

Layout

Agenda

What? - Types - Impact - Flows

Traditionele MP – CAL - Developments

How? - Impact

Wayfinding – Layout & core business

What is it about?

What is it about?

Layout = Physical arrangement of facilities in "space"

Layout optimization "green grass" approach

improvement

Some horror stories

An **engine manufacturer** was planning to develop a new site. The facilities planners and architects were designing facilities for the site. Decisions had **not** been made concerning which products would be off-loaded to the new site, nor what effect the off-load would have on requirements for moving, protection, storing, and controlling material.

An **electronics manufacturer** was planning to develop a new site. The facilities planners and architects were designing the first building for the site. **No** projections of space and throughput had been developed since decisions had not been made concerning the occupant of the building.

A manufacturer of automotive equipment acquired the land for a new manufacturing plant. The manufacturing team designed the layout, and the architect began designing the facility **before** the movement, protection, storage and control system was designed.

An aerospace-related manufacturer implemented group technology in its process planning and converted to manufacturing cells in a machining department. No analyses had been performed to determine queue or flow requirements. Subsequent analyses showed the manufacturing cells were substantially less efficient as a result of their impact on movement, protection, storage and control of work-in-process.

A distributor of sporting apparel built a new site for its warehouse and office buildings. The layout looked nice, and was very people- and nature-friendly. The only thing the architects overlooked was that the docks were **not** only supposed to serve the small shipping vans, but also were supposed to receive the large suppliers' trucks.

What to do first: layout or MH?

Common practice is to start with the "layout" and to design the material handling system afterwards

but MH decisions will seriously affect the layout centralized vs decentralized storage of WIP, tools, ... fixed path versus variable path handling unit load planned degree of automation used in handling control of physical load characteristics

also movements, throughput, ... and operations will affect the layout requirements for space, equipment, personnel, ... degree of proximity

Iterations, long term view, common sense and good communication needed!! The layout and the handling system should be (re)designed **simultaneously**!

Note: Layout changes may have considerable organizational impact !!!

How to tackle a layout problem?

SLP (Systematic layout planning - Muther)

Layout types

4 basic types of departments (and layouts)

- Process Department
 - · Functionally arranged
 - · Like processes are grouped
- Product
 - · Production line
- Project
 - · Large and hard-to-move items
- Product Family
 - Produces a "family" of similar products
- Hybrids also exist

Process layout

Product family or cellular layout

Product layout

Project layout

Characteristics	Product layout	Process layout
Throughput time		
Work in process		
Skill level		
Product flexibility		
Demand flexibility		
Machine utilization		
Worker utilization		
Reliability		
Unit production cost		

What layout type(s) do you typically find in ... ?

An automobile assembly plant

A chemical processing plant

A hospital

An aircraft manufacturing plant

A mechanical work shop

Flows

"What" is flowing, in say
In a factory, e.g. automotive plant
In a service organization, e.g. hospital

Flow patterns

Within work stations

Within departments

Between departments

Flow patterns within workstations

Motion studies and ergonomics considerations are important in establishing the flow within workstations which should be:

- Simultaneous: coordinated use of hands, arms and feet.
- Symmetrical: coordination of movements about the center of the body.
- Natural: movements are continuous, curved, and make use of momentum.
- Rhythmical and Habitual: flow allows a methodological and automatic sequence of activities. It should reduce mental, eye and muscle fatigue, and strain.

Flow patterns within departments

 In a process department, little flow should occur between workstations within departments. Flow occurs between workstations and aisles.

Dependent on:

interactions among workstations
available space
size of materials

Flow between departments

- Flow between departments is often used to evaluate flow within a facility.
- Flow typically is a combination of the basic horizontal flow patterns shown below.
- An important consideration in combining the flow patterns is the location of the entrance (receiving department) and exit (shipping department).

Vertical flow paths

Flow planning

Planning effective flow involves combining the above patterns with adequate aisles to obtain progressive movements from origin to destination.

An effective flow can be achieved by maximizing directed flow paths, reducing flow, and minimizing the costs of flow.

A directed flow path is an uninterrupted flow path progressing directly from origin to destination: the figure below illustrates the congestion and undesirable intersections that may occur when flow paths are interrupted.

