

UNIVERSITY INSTITUTE OF COMPUTING MASTER OF COMPUTER APPLICATIONS

Design and Analysis of Algorithms

24CAT-611

DISCOVER . LEARN . EMPOWER

0/1 Knapsack Problem

In 0/1 Knapsack Problem,

- •As the name suggests, items are indivisible here.
- •We can not take the fraction of any item.
- •We have to either take an item completely or leave it completely.
- •It is solved using dynamic programming approach.

U/ I Knapsack Problem Using Dynamic

Programming

Consider-

- •Knapsack weight capacity = w
- •Number of items each having some weight and value = n

0/1 knapsack problem is solved using dynamic programming in the following steps-

Step-01:

- •Draw a table say 'T' with (n+1) number of rows and (w+1) number of columns.
- •Fill all the boxes of 0th row and 0th column with zeroes as shown-

T-Table

Step-02:

Start filling the table row wise top to bottom from left to right. Use the following formula-

$$T(i, j) = max \{ T(i-1, j), value_i + T(i-1, j - weight_i) \}$$

Here, T(i, j) = maximum value of the selected items if we can take items 1 to i and have weight restrictions of j.

- •This step leads to completely filling the table.
- •Then, value of the last box represents the maximum possible value that can be put into the knapsack.

Step-03:

To identify the items that must be put into the knapsack to obtain that maximum profit,

- Consider the last column of the table.
- •Start scanning the entries from bottom to top.
- •On encountering an entry whose value is not same as the value stored in the entry immediately above it, mark the row label of that entry.
- •After all the entries are scanned, the marked labels represent the items that must be put into the knapsack.

Time Complexity-

- •Each entry of the table requires constant time $\theta(1)$ for its computation.
- •It takes $\theta(nw)$ time to fill (n+1)(w+1) table entries.
- •It takes $\theta(n)$ time for tracing the solution since tracing process traces the n rows.
- •Thus, overall $\theta(nw)$ time is taken to solve 0/1 knapsack problem using dynamic programming.

Example

For the given set of items and knapsack capacity = 5 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Item	Weight	Value		
1	2	3		
2	3	4		
3	4	5		
4	5	6		

Example

Find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach. Consider-

$$n = 4$$

 $w = 5 \text{ kg}$
 $(w1, w2, w3, w4) = (2, 3, 4, 5)$
 $(b1, b2, b3, b4) = (3, 4, 5, 6)$

Solution

Given-

- •Knapsack capacity (w) = 5 kg
- •Number of items (n) = 4

Step-01:

- •Draw a table say 'T' with (n+1) = 4 + 1 = 5 number of rows and (w+1) = 5 + 1 = 6 number of columns.
- •Fill all the boxes of 0th row and 0th column with 0

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

T-Table

Working Procedure

Step-02:

Start filling the table row wise top to bottom from left to right using the formula-

```
T(i, j) = max \{ T(i-1, j), value_i + T(i-1, j - weight_i) \}
```

Finding T(1,1)-

```
We have,

•i = 1

•j = 1

•(value)<sub>i</sub> = (value)<sub>1</sub> = 3

•(weight)<sub>i</sub> = (weight)<sub>1</sub> = 2

Substituting the values, we get-

T(1,1) = max \{ T(1-1, 1), 3 + T(1-1, 1-2) \}

T(1,1) = max \{ T(0,1), 3 + T(0,-1) \}

T(1,1) = T(0,1) \{ Ignore T(0,-1) \}

T(1,1) = 0
```


Finding T(1,2)-

```
We have,

•i = 1

•j = 2

•(value)<sub>i</sub> = (value)<sub>1</sub> = 3

•(weight)<sub>i</sub> = (weight)<sub>1</sub> = 2

Substituting the values, we get-

T(1,2) = max \{ T(1-1, 2), 3 + T(1-1, 2-2) \}

T(1,2) = max \{ T(0,2), 3 + T(0,0) \}

T(1,2) = max \{ 0, 3+0 \}

T(1,2) = 3
```


Finding T(1,3)-

```
We have,

•i = 1

•j = 3

•(value)<sub>i</sub> = (value)<sub>1</sub> = 3

•(weight)<sub>i</sub> = (weight)<sub>1</sub> = 2

Substituting the values, we get-

T(1,3) = max { T(1-1, 3), 3 + T(1-1, 3-2) }

T(1,3) = max { T(0,3), 3 + T(0,1) }

T(1,3) = max {0, 3+0}

T(1,3) = 3
```


