

ALMACÉN DE DATOS PARA EL ANÁLISIS DEL IMPACTO AMBIENTAL Y EL CONSUMO ENERGÉTICO DERIVADOS DE LA ACTIVIDAD ECONÓMICA

EDUARDO MORA GONZÁLEZ

Contenido

1.	Intro	oducción	3
2.	Aná	lisis de los requerimientos	3
3.	Aná	lisis de las fuentes de datos	5
3	3.1.	Estimación de volumetría	8
4.	Aná	lisis funcional	9
5.	Dise	eño del modelo conceptual, lógico y físico del almacén de datos	11
5	5.1.	Diseño conceptual	11
5	5.2.	Diseño lógico	15
5	5.3.	Diseño físico	17
	5.3.1.	Dimensiones	17
	5.3.2	Tablas de hechos	18

1. Introducción

Actualmente, nuestra sociedad hace un uso irracional de la energía, por esta razón, se pretende diseñar un Almacén de datos para el análisis del impacto ambiental y consumo energético derivados de la actividad económica.

2. Análisis de los requerimientos

La necesidad principal de la organización encargada del análisis del impacto ambiental y del consumo energético es disponer de la información integrada para su análisis y su posterior difusión mediante las herramientas de inteligencia de negocio. Estas ayudarán a facilitar la toma de decisiones a todos los usuarios potenciales para garantizar el cumplimiento, entre otros, de los siguientes objetivos:

- ✓ Analizar el balance energético mundial de los países productores y consumidores de energía.
- ✓ Analizar el balance de producción de energía no contaminante y
 contaminante.
- ✓ Porcentajes de objetivos de Desarrollo Sostenibles conseguidos.
- ✓ Contrastar las inversiones realizadas (relativas al ambiente) con la consecución de objetivos de Desarrollo Sostenibles.

A continuación, se indica la información necesaria identificada para analizarlo desde diferentes perspectivas:

- por fecha,
- por país,
- por categoría de energía (producto),
- por población,
- por nivel de industrialización,
- por objetivo (Desarrollo Sostenibles) o
- por unidad de medida.

Si se tiene en cuenta toda esta información, el sistema podrá responder a múltiples preguntas y de esta manera conseguirá cubrir las necesidades de los usuarios potenciales. A continuación, se indican de forma específica las preguntas que, como mínimo, el sistema debe ser capaz de responder:

- ✓ Análisis de los países que producen más energía y los que consumen más.
- ✓ Análisis del promedio de energía (contaminante o no) produce cada país.
- ✓ Determinar si las inversiones realizadas han causado una mejora en la creación de energía verde.
- ✓ Análisis de cómo se están cumpliendo los objetivos de Desarrollo Sostenible y cual tiene mayor y menor cumplimiento.
- ✓ Relación entre el crecimiento de las ciudades y el gasto de energía.
- ✓ Determinación de que años se ha producido más energía verde y cual más energía contaminante.
- ✓ Relacionar la producción de energía y el estado de los ecosistemas protegidos.
- ✓ Determinar los países menos y más ecológicos.

3. Análisis de las fuentes de datos

En este apartado se pretende revisar las fuentes de datos proporcionadas, qué tipo de información contienen, cuál es su formato y qué datos deben ser cargados:

1) 02002.xlsx: Encuesta del gasto de la industria en protección ambiental. Serie 2008-2018. Evolución de la inversión en protección ambiental por tipo de equipo e instalación, ámbito medioambiental y sector de actividad económica. A continuación, se analizan los campos del fichero .xlsx (Excel):

Nombre campo	Tipo	Ejemplo
Periodo	Num érico	2018
Sector de actividad económica	Texto	«C. industria manufacturera»
Tipo de equipo e instalación	Texto	«INVERSIÓN EN EQUIPOS E INSTALACIONES INDEPENDIENTES»
Ámbito medioambiental	Texto	«Protección del aire y el clima»
Comunidad autónoma	Texto	«Asturias, Principado de»
Inversión	Num érico	6.280.443

Observaciones:

- Las columnas desde la E hasta la U corresponden a la inversión de cada comunidad autónoma.
- La columna V contiene el agregado de Total nacional.
- La unidad de la inversión son euros.

