Problem Sets due Jul 17, 2022 10:34 +03

Video

At 18:00, for the expectation of triangle distribution, the term inside the integral is x*2x, not x.

You can also refer to the slides, which is correct.

9.1_Continuous_Distributions

POLL

Which of the following is true about a continuous random variable on R?

RESULTS

Its pdf must integrate to 1 on R	69%
Its cdf must integrate to 1 on R	31%
None of the above	0%

Submit

Results gathered from 42 respondents.

FEEDBACK

Its pdf must integrate to 1 on R.

1 (Graded)

1/1 point (graded)

F is the cumulative distribution function for a continuous random variable. If $F\left(b
ight)-F\left(a
ight)=0.20$, then

- \bigcirc [a,b] has length 0.20
- P(X = b) P(X = a) = 20%
- $igoplus P(X \in (a,b]) = 20\%$

Answer

Correct: Video: Continuous Distributions

Explanation

Recall that
$$F\left(b\right)=P\left(X\leq b\right)$$
, $F\left(a\right)=P\left(X\leq a\right)$. Hence $P\left(a< X\leq b\right)=F\left(b\right)-F\left(a\right)=0.2$.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

2 (Graded)

2/2 points (graded)

Which of the following holds for all continuous probability distribution function f(x) having support set \mathbb{R} ?

- $orall x \in \mathbb{R}, \quad f(x) \geq 0$
- $igcup orall x \in \mathbb{R}, \quad f(x) \leq 1$
- $\exists x \in \mathbb{R}, \quad f(x) \leq 1$
- If the limits of f(x) at positive and negative infinity exist, then $\lim_{x o\infty}f(x)=\lim_{x o-\infty}f(x)=0$

Explanation

- 1. By definition, $f(x) \geq 0$.
- 2. Consider Gaussian $\mathcal{N}\left(0,1/\left(8\pi\right)\right)$. For this probability density function, $f\left(0\right)=2>1$.
- 3. If $f>1, orall x\in \mathbb{R}$, $\int_{\mathbb{R}}f\left(z
 ight)dz=\infty$, but we require $\int_{\mathbb{R}}f\left(z
 ight)dz=1$.
- 4. Suppose $\exists \epsilon, \, x_0 > 0$ such that $\forall x \geq x_0, \, f(x) > \epsilon$, then $\int_{\mathbb{R}} f(z) \, dz = \infty$. Thus there cannot exist such an $\epsilon, \, x_0 > 0$ and hence $\lim_{x \to \infty} f(x) = 0$. Similarly $\lim_{x \to -\infty} f(x) = 0$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

3 - Power Law

0 points possible (ungraded)

Let X be a random variable with pdf $f_{X}\left(x
ight)=Cx^{-lpha},x\geq1.$

If $\alpha=2$,

C=?	
If $lpha=3$,	
C=?	
E(X) = ?	
Submit You have used 0 of 4 attempts	
Discussion	Hide Discussion
Topic: Topic 9 / Continuous Distributions	Add a Post
Show all posts 🗸	by recent activity 🗸
? Is it just me that at this stage of the course I've started feeling a bit lost? I feel that the first couple of chapters i.e. 1 to 5 were progressing more smoothly. Now I f	eel that I am h

9.2 Functions of Random Variables

POLL

Let X be a continuous random variable. What type of function g will make the random variable g(X) discrete?

RESULTS

$\label{lem:Results} \textbf{Results gathered from 42 respondents}.$

FEEDBACK

A step function will make g(X) discrete, as it will take only the y-values that correspond to the steps.

1 (Graded)

3/3 points (graded)

Let (X,Y) be distributed over [0,1] imes [0,1] according to $f(x,y)=6xy^2$. Find $P(XY^3 \le 1/2)$.

3/4 **✓ Answer:** 0.75

Explanation

Let $Z = XY^3$.

For any $z\in (0,1)$, $Z=XY^3\leq z$ iff $Y\leq \min\{(z/X)^{1/3},1\}$. Therefore

 $P(Z \le z) = P(XY^3 \le z) = \int_0^z \int_0^1 f(x,y) \, dy dx + \int_z^1 \int_0^{(z/x)^{1/3}} f(x,y) \, dy dx = \int_0^z \int_0^1 6xy^2 \, dy dx + \int_z^1 \int_0^{(z/x)^{1/3}} 6xy^2 \, dy dx = z^2 + 1$ Plugging in z = 1/2 gives the answer.

