Assessing The Impact of CMS' Hospital Price Transparency Regulations

Andrew Capron
Applied Micro Workshop

November 21, 2023

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Roadmap

1 Institutional Background and Motivation

2 Data and Reduced Form Work

3 Structural Model

Transparency has been at the forefront of recent health care policy debate

Information frictions are a prominent feature of health care markets in the United States

Transparency has been at the forefront of recent health care policy debate

- Information frictions are a prominent feature of health care markets in the United States
 - Notably, prices may not be known when patients make decisions

Transparency has been at the forefront of recent health care policy debate

- Information frictions are a prominent feature of health care markets in the United States
 - Notably, prices may not be known when patients make decisions
- Despite recent efforts, price transparency remains a salient issue
- Policymakers attempt to set policy to promote:
 - Price shopping to reign in growing healthcare spending
 - 2 Protect patients
 - 3 Promote competition in provider-insurer price negotiations

CMS Hospital Price Transparency Rules

- ► Focus of this paper: CMS' 2019 Hospital Price Transparency Final Rule
- Mandate for all hospitals in the U.S. to provide publicly accessible standard charge information online in two ways:
 - 1 A comprehensive machine-readable file with all items and services available at the facility
 - 2 A summary of 300 "shoppable services" that a consumer could schedule in advance in a consumer-friendly format
- Efficacy of the rule is determined by the degree of hospital adherence and consumer adoption

Regulation timeline

CMS has required healthcare pricing to be public

Have hospitals adhered to the regulation?

- Wide range in compliance figures:
 - ► Patient Rights Advocates found only 36% full compliance
 - ightharpoonup CMS and other studies found $\sim 2/3$ compliance
- Low compliance has been attributed to the complexity and abruptness of the regulation, also to the nominal financial penalties
- ▶ In 2022, CMS increased the maximum civil monetary penalty for non-compliance from \$100,000/hospital to more than \$2M/hospital
- CMS has issued over 700 warning notices and 250 CAP requests
- ► To date, fourteen hospitals have been penalized (fines ranging from \$56,940 \$979,000)

My Paper

11 How do changes in price transparency regulations impact firm behavior and patient decisions over hospital care?

My Paper

- 1 How do changes in price transparency regulations impact firm behavior and patient decisions over hospital care?
- 2 Do hospitals act strategically when making decisions over compliance?

Market competitiveness is negatively associated with compliance (Ji and Kong 2022; Jiang et al, 2021)

- Market competitiveness is negatively associated with compliance (Ji and Kong 2022; Jiang et al, 2021)
- More expensive services are less likely to be disclosed by hospitals (Bai et al, 2021)

- Market competitiveness is negatively associated with compliance (Ji and Kong 2022; Jiang et al, 2021)
- 2 More expensive services are less likely to be disclosed by hospitals (Bai et al, 2021)
- 3 Commercial prices vary widely across and within hospitals for the same service (Bai et al, 2023), and consumers may have substantial price sensitivity for health care services (Kowalski, 2016)

- Market competitiveness is negatively associated with compliance (Ji and Kong 2022; Jiang et al, 2021)
- 2 More expensive services are less likely to be disclosed by hospitals (Bai et al, 2021)
- 3 Commercial prices vary widely across and within hospitals for the same service (Bai et al, 2023), and consumers may have substantial price sensitivity for health care services (Kowalski, 2016)
- Mixed evidence of consumer search after the rollout of price transparency tools (Gourevitch et al, 2021; Bernstein, 2016)

More evidence that hospitals may be acting strategically

Roadmap

Institutional Background and Motivation

2 Data and Reduced Form Work

3 Structural Model

My focus will be on hospitals in North Carolina

Data

- Blue Cross Blue Shield of North Carolina (BCBSNC) claims data from 2018-2023:
 - Detailed information on demographics, visits, and billing for approx.
 2.6 million member months covered by BCBSNC.
 - Includes fully-insured, ASO, and ACA exchange plan members.
 - ▶ Importantly allows me to identify providers by name and location.
- 2 Hospitals' negotiated rates pulled directly from their websites:
 - Posted prices for 106 acute care hospitals in North Carolina.

My focus will be on hospitals in North Carolina

Data

- Blue Cross Blue Shield of North Carolina (BCBSNC) claims data from 2018-2023:
 - Detailed information on demographics, visits, and billing for approx.
 2.6 million member months covered by BCBSNC.
 - Includes fully-insured, ASO, and ACA exchange plan members.
 - ▶ Importantly allows me to identify providers by name and location.
- 2 Hospitals' negotiated rates pulled directly from their websites:
 - Posted prices for 106 acute care hospitals in North Carolina.
- ComScore Web Behavior Panel (TBD)

Begin with basic event study regressions

Beginning with the set of 70 shoppable services for which CMS requires hospitals to post prices:

$$y_{hit} = \beta_0 + \beta_1(t - Y_r) + \beta_2 C_{ht} + (\beta_3(t - Y_r) \times C_{ht}) + X_{hit}\beta_4 + \epsilon_{hit} \quad (1)$$

- \triangleright β_2 captures any discrete change at the time rule went into effect,
- \triangleright β_3 captures the change over time as the rule is implemented.

Roadmap

Institutional Background and Motivation

2 Data and Reduced Form Work

3 Structural Model

Structural Model of Compliance and Competition

Structural Model of Compliance and Competition

Network formation and patient insurance choice taken as given in model.

