Package 'AOPfingerprintR'

August 29, 2025

Title Curated Gene Annotation of Adverse Outcome Pathways Related to Human Health **Version** 0.0.1

Description The package contains lists of gene identifiers mapped to adverse outcome pathways and their key events as described in https://doi.org/10.1038/s41597-023-02321-w. Available gene identifiers are Ensembl, Symbol, and Entrez. Furthermore the package provides functions to enrich Key events and AOPs, performe the AOPfingerprint analysis described in https://doi.org/10.1002/advs.202203984 and to plot the KE-KE interaction network resulting from KE enrichment analysis.

License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Depends R (>= 3.5.0)
LazyData true
Author [Angela Serra] <angela.serra@tuni.fi>
Maintainer [Angela Serra] <angela.serra@tuni.fi>

Contents

Annotate_AOPs
aops_new
aop_ke_table_hure
aop_names
Biological_system_annotations
build_aop_for_aop_fingeprints
clust_anno
compute_the_closest_AOs
compute_the_closest_MIEs
convert_enrichment_genes_to_symbols
convert_genes_to_symbol
enrich_KEs_AOPs
filter_df_no
geneset_enrichment
genes_human
genes_mouse
genes rat

2 Annotate_AOPs

ex		34
	render_aop_fingerprint_bubble_plot	32
	rat_symbol_ke	
	rat_symbol_clusters	31
	rat_symbol_aop	31
	rat_entrez_ke	30
	rat_entrez_clusters	30
	rat_entrez_aop	29
	rat_ens_ke	29
	rat_ens_clusters	28
	rat_ens_aop	28
	plot_visNetwork	27
	mouse_symbol_ke	26
	mouse_symbol_clusters	26
	mouse_symbol_aop	25
	mouse_entrez_ke	25
	mouse_entrez_clusters	24
	mouse_entrez_aop	24
	mouse_ens_ke	23
	mouse_ens_clusters	23
	mouse_ens_aop	22
	make_visNetwork	21
	loop_enrichment_v2	20
	load_biomaRt_data	19
	ke_names	19
	KEKE_net	18
	human_symbol_ke	18
	human_symbol_clusters	17
	human_symbol_aop	17
	human_entrez_ke	16
	human_entrez_aop	16
	human_ens_ke	15
	human_ens_clusters	14 15
	human_ens_aop	
	group_enriched_ke_by_tissue	
	annon anniabad la ba diana	

Description

 $AOP_SSbD_IMPACT_ASSOCIATION$

 $Annotate_AOPs \qquad \qquad AOP_SSbD_ANNOTATION$

Usage

 ${\tt Annotate_AOPs}$

aops_new 3

Format

```
A data frame with 6 variables:
```

AOP AOP ids
SSbD_category SSbD impact category
Endpoint Endpoint
Organ Organ

Notes Notes

 $AOP_name\ AOP_name$

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

aops_new

 $AOP_KE_GENE_ASSOCIATION_DF$

Description

Dataframe of association between AOPs, KEs and ensembl genes

Usage

aops_new

Format

A data frame with 6 variables:

Aop AOP ids

Aop_KE KE ids belonging to Aop id

 $\mathsf{KE}\ \mathsf{KE}\ \mathsf{id}$

Annotation GO id mapped to KE

Level Level

Gene Gene id

Source

https://doi.org/10.1038/s41597-023-02321-w

4 aop_names

aop_ke_table_hure

AOP_KE_ASSOCIATION

Description

```
AOP_KE_MAPPING
```

Usage

```
aop_ke_table_hure
```

Format

A data frame with 5 variables:

Aop AOP ids

Ke KE ids

Ke_type KE type description, possible values are MolecularInitiatingEvent, AdverseOutcome, KeyEvent

