Data Science Project Python Report

Prepared by Group 6

Team members

Bhavana Nare

Vishnu Priya Buggineni

Yaswanth Kumar Palli

Vamshi Krishna B

Regression Models:

Linear Regression
Ridge Regression
Lasso Ridge
Quadratic Regression
Symbolic Regression
Symbolic Ridge Regression
Symbolic Lasso Ridge

Main Points

For Linear Regression Model Used SFS function for Forward, Backward and Stepwise For Ridge we have used RidgeCV For Lasso We have used LassoCV For Quadratic PolynomialRegression with degree 2 For Symbolic Based on datasets Power values are considered

We have worked on all 6 datasets using both **python** and **scala**.

All the libraries we used in python are mentioned below:

Numpy, Pandas, Matplotlib, Seaborn, Mixtend, Gplearn, Math, and sklearn

Air Quality Dataset:

We have taken this dataset from UCI repository(we used AirQualityUCI_1.csv in the datasets for python). There are 9358 occurrences of hourly averaged responses from an array of 5 metal oxide chemical sensors integrated in an Air Quality Chemical Multisensor Device in this dataset. This dataset contains 12 attributes, the information about each attribute is mentioned below:

Date- format (DD/MM/YYYY)

Time- format (HH.MM.SS)

CO(GT)- True hourly averaged concentration CO

PT08.S1(CO)- (tin oxide) hourly averaged sensor response

NMHC(GT)- True hourly averaged overall Non Metanic HydroCarbons concentration

C6H6(GT)- True hourly averaged Benzene concentration

PT08.S2(NMHC)- (titania) hourly averaged sensor response

NOx(GT)- True hourly averaged NOx concentration

PT08.S3(NOx)- (tungsten oxide) hourly averaged sensor response

NO2(GT)- True hourly averaged NO2 concentration—-**Response Variable** PT08.S4(NO2)- (tungsten oxide) hourly averaged sensor response PT08.S5(O3) -(indium oxide) hourly averaged sensor response T- Temperature in °C RH- Relative Humidity (%) AH- Absolute Humidity

Python report:

The steps followed are described below:

- 1. We have imported all the necessary libraries
- 2. Loading the dataset
- 3. Renamed all the attributes as mentioned below:

```
"CO(GT)":"CO_Concentrate",
"PT08.S1(CO)": "Tin_Oxide",
"NMHC(GT)": "Non_Metanic_Hydrocarbons",
"C6H6(GT)": "Benzene_Concentration",
"PT08.S2(NMHC)":"Titania_Concentration",
"NOx(GT)":"NOx",
"PT08.S3(NOx)":"Tungsten_Oxide_NOx",
"NO2(GT)":"NO2",
"PT08.S4(NO2)":"Tungsten_Oxide_NO2",
"PT08.S5(O3)":"Indium_Oxide",
"T":"Temperature",
"RH":"Relative_Humidity",
"AH":"Absolute Humidity"
```

4. Checking all the null values

```
In [6]: data_1.isnull().sum()
Out[6]: Date
                                      0
                                      0
        Time
         CO Concentrate
                                      0
         Tin Oxide
                                      0
         Non Metanic Hydrocarbons
         Benzene_Concentration
                                      0
         Titania Concentration
                                      0
         NOx
                                      0
         Tungsten_Oxide_NOx
                                      0
         NO2
                                      0
         Tungsten Oxide NO2
         Indium Oxide
                                      0
         Temperature
                                      0
         Relative Humidity
         Absolute_Humidity
         dtype: int64
```

