

#### Sintesi Combinatoria

Sintesi di reti combinatorie a più livelli: Introduzione

Motivazioni e Introduzione Modello per reti combinatorie a più livelli Trasformazioni e Algoritmi

versione del 22/10/04



- Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni
  - Reti combinatorie a due livelli: area e ritardo sono ridotti contemporaneamente.
  - Reti combinatorie a più livelli: area e ritardo non procedono nella stessa direzione
- Le reti a più livelli portano in generale a soluzioni più efficienti in termini di area/prestazioni e consentono un utilizzo migliore delle librerie





# Sintesi di reti combinatorie a più livelli: *Introduzione*

- □ **Esempio**-(Reti combinatorie a due livelli: Area e tempo sono ridotti contemporaneamente)
  - Ipotesi: porte con un massimo di 3 ingressi (ritardo uniforme:  $\tau$ )

f(a,b,c,d) = a'b'c'd'+a'b'c'd+a'b'cd'+a'bc'd'+a'bc'd+ab'c'd+ab'cd+abc'd+abcd





# Sintesi di reti combinatorie a più livelli: *Introduzione*

- □ **Esempio**-(Reti combinatorie a più livelli: trade-off area/prestazioni)
  - Ipotesi: porte con un massimo di 3 ingressi (ritardo uniforme:  $\tau$ )

```
f= l'+ c'*g*h'+ a*b'*k'+ g*k'+ a'*b'*c'*d'*e'+ a*d'*e'*f'+e'*g'*i'+e'*j'; Ritardo: 4\tau; Costo: 23

f= l'+ c'*g*h'+ k' (a*b'+ g)+ a'*b'*c'*d'*e'+ a*d'*e'*f'+e'*g'*i'+e'*j'; Ritardo: 5\tau; Costo: 22

f= l'+ c'*g*h'+ k' (a*b'+ g)+ e'*(a'*b'*c'*d'+ a*d'*f'+g'*i'+j'); Ritardo: 6\tau; Costo: 19

f= l'+ c'*g*h'+ k'*(a*b'+ g)+ e'*(d'*(a'*b'*c'+ a*f')+g'*i'+j'); Ritardo: 6\tau; Costo: 18
```





- Nella realizzazione di reti combinatorie multi-livello, più che ricercare un ottimo (l'ottimo non è sempre definibile in maniera univoca), si cerca una soluzione ragionevole in termini di area e prestazioni.
- Sarebbe più corretto parlare di sintesi invece che di ottimizzazione.
   La sintesi può prevedere:
  - Minimizzazione dell'area (con vincolo sul ritardo)
  - Minimizzazione del ritardo (con vincolo sull'area)
- Le operazioni e trasformazioni definite per la sintesi multi-livello hanno come scopo base quello di manipolare l'espressione logica della rete combinatoria in modo da individuare ed estrarre sottoespressioni logiche comuni nell'espressione di partenza
  - questo consente, in generale, di avere realizzazioni più efficienti (con riuso) in termini di porte utilizzate, rispetto all'ottimizzazione a due livelli, con tempi di propagazione peggiori



### Ottimizzazione a più livelli:

- Vantaggi:
  - Più efficiente in termini di area e prestazioni.
  - Permette di utilizzare elementi di libreria.
- Svantaggi:
  - Maggiore complessità della ottimizzazione.

#### Metodi di ottimizzazione:

- Esatti
  - Complessità computazionale estremamente elevata: inaccettabili.

#### Euristici

 Definizione di euristica: "procedimento non rigoroso (approssimativo, intuitivo) che permette di conseguire un risultato la cui qualità è paragonabile a quella ottenuta con metodi rigorosi"



# Sintesi di reti combinatorie a più livelli: *Introduzione*

- Euristica del problema di ottimizzazione due passi:
  - a) Si produce una soluzione ottimale ignorando i vincoli di realizzazione
    - fan\_in, fan\_out, elementi di libreria...

La soluzione è ottenuta tramite sequenze di trasformazioni applicate in modo iterativo. Le trasformazioni sono basate anche sulle proprietà algebriche delle espressioni booleane. La rete è definita ottima rispetto ad un insieme di trasformazioni, quando un'ulteriore applicazione di queste non può più migliorare la funzione di costo.

- b) Si raffina il risultato considerando i vincoli strutturali
  - b) library mapping (o library binding).

