УДК 681.5 (519.95)

МЕТОД ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ СИСТЕМ С ИСПОЛЬЗОВАНИЕМ СЕТЕЙ ПЕТРИ – МАРКОВА

В.В. Котов, Н.А. Котова, Е.В. Ларкин

Предложен метод имитационного моделирования процесса функционирования системы с использованием сетей Петри — Маркова, основанный на дискретнособытийном подходе. Разработаны структуры данных для программной реализации метода. Описано программное обеспечение имитационного моделирования с использованием сетей Петри — Маркова.

Ключевые слова: сеть Петри – Маркова, имитационное моделирование.

Петри-Маркова представляет собой Сеть [1-2] структурнопараметрическую модель процесса функционирования некоторой системы. Подобная модель позволяет учитывать как временные и вероятностные свойства процесса перехода системы из одного состояния в другое, так и логику срабатывания подобных переходов. Применение аппарата сетей Петри – Маркова позволяет ответить на вопрос о принципиальной достижимости требуемого состояния анализируемой системы при использовании процесса выбранной структуры, и спрогнозировать время достижения указанного состояния. Хотя во многих случаях возможно получение аналитического решения данных задач, зачастую такое решение требует громоздких расчётов и оказывается весьма трудоёмким. Это обуславливает необходимость разработки процедуры численного имитационного моделирования процесса функционирования некоторой системы с использованием сетей Петри-Маркова, которая, будучи реализованной в программном обеспечении, позволит быстро и эффективно оценивать общие временные характеристики процесса функционирования системы, определять частоту реализации отдельных траекторий при многократной реализации процесса функционирования, оценивать частоту попадания в то или иное состояние, вероятности зависаний системы и т.д.

Рассматриваемые в настоящей работе сети Петри — Маркова состоят из элементов четырёх основных типов: позиция, переход, дуга и фишка. Каждый из этих элементов реализуется в программе в виде самостоятельного класса объектов.

Объект типа «позиция» реализован в виде класса PMPosition. Схема данных класса приведена на рис. 1.

Каждый объект класса PMPosition имеет собственный уникальный номер, хранящийся в поле ind и совпадающий с индексом в глобальном массиве позиций. Основным элементом, описывающим структурные связи

данной позиции с остальной частью сети, является массив ArcInd, в котором хранятся индексы переходов, с которыми данная позиция связана выходными дугами.

Количество существующих дуг определяется свойством NArcOut.

Вероятности выхода фишки по той или иной дуге в соответствующий переход хранятся в массиве Р. Его размер совпадает с размером ArcInd.

Puc. 1. Схема данных класса PMPosition

В массиве PLaw хранится тип закона распределения времени пребывания фишки в позиции, закодированный целым числом. Основные точечные характеристики случайной величины времени пребывания фишки в позиции хранятся в массивах MeanVal (математическое ожидание) и MRS (среднеквадратическое отклонение). Размеры всех этих массивов также равны NArcOut.

Следует обратить внимание на следующие особенности реализации:

- 1) выходные дуги и связанные с ними переходы не хранятся в позиции, поскольку с точки зрения процедуры моделирования работы сети безразлично, по какой входной дуге в позицию поступила фишка;
- 2) позиция с индексом «0» рассматривается как начальная позиция, в которой размещаются фишки до начала процедуры имитационного моделирования;
- 3) позиция, не имеющая выходных дуг, т.е. не связанная по выходу ни с одним переходом, рассматривается как конечная позиция моделирование останавливается после того, как все фишки собираются в конечной позиции.

Объект типа «переход» реализован в виде класса PMTransition. Схема данных класса приведена на рис. 2.

Каждый объект класса PMTransition также имеет собственный уникальный номер, хранящийся в поле ind и совпадающий с индексом объекта в глобальном массиве позиций.

Структура связей данного перехода с позициями сети описывается парой массивов:

в массиве ArcInInd, имеющем размер NArcIn, хранятся индексы позиций, которые имеют с переходом общие дуги и связаны с его входами; из этих позиций в переход могут приходить фишки;

в массиве ArcOutInd, имеющем размер NArcOut, хранятся индексы позиций, которые имеют с переходом общие дуги и связаны с его выходами; в эти позиции из перехода могут уходить фишки.

Puc. 2. Схема данных класса PMTransition

Массив Logic, совпадающий по размеру с массивом ArcOutInd, хранит логические условия срабатывания перехода по каждому из имеющихся выходов. Логические условия должны задаваться с дизъюнктивной или (лучше) в совершенной дизъюнктивной нормальной форме.

