
##
   9 PA
                6/16/2...
                              15.3 18.44
                                              V3
                                                                 102
                                                                              1
3
                6/16/2...
                                                                              1
## 10 PA
                              15.3 18.44
                                              V3
                                                                 102
```

```
## # i 5,271 more rows
## # i 9 more variables: row <dbl>, sample <dbl>, n.absent <chr>, n.partial
<chr>>,
## #
       n.predated <chr>, d.absent <chr>, d.partial <chr>, d.predated <chr>,
## #
       to.predated <chr>>
clean21 <- s21 %>%
  mutate(year = '2021') %>%
  dplyr::select(location, year, growth_stage, plot_id, rep.block, treatment,
to.predated) %>%
  mutate(to.predated = as.double(to.predated)) %>%
  dplyr::rename(block = rep.block) %>%
  group_by(location, year, growth_stage, plot_id, block, treatment) %>%
  # dplyr::summarise(total = sum(to.predated)) %>%
  na.omit() %>%
  mutate(treatment = case_when(
    treatment == '33' ~ '3',
    .default = as.factor(treatment))) %>%
  dplyr::filter(treatment != '6',
                treatment != '7',
                treatment != '8') %>%
  mutate_at(vars(1:6), as.factor)
# 2022 cleaning
s22
## # A tibble: 3,246 × 19
                         am.weather pm.weather growth stage plotid block
      location date
treatment
##
      <chr>
               <chr>>
                              <dbl> <chr>
                                                <chr>>
                                                              <dbl> <dbl>
<dbl>
## 1 PA
               6/22/2022
                               22.7 26.1
                                                V3
                                                                101
                                                                        1
1
               6/22/2022
                               22.7 26.1
                                                V3
                                                                        1
## 2 PA
                                                                101
1
                               22.7 26.1
## 3 PA
               6/22/2022
                                                ٧3
                                                                101
                                                                        1
1
## 4 PA
               6/22/2022
                               22.7 26.1
                                                V3
                                                                101
                                                                        1
1
               6/22/2022
                               22.7 26.1
## 5 PA
                                                V3
                                                                101
                                                                        1
1
               6/22/2022
                               22.7 26.1
                                                ٧3
                                                                101
                                                                        1
## 6 PA
1
## 7 PA
               6/22/2022
                               22.7 26.1
                                                ٧3
                                                                        1
                                                                102
3
## 8 PA
               6/22/2022
                               22.7 26.1
                                                V3
                                                                102
                                                                        1
3
## 9 PA
               6/22/2022
                               22.7 26.1
                                                ٧3
                                                                102
                                                                        1
3
```

```
## 10 PA
               6/22/2022
                               22.7 26.1
                                               V3
                                                                102
3
## # i 3,236 more rows
## # i 11 more variables: row <dbl>, sample <dbl>, am.absent <chr>,
## #
       am.partial <chr>, am.predators <chr>, pm.absent <chr>, pm.partial
<chr>>,
       pm.predators <chr>, to.predated <dbl>, n.predated <dbl>, d.predated
## #
<dbl>
unique(s22$treatment)
## [1] 1 3 2 4
unique(s22$growth_stage)
## [1] "V3" "V5" "R3" "R2"
clean22 <- s22 %>%
  mutate(year = '2022') %>%
  dplyr::select(location, year, growth stage, plotid, block, treatment,
to.predated) %>%
  dplyr::rename(plot_id = plotid) %>%
  mutate(growth stage = case when(growth stage == 'R2' ~ 'R3',
                                   .default = as.character(growth stage))) %>%
  dplyr::group by(location, year, growth stage, plot id, block, treatment)
%>%
  # dplyr::summarise(total = sum(to.predated)) %>%
  mutate_at(vars(1:6), as.factor)
# 2023 cleaning
clean23 <- s23 %>%
  mutate(year = '2023') %>%
  relocate(am.partial, am.absent, pm.partial, pm.absent) %>%
  mutate_at(vars(1:4), as.double) %>%
  mutate(to.predated = if_else(am.partial | am.absent | pm.partial |
pm.absent == 1, 1, 0)) %>%
  relocate(to.predated)%>%
  mutate(growth_stage = case_when((location == 'NC' & date == '7/20/2023') ~
'R3',
                                   .default = as.character(growth stage))) %>%
  dplyr::select(location, year, growth_stage, plotid, block, treatmetn,
to.predated) %>%
  dplyr::rename(plot id = plotid,
         treatment = treatmetn) %>%
  group_by(location, year, growth_stage, plot_id, block, treatment) %>%
  na.omit() %>%
  filter(treatment != 5) %>%
  mutate at(vars(1:6), as.factor)
```

