Merjenje napovedne napake in izbira napovednega modela

Ljupčo Todorovski Univerza v Ljubljani, Fakulteta za upravo

Marec 2018

Pregled predavanja

Predsodek (bias) in varianca

- Ilustrativni primer
- Dekompozicija napovedne napake na predsodek in varianco

Merjenje napovedne napake

- Optimizem ocene napake na učni množici
- Razbitje podatkovne množice na učno in testno
- Vzorčenje podatkovne množice

Izbira napovednega modela

Podatkovna množica: $p=1,D_1,D_Y\subseteq\mathbb{R}$

Todorovski, UL-FU

Merjenje napake

Marec 2018

Izbira modela: linearni (William of Ockham)

Izbira modela: oscilatorski (testni podatki)

Prostora modelov

Primerjava varianc

- Nizka varianca linearnih modelov (levo): napaka modela zelo občutljiva na spremembe modela (naklon premice)
- Visoka varianca oscilatorskih modelov (desno): napaka modela neobčutljiva na spremembe modela (amplituda oscilacij)

Prostora modelov in podatki

Prostora modelov: kompromis med predsodkom in varianco

Možna posledica: napačna izbira modela

Pravi model $m: Y = m(X) + \epsilon, E(\epsilon) = 0$

- $E(m(x_0)) = m(x_0)$, ker je m determinističen
- ② $E(Y|X = x_0) = E(m(x_0) + \epsilon) =_{[1]} m(x_0)$
- $Var(Y|X = \mathbf{x}_0) = E((Y E(Y))^2|X = \mathbf{x}_0)$ = $E((Y - m(\mathbf{x}_0))^2|X = \mathbf{x}_0) = E(\epsilon^2) = \sigma_{\epsilon}^2$
- $E(Y^2|X = \mathbf{x}_0) = E((m(\mathbf{x}_0) + \epsilon)^2) = E(m(\mathbf{x}_0))^2 + 2E(m(\mathbf{x}_0)\epsilon) + E(\epsilon^2)$ $=_{[2,3]} m(\mathbf{x}_0)^2 + \sigma_{\epsilon}^2$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Naučeni napovedni model \hat{m}

ker na splošno velja $Var(U) = E(U^2) - E(U)^2$

Dekompozicija napovedne napake modela Err

$$Err(\mathbf{x}_{0}) = E((Y - \hat{m}(\mathbf{x}_{0}))^{2} | X = \mathbf{x}_{0})$$

$$= E(Y^{2} + \hat{m}(\mathbf{x}_{0})^{2} - 2Y \hat{m}(\mathbf{x}_{0}) | X = \mathbf{x}_{0})$$

$$= E(Y^{2} | X = \mathbf{x}_{0}) + E(\hat{m}(\mathbf{x}_{0})^{2}) - 2E(Y \hat{m}(\mathbf{x}_{0}) | X = \mathbf{x}_{0})$$

$$=_{[m2,m4]} m(\mathbf{x}_{0})^{2} + \sigma_{\epsilon}^{2} + E(\hat{m}(\mathbf{x}_{0})^{2}) - 2m(\mathbf{x}_{0})E(\hat{m}(\mathbf{x}_{0}))$$

$$=_{[\hat{m}1]} \sigma_{\epsilon}^{2} + m(\mathbf{x}_{0})^{2} + E(\hat{m}(\mathbf{x}_{0}))^{2} + Var(\hat{m}(\mathbf{x}_{0}))$$

$$- 2m(\mathbf{x}_{0})E(\hat{m}(\mathbf{x}_{0}))$$

$$= \sigma_{\epsilon}^{2} + (E(\hat{m}(\mathbf{x}_{0})) - m(\mathbf{x}_{0}))^{2} + Var(\hat{m}(\mathbf{x}_{0}))$$

$$= \sigma_{\epsilon}^{2} + Predsodek^{2} + Varianca$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Komponente napovedne napake

σ_{ϵ}^2 je fiksna komponenta

Na to komponento nimamo vpliva.

