PARTEA 1

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019 · ID

PRELIMINARII

OPERAŢII CU MULŢIMI

Fie A, B, T mulţimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_{T}A = T \setminus A = \{x \in T \mid x \notin A\}$$

 C_TA se mai notează și \overline{A} când T este clar din context.

OPERAŢII CU MULŢIMI

Fie A, B, T mulţimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

 $A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$
 $A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$
 $C_T A = T \setminus A = \{x \in T \mid x \notin A\}$

 C_TA se mai notează și \overline{A} când T este clar din context.

Notaţii.

- $\mathbb{N} = \{0, 1, 2, \ldots\}$ este mulţimea numerelor naturale
- $\cdot \mathbb{N}^* = \mathbb{N} \setminus \{0\}$
- $\cdot \ \mathbb{Z}$ este mulţimea numerelor întregi
- $\cdot \mathbb{Q}$ este mulțimea numerelor raționale.
- \cdot \mathbb{R} este mulțimea numerelor reale

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2[™].

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2^T.

$$\cdot \ \mathcal{P}(\emptyset) =$$

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2^T.

$$\cdot \mathcal{P}(\emptyset) = \{\emptyset\},$$

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2^T.

- $\mathcal{P}(\emptyset) = \{\emptyset\},$
- $\cdot \mathcal{P}(\{\emptyset\}) =$

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2^T.

- $\mathcal{P}(\emptyset) = \{\emptyset\},$
- $\cdot \ \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\},$

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2^T.

- $\mathcal{P}(\emptyset) = \{\emptyset\},$
- $\cdot \ \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\},$
- $\cdot \ \mathcal{P}(\{\emptyset,\{\emptyset\}\}) =$

Mulţimea părţilor lui T este $\mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Se mai notează și 2^T.

Exemple.

- $\mathcal{P}(\emptyset) = \{\emptyset\},$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\},\$
- $\mathcal{P}(\{\emptyset,\{\emptyset\}\}) = \{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}.$

Dacă T are n elemente, atunci 2^T are 2^n elemente.

PERECHI ORDONATE

Notăm cu (a, b) perechea ordonată formată din a şi b (care sunt componentele lui (a, b)).

Observații.

- · dacă $a \neq b$, atunci $(a, b) \neq (b, a)$
- $\cdot (a,b) \neq \{a,b\}$
- · (7,7) este o pereche ordonată validă
- · două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

PRODUS CARTEZIAN

Definiție.

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

PRODUS CARTEZIAN

Definiție.

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

- $\cdot \ \mathsf{A} \times (\mathsf{B} \cup \mathsf{C}) = (\mathsf{A} \times \mathsf{B}) \cup (\mathsf{A} \times \mathsf{C})$
- $\cdot \ \mathsf{A} \times (\mathsf{B} \cap \mathsf{C}) = (\mathsf{A} \times \mathsf{B}) \cap (\mathsf{A} \times \mathsf{C})$

RELAŢII BINARE

Definiție.

O relație binară între A și B este o submulțime a lui $A \times B$.

O relație binară pe A este o submulțime a lui $A \times A$.

RELAŢII BINARE

Definiție.

O relație binară între A și B este o submulțime a lui $A \times B$.

O relație binară pe A este o submulțime a lui $A \times A$.

$$\cdot$$
 $<\subseteq \mathbb{N}\times \mathbb{N}$ $<=\{(k,n)\mid \text{ există } m\in \mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$

RELAŢII BINARE

Definiție.

O relație binară între A și B este o submulțime a lui $A \times B$.

O relație binară pe A este o submulțime a lui $A \times A$.

$$\cdot$$
 < \subseteq \mathbb{N} × \mathbb{N} <= {(k, n) | există $m \in \mathbb{N}$ a.î. $m \neq 0$ şi $m+k=n$ }

$$|\cdot|\subseteq\mathbb{N}\times\mathbb{N}$$
 $=\{(k,n)\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$

Definiţie.

· Dacă $R \subseteq A \times B$, atunci relaţia inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{(b,a) \mid (a,b) \in R\}.$$

Definiţie.

· Dacă $R \subseteq A \times B$, atunci relația inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}.$$

· Dacă $R \subseteq A \times B$ şi $Q \subseteq B \times C$, atunci compunerea lor $Q \circ R \subseteq A \times C$ este definită astfel:

$$Q \circ R = \{(a,c) \mid \text{ există } b \in B \text{ a.i. } (a,b) \in R \text{ și } (b,c) \in Q\}.$$

Definiţie.

