Programmable synthesizer / function generator 0.1 mHz -50 MHz

PM 5193

9445 051 93001

Service manual

9499 455 00311 87 08 01

Industrial & Electro-acoustic Systems

PHILIPS

Programmable synthesizer / function generator 0.1 mHz - 50 MHz

PM 5193

9445 051 93001

Service manual

9499 455 00311 87 0801

PHILIPS

Please note

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

Bitte beachten

Bei Schriftwechsel über dieses Gerät wird gebeten, die Typennummer und die Gerätenummer anzugeben. Diese befinden sich auf dem Typenschild an der Rückseite des Gerätes.

Noter s. v. p.

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez toujours indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

Important

As the instrument is an electrical apparatus, it may be operated only by trained personnel. Maintenance and repairs may also be carried out only by qualified personnel.

Wichtia

Da das Gerät ein elektrisches Betriebsmittel ist, darf die Bedienung nur durch eingewiesenes Personal erfolgen, Wartung und Reparatur dürfen nur von geschultem, fach- und sachkundigem Personal durchgeführt werden.

Important

Comme l'instrument est un équipement électrique, le service doit être assuré par du personnel qualifié. De même, l'entretien et les réparations sont à confier aux personnes suffisamment qualifiées.

C Philips GmbH — Hamburg — Germany — 1987

All rights are strictly reserved.

sproduction or divulgation in any form whatsoever is not permitted without written authority from the copyright owner. Issued by Philips GmbH -Unternehmensbereich Elektronik für Wissenscheft und Industrie- Werk für Meßtechnik Printed in Germany

CONTENTS

1.	SAFETY INSTRUCTIONS		1-1
1.1.	Safety precautions		1-1
1.2.	Caution and warning statements		1-1
1.3.	Symbols		1-1
1.4.	Impaired safety-protection		1-1
1.5.	General clauses		1-1
1.6.	Connections		1-2
2.	MAINS VOLTAGE SETTING AND FUSES		2-1
3.	OPERATING PRINCIPLE		3-1
3.1.	General operating principle		3-1
3.1.	Description of the blockdiagram		3-1
3.2.	Description of the blockdagram		
4.	PERFORMANCE CHECK		4-1
4.1.	General information		4-1
4.2.	Power-on selftest		4-1
4.3.	General functional test		4-2
5.	DIAGNOSTIC-PROGRAM PM 5193		5-1
6.	CIRCUIT DESCRIPTIONS		6-1
6.1.	Digital frequency synthesizer/U2		6-1
6.2.	PLL/U1		6-8
6.3.	Modulator/U1		6-12
6.4.	Pulse generator/U1		6-16
6.5.	Amplifier/U1		6-18
6.6.	CPU/U2		6-20
6.7.	Keyboard display unit/U3		6-23
7.	ACCESS TO PARTS		7-1
7.1.	Top and bottom covers (dismantling the instrument)		7-1
7.2.	Fuse, mains transformer		7-1
7.3.	Unit 1 and unit 2		7-1
7.4.	Front-panel edging		7-1
7.5.	Text plate		7-2
7.6.	Unit 3 (keyboard and display)		7-3
7.7.	Carrying handle		7-3
7.8.	Handle assembly for rack mounting		7-4
7.9.	View into the open instrument		7-4
8.	CHECKING AND ADJUSTING		8-1
8.1.	General Information		8-1
B.2.	Recommended test equipment		8-1
8.3.	Table of checks and adjustments		8-2
9.	SAFETY INSPECTION AND TESTS AFTER REP.	AIR	
	AND MAINTENANCE IN THE PRIMARY CIRCU	IT	9-1
9.1.	General directives		9-1
9.2.	Safety components		9-1
9.3.	Checking the protective earth connection		9-1
9.4.	Checking the insulation resistance		9-1
9.5.	Test after repair and maintenance		9-1

10.	SPARE PARTS	10-1
10.1.	General	10-1
10.2.	Static sensitive components	10-1
10.3.	Handling MOS devices	10-1
10.4.	Soldering techniques	10-1
10.5.	Parts list PM 5193	10-2
11.	FIGURES 28 – 44	
Fig. 28	Unit 2, adjusting elements	
Fig. 29	Unit 1, adjusting elements	
Fig. 30	Block diagram	
Fig. 31	Front view	
Fig. 32	Rear view	
Fig. 33	Overall circuitdiagram	
Fig. 34	Unit 1, component lay-out	
Fig. 35	Power supply	
Fig. 36	Unit 1, pulse generator	
Fig. 37	Unit 1, PLL/VCO	
Fig. 38	Unit 1, output amplifier	
Fig. 39	Unit 1, modulator	
Fig. 40	Unit 2, component lay-out	
Fig. 41	Unit 2, CPU	
Fig. 42	Unit 3, (keyboard/display) component lay-out	
Fig. 43	Unit 3, keyboard display	
Fig. 44	Unit 2, digital frequency synthesis (DFS)	

13. ADRESSES FOR SALES AND SERVICE

12.

SAFETY INSTRUCTIONS

WARNING:

These servicing instructions are for use by qualified personnel only. To reduce the risk of electric shock, do not perform any servicing other then that specified in the Operating Instructions unless you are fully qualified to do so.

Read these pages carefully before installation and use of the instrument.

The following clauses contain information, cautions and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition. Adjustment, maintenance and repair to the instrument shall be carried out only by qualified personnel.

1.1. SAFETY PRECAUTIONS

For the correct and safe use of this instrument it is essential that both operating and servicing personnel follow generally-accepted safety procedures in addition to the safety precautions specified in this manual. Specific warning and caution statements, where they apply, will be found throughout the manual. Where necessary, the warning and caution statements and/or symbols are marked on the apparatus.

1.2. CAUTION AND WARNING STATEMENTS

CAUTION:

is used to indicate correct operating or maintenance procedures in order to prevent damage to or destruction of the equipment or other property.

WARNING:

Calls attention to a potential danger that requires correct procedures or practices in order to prevent personal injury.

1.3. SYMBOLS

Protective earth (grounding) terminal (black symbol on yellow background or impressed, e. g. at the mains connector at the rear)

1.4. IMPAIRED SAFETY-PROTECTION

Whenever it is likely that safety-protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation. The matter should then be referred to qualified technicians.

Safety protection is likely to be impaired if, for example, the instrument fails to perform the intended measurements or shows visible damage.

1.5. GENERAL CLAUSES

WARNING:

The opening of covers or removal of parts, except those to which access can be gaines by hand, is likely to expose live parts and accessible terminals which can be dangerous to live.

The instrument shall be disconnected from all voltage sources before it is opened.

Bear in mind that capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources.

WARNING:

Any interruption of the protective earth conductor inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dangerous. Intentional interruption is prohibited.

Components which are important for the safety of the instrument may only be renewed by components obtained through your local Philips organisation (see also chapter 9.).

After repair and maintenance in the primary circuit, safety inspection and tests, as mentioned in chapter 9 have to be performed.

1.6. CONNECTIONS

The circuit earth potential is applied to the external contacts of the BNC sockets and is connected to the cabinet by means of parallel-connected capacitors. By this means hum loops are avoided and a clear HF earthing is obtained.

If the circuit earth potential in a measurement set-up is different from the protective earth potential, it must be noticed,

- that the BNC sockets can be touched and that it must not be live, see the safety regulations on the subject (VDE 0411).
- that all sockets marked with the sign 1 are internally interconnected.

2. MAINS VOLTAGE SETTING AND FUSES

The safety instructions in previous chapters must be followed.

PM 5193: On delivery from the factory the instrument is set to 220 V - AC.

PM 5193 M (USA): On delivery from the factory the instrument is set to 120 V - AC up to ser, no.

LO-05951 or to 120 V-AC from ser. no. LO-05951 onwards.

If the instrument is to be used on a different supply voltage the wiring must be altered; the main fuse should be replaced dependent on the mains voltage. The wiring for the fan must not be altered.

Proceed as follows:

- Loosen 2 cross-slotted screws at the rear side of the instrument (see also chapter 7.1.).
- Remove the top cover.
- Remove the isolating cover of the topside of the mains transformer, remove cable binder before.
- Alter the wiring of the mains transformer according to the connection diagram.
- Refit the isolating cover.
- If necessary, insert the advised fuse into the fuse holder instead of the fuse built-in. In this case change current label of the fuse holder.
- Change the mains voltage label at the rear of the instrument in accordance with the mains voltage selected.
 - The labels for the mains voltage, current and the fuse are enclosed in a plastic bag.
- Close the instrument.

Connection diagram

Up to series number LO-05951:

•	. → 110V~	
•	5 7 5 3 1	1,25 AT
•	•	
•	9 7 5 3 1	630 mAT

From series number LO-05951 onwards:

1	NHITE BLA	LEK	
12	1717	100 V ~	1,6 AT
12	• • •	120 V ~	1,25 AT
12	3 7 5 3 1	220 V ~	630 mAT
12	9 7 5 3 1	240 V ~	630 mAT

3. OPERATING PRINCIPLE, Fig. 30 (Block diagram)

3.1. GENERAL OPERATING PRINCIPLE

The basic functional units, performing the generation, processing and conditioning of the generator output signals, are named

- DFS, Digital Frequency Synthesizer,	on unit 2
- PLL, Phase Locked Loop,	on unit 1
- MODULATOR	on unit 1
- PULSE GENERATOR	on unit 1
- AMPLIFIER	on unit 1

These functional units are under control of the CPU (Central Processing Unit), consisting of a microprocessor and its peripheral components on unit 2. Primary control data for the CPU is derived from the front end KEYBOARD & DISPLAY on unit 3 or from an external controller via the IEEE/IEC bus interface. The output-signal parameters are displayed numerically on a 7-segment-LED display. Key LEDs are provided for operating mode indication. Subsequently a brief description of the over-all block diagram (fig. 30) of the generator is given.

3.2. DESCRIPTION OF THE BLOCK DIAGRAM

DFS

In the frequency range up to 2147 kHz the primary signals – sine, triangular, positive and negative sawtooth waves – are generated by direct digital signal synthesis.

Binary samples of the wave are created in the SIGNAL SYNTHESIZER section and converted to analogue voltages by a fast DAC at the clock rate fc. The output frequency fo is directly related to fc, according to

where N is the decimal equivalent of the binary frequency word, routed to the SIGNAL SYNTHE-SIZER from the CPU via U2-CONTROL BUS. fc is generated by an x-tal oscillator, the 8.59 MHz CLOCK. The AUTOMATIC SWITCH alternatively routes the external clock frequency to the SIGNAL SYNTHESIZER, if this is applied to the CLOCK INPUT. The DAC output signal is smoothed by the 3 MHz LPF, an anti-aliasing low-pass filter. The BURST CONTROL LOGIC section generates the carrier on/off keying control signals in the burst mode of the generator.

PŁL

In the frequency range above 2147 kHz the primary sine wave is generated in the PLL. The PLL consists of a broad-band VCO, Voltage-Controlled Oscillator, — with a triangular-wave output signal fed to the SINE SHAPER — the FREQUENCY DIVIDER, the PHASE DETECTOR and the LOOP FILTER. By the PLL the PLL REF frequency — generated in the DFS — is multiplied by a factor of 4096 in FM mode and 32 otherwise. For fast phase-locking response the VCO is preset roughly by the DAC to the programmed frequency.

MODULATOR

By the VOLTAGE CONDITIONER the DFS sawtooth wave or the sine wave — if haversine is selected — are halved in amplitude and shifted in dc, resulting in unipolar signals. The sine wave — if sine wave- form is programmed — and the triangular wave are routed without change through the VOLTAGE CONDITIONER. In the BURST-mode the output signal of the VOLTAGE CONDITIONER is keyed on/off by the DIODE SWITCH 1 and routed to the AMPLIFIER. In NON-BURST-mode the signal from DIODE SWITCH 1 is fed either directly or through the AMPLITUDE MODULATOR to the AMPLITIONER 2 and to the AMPLITUDE MODULATOR to the MODIODE SWITCH 2 and to the AMPLITUDE MODULATOR or directly to the AMPLIFIER. Both diode switches are served by the SWITCH CONTROL, which evaluates the accurate control signal from the outputs SQUARE BURST and BURST for the DFS, the 2 MHz SWITCH control signal from the CPU and the GATE signal from the SWITCHING CIRCUITRY in the gate mode of the generator.

In internal GATE, AM or FM mode the modulating signal is derived from the MODULATION OSCILLATOR output. The output sine wave is scaled in amplitude by the AMPLITUDE CONTROLLER to give the accurate AM or FM modulation depth. The modulating sine wave is fed to the AMPLITUDE MODULATOR in AM mode or to the PLL in FM mode through the SWITCHING CIRCUITRY. Alternatively — in the external modulation modes — the modulating signal is supplied from the generator MODULATION INPUT.

PULSE GENERATOR

The PULSE GENERATOR basically represents an electronical switching circuitry, creating a TTL signal and either a square wave or a positive respectively negative rectangular pulse train, each signal with a 50 % duty cycle. The instants of the positive and negative edges of these signals are determined by the zero-crossings of the reference input signal. In the frequency range up to 2147 kHz the DFS signal, e.g. a sine wave, fed to the ZERO CROSSING DETECTOR serves as reference. Above 2147 kHz the TTL output signal of the PLL, named RF TTL, directly determines the switching points.

By the CONTROL CIRCUITRY either the TTL output of the ZERO CROSSING DETECTOR or the RF TTL combined with one of the burst switching signals in burst mode — the POSITIVE PULSE BURST, the BURST or the SQUARE BURST — are routed to the switching output of the signal conditioners. The TTL OUTPUT STAGE and the SQUARE WAVE CONDITIONER are creating the TTL output voltage of the generator and the primary square wave with accurate amplitude and waveform. The PULSE TRAIN CONDITIONER generates a square wave with extra steep positive and regative edges and a programmable amplitude, controlled by the dc output of the DAC. At the generator output this square wave is shifted to unipolar positive or negative pulses by the DC GENERATOR in the AMPLIFIER.

AMPLIFIER

The vernier setting of the generator output amplitude is performed by the AMPLITUDE CONTROLLER. After amplification by the POWER AMPLIFIER the signal either directly or after 20 dB respectively 40 dB attenuation by the STEP ATTENUATOR is routed to the OUTPUT socket. The DC GENERATOR adds the programmed dc voltage.

CPU

An 8-bit microprocessor (8031) and a 10 MHz clock are the constituents of the PROCESSOR & CLOCK. The PROGRAM MEMORY is a 16 Kbyte EPROM. In an external data memory, the 256 byte RAM, the 10 storage register contents of the generator are stored. By the CONTROL BUS DRIVER the required load capability of the U1- and U2 CONTROL BUS serial data linie (SDA), and the clock line (SCL), is achieved. The device selecting strobe signals STR1...15—used for CPU components and latching-data – shift registers in the various functional units controlled by the CPU – are derived from 4 ports of the PROCESSOR by the STROBE DECODER.

By the DIRECT PORT LATCH two output port signals -2 MHz SWITCH and PLL CNTL - are derived from three address/data bus lines of the CPU. The SWEEP VOLTAGE DAG is generating a voltage ramp during a frequency sweep. The PEN LIFT SWITCH serves for lifting the writing pen of an x-y plotter during frequency sweep fly-backs.

The IEEE/IEC bus interface of the generator consists of the IEC BUS CONTROLLER, the DEVICE ADDRESS LATCH & SHIFT REGISTER and the 3-STATE GATE & LATCH.

4. PERFORMANCE CHECK

4.1. GENERAL INFORMATION

WARNING:

Before switching on, ensure that the instrument has been installed in accordance with the instructions outlined in Section 2 of the Operating Manual: Installation instructions.

This procedure is intended to:

- check the instrument
- be used for incoming Inspection to determine the acceptability of newly-purchased instruments and/or recently-recalibrated instruments.

ATTENTION:

The procedure does not check every detail of the instrument's calibration; rather, it is concerned primarily with those parts of the instrument which are essential to measurement accuracy and correct operation. Removing the instrument covers is not necessary to perform this procedure. All checks are made from the front panel.

If this test is started within a short period after switching on, bear in mind that steps may be out of specification, due to insufficient warming-up time. To avoid this situation, allow the specified warmingup time of 30 min.

4.2. POWER-ON SELFTEST

Immediately after power on a selftest routine is started with which PROM and RAM are tested. If an error is detected one of the following error messages appears:

nr	checksum err	PROM	20 1	FRR

ERR 2 RAM (processor) checksum error

ERR 3 RAM checksum error; operation possible but memory centents is destroyed.

In case of no error in PROMs/RAMs all LEDs and all segments of the displays are then switched on for appr. 3s after the software version has been indicated in the 'LEVEL'-sector of the display. The instrument must then be in the on-state which is indicated by a zero in each of the display sections and the LEDs in the keys SINE, START, OFF and Vpp switched on.

4.3. GENERAL FUNCTIONAL TEST

The function of the synthesizer can now be checked with the help of the following examples:

amplitude = 5 Vpp; offset = 0 Vdc

terminate the output with 50 Ω and connect an oscilloscope.

					modulati	on	
	Wave form	start frequ	l stop Jency	-mode	-frequency	-depth, -deviation sweep time, no of cycles	defective unit in case of faulty function
1)	triangle	50 kHz	-	-	-	- 7	DFS
2)	sine	500 kHz	-	AM	1 kHz	50 % depth	modulator
3)	pos. pulse	5 MHz	-	FM	1 kHz	100 kHz dev.	modulator, PLL pulse generator
4)	pos. sawtooth	1.MHz	10 MHz	Sweep Lin.	-	5 sec. sweep time	CPU, DFS
5)	triangle	10 kHz		Gate*	1 kHz	_	modulator
6)	square	800 Hz	-	Burst	- 1,	2 on-, 3 off cycles	modulator, DFS pulse generator

^{*} it is advisable to trigger the oscilloscope with the 'MODULATION OUTPUT'-signal

If one of the functions doesn't work, the diagnostic program can be a help to distinguish whether the defect is in the unit in question or in the CPU with its C-bus drivers/decoders. By selecting TEST 4 (strobe test) it is possible to check the data communication lines and the decoders of the subunits.

In case that all functions are o. k. this test must be continued by checking the output signals:

TTL OUT: This output shows always a square wave voltage with TTL-level and signal-frequency.

INT CLOCK: This output contains the clock-signal of the internal digital frequency synthesizer with

TTL-level and a frequency of 8.58993 MHz.

MODULATION: This output shows a sinewave signal with an amplitude of max. 1 Vrms depending on

modulation depth/deviation and modulation frequency.

PEN LIFT: In the continuous sweep mode this output shows a sequence of pulses. The frequency

corresponds to the sweep repetition rate, amplitude is 20 Vpp.

SWEEP: During continuous sweep operation this output shows a sawtooth voltage with an

amplitude of 10 Vpp.

DIAGNOSTIC-PROGRAM PM 5193

This test program contains 5 submodules:

TEST 1: Display and LED test

TEST 2: Keyboard test

TEST 3: Storage register test

TEST 4: Strobe test (test of the internal interfaces)

TEST 5: Test of the IEEE/IEC-BUS interface

To activate this test program, press the key MODULATION OFF while power is switched on and keep it pressed for about 3 seconds.

The return to the main operating mode is only possible by switching power OFF and ON again.

When the test program is activated, the display shows "TEST x" where 'x' is a number from 1 to 5. This number changes continuously and slowly, and by pressing the key MODULATION OFF at the right moment, the respective test-submodule will be started.

To leave the test submodules, press the key MODULATION OFF for about 2 seconds.

TEST 1: Display and LED test

Step 1: 7-segment-display

All display segments and LEDs are switched on for about 2 seconds.

After this the program starts to switch on one segment after the other for four display positions simultaneously. Finally, the decimal points of these four positions remain lit and the program starts to do the same with the next four display positions.

After the last four digits were tested, the program switches on all segments and LEDs and remain in this state until the key MODULATION OFF was pressed once again.

Step 2: LEDs

All LEDs will be switched on sequentially, one after the other, for approx. 0.5 seconds beginning with the uppermost left one (inside the key sine wave). When the last LED was switched on the indication "End" appears at the display until the key MODULATION OFF was pressed. Then the program returns to the test: menu.

TEST 2: Keyboard test

The display shows the indication:

1 - 01 - - - -

Now you must press the first key of the first row: 1 - 01 - - - (row 1) - (column 1)

Keyboard								columns
							Œ	000
							rows +	+ + +
			columns				(O+ □	
0 0 0	(4) (5)	6	② ③	9 0	Φ	@ ③	® S- E	
rows T T T	t 1	1	F 1	1 1	-	- 1		(1)2 (2)2 (3)2
0-000			•				6+	
2- D D					•		⊡ i @_	ت ا ا
3-6 6		•	•	•	•		0-	
		T-man		- C		manual barrier		

When the right key was pressed, the display shows

for about 1 second and changes then to

as a request to press the second key in the first row. In case of a failure, the display would show

where x = xx indicates the wrong code (row and column). This error indication will only be reset by pressing the requested key - in case of a hardware failure at the keyboard unit it would not be possible to get the right code and thus to reset the error message.

When the last key was pressed, the keyboard test is finished and the display indicates "End". To leave this diagnostic submodule and to get back to the test menue, the key MODULATION OFF must be pressed.

TEST 3: Storage register test

Attention:

This memory-test damages the register contents, When the instrument is switched on after the storage register test was executed, the display inclicates "Err 3" which means that there are now no parameters in the storage register – the complete contents (parameters) are destroyed.

The display indicates

and the program starts to write a test pattern into each location of memory chip 1, reads it again, and checks this value for correctness. When no failure was detected, the same will be done with a second pattern. In case that there is no failure, the display shows

and in case of a failure

Now the program waits until the key MODULATION OFF is pressed and starts then to check the memory chip 2 in the same way as described above. When this is terminated successfully, the display indicates

or in case of a failure

With MODULATION OFF the program returns to the test menu.

TEST 4: Strobe test

The display indicates

STRO x

where x is a number from 6 to 15. This number changes continuously and slowly. By pressing the key "MODULATION OFF" at the right moment the required strobe line will be selected. The display shows then e.g.:

which means that the output lines of the shift registers controlled by strobe line 8 show a specific bitpattern. If MODULATION OFF was pressed once for a short moment all output lines of the shift registers change their state. Now the display shows:

Each time the MODULATION OFF-key is pressed for a short moment, the states of these output lines will be inverted. If MODULATION OFF is pressed for longer than about 1 second, this subprogram will be left and the display shows again:

If the key MODULATION OFF is pressed again for longer than about 1 second, the program will return to the test menu.

