

Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 05

Abgabedatum: 23.05.24, 12 Uhr

# 1. (NA) Minifragen

Zeigen oder widerlegen sie:

- 1. Wenn eine Matrix nur positive Einträge hat, sind alle ihre Eigenwerte positiv.
- 2. Falls A und -A dieselben Eigenwerte besitzen, dann ist A nicht invertierbar.
- 3. Bei einer Dreiecksmatrix stehen die Eigenwerte auf der Diagonalen.

## 2. (A) Diagonalisieren von Matrizen

Es sei 
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}.$$

- Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, so dass  $S^{-1}AS$  eine Diagonalmatrix ist. (1)
- 3. Berechnen Sie  $A^n$  für  $n \in \mathbb{N}$ . (1)

Führen Sie die obigen Schritte 1 und 2 auch für die Matrix B statt A durch, falls möglich:

$$B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}. \tag{2}$$

### 3. (A) Die Fibonacci-Folge

Wir betrachten die Fibonacci-Folge mit  $x_0 = 0$ ,  $x_1 = 1$  und  $x_n = x_{n-1} + x_{n-2}$  für  $n \ge 2$ .

1. Bestimmen Sie eine Matrix 
$$A \in M(2 \times 2, \mathbb{R})$$
 mit  $A \begin{pmatrix} x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$ . (2)

- 2. Zeigen Sie, dass A diagonalisierbar ist und bestimmen Sie eine Basis des  $\mathbb{R}^2$  aus Eigenvektoren von A. (2)
- 3. Bestimmen Sie  $A^n$  für beliebiges  $n \in \mathbb{N}$ . (1)

4. Folgern Sie aus dem letzten Schritt, dass das n-te Glied der Fibonacci-Folge die Darstellung

$$x_n = \frac{1}{\sqrt{5}} \left( \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{1-\sqrt{5}}{2} \right)^n \right)$$

besitzt. (1)

### 4. (A) Eigenschaften von Eigenwerten

Zeigen Sie

- (a) Ist  $A \in M(2 \times 2, \mathbb{R})$  symmetrisch, so sind alle Eigenwerte von A reell. (1)
- (b) Wenn  $\lambda$  ein Eigenwert von A ist, dann ist  $-\lambda$  ein Eigenwert von -A. (1)
- (c)  $A \in M(n \times n, \mathbb{K})$  ist genau dann nicht invertierbar, wenn 0 ein Eigenwert von A ist . (1)
- (d) Ist  $A \in M(n \times n, \mathbb{K})$  invertierbar und  $\lambda \in \mathbb{K}$  ein Eigenwert von A, dann ist  $\lambda \neq 0$  und  $\frac{1}{\lambda}$  ein Eigenwert von  $A^{-1}$ . (1)
- (e) Ist  $A \in M(n \times n, \mathbb{K})$  und  $\lambda \in \mathbb{K}$  ein Eigenwert von A, dann ist für  $m \in \mathbb{N}$  auch  $\lambda^m$  ein Eigenwert von  $A^m$ . (1)
- (f) Ist  $A \in M(n \times n, \mathbb{K})$ , dann haben A und  $A^{\top}$  das gleiche charakteristische Polynom und die gleichen Eigenwerte . (1)

### 5. (A) Diagonalisierbarkeit von Matrizen

- a) Eine Matrix  $A \in M(n \times n, \mathbb{R})$  heißt nilpotent, falls es ein  $m \in \mathbb{N}$  gibt, für dass  $A^m = 0$  gilt. Zeigen Sie:
  - i) Falls  $A \in M(n \times n, \mathbb{R})$  nilpotent ist, dann hat A nur den Eigenwert 0. (2)
  - ii) Falls  $0 \neq A \in M(n \times n, \mathbb{R})$  nilpotent ist, ist A nicht diagonalisierbar. (1)
- b) Zeigen Sie: Ist  $A \in M(n \times n, \mathbb{R})$  symmetrisch, so sind die Eigenvektoren zu verschiedenen Eigenwerten orthogonal (bzgl. des Standardskalarprodukts). (3)

**6.** (T),(NA) Es sei 
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

- 1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, so dass  $S^{-1}AS$  eine Diagonalmatrix ist.
- 3. Berechnen Sie  $A^n$  für  $n \in \mathbb{N}$ .

Führen Sie die obigen Schritte auch für die folgende Matrix durch, falls möglich:

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- 7. (T), (NA)
  - (a) Es sei  $G = (g_{ij}) \in M(n \times n, \mathbb{R})$  eine Matrix, deren Spaltensummen alle 1 sind, d.h.

$$\forall j \in \{1,\ldots,n\} : \left(\sum_{i=1}^n g_{ij} = 1\right).$$

Zeigen Sie, dass 1 ein Eigenwert von G ist.

- (b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen  $A \in \mathbb{R}^{n \times n}$ :
  - (a)  $\langle Ax, Ay \rangle = \langle x, y \rangle$ , wobei  $\langle \cdot, \cdot \rangle$  das kanonische Skalarprodukt bezeichnet.
  - (b)  $\det A \in \{1, -1\}.$
  - (c) Zeigen Sie, dass die orthogonalen Matrizen A mit det A = 1 eine Untergruppe von O(n) bilden. Diese wird mit SO(n) bezeichnet.

#### Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
  - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
  - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
    - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
    - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.