Ke_description KE name

a.name AOP name

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

aop_names

AOP_NAMES

Description

```
AOP_IDs_NAMES_ASSOCIATION
```

Usage

aop_names

Format

A data frame with 2 variables:

a.AOP_ID AOP ids

a.name AOP names

```
https://doi.org/10.1038/s41597-023-02321-w
```

${\it Biological_system_annotations} \\ {\it BIOLOGICAL_SYSTEM}$

Description

```
BIOLOGICAL_SYSTEM_ANNOTATION
```

Usage

 ${\tt Biological_system_annotations}$

Format

```
A data frame with 11 variables:
```

a.AOP_ID AOP ids

a.name AOP names

key_event_name Name of the key event in the biological system

ke Key event identifier

level Biological level of organization

system Primary biological system involved

organ_tissue Primary organ or tissue involved

cell Primary cell type involved

cell_component Primary cell component involved

secondary_system Secondary biological system involved, if any

secondary_organ_tissue Secondary organ or tissue involved, if any

secondary_cell Secondary cell type involved, if any

secondary_cell_component Secondary cell component involved, if any

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

build_aop_for_aop_fingeprints

Build AOP Enrichment Results for AOP Fingerprints

Description

This function constructs AOP enrichment results for AOP fingerprints based on specified criteria.

6 clust_anno

Usage

```
build_aop_for_aop_fingeprints(
   aop_enrichment_results,
   ke_enrichment_results,
   min_aop_length = 6,
   percentage_enriched_ke = 0.33
)
```

Arguments

Value

A list containing two data frames: detailed_results_only_enriched and detailed_results_all_ke_in_aop.

clust_anno

CLUSTERED_KE

Description

KE-cluster associations

Usage

clust_anno

Format

A data frame with 3 variables:

cluster KE cluster ids
KEs KE ids
Description KE names

```
https://doi.org/10.1038/s41597-023-02321-w
```

```
compute_the_closest_AOs
```

Compute closest adverse outcomes to a given vertex

Description

This function takes in a vertex (or set of vertices) of interest, an igraph object representing the KE-KE network, a vector of adverse outcomes (AO), and optional parameters threshold and distance, and returns the closest adverse outcomes to the vertex of interest in the KEKE_net. If distance is set to TRUE, it returns both the names of the closest adverse outcomes and the corresponding distances between the vertex of interest and the adverse outcomes.

Usage

```
compute_the_closest_AOs(
  interesting_vertex,
  KEKE_net,
  AO,
  max_path_length = 10,
  mode = "out",
  n_AOs = 20
)
```

Arguments

interesting_vertex

A string representing the name of the vertex/vertices of interest in the KEKE_net.

KEKE_net

An igraph object representing the knowledge exchange network.

AO

A vector of adverse outcomes.

max_path_length

An integer representing the maximum length of the path allowed to reach an

adverse outcome (Including KE and AO).

n_A0s

An integer representing the maximum number adverse outcomes to be added

Value

the function returns a vector of the names of the closest AOs to the vertex of interest in the KEKE_net.

```
compute_the_closest_MIEs
```

Compute closest molecular initiating events to a given vertex/set of vertices

Description

This function takes in a vertex (or set of vertices) of interest, an igraph object representing the KE-KE network, a vector of adverse outcomes (AO), and optional parameters threshold and distance, and returns the closest adverse outcomes to the vertex of interest in the KEKE_net. If distance is set to TRUE, it returns both the names of the closest adverse outcomes and the corresponding distances between the vertex of interest and the adverse outcomes.

Usage

```
compute_the_closest_MIEs(
  interesting_vertex,
  KEKE_net,
  MIE,
  max_path_length = 5,
  distance = TRUE,
  mode = "out",
  n_MIEs = 20
)
```

Arguments

interesting_vertex

A string representing the name of the vertex/vertices of interest in the KEKE_net.

KEKE_net An igraph object representing the knowledge exchange network.

MIE A character vector representing the list of molecular initiating events (MIEs).

max_path_length

An integer representing the maximum length of the path allowed (Including MIE

and KE)

n_MIEs An integer representing the maximum number adverse outcomes to be added#'

@param distance A logical value (TRUE or FALSE) indicating whether to return both the names of the closest adverse outcomes and the corresponding dis-

tances (default is FALSE).

Value

the function returns a vector of the names of the closest MIEs to the vertex of interest in the KEKE_net.

```
convert_enrichment_genes_to_symbols
```

Convert Gene IDs to Symbols in Enrichment Results

Description

Converts gene identifiers in a data frame of enrichment results to gene symbols. Assumes the genes are stored in a column named Genes as a semicolon-separated string.