This strobe test serves fault finding in the internal C-bus system. Measuring points, positions of ICs and measuring values are given in the following tables.

By strobe lines controlled ICs show the following bit patterns during STROBE-test:

Bit pattern ICs HEF 4094								
Pin no.	4	5	6	7	14	13	12	11
Strobe 'x' − Ø	0	1_	Ø	1	Ø	1	Ø	1
Strobe 'x' - 1	1	Ø	1	Ø	1	Ø	1	Ø

Association of these ICs:

Strobe line	Controlled ICs (Pos. no.)	Location
Strobe 6	362, 370, 371	"DFS/BURST", unit 2
Strobe 7	307, 308, 309, 310, 311	"DFS", unit 2
Strobe 8	302, 306, 312	"Output Amplifier", unit 1
Strobe 9	302, 313, 316	"Modulator", unit 1
Strobe 10	304	"Pulse Generator", unit 1
Strobe 11	301	"PLL", unit 1
Strobe 13	321	"SWEEP" CPU, unit 2
Strobe 15	311	"IEC-bus, function and address" CPU, unit 2

Bit pattern IC N	174LS17	5
Pin no.	2	7
Strobe 'x' - Ø	1	Ø
Strobe 'x' - 1	0	1

Association of this IC

Strobe line	Controlled IC (Pos. no.)	Location
Strobe 12	313	"Direct port" CPU, unit 2

Bit pattern IC H	EF 403	73					- 1	
Pin no.	2	5	6	9	12	15	16	19
Strobe 'x' − Ø	Ø	1	Ø	. 1	Ø	1	Ø	1
Strobe 'x' - 1	1	Ø	1.	Ø	1	Ø	1	Ø

Association of this IC

Strobe line	Controlled IC (Pas. no.)	Location		
Strobe 14	3Ø8	"IEC-bus out" CPU, unit 2		

TEST 5: IEC-bus test

The display shows the indication

IEC BUS

Each character sent from the controller via the IEC (IEEE)-bus will be decoded and displayed with its hexadecimal code, e. g.

ASCII 'A' indication 41 H ASCII '3' indication 33 H

etc.

The device address of the PM 5193 is fixed to 20.

With the key MODULATION OFF the program returns to the test menu.

6. CIRCUIT DESCRIPTIONS

6.1. DIGITAL FREQUENCY SYNTHESIZER/U2

Signal Synthesizer

The primary signal of PM 5193 in the frequency range up to 2.147 MHz is generated in the digital frequency synthesizer (DFS). At the output of the digital section of the DFS the signal is presented as a sequence of 9 bit binary numbers. The digital samples of the signal are then converted to analogue voltages by means of a fast DAC.

The frequency of the DFS is determined by a 40 bit frequency word which is sent to the shift registers 307 — 311 from the CPU. The bit parallel shift register outputs are connected with the phase accumulator inputs. The phase accumulator by the control of the clock generator. With each clock pulse the 9 bit-phase-accumulator output is incremented by the value of the frequency word. The resulting sequence of binary numbers represents a periodic sawtooth wave. By intermittant one's complementing (complementer) It he signal is converted to a triangular wave. The samples of this signal are used as addresses for reading out a sine table ROM. The output is representing sine wave values for the first quarter period (4). By intermittant one's complementing in complementer 2 this signal is converted to a full sine wave (7).

The phase accumulator is functionally divided into two parts. The upper part consists of the adders 312 - 319 and the D-registers 322 - 326 for the frequency range 1 mHz - 2.147 MHz. Frequency values for this range are sent in the 1-2-4-8 code. The lower part consists of the adders 320 and 321, the NOR gate 305 and the D-register 326 and covers the range 0.1-1 mHz. For this range the frequency values are anolled in the Excess -3 code.

The upper part of the phase accumulator generates a sequence of 33 bit binary numbers from \emptyset to $2^{33} - 1$. With each clock pulse the output is incremented by the value of the input frequency word. When reaching the upper limit the accumulator output is reset and starts again with incrementing. This results in a cyclic sequence of binary numbers which have a sawtooth wave form character. The frequency is fg = $171 - \delta \cdot \text{tc} \cdot 2^{-1}$ where δ is the value of the frequency word, fc the clock frequency (8.5899 MHz) and L the length of the phase accumulator (33 bit).

The upper 10 bit of the phase accumulator are used for subsequent signal processing. The samples of the lower 8 bit of them represent a sawtooth wave with the period T/4 (1A). The upper two of the 10 bit accumulator output (signum bit (2), quadrant bit (3)) determine the quadrant in which the vector of the DFS output signal (7) is actually located. In complementer 1 (exclusiv – or gates 331, 332) the 8 bit output is inverted during the second and fourth quarter period. The resulting signal (5) is fed to the sine/friangle selector (ICs 336, 337) and parallel to the address lines of the sine-ROM in which the sine wave values for the first quarter period (3).

For generating the wave form triangle the output of complementer 1 is fed directly to the sine/triangle selector by-passing the sine ROM. Thus the sawtooth signal (5) applied to complementer 2 results in the wave form (6A).

For sine wave the output data of the sine ROM (4) is picked up by the sine/triangle selector and routed to complementer 2 resulting in wave form (6b). By adding the inverted signum bit (2) as the 9th bit, it results in wave form 7.

When generating positive or negative sawtooths the value of the binary frequency word at the phase accumulator input is halfted — thus the sawtooth period at the phase accumulator output is doubled. For positive ramps control signal "a" is low. Therefore bit $\theta = 7$ are routed through complementer 1 without inversion to buffer 333 and 334. After passing sine triangle selector 336/337, the buffer 338/339 and complementer 2 without inversion to θ i) the signal is stoched to the output by the $\theta = FFS 342/434$. The ninth bit at output 2/342 is directly derived from bit 8 of the phase accumulator through MUX 347 and the buffer 333 and 338 (θ signal c).

For negative going ramps one difference is that control signal "a'' is high. Therefore the signal (bit $\emptyset - 7$) is inverted by complementer 1. The second difference is that the ninth output bit (= c) is inverted by exclusive -a' gate 327 (pins 8, 9, 10) at input pin 2 of MUX 347.

With 'low' at the reset input the phase accumulator output can be set to zero. After reset is switched back to 'high', the signal generation is started and performed in the way as described before. The starting conditions are shown in the picture below.

These starting conditions are relevant for the Burst function. As depicted above the start phase of Haversine is different from that of the sine wave.

For Haversine the lower 8 bits (0 – 7) of the phase accumulator output are intermittantly inverted in complementer 1 controlled by the inverted bit 8 of the phase accumulator (a). The resulting output of complementer 1 is depicted as signal (3'). The sine ROM converts this signal to (4'). With complementer 2 the signal is then converted to (6'). Control signal 'd' for complementer 2 is depicted as signal (5') and represents the exclusively ored bit 8 and 9 of the phase accumulator. By adding the ninth bit 'c' (= 7') the full Haversine (8') is resulting. 'C' corresponds to the inverted control bit 'd' of complementer 2. It is derived from the exclusive or gate 327 (pin 4, 5, 6) through MUX 347 and the buffers 333 and 338.

DAC

The binary signal coming from complementer 2 via buffers 342, 343 is converted to an analog voltage in the DAC.

At the DAC inputs the drivers 344, 345 are located which are controlling the current switching differential transitor stages 427 – 428, 424 – 425, . . . The DC-currents (each 5.85 mA = 10) are generated by individual circuitries. The MSB (bit 8) — current source for instance includes transitor 427 and one OP of IC 346. The bind to the bit 7 — current source includes transitor 424 and the other OP of IC 346. The remaining currents or selection as left bit second OP of IC 346. The individual currents – If switched on – are routed to the corresponding nodes N0 — N8 of the R — 2 R ladder shown below. The input impedance of each node is 2 R/3, where R is 619 bm (2 R/3, 412, 67 ohm). Therefore each current – if switched on — is building up the same voltage at the related node ($\frac{1}{2} \times 2$ R/3 = 2,41 V). The transformation to the output depends on the node position in the ladder. Generally from node n to node n+1 the voltage is divided by two. Thus for instance the bit 3 — node N3 voltage is transformed to the output node N8 by the factor $2^{-10-31} = 1/32$. The output voltage of the ladder at node N8 is filtered by the anti disals own pass filter 803, 804, 559 – 562. By this filter with a passband of about 3 MHz especially the spectral contents at both sides of the clock frequency (8.5899 MHz) are suppressed. The output signal is buffered with the transistors 430, 431.

For deglitching purposes of the DAC the current switching point of bit 8 can slightly be shifted with the trimpot 698 versus the current switching points of bits \emptyset – 7. The latter switching points are set with trimpot 676. By iterative calibration procedure with these both trimpots the sine wave distortion is minimized.

Burst Control Section

The basic block diagram of the burst control section is shown below

The basic task of the BURST CONTROL SECTION is to derive the control signals BURST and SQUARE BURST from DFS input-signals when bust-mode is selected. BURST is routed to the modulator section and inhibits the AC output-signal when being 'high'. This is the situation before the burst-function is triggered. After triggering BURST is going 'low', thus switching on the generator output signal. After NON periods of the signal BURST gain returns to 'high' inhibiting the AC output-signal. For cont-burst BURST remains 'high' during NOFF signal periods. The SQUARE BURST control signal is responsible for controlling the square wave generator during the burst function. When being 'high' the square or pulse waves of the generator are output.

For other operation modes than burst the signal BURST is always 'low'. This is achieved by BURST DISABLE at 'flow'-level. When programming burst-mode the signal BURST DISABLE is switched 'high' by the count control logic (IC 362/11 via 376/11). Additionally the burst on- and off-cycles numbers — each minus one — are transferred to NON shift-register 370 and NOFF shift-register 371. The control signal 1st LOAD is shortly switched low from the count control logic. By this action the signal COUNTER LOAD is shortly going flow' and the content of the NON shift-register is loaded into the down counter via the NON/NOFF selector. The selector is controlled by the signal SELECT (= BURST) from the output logic.

By the various actions described above the burst control function is prepared for being started. The trigger pulse is derived either from the SINGLE- or CONT-key at the front panel or from the modulation input MOD IN. At the output of the control logic START is going 'low' switching BURST also to 'low'. Additionally COUNT ENABLE is going 'low' enabling gates 365/1, 2, 3 and 365/11, 12, 13 for passing the count pulses for the MUX 361. Depending on the selected wave form and frequency either count pulses 1 or 2 are routed to the count-gate. For sine- or triangle waves and if the frequency is above 8.388 kHz the count pulses are generated by the zero detector. For all other conditions the count pulses are directly picked up as TTL-sinals from the sinal synthesizer section.

The count pulses are decrementing the down-counter. After NON — 1 low/high transitions of the count pulses BURST END is going 'low'. By this the output FF (372) in the output logic is enabled to toggle. Additionally COUNTER LOAD is shortly going to 'low' thus the down-counter is loaded with NOFF — 1. With the next high/low transition of the count pulse the FF-state changes thus setting BURST to 'high'.

For single burst a short count stop high-pulse is generated (1C 378/12) which sets SBE 'low'. SBE is received from the CPU which effects START to go 'low' (via 362/13) and the output logic to generate a short 'low' pulse GOUNTER LOAD. By this the down counter is loaded with NON – 1 again.

Now the initial state for burst-mode is set again. For frequencies below 8.388 kHz at the end of a single burst, the output logic sets DFS STOP to 'high'. By this a short reset-pulse (306/8) is generated in the signal synthesizer section setting the phase-accumulator output to the zero start condition. Furthermore the phase accumulator clock is disabled (305/2 = 'high') thus stooping the synthesizer action.

For cont burst mode the CPU isn't involved in the process of generating the control signals after first burst was started. This means that all control functions are performed by the output logic. As described in the sections above shortly before the end of the first burst the down counter is loaded with NOFF = 1, therefore subsequently the counter is decrementing NOFF = 1 times until the signal BURST switches to 100 signil (by output FF 372). Thus initiating the next cont burst cycle.

6.2. PLL / U1

In the frequency range above 2.147 MHz the primary signal is generated in the PLL. The PLL consists of a wide-band VCO, frequency divider, phase detector with loop filter and sine shaper.

DAC

Frequency coarse adjustment in the range above 2.147 MHz is achieved with the DAC which gets the information from the CPU via the C-Bus, fine adjustment takes place via the PLL-loop by comparing the reference signal from the DFS with the VCO output divided by either 321 = FM off), or 4096 i = FM on).

Phase Detector

The phase detector IC 309 compares the signals PLLREF and VCO output and generates a DC-signal which value depends on the phase difference between them.

The integration circuit: following the phase detector consists of the integrated circuit 312, the 10 kΩ resistor 619 and the capacitors 516, 521 and 522. The purpose of the integrator is to filter spikes and short deviations in order to prevent disturbances of the PLL control loop. Time constant for FM off mode is 47 μ s (619, 519), with FM on it is 0.5 s (619, 521, 522). Switching FM on and off is achieved with control signal PLL CNTL and switch 313/1, 2, 15. With FM-off the capacitors 521, 522 are continuously charged with OP-amp 311 according to the level at input 3 of the integrator. This effects a short lock-in time when FM is switched on, because the capacitors 521, 522 are always charged to the level according to the momentary frequency. The output of the integrator is passed via solder switch S6 and resistor 609 to the current summing point of the VOS.

The DAC for frequency coarse adjustment consists of the shift register IC 301 and the digital-analog converting circuit IC 302. The serial information from the CPU is received from the shift register, formed to a parallel information and fed to the parallel inputs of IC 302. The output of this circuit is buffered with OP-amp 303 and then passed via resistor 607 to the current summing point.

The last signal which is fed to the current summing point is generated in the modulator and passed via resistor 606. This FM MOD signal effects an amplitude modulation of the integrator — and DAC output signals at the current summing point, whereby the influences of these three signals in the summing point are weighted by the different values of the resistors 506, 607, 608. Lower resistance values effect a higher current going into the summing point thus giving a higher influence for the VCO. The highest current is delivered from the DAC via 607 (= 10K) followed by the phase detector output via 608 (= 75K) and the modulation signal FM MOD via 608 (= 365K).

vco

The VCO consists of the input buffer 304, a current mirror with two current sources 306, 307, 351, 353, 354 and 356 an amplifier 361, 362, 363, 380 and a comparator 364, 366, 367 and 368.

The two current sources generate the currents "I and "2I", whereby the value of 1" depends on the current in the summing point, the relation between the two currents is exactly 1:2. The current "2I" is going via transistor 356 to the transistors 355, 358 which are controlled from the comparator output. During the rising ramp (a) transistor 359 is open and feeds the current "2I" to the capacitors and to the transistor 359 which draws the current "1" on this point, thus the two capacitors \$26,827 are charged with the current "1". During the falling ramp (b) transistor 357 is open and leads the current of "2I" to ground. Because the second current source draws the current "1" continuously from the two capacitors \$26,827 they are now discharged until the negative threshold is reached.

The stage following the triangular wave generator is the sense amplifier consisting of the trensistors 361, 362, 363 and 380. This amplifier has a very high input impedance ($> 1~\rm G\Omega$), a total gain of 1 and supplys the inputs of comparator and sine shaper. The signals at these inputs have precisely the same phase as the signal at the capacitors 526,527 and an amplitude of 2 Vpp.

The comparator consists of the differential stage 364, 366 and the TTL switching circuit 367, 368. The two signals to be compared are fed to the bases of the transistors 364 and 366. The collectors of these transistors are controlling the bases of the transistors 367 and 368 thus generating a square wave signal which is connected to the base of transistor 366 via resistor 655. This effects the comparing of the positive ramp of the triangular wave with the positive half cycle of the square wave and of the negative half cycle.

When the positive ramp of the triangular wave at the base of transistor 364 reaches the upper threshold determined by the level of the square wave at the base of transistor 366, the comparator switches and with this the collector of transistor 364 becomes more negative. This effects the switching of transistor 357 to the conducting state. Thus the current 21 is drawn to ground, the capacitors 526 and 527 are discharged with the current 1 and the triangular signal turns over to the negative ramp.

The RFTTL output is supplied from the TTL switching circuit in the VCO (367, 368) via decoupling transistor 379. This signal is then formed in the signal conditioner 369, 371 and fed to the output via the two buffers 314/1, 2, 3 and 314/11, 12, 13.

Frequency divider

The frequency divider of the PLL is also supplied from the TTL-output of the VCO (IC 314/3). This circuit serves the purpose to divide the VCO output frequency by the factor 32 for FM off and 4096 for FM on. Dividing takes place in four steps with the two dividing circuits 316 and 317, the divided value is available at pin 8 of IC 318 (a) and fed to input 1 of phase detector IC 309. Switching over from dividing factor 32 to 4096 is achieved via the gates 318/1, 2, 3 and 318/8, 9, 10 with the signal PLL CNTL (b) which is 'low' for FM on and 'high' for FM off.

Sine shaper

With the sine shaper-consisting of the transistor array 320 and the transistors 372, 373 the triangular wave from the VCD is formed to a sine wave and fed to the output RF-SINE via the sine wave amplifier (transistors 374-378).

The triangular wave is attenuated with the resistors 696 and 697 to 0.4 Vpp at the base of transistor 320/9, 10, 11. The base of the second transistor of this differential stage (320/6, 7, 8) is fixed to a constant level which is defined with potmeter 709 and resistors 707, 708. Because the operating point for this stage is adjusted such that the stage is overdriven with the tops of the triangular wave, the collectors (pins 11, 8) show a sine wave signal (see picture).

This principle of forming the triangular wave to a sine wave requires a stable and exactly defined operating point. Temperature drifts in the crystal of IC 320 effect a drift of the base-emitter voltages and with this a drift of the operating point which effects then a higher distortion of the sine wave signal at the output RF SINE.

In order to keep the crystal temperature of IC 320 constant, there is a temperature control circuit in the sine shaper which consists of the transistors 372, 373 and three transistors in IC 320. With potmeter 684 a base current is adjusted for transistor 320/12, 13, 14. The collector of this transistor controls the two parallel connected 'heating transistors' 320/1, 2, 3 and 320/3, 4, 5 — which produce a heating power of together appro. 0.3 W — via transistors 373 and 372.

In case of increasing crystal temperature in IC 320, the current through transistor 320/12, 13, 14 will also increase and reduce the heating power of transistors 320/1, 2, 3 and 320/3, 4, 5 via the transistors 373 and 372.

In this way there is a closed control loop which effects a crystal temperature of appr. $80 - 85^{\circ}$ C remaining absolutely constant — this is essential for a proper sine wave forming.

The output signals of the differential amplifier 320/9, 10, 11 and 320/6, 7, 8 are fed to the bases of transistors 374 and 376. After amplification in this sine output amplifier to output amplitude is adjusted with potneter 271 and passed to the modulator via output RF SIME.

6.3. MODULATOR/U1

Voltage Conditioner

The DFS-signals (sine, triangle, rising savtooth, falling sawtooth) are routed via the voltage conditioner to be conditioned to the final signals e.g. from the bipolar rising savtooth to the unipolar positive savtooth signal.

The resistance network of this voltage conditioner and its analogue multiplexer (301) build up a voltage divider combination with selectable attenuation and dc-shifting. The path al (fig. b) is switched on at sinewave and triangular wave, path a2 at negative sawtooth and path a3 at haversine or positive sawtooth waveforms respectively (due to the inverting OUTPUT AMPLIFIER/UI the polarities of the signals in the MODULATOR are inverse with respect to the generator output signals.)

The attenuations of a2 and a3 are double of that of a1, their positive or negative dc-shifting, respectively, comes to half the value of the resulting amplitudes of the signals. Both these facts result in unipolar sawtooth and haversine signals and in equal zero to peak amplitudes of all signals derivated from the DFS waveforms.

Diode Switches

The principle of operation of the DIODE SWITCHES 1 and 2 is shown in the figure below (fig. a)

V_i = input signal voltage V_O = output signal voltage

V_d = diode foreward voltage V_{DM} = switching voltage

fig. a

If $\rm V_{\rm SW}$ is negative, D5 and D6 are open and the bridge diodes are closed. $\rm R_{\rm O}$ pulls the output voltage to 0 volts.

If V_{SW} is positive, diodes D5 and D6 are closed, the diode bridge D1 . . . D4 is open, and the voltage relations are

So the output voltage Vo is

$$V_0 = V_1 + V_{d1} - V_{d2} = V_1 + V_{d4} - V_{d3}$$

 $V_0 = V_1$ (if $V_{d1} = V_{d2}$ and $V_{d3} = V_{d4}$)

Differences of the diode voltages can cause an offset which is compensated at the general offset adjustment of the generator. The load resistance for the signal voltage source (V_i) is R_0 shunted by R_p and R_n .

Besides the selection of the right signal paths the DIODE SWITCHES perform the signal keying at BURST mode (SWITCH 1 only) and GATING mode. DIODE SWITCH 1 is driven by a balanced, non saturated differential driver (358, 360) which ensures extreme short delay required for the phase coherent signal keying at BURST mode. DIODE SWITCH 2 is driven by two coupled transistor switches operating in opposite directions (362, 364 and 383, 366).

JOLTAGE CONDITIONER

Switch control

Both the DIODE SWITCHES are controlled by logical control signals and the BURST or GATING signals, all them logically linked in the SWITCH CONTROL circuit, a combination of NOR gates. The linkage of the control signals is explained by the equivalent logical equations below (4 = OR, x = AND):

GATE1 = (2MHzSWITCH + SQUARE) x (INT GATE + int. gating sign.) x ext. gating. sign. x BURST GATE1 = 2MHzSWITCH x SQUARE x (INT GATE + int. gating sign.) x ext. gating. sign.

Represented as a combination of contacts:

fia. c

Symbols:

2MHzSWITCH:

HIGH (ON) if frequencies < 2.147 MHz (control line).

