PHAS 1102 Physics of the Universe

1 - Radiation

Graziella Branduardi-Raymont gbr@mssl.ucl.ac.uk http://www.mssl.ucl.ac.uk/~gbr/PHAS1102

Radiation (ZG Ch. 8; FK Ch. 5)

When an electric charge is accelerated, electromagnetic energy is produced. This energy can be thought of as propagating as a wave – or, equally, as a particle:

wave-particle duality

The waves are usually referred to as **light waves** or **radiation**.

The particles are known as photons or quanta of light.

Electromagnetic waves (1)

Electromagnetic waves are transverse sine waves. For an EM wave travelling in the x direction, the electric field E at time t is

given by:

$$\underline{E} = \underline{E}_0 \sin \left[\frac{2\pi}{\lambda} (x - ct) \right] \quad \begin{array}{l} \lambda = \text{wavelength} \\ c = \text{speed of light} \\ t = \text{time} \end{array}$$

Electromagnetic waves (2) (ZG Ch. 8)

General equation, for e.m., acoustic, seismic, etc. waves:

$$h = h_0 \sin \left[\frac{2\pi}{\lambda} (x - vt) \right]$$

 λ = wavelength

v = propagation speed

t = time

If motion along positive *x* axis (progressive wave)

Two things happening: local oscillations and wave propagation

Electromagnetic waves (3)

General equation, for e.m., acoustic, seismic, etc. waves:

$$h = h_0 \sin \left[\frac{2\pi}{\lambda} (x - vt) \right]$$

 λ = wavelength

v = propagation speed

t = time

Freeze $t \rightarrow$ snapshot of wave at an instant

Electromagnetic waves (4)

General equation, for e.m., acoustic, seismic, etc. waves:

$$h = h_0 \sin \left[\frac{2\pi}{\lambda} (x - vt) \right]$$

 λ = wavelength

v = propagation speed

t = time

As t starts increasing, with v > 0, h goes $< 0 \Rightarrow$ convention OK!

Electromagnetic waves (5)

Time varying electric field produces perpendicular timevarying magnetic field (Maxwell's equations).

EM waves are self-propagating, i.e. they need no medium.

$$c =$$
 speed of light in m s⁻¹

$$\lambda$$
 = wavelength in m

$$\nu$$
 = frequency in Hz

$$c = \lambda v$$

$$c = 2.998 \times 10^8 \,\mathrm{m \ s^{-1}}$$

Note difference: c (speed of light) $\longleftrightarrow v$ (source velocity)!

Doppler effect

The Doppler effect is of fundamental importance in astrophysics.

The observed wavelength, λ , is different from the emitted wavelength, λ_0 , due to the radial velocity of the emitter with respect to the observer:

$$\frac{(\lambda - \lambda_0)}{\lambda_0} \equiv \frac{\Delta \lambda}{\lambda_0} = \frac{v}{c}$$

$$\lambda = \text{observed waveler}$$

$$\lambda_0 = \text{'rest' wavelength}$$

$$v = \text{source's radial ve}$$

 λ = observed wavelength

v = source's radial velocity

 $\lambda > \lambda_0$ implies a 'redshift' of the light, $\nu > 0$, the emitter is moving away from the observer

 $\lambda < \lambda_0$ implies a 'blueshift' of the light, $\nu < 0$, the emitter is moving towards the observer

'Astronomical redshift'

$$z \sim \frac{v}{c}$$

when $z \ll 1$

Quantum nature of light

Alternatively, light can be thought of as packets (or 'quanta') of energy called *photons*. Photon energy, E:

$$E = h v = \frac{hc}{\lambda}$$

$$\nu$$
 = frequency (Hz) h = Planck's constant (= 6.63 x 10⁻³⁴ J s)

high frequency

- ⇒ short wavelength
- ⇒ high energy

Examples of particle nature of light can be seen in:

- Photo-electric effect
- Atomic spectra

Units

Wavelength: SI units - metre, m

Optical/UV: **Angstrom**, **A** $1A = 10^{-10} \text{ m} = 10^{-8} \text{ cm} = 0.1 \text{ nm}$

nanometre, nm $1 \text{nm} = 10^{-9} \text{ m}$

Infrared: **micron**, μ **m** 1μ m = 10^{-6} m

Frequency: Sl units – Hertz, Hz

Radio: **Gigahertz**, **GHz** 1GHz = 10⁹ Hz

Energy: Sl units – Joules, J

X-ray: **electron volts**, **eV** $1eV = 1.6x10^{-19} J$

 $1keV = 1.6x10^{-16} J$

The electromagnetic spectrum

The electromagnetic spectrum

(Image created by NASA)

'Map' of the electromagnetic spectrum

Atmospheric absorption

Intensity, Luminosity and Flux (1)

Intensity I : Amount of energy emitted per unit time Δt , per source unit area ΔA , per unit frequency interval $\Delta \nu$, per unit solid angle $\Delta \Omega$ in a given direction (depends on direction!)