Usage

```
convert_enrichment_genes_to_symbols(
  enrichment_df,
  gene_id_type,
  organism,
  genes_human,
  genes_mouse,
  genes_rat
)
```

Arguments

enrichment_df A data frame with a Genes column containing semicolon-separated gene identifiers.

gene_id_type A string indicating the type of gene ID used (e.g., "ENSEMBL", "ENTREZID", or "SYMBOL").

organism A string indicating the organism ("human", "mouse", or "rat").

genes_human mapping file for human genes
genes_mouse mapping file for mouse genes
genes_rat mapping file for rat genes

Value

A data frame with the Genes column converted to gene symbols.

```
convert_genes_to_symbol
```

Convert a Vector of Gene IDs to Gene Symbols

Description

Converts a vector of gene identifiers (e.g., ENSEMBL or ENTREZ IDs) to gene symbols for a specified organism. Uses preloaded data frames (genes_human, genes_mouse, genes_rat) from load_biomaRt_data().

Usage

```
convert_genes_to_symbol(
  genes,
  gene_id_type,
  organism,
  genes_human,
  genes_mouse,
  genes_rat
)
```

Arguments

genes A character vector of gene identifiers.

gene_id_type A string indicating the input gene ID type (e.g., "ENSEMBL", "ENTREZID", or

"SYMBOL").

organism A string indicating the organism ("human", "mouse", or "rat").

genes_human mapping file for human genes genes_mouse mapping file for mouse genes genes_rat mapping file for rat genes

Value

A character vector of gene symbols.

10 enrich_KEs_AOPs

enrich_KEs_AOPs

Perform Enrichment Analysis for Key Events

Description

Conduct enrichment analysis for key events (KEs) using the provided data and parameters.

Usage

```
enrich_KEs_AOPs(
   GList,
   list_gene_sets,
   only_significant = FALSE,
   pval_th = 0.05,
   adj.method = "fdr",
   merge_by = "Ke",
   numerical_properties = "Score",
   background = unique(unlist(list_gene_sets)),
   verbose = TRUE,
   aggregation_function = "median"
)
```

Arguments

GList

A named list of data frames. Each element of the list represents a specific experimental condition. The dataframe must have a column with gene ids named 'Feature', and optional numerical values associated to the genes (e.g. t-test statistics, fold-changes, bmd values, etc)

list_gene_sets One of the list of gene sets for enrichment analysis provided by the package only_significant

Logical indicating whether to include only significant results.

vector of strings, corresponding to colnames in the dataframes of the GList list

that indicates numerical properties of the Features

background A vector of background genes to compare against.

verbose boolean if TRUE a txtProgressBar is printed

aggregation_function

Function to be used to aggregate the numerical values of the KEs/AOPs. Possible values are median, mean, min and quantile_05. When using quantile_05 the 5% quantile of the distribution of the values is computed.

Value

A list of enriched key events (KEs) and associated results.

filter_df_no

filter_df_no	Filter DataFrame by Column Values	
--------------	-----------------------------------	--

Description

Filters a data frame based on specified columns and filter values.

Usage

```
filter_df_no(mod_stats, filter_column, filter_by)
```

Arguments

mod_stats A data frame containing model statistics.

filter_column A character vector specifying the columns to filter.

filter_by A list of character vectors containing filter values for each column.

Value

Returns a filtered data frame if filtering conditions are met; otherwise, NULL.

geneset_enrichment Gene Set Enrichment Analysis

Description

This function performs a gene set enrichment analysis, comparing a list of genes to a reference set across multiple gene sets.

Usage

```
geneset_enrichment(
  genes_of_interest,
  background,
  genesets,
  adj.method = "fdr",
  verbose = FALSE,
  numerical_properties = c("BMD", "BMDU", "BMDL"),
  aggregation_function = "median"
)
```

Arguments

background A vector of background genes to compare against.

genesets A named list of gene sets, where each element is a vector of genes belonging to

that set.

adj.method Method for adjusting p-values. Default is "fdr" (False Discovery Rate).

verbose Logical, indicating whether to print progress messages. Default is FALSE.

