

European Conference on Computational Biology

Quantum Machine Learning for multi-omics analysis

Session	Topic	Туре	Time
I	Welcome Remarks and Introduction	Q&A	9 – 9:20 AM
	Quantum computing fundamentals with Qiskit	Hands-on	9:20 – 10 AM
	Current state of Quantum Machine Learning	Lecture	10 – 10:45 AM
Coffee Break			10:45 – 11 AM
п	Data and Complexity measures	Lecture	11 – 11:30 AM
	Quantum Kernel methods	Lecture	11:30 - 12 PM
	Applying a Quantum-Classical machine learning benchmarking	Lecture +	12 – 1 PM
	tool on omics data	Hands-on	
Lunch break			1 – 2 PM
ш	Implementing Quantum Kernel methods	Hands-on	2 – 3 PM
	Execute the benchmarking tool on omics data	Hands-on	3 – 4 PM
Coffee break			4 – 4:15 PM
IV	Review results from the benchmarking tool	Hands-on	4:15 – 5:15 PM
	Result Read-outs	Q&A	5:15 – 5:45 PM
	Future Directions & Concluding Remarks	Lecture	5:45 – 6 PM

European Conference on Computational Biology

Know your Hosts

Aritra Bose, PhD IBM Research

Filippo Utro, PhD IBM Research

Laxmi Parida, PhD IBM Research

Bryan Raubenolt, PhD Cleveland Clinic

Hakan Doga, PhD IBM Quantum

Akhil Mohan, PhD Cleveland Clinic

European Conference on Computational Biology

Learning Outcomes

- Understanding the fundamentals of quantum computing, including learning how to implement algorithms in a quantum computer with quantum gates and circuits using Qiskit.
- Practical experience of pre-processing multi-omics data and preparing it for a quantum hardware experiment.
- Gain experience on quantum algorithms for learning problems.
- Analyze machine learning methods on multi-omics data, understand their shortcomings and review the impact of data complexity measures on ML models.
- How to apply QML models on multi-omics data.
- Learn design of experiments for biomedical data using quantum computers by gaining an in-depth knowledge of quantum-classical hybrid workflows.
- Understand when to apply QML models and benchmark it with classical ML models.

European Conference on Computational Biology

Tutorial Materials

- All tutorial materials are available here: https://github.com/IBM/qml4omics/tree/Tutorial_ISMB25
- Datasets used in this tutorial are available in the data directory. It contains a Melanoma Minimal Residual Disease dataset with single-cell transcriptomic data and a Breast Cancer multi-omics data containing DNA methylation and transcriptomic data.
- You can find each session's materials in the designated directory in the repo.