Class16: RNASeq Mini Project

Wai Lam Adele Hong A15999023

11/18/2021

```
metaFile <- "GSE37704_metadata.csv"</pre>
countFile <- "GSE37704_featurecounts.csv"</pre>
# Import metadata and take a peek
colData = read.csv(metaFile, row.names=1)
head(colData)
##
                  condition
## SRR493366 control_sirna
## SRR493367 control_sirna
## SRR493368 control_sirna
## SRR493369
                   hoxa1_kd
## SRR493370
                   hoxa1_kd
## SRR493371
                   hoxa1_kd
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
                    length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
##
## ENSG0000186092
                       918
                                    0
                                              0
                                                         0
                                                                   0
                                                                              0
## ENSG0000279928
                       718
                                   0
                                              0
                                                         0
                                                                   0
                                                                              0
## ENSG00000279457
                      1982
                                   23
                                             28
                                                        29
                                                                  29
                                                                             28
## ENSG0000278566
                       939
                                   0
                                                         0
                                                                   0
                                                                              0
## ENSG00000273547
                       939
                                    0
                                              0
                                                         0
                                                                   0
                                                                              0
## ENSG0000187634
                      3214
                                 124
                                            123
                                                       205
                                                                 207
                                                                            212
##
                    SRR493371
## ENSG0000186092
## ENSG0000279928
                            0
## ENSG00000279457
                           46
## ENSG0000278566
                            0
## ENSG00000273547
                            0
## ENSG0000187634
                          258
```

Q1. Complete the code below to remove the troublesome first column from countData. We need to get rid of this funny first column.

```
countData <- countData[, -1]
head(countData)</pre>
```

```
SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371
##
## ENSG0000186092
                            0
                                      0
                                                 0
                                                            0
                                                                       0
                                                                                 0
                            0
                                      0
                                                 0
                                                            0
                                                                       0
## ENSG00000279928
                                                                                 0
## ENSG00000279457
                           23
                                      28
                                                29
                                                           29
                                                                      28
                                                                                46
## ENSG0000278566
                            0
                                       0
                                                 0
                                                            0
                                                                       0
                                                                                 0
## ENSG0000273547
                            0
                                       0
                                                 0
                                                            0
                                                                       0
                                                                                 0
## ENSG0000187634
                                     123
                                               205
                                                          207
                                                                     212
                                                                               258
                          124
```

#We should have 6 rows and 6 columns! If we run the [, -1] code again and again, each time it will get

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

head(countData)

##	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
## ENSG00000186092	0	0	0	0	0	0
## ENSG00000279928	0	0	0	0	0	0
## ENSG00000279457	23	28	29	29	28	46
## ENSG00000278566	0	0	0	0	0	0
## ENSG00000273547	0	0	0	0	0	0
## ENSG00000187634	124	123	205	207	212	258

countsnozero <- countData[rowSums(countData) !=0,]</pre>

```
# BiocManager::install("DESeq2")
library(DESeq2)
```

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
##
       union, unique, unsplit, which.max, which.min
```

```
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Warning: package 'GenomicRanges' was built under R version 4.1.2
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
##
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
       'browseVignettes()'. To cite Bioconductor, see
##
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
```

```
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
dds = DESeqDataSetFromMatrix(countData=countData,
                              colData=colData,
                              design=~condition)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
dds = DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
dds
## class: DESeqDataSet
## dim: 19808 6
## metadata(1): version
## assays(4): counts mu H cooks
## rownames(19808): ENSG00000186092 ENSG00000279928 ... ENSG00000277475
    ENSG00000268674
## rowData names(22): baseMean baseVar ... deviance maxCooks
## colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
## colData names(2): condition sizeFactor
Q3. Call the summary() function on your results to get a sense of how many genes are up or down-regulated
at the default 0.1 p-value cutoff.
```

```
##
## out of 15975 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                       : 4349, 27%
## LFC < 0 (down)
                       : 4393, 27%
## outliers [1]
                       : 0, 0%
## low counts [2]
                       : 1221, 7.6%
## (mean count < 0)</pre>
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
##Volcano Plot
plot( res$log2FoldChange, -log(res$padj) )
```


Q4. Improve this plot by completing the below code, which adds color and axis labels.

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$pvalue < 0.01) & (abs(res$log2FoldChange) > 2 )
```

```
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-value)" )</pre>
```


library("AnnotationDbi")

