

MICROPROCESSOR SYSTEMS

BLG212E

Burak Berk Üstündağ CRN: 11450 Gökhan İnce / Ayşe Yılmazer CRN: 11446

Faculty of Computer and Informatics Engineering
Istanbul Technical University

Week 7: Addressing and Memory Organization in Computers

Comparison of Memory Modules

Memory Addressing

- Memory consists of a sequence of directly addressable "locations".
- A memory location is referred to as an information unit.
- An information unit has two components:
 - address
 - contents

Memory Addressing

- Each location in memory has an address that must be supplied before its contents can be accessed.
- The CPU communicates with memory by first identifying the location's address and then passing this address on the address bus.
- The data are transferred between memory and the CPU along the data bus.
- The number of bits that can be transferred on the data bus at once is called the data bus width of the processor.

Dimensions of Memory

- Memory is usually measured by two numbers: its length and its width (length x width).
 - The length is the total number of locations.
 - The width is the number of bits in each location.
- The length (total number of locations) is a function of the number of address lines.

```
# of memory locations = 2(# of address lines)
```

- A memory chip with 10 address lines would have
 2¹⁰ = 1024 locations (1K)
- A memory chip with 4K locations would need
 log₂ 4096=12 address lines

Educational CPU and Memory

 Educational CPU has 16 address lines. That means it can address

 $2^{16} = 64K$ memory locations.

- Then it will need 1 memory chip with 64 K locations, or 2 chips with 32 K in each, or 4 with 16 K each or 16 of the 4 K chips, etc.
- How would we use these address lines to control the multiple chips?

Chip Select

- Usually, each memory chip has a
 Chip Select (CS) input. The chip will only work if an active signal is applied on that input.
- To allow the use of multiple chips in the make up of memory, we need to use a number of the address lines for the purpose of chip selection.
- These address lines are decoded to generate the 2ⁿ necessary CS inputs for the memory chips to be used.

Memory Access

Memory Access

Chip Selection Example

A memory system made up of 4 of the 4x2 memory chips

Designates the address space for each memory chip

Address Range of a Memory Chip

- The address range of a particular chip is the list of all addresses that are mapped to the chip.
- An 8-bit CPU with 16 address bits can address a total of 64K memory locations.
 - If we use memory chips with 1K locations each, then we will need 64 such chips.
 - The 1K memory chip needs 10 address lines to uniquely identify the 1K locations. (log₂1024 = 10)
 - That leaves 6 address lines which is the exact number needed for selecting between the 64 different chips (log₂64 = 6).

Address Range of a Memory Chip

16 bit address lines can be separated into two pieces

 Depending on the combination on the address lines A₁₅-A₁₀, the address range of the specified chip is determined.

Chip Select Example

- A chip that uses the combination $[A_{15}-A_{10}]=001000$ would have addresses that range from \$2000 to \$23FF.
 - The 10 address lines on the chip gives a range of xxxx xx00 0000 0000 to xxxx xx11 1111 1111 or \$x000 to \$x3FF for each of the chips.
 - The memory chip in this example would require the following NAND circuit on its chip select input:

Chip Select Example

If we change the above combination to the following:

 Now the chip would have addresses ranging from: 2400 to 27FF.

 Changing the combination of the address bits connected to the chip select changes the address range for the memory chip.

Chip Select Example

Example: For a CPU with 8-bit data bus and 16-bit address bus, build the memory that spans between \$0000 and \$1FFF with 2Kx8 memory chips.

- What is the required memory space?
- How many 2K chips are needed?

$A_{15}A_{14}A_{13}A_{13}$	A_{12} A_{13}	$_{1}A_{10}A_{9}A_{8}$	$A_7A_6A_5A_4$	$A_3A_2A_1A_0$	
000) 0	000	0000	0000	\$0000
000	0	111	1111	1111	\$07FF
000) 1	000	0000	0000	\$0800
000) 1	111	1111	1111	\$0FFF
0001	L 0	000	0000	0000	\$1000
0001	L 0	111	1111	1111	\$17FF
0001	l 1	000	0000	0000	\$1800
0001	l 1	111	1111	1111	\$1FFF

- Connect the DATA BUS, ADDRESS BUS, R/W together
- CS is determined using A12 and A11

 Chip select is done with address bits that are not used within the memory chip.