SQUARE:

HIGH (ON) if SQUARE waveform selected (output pin 14 of shift register 302).
HIGH (ON) if any other modulation mode is selected than INTERNAL GATING

TIGH (ON) II ally other modulat

int. gating sign.:

(output pin 7 of shift register 316). H and L (ON and OFF) change with the internal gating signal (square wave output

of the modulation generator).

ext.gating sign.: H

H and L (OFF and ON) change with the external gating signal. Kept LOW (ON) if

external gating mode is switched off.

BURST: GATE1/2: H and L (ON and OFF) changes with the internal burst cycles. Kept HIGH (ON) if BURST mode is switched off. It is the inversion of the control line: BURST.

Driving signals for the DIODE SWITCHES 1 and 2 (= output signals of the SWITCH

CONTROL circuit, see fig. b). HIGH: SWITCH ON, LOW: SWITCH OFF.

Amplitude Modulator

AM is performed by multiplication. The multiplier module (305) multiplies the carrier signal (any generator signal except pulses) by the internal or external modulation signal. The modulation signal is superposed by a do-component (pin 8). The level of this do-"offset" with respect to the ac input amplitudes (pin 9 and pin 4) determines the proportion between the amplitudes of carrier and both the sidebands. At 0 volts do the carrier would be suppressed (balanced modulation).

The function of the complete AMPLITUDE MODULATOR circuit is represented by the following equation (for sinusoidal voltages):

 $u_{out} = k \times (E_{ecos}\omega_{ct} \times (Vdc + E_{m}cos\omega_{m}t))$

Symbols: uout

= modulated output signal

E_ccosω_ct

= carrier signal = modulation signal } E = amplitude

 $E_{m}cos\omega_{m}t$

= dc voltage (at pin 8)

V_{dc}

= scaling factor, resulting from the parameters of the complete AM-modulator circuitry

Evaluated:

$$\begin{array}{lll} u_{out} &=& k \times (E_cV_{dc}cos\omega_ct \times E_cE_m \left\{cos\omega_ct \times cos\omega_mt\right\}) \\ &=& k \times E_c(V_{dc}cos\omega_ct + E_mx0.5 \left\{cos(\omega_c - \omega_m)t + cos\left\{\omega_c + \omega_m\right\}t\right\}) \\ &=& carrier & lower sideband & upper sideband \\ \end{array}$$

The right relations between k, V and E, obtained by suitable dimensioning and proper calibration, result in

$$u_{out} = 0.5E_c \{\cos\omega_c t + 0.5m \{\cos(\omega_c - \omega_m)t + \cos\{\omega_c + \omega_m\}t\}\}$$

 $\{m = E_m/E_{m,max} = depth of modulation\}$

Modulation Oscillator

The main unit of the MODULATION OSCILLATOR is the function generator module (310) with adjustable frequencies by changing load capacities and/or the load current ($f \sim I/C$). Two relays (815, 816) switch the frequency ranges: from six capacitors they can select three different combinations as frequency determining capacities. Within the range selected the frequency fine setting is permitted by an active DAC (308). This DAC operates as digitally controlable current sink which sets directly the frequency determining current.

The sinewave output signal is routed via a buffer amplifier (309 (1)), which gives also possibilities for amplitude and offset calibrations, to the AMPLITUDE CONTROLLER, a circuit consisting of a DAC and an operational amplifier (311, 309 (2)). The DAC is applied as controlable feedback resistor network for the operational amplifier.

The rectangular voltage output of the function generator (pin 11) is connected to the SWITCH CONTROL circuit. It is active as internal gating signal if the INTERNAL GATING mode is switched on.

Control of the Modulator Unit

Four 8-STAGE SHIFT-AND-STORE BUS REGISTERS, joint in cascade (302 → 316 → 313 → 307; see fig. 39), distribute the control messages of the CPU (SDA) - 32 bits serial, coming in via register module 302 — to the corresponding switches and control modules respectively. With strobe STR9 going HIGH that string of bits clocked in by the serial clock (SCL) is transfered to the outputs of the redister modules in parallel (latched) and, thereby, to the switches, multiplexers, gates etc.

Register modules 307 and 313 hand over the control bits for fine setting of frequency and amplitude of the modulation oscillator. Register modules 302 and 316 hand over the control bits for selection of the different signal paths, modulation modes and modulation frequency ranges (see tables below):

4	5	6	7	14	13	12	71	
				П		1	П	BURST mode ON
	_	г		Г	0	. 1	П	BURST mode AND neg. PULSE ON
0	1	0	,	0	1		П	Ay or Ay
0	1	1	0	1	1	Г	П	75
0	0	ī	1	0	1		П	∠ or △
1	1	1	1	0	1			7
		7.	-	1	T -	•		75

	11	12	13	14	7	6	5	4
range 10 Hz 1 kHz*	1	1	_					
range 1 kHz 10 kHz*	1	0	_			-		
range 10 kHz 200 kHz*	0	0			П			_
MODULATION OFF			1	1	1	1	1	1
Internal AM			7	1	1	1	D	0
internal FM			1	1	1	0	1	1
internal GATING			1	1	0	1	1	1
externel AM			0	1	1	1	D	0
external FM			0	1	,	0	1	1
external GATING			0	0	1	1	1	1

Shift register 302

Shift register 316

PULSE GENERATOR/U1

1. Square wave generator

According to fig. 30 (over-all block diagram) and fig. 36 (circuit diagram) the section of the PULSE GENERATOR, which generates the primary square wave, fed to the AMPLIFIER, comprises the following subsections:

- ZERO CROSSING DETECTOR, IC 301.
- CONTROL CIRCUITRY, IC 302, 303, 305, Transistor 351,
- SQUARE WAVE CONDITIONER, Transistors 352 . . . 355.

Zero crossing detector

By resistor 602, 605, 698 a slight hysteresis is implemented for accurate transitions without glitches at the zero crossings of the DFS input signal, A L (- low) level "SQUARE BURST" control signal at pin 5 inactivates IC 301, (i.e., the output is set H (= high), but this function is only used in the BURST mode.

Control circuitry

Control	

"2MHz SWITCH", IC 303-pin 1;

H, if frequency ≤ 2.147 MHz L, if frequency > 2.147 MHz

"POSITIVE PULSE BURST".

IC 305-pin 2:

H for non-BURST mode

"PULSE SEL "-

L for rectangular waveform H else

"BURST" IC 302-pin 1, IC 304-pin 11: L for non-BURST mode H for rectangular waveforms

Exclusive OR gate IC 302/1, 2, 3 is routing the ZERO CROSSING OUTPUT signal inverted, if a rectangular waveform is selected, to the MUX, IC 303. The MUX is controlled by the "2MHz SWITCH" control signal at pin 1.

Functional table of IC 303/SN 74S258N:

Pin 1	Pin 2,5	Pin 3,6	Pin 4,7
L,	×	L	н
L	X -	н	L =
н	L	×	н
Н	Н	х	L

From this table and the"2 MHz SWITCH" definition results, that up to 2.147 MHz the signal from IC 302/pin 3 or above 2.147 MHz the "RF TTL" signal from the PLL is passed inversely through the MUX to IC 305/pin 1. There it is handed with (PULSE SEL) + (BURST) = L at pin 2. The NAND gate output is handed with "POS PULSE BURST" = H. The resulting signal at pin 6 is fed to the SQUARE WAVE CONDITIONER.

The various internal signals in the generator square wave BURST mode (N = 2) are depicted in the BURST mode pulse diagram. Leading positive spikes of the IC 305/pin 6 output signal, respectively negative spikes of the generator output bursts are set to zero by adjusting trimmer 603. By this trimmer the switch-over points of the ZERO CROSSING DETECTOR with respect to the zero-crossings of the sine-wave input signal can be time shifted. Trailing spikes of the output bursts are avoided by the function of the "SQUARE BURST" control signal at IC 301/pin 5: By the "SQUARE BURST" L pulse the duration of the coinciding ZERO DETECTOR OUTPUT H pulse is slightly increased, thus ensuring that at the generator output the SQUARE WAVE burst stops with a positive going transition to zero.

The SQUARE WAVE CONDITIONER converts the TTL signal at IC 305/pin B to a square wave, accurately in shape and amplitude (about 2,8 Vpp). Trimmpots 624 and 627 are adjusted for accurate positive and negative amplitudes at the generator output.

2. Rectangular pulse wave generation

The signal processings in the ZERO CROSSING DETECTOR and the CONTROL CIRCUITRY sections are the same as in the square wave mode with the exceptions, depicted in the pulse diagram table, for negative PULSE BURSTS.

The IC 305/pin 6 output TTL signal is routed to the PULSE TRAIN CONDITIONER, which converts this signal to a square wave output current (= "3ns SQUARE") shaped accurately. The amplitude of this square wave is determined by the dc collector currents of transistors 383 and 384, which are controlled by shift register IC 304 via DAC IC 306 and operational amplifiers 307, 308 and 309.

The dc current range is about 10 mA, corresponding to a 1 Vpp open-loop output amplitude, to 100 mA, corresponding to 10 Vpp. By the DC GENERATOR in the AMPLIFIER section the resulting square wave output voltage is shifted to a unipolar positive or negative rectangular pulse train, depending on the selected waveform pos. pulses or neg. pulses.

3. TTL output voltage generation

The output voltage of IC 305/pin 11 is fed to the TTL VOLTAGE CONDITIONER stage with the transistors 356, 357, 358. The TTL OUTPUT signal is a continuous wave also in the generator BURST mode, this signal is not affected by the transistor 351 output.

6.5. AMPLIFIER / U1

As depicted in the over-all block diagram, fig. 30, the AMPLIFIER comprises the sub-sections AMPLITUDE CONTROLLER, POWER AMPLIFIER, STEP ATTENUATOR and DC GENERATOR,

Amplitude controller

Corresponding to fig. a, the input voltage is 1.4 Vpp. for sine, triangle and square waves, 0.7 Vpp for the other wave forms.

The ac currents fed into the emitters of 365 and 368, representing current sinks, are proportional to the total effective conductance between buffer output and current sinks. There are 2×7 conductances, namely y_1, y_2, \dots, y_7 and y_1, y_2, \dots, y_7 with binary weights $1, 2, 4, \dots, 6.4$ Two additional conductances y_8 and y_8 , weighted 83, complete the switched conductance ladder. Depending on the programmed voltage pp, some of the conductance pairs y, y' are connected by the switches $S1 \dots S8$ with the current sinks.

Example:

for 10 Vpp, switches S3, S6, S7 and S3', S6', S7' are closed. The effective conductance is then about y = 1/(134 ohm). If 20 Vpp is programmed. All switches excl. S2, S4 and S2', S4' are closed, resulting in y = 1/(67.2 ohm). The generator open loop output voltage is $V\emptyset = ayVi$ where a = 960 ohm in the 2.1 to 20 Vpp range.

Thus
$$y\emptyset = 20 \text{ Vpp, if } y = 1/(67.2 \text{ ohm}).$$

Resistor 632 is lowering the input impedance of the emitter current sinks, thus improving the amplitudecontroller linearity.

In the real circuitry, see fig. 38, the switches are realized by the diodes 424 . . . 439. In the switch-off state, the diodes are biased reversely to about 1.3 V by transistors, e. g., diode 424 by transistor 333. Primary control is performed by shift realister 302 via CMOS switches 314. 315.

fig. a

Power amplifier

As depicted in fig. b, the POWER AMPLIFIER is a complementary collector-output type. At frequencies above some hundred #2 the ac input voltage is passed through the input buffer and C536, C 537 directly to the base of transistors 378 and 381, converted to ac currents by 378 ... 383 and fed through 385, 386, 387 and 390, 391, 392 respectively to the internal 50 Ohm output resistor, made up by the resistors 781 ... 786.

For high do stability, the difference of the emitter do currents (378, 379, 380 vs 381, 382, 383), which is about zero, is kept constant by an automatic control loop including OP 303 and transistor 377.

This loop is forcing i1 - i2 vi in the frequency range from dc to some hundred Hz. Trimmer 700 is adjusted for flat amplitude response in the take-over range of the direct drive via C536 and C537.

fig. b

DC generator

Primary control of the DC GENERATOR is performed by the DAC, Pos. 307. The DAC is set by shift register 306 to output currents I_g from 0 to about 200 · I_{reg} /255 = 0.884 mA proportional to the decimal equivalents 0 . . . 200 of the shift register binary output. If the decimal equivalent is 100, i. e. DC = 0V, I_g = 0.442 mA is compensated by the current through resistors 770, 771. 771 is adjusted for DC = 0V at the generator output. Hence, in this situation no current is drawn from the input (pin 6 of 0P 308) of the dc generating circultry. If the shift register output is 0 or 200, i. e. DC = -10 V or + 10 V respectively, the asymmetry of the emitter voltages (transistors 394, 395 vs 397, 398 is U = $I_{gmax}R/4 = 5.5$ V $(I_g = 0.884$ mA, R = 24.9 KOhm; resistors 777 7801, giving a de voltage at the generator output of 4 · U · RL/r = 10 V absolute. (RL = 50 Ohm, r = 110 Ohm; resistors 588, 889 etc.). The corresponding output current of the DC GENERATOR is 4 · U f = 200 mA.

6.6. CPU / U2

The CPU of the PM 5193 contains the μ -processor 8031 with all drivers, decoders, RAM- and PROM memory, clock generator, IEC-bus interface, strobe-decoder and the control outputs PEN LIFT and SWEEP OUT.

The multiplexed address/data bus $(AD\theta-AD7)$ of the processor 318 supplies the address inputs AD-A7 of the PROM-memory 315 via the address latch 314 (74LS363), the inputs AB-A13 are supplied directly from the processor (P2 D-P2 5). Data from the PROM is fed from the outputs $D_\theta-D_0$ via the lines $AD\theta-AD7$ directly to the processor, this transfer is controlled with the output PSEN from the processor driving the input DE of the PROM.

The memory circuits 324 and 325 serve the storing of the parameter sets (store function). Communication with them takes place via the internal serial 1 C bus which consists of a data line SDA and a clock line SCL. The principle of the data transfer between processor and the RAM-memories is shown in the following diagram.

The line SDA and the line SCL for the C-bus (output T x d of the processor) serves the communication with the remaining units. The data information of the line SDA is clocked into the shift register of each unit, the according strobe signal following this data sequence latches the data information in the selected shift register and presents the transmitted information in parallel form at the output lines of this circuit. The required strobe signals are generated with the strobe-decoder 312 which is controlled again from the processor via the lines PO = POS and the signal \overline{WR} .

Converting the serial information to a parallel one the parallel output presents the decoded commands.

The clock signals for processor and IEC controller as well as a 100 kHz signal for the internal timer are generated in the 'clock generator' circuitry. This part of the CPU consists of the crystal 801, the inverter 317 and the decimal counter 319. The 100 MHz clock from the inverting buffer is fed to input XTAL 1 of the processor, furthermore divided by 5 with the decimal counter 319 and then fed to the IEC-controller 306. After further dividing by 20 the output 7 of the counter deliveres the 100 kHz signal T0 for the timer.

Remote control of the PM 5193 follows via the IEC-interface which consists of the controller 306, the bus drivers 301 – 304, the buffers 307, 308 and the shift registers 309 – 311. Input data (control commands) from the IEC-bus connector are fed to the data bus ADØ – AD7 via the bidirectional bus drivers 303 and 304 and buffer 307. Output data (learn- and identification model) are accordingly fed to the IEC-bus via buffer 308 and the bus drivers 303 and 304. Data direction and enable of the buffers are controlled by the IEC-bus controller 306 via the output Ota (other talk address) and by the processor with the signal 'strobe 14'.

The listener/talker addresses and the interface parameters necessary for the communication are sent to the IEC-controller in serial form. The microprocessor sends these informations via the C-bus with the help of the signal STR 15 to the shift register 311. The parallel outputs of this circuit supply again the parallel inputs of the shift registers 309 and 310 by means of which addresses and interface parameters are transferred to input ISR (input shift register) of the IEC-bus controller. This transfer action is controlled from the controller circuit, the repetition rate is 125 kHz (= 2 MHz/16).

Each date string for the shift registers 309 and 310 contains the IEC device-address and one bit for SRO on or off. The data string entered from the IEC controller 308 via input 'ISR' has a length of 11 bits, not required bits at the inputs of ICs 309/310 are fixed to ground. Input GTL of these circuits — pin 15 of IC 309 — is controlled directly from the key LOCAL at the front panel. Pressing this key causes the IEC controller 306 to switch back to the local mode.

The output SWEEP OUT contains a frequency-proportional voltage during the linear sweep and a logfrequency proportional voltage during the logarithmic sweep. This output voltage is generated by means of a shift register with a DAC controlled directly from the processor via the C-bus.

The digital information is transferred to the shift-register and presents the parallel information at the outputs when the strobe-signal "Strobe 13" becomes true. The 8 output-lines of the shift-register 321 are fed directly to the input lines of the DAC 323 which forms the 8-bit digital information to an analog signal which is then — amplified by the operational amplifier 322—fed to the SWEEP OUT connector.

The Direct Port consists of the latch circuit 313 which is used to latch informations from the lines AD1, AD2 and which is controlled with the signal STR 12. The output-signals '2 MHz-SWITCH' and 'PLL-CNTL' are used for controlling purposes in the units PLL/VCO and modulator.

6.7. KEYBOARD DISPLAY UNIT / U3

Unit 3 of the synthesizer PM 5193 contains LEDs keys and display elements with their concerning driver/decoder circuits. Data transfer from the CPU to the keyboard/display unit takes place via the C-bus (ISDA, SCL, Strobe 1 – 5), input data from the keyboard is sent as a sequence of 12 pulses from the keyboard encoder 353 via the line SKC to the CPU. The key 'LOCAL' is directly led to the IEEE/ IEC interface on unit 2 via line GTL.

Display data are sent in 34 bit data blocks via the C-bus to the according part of the display unit, selection (= addressing) of this part is done with one of the strobe signals STROBE 1 – STROBE 5. During the data transfer from the CPU to the keyboard/display unit the according strobe line is set and a 34-bit data block is loaded into the shift register with the clock signal SCL. The last bit at the data input shifts the complete data set into the latch register and therewith to the display elements/LEDs via the buffer stace.

Each of the five strobe lines controls the data transfer to one of the display groups;

STROBE 1 display circuit 408 for amplitude, Vdc, address and the LEDs in the keys 'Vrms' and 'ADDRESS'

STROBE 2 display circuit 407 for modulation parameters and the LEDs in the keys 'FREQ (kHz)' and 'TIME(s)'

STROBE 3 display circuit 406 for frequency display (right part) and the LEDs in the keys 'START' and STOP'

STROBE 4 display circuit 405 for frequency displays (left part)

STROBE 5 LED driver circuit 352

Voltage supply for the LEDs and displays comes from the \pm 5 V which is reduced to \pm 3 V (= VL) by means of the transistor 301 and the resistors 602 and 603

the transistor 301 is placed behind the front plate at a spacing piece beside the socket TTL OUT.

Brightness of the LEDs/displays is adjusted with a reference voltage at the inputs BC (= brightness control) of the driver circuits. These reference voltages are derived from the + 20 V supply by means of the resistors 604 – 808 feeding currents into the BC-inputs.

Input from the keyboard takes place with the help of the keyboard encoder IC 353 (= SAA 3007) which controls the 8 x 8 keyboard matrix and sends the keycode in serial form from the output REMO via line SKC to the CPU. During the rest condition the sense lines SENØ — SENØ are 'high'; the drive lines of the matrix DRVØ — DRVØ are 'how'; the last drive line is fixed to ground.

When a key is pressed the according sense line is forced to "low", the internal logic of the encoder starts the scan of the matrix and transmits a sequence of 12 pulses whereby the distance between two pulses means binary "0" or "1".

Each time a key is pressed such a bit sequence must be measurable at line SKC (= pin 10 of the CIS connector). The toggle bits of this message are incremented by 1 each time when a key is pressed. Thus it is possible to distinguish between a key being pressed several times or once for a longer time.

The device address is fixed to "000" and the last 6 bits show the following pattern by pressing the corresponding key

Key	Connection between	Key code	Key	Connection between	Key code
744	DRVØ — SENØ	000000	LIN	DRV1 - SEN3	Ø11ØØ1
	DRVØ — SEN1	001000	LOG	DRV1 - SEN4	10ØØØ1
	DRVØ — SEN2	010000	TIME(s)	DRV1 - SEN5	1010Ø1
<27	DRV1 - SENØ	000001	SINGLE	DRV2 - SEN3	Ø11010
	DRV1 - SEN1	001001	CONT	DRV2 - SEN4	100010
	DRV1 - SEN2	010001	HOLD	DRV2 - SEN5	101010
IL	DRV2 - SENØ	000010	Vdc	DRV3 - SEN3	Ø11Ø11
IF	DRV2 - SEN1	001010	Vpp	DRV3 - SEN4	100Ø11
AC OFF	DRV2 - SEN2	010010	∆LEVEL	DRV3 - SEN5	101011
START	DRV3 - SENØ	000011	+/	DRV4 - SEN3	Ø111ØØ
Hz/kHz	DRV3 - SEN1	001011	dBm	DRV4 - SEN4	1ØØ1ØØ
-STEP	DRV3 - SEN2	010011	STEP	DRV4 - SEN5	1Ø11ØØ
STOP	DRV4 - SENØ DRV4 - SEN1 DRV4 - SEN2	Ø Ø Ø 1 Ø Ø Ø Ø 1 1 Ø Ø Ø 1 Ø 1 Ø Ø	ADDRESS Vrms +STEP	DRV5 - SEN3 DRV5 - SEN4 DRV5 - SEN5	Ø11101 100101 101101
OFF	DRV5 - SENØ	000101	STO 1-9	L - SEN7	111111
INT	DRV5 - SEN1	001101	RCLO-9	DRV6 - SEN7	111110
EXT	DRV5 - SEN2	010101	RUB OUT	DRV4 - SEN7	111100
GATE AM FM	DRV6 - SENØ DRV6 - SEN1 DRV6 - SEN2	000110 001110 010110	Ø 1 2 3	DRVØ - SEN6 DRV1 - SEN6 DRV2 - SEN6 DRV3 - SEN6	110000 110001 110010 110011
FREQ (kHz) % DEV (kHz)	⊥ — SENØ ⊥ — SEN1 ⊥ — SEN2	000111 001111 010111	4 5 6 7	DRV4 - SEN6 DRV5 - SEN6 DRV6 - SEN6 L - SEN6	110100 110101 110110 110111
BURST ON cycl. OFF cycl.	DRVØ — SEN3 DRVØ — SEN4 DRVØ — SEN5	011000 100000 101000	8 9 "e" ENTER	DRVØ — SEN7 DRV1 — SEN7 DRV2 — SEN7 DRV3 — SEN7	111000 111001 111010 111011

The clock for the keyboard encoder is generated with the ceramic resonator 860. During the rest condition — i. e. no key is pressed — there is no signal at input 11 or 12 of the keyboard encoder. When any key — except LOCAL — is pressed, the clock supply will be activated and a signal with a frequency of 455 kHz and an amplitude of 4,5 Vpp can be measured at pin 11 or 12. By pressing a key only once for a short moment the clock will be switched on for opprox. 170 ms., pressing a key for longer will keep the clock supply switched on as long as the key is pressed.

