Front matter

title: "Лабораторная работа 2" subtitle: "Работа в GIT" author: "Куденко Максим"

Generic otions

lang: ru-RU toc-title: "Содержание"

Bibliography

bibliography: bib/cite.bib csl: pandoc/csl/gost-r-7-0-5-2008-numeric.csl

Pdf output format

toc: true # Table of contents toc-depth: 2 fontsize: 12pt linestretch: 1.5 papersize: a4 documentclass: scrreprt

I18n polyglossia

polyglossia-lang: name: russian options: - spelling=modern - babelshorthands=true polyglossia-otherlangs: name: english

I18n babel

babel-lang: russian babel-otherlangs: english

Fonts

mainfont: Times New Roman romanfont: Times New Roman sansfont: Times New Roman monofont: Times New Roman mainfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX sansfontoptions: Ligatures=TeX,Scale=MatchLowercase monofontoptions: Scale=MatchLowercase,Scale=0.9

Biblatex

biblatex: true biblio-style: "gost-numeric" biblatexoptions:

- parentracker=true
- backend=biber

https://md2pdf.netlify.app 1/5

- hyperref=auto
- language=auto
- autolang=other*
- citestyle=gost-numeric

Pandoc-crossref LaTeX customization

figureTitle: "Рис." tableTitle: "Таблица" listingTitle: "Листинг" lofTitle: "Список иллюстраций" lotTitle: "Список таблиц" lolTitle: "Листинги"

Misc options

indent: true header-includes:

- \usepackage{indentfirst}
- \usepackage{float} # keep figures where there are in the text
- \floatplacement{figure}{H} # keep figures where there are in the text

Цель работы

Рассмотреть пример построения математической модели для выбора правильной стратегии при решении задач поиска. Рассмотреть задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 2 раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтобы догнать лодку

Задание:

- 1. Провести рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n раз (значение n задайте самостоятельно)
- 2. Построить траекторию движения катера и лодки для двух случаев. (Задайте самостоятельно начальные значения) Определить по графику точку пересечения катера и лодки

Ход выполнения работы

https://md2pdf.netlify.app 2/5

1. Принимаем \$t_0=0\$, \$x_0=0\$ - место нахождения лодки браконьеров в момент обнаружения, \$x_{k0}=k\$ - место о нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_{10} (\theta = x_{10})$, а полярная ось г проходит через точку нахождения катера береговой охраны.
- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса \$\theta\$, только в этом случае траектория катера пересечется с траекторией лодки.
- 4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет \$x\$, а катер \$k-x\$ (или \$k+x\$ в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как \$\frac{x}{v}\$ или как \$\frac{k-x}{nv}\$ (\$\frac{k+x}{nv}\$ для второго случая). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения: \$\frac{k}{rac}{k}\} = \frac{k-x}{nv}\$ в первом случае или \$\frac{k}{rac}{k}\} = \frac{k+x}{nv}\$ во втором.

Отсюда проучим два занчения $x_1=\frac{k}{n+1}$ и $x_1=\frac{k}{n-1}$.

- 5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: \$v_r\$ радиальная скорость и \$v_{\tau}\$ тангенциальная скорость. Радиальная скорость это скорость, с которой катер удаляется от полюса, \$v_r=\frac{dr}{dt}\$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем \$\frac{dr}{dt}\$ {dt}=v\$. Тангенциальная скорость это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости \$\frac{d\theta}{dt}\$ на радиус r , \$v_r=r\frac{d\theta}{dt}\$ Сустееп 1) Из рисунка видно: \$v_{\tau}=\sqrt[2]{4v^2-v^{2}}
- 6. Решение исходной задачи сводится к решению системы из двух дифференциальных ypaвнений \begin{equation} \begin{cases} \frac{dr}{dt} = v\ \frac{d\theta}{dt} = \sqrt[2]{4.2}v \end{cases} \end{equation}

с начальными условиями \begin{equation} \begin{cases} \theta_0 = 0\ $r_0 = x_1 \end{cases}$ \end{equation}

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta}=\frac{r}{4.2}$

Для решения задачи напишем такой код

https://md2pdf.netlify.app 3/5

"" //# загружаем библиотеки using Plots using DifferentialEquations

distance between coastguard boat and smuggler's boat

```
const s = 17.3 const n = 5.1
#distance from the spiral beginning const r01 = s/(n+1) const r02 = s/(n-1)
const I1 = (-1, 3*pi) const I2 = (-pi, pi)
function F(u,p,t) return u / sqrt(n*n -1) end
#diff equation and it's solution problem = ODEProblem(F,r01,I1)
res = solve(problem, abstol=1e-8, reltol=1e-8) @show res.u @show res.t
dxR = rand(1:size(res.t)[1]) rAng = [res.t[dxR] for i in 1:size(res.t)[1]]
#canvas1 plt = plot(proj=:polar, aspect_ratio =:equal, dpi = 1000, legend=true,bg=:white) plot!
(plt,xlabel="theta",ylabel="r(t)",title="Chase task - case 1", legend=:outerbottom) plot!(plt,
[rAng[1],rAng[2]], [0.0,res.u[size(res.u)[1]]],label="smuggler's boat trajectory", color=:blue,lw = 1)
scatter!(plt,rAng,res.u,label = "",mc=:blue,ms=0.0005) plot!(plt,res.t,res.u,xlabel = "theta", ylabel =
"r(t)", label = "coastguard boat trajectory", colot=:green, lw = 1) scatter!
(plt,res.t,res.u,label="",mc=:green, ms=0.0005)
savefig(plt, "lab02_01.png")
problem = ODEProblem(F,r02,I2) res = solve(problem, abstol=1e-8,reltol=1e-8) dxR =
rand(1:size(res.t)[1]) rAng = [res.t[dxR] for i in 1:size(res.t)[1]]
#canvas2 plt2 = plot(proj=:polar, aspect_ratio =:equal, dpi = 1000, legend=true,bg=:white) plot!
(plt2,xlabel="theta",ylabel="r(t)",title="Chase task - case 1", legend=:outerbottom) plot!(plt2,
[rAng[1],rAng[2]], [0.0,res.u[size(res.u)[1]]],label="smuggler's boat trajectory", color=:blue,lw = 1)
scatter!(plt2,rAng,res.u,label = "",mc=:blue,ms=0.0005) plot!(plt2,res.t,res.u,xlabel = "theta", ylabel =
"r(t)", label = "coastguard boat trajectory", colot=:green, lw = 1) scatter!
(plt2,res.t,res.u,label="",mc=:green, ms=0.0005)
savefig(plt2, "lab02_02.png") ""
Резульатат:
2 (Screen 2)
lab02 01 (Screen 3)
```

https://md2pdf.netlify.app 4/5

lab02_02 (Screen 4)

Координаты встречи 1: 300,-8 Координаты встречи 2: 180,0

Заключение

Цели выполнены, задачи достигнуты. Был рассмотрен пример математической модели погони а также были построены графики к этой модели.

https://md2pdf.netlify.app 5/5