Software Verification

Bounded Box

Mattia Bottaro - Mauro Carlin May, 2018

Outline

1 Project

2 Our Contribution

Project - Domain

We have chosen the **Bounded Box Domain**, which is a parametric restriction of the interval abstract domain *Int*:

```
Given m, n \in \mathbb{Z} \cup \{-\infty, +\infty\}, then  \text{Int}_{m,n} := \{\varnothing, \mathbb{Z}\} \cup \{[k,k] \mid k \in \mathbb{Z}\} \cup \{[a,b] \mid a < b, \ [a,b] \subseteq [m,n]\} \cup \{(-\infty,k] \mid k \in [m,n]\} \cup \{[k,+\infty) \mid k \in [m,n]\}
```

Project - Domain

Bounded Box with m = -2, n = 2

Project - Domain

Bounded Box with m > n

Project - Jandom

- Static Analyzer for Numerical and Object Domains (forse togliere object)
- Jandom was created at the University of Chieti-Pescara
- It's a buildup of **RANDOM**, which analyzes **R** code
- Jandon is written in Scala
- Jandom analyzes JVM bytecode using **Soot**

Project - Jandom

We've extended Jandom from this repository created by University of Padua' students

Our Contribution

We have:

- Implemented the Integer Interval Domain
- Implemented Bounded Box Domain specializing the previous domain, because abstract operators of both domains are very similar

Our Contribution

Abstract sum operator algorithm in Bounded Box Domain.

- **1** Execute sum operator of Interval Domain. $[a, b] + ^{\#} [c, d] = [a + c, b + d] = [e, f]$
- [e, f] must be represented as an element of Bounded Box Domain

$$[e,f] = \begin{cases} \top & e < m \land f > n \\ [n,+\infty) & e \ge n \land e \ne f \\ [e,+\infty) & e < n \land f > n \\ (-\infty,m] & f \le m \land e \ne f \\ (-\infty,f] & f > m \land e < m \\ [e,f] & otherwise \end{cases}$$

Our contribution

Normal block

Fusce luctus venenatis felis quis semper

Alert block

$$E = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_1 \vee x_2 \vee x_4)$$

Example block

Proin tincidunt, neque at tincidunt mollis