Home Work 2

Francisco J. Díaz Riollano Student ID: 802-15-2172

September 22, 2018

Question 1.4.3

Is it the case that for each $i \in \mathbb{N}, L^i \cap L^{i+1} = \emptyset$? If this indeed the case, prove it. Otherwise provide a counterexample.

If L is not a string alphabet then this statement is False. A counterexample would be $L=\{0,00\}$, then $L^2=\{00,000,000,0000\}$. Thus we have arrived at a contradiction.

This would be true if Σ were a string alphabet. As such:

Let L be a formal language over an alphabet Σ .

Such that $L = \{l : 1 \text{ is a string over } \Sigma\}$

Proof: We first demonstrate by induction that $\forall a \in L^n, |a| = n$.

Then the proof will go as follows:

Base Case:

For n=1 . Since L is a language over an alphabet Σ each $a\in L$ is a symbol, and therefore |a|=1.

Inductive Hypothesis: $\forall a \in L^n, |a| = n$. Then, $L^{n+1} = L^n L = \{w : w = xy | x \in L^n \land y \in L\}$ by property of concatenation. Since |xy| = |x| + |y|, using the inductive hypothesis we get |xy| = n + 1.

By proving that every element in L^n cannot possibly be L^{n+1} and viceversa, the elements of each of these formal languages have different string length, we can conclude:

$$i \in \mathbb{N}, L^i \cap L^{i+1} = \emptyset$$