

Friday, November 19, 2021

Daniel T Robb City of West Branch 121 N. 4th Street West Branch, MI 48661

Workorder: 373688

Project Name: Biosolids Wastewater Plant

Daniel Robb,

Paragon Laboratories, Inc. received the samples associated with the workorder listed above for the analyses presented in the following report. The analyses pertain only to the aliquot of sample received.

This material is confidential and is intended solely for the person to whom it is addressed. If this is received in error, please contact the number below.

Please note that any unused portion of the sample(s) will be discarded 40 days after sample receipt, unless requested otherwise.

We appreciate the opportunity to assist you. If you have any questions concerning this report, please contact me at 734.469.5622.

Sincerely,

Kelsey Q Katynski Account Coordinator

GLOSSARY

Abbreviation	Meaning	Explanation
ID	Identification	Preceeded by "Lab", it describes the unique 10-digit sample number assigned by the laboratory. Preceeded by "Sample", it describes the client-specified sample identifier.
Qual	Qualifier	Column that populates with an asterisk (*) when a related narrative comment appears in the Workorder Summary.
RL	Reporting Limit	The value at or above which a result is routinely reported.
MDL	Method Detection Limit	The minimum measured concentration that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results.
DF	Dilution Factor	The dilution applied to the sample during analysis to arrive at the final reported analyte result.
Min	Minimum	The minimum value that a result can be to meet the applicable specification, regulatory, permit, or client-specified limit.
Max	Maximum	The maximum value that a result can be to meet the applicable specification, regulatory, permit, or client-specified limit.
(S)	Surrogate	A compound that is added to the sample to mimic one or more compounds of interest. Its recovery is used to evaluate the efficiency of recovering the compound(s) of interest.
<	Less Than	Symbol that indicates that a result is less than the value following it.
>	Greater Than	Symbol that indicates that a result is greater than the value following it.

SAMPLE SUMMARY

Lab ID	Sample ID	Sample Description	Matrix	Date Collected	Date Received	Collector
3736880001	Biosolids	Grab	SO	10/27/2021 15:30	10/28/2021 11:47	Don Rob
3736880002	Field Blank	Grab	SO	10/27/2021 15:30	10/28/2021 11:47	Don Rob
3736880003	Trip Blank		SO		10/28/2021 11:47	Don Rob

Accreditations

Paragon Laboratories, Inc. is certified by the Michigan Department of Environment, Great Lakes, and Energy to analyze Drinking Water. (EGLE Lab No. 9901 Expires 2/25/2023)

Surrogate Results Narrative

3736880001 - Biosolids - M2-6:2 FTS

Surrogate recovery is above the upper control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M2-8:2 FTS

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M2PFDoA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M2PFTeDA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M4PFBA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M6PFDA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M7PFUnDA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M8PFOS

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - M8PFOSA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - d3-NMeFOSAA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880001 - Biosolids - d5-NEtFOSAA

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880002 - Field Blank - M2-4:2 FTS

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880002 - Field Blank - M2-6:2 FTS

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880002 - Field Blank - M2-8:2 FTS

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

3736880002 - Field Blank - M3PFBS

Surrogate recovery is below the lower control limit, possibly due to matrix interferences.