There are no null values in the airquality dataset

5. Checking the presence of negative values in the data

	CO_Concentrate	Tin_Oxide	Non_Metanic_Hydrocarbons	Benzene_Concentration	Titania_Concentration	NOx	Tungsten_Oxide_NOx	NO
count	9357.000000	9357.000000	9357.000000	9357.000000	9357.000000	9357.000000	9357.000000	9357.00000
mean	-34.207524	1048.869652	-159.090093	1.865576	894.475963	168.604200	794.872333	58.13589
std	77.657170	329.817015	139.789093	41.380154	342.315902	257.424561	321.977031	126.93142
min	-200.000000	-200.000000	-200.000000	-200.000000	-200.000000	-200.000000	-200.000000	-200.00000
25%	0.600000	921.000000	-200.000000	4.004958	711.000000	50.000000	637.000000	53.00000
50%	1.500000	1052.500000	-200.000000	7.886653	894.500000	141.000000	794.250000	96.00000
75%	2.600000	1221.250000	-200.000000	13.636091	1104.750000	284.200000	960.250000	133.00000
max	11.900000	2039.750000	1189.000000	63.741476	2214.000000	1479.000000	2682.750000	339.70000
								•

We can clearly see that the minimum value of each feature is -200. We can replace negative values in the data with zero, mean, median etc

6. Replacing the negative values with zero. The description of all attributes after replacing negative values is mentioned below:

	CO_Concentrate	Tin_Oxide	Non_Metanic_Hydrocarbons	Benzene_Concentration	Titania_Concentration	NOx	Tungsten_Oxide_NOx	NO
count	9357.000000	9357.000000	9357.000000	9357.000000	9357.000000	9357.000000	9357.000000	9357.00000
mean	1.765545	1056.692672	21.373731	9.688596	902.298983	203.636796	802.695353	93.23261
std	1.554264	301.232260	91.103489	7.559609	318.681183	214.984126	299.341439	61.46858
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
25%	0.600000	921.000000	0.000000	4.004958	711.000000	50.000000	637.000000	53.00000
50%	1.500000	1052.500000	0.000000	7.886653	894.500000	141.000000	794.250000	96.00000
75%	2.600000	1221.250000	0.000000	13.636091	1104.750000	284.200000	960.250000	133.00000
max	11.900000	2039.750000	1189.000000	63.741476	2214.000000	1479.000000	2682.750000	339.70000

We can also replace the negative values with mean, median etc

7. Plotting Time Vs NO2. A bar plot for NO2 with respect to time is shown below:

8. Forward Feature Selection, The best feature selected using forward feature selection is mentioned below:

```
Selected Features: ('CO_Concentrate', 'Tin_Oxide', 'Benzene_Concentration', 'NOx', 'Indium_Oxide', 'Relative_Humidity')
Selected Features ID: (0, 1, 3, 5, 8, 10)

[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s finished
```

9. Backward Feature Selection, The best feature selected using backward feature selection is mentioned below:

```
Selected Features: ('CO_Concentrate', 'Benzene_Concentration', 'Titania_Concentration', 'NOx', 'Indium_Oxide', 'Relative_Humid ity')
Selected Features ID: (0, 3, 4, 5, 8, 10)

[Parallel(n jobs=1)]: Done  1 out of  1 | elapsed:  0.0s remaining:  0.0s
```

10. Step-wise Feature Selection, The best feature selected using step-wise feature selection is mentioned below:

```
Selected Features: ('CO_Concentrate', 'Tin_Oxide', 'Benzene_Concentration', 'NOx', 'Indium_Oxide', 'Relative_Humidity')
Selected Features ID: (0, 1, 3, 5, 8, 10)

[Parallel(n_jobs=1)]: Done  1 out of  1 | elapsed: 0.0s remaining: 0.0s

[Parallel(n_iobs=1)]: Done  1 out of  1 | elapsed: 0.0s finished
```

- 11. We selected the features selected from Forward feature selection and created a new Dataframe using the features selected. We used the newly created dataframe in all the regression model.
- 12. Splitting the new dataframe into train and test sets using the train test split
- 13. Running all the regression models(linear regression, Ridge regression, Lasso Regression, Polynomial regression, symbolic regression)

