អារត្តអន្សា

យើងខ្ញុំទាំងអស់គ្នាដែលជាក្រុមសារណាថ្នាក់ជាន់ខ្ពស់បច្ចេកទេសជំនាន់ទី២៧ នៃ វិទ្យាស្ថានពហុបច្ចេកទេសព្រះកុសុមៈ (PPI) បានមើលឃើញថាប្រទេសកម្ពុជាយើងកំពុងមានការអភិវឌ្ឍន៍ លើ គ្រប់ វិស័យជាពិសេសគឺ វិស័យអគ្គិសនីដែលជាកត្តាចាំបាច់ក្នុងការកសាងជាតិ និង ធ្វើឲ្យមានសន្ទុះរីក ចម្រើនយ៉ាងឆាប់ រហ័ស ។

ហេតុនេះទើបក្រុមយើងខ្ញុំ ត្រូវបំពេញសារណាបានសម្រេចចិត្តលើកយកប្រធានបទមួយ គឺ **ការផ្គត់ផ្គង់ថាមពលអគ្គិសនីក្នុងវីឡាមួយជាន់** ហើយបានខិតខំព្យាយាមស្រាវជ្រាវប្រមូលនូវឯកសារដែលទាក់ទង និង វិធីសាស្ត្រក្នុងការគណនាដើម្បីបង្ហាញពីលក្ខណៈបច្ចេកទេស និងតាមស្តង់ដាក្នុងការដំឡើងប្រព័ន្ធអគ្គីសនីតាម ផ្ទះ ឬផ្ទះវីឡាភូមិគ្រឹះផ្សេងៗ ដើម្បីឲ្យអាចបម្រើដល់អ្នកប្រើប្រាស់មានភាពងាយស្រួល និងមានភាពទំនុកចិត្តព្រម ទាំងមានគុណភាពនិងសុវត្ថិភាព ។

ការប្រើប្រាស់ប្រព័ន្ធអគ្គិសនី ដែលមិនមានបញ្ហានិងមិនប៉ះពាល់ដល់បរិក្ខារអគ្គិសនី គឺទាមទារ ឲ្យមាន ស្ថេរភាពនៃតង់ស្យុង ប្រេកង់ព្រមទាំងមានឧបករណ៍ការពារដែលសមស្រប ទៅតាមបទដ្ឋានបច្ចេកទេសផងដែរ ។ទោះបីជាយ៉ាងណារក៏ដោយសារណាដែលជាគម្រោងតូចនេះក្តីរមែងមានចំណុច ខ្វះខាតខ្លះៗ ជាពុំខានអាស្រ័យ ហេតុនេះក្រុមយើងខ្ញុំសូមអភ័យទោស និង រងចាំទទួលការរិះគន់ពី សំណាក់ សាស្ត្រាចារ្យ លោកគ្រូ អ្នកគ្រុជា ពិសេសគណៈកម្មការ និង មិត្តអ្នកអានផ្សេងៗទៀតដែល មានជំនាញនិង ចំណេះដឹងលើផ្នែកនេះដើម្បីជួយដល់ពួក យើងខ្ញុំបានស្ថាបនានិង កែប្រែនៅថ្ងៃមុខ ។ដោយសារសមត្ថភាពនៅមានកម្រិត និងមានកន្លែងខ្លះគិតមិនដល់ពុំបាន ពិនិត្យ គ្រប់ជ្រុងជ្រោយ ហេតុនេះសូមអនុគ្រោះដល់ក្រុមយើងខ្ញុំផង ។

ទាំងនេះយើងខ្ញុំមានបំណងតែមួយគត់គឺចង់ ឲ្យវិស័យអគ្គិសនី ឬអ្នកបច្ចេកទេសប្រកបដោយស្ដ ង់ដារ និង មានគុណភាពនិងសមត្ថភាពខ្ពស់ជានិរន្តរ។

ខេត្តខ្លែ១អំណរដ្ឋណ

យើងខ្ញុំ ជានិស្សិត កម្រិត ថ្នាក់សញ្ញាបត្រជាន់ខ្ពស់បច្ចេកទេស ជំនាន់ទី២៧ នៃមហាវិទ្យាល័យ អគ្គិសនី នៅ វិទ្យាស្ថានពហុបច្ចេកទេសព្រះកុសុមៈ។

សូមថ្លែងអំណរគុណដោយក្ដីគោរពដ៏ខ្ពង់ខ្ពស់បំផុត និងដោយក្ដីកត្តញ្ញូតាធម៌ក្រៃលែង ចំពោះ គុណបំណាច់ ដ៏ធំធេងរកអ្វីប្រៀបផ្ទឹមពុំបាន ចំពោះអ្នកមានគុណទាំងពីររបស់ខ្ញុំ ដែលលោកបានផ្ដល់ កំណើត និងចញ្ចឹមបីបាច់ថែ រក្សាទំនុកបម្រុងព្រមទាំងផ្ដល់នូវដំបូន្មានល្អៗដល់កូនដែលប្រកបទៅដោយ ព្រហ្មវិហារធម៌ដ៏ល្អប្រពៃ និងលះបង់ ទាំងកំលាំងកាយ កំលាំងចិត្តនិងទ្រព្យសម្បត្តិដោយគ្មានគិតការ នឿយហត់ ដើម្បីឱ្យកូនបានសិក្សារហូតដល់បាន ទទួលជោគជ័យជាស្ថាពរ។

សូមថ្លែងអំណរគុណយ៉ាងជ្រាលជ្រៅ ចំពោះ **៦អឧត្តមមស្និត តាំ១ មឿន** នាយកនៃ វិទ្យាស្ថានពហុបច្ចេកទេសព្រះកុសុមៈ ហៅកាត់ថា PPI សិក្សាការបន្តខ្ញុំយើងឱ្យអនុញ្ញាតបានដែល ថ្នាក់សញ្ញាបត្រ ជាន់ខ្ពស់បច្ចេកទេស នៅវិទ្យាស្ថាន ដើម្បីពង្រីកចំណេះដឹង និងធ្វើកិច្ចការស្រាវជ្រាវពីបច្ចេកវិទ្យាថ្មីៗបន្ថែមទៀត ស្របតាមការរីកចម្រើនខាងផ្នែកបច្ចេកវិទ្យា ដើម្បីធ្វើជាមូលដ្ឋានគ្រឹះសម្រាប់ការសិក្សាឱ្យទទួលបាន

ជោគជ័យ។

សូមថ្លែងអំណរគុណដោយក្ដីគោរពចំពោះលោកស្រី មូល ម៉ារ៉ានី ព្រឹទ្ធបុរសមហាវិទ្យាល័យអគ្គិសនី ដែល បានរៀបចំនុវផែនការសិក្សា ថ្នាក់សញ្ញាបត្រជាន់ខ្ពស់បច្ចេកទេស សម្រាប់បណ្ដុះបណ្ដាល និងបានបង្ហាត់បង្រៀន ជួយណែនាំជួយផ្ដល់ដំបូន្មានល្អៗរហូតទទួលបានជោគជ័យ។

សូមថ្លែងអំណរគុណដោយក្ដីគោរពចំពោះ លោកគ្រូ សុត មុនីរតនា ជាសាស្ត្រាចារ្យដឹកនាំសារណា ដែល បានចំណាយពេលវេលាដ៏មានតម្លៃ ជួយបង្ហាត់បង្រៀន ជួយពន្យល់ណែនាំ ផ្ដល់ជាដំបូន្មានល្អៗ ជាពិសេសជម្រុញ និងលើកទឹកចិត្តដើម្បីឱ្យខ្ញុំទទួលបានជោគជ័យ។

សូមថ្លែងអំណរគុណដោយក្ដីគោរពចំពោះ មន្ត្រីរាជការសាស្ត្រាចារ្យ និងបុគ្គលិកទាំងអស់ នៃ វិទ្យាស្ថានពហុបច្ចេកទេសព្រះកុសុមៈ ដែលបាន ឱ្យយើងខ្ញុំបានធ្វើសារណាបញ្ចាប់ការសិក្សា និងបានផ្ដល់ ជាមតិ យោបល់ល្អៗ ក្នុងអំឡុងពេលសិក្សា ដែលធ្វើឱ្យទទួលបាននូវលទ្ធផលយ៉ាងល្អប្រសើរ។

ជាទីបញ្ចប់នេះខ្ញុំបាទសូមប្រសិទ្ធិពរជ័យជូនដល់អ្នកមានគុណទាំងពីរ ឯកឧត្តមនាយក លោក នាយករង លោកស្រីនាយិការង មន្ត្រីរាជការ សាស្ត្រាចារ្យ និងបុគ្គលិកទាំងអស់ សូមជួបតែពុទ្ធពរទាំង បួនប្រការគឺអាយុ វណ្ណៈ សុខៈ ពលៈ និងទទួលបានជោគជ័យជំនះគ្រប់ភារកិច្ច និងគ្រប់ពេលវេលា។

ចញ្ជីអ**អ្សរ**ភា**ដ**

		5619423322161	
អត្សរភាដ		ទទិចរួច	စ္မာရ
A	:	ជាបណ្ដោយបន្ទប់គិតជាម៉ែត្រ	(m)
В	:	ជាទទឹងបន្ទប់គិតជាម៉ែត្រ	(m)
Н	:	ជាកម្ពស់សរុប គិតជាម៉ែត្រ	(m)
H_2	:	គម្លាតអំពូលពីពិជាន គិតជាម៉ែត្រ	(m)
\mathbf{H}_1	:	កម្ពស់ផ្ទៃការងារ គិតជាម៉ែត្រ	(m)
N	:	ចំនួនអំពូល	
f	:	ភ្លុចពន្លឺរបស់អំពូលមួយ	(Lm)
S	:	ក្រលាផ្ទៃនៃទីតាំងដែលត្រូវបំភ្លឺគិតជា	(m^2)
F_T	:	ពន្លឺសរុបនៅក្នុងផ្ទៃបន្ទប់	(Lum)
F	:	ពន្លឺសរុបក្នុងមួយអំពូល	(Lum)
U	:	មេគុណប្រើប្រាស់យកចេញពីតារាង	
C	:	មេគុណកាត់បន្ថយពន្លឺ	
P socket	:	អានុភាពរបស់ឆ្នាប់ចរន្ត	(W)
I_n	:	ចរន្តស៊ីដោយគ្រឿនទទួល	(A)
U_n	:	តង់ស្យុងណូមីណាល់	(V)
K_s	:	មេគុណព្រមគ្នា (Simultaneously Factor)	
K_{u}	:	មេគុណប្រើប្រាស់ទាក់ទងទៅនិងចំនួនម៉ោងដែលប្រើក្នុងមួយថ្ងៃ	
K_{e}	:	មេគុណពន្យា	
$N_{\rm s}$:	ចំនួនឆ្នាប់ចរន្ត	
I	:	ជាចរន្តប្រើប្រាស់	(A)
I_t	:	ជាចរន្តប្រើប្រាស់សរុប	(A)
$P_{T.Demand} \\$:	អានុភាពតម្រូវការប្រើប្រាស់របស់ឆ្នាប់ចរន្ត	
J	:	ដង់ស៊ីតេខ្សែ	(A/mm^2)
$U_{n.}$:	តង់ស្យុងណូមីណាល់របស់ឌីហ្សុងទ័រ	(V)
U_n	:	តង់ស្យុងណូមីណាល់របស់បណ្តាញ	(V)
U	:	តង់ស្យុងប្រើប្រាស់	(V)
I _{Cal.1}	:	ចរន្តណូមីណាល់បន្ទុកប្រើប្រាស់	(A)

I_{CB}	:	ចំណុះចរន្តរបស់ ឌីសុង់ទ័ រ	(A)
S_{T}	:	អានុភាពសកម្មពុំទាន់ដាក់ (Capacitor Bank)	(kVA)
P_{T}	:	អានុភាពសរុប	(kW)
$S_{\rm C}$:	អានុភាពសកម្មពេលដាក់ (Capacitor Bank)	(kVA)
Q_c	:	ជាកុងដង់សាទ័រត្រូវដាក់ (Capacitor Bank)	(kVAR)
P Lamp	:	ជាអានុភាពសកម្មរបស់អំពូលគិតជា	(W)
$tg_{\varphi 1}$:	ជាកត្តាអានុភាពដែលពុំទាន់ទូទាត់	
$tg_{\varphi 2}$:	ជាកត្តាអានុភាពដែលបានកំណត់	
ΔU	:	ទន្លាក់តង់ស្យង	(%)
I_b	:	ចរន្តបន្ទុកប្រើប្រាស់	(A)
L	:	ប្រវែងខ្សែ	(m)
n	:	ចំនួនខ្សែ	
R	:	រេស៊ីស្តង់ខ្សែ	(Ω/km)
X	:	រេអាក់តង់ខ្សែ	(Ω/km)
S_{Cu}	:	មុខកាត់ខ្សែ	(mm^2)
$\Delta U\%$:	ទន្លាក់តង់ស្យុងគិតជាភាគរយ	(%)
S_{c}	:	ជាអានុភាពគណនាពេលដាក់ (Capacitor Bank)	(kV
K_{ov}	:	ជាមេគុណលើសបន្ទុករបស់ត្រង់ស្ទូរម៉ាទ័រកំណត់យក	
S_{G}	:	អានុភាពរបស់ម៉ាស៊ីន	(kVA)
K	:	ជាមេគុណបន្ថែមរបស់ម៉ាស៊ីន(1.2-1.3)	
S Total	:	អានុភាពសរុបរបស់បន្ទុក	(kVA)
Δ L	:	Lead Distance	
V	:	Downward tracer	(1m/\mu s)
ΔΤ	:	Spark overtime	(/µs)

စာရိုနာ

ចំណទទើទ	នំព័រ
អារម្ភកថា	i
សេចក្តីថ្លែងអំណរគុណ	ii
បញ្ជីអក្សរកាត់	iii
មាតិកា	V
បញ្ចូតារាង	iv
ខំពុងឆ្នី ១ សេចអ្គីផ្ដើម	
១.១ សេចក្តីផ្តើម	11
១.២ ទីតាំងភូមិសាស្ត្រ	12
១.៣ .មូលហេតុនៃការសិក្សា	15
១.៤ .គោលបំណងនៃការសិក្សា	15
១.៥. ព្រំដែននៃការសិក្សា	16
ទុំបំងន្ទ ៣ ខ្លួន្នមាទិនិងបាខាតទំងងង្វឹមស្ន	
២.១.វិធីសាស្ត្រគណនាប្រព័ន្ធបំភ្លឺ	17
២.២ វិធីសាស្ត្រគណនាម៉ាស៊ីនត្រជាក់	21
២.៣ វិធីសាស្ត្រគណនាធ្នាប់ចរន្តសម្រាប់ប្រើប្រាស់	24
២.៤ វិធីសាស្ត្រគណនាអានុភាពប្រើប្រាស់របស់បន្ទុក	25
២.៥. វិធីសាស្ត្រគណនាមុខកាត់ខ្សែចម្លងរបស់គ្រឿងទទួល	27
២.៦. វិធីសាស្ត្រគណនាឌីសង់ទ័រ	28
២.៧. វិធីសាស្ត្រគណនាអានុភាពប្រើប្រាស់សរុបក្នុងជាន់នីមួយៗ	29
២.៨. វិធីសាស្ត្រគណនាអានុភាពសរុបក្នុងវីឡាទាំងមូល	29
២.៩ វិធីសាស្ត្រគណនាចរន្តសរុបនៅក្នុងវីឡាទាំងមូល	29
២.១០. វិធីសាស្ត្រគណនាមុខកាត់ខ្សែមេសម្រាប់វិឡាទាំងមូល	30
២.១១. វិធីសាស្ត្រគណនាឌីសង់ទ័រសម្រាប់វីឡាទាំងមូល	30

២.១២ គណនាភ្លុចពន្លឺ	31
២.១៣ .គណនាឆ្នាប់ចរន្តសម្រាប់ប្រើប្រាស់ក្នុងបន្ទប់ទទួលភ្ញៀវ	34
២.១៤ វិធីសាស្ត្រគណនាម៉ាស៊ីនត្រជាក់	35
២.១៥ តារាទិន្នន័យម៉ាស៊ីនត្រជាក់ជាន់ផ្ទាល់ដី	40
២.១៦ វិធីសាស្ត្រគណនាមុខកាត់ខ្សែ	44
២១៧ វិធីសាស្ត្រគណនាមុខកាត់ខ្សែសម្រាប់ធ្នាប់ចរន្ត	45
២.១៨ វិធីសាស្ត្រគណនាមុខកាត់ខ្សែសម្រាប់ម៉ាស៊ីនត្រជាក់	
២.១៩. វិធីសាស្ត្រគណនាមុខកាត់ខ្សែមេតាមបន្ទប់នីមួយៗ	46
២.២០.គណនាមុខកាត់ខ្សែមេតាមជាន់នីមួយៗ	47
២.២១.គណនាមុខកាត់ខ្សែមេចូល	49
២.២២.វិធីសាស្ត្រគណនាឌីសង់ទ័រ	50
២.២២.១.គណនាឌីស្យុងទ័រសម្រាប់បន្ទប់គេង	50
២.២២.២. គណនាឌីស្យុងទ័រសម្រាប់ជាន់ផ្ទាល់ដី	50
២.២២.៣ គណនាឌីសង់ទ័រសម្រាប់ជាន់ទី១	51
២.២២.៤ គណនាឌីសង់ទ័រមេ	52
ទំពុងខ្លួយ ខេត្តទី ខេត្ត	
៣.១ ប្រព័ន្ធខ្សែដី	53
៣.២ ការគណនាអេឡិចត្រូត	56
៣.៣ ការគណនាអេឡិចត្រូដផ្ដេក	58
៣.៤ ការគណនាមុខកាត់ខ្សែដី	59
៣.៥ ប្រព័ន្ធការពាររន្ទះ	60
ខំពុតនី៤ សុខត្ថិតាព និ១ទិធីសទ្រ្គាះ១៥ទ	
៤.១ សុវត្តិភាពការងារ	62
៤.២ ឧបករណ៍ និងសម្ភារៈពេលអនុវត្តន៍	65
៤.៣ សម្ភារៈអគ្គិសនី	68

៤.៤ គ្រោះថ្នាក់បណ្តាលមកពីចរន្តអគ្គិសនី.	69
៤.៥ កត្តាដែលបណ្តាលឲ្យមនុស្សឆក់ដោយចរន្តអគ្គិសនី	69
៤.៦ ការទប់ស្កាត់កុំឲ្យមានគ្រោះថ្នាក់អគ្គិសនី	71
៤.៧ វិធីជួយសង្គ្រោះបន្ទាន់	71
៤.៨ វិធីសាស្ត្រជួយសង្គ្រោះបឋម	72
៤.៩ គ្រោះថ្នាក់ដោយអគ្គិសនី	72
៤.១០ គ្រោះថ្នាក់ដោយការធ្វេសប្រហែស	73
៤.១១ គ្រោះថ្នាក់ដោយទុស្សេខ្សែភ្លើង	73
៤.១២ វិធីពន្លត់អគ្គីភ័យ	74
៤.១៣ បំពង់ពន្លត់អគ្គីភ័យ	74
ខំពុភនី ៥ ភាគេលាខាសខ្នុកិច្ច	
៥.១ .សន្ទស្សន៍សេដ្ឋកិច្ច	75
៥.២.តម្លៃទីផ្សារ	75
៥.៣.ការគណនាសន្ទស្សន៍សេដ្ឋកិច្ច.	77
៥.៤.ការចំណាយប្រចាំខែនិងឆ្នាំ	77
ខំពុងធ្នូ ១ ខេត្តដូនប៉ូនាំខ	
៦.១ សេចក្តីសន្និដ្ឋាន	79

