ELE 535 - Machine Learning and Pattern Recognition

Fall 2018

HOMEWORK 5: Theory

- Q1 Derive the derivative, and if it exists the gradient, of the following functions.
 - (a) For $x \in \mathbb{R}^n$, $f(x) = \sum_{j=1}^n x_j$.
 - (b) For $x \in \mathbb{R}^n$, $f(x) = e^{\sum_{j=1}^n x_j}$.
 - (c) For $x \in \mathbb{R}^n$, $f(x) = x^T A x + a^T x + b$, where $b \in \mathbb{R}$, $a \in \mathbb{R}^n$, and $A \in \mathbb{R}^{n \times n}$.
 - (d) For $M \in \mathbb{R}^{n \times n}$, $f(M) = ||M||_F^2$.
 - (e) For $x \in \mathbb{R}^n$, $f(x) = xx^T \in \mathbb{R}^{n \times n}$.
- Q2 Matrix Inversion Lemma. Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with $A \in \mathbb{R}^{p \times p}, D \in \mathbb{R}^{q \times q}, B \in \mathbb{R}^{p \times q}, C \in \mathbb{R}^{q \times p}$.

(a) If A and D, and at least one of S_A or S_D are invertible, derive the equality (this was partially done in class):

$$(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}.$$
 (1)

(b) Use part (a) to show that if A and D, and at least one of A + BDC or $D^{-1} + CA^{-1}B$ are invertible, then:

$$(A + BDC)^{-1} = A^{-1} - A^{-1}B(D^{-1} + CA^{-1}B)^{-1}CA^{-1}.$$
 (2)

Q3 On-line least squares with mini-batch updates. You want to solve a least squares regression problem by processing the data in small batches (mini-batches), yielding a new least squares solution after each update. Assume each mini-batch contains k training examples. Group the examples in the t-th mini-batch into the columns of $X_t \in \mathbb{R}^{n \times k}$, and the corresponding targets into the rows of $y_t \in \mathbb{R}^k$. Let $P_{t-1} = \sum_{i=1}^{t-1} X_i X_i^T \in \mathbb{R}^{n \times n}$. Assume P_{t-1}^{-1} exists and is known. Similarly, let $s_{t-1} = \sum_{i=1}^{t-1} X_i y_i \in \mathbb{R}^n$. Derive the following equations for the t-th mini-batch update:

$$\hat{y}_t \stackrel{\Delta}{=} X_t^T w_{t-1}^* \quad \text{target prediction} \tag{3}$$

$$w_t^{\star} = w_{t-1}^{\star} + P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} (y_t - \hat{y}_t) \quad \text{update } w^{\star}$$
(4)

$$P_t^{-1} = P_{t-1}^{-1} - P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T P_{t-1}^{-1} \quad \text{update } P.$$
 (5)

How do these equations change if the mini-batches are not all the same size?

Q4 **Linear regression with vector targets.** We are given training data $\{(x_i, z_i)\}_{i=1}^m$ with input examples $x_i \in \mathbb{R}^n$ and vector targets $z_i \in \mathbb{R}^d$. Place the input examples into the columns of $X \in \mathbb{R}^{n \times m}$ and the targets into the columns of $Z \in \mathbb{R}^{d \times m}$. We want to learn a linear predictor of the vector targets $z \in \mathbb{R}^d$ of test inputs $x \in \mathbb{R}^n$. To do so, first use the training data to find:

$$W^* = \arg\min_{W \in \mathbb{R}^{n \times d}} \quad ||Y - FW||_F^2 + \lambda ||W||_F^2, \tag{6}$$

where we have set $Y=Z^T$ and $F=X^T$, and we require $\lambda \geq 0$ ($\lambda = 0$ removes the ridge regularizer).

- (a) Show that (7) separates into d standard ridge regression problems, each solvable separately.
- (b) Without using the property in (a), set the derivative of the objective function w.r.t. W equal to zero, and find an expression for the solution W^* . Is the separation property evident from this expression?

Q5 The softmax function. This function maps $x \in \mathbb{R}^n$ to a probability mass function s(x) on n outcomes. It can be written as the composition of two functions s(x) = q(p(x)), where $p \colon \mathbb{R}^n \to \mathbb{R}^n_+$ and $q \colon \mathbb{R}^n_+ \to \mathbb{R}^n_+$ are defined by

$$p(x) = [e^{x_i}]$$
 $q(z) = z/(\mathbf{1}^T z)$

Here \mathbb{R}^n_+ denotes the positive cone $\{x\in\mathbb{R}^n\colon x_i>0\}$. The function $p(\cdot)$ maps $x\in\mathbb{R}^n$ into the positive cone \mathbb{R}^n_+ , and for $z\in\mathbb{R}^n_+$, $q(\cdot)$ normalizes z to a probability mass function in \mathbb{R}^n_+ .

- (a) Determine the derivative of p(x) at x.
- (b) Determine the derivative of q(z) at z.
- (c) Determine the derivative of the softmax function at x.