Вспомогательный массив NMarkers, имеющий размер NArcIn, совпадающий с массивом входных дуг ArcInInd, предназначен для учёта количества фишек, пришедших в переход из соответствующей позиции. Массив используется в процедуре определения условий срабатывания перехода.

Для реализации задачи имитационного моделирования предлагается использовать дискретно-событийный подход, в рамках которого процесс моделирования рассматривается как поток событий, каждое из которых представляет собой перемещение в случайный момент времени одной или нескольких фишек из позиции в переход или из перехода в позицию. Общую последовательность действий имитационного моделирования системы с использованием сетей Петри — Маркова можно представить в виде следующего метода.

- 1. Обнулить счётчик глобального модельного времени
- 2. Создать заданное количество фишек в начальной позиции сети
- 3. Для каждой созданной фишки выполнить шаги 4-6:
- 4. В соответствии с заданными вероятностями Р выхода из позиции определить случайным образом дугу, по которой фишка выйдет из позиции в переход.

- 5. Для выбранной дуги в соответствии с заданным законом распределения PLaw и параметрами математического ожидания MeanVal и среднеквадратического отклонения MRS определить случайное время пребывания dT данной фишки в текущей позиции.
- 6. Если фишки рассмотрены не все, выбрать следующую и перейти к шагу 4, иначе к шагу 7.
- 7. Просмотрев все фишки, определить фишку, имеющую наименьшее время пребывания в позиции dTmin эта выбранная фишка будет на совершать полушаг из позиции в переход через время dTmin.
- 8. Уменьшить для всех фишек оставшееся время пребывания в позициях на величину dTmin и увеличить на эту же величину глобальное время моделирования.
- 9. Вынуть выбранный маркер из соответствующей позиции и по ранее выбранной дуге переместить его в переход.
- 10. Для перехода, получившего новый маркер, проверить выполнение условий срабатывания перехода.
- 11. Если ни одно из условий срабатывания не выполнено, переход к шагу 14.
- 12. Для дуги, для которой обнаружено выполнившееся условие срабатывания перехода, определить связанную позицию.
- 13. Выполнить второй полушаг, переместив фишки, определившие условие срабатывания, из перехода в связанную позицию.
- 14. Если существуют фишки, находящиеся в позициях (кроме конечной), вернуться к шагу 7.
- 15. Если все фишки находятся в конечной позиции выдать сообщение об успешном окончании моделирования и завершить моделирование.
- 16. Если все фишки находятся в переходах и конечной позиции выдать сообщение о «зависании» системы и завершить моделирование.

При практической реализации этой процедуры в программном продукте необходимо предусмотреть сбор статистических сведений (время пребывания маркеров в позициях и переходах, количество полушагов, совершённых каждым маркером и т.п.).

Предлагаемый метод был реализован в программном обеспечении, включающем модуль редактирования сети Петри — Маркова и модуль, имитационного моделирования. Внешний вид основного окна программы приведён на рис. 3.

В процессе имитационного моделирования собирается следующая статистика (рис. 4).

В поле «№» указан номер фишки. Количество строк соответствует количеству фишек, выбранному до начала моделирования.

Столбец T_mod показывает общее время пребывания фишки в модели (без учёта времени пребывания в конечной позиции). Столбец Т_ргос содержит общее время пребывания фишки в позициях (кроме конечной).

Столбец T_wait показывает общее время пребывания фишки в непримитивных переходах.

Столбец N_pos содержит общее число пройденных фишкой позиций.

Столбец T_per_pos содержит информацию о среднем времени пребывания фишки в позиции (в пересчёте на одну позицию).

Столбец T_per_tra содержит информацию о среднем времени пребывания фишки в переходе.

Рис. 3. Внешний вид основного окна программы в процессе моделирования

Nō	T_mod	T_proc	T_wait	N_pos	T_per_pos	T_per_tra
0	148	148	0	3	49,00	0,00
1	77	77	0	3	25,00	0,00
2	127	127	0	3	42,00	0,00
3	69	69	0	3	23,00	0,00
4	117	117	0	3	39,00	0,00
5	130	130	0	3	43,00	0,00
6	103	103	0	3	34,00	0,00
7	112	112	0	3	37,00	0,00
8	145	145	0	3	48,00	0,00
9	85	85	0	3	28,00	0,00
3 среднем:	111,30	111,30	0,00	3,00	37,10	0,00

Рис. 4. Внешний вид окна статистики моделирования

По каждой строке можно отследить индивидуальную статистику движения каждой фишки. В последней строке «В среднем» приведена сводная статистика, получающаяся путём усреднения статистик отдельных фишек.

