The Concept Misalignment between Experts and AI

from Data Labeling to Data Versioning

Shu Kong University of Macau March 4, 2025

Representing the Open World: Foundation Model and Open Data

Foundation Model for Open-Vocabulary Detection

Foundation Model for Open-Vocabulary Detection

Open World

7. conclusions

1. open world: models & data 2. concept misalignment 3. auto-annotation 4. failure cases of AI 5. the neglected long tail 6. few-shot recognition 7. conclusions

Data Labeling where a foundation model struggles!

nuImages dataset

Poor alignments between foundational detector and ground-truth annotations in nuImages dataset.

Whv?

Data Labeling where a foundation model struggles!

nuImages dataset

Poor alignments between foundational detector and ground-truth annotations in nuImages dataset.

Why?

A snippet of annotation guidelines from nuImages

nuImages Bicycle

- Human or electric powered 2-wheeled vehicle designed to travel at lower speeds either on road surface, sidewalks or bicycle paths.
- If there is a rider, include the rider in the box
- → If there is a pedestrian standing next to the bicycle, do NOT include in the annotation

nuImages Trucks

- → Vehicles primarily designed to haul cargo including pick-ups, lorries, trucks and semi-tractors. Trailers hauled after a semi-tractor should be labeled as trailer.
- → A pickup truck is a light duty truck with an enclosed cab and an open or closed cargo area.

Annotation instructions designed by autonomous driving experts.

Due to practical considerations!

Data Versioning where a foundation model can continue to struggle!

Class ontologies evolve over time to meet needs in the open world.

2. concept misalignment

3. auto-annotation

5. the neglected long tail

Data Versioning where a foundation model can continue to struggle!

Class ontologies evolve over time to meet needs in the open world.

How to adapt foundation models to align with experts?

sent to "annotators" for data annotation

How to adapt foundation models to align with experts?

Can we replace human annotators with foundation models for data annotation?

sent to "annotators" for data annotation

Foundation models

- Large Language Models (LLMs)
- Vision-Language Models (VLMs)
- Foundation Vision Models (FVMs)

7. conclusions

How to adapt foundation models to align with experts?

Can we replace human annotators with foundation models for data annotation?

Can we adapt foundation models w.r.t annotation guidelines?

sent to "annotators" for data annotation

Foundation models

- Large Language Models (LLMs)
- Vision-Language Models (VLMs)
- Foundation Vision Models (FVMs)

How to adapt foundation models to align with experts?

Can we replace human annotators with foundation models for data annotation?

Can we adapt foundation models w.r.t annotation guidelines?

Technically, this is a multimodal few-shot learning problem.

The proposed multimodal few-shot learning setup

How to adapt foundation models to align with experts?

Can we replace human annotators with foundation models for data annotation?

Can we adapt foundation models w.r.t annotation guidelines?

Technically, this is a multimodal few-shot learning problem.

Existing few-shot learning setup

e.g., artificially splitting 80 classes of COCO into base set (60 classes) and novel set (20 classes)

The proposed multimodal few-shot learning setup

Multimodal few-shot learning

How to adapt foundation models to align with experts?

Can we replace human annotators with foundation models for data annotation?

Can we adapt foundation models w.r.t annotation guidelines?

Technically, this is a multimodal few-shot learning problem.

Challenge at CVPR'24 and CVPR'25

Validating various methods, collecting effective approaches, summarizing useful techniques

The proposed multimodal few-shot learning setup

Approaches

Embracing the open world, esp. foundation models, we compare various approaches:

2. concept misalignment

- 1. Prompt engineering
- 2. Standard finetuning
- 3. Language prompt tuning
- 4. Visual prompting
- 5. Multimodal prompting
- 6. Multimodal chat assistants

The proposed multimodal few-shot learning setup

5. the neglected long tail

3. auto-annotation

Approaches

Embracing the open world, esp. foundation models, we compare various approaches:

2. concept misalignment

- Prompt engineering
- Standard finetuning
- Language prompt tuning
- Visual prompting
- Multimodal prompting
- Multimodal chat assistants

