 ALIUN PUBLISHED UNDER	THE PATENT COOPERATION	TREATY (PCT)

(51) International Patent Classifion 5:		(11) International Publication Number: WO 92/0702
C08J 5/06	A1	(43) International Publication Date: 30 April 1992 (30.04.92
(21) International Approximation	PCT/CA91/00 ber 1991 (22.10	son, Suite 2600, 160 Elgin Street, Ottawa, Ontario K11
(30) Priority data: 601,950 23 October 1990 (71) Applicant: ATOMIC ENERGY OF CA [CA/CA]; 344 Slater Street, Ottawa, (CA). (72) Inventors: SINGH, Ajit; 1 Aberdeen, R0E 1L0 (CA). SAUNDERS, Chric Alexander, Pinawa, Manitoba R0E Il Vincent, J.; 8 McGregor, Pinawa, N (CA). CZVIKOVSZKY, Tibor, J.; Vi Budapest (HU). BOYER, Gordon, D Drive, Winnipeg, Manitoba R2C 4L7 Walter; 51 Mager W., Winnipeg, M (CA).	NADA LIMI' Ontario KIA Pinawa, Mani stopher, B.; .0 (CA). LOPA danitoba R0E igado ter 3, H- .; 206 Devon (CA). KREMI	ropean patent), NU (Editopean patent), SU (Ed

(57) Abstract

A process for the preparation of a composite material containing a thermoplastic polymer and cellulosic fibres, having high tensile and flexural properties, reduced thermal expansion and high thermal stability (heat-deflection temperature), compared to the pure plastic is described. Cellulosic fibres are coated with electron beam-curable monomers, oligomers or mixtures thereof. The coated fibres are mixed with a powdered thermoplastic matrix material. The mixture is electron beam treated to a specified dose, to chemically cure the fibre coating by producing free radicals in the fibre, in the coating and in the matrix polymer. Free radical reactions form chemical bonds between the fibres and the synthetic matrix. Mechanical bonding, the result of a molecular entanglement, further improves the adhesion between the wood fibres and the thermoplastic polymer.

