

UiO Department of Informatics
University of Oslo

IN5400 Machine learning for image classification

Lecture 5 : Convolutional neural networks

Tollef Jahren

February 12, 2019

About today

- Naming convention: Convolutional neural network, ConvNet, CNN
- What is a convolutional neural network?
- The required computation in a convolutional neural network
- Considerations when designing an convolution neural network architecture

Outline

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Readings

- Text:
- http://cs231n.github.io/convolutional-networks/
- Video:
- https://www.youtube.com/watch?v=bNb2fEVKeEo&index=5&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk
- Optional text:
 - Receptive field: http://www.cs.toronto.edu/~wenjie/papers/nips16/top.pdf
 - Visualizing and Understanding CNN: https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
 - Dilated convolutions: https://arxiv.org/abs/1511.07122
- Optional videos:
- https://www.youtube.com/watch?v=ghEmQSxT6tw
- https://www.youtube.com/watch?v=SQ67NBCLV98

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Challenges with image classification

- Build invariance:
 - Translation
 - Occlusion
 - Illumination
 - View angle variations
 - Deformation
 - Background Clutter
 - Interclass variation

- Translation
- Occlusion
- Illumination

(all 3 images have same L2 distance to the one on the left)

View angle variations

Deformation

Background Clutter

Interclass variation

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

The ImageNet challenge

- The images classification challenge
- Dataset
 - 1,431,167 images
 - 1,000 classes

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Fully connected neural network on images

- Most image applications are absolute position invariant.
- A fully connected network will have too many parameters and not able to scale to normal size images and generalize

$$z^1 = W^T x$$
$$a^1 = g(z^1)$$

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Convolutional vs correlation

- **Note**: We will be using **cross correlation**, although we will call it **convolution**. As the network weights are learned there is no real difference.
- 2D cross correlation:

$$z[p,q] = w * x = \sum_{r=-K}^{K} \sum_{s=-K}^{K} w[r,s] \cdot x[p+r,q+s]$$

2D convolution:

$$z[p,q] = w*x = \sum_{r=-K}^{K} \sum_{s=-K}^{K} w[r,s] \cdot x[p-r,q-s]$$

Convolution example:

- Input image x with shape [4, 4]
- Weight matrix w with shape [3, 3]
- Output feature map z with shape [2, 2]

$$z[p,q] = w * x = \sum_{r=-K}^{K} \sum_{s=-K}^{K} w[r,s] \cdot x[p+r,q+s]$$

$$x = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}$$

$$w = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$z = \begin{array}{|c|c|c|}\hline ? & ? \\ \hline ? & ? \\ \hline \end{array}$$

Convolution example:

$$x = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}$$

$$w = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$z = \begin{bmatrix} 27 \\ \end{bmatrix}$$

$$z[0,0] = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1$$

$$+ 2 \cdot 2 + 4 \cdot 1 + 1 \cdot 2$$

$$+ 1 \cdot 1 + 3 \cdot 2 + 2 \cdot 1$$

$$= 27$$

\sim	_
л.	

1	2	3	4
2	4 •	1	2
1	3	2	1
1	2	3	1

w =

1	2	1
2	1	2
1	2	1

$$z =$$

27	

27	33

1	2	3	4
2	4	1	2
1	3 •	2	1
1	2	3	1

1	2	1
2	1	2
1	2	1

27	33
29	

1	2	3	4
2	4	1	2
1	3	2 •	1
1	2	3	1

1	2	1
2	1	2
1	2	1

27	33
33	29

32x32x3 image -> preserve spatial structure

 We are convolving /sliding the filter spatially across the input image and computing the dot product.

32x32x3 image

5x5x3 filter

The input volume and the filer has always the same depth (blue value).

5x5x3 filter

- The activation from a local region is computed:
- $z = w^T x + b$

 If we filter the input volume 6 times using 5x5x3 filters, we get an output volume with 6 channels (depth)

Activations

We use an activation function separately on all elements of the output volume

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Convolution neural network hyperparameters

- Stride
- Padding
- Kernel (filter/weights) size

Stride

- Stride is the **spatial step length** in the convolution operation.
- Example: Input volume 7x7x1, kernel (filter) size 3x3x1
- The stride is an important parameter for determining the spatial size of the output volume

Stride

What about stride equal to 3?

Stride 3

Using a 3x3x1 filter on the 7x7x1 volume with stride 3 does not fit!

