10

15

20

WHAT IS CLAIMED IS:

	1.	An	in-plane	switching	mode	liquid	crystal
display	device		comprisin	g:			

first and second substrates;

a plurality of gate and data bus lines which are aligned on said first substrate to define a plurality of pixel regions;

a common bus line aligned in said pixel regions of said first substrate;

a thin film transistor formed at each of said pixel regions of said first substrate and comprising a gate electrode, a gate insulator, a semiconductor layer, a source electrode, and a drain electrode;

a data electrode formed to be parallel to a first direction on said gate insulator and having a portion overlapping said common bus line for forming a first storage capacitor;

a passivation layer formed over said data electrode and said thin film transistor;

a common electrode formed on said passivation layer so as to overlap said gate and data bus lines and having a portion overlapping said data electrode for forming a second storage capacitor; and

a liquid crystal layer formed between said first

10

15

25

and second substrates.

- 2. The device according to claim 1, wherein said common electrode is connected electrically to said common electrode through a first hole formed in said gate insulator and said passivation layer.
- 3. The device according to claim 1, wherein said data bus lines are formed of high conductive metal layers.
- 4. The device according to claim 3, The device according to claim 4, wherein said data bus lines include Mo metal layer, Mo/Al/Mo triple metal layers, or Cr/Al/Cr triple metal layers.
- 5. The device according to claim 1, wherein said common electrode includes indium tin oxide.
- 6. The device according to claim 1, wherein said common electrode has an oblique side inclined to a second direction perpendicular to said first direction.
 - 7. The device according to claim 6, wherein said common electrode includes indium tin oxide.

- 8. The device according to claim 1, further comprising an alignment layer formed over said common electrode and said passivation layer.
- 9. The device according to claim 8, wherein an alignment direction of said alignment layer is determined to be inclined counterclockwise to said second direction with a first angle θ_1 .
 - 10. The device according to claim 9, wherein said first angle θ_1 is in the range of 45° to 90°.
 - 11. The device according to claim 9, wherein said common electrode have a first oblique counterclockwise inclined to said second direction with a second angle θ_2 , and a second oblique clockwise inclined to said second direction with a third angle θ_3 .
 - 12. The device according to claim 11, wherein said second angle θ_2 is in the range of said first angle θ_1 to 90°.
 - 13. The device according to claim 11, wherein said third angle θ_3 is in the range of $90^\circ-\theta_1$ to 90° .

15

20

15

20

ς

- 14. The device according to claim 11, wherein said first angle θ_1 is 75°.
- 15. The device according to claim 11, wherein said second angle θ_2 is 45°.
 - 16. The device according to claim 11, wherein said third angle θ_3 is $45^\circ.$
 - 17. The device according to claim 1, further comprising a metal layer formed on said passivation layer in the region of said thin film transistor.
 - 18. The device according to claim 17, wherein said metal layer and said common electrode are formed of the same metal.
 - 19. The device according to claim 17, wherein said metal layer and said common electrode include Mo.
 - 20. The device according to claim 17, wherein said metal layer and said common electrode include indium tin oxide.
- 21. The device according to claim 17, wherein 27

15

20

25

said metal layer and said common electrode include a double metal layer ITO/Mo which is formed by depositing Mo and indium tin oxide in the name order.

- 22. The device according to claim 17, wherein said metal layer is connected electrically to said data bus line through a second hole which is formed in said gate insulator and said passivation layer.
 - 23. The device according to claim 22, wherein said metal layer overlaps a portion of said gate bus line, and said second hole is formed in the region of said portion.
 - 24, An in-plane switching mode liquid crystal display device comprising:

first and second substrates;

- a plurality of gate and data bus lines which are aligned on said first substrate to define a plurality of pixel regions;
- a common bus line aligned in said pixel regions of said first substrate;
- a thin film transistor formed at each of said pixel regions of said first substrate and comprising a gate electrode, a gate insulator, a semiconductor layer,

10

15

25

a source electrode, and a drain electrode;

a data electrode formed on said gate insulator and having a portion overlapping said common bus line for forming a first storage capacitor;

a passivation layer formed over said data electrode and said thin film transistor;

a common electrode formed on said passivation layer and having a portion overlapping said data electrode for forming a second storage capacitor;

a metal layer formed on said passivation layer in the region of said thin film transistor; and

a liquid crystal layer formed between said first and second substrates.

- 25. The device according to claim 24, wherein said common electrode is connected to said common bus line through a first hole formed in said gate insulator and said passivation layer.
- 26. The device according to claim 24, wherein said metal layer and said common electrode is formed of the same metal.
 - 27. The device according to claim 24, wherein said metal layer and said common electrode include Mo.

- 28. The device according to claim 24, wherein said metal layer and said common electrode include indium tin oxide.
- 29. The device according to claim 24, wherein 5 said metal layer and said common electrode include a double metal layer ITO/Mo which is formed by depositing Mo and indium tin oxide in the name order.
- 10 30. The device according to claim 24, wherein said metal layer is connected electrically to said data bus line through a second hole which is formed in said gate insulator and said passivation layer.

15

25

- 31. The device according to claim 30, wherein said metal layer overlaps a portion of said gate bus line, and said second hole is formed in the region of said portion.
- 20 32, An in-plane switching mode liquid crystal display device comprising:

first and second substrates having a plurality of pixel regions;

- a common bus line formed in said pixel regions;
- a first insulating layer formed on said common

10

electrode;

a data electrode formed on said gate insulator and having a portion overlapping said common bus line for forming a first storage capacitor;

a second insulating layer formed on said data electrode;

a common electrode formed on said passivation layer so as to have an oblique side inclined to the extension direction of said data electrode and having a portion overlapping said data electrode for forming a second storage capacitor; and

a liquid crystal layer formed between said first and second substrates.