WYZNACZANIE CZĘSTOŚCI DRGAŃ WŁASNYCH PRĘTA Sprawozdanie

Mateusz Klisiewicz, Bartek Misiurski, Bartłomiej Szewczak, Maksymilian Bakała, Tomasz Olczak, Aleksander Abramowicz, Jakub Waśniewski, Kacper Tukiendorf, Mateusz Brauła, Mateusz Gutowski*

6 czerwca 2024

^{*}Na podstawie Drgania mechaniczne – Laboratorium; Praca zbiorowa pod redakcją Z. Gałkowski; Oficyna Wydawnicza PW; 1999

Wstęp

Przedmiotem badania były dwa pręty, jeden wykonany z włókna szklanego a drugi z brązu. Pręty utwierdzono w aparaturze (Rys. 1) i poddawano działaniu okresowej siły. w celu określenia ich częstości drgań własnych.

Rysunek 1: Schemat stanowiska pomiarowego

Wyniki Pomiarów

Właściwości fizyczne obydwu prętów zmierzono i umieszczono w Tabeli 1.

Właściwość	Pręt z Brązu	Pręt z Włókna Szklanego
Moduł Younga, E	$100\mathrm{GPa}$ do $120\mathrm{GPa}$	69.5 GPa
Średnica, d	$0.009\mathrm{m}\pm0.001\mathrm{m}$	$0.01\mathrm{m}\pm0.001\mathrm{m}$
Geometryczny Moment Bezwładności, ${\cal J}$	$\frac{\pi d^4}{64}$	$\frac{\pi d^4}{64}$
Długość, l	$2.89\mathrm{m}\pm0.001\mathrm{m}$	$2.6\mathrm{m}\pm0.001\mathrm{m}$
Masa, m	$1.55\mathrm{kg}\pm0.01\mathrm{kg}$	$0.39\mathrm{kg}\pm0.01\mathrm{kg}$

Tabela 1: Właściwości fizyczne badanych prętów.

Za pomocą pokrętła zwiększano częstotliwość siły wymuszającej. aż do zaobserwowania rezonansu drgań układu. W ten sposób ustalono częstotliwości rezonansowe prętów dla trzech postaci drgań (Tab. 2).

Postać Drgań	n = 1		n=2		n=3	
-	[Hz]	$[rad s^{-1}]$	[Hz]	$[\mathrm{rad}\mathrm{s}^{-1}]$	[Hz]	$[\mathrm{rad}\mathrm{s}^{-1}]$
Pręt z Brązu	$1,083 \pm 0,017$	$2,167\pi \pm 0,033\pi$	$3,050 \pm 0,017$	$6,1\pi\pm0,033\pi$	$4,883 \pm 0,017$	$9,767\pi \pm 0,033\pi$
Pręt z Włókna Szklanego	$2\pm0,017$	$4\pi \pm 0,033\pi$	$5,833 \pm 0,017$	$11,667\pi \pm 0,033\pi$	$13,833 \pm 0,017$	$27,667\pi \pm 0,033\pi$

Tabela 2: Zmierzone wartości częstotliwości rezonansowych badanych prętów.

Na podstawie zależności wyprowadzonych w instrukcji do ćwiczenia:

$$(\kappa l)_n = \frac{2n-1}{2}\pi\tag{1}$$

$$\omega = \kappa^2 \sqrt{\frac{l}{m}EJ} \tag{2}$$

Rugując κ :

$$\omega_n = \frac{\pi \sqrt{\frac{l}{m}EJ}}{4l^2} (2n-1)^2 \tag{3}$$

Otrzymano zależność częstości własnej ω_n od postaci drgań n (3). Obliczono wartości teoretyczne ω_t i zestawiono je w tabeli razem z wartościami eksperymentalnymi ω_e (Tab. 3).

	Pręt z Br	azu -	Pręt z Włókna Szklanego		
n	$\omega_{\rm e}({\rm rads^{-1}})$	$\omega_{\rm t}({\rm rads^{-1}})$	$\omega_{\rm e}({\rm rads^{-1}})$	$\omega_{\rm t}({\rm rads^{-1}})$	
1	$2,167\pi \pm 0,033\pi$	$0,83\pi$	$4\pi \pm 0,033\pi$	5.505π	
2	$6,1\pi\pm0,033\pi$	$7,478\pi$	$11.667\pi \pm 0,033\pi$	$49,541\pi$	
3	$9,767\pi \pm 0,033\pi$	$20,771\pi$	$27,667\pi \pm 0,033\pi$	$137,615\pi$	

Tabela 3: Porównanie wartości eksperymentalnych i teoretycznych częstości własnych dla badanych prętów.

Rysunek 2: Zależności teoretyczne i eksperymentalne częstości własnej ω od postaci drgań ndla pręta z brązu

Wnioski

Zmierzone wartości w sposób istotny odbiegają od przewidywanych. Tak znaczna rozbieżność musi wynikać z błędnego przeprowadzenia eksperymentu, lub z wad aparatury pomiarowej. Aby móc wnioskować na temat wyników, konieczne jest ponowne przeprowadzenie badania, po uprzedniej inspekcji stanowiska.