Homework 1

Review of matrix and vector algebra

Some definitions for the following problems. Let $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ be scalars, $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ be vectors, and $A, B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{m \times n}$ be matrices. Let the j^{th} column of A be denoted by \mathbf{a}_j , so that $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$. Similarly, let

the i^{th} row of B be denoted by \mathbf{b}_i^T , so that $B = \begin{bmatrix} \mathbf{b}_1^T \\ \vdots \\ \mathbf{b}_n^T \end{bmatrix}$. Let a_{ij} denote the entry of A in the i^{th} row and j^{th} column.

Let \mathbf{e}_i represent the i^{th} canonical (standard basis) vector, every entry of which is 0, except for the i^{th} entry which is 1. E.g., $\mathbf{e}_1 = (1, 0, \dots, 0)^T$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)^T$.

1. It is important to stay aware of the dimensions of things, both as a sanity check and for understanding. These problems give you practice with this.

For each problem, state the size of the resultant quantity (e.g., 1×1 , 1×3 , ...) . You do <u>not</u> need to compute the result.

(a)
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & -1 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

- (g) $\alpha \mathbf{v}$
- (h) αB
- (i) $\mathbf{v}^T \mathbf{w}$
- (j) Av
- (k) Cv
- (l) $\mathbf{v}^T A \mathbf{w}$
- (m) $\mathbf{v}^T C \mathbf{v}$
- (n) $\mathbf{v}^T C^T C \mathbf{v}$
- 2. Compute these inner products:

(a)
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} =$$

(b)
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} =$$

(c)
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} =$$

3. Compute these outer products:

(a)
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} =$$

(b)
$$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} =$$

(c)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} =$$

(d)
$$\begin{bmatrix} 4 \\ -1 \\ 10 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} =$$

4. It is useful to know the result of a matrix times a canonical vector.

(a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} =$$

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} =$$

(c)
$$Ae_1 =$$

(d)
$$Ae_2 =$$

(e)
$$A\mathbf{e}_n =$$

5. Similar results hold for a canonical row vector times a matrix. Find the following

(a)
$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} =$$

(b)
$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} =$$

(c)
$$e_1^T B =$$

(d)
$$\mathbf{e}_i^T B =$$

6. Is it true in general that $\mathbf{v}\mathbf{u}^T A\mathbf{w} = (\mathbf{u}^T A\mathbf{w})\mathbf{v}$? Explain.

7. Is it true in general that AB = BA? Explain if true, or give a counterexample if false.

8. What is the value of $\mathbf{e}_i^T A \mathbf{e}_i$ in terms of the entries of A?

9. It is very helpful for matrix algorithms to be able to think of matrix-matrix multiplication C = AB in two different ways. The first is the way you were probably taught: The entries of the result C are $c_{ij} = \mathbf{a}_i^T \mathbf{b}_j$, where \mathbf{a}_i^T are rows of A and \mathbf{b}_j are columns of B. The second is as a sum of outer products $C = \sum_{j=i=1}^{n} \mathbf{a}_j \mathbf{b}_i^T$, where \mathbf{a}_j are columns of A and \mathbf{b}_i^T are rows of B. To practice these, do the following.

(a) Inner products. Compute using inner products,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \end{bmatrix} =$$

(b) Outer products. Verify that you get the same result using outer products (show the two intermediate matrices),

$$\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} =$$

- 10. Show that $(AB)^T = B^T A^T$.
- 11. Assume A and B are invertible. Show that $(AB)^{-1} = B^{-1}A^{-1}$.
- 12. Let $C \in \mathbb{R}^{m \times n}$, where m < n, and C is full rank so that CC^T is invertible. Let $P = I C^T(CC^T)^{-1}C$.
 - (a) Simplify CP.
 - (b) Show that PP = P.
- 13. Let A be symmetric, i.e., $A = A^T$. Which of the following are necessarily also symmetric? Why?
 - (a) A^{-1}
 - (b) A^T
 - (c) A^{2}