A Transformer-based Function Symbol Name Inference Model from an Assembly Language for Binary Reversing

HyunJin Kim, JinYeong Bak, Kyunghyun Cho, Hyungjoon Koo AsiaCCS '23 khyunjin1993@skku.edu

Binary Reverse Engineering

Gain the semantics from machine code

- Assembly instructions are made up of an opcode and operand(s)
- Opcode specifies an operation to perform
- Operand specifies data or memory location

Missing Pieces

- Decompiler allows reversing engineers to infer code semantics by converting binary code to source in a C-syntax-like format
- Most high-level information is lost during the compilation
- It is infeasible to recover certain high-level information (e.g., variable name, function name, variable type, # of parameters)

```
1 void FUN_00108d70(void *param_1) {
2    void *pvVar1;
3    if (param_1 == (void *)0x3) {
4       return;
5    }
```

Binary Reversing

Difficult to comprehend a machine language (assembly)

→ A function often conveys a meaningful chunk with a name

Assembly Language (Machine Language)

```
0x8D70 endbr64
0x8D74 test rdi, rdi
0x8D77 jz short locret_8DB0
```

A well-developed program maintains a well-described function label!

Binary

	J'''	31101 6 106 006
0x8DA5	add	rsp, 8
0x8DA9	pop	rbx
0x8DAA	pop	rbp
0x8DAB	retn	

Existing Work

Many researchers tried to analyze function names in a binary file

 Neural Reverse Engineering of Stripped Binaries using Augmented Control Flow Graphs (NERO) [David et al., OOPSLA 2020]

Goal

A series of function names allows reversers to gain a quick overview of a binary if they could be accurately inferred

A Problem in NLP?

- Input and output are similar in terms of language
- The problem can be viewed as a language translation task

Input (One Language) endbr64, test_rdi_rdi, jz short_locret_8DB0, ..., retn 안녕하세요 (annyeonghaseyo) Output (Another Language) ipc_sem_free_info

Transformer Language Model

- Encoder understands the meaning of input words (English)
- Decoder generates a sequence of words as output (French)

Motivation

- Transformer: one of the breaking-through architectures in NLP
- Widely adopted to translate between two languages
- Naive Transformer structure struggles to learn the underlying semantics of machine instruction
- Explore optimal ways of feeding data considering the structure of a language model
- Design a model AsmDepictor tailored to a function name prediction task

Assembly Tokenization

Importance of a tokenization method

- Tokenization is splitting the raw text into small chunks of words or sentences, called tokens
- Tokenization determines how words are split, which affects the size of the vocabulary

Assembly Tokenization (Instruction)

Challenges in instruction tokenization (e.g., sub_rsp_0x50)

- Numerous sparse vocabularies (e.g., Address, Immediate)
- 400 million tokens with 4 bytes of immediate value

All possible Opcode and Operand combinations

- Diverse outcomes in vocabulary combinations
- Generates a tremendous of vocabularies (compared to NLP)
- High computational cost with larger datasets

Tokenization	Large Dataset (approx. 400,000 functions)		
Methods	Vocabulary Size	Parameter Size	
Instruction	3,253,394	1,012,857,350	

Assembly Tokenization (Byte Pair Encoding)

BPE tokenization for assembly instructions

Big Code!= Big Vocabulary: Open-Vocabulary Models for Source Code [ICSE, 2020]

- BPE calculates a sub-word frequency
- Widely adopted in the field of NLP (Natural Language Processing)
- Significant reduction with a model parameter size

sub rsp
$$0x50$$
 \Rightarrow sub rsp $0x5$, 0

Tokenization	Large Dataset (approx. 400,000 functions)		
Methods	Vocabulary Size	Parameter Size	
Instruction	3,253,394	1,012,857,350	
Byte Pair Encoding	9,923	40,004,102	

Problem of Attention for Our Purpose

Problem

- Frequent appearance of a machine instruction may convey important information (e.g., opcodes)
- Softmax reduces the collective output of duplicated words that might carry significant information

Our Approach (1): Unique-softmax

Unique-softmax

- Enables to calculate probability within a unique set of word
- Retain the collective output of duplicates (+ 3.17% on F1-score)

Problem of Positional Encoding

Problem

- Assigns a pre-defined value to give positional information
- They cannot learn the representation of the position
- Position information only added at the first layer

$$P(pos, 2i) = \sin\left(\frac{pos}{10000 \frac{2i}{dmodel}}\right)$$

$$P(pos, 2i + 1) = \cos\left(\frac{pos}{10000 \frac{2i}{dmodel}}\right)$$

i: dimension of the positional encoding vector

pos: position of the token

Our Approach (2): Per-layer Positional Embedding

Per-Layer Positional Embedding

- Learns the positional representation
- Feed the order of machine instructions to every layer (+17.93% on F1-score)

Input tokens

Our Approach (3): Layer Reduction

Layer Reduction

 Reducing the layer prevents values diminishing at the upper layers (+5.64% on F1-score)

Weak output

Strong output

AsmDepictor: Putting It All Together

Unique-softmax + Per-Layer Positional Embedding + Layer reduction

Output: cb build program id

Experiment Settings

Data

- Small dataset: 67,000 functions from NERO
- Large dataset: 400,000 functions from common packages from popular Ubuntu Linux distributions + Small dataset

Metric

- F1-score: Token matching
- Rouge-I: Popular metric for longest common subsequences

Model

- NERO: Neural reverse engineering of stripped binaries using augmented control flow graphs [David et al., OOPSLA 2020]
- Debin: Predicting Debug Information in Stripped Binaries [He et al., CCS 2018]

Performance Comparison

AsmDepictor surpasses existing SOTA models

	Model	Precision	Recall	F1	Rouge-l
Trained	Debin	5.73	5.66	5.66	5.87
with \langle	NERO	12.35	12.36	12.35	14.07
Small Dataset	AsmDepictor	57.13	57.17	57.14	58.68
Dataset					+44%

Performance improvement with a large dataset

Model	Precision	Recall	F1	Rouge-l
AsmDepictor (Small)	57.13	57.17	57.14	58.68
AsmDepictor (Large)	71.52	71.53	71.52	73.75
			+	15%

Demonstrative Examples

- Example of predictions
- Red indicates correctly predicted tokens

Debugging Symbol	AsmDepictor (Large Dataset)	AsmDepictor (Small Dataset)	NERO	Debin
cb_build program_id	cb_build program_id	cb_build program	options_menu	cint_remove
close_stdout	close_stdout	close_stdout	close_stdout	close_stdout
write_file	write_file	write_file	process	to_rgip
xcalloc	xcalloc	xcalloc	xcalloc	alloc_common

Conclusion

Wrap-up

- Our work introduces AsmDepictor, an effective prediction framework for a function name from machine instruction
- AsmDepictor surpasses existing state-of-the-art models, with F1 scores up to four times higher
- Future work: Integration function name inference model with a large language model such as LLaMA
- For more details of code & dataset, please visit our GitHub repository https://github.com/agwaBom/AsmDepictor

Thank you