តារាងទី២.១ បង្ហាញពីភាពភាពបំភ្លឺតាបបន្ទប់នីមួយៗ	20
តារាងទី២.២ ស្តង់ដាម៉ាស៊ីនត្រជាក់	23
តារាងទី ២.៣ ស្តង់ដាររបស់មុខកាត់ខ្សែ	27
តារាងទី២.៤ ស្តង់ដាររបស់ឌីស្យុងទ័រ	28
តារាងទី២.៥ ឈ្មោះនិងទំហំបន្ទប់ជាន់ផ្ទាល់ដី (E ₀₎	31
តារាងទី២.៦ ឈ្មោះនិងទំហំបន្ទប់ជាន់ទី១(E ₁₎	31
តារាងទី២.៧ បង្ហាញលទ្ធផលនៃការគណនាប្រព័ន្ធបំភ្លឺនៅក្នុងផ្ទះវីឡាជាន់ផ្ទាល់ដី (E₀)	38
តារាងទី២.៨ បង្ហាញលទ្ធផលនៃការគណនាធ្នាប់ចរន្តនៅក្នុងផ្ទះវីឡាជាន់ផ្ទាល់ដី (E₀)	39
តារាងទី២.៩ បង្ហាញទិន្នន័យនៃការគណនាអានុភាពម៉ាស៊ីនត្រជាក់នៅក្នុងផ្ទះវីឡាជាន់ផ្ទាល់ដី(E _{o)}	40
តារាងទី២.១០ បង្ហាញតារាងទិន្នន័យនៃការគណនាប្រព័ន្ធបំភ្លឺនៅក្នុងផ្ទះវីឡាជាន់ទីមួយ (E ₁₎	41
តារាងទី២.១១ បង្ហាញលទ្ធផលនៃការគណនាធ្នាប់ចរន្តនៅក្នុងផ្ទះវីឡាជាន់ទីមួយ (E _{1).}	42
តារាងទី២.១២ បង្ហាញទិន្នន័យនៃការគណនាអានុភាពម៉ាស៊ីនត្រជាក់នៅក្នុងផ្ទះវីឡាជាន់ទីមួយ (E ₁₎	43
តារាងទី២.១៣ បង្ហាញការគណនាមុខកាត់ខ្សែជាន់ផ្ទាល់ដី	48
តារាងទី២.១៤ បង្ហាញការគណនាមុខកាត់ខ្សែជាន់ទី១	49
តារាងទី២.១៥ បង្ហាញការគណនាមុខកាត់ខ្សែមេចូល	50
តារាងទី២.១៦ បង្ហាញការគណនាឌីស្យុងទ័រសម្រាប់ជាន់ទីផ្ទាល់ដី	51
តារាងទី២.១៧ បង្ហាញការគណនាឌីស្យុងទ័រសម្រាប់ជាន់ទី១	51
តារាងទី២.១៨ បង្ហាញការគណនាឌីស្យុងទ័រមេ	52
តារាងទី៥.១ តម្លៃខ្សែចម្លងតាមមុខកាត់	75
តារាងទី៥.២ តម្លៃម៉ាស៊ីនត្រជាក់	76
តារាងទី៥.៣ តម្លៃឌីសុងទ័រ (Breaker)	76
តារាងទី៥.៤ តម្លៃបរិក្ខាអគ្គិសនីក្នុងបន្ទប់	76
តារាងទី៥.៥ តម្លៃសរុប	77

ខំពូនខ្លួ

សេចគ្គីផ្ដើម

១.១ សេចគ្គីស្ដើម

ក្រោយពីបានសិក្សារយៈពេលពីរឆ្នាំកន្លងមក នៅវិទ្យាស្ថានពហុបច្ចេកទេសព្រះកុសុមៈ ក្នុងនាមយើងខ្ញុំ ជា និស្សិត កម្រិតមធ្យម មុខជំនាញ អគ្គិសនី បានយល់ឃើញថា ប្រទេសកម្ពុជាយើងកំពង់តែមាន ការរីចម្រើន លើគ្រប់ វិស័យ ជាពិសេស វិស័យសំណង់ នឹង វិស័យឧស្សាហកម្ម ប៉ុន្តែរវិស័យទាំងនោះ ក៏មិនអាចខ្វះបាននៅ ផ្នែកអគ្គិសនី បានឡើយ បើគ្មានអគ្គិសនីនោះទេ វិស័យទាំងនោះ ក៏មិនអាចរីកដុះដាលបានដែរ។

ជាមួយនេះដែរ មិនថានៅតាម ក្រសួង មន្ទីពេទ្យ ក្រុមហ៊ុន រោងចក្រ សហគ្រាស ឬ អគារស្នាក់នៅនាៗ សុទ្ធតែបានបំពាក់នៅបច្ចេកវិទ្យាទំនើបៗ ដែលត្រូវការជាចាំបាច់នៅ ថាមពលអគ្គិសនី ហេតុនេះទើបទាមទារ អោយ មានការរៀបចំ បណ្ដាញប្រព័ន្ធភ្លើង ទៅតាមស្ដង់ដារ ដើម្បីធានាបាននៅសុវត្ថិភាព គុណភាព កាសន្សំ សំចែរ និង ការប្រើប្រាស់ដើម្បីអោយមានភាពងាយស្រួល។ សព្វថ្ងៃនេះ យើងបានទាញយក ថាមពលអគ្គិសនីមក ប្រើប្រាស់ តាមរយៈ ការបំឡែងថាមពលផ្សេងៗគ្នា ដូចជា ថាមពលវារីអគ្គិសនី ចំហាយទឹកនុយក្លេអ៊ែរ ពន្លឺព្រះអាទិត្យ ខ្យល់ ធ្យូងថ្ម រលកទឹកសមុទ្រ ការជោរនាចនៃសមុទ្រ និងកំដៅចេញមកពីរផែនដី។ ល.។

ប៉ុន្តែរតម្រូវការនៃការប្រើប្រាស់ ថាមពលមានការកើនឡើងខ្ពស់ ជាហេតុធ្វើអោយមានការកង្វះខាត ថាមពលអគ្គិសនី នៅតាមជនបទ ទើបប្រមុខរាជរដ្ឋាភិបាល បានខិតខំប្រឹងប្រែង ស្វែងរកដៃគូរសហការ មកវិនិ យោគទុន ដើម្បីធ្វើការអភិវឌ្ឍន៍គម្រោងថាមពលអគ្គិសនី និងសិក្សាយ៉ាងលំអិតនៅតាមដំបន់មួយចំនួន ដែលអាច ទាញយកថាមពលអគ្គិសនីមកប្រើប្រាស់។

ដើម្បីឆ្លើយតបទៅនឹងទីផ្សារការងារ ឬជាជំនួយស្មារតីដល់វិស័យអប់រំលើផ្នែកវិស្វកម្មអគ្គិសនី និង អេឡិចត្រូនិចនៅកម្ពុជាព្រមទាំងជាការកែរលំអរកំហុសឆ្គង់ របស់អ្នកបច្ចេសទេសកន្លងមកថែមទាំងមានបំណង ជាមួយក្តីសង្ឃឹមថានឹងទទួលបានបទដ្ឋានជាតិមួយអោយមានភាពប្រាកដ ប្រជាទៅថ្ងៃអនាគត ទើបក្រុមយើងខ្ញុំ សម្រេចចិត្តលើកយកប្រធានបទមួយមកសិក្សាស្តីអំពីការផ្គត់ផ្គង់ថាមពលអគ្គីសនីនៅក្នុង

ផ្ទះវីឡា ដើម្បីការពារសារណាបញ្ចប់ការសិក្សាមធ្យមសិក្សាថ្នាក់បរិញ្ញាប័ត្រជាន់បច្ចេកទេសអគ្គិសនីនៅវិទ្យាស្ថានព ហុបច្ចេកទេសព្រះ កុសុមៈ។

១.២ នីតាំខនុនិសាស្ត្រ

វីឡាននេះមានទីតាំងស្ថិតនៅបណ្ដោយផ្លូវបេតុង ភូមិចំពុះក្អែក សង្កាត់ព្រែកថ្មី ខណ្ឌច្បារអំពៅ រាជធានី ភ្នំពេញ ខាងត្បូងវត្តចំពុះក្អែកប្រហែល ១៥០ម៉ែត្រ ។ ហើយវីឡានេះមានផ្ទៃដីសរុប 15m x 25m =375m² ។

រូបទី១.១៖ទីតាំងភូមិសាស្ត្រ

រូបទី១.២៖ប្លង់ជាន់ផ្ទាល់ដី

មាត្រដ្ឋានៈ 1/100

មាត្រដ្ឋានៈ 1/100 រូបទី១.៣៖ប្លង់ជាន់ទី១

១.៣ មូលចេងខែការសិត្យា

ដោយយល់ឃើញថាបច្ចុប្បន្ននេះក្នុងប្រទេសយើងមានជាងដែលចេះក្រៅសាលាមកដំឡើងបណ្តាញក្នុង អគារនៅមានកំហុសនិងខ្វះលក្ខណៈស្តង់ដារបច្ចេកទេសគឺអាចបណ្តាលឲ្យមានបញ្ហានៅពេល

អនាគត។ អគ្គិសនីគឺប្រៀបដូចជា សរសៃឈាមរបស់អគារឬផ្ទះ ព្រោះអគ្គិសនីរួមចំណែកយ៉ាងសំខាន់បំផុតដែលពុំ អាចខ្វះបាន។ ដើម្បីឆ្លើយតបទៅនឹងការខ្វះលក្ខណៈស្តង់ដារបច្ចេកទេសទើបក្រុមយើងខ្ញុំលើកយកប្រធានបទមួយ ស្តីពី ការផ្គត់ផ្គង់ថាមពលអគ្គិសនីក្នុងផ្ទះវីឡា មកសិក្សាដើម្បីកែប្រែនូវចំណុះខ្វះខាតទាំងនោះឲ្យធានាបានគុណ ភាពសុវត្ថិភាព និងសោភ័ណ្ឌភាពផងដែរ។ លើសពីនេះទៅទៀតនោះ គឺចង់អនុវត្តន៍នូវវិធីសាស្ត្រគណនាក្នុងការផ្គត់ ផ្គង់ថាមពលអគ្គិសនីនៅក្នុងគេហដ្ឋានទូទៅតាមលក្ខណៈស្តង់ដារបច្ចេកទេសដែលបានសិក្សាអស់រយៈពេល២ឆ្នាំ កន្លងមកក្នុងកម្រិតថ្នាក់បរិញ្ញាបត្រជាន់ខ្ពស់បច្ចេកទេសអគ្គិសនីនិងដើម្បីការពារបញ្ចប់កម្រិតនេះពីវិទ្យាស្ថានបណ្តុះ បណ្តាលពហុបច្ចេកទេសព្រះកុសុមៈហៅកាត់ថា(PPI) ។

១.៤ គោលចំណ១នៃគារសិត្សា

ការសិក្សាលើគំរោងនេះមានសារៈសំខាន់ណាស់ដល់ក្រុមយើងខ្ញុំទាំងអស់គ្នា ដែលជាអ្នកសិក្សាលើមុខ ជំនាញ អគ្គិសនីហើយមានគោលបំណង់ដូចខាងក្រោម៖

- បង្ហាញពីរូបមន្តដែលបានសិក្សាកន្លងមក
- ការគណនាបណ្តាញតង់ស្យុងទាបសម្រាប់ចែកចាយក្នុងអគារ
- បង្កើនចំនេះដឹង សមត្ថភាពលើបណ្តាញអគ្គិសនី
- > ចង់បានទុកជាសារមួយសម្រាប់លើបណ្តាញអគ្គិសនីនាពេលអនាគត់
- > ចង់បានមតិយោបល់បន្ថែមពីសាស្ត្រាចារ្យដឹកនាំ និងសាស្ត្រាចារ្យពីគ្រោះ សារណា
- > ចង់បានការវាយតម្លៃ និងការផ្តល់ជាមតិយោបល់ពីគណៈកម្មកាសារណា
- > ដើម្បីជ្រើរើសមុខកាត់ខ្សែ និងឌីសុងទ័រមកប្រើប្រាស់ឲ្យបានត្រឹមត្រូវតាមបច្ចេកទេស
- 🕨 ដើម្បីរៀបចំបណ្តាញអគ្គិសនី និងបរិក្ខារអគ្គិសនីឲ្យមានសុវត្ថិភាព និងសោភណ្ឌភាព
- > ដើម្បីឆ្លើយតបទៅនឹងការប្រើប្រាស់ថាមពលអគ្គិសនីប្រចាំថ្ងៃ

១.៥ ព្រំដែលខែការសិត្តភ

ការសិក្សាស្រាវជ្រាវលើប្រធានបទនេះគឺ មានកំណត់កាលបរិច្ឆេទជាក់លាក់ជាហេតុធ្វើ ឲ្យមិនមានពេល គ្រប់គ្រាន់សម្រាប់ការសិក្សាស្រាវជ្រាវ ឲ្យបានលំម្អិតលើប្រធានបទនេះទាំងមូលទេ។ ពីព្រោះតែការសិក្សា ស្រាវជ្រាវលើប្រធានបទ នេះមានលក្ខណៈទូលំទូលាយទើបក្រុមយើងខ្ញុំសូមលើកយក តែចំណុចសំខាន់ៗមួយ ចំនួនដែលមានជាលំដាប់លំដោយតាមជំពូកនីមួយៗដូចខាងក្រោម៖

- > សិក្សាលើសុវត្តិភាពការងារមុនពេលធ្វើការ
- គណនាប្រព័ន្ធបំភ្លឺក្នុងអគារ
- គណនាធ្នាប់ចរន្តសម្រាប់ប្រើប្រាស់ក្នុងអគារ
- គណនាម៉ាស៊ីនត្រជាក់សម្រាប់ប្រើប្រាស់ក្នុង អគារ
- គណនាអានុភាពសកម្មប្រើប្រាស់ក្នុងអគារ
- > គណនាអានុភាពអសកម្មប្រើប្រាស់ក្នុងអគារ
- គណនាអានុភាពសរុបប្រើប្រាស់ក្នុងអគារ
- គណនាមុខកាត់ខ្សែចម្លង
- គណនាឌីស្យុងទ័រ
- > គណនាការចំណាយថវិការប្រចាំ ខែនិង ប្រចាំឆ្នាំលើថាមពលប្រើប្រាស់
- > គណនាកម្លាំងពលកម្មការងារ

ខំពូនខ្លី២

ទិធីសាស្ត្រគណនាមន្ត្តអង្គិសនី

ការបំភ្លឺជាផ្នែកមួយដ៏សំខាន់ណាស់ដើម្បីធ្វើឲ្យអគារឬបន្ទប់មានពន្លឺគ្រប់គ្រាន់ត្រឹមត្រូវមិនធ្វើអោយប៉ះពាល់ ដល់ភ្នែកនិងមានសោភ័ណ្ឌភាពនោះគឺ ជាការទាមទារឲ្យយើងត្រូវការគណនា តាមស្តង់ដារបច្ចេកទេសនៃការបំភ្លឺ និងចេះជ្រើសរើសប្រភពពន្លឺឲ្យបានត្រឹមត្រវ។

២.១.១ គណនាសន្ទស្សន៍ទីតាំងត្រវបំភ្លឺ

ខ្ញុំសូមលើកយកបន្ទប់គេងមួយដែលមានៈ បណ្ដោយ= 3.5 m ទទឹង= 3 m កម្ពស់= 4 m មកធ្វើការ គណនា ចំណែកឯបន្ទប់ផ្សេងៗត្រូវបានបង្ហាញនៅតារាង និងបន្ទប់នេះមានពិដានពណ៌សនិងជញ្ជាំងពណ៌ ពងមាន់។

គណនាភ្លិចពន្លឺគឺសម្រាប់រកភ្លិចពន្លឺមធ្យមដែលបំភ្លឺក្នុងបន្ទប់ចាប់ពីផ្ទៃធ្វើការងារ ដូចរូបខាងក្រោម

រូបទី២.១៖សន្ទស្សន៍ទីតាំងនៃការបំភ្លឺ

តាមរូបមន្ត:
$$K = \frac{A \times B}{H_3(A+B)}$$

ដោយ K ជាសន្ទស្សន៍ទីតាំងបំភ្លឺ

A ប្រវែងបណ្ដោយរបស់បន្ទប់ (m)

B ប្រវែងទទឹងរបស់បន្ទប់ (m)

H₃ ជាកម្ពស់ពីអំពូលទៅផ្ទៃធ្វើការ(m)

ដោយ H ជាកម្ពស់ពីកម្រាលទៅពិដាន(m)

H₁ ជាកម្ពស់កន្លែងធ្វើការ (0.8m)

 $H_2=0$ (ដោយការតំឡើងអំពូលនៅជាប់ពិដាន)

ដោយ j=0 នោះ h₂ =0

ឃើងបាន h₃ = 4-(0.85+0) = 3.15m

នាំឲ្យ
$$k = \frac{3.5 \times 3}{3.15 \times (3.5 + 3)} = 0.52$$

ដូចនេះយើងកំណត់យក K= 0.52 ដោយផ្អែកទៅលើ តារាងតម្លៃពិដានពណ៌សមានចំណាំងផ្លាត៧០% ជញ្ជាំង ពណ៌ពងមាន់មានចំណាំងផ្លាត ៥០% នោះយើងបាន U=0.32 ។

២.១.២ គណនាមេគុណចំណាំងផ្លាតUតាមតារាង (A-J)

គ្រប់ប្រព័ន្ធបំភ្លឺទាំងអស់គឺត្រូវបានរចនាឡើងដើម្បីផ្តល់ពន្លឺទូទៅនៅក្នុងបន្ទប់និងផ្តល់ភាពភ្លឺគ្រប់គ្រាន់តែមិន ប៉ះពាល់ដល់ភ្នែកនោះមានដូចជា ការជ្រើសរើសចង្កៀងបំភ្លឺ បច្ចេកទេសបំភ្លឺ កំណត់កម្រិតនៃការបំភ្លឺ កំណត់ ឧបករណ៍បំភ្លឺ ។

តាមពណ៌នៃពិជាន ជញ្ជាំង និងកម្រាលបានធ្វើឲ្យពន្លឺមានចំណាំងផ្លាត។ ដោយឡែកកម្រាលមានកម្រិតផ្លា តតិចតួច បើធៀបទៅនឹងជញ្ជាំង និងពិជាន ដូច្នេះក្នុងការគណនាគេមិនគិតចំណាំងផ្លាតលើកម្រាលទេ។

> កត្តាចំណាំងផ្លាតនៃជញ្ជាំងនិងពិដាន គេតាងដោយ (Utilization factor (U)

