COORDINATED REPLENISHMENT POLICIES IN MULTI-ITEM INVENTORY SYSTEMS

By
UMESH CHANDRA RAY

INDUSTRIAL & MANAGEMENT ENGINEERING PROGRAMME

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

TITLY 1980

COORDINATED REPLENISHMENT POLICIES IN MULTI-ITEM INVENTORY SYSTEMS

A Thesis Submitted

In Partial Fulfilment of the Requirements

for the Degree of

MASTER OF TECHNOLOGY

By
UMESH CHANDRA RAY

to the

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR JULY, 1980

I.I. I. KANPUR

CENTRAL ! LUMARY

ACE No. 63807

20 NOV 1980 IMEP-1900-M-RAY-COO

CERTIFCATE

This is to certify that the present work on "Coordinated Replenishment Policies in Multi-Item Inventory Systems", by Umesh Chandra Ray, has been carried out under my supervision and has not been submitted elsewhere for the award of a degree.

(Kripa Shanker)

Assistant Professor

Industrial and Management Engineering Programme
Indian Institute of Technology, Kanpur

July, 1980.

ACKNOVLEDGE FRYS

I express my deep sense of gratitude to my thesis supervisor Dr. Kripa Shanker who not only has provided to me his invaluable suggestions, undescribable help and unforgettable attachment but also has imbided in myself an extensive spectrum of academic rigour during the course of this work.

I acknowledge the extreme utility and importance of many informal discussions with and valuable advices of Dr. J.L. Batra which I had during my stay here.

It is indeed my pleasure to thank all my friends at I.I.T., Kanpur, whose amusing company made my two years of life in the campus a pleasant and memorable one.

I would like to thank Mr. J.K. Misra for his neat and accurate typing and Mr. Buddhi Ram Kandiyal for his immaculate cyclostyling work.

UMESH CHANDRA RAY

CONTENTS

Chapter			Pago		
	CERTIFICATE				
	ACKNOWLEDGEMENTS				
	COMT.	CONTENTS			
	ABST	ABSTRACT			
I.	INTR	1			
	1.1	Problem of Inventory Control - An Overview	1		
	1.2	Multi-Item Inv.ntory System	2		
	1.3	Literature Review	4		
	1.4	Organization of the Thasis	5		
II.	DETE	7			
	2.1	Assumption	7		
	2.2	Notations	7		
	2.3	Problem Formulation and Solution Methodology	8		
	2.4	Numerical Illustrations	18		
III.	DETERMINISTIC MODER WITH QUANTITY DISCOUNTS				
	3.1	Statement of the Problem	21		
	3.2	Assumptions	22		
	3.3	Nomenclature	22		
	3.4	Problem Formulation and Solution Methodology	23		
	3.5	Numerical Example	25		

Chapter		Page	
IV.	STOCHASTIC MODEL - PERIODIC REVIEW ORDER-UP-TO (R,T) POLICY		
	4.1 Statement of the Problem	26	
	4.2 Assumptions	26	
	4.3 Nomenclature	27	
	4.4 Problem Formulation and Solution Methodology	28	
	4.5 Numerical Example	31	
V.	STOCHASTIC MODEL-CONTINUOUS REVIEW REORDER LEVEL, ORDER QUANTITY (r, Q) POLICY		
	5.1 Statement of the Problem	33	
	5.2 Assumptions	34	
	5.3 Nomenclature	35	
	5.4 Problem Formulation and Solution Methodology	35	
	5.5 Numerical Example	41	
VI.	CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK		
	6.1 Conclusions	43	
	6.2 Scope for Further Research	44	
	REFERENCES	45	

ABSTRACT

Most of the real life inventory systems deal with stocking and issuing of many different items. The items interact among each other through sharing a common sot-up cost of procurement or through competing for a given budget for inventory investment. The present work deals with the determination of optimal coordinated procurement policy parameters considering the above interactions in a multi-item inventory system.

Deterministic models have been developed for the situations allowing shortages and for the situations where group discounts on purchase are available. The joint replenishment models for stechastic demand case are developed for periodic review, order-up-to (R, T) and for continuous review reorder level, order quantity (r, Q) policies.

The solution methodology hase been suggested in all cases and illustrations presented through numerical examples. Scopes for further work have been indicated at the end.

INTRODUCTION

1.1 Problem of Inventory Control - An Overview:

Inventories tie up nost valuable asset; money. We may look on an inventory as a necessary evil even though it is listed in the accounts of the firm as an asset. Like all asset it ties up capital which can be put to other uses. No company has access to unlimited capital. With most, capital is definitely limited. New facilities, replacement facilities, raw materials, finished products, credit to customers, and other demands all complete for the available supply. The main objective of any business organisation is to make money. To quote Hoffman [21], 'Businesses exist to make money for the customer, money for the employee and money for the owner or stock holder. To continue making money, management must constantly increase its productivity through the effective utilization of materials, machines, man power and dollars.

There is a way to save money and generate additional capital at the same time. It will improve company's return on investment, and also make customer happier. The way is through better inventory management, which in turn can be defined as the sum total of those activities necessary for the acquisition, storage, sale, disposal, or use of material.

Since well managed inventories help reduce both the direct expenses of a business plus its investment base (and keep customers happier too), the business return on investment can be dramatically improved. Return on investment is the key ratio of: 'profits-to-investment', it is a prime indicator of the health of a business. Vigilant inventory management, by simultaneously improving profits and reducing investment, can make the business more healthy.

Careful management of inventory is a necessary in order to have adequate stockpiles of raw materials, supplies of and finished goods to provide the desired level of customer service, and no more. Inventory demands on capital will then be held to the lowest practical value.

Inventories are controllable items, which means we have an unexcelled opportunity to do something about the impact of inventories on costs, capital, investment, customer service, profits and return on the business investment.

1.2 Multi-Item Inventory System:

Although literature on inventory can be traced back to 1915, useful work has ensued only after 1951. The later work attempts at structuring real life systems. The formulation, however, has been so complex and cumbersome that most of the research workers have concentrated on only single product inventory models.

On the other hand if an inventory model is to have a practical significance, it should incorporate multi-stage, multi-product and multi-location aspects of inventory theory. Some efforts have been done to the study of individual areas mentioned above, but the field is still wide open for investigation. Once these areas are completely enalysed, a real life situation—an integrated whole of the above — can be structured. Out of the three indicated, the area of multi-item models remains relatively untenanted. Hence, an attempt has been made here to make a practical incision into the field of multi-item-inventory models.

In many real life inventory and production situations, a family of items share a common supplier and/or a common production facility, a common storage space, a common budget, and so on. A common problem with such situations is to coordinate the replenishment or the production of the various items. We shall concentrate on the fixed set up cost of procurement for an inventory system. The results with little modifications apply for the production system. Typically there is a major set-up cost (S) associated with a replenishment of the family. In the procurement context this is the fixed (or header) cost of placing an order, independent of the number of distinct items involved in the In the production environment this is the change-over order. cost associated with converting the facility from the production of some other family to production within the family of interest. Then there is a minor set-up cost (s_i) associated with including item i in a replenishment of the family. In the procurement context s_i is often called the line cost the cost of adding one more item or line to the requisition. From a production stand point s_i represents the relatively minor cost of switching to production of item i from production of some other item within the same family.

