Chapter 18

Security at the Network Layer: IPSec

Chapter 18 Objectives

- ☐ To define the architecture of IPSec
- ☐ To discuss the application of IPSec in transport and tunnel modes
- ☐ To discuss how IPSec can be used to provide only authentication
- ☐ To discuss how IPSec can be used to provide both confidentiality and authentication
- ☐ To define Security Association and explain how it is implemented for IPSec
- ☐ To define Internet Key Exchange and explain how it is used by IPSec.

Chapter 18 (Continued)

Figure 18.1 TCP/IP Protocol Suite and IPSec

18-1 TWO MODES

IPSec operates in one of two different modes: transport mode or tunnel mode.

Topics discussed in this section:

18.1.1 Transport Mode

18.1.2 Tunnel Mode

18.1.3 Comparison

18.1.1 Transport Mode

In transport mode, IPSec protects what is delivered from the transport layer to the network layer.

Note

IPSec in transport mode does not protect the IP header; it only protects the information coming from the transport layer.

18.1.1 (Continued)

Figure 18.2 IPSec in transport mode

18.1.1 (Continued)

Figure 18.3 Transport mode in action

18.1.2 Tunnel Mode

In tunnel mode, IPSec protects the entire IP packet. It takes an IP packet, including the header, applies IPSec security methods to the entire packet, and then adds a

Note

new IP header.

IPSec in tunnel mode protects the original IP header.

18.1.2 (Continued)

Figure 18.4 IPSec in tunnel mode

18.1.2 (Continued)

Figure 18.5 Tunnel mode in action

18.1.3 Comparison

Figure 18.6 Transport mode versus tunnel mode

Application layer

Transport layer

IPSec layer

Network layer

Transport Mode

Application layer

Transport layer

Network layer

IPSec layer

New network layer

Tunnel Mode

18-2 TWO SECURITY PROTOCOL

IPSec defines two protocols—the Authentication Header (AH) Protocol and the Encapsulating Security Payload (ESP) Protocol—to provide authentication and/or encryption for packets at the IP level.

Topics discussed in this section:

- **18.2.1** Authentication Header (AH)
- **18.2.2** Encapsulating Security Payload (ESP)
- **18.2.3 IPv4** and **IPv6**
- 18.2.4 AH versus ESP
- **18.2.5** Services Provided by IPSec

18.2.1 Authentication Header (AH)

Note

The AH protocol provides source authentication and data integrity, but not privacy.

18.2.1 (Continued)

Figure 18.7 Authentication Header (AH) protocol

18.2.2 Encapsulating Security Payload (ESP)

Note

ESP provides source authentication, data integrity, and privacy.

18.2.2 (Continued)

Figure 18.8 ESP

18.2.3 IPv4 and IPv6

IPSec supports both IPv4 and IPv6. In IPv6, however, AH and ESP are part of the extension header.

18.2.4 AH versus ESP

The ESP protocol was designed after the AH protocol was already in use. ESP does whatever AH does with additional functionality (privacy).

18.2.5 Services Provided by IPSec

Table 18.1 IPSec services

Services	AH	ESP
Access control	yes	yes
Message authentication (message integrity)	yes	yes
Entity authentication (data source authentication)	yes	yes
Confidentiality	no	yes
Replay attack protection	yes	yes

18.2.5 (Continued)

Figure 18.9 Replay window

18-3 SECURITY ASSOCIATION

Security Association is a very important aspect of IPSec. IPSec requires a logical relationship, called a Security Association (SA), between two hosts. This section first discusses the idea and then shows how it is used in IPSec.

Topics discussed in this section:

- **18.3.1** Idea of Security Association
- **18.3.2** Security Association Database (SAD)

18.3.1 Idea of Security Association

Figure 18.10 Simple SA

18.3.2 Security Association Database (SAD)

Figure 18.11 *SAD*

Index	SN	OF	ARW	AH/ES]	P LT	Mode	MTU
< SPI, DA, P >							
< SPI, DA, P >							
< SPI, DA, P >							
< SPI, DA, P >							

Security Association Database

Legend:

SPI: Security Parameter Index SN: Sequence Number

DA: Destination Address OF: Overflow Flag

AH/ESP: Information for either one ARW: Anti-Replay Window

P: Protocol LT: Lifetime

Mode: IPSec Mode Flag MTU: Path MTU (Maximum

Transfer Unit)

18.3.2 (Continued)

Table 18.2 Typical SA Parameters

Parameters	Description		
Sequence Number Counter	This is a 32-bit value that is used to generate sequence numbers for the AH or ESP header.		
Sequence Number Overflow	This is a flag that defines a station's options in the event of a sequence number overflow.		
Anti-Replay Window	This detects an inbound replayed AH or ESP packet.		
AH Information	This section contains information for the AH protocol: 1. Authentication algorithm 2. Keys 3. Key lifetime 4. Other related parameters		
ESP Information	This section contains information for the ESP protocol: 1. Encryption algorithm 2. Authentication algorithm 3. Keys 4. Key lifetime 5. Initiator vectors 6. Other related parameters		
SA Lifetime	This defines the lifetime for the SA.		
IPSec Mode	This defines the mode, transport or tunnel.		
Path MTU	This defines the path MTU (fragmentation).		

