

Gabarito da AD2 - Fundamentos de Algoritmos para Computação

2007-1

1. (1.5) Usando o teorema das linhas mostre que:

$$\sum_{k=0}^{n} k(k+1)C_n^k = n(n+3)2^{n-2}$$

Resposta:

2. (1.5) Considerando o desenvolvimento de $\left(\frac{\sqrt[4]{a}}{b^2} - \frac{2\sqrt{b}}{a}\right)^{100} \left(\frac{\sqrt[4]{a}}{b^2} + \frac{2\sqrt{b}}{a}\right)^{100}$, com a > 0 e b > 0, calcule o coeficiente de a^{-10} . Justifique.

Resposta: Sabemos que $(x+y)(x-y) = x^2 - y^2$.

Reescrevendo, temos:

Para $0 \le k \le 100$, o termo genérico do desenvolvimento é dado por:

$$T_{k+1} = C_{100}^{k} \left(\frac{a^{\frac{1}{2}}}{b^{4}}\right)^{100-k} \left(-\frac{4b}{a^{2}}\right)^{k} =$$

$$= C_{100}^{k} \left(\frac{a^{\frac{100-k}{2}}}{b^{400-4k}}\right) \left((-4)^{k} \frac{b^{k}}{a^{2k}}\right) =$$

$$= C_{100}^{k} a^{50-\frac{k}{2}} b^{-400+4k} (-4)^{k} b^{k} a^{-2k} =$$

$$= C_{100}^{k} (-4)^{k} b^{-400+4k+k} a^{50-\frac{k}{2}-2k} =$$

$$= C_{100}^{k} (-4)^{k} b^{5k-400} a^{50-\frac{5k}{2}}$$

Como queremos calcular o coeficiente de a^{-10} , temos que:

$$50 - \frac{5k}{2} = -10 \Rightarrow 60 = \frac{5k}{2} \Rightarrow \boxed{\text{k=24}}$$

Então, o coeficiente de $a^{-10}~$ é : $C_{100}^{24}~(-4)^{24}~b^{-280}=C_{100}^{24}~4^{24}~b^{-280}$.

- 3. (1.5) Suponha que uma moeda seja lançada até que apareçam 2 caras, quando o experimento termina.
 - (a) Seja a_n o número de experimentos que terminam no n-ésimo lançamento ou antes. Encontre uma relação de recorrência para a_n . Justifique.

Observe por exemplo, que a_3 é o número de experimentos que terminam no segundo ou terceiro lançamento, ou seja, é a soma de cc, cCc e Ccc onde c significa 'cara' e C 'coroa'.

Resposta: Os experimentos contados em a_n dividem-se em dois conjuntos disjuntos, experimentos onde as duas caras foram obtidas até o (n-1)-ésimo lançamento, existindo a_{n-1} experimentos deste tipo, e experimentos onde a segunda cara foi obtida no n-ésimo lançamento, e portanto só foi obtida uma cara até o (n-1)-ésimo lançamento, logo existem n-1 experimentos deste tipo.

Pelo princípio aditivo, temos que $a_n = a_{n-1} + n - 1$.

Observe que $a_1 = 0$. Portanto, a relação de recorrência para a_n é:

$$\begin{cases} a_n = a_{n-1} + n - 1, \text{ para } n \ge 2. \\ a_1 = 0 \end{cases}$$

(b) Calcule a fórmula fechada da relação de recorrência. Justifique.

Resposta: Temos que :

$$\begin{array}{rcl} a_n & = & a_{n-1}+n-1 & = \\ & = & [a_{n-2}+(n-2)]+(n-1) & = \\ & = & [a_{n-3}+(n-3)]+[(n-2)+(n-1)] & = \\ & = & [a_{n-4}+(n-4)]+[(n-3)+(n-2)+(n-1)] & = \\ & \vdots & \\ & = & a_{n-i}+[(n-i)+(n-i+1)+\ldots+(n-2)+(n-1)] & = \\ & = & a_{n-i}+\sum_{k=n-i}^{n-1} k \end{array}$$

Tomando n - i = 1, temos i=n-1.

Logo,
$$a_n = a_1 + \sum_{k=1}^{n-1} k$$
.

Como
$$\sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}$$
 e $a_1 = 0$ então $a_n = \frac{n(n-1)}{2}$.

4. (1.0) Mostre que não existe grafo simples com 11 vértices que seja regular de grau 3.

Resposta: Suponhamos que exista um grafo G com 11 vértices que seja regular de grau 3.

