INTERCHANGING HOMOTOPY LIMITS AND COLIMITS IN CAT

BY GUILLERMO CORTIÑAS*

ABSTRACT. Let I,J be small categories and $C:I\times J\longrightarrow {\rm CAT}$ a functor to the category of small categories. We show that if I has a final object then the canonical map ${\rm hocolim}_J\,{\rm holim}_I\,C\longrightarrow {\rm holim}_I\,{\rm hocolim}_J\,C$ is a strong homotopy equivalence.

Let $C: I \to \mathbf{CAT}$ be a functor going from a small category I to the large category of all small categories. By the *homotopy colimit* of C we mean the Grothen-dieck construction ([T]):

$$\operatorname{hocolim}_{I} C := \int_{I} C$$

and by the homotopy limit we mean the pullback:

$$\begin{array}{ccc} \operatorname{holim}_{I} C & \longrightarrow & 0 \\ & & & \downarrow id \\ \operatorname{HOM}(I, \operatorname{hocolim}_{I} C) & \xrightarrow[\pi_{*}]{} \operatorname{HOM}(I, I) \end{array}$$

Here HOM is the functor category, π_* is induced by the natural projection π : hocolim_I $C \to I$, 0 is the category with only one map and id maps the only object of 0 to the identity functor. A reason for using the above definitions is that taking nerves one recovers the usual homotopy (co)limits for simplicial sets, up to homotopy in the case of hocolim ([T]) and up to isomorphism in the case of holim ([L]). Before we state the main result of this paper, we need a definition.

Definition. A pseudo final object in a category I is a an object $e \in I$ together with a natural map $\epsilon: 1 \to e$ going from the identity to the constant functor.

Theorem 1. Let I and J be small categories and let $C: I \times J \to \text{CAT}$ be a functor. Then there is a faithful functor:

$$\iota: \operatorname{hocolim}_I \operatorname{holim}_I C \to \operatorname{holim}_I \operatorname{hocolim}_J C$$

which is natural in all variables involved. If in addition the category I has a pseudo-final object, then there also exists a functor:

$$p: \operatornamewithlimits{holim}_I \operatornamewithlimits{hocolim}_J C \longrightarrow \operatornamewithlimits{hocolim}_J \operatornamewithlimits{holim}_I C$$

^(*) Partially supported by ANPC grant BID802/OC-AR-PICT 2260 and by grants UBACyT

such that $p_i = 1$ and a natural map $1 \to \iota p$. The functor p is natural in J and C and for functors $I \to I'$ which preserve e and ϵ . In particular, under this assumption, the functor ι is a homotopy equivalence.

Before we prove the theorem we explain our choice of notation and recall a description of $\operatorname{holim}_I C$ in terms of objects and arrows. We use a somewhat non-standard notation for functors $I \to \operatorname{CAT}$. On objects we use subscripts instead of parenthesis; thus C_i (and not C(i)) means the value of C at the object $i \in I$. Also, we omit the letter C on arrows, so we use the same letter $(\alpha, \beta, \gamma, \ldots)$ for a map in I and for its image through the functor C. As we use i, j, k, \ldots for objects in I and x_i, y_i, z_i, \ldots for objects of C_i , this should arise no confusion. For example $\alpha: i \to j$ is a map in I while αx_i is the object of C_j obtained by applying the image of α through C to the object $x_i \in C_i$; i.e. αx_i really means $C(\alpha)(x_i)$. If $\rho: x_i \to y_i$ is a map in C_i and $\alpha: i \to j$ is in I, we write $\alpha(\rho)$ for $C(\alpha)(\rho)$.

Here is a description of both $\operatorname{hocolim}_I C$ and $\operatorname{holim}_I C$ in terms of objects and arrows. An object of $\operatorname{hocolim}_I C$ is a pair $x_i := (i, x)$ where $i \in I$ and $x \in C_i$. A map $x_i \to y_j$ is a pair (α, ρ) with $\alpha : i \to j \in I$ and $\rho : \alpha x \to y \in C_j$. Composition is defined as in a semidirect product: $(\alpha, \rho)(\beta, \mu) = (\alpha \beta, \alpha(\rho)\mu)$. On the other hand, $\operatorname{holim}_I C$ is the category of all pairs of families $(x, \rho) := (\{x_i\}_{i \in I}, \{\rho_\alpha\}_{\alpha \in I})$, indexed respectively by the objects and the maps of I, where $x_i \in C_i$, and if $\alpha : i \to j$ is a map in I, then $\rho_\alpha : \alpha x_i \to x_j$ is a map in C_j . The family $\{\rho_\alpha\}_{\alpha \in I}$ is subject to the conditions:

(1)
$$\rho_1 = 1 \qquad \qquad \rho_{\alpha\beta} = \rho_{\alpha}\alpha(\rho_{\beta})$$

In the first equality, the 1 on the left is an identity map $1: i \to i$ and the 1 on the right is the identity of x_i in C_i ; in the second equality, $i_0 \stackrel{\alpha}{\leftarrow} i_1 \stackrel{\beta}{\leftarrow} i_2$ are composable maps in I and it should be interpreted as an equality in the set of maps $\alpha\beta x_{i_2} \to x_{i_0}$ in C_{i_0} . A map $f: (x, \rho^x) \to (y, \rho^y)$ in $\operatorname{holim}_I C$ is a family of maps $f_i: x_i \to y_i \in C_i$ indexed by the objects of I such that the following diagram commutes for every map $\alpha: i \to j \in I$:

(2)
$$\alpha x_i \xrightarrow{f_i} \alpha y_i$$

$$\rho^x \downarrow \qquad \qquad \downarrow \rho^y$$

$$x_j \xrightarrow{f_j} y_j$$

Proof of Theorem 1. To begin with, we write down what each of the categories involved is. An object of $\operatorname{hocolim}_I \operatorname{holim}_J C$ is a pair (j, x) where $j \in J$ is an object and $x = \{(x_{ij}, \rho_{\alpha}^x) : i, \alpha \in I\}$ is a family of objects $x_{ij} \in C_{ij}$, one for each $i \in I$, together with a family of maps $\rho_{\alpha} : \alpha x_{ij} \to x_{i',j} \in C_{i'j}$, one for each map $\alpha : i \to i' \in I$. (Hereafter we shall write $x = \{(x_{ij}, \rho_{\alpha}^x\})$), omitting the specification of where the indexes lie.) The ρ_{α} satisfy condition (1) for maps in I. A map between an object (j, x) and an object (k, y) is a pair (β, f) where

commutes. Maps are composed by $(\gamma, g)(\beta, f) = (\gamma \beta, \{g_i \gamma f_i : i \in I\})$. An object of the category $\operatorname{holim}_{I} \operatorname{hocolim}_{J} C$ is a family of pairs $(j(i), x_{ij(i)})$ $(i \in I)$ where $j(i) \in J$ and $x_{ij(i)} \in C_{ij(i)}$, together with a family of pairs $(\beta_{\alpha}, \rho_{\alpha}) = (\beta_{\alpha}^{x}, \rho_{\alpha}^{x})$, $(\alpha: i \to i' \in I)$ where $\beta_{\alpha}: j(i) \to j(i') \in J$ and $\rho_{\alpha}: \alpha \beta_{\alpha} x_{ij(i)} \to x_{i',j(i')} \in C_{i',j(i')}$ are maps, and ρ_1 and β_1 are identity maps. The β satisfy $\beta_{\alpha'\alpha} = \beta_{\alpha'}\beta_{\alpha}$ and the ρ satisfy (1). A map between the object $x = ((j(i), x_{ij(i)}), (\beta_{\alpha}, \rho_{\alpha}^{x}))$ and the object $y = ((k(i), y_{i,k(i)}), (\beta, \rho_{\alpha}^{y}))$ is a family of pairs (β_{i}, f_{i}) $(i \in I)$, where $\beta_i: j(i) \to k(i) \in J$ and $f_i: \beta_i x_{ij(i)} \to y_{ik(i)} \in C_{ik(i)}$ are maps. The (β_i, f_i) satisfy $\beta_{\alpha}{}^{y}\beta_i = \beta_{i'}\beta_{\alpha}{}^{x}$ and $\rho_{\alpha}^{y}\beta_{\alpha}{}^{y}\alpha(f_i) = f_{i'}\beta_{i'}(\rho_{\alpha}^{x})$ for each map $\alpha: i \to i' \in I$. Composition is defined as $(\gamma, g)(\beta, f) = \{(\gamma_i \beta_i, g_i \gamma_i(f_i))\}$. We define ι as sending the object (j,x) to the object $(\{(j,x_{ij})\},\{(1_j,\rho^x_\alpha)\})$ and the map (β,f) to the map $(\beta,\{f_i\})$. It is clear from the definition that ι is a functor that maps hocolim_J holim_I C faithfully into holim_I hocolim_I C. Moreover the functor ι identifies hocolim_I holim_I C with the subcategory of holim_I hocolim_J C of those objects x as above which have constant j = j(i) and constant $\beta_{\alpha} = 1_j$, and with arrows the families $\{(\beta_i, f_i)\}$ with $\beta_i = \beta$, a constant map. Now assume I has a pseudo-final object $\epsilon: 1 \to e$. Define p as $p(\{(j(i), x_{ij(i)})\}, \{(\beta_{\alpha}, \rho_{\alpha})\}) = (\{(j(e), \beta_{\epsilon_i} x_{ij(i)})\}, \{(1_{j(e)}, \beta_{\epsilon_i} (\rho_{\alpha}))\})$ on objects and by $p\{(\beta_i, f_i)\} = (\beta_e, \{\beta_{\epsilon_i}(f_i)\})$ on arrows. It is tedious but straightforward to verify that p is a functor from $\operatorname{holim}_I \operatorname{hocolim}_J C$ to $\operatorname{hocolim}_J \operatorname{holim}_I C$. Once this is verified, it is clear that $p\iota = 1$. The natural map $\theta: 1 \to \iota p$ is defined as follows. Given an object $x \in \text{holim}_I \text{ hocolim}_J C$, define $\theta(x)_i = \{(\beta_{\epsilon_i}^x, 1_{\beta_{\epsilon_i x_{i,j(i)}}})\}$: $\{(j(i), x_{ij(i)})\} \to \{(j(e), \beta_{\epsilon_i}{}^x x_{ij(i)})\}$. Another tedious but straightforward verification shows that θ is a natural map. \square

