Analysis III WS 13/14

Singhof

23. Januar 2014

Kapitel I: Maß- und Integrationstheorie

1. Quader und Figuren

Bez. Sei X eine Menge. Mit $\mathscr{P}(X)$ bezeichnen wir die Potenzmenge von X, also die Menge aller Teilmengen von X.

Wünschenswert wäre eine Abbildung $\mu: \mathscr{P}(\mathbb{R}^n) \to [0,\infty]$ mit folgenden Eigenschaften:

- (0) $\mu(\emptyset) = 0$.
- (1) Ist Q ein Quader in \mathbb{R}^n mit den Kantenlängen c_1, \ldots, c_n , so ist $\mu(Q) = c_1 \cdot \ldots \cdot c_n$.
- (2) Sind $A_1, A_2, \ldots \in \mathscr{P}(\mathbb{R}^n)$ paarweise disjunkt, so ist

$$\mu\big(\bigcup_{i=1}^{\infty} A_i\big) = \sum_{i=1}^{\infty} \mu(A_i) .$$

(3) Sind $A, B \in \mathscr{P}(\mathbb{R}^n)$ kongruent zueinander, so ist $\mu(A) = \mu(B)$.

Eine solche Abbildung gibt es aber nicht, wie aus dem Banach-Tarski-Paradoxon folgt, für dessen Beweis man allerdings das Auswahlaxiom braucht. Dieses "Paradoxon" besagt:

Seien $A, B \in \mathscr{P}(\mathbb{R}^n)$ zwei beliebige Mengen mit nicht-leerem Inneren, $n \geq 1$. Dann gibt es Mengen $C_1, C_2, \ldots, D_1, D_2, \ldots \in \mathscr{P}(\mathbb{R}^n)$ mit folgenden Eigenschaften:

- A ist die disjunkte Vereinigung von C_1, C_2, \ldots
- B ist die disjunkte Vereinigung von D_1, D_2, \ldots
- C_i ist kongruent zu D_i für alle i.

Wenn es also ein μ wie oben gäbe, so hätten alle Teilmengen von \mathbb{R}^n , die ein nichtleeres Innere haben, dasselbe Volumen! Deswegen müssen wir in einem komplizierten Prozess definieren, wann eine Menge "messbar" ist, also ein Volumen besitzt.

Seien $a = (a_1, ..., a_n), b = (b_1, ..., b_n) \in \mathbb{R}^n$.

$$a \le b: \Leftrightarrow a_i \le b_i \text{ für } i = 1, \dots, n$$

 $a < b: \Leftrightarrow a_i < b_i \text{ für } i = 1, \dots, n.$

Ist $a \leq b$, so sei $[a,b] := \{x \in \mathbb{R}^n \mid a \leq x < b\}$. Eine solche Menge heißt ein (achsenparalleler, halboffener) Quader in \mathbb{R}^n .

Ist $a \leq b$, aber nicht a < b, so ist $[a, b] = \emptyset$.

Die Menge aller Quader im \mathbb{R}^n wird mit \mathcal{Q}^n bezeichnet.

Für $[a, b] \in \mathcal{Q}^n$ sei

$$\lambda^{n}([a, b\,]) := (b_{1} - a_{1}) \cdot \ldots \cdot (b_{n} - a_{n}).$$

Eine Vereinigung von endlich vielen Quadern in \mathbb{R}^n heiße Figur in \mathbb{R}^n . Es sei \mathscr{F}^n die Menge aller Figuren in \mathbb{R}^n .

Def. Sei X eine Menge und $\mathscr{R} \subseteq \mathscr{P}(X)$.

 \mathcal{R} heißt ein Ring von Teilmengen von X, falls gilt:

- (1) $\emptyset \in \mathscr{R}$.
- (2) Sind $A, B \in \mathcal{R}$, so ist $A \cup B \in \mathcal{R}$.
- (3) Sind $A, B \in \mathcal{R}$, so ist $A \setminus B \in \mathcal{R}$.

Satz 1. \mathcal{F}^n ist ein Ring von Teilmengen von \mathbb{R}^n .

Def. Sei X eine Menge, \mathscr{R} ein Ring von Teilmengen von X. Eine Abbildung $\mu: \mathscr{R} \to \mathbb{R} \cup \{\infty\}$ heißt ein $Pr\ddot{a}ma\beta$ auf \mathscr{R} , falls gilt:

- (1) $\mu(\emptyset) = 0$.
- (2) $\mu(A) \ge 0 \ \forall A \in \mathcal{R}$.
- (3) Sind $A_1, A_2, \ldots \in \mathcal{R}$ paarweise disjunkt und ist $\bigcup_{m=1}^{\infty} A_m \in \mathcal{R}$, so ist $\mu(\bigcup_m A_m) = \sum_m \mu(A_m)$.

Satz 2. Es gibt genau ein Prämaß λ^n auf \mathscr{F}^n mit

$$\lambda^n([a,b]) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n) \ \forall [a,b] \in \mathcal{Q}^n.$$

2. σ -Algebren und Maße

Def. Sei X eine Menge und $\mathscr{A} \subseteq \mathscr{P}(X)$. Dann heißt \mathscr{A} eine σ -Algebra in X, wenn gilt:

- (1) \mathscr{A} ist ein Ring von Teilmengen von X.
- (2) $X \in \mathcal{A}$

(3)
$$A_1, A_2, \ldots \in \mathscr{A} \Rightarrow \bigcup_{m=1}^{\infty} A_m \in \mathscr{A}.$$

Lemma 1. Der Durchschnitt von beliebig vielen σ -Algebren in X ist eine σ -Algebra in X.

Satz 1 und Bezeichnung. Zu jeder Teilmenge \mathscr{A} von $\mathscr{P}(X)$ gibt es eine kleinste σ -Algebra $\sigma(\mathscr{A})$ in X, die \mathscr{A} enthält.

Beispiel: Sei X ein metrischer Raum, \mathscr{T} die Menge aller offenen Teilmengen von X. Die Elemente der σ -Algebra $\sigma(\mathscr{T})$ heißen die Borel-Mengen von X. $\sigma(\mathscr{T})$ enthält alle offenen, alle abgeschlossenen und sehr viele weitere Mengen.

Def. Sei \mathscr{A} eine σ -Algebra in X. Ein $Ma\beta$ auf \mathscr{A} ist eine Abbildung $\mu : \mathscr{A} \to \mathbb{R} \cup \{\infty\}$ mit folgenden Eigenschaften:

- (1) $\mu(\emptyset) = 0$
- (2) $\mu(A) > 0 \ \forall A \in \mathscr{A}$
- (3) Sind $A_1, A_2, \ldots \in \mathscr{A}$ paarweise disjunkt, so $\mu(\bigcup_m A_m) = \sum_m \mu(A_m)$.

Bem. Ein Prämaß auf einer σ -Algebra $\mathscr A$ ist ein Maß auf $\mathscr A$.

Def. a) Ein Paar (X, \mathscr{A}) , bestehend aus einer Menge X und einer σ -Algebra \mathscr{A} in X, heißt ein Messraum.

b) Ein Tripel (X, \mathcal{A}, μ) heißt ein $Ma\beta raum$, wenn (X, \mathcal{A}) ein Messraum und μ ein Maß auf \mathcal{A} ist.

Satz 2. (Maßfortsetzungssatz von Carathéodory)

Sei X eine Menge, \mathscr{R} ein Ring von Teilmengen von X, μ ein Prämaß auf \mathscr{R} . Dann kann μ zu einem Maß auf der σ -Algebra $\sigma(\mathscr{R})$ fortgesetzt werden.

Konstruktion dieser Fortsetzung:

1. Schritt: Wir setzen die Abbildung μ zu einer Abbildung $\mu^* : \mathscr{P}(X) \to \mathbb{R} \cup \{\infty\}$ fort:

Für $A \subseteq X$ sei U(A) die Menge aller Folgen (B_m) in \mathscr{R} mit $A \subseteq \bigcup_{m=1}^{\infty} B_m$. Sei

$$\mu^*(A) := \inf\{\sum_{m=1}^{\infty} \mu(B_m) \mid (B_m) \in U(A)\}.$$

Ist $U(A) = \emptyset$, so ist dies als $\mu^*(A) = \infty$ zu interpretieren. Im Allgemeinen ist μ^* kein Maß auf $\mathscr{P}(X)$.

- **2. Schritt:** $\mu^* : \mathscr{P}(X) \to \mathbb{R} \cup \{\infty\}$ ist ein sogenanntes *äußeres Maß* auf X, d.h. μ^* hat die folgenden Eigenschaften:
 - (1) $\mu^*(\emptyset) = 0$.
 - (2) $\mu^*(A) \geq 0$ für alle $A \subseteq X$.
 - (3) Ist $A \subseteq B \subseteq X$, so ist $\mu^*(A) \le \mu^*(B)$.
 - (4) Ist (A_m) eine Folge in $\mathscr{P}(X)$, so ist $\mu^*(\bigcup_m A_m) \leq \sum_m \mu^*(A_m)$.
- **3. Schritt:** Ist μ^* ein beliebiges äußeres Maß auf X, so nennt man ein $A \in \mathscr{P}(X)$ μ^* -messbar, falls gilt: Für jedes $Q \in \mathscr{P}(X)$ ist

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A) .$$

Man zeigt dann:

- (a) Die Menge \mathcal{R}^* aller μ^* -messbaren Teilmengen von X ist eine σ -Algebra.
- (b) $\mu^* \mid \mathscr{R}^*$ ist ein Maß auf \mathscr{R}^* .
- **4. Schritt:** Ist μ ein Prämaß auf \mathscr{R} und μ^* das im 1. Schritt definierte äußere Maß auf X, so ist $\sigma(\mathscr{R}) \subseteq \mathscr{R}^*$. Weil $\mu^* \mid \mathscr{R}^*$ ein Maß auf \mathscr{R}^* ist, so ist erst recht $\mu^* \mid \sigma(\mathscr{R})$ ein Maß auf $\sigma(\mathscr{R})$, welches μ fortsetzt.-

Def. Ein Prämaß μ auf einem Ring \mathcal{R} von Teilmengen von X heißt σ -endlich, wenn es eine Folge A_1, A_2, \ldots in \mathcal{R} gibt, so dass gilt:

- (1) $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$
- $(2) \ X = \bigcup_{m} A_m$
- (3) $\mu(A_m) < \infty \ \forall \ m \in \mathbb{N}$

Satz 3. Ist \mathscr{R} ein Ring von Teilmengen einer Menge X und μ ein σ -endliches Prämaß auf \mathscr{R} , so kann μ auf genau eine Weise zu einem Maß auf der σ -Algebra $\mathscr{A}(\mathscr{R})$ fortgesetzt werden.

