

Highly Efficient Neuromorphic Computing Systems with Emerging Nonvolatile Memories

Bonan Yan

Dept. Electrical & Computer Engineering

Duke University

Slides available at: https://bonanyan.github.io/bn/

Efficiency Is The Key to Ubiquitous Al

Limited Power/Energy

Better Accuracy Comes From Larger Models

2

- Memory is the Bottleneck; Data Movement Is Expensive
- How to overcome the memory bottleneck?

Overhead Dominated by Memories

Power

Energy

Operations (32bit)	Energy (pJ)		
Int ADD	0.1		
Float ADD	0.9		
Register File	1		
Int Multiply	3.1		
Float Multiply	3.7		
SRAM Cache	5		
DRAM Memory	640		

<u>Area</u>

Specialized Hardware Enhances Efficiency

 $P = \alpha C V_{DD}^2 f$

P: Power Dissipation

 α : Activity Factor

C: Load Capacitance

 V_{DD} : Power Supply

f : Clock Frequency

 $30nm L_G$

Multicore to Manycore

Google TPU v3 ~200Watts (4 TPU to run AlphaGo, 300x less power consumption)

 $50nm L_G$

Uniqueness of Neural Network Execution

- Need new circuitry to support in-memory computing Rethink memory from the ground up!

Make Memory Access Less Expensive

Key Idea of In-Memory Computing

inputs weights
$$[V_1 \quad V_2 \quad V_3] \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{bmatrix} = \begin{bmatrix} I_1 & I_2 & I_3 \end{bmatrix}$$

- Weight Matrix Stored as Conductance G
- Rely on Analog Computation (Kirchhoff's Current Law) for "almost free"
 - Multiplication: $I = V \cdot G$
 - Addition: $I^{column} = I_1^{row} + I_2^{row} + I_2^{row}$
- Ideal Nanoscale Devices for G:
 - Programmable Conductance
 - Multi-Level Cell
 - Small Footprint/High Density
 - Compatible with Existing CMOS Process

Memristors for In-Memory Computing

Also Called Resistive Random Access Memory, RRAM or ReRAM

Programmable resistor w/ analog states

ISSCC: Intel adds embedded ReRAM to 22nm portfolio

January 03, 2019

TSMC to start embedded RRAM production in 2019

According to reports, Taiwan Semiconductor Manufacturing Company (TSMC) is aiming to start producing embedded RRAM chips in 2019 using a 22 nm process. This will be initial "risk production" to gauge market reception.

	Multi- Level Cell	Cell Area	R/W Speed
SRAM	×	large	Fast
DRAM	×	medium	Medium
1T1R	٧	medium	Medium Fast
Flash	٧	small	Slow

My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
 - Spike-based Interface [DAC'15, DAC'18, DAC'20]
 - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
 - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
 - Read Disturbance [ICCAD'17], Hard Fault [ITC'19]

My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
 - Spike-based Interface [DAC'15, DAC'18, DAC'20]
 - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
 - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
 - Read Disturbance [ICCAD'17], Hard Fault [ITC'19]

Conventional ADC is Too Large

The Level-based Design

- Compatible to existing signal processing
- High speed computation

Actual Layout:

Based on 1.66MF² 8bit ADC by K. Ohhata (JSSC 2019)

My Approach: Spiking Interface Circuit

What Better Designs Look Like

- Compute Parallelly (Massive)
- Need Light-Weight Interface Circuitry

The Spike-based Design

- Closer to biological system
- Extremely high power efficiency

Spike Conversion

Spike Conversion Circuit & Controller 3152x3152 μm²

Duke

Tradeoff between large input current range and response speed

Enlarge phase margin tolerating capacitor positive feedback

How to Use Spiking-Based Design to Execute Neural Networks?

In Situ Nonlinear Activation (ISNA) Function

Single-layer Inference Operation:

- Step 1: Load data from buffer
- Step 2: Vector-matrix multiplication
- Step 3: Nonlinear activation function
- Step 4: Pooling
- Step 5: Store results to buffer
 - : digital domain (A): analog domain

In Situ Nonlinear Activation (ISNA) Function

Single-layer Inference Operation:

- Step 1: Load data from buffer
 - Step 2: Vector-matrix multiplication
 - Step 3: Nonlinear activation function
- Step 4: Pooling
- Step 5: Store results to buffer
 - : digital domain () : analog domain

Combine Step 2 & Step 3 to simplify PE operation: Use linear + nonlinear regions

Adjust Activation Function

- Vth ↓, Charging/discharging ↑
- Distorted tuning

charging/discharging

Mixed-Signal Chip Architecture

Mixed-Signal Design Flow

Load Well-Read/Write Controller **Trained Weights** Read/Write Circuits [FIFO interface included] Column Decoder Synthesis Design Flow Using Verilog HDL WL **WL** Drivers Memristor Crossbar Array Decoders **Custom Design Flow** Column Decoder Transistor-level Design **Spike Conversion Circuits Compute Controller** (In Situ Nonlinear Activation) **Input Vectors** B. Yan, et al., IEEE VLSI Symp. on Tech. 2019 **Output Vectors**

Chip Summary

Technology	150nm CMOS +HfO _x RRAM		
Macro Capacity	64K (256×256)		
Clock Frequency	50MHz		
Energy Efficiency	0.257pJ/Mac		
Average Power	1.52 mW		
Layer-wise Latency	200ns		
Real-time Benchmarks	3-layer perceptrons, LeNet-4, LetNet-5		

Demo video online: https://bit.ly/AICHIP

Evaluation: Measured Neural Network Results

MNIST:

- MLP-1: Single-layer perceptron
- MLP-2: 2-layer perceptron
- CNN-1: 4-Layer LeNet

CIFAR-10:

• CNN-2: 5-Layer LeNet

My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
 - Spike-based Interface [DAC'15, DAC'18, DAC'20]
 - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
 - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
 - Read Disturbance [ICCAD'17], Hard Faults [ITC'19]

Non-Ideal Memristor - I

Cell Nonlinearity: conductance varies when applied with different voltages

Solution: Current Amplifier to Clamp Cell Voltage (shown in previous circuit design part)

Non-Ideal Memristor - II

- Memristance Drift: conductance/memristance gradually deviates from original values under read voltage (read disturbance)
- Characteristic:
 - Very slow to observe

How to Mitigate Memristance Drift for Inference?

Minimize Degraded Error Function:

$$\frac{\partial \Delta E_{mse}}{\partial \Delta w_{ij}} = -2\left(t_j - \sum_{i=1}^m w_{ij} x_i\right) x_i \le 0$$

0V/0.6V

Change Column Current Direction

Closed-loop Design to Enhance Weight Stability

Feedback controller: Adjust the voltage condition to compensate the memristance drift.

"Arrogant principle": last output is used as the label to determine the sense condition.

Non-ideal Memristor-III

 Hard Faults: Dead Cells that are not programmable

Noisy "Hewlett Packard", 2016

- Sources of Hard Faults:
 - Fabrication
 - Beyond Endurance
- Our Solution:
 Error Correction Circuits

Summary

- The Past and Now of Al Hardware
 - In-Memory Computing Eliminates Weights Movement
- My Work:
 - Spiking-based In-Memory Computing Engine Offer Very High Energy Efficiency & Good Performance
 - Clever Design Methodologies (e.g., Closed-Loop Sensing) is Effective to Tolerate Nonideal Features of Memristors

Future Work I: Single Spike Processing Engine

Use Single Spike to Replace Multiple Spikes: ~10x Improvement of Energy Efficiency

"ReSiPE: ReRAM-based Single-Spiking Processing-In-Memory Engine" Simulation Results Coming in July at Design Automation Conference (DAC) 2020

Future Work II: In-Memory Compute & Cache

Prospect Applications:

NN Training Acceleration Self-Updatable In-Memory Computing Engine

Long-Term Prospects

Compute

Control

Rethink Compute
Memory Hierarchies

RRAM

PCM

MRAM

"Organ" for Compute & Cache w/ different emerging memory types

Many Thanks for the Support!

Advisors:

Prof. Hai "Helen" Li

Prof. **Yiran Chen**

Prof. **Joe Qiu**Army Research Office

Prof. **Jianhua (Joshua) Yang**UMASS Amherst

Prof. **Krishnendu Chakrabarty**Duke University

Dr. **Qing Wu**Air Force Research Laboratory

Prof. **Meng-Fan Chang**National Tsing-Hua Univ.

Prof. **Weisheng Zhao**Beihang University

Ziru Li, Qilin Zheng, Brady Taylor

Thanks for Listening & Qs!

slides available at:

https://bonanyan.github.io/bn/

Backup Slides

In-Memory Computing Candidates

RRAM/Memristor	Phase-Change Memory	MRAM	Flash	SRAM	
POLY Contact P-Well ReRAM	PCM	Ctr/Au Ru Ta CoFeB MgO CoFeB Ta Ru Ta St/SiO ₂	$V_{in}(N) \qquad 0V$ $\boxed{V_{th}(N)}$ $V_{th}(N)$ $V_{th}(N)$	WLN VDD_SRAM VDD_SRAM BL BLB	
Nonvolatile	Nonvolatile	Nonvolatile	Nonvolatile	Volatile	
Dense Cell Area	Dense Cell Area	Dense Cell Area	Dense Cell Area	Large Area	
Bipolar Write	Unipolar Write	Bipolar Write	Erase-Needed Write	Bipolar Write	
Fast Write	Fast Write	Fast Write	Slow Write	Ultra-Fast Write	
Multi-level Cell	Multi-level Cell	Single-level Cell	Most Single-level Cell	Single-level Cell	

Comparison

Тур	pe	CIM Macro			CIM PE		Digital Processor	
Wo	ork	VLSI'18 Panasonic	ISSCC'18 NTHU	ISSCC'18 NTHU	ISSCC'18 MIT	This work [†]	ISSCC'18 UIUC	TrueNorth [10]
Techn	ology	180nm	65nm	65nm	65nm	150nm	65nm	28nm
Syna	ipse	1T1R RRAM	1T1R RRAM	6T-SRAM	10T-SRAM	1T1R RRAM	6T-SRAM	SRAM
Nonvo	latility	Yes	Yes	No	No	Yes	No	No
Standby	current	~zero	~zero	high	high	~zero	high	high
Spikin	ng NN	No	No	No	No	Yes	No	Yes
Capa	acity	2M	1M	4K	16K	64K	128K	256M
Cell are	ea [F²]	_	59	124	968	74	~256	_
Normalize	d die area	12×	_	_	30×	1×	11×	~17240×
Chip pow		15.8	_	_	_	1.52	_	204.4
Activation	precision	1 bit	3 bit	1 bit	7 bit	1~8 bit	8 bit	1 bit
Power	MAC only	20.7	16.95	55.8	28.1	_	_	_
efficiency [TOPS/W]	MAC +Activation	_	_	_	_	16.9	3.125	0.4
On-chip A Function Ir		No	No	No	No	Yes (tanh)	Yes (relu)	Yes (relu)
Fol	M*	_	0.86	0.45	0.20	1.83	0.098	_

FoM = energy efficiency maximum activation precision/cell area.