Discrete Structures

Relations

Relations

A binary relation: Let A and B be sets. A binary relation R from A to B is a subset of $A \times B$ (Cartesian product). When (a,b) belong to R, a is said to be related to b by R.

Examples: parent-child, student-course

A n-ary relation: A relation R on sets $A_1, ..., A_n$ is a subset of $A_1 \times \cdots \times A_n$

Note: In this course, we study binary relations. Then when we say a relation, we mean a binary relation.

Notation: We use notation a R b to show $(a,b) \in R$ and $a \not R b$ to show $(a,b) \notin R$.

Functions as Relations

Let A and B be sets. A relation R from A to B can be used to express a one-to-many relationship between elements of A and B. A function f from A to B represent a relation where exactly one element of B is related to each element of A.

Relations are a generalization of functions; they can be used to express a much wider class of relationships between sets.

Relations on a Set

Definition: A relation on the set A is a relation from A to A.

Example: $\{(a,b):a|b\}$ which is a relation on integer numbers. We can name this relation |.

Example: $\{(a,b): a < b\}$ which is a relation on real numbers. We can name this relation <.

Example: $\{(A,B): A \subset B\}$ which is relation on the power set of a set X. We can name this relation \subset .

Problem: How many relations are there on a set A with n elements?

Solution: $A \times A$ has n^2 elements. Then we can have 2^{n^2} relations (#subsets)

Properties of Relations

Assumption: Assume R is a relation on a set A.

Reflexive: R is called reflexive iff $\forall a (aRa)$

Example: The "divide" relation is reflexive.

Symmetric: R is called symmetric iff $\forall a, b \ (aRb \rightarrow bRa)$

Antisymmetric: R is called antisymmetric iff $\forall a, b \ (aRb, bRa \rightarrow a = b)$

Example: The "divide" relation on positive integers is antisymmetric and is not symmetric.

Transitive: R is called transitive iff $\forall a, b, c \ (aRb \& bRc \rightarrow aRc)$

Example: The "divide" relation on integers is transitive.

Example: $R = \{(a, a) : a \in A\}$ has all above properties.

Combining Relations

Set operations: As relations are subset of $A \times B$, Therefore, set operations like $\cup, \cap, -$ can be applied to them.

Composite of R and S: Let R be a relation from A to B and S be a relation from B to C. The composite of R and S, denoted by $S \circ R$, is the following relation: $S \circ R = \{(a,c): \exists b \ aRb \ \& bSc\}$

```
Example: R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\} \subset \{1,2,3\} \times \{1,2,3,4\} \text{ and } S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\} \subset \{1,2,3,4\} \times \{0,1,2\}, \text{ then } S \text{ o } R = \{(1,0), (2,1), (2,2), (3,0), (3,1)\}
```

Combining Relations

Definition: Let R be a relation on A. The powers R^n are defined recursively by $R^1 = R$, $R^{n+1} = R^n$ o R. The definition shows $R^2 = R$ o R, $R^3 = (R \circ R)$ o R.

Theorem: The relation R on set A is transitive iff $R^n \subset R$ for any positive integer n

Proof:

If part: $R^n \subset R \to R^2 \subset R \to \forall a,b,c \ (aRb \& bRc \to aRc)$ Only if part: We use induction. Assume $R^n \subset R$. Now consider $R^{n+1} = R^n$ o R. Assume $(a,b) \in R^{n+1}$. Then there is x s.t. $(a,x) \in R$, $(x,b) \in R^n$. Since $R^n \subset R$, and R is transitive then $(a,b) \in R$.

Representation of Relations

Using Matrix: Let R be a relation on $A = \{a_1, ..., a_m\}$ and $B = \{b_1, ..., b_n\}$. The relation R can be represented by the matrix $m \times n$ M_R where $m_{ij} = 1$ if $(a_i, b_j) \in R$ and $m_{ij} = 0$ if not.

Some Simple Observations:

- R is reflexive iff all elements on the main diagonal of M_R is 1.
- R is symmetric if M_R is a symmetric matrix
- $M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}$ and $M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2}$

Using Digraph: Let R be a relation on a set A. R can be modeled by a digraph G where each element of A is a vertex of G, and edge (a,b) exists in G iff $(a,b) \in R$.

Closure

Definition: Let R be a relation on a set A. R may or may not have some property P such as reflexivity or symmetry. If there is a relation S with property P containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P.