4

3. Das Lebesgue-Maß

Mit \mathcal{T}^n bezeichnen wir die Menge der offenen Teilmengen von \mathbb{R}^n , die sogenannte *Topologie* von \mathbb{R}^n . Sei $\mathscr{B}^n = \sigma(\mathscr{T}^n)$. Die Elemente von \mathscr{B}^n heißen die *Borel-Mengen* in \mathbb{R}^n .

Auf dem Ring \mathscr{F}^n haben wir das Prämaß λ^n . Dieses ist σ -endlich, lässt sich also nach §2 zu einem eindeutig bestimmten Maß auf $\sigma(\mathscr{F}^n)$ fortsetzen, das wieder mit λ^n bezeichnet wird und das nach §1, Satz 2 durch seine Werte auf \mathscr{Q}^n bestimmt ist.

Satz 1. $\sigma(\mathscr{F}^n) = \mathscr{B}^n$.

Damit folgt:

Satz 2. Es gibt genau ein Maß λ^n auf der Menge \mathscr{B}^n der Borel-Mengen in \mathbb{R}^n , so dass für jeden Quader $[a, b] \in \mathscr{Q}^n$ gilt:

$$\lambda^n([a,b]) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n).$$

 λ^n heißt das Lebesgue-Maß auf \mathbb{R}^n .

Lemma 1. Ist $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig und $A \in \mathcal{B}^n$, so ist $f^{-1}(A) \in \mathcal{B}^n$.

Lemma 2 und Def. Ist $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig, so erhält man ein Maß μ auf \mathscr{B}^n durch

$$\mu(B) := \lambda^n(f^{-1}(B)).$$

Man schreibt $\mu =: f(\lambda^n)$ und nennt $f(\lambda^n)$ das $Bildma\beta$ von λ^n unter f.

Def. Eine Abbildung $T: \mathbb{R}^n \to \mathbb{R}^n$ heißt *Translation*, wenn es ein $a \in \mathbb{R}^n$ gibt mit $T(x) = x + a \quad \forall \ x \in \mathbb{R}^n$.

Lemma 3. Das Maß λ^n ist translations invariant, d.h. für jede Translation T ist $T(\lambda^n) = \lambda^n$.

Def. Sei $H \subseteq \mathbb{R}^n$. Dann heißt H eine affine Hyperebene in \mathbb{R}^n , wenn es einen (n-1)-dimensionalen linearen Teilraum V von \mathbb{R}^n und ein $a \in \mathbb{R}^n$ gibt mit $H = a + V := \{a + v \mid v \in V\}$.

Def. Sei H eine affine Hyperebene in \mathbb{R}^n . Mit S_H bezeichnen wir die orthogonale Spiegelung an H. Sie ist folgendermaßen definiert: Ist $x \in \mathbb{R}^n$, so kann man x auf genau eine Weise in der Form x = y + z schreiben, wobei $y \in H$ und $z \in V^{\perp}$. (Dabei ist V wie in der vorangehenden Definition und V^{\perp} ist das Orthogonalkomplement von V, also der 1-dimensionale lineare Teilraum von \mathbb{R}^n , der senkrecht auf V steht.) Es ist

$$S_H(x) := y - z$$
.

 S_H ist ein Homöomorphismus von \mathbb{R}^n auf \mathbb{R}^n mit $S_H^{-1} = S_H$.

Lemma 4. Sei H eine affine Hyperebene in \mathbb{R}^n . Dann ist $S_H(\lambda^n) = \lambda^n$.

Ein müheloser Beweis von Lemma 4 geht folgendermaßen: Man bezeichnet mit φ eine Drehung, die den Teilraum $V_0 := \{(x_1, \dots, x_{n-1}, 0) \mid x_1, \dots, x_{n-1} \in \mathbb{R}\}$ auf V abbildet. Aus Lemma 1 folgt:

$$\mathscr{B}^n = \boldsymbol{\sigma}(\varphi(\mathscr{Q}^n))$$
.

Deswegen reicht es zu zeigen: Ist $Q \in \varphi(\mathcal{Q}^n)$, so ist $\lambda^n(S_H(Q)) = \lambda^n(Q)$. Dies sieht man, indem man Lemma 3 anwendet.

Def. Eine Abbildung $T: \mathbb{R}^n \to \mathbb{R}^n$ heißt Bewegung oder Kongruenz, wenn bzgl. der Euklidischen Norm gilt:

$$\parallel T(x) - T(y) \parallel = \parallel x - y \parallel \quad \forall \ x, y \in \mathbb{R}^n.$$

Aus der Linearen Algebra weiß man: Jede Bewegung ist das Produkt von endlich vielen Spiegelungen. Deswegen folgt aus Lemma 4:

Satz 3. Das Lebesgue-Maß λ^n ist bewegungsinvariant, d.h.: Ist T eine Bewegung, so ist $T(\lambda^n) = \lambda^n$.

Bem. Die Bewegungsinvarianz von λ^n bedeutet: Für jede Bewegung T und jedes $B \in \mathcal{B}^n \text{ ist } \lambda^n(T(B)) = \lambda^n(B).$

Satz 4. Ist H eine affine Hyperebene in \mathbb{R}^n , so ist $\lambda^n(H) = 0$.

Folgerung 1. Alle Borel-Mengen, die in einer affinen Hyperebene liegen, haben das Lebesgue-Maß 0. Insbesondere haben die einelementigen Mengen das Maß 0 (falls n > 0), und daher haben alle abzählbaren Mengen das Maß 0.

Folgerung 2. Das Lebesgue-Maß eines offenen oder abgeschlossenen, nicht notwendig achsenparallelen Quaders ist das Produkt der Kantenlängen.

Satz 5. Ist $A \in GL(n, \mathbb{R})$ und $B \in \mathcal{B}^n$, so ist $A(B) \in \mathcal{B}^n$ und

$$\lambda^n(A(B)) = |\det A| \cdot \lambda^n(B).$$

Beispiel einer Teilmenge A von \mathbb{R} , die keine Borel-Menge ist:

Auf \mathbb{R} betrachten wir die Äguivalenzrelation

$$a \sim b : \iff a - b \in \mathbb{Q}$$
.

Sei A eine Teilmenge von [0,1], die genau ein Element jeder Äquivalenzklasse enthält. Dann ist \mathbb{R} die disjunkte Vereinigung der Mengen A+q mit $q\in\mathbb{Q}$. Wäre A eine Borel-Menge, so könnten wir $\lambda^1(A)$ bilden; wegen der Translationsinvarianz von λ^1 wäre $\lambda^1(A+q)=\lambda^1(A)$. Wegen $\lambda^1(\mathbb{R})=\infty$ folgt, dass $\lambda^1(A)>0$. Andererseits sind die Mengen A+q für rationale Zahlen $q \in [0,1]$ unendlich viele disjunkte Teilmengen von [0,2], was wegen $\lambda^1([0,2]) = 2$ unmöglich ist.

4. Messbare Abbildungen

Def. Seien (X, \mathscr{A}_X) und (Y, \mathscr{A}_Y) Messräume. Eine Abbildung $f: X \to Y$ heißt messbar (bzgl. \mathscr{A}_X und \mathscr{A}_Y), wenn gilt:

Ist $B \in \mathscr{A}_Y$, so ist $f^{-1}(B) \in \mathscr{A}_X$. Wir schreiben dann auch $f: (X, \mathscr{A}_X) \to (Y, \mathscr{A}_Y)$.

Satz 1. Seien X, Y metrische Räume, \mathscr{B}_X und \mathscr{B}_Y seien die Mengen der jeweiligen Borel-Mengen. Ist $f: X \to Y$ stetig, so ist $f: (X, \mathcal{B}_X) \to (Y, \mathcal{B}_Y)$ messbar.

Bem. Sind $f:(X,\mathscr{A}_X)\to (Y,\mathscr{A}_Y)$ und $g:(Y,\mathscr{A}_Y)\to (Z,\mathscr{A}_Z)$ messbar, so ist $g \circ f : (X, \mathscr{A}_X) \to (Z, \mathscr{A}_Z)$ messbar.

Bezeichnungen: a) $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}.$

- b) Ist X eine Menge, so nennen wir eine Abbildung $f: X \to \overline{\mathbb{R}}$ eine numerische Funktion auf X.
- c) Sei $\overline{\mathscr{B}^1}:=\{A\in\mathscr{P}(\overline{\mathbb{R}})\,|\,A\cap\mathbb{R}\in\mathscr{B}^1\}$. Dann ist $\overline{\mathscr{B}^1}$ eine σ -Algebra in $\overline{\mathbb{R}}$. Ihre Elemente heißen die Borel-Mengen in \mathbb{R} . Die Elemente von $\overline{\mathscr{B}^1}$ sind von der Form $B \text{ oder } B \cup \{\infty\} \text{ oder } B \cup \{-\infty\} \text{ oder } B \cup \{\infty, -\infty\} \text{ mit } B \in \mathscr{B}^1.$
- d) Ist (X, \mathcal{A}) ein Messraum, so heißt eine numerische Funktion f auf X messbar, wenn $f:(X,\mathscr{A})\to(\overline{\mathbb{R}},\mathscr{B}^1)$ messbar ist.

Im Folgenden sei (X, \mathcal{A}) ein Messraum.

Beispiel: Sei $A \in \mathcal{P}(X)$. Die *charakteristische Funktion* χ_A von A ist definiert durch

$$\chi_A(x) := \left\{ \begin{array}{ll} 1 &, & \text{falls} \quad x \in A \\ 0 &, & \text{falls} \quad x \not \in A. \end{array} \right.$$

Es gilt: χ_A ist messbar $\iff A \in \mathscr{A}$.

Satz 2. Sei f eine numerische Funktion auf X. Dann sind äquivalent:

- a) f ist messbar.
- b) Für alle $\alpha \in \mathbb{R}$ ist $\{x \in X \mid f(x) \ge \alpha\} \in \mathscr{A}$.
- c) Für alle $\alpha \in \mathbb{R}$ ist $\{x \in X \mid f(x) > \alpha\} \in \mathcal{A}$.
- d) Für alle $\alpha \in \mathbb{R}$ ist $\{x \in X \mid f(x) \leq \alpha\} \in \mathcal{A}$.
- e) Für alle $\alpha \in \mathbb{R}$ ist $\{x \in X \mid f(x) < \alpha\} \in \mathcal{A}$.

