Computer Science and Engineering Department

Artificial Intelligence (UCS-411)

Lab Assignment-5

1	Create a dataset (.csv file) having following features- experience of the candidate,
	written score, interview score and salary. Based on three input features, HR decide
	the salary of the selected candidates. Using this data, KNN model build a for HR
	department that can help them decide salaries of the candidates. Print all the
	possible model evaluation parameters.
	Also predict the salaries for the following candidates, by executing the model (for
	different values of K):
	(a) 5 Yrs experience, 8 written test score, 10 interview score
	(b) 8 Yrs experience, 7 written test score, 6 interview score
2	Create a dataset (.csv file) having following features- Graduations percentage,
	experience of the candidate, written score, interview score and selection. Selection
	feature is binary in nature and contains the status of the candidate. Also store at
	least 25 records in this dataset.
	Using this data, build a Bayesian learning model for HR department that can help
	them to decide whether the candidate will be selected or not. Take 80% data as
	training data and remaining a testing data randomly. Using the built model, predict
	the status for the following unseen data:
	(a) 90 %, 5 Yrs experience, 8 written test score, 10 interview
	score (b) 75%, 8 Yrs experience, 7 written test score, 6
	interview score
	Also calculate the possible classification metrics for the above cases and save
	these values in the .CSV file.
3	For the IRIS dataset, design a decision tree classifier. Take different percentage of
	training data and then observe effect on the accuracy and other evaluation
	parameters. Also note the effect of decision tree parameters (like max depth,
	min_sample_spit etc.) on the performance of the model.
	Note: Take criterion as entropy.

Compare the performance of KNN, Bayesian Classifier and Decision Tree model on the diabetes dataset. For this comparison, you can take different possible parameters of particular model. Save outputs in a .csv file.