



Renaud Costadoat Lycée Dorian









Problematique

Vous êtes capables :

• de modéliser la chaîne d'information d'un système.

Vous devez êtes capables :

- de représenter l'information dans une partie commande,
- de concevoir des systèmes de traitement de l'information à l'aide de portes logiques.

#### Les codes binaires

- Symboles: 0 et 1 appelés bits (binary digit), base: 2,
- La succession de ces nombres est 0, 1, 10, 11, 100, 101, 110, 111,
- Sous forme polynomiale, un nombre binaire quelconque est exprimé par:

$$N = \sum_{i=0}^{n} \alpha_{i}.2^{i}$$
 avec  $\alpha_{i} = 0$  ou 1

- ex:  $10110 \rightarrow 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22$  décimal.
- Définitions:
  - Un nombre binaire de n bits permet d'obtenir 2<sup>n</sup> nombres différents dont le plus grand a pour valeur décimale 2<sup>n</sup> 1.
  - ► On appelle 'octet' (byte en anglais) un nombre de 8 bits (domaine 0..255),
  - On appelle 'mot' (word en anglais) un nombre de 16 bits (domaine 0..65535), les bits 0..7 constituant l'octet de 'poids faible', les bits 8..15 constituant l'octet de 'poids fort'.



#### Les codes binaires réfléchi

- L'utilisation du code binaire vu précédemment (appelé aussi code binaire naturel) dans le traitement numérique d'un signal peut poser de problèmes,
- En effet, supposons un capteur enregistrant les valeurs successives dans un comptage 0000, 0001, 0010, 0011, 0100, 0101,... On voit que le passage de 1 à 2 nécessite la modification des bits 0 et 1, ce qui peut introduire des aléas (effets transitoires néfastes).
   On risque d'obtenir: 0001 0000 0010 ou 0001 0011 0010
- Pour éviter ces erreurs, il suffit de coder chaque nombre de sorte que 2 nombres successifs ne différent que d'un élément binaire : code à distance unité. (on appelle distance entre 2 mots-code le nombre d'éléments binaires qui différent),
- Le code Gray est le plus utilisé.



#### Les codes binaires réfléchi

- Avec ce code, le passage d'un nombre au suivant ne nécessite que la modification d'un seul bit,
- La relation qui lie un nombre binaire pur avec le nombre binaire codé Gray s'écrit: (⊕ = OU exclusif),

$$N_g = \frac{N \oplus 2N}{2}$$

- ex: N = 54 décimal
  - ▶ 110110 binaire pur  $\rightarrow$  2N = 1101100 (obtenu en décalant tous les bits d'une position à gauche),
  - Le OU exclusif donne 0 si les 2 bits sont identiques,

| 0 |   | - 1 | U |   | - | 0 |
|---|---|-----|---|---|---|---|
| 1 | 1 | 0   | 1 | 1 | 0 | 0 |
| 1 | 0 | 1   | 1 | 0 | 1 | 0 |

La division par 2 revient à décaler tous les bits d'une position vers la droite (le bit 0 initial est perdu), cela donne 101101.



#### Les codes binaires réfléchi

- Ce code est utilisé par exemple dans un asservissement où la position angulaire d'un axe peut être codée par un dispositif optique composé d'un disque sur lequel on a gravé un motif,
- Des capteurs peuvent alors 'lire' la combinaison désirée.





## Définition pour les opérations

- Les opérations logiques sont réalisées en associant des tensions à des variables logiques,
- Les états et les valeurs logiques sont représentés par les nombres 0 et 1,
- La valeur de la variable est une tension électrique appliquée entre la borne considérée et la masse du montage,
- Une fonction logique est représentée par des groupes de variables reliées par des opérateurs logiques, elle ne peut prendre que les valeurs 0 et 1,
- La table de vérité est une table qui permet de connaître la valeur de S en fonction des diverses **combinaisons** possibles des variables d'entrée Ei.
- Le chronogramme est le graphe de l'évolution en fonction du temps des variables et des fonctions logiques.



