CONTROLE E SERVOMECANISMOS Engenharia da Computação

Aula 30 - "Sistemas de Controle no Espaço de Estado VII"

Prof. Dr. Victor Leonardo Yoshimura

Universidade Federal de Mato Grosso do Sul Faculdade de Computação

31 de julho de 2017

1 Introdução à Teoria de Lyapunov

Teoria de Lyapunov em SLIT-Cs

1 Introdução à Teoria de Lyapunov

2 Teoria de Lyapunov em SLIT-Cs

Introdução

- Para SLIT-Cs, muitos critérios de estabilidade estão disponíveis:
 - Critério de Routh-Hurwitz;
 - Critério de Nyquist.
- Se o sistema não for linear ou não for invariante, esses critérios são inválidos.
- A Teoria de Lyapunov (formulada em 1892!) é aplicável a tais situações.
- Para SLIT-Cs, a Teoria de Lyapunov proporciona uma análise e síntese de controladores mais versátil.

Importante!

A Teoria de Lyapunov não invalida o que estudamos até aqui! Apenas é mais completa (e complexa) do que os métodos anteriormente estudados.

Sistemas em Tempo Contínuo (SCs)

Considere um SC definido pela Equação Diferencial:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) \tag{30.1}$$

onde ${\bf f}$ é uma função dependente do estado, ${\bf x}$, e, possivelmente, do tempo, t.

- (30.1) define um campo vetorial em \mathbb{R}^n .
- Suponha que $\phi(t; \mathbf{x}_o, t_o)$ seja a solução <u>única</u> de (30.1).

Definição (Ponto de Equilíbrio)

Seja $\mathbf{x}_e \in \mathbb{R}^n$, tal que $\mathbf{f}(\mathbf{x}_e,t) = \mathbf{0}, \forall t \geq 0$. Então, \mathbf{x}_e é dito um ponto de equilíbrio de (30.1).

Exemplo: Campo Vetorial de SLIT-Cs

Considere o sistema:

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 2 \\ 0 & -5 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -x_1 + 2x_2 \\ -5x_2 \end{bmatrix}$$

Definições de Estabilidade I

Observação

Se $\mathbf{x}_e \neq \mathbf{0}$, pode-se fazer $\mathbf{z}_e = \mathbf{0}$, onde \mathbf{z} é obtida por uma mudança adequada de variáveis de estado (translação) em \mathbf{x} .

Definição (Estabilidade no Sentido de Lyapunov)

O ponto de equilíbrio \mathbf{x}_e é dito (localmente) estável no sentido de Lyapunov (ou Lyapunov-estável) se, dado $\varepsilon>0$, então $\exists \delta>0$, tal que:

$$||\mathbf{x}_o - \mathbf{x}_e|| < \delta \Rightarrow ||\phi(t; \mathbf{x}_o, t_o) - \mathbf{x}_e|| < \varepsilon$$

Definição (Estabilidade Assintótica)

O ponto de equilíbrio \mathbf{x}_e é dito (localmente) assintoticamente estável se, além de Lyapunov-estável, verifica-se, para $t \to \infty$, $\phi(t; \mathbf{x}_o, t_o) \to \mathbf{x}_e$.

Definições de Estabilidade II

Lyapunov-estável Assintoticamente estável Instável

- Os fatos ilustrados na figura devem ocorrer para todo ${\bf x}$ na esfera $\delta !$
- Se cada definição de estabilidade ocorre para $\delta \to \infty$, então a estabilidade é dita global.
- Se dado $\varepsilon > 0$ não existir δ (mesmo muito pequeno) para as definições dadas, o ponto de equilíbrio é dito instável.

Positividade

Definição (Positividade de Funções)

Seja $\Omega\subseteq\mathbb{R}^n$ e $V:\Omega\to\mathbb{R}$ uma função. V será dita positiva-definida se:

- i) $V(\mathbf{x}) \geq 0, \forall \mathbf{x} \in \Omega$;
- ii) $V(\mathbf{x}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$

Observação

- Na definição de positividade, se $V(\mathbf{x}) = 0$, para algum $\mathbf{x} \neq \mathbf{0}$ (além do próprio vetor nulo), V é dito positivo-semidefinido.
- De maneira análoga, define-se negatividade de funções.
- Uma função que não se enquadra nestas definições é dita indefinida.

Positividade: Formas Quadráticas e Autovalores

Considere $\mathbf{P} \in \mathbb{R}^{n \times n}, \mathbf{P} = \mathbf{P}'$. Uma importante classe de funções $\mathbb{R}^n \to \mathbb{R}$ é dada pela forma quadrática:

$$V(\mathbf{x}) = \mathbf{x}' \mathbf{P} \mathbf{x} \tag{30.2}$$

Da Álgebra Linear, tem-se:

- V é positiva definida se, e somente se, todos os autovalores de P forem positivos (P é uma matriz positiva-definida);
- V é negativa definida se, e somente se, todos os autovalores de ${\bf P}$ forem negativos (${\bf P}$ é uma matriz negativa-definida);

Lema (Critério de Sylvester)

 $\mathbf{P} \in \mathbb{R}^{n \times n}, \mathbf{P} = \mathbf{P}'$, é positiva-definida se, e somente se:

$$p_{11} > 0, \quad \begin{vmatrix} p_{11} & \star \\ p_{21} & p_{22} \end{vmatrix} > 0, \dots, |\mathbf{P}| > 0$$

O Teorema da Estabilidade de Lyapunov

Teorema (Lyapunov)

Seja (30.1) um SC tendo a origem como ponto de equilíbrio. Se houver uma função $V: \mathbb{R}^n \to \mathbb{R}$ com derivadas parciais de primeira ordem contínuas, tal que:

- i) V é positiva-definida, e;
- ii) \dot{V} é negativa-definida.

então o ponto de equilíbrio é assintoticamente estável. Adicionalmente, se $V \to \infty$ para $||\mathbf{x}|| \to \infty$, a estabilidade é global.

