CSE 431/531: Algorithm Analysis and Design

Fall 2022

Homework 4

Instructor: Shi Li Deadline: 11/13/2022

Your Name: _____

Your Student ID: _____

Problems	1	2	3	Total
Max. Score	20	30	30	80
Your Score				

The best way to solve Problems 2 and 3 is to use the following steps:

- 1. Give the definition of the cells in the dynamic programming table.
- 2. Show the recursions for computing the cells.
- 3. Give the order in which you compute the cells.
- 4. Briefly state why the algorithm achieves the desired running time.

Problem 1 Solve the matrix-chain-multiplication instance with the following sizes.

You need to fill the following two tables for the *opt* and π values, give the minimum cost of the instance (i.e., the number of multiplications), and describe the best way to multiply the matrices (using either a tree, or a formula with parenthesis).

$\underbrace{opt[i,j] \setminus j}_{i}$	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

$\boxed{\frac{\pi[i,j]\backslash j}{i}}$	1	2	3	4	5
1					
2					
3					
4					

Table 1: opt and π values for the matrix chain multiplication instance.

The minimum cost for the instance is _____.

Describe the best way to multiple the matrices:

Problem 2 An independent set of a graph G = (V, E) is a set $U \subseteq V$ of vertices such that there are no edges between vertices in U. Given a graph with node weights, the maximum-weight independent set problem asks for the independent set of a given graph with the maximum total weight. In general, this problem is very hard. Here we want to solve the problem on trees: given a tree with node weights, find the independent set of the tree with the maximum total weight. For example, the maximum-weight independent set of the tree in Figure 1 has weight 47.

Figure 1: The maximum-weight indpendent set of the tree has weight 47. The red vertices give the independent set.

Design an O(n)-time algorithm for the problem, where n is the number of vertices in the tree. We assume that the nodes of the tree are $\{1, 2, 3, \dots, n\}$. The tree is rooted at vertex 1, and for each vertex $i \in \{2, 3, \dots, n\}$, the parent of i is a vertex j < i. In the input, we specify the weight w_i for each vertex $i \in \{1, 2, 3, \dots, n\}$ and the parent of i for each $i \in \{2, 3, \dots, n\}$.

Problem 3 Given a sequence $A = (a_1, a_2, \dots, a_n)$ of n numbers, we need to find the longest increasing sub-sequence of A. That is, we want to find a maximum-length sequence (i_1, i_2, \dots, i_t) of integers such that $1 \le i_1 < i_2 < i_3 < \dots < i_t \le n$ and $a_{i_1} < a_{i_2} < a_{i_3} < \dots < a_{i_t}$.

For example, if the input n = 11, A = (30, 60, 20, 25, 75, 40, 10, 50, 90, 70, 80), then the longest increasing sub-sequence of A is (20, 25, 40, 50, 70, 80), which has length 6. The correspondent sequence of indices is (3, 4, 6, 8, 10, 11).

Again, you only need to output the length of the longest increasing sub-sequence. Design an $O(n^2)$ -time dynamic programming algorithm to solve the problem.