3D Deep Learning approaches Volumetric Convnets

Evangelos Kalogerakis

3D Deep Learning approaches

The Multi-View approach

The Voxel approach

The Point approach

The Graph approach

Motivation

Some types of 3D data are truly volumetric (not "empty" inside)

fMRI

CT

Physical properties of 3D objects

Voxelization

Convert shape to 3D regular grid

3D Deep Learning approaches

The Multi-View approach

- The Voxel approach
 - Dense Volumetric Nets
 - Octree Nets
 - Sparse Tensor Nets
- The Point approach

The Graph approach

Volumetric Network

Volumetric networks use convolution over 3D spatial input (=> **4D** feature maps)

$$O(x, y, z, q) = \sum_{k=-n}^{k=n} \sum_{l=-n}^{l=n} \sum_{m=-n}^{n} \sum_{channel\ c}^{n} w_q(k, l, m, c) I(x+k, y+l, z+m, c)$$

3D ShapeNets: A Deep Representation for Volumetric Shapes, Wu et al. 2015

Volumetric Network

Volumetric networks use convolution over 3D spatial input (=> **4D** feature maps)

Computationally & memory expensive! Requires low-res input!

$$O(x, y, z, q) = \sum_{k=-n}^{k=n} \sum_{l=-n}^{l=n} \sum_{m=-n}^{n} \sum_{channel\ c}^{n} w_q(k, l, m, c) I(x+k, y+l, z+m, c)$$

3D ShapeNets: A Deep Representation for Volumetric Shapes, Wu et al. 2015

Rendered Mesh

Rendered Mesh

Voxelized 16³ Occupancy 4.19%

Rendered Mesh

Voxelized 32³ Occupancy 2.11%

Rendered Mesh

Voxelized 64³ Occupancy 1.06%

Rendered Mesh

Voxelized 128³ Occupancy 0.56%

Running convolution on so much empty space is wasteful!

Rendered Mesh

Voxelized 256³ Occupancy 0.31%

3D Deep Learning approaches

The Multi-View approach

The Point approach

- The Voxel approach
 - Dense Volumetric Nets
 - Octree Nets
 - Sparse Tensor Nets
- The Graph approach

Octrees: representation

Octrees are efficiently encoded as bit-strings

Pool responses within each cell (e.g., mean or max-pooling)

For efficiency, convolutions inside the cell need to be done once

For efficiency, convolutions inside the cell need to be done once

Octrees: pooling

Before pooling

OctNet: Learning Deep 3D Representations at High Resolutions, 2017

Octrees: pooling

After pooling

Experiments

Memory consumption and runtime of classification network versus dense convolutions (VoxNet)

Network evaluation with batch size 32 Voxelized ModelNet10 meshes

Experiments

Accuracy is not affected

3D Deep Learning approaches

The Multi-View approach

- The Voxel approach
 - Dense Volumetric Nets
 - Octree Nets
 - Sparse Tensor Nets
- The Point approach

The Graph approach

Main differences:

a) Do not perform convolution in empty space

Main differences:

- a) Do not perform convolution in empty space
- b) Do not store any features in empty space

Main differences:

- a) Do not perform convolution in empty space
- b) Do not store any features in empty space
- c) While performing convolution, skip multiplying filter weights with empty space

Main differences:

- a) Do not perform convolution in empty space
- b) Do not store any features in empty space
- c) While performing convolution, skip multiplying filter weights with empty space

Main differences:

- a) Do not perform convolution in empty space
- b) Do not store any features in empty space
- c) While performing convolution, skip multiplying filter weights with empty space
- d) Use sparse representations to store features e.g. COO format stores a matrix as:

(row1, col1, value1) (row2, col2, value2)

$$O(x, y, z, q) = \sum_{k=-n}^{k=n} \sum_{l=-n}^{l=n} \sum_{m=-n}^{n} \sum_{channel\ c}^{n} w_q(k, l, m, c) I(x+k, y+l, z+m, c)$$

$$O(x, y, z, q) = \sum_{\{k, l, m\} \in Nb(x, y, z)} \sum_{channel\ c} w_q(k, l, m, c) I(x + k, y + l, z + m, c)$$

This means that you access only offsets that contain non-empty voxels in the neighborhood of voxel at (x,y,z)

$$O(x, y, z, q) = \sum_{k=-n}^{k=n} \sum_{l=-n}^{l=n} \sum_{m=-n}^{n} \sum_{channel\ c}^{n} w_q(k, l, m, c) I(x+k, y+l, z+m, c)$$

$$O(x, y, z, q) = \sum_{\substack{\{k,l,m\} \in Nb(x,y,z) \text{ channel } c}} \sum_{\substack{channel \ c}} w_q(k,l,m,c)I(x+k,y+l,z+m,c)$$

This means that you access only offsets that contain non-empty voxels in the neighborhood of voxel at (x,y,z)

See also:

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR19 for generalization of this convolution operation in any number of dimensions

Minkowski

Replaces traditional convolutions (left) with sparse convolutions

Can deal with both 3D and 4D data (uses 4D sparse convolution for point cloud sequences)

MinkowskiNet

Close to state-of-the-art performance for 3D/4D scene labeling

Method	mIOU
ScanNet [5]	30.6
SSC-UNet [10]	30.8
PointNet++ [24]	33.9
ScanNet-FTSDF	38.3
SPLATNet [29]	39.3
TangetConv [30]	43.8
SurfaceConv [21]	44.2
3DMV [‡] [6]	48.4
3DMV-FTSDF [‡]	50.1
PointNet++SW	52.3
MinkowskiNet42 (5cm)	67.9
ScanNet predictions	

Implementation:

https://nvidia.github.io/MinkowskiEngine/

Paper:

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR19

Volumetric 3D Deep Learning Advantages

- Octree and Sparse Tensor Networks offer excellent performance for shape/scene segmentation and labeling (given large enough depth in octrees/high voxel resolution)
- All 2D convolution/pooling operations and modern network architectures (residual blocks) can be adapted to 3D
- Well-suited for analyzing volumetric data
 (e.g., shapes with interior structure/physical properties)

Volumetric 3D Deep Learning Disadvantages

- Point clouds/meshes must be voxelized => artifacts

 (a few details may be lost e.g., several points end up in the same voxel)
- Voxel resolution (or octree depths) needs to be carefully selected