Example: Suppose $R = \{(1,1), (1,2), (2,1), (1,3)\}$ is a relation on $\{1,2,3\}$

- Reflexive closure: {(1,1), (2,2), (3,3), (1,2), (2,1), (1,3)}
- Symmetric closure: {(1,1), (1,2), (2,1), (1,3), (3,1)}
- Antisymmetric closure: does not exist
- Transitive closure: = $\{(1,1), (1,2), (2,1), (1,3), (2,3)\}$

Closure

Theorem: Let R be a relation on A. There is a path of length n where n is a positive integer, from a to b iff $(a,b) \in R^n$.

Proof:

- Proof is based on induction. Assume for n the claim is true. We show that the claim is true for n+1
- $(a,b) \in R^{n+1} \leftrightarrow \exists c : (a,c) \in R^n \land (c,b) \in R \leftrightarrow \exists c : \text{there}$ exists a path of length n from a to $c \land (c,b) \in R \leftrightarrow$ there exists a path of length n+1 from a to b

Closure

Definition: Let R be a relation on A. The connectivity relation R^* consists of pairs (a,b) such that there is a path of length at least one from a to b in R.

Observation: $\bigcup_{i=1}^{\infty} R^i = R^*$

Theorem: The transitive closure of R is R^* .

Proof:

- R^* contains R and it is transitive.
- We show R^* is the subset of any transitive closure S of R.
- Since S is transitive, S^n is transitive and so $S^n \subset S$
- $S^* = \bigcup_{i=1}^{\infty} S^i \to S^* \subset S$
- $R \subset S \to R^* \subset S^*$
- Any transitive closure that contain R must also contain R^* . Therefore, R^* is the transitive closure 11

Equivalence Relations

Equivalence Relations: Let R be a relation on A. R is called an equivalence relation if it is reflexive, symmetric and transitive.

Equivalence Classes: For an equivalence relation R defined on a set A and $a \in A$, the class $[a] = \{b: aRb\}$

Theorem: Either [a] = [b] or $[a] \cap [b] = \emptyset$ Proof:

- Assume $[a] \cap [b] \neq \emptyset$. Then $\exists c: aRc \land bRc$
- $x \in [a] \leftrightarrow aRx \land cRa \leftrightarrow cRx \land bRc \leftrightarrow bRx \leftrightarrow x \in [b]$
- Therefore [a] = [b]

Equivalence Relations

Example: For a given undirected graph G(V, E), let $R = \{(u, v): \text{ there is a path from } u \text{ to } v\}$. It is easy to see R is an equivalence relation. [u] is the maximal connected component that u belongs to it. Indeed, classes are connected components.

Example: For a given directed graph G(V, E), let $R = \{(u, v): \text{ there is a path from } u \text{ to } v \text{ and vice versa}\}$. It is easy to see R is an equivalence relation. [u] is the maximal stongly connected component that u belongs to it. Indeed, classes are strongly connected components.

Equivalence Relations

Example: Let m be a positive integer greater than 1. The relation $R = \{(a,b) | a \equiv b \mod m\}$ is an equivalence relation. Class [a] is the set of all numbers congruent to $a \mod m$. Integer numbers are partitioned into sets [0], [1], ..., [m-1].

Example: Let S be the set of all strings. The relation $R = \{(s,t): |s| = |t|\}$ over S is an equivalence relation. Class [s] is the set of all strings whose length is equal to the length of s. The strings are partitioned into equal-length strings.

Partial Orderings

Partial Ordering: A relation R on a set S is called a partial ordering or a partial order if it is reflexive, antisymmetric and transitive. A set S together with a partial order R is called a Partially Ordered Set (poset) and is denoted by (S,R). Members of S are called elements of poset.

Examples: relations ≤, ⊆, | are partial order

Notation: From now on, we use \leq to denote a partial order relation. So, a poset on S is denoted by (S, \leq)

Comparable Elements

Definition: Two elements a and b of a poset (S, \leq) is comparable if either $a \leq b$ or $b \leq a$.

Examples: 2 and 3 are incomparable in $(Z^+, |)$ but 2 and 4 are comparable.

Remark: The adjective "partial" is used to describe partial ordering because pairs of elements may be incomparable. When every two elements in the set are comparable, the relation is called a total ordering. A totally ordered set is also called a chain. For instance (Z, \leq) is a total order but $(Z^+, |)$ is not.

