From Raw Text to Linear λ -Terms

Konstantinos Kogkalidis

July 2019

Compositionality in formal and distributional models of natural language

Overview

Big Question

Where do λ -terms come from anyway?

Overview

Big Question

Where do λ -terms come from anyway?

A syntactic framework for Semantic Compositionality

- 1 Type Logic
- 2 Type Lexicon
- 3 Type Assignment (Supertagging)
- 4 Parsing & Surface Form

Logic

Lambek Types, Lexical Ambiguity & Wide Coverage

Phrase	Structure	Verbal Type
eenden eten ₁ vis <i>ducks eat fish</i>	SVO	$(NP\S)/NP$
eten ₂ eenden vis? do ducks eat fish?	VSO	(S/NP)/NP
eenden die vis eten _{3,4} ducks that eat fish	SOV	NP(NPS)
eenden die vis eten _{3,4} ducks that fish eat	OSV	NP(NPS)

. .

Lambek Types, Lexical Ambiguity & Wide Coverage

Phrase	Structure	Verbal Type
eenden eten ₁ vis <i>ducks eat fish</i>	SVO	$(NP\S)/NP$
eten ₂ eenden vis? do ducks eat fish?	VSO	(S/NP)/NP
eenden die vis eten _{3,4} ducks that eat fish	SOV	$NP\setminus(NP\setminus S)$
eenden die vis eten _{3,4} ducks that fish eat	OSV	$NP\setminus(NP\setminus S)$

٠.

$$\begin{split} \mathcal{L} := \mathsf{eten}_1 : (\mathrm{NP}\backslash \mathrm{S})/\mathrm{NP}, \\ & \mathsf{eten}_2 : (\mathrm{S}/\mathrm{NP})/\mathrm{NP} \\ & \mathsf{eten}_{3,4} : \mathrm{NP}\backslash (\mathrm{NP}\backslash \mathrm{S}), \\ & \dots \end{split}$$

Abstract Syntax with MILL

Inductive Type Scheme

$$\mathcal{T}_A := A \mid T_1 \rightarrow T_2$$

Logical Rules & Computational Terms

$$\frac{\Gamma \vdash s : A \to B \quad \Delta \vdash t : A}{\Gamma, \Delta \vdash s \langle t \rangle : B} \qquad \frac{\Gamma, x : A \vdash u : B}{\Gamma \vdash \lambda x. u : A \to B}$$

Lexical vs. Structural Ambiguity

Smaller Lexicon

$$\mathcal{L}' := \mathsf{eten}_{1,2,3,4} : \mathtt{NP} \to \mathtt{NP} \to \mathtt{S}$$

Lexical vs. Structural Ambiguity

Smaller Lexicon

$$\mathcal{L}' := \mathsf{eten}_{1,2,3,4} : \mathtt{NP} \to \mathtt{NP} \to \mathtt{S}$$

More Proofs

Dependency Decorations

 $\mbox{Replace} \rightarrow \mbox{with dependency-decorated variants:}$

$$\{ \xrightarrow{\text{su}}, \xrightarrow{\text{obj}}, \xrightarrow{\text{predc}}, \xrightarrow{\text{mod}}, \dots \}$$

eten: NP $\xrightarrow{\text{obj}}$ NP $\xrightarrow{\text{su}}$ S

Dependency Decorations

Replace \rightarrow with dependency-decorated variants:

$$\begin{array}{l} \{ \overset{\text{su}}{\longrightarrow} , \overset{\text{obj}}{\longrightarrow} , \overset{\text{predc}}{\longrightarrow} , \overset{\text{mod}}{\longrightarrow} , \dots \} \\ \text{eten} : \operatorname{NP} \overset{\text{obj}}{\longrightarrow} \operatorname{NP} \overset{\text{su}}{\longrightarrow} \operatorname{S} \end{array}$$