	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀
Memory 1	0	0	0	0	0	Used to
Memory 2	0	0	0	0	1	address locations
Memory 3	0	0	0	1	0	within a
Memory 4	0	0	0	1	1	memory chip

A₁₅, A₁₄, A₁₃ remain at low at all times. They can be used to form another Chip Select (Group Select)

 A₁₂ and A₁₁ can be used to select memory chips with 2x4 decoder

Memory Map (Example 1)

CPU: 64K Addressing Capability, 8Bits, Reset Vector (POR): 0000H

CPU: 64K Addressing Capability, 8Bits, Reset Vector (POR): 0000H, 32K EPROM, 16K SRAM, 8K EEPROM

1- 16K SRAM : 16x8kbit \rightarrow 62C128: \overline{WE} , \overline{OE} , \overline{CE}

2- $62C \rightarrow I/O_0...I/O_7$, Generic code: 62C128 alternative: **W24129A**

3- $x128 \rightarrow M=128kbit=128x1024$ bit

Since 62C/M48 refers 8 bits I/O,

Address bus size= log_2 (128x1024/8)=7+10-3=14

Address lines→ A0..A13

CPU: 64K Addressing Capability, 8Bits, Reset Vector (POR): 0000H, 32K EPROM, 16K SRAM, 8K EEPROM

1- 8K EEPROM : 8x8kbit \rightarrow 28C64: \overline{WE} , \overline{OE} , \overline{CE}

Address Decoding

CPU: 64K Addressing Capability, 8Bits, Reset Vector (POR): 0000H, 32K EPROM, 16K SRAM, 8K EEPROM

Address Decoder Design

If last segment will not be used:

	CPU:	A15 A14			Ou	tpu		
Segment Size:	Decoder:	A1	Α0		۲0' ۱	/1' `	Y2'	
16K			0	0	0	1	1	EPROM
16K			0	1	0	1	1	EPROM
16K			1	0	1	0	1	SRAM
16K			1	1	1	1	0	EEPROM

If last segment will be reserved for future:

	CPU:	A15	A14	A13	Output:		FU		
Segment Size:	Decoder:	A2	A1	A0	Y0'	Y1'	Y2'	Y3'	
8K		0	0	0	0	1	1	1	EPROM
8K		0	0	1	0	1	1	1	EPROM
8K		0	1	0	0	1	1	1	EPROM
8K		0	1	1	0	1	1	1	EPROM
8K		1	0	0	1	0	1	1	SRAM
8K		1	0	1	1	0	1	1	SRAM
8K		1	1	0	1	1	0	1	EEPROM
8K		1	1	1	1	1	1	0	Future Use

Address Decoder Design

If last segment will not be used:

	CPU: A15 A14				Ou	tpu		
Segment Size:	Decoder:	A1	Α0		Y0' Y	′1' `	Y2'	
16K			0	0	0	1	1	EPROM
16K			0	1	0	1	1	EPROM
16K			1	0	1	0	1	SRAM
16K			1	1	1	1	0	EEPROM

Y0'

$A_1 A_0$	0	1
0	0	0
1	1	1

$$Y0'=A1=A15$$
 (CPU)

Y1′											
$A_1 A_0$	0	1									
0	1	1									
1	0	1									

$$Y1'=(A1A0')'=A1'+A0=A15'+A14$$
 (CPU)

Y2'
A₁ 0 1
0 1 1
1 1 0

Memory Address Decoding

CPU: 64K Addressing Capability, 8Bits, Reset Vector (POR): 0000H, 32K EPROM, 16K SRAM, 8K EEPROM

Memory Address Decoding

CPU: 64K Addressing Capability, 8Bits, Reset Vector (POR): 0000H, 32K EPROM, 16K SRAM, 16K EEPROM

If last segment will be reserved for future:

	CPU:	A15	A14	A13	Output:		FU		
Segment Size:	Decoder:	A2	A1	Α0	Y0'	Y1'	Y2'	Y3'	
8K		0	0	0	0	1	1	1	EPROM
8K		0	0	1	0	1	1	1	EPROM
8K		0	1	0	0	1	1	1	EPROM
8K		0	1	1	0	1	1	1	EPROM
8K		1	0	0	1	0	1	1	SRAM
8K		1	0	1	1	0	1	1	SRAM
8K		1	1	0	1	1	0	1	EEPROM
8K		1	1	1	1	1	1	0	Future Us

2 A1 Y1 A2 C/HCT 138 Y3 4 E1 Y4 5 E2 Y5 E3 F6 F7 7

TRUTH TABLE 'HC138, 'HCT138

		INP	UTS										
	ENABLE			ADDRESS	3	OUTPUTS							
E3	E2	E1	A2	A1	A0	Y0	<u>Y1</u>	<u>Y2</u>	<u> 73</u>	√ ¥4	<u>Y5</u>	<u>Y6</u>	<u>Y7</u>
X	Х	Н	X	Х	Х	Н	Н	Н	H	Н	Н	Н	Н
L	Х	Х	Х	Х	Х	Н	Н	Н	H/	Н	Н	Н	Н
X	Н	Х	Х	Х	Х	Н	Н	Н	Ä	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	/ H	Н	Н	Н	Н
Н	L	L	L	L	Н	H	L	H/	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Æ	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	Ĺ	L	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Ĺ