ក្នុងការជ្រើសរើសមេគុណចំណាំផ្លាត យើងផ្អែកលើប៉ារ៉ាម៉ែត្រដូចខាងក្រោមៈ

- ពណ៌ពិដាន
- ពណ៌របស់ជញ្ជាំង
- Classify Luminaries (A,B,C,.....J)
- > ផ្ទៃនៃចំណាំងផ្លាតពិដាន និងជញ្ជាំង(U)
 - ពណ៌ស ចំណាំងផ្លាតពន្លឺ 50% 70%
 - ពណ៌ផ្ទៃមេឃ លឿង ពងមាន់ ចំណាំងផ្លាតពន្លឺ 30% 50%
 - ពណ៌ឈើស្រអាប់ ចំណាំងផ្លាតពន្លឺ 10% 50%

២.១.៣ គណនាភ្លុចពន្លឺរបស់បន្ទប់

វិធីសាស្ត្រក្នុងការគណនាបន្ទុកគ្រឿងបំភ្លឺគឺ ជាការគណនាតាមរូបមន្តស្តង់ដារដែលបានសិក្សាពីសាស្ត្រាចា រុក្រម្លងមក ។

តាមរួមមន្តៈ $F = \frac{(E \times S \times C)}{U}$

ដោយ F ជាភ្លួចពន្លឺសរុប (Lm)

E ជាភាពភ្លឺ (Lux)

S ជាផ្ទៃទីតាំងពន្លឺ (m²)

U ជាមេគុណចំណាំងផ្លាត

C ជាមេគុណបន្ថយពន្លឺ

C = 1.3 (ជាកន្លែងមានធូលីច្រើន

C = 1.4 (ជាកន្លែងមានធូលីមធ្យម)

C = 1.5 (ជាកន្លែងមានធូលីតិច)

ដោយអាស្រ័យលើថ្នាំពណ៌ដែលមានភាតរយផ្លាតពន្លឺលាបលើជញ្ជាំង និងពិដានគឺ៖

- (ពិដានពណ៌សស្មើ៧០%)
- (ជញ្ជាំងពណ៌ពងមាន់ស្មើ៥០%)
- ចំណាត់ថ្នាក់នៃពន្លឺA ទៅJ ហើយត្រូវបានកំណត់យកចំណាត់ថ្នាក់E សម្រាប់ធ្វើការគណនានេះ ដើម្បីជ្រើសរើសបរិក្ខារអគ្គិសនី។

តារាង ២.១ បង្ហាញពីភាពបំភ្លឺតាមប្រភេទបន្ទប់នីមួយៗ

ល.រ	ប្រភេទបន្ទប់	ភាពបំភ្លឺ E(Lux)
1	បន្ទប់គេង	100
2	បន្ទប់ទទួលភ្ញៀវ	150
3	កន្លែងទទួលទានអាហារ	100
4	បន្ទប់ទឹក	70
5	ជណ្ដើរ	70
6	ច្រកដើរ	100
7	វេរ៉ង់ដា	100

ប្រភេទប្រព័ន្ធបំភ្លឺដែលប្រើប្រាស់មានដូចជា

• អំពូលអ៊ុយពិដាន: P = 22 w, f = 1450 Lm

■ អំពូលថានថាសៈ P = 28 w , f = 1680 Lm

២.១.៤ ទិនីស្យាស្ត្តគណខាទំនួនអំពុល

២.១.៥ គណនាអានុភាពអំពូល

ដោយដឹងថាអំពូលមួយមានអានុភាព w គេប្រើប្រាស់អំពូល៣បិទបើកកុងតាក់តែមួយ។

តាមរូបមន្ត:
$$P_{Lamp} = n \times 20$$

ដោយៈ P_{Lamp} ជាអានុភាពសកម្មសរុបរបស់អំពូល(W)

n ជាចំនួនរបស់អំពូល

២.១.៦.គណនាចរន្តរបស់អំពូល

តាមរូបមន្ត:
$$I_{Lamp} = \frac{P}{U \times \cos \phi}$$

គណនាមាឌបន្ទប់

តាមរូបមន្ត: $V_{room} = A \times B \times H$

ដែល $V_{\rm room}$ ជាមាឌបន្ទប់ (m^3)

A ជាប្រវែងបណ្ដោយនៃទីតាំងបន្ទប់ (m³)

B ជាប្រវែងទទឹងនៃទីតាំងបន្ទប់ (m)

H ជាកម្ពស់របស់បន្ទប់ (m)

រូបទី២.២៖ ម៉ាស៊ីនត្រជាក់

២.២.១.គណនាអានុភាពម៉ាស៊ីន

ត្រជាក់

តាមបទដ្ឋានម៉ាស៊ីនត្រជាក់នៅក្នុងប្រទេសកម្ពុជា 9000BTU=1HP ដោយ 1HP អាចផ្តល់នូវភាពត្រជាក់ $40 \mathrm{cm}^3$ (1HP=750W)

តាមរូបមន្ត: $P_{Air} = \frac{V_{room}}{40}$

ដោយៈ P_{Air} ជាអានុភាពម៉ាស៊ីនត្រជាក់(HP)

V_{room} ជាមាឧរបស់បន្ទប់ (m³)

45m³/HP ក្នុងករណីត្រជាក់ខ្សោយ

40m³/HP ក្នុងករណីត្រជាក់មធ្យម

38m³/HP ក្នុងករណីត្រជាក់ខ្លាំង

រូបទី២.៣

គណនាចរន្តម៉ាស៊ីនត្រជាក់

តាមរូបមន្ត
$$I_{Air} = \frac{P}{U \times Cos \phi}$$

តារាង២.២ ស្តង់ជារម៉ាស៊ីនត្រជាក់

ស្តង់ដារម៉ាស៊ីនត្រជាក់
1HP
1.5HP
2HP
2.5HP
5HP
8HP

ក្រ ខេត្តទ្ធាមានទេតេសមាន ទី នេះ ខេត្ត ខេត្ត ខេត្ត ខេត្ត

ជាធម្មតាការប្រើប្រាស់ឆ្នាប់ចរន្តតាមបន្ទប់គឺអាចមានចំនួនចាប់ពី ២ ទៅ ៤ គ្រឿងដែលអាចបំពេញតាម តម្រវការប្រើប្រាស់បានគ្រប់គ្រាន់និងសម្រាប់តម្រវការផ្សេងៗ។

រូបទី២.៤៖ឆ្នាប់ចរន្ត

២.៣.១ គណនាអាំតង់ស៊ីតេរបស់ឆ្នាប់ចរន្ត

តាមរូបមន្ត $I_{Total(Socket)} = n \times I_{Socket}$

n ជាចំនួនឆ្នាប់ចរន្តសរុបសម្រាប់ប្រើប្រាស់(គ្រឿង)

I_{Socket} ជាអាំងតង់ស៊ីតេចរន្តរបស់ឆ្នាប់ចរន្តមួយ(A)

តាមស្តង់ដារផលិតផលឆ្នាប់ចរន្ត(I_{Socket})មានពី: 6A, 10A, 16A, 32A,...

២.៣.២ វិធីសាស្ត្រគណនាមេគុណប្រើប្រាស់មិនព្រមគ្នា

តាមរូបមន្ត: $K_s = 0.1 + (0.8 / N)$

ដោយ K_s ជាមេគុណប្រើប្រាស់មិនព្រមគ្នា

n ជាចំនួនឆ្នាប់ចរន្ត

២.៣.៣ វិធីសាស្ត្រគណនាចរន្តណូមីណាល់របស់ឆ្នាប់ចរន្ត

តាមរូបមន្តះ $I_n = I_{Total(socket)} x K_s$

ដោយ In ជាចរន្តណូមីណាល់(A)

 $I_{Total(Socket)}$ ជាចរន្តប្រើប្រាស់សរុប(A)

Ks ជាមេគុណប្រើប្រាស់មិនព្រមគ្នា

២.៣.៤ វិធីសាស្ត្រគណនាមេគុណប្រើប្រាស់របស់ឆ្នាប់ចរន្ត

តាមរូបមន្តៈ $K_u = \frac{h}{24h}$

Ku ជាមេគុណប្រើប្រាស់

ь ជាចំនួនម៉ោងដែលប្រើប្រាស់ក្នុងមួយថ្ងៃ

24h ស្មើមួយថ្ងៃ

២.៣.៥ វិធីសាស្ត្រគណនាចរន្តប្រើប្រាស់របស់ឆ្នាប់ចរន្ត

តាមរូបមន្ត: $I_b = I_n \times K_u \times K_s \times K_e$

ដោយ K_e ជាមេគុណពន្យាពេល (1ឬ1.1)

 I_n ជាចរន្តណូមីណាល់(A)

K. ជាមេគុណប្រើប្រាស់

 K_s ជាមេគុណប្រើប្រាស់ព្រមគ្នា

២.៣.៦ វិធីសាស្ត្រគណនាអានុភាពរបស់ឆ្នាប់ចរន្ត

តាមរូបមន្ត: $P_{Socket} = I_b \times U \times Cos φ$

ដោយ P_{Socket} ជាអានុភាពរបស់ឆ្នាប់ចរន្ត(w)

 I_b ជាចរន្តប្រើប្រាស់ដោយគ្រឿងទទួល(A)

U = 220V ជាតង់ស្យុងណូមីណាល់(V)

Cosφ = 0.8 ជាកត្តាអានុភាព

Re ជាមេគុណនៅសល់ (1 ឬ1.1)

ពៈ៤ ខ្លួចម្រាស់នេយាសង់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្តសាល់ខេត្ត

២.៤.១ គណនាអានុភាពប្រើប្រាស់របស់អំពូល

តាង P'_{Total} ជាអានុភាពប្រើប្រាស់របស់គ្រឿងទទួលនីមួយៗ

តាមរូបមន្តះ $P'_{T(Lamp)} = P_{Total} x K_u$

ហើយ $K_u = \frac{h}{24h}$

ដោយ P_{Total} ជាអានុភាពសកម្មសរុបរបស់គ្រឿងអំពូលគិតជា(W)

 $P'_{T(Lamp)}$ ជាអានុភាពប្រើប្រាស់របស់គ្រឿងអំពូលគិតជា(W)

K. ជាមេគុណប្រើប្រាស់

h ជាចំនួនម៉ោងដែលប្រើប្រាស់អំពូលក្នុងមួយថ្ងៃ

24h ស្មើមួយថ្ងៃ

២.៤.១ គណនាអានុភាពប្រើប្រាស់របស់ម៉ាស៊ីនត្រជាក់

តាមរូបមន្តៈ $P'_{T(Air)} = P_{Total} x K_u$

ហើយ $K_u = \frac{h}{24h}$

ដោយ P'_{T(Air)} = ជាអានុភាពប្រើប្រាស់របស់ម៉ាស៊ីនត្រជាក់គិតជា (W)

P_{Total} ជាមេគុណប្រើប្រាស់

h ជាចំនួនម៉ោងដែលប្រើប្រាស់ម៉ាស៊ីនត្រជាក់ក្នុងមួយថ្ងៃ

12h ស្មើមួយថ្ងៃ

២.៤.២ គណនាអានុភាពប្រើប្រាស់របស់ចរន្ត

តាមរូបមន្ត $P'_{T(Socket)} = P_{Total} x K_u$

ហើយ $K_u = \frac{h}{24h}$

ដោយ P'_{T(Socket)} ជាអានុភាពប្រើប្រាស់របស់ឈ្នាប់ចរន្តគិតជា(w)

P_{Total} ជាអានុភាពសកម្មសរុបរបស់ឈ្នាប់ចរន្តគិតជា(w)

K. ជាមេគុណប្រើប្រាស់

h ជាចំនួនម៉ោងដែលប្រើប្រាស់ឈ្នាប់ក្នុងមួយថ្ងៃ

24h ស្មើមួយថ្ងៃ

២.៥ ទិធីសាស្ត្រគណនាងខាត់ខ្សែចង្ងួចមេសំគ្រឿចននូល

ក្នុងការជ្រើសរើសខ្សែសម្រាប់បរិធាននៃការប្រើប្រាស់ក្នុងអគារ សណ្ឋាគារ ឃ្លាំងស្កុកទំនិញ យើងត្រូវ គណនាឲ្យបានត្រឹមត្រូវទៅតាមលក្ខណៈបច្ចេកទេស និងស្របទៅតាមអានុភាពដែលប្រើប្រាស់នៅតាមទីកន្លែង នីមួយៗផងដែរ។

២.៥.១ គណនាមុខកាត់ខ្សែចម្លងរបស់របស់អំពូល

តាមរូបមន្ត $S = \frac{I_n}{J}$

ដែល s ជាមុខកាត់ខ្សែចម្លងគិតជា(mm²)

In ជាអាំងតង់ស៊ីតេគិតជា(A)

J ជាដង់ស៊ីតេរបស់ខ្សែចម្លង(A/mm²)

ហើយ J គេអាចជ្រើសរើសតាមលក្ខខណ្ឌដូចខាងក្រោម៖

- លក្ខខណ្ឌទី១ ៖ ចាប់ពី1A រហូតដល់ 16A ត្រូវជ្រើសរើសយក $J=4A/mm^2$
- លក្ខខណ្ឌទី២ ៖ ចាប់ពី 16A រហូតដល់ 32A ត្រូវជ្រើសរើសយក $J=3.5A/mm^2$
- លក្ខខណ្ឌទី៣ ៖ ចាប់ពី 32A រហូតដល់ 54A ត្រូវជ្រើសរើសយក $J=3A/mm^2$

បើសិនបន្ទុកធំជាង 54A ទៅត្រូវជ្រើសរើសយក $J=2.5A/mm^2$ ។មុខកាត់ខ្សែតាម Catalogue មាន៖

តារាង២.៣ ស្តង់ដាររបស់មុខកាត់ខ្សែ

មុខកាត់ខ្សែ	មុខកាត់ខ្សែ	មុខកាត់ខ្សែ
0.5mm ²	8 mm ²	75 mm ²
1 mm ²	10 mm ²	95 mm ²
1.5 mm ²	16 mm ²	120 mm ²
2.5 mm ²	25 mm ²	180 mm ²
4 mm ²	35 mm ²	240 mm ²
6 mm ²	50 mm ²	300 mm^2

២.៥.២ គណនាមុខកាត់ខ្សែចម្លងរបស់របស់ឈ្នាប់ចរន្ត

តាមរូបមន្ត $S = \frac{I_n}{J}$

ដែល s ជាមុខកាត់ខ្សែចម្លងគិតជា(mm²)

In ជាអាំងតង់ស៊ីតេគិតជា(A)

J ជាដង់ស៊ីតេរបស់ខ្សែចម្លង(A/mm²)

២.៥.៣ គណនាមុខកាត់ខ្សែចម្លងរបស់របស់ម៉ាស៊ីនត្រជាក់

តាមរូបមន្ត S =
$$\frac{I_n}{J}$$

ដែល S ជាមុខកាត់ខ្សែចម្លងគិតជា(mm²)

In ជាអាំងតង់ស៊ីតេគិតជា(A)

J ជាដង់ស៊ីតេរបស់ខ្សែចម្លង(A/mm²)

២.៦ ទិនីសាស្ត្រគណនាឌីស្យុខន័ះ

តាមរូបមន្ត

 $I_{cb} = 1.25 \text{ x } I_n$

 $I_{CB}=$ ជាចរន្តបណ្តាច់របស់់ឌីស្យូងទ័រ(A)

 I_n ចរន្តណូមីណាល់របស់បន្ទុក(A)

1.25 ជាមេគុណបម្រុងបន្ថែមរបស់ឱ្យស្បុងទ័រ

តារាងទី២.៤ ស្តង់ដាររបស់ឌីស្យុងទ័រ

ស្តង់ដាររបស់ឌីស្យុងទ័រ	ស្តង់ដាររបស់ឌីស្យុងទ័រ	ស្តង់ដាររបស់ឌីស្យុងទ័រ
1A	20A	63A
5A	25A	80A
6A	32A	100A
8A	40A	120A
16A	50A	150A

២.៧ ទិនីសាស្ត្រគណនាអានុភាពម្រើប្រាស់សមុខភូ១ខាន់នីមួយៗ

ದ್ವಾಣ ಕ್ಷಣ ಚಿತ್ರವಾಣ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ತಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ತಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ರಿಸಿ ಕಟ್ಟು ಪ್ರಕ್ತಿಸಿ ಕಟ್ಟಿ ಸಿಸಿ ಕ

តាមរូបមន្ត $P'_{T(E0)} = P'_{T(Lamp)} + P'_{T(Socket)} + P'_{T(Air)}$

ដែល P´T(E0) ជាអានុភាពសរុបក្នុងជាន់ផ្ទាល់ដី(W)

P´_{T(Lamp)} ជាអានុភាពប្រើប្រាស់សរុបរបស់អំពូលជាន់ផ្ទាល់ដី(w)

P´_{T(Socket)} ជាអានុភាពប្រើប្រាស់សរុបរបស់ឈ្នាប់ចរន្តជាន់ផ្ទាល់ដី(w)

P´_{T(Air)} ជាអានុភាពប្រើប្រាស់សរុបរបស់ម៉ាស៊ីនត្រជាក់ជាន់ផ្ទាល់ដី(w)

២.៧.២ គណនាអានុគ្គាពម្រើប្រាស់ខាន់និ១

តាមរូបមន្ត $P'_{T(E1)} = P'_{T(Lamp)} + P'_{T(Socket)} + P'_{T(Air)}$

ដែល P´_{T(E1)} ជាអានុភាពសរុបក្នុងជាន់ផ្ទាល់ដី(W)

P´_{T(Lamp)} ជាអានុភាពប្រើប្រាស់សរុបរបស់អំពូលជាន់ផ្ទាល់ដី(w)

 $P'_{\mathsf{T}(\mathsf{Socket})}$ ជាអានុភាពប្រើប្រាស់សរុបរបស់ឈ្នាប់ចរន្តជាន់ផ្ទាល់ដី(w)

 $P_{\mathsf{T}(\mathsf{Air})}$ ជាអានុភាពប្រើប្រាស់សរុបរបស់ម៉ាស៊ីនត្រជាក់ជាន់ផ្ទាល់ដី(w)

តាមរូបមន្ត $P'_{Total} = P'_{Total}(E_0) + P'_{Total}(E_1)$

ដែល P´Total ជាអានុភាពសរុបផ្ទះវីឡាទាំងមូល (W)

P´_{Total(E0)} ជាអានុភាពសរុបក្នុងជាន់ផ្ទាល់ដី(W)

P´_{Total(E1)} ជាអានុភាពសរុបក្នុងជាន់ទី១ (W)

២.៩ និន្និសាស្ត្រដលានានរដ្ឋអាវត្តិនន្ទិន្សានាំខង្ទល

តាមរូបមន្ត $P'_{Total} = U \times I_n \times Cos φ$

$$\rightarrow I_{n} = \frac{P'_{Total}}{U \times Cos\varphi}$$

២.៩.១ គណនាចរន្តសរុបក្នុងវីឡាជាន់ផ្ទាល់ដី

តាមរូបមន្ត $P'_{T(E0)} = U \times I_{n(E0)} \times Cos \phi$

$$\rightarrow \qquad \qquad I_{n(E0)} = \frac{P'_{T(E0)}}{U \times Cos\phi}$$

២.៩.២ គណនាចរន្តសរុបក្នុងវីឡាជាន់ទី១

តាមរូបមន្ត
$$P'_{T(E0)} = U \times I_{n(E0)} \times Cos\phi$$

$$\rightarrow I_{n(E0)} = \frac{P'_{T(E0)}}{U \times Cos\varphi}$$

២.១០ វិធីសាស្ត្រគណនាមុខកាត់ខ្សែមេសម្រាប់វីឡាទាំងមូល

តាមរូបមន្ត S =
$$\frac{I_n}{J}$$

ដែល S ជាមុខកាត់ខ្សែចម្លងគិតជា(mm²)

