Package 'GWASpoly'

April 11, 2021

Title Genome-wide Association Studies for Autopolyploids

Version 2.05

Author Jeffrey B. Endelman, Umesh R. Rosyara
Maintainer Jeffrey Endelman <endelman@wisc.edu></endelman@wisc.edu>
Description Designed for genome-wide association studies in autopolyploids.
License GPL-3
LazyData true
RoxygenNote 7.1.1
Encoding UTF-8
Imports rrBLUP, methods, ggplot2, tidyr, stats
Suggests parallel, knitr
VignetteBuilder knitr
Collate 'GWASpoly.data.R' 'GWASpoly.K.R' 'GWASpoly.fitted.R' 'GWASpoly.thresh.R' 'Keff.R' 'design.score.R' 'fit.QTL.R' 'get.QTL.R' 'get_x.R' 'make.full.R' 'manhattan.plot.R' 'qq.plot.R' 'qvalue.R' 'read.GWASpoly.R' 'score.calc.R' 'set.K.R' 'set.params.R' 'set.threshold.R' 'write.GWASpoly.R'
R topics documented:
fit.QTL

2 fit.QTL

get.QTL	3
GWASpoly	3
GWASpoly.data-class	4
GWASpoly.fitted-class	4
GWASpoly.K-class	5
GWASpoly.thresh-class	5
manhattan.plot	6
qq.plot	6
read.GWASpoly	7
set.K	8
set.params	8
set.threshold	9
write.GWASpoly	10
	11

fit.QTL

Index

Test markers as QTL under backward elimination

Description

Test markers as QTL under backward elimination

Usage

```
fit.QTL(data, trait, qtl, fixed = NULL)
```

Arguments

data	variable inheriting from class GWASpoly.K
trait	name of trait
qtl	list of markers to fit in the multi-QTL model (see Details)
fixed	list to specify fixed effects (see Details)

Details

Each element of qt1 is a character vector of length two with format c("marker","model"). Each element of fixed is a character vector of length two: the first element is the name of the effect (must match column in phenotype input file) and the second element is either "factor" or "numeric". The p-value and R2 for each maker are based on the likelihood ratio test under backward elimination, comparing the deviance to the chi-squared distribution.

Value

data frame with partial r2 and p-values

get.QTL 3

get.QTL	Extract significant QTL	

Description

Output a table with all significant markers

Usage

```
get.QTL(data, traits = NULL, models = NULL)
```

Arguments

data	Output from set.threshold
traits	Vector of trait names (by default, all traits)
models	Vector of model names (by default, all models)

Details

Score = -log10(p). Effect = marker effect (not available for the general and diplo-general models).

Value

Data frame with results for significant markers

Description

Compute marker significance scores

Usage

```
GWASpoly(data, models, traits = NULL, params = NULL, n.core = 1, quiet = F)
```

Arguments

data	Output from set.K
models	Vector of model names
traits	Vector trait names (by default, all traits)
params	Optional list of params created by set.params
n.core	Number of cores for parallel computing
quiet	TRUE/FALSE whether to suppress output charting progress

Details

The following marker-effect models are available:

- "additive": Indicates the marker effect is proportional to the dosage of the alternate allele
- "X-dom": where X can be any integer between 1 and ploidy/2 and refers to the allele dosage needed for complete dominance (e.g., "1-dom" = simplex dominance, "2-dom" = duplex dominance). The software tries both dominance patterns for a given dosage model, e.g., whether the reference or alternate allele is dominant
- "diplo-general": All heterozygotes have the same effect
- "diplo-additive": All heterozygotes have the same effect, constrained to be halfway between the homozygous effects
- "general": There are no constraints on the effects of the different dosage levels

To specify additional model parameters, such as the inclusion of fixed effects (Q matrix) and the minimum minor allele frequency, use set.params

