SEQUENCE LISTING

```
<110> GeneProt, Inc
      Bairoch, Amos
       Bougueleret, Lydie
      Niknejad, Anne
<120> ENGINEERED HUMAN KUNITZ-TYPE PROTEASE INHIBITOR
 <130> 5013-W001
<150> US 60/358,683
 <151> 2002-02-21
<160> 16
<170> PatentIn version 3.1
<210> 1
<211> 131
<212> PRT
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (1)..(131)
<223> eppin-like precursor
<220>
<221> SIGNAL
<222> (1)..(25)
<223> predicted by SignalP 2.0
<220>
<221> PEPTIDE
<222> (26)..(131)
<223> mature peptide
<220>
<221> DOMAIN
<222> (77)..(127)
<223> Kunitz domain
       predicted by pfscan
<220>
<221> DISULFID '
<222> (33)..(61)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222> (40)..(65)
<223> predicted disulfide bond
```

WO 03/070770 PCT/EP03/01629

```
<220>
<221>
       DISULFID
<222>
       (48)..(60)
<223>
       predicted disulfide bond
<220>
<221>
      DISULFID
<222>
       (54)..(69)
<223> predicted disulfide bond
<220>
<221>
      DISULFID
<222>
       (77)..(127)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222>
      (86)..(110)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222>
      (102)..(123)
<223> predicted disulfide bond
<400> 1
Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu
Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly Lys Pro
            20
                                 25
Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln Cys
        35
                            40
Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe Ser
    50
                        55
Cys Gly Lys Lys Cys Leu Asp Phe Arg Lys Asp Ile Cys Ser Met Pro
65
                    70
                                        75
Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile Pro His Trp Trp Tyr Asn
                85
                                    90
Lys Lys Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Cys Gln Gly
            100
                                105
                                                    110
```

<220>

```
Asn Asn Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys
        115
                            120
Lys Tyr His
    130
<210>
<211> 106
<212> PRT
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (1)..(106)
<223> mature form
<220>
<221> DOMAIN
<222> (52)..(102)
<223> Kunitz domain
       predicted by pfscan
<220>
<221> DISULFID
<222> (8)..(36)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222> (15)..(40)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222> (23)..(35)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222> (29)..(44)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222> (52)..(102)
<223> predicted disulfide bond
```

WO 03/070770 PCT/EP03/01629

```
<221> DISULFID
<222> (61)..(85)
<223> predicted disulfide bond
<220>
<221> DISULFID
<222> (77)..(98)
<223> predicted disulfide bond
<400> 2
Glu Gly Ile Leu Gly Lys Pro Cys Pro Lys Ile Lys Val Glu Cys Glu
                                    10
Val Glu Glu Ile Asp Gln Cys Thr Lys Pro Arg Asp Cys Pro Glu Asn
            20
Met Lys Cys Cys Pro Phe Ser Cys Gly Lys Lys Cys Leu Asp Phe Arg
Lys Asp Ile Cys Ser Met Pro Gln Glu Ala Gly Pro Cys Leu Ala Ser
Ile Pro His Trp Trp Tyr Asn Lys Lys Thr Lys Ile Cys Ser Glu Phe
                    70
Ile Tyr Gly Gly Cys Gln Gly Asn Asn Asn Phe Gln Thr Glu Ala
                85
Ile Cys Leu Val Thr Cys Lys Lys Tyr His
            100
<210>
      3
<211>
      11201
      DNA
<212>
<213> Homo Sapiens
<220>
<221> misc_feature
<222>
      (1)..(11201)
<223> public sequence AL031663.2 (94000..105200)
<220>
<221>
      CDS
<222>
      (2043)..(2132)
<223>
<220>
<221> CDS
```

```
<222>
        (3358)..(3486)
<223>
<220>
<221>
       CDS
<222>
        (6120)..(6191)
<223>
<220>
<221>
       CDS
<222>
        (6193)..(6291)
<223>
<220>
<221>
       misc_feature
<222>
       (6291)..(6293)
<223>
       potential stop codon
<220>
<221>
       3'UTR
<222>
       (6294)..(7236)
<223>
       partial
<220>
<221>
       polyA_signal
<222>
       (7231)..(7236)
<223>
<400> 3
tttaaagaat catgtaaaac aggcttacaa attttctttt taaaaatatt ttatttatt
                                                                        60
ttacgttccg ggatacatgt gcaggacctg caggtttgtt acataggtaa gcctgtgcca
                                                                      120
tggtggtttg ctgcacctat caacccatta cctgggtatt aagccccgca tgcattagct
                                                                      180
atttatcctg atgetttccc tececetgee eceteaacag tecacgtgtt etcattgtte
                                                                      240
atctcccact tgcaagtgag aacatgtggt atttactttt gttcctgcgt tactttgctg
                                                                      300
aggataacgg cttccagctt catccatgtc cctgcaaagg acgtgatctc atttctttt
                                                                      360 -
atggctgcat agtattccat ggcatatatg taccacattt tctttatcca gcctatcgtt
                                                                      420
gatggatatt tggtttgatt ccatgttttt gctattgtaa atagtgctgc agtgaacata
                                                                      480
cacatgcatg tatctttata aaagaatgat ttatattcct ttgagtgtat acccagtaat
                                                                      540
gggattgctg ggtcaaatgg tatttctggt tctagatctt tcaggaattg gcacactctc
                                                                      600
ttccacaatg gttgaaccaa tttacattcc caacagtgta aaagcattca tgtttctcca
                                                                      660
cagetttace ageatetgtt gtttetggae tttttaataa teaceattet gaetggeatg
                                                                      720
agatggtatc tcattgtggt tttgatttgc atttctctga tgatcactgg tgttgagctt
                                                                      780
tttttcatat gtttgttggc cgcataaatg tcttcttttg agaagtgtct gttcatgtcc
                                                                      840
```

