Der er 5 trin i en styrkeberegning

1

2

3

4

5

Beregningsmodel

(Ydre kræfters ligevægt,

altså det med at regne med momenter og kræfter for at finde reaktionerne: $\Sigma F=0$ og $\Sigma M=0$)

Eksempel:

Kræfter og momenter i snittet

(Indre kræfters ligevægt,

altså F_N, F_T og M_B)

Tværsnits-konstanter

(Areal, Inertimoment, og tyngdepunkts-afstand; Ale)

Her kan man finde alle formlerne i Maskinståbi fra side 52 og fremaf.

Man kan også tegne snittet op i 2D og så lade Inventor beregne dem

Eksempel:

A = b * h [mm²] I = ${}^{1}/_{12}$ * b * h³ [mm⁴ e = ${}^{h}/_{2}$ [mm]

Spændinger

(De hedder så fint τ (tau) og σ (sigma), altså hvor hårdt vi belaster materialet)

Der er 3 formler og en enkelt formel til at lægge dem sammen med:

$$\sigma_{\rm N} = \frac{{\sf F}_{\rm N}}{{\sf A}}$$

$$\sigma_B = \frac{M_B * e}{I}$$

$$\tau = F_T$$

Og til sidst:

$$\sigma_{Ref} = \sqrt{(\sigma_N + \sigma_b)^2 + 3*\tau^2}$$

Materialets styrke

(Den tilladelige spænding, som hedder σ_{TILL})

Man kan finde flydespændingen i Maskinståbien fra side 234 og fremefter.

Den tilladelige spænding er tit givet i opgaven. Hvis ikke, må man den slå op.

 $\begin{array}{l} \text{Man checker om} \\ \sigma_{\text{TILL}} \! > \! \sigma_{\text{Ref}} \end{array}$

og beregner sikkerhedsfaktoren:

SF =
$$\sigma_{TILL} / \sigma_{Ref}$$