```
# and in the darkness, bind them
sent <- rbind(clean21, clean22, clean23)</pre>
as_tibble(sent)
## # A tibble: 12,432 × 7
      location year growth stage plot id block treatment to.predated
##
      <fct>
               <fct> <fct>
                                   <fct>
                                           <fct> <fct>
                                                                  <dbl>
##
   1 PA
               2021 V3
                                   101
                                                 1
                                                                      0
                                           1
                                                                      0
## 2 PA
               2021 V3
                                   101
                                           1
                                                 1
##
  3 PA
               2021 V3
                                   101
                                           1
                                                 1
                                                                      0
## 4 PA
               2021 V3
                                   101
                                           1
                                                 1
                                                                      0
## 5 PA
               2021
                    V3
                                   101
                                           1
                                                 1
                                                                      0
## 6 PA
               2021 V3
                                   101
                                           1
                                                 1
                                                                      0
                                                 3
##
  7 PA
               2021
                    V3
                                   102
                                           1
                                                                      1
                                                 3
                                                                      1
## 8 PA
               2021 V3
                                   102
                                           1
## 9 PA
               2021
                     V3
                                   102
                                           1
                                                 3
                                                                      0
                                                 3
                                                                      1
## 10 PA
               2021 V3
                                   102
                                           1
## # i 12,422 more rows
dim(sent)
## [1] 12432
                 7
unique(sent$location)
## [1] PA FL IL IA KS KY MD NE NY NC OH TX VT VA WI DE
## Levels: DE FL IA IL KS KY MD NC NE NY OH PA TX VA VT WI
```

Experimental design

Data: Sentinel Prey assessment of arthropod-predator activity in corn fields.

These data come from the Precision Sustainable Agriculture effort through the USDA. I am the lead on the entomology component of this project and responsible for analyzing this three year data set which spans multiple states. This effort began during my Master's degree, but I only analyzed Pennsylvania data for my thesis.

Study design: Treatments = 4; No cover crop, early-terminated cover crop, late-terminated cover crop, planting green **Plots** = 20; 5-6 blocks (location dependent) composed of 4 plots each = 20 plots / study site / year **Years** = 3 (2021,2022,2023) **Locations** = This project comprises 16 states. Not all states collected sentinel prey data every year. Each site year was in a different field. **Effort** = Data were collected at three corn growth stages / year (V3,V5,R3). **Sample** = 6 sentinel prey traps were placed in each plot = 120 samples collected / growth stage. Total sample effort per state per season = 360 samples.

Variables: Response = Total level of predation. This is a binomial of 6 traps/ counts per plot. Pseudoreplication is account for in the random term. **Explanatory** = Crop growth stage (timing, three levels) and treatment (four levels). I am not interested in the fixed

effects of location. **Random effects** = Plot in block in location, in year. I want to account for pseduoreplication and all of the site/year combinations.

Plots were randomly assigned to each block. Field sites were as random as they could be at each respective research station. Sentinel prey traps were placed between pre-determined rows and at specific length intervals within each plot to maintain consistency.

Locating missing values

```
library(mi)
# make an object of the missing df and then present the image
tdf <- missing_data.frame(data.frame(sent))
image(tdf)</pre>
```

Dark represents missing data

Clustered by missingness

Preliminary data display

Mosaic plot of Predation by Treatment and Growth Stage

Modeling

Theoretical model:

 $\label{lem:continuous} $\operatorname{Predation}|\operatorname{Treatment} = 2_i + \beta_i +$

Add the appropriate stuff below

 $\pi = 1I_{Treatment}$ \beta_0 + \beta_1I_{Treatment} = 2} + \beta_2I_{Treatment} = 4} + \beta_3I_{Treatment} = 3} + \beta_4I_{GrowthStage} = V5} + \beta_5I_{GrowthStage} = V3}\$

Initial model

```
sent
## # A tibble: 12,432 × 7
## # Groups:
                location, year, growth_stage, plot_id, block, treatment
[2,091]
##
                      growth_stage plot_id block treatment to.predated
      location year
                                            <fct> <fct>
                                                                    <dbl>
##
      <fct>
                <fct> <fct>
                                    <fct>
    1 PA
                2021 V3
                                    101
                                                   1
                                                                        0
##
                                            1
    2 PA
                2021
                      V3
                                    101
                                            1
                                                   1
                                                                        0
##
                                                   1
##
    3 PA
                2021
                      V3
                                    101
                                            1
                                                                        0
##
    4 PA
                2021
                      V3
                                    101
                                            1
                                                   1
                                                                        0
                                            1
                                                   1
                                                                        0
##
    5 PA
                2021
                      ٧3
                                    101
                                            1
                                                   1
## 6 PA
                2021
                      V3
                                    101
```

