Improved Reduction from BDD to USVP

Shi Bai, Damien Stehlé, Weiqiang Wen

École Normale Supérieure de Lyon

ICALP, July 15, 2016, Rome, Italy

Bounded Distance Decoding (BDD) and unique Shortest Vector Problem (USVP)

Bounded Distance Decoding for $\alpha \geq 0$ (BDD $_{\alpha}$)

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$, a vector $\mathbf{t} \in \mathbb{Q}^n$ such that $\operatorname{dist}(\mathbf{t}, \mathcal{L}(\mathbf{B})) \leq \alpha \cdot \lambda_1(\mathbf{B})$.

Output: a lattice vector $\mathbf{c} \in \mathcal{L}(\mathbf{B})$ closest to \mathbf{t} .

Bounded Distance Decoding (BDD) and unique Shortest Vector Problem (USVP)

Unique Shortest Vector Problem for $\gamma \ge 1$ (USVP $_{\gamma}$)

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$ such that $\lambda_2(\mathcal{L}(\mathbf{B})) \geq \gamma \cdot \lambda_1(\mathcal{L}(\mathbf{B}))$.

Output: a non-zero vector $\mathbf{s}_1 \in \mathcal{L}(\mathbf{B})$ of norm $\lambda_1(\mathcal{L}(\mathbf{B}))$.

Main result

Improved reduction from BDD to USVP

For $1 \le \gamma \le poly(n)$, we have

$$BDD_{1/(\sqrt{2}\gamma)} \leq USVP_{\gamma}.$$

Road map

- Background
- The Lyubashevsky and Micciancio reduction and its limitation
- New reduction:
 - lattice sparsification.
 - reduction for $\gamma = 1$.
 - sphere packing.
- Open problems

Lattices

A definition of lattice

Given $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subseteq \mathbb{Q}^m$ a set of linear independent vectors, the lattice \mathcal{L} spanned by the $\mathbf{b}_i's$ is

$$\mathcal{L}(\mathbf{B}) = \Big\{ \sum_{i \in [n]} u_i \mathbf{b}_i : \mathbf{u} \in \mathbb{Z}^n \Big\}.$$

Lattice Minima

Lattice minimum

Given a lattice \mathcal{L} , the *i*-th minimum of \mathcal{L} is defined as:

$$\lambda_i(\mathcal{L}) = \inf\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(\mathbf{0}, r))) \geq i\}.$$

Lattice Minima - first minimum

Lattice minimum

Given a lattice \mathcal{L} , the *i*-th minimum of \mathcal{L} is defined as:

$$\lambda_i(\mathcal{L}) = \inf\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(\mathbf{0}, r))) \geq i\}.$$

Lattice Minima - second minimum

Lattice minimum

Given a lattice \mathcal{L} , the *i*-th minimum of \mathcal{L} is defined as:

$$\lambda_i(\mathcal{L}) = \inf\{r : \dim(\operatorname{span}(\mathcal{L} \cap \mathcal{B}(\mathbf{0}, r))) \geq i\}.$$

Why is BDD interesting?

▶ In cryptography:

- ► Learning With Error (LWE) problem serves as a security foundation.
- LWE is an average-case variant of BDD.
- In communication theory white Gaussian noise channel:
 - Wifi, mobile phone etc;
 - View message as a lattice point, Gaussian noise is added in channel transmission, decoding is solving BDD.

Why is USVP interesting?

- Best known algorithm (especially in practice) for solving BDD is via solving USVP:
 - First, reduce BDD to USVP.
 - ▶ Second, solve uSVP by lattice reduction, e.g., LLL and BKZ.

Why is USVP interesting?

- Best known algorithm (especially in practice) for solving BDD is via solving uSVP:
 - First, reduce BDD to ∪SVP.
 - ► Second, solve **uSVP** by lattice reduction, *e.g.*, LLL and BKZ.

 $BDD_{\frac{1}{\text{poly}(n)}}$ and $USVP_{\text{poly}(n)}$ are hard;

Best known algorithm takes **exponential** time in dimension *n*.

Prior works on BDD to USVP

• Slightly improved for some α , Liu *et al*, 2014; Galbraith; Micciancio, 2015.

