Reverse Mode Automatic Differentiation: Unraveling Expression Graphs & Library Magic

Steve Bronder

October 2023

Estimating COVID Infection Rates For Policy

Figure: Probability of epidemic growth by local area

Automatic Differentiation Affects Your Day to Day

Computational technique for evaluating derivatives of functions expressed as computer programs by systematically applying the chain rule.

Ex: Newton's root finding method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

find f(x) = y where y = 0

$$f(x) = x^3 + x^2 + x (1)$$

$$f'(x) = 3x^2 + 2x + 1 \tag{2}$$

► Hamiltonian Monte Carlo:

$$ightharpoonup \frac{dp}{dt} = -\nabla_{\theta} \log p(\theta|y)$$

► BFGS:

$$ightharpoonup s_k = -H_k \nabla_{\theta} f(\theta_k)$$

Stochastic Gradient Descent:

- Choices
 - Write by hand
 - finite difference,
 - symbolic differentiation
 - spectral differentiation
 - automatic differentiation

$$\begin{split} &\underbrace{\rho(\theta \mid \mathbf{y})}_{\text{posterior}} \propto \prod_{i=1}^{N} \left\{ \sum_{\mathbf{z}_i \in \{1,2,3\}} T_i \left[\underbrace{\pi_{z_{i,1}} \prod_{t=2}^{T_i} \Pi_{z_{i,t-1},z_{i,t}}}_{\text{3-state HMMM prior}} \prod_{t=1}^{T_i} \underbrace{\mathcal{N}\left(y_{i,t} \mid \eta_{i,t}, \sigma_{z_{i,t}}^2\right)}_{\text{state-dependent emission}} \right] \right\} \\ &\text{where} \quad \eta_{i,t} = \underbrace{\mathbf{x}_{i,t}^{\mathsf{T}} \beta}_{\text{fixed}} + \underbrace{\mathbf{x}_{i,t}^{(\mathsf{G})\mathsf{T}}}_{\text{torsed random effects}} + \underbrace{\mathbf{x}_{i,t}^{\mathsf{G})\mathsf{T}}}_{\text{crossed random effects}} + \underbrace{\mathbf{f}(t_{i,t})}_{\text{state-specific offset + slope}} , \quad z_{i,t} \in \{1,2,3\}. \\ &\rho(\mathbf{f} \mid \boldsymbol{\psi}) = (2\pi)^{-T/2} \left| \mathbf{K} \right|^{-1/2} \exp\left(-\frac{1}{2} \mathbf{f}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{f} \right), \\ &\mathbf{K} = \sigma_f^2 \left(\mathbf{K}_{\mathsf{LP}}(\ell, \rho, \lambda) + \rho \, \mathbf{K}_{\mathsf{SE}}(\tilde{\ell}) \right) + \sigma_n^2 \mathbf{I}, \quad \left[\mathbf{K}_{\mathsf{LP}} \right]_{tt'} = \exp\left(-\frac{(t-t')^2}{2\ell^2} - \frac{2 \sin^2 \left(\pi \, |t-t'|/\rho \right)}{\lambda^2} \right), \\ &[\mathbf{K}_{\mathsf{SE}}]_{tt'} = \exp\left(-\frac{(t-t')^2}{2\ell^2} \right), \quad \mathbf{K} = \mathbf{L}_{\mathsf{K}} \mathbf{L}_{\mathsf{K}}^{\mathsf{T}} \Rightarrow \log |\mathbf{K}| = 2 \sum_{t=1}^{T} \log \left((\mathbf{L}_{\mathsf{K}})_{jj} \right). \end{split}$$

Hierarchical mixed effects (non-centered, LKJ prior):

$$\begin{split} \mathbf{b}_{g} &= \left(\mathbf{I}_{P_{G}} \otimes \operatorname{diag}(\boldsymbol{\tau}_{b}) \, \mathbf{L}_{R}\right) \tilde{\mathbf{b}}_{g}, \quad \tilde{\mathbf{b}}_{g} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \mathbf{c}_{c} = \operatorname{diag}(\boldsymbol{\tau}_{c}) \, \tilde{\mathbf{c}}_{c}, \quad \tilde{\mathbf{c}}_{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \\ \operatorname{LKJ}_{P_{G}}(\boldsymbol{\eta}) \text{ prior on } \mathbf{R}, \quad \mathbf{L}_{R} \mathbf{L}_{R}^{\top} = \mathbf{R}, \quad \boldsymbol{\tau}_{b} \sim \prod_{j=1}^{P_{G}} \operatorname{Half-}t_{\nu_{b}}(\mathbf{0}, s_{b}), \quad \boldsymbol{\tau}_{c} \sim \prod_{j=1}^{P_{C}} \operatorname{Half-}t_{\nu_{c}}(\mathbf{0}, s_{c}), \\ u_{g} \sim \mathcal{N}(\mathbf{0}, \sigma_{u}^{2}). \end{split}$$

- ► Faster than finite difference, more flexible than symbolic differentiation
- Allows for unknown length while and for loops
- Accurate to floating point precision
- Reverse Mode AD can compute partials derivatives of inputs at the same time

How Fast is AutoDiff?

