107-1 Statistics LAB11: CORRELATION ANALYSIS - 1

助教:廖晧宇、吳家禎、賴冠宇

2018/12/07

1207實習:數量資料的相關性

- ■使用提供的資料(Student.csv)
- ■相關性分析
 - 讀資料
 - 繪製散布圖 scatter plot
 - 計算相關係數 correlation coefficient
 - 簡單迴歸分析 simple regression
 - 檢視迴歸係數、殘差、估計值
 - 繪製迴歸線

Read data

```
8 setwd("")
9 student = read.table("Student.csv", sep = ",", header = T)
```

Environment	History	Connections						
☐ Import Dataset ▼								
■ Global Environment ▼								
Data								
student		690 obs. of 7 variab	les					

^	Sex [‡]	GPA [‡]	ReligImp [‡]	MissClass	Seat [‡]	PartyDays [‡]	StudyHrs [‡]
1	Female	3.70	Fairly	1	Back	5	3
2	Male	3.20	Fairly	3	Front	3	30
3	Female	3.01	Fairly	0	Middle	8	16
4	Female	3.77	Not	0	Middle	0	4
5	Male	3.28	Not	0	Middle	8	12
6	Female	2.80	Fairly	0	Middle	2	20
7	Male	2.50	Fairly	3	Back	1	4
8	Male	3.11	Not	0	Front	2	15
9	Male	3.15	Fairly	2	Back	15	7
10	Male	3.44	Fairly	0	Middle	1	40
11	Female	3.60	Not	0	Front	4	30
12	Female	3.30	Not	0	Back	10	15
13	Male	3.03	Not	0	Middle	2	10
14	Female	3.89	Fairly	0	Middle	9	

Scatter plot

```
head(student)
13
   PartyDays = student$PartyDays
    StudyHrs = student$StudyHrs
16
   # Scatterplot
18
    plot(PartyDays ~ StudyHrs,
19
         pch = 16, cex = 1, col = "navy",
        main="PartyDays vs. StudyHrs",
20
         xlab="Study_Hrs", ylab="Party_Days")
21
22
23
   #or
    plot(StudyHrs, PartyDays,
25
         pch = 16, cex = 1, col = "navy",
         main="PartyDays vs. StudyHrs",
26
         xlab="Study_Hrs", ylab="Party_Days")
27
```


Correlation coefficient

```
27 # Correlation coefficient
```

28 cor.test(PartyDays, StudyHrs)

The formula for correlation coefficient:

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

```
> # Correlation coefficient
> cor.test(PartyDays, StudyHrs)

Pearson's product-moment correlation

data: PartyDays and StudyHrs

t = -3.3062, df = 684, p-value = 0.0009951
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.19841112   -0.05104175
sample estimates:
    cor
    -0.1254182
```

```
> #Is there any NA value in the data?
> length(PartyDays[is.na(PartyDays)])
[1] 0
> length(StudyHrs[is.na(StudyHrs)])
[1] 4
```

 \rightarrow The sample size for calculation: n = 690-4 = 686

Simple regression

```
#or
coeff = RESULTS$coefficients
res = RESULTS$residuals
yhat = RESULTS$fitted.values
```

```
> # Simple linear regression
> RESULTS = lm(PartyDays ~ StudyHrs)
> summary(RESULTS)
Call:
lm(formula = PartyDays ~ StudyHrs)
Residuals:
    Min
             10 Median
                             3Q
-8.4688 -4.3098 -0.3893 3.7329 23.2509
                                               Next week
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
            8.46882
(Intercept)
                        0.35326 23.973 < 2e-16 ***
                        0.02177 -3.306 0.000995
            -0.07197
StudyHrs
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.416 on 684 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.01573 (Adjusted R-squared: 0.01429)
F-statistic: 10.93 on 1 and 684 DF, p-value: 0.0009951
```

ANOVA (Here, for SSR and SSE)

```
50 # ANOVA
51 anova(RESULTS)
```

The formula for r^2 :

$$r^2 = \frac{SSTO - SSE}{SSTO} = \frac{SSR}{SSTO}$$

```
> SSR = 320.6
> SSE = 20062.6
> r.square = SSR / (SSR+SSE); r.square
[1] 0.01572864
```

```
> # ANOVA

> anova(RESULTS)

Analysis of Variance Table

Response: PartyDays

Df Sum Sq Mean Sq F value Pr(>F)
StudyHrs 1 320.6
Residuals 684 20062.6

SSE

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
> # Simple linear regression
> RESULTS = 1m(PartyDays ~ StudyHrs)
> summary(RESULTS)
Call:
lm(formula = PartyDays ~ StudyHrs)
Residuals:
            1Q Median
-8.4688 -4.3098 -0.3893 3.7329 23.2509
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.46882
                       0.35326 23.973 < 2e-16 ***
StudvHrs -0.07197
                       0.02177 -3.306 0.000995 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.416 on 684 degrees of freedom
 (4 observations deleted due to missingness)
Multiple R-squared: 0.01573, Adjusted R-squared: 0.01429
F-statistic: 10.93 on 1 and 684 DF, p-value: 0.0009951
```

作業9 數量資料的相關性

- ■練習題5題(Ch. 3)
 - -3.12; 3.24; 3.48; 3.62; 3.82

- ① Scatter plot
- ② Correlation coefficient
- 3 Simple regression (estimates, residuals, y.hat, plot the regression line)
- ■R程式練習題(繳交程式碼與執行結果)
 - 使用vehicles.csv資料檔案(year: 西元年, vehicle: 臺灣小客車登記數(輛), GDP: 臺灣 國內生產毛額(10億元))
 - 以vehicle為y variable,GDP為x variable
 - 進行實習課所練習各項相關性分析<u>與解釋</u>