Hasse Diagrams

We can represent a poset using the following procedure

- Obtain the graph corresponding to the poset
- Arrange all edges such that the initial vertex is below the terminal vertex and remove all arrows
- Remove all self-loops
- Remove all edges which are present due to transitivity

Maximal and Minimal

Maximal Elements: An element a in the poset is said to be maximal if there is no element b in the poset such that a < b

Minimal Elements: An element a in the poset is said to be minimal if there is no element b in the poset such that b < a

Maximal and minimal elements in the Hasse diagram are the topmost and bottommost elements, respectively.

Maximum and Minimum

Maximum Element or Greatest Element: An element a in the poset is said to be maximum if for any element b in the poset we have $b \le a$

Minimum Element or Least Element: An element a in the poset is said to be minimum if for any element b in the poset we have $a \leq b$.

Upper and Lower Bounds

Upper Bound: An element b in the poset (S, \leq) is said to be a upper bound for the subset $A \subset S$ if for any $a \in A$ we have $a \leq b$.

Lower Bound: An element b in the poset (S, \leq) is said to be a lower bound for the subset $A \subset S$ if for any

 $a \in A$ we have $b \leq a$.

Example: Upper bounds of $\{a, c, d, f\}$ are f, h and j and the lower bound is a.

The set $\{j, h\}$ does not have any upper bound.

Upper and Lower Bounds

Least Upper Bound (LUB): An upper bound which is less than any upper bound.

Greatest Lower Bound (GLB): A lower bound which is greater than any lower bound.

Example: LUB of $\{a, c, d, f\}$ is f and its GLB is a

21

Lattice: A Poset (S, \leq) in which every pair of elements has both, a least upper bound and a greatest lower bound is called a lattice.

Operators: $a \uparrow b = LUB(a, b)$ and $a \downarrow b = GLB(a, b)$

Properties:

- 1. $a \uparrow a = a \downarrow a = a$
- 2. $a \uparrow b = b \uparrow a, a \downarrow b = b \downarrow a$
- 3. $(a \uparrow b) \uparrow c = a \uparrow (b \uparrow c), (a \downarrow b) \downarrow c = a \downarrow (b \downarrow c)$
- 4. Distributive law may or may not hold for a lattice $(a \uparrow (b \downarrow c) = (a \uparrow b) \downarrow (a \uparrow c), a \downarrow (b \uparrow c) = (a \downarrow b) \uparrow (a \downarrow c))$

Proof of $(a \uparrow b) \uparrow c = a \uparrow (b \uparrow c)$:

- Let $(a \uparrow b) \uparrow c = d$, $a \uparrow (b \uparrow c) = d'$
- We show $d \leq d'$ and similarly $d' \leq d$.
- We know $a \leq d'$ and $b \uparrow c \leq d'$
- So $a \leq d'$, $b \leq d'$, $c \leq d'$
- So $a \uparrow b \leq d'$ and $c \leq d'$
- So $(a \uparrow b) \uparrow c \leq d'$
- Therefore, $d \leq d'$

Counter Example for Distributive Law:

- $b \uparrow (e \downarrow g) = b \uparrow a = b$
- $(b \uparrow e) \downarrow (b \uparrow g) = e \downarrow h = e$

Example: $(Z^+, |)$ is a lattice. Here $a \uparrow b = [a, b]$ and $a \downarrow b = (a, b)$

Example: $(P(X), \subseteq)$ is a lattice where P(X) is the power set of a set X. Here $A \uparrow B = A \cup B, A \downarrow B = A \cap B$

Example: (Z, \leq) is a lattice. Here $a \uparrow b = max(a, b)$, $a \downarrow b = min(a, b)$

Boolean Algebra

A Boolean Algebra is a six tuple consisting of a set A, equipped with two binary operations \land and \lor , a unary operation \sim , and two element 0 and 1 in A such that for all elements a, b and c of A, the following axioms hold:

- Associativity: $a \lor (b \lor c) = (a \lor b) \lor c$ and $a \land (b \land c) = (a \land b) \land c$
- Commutativity: $a \lor b = b \lor a \text{ and } a \land b = b \land a$
- Identity: $a \lor 0 = a$ and $a \land 1 = a$
- Distributivity: $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and $a \land (b \lor c) = (a \land b) \lor (a \land c)$
- Complements: $a \lor \sim a = 1$ and $a \land \sim a = 0$ Boolean Algebra is a complemented distributive lattice. Set and proposition logic are two examples.