Universidad Nacional Autónoma de México

Seminario de Tesis

Cálculos cuánticos de hidratación de lantánidos

Braulio Joel Rojas Mayoral

Junio de 2012

 $\overline{\mathrm{Tab}}\underline{\mathrm{la}}$ 1: Cálculos hechos con dos DFT para ser comparados con los datos $\underline{\mathrm{BCL}}$

LnDFTBase	$\langle r_{Ln-O} \rangle$	$\Delta_{ m hyd} { m H}$	$\Delta_{\mathrm{hyd}}\mathrm{H}_{cp}$
La1+0B3P86VQZ	2.2965	-404.427081	-404.102876
La1+0TPSShVQZ	2.3064	-401.859492	-400.928329
Ce1+0B3P86VQZ	2.2761	-374.292444	-373.764238
Ce1+0TPSShVQZ	2.2864	-374.037495	-373.471611
Lu1+0B3P86VQZ	2.093	-511.468829	-511.196175
Lu1+0TPSShVQZ	2.1039	-509.252533	-508.744010

Tabla 2: Cálculos cuánticos de la distancia promedio lantánido- oxígeno a diferentes niveles y con diferentes bases (Las referencias están indicas por los superíndices entre corchetes).

		1					
Ln	MP2(VDZ)	B3P86(VQZ)	$B3LYP(RSC28)^{[2]}$	SCRF(MP2)	$BELYP(CEP)^{[1]}$	$\operatorname{Exp}^{[1]}$	$\operatorname{Exp}^{[2]}$
$La(H_2O)_9^{3+}$	2.61957	2.60331	2.62-2.60*				$2.580^{[6]}$
$Ce(H_2O)_9^{3+}$	2.59853		2.59	2.59606	2.5641	$2.52^{[3]}$	
$Eu(H_2O)_9^{3+}$	2.51671		2.51		2.47	$2.42^{[4]}$	$2.457^{[6]}$
$Gd(H_2O)_9^{3+}$	2.50280	2.49365	$2.50 \text{-} 2.52^*$		2.48	$2.41^{[5]}$	$2.446^{[6]}$
$Gd(H_2O)_8^{3+}$	2.46092		2.45-2.43**			$2.41^{[5]}$	$2.446^{[6]}$
$Lu(H_2O)_9^{3+}$	2.42330	2.41997	2.42	2.38347			
$Lu(H_2O)_8^{3+}$	2.37370		2.37 - 2.35**				

^{*} Cálculos considerando la segunda esfera de hidratación $Ln(H_2O)_9(H_2O)_{12}^{3+}$

Referencias

- [1] V. Buzko, I. Sukhno, A. Polushin y D. Kashaev, Int. J. Quantum Chem. 111: 11 (2011).
- [2] J. Kuta y A. E. Clark *Inor. Chem.* **49**: 17 (2010).
- [3] S. Ishiguro, Y. Umebayashi, Coord. Chem. Rev. 226:103 (2002).
- [4] A. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein y I. Craig, *Inorg. Chem.* **39**: 595 (2000).
- [5] T. Yamaguchi, M. Nomura, H. Wakita, H. Ohtaki, J. Chem. Phys. 89: 5153 (1988).
- [6] R. E. Gerkin y W. J. Reppart Acta Crystallogr. C40: 781 (1984). E. Basurto. J. Phys. D: Appl. Phys. 44 (2011) 342001.

^{**} Cálculos considerando la segunda esfera de hidratación $\rm Ln(H_2O)_8(H_2O)^{3+}_{14}$