CÔTE D'IVOIRE - ÉCOLE NUMÉRIQUE

Niveau: 1^{ères} CDE

Discipline:

PHYSIQUE-CHIMIE

THEME 2: ELECTRICITE ET

ELECTRONIQUE

TITRE DE LA LEÇON: L'AMPLIFICATEUR OPERATIONNEL

I. SITUATION D'APPRENTISSAGE

Un élève en classe de 1^{re} C au Lycée Moderne Tingrela lit dans une revue scientifique que l'amplificateur opérationnel (**AO**) est un circuit intégré qui permet de réaliser des opérations mathématiques : addition, soustraction, intégration, dérivation...

Le lendemain il informe ses camarades de classe. Afin de comprendre le fonctionnement de l'AO, les élèves décident, sous la supervision de leur Professeur, de s'informer sur les propriétés de l'AO, d'analyser son comportement et d'établir la relation entre la tension d'entrée et la tension de sortie de quelques montages.

II. CONTENU DE LA LECON

1. Généralités sur l'amplificateur opérationnel

1.1 Description

L'amplificateur opérationnel (AO) fait partie des circuits intégrés linéaires. Il se présente sous la forme d'un boitier possédant huit (8) bornes de branchement.

Sur le boitier figure un repère (encoche) qui permet de reconnaître chacune des 8 bornes et de les numéroter de façon standard.

- La borne 2 est l'entrée inverseuse (E⁻) ;
- La borne 3 est l'entrée non inverseuse (E⁺) ;
- les bornes 4 et 7 sont les bornes d'alimentation (négative A⁻ et positive A⁺);
- la borne 6 est la borne de sortie (S) ;
- les bornes 1 et 5 sont les bornes de réglage d'offset ;
- la borne 8 n'est pas connectée (NC : Non Connectée).

1.2 Symbole de l'AO

2. Caractéristiques d'un amplificateur opérationnel

La courbe $U_s = f(U_d)$ représente la caractéristique d'un AO. U_s estla tension de sortie et U_d la tension différentielle $(U_d = V^+ - V^-)$.

On distingue deux cas: 1'AO réel et 1'AO idéal

2.1. Caractéristique d'un Amplificateur opérationnel réel

La caractéristique de l'AO présente deux régimes : le régime linéaire et le régime saturé.

Il correspond à la partie centrale où la tension de sortie Us est proportionnelle à la tension différentielle $U_S = G \times U_d$.

Le coefficient de proportionnalité G est appelé gain différentiel. Il est très grand.

• Régime saturé :

Caractéristique d'un amplificateur réel

En régime saturé, la tension de sortie est égale à + V_{sat} où - V_{sat}

Les tensions -Vcc et $+V_{CC}$ sont les tensions d'alimentation, les tensions $-V_{sat}$ et

+V_{sat} sont les tensions de saturation.

On a toujours $|\pm V_{sat}| < |\pm V_{cc}|$.

2.2. Caractéristique d'un AO idéal (parfait)

Elle est représentée ci-contre.

On note que le gain de L'AO idéal est infini.

Caractéristique d'un amplificateur idéal

3. Amplificateur opérationnel idéal en régime linéair.

- L'amplificateur opérationnel idéal présente une résistance d'entrée infinie. Par conséquent,

 $i = i^+ = 0$: les courants d'entrée sont négligeables.

l'entrée inverseuse E⁻ et l'entrée non inverseuse E⁺ sont au même potentiel : $U_d = U_+ - U_- = 0$:

La tension de sortie est toujours inférieure à la tension de saturation de l'AO : $|U_S| < V_{sat}$

4. Quelques montages avec un amplificateur opérationnel

4.1. Montage suiveur

Dans ce montage, la tension d'entrée U_e est appliquée directement à l'entrée non inverseuse.

Relation entre Ue et Us

$$U_e = U_s$$

La tension de sortie suit la tension d'entrée (exemple du voltmètre électronique).

4.2. Montage amplificateur inverseur

Relation entre Ue et Us

$$U_{e^{\text{--}}} \, R_1 I_1 \! + \, U_d \! = 0$$

$$U_s + R_2I_2 + U_d = 0$$

$$U_d=0\ et\ I_1=I_2$$

On obtient:

$$U_{\rm s} = -\frac{R_2}{R_1} U_{\rm e}$$

Le rapport $G = \left| \frac{U_s}{U_a} \right| = \frac{R_2}{R_1}$ est appelé **gain en tension** de l'amplificateur.

Activité d'application

On considère pour le montage ci-dessus, une tension U_e =2V et R₂=2R₁.

- 1- Ecris $U_s(t)$ en fonction de $U_e(t)$.
- 2- Détermine U_s.

