

Performance Analysis of Clock Synchronization using IEEE 1588 Protocol

Tinghui Wang, and Partha Sarker

Introduction

Clock Synchronization is a must for monitoring any Distributed system

Applications:

- Smart Grid
- Smart Environments
- IoT System

Requirements of Clock Synchronization in Smart Grid

Application	Requirement
Traveling Wave Fault Detection and Location	100 to 500 ns
Synchrometrology (synchrophasors)	Better than 1 μs
Wide Area Protection	
Frequency Event Detection	
Anti-Islanding	
Droop Control	
Wide Area Power Oscillation Damping	
(WAPOD)	
Line Differential Relays	10 to 20 μs
Sequence of Events Recording	50 μ s to ms
Digital Fault Recorder	1 ms
Communication Events	
Substation Local Area Networks	$100~\mu s$ to 1 ms
(IEC 61850 GOOSE)	
Substation Local Area Networks	$1\mu s$
(IEC 61850 Sample Values)	

Source: National Institute of Standards and Technology (NIST)

Existing Solutions

IEEE 1588 Precision Time Protocol (PTP)

eLOng-RAnge Navigation (eLORAN)

Iridium

Network Time Protocol (NTP)

Radio (e.g. NIST WWVB time signal radio station)

Atomic clocks

Different types of terrestrial and satellite-based propagation solutions

Clock Synchronization in LAN

Network topology change

Bursts of network traffic in case of faults detected in the power system

Security attacks including denial of service (DoS), masquerde and multi-cast poisoning

IEEE 1588 Precision Time Protocol (PTP)

Self-organizing protocol

Small requirements on the network bandwidth and computation footprint on endpoints or network devices

Can achieve precise time synchronization in local area network (LAN) up to several nanosecond with help of hardware time stamping.

Two versions: IEEE 1588-2002 v1 and IEEE 1588-2008 v2.

PTP Simple Example

PTP Time Synchronization

$$au_2 = au_1 + \Delta_t + 0.5 T_{RTT}$$
 $au_4 = au_3 - \Delta_t + 0.5 T_{RTT}$

• Offset Δ_t

$$\Delta_t = \frac{(\tau_2 - \tau_1) - (\tau_4 - \tau_3)}{2}$$

• Delay T_{RTT} $T_{RTT} = (au_2 - au_1) + (au_4 - au_3)$

PTP Simulation Example

- Simulator: NS-3
 - Simulator virtual time
- Network Environment:
 - Wifi 802.11b adhoc OFDM
- Network Topology
 - 0 => 1 => 2 => 3 => 4 => 5

To Achieve High Precision

IEEE 1588 Hardware Timestamping

To Achieve High Precision

- Uncertainty in Network Delay
 - Point-to-Point Synchronization
 - Network Traffic
- Local Filtering
 - PI Filtering
 - Kalman Filtering

Security Issues

Delay Attack:

Constantly add delay in one direction

Multicast:

 Inject announcement and sync from false PTP master

Unicast:

• Capture switch/router, impersonate global master or alter sync message