Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Boolesche Algebren
- 3. Boolesche Ausdrücke, Normalformen, zweistufige Synthese
- 4. Berechnung eines Minimalpolynoms
 - 4.1 Karnaugh / Quine-McCluskey
 - 4.2 Überdeckungsproblem
- 5. Arithmetische Schaltungen
- 6. Anwendung: ALU von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Armin Biere

Institut für Informatik Sommersemester 2024

Das Matrix-Überdeckungsproblem

- Wir haben nun durch das Verfahren von Quine-McCluskey alle Primimplikanten von *f* bestimmt.
- Die Disjunktion aller Primimplikanten ist ein Polynom, das f implementiert. Es ist aber im Allgemeinen kein Minimalpolynom von f.
- Für das Minimalpolynom benötigen wir eine kostenminimale Teilmenge *M* von *Prim(f)*, so dass die Monome von *M f* überdecken.
- Diese Art von Problemen wird Matrix-Überdeckungsproblem genannt.

Das Matrix-Überdeckungsproblem: Einfaches Beispiel

■ Für eine Expedition wird ein Fahrer, ein Messtechniker und ein Kameramann benötigt. Es stehen fünf Kandidaten mit unterschiedlichen Fähigkeiten und Gehaltsvorstellungen zur Auswahl. Welches ist das kostengünstigste Team?

Kandidat	Fahrer?	Messtechniker?	Kameramann?	Gehalt
Alice	Ja	Nein	Ja	4000
Dilbert	Ja	Ja	Nein	2000
Dogbert	Ja	Ja	Ja	5000
Ted	Nein	Nein	Ja	1000
Wally	Nein	Ja	Ja	1500

Primimplikantentafel

- Definiere eine Boolesche Matrix PIT(f), die Primimplikantentafel von f:
 - Die Zeilen entsprechen eindeutig den Primimplikanten von *f*.
 - Die Spalten entsprechen eindeutig den Mintermen von f.
 - Sei $min(\alpha)$ ein beliebiger Minterm von f. Dann gilt für Primimplikant $m: PIT(f)[m, min(\alpha)] = 1 \Leftrightarrow m(\alpha) = 1$.
- Der Eintrag an der Stelle $[m, min(\alpha)]$ ist also genau dann 1, wenn $min(\alpha)$ eine Ecke des Würfels m beschreibt.

Gesucht:

Eine kostenminimale Teilmenge M von Prim(f), so dass jede Spalte von PIT(f) überdeckt ist,

```
d.h. \forall \alpha \in ON(f) \quad \exists m \in M \text{ mit } PIT(f)[m, min(\alpha)] = 1.
```

Primimplikantentafel: Beispiel (1/2)

$$Prim(f) = \{x_1'x_4, x_1x_4', x_3'\}$$

Primimplikantentafel *PIT*(*f*):

	0	1	3	4	5	7	8	9	10	12	13	14
$x'_{1}x_{4}$		1	1		1	1						
x_1x_4'							1		1	1		1
$\begin{array}{c} x_1' x_4 \\ x_1 x_4' \\ x_3' \end{array}$	1	1		1	1		1	1		1	1	

Primimplikantentafel: Beispiel (2/2)

Gesucht:

Eine kostenminimale Teilmenge M von Prim(f), so dass jede Spalte von PIT(f) überdeckt ist, d.h. $\forall \alpha \in ON(f) \quad \exists m \in M \text{ mit } PIT(f)[m,min(\alpha)] = 1$.

$$Prim(f) = \{x'_1x_4, x_1x'_4, x'_3\}$$

Primimplikantentafel PIT(f):

			3				8	9	10	12	13	14
$x_1'x_4$ x_1x_4' x_3'		1	1		1	1						
x_1x_4'							1		1	1		1
x_3'	1	1		1	1		1	1		1	1	

6/20

Erste Reduktionsregel - Wesentlicher Implikant

Definition

Ein Primimplikant m von f heißt wesentlich, wenn es einen Minterm $min(\alpha)$ von f gibt, der nur von diesem Primimplikanten überdeckt wird, also:

- $PIT(f)[m,min(\alpha)] = 1$
- \blacksquare $PIT(f)[m', min(\alpha)] = 0$

für jeden anderen Primimplikanten m' von f.