[[]LM09]: V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem, CRYPTO, 2009.

[[]LWXZ14]: M. Liu, X. Wang, G. Xu and X. Zheng. A note on BDD problems with λ_2 -gap. Inf. Process. Lett., 2014.

[[]Ga15]: Private communication, 2015.

[[]Mi15]: Private communication, 2015.

Prior works on BDD to USVP

There is a factor **2** to be improved.

[[]LM09]: V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem, CRYPTO, 2009.

[[]LWXZ14]: M. Liu, X. Wang, G. Xu and X. Zheng. A note on BDD problems with λ_2 -gap. Inf. Process. Lett., 2014.

[[]Ga15]: Private communication, 2015.

[[]Mi15]: Private communication, 2015.

Comparison with prior works

The Lyubashevsky and Micciancio reduction

For any $\gamma \geq 1$, we have

$$BDD_{1/(2\gamma)} \leq USVP_{\gamma}$$
.

[LM09]: V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem, CRYPTO, 2009.

▶ BDD_{1/2} instance: $(\mathcal{L}(\mathbf{b}_1), \mathbf{t})$.

▶ Lift vector **t** into a higher dimension space by $\lambda_1(\mathcal{L}(\mathbf{b}_1))/2$.

Kannan embedding.

• We are at the limit: $\lambda'_1 = \lambda'_2$.

This is the best this reduction can achieve

Can we improve it?

Limitation in the Lyubushevsky and Micciancio reduction.

- A simple deterministic sparsification.
- ▶ Lattice $\mathcal{L}(\mathbf{B})$ with $\mathbf{B} = [\mathbf{b}_1]$.

- A simple deterministic sparsification.
- ▶ Lattice $\mathcal{L}(\mathbf{B})$ with $\mathbf{B} = [\mathbf{b}_1]$.

▶ Lattice $\mathcal{L}(\widetilde{\mathbf{B}})$ with $\widetilde{\mathbf{B}} = [2\mathbf{b}_1]$.

▶ Recall the limitation: $\lambda_2' = \lambda_1'$

Limitation is circumvented (for this example): $\lambda_2' > \lambda_1'$ now!

Main idea

▶ But we want more...

- keep only 1 closest vector to target t.
- remove all other somewhat close N vectors to t.

Khot's Lattice Sparsification [K03] (Adapted by [S14])

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}}+\mathbf{w}=\{\mathbf{x}\in\mathcal{L}(\mathbf{B})\mid \langle\mathbf{z},\mathbf{B}^{-1}(\mathbf{x}-\mathbf{w})
angle=0 mod
ho\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

[K03]: S. Khot. Hardness of approximating the shortest vector problem in high L_p norms. FOCS'03, 2003.

[S14]: N. Stephens-Davidowitz. Discrete Gaussian sampling reduces to CVP and SVP. In Proc. of SODA, 2016.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod p\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

▶ 1st sublattice:

$$p = 5, \mathbf{z} = (0, 0).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod p\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

- ▶ 2nd sublattice:
 - p = 5, z = (0, 1).

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod p\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

▶ 3rd sublattice:

$$p = 5$$
, $z = (1, 0)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{\boldsymbol{\rho},\boldsymbol{z}} + \boldsymbol{w} = \{\boldsymbol{x} \in \mathcal{L}(\boldsymbol{B}) \mid \langle \boldsymbol{z}, \boldsymbol{B}^{-1}(\boldsymbol{x} - \boldsymbol{w}) \rangle = 0 \text{ mod } \boldsymbol{\rho}\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

▶ 4th sublattice:

$$p = 5, \mathbf{z} = (1, 1).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{\boldsymbol{\rho},\boldsymbol{z}} + \boldsymbol{w} = \{\boldsymbol{x} \in \mathcal{L}(\boldsymbol{B}) \mid \langle \boldsymbol{z}, \boldsymbol{B}^{-1}(\boldsymbol{x} - \boldsymbol{w}) \rangle = 0 \text{ mod } \boldsymbol{\rho}\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

▶ 5th sublattice:

$$p = 5, \mathbf{z} = (4, 1).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod p\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

