## Sum of Squares: Part 2

Apoorv Vikram Singh

February 19, 2021

### Recall MaxCut

- Given: G = (V, E).
- Goal: Find  $S\subseteq V$ , such that  $\left|E(S,\overline{S})\right|$  is maximized

# Approximation Algorithm for MaxCut

- . Algorithm: Return a random cut.
- . In expectation: Algorithm cuts half the edges.
- .  $MaxCut \leq |E|$ .
- . Therefore, it is a  $\frac{1}{2}$ -approximation algorithm.

# Can we improve the 1/2-approximation?

- Question: Is there an LP-based algorithm that achieves  $(0.5 + \varepsilon)$ -approximation algorithm?
- Answer: There does not exist a  $2^{n^{\delta}}$  size LP that gets  $(0.5 + f(\delta))$ -approximation [Cha+16].
- . [Goemans-Williamson, 1994] Gave a 0.878-approximation algorithm for MaxCut (based on SDP).

## Goal Today

- G = (V, E), and let Opt(G) = MaxCut(G).
- $f_G(\mathbf{x}) = \frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i \mathbf{x}_j)^2$ , for  $x \in \{-1,1\}^n$ .
- $\max_{\mathbf{x} \in \{-1,1\}^n} f_G(\mathbf{x}) = \operatorname{MaxCut}(G)$ .

### Theorem (0.878 Theorem)

For all G,

$$\frac{Opt(G)}{0.878}-f_G(\mathbf{x})\,,$$

has a degree-2 SoS certificate.

To prove the theorem, we will prove a "rounding" theorem.

### Theorem (Rounding Theorem)

Let  $\mu$  be a degree-2 pseudo-distribution on  $\{-1,1\}^n$ . Then, there is an actual distribution  $\mu'$  such that

$$\underset{\mu'}{\mathbb{E}} f_G(\mathbf{x}) \geq 0.878 \, \widetilde{\mathbb{E}}_{\mu} f_G(\mathbf{x}) \,.$$

Rounding: Takes pseudo-distribution to actual distribution.

## Rounding Theorem ⇒ 0.878 Theorem

### Proof.

Suppose  $\frac{\text{Opt}(G)}{0.878} - f_G(\mathbf{x})$  is not  $\text{SoS}_2$ , then,

- .  $\exists$  a degree-2 p.d.  $\mu$  such that  $\tilde{\mathbb{E}}_{\mu}\left(\frac{\mathsf{Opt}(\mathit{G})}{0.878} \mathit{f}_{\mathit{G}}(\mathbf{x})\right) < 0.$
- . Rearranging:  $\tilde{\mathbb{E}}_{\mu}f_{G} > \frac{\mathsf{Opt}(G)}{0.878}$ .
- . Rounding Theorem  $\implies \exists$  a distribution  $\mu'$ , such that,

$$\underset{\mu'}{\mathbb{E}} f_{G} \geq 0.878 \, \widetilde{\mathbb{E}}_{\mu} f_{G}(\mathbf{x}) > \operatorname{Opt}(G) \,.$$

.  $\mathbb{E}_{\mu'} f_G > \operatorname{Opt}(G)$ , contradiction.

## Interpreting Rounding Theorem

- . Suppose we have a p.d.  $\mu$ , and under this p.d.,  $\tilde{\mathbb{E}}_{\mu}f_{G}(\mathbf{x}) = \mathsf{Opt}_{\mathrm{SoS}_{2}}.$
- . We are interested in finding such cuts, or, if there are such cuts.
- . Find distribution  $\mu'$ , such that  $\mathbb{E}_{\mu'} f_G(\mathbf{x})$  is as large as possible.
- . We won't be able to prove it is equal, but we can prove

$$\underset{\mu'}{\mathbb{E}} f_G(\textbf{\textit{x}}) \geq 0.878 \, \mathsf{Opt}_{\mathrm{SoS}_2} \, .$$

.  $\mu \to \mu'$  will be efficient  $\implies$  algorithm to approximate MaxCut.

## Proving Rounding Theorem

#### Ideally:

. Given p.d.  $\mu$ , find distribution  $\mu'$  over  $\{-1,1\}^n$ , such that

$$\underset{\mu'}{\mathbb{E}}(1, \boldsymbol{x})^{\otimes 2} = \tilde{\mathbb{E}}_{\mu}(1, \boldsymbol{x})^{\otimes 2}$$
.

This is called: Generalized Moment Problem.

