On Vanishing Sums of Roots of Unity in Polynomial Calculus and Sum-of-"Squares"

Ilario Bonacina

UPC Barcelona Tech

Haifa, August 1 2022 Proof Complexity Workshop

Plan of the talk

- Non-Boolean encodings
- Polynomial Calculus over C
- Sum-of-"Squares" over ℝ and ℂ
- Sums of Roots of Unity and Knapsack
- Hint on lower bound techniques

Definitions

Results

Examples

Boolean and Fourier encodings

Two natural encodings for CSPs

Fourier variables $z^{\kappa} = 1$

$$z \in \{1, \zeta, \zeta^2, ..., \zeta^{\kappa-1}\}$$

where ζ is a primitive κ -th root of unity

Boolean variables $x^2 = x$

$$x \in \{0,1\}$$

Two natural encodings for CSPs

Fourier variables $z^{\kappa} = 1$

$$z \in \{1, \zeta, \zeta^2, ..., \zeta^{\kappa-1}\}$$

where ζ is a primitive κ -th root of unity

Boolean variables $x^2 = x$

$$x \in \{0,1\}$$

$$z = x_0 + x_1 \zeta + \dots + \zeta^{\kappa - 1} x_{\kappa - 1}$$

Together with the constraints

$$x_0 + \dots + x_{\kappa-1} = 1$$

and $x_0^2 = x_0, \dots, x_{k-1}^2 = x_{k-1}$

Given G = (V, E) a graph. Is G 3-colorable?

Boolean encoding

 x_{vc} "the vertex v gets color c"

$$\begin{cases} x_{v0} + x_{v1} + x_{v2} = 1 \\ x_{v0}^2 = x_{v0} \quad x_{v1}^2 = x_{v1} \quad x_{v2}^2 = x_{v2} \end{cases} \quad \forall v \in G \qquad \begin{cases} z_v^3 = 1 \\ z_v^3 = 1 \end{cases}$$

$$x_{v0}x_{w0} = 0$$

$$x_{v1}x_{w1} = 0$$

$$x_{v2}x_{w2} = 0$$

Fourier encoding

 z_{v} "the color given to vertex v"

$$\forall v \in G \qquad \left\{ \begin{array}{l} z_v^3 = 1 \\ \end{array} \right.$$

$$x_{v0}x_{w0} = 0$$

$$x_{v1}x_{w1} = 0$$

$$x_{v2}x_{w2} = 0$$

$$\forall \{v, w\} \in E$$

$$z_v^2 + z_v z_w + z_w^2 = 0$$

A practical motivation

The Fourier encoding is actually used in practice to solve k-COLORING and verification of arithmetic multiplier circuits via Groebner basis computations.

Polynomial Calculus

Polynomial Calculus over \mathbb{C} ($PC_{\mathbb{C}}$)

Y set of n variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

from P derive 1 = 0 using the inference rules

$$\frac{p=0}{qp=0} \qquad \frac{p=0}{p+q=0}$$

Complexity measures

Degree: max degree of a polynomial

Size: number of monomials

Remarks on $PC_{\mathbb{C}}$

THM. Degree D lower bounds in $PC_{\mathbb{C}}$, over **Boolean** variables

imply size
$$\exp\left(\frac{(D-d)^2}{n}\right)$$
 lower bounds [IPS'99]

No such result could exist over the Fourier variables.

PC over Fourier variables was also studied in [BGIP'01], but only for degree

$PC_{\mathbb{C}}$ on Fourier variables - a "problematic" example

Tseitin over Fourier variables

$$G = (V, E)$$
 with $|V|$ odd

$$\prod_{e \ni v} x_e = -1 \text{ for all } v \in V$$

$$x_e^2 = 1$$
 for all $e \in E$

$PC_{\mathbb{C}}$ on Fourier variables - a "problematic" example

Tseitin over Fourier variables

$$G = (V, E)$$
 with $|V|$ odd

$$\prod_{e \ni v} x_e = -1 \text{ for all } v \in V$$

$$x_e^2 = 1$$
 for all $e \in E$

- short $PC_{\mathbb C}$ proofs
- $\Omega(n)$ degree lower bound on expander graphs
- hence no size-degree tradeoff when usingFourier variables

