Decision tree

Ngô Minh Nhựt

2025

Outline

- Classification idea
- Learn decision trees
 - Entropy
 - Information gain
 - Decision tree construction algorithm
- Overfitting and pruning

- ☐ Pick an attribute, do a simple test
- Conditioned on a choice, pick another attribute, do another test
- In the leaves, assign a class with majority vote
- Do other branches as well

Decision boundaries

Source: Zemel

Source: Internet

Source: Internet

Binary vs. non-binary conditions

■ What if attributes are discrete?

Example					In	put	put Attributes Goal					
E manipio	Alt	Bar	Fri	Hun	Pa	it	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	So	me	\$\$\$	No	Yes	French	0–10	$y_1=\mathit{Yes}$
\mathbf{x}_2	Yes	No	No	Yes	Fi	ıll	\$	No	No	Thai	30–60	$y_2 = {\it N}{\it o}$
\mathbf{x}_3	No	Yes	No	No	So	me	\$	No	No	Burger	0–10	$y_3=\mathit{Yes}$
\mathbf{x}_4	Yes	No	Yes	Yes	Fi	ıll	\$	Yes	No	Thai	10–30	$y_4=$ Yes
\mathbf{x}_5	Yes	No	Yes	No	Fi	ıll	\$\$\$	No	Yes	French	>60	$y_5= extsf{No}$
\mathbf{x}_6	No	Yes	No	Yes	So	me	\$\$	Yes	Yes	Italian	0–10	$y_6= extit{Yes}$
\mathbf{x}_7	No	Yes	No	No	No	ne	\$	Yes	No	Burger	0–10	$y_7 = extcolor{No}$
\mathbf{x}_8	No	No	No	Yes	So	me	\$\$	Yes	Yes	Thai	0–10	$y_8= extit{Yes}$
\mathbf{x}_9	No	Yes	Yes	No	Fi	ıll	\$	Yes	No	Burger	>60	$y_9 = \mathit{No}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	1.	Δlt	ernate: w	hether tl	here is a	suitable alte	rnative rest	taurant nearby.
\mathbf{x}_{11}	No	No	No	No	2.							· · · · · · · · · · · · · · · · · · ·
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	3.		Bar: whether the restaurant has a comfortable bar area to wait in. Fri/Sat: true on Fridays and Saturdays.					
		1			4.		ngry: who					
					5.						aurant (vali	ies are None. Some, and Full).
						Patrons: how many people are in the restaurant (values are None, Some, and Full). Price: the restaurant's price range (\$, \$\$, \$\$\$).						
7.						Raining: whether it is raining outside.						
8. Reservation: whether we made a reservation.												
	9. Type: the kind of restaurant (French, Italian, Thai or Burger).											
	Type: the kind of restaurant (Feneri, Italian, That of Barger).											

WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Binary vs. non-binary conditions

Decision tree on whether to wait (T) or not (F)

Source: Zemel

Binary vs. non-binary conditions

- Binary conditions: conditions with two possible outcomes, e.g., true or false
- Non-binary conditions have more than two possible outcomes

Binary vs. non-binary decision trees

Source: https://developers.google.com

Outline

- Classification idea
- Learn decision trees
 - Entropy
 - Information gain
 - Decision tree construction algorithm
- Overfitting and pruning

Learn decision tree

Classification idea

- Pick an attribute, do a simple test
- Conditioned on a choice, pick another attribute, do another test
- In the leaves, assign a class with majority vote
- Do other branches as well

What is the attribute to pick first?

Choose a good attribute

■ Which attribute is better to split on, X1 or X2?

X1	X2	Υ
T	Т	Т
Т	F	Т
Т	Т	Т
Т	F	т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Idea: measure uncertainty by probability distribution of Y at leaves

Choose a good attribute

- Which attribute is better to split on, X1 or X2?
 - Deterministic: good (all are true or false; just one class in leaf)
 - Uniform distribution: bad (all classes in leaf equally probable)
 - What about distributions in between?

