fn sample_bernoulli_float

Vicki Xu, Hanwen Zhang, Zachary Ratliff
October 3, 2025

This proof resides in "contrib" because it has not completed the vetting process.

Warning 1 (Code is not constant-time). sample_bernoulli_float takes in a boolean constant_time parameter to protect against timing attacks on the Bernoulli sampling procedure. However, the current implementation does not guard against other types of timing side-channels that can break differential privacy, e.g., non-constant time code execution due to branching.

PR History

• Pull Request #473

This document proves that the implementation of sample_bernoulli_float in mod.rs at commit f5bb719 (outdated¹) satisfies its proof definition.

sample_bernoulli_float considers the binary expansion of prob into an infinite sequence a_i, like so: $\operatorname{prob} = \sum_{i=0}^{\infty} \frac{a_i}{2^{i+1}}$. The algorithm samples $I \sim Geom(0.5)$ using an internal function sample_geometric_buffer, then returns a_I .

0.1 Hoare Triple

Preconditions

- User-specified types:
 - Variable prob must be of type T
 - Variable constant_time must be of type bool
 - Type T has trait Float. Float implies there exists an associated type T::Bits (defined in FloatBits) that captures the underlying bit representation of T.
 - Type T::Bits has traits PartialOrd and ExactIntCast<usize>
 - Type usize has trait ExactIntCast<T::Bits>

Pseudocode

```
# returns a single bit with some probability of success

def sample_bernoulli_float(prob: T, constant_time: bool) -> bool:

if prob == 1: #

return True
```

¹See new changes with git diff f5bb719..10307ed rust/src/traits/samplers/bernoulli/mod.rs

```
# prepare for sampling first heads index by coin flipping
6
      max_coin_flips = usize.exact_int_cast(T.EXPONENT_BIAS) + usize.exact_int_cast(
         T.MANTISSA_BITS
8
         #
10
      # find number of bits to sample, rounding up to nearest byte (smallest sample size)
11
12
      buffer_len = max_coin_flips.inf_div(8) #
13
      # repeatedly flip fair coin and identify 0-based index of first heads
14
      first_heads_index = sample_geometric_buffer( #
15
16
          buffer_len, constant_time
17
18
      # if no events occurred, return early
19
20
      if first_heads_index is None: #
          return False
21
22
      # find number of zeroes in binary rep. of prob
23
      leading_zeroes = (
24
          T.EXPONENT_BIAS - 1 - prob.raw_exponent()
25
26
27
      # case 1: index into the leading zeroes
28
      if first_heads_index < leading_zeros: #</pre>
29
          return False
30
31
      # case 2: index into implicit bit directly to left of mantissa
32
      if first_heads_index == leading_zeroes: #
33
34
          return prob.raw_exponent() != 0
35
      # case 3: index into out-of-bounds/implicitly-zero bits
36
      if first_heads_index > leading_zeroes + T.MANTISSA_BITS: #
37
          return False
38
39
      # case 4: index into mantissa
40
      mask = 1 << (T.MANTISSA_BITS + leading_zeroes - first_heads_index)</pre>
41
      return (prob.to_bits() & mask) != 0
```

Postcondition

Definition 0.1. For any setting of the input parameters prob of type T restricted to [0, 1], and constant_time of type bool, sample_bernoulli_float either

- raises an exception if there is a lack of system entropy,
- returns out where out is \top with probability prob, otherwise \bot .

If constant_time is set, the implementation's runtime is constant.

0.2 Proof

Proof. To show the correctness of sample_bernoulli we observe first that the base-2 representation of prob is of the form

```
leading_zeroes || implicit_bit || mantissa || trailing_zeroes
```

and is represented exactly as a normal floating-point number. The IEEE-754 standard represents a normal floating-point number using an exponent E, and a mantissa m, using a base-2 analog of scientific notation.

Definition 0.2 (Floating-Point Number). A (k,ℓ) -bit floating-point number z is represented as

$$z = (-1)^s \cdot (B.M) \cdot (2^E)$$

where

- s is used to represent the sign of z
- B is the implicit bit; 1 for normal floating-point numbers and 0 for subnormal floating point numbers
- $M \in \{0,1\}^k$ is a k-bit string representing the part of the mantissa to the right of the radix point, i.e.,

$$1.M = \sum_{i=1}^{k} M_i 2^{-i}$$

• $E \in \mathbb{Z}$ represents the *exponent* of z. When ℓ bits are allocated to representing E, then $E \in [-(2^{\ell-1} - 2), 2^{\ell-1}] \cap \mathbb{Z}$. Note that the range of E is $2^{\ell} - 2$ rather than 2^{ℓ} as the remaining to numbers are used to represent special floating point values. When $E = -(2^{\ell-1} - 2)$, then the floating point number is considered *subnormal*.