Sum of Squares

Sum-of-Squares $SOS_{\mathbb{R}}$

Y set of n variables, $P = \{p_1 = 0, \ldots, p_m = 0\}$ where $p_j \in \mathbb{R}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1^2 + \dots + s_\ell^2 = -1$$

Complexity measures

Degree: $\max\{\deg(q_i p_i), \deg(s_j^2) : i \in [m], j \in [\ell]\}$

Size: number of monomials in the proof

Degree and Size

Degree and Size

THM. Over Boolean variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$

lower bounds [AH'19]

Degree and Size

THM. Over Boolean variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$

lower bounds [AH'19]

THM. Over Fourier {±1} variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$

lower bounds but for a different set of polynomials [S'20]

Y set of variables, $P=\left\{p_1=0,\ \dots\ ,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

Y set of variables, $P=\left\{p_1=0,\ \dots\ ,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

Y set of variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

on Fourier variables $z^{\kappa} = 1$: s^* is the conjugate of s after substituting z^j with $z^{\kappa-j}$

Y set of variables, $P=\left\{p_1=0,\ \dots\ ,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

on Fourier variables $z^{\kappa} = 1$: s^* is the conjugate of s after substituting z^j with $z^{\kappa-j}$

Complexity measures

Degree: $\max\{\deg(q_i p_i), \deg(s_j s_j^*) : i \in [m], j \in [\ell]\}$

Size: number of monomials in the proof

Examples of conjugate polynomials

$$p = ix + 1$$

$$p = ix + 1$$
 $p^* = -ix + 1$

On **Boolean** variables:

$$pp^* = x^2 + 1$$

$$p = iz + 1$$

$$p = iz + 1$$
 $p^* = -iz^{\kappa - 1} + 1$

On Fourier variables ($z^{\kappa} = 1$):

$$pp^* = z^k + iz - iz^{\kappa - 1} + 1$$

More Examples

Example 1.
$$P = \{ \sum_{j \in [n]} x_j = \underline{i}, x_1^2 = x_1, ..., x_n^2 = x_n \}$$

$$-(\sum_{i} x_j + \underline{i})(\sum_{i} x_j - \underline{i}) + (\sum_{i} x_j)^2 = -1$$

Example 2.
$$P = \{ \sum_{j \in [n]} z_j = -1, \sum_{j \in [n]} z_j^{\kappa - 1} = 1, z_1^{\kappa} = 1..., z_n^{\kappa} = 1 \}$$

$$(\sum_{j} z_j^{\kappa - 1} - 1) - (\sum_{j} z_j + 1)(\sum_{j} z_j^{\kappa - 1}) + \sum_{j} z_j \sum_{j} z_j^{\kappa - 1} = -1$$

Some remarks on $SOS_{\mathbb{C}}$

THM. $SOS_{\mathbb{C}}$ over the Boolean/Fourier encoding p-simulates $PC_{\mathbb{C}}$ over the same encoding.

THM. For polynomials with real coefficients and Boolean encoding, $SOS_{\mathbb{C}}$ is equivalent to $SOS_{\mathbb{R}}$

Some remarks on $SOS_{\mathbb{C}}$

THM. $SOS_{\mathbb{C}}$ over the Boolean/Fourier encoding p-simulates $PC_{\mathbb{C}}$ over the same encoding.

Proof idea. A minor variation of Berkholtz's argument [B'18].

THM. For polynomials with real coefficients and Boolean encoding, $SOS_{\mathbb{C}}$ is equivalent to $SOS_{\mathbb{R}}$

Some remarks on $SOS_{\mathbb{C}}$

THM. $SOS_{\mathbb{C}}$ over the Boolean/Fourier encoding p-simulates $PC_{\mathbb{C}}$ over the same encoding.

Proof idea. A minor variation of Berkholtz's argument [B'18].

THM. For polynomials with real coefficients and Boolean encoding,

 $SOS_{\mathbb{C}}$ is equivalent to $SOS_{\mathbb{R}}$

Proof idea. The real part of the $SOS_{\mathbb{C}}$ refutation is a valid $SOS_{\mathbb{R}}$ refutation.

