Lecture 20

Review

STAT 8010 Statistical Methods I March 31, 2020

Population Mean

Population Mean

Inferences for Matched

ANOV

Multiple Comparisons & Linear Contrasts

RCBD

Whitney Huang Clemson University

Agenda

- Review

 CLEMS IN VERSITY
- Inference for One Population Mean
- Population Means
- Inferences for Matched Pairs
- ANOVA
- Multiple Comparison & Linear Contrasts
- RCRD

- Inference for One Population Mean
- Inference for Two Population Means
- Inferences for Matched Pairs
- 4 ANOVA
- 5 Multiple Comparisons & Linear Contrasts
- 6 RCBD

Inference for One Population Mean

Population Means

Inferences for Matcheo Pairs

ANOV

Multiple Comparison: & Linear Contrasts

RCBD

Inference for One Population Mean

Point estimation:

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$

- Interval Estimation: $100 \times (1 \alpha)\%$ Confidence Interval (CI)
 - $\sigma = \sqrt{Var(X)}$ is known:

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

• σ is unknown:

$$\left(\bar{X}_n - t_{\alpha/2, df=n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{\alpha/2, df=n-1} \frac{s}{\sqrt{n}}\right)$$

Assumptions

- Data is a random sample from the population
- i) sample size n is sufficiently large (e.g., n > 30) or the population X follows a normal distribution

Population Mean

Population Mea

Inferences for Matched Pairs

ANOVA

Multiple Comparisons & Linear Contrasts

Margin of Error & Sample Size Calculation

Review

CLEMS IN THE RESERVE OF THE REVIEW

Margin of error:

$$z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \qquad \text{if } \sigma \text{ known} \\ t_{\alpha/2,df=n-1}\frac{s}{\sqrt{n}} \qquad \text{if } \sigma \text{ unknown}$$

$$\Rightarrow$$
 CI for $\mu = \bar{X}_n \pm$ margin of error

Sample size determination:

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{margin of error}}\right)^2,$$

if σ is given

Population Mean

Population Means

Inferences for Matcheo Pairs

ANOVA

Multiple Comparisons & Linear Contrasts

RCBD

Hypothesis Testing for μ

State the null and alternative hypotheses:

$$H_0: \mu = \mu_0$$
 vs. $H_a: \mu > \text{ or } \neq \text{ or } < \mu_0$

Compute the test statistic:

$$z_{obs} = \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}}, \quad \sigma \text{ known; } t_{obs} = \frac{\bar{X}_n - \mu_0}{s/\sqrt{n}}, \quad \sigma \text{ unknown}$$

- Make the decision of the test:
 - Rejection Region/ P-Value Methods
- Oraw the conclusion of the test:

We (do/do not) have enough statistical evidence to conclude that (H_a in words) at α significant level.

Inference for One Population Mean

Population Mean

Inferences for Matched Pairs

ANOVA

Multiple Comparisons & Linear Contrasts

CBD

Type I, II Error & Power

True State	Decision			
True State	Reject H_0	Fail to reject H_0		
H_0 is true	Type I error	Correct		
H_0 is false	Correct	Type II error		

- Type I error: $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is true}) = \alpha$
- Type II error: $\mathbb{P}(\text{Fail to reject } H_0|H_0 \text{ is false}) = \beta$
- The power (PWR): $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is false}) = 1 \beta$.

$$\Rightarrow \mathsf{PWR}(\mu_a) = 1 - \beta(\mu_a) = 1 - \mathbb{P}(z^* \le z_\alpha - \frac{|\mu_0 - \mu_a|}{\sigma/\sqrt{n}})$$

Inference for One Population Mean

Population I

Inferences for Matched Pairs

ANOV

Multiple Comparisons & Linear Contrasts

Duality of Hypothesis Test with Confidence Interval

There is an interesting relationship between CIs and hypothesis tests. If $H_0 = \mu_0$ is rejected with significance level α then the corresponding confidence interval does not contain μ_0 with the confidence level $(1-\alpha)$, and vice versa

Hypothesis testing at α level	$(1-\alpha) \times 100\%$ CI
$H_0: \mu = \mu_0$ VS. $H_a: \mu \neq \mu_0$	$\bar{X} \pm t_{\alpha/2, n-1} s / \sqrt{n}$
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu > \mu_0$	$(\bar{X}-t_{\alpha,n-1}s/\sqrt{n},\infty)$
$H_0: \mu = \mu_0$ vs. $H_a: \mu < \mu_0$	$(-\infty, \bar{X} + t_{\alpha,n-1}s/\sqrt{n})$

Inference for One Population Mean

Population Mean

Inferences for Matched Pairs

ANOVA

Multiple Comparisons & Linear Contrasts

Inference for One Population Mean

Inference for Two Population Means

Inferences for Matche Pairs

ANOV

& Linear Contrasts

RCBE

Inferences for Two Population Means

Multiple Comparison & Linear Contrasts

RCBD

- Assumptions: Populations X₁ and X₂ both follows a normal distribution (or their sample sizes are large enough); Data are random sample from their population
- Point estimation: $\bar{X}_1 \bar{X}_2$
- Interval estimation:

$$\bar{X}_1 - \bar{X}_2 \pm \text{ margin of error},$$

where margin of error =

$$t_{\alpha/2,df^*}\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \quad df^* = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

