CS/SE 2XB3 Lab 7 Report Enrolled in CSL02

Wang, Mingzhe 400316660

Li, Xing 400292346

wangm235@mcmaster.ca

li64@mcmaster.ca

Moon, Hyosik 400295620

moonh8@mcmaster.ca

March 12, 2021

Contents

1	Basic Graph Algorithms	2
2	Cycles and Connected Probability	2
	2.1 Cycle test	2
	2.2 Connection test	3
	2.3 Why portion of connected graph is less than that of cyclic graph	3

1 Basic Graph Algorithms

We implemented all relevant codes in graphs.py file.

2 Cycles and Connected Probability

2.1 Cycle test

To randomly construct graphs with k nodes and c edges, we treat each edge as the combination of two different nodes, then use random.sample function to choose c edges. The detail for this implementation can be found in cons_random_graph of code.py.

We designed the cycle test by increasing the number of edges from 1 to 400 for graphs with 100 nodes. For each number of edges c, we randomly generate 200 graphs, then calculated the portion of graphs which have a cycle vs c.

The observation is listed below:

- The test result (Figure 1) shows that the portion of graphs which have a cycle increases as the edge number c increases, and when the edge number c is around 80, the portion almost converges to 1.
- In addition, the average value of c which roughly half the graphs to contain a cycle is 55.0, with the accepted value for "half" is set as (0.45, 0.55).

Figure 1: Cycles and Connected Probability test

2.2 Connection test

Following the same process, we also provide the connection test result in Figure 1.

The observation is listed below:

- The portion of graphs which are connected increases as the edge number c increases, and when the edge number c is around 400, the portion almost converges to 1, (around 0.96).
- In addition, the average value of c which roughly half the graphs to be connected is 242.75, with the accepted value for "half" is set as (0.45, 0.55).

2.3 Why portion of connected graph is less than that of cyclic graph

The portion of connected graphs needs a higher number of edges to reach the same portion of cyclic graphs. Because in the case of cycle, it requires at least (k-1) edges for a graph with k nodes to be connected; while in the case of cycle, a graph with k nodes can easily be cyclic even with only 3 edges. (Assume $k \geq 3$.) That's the reason that the portion of cyclic graphs starts to rise at about 3 and the portion of connected graph rises only after 150.

References