2.5. Magnetism & magnetic field

em11

What happens if you cut a magnet into two pieces?

- every magnet has a north and south pole
- opposite poles attract while like poles repel
- cutting a magnet always yields smaller magnets with both poles
- all magnets are dipoles, no magnetic monopoles have been observed

Primer on magnetism

- magnets and their fields are found in daily life
 e.g. loudspeakers, generators, HDD, and
 magnetic resonance imaging
- magnetic ore was discovered in the greek
 region of magnesia, giving the phenomenon its name
- the interdependency of magnetism and electricity was discovered in the 19th century

from Lüsebrink et al. 2021, under CC BY 4.0

Disclaimer

- there are two entities to describe the magnetic field
 - **B**: magnetic flux density and measured in tesla [T]
 - **H**: actual magnetic field strength and measured in amperes per meter [A/m]
 - lacktriangle in vacuum: $\vec{\mathbf{H}}=rac{1}{\mu_0}\vec{\mathbf{B}}-\vec{\mathbf{M}}$ with μ_0 and $\vec{\mathbf{M}}$ being the permeability of free space and magnetization
- ullet will use $ar{\mathbf{B}}$ / B-field to describe the magnetic field instead of $ar{\mathbf{H}}$ / H-field

Magnetic field

simulation two bar magnets

- field line density is proportional to the strength of the magnetic field
- the magnetic field direction is tangent to the field lines at any point
- difference to electric field lines / consequence of no magnetic monopoles:
 - field lines run from north to south and always form closed loops
 - field lines continue through the magnet itself

Earth's magnetic field

- earth's magnetic field is believed to be produced by motion of conductive fluid in the earth's core, the **geodynamo**
- the earth's magnetic field can be
 approximated as a large bar magnet
 (position changes and not aligned with geographic poles)
- the compass pole pointing toward geographic north actually aligns with the earth's magnetic south

left: from <u>wikipedia</u> under <u>CC Attribution 3.0 Unported</u>;
right: from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 4.0</u>
<u>International</u>

Electric currents produce magnetic fields

em01 + simulation B-field of wire

- **static** electric charge and magnet show no interaction
- Hans Christian Ørsted (1777-1851) found that compass needle deflect if put near a wire running current
- current running through a wire generates a magnetic field
- magnetic field not uniform in direction and magnitude but forms circular lines around the wire
- experimentally we can see field magnitude B:
 - increases with the current I
 - \blacksquare decreases with distance r
 - $\blacksquare B = \propto \frac{I}{r}$
- in general, the magnitude of magnetic field B produced by a long, straight current-running wire is:

$$\blacksquare \ B = rac{\mu_0}{2\pi} rac{I}{r}$$

lacktriangle with permeability of free space $\mu_0 = 4\pi imes 10^-7 \, {
m T} \, {
m m} \, / {
m A}.$

Magnetic fields exert a force on currents

em02 + simulation straight wires in Bfield

- Hans Christian Ørsted (1777-1851) found that a current-carrying wire in a magnetic field experiences a force
- observations for straight wire in homogenous magnetic field (approximated by horseshoe magnet):
 - force F perpendicular to B
 - F scales with l, I, and B
- in vector form:

$$ec{F} = Iec{l} imes ec{\mathbf{B}}$$

• with θ as angle between B and l:

$$F = IlB\sin\theta$$

from <u>wikipedia</u> under <u>CCO 1.0 Universal</u>; image has been cropped

Right-hand rules

- convention: magnetic field perpendicularly coming out of the paper shown as × and going into the paper as ⊙
- *Right-Hand Rule 1* (RHR-1):
 - thumb pointing along the direction of the current *I* in a wire
 - wrapped fingers "around"
 - fingers curl in the direction the magnetic field $\vec{\mathbf{B}}$
- Right-Hand Rule 2 (RHR-2): *
 - index finger pointing along the direction of the current I
 - lacktriangle middle finger points perpendicular to your thumb along the direction of the magnetic field $\vec{\mathbf{B}}$
 - thumb perpendicular to index & middle finger, points in the direction of the force

 disclaimer: use the conventional current, i.e. running from positive to negative, and not the true physical direction of freely moving electrons

left; from <u>wikipedia</u>, public domain; right: from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 3.0 Unported</u>