Structural Model of Compliance and Competition

For each hospital h in system s and market m, flow profits are specified as:

$$\pi_{hm} = Q_{hm}(\boldsymbol{p}, \boldsymbol{X}, \boldsymbol{C}, \boldsymbol{c})(p_h - mc_h) - \rho^f(\boldsymbol{C})F_h(b_h) - \Gamma(C_h, Z_h, \nu_h), \quad (2)$$

- Q_{hm} captures patient demand,
- \triangleright p_h is a vector of prices,
- mc_h is a vector of marginal costs,
- $ightharpoonup
 ho^f$ is the probability that a non-complaint hospital will be fined,
- $ightharpoonup F_h(b_h)$ is the financial penalty as a function of hospital size,
- $ightharpoonup \Gamma(\cdot)$ is the cost of compliance,
- c_h are patient coinsurance rates,
- $ightharpoonup C_h$ is the compliance decision of the hospital.

Compliance comes at a cost

$$\Gamma(C_h, Z_h, \nu_h) = \begin{cases} \gamma_h Z_h + \nu_h & \text{if } C_h = 1, \\ 0 & \text{if } C_h = 0, \end{cases}$$
(3)

 \triangleright Z_h contains instruments for the cost of compliance that shift these costs for each hospital separately but are excluded from MC.

Compliance comes at a cost

$$\Gamma(C_h, Z_h, \nu_h) = \begin{cases} \gamma_h Z_h + \nu_h & \text{if } C_h = 1, \\ 0 & \text{if } C_h = 0, \end{cases}$$
(3)

 \triangleright Z_h contains instruments for the cost of compliance that shift these costs for each hospital separately but are excluded from MC.

Firm marginal costs are parametrized as follows:

$$mc_h = \psi_h W_h + \eta_h, \tag{4}$$

- Marginal cost is assumed to be constant in quantity, but can vary across hospital, year, and insurance type.
- ▶ Lastly, assume $(\nu, \eta, \xi) \sim MVN(0, \Sigma)$, where

$$\Sigma = egin{bmatrix} \sigma_{
u}^2 & \sigma_{
u\eta} & \sigma_{
u\xi} \ \sigma_{
u\eta} & \sigma_{\eta\xi}^2 & \sigma_{\eta\xi} \ \sigma_{
u\xi} & \sigma_{\eta\xi} & \sigma_{\xi}^2 \end{bmatrix}$$

Patient Hospital Choice

Patients choose a hospital h from choice set H_m to maximize utility:

$$u_{ih} = \underbrace{\beta X_{ih} - \alpha c_{ih} P_{ih}(C_h)}_{\delta_{ih}} + \xi_h + \lambda_{ig} + (1 - \sigma) \epsilon_{ih}, \tag{5}$$

- \triangleright X_{ih} captures hospital and patient characteristics (e.g. patient travel time and hospital quality/size),
- $\lambda_{ig} + (1 \sigma)\epsilon_{ih} \stackrel{i.i.d.}{\sim} \text{T1EV}$, nested at department (or MDC) level.

Patient Hospital Choice

Patients choose a hospital h from choice set H_m to maximize utility:

$$u_{ih} = \underbrace{\beta X_{ih} - \alpha c_{ih} P_{ih}(C_h)}_{\delta_{ih}} + \xi_h + \lambda_{ig} + (1 - \sigma) \epsilon_{ih}, \tag{5}$$

- \succ X_{ih} captures hospital and patient characteristics (e.g. patient travel time and hospital quality/size),
- $\lambda_{ig} + (1 \sigma)\epsilon_{ih} \stackrel{i.i.d.}{\sim} \text{T1EV}$, nested at department (or MDC) level.

 P_{ih} , which captures the vector of prices facing patients for care at hospital h, is the object of particular interest and takes the form:

$$P_{ih}(C_h) = \begin{cases} p_h & \text{if } C_h = 1, \\ \mathbb{E}_i[\boldsymbol{p}] & \text{if } C_h = 0. \end{cases}$$
 (6)

Will explore various distributional assumptions when $C_h = 0$, such as $\mathbb{E}_i[\mathbf{p}] = \mu_m$, market average price, or $\bar{p}_h|H_i$ (cond. on previous visits).

Market Demand

Nested logit errors allow us to express the probability that patient i chooses h in group g as:

$$\rho_{ih}(P_{ih}, X_{ih}, c_{ih}, C_h) = \rho_{i,h|g} \times \rho_{ig} = \frac{exp((\delta_{ih})/(1-\sigma))}{D_{ig}^{\sigma} \left[\sum_{g} D_{ig}^{(1-\sigma)}\right]}, \tag{7}$$

$$D_{ig} = \sum_{h \in \mathcal{H}_g} exp((\delta_{ih})/(1-\sigma)).$$

Aggregate patient demand takes the following form:

$$Q_{hm}(p_h, X_h, c_h, C_h) = \sum_{i \in \mathcal{I}} \rho_{ih}(P_{ih}, X_{ih}, c_{ih}, C_h),$$
(8)

Parametric assumptions allow for estimation via standard MLE.

Firm's Compliance Problem

The compliance decision for all h in market m becomes:

$$C_h = 1 \iff \pi_{hm}(1) - \pi_{hm}(0) \ge 0, \ \iff \Delta Q_{hm}(p_h - mc_h) + \rho^f(0)F_h(b_h) - \Gamma(C_h, Z_h, \nu_h) \ge 0,$$

Appendix

Example of Price Shopping Tool at UNC Health

Homepage link to "Standard Charges".

Example of Price Shopping Tool (Step 2)

Standard Charges & Shoppable Services Data by Hospital

- UNC Hospitals [7]
- UNC Health Rex [2]
- UNC Health Wayne 2
- UNC Health Lenoir
- UNC Health Pardee [2]
- UNC Health Blue Ridge [2]
- UNC Health Rockingham [2
- UNC Health Caldwell [2]
- UNC Health Chatham [2]
- UNC Health Johnston [2]
- UNC Health Nash
- UNC Health Southeastern [2]

Example of Price Shopping Tool (Step 3)

