1- Montrer que $||\overrightarrow{V}(A \in 3/0)|| \approx 0.5 m/s$

On mesure sur le document réponses : $\left\| \overrightarrow{OA} \right\|_{mes} = 30 \ mm$

30 mm

L'échelle est de $1/\sqrt{2}$ donc $\left\| \overrightarrow{OA} \right\|_{reelle} = 30 \times 1.4 = 42 \, mm$

$$\|\overrightarrow{V}(A \in 3/0)\| = \|\overrightarrow{OA}\| \|\overrightarrow{\Omega}(3/0)\| = 0.042 \times 114 \times \frac{2\pi}{60} = 0.5m/s$$

$$\left\| \overrightarrow{V}(A \in 3/0) \right\| = 0.5m/s$$

 $\vec{V}(A \in 3/0)$

2- Tracer sur le document réponses 1, $\vec{V}(A \in 3/0)$ On considérera pour cela que la rotation de 3/0 se fait dans le sens trigonométrique.

L'échelle pour la construction des vitesses adoptée sera de 10 cm pour 0,5 m/s.

 $\|\vec{V}(A \in 3/0)\| = 0.5m/s$ est donc représentée par un vecteur de 10 cm

 $\Delta \vec{V}(A \in 3/0) \perp (MA)$

3- Déterminer une droite sur laquelle se trouve 140.

$$\vec{V}(A \in 3/0) = \vec{V}(A \in 4/0)$$

$$\text{donc} \quad I_{40} \in (\bot \vec{V}(A \in 4/0)) \quad \text{donc} \quad I_{40} \in (AM)$$

 $\vec{V}(A \in 3/0)$ $\vec{V}(A \in 4/0)$

4- En vous intéressant au solide 6, **déterminer** une droite sur laquelle se trouve I54.

I₅₄ est aligné avec I₅₆ et I₆₄ d'après le théorème des 3 CIR alignés. Or, de manière évidente, nous avons :

$$I_{56} \equiv E$$
 et $I_{64} \equiv B$

Donc I₅₄ est sur la droite (BE).

En vous intéressant au solide 7, déterminer une autre droite sur laquelle se trouve 154.

I₅₄ est aligné avec I₅₇ et I₇₄ Or, de manière évidente, nous avons :

$$I_{57} \equiv D$$
 et $I_{74} \equiv C$

Donc I₅₄ est sur la droite (DC)

En déduire alors la position exacte de I54

 ΔI_{54}

$$I_{54} \equiv (DC) \cap (BE)$$

6- Déterminer une seconde droite sur laquelle doit se trouver I40

 $I_{50} \equiv N$ et par le théorème des 3 CIR, nous savons que les points I_{40} , I_{50} , I_{54} sont alignés. Donc I_{40} est sur la droite (I_{54} N).

7- A l'aide des questions précédentes en déduire la position de I40.

$$I_{40} \equiv (I_{54}N) \cap (AM)$$

8- Déterminer graphiquement : $\overrightarrow{V}(D \in 4/0)$

$$\overrightarrow{V}(D \in 4/0) \perp I_{40}D$$

Equiprojectivité entre A et D dans le mvt 4/0

Déterminer graphiquement $\overrightarrow{V}(D \in 5/0)$

$\overrightarrow{V}(D \in 4/0) = \overrightarrow{V}(D \in 4/5) + \overrightarrow{V}(D \in 5/0)$

 $\overrightarrow{V}(D \in 4/5)$ est orthogonale à (I₄₅D).

 $\overrightarrow{V}(D \in 5/0)$ est orthogonale à $(I_{50}D)=(ND)$

 $\overrightarrow{V}(D{\in}5/0)$ est représentée par un vecteur de 3.6 cm

donc $\|\overrightarrow{V}(D \in 5/0)\| = 0.18 \, m/s$

Norme de la vitesse de rotation du balancier 5 par rapport au repère carter fixe 0

 $\|\vec{\Omega}(5/0)\|$ en deg/s (×1000)

$$\|\overline{ND}\|_{mes} = 25mm$$
 donc $\|\overline{ND}\|_{r\acute{e}el} = 35mm$

La courbe simulée donne, en t=0.1 s, la valeur $\|\overline{\Omega}(5/0)\| \approx 300 \deg/s \approx 50 tr/\min$

donc
$$\|\overrightarrow{V}(E \in 5/0)\| = \|\overrightarrow{NE}\| \|\overrightarrow{\Omega}(5/0)\| = 0.18m/s$$

Position angulaire du balancier 5 par rapport au repère carter fixe 0

L'amplitude est d'environ 150°.

