SECTION A

(25 *marks*)

This section consists of 3 questions. Answer all questions.

1. Evaluate the following limits (if exist):

(a)
$$\lim_{x \to 3^{-}} \frac{x^2 - 9}{|x - 3|}$$
. (3 marks)

(b)
$$\lim_{x\to 5} \frac{2x-10}{\sqrt{2x-1}-3}$$
. (3 marks)

(c)
$$\lim_{x \to +\infty} \frac{2\sqrt{x} - 4}{x - 4}.$$
 (3 marks)

2. (a) Evaluate $\frac{dy}{dx}$ when x = 0 for each of the following

(i)
$$y = \ln(x^2 + \sqrt{x^2 + 1})$$
. (3 marks)

(ii)
$$y = \frac{e^x (2x^2 + 1)}{\sqrt{x+1}}$$
. (4 marks)

(b) Given
$$y = 3^{x^2}$$
, find $\frac{dy}{dx}$. (3 Marks)

3. The function $f(x) = x^3 - 3x^2 - 9x - 4$ is defined on the interval [-2, 6]. Find the critical points of f(x) on the interval and determine whether each critical point is a minimum or maximum. (6 marks)

SECTION B

(75 *marks*)

This section consists of 7 questions. Answer all questions.

- 1. Given $z_1 = 3 + 2i$ and $z_2 = 1 3i$. Without using calculator, find $z_3 = \frac{z_2}{\overline{z}_1}$ and hence, evaluate $|z_3|$. (5 marks)
- 2. (a) Solve the equation $(\log x)^2 = \log x^3$. (5 marks)
 - (b) Find the interval notation of the inequality $2 + \left| \frac{5x+2}{x-3} \right| \ge 5$. (8 marks)
- **3.** Given the functions f and g as follows

$$f(x) = x^2 + 3x + 1,$$

$$g(x) = x - 2.$$

- (a) Find $f \circ g$ and $g \circ f$. (4 marks)
- (b) State domain and range of $g \circ f$. (3 marks)
- (c) Determine the value of x such that $f \circ g(x) = g \circ [g \circ f(x)]$. (3 marks)
- **4.** The functions f and g are defined as $f(x) = \frac{x+1}{x-5}$, $x \neq 5$ and g(x) = 4-x.
 - (a) Find $f^{-1}(x)$ and $g^{-1}(x)$. (5 marks)
 - **(b)** Evaluate $(f \circ g^{-1})(2)$. **(3 marks)**

5. (a) Given
$$f(x) = \begin{cases} 7 - 2x, & x \le p \\ \frac{x^2 + (q - 2)x - 2q}{x - 2}, & p < x \le 5 \\ 10 - (x - 7)^2, & x > 5 \end{cases}$$

with $\lim_{x\to p^+} f(x) = 3$ and the function f is continuous for all real values of x.

Determine the values of p and q.

(7 marks)

- **(b)** A function f is defined by $f(x) = \begin{cases} \frac{2(1-x)}{x-2}, & x < \frac{3}{2} \\ 2, & x \ge \frac{3}{2} \end{cases}$
 - (i) Use the definition to show that f is continuous at $x = \frac{3}{2}$. (1 mark)
 - (ii) Sketch the graph of f. (6 marks)
- 6. (a) Find $\frac{dy}{dx}$ in terms of x and y if $x^2 \sin y + 2x = y$. (7 marks)
 - (b) Differentiate $\cos^3(\ln(2x-1))$ with respect to x. (4 marks)
 - (c) Given $y = 5\sin(3x) + \sqrt{x}$. Find the value of $\frac{dy}{dx}$ when $x = \frac{\pi}{2}$. (4 marks)
- 7. (a) Find the stationary points of the curve has an equation $y = \frac{1}{3}x^3 + x^2 8x$.
 - (b) Air is pumped into a spherical balloon at a rate $54 \, cm^3 s^{-1}$. Find the rate at which the radius is increasing when the volume of balloon is $36\pi \, cm^3$. (6 marks)

END OF QUESTIONS PAPER

ANSWER:

PART A

- (a) 61.
- **(b)** 6

(c) 0

(a) (i) 0 2.

(ii) $\frac{1}{2}$

(b)
$$\frac{dy}{dx} = 3^{x^2} (\ln 3)(2x)$$

(-1,1) maximum point, (3,-31) minimum point 3.

