Dynamical Systems: Homework #1

Due on 14th January, 2019

Aditya Vijaykumar

(Acknowledgements - I would like to thank Divya Jagannathan for discussions.)

Problem 1

$$\dot{x} = x^{1/3} \implies \frac{dx}{x^{1/3}} = dt \implies \frac{2}{3} \left(x^{2/3} - x_0^{2/3} \right) = t \implies x(t) = \left(x_0^{2/3} + \frac{3}{2} t \right)^{3/2}$$
 (1)

For $x_0 = 0$, we have $x(t) = \left(\frac{3t}{2}\right)^{3/2}$. As the function $f(y) = y^{3/2}$ is only defined for $y \ge 0$, this solution has maximum interval of existence $t \in [0, \infty)$. For $x_0 = 0$, we also have the trivial solution x(t) = 0 which has maximum interval of existence $t \in (-\infty, \infty)$. So there are at least two distinct solutions for $x_0 = 0$. One can also imagine patching up the above solutions at origin and forming other possible solutions.

For the case where $x_0 \neq 0$, we are only left with [1]. As $x_0^{2/3} > 0$, $\forall x_0 \neq 0$, the maximal interval of existence for x(t) is $[0, \infty)$.

Problem 2

Part (a)

$$\dot{x} = x(x^{2} - 1)
\dot{x} = \frac{dx}{x(x-1)(x+1)} = dt
\dot{x} - \frac{dx}{x} + \frac{1}{2} \left[\frac{dx}{x+1} + \frac{dx}{x-1} \right] = dt
\dot{x} - \frac{1}{2} \log \frac{x+1}{x-1} - \log x = -\frac{1}{2} \log \frac{x_{0}+1}{x_{0}-1} + \log x_{0} + t$$