Solution

1. U_s en fonction de U_e

$$U_s = -\frac{R_2}{R_1} U_e$$

2 valeur de Us

$$U_s = -\frac{R_2}{R_1}U_e = -\frac{2R_1}{R_1}U_e = -2Ue = -2 \times 2$$

$$U_s = -4V$$

4.3. Montage amplificateur non inverseur

Relation entre
$$U_e$$
 et U_s
$$U_s = \frac{R_1 + R_2}{R_1} U_e$$

Le gain en tension de l'amplificateur est: $G = \frac{U_S}{U_O} = 1 + \frac{R_2}{R_1}$

Activité d'application

On considère pour le montage ci-dessus, $R_2 = 2R_1$.

- 1. Donne l'expression du gain en tension de l'amplificateur.
- 2. Calcule la valeur du gain.

Solution

1. Expression du gain en tension de l'amplificateur

$$G = 1 + \frac{R_2}{R_1}$$

2 .Valeur de Gain

$$G = 1 + \frac{R_2}{R_1} = 1 + \frac{2R_1}{R_1} = 3$$

4.4. Montage sommateur inverseur

Relation entre U_s et les tensions d'entréeU₁ et U₂

$$U_{s} = -R_{3}(\frac{U_{1}}{R_{1}} + \frac{U_{2}}{R_{2}})$$

Activité d'application

À partir du schéma du montage sommateur inverseur, retrouve la relation établie ci-dessus.

Solution

 $U_{AM} = U_{AB} + U_{BM}$ avec $U_{AB} = U_d = 0$ V de plus $V_A = V_B$ D'où $U_{AB} = 0$ V,

Par consequent, $U_{AM} = 0 \text{ V}$

 $U_{AM} = U_{AN} + U_{NM} = 0$ avec $U_{AN} = -R_1 i_1$ et $U_{NM} = U_1$

Soit - R₁ i₁ + U₁ = 0 \Rightarrow i₁ = $\frac{U_1}{R_1}$

 $U_{AM} = U_{AN2} + U_{N2M} = 0$ avec $U_{AD} = -U_2 = -R_2 i_2$ et $U_{AN2} = U_2$

Soit - R₂ i₂ + U₂ = 0 \Rightarrow i₂ = $\frac{U_2}{R_2}$

Dans la maille MBASM, on a :

Us + U₃ + U_d = 0 avec U_d = 0
Us = - U₃ = - R₃ i₃
$$\Rightarrow$$
 i₃ = $-\frac{U_3}{R_3}$

Loi des nœuds en A, on a : $i_3 = i_1 + i_2$

$$U_{\rm s} = -R_3 \left(\frac{U_1}{R_1} + \frac{U_2}{R_2} \right)$$

donc montage sommateur

5. Amplificateur opérationnel en régime saturé

5.1 Propriétés

En régime saturé, quelle que soit la tension d'entrée :

- la tension de sortie ne peut posséder que deux états électriques
- $U_s = + V_{sat}$ ou $U_s = V_{sat}$
 - La tension différentielle est non nulle : $U_d \neq 0 \implies U_+ \neq U_-$.

5.2. Montage comparateur

 U_1 est la tension de référence et U_2 , la tension à comparer à U_1 .

• Maille MN₁AN₂M:

$$U_2 - U_1 - U_d = 0 \Rightarrow U_d = U_2 - U_1$$

- Si $U_1 > U_2 \Rightarrow U_d < 0$ alors $U_s = -V_{sat}$;
- Si $U_1 < U_2 \Rightarrow U_d > 0$ alors $U_s = +V_{sat}$.

SITUATION D'EVALUATION

Afin de vérifier vos acquis après le cours sur l'amplificateur opérationnel, votre professeur met à votre disposition le matériel nécessaire pour réaliser un montage amplificateur non-inverseur. Afin de vous aider à réussir cette tâche, il vous propose les deux schémas de montages suivants.

Montage N°1

Montage N°2

Un élève de ton groupe affirme que le montage à réaliser est le montage N°1 tandis qu'un autre affirme que c'est le montage N°2.

Tu es chargé de les départager.

- 1. Nomme le composant fondamental des circuits ci-dessus.
- 2. Rappelle ses propriétés en régime linéaire.
- 3. Etablis l'expression pour les montages 1 et 2 :
 - 3.1- de la tension de sortie Us en fonction de U_e , R_1 et R_2 .
 - 3.2- du gain G en tension.
- 4. Justifie ton choix du montage à réaliser.

Corrigé

- 1. Le composant fondamental est l'AO.
- 2. Les propriétés d'un amplificateur opérationnel idéal fonctionnant en régime linéaire sont :

Les courants d'entrée sont négligeables :

$$i^{-} = i^{+} = 0$$

L'entrée inverseuse E⁻ et l'entrée non inverseuse E⁺sont au même potentiel : $U_d = U_+ - U_- = 0$

La tension de sortie est toujours inférieure à la tension

de saturation de l'AO : $|U_S| < V_{sat}$.

