

15 July 2025

Final assay results received from resource drilling at Orient West, QLD

Silver and base metals explorer **Iltani Resources Limited** (ASX: ILT, "Iltani" or "the Company") is pleased to report the assay results from drillholes ORR091 to ORR095, recently completed at the Orient West JORC Infill drilling program at its Orient Silver-Indium Project in Herberton, North Queensland.

HIGHLIGHTS:

- Reverse circulation (RC) drillholes ORR091 to ORR095 from Iltani's JORC Infill drilling program at Orient West continue to return intersections of high grade silver-indium mineralisation.
- ORR091 intercepted multiple zones of mineralisation including:
 - o 7m @ 117.4 g/t Ag Eq. from 131m inc. 1m @ 455.8 g/t Ag Eq. from 133m;
 - 19m @ 59.7 g/t Ag Eq. from 149m inc. 7m @ 98.4 g/t Ag Eq. from 149m inc. 2m @ 206.9 g/t Ag Eq. from 153m; and
 - o 29m @ 47.3 g/t Ag Eq. from 267m inc. 1m @ 208.8 g/t Ag Eq. from 281m downhole.
- ORR092 intercepted 18m @ 67.4 g/t Ag Eq. from 103m inc. 2m @ 260.6 g/t Ag Eq. from 119m inc. 1m @ 380.3 g/t Ag Eq. from 199m downhole.
- ORR093 intercepted 22m @ 51.5 g/t Ag Eq. from 154m inc. 6m @ 107.4 g/t Ag Eq. from 170m inc. 1m @ 316.0 g/t Ag Eq. from 173m downhole.
- ORR094 intercepted multiple zones of mineralisation including:
 - 9m @ 92.4 g/t Ag Eq. from 83m inc. 1m @ 378.9 g/t Ag Eq. from 87m; and
 - 8m @ 93.2 g/t Ag Eq. from 156m inc. 3m @ 172.0 g/t Ag Eq. from 161m inc. 1m @ 245.8 g/t Ag Eq. from 162m; and
 - 5m @ 107.3 g/t Ag Eq. from 325m inc. 2m @ 222.2 g/t Ag Eq. from 327m downhole.
- ORR095 intercepted multiple zones of mineralisation including:
 - 11m @ 122.4 g/t Ag Eq. from 83m inc. 2m @ 239.0 g/t Ag Eq. from 83m & 4m @ 175.8 g/t Ag Eq. from 90m inc. 2m @ 223.4 g/t Ag Eq. from 92m;
 - 32m @ 74.4 g/t Ag Eq. from 186m inc. 10m @ 123.4 g/t Ag Eq. from 203m inc. 2m @ 280.4 g/t Ag Eq. from 209m; and
 - 4m @ 151.4 g/t Ag Eq. from 248m inc. 1m @ 382.8 g/t Ag Eq. from 249m downhole.
- Orient West JORC Infill RC drilling is complete and drilling program data is being used by independent mining consultants Mining One to estimate an initial Orient West JORC Resource, with targeted completion by end of July.
- Orient East JORC Infill RC drilling has been completed, with assay results pending for ORR096 to ORR118. Orient East JORC Resource expected in September 2025.

Iltani Managing Director Donald Garner commented:

"It has been approximately two years since we commenced exploratory drilling at Orient West, and the receipt of the assay results for drill holes ORR091 to ORR095 from our Orient West JORC Infill drilling program marks the completion of the initial JORC Resource infill drilling program.

To date, we have completed 57 RC holes (for 12,987 metres drilled) and 3 diamond holes (for 1247.7 metres drilled) at Orient West. The drilling has delivered excellent results and we continue to be excited by what we see, with results validating our belief that Orient is Australia's largest and highest-grade known silver-indium deposit.

Our independent mining consultant has commenced modelling to estimate the initial JORC Resource and we remain on course to deliver an Orient West JORC Resource by the end of July.

The RC rig has now completed the Orient East JORC Infill drilling program. We are aiming to deliver the Orient East JORC Resource in September.

We have received the final VTEM Survey data, and our geophysical consultant (Mitre Geophysics) has commenced modelling the data and generating targets starting with the Orient Area. We plan to start drilling geophysical targets at Orient once initial target modelling has been delivered, targeting additional tonnes and grade by testing the high-priority anomalies. We aim to get the drilling restarted towards the end of July."

Figure 1 Orient East RC Drilling (ORR0113)

www.iltaniresources.com.au Page 2 of 32

1. Orient West Drilling Results

Iltani is pleased to announce multiple material assay results from drillholes ORR091 to ORR095 (Table 1) at Orient West, part of the larger Orient Silver-Indium project, which is located on Iltani's whollyowned exploration permit EPM 27223, ~20km from Herberton in Northern Queensland.

These five RC drill holes were completed as part of the larger JORC Resource infill program targeting the Orient West High-Grade Core Area (approximately 900m by 350m) where there are multiple intersecting higher-grade vein systems with associated low-grade stockwork mineralisation, many at shallow depth, representing the potential to define an open pittable resource.

Iltani's JORC Resource infill drilling program targeting the High-Grade Core Area is designed to provide drill coverage on a nominal 100m section spacing with vein intersections at 50m along each section which will be suitable for the estimation of a JORC-compliant Inferred Resource.

Holes completed within the high-grade core area have demonstrated continuity of the broad mineralised veins and high-grade zones both down dip and along strike, with mineralisation remaining open at depth.

1.1. Drillholes ORR091 to ORR095

Iltani completed drillholes ORR091 to ORR095 in the central portion of Orient West's High Grade Core Area (see Figure 2) and delivered multiple intercepts of silver-lead-zinc-indium mineralisation (refer to Table 1 for material intercepts). Notable results included the following:

- ORR091 intercepted multiple zones of mineralisation including 7m @ 117.4 g/t Ag Eq. from 131m inc. 1m @ 455.8 g/t Ag Eq. from 133m; 19m @ 59.7 g/t Ag Eq. from 149m inc. 7m @ 98.4 g/t Ag Eq. from 149m inc. 2m @ 206.9 g/t Ag Eq. from 153m; and 29m @ 47.3 g/t Ag Eq. from 267m inc. 1m @ 208.8 g/t Ag Eq. from 281m downhole.
- ORR092 intercepted 18m @ 67.4 g/t Ag Eq. from 103m inc. 2m @ 260.6 g/t Ag Eq. from 119m inc. 1m @ 380.3 g/t Ag Eq. from 199m downhole.
- ORR093 intercepted 22m @ 51.5 g/t Ag Eq. from 154m inc. 6m @ 107.4 g/t Ag Eq. from 170m inc. 1m @ 316.0 g/t Ag Eq. from 173m downhole.
- ORR094 intercepted multiple zones of mineralisation including 9m @ 92.4 g/t Ag Eq. from 83m inc. 1m @ 378.9 g/t Ag Eq. from 87m; and 8m @ 93.2 g/t Ag Eq. from 156m inc. 3m @ 172.0 g/t Ag Eq. from 161m inc. 1m @ 245.8 g/t Ag Eq. from 162m; and 5m @ 107.3 g/t Ag Eq. from 325m inc. 2m @ 222.2 g/t Ag Eq. from 327m downhole.
- ORR095 intercepted multiple zones of mineralisation including 11m @ 122.4 g/t Ag Eq. from 83m inc. 2m @ 239.0 g/t Ag Eq. from 83m & 4m @ 175.8 g/t Ag Eq. from 90m inc. 2m @ 223.4 g/t Ag Eq. from 92m; 32m @ 74.4 g/t Ag Eq. from 186m inc. 10m @ 123.4 g/t Ag Eq. from 203m inc. 2m @ 280.4 g/t Ag Eq. from 209m; and 4m @ 151.4 g/t Ag Eq. from 248m inc. 1m @ 382.8 g/t Ag Eq. from 249m downhole.

Drillholes ORR091 to ORR094 were completed in the central area of the drill program and have successfully demonstrated (i) strike continuity of both the high-grade massive sulphide and peripheral stockwork Ag-In-Pb-Zn mineralisation and, (ii) down dip continuity of over 300m from surface. ORR095 successfully demonstrated strike continuity of deeper mineralisation and down dip continuity for over 200m from surface.

Iltani has now completed RC and Diamond drilling on a nominal 100m by 50m pattern along 900m strike extent covering the High Grade Core Area, intersecting significant mineralisation at down dip depths of up to 275m from surface or 315m vertical depth. Average depth of deeper (Vein 1) intersections along the 900m extent of infill drilling is 300m down dip or 250m vertical from surface.

Table 1 Orient West RC Program: ORR091 to ORR095 Material Intercepts

Hole	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR091	44	48	4.0	19.9	2.8	0.52%	0.42%	60.8
ORR091	131	138	7.0	26.0	33.5	0.60%	1.09%	117.4
ORR091	133	134	1.0	95.4	152.5	1.92%	4.39%	455.8
ORR091	149	168	19.0	13.0	16.3	0.33%	0.54%	59.7
ORR091	149	156	7.0	19.8	38.4	0.39%	0.93%	98.4
ORR091	153	155	2.0	33.2	113.1	0.44%	2.09%	206.9
ORR091	267	296	29.0	15.6	7.7	0.27%	0.37%	47.3
ORR091	281	282	1.0	102.0	27.1	0.91%	1.23%	208.8
ORR092	53	60	7.0	14.5	5.6	0.48%	0.44%	56.1
ORR092	56	57	1.0	28.3	11.4	0.85%	0.82%	104.9
ORR092	79	83	4.0	15.7	8.3	0.62%	0.60%	72.0
ORR092	80	82	2.0	20.2	13.5	0.79%	0.77%	93.4
ORR092	103	121	18.0	25.0	9.7	0.43%	0.45%	67.4
ORR092	119	121	2.0	133.3	17.9	1.86%	1.05%	260.6
ORR092	119	120	1.0	207.2	23.4	2.62%	1.38%	380.3
ORR092	161	168	7.0	11.3	8.8	0.22%	0.42%	44.6
ORR093	8	10	2.0	23.6	14.7	0.74%	0.02%	57.9
ORR093	33	49	16.0	8.2	6.7	0.20%	0.61%	49.2
ORR093	148	149	1.0	15.5	32.8	0.30%	1.38%	110.8
ORR093	154	176	22.0	15.9	9.6	0.31%	0.47%	51.5
ORR093	170	176	6.0	32.3	17.7	0.54%	0.95%	107.4
ORR093	173	174	1.0	106.5	47.3	1.65%	2.57%	316.0
ORR093	186	191	5.0	16.3	7.0	0.39%	0.36%	51.5
ORR094	64	65	1.0	14.0	24.1	0.39%	1.61%	120.0
ORR094	72	73	1.0	19.4	10.9	0.57%	0.84%	86.5
ORR094	83	92	9.0	25.1	10.7	0.76%	0.71%	92.4
ORR094	87	88	1.0	97.3	54.5	3.07%	2.93%	378.9
ORR094	105	108	3.0	10.9	3.1	0.38%	0.41%	46.2
ORR094	156	164	8.0	14.6	32.9	0.29%	1.05%	93.2
ORR094	161	164	3.0	18.9	75.9	0.26%	2.16%	172.0
ORR094	162	163	1.0	25.7	124.9	0.28%	3.02%	245.8
ORR094	258	267	9.0	11.9	12.8	0.31%	0.48%	52.7
ORR094	279	286	7.0	9.8	10.2	0.16%	0.35%	38.1
ORR094	294	297	3.0	9.8	8.5	0.21%	0.42%	42.2
ORR094	314	321	7.0	8.2	10.1	0.20%	0.48%	44.2
ORR094	325	330	5.0	28.8	28.8	0.12%	1.21%	107.3
ORR094	327	329	2.0	65.2	55.5	0.24%	2.44%	222.2
ORR095	83	94	11.0	32.4	23.0	0.80%	1.01%	122.4
ORR095	83	85	2.0	64.6	40.9	1.72%	1.88%	239.0
ORR095	90	94	4.0	44.9	36.3	1.05%	1.52%	175.8
ORR095	92	94	2.0	49.6	55.5	1.15%	2.13%	223.4
ORR095	139	147	8.0	20.9	10.8	0.50%	0.57%	72.1
ORR095	186	218	32.0	16.5	21.4	0.39%	0.68%	74.4
ORR095	203	213	10.0	23.1	47.3	0.43%	1.25%	123.4
ORRO95	209	213	4.0	28.3	82.3	0.51%	2.08%	189.2

