Fréquences spatiales

pierre-louis.frison@u-pem.fr

Fréquences temporelles

Signal temporel 1D:

Hautes fréquences: fortes variations de signal sur petite durée

Basses fréquences: fortes variations de signal sur grande durée

Fréquences spatiales

Image (signal spatial 2D):

Hautes fréquences: fortes variations de CN sur petite distance (contours, détails, ...)

Basses fréquences: variations de CN sur grande distance (dégradés de fond d'image, ...)

Transformée de Fourier 2D

f(x,y) image analogique

Transformée de Fourier:
$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) e^{[-2j\pi(ux+vy)]} dxdy$$

u, v: fréquences spatiales

Transformée de Fourier inverse:

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) e^{[2j\pi(ux+vy)]} dudv$$

Notation polaire: $F(u,v) = |F(u,v)|e^{j\varphi(u,v)}$

|F(u,v)|*Spectre d'amplitude:*

Spectre de puissance: $|F(u,v)|^2$

 $\varphi(u,v)$ *Spectre de phase:*

Exemple

$$f(x, y) = A \begin{cases} -X/2 \le x \le X/2 \\ -Y/2 \le y \le Y/2 \end{cases}$$

$$F(u,v) = AXY \operatorname{sinc}(\pi uX) \operatorname{sinc}(\pi vY)$$

Exemple

$$f(x, y) = A \begin{cases} -X/2 \le x \le X/2 \\ -Y/2 \le y \le Y/2 \end{cases}$$

$$|F(u,v)| = |AXY \operatorname{sinc}(\pi uX) \operatorname{sinc}(\pi vY)|$$

Transformée de Fourier 2D discrète

$$I(m,n)$$
 image numérique $n = 0, 1, 2, ... M-1$
 $m = 0, 1, 2, ... N-1$

Transformée de Fourier Discrète:
$$F(k,l) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m,n) e^{\left[-2j\pi\left(k\frac{m}{M}+l\frac{n}{N}\right)\right]}$$

k, l: fréquences spatiales

Transformée de Fourier inverse:

$$I(m,n) = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F(k,l) e^{\left[2j\pi\left(m\frac{k}{M} + n\frac{l}{N}\right)\right]}$$

pas de l'échantillonage spatial:
$$\Delta x$$
 et Δy $x \in [0; M\Delta x]$ $y \in [0; N\Delta y]$

Pas de l'échantillonage fréquentiel:
$$\Delta u = \frac{1}{M\Delta x}$$
 et $\Delta v = \frac{1}{N\Delta y}$

$$u \in [0; 1/\Delta x]$$
$$v \in [0; 1/\Delta y]$$

Propriété de la TF 2D:
$$F(k,l) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m,n) e^{\left[-2 j\pi \left(k \frac{m}{M} + l \frac{n}{N}\right)\right]}$$

Moyenne de l'image:

$$F(0,0) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m,n)$$

Propriétés de la TF 2D discrète

$$F(k,l) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m,n) e^{\left[-2 j \pi \left(k \frac{m}{M} + l \frac{n}{N}\right)\right]}$$
Fonction périodique de période (M, N)

Propriétés de la TF 2D discrète

$$F(k,l) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m,n) e^{\left[-2 j \pi \left(k \frac{m}{M} + l \frac{n}{N}\right)\right]}$$
Fonction périodique de période (M, N)

**Représentation usuelle dans les logiciels standards

Propriétés TF 2D discrète

[™]Séparabilité

$$F(k,l) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m,n) e^{\left[-2j\pi\left(k\frac{m}{M} + l\frac{n}{N}\right)\right]}$$

$$= \frac{1}{M} \sum_{m=0}^{M-1} \left(\frac{1}{N} \sum_{n=0}^{N-1} I(m,n) e^{\left(-2j\pi l\frac{n}{N}\right)}\right) e^{-2j\pi k\frac{m}{M}}$$

$$= \frac{1}{M} \sum_{m=0}^{M-1} I(m,l) e^{\left(-2j\pi k\frac{m}{M}\right)}$$

- © Calcul d'une TF-1D sur chaque colonne, puis TF-1D sur chaque ligne ou
- © Calcul d'une TF-1D sur chaque ligne, puis TF-1D sur chaque colonne

Source: Gonzalez & Woods

Echantillonnage 2D

$$F(u,v) = TF[I(x,y)] \quad \begin{aligned} |u| &\leq U_M \\ |v| &\leq V_M \end{aligned}$$

condition de Shannon:

$$\Delta u = \frac{1}{T_{xe}} > 2U_M$$
 ; $\Delta v = \frac{1}{T_{ye}} > 2V_M$

image analogique: I

Peigne 2D: p

image échantillonnée: I,

Spectre de I

Spectre de p

Spectre de I_e

échantillonnage sans recouvrement de spectre (Shannon respecté)

Source: Kunt

Echantillonnage 2D

Recouvrement de spectre (Shannon non respecté)

Source: Kunt

Exemple: Figure de Moiré

Remède: Suppression des hautes fréquences avant échantillonnage (filtre passe-bas)

Sélection 1 pixel / bloc (4x4)

Sélection 1 pixel / bloc (8x8)

image originale

Moyennage par bloc 4x4 pixels

Moyennage par bloc 8x8 pixels

