NAME: SECTION:

Quiz 4: Consider the matrix $A = \begin{pmatrix} -3 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 2 & -3 \end{pmatrix}$ for the differential equa-

tion $\frac{d}{dt}\mathbf{x} = A\mathbf{x}$. The matrix A has eigenvalue -3 with algebraic multiplicity 3, but geometric multiplicity 1.

1. (3 pts) Find an eigenvector v for A and give a corresponding solution to $\frac{d}{dt}\mathbf{x} = A\mathbf{x}$.

2. (3 pts) Find a rank 2 generalized eigenvector \mathbf{w}_2 for A (so that $(A - \lambda I)\mathbf{w}_2 = \mathbf{v}$) and give a corresponding solution to $\frac{d}{dt}\mathbf{x} = A\mathbf{x}$.

3. (3 pts) Find a rank 3 generalized eigenvector \mathbf{w}_3 for A (so that $(A - \lambda I)\mathbf{w}_3 = \mathbf{w}_2$) and give a corresponding solution to $\frac{d}{dt}\mathbf{x} = A\mathbf{x}$.

4. (3 pts) Compute the matrix exponential e^{At} .