WO 03/070770 PCT/EP03/01629 6/20

	tttgcccact	tttcaatggg	gttgtttgtt	ttttttcttg	taaatttgtt	taagttcctt	900
	gtagattctg	gatatcagac	cacaaatttt	cttaatctgt	ctccagtgat	gggaaagcta	960
	agctatttgt	ccactgattc	ccaacgccca	ctggatgcca	gggatactaa	atccctcgct	1020
	ctttcaaact	gttatacttg	caagctatac	aagctccctg	ggggccagag	aaaacccaca	1080
	gcagaaaatt	agggactgat	gctagaggta	ggaggctgtc	aatgtgcatt	ggctattatt	1140
	cggccataaa	aaggaatgaa	cttctcactc	accactgatg	acatgccttg	ctgcacacac	1200
	accctgctgc	caccctgcag	aaatgcttcc	attacccaca	gtcctttgcc	agatggaact	1260
	gatgcccagg	taactggctc	ctcacctcct	tcgggcttat	accaaggata	taaaacttgg	1320
	tacagatgct	caagcgttaa	tgcttcaggg	tgtgactttt	aatccaatgc	tgtagctgtg	1380
	acaacaggga	aaaacggaga	acagagttgg	agaagtccca	aagtaatgaa	agaagttatt	1440
	tactgttgca	aaatcaaacg	acttaaagga	taaatgtaac	tgatctttac	atacgaaaga	1500
	agagagaggg	aagtgaaggg	cggggagaaa	gagactcaga	cagacagaga	ctccctgaga	1560
	aaaagacagg	cacagagtaa	aagacataca	gatgcacaga	aaagagaaga	aacagagtga	1620
	gaaaaataaa -	acataagaat	agacatgtca	ggagaagagt	gaaattagaa	agaaggaaga	1680
•	gagctagcat	actgttaacc	tgcaaactcc	ccctgggaaa	tggaagactc	tggagttaaa	1740
	cctcccttc	tgctaaggga	gcctggaaag	cccaagacaa	catgtgccct	ctttccctgg	1800
	tagaccagaa	agcctcagat	tgctgaggat	taggagecae	ctatccccca	gtgtaggtac	1860
	caggtagtcc	cactgatggc	ctcagggatc	tggtgttcct	gatcggggag	tctggctggc	1920
	ttgtctccag	ggctgtctct	taaggtgctg	ggccacaccg	gggcaggcaa	agtgcagatg	1980
	taggagctgc	tgaggagcag	ttcttagttt	tggtgccatc	aaccaggcca	gtacttccta	2040
	aa atg gga Met Gly 1	ctc tca gga Leu Ser Gly 5	ctt ctg cc Leu Leu Pr	ca atc ctg g co Ile Leu V 10	gta cca ttc Val Pro Phe	atc ctt Ile Leu 15	2087
	ttg.ggg gac Leu Gly Asp	atc cag ga Ile Gln Gl 20	a cct ggg c u Pro Gly H	eac gct gaa His Ala Glu 25	ggc atc ctt Gly Ile Leu	ggc Gly 30	2132
	agtaagtatt	gggaactccg	tccttgcaat	ggggaaagga	aactcagtgg	ggaggaagga	2192
	acaaagaata	attttgcagc	tgagaaatta	ttttctccac	ctctgcctgg	aattccaggt	2252
	gggaaagagg	ggagctattt	gaagtctctt	ggtaagagac	tcccttggtg	aatacaggca	2312
	tccaaatctg	tggcaagtga	ctccttgctg	ccattccaaa	gagttcttcc	tggaggtgcc	2372
	tggacctaga	gctcatgaaa	tgaactaaga	aggagtagta	agcccaagga	agtctcccac	2432
	aagaaaaaca	ggctgctccc	cacaacacca	cctgtgtcaa	cttccaaatg	ttctcattgc	2492

