,单调收敛定理

Theorem (Monotone Convergence Theorem, B. LEVI)

Suppose that $(f_k)_{k \in \mathbb{N}}$ is a non-decreasing sequence (i.e., $f_k(\mathbf{x}) \leq f_{k+1}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and all $k \in \mathbb{N}$) of integrable functions on \mathbb{R}^n and that the sequence of integrals $(\int f_k)_{k\in\mathbb{N}}$ is bounded. Then $f(\mathbf{x}) = \lim_{k \to \infty} f_k(\mathbf{x})$ is finite almost everywhere, and the limit function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is integrable with

Corollary ("Improper" Lebesgue Integration)

Suppose $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ is a nested sequence of measurable sets in \mathbb{R}^n , $A = \bigcup_{k=1}^{\infty} A_k$, and $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$, is a function defined on A (i.e., $D \supseteq A$). Then f is integrable over A if and only if f is integrable over each A_k and the sequence $\left(\int_{A_k}|f|\right)_{k\in\mathbb{N}}$ is bounded (from above). If this is the case, we have

$$\int_{\mathbf{A}} f = \lim_{k \to \infty} \int_{\mathbf{A}_{\mathbf{A}}} f.$$

9. $\lim_{k \to \infty} \left(\int_0^1 x - x^k \cos x dx \right) \text{ is equ}$	al to	1/2	$\boxed{ \frac{\pi}{6}}$
4. $\lim_{k \to \infty} \int_0^1 \frac{t(1+k^2t^2)}{(1+kt)^2} dt \text{is equation}$ $\boxed{ 0} \qquad \boxed{ \frac{1}{3}}$	al to	1	+∞

条件: O If. f(x)= limf(x).

\$\$\$\tau: 0 \ \lim fk = \lim \fk.

Theorem (Bounded Convergence Theorem, H. LEBESGUE)

Suppose that $(f_k)_{k \in \mathbb{N}}$ is a sequence of integrable functions on \mathbb{R}^n converging almost everywhere and that there exists an integrable function (integrable "bound") $\Phi \geq 0$ on \mathbb{R}^n such that $|f_k(\mathbf{x})| \leq \Phi(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$. Then the limit function $f(\mathbf{x}) = \lim_{k \to \infty} f_k(\mathbf{x})$ (extended to \mathbb{R}^n in any way) is integrable with

ficx) = x - x cos x

9.
$$\lim_{k \to \infty} \left(\int_0^1 x - x^k \cos x \, dx \right) \text{ is equal to}$$

0. $x \in [0,1]$, $k \to \infty$ $x - x^k \cos x \to x$. limit function $f(x) = x \vee 0$ $|x - x^k \cos x| \le x + |x^k \cos x| \le x + x^k \le (x + 1)^{\phi(x)} \phi(x)$.

$$\lim_{k \to \infty} \int_0^1 x - x^k \cos x \, dx = \int_0^1 x = \frac{1}{2} x^2 \Big|_0^1 = \frac{1}{2}$$
. And $\frac{1}{2}$ the property of th

$$\frac{1}{2}$$

kEN. k>0.

$$k \rightarrow \omega$$
, $\frac{1}{kt} + kt \rightarrow \infty$

$$= t\left(1 - \frac{2kt}{1 + 2kt + k^2t^2}\right)$$

$$= t\left(1 - \frac{2}{\frac{1}{kt} + kt + 2}\right)$$

$$\Rightarrow t \cdot || \text{Init function.}$$

Suppose that $(f_k)_{k \in \mathbb{N}}$ is a sequence of integrable functions on \mathbb{R}^n converging almost everywhere and that there exists an integrable function (integrable "bound") $\Phi \geq 0$ on \mathbb{R}^n such that $|f_k(\mathbf{x})| \leq \Phi(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$. Then the limit function $f(\mathbf{x}) = \lim_{k \to \infty} f_k(\mathbf{x})$ (extended to \mathbb{R}^n in any way) is integrable with

$$\int f = \lim_{k \to \infty} \int f_k.$$

Notes

Wapplication: Parameter Integral

Theorem

Suppose $f: X \times Y \to \mathbb{R}$ $(X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n)$ is such that $\mathbf{y} o f(\mathbf{x}, \mathbf{y})$ is integrable for each $\mathbf{x} \in X$ and $F \colon X o \mathbb{R}$ is defined by $F(\mathbf{x}) = \int_{Y} f(\mathbf{x}, \mathbf{y}) d^{n}\mathbf{y}$.

- If $\mathbf{x} \to f(\mathbf{x}, \mathbf{y})$ is continuous for each $\mathbf{y} \in Y$ and there exists an integrable function $\Phi \colon Y \to \mathbb{R}$ such that $|f(\mathbf{x}, \mathbf{y})| \le \Phi(\mathbf{y})$ for all $(\mathbf{x}, \mathbf{y}) \in X \times Y$, then F is continuous.
- 2 If $\mathbf{x} \to f(\mathbf{x}, \mathbf{y})$ is a C^1 -function for each $\mathbf{y} \in Y$ and there exists an integrable function $\Phi \colon Y \to \mathbb{R}$ such that $\left| \frac{\partial f}{\partial x_i}(\mathbf{x},\mathbf{y}) \right| \leq \Phi(\mathbf{y})$ for all $(\mathbf{x}, \mathbf{y}) \in X \times Y$ and $1 \le j \le m$, then F is itself a C1-function and satisfies

$$\frac{\partial F}{\partial x_j}(\mathbf{x}) = \int_{\mathbf{Y}} \frac{\partial f}{\partial x_j}(\mathbf{x}, \mathbf{y}) \, \mathrm{d}^n \mathbf{y} \quad \text{for } 1 \le j \le$$

 $f \quad C'-funtion \quad \begin{cases} 0 & \frac{\partial f}{\partial x} & \frac{\partial f}{\partial x} & \frac{\partial f}{\partial x} \\ 0 & \frac{\partial f}{\partial x} & \frac{\partial f}{\partial x} \end{cases}$ $3 \left| \frac{\partial f}{\partial x_{j}} (x, y) \right| \leq \phi(y) \quad - \phi$

就可以把求等从外面放到里面.

10. For
$$F(x) = \int_0^1 e^{xt^2} dt$$
 the derivative $F'(1)$ is equal to
$$e^{t^2} \qquad \int_0^1 e^{t^2} dt \qquad \int_0^1 t e^{t^2} dt \qquad 2 \int_0^1 t e^{t^2} dt \qquad 2 \int_0^1 t e^{t^2} dt \qquad 2 \int_0^1 t^2 e^{t^2} dt \qquad 2 \int$$

$$f(x;t) = e^{xt^2} \qquad \frac{\partial f(x;t)}{\partial x} = t^2 e^{xt^2} \qquad \left| t^2 e^{xt^2} \right| \le t^2 e^{t^2}$$

$$F(x) = \int_0^1 \frac{\partial f(x;t)}{\partial x} dt = \int_0^1 t^2 e^{xt^2} dt \qquad x=1 \Rightarrow x=1 \Rightarrow$$

 $V^{T}(A + b^{T} = 0)$ $V^{T}A = -b^{T}$ $(V^{T}A)^{T} = (-b^{T})^{T}$ $A^{T}V = -b$ $A^{T} = A^{T} =$