· Dacă $R \subseteq A \times B$, atunci relația inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}.$$

· Dacă $R \subseteq A \times B$ şi $Q \subseteq B \times C$, atunci compunerea lor $Q \circ R \subseteq A \times C$ este definită astfel:

$$Q \circ R = \{(a,c) \mid \text{ există } b \in B \text{ a.i. } (a,b) \in R \text{ și } (b,c) \in Q\}.$$

· Diagonala lui A este $\Delta_A = \{(a, a) \mid a \in A\}.$

7

Definiţie.

· Dacă $R \subseteq A \times B$, atunci relaţia inversă $R^{-1} \subseteq B \times A$ este definită astfel:

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}.$$

· Dacă $R \subseteq A \times B$ şi $Q \subseteq B \times C$, atunci compunerea lor $Q \circ R \subseteq A \times C$ este definită astfel:

$$Q \circ R = \{(a,c) \mid \text{ există } b \in B \text{ a.î. } (a,b) \in R \text{ și } (b,c) \in Q\}.$$

· Diagonala lui A este $\Delta_A = \{(a, a) \mid a \in A\}.$

Exercițiu.

- · Compunerea relaţiilor este asociativă.
- · Dacă $R \subseteq A \times B$ atunci $R \circ \Delta_A = R$ și $\Delta_B \circ R = R$.

Definiție.

O funcție este un triplet (A, B, R), unde A și B sunt mulțimi, iar $R \subseteq A \times B$ este o relație cu proprietatea că pentru orice $a \in A$ există un unic $b \in B$ cu $(a, b) \in R$.

8

Definiție.

O funcție este un triplet (A, B, R), unde A și B sunt mulțimi, iar $R \subseteq A \times B$ este o relație cu proprietatea că pentru orice $a \in A$ există un unic $b \in B$ cu $(a, b) \in R$.

Vom nota o funcție (A, B, R) prin $f: A \to B$, simbolul f având semnificația: fiecărui element $x \in A$ îi corespunde un singur element $f(x) \in B$ a.î. $(x, f(x)) \in R$.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numeşte domeniul de definiție al funcției f și B domeniul valorilor lui f.

Definiție.

O funcție parțială de la A la B este o funcție $f:C\to B$, unde C este o submulțime a lui A.

Ç

Definiţie.

O funcție parțială de la A la B este o funcție $f:C\to B$, unde C este o submulțime a lui A.

Notaţie.

- · B^A este mulțimea funcțiilor de la A la B.
- · Fie $f: A \to B$ o funcţie, $X \subseteq A$ şi $Y \subseteq B$.
 - $\cdot f(A)$ este imaginea lui f.
 - $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f(X)
 - $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.

9

Definiţie.

Fie $f: A \rightarrow B$ o funcţie.

- f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- · f este bijectivă dacă f este injectivă și surjectivă.

Definiţie.

Fie $f: A \rightarrow B$ o funcţie.

- f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- · f este bijectivă dacă f este injectivă și surjectivă.

Definiție.

Fie $f: A \to B$ şi $g: B \to C$ două funcţii. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcţia identitate a lui A este funcţia $1_A: A \to A$, $1_A(x) = x$.

Definiție.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

Exerciţiu.

O funcție este bijectivă ddacă este inversabilă.

Definiție.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

Exerciţiu.

O funcție este bijectivă ddacă este inversabilă.

Definiție.

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notăm acest fapt prin $A\sim B$.

Definiție.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

Exerciţiu.

O funcție este bijectivă ddacă este inversabilă.

Definiție.

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notăm acest fapt prin $A\sim B$.

Exerciţiu.

A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A şi B sunt echipotente.

FUNCȚIA CARACTERISTICĂ

Definiție.

Fie A, T mulţimi a.î. $A \subseteq T$. Funcţia caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: T \to \{0,1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{dacă } x \in A \\ 0, & \text{dacă } x \notin A \end{cases}$$

FUNCŢIA CARACTERISTICĂ

Definiţie.

Fie A, T mulţimi a.î. $A \subseteq T$. Funcţia caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: T \to \{0,1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{dacă } x \in A \\ 0, & \text{dacă } x \notin A \end{cases}$$

Proprietăți.

