ESTRUTURAS DE DADOS II

MSC. DANIELE CARVALHO OLIVEIRA

DOUTORANDA EM CIÊNCIA DA COMPUTAÇÃO - USP

MESTRE EM CIÊNCIA DA COMPUTAÇÃO – UFU

BACHAREL EM CIÊNCIA DA COMPUTAÇÃO - UFJF

PRINCÍPIO DE ANÁLISE DE ALGORITMOS

3 INTRODUÇÃO

"Uma base sólida de conhecimento e técnica de algoritmos é uma das características que separa o programador experiente do aprendiz. Com a moderna tecnologia de computação, você pode realizar algumas tarefas sem saber muito sobre algoritmos, mas com um boa base em algoritmos você pode fazer muito, muito mais."

CLRS: Cormen, Leiserson, Rivest, Stein

PROBLEMA X ALGORITMO

5 "PROBLEMAS" E "ALGORITMOS"

- O que é um problema ?
 - Função P: Input → Output
 - Instância do Problema = 1 ∈ Input
- Exemplos de Problemas
 - Problema dos Primos
 - Primos: N → {Sim, Não}
 - Instância = número natural
 - Primos (n) = Sim, se n é primo; Não, caso contrário
 - Problema da Decomposição em primos
 - Decomposição:
 - $N \rightarrow \{\text{Seq} \mid \text{Seq} = \langle (p \mid , n \mid), ..., (pk, nk) \rangle, pi \text{ primo} \}$
 - Decomposição (n) = <(p1,n1), ..., (pk,nk)> se n = p1n1p2n2...pknk
 - Exemplo: Decomposição (10) = <(2,1), (5,1)>, pois 10 = 2x5

6 "PROBLEMAS" E "ALGORITMOS"

- Solução de um Problema
 - Conjunto finito de instruções cuja execução sobre o input termina depois de um tempo finito, produzindo no final o output.

- Algoritmo : conjunto finito de instruções que transformam uma entrada em uma saída depois de um tempo finito.
- Todo Algoritmo está associado a um Problema

7 PERGUNTAS

Não é função injetora: podem existir diferentes algoritmos para resolver um mesmo problema

Não é função sobrejetora: Existem problemas que não têm solução

8 O QUE É UM BOM ALGORITMO?

- Correto?
- Eficiente em tempo?
- Eficiente em espaço?

9 TIPOS DE ALGORITMOS

Problema P

- P é decidível (tem solução ?)
- Qual a complexidade de P?
- Se P for NP-completo: existem algoritmos aproximados?
- Como projetar um bom algoritmo para P, dentro das limitações da complexidade inerente ao problema P?

Tipos de Algoritmos:

- Exatos versus Aproximativos
- Iterativos versus Recursivos
- Probabilísticos (ou Randômicos)

O QUE É UM ALGORITMO PROBABILÍSTICO ?

```
Problema: Encontrar um elemento a em um array A de n elementos
Input: A, a , n
Output: posição m onde se encontra a ou 'Não'
```

```
Algoritmo Exato

Begin

Para i = I, ..., n faça

Se A[i] = a

Retorna i

Pára

Retorna 'Não'

End
```

Se n é muito grande, algoritmo pode levar muito tempo para dar a resposta.

O QUE É UM ALGORITMO PROBABILÍSTICO ?

```
Problema: Encontrar um elemento a em um array A de n elementos
   Input: A, a, n
   Output: posição m onde se encontra a ou 'Não'
Algoritmo Monte Carlo (não exato)
  begin
   i=1
    repeat
           Selecione aleatoriamente um número inteiro m em [1,n]
                      Se A[m] = a
                      Retorna m e pára
           i = i + 1
    until i=k
    Retorna 'Não'
  end
Monte Carlo encontra 'a' com Probabilidade (1 - (1/2)^k)
Tempo de Execução de Monte Carlo é fixo
```

12 ANÁLISE DE UM ALGORITMO

- O que é analisar um algoritmo?
- Determinar sua eficiência
 - quanto ao tempo de execução
 - quanto à quantidade de memória utilizada para executar o algoritmo

13 ANÁLISE EXPERIMENTAL

- Escreva uma determinada implementação para um algoritmo
- Execute esse programa com diversas entradas de vários tamanhos
- Para cada um desses casos, obtenha o tempo real de execução
- Desenhe um gráfico com os resultados obtidos

14 TEMPO DE EXECUÇÃO

- O tempo de execução de um algoritmo varia com o tamanho da entrada do problema
- Geralmente, o tempo médio é difícil de determinar
- Costuma-se estudar os tempos máximos (pior caso)
 - É mais fácil de analisar
 - É crucial para a qualidade das aplicações

15 ANÁLISE TEÓRICA DE COMPLEXIDADE

- Leva em consideração todas as possíveis entradas
- Permite a avaliação do desempenho de um algoritmo, independentemente das características do hardware e do software utilizados.