^{*} See back of page

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria ES Spain MG Madagascar AU Australia F1 Finland ML Mali BB Barbades FR Prenes MN Mengella BE Belgium GA Cabon MR Mauritania BF Burkina Faso G8 Unitud Kingdom MW Malawi BG Bulgarra GN Gunca NL Netherlands BJ Benin GR Greece NO Noway BR Brazil HU Hungary PL Poland CA Canada IT tasty RO Romanus CF Central African Republic JP Japan SD Sudan CC Congo KP Democratic People's Republic SE Sweden CH Switzerland of Korea SU Soviet Union CL Cameroon LI Lischunstein TD Chad CC Corponany LU Lusembourg US United States of America	appli	ications under the PCT.		•		
AU Austrella FI Finland Mi. Mali BB Barbades FR Frances MN Mengella BE Belgium GA Cabon MR Mauritania BF Burkina Faso GB Unitud Kingdom MW Malawi BF Burkina Faso GR Grocce NO Norway BR Brazil HU Hungary PL Poland CA Canada IT tusy RO Romanus CP Central African Republic JP Japan SD Sudan CG Congo KP Democratic People's Republic SR Sweden CH Switzerland of Korea SU+ Soviet Union CH Cameroon LI Licchtunstein TD Chad CS Cucchoslovakia LK Sri Lanka TC Togo DE Corrosny LU Luscembourg US United States of America	AT	Austria	E	Spain		Madagascar
BB Barbadas FR France MN Mengella BB Belglum GA Qubon MR Mauritania BF Burkins Faso GB United Kingdom MW Malawi BG Bulgarra GN Oumea NL Netherlands BU Benin GR Grosec NO Noway BR Brazil HU Hungary PL Poland CA Canada IT Isaly RO Romans CF Central African Republic JP Japan SD Sudan CG Congo KP Oumocratic People's Republic SB Sweden CH Switzerland of Korea SN Senegal CI Cito d'Ivoire KR Republic of Korea SN Senegal CI Congroon LI Liechtenstein TD Chad CS Czuchoslovakia Lik Sri Lanka TG Topo DE Corrosny LU Liesembourg US Linited States of America		Australia	P1	Finland		
BE Belglum GA Qabon MR Mauritania BF Burkins Faso GB Unitud Kingdom MW Matawi BG Bulgaria GN Ourica NL Netherlands BJ Benin GR Greece NO Noway BR Brazil HU Hungary PL Poland CA Canada IT Isaly RO Romania CP Central African Republic JP Japan SD Sudan CC Congo KP Democratic People's Republic SE Sweden CH Switzerland of Korea SN Senegal CI Côte d'Ivoire KR Republic of Korea SU+ Soviet Union CM Cameroon LI Lischunstein TD Chad CC Cotronony LU Lischunstein TG Togo DE Ournany LU Liscenbourg US United States of America		Barbades	FR	France		
BF Burkins Faso GB United Kingdom MW Malawi BG Bulgarra GN Guinea NL Netherlands BU Benin GR Greece NO Noway BR Brazil HU Hungary PL Poland CA Canada IT taly RO Romanus CP Central African Republic JP Japan SD Sudan CG Congo KP Democrate People's Republic SE Sweden CH Switzerland of Korea SU Soviet Union CI Côto d'Ivoire KR Republic of Korea SU Soviet Union CM C'ameroon LI Liechtenstein TD Chad CS Czuchoslovakia LK Sri Lanka TG Togo DE Corrosny LU Liestmourg US United States of Americe		Beizlum	OA.	Gabon	MR	Mauritania
BJ Benin GR Greece NO Norway BR Brazil HU Hungary PL Poland CA Canada IT tuby RO Romanus CP Central African Republic JP Japan SD Sudan CG Congo KP Democratic People's Republic SR Sweden CH Switzertand of Korea SU Soviet Union CI Côto d'Ivoire KR Republic of Korea SU Soviet Union CM Cameroon LI Licchtenstein TD Chad CS Czuchoslovakia LK Sri Lanka TC Togo DR Opromany LU Licenthourg US United States of Americ			GB	United Kingdom	MW	Malawi
BJ Benin GR Greec NO Norway BR Brazil HU Hungary PL Poland CA Canada IT listy RO Romanus CF Central African Republic JF Japan SD Sudan CC Congo KP Democratle People's Republic SE Sweden CH Switzerland of Korea SU Soviet Union CL Côte d'Ivoire KR Republic of Korea SU Soviet Union CM Cameroon LI Licchtenstein TD Chad CS Czuchosłovakia LK Sri Lanka TC Togo DE Oormany LU Licembourg US Linited States of Americ	BC	Bulgaria	GN	Guinca	NL	Netherlands
BR Bracil HU Hungary PL Poland CA Canada IT tialy RO Romanus CP Central African Republic JP Japan SD Sudan CG Congo KP Democratle People's Republic SE Sweden CH Switzertanu of Korea SU Soviet Union CI Côte d'Ivoire KR Republic of Korea SU Soviet Union CM Cameroon LI Liechtenstein TD Chad CS Czuchoslovakia LK Sri Lanka TG Togo DE Opronany LU Lieumbourg US Linited States of Americ			GR	Grocce	NO	Norway
CA Canada IT Isaly RO Romanus CP Central African Republic JP Japan SD Sudan CC Congo KP Democratle People's Republic SR Sweden CH Switzerland of Korea SN Senegal CI Côte d'Ivoire KR Republic of Korea SU+ Soviet Union CM Cameroon LI Licentumstein TD Chad CS Czuchosłovakia LK Sri Lanka TC Topo DE Oormany LU Lizembourg US United States of Americ			HU	Hungary	PL.	Poland
CP Central African Republic JP Japan SD Sudan CC Congo KP Democratle People's Republic SB Sweden CH Switzerland of Korea SN Senegal CI Côte d'Ivoire KR Republic of Korea SU* Soviet Union CM Cameroon LI Lischtenstein TD Chad CC Czuchoslovakia LK Sri Lanka TC Togo DE Oormany LU Liscembourg US United States of Americ			IT	lialy	RO	Romania
CG Congo KP Democratic People's Republic SE Sweden CH Switzerland of Korea SU+ Senegal CI Cito d'Ivoire KR Republic of Korea SU+ Soviet Union CM Cameroon LI Lectionsicin TD Chad CS Cauchoslovakia LK Sri Lanka TG Topo DE Oprimany LU Leuembourg US United States of Americ			JP	Japan	60	Sudan
CH Switzerland of Korea SN Senegal CI Côte d'Ivoire KR Republic of Korea SU+ Soviet Union CM Cameroon LI Liechtenstein TD Chad CS Czechoslovakia LK Sri Lanka TG Topo DE Oormany LU Liezembourg US United States of Americ		•••••	KP	Democratic People's Republic	SE	Sweden
CI Côte d'Ivoire KR Republic of Korea SU* Soviet Union CM Cameroon LI Licentinatein TD Chad CS Cameroon LI Siri Lanka TG Togo DE Oormany LU Licentinourg US United States of Americ		-		of Korea	. SN	Senegal
CM Cameroon LI Lacchtunstein TD Chad CS Czuchoslovakia LK Sri Lanka TG Togo DE Oproseny LU Lusembourg US Linited States of Americ			KR	Republic of Korea	su+	
CS Cruchoslovakia LK Sri Lanka TG Togo DE Oormany LU Luaembourg US United States of Americ			LI	•	TD	Ched
DE Oermany LU Luxembourg US United States of Americ						
DK Demonark MC Monaco			MC	Monaco	0.5	Daniel Committee of Pality and