Total de registros: 154 registros.

2) Countries.json: Lista de todos los países. A continuación, se analizan los campos del fichero:

Nombre campo	Tipo	Ejemplo
Nombre	Texto	Cuba
lso2	Texto	CU
lso3	Texto	CUB
Código teléfono	Numérico	53

Observaciones:

 Los 3 primeros campos contienen el nombre del país, pero en diferentes idiomas: español, inglés y francés.

Total de registros: 246 registros.

3) DataGeneric.xml: Este conjunto de datos presenta tendencias en las cantidades de residuos municipales (incluidos los residuos domésticos) y el método de tratamiento y eliminación utilizado por los distintos países. A continuación, se analizan los campos del fichero:

Nombre campo	Tipo	Ejemplo
Country	Texto	COL
Var	Texto	TREATMENT
Time	Numérico	2005
Obsvalue	Numérico	7583.09

Observaciones:

- Para ver las variables de forma correcta y entender la estructura se ha mirado la página de donde se han extraído los datos: https://stats.oecd.org/viewhtml.aspx?datasetcode=MUNW&lang=en
- Algunos datos que no tienen valores se han puesto a 0 en el xml

Total de registros: 48 por cada variable. Y tenemos el siguiente número de variables posibles:

Country: 48.Variables: 36.Years: 30.

4) Env_bio.tvs: conjunto de áreas de conservación de la biodiversidad. A continuación, se analizan los campos del fichero:

Nombre campo	Tipo	Ejemplo
AreaProt	Texto	AREA_KM2
Geo	Texto	AT
Año	Numérico	83944

Observaciones:

- Desde la tercera columna hasta el final (separando Areaprot y Geo como columnas independientes) se refieren al área que ocupa la zona en cada año.
- Existen 20 datos nulos.

Total de registros: 120

- 5) ODS.xIsx: Objetivos de Desarrollo Sostenible y su relación con los ámbitos medioambientales. Este fichero contiene dos pestañas
 - **a. ODS:** contiene los siguientes campos:

Nombre campo	Tipo	Ejemplo
Objetivo	Numérico	10
Nombre	Texto	Reducción de las desigualdades
Descripción	Texto	Reducir la desigualdad en y entre los países

Total de registros: 17

b. Ambito_VAR_Flow-ODS: contiene los siguientes campos:

Nombre campo	Tipo	Ejemplo
Codigo	Texto	BULKY
Ambito/VAR/Flow	Texto	Bulky waste
ODS principal	Numérico	9

Observaciones:

 El ultimo campo hace referencia al campo Objetivo de la pestaña ODS.

Total de registros: 50

6) WorldEnergyBalancesHighlights_final.xlsx: sobre este fichero solo se analizará la pestaña "TimeSeries_1971-2019" que contiene variables relevantes del balance energético mundial. A continuación, se analizan los campos del fichero:

Nombre campo	Tipo	Ejemplo
Country	Texto	Australia
Product	Texto	Nuclear

Flow	Texto	Imports (ktoe)
Año	Numérico	0

Observaciones:

- Por cada país (Country) existen diferentes productos (Product), y por cada producto diferentes campos (Flow).
- Las columnas desde la G hasta la BC corresponden al número de Ktoe por cada año.
- Existen valores sin datos.

Total de registros: 6049

3.1. Estimación de volumetría

Una posible estimación del volumen de datos del almacén para la carga inicial de los datos sería la siguiente:

FICHERO	REGISTROS	VALORES	DATOS
02002.xlsx	154	22	3388
Countries.json	246	6	1476
DataGeneric.xml *	48	31	53568
Env_bio.tvs	120	10	1080
ODS.xlsx → ODS	17	3	51
ODS.xlsx → Ambito_VAR_Flow-ODS	50	3	150
WorldEnergyBalancesHighlights_final.xlsx	6049	55	332640
TOTAL	6684	130	392353

^{*}Son 31 valores contemplando el país y cada uno de los años, pero existen 36 tipos diferentes para cada una de las combinaciones de los parámetros anteriores.

