All-Pair-Shortest-Paths (APSP)

I P:	Give	<u>بر</u>	a	weig	hte d	direct	ed ?	fraph	G = (v,E)
	with	a	دى	eight	fun	ω: E -	→ R			
Q:		fi	nd	, for	every	Pair	of v	ertice	್	
					•	weigh				utv
						· ·				

- A How Single Source Shortest Path Problem is
 related (or can be used) APSP?
- All How many invocations of a SSSP Subroutine are needed to solve the apsp? [n:#f Vertices]

 We can solve Apsp Problem by running a SSSP algorithm n times, once for each vertex as the source.
 - we can use Dijkstra's algorithm, n times.

 Running time = O(nmlogn) (using heap implementation)

 if G is sparse is, m = O(n) her O(n²logn)

 if G is dense is, m = O(n²) then O(n³logn)

at se need at se (n3) time find apsp \rightarrow if the graph has negative edge weights we can use Bellman-Ford algorithm once from each vertex.

Running time = $O(n^2m)$ $O(n^3)$ $O(n^4)$ if $m = \theta(n)$ if $m = \theta(n^2)$

A YES [Floyd-warshall algorithm]

- O(m³) algorithm even on graphs

with negative edge lengths

- Uses Oynamic Programming

Basic Notation

- We use adjacency matrix representation of the graph.

- We assume that the vertices are numbered

1,2, -- 1.

W - weight matrix - n xn = (Wij)

wij = $\begin{cases} 0 & \text{if } i=j \\ \text{weight of the edge if } i\neq j \text{ (i,j)} \in E \end{cases}$ $wij = \begin{cases} weight & \text{of the edge if } i\neq j \text{ (i,j)} \notin E \end{cases}$

We allow negative - weighted edges

but we assume, graph has no negative

weighted cycles.

The output of the APSP algorithm is an $n \times n \times n$ matrix $D = (d_{ij})$, where entry dij contains the weight of a Shortest Path from vertex i to Vertex j. ie, $d_{ij} = S(i,j)$

Structure of a Shortest Path:

B: What is the Maximum length of any shortest Path in a graph with n-vertices.

\$: N-1.

Consider a path P from i to j
P contains at most m-edges

i # i

 $i \xrightarrow{\mathcal{F}} i \xrightarrow{\mathsf{p}} \mathsf{k} \longrightarrow j$

Where P' contains at most m-1 edges G it is a Shortest Path from i to KG G(i,j) = G(i,K) + Wkj

A Recursive Solution:

$$\int_{ij}^{(0)} = \begin{cases} 0 & \text{if } i=j \\ \infty & \text{if } i\neq j \end{cases}$$

$$m71$$

$$\lim_{k \to \infty} \sum_{j=1}^{m} \sum_{k \neq j} \sum_{k \neq j} \sum_{j=1}^{m} \sum_{k \neq j} \sum_{k \neq j} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{k \neq j} \sum_{j=1}^{m} \sum_{j$$

Remark:
$$S(i,j) = l_{ij} = l_{ij} = --$$
because $S(i,j) \leq n-1$

Computing Shortest Path Weights bottom UP.

```
EXTEND-SHORTEST-PATHS (L, W)

1  n = L.rows
2  let L' = (l'_{ij}) be a new n \times n matrix
3  for i = 1 to n
4  for j = 1 to n
5  l'_{ij} = \infty
6  for k = 1 to n
7  l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})
8  return L'
```

$$\mathcal{L}^{(n)} = \omega_{ij}$$

$$\mathcal{L}^{(n)} = \mathcal{L}^{(n-1)}$$

$$\mathcal{L}^{(m)} = \mathcal{L}^{(m)}$$

The above algorithm, Given two matrices
$$L^{(m)}$$
 & W, Returns $L^{(m)}$. Running time = $\Theta(n^3)$

$$L^{(1)} = L^{(6)} \cdot W = W^{2}$$

$$L^{(2)} = L^{(1)} \cdot W = W^{2}$$

$$L^{(5)} = W^{3}$$

```
SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1  n = W.rows

2  L^{(1)} = W

3  for m = 2 to n - 1

4  let L^{(m)} be a new n \times n matrix

5  L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)

6  return L^{(n-1)}
```

Improving the Running time:

$$L^{(1)} = W^{2}$$

$$L^{(1)} = W^{4}$$

$$L^{(1)} = W^{4}$$

$$2^{(1)} = (\log (n-1))$$

$$2^{(1)} = (\log (n-1))$$

```
FASTER-ALL-PAIRS-SHORTEST-PATHS (W)
```

```
1 n = W.rows

2 L^{(1)} = W

3 m = 1

4 while m < n - 1

5 let L^{(2m)} be a new n \times n matrix

6 L^{(2m)} = EXTEND-SHORTEST-PATHS(L^{(m)}, L^{(m)})

7 m = 2m

8 return L^{(m)}
```

O (n logn)

Example:

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

The final iteration computes L by actually computing [2m] for some
$$n-1 \le 2m \le 2n-2$$
But $\binom{(2m)}{2} = \binom{(n-1)}{2}$

Next, we study a different DP formulation to Solve APSP, known as Floyd-warshall algorithm Runs in $\Theta(n^3)$ time.

