

Tutorial DNSSEC 1

Cesar Henrique Kuroiwa <tutorial-dnssec@registro.br>

Registro.br

18 de julho de 2012

Objetivos

- Introduzir os conceitos de DNS e DNSSEC
- Apresentar um exemplo prático de DNSSEC utilizando BIND
- Incentivar a utilização de DNSSEC

Cronograma

- Introdução DNS
 - Conceitos
 - Publicação
 - Arquitetura
 - Softwares
 - Vulnerabilidades
- 2 DNSSEC
 - Conceitos
 - Resource Records
 - Funcionamento
 - DNS vs DNSSEC
 - Softwares

- 3 DNSSEC na Prática
 - DNSSEC no Servidor Autoritativo
- DNSSEC no Servidor Recursivo
- 4 Referências

Parte I

Introdução DNS

DNS - Motivação

- Mapear nomes para endereços IP
- Crescimento acelerado do número de computadores na Internet
- Substitui o antigo arquivo /etc/hosts

```
\begin{array}{cccc} \text{exemplo.foo.eng.br} & \longleftrightarrow & 200.160.10.251 \\ & \text{www.cgi.br} & \longleftrightarrow & 200.160.4.2 \\ & \text{www.registro.br} & \longleftrightarrow & 2001:12\text{ff:}0:2::3 \\ \end{array}
```

DNS - Domain Name System

- Arquitetura hierárquica, dados dispostos em uma árvore invertida
- Descentralizado e distribuído
- Novas funcionalidades além de domínio ←→ IP

Hierarquia

Delegação e Zona

Delegação

Indica uma transferência de responsabilidade na administração a partir daquele ponto na árvore DNS

Zona

Parte do sistema de domínios com informações e administração locais (ex: eng.br e foo.eng.br)

Registro de domínios (.br)

- Reserva o direito da pessoa física ou jurídica sobre um determinado nome de endereço na Internet.
- Inclui uma nova delegação para o domínio abaixo da zona .br.
- Domínios não registrados não podem ser encontrados na Internet.

Formas de registro

Sistema WEB

A interface WEB permite de maneira prática gerenciar os domínios de qualquer pessoa física ou jurídica.

http://registro.br/suporte/tutoriais/novo-registro.html

EPP - Extensible Provisioning Protocol

É uma interface destinada somente a provedores de serviço previamente certificados pelo Registro.br.

- http://registro.br/epp/

Publicação DNS

- As alterações feitas nos servidores DNS não são efetivadas imediatamente.
- Publicações DNS fazem com essas alterações sejam propagadas para a Internet.
- Ocorrem a cada 30 minutos.
- Para domínios novos, eles estarão visíveis na Internet após a próxima publicação.
- Para mudanças de servidor DNS, o tempo de propagação para toda a Internet pode ser de até 24 horas, devido ao cache e TTL.

Resource Records

Os dados associados com os nomes de domínio estão contidos em **Resource Records** ou **RR**s (Registro de Recursos)

- São compostos por nome, classe, tipo e dados
- Atualmente existe uma grande variedade de tipos
- O conjunto de resource records com o mesmo nome de domínio, classe e tipo é denominado Resource Record Set (RRset)

Alguns Tipos Comuns de Records

SOA Indica onde começa a autoridade a zona

NS Indica um servidor de nomes para a zona

A Mapeamento de nome a endereço (IPv4)

AAAA Mapeamento de nome a endereço (IPv6)

MX Indica um mail exchanger para um nome (servidor de email)

CNAME Mapeia um nome alternativo (apelido) Apêndice II - CNAME

Arquivo de zona - Possui os RRs referentes a um determinado domínio, sendo que cada domínio possui um arquivo de zona.

```
exemplo.com.br. IN SOA ns1.exemplo.com.br. hostmaster.exemplo.com.br. (
                    : serial
            3600
                    : refresh (1h)
                                               Apêndice I - SOA
            1800 ; retry (30m)
            86400 ; expire (1d)
            900 )
                    : minimum (15m)
exemplo.com.br.
                             IN NS ns1.exemplo.com.br.
                             IN NS ns2.exemplo.com.br.
exemplo.com.br.
ns1.exemplo.com.br.
                             TN A 10.0.0.1
ns2.exemplo.com.br.
                             IN A 10.0.0.2
exemplo.com.br.
                             IN MX 10 mail.exemplo.com.br.
                             IN A 10.0.0.3
mail.exemplo.com.br.
www.exemplo.com.br.
                             TN A 10.0.0.4
```

Softwares

Registro de Dominios para a Internet no Brasil

Ferramenta para consultas DNS

Ferramentas recomendadas para consultas sobre registros de DNS de um determinado domínio, host ou IP:

- DIG (Domain Information Groper)
 - http://www.isc.org/software/bind
- DRILL
 - http://www.nlnetlabs.nl/projects/drill

