I. Parsing Stack

Given grammar:

1)
$$S\rightarrow (S) S|\epsilon$$

Show the *parsing stack*, the *input*, and the *actions* of an LL(1) parser at each step in the recognition of the input string ().

Parsing stack	Input	Action
\$ S	()\$	Replace $S \rightarrow (S) S$
\$ S) S (()\$	Match
\$ S) S)\$	Replace S→ε
\$ S))\$	Match
\$ S	\$	Replace S→ε
\$	\$	Accept

2)

Show the *parsing stack*, the *input*, and the *actions* of an LL(1) parser at each step in the recognition of the input string x-2*y\$.

$$\mathbf{E} \to \mathbf{T} \mathbf{E'}$$

$$E' \rightarrow + \ T \ E' \mid - \ T \ E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow *~F~T'~|~/~F~T'~|~\epsilon$$

$$F \to num \mid id$$

Parsing stack	Input	Action
\$ E	x-2*y\$	Replace $E \rightarrow T E'$
\$ E'T	x-2*y\$	Replace $T \rightarrow F T'$
\$ E'T'F	x-2*y\$	Replace $F \rightarrow id$
\$ E'T'id	x-2*y\$	Match
\$ E'T'	-2*y\$	Replace T'→ε
\$ E'	-2*y\$	Replace E' → - T E'
\$ E'T -	-2*y\$	Match
\$ E'T	2*y\$	Replace $T \rightarrow F T'$
\$ E'T' F	2*y\$	Replace $F \rightarrow num$
\$ E'T' num	2*y\$	Match
\$ E'T'	*y\$	Replace T' → * F T'
\$ E'T' F*	*y\$	Match
\$ E'T' F	y \$	Replace $F \rightarrow id$

\$ E'T' id	y\$	Match
\$ E'T'	\$	Replace T' $\rightarrow \epsilon$
\$ E'	\$	Replace $E' \to \epsilon$
\$	\$	Accept

II. First and Follow Sets

Grammar	First Set	Follow Set
$S \rightarrow A B \mid z$	$First(S) = \{ x, y, z, \varepsilon \}$	$Follow(S) = \{\$\}$
$A \rightarrow x \mid \varepsilon$		$Follow(A) = \{y,\$\}$
$B \rightarrow y \mid \varepsilon$	$First(B) = \{ y, \varepsilon \}$	$Follow(B) = \{\$\}$

Grammar	First Set	Follow Set
S→ABCDE	$First(S) = \{a,b,c\}$	$Follow(S) = \{\$\}$
A→a ε	$First(A) = \{a, \varepsilon \}$	$Follow(A) = \{b,c\}$
$B\rightarrow b \epsilon$	$First(B = \{b, \epsilon\})$	$Follow(B) = \{c\}$
C→c	$First(C) = \{c\}$	$Follow(C)=\{d,e,\$\}$
D→d ε	$First(D) = \{d, \epsilon\}$	$Follow(D) = \{e,\$\}$
E→e ε	First(E)= $\{e, \epsilon\}$	$Follow(E) = \{\$\}$

Grammar	First Set	Follow Set
S→AB BC ε aSABC	$First(S) = \{a,b,c,\epsilon\}$	$Follow(S) = \{\$,a,b,c\}$
A→aAa ε	$First(A) = \{a, \varepsilon \}$	$Follow(A) = \{a,b,c,\$\}$
B→bB ε	$First(B = \{b, \epsilon\})$	$Follow(B) = \{\$,a,b,c\}$
C→cC ε	First(C)= $\{c, \epsilon\}$	$Follow(C) = \{\$,a,b,c\}$

Grammar	First Set	Follow Set	
E→TE'	$First(E) = \{id,()\} $ Follow(E) = \{\$,)}		
$E' \rightarrow +TE' \epsilon$	$First(E') = \{+, \varepsilon \}$	Follow(E') ={\$,)}	
T→FT'	First(T)= {id,(}	Follow(T) = $\{+,\$,)\}$	
T'→*FT' ε	$First(T') = \{*, \epsilon \}$	Follow(T')= {+,\$,)}	
F→id (E)	$First(F) = \{id, (\}$	Follow(F) ={*,+,\$,) }	

III. Parsing Tables

1) Given the following grammar, first set, and follow set construct LL(1)Parsing Table

Grammar	First Set	Follow Set
E→TE'	First(E)={id,(}	Follow(E)= {\$,)}
E'→ +TE' ε	First(E')= $\{+, \epsilon\}$	Follow(E') ={\$,)}
T→FT'	First(T)= {id,(}	Follow(T) = $\{+,\$,)\}$
T'→*FT' ε	First(T')= $\{*, \epsilon\}$	Follow(T')= {+,\$,)}
F→id (E)	$First(F) = \{id, (\}$	Follow(F) ={*,+,\$,) }

Solution:

	id	+	*	()	\$
Е	E→TE'			E→TE'		
E'		E'→+TE'			E'→ ε	E'→ ε
T	T→FT'			T→FT'		
T'		T'→ε	T'→*FT'		T'→ε	T'→ε
F	F→id			F→(E)		

2) Given the following grammar and first set and follow set construct LL(1)Parsing Table

Grammar	First Set	Follow Set
E →numE'	First(E)={num}	Follow(E)= $\{\$,+,*\}$
E'→E A ε	First(E')={num, ε }	$Follow(E') = \{\$,+,*\}$
A→+E' *E'	$First(A) = \{+, *\}$	$Follow(A) = \{\$,+,*\}$

	Num	+	*	\$
Е	E →numE'			
E'	E'→E A	Ε'→ε	Ε'→ε	Ε'→ε
A		A→+E'	A→*E'	

IV. IS the following grammar LL(1)

```
1) S→aSbS |bSaS |ε
       NO.It's not LL(1)
       Because:
    1. it is ambiguous grammar
   2. Multiple entry in LL(1) Parsing Table
               First (S)=\{a,b,\epsilon\} Follow(S)=\{a,b,\$\}.
               We have two productions rule in T[S,a] and in T[S,b]
2)
S→aABb
                                                    One alternative no problem
A \rightarrow c | \epsilon
                                                    \{c\}\{d,b\}
                                                    \{d\}\{b\}
B\rightarrow d|\epsilon
Yes, it is LL(1)
3)
S \rightarrow A|a
A→a
NO.It's not LL(1)
Multiple entry in LL(1) Parsing Table
We have two productions rule in T[S,a]
First(S)=\{a\} \text{ and } \{a\}
```