Indian Institute of Technology Guwahati

Mid Semester Exam, January-May 2022

MA 211M: REAL ANALYSIS

Time: 2 Hours (Including submission time)

- (1) Prove or disprove (with counterexample) the following statements. No mark without proper justification. $[3 \times 4 = 12]$
 - (a) If A is a bounded subset of \mathbb{R} (with usual metric) such that $A \subset A'$ then A is compact. (A' denotes the set of limit points of A.)

Maximum Marks: 25

- (b) If f is a continuous mapping of a metric space X into a metric space Y, then $f(\bar{A}) = \overline{f(A)}$ for every $A \subset X$ (\bar{A} denotes the closure of A).
- (c) If A is a compact subsets of \mathbb{R}^3 , then the set $\{(x^2, y, z) : (x, y, z) \in A\}$ is also compact.
- (d) Let $f:(X,d)\to (Y,\rho)$ be a continuous bijection. If (Y,ρ) is compact then f^{-1} is also continuous.
- (2) Consider the subset $A = \{(x,y) : xy = 0, y \in \mathbb{Q}\}$ of \mathbb{R}^2 with usual metric. Find the following sets:
 - (a) Interior of A.
 - (b) Boundary of A.
- (3) If (X, d) is a discrete metric space then show that $A' = \emptyset$ for every $A \subseteq X$. (A' denotes the set of all limit points of A.)
- (4) Suppose K and F are disjoint closed sets in \mathbb{R}^n . If one of them is bounded then show that d(K,F) > 0 where $d(K,F) = \inf\{\|x y\| : x \in K, y \in F\}$. What will happen if we remove the boundedness condition from the assumtion. [4+1]