Datenbanksysteme 2, 10. Übung Transaktionsmanagement

Aufgabe 10.1: Sperrverfahren

In der Vorlesung wurde angesprochen, dass ein einfaches Sperrprotokoll nicht ausreicht, um Serialisierbarkeit zu gewährleisten. Dies wurde an folgendem Beispiel verdeutlicht:

Wie in der VL besprochen, wird zur Lösung üblicherweise das 2-Phasen-Sperrprotokoll verwendet. Dies besagt, dass keine Sperre mehr gesetzt werden darf, sobald die erste Sperre freigegeben wurde. Oder andersherum: jede Transaktion läuft in 2 Phasen ab, in der ersten Phase werden nur Sperren angefordert (lock), in der zweiten Phase werden nur Sperren freigegeben (daher der Name "2-Phasen-Sperrprotokoll"). Dieses Protokoll gibt es in verschiedenen Varianten. Die "klassische" Variante beachtet nur die Zweiphasigkeit. Die "strikte" Variante gibt alle Sperren erst zum Transaktionsende frei; die Variante "Preclaiming" fordert alle benötigten Sperren bereits zum Start der Transaktion an.

- a) Spielen Sie das obige Beispiel mit dem 2-Phasen-Sperrprotokoll durch. Entsteht hierbei ein serialisierbarer Schedule? Verwenden Sie in diesem Beispiel nur lock und unlock (die Lösung für diese Aufgabe finden Sie auch in den VL-Folien, versuchen Sie es aber zunächst ohne Blick auf die Folien).
- b) Wie verändert sich der Ablauf für Preclaiming?

Aufgabe 10.2: Mehrfachmodussperren

Betrachten Sie folgende Schedules:

S ₁		S ₂		S_3	
T1	T2	T1	T2	T1	T2
R(a)		R(a)		R(a)	
a:=a-10			R(b)	a:=a-10	
W(a)		a:=a-10			R(b)
R(b)			b:=b-20	W(a)	
b:=b+10		W(a)			b:=b-20
W(b)			W(b)	R(b)	
	R(b)	R(b)			W(b)
	b:=b-20		R(c)	b:=b+10	
	W(b)	b:=b+10			R(c)
	R(c)		c:=c+20	W(b)	
	c:=c+20	W(b)			c:=c+20
	W(c)		W(c)		W(c)

Ergänzen Sie die Schedules um die Operationen $read_lock(X)$, $write_lock(X)$ sowie unlock(X) zum Sperren/Entsperren eines Datenbankobjekts X. Dabei sollen Sie das **strikte 2-PL** anwenden. Gehen Sie davon aus, dass eine Sperrenverschärfung möglich ist. Welche der Schedules können mit dem 2-PL ausgeführt werden, welche nicht? Vergleichen Sie dieses Ergebnis mit der Serialisierbarkeit des jeweiligen Schedules.

Aufgabe 10.3: Zeitstempelverfahren

Betrachten Sie folgende Schedules. Wie würden diese Schedules unter einem Zeitstempelverfahren ablaufen? Nehmen Sie jeweils an, dass T1 den Zeitstempel 1 und T2 den Zeitstempel 2 bekommt. Notieren Sie jeweils die Werte von TSR und TSW für die einzelnen Objekte nach den Lese- und Schreibzugriffen. Wann muss ggf. ein Abbruch einer Transaktion stattfinden?

Wie erklären Sie sich die Ergebnisse? Überlegen Sie dazu, welche Schedules konfliktserialisierbar sind.

S ₁		S_2		S_3	
T1	T2	T1	T2	T1	T2
R(a)		R(a)		R(a)	
	R(a)		R(b)	a:=a-10	
	a:=a+10	a:=a-10			R(b)
	W(a)		b:=b-20	W(a)	
	R(b)	W(a)			b:=b-20
	b:=b+10		W(b)	R(b)	
	W(b)	R(b)			W(b)
R(b)			R(c)	b:=b+10	
c:=a+b		b:=b+10			R(c)
W(c)			c:=c+20	W(b)	
		W(b)			c:=c+20
			W(c)		W(c)