

SÍLABO DINÁMICA

ÁREA CURRICULAR: TÓPICOS DE INGENIERÍA

CICLO: IV SEMESTRE ACADÉMICO: 2018-II

I. CÓDIGO DEL CURSO : 09025604030

II. CRÉDITOS : 03

III.REQUISITOS : 09005603050 Física I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza teórica, práctica y experimental. Tiene por propósito proveer al estudiante de ingeniería civil los conceptos y principios básicos que tratan del movimiento de los cuerpos bajo la acción de fuerzas externas.

El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Introducción-Cinética de puntos materiales o partículas. II. Cinética de partículas y de centros de masa. III. Movimiento bidimensional de un cuerpo rígido. IV. Cinética de un sólido rígido en movimiento general. Cálculo de fuerza. V. Vibraciones.

VI. FUENTES DE CONSULTA:

Bibliográficas

- · Bedford. (2014). Addison-Wesley Iberoamericana S:A. Quinta Edición
 - Ferdinand P. Beer, E. Russell Johnston. (2010). The Dynamic. McGraw-Hill Companies, Inc. USA.
 Edición 2010
 - · R.C. Hibbeler, (2014) *Mecánica vectorial para Ingenieros* DINÁMICA; PRENTICE HALL, INC Edición 2012

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INTRODUCCIÓN -CINEMÁTICA DE PUNTOS MATERIALES O PARTÍCULAS

OBJETIVOS DE APRENDIZAJE:

- Aplicar conocimientos físicos y matemáticos en el estudio del movimiento de una partícula.
- Comprobar la importancia del movimiento de los cuerpos en el campo de la Ingeniería Civil.

PRIMERA SEMANA

Primera sesión:

Marcos de referencia y derivada de vectores. Posición velocidad y aceleración. Cinemática de un cuerpo rectilíneo en movimiento.

Segunda sesión:

Práctica dirigida Nº 1.

SEGUNDA SEMANA

Primera sesión:

Coordenadas ortogonales (cartesianas). Coordenadas tangencial y normal.

Segunda sesión:

Práctica dirigida Nº2.

TERCERA SEMANA

Primera sesión:

Coordenadas Polares, coordenadas cilíndricas. Presentación de Trabajo 1.

Segunda sesión:

Práctica dirigida Nº 3.

UNIDAD II: CINÉTICA DE PARTÍCULAS Y DE CENTROS DE MASA

OBJETIVOS DE APRENDIZAJE:

- Aplicar conceptos de la Matemática y Dinámica en el estudio de cinética de partículas y centro de masas.
- Comprobar la importancia de los conceptos de Energía y Fuerza en el campo de la ingeniería civil.

CUARTA SEMANA

Primera sesión:

Cinética de partícula en coordenadas ortogonales y tangencial normal

Segunda sesión:

Práctica calificada 1

QUINTA SEMANA

Primera sesión:

Cinética de partícula en coordenadas cilíndricas

Segunda sesión:

Práctica dirigida Nº 4.

SEXTA SEMANA

Primera sesión:

Trabajo y energía cinética en el movimiento de partículas y centros de masa.

Práctica dirigida Nº 5

Segunda sesión:

Practica calificada 2

SÉPTIMA SEMANA

Primera sesión:

Conservación de la Cantidad de movimiento angular. Impacto

Segunda sesión:

Práctica dirigida Nº 5.

OCTAVA SEMANA

Examen Parcial

UNIDAD III: MOVIMIENTO BIDIMENSIONAL DE UN CUERPO RÍGIDO

OBJETIVOS DE APRENDIZAJE:

- Aplicar conceptos físicos y matemáticos en el estudio del cuerpo rígido.
- Comprobar la importancia del cuerpo rígido como una introducción a la ingeniería sismo resistente.

NOVENA SEMANA

Primera sesión:

Introducción. Relación entre velocidad lineal y velocidad angular para dos puntos del mismo cuerpo rígido.

Segunda sesión:

Práctica dirigida Nº 6

DÉCIMA SEMANA

Primera sesión:

Introducción. Momentos y productos de Inercia. Teorema de los ejes paralelos

Segunda sesión:

Cantidad de movimiento angular de un cuerpo rígido en movimiento plano.

Práctica dirigida Nº 7

UNIDAD IV: CINÉTICA DE UN SÓLIDO RÍGIDO EN MOVIMIENTO GENERAL-CÁLCULO DE FUERZA.

OBJETIVOS DE APRENDIZAJE:

 Calcular las fuerzas que actúan sobre los sólidos rígidos que serán necesario para el mejor conocimiento del funcionamiento de estas estructuras.

UNDÉCIMA SEMANA

Primera sesión:

Cinética de cuerpo rígido. Práctica dirigida Nº 8

Segunda sesión:

Continuación de práctica dirigida Nº 8

DUODÉCIMA SEMANA

Primera sesión:

Trabajo y energía de cuerpo rígido

Segunda sesión:

Práctica calificada 3

DECIMOTERCERA SEMANA

Primera sesión:

Energía potencial, fuerzas conservativas y conservación de la energía mecánica total.

Práctica dirigida Nº 9 Segunda sesión:

Principio de impulso y cantidad de movimiento. Ecuaciones del impulso y cantidad de movimiento para el cuerpo rígido.

DECIMOCUARTA SEMANA

Primera sesión:

Conservación de la Cantidad de movimiento lineal y angular. Práctica dirigida Nº 10

Segunda sesión:

Práctica calificada 4

UNIDAD V. VIBRACIONES

OBJETIVOS DE APRENDIZAJE

- Aplicar conceptos físicos y matemáticos en el estudio de estructuras de un grado de libertad sometido a movimiento vibratorio.
- Comprobar la importancia de estos conceptos como una introducción a la ingeniería sismo resistente.

DECIMOQUINTA SEMANA

Primera sesión:

Introducción a las vibraciones, vibración libre.

Vibración amortiguada y vibración forzada

Segunda sesión:

Práctica dirigida Nº 10

Práctica dirigida Nº 11

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII.CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y los alumnos, ecran, proyector de multimedia y una impresora.

Materiales: Manual universitario, aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+EP+EF)/4 PE=((P1+P2+P3+P4-MN)/3+W1)/2

Donde:

PF = Promedio Final PE = Promedio de Evaluaciones P1...P4 = Prácticas Calificadas

EF = Examen Final **MN** = Menor Nota de prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

	K=clave R=relacionado Recuadro vacío= no aplica				
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería				
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos				
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas				
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario				
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería				
(f)	Comprensión de lo que es la responsabilidad ética y profesional				
(g)	Habilidad para comunicarse con efectividad				
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global				
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida				
(j)	Conocimiento de los principales temas contemporáneos				
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería				

XIII. HORAS, SESIONES, DURACIÓN

a)	Teoría	Práctica	Laboratorio	Horas de clase:
,	2	2	0	

- b) Sesiones por semana: Dos sesiones.
- c) **Duración**: 4 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Felix Navarro Rodriguez

XV. FECHA

La Molina, julio de 2018.