CLASS: F.E. - (SEM – II) Assignment-3

**SUB: Engineering Physics ACADEMIC YEAR: 2022-23** 

| CO  | Statement                                                | POs     |
|-----|----------------------------------------------------------|---------|
| CO3 | Understand concepts and principles in quantum mechanics. | 1, 2, 8 |
|     | Relate them to some applications                         |         |

|     | Questions                                                   | Marks | CO  | Bloom |
|-----|-------------------------------------------------------------|-------|-----|-------|
| No. |                                                             |       |     | Level |
| 1   | Explain de Broglie hypothesis. Derive the equation of de    | 05    | CO3 | L2    |
|     | Broglie wavelength in terms of K.E and of an electron.      |       |     |       |
| 2   | State and explain Heisenberg's uncertainty principle.       | 04    | CO3 | L5    |
| 3   | Derive Schrodinger's time independent wave equation.        | 06    | CO3 | L2    |
| 4   | Derive the equation of wave function of the particle        | 06    | CO3 | L2    |
|     | enclosed in one dimensional rigid box (infinite potential   |       |     |       |
|     | well) of length L. Draw the representation of the wave      |       |     |       |
|     | function and its probability density.                       |       |     |       |
| 5   | Explain tunneling effect and give brief explanation about   | 04    | CO3 | L2    |
|     | its use in tunnel diode.                                    |       |     |       |
| 6   | Lowest energy of an electron trapped in a potential well is | 04    | CO3 | L3    |
|     | 38 eV. Calculate the width of the well.                     |       |     |       |

#### Dr. D. Y. PATIL INSTITUTE OF TECHNOLOGY PIMPRI, PUNE-411 018

#### DEPARTMENT OF FIRST YEAR ENGINEERING

**CLASS:** F.E. **Assignment 3** 

**SUB: Basic Electrical Engineering ACADEMIC YEAR:** 2022-23

| COs | Statement                                                                                                                                            | POs                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3   | Students will be able to derive expression for impedance, current, power in series and parallel RLC circuit with AC supply along with phasor diagram | 1,2,3,4,5,6,<br>9,10,12 |

| Q.<br>No | Question Statement                                                                                                                                                                                                                                                                               | CO<br>Mapping | Blooms<br>Level | Marks |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-------|--|
| 1        | Define and state the unit of admittance, conductance and susceptance.                                                                                                                                                                                                                            | CO114.3       | 3               | 04    |  |
| 2        | The series circuit having resistance $5\Omega$ and inductance 0.1H and capacitance of $150\mu F$ is connected to 1 phase, 200V, 50Hz AC supply. Calculate (i) Inductive reactance (ii) capacitive reactance (iii) Net reactance (iv) Impedance (v) current drawn by the circuit and power factor | CO114.3       | 3               | 06    |  |
| 3        | Obtain the expression for current and power when voltage $v=V_m sin\omega t$ is applied across purely resistive circuit. also draw waveform for voltage, current and power on common X-axis. A coil having resistance of 7 $\Omega$ and an inductance of 31.8mH is                               | CO114.3       | 1               | 06    |  |
| 4        | i. The circuit current ii. Phase angle iii. Power factor iv. Power consumed                                                                                                                                                                                                                      | CO114.3       | 3               | 05    |  |
| 5        | v. Voltage drop across resistance and inductor What is series resonance? Derive the expression for the resonant frequency The series circuit having resistance 5 $\Omega$ and capacitance of 150 $\mu F$ is connected to 1-phase, 200V, 50Hz AC supply. Calculate-                               | CO114.3       | 1,3             | 05    |  |
| 6        | <ul><li>i. Impedance</li><li>ii. Current drawn by the circuit</li><li>iii. Power factor</li><li>iv. Active and reactive power</li></ul>                                                                                                                                                          | CO114.3       | 3               | 05    |  |

CLASS: F.E. - (SEM -I/II)

**Assignment 3** 

SUB: Programming and Problem Solving ACADEMIC YEAR: 2022-23

| COs | Statement                                                              | POs                |
|-----|------------------------------------------------------------------------|--------------------|
|     |                                                                        |                    |
| 3   | Demonstrate significant experience with the Python program development | 1,2,3,4,5<br>11,12 |

| Que.<br>No: | Question Description                                                  | Marks | со | Blooms<br>Level |
|-------------|-----------------------------------------------------------------------|-------|----|-----------------|
| Que.01      | Explain variable scope and lifetime with suitable example.            | 5     | 3  | L1              |
| Que.02      | Explain Required argument & Keyword argument type with example.       | 5     | 3  | L2              |
| Que.03      | What is lambda or anonymous functions in python? Explain with example | 5     | 3  | L2              |
| Que.04      | Explain return statement with example.                                | 5     | 3  | L1              |
| Que.05      | Write a program using function for                                    | 5     | 3  | L3              |

- a) Factorial of a positive number
- b) Check the given number is even or odd

**CLASS:** F.E. - (SEM – II)

**Assignment 3** 

**SUB: Engineering Mathematics - II** 

**ACADEMIC YEAR:** 2022-23

| COs | Statement                                                                                                                                                                                                                                              | POs      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2   | The student will be able to learn advanced integration techniques such as Reduction formulae, Beta functions, Gamma functions, Differentiation under integral sign and Error functions needed in evaluating multiple integrals and their applications. | 1,2,3,12 |

| Que.  | <b>Question Description</b>                                                                                                          | Marks | CO | Blooms |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|-------|----|--------|
| No.   |                                                                                                                                      |       |    | Level  |
| Que.1 | If $I_n = \int_0^{\pi/4} tan^n x  dx$ , then prove that                                                                              | 5     | 2  | L3     |
| Que.2 | $I_n = \frac{1}{n-1} - I_{n-2}$ If $I_n = \int_0^{\pi/2} x^n \cos^n x  dx$ , then prove that $I_n = \int_0^{\pi/2} x^n \cos^n x  dx$ | 5     | 2  | L3     |
| Que.3 | $I_n = \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$<br>Evaluate $\int_0^\infty \sqrt{x}. e^{-x^3} dx$                               | 5     | 2  | L3     |
| Que.4 | Evaluate $\int_{0}^{1} x^{3} \cdot (1 - \sqrt{x})^{5} dx$                                                                            | 5     | 2  | L3     |
| Que.5 | Prove that $\int_0^\infty \frac{e^{-ax}\sin x}{x} dx = \cot^{-1} a$                                                                  | 5     | 2  | L3     |
| Que.6 | Prove that $\int_0^\infty e^{-x^2 - 2bx} dx = \frac{\sqrt{\pi}}{2} e^{b^2} [1 - \text{erf(b)}]$                                      | 5     | 2  | L3     |

CLASS: F.E. - (SEM -II) Assignment 3

SUB: Engineering Chemistry ACADEMIC YEAR: 2022-23

|             |                                                                                                                                                                                                                                                                                                    |           |        |                 | D.O.              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-----------------|-------------------|
| COs         | Statement                                                                                                                                                                                                                                                                                          |           |        |                 | POs               |
| _           | ent will be able to demonstrate the knowledge of advancerials for various engineering applications.                                                                                                                                                                                                | ced engir | neerin | ng              | 1,2,7,9,11,<br>12 |
| Que.<br>No: | Question Description                                                                                                                                                                                                                                                                               | Marks     | со     | Blooms<br>Level |                   |
| Que.01      | What are biodegradable Polymers? Give important features of biodegradable polymers. How are they classified? Give the structure, properties and applications of PHBV.                                                                                                                              | 6         | 3      | BL1 &<br>BL5    |                   |
| Que.02      | What are conducting polymers? What are the structural requirements for a polymer to be conducting? Explain intrinsically and extrinsically conducting polymers. How conductivity of intrinsically conducting polymers (ICP) can be increased using doping process? Explain with suitable examples. | 5         | 3      | BL2             |                   |
| Que.03      | What are polymer composites? What are the constituents of polymer composite? What is carbon fibre reinforced polymer composites? Give advantages and applications of carbon fibre reinforced polymer composites.                                                                                   | 6         | 3      | BL1             |                   |
| Que.04      | What are electroluminescent Polymers? Give structure, properties and applications of electroluminescent Polymer polyphenylene vinylene (PPV). Explain construction and working of basic polymer LED based on PPV.                                                                                  | 4         | 3      | BL2             |                   |
| Que.05      | What are nanomaterials? Give classification of nanomaterials with examples. Explain following properties of nanomaterials with suitable example:                                                                                                                                                   | 6         | 3      | BL5             |                   |
|             | a]Optical property, b] Electrical property, c] Mechanical property.                                                                                                                                                                                                                                |           |        |                 |                   |

| Que.06 | What are carbon nanotubes? Discuss the different types of carbon nanotubes with respect to their structure. State different applications of CNT based on  a] Structural properties b] Electrical properties c] Chemical properties. | 5 | 3 | BL1 &<br>BL5 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------|
| Que.07 | What are Quantum dots? Explain with suitable examples different types of semiconductor quantum dots. What are the main properties and applications of Quantum dots?                                                                 | 5 | 3 | BL 1&<br>BL5 |
| Que.08 | Explain the structure of Graphene with the help of diagram.  Give properties and applications of graphene.                                                                                                                          | 4 | 3 | BL5          |

