三角比と三角関数

2022.05.09

三角比から三角関数へ

三角比(復習)

$$\cos A = rac{\mathrm{AB}}{\mathrm{AC}} = rac{\mathbf{\underline{EU}}}{\mathrm{斜辺}}$$

$$\sin A = rac{ ext{CB}}{ ext{AC}} = rac{ ext{高さ}}{ ext{斜辺}}$$

$$an A = rac{\mathrm{BC}}{\mathrm{AB}} = rac{ 高さ}{ 底辺}$$

• 辺の比だから、三角形の大きさによらない.

0509-1 問題図の三角形で以下を求めよ.

$$[1]\cos A$$

$$[2] \sin A$$

$$[1]\cos A \hspace{0.5cm} [2]\sin A \hspace{0.5cm} [3]\tan D \hspace{0.5cm} [4]\sin D$$

$$[4] \sin D$$

角をθとおく

角をθとおく

 \bullet 左の角が θ の直角三角形がかける

角をθとおく

 \bullet 左の角が θ の直角三角形がかける

 \bullet 斜辺r,底辺x,高さyとすると

- 角をθとおく
- \bullet 左の角が θ の直角三角形がかける
- \bullet 斜辺r,底辺x,高さyとすると

$$\cos \theta = \frac{x}{r}$$
$$\sin \theta = \frac{y}{r}$$

$$\tan \theta = \frac{y}{x}$$

• 角 θ の直角三角形がかけない

• 角 θ の直角三角形がかけない

• 半径rの円上にx軸との角が θ

である点 P はとれる

• 角 θ の直角三角形がかけない

• 半径rの円上にx軸との角が θ である点Pはとれる

Pのx座標は底辺y座標は高さに対応

- 角 θ の直角三角形がかけない
- 半径rの円上にx軸との角が θ である点Pはとれる
- Pのx座標は底辺y座標は高さに対応

$$\cos heta = rac{x}{r} \ \sin heta = rac{y}{r} \ an heta = rac{y}{x}$$

- 角 θ の直角三角形がかけない
- 半径rの円上にx軸との角が θ である点Pはとれる
- Pのx座標は底辺y座標は高さに対応

$$g$$
 প্রমান বিভাগের করে হিন্দ্রের হৈ তের $heta = rac{x}{r}$ $\sin heta = rac{y}{x}$

- 角 θ の直角三角形がかけない
- 半径rの円上にx軸との角が θ である点Pはとれる
- Pのx座標は底辺y座標は高さに対応

$$\cos heta = rac{x}{r} \ \sin heta = rac{y}{r} \ an heta = rac{y}{x}$$

ullet 半径rの円上にx軸との角がhetaの点Pをvとる

ullet 半径rの円上にx軸との角がhetaの点Pをvとる

● Pの座標を (x, y) とすると

ullet 半径rの円上にx軸との角がhetaの点Pをcとる

Pの座標を (x, y) とすると

$$\cos heta = rac{x}{r} \ \sin heta = rac{y}{r} \ an heta = rac{y}{r}$$

- ullet 半径rの円上にx軸との角がhetaの点Pをとる
- P の座標を (x, y) とすると

$$\cos \theta = \frac{x}{r}$$
 $\sin \theta = \frac{y}{r}$

 $\tan \theta = \frac{y}{}$

課題 0509-2 問題図の θ について

以下を求めよ

[1] $\cos \theta$ [2] $\sin \theta$ [3] $\tan \theta$

 $\cos \theta \sin \theta \tan \theta$

• 第1象限

 $\cos \theta \sin \theta \tan \theta$

第1象限 + + +

- 第1象限 + + +
- 第2象限

- 第1象限 + + +
- 第 2 象限 + -

- 第1象限 + + +
- 第2象限 + -
- 第3象限

- 第1象限 + + +
- 第 2 象限 + -
- 第3象限 +

- 第1象限 + + +
- 第2象限 + -
- 第 3 象 限 — +
- 第4象限

 $\cos \theta \sin \theta \tan \theta$

- 第1象限 + + +
- 第2象限 + -
- 第3象限 +
- 第4象限

課題 0509-3 第4象限での符号を調べよ

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(1) \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}$$

$$(1) \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2 \cos^2 \theta$ と書く

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2 \cos^2 \theta$ と書く

証)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{r^2} + \frac{y^2}{r^2}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2 \cos^2 \theta$ と書く

III)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{r^2} + \frac{y^2}{r^2} = \frac{x^2 + y^2}{r^2} = 1$$

ullet これまで,角 heta は 2 つの線分の間の角だった $0^\circ \le heta \le 360^\circ$

 \bullet これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - $\cdot \theta > 0^{\circ}$ のとき,反時計回り

