

Choices

- Choice is fundamental to human existence, ranging from daily individual decisions to major collective choices that shape society
- Individual choices encompass:
 - Routine decisions about time and money management
 - Major life decisions regarding housing, family, and career paths
- Collective choices involve:
 - Creation of laws and regulations
 - Management of public resources
 - Decision-making through voting or representatives
- All choices involve trade-offs:
 - ▶ Selecting one option means foregoing others
 - Both individual and collective choices require evaluating alternatives based on preferences

- People's choices reveal their preferences:
- Choosing an activity shows it was "worth" its cost
 - Observed choices help understand what people value
- Nonmarket valuation focuses on choices not captured by traditional markets:
 - Environmental goods and services (clean air, wilderness)
 - Natural amenities that aren't directly purchased
 - Public resources requiring collective decision-making
- ▶ Understanding preferences helps inform policy decisions:
 - Guides allocation of public funds
 - Assists in evaluating environmental preservation
 - Supports cost-benefit analysis of public projects

Market failure and choices

- ▶ The "invisible hand" principle has limitations:
 - While individual choices can benefit society, this doesn't always work for environmental goods
 - The principle assumes markets exist for all goods and services people value
- Market failures in environmental goods lead to undersupply:
 - Without markets, providers can't receive payment for environmental benefits
 - Private landowners lack incentives to protect habitat when they can't monetize the benefits
 - ▶ The true social value of environmental goods isn't reflected in market transactions

- ▶ Environmental externalities create economic inefficiencies:
 - ▶ Negative externalities occur when actions harm others without compensation
 - Companies don't pay for environmental damage, leading to excessive pollution
 - Private costs don't include environmental impacts, distorting decision-making
- Two solutions exist for market failures:
 - Create new markets for environmental goods where possible
 Implement government interventions through regulations or
 - direct provision
- Nonmarket valuation serves crucial roles:
 - Helps quantify environmental benefits that markets don't capture
 - Provides information to address market failures
 - ▶ Supports policy decisions about environmental protection

Non-market Valuation

- ▶ The evolution of nonmarket valuation spans several decades:
 - ▶ Originated in 1950s U.S. for water resource project analysis
 - ▶ Gained momentum in 1980s through key federal actions
 - Executive Order 12291 mandated benefit-cost analyses
 - ► Environmental legislation required damage assessments
- Applications expanded to include:
 - Environmental regulation benefit assessment
 - Natural resource damage compensation
 - Land and water management decisions
 - Ecosystem services valuation

- Growing recognition of ecosystem services drove wider adoption:
 - Non-economists began showing interest
 Environmental degradation raised awareness
 - Policy decisions often overlooked ecosystem value
 - Need emerged to quantify natural benefits
- Landmark ecosystem valuation studies emerged:
 - 1997 study estimated global ecosystem value at \$33 trillion
 - Generated controversy and critique from economistsSparked important discussions about valuation methods
- Highlighted need for proper methodology
 Current state of nonmarket valuation:
 - Serves critical role in environmental decision-making
 - ▶ Helps quantify previously ignored natural benefits
 - Requires careful understanding of proper techniques
 - Continues to evolve with new applications and methods

Values vs valuation

- Economic valuation differentiates between two types of values:
 - ► Held values: Core principles like loyalty, freedom, or environmental stewardship
 - Assigned values: Specific valuations, such as how much someone would pay to preserve a local forest or clean up a polluted lake
- Assigned values are influenced by multiple factors:
 - Individual perceptions: A hiker might value wilderness differently than a developer
 - Personal held values: Someone who believes in environmental protection might assign higher value to endangered species preservation
 - Context: The value assigned to clean air might be higher in a heavily polluted city versus a rural area
 - External circumstances: Income levels affect how much people can pay for environmental improvements

- Nonmarket valuation specifically focuses on:
 - Measuring assigned values: Quantifying how much people value improving air quality from level A to B
 - ▶ Relative changes: Comparing outcomes like having a protected wetland versus developing it
 - Practical examples: Determining the value of preserving a national park or reducing water pollution in a river
 - ➤ Trade-off decisions: Whether to spend \$20 million on forest preservation or a new museum
- Key principles of environmental valuation:
 - Values are relative: Clean air is valued against current pollution levels
 - Specific outcomes: Preserving 1,000 acres of wetland versus abstract environmental protection
 - Practical applications: Assessing damages from oil spills or benefits of emissions regulations
 - Real-world choices: Deciding between expanding a highway or protecting adjacent wildlife habitat

- Economic approach to valuation:
 - Real-world applications: Evaluating compensation for environmental damage from chemical spills
 - Policy decisions: Determining appropriate pollution control standards

 Project assessment: Analyzing costs and benefits of dampers.
 - Project assessment: Analyzing costs and benefits of dam construction
 - ▶ Resource management: Deciding optimal harvest levels for fisheries or forests

Concept of value

- Economic theory defines value through trade-offs:
 - ► Value = Maximum amount one would give up to gain something
 - Example: How much money someone would sacrifice to preserve a local park
 - Negative values exist too: Compensation required to accept pollution
- Two key principles of economic value:
 - Higher willingness to sacrifice indicates higher value
 - Example: If someone would pay 100 to save forest A but only 50 for forest B, they value A more
 - ▶ Values can be compared by measuring sacrifice amounts
 - Example: Choosing between 20M for air quality improvement or water cleanup

- Trade-offs can be measured in different ways:
 - ▶ Monetary terms (most common): Rupees willing to pay
 - ▶ Risk trade-offs: Accepting one risk to reduce another
 - Example: Accepting slightly higher traffic risk to reduce flood risk
 - Time trade-offs: Hours willing to volunteer for environmental cleanup
- Key economic value concepts:
 - Willingness to Pay (WTP): Amount someone would pay for improvement
 - Example: 50 monthly for cleaner air
 - ▶ Willingness to Accept (WTA): Compensation required to give up something
 - Example: 1000 to accept loss of neighborhood green space
- ▶ Benefits in economic valuation:
 - Specifically means monetary value assigned
 - ▶ Allows comparison across different projects
 - ► Enables cost-benefit analysis
 - Example: 5M benefit from wetland preservation versus 3M cost