

## proof of Riemann-Roch theorem

Canonical name ProofOfRiemannRochTheorem

Date of creation 2013-03-22 13:51:36 Last modified on 2013-03-22 13:51:36

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 6

Author bwebste (988)

Entry type Proof Classification msc 14H99 For a divisor D, let  $\mathfrak{L}(D)$  be the associated line bundle. By Serre duality,  $H^0(\mathfrak{L}(K-D)) \cong H^1(\mathfrak{L}(D))$ , so  $\ell(D) - \ell(K-D) = \chi(D)$ , the Euler characteristic of  $\mathfrak{L}(D)$ . Now, let p be a point of C, and consider the divisors D and D+p. There is a natural injection  $\mathfrak{L}(D) \to \mathfrak{L}(D+p)$ . This is an isomorphism anywhere away from p, so the quotient  $\mathcal{E}$  is a skyscraper sheaf supported at p. Since skyscraper sheaves are flasque, they have trivial higher cohomology, and so  $\chi(\mathcal{E}) = 1$ . Since Euler characteristics add along exact sequences (because of the long exact sequence in cohomology)  $\chi(D+p) = \chi(D) + 1$ . Since  $\deg(D+p) = \deg(D) + 1$ , we see that if Riemann-Roch holds for D, it holds for D+p, and vice-versa. Now, we need only confirm that the theorem holds for a single line bundle.  $\mathcal{O}_X$  is a line bundle of degree 0.  $\ell(0) = 1$  and  $\ell(K) = g$ . Thus, Riemann-Roch holds here, and thus for all line bundles.