Student:	
	Grupa:
	18-19 ianuarie 2014*

Problema 1. Să se arate că dacă un graf G are exact două vârfuri de grad impar atunci în G există un drum între aceste două vârfuri.

Problema 2. Fie G=(V,E) un graf dat prin listele de adiacență. Pentru fiecare vârf $v \in V$ este dată "puterea" sa $p(v) \in \mathbf{R}^+$. Descrieți un algoritm de complexitate timp O(|V| + |E|) care să calculeze pentru fiecare vârf v al grafului $P(v) := \max\{p(u)|u \in V, u \text{ accesibil printr-un drum din } v \text{ în } G\}$.

Problema 3. Fie G = (V, E) un graf conex şi $c : E \to \mathbf{R}$. Fie C un circuit al grafului G şi $e_0 \in E(C)$ astfel încât $c(e_0) = \max\{c(e)|e \in E(C)\}$. Demonstrați că G are un arbore parțial de cost minim care nu conține muchia e_0 (E(C) notează mulțimea muchiilor circuitului C).

Problema 4. Să se arate că un graf G este bipartit dacă și numai dacă orice subgraf indus H al lui G conține o mulțime S de vârfuri neadiacente două câte două în H și având cel puțn |V(H)|/2 vârfuri.

Problema 5. În rețeaua R=(G,s,t,c) se cunoaște un flux x^0 de la s la t de valoare maximă. Fie R' rețeua obținută din R prin dublarea capacității fiecărui arc. Arătați că se poate rezolva problema fluxului maxim în R' în timpul O(m) (m=|E(G)|).

^{*}Baza=10 puncte; Fiecare problemă=10 puncte; Redactați soluțiile pe foile proprii.

Student:	
	Grupa:
	18-19 ianuarie 2014 ^a

Problema 1. Fie G = (V, E) un graf cu proprietatea că $\forall v, w \in V, v \neq w$ are loc $d_G(v) + d_G(w) \ge |V| - 1$. Demonstrați că diametrul lui G este cel mult 2.

Problema 2. Fie $G = (V_1 \cup V_2, E)$ un graf bipartit reprezentat cu ajutorul listelor de adiacență. Descrieți un algoritm de complexitate timp O(n+m) care să testeze dacă un cuplaj dat, $M \subseteq E$, este cuplaj de cardinal maxim în G $(n = |V_1| + |V_2|, m = |E|)$.

Problema 3. În rețeaua R=(G,s,t,c) se cunoaște pentru fiecare vârf $i \in V(G)-\{s,t\}$ un număr real nenegativ $a(i) \in \mathbf{R}_+$. Se cere să se determine un flux de valoare maximă de la s la t în R printre toate fluxurile care satisfac condiția ca suma fluxurilor pe arcele care intră în orice vârf $i \in V(G)-\{s,t\}$ să nu depășească a(i). Construiți o rețea R' cu proprietatea că aplicând un algoritm uzual de flux maxim se obține soluția la problema dată.

Problema 4. Fie G un graf și $\delta(G)$ gradul minim al unui vârf al său. Descrieți un algoritm care, pentru un arbore dat T cu $k \leq \delta(G)$ muchii, să construiască (în timp polinomial) un subgraf H al lui G astfel încât $H \cong T$.

Problema 5. Arătați că pentru orice graf planar se poate construi în timp polinomial o ordonare a vârfurilor sale astfel încât aplicând algoritmul greedy de colorare se obține o colorare cu cel mult 6 culori.

^aBaza=10 puncte; Fiecare problemă=10 puncte; Redactați soluțiile pe foile proprii.

Student:	
	Grupa:
	18-19 ianuarie 2014 ^b

Problema 1.

Fie G un graf conex cu toate vârfurile de grad par. Demonstrați că $\forall e \in E$ graful G-e este conex.

Problema 2. Fie G=(V,E) un graf conex şi $w:E\to \mathbf{R}$ o funcție de pondere pe muchiile sale. Presupunem că graful este reprezentat prin listele de adiacență. Proiectați un algoritm de complexitate timp $O(m\log n)$ care să testeze dacă, pentru două vârfuri $u,v\in V$ date, există un drum în G cu toate muchiile de aceeași pondere (n=|V|,m=|E|; indicație: utilizați sortarea și BFS repetat).

Problema 3. Arătați că problema

Să se determine $x,y,z\in\{0,1\}$ astfel încât $3.5\cdot x+2.5\cdot y+5\cdot z\leq 8$ iar $3\cdot x+8\cdot y+10\cdot z$ să aibă valoare maximă

se poate rezolva cu ajutorul unui algoritm pentru problema drumului de cost minim pentru un digraf și costurile arcelor convenabil alese.

Problema 4. Fie G un graf şi $c: E(G) \to \mathbf{R}_+$ o funcție de capacitate a muchiilor. Oricărui drum P din graf cu măcar o muchie i se asociază **locul ingust** $b(P) = \min\{c(e)|e$ muchie a drumului $P\}$. Descrieți un algoritm eficient care să determine, pentru două virfuri s și t distincte ale grafului G, drumul cu locul ingust cel mai mare (dintre toate drumurile de la s la t in graful G).