PART B

1.
$$z_3 = \frac{9}{13} - \frac{7}{13}i$$
, $|z_3| = 0.8771$

2. (a)
$$x = 1, 1000$$

(b)
$$\left(-\infty, -\frac{11}{2}\right] \cup \left[\frac{7}{8}, 3\right] \cup \left(3, \infty\right)$$

3. **(a)**
$$f \circ g = x^2 - x - 1$$
, $g \circ f = x^2 + 3x - 1$ **(b)** $D_{g \circ f} = (-\infty, \infty), R_{g \circ f} = [-\frac{13}{4}, \infty)$

(b)
$$D_{g \circ f} = (-\infty, \infty), R_{g \circ f} = [-\frac{13}{4}, \infty)$$

(c)
$$x = \frac{1}{2}$$

4. (a)
$$f^{-1}(x) = \frac{5x+1}{x-1}, g^{-1}(x) = 4-x$$

5. (a)
$$p = 2$$
, $q = 1$

6. (a)
$$\frac{dy}{dx} = \frac{2(1+x\sin y)}{1-x^2\cos y}$$

(b)
$$\frac{dy}{dx} = -\frac{6}{2x-1}\cos^2(\ln(2x-1))\sin(\ln(2x-1))$$

7. **(a)**
$$\left(2, -\frac{28}{3}\right)$$
 and $\left(-4, \frac{80}{3}\right)$.

(b)
$$\frac{dr}{dt} = 0.4775 \text{ cms}^{-1}$$

PART A (25 marks)

NO	ANSWER SCHEMES	REMARKS
1. (a)	$\lim_{x \to 3^{-}} \frac{x^{2} - 9}{ x - 3 } = \lim_{x \to 3^{-}} \frac{(x + 3)(x - 3)}{ x - 3 }$	K 1
		Factorize and choose
	$= \lim_{x \to 3^{-}} \frac{(x+3)(x-3)}{-(x-3)}$	negative for absolute
	$=\lim_{x\to 3^{-}}\left[-(x+3)\right]$	K1 Substitute <i>x</i> =3
	= -(3+3)	
	= -6	J1
(b)	$\lim_{x \to 5} \left(\frac{2x - 10}{\sqrt{2x - 1} - 3} \right) = \lim_{x \to 5} \frac{(2x - 10)(\sqrt{2x - 1} + 3)}{(\sqrt{2x - 1} - 3)(\sqrt{2x - 1} + 3)}$	K1
	$= \lim_{x \to 5} \frac{(2x-10)(\sqrt{2x-1}+3)}{(\sqrt{2x-1})^2 - 3^2}$	
	$=\lim_{x\to 5}\left(\sqrt{2x-1}+3\right)$	K1
	$= \sqrt{2(5) - 1} + 3$ $= 6$	J1
(c)	$\lim_{x \to +\infty} \frac{2\sqrt{x} - 4}{x - 4} = \lim_{x \to +\infty} \frac{2\left(\sqrt{x} - 2\right)}{x - 4}$	K1
	$= \lim_{x \to +\infty} \frac{2(\sqrt{x} - 2)}{(\sqrt{x} - 2)(\sqrt{x} + 2)}$	
	$= \lim_{x \to +\infty} \frac{2}{\sqrt{x} + 2}$	
	$= \lim_{x \to +\infty} \frac{\frac{2}{\sqrt{x}}}{1 + \frac{2}{\sqrt{x}}}$	K1
	\sqrt{x} = 0	J1
	TOTAL MARKS	9 marks