Figure: AuToDiFf rUnS iN $\Theta(C(f))$ TiMe

Implementation Matters!

Figure: Benchmark for f' given $f(y) = N(y|X\theta, \sigma)$

Goal of this talk

- Explain autodiff in layman's terms
- Understand performance of high throughput memory intensive programs
- ➤ Show how modern C++ has led to cleaner and more efficient AD

- ► AD computes gradients of a program by applying the chain rule to its subexpressions.
- ▶ Given a function f with inputs $x \in \mathbb{R}^n$ and outputs $z \in \mathbb{R}^m$ we want to "calculate the Jacobian J" with size (m, n)

Data Type: Expression Graph

Goal: Calculate the full gradient by accumulating partial gradients (adjoints) through the a graph of subexpressions.

- Think of both data and operations as objects
 - Forward pass to calculate the values of the intermediates subexpressions
 - Reverse pass to calculate the local adjoint-Jacobian update of subexpressions

What is Automatic Differentiation

For Reverse Mode AD, each node performs two functions.

► Forward Pass:

$$u = f(x, y)$$

Reverse Pass: Given u's adjoint (partial gradient) \overline{u} Calculate the local adjoint-Jacobian update for x and y.

$$chain(\overline{u}, x, x_1) = \left\{ \overline{x} += \frac{\partial u}{\partial x} \overline{u}, \overline{y} += \frac{\partial u}{\partial y} \overline{u} \right\}$$

► The calculations needed are represented as an expression Graph

$$z = \log(\mathbf{x} \cdot \mathbf{y})$$

How do we calculate the adjoint Jacobian?

Let \overline{v}_i be the adjoint of v_i

$$\overline{\mathbf{v}}_i = \frac{\partial \mathbf{v}_{i+1}}{\partial \mathbf{v}_i} \overline{\mathbf{v}}_{i+1}$$

Automatic Differentiation only needs the partials of the intermediates

$$v_2 = v_0 \cdot v_1 \qquad \frac{\partial v_2}{\partial v_0} = v_1, \frac{\partial v_2}{\partial v_1} = v_0$$

$$v_3 = \log(v_2) \qquad \frac{\partial v_3}{\partial v_2} = \frac{1}{v_2}$$

$$z = \log(x \cdot y)$$

$$v_0 \quad y \quad \bar{v_0} = \bar{v_2} \frac{\partial v_2}{\partial v_0} = \frac{1}{v_2} v_1 \qquad v_1 \quad \bar{v_1} = \bar{v_2} \frac{\partial v_2}{\partial v_1} = \frac{1}{v_2} v_0$$

$$v_2 = v_0 \cdot v_1 \quad \times \quad \bar{v_2} = \bar{v_3} \frac{\partial v_3}{\partial v_2} = 1 \cdot \frac{1}{v_2}$$

$$v_3 = \log v_2 \quad \log \bar{v_3} = \frac{\partial v_3}{\partial v_3} = 1$$

$$z = \log(x \cdot y)$$

$$v_0 \quad y \quad \bar{v_0} = \bar{v_2} \frac{\partial v_2}{\partial v_0} = \frac{1}{v_2} v_1 = \frac{1}{y} \qquad v_1 \quad \bar{v_1} = \bar{v_2} \frac{\partial v_2}{\partial v_1} = \frac{1}{v_2} v_0 = \frac{1}{x}$$

$$v_2 = v_0 \cdot v_1 \quad \times \quad \bar{v_2} = \bar{v_3} \frac{\partial v_3}{\partial v_2} = 1 \cdot \frac{1}{v_2}$$

$$v_3 = \log v_2 \quad \log v_3 = \frac{\partial v_3}{\partial v_3} = 1$$

What Do AD Libraries Care About?

- Flexibility:
 - Debugging, exceptions, conditional loops, matrix subset assignment
- : Efficiency:
 - Efficiently using a single CPU/GPU
- Scaling
 - Efficiently using clusters with multi-gpu/cpu nodes

How do we keep track of our reverse pass?