Risultato dell'ottimizzazione è di inferiore qualità rispetto ad una ottimizzazione che considera contemporaneamente i punti a) e b) ma risulta computazionalmente più semplice.

In questa sezione si analizza solo il punto relativo all'identificazione della soluzione ottimale (punto a).



# Sintesi di reti combinatorie a più livelli: *Modello della rete (1)*

- Nella sintesi multilivello, il modello utilizzato per rappresentare un circuito combinatorio è un grafo orientato aciclico
  - DAG Direct Acyclic Graph
- Grafo per reti combinatorie
  - È un grafo orientato G(V,E) aciclico
    - · V: insieme dei nodi
    - E: insieme degli archi
- V è partizionato negli insiemi:
  - nodi di ingresso V<sub>T</sub> (Primary Inputs PI)
  - nodi di uscita V₀ (Primary Outputs PO)
  - nodi interni  $V_G$ : Sono moduli della rete combinatoria a cui è associata una funzione combinatoria scalare (una sola uscita)



# Sintesi di reti combinatorie a più livelli: *Modello della rete (2)*

- E' un modello comportamentale/strutturale
  - Strutturale: connessioni.
  - Comportamentale: ad ogni nodo è associata una funzione.
    - Nel modello considerato, ogni funzione è a due livelli con una sola uscita.
- Il modello è bipolare e non gerarchico
  - Bipolare: Ogni arco può assumere valore 0 o 1.





## Sintesi di reti combinatorie a più livelli: Trasformazioni per reti logiche (1)

- Metodi euristici
  - Realizzano un miglioramento iterativo della rete logica mediante trasformazioni logiche che conservano il comportamento di I/O del grafo
- Rispetto al grafo che rappresenta la rete combinatoria, sono possibili due tipi di trasformazioni:
  - Locali: modificano localmente (la funzione di) un nodo non toccando la struttura della rete.
    - Esempio: la fattorizzazione di un nodo
  - Globali: modificano anche la struttura della rete
    - Esempio: l'eliminazione di un nodo nella rete sostituendo la sua espressione logica in tutti i nodi che la utilizzano.





## Sintesi di reti combinatorie a più livelli: Trasformazioni per reti logiche (2)

- Le trasformazioni logiche modificano sia l'area sia le prestazioni poiché agiscono:
  - Sulle funzioni locali;
    - sul numero dei letterali (area);
  - Sulle connessioni
    - variazione del n° di nodi (area) e del n° nodi del cammino critico (prestazioni: n° nodi attraversati, usato come stima per il ritardo di propagazione)
- Sono usate cifre di merito per valutare le trasformazioni
  - Trasformazioni non convenienti sono rifiutate.
- Le trasformazioni sono applicate in modo iterativo.
- La rete è considerata ottimale quando, rispetto ad un insieme di operatori, nessuno di questi la migliora.



# Sintesi di reti combinatorie a più livelli: Approcci alla ottimizzazione multi-livello

- L'approccio tipicamente utilizzato è quello algoritmico
  - Ogni trasformazione è associata ad un algoritmo
  - L'algoritmo:
    - determina dove può essere applicata la trasformazione;
    - applica la trasformazione e la mantiene se porta benefici;
    - termina quando nessuna trasformazione di quel tipo è ulteriormente applicabile.
  - Il maggior vantaggio dell'approccio algoritmico è che trasformazioni di un dato tipo sono sistematicamente applicate alla rete.
  - Algoritmi legati a differenti trasformazioni sono applicati in sequenza.
  - Sfortunatamente differenti sequenze possono portare a soluzioni diverse.
  - Soluzione: uso di sequenze derivate da sperimentazioni.



#### Trasformazioni base - 1

#### Sostituzione di nodi a 1 variabile (sweep)

sostituisce la variabile assegnata nel nodo a monte in tutti i nodi a valle (globale)



#### Eliminazione (*eliminate*)

sostituisce l'espressione di un nodo in uno o più nodi a valle e elimina il nodo originale, +prestazioni temporali (globale, diminuisce il percorso di I/O), -area = n(l-1) - l



#### Semplificazione (simplify)

- manipola l'espressione di un nodo per portarla su due livelli (successiva all'eliminazione) - locale

#### Fattorizzazione (*factor*)

fattorizza l'espressione di un nodo, ottenendo un'espressione su più livelli. Cerca un'espressione da portare poi a fattore comune anche per altri nodi.



