Statystyka stosowana

Raport 1

Temat: Analiza wybranego zbioru danych

Imię i Nazwisko prowadzącego kurs: Mgr Katarzyna Maraj-Zygmąt

Imię i Nazwisko, nr indeksu	Szymon Malec, 262276
Wydział	Wydział matematyki, W13
Dzień i godzina zajęć:	Wtorek, 7^{30}
Kod grupy ćwiczeniowej	T00-64c
Data oddania raportu:	10.05.2022
Ocena końcowa	

Adnotacje i uwagi:

1. Wstęp

Celem raportu jest wykorzystanie dotychczas poznanych narzędzi statystycznych do zbadania wybranego zbioru danych. W dalszej części przeanalizuję pewną grupę danych w celu wyznaczenia ich podstawowych charakterystyk, znalezienia ich rozkładu oraz sprawdzenia czy dane w jakiś sposób ze sobą korelują.

2. Opis danych^[1]

Do opracowania wybrałem zbiór danych zawierający 6292 pomiary wzrostu i wagi 3333 zawodników startujących w mistrzostwach świata w hokeju na lodzie mężczyzn (IIHF World Championship) w latach 2001-2016. Ponieważ dane pochodzą z 16 turniejów, niektórzy zawodnicy, którzy startowali więcej niż jeden raz, powtarzają się. Nie pomijamy jednak tych powtórzeń, ponieważ mają one wpływ na całkowity rozkład wysokości i wagi osób startujących w zawodach.

Rysunek 1: Wykres punktowy wysokości od wagi zawodnika.

Wysokość [cm]	Waga [kg]		
185	84		
188	86		
182	95		
178	85		
175	88		
193	93		
176	84		
183	91		
180	85		
178	86		
187	93		
185	80		
198	95		
175	77		
178	75		
181	85		
194	95		
186	87		
184	86		
178	92		
175	90		
187	86		
180	75		
188	84		
182	88		
182	88		
175	88		
188	90		
190	96		
181	86		
196	98		
190	100		
185	95		
186	88		
180	76		
176	72		
183	82		
173	85		
185	87		
182 84			
	-		

Wysokość [cm]	Waga [kg]	
191	94	
182	92	
184	90	
182	92	
192	90	
187	80	
179	88	
180	78	
178	78	
188	84	
180	78	
178	83	
183	91	
182	78	
185	87	
193	97	
179	83	
185	82	
185	83	
184	92	
186	80	
184	89	
178	83	
178	88	
185	87	
192	99	
190	92	
191	92	
193	97	
183	89	
183	82	
184	84	
177	80	
177	77	
178	88	
178	81	
181	84	
185	90	
181	88	
178	86	

Tabela 1: Przykładowe dane.

Rysunek 2: Po lewej histogram z wysokości, po prawej z wag.

3. Analiza rozkładów wysokości i wagi zawodników

Dane mają charakter dyskretny, co jest spowodowane dokładnością pomiarów wynoszącą 1cm w przypadku wysokości i 1kg w przypadku wagi. Rzeczywiste wartości mają jednak rozkład ciągły. Rozkład dyskretny, który otrzymamy z danych, będzie można traktować jako przybliżenie rzeczywistego rozkładu ciągłego.

Niech x_1, x_2, \ldots, x_n oznaczają dane posortowane rosnąco. Liczba danych wynosi n = 6292. Obliczamy podstawowe charakterystyki, w celu otrzymania więcej informacji o rozkładach.

Charakterystyka	${ m Wz\'or}$	Wartość dla wysokości	Wartość dla wagi
Średnia arytmetyczna	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	183,8	87,6
Wariancja	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	29	48,5
Odchylenie standardowe	$S = \sqrt{S^2}$	5,4	7
Mediana		183	87
Kwartyl Q_1		180	83
Kwartyl Q_3		188	92
Rozstęp	$R = x_n - x_1$	40	52
Rozstęp między- kwartylowy	$IQR = Q_3 - Q_1$	8	9
Współczynnik zmienności	$V = \frac{S}{\bar{x}}$	0,029	0,079

Tabela 2: Najważniejsze charakterystyki obliczone dla danych

Na powyższej tabeli możemy zobaczyć, że w obu przypadkach średnia arytmetyczna jest zbliżona do mediany, co wskazuje, że rozkłady te są symetryczne. Widzimy także, że odchylenie standardowe dla wag jest trochę większe niż dla wysokości, zatem te pierwsze dane mają nieco większy rozrzut. Wskazuje na to także rozstęp międzykwartylowy.