Satz 3. Seien f, g messbare numerische Funktionen auf X. Dann gilt:

- a) $\{x \in X \mid f(x) < g(x)\} \in \mathscr{A}$.
- b) $\{x \in X \mid f(x) \le g(x)\} \in \mathscr{A}$.
- c) $\{x \in X \mid f(x) = g(x)\} \in \mathscr{A}$.
- d) $\{x \in X \mid f(x) \neq g(x)\} \in \mathscr{A}$.

Satz 4. Seien $f, g: X \to \mathbb{R}$ messbar. Dann sind f + g und fg messbar.

Man erweitert in naheliegender Weise die Begriffe "Supremum" und "Infimum" aus Analysis I, so dass man Abbildungen

$$\sup,\inf:\mathscr{P}(\overline{\mathbb{R}})\to\overline{\mathbb{R}}$$

erhält:

Fall 1: Sei $A \in \mathscr{P}(\mathbb{R})$.

- Ist A nicht-leer und nach oben beschränkt, so ist $\sup(A)$ wie üblich die kleinste obere Schranke von A.
- Ist A nicht nach oben beschränkt, so sei $\sup(A) := \infty$.
- Ist $A = \emptyset$, so sei sup $(A) := -\infty$.

Fall 2: Ist $\infty \in A$, so sei $\sup(A) := \infty$.

Fall 3: Ist $\infty \notin A$, aber $-\infty \in A$, so sei $\sup(A) := \sup(A \cap \mathbb{R})$.

In analoger Weise betrachtet man den Limes einer Folge in $\overline{\mathbb{R}}$.

Def. Sei (a_n) eine Folge in $\overline{\mathbb{R}}$.

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} (\sup\{a_k \mid k \ge n\}) = \inf\{\sup\{a_k \mid k \ge n\} \mid n \in \mathbb{N}\} \in \overline{\mathbb{R}}.$$

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} (\inf\{a_k \mid k \ge n\}) = \sup\{\inf\{a_k \mid k \ge n\} \mid n \in \mathbb{N}\} \in \overline{\mathbb{R}}.$$

(Beachte: Die Folge (sup{ $a_k \mid k \geq n$ })_n ist monoton fallend, daher existiert ihr Limes in $\mathbb{R} \cup \{\infty, -\infty\}$.)

Bem. Eine Folge (a_n) in $\overline{\mathbb{R}}$ konvergiert genau dann gegen $a \in \overline{\mathbb{R}}$, wenn

$$\limsup_{n \to \infty} a_n = a = \liminf_{n \to \infty} a_n.$$

Satz 5. Seien f_n $(n \in \mathbb{N})$ messbare numerische Funktionen.

- a) Die Funktionen sup f_n und $\inf_n f_n$ sind messbar.
- b) Die Funktionen $\limsup_{n\to\infty} f_n$ und $\liminf_{n\to\infty} f_n$ sind messbar.
- c) Die Folge (f_n) konvergiere punktweise in $\overline{\mathbb{R}}$. Dann ist $\lim_{n\to\infty} f_n$ messbar.

5. Integrations theorie

Sei (X, \mathcal{A}, μ) ein Maßraum.

Def. Eine Funktion $f: X \to \mathbb{R}$ heißt nicht-negative Treppenfunktion auf X, wenn gilt:

$$f(x) \ge 0 \ \forall \ x \in X,$$

f ist messbar,

f nimmt nur endlich viele Werte an.

Sei $\mathcal{T}^+ = \mathcal{T}^+(X)$ die Menge der nicht-negativen Treppenfunktionen auf X.

Bez. Sei $f \in \mathcal{T}^+$. Ist X die disjunkte Vereinigung von $A_1, \ldots, A_m \in \mathscr{A}$ und sind $\alpha_1, \ldots, \alpha_m \in [0, \infty[$ mit $f = \sum_{i=1}^m \alpha_i \, \chi_{A_i}$ (wobei die α_i nicht notwendig verschieden sind), so nennen wir die Zerlegung $f = \sum \alpha_i \, \chi_{A_i}$ eine Normaldarstellung von f.

Def. Sei $f \in \mathcal{T}^+$ und sei $f = \sum_{i=1}^m \alpha_i \chi_{A_i}$ eine Normaldarstellung von f. Dann heißt

$$\int f \, d\mu := \sum_{i=1}^{m} \alpha_i \, \mu(A_i) \text{ das } Integral \text{ von } f.$$

Satz 1. Sei \mathcal{M}^+ die Menge aller messbaren, nicht-negativen numerischen Funktionen auf X. Für jedes $f \in \mathcal{M}^+$ gibt es eine wachsende Folge (g_n) in \mathcal{T}^+ mit $f = \sup g_n$.

Bew.: Man kann setzen

$$g_n := \sum_{i=0}^{n \cdot 2^n} \frac{i}{2^n} \chi_{A_{i,n}}$$

$$A_{i,n} := \{x \in X \mid \frac{i}{2^n} \le f(x) < \frac{i+1}{2^n}\}$$
 für $i = 0, 1, 2, \dots, n \cdot 2^n - 1$

$$A_{n \cdot 2^n, n} := \{ x \in X \mid f(x) \ge n \}$$

Def. Sei $f \in \mathcal{M}^+$. Man wählt eine wachsende Folge (g_n) in \mathcal{T}^+ mit $f = \sup_n g_n$ und setzt

$$\int f \, d\mu := \sup_{n} \int g_n \, d\mu.$$

Dies ist wohldefiniert, d.h. $\int f d\mu$ hängt nicht von der Wahl der Folge (g_n) ab.

Satz 2. (Satz von der monotonen Konvergenz)

Ist (f_n) eine wachsende Folge in \mathcal{M}^+ , so ist $\sup_n f_n \in \mathcal{M}^+$ und

$$\int \sup_{n} f_n \, d\mu = \sup_{n} \int f_n \, d\mu.$$

Folgerung: Ist (f_n) eine Folge in \mathcal{M}^+ , so ist $\sum_{n=1}^{\infty} f_n \in \mathcal{M}^+$ und

$$\int (\sum_{n=1}^{\infty} f_n) d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

Bez. Für $f: X \to \overline{\mathbb{R}}$ sei $f^+ := \sup(f,0)$, $f^- := (-f)^+ = -\inf(f,0)$. Dann ist $f = f^+ - f^-$ und $|f| = f^+ + f^-$. f ist genau dann messbar, wenn f^+ und f^- messbar sind.

Def. Eine numerische Funktion f auf X heißt $(\mu-)integrierbar$, wenn sie messbar ist und wenn $\int f^+ d\mu$ und $\int f^- d\mu$ endlich sind. Dann schreiben wir

$$\int f \, d\mu := \int\limits_{Y} f(x) \, d\mu(x) := \int f^+ \, d\mu - \int f^- \, d\mu$$

und nennen diese reelle Zahl das Integral von f.

Bem. Eine messbare Funktion f ist genau dann integrierbar, wenn $\int |f| d\mu < \infty$.

Satz 3. Sind f, g integrierbare numerische Funktionen auf $X, \alpha \in \mathbb{R}$, so sind auch $\alpha f, f + g$ (falls dies auf ganz X definiert ist), $\sup(f, g)$ und $\inf(f, g)$ integrierbar, und

$$\int (\alpha f) d\mu = \alpha \int f d\mu , \int (f+g) d\mu = \int f d\mu + \int g d\mu.$$

Ist $f \leq g$, so ist $\int f d\mu \leq \int g d\mu$.

Insbesondere ist $|\int f d\mu| \le \int |f| d\mu$.

Beispiel 1. Sei X eine Menge, $a \in X$. Betrachte den Maßraum $(X, \mathscr{P}(X), \delta_a)$ mit $\delta_a(A) = \left\{ \begin{array}{ll} 1 & , & \text{falls } a \in A \\ 0 & , & \text{sonst.} \end{array} \right.$

Integrierbar bezüglich δ_a ist eine Funktion f genau dann, wenn $|f(a)| < \infty$, und dann ist $\int f d\delta_a = f(a)$.

Beispiel 2. Sei $X = \mathbb{N}$. Es gibt genau ein Maß μ auf $\mathscr{P}(\mathbb{N})$ mit $\mu(\{n\}) = 1 \ \forall n \in \mathbb{N}$. Betrachte den Maßraum $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \mu)$.

Die numerischen Funktionen auf X sind die Folgen $f=(f(n))_n$ in $\overline{\mathbb{R}}$.

Ist
$$f \in \mathcal{M}^+$$
, so ist $\int f d\mu = \sum_{n=1}^{\infty} f(n)$.

(Bew.: Ist $\infty \in f(\mathbb{N})$, also etwa $f(m) = \infty$, so ist $f \geq n\chi_{\{m\}}$ für alle $n \in \mathbb{N}$, also $\int f \, d\mu \geq n$ für alle $n \in \mathbb{N}$ und daher $\int f \, d\mu = \infty$.

Ist $\infty \notin f(\mathbb{N})$, so ist $g_n := f \cdot \chi_{\{1,\dots,n\}} \in \mathscr{T}^+$, und (g_n) ist eine wachsende Folge mit $f = \sup g_n$. Daher ist

$$\int f \, d\mu = \sup \int g_n \, d\mu = \sup \int \left(\sum_{k=1}^n f(k) \chi_{\{k\}} \right) d\mu = \sup \sum_{k=1}^n f(k) = \sum_{n=1}^\infty f(n) .$$

Eine numerische Funktion f auf \mathbb{N} ist genau dann μ -integrierbar, wenn die Reihe $\sum_{n=1}^{\infty} f(n)$ absolut konvergiert, und dann ist $\int f d\mu = \sum_{n=1}^{\infty} f(n)$.

Def. Sei (X, \mathcal{A}, μ) ein Maßraum.

a) $N \subseteq X$ heißt μ -Nullmenge, wenn $N \in \mathscr{A}$ und $\mu(N) = 0$.

b) Sei E eine Eigenschaft, die jeder Punkt von X hat oder nicht hat. Wir sagen: "Fast alle Punkte von X besitzen die Eigenschaft E" oder "E gilt fast überall auf X", wenn alle Punkte, für die E nicht gilt, in einer Nullmenge enthalten sind.

Satz 4. Für $f \in \mathcal{M}^+$ gilt:

$$\int f \, d\mu = 0 \Leftrightarrow f = 0 \text{ fast "überall}.$$

Folgerung. Zwei integrierbare Funktionen, die sich nur auf einer Nullmenge unterscheiden, haben dasselbe Integral.

