Spatially Adaptive Computation Time for Residual Networks

Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, Ruslan Salakhutdinov

Neural Nets

- Object detection
- Image segmentation
- Image-to-text
- Image generation
- NLP

- RL (yeah, Go and etc.)
- any other field you can think about...

Neural Nets

- Object detection
- Image segmentation
- Image-to-text
- Image generation
- NLP

- RL (yeah, Go and etc.)
- any other field you can think about...

Problem?

Computation cost!

Solution

Glimpse-based attention models:

Processing small number of rectangular subregions

RNN, RL and Blackjack

Figure 1: The deep recurrent attention model.

Figure 1: The deep recurrent attention model.

Solution

Glimpse-based attention models:

Processing small number of rectangular subregions

Q: Are we happy?

A: Not yet...

- Not suitable for segmentation, image generation
- Requires heuristics or separate nn

Figure 1: The deep recurrent attention model.

Global average pooling

Global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.

From Network in Network, 2013

SACT (Spatially Adaptive Computation Time)

Figure 1: Left: object detections. Right: feature extractor SACT ponder cost (computation time) map for a COCO validation image. The proposed method learns to allocate more computation for the object-like regions of the image.

Stage one: ResNet

- ResNet101
- 1st : Conv + maxpool
 - Stride 4
- 4 residual blocks
 - 3, 4, 23, 3 residual units
- Conv with stride at each block's start
 - Doubles number of channels
- Global AvgPool at the end
 - Followed by dense layers

ACT two: informally

Q: What is the purpose Adaptive Computation Time?

A: Improve the computational efficiency

Key concepts:

- Halting score
- Remainder
- Ponder cost = Num_{evaluated} + remainder

Minimizing the ponder cost increases halting scores of non-last units

ACT going deeper

 Block of L residual units (tensors H x W x Channels)

$$\begin{split} \mathbf{x}^0 &= \mathbf{input},\\ \mathbf{x}^l &= F^l(\mathbf{x}^{l-1}) = \mathbf{x}^{l-1} + f^l(\mathbf{x}^{l-1}),\ l=1\dots L,\\ \mathbf{output} &= \mathbf{x}^L. \end{split}$$

Halting score for each residual unit

$$h^{l} = H^{l}(\mathbf{x}^{l}), \ l = 1 \dots (L-1),$$

$$h^{L} = 1.$$

$$h^{l} = H^{l}(\mathbf{x}^{l}) = \sigma(W^{l} \operatorname{pool}(\mathbf{x}^{l}) + b^{l})$$

 N – number of residual units to evaluate

$$N = \min \left\{ n \in \{1 \dots L\} : \sum_{l=1}^{n} h^{l} \ge 1 - \varepsilon \right\}$$

R – remainder, p^l – halting dist.

$$R = 1 - \sum_{l=1}^{N-1} h^l$$

$$p^{l} = \begin{cases} h^{l} & \text{if } l < N, \\ R & \text{if } l = N, \\ 0 & \text{if } l > N. \end{cases}$$

ACT going deeper

$$\mathbf{output} = \sum_{l=1}^{L} p^l \mathbf{x}^l = \sum_{l=1}^{N} p^l \mathbf{x}^l.$$

$$\rho = N + R$$
.

 As we cannot optimize N directly, we introduce the *ponder cost* and we ignore the gradient of N.

$$\frac{\partial \rho}{\partial h^l} = \begin{cases} -1 & \text{if } l < N, \\ 0 & \text{if } l \ge N. \end{cases}$$

 We apply ACT to each block independently and stack them.

 Loss function with added *ponder cost* opt.

$$\mathcal{L}' = \mathcal{L} + \tau \sum_{k=1}^{K} \rho_k.$$

ACT advantages

- Calculate blocks' outputs "on the fly"
- Adds very few params to base model
- ACT is a generalization of ResNet

Algorithm 1 Adaptive Computation Time for one block of residual units. ACT does not require storing the intermediate residual units outputs.

```
Input: 3D tensor input
Input: number of residual units in the block L
Input: 0 < \varepsilon < 1
Output: 3D tensor output
Output: ponder cost \rho
 1: \mathbf{x} = \mathbf{input}
 2: c = 0
                                           ▶ Remainder value
 3: R = 1

    Output of the block

 4: \mathbf{output} = 0
 5: \rho = 0
 6: for l = 1 ... L do
         \mathbf{x} = F^l(\mathbf{x})
         if l < L then h = H^l(\mathbf{x})
         else h=1
         end if
10:
11:
         c += h
         \rho += 1
12:
13:
         if c < 1 - \varepsilon then
             output += h \cdot \mathbf{x}
14:
15:
             R -= h
16:
         else
17:
             output += R \cdot \mathbf{x}
             \rho += R
18:
             break
19:
         end if
20:
21: end for
22: return output, \rho
```

We can ACT better: SACT

- Per position computation by applying
 ACT to each spatial position of the block.
- Active positions spatial locations where cum. halt score is less than 1.

$$H^{l}(\mathbf{x}) = \sigma(\widetilde{W}^{l} * \mathbf{x} + W^{l} \operatorname{pool}(\mathbf{x}) + b^{l})$$

* is 3 x 3 convolution

Perforated conv. Layer:

- Zeros instead of neighbors for skipped values
- Tile the halting scores map

Results on ImageNet

Ponder costs visualization

Figure 9: ImageNet validation set. SACT ($\tau = 0.005$) ponder cost maps. Top: low ponder cost (19.8-20.55), middle: average ponder cost (23.4-23.6), bottom: high ponder cost (24.9-26.0). SACT typically focuses the computation on the region of interest.

Object detection (COCO)

- Faster R-CNN pipeline:
 - Feature extractor
 - Region Proposal Net predicts rect. proposals
 - Box classifier
- Use 1-3 ResNet blocks as extractor, 4 – box clf
- Reuse pretrained models

Feature extractor	FLOPs (%)	mAP @ [.5, .95] (%)
ResNet-101 [16]	100	27.2
ResNet-50 (our impl.)	46.6	25.56
SACT $\tau = 0.005$	56.0 ± 8.5	27.61
SACT $\tau = 0.001$	72.4 ± 8.4	29.04
ResNet-101 (our impl.)	100	29.24

Table 1: COCO val set. Faster R-CNN with SACT results. FLOPs are average (± one standard deviation) feature extractor floating point operations relative to ResNet-101 (that does 1.42E+11 operations). SACT improves the FLOPs-mAP trade-off compared to using ResNet without adaptive computation.

Like humans

Cat2000 dataset – human eye fixations Reuse previous SACT models Resize 1920 x 1080 to 320 x 180 and 640 x 360 respectively

Figure 10: COCO testdev set. Detections and feature extractor ponder cost maps ($\tau = 0.005$). SACT allocates much more computation to the object-like regions of the image.

Like humans

Figure 11: cat2000 saliency dataset. Left to right: image, human saliency, SACT ponder cost map (COCO model, $\tau=0.005$) with postprocessing (see text) and softmax with temperature 1/5. Note the center bias of the dataset. SACT model performs surprisingly well on out-of-domain images such as art and fractals.