2.(a) (i)	$y = \ln\left(x^2 + \sqrt{x^2 + 1}\right)$	
	$\frac{dy}{dx} = \frac{1}{x^2 + \sqrt{x^2 + 1}} \left(2x + \frac{1}{2} (x^2 + 1)^{-\frac{1}{2}} (2x) \right)$	K1
	$= \frac{1}{x^2 + \sqrt{x^2 + 1}} \left(2x + \frac{x}{\sqrt{x^2 + 1}} \right)$	
	when	
	$x = 0, \frac{dy}{dx} = \frac{1}{0 + \sqrt{0 + 1}} \left[2(0) + \frac{0}{\sqrt{0 + 1}} \right] = 0$	K1
	an 01 4011	J1
(ii)	$y = e^{x} (2x^{2} + 1)(x + 1)^{-\frac{1}{2}} = (2e^{x}x^{2} + e^{x})(x + 1)^{-\frac{1}{2}}$	K1
	$\frac{dy}{dx} = \left(2e^x x^2 + e^x\right) \left(-\frac{1}{2}\right) (x+1)^{-\frac{3}{2}} + (x+1)^{-\frac{1}{2}} \left(4xe^x + 2x^2e^x + e^x\right)$	K1
	when	
	$x = 0,$ $\frac{dy}{dx} = \left(2e^{0}(0)^{2} + e^{0}\right)\left(-\frac{1}{2}\right)(0+1)^{-\frac{3}{2}} + \left(0+1\right)^{-\frac{1}{2}}\left(4(0)e^{0} + 2(0)^{2}e^{0} + e^{0}\right)$	K1
	$=\frac{1}{2}$	J1
(b)	$y = 3^{x^2}$	
	$\ln y = x^2 \ln 3$	
	$\frac{1}{y} \left(\frac{dy}{dx} \right) = (\ln 3)(2x)$	K1
	$\frac{dy}{dx} = (\ln 3)(2x)(y)$ $\frac{dy}{dx} = 3^{x^2} (\ln 3)(2x)$	K 1
	$\frac{dy}{dx} = 3^{x^2} \left(\ln 3\right) \left(2x\right)$	J1
	TOTAL MARKS	10 marks

3.	$f(x) = x^3 - 3x^2 - 9x - 4$	
	$f'(x) = 3x^2 - 6x - 9$	
	when $f'(x) = 0$	
	$3x^2 - 6x - 9 = 0$	K1
	$x^2 - 2x - 3 = 0$	Correct factorise and
	(x+1)(x-3)=0	f'(x)=0
	x = -1 or x = 3	
	when	K1
	$x=-1, f(x)=(-1)^3-3(-1)^2-9(-1)-4=1$	Subs both <i>x</i> values
	$x = 3, f(x) = (3)^3 - 3(3)^2 - 9(3) = -31$	J1
	\therefore Critical points are $(-1,1)$ and $(3,-31)$	Both points correct
	f''(x) = 6x - 6	K1
	when	Any method
	x = -1, f''(x) = 6(-1) - 6 = -12 < 0	J1
	$\therefore (-1,1)$ is a maximum point	Any one point
	x = 3.f''(x) = 6(3) - 6 = 12 > 0	.J1
	\therefore (3,-31) is a minimum point	Both correct
	TOTAL MARKS	6 marks

PART B

(75 marks)

NO	ANSWER SCHEMES	REMARKS
1.	ANSWER SCHEMES $z_{3} = \frac{z_{2}}{\overline{z}_{1}} = \frac{1-3i}{3-2i} = \frac{1-3i}{3-2i} \times \frac{3+2i}{3+2i}$ $= \frac{3+2i-9i-6i^{2}}{9+4} = \frac{9-7i}{13}$ $= \frac{9}{13} - \frac{7}{13}i$ $ z_{3} = \sqrt{\left(\frac{9}{13}\right)^{2} + \left(-\frac{7}{13}\right)^{2}}$ $= \frac{\sqrt{130}}{13} \text{ or } 0.8771$	REMARKS K1 correct $\frac{z_2}{\overline{z}_1}$ K1 correct conjugate and simplify JI K1
2.(a)	TOTAL MARKS $(\log x)^2 = \log x^3$ $(\log x)^2 = 3\log x$ $let \ u = \log x$	5 marks K1
	$u^{2} - 3u = 0$ $u(u - 3) = 0$ $u = 0 \qquad u = 3$ $\log x = 0 \qquad \log x = 3$ $x = 10^{0} \qquad x = 10^{3}$ $x = 1 \qquad x = 1000$	K1 Quadratic form & factorize J1 K1 Attempt to solve J1

	$2 + \left \frac{5x + 2}{x - 3} \right \ge 5$	
	$\left \frac{x-3}{5x+2} \right \le 3 \qquad \text{or} \qquad \left(\frac{5x+2}{x-3} \right) \le -3$	B1
	$\left(\frac{5x+2}{x-3}\right) - 3 \ge 0 \qquad \left(\frac{5x+2}{x-3}\right) + 3 \le 0$	K1
	$\frac{2x+11}{x-3} \ge 0 \qquad \frac{8x-7}{x-3} \le 0$	K1 Simplify
	-11/2 3 + 7/8 3 +	K1 Any method
(b)	$\left[\left(-\infty, -\frac{11}{2} \right] \cup \left(3, \infty \right) \right] \qquad \left[\frac{7}{8}, 3 \right)$	J1J1
	$-\frac{11}{2} \qquad \frac{7}{8} \qquad 3$	K1
	$\left(-\infty, -\frac{11}{2}\right] \cup \left[\frac{7}{8}, 3\right) \cup (3, \infty)$	J1
	TOTAL MARKS	13 marks