Predsodek
$$(E(\hat{m}(\mathbf{x}_0))-m(\mathbf{x}_0))^2$$

- ullet Razlika med pričakovano vrednostjo napovedi \hat{Y} in vrednostjo Y
- ullet Za podani prostor modelov nam pove koliko se lahko \hat{Y} približa Y

Varianca $Var(\hat{m}(\mathbf{x}_0))$

- ullet Je varianca napovedi \hat{Y} okoli pričakovane vrednosti $E(\hat{Y})$
- ullet Za napoved \hat{Y} in model \hat{m} nam pove kakšna je njena stabilnost

4 D > 4 D > 4 B > 4 B > B 9 Q C

Predsodek in varianca: grafična ponazoritev

Kompromis med predsodkom in varianco

Prileganje, predsodek in varianca

Preprileganje (overfitting)

- Situacija ko se soočamo z nizkim predsodkom in visoko varianco
- Kompleksni prostor modelov: najbližji sosedi z nizkim k
- Desna polovica grafa na prejšnji prosojnici

Podprileganje (underfitting)

- Situacija, ko se soočamo z visokim predsodkom in nizko varianco
- Enostaven prostor modelov: linarna oz. logistična regresija
- Leva polovica grafa na prejšnji prosojnici

Optimalni model

- Je idealna rešitev kompromisa med predsodkom in varianco
- Ravno prav zapleten prostor modelov

Predsodek in variance metode strojnega učenja

Priporočila

Zmanjševanje predsodka

- Linearni modeli: dodajanje nelinearnih členov
- Najbližji sosedi: zmanjševanje števila sosedov

Zmanjševanje variance

- Linearni modeli skoraj nikoli nimajo težav z visoko varianco
- Najbližji sosedi: povečevanje števila sosedov in zmanjševanje množice vhodnih spremenljivk (izbira spremenljivk)
- Generalna metoda: ansambli modelov

V večini primerov zmanjševanje predsodka povečuje varianco in obratno: zato ocenjevanje celotne napovedne napake

Učna in realna napaka

Funkcija izgube $L: D_Y \times D_Y o \mathbb{R}_0^+$

- Za regresijo $L_{SE}(y, \hat{y}) = (y \hat{y})^2$
- Za klasifikacijo $L_{01}(y,\hat{y}) = 1 I(y,\hat{y})$

Učna napaka: napaka m izmerjena na učni množici S

$$Err_{train}(m, S) = \frac{1}{|S|} \sum_{(\mathbf{x}, \mathbf{y}) \in S} L(\mathbf{y}, m(\mathbf{x}))$$

Optimistična: izmerjena na primerih uporabljenih za učenje modela

Realna napaka: napaka m ocenjena na primerih izven S

$$Err_{real}(m, S) = E(L(y, m(x))|(x, y) \notin S)$$

Teoretični rezultati in ...

Optimizem učne napake $o = Err_{real} - Err_{train}$

Če upoštevamo negotovost Y v učni množici, nas zanima $\omega = {\sf E}_Y(o)$

Najbolj splošen rezultat

$$\omega = \frac{2}{|S|} \sum_{(\mathbf{x}, y) \in S} Cov(m(\mathbf{x}), y)$$

Optimizem je obratno sorazmeren številu učnih primerov |S|

Rezultat za linearne modele $Cov(m(x), y) = p\sigma_{\epsilon}^2$

Optimizem je premo sorazmeren številu napovednih spremenljivk p

4□ > 4□ > 4□ > 4□ > 4□ > 900

Praksa

Uporabna rešitev

Ocenjevanje napake na posebni testni množici oziroma na primerih, ki niso bili uporabljeni za učenje modela.

Praktični pristop

Razbitje učne množice S na

- ullet podmnožico primerov za učenje modela S_{train}
- ullet podmnožico primerov za ocenjevanje napake S_{test}
- $S_{train} \cup S_{test} = S$, $S_{train} \cap S_{test} = \emptyset$

Izbor primerov v S_{train} naključen

Odločimo se o deležu učnih primerov $|S_{train}|/|S|$: oznaka p v grafih

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 ○ ○

Ocena napake regresijskega modela kNN: k = 5

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

◆ロ > ◆回 > ◆ ■ > ◆ ■ > ◆ ●

Todorovski, UL-FU Merjenje napake Marec 2018 24 / 44

Ocena napake klasifikacijskega modela kNN: k = 7

$$Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$$
 zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Merjenje napake Marec 2018 25 / 44

Zakaj vzorčenje

Nižanje variance ocene

Grafi razkrijejo visoko varianco ocene napovedne napake

Dva pristopa

- Prečno preverjanje (cross validation)
- Zankanje (bootstrap)

Razbitje učne množice S

k podmnožic S_i : i = 1...k (k-kratno prečno preverjanje)

- S_i : $|S_i| \approx |S|/k$
- $S = \bigcup_{i=1}^k S_i$, $\forall i \neq j : S_i \cap S_j = \emptyset$
- Stratifikacija: vsaka podmnožica ima približno enako porazdelitev Y

Od razbitja do ocene napake

Za vsako S_i , i = 1..p opravimo koraka

- **1** Naučimo se napovedni model m_i na primerih iz $S \setminus S_i$
- ② Izmerimo napako Err_i na primerih iz S_i : $Err_i = Err(m_i, S_i)$

