Decision Tree

Liang Liang

Decision Tree Example

Assume a person only knows the following 6 objects:

One day, a person saw a picture of an object, then this guy tried to figure out the name of the object using a decision tree.

The person asked many yes-no questions

A data sample has three binary features: [alive, fly, carry_more_than_10]

Decision Tree Example

Feature Vector *x*

$$x = \begin{bmatrix} x_{(1)} \\ x_{(2)} \end{bmatrix}$$
 width height

$$y = 1$$
 It is an apple

$$y = 0$$
 It is a lemon

Feature Space (Input Space)

Decision Tree Example

split the feature space

 $x_{(1)} \le t_1$: apple (majority voting) because there are 3 apples and 1 lemon $\chi_{(2)}$

a sample has two features $x_{(1)}$ and $x_{(2)}$

left region right region

 $x_{(1)} \le t_1$: apple

 $x_{(1)} > t_1 : lemon$

partition the left region

Given $x_{(1)} \leq t_1$,

 $x_{(2)} \le t_2$: apple

 $x_{(2)} > t_2 : lemon$

a tree is growing during training

partition of input space

the decision tree T1

test the decision tree T1

a testing data sample

another layer

We can further expand this tree such that every leaf node only contains one data sample

depth 0

6 samples [3, 3]

 $x_1 \le t_1$

 $x_1 > t_1$

depth 1

4 samples [3, 1]

2 samples

[0, 2]

3 leaf (terminal) nodes do not have child nodes

depth 2 ---

3 samples [3, 0]

 $x_2 \leq t_2$

1 sample

 $x_2 > t_2$

The depth of the tree is 2

partition of input space

the decision tree T2

partition of input space (three regions)

use the decision tree T2

a new data sample x

a region corresponds to a leaf note in the tree

partition of input space (three regions)

use the decision tree T2

a new data sample x

The data sample x falls into a region/node

Apply Decision Tree to the fruit dataset

The feature vector of a fruit sample: [width, height, color_score]

width ≤ 6.65 entropy = 1.869samples = 47 value = [15, 4, 14, 14] 1:apple, 2:mandarin True False 3:orange color_score ≤ 0.755 height ≤ 7.95 4:lemon entropy = 0.863entropy = 1.411samples = 14 samples = 33 value = [0, 4, 0, 10] value = [15, 0, 14, 4] width ≤ 7.35 width ≤ 7.4 entropy = 0.0entropy = 0.0entropy = 0.971entropy = 0.932samples = 10 samples = 4 samples = 23 samples = 10 value = [0, 0, 0, 10] value = [0, 4, 0, 0] value = [15, 0, 8, 0] value = [0, 0, 6, 4] color_score ≤ 0.85 entropy = 0.0entropy = 0.0entropy = 0.0entropy = 0.845samples = 6 samples = 12 samples = 4 samples = 11 value = [12, 0, 0, 0] \forall alue = [0, 0, 0, 4] \forall alue = [0, 0, 6, 0] value = [3, 0, 8, 0] color_score ≤ 0.725 dtree.score(X_train, Y_train) entropy = 0.0entropy = 0.503samples = 2samples = 9 value = [2, 0, 0, 0]1.0 value = [1, 0, 8, 0] dtree.score(X_test, Y_test) entropy = 0.0entropy = 0.0samples = 1samples = 8 0.8333333333333334 value = [1, 0, 0, 0]value = [0, 0, 8, 0]

$$x_{(1)}$$
 is width, $t_1 = 6.65$

width ≤ 6.65
entropy = 1.869
samples = 47
value = [15, 4, 14, 14]

 $x_{(1)} \le t_1$

True

False $x_{(1)} > t_1$

color_score ≤ 0.755
entropy = 0.863
samples = 14
value = [0, 4, 0, 10]

 $x_{(3)}$ is color_score

 $x_{(2)}$ is height

 $x_{(2)}$ is height

 $x_{(2)}$ is height

 $x_{(3)} = 0.755$

visualize a decision tree: using graphviz

visualize a decision tree: using plot_tree in sk-learn

Entropy of a discrete random variable

- a discrete random variable Ythe value of Y could be $a_1, a_2,, a_K$
- it has a probability mass function (PMF): $p(y = a_k) = p_k$
- the entropy is defined to be

$$H(Y) = -\sum_{k=1}^{K} p_k \log(p_k) \ge 0$$

$$H(Y) \equiv H(p)$$

• Example: P(Y = 1) = b and P(Y = 0) = 1 - bH(Y) = -blog(b) - (1 - b)log(1 - b)

width ≤ 6.65 entropy = 1.869 samples = 47 value = [15, 4, 14, 14]

PMF: probability mass function

On this node:

the distribution (PMF) over the 4 classes is $\begin{bmatrix} p_1 & p_2 & p_3 & p_4 \end{bmatrix}$

$$p_1 = \frac{15}{47}, p_2 = \frac{4}{47}, p_3 = \frac{14}{47}, p_4 = \frac{14}{47}$$

Entropy
$$H(p) = -\sum_{k=1}^{4} p_k \log_2(p_k) = 1.869$$

entropy = 0.0 samples = 12 value = [12, 0, 0, 0]

On this node:

the distribution (PMF) over the 4 classes is $[p_1 \quad p_2 \quad p_3 \quad p_4]$

$$p_1 = \frac{12}{12} = 1$$
, $p_2 = 0$, $p_3 = 0$, $p_4 = 0$

Entropy
$$H(p) = -\sum_{k=1}^{4} p_k \log_2(p_k) = 0$$

Define: $0 \log_2(0) \equiv 0$

This node only contains apples $(p_1 = 1)$. It is a pure node (of apples)

Use a trained decision tree for classification

- Assume that a tree has been trained (fitted) on the training set.
- A new sample x needs to be classified
- The sample x will eventually fall into one of the leaf nodes.
- The majority class of the training samples in the leaf node is C.
- The predicted class label of the new sample x is C

DecisionTreeClassifier

class sklearn.tree. DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0) [source]

Use a trained decision tree for regression

- Assume that a tree has been trained (fitted) on the training set.
- A new sample x needs to be classified
- The sample *x* will eventually fall into one of the leaf nodes.
- The average target value of the training samples in the leaf node is C.
- The predicted target value (e.g. price) of the new sample x is C

DecisionTreeRegressor

```
class sklearn.tree. DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort='deprecated', ccp_alpha=0.0) [source]
```