PROC1 FOR THE PREPARATION OF C LULOSIC FIBRE-REINFORCED THERMOPLASTIC COMPOSITE MATERIALS

This invention relates to a process for the preparation of a composite material containing a thermoplastic polymer and cellulose fibres, having high tensile and flexural properties, reduced thermal expansion and high thermal stability, when compared to pure plastics. More specifically, this invention relates to a process for the preparation of a composite material containing a thermoplastic polymer, cellulosic fibres, and electron beam-curable coupling agents, wherein the components of the composite material are treated with electron beam radiation before or after compounding to produce free radicals resulting in the formation of chemical bonds between the fibres and the synthetic matrix.

Background and Prior Art

10

15

35

Wood fibres and wood flour are currently used industrially as filler materials for various 20 thermoplastics such as polypropylene, polyethylene, nylon and polyesters to produce blends with high elastic moduli, higher stiffness, reduced heat sensitivity and lower overall production costs, including both material and energy cost for processing. The adhesion between the 25 fibres and the matrix significantly affects many of the properties of the composites. Chemical bonding between the hydrophillic wood fibres and the hydrophobic polymer cannot be achieved with standard mixing procedures. Therefore, the produced composite has reduced tensile, 30 impact and flexural strength and increased moisture

Several methods have been suggested and studied for improving the adhesion between wood fibres and thermoplastic matrices.

absorption, as compared to the pure polymer.

The fibres can be coated with mixtures of monomers, such as styrene and chemical initiators, such as benzoyl peroxide. The coating is polymerized and

bonding occurs during mixing at an elevated temperature, or during extrusion. Molecules of the polymerized coating become intertwined with the polymer molecules, during processing, producing a mechanical bond.

U.S. Patent 4,464,510 discloses a method of 5 producing a composite system consisting of thermoplastics and a natural fibre bonded with an unsaturated polyester resin without the addition of an initiator. As an optional step, this patent teaches that chemical initiators or radiation can be used. When radiation is 10 used, it is disclosed that the wood fibres are pretreated with ionizing radiation before admixing with the unsaturated polyester resin. The present invention is a significant improvement over this prior art patent in specifying more efficient chemically reactive coupling 15 agents and in elaborating a more technically feasible method for radiation processing. Specifically, in the process of the present invention, irradiation occurs after the fibres have been coated with an electron beamcurable coupling agent and mixed with the thermoplastic 20 polymer. The wood fibre-filled thermoplastic polymers thus produced have improved mechanical properties over the prior art products.

U.S. Patent 3,645,939 describes mixing ethylenically unsaturated carboxylic acid or anhydride coupling agent, thermoplastic materials containing labile atoms, a hydroxy group containing material, such as cellulose, and treating with a free radical generating catalyst, including ionizing radiation. Such a system forms a bridge between the matrix and the hydroxy group containing material.

25

30

35

U.S. Patent 4,380,522 discloses a process for the manufacture of shaped articles from polyolefine compositions, modified by means of polar monomers, and cellulosic fibres. The polar monomers of this reference include unsaturated monocarboxylic acids such as acrylic, methacrylic or chloroacrylic acid, or unsaturated polycarboxylic acids such as maleic, fumaric and itaconic acid, or the anhydrides derived form these acids, such as maleic anhydride. The polyolefine and polar monomers are graft polymerized by either irradiation or in the presence of initiators. The modified polyoefine or unmodified polyoefine and polar monomers are mixed with the cellulose and subjected to a malaxating operation at high temperature.

