الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأوّل: (04.5 نقاط)

نعتبر في الفضاء المضوب إلى المعلم المتعامد المتجانس $\left(O, \vec{I}, \vec{J}, \vec{k}\right)$ النقط:

. 2y+z+1=0 : المعادلة: P و المستوي D (2;0;-1) ، C (2;-1;1) ، B (1;0;-1) ، A (-1;1;3)

ليكن
$$eta$$
 المستقيم الذي تمثيل وسيطي له: $x=-1$ حيث eta وسيط حقيقي. $y=2+eta$ المستقيم الذي تمثيل وسيطي له: $z=1-2eta$

- . (P) محتوى في المستقيم (BC)، ثمّ تحقّق أن المستقيم (BC) محتوى في المستقيم (1
 - . بين أن المستقيمين (Δ) و (BC) ليسا من نفس المستوي.
 - A أ) احسب المسافة بين النقطة A و المستوي (3).
 - بين أن D نقطة من (P)، و أن المثلث BCD قائم.
 - 4) بين أن ABCD رياعي وجوه، ثمّ احسب حجمه.

التمرين الثاني: (04 نقاط)

- $V_{\scriptscriptstyle H} = rac{5^{n+1}}{6^n}$:ب المتتالية $\left(V_{\scriptscriptstyle H}
 ight)$ معرَفة على ال
- . بين أن (v_n) متتالية هندسية يطلب تحديد أساسها و حدها الأول.
 - $\lim_{n\to+\infty}v_n$ (2)
- $u_{n+1}=\sqrt{5\,u_n+6}$ ، n معرَفة بـ: $u_0=1$ ، و من أجل كل عدد طبيعي (u_n معرَفة بـ: $u_0=1$
 - $-1 \le u_n \le 6$ ، n برهن بالتراجع أنه، من أجل كل عدد طبيعي (1
 - $\cdot (u_n)$ ادرس اتجاء تغيّر المتالية (2
 - $.6 u_{n+1} \le \frac{5}{6} (6 u_n)$ ، n عدد طبیعی (أ (3) برهن أنّه، من أجل كل عدد طبیعی
 - . $\lim_{n\to +\infty} u_n$ استنج من أجل كل عدد طبيعي و v_n ، n من أجل كل عدد طبيعي (ب

التمرين الثالث: (05 نقاط)

لا عداد المركبة، المعادلة (1) ذات المجهول z التالية: (1) المجهول z التالية:

. وسيط حقيقي
$$\alpha$$
 حيث $z^2 - (4\cos\alpha)z + 4 = 0$ (1)

$$\left(\frac{z_1}{z_2}\right)^{2013} = 1$$
 : نرمز إلى حلى المعادلة (I) يا يا يا يا $\alpha = \frac{\pi}{3}$ نرمز إلى حلى المعادلة (2) من أجل $\alpha = \frac{\pi}{3}$

ق التي C و B ، A النقط $O(\vec{u},\vec{v})$ التي المعلم المتعامد المتعامد $O(\vec{u},\vec{v})$ النقط $O(\vec{u},\vec{v})$ التي

. لاحقائها:
$$z_C=4+i\sqrt{3}$$
 و $z_B=1-i\sqrt{3}$ ؛ $z_A=1+i\sqrt{3}$ على الترتيب

C و B ، A و B أنشيئ النقط

ب) اكتب على الشكل الجبري العدد المركب $\frac{\varkappa_C - \varkappa_A}{\varkappa_R - \varkappa_A}$ ، ثمّ استتج أنّ C هي صورة B بالتشابه المباشر C الذي مركزه C ويطلب تعيين نسبته و زاويته.

 \cdot C جين لاحقة النقطة C مرجح الجملة $\left\{ (A;1), (B;-1), (C;2) \right\}$ ، ثم أنشئ C

د) احسب z_D لاحقة النقطة D ، بحيث يكون الرباعي z_D متوازي أضلاع.

