(a) $|a - b| \le |a| + |b|$;

(b) $||a| - |b|| \le |a - b|$.

Proof.

Exercise 1.2.6(b), (d): Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(a) = \{f(x) : x \in A\}$.

- (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
- (d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$.

Proof(b).

Proof(d).

Exercise 1.2.8: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that..." is not permitted

- (a) For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b.
- (b) Between every two distinct real numbers there is a rational number.
- (c) For all natural numbers $n \in \mathbb{N}$, \sqrt{n} is either a natural number or is an irrational number.
- (d) Given any real number $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x.

Solution:

- (a)
- (b)
- (c)
- (d)

Exercise 1.2.9: Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \le 2$.

Proof.

Exercise 1.3.4: Assume that *A* and *B* are nonempty, bounded above, and satisfy $B \subseteq A$. Show that $\sup B \leq \sup A$.

Proof. **Exercise 1.3.5:** Let A be bounded above and let $c \in \mathbb{R}$. Define the sets $c + A = \{a + c : a \in \mathbb{R} \}$ $a \in A$ and $cA = \{ca : a \in A\}$. (a) Show that $\sup(c + A) = c + \sup(A)$. (b) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$. (c) Postulate a similar statuent for $\sup(cA)$ when c < 0. Proof(a). Proof (b). Statement for part (c): **Exercise 1.3.6:** Compute, without proof, the suprema and infima of the following sets. (a) $\{n \in \mathbb{N} : n^2 < 10\}$. (b) $\{n/(n+m) : n, m \in \mathbb{N}\}.$ (c) $\{n/(2n+1) : n \in \mathbb{N}\}.$ (d) $\{n/m : m, n \in \mathbb{N} \text{ with } m + n \le 10\}.$ **Solution:** (a) (b) (c) (d) Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A, then $a = \sup A$. Proof.

Exercise 1.3.8: If $\sup A < \sup B$ then show that there exists an element $b \in B$ that is an upper bound for A.

Proof. □