In ជាអាំងតង់ស៊ីតេគិតជា(A)

J ជាដង់ស៊ីតេរបស់ខ្សែចម្លង(A/mm²)

២.១០.១ គណនាមុខកាត់ខ្សែមេសម្រាប់ជាន់ផ្ទាល់ដី

តាមរូបមន្ត S =
$$\frac{I_n}{I}$$

២.១០.២ គណនាមុខកាត់ខ្សែមេសម្រាប់ជាន់ទី១

តាមរូបមន្ត S =
$$\frac{I_n}{I}$$

ព្រះ១៦ ខ្លួន្នមាទនឹងបានរត្តមានខ្លួន គេគេគេគ្នានាំ១នំល

តាមរូបមន្ត
$$I_{CB} = I_n \times K_c$$

ដែល I_{CB} ជាចរន្តបណ្តាច់របស់ឌីស្យូងទ័រ(A)

In ចរន្តណូមីណាល់ក្នុងវីឡាទាំងមូល(A)

K_c 1.25 ជាមេគុណបំរុងបន្ថែមរបស់ឌីស្យូងទ័រ

២.១១.១គណនាឌីស្យុងទ័រសម្រាប់ជាន់ផ្ទាល់ដី

តាមរូបមន្ត
$$I_{CB(E0)} = I_n \times K_c$$

២.១១.២គណនាឌីស្យូងទ័រសម្រាប់ជាន់ទី១

តាមរូបមន្ត
$$I_{CB(E1)} = I_n \times K_c$$

តារាងទី២.៥ ឈ្មោះ និងទំហំបន្ទប់ជាន់ផ្ទាល់ដី(E0)

ល.រ	ឈ្មោះបន្ទប់	ជាន់ទី	ទទឹង(m)	បណ្ដោយ(m)	ផ្ទៃក្រឡា(m²)	កម្ពស់(m)
1	បន្ទប់ទទួលភ្ញៀវ	E_0	3.5m	5m	17.5m ²	4m
2	បន្ទប់គេង	E_0	3m	3.5m	10.5 m ²	4m
3	បន្ទប់ទទួលទានអាហារ	E_0	3.5m	3.5m	12.25 m ²	4m
4	បន្ទប់ទឹកទី១	E_0	1.4m	1.4m	1.96 m ²	4m
5	ជណ្ដើរ	E_0	1M	4.38m	4.38 m ²	4m
6	បន្ទប់ទឹកទី២	E ₀	1.4m	1.6m	2.24 m ²	4m

តារាងទី២.៦ ឈ្មោះនិងទំហំបន្ទប់ជាន់ទី១(E₁)

ល.រ	ឈ្មោះបន្ទប់	ជាន់ទី	ទទឹង	បណ្ដោយ	ផ្ទៃក្រឡា	កម្ពស់
1	បន្ទប់គេងទី១	E_1	3.5m	5.82m	20.37m ²	4m
2	បន្ទប់ទឹកទី១	E_1	1.75m	2.3m	4.025 m ²	4m
3	បន្ទប់ទទួលភ្ញៀវ	E_1	2.45m	4.32m	10.584 m ²	4m
4	បន្ទប់ទឹកទី២	E_1	1.75m	2.1m	3.675 m ²	4m
5	បន្ទប់គេងទី២	E_1	3.5m	3.5m	12.25 m ²	4m
6	បន្ទប់គេងទី៣	E_1	3.5m	3.5m	12.25 m ²	4m
7	ច្រកដើរ	E_1	0.95m	6m	4.5 m ²	4m
8	វេរ៉ង់ដា	E_1	7.2m	2m	14.4 m ²	4m

ದ್ರಾಧ ಜಬಾಕುಖಿಕಬಳ್ಳಿ

តាមរូបមន្ត
$$F = \frac{E \times S \times C}{U}$$

ដោយ F ជាភ្លុចពន្លឹសរុប (Lm)

E ជាភាពភ្លឺ (Lux)

S ជាផ្ទៃទីតាំង m³

C=1.4 (ជាកន្លែងមានធូលីមធ្យម)

U ជាមេគុណចំណាំផ្លាត

ំពែ $S = A \times B$

A = 3.5m

B= 3m

 $S = 3.5m \times 3m = 10.5 \text{ m}^2$

យើងមាន៖

E=100Lux

 $S=10.5m^2$

C=1.4

U=0.32

ឃើងបាន F=
$$\frac{100 \times 10.5 \times 1.4}{0.32}$$

= 4593.75Lm

ដូចនេះ F=4593.75Lm

២.១២.១ គណនាចំនួនអំពូល

យើងខ្ញុំសូមជ្រើសរើសយកប្រភេទអំពូលអ៊ុយពិដានដែលមាន : P=22W; f=1450lum។

តាមរូបមន្ត N =
$$\frac{F}{f}$$

F = ជាភ្លុចពន្លឺសរុបក្នុងបន្ទប់ (Lm)

f = ជាភ្លុចពន្លឹសរុបរបស់អំពូល (Lm)

ដោយ F = 4593,75 Lm

f = 1450 Lm

ដូចនេះ $N = \frac{4593,75 \text{ Lm}}{1450 \text{ Lm}} = 3,16$ កំណត់យក 4 អំពូល

២.១២.២ គណនាអានុភាពរបស់អំពូល

រូបទី២.៥

២៣

តាមរូបមន្ត: $P_T = N \times P$

ដោយ N = 4 អំពូល ; P = 22W/អំពូល

យើងបាន $P_T = 4 \times 22W$

ដូចនេះ P_T = 88W

២.១២.៣ គណនាអានុភាពរបស់អំពូល

បញ្ជាក់ : យើងខ្ញុំសូមបង្ហាញជូនការ គណនាប្រព័ន្ធបំភ្លឺតាមសន្ទស្សន៍ K និង ភ្លុចពន្លឺ ជាគំរូតែមួយបន្ទប់ប៉ុណ្ណោះ ។ ព្រោះរាល់បន្ទប់ណាមានការគណនាប្រព័ន្ធបំភ្លឺតាមសន្ទស្សន៍ K និង ភ្លុចពន្លឺគឺមាន របៀបគណនានិងរូបមន្តដូចគ្នា ។ ដូចនេះជាន់នីមួយៗខ្ញុំសូមបង្ហាញចម្លើយប្រព័ន្ធបំភ្លឺនៅក្នុងតារាងនៅតទំព័រខាង មុខ ។

រូបទី២.៦

២.១៣.១.គណនាអាំងតង់ស៊ីតេរបស់ឆ្នាប់ចរន្ត

តាមរូបមន្ត $I_{total(socket)} = n \times I_{socket}$

ដោយ n= 2 ចំនួនឆ្នាប់ចរន្ត

I_{socket}=10A ជាអាំងតង់ស៊ីតេចរន្តរបស់ឆ្នាប់ចរន្តមួយ

ឃើងបាន $I_{\text{socket}} = 10A \times 2$

ដូចនេះ $I_{\text{socket}} = 20A$

២.១៣.២.គណនាមេគុណប្រើប្រាស់ព្រមគ្នា

តាមរូបមន្ត:
$$K_s=0.1+\frac{0.8}{n}$$
 ដែល n=2 ជាចំនួនឆ្នាប់ចរន្ត យើងបាន $K_s=0.1+\frac{0.8}{2}=0.5$ ដូចនេះ $K_s=0.5$

•

២.១៣.៣.គណនាចរន្តណូមីណាល់របស់ឆ្នាប់ចរន្ត

តាមរូបមន្ត
$$I_n=I_{total(socket)} imes K_s$$
 ដោយ $I_{total(socket)}=20A$ $K_s=0.5$ យើងបាន $I_n=20A imes 0.5$ ដូចនេះ $I_n=10A$

២.១៣.៤. គណនាមេគុណប្រើប្រាស់របស់ឆ្នាប់ចរន្ត

២.១៣.៥. គណនាអានុភាពរបស់ឆ្នាប់ចរន្ត

តាមរូបមន្ត:
$$P_{Total} = U \times I_b \times \cos \phi$$
 ដោយ $I_b = I_n \times K_u \times K_s \times K_e = 10 \times 0.25 \times 0.5 \times 1 = 1,25A$ $\Rightarrow P_{Total} = 220V \times 1,25A \times 0.8$ ដូចនេះ $P_{Total} = 220W$

យោងតាមសៀវភៅ Schneider Electrical Installation Guide 2009 ត្រង់ចំណុចG22 ចំពោះសៀគ្វីក្រៅពី សៀគ្វីបំភ្លឺគឺ($\cos \phi = 0.8$)

បញ្ជាក់ : យើងខ្ញុំសូមបង្ហាញជូនការគណនាជម្រើសឆ្នាប់ចរន្តសម្រាប់ប្រើប្រាស់ជាគំរូតែមួយបន្ទប់ ប៉ុណ្ណោះ។ ព្រោះរាស់បន្ទប់ណាដែលមានការគណនាឆ្នាប់គឺមានរបៀបគណនានិងរូបមន្តដូចគ្នា ។ ដូចនេះជាន់ នីមួយៗខ្ញុំសូមបង្ហាញចម្លើយប្រព័ន្ធឆ្នាប់នៅក្នុងតារាង។

២.១៤.១ គណនាមាឌបន្ទប់

ក្នុងការគណនាជ្រើសរើសយកបន្ទប់រៀនមួយធ្វើជាឧទាហរណ៍ ហើយក្រៅពនោះបានបង្ហាញលទ្ធផលដូច ក្នុងតារាង

២.១៤.២.គណនាអនុភាពម៉ាស៊ីនត្រជាក់

២.១៤.៣. គណនាចរន្តណូមីណាល់របស់ម៉ាស៊ីនត្រជាក់

ដូចនេះ 1.5HP = 1 × 750W = 750W

តាមរូបមន្ត:
$$I_{HP}=\frac{P}{U\times\cos\phi}$$
 ដោយ $P=750W$ ជាអានុភាពរបស់ម៉ាស៊ីនត្រជាក់(W)
$$U=220V$$
 ជាតង់ស្យងដែលប្រើ(V)

cos φ = 0.8 ជាកត្តាអានុភាពរបស់ម៉ាស៊ីនត្រជាក់

យើងបាន
$$I_{HP}=rac{750}{220 imes0.8}$$

ដូចនេះ
$$I_{HP}=4.26A$$

ខាងក្រោមនេះខ្ញុំសូមធ្វើការបង្ហាញប្លង់បាត, ប្លង់សៀគ្វីស្ថាបត្យកម្ម , សៀគ្វីទ្រឹស្តីរបស់អំពូល ព្រី, និងសៀគ្វី ម៉ាស៊ីនត្រជាក់សម្រាប់បន្ទប់រៀន។ រីឯបន្ទប់និងកន្លែងផ្សេងៗទៀតខ្ញុំសូមបង្ហាញជាប្លង់សរុបក្នុងមួយជាន់ៗ។

រូបទី២.៧

វិទ្យាស្ថានពហុបច្ចេកទេសព្រះកុសុមៈ

តារាងទី២.៧ បង្ហាញពីប្រព័ន្ធបំភ្លឺជាន់ផ្ទាល់ដី(E₀)

ល.រ	ឈ្មោះបន្ទប់	E(Lux)	С	U	k/j=0	f (lm)	F _⊤ (lm)	N_{Lamp}	$P_L(w)$	ΙL	Cosφ	P _T (w)
1	បន្ទប់ទទួលភ្ញៀវ	150	1.4	0.32	0.65	1450(+1680)	11484	8+1	22(+25)		0.8	204
2	បន្ទប់គេង	100	1.4	0.32	0.51	1450	4594	4	22		0.8	88
3	បន្ទប់ទទួលទានអាហារ	100	1.4	0.32	0.55	1450(+215)	5359	4+1	22(+25)		0.8	113
4	បន្ទប់ទឹកទី១	70			0.22	1450	557	1	22		0.8	22
5	បន្ទប់ទឹកទី២	70			0.31	1450	686	1	22		0.8	22
6	ជណ្ដើរ					1450	1916	2	22		0.8	44
អនុភាពសរុបរបស់អំពូលក្នុងជាន់ផ្ទាល់ដី(E ₀)												493

តារាងទី២.៨ បង្ហាញឆ្នាប់ចរន្តតាមបន្ទប់នីមួយៗជាន់ផ្ទាល់ដី (E₀)

ល.រ	ឈ្មោះបន្ទប់	N _{room}	$N_{_{rac{a}{2}\dot{0}\dot{0}\dot{0}\dot{0}\dot{0}\dot{0}\dot{0}\dot{0}\dot{0}0$	Ku	ks	I _s (A)	I _T (A)	I _n (A)	I _b (A)	U(V)	Cosφ	P _{n(Socket)} (W)
1	បន្ទប់ទទួលភ្ញៀវ	1	4	0.25	0.3	10	40	12	0.9	220	0.8	158.4
2	បន្ទប់គេង	1	2	0.25	0.5	10	20	10	1.25	220	0.8	220
3	បន្ទប់ទទួលទានអាហារ	1	2	0.25	0.5	10	20	10	1.25	220	0.8	220
4	បន្ទប់ទឹកទី១	1	1	0.25	0.9	10	10	9	2.025	220	0.8	356.4
5	ជណ្ដើរ	1	2	0.25	0.5	10	20	10	1.25	220	0.8	220
6	មន្ទប់ទឹកទី២	1	1	0.25	0.9	10	10	9	2.025	220	0.8	356.4
	អនុភាពរបស់់ឆ្នាប់ចរន្តក្នុងជាន់់ផ្កាល់ដី(E₀)									1531.2 W		

២.១៥ តារាចនិត្តត័យម៉ាស៊ីតគ្រខាត់ខាត់ផ្ទាល់នី

តារាងទី២.៩ បង្ហាញអនុភាពម៉ាស៊ីនត្រជាក់តាមបន្ទប់នីមួយៗជាន់ផ្ទាល់ដី (E₀)

ល.រ	ឈ្មោះបន្ទប់	S(m ²)	H(m)	$V_{room}(m^3)$	V _{cooling} (m ³)	HP _{calcul} (HP)	HP _{select} (HP)	ចំនួន(គ្រឿង)	HP	P _n (W)
1	បន្ទប់ទទួលភ្ញៀវ	17.5	4	70	40	1.75	2	1	2HP	1500
2	បន្ទប់គេង	10.5	4	42	40	1.05	1	1	1HP	750
3	បន្ទប់ទទួលទានអាហារ	12.5	4	49	40	1.225	1	1	1HP	750
អនុភាពសរុបរបស់ម៉ាស៊ីនត្រជាក់ក្នុងជាន់ផ្ទាល់ដី (E₀)									3000W	

បញ្ជាក់៖ ការបង្ហាញតារាងខាងលើដែលមានដូចជា តារាងទិន្នន័យសម្រាប់បំភ្លឺ, តារាងទិន្នន័យសម្រាប់ឆ្នាប់ចរន្ត, តារាងទិន្នន័យសម្រាប់ម៉ាស៊ីនត្រជាក់ នៅក្នុងតារាងនីមួយៗទាំងបី ខាងលើនេះគឺសម្រាប់តែជាន់ផ្ទាល់ដី (E₀)។ រីឯជាន់មន្ទាប់ពីនេះមានការបង្ហាញទិន្នន័យដូចគ្នា។

ខ្ញុំសូមបញ្ជាក់ថា ជាន់ទី១ (E₁) នេះបង្ហាញជាទិន្នន័យតែម្តង ព្រោះរាល់ការគណនាប្រើប្រាស់រូបមន្តដូចគ្នាជាន់ផ្ទាល់ដីដែរ ។

តារាងទី២.១០ បង្ហាញពីការគណនាប្រព័ន្ធបំភ្លឺនៅក្នុងផ្ទះវីឡាជាន់ទីមួយ (E₁)

ល.រ	ឈ្មោះបន្ទប់	E(Lux)	С	U	k/j=0	f (lm)	F _T (lm)	N_{Lamp}	P _L (w)	IL	Cosφ	P _T (w)
1	បន្ទប់គេងទី១	100	1.4	0.32	1.08	1450	8912	6	22		0.8	132
2	បន្ទប់ទឹកទី១	70	1.4	0.32	0.31	1450	1124	1	22		0.8	22
3	បន្ទប់ទទួលភ្ញៀវ	150	1.4	0.32	0.61	1450	6946	5	22		0.8	110
4	បន្ទប់ទឹកទី២	70	1.4	0.32	0.3	1450	1233	1	22		0.8	22
5	បន្ទប់គេងទី២	100	1.4	0.32	0.55	1450	5359	4	22		0.8	88
6	បន្ទប់គេងទី៣	100	1.4	0.32	0.55	1450	5359	4	22		0.8	88
7	ច្រកដើរ	100	1.4	0.32		1450	2524	2				44
8	ជណ្ដើរ	100	1.4	0.32		1450	2524	2				44
អនុភាពសរុបរបស់អំពូលក្នុងជាន់ទីមួយ (E₁)									550W			

តារាងទី២.១១ បង្ហាញពីការគណនាឆ្នាប់ចរន្តនៅក្នុងផ្ទះវីឡាជាន់ទីមួយ (E₁)

ល.រ	ឈ្មោះបន្ទប់	N _{room}	N _{ឆ្នាប់ចរន្ត}	Ku	ks	I _s (A)	$I_T(A)$	I _n (A)	I _b (A)	U(V)	Cosφ	P _{n(Socket)} (W)
1	បន្ទប់គេងទី១	1	2	0.25	0.5	10	20	10	1.25	220	0.8	220
2	បន្ទប់ទឺកទី១	1	1	0.25	0.9	10	10	9	2.025	220	0.8	356.4
3	បន្ទប់ទទួលភ្ញៀវ	1	4	0.25	0.3	10	40	12	0.9	220	0.8	158.4
4	បន្ទប់ទឹកទី២	1	1	0.25	0.9	10	10	9	2.025	220	0.8	356.4
5	បន្ទប់គេងទី២	1	2	0.25	0.5	10	20	10	1.25	220	0.8	220
6	មន្ទប់គេងទី៣	1	2	0.25	0.5	10	20	10	1.25	220	0.8	220
	អនុភាពរបស់ឆ្នាប់ចរន្តក្នុងជាន់ផ្តាល់ដី(E₁)									1531.2 W		

តារាងទី២.១២ បង្ហាញពីការគណនាអនុភាពម៉ាស៊ីនត្រជាក់នៅក្នុងផ្ទះវីឡាជាន់ទីមួយ (E₁)