WO 03/070770 PCT/EP03/01629 7/20

agececeaca eccataceca cagaggaece tggtetttgg gttaaagaat ggtetecaga	2552
agtcccttgg aatgctgaaa tgtgaagact cacaattagc agctaactgt actgggcact	2612
gaaaattagt ggttgaaagt gagcactcag gagccacaca ttgtaggttc aaacctggct	2672
ccacccctga gtagctgtgt gatcttgggc aaattcacat aatctcctta tgcttccaat	2732
tcttctgttt acaaaatgtg aatattaaga gtacttaccc atagatttgt aatgaggatt	2792
aaggagaaaa ggcagctcac agtaagtgct tcatccatat tactcattgt tacgttacat	2852
tgccccaggc agtttgacga tggcttgtca aactgtgttg ctggttagtc ttcaaagcaa	2912
ccctatgggc aaatgaggaa atcaaggctc agagagagtg cctggcacac caagcgtctc	2972
acagaattca aaageccage tatetgatge cagaaatgtt aateteaate ategagagee	3032
acagcacete etgggggage aaccaageae ageaaggetg agtgaceaga acagtettag	3092
aggaatgegt etttetetea ggaateteat agatggtgeg ggtagggggt aggggttggt	3152
ttaggcatcc gatggtgagt tgttatgggg ttggggatgt gagcagtgtt gtgaaattcc	3212
tgagccccct gagggccact accttctggg gataggtgaa gtggaaacaa agttctctaa	3272
-ctctggaggg gtgccctggt ctcggggagg gggagcactg gctcctttaa ggccttgagg	3332
gaatatatet teeceteeet tagag eeg tgt eee aaa ate aaa gtg gaa tge Pro Cys Pro Lys Ile Lys Val Glu Cys 35	3384
gaa gtg gaa gaa ata gac cag tgt acc aaa ccc aga gat tgc cca gaa Glu Val Glu Glu Ile Asp Gln Cys Thr Lys Pro Arg Asp Cys Pro Glu 40 45 50 55	3432
aac atg aag tgt tgc ccg ttc agc cgt gga aag aaa tgt tta gac ttc Asn Met Lys Cys Cys Pro Phe Ser Arg Gly Lys Lys Cys Leu Asp Phe 60 65 70	3480
aga aag gtaactcaga tgcttcctaa attacccagt gccctcacct cctatctcca Arg Ly's	3536 *
cctgcactgc actacctctg tctcctagtt cactgatggc tggtctctga ccaagagttt	3596
aggtacatct totacttgac acaaatctgc cagtcctgga cttgggagac atggatttta	3656
tttcatttct tcctctattt tggtaagtga tgtgaacaat gtagttttcc tttctgggcc	3716
tcagtttccc tttccataag acaggtgtgg ataatggacc acatggtctc ttggctactc	3776
ttcagtgatt ctcgagatgc caagtagtca ccaaagtctc atcaaatgcc aacattgtgt	3836
caggttatat gatagctata agagacaggt atataatctg tatttcctgg cttttttctc	3896
taggeetete tgtetacata aateeaggat geetteeetg accaeettag accgeetaca	3956

ctctttcttc	: tctgcccata	ttattgagct	ctaaagaaga	tcatcaagga	ccattcgttc	4016
attctattca	ttcaacaaat	attgattggt	gcccctgaca	cccatgatgg	gttccacttg	4076
ctcattgtgg	ccaggaaggt	cagaaaagtt	tttctgggaa	agagatccat	gatttaagat	4136
ctgaaagatg	agtacttaga	ccaaaaatgg	gaagaaatag	cctttcaggc	cagataatag	4196
gatgtgcaaa	ggctctgtgg	caggaggcag	gatgttcagg	tctagaaagg	ctagaaagca	4256
gagagtgagc	aagagacaag	aaacaggaaa	ctggtagtgt	atattcaggg	caacttgaat	4316
ctgtattccc	aagtggccat	cctcaagttt	tggggtcaaa	taaatgccct	acttaatgat	4376
attttctgaa	tcttgttact	ttaggttgac	atacctttca	agacaataac	taggttttca	4436
gtgctttgat	aaaacctcaa	atgtgtggcc	ttccagccag	gcatctgtgg	tttcatattg	4496
tttaagcatt	tgttgcatcc	ctatggattg	cagctctcta	taggttcgct	gttgctgaac	4556
caagaaataa	ggcatacaca	gatttctaga	gaaattgtaa	ttctataaca	gattttcagg	4616
agatgaggaa	ggctggtatc	tttcagagta	caaagtgatt	ttggaattga	aagaatttct	4676
ttgggttaaa	gtttgtcact	gacttgtgtt	cctgaaccat	gaagcatgaa	tatgtgggct	4736
gagaaatagt	ttctcttgat	aaataaacaa	gtaacaaatt	ttaaaaagag	aggaagatga	4796
agctgggcta	gttgggggaa	ggagagctgg	taagggatct	ggtcttgatc	ctaacagcaa	4856
tggattaacc	tatgttcaaa	tcccttacca	tctgtgtggc	ctcaagaaag	ttatttagcc	4916
tctctaaacc	ttagttttct	catctgcata	atgagaacaa	tgagaggacc	tactttacaa	4976
gattaaatgt	taatagatgt	caactactaa	gaacactaat	caatgctata	attgttgttt	5036
tgttgtgctg	acactaatca	atgctacaat	tgttgttttg	tcgtgcttca	gacctgaggt	5096
tctaaagaac	tctatttgta	cctcatagca	ctatgggcaa	aataattgct	caataaatgc	5156
ttaagatcag	ggtagatttg	agttttgggt	tttttttt	ttctgtgaat	actcctgaag	5216
catectetet	atgccaaatt	acctgctaga	aactgctgta	tcaagatggc	ataagatgca	5276
atcçcctctc	aaaaacctca	cattctcatg	gaggaatcag	aaaatatgaa	caagaaagta	5336
aatggaaatg	ataaatgtgt	gtgcaagact	gagaagcaac	gaagaaaagc	aaagagtaaa	5396
gaatgaatcc	aggaaagact	gcataaaaga	gtcaatgtcc	ggaaagggtt	ttaaagaatg	5456
aacaagagtt	cacttagcaa	gagggggctg	gatatgtcag	gcatgtgcaa	aggcacgggg	5516
tgtgtaagaa :	agtgctattt	ttagagcata	agtttgggaa	gttgggtgtt	ggggcagcat	5576
aagaaataaa	gctggagagg	agaaggagaa	aatggattct	gaagteeete	tgggtttggt	5636
agaactttat	cctgtgccca	gcagatcggc	cattctggaa	accaatgttg	agcagattgg	5696
agaagtcttg	gagatcagct	ggtggccttt	catggagtcc	ttgcaaaaga	taattatgct	5756

