1

Trees in C++

CSC 340

April 6, 2016

Overview

Terminology

- Binary Trees
 - Array
 - Nodes/Pointers
- Traversals

.

3

Terminology

- * Trees are composed of *nodes* and *edges*
- Trees are hierarchical
- * Parent-child relationship between nodes
- * Ancestor-descendant relationship between nodes
- * Subtree of a tree is any node and its descendants
- A general tree T is a set of one or more nodes such that T is partitioned into disjoin subsets:
- * A single node, r, the root
- * Sets that are general trees, called subtrees of r

3

Tree Examples

On the left, a general tree
On the right, a subtree of the tree on the left

Terminology

- Parent of node n the node directly above node n in the tree
- Child of node n any node directly below node n in the tree
- * Root the only node in the tree with no parent
- Subtree of node n
 A tree that consists of a child (if any) of node n and that child's descendants

6

5

Terminology

- LeafA node with no children
- Siblings Nodes with a common parent
- Ancestor of node nA node on the path from the root to n
- Descendant of node n
 A node on the path from n to a leaf

Overview

- Terminology
- Binary Trees
 - Array
 - Nodes/Pointers
- Traversals

7

Binary Trees

- * A binary tree is a set T of nodes such that either
 - * T is empty, or
 - * T is partitioned into three disjoint sets:
 - ❖ A single node r, the root node
 - * Two possibly empty sets that are binary trees, called the left subtree of r and the right subtree of r

.

9

Tree Examples

On the left, a general tree - not a binary tree - why?
On the right, a binary tree

Algebraic Expressions

Binary trees can represent algebraic expressions

Note where the leaves and subtrees are - indicates precedence. More on this in CSC 600

Binary Search Tree

- * A binary tree that has the following properties:
 - n's value is greater than all values in n's left subtree (TL)
 - n's value is less than all values in n's right subtree (TR)
 - * Both TL and TR are binary search trees

11

10

11

Binary Search Tree Height

* Height

The height of a tree is the number of nodes along the longest path from the root to a leaf

Left: height 3

Right: height 5

Binary Search Tree Height

- Level of node n in a tree T
 - ❖ If n is the root of T, it is at level 1
 - * If n is not the root of T, its level is 1 greater than the level of its parent
- * Height of a tree T defined in terms of the levels of its nodes
 - ❖ If T is empty, its height is 0
 - * If T is not empty, its height is equal to the maximum level of all of its nodes

13

14

Binary Search Tree Height

- * Recursive definition of height:
 - ❖ If T is empty, height is 0
 - If T is not empty, height(T) = 1 + max(height(TL), height(TR))

14

Full Binary Tree

- * A binary tree of height h is full if nodes at levels less than h have two children each
- A full binary tree (sometimes proper binary tree or 2-tree) is a tree in which every node other than the leaves has two children.
- * Recursive definition:
- * If T is empty, T is a full binary tree of height 0
- * If T is not empty and has height h>0, T is a full binary tree if its root's subtrees are both full binary trees of height h-1

Complete Binary Tree

- * A binary tree of height h is complete if
 - ❖ It is full to level h 1, and
 - Level h is filled from left to right

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Complete Binary Tree

- Another definition:
- * A binary tree of height h is complete if
 - ❖ All nodes at levels <= h 2 have two children each and
 - * When a node at level h 1 has children, all nodes to its left at the same level have two children each, and
 - ❖ When a node at level h 1 has one child, it is a left child

17

Balanced Binary Tree

- * A binary tree is balanced if the heights of any node's subtrees differ by no more than 1
- * Complete binary trees are balanced
- * Full binary trees are complete and balanced

18

17

16

Possible Representations

- Array based
 - Uses an array of tree nodes
 - Requires the creation of a free list that keeps track of available nodes
- Pointer based
- * Nodes have two pointers that link the nodes in the tree

19

Array Representation

Level by level numbering of complete binary tree

Root at index 0

Left node at 2 * (index + 1)

Right node at 2 * (index + 1) + 1

Node Representation

- Let's design this:
 - What are the objects we need?
 - What fields?

21 Tree, Node

Tree: Node * root

Node: T value, Node * left, Node * right

Overview

- Terminology
- Binary Trees
 - Array
 - Nodes/Pointers
- * Traversals

22

Traversals of a Binary Tree

- ❖ A traversal visits every node in the tree
- * You do something with or to a node during a traversal (for example, display the value)
- * General form of a recursive traversal algorithm:

```
traverse( binary_tree )
  if binary_tree is not empty
    traverse( left_subtree of binary_tree's root )
    traverse( right_subtree of binary_tree's root )
```

23

Note that we're missing the root in this general form

Traversals of a Binary Tree

- * Preorder traversal
 Visit root *BEFORE* visiting its subtrees (i.e. before the recursive calls)
- Inorder traversal
 Visit root BETWEEN visiting its subtrees (i.e. between the recursive calls)
- * Postorder traversal
 Visit root *AFTER* visiting its subtrees (i.e. after the recursive calls)

Traversals of a Binary Tree

What is the result of displaying each node with each traversal?

Preorder: 60 20 10 40 30 50 70 Inorder: 10 20 30 40 50 60 70 Postorder: 10 30 50 40 20 70 60

Write code