? Hint (1 of 2): Let $Z = XY^3$.

Next Hint

Hint (2 of 2): The cdf of Z is $F_{Z}\left(z\right)=P\left(Z\leq z\right)=P\left(XY^{3}\leq z\right)=\int\limits_{xy^{3}\leq z}f\left(x,y\right)dxdy$

Submit

You have used 1 of 4 attempts

Answers are displayed within the problem

2 (Graded)

4/4 points (graded)

A random variable $oldsymbol{X}$ follows the distribution

$$f_{X}\left(x
ight)=\left\{egin{array}{ll} Cx^{2} & -1\leq x\leq 2,\ 0 & ext{otherwise}, \end{array}
ight.$$

and $Y=X^2$. Calculate

• C

1/3

✓ Answer: 1/3

1

Explanation

Since $1 = \int_{-1}^{2} f_X(x) dx = \int_{-1}^{2} Cx^2 dx = 3C$, we must have C = 1/3.

•
$$P(X \ge 0)$$

8/9

✓ Answer: 8/9

8

Explanation

$$P(X \ge 0) = \int_0^2 f_X(x) dx = \int_0^2 \frac{1}{3} x^2 dx = \frac{1}{9} \cdot x^3 \Big|_0^2 = \frac{8}{9}.$$

•
$$E[Y]$$

33/15

✓ Answer: 11/5

33

		_	
F		natio	
CXI	OLAII	1411	

$$E\left(Y
ight) = E\left(X^{2}
ight) = \int_{-1}^{2} x^{2} f_{X}\left(x
ight) dx = \int_{-1}^{2} rac{1}{3} \cdot x^{4} dx = 33/15 = 11/5.$$

• V(Y)

1.3

✓ Answer: 228/175

1.3

Explanation

First,
$$E\left(Y^2\right)=E\left(X^4\right)=\int_{-1}^2 x^4 f_X\left(x\right) dx=\int_{-1}^2 \frac{1}{3} \cdot x^6 dx=\frac{129}{21}.$$
 Hence $V\left(Y\right)=E\left(Y^2\right)-E(Y)^2=\frac{129}{21}-\left(\frac{11}{5}\right)^2=\frac{228}{175}.$

Submit

You have used 1 of 4 attempts

• Answers are displayed within the problem

3

0 points possible (ungraded)

Let X be distributed according to $f(x)=ce^{-2x}$ over x>0. Find P(X>2).

Submit

You have used 0 of 4 attempts

Discussion

Hide Discussion

by recent activity 🗸

Topic: Topic 9 / Functions of Random Variables

Add a Post

Show all posts There are no posts in this topic yet.

×

<u>Help</u>

alswaji 🗸

9.3_Uniform_Distribution

POLL

Let X be a uniformly distributed continuous random variable, then which of the following is also uniform?

RESULTS

Results gathered from 40 respondents.

FEEDBACK

Both 2X and X+2 are also uniform.

1

O points possible (ungraded)

The height of the probability density function of a uniformly distributed random variable is inversely proportional to the width of the interval it is distributed over.

Explanation

Recall that $\int_{-\infty}^{\infty} f_X(x) dx = 1$, which means the area under the pdf is one. For uniform distribution, it becomes

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

2 (Graded)

1/1 point (graded)

The variance of a uniformly distributed random variable on [a,b] is

- $\bigcirc (b-a)/2$
- $\bigcirc (b-a)/6$
- $\bigcirc (b-a)^2/6$
- $\bigcirc (b-a)^2/12$

Answer

Correct: Video: Uniform Distribution

Explanation

The expectation of a uniformly distributed random variable X on [a,b] is $E\left(X\right)=rac{a+b}{2}$.

Its varaince is $V\left(X
ight)=\int_{a}^{b}\left(x-rac{a+b}{2}
ight)^{2}rac{1}{b-a}dx=(b-a)^{2}/12$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

3 Max v. min (Graded)

3/3 points (graded)

Let $X,Y\sim U_{[0,1]}$ independently. Find $P\left(\max\left(X,Y
ight)\geq0.8\mid\min\left(X,Y
ight)=0.5
ight)$.

