MA0301 ELEMENTARY DISCRETE MATHEMATICS SPRING 2017

1. Homework Set 7 - Solutions

Exercise 1. Grimaldi's book (5. ed., Exercises 3.1, page 134): solve Ex. 6

Solution 1. a) T, b) T, c) T, d) F, e) T, f) F

Exercise 2. Grimaldi's book (5. ed., Exercises 3.2, page 147): solve Ex. 13

Solution 2. Statement a) is not true. Counterexample: $X := \{x_1, x_2, x_3\}, X_1 = \{x_1\}, X_2 = \{x_2\}.$ Then it follows that $\mathcal{P}(X_1) = \{\emptyset, X_1\}, \mathcal{P}(X_2) = \{\emptyset, X_2\}, \text{ and } \mathcal{P}(X_1 \cup X_2) = \{\emptyset, X_1, X_2, \{x_1, x_2\}\},$ but $\mathcal{P}(X_1) \cup \mathcal{P}(X_2) = \{\emptyset, X_1, X_2\}.$

Statement b) is true. Start with $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$ which is equivalent to $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$, which is equivalent to $X \subset A$ and $X \subset B$, which is equivalent to $X \subset A \cap B$, which is equivalent to $X \in \mathcal{P}(A \cap B)$. Therefore $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

Exercise 3. Grimaldi's book (5. ed., Exercises 5.1, page 252): solve Ex. 2

Solution 3. a) clear, b) clear

Exercise 4. Grimaldi's book (5. ed., Exercises 5.1, page 252): solve Ex. 3

Solution 4. a) |A| = |B| = 3 and $|A \times B| = |A||B| = 9$.

- b) Recall that relations from A to B are subsets of the cartesian product $A \times B$. There are $|\mathcal{P}(A \times B)|$ many subsets of $A \times B$. Hence, there are 2^9 possible relations from A to B.
 - c) |A| = 3 and $|A \times A| = |A||A| = 9$. Hence, there are $|\mathcal{P}(A \times A)| = 2^9$ possible relations on A.
- d) The pairs (1,2) and (1,5) are two out of 9 pairs in $A \times B$. Relations from A to B are subsets of $A \times B$. Hence there are seven pairs left in $A \times B$ that can be added or not to the two pairs (1,2) and (1,5). Therefore there are 2^7 possible relations that contain (1,2) and (1,5).
 - e) Choose five out of nine: $\binom{9}{5}$.
 - f) Choose either seven, eight or nine out of nine: $\binom{9}{7} + \binom{9}{8} + \binom{9}{9}$.

Exercise 5. Grimaldi's book (5. ed., Exercises 5.1, page 252): solve Ex. 7

Solution 5. a) |A| = 5 and |B| = 4 so that $|A \times B| = |A||B| = 20$ and $|\mathcal{P}(A \times B)| = 2^{20}$. b) |A| = a and |B| = b so that $|A \times B| = |A||B| = ab$ and $|\mathcal{P}(A \times B)| = 2^{ab}$.

Exercise 6. Grimaldi's book (5. ed., Exercises 5.2, page 258): solve Ex. 1

Solution 6. a) Defines a function with range $\{7, 8, 11, 16, 23...\}$.

- b) Is not a function since (4,2) and (4,-2) are in the relation.
- c) Defines a function with range \mathbb{R} .
- d) Is merely a relation since (0,1) and (0,-1) are included.
- e) Is merely a relation since |R| > 5, i.e., it must contain two pairs with the same initial element.

Date: March 6, 2017.

Exercise 7. Grimaldi's book (5. ed., Exercises 5.2, page 258): solve Ex. 5

<u>Solution</u> 7. a) $A \cap B = \{(x,y) \in \mathbb{R}^2 \mid y - 2x - 1 = 0 \land y - 3x = 0\}$. It follows that x = 1 and therefore $A \cap B = \{(1,3)\}$.