. Not possible, otherwise we would have solved MaxCut exactly.

### But, we can do it over $\mathbb{R}^n$

### Lemma (Gaussian Sampling)

For any degree-2 p.d.  $\mu$ , there exists an actual distribution over  $\mathbb{R}^n$  with same first and second moments.

#### Proof.

For any p.d.  $\mu$  of degree-2,

$$ilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top} \succcurlyeq \mathbf{0}$$
 .

- . First Moment:  $\tilde{\mathbb{E}}_{\mu} \mathbf{x}$ .
- . Second Moment:  $\tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top}$ .
- . Sample:  $\mathbf{g} \sim \mathcal{N}\left(\tilde{\mathbb{E}}_{\mu}\mathbf{x}, \tilde{\mathbb{E}}_{\mu}\mathbf{x}\mathbf{x}^{\top}\right)$ .

# $\mathsf{Wlog}\ ilde{\mathbb{E}}_{\mu} extbf{ extit{x}} = extbf{0}$

- . If  $\mu$  was an actual distribution, then  $\mathbf{x} \sim \mu$ , and output  $+\mathbf{x}$  or  $-\mathbf{x}$  uniformly.
- . Second Moment  $\tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top}$  remains unchanged.
- . Mean  $= \mathbf{0}$ .

Look at the p.d. with mean  $\mathbf{0}$  and second moment  $\tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top}$ . The value of  $\tilde{\mathbb{E}}_{\mu} f_G$  remains unchanged.

$$f_G(\mathbf{x}) = rac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i - \mathbf{x}_j)^2$$

$$= rac{1}{4} \sum_{(i,j) \in E} (2 - 2\mathbf{x}_i \mathbf{x}_j)$$
 $\Longrightarrow \tilde{\mathbb{E}}_{\mu} f_G(\mathbf{x}) = rac{1}{4} \sum_{(i,j) \in E} (2 - 2\tilde{\mathbb{E}}_{\mu} \mathbf{x}_i \mathbf{x}_j).$ 

# Efficient Algorithmic Process

Recall: 
$$oldsymbol{g} \sim \mathcal{N}\left(oldsymbol{0}, ilde{\mathbb{E}}_{\mu} oldsymbol{x} oldsymbol{x}^{ op}
ight)$$
 .

- .  $\mu \to \boldsymbol{g}$ , such that  $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top} = \mathbb{E} \, \boldsymbol{g} \boldsymbol{g}^{\top}$ .
- . Issue:  $\boldsymbol{g}$  does not have entries in  $\{\pm 1\}$ .

Efficient Algorithmic Process,

- 1. Take  $m{g} \sim \mathcal{N}\left( m{0}, \tilde{\mathbb{E}}_{\mu} m{x} m{x}^{\top} \right)$ .
- 2.  $\hat{\mathbf{x}}_i = \operatorname{sign}(\mathbf{g}_i)$ , which gives that  $\hat{\mathbf{x}} \in \{-1, 1\}^n$ .

Call  $\mu'$  the distribution on  $\hat{\mathbf{x}}$ .

### Claim (Rounding Theorem)

$$\mathbb{E}_{\mu'} f_G(\mathbf{x}) \geq 0.878 \, \tilde{\mathbb{E}}_{\mu} f_G(\mathbf{x}).$$

Lemma (Sheppard's Lemma)

$$\mathbb{P}\left[sign(\mathbf{g}_i) \neq sign(\mathbf{g}_j)\right] \geq \frac{2\arccos(\rho)}{\pi(1-\rho)} \ \mathbb{E}(\mathbf{g}_i - \mathbf{g}_j)^2,$$

for 
$$\rho = \tilde{\mathbb{E}}_{\mu} \mathbf{x}_i \mathbf{x}_j = \mathbb{E} \mathbf{g}_i \mathbf{g}_j$$
.