Wir nennen demgemäß von nun an eine Funktion *integrierbar*, wenn sie integrierbar im bisherigen Sinn wird, wenn man sie eventuell auf einer Nullmenge abändert oder ergänzt.

Bezeichnungen:

a) Ist f eine in diesem erweiterten Sinn λ^n -integrierbare numerische Funktion auf \mathbb{R}^n , so heißt f Lebesgue-integrierbar; statt $\int f d\lambda^n$ schreibt man auch

$$\int_{\mathbb{R}^n} f(x) d\lambda^n(x) \text{ oder } \int_{\mathbb{R}^n} f(x) dx \text{ oder } \int_{\mathbb{R}^n} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

und nennt dies das Lebesgue-Integral von f.

b) All gemeiner: Ist $Y \in \mathscr{B}^n$, so sei $\mathscr{B}^n(Y) := \{B \in \mathscr{B}^n \, | \, B \subseteq Y\}.$

Dann ist $\mathscr{B}^n(Y)$ eine σ -Algebra in Y. Durch $B \mapsto \lambda^n(B)$ erhält man ein Maß $\lambda^n|Y$ auf $\mathscr{B}^n(Y)$.

Man hat also einen Maßraum $(Y, \mathcal{B}^n(Y), \lambda^n | Y)$.

Ist $f:Y\to\overline{\mathbb{R}}$ eine numerische Funktion, die integrierbar bezüglich $\lambda^n|Y$ ist, so schreibt man

$$\int_{Y} f d\lambda^{n} \text{ oder } \int_{Y} f(x) d\lambda^{n}(x) \text{ oder } \int_{Y} f(x) dx \text{ oder } \int_{Y} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}$$

statt $\int f d(\lambda^n | Y)$.

6. Die Vertauschbarkeit des Integrals mit Grenzprozessen

Sei (X, \mathcal{A}, μ) ein Maßraum.

Wir kennen bereits den Satz von der monotonen Konvergenz. Daraus folgt leicht:

Satz 1. ("Lemma von Fatou") Sei (f_n) eine Folge in \mathcal{M}^+ und $f := \liminf_{n \to \infty} f_n$. Dann ist $f \in \mathcal{M}^+$ und

$$\int f \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Satz 2. (Satz von der majorisierten Konvergenz)

Sei (f_n) eine Folge integrierbarer \mathbb{R} -wertiger Funktionen auf X, die fast überall punktweise gegen eine Funktion f konvergiert. Es gebe eine integrierbare \mathbb{R} -wertige Funktion g auf X mit $|f_n(x)| \leq g(x) \ \forall \ x \in X, n \in \mathbb{N}$. Dann ist f integrierbar und

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Bew.: Wende das Lemma von Fatou an auf die Folge $(|f| + g - |f_n - f|)_n$.

Satz 3. Sei $\mu(X) < \infty$. Sei (f_n) eine Folge \mathbb{R} -wertiger integrierbarer Funktionen auf X, die gleichmäßig gegen die Funktion $f: X \to \mathbb{R}$ konvergiert. Dann ist f integrierbar und

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Satz 4. Seien $a, b \in \mathbb{R}$ mit a < b und sei $f : [a, b] \to \mathbb{R}$ Riemann-integrierbar. Dann ist f Lebesgue-integrierbar (im erweiterten Sinn wie am Ende von §5), und das

Riemann-Integral $\int_a^b f(x) dx$ und das Lebesgue-Integral $\int_{[a,b]} f(x) d\lambda^1(x)$ stimmen überein.

Bemerkung. Eine Funktion $f: \mathbb{R} \to \mathbb{R}$, die uneigentlich integrierbar ist im Sinne von Analysis I, ist nicht notwendigerweise Lebesgue-integrierbar, nämlich dann nicht, wenn |f| nicht uneigentlich integrierbar ist, wie es z.B. für die Funktion $f(x) = \frac{\sin x}{x}$ der Fall ist.

Bezeichnungen: Ist I ein Intervall mit den Endpunkten a,b, wobei $-\infty \le a < b \le \infty$, und ist f eine auf I Lebesgue-integrierbare numerische Funkti-

on, so schreibt man
$$\int_a^b f(x) dx$$
 statt $\int_I f d\lambda^1$.

Wenn man irgendwo $\int_{a}^{b} f(x) dx$ liest, ist immer zu klären, ob es sich um das Integral einer Lebesgue-integrierbaren Funktion oder um ein uneigentliches Integral handelt!

Sei (X, \mathcal{A}, μ) ein Maßraum, I ein offenes Intervall in \mathbb{R} und $f: I \times X \to \mathbb{R}$ eine Abbildung.

Für $t \in I$ sei $f_t : X \to \mathbb{R}$ definiert durch $f_t(x) := f(t,x)$.

Für $x \in X$ sei $f^x : I \to \mathbb{R}$ definiert durch $f^x(t) := f(t, x)$.

Wenn f^x an der Stelle t differenzierbar ist, so schreiben wir

$$\frac{\partial f}{\partial t}(t,x) := (f^x)'(t)$$

und sagen, dass $\frac{\partial f}{\partial t}(t,x)$ existiert.

Satz 5. $f: I \times X \to \mathbb{R}$ habe die folgenden Eigenschaften:

- a) Für alle $t \in I$ ist f_t integrierbar.
- b) Für alle $t \in I, x \in X$ existiere $\frac{\partial f}{\partial t}(t, x)$.
- c) Es gebe eine integrierbare Funktion g mit

$$\left| \frac{\partial f}{\partial t}(t,x) \right| \le g(x) \ \forall \ t \in I, x \in X.$$

Definiere $F:I\to\mathbb{R}$ durch

$$F(t) := \int_X f(t, x) \, d\mu(x).$$

Dann gilt:

- 1) F ist differenzierbar.
- 2) $\left(\frac{\partial f}{\partial t}\right)_t: X \to \mathbb{R}$ ist integrierbar für $t \in I$.

3)
$$F'(t) = \int_X \frac{\partial f}{\partial t}(t, x) d\mu(x) \ \forall \ t \in I.$$

7. Der Satz von Fubini

Bezeichnungen: a) Seien $n, m \in \mathbb{N}$ und N := n + m.

Wir schreiben die Elemente von \mathbb{R}^N in der Form (x,y) mit $x \in \mathbb{R}^n$ und $y \in \mathbb{R}^m$.

b) Ist $E \subseteq \mathbb{R}^N, x \in \mathbb{R}^n, y \in \mathbb{R}^m$, so sei

$$E_x := \{ \eta \in \mathbb{R}^m | (x, \eta) \in E \},$$

$$E^y := \{ \xi \in \mathbb{R}^n | (\xi, y) \in E \}.$$

Satz 1. Sei $E \in \mathscr{B}^N$. Dann gilt:

- 1) Für jedes $x \in \mathbb{R}^n$ ist $E_x \in \mathscr{B}^m$.
- 2) Die numerische Funktion $x \mapsto \lambda^m(E_x)$ auf \mathbb{R}^n ist messbar.

3)
$$\lambda^N(E) = \int_{\mathbb{R}^n} \lambda^m(E_x) d\lambda^n(x) = \int_{\mathbb{R}^m} \lambda^n(E^y) d\lambda^m(y)$$
.

Folgerung. (Cavalierisches Prinzip) Seien $E, E' \in \mathcal{B}^N$ mit $\lambda^m(E_x) = \lambda^m(E'_x)$ $\forall x \in \mathbb{R}^n$. Dann ist $\lambda^N(E) = \lambda^N(E')$.

Satz 2. Sei f eine messbare nicht-negative numerische Funktion auf \mathbb{R}^n und sei

$$M^f := \{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t < f(x) \}.$$

Dann ist $M^f \in \mathscr{B}^{n+1}$ und

$$\lambda^{n+1}(M^f) = \int_{\mathbb{R}^n} f \, d\lambda^n.$$

Beispiel. Das Kugelvolumen. Sei $B_{n,r} := \{x \in \mathbb{R}^n | \sum_{i=1}^n x_i^2 \leq r^2\}$. Man zeigt durch Induktion nach n:

(1 m 2m

$$\lambda^{n}(B_{n,r}) = \begin{cases} \frac{1}{m!} \pi^{m} r^{2m} & \text{für } n = 2m \\ \frac{2^{m}}{1 \cdot 3 \cdot \dots \cdot (2m-1)} \pi^{m-1} r^{2m-1} & \text{für } n = 2m-1. \end{cases}$$

Satz 3. Sei f eine messbare nicht-negative numerische Funktion auf \mathbb{R}^N , N=n+m. Dann sind die folgenden 4 numerischen Funktionen messbar und nicht negativ:

- 1) $x \mapsto f(x,y)$ für festes $y \in \mathbb{R}^m$,
- 2) $y \mapsto f(x,y)$ für festes $x \in \mathbb{R}^n$,
- 3) $y \mapsto \int_{\mathbb{D}^n} f(x,y) d\lambda^n(x)$,
- 4) $x \mapsto \int_{\mathbb{R}^m} f(x, y) d\lambda^m(y),$

und es gilt:

$$\int_{\mathbb{R}^{N}} f(x,y) d\lambda^{N}(x,y) = \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{m}} f(x,y) d\lambda^{m}(y) \right) d\lambda^{n}(x)
= \int_{\mathbb{R}^{m}} \left(\int_{\mathbb{R}^{n}} f(x,y) d\lambda^{n}(x) \right) d\lambda^{m}(y).$$

Satz 4. (Fubini) Sei f eine integrierbare numerische Funktion auf \mathbb{R}^N , N=n+m. Für fast alle $x \in \mathbb{R}^n$ ist dann die Funktion $y \mapsto f(x,y)$ integrierbar auf \mathbb{R}^m , die f.ü. definierte Funktion $x \mapsto \int f(x,y) d\lambda^m(y)$ ist integrierbar auf \mathbb{R}^n , und es gilt:

$$\begin{array}{ll} \int\limits_{\mathbb{R}^N} f(x,y)\,d\lambda^N(x,y) &= \int\limits_{\mathbb{R}^n} \left(\int\limits_{\mathbb{R}^m} f(x,y)\,d\lambda^m(y)\right) d\lambda^n(x) \\ &= \int\limits_{\mathbb{R}^m} \left(\int\limits_{\mathbb{R}^n} f(x,y)\,d\lambda^n(x)\right) d\lambda^m(y). \end{array}$$

Folgerung. Sei f Lebesgue-integrierbar auf \mathbb{R}^n . Dann ist

$$\int_{\mathbb{R}^n} f \, d\lambda^n = \int_{-\infty}^{\infty} \left(\dots \left(\int_{-\infty}^{\infty} f(x_1, \dots, x_n) \, dx_1 \right) \dots \right) dx_n.$$

Man kann auch jede andere Reihenfolge der Variablen x_1, \ldots, x_n benutzen.

