The design and performance optimization of 3-phase PLLs for phase tracking under grid imperfections

Objective:

Phase tracking

Mentor: Dr. C. Nagamani

Pradhyumna R. 107108077

Sambhav R Jain 107108103

Depth of work:

- 1. Detailed analysis of 4 PLL schemes in literature (SRF, DDSRF, DSOGI, MCCF)
 - i. Mathematical modeling
 - ii. Simulation to match results from literature
 - iii. Intuitive plot program for comparison between schemes
- 2. Novel loop filter design
 - i. Self-consistent model based approach
 - ii. Comparisons of existing design schemes with the proposed scheme
 - iii. Development of a 3D lookup table
- **3.** Experimentation (in progress)

Detailed analysis of 4 PLL schemes in literature

- 1. PLL schemes developed: SRF, DDSRF, DSOGI, MCCF
 - SRF Synchronous Reference Frame PLL
 - DDSRF Decoupled Double Synchronous Reference Frame PLL
 - DSOGI Dual Second Order Generalized Integrator based 3-phase PLL
 - MCCF Multiple Complex Coefficient Filter based 3-phase PLL
- 2. Comprehensive Simulink models
- 3. Intuitive <u>plot</u> program (at least 200 comparisons possible!!)

Novel filter design (continued)

1. <u>Comparisons</u> with Wiener method

- i. Better dynamic performance
- ii. Extremely convenient from user's perspective

2. Development of a <u>3D lookup table</u>

i. Theoretical aspect:

Can be used as an educational tool to make notable inferences

ii. Practical aspect:

Eliminate constraints on the speed and computing power of the micro-controller/DSP

Conclusions

- 1. Analysis and in-depth understanding of 4 existing PLL schemes
- 2. Development of a generalized software applet
 - Excellent learning tool
 - Easy to use
 - To find out which scheme tackles a particular issue better
 - Additions of other schemes (if required) can be easily done
- 3. Novel self-consistent model based loop filter design
 - No trial and error as a unique (k_p, k_i) pair for a particular grid condition
 - Both error and damping is optimized
 - 3D lookup table for easy hardware implementation
- 4. Hardware implementation
 - MSP430 Launchpad is used and the ADC and PWM modules are interfaced
 - Yet to create a frequency excursion to test the SRF PLL implementation

Future work

- Use of the 3D lookup table for re-configurable filter design
- Hardware testing of the proposed design on the other PLL schemes

Thank you

DSOGI PLL Back

DSOGI PLL

MCCF PLL Back

MCCF PLL V_q_space_vector v_beta_compute v_beta_est_1+ v_beta_1+ V_d_error f(u) v_beta theta_est v_alpha_est_1+ v_alpha_1+ theta_est w_est w_est SRFPLL v_beta_est_1v_alpha f(u) v_alpha_est_1v_alpha_compute Saturation MCCF module w_est_MCCF to reduce sampling rate of SRF PLL

4 PLLs simulated on a single model

The grid simulator used to create imperfect grid conditions

Back

Error quantization

$$E = \frac{2e^{-\delta\omega_n t_0}}{\omega_n \sqrt{1 - \delta^2}} \sqrt{\Delta\omega_{step}^2 + \phi^2 \omega_n^2 - 2\Delta\omega_{step} \phi \omega_n \delta}$$

Damping optimization

$$(-2\omega_n t_0 c_2)\delta^3 + (-c_2 + \omega_n t_0 c_1)\delta^2 + (c_1 + 2\omega_n t_0 c_2)\delta + (-c_2 - \omega_n t_0 c_1) = 0$$

where
$$c_1 = \Delta \omega_{step}^2 + \phi^2 \omega_n^2$$

 $c_2 = \Delta \omega_{step} \phi \omega_n$

Filtering characteristic v/s Dynamic response

Filtering $\rightarrow \frac{1}{Bandwidth}$

Dynamic performance \rightarrow Bandwidth

Wiener method: good trade-off between filtering and dynamic response

Proposed method: focus is on dynamic response

Comparisons – SRF PLL on phase jump

0.98

1.02

1.04

time (s) \rightarrow

1.06

1.08

1.1

1.12

Comparisons

Wiener method

Proposed method

3D lookup table – optimized δ

3D lookup table – optimized ω_n

3D lookup table – optimized τ