- Source code transformation
 - Unroll all forward passes and reverse passes into one function

Good: Fast

Bad: Hard to implement, very restrictive

How do we keep track of our reverse pass?

- Source code transformation
 - Unroll all forward passes and reverse passes into one function

Good: Fast

Bad: Hard to implement, very restrictive

- Operator Overloading
 - Nodes in the expression graph are objects which store a forward and reverse pass function

Good: Easier to implement, more flexible

Bad: Less optimization opportunities

Newer AD packages use a combination of both

How do we keep track of our reverse pass?

Static (Fast) vs. Dynamic (Flexible) graphs

- ► Known expression graph size at compile time? (Static)
- ► Reassignment of variables (Dynamic easy, Static hard)
- ► How much time do I have? (Dynamic)

Make A Tape

Tape of Expression Graph

$$f(x, y) = \log(x)y + \sin(x)$$

Figure: Topological sort of expression graph

Operator Overloading Approach

The operator overloading approach usually involves:

- Tracking the expression graph of reverse pass function calls
- ► A pair scalar type to hold the value and adjoint

Operator Overloading: Simple

```
struct var impl {
 double val ;
 double adj ;
 virtual void chain() {}
 var_impl(double val) : val_(val), adj_(0.0) {}
static std::vector<std::shared_ptr<var_impl>>> tape;
struct var {
 std::shared ptr<var impl> vi ;
 var(std::shared_ptr<var_impl>& vi) : vi_(vi) {
    tape.push_back(vi);
```

Operator Overloading: Simple

```
struct mul_vv final : public var_impl {
 var op1_;
 var op2;
 mul vv(double val, var op1, var op2) :
      var_impl(val), op1_(op1), op2_(op2) {}
 void chain() {
    op1_.adj() += op2_.val() * this->adjoint_;
   op2 .adj() += op1 .val() * this->adjoint_;
operator*(var x, var y) {
 return var{
    std::make shared<mul vv>(
      x.val() * y.val(), x, y);
```

Operator Overloading: Simple

```
void grad(var& v) {
  v.adj() = 1.0;
 for (auto & x : tape | std::views::reverse) {
   x->chain();
var x(2.0);
var y(4.0);
auto z = x;
while (value(z) < 10) {
z += x * log(y) + log(x * y) * y;
grad(z);
```

Full Example

Issues

Noncontiguous Access Pattern

Issues

Contiguous Access Pattern

Monotonic Buffer

```
static monotonic buffer resource mbr{1<<16};
static polymorphic_allocator<std::byte> pa{&mbr};
static std::vector<vari*> tape:
template <typename T>
auto& new vari(double x) {
  return *tape.emplace_back(pa.new_object<T>(x,
      0.0));
struct vari {
 double val;
 double adj;
 virtual void chain() {};
}; // 24 bytes
struct var {
 vari* vi ;
 var(double val) :
 vi (new vari<vari>(val)) {}
}; // 8 bytes
```

Monotonic Buffer

```
struct mul_vv : public var_impl {
  vari* op1 ;
  vari* op2_;
  void chain() {
    op1 ->adjoint += this->adjoint * op2 ->value;
    op2 ->adjoint += this->adjoint * op1 ->value;
}; // 40 bytes
8B 0
       8B 1
            8B 2
                   8B 3 8B 4
                                       8B 6
                                8B 5
                                             8B 7
mul_vv{dbl, dbl, vptr, vari*, vari*}
```

Monotonic Buffer

```
void grad(var z) {
  z.adj() = 1;
  for (auto& x : tape | std::views::reverse) {
    x->chain();
var x = 1;
var y = 2;
var z = log(x * y);
grad(z);
// Do what we want with x and y adjoints then clear
tape.clear();
mbr.release();
```

So Many Operator Classes

```
struct mul vv;
struct mul vd;
struct mul dv;
struct add_vv;
struct add_dv;
struct add vd;
struct subtract_vv;
struct subtract dv;
struct subtract vd;
struct divide_vv;
struct divide dv;
struct divide_vd;
```

Reduce Boilerplate

```
template <typename F>
struct callback vari : public vari {
 F rev functor ;
 template <std::floating_point S>
 explicit callback vari(S&& value, F&& rev functor)
    : vari(value).
      rev functor (rev functor) {}
 void chain() final { rev functor (*this); }
}; // 24 + 8B * N
// Helper for callback vari
template <std::floating point T, typename F>
auto lambda var(T val, F&& rev functor) {
  return var(
    new vari<callback vari<F>>(
     std::forward<T>(val),
     std::forward<F>(rev_functor));
```

