Introduction to Quantile Regression and Applications

Cliff J. Huang
Emeritus Professor
Department of Economics
Vanderbilt University

Yung Lieh. Yang Emeritus Professor Department of Finance Ling Tung University

November 2015

Outline

- I. Mean, Quantiles, and Distribution
- II. Quantile Regression
- III. Fundamentals of Quantile Estimation
- IV. Computation of Quantile Regression: R-Program
- V. Conclusion Remarks

I. Mean, Quantiles, and Distribution

- 1. Distribution of a Random Variable
 - Example: Starting Salary of 10 Employees

♦ Mean = 27

Quartiles:

First Quartile (25 Percentile) = 20

Second Quartile (50 Percentile) = 25 = Median

Third Quartile (75 Percentile) = 34

Distribution Skewness

Symmetric (No Skewness):

Median = Mean

Median – First Quartile = Third Quartile – Median

Positive Skewness (Skew to the Right)

Median < Mean

Median – First Quartile < Third Quartile – Median

Negative Skewness (Skew to the Left)

Median > Mean

Median – First Quartile > Third Quartile – Median

• Quantiles of order τ : $Q(\tau)$, $0 \le \tau \le 1$

•
$$Q(0.20) = 19$$
; $Q(0.25) = 20$; $Q(0.50) = 25$
 $Q(0.75) = 34$; $Q(0.90) = 36$; $Q(1.00) = ?$

• Quantile as a Ranking:

$$Q(\tau) < Q(\lambda)$$
 if $\tau < \lambda$

- 2. Quantile and Distribution Function
 - Distribution Function

$$F(y) = P(Y \le y)$$

- Quantiles
 - \diamond Quantiles of order τ :

$$F(y) = P(Y \le y) = \tau$$
 implies $y = F^{-1}(\tau) = Q(\tau)$

Examples:

$$25 = F^{-1}(0.5) = Q(0.5)$$

$$34 = F^{-1}(0.75) = Q(0.75)$$

II. Quantile Regression

- 1. Classical Regression versus Quantile Regression
 - Example:

y = salary; x = years of experience

Salary

Years of Experience

Classical Regression

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Conditional Mean Regression

$$E(y_i \mid x_i) = \beta_0 + \beta_1 x_i \equiv \mu_i$$

• Qunatile Regression of order $\tau \in [0, 1]$

$$y_i = \beta_0^{\tau} + \beta_1^{\tau} x_i + \varepsilon_i$$

Conditional Quantile Regression

$$Q(\tau \mid x_i) = \beta_0^{\tau} + \beta_1^{\tau} x_i$$

- 2. Example: Quantile Regressions of Wage Determination in Taiwan
 - Data: 29,133 plant workers in 1996 wage = hourly wage; experience = months on current job
 - Regressions:

Conditional Mean Regression

$$ln(wage) = \beta_0 + \beta_1 (experience) + \varepsilon$$

Qunatile Regression

$$ln(wage) = \beta_0^{\tau} + \beta_1^{\tau} (experience) + \epsilon$$

τ	$eta_0^ au$	$eta_1^{ au}$
0.1	4.47987	-0.00137
0.2	4.65334	-0.00056
0.3	4.77952	0.00000
0.4	4.88014	0.00040
0.5	4.99839	0.00062
0.6	5.07736	0.00094
0.7	5.18110	0.00111
0.8	5.31419	0.00117
0.9	5.50766	0.00115
0.95	5.69128	0.00121
Conditional Mean	5.02400	-0.000086

experience

III. Fundamentals of Quantile Regression Estimation

- 1. Estimation of Mean and Quantile
 - Sample Observations: $y = (y_1, y_2, ..., y_n)$
 - Population Mean and Population Quantile

$$E(y_i) = \mu; Q(\tau) = F^{-1}(\tau)$$

- Least-square Estimation of Population Mean
 - Model: $y_i = \mu + \varepsilon_i = \overline{Y} + e_i$