```
## 7 PA
               2021
                     V3
                                                 3
                                                                      1
                                   102
                                                 3
                                                                      1
                     ٧3
                                           1
##
    8 PA
               2021
                                   102
                                                 3
                                                                      0
## 9 PA
               2021
                     V3
                                   102
                                           1
                     V3
                                           1
                                                 3
                                                                      1
## 10 PA
               2021
                                   102
## # i 12,422 more rows
m2 <- glmer(to.predated ~ treatment*growth_stage +</pre>
(1 year/location/block/plot_id) , family = binomial, data = sent)
summary(m2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
##
##
  Family: binomial ( logit )
## Formula:
## to.predated ~ treatment * growth stage + (1 | year/location/block/plot id)
      Data: sent
##
##
        AIC
                 BIC
                       logLik deviance df.resid
              9253.8
     9135.0
                      -4551.5
                                9103.0
##
                                           12416
##
## Scaled residuals:
##
        Min
                  10
                       Median
                                     3Q
                                             Max
## -11.4203
              0.0801
                       0.2125
                                0.4224
                                          2.9757
##
## Random effects:
## Groups
                                     Name
                                                 Variance Std.Dev.
##
    plot id:(block:(location:year)) (Intercept) 2.611e-01 0.511004
## block:(location:year)
                                     (Intercept) 1.701e-01 0.412483
##
   location:year
                                     (Intercept) 2.689e+00 1.639802
## year
                                     (Intercept) 1.545e-05 0.003931
## Number of obs: 12432, groups:
## plot_id:(block:(location:year)), 744; block:(location:year), 191;
location: year, 39; year, 3
##
## Fixed effects:
##
                             Estimate Std. Error z value Pr(>|z|)
                                          0.29061 10.437 < 2e-16
## (Intercept)
                              3.03307
## treatment2
                              0.03549
                                          0.16020
                                                    0.222 0.824674
## treatment4
                              0.22142
                                          0.17252
                                                    1.283 0.199352
## treatment3
                              0.62055
                                          0.17515
                                                    3.543 0.000396
## growth_stageV5
                              -1.15589
                                          0.13170 -8.776
                                                           < 2e-16
## growth stageV3
                                          0.13398 -14.389
                              -1.92785
                                                           < 2e-16
## treatment2:growth stageV5
                              0.03110
                                          0.18796
                                                    0.165 0.868581
## treatment4:growth_stageV5
                                          0.20154
                                                    0.435 0.663242
                              0.08776
                                          0.20392 -0.126 0.899541
## treatment3:growth stageV5 -0.02574
## treatment2:growth_stageV3 0.29511
                                          0.18920
                                                    1.560 0.118818
## treatment4:growth_stageV3
                              0.44923
                                          0.20103
                                                    2.235 0.025439
## treatment3:growth stageV3 0.31249
                                          0.20397
                                                    1.532 0.125508
## Correlation of Fixed Effects:
```

```
(Intr) trtmn2 trtmn4 trtmn3 grw V5 grw V3 t2: V5 t4: V5 t3: V5
## treatment2 -0.272
## treatment4 -0.248 0.458
## treatment3 -0.246 0.453 0.421
## grwth_stgV5 -0.293 0.511 0.472 0.466
## grwth_stgV3 -0.300 0.511 0.474 0.464 0.647
## trtmnt2: V5 0.199 -0.724 -0.332 -0.327 -0.693 -0.446
## trtmnt4:_V5     0.185   -0.334   -0.719   -0.305   -0.646   -0.415     0.453
## trtmnt3: V5 0.184 -0.330 -0.306 -0.744 -0.639 -0.412 0.448 0.417
## trtmnt2: V3 0.203 -0.727 -0.334 -0.330 -0.451 -0.692 0.622 0.294 0.290
## trtmnt4:_V3 0.192 -0.339 -0.728 -0.310 -0.424 -0.655 0.297 0.623 0.273
## trtmnt3: V3 0.191 -0.335 -0.309 -0.747 -0.420 -0.645 0.292 0.272 0.645
##
              t2: V3 t4: V3
## treatment2
## treatment4
## treatment3
## grwth_stgV5
## grwth stgV3
## trtmnt2: V5
## trtmnt4: V5
## trtmnt3: V5
## trtmnt2: V3
## trtmnt4: V3 0.459
## trtmnt3: V3 0.454 0.427
## optimizer (Nelder Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0296809 (tol = 0.002,
component 1)
Anova(m2)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: to.predated
##
                             Chisq Df Pr(>Chisq)
## treatment
                           60.9286 3 3.722e-13
                          526.0579 2 < 2.2e-16
## growth stage
## treatment:growth_stage 8.2544 6
                                            0.22
plot(allEffects(m2), type = 'link',ylab = 'estimated log differnces in total
predation', grid = T)
```

treatment*growth_stage effect plot

plot(allEffects(m2), type = 'response', xlim = c(0,1),ylab = 'estimated
probability differnces in total predation', grid = T)

treatment*growth_stage effect plot

* There

is weak evidence against the null of no interaction between treatment and growth stage Chi squared(6) = 8.25, p = 0.22, after controlling for the random effect of plot nested in block nested in location nested in year, and will remove the interaction term from the model.

Model refinement

