Lecture 08/31/23 Domain and Range Interval Notation: When describing demain and range it is convinter convinent to have a short hand for describing large sets of numbers.

 $\begin{bmatrix}
a_1b
\end{bmatrix}
\longleftrightarrow
a \leqslant x \leqslant b$ $\begin{bmatrix}
a_1b
\end{bmatrix}
\longleftrightarrow
a \leqslant x \leqslant b$ $\begin{bmatrix}
a_1b
\end{bmatrix}
\longleftrightarrow
a \leqslant x \leqslant b$ $\begin{bmatrix}
a_1b
\end{bmatrix}
\longleftrightarrow
a \leqslant x \leqslant b$ $\begin{bmatrix}
a_1b
\end{bmatrix}
\longleftrightarrow
a \leqslant x \leqslant b$

Recall: The demain of a function is the set of all x-values that are allowed to go into the function. The range of a function is the set of are y-values that are allowed to go into the function.

Bei

	Domain + Range from equations
	V
	Ex: Find domain and range of
	9(4) = TX2-25
	1x2-25
	We can't slug negative the into square root,
	We can't Plug negative the into square root, so we need to see when the denomination
	15 positive x2-25 is positive. This is the same
	thing as seeny when
	x ² -25 ≥ 6
	U
	$x^2 \ge 25$
	$x^2 \ge 25$
	~ =
	-2-MASX ON SSIAX KEND
	1
	$(-\infty, 48] \qquad (47, \infty)$
	The denominator count be zew. This heippen
	when x=-T, F so we must remove 5 and
	when $x=-5$, t so we must remove 5 and -5 from above. Honce domain is $(-\infty, -5]U[5, \infty]$
	To find runge use a graphing calc. Desmus demanstration.
	demonstration
-	I VIWY