Lexical Preferences + Decorations ⇒ reduced ambiguity

Dependency Decorations

Replace \rightarrow with dependency-decorated variants:

$$\begin{cases} \overset{\text{su}}{\longrightarrow}, \overset{\text{obj}}{\longrightarrow}, \overset{\text{predc}}{\longrightarrow}, \overset{\text{mod}}{\longrightarrow}, \dots \end{cases}$$
 eten: NP $\overset{\text{obj}}{\longrightarrow}$ NP $\overset{\text{su}}{\longrightarrow}$ S

Lexical Preferences + Decorations ⇒ reduced ambiguity

Formally

Unary modality \diamondsuit^d for $d \in \{$ su, obj, predc, mod, ... $\}$

$$\frac{\Gamma \vdash A}{\langle \Gamma \rangle^d \vdash \diamondsuit^d A} \qquad (\diamondsuit^d I) \qquad \frac{\Delta \vdash \diamondsuit^d A \quad \Gamma[\langle A \rangle^d] \vdash B}{\Gamma[\Delta] \vdash B} \qquad (\diamondsuit^d E)$$

Lexicon

Grammar Extraction

Goal

From syntactically-annotated corpora to type grammars

Grammar Extraction

Goal

From syntactically-annotated corpora to type grammars

Lassy-Small	\rightarrow	Type Grammar
${\sim}65000$ sentences	\rightarrow	Type Sequences
${\sim}30$ POS Tags & Phrasal Categories	\rightarrow	Atomic Types
${\sim}30$ Dependency Labels	\rightarrow	Modal Decorations
${\sim}1$ mil words	\rightarrow	Type Lexicon ${\cal L}$

Grammar Extraction: Example

Extraction: Example

Grammar Extraction: Lexicon

Size

70 000 unique tokens 6 000 unique types (!)

Supertagging

Sequence Classification

Given input data sequence (word vectors) predict a class for each sequence item (types)

Sequence Classification

Given input data sequence (word vectors) predict a class for each sequence item (types)

Black Rectangle
eenden eten vis

Sequence Classification

Given input data sequence (word vectors) predict a class for each sequence item (types)

Sequence Classification

Given input data sequence (word vectors) predict a class for each sequence item (types)

The Problem

Can't predict unseen types

Bad at predicting rare types

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\forall A \in A : S \implies A$$

$$\forall \ d \in \mathcal{D} : S \implies S \stackrel{\mathsf{d}}{\longrightarrow} S$$

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\forall A \in A : S \implies A$$

$$\forall d \in D : S \implies S \stackrel{d}{\longrightarrow} S$$

CFGs: learnable

Supertagging: learnable

Supertagging: An Alternative

Type Syntax

A CFG of two meta-rules

$$\forall A \in A : S \implies A$$

$$\forall d \in D : S \implies S \stackrel{d}{\longrightarrow} S$$

CFGs: learnable

Supertagging: learnable

CFG + Supertagging ⇒ Unbounded Co-domain

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

arxiv: 1905.13418

Better Black Rectangle

eenden eten vis

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

Supertagging: Unbounded co-domain

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

arxiv: 1905.13418

Supertagging: Unbounded co-domain

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

arxiv: 1905.13418

Supertagging: Unbounded co-domain

Reformulation

Given input data sequence (word vectors) generate an output sequence (atomic types & binary connectives)

arxiv: 1905.13418

Parsing

Parsing: Overview

$\mathsf{Parse} \equiv \mathsf{Proof}$

Simulate the logical rules Navigate the proof space

Parsing: Overview

$Parse \equiv Proof$

Simulate the logical rules

Navigate the proof space

ACG Perspective: $\mathcal{S} \xrightarrow{hom} \mathcal{T}$

From Abstract Structure to Surface Form

Parsing: Framework

Parse State

- A logical judgement
- Word associations for (some of) the premise formulas
- A lookahead containing last rule applied

Algorithm

Given a parse state

- 1 Decide between introduction and elimination
- 2 Perform either
- 3 Update state(s)
- 4 Repeat

Parsing: Elimination

Given a sequence of word & type pairs

Split into two disjoint (non-contiguous) sequences...

