Geschwindigkeitsmessung von Fahrzeugen durch Audio-Analyse

Levin Fober

6. Januar 2023

Jugend forscht Ort: Heuchlingen (Ostalbkreis), Baden-Württemberg Betreuer: Timo Lachenmaier, Ellen Blaha Fachgebiet: Mathematik / Informatik

Kurzfassung

Inhaltsverzeichnis

K	Kurzfassung				
1	Einleitung 1.1 Ideenfindung	1 1			
2	Vorgehensweise, Materialien und Methode 2.1 Erste Datensammlung und manuelle Aufbereitung	2			
3	Ergebnisse	4			
4	Ergebnisdiskussion				
5	Zusammenfassung				
6	Abbildungsverzeichnis				
7	Quellen- und Literaturverzeichnis				
8	Unterstützungsleistungen	5			

Liste der noch zu erledigenden Punkte

Abbildung: Hier ein Bild von einer Radaranzeige einbetten]
Letzten Satz weglassen?]
Andere Begründung?	4

1 Einleitung

1.1 Ideenfindung

Immer häufiger beobachte ich, auch in kleinen Wohnorten, dass sogenannte Geschwindigkeitsanzeigeanlagen aufgebaut werden, die dem Verkehrsteilnehmer die aktuell gefahrene Geschwindigkeit anzeigen.

Für Kommunen ist es hierbei wichtig, den richtigen Ort zum Aufstellen einer solchen Anzeige zu wählen, um kein Schild unnötigerweise aufzustellen. Neben der Auswahl des Ortes aufgrund der Straßenführung oder Gefahrenstellen spielt es eine große Rolle, ob das Tempolimit . . .

1.2 Lösungsansatz UMBENENNEN, da auch der Grund der Ausarbeitung hier genannt wird (da kostspielig usw.)???

Bei der Recherche zur Funktion von Geschwindigkeitsmessanlagen fällt auf, dass nur Radar- bzw. Lasertechnik, hauptsächlich für mobile Geräte, oder im Boden eingelassene Kontaktschleifen bei stationären Anlagen zur Geschwindigkeitsmessung verwendet werden. Beide Optionen sind kostspielig, da spezielle Geräte angeschafft werden müssen. Radar- und Laserpistolen arbeiten nach dem Dopplerprinzip. Bei Laserpistolen werden in der Regel viele kurze, periodische Lichtimpulse ausgesendet, die von einem Fahrzeug zurückgeworfen werden. Aufgrund des Dopplereffekts sind die Zeitabstände der reflektierten Impulse kürzer als die der ausgesendeten Impulse. Mittels eines Vergleiches beider Periodendauern kann die Geschwindigkeit des Fahrzeugs ermittelt werden. Radarmesssysteme arbeiten ähnlich, unterscheidend ist jedoch, dass die Frequenz der zurückgeworfenen Radarwelle mit der gesendeten Frequenz überlagert wird. Die entstehende Schwebungsfrequenz gibt Aufschluss über die Fahrzeuggeschwindigkeit.

Ungenauigkeiten entstehen bei den genannten mobilen Messmethoden durch unsachgemäße Positionierung und Ausrichtung des Instruments zur Fahrbahn, weshalb ein Anfechten solcher Messungen vor Gericht möglich ist.¹

Zur Kostensenkung soll deshalb eine Software entwickelt werden, die aufgrund von Audiodaten eine Geschwindigkeitsberechnung vorbeifahrender Fahrzeuge durchführen kann. Ziel ist es, diese Software auf Smartphones einzusetzen. Weiterer Vorteil einer Analyse auf Grundlage von Geräuschen ist, dass kein Messgerät ausgerichtet werden muss, da sich der Schall der Kfz kugelförmig, das heißt nicht gerichtet, ausbreitet. Somit kann die Bedienung erleichtert werden

¹bussgeldkatalog.org. Geschwindigkeitsmessung mittels Laser: Funktionsweise, Schwachstellen, Einspruch. 2022. URL: https://www.bussgeldkatalog.org/geschwindigkeitsmessung/laser/.

Letzten Satz weglassen?

2 Vorgehensweise, Materialien und Methode

2.1 Erste Datensammlung und manuelle Aufbereitung

Für eine möglichst gute Datengrundlage wurde an einer geraden Straße Aufnahmen von insgesamt 21 vorbeifahrenden Kfz gemacht, sowohl von dicht aufeinanderfolgenden, als auch einzelnen Fahrzeugen. Als Aufnahmegerät wurde ein Smartphone mit integrierter Rekorder-App verwendet. Die zusammenhängende Aufnahme aller Fahrzeuge wurde anschließend von Hand in einzelne Abschnitte unterteilt und als WAV-Audiodateien gespeichert. Dieses unkomprimierte Format wurde gewählt, um die Implementierung der Datenanalyse zu erleichtern.

