

Ventral-Dorsal Neural Networks: Object Detection via Selective Attention

Mohammad K. Ebrahimpour¹
Jiayun Li², Yen-Yun Yu³, Jackson L. Reese³, Azadeh Moghtaderi³, Ming-Hsuan Yang¹, David C. Noelle¹

¹University of California, Merced ²University of California, Los Angles ³Ancestry.com

January 2019

Brain Inspiration: How Do Humans Detect Objects?

Dual Neural Networks for Object Detection

Attention Matters!

Ventral Net: Guiding Selective Attention

"Gestalt Total" Activation Over The Most Abstract Features.

$$GT = \sum_{k} \sum_{x,y} f_k(x,y)$$

Perform Sensitivity Analyses to Produce Attention Maps.

$$S = \frac{\partial \ GT}{\partial \ X} \mid_{X=I}$$

Dorsal Net: Detecting Objects in Attended Subregions

 Any Object Detection Algorithm that Tolerates Occluded Image Subregions Could be Used as Dorsal Net.

Ventral-Dorsal Neural Networks

Results

Ventral-Dorsal Networks outperform state-of-the-art approaches!

Figure 3. VDNet Performance on Some PASCAL VOC 2007 Validation Images

Deeper Dorsal Nets exhibit improved accuracy.

VDNet Component	Deep Network	mAP
Dorsal Net	Inception	63.1
Dorsal Net	ResNet50	71.6
Dorsal Net	ResNet101	86.2

Table 3. PASCAL VOC 2007 Test Results for Different Network Architectures

Results

Thanks

Paper ID: 634

Poster Session: Wednesday - Jan 9, 2019 | Poster Session 7.30-10.00pm

Please visit our Github page for more results and demos!