1.3 Literature Review:

The vast literature on inventory addresses the single item inventory systems. In the recent past, there has been an appreciable attempt to study the multi-item inventory systems. The problem of joint replenishment has been investigated by a number of authors. Each has discussed the problem under appropriate operating policy. Solution method which uses the dynamic programming has been suggested by Bomberger [2] Iterative solution procedures have been given by a number of authors namely Brown [3], Shu [19], Naddor [11], Doll and Whybark [5] and Goyal [6]. Nucturne [12] has given a graphical solution for the special case of two items. Solution procedures suggested by above authors, however, do not guarantee optimality. The drawback of above methods is that they all are iterative in nature, hence it is difficult to use on mannual basis. Silver [17] has presented a much

simpler non-iterative approach. He has considered a deterministic inventory model when the items are replenished jointly. It is extremely simple to use. The lot size reorder point model has been discussed at length by Hadley and Whitin [8]. Das [4] has developed some aids for lot-size inventory control under normal lead time demand. He has developed an explicit relationship between the two types of measures viz. one based on the penalty cost for shortage and the other on the probability of shortage. Approximations and reduction in dimensionality are the basic tools used for this purpose. These tools have previously been applied to this model by Herron [9], Parker [13], and Presutti and Trapp [15]. Comparable studies for the periodic review model are also reported by Sivazlian [18] and Snyder [20].

1.4 Organization of the Thesis:

The present study deals with analysis of a multi-item single location inventory system. The problem of multi-item coordinated replanishment with shortages backlogged has been investigated in Chapter II. Chapter III deals with coordinated replanishment with quantity discounts, on purchase of items. The case of coordinated replanishment stochastic demand - Periodic Review order-up - To (R,T) policy has been discussed in Chapter IV. In Chapter V, coordinated replanishment stochastic demand - continuous

Roview Reorder level, order quantity (r, Q) policy has been discussed. Chapter VI offers some concluding remarks and puts forward some suggestion for further work.

CHAPTER II

DETERMINISTIC MOD'L WITH SHORTAGES

2.1 Assumptions:

The assumptions made in the analysis of present system are essentially those prevalent in the derivation of classical EOQ except that now items are coordinated to reduce set-up costs.

- i) The demand rate of each item is constant and deterministic.
- ii) The unit variable cost of any of the items does not depend upon the replenishment quantity, in particular there are no quantity discounts.
- iii) The replenishment lead time is constant.
- iv) Shortages are backlogged.
- v) The entire order quantity is delivered at the same time.

2.2 Notations:

- D, the usage rate of item i, in units/year.
- v_i the unit variable cost of item i, in Rs./unit.
- r the inventory carrying charge, in Rs./Rs./year.

- Q; the replenishment quantity of item i, in units.
- S the major set-up (header) cost associated with a replenishment of a group involving one or more items, in Rs.
- si the minor set-up (line) cost associated with item i which is included in the group under consideration in, Rs.
- T the time interval between replenishments of the group, in years.
- n the number of items in the group.
- i iten number (i = 1, 2, ..., n).
- K an integer, is the number of T intervals that the replenishment quantity of item i will last.
- π; back-order cost for item i, in Rs./unit.shut/year
- CH the total holding costs, in Rs./year.
- CB the total backerder costs, in Rs./year.
- Cg the total set-up costs, in Rs./year.
- TRC the total relevant costs, in Rs./year.

2.3 Problem Formulation and Solution Methodology;

Silver [17] has considered the situation of a family of items sharing a common supplier or common production facility. In his model he has considered two cost terms viz. set—up cost and carrying cost. There is a major set—up cost to make a replenishment of the family of items and a minor cost for each item included in the family. For a family of

items sharing a common supplier or common production facility, it makes sense to replenish the various items of a family jointly. He has developed his model assuming depend is deterministic, unit variable cost of the item is constant and shortages are not backlogged. He has solved the model for the best values of T (time between replenishments of the group and K_i 's (the number of integer multiples of T that a replenishment of item i will last) which in turn when substituted in cost equation gives minimum total relevant cost.

The steps involved in Silver's model are summarized below for a guicker expositions.

Step 1:

Number the items such that

$$\frac{s_i}{D_i v_i}$$
 is smallest for item 1. Set $K_1 = 1$.

Stcp 2:

Evaluate,

$$K_{i} = \left[\frac{s_{i}}{D_{i}v_{i}} \cdot \frac{D_{1}v_{1}}{S+s_{1}} \right]^{\frac{1}{2}} \text{ rounded to the nearest}$$
 integer greater than zero.

Step 3:

Evaluate T⁺ with K_i's found in Step 2. From $T^{+} = \left[2\left(S + \sum_{i=1}^{n} \frac{s_{i}}{\kappa_{i}}\right) / r \sum_{i=1}^{n} \kappa_{i} D_{i} v_{i}\right]^{\frac{1}{2}}$

+ TRC (T, K₁'s) =
$$\frac{p_T}{2}$$
 $\sum_{i=1}^{n}$ K₁D₁v₁ + (S+ $\sum_{i=1}^{n}$ $\frac{s_1}{K_1}$)/T

Step 4

Determine,

$$O_{\mathbf{i}} V_{\mathbf{i}} = K_{\mathbf{i}} D_{\mathbf{i}} V_{\mathbf{j}} T^{+} , \qquad \mathbf{i} = 1, 2, \dots, n$$

Goyal and Bolton [7] have pointed out that Step 1 above be modified to number the items such that $\frac{S+si}{D_i}$ rather than $\frac{s_i}{D_i}$ is smallest for item 1. They have shown the modification to yield better results than Silver's original model.

Now we will proceed to formulate our problem of coordinated replenishments with shortages backlogged.

System Annual Cost:

Referring to Fig. 1, we see that if item i is replenished in a quantity sufficient to last for $^{K}_{i}$ T years, where T is the time interval between replenishments of the family, then this quantity is given by,

$$\begin{array}{rcl} \textbf{Q}_{i} &=& \textbf{D}_{i} \ \textbf{K}_{i}\textbf{T} \\ \\ \textbf{Also}, & \textbf{T}_{2} &=& \textbf{b}_{i}/\textbf{D}_{i} \\ \\ \textbf{T}_{1} &=& \textbf{K}_{i}\textbf{T} - \textbf{T}_{2} = \ \textbf{K}_{i}\textbf{T} - \textbf{b}_{i}/\textbf{D}_{i} \\ \\ &=& \frac{\textbf{D}_{i}\textbf{K}_{i}\textbf{T} - \textbf{b}_{i}}{\textbf{D}_{i}} = (\textbf{Q}_{i}-\textbf{b}_{i})/\textbf{D}_{i} \end{array}$$

We now derive different components of the annual cost.

a) Avorage Annual Set-up Cost:

Total set-up costs per year is given by,

$$C_{S} = \frac{S}{T} + \sum_{i=1}^{n} \frac{S_{i}}{K_{i}} T$$

$$C_{H} = r \sum_{i=1}^{n} \frac{v_{i}}{K_{i} T} \times \frac{(O_{i} - b_{i})^{2}}{2D_{i}}$$

c) Average Annual Backorder Cost;

$$C_{B} = \frac{n}{\sum_{i=1}^{n} \frac{\pi_{i}}{K_{i}} \times \frac{b_{i}^{2}}{2D_{i}}}$$

Therefore, Total Relevant Cost

TRC =
$$C_S + C_B + C_H$$

= $\frac{S}{T} + \frac{n}{i=1} \frac{s_i}{K_i T} + \frac{n}{i=1} \frac{\pi_i b_i^2}{2D_i K_i T}$
+ $r = \frac{n}{i=1} \frac{v_i (D_i K_i T - b_i)^2}{2D_i K_i T}$
= $\frac{S}{T} + \sum_{i=1}^{n} \frac{s_i}{K_i T} + \sum_{i=1}^{n} \frac{b_i^2 (\pi_i + rv_i)}{2D_i K_i T}$
+ $r = \frac{n}{i-1} \frac{v_i D_i K_i T}{2} - r = \frac{n}{i=1} v_i$ (1)

