MI Assimnment-3

The provided csv file was imported after removing the first 2 columns as the id and the date has no paring to the price of the house.

price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat	long	sqft_living15	sqft_lot15
221900	3	1	1180	5650	1	0	0	3	7	1180	0	1955	0	98178	47.5112	-122.257	1340	5650
538000	3	2.25	2570	7242	2	0	0	3	7	2170	400	1951	1991	98125	47.721	-122.319	1690	7639
180000	2	1	770	10000	1	0	0	3	6	770	0	1933	0	98028	47.7379	-122.233	2720	8062
604000	4	3	1960	5000	1	0	0	5	7	1050	910	1965	0	98136	47.5208	-122.393	1360	5000
510000	3	2	1680	8080	1	0	0	3	8	1680	0	1987	0	98074	47.6168	-122.045	1800	7503
1.23E+06	4	4.5	5420	101930	1	0	0	3	11	3890	1530	2001	0	98053	47.6561	-122.005	4760	101930
257500	3	2.25	1715	6819	2	0	0	3	7	1715	0	1995	0	98003	47.3097	-122.327	2238	6819
291850	3	1.5	1060	9711	1	0	0	3	7	1060	0	1963	0	98198	47.4095	-122.315	1650	9711
229500	3	1	1780	7470	1	0	0	3	7	1050	730	1960	0	98146	47.5123	-122.337	1780	8113
323000	3	2.5	1890	6560	2	0	0	3	7	1890	0	2003	0	98038	47.3684	-122.031	2390	7570
662500	3	2.5	3560	9796	1	0	0	3	8	1860	1700	1965	0	98007	47.6007	-122.145	2210	8925
468000	2	1	1160	6000	1	0	0	4	7	860	300	1942	0	98115	47.69	-122.292	1330	6000
310000	3	1	1430	19901	1.5	0	0	4	7	1430	0	1927	0	98028	47.7558	-122.229	1780	12697
400000	3	1.75	1370	9680	1	0	0	4	7	1370	0	1977	0	98074	47.6127	-122.045	1370	10208
530000	5	2	1810	4850	1.5	0	0	3	7	1810	0	1900	0	98107	47.67	-122.394	1360	4850
650000	4	3	2950	5000	2	0	3	3	9	1980	970	1979	0	98126	47.5714	-122.375	2140	4000
395000	3	2	1890	14040	2	0	0	3	7	1890	0	1994	0	98019	47.7277	-121.962	1890	14018
485000	4	1	1600	4300	1.5	0	0	4	7	1600	0	1916	0	98103	47.6648	-122.343	1610	4300
189000	2	1	1200	9850	1	0	0	4	7	1200	0	1921	0	98002	47.3089	-122.21	1060	5095
230000	3	1	1250	9774	1	0	0	4	7	1250	0	1969	0	98003	47.3343	-122.306	1280	8850
385000	4	1.75	1620	4980	1	0	0	4	7	860	760	1947	0	98133	47.7025	-122.341	1400	4980
2.00E+06	3	2.75	3050	44867	1	0	4	3	9	2330	720	1968	0	98040	47.5316	-122.233	4110	20336
285000	5	2.5	2270	6300	2	0	0	3	8	2270	0	1995	0	98092	47.3266	-122.169	2240	7005
252700	2	1.5	1070	9643	1	0	0	3	7	1070	0	1985	0	98030	47.3533	-122.166	1220	8386
329000	3	2.25	2450	6500	2	0	0	4	8	2450	0	1985	0	98030	47.3739	-122.172	2200	6865
233000	3	2	1710	4697	1.5	0	0	5	6	1710	0	1941	0	98002	47.3048	-122.218	1030	4705
937000	3	1.75	2450	2691	2	0	0	3	8	1750	700	1915	0	98119	47.6386	-122.36	1760	3573
667000	3	1	1400	1581	1.5	0	0	5	8	1400	0	1909	0	98112	47.6221	-122.314	1860	3861
	_					_	_	_	_				_					

Importing code

import os

import numpy as np

from numpy import genfromtxt

from matplotlib import pyplot

from mpl toolkits.mplot3d import Axes3D

data = genfromtxt('/Users/tarekashraf/Downloads/house_price.csv',delimiter=',')

The next step is to divided the acquired data into train, cross validat and testing and normalaizing the data.

Data diving code

X, y = data[1:10000, 1:], data[1:10000, 0]

Xcv, ycv = data[10001:14000, 1:], data[10001:14000, 0]

Xt, yt = data[14001:18000, 1:], data[14001:18000, 0]

Normalaizing code

```
def featureNormalize(X):
    X_norm = X.copy()
    mu = np.zeros(X.shape[1])
    sigma = np.zeros(X.shape[1])
    for i in range(18):
        mu = np.mean(X[:,i], axis = 0)
        sigma = np.std(X[:,i], axis = 0)
        X[:,i] = (X[:,i]-mu)/sigma
        Xcv[:,i] = (Xcv[:,i]-mu)/sigma
        Xt[:,i] = (Xt[:,i]-mu)/sigma
        return
```

Adding the bais term to the train, test and cross validat dataset.

```
b = y.size
g = np.ones(b)
X = np.column_stack([X,g])
X[:,[0, 18]] = X[:,[18, 0]]
b = ycv.size
g = np.ones(b)
Xcv = np.column_stack([Xcv,g])
Xcv[:,[0, 18]] = Xcv[:,[18, 0]]
b = yt.size
g = np.ones(b)
Xt = np.column_stack([Xt,g])
Xt[:,[0, 18]] = Xt[:,[18, 0]]
```

The next step is to calculate the cost function at different polynomials to get the best degree to fit the model the testing was done using the cross validat set.

cost function code
 def computeCostMulti(X, y, theta):
 m = y.shape[0]
 J = 0
 E = X.dot(theta)
 J = 1/(2*m)*np.sum(np.square(E-y))
 return J
 def gradientDescentMulti(X, y, theta, alpha, num_iters):
 m = y.shape[0]

```
theta = theta.copy()
J_history = []
for i in range(num_iters):
    theta = theta - (alpha / m) * (np.dot(X, theta) - y).dot(X)
    J_history.append(computeCostMulti(Xcv, ycv, theta))
return theta, J_history
```

The error function was the lowest at the first degree function.

• Error function code (error calculator was done with the testing set) def error(X, y, theta):

```
m = y.shape[0]

J = 0

E = X.dot(theta)

J = 1/(2*m)*np.sum(np.square(E-y))

return J
```

- error at 2nd degree with alpha = 0.01 and num_iters = 400 : 713858722581
- error at 1nd degree with alpha = 0.01 and num_iters = 400 : 159803527143

So there is no need to check a higher degree as the cost increased dramatically with the 2nd degree.

Tuning the learning rate and the iteration number.

Using the alpha = 0.01 and num_iters = 400.

The cost seteles very quickly at num_iters = 200 so the alpha maybe to large.

Using the alpha = 0.001 and num_iters = 4000.

The cost seteles very quickly at num_iters = 2000 but there is an increase in the error test so this maybe over fitting.

The best combination of alpha and num_iters is 0.007 and 1000.

The final set is adding the Regularization term and tunning the Regularization factor.

Regularization code(new theta calculation)
 theta = theta - (alpha / m) * (np.dot(X, theta) - y).dot(X) + lam*theta
 Staring with Regularization factor = 0.01

There was an increase in the error function from 153803527143 to 21646999997.

Then moving to a Regularization factor = 0.02 there was a decrease from the original cost function of 153803527143 to 119574722077.

Moving to a Regularization factor = 0.04 there was an incresese in theerror function to 47802945792.