3.(a)		
	$f(x) = x^2 + 3x + 1$	
	g(x) = x - 2	
	f[g(x)] = (f[x-2])	
	$=(x-2)^2+3(x-2)+1$	K1
	$=x^2-x-1$	J1
	$\therefore f \circ g = x^2 - x - 1$	91
	$g[f(x)] = g[x^2 + 3x + 1]$	K 1
	$=x^2+3x+1-2$	
	$=x^2+3x-1$	
	$\therefore g \circ f = x^2 + 3x - 1$	J1
(b)		
(~)	$g \circ f = x^2 + 3x - 1 = (x + \frac{3}{2})^2 - \frac{13}{4}$	
	Z T	K1
	$D_{gof} = (-\infty, \infty) \mathbf{R}_{gof} = \left[-\frac{13}{4}, \infty \right)$	J1JI
(c)	$f \circ g(x) = g \circ [g \circ f(x)]$	
	$x^2 - x - 1 = g[x^2 + 3x - 1]$	K1
	$x^2 - x - 1 = x^2 + 3x - 1 - 2$	K1
	$x=\frac{1}{2}$	Л
	TOTAL MARKS	10 marks
4(a)	$f(x) = \frac{x+1}{x-5}, x \neq 5$ $\frac{f^{-1}(x)+1}{f^{-1}(x)-5} = x$	
	$\frac{f^{-1}(x)+1}{2(x)^{2}}=x$	
	$\int_{c^{-1}(x)-5}^{c^{-1}(x)-5}$	171
	$\int_{-\infty}^{\infty} f(x) dx = x \int_{-\infty}^{\infty} f(x) - 5x$	K1
	$\int_{\mathcal{L}^{-1}(x)} (x) - xy (x) = -5x - 1$	K1
	$f^{-1}(x)+1 = xf^{-1}(x) - 5x$ $f^{-1}(x)-xf^{-1}(x) = -5x - 1$ $f^{-1}(x)(1-x) = -5x - 1$ $f^{-1}(x) = \frac{5x+1}{x-1}$	
	$\int_{0}^{-1} f^{-1}(x) = \frac{3x+1}{x-1}$	Л

	g(x) = 4 - x	
	$4-g^{-1}(x)=x$	K1
	$g^{-1}(x) = 4 - x$	JI
	8 (") "	
(b)	(c -1)(2) c(-1)(2)	
(0)	$(f \circ g^{-1})(2) = f(g^{-1})(2)$	K1
	= f(4-2)	
	=f(2)	K1
	$=\frac{2+1}{2-5}$	161
	= -1	JI
	TOTAL MARKS	8 marks
5. (a)	$\lim_{x \to p^{-}} 7 - 2x = \lim_{x \to p^{+}} \frac{x^{2} + (q-2)x - 2q}{x - 2}$	K1
(a)		KI
	7 - 2p = 3	K1
	p=2	J1
	$x^2 + (a-2)x - 2a$	
	$\lim_{x \to 2^{+}} \frac{x^{2} + (q-2)x - 2q}{x - 2} = 3$	K1
	$\lim_{x \to 2^{+}} \frac{(x-2)(x+q)}{x-2} = 3$	K1
		KI .
	2 + q = 3	K1
	q=1	J1
(b)	(3)	
(i)	$(i) f\left(\frac{3}{2}\right) = 2$	
	(1) $(1-x)$ $(1-x)$	
	(ii) $\lim_{x \to \frac{3}{2}^{-}} \frac{2(1-x)}{x-2} = \lim_{x \to \frac{3}{2}^{+}} 2$	
	2 (1 3)	
	$2\left(1-\frac{1}{2}\right)$	
	$\frac{2\left(1-\frac{3}{2}\right)}{\frac{3}{2}-2} = 2$	
	2 -	
	2 = 2	

