02 fama macbeth

September 29, 2021

1 How to build a linear factor model

Algorithmic trading strategies use linear factor models to quantify the relationship between the return of an asset and the sources of risk that represent the main drivers of these returns. Each factor risk carries a premium, and the total asset return can be expected to correspond to a weighted average of these risk premia.

There are several practical applications of factor models across the portfolio management process from construction and asset selection to risk management and performance evaluation. The importance of factor models continues to grow as common risk factors are now tradeable:

- A summary of the returns of many assets by a much smaller number of factors reduces the amount of data required to estimate the covariance matrix when optimizing a portfolio
- An estimate of the exposure of an asset or a portfolio to these factors allows for the management of the resultant risk, for instance by entering suitable hedges when risk factors are themselves traded
- A factor model also permits the assessment of the incremental signal content of new alpha factors
- A factor model can also help assess whether a manager's performance relative to a benchmark is indeed due to skill in selecting assets and timing the market, or if instead, the performance can be explained by portfolio tilts towards known return drivers that can today be replicated as low-cost, passively managed funds without incurring active management fees

1.1 Imports & Settings

```
[1]: import warnings
  warnings.filterwarnings('ignore')

[2]: import pandas as pd
  import numpy as np

  from statsmodels.api import OLS, add_constant
  import pandas_datareader.data as web

  from linearmodels.asset_pricing import LinearFactorModel
  import matplotlib.pyplot as plt
  import seaborn as sns
```

```
[3]: sns.set_style('whitegrid')
```

1.2 Get Data

Fama and French make updated risk factor and research portfolio data available through their website, and you can use the pandas_datareader package to obtain the data.

1.2.1 Risk Factors

In particular, we will be using the five Fama—French factors that result from sorting stocks first into three size groups and then into two for each of the remaining three firm-specific factors.

Hence, the factors involve three sets of value-weighted portfolios formed as 3 x 2 sorts on size and book-to-market, size and operating profitability, and size and investment. The risk factor values computed as the average returns of the portfolios (PF) as outlined in the following table:

LabelName	Description
SMB Small Minus	Average return on the nine small stock portfolios minus the average return
Big	on the nine big stock portfolios
HMLHigh Minus	Average return on the two value portfolios minus the average return on
Low	the two growth portfolios
RMWRobust	Average return on the two robust operating profitability portfolios minus
minus Weak	the average return on the two weak operating profitability portfolios
CMAConservative	Average return on the two conservative investment portfolios minus the
Minus	average return on the two aggressive investment portfolios
Aggressive	
Rm- Excess	Value-weight return of all firms incorporated in the US and listed on the
Rf return on	NYSE, AMEX, or NASDAQ at the beginning of month t with 'good' data
the market	for t minus the one-month Treasury bill rate

The Fama-French 5 factors are based on the 6 value-weight portfolios formed on size and book-to-market, the 6 value-weight portfolios formed on size and operating profitability, and the 6 value-weight portfolios formed on size and investment.

We will use returns at a monthly frequency that we obtain for the period 2010 - 2017 as follows:

```
1
    SMB
             96 non-null
                              float64
2
    HML
             96 non-null
                              float64
3
    RMW
             96 non-null
                              float64
4
    CMA
             96 non-null
                              float64
5
    RF
             96 non-null
                              float64
```

dtypes: float64(6) memory usage: 5.2 KB

```
[5]: ff_factor_data.describe()
```

[5]:		Mkt-RF	SMB	HML	RMW	CMA	RF
	count	96.000000	96.000000	96.000000	96.000000	96.000000	96.000000
	mean	1.158750	0.054063	-0.051771	0.126042	0.052813	0.012604
	std	3.580187	2.290739	2.191621	1.591052	1.409858	0.022583
	min	-7.890000	-4.510000	-4.520000	-3.930000	-3.350000	0.000000
	25%	-0.917500	-1.660000	-1.627500	-1.160000	-0.965000	0.000000
	50%	1.235000	0.190000	-0.305000	0.135000	-0.015000	0.000000
	75%	3.197500	1.517500	1.142500	1.140000	0.927500	0.010000
	max	11.350000	6.800000	8.220000	3.530000	3.780000	0.090000

1.2.2 Portfolios

Fama and French also make available numerous portfolios that we can illustrate the estimation of the factor exposures, as well as the value of the risk premia available in the market for a given time period. We will use a panel of the 17 industry portfolios at a monthly frequency.

