Facultatea: Automatică și Calculatoare An universitar: 2016 – 2017

Domeniul: Calculatoare și Tehnologia Informației

Sisteme de Operare

- Structura unui sistem de operare
- Organizarea memoriei
- Procese

Structura unui sistem de operare

Structura unui sistem de operare (2)

partea de control:

- se execută în mod nucleu şi realizează legătura cu sistemul de calcul;
- întreruperi
- gestiune procese
- dispecer procesoare
- gestiune memorie
- I/O la nivel fizic
- gestiune fişiere
- planificare procese şi alocare resurse
- gestiune tehnică a SO
- gestiune economică a SO

Structura unui sistem de operare (3)

partea de servicii:

- se execută în mod utilizator, folosind facilitățile părții de control și asigură legătura cu utilizatorul;
- compilatoarele
- asamblorul
- link-editorul sau editorul de legături
- loader: încarcarea programelor
- interpretor comenzi
- macroprocesor (preprocesor)
- editorul de texte
- rutine de depanare
- bibliotecarul
- mediile de programare
- interfaţa cu utilizatorul

Exemple: MS-DOS

- Nu este modular
- Nivelurile nu sunt foarte bine separate

Exemplu: Windows 2000

- microkernel modificat:
 - nu are un microkernel pur;
 - multe din funcţiile sistemului sunt în afara microkernel-ului şi rulează în modul kernel;
 - modulele pot fi şterse, înnnoite, înlocuite fără a fi necesară rescrierea întregului sistem
- Structura pe niveluri (layere):
 - Hardware abstraction layer (HAL): izolează sistemul de operare de specificul platformei hardware;
 - Microkernel
 - Drivere

Exemplu: UNIX

Exemplu: Linux

Exemplu: VMware

Nucleul (kernel) unui sistem de operare

- partea rezidentă a unui SO
- conţine proceduri care tratează:
 - planificarea proceselor
 - tratarea erorilor
 - verificarea securităţii
 - tratarea iniţială a apelurilor sistem
- ocupă o zonă fixă a memoriei
- include regiunea cu adresele cele mai mici, regiune în care se găsesc vectorii de întrerupere.

Nucleul (kernel) unui sistem de operare

- partea rezidentă a unui SO
- conţine proceduri care tratează:
 - planificarea proceselor
 - tratarea erorilor
 - verificarea securităţii
 - tratarea iniţială a apelurilor sistem
- ocupă o zonă fixă a memoriei
- include regiunea cu adresele cele mai mici, regiune în care se găsesc vectorii de întrerupere.

Nucleul (kernel) unui sistem de operare(2)

- Componentele mai puţin utilizate (componentele tranzitorii)
 - componentele pot avea o zonă de memorie rezervată
 - pot fi încărcate în orice zonă de memorie disponibilă
 - memory mapped I/O

memory mapped I/O

- o porţiune a spaţiului de adrese este rezervată pentru I/O şi sunt mapate peste un set de registre.
- aceste adrese fac referință la registrii din interfețele hardware cu echipamentele periferice
- prin operaţiile de citire/scriere de la aceste adrese se transferă date spre şi de la echipamentele periferice.

Kernel – variante de implementare

nucleu monolit:

 implică implementarea funcţiilor legate de gestionarea proceselor, gestionarea fişierelor, I/O si a memoriei într-un singur modul care va conţine toate funcţiile aferente lor.

nucleu modular:

 asigură funcţionalitatea de baza la o clasă de module distincte (potrivit cu împărţirea funcţiilor), interacţiune cu ele facându-se prin apel de proceduri sau prin comunicaţie interproces.

nucleu extensibil:

este o combinaţie între nucleul monolit şi cel modular pentru a realiza un schelet de nucleu (maşina abstractă) ce se poate îmbunătăţi conform cerinţelor funcţionale (are un numar minim de functii la care se pot adăuga altele).

nucleu multinivel:

 legat de conceptul de masina abstractă, constă în împărţirea funcţiilor în interfeţe apelabile intre ele.

