

REDES DE COMPUTADORES

GLEDSON SCOTTI

Comutação

Comutação

- É o processo de interligar dois ou mais pontos para realizar uma troca;

 Alocação de recursos da rede possibilitando a transmissão de dados pelos dispositivos conectados;

- Para maior viabilidade de comunicação entre um grande numero de pontos surgiu a rede de comutação que é um serviço de transferência de informações entre nós ou pontos;

Comutação

- Surgiu com desenvolvimento de telefonia publica; (Telefonista ligava cabo para realiza chamada)

- As redes utilizam basicamente 4 tipos de comutação: Circuitos, Mensagens, Pacotes e Células.

- Ao invés do termo COMUTAÇÃO em algumas literaturas você poderá encontrar a palavra CHAVEAMENTO.

Comutação de Circuitos (Circuit Switching)

- Formado um circuito físico real entre os dois equipamentos que desejam se comunicar;
- Parecido com o sistema de telefônico;
- A comunicação é FULL DUPLEX;
- Utiliza sempre o mesmo CIRCUITO;
- É orientado a CONEXÃO;
- Determinística.

Physical Connection is setup When call connection is made

Comutação de Circuitos (Circuit Switching)

- Circuito dedicado pode ser composto por:
 - Enlace físico dedicado;
 - Canais de Frequência (FDM);
 - Canais de Tempo (TDM).

Comutação de Circuitos (Circuit Switching)

Vantagens:

- Garantia de recursos;
- Não há congestionamentos (encaminhamento dedicado exclusivo);
- Disputa pelo acesso somente na fase de conexão;
- Não há processamento nos nós intermediários (menor tempo de transferência);
- Controle nas extremidades.

Desvantagens:

- Desperdício de banda (No silêncio);
- Sem correção de erros;
- Pode existir atraso no estabelecimento da rota de encaminhamento se todos os caminhos estiverem ocupados;
- Pouco aproveitamento da largura de banda, pois a rota vai estar ocupada durante toda a utilização do circuito;
- Probabilidade de bloqueio (Circuitos podem estar ocupados muito rápido);
- Tarifa baseada na distância, por ocupar mais circuitos.

Comutação de Mensagens (Message Switching)

- Não existe caminho físico dedicado entre o emissor e o receptor, o canal não é dedicado e sim compartilhado;
- A mensagem é colocada de forma INTEGRAL no meio físico junto com o endereço do destinatário;
- A mensagem é passada de nó em nó de forma integral até atingir o destino. As mensagens só seguem para o nó seguinte após terem sido integralmente recebidas do nó anterior;

Comutação de Mensagens (Message Switching)

- Store-And-Forward, processo de armazenar a mensagem temporariamente e em seguida enviar para o próximo nó de forma sucessiva até o destinatário;
- Geralmente implementado sobre a comutação de circuitos ou de pacotes (Ex.: Semelhante ao funcionamento do e-mail);

Comutação de Mensagens (Message Switching)

Vantagens:

- Maior aproveitamento das linhas de comunicação;
- Uso otimizado do meio;
- Congestionamentos reduzidos, pois cada nó guarda temporariamente as mensagens recebidas;
- Podem estabelecer-se esquemas de prioridade, permitindo atrasar o envio das mensagens de baixa prioridade e reenvio imediato das mensagens prioritárias.

Desvantagens:

- Aumento do tempo de transferência das mensagens;
- Não é bom para aplicações de tempo real nem para aplicações que exijam interatividade:
- Atrasos no tempo de memorização;
- O tempo gasto na busca do próximo nó não é determinístico.
- Os nós envolvidos no percurso necessitam de grande capacidade de armazenamento, pois necessitam armazenar as mensagens inteiras temporariamente.

