EXPERIMENT 03

Name: Rohit Vilas Bhadane	Date:
Roll No: 04	Grade:
Class: TE Comps	Sign:

Aim: Identify a problem statement for an Intelligent Agent

Theory:

8 Queens' Problem:

Given a 8×8 chessboard. The task is to place 8 queens on the board, such that no two queens attack each other. Return all distinct possible solutions for the 8 queens problem.

Efficient Approach: Backtracking

The idea is to apply a backtracking approach to solve the problem. The backtracking function does the following:

- Places only 1 queen per row satisfying the conditions.
- Places only 1 queen per column satisfying the conditions.

For the diagonals, the value of (row - col) is constant and the main diagonal is 0.

Every square has value (row - col). Diagonals share the same values

	0	1	2	3	4	5	6	7
0	0	-1	-2	-3	-4	-5	-6	-7
1	1	0	-1	-2	-3	-4	-5	-6
2	2	1	0	-1	-2	-3	-4	-5
3	3	2	1	0	-1	-2	-3	-4
4	4	3	2	1	0	-1	-2	-3
5	5	4	3	2	1	0	-1	-2
6	6	5	4	3	2	1	0	-1
7	7	6	5	4	3	2	1	0

Similarly, for **anti-diagonal**, the value of (**row** + **col**) is constant.

Every square has value (row - col). Anti-Diagonals share the same values

	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	8
2	2	3	4	5	6	7	8	9
3	3	4	5	6	7	8	9	10
4	4	5	6	7	8	9	10	11
5	5	6	7	8	9	10	11	12
6	6	7	8	9	10	11	12	13
7	7	8	9	10	11	12	13	14

From the above, we can keep track of the rows and columns which have been used already. Therefore, no more queens can be placed in such rows/columns.

The problem formulation is as follows:

- States: Any arrangement of n0 to 8 queens on the board is a state.
- Initial State: No queens on the board.
- **Actions:** Place a queen in such a way that it does not conflict with either vertically, horizontally or diagonally.
- Transition Model: It returns the resulting state as per the given state and actions.
- Goal test: All 8 queens must be placed on board without any conflict.
- Path cost: Number of steps required 92

Conclusion: Thus, we learned how to place all 8 queens on board without any of themconflicting with other queens either horizontally or vertically or diagonally.