MAT 116E Advanced Scientific and Engineering Computing

Lab-10

Q-1. A 240-cm long rod is cut into 12 pieces, which are welded together to form the frame of a rectangular box. The length of the box's base is 15 cm longer than its width.

- a) Create a polynomial expression for the volume V in terms of x.
- b) Make a plot of V versus x.
- c) Determine the *x* that maximizes the volume and determine that volume.

Q-2. Data on the vapor pressure P of water as a function of temperature T are given in the following table. Determine whether the data can be described by a linear (y = mx + n) fit or by an exponential fit $(y = be^{mx})$ by calculating the SSE (sum of squared error). Develop a model of the pressure as a function of temperature using the **polyfit** command, and use best fit curve to estimate the pressure at a temperature of $T = 300^{\circ}K$.

T	273	278	283	288	293	298
P	4.579	6.543	9.209	12.788	17.535	23.756

Let y be actual data point and \bar{y} be the estimated values, then SSE is calculated as follows:

$$SSE = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$$

where n is the number of data points. In one figure sketch linear fit, exponential fit and data points.