Contents

1	Secciones y retracciones, monomorfismos y epimorfismos	1
	1.1 Secciones y retracciones	1
	1.2 Monomorfismos y epimorfismos	3
2	Igualadores (Equalizers)	4
3	Categorías reflexivas, Nakagawa (Categorical Topology)	5

1 Secciones y retracciones, monomorfismos y epimorfismos

Porque en teoría de conjuntos se usan indistíntamente los términos "monomorfismo" e "inyección" junto con "epimorfismo" y "suprayección", pero en teoría de categorías no necesariamente coinciden.

1.1 Secciones y retracciones

Definición 1. Un morfismo $f:A\longrightarrow B$ en una categoría $\mathcal C$ es una **sección en** $\mathcal C$ si existe otro morfismo $g:B\longrightarrow A$ tal que $g\circ f=1_A$.

Secciones: morfismos con inverso izquierdo.

Proposición 1.1

Las secciones en **Set** con dominio $A \neq \emptyset$ son exactamente las invecciones $f: A \longrightarrow B$.

Demostración. Claro que se pide $A \neq \emptyset$ pues, si $f : \emptyset \longrightarrow B$ es sección, entonces $B = \emptyset$, pues no existe una función de $B \neq \emptyset$ al vacío.

 \Rightarrow] Sea $f: A \longrightarrow B$ inyectiva, y escójase un punto $x_0 \in A$. Si $y \in f(A)$, el que f sea inyectiva significa que su fibra bajo f tiene un solo elemento; $f^{-1}(\{y\}) = \{x\}$. Sea pues la función $g: B \longrightarrow A$ definida como

$$g(y) = \begin{cases} f^{-1}(y) & \text{si } y \in f(A) \\ x_0 & \text{si } y \notin f(A). \end{cases}$$

Claro que $g \circ f = 1_A$ pues, dado $x \in A$ cualquiera, como $f(x) \in f(A)$,

$$(g \circ f)(x) = g(f(x)) = x.$$

 \Leftarrow] Si existe $g: B \longrightarrow A$ tal que $g \circ f = 1_A$, entonces, si $x_1, x_2 \in A$ son tales que $f(x_1) = f(x_2)$, los puntos son iguales pues

$$x_1 = 1_A(x_1) = (g \circ f)(x_1)g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2) = 1_A(x_2) = x_2.$$

El ejemplo canónico en **Set** de secciones (y las motivaciones del nombre "sección") es el de la gráfica de una función: si X, Y son conjuntos y $a \in Y$ fijo, entonces $f: X \longrightarrow X \times Y$ definida como

$$f(x) = (x, a)$$

es una sección. En general, si $f:X\longrightarrow Y$ es función, entonces $\hat{f}:X\longrightarrow X\times Y$ definida como

$$\hat{f}(x) = (x, f(x))$$

es sección.

Observación 1.2

Si f, g son morfismos tales que $g \circ f$ es sección, entonces f es sección.

Claro, pues

$$1_A = h \circ (g \circ f) = (h \circ g) \circ f.$$

Definición 2. Un morfismo $f: A \longrightarrow B$ en una categoría C es una **retracción en** C si existe $g: B \longrightarrow A$ tal que $f \circ g = 1_B$.

Retracciones: morfismos con inverso derecho.

Proposición 1.3

Las retracciones en Set son las funciones suprayectivas $f:A\longrightarrow B$.

Demostración. Esta demostración usa el axioma de elección (de hecho, el enunciado de la proposición es equivalente al axioma de elección). Terminar. Hugo Rincón p.103., Hernández p.57

Definición 3. Un morfismo $f: A \longrightarrow B$ que sea tanto sección como retracción (i.e. que tenga inversa izquierda y derecha) es llamado un **isomorfismo**.

Claro que si f es un isomorfismo y si $g,h:B\longrightarrow A$ son una inversa izquierda y derecha, o sea, si $g\circ f=1_A$ y $f\circ h=1_B$, entonces g y h coinciden, pues

$$g = g \circ 1_B = g \circ (f \circ h) = (g \circ f) \circ h = 1_A \circ h = h.$$

1.2 Monomorfismos y epimorfismos

Definición 4. Un morfismo $f: A \longrightarrow B$ en una categoría C es un **monomorfismo** si

$$\forall h, k \in Mor(\mathcal{C}): f \circ h = f \circ k \Rightarrow h = k.$$

$$C \xrightarrow{h} A \xrightarrow{f} B$$

Monomorfismo: cancelable por la izquierda

Proposición 1.4

Toda C-sección es un monomorfismo.