Rysunek 3: Wykresy pudełkowe dla badanych danych.

Korzystając z pakietu KernelDensity dostępnego w Julii możemy znaleźć gęstość empiryczną dla naszych danych, która będzie przybliżeniem gęstości rozkładu, z którego te dane pochodzą.

Rysunek 4: Porównanie unormowanych histogramów i gęstości empirycznych, po lewej dla wysokości, po prawej dla wagi.

Jak możemy zobaczyć na powyższych wykresach, gęstości empiryczne pokrywają się z histogramami. Dodatkowo zauważamy, że w obu przypadkach krzywe gęstości przypominają krzywą Gaussa. Aby sprawdzić czy w rzeczywistości nasze dane pochodzą z rozkładu normalnego, porównamy wykresy gęstości empirycznych z wykresami gęstości teoretycznych rozkładu $\mathcal{N}(\mu, \sigma)$, gdzie pod μ podstawimy obliczone wcześniej średnie arytmetyczne, a pod σ odchylenia standardowe.

Rysunek 5: Porównanie gęstości empirycznej otrzymanej z danych z gęstością rozkładu normalnego $\mathcal{N}(\mu, \sigma)$. Po lewej dla wysokości: $\mu = 183.8$, $\sigma = 5.4$. Po prawej dla wagi: $\mu = 87.6$, $\sigma = 7$.

Okazuje się, że krzywe w obu przypadkach wyraźnie się pokrywają. Dodatkowo dla pewności możemy porównać jeszcze wykresy dystrybuanty empirycznej z dystrybuantą teoretyczną rozkładu normalnego.

Rysunek 6: Porównanie dystrybuanty empirycznej otrzymanej z danych z dystrybuantą teoretyczną rozkładu normalnego $\mathcal{N}(\mu, \sigma)$. Po lewej dla wysokości: $\mu = 183.8$, $\sigma = 5.4$. Po prawej dla wagi: $\mu = 87.6$, $\sigma = 7$.

Podobieństwo krzywych widocznych powyżej potwierdza, że dane pochodzą najprawdopodobniej z rozkładu normalnego lub rozkładu bardzo do niego zbliżonego.

4. Analiza korelacji pomiędzy wagą, a wysokością

Jak możemy zauważyć na rys. 1, wartości wydają się być od siebie zależne. Nie jest to zaskoczeniem, ponieważ naturalnym jest, że waga zależy od wysokości człowieka. Policzmy współczynnik korelacji Pearsona, by przekonać się jak mocno te dwa zbiory są ze sobą skorelowane. Niech x_1,\ldots,x_n oznaczają wysokości, a y_1,\ldots,y_n wagi. Wtedy

$$r_{xy} = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{(n-1)S_x S_y} \approx 0.92,$$

gdzie S_x i S_y to odchylenia standardowe.

Otrzymaliśmy bardzo wysoką wartość, co oznacza wyraźną korelację. Możemy przypuszczać, że jest tak dlatego, że dane dotyczą sportowców światowej klasy, którzy muszą posiadać odpowiednie parametry fizyczne, by móc startować w zawodach na tak wysokim poziomie. Stąd mamy niewiele odstających danych. W przypadku zwykłych ludzi rozrzut wartości byłby prawdopodobnie znacznie większy, przez co współczynnik korelacji byłby mniejszy.

5. Podsumowanie

Zgodnie z celem raportu zbadałem zbiór danych opisujący parametry fizyczne zawodników hokeja. Po przyjrzeniu się histogramom oraz wykresom gęstości empirycznej doszedłem do wniosku, że dane mogą pochodzić z rozkładu normalnego, co sprawdziłem porównując gęstość i dystrybuantę empiryczną z gęstością i dystrybuantą teoretyczną rozkładu normalnego. Jako parametry podstawiłem wyliczone wartości średnie oraz wariancje. Okazało się, że rzeczywiście rozkład naszych danych wpasowuje się w rozkład normalny.

Następnie sprawdziłem w jakim stopniu waga i wysokość ze sobą korelują. Otrzymana wartość współczynnika Pearsona wskazuje na znaczną korelację liniową między zbiorami. Stąd wniosek jest taki, że większa wysokość daje lepsze predyspozycje do osiągnięcia większej wagi, co jest w tym sporcie zapewne pożądane, by zawodnik mógł przewracać zawodników drużyny przeciwnej, a nie być przewracanym przez nich.

Źródła

[1] https://figshare.com/articles/dataset/Height_of_ice_hockey_players/3394735/2