www.iltaniresources.com.au Page **4** of **32**

Hole	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR095	209	211	2.0	38.8	127.1	0.70%	3.13%	280.4
ORR095	248	252	4.0	36.1	37.4	0.84%	1.35%	151.4
ORR095	249	251	2.0	60.5	66.4	1.39%	1.13%	254.9
ORR095	249	250	1.0	88.6	107.3	1.98%	3.46%	382.8

30 g/t Ag Eq. lower cut with no upper cut applied Intersection width is downhole width only

Figure 2 Orient West Drilling Plan

www.iltaniresources.com.au Page **6** of **32**

Figure 3 Orient West Drilling Section 39

Figure 4 Orient West Drilling Section 47

1.2. Orient West Drilling Summary

Initial drilling completed at Orient West was sufficient to define a JORC-compliant Exploration Target* of 74 - 100 Mt @ 55 - 65 g/t Ag Equivalent (30 g/t Ag Eq. cutoff grade) inclusive of high-grade core material in multiple lenses of 20 - 24Mt @ 110 - 120 g/t Ag Equivalent (80 g/t Ag Eq. cutoff grade).

Iltani's strategy is to define an initial JORC-compliant Mineral Resource Estimate based on the higher-grade material within the 900m by 350m High Grade Core Area. This will require a nominal drill density of 100m by 50m. The recently completed holes were part of a planned 42 hole program that is designed to demonstrate strike and dip continuity of mineralisation to at least 200m depth to be utilised for the Mineral Resource Estimate.

Results from recent drill holes ORR062 to ORR090 have demonstrated dip and strike continuity of the higher grade mineralisation for the immediate areas tested. The results also indicate strong potential for the development of an open pittable resource based on the numerous broad, moderate-grade mineralised trends enveloping the high-grade mineralisation. Mineralisation remains open at depth hence there is also potential for an underground mining operation.

After completion of the High-Grade Core Area phase of drilling, there is a **further 1,500m or longer strike extent** of mineralisation that requires investigation just along the Orient West trend. In addition is the high-grade resource currently being defined through drilling at Orient East, plus further untested targets at Orient North, Orient South, Deadman Creek, and the linking zone between Orient West and Orient East (see Figure 5). Further mineralisation most likely also exists below the extensive areas of surficial alluvial sheetwash, fluvial alluvium and colluvium as demonstrated by RC hole ORR025, targeting a geophysical anomaly and intersecting high-grade mineralisation with no surface indication.

*The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared in accordance with the 2012 Edition of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code')

This announcement refers to an Exploration Target estimate which was announced on 18 July 2024 (Iltani Defines Orient West Exploration Target). Iltani confirms that it is not aware of any new information or data that materially affects the information included in the release and that all material assumptions and technical parameters underpinning the results or estimates in the release continue to apply and have not materially changed.

For additional disclosures please refer to the Appendices attached to this ASX release.

Authorisation

This announcement has been approved for issue by Donald Garner, Iltani Resources Managing Director.

Contact Details

For further information, please contact:

Donald Garner

Managing Director Iltani Resources Limited +61 438 338 496 dgarner@iltaniresources.com.au

Nathan Ryan

Investor Relations NWR Communications +61 420 582 887 nathan.ryan@nwrcommunications.com.au

Competent Persons Statement

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Erik Norum who is a member of The Australasian Institute of Geologists (AIG), and is an employee of Iltani Resources Limited., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Norum consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Exploration Target

The Exploration Target estimate has been prepared by Mr Stuart Hutchin, who is a Member of the Australian Institute of Geoscientists. Mr Hutchin is a full time employee of Mining One Consultants. Mr Hutchin has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr Hutchin consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

<u>www.iltaniresources.com.au</u> Page **10** of **32**

About Iltani Resources

Iltani Resources (ASX: ILT) is an ASX listed company focused exploring for the base metals and critical minerals required to create a low emission future. It has built a portfolio of advanced exploration projects in Queensland and Tasmania with multiple high quality, drill-ready targets. Iltani has completed drilling at the Orient Silver-Indium Project, part of its Herberton Project, in Northern Queensland. The drilling has returned outstanding intercepts of silver-lead-zinc-indium mineralisation, positioning Orient as Australia's most exciting silver-indium discovery.

Other projects include the Northern Base Metal Project in Northern Queensland plus the Mt Read Volcanics Project in Tasmania.

Figure 5 Location of Iltani Resources' projects in Queensland and Tasmania

<u>www.iltaniresources.com.au</u> Page **11** of **32**

Table 2 Orient West RC Drill Program Drillhole Data

Prospect	Hole_ID	Hole Type	Depth (m)	East	North	RL	Dip	Azi	Status
Orient West	ORR069	RC	250	307117	8080735	800	-60	320	Completed
Orient West	ORR070	RC	166	307055	8080890	824	-60	320	Completed
Orient West	ORR071	RC	148	307080	8080847	812	-60	320	Completed
Orient West	ORR072	RC	199	307122	8080813	811	-60	320	Completed
Orient West	ORR073	RC	289	307193	8080726	789	-60	320	Completed
Orient West	ORR074*	RC	24	307027	8080925	831	-58	320	Abandoned
Orient West	ORR075	RC	100	307027	8080925	831	-60	320	Completed
Orient West	ORR076	RC	298	307246	8080819	815	-65	320	Completed
Orient West	ORR077	RC	274	307209	8080783	807	-55	320	Completed
Orient West	ORR078	RC	352	307319	8080732	806	-55	320	Completed
Orient West	ORR079	RC	124	307344	8081013	773	-50	320	Completed
Orient West	ORR080	RC	310	307680	8080923	810	-50	320	Completed
Orient West	ORR081	RC	261	307509	8080897	795	-55	320	Completed
Orient West	ORR082	RC	274	307058	8080576	783	-50	320	Completed
Orient West	ORR083	RC	340	307495	8080832	791	-55	320	Completed
Orient West	ORR084	RC	268	306975	8080517	780	-50	320	Completed
Orient West	ORR085	RC	286	307021	8080466	774	-50	320	Completed
Orient West	ORR086	RC	274	306894	8080460	777	-55	320	Completed
Orient West	ORR087	RC	196	306826	8080627	775	-55	320	Completed
Orient West	ORR088	RC	298	307095	8080532	778	-50	320	Completed
Orient West	ORR089	RC	304	307128	8080647	787	-57	320	Completed
Orient West	ORR090	RC	310	307166	8080602	784	-57	320	Completed
Orient West	ORR091	RC	310	307339	8080786	801	-55	320	Completed
Orient West	ORR092	RC	178	307259	8080958	813	-60	320	Completed
Orient West	ORR093	RC	250	307296	8080915	805	-60	320	Completed
Orient West	ORR094	RC	346	307420	8080769	800	-50	320	Completed
Orient West	ORR095	RC	388	307613	8080848	800	-52	320	Completed

Grid Coordinates are MGA94_55

*Hole was abandoned after intersecting old workings

Page **12** of **32**

Table 3 Orient West RC Drill Program Assay Data (ORR091)