4. Análisis funcional

A continuación, se describen algunos de los requerimientos funcionales para el diseño de una factoría de información para la organización, teniendo en cuenta las consideraciones del enunciado:

#	REQUERIMIENTO	PRIORIDAD*	EXIGIBLE/ DESEABLE
1	Se extraerá de forma adecuada la información de las fuentes de datos.	1	E
2	Se creará un almacén de datos.	1	E
3	Se cargará la información en el staging área	1	E
4	Se realizarán las transformaciones de los datos para crear el Data Mart	2	E
5	Se creará un modelo OLAP para consultas automáticas de los usuarios.	2	E
6	Se crearán los informes estáticos solicitados.	2	E
7	Cada usuario tendrá acceso a un conjunto de información relevante determinada	2	D
8	El sistema a través de los datos podrá predecir posibles resultados futuros o ciertos comportamientos	2	D
9	Análisis de viabilidad y análisis de riesgos	2	D
10	Se podrá realizar consultas a través de un dispositivo móvil.	3	D
11	Se redactará un manual de carga de datos inicial e incremental.	3	D
12	Creación de procesos de cargas incrementales	3	D

^{*} Se asigna una prioridad del 1 al 3, siendo 1 completamente prioritario para la actividad y 3 no prioritario.

En términos de la arquitectura funcional existen los siguientes elementos:

- ❖ Las fuentes de datos de las que se dispone son las siguientes:
 - o 3 ficheros Excel (un fichero del tipo xls y dos ficheros xlsx).
 - o 1 fichero en formato XML.
 - 1 fichero en formato json.
 - 1 fichero en formato tsv.gz.
- ❖ La arquitectura de la factoría de información estará formada por varios elementos alojados en la misma máquina:
 - Staging Area: para consolidar la información en una estructura de carga intermedia.
 - Data mart con el análisis del impacto ambiental y del consumo energético.

- HOLAP: a partir de la información de la data mart se creará un MOLAP y un ROLAP.
 - Se ha considerado que la arquitectura HOLAP es la más adecuada por los siguientes motivos:
 - Vamos a tener datos bastante estáticos que se puede tratar mediante la una arquitectura MOLAP, como por ejemplo los Objetivos de Desarrollo Sostenible y las áreas de conservación de la biodiversidad.
 - Por otro lado, hay otros datos que anualmente se van a ir añadiendo y pueden modificarse su estructura, por eso un sistema ROLAP es lo mas adecuado, ya que su sensibilidad a los cambios es mucho más baja.

Una vez definido los elementos de la arquitectura se concluye que tenemos una arquitectura funcional que usa un área intermedia (staging area) y se crearía dentro de la misma base de datos, cuyos objetos se identificarán con un prefijo en los nombres.

El siguiente gráfico resume los elementos de la arquitectura necesarios para esta actividad:

5. Diseño del modelo conceptual, lógico y físico del almacén de datos

5.1. Diseño conceptual

Del análisis de las fuentes de datos y de los requerimientos iniciales, se puede determinar que uno de los hechos que se deben considerar es:

 Mediciones ambientales. Hace referencia a ciertas mediciones ambientales relevantes para un desarrollo sostenible.

El análisis de las mediciones ambientales determina el diseño de la primera tabla de hechos, como se puede observar a continuación:

TABLA DE HECHOS	DESCRIPCIÓN
FACT_EnvironmentalMeasurements	Mediciones ambientales para un
	desarrollo sostenible

Las métricas de la tabla de hechos «FACT_EnvironmentalMeasurements» son las siguientes:

MÉTRICA	DESCRIPCIÓN
Value	Valor de la medición

Las métricas de esta tabla de hechos podrán ser analizadas desde las diferentes perspectivas, a partir de las dimensiones:

DIMENSIONES	DESCRIPCIÓN
SDG	Objetivos de desarrollo sostenible con los que se relaciona la medición
Measurement	Medición a tratar

A nivel de diseño quedaría de la siguiente manera:

Otro de los hechos que se deben considerar es:

 Inversiones en protección ambiental. Hace referencia a ciertas inversiones realizadas por los países relevantes para la protección del medio ambiente.