ល.រ	ឈ្មោះបន្ទប់	S(m ²)	H(m)	$V_{\text{room}}(m^3)$	$V_{\text{cooling}}(m^3)$	HP _{calcul} (HP)	HP _{select} (HP)	ចំនួន(គ្រឿង)	HP	P _n (W)
1	បន្ទប់គេងទី១	20.37	4	81.48	40	2.037	2	2	2HP	1500
2	បន្ទប់ទទួលភ្ញៀវ	10.58	4	42.336	40	1.05	1	1	1HP	750
3	បន្ទប់គេងទី២	12.25	4	49	40	1.22	1	1	1HP	750
	បន្ទប់គេងទី៣	12.25	4	49	40	1.22	1	1	1HP	750
អនុភាពសរុបរបស់ម៉ាស៊ីនត្រជាក់ក្នុងជាន់ទីមួយ (E₁)								3750W		

យើងខ្ញុំសូមលើកយកបន្ទប់គេងតែមួយមកធ្វើការគណនាមុខកាត់ខ្សែសម្រាប់អំពូលជាគំរូ ហើយរាល់បន្ទប់ ឬកន្លែងផ្សេងទៀតមានលំនាំនិងប្រើប្រាស់រូបមន្តផ្សេងគ្នា។

ដោយបន្ទប់គេងនេះយើងប្រើប្រាស់តង់ស្យុង 220V និងមានការជ្រើសរើសយកអំពូល U ពិដានចំនួន 4 មកតម្លើងដែលអំពូលមួយមាន P=22W , f=66lm/w និង Cosφ = 0.5 ។

២.១៦.១.គណនាអានុភាពអំពូល

២.១៦.២.គណនាកគុណប្រើប្រាស់របស់អំពូល

គ្រប់គ្រឿងទទួលទាំងអស់នៅក្នុងវិឡានេះ ការប្រើប្រាស់ថាមពលអគ្គិសនីក្នុង១ថ្ងៃវាមានរយៈពេលខុសៗគ្ន ហើយចំពោះការបំភ្លឺប្រើប្រាស់ជាមធ្យម 8h/ថ្ងៃ។

តាមរូបមន្ត
$$K_u=rac{h}{24}$$
 ដោយ h=8h , 24h=1 ថ្ងៃ $K_u=rac{8}{24}=0.33$

២.១៦.៣.គណនាអានុភាពប្រើប្រាស់របស់អំពូល

២.១៦.៤.គណនាចរន្តណូមីណាល់របស់អំពូល

តាមរូបមន្ត:
$$P_{Total}=U\times I_n\times Cos\phi$$

$$\Rightarrow \ I_{n}=\frac{P_{Total}}{U\times Cos\phi} \qquad \text{ ដោយ } P_{Total}=88W \ , \ U=220 \ V \ , \ \ Cos\phi=0.5$$
 ឃើងបាន
$$I_{n}=\frac{88}{220\times 0.5}=0.8A$$
 ដូចនេះ $I_{n}=0.8A$

២.១៦.៥.វិធីសាស្ត្រគណនាមុខកាត់ខ្សែអំពូល

តាមរូបមន្ត =
$$S_{Cu} = \frac{I_n}{J}$$

ដោយ
$$I_n = 0.8A$$
 $J = 4A/mm^2$

ឃើងបាន
$$S_{Cu} = \frac{0.8}{4} = 0.2 \text{mm}^2$$

ដូចនេះ ដើម្បីសុវត្តិភាពលើការប្រើប្រាស់ និងតាមស្តង់ដាកំណត់យក $S_{Cu}=0.5 mm^2$ ។

២.១៧ ទិនីសាស្ត្រគណនាមុខភាគខ្សែសម្រាច់ឆ្លាច់ចរន្ត

ខ្ញុំសូមលើកយកបន្ទប់ទទួលភ្ញៀវតែមួយមកធ្វើការគណនាមុខកាត់ខ្សែសម្រាប់ភ្ជាប់កម្ពុជាចំនួន ហើយរាល់បន្ទប់កន្លែងផ្សេងទៀតមានលំនាំនិងប្រើប្រាស់រូបមន្តដូចគ្នា។

ដោយបន្ទប់គេងនេះមានអានុភាព P=220W ដែលយើងប្រើប្រាស់តង់ស្យុង 220 Vol និងមាន ធ្លាប់ចរន្តចំនួន 2 ដោយចរន្តរបស់ឆ្នាប់ចរន្តមួយ 10A និងចរន្តប្រើប្រាស់ I_b=1.25 A ។

តាមរូបមន្ត
$$S_{Cu} = \frac{I_b}{I}$$

ដោយ
$$I_b = 1.25$$
 J=4A/mm²

យើងបាន
$$S_{Cu} = \frac{1.25}{4} = 0.31$$

ដូចនេះ ដើម្បីសុវត្ថិភាពលើការប្រើប្រាស់ និងតាមស្តង់ជាកំណត់យក $S_{Cu}=0.5 \mathrm{mm}^2$ ។

ខ្ញុំសូមលើកយកបន្ទប់គេងតែមួយមកធ្វើការតលនាមុខកាត់ខ្សែសម្រាប់ម៉ាស៊ីនត្រជាក់ ជាគំរូ ហើយរាល់ បន្ទប់ឬកន្លែងផ្សេងទៀតមានលំនិងប្រើប្រាស់រូបមន្តដូចគ្នា។

ដោយបន្ទប់គេងនេះប្រើប្រាស់ម៉ាស៊ីនត្រជាក់ចំនួន ១គឿង = 1HP មានអានុភាព P=750 យើងប្រើប្រាស់តង់ស្យង 220V និងមាន Cop=0.8 ។

២ ១៨.១.គណនាមេគុណប្រើប្រាស់របស់ម៉ាស៊ីនត្រជាក់

ដោយជាមធ្យមប្រើប្រាស់ម៉ាស៊ីនត្រជាក់ 10h/ថ្ងៃ

តាមរូបមន្ត
$$K_u = \frac{h}{24}$$
 ដោយ h=10ម៉ោង

ឃើងបាន
$$K_{\mathrm{u}}=rac{10}{24}=0.41$$

២.១៨.២.គណនាអានុភាពប្រើប្រាស់ម៉ាស៊ីនត្រជាក់

តាង P'Air ជាអនុភាពម៉ាស៊ីនត្រជាក់បន្ទាប់ពីគុណមេគុណប្រើប្រាស់

$$\Rightarrow$$
 P'_{Air} = 750 × 0.41 = 307.5W

២.១៨.៣.គណនាចរន្តណូមិណាល់របស់ម៉ាស៊ីនត្រជាក់

តាមរូបមន្ត
$$P_{Air} = U \times I_n \times Cos\phi$$

$$\Rightarrow \qquad I_n = \frac{P_{Air}}{U \times Cos\phi}$$

ដោយ
$$P_{Air} = 750W$$
 $U = 220V$

 $Cos\phi=0.8$

យើងបាន
$$I_n = \frac{750}{220 \times 0.8} = 4.26A$$

ដូចនេះ

$$I_n = 4.26A$$

២.១៨.៤.គណនាមុខកាត់ខ្សែសម្រាប់ម៉ាស៊ីនត្រជាក់

$$S_{Cu} = \frac{I_n}{I}$$

ដោយ
$$I_n = 4.26A$$
 J=4A/mm²

$$S_{Cu} = \frac{4.26}{4} = 1.06 \text{mm}^2$$

ដូចនេះ ដើម្បីសុវត្ថិភាពលើការប្រើប្រាស់ និងតាមស្តង់ដាកំណត់យក S_{Cu} = 1.5mm 2 ។

តាមការគណនាខាងលើយើងអាចសរុបអានុភាពទាំងអស់មានអំពូល ឆ្នាប់ចរន្ត និងម៉ាស៊ីនត្រជាក់ ហើយ ក្នុងការគណនានេះយើងជ្រើសរើសយកបន្ទប់គេងមួយមកសិក្សា ចំណែកឯបន្ទប់ផ្សេងទៀតមាន

បង្ហាញក្នុងតារាង។

២.១៩.១.គណនាអានុភាពសរុបបន្ទប់គេង

ឃើងហ៊ុន
$$P'_{Total} = P'_{Lamp} + P'_{Socket} + P'_{Air.C}$$

$$\Rightarrow P'_{Total} = 88 + 220 + 307.5 = 615.5W$$

២.១៩.២.គណនាចរន្តណូមីណាល់បន្ទប់គេង

តាមរូបមន្ត
$$P'_{Total} = U \times I_n \times Cos\phi$$

ឃើងបាន
$$I_n = \frac{615.5}{220 \times 0.8} = 3.49A$$

២.១៩.៣.គណនាមុខកាត់ខ្សែមេសម្រាប់បន្ទប់គេង

តាមរូបមន្ត
$$S_{Cu} = \frac{I_n}{I}$$

ដោយ
$$I_n = 3.49A$$
 $J = 4A/mm^2$

ឃើងបាន
$$S_{Cu} = \frac{3.49}{4} = 0.87 \text{mm}^2$$

ដោយមុខកាត់ខ្សែលេខ០.87mm²មិនមានយើងអាចកំណត់យកS_{cu} = 1mm² ។

២.២០ គណនាមុខភាគខ្មែរមតាមខាន់នឹម្មយៗ

២.២០.១.គណនាមុខកាត់ខ្សែជាន់ទីផ្ទាល់ដី

- គណនាចរន្ត

តាមរូបមន្ត
$$P'_{Total(E0)} = U \times I_{n(E0)} \times Cos\varphi$$

$$\Rightarrow \ \ I_{n(E0)} = \frac{P'_{Total(E0)}}{U \times Cos\phi} \ \text{im} \text{ iff } \ P'_{Total} = 3254,2W \qquad U = 220V \qquad Cos\phi = 0.8$$

ឃើងបាន
$$I_n = \frac{3254,2}{220 \times 0.8} = 18,48A$$

ដូចនេះ
$$I_n = 18,48A$$

គណនាមុខកាត់ខ្សែ

តាមរូបមន្ត
$$S_{Cu} = \frac{I_n}{J}$$

ដោយ
$$I_n = 28,54A$$
 $J = 4A/mm^2$

ឃើងបាន
$$S_{Cu} = \frac{28,54}{4} = 4.62 \text{mm}^2$$

ដោយមុខកាត់ខ្សែលេខ4.62mm²មិនមានយើងអាចកំណត់យក $S_{\text{cu}} = 6 \text{mm}^2$

តារាង២.១៣ បង្ហាញពីការគណនាមុខកាត់ខ្សែជាន់ផ្ទាល់ដី

ល.រ	ឈ្មោះបន្ទប់	P _{Total(E0)} W	$Cos \varphi$	U(V)	$I_{n(E0)}A$	S _{CuCal(E0)} mm ²	S _{CuSe(E0)} mm ²
1	បន្ទប់ទទួលភ្ញៀវ	977.4	0.8	220	5.55	1.38	1.5
2	បន្ទប់គេង	615.5	0.8	220	3.49	0.87	1
3	បន្ទប់ទទួលទានអាហារ	640.5	0.8	220	3.63	0.90	1
4	បន្ទប់ទឹកទី១	378.4	0.8	220	2.15	0.53	1
5	ជណ្ដើរ	264	0.8	220	1.5	0.37	0.5
6	បន្ទប់ទឹកទី២	378.4	0.8	220	2.15	0.53	1
	សរុប	3254.2	0.8	220	18.47	4.62	6

២.២០.២.គណនាមុខកាត់ខ្សែជាន់ទី១

- គណនាចរន្ត

តាមរូបមន្ត
$$P'_{Total(E1)} = U \times I_{n(E1)} \times Cos\phi$$
 $I_{n(E1)} = \frac{P'_{Total(E1)}}{U \times Cos\phi}$ ដោយ $P'_{Total} = 3662,7W$ $U = 220V$ $Cos\phi = 0.8$ យើងបាន $I_n = \frac{3254,2}{220 \times 0.8} = 20,81A$ ដូចនេះ $I_n = 20,81A$

-គណនាមុខកាត់ខ្សែ

តាមរូបមន្ត
$$S_{Cu}=rac{I_n}{J}$$
 ដោយ $I_n=20,81A$ $J=4A/mm^2$ យើងបាន $S_{Cu}=rac{20,81}{4}=5,20mm^2$

ដោយមុខកាត់ខ្សែលេខ4.62mm²មិនមានយើងអាចកំណត់យក $S_{cu} = 6 mm^2$

តារាង២.១៤ បង្ហាញពីការគណនាមុខកាត់ខ្សែជាន់ទី១

ល.រ	ឈ្មោះបន្ទប់	P _{Total(E1)} W	$Cos \varphi$	U(V)	$I_{n(E1)}A$	S _{CuCal(E1)} mm ²	S _{CuSe(E1)} mm ²
1	បន្ទប់ទទួលភ្ញៀវ	575.9	0.8	220	3.27	0.81	1
2	បន្ទប់គេងទី១	967	0.8	220	5.49	1.37	1.5
3	បន្ទប់គេងទី២	615.5	0.8	220	3.49	0.87	1
4	បន្ទប់ទឹកទី១	378.4	0.8	220	2.15	0.53	1
5	ច្រកដើរ	44	0.8	220	0.25	0.06	0,5
6	បន្ទប់ទឹកទី២	378.4	0.8	220	2.14	0.53	1
7	បន្ទប់គេងទី៣	615.5	0.8	220	3.49	0.87	1
8	វេរ៉ង់ដា	88	0.8	220	0.5	0.125	0.5
	សរុប	3662.7	0.8	220	20.78	5.20	6

២.២១ គណនាមុខកាត់ខ្សែមេចូល

អានុភាពសកម្មប្រើប្រាស់សរុប

ចរន្តប្រើប្រាស់សរុប

តាមរូបមន្ត
$$P'_{Total} = U \times I_{Total} \times Cos\phi$$

$$\Rightarrow I_{Total} = \frac{P'_{Total}}{U \times Cos\phi} \quad \text{ដោយ} \quad P'_{Total} = 6916.9W \qquad U = 220V \qquad Cos\phi = 0.8$$
 មើងបាន
$$I_n = \frac{6916.9}{220 \times 0.8} = 39.3A$$
 ដូចនេះ
$$I_n = 39.3A$$

-គណនាមុខកាត់ខ្សែ

តាមរូបមន្ត
$$S_{Cu}=rac{I_n}{J}$$
 ដោយ $I_n=39.3A$ $J=4A/mm^2$ យើងបាន $S_{Cu}=rac{39.3}{4}=9.82mm^2$

ដោយមុខកាត់ខ្សែលេខ១.82mm²មិនមានយើងអាចកំណត់យក $S_{cu} = 10 \text{mm}^2$

តារាង២.១៥ បង្ហាញពីការគណនាមុខកាត់ខ្សែមេចូល

ល.រ	ឈ្មោះជាន់នីមួយៗ	P _{Total} (W)	$Cos \varphi$	U(V)	In	S _{Cu.cal} mm ²	S _{Cu.se} mm ²
1	ជាន់ផ្ទាល់ដី	3254.2	0.8	220	18.47	4.62	6
2	ជាន់ទី១	3662.7	0.8	220	20.78	5.20	6
	សរុប	6916.9	0.8	220	39.3	9.82	10

២.២២.១ គណនាឌីស្យងទ័រសម្រាប់បន្ទប់គេង

ខ្ញុំសូមលើកយកប្លុកមួយមាន បន្ទប់គេង តែមួយមកធ្វើការគណនាតម្លៃឌីស្យុងទ័រសម្រាប់អំពូល ជាគំរូហើយ រាល់ប្លុកផ្សេងទៀតមានលំនាំនិងប្រើប្រាស់រូបមន្តដូចគ្នា។

តាមរូបមន្ត $I_{CB} = I_n \times K_c$

ដោយ $I_n = 3,49A$, $K_c = 1.25$ ជាមេគុណបម្រង

ដូចនេះយើងអាចជ្រើសរើសឌីស្យូងទ័រតាម Schneider Electric Model MCB យក I_{CB} = 6A។

២.២២.២គណនាឌីស្យុងទ័រសម្រាប់ជាន់ផ្ទាល់ដី

ខ្ញុំសូមលើកយកប្លុកមួយមានជាន់ផ្ទាល់ដីតែមួយមកធ្វើការគណនាតម្លៃឌីស្យុងទ័រសម្រាប់ ធ្លាប់ចរន្តជាគំរូហើយរាល់ ប្លុកផ្សេងទៀតមានលំនាំនិងច្រើប្រាស់រូបមន្តដូចគ្នា។

តាមរូបមន្ត $I_{CB} = I_n \times K_c$

ដោយ $I_n = 18.47A$, $K_c = 1.25$ ជាមេគុណបម្រុង

ដូចនេះយើងអាចជ្រើសរើសឌីស្យុងទ័រតាម Schneider Electric Model MCB យក I = 25A ។

តារាង២.១៦ បង្ហាញពីការគណនាឌីសង់ទ័រសម្រាប់ជានផ្ទាល់ដី

ល.រ	ឈ្មោះបន្ទប់	K _c	$I_{n(E0)}(A)$	I _{CB.Cal(E0)} (A)	I _{CB.Se(E0)} (A)
1	បន្ទប់ទទួលភ្ញៀវ	1.25	5.55	6.93	8
2	បន្ទប់គេង	1.25	3.49	4.36	5
3	បន្ទប់ទទួលទានអាហារ	1.25	3.63	4.53	5
4	បន្ទប់ទឹកទី១	1.25	2.15	2.68	3
5	ជណ្ដើរ	1.25	1.5	1.87	3
6	បន្ទប់ទឹកទី២	1.25	2.15	2.68	3
	សរុប	1.25	18.47	23.08	25

២.២២.៣ គណនាឌីស្យុងទ័រសម្រាប់ជាន់ទី១

ខ្ញុំសូមលើកយកប្លុកមួយមាន វេរ៉ង់ដា តែមួយមកធ្វើការគណនាតម្លៃឌីស្យុងទ័រ សម្រាប់ ឆ្នាប់ចរន្តជាគំរូ ហើយរាល់ប្លុកផ្សេងទៀតមានលំនាំនិងប្រើប្រាស់រូបមន្តដូចគ្នា។

តាមរូបមន្ត $I_{CB} = I_n \times K_c$

ដោយ I_n =0.5 A, K_c = 1.25 ជាមេគុណបម្រុង

ដូចនេះយើងអាចជ្រើសរើសឌីស្យូងទ័រតាម Schneider Electric Model MCB យក I = 3A

តារាង២.១៧ បង្ហាញពីការគណនាឌីសង់ទ័រសម្រាប់ជាន់ទី១

ល.រ	ឈ្មោះបន្ទប់	K _c	I _{n(E1`)} (A)	$I_{CB.Cal(E1)}(A)$	I _{CB.Cal(E1)} (A)
1	បន្ទប់ទទួលភ្ញៀវ	1.25	3.27	4.08	5
2	បន្ទប់គេងទី១	1.25	5.49	6.86	8
3	បន្ទប់គេងទី២	1.25	3.49	4.36	5
4	បន្ទប់ទឹកទី១	1.25	2.15	2.68	3
5	ច្រកដើរ	1.25	0.25	0.31	3
6	បន្ទប់ទឹកទី២	1.25	2.14	2.67	3
7	បន្ទប់គេងទី៣	1.25	3.49	4.36	5
8	វេរ៉ង់ដា	1.25	0.5	0.6	3
	សរុប		20.78	25.97	32