#### Sostituzione (substitute)

Utilizza un nodo *già* presente nella rete per semplificare un altro nodo, sostituendo una sotto-espressione (diminuisce il n° di letterali nel secondo nodo) (globale, aumenta il percorso di I/O)



#### Estrazione di una sotto-espressione (extract)

Simile alla sostituzione ma più generale: il nodo da estrarre non deve già esistere (si cerca un divisore comune a più nodi)



#### Decomposizione di una espressione (decompose)

Applica il teorema di espansione di Shannon: estra da  $\rightarrow \bigcirc \rightarrow$  un nodo  $2^k$  nodi (globale, aumenta il percorso di I/O)





- Eliminazione: globale, riduce la lunghezza del percorso I/O
   La lunghezza è calcolata in numero di nodi attraversati.
  - Eliminazione nella rete di tutti i vertici con un solo ingresso e di quelli relativi a funzioni costanti (Sweep)
  - Riduzione vincolata (Eliminate opzione Val-Intero) eliminate 5
    - L'eliminazione di un vertice è accettata se incrementa l'area di una quantità inferiore a Val-Intero.
      - Ad esempio, l'incremento di area può venire calcolato come = n(l-1) l, dove l è numero di letterali del nodo eliminato mentre n è il numero di nodi che lo assorbono
  - Riduzione non vincolata
    - tutti i nodi vengono ridotti ad un solo nodo; si ottiene una rete a due livelli.



### Trasformazioni e algoritmi: eliminazione

• Esempio di eliminate 2:



Costo: 3+4+3=10

Costo: 6+5=11

incremento di costo: 2\*3-2-3 = 1 (accettato)

□ eliminate -1

|   |   |    |    |    | n  |    |    |    |
|---|---|----|----|----|----|----|----|----|
|   |   | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|   | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| I | 2 | -1 | 0  | 1  | 2  | 3  | 4  | 5  |
|   | 3 | -1 | 1  | 3  | 5  | 7  | 9  | 11 |
|   | 4 | -1 | 2  | 5  |    | 11 | 14 | 17 |
|   | 5 | -1 | 3  | 7  | 11 | 15 | 19 | 23 |
|   | 6 | -1 | 4  | 9  | 14 | 19 | 24 | 29 |
|   | 7 | -1 | 5  | 11 | 17 | 23 | 29 | 35 |
|   | 8 | -1 | 6  | 13 | 20 | 27 | 34 | 41 |
|   | 9 | -1 | 7  | 15 | 23 | 31 | 39 | 47 |

Osservano i dati riportati in tabella, relativi al calcolo di n\*l-n-1 al variare di n e l, si può constatare che l'effetto di eliminate -1 (con l=1) è quello di eliminare tutti i nodi composti da un solo letterale (sweep).



Trasformazioni e algoritmi: semplificazione

#### Semplificazione: trasformazione locale

- Semplificazione a due livelli di ogni nodo (simplify)
  - Metodo esatto (Quine-McCluskey) o euristico.
- Fattorizzazione di un nodo (factor)
  - All'interno di un nodo, raccoglie a fattore comune alcuni termini
     >> da due a più livelli
  - Esempio: (ipotesi: porte a 3 ingressi)

```
f= l'+ c'gh'+ ab'k'+ gk'+ a'b'c'd'e'+ ad'e'f'+e'g'i'+e'j';

Ritardo: 4 τ; Costo: 23
```



## Sintesi di reti combinatorie a più livelli: Trasformazioni e algoritmi: fattorizzazione

#### Fattorizzazione

- L'espressione logica fattorizzata può essere ottenuta utilizzando una euristica.
  - Politica della euristica: si pesano i letterali dell'espressione di partenza con ordinamento lessico-grafico a parità di peso
    - Elemento più a destra per primo
- L'insieme dei termini prodotto viene ricorsivamente partizionato (blocco della partizione e blocco residuo) utilizzando come termine di riferimento il letterale che compare con più frequenza.
  - Ottimizzazione: tutti i letterali che hanno la stessa cardinalità della partizione vengono raccolti contemporaneamente
- Ad ogni passo della ricorsione le partizioni sono in **OR** fra loro mentre i termini a fattor comune sono in **AND**.