▶ 6th sublattice:

$$p = 5, \mathbf{z} = (1, 2).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{\boldsymbol{\rho},\boldsymbol{z}} + \boldsymbol{w} = \{\boldsymbol{x} \in \mathcal{L}(\boldsymbol{B}) \mid \langle \boldsymbol{z}, \boldsymbol{B}^{-1}(\boldsymbol{x} - \boldsymbol{w}) \rangle = 0 \text{ mod } \boldsymbol{\rho}\},$$

where p is a prime integer, $\mathbf{z} \in \mathbb{Z}_p^n$ and $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \leftarrow U(\mathbb{Z}_p^n)$.

▶ 7th sublattice:

$$p = 5, \mathbf{z} = (1,3).$$

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod p\},$$

- 7th sublattice: p = 5, z = (1,3).
- ▶ 1th shift: $\mathbf{w} = (0,0)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \mod p\},$$

- ▶ 7th sublattice: p = 5, z = (1, 3).
- **2** 2nd shift: $\mathbf{w} = (1, 0)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \mod p\},$$

- ▶ **7**th sublattice: p = 5, **z** = (1,3).
- ▶ **3**rd shift: $\mathbf{w} = (1, 1)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{\boldsymbol{\rho},\boldsymbol{z}} + \boldsymbol{w} = \{\boldsymbol{x} \in \mathcal{L}(\boldsymbol{B}) \mid \langle \boldsymbol{z}, \boldsymbol{B}^{-1}(\boldsymbol{x} - \boldsymbol{w}) \rangle = 0 \text{ mod } \boldsymbol{\rho}\},$$

- ▶ **7**th sublattice: p = 5, **z** = (1,3).
- ▶ 4th shift: $\mathbf{w} = (2, 1)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \mod p\},$$

- ▶ **7**th sublattice: p = 5, **z** = (1,3).
- **5**th shift: $\mathbf{w} = (2, 2)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod \rho\},$$

- ▶ **7**th sublattice: p = 5, **z** = (1,3).
- ▶ **6**th shift: $\mathbf{w} = (3, 2)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod \rho\},$$

- 7th sublattice:
 p = 5, z = (1, 3).
- ▶ **7**th shift: $\mathbf{w} = (3,3)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{p,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \mod p\},$$

- 7th sublattice:
 p = 5, z = (1,3).
- ▶ 8th shift: $\mathbf{w} = (4,3)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod \rho\},$$

- 7th sublattice:
 p = 5, z = (1, 3).
- ▶ **9**th shift: $\mathbf{w} = (4, 4)$.

Khot's Lattice Sparsification

Input: $\mathbf{B} \in \mathbb{Q}^{n \times n}$.

Output: a *shifted* *sparsified* sub-lattice of $\mathcal{L}(\mathbf{B})$:

$$\mathcal{L}_{
ho,\mathbf{z}} + \mathbf{w} = \{\mathbf{x} \in \mathcal{L}(\mathbf{B}) \mid \langle \mathbf{z}, \mathbf{B}^{-1}(\mathbf{x} - \mathbf{w}) \rangle = 0 \bmod \rho\},$$

- 7th sublattice:
 p = 5, z = (1, 3).
- ▶ **10**th shift: $\mathbf{w} = (5, 4)$.

Main result of the sparsification

A probabilistic argument on Khot's sparsification [S14]

Given a basis **B**, vectors $\mathbf{v}_1, \dots, \mathbf{v}_N, \mathbf{x} \in \mathcal{L}(\mathbf{B})$, and $\mathbf{B}^{-1}\mathbf{x} \notin \{\mathbf{B}^{-1}\mathbf{v}_i\}_{i \leq N}$, for any prime p, we have

$$\Pr_{\boldsymbol{z} \leftarrow U(\mathbb{Z}_q^n)} \left[\begin{array}{c} \boldsymbol{x} \in \mathcal{L}_{\boldsymbol{p},\boldsymbol{z}} + \boldsymbol{w} \\ \forall i, \quad \boldsymbol{v}_i \not\in \mathcal{L}_{\boldsymbol{p},\boldsymbol{z}} + \boldsymbol{w} \end{array} \right] \geq \frac{1}{\rho} - \frac{N}{\rho^2} - \frac{N}{\rho^{n-1}},$$

where $\mathbf{w} = \mathbf{B}\mathbf{u}$ for $\mathbf{u} \longleftrightarrow U(\mathbb{Z}_p^n)$.

$$\frac{1}{p} - \frac{N}{p^2}$$

is the (approximate) probability to

- ▶ keep 1 point;
- ▶ remove N points.

