Béjar & Rezac (2009) Syntax Project Discussion Dan Milway 15 January 2016

1 Introduction

- Phenomenon analyzed: Agreement systems with:
 - (partial) Person hierarchy (PH),
 - preferred agreement with internal argument (IA)
- \bullet B&R analyze these patterns syntactically (as opposed to morphologically)
- (B&R (1),p36) Assumptions
 - a. Intervener-based locality (Rizzi 1990), relativized to features (Chomsky 1995): Agree for a feature [F] is sensitive only to other elements with [F]
 - A fine-grained approach to cyclicity, where every syntactic operation defines a cycle and thus a potential feeding-bleeding relationship (Rezac 2003)
 - c. A fine-grained approach to φ -features (specifically person or π -features), and especially φ -probes, associating with each person value (π -value) a different feature structure and thus a different locality class (Béjar 2003)
 - Two innovations: Cyclic Agree, and Added-Probe

2 Person Hierarchies and External Argument–Internal Argument Interaction

- · Core agreement is controlled by an argument
- B&R are interested in a subset of languages where $controller \neq subject$: e.g., Basque, Georgian, Karok, Ezra.

1

(2) (Table 1, p39)

EA	IA	Controller	π agreement
1	2	IA	2
2	1	IA	1
3	1	IA	1
2	3	EA	2
1	3	EA	1

- PH partially explains (2). (1, 2 > 3)
- $\bullet\,$ PH can't explain the preference for IA agreement (IA > EA)
- IA preference suggests that Agree-IA and Agree-EA are ordered (cyclic Agree)
- (3) (4, p39) [vP EA [v+Agr [VP V + IA]]]
 - One probe on v ensures that Agree-IA bleeds Agree-EA

3 The Theory of Cyclic Agree and Person Hierarchy–Driven Agreement Displacement

3.1 Articulated Probes, Feature-Relativized Locality, and Person Licensing

- Agree-IA occurs before Agree-EA (cyclic expansion)
- Agree requires matching:
- (4) (5, p 41) Matching is a relation that holds of a probe P and a goal G. Not every matching pair induces Agree. To do so, G must (at least) be in the domain D(P) of P and satisfy locality conditions. The simplest assumptions for the probe-goal system are shown [below:]
 - a. Matching is feature identity.
 - b. D(P) is the sister of P.
 - Locality reduces to closest c-command. (Chomsky 2000:122)
 - ullet (4) generates cyclic expansion and standard locality patterns

Cyclic expansion

Standard locality pattern

Figure 1: (Fig 1, p42) Locality patterns

Parameter 1. Probe height can be high (T) or low (v) (or both?)

- φ bundles (and, by extension π bundles) are organized into subsets that reflect semantic entailment.
- $\begin{array}{ccc} \text{(5)} & \text{a.} & \text{Semantic entailment} \\ & \text{speaker} \implies \text{participant} \implies \text{person} \; (1 > 2 > 3) \\ & \text{addressee} \implies \text{participant} \implies \text{person} \; (2 > 1 > 3) \\ \end{array}$
 - b. Syntactic feature structure

A: Person specifications		B: Shorthand 1>2>3			C: Shorthand 2>1>3			
3rd	2nd	1st	3rd	2nd	1st	3rd	2nd	1st
[π]	[π] [participant]	[π] [participant] [speaker]	[3]	[3] [2]	[3] [2] [1]	[3]	[3] [1]	[3] [1] [2]

Parameter 2. speaker or addressee but not both can be lexicalized as a feature.

• interpretable and uninterpretable features are articulated

Parameter 3. π probes can be:

flat
$$([u3])$$
,

partially articulated
$$\begin{bmatrix} [u3] & [u3] \\ [u2] & [u1] \end{bmatrix}$$
, or fully articulated $\begin{bmatrix} [u3] & [u3] \\ [u2] & [u1] \\ [u1] & [u2] \end{bmatrix}$

fully articulated
$$\begin{bmatrix} [u3] & [u3] \\ [u2] & [u1] \\ [u1] & [u2] \end{bmatrix}$$

- When a probe P matches a goal G
 - If P is more specified than G, the unmatched portion of P remains active.
 - otherwise, P is rendered inactive