10

15

20

25

30

35

Each of the suggested methods for improving the adhesion between wood fibres and thermoplastic matrices, has seen limited success and industrial acceptance. Select coupling agents have been shown to improve the mechanical properties of some specific matrix/fibre composites but the agents cannot be used universally. The ability of a specific chemical to couple a polymer and a fibre, depends on the polymer type, the wood species and the wood composition (bleached or unbleached). Coupling agents must be tailored to each specific wood fibre - reinforced composite, often making their industrial use impractical.

Coating the wood fibres with a polymer, such as polystyrene, prior to compounding, provides a surface for the matrix to bond through molecular entanglement, but does not provide a chemical bond between the coating and the fibre. Initiating polymerization of the coating by introducing chemicals such as benzyl peroxide, along with mixing/compounding at elevated temperatures, may also cause the fibres to clump together, lowering the final mechanical properties of the composite because of poor fibre dispersion.

Irradiating wood fibres in air produces peroxides and hydroperoxides on the surface of the fibres. Their concentration and distribution on the surface depends on

the wood species, the wood composition (bleached or unbleached), the dose, the dose rate, the temperature during irradiation and the availability of oxygen to the fibres. The number of these active peroxide sites available to initiate polymerization of a coating, may also be a function of the time between the fibre irradiation and the application of the coating. Such complexities make the optimization of this method and the production of a consistent product difficult.

The use of ethylenically unsaturated carboxylic acid or anhydride along with a free radical catalyst can only be used with hydroxy group containing materials, producing weak hydrogen bonds between the matrix and the fibres and limiting the reinforcing benefits.

Therefore there is a need for a process to produce fibre-reinforced plastic composites with good mechanical and thermal properties which overcome the disadvantages of the prior art processes. The thermoplastic composite material of the present invention, contain chemical bonds between the fibre/coupling agent interface and the coupling agent/thermoplastic polymer.

Summary of the Invention

10

15

20

25

. 30

35

The process of the present invention is based on the recognition that a fibre-reinforced plastic composite with good mechanical and thermal properties can be formed if a chemical bond between the plastic matrix and the fibre's natural polymer is ensured by using EB-curable unsaturated oligomers, vinyl monomers, acrylate monomers, or there mixtures as coupling agents and treating the components of the composite with an electron beam after mixing the treated fibre with the thermoplastic material. Upon electron beam treatment, these reactive additives can form an adhesion-mediated layer of the fibre matrix interface.

In the process of the present invention, the wood fibres are coated with an electron beam (EB)-curable monomer/oligomer mixture. The coated fibres are then mixed with a powdered thermoplastic matrix material. The mixture is EB treated to a specific dose prior to or after extrusion or other similar procedures resulting in intimate melt-mixing, to chemically cure the fibre coating by producing free radicals on the fibre surfaces, in the coating and in the matrix polymer. Free radical reactions during further compounding and extrusion will form chemical bonds at both the coating/fibre interface and the matrix/coating interface. Mechanical bonding, the result of a molecular entanglement at the matrix/coating interface further improves the adhesion between the wood fibres and the thermoplastic polymer.

In one embodiment of the present invention there is provided a process for the preparation of a thermoplastic material containing thermoplastic polymer, cellulose fibre and EB-curable coupling agents comprising the steps of: treating the fibres 10 to 50% by weight of the total composite, with a coupling agent mixture in an amount of 1 to 10% by weight, related to the fibre; mixing the treated fibres with a thermoplastic powder, 45 to 90% by weight of the total composite and electron beam treating the mixture to a dose of 5 to 50 kGy to produce free radicals; and compounding the cured mixture to form chemical bonds at the fibre-resin interface and the resin-polymer interface.

. 30 Detailed Description

10

20

25

35

In preparing the thermoplastic composite materials of the present invention, 45 to 90% by weight, preferably 55 to 75% by weight, of the thermoplastic polymer and 10 to 50% by weight, preferably 20 to 35% by weight, of a cellulosic fibre are used. The fibres are

treated with an EB-curable coupling agent consisting of unsaturated polyesters and/or vinyl monomers and/or acrylated monomers/oligomers in an amount of 1 to 10% by weight, preferably 1.5 to 7% by weight, related to the fibre mass. The fibres are mixed with thermoplastic powder (melt flow index greater than or equal to 5 gram/10 minutes) and the mixture is electron beam treated to a dose of 5 to 50 kGy, preferably 6 to 16 kGy, prior to standard thermoplastic processing such as extrusion, 10 / injection moulding, calendering or thermoforming.

