Course – 5 Title: Mathematics-I

Course Code: MAT 111 Credit: 3.00 Contact Hour: 3 per week Total marks: 100

11.1 **Rationale:** To be a computer Engineer one has to have sound knowledge about limit, continuity, differentiability and integration of differential and integral calculus.

11.2 Objectives:

- 1. To Learn about various limit problems algebraically and graphically
- 2. To Examine and Apply the continuity and differentiability of various types of function
- 3. To gain knowledge about Integration and application of Integration.

11.3 Learning Outcomes	11.4 Course Content	11.5 Teaching/Learning	11.6 Assessment
Learning Outcomes	Course Content	Strategy Strategy	Strategy Strategy
 Define limit and continuity. Justify continuity and differentiability. Explain Differentiability Find the differential coefficient. 	Differential Calculus Limit, continuity and differentiability, successive differentiation of various types of functions	Lecture Exercise	Assignment Essay Exercise Short
State and prove the Leibnitz's theorem Roll's theorem and Mean Value theorem	Leibnitz's rule, Taylor's theorem in finite and infinite forms. Maclaurin's theorem in finite and infinite forms. Roll's	Lecture Exercise	Assignment Essay Exercise Short
Define Partial Derivative Derive Euler's theorem.	theorem, Mean Value theorem Partial differentiation, Euler's theorem.	Lecture Exercise	Assignment Essay Exercise Short answer
Determine the Equations of Tangent and normal.	Equations of Tangent and normal.	Lecture Exercise	Assignment Essay Exercise Short answer
 Determine the maximum and minimum. Discuss the maximum and minimum. Evaluate maximum and minimum of function 	Determination of maximum and minimum values of functions and points of inflexion	Lecture Exercise	Assignment Essay Exercise Short answer
Explain Curvature, radius of curvature and center of curvature	Curvature, radius of curvature and center of curvature.	Lecture Exercise	Assignment Essay Exercise Short answer
Compute Integral of functions	Integral Calculus Integration by various methods	Lecture Exercise	Assignment Essay Exercise

				Short
			_	answer
1.	List the properties of Definite	Definite Integrals, Gamma Beta	Lecture	Assignment
	Integrals	Function,	Exercise	Essay
2.	Define Gamma and Beta			Exercise
	Function.			Short
3.	Find the relation between			answer
	Gamma and Beta Function			
1.	State and prove Walli's formula	Walli's formula, Reduction	Lecture	Assignment
2.	Deduce Reduction Formula	Formula, Improper integral,	Exercise	Essay
3.	Explain improper integral	Determination of Area		Exercise
4.	Derive area of various curves.			Short
				answer

RECOMMENDED BOOKS AND PERIODICALS

Book References:

S.P. Gordon
 Calculus and the Computer.
 L.I. Holder
 Calculus and Analytic Geometry.

3. J.F. Hurley : Calculus

4. Willard, Stephen : Calculus and its Application

5. J. Stewart : Calculus.