Functions of Several variables

Section 14.1-14.3

Outline

- Functions of Several Variables
 - Graphs
 - Level Curves
- Limits and Continuity
- Partial Derivatives
 - Definition
 - Geometric Interpretation
 - Higher Derivatives and Clairaut's Theorem

Derivatives
$$f(x) \qquad f'(a) = \qquad f'(x) = \qquad \qquad f(x,y) = \qquad f$$

 $f(x_1,...,x_n)$ $f_{x_{\hat{i}}}(x_1,...,x_n) =$

If f is a function of two variables, its **partial derivatives** are the functions f_x and f_y defined by

$$f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

Rule for Finding Partial Derivatives of z = f(x, y)

- **1.** To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.
- **2.** To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

Notations for Partial Derivatives If z = f(x, y), we write

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_{y}(x, y) = f_{y} = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y} = f_{2} = D_{2}f = D_{y}f$$

In general, if u is a function of n variables, $u = f(x_1, x_2, \ldots, x_n)$, its partial derivative with respect to the ith variable x_i is

$$\frac{\partial u}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_{i-1}, x_i + h, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

We also denote it as

$$\frac{\partial u}{\partial x_i} = \frac{\partial f}{\partial x_i} = f_{x_i} = f_i = D_i f$$

Ex:
$$f(x,y) = \sqrt{1 + x^2y^4} + \tan^{-1}(\frac{y}{x}) + x \ln y + 2^{xy^2}$$

Find $f_x(x,y)$ and $f_y(x,y)$.

Ex:
$$f(x,y,z) = (2x+y)$$
. Find f_x , f_y , and f_z .

Ex:
$$f(x,y,z) = \int_{xy}^{\frac{y}{\sqrt{z}}} g(t) dt$$
, where $g(t)$ is continuous.
Find $f_{x}(x,y,z)$, $f_{y}(x,y,z)$ and $f_{z}(x,y,z)$.

Ex:
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \end{cases}$$
 Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Ex:
$$f(x,y) = \begin{cases} (x^2 + y) & (x + y) \\ 0 & (x^2 + y) \end{cases}$$
, if $(x,y) \neq (0,0)$.

Find $f_x(0,0)$ and $f_y(0,0)$.

Ex: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y by the equation $e^{z} = xy + \sin(xz) + e^{z}$ at (0, 1, 2).

The partial derivatives $f_x(a,b)$ and $f_y(a,b)$ can be interpreted geometrically as the slopes of the tangent lines at P(a,b,c) to the traces C_1 and C_2 of the graph of f (surface S) in the planes x=a and y=b.

Parametric equations for C, and Cz

 $C_1: \vec{R}(x) = (x, b, f(x, b))$ $x \in \mathbb{R}$

C2: 1/2 (4) = (4, 4, 4 (4))

9 FIR

The tangent line of C, at Ca, b, f(a,b) is parallel to

The tangent line of Cz at carb, fca, b) is parallel to

Ex: $S: Z = 4 - \frac{x^2}{3} + \frac{y^2}{2}$. $C_1 = S \cap P_{y=2}$, $C_2 = S \cap P_{x=3}$. Find tangent line equations of C_1 and C_2 at (3, 2, 3).

 \blacktriangleright We also define **second partial derivatives** of f.

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

Ex:
$$f(x,y) = x^3y^2 + e^{xy}$$
. Find f_{xy} and f_{yx} .

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a, b) = f_{yx}(a, b)$$

Proof of Clairaut's Theorem:

Tor h,k close to 0, consider

Q(h,k) = f(ath,btk) - f(ath,b) - f(a,b) + f(a,b)

Review

- What are the graph and level curves of a function f(x,y) ?
- How do we define and compute the limit of a function of several variables?
- What are the partial derivatives of a function of several variables? Describe their geometric meanings.
- State Clairaut's Theorem.