 \bullet これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - $\cdot \; heta > 0^\circ$ のとき,反時計回り
 - \cdot $heta < 0^\circ$ のとき,時計回り

一般角

アプリ「一般角」で一般角を見てみよう

一般角

アプリ「一般角」で一般角を見てみよう

• 座標を使う(鈍角の場合と同じ)

例 $heta=240^\circ$

例
$$heta=240^\circ$$
 $r=2, x=-1, \; y=-\sqrt{3}$

例
$$heta=240^\circ$$
 $r=2, x=-1, \ y=-\sqrt{3}$ $\cos heta=$

例
$$heta=240^\circ$$
 $r=2, x=-1, \ y=-\sqrt{3}$ $\cos heta=-rac{1}{2}$

例
$$heta=240^\circ$$
 $r=2, x=-1, \ y=-\sqrt{3}$ $\cos \theta=-rac{1}{2}$ $\sin \theta=$

例
$$heta=240^\circ$$
 $r=2, x=-1, \ y=-\sqrt{3}$ $\cos \theta=-rac{1}{2}$ $\sin \theta=-rac{\sqrt{3}}{2}$

例
$$heta=240^\circ$$
 $r=2, x=-1, \ y=-\sqrt{3}$
 $\cos \theta=-rac{1}{2}$
 $\sin \theta=-rac{\sqrt{3}}{2}$
 $an heta=$

例
$$heta=240^\circ$$
 $r=2, x=-1, \ y=-\sqrt{3}$
 $\cos\theta=-rac{1}{2}$
 $\sin\theta=-rac{\sqrt{3}}{2}$
 $an heta=\sqrt{3}$

例
$$heta=-30^\circ$$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$ $\cos \theta=$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$ $\cos\theta=rac{\sqrt{3}}{2}$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$ $\cos\theta=rac{\sqrt{3}}{2}$ $\sin\theta=$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$ $\cos\theta=rac{\sqrt{3}}{2}$ $\sin\theta=-rac{1}{2}$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$
 $\cos\theta=rac{\sqrt{3}}{2}$
 $\sin\theta=-rac{1}{2}$
 $an heta=$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$ $\cos\theta=rac{\sqrt{3}}{2}$ $\sin\theta=-rac{1}{2}$ $an heta=-rac{1}{\sqrt{3}}$

例
$$heta=-30^\circ$$
 $r=2, x=\sqrt{3}, \ y=-1$
 $\cos \theta=rac{\sqrt{3}}{2}$
 $\sin \theta=-rac{1}{2}$
 $an heta=-rac{1}{\sqrt{3}}$

課題 0509-5 次を求めよ

 $[1] \cos 135^{\circ} \ [2] \sin 135^{\circ} \ [3] \tan 135^{\circ}$

弧度法 (radian)

度。

1周を360°とする

- 1周を360°とする
- 半周は180°とする

- 1周を360°とする
- 半周は180°とする
- ullet 一周の $\frac{1}{360}$ を 1° とする

- 1周を360°とする
- 半周は180°とする
- \bullet 一周の $\frac{1}{360}$ を 1° とする
- 数学的な意味は余りない
- 日常的には使いやすい

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

• 半径 r の円周は

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

• 半径rの円周は $2\pi r$ だから

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{2}$

ullet 半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}$

ullet 弧の長さ ℓ と半径rの比 θ (ラジアン) $=\frac{\ell}{r}$

・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$

ullet 弧の長さ ℓ と半径rの比 θ (ラジアン) $=\frac{\ell}{r}$

- ・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$
- 半周の角 (180°)

ullet 弧の長さ ℓ と半径rの比 θ (ラジアン) $=\frac{\ell}{r}$

- ・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$
- 半周の角 (180°) = π

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

比なので単位はない(sin などと同じ)

ullet 弧の長さ ℓ と半径rの比 θ (ラジアン) $=\frac{\ell}{r}$

- ・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$
- 半周の角 (180°) = π
- 比なので単位はない(sin などと同じ)度と区別するときは、ラジアン(rad)を付ける