Andere Begründung?

2.2 Analyse der Audiodaten via Dopplereffekt

Da im Physik-Unterricht eine Abituraufgabe zur Geschwindigkeitsbestimmung eines Rennwagens mittels Differenz der Frequenz bei Annäherung und Entfernung behandelt wurde, ist das der erste verfolgte Ansatz. Es erscheint zudem einfach, die Geschwindigkeit akkurat zu ermitteln, da selbst ein Mensch eindeutige Frequenzveränderungen hören kann, beispielsweise bei einem vorbeifahrenden Krankenwagen mit Martinshorn. Allerdings muss bei normalen Kfz das Reifengeräusch anstelle des Martinshorns verwendet werden, da dieses mit Abstand die lauteste Geräuschquelle des Straßenverkehrs ist.

Wenn der Abstand des vorbeifahrenden Fahrzeugs zum Beobachter vernachlässigt und von konstanter Bewegungsgeschwindigkeit ausgegangen wird, können folgende Formeln zur Berechnung der Geschwindigkeit verwendet werden:

$$f_1 = f_0 * \frac{c}{c - v}$$
 und $f_2 = f_0 * \frac{c}{c + v}$

Dabei ist f_1 die Frequenz bei Annäherung und f_2 die vom Beobachter registrierte Frequenz bei Entfernung des Fahrzeugs. Durch Messung beider Frequenzen kann das Frequenzverhältnis $k = \frac{f_1}{f_2}$ berechnet und nach v umgestellt werden:

$$k = \frac{f_0 * \frac{c}{c-v}}{f_0 * \frac{c}{c+v}}$$
$$k = \frac{c+v}{c-v}$$
$$\Leftrightarrow$$
$$v = \frac{k-1}{k+1} * c$$

Für einen ersten Überblick wurden die Audio-Abschnitte in einen Spektrumanalysator geladen. Die Ergebnisse der visuellen Analyse sind in Abbildung 1 dargestellt.

Abbildung 1b wurde nachbearbeitet. Die pinkfarbene Linie zeigt den Verlauf der Tonhöhe über Zeit und kann als Frequenzgraph interpretiert werden. Ab der tiefsten Stelle des Graphen ist das vorbeifahrende Kfz am nächsten zum Mikrofon.

Abbildung 1: Ergebnisse Spektrumanalysator

Abbildung 2: Beispielhafter Frequenzverlauf bei vorbeifahrendem Fahrzeug

Beim Vergleich mit einem theoretisch berechneten Frequenzgraph (Abbildung 2) fällt auf, dass die aufgenommene Frequenz der Reifengeräusche vor Vorbeifahren (in der Beispielabbildung bei t=10s) nicht höher ist als nach dem Vorbeifahren, sondern bei niedrigerem Abstand geringer ist. Es konnte keine wissenschaftliche Erarbeitung dieses Phänomens gefunden werden, am wahrscheinlichsten ist jedoch eine Reflexion der akustischen Wellen am Boden, die mit den direkt zum Mikrofon laufenden Wellen interferieren und somit hohe Frequenzen auslöschen. Aufgrund dieser unklaren Messergebnisse kann dieser Ansatz jedoch nicht weiterverfolgt werden.

- 2.3 Analyse der Audiodaten via Lautstärkeänderung
- 3 Ergebnisse
- 4 Ergebnisdiskussion
- 5 Zusammenfassung

6 Abbildungsverzeichnis

Abbildungsverzeichnis

1	Ergebnisse Spektrumanalysator	3
2	Beispielhafter Frequenzverlauf bei vorbeifahrendem Fahrzeug	3

7 Quellen- und Literaturverzeichnis

Literatur

bussgeldkatalog.org. Geschwindigkeitsmessung mittels Laser: Funktionsweise, Schwachstellen, Einspruch. 2022. URL: https://www.bussgeldkatalog.org/geschwindigkeitsmessung/laser/.

8 Unterstützungsleistungen

Ich versichere, dass ich in dieser Arbeit keine Quellen verwendet habe, die nicht genannt wurden.							
	ss ich in dieser	Arbeit keine Q	uellen verwende	t habe, die nich	nt genannt		