0.4

✓ Answer: 0.4

0.4

Explanation

Red area is the region that $\max(X, Y) \ge 0.8$.

Blue line (both solid and dash) is the region that $\min(X,Y) = 0.5$.

Blue dash line is the region that $\max{(X,Y)} \ge 0.8$ and $\min{(X,Y)} = 0.5$.

Notice that $P\left(\max\left(X,Y
ight)\geq0.8\mid\min\left(X,Y
ight)=0.5
ight)=rac{P(\max\left(X,Y
ight)\geq0.8,\min\left(X,Y
ight)=0.5)}{P(\min\left(X,Y
ight)=0.5)}$

Conditioning on $\min{(X,Y)}=0.5$) restricts our focus to the L-shaped line from (1,0.5) to (0.5,0.5) to (0.5,1) whose total length is 0.5+0.5=1, and the distribution over that line is uniform. Within this line, $\max{(X,Y)} \geq 0.8$ forms the segments from (0.8,0.5) to (1,0.5) and from (0.5,0.8) to (0.5,1) whose total length is 0.2+0.2=0.4.

The probability of falling within these segments given the L-shaped line is 0.4/1=0.4.

? Hint (1 of 1): Think geometrically in \mathbb{R}^2 . What is the region $\min{(X,Y)}=0.5$, and what fraction of this region intersects with $\max{(X,Y)}\geq 0.8$.

Next Hint

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

4

0 points possible (ungraded)

Given $X \sim U_{[a,b]}$ with $E\left[X
ight] = 2$ and $V\left(X
ight) = 3$, find a and b.

• a

• **b**

Submit

You have used 0 of 4 attempts

Discussion

Hide Discussion

Topic: Topic 9 / Uniform

Add a Post

Show all posts by recent activity by recent activit

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

<u>Help</u>

alswaji 🗸

9.4_Exponential_Distribution

POLL

In terms of memorylessness, the exponential distribution is analogous to which discrete random variable distribution?

RESULTS

Results gathered from 43 respondents.

FEEDBACK

Geometric distributions are also memoryless.

1

0 points possible (ungraded)

The y-intercept of the pdf of an exponentially distribution with $\lambda=2$ is

O 0		
0.5		
1		

Submit

You have used 0 of 2 attempts

2 (Graded)

2/2 points (graded)

Assume the lifetimes of some kind of batteries follow exponential distribution with mean 1 year.

• What is the probability that one such batteries can be used for more than 1.5 years?

0.2231 **Answer:** 0.22313

0.2231

Explanation

Let $X \sim \text{Exponential}(\lambda)$ denote the age of the battery. Since $1 = E(X) = 1/\lambda$, we have $\lambda = 1$. Further, for an exponential distribution, the CDF is given by $F_X(x) = P(X \le x) = 1 - e^{-\lambda \cdot x}, \ x \ge 0$. Thus $P(X > 1.5) = 1 - P(X \le 1.5) = 1 - F_X(1.5) = e^{-1.5} = 0.22313$.

 What is the probability that one such batteries can be used for more than 1.5 years in total if it has already been used for 0.5 year?

0.3679 **✓ Answer:** 0.367879

0.3679

Explanation

By the memoryless property of expoential distribution, P(X>1.5|X>0.5)=P(X>1). Following the same steps as the previous part above, $P(X>1)=e^{-1}=0.367879$.

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

3 (Graded)

3/3 points (graded)

Let X,Y be two independent exponential random variables with means 1 and 3, respectively. Find P(X>Y).

1/4 **✓ Answer:** 0.25

Explanation

From the description we have $f_{X}\left(x
ight)=e^{-t},f_{Y}\left(y
ight)=rac{1}{3}e^{-rac{y}{3}}$.