Bem. Im Satz von Fubini ist die Voraussetzung, dass f integrierbar ist, wichtig. In vielen Fällen überprüft man für messbares f diese Voraussetzung so: Man muss zeigen, dass |f| integrierbar ist, d.h. dass $\int\limits_{\mathbb{R}^N} |f| \, d\lambda^N < \infty$. Dafür rechnet man $\int\limits_{\mathbb{R}^N} |f| \, d\lambda^N$ mithilfe von Satz 3 aus.

8. Die Transformationsformel

Def. Sei $k \in \mathbb{N} \cup \{0, \infty\}$ und seien U, V offen in \mathbb{R}^n . Eine Abbildung $\varphi : U \to V$ heißt ein C^k -Diffeomorphismus von U nach V, wenn gilt:

- a) φ ist eine Bijektion,
- b) φ ist von der Klasse C^k ,
- c) $\varphi^{-1}: V \to U$ ist von der Klasse C^k .

Bem. a) C^0 -Diffeomorphismus = Homöomorphismus.

b) Ist $\varphi:U\to V$ ein Homö
omorphismus und $A\subseteq U$ eine Borel-Menge, so ist $\varphi(A)=(\varphi^{-1})^{-1}(A)$ eine Borel-Menge nach Paragraph 4, Satz 1.

Satz 1. (Transformationsformel) Seien U, V offen in \mathbb{R}^n , $\varphi: U \to V$ sei ein C^1 -Diffeomorphismus.

a) Ist $A \subseteq U$ eine Borel-Menge, so ist

$$\lambda^n(\varphi(A)) = \int_A |\det D\varphi(x)| dx.$$

b) Ist eine Funktion $f:V\to\mathbb{R}$ integrierbar, so ist $|\det D\varphi|\cdot (f\circ\varphi):U\to\mathbb{R}$ integrierbar und

$$\int\limits_{V} f(y)\,dy = \int\limits_{U} f(\varphi(x)) \cdot |\det D\varphi(x)|\,dx.$$

Der Beweis benutzt unter anderem die folgenden Resultate: Aus der Analysis II die Kettenregel und den Umkehrsatz, aus der Analysis III den Satz von der monotonen

Konvergenz, Fubini und den Satz 5 aus §1, der sagt, wie sich das Volumen unter einer linearen Abbildung ändert.

Beispiel: Ebene Polarkoordinaten. Definiere $\varphi:[0,\infty[\times[0,2\pi]\to\mathbb{R}^2]]$ durch $\varphi(r,t):=(r\cdot\cos t,r\cdot\sin t).$

Satz 2. Ist $f: \mathbb{R}^2 \to \mathbb{R}$ integrierbar, so ist die Funktion

$$(r,t) \mapsto r \cdot f(\varphi(r,t))$$

über $[0, \infty \times [0, 2\pi]]$ integrierbar und es gilt:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = \int_{0}^{2\pi} \int_{0}^{\infty} f(r\cos t, r\sin t) \cdot r \, dr \, dt.$$

Bew. Wende Satz 1 an mit $U :=]0, \infty [\times]0, 2\pi [$, $V := \mathbb{R}^2 \setminus \{(x,0) | x \geq 0\}$. Dann liefert φ einen C^1 -Diffeomorphismus von U auf V, und $\mathbb{R}^2 \setminus V$ und $([0,\infty[\times[0,2\pi]) \setminus U \text{ sind Nullmengen.})$

Anwendung:

$$\begin{split} & \left(\int\limits_{-\infty}^{\infty} e^{-x^2} \, dx\right)^2 = \left(\int\limits_{-\infty}^{\infty} e^{-x^2} \, dx\right) \left(\int\limits_{-\infty}^{\infty} e^{-y^2} \, dy\right) \\ & = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} e^{-(x^2+y^2)} \, dx \, dy = \int\limits_{0}^{2\pi} \int\limits_{0}^{\infty} e^{-r^2} \cdot r \, dr \, d\varphi \\ & = 2\pi \int\limits_{0}^{\infty} e^{-r^2} \cdot r \, dr = 2\pi \left[-\frac{1}{2}e^{-r^2}\right]_{0}^{\infty} = \pi \\ & \Longrightarrow \int\limits_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}. \end{split}$$

9. Die Räume L^p

Bezeichnungen: Sei (X, \mathcal{A}, μ) ein Maßraum, $p \in [1, \infty[$. a) Ist f eine messbare numerische Funktion auf X, so sei

$$|| f ||_p := \left(\int |f|^p d\mu \right)^{1/p} \in [0, \infty].$$

(Beachte: Mit f sind auch |f| und $|f|^p$ nach Paragraph 4 messbar.)

b) $\mathscr{L}^p(X) := \mathscr{L}^p(X, \mathscr{A}, \mu) := \{ f : X \to \mathbb{R} \mid f \text{ ist messbar und } \| f \|_p < \infty \}.$

Bem. $\mathcal{L}^1(X) = \{ \text{ integrierbare } \mathbb{R}\text{-wertige Funktionen auf } X \}.$

Beispiel: Sei $X=\{1,2,\ldots,n\}, \mathscr{A}=\mathscr{P}(X), \mu(\{k\})=1 \ \forall \ k\in X.$

Dann sind alle Abbildungen $f: X \to \mathbb{R}$ integrierbar, und $\int f d\mu = \sum_{i=1}^n f(i)$. Die

Menge aller Abbildungen $f: X \to \mathbb{R}$ kann mit \mathbb{R}^n identifiziert werden vermöge $f \leftrightarrow (f(1), \ldots, f(n))$. Also $\mathcal{L}^p(X, \mathcal{A}, \mu) = \mathbb{R}^n$, und unter dieser Identifikation gilt für $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Dies ist die übliche p-Norm auf \mathbb{R}^n .

Satz 1. (Höldersche Ungleichung) Sei $p \in \mathbb{R}$ mit 1 , und sei <math>q definiert durch $\frac{1}{p} + \frac{1}{q} = 1$.

Dann gilt für zwei messbare reellwertige Funktionen f,g auf X:

$$|| fg ||_1 \le || f ||_p \cdot || g ||_q$$
.

Sind insbesondere $f, g \in \mathcal{L}^2(X)$, so ist fg integrierbar.

Folgerung. Ist $\mu(X) < \infty$, so ist $\mathcal{L}^p(X) \subseteq \mathcal{L}^1(X)$ für $p \ge 1$.

Dies sieht man, indem man g = 1 in der Hölderschen Ungleichung setzt.

Satz 2. (Minkowskische Ungleichung) Ist $1 \le p < \infty$ und sind f, g messbare reellwertige Funktionen auf X, so ist

$$|| f + g ||_p \le || f ||_p + || g ||_p$$
.

Sind insbesondere $f, g \in \mathcal{L}^p(X)$, so ist auch $f + g \in \mathcal{L}^p(X)$. Daher ist $\mathcal{L}^p(X)$ ein \mathbb{R} -Vektorraum.

Bem. Im Allgemeinen ist $(\mathcal{L}^p(X), \| \cdot \|_p)$ kein normierter Raum, denn es kann Funktionen $f \neq 0$ geben mit $\| f \|_p = 0$. Nach Paragraph 5, Satz 4 ist

$$\{f\in \mathscr{L}^p(X)\,|\,\parallel f\parallel_p=0\}=\{f:X\to \mathbb{R}\,|\,f\text{ messbar und }f=0\text{ f.\"{u}.}\}=:\mathscr{N}(X).$$

Dies ist ein Untervektorraum von $\mathcal{L}^p(X)$.

Def. $L^p(X) := \mathscr{L}^p(X)/\mathscr{N}(X)$.

Ist $f \in \mathcal{L}^p(X)$, so bezeichne \tilde{f} die Klasse von f in $L^p(X)$. Durch $\|\tilde{f}\|_p := \|f\|_p$ wird $L^p(X)$ zu einem normierten Raum.

Satz 3. (Fischer-Riesz) Für $1 \le p < \infty$ ist $L^p(X)$ ein Banach-Raum.

Kapitel II. Vektoranalysis

10. Untermannigfaltigkeiten des \mathbb{R}^N

Def. Sei U offen in \mathbb{R}^n und sei $f: U \to \mathbb{R}^m$ von der Klasse C^1 .

- a) f heißt Immersion, falls $\operatorname{Rg} Df(x) = n$ für alle $x \in U$.
- b) f heißt Submersion, falls $\operatorname{Rg} Df(x) = m$ für alle $x \in U$.

Bem. Ist U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ von der Klasse C^1 , so ist f genau dann eine Submersion, wenn grad $f(x)\neq 0$ für alle $x\in U$.

Def. Sei $p \in \mathbb{N} \cup \{\infty\}$ und sei $0 \leq n \leq N$. Eine Teilmenge M von \mathbb{R}^N heißt n-dimensionale Untermannigfaltigkeit des \mathbb{R}^N der Klasse C^p , wenn es für jedes $a \in M$ eine offene Umgebung U von a in \mathbb{R}^N und eine Submersion $g: U \to \mathbb{R}^{N-n}$ der Klasse C^p gibt, so dass gilt:

$$M \cap U = \{x \in U \mid g(x) = 0\}.$$

Eine Untermannigfaltigkeit der Klasse C^{∞} heißt Untermannigfaltigkeit.

Bezeichnung: In der Situation obiger Definition heißt N-n die Kodimension von M. Eine Untermannigfaltigkeit der Kodimension 1 heißt Hyperfläche in \mathbb{R}^N .

Beispiele: 1) Die 0-dimensionalen Untermannigfaltigkeiten des \mathbb{R}^N sind die diskreten Teilmengen des \mathbb{R}^N .

- 2) Die N-dimensionalen Untermannigfaltigkeiten des \mathbb{R}^N sind die offenen Teilmengen von \mathbb{R}^N .
- 3) $S^{N-1} = \{x \in \mathbb{R}^N \mid x_1^2 + \ldots + x_N^2 1 = 0\}$ ist eine Hyperfläche in \mathbb{R}^N .

