Compilado de Geometria

Guilherme Zeus Moura zeusdanmou@gmail.com

1 Minha Notação

Essa notação não é usual. Para usar essa notação em qualquer outro lugar, é necessário explicar o que significa cada símbolo.

- /(A, B, ..., Z) significa que existe uma reta que passa por A, B, ..., Z.
- $\circ(A, B, ..., Z)$ significa que existe um círculo que passa por A, B, ..., Z e também denota, quando existe, o círculo que passa por esses pontos.

2 Algumas definições

Definição 2.1. O incentro I de um triângulo ABC é o encontro das bissetrizes dos ângulos $\angle CAB$, $\angle ABC$ e $\angle BCA$.

Problema 2.1. Prove que as três bissetrizes são concorrentes.

Corolário. I é o centro do círculo contido no interior de ABC tangente às retas BC, CA e AB, o incírculo de ABC.

Definição 2.2. O baricentro G de um triângulo ABC é o encontro das medianas relativas a A, B e C.

Problema 2.2. Prove que as três medianas são concorrentes e que este ponto divide cada mediana na razão 2 : 1.

Definição 2.3. O circumcentro O de um triângulo ABC é o encontro das mediatrizes de BC, CA e AB.

Problema 2.3. Prove que as três mediatrizes são concorrentes.

Corolário. O é o centro do círculo que passa por A, B e C, o circuncírculo de ABC.

Definição 2.4. O ortocentro H de um triângulo ABC é o encontro das alturas relativas a A, B e C.

Problema 2.4. Prove que as três alturas são concorrentes.

3 Círculo de Nove Pontos

Teorema 3.1. Existe um círculo que passa pelo ponto médio dos lados, pelos pés das alturas e pelo ponto médio dos segmentos AH, BH e CH, o círculo de nove pontos, cujo centro, N, é o ponto médio de OH.

Definição 3.1. Este círculo é o círculo de nove pontos.

Problema 3.1. Prove o Teorema 3.1.

4 Simedianas

Definição 4.1. A simediana relativa a A é a reta que liga A com o encontro das tangentes ao circuncírculo de ABC por B e por C.

Teorema 4.1. A simediana relativa a A é a reflexão da mediana relativa a A pela bissetriz de $\angle CAB$, isto é, a simediana é a isogonal da mediana.

Problema 4.1. Prove o Teorema 4.1.

Definição 4.2. O ponto simediano, ou alternativamente Ponto de Lemoine, L, é o encontro das simedianas relativas a A, B e C.

Definição 4.3. O conjugado isogonal de um ponto P com respeito ao triângulo ABC, P^* é a interseção das reflexões das retas PA, PB e PC em relação às bissetrizes de $\angle CAB$, $\angle ABC$ e $\angle BCA$, isto é, a interseção das isogonais de PA, PB e PC.

Demonstração. A existência de P^* na Definição 4.3 é uma consequência direta do Teorema de Ceva Trigonométrico.

Corolário. Usando a Definição 4.3 e o Teorema 4.1, o ponto L, definido em Definição 4.2, existe.

5 Incírculos

6 Excírculos

Definição 6.1. Seja I_A é a interseção da bissetriz de $\angle CAB$ com as bissetrizes externas de $\angle ABC$ e $\angle CBA$.

Problema 6.1. Prove que as bissetrizes acima se intersectam.

Definição 6.2. O excírculo relativo a A é um círculo fora do triângulo ABC, tangente ao lado BC e ao prolongamento dos lados AB e AC.

Corolário. I_A é o centro do excírculo relativo a A.

6.1 Nagel

Definição 6.3. Vamos chamar de P_A o ponto de tangência do excírculo relativo a A com o lado BC, com P_B e P_C definidos analogamente.

Teorema 6.1. O ponto P_A também é conhecido como ponto isoperimétrico, pois o caminho ABD tem mesmo comprimento que o caminho ACD.

Problema 6.2. Prove o Teorema 6.1.

6.2 Círculo (B, C, I, I_A)

Teorema 6.2. Seja M a interseção da bissetriz de $\angle A$ com o circuncírculo. Então $\circ (B, C, I, I_A)$, com centro M.

Problema 6.3. Prove o Teorema 6.2.

7 Ponto de Fermat

Problema 7.1. Seja P um ponto no plano. Como se constrói um triângulo ABC equilátero tal que os PA = 2, PB = 3 e PC = 4?