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR091	129495	32.0	36.0	4.0	4.6	0.3	0.15%	0.18%	19.2
ORR091	129496	36.0	40.0	4.0	3.9	0.5	0.13%	0.16%	16.6
ORR091	129497	40.0	44.0	4.0	4.2	0.6	0.17%	0.16%	18.3
ORR091	129498	44.0	45.0	1.0	15.4	3.1	0.43%	0.48%	56.0
ORR091	129499	45.0	46.0	1.0	13.6	1.3	0.38%	0.37%	46.0
ORR091	129500	46.0	47.0	1.0	16.2	2.5	0.40%	0.36%	49.8
ORR091	129501	47.0	48.0	1.0	34.6	4.2	0.88%	0.47%	91.5
ORR091	129503	48.0	52.0	4.0	1.9	0.3	0.05%	0.06%	6.8
ORR091	129504	52.0	56.0	4.0	0.3	0.1	0.01%	0.01%	1.3
ORR091	129529	130.0	131.0	1.0	0.3	0.1	0.01%	0.01%	1.1
ORR091	129530	131.0	132.0	1.0	13.6	19.2	0.35%	0.71%	70.4
ORR091	129531	132.0	133.0	1.0	20.1	18.9	0.48%	0.67%	79.7
ORR091	129533	133.0	134.0	1.0	95.4	152.5	1.92%	4.39%	455.8
ORR091	129534	134.0	135.0	1.0	18.0	10.4	0.44%	0.49%	63.1
ORR091	129535	135.0	136.0	1.0	4.4	2.5	0.11%	0.11%	15.2
ORR091	129536	136.0	137.0	1.0	13.9	8.9	0.40%	0.43%	54.1
ORR091	129537	137.0	138.0	1.0	16.5	22.6	0.47%	0.79%	83.8
ORR091	129538	138.0	139.0	1.0	3.4	2.7	0.11%	0.14%	15.3
ORR091	129540	139.0	140.0	1.0	2.3	0.9	0.09%	0.09%	10.2
ORR091	129541	140.0	141.0	1.0	1.0	0.3	0.03%	0.03%	3.7
ORR091	129542	141.0	142.0	1.0	3.7	0.8	0.12%	0.10%	13.5
ORR091	129543	142.0	143.0	1.0	12.4	7.4	0.36%	0.37%	47.2
ORR091	129544	143.0	144.0	1.0	2.0	0.6	0.06%	0.06%	7.3
ORR091	129545	144.0	148.0	4.0	0.4	0.2	0.01%	0.01%	1.6
ORR091	129546	148.0	149.0	1.0	2.8	0.7	0.11%	0.10%	11.9
ORR091	129547	149.0	150.0	1.0	16.3	5.3	0.51%	0.50%	61.7
ORR091	129548	150.0	151.0	1.0	3.6	0.8	0.13%	0.11%	14.0
ORR091	129549	151.0	152.0	1.0	14.1	13.3	0.34%	0.57%	61.1
ORR091	129550	152.0	153.0	1.0	16.7	8.2	0.38%	0.47%	57.6
ORR091	129551	153.0	154.0	1.0	30.0	97.1	0.46%	1.80%	182.6
ORR091	129552	154.0	155.0	1.0	36.5	129.0	0.41%	2.38%	231.3
ORR091	129553	155.0	156.0	1.0	21.8	15.0	0.49%	0.68%	80.4
ORR091	129554	156.0	157.0	1.0	12.6	4.5	0.42%	0.43%	51.3
ORR091	129555	157.0	158.0	1.0	13.9	4.4	0.50%	0.52%	59.8
ORR091	129556	158.0	159.0	1.0	5.2	1.6	0.18%	0.16%	20.1
ORR091	129648	159.0	160.0	1.0	11.7	9.7	0.29%	0.39%	46.0
ORR091	129649	160.0	164.0	4.0	7.2	2.6	0.23%	0.25%	29.1
ORR091	129650	164.0	168.0	4.0	8.9	2.6	0.32%	0.33%	38.1
ORR091	129696	262.0	263.0	1.0	17.0	4.7	0.42%	0.37%	52.9
ORR091	129697	263.0	264.0	1.0	8.2	2.6	0.24%	0.23%	29.4
ORR091	129698	264.0	265.0	1.0	2.1	0.8	0.08%	0.07%	8.7
ORR091	129699	265.0	266.0	1.0	1.8	0.7	0.10%	0.07%	8.9
ORRO91	129700	266.0	267.0	1.0	6.2	3.5	0.18%	0.18%	23.2

<u>www.iltaniresources.com.au</u> Page **13** of **32**

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t		
ORR091	129701	267.0	268.0	1.0	18.5	20.0	0.26%	0.66%	70.4		
ORR091	129702	268.0	269.0	1.0	10.1	12.4	0.20%	0.45%	45.6		
ORR091	129703	269.0	270.0	1.0	7.1	1.8	0.08%	0.04%	12.5		
ORR091	129704	270.0	271.0	1.0	8.3	6.7	0.15%	0.25%	29.5		
ORR091	129706	271.0	272.0	1.0	15.0	3.3	0.36%	0.32%	45.8		
ORR091	129707	272.0	273.0	1.0	18.6	7.3	0.55%	0.44%	63.7		
ORR091	129708	273.0	274.0	1.0	6.4	12.2	0.08%	0.36%	32.8		
ORR091	129709	274.0	275.0	1.0	14.5	15.9	0.14%	0.46%	50.3		
ORR091	129710	275.0	276.0	1.0	4.3	2.0	0.04%	0.04%	8.9		
ORR091	129711	276.0	277.0	1.0	53.3	8.2	0.43%	0.28%	86.6		
ORR091	129712	277.0	278.0	1.0	15.0	6.0	0.26%	0.28%	41.1		
ORR091	129713	278.0	279.0	1.0	3.1	1.5	0.11%	0.08%	11.7		
ORR091	129714	279.0	280.0	1.0	5.7	1.4	0.17%	0.14%	19.5		
ORR091	129715	280.0	281.0	1.0	6.6	4.8	0.08%	0.19%	21.2		
ORR091	129716	281.0	282.0	1.0	102.0	27.1	0.91%	1.23%	208.8		
ORR091	129717	282.0	283.0	1.0	21.6	5.9	0.26%	0.23%	45.0		
ORR091	129718	283.0	284.0	1.0	12.0	6.1	0.26%	0.39%	43.6		
ORR091	129719	284.0	285.0	1.0	10.5	9.8	0.18%	0.56%	49.7		
ORR091	129720	285.0	286.0	1.0	13.4	5.2	0.33%	0.31%	42.9		
ORR091	129721	286.0	287.0	1.0	13.2	14.8	0.23%	0.63%	59.9		
ORR091	129722	287.0	288.0	1.0	15.8	11.1	0.37%	0.57%	62.9		
ORR091	129723	288.0	289.0	1.0	13.0	9.1	0.25%	0.43%	48.0		
ORR091	129724	289.0	290.0	1.0	7.4	3.9	0.20%	0.24%	28.4		
ORR091	129725	290.0	291.0	1.0	5.6	2.0	0.28%	0.28%	30.5		
ORR091	129726	291.0	292.0	1.0	11.1	5.6	0.44%	0.59%	59.1		
ORR091	129727	292.0	296.0	4.0	10.1	4.9	0.27%	0.33%	38.7		
Intersectio	Intersection width is downhole width only										

www.iltaniresources.com.au Page **14** of **32**

Table 4 Orient West RC Drill Program Assay Data (ORR092)

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR092	129764	45.0	49.0	4.0	5.5	1.7	0.19%	0.18%	21.7
ORR092	129765	49.0	50.0	1.0	2.4	0.9	0.08%	0.07%	9.2
ORR092	129766	50.0	51.0	1.0	0.8	0.5	0.02%	0.02%	3.0
ORR092	129767	51.0	52.0	1.0	2.0	0.6	0.10%	0.09%	10.5
ORR092	129768	52.0	53.0	1.0	4.1	2.3	0.16%	0.24%	22.5
ORR092	129769	53.0	54.0	1.0	18.0	8.1	0.60%	0.53%	69.8
ORR092	129770	54.0	55.0	1.0	9.1	2.9	0.27%	0.24%	32.2
ORR092	129771	55.0	56.0	1.0	0.7	0.2	0.02%	0.02%	2.5
ORR092	129772	56.0	57.0	1.0	28.3	11.4	0.85%	0.82%	104.9
ORR092	129773	57.0	58.0	1.0	19.7	8.4	0.70%	0.74%	85.7
ORR092	129774	58.0	59.0	1.0	9.8	3.8	0.40%	0.36%	43.9
ORR092	129775	59.0	60.0	1.0	15.6	4.6	0.50%	0.37%	53.8
ORR092	129776	60.0	61.0	1.0	0.6	0.2	0.02%	0.02%	2.6
ORR092	129784	70.0	71.0	1.0	0.9	0.2	0.03%	0.03%	3.7
ORR092	129785	71.0	72.0	1.0	7.2	4.3	0.26%	0.22%	29.6
ORR092	129786	72.0	73.0	1.0	8.1	4.4	0.32%	0.20%	31.4
ORR092	129787	73.0	74.0	1.0	2.7	0.7	0.11%	0.12%	13.3
ORR092	129788	74.0	78.0	4.0	2.5	0.6	0.12%	0.12%	13.1
ORR092	129789	78.0	79.0	1.0	3.4	0.8	0.16%	0.14%	16.5
ORR092	129790	79.0	80.0	1.0	10.6	3.2	0.42%	0.40%	46.7
ORR092	129791	80.0	81.0	1.0	19.6	14.7	0.73%	0.78%	91.9
ORR092	129792	81.0	82.0	1.0	20.8	12.3	0.85%	0.76%	94.8
ORR092	129793	82.0	83.0	1.0	11.7	2.9	0.50%	0.47%	54.4
ORR092	129794	83.0	84.0	1.0	3.0	0.6	0.13%	0.14%	15.0
ORR092	129799	91.0	95.0	4.0	2.3	0.7	0.11%	0.10%	11.4
ORR092	129800	95.0	96.0	1.0	4.3	1.6	0.22%	0.19%	22.4
ORR092	129801	96.0	97.0	1.0	8.4	3.5	0.33%	0.30%	36.8
ORR092	129802	97.0	98.0	1.0	8.4	5.5	0.27%	0.35%	38.0
ORR092	129803	98.0	102.0	4.0	1.9	0.6	0.08%	0.07%	8.9
ORR092	129804	102.0	103.0	1.0	3.0	0.7	0.11%	0.10%	12.1
ORR092	129806	103.0	104.0	1.0	11.3	8.6	0.27%	0.35%	42.1
ORR092	129807	104.0	105.0	1.0	15.0	13.4	0.31%	0.46%	55.3
ORR092	129808	105.0	106.0	1.0	8.1	6.3	0.20%	0.27%	32.0
ORR092	129809	106.0	107.0	1.0	4.2	1.5	0.16%	0.14%	17.6
ORR092	129810	107.0	108.0	1.0	5.1	2.2	0.21%	0.17%	22.4
ORR092	129811	108.0	109.0	1.0	6.7	3.4	0.28%	0.22%	29.4
ORR092	129812	109.0	110.0	1.0	17.5	27.5	0.30%	0.92%	87.3
ORR092	129813	110.0	111.0	1.0	17.4	12.5	0.30%	0.45%	56.4
ORR092	129814	111.0	112.0	1.0	10.1	5.7	0.19%	0.28%	33.5
ORR092	129815	112.0	113.0	1.0	9.7	9.0	0.20%	0.41%	41.2
ORR092	129816	113.0	114.0	1.0	8.3	4.4	0.21%	0.22%	28.6
ORR092	129817	114.0	115.0	1.0	7.9	15.5	0.14%	0.47%	43.9
ORR092	129818	115.0	116.0	1.0	22.5	16.4	0.36%	0.57%	71.5