The line ENK (enable keyboard) at pin 4 of the CIS-connector has a special meaning for the keyboard input. During a running sweep it is not possible to press any key except MOD OFF, SINGLE, CONT or HOLD. These keys contain one more switch contact which is commonly connected to line ENK, only this line is supervised by the processor during a running sweep.

When operating one of these keys the line ENK and the according sense line are forced to 'Low' which effects the keyboard encoder to scan the matrix and to send the key code via the line SKC to the CPU. Only when the processor has recognized via ENK that one of the four keys was pressed, the normal keyboard input via line SKC is started.

7. ACCESS TO PARTS

7.1. TOP AND BOTTOM COVERS (DISMANTLING THE INSTRUMENT)

Before opening the instrument unplug mains connector, take note of chapter 1.5..

- Loosen the cross-slotted screws
 (A) (Fig. 7-1) at the rear
- Pull top cover (B) as shown in figure 7-1.
- The procedure to remove the bottom cover is the same as above.

7.2. FUSE, MAINS TRANSFORMER

For mains voltage setting and fuses and the assigned safety instructions see chapter 2.

7.3. UNIT 1 AND UNIT 2

For access to the upper side of unit 2 and the bottom side of unit 1 it is only necessary to remove the top cover respectively the bottom cover of the instrument (see chapter 7.1.).

To reach the upper side of unit 1 and the bottom side of unit 2 proceed as follows:

- Remove 2 screws (A) (Fig. 7-5) at the sides of the instrument.
- Lift the pcb as arrow (shows in Fig. 7-5. (If it is heavy to move the pcb, loosen the screws at the pivot a little bit.).
- Fixing unit 2 in an upright position insert screw (A) in position (H) (Fig. 7-5).
- The other steps shown in fig. 7-5 are not necessary to reach unit 1 + 2.

7.4. FRONT-PANEL EDGING

- Remove covers (chapt. 7.1.).
- Lift the profile ornament (A)
 (Fig. 7-2) with a small screw driver.
- Remove the screws (B) (Fig. 7-2).
- Remove the edging (C) (Fig. 7-2).
- For the bottom side the same procedure applies.

- Remove screws B (Fig. 7-3)
- Remove side pieces (A) (Fig. 7-3)

7.5. TEXT PLATE

The text plate (A) (Fig. 7-4) is fixed by three parts of doublesided adhesive tape (B) (Fig. 7-4)

- To remove the text plate insert carefully a screwdriver near the tapes and move the screwdriver as shown in Fig. 7-4.
- Steps described in chapters 7.1 and 7.4. are necessary before.

7.6. UNIT 3 (KEYBOARD AND DISPLAY)

At first steps described in chapters 7.1., 7.4. and 7.5. must be done

- Unplug connector (G) (Fig. 7-5)
- Loosen all screws (F) (Fig. 7-5) at the front of the instrument
- Pull carefully frontplate (E) (Fig. 7-5) forwards, take care of the wires of the BNC-connectors and the main switch.
- Remove unit 3 (D) (Fig. 7-5)
 - The other steps shown in this figure are not necessary to reach unit 3.

7.7. CARRYING HANDLE

- Lift the carrying handle.
- Prise off carefully both plastic profile strips next to the handle in the similar way as the profile ornament of the front-panel edging shown in Figure 7-2.
- Loosen cross-slotted screws of the holder for handle.

7.8. HANDLE ASSEMBLY FOR RACK MOUNTING

- Remove top and bottom covers as described in chapter 7.1.
- Loosen screws (B) (Fig. 7-6).
- Remove side piece © .
- Fit handle (A) , refit screws (B) .
- For the right hand side the same procedure applies.
- Close the instrument

7.9. VIEW INTO THE OPEN INSTRUMENT

PM 5193 without top cover

CHECKING AND ADJUSTING

GENERAL INFORMATION 8.1.

The following information provides the complete check and adjustment procedure for the instrument. As various control functions are interdependent, a certain order of adjustment is often necessary. The procedure is, therefore, presented in a sequence which is best suited to this order, cross-reference being made to any circuit which may affect a particular adjustment.

Before any check, the instrument must attain its normal operating temperature.

- Warm-up time under average conditions is 30 minutes.
- Adjustments should be made after 2 hours
- Ambient temperature (23 ± 1)° C
- Mains voltage, nominal values ± 10 %
- The cabinet must be closed."
- Where possible, instrument performance should be checked before an adjustment is made.
- All limits and tolerances given in this chapter are calibration guides, and should not be interpreted as instrument specifications unless they are also published in chapter 1.2. of the Operating Manual,
- Tolerances are given for the instrument under test and do not include test equipment error.
- If not explicitely stated otherwise, the voltage potentials refer to the relevant contact measured against measuring earth.

RECOMMENDED TEST EQUIPMENT 8.2.

The following instruments are necessary to provide check and adjustment of the PM 5193

- 50 Ω termination resistor PM 9581 (1 W)
- wide band oscilloscope (tr ≤ 1 ns)
- DC-voltmeter: resolution ≤ 100 µV e. g. PM 2528
- counter 50 MHz, intervall-measurements, 8 digits resolution, e. g. PM 6665
- spectrum analyzer e. g. Takeda Riken 4132
- rms voltmeter: resolution 1 mV, fmax = 3 MHz e. g. Fluke 8920 A; the connection cable together with the termination resistor must have an impedance of exactly 50 Ω
- distortion meter e. g. PM 6309
- power meter e. g. HP438A with probes HP8482A and HP8484A
- modulation meter e. g. Rhode + Schwarz FAM
- service kit consisting of notch filter 100 kHz, low pass filter 5 kHz, adjustment covers and two adapter
- cables; to be ordered from SC Hamburg without service code number
- For adjustments special covers with holes for the adjusting elements are required. This parts are included in the service kit.

8.3. TABLE OF CHECKS AND ADJUSTMENTS

Step	Objective	s = sqîna c = cµsck	operation parameters settings	8.3. TABLE OF CHECKS AND ADJUSTMENTS adjusting elements researced value, value to be adjusted		test point, output messuring instruments	open output/	conment
	POWER SUPPLY ADJUSTMENT						JOSE CENTRAL	
-	+5 V supply	ű	~/1kHz/10Vpp		5 ±0,25 V	11/6, DC-voltmeter (DVM)		0.
7	+10V supply	(e)	~/1kHz/10Vpp	612/615,pawer supply	=10 ×0,1 V	11/1, 2, DC-voltmeter (DVM)		
	#20V supply	c(8)	~/1kHz/10Vpp	604/609,power supply	±20 ±0,2 V	T1/3, 4, DC-voltmeter (DVM)	1	*
	DFS ADJUSTMENT			*				
4	Frequency adjustment		Tu /1MHz/5Vpp	505,DFS unit 2	1 MHz +0,3 Hz	OUTPUT connector, counter	50 Ohm	
^	DFS-glitches	8	∿/100kHz!/10Vpp see comment	676/689,DFS unit 2	minimum AC level	OUTPUT connector, notch filter	50 Ohm	the generator frequency must be exactly the same as the frequency of the notch filter.
-	DC-ADJUSTMENT						*	
9	DFS DC-offset	8	√/1kHz/10Vpp	693,DFS unit 2	D ±1 mV	T20 unit 1, DC-voltmeter	,	8
۲.	OC-generator voltage	æ	~/1kHz/OVVpp/+1OVDC/AC OFF 771,smplifier unit 1	771, amplifier unit 1	+9,9 V+5 mV	OUTPUT connector, DC-voltmeter	oben	-2
20	OC-generator voltage	ø	~/1kHz/0Vpp/0VDC/AC 0FF	769,amplifier unit 1	0 +5 mV	BUTPUT connector, DC-voltmeter	oben	-
6	offset, smplifier preliminary stage	w	√/1kHz/10Vpp/Burst not triggered	809, amplifier unit 1	0 *1 mV	114 emplifier, DC-voltmeter	1	3
₽	offset difference	ø		874, amplifier unit 1	,	777 1 from model 1 common		these two AC_complitudes
Ξ	offset difference		v/1kHz/6,4 Vpp/ -"-	t 2	ddam 7 > {	ill diptriter, decrisocope	ı	must be switched alterna- tively and very fast (e.g.
12	output offset		√/1kHz/5Vpp/Burst not triggered	666,amplifier unit 1	0 * 10 mV	CUTPUT connector, DC-voltmeter	obeu	with an iti-bus controller) in order to get a visible signal
ŧ	autput offset	υ	"//thtz/Burst not triggered step output level from 3Vpp-20Vpp, step width 1Vpp	1	0 + 40 mV	OUTPUT connector, DC-voltmeter	uado	If the offset value is outside the limit of #40 mV, side the limit of #40 mV, seeps 10 and 11 must be
4	output offset difference	0	∼/1kHz/Burst not triggsred/MOD OFF/5Vpp	627,modulator unit 1	< 10 mV	CUIPUI connector, DCvoltmeter	uado	repeared
	_	_		_		-		

Comment								if necessary 517 and/or 519 (modulator) may be altered			the transition regions must be free of voltons immed	_	-3		710 must be terminated with 50 Ghm!	*	0	i.			DC-level between F 11 and T 12.
	output/ SOgterm.		50 Ohm	50 Ohm	50 Ohan	50 Ohm	50 Ohm	50 Ohm	50 Ohm		50 Ohm	50 0hm	50 Ohm			ı	,			nimum and s to nly 536. ust be	
test mint, nathart	nts		CUIPUI connector, rms-voltmeter	DUTPUT connector, rms-voltmeter	OUTPUT connector, rms-voltmeter	DUIPUT connector, rms-voltmeter	OUTPUT connector, distortmeter 50 Uhm	OUTPUT connector, rms-voltmeter	OUIPUI connector, rms-voltmeter 50 Ohm	*	OUIPUI connector, oscilloscope	OUIPUI connector, oscilloscope	QUIPUT connector, rms-voltmeter		110, rms voltmeter	110, DC-voltmeter	110, spectrum analyser	I10, spectrum analyser	722, oscilloscope	Set trieming capecitor 526 to minimum and use it only if there are problems to adjust the required value with only 356. The steps in the diagram above must be horizontal.	111-112, DC-voltmeter
an constant	messured value, value to be adjusted		1,767±0,001 Vrms	177±3,5 mVrns	17,7±0,5 mVrms	∆ U < 0,02 dB	< 0,35 %, < 0,45 %	*0,3 dB	*0,3 dB) ر ، ار	7	1,443 ±0,025 Vrms		12,3±8,1 mVrms	-550 ±150 mV	minimum, <-31 dB	minimum, 4-36 dB	[A ≈[B] < 3 V		700 ±20 mV
_	adjusting elements		613,modulator unit 1	1	1	700, amplifier unit 1		-	1		607, modulator unit 1	602, modulator unit 1	ļ		636,PLL unit 1		611, PLL unit 1	614, PLL unit 1	536(526),PLL unit 1		684, PLL unit 1
_	operation parameters settings		~/10 kHz/10 Vpp	~/10 kHz/1 Vpp	~/10 kHz/0,1 Vpp	~/100 Hz, 10 kHz/10 Vpp	~/1 kHz/17 Vpp, 20 Vpp	√/10 kHz, 1,8 MHz/10 Vpp	√/10 kHz, 2.147 MHz/18 Vpp		1 kHz/1:1 Burst cont./ 607,modulator unit 1 10 Vpp	// kHz/1:1 Burst cont./ 602,modulator unit 1	7, Z /1 kHz/10 Vpp		√/3 MHz/10 Vpp	√/3 MHZ/10 Vpp	√/45MHz/10 Vpp	~/2,5 MHz/10 Vpp	√/2,5 -50 MHz/lin.sweep cont/Ts=0.02sec./10Vpp		√/5 MHz/10 Vpp
check adjustmen	3 = 5	- 2		U	υ	ø	υ	ů	υ		æ	ø	υ	L	æ	U	8				•
	Objective	LF-AMPLITUDE, DISTORTION	LF-amplitude	LF-smplitude	LF-amplitude	amplitudes difference	distortion	DFS-frequency response	DF5-frequency response	SAWTOOTH ADJUSTMENT	offset	offset	rma-value	PLL-ADJUSTNENT	amplitude triangular wave.	offset	2nd harmonic	2nd harmonic	PLL centrol voltage		DC-level
	Step		15	16	17	8	19	50	21		22	23	24		25	56	22	78	53		. B

	comment		*				if the output level is too low, change capacitor 501	in the modulator to another one (27 pF); if the level is too high, increase resistor 714 PLL.	-	,	8-4		the first needle must be suppressed	Tx = half cycle resulting from step 39	if < 500 µs adjust with 603 to 500 µs; if >504 µs check step 6 - DC adjustmen	-	0	if this value is not correct, repeat 41 and 42	if 513 must be adjusted, the steps 36 and 37/PLL adjustment) are to be repeated	use potweter 614 only in case of exceeded limits and adjust it until the limit is resched.
	open output/ 50eterm.	M40 05	50 Ohm	M-0 00	50 Ohm	uedo	50 Ohm		SO Ohm				50 Ohm	50 Ohm	50 Ohm	uado	uedo	MU DS	50 Ohm	50 Ohm
	test point, output measuring instruments	OUTPUT connector, spectrum		OUTPUT connector, spectrum analyser	GUIPUT connector, rms-voltmeter	OUTPUT connector, DC-voltmeter	CUIPUI connector, power meter	*	OUTPUI connector, power meter	16, 17, DC-voltmeter			UUTPUT connector, escilloscope	OUTPUT connector, Intervall counter	OUIPUI connector, Intervall counter	GUTPUI connector, OC voltmeter	GUTPUT connector, DC voltmeter	GUIPUI connector, Ima-voltmeter	GUIPUI connector, wide band oscilloscope (tr∉1 nsec)	OUTPUT connector, wide band oscilloscope (tr ≤1 nsec.)
-	measured value, value to be adjusted	minimum, <-43 dB	minimum, <-54 dB	minimum, <-30 dB	A Us < 0,03 d8	√m 01 >	+0,4 +0,1 dB		+0,1 ±0,3dB	< 0,2 mV				Ix + 2 με.	500 µs ≤ T ≤ 510 µs	+4.95 ±0,02 V	-4,95 ±0,02 V	2,5±0,02Vrms	edjust minimum rise- time without over- shoot	% C# 05
	adjusting elements	706, 709, PLL unit 1	1		721, PLL unit 1	624, modulator unit 1	503, modulator unit 1			621,PLL unit 1			603/pulse generator unit 1	603/pulse generator unit 1	į	627/pulse generator unit 1	629/pulse generator unit 1	1	505/modulator unit 1 (513/output amplif.)	(614,pulse generator unit 1)
	operation parameters settings	√/5 NHz /10 Vpp	. √/10 MHz/20 Vpp	√/2,5 - 50 MHz /lin. sweep cont/Is=2sec/20Vpp	\sim /10kHz, 3MHz/10Vpp	√/3кнz, Эмнz/5Vpp	√/3MHz, 50MHz/10Vpp		√/3MHz, 3ŒHkz/1ŒVpp	√/5MHz/10Vpp			/1kHz/BURST 1:1 cont/	√1кнz/10Vpp	П_, /1кнz/10Vpp	∏, /0.05нz/10Vpp	/0.05Hz/10Vρρ	7 /10kHz/10Vpp	1/10MHz/10Vpp	с(а)
pay	3 = 8	8	ú	ú	æ	œ	8		U	æ	1	_			c(a)	æ	n	6	œ	c(a)
	Objective	2nd and 3rd harmonics	2nd and 3rd harmonies	2nd and 3rd harmonics	output level difference	DC-level difference	output level difference a		output level difference c	DC-level difference		SQUARE MAVE ADJUSTMENT	square burst pre-shot	positive half cycle	positive half cycle: I $c(a)$ $\Gamma_{\perp}/1kHz/10Vpp$	positive amplitude	negative amplitude	rms-value	signalform	duty cycle
	Step	31	32	33	z	35	36		37	38			33	640	14	42	43	8	\$	9

	connent		aberrations related to the amplitude 0 - p.		square wave pulses stepping out of the quiescent potential ±5 mV			8-5		potmeter 664 is used to	and the duty cycle. When adjusting them, more care must be taken to reach the	specification of the rise and fall time			iterate this adjustment with step 55	*
	open output/ 50% term.	50 Oha	50 Ohm		OC OPpe	obeu	50 Ohm	50 Ohm	SO Dhun	50 OFm	50 Other			·		
	test point, output measuring instruments	DUTPUT connector, wide band oscilloscope (tr < 1msec)	OUTPUT connector, wide band oscilloscope (tr ≤ insec)		pulse amplitude < *5 mV DUIPUT connector, oscilloscope	OUTPUI connector, DC-voltmeter	OUTPUT connector, rms-voltmeter 50 Ohm	OUTPUT connector, wide band oscilloscope (tr * 1 nsec)	OUTPUT connector, oscilloscope	OUTPUT connector, wide band oscilloscope (tr < 1 nsec)	OUTPUT connector, wide band oscilloscope (tr <1 nsec)			MOD-Dul connector, counter	MOD-OUT connector, counter	
	measured value, value to be adjusted	< 10,5 naec	24 24 24		pulse amplitude < +5 aV	0 ±10 av	2,5 ±0,01 Vrms	adjust minimum rise- time without over-	shoot. check the pulse form	50 *5 %	<4,5 nsec.			900 ±1 Hz	50 +0,1 Hz	
	adjusting elements	1			659,662/pulse generator unit 1	684/pulse generator unit 1	654/pulse generator unit 1	537,538/pulse generator unit 1		664/pulse generator unit 1	664/pulse generator unit 1	-		696/madulator unit 1	699/modulator unit 1	
	operation parameters settings	П /10/Hz/10/pp	_ /лкн₂/10Урр		П—/10кнz/0vpp	П—/10кнz/0vpp	П—/10кнz/10vpp	П—/ЗФИ12/5Vрр	□—/1kHz/5Vpp	с(а) П— /50мнz/5vpp	с(а) П—/50мнz/10Vpp			~ /10kHz/AMINI/50 % fm = 0,9kHz/20Vpp	$\sim /10kHz/AMINY/50 \%$ fm = 0,05kHz/20Vpp	
yost Justment	(0 = 0 (0 = 0	o			æ	es	œ	æ	6	(a)	(8)3					_
	Objective	rise-/falltime	aberrations (overshoot cetc.)	PULSE ADJUSTMENT	pulse suppression	DC-offset	pulse-amplitude	pulse-form	pulse form	duty cycle	rise/fall time, duty		AM- AND FM ADJUSTMENTS	modulation frequency	modulation frequency	×
	Step	1,7	84		64	25	7.5	52	. 22	. \$	\$			25	15	

						ige single this	8					e pe		
	conment				LF-band width 10 Hz - 20 kHz	+3 kHz is the average failure over the whole range of 5-35 NHz, single failures can exceed this	11016.	i√ bendwidth 10Hz-20KHz			•	these glitches must be adjusted to minimum	IBI/A<0,2	
	output/ 50eterm.	-			S 94	50 Olvn	50 Ohm	\$0 Otum	50 Dhm	oben	50 Otsa	50 Ohn	MHO DK	
	test point, output measuring instruments	MOD OUT connector, counter	MUD BUT connector, distortion meter	T21, DC-voltmeter	OUTPUT connector, modulation meter	OUTPUT connector, modulation meter	GUIPUT connector, rms-voltmeter 50 Ohm	OUTPUT connector, modulation meter	OUTPUT connector, ims-voltmeter with low pass filter 5 kHz	OUTPUT connector, DC-voltmeter	GUIPUI connector, power meter	OUIPUI connector, oscilloscope	OUTPUT connector, oscilloscope	
	measured value, value to be adjusted	50 ±0,03 kHz	minimum distortion (<0,5%)	+100 ±50 mV	minimum (<500 Hz)	200 ±3 kHz	1.767 ±0,01 Vrms	50 ±0,2 %	minimum level	ym 0t >	-0,2 ±1 dB	minimum glitches	aberrations < 20 %	
	adjusting elements	\$24/modulator unit 1	700,702/modulator unit	709/mcdulator unit 1	620/Pil unit 1	707/modulator unit 1	684/smodulator unit 1	686/modulator unit 1	663/amodulator unit 1	681/modulator unit 1	511/modulator unit 1	701/DFS unit 2	1	-
	operation parameters settings	~ /10khz/AMINT/50 %/ fm = 50kHz/20Vpp	√/10kHz/AMINI/50 %/ fm = 5 kHz/20 Vpp	~//10kHz/AM INI/50 %/ fm = 5 kHz/20 Vpp	~/SMHz/FM EXT, MOD OFF/10Vpp	~/5,10,35Hz/fw 1NI/ 200kHz 0EV/fm=5kHz/10Vpp	~/1kHz/AM 1NT/0 %/ fn = 5kHz/20Vpp	^/18Hz/AH INT/508 fm=5kHz/20Vpp	√/тинz/ян INT/50 % fm=5kHz/20Vpp	√√5kHz/AM INI/NOD OFF/ 0 %/fn=5kHz/10Vpp	///1MHz, 40MHz/AM 1NI/ 0 %/fm = 5 kHz/20 Vpp	√/10kHz/Burst cont.) Non = Noff = 1/10Vpp	√/244z/Burst cont) Non = Noff = 1/10Vpp	
q1 pe	8 = 8	æ	ø	ø				ø	æ		8			
	Objective	modulation frequency	distortion	DC-offset	unwented frequency deviation mms	O-p Frequency deviation (average)	AC-amplitude rms	modulation depth AM	LF-suppression	DC-difference	level difference	SURST ADUSTNENT start-stop phase of burat	start-stop phase of burst	
	Step	28	85	09	19	62	3	49	.%	8	69	88	\$6	

	8-
-la	
signal- 2.8 Vpg	
- ×	

	comment	*	start adjustment at full left position of 805 (bottom view) and turn it until frequency response is within 45 dB	e.g. PM 6654 with 1 : 10 attenuator			connect external signal- sine wave, 1 kHz, 2,8 Vpp to MOD IMPUT	8-7	. = *			
	open output 50sterm.		50 Ohm	,	50 Ohm		50 Ohm	50 Ohm		t		
	test point, output measuring instruments	*	OutPul connector, spectrum analyser	INT CLOCK connector, counter, oscilloscope with 1:10 atten.	OUTPUT connector, counter	IIL out connector, counter, oscilloscope	OUTPUT connector, modulation meter	OUTPUT connector, oscilloscope	MGD OUT connector, oscilloscope	PEN LIFT connector, oscilloscope	SWEEP OUT connector, oscillascope	
	measured value, value to be adjusted		0 ±5 d8	8,589935 MHz ±3 Hz level >3,5 Vpp	1,164153 MHz ±1 Hz	10 MHz ±3 Hz level >3,5 Vpp	%(2* 45)	check of the gate function	sine wave 2,8 Vpp	square wave signal >16 Vpp	savtooth signal 10 Vpp	-
	adjusting elements		805/amplifier unit 1				1	1	[1	1	**
	operation parameters settings		<pre>~/3-50 MHz/ sweep lin cont/Ts = 5 sec/ 0,001 Vpp</pre>	√/1 kHz/10Vpp	√/1MHz/10Vpp	√/10MHz/10Vpp	√/10MHz/AM EXT/20Vpp	<pre> // /1MHz/GATE INT/10Vpp fm = 1 kHz</pre>	\sim /1MHz/GATE INT/10Vpp fm = 1 kHz	<pre>// // // // // // // // // // // // //</pre>	<pre>//fstart = 1 kHz/ fstop = 10 kHz/TS=100 ms/ lin sweep cont/10 Vpp</pre>	
heck djust	e = e o = o			٥	٥	٥	٥	ь	υ	υ	٥	
	Objective	MISCELLANEOUS	frequency response	frequency, level pp	frequency	frequency, level pp	modulation depth	gate function	Mod out amplitude	Pen lift amplitude	Sweep out amplitude	
	Step		70	r	72	. 27	47	22	92	11	82	

9. SAFETY INSPECTION AND TESTS AFTER REPAIR AND MAINTENANCE IN THE PRIMARY CIRCUIT

9.1. GENERAL DIRECTIVES

- Take care that creepage distances and clearances have not been reduced
- Before soldering, wires:
- should be bent through the holes of solder tags, or wrapped round the tag in the form of an open
 U, or, wiring ridigity shall be maintained by cable clamps or cable lacing.
- Replace all insulating guards and -plates.

