

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General Degree) in Applied Sciences Second year Semester I Examination – June 2022

CHE 2205 - Inorganic Chemistry

Answer all four questions.

Time: Two (02) hours.

		$9.11 \times 10^{-31} \text{ kg}$
Mass of electron	m _e –	9.11 × 10 kg
Mass of proton	$m_p =$	$1.672 \times 10^{-27} \text{ kg}$
Mass of neutron	$m_n =$	$1.675 \times 10^{-27} \text{ kg}$
Avogadro number		$6.022 \times 10^{23} \mathrm{mol}^{-1}$
Universal gas constant		8.314 J mol ⁻¹ K ⁻¹
Planck constant		$6.63 \times 10^{-34} \text{ J s}$
Speed of light		$3.00 \times 10^8 \mathrm{m \ s^{-1}}$
1 atomic mass unit (amu)	1 amu =	$1.66 \times 10^{-27} \text{ kg}$
	1 eV =	$1.602 \times 10^{-19} \text{ J}$

The use of a non-programmable calculator is permitted.

- 1. a) Give the IUPAC name of the following complexes
 - (i) $[CrCl_4(OH_2)_2]^{-1}$
 - (ii). $[Mn(CO)_3(C_6H_6)]^+$
 - b) Give the formula of the following:
 - (i) ammonium tetrachloroaurate (I)
 - (ii). chloridobis(ethylenediaminehydroxido cobalt (III) ion.
 - c) Draw the structure for each of the following complex compounds or ions.
 - (i). trans-dichloridobis(ethylenediamine)cobalt (III) chlorate
 - (ii). cis-diammine-trans-dibromo-cis-dichloroplatinum (VI) bromate
 - d) Determine the oxidation number for each of the transition metal atoms or ions.
 - (i) $[V(OH_2)_6](NO_3)_3$
 - (ii) $(NH_4)_2[CoCl_4]$

- (iii). $[Co(py)_4]Br_2$
- (iv) $[Co(P(CH_3)_3)_4]_2(SO_4)_3$
- (e) At -173 °C, Xe has a face centered cubic structure with a unit cell side of 618 pm. Compute the density and the radius of the Xe atom. ($Xe = 131.29 \text{ g mol}^{-1}$).
- (f) X-ray diffraction studies of NaCl crystals, give the cubic unit cell dimensions as 564 pm. The density of NaCl is 2.165 g mol⁻¹. Calculate the number of NaCl units in a unit cell. Predict giving reasons structure of the unit cell.
- Tungsten has a density of 19.2×10^3 kg m⁻³. Its structure is body-centered cubic. Calculate the length of the edge of the unit cell and the metallic radius of the tungsten atom. (atomic mass of tungsten is 183.85 g mol⁻¹).
- (h) Bragg's diffraction law is given by the equation $n\lambda = 2d \sin\theta$, define the terms in the equation. An X-ray diffraction study of a metal gave a first order reflection for one set of planes at an angle 21.82° and for another set at 25.42°. The x-radiation has a wavelength of 154.1 pm. What is the separation for each of the two sets of planes?
- (i) Write a balanced equation for each of the following nuclear reactions:
 - (i). ²¹²Bi decays into ²¹²Po.
 - (ii). ⁸Be and a positron are produced by the decay of an unstable nucleus.
 - (iii). ²³⁹ Np forms from the reaction of ²³⁸ U with a neutron and then spontaneously converts into ²³⁹ Pu.
 - (iii) $^{232}_{90}$ Th decays and produces an alpha particle and $^{228}_{88}$ Ra nucleus, which decays into $^{228}_{89}$ Ac by beta decay
- (i) The mass of the atom 23 Na is 22.9898 amu.
 - (i) Calculate its binding energy per atom.
 - (ii) Calculate its binding energy per nucleon in MeV.

(16x 10 = 160 marks)

- 2. a). (i) Draw all possible isomers of the complex ion $[Co(en)_2Cl_2]^{2+}$ and identify the active isomer.
 - (ii). Match the column I with column II and write down the correct options from the code for the type of the complex species.

Column I Complex species	code	Column II Isomerism
$[Co(NH_3)_4Cl_2]^+$	р	optical
cis-[Co(en) ₂ Cl ₂] ⁺	q	ionization
[Co(NH3)5(NO2)]Cl2	r	coordination
$[Co(NH_3)_6][Cr(CN)_6]$	S	Geometrical
	t	linkage
		g.
	[Co(NH3)4Cl2]+ $cis-[Co(en)2Cl2]+$ $[Co(NH3)5(NO2)]Cl2$	$[Co(NH_3)_4Cl_2]^+$ p $cis-[Co(en)_2Cl_2]^+$ q $[Co(NH_3)_5(NO_2)]Cl_2$ r $[Co(NH_3)_6][Cr(CN)_6]$ s

(30 marks)

- b). (i). What are the limitations of VB theory?
 - (ii). Based on VB theory explain why [Cr (NH₃)₆]³⁺ is paramagnetic, while [Ni (CN)₄]²⁻ diamagnetic. Predict the types of hybridization, coordination number, number of unpaired electrons and the value of the magnetic moment for each compound.