Softwares

Licença de Servidores DNS

	Criador	Código Aberto	Grátis
ANS	Nominum		
BIND	Internet System Consortium		
djbdns	Daniel J. Bernstein		
DNSSHIM	Registro.br		$\sqrt{}$
IPControl	INS		
IPM DNS	EfficientIP		
MaraDNS	Sam Trenholme	√	
Microsoft DNS	Microsoft		
NSD	NLnet Labs		
PowerDNS	PowerDNS.com / Bert Hubert	√	
Unbound	NLnet Labs		
Vantio	Nominum		
VitalQIP	Lucent Technologies		

Softwares

Compatibilidade de Servidores DNS com Sistemas Operacionais

	BSD ^a	Solaris	Linux	Windows	MAC OS X
ANS					
BIND		√	√	√	√
djbdns					√
DNSSHIM				√	
IPControl		√	√	√	
IPM DNS		√			√
MaraDNS				\sqrt{b}	
Microsoft DNS				√	
NSD		√	√		√
PowerDNS				√	\sqrt{c}
Unbound					
Vantio					
VitalQIP					

^aSistema compatível com a norma POSIX assim como outros clones do Unix.

 $^{^{\}it b}$ Apenas nas versões mais recentes do sistema operacional

^CSoftware em versão Beta

Tipos de servidores

Servidor Autoritativo

- Responde com autoridade para uma zona específica
- Deve estar disponível publicamente para toda a internet
- Podem ser do tipo Master ou Slave

Servidor Recursivo

- Não é responsável por uma única zona
- Ao receber uma requisição, consulta servidores autoritativos para obter a informação desejada
- Faz cache de informações
- Pode ter acesso controlado

Servidores Master e Slave

Servidor Master

- Contém a configuração da zona pela qual é responsável
- A cada alteração, as novas informações são propagadas para os servidores Slaves
- Hidden Master (Master oculto): tipo específico de master que não é visível na Internet

Servidor Slave

Apenas obtém a configuração da zona do servidor Master

Conceitos úteis - Cache e TTL

Cache

- Cache é o ato de armazenar informações de consultas anteriores.
- Usado somente em servidores recursivos.
- Reduz o tempo de resposta para informações muito consultadas.

TTL

 TTL é o tempo (em segundos) que uma informação fica armazenada no Cache de um servidor recursivo.

Conceitos úteis - Glue Records

- Necessário quando o nome de um servidor DNS contém o próprio nome do domínio
- Neste caso é necessário ter o endereço IP do servidor para poder acessá-lo.
- Glue é o record que contém este endereço IP
- Deve ser incluído na zona pai do domínio

Exemplo:

Domínio. EXEMPLO.COM.BR.

Servidor: NS.EXEMPLO.COM.BR

Glue record: NS.EXEMPLO.COM.BR - 123.123.123.123

Supondo que o cache está vazio ou sem informações de br, eng.br, foo.eng.br, exemplo.foo.eng.br

Resolver

Serviço localizado no cliente que tem como responsabilidade resolver as requisições DNS para diversos aplicativos

Resolver

Supondo que o cache está vazio ou sem informações de br, eng.br, foo.eng.br, exemplo.foo.eng.br

Fluxo de dados

- Resolver faz consultas no Recursivo
- Recursivo faz consultas no Master ou Slave
- Master tem a zona original (via arquivo ou Dynamic Update)
- Slave recebe a zona do Master (AXFR ou IXFR)

Vulnerabilidades

Registro de Dominios para a Internet no Brasil

Man-in-The-Middle

Registro de Dominios para a Internet no Brasil

Man-in-The-Middle

Man-in-The-Middle

O atacante responde mais rápido, spoofando endereço do recursivo

Man-in-The-Middle

O atacante responde mais rápido, spoofando endereço do recursivo

Poluição de Cache

O atacante responde mais rápido, spoofando endereço do autoritativo

Poluição de Cache

O atacante responde mais rápido, spoofando endereço do autoritativo

Poluição de Cache

O atacante responde mais rápido, spoofando endereço do autoritativo

Ambientes Propícios

Segmentos compartilhados L2 ponto-multiponto

- Ethernet (não bridge 802.1d)
- Ethernet Wireless (802.11)

Ambientes Propícios

Segmentos compartilhados L2 ponto-multiponto

- Ethernet (não bridge 802.1d)
- Ethernet Wireless (802.11)

Atenção muito cuidado em conferências!