# Sintesi di reti combinatorie a più livelli: Fattorizzazione - esempi





# Sintesi di reti combinatorie a più livelli: Fattorizzazione - esempi

#### □ Esempio 2: (forma 2 livelli non ottimizzata)

f = abcd+ab'c'd+a'b'cd+a'b'c'd

Ritardo: 4τ costo: 12

a a' h h' c c'

abc

|         | а | a <b>'</b> | b | b' | С | c' | d | d <b>′</b> |
|---------|---|------------|---|----|---|----|---|------------|
| abcd    | 1 | 0          | 1 | 0  | 1 | 0  | 1 | 0          |
| ab'c'd  | 1 | 0          | 0 | 1  | 0 | 1  | 1 | 0          |
| a'b'cd  | 0 | 1          | 0 | 1  | 1 | 0  | 1 | 0          |
| a'b'c'd | 0 | 1          | 0 | 1  | 0 | 1  | 1 | 0          |
|         | 2 | 2          | 1 | 3  | 2 | 2  | 4 | 0          |

Fattore comune d

Blocco della partizione indotta dal

b'

fattore comune

ac'

a'c

a'c'

|        | a | а |   | D |   |   |   |
|--------|---|---|---|---|---|---|---|
| abc    | 1 | 0 | 1 | 0 | 1 | 0 | - |
| ab'c'  | 1 | 0 | 0 | 1 | 0 | 1 |   |
| a'b'c  | 0 | 1 | 0 | 1 | 1 | 0 |   |
| a'b'c' | 0 | 1 | 0 | 1 | 0 | 1 |   |
|        | 2 | 2 | 1 | 3 | 2 | 2 | Γ |

a a' c c' 1 0 0 1 0 1 1 0 0 1 0 1

+

a'c

Ritardo: 5τ

Blocco residuo

partizione

della

costo: 10

f = d(abc+b'(a'c+c'(a+a')))

|                                                 |             | а | a <b>′</b> |  |
|-------------------------------------------------|-------------|---|------------|--|
|                                                 | a           | 1 | 0          |  |
| <u>. + ./ . / / / / / / / / / / / / / / / /</u> | <b>'</b> a' | 0 | 1          |  |
| a + a'                                          |             | 1 | 1          |  |

Blocco della partizione

indotta dal fattore

comune c'



# Sintesi di reti combinatorie a più livelli: Fattorizzazione - esempi





### Trasformazioni e algoritmi: sostituzione

- Sostituzione (substitute): globale, aumenta la lunghezza del percorso I/O
- Sostituzione di una sotto-espressione mediante una variabile (nodo) già presente nella rete. In generale, ogni sostituzione è accettata se produce guadagno nel numero di letterali.
  - · Fa uso della divisione algebrica; si cerca di ridurre f<sub>i</sub> usando f<sub>i</sub>





### Trasformazioni e algoritmi: estrazione

- Estrazione (extract) globale, aumenta la lunghezza del percorso I/O
  - Estrae una espressione da gruppi di nodi. L'estrazione viene fatta fino a che è possibile.
    - · Identificazione un divisore comune a due o più espressioni.
    - Il divisore costituisce un nuovo nodo della rete ed ha per successori i nodi da cui è stato estratto.





### Sintesi di reti combinatorie a più livelli: Trasformazioni e algoritmi: decomposizione algebrica

- Decomposizione algebrica (decompose): globale, aumenta la lunghezza del percorso I/O
  - Riduce le dimensioni di una espressione per:
    - Rendere più semplice l'operazione di library mapping.
    - Aumentare la probabilità di successo della sostituzione
  - La decomposizione può essere applicata ricorsivamente al divisore, quoziente e resto.

$$f_i = f_d (f_{dq} f_{qq} + f_{rq}) + (f_{dr} f_{qr} + f_{rr})$$

$$f_k = f_{dq}$$

$$f_1 = f_{dr}$$

$$f_i = f_j \quad (f_k \quad f_{qq} + f_{rq}) \quad + \quad f_1 \quad f_{qr} \quad + \quad f_{rr}$$

$$f_j = f_d$$



- Decomposizione algebrica, estrazione e sostituzione: come si trovano i divisori?
  - Modello algebrico: le espressioni booleane vengono viste come espressioni algebriche, cioè come polinomi di primo grado, nelle variabili naturali e complementate, con coefficienti unitari
  - Lavorando con il modello algebrico valgono le proprietà algebriche mentre quelle dell'algebra booleana non sono valide
  - È definita la divisione algebrica:  $f_{divisore}$  è un divisore algebrico di  $f_{dividendo}$  se
    - $f_{dividendo} = f_{divisore} f_{quoziente} + f_{resto} e$
    - $f_{quoziente} \bullet f_{divisore} \neq 0 e$
    - il supporto di  $f_{divisore}$  e di  $f_{quoziente}$  è disgiunto
  - Esistono algoritmi diversi per calcolare i divisori di una espressione algebrica