Finding T(1,4)-

```
We have,

•i = 1

•j = 4

•(value)<sub>i</sub> = (value)<sub>1</sub> = 3

•(weight)<sub>i</sub> = (weight)<sub>1</sub> = 2

Substituting the values, we get-

T(1,4) = max \{ T(1-1, 4), 3 + T(1-1, 4-2) \}

T(1,4) = max \{ T(0,4), 3 + T(0,2) \}

T(1,4) = max \{ 0, 3+0 \}

T(1,4) = 3
```


Finding T(1,5)-

```
We have,

•i = 1

•j = 5

•(value)<sub>i</sub> = (value)<sub>1</sub> = 3

•(weight)<sub>i</sub> = (weight)<sub>1</sub> = 2

Substituting the values, we get-

T(1,5) = max \{ T(1-1,5), 3 + T(1-1,5-2) \}

T(1,5) = max \{ T(0,5), 3 + T(0,3) \}

T(1,5) = max \{ 0, 3+0 \}

T(1,5) = 3
```


Finding T(2,1)-

```
We have,

•i = 2

•j = 1

•(value)<sub>i</sub> = (value)<sub>2</sub> = 4

•(weight)<sub>i</sub> = (weight)<sub>2</sub> = 3

Substituting the values, we get-

T(2,1) = max \{ T(2-1, 1), 4 + T(2-1, 1-3) \}

T(2,1) = max \{ T(1,1), 4 + T(1,-2) \}

T(2,1) = T(1,1) \{ Ignore T(1,-2) \}

T(2,1) = 0
```


Finding T(2,2)-

```
We have,

•i = 2

•j = 2

•(value)<sub>i</sub> = (value)<sub>2</sub> = 4

•(weight)<sub>i</sub> = (weight)<sub>2</sub> = 3

Substituting the values, we get-

T(2,2) = max \{ T(2-1, 2), 4 + T(2-1, 2-3) \}

T(2,2) = max \{ T(1,2), 4 + T(1,-1) \}

T(2,2) = T(1,2) \{ Ignore T(1,-1) \}

T(2,2) = 3
```


Finding T(2,3)-

```
We have,

•i = 2

•j = 3

•(value)<sub>i</sub> = (value)<sub>2</sub> = 4

•(weight)<sub>i</sub> = (weight)<sub>2</sub> = 3

Substituting the values, we get-

T(2,3) = max \{ T(2-1, 3), 4 + T(2-1, 3-3) \}

T(2,3) = max \{ T(1,3), 4 + T(1,0) \}

T(2,3) = max \{ 3, 4+0 \}

T(2,3) = 4
```


Finding T(2,4)-

```
We have,

•i = 2

•j = 4

•(value)<sub>i</sub> = (value)<sub>2</sub> = 4

•(weight)<sub>i</sub> = (weight)<sub>2</sub> = 3

Substituting the values, we get-

T(2,4) = max \{ T(2-1, 4), 4 + T(2-1, 4-3) \}

T(2,4) = max \{ T(1,4), 4 + T(1,1) \}

T(2,4) = max \{ 3, 4+0 \}

T(2,4) = 4
```


Finding T(2,5)-

```
We have,

•i = 2

•j = 5

•(value)<sub>i</sub> = (value)<sub>2</sub> = 4

•(weight)<sub>i</sub> = (weight)<sub>2</sub> = 3

Substituting the values, we get-

T(2,5) = max \{ T(2-1, 5), 4 + T(2-1, 5-3) \}

T(2,5) = max \{ T(1,5), 4 + T(1,2) \}

T(2,5) = max \{ 3, 4+3 \}

T(2,5) = 7
```

Working procedure

Similarly, compute all the entries.

After all the entries are computed and filled in the table we get the following table-

72	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
/ 2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

T-Table

- •The last entry represents the maximum possible value that can be put into the knapsack.
- •So, maximum possible value that can be put into the knapsack = 7.

Identifying Items To Be Put Into Knapsack-

Following Step-04,

- •We mark the rows labelled "1" and "2".
- •Thus, items that must be put into the knapsack to obtain the maximum value 7 are
 Item-1 and Item-2

References

1. https://www.gatevidyalay.com/tag/0-1-knapsack-problem-ppt/

Books:

- 1. Introduction to Algorithms by Coreman, Leiserson, Rivest, Stein.
- 2. Fundamentals of Algorithms by Ellis Horwitz
- 3. Computer Algorithms/C++ by Sartaj Sahni, Sanguthevar Rajasekaran