9.2. SAFETY COMPONENTS

Components in the primary circuit may only be renewed by components selected by Philips, see also chapter 10.

9.3. CHECKING THE PROTECTIVE EARTH CONNECTION

The correct connection and condition is checked by visual control and by measuring the resistance between the protective-lead connection at the plug and the cabinet/frame. The resistance shall not be more than $0.5~\Omega$. During measurement the mains cable should be moved. Resistance variations indicate a defect.

9.4. CHECKING THE INSULATION RESISTANCE

Measure the insulation resistance at U = 500 Vide between the mains connections and the protective lead connections. For this purpose set the mains switch to ON. The insulation resistance shall not be less than 2 M.2.

Note:

2 M Ω is a minimum requirement at 40° C and 95 % relative humidity. Under normal conditions the insulation resistance should be much higher (10 to 20 M Ω).

9.5. TEST AFTER REPAIR AND MAINTENANCE

This part of the checking — and adjusting procedure represents the final check of the PM 5193. Bottom and top cover of the cabinet must be closed and the instrument must be warmed up for at least 2 hours. The check contains measurements of DC-levels, amplitudes and frequencies on following their specifications and furthermore some tests of modulation functions. The sequence of the measurements is free selectable.

9.5.1. Frequency Measurements

Objective	Frequency setting	maximum tolerance	connector
basic frequency	1 MHz	±0,8 Hz	ОUТРИТ
modulation frequency	50 Hz	± 1,25 Hz	MOD OUT
FREQ (kHz)	500 Hz	± 12,5 Hz	"
	5 kHz	± 175,0 Hz	"
1	50 kHz	±1,25 kHz	"
	200 kHz	+ 8/ 20 kHz	

9.5.2. Checking of the square wave and pulse signals

Setting	Connector	Measuring Instrument
/10 MHz/10 Vpp	OUTPUT	wide band oscilloscope (tr ≤ 1nsec)
/30 MHz/10 Vpp	OUTPUT	

9.5.3. Modulation Measurements

Modulation	Carrier Frequency	Object	Measured tolerance
OFF " FM EXT " FM INT "	4.05 MHz 8.589 MHz 19 MHz 42,9487 MHz 4,05 MHz 4,06 MHz 19 MHz 19 MHz 10 MHz 10 MHz 20 MHz 35 MHz	residual FM rms $B_{H} = 10 \text{ Hz} - 20 \text{ kHz}$ $frequency deviation setting = 200 \text{ kHz}$	<0,02 % of carrier frequency or < 1000 Hz (smallest value in each case) 200 ± 30 kHz
AM INT	50 MHz 50 MHz 5 MHz 5 MHz 5 MHz 5 MHz	mod. depth setting 10 %''- 50 %''- 90 % freq. dev. Umod = 1 V/1 KHz	200 + 30/- 110 kHz (10 ± 3) % (50 ± 3) % (90 ± 4) % 200 ± 40 kHz

9,5,4, DC-measurements

modulation off, frequency = 1 kHz

Waveform	Setting AC	DC -	DC-output open circuit	Tolerance of DC-output open circuit
AC OFF	0	0		± 30 mV
"	0	-10	-10	1
	0	- 5	- 5	± 1,5 % ± 30 mV
**	0	- 5	5	1
"	0	10	10	1
~	3,4 , 20 Vpp	0	-	± 100 mV _{max} , average: 0 ± 50 mV
Æ	5, 10, 15, 20 Vpp	0	- 1	± 150 mV
rī_	1 Vpp	0	0.5 V	1
"	3 Vpp	0	1,5 V	1
**	5 Vpp	l 0	2,5 V	± 5 % ± 30 mV
"	7 Vpp	0	3,5 V	
"	10 Vpp	0	5 V	1
1 KHz/3 MHz	10 Vpp	. 0		Δ U _{dc} $<$ 25 mV
AM, frequency	= 1 kHz			× × × × × × × × × × × × × × × × × × ×
~	10 Vpp	0	0	± 150 mV

9.5.5. AC-Measurements

Waveform	Frequency	Modulation	Setting Vpp	Tolerance
	1 kHz	OFF	3,1	
"	"	"	3,2	1)
"	"	"	6,3	1
"	"	"	6,4	5 ± 1,5 %
"	"	"	12,7	[[
"	"	"	12,8	}
"	" *	"	20,0	1
."	"	"	0,30	± 2,0 %
"	"	"	1,00	"
"	"	"	2,00	"
	"	"	0,003	± 12,5 %
"	"	"	0,010	± 5,5%
"	"		0,020	± 4,0 %
"	"	"	0,050	± 3,1 %
1 "	"	<u>"</u>	0,100	± 2,8 %
	"	"	0,200	± 2,65 %
^	"		10,0	± 2,5 %
n_	"		10,0	± 2,0 %
"	"	"	5,0	± 2,5 %
	, ,	"	1,0	± 3,5 %
_	"		10,0	± 1,5%
Ci Ci	, ,	,,,	10,0	± 2,0 %
<u>-</u> -	, ,	",	10,0	± 2,0 %
1	"	,,	10,0	± 2,5 %
7	"		10,0	± 2,5 %
^	"	Burst not trigg.	20,0	± 2,5 mVrms
		AMINTO%	20.0	± 2,0 %
,,	10 kHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.0	± 2,0 %
"	200 kHz	OFF	10.0	± 1,5%
"	2.146 MHz	,,	10,0	+0/-3%
"	20 MHz	п	10,0	± 8,0 %
"	40 MHz	"	10,0	± 8,0 %
"	50 MHz	"	10,0	± 8,0 %
"	50 MHz	"	20,0	+6/-12%
"	2.146 MHz	"	1,00	± 3,5 %
"	20 MHz	"	1,00	± 11,5 %
"	50 MHz	"	1,00	± 11,5 %
"	2.146 MHz	AM INT 0 %	20,0	± 5,0 %
"	20 MHz	" 0%	20,0	± 8,0 %
"	50 MHz	" 0%	20,0	+7/-30%
	2.146 MHz	OFF	0,100	± 5,0 %
"	20 MHz	",	0,100	± 30,0 %
"	50 MHz	<i>"</i> ,	0,100	± 30,0 %
"	2.146 MHz	l "	0,010	± 10,0 %
" "	20 MHz	,,	0,010	± 35,0 %
1 7	50 MHz		0,010	± 35,0 %

SPARE PARTS

10.1. GENERAL

The synthesizer/function generator PM 5193 is repaired on single component level. No complete boards and modules are available at Concern Service Eindhoven.

Loaded PROMs must be ordered directly via Philips Supply Center Hamburg (please note software version).

In case of difficult faults central repair facility of the complete instrument is possible on special request via repair procedure at Supply Center Hamburg.

Conversion of an existing instrument to a different version is not foreseen.

Standard Parts

Electrical and mechanical parts replacement can be obtained through your local Phillips organisation or representative. However, many of the standard electronic components can be obtained from other local suppliers. Before purchasing or ordering replacement parts, check the parts list for value, tolerance, rating and description.

NOTE: Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade instrument performance.

Special Parts

In addition to the standard electronic components, some special components are used:

- Components, manufactured or selected by Phillips to meet specific performance requirements.
- Components which are important for the safety of the instrument marked with 'S' in the parts list.

ATTENTION: Both type of components may only be replaced by components obtained through your local Philips organisation.

10.2. STATIC SENSITIVE COMPONENTS

This instrument contains electrical components that are suspectible to damage from static discharge. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.

10.3 HANDLING MOS DEVICES

Though all our MOS integrated circuits incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

CAUTION: Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

10.4. SOLDERING TECHNIQUES

Working method:

- Carefully unsolder one after the other the soldering tags of the semi-conductor.
- Remove all superfluous soldering material. Use a sucking iron or sucking litze wire.
- Check that the tags of the replacement part are clean and pre-tinned on the soldering places.
- Locate the replacement semi-conductor exactly on its place, and solder each tag to the relevant printed conductor on the circuit board.

NOTE: Bear in mind that the maximum permissible soldering time is 10 seconds during which the temperature of the tags must not exceed 250° C. The use of solder with a low melting point is therefore recommended.

Take care not to damage the plastic encapsulation of the semi-conductor (softening point of the plastic is 150° C).

ATTENTION: When you are soldering inside the instrument it is essential to use a low-voltage soldering iron, the tip of which must be earthed to ground of the instrument.

Suitable soldering irons should have temperature control and different types of nozzles (pin point tips), e. g. Weller Magnastat WTCP or WECP, Ersa TC 70/24 V.

If a higher wattage-rating soldering iron is used on the etched circuit boards excessive heat can cause the etched circuit wiring to seperate from the board base material.

atched circuit wiring to seperate from the board base material.

In general use short-time heating with high tip temperature at a small point, avoid long time heating.

10.5. PARTS LIST PM 5193

10.5.1. Mechanical parts

Cabinet

item	Quantity	Order number	Description	
Α	1	5322 447 91368	Top cover	
В	1	5322 447 91369	Bottom cover	
С	4	5322 462 40756	Plastic foot	
D	4	5322 462 44434	Rubber foot, adhesive	
E	4	5322 492 64745	Locking clip	
F	1	5322 401 10867	Tilting support	
G	1	5322 447 91373	Rear panel	
H	2	5322 462 40761	Rear bumper -	
1	1	5322 447 91372	Front panel	
J	1	5322 447 91371	Window for display	
K	1	5322 456 90257	Text plate PM 5193	
L	1	5322 447 90502	Front plate edging (upper)	
M	1	5322 466 92117	Front plate edging (lower)	
N	1	5322 460 60433	Profile ornament	
0	1	5322 460 60436	Profile ornament with text	
P	2	5322 447 90501	Side piece	
P	2	5322 263 70186	Handle assembly (rack), not shown	
Q	1	5322 460 60432	Profile orn. long, perf. (left)	
R	1	5322 460 60434	Profile orn. short (right)	
R	1	5322 460 60431	Profile orn. short, perf. (right)	
s	1	5322 498 50176	Rubber handle	
Ŧ	1	5322 462 40759	Steel insert	

10.5.2. Miscellaneaous, parts not on units

Item	Fig.	Quantity	Order number	Description
880	33 (31)	1	5322 276 12029 *S	Mains switch
881, 882	33 (31)	ż	5322 267 10004	BNC connector, front
862-867	33 (32)	2 6	5322 267 10173	BNC connector, rear
	33 (32)	ĭ	5322 321 22352	IFFE connector wired
870	33 (32)	i	5322 267 30416 *S	Mains socket with filter
	10-2	1	5322 321 10388 *S	Mains cable (Europe)
	10-3	1	5322 321 20816 *S	Mains cable (USA)
	10-4	1	5322 321 10123 *S	Mains cable (U. K.)
	32	1	5322 267 10173 *S	Fuse holder
869	33 (32)	1	4822 253 30018 *S	Fuse 630 mAT
B69	33 (32)	1	4822 253 30022 *S	Fuse 1.25 AT
869	33 (32)	1	4822 253 30024 *S	Fuse 1.6 AT
868	33	1	5322 361 10451 *S	Fan
751	33	1	5322 146 21241 *S	Transformer
	31	15	5322 414 60037	Knob, large 12.5 x 6.5
	31	7	5322 414 60036	Knob, small 6.5 x 6.5
	31	36	5322 414 60038	Knob, small with LED
881, 882	33	2	5322 116 21068	Varistor (BNC front)
352-857	33	6	_ 5322 116 21137	Varistor (BNC rear)
850-858	33	9	5322 526 14034	Damping bead (BNC connector)
	32	1	5322 462 44172	Cap for IC (rear panel)

^{*}S = Safety component, see chapter 10.1.

Maine sabtas

10.5.3. Electrical Parts

Some parts are listed in chapter 10.5.2.

All metal film resistors not listed are of type MR 25 \pm 1 % 0.4 W (ordering code see end of this list).

*1 Please order loaded PROM directly via Philips Supply Center Hamburg (note software version).

	Description				Ordering code
UNIT 1, I	POWER SUPPLY				
INTEGRA	TED CIRCUITS / UI	NIT 1, POWER SUF	PLY		
301, 303	Integr. circuit	Regulator	78GCU1		5322 209 85565
302, 304	Integr. circuit	Regulator	79GCU1		5322 209 86349
305	Integr. circuit	Regulator	LM223K		5322 209 71639 (rear wa
TRANSIS	TORS / UNIT 1, POV	VER SUPPLY			
351	Transistor	BD204			5322 130 44324
352	Transistor	BD203			5322 130 44325
360	Transistor	BC558B			4822 130 44197
DIODES /	UNIT 1, POWER SU	PPLY			
401	Rectifier	SKB2/08L	.5A		5322 130 32031
402-405	Diode, reference	BZX92			5322 130 34397
417	Diode, reference	BZX75C1			4822 130 34047
420, 421	Rectifier	BY260-2	00		4822 130 32145 (rear wal
CAPACIT	ORS / UNIT 1, POWE	R SUPPLY			
501, 503	Cap. foil	220 nF	20 %	100 V	4822 121 40232
501, 503 502, 504	Cap. foil Cap. electrolyt.	220 nF 10 000 µF	20 %	40 V	5322 124 41278
501, 503 502, 504 505, 506	Cap. foil Cap. electrolyt. Cap. solid alu.	220 nF 10 000 μF 1 μF		40 V 25 V	5322 124 41278 4822 124 20944
501, 503 502, 504 505, 506 508-510	Cap. foil Cap. electrolyt. Cap. solid alu. Cap, foil	220 nF 10 000 μF 1 μF 220 nF	20 %	40 V 25 V 100 V	5322 124 41278 4822 124 20944 4822 121 40232
501, 503	Cap. foil Cap. electrolyt. Cap. solid alu.	220 nF 10 000 μF 1 μF		40 V 25 V	5322 124 41278 4822 124 20944
501, 503 502, 504 505, 506 508-510 511-513	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil	220 nF 10 000 μF 1 μF 220 nF 4 700 μF		40 V 25 V 100 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu.	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF	20 %	40 V 25 V 100 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232 4822 124 20944
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. solid alu. Cap. foil	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF 220 nF	20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232 4822 124 20944 4822 124 10232
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516 517	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. foil Cap. foil Cap. solid alu. Cap. foil Cap. foil Cap. foil Cap. foil Cap. electrolyt.	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF 220 nF 2 000 µF	20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232 4822 124 20944 4822 121 40232 5322 124 70435
501, 503 502, 504 505, 506 508-510 511-513	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. solid alu. Cap. foil	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF 220 nF	20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232 4822 124 20944 4822 124 10232
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516 517 518	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. electrolyt. Cap solid alu. Cap. solid alu. Cap. solid alu. Cap. cap. solid alu. Cap. solid alu.	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 20 nF 20 nF 20 nF 1 µF 20 nF 1 µF 100 nF	20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232 4822 124 20944 4822 121 40232 5322 124 70435 4822 124 20944 5322 124 20944
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516 617 518	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. electrolyt. Cap. solid alu. Cap. solid alu. Cap. ceramic Cap. seramic Cap. seramic	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF 220 nF 22 000 µF 1 µF 100 nF 2.2 µF	20 % 20 % 20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 121 40232 4822 124 40232 5322 124 70435 4822 124 20944 5322 124 20944 5322 124 20944
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516 517 518 519 520 521-523	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. solid alu. Cap. solid alu. Cap. solid alu. Cap. ceramic Cap. solid alu. Cap. ceramic	220 nF 10 000 μF 1 μF 220 nF 4 700 μF 220 nF 1 μF 220 nF 2 000 μF 1 μF 100 nF 2.2 μF	20 % 20 % 20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V 25 V 50 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 124 20944 4822 124 40232 5322 124 20944 4822 124 20944 5322 124 20944 5322 124 20944 5322 124 32941
501, 503 502, 504 505, 506 508-510 611-513 612 514, 515 616 617 518 619 520 521-523 524, 525	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. electrolyt. Cap. solid alu. Cap. solid alu. Cap. ceramic Cap. solid alu. Cap. ceramic Cap. solid alu. Cap. ceramid	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF 22 000 µF 2 000 µF 1 µF 100 nF 2.2 µF 100 nF	20 % 20 % 20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V 25 V 50 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 124 40232 4822 124 40232 5322 124 70435 4822 124 40944 5322 124 20944 5322 124 21255 5322 123 32941 4822 124 21255 5322 123 32941
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516 517 518	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. solid alu. Cap. solid alu. Cap. solid alu. Cap. ceramic Cap. solid alu. Cap. ceramic	220 nF 10 000 μF 1 μF 220 nF 4 700 μF 220 nF 1 μF 220 nF 2 000 μF 1 μF 100 nF 2.2 μF	20 % 20 % 20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V 25 V 50 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 124 20944 4822 124 40232 5322 124 20944 4822 124 20944 5322 124 20944 5322 124 20944 5322 124 32941
501, 503 502, 504 505, 506 508-510 511-513 512 514, 515 516 617 518 519 520 521-523 524, 525	Cap. foil Cap. electrolyt. Cap. solid alu. Cap. foil Cap. electrolyt. Cap foil Cap. solid alu. Cap. foil Cap. electrolyt. Cap. solid alu. Cap. solid alu. Cap. ceramic Cap. solid alu. Cap. ceramic Cap. solid alu. Cap. ceramid	220 nF 10 000 µF 1 µF 220 nF 4 700 µF 220 nF 1 µF 22 000 µF 2 000 µF 1 µF 100 nF 2.2 µF 100 nF	20 % 20 % 20 %	40 V 25 V 100 V 25 V 100 V 25 V 100 V 16 V 25 V 50 V 25 V	5322 124 41278 4822 124 20944 4822 121 40232 5322 124 21459 4822 124 40232 4822 124 40232 5322 124 70435 4822 124 40944 5322 124 20944 5322 124 21255 5322 123 32941 4822 124 21255 5322 123 32941

Pos. no.	Description				Ordering code	_
RESISTOR	RS / UNIT 1, POWER SUPP	LY				
602	Res. metal film	5.6 Ω	5 %	2.5 W	4822 116 52165	
604, 609	Potm. trimmer	220 Ω	CERMET	0.1 W	4822 100 10359	
607	Res. metal film	5.6 Ω	5 %	2.5 W	4822 116 52165	
612	Potm. trimmer	470 Ω	CERMET	0.1 W	5322 101 14047	
615	Potm. trimmer	220 Ω		0.1 W	4822 100 10359	
COIL / UN	IIT 1, POWER SUPPLY					
800	Cail				5322 158 10271	
UNII 1, A	MPLIFIER					
INTEGRA	TED CIRCUITS/UNIT 1,	AMPL.				
301	Integr. circuit	MC1558U			5322 209 71645	
302	Integr. circuit	HEF4094	3P		5322 209 10421	
303	Integr. circuit	SE53BN			5322 209 71641	
304, 305	Integr. circuit	TL071IP			5322 209 71643	
306	Integr. circuit	HEF4094	ВР		5322 209 10421	
307	Integr. circuit	DAC-08E	N		5322 209 11254	
308	Integr. circuit	TL072IP			5322 209 71646	
312	Integr. circuit	HEF4094	BP		5322 209 10421	
313	Integr. circuit	7406N~0			5322 209 86327	
314, 315	Integr. circuit	HEF4066	BP		5322 209 10357	
TRANSIST	TORS/UNIT 1, AMPL.					
320-322	Transistor	BC548B			4822 130 40937	
330, 332	Transistor	BFW16A			5322 130 44015	
331	Transistor	2N4035			5322 130 44201	
333	Transistor	BF450			4822 130 44237	
334, 335	Transistor	BC558B			4822 130 44197	
336	Transistor	BF240			4822 130 40902	
337	Transistor	BF450			4822 130 44237	
338	Transistor	BC548B			4822 130 40937	
339	Transistor	BC558B			4822 130 44197	
340	Transistor	BF240			4822 130 40902	
341	Transistor	BF450			4822 130 44237	
343	Transistor	BC558B			4822 130 44197	
344	Transistor	BF240 BF450			4822 130 40902	
345 347	Transistor Transistor	BC558B			4822 130 44237 4822 130 44197	
348	Transistor	BF240			4822 130 40902	
349	Transistor	BF450			4822 130 44237	
351	Transistor	BC5588			4822 130 44197	
352	Transistor	BF240			4822 130 40902	
353	Transistor	BF450			4822 130 44237	