Deterministic

Uniform

Choose a good attribute

- We flip two different coins
 - Sequence 1: 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ... ?
 - Sequence 2: 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?

Quantify uncertainty

Entropy H

- How easy can we guess a new value in the sequence?
- How much information does it convey?

Quantify uncertainty

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

Source: Zemel

Entropy

- Entropy measures how states of disorder, randomness or uncertainty
- High entropy
 - Variable has a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable
- Low entropy
 - Distribution of variable has many peaks and valleys
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

Entropy

Three different levels of entropy

Source: https://developers.google.com

Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$= -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$$

$$\approx 1.56$$

Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

■ What is the entropy of cloudiness Y, given that it is raining?

$$H(Y, X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$
$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$
$$\approx 0.24$$

■ We used: $P(y|x) = \frac{p(x,y)}{p(x)}$, and $P(x) = \sum_{y} p(x,y)$

Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

The expected conditional entropy

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

■ What is the entropy of cloudiness, given the knowledge of if it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

$$= \frac{1}{4}H(\text{cloudy}|\text{raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})$$

$$\approx 0.75$$

Information Gain

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

How much information about cloudiness do we get by discovering if it is raining?

$$IG(Y|X) = H(Y) - H(Y|X)$$

$$\approx 0.25$$

Information Gain

- Information gain in Y due to X: IG(Y | X)
- If X is completely uninformative about Y : IG (Y | X) = 0
- ☐ If X is completely informative about Y : IG (Y | X) = H(Y)
- How can we use this to construct our decision tree?

Construct decision tree

- Make use of information gain to partition data samples
- At each level, we need to choose
 - Which variable to split
 - Possibly where to split it
- Choose them based on how much information we would gain from the decision
 - Choose attribute that gives the highest gain

Decision tree construction algorithm

- □ Step 1: Pick an attribute to split at a non-terminal node
- Step 2: Split examples into groups based on attribute value
- Step 3: For each group
 - If no example, return majority from parent
 - Else if all examples in same class, return class
 - Else go to Step 1

Example

Example		Input Attributes								
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60
\mathbf{x}_6	No	Yes	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Italian	0–10
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10
\mathbf{x}_8	No	No	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Thai	0–10
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Goal

WillWait $y_1 = Yes$ $y_2 = No$ $y_3 = Yes$ $y_4 = Yes$ $y_5 = No$ $y_6 = Yes$ $y_7 = No$ $y_8 = Yes$ $y_9 = No$ $y_{10} = No$ $y_{11} = No$ $y_{12} = Yes$

Example

Source: Zemel

Source: Internet

Source: https://scikit-learn.org

Decision Tree Visualization for Iris Dataset

Source: ChatGPT

Source: ChatGPT

Which tree is better?

What makes a good tree

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency
 - Avoid overfitting training set
- Find the simplest hypothesis, i.e., smallest tree that fits the observations
- Small trees with informative nodes near the root

Outline

- Classification idea
- Learn decision trees
 - Entropy
 - Information gain
 - Decision tree construction algorithm
- Overfitting and pruning

Overfitting and pruning

☐ If the dataset contains noise, this tree will overfit to the data and show poor test accuracy

Source: https://developers.google.com

Overfitting and pruning

- To limit overfitting a decision tree, apply one or both of the following regularization criteria:
 - Set a maximum depth: Prevent decision trees from growing past a maximum depth, such as 10.
 - Set a minimum number of examples in leaf: A leaf with less than a certain number of examples will not be considered for splitting.

Source: https://developers.google.com

Overfitting and pruning

- □ Pruning: selectively remove certain branches, that is, by converting certain non-leaf nodes to leaves.
 - Common solution: use a validation dataset to select branches to remove.
 - That is, if removing a branch improves the quality of the model on the validation dataset, then the branch is removed.

Effect of using 20% dataset as validation for pruning

Source: https://developers.google.com

References

This slide borrowed ideas from

 CSC 411: Lecture 06: Decision Trees, Richard Zemel, Raquel Urtasun and Sanja Fidler, University of Toronto

References

https://developers.google.com/machine-learning/decision-forests