<u>www.iltaniresources.com.au</u> Page **15** of **32**

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR092	129819	116.0	117.0	1.0	14.8	3.2	0.38%	0.28%	43.9
ORR092	129820	117.0	118.0	1.0	16.5	3.0	0.42%	0.33%	49.7
ORR092	129821	118.0	119.0	1.0	8.4	7.1	0.10%	0.43%	37.1
ORR092	129822	119.0	120.0	1.0	207.2	23.4	2.62%	1.38%	380.3
ORR092	129823	120.0	121.0	1.0	59.4	12.4	1.10%	0.73%	141.0
ORR092	129824	121.0	122.0	1.0	8.5	2.0	0.19%	0.17%	24.7
ORR092	129825	122.0	123.0	1.0	3.5	1.0	0.09%	0.07%	10.9
ORR092	129831	139.0	140.0	1.0	21.9	5.2	0.47%	0.40%	60.9
ORR092	129832	140.0	144.0	4.0	2.1	0.9	0.05%	0.04%	6.5
ORR092	129833	144.0	148.0	4.0	1.9	1.0	0.04%	0.03%	5.4
ORR092	129834	148.0	149.0	1.0	4.8	2.5	0.10%	0.09%	14.2
ORR092	129835	149.0	150.0	1.0	6.0	4.1	0.10%	0.13%	18.1
ORR092	129836	150.0	151.0	1.0	6.7	7.3	0.06%	0.23%	24.0
ORR092	129837	151.0	152.0	1.0	3.2	2.4	0.06%	0.08%	10.6
ORR092	129838	152.0	156.0	4.0	3.2	2.6	0.07%	0.09%	11.3
ORR092	129839	156.0	160.0	4.0	2.7	1.6	0.04%	0.06%	8.0
ORR092	129840	160.0	161.0	1.0	8.2	3.3	0.11%	0.16%	21.6
ORR092	129841	161.0	162.0	1.0	8.6	6.6	0.17%	0.37%	36.4
ORR092	129842	162.0	163.0	1.0	16.3	6.8	0.32%	0.38%	49.9
ORR092	129843	163.0	164.0	1.0	12.2	7.3	0.21%	0.36%	40.9
ORR092	129844	164.0	165.0	1.0	13.6	7.9	0.29%	0.47%	51.1
ORR092	129845	165.0	166.0	1.0	15.4	6.4	0.33%	0.52%	56.2
ORR092	129846	166.0	167.0	1.0	6.1	19.0	0.12%	0.53%	45.8
ORR092	129847	167.0	168.0	1.0	7.2	7.9	0.13%	0.32%	31.6
Intersection	width is down	hole width o	nly		•	•	•	•	

<u>www.iltaniresources.com.au</u> Page **16** of **32**

Table 5 Orient West RC Drill Program Assay Data (ORR093)

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR093	129854	2.0	3.0	1.0	1.6	0.1	0.24%	0.77%	48.7
ORR093	129856	3.0	4.0	1.0	4.0	2.6	0.24%	0.06%	17.0
ORR093	129857	4.0	5.0	1.0	3.8	5.3	0.21%	0.05%	16.6
ORR093	129858	5.0	6.0	1.0	4.4	0.5	0.22%	0.10%	17.3
ORR093	129859	6.0	7.0	1.0	3.6	0.7	0.16%	0.05%	12.1
ORR093	129860	7.0	8.0	1.0	2.7	0.4	0.07%	0.06%	8.7
ORR093	129861	8.0	9.0	1.0	12.5	4.7	0.45%	0.02%	31.9
ORR093	129862	9.0	10.0	1.0	34.7	24.6	1.03%	0.02%	83.8
ORR093	129863	10.0	11.0	1.0	6.3	5.7	0.32%	0.04%	22.2
ORR093	129864	11.0	12.0	1.0	1.3	0.6	0.11%	0.07%	8.9
ORR093	129865	12.0	13.0	1.0	1.3	1.2	0.04%	0.18%	12.1
ORR093	129866	13.0	14.0	1.0	0.3	0.2	0.01%	0.61%	31.6
ORR093	129874	33.0	34.0	1.0	10.3	5.2	0.32%	0.47%	47.8
ORR093	129875	34.0	35.0	1.0	10.3	1.5	0.27%	0.25%	33.2
ORR093	129876	35.0	36.0	1.0	29.2	22.0	0.67%	0.94%	110.8
ORR093	129877	36.0	37.0	1.0	16.1	7.4	0.37%	0.85%	75.4
ORR093	129878	37.0	38.0	1.0	0.9	0.5	0.02%	0.47%	25.8
ORR093	129879	38.0	41.0	3.0	0.4	0.2	0.01%	0.39%	20.3
ORR093	129881	41.0	42.0	1.0	9.8	3.5	0.36%	0.64%	56.4
ORR093	129882	42.0	43.0	1.0	2.9	0.8	0.11%	0.29%	21.5
ORR093	129883	43.0	44.0	1.0	0.5	0.1	0.02%	0.49%	25.8
ORR093	129884	44.0	45.0	1.0	1.9	0.3	0.06%	0.62%	35.3
ORR093	129885	45.0	46.0	1.0	15.1	16.3	0.32%	0.83%	75.8
ORR093	129886	46.0	47.0	1.0	21.9	38.2	0.42%	1.45%	127.5
ORR093	129887	47.0	48.0	1.0	6.8	7.1	0.15%	0.69%	50.3
ORR093	129888	48.0	49.0	1.0	4.0	4.0	0.09%	0.63%	40.9
ORR093	129933	148.0	149.0	1.0	15.5	32.8	0.30%	1.38%	110.8
ORR093	129934	149.0	150.0	1.0	5.8	6.6	0.10%	0.25%	25.3
ORR093	129935	150.0	151.0	1.0	2.4	1.3	0.07%	0.09%	10.0
ORR093	129936	151.0	154.0	3.0	4.5	3.1	0.12%	0.15%	17.6
ORR093	129937	154.0	155.0	1.0	10.6	11.8	0.18%	0.43%	44.4
ORR093	129938	155.0	156.0	1.0	11.7	4.1	0.31%	0.27%	38.2
ORR093	129939	156.0	157.0	1.0	9.0	2.5	0.28%	0.24%	32.1
ORR093	129940	157.0	158.0	1.0	21.2	11.2	0.62%	0.65%	81.2
ORR093	129941	158.0	159.0	1.0	16.8	13.7	0.28%	0.49%	57.8
ORR093	129942	159.0	160.0	1.0	10.2	10.2	0.18%	0.36%	39.1
ORR093	129943	160.0	161.0	1.0	11.8	5.9	0.22%	0.28%	36.7
ORR093	129944	161.0	162.0	1.0	11.8	7.5	0.18%	0.30%	37.0
ORR093	129945	162.0	163.0	1.0	6.5	4.2	0.17%	0.20%	24.8
ORR093	129946	163.0	164.0	1.0	8.7	10.2	0.16%	0.36%	37.6
ORR093	129947	164.0	165.0	1.0	5.3	5.4	0.13%	0.21%	23.2
ORR093	129948	165.0	166.0	1.0	10.8	4.7	0.21%	0.27%	34.0
ORR093	129949	166.0	167.0	1.0	8.3	7.4	0.12%	0.31%	31.4

<u>www.iltaniresources.com.au</u> Page **17** of **32**

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t	
ORR093	129950	167.0	168.0	1.0	5.6	2.1	0.14%	0.12%	17.7	
ORR093	129951	168.0	169.0	1.0	4.5	1.8	0.14%	0.12%	16.4	
ORR093	129952	169.0	170.0	1.0	4.2	1.5	0.16%	0.13%	17.2	
ORR093	129953	170.0	171.0	1.0	10.2	1.7	0.28%	0.27%	34.3	
ORR093	129954	171.0	172.0	1.0	5.9	16.6	0.07%	0.74%	53.1	
ORR093	129956	172.0	173.0	1.0	30.1	21.0	0.59%	1.20%	121.4	
ORR093	129957	173.0	174.0	1.0	106.5	47.3	1.65%	2.57%	316.0	
ORR093	129958	174.0	175.0	1.0	27.0	10.1	0.39%	0.45%	68.1	
ORR093	129959	175.0	176.0	1.0	14.0	9.5	0.26%	0.48%	51.7	
ORR093	129960	176.0	177.0	1.0	9.7	2.0	0.24%	0.21%	29.8	
ORR093	129961	177.0	178.0	1.0	6.8	1.5	0.15%	0.13%	19.1	
ORR093	129962	178.0	182.0	4.0	3.6	1.2	0.11%	0.09%	12.6	
ORR093	129963	182.0	186.0	4.0	8.6	3.0	0.17%	0.22%	27.0	
ORR093	129964	186.0	187.0	1.0	10.2	4.7	0.22%	0.28%	34.3	
ORR093	129965	187.0	188.0	1.0	19.0	5.7	0.49%	0.47%	62.9	
ORR093	129966	188.0	189.0	1.0	15.6	12.3	0.25%	0.51%	55.8	
ORR093	129967	189.0	190.0	1.0	16.1	5.9	0.47%	0.22%	46.5	
ORR093	129968	190.0	191.0	1.0	20.4	6.4	0.51%	0.33%	58.1	
ORR093	129969	191.0	192.0	1.0	4.2	1.4	0.11%	0.10%	13.6	
Intersection width is downhole width only										

www.iltaniresources.com.au Page **18** of **32**

Table 6 Orient West RC Drill Program Assay Data (ORR094)