 Lab ID:
 3736880001
 Date Collected:
 10/27/2021 15:30
 Matrix:
 Solid

 Sample ID:
 Biosolids
 Date Received:
 10/28/2021 11:47
 Collector:
 Don Robb

Description: Grab

Parameter Grab	Result	Qual Unit	RL	MDL	DF	Min	Max	Analyzed	Ву		
Individual Parameters by SM 2540 G											
Percent Total Solids	23	% m/m	0.10		1			11/03/2021 08:52	CTJ		
Per- & Polyfluoroalkyls (PFAS) by ASTM D7968 Mod.											
11CI-PF3OUdS	<100	ng/Kg-dry	100	65	1			11/12/2021 18:25	JKP		
4:2 FTSA	<100	ng/Kg-dry	100	58	1			11/12/2021 18:25	JKP		
6:2 FTSA	300	ng/Kg-dry	150	130	1			11/12/2021 18:25	JKP		
8:2 FTSA	470	ng/Kg-dry	100	50	1			11/12/2021 18:25	JKP		
9CI-PF3ONS	<100	ng/Kg-dry	100	59	1			11/12/2021 18:25	JKP		
ADONA	<100	ng/Kg-dry	100	68	1			11/12/2021 18:25	JKP		
HFPO-DA	<150	ng/Kg-dry	150	130	1			11/12/2021 18:25	JKP		
NEtFOSAA	12000	ng/Kg-dry	100	57	1			11/12/2021 18:25	JKP		
NMeFOSAA	7000	ng/Kg-dry	200	190	1			11/12/2021 18:25	JKP		
PFBA	1900	ng/Kg-dry	25	20	1			11/12/2021 18:25	JKP		
PFBS	1600	ng/Kg-dry	10	9.2	1			11/12/2021 18:25	JKP		
PFDA	2500	ng/Kg-dry	15	14	1			11/12/2021 18:25	JKP		
PFDS	110	ng/Kg-dry	15	15	1			11/12/2021 18:25	JKP		
PFDoA	140	ng/Kg-dry	20	17	1			11/12/2021 18:25	JKP		
PFHpA	1100	ng/Kg-dry	20	16	1			11/12/2021 18:25	JKP		
PFHpS	170	ng/Kg-dry	15	12	1			11/12/2021 18:25	JKP		
PFHxA	830	ng/Kg-dry	10	7.5	1			11/12/2021 18:25	JKP		
PFHxS	600	ng/Kg-dry	10	5.8	1			11/12/2021 18:25	JKP		
PFNA	1800	ng/Kg-dry	10	5.2	1			11/12/2021 18:25	JKP		
PFNS	270	ng/Kg-dry	30	29	1			11/12/2021 18:25	JKP		
PFOA	2500	ng/Kg-dry	10	9.3	1			11/12/2021 18:25	JKP		
PFOS	14000	ng/Kg-dry	400	400	20			11/12/2021 19:27	JKP		
PFOSA	490	ng/Kg-dry	15	10	1			11/12/2021 18:25	JKP		
PFPeA	690	ng/Kg-dry	15	12	1			11/12/2021 18:25	JKP		
PFPeS	38	ng/Kg-dry	15	15	1			11/12/2021 18:25	JKP		
PFTeDA	<25	ng/Kg-dry	25	23	1			11/12/2021 18:25	JKP		
PFTrDA	<20	ng/Kg-dry	20	10	1			11/12/2021 18:25	JKP		
PFUnDA	180	ng/Kg-dry	10	8.7	1			11/12/2021 18:25	JKP		
PFecHS	<15	ng/Kg-dry	15	9.6	1			11/12/2021 18:25	JKP		

Unit	Spiked Amount	Spike Result	Spike % Recovery	Control Limits	Qual
ng/Kg-dry	35000	29000	83	70 - 130	
ng/Kg-dry	3500	1100	30	70 - 130	*
ng/Kg-dry	3500	1400	39	70 - 130	*
ng/Kg-dry	3500	3800	108	70 - 130	
ng/Kg-dry	3500	4800	137	70 - 130	*
ng/Kg-dry	3500	2000	58	70 - 130	*
ng/Kg-dry	3500	340	10	70 - 130	*
1	ng/Kg-dry ng/Kg-dry ng/Kg-dry ng/Kg-dry ng/Kg-dry ng/Kg-dry	Amount ng/Kg-dry 35000 ng/Kg-dry 3500 ng/Kg-dry 3500 ng/Kg-dry 3500 ng/Kg-dry 3500 ng/Kg-dry 3500 ng/Kg-dry 3500 ng/Kg-dry 3500	Amount Result ng/Kg-dry 35000 29000 ng/Kg-dry 3500 1100 ng/Kg-dry 3500 1400 ng/Kg-dry 3500 3800 ng/Kg-dry 3500 4800 ng/Kg-dry 3500 2000	Amount Result Recovery 19g/Kg-dry 35000 29000 83 1100 30 1100 30 1400 39 19g/Kg-dry 3500 1400 39 19g/Kg-dry 3500 3800 108 19g/Kg-dry 3500 4800 137 19g/Kg-dry 3500 2000 58	Amount Result Recovery Limits 19g/Kg-dry 35000 29000 83 70 - 130 19g/Kg-dry 3500 1100 30 70 - 130 19g/Kg-dry 3500 1400 39 70 - 130 19g/Kg-dry 3500 3800 108 70 - 130 19g/Kg-dry 3500 4800 137 70 - 130 19g/Kg-dry 3500 2000 58 70 - 130