- É a técnica que envia uma mensagem de dados dividida em pequenas unidades, chamados **pacotes**;
- Os pacotes são transmitidos através nós de comutação da rede até o seu destino, semelhante a comutação de mensagens. Porém, na comutação de pacotes o tamanho dos blocos de transmissão são definidos pela rede;

- Não exige o prévio estabelecimento de um caminho físico para a sua transmissão;
- Podem ser transmitidos por diferentes caminhos e chegar fora da ordem em que foram transmitidos, por isso é probabilística e necessita de mecanismo de ordenação;
- É mais tolerante a falhas, pois percorrem caminhos alterativos aos nós com falhas;

- Utiliza o mesmo tipo de transmissão que comutação por mensagens (store-and-forward), onde o pacote é recebido por completo pelo nó, só depois encaminhado para o próximo destino;
- Todo pacote tem um endereço de destino, que possibilita indicar o caminho correto a ser encaminhado.
- Na comutação de pacotes a tarifa é por volume do tráfego de dados, mensalmente.

- Pode ser Com Ligação (Circuito Virtual) ou Sem Ligação (Datagrama);
- Comutação por Datagramas (Sem Ligação): cada pacote é tratado de forma independente por cada nó, fazendo que o mesmo seja reajustado mediante a quebra de um link de dados. Neste formato o pacote possui numero sequencial, endereço do remetente e do destinatário. Ex.: Endereço IP.

- Comutação por Circuitos Virtuais (Com Ligação): Antes da transmissão, define uma rota virtual para os pacotes (call setup) e todos os pacotes seguirão este caminho através dos vários nós intermediários até o destino final. A grande vantagem é que oferece garantia de entrega de forma ordenada. Ex: ATM (comutação de células), Frame Relay e X.25.

Vantagens:

- Uso otimizado dos recursos de forma livre, a medida que for necessário, sem reserva prévia;
- Ideal para dados;
- Erros recuperados no enlace onde ocorreram;
- Dividir uma mensagem em pacotes e transmiti-los simultaneamente reduz o atraso de transmissão total da mensagem;
- Utilizam a largura de banda total disponível para transferir os pacotes (otimização da largura de banda).

Desvantagens:

- Sem garantias de banda, atraso e variação do atraso (jitter);
- Quando a demanda é maior que os recursos oferecidos há congestionamento com uma geração de fila, podendo haver falha e perda de pacote;
- Por poder usar diferentes caminhos, atrasos podem ser diferentes. Ruim para algumas aplicações tipo voz e vídeo;
- Overhead de cabeçalho;
- Disputa nó-a-nó;
- Atrasos de enfileiramento e de processamento a cada nó.

Comutação por Células

- Semelhante a comutação de mensagens e considerada a evolução técnica da comutação de pacotes;
- Tem como objetivo operar em quadros de tamanho fixo e atender serviços com altas taxas de transmissão. Tais quadros possuem um tamanho pequeno, **as células**.
- Rede ATM (Modo de Transferência Assíncrono) é uma tecnologia de transmissão, multiplexação e chaveamento de células pequenas, o que permite a integração e transporte de dados, voz, imagens e vídeo sobre uma mesma rede.

Comutação Ethernet

- Numa rede ethernet em que recursos e meios são compartilhados só teremos um bom funcionamento quando em condições ideais. Ou seja, quando o número de dispositivos é pequeno, o número de colisões é aceitável;
- Quando o numero de dispositivos em uma rede cresce, devemos nos atentar a quantidade de colisões e broadcast que se esta sendo gerado na mesma;

Comutação Ethernet

- Isto acontece quando não utilizamos os meios de rede compartilhados de forma adequada;
- Devemos então entender qual meio estamos utilizando (Rede Simplex, Half-Duplex ou Full-Duplex), quais equipamentos compartilhados (Repetidores, Bridges, HUB, Switches e Routers);
- Compreender também sobre domínios de colisões e domínio de broadcast, sabendo dividir as redes de forma a reduzir retransmissões desnecessárias na rede.

Comutação Ethernet - Atenção

Modelo OSI

Rede Simplex, Half-Duplex ou Full-Duplex;

- Camada 1 do modelo OSI, sincroniza, amplifica e transmite o dado (seqüência de bits).

- Camada 2 do modelo OSI, encaminha ou filtra os dados (quadros) com base no endereço físico (no caso, endereço MAC).