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR094	131020	54.0	56.0	2.0	10.6	0.7	0.32%	0.21%	33.0
ORR094	131021	56.0	57.0	1.0	7.3	0.5	0.24%	0.21%	26.6
ORR094	131022	57.0	58.0	1.0	2.4	0.2	0.08%	0.08%	9.2
ORR094	131023	58.0	60.0	2.0	1.0	0.1	0.03%	0.03%	3.8
ORR094	131024	60.0	61.0	1.0	11.8	2.2	0.36%	0.31%	41.0
ORR094	131025	61.0	62.0	1.0	6.7	0.8	0.22%	0.20%	24.6
ORR094	131026	62.0	63.0	1.0	2.7	0.3	0.09%	0.08%	9.7
ORR094	131027	63.0	64.0	1.0	0.5	0.1	0.02%	0.02%	1.9
ORR094	131028	64.0	65.0	1.0	14.0	24.1	0.39%	1.61%	120.0
ORR094	131029	65.0	69.0	4.0	0.4	0.5	0.01%	0.04%	2.9
ORR094	131031	69.0	72.0	3.0	0.1	0.1	0.00%	0.01%	0.6
ORR094	131032	72.0	73.0	1.0	19.4	10.9	0.57%	0.84%	86.5
ORR094	131033	73.0	74.0	1.0	6.9	3.6	0.20%	0.27%	29.2
ORR094	131034	74.0	75.0	1.0	0.5	0.2	0.02%	0.02%	2.1
ORR094	131035	75.0	79.0	4.0	0.3	0.1	0.01%	0.02%	1.8
ORR094	131036	79.0	81.0	2.0	0.2	0.1	0.01%	0.01%	1.0
ORR094	131037	81.0	82.0	1.0	2.7	0.6	0.10%	0.10%	11.6
ORR094	131038	82.0	83.0	1.0	6.9	1.0	0.23%	0.24%	27.3
ORR094	131039	83.0	84.0	1.0	22.5	10.6	0.67%	0.80%	91.3
ORR094	131040	84.0	85.0	1.0	45.7	15.8	1.26%	0.92%	144.1
ORR094	131041	85.0	86.0	1.0	3.4	1.1	0.10%	0.09%	11.7
ORR094	131042	86.0	87.0	1.0	14.6	1.5	0.41%	0.40%	50.0
ORR094	131043	87.0	88.0	1.0	97.3	54.5	3.07%	2.93%	378.9
ORR094	131044	88.0	89.0	1.0	11.0	2.8	0.31%	0.27%	37.2
ORR094	131045	89.0	90.0	1.0	0.8	0.3	0.02%	0.03%	3.2
ORR094	131046	90.0	91.0	1.0	18.6	6.3	0.56%	0.50%	66.8
ORR094	131047	91.0	92.0	1.0	12.0	3.6	0.40%	0.41%	48.6
ORR094	131048	92.0	96.0	4.0	7.3	1.7	0.25%	0.25%	29.5
ORR094	131049	96.0	100.0	4.0	2.0	0.3	0.07%	0.06%	7.5
ORR094	131050	100.0	103.0	3.0	0.7	0.1	0.02%	0.02%	2.7
ORR094	131051	103.0	104.0	1.0	3.5	1.2	0.12%	0.16%	16.4
ORR094	131052	104.0	105.0	1.0	2.1	0.2	0.08%	0.08%	8.7
ORR094	131053	105.0	106.0	1.0	11.4	2.0	0.42%	0.44%	49.2
ORR094	131054	106.0	107.0	1.0	13.9	5.4	0.44%	0.51%	57.8
ORR094	131056	107.0	108.0	1.0	7.4	1.9	0.28%	0.27%	31.6
ORR094	131066	146.0	147.0	1.0	11.5	4.9	0.37%	0.39%	46.7
ORR094	131067	147.0	148.0	1.0	2.4	0.6	0.09%	0.08%	10.0
ORR094	131068	148.0	149.0	1.0	13.8	11.8	0.40%	0.68%	67.6
ORR094	131069	149.0	150.0	1.0	9.4	4.6	0.30%	0.33%	38.9
ORR094	131070	150.0	151.0	1.0	1.4	0.6	0.06%	0.05%	6.3
ORR094	131071	151.0	152.0	1.0	1.0	0.3	0.03%	0.03%	4.1
ORR094	131072	152.0	153.0	1.0	1.0	0.2	0.02%	0.02%	3.1
ORRO94	131073	153.0	154.0	1.0	0.8	0.2	0.03%	0.02%	3.0
ORR094	131075	154.0	155.0	1.0	1.8	0.5	0.06%	0.06%	7.4