12 genes_mouse

numerical_properties

A vector of column names from the genes data frame representing numerical properties to be averaged. Default includes "BMD", "BMDU", and "BMDL".

aggregation_function

Function to be used to aggregate the numerical values of the KEs/AOPs. Possible values are median, mean, min and quantile_05. When using quantile_05 the 5% quantile of the distribution of the values is computed.

genes_human

genes_human

Description

Mapping between ENSEMBL, SYMBOL and ENTREZ human gene IDs

Usage

genes_human

Format

A dataframe with columns ensembl_gene_id, hgnc_symbol, entrezgene_id and description. From human = useMart("ensembl", dataset = "hsapiens_gene_ensembl", host = "https://dec2021.archive.ensembl.org/")

genes_mouse

genes_mouse

Description

Mapping between ENSEMBL, SYMBOL and ENTREZ mouse gene IDs

Usage

genes_mouse

Format

A dataframe with columns ensembl_gene_id, hgnc_symbol, entrezgene_id and description. From mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl", host = "https://dec2021.archive.ensembl.org/")

genes_rat 13

genes_rat genes_rat

Description

Mapping between ENSEMBL, SYMBOL and ENTREZ rat gene IDs

Usage

```
genes_rat
```

Format

A dataframe with columns ensembl_gene_id, hgnc_symbol, entrezgene_id and description.From rat = useMart("ensembl", dataset = "rnorvegicus_gene_ensembl", host = "https://dec2021.archive.ensembl.org/")

```
group_enriched_ke_by_tissue
```

Plot KEs average BMD by tissue

Description

Plot KEs average BMD by tissue

Usage

Arguments

```
ke_enrichment_results
```

A data frame containing the enrichment data.

filter_experiment

a vector of strings of experiment IDs to be plotted. If NULL no filtering is performed

periornieu

group_by_time a string for timeid. If NULL all time points are included in the plot. Use NULL

also if timepoint is not a variable inclued in the experimental setup

pheno_colnames vector of string indicating the variables from KE enrichment results to be con-

sidered for plotting,

relevant_tissues

list of tissues to add in the plot.

human_ens_clusters

Value

A grouped bar plot

human_ens_aop

AOP_HUMAN_ENSEMBL_GENES

Description

Mapping between AOP ids and human ensembl genes

Usage

human_ens_aop

Format

A list with AOP ids used as indices. Each position contains a vector of human ensembl gene ids

Source

https://doi.org/10.1038/s41597-023-02321-w

human_ens_clusters

 $CLUSTERED_KE_HUMAN_ENSEMBL_GENES$

Description

Mapping between KE ids and human ensembl genes. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

human_ens_clusters

Format

A list with clustered KE ids used as indices. Each position contains a vector of human ensembl gene ids

Source

https://doi.org/10.1038/s41597-023-02321-w

human_ens_ke

human_ens_ke

KE_HUMAN_ENSEMBL_GENES

Description

Mapping between KE ids and human ensembl genes.

Usage

human_ens_ke

Format

A list with KE ids used as indices. Each position contains a vector of human ensembl gene ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

human_entrez_aop

 $AOP_HUMAN_ENTREZ_GENES$

Description

Mapping between AOP ids and human genes symbols

Usage

human_entrez_aop

Format

A list with AOP ids used as indices. Each position contains a vector of human gene symbol ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

human_entrez_ke

Description

Mapping between KE ids and human gene symbols. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

human_entrez_clusters

Format

A list with clustered KE ids used as indices. Each position contains a vector of human gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

 $\verb|human_entrez_ke|$

KE_HUMAN_ENTREZ_GENES

Description

Mapping between KE ids and human gene symbols.

Usage

human_entrez_ke

Format

A list with KE ids used as indices. Each position contains a vector of human gene symbol ids

Source

https://doi.org/10.1038/s41597-023-02321-w

human_symbol_aop 17

human_symbol_aop

 $AOP_HUMAN_GENE_SYMBOLS$

Description

Mapping between AOP ids and human genes symbols

Usage

human_symbol_aop

Format

A list with AOP ids used as indices. Each position contains a vector of human gene symbol ids

Source

https://doi.org/10.1038/s41597-023-02321-w

Description

Mapping between KE ids and human gene symbols. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

human_symbol_clusters

Format

A list with clustered KE ids used as indices. Each position contains a vector of human gene symbol ids

Source

https://doi.org/10.1038/s41597-023-02321-w

18 KEKE_net

 $human_symbol_ke$

 $KE_HUMAN_GENE_SYMBOLS$

Description

Mapping between KE ids and human gene symbols.

