Teste Online 12

Questão 1

Ainda não respondida

A integral definida $\int_0^{\,\overline{3}}\,\left(\mathrm{sen}(x)-3\cos(x)
ight)\,dx$ é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\bigcirc \ \frac{3\sqrt{3}-1}{2}$$

$$\bigcirc \ -\frac{3\sqrt{2}+1}{2}$$

$$\bigcirc \frac{1-3\sqrt{3}}{2}$$

$$\bigcirc$$
 -2

$$\bigcirc \ \ -\frac{3\sqrt{2}-1}{2}$$

Questão 2

Ainda não respondida

A integral definida $\displaystyle \int_{-a}^{a} 6x \, dx$ é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\bigcirc$$
 $-4a$

$$\bigcirc$$
 4 a

$$\bigcirc$$
 -12a

$$\bigcirc$$
 12a

$$\bigcirc$$
 0

Questão 3

Ainda não respondida

A integral definida $\displaystyle \int_1^{\, {
m e}} \left(3 + \displaystyle rac{2}{x}
ight) \, dx$ é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\bigcirc$$
 e³ – 1

$$\bigcirc$$
 e³ + 1

$$\bigcirc$$
 3e – 1

$$\bigcirc$$
 3e + 5

$$\bigcirc$$
 e³

Questão 4

Ainda não respondida

A integral
$$\int_1^9 \left(\sqrt{t} - rac{4}{\sqrt{t}}
ight) \, dt$$
 é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\circ \frac{2}{3}$$

Ainda não respondida

A integral
$$\int_1 - \left(\sqrt{ au} - rac{\sqrt{t}}{\sqrt{t}}
ight) \, a t$$
 e igual a

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc \frac{2}{3}$
- $\bigcirc 2$
- \bigcirc 0
- $\bigcirc \frac{3}{2}$
- $\circ \frac{4}{3}$

Questão 5

Ainda não respondida

Vale 1,00 ponto(s).

A velocidade de um corpo, dada em metros por segundo, é descrita pela função $v(t)=25+10t+t^3$. Calcule o espaço percorrido por esse corpo, em metros, desde o instante $t_1=0$ até $t_2=2$.

Escolha uma:

- 0 74
- 0 90
- 0 96
- O depende do ponto de partida
- 0 56

Questão 6

Ainda não respondida

Vale 1,00 ponto(s).

Utilize a relação ${
m tg}^2(x)=\sec^2(x)-1$ para calcular a integral definida $\int_0^{\frac{\pi}{4}}{
m tg}^2(x)\,dx$.

Escolha uma:

- $01 + \frac{\pi}{4}$
- $\bigcirc 1 \frac{\pi}{4}$
- $\bigcirc \sqrt{2}$
- $\bigcirc \sqrt{2} \frac{\pi}{4} 1$
- $\bigcirc \frac{\pi}{4} 1$

Questão 7

Ainda não respondida

A velocidade de um corpo, dada em metros por segundo, é descrita pela função $v(t)=25+10t+t^3$. Calcule o espaço percorrido por esse corpo, em metros, desde o instante $t_1=2$ até $t_2=4$

Questão 7

Ainda não respondida

Vale 1,00 ponto(s).

A velocidade de um corpo, dada em metros por segundo, é descrita pela função $v(t)=25+10t+t^3$. Calcule o espaço percorrido por esse corpo, em metros, desde o instante $t_1=2$ até $t_2=4$.

Escolha uma:

- O depende do ponto de partida
- \bigcirc 170
- \bigcirc 180
- 0 74
- \circ 80

Questão 8

Ainda não respondida

Vale 1,00 ponto(s).

Determine $\displaystyle \frac{d}{dx} \int_x^4 \frac{1}{s} \, ds$ utilizando o Teorema Fundamental do

Cálculo.

Escolha uma:

- $\bigcirc \frac{1}{x}$
- $\bigcirc -\frac{1}{x}$
- $\bigcirc \frac{1}{4}$
- $\bigcirc -\frac{1}{4}$
- nenhum das outras opções

Questão 9

Ainda não respondida

Determine $\frac{d}{dx} \int_{x}^{\pi} \cos^{2}(s) \, ds$.

