Subject: Physics

Class: SS1

Week: 2

Topic: Position, Distance, and Displacement

1. Concept of Position, Distance, and Time

Position

- The **position** of an object tells **where the object is located** at a particular moment.
- It is described relative to a reference point (also called origin).
- For example, if you are sitting 3 meters away from the front door of a classroom, your position is 3 meters from that door. The door is the reference point.

Key point: Position is usually described in terms of **distance and direction** from a fixed point.

Distance

- Distance is the total length of the path covered by a moving object.
- It does not consider direction.
- It is a scalar quantity, meaning it only has magnitude (size) and no direction.

Example:

A boy walks 4 meters forward and then walks another 3 meters forward. The total distance he walked is:

4 m + 3 m = 7 meters

Even if he walks in a curved or zig-zag path, the distance is the **sum of all the steps taken**, regardless of the direction.

Time

- **Time** is the **duration** taken to carry out an activity or motion.
- It helps us know how long something took to happen.

- Time is usually measured using a **stopwatch or clock**.
- The standard unit of time is the **second (s)**.

Example: If a car takes 10 seconds to travel from one house to another, the time taken for that motion is 10 seconds.

2. Concept of Displacement

- Displacement is the shortest straight-line distance between the starting point and the final point of an object, in a specific direction.
- It is a **vector quantity** because it has both **magnitude** and **direction**.

Example 1:

A girl walks 5 meters east, then walks 3 meters back west.

- Total distance = 5 m + 3 m = 8 m
- Displacement = 5 m 3 m = 2 meters east

Example 2:

If a person walks in a full circle and ends at the starting point, the distance may be 20 meters, but the **displacement is 0**, because there is **no change in position**.

3. Measurement of Distance and Displacement

- Both distance and displacement are measured in metres (m), which is the SI unit.
- They are measured using different tools depending on the situation.

Common Tools:

Tool	Use
Ruler or Meter Rule	Used for measuring small distances (e.g., the length of a book).
Measuring Tape	Used for medium distances (e.g., measuring a room or field).
Odometer	Found in cars to measure how far the car has traveled.

Tool Use

GPS Devices

Used in navigation systems to measure straight-line distance

(displacement).

Stopwatch Used to measure **time** taken to move from one position to another.

4. Distinction Between Distance and Displacement

Feature	Distance	Displacement
Definition	Total length of the path traveled	Shortest distance from starting to final position
Туре	Scalar quantity (no direction)	Vector quantity (has direction)
Direction	Not considered	Direction is very important
Value	Always positive	Can be positive, negative, or zero
Example 1	Walking 10 m in a circle = 10 m distance	Displacement = 0 (since you end at the starting point)
Example 2	A man walks 6 m east and 4 m west = 10 m	Displacement = 2 m east (6 - 4 = 2 m in the net direction)