Padding

- The output volume can get a lower spatial dimension compared to the input volume. We can solve this by padding the input volume. Common to use zero padding.
- Abbreviations: Stride (S), spatial filter size (F), input spatial size (N^i), output spatial size (N^{i+1}) and padding (P)
- For S = 1, we can achieve $N^0 = N^1$ by selecting P equal to:

$$P = \frac{(F-1)}{2}$$

Calculation of the spatial output size:

$$N^{i+1} = \frac{N^i - F + 2P}{S} + 1$$

Padding examples

- Remember: $N^{i+1} = \frac{N^{i-F+2P}}{S} + 1$
- Parameters:

$$-N^{0}=7$$

$$- P = 0$$

$$- F = 3$$

• Stride 1
$$\rightarrow \frac{7-3+2\cdot 0}{1} + 1 = 5$$

• Stride 2
$$\rightarrow \frac{7-3+2\cdot 0}{2} + 1 = 3$$

• Stride 3
$$\rightarrow \frac{7-3+2\cdot 0}{3} + 1 = 2.33$$

Padding examples

• Remember, to keep $N^i = N^{i+1}$ with S = 1 use:

$$P = \frac{(F-1)}{2}$$

- $F = 3 \rightarrow \text{zero pad with } 1$
- $F = 5 \rightarrow \text{zero pad with } 2$
- $F = 7 \rightarrow \text{zero pad with } 3$

Kernel size (filter bank)

- Each filter has a size of $[F_c, F_h, F_w]$ e.g. [3, 5, 5]
- Multiple filters (F_N) can be applied at each layer and the filter bank are represented by a 4-D tensor
 - $[F_N, F_c, F_h, F_w]$
- F_N corresponds to the depth of the next layer
- This is a practical representation and used by many deep learning frameworks.

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- **Convolutional layer example**
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

28

28

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Receptive field (Field of View)

 How much of the input image is available for a particular neuron?

How large area influence the end result?

- With a convolutional network the receptive field increase with each layer
- 3 inputs influence each node in the first hidden layer

How large area influence the end result?

- With a convolutional network the receptive field increase with each layer
- 3 inputs influence each node in the first hidden layer
- 5 influence the next

How large area influence the end result?

- With a convolutional network the receptive field increase with each layer
- 3 inputs influence each node in the first hidden layer
- 5 influence the next
- 7 influence the next

The receptive field grow with k-1 for each layer

- Two 3x3 filters give equal receptive field as one 5x5 filer
- Should we use 3x3 or 5x5?

Parameter efficiency

- Two 3x3 filters give equal receptive field as one 5x5 filter
- Should we use 3x3 or 5x5 filters?
- Assumption:
 - The filter count in all layers are $(F_c = F_c^i = F_c^{i+1})$ and we don't account for biases.
- Number of parameters:
 - 3x3 filter $\rightarrow (3 \cdot 3 \cdot F_c) \cdot F_c + (3 \cdot 3 \cdot F_c) \cdot F_c = 18F_c^2$
 - 5x5 filter \rightarrow $(5 \cdot 5 \cdot F_c) \cdot F_c = 25F_c^2$
- Note: Many 3x3 filters will lead to a larger memory footprint during training as the system must store the values for backpropagation.

Smaller spatial filter size is more parameter efficient

- A network with many parameters generally need more training data and computation time
- A larger receptive field per parameter is good
- More layers can give more reuse

Strided convolutions

- By skipping positions we can cover a larger area with less computation
- The effect of the receptive field for the next layer is important

The effect of strided convolutions

- We still cover the whole input
- With stride of two we have increased the receptive field from 5→7 in layer 2

The effect of strided convolutions

• Receptive field: R

• Spatial filter size: *F*

• Stride: S

• Layer index: $k \in \{1,2,3,...,n\}$

$$R^{k} = R^{k-1} + \left[\left(F^{k} - 1 \right) \cdot \prod_{i=1}^{k-1} S^{i} \right]$$

 Essentially all the following layers will have a receptive field multiplied by S^k

Theoretical vs effective receptive field

 "Effective receptive field only takes up a fraction of the full theoretical receptive field"

With strides, spatial dimensions will become smaller

 Usually some of the of the network capacity is preserved through an increasing number of channels

Can the network still remember positions?

