CS 511, Fall 2024, Lecture Slides 24 – *Appendix*Deductive Closures and First-Order Theories

Assaf Kfoury

October 23, 2024

the first-order theory of $\mathcal{N} \stackrel{ ext{ iny def}}{=} (\mathbb{N},0,S)$

Consider again the structure $\mathcal{N}\stackrel{\mathrm{def}}{=}(\mathbb{N},0,S)$ in Lecture Slides 21. The first-order theory of \mathcal{N} is:

$$\mathsf{Th}(\mathcal{N}) \stackrel{\mathrm{def}}{=} \{\, \varphi \mid \varphi \text{ is a first-order sentence s.t. } \mathcal{N} \models \varphi \, \}$$

Some sentences that are true in \mathcal{N} :

S1
$$\forall x. \neg (Sx \approx 0)$$

S2
$$\forall x \, \forall y. \, (Sx \approx Sy \rightarrow x \approx y)$$

S3
$$\forall y. (\neg (y \approx 0) \rightarrow \exists x (y \approx Sx))$$

S4.1
$$\forall x. \neg (Sx \approx x)$$

S4.2
$$\forall x. \neg (SSx \approx x)$$

. . .

S4.n
$$\forall x. \neg (\underbrace{S \cdots S}_{n} x \approx x)$$

. . .

the first-order theory of $\mathcal{N} \stackrel{ ext{ iny def}}{=} (\mathbb{N},0,\mathit{S})$

(a) Graphical representation of \mathcal{N} , which is a model of $\{S1,\ S2,\ S3\}$ and infinitely many other first-order sentences:

the first-order theory of $\mathcal{N}\stackrel{ ext{ iny def}}{=}(\mathbb{N},0,S)$

(a) Graphical representation of \mathcal{N} , which is a model of {S1, S2, S3} and infinitely many other first-order sentences:

$$\bullet \xrightarrow{S} \bullet \xrightarrow{S} \bullet \xrightarrow{S} \bullet \xrightarrow{S} \cdots$$

(b) Another model of $\{S1, S2, S3\}$, different from \mathcal{N} :

$$\bullet \xrightarrow{S} \bullet \xrightarrow{S} \bullet \xrightarrow{S} \bullet \xrightarrow{S} \cdots$$

the first-order theory of $\mathcal{N} \stackrel{ ext{ iny def}}{=} (\mathbb{N},0,S)$

(a) Graphical representation of \mathcal{N} , which is a model of {S1, S2, S3} and infinitely many other first-order sentences:

$$\bullet \xrightarrow{S} \bullet \xrightarrow{S} \bullet \xrightarrow{S} \bullet \xrightarrow{S} \cdots$$

(b) Another model of {S1, S2, S3}, different from \mathcal{N} :

- (c) In fact, the model in (b) satisfies $\{S1, S2, S3\} \cup \{S4.n \mid n \text{ not a multiple of } 5\}$.
 - Satisfaction of $\{ S4.n \mid n \ge 1 \}$ eliminates all cycles.

the first-order theory of $\mathcal{N} \stackrel{ ext{ iny def}}{=} (\mathbb{N},0,\mathit{S})$

(d) A model of {S1, S2, S3} \cup { S4. $n \mid n \geqslant 1$ } without cycles:

the first-order theory of $\mathcal{N} \stackrel{ ext{ iny def}}{=} (\mathbb{N},0,S)$

(d) A model of $\{S1, S2, S3\} \cup \{S4.n \mid n \geqslant 1\}$ without cycles:

(e) And another model of $\{S1, S2, S3\} \cup \{S4.n | n \geqslant 1\}$ without cycles:

The universe of this last model consists of one copy of $\mathbb N$ and two copies of $\mathbb Z$.

the first-order theory of $\mathcal{N}\stackrel{ ext{ iny def}}{=}(\mathbb{N},0,S)$

- ▶ let $\Gamma = \{$ S1, S2, S3, S4.1, S4.2, S4.3, . . . $\}$
- what can we say about the deductive closure of the set Γ above: $\overline{\Gamma} = \{ \varphi \mid \varphi \text{ first-order sentence s.t. } \Gamma \vdash \varphi \} ?$
- ightharpoonup certainly $\overline{\Gamma}\subseteq \mathsf{Th}(\mathcal{N})$, by soundness
- in fact, the equality holds:

$$\overline{\Gamma} = \mathsf{Th}(\mathcal{N})$$
 (not shown here)

 $\hbox{ we therefore say that Γ is an } \hbox{ \bf axiomatization } \hbox{ of $\operatorname{Th}(\mathcal{N})$ because } \\ \hbox{ every sentence φ made true by \mathcal{N} is formally deduced from Γ }$

(THIS PAGE INTENTIONALLY LEFT BLANK)