Lecture 08 ZigBee & Interoperability

CS433 – Wireless Protocols for IoT Branden Ghena – Spring 2025

Materials in collaboration with Pat Pannuto (UCSD) and Brad Campbell (UVA)

Updates

- Lab: BLE
 - Due Thursday
 - Last part "LED Control Application" is more work than many of the prior parts

- Hw: Matter
 - Out today or tomorrow

Today's Goals

• Introduce ZigBee as another 802.15.4 implementation

Explore ZigBee application layer

Discuss interoperability designs and the Matter standard

Outline

ZigBee overview

ZigBee PHY and MAC

ZigBee application layer

Interoperability

ZigBee goals

- Enable automatic communication between devices
 - Low complexity
 - Low power
 - Focus on home automation and industrial control/monitoring
- From our perspective
 - 802.15.4 PHY and MAC
 - Plus well-defined Server/Client interactions
 - Similar to BLE (actually, BLE is similar to ZigBee)
 - Designed for higher-power devices than Thread or BLE
 - Although still relatively low power

ZigBee history

- Intertwined with the creation of 802.15.4
 - Both are founded around the same time
 - ZigBee Alliance involved in the original 802.15.4 specification
 - Recently renamed: Connectivity Standards Alliance (CSA)
 - Original plan: 802.11/WiFi <-> 802.15.4/ZigBee
- Original specification 2004 (following 802.15.4 in 2003)
 - Updated 2006, 2007, 2015, (2017?)
 - 2015 version is also known as ZigBee Pro
 - We'll focus on 2015, but look at previous stuff too
 - Application layer stuff hasn't changed considerably

ZigBee resources

- ZigBee Specification (2015)
- ZigBee Cluster Library Specification (2016)

- Useful resources
 - ZigBee overview: https://www.cse.wustl.edu/~jain/cse574-14/ftp/j 13zgb.pdf
 - NXP library guides (include overview on ZigBee)
 - ZigBee Protocol: https://www.nxp.com/docs/en/user-guide/JN-UG-3113.pdf
 - ZigBee Cluster Library: https://www.nxp.com/docs/en/user-guide/JN-UG-3115.pdf
 - ZigBee Home Automation: https://www.nxp.com/docs/en/user-guide/JN-UG-3076.pdf

Outline

ZigBee overview

ZigBee PHY and MAC

ZigBee application layer

Interoperability

ZigBee stack

Use of 802.15.4

- Basic answer: everything
 - Reuse all of PHY (including non-2.4 GHz channels)
 - Reuse all of MAC (including beacon-enabled network and GTS)
 - Same CSMA/CA mechanism

ZigBee devices (same roles as 802.15.4 defines)

- ZigBee Coordinator (ZC)
 - Starts the network and decides on key parameters
 - Is also a Router
- ZigBee Router (ZR)
 - Higher-power, more-capable devices
 - Radios always on (except during inactive superframe)
 - Connect to one or more children
 - Connect to one or more routers
- ZigBee End Device (ZED)
 - Lower-power, less-capable devices
 - Always a child of one router

Older ZigBee - tree networks

- Original preferred topology
- Uses beacon-enabled network
 - Synchronization via beacon superframes
 - Can reduce power requirements for routers
- Some things get simpler
 - Address assignment is simple
 - If you restrict network size
 - Routing is straightforward
 - But likely more hops for router-to-router communication

ZigBee tree network complications

- Distributed routing scheme limits topologies
 - There is a limit on number of routers
 - Each router has a maximum number of children
 - There is a maximum limit for router depth
 - Note: many protocols have limits. Thread has device count limits too!
- Needs a beacon scheduling mechanism
 - Each parent must both participate in a superframe
 - And also send their own superframe beacons
 - Need to keep inactive period large if there is significant router depth
 - Each beacon includes a TX offset field specifying parent beacon time
 - Helps prevent hidden terminal problem

