

Digital Logic and System Design

8. Registers, Counters, and Memory

COL215, I Semester 2024-2025

Venue: LHC 408

'E' Slot: Tue, Wed, Fri 10:00-11:00

Instructor: Preeti Ranjan Panda

panda@cse.iitd.ac.in

www.cse.iitd.ac.in/~panda/

Dept. of Computer Science & Engg., IIT Delhi

Registers

- Group of Flip-flops
 - common clock
 - stores 1 bit per flipflop
- Recall: State Register of FSM
- n-bit value transferred from Ds to Qs on clock edge
 - storing **n-bit data**

Registers with Reset

- Reset/Clear signal
 asynchronously clears A to 0
 - independent of Clk
 - using DFF with asynchronous Reset

Registers with **Load** signal

- Register function:
 - Transfers I to A on every clock
 - Called Loading new value to register (or updating the register)
- Desired function:
 - Load new value only when required
 - New control signal Load
- Modify D input
 - Not clock (don't disturb clock, causes uneven propagation delays)

Shift Registers

- Cascade/Chain: Q of one stage connected to D of next stage
- Common Clock
- Shifts bit to next DFF on clock edge
- General: Chained data registers (n-bits wide)

Repeated Computation on Data Sequence

Processing time for 1 input set: 10 ns Processing time for n input sets: ?

Repeated Computation: Split into Stages

Does this help?

Pipelining: Register Between Stages

Processing time for n input sets: ?

Pipelining: Generalise to Multiple Stages

Processing time for n input sets: ?

Counters

- Register going through a given sequence of states on input pulse
- Already studied: mod 3 counter
 - Sequence: 0,1,2,0,1,2,0,1,2
- Counting on common clock pulse: synchronous counter (e.g., mod 3 counter)
- Pulse could be internal signal: ripple counter
- Counter value on Q of DFFs

Sequence

Counters

- How do we generate sequence for DFF B_0 ?
 - Alternating Sequence
- How do we generate sequence for DFF B₁?
 - Alternating Sequence
 - Triggered by?
- How do we generate sequence for DFF B₂?
 - Alternating Sequence
 - Triggered by?

Counters

- How do we generate sequence for DFF B_0 ?
 - Alternating Sequence
 - Triggered by External Count Signal
- How do we generate sequence for DFF B₁?
 - Alternating Sequence
 - Triggered by Negative edge of B₀
- How do we generate sequence for DFF B₂?
 - Alternating Sequence
 - Triggered by Negative edge of B₁

Ripple Counters

Recall: Memory Interface and Function

Memory: General Architectures

Bi-directional Data Bus

Multiple Simultaneous Accesses

Read & Write on Same Address: ??

Memory Cell

Recall: Decoder Implementation

Each output is a **minterm**

Truth Table?

$D_0D_1D_2D_3D_4D_5D_6D_7$
10000000
0100000
00100000
00010000
00001000
00000100
0000010
0000001

2D Memory Layout

Data Arranged in Square/Rectangle

Dynamic Random Access Memory (DRAM) Addressing

DRAM Addressing

DRAM Storage

DRAM Operations

READ Operation

Access **Transistor Capacitor** (storage) **Word-line Bit-line** Sensor /Buffer

Data

• Data **LOST** upon READ!

 Need to write back to Row once row operations complete

DRAM Refresh Operation

- Data leaks away from capacitor storage
- DRAM Data Needs to be Refreshed frequently
 - Refresh = READ, then WRITE
- Cell/Row unavailable for READ/WRITE during Refresh operation
- Compare: Flip-flop data is NOT lost STATIC memory: No Refresh required.