Grundlagen der Kernfusion 2

- Grundlagen der Kernfusion
- Geschichte der Kernfusion
- Stellare Kernfusion
- Kernfusion zur Energiegewinnung
- Quellen

- Verschmelzen von Atomkernen
- Kerne müssen Coulombbarriere überwinden / durchtunneln
- Sowohl exotherme als auch endotherme Fusionsreaktionen
- Exothermität / Endothermität durch Massendefekt zu erklären

Stellare Kernfusion 4

Geschichte der Kernfusion 3

- 1917, Lange vor Kernspaltung entdeckt
- 1920 als Energiequelle von Sternen erkannt
- 1952/53 erste auf Fusion bassierende Wasserstoffbombe

- Seit Entwicklung der Fissions-Bombe Forschung an wirtschaftlicher Nutzung

- Proton-Proton-Reaktion
 - Startreaktion: $^{2}\mathrm{H} + ^{1}\mathrm{H} \rightarrow ^{3}\mathrm{He} + \gamma + 5{,}493~\mathrm{MeV}$
 - Folgereaktion: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2{}^{1}\text{H} + 12,86 \text{ MeV}$
 - 2 weitere Reaktionsreihen, geringer anteil an Energiebilanz
- Hauptreaktion der Sonne
- ca. 1.4 × 10¹⁰ Jahre bis Start reaktion pro Proton
- + 26.196 MeV

- Kleinere Sterne Proton-Proton-Reaktion
- Größere Sterne Bethe-Weizsäcker-Zyklus
- Entstehung von Kernen bis A = 60 70

Cu,Zn,Ga

Bethe-Weizsäcker-Zyklus

- ${}^{12}_{6}\text{C} + {}^{1}_{1}\text{H} \rightarrow {}^{13}_{7}\text{N} + \gamma + 1,96 \text{ MeV}$
- ${}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e} + 1,37 \text{ MeV}$
- ${}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e} + 1,37 \text{ MeV}$
- ${}^{12}_{6}\text{C} + {}^{1}_{1}\text{H} \rightarrow {}^{14}_{7}\text{N} + \gamma + 7,54 \text{ MeV}$ • ${}^{14}_{7}\text{N} + {}^{1}_{1}\text{H} \rightarrow {}^{15}_{8}\text{N} + \gamma + 7,35 \text{ MeV}$
- ${}^{15}_{8}O \rightarrow {}^{15}_{7}N + e^{+} + \nu_{e} + 1{,}73 \text{ MeV}$
- ${}^{15}_{7}N + {}^{1}_{1}H \rightarrow {}^{12}_{6}C + {}^{4}_{2}He + 4,96 \text{ MeV}$
- M > M_{Sonne} für sig. Effekt auf Energiebilianz
- Ab 14×10^{60} Kelvin
- +25.03 MeV
- 1.193 MeV weniger als P-P-Reaktion

Kernfusion zur Energiegewinning

Kernfusion zur Energiegewinning

Weitere Denkbare Reakionen

Plasma elektronen werden von Kern getrennt Ionen können durch magnetfeld abgelenkt werden

- Deuterium-Tritium-Reakion
 - ${}^{2}D + {}^{3}H \rightarrow {}^{4}He + n + 17.58 \text{ MeV}$
- Lawson-Kriterium muss erfüllt sein $(T \cdot \rho \cdot \tau_E)$
- $T = 150 \cdot 10^6$ Kelvin

• $\rho \ll \rho_{Sonne}$

- D/D: $D + D \rightarrow p + T + 4.0 \text{ MeV}$
- H3/H3: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2 \text{ p} + 12.9 \text{ MeV}$
- B11/p $^{11}\text{B} + \text{p} \rightarrow 3 \,^{4}\text{He} + 8.7 \,^{4}\text{MeV}$

Alle ineffizienter oder schwerer zubeschaffede Stoffe

 $> 6e28 \text{ sK/m}^3$ Tau e=

Einschlusszeit

Tokamak-Architektur

Tokamak-Architektur

Pro:

• Simple Geometrie

Contra:

• Kann nur im Pulsbetrieb laufen

Toroidalfeldspulen schließen plasma ein, Transformator induziert Strom von vielen Hundertausend-Mio Amp was plasma in bewegung setzt, Plasmaring agiert als Windung Der Transformatorspule

Plasma heizt sich durch elektrischen wiederstand weiter auf

Plasma erzeug eigenes B-Feld(Poloidalfeld) Vertikalfeldspulen zur Stabilisierung

Aufheizen durch Transformator nur im Pulsbetrieb da Transformator auf wechselnden Strom angewiesen ist.

Mikrowellenheizung ermöglicht weiteren Betrieb

Stellarator-Architektur

Plasma wird ausschließlich durch Äußere Spulen eingefangen, kein Transformator oder Vertikalfeld nötig auf Grund der komplexen geometrie

Hochfrequenzheizung oder Neutralteilchenheizung zum Betrieb nötig

Stellarator-Architektur

Pro:

- Kann im Dauerbetrieb laufen
- Transformator und Vertikalfeld nicht notwendig

Contra

• Komplexe Geometrie \rightarrow klompliziert in Bau und Betrieb

Energieumwandlung im Blanket

- Umwandlung von Neutronenenergie in Wärme
- Erbrüten von Tritium $^6{\rm Li} + {\rm n} \ \to \ ^4{\rm He} + ^3{\rm H} + 4{,}8 \ {\rm MeV}$
- Strahlenschutz

Blanket mit Kanälen durchzogen durch die Helium unter ungefähr 8megapascal druck fließt (80bar) Danach selbes Verfahren zur Wärme umwandlung wie bei Fissionsreaktor

Quellen

- $\bullet \ \, https://www.fusion.kit.edu/downloads/Kernfusion.pdf$
- $\bullet \ \, \rm https://de.wikipedia.org/wiki/Kernfusion$
- ullet https://www.fraunhofer.de