២.២២.៤ គណនាឌីស្យុងទ័រមេ

តាមរូបមន្ត $I_{CB(Total)} = I_{total} \times K_c$

ដោយ $I_{Total} = A$, $K_c = 1.25$ ជាមេគុណបម្រុង

ឃើងបាន $I_{CB(Total)} = x 1.25 = A$

ដូចនេះយើងអាចជ្រើសរើសឌីស្យុងទ័រតាម Schneider Electric Model MCB យក I = A

តារាង២.១៨ បង្ហាញពីការគណនាឌីសង់ទ័រមេ

ល.រ	ឈ្មោះបន្ទប់	Kc	I _n (A)	I _{CB.Cal} (A)	I _{CB.Se} (A)
1	ជាន់ផ្ទាល់ដី	1,25	18.47	23.08	25
2	ជាន់ទី១	1,25	20.78	25.97	32
	សរុប	1,25	39.25	49.06	50A

ପ୍ରେ

ខំពុភនី ៣

វុទ្ធព័ន្ធអារពារ

៣.១ ទ្រព័ន្ធខ្សែនី TT

៣.១.១ ប្រព័ន្ធការពារសុវត្ថិភាព

ប្រព័ន្ធខ្សែដីគឺ ជាប្រព័ន្ធខ្សែចម្លងសុវត្តិភាពភ្ជាប់រវាងតួបរិក្ខារអគ្គិសនី ទៅខ្សែដីដើម្បីឲ្យវាមានលទ្ធភាព រំលស់ចរន្តមកដីឬភ្ជាប់ចំណុចណ្ឌិតពីប្រភពមកដីដើម្បីឲ្យព៌តមានតម្លៃសូន្យ ។

ប្រព័ន្ធខ្សែដ៏មានច្រើនប្រភេទផ្សេងៗពីគ្នាដែលអាស្រ័យទៅនិងតំណររបស់ខ្សែដី។ ប្រព័ន្ធនេះសំខាន់ខ្លាំង ណាស់ក្នុងប្រើប្រាស់ថាមពលលើគ្រប់វិស័យឧស្សាហកម្ម សណ្ឋាគារ លំនៅដ្ឋានសាលារៀនមន្ទីរពេទ្យ ហាងទំនិ ញ។ល។ ហើយតួនាទីរបស់វា គឺសម្រាប់ការពារ ម៉ាស៊ីនភ្លើង ត្រង់ស្ងូរអំពូល បណ្តាញកុំព្យុទ័រ ទូរទស្សន៍ និងបរិក្ខារ អគ្គិសនីផ្សេងៗទៀត។ ដើម្បីធានានៅការគ្រោះថ្នាក់ជាយថាហេតុគឺគេត្រូវដំឡើងប្រព័ន្ធនេះ អោយបានត្រឹមត្រូវតាម បទដ្ឋានបច្ចេកទេសសម្រាប់ការរស់នៅប្រចាំថ្ងៃ និងកន្លែងការងារផងដែរ ។

៣.១.២ ប្រភេទនៃប្រព័ន្ធខ្សែដី

ប្រភេទនៃប្រព័ន្ធខ្សែដីត្រូវបានគេចែកចេញ ៣ ប្រភេទផ្សេងៗគ្នាគឺ

ប្រព័ន្ធ TT

ប្រព័ន្ធ រក

ប្រព័ន្ធ TN

៣.១.៣ ប្រព័ន្ធខ្សែដី TT

នៅក្នុងប្រព័ន្ធនេះ ចំនុចមួយត្រូវបានចាប់ភ្ជាប់ទៅនឹងជីដោយផ្ទាល់ ហើយផ្នែកដែលអាចឆ្លងកាត់ចរន្ត ដាក់ កណ្តាលវាលត្រូវបានភ្ជាប់ទៅនឹងអេឡិចត្រូតខ្សែដីដាច់ដោយឡែក មិនត្រូវភ្ជាប់ទៅនឹងអេឡិចត្រូតខ្សែដី របស់ ប្រព័ន្ធបណ្តាញនោះទេ ។ ខ្សែដីប្រភេទនេះអាចការពារទល់នឹងការឆ្លងប៉ះដី ហើយគេអាចប្រើប្រាស់ឌីស្យុង ទ័រ ការពារចរន្តជ្រាបទៅដីបាន ។

រូបភាព ៣.១ ប្រព័ន្ធខ្សែដី TT

៣.១.៤ ប្រភេទខ្សែដី TN

ក្នុងប្រព័ន្ធខ្សែដីប្រភេទនេះ ប្រព័ន្ធខ្សែដី និងខ្សែដីការពារសុវត្ថិភាពបរិក្ខាអគ្គិសនីត្រូវបានប្រើប្រាស់រួម បញ្ចូលគ្នាចំណុចមួយនៃប្រព័ន្ធ ត្រូវបានចាប់ភ្ជាប់ទៅដីដោយផ្ទាល់ ហើយផ្នែកដែលឆ្លងចរន្តដាក់នៅកណ្តាល វាល បរិក្ខារអគ្គិសនីទាំងអស់ត្រូវភ្ជាប់ជាមួយចំនុចខ្សែជីរបស់ប្រព័ន្ធដោយប្រើខ្សែចម្លងការពារ ។ សម្រាប់ក្នុង ប្រព័ន្ធ TN គេបែងចែកជាបីសំខាន់ៗគឺ

ក. ប្រភេទ TN-S

នៅក្នុងប្រព័ន្ធ TN-S ទាំងមូលរបស់ខ្សែចម្លង N និងរបស់ខ្សែចម្លង PE ត្រូវចែកដាច់ពីគ្នា ហើយផ្នែកដែល ឆ្លងកាត់ចរន្តដាក់នៅកណ្តាលវាលដោយភ្ជាប់ទៅនឹងខ្សែចម្លង PE។ វាមាននាទីការពារទប់នឹងការឆ្លងប៉ះដី ជាង នេះទៅទៀតគេអាចប្រើប្រាស់ឌីស្យងទ័រការពារចរន្តជ្រាបទៅដី ឬឌីស្យងទ័រការពារចរន្តលើស ។

រូបភាព ៣.២ ប្រព័ន្ធខ្សែដី TN-S

ខ. ប្រភេទ TN-C

ក្នុងប្រព័ន្ធ TN-C ទាំងមូលតួនាទីរបស់ខ្សែណេតនិងខ្សែការពារគឺរួមបញ្ចូលគ្នាក្នុងខ្សែតែមួយ(ខ្សែ PEN) ហើយផ្នែកដែលឆ្លងចរន្តដាក់នៅកណ្តាលវាលដោយភ្ជាប់ជាមួយខ្សែ PEN ។វាមានតួនាទីការពារទប់នឹងការឆ្លង ប៉ះ ទៅដី វាមិនមានការលំបាកនិងកំណត់ចរន្តហ្វាសូន្យ គឺព្រោះខ្សែ PEN ត្រូវបានគេប្រើទាំង PE និង N ដូច នេះគេ មិនអាចប្រើប្រាស់ឌីស្យុងទ័រ ការពារចរន្តជាប់ទៅដីបានទេ មានតែឌីស្យុងទ័រការពារចរន្តលើសទេដែល អាចប្រើប្រាស់បាន ។ ទោះជាយ៉ាងណាក៏ដោយគេត្រូវតែពិចារណាអំពីសុវត្ថិភាពក្នុងករណីប្រើប្រាស់វាជាការល្អ ដើម្បី

ការពារផ្នែកខាងចុងទល់នឹងការឆ្លងប៉ះដីគេប្រើខីស្យុងទ័រការពារចរន្តជ្រាបទៅដីក្នុងលក្ខខណ្ឌ ផ្នែកខាង ក្នុងត្រូវបាន ប្តូរពីប្រព័ន្ធ TN-C ទៅជាប្រព័ន្ធ TN-S គេហៅប្រព័ន្ធទាំងមូលនេះបានថា TN-C-S។

រូបភាព ៣.៣ ប្រព័ន្ធខ្សែដី TN-C

គ. ប្រព័ន្ធ TN-C-S

ក្នុងប្រព័ន្ធ ផ្នែកមួយនៃប្រព័ន្ធ TN-C-S ទាំងមូលមានតួនាទីរបស់ខ្សែណេត និងខ្សែការពារគឺរួមបញ្ចូលគ្នាជា ខ្សែតែមួយក្នុង PEN ប្រើខ្សែរួមគ្នា ហើយនៅតាមចំណុចមួយចំនួនបំបែកជាPE និង N ដាច់ពីគ្នា ។វាអាច ទុ មានការ ផ្គត់ផ្គង់ទាំង TN-S និង TN-C-S ពីត្រង់ស្ងូម៉ាទ័រតែមួយ ។ វាអាចការពារទប់នឹងការឆ្លងប៉ះដី ហើយគេ អាចប្រើឌីស្យុង ទ័រ ការពារចរន្តលើសនៅគ្រប់ផ្នែកទាំងអស់នៃប្រព័ន្ធ ចំណែកឌីស្យុងទ័រការពារចរន្តជ្រាប់ទៅដី អាចប្រើប្រាស់បាន នៅលើផ្នែកដែលប្រើប្រព័ន្ធ TN-S ។

រូបទី៣.៤ ប្រព័ន្ធខ្សែដី TN-C-S

ព ២ ទារដល់ខារមេនៀនវិត្តដ

តាមការចុះទៅសិក្សារបស់ក្រុមយើងខ្ញុំអគារមានមានបណ្ដោយប្រវែង 39m និង ទទឹងមានប្រវែង 37m. ហើយអគារមានប្រភេទដីជាប្រភេទដីឥដ្ឋទន់ P = 5002m និងមានរណ្ដមានជម្រៅ A = 0.8m អានុភាពបើ ប្រាស់ធំ ជាង100kVAដូចច្នេះ R = 502 យោងតាមឯកសារដែលបានសិក្សា។

៣.២.១ ការគណនារេស៊ីស្គីវីតេរបស់អេឡិចត្រូត

តាមរូបមន្តៈ $\rho_{pv} = K_{cv} \times \rho_{g}$

ដោយ: $ho_g = 50 \Omega m$ ជារេស៊ីស្តង់ខ្សែដីដែលមានស្រាប់

 K_{cv} មេគុណចម្លងរបស់អេឡិចត្រូដកំណត់យក 5m នោះ $K_{cv} = 1.45$ (យោងតាមឯកសារ)

$$\rho_{pv}=1.45\times 50=72.5\Omega m$$

ផ្ទៃមុខលើរបស់ដី

រូបទី៣.៥ការតម្លើងអេឡិត្រូតបញ្ឈរ

៣.២.២ ការគណនារ៉េស៊ីស្តង់ខ្សែដីនៃអេឡិចត្រូតបញ្ឈរ

តាមរូបមន្ត:
$$R_v = \frac{\rho_{pv}}{2\pi L} \times \left[ln \frac{2L}{d} + \frac{1}{2} ln \frac{4h+L}{4h-L} \right]$$

ដោយ: $\rho_{pv} = 72.5\Omega m$

L = 3 ប្រវែងអេឡិចត្រតបញ្ឈរ (តាម Furse Catalogue Earthing)

$$d_v = 20 mm = 0.02 m$$

$$h = 0.8 + \frac{3}{2} = 2.3 \text{m}$$

$$R_{v} = \frac{72.5}{2 \times 3.14 \times 3} \times \left[\ln \frac{2 \times 3}{0.02} + \frac{1}{2} \ln \frac{4 \times 2.3 + 3}{4 \times 2.3 - 3} \right] = 21.95$$

៣.២.៣ ការគណនាចំនួនអេឡិចត្រួតបញ្ឈរ

តាមរូបមន្ត
$$:$$
n $_{\mathrm{EV}}=rac{\mathrm{R}_{\mathrm{V}}}{\mathrm{R}_{\mathrm{gs}}}$

$$R_{gs} = 4$$

$$n_{EV} = \frac{21.95}{4} = 5.48$$
 យើងអាចកំណត់យក 6 ដើម

៣.២.៤ ការគណនាចំនួនអេឡិចត្រតពិត

តាមរូបមន្ត:
$$n'_{EV} = \frac{n_{EV}}{n_V}$$

$$\eta_V = K = \frac{a}{L} = \frac{5}{3} = 1.66$$
 អាចកំណត់បាន $K = 2$ (តាមតារាង K)

$$\eta_{\rm V} = 0.75$$

 $\eta'_{EV} = \frac{6}{0.75} = 8$ យើងអាចកំណត់យក 8 ដើម

៣.៣ គារគលាលអេឡិចគ្រូតថ្លេក

៣.៣.១ រេស៊ីស្ទីវីតេរបស់អេឡិចត្រូតផ្ដេក

តាមរូបមន្ត
$$ho_{PH} = K_{CH} imes
ho_{gs}$$

ដោយកំណត់យកប្រវែង 14 m នោះ K_{CH} = 3.5

$$\rho_{gs}=50\Omega m$$

$$\rho_{PH}=3.5\times50=175\Omega m$$

៣.៣.២ រេស៊ីស្តង់ជីរបស់អេឡិចត្រូតផ្តេក

តាមរូបមន្ត
$$R_{H} = \frac{\rho_{pH}}{2\pi L_{H}} ln \frac{2L_{H}^{2}}{bh_{o}}$$

$$h_0 = 0.8 m$$

$$\rho_{PH} = 100\Omega m$$

$$R_{\rm H} = \frac{175}{2 \times 3.14 \times 17} = \ln \frac{2 \times 10^2}{0.02 \times 0.8} = 15.46$$

៣.៣.៣ ការគណនាចំនួនអេឡិចត្រូតផ្ដេក

តាមរូបមន្ត
$$n_H = \frac{P}{L_H}$$

ដោយ
$$L_{\rm H}=17 {\rm m}$$

$$P = [(a + 2) + (b + 2)] \times 2 = [(17 + 2) + (32 + 2)] \times 2 = 100m$$

$$n_{\rm H}=rac{106}{17}=6.23$$
 យើងអាចកំណត់យក 8 ដើម

៣.៣.៤ ការគណនារេស៊ីស្តង់សរុប

តាមរូបមន្ត
$$R_{gTotal} = \frac{R_V \times R_H}{(R_V \times \eta_H) + (R_H \times \eta_V \times \eta_{EV})}$$

ដោយ
$$R_{g Total} < R_{gs}$$

ដូច្នេះក្រុមខ្ញុំបាទកំណត់បានថាការបុកប្រព័ន្ធខ្សែដ៏មានរូតចំនួន 8 ការបុករ៉ូតគឺស្ថិតនៅក្រោម 5Q2 ហើយ គម្លាតរ៉ូតមួយដើមទៅរ៉ូតមួយដើមទៀតមានប្រវែង 5m ជាប្រភេទTT

រូបទី៣.៦ការតម្លើងអេឡិចត្រួតផ្ដេក

៣.៤ ភាគេលាខាងខែអ្វដ្ឋិ

ការកំណត់មុខកាត់ខ្សែដីគឺយោងទៅតាមមុខកាត់ខ្សែមេដែលក្រុមយើងខ្ញុំគណនាឃើញ។ ខាងក្រោមនេះជា ការគណនា

	c.s.a of phase conductors Sph(mm²)	Minimum c.s.a of PE conductor(mm²)
	$S_{ph} \le 16$	$S_{ph} \times 2$
Simplifled method ⁽¹⁾	$16 < S_{ph} \le 25$	16
	$25 < S_{ph} < 35$	
	35 < S _{ph} < 50	$S_{\rm ph}/2$
	S _{ph} > 50	_

ដូចនេះដោយមុខកាត់ខ្សែមេមានមុខកាត់ 185mm តាមតារាងកំណត់បើខ្សែប្រភពធំជាង 50mm[,] នោះត្រូវ យកខ្សែប្រភពចែកជា២

តាមរូបមន្តៈ PEconductor = $\frac{S_{ph}}{2}$

ដោយ: S_{ph=185m²}

 $PEconductor = \frac{185}{2} = 95 \text{mm}^2$

ដូច្នេះការកំណត់យកខ្សែដីគឺមានមុខកាត់១5mm" ជាប្រភេទខ្សែទង់ដែងមិនមានសំបក់ការពារ។

៣.៥ ទ្រព័ន្ធអារពាររន្ទះ

៣.៥.១ បាតុភូតនៃរន្ទះ

បាតុភូតរន្ទះ គឺជាបាតុភូតធម្មជាតិមួយដែលបង្កើតអោយមានផ្គរនិង មានរន្ទះនៅពេលមានភ្លៀងធ្លាក់ៗ បាតុភូតនេះបង្កឲ្យ មានគ្រោះថ្នាក់ដល់ភាវៈទាំងអស់នៅលើផែនដីប្រសិនបើគ្មានការការពារឲ្យបានត្រឹមត្រូវ។ នៅ ក្នុងបរិយាកាសមានពពកជាច្រើនដែលបង្កើតឲ្យមានបន្ទុកអគ្គិសនី(បន្ទុកវិជ្ជមាន និងបន្ទុកអវិជ្ជមាន)ដោយកកិតអេ ទ្បិចត្រុងរវាងគ្នានឹងគ្នា។ នៅពេលមេឃភ្លៀងបន្ទុកវិជ្ជមានបានធ្លាក់ចុះមកខាងក្រោមនៃពពកហើយពេលដែលបន្ទុក នះមានចលនាទៅប៉ះនឹងបន្ទុកមួយទៀត (បន្ទុកអវិជ្ជមាន) បានបង្កើតដែនអគ្គិសនី (រន្ធះ) បង្កើតឱ្យមានចរន្តមាន តម្លៃធំ និងតង់ស្យុងខ្ពស់។

រូបទី៣.៧

៣.៥.២ ការគណនាប្រព័ន្ធរន្ទះ

តាមរូបមន្ត $R_p = \sqrt{h(2D+h) + \Delta T(2D+\Delta T)}$

ដោយ h > 5 m កម្ពស់កំណត់តាមតារាង

D ជាកាំការពាររន្ទះ

ΔT រយពេលគិតជា μs

- > 15 μs
- **>** 30 μs
- > 45 μs
- > 60 μs

$$R_p = \sqrt{5(2 \times 30 + 5) + 30[(2 \times 30) + 30]} = 55m$$

រូបទី៣.៨

ខំពុងខ្ម

សុខត្តិភាពភាទោះ និខ ភាះសខ្ចោះ១៥ម

៤.១ សុទត្តិភាពភារខារ

ការងារអគ្គិសនីគឺ ជាការងារដែលប្រឈមមុខទៅដោយភាពគ្រោះថ្នាក់ ប្រសិនបើយើងមិនបានសិក្សាស្វែង យល់ឲ្យដឹងច្បាស់លាស់នោះទេ វាអាចនឹងបង្កគ្រោះថ្នាក់ដល់អាយុជីវិតបាន ព្រោះថាអគ្គិសនីគឺជាចរន្តមួយ ដែល មិនអាចមើលឃើញដោយភ្នែកទទេបានឡើយ។ ដូចនេះហើយយើងគឺជាអ្នកបច្ចេកទេស ត្រូវមានការប្រុង ប្រយ័ត្ន និងស្វែងយល់ឲ្យបានច្បាស់លាស់អំពីសុវត្ថិភាព វិធីការពារនិងផលប៉ះពាល់ដែលអាចកើតមានជាយ ថា ហេតុ ។ ឧបករណ៍ការពារដែលត្រូវប្រើប្រាស់ នៅពេលដែលបំពេញការងារជាមួយនិងអគ្គិសនី មានដូចជា ៖