Usage

human_symbol_ke

Format

A list with KE ids used as indices. Each position contains a vector of human gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

KEKE_net

KE_KE_NETWORK

Description

KE-KE network.

Usage

KEKE_net

Format

It is an igraph object, whose nodes are the clustered KEs, and edges represent their connections. Nodes have the attribute 'ke_description' that includes a description of the KEs, while edges have the attribute 'type.r' that specifies the type of connections.

```
https://doi.org/10.1038/s41597-023-02321-w
```

ke_names 19

ke_names

 KE_NAMES

Description

KE_IDs_NAMES_ASSOCIATION

Usage

ke_names

Format

A data frame with 2 variables:

Ke Ke ids

Ke_description KE names

Source

https://doi.org/10.1038/s41597-023-02321-w

load_biomaRt_data

Load Ensembl Gene Annotation Data from biomaRt

Description

Loads gene annotation data for human, mouse, and rat from the December 2021 archive of Ensembl using the biomaRt package. This function retrieves Ensembl gene IDs, gene symbols, Entrez IDs, and descriptions for each species. The resulting data frames (genes_human, genes_mouse, genes_rat) are stored in the global environment.

Usage

load_biomaRt_data()

Value

None. Side effect: creates global variables genes_human, genes_mouse, and genes_rat.

20 loop_enrichment_v2

loop_enrichment_v2

Enrichment Analysis for Multiple Experiment Genes

Description

This is a wrapper of the function geneset_enrichment to performs enrichment analysis for multiple experiments.

Usage

```
loop_enrichment_v2(
  GList,
  list_gene_sets,
  background,
  only_significant = TRUE,
  pval_th = 0.05,
  adj.method = "fdr",
  merge_by = "Ke",
  numerical_properties = c("Score"),
  verbose = TRUE,
  aggregation_function = "median"
)
```

Arguments

GList

A named list of data frames. Each element of the list represents a specific experimental condition. The dataframe must have a column with gene ids, and optional numerical values associated to the genes (e.g. t-test statistics, fold-changes, bmd values, etc)

list_gene_sets A list of gene sets for enrichment analysis.

background Background gene set for enrichment analysis.

only_significant

Logical, whether to include only significant results.

pval_th P-value threshold for significance. adj.method Adjustment method for p-values.

merge_by Column used to merge results with the AOP-KE mapping table. Available op-

tions "Ke" or "Aop"

numerical_properties

vector of strings, corresponding to colnames in the dataframes of the GList list

that indicates numerical properties of the Features

verbose boolean if TRUE a txtProgressBar is printed

aggregation_function

Function to be used to aggregate the numerical values of the KEs/AOPs. Possible values are median, mean, min and quantile_05. When using quantile_05 the 5% quantile of the distribution of the values is computed.

Value

A data frame containing the enriched results.

make_visNetwork 21

make_visNetwork

Create a Visualization Network

Description

This function generates a visualization network (visNetwork) based on enrichment data and a network structure.

Usage

```
make_visNetwork(
  detailed_results,
  experiment,
  enlarge_ke_selection = TRUE,
  ke_id,
  numerical_variables,
  pval_variable,
  gene_variable,
  convert_to_gene_symbols = F,
  gene_id_type,
  organism,
  max_path_length = 20,
  n_A0s = 10,
  n_MIEs = 10,
  mode = "out",
  genes_human,
  genes_mouse,
  genes_rat
)
```

Arguments

detailed_results

A data frame containing detailed enrichment results. It should include columns corresponding to the experiment name, KE (Key Event) identifiers, KE descriptions, and other relevant numerical variables.

experiment

The name of the experiment for which the network is being created. This should match the experiment name in the detailed_results data frame.

enlarge_ke_selection

Logical, whether to expand the selection of Key Events (KEs) to include the closest Molecular Initiating Events (MIEs) and Adverse Outcomes (AOs). Default is TRUE.

ke_id

The column name in $detailed_results$ that corresponds to the Key Event (KE) identifier.

numerical_variables

A character vector specifying the names of the columns in detailed_results that contain numerical variables to be included in the network nodes.

pval_variable

The name of the column in detailed_results that contains p-values or adjusted p-values associated with the enrichment results.