### Combinatoire ou séquentiel?

- Une fonction est dite combinatoire si ses sorties ne dépendent que des combinaisons d'entrée et pas de l'histoire de celles-ci.
- A une combinaison de variables d'entrée correspond une seule combinaison des sorties.
- Aucune mémoire des états précédents n'est conservée
- Une fonction est dite séquentielle si ses sorties dépendent des combinaisons d'entrée et de l'histoire de celles-ci.
- A une combinaison de variables d'entrée correspond plusieurs combinaisons des sorties.
- Tout ou partie des combinaisons d'entrée et de sortie qui peuvent influencer les sorties de nouvelles combinaisons est conservé





# Fonction à une variable logique

- **OUI**: S = E,
- S est identique à E.

- NON:  $S = \overline{E}$ ,
- S est le complément de E.







# Fonction à deux variables logiques

- **OU**:  $S = E_1 + E_2$ ,
- S est vrai si  $E_1$  ou  $E_2$  est vrai.

- **ET**:  $S = E_1 . E_2$ ,
- S est vrai si E<sub>1</sub> et E<sub>2</sub> sont vrai.





## Fonction à deux variables logiques

- NON OU:  $S = \overline{E_1 + E_2}$ ,
- S est le **complément** de  $(E_1 + E_2)$ .

- NON ET:  $S = \overline{E_1 . E_2}$ ,
- S est le **complément** de (E<sub>1</sub>.E<sub>2</sub>).





## Fonction à deux variables logiques

- OU exclusif:  $S = E_1 \oplus E_2$ ,
- $S = E_1 \cdot \overline{E_2} + \overline{E_1} \cdot E_2,$
- S ne vaut 1 que si les 2 variables d'entrée ont des valeurs différentes: anticoïncidence.

- NON OU exclusif:  $S = \overline{E_1 \oplus E_2}$ ,
- $S = \overline{E_1}.\overline{E_2} + E_1.E_2$ ,
- S ne vaut 1 que si les 2 variables d'entrée ont des valeurs identiques: coïncidence.





### Théorèmes fondamentaux

identités remarquables:

$$\blacksquare$$
 1. $E = E$ ,  $E + 1 = 1$ , 0. $E = 0$ ,  $E + 0 = E$ ,

commutativité:

$$ightharpoonup$$
  $E_1.E_2 = E_2.E_1, E_1 + E_2 = E_2 + E_1,$ 

associativité:

$$E_1.(E_2.E_3) = (E_1.E_2).E_3, E_1 + (E_2 + E_3) = (E_1 + E_2) + E_3,$$

distributivité:

$$E_1.(E_2+E_3)=(E_1.E_2)+(E_1.E_3), E_1+(E_2.E_3)=(E_1+E_2).(E_1+E_3),$$

- idempotence:
  - ► E+E=E.E.E=E
- complémentarité

$$E + \overline{E} = 1$$
,  $E \cdot \overline{E} = 0$ 

- absorption
  - $\triangleright$  E+E.A = E.



#### Théorèmes fondamentaux

#### Principe de dualité:

Toute expression logique demeure vraie si l'on remplace '+' par '.' et 0 par 1 et réciproquement (facilement vérifiable pour les expressions précédentes).

#### Théorèmes de De Morgan

• Théorème 1:

Le produit logique complémenté de 2 variables booléennes est égal à la somme logique des compléments de ces variables:

$$\overline{E_1.E_2}=\overline{E_1}+\overline{E_2},$$

Théorème 2:

La somme logique complémentée de 2 variables booléennes est égale au produit logique des compléments de ces variables:

$$\overline{E_1 + E_2} = \overline{E_1}.\overline{E_2},$$

• Remarque: Ces relations sont généralisables à n variables booléennes.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ♥ 9 Q ○

#### Emploi d'opérateurs NOR





#### Emploi d'opérateurs NAND





#### Exemple

• Soit la forme canonique  $S = \overline{E_1} \cdot E_2 + E_1 \cdot \overline{E_2}$ ,

| E <sub>1</sub> | E <sub>2</sub> | S |
|----------------|----------------|---|
| 0              | 0              | 0 |
| 0              | 1              | 1 |
| 1              | 0              | 1 |
| 1              | 1              | 0 |

Question: Établir les montages avec des opérateurs NAND et NOR.