3.2 Cyclicity and Agree

- Derivations are sequences of instances of Merge and Agree.
- $Merge(\alpha, \beta) = {\alpha, {\alpha, \beta}}$ iff α selects β
 - [DM: This assumption is the linchpin of the entire account.]
- Since the label is a copy of one of a head, it can probe and Agree.
- Derivation of a transitive vP (16, p48)

Step 1: Merge(v, VP) =
$$\{v_I, \{v, \{V, \{V, IA\}\}\}\}$$

Step 2: Agree
$$(v_I, IA)$$

Step 3: Merge(vP, EA) =
$$\{v_{II}, \{EA, \{v_I, \{v, \{V, \{V, IA\}\}\}\}\}\}$$

Step 4: Agree(
$$v_{II}$$
, EA), if there is still a probe on v_{II}

- v selects the EA, so v projects when EA is merged.
- Nishnaabemwin is used to demonstrate cyclic Agree.
 - Low π probe
 - Addressee is lexicalized
 - Full π probe
- Nishnaabemwin core agreement pattern (2 > 1 > 3)

EA	IΑ	Controller	π agreement
1	2	IA	2
2	1	EA	2
3	1	IA	1
3	2	IA	2

"Derivation" of agreement (Table 3, p50)

EA→IA	2				1			
2	_				$v_{\rm II}$	EA	$v_{\rm I}$	IA
					([<i>u</i> 3]) ([<i>u</i> 1]) [<i>u</i> 2]–			
1	$v_{\rm II}$	EA	$v_{\rm I}$	IA	_			
	([<i>u</i> 3]) ([<i>u</i> 1]) ([<i>u</i> 2])	[3] [1]	[<i>u</i> 3]— [<i>u</i> 1]— [<i>u</i> 2]—	-[1]				
3	$v_{\rm II}$	EA	$v_{\rm I}$	IA	$v_{\rm II}$	EA	$v_{\rm I}$	IA
	([<i>u</i> 3]) ([<i>u</i> 1]) ([<i>u</i> 2])	[3]	[<i>u</i> 3]— [<i>u</i> 1]— [<i>u</i> 2]—	-[1]	([u3]) ([u1]) [u2]	[3]	[<i>u</i> 3]- [<i>u</i> 1]- [<i>u</i> 2]	

- Cyclic Agree also predicts (or allows for a good analysis of) second-cycle effects which we see in Georgian
- (18, p51) Georgian

a.
$$m- xedav -s$$

"I see him."

- m- spells out first cycle (v_I) 1Sg agreement.
- v- spells out second sycle (v_{II}) 1Sg agreement.
- B&R express this in vocabulary insertion rules.
- (10) (21, p52)
 - a. First-cycle vocabulary item: $m \leftrightarrow [3-2-1]/[_]_v$
 - b. Second-cycle vocabulary item: $v \leftrightarrow [3-2-1]/[-]_v[...]_v$

3.3 Nishnaabemwin: The core probe

- B&R reiterate their analysis of the Nishnaabemwin core agreement pattern
- They point out that Inverse marking needs to be addressed

Singular agreement paradigm for Nishnaabemwin (core agreement in small capitals, theme suffix underlined)

EA→IA	2	1	3
2	_	G-see-i± 2-see-DFLT.1 'You see me.'	G-see-aa 2-see-DFLT 'You see him.'
1	G-see-in 2-see-1.inv 'I see you.'	-	N-see- <u>aa</u> 1-see-DFLT 'I see him.'
3	G-see- <u>ig</u> 2-see-3.INV 'He sees you.'	N-see-ig 1-see-3.INV 'He sees me.'	w-see- <u>igw</u> -n 3-see-3.INV-OBV 'That sees this.'

Figure 2: (Table 4, p 53)

4 Person Licensing and the Added Probe

4.1 Inverse Contexts: Person-Licensing Failure and Repair

- (11) (13, p46) Person-Licensing Condition (PLC) A π-feature [F] must be licensed by Agree of some segment in a feature structure of which [F] is a subject.
 - Inverse contexts leave EA π features unlicensed.
 - In languages with PH-driven agreement, Inverse contexts (π -IA> π -EA) show special morphology.
 - Nishnaabemwin, Mohawk, and Basque: IA controls core agreement, extra agreement is added for EA
 - Kashmiri: EA controls core agreement, IA is in a special case (R-case)
 - these reflect two repair strategies: added-probe and R-case respectively.
 - In fact, R-case is just a different spellout of added-probe
 - The basis of both of the strategies is "Property P"
- (12) (23, p56) Property P If the core probe α on Agr has property P, a probe is added to Agr upon Agree by α .
 - (at least) The languages in question have two varieties of v heads: v and v^P
 - If IA>EA, the derivation only converges with v^P
 - Inverse marking (Nishnaabemwin, etc) spells out the added probe
 - R-Case is the case assigned by \mathbf{v}^P
 - $\bullet\,$ If EA>IA, the derivation crashes with ${\bf v}^P$
 - [DM: Why doesn't agreement with EA trigger an added probe?]

