STRUCTURE CHARACTERIZATION METHODS AND STRUCTURAL APPROACH TO MEDICINE

Dr. Zhiyi Wei SUSTC

Explosive growth of solved protein structures

Structure determination methods

- Biophysics
 - Use of electromagnetic radiation
- X-ray crystallography
- Nuclear magnetic resonance (NMR) spectroscopy
- Electron microscopy (EM)
 - CryoEM

X-ray Crystallography

Structure determination by crystallography

Why we need X-ray?

Why we need crystals?

- X-ray lens are very hard to make, because of two difficulties
 - Focus X-ray
 - Atomic scale
- X-ray scattering from a single molecule would be incredibly weak and extremely difficult to detect above the noise level

Hooke's microscope

NMR Spectroscopy

Structure determination by NMR

Generating powerful magnetic field

2D NOESY spectrum of a protein

Standard approach to NMR protein structure

NMR structural ensemble

NMR and dynamics

Electron Microscopy

Structure determination by cryoEM

Single particle technique

Transmission Cryo-Electron Microscopy A tool used by structural biologists to study molecular nanomachines

Tomography technique

Nature Reviews | Microbiology

BIO446 Protein Structure and Function

The architecture of *D. discoideum* filopodia

Other structure characterization methods

- X-ray scattering methods
 - Small angle X-ray scattering
- Neuron diffraction
- Optical spectroscopic methods
 - Absorbance: UV spectroscopy
 - Fluorescence: fluorescence microscopy
 - Circular dichroism
 - Vibrational spectroscopy
 - Raman spectroscopy

• ...

Small angle X-ray scattering (SAXS)

SAXS provides the shape information

Circular dichroism (CD)

CD can be used for protein folding analysis

Protein structures provide molecular approach to medicine

- Most diseases happen are due to defects in proteins
- Protein structure is a key to understand disease-causing mechanism
 - How disease-causing mutations affect structures and/or target recognition
- Protein structure based drug design

Virus and their impact on health as seen through structure and function

Influza

HIV

The pathway of viral entry and exit from host cells

Haemagglutinin: the anchor

The conformational changes in the transition from neutral pH form to active haemagglutinin

BIO446 Protein Structure and Function

Neuraminidase: the releaser

Sialic acid (substrate) bound to active site

The structure of HIV

HIV protease

Ala-Phe-Pro sequence containing the target peptide bond (substrate) for HIV protease

The structure of saquinavir

Drug design strategies