Dacă $A, B \subseteq T$ și $x \in T$ atunci

$$\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\} = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{\overline{A}}(x) = 1 - \chi_A(x).$$

FAMILII DE MULŢIMI

Fie I o mulţime nevidă.

Definiţie.

Fie A o mulţime. O familie de elemente din A indexată de I este o funcţie $f:I\to A$. Notăm cu $(a_i)_{i\in I}$ familia $f:I\to A$, $f(i)=a_i$ pentru orice $i\in I$. Vom scrie şi $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Definiţie.

Dacă fiecărui $i \in I$ îi este asociată o mulţime A_i , obţinem o familie (indexată) de mulţimi $(A_i)_{i \in I}$.

FAMILII DE MULŢIMI

Fie I o mulţime nevidă.

Definiţie.

Fie A o mulţime. O familie de elemente din A indexată de I este o funcţie $f:I\to A$. Notăm cu $(a_i)_{i\in I}$ familia $f:I\to A$, $f(i)=a_i$ pentru orice $i\in I$. Vom scrie şi $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Definiție.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulţimi ale unei mulţimi T. Reuniunea şi intersecţia familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

PRODUSUL CARTEZIAN AL UNEI FAMILII DE MULŢIMI

Fie I o mulţime nevidă şi $(A_i)_{i \in I}$ o familie de mulţimi.

Definiție.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

PRODUSUL CARTEZIAN AL UNEI FAMILII DE MULŢIMI

Fie I o mulţime nevidă şi $(A_i)_{i \in I}$ o familie de mulţimi.

Definiţie.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice $j \in I$, funcția $\pi_j : \prod_{i \in I} A_i \to A_j, \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod_{i \in I} A_i$. π_j este surjectivă.

PRODUSUL CARTEZIAN AL UNEI FAMILII DE MULŢIMI

Fie I o mulţime nevidă şi $(A_i)_{i \in I}$ o familie de mulţimi.

Definiție.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice $j \in I$, funcția $\pi_j : \prod_{i \in I} A_i \to A_j, \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod A_i$. π_j este surjectivă.

Exercițiu.

Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i\in I}A_i\times\bigcup_{j\in J}B_j=\bigcup_{(i,j)\in I\times J}A_i\times B_j\ \xi i\ \bigcap_{i\in I}A_i\times\bigcap_{j\in J}B_j=\bigcap_{(i,j)\in I\times J}A_i\times B_j.$$

TUPLURI ORDONATE

Fie $n \ge 1$ un număr natural, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subseteq T$.

$$(x_i)_{i \in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\cdot \bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \ \text{si} \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_n$$

Fie $n \ge 1$ un număr natural, $I = \{1, ..., n\}$ şi $A_1, ..., A_n \subseteq T$.

$$(x_i)_{i \in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\cdot \bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \, \operatorname{si} \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_n$$

Definiție.

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$. Dacă R este o relație n-ară, spunem că n este aritatea lui R.

O relație n-ară pe A este o submulțime a lui A^n .

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notație.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

· R este reflexivă dacă

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

· R este reflexivă dacă xRx pentru orice $x \in A$.

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă pentru orice $x, y \in A$,

xRy şi yRx implică x = y.

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- · R este tranzitivă dacă

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă pentru orice $x, y \in A$,

$$xRy$$
 şi yRx implică $x = y$.

• R este tranzitivă dacă pentru orice $x, y, z \in A$, xRy si yRz implică xRz.

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă pentru orice $x, y \in A$,

$$xRy$$
 şi yRx implică $x = y$.

· R este tranzitivă dacă pentru orice $x, y, z \in A$,

· R este totală dacă

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă pentru orice $x, y \in A$,

$$xRy$$
 şi yRx implică $x = y$.

· R este tranzitivă dacă pentru orice $x, y, z \in A$,

· R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Definiție.

Fie A o mulţime nevidă. O relaţie binară $R \subseteq A \times A$ se numeşte relaţie de echivalenţă dacă este reflexivă, simetrică şi tranzitivă.

Definiţie.

Fie A o mulţime nevidă. O relaţie binară $R \subseteq A \times A$ se numeşte relaţie de echivalenţă dacă este reflexivă, simetrică şi tranzitivă.

Exemplu.

