

Կոնֆետների բաժանում

Մորաքույր Խոնգը պատրաստում է կոնֆետների n տուփեր հարևան դպրոցի աշակերտների համար։ Տուփերը համարակալված են 0-ից n-1 թվերով և սկզբում դատարկ են։ i ($0 \le i \le n-1$) համարի տուփում հնարավոր է դնել առավելագույնը c[i] հատ կոնֆետ։

Մորաքույր Խոնգը q օր ծախսեց տուփերը պատրաստելու համար։ j-րդ ($0 \leq j \leq q-1$) օրը նա կատարեց գործողություն, որը նկարագրվում է երեք $l[j],\ r[j]$ և v[j] ամբողջ թվերով, որտեղ $0 \leq l[j] \leq r[j] \leq n-1$ և $v[j] \neq 0$ ։ Յուրաքանչյուր k արկղի համար, որը բավարարում է $l[j] \leq k \leq r[j]$ պայմանին

- Եթե v[j]>0, Մորաքույր Խոնգը մեկ առ մեկ կոնֆետներ է ավելացնում k տուփի մեջ, մինչև որ ավելացված կոնֆետների քանակը դառնում է v[j] կամ տուփը լցվում է։ Այլ կերպ ասած, եթե մինչև գործողությունը տուփում կար p կոնֆետ, գործողությունից հետո կլինի $\min(c[k], p+v[j])$ կոնֆետ։
- Եթե v[j] < 0, Մորաքույր Խոնգը մեկ առ մեկ կոնֆետներ է հանում k տուփից, մինչև որ հանած կոնֆետների քանակը դառնում է ճիշտ -v[j] կամ տուփը դատարկվում է։ Այլ կերպ ասած, եթե մինչև գործողությունը տուփում կար p կոնֆետ, գործողությունից հետո կլինի $\max(0,p+v[j])$ կոնֆետ։

Ձեր խնդիրն է պարզել կոնֆետների քանակը յուրաքանչյուր տուփում $\,q\,$ օր հետո։

Իրականացման մանրամասներ

Դուք պետք է իրականացնեք հետևյալ ֆունկցիան.

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c։ n երկարության զանգված։ $0 \leq i \leq n-1$, c[i]-ն ցույց է տալիս i-րդ տուփի տարողունակությունը։
- $l,\ r$ և v: q երկարության երեք զանգված։ j-րդ օրը, for $0 \le j \le q-1$, Մորաքույր Խոնգը կատարում է $l[j],\ r[j]$ և v[j] ամբողջ թվերին համապատասխանող գործողություն, որը նկարագրված է վերևում։
- Այս ֆունկցիան պետք է վերադարձնի n երկարության զանգված։ Ձանգվածի անունը նշանակենք s-ով։ $0 \le i \le n-1$ համար, s[i]-ն պետք է լինի կոնֆետների քանակը i-րդ տուփում q օր հետո։

Օրինակներ

Օրինակ 1

Դիտարկենք հետևյալ կանչը.

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Սա նշանակում է, որ 0 տուփի տաողունակությունը 10 կոնֆետ է, 1 տուփի տարողունակությունը 15 կոնֆետ է, իսկ 2 տուփը տեղավորում է 13 կոնֆետ։

0 օրվա վերջում, 0 տուփում կլինի $\min(c[0],0+v[0])=10$ կոնֆետ, 1 տուփում կլինի $\min(c[1],0+v[0])=15$ կոնֆետ և 2 տուփում կլինի $\min(c[2],0+v[0])=13$ կոնֆետ։

1 օրվա վերջում, 0 տուփում կլինի $\max(0,10+v[1])=0$ կոնֆետ, 1 տուփում կլինի $\max(0,15+v[1])=4$ կոնֆետ։ Քանի որ $2>r[1],\ 2$ տուփում կոնֆետների քանակը չի փոխվի։ Կոնֆետների քանակը յուրաքանչյուր օրվա վերջում ամփոփված է հետևյալ աղյուսակում.

Ор	Տու փ 0	Տուփ 1	Տուփ 2
0	10	15	13
1	0	4	13

<ետևաբար, ֆունկցիան պետք է վերադարձնի [0,4,13]։

Սահմանափակումներ

- 1 < n < 200000
- $1 \le q \le 200\,000$
- $1 \le c[i] \le 10^9$ (բոլոր $0 \le i \le n-1$ համար)
- $0 \le l[j] \le r[j] \le n-1$ (բոլոր $0 \le j \le q-1$ համար)
- $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (բոլոր $0 \leq j \leq q-1$ համար)

ենթախնդիրներ

- 1. (3 միավոր) $n, q \leq 2000$
- 2. (8 միավոր) v[j]>0 (բոլոր $0\leq j\leq q-1$ համար)
- 3. (27 միավոր) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 միավոր) l[j]=0 և r[j]=n-1 (բոլոր $0\leq j\leq q-1$ համար)
- 5. (33 միավոր) Լրացուցիչ սահմանափակումներ չկան։

Գրեյդերի նմուշ

Գրեյդերի նմուշը մուտքային տվյալները կարդում է հետևյալ ձևաչափով.

• unn 1: n

- unn 2: c[0] c[1] \dots c[n-1]
- unnų 3: q
- unn 4+j ($0\leq j\leq q-1$): l[j] r[j] v[j]

Գրեյդերի նմուշը տպում է ձեր պատասխանները հետևյալ ձևաչափով.

• unnų 1: s[0] s[1] ... s[n-1]