Fig. 8, 1) = BC+ ABC'+AC

 $F = \overline{ABC} + ABC + ABC + ABC$ $= \overline{ABC} + \overline{AB$

वि3	Present State	Mext state	I Sout to ff
	ABC	A+ 8+ C+	Da De De
	100	101	101
	101	110	110
	110	011	011
	011	001	001
	001	0 0 0	000
	0 0 0	100	100
	010	x *×	× × ×
	111	× × ×	* * * X

DA = A8+80

S2021 001 0029

Resent -> A(t)=0, B(t)=1, input x(t)=0

Clk

From the circuit, $D_A = Ax + 8\pi, \quad A(t+0) = D_A$ $D_B = \overline{A}\pi, \quad B(t+0) = D_B$ $Y = \overline{\pi}(A+B)$

Ar All=0, B(x)=1, A(x+1)=0.x+1.x=x=0

3)
$$B(t+1) = \overline{0}.0 = 0$$

 $y(t) = \overline{0}.(0+1) = 1.1 = 1$

95

```
module ans (A, B, C, D, P);
```

input A;
input B;
input C;
input D;
output P;

F= (B&~C) | (A&~B) | (B&~D) | (A&C);

endmodule