Fie $n \in \mathbb{N}^*$. Definim relaţia $\equiv \pmod{n} \subseteq \mathbb{Z} \times \mathbb{Z}$ astfel:

$$\equiv \pmod{n} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid n \text{ divide } (x-y)\}.$$

Relaţia $\equiv \pmod{n}$ se numeşte congruenţa modulo n. Folosim notaţia $x \equiv y \pmod{n}$ pentru $(x, y) \in \equiv \pmod{n}$.

Definiţie.

Fie A o mulţime nevidă. O relaţie binară $R \subseteq A \times A$ se numeşte relaţie de echivalenţă dacă este reflexivă, simetrică şi tranzitivă.

Exemplu.

Fie $n \in \mathbb{N}^*$. Definim relaţia $\equiv \pmod{n} \subseteq \mathbb{Z} \times \mathbb{Z}$ astfel:

$$\equiv \pmod{n} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid n \text{ divide } (x-y)\}.$$

Relaţia $\equiv \pmod{n}$ se numeşte congruenţa modulo n. Folosim notaţia $x \equiv y \pmod{n}$ pentru $(x, y) \in \equiv \pmod{n}$.

Exemplu.

Fie $f: A \to B$ o funcţie. Definim relaţia $\ker f \subseteq A \times A$ astfel:

$$\ker f = \{(a_1, a_2) \in A \times A \mid f(a_1) = f(a_2)\}.$$

kerf se numeşte nucleul lui f.

Notaţii.

Vom nota relațiile de echivalență cu \sim . Scriem $x \sim y$ dacă $(x,y) \in \sim$ și $x \not\sim y$ dacă $(x,y) \notin \sim$.

Fie A o mulțime nevidă și $\sim \subseteq A \times A$ o relație de echivalență.

Notaţii.

Vom nota relațiile de echivalență cu ∼.

Scriem $x \sim y$ dacă $(x,y) \in \sim$ şi $x \not\sim y$ dacă $(x,y) \notin \sim$.

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiție.

Pentru orice $x \in A$, clasa de echivalență [x] a lui x este definită astfel:

$$[x] = \{ y \in A \mid x \sim y \}.$$

Notaţii.

Vom nota relațiile de echivalență cu ∼.

Scriem $x \sim y$ dacă $(x,y) \in \sim$ și $x \not\sim y$ dacă $(x,y) \notin \sim$.

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiție.

Pentru orice $x \in A$, clasa de echivalență [x] a lui x este definită astfel:

$$[x] = \{ y \in A \mid x \sim y \}.$$

Definiție.

Mulţimea tuturor claselor de echivalenţă distincte ale elementelor lui A se numeşte mulţimea cât a lui A prin \sim şi se notează A/\sim .

Aplicaţia $\pi: A \to A/\sim$, $\pi(x) = [x]$ se numeşte funcţia cât.

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

$$\cdot [0] =$$

Exemplu.

Considerăm congruența modulo 2, $\equiv \pmod{2}$:

$$\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$$

Exemplu.

Considerăm congruența modulo 2, $\equiv \pmod{2}$:

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- · [1] =

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- $\cdot \ [1] = \{2n+1 \mid n \in \mathbb{Z}\}$

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- · $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] =

Exemplu.

Considerăm congruența modulo 2, $\equiv \pmod{2}$:

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- · $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$

Exemplu.

Considerăm congruența modulo 2, $\equiv \pmod{2}$:

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- · $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- $\cdot [2n + 1] =$

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- · $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- · [2n + 1] = [1], pentru orice $n \in \mathbb{Z}$

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- · [2n + 1] = [1], pentru orice $n \in \mathbb{Z}$

Mulţimea cât este

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- · $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- · [2n+1] = [1], pentru orice $n \in \mathbb{Z}$

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot \ [0] = \{2n \mid n \in \mathbb{Z}\}$
- $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- · [2n + 1] = [1], pentru orice $n \in \mathbb{Z}$

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Propoziție.

Fie A o mulțime nevidă și $\sim \subseteq A \times A$ o relație de echivalență. Atunci

- $\cdot A = \bigcup_{x \in A} [x].$
- · [x] = [y] ddacă $x \sim y$.
- $\cdot [x] \cap [y] = \emptyset \text{ ddacă } x \not\sim y \text{ ddacă } [x] \neq [y].$

Demonstrație. Exercițiu.

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiţie.

Un sistem de reprezentanți pentru \sim este o submulțime $X \subseteq A$ care satisface: pentru orice $a \in A$ există un unic $x \in X$ a.î. $a \sim x$.