Lemma

Jedes Minimalpolynom von f enthält alle wesentlichen Primimplikanten von f.

1. Reduktionsregel: Entferne aus der Primimplikantentafel PIT(f) alle wesentlichen Primimplikanten und alle Minterme, die von diesen überdeckt werden.

Erste Reduktionsregel: Beispiel (1/2)

Erste Reduktionsregel: Beispiel (2/2)

Nach Anwendung der 1. Reduktionsregel

	9	10	11	12	13	14	15	16	17
E F	1								1
F		1							1
G			1						
Н				1					
ı	1				1				
J		1				1			1
K			1				1		
L				1				1	
М					1	1	1	1	

Die Matrix enthält keine wesentlichen Zeilen mehr!

Zweite Reduktionsregel - Spaltendominanz

Definition

Sei A eine Boolesche Matrix. Spalte j von A dominiert Spalte i von A, wenn für jede Zeile k gilt: $A[k,j] \le A[k,j]$.

- Nutzen für unser Problem: Dominiert ein Minterm w' von f einen anderen Minterm w von f, so braucht man w' nicht weiter zu betrachten, da w auf jeden Fall überdeckt werden muss und hierdurch auch Minterm w' überdeckt wird.
- Jeder in PIT(f) vorhandene Primimplikant p, der w überdeckt, überdeckt auch w'.
- **2. Reduktionsregel:** Entferne aus der Primimplikantentafel PIT(f) alle Minterme, die einen anderen Minterm in PIT(f) dominieren.

Zweite Reduktionsregel: Beispiel

	9	10	11	12	13	14	15	16	17	
Е	1								1	
E F G		1	1						1	
Н				1						
l J	1	1			1	1			1	
K		ľ	1				1		ľ	
L M				1	1	1	1	1		
IVI	ļ				•	٠	'	•	Ш	

Spalte 17 dominiert Spalte 10 ⇒ Spalte 17 kann gelöscht werden!

Dritte Reduktionsregel - Zeilendominanz

Definition

Sei A eine Boolesche Matrix. Zeile i von A dominiert Zeile j von A, wenn für jede Spalte k gilt: $A[i,k] \ge A[j,k]$.

- Nutzen für unser Problem: Dominiert ein Primimplikant *m* einen Primimplikanten m', so braucht man m' nicht weiter zu betrachten, wenn cost(m') > cost(m) gilt.
- Der Primimplikant m überdeckt jeden noch nicht überdeckten Minterm von f, der von m' überdeckt wird, obwohl er nicht teurer ist.
- **3. Reduktionsregel:** Entferne aus der Primimplikantentafel PIT(f) alle Primimplikanten, die durch einen anderen, nicht teureren Primimplikanten dominiert werden.

Dritte Reduktionsregel: Beispiel

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

Dritte Reduktionsregel: Beispiel

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

Nach Anwendung der 3. Reduktionsregel

- Offensichtlich kann nun wieder die erste Reduktionsregel angewendet werden, da die Zeilen 9, 10, 11, 12 wesentlich sind.
 - Die resultierende Matrix ist leer.
 - Das gefundene Minimalpolynom ist:

$$A + B + C + D + I + J + K + L$$

Ein weiteres Beispiel

Welche Reduktionsregel(n) können in dem Beispiel angewendet werden?

$$\textit{Prim}(f) = \{ \{7,5\}, \{5,13\}, \{13,9\}, \{9,11\}, \{11,3\}, \{3,7\} \}$$

Primimplikantentafel PIT(f):

	3	5	7	9	11	13
{7,5}		1	1			
$\{5, 13\}$		1				1
{13,9}				1		1
$\{9,11\}$				1	1	
{11,3}	1				1	
{3,7}	1		1			

Ein weiteres Beispiel

Welche Reduktionsregel(n) können in dem Beispiel angewendet werden?