WO 03/070770 PCT/EP03/01629 9/20

tgaattaaga aagcagccgg aaggaaataa aggagagcta tttaggaggc aaaatcagcc	5816
agatttagtg ttcagatgtt ggggaggcaa ggaaaaagaa gccatgtgat gtcacagctg	5876
cteetteeaa eageeetgtt aggegageag gttgggattt tgtattetea tettacagat	5936
gaggaagtca aggaccagag aggtaaaatg agtggtcagg gttcacactg aattgggaac	5996
agagccctga ggcaaatttg cttctcagtg gagacaaagg gaatggtggc cagagaaggg	6056
gagagatgga cattetecag ggagaeagge acceaaacag etetattetg egatetecet	6116
gca gat ata tgc agt atg cca cag gag gct ggc ccc tgc ctg gcc tcc Asp Ile Cys Ser Met Pro Gln Glu Ala Gly Pro Cys Leu Ala Ser 75 80 85	6164
ata cca cac tgg tgg tac aat aaa aaa a act aag atc tgc tcc gaa ttc Ile Pro His Trp Trp Tyr Asn Lys Lys Thr Lys Ile Cys Ser Glu Phe 90 95 100	6213
atc tat ggc ggt agc cag ggg aac aat aac aac ttc caa act gaa gct Ile Tyr Gly Gly Ser Gln Gly Asn Asn Asn Asn Phe Gln Thr Glu Ala 105 110 115 120	6261
atc tgt ctg gtc acc tgc aaa aaa tac cat aagtcccaga ggtcccggtc Ile Cys:Leu Val Thr Cys Lys Lys Tyr His 125 130	6311
tectgtgete accaaggeea caetgggagg tetgggtgtt ggetggteta ttecaagace	6371
tgggtggcgc tggggatgac aaaaccagct ccaatgcaga agtataagta gaaggatatt	6431
ttgggaaaga gggtgggaag ggagggatta gtcaaaggga tattggcaag tatgaggtga	6491
gtagtgggtg tagagagaaa acagaagtgg tggagtatcc cagaccaggt cagacggaag	6551
cccggtaaac ccagcccagc cctgggcacc attcatcagc caatcattat agtcctttac	6611
ttotcactaa accttgttgo tacttotott cotttgaaag gttatttota accagggcaa	6671
ccacatactt tattggccaa accaaatcac ttttgaaagt gtctcaaggt gaggtgccat	6731 .
taattattac actgagacaa caggcataaa ctgggactct actggacaag tcagaactca	6791
tgatcattct aggagccccc aaactcacct tcattccatt cctgcccaaa gatgtaaaaa	6851
tgatcccacc tcctttttcc cattaggtgc aagatttggt tcctaatgtg gtcagggtcc	6911
aagcatetea eeetttatte ttetgettea eaggteagee ttaetttata eeataaggag	6971
gagettgaat aacetecagg atttggetea taateeagge eteteteeae gtgtgeetga	7031
ttgatgctcc aaattggctt ccacgggcca aaccttggct gttccagaaa ctgaacccca	7091
ggaattgett acacaettte ttecagegta geatetette aaacaeaatg etetteeeet	7151
tgaccacttc tcagtatgaa actctatgtc ttcaactttc agacccccca tttatttgta	7211

