When the ideals \mathfrak{a}_i form a chain of inclusions $\mathfrak{a}_1 \subseteq \cdots \subseteq \mathfrak{a}_n$, we get the following remarkable result.

Proposition 35.29. Let A be a commutative ring and let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be n ideals of A such that $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots \subseteq \mathfrak{a}_n$. If the module M is the direct sum of n cyclic modules

$$M = A/\mathfrak{a}_1 \oplus \cdots \oplus A/\mathfrak{a}_n$$

then for every p with $1 \le p \le n$, the ideal \mathfrak{a}_p is the annihilator of the exterior power $\bigwedge^p M$. If $\mathfrak{a}_n \ne A$, then $\bigwedge^p M \ne (0)$ for $p = 1, \ldots, n$, and $\bigwedge^p M = (0)$ for p > n.

Proof. With the notation of Proposition 35.28, we have $\mathfrak{a}_H = \mathfrak{a}_{\max(H)}$, where $\max(H)$ is the greatest element in the set H. Since $\max(H) \geq p$ for any subset with p elements and since $\max(H) = p$ when $H = \{1, \ldots, p\}$, we see that

$$\mathfrak{a}_p = \bigcap_{\substack{H \subseteq \{1,...,n\} \ |H|=p}} \mathfrak{a}_H.$$

By Proposition 35.28, we have

$$\bigwedge^{p} M \approx \bigoplus_{\substack{H \subseteq \{1, \dots, n\} \\ |H| = p}} A/\mathfrak{a}_{H}$$

which proves that \mathfrak{a}_p is indeed the annihilator of $\bigwedge^p M$. The rest is clear.

Example 35.1 continued: Recall that M is the \mathbb{Z} -module generated by $\{e_1, e_2, e_3, e_4\}$ subject to $6e_3 = 0$, $2e_2 = 0$. Then

$$\bigwedge^{1} M = \text{span}\{e_{1}, e_{2}, e_{3}, e_{4}\}$$

$$\bigwedge^{2} M = \text{span}\{e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{1} \wedge e_{4}, e_{2} \wedge e_{3}, e_{2} \wedge e_{4}, e_{3} \wedge e_{4}\}$$

$$\bigwedge^{3} M = \text{span}\{e_{1} \wedge e_{2} \wedge e_{3}, e_{1} \wedge e_{2} \wedge e_{4}, e_{1} \wedge e_{3} \wedge e_{4}, e_{2} \wedge e_{3} \wedge e_{4}\}$$

$$\bigwedge^{3} M = \text{span}\{e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\}.$$

Since e_1 and e_2 are free, $e_1 \wedge e_2$ is also free. Since $6e_3 = 0$, each element of $\{e_1 \wedge e_3, e_2 \wedge e_3, e_1 \wedge e_2 \wedge e_3\}$ is annihilated by $6\mathbb{Z} = (6)$. Since $2e_4 = 0$, each element of $\{e_1 \wedge e_4, e_2 \wedge e_4, e_3 \wedge e_4, e_1 \wedge e_2 \wedge e_4, e_1 \wedge e_2 \wedge e_3 \wedge e_4, e_1 \wedge e_2 \wedge e_3 \wedge e_4\}$ is annihilated by $2\mathbb{Z} = (2)$.