Московский Физико-Технический Институт

Лабораторная работа по радиотехническим сигналам и цепям

Связанные колебательные контуры.

Автор:

Глеб Уваркин 615 группа

5 декабря 2017 г.

Рис. 1: Связанные контуры.

Задание №1. Система с индуктивной связью.

3. Изучим поведение резонансных кривых и фазовых характеристик при F=[0.2,1|0.2] и F=[1.5|1]. Измерим границы диапазонов изменения фаз на первом и втором контурах: на первом контуре – от -84.161° до 84.415° , на втором контуре – от -258.322° до 78.322° ,

а также разность фаз между напряжениями на контурах на частоте f_0 : 89.238° . Измерив уровни $u_1(f_0)$, $u_2(f_0)$ при $F=0.5;\ 1;\ 2$, проверим формулы

$$u_1(f_0) = \frac{1}{1+F^2}, \ u_2(f_0) = \frac{F}{1+F^2}$$
 (1)

Таблица 1: Проверка формулы (1).

\overline{F}	1	0.5	2
$u_1(f_0)_{Mccap}$	0.5	0.8	0.2
$u_1(f_0)_{ extstyle ex$	0.5	0.8	0.2
$u_2(f_0)_{Mccap}$	0.5		0.2
$u_2(f_0)_{ m формула}$	0.5	0.4	0.2

- ⇒ формула (1) выполняется.
- **4.** Измерим значения F, при которых возникает: а) провал на первом контуре: F=0.6, b) провал на втором контуре: F=1.1, c) подъём на фазовой характеристике первого контура: F=1.1.

Измерив частоты пересечения нуля фазовой характеристикой u_1 при F=5 ($\nu=976.121k,\ 1.001M,\ 1.025M$) и при F=10 ($\nu=953.430k,\ 1.005M,\ 1.054M$), проверим приближённые ($f_0\pm FF_0$) и уточнённые ($f_0\sqrt{1\pm\frac{F}{Q}}$).

5. Оставим только плот 1. При критической связи измерим ширину полосы по уровню -3dB эталонного контура ($\Delta f = 10.273k$) и ширину полосы по уровню -9dB резонансной кривой на втором контуре ($\Delta f = 14.279k$). Убедимся, что их отношение составляет $\sqrt{2}$.

Измерим уровни затухания критической кривой при сдвигах по частоте на декаду F_0 , то есть на $\pm 10F_0=\pm 50k$ (затухание $-34\frac{dB}{\text{дек}_{F_0}}$). Варьируя сопротивление потерь эталонного контура $R=[60k,\ 80k|5k]$, выясним, что при добротности Q=68.6 ($R=70k,\ \Delta f=14.557k$) его полоса сравнивается с полосой двухконтурной системы. Измерим затухание, вносимое эталонным контуром с этой добротностью при расстройках на

декаду F_0 (затухание — $-16.7 \frac{dB}{\text{дека}_{F_0}}$). Оценим выигрыш двухконтурной системы по затуханию: выигрыш $\simeq 2$ раза.

- **6.** Изучим поведение резонансных кривых при $F=[0.5,\ 1|0.1]$. Найдём значение $F=[0.65,\ 0.75|0.05]$, при котором полоса двухконтурной системы по критическому уровню -9dB сравнивается с полосой 10k эталонного контура: F=0.75. При этом значении F оценим выигрыш по затуханию при расстройке на декаду F_0 двухконтурной системы по сравнению с эталоном: у эталона $-19.75\frac{dB}{\text{дек}_{F_0}}$, у двухконтурной системы $-36.45\frac{dB}{\text{дек}_{F_0}}$ выигрыш $\simeq 2$ раза.
- 7. Измерим значение F из диапазона $F=[2.2,\ 2.6|0.1]$, при котором полоса двухконтурной системы по критическому уровню -9dB сравнивается с полосой 10k эталонного контура.(F=0.75). При этом значении F измерим ширину полосы $\Delta\omega$ двухконтурной системы по уровню -9dB ($\Delta\omega=30.532k$) и уровни затухания при расстройках на декаду F_0 (у эталона $-23\frac{db}{dek}$, у двухконтурной системы $-19.833\frac{dB}{dek}$). Варьированием сопротивления эталонного контура R добьёмся совпадения его полосы с полосой двухконтурной системы и измерим уровни затухания, вносимого контуром $(-18.278\frac{dB}{dek})$.
- **8.** При критической связи F=1 измерим затухания на втором контуре при расстройках на декаду f_0 . Изучим зависимость уровней затухания от F=[1,5.5|1.5]. Занесём результаты в таблицу 2.

	y ровень затухания, $\frac{dB}{ ext{дек}}$				
F	f = 100k	f = 10Meg			
1	-94	-133			
2.5	-85	-126			
4	-82	-122			
5.5	-79	-119			

Таблица 2: Зависимость уровней затухания от F

11. Установив диапазон моделирования [2Meg,600k], исследуем частотные и фазовые характеристики при сильной связи. Измерим частоты f_\pm пиков при F=50: $f_+=1.414M$, $f_-=816.378k$.

Задание №2. Система с ёмкостной связью.

1. Измерим диапазоны изменения фазовых характеристик на первом и втором контуpax:

на 1 контуре – от 90° до -90° на 2 контуре – от -90° до -450° .

Измерим значения F, при которых возникает: a) провал на первом контуре (F=0.5), b) провал на втором контуре (F=1) c) подъём на фазовой характеристике первого контура (F=1).

Снимем зависимость частоты провала на втором контуре от F = [2, 4|1] (таблица 3).

Таблица 3: Зависимость частоты провала от F.

\overline{F}	2	3	4
$f_{\rm пров}, \ \Gamma$ ц	990k	985k	980k

2. Измерим уровни затухания при расстройках на $\pm 50k$:

1 контур — $-17 \frac{dB}{\text{дек}}$ 2 контур — $-35 \frac{dB}{\text{дек}}$. Перейдём на частотный диапазон [10 Meg, 100k] и измерим уровни затухания при расстройках на декаду f_0 :

1 контур — $-56 \frac{dB}{\rm дек}$ 2 контур — $-94 \frac{dB}{\rm дек}$ (вблизи 100k), $-133 \frac{dB}{\rm дек}$ (вблизи 10Meg)