

海外弱网下在线视频平台优化实践

四达时代 张亮

01 StarTimes On App简介

02 非洲网络情况与挑战

03 高延迟、高丢包网络视频体验优化

StarTimes On App 简介

四达时代——非洲影响力最大的电视运营商

4年 耕耘

45个 非洲国家

万村通 项目实施方

480+

直播频道

数万小时 点播视频

1000万+ 付费电视用户

StarTimes On App

- 覆盖非洲撒哈拉以南20多个国家
- 直播频道140+,点播内容数万小时
- 独家体育版权
- 成功转播2018年世界杯
- 长期位于Google Play娱乐版块前列

Google Play - Leader Board 排名

加纳市场

肯尼亚市场 5100万人口

尼日利亚市场 1.96亿人口

丰富的内容资源

商业模式与运营指标

	免费用户	付费用户
收入来源	广告	订阅费
用户权益	• 必须观看广告 • VIP内容可试看3分钟	免广告解锁所有内容权益
运营指标	观看广告数量(约等于观看视频数量)	• 观看视频数量 • 次均观看时长

从运营指标拆解QoE/QoS指标

运营指标	QoE	QoS
观看视频数量	主动退出率	85分位首屏时间
视频观看时长	观看时长或比例	85分位卡顿比

非洲 网络情况与挑战 2

非洲主要国家到欧洲某知名CDN的RTT

非洲主要国家到欧洲某知名CDN的丢包率

其他协议层/应用层指标

指标	数值范围
TCP建连成功率	≈80%
DNS解析时间(85分位)	≈1000ms
m3u8下载时间(85分位)	1000~2000ms
视频切片下载速度(85分位)	200~400kbps

延迟与丢包如何产生?

2020 北京

• 丢包

- 无线接入网丢包: 信号干扰或小区切换等导致数据包丢失/损坏
- 拥塞丢包: 网络严重拥塞后缓冲区溢出

• 延迟

- 传输延迟: 光速有限, 距离用户越远延迟越大
- 处理延迟: 处理packet header、校验位检查等耗时
- •排队延迟:网络拥塞时,数据无法及时转发,必须排队按顺序发送 (Bufferbloat)
- 重发延迟: 丢包后重发, 对应用层等于增加了延迟

延迟与丢包如何产生?

确定延迟与丢包的产生环节

测试目的	实验组	对照组	实验组收益
验证是否存在 严重拥塞	闲时	作亡日寸	首屏时间减少30% 卡顿比降低40%
验证接入网 质量差异	使用4G网络	使用3G网络	首屏时间减少20% 卡顿比降低30%
验证互联网出口	使用运营商网内CDN	使用欧洲CDN	首屏时间减少10% 卡顿比降低20%
质量差异	使用IXP内的CDN	使用欧洲CDN	首屏时间减少5% 卡顿比降低8%

确定延迟与丢包的产生环节

非洲网络情况总结

网络层级	问题表现
链路/网络层	带宽不足、严重拥塞
传输层	丢包率高、RTT高
应用层	域名解析慢、下载速度慢、下载成功率低

高延迟、高丢包网络 别视频体验优化

确定优化目标

- 指标的互斥关系
 - 首屏 vs 卡顿 vs 延迟
 - 用户体验 vs 成本
- 业务特点
 - 以版权视频为主,无互动,用户对延时不敏感
 - 以长视频为主,用户对卡顿的耐受差,首屏时间不能超过5秒
 - 付费用户为主,对画质有一定要求
- 优化目标
 - 卡顿比第一,首屏时间第二,延迟可牺牲
 - 画质满足基本需求 (例如球赛能看到足球、新闻能看清人脸)

优化思路 | CDN层面

- 从IDC角度看非洲的网络基础设施
 - ISP多、规模偏小、彼此之间没有互联互通
 - ISP与IDC之间缺乏直达路由,需要通过欧洲的Tier 1交换流量
- 优化策略:
 - 在ISP网内自建CDN
 - 寻找与ISP直连的第三方CDN

监控与调度系统

- 挑战
 - 自建CDN仅能供网内用户访问,如果调度出错则视频无法播放
 - 运营商网内出口不稳定,可能影响用户体验
 - 球赛、演唱会等场景可能会打爆运营商机房的网内出口
- 调度策略
 - 基于用户体验调度: 实时、分析采集播放器日志, 提取成功率、卡顿比等指标
 - 基于设备与网络状态调度: 实时采集CDN设备状态和机房网络出口状态
 - 基于成本调度: 优先将用户调往网内CDN, 无法处理时再调往第三方CDN

