

本题分数	10分
得 分	PENTS

二、已知系统的可靠性框图如 图所示,其中三个电子装置 A、

B、C相互独立,它们的寿命均服从指数分布,其失效

率分别为: $\lambda_A = 0.01/$ 小时, $\lambda_B = 0.02/$ 小时,

 $\lambda_c = 0.03 / 小时。 求该系统整机的平均寿命及工作 10 小时时的可靠度。$

本题分数	15 分
得分	
作 1000 小	

三、设有一串联系统由筹命分布均为指数分布的A、B、C、

三个单元组成,已知系统工作1000小时时。各单元的可靠

- 统工作 1000 小时的可靠度为 0.85, 度分别为 R_A=0.84, R_B=0.86, R_C=0.88。若设计时要求该系
- (1) 各分系统的可靠度指标能否满足系统要求?
- (2) 如果不满足要求,试问三个单元工作1000小时时的可靠度应该各为多少?(要求

采用利用预计值的可靠性分配方法)

本题分数	15 分
得 分	

四、某一桥式系统的可靠性逻辑框图如下图所示。图中各单元工作相互独立,各单元的可靠度分别为 $R_1=R_5=0.85$, $R_3=R_4=0.9$, $R_2=0.95$ 。请根据图中单元 R_5 的"正常"与"失效"两种状态,利用全概率分解法求图示系统的可靠度。

本题分数 15分			
日 分 一	五、己知系统的可	T the transfer of the transfe	第5页(共6页)
①写出系统所有的最。②写出该系统的可谓	小通路集;	靠性框图如图所示。图 靠度分别为 R ₁ =0.8, R ₂ =	1中各单元工作相互 0.9,R ₃ =0.7,R ₅ =0.8。
②写出该系统的可靠。③请采用不交并最小部分	度的结构函数。	R_1	R_4
舒:	一来还水该系统的市	丁靠度。 R ₂	1
		R_1	
		R_4	R_3

本题分数		16分
得	分	

六、某系统的故障树如下图所示。已知各单元的可靠度分 别为: $R_1=0.9$, $R_2=0.9$, $R_3=0.8$, $R_4=0.8$, $R_5=0.7$ 。

- ① 用富塞尔下行法求该故障树的所有最小割集;
- ②写出该系统的故障树结构函数。
- ③ 采用不交并最小割集法求系统的可靠度。