- 3. Expression de U_s en fonction de U_e pour :
- 3.1. Montage 1
 - maille MABM : $U_e R_1 i + U_d = 0$
 - maille MBSM : $U_s + R_2i + U_d = 0$

AO idéal en fonctionnement linéaire i+=i-=0 et $U_d=0$

$$U_s = -R_2i$$
 et $U_e = R_1i$ $\Rightarrow U_s = -\frac{R_2}{R_1}U_e$

Montage 2

- maille MABM: $U_e U_d + R_1 i += 0$
- maille MABSM : $U_s + R_2i + R_1i = 0$

AO idéal en fonctionnement linéaire i+=i-=0 et $U_d=0$

$$U_s = -(R_{1+}R_2)i$$
 et $U_e = -R_1i$ $\Rightarrow U_s = \frac{R_1+R_2}{R_1}U_e$

3.2 Gain en tension $G = \left| \frac{U_s}{U_e} \right|$

Montage 1: ,G = $\frac{R_2}{R_1}$

Montage 2 : G = $\frac{R_1 + R_2}{R_1}$

4. Le montage à réaliser est le montage 2 car Us > 0

III. EXERCICES

Exercice 1

Pour chacune des propositions suivantes :

- 1. Dans un amplificateur opérationnel les intensités des courants d'entrée sont élevées.
- 2. Une radio utilise des amplificateurs opérationnels.
- 3. Dans un amplificateur opérationnel en fonctionnement linéaire la tension différentielle est différente de zéro.
- 4. Le gain en tension d'un montage en régime linéaire est $G = \frac{U_S}{U_o}$
- 5. Dans un amplificateur opérationnel en régime de saturation $U_S = \pm V_{sat}$
- 6. En régime linéaire les courants aux entrées de l'A.O sont négligeables : $i^+ = i^- = 0$
- 7. Dans un amplificateur opérationnel en régime de linéaire $U_S > V_{sat}$
- 8. La résistance entre les bornes d'entrée E⁺et E⁺est infinie.

Recopie le numéro de la proposition et écris à la suite vrai si la proposition est vrai et faux si elle est fausse.

Solution

1-F; 2-V; 3-F; 4-V; 5-V; 6-V; 7-F

Exercice 2

Complète le texte ci-dessous avec les mots ou groupe de mots suivants qui conviennent.

Deux bornes ; régime linéaire ; boitier ; différentielle ; circuits intégrés ; huit bornes ; régime saturé ; deux régimes.

L'amplificateur opérationnel (AOP ou AO) est un élément essentiel très utilisé en électronique de pointe.
Il fait partie de la famille des
possédant de branchement. Les courants entrants dans l'AO par ses
d'entrées sont extrêmement faibles en intensité. L'AO peut fonctionner sous différents. Si
la tension est nulle, il fonctionne en tandis que si la d.d.p entre
les deux entrées n'est pas nulle, il fonctionne en

Solution

L'amplificateur opérationnel (AOP ou AO) est un élément essentiel très utilisé en électronique de pointe. Il fait partie de la famille des **circuits intégrés** Il se présente sous la forme d'un **boitier** possédant **huit bornes** de branchement. Les courants entrants dans l'AO par ses **deux bornes** d'entrées sont extrêmement faibles en intensité. L'AO peut fonctionner sous **deux régimes** différents. Si la tension **différentielle** est nulle, il fonctionne en **régime linéaire**, tandis que si la d.d.p entre les deux entrées n'est pas nulle, il fonctionne en **régime saturé**.

Exercice 3

Ordonne les mots et expressions ci-dessous de sorte à constituer une phrase qui a un sens. peut fonctionner /et comme un comparateur de tension /un amplificateur opérationnel / comme un amplificateur de tension/ en régime saturé /en régime linéaire.

Corrigé

Un amplificateur opérationnel peut fonctionner comme un amplificateur de tension en régime linéaire et comme un comparateur de tension en régime saturé.

Exercice 4

Au cours d'une séance de travaux pratiques, ton groupe réalise le montage ci-dessous :

Vous relevez les valeurs des tensions U_s à la sortie de l'amplificateur opérationnel, en fonction des valeurs de la tension d'entrées U_e, que vous consignez dans le tableau ci-dessous :

U _e (V)	1	1.5	2	2,5	3	3,5	4
U _s (V)	-2	-2,97	-3,93	-4,93	-5,89	-6,86	-7,8

Il est demandé à ton groupe de tracer la caractéristique $U_s = f(U_e)$ afin de déterminer le gain en amplification.

L'A.O est idéal et est utilisé en régime linéaire.

Données : $R_1 = 1 \text{ k}\Omega$ et $R_2 = 2 \text{ k}\Omega$.

