D208 Exploratory Predictive Data Modeling PA

NBM2 Task 1: Multiple Regression for Predictive Modeling

Sean Simmons

WDU Data Analytics

MSDA D208

January 2023

Part I: Research Question

- A. Describe the purpose of this data analysis by doing the following:
 - 1. Summarize one research question that is relevant to a real-world organizational situation captured in the data set you have selected and that you will answer using multiple regression.
 - 2. Define the objectives or goals of the data analysis. Ensure that your objectives or goals are reasonable within the scope of the data dictionary and are represented in the available data.
 - 1. "What causes customers to have a high Tenure?" is my research question. This is relevant to the real-world organizational setting because Tenure is defined as the length of time the customer has been with the organization. This is an important metric related to customer retention, a vital aspect to this organization's needs. Understanding why a customer stays with the organization for an extended period of time will help the organization identify what needs to be done, worked on, changed, or further analyzed to prevent the customer leaving. Tenure is our target variable and can be analyzed with multiple linear regression involving other variables in the dataset related to customer information.
 - 2. The objective and goal of the data analysis here is to use multiple linear regression to identify the variables that have a strong relationship with Tenure. How long a customer will stay with the organization, or what variables affect it and can be used to increase the length of Tenure, is a key metric that can be used to inform the organization's decisions

and further data analyst projects. Multiple linear regression can be used to predict the relationship between Tenure and other independent variables in the data set.

Part II: Method Justification

- B. Describe multiple regression methods by doing the following:
 - 1. Summarize the assumptions of a multiple regression model.
 - 2. Describe the benefits of using the tool(s) you have chosen (i.e., Python, R, or both) in support of various phases of the analysis.
 - 3. Explain why multiple regression is an appropriate technique to analyze the research question summarized in Part I.
 - 1. The assumptions of a multiple regression model are summarized as follows:
 - a. There is a linear relationship between the dependent and independent variables.
 - b. The independent variables are not strongly correlated with each other.
 - c. The observations are independent from one another.
 - d. The Residuals have a constant variance, that is to be normally distributed with a mean of 0.
 - 2. The benefits of using Python and jupyter notebook are numerous. To begin, Jupyter notebook is an interface system for python that provides a user-friendly coding environment, visualization abilities, and code extraction. Python can handle large data sets faster and easier than R, and I am much more familiar with Python. Python can import a large data set, provide the summary, and house the data cleaning tools through packages and functions (such as missingno). Python and its packages can provide the visualizations for every step of this project: univariate, bivariate, and multiple linear

regression modeling as well as our backwards stepwise reduction and VIF analysis. Finally, Python will be able to use packages to perform the multiple linear regression model using the ols function, reduce the variables, and perform the residual plot visualization. To summarize, Python has all of the tools necessary to complete each step of this data analysis project in a quick and efficient manner (Prasanna 2021).

3. Multiple linear regression is an appropriate technique to analyze the research question because it can be used to identify a linear relationship between our continuous target variable and several other independent variables. The organization can benefit from multiple regression because it provides an indication as to which variables have a strong relationship with our target, Tenure, thereby informing their retention and best practices methods (Yadav 2021).

Part III: Data Preparation

- C. Summarize the data preparation process for multiple regression analysis by doing the following:
 - 1. Describe your data preparation goals and the data manipulations that will be used to achieve the goals.
 - 2. Discuss the summary statistics, including the target variable and *all* predictor variables that you will need to gather from the data set to answer the research question.
 - 3. Explain the steps used to prepare the data for the analysis, including the annotated code.

- 4. Generate univariate and bivariate visualizations of the distributions of variables in the cleaned data set. Include the target variable in your bivariate visualizations.
- 5. Provide a copy of the prepared data set.
- 1. My data preparation goals are to bring the data into my coding environment and check if it is cleaned. This involves looking for missing values and data types to examine the overall structure of the dataset. The data manipulations I will do are to rename survey response items to be more descriptive and create numeric columns for all of the categorical columns that were informed from the last step. Now we can check if it is cleaned, so I checked for missing values to impute with central tendency. Next, I will use univariate analysis to create visuals for each of the variables I intend to look at. After that, bivariate analysis using scatterplots of numerous independent variables with Tenure will be done.

