

Exercise 9B

Question 15:

Given: A parallelogram ABCD in which angle bisectors of ∠A and ∠B intersectat P.

To Prove: ∠APB=900

Proof: $\angle PAB = \frac{1}{2} \angle A$

and $\angle PBA = \frac{1}{2} \angle B$ [Given]

∴AD and BC are parallel and AB is a transversal.
So sum of consecutive angles is 180°.

Now in $\triangle PAB$,

$$\angle$$
PAB + \angle PBA + \angle APB=180⁰

⇒
$$90^{\circ} + \angle APB = 180^{\circ}$$
 [from (2)]

 \Rightarrow $\angle APB = 180^{0} - 90^{0} = 90^{\circ}$

∴ ∠APB=90°

Question 16:

Given: A parallelogram ABCD in which AP = $\frac{1}{3}$ AD and

$$CQ = \frac{1}{3}BC$$

To Prove: PAQC is a parallelogram.

Proof : In $\triangle ABQ$ and $\triangle CDP$

$$AB = CD$$

· opposite sides of a parallelogram

$$/B = /D$$

and DP = AD - PA =
$$\frac{2}{3}$$
 AD

and, BQ= BC-CQ=BC-
$$\frac{1}{3}$$
BC
= $\frac{2}{3}$ BC= $\frac{2}{3}$ AD [::AD=BC]

Thus, by Side-Angle-Side criterion of congruence, we have,

So,
$$\triangle ABQ \cong \triangle CDP$$

[By SAS]

The corresponding parts of the congruent triangles are equal.

and
$$PA = \frac{1}{3}AD$$

and
$$CQ = \frac{1}{3}BC = \frac{1}{3}AD$$

$$PA = CQ$$
 [::AD=BC]
Also, by c.p.c.t, $\angle QAB = \angle PCD....(1)$

Therefore,

$$= \angle C - \angle PCD \qquad [since \angle A = \angle C \text{ and from (1)}]$$

=∠PCQ [alternate interior angles are equal]

Therefore, AQ and CP are two parallel lines.

So, PAQC is a parallelogram.

********* END ********