1 Experiment 1: Before Perturbation (Experiment on Feature Data without Removal Edges)

DESCRIPTION: Experiment I is conducted on statistical tests between original data and normalized feature data.

- 1. Subsection 1.1 explains statistical tests for classification based the original feature compare to normalized feature. The original feature consists of Netpro2VecMetgraphs, Netpro2VecNDD, Netpro2VecTM1, Netpro2VecTM2, Netpro2VecNDD+TM1, Netpro2VecNDD+TM1+TM2, Graph2Vec, GL2Vec, FeatherGraph, and SF as our graph embeddings schemes. Meanwhile, normalized feature data refers to all original features data that have been normalized using the min-max method, ensuring that feature values fall within the interval [0,1].
- 2. In this experiment, we implement both groups of graph embeddings in classification models and evaluate their performance through statistical tests, including accuracy, precision, recall, and F1-score from all models-based graph embeddings.
- 3. Following Table 1a until Table 1d ilustrate the test results.
- 4. Section 1.2 presents Figure 1a until Figure 1d as visualization of the statistical test results

RESUME: The comparison resume is based on the percentage difference of the original features compare to the normalized features. Rely on the accuracy, precision, recall, and F1-score, we describe the best and the lowest percentage difference as follow:

- 1. The best percentage difference of accuracies are in GCNs, DT, GNB, and RF with percentage difference of original compare to their normalized feature, that is about 0.000%. Meanwhile the lowest is in non linear SVM (SVMnl), that is about 0.051%.
- 2. The best percentage difference of precision is in DT, that is about 0.000%, meanwhile the lowest is in SVMnl, that is about 0.047%.
- 3. The best recall are in GCNs and DT, that is about 0.000%, meanwhile the lowest is in SVMnl, that is about 0.051%.
- 4. The best percentage difference of F1-score are in GCNs and DT, that is about 0.000%, meanwhile the lowest score is in SVMnl, that is about 0.069%.

CONCLUSION: Based on the statistical tests, analyzing the effect of normalized features compared to the original features, we conclude that the best-performing model is DT, achieving 0.000% accuracy, precision, recall, and F1-score. This is followed by GCNs, which also maintain 0.000% accuracy, recall, and F1-score, except for precision, which shows a slight variation of 0.018%.

1.1 Classification based Original Vs Normalized Features

Table 1: Comparison between Original and Normalized Features

(a) Accuracy

Rank	Models:	Original	Normalized	Percentage diff.
1	GCNs	1	1	0,000
2	SVML	0.97	0.98	0,010
3	KNN	0.965	0.968	0,003
4	DT	0.948	0.948	0,000
5	GNB	0.935	0.935	0,000
6	RF	0.93	0.93	0,000
7	SVMnl	0.883	0.928	0,051

(c) **Recall**

Recall Rank	Models:	Original	Normalized	Percentage diff.
1	GCNs	1	1	0,000
2	KNN	0.965	0.979	0,015
3	SVML	0.949	0.967	0,019
4	DT	0.947	0.947	0.000
5	GNB	0.933	0.945	0,013
6	RF	0.93	0.933	0,003
7	SVMnl	0.855	0.93	0,051

(b) **Precision**

Precisi	Precision					
Rank	Models:	Original	Normalized	Percentage diff.		
1	GCNs	0.982	1	0,018		
2	SVML	0.972	0,982	0,010		
3	KNN	0.952	0.972	0,021		
4	GNB/SVMnl	0.951	0.951	0,000		
5	RF/GNB	0.945	0.948	0,003		
6	RF	0.933	0.945	0,013		
7	SVMnl/RF	0.891	0.933	0,047		

(d) $\mathbf{F1}\text{-}\mathbf{Score}$

T3 ()					
Rank	l	Original	Normalized	Percentage diff.	
1	GCNs	1	1	0.000	
2	SVML	0,969	0,98	0,011	
3	KNN	0,965	0,967	0,002	
4	DT	0,947	0,947	0,000	
5	GNB	0,932	0,945	0,014	
6	RF	0,929	0,932	0,003	
7	SVMNL	0,869	0,929	0,069	

1.2 Figure of Statistical Tests Result

ಬ

(b) Precision

(d) F1-Score

Figure 1: Plot between Original and Normalized Feature