Assignment 3

Dushan Terzikj 24.02.2017

Problem 1:

- (a) Methods are implemented in the following source files:
 - (i) 'Fib_naive.cpp' → naive approach with STDIN and STDOUT
 - (ii) 'Fib_naive_generator.cpp' → naive approach with generating increasing N
 - (iii) 'Fib bottom up.cpp' → Bottom up approach with STDIN and STDOUT
 - (iv) 'Fib_bottom_up_generator.cpp' → Bottom up approach with generating increasing N
 - (v) 'Fib matrix.cpp' → Matrix approach with STDIN and STDOUT
 - (vi) 'Fib matrix generator.cpp' → Matrix approach with generating increasing N
 - (vii) 'Fib closed form.cpp' → Closed form approach with STDIN and STDOUT
 - (viii) 'Fib_closed_form_generator.cpp' → Closed form approach with generating increasing N There is a 'Makefile', which you can run using the command line by typing 'make' in the directory of the source files and the 'Makefile'. Then run the programs by typing ./[name_of_the_program] in the command line (NOTE: Generator programs might take a while, they were initially used for generating run-time data).
- (b) Table can be found in 'table.pdf'
- (c) In practice yes. However, if not properly regulated, **closed form approach** might not give the correct n-th fibonacci number. The reason for this is floating point precision. In my program, I used round(x) function from C++ library <cmath>.
- (d) Plot can be found in 'plot.pdf'.