When s_1 and s_2 "similar enough", we replace $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ by $s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$, where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$, $df = n_1 + n_2 - 2$

ANOV

Multiple Comparison: & Linear Contrasts

RCBE

- State the null and alternative hypotheses:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$
- Compute the test statistic:

$$t_{obs} = \frac{\frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}{\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}}, \quad \sigma_1 = \sigma_2$$

- Make the decision of the test:
 - Rejection Region/ P-Value Methods
- Draw the conclusion of the test

Inference for One Population Mean

Population M

Interences for Matched Pairs

ANOV

Multiple Comparisons
& Linear Contrasts

RCBI

Inferences for Matched Pairs

Paired T-Tests

ANO

Multiple Comparisons & Linear Contrasts

- When to use: before/after study, pairing subjects, study on twins, etc
- $H_0: \mu_{diff} = 0$ vs. $H_a: \mu_{diff} > 0$ or $\mu_{diff} < 0$ or $\mu_{diff} \neq 0$, where μ_{diff} is the population mean of the paired difference
- Test statistic: $t_{obs} = \frac{\bar{X}_{diff} 0}{\frac{2}{\sqrt{n}}}$

Population Mear

Inferences for Matche

ANOVA

Multiple Comparisons
& Linear Contrasts

RCB

ANOVA

ANOVA and Overall F Test

Review CLEMS UNIVERSITY

Inference for One Population Mean

Population Means

Inferences for Matched Pairs

ANOVA

& Linear Contrasts

Overall F-Test

• $H_0: \mu_1 = \mu_2 = \cdots = \mu_J$ $H_a:$ At least one mean is different

ANOVA Table:

Source	df	SS	MS	F statistic
Treatment	<i>J</i> – 1	SSTr	$MSTr = \frac{SSTr}{J-1}$	$F = \frac{\text{MSTr}}{\text{MSE}}$
Error	N-J	SSE	$MSE = \frac{SSE}{N-J}$	
Total	<i>N</i> – 1	SSTo		

• Test Statistic: $F_{obs} = \frac{\text{MSTr}}{\text{MSE}}$. Under H_0 , $F^* \sim F_{df_1 = J-1, df_2 = N-J}$

Population Mean

Inferences for Matched Pairs

ANO\

Multiple Comparisons & Linear Contrasts

RCBI

Multiple Comparisons & Linear Contrasts

Family-Wise Error Rate (FWER) and Mulitple Comparisons

Inference for One Population Mean

Population Mear

Inferences for Matched Pairs

ANO\

Multiple Comparisons & Linear Contrasts

RCBD

- Family-Wise Error Rate (FWER) $\bar{\alpha}$: the probability of making 1 or more type I errors in a set of hypothesis tests
- Bonferroni Correction: Adjust the significant level for each of the m tests to be $\frac{\alpha}{m}$ to control the **FWER**
- Fisher's LSD and Tukey's HSD

Linear Contrasts

- Review

 CLEMS

 U N I V E R S I T Y
- Inference for One
 - Population Means
 - Inferences for Matched Pairs
 - ANOVA
 - Multiple Comparisons & Linear Contrasts
 - ПОВВ

- **Definition**: Let c_1, c_2, \dots, c_J are constants where $\sum_{j=1}^J c_j = 0$, then $L = \sum_{j=1}^J c_j \mu_j$ is called a **linear contrast** of the population means.
- Point Estimation:

$$\hat{L} = \sum_{j=1}^{J} c_j \bar{X}_j$$

Interval Estimation:

$$(\hat{L} - t_{\alpha/2, df=N-J} \hat{se}_{\hat{L}}, \hat{L} + t_{\alpha/2, df=N-J} \hat{se}_{\hat{L}}),$$

where
$$\hat{se}_{\hat{L}} = \sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_J^2}{n_J}\right)}$$

Hypothesis Testing for linear contrasts

Population Mea

Inferences for Matche Pairs

ANOV

Multiple Comparison: & Linear Contrasts

RCBD

RCBD

Source	df	SS	MS	F statistic
Treatment	<i>J</i> – 1	SS_{trt}	$MS_{trt} = \frac{SS_{trt}}{J-1}$	$F_{trt} = \frac{MS_{trt}}{MS_{err}}$
Block	B-1	SS_{blk}	$MS_{blk} = \frac{SS_{blk}}{B-1}$	
Error	(B-1)(J-1)	SS_{err}	$MS_{err} = \frac{SS_{err}}{(B-1)(J-1)}$	
Total	N - 1	SStot		

- Why we may want to do blocking (See the example in Lecture 17)?
- Use interaction plot to assess the additivity assumption (i.e., treatment effects are consistent across blocks)

Population Me

Inferences for Matched Pairs

ANOVA

& Linear Contrasts

CBD