Setting,

$$\frac{\partial TRC}{\partial T} = 0, \qquad \frac{\partial TRC}{\partial b_i} = 0$$

gives the best T and b_i 's for particular set of K_i 's, that is,

$$T^{+} (K_{i}'s,b_{i}'s) = \left[\frac{2}{n} (S + \sum_{i=1}^{n} \frac{s_{i}}{K_{i}} + \sum_{i=1}^{n} \frac{b_{i}^{2}(\pi_{i}+rv_{i})}{2D_{i}K_{i}} \right]^{\frac{1}{2}}$$

$$+ \sum_{i=1}^{n} \frac{b_{i}^{2}(\pi_{i}+rv_{i})}{2D_{i}K_{i}} \right]^{\frac{1}{2}}$$
(2)

JOINT REPLENISHMENTS WITH SHORTAGES BACKLOGGE

$$b_{i}^{+}(K_{i}'s, T) = \frac{r v_{i} D_{i} K_{i} T}{(\kappa_{i} + r v_{i})}$$

$$(3)$$

From Eq. (2) after putting the value of b_i from Eq. (3).

$$T^{+}(K_{\underline{i}}'s) = \left[2(S + \sum_{i=1}^{n} \frac{s_{\underline{i}}}{K_{\underline{i}}})/(r \sum_{i=1}^{n} v_{\underline{i}} D_{\underline{i}} K_{\underline{i}} - r^{2} \sum_{i=1}^{n} \frac{v_{\underline{i}}^{2} D_{\underline{i}} K_{\underline{i}}}{(\pi_{\underline{i}} + r v_{\underline{i}})}\right]^{\frac{1}{2}}$$

$$(4)$$

From Eqn. (3) and (4),

$$b_{i}^{+}(K_{i}'s) = \frac{r \ v_{i} \ D_{i} \ K_{i}}{(\pi_{i} + r \ v_{i})} \left[2(S + \frac{n}{2} \ \frac{s_{i}}{K_{i}}) / (r \ \frac{n}{i=1} \ v_{i} \ D_{i}K_{i} \right]$$

$$- r^{2} \sum_{i=1}^{n} \frac{v_{i}^{2} \ D_{i} \ K_{i}}{(\pi_{i} + r v_{i})} e^{\frac{1}{2}}$$
(5)

After putting the values of T and b_i 's from Eqs. (4) and (5) in Eq. (1) we have,

$$TRC^{+} (K_{i}'s) = \left[2(S + \sum_{i=1}^{n} \frac{s_{i}}{K_{i}})(y \sum_{i=1}^{n} v_{i} D_{i}K_{i} - y^{2} \sum_{i=1}^{n} \frac{v_{i}^{2} D_{i} K_{i}}{(\pi_{i} + rv_{i})})\right]^{\frac{1}{2}}$$
(6)

Now our problem is to select the K_i 's to minimize TRC^+ $(K_i$'s). To minimize TRC^+ $(K_i$'s) is equivalent to minimize

$$F(K_{\underline{i}}'s) = \left[S + \sum_{i=1}^{n} \frac{s_{\underline{i}}}{K_{\underline{i}}}\right] \left[r \sum_{i=1}^{n} v_{\underline{i}} D_{\underline{i}} K_{\underline{i}} - r \sum_{i=1}^{n} \frac{v_{\underline{i}}^{2} D_{\underline{i}} K_{\underline{i}}}{(\pi_{\underline{i}} + r v_{\underline{i}})}\right]$$
(7)

If we ignore the integer constraints of K_i 's and set partial derivatives of $F(K_i$ '1) equal to zero, then

$$\frac{F(K_{i}'s)}{K_{j}} = 0 = \left[S + \sum_{i=1}^{n} \sum_{j=1}^{s_{i}} \left[Fv_{j} D_{j} - r \frac{v_{j}^{2} D_{j}}{(\pi_{j} + rv_{j})} \right] - \frac{s_{j}}{K_{i}^{2}} \left[r \frac{D}{i} v_{j} D_{i} K_{i} - r \frac{v_{j}^{2} D_{i} K_{i}}{(\pi_{i} + rv_{i})} \right]$$

or,

$$v_{j} = \begin{bmatrix} \frac{n}{2} & v_{i} & D_{i}v_{i} & -r & \frac{n}{2} & \frac{1}{2} & \frac{K_{i}}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{1}{2} & \frac{K_{i}}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ v_{j} & D_{j} & \left[S + \sum_{i=1}^{n} \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} & \frac{n}{2$$

Put,

$$\frac{\pi_{j}}{\pi_{j} + rv_{j}} = E_{j}$$

$$K_{j}^{2} = \frac{s_{j}}{v_{j}} \sum_{\substack{j=1 \ j = 1}}^{n} v_{i} \sum_{\substack{j=1 \ j = 1}}^{n} v_{j} \sum_{\substack{j=1 \ k_{j} = 1}}^{n} \frac{v_{j}^{2} D_{j} k_{j}}{(\pi_{i} + rv_{j})}] (8)$$

For $j \neq m$ we have,

$$\frac{K_{j}^{2}}{K_{m}^{2}} = \frac{s_{j}}{v_{j}D_{j}E_{j}} \times \frac{v_{m}D_{m}E_{m}}{s_{m}}$$
or,
$$\frac{K_{j}}{K} = \left[\frac{s_{j}}{v_{j}D_{j}E_{j}} \times \frac{v_{m}D_{m}E_{m}}{s_{m}}\right]^{\frac{1}{2}}$$

It is seen that if

$$\frac{s_{j}}{v_{j} D_{j} E_{j}} < \frac{s_{m}}{v_{m} D_{m} E_{m}}$$

then (the continuous solution) K_j is less than (the centinuous solution) K_m . Therefore, the item is for which the ratio $s_i/(v_i \ D_i \ E_i)$ is smallest will have the lowest value of K_i , namely 1. If the items are numbered such that the item 1 has the smallest value of $s_i/(v_i \ D_i \ E_i)$ then from above,

From Eqn. (8),

$$\mathbb{F}_{j} = \mathbb{C} \left[\frac{s_{j}}{v_{j}} \right]^{\frac{1}{2}}, \qquad j = 2,3,\ldots, n$$

where,

$$C = \left[\left(\frac{\frac{n}{\sum_{i=1}^{n} v_{i}} D_{i} K_{i} - r^{\frac{n}{2}} \frac{v_{i}^{2} D_{i} K_{i}}{(\pi_{i} + r v_{i})}}{\frac{n}{\sum_{i=1}^{n} K_{i}}} \right) \right]^{\frac{1}{2}}$$

$$(9)$$

NOW,

$$\sum_{i=1}^{n} v_{i} D_{i} K_{i} = v_{1} D_{1} - C \sum_{i=2}^{n} v_{i} D_{i} \left[\frac{s_{i}}{v_{i} D_{i}} \frac{1^{\frac{1}{2}}}{v_{i}} \right]^{\frac{1}{2}}$$

$$= v_{1} D_{1} + C \sum_{i=2}^{n} \left[\frac{s_{i} v_{i} D_{i}}{E_{i}} \right]^{\frac{1}{2}}$$

$$\sum_{i=1}^{n} \frac{v_{i}^{2} D_{i} K_{i}}{(\pi_{i} + r v_{i})} = \frac{v_{1}^{2} D_{1}}{(\pi_{1} + r v_{1})} + C \sum_{i=2}^{n} \frac{v_{i}^{2} D_{i}}{(\pi_{i} + v_{i} r)} \left[\frac{s_{i}}{v_{i}} D_{i} \right]^{\frac{1}{2}}$$

$$= \frac{v_{1}^{2} D_{1}}{\pi_{1} + v_{1} r} + C \sum_{i=2}^{n} \left[\frac{s_{i}}{\pi_{i}} \frac{1 D_{i}}{1 + v_{i} r} \right]^{\frac{1}{2}}$$

$$\frac{\sum_{i=1}^{n} \frac{s_{i}}{x_{i}}}{\sum_{i=1}^{n} \frac{s_{i}}{x_{i}}} = s_{1} + \frac{1}{C} \sum_{i=2}^{n} \frac{s_{i}}{x_{i}} \left[s_{i} \cdot v_{i} \cdot D_{i} \cdot E_{i} \right]^{\frac{1}{2}}$$

$$= s_{1} + \frac{1}{C} \sum_{i=2}^{n} \left[s_{i} \cdot v_{i} \cdot D_{i} \cdot E_{i} \right]^{\frac{1}{2}}$$

Putting these values in Eqn. (9), we have,

$$C = \left[\begin{array}{cc} \frac{v_1}{S} & \frac{D_1}{S} & \frac{D_1}{2} \\ \end{array} \right]^{\frac{1}{2}}$$

Hence,

$$K_{j} = \left[\begin{array}{ccc} s_{j} & v_{j}D_{j}B_{j} \\ \hline v_{j}D_{j}B_{j} & 5 + \overline{\gamma}_{1} \end{array}\right]^{\frac{1}{2}} \text{ for } j = 2, 3, ..., n (10)$$

The values of K_j ($j=2,3,\ldots,n$) is rounded to the nearest integer greater than zero.

