1 Lenti convesse e concave

Supponiamo innanzitutto che i raggi luminosi si muovono esclusivamente verso destra (ovvero se \vec{c} è la velocità del raggio allora deve essere $c_x > 0$). Tali raggi vengono definiti **progressivi**. Consideriamo una lente sottile convessa che possa essere approssimata con una retta parallela all'asse y nel piano, con centro sull'asse delle ascisse e asse parallelo alle ordinate, posta a distanza d > 0 dall'asse delle ordinate e distanza focale f. I raggi che attraversano la lente vengono rifratti secondo le seguenti regole:

- i raggi progressivi passanti per il centro della lente non vengono rifratti;
- i raggi progressivi perpendicolari all'asse della lente vengono rifratti in modo da passare per il punto (d + f, 0) (il fuoco);
- i fasci di raggi progressivi (propri o impropri) attraverso la lente generano ancora fasci di raggi (propri o impropri) NOTA: un fascio proprio non è detto che generi un fascio proprio.

Una lente convessa con tali caratteristiche può essere considerata come un applicazione dall'insieme delle rette in esso che soddisfi le caratteristiche enunciate precedentemente.

1.1 Costruzione dell'applicazione

Consideriamo il punto (0, b) sull'asse delle ordinate. Per le regole precedenti si deduce che se $d \neq f$ allora il fascio di rette (raggi) per (0, b) vengono rifratti in modo da generare un fascio proprio passante per $(\frac{df}{d-f} + d, -\frac{bf}{d-f})$.

Consideriamo la generica retta y = ax + b. Tale retta passa sicuramente per (0, b) e quindi, se y = ix + j è l'immagine di ax + b secondo la funzione indotta dalla lente si ha:

$$\begin{cases} d^2i + (d-f)j &= -fb \\ di+j &= da+b \end{cases}$$

che ha come soluzione:

$$\begin{array}{rcl} i & = & a - \frac{b + ad}{f} \\ j & = & b + d\frac{b + ad}{f} \end{array}$$

Tale sistema è valido anche ponendo d = f.

Osservando bene la formula risolutiva si osserva che l'applicazione indotta dalla lente non è solo una funzione, ma è anche un omomorfismo in $(\mathbb{R}^2, +, \cdot)$, difatti si ha:

$$\begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} 1 - \frac{d}{f} & -\frac{1}{f} \\ \frac{d^2}{f} & 1 + \frac{d}{f} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

La matrice 2x2 è la matrice caratteristica della lente convessa. Se invece di considerare una lente convessa si considera una lente divergente, si ottiene lo stesso risultato, con l'unica differenza che f < 0.

Si vede facilmente che il determinante di questa matrice vale sempre 1, e inoltre le matrici caratteristiche di una lente convergente e di una lente divergente, con la stessa distanza focale e la stessa distanza dall'asse delle ordinate, sono l'una l'inversa dell'altra.

2 Sistemi diottrici centrali

Consideriamo un sistema diottrico centrale composto da lenti convergenti e divergenti L_1, L_2, \dots, L_n con distanze focali f_1, f_2, \dots, f_n e distanze dall'asse delle ordinate $0 < d_1 < d_2 < \dots < d_n$. Consideriamo ora un punto (0,b) sull'asse delle ordinate, vogliamo determinare l'immagine del punto attraverso il sistema. Poiché le lenti sono rifrangenti i raggi provenienti dall'oggetto sono tutti progressivi, quindi prima passano attraverso la lente L_1 , poi L_2 , e così via. Consideriamo il fascio di rette y = kx + b di parametro k, e sia M_i la matrice caratteristica della lente L_i , allora il fascio di rette y = ix + j generato dal sistema soddisfa la:

$$\begin{pmatrix} i \\ j \end{pmatrix} = M_n M_{n-1} \cdots M_2 M_1 \begin{pmatrix} k \\ b \end{pmatrix} = M \begin{pmatrix} k \\ b \end{pmatrix}$$

con $M = \{m_{ij}\}_{2x2}$ detta matrice caratteristica del sistema. Per il teorema di Binet si ha |M| = 1. Si vede facilmente che:

- Se $m_{11} = 0$ y = ix + j è un fascio improprio, quindi il punto (0, b) non ha immagine;
- Se $m_{11} \neq 0$ il fascio è proprio, e il centro è il punto $\left(-\frac{m_{21}}{m_{11}}, \frac{b}{m_{11}}\right)$, in particolare $\frac{1}{m_{11}}$ è l'ingrandimento del sistema. Se $-\frac{m_{21}}{m_{11}} > d_n$ l'immagine è reale, altrimenti è virtuale, in quanto i raggi sono progressivi.

3 Esempio

Analizziamo il sistema composto da una sola lente (convergente o divergente) con distanza focale f e distanza d dall'oggetto (una freccia). Per semplicità poniamo l'oggetto sull'asse delle ordinate. La matrice del sistema è :

$$\left(\begin{array}{cc} 1 - \frac{d}{f} & -\frac{1}{f} \\ \frac{d^2}{f} & 1 + \frac{d}{f} \end{array}\right)$$

il punto non ha immagine se e solo se $1 - \frac{d}{f} = 0$, ovvero d = f, quindi solo se la lente è convessa (f > 0) e l'oggetto si trova sul fuoco. L'ingrandimento

vale $\frac{f}{f-d}$, l'immagine è capovolta se tale quantità è negativa, altrimenti è diritta. Si ha ingrandimento se e solo se $\frac{f}{f-d}>1$, ovvero $\frac{d}{f-d}>0 \Leftrightarrow f>d$, quindi la lente deve essere convergente per avere ingrandimento. L'immagine si forma alla distanza $-\frac{d^2}{f-d}$, è reale se e solo se:

$$-\frac{d^2}{f-d} > d \Leftrightarrow \frac{fd}{f-d} < 0 \Leftrightarrow \frac{f}{f-d} < 0$$

essendo d > 0. Quindi si ha:

- 1. f < 0 (divergente): Poiché d > 0 l'immagine è sempre virtuale;
- 2. f > 0 (convergente): È reale se e solo se d > f.