PageRank实验报告

一、数据集说明

本次实验中使用的数据集为示例中给出的数据集 Data.txt ,包含 node 8297个, link 135737条。其中出度为0的节点共计2187个,详细信息存储于 degree.txt

2007	95.7	- TO 1				第 年 第
Data.txt - 记	事本	a deg	gree.txt - 记事本			
文件(F) 编辑(E)	格式(文件(F)	编辑(E) 格式(O)	查看(V) 帮助	力(H)	
2222 5878		1371	out_deg	ree: 31		in_degree10
1240 1249		1372	out_deg	ree: 28		in_degree19
5880 3433		1373	out_deg	ree: 18		in_degree21
6479 6339		1374	out_deg	ree: 28		in_degree18

二、实验原理

1. 数量假设

当在网页模型图中,一个网页接受到的其他网页指向的入链(in-links)越多,说明该网页越重要。

2. 质量假设

当一个质量高的网页指向(out-links)一个网页,说明这个被指的网页重要。

3. 基本原理

一般 PageRank 的定义意味着互联网浏览者,按照以下方法在网上随机游走:任意一个网页上,浏览者或者以概率 teleport 决定按照超链接随机跳转,这时以等概率从连接出去的超链接跳转到下一个网页;或者以概率 (1-teleport) 决定完全随机跳转,这时以等概率 1/n 跳转到任意一个网页。第二个机制保证从没有连接出去的超链接的网页也可以跳转出。

三、关键代码解析

Init 函数

```
1 int Init(const char* filename)
2 {
3     fstream input(filename);
4     Node_ID from = 0;
5     Node_ID to = 0;
6     while (!input.eof() && input >> from >> to)
```

```
8
                     in_page[to].push_back(from);
                     out_page[from].push_back(to);
 9
                     Node num = \max(\text{Node num, }\max(\text{from, to}));
10
            }
11
            input.close();
12
            in degree.resize(Node num + 1);
13
            out_degree.resize(Node_num + 1);
14
15
            for (unsigned int i = 0; i <= Node_num; i++)</pre>
16
            {
17
                     in_degree[i] = in_page[i].size();
                     out_degree[i] = out_page[i].size();
18
            }
19
            unsigned int count = Node_num;
20
            for (unsigned int i = 0; i <= Node_num; i++)</pre>
21
22
                     if (in_degree[i] == 0 && out_degree[i] == 0)
23
24
                     {
25
                              count--;
26
27
28
            return count + 1;
29 }
```

- 1 **功能**:该函数负责从指定的文件名(filename)读取网络链接数据,构建网络图结构,并统计节点的入度、出度等信息。
- 2 具体实现:
- 3 **打开文件**:使用std::fstream打开指定的文本文件(Data.txt)。
- 4 **读取数据**:逐行读取文件内容,每行包含两个整数(from和to),代表一条从节点from到节点to的有向边。将这些边信息添加到in_page和out_page映射表中,分别表示节点的入链和出链。同时,更新全局变量Node_num以存储当前网络中的最大节点ID。
- 5 **计算节点入度和出度**:关闭文件后,根据已构建的网络图,为所有节点(包括未出现在边数据中的节点)分配入度和出度数组,并按节点ID填充其实际入度和出度值。
- 6 **统计有效节点数量**:遍历节点的入度和出度数组,减去那些入度和出度均为0的孤立节点数量,最终返回有效节点数量(即参与PageRank计算的节点数量)。
- 7 输出:返回一个整数,表示有效节点的数量。

get_rank 函数

```
1 void get_rank(int n, double teleport)
2 {
3         old_rank.resize(Node_num + 1, 0);
```

```
new_rank.resize(Node_num + 1, 1.0 / n);
 5
            double loss = 0.0;
            do
 6
 7
            {
                    loss = 0.0;
 8
 9
                    for (auto i : in_page)
10
                             new_rank[i.first] = 0.0;
11
12
                             for (int j = 0; j < i.second.size(); j++)</pre>
13
                                     if (out_degree[i.second[j]] != 0)
14
15
                                              new_rank[i.first] += teleport *
16
   (old_rank[i.second[j]] / out_degree[i.second[j]]);
17
                                     }
18
                                      else
19
                                      {
20
                                             new_rank[i.first] += 0;
21
                                     }
22
                            }
23
                    }
                    double S = 0.0;
24
25
                    for (auto i : new_rank)
26
                             S += i;
27
28
29
                    for (int i = 0; i < new_rank.size(); i++)</pre>
30
                             new_rank[i] += (1.0 - S) / n;
31
32
                    for (int i = 0; i < new_rank.size(); i++)</pre>
33
34
                             double temp = new_rank[i] - old_rank[i];
35
                             if (temp > 0)
36
37
38
                                     loss += temp;
39
                             }
                             else
40
                             {
41
42
                                     loss -= temp;
43
                             }
44
                    for (int i = 0; i < new_rank.size(); i++)</pre>
45
46
                    {
47
                             old_rank[i] = new_rank[i];
48
                    cout << "current loss: " << loss << endl;</pre>
49
```

```
50
            } while (loss > STOPLOSS);
            cout << "final loss: " << loss << endl;</pre>
51
            ofstream result("result.txt");
52
            for (auto i : in page)
53
54
            {
                     result << i.first << "\t" << new_rank[i.first] << endl;</pre>
55
56
            result.close();
57
58
            return;
59 }
```