 $Prim(f) = \{\{7,5\}, \{5,13\}, \{13,9\}, \{9,11\}, \{11,3\}, \{3,7\}\}$

Primimplikantentafel *PIT*(*f*):

	3	5	7	9	11	13
{7,5}		1	1			
$\{5, 13\}$		1				1
{13,9}				1		1
{9,11}				1	1	
{11,3}	1				1	
$\{3,7\}$	1		1			

Kein Primimplikant ist wesentlich!

Zvklische Überdeckungsprobleme

Definition

Eine Primimplikantentafel heißt reduziert, wenn keine der drei Reduktionsregeln anwendbar ist.

- Ist eine reduzierte Tafel nicht-leer, spricht man von einem zyklischen Überdeckungsproblem.
- In der Praxis werden solche Probleme heuristisch gelöst. Es gibt auch exakte Methoden (Petrick, Branch-and-Bound).

Primimplikantentafel PIT(f):

	-	-							
	3	5	7	9	11	13			
{7,5}		1	1						
$\{5, 13\}$		1				1			
{13,9}				1		1			
{9,11}				1	1				
{11,3}	1				1				
$\{3,7\}$	1		1						

Petrick's Methode

Verfahren:

- Übersetze die PIT in ein Produkt von Summen, d.h. in ein (OR, AND)-Polynom, das alle Möglichkeiten der Überdeckung enthält.
- Multipliziere das (OR, AND)-Polynom aus, so dass ein (AND-OR)-Polynom entsteht.
- Die gesuchte minimale Überdeckung ist gegeben durch das Monom, das einer PI-Auswahl mit minimalen Kosten entspricht.

	3	5	7	9	11	13
a:{7,5}		1	1			
b: {5,13}		1				1
c:{13,9}				1		1
d: {9,11}				1	1	
e:{11,3}	1				1	
$f: \{3,7\}$	1		1			

wird übersetzt in

$$(e+f) \cdot (a+b) \cdot (a+f) \cdot (c+d) \cdot (d+e) \cdot (b+c)$$

$$= (ea+eb+fa+fb) \cdot (ac+ad+fc+fd)$$

$$\cdot (db+dc+eb+ec)$$

$$\vdots$$

$$= ace+acde+abcde+abcd+\cdots+bdf$$

Bei gleichen Kosten für alle Pls sind *ace* und *bdf* minimal.

"Greedy-Heuristik" zur Lösung von Überdeckungsproblemen

- 1. Wende alle möglichen Reduktionsregeln an.
- 2. Ist die Matrix *A* leer, ist man fertig.
- Sonst wähle die Zeile i, die die meisten Spalten überdeckt. Lösche diese Zeile und alle von ihr überdeckten Spalten und gehe zu 1.
- Dieser Algorithmus liefert nicht immer die optimale Lösung!
 - Hinweis: Bei der Ausgangs-Matrix aus unserem Beispiel überdeckt die M Zeile die meisten Spalten. Diese ist nicht Teil der gefundenen Lösung!

Vergleich Schaltkreise, Boolesche Polynome

- Sowohl Schaltkreise als auch Boolesche Polynome stellen Boolesche Funktionen dar.
- Optimale Boolesche Polynome können sehr viel größer sein, als entsprechende Schaltkreise.
 - exponentielle Unterschiede möglich
 - Rechtfertigung für Einsatz von Schaltkreisen statt PLAs
- Es gibt auch Algorithmen zur Berechnung optimaler (mehrstufiger) Schaltkreise.
 - anspruchsvoller als Optimierung von Booleschen Polynomen
 - meist heuristisch (Näherungsverfahren)
 - nicht Gegenstand dieser Vorlesung
- Hier: Schaltkreise für spezielle Funktionen, insbesondere Arithmetik.