```
m3 <- glmer(to.predated ~ treatment+growth_stage +
(1 year/location/block/plot_id) , family = binomial, data = sent)
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
  Family: binomial (logit)
## Formula:
## to.predated ~ treatment + growth_stage + (1 | year/location/block/plot_id)
      Data: sent
##
##
                       logLik deviance df.resid
##
        AIC
                 BIC
##
     9131.1
              9205.4 -4555.5
                                9111.1
                                          12422
##
## Scaled residuals:
                       Median
                                    3Q
##
        Min
                  10
                                            Max
                                0.4229
## -11.4488
              0.0811
                       0.2124
                                         2.9455
##
## Random effects:
## Groups
                                    Name
                                                Variance Std.Dev.
## plot_id:(block:(location:year)) (Intercept) 2.600e-01 0.50988
## block:(location:year)
                                    (Intercept) 1.700e-01 0.41236
## location:year
                                    (Intercept) 2.672e+00 1.63473
## year
                                    (Intercept) 5.569e-06 0.00236
## Number of obs: 12432, groups:
## plot_id:(block:(location:year)), 744; block:(location:year), 191;
location:year, 39; year, 3
##
## Fixed effects:
                  Estimate Std. Error z value Pr(>|z|)
##
                              0.27926 10.481 < 2e-16
## (Intercept)
                   2.92687
## treatment2
                   0.15828
                              0.09462
                                        1.673
                                                0.0944
## treatment4
                   0.42821
                              0.10271
                                        4.169 3.06e-05
## treatment3
                   0.72957
                              0.09942
                                        7.338 2.16e-13
## growth_stageV5 -1.13027
                              0.07256 -15.578 < 2e-16
## growth_stageV3 -1.68191
                              0.07334 -22.932 < 2e-16
##
## Correlation of Fixed Effects:
               (Intr) trtmn2 trtmn4 trtmn3 grw_V5
##
## treatment2 -0.161
## treatment4 -0.138 0.451
## treatment3 -0.141 0.468 0.436
## grwth stgV5 -0.172 -0.003 -0.015 -0.026
## grwth stgV3 -0.176 -0.007 -0.024 -0.041 0.625
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0104819 (tol = 0.002,
component 1)
Anova(m3)
```

```
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: to.predated
## Chisq Df Pr(>Chisq)
## treatment 60.988 3 3.615e-13
## growth_stage 528.427 2 < 2.2e-16

plot(allEffects(m3), type = 'link', ylab = 'Estimated log differnces in total predation', grid = T)</pre>
```

treatment effect plot

growth_stage effect plot

plot(allEffects(m3), type = 'response', xlim = c(0,1),ylab = 'Estimated
probability differnces in total predation', grid = T)

treatment effect plot

growth_stage effect plot


```
0.95

R3

V5

growth_stage
```

```
cld(emmeans(m3, ~treatment, adjust = 'tukey', type = 'response'), Letters =
letters)
##
    treatment prob
                        SE df asymp.LCL asymp.UCL .group
##
              0.880 0.0290 Inf
                                   0.787
                                             0.935
                                                    а
    2
              0.895 0.0257 Inf
                                   0.812
##
                                             0.944
                                                    а
##
  4
              0.918 0.0209 Inf
                                   0.849
                                             0.957
                                                     b
##
              0.938 0.0161 Inf
                                   0.884
                                             0.968
##
## Results are averaged over the levels of: growth_stage
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 4 estimates
## Intervals are back-transformed from the logit scale
## P value adjustment: tukey method for comparing a family of 4 estimates
## Tests are performed on the log odds ratio scale
## significance level used: alpha = 0.05
## NOTE: If two or more means share the same grouping symbol,
##
         then we cannot show them to be different.
         But we also did not show them to be the same.
##
cld(emmeans(m3, ~growth_stage, adjust = 'tukey', type = 'response'), Letters
= letters)
    growth_stage prob
                            SE df asymp.LCL asymp.UCL .group
##
##
  V3
                 0.828 0.03850 Inf
                                                  0.902
                                       0.717
                                                         a
##
  V5
                 0.893 0.02584 Inf
                                       0.814
                                                 0.941
                                                          b
##
  R3
                 0.963 0.00981 Inf
                                       0.931
                                                  0.980
                                                           c
## Results are averaged over the levels of: treatment
```