Approach	Backbone	Pre-Train Data	Average Precision (AP)			
	340100110		All	Many	Med	Few
Zero-Shot Detection						
RegionCLIP 64	RN50	CC3M	2.50	3.20	3.80	0.40
Detic 67	SWIN-B	LVIS, COCO, IN-21K	14.40	25.83	16.59	2.32
GroundingDINO 33	SWIN-T	Objects365, GoldG, Cap4M	12.05	17.29	15.45	3.72
GLIP 30	SWIN-L	FourODs,GoldG,Cap24M	17.01	23.36	19.86	8.40
MQ-GLIP-Text 59	SWIN-L	Objects365, FourODs, GoldG, Cap24M	17.01	23.36	19.85	8.41
Prompt Engineering						
Detic 67	SWIN-B	LVIS, COCO, IN-21K	14.92	26.48	17.29	2.53
GLIP (30)	SWIN-L	FourODs, GoldG, Cap24M	17.15	23.82	19.36	9.02
Standard Fine-Tuning						
RegionCLIP 64	RN50	CC3M	3.86	6.08	5.13	0.54
Detic 67	SWIN-B	LVIS, COCO, IN-21K	16.09	25.46	20	3.73
Federated Fine-Tuning (Ours)						
Detic 67	SWIN-B	LVIS, COCO, IN-21K	17.24	28.07	20.71	4.18
Detic 67 w/ Prompt Engineering	SWIN-B	LVIS, COCO, IN-21K	17.71	28.46	21.14	4.75
Language Prompt Tuning						
GLIP 30	SWIN-L	FourODs,GoldG,Cap24M	19.41	22.18	25.16	10.39
Visual Prompting						
MQ-GLIP-Image 59	SWIN-L	Objects365,FourODs,GoldG,Cap24M	14.07	24.39	15.89	3.34
Multi-Modal Prompting						
MQ-GLIP 59	SWIN-L	Objects365,FourODs,GoldG,Cap24M	21.42	32.19	23.29	10.26
Multi-Modal Chat Assistants						
GPT-4o Zero-Shot Classification [1]	Private	Private	9.95	16.81	12.11	1.71
MQ-GLIP Iterative Prompting	Private	Private	22.03	33.42	24.72	9.41
CVPR 2024 Competition Results						
NJUST KMG	SWIN-L	Objects365V2, OpenImageV6, GoldG, V3Det, COCO2014, COCO2017, LVISV1, GRIT, RefCOCO, RefCOCO+, RefCOCOg, gRef-COCO		50.21	34.87	15.16
-141-1	SWIN-L	Objects365V2, COCO2017, LVIS, GoldG, VG, OpenImagesV6, V3Det,	21.57	46.50	22.22	17.02
zjyd_cxy_vision	2MIN-L	PhraseCut, RefCOCO, RefCOCO+, RefCOCOg, gRef-COCO	31.57	46.59	33.32	17.03

5. the neglected long tail

3. auto-annotation

It's cool to embrace foundation models!

Embracing the open world, esp. foundation models, we compare various approaches:

2. concept misalignment

- Prompt engineering
- Standard finetuning
- Language prompt tuning
- Visual prompting
- Multimodal prompting
- Multimodal chat assistants 6.

5. the neglected long tail

Approaches

It's cool to embrace foundation models!

Embracing the open world, esp. foundation models, we compare various approaches:

2. concept misalignment

- Prompt engineering
- Standard finetuning
- Language prompt tuning
- Visual prompting
- Multimodal prompting
- Multimodal chat assistants 6.

Chat assistant can fail too!

```
60 59: 'vine snake',
61 60: 'night snake, Hypsiglena torquata',
62 61: 'boa constrictor, Constrictor constrictor',
63 62: 'rock python, rock snake, Python sebae',
```

GPT-4 misclassifies "night snake" as "European Adder"

Chat assistant can fail too!

```
60 59: 'vine snake',
61 60: 'night snake, Hypsiglena torquata',
62 61: 'boa constrictor, Constrictor constrictor',
63 62: 'rock python, rock snake, Python sebae',
```

GPT-4 misclassifies "night snake" as "European Adder"

Chat assistant can fail too!

It has seen the whole internet data, right?

Hypothesis: certain concepts are insufficiently presented in the open world.

"night snake" is one of rare concepts in the open world

Hypothesis: certain concepts are insufficiently presented in the open world. *Justification*: We *count* the occurrence of pretraining texts related to the concept of interest.

"night snake" is one of rare concepts in the open world

7. conclusions

Hypothesis: certain concepts are insufficiently presented in the open world.

Justification: We count the occurrence of pretraining texts related to the concept of interest.

Challenge: billions of training examples (e.g., LAION-2B).

Measure concept frequency

Hypothesis: certain concepts are insufficiently presented in the open world.

Justification: We *count* the occurrence of pretraining texts related to the concept of interest.

Challenge: billions of training examples (e.g., LAION-2B). We use string matching!

Measure concept frequency

Hypothesis: certain concepts are insufficiently presented in the open world. *Justification*: We *count* the occurrence of pretraining texts related to the concept of interest.

Challenge: billions of training examples (e.g., LAION-2B). We use string matching!