Similar to the steps suggested by Silver [17] we have the following steps for obtaining the $\rm K_i$'s, T, $\rm ^c_i$'s, TRC and $\rm b_i$'s.

Stop 1:

Items are numbered such that,

is smallest for item 1. Set $K_1 = 1$.

Step 2:

Evaluate,

$$\mathbb{Y}_{\mathbf{i}} = \left[\begin{array}{cc} \frac{\mathbf{s}_{\mathbf{i}}}{\mathbf{v}_{\mathbf{i}} \ \mathbf{D}_{\mathbf{i}} \ \mathbf{E}_{\mathbf{i}}} \times \frac{\mathbf{v}_{\mathbf{l}} \ \mathbf{D}_{\mathbf{l}}}{\mathbf{S}} & \frac{\mathbf{F}_{\mathbf{l}}}{\mathbf{s}_{\mathbf{l}}} \end{array} \right]^{\frac{1}{2}}$$

Round off the above values of K_i 's to the nearest integer greater than zero.

Step 3: Evaluate TRC^+ (K_i 's) from Eq. (6) using K_i 's from Step 2.

Step 4: Evaluate T^+ (K_i 's) from Eq. (4) using K_i 's from Step 2.

Step 5: Evaluate $Q_i = K_i L_i D$

Stop 6: Evaluate b_i^+ (K_i 's) from Eq. (5) using K_i 's from Step 2.

A Graphical Aid:

If we have n items in a group to be replonished then from Eq. (10) we see that w. will have to take the square root of Eq. (10) (n-1) times to get the different values of K_i 's. To avoid this square root business, in turn to reduce the computational complexities, a graphical approach is presented here. Because of the rounding rule of Eq. (10) to get the integer values of F_i 's we are indifferent between the integer values K_i and K_i +1 when

is half way between K_{i} and K_{i} +1, that is

$$K_{i} + \frac{1}{2} = \left[\begin{array}{cc} s_{i} & \frac{v_{1} D_{1} E_{1}}{S + S_{1}} \right]^{\frac{1}{2}}$$

or,

$$\frac{s_{\underline{i}}}{v_{\underline{i}}} \frac{s_{\underline{i}}}{v_{\underline{i}}} = (K_{\underline{i}} + \frac{1}{2})^2 \frac{S + s_{\underline{i}}}{v_{\underline{i}} D_{\underline{i}} E_{\underline{i}}}$$

Thus the indifference curves are straight lines passing through the origin in a plot of $s_i/(v_iD_iT_i)$ vs. $S + s_1/(v_iD_iT_i)$ as shown in Fig.2. Multiplication of $s_i/(v_iD_iT_i)$ and $S + s_1/(v_iD_iT_i)$ by the same constant does not have any affect on Eq. (10). This flexibility helps us in the plot of graph. Suppose both the ratios are extremely small, then multiplying both by the same large number, we can ascertain the corresponding points on the graph with great ease.

2.4 Numerical Illustration:

Consider a family of 5 items with the following characteristics -

당 =	Ps. 10	r	= 0.2 8	s./Rs./yo	ar
Itom	^S i	$\pi_{ exttt{i}}$	v	$\mathtt{D}_{\mathtt{i}}$	
ı	1.00	6	0.50	10,000	
2	4.00	5	0.40	1,000	
3	6.00	4	0.35	12,000	
4	8.00	3	0.20	500	
5	9.00	2	0.15	400	

IMPLEMENTATION AID FOR THE DETERMINATION OF THE KI'S

A computerized version of the method is developed in FORTRAN 10 and control parameters have been calculated on DFC system 1090. The results are as follows;

T(YR) = Time between replenishment = 0.139 TRC(Rs./YR) = Total Relevant Cost = 308.06

. Above values have been compared with values when K_i 's for all the items have been taken as l. i.e. items are treated independently. Comparing these two values of total relevant costs, we see that total relevant cost is more when all K_i 's and l. Hence, it is economical to coordinate the items in a group.

Compared results for the illustrative example:

electric of deplementation are one as as as as a section of	May approvate Man or whost		pageon about y fo the o		and the state of the property of the second	H HE SE HALF OF LUMBER HARROWSELL	_ glaver-from to page 100 replacements in the color	
Method			K.'s	-L		T	TRC	
	-	^К 2		K ₄	^K 5	(Y373,)	(Rs./Yr.)	
Manuschild and Laber and College of the Labor of the Age of the Ag	t grant against a marchine and an annual an annual and an annual and an annual an	STATE OF THE PARTY OF						
This Method	l	2	1	6	8	0.139	308.06	
All K _i =	l	l	l	1	l	0.197	384.89	
					THE PROPERTY AND PROPERTY AND ADDRESS OF THE LOCAL	S AND STATE OF STATE OF STREET, STATE OF STATE OF STATE OF STREET, STATE OF STREET, STATE OF	elitabelisación el electropi signi fen y e	

CHAPTER III

DAL BLAINIEGIC WOOST ALL CAMBILL DISCOULTS

3.1 Statement of the Problem:

Cuantity discounts (All units discount) may be offered on the total volume of a replemishment made up of several Here in our problem items are replenished jointly so that most of the times total volume replenished will be sufficient to ask for quantity discounts. As in the case of single item if discount is taken into account the replenishment costs (both fixed and unit costs) will decrease but at the same time inventory carrying costs will increase. For multiple items if every item is included in every raplenishments. the analysis will be like that of single item. But our case is different. Here every item is not included in every replenishment. Items for which K_{i} > 1 is not included in every replenishment even to help achieve a quantity discount level. So on certain replenishments a discount is achieved while on others it is not. Replenishment cycles would be no longer of the same duration T (the ones whe quantity discounts are achieved will be longer than the others). Acc. No. . 63807

As done by Silver [17] consider three possible solutions. The first is one where coordinated analysis is done assuming discount. If the replenishment quantities are sufficient to achieve discount then we are through otherwise not. The second case is where the best result is achieved right at the break point. The third solution is the coordinated solution without a quantity discount. The last two cases are compared. In and I for which the total relevant cost is minimum is used.

J.2 Assumptions:

We make the following assumptions to further characterize the system:

- a) Planning horizon is finite
- b) Demand rate is deterministic and static
- c) Shortages are allowed
- d) Holding cost is linear in nature

3.3 Nomenclature:

We use the following notations:

v_{oi} = unit cost of item i without a discount.

 v_i = unit cost of item i with a discount,

d = discount rate,

Oh = break point quantity,

 $Q_{\rm sm}$ = summation of order quantities for all items having

 $K_i = 1.$

 K_{i} = The number of integer multiples of T that a replenishment of item i will last,

 Ω_{i} = The replenishment quantity of item i

D; = The demand rate of item i,

S = The major set-up cost, associated with the replenishment of the group,

s_{i.} = The minor set-up cost, incurred when iten i is included in the group.