22 mouse_ens_aop

gene_variable The name of the column in detailed_results that contains gene identifiers or

gene sets associated with the enrichment results.

convert_to_gene_symbols

Logical, whether to convert gene identifiers to gene symbols using organism-

specific mapping. Default is FALSE.

gene_id_type A character string indicating the type of gene identifiers used (e.g., "ENSEMBL",

"ENTREZID", or "SYMBOL").

organism A character string specifying the organism of interest ("human", "mouse", or

"rat").

max_path_length

Maximum length of the shortest path to be used to retrieve close MIEs or AOs

if enlarge_ke_selection = TRUE. Default is 20.

n_AOs Number of AOs to add if enlarge_ke_selection = TRUE. Default is 10.n_MIEs Number of MIEs to add if enlarge_ke_selection = TRUE. Default is 10.

 $\label{eq:parameter passed to the igraph::shortest.paths function if enlarge_ke_selection} \\$

= TRUE. Options are "all", "out", or "in". Default is "out".

genes_human mapping file for human genes genes_mouse mapping file for mouse genes genes_rat mapping file for rat genes

Value

A list containing two elements:

nodes A data frame of nodes representing the selected KEs, including information on the numerical variables, p-values, and associated genes.

edges A data frame of edges representing the connections between the KEs in the network.

mouse_ens_aop

AOP_MOUSE_ENSEMBL_GENES

Description

Mapping between AOP ids and mouse ensembl genes

Usage

mouse_ens_aop

Format

A list with AOP ids used as indices. Each position contains a vector of mouse ensembl gene ids

Source

https://doi.org/10.1038/s41597-023-02321-w

mouse_ens_clusters 23

 $mouse_ens_clusters$

CLUSTERED_KE_MOUSE_ENSEMBL_GENES

Description

Mapping between KE ids and mouse ensembl genes. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

mouse_ens_clusters

Format

A list with clustered KE ids used as indices. Each position contains a vector of mouse ensembl gene ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

mouse_ens_ke

KE_MOUSE_ENSEMBL_GENES

Description

Mapping between KE ids and mouse ensembl genes.

Usage

mouse_ens_ke

Format

A list with KE ids used as indices. Each position contains a vector of mouse ensembl gene ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

24 mouse_entrez_clusters

mouse_entrez_aop

 $AOP_MOUSE_ENTREZ_GENES$

Description

Mapping between AOP ids and mouse genes symbols

Usage

mouse_entrez_aop

Format

A list with AOP ids used as indices. Each position contains a vector of mouse gene symbol ids

Source

https://doi.org/10.1038/s41597-023-02321-w

Description

Mapping between KE ids and mouse gene symbols. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

mouse_entrez_clusters

Format

A list with clustered KE ids used as indices. Each position contains a vector of mouse gene symbol ids

Source

https://doi.org/10.1038/s41597-023-02321-w

mouse_entrez_ke 25

mouse_entrez_ke

KE_MOUSE_ENTREZ_GENES

Description

Mapping between KE ids and mouse gene symbols.

Usage

```
mouse_entrez_ke
```

Format

A list with KE ids used as indices. Each position contains a vector of mouse gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

mouse_symbol_aop

 $AOP_MOUSE_GENE_SYMBOLS$

Description

Mapping between AOP ids and mouse genes symbols

Usage

```
mouse_symbol_aop
```

Format

A list with AOP ids used as indices. Each position contains a vector of mouse gene symbol ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

26 mouse_symbol_ke

 $\verb|mouse_symbol_clusters|| \textit{CLUSTERED_KE_MOUSE_GENE_SYMBOLS}|$

Description

Mapping between KE ids and mouse gene symbols. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

```
mouse_symbol_clusters
```

Format

A list with clustered KE ids used as indices. Each position contains a vector of mouse gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

mouse_symbol_ke

KE_MOUSE_GENE_SYMBOLS

Description

Mapping between KE ids and mouse gene symbols.

