

Рис. 1. Визуализация метода циклического покоординатного спуска на примере квадратичной функции

Рис. 2. Визуализация метода метода циклического покоординатного спуска на примере функции Розенброка

Рис. 3. Визуализация метода Хука - Дживса на примере квадратичной функции

Рис. 4. Визуализация метода Хука - Дживса на примере функции Розенброка

Рис. 5. Визуализация метода Розенброка на примере квадратичной функции

Рис. 6. Визуализация метода Розенброка на примере функции Розенброка

Таб. 1 Результаты вычислений в зависимости от Eps (метод циклического покоординатного спуска)

	Квадратичная Функция при Eps=0.01	Квадратичная Функция при Eps=0.000001	Функция Розенброка при Eps=0.01, а = 4	Функция Розенброка при Eps=0.01, а = 80	Функция Розенброка при Eps=0.000001, а = 4	Функция Розенброка при Eps=0.000001, a = 80
Кол-во итераций	8	18	26	22	174	2332
Кол-во вычисления функции	448	1548	1401	1177	14879	200467
Точка минимума	(2,23; 0.00)	(2,236068; 0.000000)	(0,93 ; 0,87)	(0,48; 0,23)	(1,000000; 1,000000)	(0,999998; 0.999999)
Минимальное значение	-5.99	-6.000000	0.00	0.26	0.000000	0.00

Таб. 2 Результаты вычислений в зависимости от Ерѕ (метод Хука — Дживса)

	Квадратичная Функция при Eps=0.01	Квадратичная Функция при Eps=0.000001	Функция Розенброка при Eps=0.01, а = 4	Функция Розенброка при Eps=0.01, а = 80	Функция Розенброка при Eps=0.000001, а = 4	Функция Розенброка при Eps=0.000001, а =
Кол-во итераций	2	3	14	5	108	1504
Кол-во вычисления функции	166	269	470	178	5242	72250
Точка минимума	(2,23; 0.00)	(2,236068; 0.000000)	(0,93 ; 0,86)	(0,54; 0,29)	(1,000000; 1,000000)	(0,99998; 0.999999)
Минимальное значение	-6.00	-6.000000	0.00	0.21	0.000000	0.00

Таб. 3 Результаты вычислений в зависимости от Eps (метод Розенброка)

	Квадратичная Функция при Eps=0.01	Квадратичная Функция при Eps=0.000001	Функция Розенброка при Eps=0.01, а = 4	Функция Розенброка при Eps=0.01, а = 80	Функция Розенброка при Eps=0.000001, а = 4	Функция Розенброка при Eps=0.000001, a = 80
Кол-во итераций	5	6	8	19	9	21
Кол-во вычисления функции	336	602	449	1065	775	1807
Точка минимума	(2,23; 0.00)	(2,236068; 0.000000)	(0,99 ; 0,99)	(0,99; 0,99)	(1,000000; 1,000000)	(0,99998; 0.99999)
Минимальное значение	-6.00	-6.000000	0.00	0.00	0.000000	0.00

Таб. 4 Результаты вычислений в зависимости от метода вычисления

	Квадратичная Функция при Eps=0.01 Метод ЦПС	Квадратичная Функция при Eps=0.01 Метод Хука — Дживса	Квадратичная Функция при Eps=0.01 Метод Розенброка	Функция Розенброка при Eps=0.01, а = 4 Метод ЦПС	Функция Розенброка при Eps=0.01, а = 4 Метод Хука — Дживса	Функция Розенброка при Eps=0.01, а = 4 Метод Розенброка	Функция Розенброка при Eps=0.01, а = 80 Метод ЦПС	Функция Розенброка при Ерs=0.01, а = 80 Метод Хука — Дживса	Функция Розенброка при Ерs=0.01, а = 80 Метод Розенброка
Кол-во итераций	8	2	5	26	14	8	22	5	19
Кол-во вычисления функции	448	166	336	1401	470	449	1177	178	1065
Точка минимума	(2,23; 0.00)	(2,23; 0.00)	(2,23; 0.00)	(0,93 ; 0,87)	(0,93 ; 0,86)	(0,99 ; 0,99)	(0,48; 0,23)	(0,54; 0,29)	(0,99; 0,99)
Минимальное значение	-5.99	-6.00	-6.00	0.00	0.00	0.00	0.26	0.21	0.00

Таб. 5. Зависимость результатов от положения начальной точки

	Функция	Функция	Функция	Функция	Функция	Функция	Функция	Функция	Функция
	Розенброка	Розенброка	Розенброка	Розенброка	Розенброк	Розенброка	Розенброка	Розенброка	Розенброка
	Начальная	Начальная точка	Начальная	Начальная	a	Начальная	Начальная	Начальная	Начальная
	точка $-(0,0)$	-(0,50)	точка – (0,	точка $-(0,$	Начальная	точка $-(0,$	точка $-(0,$	точка $-(0,$	точка – (0,
	Метод ЦПС	Метод ЦПС	5000)	0)	точка – (0,	5000)	0)	50)	5000)
			Метод ЦПС	Метод	50)	Метод	Метод	Метод	Метод
				Хука—	Метод	Хука—	Розенброка	Розенброка	Розенброка
				Дживса	Хука—	Дживса			
					Дживса				
Кол-во	172	225	5175	2	27	2524	9	27	5007
итераций									
Кол-во	14707	19265	444965	179	1359	121210	775	4903	430603
вычисления									
функции									

Таким образом мы рассмотрели алгоритмы прямого поиска, в которых используется информация только о значениях функции. Достоинством данных методов является то, что нам не нужно требовать дифференцируемости функции и прочих условий. Однако из-за этого появляются недостатки: эффективность такого метода сложно оценить. Метод покоординатного спуска является самым простым для реализации, однако его простота делает его не самым эффективным с точки зрения количества итераций. Методы Хука-Дживса и Розенброка является эффективным с точки зрения количества итерация и вычисления функций. Наиболее выгодным является метод Хука-Дживса.

Следует отметить, что при сильно овражной функции и маленькой точности методы ЦПС и Хука-Дживса ищут минимум не точно. Для точного поиска (методом Розенброка) следует жертвовать производительностью.