```
## Confidence level used: 0.95
## Conf-level adjustment: sidak method for 3 estimates
## Intervals are back-transformed from the logit scale
## P value adjustment: tukey method for comparing a family of 3 estimates
## Tests are performed on the log odds ratio scale
## significance level used: alpha = 0.05
## NOTE: If two or more means share the same grouping symbol,
## then we cannot show them to be different.
## But we also did not show them to be the same.
```

R squared and ICC

```
r.squaredGLMM(m3)
##
                      R<sub>2</sub>m
                               R<sub>2</sub>c
## theoretical 0.08286345 0.527981
               0.05596765 0.356609
## delta
library(performance)
r2(m3)
## # R2 for Mixed Models
##
     Conditional R2: 0.528
##
##
        Marginal R2: 0.083
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: binomial (logit)
## Formula:
## to.predated ~ treatment + growth_stage + (1 | year/location/block/plot_id)
##
      Data: sent
##
##
        AIC
                 BIC
                       logLik deviance df.resid
##
     9131.1
              9205.4 -4555.5
                                9111.1
                                           12422
##
## Scaled residuals:
##
        Min
                       Median
                                     3Q
                  10
                                             Max
## -11.4488
              0.0811
                       0.2124
                                0.4229
                                          2.9455
##
## Random effects:
## Groups
                                                 Variance Std.Dev.
                                     Name
## plot id:(block:(location:year)) (Intercept) 2.600e-01 0.50988
## block:(location:year)
                                     (Intercept) 1.700e-01 0.41236
                                     (Intercept) 2.672e+00 1.63473
## location:year
## year
                                     (Intercept) 5.569e-06 0.00236
## Number of obs: 12432, groups:
## plot_id:(block:(location:year)), 744; block:(location:year), 191;
location: year, 39; year, 3
```

```
## Fixed effects:
##
                 Estimate Std. Error z value Pr(>|z|)
                             0.27926 10.481 < 2e-16
## (Intercept)
                  2.92687
                  0.15828
                             0.09462 1.673
                                               0.0944
## treatment2
## treatment4
                  0.42821
                             0.10271 4.169 3.06e-05
                  0.72957
## treatment3
                            0.09942 7.338 2.16e-13
## growth_stageV5 -1.13027
                            0.07256 -15.578 < 2e-16
## growth stageV3 -1.68191
                            0.07334 -22.932 < 2e-16
## Correlation of Fixed Effects:
##
              (Intr) trtmn2 trtmn4 trtmn3 grw_V5
## treatment2 -0.161
## treatment4 -0.138 0.451
## treatment3 -0.141 0.468 0.436
## grwth_stgV5 -0.172 -0.003 -0.015 -0.026
## grwth stgV3 -0.176 -0.007 -0.024 -0.041 0.625
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0104819 (tol = 0.002,
component 1)
# for plot
(2.600e-01) / (2.600e-01 + 1.700e-01 + .672e+00 + 5.569e-06)
## [1] 0.2359335
```

The ICC for plot id is 0.236.

Final plots

```
sent %>%
  ggplot()+
  geom_mosaic(aes(x = product(treatment), fill = to.predated))+
  scale_fill_manual(values = c("#E7298A","#1B9E77"))+
  scale_x_productlist(labels=c("No CC", "Early", "Late", "Green"))+
  labs(title = 'Whole Team Sentinel Prey ~ Treatment',
       x = 'Treatment',
       y = 'Estimated proportion',
       caption = 'Figure 5:\nTotal predation binary where 1 = predation and 0
= no predation.\nPredation levels differed between the no-cover and late-
terminated treatment\nand the no-cover and planting-green treatment (p <
0.05).\nCompact letter display denotes differences among treatments.')+
  guides(fill = guide_legend(title = 'Predation:\n0 = no predation\n1 =
predation'))+
  theme(legend.title = element text(size = 14),
        legend.text = element text(size = 14),
        axis.text.x = element text(size=16),
        axis.text.y = element_text(size = 16),
        axis.title = element_text(size = 18),
        plot.title = element text(size = 18),
        plot.subtitle = element_text(size = 12),
```

```
panel.grid.major.y = element_line(color = "darkgrey"),
    panel.grid.major.x = element_blank(),
    panel.grid.minor = element_blank(),
    strip.text = element_text(size = 12),
    plot.caption = element_text(hjust = 0, size = 12, color = "grey25"),
    axis.ticks.length=unit(.25, "cm"))+
annotate('text', x = 0.15, y = 0.95, label = 'a', size = 8)+
annotate('text', x = .4, y = 0.95, label = 'a', size = 8)+
annotate('text', x = .65, y = 0.95, label = 'b', size = 8)+
annotate('text', x = .875, y = 0.95, label = 'c', size = 8)
```

Whole Team Sentinel Prey ~ Treatment

Figure 5:
Total predation binary where 1 = predation and 0 = no predation.
Predation levels differed between the no-cover and late-terminated treatment and the no-cover and planting-green treatment (p < 0.05).
Compact letter display denotes differences among treatments.