Soluções

Soluções

TSIG

Transaction Signatures - RFC 2845

- Tráfego assinado com uma chave compartilhada (simétrica) entre as duas partes
- Utilizado principalmente em tranferências de zona (master e slave)

Soluções

TSIG

Transaction Signatures — RFC 2845

- Tráfego assinado com uma chave compartilhada (simétrica) entre as duas partes
- Utilizado principalmente em tranferências de zona (master e slave)

DNSSEC

- Assinatura digital das informações da zona
- Utiliza o conceito de chaves assimétricas (pública e privada)
- Garante integridade e autenticidade das informações
- Provê segurança para a resolução de endereços

Parte II

DNSSEC

DNSSEC

registro

Domain Name System SECurity extensions

- Extensão da tecnologia DNS

 (o que existia continua a funcionar)
- Possibilita maior segurança para o usuário na Internet (corrige algumas vulnerabilidades do DNS)
- Atualmente na versão denominada DNSSEC bis com opcional NSEC3

Garantias de DNSSEC

O que garante?

- Origem (Autenticidade)
- Integridade
- A não existência de um nome ou tipo

Garantias de DNSSEC

O que garante?

- Origem (Autenticidade)
- Integridade
- A não existência de um nome ou tipo

O que NÃO garante?

- Confidencialidade
- Proteção contra ataques de negação de serviço (DOS)

Avanço de DNSSEC no Mundo

World Wide DNSSEC Deployment

See also DNSSEC Theory and World Wide Deployment by Paul Wouters, November 21, 2007, SecTor

This map was created by Paul Wouters

Utilização de DNSSEC

Quem pode utilizar DNSSEC abaixo do .br?

Todos os domínios abaixo do .br podem (e devem) utilizar DNSSEC. Atualmente com cerca de 250.000 domínios assinados (9%)

Mais informações podem ser obtidas no site http://www.registro.br/dominio/dpn.html

Utilização de DNSSEC

Quem pode utilizar DNSSEC abaixo do .br?

Todos os domínios abaixo do .br podem (e devem) utilizar DNSSEC. Atualmente com cerca de 250.000 domínios assinados (9%)

Mais informações podem ser obtidas no site http://www.registro.br/dominio/dpn.html

Onde DNSSEC é Obrigatório?

 $\acute{\text{E}}$ obrigatório nos registros que estiverem diretamente abaixo dos domínios .B.BR e .JUS.BR

Chaves Assimétricas

Assinatura

DNSSEC utiliza o conceito de chaves assimétricas

— chave pública e chave privada

Chaves Assimétricas

Verificação

DNSSEC utiliza o conceito de chaves assimétricas — chave pública e chave privada

Novos Resource Records

- DNSKEY Chave pública (incluída na própria zona)
 - RRSIG Assinatura do RRset (somente registros com autoridade)
 - DS Delegation Signer (Ponteiro para a cadeia de confiança)
- NSEC(3) Next Secure (Prova de não existência)

DNSKEY

Representa a chave pública de uma zona

Exemplo de consulta DNSKEY


```
$ dig foo.eng.br dnskey +dnssec
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26230
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
:: OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1280
;; QUESTION SECTION:
;foo.eng.br. IN DNSKEY
:: ANSWER SECTION:
foo.eng.br. 70946 IN DNSKEY 257 3 5 (
                         AwEAAa1ZWWcbEaO5xKyJVyIC1inc/DclqTWIhlUsYiuy
                        qbiC7Kz5lwOYMPNh00edsC3d9S6Cci06T3OUMiFfA+FS
                         wf7eqtv09w7XeuAg9uNdS6wtDL6Qz+UTv9qUzpdclaHK
                        TY8VIfy1Kc8XkR2lgbnpFZkhKlactVJMD4dsUUUJIryF
                        ); key id = 58729
foo.eng.br. 70946 IN RRSIG DNSKEY 5 3 86400 20120516101147 (
                         20120426101147 58729 foo.eng.br.
                         LFT+hSwL6MeFxB2021iuLocmmR8ua6BmphAan7FXCero
                        SwvEKwwvFlLo5piyDkBY5opSLWhbRInahw3F/SZqxt+I
                        MY/zleKOY646+ZvRP4Jt4wjnx2kJG2Bp1NddiFSPoK4X
                        17+DRgB0s80M9kzfEw10FSEJH2HQ/v+g3zgN770= )
```


RRSIG

- Representa a assinatura de um RRset específico com uma determinada chave (DNSKEY)
- Possui uma validade inicial (inception) e final (expiration)

Exemplos de RRset:

foo.eng.br. IN NS ns1.foo.eng.br. foo.eng.br. IN NS ns2.foo.eng.br.

ns1.foo.eng.br. IN A 200.160.3.97

ns2.foo.eng.br. IN A 200.160.3.97

RRSIG

									1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3
0	1	2	3	4	5	6	7	8 9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+-+	+	٠	+-+	+	-+	-+-	+-	+	+-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+
1	Type Covered Algorithm Labels														-															
+-+	+	٠	+-+	+	-+	-+-	+-	+	+-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+
1	Original TTL												-																	
+-+	+-																													
1	Signature Expiration											-																		
+-																														
1										Si	gn	at	ur	е	Ιn	се	pt	io	n											-
+-+	4	٠	+-+	+	-+	-+-	+-	+	+-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+
1						Kej	7]	ag						-																/
+-+	4	٠	+-+	+	-+	-+-	+-	+	+-+	-+	-+	-+	-+	-+					S	ig	ne	r,	s	Na	me					/
1	,											/																		
+-																														
1													/																	
1	Signature													/																
1	-											/																		
+			+-+	+	-+	-+-	-+-	+	+-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+	-+

