LABORATOR#1

- **EX#1** Implementați Exemplul#1–Exemplul#4 din Cursul#1 în fereastra de comenzi (Command Window) a MATLAB®.
- $\mathbf{EX\#2}$ Soldul S al unui cont de economii după timpul t (măsurat în ani) de investiție a capitalului C, cu o rată anuală a dobânzii d și o dobândă calculată în n tranșe anuale, este calculat cu formula:

$$S = P\left(1 + \frac{d}{n}\right)^{nt} \,. \tag{1}$$

Scrieți un fișier script în MATLAB® care:

- (a) calculează soldul unui cont de economii după 17 ani de investiție a sumei de 5.000 USD cu o rată anuală a dobânzii de 8,5% și o dobândă calculată într-o singură tranșă anuală;
- (b) calculează t pentru soldul obținut la (a) și investiția aceluiași capital cu o rată anuală a dobânzii de 8,5% și o dobândă calculată lunar;
- (c) determină numărul de ani și de luni corespunzătoare lui t obținut la (b).

EX#3 Fie cercurile $\mathscr{C}(O_k, r_k)$, $k = \overline{1, 4}$, astfel încât:

- (i) $\mathscr{C}(O_1, r_1)$ este tangent exterior la $\mathscr{C}(O_k, r_k)$, k = 2, 3, 4;
- (ii) $\mathscr{C}(O_2, r_2)$ este tangent exterior la $\mathscr{C}(O_k, r_k)$, k = 1, 3, și exterior lui $\mathscr{C}(O_4, r_4)$;
- (iii) $\mathscr{C}(O_3, r_3)$ este tangent exterior la $\mathscr{C}(O_k, r_k)$, k = 1, 2, 4;
- (iv) $\mathscr{C}(O_4, r_4)$ este tangent exterior la $\mathscr{C}(O_k, r_k)$, k = 1, 3, și exterior lui $\mathscr{C}(O_2, r_2)$.

Fie $r_1=16$ mm, $r_2=6,5$ mm, $r_3=12$ mm şi $r_4=9,5$ mm.

Scrieți un fișier script în $\mathsf{MATLAB}^{\circledR}$ care

- (a) calculează distanțele dintre oricare două puncte O_j și O_k , unde $1 \le j \le 4$;
- (b) calculează toate unghiurile $\widehat{O_iO_jO_k}$, unde $i,j,k \in \{1,2,3,4\}$ şi $i \neq j \neq k \neq i$;
- (c) calculează aria şi perimetrul tuturor triunghiurilor $\triangle O_i O_j O_k$, unde $i, j, k \in \{1, 2, 3, 4\}$ şi $i \neq j \neq k \neq i$;
- (d) calculează raza cercului înscris și raza cercului circumscris triunghiurilor $\triangle O_i O_j O_k$, unde $i, j, k \in \{1, 2, 3, 4\}$ și $i \neq j \neq k \neq i$;
- (e) calculează aria și perimetrul patrulaterului $O_1O_2O_3O_4$.
- **EX#4** Fie patrulaterul ABCD, unde AB=8, $BC=CD=5\sqrt{2}$, DA=6 și $\widehat{BAD}=90^\circ$, și fie $\{O\}=AB\cap CD$.

Scrieți un fișier script în $\mathsf{MATLAB}^{\circledR}$ care

- (a) calculează lungimea diagonalelor AC şi BD;
- (b) calculează unghiurile patrulaterului ABCD;
- (c) verifică dacă patrulaterul ABCD este convex sau nu;
- (d) verifică dacă patrulaterul ABCD este inscriptibil şi, în caz afirmativ, determină raza cercului circumscris patrulaterului ABCD;
- (e) verifică dacă patrulaterul ABCD admite un cerc înscris și, în caz afirmativ, determină raza cercului înscris în patrulaterul ABCD;
- (f) calculează aria și perimetrul patrulaterului ABCD.
- **EX#5** (a) Scrieți un fișier script în MATLAB® care convertește un număr x din baza b, unde $b \neq 10$ cunoscut, într-un număr din baza 10.
 - (b) Scrieți un fișier script în MATLAB® care convertește un număr x din baza 10 într-un număr din baza b, cu $b \neq 10$ cunoscut.
- **EX#6** Formula de aproximare a lui Stirling pentru n!, cu $n \in \mathbb{N}$ suficient de mare, este dată de:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \,. \tag{2}$$

Scrieţi un fişier script în MATLAB® care calculează n! folosind formula de aproximare a lui Stirling (2), compară rezultatul acestei aproximări cu funcția MATLAB predefinită factorial şi calculează eroarea absolută şi eroarea relativă ale aproximării date de formula de aproximare a lui Stirling (2).

Rulați acest fișier script pentru $n=20,\,n=30,\,n=40$ și n=50.

EX#7 Fie
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = e^x \sin(2x)$ şi $x_0 = 0$.

Scrieţi un fişier script în MATLAB® care calculează valoarea exactă f(x) pentru $x \in \{10^k \mid k = \overline{0,5}\}$, aproximările lui $f(x), x \in \{10^k \mid k = \overline{0,5}\}$, date de polinoamele Taylor de grad $n = \overline{1,5}$ asociate funcției f și punctului x_0 , precum și erorile absolută și relativă ale acestor aproximări.