Hence $P\left(Y < y
ight) = F_Y\left(y
ight) = \int_{-\infty}^y f_Y\left(y'
ight) dy' = \int_0^y rac{1}{3} e^{-rac{y'}{3}} dy' = 1 - e^{rac{y}{3}}.$ $P\left(X > Y
ight) = \int_0^\infty \int_0^t f_X\left(t
ight) f_Y\left(y
ight) dy dt = \int_0^\infty f_X\left(t
ight) P\left(Y < t
ight) dt = \int_0^\infty e^{-t} \left(1 - e^{-t/3}
ight) dt = \int_0^\infty e^{-t} - e^{-4t/3}$

Submit

You have used 2 of 4 attempts

1 Answers are displayed within the problem

the lecture?			
Submit	You have used 0 of 4 attem	pts	
Discussior			Hide Discussion
			Hide Discussion Add a Post
Topic: Topic 9 / Ex	ponential		Add a Post
Topic: Topic 9 / Ex	ponential 🗸		Add a Post
Topic: Topic 9 / Ex Show all posts There are no po	ponential 🗸		Add a Post
Topic: Topic 9 / Ex Show all posts There are no po	ponential 🗸		Add a Post

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

<u>Open edX</u>

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

<u>Help</u>

alswaji 🗸

9.5_Gaussian_Distribution

POLL

If you fix the mean but increase the variance of a normal distribution, its pdf will

RESULTS

Results gathered from 42 respondents.

FEEDBACK

The pdf will become shorter and flatter.

1 Highest probability

0 points possible (ungraded)

 $\sqrt{2\pi\sigma}$

Let $X \sim \mathcal{N}\left(\mu, \sigma^2
ight)$ be a normal random variable, then the maximum value of its pdf is

1			
$\frac{1}{\sqrt{2\pi}}$			

$\bigcirc rac{1}{\sqrt{2\pi\sigma^2}}$
Submit You have used 0 of 2 attempts
You have used 0 of 2 attempts
2 Linear transformations
0 points possible (ungraded) The linear transformation of a normal random variable is also a normal random variable.
○ True
○ False
Submit You have used 0 of 1 attempt
3
O points possible (ungraded) If X,Y are two independent random variable with $X\sim\mathcal{N}\left(1,16 ight)$ and $Y\sim\mathcal{N}\left(1,9 ight)$, then find $\mathrm{Var}\left(XY ight)$.
Submit You have used 0 of 4 attempts
4
0 points possible (ungraded) Suppose X is a Gaussian random variable with mean 2 and variance 4 . Find $E\left(e^{rac{X}{2}} ight)$.
Submit You have used 0 of 4 attempts
5
0 points possible (ungraded) If $x \sim \mathcal{N}\left(0,1 ight)$, find $E\left(e^{-X^2} ight)$.
Submit You have used 0 of 4 attempts

6 (Graded)	
3/3 points (graded) Let $oldsymbol{X}$ be distributed according to	o the pdf ke^{-x^2-7x} . Find $E\left(X^2 ight)$.
12.75	✓ Answer: 51/4
12.75	
Explanation	

Notice that $f_X(x)=ke^{-x^2-7x}=(ke^{49/4})\cdot e^{-\frac{(x+7/2)^2}{2\times 0.5}}=c\cdot e^{-\frac{(x+7/2)^2}{2\times 0.5}}$, where c is a constant. Therefore X is normally distributed with $\mu=-7/2$ and $\sigma^2=0.5$ and thus $E\left(X^2\right)=V\left(X\right)+E(X)^2=1/2+49/4=51/4$.

? Hint (1 of 1): Consider the pdf of Gaussian distribution.

Next Hint

Submit

You have used 1 of 4 attempts

• Answers are displayed within the problem

7 (Graded)

3/3 points (graded)

Let $X \sim N\left(0,9
ight)$ have mean 0 and variance 9. Find the expected value of $X^2\left(X+1
ight)$.

9 **✓ Answer**: 9

Explanation

Notice that since the Guassian distribution is symmetric around its mean 0, $E(X^3)=0$. Further since $E(X^2)=V(X)+E(X)^2=9$, the answer follows.

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 9 / Normal Distributions

Add a Post

Show all posts

There are no posts in this topic yet.

Previous

Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

<u>Help</u> a

alswaji 🗸

9.6_Gaussian_Distribution_Probabilities

POLL

Why z table only cover one half of the normal curve?

RESULTS

The positive half is most frequently used.	2%
The table will be too large to include the negative half.	5%
The values of the negative half can be deduced from symmetry.	93%

Submit

Results gathered from 42 respondents.

FEEDBACK

The values of the negative half can be deduced from symmetry.

