Amote

Label a few, we label the rest

Email: vidranatan@gmail.com

LinkedIn: https://www.linkedin.com/in/natanvidra/

How modern AI/ML works?

In traditional supervised learning settings, there are millions of rows of training data (X) and corresponding labels (Y). Given new testing data (X*), the goal is to predict a corresponding label (Y*)

How few shot learning works?

In few shot learning, the goal is to predict label (Y*) with just a few rows of training data (X) and corresponding labels (Y). This requires novel foundation models.

Setfit: Few Shot Learning in practice

Results:

After just a few labels, you are able to get a high degree of accuracy for certain, specific tasks of simple text classification across many domains and verticals. Results are benchmarked on SST-5, Emotions, AmazonCF, Enron Spam, and Ag News

Rank	Method	Accuracy	Model Size
2	T-Few	75.8	11B
4	Human Baseline	73.5	N/A
6	SetFit (Roberta Large)	71.3	355M
9	PET	69.6	235M
11	SetFit (MP-Net)	66.9	110M
12	GPT-3	62.7	175 B

Can be done: Manual	Can be done: Few Shot	Can not be done: Few Shot	
Data Labeling	Learning	Learning	Example of Task
Text Classification	Simple Text	Text Classification	Spam vs Not Spam in Emails
Document Labeling	Classification	Document Labeling	Good vs. Bad Resume
Named Entity Recognition	Simple Document Labeling	Named Entity Recognition	Identifying PII/PHI in Medical Documents
Sentiment Analysis		Sentiment Analysis	Positive vs. Negative Amazon Reviews
Co-referencing	Simple Sentiment	Co-referencing	Research Paper Citations of overlapping linked terms
Part of Speech Tagging	Analysis	Part of Speech Tagging	Identifying Nouns, Verbs and Adjectives in articles
Entity Linkage		Entity Linkage	Wikipedia Citations of key terms related to eachother
Text Summarization		Text Summarization	Converting 100 page agreements to 2 paragraphs
Conversational AI		Conversational AI	Understanding intent of patient to chatbot
Speaker Diarization		Speaker Diarization	Understanding who is saying what in novel
Entity Disambiguation		Entity Disambiguation	Bank vs. river bank

Few Shot Hierarchical Classification

Input Prompt:

I am at the Apple Store getting a cellphone. I admire Steve Job's vision of the iPhone. How can I get this electronic device at a good price?

Category Prediction

Clothing: Prob = .15 Electronics: Prob = .75

Home: Prob = .1

Sub-Category Prediction

Phones: Prob = .8(.75)

Cameras: Prob = .15(.75)

Televisions: Prob = .05(.75)

Sub-Sub-Category Prediction

iPhone: Prob = .65(.8)(.75)
Android: Prob = .2(.8)(.75)
Pixel: Prob = .1(.8)(.75)
Galaxy: Prob = .05(.8)(.75)

Semi-Structured Prompts

Ami Jape

50 GRAHAM ST, JERSEY CITY NJ 07307 <u>Ami.ITManager@gmail.com</u> • 551.227.6212

Summary:

- Self-motivated IT Professional with 10+ years of experience and accomplishments in the areas of Project
 Management, Project Coordination, Business Analysis, Process Improvements, Change Management, Maintaining
 project timelines and deliverables. Highly creative & detail-oriented, recognized as a results-oriented & solutionfocused individual with excellent leadership & communication skills.
- Remarkable experience in leading & delivering medium to large scale, multiple & highly visible service-oriented & customer-focused (Business & IT) projects such as software development, web/mobile application development, product management & technology implementation projects, with a good track record of successfully completing projects within triple constraints (Time, Cost & Quality). Exposure to various industry projects such as Technology, Digital Advertising, Media, Finance, Banking, ecommerce and Healthcare industries.
- Spearheaded successful project implementation & launches, resulting in enhanced productivity by 38% in a twelve month period. Successfully completed several critical implementations and these successes have brought in approximately \$8 million in revenue.
- Experiences working with cross-functional team environment with clients located in different geographical locations and have managed onshore & offshore team.
- Experience managing projects through all the phases of the Project Life Cycle (such as initiation, planning, execution, control, and closure) as well as overlook the post-implementation support phase to ensure excellent client support and exceed user expectations.
- Experience facilitating Requirements gathering & Technical Specification discussions, conducting JAD sessions with user groups, stakeholders, SMEs & development team. Good understanding of project processes with an ability to analyze business problems & identify solutions.
- Well versed in project management tools like MS Project & JIRA, proficient in development & maintenance of Project Charter, Project plan, Statement of Work (SOW's), Work Breakdown Structure (WBS), Project schedule, issue/risk register and other project related documentation.
- Experience managing a team, provide mentoring & coaching to project team personnel in implementing the
 organizational standard processes & procedures, develop team competencies and help maintain positive attitude at
 the workplace.
- Remarkable experience managing project execution efforts, closely worked with technical team & product owners to
 coordinate the product development efforts with good understanding of software engineering methods such as
 Waterfall & Agile (SCRUM). Demonstrated success in project management using recognized PMI methodologies and
 SDLC (software development life cycle) processes.
- Adept at tracking & monitoring project schedule, budget, progress & milestones to ensure project success. Ability to
 effectively monitor and control project risks & issues; escalate issues when needed to ensure outmost quality of
 project deliverables.
- · Exceptional documentation skills, managing project communication & status reporting with an ability to effectively

PAGE 1 OF 7

86% 🗐 🕶 🔼

27

Question 1: Summarize this document

• This is a resume about Ami Jape's work experience

Question 2: Do so with formal language in a bulleted list

- Ami Jape has 10+ years of experience
- Ami Jape is strong at managing teams

Question 3: Does this candidate have software engineering experience?

Yes

No

N/A

Confirm

Model Centric Al

Try different models on static datasets

Text Classification

Text	Label
I like bananas	Fruit
roccoli is not good V	egetable
e like tomatoes and potatoes	egetable

Named Entity Recognition

Entity_Text	Entity_Label
I like bananas	I like bananas [FRUIT]
Broccoli is not good	Broccoli [VEGETABLE] is not good
We like tomatoes and potatoes	We like tomatoes [FRUIT] and potatoes [VEGETABLE]

Fruits: {Apple, Orange}

Vegetable: {Zucchini, Spinach}

In model-centric AI, the training data is treated as a fixed input. Your training data is something you download as a static file. New iterations of your project result from changes to the model.

Data Centric Al

Naive Bayes

Try different datasets on static model

Text Classification

Text	Label
l like bananas	Fruit
Broccoli is not good	Vegetable
We like tomatoes and cake	Dessert
Cookies and milk are great	Dessert

Named Entity Recognition

Entity_Text	Entity_Label	
l like bananas	l like bananas [FRUIT]	
Broccoli is not good	Broccoli [VEGETABLE] is not good	
We like tomatoes and cake	We like tomatoes [FRUIT] and cake [DESSERT]	
Cookies and milk are great	Cookies [DESSERT] and milk [BEVERAGE] are great	

In data-centric AI, data quality and quantity is increasingly the key to successful results. Teams spend more time on labeling, managing, slicing, augmenting, and curating the data, with the model itself relatively more fixed. In data centric AI, you programmatically iterate on your training data.

Fruits: {Apple, Orange}

Vegetable: {Zucchini, Spinach} Dessert: {Chocolate, Ice Cream}

Beverage: {Water, Juice}

The "Scale"-ability Issue

Manual labeling:

As we label data, new classes of data are added due to changing business requirements. Oftentimes, this requires manually relabeling all of the data again, from scratch.

Programmatic labeling:

A solution that works in a specific vertical (i.e. finance) may not translate well to a different vertical (i.e. healthcare). Many labeling applications can't be solved programmatically

Less than **1/1000th** of data that businesses require to be labeled is currently labeled today. As Carl Sagan said, we are just a pale blue dot.

A New Way of Doing Al

Try different datasets and different models in conjunction.