Sejam a_1, \ldots, a_{11} os vértices do grafo G.

Como G é um grafo regular de grau 3 temos que $d(a_1) = d(a_2) = \ldots = d(a_{11}) = 3$.

Então $\sum d(v) = 3 \times 11 = 33$, que é um número ímpar. Mas sabemos pelo "Teorema do Aperto de Mãos" que para todo grafo a soma dos graus de seus vértices é sempre igual a duas vezes o seu número de vértices, ou seja, é sempre um número par. Logo, não existe um grafo simples com 11 vértices que seja regular de grau 3.

5. (1.5) Dê um exemplo de um digrafo com 7 vértices que seja unilateralmente conexo e não seja fortemente conexo.

Resposta: Um digrafo D=(V,E) é fortemente conexo quando para todo par de vértices $v,w\in V$, existe um caminho em D de v para w e também de w para v.

Se pelo menos um desses caminhos existir para todo $v, w \in V$, então D é unilateralmente conexo (isto é, se para cada par v, w de V existir caminho de v para w ou de w para v).

Veja no exemplo abaixo: o digrafo não é fortemente conexo pois não existe caminho de vértice 7 para nenhum outro vértice do grafo (o vértice 7 é um sumidouro). Mas ele é unilateralmente conexo. Existem os caminhos 12347, 15647, 256, 53, 36 que mostram que para todo $v,w\in V$ existe pelo menos um caminho de v a w ou de w a v.

6. (3.0) Responda as seguintes perguntas considerando os grafos G_1 e G_2 abaixo. (Respostas sem justificativas não serão consideradas.)

(a) G_1 e G_2 são isomorfos?

Resposta: Sim, pois seja $f: V(G_1) \to V(G_2)$ tal que:

v	f(v)
\overline{a}	1
b	5
c	2
d	6
e	3
f	7
g	4
h	8

f é injetiva (1 a 1) e sobrejetiva. Para f ser isomorfa precisamos verificar se:

$$(v,w) \in E(G_1) \leftrightarrow (f(v),f(w)) \in E(G_2), \forall v,w \in V(G_1) \text{ tal que } (v,w) \in E(G_1).$$

$$(a,b) \in E(G_1) \leftrightarrow (1,5) \in E(G_2)$$

$$(b,c) \in E(G_1) \leftrightarrow (5,2) \in E(G_2)$$

$$(c,d) \in E(G_1) \leftrightarrow (2,6) \in E(G_2)$$

$$(d,e) \in E(G_1) \leftrightarrow (6,3) \in E(G_2)$$

$$(e,f) \in E(G_1) \leftrightarrow (3,7) \in E(G_2)$$

$$(f,g) \in E(G_1) \leftrightarrow (7,4) \in E(G_2)$$

$$(g,h) \in E(G_1) \leftrightarrow (4,8) \in E(G_2)$$

$$(h,a) \in E(G_1) \leftrightarrow (8,1) \in E(G_2)$$

$$(a,d) \in E(G_1) \leftrightarrow (1,6) \in E(G_2)$$

$$(b,g) \in E(G_1) \leftrightarrow (5,4) \in E(G_2)$$

$$(c,f) \in E(G_1) \leftrightarrow (2,7) \in E(G_2)$$

$$(e,h) \in E(G_1) \leftrightarrow (3,8) \in E(G_2)$$

Logo, f é um isomorfismo e G_1 é isomorfo a G_2 .

(b) Escreva a matriz de adjacência de G_1 .

Resposta: A matriz de adjacência $A = (a_{ij})$ é uma matriz $n \times n$ tal que:

$$\begin{cases} a_{ij} = 1, \text{ se } (v_i, v_j) \in E(G) \\ a_{ij} = 0, \text{ caso contrário} \end{cases}$$

(c) G_2 é um grafo hamiltoniano?

Resposta: G_2 é hamiltoniano, pois G_2 possui um ciclo que passa por todos os vértices uma única vez. E o ciclo é 152637481.

(d) G_2 é um grafo euleriano?

Resposta: Não, pois por teorema, G_2 é euleriano se e somente se todo vértice de G_2 possui grau par, e d(1) = d(2) = d(3) = d(4) = d(5) = d(6) = d(7) = d(8) = 3, ou seja G_2 possui vértices com grau ímpar.

(e) G_2 é planar?

Resposta: Sim, pois ${\cal G}_2$ possui a seguinte representação plana:

