LP11 – Gaz réels, gaz parfait

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

ROBERT BOYLE 1627 - 1691

Loi de Boyle-Mariotte $PV = F_1(n, T)$

EDME MARIOTTE 1620 - 1684

Loi de Charles

$$\frac{V}{T} = F_2(n, P)$$

Loi de Boyle-Mariotte

$$PV = F_1(n, T)$$

JACQUES CHARLES 1746 - 1823

Loi de Charles

$$\frac{V}{T} = F_2(n, P)$$

Loi de Boyle-Mariotte $PV = F_1(n, T)$

Loi de Gay-Lussac

$$\frac{P}{T} = F_3(n, V)$$

JOSEPH LOUIS GAY-LUSSAC 1778 - 1850

Loi de Charles

$$\frac{V}{T} = F_2(n, P)$$

Loi d'Avogadro

$$\frac{V}{n} = F_4(P, T)$$

Loi de Boyle-Mariotte

$$PV = F_1(n, T)$$

Loi de Gay-Lussac

$$\frac{P}{T} = F_3(n, V)$$

Amedeo Avogadro 1776 - 1856

Loi de Charles

$$\frac{V}{T} = F_2(n, P)$$

Loi d'Avogadro

$$\frac{V}{n} = F_4(P, T)$$

Loi de Boyle-Mariotte

$$PV = F_1(n, T)$$

Loi de Gay-Lussac

$$\frac{P}{T} = F_3(n, V)$$

Loi des gaz parfaits

$$PV = nRT$$

I. Le modèle du gaz parfait

1. Définition du gaz parfait

II. Du gaz parfait aux gaz réels, détentes

2. Détente de Joule - Thomson

1. Prise en compte des interactions

Isothermes (en °C) du diagramme des frigoristes (log(P) - h) pour le diazote N_2

1. Prise en compte des interactions

Isothermes (en °C) du diagramme des frigoristes (log(P) - h) pour le diazote N_2

1. Prise en compte des interactions

Isothermes (en °C) du diagramme des frigoristes (log(P) - h) pour le diazote N_2

2. Le modèle de Van der Waals

2. Le modèle de Van der Waals

Isothermes de Van der Waals dans le plan (P, V), tiré de *Thermodynamique*, B. Diu et coll.