Text Classification

Text	Label
l like bananas	Fruit
Broccoli is not good	Vegetable
We like tomatoes and cake	Dessert
Cookies and milk are great	Dessert

Named Entity Recognition

Entity_Text	Entity_Label	
I like bananas	l like bananas [FRUIT]	
Broccoli is not good	Broccoli [VEGETABLE] is not good	
We like tomatoes and cake	We like tomatoes [FRUIT] and cake [DESSERT]	
Cookies and milk are great	Cookies [DESSERT] and milk [BEVERAGE] are great	

As we iterate on our data, we also iterate on our ensemble model

The ensemble model output is a function of the data input

As we label more, the ensemble model learns which local model is best

Enabling a Scalable Data Labeling Solution

What applications can this be applied to?

Legal Tech - Classifying Terms in Legal Agreements

A tech-based Law Firm looks over thousands of investor term sheets and acquisition agreements for startups. In each long contract, there is important information that lawyers are paid ~\$1,000 per hour to identify, detect, and note to startups. For many startups, going to law firms can be extremely expensive, and well outside of their budget, but these startups still need legal counsel on specific documents.

Research - Co-referencing in Research Papers

A research institute at a top-tier university wanted to understand relationships between phenotypes of species in research papers. They needed a tool to go through research papers and annotate co-references, named entities and key words to build this model. Their data labeling process was relatively manual, as existing labeling tool did not work well and satisfy their use case.

Miscellaneous - Unsubscribe From Emails

A large organization has employees that constantly receive annoying emails which they want to unsubscribe from. The organization mentioned that each employee spends on average 15 minutes a day sifting through and deleting irrelevant emails to their mailbox. The organization wanted to build a tool where employees could unsubscribe from a few emails, and the AI would automatically recommend the remaining emails from which employees should unsubscribe from. That would save employees time, and keep their mailbox clean.

Finance - Document Information Extraction

A large finance company has a team of 20-30 data annotators (analysts) out of Princeton, NJ, in charge of extracting key points from financial documents. These documents are normally in the form of PDFs, and some of the information exists in tables and pictures. The companies research team has looked into AI techniques such as OCR (Optical Character Recognition) to extract this information from documents, though the information extraction is predominantly still done manually.

Education - Writing Proposals

A technical team was looking for funding for research projects, and oftentimes needed to write proposals. However, when writing proposals, it oftentimes was unclear whether what employees were writing was beneficial content for their proposal being accepted. They needed labeled data describing whether certain sentences helped or hurt employees chance's of their proposal being accepted.

Healthcare - Classifying Cancer

A large hospital in New York goes through radiology reports to classify certain types of cancer present in the report. They attempted to build an Al text classification model for this task, using BERT, but struggled with an imbalanced dataset (lack of labeled training data). Regarding their data distribution, the team had 250 classes of cancer that were present relatively infrequently / only appeared a small fraction of the time, whereas the most prominent cancer types occurred very frequently in the reports. Because of this, the team looked into heuristic models to train their system, as well as alternative data labeling mechanisms.

Non Profit - Identifying Violent Tweets

A non-profit that was looking to analyze social media data from twitter for public safety purposes in New York City. They wanted to build a model that scrapes data off of twitter to analyze if a specific tweet in the New York City area is violent. To do this, they need annotated data from the tweets to see whether specific tweets correspond to "violent" or "not violent", that way they could train their Al model.

Few Shot Learning

After you label just a few row of data (the edge cases), we label the rest, using state of the art transformer models

Synchronous

Index	Text	Label	Probability
0	Click this link to win \$500	SPAM	.98
1	This is a normal sentence	NOT SPAM	.89
2	You just won a free iPhone	SPAM	.93
3	Hope you are doing well	NOT SPAM	.87
4	Enter your credit card info	SPAM	.97

Get your data labeled in real time, and receive immediate feedback on the model's performance as you label data

Programmatic Labeling

Heuristics such as key words, entities and regex expressions are fed into the model

Human in the Loop

We actively learn from subject matter experts, who provide input into our model

Decomposition

Convert unstructured text data to a spreadsheet

Contextual

Our large language models extract the context of words in sentences, not just the individual words themselves