

Kaffeegetränke

a) Ein bestimmtes Kaffeegetränk wird von den zwei Produktionsmaschinen A und B erzeugt.

Der Koffeingehalt dieses Kaffeegetränks kann bei beiden Produktionsmaschinen als normalverteilt angenommen werden. Die Graphen der Verteilungsfunktionen der beiden Produktionsmaschinen A und B sind in der nachstehenden Abbildung dargestellt.

Die Produktionsmaschine A produziert mit Erwartungswert μ_A und Standardabweichung σ_A . Die Produktionsmaschine B produziert mit Erwartungswert μ_B und Standardabweichung σ_B .

1) Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen so, dass eine richtige Aussage entsteht. [0/1 P.]

Für die beiden Produktionsmaschinen gilt:

1)	und	2

1	
$\mu_A < \mu_B$	
$\mu_A = \mu_B$	
$\mu_A > \mu_B$	

2	
$\sigma_A < \sigma_B$	
$\sigma_A = \sigma_B$	
$\sigma_A > \sigma_B$	

Der Koffeingehalt eines anderen Kaffeegetränks ist ebenfalls annähernd normalverteilt. Der um den Erwartungswert μ symmetrische 70-%-Zufallsstreubereich beträgt in diesem Fall [430 mg/L; 590 mg/L].

2) Berechnen Sie die Standardabweichung σ für diese Normalverteilung.

[0/1 P.]

b) Die Kosten für die Produktion eines bestimmten Kaffeefertiggetränks können durch die Kostenfunktion *K* beschrieben werden.

$$K(x) = F + v \cdot x$$

x ... Produktionsmenge in ME

K(x) ... Kosten bei der Produktionsmenge x in GE

v ... variable Stückkosten in GE/ME

F... Fixkosten in GE

In der nachstehenden Abbildung sind der Graph der zugehörigen Stückkostenfunktion \overline{K} und die horizontale Asymptote von \overline{K} dargestellt.

1) Lesen Sie aus der obigen Abbildung die variablen Stückkosten *v* ab.

$$V =$$
______ GE/ME [0/1 P.]

c) Die Kosten für die Produktion eines bestimmten Heißgetränks können näherungsweise durch die Kostenfunktion K_2 beschrieben werden.

$$K_2(x) = \frac{1}{5000000} \cdot x^3 - \frac{1}{2000} \cdot x^2 + \frac{3}{5} \cdot x + 200$$

x ... Produktionsmenge in ME

 $K_2(x)$... Kosten bei der Produktionsmenge x in GE

1) Berechnen Sie die Kostenkehre der Funktion K_2 .

[0/1 P.]

Der Preis des Heißgetränks beträgt 0,50 GE/ME.

2) Ermitteln Sie den Gewinnbereich.

[0/1 P.]

d) Kaffee wird oft aus sogenannten *Cappuccino-Gläsern* getrunken. Die Form eines Cappuccino-Glases kann durch Rotation der Graphen der Funktionen *f* und *g* um die *x*-Achse modelliert werden (siehe nachstehende Abbildung).

Bildquelle: bloomix GmbH, https://www.bloomix.at/media/catalog/product/cache/1/image/650x/040ec09b1e35df139433887a97daa6 6f/c/-/c-112-200_p2_1.jpg [03.11.2021].

$$f(x) = -0.02 \cdot x^2 + 0.31 \cdot x + 2.44$$
 mit $0 \le x \le b$

1) Berechnen Sie mithilfe der Funktion f den maximalen Außendurchmesser d des Glases. [0/1 P.]

Die innere Form des Cappuccino-Glases entsteht durch Rotation des Graphen der Funktion g um die x-Achse.

2) Stellen Sie eine Formel zur Berechnung des Innenvolumens V auf.

$$V = [0/1 P.]$$

Bundesministerium Bildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

a1)

1	
$\mu_A = \mu_B$	\boxtimes

2	
$\sigma_A < \sigma_B$	\boxtimes

a2)
$$\mu = \frac{430 + 590}{2} = 510$$

 $P(430 \le X \le 590) = 0.70$

Berechnung der Standardabweichung σ mittels Technologieeinsatz:

$$\sigma$$
 = 77,18... mg/L

- a1) Ein Punkt für das richtige Ankreuzen.
- a2) Ein Punkt für das richtige Berechnen der Standardabweichung σ .

Bundesministerium

Bildung, Wissenschaft und Forschung

b1) v = 0.25 GE/ME

b1) Ein Punkt für das Ablesen der richtigen variablen Stückkosten v.

c1)
$$K_2''(x) = 0$$
 oder $\frac{6}{5000000} \cdot x - \frac{1}{1000} = 0$
 $x = 833,3...$

Die Kostenkehre der Funktion K_2 liegt bei rund 833 ME.

c2)
$$E(x) = 0.5 \cdot x$$
 $G(x) = 0.5 \cdot x - K_2(x)$

$$G(x) = 0$$
 oder $-\frac{1}{5000000} \cdot x^3 + \frac{1}{2000} \cdot x^2 - \frac{1}{10} \cdot x - 200 = 0$

Berechnung mittels Technologieeinsatz:

$$(x_1 = -500)$$

$$x_2 = 1000$$

$$x_3 = 2000$$

Gewinnbereich: [1000; 2000] (in ME)

Auch eine Angabe des Gewinnbereichs als 1 000; 2 000 ist als richtig zu werten.

- c1) Ein Punkt für das richtige Berechnen der Kostenkehre.
- c2) Ein Punkt für das richtige Ermitteln des Gewinnbereichs.

d1)
$$f'(x) = 0$$
 oder $-0.04 \cdot x + 0.31 = 0$
 $x = 7.75$
 $d = 2 \cdot f(7.75) = 7.28...$ cm

d2)
$$V = \pi \cdot \int_{a}^{b} (g(x))^{2} dx$$

- d1) Ein Punkt für das richtige Berechnen des maximalen Außendurchmessers d.
- d2) Ein Punkt für das richtige Aufstellen der Formel.