	$\lim_{x \to \frac{3}{2}^{-}} f(x) = \lim_{x \to \frac{3}{2}^{+}} f(x)$	
	$\lim_{x \to \frac{3}{2}} f(x) $ is exist.	
	$f\left(\frac{3}{2}\right) = \lim_{x \to \frac{3}{2}} f\left(x\right)$	
	$\therefore f(x) \text{ is continuous at } x = \frac{3}{2}.$	J1
	$\lim_{x \to +\infty} \frac{2(1-x)}{x-2} = \lim_{x \to +\infty} \frac{\frac{2}{x}-2}{1-\frac{2}{x}}$ $= \frac{0-2}{1-0}$ $= -2$ $\lim_{x \to -\infty} \frac{2(1-x)}{x-2} = \lim_{x \to -\infty} \frac{\frac{2}{x}-2}{1-\frac{2}{x}}$ $= -2$ $\therefore \text{Horizontal Asymptote is } y = -2$	K1 K1 J1
(ii)	$ \begin{array}{c} y \\ \hline 1 & 3/2 \\ \hline -2 \end{array} $	R1 R1 R1
	TOTAL MARKS	14 marks

6 (a)	$x^2 \sin y + 2x = y$	
	$2x\sin y + x^2\cos y\left(\frac{dy}{dx}\right) + 2 = \frac{dy}{dx}$	K1K1K1 Differentiate each term
	$\frac{dy}{dx}(1-x^2\cos y) = 2(1+x\sin y)$	K1K1
	$\frac{dy}{dx} = \frac{2(1+x\sin y)}{1-x^2\cos y}$	K1J1
(b)	$\frac{d}{dx} \Big[\cos^3(\ln(2x-1)) \Big] = 3 \Big[\cos^2(\ln(2x-1)) \Big] \cdot \Big[-\sin(\ln(2x-1)) \Big] \cdot \frac{2}{2x-1}$ $= -\frac{6}{2x-1} \cos^2(\ln(2x-1)) \sin(\ln(2x-1))$	K1K1
	$= -\frac{6}{2x-1}\cos^2(\ln(2x-1))\sin(\ln(2x-1))$	K1J1
(c)	$\frac{dy}{dx} = 15\cos(3x) + \frac{1}{2\sqrt{x}}$	K1K1 Differentiate both terms
	$\left \frac{dy}{dx} \right _{x=\frac{\pi}{2}} = 15 \cos\left(3\left(\frac{\pi}{2}\right)\right) + \frac{1}{2\sqrt{\frac{\pi}{2}}}$	K1 Substitute limit
	$=15(0)+\frac{1}{2\frac{\sqrt{\pi}}{\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}}$	
	$=\frac{1}{\sqrt{2\pi}}$	
	=0.399	J1
	TOTAL MARKS	15 marks

7(a) $\frac{1}{y^3 + y^2} = 8y$	
7(a) $y = \frac{1}{3}x^3 + x^2 - 8x$ $\frac{dy}{dx} = x^2 + 2x - 8$	
$\frac{dy}{dx} = x^2 + 2x - 8$	K1
	Differentiate
$\frac{dy}{dx} = 0$	
$x^2 + 2x - 8 = 0$	
(x-2)(x+4)=0	
x = 2; x = -4	K1
When $x = 2$; $f(2) = \frac{1}{3}(2)^3 + (2)^2 - 8(2)$	
$=-\frac{28}{3}$	
When $x = -4$; $f(-4) = \frac{1}{3}(-4)^3 + (-4)^2 - 8(-4)$	
	K1
$=\frac{80}{3}$	
Stationary points are $\left(2, -\frac{28}{3}\right)$ and $\left(-4, \frac{80}{3}\right)$.	J1
(b) $\frac{dV}{dt} = 54$	D1
(b) $\frac{dV}{dt} = 54$ $\frac{dr}{dt} = \frac{dV}{dt} \times \frac{dr}{dV}$ $V = \frac{4}{3}\pi r^3 = 36\pi$	B1
$\frac{1}{dt} = \frac{1}{dt} \times \frac{1}{dV}$	171
$V = \frac{4}{3}\pi r^3 = 36\pi$	K1
$r^3 = 27, r = 3$	J1
	Value of r
$\frac{dV}{dr} = 4\pi r^2$	K1
	Differentiate
$\therefore \frac{dr}{dt} = 54 \times \frac{1}{4\pi(3)^2} = \frac{3}{2\pi} = 0.4775 \text{ cms}^{-1}$	K1J1
TOTAL MARKS	10 marks