<u>www.iltaniresources.com.au</u> Page **19** of **32**

Mone Many Mone Mone				1		1 .				
ORR094 131077 156.0 157.0 1.0 9.2 2.3 0.25% 0.24% 31.3 ORR094 131079 158.0 159.0 1.0 15.7 15.3 0.40% 0.59% 66.4 ORR094 131081 159.0 160.0 1.0 4.5 0.9 0.14% 0.13% 16.7 ORR094 131081 159.0 160.0 1.0 1.6 6.7 0.43% 0.46% 57.0 ORR094 131083 161.0 162.0 1.0 1.6 6.4 7.0 0.4% 1.34 9.46 ORR094 131084 162.0 163.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORR094 131168 164.0 165.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORR094 131116 259.0 259.0 1.0 17.9 4.9 0.57% 0.51% 65.6 ORR094 131119	Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR094 131078 157.0 158.0 1.0 15.7 15.3 0.40% 0.59% 66.4 ORR094 131091 159.0 150.0 1.0 13.9 12.0 0.35% 0.52% 58.0 ORR094 131081 159.0 160.0 1.0 14.5 0.9 0.14% 0.13% 0.57% ORR094 131082 160.0 161.0 1.0 16.6 4.7 0.43% 0.46% 57.0 ORR094 131083 161.0 162.0 1.0 13.8 30.4 0.26% 1.14% 94.6 ORR094 131085 163.0 164.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORR094 131115 258.0 259.0 1.0 17.9 4.9 0.09% 0.19% 18.5 ORR094 131116 258.0 259.0 1.0 17.9 4.9 0.57% 0.51% 65.6 ORR094 131112 260.0 <td></td>										
ORRO94 131079 158.0 159.0 1.0 13.9 12.0 0.35% 0.52% 58.0 ORRO94 131081 159.0 160.0 1.0 4.5 0.9 0.14% 0.13% 16.7 ORRO94 131082 160.0 161.0 1.0 13.8 30.4 0.26% 1.7 ORRO94 131084 162.0 163.0 1.0 17.4 72.6 0.23% 2.02% 2.28 3.02% 245.8 ORRO94 131085 163.0 164.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORRO94 131165 258.0 166.0 1.0 17.9 4.9 0.09% 0.19% 185 ORRO94 131115 259.0 250.0 1.0 17.9 4.9 0.57% 0.51% 65.6 65.6 ORRO94 131117 260.0 261.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORRO94										
ORRO94 131081 159.0 160.0 1.0 4.5 0.9 0.14% 0.13% 16.7 ORRO94 131082 160.0 161.0 16.0 16.6 4.7 0.43% 0.46% 57.0 ORRO94 131083 161.0 162.0 1.0 13.8 30.4 0.25% 1.14% 94.6 ORRO94 131085 163.0 164.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORRO94 131165 166.0 165.0 1.0 1.7 2.6 0.23% 2.31% 175.7 ORRO94 131115 258.0 259.0 1.0 1.7 2.6 0.57% 0.51% 65.6 ORRO94 131116 259.0 260.0 1.0										
ORRO94										ļ
ORRO94 131083 161.0 162.0 1.0 13.8 30.4 0.26% 1.14% 94.6 ORRO94 131084 162.0 163.0 1.0 25.7 124.9 0.28% 3.02% 245.8 ORRO94 131085 163.0 164.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORRO94 131115 258.0 150.0 10 17.9 4.9 0.57% 0.51% 65.6 ORRO94 131116 259.0 260.0 1.0 17.2 36.2 0.07% 0.84% 68.9 ORRO94 131117 260.0 261.0 1.0 7.2 36.2 0.07% 0.84% 68.9 ORRO94 131119 262.0 263.0 1.0 4.9 3.4 0.18% 0.17% 21.6 ORRO94 131120 263.0 264.0 1.0 1.0 5.9 0.33% 0.31% 34.7 ORRO94 131122 265.0										
ORRO94 131084 162.0 163.0 1.0 25.7 124.9 0.28% 3.02% 245.8 ORRO94 131085 163.0 164.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORRO94 131086 164.0 165.0 1.0 17.4 72.6 0.23% 2.31% 175.7 ORRO94 131115 258.0 259.0 1.0 17.9 4.9 0.57% 0.51% 65.6 ORRO94 131116 259.0 260.0 1.0 20.4 18.7 0.51% 0.53% 68.9 ORRO94 131117 260.0 261.0 1.0 7.2 36.2 0.07% 0.84% 68.9 ORRO94 131119 262.0 263.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORRO94 131119 262.0 263.0 1.0 4.9 3.4 0.13% 0.13% 0.13% 0.66 ORRO94 131121 264.0 265.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORRO94 131122 265.0 266.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORRO94 131123 266.0 267.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORRO94 131124 267.0 268.0 1.0 1.0 1.0 0.0 ORRO94 131125 268.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORRO94 131126 269.0 270.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORRO94 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORRO94 131128 274.0 278.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORRO94 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.35% 24.6 ORRO94 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORRO94 131128 278.0 279.0 1.0 6.8 1.6 0.19% 0.35% 24.6 ORRO94 131131 279.0 280.0 1.0 1.1 1.2 0.18% 0.39% 34.6 ORRO94 131135 283.0 281.0 1.0 7.7 1.2 8 0.06% 0.39% 34.6 ORRO94 131136 284.0 285.0 1.0 1.1 1.2 0.18% 0.39% 34.6 ORRO94 131137 285.0 286.0 1.0 1.1 1.1 1.2 0.18% 0.39% 34.6 ORRO94 131138 286.0 287.0 1.0 1.3 0.1 1.5 0.06% 0.39% 34.6 ORRO94 131139 287.0 288.0 1.0 1.1 1.1 1.2 0.18% 0.39% 34.6 ORRO94 131137 285.0 286.0 1.0 1.1 1.1 1.2 0.06% 0.06% 0.06% 0.1 ORRO94 131139 287.0 288.0 1.0 1.1 1.1										
ORRO94 131085 163.0 164.0 1.0 1.7.4 72.6 0.23% 2.31% 175.7										
ORRO94										
ORRO94 131115 258.0 259.0 1.0 17.9 4.9 0.57% 0.51% 65.6 ORRO94 131116 259.0 260.0 1.0 17.9 4.9 0.57% 0.51% 65.6 ORRO94 131117 260.0 261.0 1.0 7.2 36.2 0.07% 0.84% 68.9 ORR094 131118 261.0 262.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORR094 131120 262.0 263.0 1.0 1.0 5.9 0.33% 0.31% 94.7 ORR094 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 94.7 ORR094 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 94.7 ORR094 131123 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORR094 131125 268.0										
ORRO94 131116 259.0 260.0 1.0 20.4 18.7 0.51% 0.73% 83.5 ORRO94 131117 260.0 261.0 1.0 7.2 36.2 0.07% 0.84% 68.9 ORRO94 131118 261.0 262.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORRO94 131120 263.0 264.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORRO94 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORRO94 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORRO94 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORRO94 131123 266.0 267.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORRO94 131125 268.0	ORR094	131086	164.0	165.0	1.0	3.2	4.9	0.09%	0.19%	18.5
ORRO94 131116 259.0 260.0 1.0 20.4 18.7 0.51% 0.73% 83.5 ORRO94 131117 260.0 261.0 1.0 7.2 36.2 0.07% 0.84% 68.9 ORRO94 131118 261.0 262.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORRO94 131120 263.0 264.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORRO94 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORRO94 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORRO94 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORRO94 131123 266.0 267.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORRO94 131125 268.0										
ORRO94 131117 260.0 261.0 1.0 7.2 36.2 0.07% 0.84% 68.9 ORRO94 131118 261.0 262.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORRO94 131119 262.0 263.0 1.0 4.9 3.4 0.18% 0.17% 21.6 ORRO94 131120 263.0 266.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORRO94 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORRO94 131123 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORRO94 131124 267.0 268.0 1.0 1.9 1.0 0.07% 0.06% 7.5 ORRO94 131125 268.0 270.0 1.0 1.7 0.8 0.07% 0.06% 7.7 ORRO94 131128 274.0		131115		259.0				0.57%	0.51%	
ORRO94 131118 261.0 262.0 1.0 17.5 19.6 0.41% 0.63% 72.8 ORRO94 131119 262.0 263.0 1.0 4.9 3.4 0.18% 0.17% 21.6 ORRO94 131120 263.0 264.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORRO94 131121 264.0 265.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORR094 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORR094 131124 267.0 268.0 1.0 1.9 1.0 0.07% 0.06% 33.5 ORR094 131125 268.0 269.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORR094 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 2.3 ORR094 131132 274.0			259.0	260.0		20.4				
ORR094 131119 262.0 263.0 1.0 4.9 3.4 0.18% 0.17% 21.6 ORR094 131120 263.0 264.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORR094 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORR094 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORR094 131122 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORR094 131125 268.0 269.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORR094 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131131 279.0 <t< td=""><td>ORR094</td><td>131117</td><td>260.0</td><td>261.0</td><td>1.0</td><td>7.2</td><td>36.2</td><td>0.07%</td><td>0.84%</td><td>68.9</td></t<>	ORR094	131117	260.0	261.0	1.0	7.2	36.2	0.07%	0.84%	68.9
ORR094 131120 263.0 264.0 1.0 10.6 5.9 0.33% 0.31% 40.6 ORR094 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORR094 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORR094 131123 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORR094 131124 267.0 268.0 1.0 1.7 0.9 0.07% 0.07% 8.0 ORR094 131125 268.0 269.0 1.0 1.7 0.8 0.07% 0.06% 7.5 ORR094 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131131 279.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
ORRO94 131121 264.0 265.0 1.0 7.4 6.6 0.24% 0.31% 34.7 ORRO94 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORRO94 131123 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORRO94 131124 267.0 268.0 1.0 1.9 1.0 0.07% 0.07% 8.0 ORRO94 131125 268.0 269.0 1.0 1.7 0.8 0.07% 0.06% 7.5 ORRO94 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORRO94 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORRO94 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORRO94 131132 280.0 <th< td=""><td>ORR094</td><td>131119</td><td>262.0</td><td>263.0</td><td>1.0</td><td>4.9</td><td>3.4</td><td>0.18%</td><td>0.17%</td><td>21.6</td></th<>	ORR094	131119	262.0	263.0	1.0	4.9	3.4	0.18%	0.17%	21.6
ORRO94 131122 265.0 266.0 1.0 12.0 15.9 0.19% 0.53% 52.7 ORRO94 131123 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORRO94 131124 267.0 268.0 1.0 1.9 1.0 0.07% 0.07% 8.0 ORRO94 131126 269.0 270.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORRO94 131126 269.0 270.0 1.0 1.7 0.8 0.07% 0.06% 7.7 ORRO94 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORRO94 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.28% 28.0 ORRO94 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORRO94 131133 281.0	ORR094	131120	263.0	264.0	1.0	10.6	5.9	0.33%	0.31%	40.6
ORRO94 131123 266.0 267.0 1.0 9.4 4.2 0.25% 0.26% 33.5 ORRO94 131124 267.0 268.0 1.0 1.9 1.0 0.07% 0.07% 8.0 ORRO94 131125 268.0 269.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORRO94 131126 269.0 270.0 1.0 1.7 0.8 0.07% 0.06% 7.7 ORRO94 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORRO94 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORRO94 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORRO94 131132 280.0 281.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORRO94 131133 281.0 28	ORR094	131121	264.0	265.0	1.0	7.4	6.6	0.24%	0.31%	34.7
ORRO94 131124 267.0 268.0 1.0 1.9 1.0 0.07% 0.07% 8.0 ORRO94 131125 268.0 269.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORRO94 131126 269.0 270.0 1.0 1.7 0.8 0.07% 0.06% 7.7 ORRO94 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131131 279.0 280.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131133 281.0 1.0 1.2 4.5 0.09% 0.14% 21.5 ORR094 131135 282.0 1.0 10.8	ORR094	131122	265.0	266.0	1.0	12.0	15.9	0.19%	0.53%	52.7
ORR094 131125 268.0 269.0 1.0 1.7 0.9 0.07% 0.06% 7.5 ORR094 131126 269.0 270.0 1.0 1.7 0.8 0.07% 0.06% 7.7 ORR094 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0	ORR094	131123	266.0	267.0	1.0	9.4	4.2	0.25%	0.26%	33.5
ORR094 131126 269.0 270.0 1.0 1.7 0.8 0.07% 0.06% 7.7 ORR094 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131137 285.0 <	ORR094	131124	267.0	268.0	1.0	1.9	1.0	0.07%	0.07%	8.0
ORR094 131127 270.0 274.0 4.0 5.8 3.6 0.17% 0.19% 23.0 ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131137 285.0	ORR094	131125	268.0	269.0	1.0	1.7	0.9	0.07%	0.06%	7.5
ORR094 131128 274.0 278.0 4.0 7.7 3.4 0.22% 0.23% 28.6 ORR094 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0	ORR094	131126	269.0	270.0	1.0	1.7	0.8	0.07%	0.06%	7.7
ORR094 131129 278.0 279.0 1.0 6.8 1.6 0.19% 0.15% 21.6 ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131140 288.0	ORR094	131127	270.0	274.0	4.0	5.8	3.6	0.17%	0.19%	23.0
ORR094 131131 279.0 280.0 1.0 13.0 9.8 0.25% 0.44% 48.6 ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131140 288.0	ORR094	131128	274.0	278.0	4.0	7.7	3.4	0.22%	0.23%	28.6
ORR094 131132 280.0 281.0 1.0 9.2 4.5 0.09% 0.14% 21.5 ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0	ORR094	131129	278.0	279.0	1.0	6.8	1.6	0.19%	0.15%	21.6
ORR094 131133 281.0 282.0 1.0 7.1 12.8 0.06% 0.39% 34.6 ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131142 293.0	ORR094	131131	279.0	280.0	1.0	13.0	9.8	0.25%	0.44%	48.6
ORR094 131134 282.0 283.0 1.0 10.8 8.0 0.28% 0.36% 42.4 ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131143 294.0 <	ORR094	131132	280.0	281.0	1.0	9.2	4.5	0.09%	0.14%	21.5
ORR094 131135 283.0 284.0 1.0 11.1 11.2 0.18% 0.39% 42.5 ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 <t< td=""><td>ORR094</td><td>131133</td><td>281.0</td><td>282.0</td><td>1.0</td><td>7.1</td><td>12.8</td><td>0.06%</td><td>0.39%</td><td>34.6</td></t<>	ORR094	131133	281.0	282.0	1.0	7.1	12.8	0.06%	0.39%	34.6
ORR094 131136 284.0 285.0 1.0 6.9 7.2 0.12% 0.24% 26.5 ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0	ORR094	131134	282.0	283.0	1.0	10.8	8.0	0.28%	0.36%	42.4
ORR094 131137 285.0 286.0 1.0 10.5 18.0 0.16% 0.52% 50.7 ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131153 314.0 <td< td=""><td>ORR094</td><td>131135</td><td>283.0</td><td>284.0</td><td>1.0</td><td>11.1</td><td>11.2</td><td>0.18%</td><td>0.39%</td><td>42.5</td></td<>	ORR094	131135	283.0	284.0	1.0	11.1	11.2	0.18%	0.39%	42.5
ORR094 131138 286.0 287.0 1.0 1.9 1.5 0.07% 0.07% 8.7 ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 <td< td=""><td>ORR094</td><td>131136</td><td>284.0</td><td>285.0</td><td>1.0</td><td>6.9</td><td>7.2</td><td>0.12%</td><td>0.24%</td><td>26.5</td></td<>	ORR094	131136	284.0	285.0	1.0	6.9	7.2	0.12%	0.24%	26.5
ORR094 131139 287.0 288.0 1.0 2.2 1.9 0.07% 0.09% 10.3 ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 <t< td=""><td>ORR094</td><td>131137</td><td>285.0</td><td>286.0</td><td>1.0</td><td>10.5</td><td>18.0</td><td>0.16%</td><td>0.52%</td><td>50.7</td></t<>	ORR094	131137	285.0	286.0	1.0	10.5	18.0	0.16%	0.52%	50.7
ORR094 131140 288.0 292.0 4.0 3.1 2.7 0.09% 0.11% 13.2 ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 <	ORR094	131138	286.0	287.0	1.0	1.9	1.5	0.07%	0.07%	8.7
ORR094 131141 292.0 293.0 1.0 1.1 0.6 0.04% 0.04% 5.0 ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094	131139	287.0	288.0	1.0	2.2	1.9	0.07%	0.09%	10.3
ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094	131140	288.0	292.0	4.0	3.1	2.7	0.09%	0.11%	13.2
ORR094 131142 293.0 294.0 1.0 2.7 1.4 0.08% 0.09% 10.9 ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094	131141	292.0	293.0	1.0	1.1	0.6	0.04%	0.04%	5.0
ORR094 131143 294.0 295.0 1.0 5.8 7.7 0.06% 0.38% 30.8 ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094		293.0		1.0	2.7		0.08%	0.09%	10.9
ORR094 131144 295.0 296.0 1.0 11.3 7.6 0.28% 0.39% 44.7 ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094		294.0	295.0	1.0	5.8	7.7	0.06%	0.38%	30.8
ORR094 131145 296.0 297.0 1.0 12.3 10.2 0.29% 0.47% 51.1 ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094									
ORR094 131153 314.0 315.0 1.0 6.9 3.8 0.22% 0.29% 31.4 ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0					†					51.1
ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0										
ORR094 131154 315.0 316.0 1.0 11.4 6.2 0.46% 0.52% 56.7 ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0	ORR094	131153	314.0	315.0	1.0	6.9	3.8	0.22%	0.29%	31.4
ORR094 131156 316.0 317.0 1.0 7.3 5.4 0.20% 0.26% 30.0										
					†					
									1	

www.iltaniresources.com.au Page **20** of **32**

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t		
ORR094	131158	318.0	319.0	1.0	17.6	11.5	0.30%	0.50%	58.9		
ORR094	131159	319.0	320.0	1.0	6.4	17.0	0.09%	0.61%	48.2		
ORR094	131160	320.0	321.0	1.0	2.8	14.3	0.04%	0.51%	36.3		
ORR094	131161	321.0	322.0	1.0	3.3	3.4	0.06%	0.13%	13.4		
ORR094	131162	322.0	323.0	1.0	2.8	3.6	0.05%	0.16%	14.3		
ORR094	131163	323.0	324.0	1.0	1.9	11.4	0.01%	0.35%	25.3		
ORR094	131164	324.0	325.0	1.0	4.3	6.5	0.06%	0.21%	20.3		
ORR094	131165	325.0	326.0	1.0	3.8	15.0	0.02%	0.54%	38.8		
ORR094	131166	326.0	327.0	1.0	2.2	7.2	0.01%	0.20%	15.9		
ORR094	131167	327.0	328.0	1.0	68.4	64.3	0.27%	2.98%	258.1		
ORR094	131168	328.0	329.0	1.0	62.1	46.7	0.20%	1.89%	186.3		
ORR094	131170	329.0	330.0	1.0	7.5	10.8	0.07%	0.44%	37.2		
ORR094	131171	330.0	331.0	1.0	6.1	2.2	0.17%	0.19%	22.5		
Intersection	Intersection width is downhole width only										

www.iltaniresources.com.au Page **21** of **32**

Table 7 Orient West RC Drill Program Assay Data (ORR095)