Flow analysis

Mapping

Kanban square (Decoupler)

VM = Vertical milling machine

G = Grinder

Worker positions

See also previous chapter

"Measuring" flow/relationships

From-to matrix

Quantitative view

Objective data

Flow ~ meters

Optimum

= min distance travelled

																Totals
From	Α	В	С	D	From	Α	В	С	D		From	Α	В	С	D	
Α		2	7	4	A		50	35	65		Α		100	245	260	605
В	3		5	5	В	50	/	85	35		В	150		425	175	750
С	6	7		3	С	35	85		50		С	210	595		150	955
D	8	2	3		D	65	35	50			D	520	70	150	/	740
										To	otals:	880	765	820	585	3,050
(a) Number of materials handling trips per hour			(b) Rectilinear distance between departments in initial layout				(c) Total distance traveled per hour between departments in initial layout				ents					

Relationship chart/diagram

Qualitative view

Subjective data

Expressing preferences about "closeness" of departments

Optimum

= max closeness

Algorithms

KU LEUVEN

Types of algorithms

Many differences (classification schemes) ...

Different starting points construction vs improvement heuristics

Different type of input required gualitative and/or quantitative input

Different layout representation discrete (grid) vs continuous

Different objective function minimum total distance vs maximum adjency score

Different userfriendliness

pen & paper, COTS software, math programming, ...

Here:

Traditional math programming approach (QAP)
Graph theoretic approach
Computer aided algorithms (block layouts)
Newer developments

Automation in Construction 85 (2018) 241–248

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Mathematical programming models for construction site layout problems

Wen Yia, Hung-Lin Chib, Shuaian Wangc,*

- a School of Engineering and Advanced Technology, College of Sciences, Massey University, Auckland, New Zealand
- b Department of Building and Real Estate, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- ^c Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 26 (2015) 247 - 251

12th Global Conference on Sustainable Manufacturing

Production Layout Optimization for Small and Medium Scale Food Industry

Yosra Ojaghi^a, Alireza Khademi^a, Noordin Mohd Yusof^{a,} Nafiseh Ghorbani Renani^a, Syed Ahmad Helmi bin Syed Hassan^a

*Dept. of Materials, Manufacturing & Industrial Engineering, Faculty of Machanical Engineering, University Teknologi Malaysia (UTM), 81310 Johor Bahra Malaysia

* Corresponding author. Tel.: +6075557048 ; fac: +6075566159. E-mail address: noordin@fkm.utm.mj

(1) Traditional math programming approach

QAP (Quadratic Assignment Problem)

$$\min \sum_{i=1}^{M} \sum_{k=1}^{M} \sum_{j=1}^{N} \sum_{l=1}^{N} f_{ik} d_{jl} x_{ij} x_{kl}$$

subject to

$$\sum_{j=1}^{N} x_{ij} = 1 \quad for \, i = 1, ...M$$

$$\sum_{i=1}^{M} x_{ij} \le 1 \text{ for } j = 1,...N$$

$$x_{ij} \in \{0,1\}$$

where

i=1,2,... m unit departments

j=1,2, ... n unit locations

f_{ik}=relationship between departments i and k

d_{il}=distance between locations j and l

 x_{ij} =1 if department i is located in

location j, =0 otherwise

QSCP

(Quadratic Set Covering Problem)

$$\label{eq:Minimize} \begin{aligned} & \text{Minimize} \sum_{i=l}^{M} \sum_{k=l}^{M} \sum_{j=l}^{L(i)} \sum_{l=l}^{L(k)} f_{ik} x_{ij} x_{kl} d(j_i, l_k) \end{aligned}$$

subject to

$$\sum_{i=1}^{L(i)} x_{ij} = 1 \text{ for } i = 1, M$$

$$\sum_{i=1}^{M} \sum_{j=1}^{L(i)} b_{ijn} x_{ij} \le 1 \text{ for } n = 1, N$$

$$x_{ij} \in \{0,1\}$$

Based on candidate locations for departments

LAP

(Linear Assignment Problem)

$$Minimize \sum_{i=1}^{M} \sum_{k=1}^{M} x_{ij} \left(\sum_{k=1}^{K} f_{ik} d_{jk} \right)$$

subject to

$$\sum_{i=1}^{N} x_{ij} = 1 \text{ for } i = 1, M$$

$$\sum_{i=1}^{M} x_{ij} \le 1 \text{ for } j = 1, N$$

$$x_{ij} \ge 0$$

Takes into account distances to fixed points (eg I/O)

(2) Graph theoretical approach

Based on 1-to-1 relation between block layout and planar graph

Nodes represent departments

Arcs represent relationships

Graph is **planar** if it can be drawn in 2-D without arcs crossing.

