Bistability in biochemical signaling models

Part 3

Outline: Part 3

How to predict if bistability will be present?

Rate-balance plots

Examples of rate-balance plots in MATLAB

Rate balance plots

3) Michaelian system with ultrasensitive feedback

Effects of changes in hill exponent n

Rate balance plots

4) Linear feedback plus saturating back reaction

$$FR = (k_{+}[S] + k_{f}[A^{*}])([A]_{TOTAL} - [A^{*}])$$

$$BR = k_{minus} \left(\frac{[A^*]}{[A^*] + K_{mb}} \right)$$

Rate balance plots

How can the cell change states?

Vary the amount of stimulus [S]

Most plots have assumed [S]=0

$$\begin{array}{c}
k_{+}[S] \\
\downarrow \downarrow \\
[A] \xrightarrow{k_{minus}} [A^{*}]
\end{array}$$

$$FR = \left(k_{+}[S] + k_{f} \frac{[A^{*}]^{n}}{[A^{*}]^{n} + K_{mf}^{n}}\right) ([A]_{TOTAL} - [A^{*}])$$

Where the system switches between 3 and 1 steady-states is a bifurcation

Switching can be reversible or irreversible

Ferrell (2002) Curr. Op. Cell Biol. 14:140-148.

In either case, transition on the way up is higher than transition on way down

Example: rate-balance plots in MATLAB

We will demonstrate rate-balance plots under two conditions

Summary

In a one-variable system, bistability can be produced by:
ultrasensitive positive feedback
a back reaction that saturates

Analysis of rate-balance plots can generate a bifurcation diagram showing a transition from monostability to bistability.

Array arithmetic in MATLAB can be used to produce helpful rate balance plots.