1 Lezione del 05-12-24

1.1 Regole di Armijo-Goldstein-Wolfe

Abbiamo visto alcuni metodi per ricavare passi t_k e direzioni di crescita d_k per algoritmi iterativi di PNL. Vediamo adesso un altro metodo, dato dalle condizioni di **Armijo-Goldstein-Wolfe**:

$$d_k = \nabla f(x_k)$$

$$t_k = \begin{cases} \phi(t_k) \le \phi(0) + \alpha \, \phi'(0) \, t_k \\ \phi'(t_k) \ge \beta \phi'(0) \end{cases}$$

dove $0 < \alpha < \beta < 1$ sono parametri dell'algoritmo.

Sostanzialmente la prima condizione va a verificare che t_k stia fra uno dei punti (non diventi *troppo grande*) dove la funzione è minore della retta passante per $\phi(0)$ con coefficiente angolare $\alpha \, \phi'(0)$, cioè che ad $\alpha = 0$ ha coefficiente nullo (parallela all'asse delle x) e ad $\alpha = 1$ ha coefficiente $\phi'(0)$ (cioè tangente alla ϕ , non prenderà nessun punto).

La seconda condizione verifica invece che t_k sia maggiore del punto t^* (non diventi *troppo piccola*), dove t^* è il punto dove la derivata $\phi'(t^*)$ è uguale a $\beta \phi'(0)$, che per $\beta = 0$ è nuovamente la retta parallela all'asse x, mentre per $\beta = 1$ è tangente a $\phi'(0)$.

Nel grafico, il vincolo in rosso è il primo (relativo ad α), mentre il vincolo in giallo è il secondo (relativo a β).

1.2 Metodo di Frank-Wolfe

Restringiamoci a funzioni f(x) su domini Ω regolari limitati, di cui siamo interessati a trovare il massimo $\max_{x \in \Omega} f(x)$. L'idea è quella di definire il **problema linearizzato** (detto PL) in x_k , cioè $\operatorname{PL}(x_k)$. Prendiamo allora l'approssimazione di primo ordine dato dall'espansione di Taylor al secondo termine:

$$f(x) = f(x_k) + \nabla f(x_k)(x - x_k) + o(x - x_k)$$

Scartando i termini costanti, vogliamo trovare:

$$y_k = \max_{x \in \Omega} \nabla f(x_k) x$$

Sarà allora:

$$d_k = y_k - x_k$$

$$t_k \in \operatorname{argmax}_{0 \le t \le 1} f(x_k + t(y_k - x_k))$$

Si può dimostrare che il metodo fi Frank-Wolfe, se la funzione ne ammette, trova un punto stazionario dopo un numero finito di iterazioni per qualsiasi punto iniziale x_0 .