Exemplo de consulta com RRSIG


```
$ dig @200.160.10.251 foo.eng.br SOA +dnssec +noadditional
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6372
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 5
:: OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;foo.eng.br.
                    TN
                         SOA
;; ANSWER SECTION:
foo.eng.br. 900
                   TN
                         SOA
                                 ns1.foo.eng.br. hostmaster.foo.eng.br. 1 3600 3600 3600 900
foo.eng.br. 900
                    TN
                         RRSTG
                                 SOA 5 3 900 20070617200428 20070518200428 62745 foo.eng.br.
                         glEeCYvd/CCBfzH64v0RAQf90xYDsI4xuBNaam+8DZQZxeoSLQEEtwmp
                         6wBtQ7G10wSM9nEjRRhbZdNPNKJMp2PE1LLgLI+BLwd1z0t8MypcpL0a
                         Tm9rc7pP7UR5XLzU1k8Dm6ePW1bNkId7i0IPSghyoHM7tPVdL2GW51hCujA=
:: AUTHORITY SECTION:
foo.eng.br.
              900
                    TN
                         NS
                                 ns2.foo.eng.br.
                    TN
foo.eng.br.
             900
                         NS
                                 ns1.foo.eng.br.
foo.eng.br.
              900
                    TN
                         RRSIG
                                 NS 5 3 900 20070617200428 20070518200428 62745 foo.eng.br.
                         3iLm1ROC+UeqYk0xgQGQQXkBzcKiKQRPwe+1JZlpjEzjU1Uj0HU0Hefa
                         jXzMv7F1FMWYeU51Ybg49HFe67XQV1K54GeAFXWB7YS59vODLoNEBxQ1
                         9QEy6g/00nLpuKTrST8qqd5Fc/eYqN/Ag3GnfcAviZgiQhhveGH9mJHWZvc=
```


Representa um hash de um record DNSKEY

Indica:

- que a zona delegada está assinada
- qual a chave usada na zona delegada

A zona Pai possui autoridade pelo record DS das zonas delegadas

• O record DS não deve aparecer no Filho

Cadeia de Confiança

O Record DS forma uma cadeia de confiança, a qual garante a autenticidade das delegações de uma zona até um ponto de confiança (uma chave ancorada)

0 1 2 3 4 5 6 7 8 9 0	. 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	0 1								
Key Tag	Algorithm									
/		/								
/	Digest	/								
/										

Exemplo

foo.eng.br.

IN DS 817 5 1 EAEC29E4B0958D4D3DFD90CC70C6730AD5880DD3

É possível obter os DS da zona utilizando o sistema Whois.

Exemplo de DS pelo Whois

\$ whois foo.eng.br

domain: foo.eng.br

owner: Frederico A. C. Neves

address: Av. das Nacoes Unidas, 11541, 7 andar

address: 04578-000 - São Paulo - SP

country: BR
owner-c: FAN
admin-c: FAN
tech-c: FAN

billing-c: FAN

nserver: dixit.foo.eng.br 200.160.7.134

nsstat: 20070619 AA nslastaa: 20070619 nserver: sroot.dns.br nsstat: 20070619 AA nslastaa: 20070619

ds-record: 6928 RSA/SHA-1 CA7D9EE79CC37D8DC8011F33D330436DF76220D1

created: 20000103 #237812

expires: 20080103 changed: 20070604 status: published

NSEC - Next Secure

Permite autenticar uma resposta negativa

- Indica o próximo nome seguro na zona
- Indica os tipos de RRsets existentes para o nome
- Circular (Último aponta para o primeiro)

Exemplo

foo.eng.br.

900 IN NSEC ns1.exemplo.foo.eng.br. NS SOA RRSIG NSEC DNSKEY

Prova de não existência, com pré-assinatura, sem a necessidade de chaves on-line para assinatura on-demand. Diminuindo a possibilidade de DOS.