Usage

```
mouse_symbol_ke
```

Format

A list with KE ids used as indices. Each position contains a vector of mouse gene symbol ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

plot_visNetwork 27

Description

This function generates a visualization network (visNetwork) based on the nodes and edges derived from enrichment data. It allows for the visual grouping of nodes based on either AOPs (Adverse Outcome Pathways) or SSbD (Safe and Sustainable by Design) impact categories, and highlights key events (KEs) based on their significance.

Usage

```
plot_visNetwork(
  nodes,
  edges,
  numerical_variables,
  group_by = "aop",
  color_enriched = "red",
  color_not_enriched = "gray"
)
```

Arguments

nodes A data frame containing nodes representing Key Events (KEs). Each node

should include information such as KE identifiers, KE descriptions, p-values,

associated genes, and any numerical variables relevant to the analysis.

edges A data frame containing edges representing the connections between the KEs in

the network. Each edge should include information such as the source and target

KE IDs.

numerical_variables

A character vector specifying the names of the columns in nodes that contain

numerical data to be displayed in the node tooltips.

group_by A character string indicating how to group the nodes in the network. Accepts

either "aop" (default) to group by Adverse Outcome Pathways, or other specified categories such as "ssbd" to group by SSbD impact categories. Other grouping

categories can be the colnames of the nodes parameter

Value

A visNetwork object that can be rendered to create an interactive network visualization. The network will color nodes based on their significance and group them according to the specified category.

28 rat_ens_clusters

rat_ens_aop

AOP_RAT_ENSEMBL_GENES

Description

Mapping between AOP ids and rat ensembl genes

Usage

```
rat_ens_aop
```

Format

A list with AOP ids used as indices. Each position contains a vector of rat ensembl gene ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

rat_ens_clusters

CLUSTERED_KE_RAT_ENSEMBL_GENES

Description

Mapping between KE ids and rat ensembl genes. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

```
rat_ens_clusters
```

Format

A list with clustered KE ids used as indices. Each position contains a vector of rat ensembl gene ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

rat_ens_ke 29

rat_ens_ke

KE_RAT_ENSEMBL_GENES

Description

Mapping between KE ids and rat ensembl genes.

Usage

rat_ens_ke

Format

A list with KE ids used as indices. Each position contains a vector of rat ensembl gene ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

rat_entrez_aop

AOP_RAT_ENTREZ_GENES

Description

Mapping between AOP ids and rat genes symbols

Usage

```
rat_entrez_aop
```

Format

A list with AOP ids used as indices. Each position contains a vector of rat gene symbol ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

30 rat_entrez_ke

rat_entrez_clusters CD

CLUSTERED_KE_RAT_ENTREZ_GENES

Description

Mapping between KE ids and rat gene symbols. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

rat_entrez_clusters

Format

A list with clustered KE ids used as indices. Each position contains a vector of rat gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

rat_entrez_ke

KE_RAT_ENTREZ_GENES

Description

Mapping between KE ids and rat gene symbols.

Usage

rat_entrez_ke

Format

A list with KE ids used as indices. Each position contains a vector of rat gene symbol ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

rat_symbol_aop 31

rat_symbol_aop

AOP_RAT_GENE_SYMBOLS

Description

Mapping between AOP ids and rat genes symbols

Usage

```
rat_symbol_aop
```

Format

A list with AOP ids used as indices. Each position contains a vector of rat gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

rat_symbol_clusters

 $CLUSTERED_KE_RAT_GENE_SYMBOLS$

Description

Mapping between KE ids and rat gene symbols. KEs sharing the same set of genes are clustered in a combined id as KE_id1;KE_id2

Usage

```
rat_symbol_clusters
```

Format

A list with clustered KE ids used as indices. Each position contains a vector of rat gene symbol ids

```
https://doi.org/10.1038/s41597-023-02321-w
```

```
rat_symbol_ke
```

KE_RAT_GENE_SYMBOLS

Description

Mapping between KE ids and rat gene symbols.