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc -\cos^2(x)$
- $\bigcirc \cos(x)$
- $\bigcirc \cos^2(x)$
- $\bigcirc -2\cos(x)\sin(x)$
- $\bigcirc 2\cos(x)\sin(x)$

Questão 10

Ainda não

Determine
$$\frac{d}{dx} \int_{x}^{\pi} \cos(t) \, dt$$
 utilizando o Teorema Fundamental

Questão 10

Ainda não respondida

Determine $\frac{d}{dx}\int_x^\pi \cos(t)\,dt$ utilizando o Teorema Fundamental do Cálculo.

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc -\cos(x) + 1$
- \bigcirc sen(x)-1
- $\bigcirc -\cos(x)$
- \bigcirc sen(x) + 1
- $\bigcirc -\cos(x) 1$

Questão 11

Ainda não respondida

A área da região compreendida abaixo do gráfico de $y(x) = \mathrm{sen}(x)$ para $x \in [0,\pi]$ é igual a:

Vale 1,00 ponto(s).

Escolha uma:

- \circ_{π}
- $\bigcirc 2$
- $\bigcirc \pi/2$
- $\bigcirc 0$
- \circ_1

Questão 12

Ainda não respondida

A área da região limitada pelas curvas $y_1(x)=x^2$ e $y_2(x)=x$ é igual a:

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc 1/3$
- \bigcirc 1/6
- \bigcirc 1/2
- \bigcirc 1/4
- \circ_1

Questão 13

Ainda não respondida

A área entre os gráficos de $y_1(x)=\sin(x)$ e $y_2(x)=\cos(x)$ para $x\in[0,\pi/4]$ é igual a:

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc \pi/2$
- $\Omega = 1/4$

Ainda não respondida

para $x \in [0,\pi/4]$ e igual a:

Vale 1,00 ponto(s).

Escolha uma:

- \circ $\pi/2$
- \circ $\pi/4$
- $\bigcirc \sqrt{2}-1$
- $\bigcirc \sqrt{2}$
- \circ 1

Questão 14

Se R é a região delimitada pelas retas y=x, y=-x e x=1, então a área de R é igual a

Ainda não respondida

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc 2$
- \bigcirc 4
- \bigcirc 3
- 0 1

Questão 15

Se R é a região delimitada pelo gráfico das funções

Ainda não $r(x) = x^2 - 2x$ e $s(x) = -x^2 + 4$, então a área de R é igual respondida

Vale 1,00 ponto(s).

Escolha uma:

- \bigcirc 9
- 0 12
- 0 11
- 0 8
- \bigcirc 10

Questão 16

A área da região compreendida entre as curvas x=0,

Ainda não respondida

 $y_1(x)=\mathrm{e}\,\mathrm{e}\,y_2(x)=\mathrm{e}^x$ é igual a:

Vale 1,00 ponto(s). Escolha uma:

 \bigcirc 1

- \bigcirc 2e
- O e
- \bigcirc e²
- \bigcirc 2

∨ e

 \bigcirc e²

 $\bigcirc 2$

Questão 17

Ainda não respondida

A integral $\int_0^1 |\cos(\pi x)| \ dx$ é igual a:

Vale 1,00 ponto(s).

Escolha uma:

 $\bigcirc 2/\pi$

 $\bigcirc 1/\pi$

 \bigcirc 0

 \circ π

 $\bigcirc 2\pi$

Questão 18

Ainda não respondida

A área da região compreendida entre as curvas $y^2(x)=2x-2$ e a reta x=9 é igual a:

Vale 1,00 ponto(s).

Escolha uma:

$$\circ$$
 72 - $\frac{88}{3}$

 \bigcirc 189

 $\bigcirc \frac{88}{3}$

 \bigcirc 72

$$\bigcirc \frac{88}{3} - 72$$

Questão 19

Sobre a função $f(x)=x^2\mathrm{sen}(x)$ é correto afirmar que:

Ainda não respondida

Escolha uma:

Vale 1,00 ponto(s).

- O Como a função f é par, temos que a área líquida determinada por f entre os pontos -1 e 1 é positiva e vale $2\int_0^1 f(x)dx$.
- A área compreendida entre o gráfico de f e o eixo x entre os pontos 0 e 1 é igual área compreendida entre o gráfico de f e o eixo x entre os pontos -1 e 0, donde temos que $\int_{-1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx.$
- Como a função f é par, temos que a área líquida determinada por f entre os pontos -1 e 1 é positiva e vale $2\int_{-1}^{0}f(x)dx$.
- A área compreendida entre o gráfico de f e o eixo x entre os

6 de 6