×	f(x)
0.20	0.037
0.21	0.016
0.22	-0.005
0.23	-0.026
0.24	-0.048
0.25	-0.070

التمرين الرابع: (
$$06.5$$
 نقاط) $f(x) = \frac{x}{x-1} + e^{x-1}$ ي: $]-\infty;1[$ يا الدالة المعرفة على $f(x)$

 $-\left(O,ec{I},ec{J}
ight)$ و $-\left(O,ec{I},ec{J}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس

 $\frac{0.25 \quad | \quad -0.070 \mid}{1 \quad \text{lim}} \quad f(x)$ و $\lim_{x \to -\infty} f(x)$ ، ثمّ استنتج المستقيمين المقاربين للمنحنى ا $\lim_{x \to -\infty} f(x)$. $\lim_{x \to -\infty} f(x)$

- ا حسب f'(x). بيّن أن الدالة / متناقصة تماما على المجال $[1;\infty-1]$ ، ثمّ شكّل جدول تغيراتها.
- . α يين أن المعادلة I(x)=0 نقبل في $]-\infty$ حلا وحيدا α . باستعمال جدول القيم أعلاء جد حصرا للعدد (3
 - . |f| الممثل للدالة (C)، ثمّ ارسم المنحنى المقاربين و المنحنى و المنحنى المثل الدالة (C
- 5) عين بيانيا مجموعة قيم الأعداد الحقيقة m التي من أجلها يكون للمعادلة f(x)=|f(x)|=0 حلان مختلفان في الإشارة.
 - (عيارة g(x) عير مطلوبة g(x) الدالة المعرفة على g(x)=f(2x-1) ي: g(x)=g(x) عير مطلوبة g(x)
 - ا) ادرس تغيرات الدالة g على $[1:\infty-[$ ، ثمّ شكّل جدول تغيراتها. $[1:\infty]$

$$g'\left(\frac{\alpha+1}{2}\right) = 2f'(\alpha)$$
: ثم بيّن أن: $g\left(\frac{\alpha+1}{2}\right) = 0$: ثم بيّن أن: (2

 $rac{lpha+1}{2}$ ب) استنتج معادلة T المماس لمنحنى الدالة g في النقطة ذات الفاصلة

$$(T)$$
 معادلة للمستقيم $y = \frac{2}{(\alpha - 1)^3} x - \frac{\alpha + 1}{(\alpha - 1)^3}$ عند (T) معادلة المستقيم (T)

الموضوع الثائي

التمرين الأول: (04.5 نقاط)

 $z^2+4z+13=0$ (E) نعتبر في مجموعة الأعداد المركبة $\mathbb C$ المعادلة (E) ذأت المجهول z الآتية: 1) تحقّق أن العدد المركب 2-3r-2 حل للمعادلة (E)، ثمّ جد الحل الآخر -1

و كا نقطتان من المستوي المركب لاحقتاهما $z_A=-2-3i$ و $z_B=i$ على الترتيب. S التشابه المباشر A

M'(z) الذي مركزه M، نسبته $rac{1}{2}$ و زاويته $rac{\pi}{2}$ والذي يحوّل كل نقطة M(z) من المستوي إلى النقطة

.
$$z' = \frac{1}{2}iz - \frac{7}{2} - 2i$$
) بین أن:

-S بالتثابه B معلماً أن C هي صورة B بالتثابه C

. 2 $A\dot{D}+A\dot{B}=\dot{0}$: حيث D لتكن النقطة (3

أ) بيّن أن D هي مرجح النقطتين A و B المرفقتين بمعاملين حقيقبين يطلب تعبينهما .

D احسب Z_D الحقة النقطة

.
$$ACD$$
 بيّن أن: $\frac{Z_D-Z_A}{Z_C-Z_A}=1$ ، ثمّ استنج طبيعة المثلث (ج

التمرين الثاني: (04 نقاط)

في الشكل المقابل، (C_f) هو التمثيل البياني للذالة f المعرّفة على

$$f(x) = \frac{2x}{x+1}$$
 المجال [0;1] بالعلاقة

y=x و d المستقيم ذو المعادلة d

$$u_0=rac{1}{2}$$
 ، المتتالية العددية المعزفة على $\mathbb N$ بحدها الأوّل (u_n) المتتالية العددية المعزفة المعزف

 $u_{n-1} = f(u_n)$ ، من أجل كل عدد طبيعي و من أجل

، u_1 ، u_0 هذا الشكل في ورقة الإجابة، ثمّ مثل الحدود أ) أعد رسم هذا الشكل في ورقة الإجابة، ثمّ مثلًا الحدود و u_3 على محور الفواصل دون حسابها، مبرزا خطوط التمثيل.