Demostración. En efecto, si g es una inversa izquierda para la \mathcal{C} -sección f, i.e. $g \circ f = 1_A$, y $h, k : C \longrightarrow A$ son morfismos tales que $f \circ h = f \circ k$, entonces

$$h = 1_A \circ h = (g \circ f) \circ h = g \circ (f \circ h) = g \circ (f \circ k) = (g \circ f) \circ k = 1_A \circ k = k.$$

Proposición 1.5

En cualquier categoría C, son equivalentes:

- 1. f es un isomorfismo
- 2. f es un monomorfismo y una retracción.

Demostración. El que 1) implica 2) es claro por la Proposición 1.4.

Como f es retracción, existe $g:B\longrightarrow A$ tal que $f\circ g=1_B.$ Buscamos que también ocurra $g\circ f=1_A.$

$$f \circ (g \circ f) = (f \circ g) \circ f = 1_B \circ f = f = f \circ 1_A$$

luego, como f es cancelable por la izquierda, $g \circ f = 1_A$.

Definición 5. Un morfismo $f: A \longrightarrow B$ en una categoría C es un **epimorfismo** si

$$\forall h, k \in Mor(\mathcal{C}): h \circ f = k \circ f \Rightarrow h = k.$$

Epimorfismo: cancelable por la derecha.

Proposición 1.6

Toda C-retracción es un epimorfismo.

Definición 6. Un **bimorfismo** es un morfismo que es epi y mono (i.e. es cancelable por ambos lados).

2 Igualadores (Equalizers)

En una categoría \mathcal{A} , un **igualador** $(Z, h: Z \longrightarrow X)$ para dos morfismos $f, g: X \longrightarrow Y$ es una pareja tal que

- $\bullet \ f \circ h = g \circ h$
- Si W es otro objeto y $k: W \longrightarrow X$ es tal que $f \circ k = g \circ k$, entonces existe un único morfismo $\phi: W \longrightarrow Z$ tal que $k = h \circ \phi$.

Proposición 2.1

Si $h:Z\longrightarrow X$ es el igualador de un par de morfismos, entonces h es un monomorfismo (i.e. cancelable por la izquierda).

Demostración. En efecto, sean $p,q:A\longrightarrow Z$ morfismos tales que $h\circ q=h\circ p$. Entonces, como $f\circ h=g\circ h$, también

$$f \circ (h \circ p) = (f \circ h) \circ p = (g \circ h) \circ p = g \circ (h \circ p).$$

Luego, existe un único $\phi: A \longrightarrow Z$ tal que

$$h \circ \phi = h \circ p$$
.

Tanto $\phi = p$ como $\phi = q$ funcionan, luego, p = q.

Definición 7. A todo monomorfismo que sea un igualador para dos morfismos (con el mismo dominio) en su categoría se le llama un **monomorfismo regular**.

monomorfismo extremal?

3 Categorías reflexivas, Nakagawa (Categorical Topology)

Estamos suponiendo que en la categoría \mathcal{A} existen todos los límites pequeños (p.ej. productos, igualadores) y que \mathcal{B} es cerrada bajo isomorfismos.

Lema 3.1

(Lema 7.10, Nakagawa) Si \mathcal{B} es fuertemente cerrada en \mathcal{A} bajo igualadores, entonces \mathcal{B} es cerrada en \mathcal{A} bajo intersecciones de monomorfismos regulares.

