ROBEM I Assume $(X_n : n \ge 0)$ is an irreducible Markov chain on E. Prove that $(X_n : n \ge 0)$ is recurrent (or transient) $\iff \forall i \in E$,

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}\right)=1(\text{or }0).$$

SOUTION. Since $(X_n : n \geq 0)$ is irreducible, then $\forall i \in E, \exists n_i \text{ s.t.} 0 < \mathbb{P}(X_{n_i} = i)) \leq 1$. And $\forall \omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\}$, then $\exists k_i \geq n_i X_{k_i}(\omega) = i$. Besides, $(X_n : n \geq 1)$ is a Markov chain, let $T_i(\omega) := \min\{n \geq 1 : X_0(\omega) = X_n(\omega) = i\}$, then $\mathbb{P}_i(T_i < \infty) = \mathbb{P}(\min\{n \geq 1 : X_{n_i+n}(\omega) = i\} < \infty) \geq \mathbb{P}(\{\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\}\})$.

 $\forall \omega \in \{T_i < \infty\}, \text{ then } \exists m_i \text{ s.t. } \forall 1 \leq j < m_i, X_j \neq i, X_{m_i} = i, \text{ Then } \forall n \geq 1, \text{ let } t_n = \left[\frac{n}{m_i}\right] + 1,$ $Y_m = X_k, m \equiv k \mod m_i, 0 \leq k \leq m_i - 1, \text{ so } Y_{t_n m_i}(\omega) = i. \text{ Thus, } \mathbb{P}_i(T_i < \infty) \leq \mathbb{P}(\bigcap_{n=1}^{\infty} Y_{t_n m_i} = i).$ $\text{Besides, } \{\bigcup_{k=n}^{\infty} \{X_k = i\} \supset \{X_{t_n m_i} = i\} \supset \{Y_{t_n m_i} = i\}. \text{ Then } \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\} \supset \bigcap_{n=1}^{\infty} \{Y_{t_n m_i} = i\}, \text{ thus, } \mathbb{P}_i(T_i < \infty) \leq \mathbb{P}(\bigcap_{n=1}^{\infty} Y_{t_n m_i} = i) \leq \mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} X_k = i).$

Therefore, $\mathbb{P}_i(T_i < \infty) = \mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} X_k = i)$. Then, $(X_n : n \ge 0)$ is recurrent (or transient) $\iff \mathbb{P}_i(T_i < \infty) = 1 \text{ (or } 0) \iff \mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} X_k = i) = 1 \text{ (or } 0)$.

ROBEM II Prove: $(X_n : n \ge 0)$ is Markov chain on E, where E is finite. Then $\exists x \in E, x$ is recurrent.

SOUTHON. Since $\sum_{i \in E} p_{ki}^* = \sum_{i \in E} \sum_{n \geq 0} p_{ki}(n) = \sum_{n \geq 0} \sum_{i \in E} p_{ik}(n) = \infty$, and E is finite, then $\exists i$, $p_{ki}^* = \infty$. So by colloary of 3.3.6 on textbook, then i is not transient, so i is recurrent. \Box

ROBEM III Assume $(X_n : n \ge 0)$ is Markov chain on \mathbb{Z} . Prove it is transient $\iff \forall \mu_0$ is primitive distribution, $\lim_{n\to\infty} |X_n| \stackrel{\text{a.s.}}{=} \infty$.

SOUTON. Only need to prove that $\forall k \in \mathbb{N}$, $\lim\inf_{n\to\infty}|X_n|>k, a.s.$. Consider the event $\liminf\inf_{n\to\infty}|X_n|\leq k$, it means $\forall n\in\mathbb{N}, \exists t\geq n, X_t\in[-k,k]$. So we only need to prove $\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{t=n}^{\infty}\{X_t\in[-k,k]\}\right)=0$. It is sufficient to prove that $\mathbb{P}(\bigcup_{u\in[-k,k]}\bigcap_{n=1}^{\infty}\bigcup_{t=n}^{\infty}\{X_t=u\})=0$. Since (X_n) is transient, it has been proved that $\mathbb{P}(\bigcap_{n=1}^{\infty}\bigcup_{t=n}^{\infty}\{X_t=u\})=0$. So $\mathbb{P}(\bigcup_{u\in[-k,k]}\bigcap_{n=1}^{\infty}\bigcup_{t=n}^{\infty}\{X_t=u\})=0$.

ROBLEM IV Assume $\{a_i : i \geq 1\} \subset (0,1)$. Consider $E := \mathbb{N}$, P is a transition matrix on E, where $p_{ij} = a_i \mathbb{1}_{\{j=0\}} + (1-a_i) \mathbb{1}_{\{j=i+1\}}$. Prove:

- 1. P is irreducible.
- 2. P is recurrent $\iff \sum_i a_i = \infty$.
- 3. *P* is ergodic $\iff \sum_{k=1}^{\infty} \prod_{i=1}^{k-1} (1 a_i) < \infty$.