NSEC - Simulação nome não existente

Respostas NXDOMAIN

 Um ou mais registros NSEC indicam que o nome ou a sintetização de um wildcard não existe

```
$ dig @200.160.10.251 zzz.foo.eng.br SOA +dnssec
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 18301
:: flags: or aa rd: QUERY: 1. ANSWER: 0. AUTHORITY: 6. ADDITIONAL: 1
:: QUESTION SECTION:
;zzz.foo.eng.br.
                        TN
                             SOA
;; AUTHORITY SECTION:
foo.eng.br.
                             SOA
                                     ns1.foo.eng.br. hostmaster.foo.eng.br. 1 3600 3600 3600 900
                        TN
foo.eng.br.
                                     SOA 5 3 900 20070617200428 20070518200428 62745 foo.eng.br.
                        TN
                             glEeCYyd/CCBfzH64yORAQf90xYDsI4xuBNaam+8DZQZxeoSLQEEtwmp
                             6wBtQ7G10wSM9nEiRRhbZdNPNKJMp2PE1LLgLI+BLwdlzOt8MvpcpLOa
                             Tm9rc7pP7UR5XLzU1k8Dm6ePW1bNkId7i0IPSghvoHM7tPVdL2GW51hCuiA=
foo.eng.br.
              900 IN
                       NSEC
                               ns1.exemplo.foo.eng.br. NS SOA RRSIG NSEC DNSKEY
foo.eng.br.
                  900
                        TN
                             RRSTG
                                     NSEC 5 3 900 20070617200428 20070518200428 62745 foo.eng.br.
                             OCOCpFW5fR6MPhVBaUWfrP9pkIqVc+NDORi6PRwIX/p1dLmAT7NF5Rkc
                             9IfbAHZTxefoqTKqN/vPl1PqSxUzhOrl+atHblaH6yt79CTkmStota7C
                             SLYYXX5c7D93hRYJ2yk1C0xQz6GG9SIp/U4qR4//TcQDHpqQ4bFs42ZsD4I=
ns2.foo.eng.br. 900 IN
                        NSEC
                                foo.eng.br. A RRSIG NSEC
ns2.foo.eng.br.
                                     NSEC 5 4 900 20070617200428 20070518200428 62745 foo.eng.br.
                  900
                             XVf7MO9L4rVUD6uxa1P+EhQYohuimuwk1xzAemsn292esUhkkYz/BG7b
                             OT/L9fhzOEPYtYGFyMF4gZ1/mxwY31UmX6xVZZPYFJ7x5Kw2uTSD49FK
                             VsdUOLBCAHz088byAm8EwLe31+U0/q8RvPimAfpouoivUDcuWtKxs0CzLyc=
```

NSEC - Simulação tipo não existente

\$ dig @200.160.10.251 foo.eng.br TXT +dnssec

- Resposta **NOERROR** + sem resposta (ANSWER = 0)
 - O registro NSEC prova que o tipo consultado não existe

```
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60466
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1
;; QUESTION SECTION:
;foo.eng.br.
                    TN
                        TXT
;; AUTHORITY SECTION:
                        SOA
                                ns1.foo.eng.br. hostmaster.foo.eng.br. 1 3600 3600 3600 900
foo.eng.br.
            900
foo.eng.br. 900
                   TN
                        RRSTG
                                SOA 5 3 900 20070617200428 20070518200428 62745 foo.eng.br.
                         glEeCYyd/CCBfzH64y0RAQf90xYDsI4xuBNaam+8DZQZxeoSLQEEtwmp
                         6wBtQ7G10wSM9nEjRRhbZdNPNKJMp2PE1LLgLI+BLwd1z0t8MypcpL0a
                        Tm9rc7pP7UR5XLzU1k8Dm6ePW1bNkId7i0IPSghvoHM7tPVdL2GW51hCuiA=
foo.eng.br. 900 IN
                   NSEC
                            ns1.exemplo.foo.eng.br. NS SOA RRSIG NSEC DNSKEY
foo.eng.br.
              900
                    TN
                        RRSTG
                                 NSEC 5 3 900 20070617200428 20070518200428 62745 foo.eng.br.
                        OCOCpFW5fR6MPhVBaUWfrP9pkIqVc+NDORi6PRwIX/p1dLmAT7NF5Rkc
                         9IfbAHZTxefoqTKqN/vPl1PqSxUzhOrl+atHblaH6yt79CTkmStota7C
                         SLYYXX5c7D93hRYJ2yk1C0xQz6GG9SIp/U4qR4//TcQDHpqQ4bFs42ZsD4I=
```

NSEC3 - DNSSEC Hashed Authenticated Denial of Existence

- RFC 5155
- Soluciona o problema do "Zone Walking"
- Substitui o record NSEC pelo record NSEC3
- Consiste na sequência de hashes dos nomes da zona
- COM.BR e NET.BR

Funcionamento

- RRsets são assinados com a chave privada da zona, gerando RRSIGs
- Chave pública é usada para verificar a assinatura (RRSIG) dos RRsets
- Autenticidade da chave é verificada pelo record DS assinado na zona pai (hash da chave pública da zona filha)
- NSEC fornece prova de não existência

DNSSEC não é PKI

- Não existem Certificados
 (Certification Authority, Service Level Agreement, Certificate Revogation List)
- Chaves nunca expiram
- Assinaturas têm prazo de validade (inception e expiration do RRSIG)
- Políticas das chaves são locais à zona

Servidor Recursivo

Para habilitar um servidor recursivo com DNSSEC é necessário ancorar uma chave pública, que servirá como início da cadeia de confiança.