18-4 SECURITY POLICY

Another import aspect of IPSec is the Security Policy (SP), which defines the type of security applied to a packet when it is to be sent or when it has arrived. Before using the SAD, discussed in the previous section, a host must determine the predefined policy for the packet.

Topics discussed in this section:

18.4.1 Security Policy Database

18.4.1 (Continued)

Figure 18.12 Connection identifiers

Index Policy

< SA, DA, Name, P, SPort, DPort >	
< SA, DA, Name, P, SPort, DPort >	
< SA, DA, Name, P, SPort, DPort >	
< SA, DA, Name, P, SPort, DPort >	

Legend:

SA: Source Address SPort: Source Port

DA: Destination Address DPort: Destination Port

P: Protocol

18.4.1 (Continued)

Figure 18.13 Outbound processing

18.4.1 (Continued)

Figure 18.14 Inbound processing

18-5 INTERNET KEY EXCHANGE (IKE)

The Internet Key Exchange (IKE) is a protocol designed to create both inbound and outbound Security Associations.

Topics discussed in this section:

- **18.5.1** Improved Diffie-Hellman Key Exchange
- **18.5.2 IKE Phases**
- 18.5.3 Phases and Modes
- 18.5.4. Phase I: Main Mode
- **18.5.5** Phase I: Aggressive Mode
- 18.5.6 Phase II: Quick Mode
- 18.5.7 SA Algorithms

18.5 (Continued)

IKE creates SAs for IPSec.

18.5 (Continued)

Figure 18.15 IKE components

Internet Key Exchange (IKE)

18.5.1 Improved Diffie-Hellman

Figure 18.16 Diffie-Hellman key exchange

18.5.1 (Continued)

Figure 18.17 Diffie-Hellman with cookies

18.5.1 Continued

To protect against a clogging attack, IKE uses cookies.

Note

To protect against a replay attack, IKE uses nonces.

Note

To protect against man-in-the-middle attack, IKE requires that each party shows that it possesses a secret.

18.5.2 IKE Phases

IKE is divided into two phases: phase I and phase II. Phase I creates SAs for phase II; phase II creates SAs for a data exchange protocol such as IPSec..

18.5.3 Phases and Modes

Figure 18.18 IKE Phases

18.5.3 (Continued)

Figure 18.19 Main-mode or aggressive-mode methods

18.5.4 Phase I: Main Mode

Figure 18.20 Main mode, preshared secret-key method

KE-I (KE-R): Initiator's (responder's) half-key

N-I (N-R): Initiator's (responder's) nonce

ID-I (ID-R): Initiator's (responder's) ID

HASH-I (HASH-R): Initiator's (responder's) hash

HDR: General header including cookies

Encrypted with SKEYID_e

18.5.4 (Continued)

Figure 18.21 Main mode, original public-key method

HDR: General header including cookies

KE-I (KE-R): Initiator's (responder's) half-key

N-I (N-R): Initiator's (responder's) nonce

ID-I (ID-R): Initiator's (responder's) ID

HASH-I (HASH-R): Initiator's (responder's) hash

I am Encrypted with initiator's public key

R Encrypted with responder's public key

Encrypted with SKEYID_e

Result: SA for Phase II

18.5.4 (Continued)

Figure 18.22 Main mode, revised public-key method

HDR: General header including cookies

KE-I (KE-R): Initiator's (responder's) half-key

Cert-I (Cert-R): Initiator's (responder's) certificate

N-I (N-R): Initiator's (responder's) nonce

ID-I (ID-R): Initiator's (responder's) ID

HASH-I (HASH-R): Initiator's (responder's) hash

I 🔞 Encrypted with initiator's public key

R is Encrypted with responder's public key

Encrypted with responder's secret key

Encrypted with initiator's secret key

Encrypted with SKEYID e

18.5.4 (Continued)