Reduce Boilerplate

```
template <typename T1, typename T2>
requires any_var<T1, T2>
inline auto operator*(T1 op1, T2 op2) {
 return lambda_var(value(op1) * value(op2),
    [op1, op2](auto&& ret) mutable {
      if constexpr (is_var_v<T1>) {
        adjoint(op1) += adjoint(ret) * value(op2);
      if constexpr (is var v<T2>) {
        adjoint(op2) += adjoint(ret) * value(op1);
    });
```

1 blah

```
1 struct Matrix<var> {
2  var* data_;
3 };
4 Matrix<var> B(M, M);
5 Matrix<var> X(M, M);
6 Matrix<var> Z = X * B.transpose();
```

- Array of Structs:
 - ▶ Simple, most algorithms Just Work™
 - Adds a lot to expression graph
 - turns off SIMD

```
1 struct Matrix<var> {
2  var* data_;
3 };
4 Matrix<var> B(M, M);
5 Matrix<var> X(M, M);
6 Matrix<var> Z = X * B.transpose();
```

- Array of Structs:
 - ► Simple, most algorithms Just Work™
 - Adds a lot to expression graph
 - turns off SIMD


```
1 struct vari<Matrix<double>>> {
2   double* value_;
3   double* adjoint_;
4   virtual void chain() {}
5  };
6  var<Matrix<double>>> B(M, M);
7  var<Matrix<double>>> X(M, M);
8  var<Matrix<double>>> Z = X * B.transpose();
```

- Struct of Arrays:
 - Hard, everything written out manually
 - Collapses matrix expressions in tree
 - ► SIMD can be used on values and adjoints

Matrix Multiplication Example

```
template <typename T1, typename T2>
requires any var<T1, T2>
inline auto operator*(T186 op1, T286 op2) {
  return lambda_var(value(op1) * value(op2),
    [op1, op2](auto\ ret) mutable {
      if constexpr (is_var_matrix_v<T1>) {
        adjoint(op1) += adjoint(ret) *
            value(op2).transpose();
      if constexpr (is var matrix v<T2>) {
        adjoint(op2) += value(op1) * adjoint(ret);
    });
```



```
1 double z = log(x * y);
```

Break it down

```
1 double v0 = x;
2 double v1 = y;
3 double v2 = x * y;
4 double v3 = log(v2)
5 double bar_v3 = 1;
6 double bar_v2 = bar_v3 * 1/v2;
7 double bar_v1 = bar_v2 * v0;
8 double bar_v0 = bar_v2 * v1;
```

Code like the following very hard / impossible in source code transform

```
1 while(error < tolerance) {
2  // ...
3 }</pre>
```

```
1 struct var {
2    double values_;
3    double adjoints_;
4    var(double x) : values_(x), adjoints_(0) {}
5    auto val() const {
6      return values_;
7    }
8    auto6 adj() {
9      return adjoints_;
0    }
1 };
```

```
template <typename F, typename... Exprs>
struct ad expr {
  var ret;
   std::tuple<deduce_ownership_t<Exprs>...> exprs_;
   std::decay t<F> f;
   template <typename FF, typename... Args>
   ad_expr(double x, FF&& f, Args&&... args):
     ret_(x), f_{std::forward < F>(f)},
     exprs (std::forward<Args>(args)...) {}
   auto val() { return ret .val();}
   auto& adj() { return ret .adj();}
```

```
template <typename T1, typename T2>
requires any_var_or_expr<T1, T2>
inline auto operator*(T188 lhs, T288 rhs) {
 return make_expr(value(lhs) * value(rhs),
  [](auto&& ret, auto&& lhs, auto&& rhs) {
    if constexpr (!std::is arithmetic v<T1>) {
      adjoint(lhs) += adjoint(ret) * value(rhs);
    if constexpr (!std::is_arithmetic_v<T2>) {
      adjoint(rhs) += adjoint(ret) * value(lhs);
  }, std::forward<T1>(lhs), std::forward<T2>(rhs));
```

Comparison

Table:
$$f(x, y) = x \log(y) + \log(xy)y$$
;

Method	CPU Time	% Improvement
Shared Ptr	508ns	1.0
MonoBuff	121ns	3.9x
Lambda	112ns	4.2x
Source Code Transform	26.5ns	19×
Baseline	0.282ns	A Lotx