No missing values:

Out[42]: CaseOrder 0 Customer_id Interaction UID City State 0 County Zip Lng Population 0 Area TimeZone Children Age Income 0 0 Marital 0 Gender Churn Outage_sec_perweek 0 Email Contacts Yearly_equip_failure Contract 0 Port_modem Tablet 0 InternetService Phone Multiple OnlineSecurity OnlineBackup DeviceProtection 0 0 TechSupport StreamingTV StreamingMovies 0 PaperlessBilling 0 PaymentMethod 0 Tenure MonthlyCharge Bandwidth_GB_Year 0 item1_responses
item2_fixes
item3_replacements 0 item4_reliability item5_options item6_respectfulness 0 item7_courteous
item8_listening 0 0 dtype: int64

2. The target variable is Tenure, a continuous dependent variable. The predictor variables are both categorical and continuous. The predictor variables are as follows (on the left of the first column). Please see the next 3 charts to see the type of data each variable is and an example of what the data looks like in the data set.

Children -0.366423

Age 0.040279

Income-0.000001

Outage_sec_perweek 0.009168

Email 0.000752

Contacts -0.023848

Yearly_equip_failure -0.027181

Bandwidth GB Year 0.011966

MonthlyCharge 0.018156

iteml_responses 0.057365

item2 fixes -0.054017

item3_replacements 0.024902

item4_reliability -0.009846

item5_options -0.038197

item6_respectfulness -0.014343

item7 courteous -0.005482

item8_listening -0.053401

Churn numeric 1. 347461

Techie numeric -0.053166

Port- modem- numeric -0.043823

Tablet numeric 0.004083

Phone numeric -0.014566

Multiple_numeric 1.380790

OnlineSecurity_numeric 0.998428

OnlineBackup_numeric 1.460700

DeviceProtection numeric 1.171649

TechSupport_numeric 0.349225

StreamingTV_numeric 3.228143

StreamingMovies_numeric 3.126839

PaperlessBilling_numeric -0.076023

InternetService numeric -0.333164

Contract numeric -0.021971

Gender numeric 0.603957

```
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 10000 entries, 0 to 9999
 Data columns (total 7 columns):
 # Column Non-Null Count Dtype

0 Lat 10000 non-null float64
1 Lng 10000 non-null float64
2 Income 10000 non-null float64
   3 Outage_sec_perweek 10000 non-null float64
   4 Tenure 10000 non-null float64
5 MonthlyCharge 10000 non-null float64
6 Bandwidth_GB_Year 10000 non-null float64
 dtypes: float64(7)
 memory usage: 547.0 KB
 None
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 10000 entries, 0 to 9999
 Data columns (total 16 columns):
 Yearly_equip_failure 10000 non-null int64
   7
 7 Yearly_equip_failure 10000 non-null int64
8 Item1 10000 non-null int64
9 Item2 10000 non-null int64
10 Item3 10000 non-null int64
11 Item4 10000 non-null int64
12 Item5 10000 non-null int64
13 Item6 10000 non-null int64
14 Item7 10000 non-null int64
15 Item8 10000 non-null int64
dtypes: int64(16)
 dtypes: int64(16)
 memory usage: 1.2 MB
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 10000 entries, 0 to 9999
Data columns (total 27 columns):

# Column Non-Null Count Dtype

O Customer_id 10000 non-null object
Interaction 10000 non-null object
City 10000 non-null object
County 10000 non-null object
County 10000 non-null object
Area 10000 non-null object
TimeZone 10000 non-null object
Doby 10000 non-null object
Marital 10000 non-null object
Marital 10000 non-null object
Churn 10000 non-null object
Churn 10000 non-null object
Contract 10000 non-null object
Contract 10000 non-null object
Doby Contract 10000 non-null object
 Data columns (total 27 columns):
```

```
16 InternetService 10000 non-null object
17 Phone
                     10000 non-null object
18 Multiple
                    10000 non-null
                                     object
19 OnlineSecurity 10000 non-null
                                     object
20 OnlineBackup
                     10000 non-null
                                     object
21 DeviceProtection 10000 non-null
                                    object
22 TechSupport
                     10000 non-null
                                     object
23 StreamingTV
                     10000 non-null
                                    object
24 StreamingMovies 10000 non-null object
25 PaperlessBilling 10000 non-null object
26 PaymentMethod
                     10000 non-null object
dtypes: object(27)
memory usage: 2.1+ MB
  CaseOrder Customer id
                                                Interaction \
0
          1
                K409198 aa90260b-4141-4a24-8e36-b04ce1f4f77b
1
                S120509 fb76459f-c047-4a9d-8af9-e0f7d4ac2524
                                                                   County \
                              UID
                                         City State
                                                 AK Prince of Wales-Hyder
0 e885b299883d4f9fb18e39c75155d990 Point Baker
1 f2de8bef964785f41a2959829830fb8a West Branch
                                                 MΙ
                                                                   Ogemaw
    Zip
              Lat
                        Lng ...
                                  MonthlyCharge Bandwidth GB Year Item1 \
0 99927 56.25100 -133.37571 ...
                                     172.455519
                                                      904.536110
                                                                    5
                                                                    3
 48661 44.32893 -84.24080 ...
                                     242.632554
                                                      800.982766
  Item2 Item3 Item4 Item5 Item6 Item7 Item8
     5
            5
                   3
                         4
                               4
                                     3
                                          4
            3
                   3
                         4
                               3
                                          4
[2 rows x 50 columns]
```

