Circuit Theory and Electronics Fundamentals

EXAM PART I = TEST 1

June/22/2021. Duration: 1h30m

	First Name:	Last Name:	Number:	Room:	
•		culator are allowed on your d group to facilitate and speed		books or notes is not allowed. <u>Solv</u> igures are in the next page.	<u>e each</u>
Theorem, co	ompute V_{γ} and I_{1} . b) Conergy. c) Compute the	ompute the power in sources	V_{A} and I_{B} , and ex_{J}	and I_B =14 mA . a) Using the Superpolicitly indicate if each source is reode β to ground) and R_{eq} , as seen by	ceiving o
	-			and I_B =6 I_3 (dependent current source nodal method matrix equation.	e). a)
energy store	_			I , and $v_A(t) = 10-5u(t) V$. a) Comp Il the time. b) Determine $i_1(t)$ assur	
				by $v_A(t) = 30 \sin(2\pi 50 t + \pi/3)$ laced in parallel with v_A , in order to	
compensate	the power factor. c) C	ompute the transfer function	$T(s) = \frac{V_1(s)}{V_s(s)} $	symbolically (without replacing the	į
components	with their values); inc	licate the filter type (low-pass	s, high-pass or ban	d-pass), justifying your answer.	
TRADUÇÃ	o				
Prencha o se	eu primeiro (First Nar	ne) e último nome (Last Nam	e), número de alur	no (Number) e sala (Room) no cabe	ecalho.

Prencha o seu primeiro (First Name) e último nome (Last Name), número de aluno (Number) e sala (Room) no cabeçalho Apenas a calculadora e folhas brancas de rascunho são permitidos. O teste é sem consulta. <u>Resolva cada grupo de problemas num grupo de folhas separado para facilitar e acelerar a correção</u>. As figuras estão na página seguinte.

- **1.** Considere o circuito da Figura 1, onde V_A =21V, R_1 =1 $k\Omega$, R_2 =10 $k\Omega$, R_3 =3 $k\Omega$, e I_B =14mA. **a**) Usando o Teorema da Sobreposição, calcule V_Y e $I_{1.}$ **b**) Calcule a potência nas fontes V_A e I_B , e indique explicitamente se cada fonte consome ou produz energia. **c**) Calcule os parâmetros do equivalente de Thévenin, V_{eq} (do nó β para a massa) and R_{eq} , vistos pela fonte I_B .
- **2.** Considere o circuito da Figura 2, onde $V_A=21V$, $R_1=1k\Omega$, $R_2=10k\Omega$, $R_3=3k\Omega$, e $I_B=6I_3$ (fonte de corrente dependente). **a)** Escreva uma equação matricial do método das malhas, usando o sentido horário para as correntes nas malhas elementares. **b)** Escreva uma equação matricial do método dos nós.
- **3.** Considere o circuito da Figura 3, onde $R_1=1k\Omega$, $R_2=10k\Omega$, C=20nF, L=200~mH, e $v_A(t)=10$ -5u(t) V. **a)** Calcule a energia armazenada no circuito no instante t=-5s, assumindo que o interruptor de 2 vias está na <u>posição 1</u> o tempo todo. **b**) Determine $i_1(t)$, assumindo que o interruptor está na <u>posição 2</u> o tempo todo.
- **4.** Considere o circuito da Figura 3 com o interruptor na <u>posição 1</u>, e com a tensão v_A agora dada por $v_A(t) = 30 \sin (2\pi 50 t + \pi/3) \ V$. **a)** Determine a solução forçada $v_Y(t)$. **b)** Calcule o valor da capacidade do condensador a colocar em paralelo com v_A , de modo a compensar o fator de potência. **c)** Calcule a função de transferência

 $T(s) = \frac{V_1(s)}{V_a(s)}$ simbolicamente (sem substituir os componentes pelos seus valores); indique, justificando, o tipo de filtro (passa-baixo, passa-alto ou passa-banda).

Grading / Cotação

1-a)	1-b)	1-c)	2-a)	2-b)	3-a)	3-b)	4-a)	4-b)	4-c)
2	1.5	2	2	3	1.5	2	2	2	2

Figures / Figuras

Figure 3