

continuity missior

LDCM Operational Land Imager and Thermal Infrared Sensor Performance

Brian Markham

NASA Cal/Val Scientist

James R. Irons, Philip W. Dabney, Kurtis J. Thome++

Goddard Space Flight Center, Greenbelt, MD

Representing NASA/USGS/BATC Instrument and Calibration Teams

August 23, 2011

SPIE
Earth Observing
Systems XVI

Cal/Val Personnel

>NASA SCIENCE/IMAGE ASSESSMENT

- Brian Markham (Lead)
 - ► Ed Kaita /SSAI
 - ➤ Raviv Levy /SSAI
 - ➤ Julia Barsi /SSAI
 - ▶Lawrence Ong /SSAI
 - ➤ Robert Barnes /SAIC
 - ➤ Matt Montanaro /Sigma Space
- Phil Dabney (Instrument Scientist)
- Jeff Pedelty (BATC on-site rep)

➤ USGS SCIENCE/IMAGE ASSESSMENT

- Ron Hayes/SGT (Lead)
- Ron Morfitt /SGT (Technical Lead)
 - ➤ Esad Micijevic /SGT
 - ▶ Pat Scaramuzza /SGT
 - ➤ Kelly Vanderwerff /SGT
- James Storey /SGT (Geometry Lead)
 - ➤ Mike Choate /SGT
 - ▶ Don Moe/SGT

► BATC OLI CALIBRATION/SYSTEMS

- Ed Knight (Lead Systems)
- Brent Canova (Lead)
 - ▶Geir Kvaran
 - ▶ Kenton Lee
 - ➤ Eric Donley
 - ▶Brian Donley

▶GSFC TIRS CALIBRATION

- Dennis Reuter (instrument scientist)
- Kurtis Thome (Lead)
 - ▶Brian Wenny
 - ➤ Allan Lunsford
 - ➤ Matt Montanaro
 - ➤ Tesfaye Zelalem
 - ➤ Ramsey Smith

UNIVERSITY AFFILIATES

- Dennis Helder (SDSU)
- John Schott (RIT)
 - >Orlando/Nina Raqueno
 - ➤ Mike Gartley
 - > Aaron Gerace

Landsat and LDCM Spectral and Spatial Requirements

	Landsat-5/7 TM/ETM+ Bands (μm)			LDCM Band Requirements (µm)			
ETM+				30 m Coastal/Aerosol	0.433 - 0.453	Band 1	
	Band 1	30 m Blue	0.450 - 0.515	30 m Blue	0.450 - 0.515	Band 2	
	Band 2	30 m Green	0.525 - 0.605	30 m Green	0.525 - 0.600	Band 3	
	Band 3	30 m Red	0.630 - 0.690	30 m Red	0.630 - 0.680	Band 4	
	Band 4	30 m Near-IR	0.775 - 0.900	30 m Near-IR	0.845 - 0.885	Band 5	
	Band 5	30 m SWIR-1	1.550 - 1.750	30 m SWIR-1	1.560 - 1.660	Band 6	
	Band 6	60/120m* LWIR	10.40 - 12.50	120 m LWIR-1	10.30 –11.30	Band 10	Т
				120 m LWIR-2	11.50 –12.50	Band 11	
	Band 7	30 m SWIR-2	2.090 - 2.350	30 m SWIR-2	2.100 - 2.300	Band 7	
	Band 8**	15 m Pan	0.520 - 0.900	15 m Pan	0.500 - 0.680	Band 8	
				30 m Cirrus	1.360 - 1.390	Band 9	

OLI

TIRS

OLI

Operational Land Imager (OLI)

Key instrument requirements

Cross-track FOV 185 kmS/C altitude 705 km

Geodetic accuracy*

♦ Absolute 65 m

❖ Relative 25 m

Geometric accuracy**

♦ Absolute 12 m

Band Name	CW (nm)	Bandwidth (nm)	GSD (m)	SNR
Coastal/ Aerosol	443	20	30	130
Blue	482	65	30	130
Green	562	75	30	100
Red	655	50	30	90
NIR	865	40	30	90
SWIR 1	1610	100	30	100
SWIR 2	2200	200	30	100
PAN	590	180	15	80
Cirrus	1375	30	30	50