៤.១.១ មួកការពារសុវត្ថិភាព

ប្រើសម្រាប់ការពារក្បាលនៅពេលមានធូលីដី ឬឧបករណ៍អ្វីធ្លាក់មកលើពេលកំពុងធ្វើការ។

រូបទី២ មុកសុវត្ថិភាពពេលយប់

៤.១.២ វ៉ែនតាកាពារសុវត្ថិភាព

ប្រើសម្រាប់ការពារភ្នែកកុំឲ្យកំទិចធូលីមកប៉ះភ្នែកពេលកំពុងធ្វើការ

រូបទី៣ វ៉ែនតាសុវត្ថិភាព

៤.១.៣ ខ្សែក្រវ៉ត់ការពារសុវត្ថិភាព

ប្រើសម្រាប់ទប់ខ្លួននៅពេលយើងឡើងលើបង្គោលខ្ពស់វាជួយការពារកុំឱ្យមានគ្រោះ ថ្នាក់ជាយថាហេតុ។

រូបទី៤ ប្រភេទខ្សែក្រវ៉ាត់សុវត្ថិភាព

៤១.៤ ស្រោមដៃសុវត្ថិភាព

ប្រើសម្រាប់ការពារពេលធ្វើតំណខ្សែភ្លើងពេលមានចរន្តឆ្លងកាត់។

រូបទី៥ ស្រោមដៃសុវត្ថិភាពដែលមានអ៊ីសូឡង់ក្រាស់

៤. ១.៥ ស្បែកជើងសុវត្ថិភាព

ប្រើសម្រាប់ការពារកុំឲ្យមានគ្រោះថ្នាក់នៅពេលកំពុងធ្វើការ។

រូបទី៦ ស្បែកជើងសុវត្ថិភាព

៤.១.៦ ឯកសណ្ឋានការងារ

ប្រើសម្រាប់ការពារសុវត្ថិភាពនៅពេលកំពុងធ្វើការ។

រូបទី៧ ឯកសណ្ឋានការងារ

ទំនួនទំពេលបារៈស្ដេង១នៃ ណែដេន ៧.៦

សុវត្ថិភាពនៅពេលចូលទៅធ្វើការត្រូវតែគោរពតាមគោការណ៍ដូចខាងក្រោម ៖

- ត្រូវមានមនុស្សចាប់ពី ២ នាក់ឡើងទៅ
- ត្រូវតែមានឧបករណ៍សម្រាប់តេស្តភ្លើង ដូចជា វ៉ុលម៉ែត្រ ឬ ប៊ិចភ្លើង
- > ត្រូវតែបិទប្រភពអគ្គិសនីជាមុនសិនទើបធ្វើការជួសជុលជាក្រោយ
- ពេលធ្វើការកន្លែងខ្ពស់ត្រូវតែប្រើប្រាស់និងខ្សែក្រវ៉ាត់ការពារ
- ប្រើប្រាស់ជណ្ដើរ ដែលមានអ៊ីសូឡង់ការពារហើយមានភាពរឹងមាំ
- > ត្រូវមានឧបករណ៍គ្រប់គ្រាន់ដើម្បីតម្រូវតាមស្ថានភាពប្រើប្រាស់
- ពេលធ្វើការត្រូវតភ្ជាប់ខ្សែណែតទៅក្នុងដី ។
- ឧមអរណ៍ម្រើប្រាស់

រូបទី៨ ដង្កាប់ និង កូនសោ

រូបទី៩ កាំបិតកាត់ខ្សែភ្លើង

រូបទី១០ ម៉ូទ័រស្វាន

រូបទី១២ ម៉ូទ័របុក

រូបទី១៣ សោមាត់

រូបទី១៤ ញញួរដែក

រូបទី១៥ ញញូរជ័រ

រូបទី១៦ ដង្កាប់សកខ្សែភ្លើង

រូបទី១៧ ដែកដាបបំបែក

រូបទី ១៨ ប៊ិចភ្លើង

រូបទី១៩ ម៉ុលទីម៉ែត្រ

រូបទី២០ ឆ្នាប់ចរន្ត

រូបទី២១ ម៉ែត្រ

រូបទី២២ ជណ្ដើរ

រូបទី២៣ សម្ភារប្រើប្រាស់

៤.៣ សម្ភារៈអគ្គិសនី

រូបទី២៤ ខ្សែចម្លង

រូបទី២៥ ប្រអប់ជ័រ ឬ បំពង់ជ័រ

រូបទី២៦ ឌីសង់ទ័រ

រូបទី២៧ ឆ្នាប់ចរន្ត

រូបទី២៨ កុងទ័រថាមពល

រូបទី២៩ អំពូល

៤.៤ គ្រោះថ្នាក់មណ្ណាលមកពីចរខ្ពងគ្គិសនី

ការឆក់ដោយចរន្តអគ្គិសនី គឺបណ្តាលមកពីមានចរន្តអគ្គិសនីរត់ឆ្លងកាត់រាងកាយមនុស្ស សងប៉ូតង់ស្យែល ពីចំណុចមួយទៅចំណុចមួយទៀត។ការឆក់ដែលបណ្តាលឲ្យគ្រោះថ្នាក់ខ្លាំង កាលណាចរន្តឆ្លងកាន់ខ្លួនមនុស្សក៏ មានតម្លៃចំដែរ។

ឆក់តិចត្រឹមកន្ត្រាក់សាច់ដុំ

> ឆក់ខ្លាំងបណ្តាលឲ្យគាំងបេះដូង(ធ្វើឲ្យស្លាប់បាន)

៤.៥ អគ្គាជលមណ្ឌាល៤្យមខុស្សឆអំដោយចរខ្លួមគ្គិសនី

គ្រោះថ្នាក់បណ្តាលមកពីចរន្តអគ្គិសនី អាចកើតមានច្រើនករណី ប៉ុន្តែប្រជាពលរដ្ឋមួយចំនួននៅមិន ទាន់
ដឹងច្បាស់អំពីមូលហេតុកើតឡើងដោយសារអ្វីនិងនៅពេលណា កត្តាគ្រោះថ្នាក់នៃចរន្តអគ្គិសនីនេះសា ស្ត្រាចារ្យ
ជំនាញអគ្គិសនី នៅវិទ្យាស្ថានជាតិបណ្តុះបណ្តាលបច្ចេកទេស លោក យឿន សារ៉េ បានបកស្រាយ ថា ប្រជាពលរដ្ឋ
អាចប្រឈមមុខជាមួយគ្រោះថ្នាក់នៃចរន្តអគ្គិសនី គ្រប់ពេលដែលពួកគេមិនដឹងថាបណ្តាលមកពី កត្តាអ្វីខ្លះ។ សា
ស្ត្រាចារ្យជំនាញអគ្គិសនីរូបនេះបញ្ជាក់ថា មូលហេតុនៃចរន្តអគ្គិសនីដែលបណ្តាលឱ្យមនុស្ស គ្រោះថ្នាក់មាន៣ករណី
គឺ៖

- 9. ការប៉ះទៅនឹងវត្ថុអគ្គិសនីថ្នាល់ ៖ គ្រោះថ្នាក់អាចកើតឡើងនៅពេលជនរងគ្រោះយកវត្ថុមានជាតិជា លោហៈឬប៉ះ ពាល់ដោយដៃផ្ទាល់ ឬនៅពេលជួសជុលលើខ្សែបណ្តាញអគ្គិសនីនិងឧបករណ៍អគ្គិសនីកំពុងភ្ជាប់ ជាមួយប្រភពអគ្គិ សនី។ ករណ៏មួយទៀតនៅពេលខ្សែរបស់ឧបករណ៍អគ្គិសនីខូចស្រទាប់អ៊ីសូឡង់ហើយប៉ះឆ្លង ទៅនឹងសំបកជាលោ ហៈ។ ឧបករណ៍អគ្គិសនីដែលគេប្រទះឃើញបង្កគ្រោះថ្នាក់ញឹកញាប់មានដូចជា ៖ កង្ហារ, ឆ្នាំងអ៊ុត, ចង្ក្រានអគ្គិសនី, ឆ្នាំងដាំបាយអគ្គិសនី, ទូរទឹកកកនិងឧបករណ៍ជាច្រើនទៀត។
- ២. គ្រោះថ្នាក់ដោយសារដែនទំនាញអគ្គិសនី៖ ចំណុចនេះមានន័យថាគ្រោះថ្នាក់អាចកើតមានជាញឹកញាប់ ដោយសារអគ្គិសនីដែល មានតង់ស្យុងខ្ពស់ ហើយវានឹងបញ្ចេញចរន្តអគ្គិសនីឆ្លងកាត់បរិយាកាស ធ្វើឱ្យដុតឆេះឬ បង្កជាឆក់ក៏មាន។ ករណីនេះច្រើនកើតឡើងលើប្រជាពលរដ្ឋមួយចំនួនដែលសង់ផ្ទះនៅជិតបណ្តាញអគ្គិសនី ដែល មានតង់ស្យងខ្ពស់ឬនៅជិតស្ថានីយអគ្គិសនី។
- ៣. គ្រោះថ្នាក់ដោយសារតង់ស្យុងជំហាន៖ ជនរងគ្រោះមានគ្រោះថ្នាក់នៅពេលជនរងគ្រោះ ឈរជិត ចំណុចដែល មានតង់ស្យុងខ្ពស់ពោលគឺ ពេលមានខ្សែចម្លងដាច់ចុះមកដីធ្វើឱ្យចរន្តអគ្គិសនី រត់រវាងចន្លោះជើង ទាំងពីរ។ ត្រង់ ចំណុចនេះអ្នកជំនាញមានប្រសាសន៍ថានៅពេលមានខ្សែចម្លងដាច់ចុះមកដី ចាំបាច់ត្រូវកាត់ផ្ដាច់ ចរន្តអគ្គិសនីនិង ហាមមិនឱ្យចូលជិតតំបន់នោះយ៉ាងហោចណាស់ក៏មានចម្ងាយឃ្លាតយ៉ាងតិច២០ម៉ែត្រដែរ។ មានកត្តាជាច្រើនទៀត ដែលបណ្ដាលឲ្យមនុស្សឆក់ដែលក្នុងនោះរួមមានការគ្មានចំណេះដឹងផ្នែកអគ្គិសនី ការធ្វេសប្រហែស ការខ្វះបទ ពិសោធន៍ និងការខ្វះទំនួលខុសត្រូវ។ កម្រិតនៃការឆក់មានសភាពខុសៗគ្នាដូចជាមនុស្សចាស់កម្រិតនៃការឆក់ ស្រាលជាងកូនក្មេងដោយសារស្រទាប់ស្បែកក្រាស់ជាងមនុស្សធាត់កម្រិតនៃការ ឆក់ស្រាលជាងមនុស្សស្គម។ ក្រៅ ពីនោះវាប្រែប្រូលទៅតាមប្រភេទនៃតង់ស្យុងដូចជាចំពោះចរន្តឆ្លាស់ អាចចាប់ ពីតង់ស្យុង 36 វ៉ុល ឡើងទៅ ឯចរន្ត ជាប់ចាប់ពី 50 វ៉ុលឡើងទៅ។

តារាងទី៤.១បញ្ជាក់ពីតម្លៃចរន្តដែលមានគ្រោះថ្នាក់

ល.រ	តម្លៃចរន្ត(mA)	ធម្មជាតិនៃចរន្ត		
		DC	AC	
1	0.5 - 0.5	• គ្មានអារម្មណ៍	• ចាប់ផ្តើមមានអារម្មណ៍	
2	2.0 -3.0	• គ្មានអារម្មណ៍	• ញ័រចុងម្រាម	
3	5.0 -7.0	• ក្ដៅ	• មានការឈឺចាប់ ឬ រមួលសាច់ដុំ	
4	8.0 -10.0	• កម្ដៅកើនឡើង	• ដៃចាប់ផ្ដើមះពិបាកដកចេញពីចំណុច	
			ប៉ះ	
5	20 -25	• មានបញ្ហាដល់ភាពរស់របស់	• រលាកមិនអាចដកដៃរួចពីចំនុចប៉ះ	
		ជំរំ	ពិបាកដកដង្ហើម	
6	50 -80	• ពិបាកដកដង្ហើម	• ចាប់ផ្ដើមភ្ញោចបេះដូង	
7	90 -100	• បញ្ចប់ការដកដង្ហើម	• ពីរ បី នាទីបេះដូងលែងដំណើរការ	

បញ្ជាក់៖ 1A =1000mA_ប៉ុន្តែចរន្តអគ្គិសនីដែលប្រជាពលរដ្ឋប្រើនៅក្នុងជីវភាពប្រចាំថ្ងៃ គឺចាប់ពី10A ឡើងទៅ។ បើទោះបីជាចរន្តអគ្គិសនី ជា វត្ថុមួយសម្រាប់ឆ្លើយតបជាមួយតម្រូវការមនុស្សប្រចាំថ្ងៃមែន ប៉ុន្តែវត្ថុអរូប នេះក៏ជាអាវុធកាចសាហាវមួយគម្រាមកំហែងដល់អាយុ ជីវិតមនុស្សផងដែរ។

៤.៦ ភានេច់ស្អាត់គុំ៤មានគ្រោះថ្នាក់អគ្គិសនី

ដើម្បីបង្កើនសុវត្ថិភាពដែលបង្កឡើងដោយចរន្តអគ្គិសនីសម្រាប់ជីវភាពរស់នៅប្រចាំថ្ងៃយើងទាំងអស់គ្នា គួរ ចៀសវាងនិងអនុវត្តក្នុងការទប់ស្កាត់ដើម្បីកុំឱ្យមានការគ្រោះថ្នាក់ក្នុងនោះមានដូចជា៖

- កុំឡើងលើបង្គោលខ្សែភ្លើង
- កុំឈរឬផ្អែកលើបង្គោលអគ្គិសនី
- កុំនៅក្រោមខ្សែអគ្គិសនី
- កុំឈរនៅជិតបង្គោលអគ្គិសនីនៅពេលមានភ្លៀងឆ្លាក់ខ្យល់ឬរន្ទះ
- កុំបង្ហោះខ្លែងនៅជិតខ្សែអគ្គិសនី
- កុំចងគោក្របីសេះទៅនិងបង្គោលអគ្គិសនី
- កុំសង់គេហដ្ឋាននៅក្នុងតំបន់ស្ថានីយអគ្គិសនីវិទ្យាស្ត
- កុំប៉ះពាល់ខ្សែចម្លងអគ្គិសនី ព្រោះយើងមិនដឹងថាវាមានភ្លើង ឬអត់
- កុំប៉ះពាល់ទៅលើឧបករណ៍ ដូចជា ទូភ្លើង ទូបញ្ហា តួម៉ូទ័រ និងឧបករណ៍ផ្សេងៗទៀត ព្រោះយើងមិនដឹង ថា វាមានការឆ្លងភ្លើង ឬមិនមាន
- ត្រូវចាប់ខ្សែដីម៉ាស់ភ្ជាប់ទៅនឹងតួឧបករណ៍ទាំងនោះ
- ត្រូវប្រើវត្ថុដែលរុំព័ទ្ធដោយអីសូឡង់ដូចជា៖ កៅស៊ូ, ជ័រ, ឈើ នៅពេលជួសជុលឧបករណ៍ ឬបណ្តាញ អគ្គិសនី
- ត្រូវប្រើប្រាស់ឧបករណ៍ដូចជាទុលឡឺវីស,ដង្កាប់...ឱ្យត្រូវតាមលក្ខណៈបច្ចេកទេស

• គ្រូសារនីមួយៗគប្បីត្រូវមានប៊ិចភ្លើងដើម្បីត្រូតពិនិត្យតង់ស្យងសុវត្ថិភាព។

៤.៧ ទិធីស្នួយសម្រើរៈឧសីរមុ

នៅពេលដែលយើងឃើញការគ្រោះថ្នាក់ដែលកើតមានឡើង ដែលបណ្តាលមកពីចរន្ត អគ្គិសនីឆក់ពេល នោះយើងត្រូវជួយជនរងគ្រោះដោយបិទបារ៉ែត ឬឌីសង់ទ័រហើយបើនៅឆ្ងាយពីកន្លែងកើតហេតុ ត្រូវយកពូថៅ ឬ កាំ បិទដែលមានអ៊ីសូឡង់កាត់ផ្តាច់ខ្សែហើយយកឈើ ឬស្សីដែលស្ងួតទាញខ្សែនោះចេញ។ បើមិនដូច្នោះទេ យើង ទាញអាវ ឬយកក្រណាត់ស្ងួតទាញអ្នករងគ្រោះឲ្យផុតពីកន្លែងគ្រោះថ្នាក់ ។

រូបទី៣០ ការផ្ដាច់ចរន្តចេញពីជនរងគ្រោះ

៤.៤ ទិធីសាស្ត្រពួយសព្ទខ្លាះមឋម

ពេលអ្នករងគ្រោះមានសភាពធ្ងន់ធ្ងរដែលធ្វើឲ្យសសៃឈាមឈប់មានចលនា។ ការជួយសង្គ្រោះអ្នកជំងឺ បេះដូង យើងត្រូវដាក់អ្នកជំងឺឲ្យដេកត្រង់រួចចាំផ្ដើមធ្វើចលនាដៃរួចលំងាក់ស្មាទៅឆ្វេងទៅស្ដាំបន្ទាប់មកធ្វើចលនា បេះដូងដោយសង្កត់លើដើមទ្រុងមួយៗ។

រូបទី៣១ ការធ្វើចលនាបេះដូង

បើអ្នកជំងឺមិនទាន់ដឹងខ្លួន បេះដូងមិនទាន់មានចលនា នោះយើងត្រូវផ្លុំខ្យល់បញ្ចូលតាមមាត់នឹងមាត់ រួច ធ្វើចលនា បេះដូងជាមុននិងផ្តល់ព៌តមានភ្លាមៗដល់ក្រុមសង្គ្រោះរបស់គ្រូពេទ្រជាបន្ទាន់។

រូបទី៣២ ករណីដែលជនរងគ្រោះសន្លប់បាត់ដង្ហើម

៤.៩ គ្រោះថ្នាក់ដោយអគ្គិសនី

- កំហុសបច្ចេកទេសដោយការតបណ្ដាញមិនបានត្រឹមត្រូវ
- ការប្រើប្រាស់មុខកាត់ខ្សែដែលគ្មានតុល្យភាព
- ការប្រើប្រាស់ឧបករណ៍ការពារសៀគ្គី គ្មានគុណភាព ឬខុសបច្ចេកទេស
- កំហុសបច្ចេកទេសដោយអនុវត្តន៍ផ្ទាល់
- ភ្ជាប់ចរន្ត តែមួយឥភ្ជាប់ច្រើនហួសហេតុពេក
- ការដាច់ អ៊ីសូឡង់ដោយពុំបានដឹង

៤.90 គ្រោះថ្នាក់ដោយភាពឆ្លងប្រហែស

- ធ្វេសប្រហែសដោយបំពាន លើការងារ
- ខ្វះការយល់ដឹងខាងបច្ចេកទេសអគ្គិសនី
- មិនគោរពតាមបទដ្ឋានបច្ចេកទេស

៤.១១ គ្រោះថ្នាក់ដោយឆ្លសៀខ្សែត្រឹច

នាពេលបច្ចុប្បន្នគេសង្កេតឃើញថាការប្រើប្រាស់ចរន្តអគ្គិសនីរបស់ប្រជាជនខ្មែរភាគច្រើន មិនគោរព តាម ស្តង់ដារនោះទេ ដែលបញ្ហានេះបណ្តាលឱ្យកើតមានទុស្សេខ្សែភ្លើងហើយក៏ឈានទៅបង្កើត ជាអគ្គីភ័យបាន យ៉ាង ងាយ។តើដើមចមនៃទុស្សេខ្សែភ្លើងនេះបណ្តាលមកពីបញ្ហាអ្វីខ្លះ?