M2PFTeDA (S)	ng/Kg-dry	3500	88	3	70 - 130		*
M3PFBS (S)	ng/Kg-dry	3500	2800	80	70 - 130		
M3PFHxS (S)	ng/Kg-dry	3500	2600	76	70 - 130		
M4PFBA (S)	ng/Kg-dry	3500	2000	58	70 - 130		*
M4PFHpA (S)	ng/Kg-dry	3500	2700	78	70 - 130		
M5PFHxA (S)	ng/Kg-dry	3500	2400	70	70 - 130		
M5PFPeA (S)	ng/Kg-dry	3500	2900	84	70 - 130		
M6PFDA (S)	ng/Kg-dry	3500	1700	50	70 - 130		*
M7PFUnDA (S)	ng/Kg-dry	3500	1000	29	70 - 130		*
M8PFOA (S)	ng/Kg-dry	3500	2600	75	70 - 130		
M8PFOS (S)	ng/Kg-dry	3500	3300	94	70 - 130		
M8PFOSA (S)	ng/Kg-dry	3500	530	15	70 - 130		*
M9PFNA (S)	ng/Kg-dry	3500	2700	78	70 - 130		
Sample Preparation by AST	M D7968 Mo	d.					
Tumble Extraction for PFAS	2.0	053	grams		1	11/10/2021 11:30	JKP

 $This \ report \ shall \ not \ be \ reproduced, \ except \ in \ full, \ without \ the \ written \ consent \ of \ Paragon \ Laboratories, \ Inc.$

 Lab ID:
 3736880002
 Date Collected:
 10/27/2021 15:30
 Matrix:
 Solid

 Sample ID:
 Field Blank
 Date Received:
 10/28/2021 11:47
 Collector:
 Don Robb

Description: Grab

Parameter	Result (Qual Unit	RL	MDL	DF	Min	Max	Analyzed	Ву
Per- & Polyfluoroalkyls (PFAS)	by ASTM D796	8 Mod.							
11CI-PF3OUdS	<100	ng/Kg-dry	100	65	1			11/12/2021 20:29	JKP
4:2 FTSA	<100	ng/Kg-dry	100	58	1			11/12/2021 20:29	JKP
6:2 FTSA	<150	ng/Kg-dry	150	130	1			11/12/2021 20:29	JKP
8:2 FTSA	<100	ng/Kg-dry	100	50	1			11/12/2021 20:29	JKP
9CI-PF3ONS	<100	ng/Kg-dry	100	59	1			11/12/2021 20:29	JKP
ADONA	<100	ng/Kg-dry	100	68	1			11/12/2021 20:29	JKP
HFPO-DA	<150	ng/Kg-dry	150	130	1			11/12/2021 20:29	JKP
NEtFOSAA	<100	ng/Kg-dry	100	57	1			11/12/2021 20:29	JKP
NMeFOSAA	<200	ng/Kg-dry	200	190	1			11/12/2021 20:29	JKP
PFBA	<25	ng/Kg-dry	25	20	1			11/12/2021 20:29	JKP
PFBS	<10	ng/Kg-dry	10	9.2	1			11/12/2021 20:29	JKP
PFDA	<15	ng/Kg-dry	15	14	1			11/12/2021 20:29	JKP
PFDS	<15	ng/Kg-dry	15	15	1			11/12/2021 20:29	JKP
PFDoA	<20	ng/Kg-dry	20	17	1			11/12/2021 20:29	JKP
PFHpA	<20	ng/Kg-dry	20	16	1			11/12/2021 20:29	JKP
PFHpS	<15	ng/Kg-dry	15	12	1			11/12/2021 20:29	JKP
PFHxA	<10	ng/Kg-dry	10	7.5	1			11/12/2021 20:29	JKP
PFHxS	<10	ng/Kg-dry	10	5.8	1			11/12/2021 20:29	JKP
PFNA	<10	ng/Kg-dry	10	5.2	1			11/12/2021 20:29	JKP
PFNS	<30	ng/Kg-dry	30	29	1			11/12/2021 20:29	JKP
PFOA	<10	ng/Kg-dry	10	9.3	1			11/12/2021 20:29	JKP
PFOS	<20	ng/Kg-dry	20	20	1			11/12/2021 20:29	JKP
PFOSA	<15	ng/Kg-dry	15	10	1			11/12/2021 20:29	JKP
PFPeA	<15	ng/Kg-dry	15	12	1			11/12/2021 20:29	JKP
PFPeS	<15	ng/Kg-dry	15	15	1			11/12/2021 20:29	JKP
PFTeDA	<25	ng/Kg-dry	25	23	1			11/12/2021 20:29	JKP
PFTrDA	<20	ng/Kg-dry	20	10	1			11/12/2021 20:29	JKP
PFUnDA	<10	ng/Kg-dry	10	8.7	1			11/12/2021 20:29	JKP
PFecHS	<15	ng/Kg-dry	15	9.6	1			11/12/2021 20:29	JKP