Maximally planar if no additional arcs can be added

Many different methods exist!

node insertion

hexagonal adjacency graphs (SPIRAL), deltahedron heuristic, Green-Al Hakim, Leung, ...

Example: node insertion method

- 1. Select pair with largest weights (C-D)
- 2. Select 3rd node (B) as one with largest combined weight with (C-D)

	С	D	TOT
Α	8	10	18
В	12	13	25
Ε	0	2	2

3. Determine which dept, has highest weight with respect to depts. already placed.

	В	С	D	TOT
Α	9	8	10	27
Ε	7	0	2	9

A is placed next into center "face" of graph.

Where should (E) go?

· Check each face of the graph.

· Node 5 is inserted at the A-B-D face

FACES							
A-B-C	A-C-D	A-B-D					
7	2	9					

Total Score =81 (Maximum)

KU LEUVEN

(3) CAL (computer aided layout)

Basics

Block layouts

Scoring

Volume-distance product
Adjacency based scoring

Multi-objective scoring

$$\min z^{distance} = \sum_{i=1}^{m} \sum_{j=1}^{m} f_{ij} c_{ij} d_{ij}$$

$$\max z^{adjacency} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} f_{ij} x_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{m} f_{ij}}$$

Illustration: distance-based scores

$$d_{rectilinear,Manhattan} = |x_1 - x_2| + |y_1 - y_2|$$

$$d_{euclidean} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$d_{chebyshev} = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

Illustration: distance and adjency scoring

Example – Each dept. is 100' x 100'

А	В
С	D

	Α	В	С	D			
Α	-	2	4	6			
В	6	-	8	10			
С	4	8	-	7			
D	2	10	0	-			
FLOW							

	Α	В	С	D		
Α	-	100	100	200		
В	100	•	200	100		
C	100	100 200	200	-	100	
D	200	100	100	-		
DISTANCE						

		Α	В	С	D	TOT
	Α	-	200	400	1200	1800
	В	600		1600	1000	3200
	С	400	1600	-	700	2700
	D	400	1000	0	-	1400
•						9100

Dept.	Dept. B
	Dept. C

Corner adjacency: e.g. A-C **Side-to-side** adjacency: e.g. A-B

Border-to-border distance: e.g. A-B: 0 and A-C: 1

Relationship	If adjacent	If not adjacent		
A /	100	0		
E	50	0		
I	25	0		
0	5	0		
U	0	0		
X	-100	0		

other conversions possible!

Illustration: multi-objective scoring

			Α		В		С		D	
	Factor	Weight	Rating	Score	Rating	Score	Rating	Score	Rating	Score
1	MH Cost	30	8	240	7	210	10	300	10	300
2	Space Utilization	30	7	210	6	180	6	180	10	300
3	Safety	10	9	90	10	100	7	70	5	50
4	Flexibility	5	7	35	8	40	9	45	6	30
5	Material Flow	25	10	250	9	225	9	225	7	175
	Total	100		825		755		820		855
										Nanagara San

- · Useful in group evaluation situations
- · Must decide on weights
- · While totally subjective, allows for fair comparisons

Can be solved (partly)

"Oldie" illustration : ALDEP

(Automated Layout DEsign Program – Seehof&Evans, 1967)

Construction algorithm

Example

Dept.	Name	Area (ft²)
1	receiving	12000
2	milling	8000
3	press	6000
4	drilling	12000
5	assembly	8000
6	plating	12000
7	shipping	12000

Required space

	Dept/Dept	1	2	3	4	5	6	7
	1	-	Е	0	I	0	U	U
	2		-	U	Е	I	I	U
	3			-	U	U	О	U
	4				-	I	U	U
Requested closeness	5					-	A	I
,	6						-	E