Modern ZigBee – mesh networks

- Presently preferred topology
- Uses non-beacon-enabled network
 - All routers are always-on devices
 - Allows arbitrary communication between routers
- Some tradeoffs
 - Higher power routers
 - Routing more complicated (potentially better algorithms though)
 - Addressing more complicated
 - Assign random addresses to each node
 - Include a method for address conflict resolution

Example ZigBee network

Break + Design Question

- How frequently should End Devices communicate?
 - Constantly or periodically, and at what period?
- Each group:
 - Pick an Industrial or Commercial smart device (not a home bulb/switch)
 - Consider its energy, latency, and reliability requirements
 - Determine communication pattern
 - We'll share around the room

ZigBee End Device polling

- Packets are held in ZigBee Routers for up to 7.68 seconds
 - Compare to undefined duration for Thread (at least minutes)
 - Reduction in "low energy" capability for end devices
 - Limiting timeouts makes Router design simpler
- ZigBee codifies polling behavior for End Devices
 - Long Polling steady state polling period, example: 7.5 seconds
 - Short Polling polling period while waiting on data, example: 1 second

Outline

ZigBee overview

ZigBee PHY and MAC

ZigBee application layer

Interoperability

Analogies between BLE and ZigBee

- BLE Profile
 ZigBee Profile + Device Type
- BLE Service
 ZigBee Cluster
- BLE Characteristic
 ZigBee Attribute
 Also ~ZigBee Commands

ZigBee application-layer terms

- Devices act as servers and clients
- Profiles detail application-level features
 - Includes network configurations
 - For example: security or reliability
 - Includes definitions of various Device Types
 - Specify a collection mandatory and optional Clusters
 - Clusters collection of Attributes and Commands
 - Attributes information, readable and/or writable
 - Commands control, writable, may elicit a response

ZigBee profiles

- Broad classes of device purposes
 - Contains multiple Device Type definitions

Profile ID	Profile Name	
0101	Industrial Plant Monitoring (IPM)	
0104	Home Automation (HA)	
0105	Commercial Building Automation (CBA)	
0107	Telecom Applications (TA)	
0108	Personal Home & Hospital Care (PHHC)	
0109	Advanced Metering Initiative (AMI)	

- Define more features of device than the profiles from BLE
 - Pick various optional network/MAC features, like security or commissioning

Example ZigBee profile: Home Automation Device Types

Generic Devices

- On/Off Switch
- On/Off Output
- Remote Control
- Door Lock
- Door Lock Controller
- Simple Sensor
- Smart Plug

Intruder Alarm System Devices

- IAS Control and Indicating
- IAS Ancillary Control
- IAS Zone
- IAS Warning Device

Lighting

- On/Off Light
- Dimmable Light
- Colour Dimmable Light
- On/Off Light Switch
- Dimmer Switch
- Colour Dimmer Switch
- Light Sensor
- Occupancy Sensor

HVAC Devices

Thermostat

Each bullet point is a **Device Type**

Which is a list of mandatory and optional Clusters

ZigBee Device Types

- A collection of Clusters
 - Some mandatory and some optional
- Lists Clusters as Server side or Client Side
 - Server side Cluster is an *input*
 - Client side Cluster is an output
- Example: light bulbs implement server, switches implement client

Example Device Types: door lock and door lock controller

Server (Input) Side Client (Output) Side					
Mandatory					
Basic					
Identify					
Door Lock					
Scenes					
Groups					
Opti	onal				
See Table 1 on page 26	See Table 1 on page 26				
Alarms	Time				
Power Configuration	OTA Bootload				
Poll Control					

Table 6: Clusters for Door Lock

Server (Input) Side	Client (Output) Side		
Mand	latory		
Basic	Door Lock		
Identify	Scenes		
	Group		
	Identify		
Optional			
See Table 1 on page 26	See Table 1 on page 26		

Table 7: Clusters for Door Lock Controller

ZigBee Clusters

- A collection of Attributes and Commands
 - Analogous to BLE Services
 - Can be optional or mandatory
- ZigBee Cluster Library defines standard Clusters
 - Lists Attributes and Commands for each
 - Attributes
 - Type uint8, enum, bitmap, string, etc.
 - Permissions Read/Write/Report (receive automatic updates)
 - How to interpret meaning of value
 - Commands
 - Field(s), Type of each, Interpretation of each