Obtendo a chave da zona "." (raiz)

• https://registro.br/dominio/root-anchor.html

 O resolver recursivo já possui a chave pública da zona "." (raiz) ancorada

 Compara a chave ancorada com a DNSKEY, caso seja válida continua com as requisições

- Retorna sem resposta, mas com referência para "br":
 - NS de "br"
 - DS de "br"
 - RRSIG do Record DS

 O servidor DNS recursivo utiliza a DNSKEY para checar a assinatura (RRSIG) do Record DS

 O servidor DNS responde enviando DNSKEY e o RRSIG

 O servidor DNS recursivo verifica, através do DS, se a DNSKEY é válida.

- Retorna sem resposta, mas com referência "foo.eng.br":
 - NS de "foo.eng.br"
 - DS de "foo.eng.br"
 - RRSIG do Record DS

 O servidor DNS recursivo utiliza a DNSKEY para checar a assinatura (RRSIG) do Record DS

 O servidor DNS recursivo verifica, através do DS, se a DNSKEY é válida.

 Retorna o Record A e sua assinatura RRSIG.

 O servidor DNS recursivo utiliza a DNSKEY para checar a assinatura (RRSIG) do Record A

EDNS0 (RFC 2671)

- Outra extensão ao protocolo DNS
- Distingue quem suporta DNSSEC
- Possibilita mensagens DNS UDP maiores que 512 bytes
 - Mensagens DNSSEC são bem maiores

Lembrete

É necessário que o transporte TCP também esteja habilitado no servidor.

Alguns cuidados

Configuração de Firewall

O firewall deve ser capaz de tratar corretamente fragmentos UDP.

Alguns cuidados

Configuração de Firewall

O firewall deve ser capaz de tratar corretamente fragmentos UDP.

Caso isto não seja possível, uma alternativa é configurar o servidor para trabalhar com pacotes UDP menores que o MTU da rede.

```
options {
   edns-udp-size 1252; # Servidores recursivos
   max-udp-size 1252; # Servidores recursivos e autoritativos
};
```

1252 é apenas uma sugestão, este valor deve refletir as configurações de Firewall.

Recomendação

Firewalls e DNS, como e porque configurar corretamente ftp://ftp.registro.br/pub/doc/dns-fw.pdf

DNS vs DNSSEC

Diferenças entre uma requisição DNS e uma requisição DNSSEC:

8 Pacotes — X Bytes

12 Pacotes ± 6X Bytes^a

 $[^]a\mathrm{Diferença}$ proporcional ao tamanho da chave

Softwares

registrour Registro de Dominios para a Internet no Brassil

Compatibilidade DNSSEC

			5.00553	NSEC3 ^b			
	Autoritativo	Recursivo	DNSSEC bis ^a	NSEC32	RFC 5011	TSIG	IPv6
ANS			√				
BIND				\sqrt{c}	$\sqrt{}$		
djbdns							
DNSSHIM	$\sqrt{}$					$\sqrt{}$	
IPControl							
IPM DNS							
MaraDNS							
Microsoft DNS			\sqrt{d}			$\sqrt{}$	
NSD	√		√				
PowerDNS							
Unbound					$\sqrt{}$		\vee
Vantio			√				
VitalQIP							

^aVersão atual do protocolo

 $[^]b$ Servidores recursivos devem(!) ter suporte a NSEC3 para pleno funcionamento com DNSSEC

^CSuporte a partir da versão 9.6.0

 $[^]d$ Suporte a partir da versão Windows Server 2008 R2 ou Windows 7

Softwares

DNSSHIM - DNS Secure Hidden Master

http://registro.br/dnsshim/

- Open-Source
- Automatiza o processo de provisionamento de zonas
- Suporte a DNSSEC
- Interface Automatizável
- Manutenção de chaves/assinaturas

Público Alvo

Provedores de hospedagem ou qualquer outra instituição responsável por administrar servidores DNS autoritativos para **muitas zonas**

Softwares

DNSSHIM - DNS Secure Hidden Master Registro de Donnisios para a Internet no Bras

Parte III

Utilizando DNSSEC na Prática

DNSSEC no Servidor Autoritativo

DNSSEC no Servidor Autoritativo

Passo 1 — Criação de Chaves

Utilização do comando dassec-keygen para geração de chaves:

\$ dnssec-keygen -r /dev/urandom -f KSK dominio.com.br

Onde, dominio.com.br deve ser substituído pelo seu domínio.

O comando irá gerar dois arquivos com extensões .key e .private

Passo 2 — Assinar o domínio (arquivo de zona)

Lembrete

Não se esquecer de incrementar o serial do SOA da zona!