◆ロト ◆団 ト ◆ 圭 ト ◆ 圭 ・ 夕 Q (^>)

#### 1ère solution avec opérateurs NAND

• D'après le théorème de De Morgan:

$$\overline{S} = \overline{E_1.\overline{E_2} + \overline{E_1}.\underline{E_2}} = \overline{E1.\overline{E2}.\overline{E1}.E2}$$
Donc:  $S = \overline{E1.\overline{E2}.\overline{E1}.E2}$ 

Ce qui donne la solution suivante avec 5 opérateurs NAND:





DORIAN

Renaud Costadoat

S07 - C01

#### 2ème solution avec opérateurs NOR

D'après le théorème de De Morgan:

$$S = E_1 \cdot \overline{E_2} + \overline{E_1} \cdot E_2 + E_1 \cdot \overline{E_1} + E_2 \cdot \overline{E_2} = (E_1 + E_2) \cdot (\overline{E_1} + \overline{E_2})$$
D'après le théorème de De Morgan :  $\overline{S} = \overline{(E_1 + E_2) \cdot (\overline{E_1} + \overline{E_2})} = \overline{(E_1 + E_2)} + \overline{(\overline{E_1} + \overline{E_2})}$ 
Donc:  $S = \overline{(E_1 + E_2) + (\overline{E_1} + \overline{E_2})}$ 

• Ce qui donne la solution suivante avec 5 opérateurs NOR:





DORIAN

Renaud Costadoat

S07 - C01

# Méthode de Karnaugh

- La représentation d'une forme canonique sous la forme d'une table de vérité devient lourde dés que le nombre de variables d'entrée est important. Par exemple, 3 variables nécessitent 8 lignes dans la table.
- La méthode de Karnaugh permet de simplifier une expression booléenne et de déduire le montage adéquat,
- Elle consiste à mettre en évidence le regroupement de termes tel que  $A + A \cdot B = A$ ,
- Le codage des états des lignes et des colonnes est binaire réfléchi pour qu'une et une seule variable change d'état d'une case à une case adjacente.



## Méthode de Karnaugh

• Soit la forme canonique  $S = \overline{E_1 . E_3 + E_2 . E_4}$ .

$$S = \overline{E_1.E_3}.\overline{E_2.E_4} = (\overline{E_1} + \overline{E_3}).(\overline{E_2} + \overline{E_4}) = \overline{E_1}.\overline{E_2} + \overline{E_1}.\overline{E_4} + \overline{E_3}.\overline{E_2} + \overline{E_3}.\overline{E_4}$$

• D'un point de vue théorique, on a avec 4 variables:

| $E_1.E_2/E_3.E_4$ | 0 0                                                           | 0 1                                                | 1.1                                     | 1 0                                                |
|-------------------|---------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------|
| 0 0               | $\overline{E_1}.\overline{E_2}.\overline{E_3}.\overline{E_4}$ | $\overline{E_1}.\overline{E_2}.\overline{E_3}.E_4$ | $\overline{E_1}.\overline{E_2}.E_3.E_4$ | $\overline{E_1}.\overline{E_2}.E_3.\overline{E_4}$ |
| 0 1               | $\overline{E_1}.E_2.\overline{E_3}.\overline{E_4}$            | $\overline{E_1}.E_2.\overline{E_3}.E_4$            | $\overline{E_1}.E_2.E_3.E_4$            | $\overline{E_1}.E_2.E_3.\overline{E_4}$            |
| 1 1               | $E_1.E_2.\overline{E_3}.\overline{E_4}$                       | $E_1.E_2.\overline{E_3}.E_4$                       | $E_1.E_2.E_3.E_4$                       | $E_1.E_2.E_3.\overline{E_4}$                       |
| 1 0               | $E_1.\overline{E_2}.\overline{E_3}.\overline{E_4}$            | $E_1.\overline{E_2}.\overline{E_3}.E_4$            | $E_1.\overline{E_2}.E_3.E_4$            | $E_1.\overline{E_2}.E_3.\overline{E_4}$            |