Satz 1. Sei $M \subseteq \mathbb{R}^N$, sei $0 \le n \le N$ und $p \in \mathbb{N} \cup \{\infty\}$. Dann sind äquivalent:

- a) M ist eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N der Klasse C^p .
- b) Für jedes $a \in M$ existieren eine offene Umgebung U von a in \mathbb{R}^N , eine offene Teilmenge V von \mathbb{R}^N und ein C^p -Diffeomorphismus $\varphi: U \to V$ mit

$$\varphi(M \cap U) = (\mathbb{R}^n \times \{0\}) \cap V .$$

c) Für jedes $a \in M$ existieren eine offene Umgebung V von a in M, eine offene Teilmenge W in \mathbb{R}^n und eine Immersion $\varphi:W\to\mathbb{R}^N$ der Klasse C^p , die W homö
omorph auf V abbildet.

(Ein solches φ , aufgefasst als Abbildung $W \to V$, heißt eine Karte von M.)

Folgerung. Ist M eine n-dimensionale Untermannigfaltigkeit der Klasse C^1 von \mathbb{R}^N und $a \in M$, so gibt es eine offene Umgebung V von a in M, die homöomorph zu \mathbb{R}^n ist.

Satz 2. Sei M eine n-dim. Untermannigfaltigkeit von \mathbb{R}^N und seien $\varphi_j: W_j \to V_j$ (j=1,2) zwei Karten von M. Sei $V:=V_1\cap V_2$ und $U_j:=\varphi_j^{-1}(V),\ j=1,2$. Dann sind die U_j offene Teilmengen von \mathbb{R}^n , und die Abbildung

$$\tau(\varphi_2, \varphi_1) := (\varphi_2 | U_2)^{-1} \circ (\varphi_1 | U_1) : U_1 \to U_2$$

ist ein Diffeomorphismus. Er heißt die zu den Karten φ_1 und φ_2 gehörige Parametertransformation.

Def. Sei M eine n-dim. Untermannigfaltigkeit von \mathbb{R}^N . Eine Menge $\{\varphi_i:W_i\to 0\}$ $V_j \, | \, j \in J \}$ von Karten von Mheißt Atlasvon M, falls $M = \bigcup \, V_j.$

Satz 3. Sei X ein metrischer Raum, $M \subseteq X$ und $A \subseteq M$. Dann sind äquivalent:

- a) A ist offen in M.
- b) Es gibt eine offene Teilmenge U von X mit $A = M \cap U$.

Satz 4. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N und sei \mathscr{A} ein Atlas von M. Dann enthält \mathscr{A} einen höchstens abzählbaren Teilatlas.

Bez.
$$\mathbb{R}^n_- := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 \le 0\},\$$
 $\partial \mathbb{R}^n_- := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}.$

Def. Sei M eine n-dim. Untermannigfaltigkeit von \mathbb{R}^N und $X \subseteq M$.

- a) Mit ∂X bezeichnen wir den Rand von X in M, also alle Punkte a von M, so dass für jede Umgebung U von a in \mathbb{R}^N gilt: $U \cap X \neq \emptyset$ und $U \cap (M \setminus X) \neq \emptyset$.
- b) X heißt eine n-dim. abgeschlossene Untermannigfaltigkeit mit Rand von <math>M, wenn es zu jedem $a \in \partial X$ eine Karte $\varphi : W \to V$ von M gibt, so dass gilt:

 - $\begin{array}{ll} 1) & a \in V, \\ 2) & \varphi(\mathbb{R}^n_- \cap W) = X \cap V, \\ 3) & \varphi(\partial \mathbb{R}^n_- \cap W) = \partial X \cap V. \end{array}$

Eine solche Karte heißt randadaptiert bezüglich X.

Bem. Sei M eine n-dim. Untermannigfaltigkeit von \mathbb{R}^N und X eine n-dim. abgeschlossene Untermannigfaltigkeit mit Rand von M. Dann ist $\partial X \subseteq X$.

Satz 5. Sei M eine n-dim. Untermannigfaltigkeit von \mathbb{R}^N und X eine n-dim. abgeschlossene Untermannigfaltigkeit mit Rand von M. Dann ist ∂X eine (n-1)-dim. Untermannigfaltigkeit von \mathbb{R}^N .

Bem. Seien M und X wie oben und sei $a \in X$.

Ist $a \in \partial X$, so besitzt a eine offene Umgebung in X, die homöomorph zu \mathbb{R}^n_- ist. $X \setminus \partial X$ ist eine n-dimensionale Untermannigfaltigkeit (ohne Rand) von \mathbb{R}^N .

Beispiele: 1) \mathbb{R}^n_- ist eine *n*-dimensionale abgeschlossene Untermannigfaltigkeit mit Rand von \mathbb{R}^n .

- 2) $D^n := \{x \in \mathbb{R}^n | \|x\|_2 \le 1\}$ ist eine *n*-dimensionale abgeschlossene Untermannigfaltigkeit mit Rand von \mathbb{R}^n mit $\partial D^n = S^{n-1}$.
- 3) $S^{n-1}_+:=\{(x_1,\ldots,x_n)\in S^{n-1}|x_n\geq 0\}$ ist eine (n-1)-dimensionale abgeschlossene Untermannigfaltigkeit mit Rand von S^{n-1} mit

$$\partial S_+^{n-1} = \{(x_1, \dots, x_n) \in S^{n-1} | x_n = 0\} = S^{n-2} \times \{0\}.$$

11. Zusammenhängende metrische Räume

Def. Ein metrischer Raum X heißt zusammenhängend, wenn die einzigen Teilmengen von X, die sowohl offen als auch abgeschlossen in X sind, \emptyset und X sind.

Bem. Genau dann ist X zusammenhängend, wenn gilt: Sind A, B offene Teilmengen von X mit $A \cup B = X$ und $A \cap B = \emptyset$, so ist $A = \emptyset$ oder $B = \emptyset$.

Satz 1. Sei X eine Teilmenge von \mathbb{R} , die mehr als einen Punkt enthält. Dann sind äquivalent:

- a) X ist zusammenhängend.
- b) X ist ein Intervall (eigentlich oder uneigentlich, offen, abgeschlossen oder halboffen).

Satz 2. Seien X, Y metrische Räume; X sei zusammenhängend und $f: X \to Y$ sei eine surjektive stetige Abbildung. Dann ist Y zusammenhängend.

Lemma 1. Sei X ein metrischer Raum, C ein zusammenhängender Teilraum von X. Dann ist auch der Abschluss \bar{C} von C zusammenhängend.

Lemma 2. Sei X ein metrischer Raum, $X = \bigcup_{i \in I} X_i$. Alle X_i seien zusammenhängend

und es sei $\bigcap_{i \in I} X_i \neq \emptyset$. Dann ist auch X zusammenhängend.

Def. Sei X ein metrischer Raum, $x \in X$. Dann sei C(x) die Vereinigung aller zusammenhängenden Teilmengen von X, die x enthalten. Die Mengen C(x) heißen die Zusammenhangskomponenten von X.

Satz 3. Sei X ein metrischer Raum, $x, y \in X$.

- a) C(x) ist die größte zusammenhängende Menge, die x enthält.
- b) Entweder ist C(x) = C(y) oder $C(x) \cap C(y) = \emptyset$.
- c) C(x) ist abgeschlossen in X.

Def. Ein metrischer Raum X heißt wegzusammenhängend, wenn es für je zwei Punkte $x, y \in X$ eine stetige Abbildung $w : [0, 1] \to X$ gibt mit w(0) = x, w(1) = y.

 \mathbf{Satz} 4. Ein wegzusammenhängender metrischer Raum X ist zusammenhängend.

Bem. Es gibt zusammenhängende Räume, die nicht wegzusammenhängend sind.

Satz 5. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N . Dann gilt:

- a) M ist genau dann zusammenhängend, wenn es wegzusammenhängend ist.
- b) Die Zusammenhangskomponenten von M sind offen in M.
- c) Die Zusammenhangskomponenten von M sind n-dimensionale Untermannigfaltigkeiten von \mathbb{R}^N .

Entsprechendes gilt für Untermannigfaltigkeiten mit Rand.

12. Kompakte metrische Räume

Def. Ein metrischer Raum X heißt kompakt, wenn jede Überdeckung von X durch offene Teilmengen eine endliche Teilüberdeckung besitzt.

Das heißt: Ist Λ eine Menge und sind A_i ($i \in \Lambda$) offene Teilmengen von X mit $\bigcup_{i \in \Lambda} A_i = X$, so gibt es ein $n \in \mathbb{N}$ und $i_1, \ldots, i_n \in \Lambda$ mit $A_{i_1} \cup \ldots \cup A_{i_n} = X$.

Bem. Eine Teilmenge A eines metrischen Raumes X ist genau dann kompakt, wenn gilt: Ist Λ eine Menge und sind A_i ($i \in \Lambda$) offene Teilmengen von X mit $A \subseteq \bigcup_{i \in \Lambda} A_i$, so gibt es ein $n \in \mathbb{N}$ und $i_1, \ldots, i_n \in \Lambda$ mit $A \subseteq A_{i_1} \cup \ldots \cup A_{i_n}$.

Satz 1. Seien X, Y metrische Räume, sei $f: X \to Y$ stetig und K sei eine kompakte Teilmenge von X. Dann ist f(K) kompakt.

Satz 2. Jede abgeschlossene Teilmenge eines kompakten metrischen Raumes ist kompakt.

Satz 3. Jede kompakte Teilmenge eines metrischen Raumes X ist abgeschlossen in X

Satz 4. Seien X, Y metrische Räume; X sei kompakt. Ist $f: X \to Y$ stetig und bijektiv, so ist $f^{-1}: Y \to X$ stetig. Daher ist f ein Homöomorphismus.

Def. Sei (x_n) eine Folge in einem metrischen Raum X und $a \in X$. Dann heißt a $H\ddot{a}ufungspunkt$ von (x_n) , wenn (x_n) eine Teilfolge besitzt, die gegen a konvergiert. (Äquivalent dazu: Wenn es zu jeder Umgebung U von a unendlich viele $n \in \mathbb{N}$ mit $x_n \in U$ gibt.)

Satz 5. Für einen metrischen Raum X sind äquivalent:

- a) X ist kompakt.
- b) Jede Folge in X besitzt einen Häufungspunkt in X.
- c) X ist vollständig, und für jedes $\varepsilon > 0$ existieren ein $n \in \mathbb{N}$ und $x_1, \ldots, x_n \in X$ mit $X = \bigcup_{i=1}^n B_{\varepsilon}(x_i)$.

