A Study of MatchPyramid Models on Ad-hoc Retrieval

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xueqi Cheng

Institute of Computing Technology, Chinese Academy of Sciences

Text Matching

Many text based applications have been formalized as a matching task

Lack the evaluation of deep matching models on the standard ad-hoc retrieval tasks

A Representative model: MatchPyramid

A State-of-the-art text matching model [AAAI 2016]

TD 1 1	4 1		1 4	7 /	CD	
ahle		A DCII	lts on	1	V K	\mathbf{P}
raure		VC3u	us on	IVI		1.

Model	Acc.(%)	$F_1(\%)$
ALLPOSITIVE	66.50	79.87
TF-IDF	70.31	77.62
DSSM	70.09	80.96
CDSSM	69.80	80.42
ARC-I	69.60	80.27
ARC-II	69.90	80.91
MP-IND	75.77	82.66
MP-Cos	75.13	82.45
MP-Dot	75.94	83.01

Paraphrase Identification

Table 2: Results on the task of paper citation matching.

Model	Acc.(%)	$F_1(\%)$
ALLPOSITIVE	33.33	50.00
TF-IDF	82.63	70.21
DSSM	71.97	29.88
CDSSM	69.84	19.97
ARC-I	84.51	76.79
Arc-II	86.48	79.57
MP-IND	73.76	44.71
MP-Cos	86.65	79.70
MP-Dot	88.73	82.86

Paper Citation Matching

A Brief Introduction to MatchPyramid

Text Matching as Image Recognition

Matching Matrix

Capture the local interactions, and bridge the gap between text matching and image recognition

$$\mathbf{M}_{ij} = w_i \otimes v_j \ \begin{cases} \text{Indicator:} & \mathbf{M}_{ij} = \mathbb{I}_{\{w_i = v_j\}} = \begin{cases} 1, & \text{if } w_i = v_j \\ 0, & \text{otherwise.} \end{cases} \\ \mathbf{M}_{ij} = \vec{\alpha_i}^\top \vec{\beta_j}. \\ \mathbf{M}_{ij} = \frac{\vec{\alpha_i}^\top \vec{\beta_j}}{\|\vec{\alpha_i}\| \cdot \|\vec{\beta_j}\|} \\ \mathbf{Gaussian \ Kernel:} & \mathbf{M}_{ij} = e^{-\|\vec{\alpha_i} - \vec{\beta_j}\|^2} \end{cases}$$

Hierarchical Convolution

A Way to Capture Rich Matching Patterns (e.g., n-grams, n-terms)

Matching Score and Training

Matching Score Generation

Multi-Layer Perception

$$(s_+, s_-)^{\mathsf{T}} = W_2 \sigma(W_1 z + b_1) + b_2$$

Training

$$\mathcal{L}(s_+, s_-; \Theta) = \max(0, 1 - s_+ + s_-)$$

Adagrad [Duchi, Hazan, and Singer 2011]

Experiments on Ad-hoc Retrieval

Experimental settings

- TREC Robust04
 - The topics are collected from TREC Robust Track 2004.
 - Use the Galago Search Engine in this experiment, and both queries and documents are white-space tokenized, lower-cased, and stemmed during indexing and retrieval.
 - Truncate the document length to 500.

Table 1: Statistics of the TREC collection Robust04.

#Vocab	$\#\mathrm{Doc}$	# Query	#Retrieval doc	Avg doc
0.6M	0.5M	250	2000	477

Experimental Settings

- Model Settings
 - 1 Convolutional Layer and 1 Pooling Layer
 - 128 hidden nodes for the MLP
 - ReLU as the activation function

- Impact of Similarity Function
- Impact of Kernel Size
- Impact of Dynamic Pooling Size

Impact of Similarity Function

Comparison of different similarity functions on Paraphrase Identification

Model	Acc.(%)	$F_1(\%)$
MP-IND	75.77	82.66
MP-Cos	75.13	82.45
MP-Dot	75.94	83.01

Comparison of different similarity functions on Robust04

Model	MAP	nDCG@20	P@20
MP-Ind	0.225	0.387	0.302
MP-Dot	0.095	0.149	0.142
MP-Cos	0.189	0.340	0.272
MP-Gau	0.226	0.403	0.318

It is important for deep models to differentiate exact matching from semantic matching on ad-hoc retrieval task

Impact of Kernel Size

- 1 x n kernel: to capture the query word level richer matching signals
- **n x n kernel**: to capture the n-gram matching (word proximity)

Observations:

- Kernel size is not sensitive on the Indicator Matching Matrix due to sparsity.
- A proper kernel size on the Gaussian Matching Matrix can capture richer semantic information.
- Surprisingly, no improvement on n-gram matching: The dataset is too small to learn the complex proximity patterns.

Table 4: Comparison of different kernel size of MatchPyramid. (fix pooling size 3×10)

Model	Kernel Size	MAP	nDCG@20	P@20
MP-Ind	1×1	0.225	0.387	0.302
MP-Ind	1×3	0.226	0.382	0.294
MP-Ind	1×5	0.223	0.382	0.297
MP-Ind	3×3	0.221	0.379	0.295
MP-Ind	5×5	0.219	0.378	0.295
MP-Gau	1 × 1	0.226	0.403	0.318
MP-Gau	1×3	0.232	0.411	0.327
MP-Gau	1×5	0.226	0.409	0.326
MP-Gau	3×3	0.220	0.400	0.312
MP-Gau	5×5	0.201	0.371	0.301

Impact of Pooling Size

Pooling layer is used to pick out the most important signals

Observation:

- 1. Pooling size affect the performance significantly
- 2. The best dynamic pooling size is about 3x10
 - On the query side, we keep information at query word level (since the mean query length is 3);
 - On the document side, we aggregate information from every 50 words, close to the average length of a paragraph.

Table 2: Comparison of different pooling size of MatchPyramid. (fix kernel size 1×1)

	(~ - ^ -)	
Model	Pooling Size	MAP	nDCG@20	P@20
MP-Ind	5×100	0.175	0.320	0.254
MP-Ind	5×50	0.195	0.343	0.266
MP-Ind	5×20	0.209	0.363	0.279
MP-Ind	5×10	0.219	0.387	0.301
MP-Ind	5×5	0.214	0.380	0.295
MP-Ind	5×3	0.209	0.370	0.300
MP-Ind	3×20	0.213	0.357	0.285
MP-Ind	3×10	0.225	0.387	0.302
MP-Ind	3×5	0.225	0.385	0.301
MP-Ind	3×3	0.215	0.377	0.301
MP-Ind	1×10	0.056	0.082	0.073
MP-Ind	1×5	0.051	0.072	0.078
MP-Ind	1×3	0.043	0.066	0.053
	·			

It is better to aggregate signals for the lengthy, noisy documents but not the short queries

Compare with Existing Models

- MatchPyramid outperforms existing deep matching models
 - Compared with representation based models, MatchPyramid keeps all the low-level detailed matching signals
 - Compared with interaction based models, Gaussian kernel is much more effective than 1D convolution in ARC-II
- The best performing deep matching models cannot beat the traditional retrieval models on Robust04

Table 5: Comparison of different retrieval models over the TREC collection Robust04. † models trained on large click-through dataset.

Type	Name	MAP	nDCG@20	P@20
Traditional	$\overline{\mathrm{QL}}$	0.253	0.415	0.369
Model	BM25	$\boldsymbol{0.255}$	0.418	0.370
Representation	DSSM^\dagger	0.095	0.201	0.171
Based Model	${ m CDSSM}^\dagger$	0.067	0.146	0.125
	ARC-I	0.041	0.066	0.065
Interaction	ARC-II	0.067	0.147	0.128
Based Model	MP-Gau	0.232	0.411	0.327

Some Thoughts...

- Considering the success of these deep matching models on NLP tasks,
 e.g. paraphrase identification
 - Task: It seems that the ad-hoc retrieval task is quire different from those text matching tasks in NLP:

- Homogeneous texts (sentences) vs. heterogeneous texts (keywords, documents)
- Comparable lengths vs. significantly different lengths (short queries, very long documents)
- Semantic matching signals vs. exact matching signals

Some Thoughts...

- Considering the success of traditional retrieval models,
 - Model: Queries are usually not treated equivalent to documents in traditional retrieval models
 - VSM (symmetric) vs. BM25/LM (non-symmetric)
 - Most deep models treat the two input texts in a symmetric way

Some Thoughts...

- Considering the success of deep learning models in other research areas,
 - **Data:** The limited data size (i.e., query size) of ad-hoc retrieval dataset prevents us from using very deep network architectures

\mathbf{I}	able 1:	<u>Statistic</u>	${f s}$ of the ${f T}$	REC collection	Robust04.
	#Vocab	$\#\mathrm{Doc}$	# Query	#Retrieval doc	Avg doc
	0.6M	0.5M	250	2000	477

- Some larger data sets:
 - MQ2007: about 1700 queries labeled
 - MQ2008: about 800 queries labeled
- Paraphrase Identification: 5,800 pairs of sentences (MSRP)
- ImageNet: 14,197,122 images, synsets: 21,841

Conclusions

- Test MatchPyramid models on ad-hoc retrieval tasks
- Study three factors in MatchPyramid models
 - Similarity functions
 - Kernel size
 - Dynamic pooling size
- The weak performance on ad-hoc retrieval tasks
 - Task characteristics
 - Model design
 - Data size

Thanks Q&A