Topology — Worksheet 5

Qualifying Exam Prep Seminar 2020

Definition

A CW complex is the union $X = \bigcup_{0}^{\infty} X^{n}$ of n-skeletons defined inductively by:

- i) X^0 is a discrete set of point;
- ii) Given X^{n-1} , a collection of maps $\varphi_{\alpha} \colon S^{n-1} \to X^{n-1}$, and a collection of n-disks D_{α}^{n} , we define

$$X^n = X^{n-1} \sqcup_{\alpha} D^n_{\alpha} / \sim$$

where $x \sim \varphi_{\alpha}(x)$ for all $x \in \partial D_{\alpha}^{n}$.

If $X = X^n$ for some n, we say X is a finite-dimensional CW complex of dimension n.

A CW structure on a topological space Y is a CW complex X such that $X \cong Y$.

- 1. Construct CW structure for each of the following spaces:
 - (a) S^1
 - (b) T²
 - (c) Sⁿ
 - (d) \mathbb{RP}^n
- 2. Given finite CW complexes X and Y, construct a CW structure for the space $X \times Y$.
- 3. Compute the cellular homology groups for each of the following spaces:
 - (a) Sⁿ
 - (b) \mathbb{RP}^n
 - (c) $S^n \times S^n$