- b) $B \cap C = \{(x,y) \in \mathbb{R}^2 \mid y 3x = 0 \land y x + 7 = 0\}$. It follows that x = -7/2 and therefore $B \cap C = \{(-7/2, -21/2)\}$.
- c) $A \cap C = \{(x, y) \in \mathbb{R}^2 \mid y 2x 1 = 0 \land y x + 7 = 0\}$. It follows that x = -8 and therefore $A \cap C = \{(-8, -15)\}$.
 - d) $B' \cup C' = (B \cap C)' = \mathbb{R}^2 \{(-7/2, -21/2)\}.$

Exercise 8. Grimaldi's book (5. ed., Exercises 5.2, page 259): solve Ex. 15 c), d), f)

Solution 8. c) f(0) = f(1) implies that it is not injective. The range is $\{0, \pm 6, \pm 24, \pm 60, \ldots\}$.

- d) Is injective with range \mathbb{R}^+ .
- f) Among others, $f(\pi/4) = f(3\pi/4)$, and this implies that it is not injective. The range is [0, 1].

Exercise 9. Grimaldi's book (5. ed., Exercises 5.3, page 265): solve Ex. 2 b), d), f)

Solution 9. b) It is injective and not surjective. The range are the odd integers.

- d) It is not injective (f(1) = f(-1)) and not surjective. The range is $\{0, 1, 4, 9, 16, \ldots\}$.
- f) It is injective and not surjective. The range is $\{\ldots, -64, -27, -8, -1, 0, 1, 8, \ldots\}$.

Exercise 10. Grimaldi's book (5. ed., Exercises 5.3, page 265): solve Ex. 3 b), d), f)

Solution 10. b) It is injective and surjective.

- d) It is not injective and not surjective. The range is $[0, \infty[$.
- f) It is injective and surjective.

Exercise 11. Grimaldi's book (5. ed., Exercises 5.6, page 288): solve Ex. 5

Solution 11. We have by definition $g(A) := T \cap (S \cup A)$. Then $g(g(A)) = T \cap (S \cup g(A))$. Now, we see that $T \cap (S \cup g(A)) = T \cap (S \cup (T \cap (S \cup A))) = T \cap (S \cup T) \cap (S \cup A) = (T \cap (S \cup T)) \cap (S \cup A)) = T \cap (S \cup A) = g(A)$.

Exercise 12. Grimaldi's book (5. ed., Exercises 5.6, page 288): solve Ex. 10 b), d)

Solution 12. b) Invertible for $a \neq 0$, $f^{-1} = \{(x,y) \mid ay = c - bx, \ b \neq 0, \ a \neq 0\}$

d) f is not injective and therefore not bijective.

Exercise 13. Grimaldi's book (5. ed., Exercises 5.6, page 288): solve Ex. 14 b), c), f)

Solution 13. b) $f^{-1}(B) = \{-1, 0, 1\}$

- c) $f^{-1}(B) = [-1, 1]$
- f) $f^{-1}(B) =]-3, -2[\cup [-1, 0[\cup]0, 1] \cup]2, 3[.$
 - 2. Classroom Set 7 Solutions

Exercise 14. Grimaldi's book (5. ed., Exercises 5.2, page 258): solve Ex. 12

Solution 14. If n = ka, a positive integer, i.e., k divides n, then $\lceil n/k \rceil = a$. On the other hand, (n-1)/k = a - (1/k) and $a-1 \le a - (1/k) \le a$, which implies that $\lfloor (n-1)/k \rfloor + 1 = a - 1 + 1 = a$. If k does not divide n, then n = ak + b, with a, b positive integers and b < k. This implies that

n/k = a + (b/k) with 0 < b/k < 1. n-1 = ak+b-1 and (n-1)/k = a + (b-1)/k and $0 \le (b-1)/k < 1$. From this it follows that

$$\lceil n/k \rceil = a + 1 = |(n-1)/k| + 1.$$

Exercise 15. Grimaldi's book (5. ed., Exercises 5.2, page 258): solve Ex. 14

Solution 15. a) $a_2 = 2$, $a_3 = 2$, $a_4 = 4$, $a_5 = 4$, $a_6 = 4$, $a_7 = 4$, $a_8 = 8$