Extra information

Scoring

Adjacency score, based on

relation	Α	Е	I	0	U	Х
value	64	16	4	1	0	-1024

Areas

Unit square = 6000 ft²

⇒ dept1: 2, dept2: 1, dept3: 1, dept4: 2, dept5: 1, dept6: 2, dept7: 2 unit squares

Building = 4 by 3 unit squares

Algorithm parameter settings

Minimum closeness ranking = E

Sweep width = 1

Algorithm

```
initial set of candidates = \{1, 2, 3, 4, 5, 6, 7\}
        first randomly selected department = 3
Minimum closeness ranking
set of candidates with E or higher relation with 3 = \{ \}
set of candidates = \{1, 2, 4, 5, 6, 7\}
        second randomly selected department = 7
set of candidates with E or higher relation with 7 = \{6\}
        third selected department = 6
set of candidates with E or higher relation with 6 = \{5\}
        fourth selected department = 5
set of candidates with E or higher relation with 5 = \{ \}
set of candidates = \{1, 2, 4\}
        fifth randomly selected department = 2
set of candidates with E or higher relation with 2 = \{1, 4\}
        sixth randomly selected department = 1
        last selected department = 4
```


Layout score

		ideally	,	currently	
relation	value	#	score	#	score
Α	64	1	64	1	64
E	16	3	48	3	48
1	4	5	20	4	16
0	1	3	3	2	2
U	0	9	0	3	0
X	-1024	0	0	0	0
			135		130

relative score (%)

96%

				Dpt/Dpt	1	2	3	4	5	6	7
3	5	2		1	-	E	0	I	0	U	U
				2		-	U	E	I	I	U
7	6	1	4	3			-	U	U	0	U
				4				-	I	U	U
7	6	4	1	5					-	A	I
1	O		4	6						-	E

CAL: why (not)?

Why?

Reasonable effort
Often satisfactory performance
(though also often limited quality)
"Easy" to use in practice

BUT ...

deterministic approach
often single objective
only tangibles (quid e.g. safety ?)
linearity of MH cost (few exceptions)
rectilinear distances
scoring methods
initial layout bias
obstacles
"choices" within algorithms: DOE !!

scale effects, grid size,
Aldep example (sweep width)

department area & shape

Solution: use cohesion score, SER, ...

• • • •

(4) new(er) developments

Space filling curves (SFC)

Use of the SFC in improvement or construction algorithms

Different types of SFC exist

Also for multi-level

Genetic algorithms (GA)

Based on observation that survival-of-the-fittest (SOF) principle in nature may be used in solving decision-making, optimization and machine learning problems

GA work with a family of solutions (population) from which a "next" generation of better solutions is obtained.

Stopping rule: if no noticeable improvement is obtained in the last x trails.

Consider: simulated annealing

Why (not) newer algorithms?

On-going research, often not limited to layout optimization

Can avoid drawbacks of myopic old algorithms

Many different approaches possible

Experience most often required

Programming skills needed – Some commercial packages exist

Don't_forget about simulation!

Space requirements

What is it about?

Blocks 4 and 5 of SLP

Perhaps the most difficult aspect of facility plan

Large amounts of uncertainty

- Technology changes
- Demand forecasts
- Changing product mix
- Parkinson's Law things will fill available space
- New designs (pull systems, decentralized storage, etc)

Generally use "bottom-up" approach

- Define workstation spaces
- Define departmental spaces (with aisle allowances)

Workstation space

Equipment Footprint

- Machine Travel
- Machine Maintenance
- Plant Services

Material

- Inbound and store
- In-process
- Outbound
- Waste and Scrap
- Tools Fixtures
- Can depend on system

Personnel

- The operator
- Material handling
- Ingress/Egress min (30"-42")

Try to:

- Eliminate long and awkward reaches
- · Make work efficient
- · Minimize manual handling
- · Maximize operator safety, comfort and productivity

Departemental space Rather complex!