Lexical variation, e.g., synonyms

Linguistic ambiguity

Measure concept frequency

Hypothesis: certain concepts are insufficiently presented in the open world. *Justification*: We *count* the occurrence of pretraining texts related to the concept of interest.

Challenge: billions of training examples (e.g., LAION-2B). We use string matching!

Hypothesis: certain concepts are insufficiently presented in the open world.

Justification: We count the occurrence of pretraining texts related to the concept of interest.

Evidence: a strong correlation between concept frequency and per-concept accuracy.

"night snake" is one of rare concepts in the open world

Insight 1: prompt VLM using the most frequent synonym

This simple change significantly boosts zero-shot accuracy!

	Freq.	Accuracy			Freq.	Accuracy
cash machine	586	30% +46% >		prairie grouse	69	40% +46% >
ATM	27,234	76%		prairie chicken	892	86%
radiator grille	738	22% +40%		promontory	2,470	8% +26%
front grille	3,403	62%	1	headland	6,674	34%
oceanliner	1923	68% +24%	5	shetland sheepdog	3,707	34% +24%
cruise ship	37,814	92%		sheltie	7,489	58%

Insight 2: use the most frequent synonym in image generation

replace the original query with its most frequent synonym in prompts

Insight 3: use all synonyms for Retrieval Augmented Learning (RAL)

[REACT] is the state-of-the-art RAL method for zero-shot recognition

5. the neglected long tail

Insight 3: use all synonyms for Retrieval Augmented Learning (RAL)

[REACT] is the state-of-the-art RAL method for zero-shot recognition

3. auto-annotation

[Ours] exploits all synonyms to retrieve data using string matching

1. open world: models & data

Insight 3: use all synonyms for Retrieval Augmented Learning (RAL)

[REACT] is the state-of-the-art RAL method for zero-shot recognition

[Ours] exploits all synonyms to retrieve data using string matching

1. open world: models & data

Insight 3: use all synonyms for Retrieval Augmented Learning (RAL)

[REACT] is the state-of-the-art RAL method for zero-shot recognition

[Ours] exploits all synonyms to retrieve data using string matching

Accuracy averaged over eight datasets such as ImageNet, Food...

Stage	Resource	REACT	[Our] RAL	Relative Cost
Retrieval	retrieved examples	400M	0.5M	0.1%
	time	200 hrs	6 hrs	3%
	storage	10 TB	25 GB	0.25%
Learning	training images	10M	0.5M	5%
	time	256 hrs	2 mins	0.01%
	# of learned parameters	87M	0.5M	0.6%
	GPU memory	256 GB	2 GB	0.8%

We study few-shot recognition by adapting a Vision-Language Model (VLM)

sent to "annotators" for data annotation

Foundation models

- Large Language Models (LLMs)
- Vision-Language Models (VLMs)
- Foundation Vision Models (FVMs)

7. conclusions

Retrieve data

• Retrieve data, which has (1) domain gaps, and (2) imbalanced distributions.

- Retrieve data, which has (1) domain gaps, and (2) imbalanced distributions.
- We solve the above issues via Stage-Wise retrieval Augmented fine-Tuning (SWAT), cf. decoupled feature and classifier for long-tailed recognition, and transfer learning for domain adaptation.

- Retrieve data, which has (1) domain gaps, and (2) imbalanced distributions.
- We solve the above issues via Stage-Wise retrieval Augmented fine-Tuning (SWAT), cf. decoupled feature and classifier for long-tailed recognition, and transfer learning for domain adaptation.
- SWAT performs the best.

1. open world: models & data 2. concept misalignment 3. auto-annotation 4. failure cases of AI 5. the neglected long tail 6. few-shot recognition 7. conclusions

Exploit the open world for auto-annotation

- Retrieve data, which has (1) domain gaps, and (2) imbalanced distributions.
- We solve the above issues via Stage-Wise retrieval Augmented fine-Tuning (SWAT), cf. decoupled feature and classifier for long-tailed recognition, and transfer learning for domain adaptation.
- **SWAT** performs the best.
- Few-shot finetuning outperforms existing few-shot learning methods!
- Finetuning on retrieved data underperforms zero-shot method (REAL-Linear) due to domain gaps & imbalanced distributions.

Conclusions & Thank you!

sent to "annotators"

for data annotation

Embrace the open world – the foundation models and open data!

3. auto-annotation

- Watch out for misalignment between AI and experts (like you)!
- Be aware of the imbalance of the open world! •

2. concept misalignment

nuImages Bicycle

- Human or electric powered 2-wheeled vehicle designed to travel at lower speeds either on road surface, sidewalks or bicycle paths.
- If there is a rider, include the rider in the box
 - If there is a pedestrian standing next to the bicvcle, do NOT include in the annotation