We will subtract the risk-free rate from the returns because the factor model works with excess returns:

```
<class 'pandas.core.frame.DataFrame'>
```

PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Food	96 non-null	float64
1	Mines	96 non-null	float64
2	Oil	96 non-null	float64
3	Clths	96 non-null	float64
4	Durbl	96 non-null	float64
5	Chems	96 non-null	float64
6	Cnsum	96 non-null	float64
7	Cnstr	96 non-null	float64

```
8
   Steel
            96 non-null
                            float64
9
   FabPr
            96 non-null
                            float64
10
   Machn
            96 non-null
                            float64
11 Cars
            96 non-null
                            float64
12 Trans
            96 non-null
                            float64
13 Utils
            96 non-null
                            float64
            96 non-null
14 Rtail
                            float64
15 Finan
            96 non-null
                            float64
16 Other
            96 non-null
                            float64
```

dtypes: float64(17)
memory usage: 13.5 KB

[7]: ff_portfolio_data.describe()

[7]:		Food	Mines	Oil	Clths	Durbl	Chems	\
	count	96.000000	96.000000	96.000000	96.000000	96.000000	96.000000	
	mean	1.045625	0.197083	0.547917	1.396979	1.155208	1.303229	
	std	2.795857	7.902185	5.577552	5.025167	5.137482	5.594216	
	min	-5.170000	-24.380000	-12.010000	-10.000000	-13.210000	-17.390000	
	25%	-0.785000	-5.847500	-3.167500	-1.865000	-2.017500	-1.445000	
	50%	0.930000	-0.460000	1.040000	1.160000	1.205000	1.435000	
	75%	3.187500	5.715000	3.915000	3.857500	4.322500	4.442500	
	max	6.670000	21.920000	16.300000	17.200000	16.580000	18.370000	
		Cnsum	Cnstr	Steel	FabPr	Machn	Cars	\
	count	96.000000	96.000000			96.000000	96.000000	
	mean	1.136250	1.731354	0.555625	1.350521	1.227604	1.278854	
	std	3.174283	5.246518	7.389824	4.694408	4.811242	5.718887	
	min	-7.300000	-13.960000	-20.490000	-11.960000	-9.080000	-11.650000	
	25%	-0.920000	-2.462500	-4.410000	-1.447500	-2.047500	-1.245000	
	50%	1.470000	2.190000	0.660000	1.485000	1.545000	0.645000	
	75%	3.317500	5.390000	4.220000	3.837500	4.657500	4.802500	
	max	8.290000	15.550000	21.350000	17.660000	14.650000	20.860000	
		Trans	Utils	Rtail	Finan	Other		
	count	96.000000	96.000000	96.000000	96.000000	96.000000		
	mean	1.465000	0.890313	1.234375	1.241562	1.282396		
	std	4.150833	3.235140	3.508655	4.809791	3.708972		
	min	-8.560000	-6.990000		-11.040000	-7.920000		
	25%	-0.880000	-0.745000	-0.962500	-1.467500	-1.075000		
	50%	1.505000	1.215000	0.880000	1.955000	1.575000		
	75%	4.235000	2.952500	3.355000	4.092500	3.517500		
	max	13.160000	7.900000	12.360000	13.480000	10.790000		

