Projektowanie Algorytmów i Metody Sztucznej Inteligencji Projekt 2

Mgr inż. Marcin Ochman Grupa: Wtorek 15¹⁵-16⁵⁵

1. Wstęp

Celem projektu jest porównanie w jaki sposób reprezentacja grafu w programie wpływa na wydajność algorytmów grafowych. Badany jest problem najkrótszej ścieżki. Polega on na znalezieniu w grafie ważonym najkrótszej możliwej ścieżki między dwoma wierzchołkami. Wykorzystane reprezentacje: lista sąsiedztwa oraz macierz sąsiedztwa. Do rozwiązania tego problemu użyłem algorytmu Dijkstry.

2. Lista sąsiedztwa

Reprezentacja ta polega na stworzeniu tablicy list o wymiarze *V*. Gdzie *V* oznacza liczbę wierzchołków. Na każdej liście przechowywane są indeksy wierzchołków końcowych, czyli sąsiadów wierzchołka początkowego. Zaletą tej reprezentacji jest mały wymóg pamięci. Wadą jest duża złożoność obliczeniowa w momencie kiedy chcemy dostać się do konkretnej krawędzi.

3. Macierz sąsiedztwa

Reprezentacja ta polega na stworzeniu macierzy o wymiarze $V \times V$. Wadą tej reprezentacji jest duży wymóg pamięci. Zaletą jest natychmiastowy dostęp do określonej krawędzi.

4. Algorytm Dijkstry

Algorytm znajduje najkrótsze ścieżki między źródłem jakie ustalimy a wszystkimi wierzchołkami w grafie. Przy okazji wylicza koszt dotarcia do wierzchołków. Można go łatwo zmodyfikować żeby wyszukiwał tylko drogę do jednego wierzchołka. Można zaimplementować ten algorytm na trzy podane sposoby:

Przy użyciu zwykłej **tablicy**. Złożoność – $O(V^2)$

Przy użyciu kolejki priorytetowej. Złożoność – $O(E * \log V)$

Przy użyciu **kopca Fibonacciego**. Złożoność – $O(E + \log V)$

W projekcie wykorzystany został algorytm działający przy użyciu kolejki priorytetowej.

5. Przebieg eksperymentów

Lista sąsiedztwa						
Ilość wierzchołków	Gęstość					
	0,25	0,5	0,75	1		
	Czas wykonywania algorytmu [ms]					
10	0,010	0,009	0,009	0,009		
50	0,115	0,121	0,129	0,130		
100	0,507	0,543	0,662	0,601		
500	23,825	26,448	28,936	30,207		
1000	157,454	178,858	197,958	208,156		

Macierz sąsiedztwa						
Ilość wierzchołków	Gęstość					
	0,25	0,5	0,75	1		
	Czas wykonywania algorytmu [ms]					
10	0,011	0,010	0,010	0,010		
50	0,088	0,085	0,084	0,083		
100	0,232	0,245	0,228	0,226		
500	3,346	3,194	3,195	3,170		
1000	12,201	12,031	11,091	10,037		

Michał Więcek 05.05.2020 248956

6. Wnioski:

Na podstawie wykonanych badań można stwierdzić, że przy badaniu problemu optymalna okazała się macierz sąsiedztwa. Również zmiana liczby krawędzi grafu nie miała większego wpływu na macierz. W przypadku listy można zauważyć duże zmiany podczas zwiększania liczby krawędzi.

7. Literatura:

https://pl.wikipedia.org/wiki/Algorytm_Dijkstry

https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

http://algorytmy.ency.pl/tutorial/algorytm dijkstry

https://pl.wikipedia.org/wiki/Graf (matematyka)

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

https://graphonline.ru/en/

8. Dodatkowo

Sprawdziłem czas wykonywania się tego algorytmu na różnych konfiguracjach sprzętowych. I mniej więcej porównałem je z tymi zaprezentowanymi w sprawozdaniu.

- 1. Intel Core i7-5600U 2.6GHz, Win10, Laptop Opisane wyniki.
- 2. Intel Core i5-4460 3.2GHz, Win10, PC Około o 8% wolniej.
- 3. Intel Core i5-8250U 1.6 GHz, Win10, Laptop Około 40% wolniej.
- 4. AMD Athlon II X4 645 3.10GHz, Win7, PC Około 100% wolniej.
- 5. Ryzen 5 3600X 3.8GHz ,Win10, PC Dla wszystkich wyników około 40% szybciej **ale** dla największego rozmiaru listy około 50% wolniej.