Ex1. Rappels sur les vecteurs

- 1) Déterminer la norme des vecteurs suivants, décrits dans la base orthonormée $(\overrightarrow{e_x}, \overrightarrow{e_y})$:
 - \vec{u} (-1; 3); $\vec{v} = \overrightarrow{AB}$ sachant que A(-2; 5) et B(1; -6); $\vec{w} = 3\overrightarrow{e_x} + 4\overrightarrow{e_y}$; $\vec{x} = -2\vec{w}$.
- 2) Soit 3 points A,B et C. Sachant que $\overrightarrow{AB} = 3\overrightarrow{e_x} + 3\overrightarrow{e_y}$ et $\overrightarrow{BC} = -5\overrightarrow{e_x} 1\overrightarrow{e_y}$, que vaut \overrightarrow{AC} ? $||\overrightarrow{AC}||$?
- 3) D'après le schéma suivant, quelles sont les coordonnées de \overrightarrow{OM} en fonction de la norme $\left\|\overrightarrow{OM}\right\|=r$ et de l'angle θ ?
- 4) Soit les vecteurs $\vec{u}(2;0)$, $\vec{v}(1;1)$ et $\vec{w}(0;4)$. Que valent les produits scalaires \vec{u} . \vec{v} , \vec{v} . \vec{w} et \vec{u} . \vec{w} ?

Bilan des forces

Ex2.

Faire le bilan des forces appliquées sur les systèmes suivants. Indiquer le sens et la direction de ces forces sur le schéma puis déterminer leurs coordonnées dans le repère (\vec{x}, \vec{y}) .

Ex3. (bonus)

Déterminer les tensions des câbles dans les deux figures suivantes :

Analyse dimensionnelle

Ex4. Trois étudiants établissent les équations suivantes dans lesquelles x désigne la distance parcourue (m), a l'accélération (m.s⁻²), t le temps (s) et l'indice 0 indique que l'on considère la quantité à l'instant t=0s:

(a)
$$x = vt^2$$

(b)
$$x = v_0 t + at^2/2$$

(c)
$$x = v_0 t + 2at^2$$

Parmi ces équations, lesquelles sont possibles ?

Ex5. Déterminer la dimension de G dans l'équation : $F = G \frac{M_T m}{r^2}$ F est une force r est une distance et M_T et m sont des masses.

En déduire l'unité de $K = GM_Tm$

En déduire l'unité de $E_p = \frac{K}{r}$

Ex6. En partant de l'expression de la puissance dissipée par effet Joule dans un circuit P=UI, déterminer l'unité SI de la tension U. (I est l'intensité électrique). A l'aide de la loi d'Ohm, déduisez-en l'unité SI de la résistance.

Ex7. Sachant que $I=C\frac{\Delta U}{\Delta t}$ et que $U=L\frac{\Delta I}{\Delta t}$ où l'est le courant électrique, U la tension électrique et t un temps, déterminer la dimension de C et de L puis de la grandeur $\omega_0=\frac{1}{\sqrt{LC}}$

Ex8. Vérifier l'homogénéité des deux forces suivantes : $F_1 = m\omega^2 r$ et $F_2 = m\omega v$ r est une distance, v une vitesse, ω une vitesse angulaire.

Ex9. Déterminer la dimension du coefficient C et du coefficient η dans l'expression des forces suivantes :

$$F_1 = \frac{1}{2}\rho SCv^2$$
; $F_2 = 6\pi\eta Srv$

 ρ est une masse volumique, S une surface, r une distance et v une vitesse.

Ex10. (bonus) Déterminer la dimension des grandeurs suivantes :

$$A = \frac{1}{2}mr^2\omega^2; \quad B = mgv.\cos\theta; \quad C = mg\ell.\sin\theta; \quad D = \frac{1}{2}k(x-\ell)^2; \quad E = \sqrt{\frac{k}{m}};$$

$$F = \frac{dE}{dt}; \quad G = 2\pi\sqrt{\frac{\ell}{g}}; \quad H = \frac{1}{2}k\ell^2; \quad I = \frac{FQ}{m\omega^2}; \quad J = \frac{F^2Q}{2m\omega}$$

R, x, ℓ sont des distances, v est une vitesse, ω une vitesse angulaire, g est le champ de pesanteur, θ est un angle, k la raideur d'un ressort, E une énergie, m une masse, E une force et E0 un coefficient sans unité.