Examples of cellulosic material which can be used in the present process include seed fibres such as cotton, woody fibres such as coniferous and deciduous woods, bast fibres represented by flax, leaf fibres such as sisal, and fruit fibres such as coconut. However, wood fibres are preferred.

Various thermoplastic materials can be used in the present invention. For example, materials such as polypropylene, polyethylene, and polyvinyl chloride. These polymers are preferred, however, other thermoplastics such as copolymers of olefines, styrenes, acrylics, as well as polycarbonates, polyamides and polyesters could also be used in the present invention.

20

25

35

The properties of wood fibre-filled polyester polymers can be significantly improved if the adhesion between the hydrophillic fibres and the hydrophobic matrix could be increased. In the electron beam process of the present invention, the fibres are coated with an electron beam-curable monomer/oligomer mixture. This mixture includes for example unsaturated oligomers, vinyl monomers, acrylated monomers of mixtures thereof. More specifically, the coupling agents of the present invention are preferably epoxy acrylates, polyester-urethane acrylates and polyether acrylates or mixtures thereof. A specific example of coupling agents includes

a mixture of hexanediol diacrylate, long-chain acrylated diol, tripropylene glycol diacrylate, vinyl ester resin and isodecyl acrylate.

Chemical bonds are easily produced at both the matrix/coating interface and the coating/fibre interface, using the process of the present invention. The amount of bonding is a function of the applied dose, which is easily controlled. This chemical bonding improves the mechanical properties of thermoplastics containing wood fibres. In the present invention, the mixture is electron beam treated to a dose of 5 to 50 kGy, more preferably 6 to 16 kGy.

In addition to the components discussed above other product additives such as antioxidants and fibre dispersion aids can be added, provided that the physical properties of the resulting product are not adversely affected.

The following examples illustrate the best modes contemplated for carrying out this invention, but are not to be construed as limiting.

Example 1

10

15

20

25

. 30

35

Wood fibres were coated with 5%, related to the fibre mass, of a mixture comprising hexanediol diacrylate (30%), long chain acrylated diol (20%), tripropylene glycol diacrylate (20%), vinyl ester resin (20%) and isodecyl acrylate (10%) and a mixture of 25% fibres and 75% (by weight) polypropylene was prepared. The mixture was electron beam treated at a dose of 10 kGy. The resulting mixture was then further processed by mixing using a low shear Henschel blender, extrusion and injection moulding.

The resulting material was then subjected to a number of tests of the American Society for Testing and Materials (ASTM) to determine for example, flexural

modulus, flexural strength, tensile modulus, tensile strength, impact strength, and the coefficient of thermal expansion. These tests are standard tests known in the art. The properties of this material (20% WF, 10 kGy) were compared to: unmodified polypropylene material (PP); a commercially available product of polypropylene (Himont PP) and a composite as described above which was not electron beam cured (20% WF, 0 kGy). These results are found in Table 1.

10

· 15

20

25

.30

35

Example 2

Thirty-five percent wood fibres were coated with the coupling agents as described in Example 1. The coated fibres were mixed with 63% polypropylene. The mixture was electron beam treated at a dose of 10 kGy. The resulting mixture was then further processed as described in Example 1. The resulting composite material was subjected to the tests referred to in Example 1. The results from these tests are found in Table 1 (35% WF, 10 kGy and 35% WF, 0 kGy).

The last column in Table 1 shows the percent change using 35% wood fibre between the unirradiated and irradiated composite material. It will be readily noted that the flexural modulus, and flexural strength increased in the irradiated composite material as compared to the unirradiated composite material. There was no change in the tensile modulus property between the unirradiated and the irradiated samples. However, the tensile strength and impact strength increased in the materials irradiated as compared to the unirradiated materials. The coefficient of thermal expansion decreased in the irradiated sample.

The results from these tests clearly show that the chemical bonding produced in the present invention improves the mechanical properties of thermoplastics

containing wood fibres.

