Numerical Analysis – Lecture 4

... **proof.** We consider next the case of $\rho(H) < 1$, assuming in addition that H possesses n linearly independent eigenvectors w_1, w_2, \ldots, w_n , say. Hence $Hw_i = \lambda_i w_i, |\lambda_i| < 1, j = 1, 2, \ldots, n$. Linear independence means that every $v \in \mathbb{R}^n$ can be expressed as a linear combination of the eigenvectors. Hence, given $x_0 \in \mathbb{R}^n$, there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{C}$ such that $v_0 = x_0 - x^* = x_0 + x_0 + x_0 = x_0 + x_0 + x_0 = x_0 = x_0 + x_0 = x_0 = x_0 + x_0 = x_0$ $\sum_{j=1}^{n} \alpha_j \boldsymbol{w}_j$. Thus,

$$\boldsymbol{v}_1 = H \boldsymbol{v}_0 = \sum_{j=1}^n \alpha_j \lambda_j \boldsymbol{w}_j$$
 and, by induction, $\boldsymbol{v}_m = \sum_{j=1}^n \alpha_j \lambda_j^m \boldsymbol{w}_j$

for all $m = 0, 1, \ldots$ Since $\rho(H) < 1$, it follows that $\lim_{m \to \infty} \boldsymbol{w}_m = \boldsymbol{0}$, as required.

The 'missing' case Suppose that $\rho(H) < 1$ but that H does not have n linearly independent eigenvalues. This occurs, for example, for the matrix

$$H = \left[\begin{array}{cc} a & b \\ 0 & a \end{array} \right],$$

where $b \neq 0$ and |a| < 1. The eigenvalues of H are both a, but it is an easy exercise to verify that all eigenvectors are necessarily multiples of e_1 .

4 QR factorization of matrices

Scalar products, norms and orthogonality

We revise few definitions. \mathbb{R}^n is the linear space of all real n-tuples. For all $u, v \in \mathbb{R}^n$ we define the scalar product

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{j=1}^n u_j v_j = \boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}.$$

The norm (a.k.a. the Euclidean length) of $\mathbf{u} \in \mathbb{R}^n$ is $\|\mathbf{u}\| := \left(\sum_{j=1}^n u_j^2\right)^{1/2} = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}$. Note that $\|u\| = 0 \text{ iff } u = 0.$

We say that $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$ are orthogonal to each other if $\langle u, v \rangle = 0$.

The vectors $\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_m \in \mathbb{R}^n$ are orthonormal if

$$\langle \boldsymbol{q}_k, \boldsymbol{q}_\ell \rangle = \left\{ egin{array}{ll} 1, & k = \ell, \\ 0, & k
eq \ell, \end{array}
ight. \quad k, \ell = 1, 2, \ldots, m.$$

An $n \times n$ real matrix Q is orthogonal if all its columns are orthonormal. This is equivalent to $Q^{\mathrm{T}}Q = I$ (I is the $unit\ matrix$), because $(Q^{\mathrm{T}}Q)_{k,\ell} = \langle \boldsymbol{q}_k, \boldsymbol{q}_\ell \rangle$, hence to $Q^{-1} = Q^{\mathrm{T}}$. We conclude that $QQ^{\mathrm{T}} = QQ^{-1} = I$ and also the rows of an orthogonal matrix are orthonormal. As a consequence of $1 = \det I = \det(QQ^{\mathrm{T}}) = \det Q \det Q^{\mathrm{T}} = (\det Q)^2$, we deduce that $\det Q = \pm 1$ and an orthogonal matrix is nonsingular.

Proposition If P,Q are orthogonal then so is PQ. **Proof.** Since $P^{\mathrm{T}}P = Q^{\mathrm{T}}Q = I$, we have $(PQ)^{\mathrm{T}}(PQ) = (Q^{\mathrm{T}}P^{\mathrm{T}})(PQ) = Q^{\mathrm{T}}(P^{\mathrm{T}}P)Q = Q^{\mathrm{T}}Q = I$ I, hence PQ is orthogonal.

Proposition Let $q_1, q_2, \dots, q_m \in \mathbb{R}^n$ be orthonormal. Then $m \leq n$. **Proof.** Suppose that $m \geq n+1$ and let Q be the orthogonal matrix whose columns are q_1, q_2, \dots, q_n . Since Q is nonsingular and $q_m \neq 0$, there exists a nonzero solution to the linear system $Q\mathbf{a} = \mathbf{q}_m$, hence $\mathbf{q}_m = \sum_{j=1}^n a_j \mathbf{q}_j$. But

$$0 = \langle \boldsymbol{q}_{\ell}, \boldsymbol{q}_{m} \rangle = \left\langle \boldsymbol{q}_{\ell}, \sum_{j=1}^{n} a_{j} \boldsymbol{q}_{j} \right\rangle = \sum_{j=1}^{n} a_{j} \langle \boldsymbol{q}_{\ell}, \boldsymbol{q}_{j} \rangle = a_{j}, \qquad \ell = 1, 2, \dots, n,$$

hence a = 0, a contradiction. We deduce that $m \leq n$.

Lemma Let $q_1, q_2, \dots, q_m \in \mathbb{R}^n$ be orthonormal and $m \leq n - 1$. Then there exists $q_{m+1} \in \mathbb{R}^n$ such that $\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_{m+1}$ are orthonormal.

Proof. Let Q be the $n \times m$ matrix whose columns are $\mathbf{q}_1, \dots, \mathbf{q}_m$. Since $\sum_{k=1}^n \sum_{j=1}^m Q_{k,j}^2 = \sum_{j=1}^m \|\mathbf{q}_j\|^2 = m < n$, it follows that $\exists \ell \in \{1, 2, \dots, n\}$ such that $\sum_{j=1}^m Q_{\ell,j}^2 < 1$. We let $\mathbf{w} := \mathbf{e}_\ell - \sum_{j=1}^m \langle \mathbf{q}_j, \mathbf{e}_\ell \rangle \mathbf{q}_j$. Since $Q_{\ell,j} = \langle \mathbf{q}_j, \mathbf{e}_\ell \rangle$, we have $\|\mathbf{w}\|^2 = \langle \mathbf{w}, \mathbf{w} \rangle = 1 - \sum_{j=1}^m Q_{\ell,j}^2 > 0$ and, by construction, \mathbf{w} is orthogonal to $\mathbf{q}_1, \dots, \mathbf{q}_m$. We set $\mathbf{q}_{m+1} = \mathbf{w}/\|\mathbf{w}\|$.

The QR factorization 4.2

The QR factorization of an $m \times n$ matrix A has the form A = QR, where Q is an $m \times m$ orthogonal matrix and R is an $m \times n$ upper triangular matrix (i.e., $R_{i,j} = 0$ for i > j). We will demonstrate in the sequel that every matrix has a (non-unique) QR factorization.

An application Let m = n and A be nonsingular. We can solve Ax = b by calculating the QR factorization of A and solving first Qy = b (hence $y = Q^Tb$) and then Rx = y (a triangular

Interpretation of the QR factorization Let $m \geq n$ and denote the columns of A and Q by a_1, a_2, \ldots, a_n and q_1, q_2, \ldots, q_m respectively. Since

we have $\mathbf{a}_k = \sum_{j=1}^k R_{j,k} \mathbf{q}_j$, k = 1, 2, ..., n. In other words, Q has the property that each kth column of A can be expressed as a linear combination of the first k columns of Q.