

Please write clearly in	Please write clearly in block capitals.			
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature	I declare this is my own work.	/		

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA03) Unit P2 Pure Mathematics

Friday 17 January 2020 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- · You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working: otherwise marks may be lost.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
TOTAL				

		Answer all questions in the spaces provided.	
1	(a) (i)	Express $5 \sin \theta - 12 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α to the nearest 0.1°	narks]
		Answer	
1	(a) (ii)	Hence solve the equation $5\sin\theta - 12\cos\theta = -1$	
		in the interval $-180^{\circ} < \theta < 180^{\circ}$, giving all solutions to the nearest 0.1°	narks]
		Answer	

1	(b)	Solve the equation
		$2 \cot^2 x = 10 - 5 \csc x$
		in the interval $-90^{\circ} < x < 270^{\circ}$, giving all solutions to the nearest degree. [5 marks]
		Answer

 $2 \qquad \qquad \text{The function } f \text{ is defined by }$

$$f(x) = \sin^{-1} (2x - 1)$$

2 (a) State the largest possible domain of f.

[1 mark]

Answer

2 (b) On the axes below, sketch the graph of y = f(x).

Show the coordinates of the end-points on the graph.

[2 marks]

2	(c)	Describe a sequence of two geometrical transformations that maps the graph of				
		$y = \sin^{-1} x$ onto the graph of $y = \sin^{-1} (2x - 1)$	[4 marks]			
			[
2	(d)	The root of the equation $\sin^{-1}(2x-1)+x-1=0$ is α .				
	` ,	,				
		Show that α lies between 0.6 and 0.7				
			[2 marks]			
		Ougstion 2 continues on the next ness				
		Question 2 continues on the next page				
		Question 2 continues on the next page				
		Question 2 continues on the next page				
		Question 2 continues on the next page				
		Question 2 continues on the next page				

2 ((0)	Lloo	tho	iterative	formula
4 ((e)	USE	uie	ileralive	TOTTIUIA

$$x_{n+1} = \frac{1 + \sin(1 - x_n)}{2}$$
 with $x_1 = 0.6$

to find the values of x_2 and x_3 , giving your answers to three decimal places.

[2 marks]

Answer

Do not write outside the

3	(a)	Find $\int x \ln x dx$			box
				[3 marks]	
				_	
		-			
			Answer		
3	(b)	Find $\int \ln x dx$			
				[3 marks]	
			Ancirio		6
			Answer		

4	(a)	The polynomial $f(x)$ is defined by							
		$f(x) = 8x^3 + bx^2 + cx + 6$							
		where b and c are constants.							
		When $f(x)$ is divided by $(2x - 1)$ the remainder is 5.25							
		When $f(x)$ is divided by $(2x - 3)$ the remainder is -3.75							
		Find the value of b and the value of c .	[4 marks]						
		b= $c=$							

4	(b)	Show that	$\frac{12x^3 - 8x^2 + x + 7}{4x^2 - 1}$	can be written in the form	$3x + d + \frac{ex + f}{4x^2 - 1}$
		where d, e a	and f are integers.		[4 marks]
					·

5	(a)	Express	$\frac{12}{9-u^2}$	in the form	$\frac{A}{3-u}$ +	$\frac{B}{3+u}$		[2 marks]
					Answer			

5	(b)	Use the substitution	$u = \sin x$ to find	nd the exact value of	$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{12\cos x}{8 + \cos^2 x} \mathrm{d}x$	
		Give your answer in t	he form $\ln q$, w	where q is a rational nu	mber.	[6 marks]
			Ar	nswer		

6	(a) (i)	Find the binomial expansion of $(1 + 2x)^{0.5}$ in ascending powers of x up to and
		including the term in x^2 [2 marks]
		Answer
6	(a) (ii)	Find the binomial expansion of $(1-4x)^{-0.5}$ in ascending powers of x up to and
		including the term in x^2
		[2 marks]
		Answer
		1 + 2
6	(b) (i)	Hence find the binomial expansion of $\sqrt{\frac{1+2x}{1-4x}}$ in ascending powers of x up to and
		including the term in x^2
		[2 marks]
		Answer