3.4 Problem Formulation and Solution Methodology:

Following are the four steps to get the values of $\mathbf{Q}_{\underline{\mathbf{i}}}$'s considering quantity discounts:

Step 1:

Expressions for K_i 's and T are developed as in Sec.2.3, but with the difference that now each $v_i = v_{oi}(1-d)$. Now the size of the smallest family replenishment is computed which is equal to the summation of order quantities of all items for which $K_i = 1$. If $\Omega_{sm} > \Omega_b$, the values of K_i 's, T and Ω_i 's found above are optimal. If $\Omega_{sm} < \Omega_b$, we proceed to Step 2.

Step 2:

Now the family cycle time T is set equal to T_b which in turn is defined as $T_b = Q_b/(Summation \ of \ D_i's \ of \ all \ items \ having \ K_i = 1).$

According to Eq. (1) of Sec. 2.3, the cost expression at this break point will be as follows:

TRC (
$$T_b$$
, K_i 's) = (1-d) $\sum_{i=1}^{n} D_i v_{oi} + \frac{S + \sum_{i=1}^{n} \frac{S_i}{K_i}}{T_b}$

$$+ \frac{r(1-d)}{2T_{b}} = \frac{n}{i=1} \cdot \frac{v_{0i}(0_{i}-b_{i})^{2}}{v_{0i}} + \frac{1}{2T_{b}} = \frac{n}{i=1} \cdot \frac{\pi_{i}}{v_{0i}} + \frac{b_{i}^{2}}{v_{0i}}$$

Step 3:

Best values of K_i 's, T and Q_i 's are found out as in Sec. 2.3 without quantity discount. According to Eq. (6) of Sec. 2.3 the total relevant cost of this solution will be given as,

TRC (best T and
$$K_i$$
's) = $\sum_{i=1}^{n} D_i v_{oi}$

$$+ \left[2\left(\beta + \frac{n}{\sum_{i=1}^{n} x_{i}}\right)\left(r + \sum_{i=1}^{n} v_{oi} D_{i} x_{i} - r^{2} + \sum_{i=1}^{n} \frac{v_{oi}^{2} D_{i} x_{i}}{\pi_{i} + r v_{oi}}\right)\right]^{\frac{1}{2}}$$

Step 4:

Cost of the best solution without a discount and the cost of the solution where the smallest replenishment quantity is right at the break point are compared i.e. TRC values of Step 2 and Step 3 are compared, whichever of these has the lower cost is then the solution to use. The $K_{\bf i}$'s, T and $\Omega_{\bf i}$'s associated with this solution are to be used.

3.5 Numerical Example:

Consider a family of 5 items with following characteristics;

$$S = 10$$

$$\frac{s_{i}}{4.00} \frac{D_{i}}{543} \frac{v_{i}}{20} \frac{H_{i}}{5} \frac{\pi_{i}}{6}$$

$$5.89 \quad 350 \quad 24 \quad 6 \quad 5$$

$$7.94 \quad 250 \quad 23 \quad 7 \quad 4$$

$$8.19 \quad 110 \quad 32 \quad 8 \quad 3$$

$$8.87 \quad 100 \quad 36 \quad 9 \quad 2$$

A computerized version of the method is developed in FORTRAN 10 and decision variable have been calculated on DEC System 1090. For a particular value of discount optimal results are as follows:

Discount = 0.05

T (YR) = Time between replantshments = 0.1390 TRC (T_b , K_i 's) = Total relevant costs (RS/YR) = 32234.192

Thus for discount of 0.05 it is optimal to replenish items 1, 2 and 3 after every 0.1390 yrs. and items 4 and 5 after every 0.2780 years.

Similarly for different value of discount we can

CHAPTER IV.

STOCHASTIC MODEL - PERIODIC REVIEW ORD R-UP-TO (R, T) POLICY

4.1 Statement of the Problem:

Here the decision rules for coordinated replenishment under stochastic demands will be developed for periodic review system of order-up-to-type. The logic of the basic single item (R, T) model has been extended to include multi-item case. In (R, T) model after every T units of time a quantity is ordered to raise the inventory position to R_i for each item. The analysis of the problem is same as for single item except that here items are replenished jointly to reduce the set-up cost.

4.2 Assumptions:

- a) The inventory levels are reviewed every T units of time and replenishment decisions can be made only at those times.
- b) The unit cost C of the item is constant, independent of the quantity ordered.
- c) The cost of each backorder is π and the ∞ st is independent of length of time for which the backorder exists.
- d) Backorders are incurred only in very small quantities

so that when order arrives, it is almost always sufficient to meet any outstanding backorders.

- E) The replenishment lead time is of fixed duration.
- f) The demand for each item i in a period of duration $(\tau+T) \text{ is normally distributed with known mean } \overline{x}_{\tau+T,i} \text{ and standard d viation } \sigma_{\tau+T,i}.$

4.3 Nomenclature:

S = Fixed set-up cost of replenishment of family of items including review cost,

D; = Domand rate of item i,

si = Variable set-up cost when item i is included in a group to be replenished,

K_i = The number of integer multiples of T that a replenishment of item i will last,

T = Time interval between reviews,

 $U_i = \text{Holding cost per unit} \circ r \text{ year of item i,}$

R; = Order quantity of item :,

 μ_i = Mean d.mand during lead time of item i,

 σ_i = Standard deviation of demand during lead time of item i,

 π_i = Penalty cost per unit short,

n = Number of items in a group.

4.4 Problem Formulation and Solution Methodology;

Under the assumed policy a group replanishment is made every T years and item i is replenished in a quantity sufficient to last for K_i T years. Therefore,

$$\Omega_{i} = D_{i} K_{i} T \qquad (i = 1, 2, ..., n)$$

The various costs shall be given as follows:

a) Average annual set-up cost

$$C_{s} = \frac{s}{T} + \sum_{i=1}^{n} K_{i}^{i}$$

b) Average annual cost of back-order.

Expected back-order during a cycle

$$\overline{B}$$
 (R_i, K_i T) = $(x_i - R_i)$ f (x_i , $\tau + K_i$ T) dx_i

D fine $l(x_i, K_iT) = f(x_i, \tau + K_iT)$.

Therefore,

$$\widetilde{B}(R_i, K_i T) = \int_{R_i}^{R_i} ((x_i - R_i) \widehat{l}(x_i, K_i T) dx_i)$$

The average number of backorders incurred per year,

$$E(R_{i}, K_{i}T) = \frac{1}{K_{i}T} \left(x_{i}-R_{i} \right) \hat{1} \left(x_{i}, K_{i}T \right) dx_{i}$$

Hence average annual cost of backorders,

$$C_{B} = \sum_{i=1}^{n} \frac{\pi_{i}}{K_{i}T} \int_{R_{i}}^{\infty} (x_{i}-R_{i})^{i} (x_{i}, K_{i}T) dx_{i}$$

c) Average annual cost of holding inventory:

Expected net inventory just after the receipt of an order:

$$= R_i - \mu_i$$

Expected net inventory prior to receiving an order

$$= R_{i} - \mu_{i} - D_{i} K_{i}T$$

Now because of assumption 'd' it must be true that the integral over time of the net inventory must very closely approximate the integral over time of the on hand inventory. Hence the expected unit of storage incurred per period is to a good approximation,

$$\begin{bmatrix} \frac{1}{2} (R_{i} - \mu_{i}) + \frac{1}{2} (R_{i} - \mu_{i} - D_{i} K_{i}T) \end{bmatrix} K_{i}T$$

$$= \begin{bmatrix} R_{i} - \mu_{i} - \frac{D_{i} K_{i}T}{2} \end{bmatrix} K_{i}T$$

So that average annual cost of carrying inventory is,

$$C_{H} = \sum_{i=1}^{n} H_{i} \left(R_{i} - \mu_{i} - \frac{D_{i} K_{i}T}{2}\right)$$

