Laporan Tugas Pemrograman - Diffie Hellman

Rakina Zata Amni, 1306398951 Kelas A - Asdos Dinda Susanti

Diffie Hellman

Algoritma Diffie Hellman adalah algoritma yang digunakan untuk mendapatkan *shared key*/kunci rahasia bersama. Kunci yang didapatkan dari algoritma ini dapat digunakan untuk enkripsi. Sang pengirim dapat mengenkripsi dengan kunci yang didapat dan sang penerima dapat mendekripsi dengan kunci yang didapat.

Cara Kerja Algoritma Diffie Hellman

- Kedua pihak (sebut saja Alice dan Bob) pertama-tama harus menyetujui sebuah bilangan prima p dan bilangan bulat q yang merupakan primitive root modulo p.
- Setelah itu, Alice akan memilih sebuah bilangan bulat rahasia a, dan Bob akan memilih sebuah bilangan bulat rahasia b. Alice lalu akan menghitung $A = g^a \mod p$ dan Bob akan menghitung $B = g^b \mod p$.
- Alice lalu akan mengirimkan **A** ke Bob dan Bob akan mengirimkan **B** ke Alice.
- Alice akan menghitung *shared key*nya, yaitu $B^a \mod p$. Bob akan menghitung *shared key*nya, $A^b \mod p$.
- Perhatikan bahwa $A^b \mod p = B^a \mod p = g^{ab} \mod p$.
- Alice dan Bob kini memiliki *shared key* yang sama dan rahasia.

Mengapa algoritma Diffie Hellman dapat dibilang aman?

Perhatikan bahwa informasi-informasi yang bisa kita dapatkan secara publik hanyalah nilai p, g, A, dan B. Untuk mendapatkan shared key, kita harus menemukan salah satu dari a atau b. Ini sama saja dengan discrete logarithm problem, dimana kita harus mencari y dan kita hanya diberitahu x dan x^y . Kita harus mencoba semua kemungkinan untuk nilai a (atau b), dimana banyak kemungkinan nilainya sangat besar. Jika nilai p sangat besar, tentu saja hal ini akan memakan waktu yang lama. Ini berarti algoritma Diffie Hellman susah dipecahkan dan aman.

Cryptanalysis algoritma Diffie Hellman

Di algoritma *cryptanalysis* saya, saya mencari nilai \boldsymbol{a} dengan cara mencoba semua kemungkinan nilai \boldsymbol{a} . Karena g adalah *primitive root* modulo p, nilai \boldsymbol{a} yang harus kita cek adalah 0..p-1. Setelah kita dapatkan nilai \boldsymbol{a} (dengan mengecek apakah \boldsymbol{g}^a mod $\boldsymbol{p} = \boldsymbol{A}$), kita bisa mendapatkan shared keynya dengan menghitung \boldsymbol{B}^a mod \boldsymbol{p} . Agar dapat menghitung pangkat dengan cepat,

saya menggunakan algoritma perpangkatan modular yang membutuhkan waktu *O(log N)*. Maka kompleksitas algoritma saya adalah *O(P log P)*. Program saya dapat berjalan di bawah 1 detik untuk nilai P yang relatif kecil (dibawah 10 juta).

Program Saya

Saya membuat program untuk menyimulasikan algoritma Diffie Hellman dan *cryptanalysis* terhadap algoritma Diffie Hellman yang menggunakan bilangan prima yang kecil. Program saya menggunakan bahasa C++ dan menempatkan anda sebagai Alice. Saya juga membuat versi *web-app* dalam bahasa PHP. Inti dari kedua program tersebut sama saja.

Halaman di kawung

mahasiswa.cs.ui.ac.id/~rakina.zata/md2/diffie.html

Referensi

Dalam mengerjakan tugas ini, saya membaca dan menonton berbagai sumber di internet yang menjelaskan algoritma Diffie Hellman. Sumber-sumber tersebut adalah:

Wikipedia

Khan Academy