CLASS: F.E.- (SEM -II)

**Assignment 3** 

**SUB:Basic Electronics Engineering** 

**ACADEMIC YEAR:**2022-23

| COs       | Statement                                                                                                   |       |    | POs             |
|-----------|-------------------------------------------------------------------------------------------------------------|-------|----|-----------------|
| _         | Build and test analog circuits using OPAMP and digital circuits using universal/basic gates and flip flops. | ng    |    | 1,2,3,9,12      |
| Que<br>No |                                                                                                             | Marks | СО | Blooms<br>Level |
| Que.      | O1 Convert the following numbers:                                                                           | 5     | 3  | L3              |
|           | 1. $(1101101)_2$ to $()_{10}$ 2. $(197.56)_{10}$ to $()_2$                                                  |       |    |                 |
|           | 3. $(1762.46)_8$ to $()_{16}$ 4. $(2AB)_{16}$ to $()_8$                                                     |       |    |                 |
|           | 5. $(6534.04)_8$ to $()_{10}$ 6. $(420.6)_{10}$ to $()_8$                                                   |       |    |                 |
|           | 7. $(AF9.B0D)_{16}$ to $()_2$ 8. $(10110)_2$ to $()_{16}$                                                   |       |    |                 |
| Que.      | O2 Add the following binary numbers                                                                         | 5     | 3  | L3              |
|           | a. 1011+1101+1001+1111                                                                                      |       |    |                 |
|           | b. 10111.101+110111.01                                                                                      |       |    |                 |
|           | c. 1010.11+1101.0+1001.1+1111.11                                                                            |       |    |                 |
| Que.      | O3 Subtract the following binary numbers                                                                    | 5     | 3  | L3              |
|           | a. 1011 - 101                                                                                               |       |    |                 |
|           | b. 1100.10 - 111.01                                                                                         |       |    |                 |
|           | c. 10001.01 – 1111.11                                                                                       |       |    |                 |
| Que.      | Explain the following gates with truth table.                                                               | 5     | 3  | L2              |
|           | i) AND                                                                                                      |       |    |                 |
|           | ii) NAND                                                                                                    |       |    |                 |
|           | iii) Ex-OR                                                                                                  |       |    |                 |
|           | iv) Ex-NOR                                                                                                  |       |    |                 |
| Que.      | State and Prove De-Morgans theorems.                                                                        | 5     | 3  | L1,5            |
| Que.      | 06 Explain NAND and NOR as universal gates                                                                  | 5     | 3  | L2              |
| Que.      | Explain the working of full adder with the help of truth table and give equations for sum and carry.        | 5     | 3  | L2              |

| Que.08 | Draw and explain JK flip Flop using truth table.                                              | 5 | 3 | L2,3 |
|--------|-----------------------------------------------------------------------------------------------|---|---|------|
| Que.9  | Explain with block diagram microcontroller. Also compare microcontroller with microprocessor. | 5 | 3 | L2,4 |
| Que.10 | Explain with block diagram microprocessor.                                                    | 5 | 3 | L2   |

CLASS: F.E. - (SEM -II) Assignment 3

SUB: Engineering Mechanics ACADEMIC YEAR: 2022-23

| COs | Statement                                                                                                                   | POs                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---------------------|
| 3   | Student will be able to calculate reactions of a beam and to find internal forces in cables using equations of equilibrium. | 1,2,3,4,5,<br>11,12 |

| Que.<br>No: | Question Description                                                                                                                                                       | Marks | СО | Blooms<br>Level |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----------------|
| Que.01      | A system of connected flexible cables shown in <b>Fig.01</b> is supporting two loads 400N and 500N at points B and D. Determine tensions in various segments of the cable. | 5     | 3  | L2              |



**Fig.01** 

Que.02 Two smooth spheres of radius 150 mm each and weighing 250N each rest in a horizontal channel having vertical walls, the distance between the walls being 560mm. Find the reactions at the points of contact A, B, C and D. Fig.02.

3

L2&L3



Fig.02

Que.03 Determine the support reaction for the beam loaded & supported as shown **Fig.03.** That 50 kN force is inclined at 5 3 L2 30<sup>0</sup> to the horizontal.



**Fig.03** 

Que.04 Determine reaction at A and B for the beam loaded and supported as shown in **Fig.04.** 



Fig.04

Que.05 Determine the resultant of two forces. Refer Fig.05



5

5

5

3

3

3

L2

L3

L3

A wire is connected by a bolt at A. If tension in wire is 3 kN, **Que.06** determine components of force acting at A and  $\theta x$ ,  $\theta y & \theta z$ .

Refer Fig.06