H = High Voltage Level, L = Low Voltage Level, X = Don't Care

Memory Address Decoding

Example 2

CPU: 16bit Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

EPROM #1 in memory map

CPU: 16bit Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

EPROM #2 in memory map

CPU: 16bit Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

SRAM #1 in memory map

CPU: 16bit Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

SRAM #2 in memory map

CPU: 16bit Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

EEPROM in memory map

CPU: 16bit Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

16bits

D15

DÓ

Address Decoder Design

1 | 0

Example 2 (16bits Data Bus)

CPU: 64K Addressing Capability, 16Bits, Reset Vector (POR): 0000H, 2x27C128 EPROM, 2x62C256 SRAM 1x28C64 EEPROM

74HC373 3-state D-type latch

LS373

Dn	LE	OE	On
Н	Н	L	Н
L	Н	L	L
X	L	L	Q ₀
X	Х	Н	Z*

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

SN54/74LS373

Intel 8085 CPU

Performance			
Max. <u>CPU</u> <u>clock</u> <u>rate</u>	3, 5 and 6 MHz		
Data width	8 Bit		
Address width	16 Bit		
Architecture and classification			
Min. feature size	<u>3 µm</u>		
<u>Instruction set</u>	8085		
Physical specifications			
<u>Transistors</u>	•6,500		
Package(s)	•40-pin <u>DIP</u>		
Socket(s)	• <u>DIP40</u>		

(a) Pin configuration

(b) Functional pin diagram

CPU: 8085 27C64 EPROM, 62C64 SRAM 3x8255 I/O Ports

8088 CPU

Max. <u>CPU</u> <u>clock</u> <u>rate</u>	5 MHz to 16 MHz		
Data width	8 bits		
Address width	20 bits		
Architecture and classification			
Min. feature size	<u>3 µm</u>		
<u>Instruction set</u>	<u>x86-16</u>		
Physical specifications			
<u>Transistors</u>	•29,000		
<u>Co-processor</u>	<u>Intel 8087</u>		
Package(s)	•40-pin <u>DIP</u> •44-pin <u>PLCC</u>		

8088 CPU Functional Block Diagram

8088 Memory Interfacing

16-bit processor example (1978-) :

_				_	MAX MODE	(MIN MODE)
GND 🗖	1	\bigcup	40	þ	U_{cc}	-
AD14	2		39	þ	AD15	
AD13 🗖	3		38	Þ	A16/S3	_
AD12 🗖	4		37	Þ	A17/S4	
AD11	5		36	Þ	A18/S5	
AD10	6		35	Þ	A19/S6	_
AD9 🗖	7		34	Þ	BHE/S7	
AD8 🗖	8		33	Þ	MN/\overline{MX}	-
AD7 🗖	9	8086	32	Þ	\overline{RD}	_
AD6 🗖	10	CPU	31	Þ	$\overline{RQ}/\overline{GT0}$	(HOLD)
AD5	11		30	Þ	$\overline{RQ}/\overline{GT1}$	(HLDA)
AD4	12		29	Þ	LOCK	(WR)
AD3 🗖	13		28	Þ	5 2	(M/ IO)
AD2	14		27	Þ	5 1	(DT/\overline{R})
AD1 🗖	15		26	Þ	50	(DEN)
ADO 🗖	16		25	Þ	QS0	(ALE)
имі 🗖	17		24	Þ	QS1	(INTA)
INTR 🗖	18		23	Þ	TEST	
CLK 🗖	19		22	Þ	READY	L
GND 🗖	20		21		RESET	

Max. <u>CPU</u> <u>clock rate</u>	5 MHz to 10 MHz		
Data width	16 bits		
Address width	20 bits		
Architecture and classification			
Min. feature size	<u>3 μm</u>		
<u>Instruction set</u>	<u>x86-16</u>		
Physical specifications			
<u>Transistors</u>	•29,000		
<u>Co-processor</u>	<u>Intel 8087</u>		
Package(s)	•40 pin <u>DIP</u>		
Socket(s)	• <u>DIP40</u>		

8086 Address and Data Bus Connection in Minimum Mode

80486 CPU

Architecture and classification

1 μm to 0.6 μm

Min. feature size

Historical Developement

x1 bit Memory Organization

Example: Organize 8Kx1 memory chips to obtain 8Kx8 memory