• D'un point de vue théorique, on a avec 4 variables:

| $E_1.E_2/E_3.E_4$ | 0 0 | 0 1 | 11 | 10 |
|-------------------|-----|-----|----|----|
| 0 0               | 1   | 1   | 1  | 1  |
| 0 1               | 1   | 0   | 0  | 1  |
| 1 1               | 1   | 0   | 0  | 0  |
| 1 0               | 1   | 1   | 0  | 0  |



- La méthode de recherche de l'expression minimale d'une fonction logique S à partir d'un tableau de Karnaugh consiste à rechercher des cases adjacentes comportant des 1 de sorte qu'un regroupement puisse être opéré dans le but de simplifier S,
- Les cases extrêmes peuvent être considérées comme adjacentes puisqu'une seule variable change d'état, donc le tableau peut être considéré comme un cylindre vertical ou horizontal.





 Remarque: Lorsque certains états de la fonction S ne sont pas définis, l'état de la sortie dans le tableau de Karnaugh est symbolisé par une croix (état indifférent). Les croix peuvent être remplacées par des 0 ou des 1 pour faciliter au mieux les regroupements.



#### Recherche d'octets

Huit 1 voisins peuvent être regroupés car 3 variables changent d'état, celles-ci disparaissent dans le terme qui résulte.

| 1 | 1 |  |
|---|---|--|
| 1 | 1 |  |
| 1 | 1 |  |
| 1 | 1 |  |

| 1 |  | 1 |
|---|--|---|
| 1 |  | 1 |
| 1 |  | 1 |
| 1 |  | 1 |

Exemple:  $S = \overline{E_3}$ 

| $E_1.E_2/E_3.E_4$ | 0.0 | 0 1 | 11 | 10 |
|-------------------|-----|-----|----|----|
| 0 0               | 1   | 1   | 0  | 0  |
| 0 1               | 1   | 1   | 0  | 0  |
| 11                | 1   | 1   | 0  | 0  |
| 1 0               | 1   | 1   | 0  | 0  |



#### Recherche de quartets

Quatre 1 voisins peuvent être regroupés car deux variables changent d'état, celles-ci disparaissent dans le terme qui résulte.

|  | 1 |  |     |   | 1 |  | 1 |   |  |   |
|--|---|--|-----|---|---|--|---|---|--|---|
|  | 1 |  | - 1 | 1 |   |  |   | 1 |  | 1 |
|  | 1 |  | 1   | 1 |   |  |   | 1 |  | 1 |
|  | 1 |  |     |   | 1 |  | 1 |   |  |   |

Exemple:  $S = E_1.E_2 + \overline{E_2}.\overline{E_4}$ 

| $E_1.E_2/E_3.E_4$ | 0 0 | 0 1 | 11 | 10 |
|-------------------|-----|-----|----|----|
| 0 0               | 1   | 0   | 0  | 1  |
| 0 1               | 0   | 0   | 0  | 0  |
| 1 1               | 1   | 1   | 1  | 1  |
| 1 0               | 1   | 0   | 0  | 1  |



#### Recherche de doublets

Deux 1 voisins peuvent être regroupés car une seule variable change d'état, celle-ci disparaît dans le terme qui résulte.



| 1 |  | 1 |
|---|--|---|
|   |  |   |
|   |  |   |
|   |  |   |

Exemple: 
$$S = \overline{E_1}.\overline{E_2}.\overline{E_3} + \overline{E_2}\overline{E_3}.E_4 + E_2.E_3.E_4 + E_1.E_3.\overline{E_4}$$

| $E_1.E_2/E_3.E_4$ | 0 0 | 0 1 | 11 | 1 0 |
|-------------------|-----|-----|----|-----|
| 0 0               | 1   | 1   | 0  | 0   |
| 0 1               | 0   | 0   | 1  | 0   |
| 1 1               | 0   | 0   | 1  | 1   |
| 1 0               | 0   | 1   | 0  | 1   |



Vous devez être capables :

- de manipuler des équations logiques,
- de manipuler des fonctions combinatoires,
- de concevoir un câblage de portes logiques.

Il est nécessaire d'utiliser d'autres formes de représentation d'un mécanisme.

- Problème: Comment concevoir une commande séquentielle
- Perspectives: Réaliser des algorithmes séquentiels capables de piloter le comportement d'un système.