Honco, avorage annual variable cost is

$$C = C_{s} + C_{H} + C_{B} = \frac{S}{T} + \sum_{i=1}^{n} \frac{s_{i}}{K_{i}T} + \sum_{i=1}^{n} H_{i}(R_{i} - \mu_{i} - \frac{D_{i}K_{i}T}{2} + \sum_{i=1}^{n} \frac{H_{i}(R_{i} - \mu_{i} - \frac{D_{i}K_{i}T}{2} + \sum_{i=1}^{n} \frac{\pi_{i}}{K_{i}T}) \cdot (x_{i}, K_{i}T) dx_{i}$$

Derivation of the Proposed Decision Rules:

For a given T and K_i 's, setting $\partial C/\partial R_i = 0$ fives the best R_i for the particular set of K_i 's.

$$\frac{R_{i}^{C}}{SR_{i}} = 0 = H_{i} - \frac{\pi_{i}}{K_{i}T} \quad \hat{K}_{i} \quad \hat{I} \quad (x_{i}, K_{i}T) \quad dx_{i}$$

$$= H_{i} - \frac{\pi_{i}}{K_{i}T} \quad I \quad (R_{i}, K_{i}T)$$

whore,

$$L(R_{i}, K_{i}T) = \int_{R_{i}}^{A} \hat{I}(x_{i}, K_{i}T) dx_{i}$$

Thus Ri, optimal value of Ri is a solution to

or
$$L(R_{i}, K_{i}T) = \frac{H_{i} K_{i}T}{\pi_{i}}$$
$$(\frac{R_{i}-\mu_{i}}{\sigma_{i}}) = \frac{H_{i} K_{i}T}{\pi_{i}}$$

or
$$R_{i} = \mu_{i} + \sigma_{i} Z_{p_{i}}$$
 where $p_{i} = \frac{H_{i} K_{i}T}{\pi_{i}}$

By giving different values to sets of K_i and T we can have different values of R_i . For each set of K_i 's changing the value of T, the cost C for each T is calculated. The T corresponding to the minimum cost is chosen. The set of K_i 's which gives lowest of these minimum is taken as

optimal one. Due to the probabilistic nature of demand to get an exact expression for K_i (the number of integer multiples of T that a replenishment of item i will last) is quite involved. So different sets of K_i 's have been supplied as problem parameter and total relevant costs for each set are calculated and then compared to give that set of K_i 's which gives minimum total relevant cost.

4.5 Numerical Example:

Consider a family of 5 items with following characteristics:

S = Rs. 10.00

 $\tau = 0.03 \text{ yr}$

^S i	π _i	Hi	$^{ extsf{D}_{f i}}$	μi	σ _i 2
3	25	3	50	75	100
4	20	4	400	500	600
5	24	3.	100	150	200
6	23	2	150	200	250
7	21	5	500	600	650
				Managramatical with grade, to	

A computerized version of the method is developed in FORTRAN 10 and decision variables have been calculated on DEC System 1090.

For different sets of K_i 's, optimal values of time between replenishments and total relevant cost have been

calculated. Finally one having the lowest of these minimum is taken as optimal one. The results are as follows:

K _i 's				T (Yrs.)	TRC (Rs./Yr.)		
K_1	K ₂	K ₃	K ₄	^K 5	ale (ale ale no o o)	appropriate the the three between the total to the terminate the total terminate the t	
1	1	7_	1	1	0.10	1004.85	
2	1	2	2	1	0.08	992.91+	
3	1	2	2	l	0.08	1001.65	
2	1	2	l	ı	0.08	.1004.00	
2	1	1	1	ı	0.08	1003.89	
		, , , , , , , , , , , , , , , , , , , ,	The radio of a Walter Str.		TO ANY DE BL. of Miles and the Secondary and the		

Lowest of these costs is 992.91 Rs./Yr. So our optimal policy is to set the values of K_i 's as 2,1,2,2,1. One can also note that the total relevant cost when all K_i 's are 1, is highest compared to other costs where items are jointly replanished. Hence it is beneficial to replanish the items jointly.

STOCHASTIC MODEL - CONTINUOUS REVIEW REORDER LEVEL, ORDER QUANTITY (r, Q) POLICY

5.1 Statement of the Problem:

One of the most popular types of inventory management is the (r, Q) system, in which a quantity Q of an item is reordered whenever the inventory position goes to the roarder point r or below. The use of (r, Q) inventory policy has grown rapidly as automatic data processing equipment has become available to perform the necessary calculations and transaction reporting. Computer firms have developed detailed package programmes for continuous transactions survicllance and calculation of order quantities and reorder Das [4] has developed a model which is suitable for computer application to determine accurately the minimum cost values of Q and r, employing either stockout penalties or specified service levels. In his model he has developed an equivalance relationship between the penalty cost and disservice level assuming that the demand during lead time is normally distributed. He has also developed explicit formulas for the optimal order size and reorder point. To

reduce the computational complexities he has transformed the equations into a single equation of one unknown.

Das has developed some aids for lot size inventory control considering single item and without any constraint. To make the problem more realistic we have extended Das's work to include multi-item, budgetary constraints. The reorder level for different item is different. As soon as the item i crosses its reorder level r_i , an amount θ_i is ordered for that item. The problem has been worked for an optimal order quantity θ_i , its optimal reorder level r_i and an equivalence relationship between the penalty cost and disservice level. The model has been supported with numerical example also at the end of the Chapter.

5.2 Assumptions:

- a) Out-of-stock items may be backerdered and delivered when available,
- b) Periods of stockouts are of short duration so that the average inventory can be approximated as the sum of the safety stock plus one half the order quantity.
- c) The repl mishment lead time is constant and the deplane during lead time is normally distributed.
- d) The unit cost C of an item is independent of C i.e. quantity discount is not allowed.

e) There is never more than a single order outstanding for an item i.

5.3 Nomenclature:

 C_i = Unit cost of item i,

D; = Expected annual demand of item i,

 $Q_i = Order size of item i,$

R; = Reorder point of item i,

A; = Fixed order cost per order for item i,

H; = Holding cost per unit per year of item i,

 π_i = P enalty cost per unit short of item i,

 μ_i = Mean lead time demand of item i,

 σ_i = Standard deviation of lead time demand of item i,

0 = Lagrangian multiplior,

B = Upper limit of the budget.

5.4 Problem Formulation and Solution Methodology:

The lot size reorder; int inventory model has been discussed at length by Hadley and Whitin [8]. They have developed an expression for average annual cost for single item without any constraints. On the same line the average annual cost for multi-item with budgetary constraints is given by,

$$K (\Omega_{i}, R_{i}) = \sum_{i=1}^{n} \left[\frac{D_{i}A_{i}}{Q_{i}} + \left(\frac{Q_{i}}{2} + R_{i} - \mu_{i} \right) H_{i} + \frac{D_{i}\pi_{i}}{Q_{i}} L(R_{i}) \right]$$

$$(1)$$

Such that
$$\sum_{i=1}^{n} C_{i} \cap_{i} \subseteq B$$
 (2)

where
$$L(R_i) = \begin{cases} (x_i - R_i) h(x_i) dx_i \\ R_i \end{cases}$$
 (3)

 $h(x_{\bf i})$ being the probability density of lead time demand assumed to be normal with mean $\mu_{\bf i}$ and standard deviation $\tau_{\bf i}$.

First we solve the problem ignoring the constraint (2), i.e. we minimize ever each Ω_i separately. If these Ω_i 's satisfy (2), then these Ω_i 's are optimal. In such a case constraint is not active.

