1. This aim of this quiz is to familiarise yourself with vectors and some basic vector operations.

For the following questions, the vectors $a,\,b,\,c,\,d$ and e refer to those in this diagram:

The sides of each square on the grid are of length 1. What is the numerical representation of the vector \mathbf{a} ?

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

You can get the numerical representation by following the arrow along the grid.

2. 1/1 punto

Which vector in the diagram corresponds to

$$\begin{bmatrix} -1\\2\\-1\\2\end{bmatrix}?$$

- O Vector a
- O Vector **b**
- O Vector c
- Vector d
 - **⊘** Correcto

You can get the numerical representation by following the arrow along the grid.

What vector is $2\mathbf{c}$?

Please select all correct answers.

 \checkmark a

⊘ Correcto

Multiplying by a positive scalar is like stretching out a vector in the same direction.

⊘ Correcto

A scalar multiple of a vector can be calculated by multiplying each component.

4. 1 / 1 punto

What vector is $-\mathbf{b}$?

Please select all correct answers.

$$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

⊘ Correcto

A scalar multiple of a vector can be calculated by multiplying each component.

- □ e
- **✓** d
- ✓ Correcto

Multiplying by a negative number points the vector in the opposite direction.

5. In the previous videos you saw that vectors can be added by placing them start-to-end. For example, the following diagram represents the sum of two new vectors, $\mathbf{u} + \mathbf{v}$:

1 / 1 punto

The sides of each square on the grid are still of length 1. Which of the following equations does the diagram represent?

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1\\2\\ \end{bmatrix}$$

$$\begin{bmatrix} 0\\1\\ \end{bmatrix}$$

$$\begin{bmatrix} 2\\2\\ \end{bmatrix}$$

$$\begin{bmatrix} 2\\2\\ \end{bmatrix} + \begin{bmatrix} 0\\1\\ \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix}$$

$$\begin{bmatrix}
2 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\
2
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\
1
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} = \begin{bmatrix}
2 \\
2
\end{bmatrix}$$

⊘ Correcto

We can see that summing the vectors by adding them start-to-end and adding up the individual components gives us the same answer.

6. Let's return to our vectors defined by the diagram below:

1 / 1 punto

What is the vector $\mathbf{b} + \mathbf{e}$?

$$\begin{bmatrix}
-1 \\
-1
\end{bmatrix}$$

$$\begin{bmatrix}
-1 \\
-1
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\
-1
\end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

⊘ Correcto

Vectors are added together entry by entry. They can also be thought of as adding start to end, like in the following diagram:

7. 1 / 1 punto

$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

⊘ Correcto

Remember that vectors add by attaching the end of one to the start of the other, and that multiplying by a negative number points the vector in the opposite direction.

