Data Processing Pipelines

CS611 – Machine Learning Engineering Assignment 1 Yue Jun Yuan

Proposed Pipeline – Medallion Architecture

Single python script orchestrates entire preprocessing pipeline

- Logic transforming from each stage captured in individual python scripts
- Configuration and parameter details managed on separate YAML files
- Pipeline fully containerized to ensure reproducibility and facilitate production deployment
- Logs are created with each run to detail results of data validation and dataset shape details

Bronze:

- Partitioned by month and saved as parquet
- Raw data dump
- No processing

Silver:

- Partitioned by month and saved as parquet
- Data Type enforcement
- Data Quality Handling
- Synthesize additional columns where relevant

Gold:

- Separate feature and label store
- Each store subdivided into train / val / test / OOT
- Identifiers retained (to be dropped during ML pipeline)
- Missing value handling and encoding rules derived from train and applied to other splits

Overall Pipelining Considerations

Storing Configuration / Parameters in YAML

- Separation of concerns separation of core pipeline logic from config and parameters
 - > Update of parameters follows different (simpler) approval process as compared to code change
 - Cleaner and easier to read code logic
- Scalability different YAML files can be used for development / production
 - Easy switching of file paths, or API end points without modifying code
- Version control changes to parameters can be archived and versioned
 - > Avoids multiple versions of scripts or commented code
- User friendly allows non-programmers to easily understand and edit
 - Business users or new project members can easily make simple changes
 - Reduced hardcoding which results in more maintainable and less error-prone codes

Pipeline logging system

- Pipeline logging captures script execution, completions and errors in dedicated log files
 - > New time-stamped log file created with each run of pipeline, enabling traceability and easier debugging

Silver Tables Processing Steps:

- 1. Handle **Data Quality issues** (detailed missing and invalid handling available in following slides treatment to be agreed with business)
- 2. Create or transform additional columns to improve data usability
 - Create integer based "Credit_History_Age_Months" by transforming text description in "Credit_History_Age"
 - Create "Type_of_Loan_list" of Array(String) type by parsing "Type_of_Loan"
 - Full list available in following slides
- **3. Data type enforcement** full list of variables with expected data types defined in **silver_config.yaml** and enforced during processing
 - Parquet format preserves data type through defined schema

Objective:

Silver tables (separate for each dataset) is processed only **minimally** to allow for general view and analytics consumption. Use case specific transformation are done in gold layer.

Silver Tables Processing – Data Quality Handling

Dataset	Data Quality Issue	Handling	
features_attributes.csv	"SSN" contain values "#F%\$D@*&8" not following convention	Replace with np.nan	
features_attributes.csv	"Occupation" column contain invalid "" values	Replace with np.nan	
features_attributes.csv	"Age" containing numeric values suffixed with '_' "Age" column contains large invalid values "Age" column containing negative values	Remove '_' suffix Age<0 or Age>120 replace with np.nan; set "Age_valid' binary flag to 0 else 1	
features_financials.csv	"Annual_Income" containing numeric values suffixed with '_' "Annual_Income" contain inconsistent rounding	Remove '_' suffix Standardize rounding to 2d.p.	
features_financials.csv	"Num_Bank_Accounts" containing invalid negative values "Num_Bank_Accounts" containing large invalid values	Replace with np.nan Cap values at 11*	
features_financials.csv	"Num_Credit_Card" containing invalid large values	Cap values at 11*	
features_financials.csv	"Interest_Rate" containing invalid large values	Cap values at 34*	
features_financials.csv	"Type_of_Loan" contains multiple categorical values, including "Not Specified", and missing values	Create "Type_of_Loan_list" as array of string representation	
features_financials.csv	"Num_of_Loan" contain invalid numeric values suffixed with '_' "Num_of_Loan" contain negative values "Num_of_Loan" contain invalid large values	Derive values for "Num_of_Loan" using "Type_of_Loan_list"	

^{*} Invalid values handling derived based on data exploration, business to confirm correct maximum values