(30 marks)

- (c) (i). A solution of $[Ni (H_2O)_6]^{2+}$ is green, whereas a solution of $[Ni (CN)_4]^{2+}$ is colorless. Explain.
 - (ii) Give one test to differentiate [Co (NH₃)₅Cl] SO_4 and [Co(NH₃)₅ SO_4] Cl.

(20 marks)

- 3. a). (i). Distinguish between crystalline solid and amorphous solid. Name two solids in each type.
 - (ii). Find the number of atoms in fcc and bcc unit cell structures. Calculate the packing efficiency and the void percentage for bcc lattice.

(30 marks)

b).	An element has bcc structure, with a cell edge of 288 pm. The density of the element is 7.2 g cm ⁻³ . Calculate the number of atoms are present in 208 g of the element.
-----	---

(20 marks)

- Calculate the Miller indices of crystal planes which cut through the crystal axes at C) (i)
 - (2a, 3b, c)(1)
 - (6a, 3b, 3c) and (2)
 - (2a, -3b, -3c). (3)
 - Draw the plane and determine the axis intersects of a surface with the (ii) Miller indices (111), (100) and (123) in a simple cubic lattice.

(30 marks)

- Give one example of fusion and fission reactions. What are the advantages of fusion i. 4. a) over fission for energy production?
 - How much energy released in kJ mol⁻¹ of ⁴₂He produced is the following fusion ii. reaction.

$$_{1}^{1}H + _{1}^{3}H \longrightarrow _{2}^{4}He$$

The masses of 1_1H atom, 3_1H atom and 4_2He are 1.007825 amu, 3.01605 amu and 4.00150 amu respectively.

(20 marks)

³²P is a radioactive isotope used as a tracer in the liver. How much ³²P was originally used if b) there is only 3.50 mg left in a sample after 288 h? (The half-life ($t_{1/2}$ of 32 P is 14.3 days.)

(20 marks)

What quantity of energy would be produced as 1.00 g of 238 Pu undergoes alpha decay? The nuclide mass of 238 Pu is 238.0495 amu, and the nuclide mass of 234 U is 234.0409 amu. (alpha particle mass is 6.64465×10^{-24} g). c)

(20 marks)

Discuss, briefly the uses of radioactive isotopes. (d)

(20 marks)

[223]	4	87	132.91	Cs	55	85,468 caesium	Rb	37	39,098	×	19	olassium OE6.72	Na	: =	sodium			s in the	1,0079	I	
[226]	Ra	88	137,33	Ва	56	87.62 barium	Sr	38	40.078	Ca	20	calcium	BM	12	magnesium 22.00.6	Be	, (beryllum			
	*	89-102		*	57-70										•						
[262]	二	103	174.97	Lu	71	88,906 Jutetium	~	39	44.956	Sc	21	scandum				•					
[261]	尕	104	178,49	 폭	72	91,224 hafnlum	77	40	47,867	크	22	Illanium									
[262]	망	105	180.95	a	73	92,906 tantalum	R	41	50,942	<	23	vanadium									
[265]	Sg	seaborglum 106	183,84	S	74	95,94 tungsten	Mo	42	51,996	S.	24	chromium									
[264]	Bh	107	188,21	Re	75	thenium	て	43	54,938	S _D	25	mannanasa									
	10.00						Ru	dia	T												
[268]	Z Z	meitnerium 109	192,22	=	77	102.91	R ₂	45	58.933	င္ပ	27	noho#									
12711	Uun	ununnillum 110	195,08	Pt	78	108.42 Dialinum	Pd	46	58,693	Z	28	Ni Oko									•
			-			-	Ag		+-			-									
777		ununblum 112	200.59	Hg	80	112.41	Cd	cadmium 48	65.39	Zn	30	÷							•		
		7					5					+	2	13	10.811	W	ហ	nonod			
12891	卫	flerovium 114	207.2	Pb	82	118.71	Sn	8 a	72.61	Ge	32	28,085	S	14	12,011 .	n	o	carbon			
		B	-			+	dS					+			+	7		\dashv			
		57		•		+	Te		-			+			+			\dashv			
[294]	JS.	tennessini 117	1210	A	85	125.90	<u> </u>	53	79.934	ᄧ	35	35.453	0	17	18.993	TI	ယ	fluorine			
		m	-		1	-	Xe		-			-			4-			_	40006	L	2

*Lanth

**Acti

		inide series			hanide series					
[227]	Ac	89	actinium	138,91	La	S7				
232,04	금	90	thorium	140,12	Ce	cerium 58				
231,04	Pa	93	protectinium	140,91	P	praseodymium 59				
238.03	C	92	manum	144.24	Nd	neodymłum 60				
[237]	P	93	neptunium	11453	Pm	promethum 61				
[244]	Pu	94	phitophim	150,36	Sm	samarlum 62				
[243]	Am	95	americium	151.96	Eu	europium 63				
[247]	Cm	96	curium	157,25	Gd	gadolinium 64				
[247]	哭	97	berkellum	158.93	귱	g9 Writigal				
[251]	ರೆ	98	munojiso	162.50	Dy	dysprosium mulsoridzyb				
[252]	Es	99	einsteintum	164.93	Ho	holimlum 67				
[257]				100	Ē	erblum 68				
[258]	Md	101	mendelevium	168,93	Ħ	thulium 69				
[259]	No.	192	nobelium	173.04	상	yîterbium 70				