WO 03/070770 PCT/EP03/01629 10/20

tgaaggcttc	agttgcctta	ataaagtgct	ctgtggggtc	cgatctctcc	gaggctgaat	7271
aattcacatc	tgcaatatgc	tgatattgac	atacactcac	atctctctat	atgcaatttt	7331
cagagaacaa	aaagccattg	cattttctgg	t _. gacaccaaa	aaagggagag	agtatgaaaa	7391
tcctgcaaat	tgagaatgct	agtgacattg	ttactttggt	aaagttgtcg	ttaagatgct	7451
gaagaatgga	gccagtgcag	atccagattt	tgtatggtct	aaacctgata	aatgaggagc	7511
tcctttagaa	accaagcaca	ggctgggcac	ggtggctcac	gcctgtaatc	ccagcacttt	7571
gggaggccaa	ggagggcgga	tcacctgagg	tcaggagttc	aagaccagcc	tgaccaacgt	7631
ggagaaacac	catctctact	aaaaatacaa	aattagccag	gcgtggtggt	gcatgcctgt	7691
aatcccaact	actcgggagg	ctgaggcagg	agaattgttt	gaacccagga	ggcaaaagtt	7751
gcagtgagct	gagattgcac	cattgcactc	cagcctgggc	aataagaaca	aaactcaaaa	7811
aaaaaaaaa	aaaaaaaaga	aagaaagaaa	gaaaagaaaa	aagaaagaaa	ccaagcacaa	7871
atgagtacaa	aagagaatat	tatttcaaat	gaggagggaa	attgcaacca	gctgcaaatt	7931
tttaaaggct	gacaaacagt	aaaaattgca	caaaacccat	ataaattaat	aattcattgt	7991
ttacatttat	gacctcaatt	ctgtaaagca	ctatttctgt	ggagagaatg	gaaagataac	8051
tttttattta	atgtggggat	caaaatatga	tattttaatt	tttattatag	gtgaattgga	8111
taaaacatgt	acctgaatgc	ttgaagccat	gcttgatgtc	tgcagttctg	ttacaggttt	8171
gtgtcctaga	aacacaggaa	ttttaataaa	ttatcttttg	tacaactcta	ttaaaaaaaag	8231
aaaaaatgca	tggtacattt	aaaattgtac	atattgaatt	atcaagtata	tgcttactac	8291
aaaagaactt	ctgaacaggc	ttccataaga	gctgattttt	tttttctaat	taaaatgtga	8351
tgtatctgac	cagactcagt	ggttcatgcc	tgtaatccca	gcactttggg	aggccgaagg	8411
gggcagatca	cctgatgtca	agagttcaag	accagactgg	ccaacgtggt	gaaaccccat	8471
ctctactaaa	aatacaagaa	attagccagg	tgtggtggtg	cacacttgta	gccccagcta	8531
ctcaggaggc	tgaggcagga	gaattgcttg	aacccgggag	gtggaggttg	cagtgagcca	8591
agatcgtgcc	attgcactct	agcctgggcg	gtggagtgag	actccatctc	aaaaaaaaa	8651
ttgatgtatc	tgatatttga	aagaatgcta	cacaggcttg	ttttcctggc	tccacacatt	8711
tcaaaacttg	tttctcctct	accacccgca	accttcttgg	gctaagaaca	ttcattttac	8771
agtgcaacct	ctagtcccat	aacttagtgt	cataacatca	agggaatagg	cccagtagaa	8831
aacaggagta	ttatttgcag	ctgcttctcc	accaggacag	ctagcagcaa	cttcctacac	8891
atacaaatga	cagctaacga	cctaaatata	ttctactaac	tccaaaataa	atatatcccc	8951
aactcaactt	ccttttaatt	tgcatgccta	aaatgctggc	agtcgcccaa	acaccacctg	9011

