§12. Druhy shodných zobrazení v \mathbb{E}_3

. .

Def: Složením dvou rovinových souměrností s různoběžnými rovinami souměrnosti vznikne zobrazení, které nazýváme otočením, nebo-li rotací v E_3 . Průsečnici těchto rovin nazýváme osou otočení.

V.12.2.: Nechť $S_{\beta} \circ S_{\alpha} : \mathbb{E}_3 \to \mathbb{E}_3$ je složené zobrazení dvou rovinných souměrností s rovinami $\alpha, \beta \subset \mathbb{E}_3$. Nechť $\alpha \perp \beta, \alpha \cap \beta = r$, pak zobrazení $S_{\beta} \circ S_{\alpha}$ má tyto vlastnosti:

1. $X \in r : X = X'$

2. $X \notin r$: střed úsečky XX' leží na r, kde $X' = S_{\beta} \circ S_{\alpha}(X)$.

Def: Složením dvou rovinových souměrností s navzájem kolmými rovinami souměrnosti vznikne zobrazení, které nazýváme osovou souměrností v E_3 . Průsečnici těchto rovin nazýváme osou osové souměrnosti.

Pozn: Osová souměrnost je další, tedy již třetí, druh souměrnosti v E_3 . Za její definici se častěji používá V.12.13.

Def: 1. Přímka $p\subset E_3$ se nazývá osa souměrnosti útvaru $U\subset E_3$, jestliže útvar U je samodružný v osové souměrnosti s osou p.

2. Útvar $U\subset E_3$ se nazývá osově souměrný, má-li alespoň 1 osu souměrnosti.

Př: Najděte všechny osy souměrnosti krychle a pravidelného čtyřbokého jehlanu.

Pozn: Každé shodné zobrazení v E_3 lze vyjádřit jako složení rovinových souměrností. První souměrnost zvolíme tak, aby se bod A zobrazil na A', druhou tak, aby se při složeném zobrazení zobrazil bod B na B' a bod A' aby zůstal samodružný, . . .