Summary of all the models:

a. Linear Regression

R2: 0.7409648928470239 **Adj R2:** 1.064741475485335

b. Ridge Regression:

R2: 0.7409660836331564 **Adj R2:** 1.0647411778683362

c. Lasso Regression:

R2:0.7195064365162228

Adj R2: 1.0701046563289003

d. Quadratic Regression:

R2: 0.8389213177239685 **Adj R2:** 1.0402589119073544

e. Symbolic Regression:

R2: 0.7807531306825347 **Adj R2:** 1.0547970735363315

Quadratic Regression works best when we replace negative values with zero based on R2.

ForestFires Dataset:

We have taken this dataset from the UCI repository. Our aim is to predict the burned area of the forest. There are 518 instances in the dataset.

- 1. X x-axis spatial coordinate within the Montesinho park map: 1 to 9
- 2. Y y-axis spatial coordinate within the Montesinho park map: 2 to 9
- 3. month month of the year: 'jan' to 'dec'
- 4. day day of the week: 'mon' to 'sun'
- 5. FFMC FFMC index from the FWI system: 18.7 to 96.20
- 6. DMC DMC index from the FWI system: 1.1 to 291.3
- 7. DC DC index from the FWI system: 7.9 to 860.6
- 8. ISI ISI index from the FWI system: 0.0 to 56.10
- 9. temp temperature in Celsius degrees: 2.2 to 33.30
- 10. RH relative humidity in %: 15.0 to 100
- 11. wind wind speed in km/h: 0.40 to 9.40
- 12. rain outside rain in mm/m2: 0.0 to 6.4
- 13. area the burned area of the forest (in ha): 0.00 to 1090.84 (this output variable is very skewed towards 0.0, thus it may make sense to model with the logarithm transform).

Libraries used in Python:

Numpy

Pandas

Matplotlib

Seaborn

Sklearn

----- Displaying head ------ Displaying head

	X	Υ	mont h	da y	FFM C	DM C	DC	ISI	tem p	R H	win d	rai n	are a
0	7	5	mar	fri	86.2	26.2	94.3	5. 1	8.2	51	6.7	0.0	0.0
1	7	4	oct	tue	90.6	35.4	669. 1	6. 7	18.0	33	0.9	0.0	0.0
2	7	4	oct	sat	90.6	43.7	686. 9	6. 7	14.6	33	1.3	0.0	0.0
3	8	6	mar	fri	91.7	33.3	77.5	9. 0	8.3	97	4.0	0.2	0.0
4	8	6	mar	su n	89.3	51.3	102. 2	9. 6	11.4	99	1.8	0.0	0.0

------ Contents of dataset

<class 'pandas.core.frame.DataFrame'> RangeIndex: 517 entries, 0 to 516 Data columns (total 13 columns):

Column Non-Null Count Dtype

0	X 517 non-null	int64
1	Y 517 non-null	int64
2	month 517 non-null	object
3	day 517 non-null	object
4	FFMC 517 non-null	float64
5	DMC 517 non-null	float64
6	DC 517 non-null	float64
7	ISI 517 non-null	float64
8	temp 517 non-null	float64
9	RH 517 non-null	int64
10	wind 517 non-null	float64
11	rain 517 non-null	float64
12	area 517 non-null	float64

dtypes: float64(8), int64(3), object(2)

Variables month and day being ordinal variables, they have been encoded using label encoding.

No Null values were detected in the data.

Response variables are highly positively skewed and most of the values in this variable are zeros. Which makes this regression exercise very difficult and even the R-squared and Adj R-squared values are very low.

Custom summary of numerical features.