We now use the technique for arbitrarily biasing a coin in 2 expected tosses as a building block. Recall that we can represent the probability prob as $\operatorname{prob} = \sum_{i=0}^\infty \frac{a_i}{2^{i+1}}$ for $a_i \in \{0,1\}$, where a_i is the zero-indexed i-th significant bit in the binary expansion of prob. Then let $I \sim Geom(0.5)$ and observe that the random variable a_I is an exact Bernoulli sample with probability prob since $P(a_I=1) = \sum_{i=0}^\infty P(a_i=1|I=i)P(I=i) = \sum_{i=1}^\infty a_i \cdot \frac{1}{2^{i+1}} = \operatorname{prob}$. It is therefore sufficient to show that for any (k,ℓ) -bit float $\operatorname{prob} = \sum_{i=0}^\infty \frac{a_i}{2^{i+1}}$, sample_bernoulli returns the value a_I with $I \sim Geom(0.5)$.

First, we observe that by line 3, if prob = 1.0 then sample_bernoulli returns true which is correct by definition of a Bernoulli random variable. Otherwise, the variable max_coin_flips is computed to be the value T::EXPONENT_BIAS+T::MANTISSA_BITS which equals $2^{\ell-1}-1+k$ for any (k,ℓ) -bit float. Since prob has finite precision, there is some j for which $a_i=0$ for all i>j. For all (k,ℓ) -bit floating-point numbers, $j\leq 2^{\ell-1}-1+k$ by definition. Then sample_bernoulli calls sample_geometric_buffer with a buffer of length $\lceil \frac{\max_{coin_flips}}{8} \rceil$ bytes (as shown in lines 9 and 12) which returns None if and only if $I>8 \cdot \lceil \frac{2^{\ell-1}-1+k}{8} \rceil$, where $I\sim Geom(0.5)$ (by Theorem 2.1). In this case, since I>j this index appears in the trailing_zeroes part of the binary expansion of prob and should always return false, i.e., $a_I=0$ for all I>j. We can therefore restrict our attention to when sample_geometric_buffer returns an index $I\leq \max_{coin_flips}$ and show that sample_bernoulli always returns a_I .

Assuming that sample_geometric_buffer returns some I < j, sample_bernoulli computes the number of leading zeroes in the binary expansion of prob to be leading_zeroes = T::EXPONENT_BIAS - 1 - raw_exponent(prob), where raw_exponent(prob) is the value stored in the ℓ bits of the exponent. This value is correct by the specification of a (k,ℓ) -bit float. sample_bernoulli then matches on the value first_heads_index corresponding to $I \sim Geom(0.5)$ returned by the function sample_geometric_buffer:

Case 1 (first_heads_index < leading_zeroes).

This corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the leading_zeroes part of the prob variable's binary expansion. Therefore, for any $I < \text{leading_zeroes}$, it follows that $a_I = 0$ and we should return false. In this case, sample_bernoulli returns false.

$\mathbf{Case}\ \mathbf{2}\ (\mathtt{first_heads_index} == \mathtt{leading_zeroes}).$

This corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the implicit_bit part of the prob variable's binary expansion. When prob is a normal floating point value, i.e., $E \neq -(2^{\ell-1}-2)$ then the implicit bit $a_I = 1$. Otherwise, when prob is a subnormal floating point value, i.e., $E = -(2^{\ell-1}-2)$, the implicit bit $a_I = 0$. Since raw_exponent(prob) corresponds to the exponent E for any (k, ℓ) -bit floating point number prob, sample_bernoulli returns true when raw_exponent(prob) $\neq 0$ and false otherwise.

Case 3 (leading_zeroes+T::MANTISSA_BITS < I). This corresponds to the case where sample_geometric_buffer returns a value I where I > j, but $I < \max_{coin_flips}$ and therefore a_I indexes into the trailing zeroes. In this case, sample_bernoulli returns false since $a_I = 0$ for all bits in the trailing_zeroes part of prob's

binary expansion.

Case 4 (leading_zeroes < first_heads_index < leading_zeroes + T::MANTISSA_BITS). This corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the mantissa

Inis corresponds to sample_geometric_buffer returning a value I such that a_I indexes into the mantissa part of the prob variable's binary expansion. In this case, sample_bernoulli left-shifts the value 1 by (MANTISSA_BITS + leading_zeroes - first_heads_index) digits, the index into the mantissa corresponding to the digit a_I in the binary representation of prob. Since the operation between the left-shifted 1 and the binary representation of prob at that position is a bitwise AND, if the bit in question is 1 (matching the left-shifted 1), sample_bernoulli will return true. Otherwise, sample_bernoulli will return false.

Therefore, for any value of prob, the function sample_bernoulli either raises an exception or returns the value true with probability exactly prob.