

Independent Learning

in Constrained Markov Potential Games

Anas Barakat

Niao He

Motivation

Multi-agent RL in Markov Potential Games with:

- independent learning for:
 - (a) scaling (breaking curse of multi-agents),
 - (b) privacy (no information sharing),
 - (c) avoid communication cost.
- common coupled constraints; e.g., collision avoidance in autonomous driving, or power constraints in signal transmission

Related Work

	centralized	independent
MPG	Nash-CA; [1]; $\mathcal{O}(\epsilon^{-3})$	Ind. PGA; [2]; $\mathcal{O}(\epsilon^{-5})$
CMPG	CA-CMPG; [3]; $\tilde{\mathcal{O}}(\epsilon^{-5})$	Ours (iProxCMPG); $\tilde{\mathcal{O}}(\epsilon^{-7})$

Problem Setting

Markov Game $\mathcal{G} = (\mathcal{S}, \mathcal{N}, \{\mathcal{A}_i, r_i\}_{i \in \mathcal{N}}, c, \alpha, \mu, P, \kappa)$

- shared state space \mathcal{S}
- players $\mathcal{N} = \{1, \dots, m\}$
- joint policy space

$$\Pi = \prod_{i \in \mathcal{N}} \Delta(\mathcal{A}_i)^{\mathcal{S}}$$

• indiv. value functions

potential structure:

$$\exists \Phi : \Pi \to \mathbb{R} \text{ s.t. } \forall i \in \mathcal{N}, (\pi_i, \pi_{-i}) \in \Pi, \text{ and } \pi'_i \in \Pi'_i, \\ V_{r_i}(\pi_i, \pi_{-i}) - V_{r_i}(\pi'_i, \pi_{-i}) = \Phi(\pi_i, \pi_{-i}) - \Phi(\pi'_i, \pi_{-i})$$

• constr. threshold $\alpha \in \mathbb{R}$; feasible set $\Pi_c := \{ \pi \in \Pi \mid V_c(\pi) \leq \alpha \}$,

$$V_c(\pi) := \mathbb{E}_{s \sim \mu} \left[\sum_{t=0}^T c(s_t, a_t) \mid s_0 = s \right]$$

• solution concept: ϵ -approx. NE: $\pi^* \in \Pi$ s.t. $\forall i \in \mathcal{N}, \pi_i' \in \Pi_c^i(\pi_{-i}^*)$, $V_{r_i}(\pi^*) - V_{r_i}(\pi'_i, \pi^*_{-i}) \leq \epsilon.$

Challenges

- nonconvex objective and constraint; constr. opt. challenge
- constraint **couples** π_i 's; how to learn independently?
- no strong duality [3]; prohibits CMDP primal-dual methods

Main Contributions

- design of an algorithm for independent learning of constrained ϵ -approximate Nash equilibria in CMPGs
- establish sample complexity with poly. dependency on ϵ and problem parameters
- two CMPG applications: pollution tax & energy marketplace

Method

proximal-point-like update

$$\pi^{(t+1)} = \underset{\pi \in \Pi}{\operatorname{arg \, min}} \left\{ \Phi\left(\pi\right) + \frac{1}{2\eta} \|\pi - \pi^{(t)}\|^2 \right\}$$

$$V_c(\pi) + \frac{1}{2\eta} \|\pi - \pi^{(t)}\|^2 \le \alpha$$

converges to ϵ -KKT policy $\Rightarrow \epsilon$ -approx. constr. NE

- Φ and V_c weakly cvx \Rightarrow subproblem obj. and constr. strongly cvx → solve via gradient switching
- observation:

$$\nabla_{\pi_i} \Phi_{\eta, \pi'}(\pi) = \nabla_{\pi_i} \Phi(\pi) + \frac{1}{\eta} \left(\pi_i - \pi'_i \right) = \nabla_{\pi_i} V_{r_i}(\pi) + \frac{1}{\eta} \left(\pi_i - \pi'_i \right)$$

$$\Rightarrow \text{ implementable as independent PG steps}$$

Algorithm (iProxCMPG)

Convergence Results

Assumptions.

- 1. initial feasibility: $\pi^{(0)}$ satisfies $V_c(\pi^{(0)}) < \alpha$
- 2. uniform Slater's condition:

$$\exists \zeta > 0 \text{ s.t. } \forall \pi' \in \Pi \text{ with } V_c(\pi') < \alpha, \exists \pi \in \Pi \text{ s.t. } V_{\eta,\pi'}^c(\pi) \leq \alpha - \zeta$$

Theorem. For $\epsilon > 0$, using ϵ -greedy exploration, after running iProxCMPG for suitably chosen η, T, K , and $\{(\nu_k, \delta_k)\}_{0 \le k \le K}$, there exists $t \in [T]$ s.t. in expectation $\pi^{(t)}$ is a constrained ϵ -NE.

- exact gradients: total iteration complexity ${}^a \tilde{\mathcal{O}}(\epsilon^{-4})$
- finite sample: total sample complexity $\tilde{\mathcal{O}}(\epsilon^{-7})$

Simulations: Energy Marketplace

Future Work

- learning constrained NEs beyond CMPGs
- "fully" independent learning (different stepsizes/algorthms)
- coupled playerwise (instead of common) constraints

References

- [1] Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large number of players sample-efficiently? In ICLR, 2022.
- [2] Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence of multi-agent policy gradient in markov potential games. In ICLR, 2022.
- [3] Pragnya Alatur, Giorgia Ramponi, Niao He, and Andreas Krause. Provably learning nash policies in constrained markov potential games. In AAMAS, 2024.

 $^{{}^{}a}\mathcal{O}(\cdot)$ hides logarithmic dependencies in $1/\epsilon$, and polynomial dependencies in $m, S, A_{\max}, 1 - \gamma, \zeta$, and D.