CIRCUIT FIXE DANS UN CHAMP VARIABLE

Exercice n°1

Autoinductance d'un solénoïde

On double le nombre de spires d'un solénoïde tout en réduisant le courant qui le traverse de moitié. Comment varie son inductance propre ?

Exercice n°2

Inductances combinées.

La partie a) de la figure ci-dessous définit les deux bobines par leur self, L₁ et L₂ et leur position par l'inductance mutuelle M. Déterminez les f.e.m. de chacune de ces bobines.

Exprimez également les self-inductances L' et L" (figures b et c) en fonction de M, L1 et L2

Exercice n°3

Couplage entre un solénoïde et une bobine Une bobine de N_2 spires enlace un solénoïde idéal de N_1 spires, de longueur $\mathcal L$ et de section S.

- 1) Calculer l'inductance mutuelle M de ces deux circuits, avec les orientations du schéma ci-dessus.
- 2) La bobine de résistance R est fermée sur ellemême. Le solénoïde est parcouru par le courant $i_1 = i_0 \cos \omega t$. On suppose de plus que $N_2 << N_1$. Montrer que l'inductance L_2 est négligeable et déterminer le courant i_2 dans la bobine.
- 3) Proposer une méthode simple, utilisant un générateur B.F. et un oscilloscope pour mesurer M.

Exercice n°4

On considère deux circuits R-L-C couplés par mutuelle induction (coefficient M).

- a) écrire les équations différentielles auxquelles satisfont i_1 (t) et i_2 (t).
- b) on se place en régime sinusoïdal forcé de pulsation ω ; en déduire l'expression de i_2 en fonction de e_1 ,

$$e_2 \text{ , M , et de : } \underline{Z}_1 = R_1 + j \Big(L_1 \omega - \frac{1}{C_1 \omega} \Big) \text{ et } \underline{Z}_2 = R_2 + j \Big(L_2 \omega - \frac{1}{C_2 \omega} \Big)$$