On the other hand if the Ω_i 's do not satisfy (2) then the constraint is active and the Ω_i 's are not optimal. To find the optimal Ω_i 's and R_i 's, the Lagrange multiplier technique is used. We form the function,

$$J = \sum_{i=1}^{n} \left[\frac{D_{i}A_{i}}{Q_{i}} + \left(\frac{Q_{i}}{2} : R_{i} - \mu_{i} \right) H_{i} + \frac{D_{i}\pi_{i}}{Q_{i}} L(R_{i}) \right] + \Theta \left(\sum_{i=1}^{n} C_{i}Q_{i} - B \right)$$
(4)

where the parameter θ is a Lagrange multiplier.

Then the set of Q_i 's and R_i 's, $i=1,2,\ldots,n$ which yield the absolute minimum of Eq.(1) subject to Eq.(2) are solution to the set of equations,

$$\frac{1}{1} = -\frac{D_{i}A_{i}}{Q_{i}} + \frac{H_{i}}{2} - \frac{D_{i}\pi_{i}}{Q_{i}} L(R_{i}) + \Theta C_{i} = 0$$
 (5)

$$\frac{\partial J}{\partial B} = C_{i} C_{i} - B = 0$$

$$\frac{\partial J}{\partial B_{i}} = B_{i} - \frac{D_{i} \pi_{i}}{G_{i}} \int_{B_{i}}^{C} h(x_{i}) dx_{i}$$
(6)

oi,
$$\int_{\mathcal{X}_{\dot{\mathbf{1}}}} h(x_{\dot{\mathbf{1}}}) dx_{\dot{\mathbf{1}}} = \frac{\prod_{\dot{\mathbf{1}}} \Omega_{\dot{\mathbf{1}}}}{D_{\dot{\mathbf{1}}} \pi_{\dot{\mathbf{1}}}}$$
 (7)

From Eq. (5) we have,

$$C_{i}^{2} = \left[2D_{i}/(U_{i} + 2\Theta C_{i})\right] \left[A_{i} + \pi_{i} L(R_{i}) \right]$$
 (8)

Now late f(.) be the standardized normal density and define,

$$\mathcal{I}(r_i) = \int_{z_{r_i}} (z_i - z_{r_i}) f(z_i) dz_i$$

whore Z_{r_i} is such that $r_i = \sum_{Z_{r_i}} f(Z_i) dZ_i$ Let $p_i = \frac{H_i}{D_i} \frac{0_i}{\pi_i} = \sum_{R} h(-i) dx_i$

= risk of stockout of itom i during lead time for given (i

$$Z_{p_{i}} = \frac{R_{i} - \mu_{i}}{\sigma_{i}} \quad \text{or} \quad R_{i} = \mu_{i} + \sigma_{i} \quad Z_{p_{i}}$$
 (9)

Substituting Eq. (9) in Eq. (3) it can be shown that

$$L(R_{i}) = \sigma_{i} M(p_{i})$$

Using above in Eq. (8) and simplifying

$$Q_{i}^{2} = \frac{2D_{i}}{H_{i} + 2\Theta C_{i}} [A_{i} + \pi_{i}\sigma_{i} M(p_{i})]$$
or
$$\frac{D_{i} \pi_{i} (H_{i} + 2\Theta C_{i})}{2\sigma_{i} H_{i}^{2}} p_{i}^{2} - \frac{A_{i}}{\pi_{i} \sigma_{i}} = M(p_{i})$$
or,
$$u_{i} p_{i}^{2} - v_{i} = M(p_{i})$$
where,
$$u_{i} = \frac{D_{i} \pi_{i} (H_{i} + 2\Theta C_{i})}{2\sigma_{i} H_{i}^{2}}, v_{i} = \frac{A_{i}}{\pi_{i} \sigma_{i}}$$
(10)

Thus, the original problem of determining Q_i^+ and R_l^+ is reduced to determining p_i^+ such that Eq. (10) is satisfied. There is no explicit expression for M here, therefore M is approximated by a quadratic form because L.H.S. of Eq.(10) is quadratic in p. Therefore, fitting $ap_i^{-2}+bp_i^{-2}+c$ (by least squares method) through 59 values of M in the range 0.004 $< p_i < 0.499$, we find c = 0.79838, c = 0.39694, and c = -0.00044 with 0.001 (approx.) as the maximum absolute error.

Hence, p_i^{\dagger} can be estimated by the positive root of the eqn.

$$u_{i}p_{i}^{2} - v_{i} = ap_{i}^{2} + bp_{i} + c$$
 (11)
or, $(u_{i} - a) p_{i}^{2} - bp_{i} - (v_{i} + c) = 0$

The refere,

$$p_{i} = b + [b^{2} + 4(u_{-n}) (v_{i} + c)]^{\frac{1}{2}}$$

$$2(u_{i} - a)$$
(12)

which gives,

$$O_{i}^{+} = \frac{D_{i} \pi_{i}}{H_{i}} p_{i}^{+} \qquad (13)$$

$$R_{i}^{+} = \mu_{i} + \sigma_{i} Z_{p_{i}^{+}}$$
 (14)

Further, multiplying both sides of Eq. (8) by $\rm H_i + 20C_i/2C_i$ and rearranging we get,

$$\frac{D_{i} \pi_{i}}{C_{i}} L(R_{i}) = \frac{Q_{i}(H_{i} + 2\Theta C_{i})}{2} - \frac{A_{i} D_{i}}{Q_{i}}$$
(15)

Now from Eq. (1) and Eq. (15), we have,

$$K(Q_{i}^{+}, R_{i}^{+}) = \sum_{i=1}^{n} [(Q_{i} + R_{i} - \mu_{i}) H_{i} + \ThetaC_{i}]$$

$$= \sum_{i=1}^{n} [(Q_{i} + \sigma_{i} Z_{p_{i}^{+}}) H_{i} + \ThetaC_{i}] \qquad (16)$$

Substituting the values of u_i and v_i in Eq. (10) and writing $M(p_i) = M_i$

$$\frac{\sum_{i} \pi_{i} (H_{i} + 2\ThetaC_{i})}{2\sigma_{i}H_{i}} p_{i}^{2} - \frac{A_{i}}{\pi_{i}\sigma_{i}} = M_{i}$$
or,
$$(\frac{p_{i}^{2}}{2})(\frac{H_{i} + 2\ThetaC_{i}}{2}) n_{i}^{2} - M_{i}\sigma_{i}\pi_{i} - A_{i} = 0$$

This is quadratic in π_i , hence for $\pi_i > 0$

$$\pi_{i}^{+} = \frac{M_{i} \sigma_{i} + [(H_{i}\sigma_{i})^{2} + 2A_{i}p_{i}^{2} (\frac{D_{i}(H_{i}+2\ThetaC_{i})}{H_{i}})]^{\frac{1}{2}}}{p_{i}^{2} (\frac{D_{i}(H_{i}+2\ThetaC_{i})}{H_{i}^{2}})}$$

$$= \frac{H_{i}^{2}}{p_{i}D_{i}(H_{i}+2\ThetaC_{i})} [\frac{M_{i}\sigma_{i}}{p_{i}} + ((\frac{M_{i}\sigma_{i}}{p_{i}})^{2} + (P_{i},\sigma_{i}))]^{\frac{1}{2}}$$

$$+ \frac{2A_{i}D_{i}(H_{i}+2\ThetaC_{i})}{H_{i}^{2}} [\frac{M_{i}\sigma_{i}}{p_{i}} + (P_{i},\sigma_{i})]^{\frac{1}{2}} = \pi_{i}^{+} (P_{i},\sigma_{i}) (17)$$

Since $M(p_i) < p_i$ for all $p_i < 0.5$, hence as p_i increases r.h.s. of Eq. (17) decreases, consequently ${\pi_i}^+$ decreases. Thus ${\pi_i}^+$ and p_i are inversely related. This emplies that higher the penalty cost $({\pi_i}^+)$ greater is the protection against stockouts (p_i) . Similarly an increase in the variability of load time demand increases penalty cost and calls for higher level of service in the optimum.

