mean-driven的实验

我们选择 $N_{input}=200, N=600$ 完成mean-driven的实验

参数对应

由于理论模型是无量纲的模型,因此我们在与实际模型对应时需要考虑对应的问题,我们考虑如下的方程:

$$r_E = g(I_E + k_{EE} * r_E - k_{EI} * r_I) \tag{2}$$

$$r_I = g(I_I + k_{IE} * r_E) \tag{3}$$

其中, $k_{XY}=\alpha_{XY}exp(-x^2/(2\sigma^2))$,我们固定g=1,固定 r_E,r_I 的理论值与实际值相等,因此我们需要确认 I_E,I_I,α_{XY} 的值,特别地,我们只需要在基频时完成对应。

无连接情况下确定 I_E,I_I

$$r_E = I_E = kI_E^T + b \tag{4}$$

其中, I_E^T 为实验中测得的值,其单位为 mA 。我们需要确定 k 与 b 的值来完成电流值的对应:

测得k = 1.12, b = -194.12。

线性情况的验证

连接EE时测量 $lpha_{EE}$

$$r_E = I_E + k_{EE} * r_E \tag{5}$$

由于只考虑基频时完成实验,且在mean-driven情况下,我们可以直接考虑平均意义上的计算,即 $r_E=ar{r_E}$:

$$lpha_{EE} = rac{ar{r_E} - (kI_E^T + b)}{ar{r_E} \int_{-90}^{90} e^{-x^2/(2\sigma^2)} dx}$$
 (6)

测得在实际模型中 $g_{EE}=0.01*nS$ 时, $lpha_{EE}=0.0121$

连接IE时测量 $lpha_{IE}$

$$r_I = I_I + k_{IE} * r_E \tag{7}$$

由于只考虑基频时完成实验,且在mean-driven情况下,我们可以直接考虑平均意义上的计算,即 $r_E=ar{r_E}, r_I=ar{r_I}$:

$$lpha_{IE} = rac{ar{r_I} - (kI_I^T + b)}{ar{r_E} \int_{-90}^{90} e^{-x^2/(2\sigma^2)} dx}$$
 (8)

测得在实际模型中 $g_{IE}=0.01*nS$ 时, $lpha_{IE}=0.0121$

连接EI时测量 $lpha_{EI}$

$$r_E = I_E - k_{EI} * r_I \tag{9}$$

由于只考虑基频时完成实验,且在mean-driven情况下,我们可以直接考虑平均意义上的计算,即 $r_E=ar{r_E}, r_I=ar{r_I}$:

$$\alpha_{EI} = \frac{\bar{r_E} - (kI_E^T + b)}{-\bar{r_I} \int_{-90}^{90} e^{-x^2/(2\sigma^2)} dx}$$
 (10)

测得在实际模型中 $g_{EI}=0.01*nS$ 时, $\alpha_{IE}=0.0069$

Synchronization Test

比较所使用的理论结果

我们考虑如下的理论模型:

$$\hat{r_E} = (1 - \hat{k_{EE}} + \hat{k_{EI}}\hat{k_{IE}})^{-1}(\hat{I_E} - \hat{k_{EI}}\hat{I_I})$$
(11)

其中

$$\hat{k_{XY}} = \alpha_{XY} \sqrt{2\pi} \sigma_{XY} e^{-2\pi^2 \sigma_{XY}^2 \xi^2 / T^2}$$

$$\tag{12}$$

与理论结果的比较

线性情况的验证

只连接EI的情况

EIIE问题

主要实验

- 参数对应实验出现的问题与修改
- 理论模型与实验模型的对应
 - 。 输入电流方差问题
 - o E通道与I通道问题

理论模型与实验模型的对应

输入电流方差问题

方差对应

我们可以看到网络输入电流在不同连接条件、发放率、均值相同时表现出的方差并不相同,因此我们考虑通过消除 方差的差异来完成对应的问题

```
| Params = default_params() | params() |
```

```
params = default_params()
params.g_EE = 8.02enS
params.g_EE = 8.02enS
params.g_EE = 8enS
params.g_IE = 8enS
params.g_IE = 8enS
params.g_IE = 8enS
params.g_IE = 8enS
params.liput = 200
params.Ecenter = 45
params.seps = 0
params.seps = 0
params.seps = 0
params.sp = 0
params.fc = 8
pa
```

然而当我们考虑这种差异时并不能解决问题

增大规模

同时,尝试了增大规模,其效果如下:

• N=2400

• N=4800

可以看到, 增大规模的方法也没有办法解决这个问题。

E通道与I通道的问题

首先,我们可以看到,如果把两个通道合并,我们可以得到精确能收敛到1的结果:

因此我们尝试通过调整|通道的一些参数来分析|通道带来的影响:

• 令I通道与E通道近似,即I通道的reversal potential大于-50mV,I通道的刺激叠加;

• 恢复正常的I通道:

• 恢复正常的I通道并增加连接强度:

• 改变时间常数 τ_I :

• 全连接时:

主要实验

- 消除与理论模型之间的差距:
 - o 取消I通道只使用E通道
 - 计算I通道的流量,并在基准上加上这样的流量
 - o 特例分析
- 各种条件下gain curve的绘制:
 - 。 主要目的是观察是否有非线性

消除与理论模型之间的差距

取消I通道只使用E通道

取消I通道在这组参数下可以起到不错的效果,不会再产生稳定的大于1的现象,然而当我们换一组参数后就会有变化:

计算I通道的流量,并在基准上加上这样的流量

先调整基准的IE连接,使得曲线在高频部分到1

在此基础上计算|通道的流量:

```
(mean(np.asarray(E_ext71[0]/pamp))-mean(np.asarray(E_net71[0]/pamp)))/mean(np.asarray(E_ext71[0]/pamp))

✓ 0.0s

... 0.6256742763591039

(mean(np.asarray(E_extall61[0]/pamp))-mean(np.asarray(E_netall61[0]/pamp))+mean(np.asarray(E_extall61[0]/pamp)))/mean(np.asarray(E_extall61[0]/pamp))

✓ 0.0s

... 0.68364712072394
```

一方面两种方式的I通道流量无法对应上,另一方面其带来在低频的部分显著低于理论模型,因此这个方法不可行。 但在这个实验中发现,在调整基准时,即只添加IE连接时,会使得网络的流量变化大于属于的流量变化:

```
mean(np.asarray(E_net71[0]/pamp)-np.asarray(E_net70[0]/pamp)),mean(np.asarray(E_ext71[0]/pamp)-np.asarray(E_ext70[0]/pamp))

v 0.0s

(46.65552650937329, 44.32037337082818)
```

这会导致基准上升,如上图所示。

高频特例的分析

为了更好的在firing rates(未经过傅立叶变换)的角度分析差异,我们考虑在一个高频特例下进行分析,即频率取到150时,首先其在频域的结果仍然大于理论模型:

同时在频率变化的角度我们可以看到:

同时我们检查了在这个频率下gain curve斜率的变化,gain curve斜率也无法解释这个差异:

各种条件下gain curve

• EIIE连接 (g_EI=0.015,g_IE=0.015)

• 全连接(g_EE=0.015,g_EI=0.03,g_IE=0.03)