Remark(s): Comparing LHS and RHS of claim with lemma.

$$\cdot \underset{\mu'}{\mathbb{E}} f_G(\mathbf{x}) = \frac{1}{4} \sum_{(i,j) \in E} \underset{\mu'}{\mathbb{E}} (\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j)^2 = \sum_{(i,j) \in E} \mathbb{P} \left[ \operatorname{sign}(\mathbf{g}_i) \neq \operatorname{sign}(\mathbf{g}_j) \right].$$

$$\cdot \tilde{\mathbb{E}}_{\mu} f_{G}(\mathbf{x}) = \frac{1}{4} \sum_{(i,i) \in F} \tilde{\mathbb{E}}_{\mu} (\mathbf{x}_{i} - \mathbf{x}_{j})^{2} = \frac{1}{4} \sum_{(i,i) \in F} \mathbb{E} (\mathbf{g}_{i} - \mathbf{g}_{j})^{2}.$$

# Sheppard's Lemma ⇒ Rounding Theorem

Proof.

$$\min_{\rho \in [-1,1]} \frac{2\arccos(\rho)}{\pi(1-\rho)} \, \geq \, \underbrace{\alpha_{GW}}_{=0.878\dots} \, , \quad \text{( min at } \rho = -0.69 \text{) }.$$

This implies

$$\frac{1}{4} \underset{\mu'}{\mathbb{E}} (\hat{\boldsymbol{x}}_i - \hat{\boldsymbol{x}}_j)^2 \ge \alpha_{GW} \frac{1}{4} \widetilde{\mathbb{E}}_{\mu} (\boldsymbol{x}_i - \boldsymbol{x}_j)^2 ,$$

$$\frac{1}{4} \sum_{(i,j) \in E} \underset{\mu'}{\mathbb{E}} (\hat{\boldsymbol{x}}_i - \hat{\boldsymbol{x}}_j)^2 \ge \alpha_{GW} \frac{1}{4} \sum_{(i,j) \in E} \widetilde{\mathbb{E}}_{\mu} (\boldsymbol{x}_i - \boldsymbol{x}_j)^2 .$$

# Proving Sheppard's Lemma

#### Proof

We have Gaussians  $\mathbf{g}_i, \mathbf{g}_j$ , such that  $\mathbb{E} \mathbf{g}_i \mathbf{g}_j = \widetilde{\mathbb{E}}_{\mu} \mathbf{x}_i \mathbf{x}_j = \rho$ , and  $\mathbb{E} \mathbf{g}_i^2 = \widetilde{\mathbb{E}}_{\mu} \mathbf{x}_i^2 = 1$ .

Procedure to generate such Gaussian vectors:

- . Let  $\mathbf{v}, \mathbf{w} \in \mathbb{S}^{(2-1)}$  such that  $\langle \mathbf{v}, \mathbf{w} \rangle = \rho$ .
- . Take  $\boldsymbol{h} \sim \mathcal{N}(\boldsymbol{0}, \mathit{I}_2)$ .
- .  $\hat{m{g}_i}=\langle m{h},m{v}
  angle$ ,  $\hat{m{g}_j}=\langle m{h},m{w}
  angle$ , this has same joint-distribution as  $m{g}_i,m{g}_j$ .

#### We are interested in:

$$\mathbb{P}\left[\operatorname{sign}(\boldsymbol{g}_i) \neq \operatorname{sign}(\boldsymbol{g}_j)\right] = \mathbb{P}\left[\operatorname{sign}(\hat{\boldsymbol{g}}_i) \neq \operatorname{sign}(\hat{\boldsymbol{g}}_j)\right] \,.$$

### Proof Cont...



$$\mathbb{P}\left[\operatorname{sign}(\mathbf{g}_{i}) \neq \operatorname{sign}(\mathbf{g}_{j})\right] = \mathbb{P}\left[\operatorname{sign}(\hat{\mathbf{g}}_{i}) \neq \operatorname{sign}(\hat{\mathbf{g}}_{j})\right]$$

$$= \mathbb{P}\left[\operatorname{sign}(\langle \mathbf{h}, \mathbf{v} \rangle) \neq \operatorname{sign}(\langle \mathbf{h}, \mathbf{w} \rangle)\right]$$

$$= \frac{\operatorname{arccos}(\rho)}{\pi}.$$

And the other quantity

$$\frac{1}{4}\tilde{\mathbb{E}}_{\mu}(\mathbf{x}_i - \mathbf{x}_j)^2 = \frac{1}{4}\mathbb{E}(\mathbf{g}_i - \mathbf{g}_j)^2 = \frac{1}{4}\mathbb{E}(\hat{\mathbf{g}}_i - \hat{\mathbf{g}}_j)^2 = \frac{1}{2}(1 - \rho).$$

$$\implies \mathbb{P}\left[\operatorname{sign}(\mathbf{g}_i) \neq \operatorname{sign}(\mathbf{g}_j)\right] \geq \frac{2\operatorname{arccos}(\rho)}{\pi(1 - \rho)}\mathbb{E}(\mathbf{g}_i - \mathbf{g}_j)^2.$$



#### Can we do better?

- 1. Can we do better with degree-2 SoS?: No.
- 2. Can we improve it with degree-4, degree-6, ..., degree-log *n* SoS? Open.

