Лабораторная работа 1.1.1

Условие:

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволки.

Цель работы:

Измерить удельное сопротивление проволки и вычислить систематические и случайные погрешности.

В работе используются:

Линейка, штангенциркуль, микрометр, отрезок проволки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

Решение:

2)Точность измерения при помощи штангенциркуля - 0.1мм. При помощи микрометра - 0.01 мм.

Результаты измерения диаметра проволки на 10 различных участках:

	1	2	3	4	5	6	7	8	9	10
<i>d</i> ₁ (MM)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
<i>d</i> ₂ (MM)	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.36	0.36	0.37

$$\overline{d_1} = 0.4$$

$$\overline{d_2} = 0.36$$

При измерении диаметра штангенциркулем случайная погрешность отсутствует, а значит точность определяется систематической погрешностью прибора

$$\overline{d_1} = (0.4 \pm 0.1)$$

Случайная погрешность измерений при помощи микрометра:

$$\sigma_{\text{сл}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d - \overline{d})^2} = 1.4 \cdot 10^{-3} \text{мм}$$

Систематическая же:

$$\sigma_{\text{CMCT}} = 0.01 \text{MM}$$

Поскольку $\sigma_{\text{сл}} \ll \sigma_{\text{сист}}$, то можно считать проволку однородной по диаметру, а погрешность диаметра σ_d равной систематической погрешности микрометра $\sigma_{\text{сист}}$.

$$\sigma_d \approx \sigma_{\text{CMCT}} = 0.01 \text{MM}$$

$$d_2 = \overline{d_2} \pm \sigma_d = (3.6 \pm 0.1) \cdot 10^{-4} \text{M}$$

Площадь поперечного сечения из наиболее точного замера микрометром

$$S = \frac{\pi d_2^2}{4} \approx 1.02 \cdot 10^{-7} \text{m}^2$$

Погрешность площади

$$\sigma_S = 2\frac{\sigma_d}{d_2} S \approx 6 \cdot 10^{-9} \text{m}^2$$

Наконец $S = (1.02 \pm 0.06) \cdot 10^{-7} \text{м}^2$

3)Основные характеристики приборов

	Вольтметр	Амперметр
Система	Цифровой	Магнитоэлектрическая
Класс точности	0.001	0.2
Предел измерений(x_{Π})	10 B	0.15 A
Число делений шкалы(n)	10^{5}	150
Цена деления (x_{Π}/n)	10 ^{−4} B	1 мА
Чувствительность (n/x_{Π})	$10^4~{ m B}^{-1}$	$10^3 \mathrm{A}^{-1}$
Абсолютная погрешность (Δx_M)	$10^{-4} \mathrm{B}$	1 мА
Внутреннее сопротивление	10 МОм	0.5 Ом

4) Первая поправка

$$\epsilon_1 = \frac{R_{\rm np}}{R_V} = \frac{5 \text{ Om}}{10^7 \text{Om}} = 5 \cdot 10^{-7}$$

Вторая поправка

$$\epsilon_2 = \frac{R_A}{R_{\text{IID}}} = \frac{0.5 \text{ OM}}{5 \text{ OM}} = 0.1$$

 $\epsilon_1 \ll \epsilon_2$, а значит первая схема предпочтительнее, при этом множитель с этим членом пренебрежимо близко к 1, а значит его можно не учитывать в дальнейшем

5)Соберу схему как на рисунке

Показания вольтметра и амперметра

1 = 20 см		1 = 30) см	1 = 50 см		
V, B	I, mA	V, B	I, mA	V, B	I, mA	
0.3262	152	0.4780	150	0.7730	146	
0.2700	125	0.3880	121	0.6285	119	
0.1720	80	0.3196	100	0.4740	90	
0.1290	60	0.2550	80	0.3690	70	
0.1070	50	0.1900	60	0.2643	50	
0.0650	30	0.1260	40	0.1575	30	
0.0555	26	0.0795	25	0.1826	35	
0.0860	40	0.1100	35	0.3140	60	
0.1510	70	0.1585	50	0.4230	80	
0.1948	90	0.2235	70	0.5275	100	
0.2370	110	0.2900	91	0.6330	120	
0.2795	130	0.4160	130	0.7115	135	

Соответствующий график

Теперь определю значение сопротивления проволки для каждой длины проволки из закона Ома $(R=\frac{U}{I})$ и занесу результаты в таблицу

1 = 20 см	1 = 30 см	1 = 50 см
	$R_0 = 3.1654$ Ом	
$R_{\rm np} = 2.152~{ m Om}$	$R_{\rm пp} = 3.209 {\rm Om}$	$R_{\rm np} = 5.296~{ m Om}$
$\sigma_{R_{\rm np}} = 0.007 \; {\rm Om}$	$\sigma_{R_{\rm np}} = 0.011 \mathrm{Om}$	$\sigma_{R_{\rm np}} = 0.018 {\rm Om}$

Ошибка значения сопротивления составляет

$$\sigma_{R_{\rm np}} = R_{\rm np} \sqrt{\left(\frac{\Delta x_V}{2V}\right)^2 + \left(\frac{\Delta x_I}{2I}\right)^2} = R_{\rm np} \sqrt{\left(\frac{10^{-4} \rm B}{2 \cdot 10 \; \rm B}\right)^2 + \left(\frac{1 \; \rm MA}{2 \cdot 150 \; \rm MA}\right)^2} \approx \frac{1}{300} R_{\rm np}$$

Занесем полученные значения в таблицу

6)Результаты замеров мостом Р4833 аналогично занесу в таблицу

Как видно, отличие замеров сопротивлений мостиком и схемой в первых 2-х замерах выходит за пределы погрешности. Это может быть обусловлено как неучтенной систематической погрешностью моста, так и плохим контактом с проволкой в разных замерах. Сильного отличия результатов нет, поэтому измерения можно считать корректными.

8) Рассчитаю удельное сопротивление по формуле

$$\rho = \frac{R_{\rm np}S}{1}$$

1, м	ρ , Ом \cdot м	$σ_ρ$, Oм·м
0.2	$1.10 \cdot 10^{-6}$	$7 \cdot 10^{-8}$
0.3	$1.09 \cdot 10^{-6}$	$6 \cdot 10^{-8}$
0.5	$1.08 \cdot 10^{-6}$	$6 \cdot 10^{-8}$

Итого $\rho = (1.09 \pm 0.06) \cdot 10^{-6} \text{ Ом} \cdot \text{м}$

Основной вклад в погрешность результата вносит погрешность площади сечения проволки($\approx 6\%$), определяющаяся погрешностью её диаметра. Поэтому для замеров сопротивления достаточно вдвое меньшей погрешности($\approx 3\%$)

9)Полученное удельное сопротивление соответствует диапазону удельных сопротивлений нихрома $(1.05-1.4)\,\mathrm{Om\cdot mm^2/m}$, с большой вероятностью это один из самых распространенных, сплав X20H80.

Удельное сопротивление найдено, а значит цель работы достигнута.