Physics based animation

Grégory Leplâtre

Introductio

Grid-based partitioning

Tree-based decomposition

Other

Summar

# Physics based animation

Lecture 12 - Collision detection Part 5 - Spatial partitioning

Grégory Leplâtre

g.leplatre@napier.ac.uk, room D32 School of Computing Edinburgh Napier University

Semester 1 - 2016/2017

Grid-based partitioning

Tree-based decomposition

Other methods

Summary

- 1 Introduction
- 2 Grid-based partitioning
- 3 Tree-based decomposition
- 4 Other methods
- 5 Summary

Grid-based partitioning

Iree-based decomposition

Other method:

Summary

#### Goals:

Restrict the number of pairwise collision tests

Grid-based partitioning

Tree-based decomposition

Other methods

Summar

### Goals:

- Restrict the number of pairwise collision tests
- Two types of spatial partitioning:
  - Grids
  - trees

Uniform ar

Tree-based

Other method:

Summar

### **Outline**

- 1 Introduction
- 2 Grid-based partitioning
- 3 Tree-based decomposition
- 4 Other methods
- 5 Summary

Physics based animation

Grégory Leplâtre

Introductio

Grid-base partitioning

#### Uniform grids

Tree-based decomposition

Other

Summar

# Uniform grid



Grid-based partitioning

#### Uniform grids

Tree-based decomposition

Other method

Summa

# Uniform grids



A simple but effective spatial decomposition scheme is to simply overlay space with a uniform grid (i.e. comprising a number of equal sized regions (or cells)). Grid-based partitioning

#### Uniform grids

ree-based ecomposition

Other method

Summar



- ▶ A simple but effective spatial decomposition scheme is to simply overlay space with a uniform grid (i.e. comprising a number of equal sized regions (or cells)).
- ➤ Only those objects which overlap a common cell(s) can be in contact ⇒ intersection tests are only performed against objects which share cells.

Grid-based

#### Uniform grids

Free-based decomposition

Other method

Summar







Grid-based

#### Uniform grids

ree-based lecompositio

Other method

Summar

# Design and performance issues







➤ **Too fine**: Large number of cells need to be updated when a large object moves

#### Uniform grids

ree-based ecompositio

Other method

Summai







- ➤ **Too fine**: Large number of cells need to be updated when a large object moves
- ➤ Too coarse: Large amount of collision tests likely to be required

Grid-based

#### Uniform grids

ree-based lecompositio

Other method

Summa







- ➤ **Too fine**: Large number of cells need to be updated when a large object moves
- Too coarse: Large amount of collision tests likely to be required
- ▶ Both?: Linked to the relative size of the partition and of the objects

Grid-based

#### Uniform grids

ree-based lecompositio

Other method

Summa







- For uniform grids, the cell size is normally adjusted to be large enough to accommodate the largest object object at any rotation.
- → an object cannot overlap more than 4 cells (in 2D) or 8 cells (in 3D).

#### Uniform grids

Tree-based decompositio

Other methods

Summai

# Summary

### Pros

- Simple implementation
- Fast for small dynamic objects and large static ones (environments).

#### Cons

- finding optimal grid size
- Memory (large 3d grid)
- Accuracy depends on grid resolution

### Outline

- 2 Grid-based partitioning
- 3 Tree-based decomposition

Octrees

K-d trees BSP trees

Other methods

Summar



Octrees K-d trees BSP trees

Other

Summar



Octrees K-d trees BSP trees

Other

Summar



Grid-based

# Tree-based decomposition

Octrees K-d trees BSP trees

Other

0.....



Physics based animation

Grégory Leplâtre

Introductio

Grid-based partitioning

Tree-based decomposition

Octrees

K-d trees BSP trees

Other methods

Summary

### Octrees



Grid-based partitioning

decomposition

Octrees K-d trees BSP trees

Other

Summar



- Axis-aligned tree-based hierarchical partitioning of space.
  - The root node is typically the smallest AABB which fully encloses the world.
  - Each tree node can be divided into eight smaller regions of space
  - Typically the root node is recursively subdivided until either some maximum tree depth or minimum cube size limit is reached

Grid-based

Tree-based decomposition

K-d trees BSP trees

Other methods

Summar

### Octree construction



- static data Octree formed using a top-down approach.
  - All objects initially associated with the root node. As the root node is split, objects are assigned to all the child nodes it overlaps.
  - ➤ The process is recursively repeated until some stopping criteria is reached (e.g. max depth, min objects per cell, etc.).