Knapsack & Sums of Roots of Unity

Knapsack & Sums of Roots of Unity

$$\mathsf{Kn}_{\overrightarrow{c},r} = \left\{ \sum_{i=1}^n c_i x_i = r \;, \quad x_1^2 = x_1 \;, \qquad \dots \;, x_n^2 = x_n \right\} \; \text{with} \; c_1, \dots c_n, r \in \mathbb{C}$$

(Interesting special case $c_1, ..., c_n = 1$)

$$SRU_n^{\kappa,r} = \left\{ \sum_{i \in [n]} z_i = r, \quad z_1^{\kappa} = 1, \quad \dots, z_n^{\kappa} = 1 \right\} \text{ with } r \in \mathbb{C}$$

(Interesting special case r = 0)

How hard is to refute $SRU_n^{\kappa,r}$ in $PC_{\mathbb{C}}/SOS_{\mathbb{C}}$?

Wait, when is $SRU_n^{\kappa,r}$ unsatisfiable?

$SRU_n^{\kappa,0}$ when is satisfiable?

Proof. Assume $SRU_n^{\kappa,0}$ is satisfiable, i.e. $\alpha_1 + \ldots + \alpha_n = 0$ for some κ th roots of unity α_i . I.e. there are $a_0, \ldots, a_{\kappa-1} \in \mathbb{N}$ s.t.

$$a_0 + a_1 \zeta + a_2 \zeta^2 + \dots + a_{\kappa-1} \zeta^{\kappa-1} = 0$$

where ζ is a primitive κ th roots of unity (i.e. root of $X^{\kappa-1} + X^{\kappa-2} + \cdots + X + 1$).

But then, ζ is a root of the polynomial

$$(a_0 - a_{\kappa-1}) + (a_1 - a_{\kappa-1})X + \dots + (a_{\kappa-2} - a_{\kappa-1})X^{\kappa-2},$$

which then must be identically 0 and $a_0 = a_1 = a_2 = \dots = a_{\kappa-1}$.

$SRU_n^{\kappa,0}$ when is satisfiable?

THM. If κ prime, $SRU_n^{\kappa,0}$ is satisfiable if and only if κ divides n.

Proof. Assume $SRU_n^{\kappa,0}$ is satisfiable, i.e. $\alpha_1 + \ldots + \alpha_n = 0$ for some κ th roots of unity α_j . I.e. there are $a_0, \ldots, a_{\kappa-1} \in \mathbb{N}$ s.t.

$$a_0 + a_1 \zeta + a_2 \zeta^2 + \dots + a_{\kappa-1} \zeta^{\kappa-1} = 0$$

where ζ is a primitive κ th roots of unity (i.e. root of $X^{\kappa-1} + X^{\kappa-2} + \cdots + X + 1$).

But then, ζ is a root of the polynomial

$$(a_0 - a_{\kappa-1}) + (a_1 - a_{\kappa-1})X + \dots + (a_{\kappa-2} - a_{\kappa-1})X^{\kappa-2},$$

which then must be identically 0 and $a_0 = a_1 = a_2 = \dots = a_{\kappa-1}$.

Sums of Roots of Unity - satisfiability

$$SRU_n^{\kappa,r} = \left\{ \sum_{i \in [n]} z_i = r, \quad z_1^{\kappa} = 1, \quad \dots, z_n^{\kappa} = 1 \right\} \text{ with } r \in \mathbb{C}$$

(Interesting special case r = 0)

THM. If $\kappa = p^m$ for some prime p, $SRU_n^{\kappa,0}$ is satisfiable if and only if p divides n.

Sums of Roots of Unity - satisfiability

$$SRU_n^{\kappa,r} = \left\{ \sum_{i \in [n]} z_i = r, \quad z_1^{\kappa} = 1, \quad \dots, z_n^{\kappa} = 1 \right\} \text{ with } r \in \mathbb{C}$$

(Interesting special case r = 0)

THM. If $\kappa = p^m$ for some prime p, $SRU_n^{\kappa,0}$ is satisfiable if and only if p divides n.