弧度法による角度の例

ullet 60° は 180° の ,したがって $60^\circ =$

ullet 90° は 180° の $rac{1}{2}$,したがって $90^\circ=$

$$ullet$$
 90° は 180° の $rac{1}{2}$,したがって $90^\circ=rac{\pi}{2}$

$$ullet$$
 90° は 180° の $rac{1}{2}$,したがって $90^\circ=rac{\pi}{2}$

ullet 60° は 180° の ,したがって 60° =

$$ullet$$
 90° は 180° の $rac{1}{2}$,したがって $90^\circ = rac{\pi}{2}$

$$ullet$$
 60° は 180° の $rac{1}{3}$,したがって $60^\circ =$

$$ullet$$
 90° は 180° の $rac{1}{2}$,したがって $90^\circ = rac{\pi}{2}$

$$ullet$$
 60° は 180° の $\dfrac{1}{3}$,したがって $60^\circ=\dfrac{\pi}{3}$

$$ullet$$
 90° は 180° の $rac{1}{2}$,したがって $90^\circ = rac{\pi}{2}$

$$ullet$$
 60° は 180° の $\dfrac{1}{3}$,したがって $60^\circ=\dfrac{\pi}{3}$

課題 0509-6 次の角をラジアンで表せ.

$$[1] 30^{\circ}$$

$$[2]~45^{\circ}$$

$$[3] 120^{\circ}$$

1つの角について, $x^\circ=y$ (ラジアン)とする

1つの角について,
$$x^\circ=y$$
(ラジアン) とする
比例関係 $\frac{y}{\pi}=\frac{x}{180}$

1つの角について, $x^\circ = y(ラジアン)$ とする

比例関係
$$\frac{y}{\pi} = \frac{x}{180}$$

これから

$$y = rac{\pi}{180} |x|$$
(ラジアンを求める式)

$$x=rac{180}{\pi}\;y$$
 (度を求める式)

1つの角について, $x^\circ = y(ラジアン)$ とする

比例関係
$$\frac{y}{\pi} = \frac{x}{180}$$

これから

$$y = rac{\pi}{180} \ x$$
 (ラジアンを求める式)

$$x=rac{180}{\pi}y$$
 (度を求める式)

課題 0509-7 次の角を変換せよ (小数でよい)

$$[1] \ 3.1416 \quad [2] \ 70^{\circ} \qquad [3] \ 10 \qquad [4] \ 10^{\circ}$$

$$[2] 70^{\circ}$$

$$[4]~10^{\circ}$$

一般角をxとおく。

- 一般角をxとおく.
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.

- 一般角をxとおく。
- 任意のxに対して, $y = \sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).

- 一般角をxとおく。
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.

- 一般角をxとおく。
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.
- x はラジアンとする.

- 一般角をxとおく。
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.
- x はラジアンとする.横軸を度とすると

- 一般角をxとおく。
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.
- $\bullet x$ はラジアンとする.

横軸を度とすると

• 半径1の円に点P(X,Y)をとる

ullet 半径1の円に点 $\mathrm{P}(X,Y)$ をとる

 $\sin x = rac{Y}{r}$

ullet 半径1の円に点 $\mathrm{P}(X,Y)$ をとる

$$\sin x = \frac{Y}{r}$$

ullet 半径1の円に点 $\mathrm{P}(X,Y)$ をとる

$$\sin x = \frac{Y}{r} = Y$$

半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

● また弧の長さを ℓ とすると

$$x=rac{\ell}{r}$$

● 半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x = \frac{\ell}{v}$$

● 半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x = \frac{\ell}{r} = \ell$$

● 半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x = \frac{\ell}{v} = \ell$$

(1)-(4) のどの長さで表されるか.

 $[2] \sin x$

正弦曲線を描く

- \bullet アプリ「 $y = \sin x$ のグラフ」を動かしてみよう
- 使い方
 - (1) 学生番号を入れる
 - (2) 赤い点を動かしてxを決め,「点を打つ」 長さがxの弧を表示して $(x,\sin x)$ に点を打つ.
 - (3) いくつかの点を打って「点を結ぶ」 正弦曲線との違いが表示される さらに「点を打つ」,「点を結ぶ」を繰り返す.

課題 0509-9「REC」を押して表示されるデータを提出せよ.

・周期は

周期は2π (2π で元に戻る)

- 周期は2π (2π で元に戻る)
- 振幅は

- 周期は2π(2πで元に戻る)
- 振幅は1(値の範囲は -1 から1)

- 周期は2π(2πで元に戻る)
- 振幅は1(値の範囲は −1 から 1)
- 原点対称

正弦曲線(課題)

課題 0509-10 アプリ「関数のグラフ」で次の関数のグラフ をかき、周期と振幅を答えよ.

$$[1] y = 2 \sin x$$

$$[2] \ y = \frac{1}{3}\sin x$$

$$[3] y = \sin 2x$$

[3]
$$y = \sin 2x$$
 [4] $y = 4\sin \frac{x}{2}$