# CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

# NP and Computational Hardness

## **NP and Computational Hardness**

Polynomial-time reduction (Kleinberg-Tardos, Section 8.1, 8.2)

Which problem is harder?

Which problem is harder?

• Problem A: it takes me a week to come up with an  $O(n^2)$  algorithm

### Which problem is harder?

- Problem A: it takes me a week to come up with an  $O(n^2)$  algorithm
- Problem B: It's straightforward to design a brute-force algorithm with running time  $O(2^n)$ , but it's the best-known algorithm

#### Which problem is harder?

- Problem A: it takes me a week to come up with an  $O(n^2)$  algorithm
- Problem B: It's straightforward to design a brute-force algorithm with running time  $O(2^n)$ , but it's the best-known algorithm

Is Problem B really hard? How do we prove hardness?

We can prove **lower bound** for some problems. For example: for sorting  $\Omega(n \log n)$ 

We can prove **lower bound** for some problems. For example: for sorting  $\Omega(n \log n)$ 

For hard problems, can we get something like  $\Omega(2^n)$ ?

We can prove **lower bound** for some problems. For example: for sorting  $\Omega(n \log n)$ 

For hard problems, can we get something like  $\Omega(2^n)$ ? Unfortunately, for most hard problems, we can't either find an O(poly(n)) time algorithm or prove a lower bound like  $\Omega(\exp(n))$ 

We can prove **lower bound** for some problems. For example: for sorting  $\Omega(n \log n)$ 

For hard problems, can we get something like  $\Omega(2^n)$ ? Unfortunately, for most hard problems, we can't either find an O(poly(n)) time algorithm or prove a lower bound like  $\Omega(\exp(n))$ 

Instead, we classify hard computational problems. We prove they are "equivalent" in the sense that

We can prove **lower bound** for some problems. For example: for sorting  $\Omega(n \log n)$ 

For hard problems, can we get something like  $\Omega(2^n)$ ? Unfortunately, for most hard problems, we can't either find an O(poly(n)) time algorithm or prove a lower bound like  $\Omega(\exp(n))$ 

Instead, we classify hard computational problems. We prove they are "equivalent" in the sense that

 A polynomial-time algorithm for any one of them would imply there exist polynomial-time algorithms for all of them

We can prove **lower bound** for some problems. For example: for sorting  $\Omega(n \log n)$ 

For hard problems, can we get something like  $\Omega(2^n)$ ? Unfortunately, for most hard problems, we can't either find an O(poly(n)) time algorithm or prove a lower bound like  $\Omega(\exp(n))$ 

Instead, we classify hard computational problems. We prove they are "equivalent" in the sense that

 A polynomial-time algorithm for any one of them would imply there exist polynomial-time algorithms for all of them

Tool: polynomial-time reduction

#### **Definition**

A problem Y is  $\boldsymbol{polynomial\text{-}time}$   $\boldsymbol{reducible}$  to a problem X

#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations

#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X

#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving  $\boldsymbol{X}$ 

#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X



#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X



#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X



#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X



#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X



#### **Definition**

A problem Y is **polynomial-time reducible** to a problem X if there exists an algorithm that solves any instance of Y making polynomially many elementary operations and polynomially many calls to a black-box solving X



#### Lemma

Suppose  $Y \leq_P X$ . If X can be solved in polynomial time, then

#### Lemma

Suppose  $Y \leq_P X$ . If X can be solved in polynomial time, then Y can be solved in polynomial time

#### Lemma

Suppose  $Y \leq_P X$ . If X can be solved in polynomial time, then Y can be solved in polynomial time

Intuition: X is at least as hard as Y

#### Lemma

Suppose  $Y \leq_P X$ . If X can be solved in polynomial time, then Y can be solved in polynomial time

Intuition: X is at least as hard as Y

#### Lemma

Suppose  $Y \leq_P X$ . If Y cannot be solved in polynomial time, then

#### Lemma

Suppose  $Y \leq_P X$ . If X can be solved in polynomial time, then Y can be solved in polynomial time

Intuition: X is at least as hard as Y

#### Lemma

Suppose  $Y \leq_P X$ . If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time

#### **Definition**

#### **Definition**



#### **Definition**



#### Definition



#### Definition



## The Maximum Independent Set Problem

The Maximum Independent Set Problem (Decision version)

## The Maximum Independent Set Problem

The Maximum Independent Set Problem (Decision version)