THM. If κ not a power of a $SRU_n^{\kappa,0}$ for n large enough vays satisfiable. [LL'01]

Knapsack - results

$$\mathsf{Kn}_{\overrightarrow{c},r} = \left\{ \sum_{i=1}^n c_i x_i = r \;, \quad x_1^2 = x_1 \;, \qquad \dots \;, x_n^2 = x_n \right\} \; \text{with} \; c_1, \dots c_n, r \in \mathbb{C}$$

(Interesting special case $c_1, ..., c_n = 1$)

Knapsack - results

$$\mathsf{Kn}_{\overrightarrow{c},r} = \left\{ \sum_{i=1}^n c_i x_i = r \;, \quad x_1^2 = x_1 \;, \qquad \dots \;, x_n^2 = x_n \right\} \; \text{with} \; c_1, \dots c_n, r \in \mathbb{C}$$

(Interesting special case $c_1, ..., c_n = 1$)

THM. Kn $_{c,r}$ is always hard to refute in $PC_{\mathbb{C}}$: degree $\Omega(n)$ and size $2^{\Omega(n)}$

[IPS'99]

Knapsack - results

$$\operatorname{Kn}_{\overrightarrow{c},r} = \left\{ \sum_{i=1}^n c_i x_i = r \;, \quad x_1^2 = x_1 \;, \quad \dots \;, x_n^2 = x_n \right\} \text{ with } c_1, \dots c_n, r \in \mathbb{C}$$

(Interesting special case $c_1, ..., c_n = 1$)

THM. Kn $_{\overrightarrow{c},r}$ is always hard to refute in $PC_{\mathbb{C}}$: degree $\Omega(n)$ and size $2^{\Omega(n)}$ [IPS'99]

THM. In $SOS_{\mathbb{C}}$ the hardness of $Kn_{1,r}$ depends on r:

- $r \in \mathbb{R}$ the hardness is the same as for $SOS_{\mathbb{R}}$: degree $\geq \min\{n, 2\min\{r, n-r\} + 3\}$ [G'01]
- -For $r \notin \mathbb{R}$ it is easy in $SOS_{\mathbb{C}}$

$SRU_n^{\kappa,r}$ requires large degree in $PC_{\mathbb{C}}$

What about SOS?

$SRU_n^{\kappa,r}$ requires large degree in $PC_{\mathbb{C}}$

THM. $PC_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,r}$ require degree $\Omega(n)$.

(Hint: focus on just two of the roots and via a

linear transformation reduce to knapsack)

What about SOS?

Hardness of $SRU_n^{\kappa,r}$ in SOS

κ prime

$$\zeta$$
 primitive κ th root of unity

$$\zeta$$
 primitive κ th root of unity $r = r_1 + \zeta r_2$ with $r_1, r_2 \in \mathbb{R}$

THM. (Degree lower bound)

If
$$\kappa D \leq \min\{r_1+r_2+(\kappa-1)n+\kappa,\ n-r_1-r_2+\kappa\}$$
, then $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,r}$ require degree at least D

COR. $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,0}$ require degree $\Omega(n/\kappa)$

THM. (Size lower bound)

If $n \gg \kappa$, $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,0}$ require size $2^{\Omega(n)}$

Degree lower bounds

Proof Technique for degree in $SOS_{\mathbb{R}}$

$$\left\{p_1=0, \ \dots, p_m=0\right\}$$
 does not have $SOS_{\mathbb{R}}$ refutations of degree $\leq D$

- $-\mathbb{E}(1) = 1$
- E linear
- $\mathbb{E}(q_j p_j) = 0 \text{ for all } q_j \text{ s.t } \deg(q_j p_j) \le D$
- $\mathbb{E}(s^2) \ge 0 \text{ for all } s \text{ s.t. } \deg(s^2) \le D$

Proof Technique for degree in $SOS_{\mathbb{C}}$

$$\left\{ p_1 = 0, \ \dots, p_m = 0 \right\}$$
 does not have $SOS_{\mathbb{C}}$ refutations of degree $\leq D$

- $-\mathbb{E}(1) = 1$
- E linear
- $\mathbb{E}(q_j p_j) = 0 \text{ for all } q_j \text{ s.t } \deg(q_j p_j) \le D$
- $= \mathbb{E}(ss^*) \ge 0 \text{ for all } s \text{ s.t. } \deg(ss^*) \le D$

The reduction to knapsack does not work for $SOS_{\mathbb{C}}$, instead:

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$
- Construct a candidate pseudo-expectation E (only one choice under symmetry)

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$
- Construct a candidate pseudo-expectation E (only one choice under symmetry)
- Interpret E(p) as the evaluation of a symmetric polynomial \mathcal{S}_E