Feat	ure_name	datatype	Count	min	quartile1	Mean	Median	quartile3	max	Std dev	Skewness	Kurtosis	Range	IQR	skewness comment	outlier comment
0	х	int64	517	1.0	3.0	4.669246	4.00	7.00	9.00	2.31	0.04	-1.17	8.00	4.00	Fairly symmetric(positive)	No outliers
1	Υ	int64	517	2.0	4.0	4.299807	4.00	5.00	9.00	1.23	0.42	1.42	7.00	1.00	Fairly symmetric(positive)	Has outilers
2	FFMC	float64	517	18.7	90.2	90.644681	91.60	92.90	96.20	5.52	-6.58	67.07	77.50	2.70	High negative skewed	Has outilers
3	DMC	float64	517	1.1	68.6	110.872340	108.30	142.40	291.30	64.05	0.55	0.20	290.20	73.80	Moderate positive skewed	Has outilers
4	DC	float64	517	7.9	437.7	547.940039	664.20	713.90	860.60	248.07	-1.10	-0.25	852.70	276.20	High negative skewed	Has outilers
5	ISI	float64	517	0.0	6.5	9.021663	8.40	10.80	56.10	4.56	2.54	21.46	56.10	4.30	High positive skewed	Has outilers
6	temp	float64	517	2.2	15.5	18.889168	19.30	22.80	33.30	5.81	-0.33	0.14	31.10	7.30	Fairly symmetric(negative)	Has outilers
7	RH	int64	517	15.0	33.0	44.288201	42.00	53.00	100.00	16.32	0.86	0.44	85.00	20.00	Moderate positive skewed	Has outilers
8	wind	float64	517	0.4	2.7	4.017602	4.00	4.90	9.40	1.79	0.57	0.05	9.00	2.20	Moderate positive skewed	Has outilers
9	rain	float64	517	0.0	0.0	0.021663	0.00	0.00	6.40	0.30	19.82	421.30	6.40	0.00	High positive skewed	Has outilers
10	area	float64	517	0.0	0.0	12.847292	0.52	6.57	1090.84	63.66	12.85	194.14	1090.84	6.57	High positive skewed	Has outilers

Distribution of all features

Feature selection

From the three feature selection techniques forward, backward and stepwise, all the 12 independent variables were selected.

After the feature selection, scaling was performed on the independent datasets using standard scalar.

Model results.

******* R^2 and R-bar squared of Models **********

Linear Regression: R^2 score is 0.021557347582511044

Linear Regression: Adjusted R^2 score is 0.00024473535163505034

Lasso Regression: R^2 score is -6.493504504101466e-06

Lasso Regression: Adjusted R^2 score is -0.021788813164998366

Best Alpha 0.98999999999995

Ridge Regression: R^2 score is 0.021558995633138567

Ridge Regression: Adjusted R^2 score is 0.0002464193003950399

Quadratic Regression: R^2 score is -9.640437028798407e+29

Quadratic Regression: Adjusted R^2 score is -9.850426746257383e+29

****** R^2-cross-validated of Models ********

Linear Regression R² score is: 0.001 (0.009)

Lasso Regression R² score is: 0.006 (0.002)

Ridge Regression R² score is: 0.003 (0.006)

Quadratic Regression R² score is: 0.001 (0.009)

Symbolic Regression R² score is: -0.042 (0.016)

Expedia Dataset:

----- Contents of dataset

RangeIndex: 2870 entries, 0 to 2869 Data columns (total 12 columns):

	(10.10				
#	Column	Non	-Null Coun	t Dty	γpe
					-
0	id	287	non-null	int6	4
1	region	287	0 non-null	obje	ect
2	latitude	2870	non-null	float	:64
3	longitude	2870	non-null	float	:64
4	accommodation_	type	2870 no	n-null	object
5	cost	287	0 non-null	inte	64
6	minimum_nights	287	0 non-null	inte	64
7	number_of_revie	ws	2870 non-	-null	int64
8	reviews_per_mo	nth	2194 non-	-null	float64
9	owner_id		2870 non	-null	int64
10	owned_hotels		2870 non-	-null	int64
11	yearly_availabilit	ty	2870 non-	·null	int64
dty	pes: float64(3), in	t64(7), object(2)	

Custom summary of numerical features.

