Entwicklung einer Methodik zur optischen Spannkraftdeformationsanalyse von additiv gefertigten Bauteilen

Niklas Thieme TU Dortmund University, Germany

13. März 2024

Gliederung

Themen

- Additive Fertigung
- Digitalisierung von Bauteilen
- Optischen Analyse spannkraftinduzierter Deformationen
- Automatisierung
- Ausblick

Abbildung 1: https://additive.industrie.de/news/wohlers-report-2023-additive-fertigung-legt-um-183-zu/(07.03.2024)

Additive Fertigung: Verfahren SLM und FDM

Abbildung 2: Selective Laser Melting https: //www.wdoose.de/en/additive-fertigung/ slm-selective-laser-melting/ (07.03.2024)

Abbildung 3: Fused Deposition Modeling

Additive Fertigung: Limitierungen und Post-Processing

Abbildung 4: https://www.unionfab.com/blog/2023/08/post-processing-methods-metal-3d-printing (07.03.2024)

Einspannen und Nachbearbeiten

Abbildung 5: Schraubstock mit Spannkraftüberwachung https://mav.industrie.de/werkzeuge/innovativer-schraubstock-vereinfacht-5-achs-bearbeitung/(07.03.2024)

Optische Spannkraftdeformationsanalyse

Ziel

 Automatische Erkennung von Bauteildeformation

Arbeitsschritte

- Digitalisierung des Bauteils
- Entwicklung der Stitching-Methodik
- Benchmarking an Demonstratorbauteil
- Entwicklung der automatisierten Deformationserkennung
- Validierung der Methodik an unterschiedlichen Bauteilgeometrien

Abbildung 6: Vergleich

Demonstratorbauteil

Abbildung 7: STL des Demonstratorbauteils

Abbildung 8: TOP-DOWN Ansicht (generiert)

Digitalisierung: Bauteil

- Scanner: Micro-Epsilon, LLT3000-25
- Limitierter Messbereich
- Limiterte Auflösung und Genauigkeit
- Scanergebnis mit 13205223 Polygonen
- Pre-Processing
- Top-Down Ansicht erstellen

Abbildung 9: Scanergebnis

Digitalisierung: Stitching

Abbildung 10: Scanner TOP-DOWN Ansicht links (generiert)

Abbildung 11: Scanner TOP-DOWN Ansicht rechts (generiert)

Optische Spannkraftdeformationsanalyse

Nach der Digitalisierung:

- Scan vor und nach dem Einspannen
- Optisch Deformationen erkennen
- Optische Gegenüberstellung
- Geeignete
 Vergleichsparameter finden

Abbildung 12: Digitales Abbild

Automatisierung

Anforderungen:

- Pipeline
- Input: Scandateien, evtl. originale STL-Datei
- Output: Visueller Vergleich, Vergleichszahlen
- Universell auf Bauteile anwendbar.
- Einfach zu installierendes Programm.

Ausblick

Mögliche weitere Themen:

- Vergleich von unterschiedlichen Materialien und Bauteilgeometrien
- Vergleich von Herstellungsverfahren (FDM vs SLM)
- 3D Stitching anstelle von 2D.
- Performance-Verbesserungen des Algorithmus

Quellen

Abbildungen	Datum	Link
Abbildung 1	(07.03.2024)	https://additive.industrie.de/news/wohlers-
		report-2023-additive-fertigung-legt-um-183-zu/
Abbildung 2	(07.03.2024)	https://www.wdoose.de/en/additive-
		fertigung/slm-selective-laser-melting/
Abbildung 4	(07.03.2024)	https://www.unionfab.com/blog/2023/08/post-
		processing-methods-metal-3d-printing
Abbildung 5	(07.03.2024)	https://mav.industrie.de/werkzeuge/innovativer-
		schraubstock-vereinfacht-5-achs-bearbeitung/

Zeitplan

Abbildung 13: Zeitplan