I

Visible/NIR

SWIR

SPIE Earth Observing Systems XVI
NASA GSFC / USGS EROS

*No terrain compensation

**w/ terrain compensation

Instrument Complete

Operational Land Imager (OLI)

- Pushbroom VIS/SWIR sensor
- Four-mirror telescope with front aperture stop
- FPA consisting of 14 sensor chip assemblies, passively cooled
- On-board calibration with both lamps and full aperture diffusers

OLI Spectral and Polarization Performance

- ➤ Spectral Performance
 - Measured at instrument level for sampling of detectors from each focal plane module
 - ➤ Meets all requirements
 - Out-of-Band Response measured at focal plane module level for all detectors
 - typically below 10⁻⁴
- ➤ Polarization Sensitivity
 - Measured at instrument level
 - Below 2%

OLI Radiometric Performance

>SNR

SNR significantly exceeds requirements and heritage

▶ Calibration

- Absolute uncertainty ~4%
 - Extensive round robin for validation
 - Transfer-to-Orbit uncertainties included
- Stability over 60 seconds (2 standard scenes)
 - $><0.02\% 2\sigma$
- Stability over 16 days (time between Solar Diffuser Cals)
 - ><0.54% 2σ for all but Cirrus Band which is <1.19%

> Uniformity

- Typically better than 0.5%
 - A few detectors and FPM boundaries may exceed this

OLI Spatial Performance

➤ Spatial Performance

- Want sharp edges for change detection
- Measured spatial response has:
 - Steep slope (exceeding reqts)
 - Low extended edge (good half edge extent)
 - ➤ No ripple/overshoot

▶ Geolocation

- Want good pointing knowledge, again for change detection
- Performance depends on both instrument and spacecraft; final measurements made during initial on-orbit checkout
- Pre-launch instrument measurements mapped line of sight of all detectors to reference pixel/boresight to ~1/10th of a pixel
- On target to have absolute geometric accuracy of <1/2 pixel

OLI Stray Light

- Meets requirements
- Consistent with modeled performance

Stray Light Ninjas

Thermal Infrared Sensor (TIRS)

- Quantum well infrared photodetector (QWIP) focal plane array (built at GSFC), at 43K
- •2-Channel IR spectral imager
 - •10.8 μm and 12 μm
 - Split window atmospheric correction
- Two full aperture calibration sources
 - Onboard blackbody
 - Space view
 - Calibration every 34 minutes
- Scene select mirror selects between calibration sources, nadir
- •185 km ground swath (15° FOV)
- •100 meter resolution
- •TIRS delivery December 2011
- •3.25 year life, Class C instrument
- TVAC testing (full instrument) started

TIRS Overview

TIRS Relative Spectral Response Average: based on component level measurements

TIRS Relative Spectral Responses

All Detectors – based on component measurements

Spectral Uniformity Impact 300K Surface Target: 10.8 µm band

Spectral Uniformity Impact 300K Surface Target: 12.0 µm band

TIRS Calibration Images

SCA-C (Q023)

- >SNR ~1,500 for 360 K source and ~1,000 for 300 K
- >>3X more than required
- Consistent with shot-noise limited SPIE Earth Observing Systems XVI

NASA GSFC / USGS EROS

TIRS Preliminary Radiometric Performance

Radiometric Responsivity Variation with 12.0 µm Band

Radiance vs. Linearized, Bkgd-subtracted DN for IRSM temperatures of: [200 K, 220 K, 240 K, 260 K, 290 K, 310 K, 330 K, 360 K]

Summary

≻OLI

- Instrument complete currently investigating heater controller anomaly
- SNR performance substantially exceeds requirements
- Absolute calibration meets requirements
- Relative (detector to detector)
 calibration meets requirements
 with possible exception of a few
 FPM boundaries and a few
 detectors
- Spatial response meets requirements

>TIRS

- Instrument now in primary thermal vacuum performance testing
- SNR performance expected to substantially exceed requirements
- Absolute calibration expected to exceed requirements
- Relative (detector-to-detector) calibration expected to meet requirements