WO 03/070770 PCT/EP03/01629

acctaggaga	a agtgtgacaç	g agggaaaggt	: cagagtggaa	a agggaaggto	g gattggcgat	9071
tatggttaga	a atatettaet	tttgcagata	ttacaagtca	a tctgaccato	, taaacatata	9131
gctagaagca	a ctcccagaat	: cttaaaaggg	gctcgctcga	a gcgaggacco	tgaggcttgg	9191
ctccatcgad	ctcatggtaa	gtccgtctct	gaaagggcto	atggacttgt	: ttactggagt	9251
tgtagtaaaq	g aagacagtto	: catagtatgg	tgcagaaact	ccaaaattga	aaatagctgg	9311
acaggcatga	a aagggggaga	tggaggaaag	cagagaagag	j ttaaagagga	agggagaaga	9371
aaggggtgaa	a ggaggaaaag	acactggatg	gtgtgactgt	: tttaaagcaa	ggtcctaaaa	9431
ttctttcact	caccttccac	ctagaagtgg	gatctatgto	ccctccttt	gaatctgaga	9491
aaactctgtg	actgctttga	ccaagagaat	aaagcaaaaa	tgatgctatg	tgacctccaa	9551
ggctaagcta	gaataagtgc	aagtcccact	tgatcctctt	atgtagcttg	tttgggggca	9611
gtgggaaact	gccatgtaag	atgtccaact	actctgagag	aggcccatgc	tagagagacc	9671
catgtgggtg	ctgtgatcag	caggcccaga	taagctctga	ctgatagcca	gcatcaattt	9731
cagccatgca	aatgagatgc	ccaacccaat	agagccttca	gatggctgca	gccccagcag	9791
.acatctgact	gcaaccatgg	gaaagaccct	ataaaagaac	caccaagcag	attgcttccc	9851
agatggctga	cccacaatat	aaaatggttg	ctttaaagtg	ctaagttttc	agaaaattta	9911
ttcacagaat	aggtgatcaa	agatggaaac	gggctaggag	cagtggctca	cagctgtaat	9971
cccaggcact	ttgggagtcc	aaggcaggca	gataacttga	agtcagaagt	tcaagaccag	10031
cctggccaaa '	acggcaaaac	cctgtctcta	ctaaaaatac	aaaaattagc	cagacatagt	10091
	tgtaatacca					10151
ggaggcggag	gttgcagtga	gctgagattg	cgccactgca	ctccagagcg	agatttggtc	10211
	aaaaagaaag					10271
	gaaagagaca					10331
	cacaacaggc					10391
	tgttgtttaa					10451
	atgctgttgc					10511
	aactctaaag					10571
	gatacaaaat					10631
	ccatcagegg					10691
agtgaaaaac	ttatgcattg	acaattataa	aacatcgatg	aaggaaattt	aaaagacaca	10751

aataaatgaa aagacatcca tgctcataga ttagaagaat caatgttgtc aaaatgtcca 10811 cactacccaa agcaatctac agagcacatg caatttctgc caaaatgcca atggcatttt 10871 ttacagaaac ataaaaagca atgctaaaat tcatatggaa ccacaaaaga ccccaaattg 10931 ccaaaggaat tttgaaaaag aacagagctg taagcaccac atttcctgat gtcaaattac 10991 attgcaaagc tagagtaatc aaaagagtgt ggtactggca taaaaacaga aaagcagaca 11051 tacaggccaa tggaacagaa tagagaagcc agaactaagc ccacccattt atggtcaatt 11111 gatcttgac gagggtgtca aaaacacaca ataggcaaca gaagatctct ttaacaaatg 11171 gtgctgggaa aactagatat tcacatgcaa tcacatgcaa tcacatgaa

<210> 4

<211> 30

<212> PRT

<213> Homo Sapiens

<400> 4

Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu 1 5 10 15

Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly 20 25 30

<210> 5

<211> 43

<212> PRT

<213> Homo Sapiens

<400> 5

Pro Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln 1 5 10 15

Cys Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe 20 25 30

Ser Arg Gly Lys Lys Cys Leu Asp Phe Arg Lys 35

<210> 6

<211> 24

<212> PRT

<213> Homo Sapiens

<400> 6

Asp Ile Cys Ser Met Pro Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile

```
1
                5
                                     10
                                                         15
Pro His Trp Trp Tyr Asn Lys Lys
            20
<210> 7
<211> 33
<212> PRT
<213> Homo Sapiens
<400> 7
Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Ser Gln Gly Asn Asn
                5
                                     10
Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys Lys Tyr
            20
                                 25
                                                     30
His
<210> 8
-<211> 1339
<212> DNA
<213> Homo Sapiens
<220>
<221> misc_feature
<222> (1)..(1339)
<223> reconstructed cDNA from seqID 3
<220>
<221> CDS
<222>
      (1)..(294)
<223>
<220>
<221> CDS
<222> (296)..(394)
<223>
<220>
<221> misc_feature
<222> (394)..(396)
<223> potential stop codon
<220> -
<221> 3'UTR
```

<222> (397)..(1339)