Example Cluster: door lock attributes

Identifier	Name	Туре	Access		Def	M/O		
0x0000	LockState	enum8	Read Only Reportable		-	M		
0x0001	LockType	enum8	R	ead Only		-	M	
0x0002	ActuatorEnabled	bool	R	ead Only		-	M	\setminus
0x0003	Door:State	enum8	1	ead Only eportable		-	0	
0x0004	DoorOpenEvents	uint32	Re	ad/Write		-	O	
0x0005	DoorClosedEvents	uint32	Re	Read/Write		-	О	
0x006	OpenPeriod	uint16	Read/Write			-	0	
0x0010 NumberOfLogRecordsSupported			uint16	Read Onl	y	0	0	
0x0011 NumberOfTotalUsersSupported			uint16	Read Onl	y	0	О	
0x0012 NumberOfPINUsersSupported			uint16	Read Onl	y	0	О	
0x0013 λ	NumberOfRFIDUsersSupported		uint16	Read Onl	у	0	О	
0x0014 λ	humberOfWeekDaySchedulesSupp	portedPerUser uint8 R		Read Onl	у	0	О	
0x0020	EnableLogging	bool	Read*Write Reportable 0			0		
0x0021	Language	string (3bytes)	Read*Write Reportable 0			0		
0x0022	LEDSettings	uint8		*Write	0)	0	

Table 7-10. LockType Attribute Values

1	Value	Definition	
	0x00	Dead bolt	
	0x01	Magnetic	
	0x02	Other	
	0x03	Mortise	
	0x04	Rim	
	0x05	Latch Bolt	
	0x06	Cylindrical Lock	
	0x07	Tubular Lock	
	0x08	Interconnected Lock	
	0x09	Dead Latch	
	0x0A	Door Furniture	

Example Cluster: door lock commands (client side)

Command ID	Description	M/O
0x00	Lock Door	M
0x01	Unlock Door	M
0x02	Toggle	0
0x03	Unlock with Timeout	О
0x04	Get Log Record	О
0x05	Set PIN Code	О
0x06	Get PIN Code	О
0x07	Clear PIN Code	О
0x08	Clear All PIN Codes	О
0x09	Set User Status	О
0x0A	Get User Status	0
0x0B	Set Weekday Schedule	0
0x0C	Get Weekday Schedule	О
0x0D	Clear Weekday Schedule	О
0x0E	Set Year Day Schedule	О
0x0F	Get Year Day Schedule	0

Octets	Variable
Data Type	octstr
Field Name	PIN/RFID Code

- Server-side
 - Performs actions when it receives these commands
- Client-side
 - Capable of sending these commands

Example ZigBee profile: Smart Energy

Interactions with energy providers for efficiency and cost savings

- Devices
 - Energy service interface
 - Metering device
 - Load control device

- Clusters
 - Demand response
 - Metering
 - Price
 - Key establishment (e.g. security)

Server Side Client					
Mano	latory				
	Demand Response and Load Control				
	Time				
Optional					
	Price				
	Calendar				
	Device Management				
	MDU Pairing				
Energy Management					
Alarms					
Tunneling	Tunneling				

Example: demand response cluster

No attributes, only commands

Command Identifier	Description	
0x00	Load Control Event	M
0x01 Cancel Load Control Event		M
0x02	Cancel All Load Control Events	M

Load Control Command Payload

Octets	4	2	1	4	2	1	1
Data Type	uint32	map16	uint8	UTC	uint16	uint8	uint8
Field Name	Issuer Event ID (M)	Device Class (M)	Utility Enrollment Group (M)	Start Time (M)	Duration in Minutes (M)	Criticality Level (M)	Cooling Temperature Offset (O)