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiţie.

Un sistem de reprezentanţi pentru \sim este o submulţime $X \subseteq A$ care satisface: pentru orice $a \in A$ există un unic $x \in X$ a.î. $a \sim x$.

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2).

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Sisteme de reprezentanţi:

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiţie.

Un sistem de reprezentanţi pentru \sim este o submulţime $X \subseteq A$ care satisface: pentru orice $a \in A$ există un unic $x \in X$ a.î. $a \sim x$.

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2).

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Sisteme de reprezentanți: $X = \{0, 1\}, X = \{2, 5\}, X = \{999, 20\}.$

RELAŢII DE ECHIVALENŢĂ

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiție.

Un sistem de reprezentanţi pentru \sim este o submulţime $X \subseteq A$ care satisface: pentru orice $a \in A$ există un unic $x \in X$ a.î. $a \sim x$.

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2).

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Sisteme de reprezentanți: $X = \{0, 1\}, X = \{2, 5\}, X = \{999, 20\}.$

Propoziție.

Fie X un sistem de reprezentanți pentru \sim .

Atunci $A = \bigcup_{x \in X} [x]$ şi $A/\sim = \{[x] \mid x \in X\}.$

Demonstrație. Exercițiu.

PARTIŢII

Fie A o mulţime nevidă.

Definiție.

O partiție a lui A este o familie $(A_i)_{i \in I}$ de submulțimi nevide ale lui A care verifică proprietățile:

- $\cdot A = \bigcup_{i \in I} A_i$ şi
- $A_i \cap A_j = \emptyset$ pentru orice $i \neq j$.

Partiţia $(A_i)_{i \in I}$ se numeşte finită dacă I este finită.

PARTIŢII

Fie A o mulţime nevidă.

Propoziție.

Există o bijecție între mulțimea relațiilor de echivalență pe A și mulțimea partițiilor lui A:

· $(A_i)_{i \in I}$ partiție a lui $A \mapsto$ relația de echivalență pe A definită prin:

$$x \sim y$$
 ddacă există $i \in I$ a.î. $x, y \in A_i$.

· ~ relație de echivalență pe $A \mapsto \text{partiția } ([x])_{x \in X}$, unde $X \subseteq A$ este un sistem de reprezentanți pentru ~.

Definiţie.

Fie A o mulțime nevidă. O relație binară R pe A este relație de

· ordine parţială dacă este

Definiţie.

Fie A o mulțime nevidă. O relație binară R pe A este relație de

· ordine parţială dacă este reflexivă, antisimetrică și tranzitivă.

Definiţie.

- · ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- · ordine strictă dacă este

Definiţie.

- · ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- · ordine strictă dacă este ireflexivă și tranzitivă.

Definiţie.

- · ordine parţială dacă este reflexivă, antisimetrică și tranzitivă.
- · ordine strictă dacă este ireflexivă și tranzitivă.
- · ordine totală dacă este

Definiţie.

- · ordine parţială dacă este reflexivă, antisimetrică și tranzitivă.
- · ordine strictă dacă este ireflexivă și tranzitivă.
- · ordine totală dacă este antisimetrică, tranzitivă și totală.

Definiție.

Fie A o mulțime nevidă. O relație binară R pe A este relație de

- · ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- · ordine strictă dacă este ireflexivă și tranzitivă.
- · ordine totală dacă este antisimetrică, tranzitivă și totală.

Notaţii.

Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

Definiție.

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Definiţie.

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Propoziție.

Fie (A, \leq) o mulţime parţial ordonată.

- · Orice relație de ordine totală este reflexivă. Prin urmare, orice mulțime total ordonată este mulțime parțial ordonată.
- · Relaţia < definită prin $x < y \iff (x \le y \text{ şi } x \ne y)$ este relaţie de ordine strictă.
- · Dacă $\emptyset \neq S \subseteq A$, atunci (S, \leq) este mulţime parţial ordonată.

Definiţie.

Dacă \leq este o relație de ordine parțială (totală) pe A, spunem că (A, \leq) este mulțime parțial (total) ordonată.

Propoziţie.

Fie (A, \leq) o mulţime parţial ordonată.