Etude de la sortie du porte balai et de son balai par rapport au balancier

Paramétrage:

Au bâti 0 est associé le repère $(N, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$

Au balancier 5 est associe le repère $(N, \overline{x_5}, \overline{y_5}, \overline{z})$ $\beta = (\overline{x}, \overline{x_5}) = (\overline{y}, \overline{y_5})$

Au pignon 9, on associe le repère $(A, \overrightarrow{x_9}, \overrightarrow{y_9}, \overrightarrow{z})$ $\gamma = (\overrightarrow{x_5}, \overrightarrow{x_9}) = (\overrightarrow{y_5}, \overrightarrow{y_9})$

A la biellette 19 est associée le repère $(C, \overrightarrow{x_{19}}, \overrightarrow{y_{19}}, \overrightarrow{z})$ $\delta = (\overrightarrow{x_5}, \overrightarrow{x_{19}}) = (\overrightarrow{y_5}, \overrightarrow{y_{19}})$

 $\overrightarrow{AB} = r\overrightarrow{x_9}$ avec r = 40 mm

$$\overrightarrow{BC} = \overrightarrow{Ly_{19}}$$
 avec L = 72 mm

$$\overrightarrow{AC} = \lambda \overrightarrow{y_5}$$

1- Tracer les trois figures planes de changement de base.

Le vecteur orthogonal à toutes ces figures est le vecteur

2- Compléter le schéma cinématique en 3D

3- A partir de l'hypothèse de roulement sans glissement en I du pignon par rapport au carter, déterminer la relation liant $\dot{\gamma}$ à $\dot{\beta}$, R₀ et R₉.

$$\overrightarrow{V}(I \in 9/0) = \overrightarrow{0}$$

$$\vec{V}(I \in 9/5) + \vec{V}(I \in 5/0) = \vec{0}$$

$$\overrightarrow{V}(I \in 9/5) = \overrightarrow{V}(A \in 9/5) + \overrightarrow{IA} \wedge \overrightarrow{\Omega}(9/5) = R_9 \overrightarrow{y_5} \wedge \overrightarrow{\gamma} \overrightarrow{z} = R_9 \overrightarrow{\gamma} \overrightarrow{x_5}$$

$$\overrightarrow{V}(I \in 5/0) = \overrightarrow{V}(N \in 5/0) + \overrightarrow{IN} \wedge \overrightarrow{\Omega}(5/0) = R_0 \overrightarrow{y_5} \wedge \overrightarrow{\beta} \overrightarrow{z} = R_0 \overrightarrow{\beta} \overrightarrow{x_5}$$

donc on en déduit :

$$R_9 \stackrel{\bullet}{\gamma} + R_0 \stackrel{\bullet}{\beta} = 0$$

soit finalement

$$\dot{\gamma} = -\frac{R_0}{R_9} \dot{\beta}$$

Le cahier des charges impose que l'amplitude de variation de β , notée $\Delta\beta$ soit de 150°.

4- Quel doit être, sur l'amplitude totale du mouvement, le nombre de tours réalisés par le pignon 9 par rapport au balancier 5 ?

Le porte balai 14 fait 1 aller et retour par tour de pignon 9.

Or, pour 1 balayage aller de pare-brise, le porte balai doit effectuer 2 allers et retours.

Le pignon 9 doit donc faire 2 tours par rapport au balancier 5 sur l'amplitude totale du mouvement.

Il est dans la position $\gamma = -\frac{\pi}{2}$ à droite, à gauche et en haut du pare brise li est dans la position $\gamma = \frac{\pi}{2}$ aux « coins » supérieurs du pare brise.

