WHY ARE ELLENBERG INDICATOR VALUES SO GOOD EXPLANATORY VARIABLES?

David Zelený

ELLENBERG INDICATOR VALUES

	EIV-reaction	1	2	3
Mycelis muralis	6	1	0	0
Moehringia trinervia	7	0	1	1
Mercurialis perennis	7	1	0	1
Lathyrus vernus	4	0	1	0
Myosotis sylvatica	7	1	1	0
Milium effusum	5	0	0	1
Melica nutans	3	1	1	0
Melampyrum pratense	2	0	1	1
Myosotis ramosissima	1	1	1	0
Lychnis viscaria	2	0	0	1
Melittis melissophyllum	3	0	1	0

Mycelis muralis
Moehringia trinervia
Mercurialis perennis
Lathyrus vernus
Myosotis sylvatica
Milium effusum
Melica nutans
Melampyrum pratense
Myosotis ramosissima
Lychnis viscaria
Melittis melissophyllum

	EIV-reaction	1	2	3
Mycelis muralis	6	1	0	0
Moehringia trinervia	7	0	1	1
Mercurialis perennis	7	1	0	1
Lathyrus vernus	4	0	1	0
Myosotis sylvatica	7	1	1	0
Milium effusum	5	0	0	1
Melica nutans	3	1	1	0
Melampyrum pratense	2	0	1	1
Myosotis ramosissima	1	1	1	0
Lychnis viscaria	2	0	0	1
Melittis melissophyllum	3	0	1	0
	mean EIV:	4.8	3.9	4.6

	EIV-reaction	1	2	3	4
Mycelis muralis	6	1	0	0	0
Moehringia trinervia	7	0	1	1	1
Mercurialis perennis	7	1	0	1	1
Lathyrus vernus	4	0	1	0	0
Myosotis sylvatica	7	1	1	0	0
Milium effusum	5	0	0	1	1
Melica nutans	3	1	1	0	0
Melampyrum pratense	2	0	1	1	1
Myosotis ramosissima	1	1	1	0	0
Lychnis viscaria	2	0	0	1	1
Melittis melissophyllum	3	0	1	0	0
	mean EIV:	4.8	3.9	4.6	4.6
			/	<u></u>	

mean EIV inherits information about compositional similarity between plots

RANDOMIZATION OF EIVS AMONG SPECIES

RANDOMIZATION OF EIVS AMONG SPECIES

	EIV-reaction	1	2	3	4
Mycelis muralis	6	1	0	0	0
Moehringia trinervia	7	0	1	1	1
Mercurialis perennis	7	1	0	1	1
Lathyrus vernus	4	0	1	0	0
Myosotis sylvatica	7	1	1	0	0
Milium effusum	5	0	0	1	1
Melica nutans	3	1	1	0	0
Melampyrum pratense	2	0	1	1	1
Myosotis ramosissima	1	1	1	0	0
Lychnis viscaria	2	0	0	1	1
Melittis melissophyllum	3	0	1	0	0

Mycelis muralis
Moehringia trinervia
Mercurialis perennis
Lathyrus vernus
Myosotis sylvatica
Milium effusum
Melica nutans
Melampyrum pratense
Myosotis ramosissima
Lychnis viscaria
Melittis melissophyllum

Mycelis muralis
Moehringia trinervia
Mercurialis perennis
Lathyrus vernus
Myosotis sylvatica
Milium effusum
Melica nutans
Melampyrum pratense
Myosotis ramosissima
Lychnis viscaria
Melittis melissophyllum

Mycelis muralis
Moehringia trinervia
Mercurialis perennis
Lathyrus vernus
Myosotis sylvatica
Milium effusum
Melica nutans
Melampyrum pratense
Myosotis ramosissima
Lychnis viscaria
Melittis melissophyllum

	EIV-reaction	1	2	3	4
Mycelis muralis	6	1	0	0	0
Moehringia trinervia	4	0	1	1	1
Mercurialis perennis	3	1	0	1	1
Lathyrus vernus	3	0	1	0	0
Myosotis sylvatica	5	1	1	0	0
Milium effusum	7	0	0	1	1
Melica nutans	7	1	1	0	0
Melampyrum pratense	1	0	1	1	1
Myosotis ramosissima	7	1	1	0	0
Lychnis viscaria	2	0	0	1	1
Melittis melissophyllum	2	0	1	0	0

Mean RANDOMIZED EIV: 5.6 4.1 3.4

THREE TYPES OF VARIABLES:

	EIV-reaction	1	2	3
Mycelis muralis	6	1	0	0
Moehringia trinervia	7	0	1	1
Mercurialis perennis	7	1	0	1
Lathyrus vernus	4	0	1	0
Myosotis sylvatica	7	1	1	0
Milium effusum	5	0	0	1
Melica nutans	3	1	1	0
Melampyrum pratense	2	0	1	1
Myosotis ramosissima	1	1	1	0
Lychnis viscaria	2	0	0	1
Melittis melissophyllum	3	0	1	0