Satz 6. (Heine-Borel) Eine Teilmenge von \mathbb{R}^n ist genau dann kompakt, wenn sie beschränkt und abgeschlossen in \mathbb{R}^n ist.

Def. Ein metrischer Raum X heißt lokalkompakt, wenn gilt: Ist $a \in X$, so besitzt a eine kompakte Umgebung in X.

Bem. Jede Untermannigfaltigkeit von \mathbb{R}^N ist lokalkompakt.

13. Tangentialräume und Orientierungen

Def. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N und $a \in M$. Ein Punkt $v \in \mathbb{R}^N$ heißt Tangentialvektor an M in a, falls es ein offenes Intervall $I \subseteq \mathbb{R}$ mit $0 \in I$ und eine C^1 -Abbildung $\psi : I \to \mathbb{R}^N$ gibt mit

- 1) $\psi(I) \subseteq M$,
- 2) $\psi(0) = a$,
- 3) $\psi'(0) = v$.

Sei $T_a(M)$ die Menge aller Tangentialvektoren an M in a. Dann heißt $T_a(M)$ der Tangentialraum an M in a.

Satz 1. Sei M eine n-dim. Untermannigfaltigkeit von \mathbb{R}^N und $a \in M$.

- a) T_aM ist ein *n*-dim. Untervektorraum von \mathbb{R}^N .
- b) Sei $\varphi:W\to V$ eine Karte von M und $b\in W$ mit $\varphi(b)=a$. Dann ist

$$T_a(M) = \text{Bild}(D\varphi(b)) = \{D\varphi(b) \cdot u \mid u \in \mathbb{R}^n\}.$$

c) Sei U eine offene Umgebung von a in \mathbb{R}^N und $g:U\to\mathbb{R}^{N-n}$ eine Submersion mit $M\cap U=\{x\in U\,|\, g(x)=0\}$. Dann ist

$$T_a M = \operatorname{Kern} (Dg(a)) = \{ v \in \mathbb{R}^N \mid Dg(a) \cdot v = 0 \}$$

.

Beispiel: Ist
$$a \in S^{N-1}$$
, so ist $T_a(S^{N-1}) = a^{\perp} = \{v \in \mathbb{R}^N \mid \langle a | v \rangle = 0\}$.

Def. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N und $a \in M$. Das Orthogonalkomplement von $T_a(M)$ in \mathbb{R}^N wird mit $N_a(M)$ bezeichnet und heißt Normalenraum von M im Punkt a. Die Elemente von $N_a(M)$ heißen Normalenvektoren.

Beispiel: $N_a(S^{N-1}) = \mathbb{R} \cdot a$.

Def. Sei M eine Hyperfläche in \mathbb{R}^N . Ein Einheitsnormalenfeld auf M ist eine stetige Abbildung $\nu:M\to\mathbb{R}^N$ mit

- 1. $\nu(a) \in N_a(M)$ für alle $a \in M$,
- 2. $\|\nu(a)\| = 1$ für alle $a \in N$.

Def. Seien U, V offen in \mathbb{R}^n und $\varphi : U \to V$ ein Diffeomorphismus. Dann heißt φ orientierungstreu, wenn det $D\varphi(x) > 0$ für alle $x \in U$.

Def. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N mit $n \geq 1$.

- a) Zwei Karten φ_1, φ_2 heißen gleich orientiert, wenn die Parametertransformation $\tau(\varphi_2, \varphi_1)$ orientierungstreu ist.
- b) Ein Atlas von M heißt orientiert, wenn je zwei seiner Karten gleich orientiert sind.
- c) M heißt orientierbar, wenn M einen orientierten Atlas besitzt.
- d) Zwei orientierte Atlanten \mathcal{A} und \mathcal{A}' heißen äquivalent, wenn jede Karte von \mathcal{A} mit jeder Karte von \mathcal{A}' gleich orientiert ist.
- e) Eine Äquivalenzklasse σ orientierter Atlanten von M heißt eine Orientierung von M. Man nennt dann (M,σ) eine orientierte Untermannigfaltigkeit. Man sagt meist: "Sei M eine orientierte Untermannigfaltigkeit" statt "Sei (M,σ) eine orientierte Untermannigfaltigkeit".

Beispiel: Jede Untermannigfaltigkeit von \mathbb{R}^N , die das Bild einer einzigen Karte ist, ist orientierbar.

Bemerkungen. Sei M eine n-dimensionale orientierbare Untermannigfaltigkeit von \mathbb{R}^N mit $n \geq 1$.

- a) Zu jeder Orientierung σ gibt es einen zu σ gehörigen orientierten Atlas \mathcal{A} , dessen Karten den Definitionsbereich \mathbb{R}^n haben.
- b) M besitzt mindestens zwei verschiedene Orientierungen:

Sei $\mathcal{A} = \{ \varphi_j : \mathbb{R}^n \to V_j \mid j \in J \}$ ein orientierter Atlas von M. Sei

$$\tilde{\varphi}_j(x_1,\ldots,x_n) := \varphi_j(x_1,\ldots,x_{n-1},-x_n)$$
.

Dann bilden die $\tilde{\varphi}_i$ einen orientierten Atlas von M, der nicht zu A äquivalent ist.

c) Ist M orientierbar und zusammenhängend, so besitzt M genau zwei verschiedene Orientierungen.

Satz 2. Sei M eine Hyperfläche in \mathbb{R}^N . Genau dann ist M orientierbar, wenn M ein Einheitsnormalenfeld besitzt.

Beispiel: S^n ist orientierbar; das Möbiusband ist nicht orientierbar.

Satz 3. Sei M eine n-dimensionale Untermannigfaltigkeit von \mathbb{R}^N und X eine n-dimensionale abgeschlossene Untermannigfaltigkeit mit Rand von M. Ist M orientierbar und $n \geq 2$, so ist ∂X orientierbar.

Beispiel: Satz 3 zeigt erneut, dass S^n orientierbar ist.

Bem. und Def. Ist σ eine Orientierung von M, so erhält man auf folgende Weise eine Orientierung von ∂X , die die *induzierte Orientierung* von ∂X heißt:

Man wählt einen orientierten Atlas \mathcal{A} von M, der zu σ gehört und für den gilt: Jede Karte $\varphi:W\to V$ von \mathcal{A} mit $V\cap\partial X\neq\emptyset$ ist randadaptiert bezüglich X. Für jedes solches φ setzen wir:

$$\begin{split} V_0 &:= \partial X \cap V, \\ W_0 &:= \{ (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} \mid (0, x_1, \dots, x_{n-1}) \in W \}, \\ \varphi_0 &: W_0 \to V_0 \text{ gegeben durch } \varphi_0(x_1, \dots, x_{n-1}) := \varphi(0, x_1, \dots, x_{n-1}). \end{split}$$

Dann bilden die φ_0 einen orientierten Atlas von ∂X , der zur induzierten Orientierung gehört.

14. Glatte Zerlegungen der Eins

Def. Ist X ein metrischer Raum und $f: X \to \mathbb{R}$ eine Funktion, so heißt der Abschluss der Menge $\{x \in X | f(x) \neq 0\}$ der Träger von f; er wird mit Supp(f) bezeichnet.

Satz 1. Es gibt eine glatte Funktion $g: \mathbb{R}^n \to \mathbb{R}$ mit

$$g(x)>0\quad \text{für}\quad x\in]-1,1[^n\ ,$$

$$\mathrm{Supp}(g)=[-1,1]^n\ .$$

Satz 2. Sei U offen \mathbb{R}^n und X eine kompakte Teilmenge von U. Seien A_1, \ldots, A_m offen in U mit $X \subseteq A_1 \cup \ldots \cup A_m$. Dann gibt es glatte Funktionen $g_1, \ldots, g_m : U \to \mathbb{R}$ mit folgenden Eigenschaften:

• $g_j(x) \ge 0$ für alle $x \in U$ und alle j.

- $\sum_{j=1}^{m} g_j(x) \le 1$ für alle $x \in U$.
- Für alle j ist $Supp(g_j)$ kompakt und in A_j enthalten.
- $\sum_{j=1}^{m} g_j(x) = 1$ für alle $x \in X$.

Eine solche Menge von Funktionen heißt eine glatte Zerlegung der Eins auf X, welche der Überdeckung $A_1, \ldots A_m$ von X untergeordnet ist.

15. Alternierende Multilinearformen

Bez.: Ist U offen in \mathbb{R}^3 , so sei $\mathfrak{V}(U)$ die Menge aller C^{∞} -Abbildungen $F = (f_1, f_2, f_3) : U \to \mathbb{R}^3$. Die Elemente von $\mathfrak{V}(U)$ heißen glatte Vektorfelder auf U. Man hat lineare Abbildungen

$$C^{\infty}(U) \xrightarrow{\operatorname{grad}} \mathfrak{V}(U) \xrightarrow{\operatorname{rot}} \mathfrak{V}(U) \xrightarrow{\operatorname{div}} C^{\infty}:$$

$$\operatorname{grad}(f) := \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right),$$

$$\operatorname{rot}(F) := \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}, \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}, \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right),$$

$$\operatorname{div}(F) := \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}.$$

Es gilt: rot grad f = 0, div rot F = 0.

Ist U zum Beispiel konvex, so gilt: Ist rot F = 0, so gibt es ein f mit grad f = F; ist div F = 0, so gibt es ein G mit rot G = F.

Ziel von §15 und §16: Verallgemeinerung dieses Kalküls von 3 auf n und auf beliebige Mannigfaltigkeiten.

Bez.: a) Sei e_1, \ldots, e_n die übliche Basis von \mathbb{R}^n .

b) Sei $(\mathbb{R}^n)^*$ der Dualraum von \mathbb{R}^n , also die Menge aller linearen Abbildungen $\mathbb{R}^n \to \mathbb{R}$. Dann ist $(\mathbb{R}^n)^*$ ein \mathbb{R} -Vektorraum mit der Basis $\Delta_1, \ldots, \Delta_n$, wobei

$$\Delta_i(e_j) = \begin{cases} 1 & , & \text{falls } i = j \\ 0 & , & \text{falls } i \neq j. \end{cases}$$

c) Für $k \in \mathbb{N}$ sei $(\mathbb{R}^n)^k := \{(v_1, \dots, v_k) \mid v_i \in \mathbb{R}^n\}.$

Def. Eine alternierende Multilinearform vom Grad k, kurz: eine alternierende k-Form auf \mathbb{R}^n ist eine Abbildung $\omega : (\mathbb{R}^n)^k \to \mathbb{R}$ mit folgenden Eigenschaften:

- 1) ω ist linear in jedem Argument.
- 2) $\omega(\ldots,v_i,\ldots,v_j,\ldots)=-\omega(\ldots,v_j,\ldots,v_i,\ldots)$, wenn alle anderen Argumente gleich bleiben.

