

COMP7/8118 M50

# Data Mining

K-Means Clustering

Xiaofei Zhang

Slides compiled from Jiawei Han and Raymond C.W. Wong's work



#### Outline

- K-means Clustering
  - Original K-means Clustering
  - Sequential K-means Clustering
  - Forgetful Sequential K-means Clustering

# K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The objective is to minimize the sum of distances of the points to their respective centroid

# K-means Clustering

Problem: Given a set X of n points in a d-dimensional space and an integer K group the points into K clusters C= {C<sub>1</sub>, C<sub>2</sub>,...,C<sub>k</sub>} such that the following objective function is minimized, where c<sub>i</sub> is the centroid of the points in cluster C<sub>i</sub>

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} distance(x, c_i)$$

# K-means Clustering

 Most common definition is with Euclidean distance, minimizing the Sum of Squares Error (SSE) function

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} (x - c_i)^2$$

Sum of Squares Error (SSE)

# Complexity of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 (d≥2)
  - Finding the best solution in polynomial time is infeasible

For d=1 the problem is solvable in polynomial time

A simple iterative algorithm works quite well in practice

# K-means Algorithm

- Also known as Lloyd's algorithm.
- K-means is sometimes synonymous with this algorithm

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

# Procedure for finding k-means



# K-means Algorithm – Initialization

- Initial centroids are often chosen randomly.
  - Clusters produced vary from one run to another.

# Two different K-means Clusterings



# Importance of Choosing Initial Centroids



### Importance of Choosing Initial Centroids



# Importance of Choosing Initial Centroids



### Importance of Choosing Initial Centroids ...



# Dealing with Initialization

Do multiple runs and select the clustering with the smallest error

• Select original set of points by methods other than random . E.g., pick the most distant (from each other) points as cluster centers (K-means++ algorithm)

# K-means Algorithm – Centroids

- The centroid depends on the distance function
  - The minimizer for the distance function
- 'Closeness' is measured by Euclidean distance (SSE), cosine similarity, correlation, etc.
- Centroid:
  - The mean of the points in the cluster for SSE, and cosine similarity
  - The median for Manhattan distance.
- Finding the centroid is not always easy
  - It can be an NP-hard problem for some distance functions
    - E.g., median form multiple dimensions

# K-means Algorithm – Convergence

- K-means will converge for common similarity measures mentioned above.
  - Most of the convergence happens in the first few iterations.
  - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O( n \* K \* I \* d )
  - n = number of points, K = number of clusters,
    I = number of iterations, d = dimensionality

#### Limitations of K-means

- K-means has problems when clusters are of different
  - Sizes
  - Densities
  - Non-globular shapes

K-means has problems when the data contains outliers

Determining K is not user-friendly

### Limitations of K-means: Differing Sizes



3 - 2 - 1 0 1 2 3 4 X

**Original Points** 

K-means (3 Clusters)

### Limitations of K-means: Differing Density



### Limitations of K-means: Non-globular Shapes



**Original Points** 

K-means (2 Clusters)

# Overcoming K-means Limitations



• One solution is to use many clusters - find parts of clusters, but need to put together.

# Overcoming K-means Limitations

**Original Points** 



**K-means Clusters** 

# Overcoming K-means Limitations



**Original Points** 

K-means Clusters

#### Variations

• K-medoids: Similar problem definition as in K-means, but the centroid of the cluster is defined to be one of the points in the cluster (the medoid).

• K-centers: Similar problem definition as in K-means, but the goal now is to minimize the maximum diameter of the clusters (diameter of a cluster is maximum distance between any two points in the cluster).

# Clustering Methods

- K-means Clustering
  - Original k-means Clustering
  - Sequential K-means Clustering
  - Forgetful Sequential K-means Clustering

# Sequential k-Means Clustering

- Another way to modify the k-means procedure is to update the means one example at a time, rather than all at once.
- This is particularly attractive when we acquire the examples over a period of time, and we want to start clustering before we have seen all of the examples
- Here is a modification of the k-means procedure that operates sequentially

# Sequential k-Means Clustering

- Make initial guesses for the means  $m_1, m_2, ..., m_k$
- Set the counts n<sub>1</sub>, n<sub>2</sub>, .., n<sub>k</sub> to zero
- Until interrupted
  - Acquire the next example, x
  - If m<sub>i</sub> is closest to x
    - Increment n<sub>i</sub>
    - Replace  $m_i$  by  $m_i + (1/n_i) \cdot (x m_i)$

# Clustering Methods

- K-means Clustering
  - Original k-means Clustering
  - Sequential K-means Clustering
  - Forgetful Sequential K-means Clustering

# Forgetful Sequential k-means

- This also suggests another alternative in which we replace the counts by constants. In particular, suppose that  $\alpha$  is a constant between 0 and 1, and consider the following variation:
- Make initial guesses for the means m<sub>1</sub>, m<sub>2</sub>, ..., m<sub>k</sub>
- Until interrupted
  - Acquire the next example x
  - If m<sub>i</sub> is closest to x, replace m<sub>i</sub> by m<sub>i</sub>+a(x-m<sub>i</sub>)

# Forgetful Sequential k-means

- The result is called the "forgetful" sequential k-means procedure.
- It is not hard to show that m<sub>i</sub> is a weighted average of the examples that were closest to m<sub>i</sub>, where the weight decreases exponentially with the "age" to the example.
- That is, if  $m_0$  is the initial value of the mean vector and if  $x_j$  is the j-th example out of n examples that were used to form  $m_i$ , then it is not hard to show that

$$m_n = (1-a)^n m_0 + a \sum_{k=1}^n (1-a)^{n-k} x_k$$

# Forgetful Sequential k-means

- Thus, the initial value  $m_0$  is eventually forgotten, and recent examples receive more weight than ancient examples.
- This variation of k-means is particularly simple to implement, and it is attractive when the nature of the problem changes over time and the cluster centers "drift".