$$\Delta\Omega = \frac{\Delta a}{r^2}$$

Steradian (sr): Unit of solid angle (entire spherical surface: $\Delta a = 4\pi r^2 \rightarrow 4\pi \text{ sr}$)

Intensity units (e.g.): Joule s⁻¹ m⁻² Hz⁻¹ sr⁻¹

Intensity, Luminosity and Flux (2)

<u>Luminosity L</u>: Total energy emitted per unit time (second) from a spherical star of total surface A, over all frequencies and in all directions

$$L = 4\pi \int_{0}^{\infty} A I(v) dv$$

I(v): Monochromatic intensity (i.e. intensity emitted at specific frequency v)

Unit of luminosity: Watt = Joule s⁻¹

Intensity, Luminosity and Flux (3)

Monochromatic flux F(v): Amount of energy at frequency v received per unit time Δt , passing through a unit surface ΔS of the detector, per unit frequency interval Δv

$$F = \int_{0}^{\infty} F(v) dv$$

Unit of flux F(v): Joule s⁻¹ m⁻² Hz⁻¹

Energy flux from a star through concentric sphere at distance r:

$$\left| F = \frac{L}{4\pi r^2} \right| \text{ in}$$

in Joule s⁻¹ m⁻²

'Thermal' spectrum of radiation: Blackbody (1)

Blackbody: A body which absorbs all radiation incident upon it.

To be in perfect thermal equilibrium, it must also emit radiation at the same rate it absorbs it

→ its temperature is maintained

Example: Perfectly insulated enclosure within which radiation is in equilibrium with the enclosure walls

→ observe blackbody radiation through a pinhole

Gases in the interior of stars are opaque to all radiation

→ Surfaces of stars emit very closely to a blackbody spectrum

'Thermal' spectrum of radiation: Blackbody (2)

In 1900 Planck postulated e.m. energy propagates in quanta, and derived the blackbody radiation law:

$$I(\lambda) \Delta \lambda = \frac{2hc^2}{\lambda^5} \left[\frac{1}{e^{hc/\lambda kT} - 1} \right] \Delta \lambda$$

where $I(\lambda)$ is the intensity emitted by a blackbody at temperature T in the range of wavelength λ and $\lambda+\Delta\lambda$

h: Planck's constant

c: speed of light

k: Boltzmann's constant

T: temperature in Kelvin

'Thermal' spectrum of radiation: Blackbody (3)

Alternatively, we can express the blackbody radiation law (also called Planck's function) in terms of frequency:

$$I(v) \Delta v = \frac{2hv^3}{c^2} \left[\frac{1}{e^{hv/kT} - 1} \right] \Delta v$$

where $I(\nu)$ is the intensity emitted by a blackbody at temperature T in the range of frequency ν and $\nu + \Delta \nu$

h: Planck's constant

c: speed of light

k: Boltzmann's constant

T: temperature in Kelvin

'Thermal' spectrum of radiation: Blackbody (4)

Useful approximations - At high frequencies, Wien distribution:

$$I(v) = \frac{2hv^3}{c^2}e^{-hv/kT}$$

$$I(\lambda) = \frac{2hc^2}{\lambda^5} e^{-hc/\lambda kT}$$

At low frequencies, the Rayleigh-Jeans distribution applies:

$$I(v) = \frac{2v^2kT}{c^2}$$

$$I(\lambda) = \frac{2ckT}{\lambda^4}$$

'Thermal' spectrum of radiation: Blackbody (5)

Wien displacement law expresses wavelength at which maximum intensity of blackbody radiation is emitted as a function of temperature; it is obtained by setting

$$\frac{dI(\lambda)}{d\lambda} = 0$$

where λ_{\max} in m

T in Kelvin

'Thermal' spectrum of radiation: Blackbody (6)

Wien displacement law: $\lambda_{\text{max}} \approx \frac{3}{2}$

$$\lambda_{\text{max}} \approx \frac{3 \times 10^{-3}}{T}$$

or $v_{\text{max}} = 10^{11} T$ (v in Hz)

(remember $\lambda v = c = 3 \times 10^8 \text{ m s}^{-1}$)

'Thermal' spectrum of radiation: Blackbody (7)

Stefan-Boltzmann law

Area under Planck's curve (by integrating Planck's function over wavelength and all solid angles) is the local power emitted per unit area:

$$B(T) = \sigma T^4$$
 W m⁻²

 $\sigma = 5.67 \times 10^{-8}$ W m⁻² K⁻⁴ Stefan-Boltzmann's constant

Luminosity of star of radius *R* (emitting as a blackbody)

$$L = 4\pi R^2 \sigma T^4 \mid W$$

'Thermal' spectrum of radiation: Blackbody (8)

The best example of a blackbody is provided by the spectrum of the microwave background, the relic of the Big Bang, known to be now at 2.7 K.

'Thermal' spectrum of radiation: Blackbody (9)

Effective temperature $T_{\rm eff}$ of a star: Temperature of the blackbody

that would emit the same total energy as the star

For the Sun: $T_{\text{eff}} \approx 6000 \text{ K}$