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR095	131207	82.0	83.0	1.0	2.5	0.2	0.07%	0.07%	8.6
ORR095	131208	83.0	84.0	1.0	75.3	49.1	1.95%	2.24%	280.1
ORR095	131209	84.0	85.0	1.0	54.0	32.7	1.49%	1.51%	197.9
ORR095	131210	85.0	86.0	1.0	18.3	13.5	0.48%	0.54%	68.8
ORR095	131211	86.0	87.0	1.0	5.4	3.5	0.14%	0.16%	19.8
ORR095	131212	87.0	88.0	1.0	8.6	2.5	0.17%	0.20%	25.8
ORR095	131213	88.0	89.0	1.0	5.9	5.1	0.13%	0.21%	23.1
ORR095	131214	89.0	90.0	1.0	8.8	1.6	0.21%	0.21%	27.8
ORR095	131215	90.0	91.0	1.0	51.0	26.0	1.19%	1.28%	169.6
ORR095	131216	91.0	92.0	1.0	29.4	8.4	0.71%	0.56%	86.6
ORR095	131217	92.0	93.0	1.0	55.6	71.2	1.18%	2.55%	259.0
ORR095	131218	93.0	94.0	1.0	43.6	39.8	1.12%	1.71%	187.9
ORR095	131219	94.0	98.0	4.0	3.4	1.3	0.09%	0.10%	12.4
ORR095	131266	123.0	124.0	1.0	1.0	0.3	0.03%	0.03%	3.6
ORR095	131267	124.0	128.0	4.0	1.1	0.1	0.02%	0.03%	3.5
ORR095	131268	128.0	132.0	4.0	2.3	0.2	0.07%	0.07%	8.5
ORR095	131269	132.0	134.0	2.0	4.4	0.7	0.14%	0.12%	15.7
ORR095	131270	134.0	135.0	1.0	16.2	3.7	0.45%	0.37%	52.3
ORR095	131271	135.0	136.0	1.0	11.5	1.9	0.33%	0.29%	38.9
ORR095	131272	136.0	137.0	1.0	2.9	0.6	0.10%	0.09%	11.6
ORR095	131273	137.0	138.0	1.0	9.4	1.4	0.25%	0.13%	25.4
ORR095	131274	138.0	139.0	1.0	9.0	1.6	0.27%	0.18%	28.4
ORR095	131275	139.0	140.0	1.0	17.0	6.7	0.42%	0.52%	61.1
ORR095	131276	140.0	141.0	1.0	20.4	14.7	0.50%	0.69%	79.3
ORR095	131277	141.0	142.0	1.0	19.7	18.1	0.42%	0.65%	75.6
ORR095	131278	142.0	143.0	1.0	24.6	17.1	0.52%	0.61%	81.7
ORR095	131279	143.0	144.0	1.0	17.2	12.6	0.37%	0.57%	64.5
ORR095	131280	144.0	145.0	1.0	19.8	6.4	0.54%	0.52%	68.2
ORR095	131281	145.0	146.0	1.0	19.8	3.8	0.45%	0.40%	57.5
ORR095	131282	146.0	147.0	1.0	29.1	7.2	0.77%	0.58%	89.1
ORR095	131283	147.0	148.0	1.0	3.7	0.8	0.11%	0.08%	12.1
ORR095	131298	186.0	187.0	1.0	16.9	7.9	0.50%	0.49%	63.0
ORR095	131299	187.0	188.0	1.0	40.6	13.6	1.08%	0.65%	117.9
ORR095	131301	188.0	189.0	1.0	20.5	12.5	0.61%	0.61%	78.9
ORR095	131302	189.0	190.0	1.0	17.2	19.3	0.49%	0.68%	78.0
ORR095	131303	190.0	191.0	1.0	16.6	12.2	0.48%	0.56%	67.3
ORR095	131304	191.0	192.0	1.0	23.1	23.9	0.62%	0.84%	98.3
ORR095	131305	192.0	193.0	1.0	26.4	26.6	0.68%	0.89%	107.7
ORR095	131306	193.0	194.0	1.0	16.1	7.7	0.46%	0.42%	57.1
ORR095	131307	194.0	195.0	1.0	8.5	5.1	0.25%	0.24%	32.1
ORR095	131308	195.0	196.0	1.0	16.7	10.2	0.43%	0.50%	61.9
ORR095	131309	196.0	197.0	1.0	19.3	14.3	0.57%	0.64%	78.2
ORR095	131310	197.0	198.0	1.0	14.6	10.7	0.37%	0.42%	54.1

<u>www.iltaniresources.com.au</u> Page **22** of **32**

Hole	Sample ID	From (m)	To (m)	Intersect (m)	Ag g/t	In g/t	Pb %	Zn %	Ag Eq. g/t
ORR095	131311	198.0	202.0	4.0	1.5	0.8	0.05%	0.04%	5.7
ORR095	131312	202.0	203.0	1.0	14.2	14.0	0.33%	0.54%	59.3
ORR095	131313	203.0	204.0	1.0	18.7	20.0	0.33%	0.61%	70.2
ORR095	131314	204.0	205.0	1.0	22.1	14.1	0.56%	0.50%	73.9
ORR095	131316	205.0	206.0	1.0	24.3	41.2	0.31%	0.89%	99.0
ORR095	131317	206.0	207.0	1.0	16.0	23.5	0.35%	0.77%	77.9
ORR095	131318	207.0	208.0	1.0	17.9	19.2	0.40%	0.66%	74.3
ORR095	131319	208.0	209.0	1.0	18.4	26.0	0.32%	0.79%	81.7
ORR095	131320	209.0	210.0	1.0	33.7	17.4	0.80%	0.76%	108.5
ORR095	131321	210.0	211.0	1.0	43.9	236.9	0.60%	5.49%	452.3
ORR095	131322	211.0	212.0	1.0	11.8	45.2	0.12%	1.15%	95.0
ORR095	131323	212.0	213.0	1.0	24.0	29.8	0.50%	0.90%	101.0
ORR095	131324	213.0	214.0	1.0	2.3	4.1	0.06%	0.11%	12.0
ORR095	131325	214.0	216.0	2.0	3.7	1.5	0.12%	0.09%	13.3
ORR095	131326	216.0	217.0	1.0	18.7	19.2	0.45%	0.83%	85.3
ORR095	131327	217.0	218.0	1.0	12.8	5.9	0.35%	0.37%	46.4
ORR095	131328	218.0	222.0	4.0	1.0	0.6	0.03%	0.03%	3.7
ORR095	131329	222.0	226.0	4.0	1.0	0.2	0.02%	0.02%	2.7
ORR095	131330	226.0	230.0	4.0	0.6	0.2	0.03%	0.03%	2.9
ORR095	131331	230.0	234.0	4.0	1.4	0.3	0.04%	0.04%	4.9
ORR095	131332	234.0	238.0	4.0	1.2	0.2	0.04%	0.04%	4.7
ORR095	131333	238.0	242.0	4.0	1.2	0.3	0.04%	0.03%	4.2
ORR095	131334	242.0	246.0	4.0	1.5	0.6	0.05%	0.04%	5.3
ORR095	131335	246.0	248.0	2.0	3.5	0.5	0.10%	0.08%	11.5
ORR095	131336	248.0	249.0	1.0	14.7	14.1	0.34%	0.64%	65.5
ORR095	131337	249.0	250.0	1.0	88.6	107.3	1.98%	3.46%	382.8
ORR095	131338	250.0	251.0	1.0	32.5	25.4	0.80%	1.08%	126.9
ORR095	131341	251.0	252.0	1.0	8.6	2.8	0.25%	0.23%	30.5
Intersection width is downhole width only									

www.iltaniresources.com.au Page 23 of 32

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling reported is reverse circulation (RC) drilling. Iltani Resources has completed 34 infill RC holes for 8,321m drilled. The drilling was completed by Charters Towers, Qld based drilling contractors Eagle Drilling Pty Ltd. RC drilling returned samples through a fully enclosed cyclone system, then via a remote controlled gate into a cone splitter. 1m RC samples were homogenised and collected by a static cone splitter to produce a representative 3-5kg sub sample. Sampling comprises 4m composite samples or, where visual mineralisation is encountered, 1m increment RC sub-samples, that were bagged and sent to Intertek Townsville for preparation and analysis. Preparation consisted of drying of the sample and the entire sample being crushed to 70% passing 6mm and pulverised to 85% passing 75 microns in a ring and puck pulveriser. Analysis will consist of four acid digest with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (4A-MS48) analysis for the following elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y Zn, Zr. Ore grade sample analysis consisted of four acid digest with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) finish. This was carried out for Ag, Pb, Zn, Sn & In.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The drilling was completed using a truck mounted RC rig utilising 6m rods with reverse circulation capability. Drilling diameter was 5.5 inch RC hammer using a face sampling bit. RC hole length ranged from 24m to 354m with average hole length of 210m. Downhole surveys were undertaken at nominal 30m intervals during drilling utilising a digitally controlled Imdex Gyroscope instrument
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 All samples were weighted and weights recorder in the logging sheet. Samples with no recovery or very low recoveries were recorded also in the logging sheet. A few samples were collected wet due to rig unable to keep the hole dry. Wet samples were noted in the logging sheet.

