HOMEWORK 7 – MATH 392 February 17, 2018

ALEX THIES athies@uoregon.edu

Problem A. Let $K_1 \subset K_2 \subset \cdots \subset K_n$ be a chain of field extensions such that $K_i \subset K_{i+1}$ is algebraic. Prove that $K_1 \subset K_n$ is algebraic, and compute the degree of the extension, $[K_n : K_1]$.

Problem 9.38. Let c be a root [of] $p(x) = 4 + 3x + x^2$ in an extension of \mathbb{Z}_5 . Show that p(x) is irreducible over \mathbb{Z}_5 , and calculate the following elements in $\mathbb{Z}_5(c)$.

$$(4+5c)+(6+3c) =$$

$$(2+6d)(4+2c) =$$

$$(6+4c)^{-1} =$$

Problem 9.50. Find the complete addition and multiplication tables for the field $\mathbb{Z}_2(c)$ where c is a root of the polynomial $p(x) = 1 + x + 0x^2 + x^3$ which is irreducible over \mathbb{Z}_2 .

Problem 9.51. Using the result of the previous exercise, determine if there are other roots of p(x) in $\mathbb{Z}_2(c)$.

Problem 9.57. Suppose K is a field, E is [a field extension] of K, and n is a positive integer. Prove: If [E:K]=n and $c \in E$ then the degree of the minimum polynomial for c over K must divide n.

Problem 9.63. Prove that $\sqrt{2+i} \notin \mathbb{Q}(\sqrt[3]{2})$ using Theorem 9.22.

Problem 9.64. Suppose that K is a field and c is algebraic over K with [K(c):K]=2. Prove: K(c) is the root field for the minimum polynomial of c over K.

Problem 9.65. Suppose K is a field and E is a finite extension of K. Prove: There exist $u_1, u_2, \ldots, u_m \in E$ with $E = K(u_1, u_2, \ldots, u_m)$.

Problem 9.66. Find the root field E for $a(x) = \frac{5}{4} + 6x + \frac{11}{2}x^2 + 2x^3 + \frac{1}{4}x^4$ over \mathbb{Q} .

Problem 9.67. Prove that $\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$ and use it to show $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$.