Warning. Write NC for the nerve of C. Note that the theorem does not imply that $\operatorname{hocolim}_{J} \operatorname{holim}_{I} NC \approx \operatorname{holim}_{I} \operatorname{hocolim}_{J} NC$. This is because, unlike holim , $\operatorname{hocolim}$ commutes with nerves only up to weak equivalence, not isomorphism, and holim , unlike $\operatorname{hocolim}$, does not preserve all weak equivalences, only those between fibrant simplicial sets. Theorem 1.2 may still be true for simplicial sets but it $\operatorname{certainly}$ cannot be derived in this way. Also note that, even when C is fibrant, $\operatorname{hocolim}_{J} C$ need not be so, and thus the spectral sequence for holim may converge to the wrong homotopy type. The following example illustrates these pathologies.

Tricky Example. Fix a prime number p. Let $C: \mathbb{N}^{op} \times \mathbb{N} \to CAT$ be given by the following diagram:

Here $(\mathbb{Z}/p^m)_{\delta}$ is the discrete category, the vertical maps are the natural projections, and p means 'multiply by p'. One checks that $\operatorname{hocolim}_{\mathbb{N}} \operatorname{holim}_{\mathbb{N}^{op}C\delta} \approx \operatorname{holim}_{\mathbb{N}^{op}C\delta} \operatorname{holim}_{\mathbb{N}^{op}C\delta} \operatorname{holim}_{\mathbb{N}^{op}C\delta} \operatorname{holim}_{\mathbb{N}^{op}C\delta} \operatorname{holim}_{\mathbb{N}^{op}C\delta}$

the hocolim of each of the rows has the weak homotopy type of a point, by [BK] and [T]. Note this is not in contradiction with the fact that holim preserves weak equivalences of fibrant simplicial sets ([BK]) nor the fact that it preserves adjoint functors ([L]). Indeed the category $L_m := \text{hocolim}_{\mathbb{N}} C_{m,-}$ has $\mathbb{N} \times \mathbb{Z}/p^m$ as set of objects, and $\text{hom}((n_0, a_m), (n_1, b_m)) = \{*\}$ if both $n_0 \leq n_1$ and $p^{n_1 - n_0} a_m = b_m$ and the empty set otherwise. Thus NL_m is not fibrant, because not every map in L_m is an isomorphism, and it does not have initial or final object, i.e., the map $L_m \to 0$ does not have an adjoint.

References

- [BK] A. Bousfield, D. Kan, *Homotopy limits, localizations and completions*, Lecture Notes in Math, vol. 304, Springer, 1972.
- [L] M. Lydakis, Homotopy limits of categories, J. of Pure and Applied Algebra 97 (1994), 73-80.
- [T] R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), 91-109.

Departamento de Matemática, Ciudad Universitaria Pabellón 1, (1428) Buenos Aires, Argentina.

E-mail address: gcorti@dm.uba.ar