Python-Excercises

```
In [8]:
          import pandas as pd
          import matplotlib.pyplot as plt
In [5]:
         df=pd.read_excel('world-population.xlsm')
In [6]:
         df
Out[6]:
                   Population
             Year
            1960
                  3028654024
                  3068356747
             1961
             1962 3121963107
            1963 3187471383
          3
             1964 3253112403
            1965 3320396924
            1966 3390712300
            1967 3460521851
            1968 3531547287
            1969 3606994959
            1970 3682870688
            1971 3761750672
            1972 3839147707
            1973 3915742695
            1974 3992806090
            1975 4068032705
            1976 4141383058
            1977 4214499013
            1978 4288485981
             1979 4363754326
             1980 4439638086
             1981 4516734312
            1982 4595890494
             1983 4675178812
            1984 4753877875
         24
```

	Year	Population
25	1985	4834206631
26	1986	4918126890
27	1987	5004006066
28	1988	5090899475
29	1989	5178059174
30	1990	5266783430
31	1991	5351836347
32	1992	5433823608
33	1993	5516863641
34	1994	5598658151
35	1995	5681689325
36	1996	5762235749
37	1997	5842585301
38	1998	5921799957
39	1999	6001269553
40	2000	6078274622
41	2001	6155652495
42	2002	6232413711
43	2003	6309266583
44	2004	6385778679
45	2005	6462054420
46	2006	6538196688
47	2007	6614396907
48	2008	6692030277
49	2009	6775235741

Python - Line Chart

```
In [12]:
          plt.plot(df['Year'],df['Population'])
          plt.title('Python - Line chart- World population ')
          plt.xlabel('Year')
          plt.ylabel('Population')
          plt.show()
```


Python-Step Chart

```
plt.step(df['Year'], df['Population'])
plt.title('Python - Step chart- World population ')
plt.xlabel('Year')
plt.ylabel('Population')
plt.show()
```


R-Excercises

```
In [1]:
         # Import required packages
         library('magrittr')
         library("ggplot2")
         library("dplyr")
         library("xlsx")
        Attaching package: 'dplyr'
        The following objects are masked from 'package:stats':
            filter, lag
        The following objects are masked from 'package:base':
            intersect, setdiff, setequal, union
        java.home option:
        JAVA_HOME environment variable: C:\Users\meena\anaconda3\Library\lib\jvm
        Warning message in fun(libname, pkgname):
        "Java home setting is INVALID, it will be ignored.
        Please do NOT set it unless you want to override system settings."
In [2]:
         file = paste(getwd(), '/world-population.xlsm', sep = '')
         df = xlsx::read.xlsx(file, sheetIndex = 1, stringsAsFactors = FALSE)
In [3]:
         df
         A data.frame: 50 × 2
                Population
          Year
         <dbl>
                    <dbl>
          1960 3028654024
          1961 3068356747
          1962 3121963107
          1963 3187471383
          1964 3253112403
          1965 3320396924
          1966 3390712300
          1967 3460521851
          1968 3531547287
```

Year	Population
<dbl></dbl>	<dbl></dbl>
1969	3606994959
1970	3682870688
1971	3761750672
1972	3839147707
1973	3915742695
1974	3992806090
1975	4068032705
1976	4141383058
1977	4214499013
1978	4288485981
1979	4363754326
1980	4439638086
1981	4516734312
1982	4595890494
1983	4675178812
1984	4753877875
1985	4834206631
1986	4918126890
1987	5004006066
1988	5090899475
1989	5178059174
1990	5266783430
1991	5351836347
1992	5433823608
1993	5516863641
1994	5598658151
1995	5681689325
1996	5762235749
1997	5842585301
1998	5921799957
1999	6001269553
2000	6078274622

Year	Population
<dbl></dbl>	<dbl></dbl>
2001	6155652495
2002	6232413711
2003	6309266583
2004	6385778679
2005	6462054420
2006	6538196688
2007	6614396907
2008	6692030277
2009	6775235741

R - Line Chart

In [8]: ggplot2::ggplot(data=df, ggplot2::aes(x=Year, y=Population)) + ggplot2::geom_line(linet

R - Step Chart

In [9]: ggplot2::ggplot(data=df, ggplot2::aes(x=Year, y=Population)) + ggplot2::geom_step(linet

Power BI - Step Chart