- Camada 3 do modelo OSI, encaminha ou filtra os dados (pacotes) com base no endereço lógico (no caso, endereço IP).

Comutação Ethernet - Atenção

- Colisão: Em uma rede half-duplex, ocorre quando dois hosts tentam transmitir ao mesmo tempo.

- Broadcast: é um endereço IP (último endereço possível de sua rede) que permite que as informações sejam enviadas para todas as maquinas de sua rede.

Comutação Ethernet - Domínio de Colisão

- **Domínio de Colisão** são áreas segmentadas pelos dispositivos de camada 2 (bridges e switches) de forma a diminuir os efeitos das colisões de quadros sobre o desempenho da rede.

Domínio de Colisão

- As estações ligadas ao hub concorrem entre si dentro do primeiro domínio;
- A estação ligada à bridge compõe um segundo domínio;
- O switch criou mais dois domínios de colisão.

Comutação Ethernet - Domínio de Broadcast

- **Domínio de Broadcast** é um segmento de rede onde um pacote de broadcast é disseminado. Quando as estações de trabalho precisam localizar um endereço MAC que não está na sua tabela MAC, fazem uma solicitação broadcast por meio do protocolo ARP (Address Resolution Protocol).

Bridging de Camada 2

- Ao acrescentarmos mais hosts em um segmento, aumentamos o domínio de colisão e o número de retransmissões.
- Uma solução é dividir um domínio de colisão em segmentos isolados com bridges.
- As bridges constroem uma tabela com base no endereço de origem do pacote da camada 02, associando o endereço a uma interface.

Comutação de Camada 2

- Uma bridge possui duas portas e divide o domínio de colisão em duas partes, sem ter efeito sobre o domínio de broadcast.
- Um switch é uma bridge multiporta mais rápida e sua tabela de comutação é denominada CAM.

Comutação de Camada 2 - Switch

- Os switches são capazes de suportar full-duplex, dependendo das placas de rede (NICs). Nesse modo não existe competição para os meios.

Comutação de Camada 2 - Latência

- Latência Latência é o atraso que um quadro sofre para ir da origem até o destino.
- Os parâmetros que influenciam na latência de uma rede são:
 - Meio físico;
- Circuito que processa o sinal ao longo do caminho;
- Atrasos de software causados pelas decisões de comutação;
- Atrasos causados pelo conteúdo do quadro.

Modos de um Switch

- Cut-Through:
 - Comutação instantânea;
 - Baixa latência;
 - Comutação Simétrica;
- Store-and-foward:
 - Quadro completo;
 - FCS (Frame Check Sequence);
 - Comutação Assimétrica;
- Fragment-free:
 - Similar ao SAF porém para os primeiros 64 bytes;
 - Valida endereçamento e LLC;

Simétrica → mesma taxa de bits nas duas portas

Assimétrica → taxa de bits diferentes (i.e. 100 e 1000 Mbps)

Spanning-Tree Protocol

- As redes comutadas são projetadas com caminhos redundantes.
- Para evitar loops, os switches utilizam um protocolo baseado em padrões STP (Spanning Spanning-Tree Protocol Tree Protocol).
- Cada switch em uma rede local que usa STP envia mensagens especiais denominadas BPDUs (Bridge Protocol Data Units).
- O resultado da resolução e eliminação de loops com a utilização de STP, é a criação de uma árvore hierárquica lógica sem loops.
- No entanto, os caminhos alternativos ainda estarão disponíveis caso sejam necessários.

Estados	Finalidade
Bloqueio	Recebe somente BPDUs
Escuta	Construindo topologia "ativa"
Aprendizado	Enviando e recebendo dados do usuário
Encaminhamento	Construindo tabela de bridging
Desativado	Administratively down

Segmento de Rede

Domínios de Colisão

Domínio de Broadcast

Segmento de Rede

Regras de Fluxo de Dados

Os fluxos de dados em uma rede são focalizados nas camadas um, dois e três do modelo OSI. Isso é depois de ter sido feita a transmissão pelo host de envio e antes da chegada ao host de recepção.