优化思路 | 音视频技术层面

2020 北京

针对高延迟和低下载速度优化

- 接口调用异步化
- 网络层优化
- 视频封装优化
- 提升视频压缩效率

流媒体协议选择

对比项	HTTP FLV	HLS	DASH
时延	短	中~长	中~长
多音轨、多字幕	不支持	支持	支持
音视频数据流分离	不支持	支持	支持
平滑码率切换	不支持	支持	支持
海外第三方CDN支持	待淘汰	支持	支持
开源库	丰富	丰富	较少*

首屏指标体系

2020 北京

业务鉴权/防盗链 token生成/广告、续 播参数

CDN选择 (GSLB)

CDN域名解析 (DNS 解析)

下载首个m3u8

下载首个切片

缓冲区达到阈值 渲染首帧

- 接口响应耗时
- 接口调用耗时
- 调用成功率

- 接口响应耗时
- 接口调用耗时
- 调用成功率
- 请求劫持比例

- 域名解析时长
- 域名解析成功率
- 请求劫持比例

- TCP握手时长
- 握手成功率
- 首包时间
- 下载速度
- 成功率

- TCP握手时长
- 握手成功率
- 首包时间
- 下载速度
- 成功率

- 首屏时间
- 视频启动成功率
- 视频首帧解码耗时
- 音频首帧解码耗时

全流程指标:

- 首屏显示成功率
- 错误率
- 用户主动退出率
- 用户主动退出时间
- 用户主动退出环节

首屏时间优化

问题现象	优化思路	收益
业务接口时间长	・ 鉴权、广告播发策略、续播、码率选择等逻辑移动到客 户端异步处理	网络环节减少1~2个RTT*服务端环节减少100~200ms
CDN选择时间长、 DNS时间长	在返回列表页URL时完成CDN选择和域名解析App启动/播放过程中/网络变化时异步选择、解析	• 减少2 RTT
M3U8下载 TCP握手时间长	• CDN选择结束后即建立连接,心跳保活 • QUIC 0-RTT	 相比HTTPS减少2 RTT、相比HTTP 减少1 RTT,生效比例约为50%

问题现象	优化思路	收益
M3U8下载时间长	master m3u8合并到列表页URL中HLS fragmented MP4的init.fmp4合并到m3u8中	• 减少2 RTT
切片下载 TCP握手时间长	并行建立连接基于HTTP2/QUIC的连接复用对于点播直接复用下载m3u8的连接	• 减少1~2 RTT

收益

Video 北京

卡顿比指标体系

2020 北京

• 下载耗时

• 成功率

下载m3u8

下载切片

- 下载耗时
- 成功率

同步

播放

- 视频解码耗时
- 音频解码耗时

帧率

(帧率=0代表卡顿)

- 整体指标:
- 卡顿比
- m3u8下载速度
- 切片下载速度

• 视频缓冲区大小

• 音频缓冲区大小

• 字幕缓冲区大小 (缓冲区大小=0代表卡顿)

卡顿比瓶颈分析

卡顿比优化

问题现象	优化思路	收益
直播多次下载M3U8	M3U8与切片文件并行下载M3U8的内容放到切片文件的http response header里— 同返回	• 直播切片下载速度提升15%
直播缓冲区用不满	增大源站的缓冲时间,使播放器的缓冲区有机会充满给予播放器较大的缓冲区,使其在网络良好时有机会多下载内容并填充缓冲区	• 卡顿比降低50%

卡顿比优化

问题现象	优化思路	收益
总体码率高、	• 使用HLS fragmented MP4	• Overhead降到1%,切片下载时间减少10%
文件大	• 优化超低码率下的画质和流畅性	• 在同样画质下码率降低30%,切片下载时间减少20%
	• 在重要的运营商内自建CDN	• 晚高峰切片下载速度20%~30%
切片下载速度 慢	优化CDN选择策略,根据国家、运营商、IP段选 择最合适的CDN优化边缘站点调度策略,避免请求分散导致切片 命中率下降	• 第三方CDN切片下载速度提升10%~30%
	• 使用BBR/QUIC等新的拥塞控制算法和传输协议	BBR收益不显著QUIC平均提升10%的下载速度,但忙时收益不显著

收益

2020 北京

点播卡顿比85分位

优化思路总结

- 数据、数据、数据
 - 网络协议栈埋点、播放器埋点、业务埋点......
 - 在多个维度、多个分位线上看数据, 以准确找到瓶颈
- 抓核心指标
 - 重点优化影响业务的核心QoS指标,适度牺牲其他指标
 - 找到核心瓶颈, 投入产出比高的事情优先做

多媒体开启 MULTIMEDIA BRIDGE TO A WORLD OF VISION 新视界

Thank you