```
sent %>%
  ggplot()+
  geom_mosaic(aes(x = product(growth_stage), fill = to.predated))+
  scale_fill_manual(values = c("#E7298A","#1B9E77"))+
  labs(title = 'Whole Team Sentinel Prey ~ Growth Stage',
       x = 'Growth Stage',
       y = 'Esimiated proportion',
       caption = 'Figure 6:\nTotal predation binary where 1 = predation and 0
= no predation.\nPredation levels differed among all growth stages (p <
0.05), where R3 was the highest, \nfollowed by V5, and then V3. Growth stages
are ordered in reverse-chronological order.\nCompact letter display denotes
differences among growth stages')+
  guides(fill = guide_legend(title = 'Predation:\n0 = no predation\n1 =
predation'))+
  theme(legend.title = element_text(size = 14),
        legend.text = element_text(size = 14),
        axis.text.x = element_text(size=16),
        axis.text.y = element_text(size = 16),
```

```
axis.title = element_text(size = 18),
plot.title = element_text(size = 12),
plot.subtitle = element_text(size = 12),
panel.grid.major.y = element_line(color = "darkgrey"),
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
strip.text = element_text(size = 12),
plot.caption = element_text(hjust = 0, size = 12, color = "grey25"),
axis.ticks.length=unit(.25, "cm"))+
annotate('text', x = 0.175, y = 0.95, label = 'a', size = 8)+
annotate('text', x = .5, y = 0.95, label = 'b', size = 8)+
annotate('text', x = .85, y = 0.95, label = 'c', size = 8)
```

Whole Team Sentinel Prey ~ Growth Stage

Figure 6:
Total predation binary where 1 = predation and 0 = no predation.
Predation levels differed among all growth stages (p < 0.05), where R3 was the highest, followed by V5, and then V3. Growth stages are ordered in reverse-chronological order. Compact letter display denotes differences among growth stages

Table 1

```
# table as a proportion
sent %>%
  group_by(location, treatment, growth_stage) %>%
  summary()
##
       location
                      year
                                 growth_stage
                                                   plot_id
                                                                block
                                                                         treatment
    ΙL
            :1296
                    2021:5004
                                 R3:4334
                                               203
                                                                1:2681
                                                                         1:3439
##
                                                       : 608
##
    OH
            :1173
                    2022:3246
                                 V5:4196
                                               103
                                                       : 607
                                                                2:2491
                                                                         2:3203
##
    VT
            :1080
                    2023:4182
                                 V3:3902
                                               303
                                                       : 607
                                                                3:2493
                                                                         4:2605
##
    PA
            :1074
                                                                4:2514
                                                                         3:3185
                                               401
                                                       : 603
##
    KY
            :1054
                                               102
                                                       : 591
                                                                5:1969
                                                                6: 284
    KS
            : 848
                                               202
                                                       : 589
##
##
    (Other):5907
                                               (Other):8827
```