Ocena napovedne napake Err_{CV} in alternativa

$$Err_{CV} = \frac{1}{k} \sum_{i=1}^{k} Err_i$$

$$Err_{CV1} = \frac{1}{|S|} \sum_{e=(\mathbf{x},y) \in S} L(y,m_e(\mathbf{x}))$$
, kjer je $m_e = m_i : e \in S_i$

Običajni vrednosti k: 5 ali 10

Poseben primer k = |S|: **izpusti enega** (*leave-one-out*, *LOO*)

Ocena napake regresijskega modela kNN: k = 5

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

Todorovski, UL-FU Merjenje napake Marec 2018 29 / 44

Ocena napake klasifikacijskega modela kNN: k = 7

$$Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$$
 zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Merjenje napake Marec 2018 30 / 44

Vzorčenje učne množice S

B vzorcev V_i : i = 1..B množice S

- $V_i: |V_i| = |S|$, vzorčenje s ponavljanjem
- Verjetnost $p(e \notin V_i) = (1 1/|S|)^{|S|}$

$$\lim_{|S|\to\infty} p(e\notin V_i) = \frac{1}{e} = 0.368$$

Od vzorčenja do ocene napake

Za vsak V_i , i = 1..B opravimo koraka

- **1** Naučimo se napovedni model m_i na primerih iz V_i
- 2 Izmerimo napako Err_i na primerih iz $S \setminus V_i$: $Err_i = Err(m_i, S \setminus V_i)$

Ocena napovedne napake Err_{BS}: običajna in alternativi

$$Err_{BS} = \frac{1}{B} \sum_{i=1}^{B} Err_i$$

- $Err_{BS1} = \frac{1}{|S|} \sum_{e=(x,y) \in S} \frac{1}{|M_e|} \sum_{m \in M_e} L(y, m(x)),$ kjer je $M_e = \{m_i : e \notin V_i\}$
- $Err_{BS632} = 0.368Err_{train} + (1 0.368)Err_{BS1}$

4 D > 4 P > 4 B > 4 B > B 9 Q P

Marec 2018

32 / 44

Todorovski, UL-FU Merjenje napake

Ocena napake regresijskega modela kNN: k = 5

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

Todorovski, UL-FU Merjenje napake Marec 2018 33 / 44

Ocena napake regresijskega modela kNN: k = 5, popravek

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

Todorovski, UL-FU Merjenje napake Marec 2018 34 / 44

Ocena napake klasifikacijskega modela kNN: k = 7

$$Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$$
 zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Merjenje napake Marec 2018 35 / 44

Ocena napake klasifikacijskega modela kNN: k = 7, popr.

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Merjenje napake Marec 2018 36 / 44

Izbira modela

Za podano podatkovno množico S zberemo

- Nabor algoritmov $\mathcal{A}_1, \mathcal{A}_2, \dots \mathcal{A}_q$ za strojno učenje
- Za vsak algoritem A_i : i=1..q izberemo nabor nastavitev parametrov $N_{i1},N_{i2},\ldots N_{ir_i}$

Za vsak par (A_i, N_{ij})

- Uporabimo zankanje na množici S za oceno napake Errij
- Ugotovimo kateri par ima minimalno napako Err
- \odot Uporabimo ta par za gradnjo končnega modela na celi množici S

Izbira algoritmov in nastavitev

Kateri algoritmi?

Lastnosti podatkovne množice: število primerov, spremenljivk, domene

Kateri parametri?

Tisti, ki spreminjajo kompleksnost modela oziroma vplivajo na odnos med predsodkom in varianco.

Priporočila za enostavne metode

Linearni modeli

- Manjši predsodek: nelinearne kombinacije napovednih spremenljivk
- Manjša varianca: izbira podmnožice vhodnih spremenljivk
- Manjša varianca: regularizacija

Najbližji sosedi

- Manjši predsodek: manjše število sosedov k
- Manjša varianca: izbira podmnožice vhodnih spremenljivk

Izbira števila sosedov za regresijski model: CV-10

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1..2, D_Y = [0, 1]$$

Todorovski, UL-FU Merjenje napake Marec 2018 40 / 44

Izbira števila sosedov za klasifikacijski model: CV-10

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Merjenje napake Marec 2018 41 / 44

Izbira števila sosedov za regresijski model: BS-100

$$Y = (1 + X_1 + X_1 X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1...2, D_Y = [0, 1]$$

←□ → ←□ → ← = → ← = → へへ

Todorovski, UL-FU Merjenje napake Marec 2018 42 / 44

Izbira števila sosedov za klasifikacijski model: BS-100

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1...2, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Merjenje napake Marec 2018 43 / 44

Izbira modela za podatkovno množico Iris: BS-100

