Exercise Set #5

due online Wednesday, May 16 at 10:10 AM

1. Solving a Differential Equation

We are given the following differential equation and initial condition:

$$\begin{cases} \frac{dx}{dt} = -tx^2\\ x(0) = 2 \end{cases}$$

Find the value of x at t = -0.2, correct to two decimal places, using

- (a) one step of the Taylor series method of order 2, and
- (b) one step of the Runge-Kutta method of order 2.

You can do these with or without the computer. Remember, just write one step!

2. Projectile Motion with Air Resistance

The parabolic motion of a projectile is spoiled by air resistance (drag force). Given a drag coefficient k, we can write the time change of projectile momentum as

$$\frac{dp}{dt} = mg - kv^2$$

For a spherical projectile, take values of $m = 10^{-2}$ kg and $k = 10^{-4}$ kg/s².

- (a) Use a 4th-order Runge-Kutta program with adaptive step sizes to find the velocity v = p/m as a function of time for t < 10 s, assuming the projectile is released from rest. Try to adapt the step sizes so that you obtain 4 significant digits of accuracy.
- (b) Compare your numerical result to the analytic result for v expected with k = 0.

3. Nonlinear Oscillations

In this problem, we will study anharmonic oscillations in potentials of the form $V(x) = \frac{1}{n}kx^p$. (See also Landau Chapter 8.8.)

(a) Use the 4th-order Runge-Kutta technique to plot the oscillations x(t) of systems with p = 2, 4, 8. Confirm that energy is conserved during the oscillations.

(b) Plot the period of oscillations as a function of initial amplitude for p = 2,4,8. Because the motion may be asymmetric, you must record the time for at least three cycles in order to find the period.

4. Oscillations with External Driving Force

Now we will add an external driving force F_{ext} to the harmonic oscillator system with p = 2.

$$F_{\rm ext}(t) = F_0 \sin \omega t$$

(See also Landau Chapter 8.10.)

- (a) Solve for and plot the oscillation of this system for a very large F_0 value.
- (b) Now reduce F_0 until it is approximately equal to the system restoring force $F_k(x) = -dV(x)/dx$, and verify that you see a beat frequency of $(\omega \omega_0)/2\pi$, where ω_0 is the natural frequency of the system.
- (c) Plot the maximum amplitude as a function of the driving frequency ω by scanning the interval $\omega_0/10 \le \omega \le 10\omega_0$. What features do you observe?
- (d) Repeat the previous scan over ω with a new, non-linear system having p=4. (You may have to retune F_0 .) How does the response of this system differ from the linear system having p=2?