NPN Silicon Epitaxial Planar Transistor

for switching and amplifier applications.

As complementary types the PNP transistors 2N3905 and 2N3906 are recommended.

On special request, these transistors can be manufactured in different pin configurations.

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	V _{CBO}	60	V
Collector Emitter Voltage	V _{CEO}	40	V
Emitter Base Voltage	V_{EBO}	6	V
Collector Current	Ic	200	mA
Power Dissipation	P _{tot}	625	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	°C

Dated: 09/08/2016 Rev:02

Characteristics at T_a = 25 °C

Parameter		Symbol	Min.	Max.	Unit
DC Current Gain					
at $V_{CE} = 1 \text{ V}, I_{C} = 0.1 \text{ mA}$	2N3903	h_{FE}	20	-	-
	2N3904	h_{FE}	40	-	-
at $V_{CE} = 1 \text{ V}, I_C = 1 \text{ mA}$	2N3903	h _{FE}	35	-	-
	2N3904	h _{FE}	70 - 2	-	-
at $V_{CE} = 1 \text{ V}$, $I_C = 10 \text{ mA}$	2N3903	h _{FE}	50	150	-
4)/	2N3904	h _{FE}	100	300	-
at $V_{CE} = 1 \text{ V}$, $I_C = 50 \text{ mA}$	2N3903	h _{FE}	30	-	-
at 1/ 1 100 m A	2N3904	h _{FE}	60	-	-
at $V_{CE} = 1 \text{ V}, I_{C} = 100 \text{ mA}$	2N3903	h _{FE}	15	-	-
	2N3904	h _{FE}	30	-	-
Collector Base Cutoff Current at $V_{CB} = 30 \text{ V}$		I _{CBO}	-	50	nA
Emitter Base Cutoff Current at V _{EB} = 6 V		I _{EBO}	-	50	nA
Collector Base Breakdown Voltage		V _{(BR)CBO}	60	-	V
at I _C = 10 μA		(511)050			
Collector Emitter Breakdown Voltage at I _C = 1 mA		$V_{(BR)CEO}$	40	-	V
Emitter Base Breakdown Voltage		V	6		V
at $I_E = 10 \mu A$		$V_{(BR)EBO}$	O	_	V
Collector Emitter Saturation Voltage					
at $I_C = 10 \text{ mA}$, $I_B = 1 \text{ mA}$		$V_{CE(sat)}$	-	0.2	V
at $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$		$V_{CE(sat)}$	-	0.3	
Base Emitter Saturation Voltage					
at $I_C = 10$ mA, $I_B = 1$ mA		$V_{BE(sat)}$	-	0.85	V
at $I_C = 50$ mA, $I_B = 5$ mA		$V_{BE(sat)}$	-	0.95	-
Gain Bandwidth Product		, ,			
at $V_{CE} = 20 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$	2N3903	f⊤	250	_	MHz
at ver 20 v, ie = 10 m/s, i = 100 mile	2N3904	•1	300	_	IVII IZ
Collector Page Congeitance					
Collector Base Capacitance at $V_{CB} = 5 \text{ V}$, $f = 100 \text{ KHz}$		C_ob	-	4	pF
Delay Time					
at $V_{CC} = 3 \text{ V}$, $V_{BE} = 0.5 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$		t_d	-	35	ns
Rise Time at $V_{CC} = 3 \text{ V}$, $V_{BE} = 0.5 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$		t _r	-	35	ns
Storage Time at $V_{CC} = 3 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = -I_{B2} = 1 \text{ mA}$		t _s	-	200	ns
Fall Time		t_f	-	50	ns
at $V_{CC} = 3 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = -I_{B2} = 1 \text{ mA}$					

