In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

df=pd.read_csv("D:\\projects\\DS Internship datasets\\project 2\\Car_Insurance_Claim.csv"

In [3]:

df.head()

Out[3]:

	ID	AGE	GENDER	RACE	DRIVING_EXPERIENCE	EDUCATION	INCOME	CREDIT_S
0	569520	65+	female	majority	0-9y	high school	upper class	0.6
1	750365	16- 25	male	majority	0-9y	none	poverty	0.3
2	199901	16- 25	female	majority	0-9y	high school	working class	0.4
3	478866	16- 25	male	majority	0-9y	university	working class	0.2
4	731664	26- 39	male	majority	10-19y	none	working class	0.3
4								•

In [4]:

df.tail()

Out[4]:

	ID	AGE	GENDER	RACE	DRIVING_EXPERIENCE	EDUCATION	INCOME	CREDI
9995	323164	26- 39	female	majority	10-19y	university	upper class	
9996	910346	26- 39	female	majority	10-19y	none	middle class	
9997	468409	26- 39	male	majority	0-9y	high school	middle class	
9998	903459	26- 39	female	majority	10-19y	high school	poverty	
9999	442696	26- 39	female	majority	0-9y	none	working class	
4								•

In [5]:

df.describe()

Out[5]:

	ID	CREDIT_SCORE	VEHICLE_OWNERSHIP	MARRIED	CHILDREN	P
count	10000.000000	9018.000000	10000.000000	10000.000000	10000.000000	
mean	500521.906800	0.515813	0.697000	0.498200	0.688800	
std	290030.768758	0.137688	0.459578	0.500022	0.463008	
min	101.000000	0.053358	0.000000	0.000000	0.000000	
25%	249638.500000	0.417191	0.000000	0.000000	0.000000	
50%	501777.000000	0.525033	1.000000	0.000000	1.000000	
75%	753974.500000	0.618312	1.000000	1.000000	1.000000	
max	999976.000000	0.960819	1.000000	1.000000	1.000000	
4						•

In [6]:

```
df.isnull().any().sum()
```

Out[6]:

2

In [7]:

```
df.isnull().sum()
```

Out[7]:

ID	0
AGE	0
GENDER	0
RACE	0
DRIVING_EXPERIENCE	0
EDUCATION	0
INCOME	0
CREDIT_SCORE	982
VEHICLE_OWNERSHIP	0
VEHICLE_YEAR	0
MARRIED	0
CHILDREN	0
POSTAL_CODE	0
ANNUAL_MILEAGE	957
VEHICLE_TYPE	0
SPEEDING_VIOLATIONS	0
DUIS	0
PAST_ACCIDENTS	0
OUTCOME	0
dtype: int64	

```
In [8]:
```

df.shape

Out[8]:

(10000, 19)

In [9]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	ID	10000 non-null	int64
1	AGE	10000 non-null	object
2	GENDER	10000 non-null	object
3	RACE	10000 non-null	object
4	DRIVING_EXPERIENCE	10000 non-null	object
5	EDUCATION	10000 non-null	object
6	INCOME	10000 non-null	object
7	CREDIT_SCORE	9018 non-null	float64
8	VEHICLE_OWNERSHIP	10000 non-null	float64
9	VEHICLE_YEAR	10000 non-null	object
10	MARRIED	10000 non-null	float64
11	CHILDREN	10000 non-null	float64
12	POSTAL_CODE	10000 non-null	int64
13	ANNUAL_MILEAGE	9043 non-null	float64
14	VEHICLE_TYPE	10000 non-null	object
15	SPEEDING_VIOLATIONS	10000 non-null	int64
16	DUIS	10000 non-null	int64
17	PAST_ACCIDENTS	10000 non-null	int64
18	OUTCOME	10000 non-null	float64
dtyp	es: float64(6), int64	(5), object(8)	

memory usage: 1.4+ MB

In [10]:

df[df.isnull().any(axis=1)]

Out[10]:

	ID	AGE	GENDER	RACE	DRIVING_EXPERIENCE	EDUCATION	INCOME	CREDIT
13	569640	16- 25	female	majority	0-9y	university	upper class	
15	906223	26- 39	female	majority	0-9y	high school	upper class	
16	517747	65+	male	majority	30y+	university	upper class	
17	24851	16- 25	male	majority	0-9y	none	poverty	
18	104086	26- 39	female	majority	0-9y	university	upper class	
9977	794068	65+	male	minority	0-9y	none	upper class	
9981	366048	26- 39	male	majority	0-9y	high school	working class	
9985	595418	16- 25	male	minority	0-9y	high school	working class	
9988	479789	26- 39	male	majority	10-19y	high school	poverty	
9996	910346	26- 39	female	majority	10-19y	none	middle class	
1851 ו	rows × 1	9 coluı	mns					
4								>

In [11]:

df[df["CREDIT_SCORE"].isnull()]

Out[11]:

	ID	AGE	GENDER	RACE	DRIVING_EXPERIENCE	EDUCATION	INCOME	CREDI
17	24851	16- 25	male	majority	0-9y	none	poverty	
23	217	16- 25	male	majority	0-9y	none	poverty	
37	511757	40- 64	female	majority	10-19y	none	middle class	
38	429947	65+	male	majority	30y+	university	upper class	
47	921097	40- 64	female	majority	20-29y	university	upper class	
9952	870405	40- 64	female	majority	10-19y	university	upper class	
9967	27406	26- 39	female	majority	10-19y	high school	middle class	
9981	366048	26- 39	male	majority	0-9y	high school	working class	
9985	595418	16- 25	male	minority	0-9y	high school	working class	
9988	479789	26- 39	male	majority	10-19y	high school	poverty	
982 rc	ws × 19	colum	ıns					
1								.

In [12]:

```
plt.figure(figsize=(8,5))
df['CREDIT_SCORE'].plot(kind='kde')
plt.show()
```


In [13]:

```
df["CREDIT_SCORE"].fillna(df["CREDIT_SCORE"].median(),inplace=True)
```

In [14]:

```
df["ANNUAL_MILEAGE"].fillna(df["ANNUAL_MILEAGE"].median(),inplace=True)
```

In [15]:

```
df.isna().sum()
```

Out[15]:

ID	0
AGE	0
GENDER	0
RACE	0
DRIVING_EXPERIENCE	0
EDUCATION	0
INCOME	0
CREDIT_SCORE	0
VEHICLE_OWNERSHIP	0
VEHICLE_YEAR	0
MARRIED	0
CHILDREN	0
POSTAL_CODE	0
ANNUAL_MILEAGE	0
VEHICLE_TYPE	0
SPEEDING_VIOLATIONS	0
DUIS	0
PAST_ACCIDENTS	0
OUTCOME	0
dtvpe: int64	

```
In [16]:
df.drop(["ID"],axis=1,inplace=True)
In [17]:
df.head()
Out[17]:
   AGE GENDER
                   RACE DRIVING_EXPERIENCE EDUCATION INCOME CREDIT_SCORE V
                                                              upper
 0
    65+
                                          0-9y
                                                                           0.629027
           female
                  majority
                                                 high school
                                                              class
     16-
                                                                           0.357757
 1
                  majority
                                          0-9y
                                                             poverty
             male
                                                      none
     25
     16-
                                                             working
 2
                                                 high school
                                                                           0.493146
           female
                 majority
                                          0-9y
     25
                                                              class
     16-
                                                             working
 3
                                                                           0.206013
             male
                  majority
                                          0-9y
                                                  university
     25
                                                               class
     26-
                                                             working
                                        10-19y
                                                                           0.388366
             male majority
                                                      none
                                                               class
In [18]:
df["AGE"].unique()#discrete
Out[18]:
array(['65+', '16-25', '26-39', '40-64'], dtype=object)
In [19]:
df["GENDER"].unique()#nominal
Out[19]:
array(['female', 'male'], dtype=object)
In [20]:
df["RACE"].unique()#nominal
Out[20]:
array(['majority', 'minority'], dtype=object)
In [21]:
df["DRIVING_EXPERIENCE"].unique()#discrete
Out[21]:
array(['0-9y', '10-19y', '20-29y', '30y+'], dtype=object)
```

```
In [22]:
df["EDUCATION"].unique()#ordinal
Out[22]:
array(['high school', 'none', 'university'], dtype=object)
In [23]:
df["INCOME"].unique()#ordinal
Out[23]:
array(['upper class', 'poverty', 'working class', 'middle class'],
      dtype=object)
In [24]:
df["CREDIT_SCORE"].unique()#continous
Out[24]:
array([0.62902731, 0.35775712, 0.49314579, ..., 0.47094023, 0.36418478,
       0.435224781)
In [25]:
df["VEHICLE_OWNERSHIP"].unique()#discrete
Out[25]:
array([1., 0.])
In [26]:
df["VEHICLE_YEAR"].unique()#nominal
Out[26]:
array(['after 2015', 'before 2015'], dtype=object)
In [27]:
df["MARRIED"].unique()#discrete
Out[27]:
array([0., 1.])
In [28]:
df["CHILDREN"].unique()#discrete
Out[28]:
array([1., 0.])
```

```
In [29]:
df["POSTAL_CODE"].unique()#nominal
Out[29]:
array([10238, 32765, 92101, 21217], dtype=int64)
In [30]:
df["ANNUAL_MILEAGE"].unique()#discrete
Out[30]:
array([12000., 16000., 11000., 13000., 14000., 10000., 8000., 18000.,
       17000., 7000., 15000., 9000., 5000., 6000., 19000., 4000.,
        3000., 2000., 20000., 21000., 22000.])
In [31]:
df["VEHICLE_TYPE"].unique()#nominal
Out[31]:
array(['sedan', 'sports car'], dtype=object)
In [32]:
df["SPEEDING_VIOLATIONS"].unique()#continous
Out[32]:
array([ 0, 2, 3, 7, 6, 4, 10, 13, 1, 5, 9, 8, 12, 11, 15, 17, 19,
       18, 16, 14, 22], dtype=int64)
In [33]:
df["DUIS"].unique()#continous
Out[33]:
array([0, 2, 1, 3, 4, 5, 6], dtype=int64)
In [34]:
df["PAST_ACCIDENTS"].unique()#continous
Out[34]:
array([ 0, 1, 3, 7, 2, 5, 4, 6, 8, 10, 11, 9, 12, 14, 15],
      dtype=int64)
```

