Information about Level 2 – Ambient flow diagnostics

At this level, the code estimates basic state or climatological flow properties that determine generation and propagation of stationary Rossby waves. Specifically, restoring effect for Rossby waves (β *) that is dependent on meridional gradient in absolute vorticity (β) and meridional curvature of the climatological zonal flow or gradients in relative vorticity $\partial^2 \overline{U}/\partial y^2$, and resultant stationary wave number (K_s) are diagnosed.

Required input data are calculated in Level 1.

Users need to complete Level 1 diagnostics first before running Level 2.

The following terms are calculated at an appropriate upper tropospheric level:

$$\beta_* = \beta - \partial^2 \overline{U} / \partial y^2 \tag{1}$$

$$K_{s} = (\beta_{*}/\overline{U})^{1/2} \tag{2}$$

where β is $\partial f/\partial y$ latitudinal variations in planetary vorticity (f), \overline{U} is the basic-state zonal wind velocity, and $\partial^2 \overline{U}/\partial y^2$ is the curvature of the ambient zonal flow. Stationary Rossby waves are possible if the flow is westerly $(\overline{U}$ positive) and β_* is positive.

Final output directories:

The seasonal climatologies are under directories:

~/wkdir/MDTF_\$model_\$first_year_\$last_year/ENSO_RWS/model/netCDF/

Graphical output files reside in: ~/wkdir/MDTF_\$model_\$first_year_\$last_year/ENSO_RWS/model

(e.g. \$model = CESM1, \$first_year = 1950, \$last_year = 2005)