Surrogate	Unit	Spiked Amount	Spike Result	Spike % Recovery	Control Limits	Qual
13C-HFPO-DA (S)	ng/Kg-dry	8000	9100	114	70 - 130	
d3-NMeFOSAA (S)	ng/Kg-dry	800	610	77	70 - 130	
d5-NEtFOSAA (S)	ng/Kg-dry	800	630	79	70 - 130	
M2-4:2 FTS (S)	ng/Kg-dry	800	470	59	70 - 130	*
M2-6:2 FTS (S)	ng/Kg-dry	800	520	64	70 - 130	*
M2-8:2 FTS (S)	ng/Kg-dry	800	500	63	70 - 130	*
M2PFDoA (S)	ng/Kg-dry	800	620	77	70 - 130	
M2PFTeDA (S)	ng/Kg-dry	800	650	81	70 - 130	
M3PFBS (S)	ng/Kg-dry	800	550	68	70 - 130	*
M3PFHxS (S)	ng/Kg-dry	800	570	71	70 - 130	

M4PFBA (S)	ng/Kg-dry	800	600	75	70 - 130			
M4PFHpA (S)	ng/Kg-dry	800	600	75	70 - 130			
M5PFHxA (S)	ng/Kg-dry	800	570	71	70 - 130			
M5PFPeA (S)	ng/Kg-dry	800	570	72	70 - 130			
M6PFDA (S)	ng/Kg-dry	800	670	84	70 - 130			
M7PFUnDA (S)	ng/Kg-dry	800	650	81	70 - 130			
M8PFOA (S)	ng/Kg-dry	800	590	74	70 - 130			
M8PFOS (S)	ng/Kg-dry	800	630	79	70 - 130			
M8PFOSA (S)	ng/Kg-dry	800	590	74	70 - 130			
M9PFNA (S)	ng/Kg-dry	800	670	84	70 - 130			
Sample Preparation by ASTM D7968 Mod.								
Tumble Extraction for PFAS	2.0	006	grams		1		11/10/2021 11:30	JKP

 $This \ report \ shall \ not \ be \ reproduced, \ except \ in \ full, \ without \ the \ written \ consent \ of \ Paragon \ Laboratories, \ Inc.$

Lab ID: 3736880003 Date Collected: Matrix: Solid Sample ID: Trip Blank Date Received: 10/28/2021 11:47 Collector: Don Robb Description: Parameter Result Qual Unit RLMDL DF Min Max Analyzed Ву

No results available.