	Feature_name	datatype	Count	min	quartile1	Mean	Median	quartile3	max	Std dev	Skewness	Kurtosis	Range	IQR	skewness comment	outlier comment
0	latitude	float64	2870	40.50708	40.692462	40.731224	40.72825	40.762658	40.89873	0.05	0.17	0.21	0.39165	0.070195	Fairly symmetric(positive)	Has outilers
1	longitude	float64	2870	-74.24285	-73.984003	-73.950158	-73.95672	-73.934202	-73.72173	0.05	1.36	4.43	0.52112	0.049800	High positive skewed	Has outilers
2	cost	int64	2870	10.00000	75.000000	195.943206	120.00000	200.000000	9999.00000	406.18	13.01	232.35	9989.00000	125.000000	High positive skewed	Has outilers
3	minimum_nights	int64	2870	1.00000	1.000000	11.530314	3.00000	6.000000	999.00000	37.97	11.87	210.77	998.00000	5.000000	High positive skewed	Has outilers
4	number_of_reviews	int64	2870	0.00000	1.000000	16.315331	4.00000	16.000000	395.00000	32.48	4.27	25.44	395.00000	15.000000	High positive skewed	Has outilers
5	reviews_per_month	float64	2194	0.01000	0.240000	1.157502	0.65000	1.530000	10.37000	1.36	2.16	5.81	10.36000	1.290000	High positive skewed	Has outilers
6	owned_hotels	int64	2870	1.00000	1.000000	8.411498	1.00000	3.000000	327.00000	27.11	6.95	62.60	326.00000	2.000000	High positive skewed	Has outilers
7	yearly_availability	int64	2870	0.00000	0.000000	0.498606	0.00000	1.000000	1.00000	0.50	0.01	-2.00	1.00000	1.000000	Fairly symmetric(positive)	No outliers

Variables id, owner_id have been dropped as they are unique to the customer and doesn't much value to the model's prediction.

Variables accommodation type and region being categorical variables, so they have been encoded using label encoding.

600+ Null values were detected in the review_per_month variables in the data and they have been imputed with zero because there were no reviews in the number_of_review column for those corresponding null values.

Response variable 'cost' are highly positively skewed. Which makes this regression exercise very difficult and even the R-squared and Adj R-squared values are very low.

Distribution of all features

Feature selection

From the three feature selection techniques forward, backward and stepwise, all the 8 independent variables were selected.

After the feature selection, scaling was performed on the independent datasets using standard scalar.

Linear Regression: R^2 score is 0.0414320624453266

Linear Regression: Adjusted R^2 score is 0.03942318796913802

Best alpha 2.7304476164675275

Lasso Regression: R^2 score is 0.040555507468974406

Lasso Regression: Adjusted R^2 score is 0.03854479599318461

Best Alpha 0.98999999999995

Ridge Regression: R^2 score is 0.04142602451455524

Ridge Regression: Adjusted R^2 score is 0.03941713738465202

Quadratic Regression: R^2 score is 0.05442672668346937

Quadratic Regression: Adjusted R^2 score is 0.052445085174597894

Symbolic Regression: R^2 score is -0.024828426607538034

Symbolic Regression: Adjusted R^2 score is -0.026976163442901324

******* R^2-cross-validated of Models ********

Linear Regression R² score is: 0.033 (0.044)

Lasso Regression R² score is: 0.038 (0.038)

Ridge Regression R² score is: 0.033 (0.044)

Quadratic Regression R² score is: 0.033 (0.044)

Symbolic Regression R² score is: -0.099 (0.169)

Auto MPG:

Data Set Information:

This dataset is a slightly modified version of the dataset provided in the StatLib library. In line with the use by Ross Quinlan (1993) in predicting the attribute "mpg", 8 of the original instances were removed because they had unknown values for the "mpg" attribute. The original dataset is available in the file "auto-mpg.data-original".