Tree-based decomposition Octrees

K-d trees BSP trees

Other method:

Summar

### Octree construction



- static data Octree formed using a top-down approach.
  - All objects initially associated with the root node. As the root node is split, objects are assigned to all the child nodes it overlaps.
  - The process is recursively repeated until some stopping criteria is reached (e.g. max depth, min objects per cell, etc.).
- Dynamic data Octree formed by restricting objects to the lowest octree node that fully contains the object

Grid-based

Tree-based

Octrees

K-d trees BSP trees

Other methods

Summar

### Octree construction



Physics based animation

Grégory Leplâtre

Introductio

Grid-based partitioning

Tree-based decomposition Octrees

K-d trees BSP trees

Other

Summary

### K-d trees



Grégory Leplâtre

Introductio

Grid-based partitioning

Tree-based decomposition Octrees

K-d trees BSP trees

Other method:

Summar



► The k-dimensional tree (or k-d tree) is a generalisation of octrees and quadtrees, where k represents the number of dimensions subdivided.

Grégory Leplâtre

Introductio

Grid-based

Tree-based decomposition Octrees

K-d trees BSP trees

Other method:

Summar



- The k-dimensional tree (or k-d tree) is a generalisation of octrees and quadtrees, where k represents the number of dimensions subdivided.
  - Instead of simultaneously dividing space in two (quadtree) or three (octree) dimensions, the k-d tree divides space along one dimension at a time.

Grid-based

Tree-based decomposition Octrees K-d trees

K-d trees BSP trees

Other methods

Summar



- The k-dimensional tree (or k-d tree) is a generalisation of octrees and quadtrees, where k represents the number of dimensions subdivided.
  - Instead of simultaneously dividing space in two (quadtree) or three (octree) dimensions, the k-d tree divides space along one dimension at a time.
  - The splitting axis can be freely selected

Grégory Leplâtre

Introductio

Grid-based partitioning

Tree-based decompositio

Octrees Kild trees

BSP trees

Other

Summary

### **BSP** trees



Grid-based

Tree-based decomposition

K-d trees

0.1

method

Summar



- Can serve two functions:
  - Spatial partitioning
  - ▶ Volume representation for polygons/polyhedra

Tree-based decomposition Octrees K-d trees

BSP trees Other

Summar

# Partitioning approaches

- Object aligned partitioning
- ► Axis aligned partitioning ⇔ k-d tree
- Arbitrary partitioning

Grid-base

Tree-based decomposition Octrees

BSP trees

Other

Summar

# Building a BSP tree



- Building a BSP tree involves three steps.
  - Selection of a partitioning plane

Grid-based

Tree-based decomposition Octrees

RSP trees

Other

Summar

# Building a BSP tree



- Building a BSP tree involves three steps.
  - Selection of a partitioning plane
  - Partitioning input geometry into the positive and negative halfspaces of the dividing plane. Geometry that straddles the plane is split to the plane before partitioning.

Grid-based

Tree-based decomposition Octrees

BSP trees

Other

Summar

# Building a BSP tree



- Building a BSP tree involves three steps.
  - Selection of a partitioning plane
  - Partitioning input geometry into the positive and negative halfspaces of the dividing plane. Geometry that straddles the plane is split to the plane before partitioning.
  - Repeat recursively until termination condition is met

Grid-base

Tree-based decompositio

Octrees Kad trees

BSP trees

Other

Summar

# Selecting a dividing plane



- Two conflicting criteria:
  - minimise splitting of geometry
  - Balance geometry equally on each side of the plane
- Using a weighted combination is a good compromise.

Grid-based

Tree-based decomposition

# Other methods

nethods Sort and swe

Summar

### **Outline**

- 1 Introduction
- 2 Grid-based partitioning
- 3 Tree-based decomposition
- 4 Other methods
- 5 Summary

Grid-based

Tree-based decomposition

Other

Sort and sweep

Summary

# Sort and Sweep methods



Problem: One drawback of inserting objects into fixed spatial subdivisions (grids, octrees, etc.) is having to handle objects straddling multiple partitions. Grid-based

Tree-based decomposition

Other

Sort and sweep

methods

Summai

# Sort and Sweep methods



- Problem: One drawback of inserting objects into fixed spatial subdivisions (grids, octrees, etc.) is having to handle objects straddling multiple partitions.
- Solution:
  - maintain a sorted spatial ordering of objects.

Grid-based

Tree-based decomposition

Other method

Sort and sweep

Summar

# Sort and Sweep methods



- Problem: One drawback of inserting objects into fixed spatial subdivisions (grids, octrees, etc.) is having to handle objects straddling multiple partitions.
- Solution:
  - maintain a sorted spatial ordering of objects.
- Limitations: clustering of objects, but also sorting cost

Grid-based partitioning

Tree-based decomposition

Other method:

Summary

- 1 Introduction
- 2 Grid-based partitioning
- 3 Tree-based decomposition
- 4 Other methods
- 5 Summary

Other method:

Summary

# Summary

- Overview of common spatial division methods:
  - unifrom grid
  - Tree-based representations
  - Sort and sweep

Summary

Overview of common spatial division methods:

- - unifrom grid
  - Tree-based representations
  - Sort and sweep
- Other topics (see textbook)
  - optimisation
  - Ideal topic for further studies

Grid-based

Tree-based decomposition

Other method:

Summary

### References

Ericson, C. (2004). Real-time collision detection. CRC Press.