Pos. no.	Description		Ordering code
		202202	4822 130 44197
355	Transistor	BC558B	4822 130 44197
356	Transistor	BF240	
357	Transistor	BF450	4822 130 44237
359	Transistor	BC558B	4822 130 44197
360	Transistor	BF240	4822 130 40902
361	Transistor	BF450	4822 130 44237
		BC558B	4822 130 44197
363	Transistor		4822 130 40902
364	Transistor	BF240	
365	Transistor	BSX20	4822 130 41705
366	Transistor	BC558B	4822 130 44197
367	Transistor	BC548B	4822 130 40937
368	Transistor	2N2894A	5322 130 44127
369	Transistor	BC558C	5322 130 60068
370	Transistor	2N4035	5322 130 44201
371	Transistor	BC548B	4822 130 40937
3/1	Transistor	505405	4022 100 10007
372	Transistor	BSX20	4822 130 41705
373	Transistor	BC558B	4822 130 44197
374	Transistor	BC548C	4822 130 44196
375	Transistor	2N4035	5322 130 44201
376	Transistor	BFW16A	5322 130 44015
376	Transistor	DI WIGA	
377	Transistor	BC548B	4822 130 40937
378	Transistor	BSX20	4822 130 41705
379, 380	Transistor	BFW16A	5322 130 44015
381	Transistor	2N2894A	5322 130 44127
382, 383	Transistor	2N5583	5322 130 44033
384	Transistor	BSS61	5322 130 44714
385-387	Transistor	2N5583	5322 130 44033
388	Transistor	2N2905A	5322 130 40468
		2N2219A	5322 130 44034
389	Transistor	BFW16A	5322 130 44015
390-392	Transistor	BEMION	3322 130 44013
393	Transistor	BSS52	5322 130 44579
394, 395	Transistor	2N2905A	5322 130 40468
396	Transistor	BF450	4822 130 44237
397, 398	Transistor	2N2219A	5322 130 44034
399	Transistor	BF240	4822 130 40902
DIODES /	UNIT 1, AMPL.		
403, 404	Diode, ref.	BZV46C1V5	5322 130 34865
	Diode, rer.	BAW62	4822 130 30613
405, 406			5322 130 34865
409, 411	Diode, ref.	BZV46C1V5	
416, 417	Diode, ref.	BZX79C6V8	4822 130 34278
419, 420	Diode, ref.	BZX79C5V1	4822 130 34233
421, 422	Diode, ref.	BZX79C6V2	4822 130 34167
423	Diode, ref.	BZX90	5322 130 34397
424-439	Diode	BA482 (selected)	5322 130 80265
440, 441	Diode, ref.	BZV46C1V5	5322 130 34865
442	Diode, ref.	BZX90	5322 130 34397
772	Diode. Tel.	DEMOS	

Pos. no.	Description				Ordering code
CAPACIT	ORS/UNIT 1, AMPL.				
501	Cap. ceramic	10 nE	+ 20/- 90 %	40 V	4822 122 30043
502	Cap. ceramic	1 nF	10 %	100 V	5322 122 32331
503		2.2 pF	0.25 %	100 V	4822 122 31036
504, 506	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
	Cap. ceramic	220 µF	10 /6	16 V	4822 124 40196
505, 507	Cap. electrolyt.	220 μF		16 V	4822 124 40196
508-511	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
512	Cap. ceramic	39 pF	2 %	100 V	4822 122 31069
513	Cap. trimmer	5.5-65 pF		100 V	5322 125 54025
514	Cap. solid alu.	10 μF		16 V	4822 124 21314
515	Cap. ceramic	10 nF	+ 20/- 90 %	40 V	4822 122 30043
516	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
517-520	Cap. ceramic	10 nF	+ 20/- 90 %	40 V	4822 122 30043
521	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
522	Cap, solid alu,	10 µF		16 V	4822 124 21314
523	Cap. ceramic		+ 20/- 90 %	40 V	4822 122 30043
525	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
526	Cap. ceramic	100 pF	2 %	100 V	4822 122 31316
528-531	Cap, ceramic	100 nF	10 %	50 V	5322 122 32941
532, 533	Cap. ceramic	470 pF	2%	63 V	4822 122 32062
534	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
536, 537	Cap. solid alu.	10 μF		16 V	4822 124 21314
538	Cap, ceramic	4.7 nF	10 %	100 V	4822 122 31125
539	Cap. ceramic	150 pF	2 %	100 V	4822 122 31413
540. 542	Cap, ceramic	68 pF	2 %	100 V	4822 122 31349
544	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
545	Cap, solid alu.	1 µF		25 V	4822 124 20944
547	Cap. ceramic	10 nF	+ 20/- 90 %	40 V	4822 122 30043
548	Cap. ceramic	100 nF	10 %	50 V	
549. 550			+ 20/ 90 %		5322 122 32941
551, 553	Cap. ceramic Cap. ceramic	10 nF 100 nF	10 %	40 V 50 V	4822 122 30043 5322 122 32941
554	Con solid also	1		05.14	4000 104 00044
	Cap. solid alu.	1 µF	. 00/ 000/	25 V	4822 124 20944
555	Cap. ceramic	10 nF	+ 20/- 90 %	40 V	4822 122 30043
557	Cap. ceramic	15 pF	2 %	100 V	4822 122 31823
560, 561	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
562-565	Cap. ceramic	10 nF	+ 20/- 90 %	40 V	4822 122 30043
566-574	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
577, 578	Cap. ceramic	220 pF	2 %	100 V	5322 122 34047
580	Cap. ceramic	12 pF	2 %	100 V	4822 122 31056
581, 582	Cap. ceramic	470 nF	20 %	100 V	5322 122 33078
583	Cap, ceramic	1 nF	10 %	100 V	4822 122 30027

Pos. no.	Description	0			Ordering code
RESISTO	RS/UNIT 1, AMPL.				
609, 610	Res. metal film	312 Ω	0.1 %	0.25 W	5322 116 80206
611, 612	Res, metal film	412 Ω	0.1 %	0.25 W	5322 116 80211
613, 614	Res. metal film	825 Ω	0.1 %	0.25 W	5322 116 80213
644, 653	Res. network	8 x 4.7 kΩ	5 %	0.125 W	5322 116 90132
666	Potm. trimmer	100 Ω	carb.	0.1 W	4822 100 10075
700	Potm. trimmer	2.2 kΩ	carb.	0.1 W	4822 100 10029
702	Res. metal film	130 Ω	5 %	1.6 W	5322 116 55509
769	Potm. trimmer	1 kΩ	carb.	0.1 W	4822 100 10037
771	Potm. trimmer	4.7 kΩ	carb.	0.1 W	4822 100 10036
787	Res. metal film	100 Ω	0.1 %	0.25 W	5322 116 80208
788	Res. metal film	150 Ω	0.1 %	0.25 W	5322 116 80209
789	Res. metal film	261 Ω	0.1 %	0.25 W	5322 116 80205
792, 793	Res. metal film	100 Ω	0.1 %	0.25 W	5322 116 80208
794	Res. metal film	150 Ω	0.1 %	0.25 W	5322 116 80209
795	Res. metal film	261 Ω	0.1 %	0.25 W	5322 116 80205
805	Potm. trimmer	2.2 kΩ	carb.	0.1 W	4822 100 10029
809	Potm, trimmer	10 kΩ	carb.	0.1 W	4822 100 10035
825-828	Res. metal film	39 Ω	5 %	0.5 W	4822 116 52193
874	Potm. trimmer	470 Ω	carb.	0.1 W	4822 100 100 3 8
COILS / C	INIT 1, AMPL.				
831. 832	Wide band choke				5322 158 10271
833, 835	Choke	220 µH			5322 157 53012
838	Wide band choke	3			5322 157 53015
873	Choke	220 µH			5322 157 53012
RELAIS /	UNIT 1, AMPL.				
841-850	Reed relais	5 V			5322 280 20281
041-050	Occu leiais	5 V			3322 200 20201

Pos. no.	Description		 Ordering code
UNIT 1, N	MODULATOR		
INTEGRA	TED CIRCUITS / UNI	T 1, MOD.	
301	Integr. circuit	HEF4053BP	5322 209 10576
302	Integr. circuit	HEF4094BP	5322 209 10421
303	Integr. circuit	N74LS02N	5322 209 85312
304	Integr. circuit	N74LS27N	5322 209 85561
305	Integr. circuit	MC1495L	5322 209 71638
306	Integr. circuit	NE538N	5322 209 81343
307	Integr. circuit	HEF4094BP	5322 209 10421
308	Integr. circuit	DAC-08EN	5322 209 11254
309	Integr. circuit	TL072ACP-00	5322 209 71644
310	Integr. circuit	XR-2206CP	5322 209 86453
	4	AD7523JN	5322 209 70195
311	Integr. circuit	HEF4094BP	5322 209 10421
313, 316	Integr, circuit Integr, circuit	HEF4063BP	5322 209 10576
314, 315 317	Integr. circuit	HEF4001BP	4822 209 10246
TRANSIS	TORS/UNIT 1, MOL).	
350	Transistor	BC558B	4822 130 44197
352, 355	Transistor	BC548B	4822 130 40937
358	Transistor	BSX20	4822 130 41705
359	Transistor	2N2894A	5322 130 44127
360, 361	Transistor	BSX20	4822 130 41705
		BC548B	4822 130 40937
362	Transistor Transistor	BC558B	4822 130 44197
363		2N2894A	5322 130 44127
364, 365		BSX20	4822 130 41705
366, 367		BF450	4822 130 44237
378, 379	Transistor	D1 430	
000 001	Transistor	BF240	4822 130 40902
380, 381	Transistor	BC548B	4822 130 40937
382	Transistor	BC558B	4822 130 44197
383		BC548B	4822 130 40937
384, 385	i ransistor	500.35	

Pos. no.	Description				Ordering code
DIODES /	UNIT 1, MOD.				
401, 402	Diode, ref.	BZX79B4	\/7		4822 130 34174
403-408	Diode, ref.	BZX79B6			4822 130 34174
410-418	Diode, rer.	BA481	Vo		5322 130 32239
421	Diode, ref.	BZX79C8	\/2		4822 130 34382
422, 423	Diode, ref.	BZX79C6			4822 130 34278
425	Diode, ref.	BZX79B4	V7		4822 130 34174
426	Diode	BAW62			4822 130 30613
427, 428	Diode, ref.	BZX79B4			4822 130 34174
429, 430	Diade, ref.	BZX7984			4822 130 31554
431	Diode, ref.	BZX79B1	0		4822 130 34297
432, 433	Diode	BA481			5322 130 32239
CAPACIT	ORS/UNIT 1, MOD.				
503	Cap. trimmer	2-22 pF		100 V	4822 125 50045
504	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
505, 511	Cap. trimmer	2-22 pF		100 V	4822 125 50045
513	Cap. ceramic	120 pF	2 %	100 V	4822 122 31685
514-516	Cap. ceramic	100 nF	10 %	20 V	5322 122 30108
517	Cap. ceramic	270 pF	2 %	100 V	4822 122 30107
519	Cap. ceramic	220 pF	2 %	100 V	5322 122 34047
520	Cap. ceramic	10 nF 100 nF	10 %	40 V 50 V	4822 122 30043
521 522	Cap. ceramic Cap. solid alu.	100 n=	10 %	16 V	5322 122 32941 4822 124 20977
022	Cap. solid alu,	15 μΓ		10 V	4022 124 20977
523	Cap. solid alu.	1 μF		25 V	4822 124 20944
524	Cap. trimmer	11-120 pF		150 V	5322 125 50183
525	Cap. ceramic	100 pF	2 %	100 V	4822 122 31316
526	Cap. foil	1.6 nF	1 %	160 V	5322 121 51123
527	Cap. foil	1.82 nF	1 %	160 V	5322 121 54259
528	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
529	Cap. solid alu.	15 μF		16 V	4822 124 20977
530	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
532	Cap. foil	33 nF	1 %	63 V	5322 121 54111
533	Cap. foil	330 nF	1 %	63 V	5322 121 54171
534	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
536	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
537	Cap. electrolyt.	47 μF	100	25 V	4822 124 22027
540-544	Cap. ceramic	100 nF	10 %	100 V	5322 122 32941
545-546	Cap. ceramic	100 pF	2 %	100 V	4822 122 31316
547	Cap. ceramic	22 pF	2 %	100 V	5322 122 32143
548-549	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
550	Cap, ceramic	2.2 nF	10 %	100 V	4822 122 30114

Pos. no.	Description				Ordering code
					-
RESISTO	RS/UNIT 1, MOD.				
601	Res. metal film	1 kΩ	0.1 %	0.25 W	5322 116 52384
602, 607	Potm. trimmer	47 kΩ	CERMET	0.5 W	5322 101 10509
604, 606	Res. metal film	2 kΩ	0.1 %	0.25 W	5322 116 51812
609, 611	Res. metal film	2 kΩ	0.1 %	0.25 W	5322 116 51812
613	Potm. trimmer	470 Ω	CERMET	0.5 W	5322 101 14047
624, 627	Potm. trimmer	100 Ω	CERMET	0.5 W	5322 101 14011
663, 681	Potm. trimmer	10 kΩ	carb.	0.1 W	4822 100 10035
684	Potm. trimmer	2.2 kΩ	carb.	0.1 W	4822 100 10029
686	Potm. trimmer	470 Ω	carb.	0.1 W	4822 100 10038
696	Potm. trimmer	1 kΩ	CERMET	0.5 W	4822 100 10254
699	Potm, trimmer	10 kΩ	carb.	0.1 W	4822 100 10035
700	Potm. trimmer	220 Ω	carb.	0.1 W	4822 100 10019
702, 709	Potm, trimmer	22 kΩ	carb.	0.1 W	4822 100 10051
707	Potm. trimmer	1 kΩ	carb.	0.1 W	4822 100 10037
714	Res. N. T. C.	4.7 kΩ	10 %	0.25 W	5322 116 30215
COILS/U	NIT 1, MOD.				
801	Choke	0.33 μH			5322 157 53013
802	Choke	220 µH			5322 157 53012
RELAIS /	UNIT 1, MOD.				
810-816	Reed relais	5 V			5322 280 20281

Pos. no.	Description		Ordering code
UNIT 1,	PULSE GENERATOR		
INTEGRA	TED CIRCUITS / UN	IT 1, PULSE GEN.	
301	Integr. circuit	NE521N	5322 209 14441
302	Integr. circuit	N74LS86N	5322 209 84997
303	Integr. circuit	N74S258N	5322 209 85674
304	Integr. circuit	HEF4094BP	5322 209 10421
305	Integr. circuit	N74S00N	5322 209 84167
306	Integr. circuit	DAC-08EN	5322 209 11254
307	Integr. circuit	MC1458N	4822 209 81349
308, 309	Integr. circuit	LF356N	5322 209 86422
TRANSIS	TORS/UNIT 1, PULS	SE GEN.	
351, 353	Transistor	BSX20	4822 130 41705
352, 354	Transistor	2N2894A	5322 130 44127
355, 360	Transistor	BSX20	4822 130 41706
356, 357	Transistor	2N2894A	5322 130 44127
358	Transistor	2N5583	5322 130 44033
359	Transistor	2N2894A	5322 130 44127
361, 365	Transistor	2N5583	5322 130 44033
362, 366	Transistor	BFW16A	5322 130 44015
363	Transistor	2N2905A	5322 130 40468
364	Transistor	2N2219A	5322 130 44034
DIODES /	UNIT 1, PULSE GEN	l.	
401, 402	Diode, ref.	BZX79B4V7	4822 130 34174
403	Diode, ref.	BZV46C2V0	4822 130 31248
404	Diode, ref.	BZX79B6V2	4822 130 34167
405-408	Diode	BA481	5322 130 32239
409, 410	Diode, ref.	BZX75C2V8	4822 130 34048
411	Diode, ref.	BZX79B4V7	4822 130 34174
412, 413	Diode	BA481	5322 130 32239
414	Diode, ref.	BZX79B3V3	5322 130 31504
415, 416	Diode, ref.	BZX75B16	4822 130 34268
417	Diode, ref.	BZX79B9V1	4822 130 30862
418	Diode, ref.	BZX79B15	4822 130 34281
419	Diode, ref.	BZX79B10	4822 130 34297
420	Diode, ref.	BZX79B13	4822 130 34195
421-424	Diode	BAT14036	5322 130 80266
425, 426	Diode, ref.	BZX79B12	4822 130 34197
427, 428	Diode	BAW62	4822 130 30613

Pos. no.	Description			Ordering code		
CARACIT	DRC/UNIT 1 DUI CE (nen -				
CAPACITORS / UNIT 1, PULSE GEN.						
501, 502	Cap, ceramic	10 nF + 50/- 20 %	100 V	4822 122 31414		
503	Cap, ceramic	220 pF 2 %	100 V	5322 122 34047		
504, 505	Cap, ceramic	100 nF 10 %	50 V	5322 122 32941		
506, 507	Cap, ceramic	10 nF + 50/- 20 %	100 V	4822 122 31414		
508, 509	Cap. ceramic	100 nF 10 %	50 V	5322 122 32941		
510, 511	Cap. ceramic	10 nF + 50/- 20 %		4822 122 31414		
512-517	Cap. ceramic	100 nF 10 %	50 V	5322 122 32941		
518, 519	Cap. solid alu.	10 μF	16 V	4822 124 21314		
520	Cap. ceramic	100 nF 10 %	50 V	5322 122 32941		
521	Cap. ceramic	33 pF 2 %	100 V	5322 122 32072		
522, 523	Cap. ceramic	1 nF 10 %	100 V	4822 122 30027		
525	Cap. ceramic	10 nF + 50/- 20 %		4822 122 31414		
526, 527	Cap. ceramic	100 nF 10 %	50 V	5322 122 32941		
530, 531	Cap. ceramic	10 nF + 50/- 20 %		4822 122 31414		
532, 533	Cap. solid alu.	10 μF	16 V	4822 124 21314		
534, 535	Cap. ceramic	10 pF 2 %	100 V	4822 122 32185		
536, 539	Cap. ceramic	100 nF 10 %	50 V	5322 122 32941		
537, 538	Cap. trimmer	2-22 pF	100 V	4822 125 50045		
541	Cap. ceramic	10 nF + 50/- 20 %		4822 122 31414		
542	Cap, ceramic	1 nF 10 %	100 V	4822 122 30027		
RESISTORS / UNIT 1, PULSE GEN.						
603	Potm, trimmer	100 kΩ carb.	0.1 W	4822 100 10052		
614	Potm. trimmer	4.7 kΩ carb.	0.1 W	4822 100 10036		
624, 627	Potm. trimmer	4.7 kΩ carb.	0.1 W	4822 100 10036		
650	Res, metal film	150 Ω 5%	1.6 W	4822 116 51142		
654, 659	Potm. trimmer	4.7 k Ω carb.	0.1 W	4822 100 10036		
662	Potm, trimmer	4.7 kΩ carb.	0.1 W	4822 100 10036		
664	Potm. trimmer	10 kΩ carb.	0.1 W	4822 100 10035		
684	Potm. trimmer	2.2 k Ω carb.	0.1 W	4822 100 10029		
COILS / UNIT 1, PULSE GEN.						
805	Damping bead			5322 526 10365		
806	Choke	22 µH		5322 157 50317		
811	Wide band choke	p		5322 157 53015		
812	Damping bead			5322 526 10015		

Ordering code

Description

			eraaring abab
UNIT 1, I	PLL / VCO		
	TED CIRCUITS/UNIT	1, PLL / VCO	
301	Integr. circuit	HEF4094BP	5322 209 10421
302	Integr. circuit	DAC-08EN	5322 209 11254
303, 312	Integr. circuit	LF356N	5322 209 86451
304, 307	Integr. circuit	LF256H	5322 209 71642
306	Integr. circuit	TL0721P	5322 209 71646
309	Integr. circuit	MC4044P	5322 209 85821
311	Integr. circuit	MC1456P1	5322 209 71647
313	Integr. circuit	HEF4053BP	5322 209 10576
314	Integr. circuit	N74S00N	5322 209 84167
316	Integr. circuit	SN74197N	5322 209 84516
317	Integr. circuit	N74LS393N	4822 209 80447
318	Integr. circuit	N74LS00N	5322 209 84823
320	Integr. circuit	MC3346P (CA3086)	5322 209 84111
TRANSIS	TORS/UNIT 1, PLL/	vco	
351, 354	Transistor	BC548B	4822 130 40937
352, 353	Transistor	BC558B	4822 130 44197
356	Transistor	BF450	4822 130 44237
357, 358	Transistor	2N4035	5322 130 44201
359	Transistor	BF240	4822 130 40902
	Transistor Transistor Transistor Transistor Transistor	BSV79 BFX89 BFW16A BFX89 2NZ894A	5322 130 44017 5322 130 40542 5322 130 44015 5322 130 40542 5322 130 44127
369, 371	Transistor	PH2369	4822 130 41594
372	Transistor	BC548B	4822 130 40937
373	Transistor	BC558B	4822 130 44197
374, 376	Transistor	2N4035	5322 130 44201
375, 377	Transistor	BF240	4822 130 40902
378	Transistor	2N4035	5322 130 44201
379	Transistor	BF450	4822 130 44237
380	Transistor	BF240	4822 130 40902
381	Transistor	BC558B	4822 130 44197
382	Integr. circuit	Regul, UA7815UC	4822 209 80808
DIODES /	UNIT 1, PLL/VCO		
401, 402	Diode, ref.	BZX79C4V7	4822 130 34174
403	Diode, ref.	BZX91	5322 130 34397
404-407	Diode, ref.	BZX79C4V7	4822 130 34174
408	Diode, ref.	BZX79C4V3	4822 130 31554
409, 411	Diode, ref.	BZX79C5V1	4822 130 34233
412	Diode, ref.	BZX91	5322 130 34397
413, 417	Diode, ref.	BZX79C4V7	4822 130 34174
414, 420	Diode	BAW62	4822 130 30613
416	Diode, ref.	BZX79C6V2	4822 130 34167
418	Diode, ref.	BZV46C1V5	5322 130 34865
419	Diode, ref.	BZX79B3V3	5322 130 34665