Table 1

Wood Fibre Polypropylene Composite Physical Properties

							35% WF	
Property	đđ	Himont. PP	20% WF 0 kGy	20% WF 10 kGy	35% WF 0 kGy	35% WF 10 kGy	Irradiated vs Unirrradiated % change	
Flexural Modulus, GPa	1.41	1.7	2.17	2.25	3.04	3.46	13.98	
Std. Dev.	m		39.11	46.38	44.01	62.47	41.95	
Tensile Modulus, GPa Std. Dev.	1.87		3.00	2.76	3.93	3.89	-1.17	•
Tensile Strength, MPa Std. Dev.	37.26 0.53	34.	33.11 0.88	35.12 0.73	35.29 1.35	48.80	38.29	- 10
<pre>Impact Strength, Izod, unnotched, J/m Std. Dev.</pre>	675. 28.		131. 8.	92. 7.	87.	101.	16.86	· <u>_</u>
Coefficient of Thermal Expansion. °C ⁻¹ (x10 ⁶)	134.3		48.3	45.1	22.4	18.1	-19.20	

Example 3

10

15

20

25

Thirty-five percent wood fibres were mixed with 1.75% of a coupling agent consisting of:

16.6% aliphatic polyester-urethane-acrylate,

15.0% aromatic polyester-urethane-acrylate,

1.7% epoxidized soya oil acrylate,

3.0% poly(proplylene glycol) diacrylate,

3.3% neopentyl glycol diacrylate,

24.0% hexane diol diacrylate, and

33.4% tri(propylene glycol) diacrylate.

and mixed with 52% of polypropylene homopolymer, having a Melt Flow Index (MFI) of log/10 min, and with 13% of and ethylene-propylene copolymer.

The dry blend was first mixed in a high-speed fluid mixer and then extruded using a twin-screw extruder and pelletized. The above described pellets were treated with electron from an electron accelerator having a 10 MeV beam energy, to an absorbed dose of 10 kGy. The EB-treated pellets were re-pelletized on the same twin-screw extruder 76 hours after being irradiated. Table 2 shows the main properties, determined as described in Example 1, of the EB-treated composite made according to the present invention as compared to the unirradiated mixture having the same polymer and fibre composition.

Table 2
Properties of Wood Fibre Reinforced Plastics
Modified with Co-Polymers and EB-Treatment

Property	PP+EP	Composition ¹ PP+EP (65%) +WF (35%)	PP+EP (65%) +WF (35%)+EB
Flexural Strength, MPa	34.6	32.3	39.6
Flexural Modulus, GPa	1.88	3.39	3.75
<pre>Impact Strength, J/m (Unnotched)</pre>	>250	64.7	67.7

5

25

1PP: Polypropylene; EP: Ethylene/propylene copolymer; WF:
20 Wood fibres; EB: Electron beam treatment.

It is understood that the invention has been disclosed herein in connection with certain examples and embodiments. However, such changes, modifications or equivalents as can be used by those skilled in the art are intended to be included. Accordingly, the disclosure is to be construed as exemplary, rather than limiting, and such changes within the principles of the invention as are obvious to one skilled in the art are intended to be included within the scope of the claims.

Claims

- 1. A process for the production of a thermoplastic composite material containing thermoplastic polymer, cellulosic fibres and coupling agents, comprising the steps of:
 - (a) treating the fibres with EB-curable coupling agents, wherein the coupling agent is selected from the group consisting of unsaturated oligomers, vinyl monomers, acrylated monomers, and mixtures thereof;
 - (b) mixing the treated fibres with thermoplastic polymer material.
 - (c) electron beam treating the mixture to initiate the chemical curing of the coupling agents by producing free radicals; and
 - (d) compounding the EB-treated mixture to form chemical bonds at the fibre-resin interface and the resin-polymer interface.
- 2. The process of claim 1 wherein 10-50% by weight of the cellulosic fibres are treated with EB-curable coupling agents in an amount of 1 to 10% by weight, relative to the fibres and the treated fibres are mixed with 45 to 90% by weight, of the thermoplastic polymer.
- 3. The process of Claim 2 wherein the mixture is electron-beam treated to a dose of 5 to 50 kGy.
- 4. The process of Claim 2 wherein the 20 to 35% by weight, of the cellulosic fibres are treated with EBcurable agents in an amount of 1.5 to 7% by weight, relative to the fibres and the treated fibres are mixed with 55 to 75% by weight, of the thermoplastic polymer.