- · Orice relație de ordine totală este reflexivă. Prin urmare, orice mulțime total ordonată este mulțime parțial ordonată.
- · Relaţia < definită prin $x < y \iff (x \le y \text{ şi } x \ne y)$ este relaţie de ordine strictă.
- · Dacă $\emptyset \neq S \subseteq A$, atunci (S, \leq) este mulţime parţial ordonată.

Demonstrație. Exercițiu.

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiție.

Un element $e \in S$ se numeşte

· element minimal al lui S dacă pentru orice $a \in S$, $a \le e$ implică a = e;

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiție.

Un element $e \in S$ se numeşte

- element minimal al lui S dacă pentru orice $a \in S$, $a \le e$ implică a = e;
- element maximal al lui S dacă pentru orice $a \in S$, $e \le a$ implică a = e;

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiție.

Un element $e \in S$ se numeşte

- element minimal al lui S dacă pentru orice $a \in S$, $a \le e$ implică a = e;
- element maximal al lui S dacă pentru orice $a \in S$, $e \le a$ implică a = e;
- · cel mai mic element (sau minim) al lui S dacă $e \le a$ pentru orice $a \in S$;

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiție.

Un element $e \in S$ se numeşte

- element minimal al lui S dacă pentru orice $a \in S$, $a \le e$ implică a = e;
- element maximal al lui S dacă pentru orice $a \in S$, $e \le a$ implică a = e;
- · cel mai mic element (sau minim) al lui S dacă $e \le a$ pentru orice $a \in S$;
- · cel mai mare element (sau maxim) al lui S dacă $a \le e$ pentru orice $a \in S$.

Propoziție.

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

- · Atât minimul, cât și maximul lui S sunt unice (dacă există).
- · Orice minim (maxim) este element minimal (maximal). Reciproca nu este adevărată.
- · S poate avea mai multe elemente maximale sau minimale.

Propoziție.

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

- · Atât minimul, cât și maximul lui S sunt unice (dacă există).
- · Orice minim (maxim) este element minimal (maximal). Reciproca nu este adevărată.
- · S poate avea mai multe elemente maximale sau minimale.

Demonstrație. Exercițiu.

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiţie.

Un element $e \in A$ se numeşte

- · majorant al lui S dacă $a \le e$ pentru orice $a \in S$;
- · minorant al lui S dacă $e \le a$ pentru orice $a \in S$;
- supremumul lui S, notat sup S, dacă e este cel mai mic majorant al lui
 S;
- · infimumul lui S, notat inf S, dacă e este cel mai mare minorant al lui S.

Fie (A, \leq) o mulţime parţial ordonată şi $\emptyset \neq S \subseteq A$.

Definiţie.

Un element $e \in A$ se numeşte

- · majorant al lui S dacă $a \le e$ pentru orice $a \in S$;
- · minorant al lui S dacă $e \le a$ pentru orice $a \in S$;
- supremumul lui S, notat sup S, dacă e este cel mai mic majorant al lui S;
- · infimumul lui S, notat inf S, dacă e este cel mai mare minorant al lui S.

Proprietăți.

- · Atât mulţimea majoranţilor, cât şi mulţimea minoranţilor lui S pot fi vide.
- · Atât supremumul, cât și infimumul lui S sunt unice (dacă există).

MULŢIMI BINE ORDONATE

Fie (A, \leq) o mulţime parţial ordonată.

Definiție.

Spunem că (A, \leq) este mulțime bine ordonată dacă orice submulțime nevidă a lui A are minim. În acest caz, \leq se numește relație de bună ordonare pe A.

MULŢIMI BINE ORDONATE

Fie (A, \leq) o mulţime parţial ordonată.

Definiție.

Spunem că (A, \leq) este mulțime bine ordonată dacă orice submulțime nevidă a lui A are minim. În acest caz, \leq se numește relație de bună ordonare pe A.

Exemple.

 (\mathbb{N},\leq) este bine ordonată, dar (\mathbb{Z},\leq) nu este bine ordonată.

MULŢIMI BINE ORDONATE

Fie (A, \leq) o mulţime parţial ordonată.

Definiție.

Spunem că (A, \leq) este mulțime bine ordonată dacă orice submulțime nevidă a lui A are minim. În acest caz, \leq se numește relație de bună ordonare pe A.

Exemple.

 (\mathbb{N}, \leq) este bine ordonată, dar (\mathbb{Z}, \leq) nu este bine ordonată.

Observație.

Orice mulțime bine ordonată este total ordonată.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.

Comic-ul apartine xkcd.