Attribute Information:

1. mpg: continuous

2. cylinders: multi-valued discrete

3. displacement: continuous

4. horsepower: continuous

5. weight: continuous

6. acceleration: continuous

- 7. model year: multi-valued discrete
- 8. origin: multi-valued discrete
- 9. car name: string (unique for each instance)

```
data.info()
data.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	int64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	int64
		/ - \	

dtypes: float64(3), int64(6)

memory usage: 28.1 KB

Exploratory Data Analysis

```
[5]:
    data.drop_duplicates()
    print(data.size)
    corr = data.corr()

sns.heatmap(corr, cmap ='RdYlGn', annot = True)
    plt.show()
```

3582


```
2 0.007215
1 0.011868
```



```
In [13]: print('\nSequential Backward Selection best:')
    print(sfs2.k_feature_idx_)
    print('CV Score:')
    print(sfs2.k_score_)
```

Sequential Backward Selection best: (3, 5, 6) CV Score: 0.8016951001447611

Models:

Linear Regression:

R2: 0.8350774853140814 Adj R2: 0.8299236567301465

Lasso Regression

R2 0.810882236598091 Adj R2 0.8049723064917813

Ridge Regression

R2: 0.8351387384635716 Adj R2: 0.8299868240405581

Quadratic Regression

R2 0.8857505723869155 Adj R2 0.8821802777740065 Symbolic Regression R2 0.8985500344084522 Adj R2 0.8953797229837163

Ridge Symbolic Regression R2 0.5374527235645212 Adj R2 0.5302999306299521

Lasso Symbolic Regression R2 0.7267487060204503 Adj R2 0.7225231705465397

Best Model Symbolic Regression Based on R2

FoldsCpp

The dataset contains 9568 data points collected from a Combined Cycle Power Plant over 6 years (2006-2011), when the power plant was set to work with full load. Features consist of hourly average ambient variables Temperature (T), Ambient Pressure (AP), Relative Humidity (RH) and Exhaust Vacuum (V) to predict the net hourly electrical energy output (EP) of the plant. A combined cycle power plant (CCPP) is composed of gas turbines (GT), steam turbines (ST) and heat recovery steam generators. In a CCPP, the electricity is generated by gas and steam turbines, which are combined in one cycle, and is transferred from one turbine to another. While the Vacuum is colected from and has effect on the Steam Turbine, he other three of the ambient variables effect the GT performance.

For comparability with our baseline studies, and to allow 5x2 fold statistical tests be carried out, we provide the data shuffled five times. For each shuffling 2-fold CV is carried out and the resulting 10 measurements are used for statistical testing.

Data Overview:

In [28]:	dat	ta.hea	d()			
Out[28]:		АТ	v	AP	BU	PE
		AI	v	AF	КП	PE
	0	8.34	40.77	1010.84	90.01	480.48
	1	23.64	58.49	1011.40	74.20	445.75
	2	29.74	56.90	1007.15	41.91	438.76
	3	19.07	49.69	1007.22	76.79	453.09
	4	11.80	40.66	1017.13	97.20	464.43

Exploiately Data / tilaly old

```
In [6]:
    data.drop_duplicates()
    print(data.size)
    corr = data.corr()

X = [ 'AT', 'V', 'AP', 'RH' ]
Y = ['PE']
sns.heatmap(corr, cmap ='RdYlGn', annot = True)
plt.show()
```

47840

Pr 2110(313_1110_1000010_100005_)