Value

Variable of class GWASpoly.fitted

GWASpoly.data-class S4 class with genotype and phenotype data

Description

S4 class with genotype and phenotype data

Slots

```
map data frame with marker, chrom, and position (either bp or cM)
pheno data frame of phenotypes
geno matrix (individuals x markers) of allele dosages (0,1,2,...ploidy)
fixed data frame of fixed effects
ploidy ploidy
```

GWASpoly.fitted-class S4 class with results from genome-wide scan

Description

S4 class with results from genome-wide scan

GWASpoly.K-class 5

Slots

map data frame with marker,chrom,and position (either bp or cM) pheno data frame of phenotypes geno matrix with allele dosages fixed data frame of fixed effects ploidy ploidy

K covariance matrix for polygenic effect scores -log10(p) results

effects estimated marker effects

params parameters used for the analysis

GWASpoly.K-class

S4 class with genotypes, phenotypes, and polygenic covariance

Description

S4 class with genotypes, phenotypes, and polygenic covariance

Slots

map data frame with marker,chrom,and position (either bp or cM)
pheno data frame of phenotypes
geno matrix with allele dosages
fixed data frame of fixed effects
ploidy ploidy
K covariance matrix for polygenic effect

GWASpoly.thresh-class S4 class with results from genome-wide scan and detection threshold

Description

S4 class with results from genome-wide scan and detection threshold

Slots

map data frame with marker,chrom,and position (either bp or cM) pheno data frame of phenotypes geno matrix with allele dosages fixed data frame of fixed effects ploidy ploidy

K covariance matrix for polygenic effect scores -log10(p) results effects estimated marker effects params parameters used for the analysis threshold thresholds for significance

6 qq.plot

Description

Create Manhattan plot

Usage

```
manhattan.plot(data, traits = NULL, models = NULL)
```

Arguments

data Variable of class GWASpoly.fitted

traits Vector of trait names (by default, all traits plotted)
models Vector of model names (by default, all models plotted)

Details

Results for the ref and alt versions of the dominance model are combined. If data is the output from set.threshold, then the threshold is displayed as a horizontal dashed line when models contains a single model. Because the threshold varies between models, it is not drawn when multiple models are included. Although the ref and alt versions of each dominance model are slightly different (as seen with qq.plot), they are treated as a single model for the Manhattan plot, and the average threshold is shown.

Value

ggplot2 object

qq.plot

Quantile-Quantile (QQ) Plot

Description

Inspect p-value inflation using a QQ plot

Usage

```
qq.plot(data, traits = NULL, models = NULL)
```

Arguments

data Variable of class GWASpoly.fitted

traits Vector of trait names (by default, all traits plotted)
models Vector of model names (by default, all models plotted)

Value

ggplot2 object

read.GWASpoly 7

read.GWASpoly	Read in marker and phenotype data	
---------------	-----------------------------------	--

Description

Read in marker and phenotype data

Usage

```
read.GWASpoly(ploidy, pheno.file, geno.file, format, n.traits, delim = ",")
```

Arguments

ploidy	Ploidy (e.g., 2 for diploid, 4 for tetraploid)
pheno.file	Name of the phenotype file
geno.file	Name of the genotype file
format	Format for the marker data. See details.
n.traits	Number of traits
delim	Character to indicate the delimiter in the data files (e.g., "," for csv, "\t" for tab-delimited)

Details

The first column of the phenotype file contains the genotype identifier, columns 2 through (n.traits + 1) contain trait values, and subsequent columns contain the levels (for factors) or numeric values (for covariates) of any fixed effects. The first three columns of the genotype file are (1) marker name, (2) chromosome, and (3) position. Subsequent columns contain the marker data for each individual in the population. Marker data can be coded in one of three formats:

- "numeric": markers are coded based on the dosage of the alternate allele, taking on values between 0 and ploidy
- "AB": e.g., AAAB, ABBB for tetraploids
- "ACGT": e.g., AAAT, GGCC for tetraploids

Only bi-allelic markers are allowed. As of version 2.02 of the package, fractional values of dosage are allowed for the "numeric" format, with missing values imputed by the population mean for each marker. The fractional values are only used for the additive genetic model; for the other models, dosages are rounded to the nearest whole number. If the input allele dosages are whole numbers, then missing values are imputed with the population mode (most frequent value) for each marker.