Demostración. Sea $(h_i: Z \longrightarrow X)_{i \in I}$ una familia de monomorfismos regulares con $X \in Obj(\mathcal{B})$; queremos demostrar que su intersección está en \mathcal{B} . Para cada $i \in I$, sean $f_i, g_i: X \longrightarrow Y_i$ tales que

$$Z_i \xrightarrow{h_i} X \xrightarrow{g_i} Y_i$$

es un diagrama igualador. Entonces

$$\forall i \in I: \quad f_i \circ h_i = g_i \circ h_i. \tag{1}$$

Sea $Y = \prod_{i \in I} Y_i$, $p_i : Y \longrightarrow Y_i$ el producto de la familia $(Y_i)_{i \in I}$ de objetos de \mathcal{A} - que existe por ser la categoría \mathcal{A} completa. Sean $f, g : X \longrightarrow Y$ los únicos morfismos tales que

$$\forall i \in I: \quad p_i \circ f = f_i, \ p_i \circ g = g_i. \tag{2}$$

Por ser \mathcal{A} completa, existe un monomorfismo igualador $h:W\longrightarrow X$ para f y g;

$$f \circ h = g \circ h. \tag{3}$$

Por ser \mathcal{B} fuertemente cerrada en \mathcal{A} bajo igualadores y como $X \in Obj(\mathcal{B})$, entonces $W \in Obj(\mathcal{B})$.

Si $i \in I$, entonces, de (2) y (3) se sigue que

$$f_i \circ h = (p_i \circ f) \circ h = (p_i \circ g) \circ h = g_i \circ h,$$

luego, por ser (Z_i, h_i) igualador de f_i, g_i , se tiene que existe $\omega_i : W \longrightarrow Z_i$ tal que

$$h = h_i \circ \omega_i, \quad i \in I. \tag{4}$$

Si mostramos que $[W,((\omega)_{i\in I},h)]$ es una intersección de la familia de monomorfismos regulares $(h_i)_{i\in I}$, puesto que ya vimos que $W\in Obj(\mathcal{B})$, habremos acabado.

Sean pues para $i \in I$, $\omega_i' : U \longrightarrow Z_i \ y \ h' : U \longrightarrow X$ monomorfismos tales que

$$\forall i \in I: \quad h_i \circ \omega_i' = h'. \tag{5}$$

Entonces, para toda $i \in I$, por (1),

$$f_i \circ h' = (f_i \circ h_i) \circ \omega_i' = (g_i \circ h_i) \circ \omega_i' = g_i \circ h', \tag{6}$$

por lo tanto,

$$f \circ h' = g \circ h'. \tag{7}$$

Como (W,h) es un igualador para f y g, existe un único morfismo $\phi:U\longrightarrow W$ tal que

$$h' = h \circ \phi \tag{8}$$

Veamos que ϕ es un morfismo conector entre los dos límites. Sea $i \in I$. Por (6), como (Z_i, h_i) es un igualador para f_i y g_i , existe un único morfismo de U en Z_i que con h_i factoriza a h'. Pero

$$h' = h \circ \phi = (h_i \circ \omega_i) \circ \phi = h_i \circ (\omega_i \circ \phi),$$

y también se tiene (5), luego, por unicidad concluimos que $\omega_i' = \omega_i \circ \phi$.

Recordemos estas definiciones; si \mathcal{B} es una subcategoría de \mathcal{A} , entonces

• \mathcal{B} es **llena** ("full") si, para cualesquiera $X, Y \in Obj(\mathcal{B})$, todo morfismo en \mathcal{A} de X en Y es también un morfismo en \mathcal{B} , es decir, si \mathcal{B} contiene a dos objetos X y Y de \mathcal{A} , entonces contiene a todos los morfismos entre ellos.

• Si \mathcal{K} es una categoría pequeña y $\mathcal{D}:\mathcal{K}\longrightarrow\mathcal{A}$ es un diagrama, se dice que este es **inicial en** \mathcal{B} si

$$(\forall i \in Obj(\mathcal{K}))(\exists j \in Obj(\mathcal{K}))(\exists a : j \longrightarrow i \in Mor(\mathcal{K})) : \mathcal{D}(j) \in \mathcal{B}.$$

• \mathcal{B} es fuertemente cerrada en \mathcal{A} bajo \mathcal{K} -límites si para cualquier diagrama $\mathcal{D}: \mathcal{K} \longrightarrow \mathcal{A}$ inicial en \mathcal{B} se tiene que el límite $(X, (\alpha_i)_{i \in Obj(\mathcal{K})})$ para \mathcal{D} cumple que $X \in Obj(\mathcal{B})$.