Die alternierenden k-Formen auf \mathbb{R}^n bilden einen Vektorraum $\Lambda^k(\mathbb{R}^n)^*$. Man setzt $\Lambda^0(\mathbb{R}^n)^* := \mathbb{R}$.

Beispiele: a) $\Lambda^1(\mathbb{R}^n)^* = (\mathbb{R}^n)^*$.

b) Durch $(v_1, \ldots, v_n) \mapsto \det(v_1, \ldots, v_n)$ erhält man eine alternierende *n*-Form auf \mathbb{R}^n , wobei die v_i als Spalten aufgefasst werden.

Bem.1. Die Bedingung 2) ist äquivalent mit

$$2^*) \qquad \qquad \omega(\ldots, v, \ldots, v, \ldots) = 0.$$

Def. Sind $\varphi_1, \ldots, \varphi_k \in (\mathbb{R}^n)^*$, so definier man $\varphi_1 \wedge \ldots \wedge \varphi_k \in \Lambda^k(\mathbb{R}^n)^*$ durch

$$(\varphi_1 \wedge \ldots \wedge \varphi_k)(v_1, \ldots, v_k) := \det((\varphi_i(v_i))_{i,i=1,\ldots,k}).$$

Beispiel: $\Delta_1 \wedge \ldots \wedge \Delta_n = \det$.

Bez.: Ist $I \subseteq \{1, \ldots, n\}$, also $I = \{i_1, \ldots, i_k\}$ mit $1 \le i_1 < \ldots < i_k \le n$, so sei

$$|I| := k,$$

$$e_I := (e_{i_1}, \dots, e_{i_k}) \in (\mathbb{R}^n)^k,$$

$$\Delta_I := \Delta_{i_1} \wedge \dots \wedge \Delta_{i_k} \in \Lambda^k(\mathbb{R}^n)^*.$$

(Dabei ist auch $I = \emptyset$, also k = 0, erlaubt; allerdings muss man e_{\emptyset} nicht definieren; man setzt $\Delta_{\emptyset} := 1 \in \mathbb{R} = \Lambda^{0}(\mathbb{R}^{n})^{*}$.)

Bem.2. Sind $I, J \subseteq \{1, \ldots, n\}$ mit $|I| = |J| = k \ge 1$, so ist

$$\Delta_I(e_J) = \begin{cases} 1 & , & \text{falls } I = J \\ 0 & , & \text{falls } I \neq J. \end{cases}$$

Bem.3. Die Δ_I mit |I|=k bilden eine Basis des \mathbb{R} -Vektorraums $\Lambda^k(\mathbb{R}^n)^*$. Insbesondere ist dim $\Lambda^k(\mathbb{R}^n)^*=\binom{n}{k}$ und $\Lambda^k(\mathbb{R}^n)^*=0$ für k>n. Die Elemente von $\Lambda^k(\mathbb{R}^n)^*$ können also auf genau eine Weise in der Form $\sum_{|I|=k} a_I \Delta_I$ mit $a_I \in \mathbb{R}$ geschrieben werden.

Def. Seien $I, J \subseteq \{1, \ldots, n\}$, $I = \{i_1, \ldots, i_k\}$ mit $i_1 < \ldots < i_k$ und $J = \{j_1, \ldots, j_h\}$ mit $j_1 < \ldots < j_h$. Dann sei

$$\Delta_I \wedge \Delta_J := \Delta_{i_1} \wedge \ldots \wedge \Delta_{i_k} \wedge \Delta_{j_1} \wedge \ldots \wedge \Delta_{j_h}.$$

(Insbesondere ist $\Delta_{\emptyset} \wedge \Delta_J = \Delta_J$.)

Daraus gewinnt man eine Abbildung

$$\wedge : \Lambda^{k}(\mathbb{R}^{n})^{*} \times \Lambda^{h}(\mathbb{R}^{n})^{*} \longrightarrow \Lambda^{k+h}(\mathbb{R}^{n})^{*} :$$

$$\left(\sum_{|I|=k} a_{I} \Delta_{I}\right) \wedge \left(\sum_{|J|=h} b_{J} \Delta_{J}\right) = \sum_{I,J} a_{I} b_{J} \Delta_{I} \wedge \Delta_{J}.$$

Bem.4. Diese Abbildung hat folgende Eigenschaften:

- a) Sie ist bilinear.
- b) Sie ist assoziativ.
- c) Sie ist graduiert kommutativ, d.h.

$$\omega\wedge\eta=(-1)^{kh}\eta\wedge\omega\text{ f\"{u}r }\omega\in\Lambda^k,\eta\in\Lambda^h.$$

16. Differentialformen

Def. Sei U offen in \mathbb{R}^n . Eine Differentialform vom Grad k oder k-Form auf U ist eine Abbildung

$$\omega: U \to \Lambda^k(\mathbb{R}^n)^*.$$

Insbesondere ist eine 0-Form eine Funktion $U \to \mathbb{R}$.

Bez.: Die konstante k-Form $\omega: U \to \Lambda^k(\mathbb{R}^n)^*$ mit $\omega(x) = \Delta_I$ für alle $x \in U$ wird mit dx_I bezeichnet.

Ist $I = \{i\}$, so schreibt man natürlich dx_i statt $dx_{\{i\}}$.

Bem.5. Eine Differentialform ω vom Grad k auf U ist von der Form

$$\omega = \sum_{|I|=k} f_I \, dx_I$$

mit eindeutig bestimmten Funktionen $f_I: U \to \mathbb{R}$.

 ω heißt stetig (bzw. von der Klasse C^p), wenn alle f_I diese Eigenschaft haben.

Wir betrachten meist glatte Differentialformen, d.h. Differentialformen von der Klasse C^{∞} . Mit $\Omega^k(U)$ bezeichnen wir den Vektorraum der glatten k-Formen auf U.

Sind $\omega = \sum f_I dx_I$, $\eta = \sum g_I dx_I \in \Omega^k(U)$, so ist

$$\omega + \eta = \sum (f_I + g_I) \, dx_I.$$

Ist ω eine k-Form und η eine h-Form auf U, so erhält man eine (k+h)-Form $\omega \wedge \eta$ auf U durch

$$\omega \wedge \eta(x) := \omega(x) \wedge \eta(x).$$

Ist $I = \{i_1, ..., i_k\} \subseteq \{1, ..., n\}$ mit $i_1 < ... < i_k$, so ist

$$dx_I = dx_{i_1} \wedge \ldots \wedge dx_{i_k}.$$

Es gilt: $dx_i \wedge dx_j = -dx_j \wedge dx_i$, insbesondere $dx_i \wedge dx_i = 0$.

Def. Sei $\omega = \sum_{|I|=k} f_I dx_I \in \Omega^k(U)$. Definiere $d\omega \in \Omega^{k+1}(U)$ durch

$$d\omega := \sum_{|I|=k} \sum_{j=1}^{n} \frac{\partial f_{I}}{\partial x_{j}} dx_{j} \wedge dx_{I}.$$

 $d\omega$ heißt die äußere Ableitung von ω .

Spezialfall: Ist ω eine 0-Form , also eine Funktion, so ist

$$d\omega = \sum_{j=1}^{n} \frac{\partial \omega}{\partial x_j} \, dx_j.$$

Beispiel: Sei ω die Funktion $(x_1, \ldots, x_n) \mapsto x_i$ auf \mathbb{R}^n ; dann ist $d\omega = dx_i$.

Bem.6. Man hat für $U \subseteq \mathbb{R}^3$ ein kommutatives Diagramm

$$C^{\infty}(U) \xrightarrow{\operatorname{grad}} \mathfrak{V}(U) \xrightarrow{\operatorname{rot}} \mathfrak{V}(U) \xrightarrow{\operatorname{div}} C^{\infty}(U)$$

$$= \varphi_1 \bigg| \cong \varphi_2 \bigg| \cong \varphi_3 \bigg| \cong \varphi_3$$

Dabei sind die Vektorraumisomorphismen $\varphi_1, \varphi_2, \varphi_3$ gegeben durch

$$\varphi_1(f_1, f_2, f_3) = f_1 dx + f_2 dy + f_3 dz,$$

$$\varphi_2(f_1, f_2, f_3) = f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy,$$

 $\varphi_3(f) = f dx \wedge dy \wedge dz.$

Bem.7. Die Abbildung $d: \Omega^k(U) \to \Omega^{k+1}(U)$ ist linear. Für $\omega \in \Omega^k(U)$ und $\eta \in \Omega^h(U)$ ist

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \omega \wedge d\eta.$$

Satz 1. Ist ω eine glatte Differentialform, so ist

$$d(d\omega) = 0.$$

Def. Eine Teilmenge U von \mathbb{R}^n heißt sternförmig, wenn gilt: Es gibt ein $x_0 \in U$, so dass für alle $x \in U$ die Verbindungsstrecke zwischen x_0 und x in U liegt.

Bem. Wie zeigen später: Sei U eine offene sternförmige Teilmenge von \mathbb{R}^n und $\omega \in \Omega^k(U)$ mit $d\omega = 0$. Dann gibt es ein $\eta \in \Omega^{k-1}(U)$ mit $d\eta = \omega$.

Satz 2. Sei U offen in \mathbb{R}^n , V offen in \mathbb{R}^m , $\varphi=(\varphi_1,\ldots,\varphi_n):V\to U$ glatt. Dann gibt es genau eine Abbildung

$$\varphi^*: \Omega^k(U) \to \Omega^k(V)$$

mit den folgenden Eigenschaften (1) - (4):

- (1) φ^* ist linear.
- (2) Ist $f \in \Omega^0(U) = C^\infty(U)$, so ist $\varphi^*(f) = f \circ \varphi$.
- (3) $\varphi^*(\omega \wedge \eta) = \varphi^*(\omega) \wedge \varphi^*(\eta)$.
- (4) $d(\varphi^*\omega) = \varphi^*(d\omega)$.

Ferner gilt:

(5)
$$\psi^*(\varphi^*(\omega)) = (\varphi \circ \psi)^*(\omega)$$
.

Spezialfall: Sei k = n = m: Es ist

$$\varphi^*(fdx_1 \wedge \ldots \wedge dx_n) = (f \circ \varphi) \cdot \det(D\varphi) \, dx_1 \wedge \ldots \wedge dx_n.$$