

CASO PARTICOLARE: Per equalizzazione si ossume che hy= à (costente) E' una richieste "empirice", in generale patrei assegnare hy in modo differente.

Note on L livelli => hy he velore estente = $\frac{1}{L-1}$ = $\frac{1}{L-1}$

Proprieta di f:

- (1) f strettemente vercente, derivabile con f' derivabile
- (2) f(x) e [0, L-1]

Nota monotonia é richiesta per non alterare significato dell'immagine regolorità è aggiunta per "amo de dita"

Sia
$$q = f'$$
 ($q \neq derivabile per ipotesi$). Supprojours di possore nel continue, quinchi $x, y \neq v.e.$ Continue.

Fight) = Pro $g \neq f \neq f = f$ volve pixel $g \neq f = f$ hy (s) $g \neq f = f$ hy (w) $g \neq f =$

Par ipotesi abbiamó assunto che hy (s) =
$$\frac{1}{L-1}$$
 => $\int_{0}^{t} h_{y}(s)ds = \frac{t}{L-1}$
Denivorado respetto a t : $\frac{1}{L-1} = h_{x}(g(t)) g'(t)$

Per definizione
$$g'(t) = \frac{1}{f'(g)H}$$
, quindi, posto $z = g(t)$,

 $f'(z) = (L-1) h_X(z) \Rightarrow f(z) = (L-2) \int_0^z h_X(s) ds + f(0)$

E regionerale arramene $f(0) = 0$ [pixel new, volore minimo, \rightarrow pixel news]

 $f(z) = (L-1) \int_0^z h_X(s) ds$

Nel caso di socreto $f(s) \Rightarrow f(s) \Rightarrow$