Additionally, there are no outliers that need removal, as all datapoints should be kept to preserve the integrity of the data set. Finally, the measures of central tendency for the variables are as follows: Please note all of the categorical values have been changed to numeric and are represented by their original title numeric. Yes = 0, No = 1.

Mean

CaseOrder 5000.500000 Zip 49153.319600 Lat 38.757567 Lng -90.782536 Population 9756.562400 Children 2.087700 53.078400 Age Income 39806.926771 Outage_sec_perweek 10.001848

Sean Simmons - 009752842 11

Email 12.016000 0.994200 Contacts Yearly_equip_failure 0.398000 Tenure 34.526188 MonthlyCharge 172.624816 Bandwidth GB Year 3392.341550 item1 responses 3.490800 item2 fixes 3.505100 item3_replacements 3.487000 item4_reliability 3.497500 item5 options 3.492900 item6_respectfulness 3.497300 item7_courteous 3.509500 item8 listening 3.495600 0.735000 Churn numeric Area numeric 1.000000 Marital_numeric 2.017500 Gender_numeric 0.571800 Contract numeric 1.034000 PaymentMethod_numeric 1.700300 InternetService numeric 0.772100 Techie numeric 0.832100 Port_modem_numeric 0.516600 Tablet_numeric 0.700900 Phone numeric 0.093300 Multiple_numeric 0.539200 OnlineSecurity_numeric 0.642400 OnlineBackup_numeric 0.549400 DeviceProtection numeric 0.561400 TechSupport numeric 0.625000 StreamingTV_numeric 0.507100 StreamingMovies_numeric 0.511000 PaperlessBilling numeric 0.411800

Median

dtype: float64

CaseOrder 5000.500000 Zip 48869.500000 Lat 39.395800 Lng -87.918800 Population 2910.500000 Children 1.000000 53.000000 Age 33170.605000 Income Outage_sec_perweek 10.018560 **Email** 12.000000

Contacts 1.000000
Yearly_equip_failure 0.000000
Tenure 35.430507
MonthlyCharge 167.484700
Bandwidth_GB_Year 3279.536903

Sean Simmons - 009752842 12

item1 responses 3.000000 item2 fixes 4.000000 item3 replacements 3.000000 item4_reliability 3.000000 item5_options 3.000000 item6 respectfulness 3.000000 item7 courteous 4.000000 item8_listening 3.000000 Churn_numeric 1.000000 Area_numeric 1.000000 Marital numeric 2.000000 Gender numeric 1.000000 Contract_numeric 1.000000 PaymentMethod numeric 2.000000 1.000000 InternetService numeric Techie numeric 1.000000 Port_modem_numeric 1.000000 Tablet_numeric 1.000000 Phone numeric 0.000000 Multiple_numeric 1.000000 OnlineSecurity_numeric 1.000000 OnlineBackup numeric 1.000000 DeviceProtection_numeric 1.000000 TechSupport_numeric 1.000000 StreamingTV numeric 1.000000 StreamingMovies_numeric 1.000000 PaperlessBilling_numeric 0.000000 dtype: float64