Error: $e_i = y_i - \overline{Y}$

- Loss Function: $\rho(e_i) = e_i^2 = (y_i \overline{Y})^2$
- **.** Least-square method:

$$\min_{\bar{Y}} \sum_{i=1}^{n} \rho(e_i) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \bar{Y})^2; \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

- Quantile Estimation of $Q(\tau)$
 - Model: $y_i = Q(\tau) + \varepsilon_i = \hat{Q} + e_i$

Error: $e_i = y_i - \hat{Q}$

Example: $\tau = 0.25$ implies $100 \tau \%$ of $e_i = y_i - \hat{Q} \le 0$

$$100 (1-\tau) \% \text{ of } e_i = y_i - \hat{Q} \ge 0$$

A Loss Function:

$$\begin{split} \rho_{\tau}\left(e_{i}\right) &= \tau \times e_{i} = \tau \times \left(y_{i} - \hat{Q}\right) & \text{if } e_{i} \geq 0 \\ &= \left(\tau - 1\right) \times e_{i} = \left(\tau - 1\right) \times \left(y_{i} - \hat{Q}\right) & \text{if } e_{i} \leq 0 \\ \rho_{\tau}\left(e_{i}\right) &= \left(\tau - I\left(e_{i} < 0\right)\right) \times e_{i} = \left(\tau - I\left(y_{i} - \hat{Q} < 0\right)\right) \times \left(y_{i} - \hat{Q}\right) \\ \rho_{\tau}(e) & & & & & & & & & \\ \end{split}$$

Quantile Estimation Method

$$\min_{\hat{O}} \quad \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}\right) = \sum_{i=1}^{n} \left(\tau - I\left(y_{i} - \hat{Q} < 0\right)\right) \times \left(y_{i} - \hat{Q}\right)$$

Note: (1) For any i, there is the constraint

If
$$(y_i - \hat{Q}) \begin{cases} \geq \\ \leq \end{cases} 0$$
, then $\rho_{\tau}(e_i) = \begin{cases} \tau \times (y_i - \hat{Q}) \\ (1 - \tau) \times (\hat{Q} - y_i) \end{cases}$

i.e, for any i,

$$\hat{Q} + (y_i - \hat{Q}) - (\hat{Q} - y_i) = y_i$$

(2) Let $u_i = (y_i - \hat{Q}) \ge 0$, $v_i = (\hat{Q} - y_i) \ge 0$ be two "slack" variables, then for any i,

$$\rho_{\tau}(e_i) = \tau \times u_i + (1 - \tau) \times v_i$$
subject to $\hat{Q} + u_i - v_i = y_i$

Linear Programming Estimation of Quantiles

$$\min_{\hat{Q}, u, v} \sum_{i=1}^{n} (\tau \times u_i + (1-\tau) \times v_i)$$
subject to $\hat{Q} + u_i - v_i = y_i$, $i = 1, 2, ..., n$

$$u_i, v_i \ge 0$$

- 2. Estimation of Classical Regression and Quantile Regression
 - Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Classical Regression
 - Conditional Mean: $E(y_i | x_i) = \beta_0 + \beta_1 x_i$
 - Quantile Regression:
 - Conditional Quantile: $Q(\tau | x_i) = \beta_0^{\tau} + \beta_1^{\tau} x_i$

$$e_i = y_i - \hat{\beta}_0^{\tau} - \hat{\beta}_1^{\tau} x_i$$

IV. Computation of Quantile Regression: R-Program

• Free Downloard of **R-Program** at

http://www.r-project.org

- Example on Wage Determination in Taiwan
 - ❖ Observations: 29,133 plant workers in 1996
 - ❖ Variables: wage = hourly wage; lnwage = ln(wage); gender = 1 male, 0 female; age = year of age; married = 1 married, 0 unmarried; education = year of education; experience = months of working experience on current job
- Use of R-Program
 - ❖ Data file: wage.dat

wage	lnwage	gender	age	married	education	experience
270.83	5.60	1	33	0	9	2
175	5.16	1	36	1	12	125
116.07	4.75	0	28	1	12	26