- 5. The process of Claim 4 wherein the mixture is electron-beam treated to a dose of 6 to 16 kGy.
- 6. The process of Claim 1 wherein the coupling agent is selected from the group consisting of epoxy acrylates, polyester-urethane-acrylates and polyether acrylates or mixtures thereof.
- 7. The process of Claim 4 wherein the coupling agent is a mixture of hexanediol diacrylate, long chain acrylated diol, tripropylene glycol diacrylate, vinyl ester resin and isodecyl acrylate.
- 8. The process of Claim 1 wherein the thermoplastic polymer is selected from the group consisting of polypropylene, polyethylene, polyvinylchloride, copolymers of olefines, styrenics, acrylics, polyamides, polyesters and polycarbonates.
- 9. The process of claim 8 wherein the thermoplastic polymer is selected from the group consisting of polypropylene, polyethylene and polyvinylchloride.
- 10. The process of Claim 1 wherein the thermoplastic powder has a melt flow index greater than 5 grams per 10 minutes.
- 11. The process of Claim 1 wherein the compounding, of the cured mixture, is selected from the group consisting of extrusion, injection moulding, calendering and thermoforming.
- 12. The process of claim 1 wherein the cellulosic fibres are wood fibres.

- 13. The process of claim 11 wherein the thermoplastic composite material is electron beam treated after compounding the mixture.
- 14. The process of claim 1 wherein the production of a thermoplastic composite material containing thermoplastic polymer, wood fibres and EB-curable coupling agents, comprises the steps of:
 - (a) treating the wood fibres, 20-35% by weight of the total composite, with EB-curable coupling agents comprising a mixture of hexanediol diacrylate, long chain acrylated diol, tripropylene glycol diacrylate, vinyl ester resin and isodecyl acrylate; in an amount of 1.5 to 7% by weight, relative to the fibres;
 - b) mixing the treated fibres with thermoplastic polymer powder, 55 - 75% by weight of the total composite material;
 - (c) electron beam treating the mixture to a dose of 6-16 kGy, to cure the coupling agents and to produce free radicals; and compounding the cured mixture to form chemical bonds at the fibre-resin interface and the resin polymer interface.

		International Application to PCT,	/CA 91/00370	
I. CLASSIFICATION OF SUBJ MATTER (If several classification symbols apply, ii a all) 6				
	to International Patent Classification (IPC) or to both No 08 J 5/06	itional Classification and IPC		
II. FIELDS	SEARCHED			
<i></i>	Minimum Documen			
Classificatio	n System C	lassification Symbols		
IPC5	C 08 J			
	Documentation Searched other to the Extent that such Documents			
·		•		
III. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of Document,11 with indication, where app	ropriate, of the relevant passages 12	Relevant to Claim No.13	
A	US, A, 4464510 (CZVIKOVSZKY ET / 7 August 1984,	AL)	1-14	
	see the whole document			
j				
A	CA, A, 1269187 (BESHAY, ALPHONS 15 May 1990,	D)	1-14	
	see the whole document	•	}	
1				
	Ba- 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0 - 4-0			
ļ		•		
. (
}				
	·			
"A" docu	categories of cited documents: 10 ment defining the general state of the art which is not idered to be of particular relevance	triater document published after or priority date and not in concled to understand the principle invention	r the international filing date flict with the application but pla or theory underlying the	
	er document but published on or after the international g date	"X" document of particular releva: cannot be considered novel or involve an inventive step		
"L" docu	ment which may throw doubts on priority claim(s) or h is cited to salabilsh the publication date of another lon or other special reason (as specialed)	"Y" document of particular relevan	nce, the claimed invention	
"O" docu	ment referring to an oral disclosure, use, exhibition or r means	"Y" document of particular releva- cannol be considered to invol- document is combined with or ments, such combination bein in the ert.	g obvious to a person skilled re or more other such docu-	
P docu	ment published prior to the international filing date but than the priority date claimed	"&" document member of the same		
IV. CERTIF				
	Actual Completion of the International Search NUARY 1992	Date of Malling of this international 3 1, 01, 92	Search Report	
Internationa	Searching Authority	Signature of Authorized Officer		

EUROPEAN PATENT OFFICE

ANNE O THE INTERNATIONAL SEAR REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/CA 91/00370

SA

52140

This annex first the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 31/10/91. The European Patent office is in no way fiable (or theseparticulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent femily member(s)		Publication data
JS-A- 4464510	07/08/84	DE-A-C- GB-A-B-	3230888 2104903	03/03/83 16/03/83
CA-A- 1269187	15/05/90	NONE		
	· .			•
	•			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.