Parsing: Elimination

Given a sequence of word & type pairs

Split into two disjoint (non-contiguous) sequences..

..by assigning each item one of two labels

..binary sequence classification (!)

$$\frac{\overbrace{\operatorname{eten} \vdash \operatorname{NP} \xrightarrow{\operatorname{obj}} \operatorname{NP} \xrightarrow{\operatorname{su}} \operatorname{S}} Ax.}{\underbrace{\operatorname{eten}, \operatorname{vis} \vdash \operatorname{NP} \xrightarrow{\operatorname{su}} \operatorname{S}} + E} \xrightarrow{\operatorname{eenden} \vdash \operatorname{NP}} Ax.}$$

$$\underbrace{\operatorname{eten} \vdash \operatorname{NP} \xrightarrow{\operatorname{obj}} \operatorname{NP} \xrightarrow{\operatorname{su}} \operatorname{S}} Ax.}_{\operatorname{eenden}, \operatorname{eten}, \operatorname{vis} \vdash \operatorname{S}} Ax.}$$

Black Rectangle of Parsing

$$\langle \mathsf{eenden}, \mathrm{NP} \rangle \text{, } \langle \mathsf{eten}, \mathrm{NP} \xrightarrow{\mathsf{obj}} \mathrm{NP} \xrightarrow{\mathsf{su}} \mathrm{S} \rangle \text{, } \langle \mathsf{vis}, \mathrm{NP} \rangle \vdash \mathrm{S}$$

$$\frac{\overbrace{\text{eten} \vdash_{\text{NP}} \xrightarrow{\text{obj}}_{\text{NP}} \xrightarrow{\text{su}}_{\text{S}} S} \xrightarrow{\text{Vis} \vdash_{\text{NP}}} Ax.}{\underbrace{\text{eten, vis} \vdash_{\text{NP}} \xrightarrow{\text{su}}_{\text{S}} S} \xrightarrow{\text{eenden}, \text{eten, vis} \vdash_{\text{S}}} Ax.} \underbrace{\frac{Ax.}{\text{eenden} \vdash_{\text{NP}}} Ax.}_{\text{eenden, eten, vis} \vdash_{\text{S}}} Ax.$$

$$\frac{\overbrace{\text{eten} \vdash \text{NP} \xrightarrow{\text{obj}} \text{NP} \xrightarrow{\text{su}} \text{S}} \xrightarrow{\text{vis} \vdash \text{NP}} Ax.}{\underbrace{\text{eten, vis} \vdash \text{NP} \xrightarrow{\text{su}} \text{S}} \xrightarrow{\text{eenden}, \text{eten, vis} \vdash \text{S}}} \xrightarrow{\text{eenden} \vdash \text{NP}} Ax$$

$$\frac{1 \qquad 0 \qquad \qquad 0}{\text{eenden, eten, vis} \vdash \text{S}}$$

$$\frac{1}{\text{Black Rectangle of Parsing}} \xrightarrow{\text{Black Rectangle of Parsing}} Ax$$

$$\langle \text{eenden, NP} \rangle, \langle \text{eten, NP} \xrightarrow{\text{obj}} \text{NP} \xrightarrow{\text{su}} \text{S} \rangle, \langle \text{vis, NP} \rangle \vdash \text{S}}$$

$$\frac{\overbrace{\text{eten} \vdash \text{NP} \xrightarrow{\text{obj}} \text{NP} \xrightarrow{\text{su}} \text{S}} \xrightarrow{\text{vis} \vdash \text{NP}} Ax.}{\underbrace{\text{eten, vis} \vdash \text{NP} \xrightarrow{\text{su}} \text{S}} \xrightarrow{\text{eenden} \vdash \text{NP}} Ax} \xrightarrow{\text{eenden} \vdash \text{NP}} Ax$$