Octets	1	2	2	1	1	1
Data Type	uint8	int16	int16	int8	uint8	map8
Field Name	Heating Temperature Offset (O)	Cooling Temperature Set Point (O)	Heating Temperature Set Point (O)	Average Load Ad- justment Percentage (O)	Duty Cycle (O)	Event Control (M)

Endpoints

- Each ZigBee device has a number of Endpoints (up to 240)
 - Number by which remote applications can contact it
 - Analogous to a Port in TCP/UDP
- Each Endpoint has one Device Type attached to it
 - Communication refers to the Endpoint number,
 - Then the Cluster ID within it,
 - Then the Attribute/Command ID within that
 - Endpoints can be queried to determine what they provide
- Special case: Endpoint 0 ZigBee Device Object
 - All devices must implement the ZigBee Device Object
 - Attributes and Commands for controlling a network device
 - Network parameters are configured just like a light or door lock

Example Endpoints for a device

An example endpoint implementation:

Endpoint # - Profile Name: Device Type

0 - ZigBee Device Profile (ZDP): ZDO

1 - HA: Thermostat

2 - HA: On/Off Output

3 - SE: In-Home Display

4 - MSP: Proprietary vendor extensions

- Even simple devices hopefully have three endpoints:
 - 1. ZigBee Device Object
 - 2. <Their functionality>
 - 3. Over The Air Bootloader (code updates)

Security is still a concern: Phillips Hue Bridge Vulnerability

- ZCL data needs to be handled properly
 - Phillips Hue Bridge had a buffer overflow when handling long string names
 - Allowed attackers to break in through Zigbee to attack the IP network

Steps

- 1. Figure out Zigbee network encryption keys with power analysis
- 2. Upload hacked software via OTA update mechanism
- 3. Buffer overflow bridge with large ZCL payload with attack instructions
- 4. Further gives access to internal IP network to attack other devices

https://nvd.nist.gov/vuln/detail/CVE-2020-6007

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/researchers-use-smart-light-bulbs-to-infiltrate-networks

Break + Comparison

- ZigBee
 - Standardized services
 - Low-power end devices
 - Higher power routers
 - Mesh for extended range and connectivity
 - No interface on most consumer hardware

- BLE
 - Standardized services
 - Low-power end devices
 - Higher power scanner/centrals
 - Star topology for simplicity and focus on single "Central" device
 - Compatible with smartphones

Outline

ZigBee overview

ZigBee PHY and MAC

ZigBee application layer

Interoperability

"When I leave, turn down the AC"

"When I leave, turn down the AC"

What does it look like without three different clouds?

"Standardization" is the answer? Custom adaptations?

Reusing ZCL across other networks

- Can we use ZigBee Cluster Library to enable device interoperability
 - Even if we don't want to use the ZigBee protocol?
- dotdot was a recent effort to spread ZigBee Clusters more widely
 - Runs same application-layer on top of various lower layers
 - ZigBee, BLE, Thread, WiFi, Ethernet

dotdot provides ZigBee-style control over various networks

Built on IETF internet standards

Example dotdot over Thread

ZCL to CoAP mappings

Resource	Methods	URI
Resource discovery	GET	/zcl
Endpoints	GET	/e
Attributes	GET, PUT, POST	/a
Commands	GET, POST	/c
Bindings	GET, PUT, POST, DELETE	/b
Report Configuration	GET, PUT, POST, DELETE	/r
Report Notification	POST	/n
Group Notification	POST	/g
EZ-Mode Commissioning	GET, POST	/m

Zigbee Connectivity Standards Alliance today

- 2021 rebrand
 - Zigbee fading in relevance, utility
 - Zigbee group created/creating new standard: Matter
 - Announced Dec 2019; first products shipped Fall 2022

Previously known as "Project CHIP"

- Setting up as a cross-platform solution focused on nailing Smart Home
 - Commissioning devices
 - Security
 - Device interactions

Matter documentation

- Specifications
 - Version 1.4 (November 2024): https://csa-iot.org/wp-content/uploads/2024/11/24-27349-006 Matter-1.4-Core-Specification.pdf
- Nordic has a decent Matter overview with actual technical details: <u>https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/ug_matter_intro_overview.html</u>
- Documentation from "Project Chip": https://project-chip.github.io/connectedhomeip-doc/index.html
- Documentation on Matter's website: https://handbook.buildwithmatter.com/

Matter Members

Matter Overview

- Assumes networks already exist
- How do we communicate with devices over those networks in a way that's network-agnostic and vendor-agnostic?
- Two big parts:
 - Devices joining the network
 - Communicating information between devices

What does matter add?