- Yes, the network can still encode positional information in the depth dimension
- A network can pass positional information (right, left etc.) to different channels

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Dilated convolutions

 Larger receptive field, without reducing spatial dimension or increasing the parameters

Dilated convolutions

- Skipping values in the kernel
- Same as filling the kernel with every other value as zero
- Still cover all inputs
- Larger kernel with no extra parameters

A growing dilation factor can give similar effect as stride

- With a constant dilation factor you get the similar effect as using a larger kernel
- With growing dilation factor you can get an even larger receptive field, while still covering all inputs

Fisher Yu, Vladlen Koltun (2016) Multi-scale Context Aggregation by Dilated Convolutions

Growing dilation factor

- 1-D example:
 - Filter size: F = 3
 - Layer: $k \in \{1,2,3,...,n\}$
 - Receptive field : $R^k = 2^{k+1} 1$
 - Dilation factor: $l = 2^{k-1}$

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Pooling

- Spatial reduction and forcing invariance
- Operates over each activation map (channel) independently
- No learnable weights
- Two methods:
 - Max pooling
 - Average pooling

Max pooling

- A strided maximum filtering
- Choosing the maximum value inside the kernel

IN 5400

12.02.2020

Max-pooling: invariance built-in

- With max-pooling you explicitly remove some spatial information
- This can help both position and rotation invariance

6

3

8

4

12.02.2020

Max-pooling have some important problems

- Even if we want our final results to be positional invariant, we may need positional information in the earlier representations
- Only a small part of the network is updated with gradients each step (learning slower)
- We calculate a lot of values that is not "used"

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Depthwise Separable Convolution

- Depthwise separable convolution is an efficient convolutional layer. It is composed of two steps:
 - Depthwise convolution
 - Pointwise convolution

Depthwise convolution :

- Input volume of shape $[N_c, N_h^i, N_w^i]$
- We use N_c different kernels of shape $[F_c = 1, F_h, F_w]$ on the input channels individually
- Output volume $[N_c, N_h^{i+1}, N_w^{i+1},]$

Pointwise convolution

- Pointwise convolutions are ordinary convolutions with :
 - kernels of shape: $[F_c, F_h = 1, F_w = 1]$
 - Filter bank: $[F_N, F_c, 1, 1]$

Depthwise Separable Convolution – Summary

- Depthwise separable convolution = Depthwise convolution + Pointwise convolutions
- Lets compare the number of parameters in a depthwise separable convolution and a convolutional layer:

$$[F_N = 512, F_C = 256, F_h = 3, F_w = 3]$$

Parameters in a depthwise separable convolution:

-
$$F_c \cdot 1 \cdot F_h \cdot F_w + F_N \cdot F_c \cdot 1 \cdot 1 = 133,376$$

- Parameters in a convolutional layer:
 - $-F_N \cdot F_C \cdot F_h \cdot F_W = 1,179,648$

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Structure of the last layer(s) – dense layer

- At the end we normally have a feature map of some spatial size and channels (N_c, N_w, N_h) .
- Assume we have a 3 class classification problem and want our output to be a vector of length 3.
- We can flatten the input feature map and stack dense layers

Structure of the last layer(s) – fully convolutional

- We can make sure the last layer has the same number of channels as we have classes.
- A 3 class problem yields $N_c = 3$
- Average over the spatial dimensions N_w and N_h

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Visualizing and Understanding ConvNets

 AlexNet, the winner of the ImageNet classification challenge 2012.

- Filter bank of size (11x11x3)x96 for the first convolutional layer:
- Visualizing the learnt weights

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

Visualizing and Understanding deeper layers

- Looking at the filer coefficient directly at deeper layer is not meaningful.
- Visualization with Deconvnet

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks

Hierarchical learning

- A convolution neural network is built up as a hierarchy were the complexity (abstraction) is increased by depth.
- A hierarchical structure is parameter efficient

Reuse of features

- Each filter kernel is applied at all spatial positions
- Features are reused:
 - edges, fur, eye, grass
- Reuse instead of retraining many times over

Data driven

- A convolutional neural network still "remembers" shapes, rotation, size.
- No fundamental understanding of the concept "cat"

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Application of convolutional neural network

- Classification
- Detection
- Segmentation
- Reinforcement learning (game playing)
- Image captioning

Classification

Images for ImageNet

Detection

Segmentation

Reinforcement learning (game playing)

Image captioning

Progress

- Challenges with image classification
- Benchmark: ImageNet
- Fully connected neural network on images
- Convolutional layer
- Convolutional layer hyperparameters
- Convolutional layer example
- Receptive field (Field of View)
- Dilated convolutions
- Pooling
- Depthwise Separable Convolution
- Last layer
- Visualizing and Understanding CNN
- Applications were CNN are used
- Alternative to ConvNet

Alternative to ConvNet

Note: Not part of curriculum

- Rotation equivariant vector field networks
 - https://arxiv.org/abs/1612.09346
- Capsule Network
 - https://arxiv.org/abs/1710.09829

CNN vs dense net on cifar10