```
##
   to.predated
## Min.
           :0.0000
## 1st Qu.:1.0000
## Median :1.0000
          :0.8103
## Mean
##
    3rd Qu.:1.0000
## Max.
          :1.0000
##
sent %>%
  group_by(growth_stage) %>%
  summary()
       location
##
                     year
                               growth_stage
                                               plot_id
                                                           block
                                                                    treatment
                                            203
##
   ΙL
           :1296
                   2021:5004
                               R3:4334
                                                   : 608
                                                           1:2681
                                                                    1:3439
## OH
           :1173
                   2022:3246
                               V5:4196
                                            103
                                                   : 607
                                                           2:2491
                                                                    2:3203
## VT
           :1080
                   2023:4182
                               V3:3902
                                            303
                                                   : 607
                                                           3:2493
                                                                    4:2605
## PA
           :1074
                                            401
                                                   : 603
                                                           4:2514
                                                                    3:3185
## KY
           :1054
                                            102
                                                   : 591
                                                           5:1969
                                                   : 589
    KS
           : 848
                                                           6: 284
##
                                            202
##
    (Other):5907
                                            (Other):8827
##
    to.predated
## Min.
          :0.0000
    1st Qu.:1.0000
##
## Median :1.0000
## Mean
           :0.8103
## 3rd Qu.:1.0000
## Max.
          :1.0000
##
tally(to.predated ~ treatment + growth_stage, data = sent)
## , , growth_stage = R3
##
##
              treatment
                  1
                            4
                                 3
## to.predated
             0 128 125
                           96
                                77
##
             1 1018 1024
                          802 1064
##
## , , growth_stage = V5
##
##
              treatment
## to.predated
                  1
                       2
                            4
                                 3
                     232
                          179
                               167
             0
               277
##
             1
               918 836
                          692
                               895
##
## , , growth_stage = V3
##
##
              treatment
                                 3
## to.predated 1 2 4
```

0 371 281 221 204 ## 1 727 705 615 778

datasummary_balance(~ to.predated,data = sent)

		0		1	
		N	Pct.	N	Pct.
location	DE	193	8.2	405	4.0
	FL	19	8.0	692	6.9
	IA	16	0.7	705	7.0
	IL	95	4.0	1201	11.9
	KS	345	14.6	503	5.0
	KY	373	15.8	681	6.8
	MD	192	8.1	408	4.1
	NC	19	8.0	341	3.4
	NE	65	2.8	706	7.0
	NY	94	4.0	474	4.7
	ОН	531	22.5	642	6.4
	PA	240	10.2	834	8.3
	TX	22	0.9	698	6.9
	VA	49	2.1	239	2.4
	VT	38	1.6	1042	10.3
	WI	67	2.8	503	5.0
year	2021	883	37.4	4121	40.9
	2022	676	28.7	2570	25.5
	2023	799	33.9	3383	33.6
growth_stage	R3	426	18.1	3908	38.8
	V5	855	36.3	3341	33.2
	V3	1077	45.7	2825	28.0
plot_id	101	161	6.8	425	4.2
	102	112	4.7	479	4.8
	103	126	5.3	481	4.8
	104	119	5.0	426	4.2
	201	112	4.7	452	4.5
	202	117	5.0	472	4.7
	203	113	4.8	495	4.9
	204	129	5.5	445	4.4
	301	111	4.7	478	4.7

	0		1	
	N	Pct.	N	Pct.
302	112	4.7	455	4.5
303	123	5.2	484	4.8
304	120	5.1	450	4.5
401	130	5.5	473	4.7
402	112	4.7	477	4.7
403	106	4.5	461	4.6
404	101	4.3	473	4.7
501	108	4.6	400	4.0
502	79	3.4	422	4.2
503	82	3.5	442	4.4
504	71	3.0	386	3.8
601	2	0.1	111	1.1
602	1	0.0	75	0.7
603	9	0.4	86	0.9
604	11	0.5	96	1.0
505	5	0.2	22	0.2
506	3	0.1	33	0.3
701	5	0.2	49	0.5
702	2	0.1	34	0.3
706	2	0.1	34	0.3
803	3	0.1	33	0.3
804	7	0.3	25	0.2
805	1	0.0	35	0.3
901		0.2		0.3
905		0.3		0.3
906	4	0.2		0.5
105		0.1		0.2
106		0.5		0.1
205		0.1		0.1
206	3	0.1	15	0.1
305		0.2		0.1
306		0.2	13	0.1
405		0.3		0.1
406	4	0.2		0.1
100	-	·	10	V.1

```
N
                                           N
                                                    Pct.
                                    Pct.
                                    0.0
                                                    0.3
                  605
                           0
                                           30
                  705
                           2
                                                    0.3
                                    0.1
                                           33
                  801
                           3
                                           32
                                                    0.3
                                    0.1
                  902
                                           17
                                                    0.2
                           1
                                    0.0
                  606
                           0
                                    0.0
                                           9
                                                    0.1
                  802
                                                    0.1
                           4
                                    0.2
                                           13
                  904
                           1
                                           17
                                                    0.2
                                    0.0
block
                  1
                           631
                                    26.8
                                           2050
                                                    20.3
                  2
                           479
                                    20.3
                                           2012
                                                    20.0
                  3
                           468
                                    19.8
                                           2025
                                                    20.1
                  4
                           435
                                    18.4
                                           2079
                                                    20.6
                  5
                           331
                                    14.0
                                                    16.3
                                           1638
                  6
                           14
                                    0.6
                                           270
                                                    2.7
                  1
                           776
                                    32.9
                                           2663
                                                    26.4
treatment
                  2
                           638
                                    27.1
                                           2565
                                                    25.5
                  4
                           496
                                    21.0
                                           2109
                                                    20.9
                  3
                           448
                                    19.0
                                           2737
                                                    27.2
# install.packages('openxlsx')
# library(openxlsx)
# table <- favstats(to.predated ~ treatment + growth stage, data = sent)</pre>
# write.xlsx(table, 'test.xlsx')
# favstats(to.predated ~ growth_stage, data = sent)
# favstats(to.predated ~ treatment, data = sent)
```

1

0

Study design figure

citation('mosaic')

```
tally(~ year, sent)
## year
## 2021 2022 2023
## 5004 3246 4182
tally(~location, sent)
## location
##
     DE
          FL
               IΑ
                    ΙL
                         KS
                               ΚY
                                    MD
                                         NC
                                              NE
                                                   NY
                                                        OH
                                                                   TX
                                                                             VT
WΙ
##
   598 711 721 1296 848 1054
                                   600
                                        360
                                             771 568 1173 1074
                                                                  720
                                                                       288 1080
570
```