Mean EIV: 4.8 3.9 4.6

Mean RANDOMIZED EIV: 5.6 4.1 3.4

	EIV-reaction	1	2	3
Mycelis muralis	6	1	0	C
Moehringia trinervia	7	0	1	1
Mercurialis perennis	7	1	0	1
Lathyrus vernus	4	0	1	C
Myosotis sylvatica	7	1	1	C
Milium effusum	5	0	0	1
Melica nutans	3	1	1	C
Melampyrum pratense	2	0	1	1
Myosotis ramosissima	1	1	1	C
Lychnis viscaria	2	0	0	_ 1
Melittis melissophyllum	3	0	1	

Random variable: 4.6 4.8 3.9

DATA USED FOR ANALYSES

Dataset 1

- 94 vegetation plots
- forest vegetation in Vltava river valley
- measured soil pH

Dataset 2

- 1000 vegetation plots
- forest vegetation
- randomly selected from Czech National Phytosociological Database

INFORMATION ABOUT COMPOSITIONAL SIMILARITY AMONG PLOTS INHERITED INTO

measured pH

calculated mean EIV for soil reaction

plot dissimilarity

	plot 1	plot 2	plot 3	plot 4
plot 2	0.33			
plot 3	0.34	0.37		
plot 4	0.35	0.22	0.42	
plot 5	0.84	0.84	0.76	0.82

Bray-Curtis distance

Δ measured pH

		plot 1 5.10	plot 2 4.09	plot 3 4.10	plot 4 4.15
plot 2	4.09	1.01			
plot 3	4.10	1.00	0.01		
plot 4	4.15	0.95	0.06	0.05	
plot 5	5.35	0.25	1.26	1.25	1.20

INFORMATION ABOUT COMPOSITIONAL SIMILARITY AMONG PLOTS INHERITED INTO

measured pH

calculated mean EIV for soil reaction

INFORMATION ABOUT COMPOSITIONAL SIMILARITY AMONG PLOTS INHERITED INTO

mean randomized EIV for soil reaction

random variable

EIVS AS EXPLANATORY VARIABLES IN CCA

COMPARISON OF MEASURED PH AND CALCULATED EIV FOR SOIL REACTION

Data: dataset 1 – river valley

CCA: COMPARISON OF MEASURED PH AND CALCULATED EIV FOR SOIL REACTION

CCA: COMPARISON OF MEASURED PH AND CALCULATED EIV FOR SOIL REACTION

CCA: COMPARISON OF MEASURED PH AND CALCULATED EIV FOR SOIL REACTION

EIVS CORRELATED WITH DCA SCORES

MEAN EIVS CORRELATED WITH DCA SCORES

	DCA1	DCA2
Light	+++	+++
Temp	++	+++
Cont	++	+++
Moist		n.s.
Nutr		n.s.
React		n.s.

Tab.: significance of Pearson's correlation coefficient

MEAN EIVS CORRELATED WITH DCA SCORES

MEAN RANDOMIZED EIV CORRELATED WITH DCA SCORES

Mean randomized EIV

- inherits information about compositional similarity among plots
- carry no ecological information
- more than 50% are significantly (p < 0.05) correlated with the first DCA axis!

REGRESSION OF SPECIES RICHNESS ON MEAN EIVS

REGRESSION OF SPECIES RICHNESS ON MEAN EIVS

mean randomized EIV random variable

USE OF MEAN EIVS IN REGRESSION AND CLASSIFICATION TREES

Dependent variable: species richness

Explanatory variables: mean EIV

measured variables

REGRESSION TREES — VARIABILITY EXPLAINED BY MEAN RANDOMIZED EIV

SUMMARY

- mean Ellenberg indicator values inherits information about compositional similarity among plots
- use in CCA (as explanatory variables)
 - circularity of reasoning
 - unrealistically high explained variability
- use in DCA (correlation with DCA axis)
 - circularity of reasoning less obvious, but still present
 - unrealistically high correlation coefficients
 - ~ 50 % probability of significant result even in case of no ecological meaning

SUMMARY

correlation with species richness

unrealistically high correlation coefficients and higher probability of significant results

o use in regression trees

- when mixing mean EIVs with measured variables, mean EIVs will perform as better predictors
- unrealistically high explained variability

REGRESSION OF MEAN EIV WITH 1ST AXIS OF DCA MODIFIED MONTE-CARLO PERMUTATION TEST

Monte-Carlo distribution of R²

REGRESSION OF MEAN EIV WITH 1ST AXIS OF DCA MODIFIED MONTE-CARLO PERMUTATION TEST

mean randomized EIV

Data: dataset 2 – 100 plots randomly selected from database

CONCLUSIONS

- o for any analysis with mean EIV: be careful with testing the significance of relationship
- for DCA: do not test the significance of correlation between mean
 EIV and plot scores on DCA axes or use modified Monte-Carlo test
- for correlation with species richness or other vegetation-derived variable: expect unrealistically high correlation coefficient and higher probability of getting significant result
- for regression and classification trees: do not mix mean EIV with measured variables, if dependent variable is derived from species composition (species richness, classification)

Thank you for your attention!

ACKNOWLEDGEMENT

- to Lubomír Tichý, Milan Chytrý and Ching-Feng Li from Department of Botany & Zoology, Masaryk University, for comments and recommendations
- this study was supported by long-term research plan MSM 0021622416