<u>www.iltaniresources.com.au</u> Page **24** of **32**

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Iltani personnel and Eagle Drilling crew monitor sample recovery, size and moisture, making appropriate adjustments as required to maintain quality. A cone splitter is mounted beneath the cyclone to ensure representative samples are collected. The cyclone and cone splitter were cleaned with compressed air necessary to minimise contamination. No significant contamination or bias has been noted in the current drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of 	 Geological logging was carried out on RC chips by suitably qualified geologists. Lithology, veining, alteration, mineralisation and weathering are recorded in the geology table of the drill hole database. Final and detailed digital geological logs were forwarded from the field following sampling. Geological logging of the RC samples is qualitative and descriptive in nature. Observations were recorded appropriate to the sample type based on visual field estimates of sulphide content and sulphide mineral species. All drill holes are logged to the end of hole (EoH).
Sub-sampling techniques and sample preparation	 the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m increment samples were collected off the drill rig via cyclone - cone splitter into calico bags with a respective weight between 3-5kg. The onsite geologist selects the mineralised interval from logging of washed RC chips, based on identification of either rock alteration and/or visual sulphides. Industry standard sample preparation is conducted under controlled conditions within the laboratory and is considered appropriate for the sample types. QAQC samples (standards, blanks and field duplicates) were submitted at a frequency of at least 1 in 25. Regular reviews of the sampling were carried out by Iltani Geologist to ensure all procedures and best industry practice were followed. Sample sizes and preparation techniques are considered appropriate for the nature of mineralisation.

www.iltaniresources.com.au Page **25** of **32**

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Industry standard assay techniques were used to assay for silver and base metal mineralisation (ICP for multi-elements with a four-acid digest) No geophysical tools, spectrometers or handheld XRF instruments have been used to determine assay results for any elements. Monitoring of results of blanks, duplicates and standards (inserted at a minimum rate of 1:25) is conducted regularly. QAQC data is reviewed for bias prior to uploading results in the database.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drill holes were twinned. Primary data is collected in the field via laptops in a self-validating data entry form; data verification and storage are accomplished by Iltani contractor and staff personnel. All drillhole data was compiled in Excel worksheets and imported into Micromine in order to query 3D data and generate drill plans and cross sections.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations are initially set out using a hand held GPS. Downhole surveys completed at nominal 30m intervals by driller using a digitally controlled Imdex Gyroscope instrument. All exploration works are conducted in the GDA94 zone 55 datum. Topographic control is based on a detailed drone survey and is considered adequate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was targeted on selected veins and areas of potential stockwork mineralisation. Drill hole spacing is not adequate to report geological or grade continuity. Sample compositing has been applied outside the zones of logged mineralisation, where 4m sample composites have been utilised. Iltani will resample the 4m composites on a 1m basis should the composites return high-grade assay results
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased	The drill holes were orientated in order to intersect the interpreted mineralisation zones as

www.iltaniresources.com.au Page **26** of **32**

Criteria	JORC Code explanation	Commentary
geological structure	sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 perpendicular as possible based on information to date. Due to locally varying intersection angles between drillholes and lithological units all results will be defined as downhole widths. No drilling orientation and sampling bias has been recognised at this time and it is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 Samples were stored in sealed polyweave bags at the drill rig then put on a pallet and transported to Intertek Townsville by using a freight carrying company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out at this point

www.iltaniresources.com.au Page **27** of **32**

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Orient is located on EPM 27223. EPM 27223 is wholly owned by Iltani Resources Limited All leases/tenements are in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration activities have been carried out (underground mapping, diamond drilling, surface geochemical surveys and surface mapping, prefeasibility study) by Great Northern Mining Corporation and Mareeba Mining and Exploration over the West and East Orient areas from 1978 to 1989. Exploration activities have been carried out (soils and rock chip sampling) around Orient West and East by Monto Minerals Limited from 2014 to 2017 Red River Resources carried out mapping, sampling and geophysical exploration (drone mag survey and IP survey) in 2020 and 2021.
Geology	Deposit type, geological setting and style of mineralisation.	 Mineralisation occurs in primary vein systems up to 3m wide (controlled by fractures/shears) containing argentiferous galena, cerussite, anglesite, sphalerite, pyrite, marmatite, cassiterite (minor), and stannite (minor) surrounded by a stockwork of lesser veinlets of variable density. The lead-zinc-silver-indium mineralisation at Orient is believed to represent part of an epithermal precious metals system. The Orient vein and stockwork mineralisation are associated with a strongly faulted and deeply fractured zone near the margin of a major caldera subsidence structure.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is 	 Iltani Resources has completed at total of 111 RC (Reverse Circulation) drill holes for 21,671m drilled at both Orient East and Orient West and 5 diamond holes for 1734.8m drilled Relevant information for recent drill holes is summarised in Table 2, assay results for significant intervals are presented in Tables 3 to 10.

<u>www.iltaniresources.com.au</u> Page **28** of **32**

Criteria	JORC Code explanation	Commentary
	the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Iltani are using a 30 g/t Ag Eq. lower cut with no upper cut applied) to report material intersections Metal equivalents are used (silver equivalent) The equivalent silver formula is Ag Eq. = Ag + (Pb x 35.5) + (Zn x 50.2) + (In x 0.47) Metal Equivalent Calculation - Recoveries and Commodity Prices Metal Price/Unit Recovery Silver US\$20/oz 87% Lead US\$1.00/lb 90% Zinc US\$1.50/lb 85% Indium US\$300/kg 85% It is Iltani's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Drilling is generally perpendicular to the structure by angled RC at 50° to 60° into structures dipping between 45° and 80°.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plans and sections.	Refer to plans and sections within report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported.	All meaningful and material data is reported
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Exploration of the target area is ongoing. Iltani plans to complete further drilling at Orient during 2025.

www.iltaniresources.com.au Page **29** of **32**

Metallurgical Equivalent Calculation - Additional Disclosure

The equivalent silver formula is Ag Eq. = Ag + (Pb x 35.5) + (Zn x 50.2) + (In x 0.47)

Table 8 Metal Equivalent Calculation - Recoveries and Commodity Prices

Metal	Price/Unit	Recovery
Silver	US\$20/oz	87%
Lead	US\$1.00/lb	90%
Zinc	US\$1.50/lb	85%
Indium	US\$350/kg	85%

Please refer to the release dated 14 November 2023 (Test Work Confirms Silver-Indium Production Potential) detailing the historical test work which Iltani is using to support the metal equivalent calculation.

The metal equivalent calculation (Ag Eq.) assumes lead and silver will be recovered to a lead concentrate and zinc, silver and indium will be recovered to a zinc concentrate. It is Iltani's opinion that all the elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

It should be noted that there are other metals present, notably antimony and tin, that have the potential to be included in the metallurgical equivalent calculation, but at this stage, Iltani has chosen not to do so. These metals will likely also be recovered to the concentrates, notably the lead concentrate, however Iltani is currently assuming that these metals will not be payable, so are excluded from the metallurgical equivalent calculation.

Should this situation change, and the antimony and tin become payable in the lead concentrate and/or metallurgical test work indicates that the antimony or tin can be recovered to a separate concentrate where they are payable, then the metallurgical equivalent calculation could be expanded to include these metals.

Page **30** of **32**

Exploration Target – Additional Disclosure

1. Summary of Relevant Exploration Data

The Exploration Target is based on the interpretation of the following geology and mineralisation data that has been collated as of the date of this announcement, which includes previously reported exploration results, and information in this report that relates to previously reported exploration results has been cross-referenced in this report to the date it was reported to the ASX. Exploration data is comprised of:

- 22 reverse circulation (RC) drill holes completed for 4,406 metres drilled
- 2,773 assay results from RC drill hole samples
- Detailed surface geological mapping
- Wireframing and 3D block modelling of the Orient West mineralised vein systems.

Historical exploration completed at Orient includes:

- 255 rock chip assay results from Orient East and Orient West
- Geophysical data sets (14km² drone mag survey over the Orient area plus 7.18 line km of a dipoledipole Induced Polarisation survey)
- Great Northern Mining Corporation (GNMC) completed 16 diamond drill holes at Orient West in the 1970s. Drilling did not delineate the margins of mineralisation, leaving it open to extension in all directions. GNMC undertook limited assay of the drill samples (core and percussion) with a focus on the high grade vein system. Extensive low grade mineralisation was logged, usually forming halos around the higher grade veins but this was not assayed. The assay data was not used in the Exploration Target estimation process (due to lack of certainty of the data), and the geological data was used in the wireframing process.

2. Methodology to Determine the Grade and Tonnage Range for the Exploration Target

Iltani engaged Mining One Consultants to build a 3D model of the Orient System (Orient West and East) to better understand the size and scale of the mineralised vein systems, allowing Iltani to optimise drill hole design. This model has been continually updated as drilling has been completed and was used as the basis for estimating the Exploration Target.

Mineralised intercepts in downhole drilling align from section to section along structures that can be assumed to be continuous between drillholes. Mineralised zones broadly pinch and swell but can be linked together across drilled sections. Some areas of interpretation, especially regarding thin and lower grade lenses, should be considered initial and linkages between drillholes may change with further information, however the current interpretation holds true with concurrent surface geological observations and areas of denser drilling.

Apart from drilling, strike extents of the exploration model are also based on soil anomalism above the mineralised veins and the extent of historic workings which have been rock chip sampled. Mineralisation extends 2.6km from SW to NE and dips approximately $55^{\circ} \rightarrow 150^{\circ}$. The stacked system ranges from 270-330m in thickness from the footwall of the northern-most structure to the hanging wall in the south. The 13 modelled mineral domains (sulphide veins) range from 2-55 m in thickness. Assays were composited in each domain to 1m which is the nominal assay interval. Domains were snapped to assay intervals and Ag, Pb, Zn & In were estimated from the composites constrained by each domain using hard boundaries and using inverse distance squared (ID²) estimation in four passes. Search ellipsoids were oriented according to the mineralised trend $55^{\circ} \rightarrow 150^{\circ}$ or 153° . The Block Model has parent blocks 20m x 20m x 10m. It is sub-blocked using an octree method 8 x 8 x 16 resulting in sub-blocks as small as 2.5 m x 2.5m x 0.625m to honour the vein geometry even as they pinch out or splay against each other.

www.iltaniresources.com.au Page **31** of **32**

Drilling intersects the mineralised structures at 60m intervals in the area of closest drilling. Grades were not capped. The highest grades are in the core of the deposit where the estimate uses up to 50 samples to estimate grade. High grades including outliers will impact local grades in the core of the deposit but will have very little influence on blocks away from drilling.

Global approximated exploration target figures were generated using a 30g/t Ag equivalent cut off and the high-grade core target figures were approximated using an 80g/t Ag equivalent cut off.

An assumed density of 2.7 g/cc was applied to determine the tonnes. Density vs sulphide content was inspected at other multi-commodity deposits to understand the effect of similar grades to density. At similar average grades to Orient, the result is negligeable. Some high sulphide zones likely have a higher density however, the volume of this material is very low and deemed negligeable for consideration in the current study.

The Exploration Target Estimation for Orient West has utilised the more rigorous methodology that is generally utilised for Mineral Resource Estimation without a more constrained statistical approach required for the latter. This is to ensure the Exploration Target Estimation result is meaningful and, with further drilling, will be used as a basis for a Mineral Resource Estimate.

3. Progress Towards a Mineral Resource Estimate

Proposed exploration activities designed to progress the Orient West Exploration Target to a Mineral Resource Estimate will consist of the following and is planned to take place over the next 6 to 12 months.

www.iltaniresources.com.au Page **32** of **32**