Utilização do comando dassec-sigazone para assinatura

\$ dnssec-signzone -S -z -o dominio.com.br db.dominio.com.br

Onde, dominio.com.br deve ser substituído pelo nome do domínio e db.dominio.com.br pelo nome do arquivo de zona.

- O comando irá gerar um novo arquivo de zona com a extensão .signed
- O período de validade padrão da assinatura é de 30 dias

Mais informações no Apêndice IV

Passo 3 — Atualização do named.conf

Alteração da referência para o arquivo de zona

```
zone "dominio.com.br" {
   type master;
   file "/etc/namedb/db.dominio.com.br.signed";
   ...
};
```

Onde, dominio.com.br deve ser substituído pelo nome do domínio e db.dominio.com.br deve ser substituído pelo nome do arquivo de zona.

Passo 4 — Reiniciar o Bind

Reiniciar o Bind

Passo 5 — Adicionar o DS no site do Registro.br

Copiar os dados de **KeyTag** e **Digest** do arquivo **dsset-dominio.com.br** para a interface no site do Registro.br.

```
Exemplo: $ cat dsset-dominio.com.br. | head -1

dominio.com.br | IN DS | Second Head | Digest |

dominio.com.br | IN DS | Second Head | Second
```

- Onde, dominio.com.br deve ser substituído pelo nome do domínio

DNSSEC		
Record	KeyTag	Digest
DS 1		
DS 2		

Passo 6 — Aguardar nova publicação

Aguardar nova publicação no site do Registro.br

Roteiro — Configurar um Servidor Autoritativo

- Criar chave (dnssec-keygen) (slide 121)
- Assinar a zona (dnssec-signzone) (slide 123)
- Modificar o named.conf (slide 106)
- Reiniciar o BIND (named) no servidores Master
- Adicionar o DS no site do Registro.br (slide 108)
- Aguardar nova publicação

Informações Importantes

Servidor Autoritativo

Reassinar a zona antes das assinaturas expirarem

- 1 Incrementar o serial (record SOA) do arquivo de zona original
- Reassinar a zona utilizando o comando dossec-signzone

DNSSEC no Servidor Recursivo

DNSSEC no Servidor Recursivo

Passo 1 — Ancorar a chave da raiz

Obter a chave da raiz no formato do Bind

https://registro.br/dominio/root-anchor.html

named.conf

Passo 2 — Reiniciar o Bind

Reiniciar o Bind

Referências

RFC 2671

Extension Mechanisms for DNS (EDNS0)

RFC 2845

Secret Key Transaction Authentication for DNS (TSIG)

RFC 4033
DNS Security Introduction and Requirements (DNSSEC-bis)

RFC 4034
Resource Records for the DNS Security Extensions (DNSSEC-bis)

RFC 4035
Protocol Modifications for the DNS Security Extensions (DNSSEC-bis)

RFC 4431
The DNSSEC Lookaside Validation (DLV) DNS Resource Record

RFC 4470 Minimally Covering NSEC Records and DNSSEC On-line Signing

RFC 4641
DNSSEC Operational Practices

RFC 5155

DNSSEC Hashed Authenticated Denial of Existence

Referências

- DNSSEC.NET http://www.dnssec.net
- DNSSHIM http://www.registro.br/dnsshim
- Wikipédia DNSSEC http://pt.wikipedia.org/wiki/DNSSEC
- Wikipédia Comparação entre softwares de servidores DNS http://en.wikipedia.org/wiki/Comparison_of_DNS_server_software
- Firewalls e DNS, como e porque configurar corretamente ftp://ftp.registro.br/pub/doc/dns-fw.pdf
- Recomendações para Evitar o Abuso de Servidores DNS Recursivos Abertos http://www.cert.br/docs/whitepapers/dns-recursivo-aberto
- FAQ Registro.br (Perguntas Frequentes)
 http://registro.br/suporte/faq
- A última versão do tutorial de DNSSEC pode ser encontrada em ftp://ftp.registro.br/pub/doc/tutorial-dnssec.pdf
- DNSSEC Olaf Kolkman (RIPE NCC/NLnet Labs)
 http://www.nlnetlabs.nl/dnssec_howto

Perguntas?

Fim da Apresentação

Obrigado!

SOA

- Serial O número de revisão do arquivo de zona. Esse número aumenta cada vez que um record é alterado na zona.
- Refresh O tempo, em segundos, que um servidor DNS secundário espera antes de consultar sua origem da zona para tentar renová-la.
 - Retry O tempo, em segundos, que um servidor secundário espera antes de tentar novamente uma transferência de zona falha.
 - Expire O tempo, em segundos, antes que o servidor secundário pare de responder às consultas depois de transcorrido um intervalo de atualização no qual a zona não foi renovada ou atualizada.
- Minimum O menor tempo de vida (TTL) da zona e o intervalo máximo para armazenar respostas negativas em cache.