1.2.3 Equity Data

Freq: M

Columns: 1986 entries, A to ZUMZ

dtypes: float64(1986) memory usage: 1.4 MB

```
[8]: with pd.HDFStore('../data/assets.h5') as store:
         prices = store['/quandl/wiki/prices'].adj_close.unstack().loc['2010':'2017']
         equities = store['/us equities/stocks'].drop duplicates()
 [9]: sectors = equities.filter(prices.columns, axis=0).sector.to_dict()
     prices = prices.filter(sectors.keys()).dropna(how='all', axis=1)
[10]: returns = prices.resample('M').last().pct_change().mul(100).to_period('M')
     returns = returns.dropna(how='all').dropna(axis=1)
     returns.info()
     <class 'pandas.core.frame.DataFrame'>
     PeriodIndex: 95 entries, 2010-02 to 2017-12
     Freq: M
     Columns: 1986 entries, A to ZUMZ
     dtypes: float64(1986)
     memory usage: 1.4 MB
     1.2.4 Align data
[11]: ff_factor_data = ff_factor_data.loc[returns.index]
     ff_portfolio_data = ff_portfolio_data.loc[returns.index]
[12]: ff_factor_data.describe()
[12]:
               Mkt-RF
                             SMB
                                        HML
                                                  RMW
                                                             CMA
                                                                         RF
     count 95.000000 95.000000 95.000000 95.000000 95.000000
                       0.051053 -0.055789 0.139789 0.048842
     mean
             1.206316
                                                                   0.012737
     std
             3.568555
                        2.302701
                                   2.202892
                                              1.593750
                                                        1.416798
                                                                   0.022665
            -7.890000 -4.510000 -4.520000 -3.930000 -3.350000
     min
                                                                   0.000000
     25%
            -0.565000 -1.670000 -1.655000 -0.965000 -0.990000
                                                                   0.000000
     50%
            1.290000
                       0.150000 -0.360000
                                            0.140000 -0.020000
                                                                   0.000000
     75%
             3.265000
                        1.555000
                                   1.165000
                                              1.140000 0.935000
                                                                   0.010000
            11.350000
                        6.800000
                                   8.220000
                                             3.530000
                                                        3.780000
                                                                   0.090000
     max
     1.2.5 Compute excess Returns
[13]: excess_returns = returns.sub(ff_factor_data.RF, axis=0)
     excess_returns.info()
     <class 'pandas.core.frame.DataFrame'>
     PeriodIndex: 95 entries, 2010-02 to 2017-12
```

5

```
[14]: excess_returns = excess_returns.clip(lower=np.percentile(excess_returns, 1), upper=np.percentile(excess_returns, 99))
```

1.3 Fama-Macbeth Regression

Given data on risk factors and portfolio returns, it is useful to estimate the portfolio's exposure, that is, how much the risk factors drive portfolio returns, as well as how much the exposure to a given factor is worth, that is, the what market's risk factor premium is. The risk premium then permits to estimate the return for any portfolio provided the factor exposure is known or can be assumed

```
assumed.
[15]: ff_portfolio_data.info()
     <class 'pandas.core.frame.DataFrame'>
     PeriodIndex: 95 entries, 2010-02 to 2017-12
     Freq: M
     Data columns (total 17 columns):
          Column Non-Null Count Dtype
                  _____
      0
          Food
                  95 non-null
                                  float64
      1
          Mines
                  95 non-null
                                  float64
      2
          Oil
                  95 non-null
                                  float64
      3
          Clths
                  95 non-null
                                  float64
      4
          Durbl
                  95 non-null
                                  float64
      5
          Chems
                  95 non-null
                                  float64
          Cnsum
                  95 non-null
                                  float64
      6
      7
          Cnstr
                  95 non-null
                                  float64
      8
                  95 non-null
                                  float64
          Steel
      9
          FabPr
                  95 non-null
                                  float64
      10
          Machn
                  95 non-null
                                  float64
      11
         Cars
                  95 non-null
                                  float64
      12
         Trans
                  95 non-null
                                  float64
      13 Utils
                  95 non-null
                                  float64
      14 Rtail
                  95 non-null
                                  float64
      15 Finan
                  95 non-null
                                  float64
      16 Other
                  95 non-null
                                  float64
     dtypes: float64(17)
     memory usage: 13.4 KB
[16]: ff_factor_data = ff_factor_data.drop('RF', axis=1)
      ff_factor_data.info()
     <class 'pandas.core.frame.DataFrame'>
     PeriodIndex: 95 entries, 2010-02 to 2017-12
     Freq: M
     Data columns (total 5 columns):
          Column Non-Null Count Dtype
```