Silver Tables Processing – Data Quality Handling

Dataset	Data Quality Issue	Handling	
features_financials.csv	"Num_of_Delayed_Payment" contain numeric suffixed with '_' "Num_of_Delayed_Payment" contain invalid large values "Num_of_Delayed_Payment" contain negative values	Remove '_' suffix Cap values at 28* No handling business to advice	
features_financials.csv	"Changed_Credit_Limit" contain invalid values '_' "Changed_Credit_Limit" contain inconsistent rounding "Changed_Credit_Limit" contain negative values	Replace with np.nan Standardize rounding to 2d.p. No handling business to advice	
features_financials.csv	"Outstanding_Debt" containing numeric values suffixed with '_'	Remove '_' suffix	
features_financials.csv	"Credit_History_Age" in format of "X Years and Y Months"	Convert to int no. of months	
features_financials.csv	"Payment_of_Min_Amount" contains {Yes, No, NM}	Business to advice 'NM' validity	
features_financials.csv	"Amount_invested_monthly" containing invalid '10000' values	Remove both prefix and suffix	
features_financials.csv	"Payment_Behaviour" containing invalid '!@9#%8' values	Replace with np.nan	
features_financials.csv	"Monthly_Balance" contain invalid ' 33333333333333333333333333333333333	Replace with np.nan	
features_financials.csv	"Delay_from_due_date" contains negative values	No handling business to advice	
features_financials.csv	"Credit_Mix" contain invalid "_" values	Replace with np.nan	

^{*} Invalid values handling derived based on data exploration, business to confirm correct maximum values

Gold Tables Processing – Pipelining Considerations

- The set of concatenated values (Customer_ID + snapshot_date) is equivalent between feature_financials and features_attributes and also equivalent with (Customer_ID + loan_start_date) on lms_loan_daily
 - Align feature store (financials / attributes) to label store (lms_loan_daily) using above join keys

```
set1 = set(financials_df['Customer_ID_Snapshot'])
set2 = set(attributes_df['Customer_ID_Snapshot'])
set3 = set(lms_loan_daily_df['Customer_ID_start_date'])
set1 == set2 == set3
True
```

- 2. Clickstream data is missing **3,526 (approximately 28% of)** customers
 - ❖ Option 1: Drop records from feature and label stores where Customer_ID are not found in the set of Customer_ID in clickstream data
 - > Impact: Lose more than 1 quarter of dataset, significant reduction in training data impact model ability to generalize
 - ❖ Option 2: Attempt to extrapolate clickstream data for missing customers
 - > Impact: Introduce noise and bias, limited information on nature of features (fe1-fe20) preventing accurate extrapolation
 - ❖ Option 3: Assume clickstream data to reflect some form of digital activity (to verify with business) therefore lack of data reflects absence of digital activity → impute 0
 - ➤ Impact: Absence of activity is a valid parameter for model learning, avoid injecting false assumptions, simple to implement ✓
- 3. Backward looking aggregation of temporal data (features_clickstream) results in misalignment of datapoints available lack of datapoints to compute LM / L3M aggregates for loans incepted in earlier months of dataset (2023-01-01to 2023-03-01)
 - Option 1: Introduce "months_available" flag while truncating aggregated data for loans incepted on or before 2023-03-01
 - ❖ Impact: Retains full dataset but may introduces more complexities than value, model may require even more datapoints to learn nuanced differences between how such a flag interacts differently with SUM and AVG aggregates
 - ❖ Option 2: Drop records pertaining to loans incepted on or before 2023-03-01
 - Impact: Lose 1,537 (12.3%) of customers available, prevents increase of feature space, more practical approach considering
 'missing' datapoints are more likely due to data sourcing limitations rather than data quality issues

Gold Tables Processing Steps:

- 1. Filter away loans on or before 2023-03-1 (prevent truncation of aggregated features)
- 2. Create Label Store Label definition: default_flag=1 if customer has any overdue_amt > 0 over the life of the loan