Таким образом, разработаный метод дискретно-событийного имитационного моделирования системы на сети Петри-Маркова, позволяет формализовать описание процесса функционирования анализируемой системы с учётом её структурно-параметрических и вероятностно-временных свойств, оценить достижимость требуемого состояния и время его достижения, а также оценить по формируемой в результате имитационного моделирования статистике траекторий отдельных фишек «узкие» места выбранной структуры и, таким образом, определить направление оптимизации анализируемой системы.

Список литературы

- 1. Ларкин Е.В., Котова Н.А. Проектирование информационных систем роботов с использованием сетей Петри-Маркова: учеб. пособие. Тула: Изд-во ТулГУ, 2008. 158 с.
- 2. К вопросу о моделировании отказоустойчивых систем с помощью сетей Петри-Маркова / Е.В. Ларкин, В.В. Котов, Н.А. Котова, В.А. Соколов // Фундаментальные исследования. №5, 2007. С. 74-78.

Котов Владислав Викторович, д-р техн. наук, проф., <u>vkotov@list.ru</u>, Россия, Тула, Тульский государственный университет,

Котова Наталья Александровна, канд. техн. наук, доцент, <u>nkotova@inbox.ru</u>, Россия, Тула, Тульский государственный университет,

Ларкин Евгений Васильевич, д-р техн. наук, проф., зав. кафедрой, <u>elar-kin@mail.ru</u>, Россия, Тула, Тульский государственный университет

METHOD OF SIMULATION MODELING USING PETRI-MARKOV NETWORKS

V.V. Kotov, N.A. Kotova, E.V. Larkin

A method of simulation modeling of functioning of a system using Petri-Markov networks based on discrete-event approach is offered. Data structures for software implementation of the method are developed. The developed program for simulation modeling using Petri-Markov network is described.

Key words: Petri-Markov network, simulation modeling.

Kotov Vladislav Viktorovich, doctor of technical sciences, professor, <u>vkotov@list.ru</u>, Russia, Tula, Tula State University,

Kotova Natalia Aleksandrovna, candidate of technical sciences, docent, <u>nkotova@inbox.ru</u>, Russia, Tula, Tula State University,

Larkin Evgeny Vasilievich, doctor of technical sciences, professor, head of chair, <u>elarkin@mail.ru</u>, Russia, Tula, Tula State University

УДК 681.7

ПОКООРДИНАТНЫЙ ПОИСК МЕСТОПОЛОЖЕНИЯ ТОЧЕЧНОГО ИСТОЧНИКА СИГНАЛА

Е.В. Ларкин, А.А. Аршакян

На основании сравнительного анализ двух методов поиска экстремума интеграла свертки, показано, что прямой метод поиска дает низкую точность, но обладает повышенным быстродействием. Показано, что совместить быстродействие и точность возможно за счет применения производной от согласованного фильтра при выделении точечного источника. Разработана покоординатная процедура поиска местоположения точечного источника.

Ключевые слова: сигнал, свертка, фильтрация, четная функция, нечетная функция, максимум, покоординатный поиск.

Одной из важных характеристик пеленгатора является точность определения координат точечного источника. Как следует из [1], при применении метода согласованной фильтрации задача оценки местоположения точечного источника сводится к задаче поиска экстремума функции, которая формируется на выходе согласованного фильтра.

Существует множество численных методов поиска экстремума, обладающих различной вычислительной сложностью и точностью, начиная от метода перебора и кончая численными градиентными методами [2]. Указанные методы могут быть разделены на два достаточно обширных класса: методы, связанные с прямым поиском максимума функции $u(\rho)$, где ρ - обобщенная координата, и методы, связанные с поиском нуля производной $\frac{du(\rho)}{d\rho}$. Проведем сопоставительный анализ точности, достигаемой при использовании методов данных классов (рис. 1).

Задача решается при условии, что на компьютерную обработку поступает цифровая модель сигнала, т.е. сигнал, прошедший процедуру дискретизации и квантования по уровню [3]. Выбор шага дискретизации по аргументу и квантования по уровню обусловлен в основном максимальной допустимой погрешностью измерения значения сигнала u. Будем считать, что указанная погрешность определяется интервалом квантования Δ_u .