- 3. The steps to prepare the data for analysis are inside of the annotated code file below and summarized as follows:
 - i. Import dataset to Python
 - ii. Rename columns of survey to easily recognizable descriptions (ex: "Item1" to "item1_responses")
 - iii. Get a description of the data set, structure (columns & rows) & data types.
 - iv. View summary statistics

- v. Check for records with missing data & impute missing data with meaningful measures of central tendency (mean, median or mode) or simply remove outliers that are several standard deviations above the mean. This step might not be necessary if it is determined we will not be removing outliers.
- vi. Create numeric variables in order to encode categorical, yes/no data points into 1/0 numerical values.
- vii. View univariate & bivariate visualizations.
- viii. Finally, the prepared dataset will be extracted & provided as "churn_Task1.csv"
- b. The annotated code can be found in "PA D208 Code Task1"
- 4. The visualizations are as follows:
 - a. Univariate

b. Bivariate

5. The prepared data set is included as "D208_cleaned_task1"

Part IV: Model Comparison and Analysis

- D. Compare an initial and a reduced multiple regression model by doing the following:
 - 1. Construct an initial multiple regression model from *all* predictors that were identified in Part C2.
 - 2. Justify a statistically based variable selection procedure and a model evaluation metric to reduce the initial model in a way that aligns with the research question.
 - 3. Provide a reduced multiple regression model that includes *both* categorical and continuous variables.
 - 1. Initial multiple regression model from all predictors:

	,	N_0500_0000_188K1	
Intercept	-17.523751		
Children	-0.366423		
Age	0.040279		
Income	-0.000001		
Outage_sec_perweek	0.009168		
Email	0.000752		
Contacts	-0.023848		
Yearly_equip_failure	-0.027181		
Bandwidth_GB_Year	0.011966 0.018156		
MonthlyCharge item1_responses	0.057365		
item2_fixes	-0.054017		
item3_replacements	0.024902		
item4_reliability	-0.009846		
item5_options	-0.038197		
item6 respectfulness	-0.014343		
item7_courteous	-0.005482		
item8_listening	-0.053401		
Churn_numeric	1.347461		
Techie_numeric	-0.053166		
Port_modem_numeric	-0.043823		
Tablet_numeric	0.004083		
Phone_numeric	-0.014566		
Multiple_numeric OnlineSecurity_numeric	1.380790 0.998428		
OnlineBackup_numeric	1.460700		
DeviceProtection_numeric	1.171649		
TechSupport_numeric	0.349225		
StreamingTV_numeric	3.228143		
StreamingMovies_numeric	3.126839		
PaperlessBilling_numeric	-0.076023		
InternetService_numeric	-0.333164		
Contract_numeric	-0.021971		
Gender_numeric	0.603957		
dtype: float64			
OLS Regression Results			
Dep. Variable:	Tenure	R-squared:	0.992
Model:	OLS	Adj. R-squared:	0.992
	east Squares	F-statistic:	3.916e+04
	25 Jan 2023	Prob (F-statistic):	0.00
Time:	17:07:14	Log-Likelihood:	-22576.
No. Observations:	10000	AIC:	4.522e+04
Df Residuals:	9966	BIC:	4.546e+04
Df Model:	33		
Covariance Type:	nonrobust		

