医用工学概論

第1回 イントロダクション 白倉 尚貴

この講義の目標

- 工学的視点から医療行為をとらえる
- 医療機器の仕組みや安全についての理解

具体的な課題

臨床検査技師の国家試験のME関連問題は毎年4題程度出題される。これらの問題を解けるようになること

工学とは

理学の知識を応用して 現実世界にある課題を解決する学問が工学

理学 ∋ 数学、力学、電磁気学... (自然科学)

工学 > 制御理論、電気電子回路... (医用工学)

医用工学とは

医用工学

生体物性、生体計測、生体情報、生体制御などの物理的な法則性から得られた手法・技術を 医療に応用する

経験的にではなく、数式や理論に基づいて、理解する。

→ 医療機器への応用

工学的な考え方

物事を「システム」として考え、記述する

システム : 個々の要素が関わり合い、全体として秩序 ある働きをするもの

システムは、入力、出力、(状態)を持つ。

人体は「生体システム」である

外部からの刺激

ラーメンの匂い

200gのショ糖

40°Cの温浴

5トンの衝撃力

100個の0157

食指が動く

出力

尿糖

凝りの解消

内出血、骨折

下痢

医療は「システム制御」である

入力 を調整して出力を理想の状態に持っていく

どのようにフィードバックするの?

どうやって出力を見るの?

検査は「システム同定」である

入力と出力の関係からシステムの中身を推定する

医用工学

非破壊・非侵襲的であることが望ましい

操作

入力

「周波数依存性」 「時間依存性」 「環境依存性」 「異方性」 「不均一性」 「非線形性」 の理解

出力

結果

生体情報を 電気信号に変換 (トランスデューサ)

医用工学の目指す先には...

検査機器や人工臓器、生命維持装置など様々な 医療機器の研究開発により

- •「医学の研究」
- 「病気の早期発見」
- ・「正確な診断」
- •「より正確な治療」
- 「治療後の状態の判定」
- 「より良いリハビリテーション」 が可能となる

医用工学の何が難しいのか?

生体が無生物と異なる点

- 物性的特異性
- 生体活動に起因する生理学的特性
- ・エネルギー照射時の生体反応の特異性
- → 生体からの情報入手が困難な場合が少なく無い

生体計測のもつ難しさは

- 経時変化・個体差の考慮
- 数量化の困難さ

生体計測システム(ME機器)

トランスデューサ(センサ): 生体信号を電気信号に変換

増幅・変調 : 微弱な信号を精密に検出

講義資料

講義資料、お知らせ、その他の資料

https://naoki-sh.github.io/documents/me2020/

質問用メールアドレス shirakura.naoki.se8@is.naist.jp

連絡の際のお願い(できれば)

- ・件名は、「医用工学概論1 質問」にしてください
- 所属、(氏名)を明らかにしてください

受講に際して

- わからないことがあればいつでも質問してください
 - 授業中、授業後、いつでも構いません
 - メールでも構いません
 - 質問だけでなく、授業に関する要望等でも構いません
 - 質問したことが授業評価に関わることはありません。

練習問題(復習)

医用工学では(①)の観点から医療行為を理解する。

- (1)では、物事を(2)として考える。人体を1つの
- (②)として考えると、医療行為は人体を理想的な状態に
- する(3)であり、検査は人体の内部状態を推定する
- (4)であると言える。

医療行為は、人体からの生体信号を出力として捉え、それらを生体への入力に(⑤)することで行われる。

語群:システム制御、理学、工学、フィードバック、

システム、システム同定、数学

練習問題(予習)

 R_1 =1.9, R_2 =3, R_3 = 7[Ω], E=19[V] となる以下のような回路を作製したときの

- (1)合成抵抗值
- (2)消費電力

Roに流れる電流Ioを求めよ。

抵抗R₀に流れる電流が0[A]になるとき、抵抗Rの値を求めよ

・次の式を計算しなさい

$$(1) \qquad \frac{\frac{1}{1}}{\frac{1}{10} + \frac{1}{90}}$$

- (2) 2^2
- $(3) 2^0$
- (4) 2^{-1}

(5)
$$\log_{10} 100$$

- (6) $\log_{10} 1000$
- (7) $\log_{10} 1_{1}$
- (8) $\log_{10} \frac{1}{10}$