Figure 18.23 Main mode, digital signature method

HDR: General header including cookies

Sig-I: Initiator's signature on messages 1-4

Sig-R: Initiator's signature on messages 1-5

Cert-I (Cert-R): Initiator's (responder's) certificate

N-I (N-R): Initiator's (responder's) nonce

KE-I (KE-R): Initiator's (responder's) half-key

ID-I (ID-R): Initiator's (responder's) ID

Encrypted with SKEYID_e

18.5.5 Phase I: Aggressive Mode

Figure 18.24 Aggressive mode, preshared-key method

KE-I (IK-R): Initiator's (responder's) half-key N-I (N-R): Initiator's (responder's) nonce HASH-I (HASH-R): Initiator's (responder's) hash HDR: General header including cookies
Encrypted with SKEYID_e

ID-I (ID-R): Initiator's (responder's) ID

18.5.5 (Continued)

Figure 18.25 Aggressive mode, original public-key method

HDR: General header including cookies

KE-I (KE-R): Initiator's (responder's) half-key

N-I (N-R): Initiator's (responder's) nonce

ID-I (ID-R): Initiator's (responder's) ID

I Encrypted with initiator's public key

R Encrypted with responder's public key

Encrypted with SKEYID_e

HASH-I (HASH-R): Initiator's (responder's) hash

18.5.5 (Continued)

Figure 18.26 Aggressive mode, revised public-key method

HDR: General header including cookies
KE-I (KE-R): Initiator's (responder's) half-key
Cert-I (Cert-R): Initiator's (responder's) certificate
N-I (N-R): Initiator's (responder's) nonce
ID-I (ID-R): Initiator's (responder's) ID

HASH-I (HASH-R): Initiator's (responder's) hash

I Encrypted with initiator's public key
R Encrypted with responder's public key
R Encrypted with responder's secret key
I Encrypted with initiator's secret key
Encrypted with SKEYID e

18.5.5 (Continued)

Figure 18.27 Aggressive mode, digital signature method

Encrypted with SKEYID_e

Sig-I (Sig-R): Initiator's (responder's) signature

HDR: General header including cookies

Cert-I (Cert-R): Initiator's (responder's) certificate

N-I (N-R): Initiator's (responder's) nonce

KE-I (KE-R): Initiator's (responder's) half-key

ID-I (ID-R): Initiator's (responder's) ID

18.5.6 Phase II: Quick Mode

Figure 18.28 Quick mode

KE-I (KE-R): Initiator's (responder's) half-key

N-I (N-R): Initiator's (responder's) nonce

ID-I (ID-R): Initiator's (responder's) ID

HDR: General header including cookies

Encrypted with SKEYID_e

SA: Security association

18.5.7 SA Algorithms

Table 18.3 Diffie-Hellman groups

Value	Description	
1	Modular exponentiation group with a 768-bit modulus	
2	Modular exponentiation group with a 1024-bit modulus	
3	Elliptic curve group with a 155-bit field size	
4	Elliptic curve group with a 185-bit field size	
5	Modular exponentiation group with a 1680-bit modulus	

18.5.7 Continued

 Table 18.4
 Hash Algorithms

Value	Description	
1	MD5	
2	SHA	
3	Tiger	
4	SHA2-256	
5	SHA2-384	
6	SHA2-512	

18.5.7 Continued

 Table 18.5
 Encryption algorithms

Value	Description	
1	DES	
2	IDEA	
3	Blowfish	
4	RC5	
5	3DES	
6	CAST	
7	AES	

18-6 ISKAMP

The ISAKMP protocol is designed to carry messages for the IKE exchange.

Topics discussed in this section:

18.6.1 General Header

18.6.2 Payloads

18.6.1 General Header

Figure 18.29 ISAKMP general header

0	8	3	10	5	24	31
_	Initiator cookie					
_	Responder cookie					
	Next payload Major ver Minor ver Exchange type Flags					Flags
	Message ID					
	Message length					

18.6.2 Payloads

Table 18.6 Payloads

Types	Name	Brief Description	
0	None	Used to show the end of the payloads	
1	SA	Used for starting the negotiation	
2	Proposal	Contains information used during SA negotiation	
3	Transform	Defines a security transform to create a secure channel	
4	Key Exchange	Carries data used for generating keys	
5	Identification	Carries the identification of communication peers	
6	Certification	Carries a public-key certificate	
7	Certification Request	Used to request a certificate from the other party	
8	Hash	Carries data generated by a hash function	
9	Signature	Carries data generated by a signature function	
10	Nonce	Carries randomly generated data as a nonce	
11	Notification	Carries error message or status associated with an SA	
12	Delete	Carries one more SA that the sender has deleted	
13	Vendor	Defines vendor-specification extensions	