Warning: package 'AnnotationDbi' was built under R version 4.1.2

```
library("org.Hs.eg.db")
```

##

```
columns(org.Hs.eg.db)
```

```
"ALIAS"
    [1] "ACCNUM"
                                        "ENSEMBL"
                                                        "ENSEMBLPROT"
                                                                        "ENSEMBLTRANS"
    [6] "ENTREZID"
                        "ENZYME"
                                        "EVIDENCE"
                                                        "EVIDENCEALL"
                                                                        "GENENAME"
                        "GO"
                                        "GOALL"
                                                        "IPI"
                                                                        "MAP"
##
   [11]
       "GENETYPE"
                                        "ONTOLOGYALL"
   [16] "OMIM"
                        "ONTOLOGY"
                                                        "PATH"
                                                                        "PFAM"
                        "PROSITE"
                                        "REFSEQ"
                                                                        "UCSCKG"
   [21] "PMID"
                                                        "SYMBOL"
## [26] "UNIPROT"
```

```
res$symbol <- mapIds(org.Hs.eg.db,</pre>
                     keys=row.names(res),
                     keytype="ENSEMBL",
                     column="ENTREZID",
                     multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
res$entrez = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
res$name =
             mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
head(res, 10)
## log2 fold change (MLE): condition hoxa1_kd vs control_sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 10 rows and 9 columns
##
                    baseMean log2FoldChange
                                                 lfcSE
                                                                        pvalue
                                                              stat
                                   <numeric> <numeric>
##
                   <numeric>
                                                         <numeric>
                                                                     <numeric>
## ENSG0000186092
                      0.0000
                                          NA
                                                    NA
                                                                            NA
                                                                NA
## ENSG0000279928
                      0.0000
                                          NA
                                                    NA
                                                                NA
                                                                            NΑ
## ENSG00000279457
                     29.9136
                                   0.1792571 0.3248216
                                                         0.551863 5.81042e-01
## ENSG0000278566
                      0.0000
                                          NΑ
                                                    NA
                                                                NA
                                                                            NΑ
## ENSG00000273547
                      0.0000
                                          NA
                                                    NA
                                                                NA
                                                                            NΑ
                                                         3.040350 2.36304e-03
                                   0.4264571 0.1402658
## ENSG00000187634 183.2296
## ENSG00000188976 1651.1881
                                  -0.6927205 0.0548465 -12.630158 1.43990e-36
## ENSG00000187961 209.6379
                                   0.7297556 0.1318599
                                                         5.534326 3.12428e-08
## ENSG0000187583
                     47.2551
                                   0.0405765 0.2718928
                                                         0.149237 8.81366e-01
## ENSG0000187642
                     11.9798
                                   0.5428105 0.5215598
                                                         1.040744 2.97994e-01
##
                                     symbol
                                                 entrez
                                                                name
                          padj
##
                     <numeric> <character> <character> <character>
## ENSG0000186092
                            NA
                                      79501
                                                  79501
                                                               79501
## ENSG0000279928
                            NA
                                         NA
                                                     NA
                                                                  NA
## ENSG00000279457 6.87080e-01
                                  102723897
                                              102723897
                                                          102723897
## ENSG00000278566
                            NA
                                                                  NA
                                         NA
                                                     NA
## ENSG00000273547
                            NA
                                         NA
                                                     NA
                                                                  NA
## ENSG00000187634 5.16278e-03
                                     148398
                                                 148398
                                                              148398
## ENSG00000188976 1.76741e-35
                                      26155
                                                  26155
                                                              26155
## ENSG00000187961 1.13536e-07
                                     339451
                                                 339451
                                                              339451
## ENSG00000187583 9.18988e-01
                                                  84069
                                      84069
                                                              84069
## ENSG00000187642 4.03817e-01
                                      84808
                                                  84808
                                                              84808
```

```
pca <- prcomp(t(countsnozero))
mycols <- rep(c("red", "blue"), each=3)
plot(pca$x[,1:2], col=mycols, pch=16)</pre>
```



```
# Run in your R console (i.e. not your Rmarkdown doc!)
# BiocManager::install( c("pathview", "gage", "gageData") )
library(pathview)
```

library(gage)

##

```
library(gageData)
# Focus on datasubset of KEGG
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
## $'hsa00232 Caffeine metabolism'
              "1544" "1548" "1549" "1553" "7498" "9"
## [1] "10"
##
## $'hsa00983 Drug metabolism - other enzymes'
##
    [1] "10"
                  "1066"
                           "10720"
                                     "10941"
                                              "151531" "1548"
                                                                  "1549"
                                                                           "1551"
                  "1576"
                                     "1806"
##
   [9] "1553"
                           "1577"
                                              "1807"
                                                        "1890"
                                                                  "221223" "2990"
## [17] "3251"
                  "3614"
                           "3615"
                                     "3704"
                                              "51733"
                                                        "54490"
                                                                  "54575"
                                                                           "54576"
   [25] "54577"
                  "54578"
                           "54579"
                                     "54600"
                                              "54657"
                                                        "54658"
                                                                  "54659"
                                                                           "54963"
##
   [33] "574537" "64816"
                           "7083"
                                     "7084"
                                              "7172"
                                                        "7363"
                                                                  "7364"
                                                                           "7365"
   [41] "7366"
                  "7367"
                           "7371"
                                     "7372"
                                              "7378"
                                                        "7498"
                                                                  "79799"
                                                                           "83549"
## [49] "8824"
                  "8833"
                           "9"
                                     "978"
##
## $'hsa00230 Purine metabolism'
##
     [1] "100"
                   "10201"
                            "10606"
                                      "10621"
                                               "10622"
                                                         "10623"
                                                                   "107"
                                                                            "10714"
     [9] "108"
                   "10846"
                            "109"
                                      "111"
                                                "11128"
                                                         "11164"
                                                                            "113"
##
                                                                   "112"
##
    [17] "114"
                   "115"
                            "122481" "122622" "124583" "132"
                                                                   "158"
                                                                            "159"
    [25] "1633"
                   "171568" "1716"
                                      "196883" "203"
                                                         "204"
                                                                   "205"
                                                                            "221823"
##
                   "22978"
                            "23649"
                                      "246721" "25885"
                                                         "2618"
                                                                   "26289"
                                                                            "270"
##
    [33] "2272"
                                                                            "2984"
    [41] "271"
                   "27115"
                            "272"
                                      "2766"
                                                "2977"
                                                                   "2983"
                                                         "2982"
##
    [49] "2986"
                   "2987"
                            "29922"
                                      "3000"
                                                "30833"
                                                                   "318"
                                                                            "3251"
##
                                                         "30834"
##
    [57] "353"
                   "3614"
                            "3615"
                                      "3704"
                                                "377841" "471"
                                                                   "4830"
                                                                            "4831"
##
    [65] "4832"
                   "4833"
                            "4860"
                                      "4881"
                                                "4882"
                                                         "4907"
                                                                   "50484"
                                                                            "50940"
    [73] "51082"
                   "51251"
                            "51292"
                                      "5136"
                                                "5137"
                                                         "5138"
                                                                   "5139"
                                                                            "5140"
##
##
    [81] "5141"
                   "5142"
                            "5143"
                                      "5144"
                                               "5145"
                                                         "5146"
                                                                   "5147"
                                                                            "5148"
                            "5151"
                                      "5152"
                                                                   "5167"
##
    [89] "5149"
                   "5150"
                                                "5153"
                                                         "5158"
                                                                            "5169"
##
   [97] "51728"
                   "5198"
                            "5236"
                                      "5313"
                                                "5315"
                                                         "53343"
                                                                   "54107"
                                                                            "5422"
## [105] "5424"
                   "5425"
                            "5426"
                                      "5427"
                                                "5430"
                                                         "5431"
                                                                   "5432"
                                                                            "5433"
##
  [113] "5434"
                   "5435"
                            "5436"
                                      "5437"
                                                "5438"
                                                         "5439"
                                                                   "5440"
                                                                            "5441"
                   "548644" "55276"
                                      "5557"
                                                "5558"
## [121] "5471"
                                                         "55703"
                                                                   "55811"
                                                                            "55821"
## [129] "5631"
                   "5634"
                            "56655"
                                      "56953"
                                                "56985"
                                                         "57804"
                                                                   "58497"
                                                                            "6240"
## [137] "6241"
                   "64425"
                            "646625"
                                      "654364" "661"
                                                         "7498"
                                                                   "8382"
                                                                            "84172"
                                                "8654"
## [145] "84265"
                   "84284"
                            "84618"
                                      "8622"
                                                         "87178"
                                                                   "8833"
                                                                            "9060"
## [153] "9061"
                   "93034"
                            "953"
                                      "9533"
                                                "954"
                                                         "955"
                                                                   "956"
                                                                            "957"
## [161] "9583"
                   "9615"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
##
       79501
                   <NA> 102723897
                                        <NA>
                                                   <NA>
                                                           148398
```

NA

NA 0.4264571

##

NA

NA 0.1792571

Let's run the gage pathway analysis.