b) Proof by induction (alternative form): $a_1 = 1 \le 1$, which provides the basis step. Assume that the statement holds for n=1 up to n=k. For n=k+1 it follows from the ind.-hyp. that $a_{k+1} = 2a_{\lfloor (k+1)/2 \rfloor}$ is smaller or equal to $2\lfloor (k+1)/2 \rfloor$. For odd k it follows that $2\lfloor (k+1)/2 \rfloor = (k+1)$, which implies that $a_{k+1} = 2a_{\lfloor (k+1)/2 \rfloor} \leq k+1$. For even k we find that $2\lfloor (k/2) + (1/2) \rfloor = k$, which implies that $a_{k+1} = 2a_{\lfloor (k+1)/2 \rfloor} = k \le k+1$. Therefore it follows that for all positive integers n that $a_n \leq n$.

Exercise 16. Grimaldi's book (5. ed., Exercises 5.2, page 259): solve Ex. 15 a), b), e)

Solution 16. a) This function is injective. The range consists of the odd integers.

- b) This function is injective and the range is \mathbb{Q} .
- e) This function is injective and the range is [-1, 1].

Exercise 17. Grimaldi's book (5. ed., Exercises 5.2, page 259): solve Ex. 22

Solution 17. a) $\binom{11}{7}$

- b) $\binom{14}{6}$ c) $\binom{m+n-1}{m}$
- d) We must have that $f(\{1,2,3\}) \subset \{1,2,3,4\}, f(4) = 4$ and $f(\{5,6,7,8,9,10\}) \subset \{4,5,6,7,8\}.$ Therefore there are $\binom{6}{3}\binom{10}{6}$ many such functions.
 - e) $\binom{12}{4}\binom{5}{2}$
- f) Let $f: X_m \to X_n, 1 \le k \le m$ and $1 \le l \le n$, and f(k) = l. Then $f(\{1, ..., k-1\}) \subset \{1, ..., l\}$ and $f(\{k+1,\ldots,m\}) \subset \{l,l+1,\ldots,n\}$, and there are $\binom{l+k-2}{k-1}\binom{n+m-l-k}{m-k}$ such functions.

Exercise 18. Grimaldi's book (5. ed., Exercises 5.3, page 265): solve Ex. 2 a), c), e)

Solution 18. a) It is injective and surjective.

- c) It is injective and surjective.
- e) f(0) = f(-1) implies that it is not injective. It is not surjective and the range is $\{0, 2, 6, 12, 20, \ldots\}$

Exercise 19. Grimaldi's book (5. ed., Exercises 5.3, page 265): solve Ex. 3 a), c), e)

Solution 19. a) It is injective and surjective.

- c) It is injective and surjective.
- e) It is not injective and not surjective. The range is $[-1/4, \infty]$.

Exercise 20. Grimaldi's book (5. ed., Exercises 5.6, page 288): solve Ex. 10 a), c)

Solution 20. a) f is invertible with $f^{-1} = \{(x, y) \mid 2y = 7 - 3x\}.$

c) f is invertible with $f^{-1} = \{(x, y) \mid y^3 = x\}.$

Exercise 21. Grimaldi's book (5. ed., Exercises 5.6, page 288): solve Ex. 14 a), d), e)

Solution 21. a) $f^{-1}(B) = \{-1, 0, 1\}$

- $\frac{1}{d} f^{-1}(B) =]-1,1[$
- e) $f^{-1}(B) = [-2, 2]$

Exercise 22. Grimaldi's book (5. ed., Exercises 5.6, page 288): solve Ex. 15

Solution 22. First observe that $3,4,5 \in f^{-1}(\{9,10,11,12\})$, i.e., there are four choices for f(3), f(4), f(5), and for each of the images of f(1) and f(2) we have three choices. Hence, rule of product implies that there are 3^24^3 such functions.