New reduction for $\gamma = 1$

▶ BDD_{1/ $\sqrt{2}$} instance: ($\mathcal{L}(\mathbf{B})$, t).

New reduction for $\gamma = 1$

Remove annoying points around the target t.

How sparse?

Recall the probability to keep 1 point and **remove** N points:

$$\frac{1}{p} - \frac{N}{p^2}.$$

How sparse?

Recall the probability to keep 1 point and **remove** N points:

$$\frac{1}{p} - \frac{N}{p^2}.$$

- ▶ We want it to be at least $\frac{1}{\text{poly}(n)}$;
- ▶ thus, $p \ge N$ and both should be \le poly(n).

We can sparsify the lattice by removing polynomially many points.

How sparse?

Recall the probability to keep $\boxed{1}$ point and **remove** \boxed{N} points:

$$\frac{1}{p} - \frac{N}{p^2}.$$

- ▶ We want it to be at least $\frac{1}{\text{poly}(n)}$;
- ▶ thus, $p \ge N$ and both should be \le poly(n).

We can sparsify the lattice by removing polynomially many points.

What is the worst-case list decoding radius?

Approaching the limit

Within $\lambda_1/\sqrt{2}$, adapted from [MG02, Th. 5.2]

For any *n*-dimensional lattice \mathcal{L} and any vector $\mathbf{t} \in \operatorname{Span}(\mathcal{L})$, we have $\#\mathcal{L} \cap \mathcal{B}(\mathbf{t}, \lambda_1(\mathcal{L})/\sqrt{2}) \leq \frac{2n}{n}$.

[MG02]: D. Micciancio and S. Goldwasser. Complexity of lattice problem: A cryptography perspective. Kluwer, 2009.

$\lambda_1/\sqrt{2}$ is the limit

Within $\lambda_1/\sqrt{2}$, adapted from [MG02, Th. 5.2]

For any *n*-dimensional lattice \mathcal{L} and any vector $\mathbf{t} \in \operatorname{Span}(\mathcal{L})$, we have $\#\mathcal{L} \cap \mathcal{B}(\mathbf{t}, \lambda_1(\mathcal{L})/\sqrt{2}) \leq \frac{2n}{n}$.

Extremely dense lattice, adapted from [MG02, Lem. 4.1]

For any $\alpha>1/\sqrt{2}$, there exists $\epsilon>0$ such that for any sufficiently large n we can find an n-dimensional lattice $\mathcal L$ and a vector $\mathbf t\in \mathrm{Span}(\mathcal L)$, such that $\#\mathcal L\cap\mathcal B(\mathbf t,\alpha\cdot\lambda_1(\mathcal L))\geq \mathbf 2^{n^\epsilon}$.

[MG02]: D. Micciancio and S. Goldwasser. Complexity of lattice problem: A cryptography perspective. Kluwer, 2009.

Our result

This reduction algorithm also works for any γ with $\gamma \leq \text{poly}(n)$.

This algorithm actually works for any $\gamma \geq$ 1, thanks Stephens-Davidowitz for the observation.

Open problems

- ▶ The sparsification in our reduction heavily relies on randomness.
 - Problem 1. Remove the sparsification randomness.

- In practice, randomly chosen lattice is sparse enough such that there is almost no point within $\lambda_1/\sqrt{2}$ -radius.
 - Problem 2. Is sparsification just an artifact?

Open problems

► Conjecture: BDD and USVP are computationally identical.

$$\begin{array}{c} \mathsf{BDD}_{\frac{1}{c \cdot \gamma}} = \mathsf{uSVP}_{\gamma} \\ c \in [1, \sqrt{2}] \end{array}$$

• Problem 3. What is the constant c? Is $c = \sqrt{2}$?