Math 2033 Comments on HW 1

March 23, 2016

In general

- 1. State clearly what the "variable" comes from.
- 2. Be careful the definition of the supremum.

Just supposing sup $M \le a$ does not yield any contradiction: (Consider M = (0, 1), a = 1.)

One Should show a is an upper bound of M (which implies $\sup M \le a$) and then suppose $\sup M < a$ (which is same as $\sup M \ne a$ since $\sup M \le a$) in order to yield a contradiction (Recall YOUR GOAL is to show $\sup M = a$.)

- 3. When Attempting to use limit supremum/infimum theorem to conclude $\sup M = a$ (inf M = b resp.), make sure you have done the following two steps:
 - 1. Show a is an upper bound of M (b is a lower bound of M resp.)
 - 2. Construct a sequence lying inside M that is approaching to a (approaching to b resp.).
- 4. Be careful with the Set notations:

 \in and \subseteq are NOT the SAME.

Also, DO NOT make up intersection and union of two sets, namely, $A \cap B$ and $A \cup B$ respectively.

5. Do Not just list out special case(s), you need to show your arguments hold for everything that you want to show/prove.

Listing Special case is NOT a proof!!!

- 6. We use the terminology: supremum of a set, but NOT suprmeum of a number/element.
- 7. Note that sup A is NOT NECESSARY lying in A. For example, A = (0, 1), in which sup $A = 1 \notin A$.

Problem 1

Many students forget to explain why the map is a bijection.

Problem 2

The presentation is not so clear and have some mistakes. Please learn from Professor Li.

Problem 3

- 1. Many student confuses the concepts "finite" and "countable".
- 2. Students did not consider $(0, +\infty)\backslash S$, that is to prove $(0, +\infty)\backslash S$ is uncountable.

Note that $g(x, y, z) = 2^x + 3^y + 5^z$ is not that special, we can use other map f as long as the $f : \mathbb{R} \to (0, +\infty)$, the same argument works.

```
Note that S = \{f(x, y, z) : (x, y, z) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}\} = \{r \in (0, +\infty) : f(x, y, z) = r \text{ have a solution } (x, y, z) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}\}.
```

This implies $\{r \in (0, +\infty) : f(x, y, z) = r \text{ have no solution } (x, y, z) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \} = (0, +\infty)/S$, is uncountable, and thus infinite.

Hence, there exist infinitely many positive real numbers r such that the equation f(x, y, z) = r has no solution $(x, y, z) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$.

Problem 4

1. DO NOT assume T or $T \cap \left[\frac{1}{k+1}, \frac{1}{k}\right]$ is finite/countable since it is what you need to show.

Write $T = \{a_1, a_2, \dots, a_n\}$ already means that T is finite.

Write $T = \{a_1, a_2, \dots\}$ already means that T is countable.

2. One Should use correct Theorem/definition for a countable Set.

Problem 5

- 1. Some students define sequences $\{x_n\}$, $\{y_n\}$ and $\{w_n\}$ in which $x_n \to 5$ and $y_n \to \sqrt{2}$ and $w_n \to 10\sqrt{2} \frac{1}{5}$, however the sequence they constructed are NOT in the set concerned. So that they cannot apply supremum/infimum limit theorem.
- 2. Some students mentioned the fact that $10\sqrt{2} \frac{1}{5}$ is an upper bounded of *E* without giving any reason OR forget to mention $10\sqrt{2} \frac{1}{5}$ is an upper bounded of *E*.
- 3. In order to use Limit Supremum/infimum Theorem, One should show $10\sqrt{2} \frac{1}{5}$ is an upper bound of E by constructing a sequence lying in E that approaching to $10\sqrt{2} \frac{1}{5}$.
- 4. The number that we considered is

$$x(y+\sqrt{2})-\frac{1}{x}$$

Remember two x are the same. If you do something like simply taking $\sup E = \sup D\left(\sqrt{2} + \sqrt{2}\right) - \frac{1}{\sup D}$ directly without some inequality kind of explanation, it works this time but it fails for the set $F = \left\{x(y + \sqrt{2}) + \frac{1}{x} : x \in D, \ y \in [0, \sqrt{2}) \cap \mathbb{Q}\right\}$.

Problem 6

Similar mistakes as in Problem 5.