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

[1] "greater" "less" "stats"

Let's look at the first few down-regulat4ed (less) pathways.

Info: Writing image file hsa04110.pathview.png

head(keggres\$less)

\$names

```
##
                                          p.geomean stat.mean
                                                                    p.val
## hsa04110 Cell cycle
                                       7.077982e-06 -4.432593 7.077982e-06
## hsa03030 DNA replication
                                       9.424076e-05 -3.951803 9.424076e-05
## hsa03013 RNA transport
                                       1.012277e-03 -3.122555 1.012277e-03
## hsa04114 Oocyte meiosis
                                       2.563806e-03 -2.827297 2.563806e-03
## hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
## hsa00010 Glycolysis / Gluconeogenesis 4.360092e-03 -2.663825 4.360092e-03
                                             q.val set.size
## hsa04110 Cell cycle
                                       0.001160789 124 7.077982e-06
## hsa03030 DNA replication
                                       0.007727742
                                                        36 9.424076e-05
## hsa03013 RNA transport
                                       0.055337821
                                                      150 1.012277e-03
## hsa04114 Oocyte meiosis
                                       0.100589607
                                                      112 2.563806e-03
## hsa03440 Homologous recombination
                                      0.100589607
                                                        28 3.066756e-03
## hsa00010 Glycolysis / Gluconeogenesis 0.119175854
                                                        65 4.360092e-03
```

Using the pathview() function, we will make pathway plot for the RNASeq. expression results.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

```
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
```



```
# A different PDF based output of the same data
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathwaysup <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresidsup = substr(keggrespathwaysup, start=1, stop=8)
keggresidsup</pre>
```

[1] "hsa04740" "hsa04640" "hsa00140" "hsa04630" "hsa04976"

Let's use **pathview()** for all top 5 up-regulated pathways.

pathview(gene.data=foldchanges, pathway.id=keggresidsup, species="hsa")

- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04740.pathview.png
- ## Info: some node width is different from others, and hence adjusted!
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04640.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa00140.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04630.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04976.pathview.png

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 down-regulated pathways here for demo purposes only
keggrespathwaysdown <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresidsdown = substr(keggrespathwaysdown, start=1, stop=8)
keggresidsdown</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa04114" "hsa03440"

```
pathview(gene.data=foldchanges, pathway.id=keggresidsdown, species="hsa")
```

- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04110.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16

- ## Info: Writing image file hsa03030.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa03013.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa04114.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory /Users/adelehong/BIMM 143/bimm143_github/Class16
- ## Info: Writing image file hsa03440.pathview.png

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

```
##
                                                    q.val set.size
                                                                           exp1
## GO:0007156 homophilic cell adhesion
                                              0.07103646
                                                               138 1.624062e-05
## GO:0048729 tissue morphogenesis
                                              0.08350839
                                                               483 5.407952e-05
## GO:0002009 morphogenesis of an epithelium 0.08350839
                                                               382 5.727599e-05
## GO:0030855 epithelial cell differentiation 0.15370245
                                                               299 2.053700e-04
## GO:0060562 epithelial tube morphogenesis
                                              0.15370245
                                                               289 2.927804e-04
## GO:0048598 embryonic morphogenesis
                                                               498 2.959270e-04
                                              0.15370245
##
## $less
##
                                               p.geomean stat.mean
## GO:0048285 organelle fission
                                            6.386337e-16 -8.175381 6.386337e-16
## GO:0000280 nuclear division
                                            1.726380e-15 -8.056666 1.726380e-15
## GO:0007067 mitosis
                                            1.726380e-15 -8.056666 1.726380e-15
## G0:0000087 M phase of mitotic cell cycle 4.593581e-15 -7.919909 4.593581e-15
## GO:0007059 chromosome segregation
                                            9.576332e-12 -6.994852 9.576332e-12
## GO:0051301 cell division
                                            8.718528e-11 -6.455491 8.718528e-11
                                                    q.val set.size
##
## GO:0048285 organelle fission
                                            2.517062e-12
                                                               386 6.386337e-16
## GO:0000280 nuclear division
                                            2.517062e-12
                                                               362 1.726380e-15
## GO:0007067 mitosis
                                            2.517062e-12
                                                               362 1.726380e-15
## GO:0000087 M phase of mitotic cell cycle 5.023080e-12
                                                               373 4.593581e-15
## GO:0007059 chromosome segregation
                                                               146 9.576332e-12
                                            8.377375e-09
## GO:0051301 cell division
                                            6.355807e-08
                                                               479 8.718528e-11
## $stats
                                              stat.mean
                                                             exp1
## GO:0007156 homophilic cell adhesion
                                               4.226117 4.226117
## GO:0048729 tissue morphogenesis
                                               3.888470 3.888470
## GO:0002009 morphogenesis of an epithelium
                                               3.878706 3.878706
## GD:0030855 epithelial cell differentiation 3.554776 3.554776
## GO:0060562 epithelial tube morphogenesis
                                               3.458463 3.458463
## GO:0048598 embryonic morphogenesis
                                               3.446527 3.446527
```