```
tally(~block, sent)
## block
##
      1
           2
                 3
                      4
                           5
                                 6
## 2681 2491 2493 2514 1969 284
tally(~plot id, sent)
## plot id
## 101 102 103 104 201 202 203 204 301 302 303 304 401 402 403 404 501 502
503 504
## 586 591 607 545 564 589 608 574 589 567 607 570 603 589 567 574 508 501
## 601 602 603 604 505 506 701 702 706 803 804 805 901 905 906 105 106 205
206 305
## 113 76 95 107 27 36 54 36 36 36 32 36 36 33 54 18 18 18
18 18
## 306 405 406 605 705 801 902 606 802 904
## 18 18 17 30 35 35 18
                                   9 17 18
names1 <- list("Year 2021", "Year 2022", "Year 2023")</pre>
names2 <- list("Loc. 1", "...", "Loc. 16", "...", "Loc. 1", "...", "Loc. 16")
names3 <- list("Block 1", "...", "Block 6")
names4 <- list("Plot 1", "...", "Plot 4")</pre>
namesF <- list("Treatment", "Growth Stage")</pre>
namesR <- list("Year", "Location in Year", "Block in Location", "Observation</pre>
Error")
```

Citations

```
citation('DiagrammeRsvg')
## To cite package 'DiagrammeRsvg' in publications use:
##
     Iannone R (2016). _DiagrammeRsvg: Export DiagrammeR Graphviz Graphs
##
##
     as SVG . R package version 0.1,
     <https://CRAN.R-project.org/package=DiagrammeRsvg>.
##
##
## A BibTeX entry for LaTeX users is
##
##
     @Manual{,
       title = {DiagrammeRsvg: Export DiagrammeR Graphviz Graphs as SVG},
##
##
       author = {Richard Iannone},
##
       year = \{2016\},
       note = {R package version 0.1},
##
       url = {https://CRAN.R-project.org/package=DiagrammeRsvg},
##
     }
citation('car')
```

```
## To cite the car package in publications use:
##
     Fox J, Weisberg S (2019). _An R Companion to Applied Regression_,
##
##
     Third edition. Sage, Thousand Oaks CA.
     <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>.
##
##
## A BibTeX entry for LaTeX users is
##
##
     @Book{ ,
##
       title = {An {R} Companion to Applied Regression},
##
       edition = {Third},
       author = {John Fox and Sanford Weisberg},
##
##
       year = \{2019\},
##
       publisher = {Sage},
##
       address = {Thousand Oaks {CA}},
##
       url = {https://socialsciences.mcmaster.ca/jfox/Books/Companion/},
##
     }
citation('effects')
## To cite effects in publications use:
##
##
     John Fox and Sanford Weisberg (2019). An R Companion to Applied
     Regression, 3rd Edition. Thousand Oaks, CA
##
##
     <https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html>
##
## For predictor effects or partial residuals also cite:
##
##
     John Fox, Sanford Weisberg (2018). Visualizing Fit and Lack of Fit in
##
     Complex Regression Models with Predictor Effect Plots and Partial
##
     Residuals. Journal of Statistical Software, 87(9), 1-27. doi
##
     10.18637/jss.v087.i09
##
## For generalized linear models also cite:
##
##
     John Fox (2003). Effect Displays in R for Generalised Linear Models.
     Journal of Statistical Software, 8(15), 1-27. doi
##
##
     10.18637/jss.v008.i15
##
## For usage in multinomial and proportional-odds logit models also cite:
##
     John Fox, Jangman Hong (2009). Effect Displays in R for Multinomial
##
##
     and Proportional-Odds Logit Models: Extensions to the effects
##
     Package. Journal of Statistical Software, 32(1), 1-24. doi
##
     10.18637/jss.v032.i01
## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set
## 'options(citation.bibtex.max=999)'.
```

```
citation('emmeans')
## To cite package 'emmeans' in publications use:
##
     Lenth R (2024). _emmeans: Estimated Marginal Means, aka Least-Squares
##
     Means_. R package version 1.10.4, commit
##
##
     52c445c77326050a97e70999b376424266495419,
##
     <https://github.com/rvlenth/emmeans>.
##
## A BibTeX entry for LaTeX users is
##
##
     @Manual{,
##
       title = {emmeans: Estimated Marginal Means, aka Least-Squares Means},
       author = {Russell V. Lenth},
##
       year = \{2024\},
##
       note = {R package version 1.10.4, commit
52c445c77326050a97e70999b376424266495419},
       url = {https://github.com/rvlenth/emmeans},
## }
```