

TEORÍA DE SISTEMAS 2 (CO206) SYLLABUS

1. Equipo Docente

Catedrático: Ing. J. R. Quan rquan@galileo.edu>

2. Descripción

En este curso se obtienen representaciones matemáticas de sistemas y se enfatiza dicha representación en el espacio de estados. Las ecuaciones de estado se resuelven (por integración en el tiempo y por transformación de Laplace) y se analiza el estado y la respuesta de sistemas. Se destaca el análisis por descomposición modal de sistemas con valores propios simples y se dan interpretaciones geométricas del vector de estado.

En resumen, el *objetivo general* del curso es: representar sistemas mecánicos y eléctricos en el espacio de estados, resolver las ecuaciones de estado y de salida, y analizar el vector de estado y la respuesta de sistemas.

3. Competencias

Al finalizar el curso, el estudiante: calcula y analiza el vector de estado y la respuesta de sistemas representados en el espacio de estados.

4. Metodología

El curso se desarrolla mediante clases magistrales, ejemplos, ejercicios, hojas de trabajo, lecturas y observación de videos (las clases grabadas se encuentran en $http://medialab.\ galileo.\ edu:$ Video en L'inea \rightarrow Dr. Eduardo Suger \rightarrow Teor'ia de Sistemas 2).

5. Contenido Sintético

Unidad Temática	Ref.	Competencias a Trabajar
 Unidad 1 – Representaciones matemáticas de sistemas. 1.1 Descripción de sistemas por funciones de transferencia. 1.2 Representación de sistemas en el espacio de estados. 1.3 Matriz de transferencia. 	[4].	Relaciona las señales de entrada y salida de sistemas utilizando funciones de transferencia, ecuaciones de estado y de salida, y matrices de transferencia. Obtiene representaciones de sistemas en el espacio de estados a partir de funciones de transferencia.

Unidad 2 – Solución de las ecuaciones de estado y de salida en el dominio del tiempo		
2.1 Valores propios y vectores propios de una matriz.		
2.2 Vectores propios generalizados.		Calcula y analiza el vector de estado y la respuesta de sistemas.
2.3 Matriz modal.		
2.4 Solución de las ecuaciones de estado y de salida – caso homogéneo.		
2.5 Matriz de transición de estado.	[4].	
2.6 Cálculo de la matriz de transición de estado en el caso de una matriz de sistema con valores propios simples por medio de la matriz modal.		
2.7 Cálculo de la matriz de transición por el teorema de Cayley-Hamilton.		
2.8 Propiedades de la matriz de transición de estado.		
2.9 Solución de las ecuaciones de estado y de salida – caso no homogéneo.		
Unidad 3 — Solución de las ecuaciones de estado y de salida por transformación de variables de estado.		Calcula y analiza el vector de esta- do y la respuesta de sistemas. Interpreta geométricamente el comportamiento de los modos de sistemas.
3.1 Transformación de variables de estado.		
3.2 Solución de las ecuaciones de estado y de salida en forma normal.	[4].	
3.3 Descomposición modal.		
3.4 Trayectorias en el espacio de estados.		
3.5 Análisis de sistemas con valores propios complejos (osciladores).		
Unidad 4 – Solución de las ecuaciones de estado		
y de salida en el dominio de la frecuencia4.1 Solución de las ecuaciones de estado y de salida por transformación de Laplace.	[4].	Calcula el vector de estado y la res- puesta de sistemas por transforma- ción inversa de Laplace.
4.2 Cálculo de la matriz de transición de estado por transformación inversa de Laplace.		

Unidad 5 — Representación de sistemas en el espacio de estados.		
5.1 Ecuaciones de estado y de lectura de sistemas mecánicos.		A P
5.2 Ecuaciones de estado y de lectura de sistemas eléctricos.	[4].	Analiza y representa sistemas en el espacio de estados.
5.3 Ecuaciones de estado y de lectura de sistemas con engranajes.		

6. Evaluación

La nota final de este curso se calculará de acuerdo a lo indicado en siguiente tabla:

Actividades a Desarrollar	Puntuación Asignada
Tareas	5 puntos
Dos Exámenes Cortos	10 puntos
Primer Examen Parcial	25 puntos
Segundo Examen Parcial	30 puntos
Zona	70 puntos
Examen Final	30 puntos
Total	100 puntos

Como requisito adicional de aprobación se requiere un mínimo de 80 % de asistencia.

7. Horario

El curso consta de 4 créditos académicos (CA). Ver horario en el GES dependiendo de su sección.

8. Bibliografía

- [1] Chen, C. T.: *Linear system theory and design*. Oxford University Press, 4a. edición, 2012, ISBN 4-8337-0191-X.
- [2] CsGaki, Frigyes: *Modern control theories : nonlinear, optimal, and adaptive systems*. Akad-Gemiai KiadGo, 1972.
- [3] Drazin, P.: *Nonlinear Systems*. Cambridge University Press, 1a. edición, 1992, ISBN 0521406684.
- [4] FISICC, Universidad Galileo: *Teoría de Sistemas 2*, 2005 y 2006. http://medialab.galileo.edu.
- [5] Göldner, K.: *Mathematische Grundlagen der Systemanalyse, Vol. 1, 2, 3.* VEB Fachbuch Verlag, 1987, ISBN 38171 1008 1.

- [6] Harmann: Lineare Systeme. Springer Verlag, ISBN 3-54-57661-4.
- [7] Karnopp, D. y R. Rosenberg: *System Dynamics: A Unified Approach*. John Wiley & Sons, Inc., 1975, ISBN 0-471-62171-4.
- [8] Lathi, B.P.: *Linear Systems and Signals*. Oxford University Press, 2a. edición, 2004, ISBN 0-941413-34-9.
- [9] Nise, N. S.: Control Systems Engineering. John Wiley & Sons, Inc., 6a. edición, 2010, ISBN 978-0470547564.
- [10] Oppenheim, A., A. Willsky y S. Hamid: *Signals and Systems*. Prentice Hall, 2a. edición, 1996, ISBN 0-13-814757-4.
- [11] Rosen, R.: *Dynamical System Theory in Biology: Stability theory and its applications*. Wiley-Interscience, 1a. edición, 1971, ISBN 0-471-73550-7.
- [12] Roxin, E.: *Control theory and its applications*. Gordon and Breach Science Publishers, 1997, ISBN 2919875221.
- [13] Tu, Pierre N.V.: Dynamical Systems: An Introduction with Applications in Economics and Biology. Springer, 2a. edición, 1994, ISBN 3-54-57661-4.
- [14] Zadeh, L. y C. Desoer: *Linear System Theory: The State Space Approach*. Dover Publications, 1a. edición, 2008.

9. Recomendaciones Generales

Se recomienda *resolver* todos los problemas de las hojas de trabajo, preguntar si tienen dudas y *enseñar* periódicamente todo lo que se les ha enseñado en el curso.