16 ANÁLISE DE UM ALGORITMO

- Que operações atômicas considerar no cálculo de custo?
- Operações atômicas = custo constante
 - Operações aritméticas
 - Soma, subtração, multiplicação, divisão, resto, piso, teto
 - Movimentação de dados:
 - Carregar, armazenar, copiar
 - Controle
 - Desvio condicional e incondicional
 - Chamada e retorno de subrotinas

17 EXEMPLO: PROBLEMA, ALGORITMO, ANÁLISE DO ALGORITMO

- Problema: (Ordenação de uma sequência)
- Input: sequência de n números A =<a I,...,an>
- Output: B = <b1,...,bn>, onde B é uma permutação de A e b1≤ b2 ≤ ... ≤ bn

Projeto de um Algoritmo


```
Insertion-Sort (A)
                                    Entrada: A = array [a1,...,an]
Ι.
           For j \leftarrow 2 to n
2.
               do chave ← A[j]
3.
                 i \leftarrow j - 1
                                              % Procura lugar anterior onde inserir a chave
4.
                While i > 0 e A[i] > chave
5.
                     do A[i+1] \leftarrow A[i]
6.
                          i \leftarrow i - 1
7.
                 A[i+1] \leftarrow chave
```

Algoritmo é executado in place :

Espaço necessário = espaço da entrada + espaço das variáveis Chave, j, i Complexidade em Espaço = constante (=3) (não se conta o espaço ocupado pela entrada)

Insertion-Sort (A)			
		Custo	Vezes
I.	For $j \leftarrow 2$ to n	cl	n
2.	do chave ← A[j]	c2	n-I
3.	i ← j – I	c3	n-I
4.	While i > 0 e A[i] > chave	c4	Σ ⁿ _{j=2} tj
5.	$do A[i+1] \leftarrow A[i]$	c5	$\Sigma_{j=2}^{n}(tj-1)$
6.	i ← i - I	c6	$\Sigma_{j=2}^{n}(tj-1)$
7.	A[i+1] ← chave	c7	n-I

tj = número de vezes que o teste do While em (4) é executado para cada valor j do loop for

 T(n) = custo temporal do algoritmo em função do tamanho da entrada (=n)

$$T(n) = c1.n + c2(n-1) + c3(n-1) + c4(\Sigma_{j=2}^{n} tj) + c5(\Sigma_{j=2}^{n} (tj-1)) + c6(\Sigma_{j=2}^{n} (tj-1)) + c7(n-1)$$

- T(n) depende de tj
- O valor de tj depende do "grau de desordenação" da entrada.

Melhor caso: a entrada está corretamente em ordem crescente.

•
$$tj = I$$
, para $j = 2,...,n$

$$T(n) = c1.n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)$$

$$= (c1+c2+c3+c4+c7)n - (c2+c3+c4+c7)$$

Pior caso: a entrada está ordenada de forma reversa (descrescente)

• **tj = j**, para j = 2,...,n

$$\Sigma_{j=2}^{n} j = [n(n+1)/2] - 1$$

$$T(n) = c1.n + c2(n-1) + c3(n-1) + c4([n(n+1)/2] - 1) + c5([n(n-1)/2]) + c6([n(n-1)/2]) + c7(n-1) =$$

$$= (c4/2 + c5/2 + c6/2)n^2 + (c1+c2+c3 - c4/2 - c5/2 - c6/2 + c7)n - (c2+c3+c4+c7)$$

Caso médio:

$$tj = j/2$$
, para $j = 2,...,n$

Exercício: Determinar o valor de T(n) para o caso médio.

23 OUTRO EXEMPLO

O programa abaixo encontra o maior valor em um vetor de tamanho n:

 Inspecionando o código, podemos calcular, em função de n, o número máximo de operações primitivas executadas.

24 ESTIMATIVA DO TEMPO DE EXECUÇÃO

- No pior caso, o algoritmo arrayMax executa 4n-1 operações primitivas.
- Definições:
 - a: tempo gasto na execução da operação primitiva mais rápida
 - b: tempo gasto na execução da operação primitiva mais lenta
- Seja T(n) o tempo real de execução de pior caso de arrayMax.
- Portanto, a. $(4n-1) \le T(n) \le b.(4n-1)$
- O tempo de execução T(n) é limitado por duas funções lineares.

TAXA DE CRESCIMENTO DO TEMPO E EXECUÇÃO

- Alterações nos ambientes de hardware ou software:
 - afetam T(n) apenas por um fator constante;
 - não alteram a taxa de crescimento de T(n): continua linear!
- Portanto, a linearidade de T(n) é uma propriedade intrínseca do algoritmo arrayMax.
- Cada algoritmo tem uma taxa de crescimento que lhe é intrínseca.
- O que varia, de ambiente para ambiente, é somente o tempo absoluto de cada execução, que depende de fatores relacionados com o hardware e o software utilizados.

26 TAXAS DE CRESCIMENTO

- Exemplos de taxas de crescimento:
 - Linear $\approx n$
 - Quadrática $\approx n^2$
 - Cúbica $\approx n^3$
- A taxa de crescimento não é afetada por:
 - fatores constantes;
 - fatores de ordem mais baixa.
- Exemplos:
 - $10^2 n + 10^5$: é uma função linear
 - $10^5 n^2 + 10^8$ n: é uma função quadrática
 - $10^{-9}n^3 + 10^2n^2$: é uma função cúbica

77

28 EXERCÍCIO

Elabore o Algoritmo do bubble sort e calcule o seu tempo
 T(n) de execução no pior caso.

FIM DA AULA 4

Próxima aula: Busca em Texto