华中科技大学 人工智能与自动化学院

波形发生器

彭杨哲

U201914634

2021年6月10日

1 实验目的

- 1. 桥式 RC 振荡电路的原理及条件
- 2. 正反馈的作用
- 3. 负反馈对振荡波形的影响
- 4. 相频特性的测量

2 实验元器件

类型	型号(参数)	数量
集成运算放大器	LM324	1 片
电位器	$100 \mathrm{k}\Omega$	1 只
	$5.1 \mathrm{k}\Omega$	2 只
电阻	$10 \mathrm{k}\Omega$	1 只
	$18\mathrm{k}\Omega$	1 只
二极管	1N4148	2 只
电容	0.033 f	2 只

3 实验原理及参考电路

3.1 参考电路

RC 文氏电桥正弦波振荡电路如图1所示:

Figure 1: RC 文氏电桥正弦波振荡电路

3.2 振荡工作原理

如图2所示, V_o 很小时, D_1 和 D_2 开路,等效 R_f 较大,从而 A_{vf} 很大,有利于起振。 V_o 增大后 D_1 和 D_2 短路,等效 R_f 减小,从而 A_{vf} 减小,使 V_o 趋于稳定。无输出时调节 R_p 以调整负反馈系数,从而调节放大电路部分的增益,使其满足振荡的幅值条件。

Figure 2: 振荡原理图

3.3 选频工作原理

如图3f 所示,RC 组成串 (Z_2) ,并联 (Z_1) 选频网络,从并联处正反馈,反馈系数 $F_v = \frac{Z_1}{Z_1+Z_2}$ 。计算可知,正反馈最大值为 $\frac{1}{3}$ 。电路平衡时应有 $A_{vf}F_v = 1$,即 $A_{vf} = 3$ 。

Figure 3: 选频原理图

4 实验内容

• 将示波器接在振荡电路的输出端,观察 V_O 的波形。适当调节电位器 R_p ,使电路产生震荡,观察负反馈强弱(即 A_{vf} 大小)对输出波形 V_O

的影响。

- 调节 R_p , 使振荡稳定且输出不失真情况下, 测量输出信号 V。
- 测量开环幅频特性和相频特性
 - 用波形发生器调节出 V_i 。
 - $-V_i$ 幅值设为上一步骤实测的 V_o 值。
 - 保持 V_i 幅值不变,调节频率。
 - 测量各个频率时输出的峰峰值。
 - 测量各个频率时与 V_i 的 V_o 相位差。

Figure 4: 实验内容图

5 实验结果及分析

5.1 观察输出波形

当将示波器接在振荡电路的输出端后,调节电位器,使滑动变阻器阻值 变小时,使负反馈强度变小,此时可见输出波形由截波失真逐渐变为正常波 形.

5.2 测量输出电压峰峰值和输出信号频率

测得不失真时输出电压的峰峰值为 16.2V, 振荡频率为 954.2Hz, 波形图 如图5所示

5.3 测量开环幅频特性和相频特性

实验记录如下表1所示

Figure 5: 输出波形

输入信号 v_{12} 的频率	图/Hz 50	70	100	200	700	f_o	1200	5000	7000	10000
输出电压峰峰值/V	3.4	4.4	5.8	9	16.0	16.2	16.2	9.2	7.2	5.6
v_o, v_{12} 间的相位差/	度 98.56	92.28	85.3	60.24	10.08	0	-5.192	-50.4	-60	-68.4

Table 1: 实验记录

6 思考题

- 1. 若想改变图2所示电路的振荡频率, 需要调节电路中哪些元件? 答: 应该调节 R 的阻值和 C 的电容值
- 2. 分析电路调节输出电压幅度的原理, 说明该电路中调整哪个元件可以改变输出电压 v_o 的幅度?
 - 答:输出电压的幅度与放大器的电压增益有关,所以通过调节 R_2 , R_1 , R_p 的值均可调整输出电压的幅度 (在不失真的情况下)
- 3. 试说明用示波器测量频率有哪几种常用方法?

答: 1. 将待测信号接入示波器后, 按下 Measure 键, 打开全部测量 2. 将待测信号接入示波器后, 按下左侧的测量键, 找到对应的"频率", 对应的数值即可显示在示波器的下部显示区. 3. 将待测信号接入示波器后, 通过数波形一个周期所占的格数, 再乘以此时示波器的时间系数, 得到周期时间, 取反函数之后即可得到信号的频率

7 小结

通过此次实验, 我进一步巩固了在模电中学到的波形发生器的相关知识, 了解到了正弦波的产生原理, 更进一步增强了自己对于示波器的操作使用, 学到了很多有用的操作知识.

8 实验中出现的问题,分析及解决方案

在本次实验过程中, 我收集了一些常见的问题, 小结如下:

- 要熟练使用示波器,对示波器的功能具有较清楚的认识,知道可以直接通过示波器显示两个信号波形的相位差
- 当信号输出波形失真时, 注意调整滑动变阻器, 使信号刚好不失真, 记录的应该是此时的频率和峰峰值