$\underline{\text{Nom}}$: <u>Correcteur</u>: $\underline{\text{Note}}$:

Soit A, B, C trois points distincts du plan, d'affixes respectives a, b, c. Donner une condition nécessaire et suffisante d'orthogonalité des vecteurs \overrightarrow{AB} et \overrightarrow{AC} , portant sur a, b, c. Pour a=1, b=2+i et c=-1+2i, est-ce que $\overrightarrow{AB} \perp \overrightarrow{AC}$?

Soit $n \in \mathbb{N}^*$ et I un intervalle de \mathbb{R} . On désigne par $\mathbb{K} : \mathbb{R}$ ou \mathbb{C} . Donner les définitions des ensembles suivants : $\mathscr{C}^1(I,\mathbb{K})$, $\mathscr{C}^n(I,\mathbb{K})$ et $\mathscr{C}^{\infty}(I,\mathbb{K})$.

Calculer $\int_0^1 e^t \sin(t) dt$.

Soit $a, z_0 \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$ vérifiant $z_0^n = a$. Définir l'ensemble des racines n^{es} de l'unité, noté \mathbb{U}_n , et en donner une expression explicite.

Montrer que l'ensemble des racines n^{es} de a est exactement l'ensemble des $z_0 \times \omega$ pour ω parcourant \mathbb{U}_n .