8

Figure 18.30 Generic payload header

U	8	1	O	31
Next payload		Reserved	Payload length	

Figure 18.31 SA payload

	<i>3</i>	0 91	
Next payload	Reserved	Payload length	
DOI			
Situation (variable length)			

DOI - Domain of Interpretation

31

Figure 18.32 Proposal payload

0	8	16 2	24 31	
Next payload	Reserved	Payloa	d length	
Proposal #	Protocol ID	SPI size	No. of transforms	
SPI (variable length)				

0

Figure 18.33 Transform payload

0	8	3 1	6 31			
	Next payload	Reserved	Payload length			
	Transform #	Transform ID	Reserved			
	Attributes (variable length)					
		Transforn	n payload			
0	16					
0	Attrib	oute type	Attribute length			
	Attribute value (variable length)					
	Attribute (long form)					
0	16					
1	Attrib	oute type	Attribute value			
	Attribute (short form)					

Figure 18.34 Key-exchange payload

0	8	16	<u>31</u>
Next payload	Reserv	ved Payload length	
	(KE (variable length)	

Figure 18.35 Identification payload

0	8 1	6 31	
Next payload	Reserved	Payload length	
ID type	ID data		
Identification data (variable length)			

Figure 18.36 Certification payload

0 8	16	31
Next payload	Reserved	Payload length
Certificate encoding		
	Certificate (variable ler	

Table 18.7 Certification types

Value	Туре		
0	None		
1	Wrapped X.509 Certificate		
2	PGP Certificate		
3	DNS Signed Key		
4	X.509 Certificate —Signature		
5	X.509 Certificate—Key Exchange		
6	Kerberos Tokens		
7	Certification Revocation List		
8	8 Authority Revocation List		
9	SPKI Certificate		
10	X.509 Certificate—Attribute		

Figure 18.37 Certification request payload

0	8 1	6 31
Next payload	Reserved	Payload length
Certificate type		
Certificate authority (variable length)		

Figure 18.38 Hash payload

0	8]	16 31
Next pa	yload	Reserved	Payload length
Hash data (variable length)			

Figure 18.39 Signature payload

0	8	8	16 31	
	Next payload	Reserved	Payload length	
	Signature data (variable length)			

Figure 18.40 Nonce payload

0	;	8	1	6 31
	Next payload]	Reserved	Payload length
	Nonce (variable length)			

Figure 18.41 Notification payload

0	8 1	6 31		
Next payload	Reserved	Payload length		
DOI (32 bits)				
Protocol ID	SPI size	Notification message type		
SPI (variable length)				
Notification data (variable length)				

Table 18.8 Notification types

Value	Description	Value	Description
1	INVALID-PAYLOAD-TYPE	8	INVALID-FLAGS
2	DOI-NOT-SUPPORTED	9	INVALID-MESSAGE-ID
3	SITUATION-NOT-SUPPORTED	10	INVALID-PROTOCOL-ID
4	INVALID-COOKIE	11	INVALID-SPI
5	INVALID-MAJOR-VERSION	12	INVALID-TRANSFORM-ID
6	INVALID-MINOR-VERSION	13	ATTRIBUTE-NOT-SUPPORTED
7	INVALID-EXCHANGE-TYPE	14	NO-PROPOSAL-CHOSEN

18.6.2

18.6.2 *Continued*

Table 18.8 Notification types (Continued)

Value	Description	Value	Description
15	BAD-PROPOSAL-SYNTAX	23	INVALID-HASH-INFORMATION
16	PAYLOAD-MALFORMED	24	AUTHENTICATION-FAILED
17	INVALID-KEY-INFORMATION	25	INVALID-SIGNATURE
18	INVALID-ID-INFORMATION	26	ADDRESS-NOTIFICATION
19	INVALID-CERT-ENCODING	27	NOTIFY-SA-LIFETIME
20	INVALID-CERTIFICATE	28	CERTIFICATE-UNAVAILABLE
21	CERT-TYPE-UNSUPPORTED	29	UNSUPPORTED EXCHANGE-TYPE
22	INVALID-CERT-AUTHORITY	30	UNEQUAL-PAYLOAD-LENGTHS

 Table 18.9
 Status notification values

Value	Description
16384	CONNECTED
24576-32767	DOI-specific codes

Figure 18.42 Delete payload

0	8 1	6 31	
Next payload	Reserved	Payload length	
DOI (variable length)			
Protocol ID SPI size Number of SPIs			
SPIs (variable length)			

Figure 18.43 Vendor payload

0		8	1	6 31
	Next payload		Reserved	Payload length
	Vendor ID (variable length)			