 Application-layer protocol for how to interact with devices and understand data

 Includes security model for encrypting and authenticating messages

- MRP Message Reliability Protocol
 - UDP + Retransmissions
- BTP Bluetooth Transport Protocol
 - For device setup

Matter communication architecture

- Multiple Phy/Link layers: Ethernet, WiFi, or Thread
- IPv6 networking
- Multiple transport layers
 - TCP, UDP, custom BLE layer for device setup only

Connecting many devices

- Ambitious goals of interoperability
- "Fabric": logical set of devices that share a security domain and can communicate
- Devices in Matter can support "multi-fabric"
 - This would enable connecting device ecosystems together
 - Does have to be implemented though...

Challenge: credentials for devices joining the fabric

Turns into a complicated process

 Should this device be allowed to join?

 How do we provide credentials for the device for encrypted, authenticated communication within the network?

Matter uses ZigBee Cluster Library idea for interactions

 "Action Framing" layer converts from raw packet data into device interactions

Matter reuses ZCL device attributes

Id	Name	Туре	Constraint	Quality	Default	Access	Confor- mance
0x0000	LockState	enum8	desc	XPS		RV	M
0x0001	LockType	enum8	desc			RV	M
0x0002	Actua- torEn- abled	bool	all			RV	M
0x0003	DoorState	enum8	desc	X P		RV	DPS

Matter

ZigBee

Identifier	Name	Туре	Access	Def	M/O
0x0000	LockState	enum8	Read Only Reportable	-	M
0x0001	LockType	enum8	Read Only	-	M
0x0002	ActuatorEnabled	bool	Read Only	-	M
0x0003	DoorState	enum8	Read Only Reportable	-	0
0x0004	DoorOpenEvents	uint32	Read/Write	-	О
0x0005	DoorClosedEvents	uint32	Read/Write	-	0
0x006	OpenPeriod	uint16	Read/Write	-	0

Currently supported Matter device types

- Matter 1.0 (October 2022)
 - Lighting
 - Smart Plugs/Outlets
 - Switches and Controls
 - Sensors (contact, light, occupancy, temperature, pressure, etc.)
 - Closure (door/window/shades)
 - HVAC
- Matter 1.2 (October 2023)
 - Refrigerators, Dishwashers, Laundry
 - Smoke and Carbon Monoxide Alarms, Air Quality Sensors
 - Fans, Portable Air Conditioners, Air Purifiers
 - Robotics vacuum cleaners

More recent Matter device additions

- Matter 1.3 (May 2024)
 - Kitchen appliances: microwaves, ovens, cooktops,
 - Dryers
 - Electric vehicle chargers
 - Leak sensors, water valves, rain sensors
- Matter 1.4 (November 2024)
 - Heat pumps
 - Solar panels

What supports matter?

- https://www.theverge.com/23568091/matter-compatible-devicesaccessories-apple-amazon-google-samsung
 - Still an evolving system
 - Support is increasingly added to new devices

- Needs a Matter Controller and (for thread) Thread border router
 - Goal: get those integrated into home WiFi routers
 - Version 1.4 adds some specification on how this works
 - Current controllers: Apple Homepod, Apple TV, Google TV, Samsung SmartThings Hub, Amazon Echo Hub, and others...
 - Mostly NOT Thread border routers though

Is ZCL the right standard for device interactions?

Seems better than making something new from scratch

https://xkcd.com/927/

Outline

ZigBee overview

ZigBee PHY and MAC

ZigBee application layer

Interoperability