Teenage Pregnancy in Bungoma County – Exploratory Data Analysis (EDA) Report

Analyst: Elizabeth Nyadimo

Organization: Elevate Analytics & Consulting

Date: June 2025

Teenage pregnancy remains a pressing public health and social issue in Bungoma County. While national and regional efforts aim to improve youth reproductive health, this analysis seeks to understand local-level dynamics. The goal is to uncover whether access to services and programs translates into reduced teenage pregnancy rates — and if not, where to look next.

STEP 1: Import Necessary Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

sns.set(style="whitegrid")

# Apply custom yellow-green color palette
custom_palette = ["#FFD700", "#32CD32"] # Yellow & LimeGreen
sns.set_palette(custom_palette)
```

STEP 2: Read Dataset

```
In [58]: df=pd.read_excel("Bungoma Teenage Pregnancy Raw Data.xlsx")
```

a) Display the top 5 records of the dataset

```
In [59]: df.head()
```

Out[59]:		SubCounty	Ward	Village	TeenPregnancyRate	SchoolDropouts	HealthCenters	Cı
	0	Mt Elgon	Cheptais	Kamosong	16.4	20	2	
	1	Mt Elgon	Cheptais	Chebwek	21.5	18	1	
	2	Mt Elgon	Cheptais	Chepkube	24.1	22	0	
	3	Mt Elgon	Cheptais	Kipsis	17.8	19	2	
	4	Mt Elgon	Cheptais	Kapsesoi	19.8	17	0	
	4		_	_				

b) .Display the last 5 records of the dataset

In [60]: df.tail()

[60]:		SubCounty	Ward	Village	TeenPregnancyRate	SchoolDropouts	HealthC
	766	Tongaren	Soysambu/Mitua	Narati	24.2	11	
	767	Tongaren	Soysambu/Mitua	Maresi Maket	17.1	12	
	768	Tongaren	Soysambu/Mitua	James Mwei	13.9	10	
	769	Tongaren	Soysambu/Mitua	Matisi	24.0	11	
	770	Tongaren	Soysambu/Mitua	Brigadia Makutano	16.7	12	

STEP 3: Data Sanity Check

a) Check Shape

In [61]: df.shape

Out[61]: (771, 8)

b) Check Information

In [62]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 771 entries, 0 to 770 Data columns (total 8 columns): Column Non-Null Count Dtype -----_____ SubCounty 0 771 non-null object 1 Ward 771 non-null object 2 Village 771 non-null object 3 TeenPregnancyRate 771 non-null float64 SchoolDropouts 771 non-null int64 5 HealthCenters 771 non-null int64 ContraceptiveAccess 771 non-null object 7 EducationPrograms 771 non-null object dtypes: float64(1), int64(2), object(5)

memory usage: 48.3+ KB

c) Finding Missing Values

```
df.isnull().sum()
In [63]:
         SubCounty
                                 0
Out[63]:
         Ward
                                 0
         Village
         TeenPregnancyRate
         SchoolDropouts
                                 0
         HealthCenters
                                 0
         ContraceptiveAccess
                                 0
          EducationPrograms
         dtype: int64
         d) Finding duplicates
        df.duplicated().sum()
In [64]:
Out[64]: 0
```

STEP 4: Exploratory Data Analysis (EDA)

a) Descriptive Statistics

Numerical columns

```
df.describe().T
In [65]:
Out[65]:
                                                              25%
                                                                    50%
                              count
                                         mean
                                                         min
                                                                          75%
                                                                                max
          TeenPregnancyRate
                             771.0 19.258366 3.922952 12.5
                                                               15.9
                                                                     19.5
                                                                           22.7
                                                                                26.0
             SchoolDropouts
                              771.0 12.822309 2.587848 10.0
                                                               11.0
                                                                     12.0
                                                                          14.0
                                                                                24.0
                              771.0
               HealthCenters
                                      1.024643 0.815859
                                                          0.0
                                                                0.0
                                                                      1.0
                                                                            2.0
                                                                                 2.0
```

Teenage pregnancy is widespread, averaging 19.3%, with some villages experiencing rates as high as 26%.

School dropout rates also average 12.8%, with a noticeable spread.

Health center availability is limited — nearly 25% of villages have no facility at all.

Object columns

In [66]:	<pre>df.describe(include="object").T</pre>				
Out[66]:		count	unique	top	freq
	SubCounty	771	9	Mt Elgon	129
	Ward	771	45	Lwandanyi	34
	Village	771	659	Sango	6
	ContraceptiveAccess	771	2	No	486
	EducationPrograms	771	2	No	501

While most villages lack contraceptive access and youth-focused education programs, some with these services still show high pregnancy rates.

b) Univariate Analysis

Categorical features (Object Columns)

```
In [81]: categorical_cols = ['SubCounty', 'Ward', 'Village', 'ContraceptiveAccess', 'Educati
         for col in categorical_cols:
             plt.figure(figsize=(10, 5))
             # If the column has many unique categories, show top 10
             if df[col].nunique() > 15:
                 top_categories = df[col].value_counts().nlargest(10)
                 sns.barplot(x=top_categories.index, y=top_categories.values, palette='virid
                 plt.title(f'Top 10 Most Frequent {col}')
                 plt.ylabel('Count')
                 plt.xlabel(col)
                 plt.xticks(rotation=45)
             else:
                 sns.countplot(x=col, data=df, palette='Set2')
                 plt.title(f'Distribution of {col}')
                 plt.xticks(rotation=45)
             plt.tight_layout()
             plt.show()
```


Numerical features

```
In [73]: # List of numerical columns
numerical_cols = ['TeenPregnancyRate', 'SchoolDropouts', 'HealthCenters']

for col in numerical_cols:
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution of {col}')
    plt.show()
```


c)Bivariate Analysis

Categorical vs Target (TeenPregnancyRate)

```
In [84]: categorical_cols = ['ContraceptiveAccess', 'EducationPrograms', 'SubCounty', 'Ward'

for col in categorical_cols:
    plt.figure(figsize=(12, 6 ))
    sns.boxplot(x=col, y='TeenPregnancyRate', data=df)
    plt.title(f'{col} vs TeenPregnancyRate')
    plt.xticks(rotation=90)
    plt.tight_layout()
    plt.show()
```



```
In [86]: numerical_cols = ['SchoolDropouts', 'HealthCenters']
for col in ['SchoolDropouts', 'HealthCenters']:
    plt.figure(figsize=(6, 4))
    sns.scatterplot(x=col, y='TeenPregnancyRate', data=df)
    sns.regplot(x=col, y='TeenPregnancyRate', data=df, scatter=False, color='red')
    plt.title(f'{col} vs TeenPregnancyRate')
    plt.tight_layout()
    plt.show()
```


d)Correlation Analysis

None of the structural or programmatic variables show a strong or even moderate correlation with teenage pregnancy.

School dropouts show only a very weak positive association, suggesting potential cooccurrence rather than causation.

e) Outliers & Insights

Boxplot of SchoolDropouts

Boxplot of HealthCenters

What the Data Is Telling Us

Widespread Issue, Poorly Explained

Even villages with health centers, contraceptives, and education programs report high teen pregnancy. This suggests:

- Structural presence ≠ Utilization or effectiveness
- The problem is deeper than service availability

Dropout Rates Are Not the Whole Story

With only +0.07 correlation:

 Dropouts and pregnancy may co-occur due to shared root causes like poverty, early marriage, or lack of aspiration — not necessarily causality

Health Centers Might Not Be Adolescent-Friendly

 A facility's existence doesn't guarantee confidentiality, non-judgmental care, or youthspecific services.

Contraceptive and Education Programs Lack Depth

Presence alone isn't enough. Are these programs:

- Age-appropriate?
- Community-accepted?
- Delivered by trained staff?
- Monitored for quality?

Recommendations

Gap Identified	Recommendation
Weak link between presence & outcomes	Conduct qualitative assessments (e.g., FGDs, interviews) on barriers to usage
Unclear program impact	Evaluate program quality, delivery, and youth engagement
Cultural/social drivers suspected	Engage parents, religious leaders, elders, and peer influencers
Lack of holistic approach	Include mental health, mentorship, life skills, and economic empowerment

What to Explore Next

To go beyond surface-level indicators, future data collection should include:

- Household income and poverty levels
- Parental involvement and support
- Peer pressure and relationships
- Age at first sexual encounter
- Social norms and beliefs about early marriage and gender roles

Insight: The data shows the map — not the full terrain. It reveals where to dig deeper, not necessarily why things happen.

Strategic Next Steps

Action Area	What to Do
Deep-Dive Assessments	Case studies, ethnographic research, community storytelling
Improve Program Quality	Evaluate content, staff capacity, delivery methods

Action Area	What to Do				
Tailored Interventions	Adapt strategies to specific wards and villages				
Youth Engagement	Let young people co-create solutions and be part of decision-making				

Final Takeaway

"Availability does not equal access, and access does not guarantee impact."

This analysis challenges assumptions that services alone reduce teenage pregnancy. It calls for **multi-dimensional strategies** that address the **social, behavioral, and psychological** aspects of adolescent life in Bungoma.

Done by: Elizabeth Nyadimo

For: Elevate Analytics & Consulting

📰 Date: June 2025 | 🣍 Bungoma County, Kenya

"Turning Data Into Impact."

No description has been provided for this image