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$
- Construct a candidate pseudo-expectation E (only one choice under symmetry)
- Interpret E(p) as the evaluation of a symmetric polynomial \mathcal{S}_E
- Use Bleckherman's theorem (adapted to $\mathbb C$) to prove properties of S_E

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$
- Construct a candidate pseudo-expectation E (only one choice under symmetry)
- Interpret E(p) as the evaluation of a symmetric polynomial \mathcal{S}_E
- Use Bleckherman's theorem (adapted to $\mathbb C$) to prove properties of S_E
- E is a pseudo-expectation

Blekherman's theorem

$$Y = \{y_1, \dots, y_n\} \quad p \in \mathbb{C}[Y]$$

$$\operatorname{Sym}(p) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} p(\sigma Y)$$

$$||Y|| = y_1 + \dots + y_n$$

For knapsack and the sum-of-roots-of-unity,

 $\mathbb{E}(p)$ and the evaluation of $\mathrm{Sym}(p)$ in some point are related

THM. (Blekherman) $p \in \mathbb{C}[Y]$ of degree d

$$\operatorname{Sym}(p \cdot p^*)(Y) = \sum_{j=1}^{d} p_{d-j}(\|Y\|) p_{d-j}^*(\|Y\|) \prod_{i=0}^{j-1} (\|Y\| - i)(n - \|Y\| - i)$$

Size lower bounds

- The technique is a non-trivial adaptation of Sokolov's **gadgets** from $\{\pm 1\}$ variables to generic Fourier variables. [S'20]

- The technique is a non-trivial adaptation of Sokolov's **gadgets** from $\{\pm 1\}$ variables to generic Fourier variables. [S'20]
- A degree-D $SOS_{\mathbb{C}}$ lower bound for P, implies a monomial size lower

bound for
$$P \circ g$$
 of the form $\exp\left(\frac{(D-d)^2}{\kappa^{\kappa}n}\right)$

- The technique is a non-trivial adaptation of Sokolov's **gadgets** from $\{\pm 1\}$ variables to generic Fourier variables. [S'20]
- A degree-D $SOS_{\mathbb{C}}$ lower bound for P, implies a monomial size lower

bound for
$$P \circ g$$
 of the form $\exp\left(\frac{(D-d)^2}{\kappa^{\kappa}n}\right)$

- The gadget could be taken as a sum of variables and hence it transforms instances of SRU into itself.

For what \overrightarrow{c} , r the knapsack $\operatorname{Kn}_{\overrightarrow{c},r}$ is hard for $SOS_{\mathbb{R}}$?

For what \overrightarrow{c} , r the knapsack $\operatorname{Kn}_{\overrightarrow{c},r}$ is hard for $SOS_{\mathbb{R}}$?

For what \overrightarrow{c} , r the knapsack $\operatorname{Kn}_{\overrightarrow{c},r}$ is hard for $SOS_{\mathbb{R}}$?

Find new techniques to prove size lower bounds in $SOS_{\mathbb{C}}$ for encodings based on non-binomial ideals, e.g. for the $\{1,2\}$ -encoding.

For what \overrightarrow{c} , r the knapsack $\operatorname{Kn}_{\overrightarrow{c},r}$ is hard for $SOS_{\mathbb{R}}$?

Find new techniques to prove size lower bounds in $SOS_{\mathbb{C}}$ for encodings based on non-binomial ideals, e.g. for the $\{1,2\}$ -encoding.

For what \overrightarrow{c} , r the knapsack $\operatorname{Kn}_{\overrightarrow{c},r}$ is hard for $SOS_{\mathbb{R}}$?

Find new techniques to prove size lower bounds in $SOS_{\mathbb{C}}$ for encodings based on non-binomial ideals, e.g. for the $\{1,2\}$ -encoding.

Prove degree/size lower bounds in $PC_{\mathbb{C}}/SOS_{\mathbb{C}}$ for 3-Coloring on an Erdos-

Renyi random graph and with the Fourier encoding. Known worst case degree

Known worst case degree

lower bounds in $PC_{\mathbb{C}}$ [LN'17]

Thanks

Questions?

- Non-Boolean encodings
- o Polynomial Calculus over C
- $^{\circ}$ Sum-of-"Squares" over $\mathbb R$ and $\mathbb C$
- Sums of Roots of Unity and Knapsack
- Lower bound techniques
- Open problems