Tu es désigné pour rédiger le compte rendu de ton groupe

Tu utiliseras au besoin l'échelle 1 cm \leftrightarrow 1 V en abscisse et 1 cm \leftrightarrow 1 V en ordonnée.

- 1. Trace la courbe $U_s = f(U_e)$ et déduis le nom du montage.
- 2. Compare le rapport $\frac{R_2}{R_1}$ et la pente de la courbe U_s = f (U_e)
- 3. Déduis-en la relation entre Ue et Us en fonction de R₁ et R₂.
- 4. Retrouve la relation établie au 3, en utilisant les lois de l'électricité et le schéma du montage,

Corrigé

1. Le montage est un montage amplificateur inverseur

$$2.\frac{R_2}{R_1} = 2; \frac{\Delta U_s}{\Delta U_e} = \frac{-7.8 + 2}{4 - 1} = -2; \frac{\Delta U_s}{\Delta U_e} = -\frac{R_2}{R_1}$$

3.
$$U_s = -2 U_e$$

 $\begin{aligned} &\text{Maille SMAS}: U_S + R_2 I_2 = 0 \Rightarrow U_S = -R_2 I_2. \\ &\text{Maille MNAM}: -U_e + R_1 I_1 = 0 \Rightarrow U_e = R_1 I_1. \end{aligned}$

$$\frac{U_{S}}{U_{e}} = -\frac{R_{2}}{R_{1}} \frac{I_{2}}{I_{1}} \Rightarrow U_{S} = -\frac{R_{2}}{R_{1}} U_{e}$$

Exercice 5

Lors d'une évaluation, votre professeur de physique-chimie vous soumet le montage ci-dessous :

L'amplificateur opérationnel est supposé idéal et est utilisé en régime linéaire.

Il vous est demandé d'exprimer la tension à la sortie de l'amplificateur opérationnel en fonction des tensions d'entrée.

Données: $U_1=4\ V$; $U_2=6\ V$; $R=250\ \Omega.$

- 1. Donne les propriétés d'un amplificateur opérationnel en régime linéaire.
- 2. Exprime la tension de sortie Us en fonction de U_1 ; U_2 et R.
- 3. Identifie la nature du montage.
- 4. Calcule la valeur numérique de la tension de sortie Us.

Corrigé

- 1. Conditions d'étude : $i^+ = i^- = 0$ et $U_d = 0$
- 2. $U_{AM} = U_{AB} + U_{BM}$ avec $U_{AB} = U_d = 0$ de plus $V_A = V_B$ D'où $U_{AB} = 0$,

Par conséquent $U_{AM} = 0$

 $U_{AM} = U_{AC} + U_{CM} = 0 \quad avec \ U_{AC} = \text{-} \ U_1 = \text{-} \ R_1 \ i_1 \ et \ U_{CM} = U_1$

Soit - $R_1 i_1 + U_1 = 0 \implies i_1 = \frac{U_1}{R_1}$

$$U_{AM}$$
= U_{AD} + U_{DM} = 0 avec U_{AD} = - U_2 = - R_2 i_2 et U_{AD} = U_2

Soit
$$-R_2 i_2 + U_2 = 0 \implies i_2 = \frac{U_2}{R_2}$$

Dans la maille MBASM, on a :

$$U_s + U_d + U_d = 0$$
 avec $U_d = 0$

Us = - U₃ = - R₃ i₃
$$\Rightarrow$$
 i₃ = $-\frac{U_3}{R_3}$
Loi des nœuds en A, on a : i₃ = i₁ + i₂

$$\mathbf{u}_{s} = -\mathbf{R}_{3} \left(\frac{\mathbf{U}_{1}}{\mathbf{R}_{1}} + \frac{\mathbf{U}_{2}}{\mathbf{R}_{2}} \right)$$

dans notre cas avec $R_1 = R_2 = R$ on obtient

$$U_s = -(U_1 + U_2)$$

3. La tension de sortie est l'opposée de la tension d'entrée : c'est un montage sommateur inverseur.

4.
$$U_S = -10 \text{ V}$$

IV. DOCUMENTATION

L'amplificateur opérationnel (AO) est un comp osant de base extrêmement imp ortant. Il est utilisé dans de très nombreux circuits d'électronique analogique où il p ermet de réaliser de façon simple des fonctions linéaires et non-linéaires variées et

performantes.

L'amplificateur opérationnel est réalisé à l'aide de quelques dizaines de transistors et deséléments passifs reliés ensemble dans une configuration assez complexe.

De manière classique, le circuit d'entrée est constitué par une paire diférentielle de transistors. Un deuxième étage d'amplification diférentielle

permet d'obtenir un gain total d'environ 7'000.

La recherche de l'amélioration des performances et une plus grande maîtrise de la technologie du silicium et de l'intégration ont conduit à des circuits bien plus complexes.