- 1 **功能**: 该函数实现Google PageRank算法,计算网络中节点的排名。参数n表示有效节点数量,teleport是随机跳转概率。
- 2 具体实现:
- 3 **初始化**: 为所有节点分配初始排名值。所有节点的初始PageRank值设为1/n,存储在new_rank数组中; old rank数组用于保存上一轮迭代的PageRank值。
- 4 迭代计算: 执行以下循环,直到PageRank值变化小于给定阈值(STOPLOSS)为止:
- 5 a. **更新PageRank值**:对于每个节点,根据其入链节点的PageRank值及其出链数量重新计算其 PageRank值。同时,根据随机跳转概率teleport进行调整。对于没有出链的节点,其贡献为0。
- 6 b. **归一化**: 计算当前PageRank值总和,将其与n相减后平均分配给所有节点,确保PageRank值总和为1。
- 7 c. **计算损失**: 计算当前PageRank值与上一轮PageRank值之间的差异(绝对值之和),作为损失值。
- 8 d. 更新旧值:将当前PageRank值复制到old_rank数组,准备下一轮迭代。
- 9 **输出结果**:将最终PageRank值写入到result.txt文件中,格式为"节点ID"和"PageRank值"的对应关系。
- 10 输出:将PageRank结果写入到文件result.txt中。

gettop100 函数

```
1 void gettop100()
 2 {
 3
            for (int i = 0; i < new_rank.size(); i++)</pre>
            {
 4
                    Node_score[i] = new_rank[i];
 5
 6
            vector<PAIR> nodes_top(Node_score.begin(), Node_score.end());
            sort(nodes_top.begin(), nodes_top.end(), cmp_value);
 8
            ofstream topnode("top100.txt");
 9
           for (int i = 0; i < 100; i++)
10
11
                    topnode << nodes_top[i].first << '\t' << nodes_top[i].second</pre>
12
   << endl;
```

```
13     }
14     topnode.close();
15     return;
16 }
```

- 1 **功能**:该函数从已计算得到的PageRank值中,提取排名前100的节点及其得分,并将结果写入到 top100.txt文件中。
- 2 具体实现:
- 3 **创建排序键值对**:将new_rank数组中的节点ID及其对应的PageRank值封装成PAIR类型(std::pair<Node_ID, double>),并存入Node_score映射表中。
- 4 排序: 使用std::sort对节点PageRank值进行降序排列。
- 5 **输出**:将排名前100的节点ID及其PageRank值写入到top100.txt文件中,每行包含一个节点的ID和 PageRank值。
- 6 输出:将排名前100的节点及其得分写入到文件top100.txt中。

四、实验结果及分析

程序运行后得到对应 teleport 下的结果,分别为 result.txt、degree.txt、top100.txt。

其中 result.txt 为所有节点及其对应的 PageRank 值, degree.txt 为所有节点对应的 入度 与 出度 , top100.txt 为 PageRank 值从高到低的前一百个节点及其 PageRank 值。

此处我们以两组数据进行对比说明(teleport分别为0.85、0.90)

degree.txt:

degr	ee.txt - 记事本			
文件(F) 4	编辑(E) 格式(O) 查看(V) 帮助(H)			
0	out_degree: 0		in_degre	ee0
1	out_degree: 1		in_degre	ee15
2	out_degree: 28		in_degre	ee17
3	out_degree: 27		in_degre	ee26
4	out_degree: 0		in_degre	ee20
5	out_degree: 34		in_degre	ee15

该文件标明了各节点的对应的 入度 与 出度 ,且与 teleport 取值无关,只随初始数据集而变化 result.txt:

文件(F) 纠	编辑(E) 格式(O)	查看(V)	帮助	文件(F)	编辑(E)	格式(O)	查看(V)	帮助(H)	
2726	宇	8.07596	e-05		2726	7	.00643	e-05		
2727		7.54442	e-05		2727	6	.48754	e-05		
2728	宇	9.54346	e-05		2728	8	3.32792	e-05		
2729		8.16516	e-05		2729	7	.03671	e-05		
2730	字	0.00087	186		2730	C	0.00115	655		
2731		7.95059	e-05		2731	6	.85445	e-05		
2732		0.000110	0758		2732	9	.75866	e-05		
2733		9.26844	e-05		2733	8	3.07906	e-05		

对比两组数据,可以发现随着 teleport 的增加,原数据中 PageRank 值较大的增大,较小的减小,即数据更加分散。这个结果是符合预期的, teleport 值越大,则 PageRank 值更接近原来的 网络关系分布,归一化分配的平均值更小,数据更加分散。一个极端的例子是当 teleport 为0时,所有节点的 PageRank 值都相等。

top100.txt:

top100(0.85).txt - 记事本	■ top100(0.90).txt - 记事本				
文件(F) 编辑	(E) 格式(O) 查看(V) 帮	文件(F) 编	辑(E) 格式(O) 查看(V) 帮	部助(H)		
2730	0.00087186	2730	0.00115655			
7102	0.000854534	7102	0.00113552			
1010	0.000849616	1010	0.00112895			
368	0.000835903	368	0.00111009			
1907	0.000830595	1907	0.0011036			
7453	0.000820647	7453	0.00108427			
4583	0.000817883	4583	0.00108404			

对比两组数据,发现随着 teleport 的变化,节点 PageRank 值的变化符合上一部分的分析,且可以看到改变 teleport 的值只会改变各节点的 PageRank 值,而不会影响各节点的最终排名。