6	(b) (ii)	State the values of x for which the expansion of $\sqrt{\frac{1+2x}{1-4x}}$ is valid.
		$\sqrt{1-4x}$ [1 mark]
		Answer
6	(c)	Use your expansion of $\sqrt{\frac{1+2x}{1-4x}}$ to find an estimate for $\sqrt{2}$, giving your answer to
		three decimal places.
		[3 marks]
		Answer

7		A curve has equation $y = e^{3x} - 24x$	
7	(a)	Find an equation of the tangent to the curve at (0, 1)	[3 marks]
		Answer _	
		/ (15WC1	
7	(b)	Find the coordinates of the stationary point of the curve, giving your answer in a form.	an exact
7	(b)	form.	

Do not write outside the box

Find $\frac{d^2y}{dx^2}$ and hence determine the nature of this stationary point.	ro ·	
	[3 marks	
_		
Answer		

Turn over for the next question

e mass
[1 mark]
[1 mark]
5 marks]

8	(c) (i)	Find the number of grams of the liquid that has evaporated after 120 minutes.
		[2 marks]
		Answer
		/ triower
8	(c) (ii)	Find how many minutes it takes for there to be only 10 grams of the liquid remaining.
		[3 marks]
		Answer

Do not write outside the box

The region bounded by the curve $y = \frac{1}{2+x}$, the lines $y = 0.2$, $y = 0.25$ and the y -axis is rotated through 2π radians about the y -axis to form a solid.
Find the exact value of the volume of the solid generated.
[6 marks]
Answer

Use the mid-ordinate rule with six strips, to find an estimate for $\int_{1.5}^{3} x^{-x} dx$, giving your			
	answer to three decimal places. [4 mar	ks]	
	Answer		
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.		
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation,	·ks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	·ks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	rks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	rks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	'ks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	'ks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	·ks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	'ks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	rks]	
	By taking logarithms of both sides of $y = x^{-x}$ and then using implicit differentiation, find $\frac{dy}{dx}$, giving your answer in terms of x only.	rks]	

	The point A has coordinates (10, 2, -3).	
	The point B has coordinates $(2, -2, 5)$.	
(a)	Find the vector equation of the line AB and hence show that it can be written as	
	$\mathbf{r} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$	[4 marks]
	Answer	
(b)	The point <i>D</i> has coordinates (–2, 1, 7).	
	The point <i>C</i> lies on the line <i>AB</i> .	
	The line <i>CD</i> is perpendicular to the line <i>AB</i> .	
(b) (i)		[5 marks]
	(b)	The point B has coordinates $(2, -2, 5)$. (a) Find the vector equation of the line AB and hence show that it can be written as $\mathbf{r} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ Answer Answer The point D has coordinates $(-2, 1, 7)$. The point C lies on the line AB . The line CD is perpendicular to the line AB .

	21	
		Do ou
	Answer	
(b)	(iii) Show that the distance $CD = \sqrt{q}$ where q is a constant.	[2 marks]
l (c)	The point $P(4+2p, -1+p, 3-2p)$ lies on the line AB such that triangle DCB isosceles.	Pis
	Find the possible exact values of p , giving your answers in the form $s+t\sqrt{q}$,	
	where s and t are constants.	[5 marks]

Answer

Giv	ven that the curve has a stationary point (p, q) , show that $2e^p = q$	
Oiv	The first the curve has a stationary point (p, q) , show that $2e^{-} = q$	[5 mar
Fin	and the exact value of p and the exact value of q .	[/] mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	ad the exact value of p and the exact value of q .	[4 mar
Fin	ad the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 mar
Fin	and the exact value of p and the exact value of q .	[4 ma

13	A curve C is defined by the parametric equations $x = at^2$, $y = 2at$, where a is a constant.
	The tangent to the curve at the point $P(ap^2, 2ap)$ meets the tangent to the curve at the point $Q(aq^2, 2aq)$ at the point R .
	Given that p and q vary so that $p^2 + q^2 = 1$, find the Cartesian equation of the curve on which R lies, giving your answer in the form $y^2 = f(x)$
	[7 marks]
	Answer

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	······································

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	······································

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the