----- -----

```
0
    Mkt-RF
             95 non-null
                              float64
    SMB
             95 non-null
                              float64
1
2
    HML
             95 non-null
                              float64
3
    RMW
             95 non-null
                              float64
4
    CMA
             95 non-null
                              float64
```

dtypes: float64(5) memory usage: 4.5 KB

To address the inference problem caused by the correlation of the residuals, Fama and MacBeth proposed a two-step methodology for a cross-sectional regression of returns on factors. The two-stage Fama—Macbeth regression is designed to estimate the premium rewarded for the exposure to a particular risk factor by the market. The two stages consist of:

- First stage: N time-series regression, one for each asset or portfolio, of its excess returns on the factors to estimate the factor loadings.
- Second stage: T cross-sectional regression, one for each time period, to estimate the risk premium.

See corresponding section in Chapter 7 of Machine Learning for Trading for details.

Now we can compute the factor risk premia as the time average and get t-statistic to assess their individual significance, using the assumption that the risk premia estimates are independent over time.

If we had a very large and representative data sample on traded risk factors we could use the sample mean as a risk premium estimate. However, we typically do not have a sufficiently long history to and the margin of error around the sample mean could be quite large.

The Fama—Macbeth methodology leverages the covariance of the factors with other assets to determine the factor premia. The second moment of asset returns is easier to estimate than the first moment, and obtaining more granular data improves estimation considerably, which is not true of mean estimation.

1.3.1 Step 1: Factor Exposures

We can implement the first stage to obtain the 17 factor loading estimates as follows:

```
<class 'pandas.core.frame.DataFrame'>
Index: 17 entries, Food to Other
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	Mkt-RF	17 non-null	float64
1	SMB	17 non-null	float64
2	HML	17 non-null	float64
3	RMW	17 non-null	float64
4	CMA	17 non-null	float64

dtypes: float64(5) memory usage: 1.3+ KB

1.3.2 Step 2: Risk Premia

For the second stage, we run 96 regressions of the period returns for the cross section of portfolios on the factor loadings

```
<class 'pandas.core.frame.DataFrame'>
PeriodIndex: 95 entries, 2010-02 to 2017-12
Freq: M
Data columns (total 5 columns):
    Column Non-Null Count Dtype
    Mkt-RF 95 non-null
                            float64
 1
    SMB
            95 non-null
                            float64
 2
    HML
            95 non-null
                          float64
 3
    RMW
            95 non-null
                            float64
 4
    CMA
            95 non-null
                            float64
```

dtypes: float64(5)
memory usage: 9.3 KB

```
[21]: lambdas.mean().sort_values().plot.barh(figsize=(12, 4))
sns.despine()
plt.tight_layout();
```