Balancier 5

Carter 0

Porte balai 14

Pignon 9

5- Montrer alors qu'il faut nécessairement que R9=10 mm.

La relation $\dot{\gamma} = -\frac{R_0}{R_9}\dot{\beta}$ s'intègre en $\Delta \gamma = \frac{R_0}{R_9}\Delta\beta$ car les amplitudes sont positives

or:
$$\Delta \beta = 150^{\circ}$$
 et $\Delta \gamma = 720^{\circ}$ donc: $R_9 = \frac{\Delta \beta}{\Delta \gamma} R_0 = \frac{150}{720} 48 = 10 \text{ mm}$

6- Lorsque $\beta = 0^{\circ}$, que doit alors valoir γ ?

Lorsque $\beta = 0^{\circ}$, nous nous situons en haut du pare-brise donc il faut que $\gamma = -90^{\circ}$

Déterminer alors l'équation de γ en fonction de β

La relation $\dot{\gamma} = -\frac{R_0}{R_0} \dot{\beta}$, s'intègre alors en $\gamma(t) = -\frac{R_0}{R_0} \beta(t) - 90^\circ$

$$\gamma(t) = -\frac{R_0}{R_9} \beta(t) - 90^\circ$$

7- Déterminer les trois valeurs de β , notées $\beta_0 < \beta_1 < \beta_2$ pour lesquelles le porte balai est complètement rentré par rapport au balancier.

$$\gamma(t) = -\frac{R_0}{R_9}\beta(t) - 90^\circ$$

$$\begin{cases} \beta_0 = -75^{\circ} \\ \beta_1 = 0^{\circ} \\ \beta_2 = 75^{\circ} \end{cases}$$

8- Déterminer les 2 valeurs de β , notées $\beta_3 < \beta_4$ pour lesquelles le porte balai est complètement sorti par rapport au balancier.

$$\beta_3 = -37.5^{\circ}$$
$$\beta_4 = 37.5^{\circ}$$

9- Par un bouclage géométrique, déterminer deux relations scalaires faisant intervenir λ , r, L, γ et δ

Il suffit pour cela d'écrire : $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$

$$r\vec{x}_9 + L\vec{y}_{19} - \lambda \vec{y}_5 = \vec{0}$$

soit en projection dans $(\overrightarrow{x_5}, \overrightarrow{y}_5, z)$

$$\begin{cases} r\cos\gamma - L\sin\delta = 0\\ r\sin\gamma + L\cos\delta - \lambda = 0 \end{cases}$$

10- Déterminer l'expression de λ en fonction de r, L et γ

D'après la question précédente : $\begin{cases} r\cos\gamma - L\sin\delta = 0 & \text{(1)} \\ r\sin\gamma + L\cos\delta - \lambda = 0 & \text{(2)} \end{cases}$

Compte tenu du fonctionnement, la bielle reste en fonctionnement avec un axe \vec{y}_{19} proche de \vec{y}_5 si bien que l'on a toujours $\cos\delta > 0$

On a alors:
$$\cos \delta = \sqrt{1 - \sin^2 \delta} = \sqrt{1 - \frac{r^2}{L^2} \cos^2 \gamma}$$
 avec (1)

$$\lambda = r \sin \gamma + L \sqrt{1 - \frac{r^2}{L^2} \cos^2 \gamma} \qquad \text{avec (2)}$$

11- Donner les deux valeurs extrêmes de λ , et faire les applications numériques.

Les deux valeurs extrêmes de λ sont obtenues pour

$$\gamma = \frac{\pi}{2}$$
 et $\gamma = -\frac{\pi}{2}$

On obtient alors :

$$\lambda_{\text{max}} = r + L = 112mm$$
$$\lambda_{\text{min}} = -r + L = 32mm$$

12- Dessiner la trajectoire des points C1 et C2 lors :

- d'un mécanisme traditionnel sans mécanisme de sortie du porte balai par rapport au balancier
- du mécanisme Bosch

