Reachable Configurations A configuration is reachable from another configuration, if the former may be required for the evaluation of the latter after any number of steps.

$$\mathcal{R}each: Module \times state \times Stmts \longrightarrow \mathcal{P}(Stmts \times state)$$

In figure 2 we define the function $\mathcal{R}each$ by cases on the structure of the expression, and depending on the execution of the statement. The set $\mathcal{R}each(M,\sigma,\text{stmts})$ collects all configurations reachable during execution of σ,stmts . Note that the function $\mathcal{R}each(M,\sigma,\text{stmts})$ is defined, even when the execution should diverge; of course then it may be an infinite set. The definedness of $\mathcal{R}each(M,\sigma,\text{stmts})$ is important, because it allows us to give meaning to capability policies without requiring termination.

Lemma 3 ($\mathcal{R}each$ and \leadsto). For all M, M', σ , σ' , σ' , and stmt':

- If $M, \sigma, stmt \leadsto \sigma'$, then $(_, \sigma') \in \mathcal{R}each(M, \sigma, stmt)$.
- If $(stmt', \sigma') \in \mathcal{R}each(M, \sigma, stmt)$, and $(stmt'', \sigma'') \in \mathcal{R}each(M, \sigma', stmt')$, then $(stmt''', \sigma'') \in \mathcal{R}each(M, \sigma, stmt)$.
- If M*M' is defined, and $(stmt', \sigma') \in \mathcal{R}each(M, \sigma, stmt)$, then $(stmt', \sigma') \in \mathcal{R}each(M*M', \sigma, stmt)$.
- If M * M' is defined, then $Arising(M) \subseteq Arising(M * M')$.

Proof By structural induction on \rightsquigarrow and the definition of $\mathcal{R}each$ and $\mathcal{A}rising$.

Notation We shall use $\sigma' \in \mathcal{R}each(M, \sigma, \mathsf{stmt})$ as a shorthand for $(_, \sigma') \in \mathcal{R}each(M, \sigma, \mathsf{stmt})$ and $\sigma' \in \mathcal{A}rising(M)$ as a shorthand for $(_, \sigma') \in \mathcal{A}rising(M)$.