Pos. no.	Description				Ordering code
CAPACIT	ORS/UNIT 1, PLL/VC	0			
502	Cap. ceramic	10 nF +	50/- 20 %	100 V	4822 122 31414
503	Cap. solid alu.	10 μF		16 V	4822 124 21314
504-508	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
509	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
511	Cap. ceramic	220 pF	2 %	100 V	5322 122 34047
512	Cap. ceramic	100 nF	10 %	20 V	5322 122 30108
513, 514	Cap. tantal	47 μF		6.3 V	4822 124 10197
516	Cap. foil	4.7 nF	5 %	63 V	4822 121 50539
517	Cap. ceramic	470 pF	2 %	63 V 50 V	4822 122 32062
518, 519	Cap, ceramic	100 nF	10 %	50 V	5322 122 32941
521, 522	Cap. electrolyt.	100 μF		25 V	4822 124 40207
523, 524	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
526	Cap. trimmer	2-10 pF	D 04	100 V	4822 125 50062
527	Cap. ceramic	18 pF	2 % 10 %	100 V	4822 122 31061
528, 529	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
530	_Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
533, 547	Cap. ceramic		50/- 20 %	100 V	4822 122 31414
536	Cap. trimmer	2-22 pF	• •	100 V	4822 125 50045
537	Cap. ceramic	22 pF	2 %	100 V	5322 122 32143
539	Cap. ceramic	100 nF	10 %	20 V	5322 122 30108
541	Cap. ceramic	470 pF	2 %	63 V	4822 122 32062
542	Cap. ceramic	100 nF	10 %	20 V	5322 122 30108
544	Cap. ceramic	2.2 nF	10 %	100 V	4822 122 30114
548-552 556	Cap, ceramic Cap, tantal	100 nF 47 µF	10 %	50 V 6.3 V	5322 122 32941 5322 124 10197
	/ ·				
557, 566	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
558	Cap. solid alu.	10 μF	ra/ aan/	16 V	4822 124 21314
559-562 563	Cap. ceramic		50/- 20 % 2 %	100 V 100 V	4822 122 31414 4822 122 30045
564-565	Cap. ceramic Cap. ceramic	27 pF 10 nF +	50/- 20 %	100 V	4822 122 31414
	•				
568, 569	Cap. ceramic	100 nF	10 %	20 V	5322 122 30108
570	Cap. ceramic	220 pF	2 %	100 V	5322 122 34047
571 572	Cap, ceramic	100 nF	10 % 50/- 20 %	20 V 100 V	5322 122 30108
573, 574	Cap. ceramic Cap. ceramic	10 nF + 100 nF	10 %	50 V	4822 122 31414 5322 122 32941
373, 374	Cap. Ceraniic	100111	10 /6	30 V	3322 122 32941
RESISTO	RS/UNIT 1, PLL/VCO				
611	Potm. trimmer	470 Ω	carb.	0.1 W	4822 100 10038
614, 621	Potm. trimmer	10 kΩ	carb.	0.1 W	4822 100 10035
620	Potm. trimmer	22 kΩ	carb.	0.1 W	4822 100 10051
625	Resistor	10 MΩ	5 %	0.25 W	4822 110 72214
636	Potm, trimmer	220 Ω	carb.	0.1 W	4822 100 10019
650, 655	Res, metal film	39 Ω	5 %	0.5 W	4822 116 52193
684	Potm. trimmer	100 Ω	carb.	0.1 W	4822 100 10075
706, 709	Potm. trimmer	22 kΩ	carb.	0.1 W	4822 100 10051
721	Potm. trimmer	100 Ω	carb.	0.1 W	4822 100 10075
COLLS / I	INIT 1, PLĹ/VCO	' /			
801-803	Damping lead	FXC3B			5322 526 10366
805	Damping lead	FXC3B			5322 526 10366
806	Coil	0.15 µH			5322 157 53014
804, 807	Coil	4.7 μH			5322 158 10628
808	Coil	15 μH			5322 158 14004

Pos. no.	Description		Ordering code
UNIT 2,	CPU		
INTEGRA	TED CIRCUITS/UNIT 2,	CPU	
301 - 304 305 306 307 308	Integr. circuit Integr. circuit Integr. circuit Integr. circuit Integr. circuit	MC3441AP HEF4093BP HEF4738VP HEF40244BP HEF40373BP	5322 209 85464 5322 209 14927 5322 209 14509 5322 209 10489 5322 209 10491
309, 310 311 312 313 314	Integr. circuit Integr. circuit Integr. circuit Integr. circuit Integr. circuit	HEF4014BP HEF4094BP HEF4514BP N74LS175N N74LS363N	4822 209 10296 5322 209 10421 5322 209 14051 5322 209 84999 5322 209 81776
315*1 317 318 319 320	I. C. P27128 Integr. circuit Integr. circuit Integr. circuit Integr. circuit	(PROM, software version) PC74HCUO4P P8031U processor N74LS390N HEF4049BP	5322 209 11323 5322 209 82034 5322 209 86362 4822 209 10306
321 322 323 324, 325	integr. circuit Integr. circuit Integr. circuit Integr. circuit	HEF4094BP LM741CN DAC-08EN PCD8571P	5322 209 10421 4822 209 80617 5322 209 11254 4822 209 83571
TRANSIS	TOR / UNIT 2, CPU		
351	Transistor	BC337-16	4822 130 41095
DIODE / C	JNIT 2, CPU		

CAPACE	TORS	/ LIMIT	2	CPII

401-404 Diode

501 502 503, 505 504 506-511	Cap. solid alu. Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic Cap. ceramic	3.3 µF 220 pF 22 pF 27 pF 22 nF	10 % 2 % 2 % + 20/ 90 %	16 V 100 V 100 V 100 V 40 V	4822 124 20947 4822 122 30094 5322 122 32143 4822 122 30045 4822 122 30103
512	Cap. electrolyt.	220 µF		16 V	4822 124 40196
513-515	Cap. ceramic	22 nF		40 V	4822 122 30103
517	Cap. ceramic	100 nF		50 V	5322 122 32941

BAW62

4822 130 30613

Pos. no.	Description			-	Ordering code
RESISTO	RS/UNIT 2, CPU				
601, 602 604, 605 609	Res. network Res. network Res. network	8 x 4.7 kΩ 8 x 4.7 kΩ 8 x 4.7 kΩ	5 % 5 % 5 %	0.125 W 0.125 W 0.125 W	5322 116 90132 5322 116 90132 5322 116 90132
CRYSTAI	_/UNIT 2, CPU				
801	Crystal	10 MHz			5322 242 71724
MISCELL	ANEOUS / UNIT 2, CPU				
802	Lithium cell	3V/160mAh			5322 138 10144

UNIT 2, DFS

INTEGRATED CIRCUITS / UNIT 2, DFS

301	Integr. circuit	PC74HCUO4P	5322 209 11323
302, 306	Integr. circuit	N74LS132N	5322 209 85201
303	Integr. circuit	SN74LS109AN	5322 209 85974
304, 305			
	Integr. circuit	N74LS02N	5322 209 85312
307-311	Integr. circuit	HEF4094BP	5322 209 10421
312-321	Integr. circuit	N74LS283N	5322 209 86052
322, 323	Integr. circuit	N74LS273N	5322 209 85792
324	Integr. circuit	N74LS174N	5322 209 81632
325, 326	Integr. circuit	N74LS273N	5322 209 85792
327	Integr. circuit	N74LS86N	5322 209 84997
328	Integr. circuit	N74LS153N	5322 209 85488
329	Integr. circuit	SN74LS151N	5322 209 86452
330	Integr, circuit	N74LS00N	5322 209 84823
331, 332	Integr. circuit	N74LS86N	5322 209 84997
333	Integr. circuit	N74LS174N	5322 209 81632
000	integri en eur	1772017414	3022 200 0 7 002
334	Integr. circuit	N74LS175N	5322 209 84999
335	Integr, circuit	N82S115N (sine ROM)	5322 209 82603
336, 337	Integr, circuit	N74LS157N	5322 209 81521
338	Integr. circuit	N74LS174N	5322 209 81632
339	Integr. circuit	N74LS175N	5322 209 84999
340, 341	Integr. circuit	N74LS86N	5322 209 84997
342	Integr. circuit	N74LS273N	5322 209 85792
343	Integr. circuit	N74LS175N	5322 209 84999
344, 345	Integr. circuit	N74S04N	5322 209 84475
346	Integr. circuit	MC145BN	4822 209 81349
340	integr. circuit	14.0140014	4022 203 01343
347	Integr, circuit	SN74LS151N	5322 209 86452
348	Integr. circuit	HEF4050BP	4822 209 10261
360	Integr. circuit	NE521N	5322 209 14441
361	Integr. circuit	N74S153N	5322 209 85688
362	Integr. circuit	HEF4094BP	5322 209 10421
302	megr. circuit	1121 400401	3322 203 10421
363	Integr. circuit	N74LS00N	5322 209 84823
364	Integr. circuit	N74LS107N	5322 209 85816
365	Integr, circuit	N74S02N	5322 209 85407
366, 367	Integr. circuit	N74LS191N	5322 209 84989
368, 369	Integr, circuit	N74LS157N	5322 209 81521
	integri encere		
370, 371	Integr. circuit	HEF4094BP	5322 209 10421
372	Integr. circuit	SN74S112N	5322 209 85741
373	Integr. circuit	N74LS32N	5322 209 85311
374	Integr. circuit	SN74LS123N	5322 209 85266
375	Integr. circuit	N74LS107N	5322 209 85816
376	Integr. circuit	N74LS37N	4822 209 80916
377	Integr. circuit	N74LS0PN	5322 209 84995
378	Integr. circuit	SN74LS123N	5322 209 85266

Pos. no.	Description		Ordering code
TRANSIS	TORS/UNIT 2. DFS		
379, 402	Transistor	BC548B	4822 130 40937
401, 403		BC558C	5322 130 60068
404, 407	Transistor	BC558B	4822 130 44197
405, 406	Transistor	BC558C	5322 130 60068
408, 409	Transistor	BC558C	5322 130 60068
410, 413	Transistor	BC558B	4822 130 44197
411, 412	Transistor	BC558C	5322 130 60068
414, 415	Transistor	BC558C	5322 130 60068
416, 419	Transistor	BC558B	4822 130 44197
417, 418		BC558C	5322 130 60068
420, 421	Transistor	BC558C	5322 130 60068
422, 425	Transistor	BC558B	4822 130 44197
423, 424	Transistor	BC558C	5322 130 60068
426, 427		BC558C	5322 130 60068
428, 430		BC558B	4822 130 44197
429	Transistor	BC558C	5322 130 60068
431, 441	Transistor	BC548B	4822 130 40937
DIODES /	UNIT 2, DFS		
451-460		BAW62	4822 130 30613
461, 463		BZX79B4V3	4822 130 31554
462, 464		BAW62	4822 130 30613
465, 467		BZW79B4V3	4822 130 31554
466, 468	Diode	BAW62	4822 130 30613
469, 471	Diode, ref.	BZX79B4V3	4822 130 31554
470, 472	Diode	BAW62	4822 130 30613
473, 475	Diode, ref.	BZX79B4V3	4822 130 31554
474, 476	Diode	BAW62	4822 130 30613
477	Diode, ref.	BZX79B4V3	4822 130 31554
478	Diode, ref.	BZV46X2V0	4822 130 31248
480	Diode, ref.	BZX79B5V1	4822 130 34233
CAPACIT	ORS/UNIT 2, DFS		
501, 507	Cap. ceramic	22 nF + 20/ 90 %	40 V 4822 122 30103
502	Cap, ceramic	22 pF 2 %	100 V 5322 122 32143
503	Cap. ceramic	56 pF 2 %	100 V 4822 122 32027
504	Cap, ceramic	33 pF 2 %	100 V 5322 122 32072
505	Cap. trimmer	2.5-27 pF	100 V 5322 125 54083
		•	

Pos. no.	Description				Ordering code
506	Cap, solid alu.	1 uF		25 V	4822 124 20944
511-517	Cap, ceramic	22 nF	+ 20/- 90 %	40 V	4822 122 30103
518	Cap. electrolyt.	220 µF		16 V	4822 124 40196
519	Cap, ceramic	22 nF	+ 20/- 90 %	40 V	4822 122 30103
520, 521	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
522	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
523, 524	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
525, 526	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
527	Cap, ceramic	82 pF	2 %	100 V	4822 122 31237
528	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
529, 530	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
531		82 pF	2 %	100 V	4822 122 31237
	Cap. ceramic		2 %	100 V	5322 122 32072
532	Cap. ceramic	33 pF			
533, 534	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
535	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
536	Cap. ceramic	7a EE	2 %	100 V	5322 122 32072
537, 538	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
539	Cap. ceramic	82 pF	2 %	100 V	4822 122 31237
540	Cap. ceramic	33 pF	2 %	100 V	5322 122 32072
541, 542	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
541, 542	Cap. Ceramic	4.7 11	10 /8	100 V	4022 122 31123
543	Cap. ceramic	82 pF	2 %	1 0 0 V	4822 122 31237
544, 548	Cap, ceramic	33 pF	2 %	100 V	5322 122 32072
545, 546	Cap, ceramic	4.7 nF	10 %	100 V	4822 122 31125
547	Cap, ceramic	82 pF	2 %	100 V	4822 122 31237
549	Cap, ceramic		+ 20/- 90 %	40 V	4822 122 30103
550, 551	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
				100 V	4822 122 31237
553	Cap. ceramic	82 pF	2 %		
554	Cap. ceramic	22 nF	+ 20/- 90 %	40 V	4822 122 30103
555, 556	Cap. ceramic	4.7 nF	10 %	100 V	4822 122 31125
558	Cap. ceramic	22 nF	+ 20/- 90 %	40 V	4822 122 30103
559	Cap. ceramic	22 pF	2 %	100 V	5322 122 32143
560, 562	Cap, ceramic	180 pF	2 %	100 V	5322 122 31907
561	Cap, ceramic	10 pF	2 %	100 V	4822 122 32185
563	Cap, solid alu.	6.8 uF		25 V	5322 124 14081
564, 566	Cap, solid alu.	10 µF		16 V	4822 124 21314
504, 500	Gap. sond ard.				
565, 567	Cap. ceramic	22 nF	+ 20/- 90 %	40 V	4822 122 30103
568	Cap. ceramic	47 pF	2 %	100 V	4822 122 31072
569	Cap, ceramic	4.7 nF	10 %	100 V	4822 122 31125
570	Cap. ceramic	12 pF	2 %	100 V	4822 122 31056
571, 572	Cap. ceramic		+ 20/- 90 %	40 V	4822 122 30103
571, 572	Cap. ceranno	22 111	1 201 - 30 70	40 V	4022 122 30103
573, 574	Cap. ceramic	22 pF	2 %	100 V	5322 122 32143
575, 576	Cap. ceramic	470 nF	20 %	50 V	5322 122 33078
577	Cap. ceramic	330 pF	2 %	100 V	 4822 122 31353
578, 579	Cap. ceramic	100 nF	10 %	50 V	5322 122 32941
580	Cap. ceramic	22 nF	+ 20/-90 %	40 V	4822 122 30103
E01	Ci-	22 - 5	2 %	100 V	5322 122 32143
581	Cap. ceramic	22 pF			
582	Cap. ceramic	12 pF	2 %	100 V	4822 122 31056

Pos. no.	Description	8 - 1			Ordering code	
RESISTO	RS/UNIT 2, DFS					
637	Res. metal film	619 Ω	0.1 %	0.25 W	5322 116 80212	
639, 646	Res. metal film	1.87 kΩ	0.1 %	0.25 W	5322 116 80215	
642, 649	Res. metal film	4.64 kΩ	0.1 %	0.25 W	5322 116 80216	
643, 650	Res. metal film	1.69 kΩ	0.1 %	0.25 W	5322 116 80214	
644, 651	Res. metal film	619 Ω	0.1 %	0.25 W	5322 116 80212	
653, 660	Res. metal film	1.87 kΩ	0.1 %	0.25 W	5322 116 80215	
656, 663	Res. metal film	4.64 kΩ	0.1 %	0.25 W	5322 116 80216	
657, 664	Res. metal film	1.69 kΩ	0.1 %	0.25 W	5322 116 80214	
658, 665	Res. metal film	619 Ω	0.1 %	0.25 W	5322 116 80212	
667	Res. metal film	1.87 kΩ	0.1 %	0.25 W	5322 116 80215	
670	Res. metal film	4.64 kΩ	0.1 %	0.25 W	5322 116 80216	
671	Res. metal film	1.69 kΩ	0.1 %	0.25 W	5322 116 80214	
672	Res. metal film	619 Ω	0.1 %	0.25 W	5322 116 80212	
673	Res. metal film	11.5 kΩ	0.1 %	0.25 W	5322 116 51742	
674	Res. metal film	9.53 kΩ	0.1 %	0.25 W	5322 116 80207	
676	Potm, trimmer	470 -Ω	carb.	0.1 W	4822 100 10038	
679	Res, metal film	1.87 kΩ	0.1 %	0.25 W	5322 116 80215	
682, 683	Res. metal film	4.64 kΩ	0.1 %	0.25 W	5322 116 80216	
684, 685	Res. metal film	1.69 kΩ	0.1 %	0.25 W	5322 116 80214	
686	Res. metal film	11.5 kΩ	0.1 %	0.25 W	5322 116 51742	
687	Res. metal film	9.53 kΩ	0.1 %	0.25 W	5322 116 80207	
689	Potm, trimmer	1 kΩ	carb.	0.1 W	4822 100 10037	
693	Potm. trimmer	4.7 kΩ	CERMET	0.5 W	5322 101 10509	
701	Potm. trimmer	220 Ω	carb.	0.1 W	4822 100 10019	
CRYSTAL	./UNIT 2, DF\$					
810	Crystal	8.59 MHz			5322 242 74407	
COILS / U	NIT 2, DFS					
802	Wide band choke				5322 158 10271	
803	Choke				5322 158 20458	
804	Choke				5322 158 20459	

UNIT 3, KEYBOARD DISPLAY	
INTEGRATED CIRCUITS (LINIT 2	
INTEGRATED CIRCUITS/ UNIT 3	
352 Integr. circuit MM5450N 4822 2	09 10306 09 10199 09 72061
TRANSISTOR / UNIT 3	
301 Transistor 8D646 4822 1	30 41212
DIODE / UNIT 3	
409, 410 Diode BAW62 4822 1	30 30613
LEDs, DISPLAYS / UNIT 3	
	30 31128 30 90375
CAPACITORS / UNIT 3	
502-504 Cap, ceramic 22 nF + 20/- 90 % 40 V 4822 1: 505, 506 Cap, ceramic 100 pF 2 % 100 V 4822 1:	24 40196 22 30103 22 31316 22 30103
SWITCHES / UNIT 3	
802 - 818 Key switch M75120051 5322 2 819, 820 Key switch M75120001 5322 2 821-828 Key switch M75120051 5322 2	76 14338 76 14418 76 14338 76 14418 76 14338
835-840 Key switch M75120051 5322 2' 841 Key switch M75120001 5322 2' 842 Key switch M75120051 5322 2'	76 14418 76 14418 76 14338 76 14418 76 14338
MISCELLANEOUS / UNIT 3	
860 Cer. resonator 455 kHz 5322 24	42 71606

style	resistan	ce range	tol. ±%	series	temperatur coefficient ±ppm/ ^O C		ing ige (r.m.s.)	service co 5322 110	5 5
MR 25	4,99 5	2 – 301 kΩ	1	E96	50 °	250		followed	by
	<u> </u>				* For	esistance	values lowe	r than 49,9 Ω	: 100 ppm/
4,99	0568	16,5	4109	54,	9 4445	18.			4528
5,11	4192	16,9	0627	56,	2 4446	18	7 4494		4529
5,23	4113	17,4	4432	57,	6 4447	19	1 4495	634	4531
5,36	4239	17,8	0418	59	4448	19	6 0676		4532
5,49	4102	18,2	4083	60.	4 4449	20	0 4496	665	4533
5.62	4128	18,7	0895	61	9 4451	20	5 0669	681	4534
5,76	4413	19,1	4104	63		21			4037
5,90	1064	19,6	0473	64		21			0571
6,04	4114	20	1048	66		22			4535
6,19	1049	20,5	0678	68		22			4536
						23			4537
6,34	0862	21	4433	69		23			4538
6,49	4112	21,5	0677	71,		23			4539
6,65	4414	22,1	0983	73,		24			4539
6,81	4013	22,6	0491	75	4459	25			4541
6,98	4103	23,2	4434	76				i	
7,15	4415	23,7	4014	78		26			4543
7,32	4416	24,3	4435	80		26			4544
7,50	4417	24,9	0903	82		27			4545
7,68	4418	25,5	4436	84	,5 4463	28			4546
7,87	4046	26,1	0876	86	,6 4464	28	7 4506		4547
8,06	4419	26,7	4067	88	.7 4465	29	4 4507		4548
8,25	4099	27,4	0493	90		30	1 4508		4549
8.45	4421	28	0623	93	1 4467	30	9 4509		
8,66	1051	28,7	4068	95	.3 0569	31	6 4511		
8,87	4101	29,4	4084	97	6 4468	32	4 4512	2 1K07	4553
9,09	0863	30,1	0904	10		33	2 4513	3 1K1	4554
9,31	4422	30,1	4437	10		34			4555
	4258	31,6	4034	10		34	8 4515	5 1K15	0415
9,53		32,4	4105	10		35			4556
9,76	4423 0452	33,2	0527	11		36			4557
10						37		1	4559
10,2	4111	34	4438	1		38			
10,5	4071	34,8	4027	1 1		39			0526
10,7	4424	35,7	4439		18 4477	40		- 1	3 4561
11	4059	36,5	0409		21 4426	4			7 0628
11,3	4425	37,4	4158	1.	24 4478			. (4562
11,5	0838	38,3	0954	1	27 4479		22 045	~	
11,8	0738	39,2	4087	1	30 4481		32 452		
12,1	4069	40,2	0926	1	33 4482		42 059		
12,4	4427	41,2	4108		37 4483		53 452		4564
12,7	4261	42,2	1052	1	40 4484		64 053	1 .	
13	4082	43.2	0519	1	43 4485	4	75 400		
13.3	1047	44,2	0818		47 0766	4	87 050		
13,7	4428	45,3	0795		50 4486	4	99 452		
14	0839	46,4	0492		54 0506	5	11 452		
14,3	4429	47,5	0952		58 4487		23 452	26 1K7	4 0629
				-1		l l	36 062	· · ·	8 5015
14,7	0412	48,7	0511		162 0417		49 073		
15	0902	49,9	4441		165 4488		62 400	-	
15,4	0925	51,1	4442		69 4489		76 452	·	
15,8	0861	52,3	4443		174 4491		90 056	1	
16,2	4431	53,6	4444	115	178 4492	1 5	\$0 US(,, , ,,,,,	