Oftimal Substructure

Main Idea: V(G) = {1,2,3,... m}

Let $V^{(k)} = \{1, 2, -k\}$

The	Floyd - Warshall	algorithm
_		

- · Uses Dynamic Programming
- Running time = $\theta(n^3)$, n = # of vertices

The Floyd-Warshall algorithm

- · Uses Dynamic Programming
- Running time = $\theta(n^3)$, n = # of vertices
- · No negative cycles

Structure of the Shortest Path:

An intermediate verlex of a Simple Path $P = \langle V_1, V_2, ... V_l \rangle$ is any vertex P other than $V_1 & V_l$.

Algorithm relies on the following observation

Recall $V = \{1, 2, --11\}$ Consider a Subset $\{1, 2, --k\}$ of vertices, for some k

For any Pair of Vertices i, j EV, consider all Paths from i to j whose intermediate vertices are all drawn from {112,-- k}

Let P be a minimum weight path among them

Q: What is the relationship blus P and Shortest Paths from i to j with all intermediate Vertices are from {1,2,---k-1}

- **0** If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set $\{1, 2, ..., k-1\}$. Thus, a shortest path from vertex i to vertex j with all intermediate vertices in the set $\{1, 2, ..., k-1\}$ is also a shortest path from i to j with all intermediate vertices in the set $\{1, 2, ..., k\}$.
- If k is an intermediate vertex of path p, then we decompose p into $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$, as Figure 25.3 illustrates. By Lemma 24.1, p_1 is a shortest path from i to k with all intermediate vertices in the set $\{1, 2, \ldots, k\}$. In fact, we can make a slightly stronger statement. Because vertex k is not an intermediate vertex of path p_1 , all intermediate vertices of p_1 are in the set $\{1, 2, \ldots, k-1\}$. There-

fore, p_1 is a shortest path from i to k with all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$. Similarly, p_2 is a shortest path from vertex k to vertex j with all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$.

A Recursive Solution to APSP:

Base case:
$$dij = \begin{cases}
0 & \text{if } i = j \\
\omega_{ij} & \text{if } ij \in E(G) \\
\infty & \text{if } ij \notin E(G), i \neq j
\end{cases}$$

$$d_{ij}^{(k)} = \begin{cases} \mathbf{w} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

For any Path, all intermediate vertices are in the Set {1,2, -- n},

dij =
$$\delta(i,j)$$
 for all i,j $\in V$ - Final answer

Compuling the Shortest-Path weights bottom UP:

FLOYD-WARSHALL(W)

1
$$n = W.rows$$

2 $D^{(0)} = W$

3 $\mathbf{for} \ k = 1 \mathbf{to} \ n$

4 $\det D^{(k)} = (d_{ij}^{(k)}) \text{ be a new } n \times n \text{ matrix}$

5 $\mathbf{for} \ i = 1 \mathbf{to} \ n$

6 $\mathbf{for} \ j = 1 \mathbf{to} \ n$

7 $d_{ij}^{(k)} = \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$

8 $\mathbf{return} \ D^{(n)}$

Running time =
$$\theta(n^3)$$

(Q1) How to check if input graph G has a negative
Cycle ?
Ans: $d_{li}^{(n)} < 0$ for at least one iEV(G) at
the end of the algorithm.
(2) How to construct a shortest i-j Path?
Ans (See next Page)
Idea is to Compute max label of an
internal mode on a Shortest i-j Path.

Constructing a Shortest Path:

We can compute the Predecessor matrix TT while the algorithm computes the matrices $D^{(K)}$

 $\pi^{(0)}, \pi^{(1)}, -- \pi^{(n)},$

where Tij as the Redecessor of Vertex j on a Shortest ij path with all intermediate vertices in the Set {1,2,...k}

 $\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$

i ~~ j k+j {1,21- }

 $\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

Ha	o to				
Exercise 1:	Construct	Shortest	Paths Usi	ng the mad	bi X
T(K)?				•	
Exteruse 2:	How Can	we use	the OIP of	f FW algo	nitum
to detect	the Presi	ence of a	negative	-weight cyc	le ?
HINT: T	here is a	negative	weight C	sule if an	nd
only	$if d_{ii}$	<0 for	Some	• L	
•	he Proof]				