1

0 points possible (ungraded)

If X is a normal random variable with $\mu=-2$ and $\sigma=3$, and has probability density function and cumulative density function $f_X\left(x\right)$, $F_X\left(x\right)$, calculate

•
$$P(-3 < X < 0)$$

• F(1/4)

Suppose X,Y are independent and $X\sim\mathcal{N}\left(1,4
ight)$ and $Y\sim\mathcal{N}\left(1,9
ight)$. If $P\left(2X+Y\leq a
ight)=P\left(4X-2Y\geq 4a
ight)$, then find a.

4/3

✓ Answer: 4/3

Explanation

Notice that $2X+Y\sim\mathcal{N}\left(3,25
ight),4X-2Y\sim\mathcal{N}\left(2,100
ight)$. Then $P\left(2X+Y\leq a
ight)=\Phi\left(rac{a-3}{5}
ight)$, and $P(4X-2Y\geq 4a)=1-\Phi\left(rac{4a-2}{10}
ight)=\Phi\left(rac{2-4a}{10}
ight)$. By solving the equation $rac{a-3}{5}=rac{2-4a}{10}$, we have $a=rac{4}{3}$.

Submit

You have used 1 of 4 attempts

Answers are displayed within the problem

3

0 points possible (ungraded)

Let $X \sim B_{.36,1600}$. Approximate $P \, (552 \leq X \leq 600)$.

Submit

You have used 0 of 4 attempts

4 (Graded)

6/6 points (graded)

Suppose a binary message is transmitted through a noisy channel. The transmitted signal S is equally likely to be 1 or -1, the noise N follows a normal distribution $\mathcal{N}\left(0,4
ight)$, and the received signal is R=S+N. S and Nare independent. The receiver concludes that the signal is 1 when $R \geq 0$ and -1 when R < 0.

What is the error probability when one signal is transmitted?

0.308

✓ Answer: 0.308538

0.308

Explanation

All effor occurs under either of these two events, $u=\mathtt{1}, \mathtt{2} < \mathtt{0}$ of if $u=\mathtt{1}, \mathtt{2} \leq \mathtt{0}$. Now P(S=1,Z<0)=P(S=1) $P(Z<0|S=1)=1/2\cdot P(N<-1)$. Since $N/2\sim \mathcal{N}\left(0,1
ight)$, $P\left(N<-1\right)=P\left(N/2<-1/2\right)=\Phi\left(-1/2\right)=0.308538$. Thus $P\left(S=1,Z<0\right)=1/2\cdot0.308538$. Similarly, by symmetry it follows that $P(S=-1,Z\geq 0)=1/2\cdot 0.308538$. The probabilty of error thus is $2 \cdot 1/2 \cdot 0.308538 = 0.308538$. • What is the error probability when one signal is transmitted if we triple the amplitude of the transmitted signal, namely, S=3 or -3 with equal probability. 0.066 Answer: 0.0668072 0.066**Explanation** Following the same analysis as above, the first error event $P\left(S=3,Z<0
ight)=P\left(S=3
ight)P\left(Z<0|S=3
ight)=1/2\cdot P\left(N<-3
ight)$. Since $N/2\sim\mathcal{N}\left(0,1
ight)$, $P(N<-3)=P(N/2<-3/2)=\Phi\left(-3/2\right)=0.0668072$. Thus $P(S=3,Z<0)=1/2\cdot0.0668072$. Similarly, by symmetry it follows that $P(S=-3,Z\geq 0)=1/2\cdot 0.0668072$. Thus the probabilty of error is $2 \cdot 1/2 \cdot 0.0668072 = 0.0668072$ and is drastically smaller than the previous scenario. • What is the error probability if we send the original signal (with amplitude 1) three times, and take majority for confusion? For example, if three received signal was concluded 1, -1, 1 by receiver, we determine the transmitted signal to be 1. Answer: 0.226844 0.226 0.226**Explanation** If we denote the error probability in the first part by $p \, (= 0.308538)$, on repeated transmission, an error occurs if and only if the incorrect signal is concluded in least 2 of the 3 transmissions. Since the trasmission are independent, the probability of error is thus $\binom{3}{2}p^2$. $(1-p)+\binom{3}{3}p^3=0.226844$. Submit You have used 1 of 4 attempts **1** Answers are displayed within the problem Discussion **Hide Discussion** Topic: Topic 9 / Gaussian Probability **Add a Post** Show all posts

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>