- Not the simple sum of workstation spaces
 - Many items are shared from workstation to workstation
- Add aisle allowances:

If the largest load is:	Aisle Allowance % *
< 6 ft ²	5-10%
6-12 ft ²	10-20%
12-18 ft ²	20-30%
>18 ft ²	30-40 %

Aisle planning

Objective: Promote Flow

Two Types:

- Departmental Aisles (previous section)

- Main Aisles

Tradeoff

- Congestion versus Wasted Space

Principles:

- Avoid curves, jogs, non-right-angle intersections

- Aisles should be straight and lead to doors

- Avoid aisles along outer wall of bldg. Unless for entry/exit

- Don't forget to consider column spacing!

Type of Flow	Aisle Width (ft)
Tractors	12
3-ton Forklift	11
2-ton Forklift	10
1-ton Forklift	9
Narrow Aisle Truck	6
Manual Platform truck	5
Personnel	3
Personnel with doors opening into aisle from one side	6
Personnel with doors opening into aisle from two sides	8

T-SHAPED SPACE FOR 180° TURNS

Personnel space requirements

Greatly a function of owner philosophy

E.g. food services, office planning, health services, ...

Also

Barrier free compliance

Anthropometrics/Ergonomics

- AVERAGE EYE HEIGHT STANDING
- 2. AVERAGE EYE HEIGHT SEATED
- 3. NATURAL ANGLE OF VISION
- 4. RANGE OF VISION
- 5. MAXIMUM BODY BREADTH
- MAXIMUM BODY DEPTH
- 7. ONE WAY PASSAGE MIN
- 8. TWO WAY PASSAGE MIN
- 9. NORMAL REACH HEIGHT SEATED
- 10. EXTENDED REACH HEIGHT SEATED
- 11. WORKSTATION DEPTH RECEPTION
- 12. WORKSTATION DEPTH MIN MAX
- 13. V.D.U. WORKSTATION DEPTH MIN MAX
- 14. SHELF / CABINET DEPTH
- 15. SCREEN HEIGHTS

Parking lot design

Number of automobiles

- Need space for every 1.25 employees
- 2-5 spaces per 100 cars for handicapped

Space required for each

- 7'x15' to 9.5'x19' for small/large cars
- 12'x20' handicapped
- Many tables available

Available space and configuration Consider employee convenience (< 500') OSHA 1910.36 (.37) code for entrance/exits

Office planning

Very challenging
Everyone has opinions, views, likes/dislikes
Most offices are combinations of open areas and private offices
Collect activity data and determine objectives
Companies provide complete office design and inventory mgmt services

Space Type	Sq. Feet.		
Executive Office	250-400		
Manager	80-110		
Clerical	60-110		
Conference Room	20-30 per person		
Reception Area	125-300		
File Room	7 per file cab.		

HOE HET OPEN KANTOOR MEE KAN LEIDEN TOT BURN-OUT

Wegbezuinigd: onze concentratie!

12 MAART 2016 | Van onze correspondent 'leven & werk' Eva Berghmans

Het open kantoor is ruim en licht. Het belichaamt de nieuwe stijl van werken, maar is eigenlijk vaak ingegeven door besparingen. En de kakofonie van lawaai en de overdaad aan prikkels putten ons uit.

7 Attributes of Workspaces

Use this continuum to identify your company's desired way of working before embarking on an office design project.

Stuff-to-think about

The White Hat Information available and needed.	The Red Hat Intuition, feelings & hunches.
The Black Hat Cautions & Difficulties. Where things might go wrong.	The Yellow Hat Values & Benefits Why something might work.
The Green Hat Alternatives & Creative Ideas	The Blue Hat Managing the thinking process.

Layout, Flow and Wayfinding

Wayfinding

find destination + (confirmation under way)

Wayfinding – Wayshowing in hospitals

complex buildings/sites

stressed users, users with disabilities, ...

Wayfinding should be designed for the first - time visitor because repeat visitors can use their past experiences for navigation (Lynch, 1960).

Wayfinding: architecture ("readable building") – support (signage)

Basic choices

(Gibson, 2009)

Supporting signage

"Signage = art and science"

Static

colors: arrows and/or zones (progressive disclosure) routes

Dynamic

Helpful technology

Layout and core business

Central sterilization unit

Wrap-up

KU LEUVEN

Important conclusions

Layout decision making

types, concerns, interactions with MH, flows

Algorithms

developing a critical look

Space requirements

how to determine

Stuff-to-think about