```
Sequential Forward Selection best:
(0, 1, 2, 3)
CV Score:
0.9279901509689414
('AT', 'V', 'AP', 'RH')
```


Models:

Linear Regression:

R2: 0.9303315024744818 Adj R2: 0.9302147559348496

Lasso Regression

R2: 0.9303156097596659 Adj R2: 0.9301988365879184

Ridge Regression

Best Alpha 0.1

R2: 0.9303315032356659 Adj R2: 0.9302147566973092

Quadratic Regression

R2: 0.9388469766372023 Adj R2: 0.9387444998489949

Symbolic Regression

R2: 0.8973829722221228 Adj R2: 0.8972110123934209

Ridge Symbolic Regression R2: 0.9363257970916933 Adj R2: 0.9362699792500029

Lasso Symbolic Regression R2: 0.9304983804926836 Adj R2: 0.9304374542428416

Best Model Ridge Symbolic Regression Based on R2

USA_Housing Dataset:

We have taken this dataset from Kaggle. The main motive is to predict the price of the house. This dataset contains 6 attributes which are - Avg. Area Income, Avg. Area House Age, Avg. Area Number of Rooms, Avg. Area Number of Bedrooms, Area Population, Price.

Data Overview:

aset.head()					
Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
79545.45857	5.682861	7.009188	4.09	23086.80050	1.059034e+06
79248.64245	6.002900	6.730821	3.09	40173.07217	1.505891e+06
61287.06718	5.865890	8.512727	5.13	36882.15940	1.058988e+06
63345.24005	7.188236	5.586729	3.26	34310.24283	1.260617e+06
59982.19723	5.040555	7.839388	4.23	26354.10947	6.309435e+05
	Avg. Area Income 79545.45857 79248.64245 61287.06718 63345.24005	Avg. Area Income Avg. Area House Age 79545.45857 5.682861 79248.64245 6.002900 61287.06718 5.865890 63345.24005 7.188236	Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms 79545.45857 5.682861 7.009188 79248.64245 6.002900 6.730821 61287.06718 5.865890 8.512727 63345.24005 7.188236 5.586729	Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms 79545.45857 5.682861 7.009188 4.09 79248.64245 6.002900 6.730821 3.09 61287.06718 5.865890 8.512727 5.13 63345.24005 7.188236 5.586729 3.26	Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population 79545.45857 5.682861 7.009188 4.09 23086.80050 79248.64245 6.002900 6.730821 3.09 40173.07217 61287.06718 5.865890 8.512727 5.13 36882.15940 63345.24005 7.188236 5.586729 3.26 34310.24283

ataset.describe()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562390	5.322283	6.299250	3.140000	29403.928700	9.975771e+05
50%	68804.286405	5.970429	7.002902	4.050000	36199.406690	1.232669e+06
75%	75783.338665	6.650808	7.665871	4.490000	42861.290770	1.471210e+06
max	107701.748400	9.519088	10.759588	6.500000	69621.713380	2.469066e+06

We have done the feature selection using Forward, Backward and Stepwise below:

Forward Feature Selection:

```
Selected Features: ('Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Area Population')
Selected Features ID: (0, 1, 2, 4)
```

Backward Feature Selection:

```
Selected Features: ('Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Area Population') Selected Features ID: (0, 1, 2, 4)
```

Step-wise Feature Selection:

```
Selected Features: ('Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms', 'Area Population')
Selected Features ID: (0, 1, 2, 4)
```

Forward, backward and step-wise feature selections gave the same best features.

Summary of the Regressions:-

Linear Regression

R2 0.9248484536439604 Adj R2 1.0187644076005207

Ridge Regression

R2 0.9248481241195499 Adj R2 1.0187644898786727

Lasso Ridge

R2 0.5880657922589642 Adj R2 1.1028548546696564

Quadratic Regression

R2 0.9246788377522168 Adj R2 1.0188067585817384

Symbolic Regression

R2 0.8004152433298923 Adj R2 1.0498338345197296

Symbolic Ridge Regression

R2 0.917592566073667 Adj R2 1.0352838456028486

Symbolic Lasso Ridge

R2 0.917599121082713 Adj R2 1.0352810389880072

=> Linear Regression is an optimal model.