Reactome Analysis

We can also do a similar procedure with gene ontology. Similar to above, go.sets.hs has all GO terms. go.subs.hs is a named list containing indexes for the BP, CC, and MF ontologies. Let's focus on BP (a.k.a Biological Process) here.

Reactome Analysis

Reactome is database consisting of biological molecules and their relation to pathways and processes.

```
# output the list of significant genes at the 0.05 level as a plain text file:
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))
## [1] "Total number of significant genes: 8146"
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote=FALSE)</pre>
```

Q8. What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

```
# Performed significant gene analysis on https://reactome.org/PathwayBrowser/#TOOL=AT website. Download
mostsignificant <- read.csv(file="result.csv")
head(mostsignificant)</pre>
```

```
##
     Pathway.identifier
## 1
          R-HSA-9716542
## 2
          R-HSA-9012999
## 3
            R-HSA-69618
## 4
           R-HSA-141424
## 5
           R-HSA-141444
## 6
           R-HSA-194315
##
                                                                                Pathway.name
                                        Signaling by Rho GTPases, Miro GTPases and RHOBTB3
## 1
## 2
                                                                            RHO GTPase cycle
## 3
                                                                 Mitotic Spindle Checkpoint
                                              Amplification of signal from the kinetochores
## 5 Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal
                                                                    Signaling by Rho GTPases
## 6
##
     X.Entities.found X.Entities.total Entities.ratio Entities.pValue Entities.FDR
## 1
                  495
                                    725
                                            0.050802326
                                                             0.006251003
                                                                            0.7958572
                  323
                                                             0.006517206
                                                                            0.7958572
## 2
                                    460
                                            0.032233200
## 3
                    89
                                    111
                                            0.007778011
                                                             0.007440536
                                                                            0.7958572
## 4
                    77
                                            0.006586784
                                                             0.007543102
                                     94
                                                                            0.7958572
## 5
                   77
                                     94
                                           0.006586784
                                                             0.007543102
                                                                            0.7958572
                  483
                                    709
                                                                            0.7958572
## 6
                                            0.049681172
                                                             0.007827996
##
     X.Reactions.found X.Reactions.total Reactions.ratio Species.identifier
## 1
                    204
                                      212
                                              0.0156146424
                                                                          9606
## 2
                    84
                                       91
                                              0.0067025116
                                                                          9606
## 3
                     7
                                        7
                                              0.0005155778
                                                                          9606
## 4
                      4
                                        4
                                              0.0002946159
                                                                          9606
## 5
                      4
                                        4
                                              0.0002946159
                                                                          9606
                                      203
                                              0.0149517566
## 6
                    195
                                                                          9606
##
     Species.name
## 1 Homo sapiens
## 2 Homo sapiens
## 3 Homo sapiens
## 4 Homo sapiens
## 5 Homo sapiens
## 6 Homo sapiens
## 1 908;25904;65124;2551;1460;9181;9184;25900;2669;79658;253959;5930;91526;3998;23616;81839;115703;201
## 2
## 3
## 4
## 5
## 6
                                                                          908;25904;65124;2551;1460;9181;9
##
     Mapped.entities
## 1
## 2
                  NA
## 3
                  NA
## 4
                  NA
```