```
[22]: t = lambdas.mean().div(lambdas.std())
t
```

Results

1.4 Fama-Macbeth with the LinearModels library

Cov. Estimator:

The linear_models library extends statsmodels with various models for panel data and also implements the two-stage Fama—MacBeth procedure:

LinearFactorModel Estimation Summary

No. Test Portfolios:	17	R-squared:	0.6885
No. Factors:	5	J-statistic:	17.038
No. Observations:	95	P-value	0.1482
Date:	Thu, Apr 15 2021	Distribution:	chi2(12)
Time:	14:55:21		

robust

Risk Premia Estimates

=======	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Mkt-RF	1.2208	0.4076	2.9951	0.0027	0.4219	2.0197
SMB HML	-0.0523 -1.0316	0.7979 0.6332	-0.0656 -1.6292	0.9477 0.1033	-1.6161 -2.2726	1.5115 0.2094
RMW	-0.1044	0.7738	-0.1350	0.8926	-1.6210	1.4121
CMA	-0.6252	0.5222	-1.1973	0.2312	-1.6488	0.3983

 ${\tt Covariance\ estimator:}$

 ${\tt HeteroskedasticCovariance}$

See full_summary for complete results

[26]: print(res.full_summary)

LinearFactorModel Estimation Summary

No. Test Portfolios: 17 R-squared: 0.6885 No. Factors: 5 17.038 J-statistic: No. Observations: P-value 95 0.1482 Date: Thu, Apr 15 2021 Distribution: chi2(12)

Time: 14:55:21 Cov. Estimator: robust

Risk Premia Estimates

========						
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Mkt-RF	1.2208	0.4076	2.9951	0.0027	0.4219	2.0197
SMB	-0.0523	0.7979	-0.0656	0.9477	-1.6161	1.5115
HML	-1.0316	0.6332	-1.6292	0.1033	-2.2726	0.2094
RMW	-0.1044	0.7738	-0.1350	0.8926	-1.6210	1.4121
CMA	-0.6252	0.5222	-1.1973	0.2312	-1.6488	0.3983

Food Coefficients

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
alpha	0.1874	0.2393	0.7831	0.4336	-0.2816	0.6563
Mkt-RF	0.6866	0.0465	14.773	0.0000	0.5955	0.7777
SMB	-0.3100	0.1126	-2.7532	1.9941	-0.5307	-0.0893
HML	-0.3493	0.1420	-2.4595	1.9861	-0.6277	-0.0710
RMW	0.3075	0.1243	2.4747	0.0133	0.0640	0.5510
CMA	0.4666	0.1636	2.8517	0.0043	0.1459	0.7873

Mines	C-	~ f f i		+-
Mines	CO	rttq	c_{1}	ents

		Mine	s Coefficie	ents		
alpha	-0.6490	0.5444	-1.1922	1.7668	-1.7159	0.4180
Mkt-RF	1.2987	0.1950	6.6584	0.0000	0.9164	1.6810
SMB	0.1805	0.3380	0.5341	0.5933	-0.4819	0.8429
HML	0.1891	0.3305	0.5721	0.5673	-0.4587	0.8368
RMW	0.1449	0.4295	0.3375	0.7358	-0.6968	0.9867
CMA	0.6112	0.5507	1.1098	0.2671	-0.4682	1.6905
		Oil	Coefficie	ents		
alpha	0.2044	0.3452	0.5922	0.5537	-0.4722	0.8811
Mkt-RF	1.0553	0.1027	10.273	0.0000	0.8540	1.2567
SMB	0.1554	0.1941	0.8005	0.4234	-0.2251	0.5359
HML	0.6685	0.2048	3.2642	0.0011	0.2671	1.0698
RMW	-0.0247	0.2326	-0.1064	1.0847	-0.4806	0.4311