In [35]:

```
df["OUTCOME"].value_counts().plot(kind='bar')#discrete
```

Out[35]:

<AxesSubplot:>

In [36]:

```
df["GENDER"].value_counts()
```

Out[36]:

female 5010 male 4990

Name: GENDER, dtype: int64

In [37]:

```
sns.countplot(data=df,x="GENDER",hue="OUTCOME")
plt.show()
```


In [38]:

```
sns.countplot(data=df,x="RACE",hue="OUTCOME")
plt.show()
```


In [39]:

```
df["DRIVING_EXPERIENCE"].value_counts()
```

Out[39]:

0-9y 3530 10-19y 3299 20-29y 2119 30y+ 1052

Name: DRIVING_EXPERIENCE, dtype: int64

In [40]:

```
sns.countplot(df["DRIVING_EXPERIENCE"])
plt.show()
```


In [41]:

```
sns.countplot(data=df,x="DRIVING_EXPERIENCE",hue="OUTCOME")
plt.show()
```


In [42]:

df["EDUCATION"].value_counts()

Out[42]:

high school 4157 university 3928 none 1915

Name: EDUCATION, dtype: int64

In [43]:

sns.countplot(df["EDUCATION"])
plt.show()

In [44]:

```
df["INCOME"].value_counts()
```

Out[44]:

upper class 4336
middle class 2138
poverty 1814
working class 1712
Name: INCOME, dtype: int64

In [45]:

```
sns.countplot(df["INCOME"])
plt.show()
```


In [46]:

```
df["OUTCOME"].value_counts().plot(kind='pie',autopct="%0.2f%")
```

Out[46]:

<AxesSubplot:ylabel='OUTCOME'>

In [47]:

```
df["VEHICLE_TYPE"].value_counts()
```

Out[47]:

sedan 9523 sports car 477

Name: VEHICLE_TYPE, dtype: int64

In [48]:

```
sns.countplot(data=df,x='VEHICLE_TYPE',hue='OUTCOME')
plt.show()
```


In [49]:

df["DUIS"].value_counts()

Out[49]:

Name: DUIS, dtype: int64

In [50]:

```
sns.countplot(df["DUIS"])
plt.show()
```


In [51]:

```
n=df.select_dtypes(exclude='object')
```

In [52]:

```
for i in n.columns:
    sns.boxplot(data=n,x=i)
    plt.show()
```


In [53]:

```
df.dtypes
```

Out[53]:

AGE object **GENDER** object object RACE DRIVING EXPERIENCE object **EDUCATION** object object INCOME CREDIT_SCORE float64 float64 VEHICLE_OWNERSHIP VEHICLE_YEAR object MARRIED float64 float64 **CHILDREN** POSTAL_CODE int64 ANNUAL MILEAGE float64 VEHICLE_TYPE object SPEEDING_VIOLATIONS int64 int64 DUIS PAST_ACCIDENTS int64 OUTCOME float64 dtype: object

In [54]:

```
from sklearn.preprocessing import LabelEncoder
lr=LabelEncoder()
```

In [55]:

```
df['AGE']=lr.fit_transform(df['AGE'])
df['GENDER']=lr.fit_transform(df['GENDER'])
df['RACE']=lr.fit_transform(df['RACE'])
df['DRIVING_EXPERIENCE']=lr.fit_transform(df['DRIVING_EXPERIENCE'])
df['EDUCATION']=lr.fit_transform(df['EDUCATION'])
df['INCOME']=lr.fit_transform(df['INCOME'])
df['VEHICLE_YEAR']=lr.fit_transform(df['VEHICLE_YEAR'])
df['VEHICLE_TYPE']=lr.fit_transform(df['VEHICLE_TYPE'])
```

```
In [56]:
```

df.dtypes

Out[56]:

AGE int32 **GENDER** int32 RACE int32 DRIVING_EXPERIENCE int32 **EDUCATION** int32 INCOME int32 CREDIT_SCORE float64 VEHICLE_OWNERSHIP float64 VEHICLE_YEAR int32 MARRIED float64 **CHILDREN** float64 int64 POSTAL_CODE float64 ANNUAL_MILEAGE int32 VEHICLE_TYPE SPEEDING_VIOLATIONS int64 DUIS int64 PAST_ACCIDENTS int64 OUTCOME float64

dtype: object

In [57]:

df.head()

Out[57]:

	AGE	GENDER	RACE	DRIVING_EXPERIENCE	EDUCATION	INCOME	CREDIT_SCORE	VE
0	3	0	0	0	0	2	0.629027	
1	0	1	0	0	1	1	0.357757	
2	0	0	0	0	0	3	0.493146	
3	0	1	0	0	2	3	0.206013	
4	1	1	0	1	1	3	0.388366	
4								•

In [58]:

car_insurance=df.values

In [59]:

df.shape

Out[59]:

(10000, 18)

```
In [60]:
```

```
x=car_insurance[:,0:17]
y=car_insurance[:,17]
```

In [61]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
```

Logistic Regression

In [62]:

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
```

In [63]:

```
logistic_model = LogisticRegression().fit(x_train,y_train)
ypredicted = logistic_model.predict(x_test)
ypredicted
```

Out[63]:

```
array([1., 0., 0., ..., 0., 0., 0.])
```

Evaluation for Logistic Regression

In [64]:

```
Varience=np.var(ypredicted)
Varience
```

Out[64]:

0.2039182222222222

In [65]:

```
SE=np.mean((np.mean(ypredicted)-y)**2)
bias=SE-Varience
bias
```

Out[65]:

0.01200702222222219

In [66]:

```
print("Confusion Matrix")
matrix = confusion_matrix(y_test,ypredicted)
print(matrix)
```

Confusion Matrix [[1842 203] [302 653]]

In [67]:

```
print("\nClassification Report")
report = classification_report(y_test,ypredicted)
print(report)
```

Classification Report

	precision	recall	f1-score	support
0.0	0.86	0.90	0.88	2045
1.0	0.76	0.68	0.72	955
accuracy			0.83	3000
macro avg	0.81	0.79	0.80	3000
weighted avg	0.83	0.83	0.83	3000

In [68]:

```
lr_accuracy = accuracy_score(y_test, ypredicted)
lr_accuracy
print('Logistic Regression Accuracy of Scikit Model: {:.2f}%'.format(lr_accuracy*100))
```

Logistic Regression Accuracy of Scikit Model: 83.17%

In [69]:

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
```

```
In [70]:
```

```
solvers = ['newton-cg', 'lbfgs', 'liblinear']
penalty = ['12']
# define models and parameters
model = LogisticRegression()
c_values = [100, 1000, 1.0, 0.1, 0.01]
# define grid search
grid = dict(solver=solvers,penalty=penalty,C=c_values)
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='a
grid result = grid search.fit(x train,y train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
    print("%f (%f) with: %r" % (mean*100, stdev*100, param))
Best: 0.845333 using {'C': 100, 'penalty': 'l2', 'solver': 'newton-cg'}
84.533333 (1.070275) with: {'C': 100, 'penalty': '12', 'solver': 'newton-c
g'}
80.647619 (2.359734) with: {'C': 100, 'penalty': 'l2', 'solver': 'lbfgs'}
80.528571 (1.225661) with: {'C': 100, 'penalty': 'l2', 'solver': 'liblinea
r'}
84.519048 (1.053974) with: {'C': 1000, 'penalty': '12', 'solver': 'newton-
80.819048 (2.513618) with: {'C': 1000, 'penalty': 'l2', 'solver': 'lbfgs'}
80.528571 (1.225661) with: {'C': 1000, 'penalty': 'l2', 'solver': 'libline
84.509524 (0.994326) with: {'C': 1.0, 'penalty': '12', 'solver': 'newton-c
80.833333 (2.426914) with: {'C': 1.0, 'penalty': 'l2', 'solver': 'lbfgs'}
80.528571 (1.225661) with: {'C': 1.0, 'penalty': 'l2', 'solver': 'liblinea
84.390476 (0.895137) with: {'C': 0.1, 'penalty': 'l2', 'solver': 'newton-c
81.076190 (2.496728) with: {'C': 0.1, 'penalty': 'l2', 'solver': 'lbfgs'}
80.528571 (1.233407) with: {'C': 0.1, 'penalty': 'l2', 'solver': 'liblinea
r'}
83.533333 (0.972362) with: {'C': 0.01, 'penalty': 'l2', 'solver': 'newton-
80.600000 (1.885642) with: {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
80.509524 (1.139688) with: {'C': 0.01, 'penalty': 'l2', 'solver': 'libline
ar'}
In [71]:
grid_result.score(x_train,y_train)*100
```

Out[71]:

84.81428571428572

In [73]:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
```

In [75]:

```
# Spot-Check Algorithms
models = []
models.append(('RF', RandomForestClassifier()))
models.append(('GNB', GaussianNB()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('DSC', DecisionTreeClassifier(random_state = 1, max_depth=2)))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = RepeatedStratifiedKFold(n_splits=10, n_repeats = 3, random_state=1)
    cv_results = cross_val_score(model,x_train,y_train, cv=kfold, scoring='accuracy')
    results.append(cv_results)
    names.append(name)
    msg = "%s: %.2f (%.3f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
```

RF: 0.84 (0.011) GNB: 0.73 (0.017) KNN: 0.79 (0.014) DSC: 0.81 (0.015) SVM: 0.70 (0.004)

In [76]:

```
# evaluate model 1
model1 = RandomForestClassifier()
cv1 = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1)
scores1 = cross_val_score(model1,x_train,y_train, scoring = 'accuracy', cv = cv1, n_jobs
print('RFC Mean Accuracy: %.1f%% +/-(%.3f)' % (np.mean(scores1*100), np.std(scores1)))
# evaluate model 2
model2 = DecisionTreeClassifier(random_state = 1, max_depth=2)
cv2 = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1)
scores3 = cross_val_score(model2,x_train,y_train, scoring = 'accuracy', cv = cv2, n_jobs
print('DecisionTreeClassifier Mean Accuracy: %.1f%% +/-(%.3f)' % (np.mean(scores3*100), r
# plot the results
plt.boxplot([scores1, scores3], labels=['RFC', 'DTC'], showmeans=True)
plt.show()
```

RFC Mean Accuracy: 83.7% +/-(0.012)
DecisionTreeClassifier Mean Accuracy: 80.9% +/-(0.015)

In [77]:

The P-value is = 0.021The t-statistics is = 3.339Since p<0.05, We can reject the null-hypothesis that both models perform e qually well on this dataset. We may conclude that the two algorithms are s ignificantly different.

In []:			