Trasformazioni e algoritmi: decomposizione disgiuntiva

- Decomposizione disgiuntiva semplice (decompose) globale, aumenta la lunghezza del percorso I/O
  - Riduce le dimensioni di una espressione (v. decomposizione algebrica)
  - La decomposizione disgiuntiva semplice può essere applicata ricorsivamente.

$$f_{1}(a_{1}, a_{2}, ..., a_{n}) = ...$$

$$f_{1}(a_{k+1}, ..., a_{n}) = ...$$



Trasformazioni e algoritmi: decomposizione disgiuntiva

### Decomposizione disgiuntiva (cont.)

Deriva dalla applicazione del teorema di espansione di Shannon:

$$f(a_1, a_2, ... a_n) = a_1 * f_{a_1} + a_1' * f_{a_1}'$$

- Il risultato, in termini di costo, dipende fortemente dalla decomposizione che viene effettuata sulle variabili di supporto della funzione.
  - Con n variabili il numero di possibili scomposizioni è 2<sup>n</sup>-2



# Sintesi di reti combinatorie a più livelli: Decomposizione disgiuntiva - esempi

### Esempio 1:

Esempio: scomposizione disgiuntiva di f rispetto a b





#### Esempio 1:

Esempio: scomposizione disgiuntiva di f rispetto ad ab





### Esempio 2 (xor):

- scomposizione disgiuntiva di f rispetto ad ab





Esempio 3:

Costo: 11

scomposizione disgiuntiva di f rispetto ad ab

$$\mathbf{f_{ab}} = c'd'$$

$$f_{ab'} = c+c'd' \Rightarrow c+d'$$

$$\mathbf{f}_{\mathbf{a'b'}} = d + cd + c'd' = \Rightarrow c' + d$$





□ Esempio 3 (cont.):

f=ab' c+a'b'd+a'cd+c'd'

Costo: 11

scomposizione disgiuntiva di f rispetto ad c

$$\mathbf{f_c}$$
= ab'+a'b'd+a'd  $\Rightarrow$  ab'+a'd

$$\mathbf{f}_{\mathbf{c}'}$$
 = a'b'd+d'  $\Rightarrow$  a'b'+d'



scomposizione disgiuntiva di f rispetto ad a

scomposizione disgiuntiva di f rispetto ad b

$$\mathbf{f_{b'}}$$
= ac+a'd+a'cd+c'd'  $\Rightarrow$  ac+a'd+c'd'

scomposizione disgiuntiva di f rispetto ad d

$$\mathbf{f_d}$$
= ab'c+a'b'+a'c  $\Rightarrow$  ab'+a'b'+a'c

$$\mathbf{f_{d'}}$$
= ab'c+c'  $\Rightarrow$  ab'+c'

Costo: 15

Costo: 13

Costo: 14

Costo: 11

```
sweep; eliminate -1; simplify -m nocomp; eliminate -1
```

sweep; eliminate 5; simplify -m nocomp

resub -a; fx; resub -a

sweep; eliminate -1

sweep; full\_simplify -m nocomp

#### Esercizi & Soluzioni di fattorizzazione:

```
f= abcd'+ ab'c'+ a'bc'+ b'cd = c(abd'+ b'd)+ c'(ab'+ a'b)
```

```
f= abcd'+ abc'd + ab'c'd'+ a'bc'd'+ a'b'd + a'cd + b'cd = d'(abc + c'(ab'+ a'b)) +d(abc'+ c(b'+a')+ a'b')
```

```
f= ac'd+ a'bcd + a'c'd'+ b'c'd= a'bcd + c'(d(b'+a)+a'd')
```

```
f= abc'+ abd'+ ab'cd+ ac'd'+ a'bcd+ bc'd'= a(b'cd+ c'd')+ b(a'cd+ d'(c'+a) +a c')
```

```
f= ab'cd+ a'bcd+ a'b'c'+ a'b'd'+ b'c'd'=
a'bcd+ b'(acd+ d'(c'+ a')+ a'c')
```