======

0.975]

coef std err t P>|t| [0.025

Intercept	-17.5238	0.779	-22.507	0.000	-19.050
-15.998 Children	-0.3664	0.011	-33.887	0.000	-0.388
-0.345 Age	0.0403	0.001	35.916	0.000	0.038
0.042 Income 3.67e-07	-1.247e-06	8.23e-07	-1.514	0.130	-2.86e-06
/Documents/WGU/D208/PA_D208_0	Code_Task1.ipynb				
		PA_D208_Cod	e_Task1		
Outage_sec_perweek 0.024	0.0092	0.008	1.175	0.240	-0.006
Email 0.016	0.0008	0.008	0.098	0.922	-0.014
Contacts 0.022	-0.0238	0.023	-1.016	0.310	-0.070
Yearly_equip_failure 0.044	-0.0272	0.036	-0.745	0.456	-0.099
Bandwidth_GB_Year 0.012	0.0120	1.25e-05	960.548	0.000	0.012
MonthlyCharge 0.023	0.0182	0.003	6.969	0.000	0.013
item1_responses 0.123	0.0574	0.033	1.726	0.084	-0.008
item2_fixes 0.007	-0.0540	0.031	-1.734	0.083	-0.115
item3_replacements 0.081	0.0249	0.029	0.872	0.383	-0.031
item4_reliability 0.040	-0.0098	0.026	-0.385	0.700	-0.060
item5_options 0.014	-0.0382	0.027	-1.440	0.150	-0.090
item6_respectfulness 0.039	-0.0143	0.027	-0.525	0.599	-0.068
item7_courteous ∂.045	-0.0055	0.026	-0.212	0.832	-0.056
item8_listening -0.005	-0.0534	0.025	-2.173	0.030	-0.102
Churn_numeric 1.480	1.3475	0.068	19.962	0.000	1.215
Techie_numeric 0.069	-0.0532	0.062	-0.854	0.393	-0.175
Port_modem_numeric 0.047	-0.0438	0.046	-0.944	0.345	-0.135
Tablet_numeric 0.104	0.0041	0.051	0.080	0.936	-0.095
Phone_numeric 0.142	-0.0146	0.080	-0.182	0.855	-0.171
Multiple_numeric 1.570	1.3808	0.096	14.312	0.000	1.192
OnlineSecurity_numeric	0.9984	0.049	20.399	0.000	0.902
OnlineBackup_numeric 1.607	1.4607	0.075	19.513	0.000	1.314

DeviceProtection_numeric 1.283	1.1716	0.057	20.559	0.000	1.060
TechSupport_numeric 0.463	0.3492	0.058	6.033	0.000	0.236
StreamingTV_numeric 3.462	3.2281	0.119	27.107	0.000	2.995
StreamingMovies_numeric 3.408	3.1268	0.144	21.763	0.000	2.845
PaperlessBilling_numeric 0.016	-0.0760	0.047	-1.612	0.107	-0.168
InternetService_numeric -0.229	-0.3332	0.053	-6.271	0.000	-0.437
Contract_numeric 0.046	-0.0220	0.034	-0.637	0.524	-0.090
Gender_numeric 0.678	0.6040	0.038	16.091	0.000	0.530

e/Documents/WGU/D208/PA_D208_Code_Task1.ipynb

PA_D208_Code_Task1

Omnibus:	24779.448	Durbin-Watson:	1.960
Prob(Omnibus):	0.000	Jarque-Bera (JB):	999.182
Skew:	-0.434	Prob(JB):	1.07e-217
Kurtosis:	1.718	Cond. No.	1.70e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.7e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Initial Multiple Linear Regression Model

```
y = -17.523751 + (Children * -.366423) + (Age * .040279) + (Income * -.000001) +

(Outage_sec_perweek * 0.009168) + (Email * .000752) + (Contacts * -.023848) +

(Yearly_equip_failure * -.027181) + (Bandwidth_GB_Year * .011966) + (MonthlyCharge * .018156) + (item1_responses * .057365) + (item2_fixes * -.054017) + (item3_replacements * .024902) + (item4_reliability * -.09846) + (item5_options * -.038197) + (item6_respectfulness * .024902)
```

```
-.014343) + (item7_curteous * -.005482) + (item8_listening * -.053166) + (Churn_numeric * 1.347461) + (Techie_numeric * -.053401) + (Port_modem_numeric * -.043823) + (Tablet_numeric * 0.004083) + (Phone_numeric * -.014566) + (Multiple_numeric * 1.380790) + (OnlineSecurity_numeric * .998428) + (OnlineBackup_numeric * 1.460700) + (DeviceProtection_numeric * 1.171649) + (TechSupport_numeric * .349225) + (StreamingTV_numeric * 3.228143) + (StreamingMovies_numeric * 3.126839) + (PaperlessBilling_numeric * -.076023) + (InternetService_numeric * -.333164) + (Contract_numeric * -.021971) + (Gender_numeric * .0603957)
```

Based on an R squared value = .992, 99.2% of the variation is explained by this model. The condition number is large which suggests strong multicollinearity. It appears that we can reduce the number of variables. To do this, we will use Backwards stepwise reduction for regression models and Variance Inflation Factors (VIF) in Python.

