# P1 de Álgebra Linear I -2009.2

Data: 10 setembro de 2009.

| Nome:       | Matrícula: |  |  |  |  |
|-------------|------------|--|--|--|--|
|             |            |  |  |  |  |
| Assinatura: | Turma:     |  |  |  |  |

## Caderno de Respostas

Preencha CORRETA e COMPLETAMENTE todos os campos acima (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Respostas a caneta. Respostas a lápis não serão corrigidas e terão nota <u>ZERO</u>.

# Duração: 1 hora 50 minutos

| Q            | 1   | 2.a | <b>2.</b> b | 3.a | 3.b | 3.c | 4   | soma |
|--------------|-----|-----|-------------|-----|-----|-----|-----|------|
| $\mathbf{V}$ | 2.0 | 1.5 | 1.5         | 1.0 | 1.0 | 1.0 | 2.0 | 10.0 |
| N            |     |     |             |     |     |     |     |      |
| $\mathbf{R}$ |     |     |             |     |     |     |     |      |

## <u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas e resoluções.
- Escreva de forma clara, ordenada e legível.
- Somente serão aceitas respostas devidamente <u>JUSTIFICADAS</u>.

Respostas a lápis não serão corrigidas e terão nota ZERO.

## Questão 1)

Considere o sistema linear 3 x 3:

$$\begin{cases} x + y + 2z = 2 \\ 2x - y + 3z = 2 \\ 5x - y + az = 6, \end{cases}$$

onde a é uma certa constante. Determine **todos** os valores de a afim de que o sistema tenha uma *única* solução e ache tal solução.

#### Respostas:

$$\{a \in \mathbb{R}:$$

Solução do sistema:

### Questão 2)

Considere tres vetores  $\overrightarrow{u}$ ,  $\overrightarrow{v}$  e  $\overrightarrow{w}$  em  $\mathbb{R}^3$ . Responda os items abaixo (os itens são independentes):

- a) Decida se a afirmação seguinte é Verdadeira ou Falsa (Justificando!): Se  $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$ , então  $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{w} \times \overrightarrow{u}$ .
- **b)** Suponha que  $\overrightarrow{u}$  e  $\overrightarrow{v}$  não são paralelos e que  $\overrightarrow{w} = (\overrightarrow{v} \times \overrightarrow{u}) \overrightarrow{v}$ . Se  $\|\overrightarrow{v}\| = 1$  e  $\|\overrightarrow{v} \times \overrightarrow{u}\| = 2$ , ache  $\|\overrightarrow{w}\|$ .

Respostas:

(a)



(b)

$$||w|| =$$

### Questão 3)

Considere tres retas  $r_1, \, r_2$  e  $r_3$  em  $\mathbb{R}^3$  cujas equações vetoriais são:

$$r_1: X_1(t) = (1 - t, 2t, 0), \quad t \in \mathbb{R},$$

$$r_2: X_2(t) = (t, 0, 1 - t), \quad t \in \mathbb{R},$$

$$r_3: X_3(t) = (0, 2 - 2t, t), \quad t \in \mathbb{R}.$$

- a) Determine se a afirmação seguinte é Falsa ou Verdadeira (Justificando!): As três retas dadas estão em um mesmo plano de  $\mathbb{R}^3$ .
- b) Ache a equação cartesiana do plano mencionado no item anterior.
- c) Ache a área do triângulo cujos vértices são as interseções das retas dadas.

#### Respostas:

(a)



(b)

| $\pi$ : |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |

(c)

## Questão 4)

Considere o plano  $\rho$ cuja equação cartesiana é

$$\rho \colon 2x - y + z = 5.$$

Ache a equação paramétrica da reta r que é ortogonal ao plano  $\rho$  e que passa pelo ponto P pertencente ao semi-eixo positivo 0y e tal que a distância de P ao ponto Q de interseção de r com o plano  $\rho$  é  $\sqrt{6}$ .

(Sugestão: faça um esboço da situação.)

| Resposta: |
|-----------|
|-----------|

r: