

Outline

- Parallel application:
 - What is the need? ... Laptop is not enough
 - How to make it parallel? ... Scalability
- Running a parallel application on the HPC cloud
- Hands-on: Extras!

SURFsara @SURFsara_NL · Jun 22

Why do I Need SURFsara Cloud Facility in My Research? #abl #cfd slideshare.net /aliabbasicivil ... via @SlideShare

Highly demanding applications for **compute** and **storage** resources to:

- Analyse larger computational domains
- Analyse larger volume of data
- Achieve higher accuracy
- Retrieve the results faster

Scalability: system & software

- System add (virtual) hardware
 - Distributed memory systems
 - Shared memory systems

- Software optimise the application
 - Develop code, e.g. MPI, OpenMP
 - · Out of the box tools, e.g. Matlab, OpenFOAM, D-Flow FM

System architecture

 Distributed memory systems

 Shared memory systems

Software optimisation (1)

- Develop your code find opportunities for parallelisation
 - OpenMP, MPI advanced programming skills
 - Optimisation techniques partitioning tasks / data

Software optimisation (2)

Out of the box tools

Running a parallel application on the HPC cloud

- Access the UI
- Prepare OS Image
- Create the Template
- Instantiate VM(s)
 - single-VM, single-core
 - single-VM, multi-core
 - multi-VM, multi-core
 (master/workers cluster)

Scaling up vs. Scaling out

How? Scaling up

- HPC Cloud Applications
 - High memory node (up to 1TB memory per VM)
 - Multicore VMs (up to 64 cores per VM)
 - Big data (hundreds of GB storage drives)
- See example in 'Extras': calculate pi with OpenMP

Scaling out (1)

- **HPC Cloud Applications**
 - Multiple independent VMs
 - E.g. performing the same application
 - Up to your quota limit & capacity

Scaling out (2)

- HPC Cloud Applications
 - Multiple interconnected VMs
 - E.g. clusters, master/workers architecture
 - Up to your quota limit & capacity
- See example in 'Extras': xBeach with MPI

What makes HPC difficult?

- · Scaling up
 - Amdahl's law
 - Easy, but expensive
- Scaling out
 - More machines more problems
 - Machines fail
 - Networks fail
 - Heterogeneous hardware
 - Latencies
 - Data locality
- Key questions...

Key questions

Define your specific requirements:

- Number of cores, Memory, Wall-clock time, data volumes
- Pipelines: what is shared in tasks, what needs to be communicated
- Data locality (private or shared)
- Wall-clock vs. CPU time
- Operating system, software (licensing programs) and databases
- Network interfaces (private or public) virtual cluster
- Balance effort: system / software scalability

Hands-on: Extras

Continue from:

https://doc.hpccloud.surfsara.nl/UvAworkshop-2016-01-25/ UvAworkshop-2016-01-25

- Finish Part A & B
- Move to Extras!