□ micronucleu (microkernel):

 sistemul de operare este alcătuit din mai multe procese, fiecare asigurând anumite servicii.

Organizarea memoriei

- □ hărţile de memorie (**memory maps**)
 - conţinutul spaţiului virtual de adrese când este în execuţie un program utilizator;
 - conţinutul spaţiului virtual de adrese când este în execuţie o componentă a sistemului de operare;
 - conţinutul memoriei fizice;

Spațiul virtual de adrese

- disproporţia dintre necesarul de memorie al unui program şi memoria fizică (limitată) este rezolvată de conceptul de spaţiu virtual de adrese*
 - Spaţiul de adrese disponibil pentru procese este fix şi declarat în SO pentru toate procesele
 - SO moderne permit utilizarea a 2^N bytes de memorie, unde N este 32 sau 64

Organizarea memoriei CP/M

- Memoria direct adresabilă în sistem este de 64kocteţi
 - limită impusă de arhitectura procesorului 8080
- □ primii 256 octeţi
 - pentru vectorii de întrerupere şi pentru informaţii de sistem
- 10 kocteţi din zona superioară a spaţiului de adrese
 - Componenetele rezidente BIOS (Basic Input / Output System) şi
 - BDOS (Basic Disk Operating System)
- 2 kocteţi
 - Interpretorul de comenzi CCP (Command Control Processor)

Organizarea memoriei MS-DOS

Harta memoriei la MS-DOS

Adrese virtuale într-un proces

Organizarea memoriei MS-DOS

- Procesorul 8086 permite adresarea directă a 1Moctet de memorie
- rezervă zona peste 640K pentru memoria video şi pentru programe memorate în ROM (o serie de programe de test activate la pornirea calculatorului)
- vectorii de întrerupere şi o zonă tampon de 512 octeţi ocupă primii 1536 octeţi
- Partea rezidentă ocupă zona începând de la 1536 include şi o porţiune din interpretorul de comenzi
- Procesele:
 - spaţiul de adrese este limitat la 4 segmente de 64Ko fiecare
 - un segment pentru cod
 - un segment pentru stivă
 - două segmente pentru date

Organizarea memoriei UNIX

- Harta de memorie:
 - trebuie ţinut cont de caracteristicile arhitecturale ale calculatorului gazdă
 - din spaţiul de adrese al unui proces nu este vizibilă nici o porţiune a sistemului de operare.

Organizarea memoriei UNIX

max Stiva Date Program aplicație 0

UNIX - Adrese virtuale într-un proces

max Sistem de operare rezident 0

UNIX - Adrese virtuale în sistemul de operare

Organizarea memoriei Linux

Sursa: Linux Performance and Tuning Guidelines - https://lenovopress.com/redp4285.pdf

32-bit Architecture

64-bit Architecture

- □ Procesoarele 386:
 - folosind memoria paginată, fiecare proces poate accesa 4GB de memorie (232)

Organizarea memoriei Linux

[SO - 2016-2017]

□ Memoria vazută de un proces

Process address space

Sursa: Linux Performance and Tuning Guidelines - http://www.redbooks.ibm.com/abstracts/redp4285.html
Curs 2 - Structura unui sistem de operare 23/37

Interacțiunea componentelor la execuție

- Sistemul de operare poate fi privit ca o colecţie de rutine invocate prin apeluri sistem sau ca urmare a unor întreruperi
- Apelurile sistem:
 - sunt diferite de apelurile normale de rutine,
 - duc la creşterea nivelului de privilegii în timpul execuţiei
 - pot folosi toate instrucţiunile
 - au acces la toti registrii procesorului
 - au acces la toate locaţiile de memorie.
 - au un mecanism de declanşare care este analog producerii unor întreruperi, dar sursa este în program şi nu în afara acestuia
 - au acelaşi punct de intrare în sistemul de operare
 - fiecare apel este însoţit de informaţii suplimentare (codul apelului) transmise prin registrii procesorului
 - codul apelului este folosit de dispecer pentru a selecta rutina adecvată tratării apelului.