- 2. The statistically based variable selection procedure is backwards stepwise reduction removing all variables whose P value is larger than .05. I will also use Variance Inflation Factor (VIF) to aid in this. When we look at the initial regression model, the variables whose P value are greater than .05 and therefore according the idea of backwards stepwise reduction, were removed from the dataset are:
 - Income
 - Outage sec perweek
 - Email
 - Contacts
 - Yearly_equip_failure
 - Item1_responses

- Item2_fixes
- Item3_replacements
- Item4_reliability
- Item5_options
- Item6_respectfulness
- Item7_courteous
- Techie_numeric
- Port_modem_numeric
- Tablet_numeric
- Phone_numeric
- PaperlessBilling_numeric
- Contract_numeric

Next, I performed a VIF and removed all of the variables that had above a 3 VIF to hold the dataset to a strict cutoff. The following variables that were removed from this method are:

- MonthlyCharge
- Multiple_numeric
- StreamingTV_numeric
- StreamingMovies_numeric
- InternetService_numeric

The choice was informed from the following output:

VIF variable

0 1129.060742 Intercept

	VIF	variable
1	1.003919	Children
2	1.003478	Age
3	1.003404	Income
4	1.003788	Outage_sec_perweek
5	1.003559	Email
6	1.003144	Contacts
7	1.002883	Yearly_equip_failure
8	1.380259	Bandwidth_GB_Year
9	23.310180	MonthlyCharge
10	2.216297	item1_responses
11	1.934009	item2_fixes
12	1.605377	item3_replacements
13	1.278476	item4_reliability
14	1.375332	item5_options
15	1.482451	item6_respectfulness
16	1.314521	item7_courteous

	VIF	variable
17	1.189466	item8_listening
18	1.652964	Churn_numeric
19	1.008479	Techie_numeric
20	1.001800	Port_modem_numeric
21	1.004704	Tablet_numeric
22	1.005038	Phone_numeric
23	4.307308	Multiple_numeric
24	1.024982	OnlineSecurity_numeric
25	2.583752	OnlineBackup_numeric
26	1.489515	DeviceProtection_numeric
27	1.462672	TechSupport_numeric
28	6.602124	StreamingTV_numeric
29	9.607575	StreamingMovies_numeric
3	1.003549	PaperlessBilling_numeric
31	3.163871	InternetService_numeric
32	1.003407	Contract_numeric

VIF variable

33 1.006126 Gender_numeric

The final reduced regression equation will include the continuous variable for Children, Age, Bandwidth_GB_Year, and the categorical variables of Churn_numeric, OnlineBackup_numeric, OnlineSecurity numeric, DeviceProtection numeric, Gender numeric, and item8 listening.

3. The output of the final reduced multiple regression model that includes both categorical and continuous variables is as follows on the next page:

Intercept -10.863561 Children -0.356664 Age 0.039634

Bandwidth_GB_Year 0.011727 item8_listening -0.047615 Churn_numeric 3.344532 OnlineBackup_numeric 0.897706 OnlineSecurity_numeric 0.961640 DeviceProtection_numeric 0.901045 Gender_numeric 0.596107

dtype: float64

OLS Regression Results

Dep. Variable: Tenure R-squared: 0.989 Model: OLS Adj. R-squared: 0.989 Method: Least Squares F-statistic: 9.809e+04 Date: Sun, 29 Jan 2023 Prob (F-statistic): 0.00 12:31:24 Log-Likelihood: Time: -24475. 10000 AIC: No. Observations: 4.897e+04 Df Residuals: 9990 BIC: 4.904e+04

Df Model: 9
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
------Intercept -10.8636 0.151 -72.128 0.000 -11.159 -10.568
Children -0.3567 0.013 -27.342 0.000 -0.382 -0.331