### How likely?

Unique Games Conjecture  $\implies$   $(\alpha_{GW} + \varepsilon)$ -approx to MaxCut is NP-Hard  $\forall \varepsilon > 0$  [Har+10, Lecture 9].

- Corollary: Suppose  $\operatorname{Opt}(G) \geq (1-\delta)|E|$ , then Gaussian rounding gives  $\mathbb{E}_{\mu'} f_G(\mathbf{x}) \geq \left(1-\mathcal{O}\left(\sqrt{\delta}\right)\right)|E|$ .
- 3. Is this the most optimal rounding? No (RPR<sup>2</sup> rounding does better in some regimes of  $\delta$ ).

### Integrality Gaps?

What's the largest c for which degree-2 SoS certificate exists for  $\frac{\text{Opt}(G)}{c} - f_G(\mathbf{x})$ ? Ans: c = 0.878.. is optimal.

Fact

 $C_n$ : Cycle on n vertices, n odd.

$$MaxCut(C_n) = Opt(C_n) = \left(1 - \frac{1}{n}\right)|E|.$$

#### **Theorem**

There is a p.d.  $\mu$  of degree-2 such that

$$\tilde{\mathbb{E}}_{\mu}f_{C_n}(\mathbf{x}) = \left(1 - \mathcal{O}\left(\frac{1}{n^2}\right)\right)|E|.$$

Choose  $n = \frac{1}{\delta}$ , then  $\operatorname{Opt}(C_n) = (1 - \delta)|E|$ , and  $\operatorname{Opt}_{\operatorname{SoS}_2}(C_n) \geq 1 - \mathcal{O}(\delta^2)|E|$ .  $\Longrightarrow$  Corollary for small  $\delta$  is tight up to constant factors.

 $\begin{aligned} \mathsf{Cycle} &= \text{``Discretized'' 2-dimn Sphere} \\ &\vdots \end{aligned}$ 

= "Discretized" high-dimn Sphere

[Feige-Schechtman'02] Proved  $\alpha_{GW}$  is optimal.

### Proof Sketch of Theorem

 $\begin{aligned} \mathsf{MaxCut} &= \mathsf{max}_{\boldsymbol{x} \in \{-1,1\}^n} \, \boldsymbol{x}^\top L_G \boldsymbol{x}. \\ \mathsf{Relaxation} &= \mathsf{max}_{\|\boldsymbol{x}\| = \sqrt{n}} \, \boldsymbol{x}^\top L_G \boldsymbol{x} = n \, \|L_G\|_2. \end{aligned}$ 

- How to construct such a degree-2 p.d.?
- Choose a distribution on  $\boldsymbol{x}$  that are in the "largest eigenspace" of  $L_G$ .
- . We just need  $\tilde{\mathbb{E}}_{\mu}(1, \mathbf{x})(1, \mathbf{x})^{\top} \succcurlyeq 0$ ,  $\tilde{\mathbb{E}}_{\mu} \mathbf{x}_{i}^{2} = 1$ ,  $\tilde{\mathbb{E}}_{\mu} 1 = 1$ .
- 1. Idea:  $\lambda \max(L_G) = 1 \mathcal{O}(1/n^2)$ . It is not Boolean because maxcut is  $(1 \mathcal{O}(1/n))|E|$ . Top eigenspace is 2-dimensional with vectors  $\mathbf{v}_1, \mathbf{v}_2$ .
- 2. set  $M = \tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top} = \mathbf{v}_1 \mathbf{v}_1^{\top} + \mathbf{v}_2 \mathbf{v}_2^{\top} \succcurlyeq 0$ .
- 3. Moreover,  $\mathbf{v}_1 \mathbf{v}_1^\top + \mathbf{v}_2 \mathbf{v}_2^\top$  has diagonal entries 1.
- 4. Therefore, this is a valid pseudo-expectation.

#### References I



Prahladh Harsha et al. Limits of Approximation Algorithms: PCPs and Unique Games (DIMACS Tutorial Lecture Notes). 2010. arXiv: 1002.3864 [cs.CC] (cit. on p. 18).



Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. 'Approximate Constraint Satisfaction Requires Large LP Relaxations'. In: 63.4 (2016). arXiv: 1309.0563 [cs.CC] (cit. on p. 4).