Declanşarea execuției rutinelor sistemului de operare

Structura pe niveluri a componentelor

- Sistemele de operare sunt structurate pe niveluri deoarece fiecare nivel poate fi dezvoltat şi testat separat
- Orice procedură a unui sistem de operare ar trebui să poată apela orice altă procedură sau ar putea avea acces la orice structură de date ceea ce ar duce la o mare dificultate în determinarea efectelor schimbărilor în proceduri sau în structurile de date.
- Nu există reguli generale în repartizarea funcţiilor pe fiecare nivel
- Sarcinile critice ca planificarea proceselor, gestiunea memoriei, protecţia, trebuie să apară pe un nivel mai jos decât cele ca gestiunea fişierelor şi interfaţa cu utilizatorul.
- Numărul de niveluri nu poate fi prescris prin reguli fixe

Adaptabilitatea la configurația hardware

- este de dorit ca sistemele de operare să fie cât mai portabile
- trebuie să se poată adapta la orice configurație
 - poate duce la unele modificări în codul sursă sau doar la o specificare a unor anumiţi parametri la iniţializarea sistemului
- să detecteze automat caracteristicile hardware ale sistemului; să se "autoconfigureze" la încărcare

Procese

Definiţii:

- Procesul este un program în execuţie.
- Un program este o secvenţă de instrucţiuni.
 - Pentru un program dat (fişier executabil) pot exista unul sau mai multe procese asociate numite instanţe.
 - Procesul reprezintă invocarea dinamică a unui program împreună cu resursele necesare pentru lansarea în execuţie.
 - Resursele necesare pentru rularea unui program includ: stiva utilizator, stiva sistem, memorie, identificatori de fişier, etc.

Procese (2)

- Fiecare proces se execută într-un spaţiu de adrese propriu.
- Spaţiul de adrese virtual este cuprins între 0 şi adresa virtuală maximă accesibilă şi este format din următoarele zone (segmente):
 - Segmentul text
 - codul programului, este protejat la scriere;
 - Segmentul de date
 - date predefinite (cunoscute la compilare) sau date alocate dinamic;
 - Segmentul de stivă
 - conţine argumente, variabile locale şi alte date pentru execuţia funcţiilor în modul utilizator

Procese (3)

- Sistemele uniprocesor:
 - execuţia unui proces este secvenţială
- Sistem multitasking:
 - pe un procesor se pot executa mai multe procese, fiecare proces având alocată o cuantă de timp pentru execuţie după care urmează altul
 - execuţia se numeşte secvenţial concurentă sau aparent paralelă

Execuția unui proces

Modul utilizator:

procesele au acces numai la propria zonă de cod, date şi stivă utilizator;

Modul nucleu:

procesul conţine instrucţiuni privilegiate şi poate avea acces la structurile de date ale nucleului.

Crearea proceselor

- la iniţializarea sistemului (reboot);
- la execuţia unui apel de funcţie pentru creare de procese (fork);
- la cererea unui utilizator de creare a unui nou proces;
- la iniţializarea unui job.

Terminarea execuției proceselor

- normal terminarea programului (voluntar)
- eroare terminare cu eroare (voluntar)
- fatal error divide by 0, core dump (involuntar)
- terminat de un alt proces (involuntar)

Starile unui proces

Starea unui proces evidenţiază activitatea procesului

- New Procesul este creat
- Run Un proces care se execută
- Blocat Dacă procesul este implicat într-o operaţie de I/O şi dispozitivul periferic nu este liber sau pur şi simplu este lent sau nu este pregătit
- Ready Dacă sistemul este multitasking, atunci un proces foloseşte procesorul pe durata unor cuante de timp fiind oprit de către sistemul de operare care alege alt proces pentru execuţie
- Terminat Execuţia procesului este terminată

Diagrama de stare simplificată pentru un proces

Stările unui proces cu o singură stare de suspendare

Stările unui proces - UNIX