0.0396 0.001 29.287 0.000 0.037 Age Bandwidth_GB_Year 0.0117 1.43e-05 818.463 0.000 0.012 0.012 item8 listening -0.0476 0.027 -1.750 0.080 -0.101 0.006 Churn numeric 3.3445 0.071 47.072 0.000 3.484 3.205 0.787 1.008 OnlineSecurity numeric 0.9616 0.058 16.460 0.000 0.847 1.076 DeviceProtection numeric 0.9010 0.057 15.941 0.000 0.790 1.012 Gender numeric 0.5961 0.045 13.172 0.000 0.507 0.685

Omnibus: 680.102 Durbin-Watson: 1.967 Prob(Omnibus): 0.000 Jarque-Bera (JB): 375.255

 Skew:
 -0.323 Prob(JB):
 3.27e-82

 Kurtosis:
 2.305 Cond. No.
 2.22e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.22e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- E. Analyze the data set using your reduced multiple regression model by doing the following:
 - 1. Explain your data analysis process by comparing the initial and reduced multiple regression models, including the following elements:
 - the logic of the variable selection technique
 - the model evaluation metric
 - a residual plot
 - 2. Provide the output and *any* calculations of the analysis you performed, including the model's residual error.

Note: The output should include the predictions from the refined model you used to perform the analysis.

45

3. Provide the code used to support the implementation of the multiple regression models.

- 1. The data analysis summary
 - a. Logic of the variable selection technique: Tenure is our target variable and the predictor variables initially included were all of the possible variables from the dataset. After running the initial regression, the statistically based variable selection procedure I used to reduce the model was backwards stepwise reduction removing all variables whose P value is larger than .05. I also used Variance Inflation Factor (VIF) to aid in this and further reduce the data.
 - b. Model evaluation metric: Backwards Stepwise reduction and VIF. After reduction, the difference is remarkable. With the reduced selection, there was a decrease to .989 R squared value from .992, which indicates further analysis is needed as that is highly irregular. We have reduced variables to a set using valid statistical methods and we have reduced our R squared, indicating there is something going on, more data and analysis is needed, and/or the dataset is dirty in some way we have not detected. The error is still given "The condition number is large, 2.22e+04. This might indicate that there are strong multicollinearity or other numeric problems,"
 - c. Residual plot:

2. The output of any and all calculations of the analysis have been placed throughout the report in images, and can be found in the code "PA_D208_Code_Task1" or "PA_D208_Code_Task1 Backup."

The R value for our final model is .989, this suggests a 98.9% strength to predict. The R squared value being .989 is very high and a good output by itself, but as described before, the decrease we have seen is indicative of a need for more analysis.

The estimated standard residual error of the reduced model is 2.798474402739518. This means our prediction model, on average, is off by that amount.

```
# Here we are calculating our residual error from the reduced model
print(np.sqrt(LM_Reduced_Tenure.mse_resid))
```

2.798474402739518

3. The code used to support implementation of the multiple regression models is found in "PA_D208_Code_Task1" and annotated to the respective part of this report.

Part V: Data Summary and Implications

- F. Summarize your findings and assumptions by doing the following:
 - 1. Discuss the results of your data analysis, including the following elements:
 - a regression equation for the reduced model
 - an interpretation of coefficients of the statistically significant variables of the model
 - the statistical and practical significance of the model
 - the limitations of the data analysis
 - 2. Recommend a course of action based on your results.
 - 1. The results of the analysis:
 - a. Regression equation for the reduced model: y = -10.863561 + (-.356664 *
 Children) + (0.039634 * Age) + (0.011727 * Bandwidth_GB_Year) + (-.047615 *
 item8_listening) + (3.344532 * Churn_numeric) + (0.897706 *
 OnlineBackup_numeric) + (.961640 * OnlineSecurity_numeric) + (.901045 *
 DeviceProtection_numeric) + (.596107 * Gender_numeric)