Value

Variable of class GWASpoly.data

8 set.params

set.K

Set covariance matrix for polygenic effect

Description

Set covariance matrix for polygenic effect

Usage

```
set.K(data, K = NULL)
```

Arguments

data Output from read.GWASpoly

K Optional: user-supplied matrix

Details

By default, K is computed as \$K=MM'\$, where M is the centered genotype matrix (lines x markers). For GWAS, the overall scaling of K is irrelevant. At present, K is scaled such that the mean of its diagonal elements is 1. Alternatively, the user can supply any positive semidefinite K (with row.names that match the genotype identifiers).

Value

Variable of class GWASpoly.K

set.params

Set parameters

Description

Set parameters

Usage

```
set.params(
  fixed = NULL,
  fixed.type = NULL,
  n.PC = 0,
  MAF = 0.05,
  geno.freq = 0.95,
  P3D = T
)
```

set.threshold 9

Arguments

fixed Vector of names of fixed effects

fixed.type Vector of effect types ("numeric" or "factor"), corresponding to the effects listed

in "fixed"

n.PC Number of principal components to include as covariates

MAF Minimum minor allele frequency

geno. freq Maximum genotype frequency (after applying dominance relations)

P3D TRUE/FALSE whether to use the P3D approximation (variance components not

re-estimated for every marker)

Details

The list returned by the function should be passed to GWASpoly function.

Value

A list with the following components

fixed Names of fixed effects
fixed.type Types of fixed effects

n.PC Number of principal components to include as covariates

min.MAF Minimum minor allele frequency

max.geno.freq Maximum genotype frequency (after applying dominance relations)

P3D TRUE/FALSE whether to use the P3D approximation

set.threshold Set the significance threshold

Description

Set the significance threshold

Usage

```
set.threshold(
  data,
  method = "M.eff",
  level = 0.05,
  n.permute = 1000,
  n.core = 1
)
```

Arguments

data Variable of class GWASpoly.fitted

method One of the following: "M.eff", "Bonferroni", "FDR", "permute"

level Genome-wide false positive or false discovery rate (depending on method).

n.permute Number of permutations for method "permute"n.core Number of cores to use for multicore processing

10 write.GWASpoly

Details

The default method, "M.eff", is a Bonferroni-type correction but using an effective number of markers that accounts for LD between markers (Moskvina and Schmidt, 2008). The FDR method is based on version 1.30.0 of the qvalue package.

Value

Variable of class GWASpoly. thresh

References

Moskvina V, Schmidt KM (2008) On multiple-testing correction in genome-wide association studies. Genetic Epidemiology 32:567-573. doi:10.1002/gepi.20331

write.GWASpoly

Write results to file

Description

Write results to file

Usage

```
write.GWASpoly(data, trait, filename, what = "scores", delim = ",")
```

Arguments

data Variable of class GWASpoly.fitted

trait Trait name filename Filename

what Either "scores" or "effects"

delim Delimiter to use in the output file (default is comma)

Details

Score = -log10(p). Effect = marker effect (not available for the general and diplo-general models).

Index

```
fit.QTL, 2
get.QTL, 3
GWASpoly, 3
{\tt GWASpoly.data-class), 4}
GWASpoly.data-class,4
GWASpoly.fitted
        ({\tt GWASpoly.fitted-class}), 4
{\tt GWASpoly.fitted-class,4}
GWASpoly.K, 2
GWASpoly.K (GWASpoly.K-class), 5
GWASpoly.K-class, 5
{\it GWASpoly.} thresh
        (GWASpoly.thresh-class), 5
GWASpoly.thresh-class, 5
manhattan.plot, 6
qq.plot, 6, 6
read.GWASpoly, 7
set.K, 8
\operatorname{set.params}, 8
set.threshold, 6, 9
write.GWASpoly, 10
```