Teorema 3.2

(Implicación 6) \Rightarrow 1) del Teorema de Caracterización de Subcategorías Epireflexivas) Sea \mathcal{A} una categoría completa, bien potenciada y co-bien potenciada y sea \mathcal{B} una sub-categoría de \mathcal{A} llena y cerrada bajo isomorfismos. Si

- 6) : \mathcal{B} es fuertemente cerrada en \mathcal{A} bajo productos e igualadores, y
- 1) : $\mathcal B$ es fuertemente cerrada en $\mathcal A$ bajo K-límites para cualquier categoría pequeña $\mathcal K,$

Demostración.

entonces $6) \Rightarrow 1$).

Sea $\mathcal{D}: \mathcal{K} \longrightarrow \mathcal{A}$ un diagrama inicial en \mathcal{B} ; construyamos un límite para este y mostremos que el objeto del que parte el límite es un objeto de \mathcal{B} . Sea

$$S := \{ j \in Obj(\mathcal{K}) | \mathcal{D}(i) \in Obj(\mathcal{B}) \},\$$

y sea $(X, (p_i : X \longrightarrow \mathcal{D}(i))_{i \in S})$ un producto en \mathcal{A} de la familia $(\mathcal{D}(i))_{i \in S}$. ¿A qué se refieren? Sólo sé la definición de producto de monomorfismos con un mismo codominio, no producto de objetos.

Por hipótesis, $X \in Obi(\mathcal{B})$. Sea la familia

$$\Lambda = \{(a, a') \in Mor(\mathcal{K}) \times Mor(\mathcal{K}) | a: j \longrightarrow i, a': j' \longrightarrow i, con j, j' \in S\}.$$

Nótese que, por ser el diagrama \mathcal{D} inicial en \mathcal{B} , para toda $i \in Obj(\mathcal{K})$ existe una pareja $(a, a') \in \Lambda$ de flechas con codominio i (puede ser a = a'). Para cada $\lambda = (a: j \longrightarrow i, a': j' \longrightarrow i) \in \Lambda$, sea (f_i, Y_i) un igualador de los morfismos $D(a) \circ p_j \vee D(a') \circ p(j')$.

Entonces, como $X \in Obj(\mathcal{B})$, por hipótesis se sigue que

$$\forall i: Y_i \in Obj(\mathcal{B}). \tag{9}$$

Sea ahora $(Z,((g_{\lambda})_{\lambda\in\Lambda},f))$ una intersección de los monomorfismos f_i .

Según el Lema 7.10, (9) implica que

$$Z \in Obj(\mathcal{B}).$$

Para todo $i \in Obj(\mathcal{K})$, vamos a constuir un morfismo $\alpha_i : Z \longrightarrow \mathcal{D}(i)$ como sigue:

• Si $i \in S$, entonces

$$\alpha_i := p_i \circ f : Z \longrightarrow \mathcal{D}(i). \tag{10}$$

• Si $i \notin S$, es decir, si $\mathcal{D}(i) \notin Obj(\mathbb{B})$, por hipótesis existen un \mathcal{K} -objeto $j \in S$ y un \mathcal{K} morfismo $a: j \longrightarrow i$. Defínase entonces

$$\alpha_i := \mathcal{D}(a) \circ p_j \circ f : Z \longrightarrow \mathcal{D}(i).$$
 (11)

Mostremos que la definición (11) de α_i cuando $i \notin S$ no depende de la elección de j, es decir, que si existe otro $j' \in S$ y otro morfismo $a' : j' \longrightarrow i$, entonces

$$\mathcal{D}(a) \circ p_j \circ f = \mathcal{D}(a') \circ p_{j'} \circ f.$$

¿Cómo? Supongo que tengo que usar que, para toda $\lambda \in \Lambda$, (f_{λ}, Y) es igualador de las composiciones marcadas.

Si mostramos que $(Z,(\alpha_i)_{i\in Obj(\mathcal{K})})$ es un límite para el diagrama $\mathcal{D}:\mathcal{K}\longrightarrow\mathcal{A}$, puesto que ya expusimos a Z como un objeto de \mathcal{B} , habremos terminado. Me falta esto...