*** Applied Machine Learning Fundamentals *** Machine Learning Introduction

Daniel Wehner

SAPSE

August 7, 2019

Agenda August 7, 2019

- General Overview
- 2 Problem Types in Machine Learning Type of Training Information Availability of Training Examples Type of Target Variable
- 3 Key Challenges in Machine Learning
 Generalization from Training Data
 Feature Selection / Feature Engineering

Performance Measurement Model Selection Computation

- Machine Learning Examples
- **5** Wrap-Up

Summary
Lecture Overview
Self-Test Questions
Recommended Literature and further Reading

Section: General Overview

Why Machine Learning?

'We are drowning in information and starving for knowledge.'

Wrap-Up

- John Naisbitt

- Era of big data:
 - In 2017 there are about 1.8 trillion web-pages on the internet
 - 20 hours of video are uploaded to YouTube every minute
 - Walmart handles more than 1 million transactions per hour and has data bases containing more than 2.5 peta-bytes (2.5×10^{15}) of information
- No human being can deal with this data avalanche!

General Overview

Problem Types in Machine Learning Key Challenges in Machine Learning Machine Learning Examples Wrap-Up

Why Machine Learning? (Ctd.)

'I keep saying the sexy job in the next ten years will be **statisticians** and **machine learners**. People think I'm joking, but who would've guessed that computer engineers would've been the sexy job of the 1990s? The ability to take data - to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it - that's going to be a hugely important skill in the next decades'

- Hal Varian, Chief Economist at Google, 2009

Definition of Machine Learning

 '[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed."

- Arthur Samuel. 1959

• 'A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

- Tom Mitchell. 1997

General Overview

Problem Types in Machine Learning Key Challenges in Machine Learning Machine Learning Examples Wrap-Up

A more abstract Definition

Our task is to learn a mapping from input to output:

$$h: \mathfrak{I} \mapsto \mathfrak{O}$$

Put differently, we want to predict the output from the input:

$$y = h(x; \theta)$$
 also: $y = h_{\theta}(x)$

- $x \in \mathcal{I}$ (Input)
- $y \in \mathcal{O}$ (Output)
- $\theta \in \Theta$ (Parameters: What needs to be 'learned')

Section: Problem Types in Machine Learning

Type of Training Information

- Supervised learning
 - 'Teacher' provides gold labels
 - E. g. neural networks, decision trees, linear regression
- Unsupervised learning
 - Labels are not known during training
 - E. g. clustering, density estimation, association rule mining
- Reinforcement learning
 - Environment provides rewards for actions but correct action is unknown
 - E. g. policy-iteration, Q-learning, SARSA
- Semi-supervised learning (Instances partly labeled)

Type of Training Information (Ctd.)

Supervised Learning • A 'teacher' provides gold labels • Neural networks, decision trees, linear regression Reinforcement Learning Semi-Supervised Learning Feedback only Partly labeled data No labels **Unsupervised Learning** • No labels available Clustering, Apriori, ...

Supervised Learning

- A single row is called example
- An example without class label is called instance
- Predictors:
 - Outlook ∈ {sunny, overcast, rainy}
 - Temperature $\in \{hot, mild, cool\}$
 - Humidity $\in \{high, normal\}$
 - Wind \in {weak, strong}
- Label:
 - PlayGolf $\in \{yes, no\}$
 - Given a new instance we want to predict the label
- Label for the new instance???

Outlook	Temperature	Humidity	Wind	PlayGolf
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no
rainy	mild	normal	strong	???

Supervised Learning: General Approach

Unsupervised Learning

- There are no labels
- Try to find regularities in the data
- Examples for unsupervised learning:
 - Clustering
 - Density estimation
 - Dimensionality reduction

Availability of Training Examples

- Batch Learning
 - The learner is provided with a fixed set of training examples
 - See weather data set
 - E. g. neural networks, decision trees
- Incremental/Online Learning
 - Constant stream of training examples
 - The model is updated as new training examples arrive
 - E. g. k-nearest-neighbors
- Active Learning (not covered)

Type of Target Variable: Regression

Regression

- Learn a mapping into a continuous space
 - $\Omega = \mathbb{R}$
 - $\mathcal{O} = \mathbb{R}^3$
- E. g. curve fitting, financial analysis, housing prices, ...

Type of Target Variable: Classification

Classification

- Learn a mapping into a discrete space, e. g.
 - $O = \{0, 1\}$ (binary classification)
 - $0 = \{0, 1, 2, 3, ...\}$
 - $\mathfrak{O} = \{ verb, noun, adverb, ... \}$
- Examples:
 - Spam / no spam
 - Digit recognition
 - Part of speech tagging

Section: Key Challenges in Machine Learning

Generalization from Training Data

- Learning doest not mean memorizing the training data
- What if we see input that we haven't seen before?
- Example OCR (Optical Character Recognition):

Hand-written digits from the MNIST data set

- Predict the character given the input image
- People have different hand-writings

Generalization from Training Data Feature Selection / Feature Engineering Performance Measurement Model Selection Computation

What is the problem here?

- Complex decision boundary
- This leads to 🙎 Overfitting 🧸
 - The model is too expressive...
 - ...and adapts to idiosyncrasies of the training data

Solution: Choose a simpler model (c. f. Occam's razor)

Generalization from Training Data (Ctd.)

- Linear model
- Allow for misclassifications of training examples
- Better generalization to unseen instances

A Prominent Example of Overfitting

Choosing the right Features

When stuck, move to a different perspective!

$$\phi(x_1, x_2) \mapsto (x_1^2, \sqrt{2}x_1x_2, x_2^2) = (z_1, z_2, z_3)$$

Choosing the right Features

But: Beware of the curse of dimensionality!

- Too many features significantly slow down the ML algorithm
- Need exponential amount of training data
- Dimensionality reduction

Image taken from [] p. 35

Performance Measurement

- How do we measure performance?
 - 99 % correct classification in speech recognition: What does it really mean?
 - We understand the meaning of the sentence?, We understand every word?, For all speakers?
- We need more concrete numbers:
 - % of correctly classified letters
 - Average distance driven (until accident, ...)
 - % of games won
 - % of correctly recognized words, sentences, etc.
- Training vs. testing performance

Performance Measurement (Ctd.)

• We also need to define the right error metric:

- Which is better?
- Euclidean distance (L2-norm) might be useless

Model Selection

- What is the right model?
- The learned parameters (here: w) can mean a lot of different things:
- May characterize a family of functions
- May be parameters of a probability distribution
- w may be a vector, adjacency matrix, graph, ...

Computation

Even if the other problems are solved, computation is usually quite hard:

- Learning involves optimization of parameters
- Find / Search for best model parameters
 - GoogleNet has \approx 6.5 million parameters
 - Often GPUs (Graphics Processing Unit) are needed
 - Google invented TPUs (Tensor Processing Unit)
- Often we have to deal with thousands, millions, ... of training examples
- Given a model, the prediction has to be computed efficiently

Section: Machine Learning Examples

Machine Learning Examples

General Overview
Problem Types in Machine Learning
Key Challenges in Machine Learning
Machine Learning Examples
Wrap-Up

Summary Lecture Overview Self-Test Questions Recommended Literature and further Readin

Summary

Lecture Overview

Unit I: Machine Learning Introduction

Self-Test Questions

Recommended Literature and further Reading

[1] Machine Learning

Tom Mitchell. McGraw-Hill Science. 1997.

 \rightarrow See chapter 1 (Introduction)

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Machine Learning Introduction

Date: August 7, 2019

Contact:

Daniel Wehner (D062271) SAP SE

daniel.wehner@sap.com

Do you have any questions?