<223> partial

14/20 <220>

<221> polyA_signal <222> (1334)..(1339)<223> <400> 8 atg gga ctc tca gga ctt ctg cca atc ctg gta cca ttc atc ctt ttg 48 Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu ggg gac atc cag gaa cct ggg cac gct gaa ggc atc ctt ggc aag ccq 96 Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly Lys Pro tgt ccc aaa atc aaa gtg gaa tgc gaa gtg gaa gaa ata gac cag tgt 144 Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln Cys ace aaa eee aga gat tge eea gaa aae atg aag tgt tge eeg tte age 192 Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe Ser cgt gga aag aaa tgt tta gac ttc aga aag gat ata tgc agt atg cca 240 Arg Gly Lys Lys Cys Leu Asp Phe Arg Lys Asp Ile Cys Ser Met Pro cag gag gct ggc ccc tgc ctg gcc tcc ata cca cac tgg tgg tac aat 288 Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile Pro His Trp Trp Tyr Asn aaa aaa a act aag atc tgc tcc gaa ttc atc tat ggc ggt agc cag ggg 337 Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Ser Gln Gly aac aat aac aac ttc caa act gaa gct atc tgt ctg gtc acc tgc aaa 385 Asn Asn Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys aaa tac cat aagtcccaga ggtcccggtc tcctgtgctc accaaggcca 434 Lys Tyr His 130 cactgggagg tctgggtgtt ggctggtcta ttccaagacc tgggtggcgc tggggatgac 494 aaaaccagct ccaatgcaga agtataagta gaaggatatt ttgggaaaga gggtgggaag 554 ggagggatta gtcaaaggga tattggcaag tatgaggtga gtagtgggtg tagagagaaa 614 acagaagtgg tggagtatcc cagaccaggt cagacggaag cccggtaaac ccagccagc 674 cctgggcacc attcatcagc caatcattat agtcctttac ttctcactaa accttgttgc 734 tacttctctt cctttgaaag gttatttcta accagggcaa ccacatactt tattggccaa 794 accaaatcac ttttgaaagt gtctcaaggt gaggtgccat taattattac actgagacaa 854 caggcataaa ctgggactet actggacaag tcagaactca tgatcattet aggagecece aaactcacct tcattccatt cctgcccaaa gatgtaaaaa tgatcccacc tcctttttcc 974

cattaggtgc	aagatttggt	tcctaatgtg	gtcagggtcc	aagcatctca	ccctttattc	1034
ttctgcttca	caggtcagcc	ttactttata	ccataaggag	gagcttgaat	aacctccagg	1094
atttggctca	taatccaggc	ctctctccac	gtgtgcctga	ttgatgctcc	aaattggctt	1154
ccacgggcca	aaccttggct	gttccagaaa	ctgaacccca	ggaattgctt	acacactttc	1214
ttccagcgta	gcatctcttc	aaacacaatg	ctcttcccct	tgaccacttc	tcagtatgaa	1274
actctatgtc	ttcaactttc	agacccccca	tttatttgta	tgaaggcttc	agttgcctta	1334
ataaa						1339

<210> 9

<211> 98

<212> PRT

<213> Homo Sapiens

<400> 9

Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu 1 5 10 15

Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly Lys Pro 20 25 30

Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln Cys

Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe Ser 50 55 60

Arg Gly Lys Lys Cys Leu Asp Phe Arg Lys Asp Ile Cys Ser Met Pro 65 70 75 80

Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile Pro His Trp Trp Tyr Asn

Lys Lys

<210> 10

<211> 33

<212> PRT

<213> Homo Sapiens

<400> 10

Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Ser Gln Gly Asn Asn

1 5 10 15 Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys Lys Tyr 25 His <210> 11 <211> 396 <212> DNA <213> Homo Sapiens <220> <221> misc feature <222> (1)..(396)<223> reconstructed cDNA for seqID 1 <220> <221> CDS <222> (1)..(396)<223> atg gga ctc tca gga ctt ctg cca atc ctg gta cca ttc atc ctt ttg 48 Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu ggg gac atc cag gaa eet ggg cac get gaa gge atc ett gge aag eeg 96 Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly Lys Pro tgt ccc aaa atc aaa gtg gaa tgc gaa gtg gaa gaa ata gac cag tgt 144 Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln Cys acc aaa ccc aga gat tgc cca gaa aac atg aag tgt tgc ccg ttc agc 192 Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe Ser tgt gga aag aaa tgt tta gac ttc aga aag gat ata tgc agt atg cca 240 Cys Gly Lys Lys Cys Leu Asp Phe Arg Lys Asp Ile Cys Ser Met Pro cag gag get gge eee tge etg gee tee ata eea eac tgg tgg tae aat 288 Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile Pro His Trp Trp Tyr Asn aaa aaa act aag atc tgc tcc gaa ttc atc tat ggc ggt tgc cag ggg 336 Lys Lys Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Cys Gln Gly 105 aac aat aac aac ttc caa act gaa gct atc tgt ctg gtc acc tgc aaa 384 Asn Asn Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys

120

125

aaa tac cat taa Lys Tyr His 130

396

<210> 12

<211> 131

<212> PRT

<213> Homo Sapiens

<400> 12

Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu 1 5 15

Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly Lys Pro 20 25 30

Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln Cys 35 40 45

Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe Ser 50 55 60

Cys Gly Lys Lys Cys Leu Asp Phe Arg Lys Asp Ile Cys Ser Met Pro 65 70 75 80

Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile Pro His Trp Trp Tyr Asn 85 90 95

Lys Lys Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Cys Gln Gly
100 105 110