2K	4572	6K65	4604	22K1	4003	73K2	0666	243K	4733
2K05	0664	6K81	4012	22K6	0481	75K	4686	249K	4734
2K1	4573	6K98	4605	23K2	4645	76K8	4687	255K	4735
2K15	0767	7K15	4606	23K7	4646	78K7	0533	261K	4736
2K21	4574	7K32	4607	24K3	4647	80K6	4688	267K	4737
				1					
2K26	0675	7K5	4608	24K9	4648	82K5	4689	274K	4738
2K32	4575	7K68	4609	25K5	4649	84K5	4691	280K	4739
2K37	4576	7K87	0458	26K1	4651	86K6	4692	287K	4741
2K43	4004	8K06	4611	26K1	4652	88K7	4693	294K	4742
2K49	0581	8K25	4558	27K4	0559	90K9	4694	301K	4743
21145	0301	OK25	4506	2/K4	0559	9079	4094	50110	,,
2K55	4577	8K45	4612	0016	0000	93K1	4297	316 K	5268
2K61	0671			28K	0667				
		8K66	4613	28K7	4653	95K3	0567	332 K	1184*
2K67	4678	8K87	4614	29K4	4654	97K6	4695	348 K	5499
2K74	0636	9K09	4615	30K1	4655	100K	4696	365 K	5641
2K8	4579	9K31	4616	30K9	4656	102K	4697	374 K	5457
2K87	0414	9K53	4617	24162	4057	105K	4698	383 K	5335
2K94	4581	9K76		31K6	4657				5283
			4618	32K4	4658	107K	4699	402 K	
3K01	0524	10K	4619	33K2	0482	110K	4701	412 K	5424
3K09	4582	10K2	4621	34K	4659	113K	4702	422 K	5247
3K16	0579	10K5	0731	34K8	4661	115K	4279	442 K	5458
3K24	4583	10K7	4622	35K7	4662	118K	4703	464 K	5207
3K32	4005	11K	4623	36K5	0726	121K	4704	475 K	1275
3K4	4584	11K3	0668	37K4	4663	124K	4705	499 K	5468
3K48		11K5							5258
	4585		4624	38K3	0483	127K	4706	511 K	
3K57	4586	11K8	4625	39K2	4664	130K	4707	536 K	4758
3K65	4587	12K1	0572	40K2	4665	133K	4708	562 K	1169
3K74	4588	- 12K4	4626	41K2	4666	137K	4709	590 K	5567
3K83	4589	12K7	0443	42K2	0474	140K	4259	619 K	5315
3K92	4591	13K	0522	43K2	4667	143K	4711	649 K	5331
4K02	4592	13K3	4627	44K2	4668	147K	4712	681 K	5284
11102	1002	10,10	4027	4417.2	-+000	1476	4712	00110	3204
4K12	4593	13K7	4628	45K3	4669	150K	4713	750 K	5532
4K22	0729	14K	4629	46K4	0557	154K	4714	806 K	1369
4K32	4594	14K3	4631	47K5	4671	158K	4715	825 K	1398
4K42	0556	14K7	4632	48K7	0442	162K	4716	866 K	1395
4K53	0631	15K	4001	49K9	0674	165K	4717	909 K	5533
		10.1	,001	45105	0074			303 1	0000
4K64	0484	15K4	0479	51K1	0672	169K	4718	953 K	1368
4K75	4008	15K8	4633	52K3	4673	174K	4719	1MAO	5535
4K87	0509	16K2	0593	53K6	4674	178K	4721		
4K99	0523	16K5	4634	54K9	4675	182K	4722		
5K11	4595	16K9	4635	56K2	4676	187K	4723		
5K23	4596	17K4	4636	57K6	4677	191K	4724		
5K36	4597	17K8	4637	59K	4678	196K	4725		
5K49	4598	18K2	4638	60K4	4679	200K	4726		
5K62	4011	18K7	0558	61K9	0872	205K	4727		
5K76	4599	19K1	4639	63K4	4681	210K	4208		
5K9	0583	19K6	4641	64K9	0514	215K	4728		
			4642	66K5	4682	221K	4038		
6K04	4601	20K	4643	68K1	4683	221K	4038		
6K19	0608	20K5			4684				
6K34	4602	21K	4644	69KB		232K	4731		
6K49	4603	21K5	0451	71K5	4685	237K	4732		

* 4822 116 5...

Figures

FIGURES 28 - 44

- Fig. 28 Unit 2, adjusting elements
- Fig. 29 Unit 1, adjusting elements
- Fig. 30 Block diagram
- Fig. 31 Front view
- Fig. 32 Rear view
- Fig. 33 Overall circuitdiagram
- Fig. 34 Unit 1, component lay-out
- Fig. 35 Power supply
- Fig. 36 Unit 1, pulse generator
- Fig. 37 Unit 1, PLL/VCO
- Fig. 38 Unit 1, output amplifier
- Fig. 39 Unit 1, modulator
- Fig. 40 Unit 2, component lay-out
- Fig. 41 Unit 2, CPU
- Fig. 42 Unit 3, (keyboard/display) component lay-out
- Fig. 43 Unit 3, keyboard display
- Fig. 44 Unit 2, digital frequency synthesis (DFS)

component side

Fig. 29 Unit 1 adjusting elements

Fig. 31 Front view

Fig. 32 Rear view

Fig. 33 Overall circuitdiagram

Fig. 34 Unit 1, component lay-out

Fig. 35 Unit 1, power supply

Fig. 36 Unit 1, pulse generator

Fig. 40 Unit 2, component lay-out

Fig. 42 Unit 3, Keyboard/display component lay-out

Fig. 43 Unit 3, keyboard display

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

. Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

_	2			3)		(4)	
① Country	Day Monti	Year	Typenumb	~	sion	Factory/Serial no.	
3 2	1 5 0 4 7 5		0 P M 3 2 6 0 0 2		2	D O 0 0 7 8 3	
CODED FAILURE DESCRIPTION							
(5)							
Nature of call Location			Component/sequence no. Category				
Installat Pre sale Preventi mainten Correcti mainten Other	repair lve nance ive	0 0 2 1	T R 9	S 0 6 0 0 0 6 3 9 0 0 0	2	Job comple Working tin	ne ®
Detailed description of the information to be entered in the various boxes:							
①Country: 3 2 = Switzerland							
②Day Month Year 1 5 0 4 7 5 = 15 April 1975							
③Type number/Version O P M 3 2 6 0 0 2 = Oscilloscope PM 3260, version 02 (in later oscilloscopes this number is placed in front of the serial no)							
④Factory/Serial number D 0 0 0 7 8 3 = DO 783 These data are mentioned on the type plate of the instrument							
Nature of Coded fail			e relevant b	ox			
Location			Component/sequence no. C			ategory	
These four boxes are used		These six boxes are intended to pinpoint the faulty component.			0 Unknown, not ap not present, inter		
to isolate the problem area. Write the code of the part		A. Enter the component			disappeared)	mictaile a.	
in which the fault occurs, e.g. unit			designation as used in the circuit			1 Software error 2 Readiustment	
no or mechanical item no of this part (refer to 'PARTS		diagram. If the designation is alfa-numeric,the letters must be			3 Electrical repair	(wiring, solder	
LISTS' in the manual).		written (starting from the left)			joint, etc.)		
Example: 0001 for Unit 1		in the two left-hand boxes and			4 Mechanical repai		
000A for Unit A 0075 for item 75		the figures must be written (in such a way that the last digit			filing, remachining, etc.) 5 Replacement (of transistor,		
If units are not numbered, do not			occupies the right-most box) in			resistor, etc.)	
fill in the for	fill in the four boxes; see Example		the four right-hand boxes. B. Parts not identified in the			6 Cleaning and/or 7 Operator error	ubrication
Job sneet.		circuit diagram:			8 Missing items (or		
		990000 Unknown/Not applicable 990001 Cabinet or rack (text plate, emblem, grip, rail,			9 Environmental requirements are not met		
			9	raticule, etc.)			
		990002 Knob (incl. dial knob, cap,					
		990003 Probe (only if attached					
		to instrument) 990004- Leads and associated plugs					
		990005	Holder (valve,t	ransistor,			
		fuse, board, etc.) 990006 Complete unit (p.w.					
		board, h.t. unit, etc.)					
		990007 Accessory (only those without type number)					
				without type r Documentation			
				supplement, et	c.)		
				Foreign object Miscellaneous			

⁽⁷⁾ Job completed: Enter a cross when the job has been completed.

⁽B) Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

SALES AND SERVICE ALL OVER THE WORLD

Alger. Bureau de Liaison Philips, 24 bis, Rue Bougainville, El Mouradia, Alger, tel. 213-601405 Antitles see Ned Antilles

Argentina: Philips Argentina S A., Vedia 3892, Casilla de Correo 3479, 1430 Buenos Aires, tel.:54-1-5414106/ 54-1-5417141/5422411

Australia: Philips Scientific & Industrial, 25-27 Paul Street, P.O. Box 119, North Ryde/ NSW 2113, et. 61-2-8888222 Service Cenfre. PCS Service, 2 Greenhills Avenue, Moorebank, P.O. Box 269, Liverpool/NSW 2170, 1et: 61-2-202000

Bangia Deshi Philips Bangia Desh Ltd., 16/17 Kawran Bazar C/A P.O. Box 62, Ramma, N.V. Dhaka; tet., 325081/5, 411976 Service Centre: 50 New Eskaton Road Maghbazar, Dhaka; tet.: 403047

België/Belgique: Philips & MBLE associated S.A., Scientific and Industrial Equipment Division, 80 Rue des Deux Gares, 1070 Bruxalles; 101: 322–5256111

Bolivia: E.P.T.A. Industrias Bolivienes Phillips S.A., Calle Mercedo no. 1046, Cajón Postal 2964, La Paz, tel: 341453/350029

Brasil: Phillips do Bresil Ltda., Av. Eng. Luiz Cerlos Berrini, 3009, Caixa Postal 8681, CEP 04571-Sao Paulo (S.P.); tel.: 55-11-2411611

tel: 55-11-2411611 Service Centre: Sistemas Profissionais, Rue Anton Philips 1, Caixe Postel 7018, 07000 Guerulhos-S.P.; tel: 55-11-2090111

Canada: Philips Electronics Ltd., Test and Measurement Dept., 1001 Ellesmare Road, Scerborough (Ontario) M1P-2W7, tel.: 1-416-292 82000 Chille: Philips Chiléna S.A., Division Professionel, Avenida Sante Maria 0670, Casille 2687, Sentiego de Chile; tel:56-2-770038

Colombia: Industries Philips de Columbie S.A., Celle 13 no. 51-39, Apartado Aereo 4282 Bogota; tel.: 57-1-2600600

Danmark Philips Industri og Handels A/S, Pregs Boulevard 80, P.O. Box 1919, DK-2300 Cøbenhevn S; tel.: 45-1-572222

Deutschland (Bundesrepublik): Philips GmbH, Unternehmensbereich Elektronik für Wissenscheft und Industrie, Miramstresse 87, Postfach 310 320, 3500 Kassel-Bettenhausen; tel:: 49-561-5010

Ecuador: Philips Ecuador C.A., Páez 118 y Avenida Patria, Casilla 343, Ourto; tel.: 593-2-546100/564601

Egypt: Philips Egypt Branch of Philips Midden Oosten N.V., 10. Abdel Rahman El Rafei Street -Dokki-, Carro; tel.: 20-2-3490922/3490926/3490928/3492237

Eire: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Dublin 14; tel.: 353-1-693355

España: Philips Ibèrica S.A.E., Martinez Villergas 2, Apartado 2065, Madrid 28027, tel: 34-1-4042200 Service Centre: Euroservice S.A. Calle de Albasanz 75, Madrid 28017; tel: 34-1-2045940/2047025/2047105

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenus, P.O.B. 2565, Addis Ababa; tel.: 448300/157441

Erance: S.A. Philips Industrialle et Commerciale Prance: S.A. Prilips industries of Columerciale, Division Science et Industrie, 105 Rue de Paris, B–P.62, 93 002 Bobigny Cedex, tel.: 33–1–4830111

Germany: see Deutschland

Hellas (Greece): Philips S.A. Hellèniqu 15, 25th March Street, P.O. Box 3153, Athens 10210; tel: 30-1-4894911

Hong Kong: Philips Hong Kong Ltd., 29/F Hopewell Centre, 17 Kennedy Road, G.P.O. Box 2108, Hong Kong, tel.: 852-5-283298

Ireland see Eire

India: Peico Electronics & Electricals Ltd., I&E Equipment, Shivsagar Estate, Block "A" Dr. Annie Besant Road, P.O.B 6598, Worli, Bombay 400 018 (WB); tel: 91-22-4921500

Indonesia: P.T. Philips Development Corporation, Jalan Gatot Subroto Kav. 35/36, P.O. Box 785/KBY, Jakarta 12950; tel.; 82-21-517900/5781977

Iran: Philips Iran Ltd., P.O.B. 11365-3891, Tehran: tel: 98-21-674138/675158

Iraq: Philips Midden Oosten B.V., Baghdad Branch Hai Al Whida (district), Area No. 902, Street No. 12 Building No. 141/10, P.O. Box 5749, Baghdad; tel. 7187181

Island : Heimilisteaki Reykjavík; tel.: 24000 aki SF. Saetún 8

Italia, Philips S.p.A., Sezione I&E/T&M, Viale Elvezia 2, 20052 Monza (Mi); tel : 39-39-36351

Kenya, Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel.: 254-2-557999

Lebanon: Philips Middle Eest S.A.R.L., P.O. Box 11-670, Beyrouth; tel.: 392320/1

Malaysia Philips Melaysia Sendirian Berhad, Wisna Philips, No. 3, Jalan SS15/24, 47500 Petaling Jaya, Selangor, G.P.O.B. 12163, 50768 Kuala Lumpur; Iel: 60-3-734551177554234 Service Centre, Lel: 61-3-734551177554234 Centre Centre, Company, Compan

Mèxico. Telecommunicaciones y Sistemas Professionales S.A. de C.V. Goldsmith No. 40, Col. Polanco, 11560 Mèxico, D.F., tel: 52-5-5406875

Morocco Philips Maroc S.A., 304-Bould B.P. 10896, Bandoeng, Casablanca 05; tal.: 212-302092/303192/308051 llevard Mohammed V.

Nederland: Philips Nederland B.V. Boschdijk 525, Gebouw VB, 5600 PD Eindhoven; tel.: 31-40-793333

Ned. Artillen: Philips Antillana N.V., Schottegatweg Oost 146, Postbus 3523, Willemstad, Curaçao; tel.: 599-9-615277/612799 (service)

New Zealand: Phillips New Zeelend Ltd., Scientific and Industrial Equipment Division, 68-86 Jervois Ouay, G.P.O. Box 2097, Wellington C1, tel. 64-4-735735

Nigeria: Associated Electronic Products (Nigeria) Ltd., KM16, Ikorodu Road, Ojota, P.O.B. 1921, Lagos; tel: 234-1-900160/89

Nippor: NF Trading Co. Ltd., 3-20 Tsunashima Higashi 6 - Chome, Kohoku-ku, Yokohama-Shi

Norge (Norway): Norsk A.S. Philips, Dept. Industry and Telecommunication, Sendstuveren 70, Postboks 1, Manglerud N 0612, Oslo 6; tel.: 47–2-680200

Oesterreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Triestorrainsse 64, Postfach 217, A 1100 Wien; st. 45-222-45521 Oesterreichsche Philips Industrie GmbH Ketzergasse 120-122, A 1232 Wien; tet: 43-222-86582

Pakistan: Philips Electrical Co. of Pakistan Lto., P.O.B. 7101, Karachi 3; tel.: 92-21-725772

Paraguay: Philips del Paraguay S.A., Avenida Artigas 1519, Casilla de Correo 605, Asunción; tel.; 595-21-291924/291934

Péru: Philips Peruana S.A., Av. Alfonso Ugarte 1268, Lima 5, Apartado Aereo 1841, Lima 100; tel: 51-14-328070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo, Makati, Metro Manila; tel.: 63-2-868951/868959

Portugal Philips Portuguesa S.A.R.L. 1009 Lisboa Codex, Av. Eng. Duarte Pacheco 6, 1000 Lisboa; tel: 351–1-683121/9 Service Centre: Servicos Técnicos Profissionais, Outorela 7/Carnaxide, 2795 Linda-a-Velha; tel: 351–1-2180071

Saoudi Arabia: Delegate Office of Philips Industries, P.O. Box 9844, Riyadh 11423; tel. 966-1-4777808

Schweiz-Suisse-Svizzera: Philips A.G., S& Equipment, Allmendstrasse 140, Postfach 670, CH-8027 Zurich; tel.: 41-1-4882211

Singaporel Philips Singapore Private Limited, Lorong 1, Toa Payoh, Singapore 1231, P.O. Box 340 - Toa Payoh Central Post Office, Singapore 9131, tel. 65-3502000 (N.O.)

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, P.O.B. 7203, New Doornfonter Johannesburg 2000, tel.: 27-11-6179111

South Korea: Philips Electronics (Korea) Ltd., 260-199 Itaewon-dong, Yongsan-ku, Philips C.P.O. Box 3680, Seoul, Korea 140, tel. 82-2-794-5011/5

Spain, see España Suomi Oy Philips AB, Karvokatu 8, P O Box 255, SF-00101 Helsinki; tel: 358-0-17271 Service Centre.

Sinikallionte 1-3, P.O. Box 11, SF-02630 Espoo; tel: 358-0-52571

Sverige (Sweden): Philips Försäljning AB, Dw. Industrielektronik, Tegeluddsvägen 1 S 115 84 Stockholm, tel., 46-8-7821000

Syria Philips Moyen-Orient S.A.R.L., Rue Fardoss 79, B.P. 2442, Damas, tel., 218605/221650/228003/221025

Taiwan: Philips Taiwan Ltd., 150, Tun Hua North Road, P O Box 22978, Taiper; tel: 886-2-712-0500

Tanzania: Philips (Tanzania) Ltd., TD.F.L. Building (1⁸¹ floor), Ohio/Upanga Road P.O. Box 20104, Dar es Salaam; tel.: 29571/4

Theiland Philips Electrical Co of Theiland Ltd, 283 Silom Roed, P.O. Box 961, Bangiok 10500, tet. 66-2-239 83030-9/2355 655 Service Centre: 29/1 Sanpavud Roed, Bangna, Prakanong, Bangkok 10110, tet. 66-2-396-1639/393 8772-6/65-2-396-1459

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis; tel: 216-1-348666

Türkiye: Türk Philips Ticeret A.S., Inonü Caddesi 78/80, Posta Kutusu 504, 80074 Beyogiu, Istanbul, tel. 90-1-1435910

United Arab Emirates: Philips Middle East B.V., Dubai International Trade Centre, 11th floor, P.O. Box 9269, Dubai; tel.: 971-4-37700

United Kingdom Pye Unicam Ltd., York Street. Cambridge CB1+2PX; tel., 44-223-358866 Service Centre: Pye Unicam Ltd., Service Division, Beddington Lane, Croydon CR9-4EN; tel: 44-1-6843670

Uruguay: Industrias Philips del Uruguey S.A., Avda Uruguay 1287, Cesilla de Correo 294, Montevideo: Isl.: 915641/2/3/4-919009 Service: 387777-387848484

U.S.A.
Things Test and Measurement Dopartment Inc.
California Carden Grove 02645
California Carden Grove 02645
Let 2(21) 594-9741 (7(14) 598-500
Let 2(21) 594-9741 (7(14) 598-500
Let 2(21) 594-9741 (7(14) 598-500
Let 2(40) 946-9722
Florida Winter Park 2(789
1300 Let Plords Winter 947

teil. (2005) 828-1717

Illimois Blasca 6014 13 70.

500 Park Bovd. Suite 1170.

Massachusetts Woburn 01801

21 Olympia Avenue

21 Olympia Avenue

7851 Marior Parkway, Suite 302.

7851 Marior Parkway, Suite 302.

854 McKee Drwk.

154 Suite 1020.

85 McKee Drwk.

154 L. 1-201-253800 (Toll-Iree 800-6317172)

Venezuela: Industrias Venezolanas Philips SA, Apartado Aereo 1167, Caracas 1010-A, tel.: 58-2-203.7111

Zaire S.A.M.E./s.a.r.l., 137, Boulevard du 30 juin, B.P. 16636, Kinshasa, tel. 31887-31888-31921

Zambia: Phillips Electrical Zambia Ltd., Mwembeshi Road, P.O.B. 31878, Lusaka, tel.: 218511/218701/218321

Zimbabwe Philips Electrical (Pvt) Ltd, 62 Mutare Road, P.O. Box 994, Harare tel, 47211/48031

Tel 31-40-788476

For information on change of address: Philips Export B.V., Industrial & Electro-acoustic Systems Division, Test & Measurement, Building TO III - 4, P.O. Box 218, 5600 MD. Eindhoven - The Netherlands

T&M/870415