**Instance:** a graph G, a number k

## The Maximum Independent Set Problem

The Maximum Independent Set Problem (Decision version)

**Instance:** a graph G, a number k

**Objective:** Decide if G contains an independent set of size k?

The Maximum Independent Set Problem (Decision version)

**Instance:** a graph G, a number k

**Objective:** Decide if G contains an independent set of size k?

Optimization version: Find the maximum independent set

### The Maximum Independent Set Problem (Decision version)

**Instance:** a graph G, a number k

**Objective:** Decide if G contains an independent set of size k?

Optimization version: Find the maximum independent set

• Decision version  $\leq_P$  optimization version

### The Maximum Independent Set Problem (Decision version)

**Instance:** a graph G, a number k

**Objective:** Decide if G contains an independent set of size k?

Optimization version: Find the maximum independent set

- Decision version  $\leq_P$  optimization version
- Optimization version  $\leq_P$  decision version

### The Maximum Independent Set Problem (Decision version)

**Instance:** a graph G, a number k

**Objective:** Decide if G contains an independent set of size k?

Optimization version: Find the maximum independent set

- Decision version  $\leq_P$  optimization version
- Optimization version  $\leq_P$  decision version (binary search)

#### **Definition**

#### **Definition**



#### **Definition**



#### **Definition**



#### **Definition**



#### **Definition**



#### **Definition**

A set of vertices is said to be a **vertex cover** if every edge has at least one end in it



April 21, 2022

#### **Definition**



#### **Definition**



#### **Definition**

A set of vertices is said to be a **vertex cover** if every edge has at least one end in it



The Minimum Vertex Cover Problem (Decision version)

#### **Definition**

A set of vertices is said to be a **vertex cover** if every edge has at least one end in it



The Minimum Vertex Cover Problem (Decision version)

**Instance:** a graph G, a number k

#### **Definition**

A set of vertices is said to be a **vertex cover** if every edge has at least one end in it



## The Minimum Vertex Cover Problem (Decision version)

**Instance:** a graph G, a number k

**Objective:** Decide if G contains a vertex cover of size k?

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

### Proof.

• "only if":

### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

### Proof.

• "only if": Suppose *S* is an independent set.

### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

### Proof.

• "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v).

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

### Proof.

• "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S — one of them must be in V - S.

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

### Proof.

• "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S — one of them must be in V - S. So every edge has at least one end in V - S. So V - S is a vertex cover

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S one of them must be in V S. So every edge has at least one end in V S. So V S is a vertex cover
- "if":

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S one of them must be in V S. So every edge has at least one end in V S. So V S is a vertex cover
- "if": Suppose V S is a vertex cover.

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S one of them must be in V S. So every edge has at least one end in V S. So V S is a vertex cover
- "if": Suppose V S is a vertex cover. Consider any two vertices u, v in S.

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S one of them must be in V S. So every edge has at least one end in V S. So V S is a vertex cover
- "if": Suppose V S is a vertex cover. Consider any two vertices u, v in S. If u, v were joined by an edge, then neither of u, v would be in V S,

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S one of them must be in V S. So every edge has at least one end in V S. So V S is a vertex cover
- "if": Suppose V S is a vertex cover. Consider any two vertices u, v in S. If u, v were joined by an edge, then neither of u, v would be in V S, contradicting the assumption that V S is a vertex cover.

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V - S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S one of them must be in V S. So every edge has at least one end in V S. So V S is a vertex cover
- "if": Suppose V − S is a vertex cover. Consider any two vertices u, v in S. If u, v were joined by an edge, then neither of u, v would be in V − S, contradicting the assumption that V − S is a vertex cover. So no two vertices in S are jointed by an edge.

#### Lemma

Let G = (V, E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover

- "only if": Suppose S is an independent set. Consider an arbitrary edge e = (u, v). We know u, v cannot be both in S — one of them must be in V-S. So every edge has at least one end in V-S. So V-S is a vertex cover
- "if": Suppose V-S is a vertex cover. Consider any two vertices u, vin S. If u, v were joined by an edge, then neither of u, v would be in V-S, contradicting the assumption that V-S is a vertex cover. So no two vertices in S are jointed by an edge. So S is an independent set

#### **Theorem**

• Independent Set  $\leq_P$  Vertex Cover

April 21, 2022

#### **Theorem**

- Independent Set  $\leq_P$  Vertex Cover
- Vertex Cover  $\leq_P$  Independent Set

April 21, 2022