El análisis de las inversiones en protección ambiental determina el diseño de la segunda tabla de hechos, como se puede observar a continuación:

TABLA DE HECHOS	DESCRIPCIÓN
FACT_	Inversiones en la protección del
ProtectionEnvironmentalInvestments	medio ambiente

Las métricas de la tabla de hechos «FACT ProtectionEnvironmentalInvestments» son las siguientes:

MÉTRICA	DESCRIPCIÓN
Value	Valor de la inversión en un periodo de tiempo

Las métricas de esta tabla de hechos podrán ser analizadas desde las diferentes perspectivas, a partir de las dimensiones:

DIMENSIONES	DESCRIPCIÓN
Country	País que realiza la inversión
SDG	Objetivos de desarrollo sostenible con los que se relaciona la medición
Tiempo	Periodo de tiempo en que se ha realizado la inversión
Type of investment	Tipo de inversión a tratar

A nivel de diseño quedaría de la siguiente manera:

Otro de los hechos que se deben considerar es:

 Balance en producción de energía verde. Hace referencia a la distribución que existe en las diversas formas de generar energía.

El análisis del balance determina el diseño de la tercera tabla de hechos, como se puede observar a continuación:

TABLA DE HECHOS	DESCRIPCIÓN
FACT_GreenEnergyProductionBalance	Distribución entre las diferentes
	formas de generar energía verde

Las métricas de la tabla de hechos «FACT_ EnergyProductionBalance» son las siguientes:

MÉTRICA	DESCRIPCIÓN
Percentage	Porcentaje de producción de energía verde

Las métricas de esta tabla de hechos podrán ser analizadas desde las diferentes perspectivas, a partir de las dimensiones:

DIMENSIONES	DESCRIPCIÓN
Country	País en que se realiza el balance

Tiempo	Periodo de tiempo en que se ha realizado el balance
Types	Tipos de energía generada
Reach	Alcance que tiene la producción (local, otros países)

A nivel de diseño quedaría de la siguiente manera:

Unido todos los diseños, quedaría de la siguiente manera:

5.2. Diseño lógico

Una vez obtenido el modelo conceptual del almacén de datos para el análisis del impacto ambiental, pasamos a realizar el diseño lógico del mismo.

A continuación, se muestra la tabla con las métricas identificadas en el diseño conceptual de la tabla de hechos «FACT EnvironmentalMeasurements»:

TABLA DE HECHOS	MÉTRICAS
FACT_EnvironmentalMeasurements	Value

Detalle de los atributos descriptores de las dimensiones de cada hecho:

DIMENSIONES	ATRIBUTOS
SDG	Código, nombre, descripción
Measurement	Código, nombre de la medición y unidad de medida

A continuación, se muestra la tabla con las métricas identificadas en el diseño conceptual de la tabla de hechos «FACT_ProtectionEnvironmentalInvestments»:

TABLA DE HECHOS	MÉTRICAS
FACT_ ProtectionEnvironmentalInvestments	Value

Detalle de los atributos descriptores de las dimensiones de cada hecho:

DIMENSIONES	ATRIBUTOS
Country	Nombre, iso2, iso3
SDG	Código, nombre, descripción
Tiempo	Año, mes y día
Type of investment	Código, nombre de la inversión, cantidad, plazo, sector

A continuación, se muestra la tabla con las métricas identificadas en el diseño conceptual de la tabla de hechos «FACT_ EnergyProductionBalance»:

TABLA DE HECHOS	MÉTRICAS	
FACT_EnergyProductionBalance	Percentage	

Detalle de los atributos descriptores de las dimensiones de cada hecho:

DIMENSIONES	ATRIBUTOS
Country	Nombre, iso2, iso3
Tiempo	Año, mes y día
Types	Código, tipo de energía generada, porcentaje de producción, cantidad
Reach	Consumo Energía Verde, Producción Energía, Periodo

5.3. Diseño físico

Una vez que se han determinado las tablas de hechos, las dimensiones, las métricas y los atributos que existen en el modelo lógico, podemos pasar a realizar el diseño físico, lo cual significa obtener una implementación del modelo lógico en términos del sistema gestor de bases de datos escogido.