CMA	0.3117	0.2831	1.1010	0.2709	-0.2432	0.8666
		Clth	s Coefficie	ents		
alpha	0.1726	0.3388	0.5093	0.6105	-0.4915	0.8367
Mkt-RF	0.9685	0.1214	7.9776	0.0000	0.7306	1.2065
SMB	0.3430	0.1966	1.7450	0.0810	-0.0422	0.7282
HML	-0.1882	0.2098	-0.8969	1.6302	-0.5993	0.2230
RMW	0.5649	0.2720	2.0767	0.0378	0.0318	1.0980
CMA	0.0381	0.3163	0.1205	0.9040	-0.5818	0.6581
		Durb	l Coefficie	ents		
========						
alpha	-0.1564	0.3204	-0.4883	1.3747	-0.7843	0.4715
Mkt-RF	1.1740	0.0834	14.072	0.0000	1.0105	1.3375
SMB	0.5378	0.1194	4.5035	0.0000	0.3037	0.7719
HML	0.0706	0.1480	0.4771	0.6333	-0.2195	0.3607
RMW CMA	0.5117 -0.1310	0.1940 0.2655	2.6380 -0.4936	0.0083 1.3784	0.1315 -0.6514	0.8919 0.3893
CMA	-0.1310	0.2000	-0.4930	1.3704	-0.0514	0.3093
			s Coefficie			
alpha		0.3111	-0.6584	1.4897	-0.8145	0.4049
Mkt-RF	1.3510	0.3111	12.704	0.0000	1.1426	1.5594
SMB	0.1660	0.1489	1.1154	0.0000	-0.1257	0.4578
HML	0.1952	0.1480	1.3189	0.1872	-0.0949	0.4852
RMW	0.1410	0.1912	0.7374	0.4609	-0.2338	0.5158

CMA	-0.2301	0.2633	-0.8738	1.6178	-0.7462	0.2860			
Cnsum Coefficients									
alpha	-0.0380	 0.3566	-0.1065	1.0848	-0.7368	0.6609			
Mkt-RF	0.7625	0.0591	12.897	0.0000	0.6466	0.8784			
SMB	-0.3327	0.1006	-3.3088	1.9991	-0.5298	-0.1356			
HML	-0.5773	0.1259	-4.5845	2.0000	-0.8241	-0.3305			
RMW	-0.0606	0.1316	-0.4603	1.3547	-0.3186	0.1974			
CMA	0.5748	0.2271	2.5306	0.0114	0.1296	1.0199			
		Cnst	r Coefficie	nts					
alpha	0.6213	0.3917	1.5862	0.1127	 -0.1464	1.3890			
Mkt-RF	1.1161	0.0828	13.478	0.0000	0.9538	1.2784			
SMB	0.4463	0.1337	3.3389	0.0008	0.1843	0.7083			
HML	0.0920	0.1892	0.4861	0.6269	-0.2789	0.4629			
RMW	-0.0107	0.2232	-0.0482	1.0384	-0.4482	0.4267			
CMA	0.1409	0.2425	0.5811	0.5612	-0.3344	0.6162			
========		Stee	l Coefficie	nts					
alpha	-0.3503	0.4030	-0.8692	1.6153	-1.1403	0.4396			
Mkt-RF	1.4647	0.1381	10.604	0.0000	1.1940	1.7355			
SMB	0.4104	0.2548	1.6103	0.1073	-0.0891	0.9098			
HML	0.4000	0.2653	1.5076	0.1317	-0.1200	0.9200			
RMW	0.1355	0.3342	0.4054	0.6852	-0.5196	0.7906			
CMA	0.4840	0.4192	1.1547	0.2482	-0.3376	1.3056			
		FahP	r Coefficie	nte					
=======			=======	========					
alpha	0.2168	0.2831	0.7659	0.4437	-0.3381	0.7718			
Mkt-RF	1.0695	0.0734	14.573	0.0000	0.9257	1.2133			
SMB	0.4602	0.0979	4.7024	0.0000	0.2684	0.6520			
HML	-0.0294	0.1111	-0.2646	1.2087	-0.2471	0.1883			
RMW	0.1531	0.1456	1.0510	0.2933	-0.1324	0.4385			
CMA	0.1865	0.1855	1.0055	0.3147	-0.1771	0.5502			
		Mach	ın Coefficie	nts					
========			4 4 4 2 7 7			0.0405			
