$10_3 \ (K10a_{117})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{12} - u^{11} + 9u^{10} - 8u^9 + 29u^8 - 22u^7 + 40u^6 - 24u^5 + 22u^4 - 9u^3 + 3u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 12 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

²All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{12} - u^{11} + 9u^{10} - 8u^9 + 29u^8 - 22u^7 + 40u^6 - 24u^5 + 22u^4 - 9u^3 + 3u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} + 5u^{6} + 7u^{4} + 4u^{2} + 1 \\ -u^{10} - 6u^{8} - 11u^{6} - 6u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{9} + 6u^{7} + 11u^{5} + 6u^{3} - u \\ u^{9} + 5u^{7} + 7u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$= 4u^{10} - 4u^9 + 32u^8 - 28u^7 + 88u^6 - 64u^5 + 96u^4 - 52u^3 + 36u^2 - 12u + 2u^4 - 32u^4 - 32u^$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_9, c_{10}$	$u^{12} - u^{11} + \dots + 3u^2 + 1$
$c_2, c_3, c_7 \ c_8$	$u^{12} - u^{11} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_9, c_{10}$	$y^{12} + 17y^{11} + \dots + 6y + 1$
c_2, c_3, c_7 c_8	$y^{12} + 13y^{11} + \dots + 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.088430 + 1.124390I	4.57295 + 1.88989I	3.52820 - 3.98383I
u = -0.088430 - 1.124390I	4.57295 - 1.88989I	3.52820 + 3.98383I
u = 0.262297 + 1.106610I	-1.85830 - 4.37390I	-0.54525 + 3.77995I
u = 0.262297 - 1.106610I	-1.85830 + 4.37390I	-0.54525 - 3.77995I
u = 0.520232 + 0.348843I	-6.43201 - 1.71442I	-5.08194 + 3.66811I
u = 0.520232 - 0.348843I	-6.43201 + 1.71442I	-5.08194 - 3.66811I
u = -0.237731 + 0.323766I	-0.073452 + 0.847212I	-1.79874 - 8.22796I
u = -0.237731 - 0.323766I	-0.073452 - 0.847212I	-1.79874 + 8.22796I
u = 0.06408 + 1.75550I	8.44501 - 5.73210I	0.29636 + 2.78231I
u = 0.06408 - 1.75550I	8.44501 + 5.73210I	0.29636 - 2.78231I
u = -0.02045 + 1.76385I	15.0850 + 2.3421I	3.60137 - 2.79467I
u = -0.02045 - 1.76385I	15.0850 - 2.3421I	3.60137 + 2.79467I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_9, c_{10}$	$u^{12} - u^{11} + \dots + 3u^2 + 1$
c_2, c_3, c_7 c_8	$u^{12} - u^{11} + \dots - 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_9, c_{10}$	$y^{12} + 17y^{11} + \dots + 6y + 1$
c_2, c_3, c_7 c_8	$y^{12} + 13y^{11} + \dots + 6y + 1$