Asn Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys 115 120 125

Lys Tyr His 130

<210> 13

<211> 133

<212> PRT

<213> Homo sapiens

<400> 13

Met Gly Ser Ser Gly Leu Leu Ser Leu Leu Val Leu Phe Val Leu Leu 1 5 10 15

Ala Asn Val Gln Gly Pro Gly Leu Thr Asp Trp Leu Phe Pro Arg Arg 20 25 30

Cys Pro Lys Ile Arg Glu Glu Cys Glu Phe Gln Glu Arg Asp Val Cys 35 40 45

Thr Lys Asp Arg Gln Cys Gln Asp Asn Lys Lys Cys Cys Val Phe Ser 50 55 60

Cys Gly Lys Lys Cys Leu Asp Leu Lys Gln Asp Val Cys Glu Met Pro 65 70 75 80

Lys Glu Thr Gly Pro Cys Leu Ala Tyr Phe Leu His Trp Trp Tyr Asp 85 90 95

Lys Lys Asp Asn Thr Cys Ser Met Phe Val Tyr Gly Gly Cys Gln Gly 100 105 110

Asn Asn Asn Phe Gln Ser Lys Ala Asn Cys Leu Asn Thr Cys Lys 115 120 125

Asn Lys Arg Phe Pro

<210> 14

<211> 134

<212> PRT

<213> Mus musculus

<400> 14

Met Lys Leu Ser Gly Phe Val Ser Ile Leu Val Leu Phe Gly Leu Leu 1 5 10 15

Ala Arg Val Gln Gly Pro Ser Leu Ala Asp Leu Leu Phe Pro Arg Arg 20 25 30

Cys Pro Arg Phe Arg Glu Glu Cys Glu His Gln Glu Arg Asp Leu Cys 35 40 45

Thr Arg Asp Arg Asp Cys Pro Lys Lys Glu Lys Cys Cys Val Phe Asn 50 55 60

Cys Gly Lys Lys Cys Leu Asn Pro Gln Gln Asp Ile Cys Ser Leu Pro 65 70 75 80

Lys Asp Ser Gly Tyr Cys Met Ala Tyr Phe Arg Arg Trp Trp Phe Asn 85 90 95

Lys Glu Asn Ser Thr Cys Gln Val Phe Ile Tyr Gly Gly Cys Gln Gly 100 105 110

Asn Asn Asn Phe Gln Ser Gln Ser Ile Cys Gln Asn Ala Cys Glu 115 120 125

Lys Lys Ser Ser Leu Thr 130

<210> 15

<211> 131

<212> PRT

<213> Homo sapiens

<400> 15

Met Gly Leu Ser Gly Leu Leu Pro Ile Leu Val Pro Phe Ile Leu Leu 1 5 10 15

Gly Asp Ile Gln Glu Pro Gly His Ala Glu Gly Ile Leu Gly Lys Pro 20 . 25 . 30

Cys Pro Lys Ile Lys Val Glu Cys Glu Val Glu Glu Ile Asp Gln Cys 35 40 45

Thr Lys Pro Arg Asp Cys Pro Glu Asn Met Lys Cys Cys Pro Phe Ser 50 55 60

Arg Gly Lys Lys Cys Leu Asp Phe Arg Lys Asp Ile Cys Ser Met Pro 65 70 75 80

Gln Glu Ala Gly Pro Cys Leu Ala Ser Ile Pro His Trp Trp Tyr Asn 85 90 95

Lys Lys Thr Lys Ile Cys Ser Glu Phe Ile Tyr Gly Gly Ser Gln Gly

Asn Asn Asn Phe Gln Thr Glu Ala Ile Cys Leu Val Thr Cys Lys
115 120 125

Lys Tyr His

<210> 16

<211> 136

<212> PRT

<213> Mus musculus

<400> 16

Met Arg Leu Trp Gly Leu Leu Pro Phe Leu Val Pro Phe Ile Leu Leu 1 5 10 15

Trp Ser Ile Gln Glu Pro Glu Leu Ala Glu Gly Phe Phe Ile Arg Thr 20 25 30

Cys Pro Arg Val Arg Val Lys Cys Glu Val Glu Glu Arg Asn Glu Cys 35 40 45

Thr Arg His Arg Gln Cys Pro Asn Lys Lys Arg Cys Cys Leu Phe Ser 50. 55 60

Cys Gly Lys Lys Cys Met Asp Leu Arg Gln Asp Val Cys Ser Leu Pro 65 70 75. 80

Gln Asp Pro Gly Pro Cys Leu Ala Tyr Leu Pro Arg Trp Trp Tyr Asn 85 90 95

Gln Glu Thr Asp Leu Cys Thr Glu Phe Ile Tyr Gly Gly Cys Gln Gly
100 105 110

Asn Pro Asn Asn Phe Pro Ser Glu Gly Ile Cys Thr Val Val Cys Lys 115 120 125

Lys Lys Gln Met Ser Ser Trp Ile 130 135