$$\frac{\text{eten, vis} \vdash \text{NP} \xrightarrow{\text{su}} \text{S}}{\text{eenden, eten, vis} \vdash \text{S}} \xrightarrow{\text{obj}} \text{NP} \xrightarrow{\text{su}} \text{S}, \langle \text{vis, NP} \rangle \vdash \text{S}} Ax$$

$$\frac{1}{\text{eenden, NP}} \xrightarrow{\text{obj}} \text{NP} \xrightarrow{\text{su}} \text{S}, \langle \text{vis, NP} \rangle \vdash \text{S}} Ax$$

$$\frac{1}{\text{eenden}, \text{NP}} \xrightarrow{\text{obj}} \text{NP} \xrightarrow{\text{su}} \text{S}, \langle \text{vis, NP} \rangle \vdash \text{S}} Ax$$

$$\frac{\overbrace{\text{eten} \vdash_{\text{NP}} \xrightarrow{\text{obj}}_{\text{NP}} \xrightarrow{\text{su}}_{\text{S}} S} \xrightarrow{\text{vis} \vdash_{\text{NP}}} Ax.}{\underbrace{\text{eten, vis} \vdash_{\text{NP}} \xrightarrow{\text{su}}_{\text{S}} S} \xrightarrow{\text{eenden} \vdash_{\text{NP}}} Ax.}$$

$$\underbrace{\text{eenden, eten, vis} \vdash_{\text{S}}}_{\text{eenden, eten, vis} \vdash_{\text{S}}} Ax.$$

$$\frac{\underbrace{\mathsf{eten} \vdash \mathsf{NP} \xrightarrow{\mathsf{obj}} \mathsf{NP} \xrightarrow{\mathsf{su}} \mathsf{S}}_{\mathsf{NP} \xrightarrow{\mathsf{su}} \mathsf{S}} \xrightarrow{\mathsf{vis} \vdash \mathsf{NP}} \xrightarrow{\mathsf{Ax}}.}{\underbrace{\mathsf{eten}, \mathsf{vis} \vdash \mathsf{NP} \xrightarrow{\mathsf{su}} \mathsf{S}}_{\mathsf{eenden}, \mathsf{eten}, \mathsf{vis} \vdash \mathsf{S}}} \xrightarrow{\mathsf{eenden} \vdash \mathsf{NP}} \mathsf{Ax}.$$

$$0 \qquad \qquad 1$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathsf{Black} \ \mathsf{Rectangle} \ \mathsf{of} \ \mathsf{Parsing}$$

$$\langle \mathsf{eten}, \mathsf{NP} \xrightarrow{\mathsf{obj}} \mathsf{NP} \xrightarrow{\mathsf{su}} \mathsf{S} \rangle, \, \langle \mathsf{vis}, \mathsf{NP} \rangle \vdash \mathsf{NP} \xrightarrow{\mathsf{su}} \mathsf{S}$$

..Semantics, finally (computational)

..Semantics, finally (your own)

Semantic Interpretation

From Abstract Syntax to Concrete Semantics $\mathcal{S} \stackrel{\text{hom}}{\longrightarrow} \mathcal{O}$

- Relate MILL types to semantic counterparts
- Provide lexical meaning formulas for constants

Compositional Thanks

$$\frac{\frac{}{\mathsf{thank} \vdash \lozenge^{obj} \mathsf{VNW} \to \mathsf{S}} \mathsf{Ax.} \quad \frac{\frac{}{\mathsf{you} \vdash \mathsf{VNW}} \mathsf{Ax.}}{\langle \mathsf{you} \rangle^{obj} \vdash \lozenge^{obj} \mathsf{VNW}} \stackrel{\diamondsuit^{obj} \mathsf{I}}{\to} E}{\mathsf{thank}, \langle \mathsf{you} \rangle^{obj} \vdash \mathsf{S}} \to \mathsf{E}$$