- b. Interpretation of coefficients of the statistically significant variables of the
 previous model. The coefficients suggest that per each unit of the following,
 Tenure will increase or decrease by the following per one unit of the variable.
- Children, Tenure will decrease 0.356664
- Age, Tenure will increase 0.039634
- Bandwidth_GB_Year, Tenure will increase 0.011727
- item8_listening, Tenure will decrease 0.047615
- Churn_numeric, Tenure will increase 3.344532
- OnlineBackup numeric, Tenure will increase 0.897706
- OnlineSecurity numeric, Tenure will increase 0.961640
- DeviceProtection_numeric, Tenure will increase 0.901045
- Gender numeric, Tenure will increase 0.596107
 - c. Statistical and significance of the model: As described, the condition number is large, indicating there might be strong multicollinearity or other numerical problems. The P value for all of the variables in the reduced model are statistically significant at 0.00. The R value is .989, indicating a strong prediction strength, but again, has lowered after reduction, indicating further analysis and reevaluation of the data acquisition and cleaning phase of this dataset is needed. Finally, with standard residual error of 2.798474402739518 our model is fairly accurate, but whether it is acceptable error or not is up to the organization based off of their specific needs.
 - d. Limitations of data analysis: There is not enough customer data to clearly identify trends. The data analysis indicates strong multicollinearity or other numerical problems, indicating the dataset is dirty in some way not tested for. More data analysis beyond a multiple linear regression model is needed and the model indicates a need to reevaluate the data acquisition and cleaning phase for this

49

organization. Also, the R squared value lowering after a reduction of non-correlated variables indicates further analysis is needed and there is more going on with the data than meets the eye. Finally, the residual error of 2.798474402739518 could be a limitation of the model's output if the organization deems it too large.

2. The course of action I recommend is based on the strong linear relationship between

Tenure and Churn. The organization should firstly begin an analysis into why Tenure and

Churning are related, why do customers at certain linear Tenure lengths leave the

organization within the last month. Is there a way to give the customers incentives or

contacts to prevent churning and specific Tenure lengths? The organization should also

investigate the Bandwidth_GB_Year and item8_listening in relation to what they can do

to increase Tenure with their service model. Also, the organization can use the

demographic variables found in our reduced model to predict the tenure length of

customers and adjust their business model to increase the predicted Tenure of these

customers. Finally, due to the limitations and the suspicious R value, I would recommend

further data collection to get a larger data set and to perform more analysis on the topic.

Part VI: Demonstration

- G. Provide a Panopto video recording that includes all of the following elements:
 - a demonstration of the functionality of the code used for the analysis
 - an identification of the version of the programming environment
 - a comparison of the two multiple regression models you used in your analysis

• an interpretation of the coefficients.

Link to the panopto presentation:

 $\frac{https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=70b8f409-c65a-434e-8548-af9b0153973f}{}$

H. List the web sources used to acquire data or segments of third-party code to support the application. Ensure the web sources are reliable.

The source to inform my code regarding the multiple regression model was the following:

Linear Regression: Residual Standard Error in Python – Data Science Concepts. (n.d.). Retrieved

January 31, 2023, from https://www.datascienceconcepts.com/tutorials/python-programming-language/linear-regression-residual-standard-error-in-python/

Yadav, H. (2021, May 8). *Multiple Linear Regression Implementation in Python*. Machine Learning with Python. https://medium.com/machine-learning-with-python/multiple-linear-regression-implementation-in-python-2de9b303fc0c

Zach. (2020, July 20). *How to Calculate VIF in Python*. Statology. https://www.statology.org/how-to-calculate-vif-in-python/

I. Acknowledge sources, using in-text citations and references, for content that is quoted, paraphrased, or summarized.

The sources to inform my python choice, multiple regression, and VIF information are as follows:

Prasanna, M. (2021, October 21). How to Efficiently Handle Large Datasets for Machine Learning and Data Analysis Using Python. Medium.

https://python.plainenglish.io/working-with-large-datasets-for-machine-learning-d8da0dd802fb

Yadav, H. (2021, May 8). *Multiple Linear Regression Implementation in Python*. Machine Learning with Python. https://medium.com/machine-learning-with-python/multiple-linear-regression-implementation-in-python-2de9b303fc0c

J. Demonstrate professional communication in the content and presentation of your submission.

This aspect cannot be summarized; however, I hope it has shown through in all aspects of this report.