alpha	-0.3139	0.2688	-1.1677	1.7571	-0.8409	0.2130			
Mkt-RF	1.1883	0.0582	20.424	0.0000	1.0742	1.3023			
SMB	0.1817	0.1074	1.6922	0.0906	-0.0287	0.3921			

HML	0.0384	0.1060	0.3621	0.7173	-0.1694	0.2462
RMW	0.0540	0.1581	0.3416	0.7327	-0.2559	0.3639
CMA	-0.3765	0.1786	-2.1079	1.9650	-0.7266	-0.0264
		Cars	Coefficie	nts		
=======						
alpha	-0.0952	0.3906	-0.2436	1.1925	-0.8607	0.6704
Mkt-RF	1.1895	0.0996	11.949	0.0000	0.9944	1.3846
SMB	0.5941	0.1290	4.6069	0.0000	0.3414	0.8469
HML	0.0213	0.1757	0.1214	0.9034	-0.3231	0.3658
RMW	0.0223	0.2201	0.1012	0.9194	-0.4091	0.4537
CMA	0.0123	0.2993	0.0412	0.9671	-0.5743	0.5990
		_				
		Tran	s Coefficie	nts		
alpha	0.4814	0.3269	======== 1.4725	0.1409	-0.1594	1.1221
Mkt-RF	1.0248	0.0508	20.161	0.1409	0.9251	1.1244
MKC-KF SMB	0.2537	0.1030	2.4641	0.0000	0.9251	0.4556
HML	0.2337	0.1030	0.0961	0.0137	-0.2278	0.2512
RMW			2.3525	0.9235		0.6926
	0.3778	0.1606			0.0630	
CMA	0.2634	0.2018	1.3056	0.1917	-0.1320	0.6589
		Util	s Coefficie	nts		
alpha	 0.3695	0.3118	======== 1.1849	0.2361	-0.2417	0.9807
Mkt-RF	0.5093	0.0911	5.5126	0.0000	0.3237	0.6808
SMB	-0.2454	0.1567	-1.5664	1.8827	-0.5525	0.0617
HML	-0.2932	0.1772	-1.6549	1.9021	-0.6405	0.0540
RMW	0.2424	0.1772	1.2435	0.2137	-0.1396	0.6244
CMA	0.5207	0.1949	1.7621	0.2137	-0.0585	1.0998
OTIA	0.0201	0.2300	1.7021	0.0701	0.0000	1.0330
			l Coefficie			
alpha	-0.0421	0.2681	 -0.1570	1.1247	 -0.5676	0.4834
Mkt-RF	0.9087	0.2681	13.192	0.0000	0.7737	1.0437
MKC-KF SMB	0.9087	0.0009	1.3235	0.0000	-0.0633	0.3265
HML	-0.3830	0.0994	-2.9560	1.9969	-0.0633 -0.6370	-0.1291
RMW CMA	0.6884	0.1610	4.2748	0.0000	0.3728	1.0041
CMA	0.1961	0.1741	1.1259	0.2602	-0.1452	0.5373
		Fina	n Coefficie	nts		
	0.0750	0.0745	4 0007		0.0500	4 4004
alpha	0.3752	0.3715	1.0097	0.3126	-0.3530	1.1034

Mkt-RF	1.0565	0.0426	24.782	0.0000	0.9730	1.1401
SMB	0.0756	0.0856	0.8825	0.3775	-0.0923	0.2434
HML	0.7333	0.0878	8.3550	0.0000	0.5613	0.9054
RMW	-0.4296	0.1061	-4.0490	1.9999	-0.6376	-0.2216
CMA	-0.5083	0.1124	-4.5216	2.0000	-0.7286	-0.2879

Other Coefficients

========						
alpha	-0.1368	0.2280	-0.5998	1.4513	-0.5837	0.3102
Mkt-RF	1.0416	0.0244	42.676	0.0000	0.9937	1.0894
SMB	-0.1150	0.0397	-2.8966	1.9962	-0.1927	-0.0372
HML	-0.2042	0.0379	-5.3820	2.0000	-0.2786	-0.1299
RMW	-0.0685	0.0626	-1.0934	1.7258	-0.1912	0.0543
CMA	0.0194	0.0657	0.2945	0.7684	-0.1095	0.1482

Covariance estimator:

 ${\tt HeteroskedasticCovariance}$

See full_summary for complete results

This provides us with the same result:

[27]: lambdas.mean()