No label leakage as every Customer_ID only has 1 loan, and any overdue_amt relates to future outcome

relative to loan_start_date

Loan_start_date	LM	L3M
2025-01-01	2024-12-01	2024-10-01 to 2024-12-01

- 3. Create aggregated features (AVG_L3M / SUM_L3M / LM) from temporal clickstream data
 - ❖ Aggregation done for each customer using **snapshot_date immediately before loan_start_date**.
- 4. Create Feature Store "Customer_ID" and "loan_start_date" from **Label store used as anchor keys**
 - Left join static features (attributes and financials) followed by aggregated clickstream features
 - Ensures no data leakage static features joined on static_feats.snapshot_date, temporal features joined on click_aggs.loan_start_date (already aggregated per logic above)
- 5. Perform date-based splits on both feature and label stores using **gold_config.yaml defines split windows**
- 6. Model specific handling apply missing value treatment and encoding based on **train set data or gold_config.yaml**
 - Details on encoding strategy and missing value handling can be found in following slides

Objective:

Gold tables are split into Feature and Label Stores, each store further split into train / val / test / OOT sets. Gold layer built to be **ML ready** (identifiers to be dropped during ML pipeline) and designed based on requirements for a tree based model – (no scaling applied). Encoding format is designed to be compatible with most scikit-learn models rather than SparkML models.

Gold Tables Processing – Pipelining Considerations

Encoding Decisioning

Create and maintain a **gold_config.yaml** file for features which are expected to contain only **business approved values**

- Processing pipeline verifies that columns like "Types_of_Loan" contain only approved list of values
 - > Adopt **lenient policy** log warning and ignore unapproved values
 - > Ensures **stability of gold table schema** (after multi-hot-encoding)
 - > **Early detection** of data drift or data quality issues if unexpected values appear
- Multi-hot encoding relies on expected set of values from gold_config.yaml to apply encoding to all splits (train / validation / test / OOT)

Encoding pipeline for other categorical variables **fits only on train dataset** and **transforms other splits** (test / validation / OOT) using the train fitted pipeline

- > Guarantees no data leakage from unseen datasets into training
- ➤ All splits result in the same number of columns

Gold Tables Processing – ML specific handling

Feature	Data Type	Missing - Reason	Fill / Impute	Missing Frequency	
			Strategy	Number	(%)
Age	Integer	Unrealistic values (negative or values above reasonable cap 120) replaced with NaN on silver tables	Median	104	0.83%
Occupation	String	"" values were replace with NaN on silver tables	"Unknown" Flag	880	7.04%
Num_Bank_Accounts	Integer	Negative values treated as invalid and replace with NaN on silver tables	Median	4	0.03%
Type_of_Loan_list	Array(String)	Missing values indicate no loans (Num_of_Loans == 0)	"No_Loan" flag	1,426	11.41%
Changed_Credit_L imit	Float	Invalid "_" values were replaced with NaN on silver tables	Impute 0	254	2.03%
Credit_Mix	String	Invalid "_" values were replaced with NaN on silver tables	"Unknown" flag	2,611	20.89%
Payment_Behvaio ur	String	Invalid '!@9#%8' values were replaced with NaN on silver tables	"Unknown" flag	998	7.98%
Monthly_Balance	Float	Invalid '333333333333333333333333333333333333	Impute 0	1	0.01%
fe_1 - fe_20	Float	Absence of digital activity / profile – to confirm with business	Impute 0	3,526	28.21%

Split	Period	Duration	Purpose
Train	2023-04 → 2024-06	15 months	Used to fit models and transformations (StringIndexer, OneHotEncoder, etc.)
Validation	2024-07 → 2024-09	3 months	Used for hyperparameter tuning / early stopping
Test	2024-10 → 2024-12	3 months	Final performance evaluation before deployment
OOT (Out of Time)	2025-01	1 month	Simulates unseen future data for production generalization check