Algorithm Design and Analysis (Fall 2023) Assignment 3

Deadline: Dec 12, 2023

- 1. (25 points) Given a constant $k \in \mathbb{Z}^+$, we say that a vertex u in an undirected graph covers a vertex v if the distance between u and v is at most k. In particular, a vertex u covers all those vertices that are within distance k from u, including u itself. Given an undirected tree G = (V, E) and the parameter k, consider the problem of finding a minimum-size subset of vertices that covers all the vertices in G. Design a polynomial time algorithm for this problem. Prove the correctness of your algorithm and analyze its running time. You will receive 15 points if you can solve the problem for k = 1.
- 2. (25 points) Suppose you are a driver, and you plan to drive from A to B through a highway with distance D. Since your car's tank capacity C is limited, you need to refuel your car at the gas station on the way. We are given n gas stations on the highway with surplus supply. Let $d_i \in (0, D)$ be the distance between the starting point A and the i-th gas station. Let p_i be the price for each unit of gas at the i-th gas station. Suppose each unit of gas exactly supports one unit of distance. The car's tank is empty at the beginning, and the 1-st gas station is at A. Design efficient algorithms for the following tasks.
 - (a) (5 points) Determine whether it is possible to reach B from A.
 - (b) (20 points) Minimized the gas cost for reaching B.

Please prove the correctness of your algorithms and analyze their running times.

3. (25 points) Given a ground set $U = \{1, ..., n\}$, a set function on U is a function $f : \{0, 1\}^U \to \mathbb{R}$ that maps a subset of U to a real value. A set function f is submodular if

$$f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T)$$

holds for any $S,T\subseteq U$ with $S\subseteq T$ and any $v\in U\setminus T$. We make the following assumptions on a submodular set function f:

- Nonnegative: $f(S) \ge 0$ for any $S \subseteq U$; you can assume f(S) is always a rational number.
- Monotone: $f(S) \leq f(T)$ for any $S, T \subseteq U$ with $S \subseteq T$.
- f(S) can be computed in a polynomial time with respect to n = |U|.

Given a positive integer k > 0 as an input, the goal is to find $S \subseteq U$ that maximizes f(S) subject to the cardinality constraint $|S| \le k$. Design a polynomial time (1 - 1/e)-approximation algorithm for this maximization problem. Prove that the algorithm you design runs in a polynomial time and provides a (1 - 1/e)-approximation.

- 4. (25 points) Given an undirected graph G = (V, E), a matching M is a subset of edges such that no two edges in M share an endpoint. The maximum matching problem takes the graph G = (V, E) as the input and outputs a matching M with the maximum size |M|. Consider the following greedy algorithm.
 - initialize $M \leftarrow \emptyset$
 - while there exists $e \in E$ such that $M \cup \{e\}$ is a valid matching:
 - update $M \leftarrow M \cup \{e\}$
 - endwhile
 - \bullet return S
 - (a) (20 points) Prove that this is a 0.5-approximation algorithm.
 - (b) (5 points) Provide a tight example showing that this is not a $(0.5+\varepsilon)$ -approximation algorithm for any $\varepsilon > 0$.
- 5. How long does it take you to finish the assignment (including thinking and discussion)? Give a score (1,2,3,4,5) to the difficulty. Do you have any collaborators? Please write down their names here.