If survice level is freduced by increasing p_i to p_i , then the unit penalty cost must be reduced by an amount,

$$\Delta_{l,i} = \pi_i^+(p_i, \sigma_i) - \pi_i^+(p_i', \sigma_i)$$

Similarly, if the variance of lead time demand increases from $\sigma_i^{\ 2}$ to $\sigma_i^{\ 2}$, then the unit penalty cost must be increased by,

$$\Delta_{2,i} = \pi_{i}^{+}(p_{i}, \sigma_{i}') - \pi_{i}^{+}(p_{i}, \sigma_{i})$$

5.5 Numerical Example:

Consider a family of 6 items and assume that the following parameter values are known,

D _i	ii.	Ci	Ai	πί	lli	$\sigma_{ ext{i}}$
3430	14	20	6	1.0	35.0	60
2000	12	100	પ	1.2	350	30
1091	11	50	9	1.1	100	15
1500	12	90	7	1.2	150	15
2700	13	40	5	1.0	250	20
4000	15	60	8	1.1	400	30
* * *** * *		and the second of the particular of	-	944 PM NO AND PM	A THEOLOGOPHE SHEET, AND ADDRESS OF THE PERSONS ASSESSED.	serie de cipiaramenta

A computerised version of the method is developed and decision variables have been calculated on DEC system 1090. By changing the value of 0, grand total relevant costs are calculated. It has been seen that as 0 increases, the grand total relevant cost first decreases to give minimum and then increases. O correst onding to minimum cost is taken as optimal one. The various results are as follows:

a (Theta)	GTRC (Rs./Yr)	$\Theta(\text{Thota})$	GTRC (Rs./Yr)
0.00 0.50 1.00 1.50 2.00 2.50 3.00	6454.00 4510.85 4352.90 4327.80+ 4339.00 4339.10 4371.45 4309.65	4.00 4.50 5.00 5.50 6.00 6.50 7.00	4415.60 4459.25 4462.40 4477.30 4511.55 4539.25 4550.00

From above results, we see that GTRC corresponding to $\theta=1.5$ is the lowest. Hence this is taken as optimal one.

Corresponding to $\theta=1.5$, the following table gives the various values of Ω_i^{+} 's, R_i^{+} 's, total cost and p_i^{+} 's.

paymentered of their his conduction for		er was a barre women	-	A seed it are specificated annihilation and are the transfer provided provided by the pression of the pression
Itom	Q _i +	Rit	p _i +	Total Cost (Rs./Yr)
1	29	419	0.12	1380.40
2	10	398	0.05	703.20
3	11	118	0.11	325.60
4	8	173	0.06	375.00
5	15	279	0.07	574.60
6	19	445	0.07	969.00
			and the same transfer and the same transfer and	TOTALITA NAME STATE BENEVICE TOTAL CONTROL OF THE PARTY O

Grand Total Relevant Cost = 4327.80

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

6.1 Conclusions:

In the present study, some coordinated replenishment policies for multi-item inventory systems have been formulated, solution muthodologies suggested and illustration presented through numerical examples. The items share a major fixed replenishment cost or compete for a given total inventory investment. For the deterministic demand case, Silver's popular model has been extended for the case of shortages allowed with backlogging and for the case where group discounts are available for ordering several items simultaneously so as to make the total purchase money value equal to or greater than a given value. For the case of stochastic demand, joint replenishment pelicies have been formulated for the popular periodic review (R, T) and continuous review (r, 0) policies. The demands in lead time are assumed to be distributed normally. For the (r, 0) policy, Das's approach has been applied to include multi-item interaction yielding a budgetary constraint.

In all above case, as might be expected, computational complexities multiply as the number of items in the system increases. The appropriate houristic approach is suggetted to make the models as far as possible computationally simpler.

6.2 Scope for Future Research:

The present work on multi-item coordinated replenishment though brings some popular single item models to the application in a more realistic situation, is still far from complete in that much more is to be done to evolve an operating policy for a practical situation. Joint replenishment models for multi-ech.lon inventory system or for multi-stage production system will obviously serve many more real life situations as many organization are of such typls. The analysis of dynamic demands case will yield the models to control the systems where there is seasonality in the demands of items. It would be quite realistic and purposeful to analyze the multi-item systems where items have varying characteristics, such as some consumable while others perishable, decaying or repairable.

REFERENCES

- Baker, K.R., 'On Madigan's Approach to the Deterministic Multi-Product Production and Inventory Problem', Management Science, Vol. 12, No.9, May 1970, pp. 636-638.
 - 2. Bomberger, E., 'A Dynamic Programming Approach to a Lot Size Scheduling Problem', Management Science, Vol. 12, No. 11, July 1966, pp. 778-784.
 - 3. Brown, R.G., 'Decision Rules for Inventory Management, Holt Kinchart and Winston, New York, 1967, Chap. 5.
 - 4. Das, C., 'Some Aids for Lot-Size Inventory Control Under Normal Lead Time Demand', AIIE Transactions, March, 1975.
 - 5. Doll, C.L. and D.C. Whybark, 'An Iterative Procedure for the Single-Machine Multi-Product Lot Scheduling Problem', Management Science, Vol. 20, No. 1, Sept. 1973, pp. 50-55.
 - 6. Goyal, S.K., 'Determination of Economic Packaging Frequency for Items Jointly Replenished', Management Science, Vol. 20. No. 2, October, 1973, pp. 232-235.
 - 7. Goyal, S.K. and Belton, A.S., 'On a Simple Method of Determining Order Quantities in Joint Replenishments Under Deterministic Demand', Management Science, Vol. 25, No. 6, June, 1979, pp. 604.
 - 8. Hadley, G., Whitin, T. T. Prentice Hall, Inc., Englowood Cliffs, N.J., 1963, Cap. 4 and 5.
 - 9. Horron, D.P., 'Inventory Management for Minimum Cost', Management Science, 14, 4, B219-235 (1967).
 - Magigan, J.G., 'Scheduling a Multi-Product Single Machine System for an Infinite Planning Period', Management Science, Vol. 14, No. 11, July 1968, pp. 713-719.
 - 11. Naddor, E., Inventory Systems, John Wiley, New York, 1966, pp. 102-105.
 - 12. Mocturno, D.J., 'Economic Ord ring Frequency for Soveral Items Jointly Replenished', Management Science, Vol. 19, No.9, May 1973, pp. 1093-1096.

- Parker, L.J., 'Economical Order Cuantities and Reorder Points with Uncertain Demand', Naval Res. Log. Cuart., 11, 4, 351-358 (1964).
- 14. Poterson, R. and E.A. Silver, Decision Systems for Inventory Management and Production Planning, John Wiley, 1979.
- Presutti, V.J., and Trepp, R.C., 'More Ado About Economic Order Quantities (EOQ)', Naval Res. Log. Quart. 17, 243, 251 (1970).
- 16. Rogers, J., 'A Computational Approach to the Economic-Lot Scheduling Problem', Management Science, Vol.4, No.3, April 1958, pp. 264-291.
- 17. Silver, E.A., 'A Simple Method of Determining Order Quantities in Joint Replenishments Under Deterministic Demand', <u>Management Science</u>, Vol. 22, No. 12, August 1976, pp. 1351-1361.
- 18. Sivazlian, B.D., 'Dimensional and Computational Analysis in Stationary (S, s) Inventory Problems with Gamma Distributed Damand', Management Science, 17, 307-311 (1971).
- 19. Shu, F.T., 'Economic Ordering Frequency for Two Items Jointly Replanished', Management Science, Vol.17, No. 6, February 1971, pp. 406-410.
- 20. Snyder, A.D., 'Computation of (S,s) Ordering Policy Parameters', Management Science, 21, 2 223-229 (1974).

IMEP-1900-M-RAY-COD

A 63807

This book is to be returned on the

date last stamped.