Problema 5. Demonstrați că problema determinării dacă un graf bipartit dat este hamiltonian este o problemă NP-completă.

^bBaza=10 puncte; Fiecare problemă=10 puncte; Redactați soluțiile pe foile proprii.

Student:	
	Grupa:
	18-19 ianuarie 2014 ^c

Problema 1. Fie G=(V,E) un graf cu cel puţin 3 vîfuri. Demonstraţi că G este conex dacă şi numai dacă există două vârfuri $u,v\in V\ (u\neq v)$ astfel încât grafurile G-u şi G-v sunt conexe.

Problema 2. Fie G=(V,E) un graf conex reprezentat prin listele de adiacență. Fiecare muchie $e \in E$ are un cost $c(e) \in \{0,1\}$. Descrieți un algoritm care să determine în timpul O(n+m) un arbore parțial de cost minim în graful dat (n=|V|, m=|E|; indicație: BFS pe grafuri convenabil alese).

Problema 3. Fie $G = (V_1 \cup V_2, E)$ un graf bipartit în care toate vârfurile au același grad $k \ge 1$. Demonstrați că G are un cuplaj perfect.

Problema 4. În rețeaua R = (G, s, t, c), toate capacitățile nenule sunt numere întregi pozitive pare. Demonstrați că există un flux x de valoare maximă cu proprietatea că pe orice arc, dacă fluxul este nenul atunci el este un număr pozitiv par.

Problema 5. Demonstrați că dacă graful G este p-conex $(p \ge 2)$ atunci, pentru orice vârf $v \in V(G)$, graful G - v este p - 1-conex.

^cBaza=10 puncte; Fiecare problemă=10 puncte; Redactați soluțiile pe foile proprii.

Student:	
	Grupa:
	18-19 ianuarie 2014 ^d

Problema 1. Dacă H=(V(H),E(H)) este un graf, notăm numărul muchiilor lui H cu e(H) (e(H)=|E(H)|). Demonstrați că pentru orice graf G=(V,E) cu cel puțin 3 vârfuri are loc egalitatea $e(G)=\frac{\sum_{v\in V}e(G-v)}{|V|-2}$.

Problema 2. Fie G=(V,E) un graf cu cel puțin 3 vârfuri, reprezentat cu ajutorul matricii de adiacență A. Se dorește să se afle numărul circuitelor de lungime 3 existente în graful G. Descrieți un algoritm care să folosească A^3 pentru aflarea acestui număr.

Problema 3. Demonstrați că următoarea problemă este \mathbf{NP} -completă. \mathbf{CLICA} \mathbf{MAXIM}

Instanță: G un graf și $k \in \mathbb{N}^*$.

Întrebare: Există Q o clică în G cu cel puțin k vârfuri?

Problema 4. Arătați că se poate determina, într-o matrice cu elemente 0 și 1 dată, o mulțime de cardinal maxim de elemente egale cu 0 și care să nu se găsească pe aceeași linie sau coloană, cu ajutorul unui algoritm de flux maxim (pe o rețea convenabil definită).

Problema 5. Un graf G este maximal planar dacă G + e nu este planar pentru orice muchie e a complementarului lui G. Demonstrați că fiecare față a unui graf maximal planar este mărginită de un circuit de lungime 3.

 $^{^{\}rm d} {\rm Baza}{=}10$ puncte; Fiecare problemă=10 puncte; Redactați soluțiile pe foile proprii.

Student:	
	Grupa:
	18-19 ianuarie 2014 ^e

Problema 1. Fie G un graf autocomplementar $(G \cong \overline{G})$ de ordin $2k+1 \geq 5$. Demonstrați că G are un vârf de grad k.

Problema 2. Fie G = (V, E) un graf conex şi u, v, w trei vârfuri distincte ale sale. Să se descrie un algoritm cu timp de lucru polinomial care să testeze dacă există în G un drum de la u la v care să treacă prin w (indicație: se pot considera drumuri intern disjuncte plecând din w).

Problema 3. Fie G=(V,E) un graf 2-conex care nu conține subgrafuri induse izomorfe cu graful circuit C_k , $\forall k \in \mathbb{N}, \ k \geq 3$. Demonstrați că pentru orice două vârfuri neadiacente u și v ale lui G, graful $G-\{u,v\}$ este conex.

Problema 4. Fie R=(G,s,t,c) o rețea și (S_i,T_i) (i=1,2) secțiuni de capacitate minimă ale ei. Demonstrați că și $(S_1 \cup S_2,T_1 \cap T_2)$ și $(S_1 \cap S_2,T_1 \cup T_2)$ sunt secțiuni de capacitate minimă în R.

Problema 5. Desenați un graf 3-regulat care sa nu aibă cuplaj perfect (justificare).

^eBaza=10 puncte; Fiecare problemă=10 puncte; Redactați soluțiile pe foile proprii.