5.3.1. Dimensiones

El modelo físico de las dimensiones identificadas es el siguiente:

• **DIM SDG**: contiene los datos de los objetivos de desarrollo sostenible.

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO	
Pk_sdg (PK)	Numérico	4	13	
Sdg_name	Texto	50	«Acción por el clima»	
Sdg_description	Texto	500 «El cambio climático es un		
			reto global que no respeta las	
			fronteras nacionales»	

• **DIM_Measurement**: contiene los datos de la medición.

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_measurement (PK)	Numérico	4	1
measurement_code	Texto	100	«Protección del aire y el clima»
measurement_name	Texto	200	«Inversión en protección ambiental»
Unit	Texto	25	«euros»
fk_sdg	Numérico	4	13

• **DIM_Country**: contiene los datos del país donde se hacen las mediciones o los cálculos.

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_country (PK)	Numérico	4	15
Country_name	Texto	100	«CUBA»
Country_ISO2	Texto	200	«CU»
Country_ISO3	Texto	25	«CUB»

 DIM_Tiempo: corresponde a la dimensión temporal de las mediciones o inversiones realizadas.

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_Tiempo (PK)	Numérico	4	25
Year	Numérico	4	2020
Month	Numérico	2	6

Day	Numérico	2	20
Date	Fecha	10	20/06/2020

• **DIM_Type_of_investment**: contiene los datos de la inversión

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_TypeOfInvestement (PK)	Numérico	4	5
Investment_Name	Texto	25	«Cambio Industria del Carbón»
amount	Numérico	10	150000€
Time_Frame	Fecha	10	10/12/2021
sector	Texto	25	«Producción Energía»

• **DIM_Type**: contiene los datos de la energía generada.

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_Type (PK)	Numérico	4	2
Type_Name	Texto	25	«Energía Solar»
Percentage	Numérico	4	60%
amount	Numérico	10	52000

• **DIM_Reach**: contiene los datos del consumo y alcance de la energía.

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_Reach (PK)	Numérico	4	3
Name	Texto	25	«Energía Solar»
GreenEnergyConsumption	Numérico	4	12%
EnergyProduction	Numérico	4	50%
Period	Numérico	Fecha	10/12/2021

5.3.2. Tablas de hechos

El modelo físico de las tablas de hechos del almacén de datos para el impacto ambiental y el consumo energético está compuesto, entre otras, de las siguientes tablas:

 FACT_EnvironmentalMeasurements: es la tabla física que contendrá la información que permitirá realizar el análisis de los datos de las mediciones ambientales para un desarrollo sostenible. Tendrá los siguientes campos:

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_id (PK)	Numérico	4	17
fk_date (FK)	Numérico	4	25

fk_region (FK)	Numérico	4	10
fk_activitysector (FK)	Numérico	4	1
fk_typeequipinstall (FK)	Numérico	4	1
fk_measurement (FK)	Numérico	4	1
value	Numérico	8	6.390.920

 FACT_ProtectionEnvironmentalInvestments: es la tabla física que contendrá la información que permitirá realizar el análisis de los datos de las inversiones para la protección del medio ambiente. Tendrá los siguientes campos:

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_id (PK)	Numérico	4	50
fk_date (FK)	Numérico	4	25
fk_region (FK)	Numérico	4	10
fk_SDG (FK)	Numérico	4	1
fk_typeOfInvestement (FK)	Numérico	4	1
value	Numérico	8	6.390.920

 FACT_EnergyProductionBalance: es la tabla física que contendrá la información que permitirá realizar el análisis de los datos de la producción de energía. Tendrá los siguientes campos:

NOMBRE CAMPO	TIPO	TAMAÑO	EJEMPLO
pk_id (PK)	Numérico	4	23
fk_date (FK)	Numérico	4	25
fk_region (FK)	Numérico	4	10
fk_activitysector (FK)	Numérico	4	1
fk_type (FK)	Numérico	4	1
Percentage	Numérico	8	0.85