Usage

```
rat_symbol_ke
```

Format

A list with KE ids used as indices. Each position contains a vector of rat gene symbol ids

Source

```
https://doi.org/10.1038/s41597-023-02321-w
```

```
render\_aop\_fingerprint\_bubble\_plot \\ Render\ AOP\ Fingerprint\ Bubble\ Plot
```

Description

This function generates a bubble plot for rendering AOP fingerprint data.

Usage

```
render_aop_fingerprint_bubble_plot(
  enrichement_data,
  group_AOPs = "SSbD_category",
  group_by,
  group_by2,
  x_axis_var,
  y_axis_var = "TermID",
  filter_column,
  filter_by,
  is_group_by_numeric,
  threshold_proportion,
  text_cex = 12
)
```

Arguments

enrichement_data

A data frame containing the enrichment data.

group_by Variable used for grouping the data.

group_by2 Second variable used for subgrouping the data.

filter_column Column for filtering the data. filter_by Value for filtering the data.

is_group_by_numeric

Logical, whether the grouping variable is numeric.

 $threshold_proportion$

Proportion threshold for filtering data.

text_cex Text size for labels.

time_var Column name of timepoint variable

Value

A bubble plot visualizing AOP fingerprint data.

Index

* datasets	Biological_system_annotations, 5
Annotate_AOPs, 2	build_aop_for_aop_fingeprints, 5
aop_ke_table_hure, 4	bullu_dop_ror_dop_ringeprintes, 5
aop_names, 4	clust_anno, 6
aops_new, 3	compute_the_closest_AOs, 7
Biological_system_annotations, 5	compute_the_closest_MIEs, 7
clust_anno, 6	<pre>convert_enrichment_genes_to_symbols, 8</pre>
genes_human, 12	convert_genes_to_symbol, 9
genes_mouse, 12	
genes_rat, 13	enrich_KEs_AOPs, 10
human_ens_aop, 14	
human_ens_clusters, 14	filter_df_no, 11
human_ens_ke, 15	
human_entrez_aop, 15	genes_human, 12
human_entrez_clusters, 16	genes_mouse, 12
	genes_rat, 13
human_entrez_ke, 16	geneset_enrichment, 11
human_symbol_aop, 17	<pre>group_enriched_ke_by_tissue, 13</pre>
human_symbol_clusters, 17 human_symbol_ke, 18	
ke_names, 19	human_ens_aop, 14
	human_ens_clusters, 14
KEKE_net, 18	human_ens_ke, 15
mouse_ens_aop, 22	human_entrez_aop, 15
mouse_ens_clusters, 23	human_entrez_clusters, 16
mouse_ens_ke, 23	human_entrez_ke, 16
mouse_entrez_aop, 24	human_symbol_aop, 17
mouse_entrez_clusters, 24	human_symbol_clusters, 17
mouse_entrez_ke, 25	human_symbol_ke, 18
mouse_symbol_aop, 25	
mouse_symbol_clusters, 26	ke_names, 19
mouse_symbol_ke, 26	KEKE_net, 18
rat_ens_aop, 28	Total Micros D4 Hotel 10
rat_ens_clusters, 28	load_biomaRt_data, 19
rat_ens_ke, 29	loop_enrichment_v2, 20
rat_entrez_aop, 29	make wichetwerk 21
rat_entrez_clusters, 30	make_visNetwork, 21
rat_entrez_ke, 30	mouse_ens_aop, 22
rat_symbol_aop, 31	mouse_ens_clusters, 23
rat_symbol_clusters, 31	mouse_ens_ke, 23
<pre>rat_symbol_ke, 32</pre>	mouse_entrez_aop, 24
Annatata AODa 2	mouse_entrez_clusters, 24
Annotate_AOPs, 2	mouse_entrez_ke, 25
aop_ke_table_hure, 4	mouse_symbol_aop, 25
aop_names, 4	mouse_symbol_clusters, 26
aops_new, 3	mouse_symbol_ke, 26

INDEX 35

```
plot_visNetwork, 27

rat_ens_aop, 28

rat_ens_clusters, 28

rat_ens_ke, 29

rat_entrez_aop, 29

rat_entrez_clusters, 30

rat_entrez_ke, 30

rat_symbol_aop, 31

rat_symbol_clusters, 31

rat_symbol_ke, 32

render_aop_fingerprint_bubble_plot, 32
```