Ampère's law

- So far, know only B-field for a long straight, current-running wire: $B = \frac{\mu_0}{2\pi} \frac{I}{r}$
- how to generalize to arbitrary configurations?
- solution by André Marie Ampère (1775-1836)
 - considered a closed path around a current I_{enc}
 - decompose path into many, (infinitesimally) short, straight segments
 - consider only magnetic field component parallel to the path
 - taking the integral yields Amère's law: $\oint \vec{\mathbf{B}} \cdot d\vec{l} = \mu_0 I_{enc}$

Example for Ampère's law

- consider long straight wire running the current
- closed path integral for a circle centered around wires, thus, $I_{enc}=I$:

$$\oint \vec{\mathbf{B}} \cdot d\vec{l} = \mu_0 I$$

• $\vec{\mathbf{B}}$ is tangent to closed path (const. magnitude) and circumference of circle is $2\pi r$

$$\oint \; ec{f B} \cdot dec{l} = B \oint \; dec{l} = B2\pi r = \mu_0 I$$

$$B=rac{\mu_0}{2\pi}rac{I}{r}$$

Individual charges moving through magnetic fields

em08

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 3.0</u> <u>Unported</u>

Force on a moving charge due to a magnetic field

- for a current-running wire we know $\vec{\mathbf{F}} = I\vec{\mathbf{l}} \times \vec{\mathbf{B}}$
- current is charge by unit time $I = rac{Q}{t} = rac{Nq}{t}$
- a single charged particles travel the distance l depending on their speed: $\vec{\bf l}=t\vec{\bf v}$
- thus, we obtain:

$$ec{\mathbf{F}} = I ec{\mathbf{l}} imes ec{\mathbf{B}} = rac{Nq}{t} t ec{\mathbf{v}} imes ec{\mathbf{B}}$$
 $ec{\mathbf{F}} = q ec{\mathbf{v}} imes ec{\mathbf{B}}$

• if $\vec{\mathbf{B}}$ is uniform, the equation can be simplified to $F=qvB\sin\theta$ with θ as the angle between the magnetic field and the direction the charge in moving

Lorentz equation

• the total force on a charged particle due to electric and magnetic fields is given by

$$\vec{\mathbf{F}} = q(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

from wikipedia under CCO 1.0 Universal

Hall effect

em05/em48 + simulation Hall effect

- current-running wire, a.k.a. confined space, in a magnetic field (assuming perpendicular, uniform)
- $\vec{\mathbf{F}}_B = e \vec{\mathbf{v}}_d imes \vec{\mathbf{B}}$ with $\vec{\mathbf{v}}_d$ being the drift velocity of the electron
- Hall field: electron will be deflected towards one side of the conducting wire creating an electric field $\vec{\mathbf{E}}_H$
- Hall field itself causes a force with the same magnitude but opposite direction to the magnetic force:

$$eE_H = ev_d B$$
 $E_H = v_d B$

• Hall voltage V_H in the presence of uniform, perpendicular fields and thin, but long conducting wire is:

$$V_H = E_H d = v_d B d$$

• with **Hall effect** we can differentiate between positive and negative charges

Microscopic view of ferromagnetism

em21

- ferromagnetic materials are divided into domains that act like tiny bar magnets
- in an unmagnetized state, the domains are randomly oriented so their fields cancel
- applying an external magnetic field aligns the domains and magnetizes the material
- heating or mechanical shock can randomize the domains again

from <u>wikipedia</u> under <u>CC Attribution-ShareAlike 3.0</u>
<u>Unported</u>

Magnetic permeability & susceptibility

- ullet a material's permeability μ relates to the free space permeability μ_0
- the relative permeability is defined as

$$K_m=rac{\mu}{\mu_0}$$

magnetic susceptibility is given by

$$\chi = K_m - 1$$

Magnetic materials

em32

- diamagnetic materials $\chi < 0$:
 - push the magnetic field out
 - examples: gold, silver, water, oxygenated blood
- paramagnetic materials $\chi > 0$:
 - pull the magnetic field in
 - examples: lithium, aluminium, deoxygenated blood
- ferromagnetic materials $\chi \gg 1$:
 - have a strong pulling effect
 - examples: iron, nickel, cobalt

Hysteresis

- hysteresis describes the lag in a material's magnetic response to an external field
- as the external field is increased, the material's magnetic field increases until saturation
- when the external field is reduced, the material retains some magnetization
- completely removing the magnetization requires applying a reverse external field
- permanent magnets exhibit broad hysteresis loops while electromagnets show shallower curves

from wikipedia under CCO 1.0 Universal