ب) ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) و تقاربها.

 $\cdot [0:1]$ أُنْبِت أَنَ الدالة f متزايدة تماما على المجال أ

 $0 < u_n < 1$ ، n برهن بالثراجع أنّه، من أجل كل عدد طبيعي بالثراجع

 $\cdot (u_n)$ قير المنتالية (ج) ادرس اتجاء تغير

$$v_n = \frac{u_n - 1}{u_n}$$
 :كما يلي كما المنتالية العددية المعرفة على المنالية المنالي

. v_0 أ) برهن أنّ (v_n) متثالية هندسية أساسها أ $rac{1}{2}$ ، يطلب حساب حدّها الأول

 $\cdot (u_n)$ ägler (\cdot

التمرين الثالث: (04.5 نقاط)

A(|2|;1|;-1|) النقط ($|O|;ec{t},ec{f},ec{k}|$) النقط المتعامد المتعامد المتجانس ($|O|;ec{t},ec{f},ec{k}|$) النقط

. [
$$AB$$
] و القطعة $D\left(\frac{7}{2};-3;0\right)$ و القطعة $C\left(-\frac{3}{2};-2;1\right)$ ، $B\left(1;-1;3\right)$

1) أ) احسب إحداثيات النقطة /.

. [AB] المستوي المحوري لـ [(P) عادلة ديكارتية لـ ((P))؛ المستوي المحوري لـ [(x+4) المستوي المحوري لـ [(x+4)

كتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة C و (1;2;-4) شعاع توجيه له.

 $\cdot (\Delta)$ نقطة تقاطع المستوي (P) و المستقيم (Δ

ب بين أنَ (Δ) و (AB) من نفس المستوى، ثمّ استنتج أن المثلث IEC قائم.

(IE) عمودي على كل من المستقيم ((ID) عمودي على كل من المستقيم ((AB) و المستقيم ((IE)

ب) أحسب حجم رباعي الوجوء DIEC .

التمرين الرابع: (07 نقاط)

 $g(x) = x^2 + 2x + 4 - 2\ln(x+1)$ بندالة المعزفة على المجال $g(x) = -1; +\infty$ الدالة المعزفة على المجال $g(x) = -1; +\infty$

ا درس تغیرات الدالة g، ثمّ شكّل جدول تغیراتها 1

g(x) > 0 ، $]-1;+\infty[$ استنتج أنه، من أجل كل x من المجال (2

$$f(x) = x - \frac{1 - 2\ln(x+1)}{x+1}$$
 ب: $|-1;+\infty|$ بالدالة المعرّفة على المجال $|-1;+\infty|$

 $(2\,cm$ وحدة الطول)، $(\,O;ec{I},ec{J}\,)$ وحدة الطول ($\,C_{r}$) وحدة الطول ($\,C_{r}$) وحدة الطول

. $\lim_{x \to \infty} f(x)$ — (φ

. f الدالة $f'(x) = \frac{g(x)}{(x+1)^2}$ ، $f(x) = \frac{g(x)}{(x+1)^2}$ ، $f(x) = \frac{g(x)}{(x+1)^2}$ هي مشتقة الدالة $f(x) = \frac{g(x)}{(x+1)^2}$

ب) ادرس اتجاه تغيّر الدالة f على المجال] + (1 - [، ثمّ شكّل جدول تغيّراتها ،

0<lpha<0.5 جين أنّ المعادلة f(x)=0 تقبل حلا وحيدا lpha في المجال a المجال a تقبل حلا وحيدا عنه وحيدا المجال أنت المعادلة الم

 $+\infty$ عند (C_r) عند ماثل للمنحنى المعادلة y=x عند عند (Δ) عند المعادلة (3

 $\cdot (\Delta)$ بالنسبة إلى المنحنى (C_f) بالنسبة إلى بالمنحنى (ب

. x_0 المستقيم (C_r) في نقطة فاصلتها $y=x+rac{2}{\sqrt{c^3}}$: أن المستقيم (T) أن المستقيم (4

أ) احتب (أ

. (C_r) ب) ارسم المستقيمين المقاربين والمماس (T) عم المنحنى

ج) عيّن بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة f(x)=x+m حلّين متمايزين.