Quelques problèmes corrigés

Problème I (intégrales et suites)

Pour tout nombre entier k positif ou nul, on considère la suite de nombres (I_k) telle que $I_k = \int_0^1 \frac{x^k}{\sqrt{x^2+1}} dx$. L'objectif est d'étudier cette suite.

- 1) Calcul de I_0
- a) On considère la fonction $g(x) = \ln(x + \sqrt{x^2 + 1})$. Montrer qu'elle est définie sur R.
 - b) Calculer sa dérivée g'(x).
 - c) En déduire la valeur de I_0 .
 - 2)Calculer I_1 .
- 3)a) Pour tout entier k supérieur ou égal à deux, écrire $I_k + I_{k-2}$ sous forme d'une seule intégrale, en simplifiant au mieux.
- b) Procéder à une intégration par parties sur cette intégrale pour démontrer que : $I_k+I_{k-2}=\frac{\sqrt{2}-I_k}{k-1}$.
 - c) En déduire l'expression de I_k en fonction de I_{k-2} et k.
 - d) Calculer I_2 et I_3 .
 - 4)a) Montrer que $I_k \leq \frac{1}{k+1}$.
 - b) En déduire le comportement à l'infini de la suite (I_k) .
 - 5) Montrer que la suite (I_k) est décroissante.
 - 6)a) En utilisant le résultat du 5° et du 3-b, montrer que :

$$\frac{\sqrt{2} - I_{k+2}}{k+1} \le 2I_k \le \frac{\sqrt{2} - I_k}{k-1}.$$

- b) En déduire que $k\sqrt{2}\ I_k$ tend vers 1 lorsque k tend vers l'infini.
- 1a) L'expression $x + \sqrt{1 + x^2}$ est positive (>0) lorsque x est ≥0, comme somme des deux termes $x \ge 0$ et $\sqrt{1 + x^2} \ge 1 > 0$. Prenons maintenant x < 0, et utilisons la quantité conjuguée : $x + \sqrt{1 + x^2} = \frac{x^2 1 x^2}{x \sqrt{1 + x^2}} = \frac{-x^2}{x \sqrt{1 + x^2}} > 0$

Ce qui est sous le logarithme est toujours >0, le logarithme existe pour tout x réel, et g est définie sur R.

1

1b)La fonction g est dérivable comme mélange de fonctions usuelles dérivables sur leur ensemble de définition, et la $\sqrt{}$ l'est aussi car ce qui est sous le radical n'est jamais nul.

$$g'(x) = \frac{1}{x + \sqrt{1 + x^2}} \left(1 + \frac{x}{\sqrt{1 + x^2}}\right) = \frac{1}{x + \sqrt{1 + x^2}} \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}$$

1c) On en déduit que $\frac{1}{\sqrt{1+x^2}}$ admet comme primitive $\ln(x+\sqrt{x^2+1})$ sur R.

$$I_0 = \int_0^1 \frac{1}{\sqrt{x^2 + 1}} dx = \left[\ln(x + \sqrt{1 + x^2})\right]_0^1 = \ln 2.$$

2)
$$I_1 = \int_0^1 \frac{x}{\sqrt{x^2 + 1}} dx = \int_0^1 \frac{2x}{2\sqrt{x^2 + 1}} dx$$
, avec $\frac{2x}{2\sqrt{x^2 + 1}}$ de la forme $\frac{u'}{2\sqrt{u}}$ qui admet

comme primitive \sqrt{u} , d'où $I_1 = [\sqrt{1+x^2}]_0^1 = \sqrt{2} - 1$.

3a)
$$I_k + I_{k-2} = \int_0^1 \frac{x^k + x^{k-2}}{\sqrt{1 + x^2}} dx = \int_0^1 \frac{x^{k-2}(1 + x^2)}{\sqrt{1 + x^2}} dx = \int_0^1 x^{k-2} \sqrt{1 + x^2} dx$$

3b) Procédons à une intégration par parties en posant :

$$u' = x^{k-2}$$
, $v = \sqrt{1+x^2}$, d'où $u = \frac{x^{k-1}}{k-1}$, $v' = \frac{x}{\sqrt{1+x^2}}$

$$I_k + I_{k-2} = \left[\frac{1}{k-1}x^{k-1}\sqrt{1+x^2}\right]_0^1 - \frac{1}{k-1}\int_0^1 \frac{x^k}{\sqrt{1+x^2}} dx = \frac{1}{k-1}(\sqrt{2} - I_k)$$

3c) En ordonnant, l'égalité précédente devient :

$$\frac{k}{k-1}I_k = \frac{\sqrt{2}}{k-1} - I_{k-2}$$

$$I_k = \frac{1}{k} (\sqrt{2} - (k-1)I_{k-2})$$

3d)
$$I_2 = \frac{1}{2}(\sqrt{2} - I_0) = \frac{1}{2}(\sqrt{2} - \ln 2)$$

$$I_2 = \frac{1}{3}(\sqrt{2} - 2I_1) = \frac{1}{2}(\sqrt{2} - 2(\sqrt{2} - 1)) = \frac{1}{2}(2 - \sqrt{2})$$

4a) On a toujours $\sqrt{x^2 + 1} \ge 1$, d'où $\frac{x^k}{\sqrt{x^2 + 1}} \le x^k$ sur [0 1]. L'intégration préserve les inégalités, avec les bornes dans le sens croissant : $I_k \le \int_0^1 x^k dx$, $I_k \le \frac{1}{k+1}$.

b) Puisque $0 \le I_k \le \frac{1}{k+1}$, lorsque tend vers l'infini, I_k est pris en tenaille entre 0 et une quantité qui tend vers 0. D'où $\lim_{k\to\infty}I_k=0$.

5) $I_{k+1} - I_k = \int_0^1 \frac{x^k(x-1)}{\sqrt{x^2+1}} dx$. Ce qui est sous l'intégrale est négatif ou nul sur [0 1] à cause de x-1. Par intégration $I_{k+1} - I_k \le 0$. La suite (I_k) est décroissante.

6) On a vu que $I_k + I_{k-2} = \frac{\sqrt{2 - I_k}}{k - 1}$. Comme la suite (I_k) est décroissante,

$$\begin{split} I_k + I_{k-2} &\geq 2I_k \ \text{ et } \ 2I_k \leq \frac{\sqrt{2} - I_k}{k-1}. \ \text{De même, avec} \ I_{k+2} + I_k = \frac{\sqrt{2} - I_{k+2}}{k+1}, \ \text{et } \ I_{k+2} + I_k \leq 2I_k, \ \frac{\sqrt{2} - I_{k+2}}{k+1} \leq 2I_k. \ \text{On a bien l'encadrement demandé.} \end{split}$$

Problème 2 (fonctions)

On considère la fonction f telle que $f(x) = e^{\int \frac{1}{x} \ln(x + \sqrt{x^2 + 1})}$. L'objectif est l'étude de cette fonction.

- 1) Déterminer l'ensemble de définition de la fonction f.
- 2) Recherche de la limite de f en 0
- a) Déterminer $\lim_{h\to 0} \frac{\ln(1+h)}{h}$ et en déduire la limite de $\frac{\ln(x+\sqrt{1+x^2})}{x+\sqrt{1+x^2}-1}$ lorsque

x tend vers 0.

- b) En s'aidant du résultat précédent, chercher la limite de $\frac{\ln(x+\sqrt{1+x^2})}{x}$ lorsque x tend vers 0.
 - c) Justifier et préciser la limite de f en 0.
 - 3) Déterminer la limite de f en $+\infty$.
 - 4) Montrer que la fonction f est paire.
 - 5) Montrer que la fonction f est dérivable sur \mathbb{R}^* et calculer la dérivée f.
- 6) En étudiant une fonction auxiliaire sur R^*+ pour avoir le signe de f', déterminer le sens de variation de f sur R^*+ .
- 7) Montrer que l'on peut prolonger par continuité la fonction f de façon à avoir une fonction F définie et continue sur R. Montrer que la fonction F est aussi dérivable en 0.
 - 8) Tracer la courbe représentative de f.
 - 1) Ce qui est sous le radical dans $\sqrt{1+x^2}$ est toujours ≥ 0 (et même ≥ 1). La racine carrée existe.

Le logarithme existe si et seulement si $x+\sqrt{1+x^2}>0$. Etudions le signe de $x+\sqrt{1+x^2}$ en distinguant deux cas :

3

- Si x est ≥ 0 , on a aussi $1+x^2 \ge 1$, $\sqrt{1+x^2} \ge 1$, d'où $x+\sqrt{1+x^2} > 0$.
- Si x est < 0,

$$x + \sqrt{1 + x^2} = x + \sqrt{x^2 (1 + \frac{1}{x^2})} = x - x\sqrt{1 + \frac{1}{x^2}} \quad \text{car} \quad x < 0$$
$$= x(1 - \sqrt{1 + \frac{1}{x^2}}) > 0 \quad \text{car} \quad \sqrt{1 + \frac{1}{x^2}} > 1 \quad \text{d'où } 1 - \sqrt{1 + \frac{1}{x^2}} < 0$$

Le logarithme existe toujours.

1/x existe si et seulement si $x \neq 0$.

L'exponentielle n'a aucun problème.

Finalement l'ensemble de définition est $D = \mathbf{R}^*$.

2a) On sait bien (cours !) que $\lim_{h\to 0} \frac{\ln(1+h)}{h} = 1$.

Posons $h = x + \sqrt{1 + x^2} - 1$. Lorsque x tend vers 0, on constate que h tend vers 0. Appliquons le résultat précédent : $\frac{\ln(1+h)}{h} = \frac{\ln(x+\sqrt{1+x^2})}{x+\sqrt{1+x^2}-1}$ tend vers 1 lorsque x tend vers 0 (d'où h aussi).

2b)
$$\frac{\ln(x+\sqrt{1+x^2})}{x} = \frac{\ln(x+\sqrt{1+x^2})}{x+\sqrt{1+x^2}-1} \cdot \frac{x+\sqrt{1+x^2}-1}{x}$$
. On sait déjà que

 $\frac{\ln(x+\sqrt{1+x^2})}{x+\sqrt{1+x^2}-1}$ tend vers 1 lorsque x tend vers 0. D'autre part :

$$\frac{x + \sqrt{1 + x^2} - 1}{x} = \frac{x + \frac{1 - x^2 - 1}{\sqrt{1 + x^2} + 1}}{x} = \frac{x(1 + \frac{x}{\sqrt{1 + x^2} + 1})}{x}$$
 (quantité conjuguée)
= 1 + $\frac{x}{\sqrt{1 + x^2} + 1}$ qui tend vers 1

Finalement $\lim_{x\to 0} \frac{\ln(x+\sqrt{1+x^2})}{x} = 1$.

2c) f(x) est de la forme e^{u} avec u qui tend vers 1 lorsque x tend vers 0. D'où $\lim_{x\to 0} f(x) = e$.

3)
$$x + \sqrt{1 + x^2} = x + \sqrt{x^2 (1 + \frac{1}{x^2})} = x + x\sqrt{1 + \frac{1}{x^2}} = x(1 + \sqrt{1 + \frac{1}{x^2}})$$
 pour $x > 0$

$$\frac{1}{x} \ln(x + \sqrt{1 + x^2}) = \frac{1}{x} \ln x(1 + \sqrt{1 + \frac{1}{x^2}}) = \frac{\ln x}{x} + \frac{1}{x} \ln(1 + \sqrt{1 + \frac{1}{x^2}})$$
 pour $x > 0$

Lorsque x tend vers $+\infty$, $\ln x / x$ est de la forme indéterminée $+\infty / +\infty$ mais dans ce cas, on sait que c'est x qui l'emporte : $\ln x / x$ tend vers 0+. D'autre part :

$$\frac{1}{x}\ln(1+\sqrt{1+\frac{1}{x^2}})$$
 est de la forme 0+. $\ln 2$, et tend vers 0+.

Ainsi $\lim_{x\to +\infty} f(x) = 0^+$. La courbe de f admet (Ox) comme asymptote, et elle est audessus.

4) Sur **R***,

$$f(-x) = e^{-\frac{1}{x}\ln(-x+\sqrt{x^2+1})} = e^{-\frac{1}{x}\ln\frac{1+x^2-x^2}{x+\sqrt{x^2+1}}} = e^{-\frac{1}{x}\ln\frac{1}{x+\sqrt{x^2+1}}} = e^{\frac{1}{x}\ln(x+\sqrt{x^2+1})} = f(x)$$

La fonction est paire, sa courbe est symétrique par rapport à l'axe des y. On peut réduire l'intervalle d'étude à $\mathbf{R}^{*}+$.

5) Comme mélange de fonctions usuelles dérivables sur leur ensemble de définition (et aussi par ce qui est sous le radical de $\sqrt{1+x^2}$ est >0), f est dérivable sur $D=\mathbf{R}^*$.

$$f'(x) = f(x) \left(-\frac{1}{x^2} \ln(x + \sqrt{1 + x^2} + \frac{1}{x\sqrt{1 + x^2}}) \right)$$

$$= f(x) \frac{1}{x^2 \sqrt{1 + x^2}} (x - \sqrt{1 + x^2} \ln(x + \sqrt{1 + x^2}))$$
 (on a abrégé les calculs)

6) Le signe de
$$f$$
' est celui de $x - \sqrt{1 + x^2} \ln(x + \sqrt{1 + x^2})$.
Posons $g(x) = x - \sqrt{1 + x^2} \ln(x + \sqrt{1 + x^2})$
 $g'(x) = 1 - \sqrt{1 + x^2} \frac{1}{x + \sqrt{1 + x^2}} (1 + \frac{x}{\sqrt{1 + x^2}}) - \frac{x}{\sqrt{1 + x^2}} \ln(x + \sqrt{1 + x^2})$
 $= 1 - 1 - \frac{x}{\sqrt{1 + x^2}} \ln(x + \sqrt{1 + x^2}) = -\frac{x}{\sqrt{1 + x^2}} \ln(x + \sqrt{1 + x^2})$

Ce qui est sous ln est >1, d'où ln >0. En prenant x>0, on a g'(x) < 0 sur R^*+ , et $g'(x) \le 0$ sur R^*+ . On en déduit que g est strictement décroissante sur R^*+ , à partir de g(0) = 0. D'où g(x) > 0 sur R^*+ .

On en déduit que f' < 0 sur \mathbb{R}^*+ , la fonction f est strictement décroissante sur \mathbb{R}^*+ .

7) Prenons la fonction F telle que $F(x) = f(x) \operatorname{sur} \mathbf{R} + \operatorname{et} F(0) = 0$.

Cette fonction est définie sur \mathbf{R} . Comme $\lim_{x\to 0} F(x) = \lim_{x\to 0} f(x)$ et que cette limite vaut e, avec en en plus F(0) = e, F est continue en 0 (elle l'est aussi, comme f, sur \mathbf{R}^*). La fonction F est le prolongement par continuité de f, sur \mathbf{R} .

F est-elle dérivable en 0 ? Formons le taux d'accroissement au voisinage de 0 :

$$\frac{F(x) - e}{x} = \frac{f(x) - e}{x} = \frac{e^{\frac{1}{x}\ln(x + \sqrt{1 + x^2})} - e}{x} = e^{\frac{1}{x}\ln(x + \sqrt{1 + x^2}) - 1} - \frac{1}{x}.$$

Posons $u = \frac{1}{x} \ln(x + \sqrt{1 + x^2}) - 1$. Grâce au 2°, on peut affirmer que u tend vers 0 lorsque x tend vers 0.

$$\frac{F(x) - e}{x} = e^{\frac{e^u - 1}{x}} = e^{\frac{e^u - 1}{u}} \cdot \frac{u}{x}$$
. On sait que $\frac{e^u - 1}{u}$ tend vers 1 lorsque u tend vers

0. Il s'agit de montrer que $\frac{u}{x}$ tend vers 0 lorsque x tend vers 0+ (alors, à cause de la symétrie, la dérivée à gauche sera aussi 0), et F sera dérivable en 0.

Montrons que $0 \le -\frac{u}{x} \le x$ sur \mathbb{R}^*+ , plus précisément au voisinage de 0+. On sait déjà que $0 \le -\frac{u}{x}$ car u < 0 à cause de la décroissance de f. Il reste à montrer que $-u \le x^2$.

Formons
$$x^2 + u = x^2 + \frac{1}{x} \ln(x + \sqrt{1 + x^2}) - 1 = \frac{1}{x} (x^3 - x + \ln(x + \sqrt{1 + x^2}))$$

Posons $h(x) = x^3 - x + \ln(x + \sqrt{1 + x^2})$, h a le même signe que $x^2 + 1$

$$h'(x) = 3x^2 - 1 + \frac{1}{\sqrt{1 + x^2}} = 3x^2 - 1 + (1 + x^2)^{-\frac{1}{2}} = 3x^2 - 1 + 1 - \frac{1}{2}x^2 + o(x^2) = \frac{5}{2}x^2 + o(x^2)$$

>0 au voisinage de 0+.

D'où h(x) est croissante au voisinage de 0+, et h(0) = 0, d'où h(x) > 0 au voisinage de 0+, et $u(x) + x^2$ aussi. D'où $0 \le -\frac{u}{x} \le x$ et $-\frac{u}{x}$ tend vers 0 lorsque x tend vers 0, comme annoncé. La fonction F est aussi dérivable en 0.

Problème 3 (suites)

On considère les deux suites couplées (x_n) et (y_n) avec n entier naturel, vérifiant les relations de récurrence : $x_{n+1} = \frac{1}{2}(x_n + \sqrt{y_n})$ et $y_{n+1} = \frac{1}{2}(y_n + \sqrt{x_n})$,

avec au départ $1 \le x_0 \le y_0$.

- 1) Montrer que ces deux suites existent et que pour tout n, $1 \le x_n \le y_n$.
- 2) Montrer que (y_n) est décroissante et qu'elle converge. On appelle sa limite M.
- 3) Montrer que (x_n) converge aussi. En déduire que (x_n) et (y_n) ont la même limite et que M=1.
- 4) Montrer que (x_n) finit par décroître, c'est-à-dire que $x_{n+1} \le x_n$ pour tout $n \ge n_0$.
- 5) A quelle condition sur les conditions initiales la suite (x_n) ne cesse de décroître? A quelle condition a-t-on $x_1 > x_0$? A quelle condition aura-t-on $x_1 > x_0$ puis $x_2 > x_1$?
 - 1) Montrons cette propriété en faisant un raisonnement par récurrence.
 - x_0 et y_0 existent, et $1 \le x_0 \le y_0$.
- Supposons la propriété vraie à un certain rang n, et montrons qu'elle reste vraie au rang suivant : avec x_n et y_n qui existent et sont positifs, $\sqrt{x_n}$ et $\sqrt{y_n}$ existent, donc x_{n+1} et y_{n+1} existent aussi. D'autre part, avec $x_{n+1} = \frac{1}{2}(x_n + \sqrt{y_n})$, sachant que $x_n \ge 1$ et $\sqrt{y_n} \ge 1$ (puisque $y_n \ge 1$) par hypothèse de récurrence, on constate que $x_{n+1} \ge 1$. De même, $y_{n+1} \ge 1$. Enfin, formons :

 $y_{n+1} - x_{n+1} = \frac{1}{2} \left(y_n - x_n + \sqrt{x_n} - \sqrt{y_n} \right) = \frac{1}{2} \left(\sqrt{y_n} - \sqrt{x_n} \right) \left(\sqrt{y_n} + \sqrt{x_n} + 1 \right).$ Avec $y_n \ge x_n$, on a aussi $\sqrt{y_n} \ge \sqrt{x_n}$, le premier facteur est supérieur ou égal à 0. D'autre part $\sqrt{x_n} \ge 1$ et $\sqrt{y_n} \ge 1$, le deuxième facteur est supérieur à 1. On a bien $y_{n+1} - x_{n+1} \ge 0$.

- 2) Formons $y_{n+1} y_n = \frac{1}{2} \left(y_n + \sqrt{x_n} \right) y_n = \frac{1}{2} \left(\sqrt{x_n} y_n \right)$. Avec $\sqrt{x_n} \le x_n \le y_n$ puisque $x_n \le 1$ et $x_n \le y_n$, on en déduit que $y_{n+1} y_n \le 0$. La suite (y_n) est décroissante. Décroissante et minorée par 1, elle converge vers une limite $M \ge 1$.
- 3) Puisque $\sqrt{x_n} = 2y_{n+1} y_n$, en passant à la limite, $\sqrt{x_n}$ tend vers 2M M = M, et x_n converge vers M^2 . En reprenant l'une des deux relations de récurrence, et en passant à la limite, on trouve que $M^2 = \frac{1}{2} \left(M^2 + \sqrt{M} \right)$, d'où $M^2 = \sqrt{M}$, ou $M^4 = M$. Comme M ne peut être égal à 0, puisque les termes des deux suites sont supérieurs ou égaux à 1, il reste $M^3 = 1$, d'où M = 1. Les deux suites convergent vers 1.
- 4) Si la suite (x_n) ne cessait de croître, avec x_0 supérieur à 1, elle ne pourrait pas converger vers 1. Il est donc sûr qu'à un moment, on aura pour la première fois $x_{n0+1} < x_{n0}$. Une fois que cela se produit, montrons que la suite ne cesse de décroître. Faisons un raisonnement par récurrence pour prouver que $x_{n+1} < x_n$ dès que $n \ge n_0$.

C'est vrai au rang n_0 . Supposons que cela soit vrai à un rang $n \ge n_0$ et montrons que cela reste vrai au rang suivant. Alors :

$$x_{n+2} - x_{n+1} = \frac{1}{2} (x_{n+1} + \sqrt{y_{n+1}} - x_n - \sqrt{y_n})$$

= $\frac{1}{2} (x_{n+1} - x_n + \sqrt{y_{n+1}} - \sqrt{y_n}) \le 0$ puisque $x_{n+1} \le x_n$ par hypothèse de récurrence, et $y_{n+1} \le y_n$. D'où $x_{n+2} \le x_{n+1}$.

- de récurrence, et $y_{n+1} \le y_n$. D'où $x_{n+2} \le x_{n+1}$.

 5) Exprimons que $x_1 < x_0$: $x_1 x_0 = \frac{1}{2}(\sqrt{y_0} x_0)$. Ainsi, lorsque $\sqrt{y_0} < x_0$ ou encore $y_0 < x_0^2$, la suite ne cesse de décroître.
- Prenons maintenant $y_0 > x_0^2$, alors $x_1 > x_0$. Mais que se passe-t-il ensuite? Formons $x_2 x_1 = \frac{1}{2} \left(\sqrt{y_1} x_1 \right) = \frac{1}{2} \frac{y_1 x_1^2}{(\sqrt{y_1} + x_1)}$ qui est du signe de $y_1 x_1^2$. Le calcul de cette expression donne, à un facteur près : $y_0 + 2x_0\sqrt{y_0} + 2\sqrt{x_0} x_0^2$. Ce trinôme du second degré en $\sqrt{y_0}$ a pour racines $x_0 \pm \sqrt{2(x_0^2 \sqrt{x_0})}$. Sachant que l'on doit déjà avoir $\sqrt{y_0} > x_0$, cela impose, pour que le trinôme soit positif, que $\sqrt{y_0} > x_0 + \sqrt{2(x_0^2 \sqrt{x_0})}$. Lorsque cette inégalité est vérifiée pour les conditions initiales, on aura non seulement $x_1 > x_0$ mais aussi $x_2 > x_1$.

¹ Le cas exceptionnel est celui où x_n resterait constamment égal à 1, ce qui suppose que $x_0 = 1$, et à son tour il faudrait que y_n reste aussi égal à 1, d'où $y_0 = 1$.