ការទុស្សេខ្សែភ្លើងចែកចេញជាពីរករណ៏គឺ

- ដាច់រលាត់នៃខ្សែភ្លើង
- ប្រើប្រាស់លើសបន្ទុកនៃខ្សែភ្លើង

ទាក់ទងទៅនឹងការប្រើប្រាស់លើសបន្ទុកខ្សែភ្លើងនេះ លោកបានបញ្ជាក់ថា ការប្រើប្រាស់លើសបន្ទុក មាន ន័យថា ខ្សែភ្លើងមួយនោះអាចប្រើបានត្រឹមតែ ១កន្លះ ទៅ ២ ប៉ុន្តែអ្នកប្រើប្រាស់បានប្រើឧបករណ៍ប្រើកម្លាំង អគ្គិស នីបន្ថែមទៀត ធ្វើឱ្យលើសទំហំខ្សែ ដូចនេះពេលប្រើយូរៗទៅបណ្ដាលឱ្យកម្ដៅខ្សែ ហើយរលាយអ៊ីសូឡង់ ជាហេតុ ឱ្យមានការប៉ះគ្នារវាងចរន្តនិងចរន្តធ្វើឱ្យទុស្សេខ្សែភ្លើងកើតឡើង។ ដើម្បីបញ្ចៀសឧបទ្ទវហេតុនៃការទុស្សេខ្សែភ្លើង ត្រូវមានវិធីសាស្ត្រក្នុងការប្រើប្រាស់ខ្សែឱ្យបានត្រឹមត្រូវ ដោយក្នុងនោះគេត្រូវដឹងថាឧបករណ៍ប្រភេទណា?ប្រើខ្សែទំហំប៉ុន្មាន? ក្រៅពីការប្រើប្រាស់ខ្សែភ្លើង លោកក៏មានទស្សនៈទៀតថា តាមផ្ទះនីមួយៗពេលដំឡើងអគ្គិសនីត្រូវតែឆ្លងកាត់ អ្នកឯកទេសដែលមាន - ស្តង់ដា ព្រោះថាប្រជា ជនមួយចំនួនមិនសូវដំឡើងឱ្យបានត្រឹមត្រូវនោះទេ ដោយភាគ្រើនប្រើតាមការយល់ឃើញ,តាមការចំណាំពិសេសគឺ ផ្តោតលើតម្លៃ។ មិនមែនមានតែការប្រើប្រាស់ខ្សែភ្លើងឱ្យ បានត្រឹមត្រូវនោះទេ លោកបន្ថែមថា អ្វីជាកត្តាសំខាន់ដើម្បី បញ្ចៀសការទុស្សេនោះគឺរាល់ពេលដំឡើង ចរន្តអគ្គិ សនី នៅតាមផ្ទះនីមួយៗត្រូវចំពាក់ឧបករណ៍ទប់អគ្គិសនីឲ្យ បានត្រឹមត្រូវ ដែលត្រូវដំឡើង។ ឧបករណ៍ទាំងនោះ មានដូចជា ឌីសុងទ័រ ឬ ហ្វួយស៊ីប(បារ៉ាត)ជាដើម។

៤.១២ ខិនីពន្លង់អង្គីដូច

- បើអគ្គីភ័យបណ្តាលមកពីចរន្តអគ្គិសនី យើងត្រូវផ្តាច់ចរន្តអគ្គិសនីជាមុនសិនទើបពន្លត់ភ្លើង យើងពន្លត់ភ្លើង ដោយជះជីខ្សាច់
- បាញ់ទឹក
- ប្រើបំពង់ពន្លត់អគ្គីភ័យ

រូបទី៣៣ វិធីពន្លត់ដោយប្រើបំពង់ពន្លត់អគ្គីភ័យ

៤.១៣ ទំពខ់ពន្លង់អង្គីត័យ

- បំពង់ពន្លត់អគ្គីភ័យមានប្រាំប្រភេទ៖
- ១. ប្រភេទទឹក
- ២. ប្រភេទពពុះ
- ៣. ប្រភេទកាបូនឌីអុកស៊ីត
- ៤. ប្រភេទម្សៅស្ងួត
- ៥. ប្រភេទមេតាន

រូបទី៣៤

<u>សម្គាល់</u>

នៅពេលបច្ចុប្បន្ននេះគ្មានខ្នាតគំរូជាពណ៌កង ឬខ្សែពន្លត់អគ្គីភ័យនោះទេ ។ ហេតុដូច្នេះបំពង់ពន្លត់អគ្គី ។ ភ័យនីមួយៗ ងាយស្រួលដឹងអត្តសញ្ញាណរបស់វា ដោយបំពង់ទាំងនោះសុទ្ធតែបិទផ្លាកសញ្ញាភ្ជាប់ ទៅនិងបំពង់ ដែលអាចផ្តល់ដំណឹង៣ក់ព័ន្ធទៅនិងបំពង់ពន្លត់អគ្គីភ័យទាំងនោះ ។

ខំពូននី ៥

សន្ទស្សន៍សេន្តភិច្ច

៥.១ .សន្ទស្សន៍សេដ្ឋគិច្ច

ចំពោះការសិក្សាលើតម្លៃសម្ភារៈ គឺយើងសិក្សាតាមទីផ្សារសេរីក្នុងប្រទេសកម្ពុជា ហើយសម្រាប់ តម្លៃវិញ ក្រុមយើងខ្ញុំបានចុះស្រាវជ្រាវតម្លៃផ្ទាល់តាមរយៈអាជីវករលក់ដូរសម្ភារៈអគ្គិសនី ដើម្បីស្វែងរក តម្លៃសមស្របដែល អាច ទទួលយកបានក្នុងការផ្គត់ផ្គង់សម្ភារៈក្នុងផ្ទះមួយនេះ ។ ក៏ប៉ុន្តែតម្លៃសេដ្ឋកិច្ច ទាំងនេះក៏មានការប្រែប្រួល ដោយសារបញ្ហាសេដ្ឋកិច្ចក្នុងតំបន់ដែរ ។ ដូចនេះតម្លៃទាំងនោះមានក្នុងតារាង ខាងក្រោម

ಚ್ಚಡಿಣೆಜ್ಞಾಗಿ ಜಿ.೫

តារាង៥.១ តម្លៃខ្សែចម្លងតាមមុខកាត់

ល.រ	ឈ្មោះឧបករណ៍ អគ្គិសនី	ឯកតា	ចំនួន	តម្លៃរាយ(\$)	តម្លៃសរុប(\$)
01	ខ្សែ 1 × 1.5 mm² ពណ៌ខ្មៅ	ង៉ុ	2	20\$	40\$
02	ខ្សែ 1 × 1.5 mm² ពណ៌ក្រហម	จฉ∽	2	20\$	40\$
03	ខ្សែ 1 × 1 mm² ពណ៌ខ្មៅ	ង្	5	18\$	90\$
04	ខ្សែ 1 × 1 mm² ពណ៌ក្រហម	ង ដ-	5	18\$	90\$
05	ខ្សែ 1 × 1,5 mm² ពណ៌បៃតង	ង ក	5	20\$	100\$
06	ខ្សែ 1 × 0,5 mm² ពណ៌ខ្មៅ	°1	1	12\$	12\$
07	ខ្សែ 1 × 0,5 mm² ពណ៌ក្រហម	ូ ឯ-	1	12\$	120\$
08	ខ្សែ 1 × 6 mm² ពណ៌ខ្មៅ	ង ក	1	60\$	160\$
09	ខ្សែ 1 × 6 mm² ពណ៌ក្រហម	ង្	1	60\$	60\$
10	ខ្សែ 1 × 10 mm² ពណ៌ខ្មៅ	m	50	4\$	950\$
	សរុប				2209\$

តារាងទី៥.២ តម្លៃម៉ាស៊ីនត្រជាក់

ល.រ	សម្ភារៈ	ឯកតា	ចំនួន	តម្លៃរាយ(\$)	តម្លៃសរុប(\$)
1	ម៉ាស៊ីនត្រជាក់ 1 HP	គ្រឿង	4	350\$	1400\$
2	ម៉ាស៊ីនត្រជាក់ 2 HP	គ្រឿង	2	650\$	1300\$
សរុប					2700\$

តារាងទី៥.៣ តម្លៃឌីសង់ទ័រ (Breaker)

ល.រ	សម្ភារៈ	ឯកតា	ចំនួន	តម្លៃរាយ(\$)	តម្លៃសរុប(\$)
1	ឌីសង់ទ័រ CB 3A(1P)	គ្រាប់	7	4,5\$	31.5\$
2	ឌីសង់ទ័រ CB 5A(2P)	គ្រាប់	5	7\$	35\$
3	ឌីសង់ទ័រ CB 8A(2P)	គ្រាប់	2	9\$	18\$
4	ឌីសង់ទ័រ MCB 25A(2P)	គ្រាប់	1	27\$	27\$
5	ឌីសង់ទ័រ MCB 32A(2P)	គ្រាប់	1	30\$	30\$
6	ឌីសង់ទ័រ MCB 50A(2P)	គ្រាប់	1	35\$	35\$
សរុប					176,5\$

តារាង៥.៤ ៖តម្លៃបរិក្ខាអគ្គិសនីក្នុងបន្ទប់

ល.រ	សម្ភារៈ	ឯកតា	ចំនួន	តម្លៃរាយ(\$)	តម្លៃសរុប(\$)
1	អំពូល រំយោល	គ្រាប់	5	25\$	125\$
2	អំពូលអ៊ុយពិដាន	គ្រាប់	55	4.5\$	247.5\$
3	កុងតាក់ ១ ចុច	គ្រាប់	15	2,5\$	37.5\$
4	កុងតាក់ជណ្តើរ ១ ចុច	គ្រាប់	4	5.5\$	22\$
5	ឆ្នាប់ចរន្ត	គ្រាប់	24	2.5\$	60\$
6	ប្រអប់កុងតាក់ព្រី	គ្រាប់	35	0.5\$	17.5\$
7	តាកេជ័រ	កញ្ចប់	2	2.5\$	5\$
8	វិស	កញ្ចប់	2	7.5\$	15\$
9	ស្គព់	ိ ပ	20	0.5\$	10\$
10	ប្រអប់បំបែក	គ្រាប់	10	2\$	20\$
11	ទូរឌីសុងទ័រដែក(600x400)	គ្រាប់	3	80\$	240\$
12	ទុយោនិងហ្គេន	ů U	15	3\$	45\$
	សរុប				

តារាងទី៥.៥ តម្លៃសរុប

ល.រ	សម្ភារៈ	តម្លៃសរុប(\$)
9	ខ្សែចម្លង	2209\$
២	ម៉ាស៊ីនត្រជាក់	2700\$
m	ឌីសង់ទ័រ	176.5\$
G	បរិក្ខារអគ្គិសនីសរុប	844.5\$
	សរុបទឹកប្រាក់ទាំងអស់	5930\$

៥.៣ ភាគេលាខាសខ្លួស្សន៍សេន្ទគិច្ច

សម្រាប់តម្លៃបរិក្ខារអគ្គិសនីយើងគិតថា វានៅមានការខ្វះខាតជាច្រើនទៀតដែលយើងមិនបានគិតដល់ ។ ដូចនេះយើងសន្មតថា ការចំណាយផ្សេងៗទៀតស្មើ 3% ហើយពលកម្ម15%នៃតម្លៃសម្ភារៈ និងការដឹកជញ្ជូន ផ្សេង ទៀតស្មើ 5%។ យើងអាចគណនាបានដូចខាងក្រោម ៖

- តម្លៃសរុបរិក្ខារផ្សេងៗ= $\frac{5930\times3}{100}$ = 177.9\$ តម្លៃសរុបបរិក្ខារផ្សេងៗគឺ 177.9\$
- តម្លៃជីកជញ្ជូន = $\frac{12600 \times 5}{100}$ = 630\$ តម្លៃជីកជញ្ជូនគឺ630\$
- តម្លៃពលកម្ម = $\frac{12600 \times 15}{100}$ = 1890\$ តម្លៃពលកម្មគឺ1890\$
- តម្លៃសរុបស្មើនឹង 5930\$+177.9\$ +630\$ +1890\$ = 8627.9\$

ដោយមួយថ្ងៃប្រើអស់អនុភាពសរុបP´_{Total} =6916.9W

$$W_{Month} = W_{Day} \times 30$$

$$W_{Month} = 6916.9 \times 30 = 207507W$$

$$W_{Month} = 207507W = 207.507Kw$$

$$W_{Year} = W_{Month} \times 365$$

$$W_{\text{Year}} = 75740055W = 75740.055Kw$$

ដោយតម្លៃអគ្គិសនីដែលយើងទិញពី EDC ស្មើនឹង 750 រៀល ក្នុងមួយគីឡូវ៉ាត់ម៉ោង(1Kwh)

នាំឲ្យតម្លៃប្រចាំខែ

 $Cost_{Month} = 207.507 Kw x 750 = 155630.250^{Riel}$

ដូចនេះ ការចំណាយក្នុងមួយខែស្មើនឹង 155630.250^{Riel} = 38.90\$

តម្លៃប្រចាំឆ្នាំ

 $Cost_{Year} = 38.90\$ \times 12 = 466.8\$$

ដូចនេះ ការចំណាយក្នុងមួយឆ្នាំស្មើនឹង 466.8\$

ខំពុងខ្ន

សេចគ្គីសត្ថិដ្ឋាន

៦.១ សេចគ្គីសត្តិខ្នាន

ក្រោយពីបានសិក្សាគម្រោងការផ្គត់ផ្គង់ថាមពលអគ្គិសនី ក្នុងវីឡានេះរួចមក បានធ្វើ ឲ្យក្រុម យើងខ្ញុំ បាន ស្វែងយល់យ៉ាងច្រើនបន្ថែមទៀតលើការសិក្សារជំនាញនេះ ក៏ដូចជាបានរំលឹកឡើងវិញ វាល់ចំណុច ដែលទាក់ទង ហើយបានធ្វើការស្រាវជ្រាវបន្ថែមទៀត តាមរយៈសៀវភៅឯកសាររបស់ លោកគ្រូ សាស្ត្រាចារ្យនិង តាមរយៈអ៊ីនធឺ ណែតផងដែរ។ ការសិក្សារលើគម្រោងនេះវាពិតជាបានផ្តល់ អត្ថប្រយោជន៍ ជាចំណេះដឹងយ៉ាងច្រើនដល់ក្រុមសារ ណាយើងខ្ញុំដូចជាៈ ការគណនាភ្លុចពន្លឺក្នុងបន្ទប់ នីមួយៗ ការគណនាប្រព័ន្ធបំភ្លឺតាមថ្ងៃក្រឡា ការបំពាក់បរិក្ខារអគ្គិ សនី, ការគណនាបន្ទុកអគ្គិសនី, ការគណនាមុខកាត់ខ្សែចម្លង, ការជ្រើសរើសបរិក្ខារសម្រាប់ការពារក្នុងផ្ទះមានដូច ជាៈ ឌីស្យុងទ័រ ខ្សែជី បានត្រឹមត្រូវតាមលក្ខណៈបច្ចេកទេស ហើយក៏មានការគណនាសន្ទេស្សន៍សេដ្ឋកិច្ច ទាំងនេះ ដើម្បីឲ្យ បាននូវសុវត្ថិភាព គុណភាព និងមានទំនុកចិត្តដល់អ្នកប្រើប្រាស់ ។ នេះគឺជាការឆ្លុះបញ្ចាំងពីសមត្ថភាព របស់ក្រុមនិស្សិតបច្ចេកទេសអគ្គិសនី ដែលបានសិក្សារបញ្ចប់ថ្នាក់ជាន់ខ្ពស់បច្ចេកទេសមកពី វិទ្យាស្ថាន ពហុ បច្ចេកទេសព្រះកុសុមៈ។ ការដោយខំប្រឹងប្រែងអស់ពីសមត្ថភាព របស់ក្រុមយើងខ្ញុំគឺដូចជាបាន មកពីលោកសា ស្ត្រាចារ្យទាំងអស់គ្នាជាពិសេស លោកសាស្ត្រាចារ្យ ដែលបានដឹកនាំក្រុមយើងខ្ញុំផ្ទាល់ តាំងពីដើមរហូតដល់បញ្ចប់ និង ក្រោមការពិគ្រោះផ្ទាល់ពីលោកសាស្ត្រាចារ្យផ្សេងៗទៀត ដែលលោក បានផ្តល់នូវឯកសារខ្លះដែលទាក់ទង និង អានុសាសន៍ប្រកបដោយអត្ថន័យខ្លឹមសារ ។ ហើយក៏មានការ ពិគ្រោះយោបល់ផ្ទាល់ផងដែរដែលបានផ្តល់នូវមតិ យោបល់ល្អ១និងវិធីសាស្ត្រផ្សេងៗដើម្បីឲ្យមានភាពត្រឹមត្រូវក្នុងការបំពេញសារណានេះរហូតដល់បញ្ចប់ជាស្ថាព ។

សរុបសេចក្ដីមកយើងអាចសន្និដ្ឋានបានថា គម្រោងមួយនេះពិតជាបានសិក្សា សមស្របទៅ តាម លក្ខណៈ ស្ដង់ដាបច្ចេកទេស ក្នុងការផ្គត់ផ្គង់ថាមពលអគ្គិសនីក្នុងវីឡា ប្រកបដោយសុវត្ថិភាពនិង គ្មានការប៉ះពាល់ពីប្រព័ន្ធបំភ្លឺ ឡើយ ។ ជាចុងក្រោយយើងខ្ញុំសូមអភ័យទោសរាល់ចំណុចណារដែលខ្វះ ខាតនិង មិនសមរម្យសម្រាប់អ្នកអានគ្រប់ ជាន់ថ្នាក់ទាំងអស់ ហើយសូមជូនពរ ឲ្យជួបតែសេចក្ដីសុខ គ្រប់ប្រការ ។

ឯកសារយោង

សៀវភៅ ស្ដង់ដាអគ្គិសនី EDC

សៀវភៅ Lighting and Wiring Design

- Down Light (<u>www.Downlight.com</u>)
- Hager Electro (<u>www.hager.hk</u>)
- GOODHILL (www.goodhill.com.kh)
- Keystone (<u>www.keystone-cable.com</u>)
- Schneider circuit Breaker 2009 (<u>www.Schneider circuit Breake.com</u>)

និងឯកសារផ្សេងៗដែលក្រុមរបស់យើងខ្ញុំបានធ្វើការស្រាវជ្រាវ