Program file:

- Outputs:
 - (1) Least-square outputs:

Coefficients:

```
(Intercept) gender married education experience 4.078e+00 3.074e-01 2.242e-01 5.660e-02 -2.925e-05
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.078e+00	1.099e-02	370.912	<2e-16 ***
gender	3.074e-01	6.071e-03	50.641	<2e-16 ***
married	2.242e-01	6.344e-03	35.340	<2e-16 ***
education	5.660e-02	7.833e-04	72.260	<2e-16 ***
experience	-2.925e-05	2.814e-05	-1.039	0.299

(2) Quantile Outputs:

tau: [1] 0.05 Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	3.20542	0.02845	112.66064	0.00000
gender	0.26821	0.01336	20.08050	0.00000
married	0.21626	0.01395	15.49835	0.00000
education	0.08225	0.00195	42.17080	0.00000
experience	-0.00139	0.00010	-14.33464	0.00000

(3) Graphs of $y_i = \beta^{\tau}$

(Intercept)

gender

married

education

experience

V. Conclusion Remarks on Quantile Regression

1. Regression:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

• Homocedastic Case: $\epsilon_i \sim iid$

$$\begin{aligned} Q_{Y}\left(\tau \mid x_{i}\right) &= \beta_{0} + \beta_{1}x_{i} + Q_{\varepsilon}\left(\tau\right) = \left(\beta_{0} + Q_{\varepsilon}\left(\tau\right)\right) + \beta_{1}x_{i} \\ &= \beta_{0}^{\tau} + \beta_{1}x_{i} \end{aligned}$$

Intercept varies with τ , but not slope.

• Heteroscedastic Case: $\varepsilon_i = h(x_i)w_i = x_i w_i$

$$\begin{aligned} Q_{Y}\left(\tau \,|\, x_{i}\right) &= \beta_{0} + \beta_{1}x_{i} + x_{i}Q_{w}\left(\tau\right) = \beta_{0} + \left(\beta_{1} + Q_{w}\left(\tau\right)\right)x_{i} \\ &= \beta_{0} + \beta_{1}^{\tau}x_{i} \end{aligned}$$

Slope varies with τ , but not intercept.

- 2. Interpreting Quantile Regression Coefficients:
 - Classical Regression:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i; \quad E(y_i \mid x_i) = \beta_0 + \beta_1 x_i$$

$$\frac{\partial E(y_i \mid x_i)}{\partial x_i} = \beta_1$$

* Transformation: $\ln(y_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$; $E(\ln(y_i) | x_i) = \beta_0 + \beta_1 x_i$;

$$\frac{\partial E(\ln(y_i)|x_i)}{\partial x_i} = \beta_1, \text{ but } \frac{\partial E(y_i|x_i)}{\partial x_i} \neq e^{\beta_1}$$

• Quantile Regression:

$$\begin{aligned} & \boldsymbol{\psi}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\boldsymbol{x}_{i} + \boldsymbol{\epsilon}_{i}; \quad \boldsymbol{Q}_{y}\left(\boldsymbol{\tau} \,|\, \boldsymbol{x}_{i}\right) = \boldsymbol{\beta}_{0}^{\tau} + \boldsymbol{\beta}_{1}^{\tau}\boldsymbol{x}_{i} \\ & \frac{\partial \boldsymbol{Q}_{y}\left(\boldsymbol{\tau} \,|\, \boldsymbol{x}_{i}\right)}{\partial \boldsymbol{x}_{i}} = \boldsymbol{\beta}_{1}^{\tau} \end{aligned}$$

***** Transformation: $\ln(y_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$; $Q_{\ln(y)}(\tau \mid x_i) = \beta_0^{\tau} + \beta_1^{\tau} x_i$

$$\frac{\partial Q_{ln(y)}(\tau \mid x_i)}{\partial x_i} = \beta_1^{\tau} \text{ and } \frac{\partial Q_y(\tau \mid x_i)}{\partial x_i} = e^{\beta_1^{\tau}}$$