UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

MOBILNÁ APLIKÁCIA NA NÁJDENIE OPTIMÁLNEJ TRASY V MHD Z REÁLNYCH DÁT Diplomová práca

2019

BC. GABRIELA SLANINKOVÁ

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

MOBILNÁ APLIKÁCIA NA NÁJDENIE OPTIMÁLNEJ TRASY V MHD Z REÁLNYCH DÁT DIPLOMOVÁ PRÁCA

Študijný program: Aplikovaná informatika

Študijný odbor: 2511 Aplikovaná informatika Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: doc. RNDr. Milan Ftáčnik, CSc.

Konzultant: Mgr. Ľubor Illek

Bratislava, 2019

Bc. Gabriela Slaninková

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Gabriela Slaninková

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor: aplikovaná informatika

Typ záverečnej práce: diplomová slovenský slovenský anglický

Názov: Mobilná aplikácia na nájdenie optimálnej trasy v MHD z reálnych dát

Mobile application for finding the optimal pathway in city public transport from

real data

Anotácia: Existuje aplikácia imhd ba, ktorá slúži na plánovanie cesty v MHD v Bratislave

na základe statických cestovných poriadkov. Cieľ om tejto práce je nájsť spôsob určovania optimálnej cesty a naprogramovať aplikáciu, ktorá to dokáže urobiť

s reálnych dát o pohybe vozidiel MHD.

Vedúci: doc. RNDr. Milan Ftáčnik, CSc.

Konzultant: Mgr. Ľubor Illek

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 03.10.2018

Dátum schválenia: 23.10.2018 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

1,772444,772444,772444,772444,772444,7772444,77724	/25/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-772/1-77
študent	vedúci práce

Poďakovanie:

Abstrakt

Kľúčové slová:

Abstract

Key words:

Obsah

Ú	vod	1
1	Východiská	2
2	Súhrn požiadaviek	3
3	Návrh	4
4	Implementácia	5
5	Testovanie a evaluácia	6
Zá	áver	7

Zoznam obrázkov

$\mathbf{\acute{U}}\mathbf{vod}$

Východiská

Kapitola 2 Súhrn požiadaviek

Návrh

Implementácia

Testovanie a evaluácia

Záver

Literatúra

- [1] Kristóf Bérczi, Alpár Jüttner, Marco Laumanns, and Jácint Szabó. Arrival time dependent routing policies in public transport. *Discrete Applied Mathematics*, 251:93 102, 2018.
- [2] Lunce Fu and Maged Dessouky. Algorithms for a special class of state-dependent shortest path problems with an application to the train routing problem. *Journal of Scheduling*, 21(3):367–386, Jun 2018.
- [3] Abdelfattah Idri, Mariyem Oukarfi, Azedine Boulmakoul, Karine Zeitouni, and Ali Masri. A new time-dependent shortest path algorithm for multimodal transportation network. *Procedia Computer Science*, 109:692 697, 2017. 8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal.
- [4] Yeon-Jeong Jeong, Tschangho John Kim, Chang-Ho Park, and Dong-Kyu Kim. A dissimilar alternative paths-search algorithm for navigation services: A heuristic approach. *KSCE Journal of Civil Engineering*, 14(1):41–49, Jan 2010.
- [5] Y. Li, H. Zhang, H. Zhu, J. Li, W. Yan, and Y. Wu. Ibas: Index based a-star. *IEEE Access*, 6:11707–11715, 2018.
- [6] R. Parmar and B. Trivedi. Shortest alternate path discovery through recursive bounding box pruning. *Journal of Transportation Technologies*, 7:167 180, 2017.
- [7] Lilian S.C. Pun-Cheng and Albert W.F. Chan. Optimal route computation for circular public transport routes with differential fare structure. *Travel Behaviour and Society*, 3:71 77, 2016.
- [8] Mohammed Quddus and Simon Washington. Shortest path and vehicle trajectory aided map-matching for low frequency gps data. *Transportation Research Part C: Emerging Technologies*, 55:328 339, 2015. Engineering and Applied Sciences Optimization (OPT-i) Professor Matthew G. Karlaftis Memorial Issue.

LITERATÚRA 9

[9] L. H. U, H. J. Zhao, M. L. Yiu, Y. Li, and Z. Gong. Towards online shortest path computation. *IEEE Transactions on Knowledge and Data Engineering*, 26(4):1012–1025, April 2014.

[10] Y. Zhao Z. Sun, W. Gu and C. Wang. Optimal path finding method study based on stochastic travel time. *Journal of Transportation Technologies*, 3(4):260 – 265, 2013.