SOUTHON. 1. $\forall i, j \in E$, if i < j, then $p_{ij}(j-i) = \prod_{k=i}^{j-1} (1-a_k) > 0$. If $i \ge j$, then $p_{ij}(j+1) = a_i \prod_{k=0}^{j-1} (1-a_k) > 0$. So P is recurrent.

- 2. Since P is irreducible, then we only need to concern the circumstance when $X_0 = 0$. Then $\{T_0 > n\} \stackrel{\text{a.s.}}{=} \{X_k = k, k = 0, \dots, n\}$. Then $\mathbb{P}_0(T_0 = \infty) = \mathbb{P}_0(\bigcap_n \{T_0 > n\}) = \lim_{n \to \infty} \mathbb{P}_0(X_k = k, k = 0, \dots, n) = \lim_{n \to \infty} \prod_{k=0}^{n-1} (1 a_k) = \prod_{k=0}^{\infty} (1 a_k)$. Then $\mathbb{P}_0(T_0 = \infty) = 0 \iff \prod_{k=0}^{\infty} (1 a_k) = 0 \iff \sum_k a_k = \infty$.
- 3. Since $\mathbb{E}_0(T_0) = \sum_{n \in E} \mathbb{P}_0(T_0 > n) = \sum_{n=0}^{\infty} \prod_{k=0}^{n-1} (1 a_k)$, then P is ergodic $\iff \mathbb{E}_0(T_0) < \infty$ $\iff \sum_{n=0}^{\infty} \prod_{k=0}^{n-1} (1 a_k) < \infty$.

ROBEM V Assume P is a transition matrix on E and P is irreducible, $j \in E$. Prove: P is recurrent $\iff 1$ is the minimum non negetive solution of

$$y_i = \sum_{k \neq j} p_{ik} y_k + p_{ij}, i \in E \setminus \{j\}$$
 (1)

SOUTION. " \Longrightarrow ": If P is recurrent, then the bounded solution of $y_i = \sum_{k \in E} p_{ik} y_k, i \in E \setminus \{j\}$ is constant. Specially, 1 is the minimum non-negetive solution. If 1 is not the minimum non-negetive solution of Equation (1), let $\{z_i : i \geq 0\}$ be the minimum non-negetive solution. Let $x_i = z_i - 1$, then $\{x_i : i \geq 0\}$ is the bounded solution of $y_i = \sum_{k \in E} p_{ik} y_k, i \in E \setminus \{j\}$, contradiction.

"\(\iff P\) is transient, then the bounded solution of $y_i = \sum_{k \in E} p_{ik} y_k, i \in E \setminus \{j\}$ has non constant ones. Let it be $\{z_i : i \in E\}$. W.L.O.G., we can assume $z_j = 0, |z_i| \le 1, \forall i \in E, \exists i_0 \in E, z_{i_0} < 0$. Let $y_i = 1 + z_i, i \in E$, then $\{y_i : i \in E\}$ is the bounded solution of Equation (1). But $y_{i_0} < 1, y_i \ge 0, i \in E$, and $\{y_i : i \in E\}$ is smaller than 1, which is a contradiction.

 $\mathbb{R}^{\text{OBEM VI Let }} \{a_k : k \geq 0\} \text{ satisfies } \sum_{k \geq 0} a_k = 1, a_k \geq 0, a_0 > 0, \ \mu := \sum_{k=1}^{\infty} k a_k > 1. \text{ Define } p_{ij} = \begin{cases} a_j &, i = 0 \\ a_{j-i+1} &, i \geq 1 \land j \geq i-1. \text{ Prove: } P \text{ is transient.} \\ 0 &, \text{ otherwise} \end{cases}$

SOLTION. First of all, we prove that P is irreducible: Since $\sum_{k=1}^{\infty} k a_k > 1$, then $\exists m : a_m > 0$. And $\forall i \geq 1$, $p_{i-1,i} = a_0 > 0$. Then $\forall i,j$, if i < j, then $p_{ij}(j-i) = a_0^{j-i} > 0$. If $i \geq j$, let $t \equiv i-j \pmod{m}$, $1 \leq t \leq m$, then $p_{ij}(t+1) = a_0^t a_m > 0$.

Second, we prove that P is transient: Let $f(z) = \sum_{k=0}^{\infty} a_k z^k, z \in [0, 1]$, then $f(0) = a_0 > 0$, f(1) = 1, $f'' \ge 0$, $f'(0) = a_1 \ge 0$. Therefore, $\exists \mid c \in (0, 1)$, s.t. c = f(c), then $\forall i \ge 1$,

$$c^{i} = \sum_{k=0}^{\infty} a_{k} c^{k+i-1} = \sum_{j=i-1}^{\infty} a_{j-i+1} c^{j} = \sum_{j=0}^{\infty} p_{ij} c^{j}$$

So P is transient.