(13)			
()	Context	v/v^P	Result
	Direct	v	Converge
	Inverse	v	Crash (PLC)
	Direct	\mathbf{v}^P	Crash (unchecked [uF])
	Inverse	\mathbf{v}^P	Converge w/ special morphology

4.2 Added Probe

• Mohawk:

- Direct contexts: 1 Agr slot (Core probe)
- Inverse contexts: 2 Agr Slots (Core + Added probe)
- + Contextual allomorphy for KU-see

(14) (Table 7, p59)

Transitive singular agreement paradigm for Mohawk (core agreement in small capitals; added probe underlined)

EA→IA	1	2	3
1	_	KU-see‡	K-see
		1/2-see	1-see
		'I see you.'	'I see him.'
2	(h)s-ĸ-see	_	HS-see
	2-1-see		2-see
	'You see me.'		'You see him.'
3	wa-ĸ-see	(н)s-(w)a- <i>see</i>	hra-wa-see > hra-o-see
	3.INV-1-see	2-3.INV.see	3.M-DFLT-see
	'He sees me.'	'He sees you.'	'It sees him.'

- Basque: [u-3-2] probe
 - Direct contexts: 1 Agr prefix (Core)
 - Inverse contexts: 1 Agr prefix (Core), $i\tilde{n}dd$ (Added probe)

(15) (Table 9, p61)

Added probe in Bizkaian Basque (core agreement in small capitals; added probe underlined)

EA→IA	1	2	1.pl	3
1	_	s- <u>iñdd</u> -u-te-n 2.sg-INV- <i>have</i> -1.sg-PAST 'I had you.'	_	N-eb-en 1.sg- <i>have</i> -PAST 'I had him.'
2	N- <u>iñdd</u> -u-su-n 1.sg-INV- <i>have</i> -2.sg-PAST 'You had me.'	_	G- <u>iñdd</u> -u-su-n 1.PL-INV- <i>have-</i> 2.SG-PAST 'You had us.'	s-eb-en 2.sg- <i>have</i> -PAST 'You had him.'
1.pl	_	s- <u>iñdd</u> -u-gu-n 2.sg-INV- <i>have</i> -1.PL-PAST 'We had you.'	_	G-eb-en 1.PL-have-PAST 'We had him.'
3	N- <u>iñdd</u> -u-en 1.SG-INV- <i>have</i> -PAST 'He had me.'	s- <u>iñdd</u> -u-en 2.sg-INV- <i>have</i> -PAST 'He had you.'	G- <u>iñdd</u> -u-en 1.PL-INV- <i>have</i> -PAST 'He had us.'	eb-en have-PAST 'He had him.'

• Nishnaabemwin (see 2):

- Direct contexts: 1 Agr prefix (Core), Constant theme suffix % contexutal allomorphy
- Inverse context: 1 Agr prefix (Core), agreeing theme suffix (Added probe)

4.3 R-Case

- Kashmiri:
 - Present/Future \rightarrow Nom-Acc
 - Past/Future \rightarrow Erg-Nom
 - Present, Inverse: IA gets R-case (homophonous with Dative)
 - R-case, unlike Dative, disappears in Passives, which can't have PH effects (no EA)
 - R-case is the case assigned by $\mathbf{v}^P,$ but EA always controls agreement.

5 Questions/Issues

- Can this be done without Projection/Labelling in the narrow syntax?
- \bullet Why doesn't \mathbf{v}^P get a third probe when it Agrees with EA?
 - Maybe \mathbf{v}^P enters the derivation with two probes
- \bullet In an Inverse context, do we end up with three distinct instances of v? (v, $\mathbf{v}_{Agr-IA},\,\mathbf{v}_{Agr-EA})$
- In Kashmiri, why are Dative and R-case homophonous?
- $\bullet\,$ How do the parameters interact?