- Sistemas mecânicos (e elétricos) são estáveis se a energia (que é positiva-definida) decai (derivada negativa-definida);
- Em outros sistemas, pode ser difícil definir "energia";
- Ideia de Lyapunov: definir uma função energia fictícia no sistema.

Exemplo: Função "Energia"

Para o exemplo anterior, considere $V(\mathbf{x}) = \mathbf{x}'\mathbf{I}\mathbf{x} = ||\mathbf{x}||^2 = x_1^2 + x_2^2$. Calculando sua derivada:

$$\dot{V} = \nabla V' \cdot \dot{\mathbf{x}} = \begin{bmatrix} 2x_1 & 2x_2 \end{bmatrix} \begin{bmatrix} -x_1 + 2x_2 \\ -5x_2 \end{bmatrix} = -2x_1^2 + 4x_1x_2 - 10x_2^2$$
$$= -2[(x_1 - x_2)^2 + 4x_2^2]$$

que é negativa-definida. Por outro lado, também tem-se:

$$\dot{V} = \nabla V' \cdot \dot{\mathbf{x}} = -2x_1^2 + 4x_1x_2 - 10x_2^2 = -\mathbf{x}' \begin{bmatrix} 2 & -2 \\ -2 & 10 \end{bmatrix} \mathbf{x}$$

cujos autovalores são -1,5 e -10,5. Ainda, pelo critério de Sylvester:

$$\det[2] = 2 \quad \det\begin{bmatrix} 2 & -2 \\ -2 & 10 \end{bmatrix} = 16$$

Logo, a origem deste sistema é global e assintoticamente estável.

Exemplo: Função "Energia"

- As trajetórias entram nas hiperfícies de energia constante;
- Nem sempre as hiperfícies de energia constante serão esferas...

Teorema Recíproco de Lyapunov

Teorema (Lyapunov Recíproco)

Seja (30.1) um SC tendo a origem como ponto de equilíbrio. Se houver uma função $W: \mathbb{R}^n \to \mathbb{R}$ com derivadas parciais de primeira ordem contínuas, tal que:

- i) W é positiva-definida em algum $\Omega \subseteq \mathbb{R}^n$;
- ii) \dot{W} é positiva-definida em Ω , e;
- iii) $\mathbf{0} \in \Omega$.

então o ponto de equilíbrio é instável.

Introdução à Teoria de Lyapunov

2 Teoria de Lyapunov em SLIT-Cs

Alguns Fatos sobre Estabilidade de SLIT-Cs

Lema

Considere o SLIT-C homogêneo (4.1). Se ${f A}$ for invertível, então a origem é o único ponto de equilíbrio do sistema.

Lema

Em um SLIT-C, as seguintes afirmativas são equivalentes:

- i) A origem é global e assintoticamente estável;
- ii) Os autovalores de A estão no semi-plano complexo esquerdo;
- iii) Existem c > 0 e $\lambda < 0$, tais que:

$$||\phi(t; \mathbf{x}_o, 0)|| = ||e^{\mathbf{A}t}\mathbf{x}_o|| \le c \cdot e^{\lambda t}$$
(30.3)

iv) Existe uma função de Lyapunov quadrática para o sistema.

Como Construir a Função de Lyapunov?

Considere (30.2) como uma função candidata a Lyapunov. Derivemo-la:

$$\dot{V}(\mathbf{x}) = \dot{\mathbf{x}}'\mathbf{P}\mathbf{x} + \mathbf{x}'\mathbf{P}\dot{\mathbf{x}} = (\mathbf{A}\mathbf{x})'\mathbf{P}\mathbf{x} + \mathbf{x}'\mathbf{P}\mathbf{A}\mathbf{x} = \mathbf{x}'(\mathbf{A}'\mathbf{P} + \mathbf{P}\mathbf{A})\mathbf{x}$$
 (30.4)

Note que (30.4) deve ser negativa-definida para a estabilidade. Assim:

Teorema

Seja (4.1) um SLIT-C homogêneo. Uma condição necessária e suficiente para sua estabilidade global e assintótica é que, dada $\mathbf{Q} \in \mathbb{R}^{n \times n}, \mathbf{Q} = \mathbf{Q}'$, positiva-definida, exista $\mathbf{P} \in \mathbb{R}^{n \times n}, \mathbf{P} = \mathbf{P}'$, positiva-definida, tal que

$$\mathbf{A}'\mathbf{P} + \mathbf{P}\mathbf{A} = -\mathbf{Q} \tag{30.5}$$

Exemplo

Considere o SLIT-C homogêneo:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \mathbf{x}$$

Façamos $\mathbf{Q} = \mathbf{I}$ (um chute inicial bem conveniente) e apliquemos (30.5):

$$\mathbf{P} = \begin{bmatrix} p_1 & \star \\ p_2 & p_3 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} p_1 & \star \\ p_2 & p_3 \end{bmatrix} + \begin{bmatrix} p_1 & \star \\ p_2 & p_3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

O que origina:

$$-2p_2 = -1$$

$$p_1 - p_2 - p_3 = 0$$

$$2p_2 - 2p_3 = -1$$

$$\mathbf{P} = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$