Apêndice II

CNAME

O que é

Um alias para nomes alternativos

Funcionalidade

Mapeia um nome de domínio alternativo ou apelido no campo *proprietário* para um canônico especificado no campo *Nome Canônico*

Problemas

- Records MX, NS, CNAME, e SOA só devem se referir a um record A.
- RRs referindo-se a um CNAME podem ocasionar problemas de buscas e carga extra na rede.
- Recomenda-se utilizar um RR A ao invés de CNAME.

Apêndice III

Detalhes sobre o comando para geração de chaves (1/2)

BIND: dnssec-keygen

Zona foo.eng.br:

dnssec-keygen -f KSK -a RSASHA1 -b 2048 -n ZONE foo.eng.br

Onde,

- -f : Define o tipo da chave
- -a : Algoritmo
- -b : Tamanho da chave (bits)
- -n : Especifica o tipo de dono da chave
- -r : Device de randomização

Em determinados ambientes, onde a geração de chaves demorar muito pode ser necessário especificar o device de randomização, como por exemplo: "-r /dev/urandom"

- OBS1: Guardar o nome das chaves geradas para ser usado futuramente.
- OBS2: Chaves geradas com dnssec-keygen não possuem passphrase.

Exemplo de Tamanho de chaves

BR: 1280 bits

Apêndice III

Exemplo dos arquivos de chave (2/2)

Chave pública (.key)

foo.eng.br. IN DNSKEY 257 3 5 AWEAAdDaICi4nCQX+dC+kkGlGmi7+Pjww405WYZtt+oe1RG329H2+k0Y XhYiZx7tLULD8Fn3DtBC hCTeFND+gCBjOvFS9MEjxHIkD2gtt3fF1oqN /sQ1HbjNGr1M6aFngKxWTENMqkl7ihT9j0EvzsLUD+deFDge4sDF5qQQ 4D8njiqIIqDsU kt31itJoFtP9k9RPIijxWdILWuKgh7nEvKpXFoGEUXO YK1W8AV9ctpm3y6lzbsWCOK40Il7nGTB+qMCbt/ZdYMwcaVuTBHQPEUKNVuq3m FGj1MxwtadBimmqq+YhleGzn21xOCYmsStwNUAWcb/H9SqgOG F3CVcHOt86k=

Chave privada (.private)

Private-key-format: v1.2 Algorithm: 5 (RSASHA1)

Modulus: ONogKLicJBf50L6SQaUaaLv4+PDDg71Zhm236h7VEbfb0fb6TRheFiJnHu0tQsPwWfc00EKEZN4U0P6AIGPS8VL0wSPEciQPaC 23d8Uhuo3+xAgc0MOavUzpoWeArFZMQ1aqSXvWFP2M45/Ows4P514U0B7iwMXmo5DgPye0KogioOxS33cjVwmgW0/ZT1E8iKPFZ0gta4qCH ucS8qlft444S5c5grVbzwC71y2mbfLqXNuxYLQrg4iXucZMH6owJu3911gzBxpW5MEdCkRQo1W6reYUaPUzHC1p0GKaaqr5iGV4b0fbXHQJiaxK3AiQBZxw8f1KqDQYXcJVwfS3zqQ==

. .

OBS

Antes de assinar a zona incremente o serial do record SOA para que ocorra a sincronização com os servidores secundários.

Apêndice IV

registro

Detalhes sobre o comando para assinar zona

Ao se assinar a zona são gerados os records RRSIG e NSEC que ficar $\tilde{A}\pounds$ o ordenados de forma canônica dentro do arquivo de zona.

BIND: dnssec-signzone

Zona foo.eng.br:

\$ dnssec-signzone -S -z db.foo

Onde,

- -S : Assinatura inteligente busca as chaves da zona e determina como estas utilizadas
- -z : Ignora o bit SEP da chave e assina toda a zona
- -e: Data de expiração das assinaturas (formato AAAAMMDDHHMMSS) Se não informado é considerado 30 dias
- o último parámetro se refere ao arquivo de zona

Geração de records DS

No momento em que se assina uma zona é gerado um arquivo contendo o Records DS que será utilizado para as delegações.

o arquivo gerado neste exemplo: dsset-foo.eng.br.

Apêndice V

Conceito de Chaves (1/2)

Por que existem dois tipos de chave?

- Permite substituir uma chave de uso frequente (ZSK) sem ter a necessidade de modificar o DS do parent (hash da KSK)
- Permite criar uma chave de tamanho menor para criar assinaturas menores

Key Signing Key (KSK)

As chaves utilizadas para assinar as chaves da zona. Assinam apenas os RRsets do tipo $\mathsf{DNSKEY} - \mathsf{possui}$ o flag **bit SEP** ligado

Zone Signing Key (ZSK)

As chaves utilizadas para assinar RRsets da zona sobre o qual tem autoridade

Apêndice V

Conceito de Chaves (2/2)

Lembrete

- O record DNSKEY pode armazenar tanto a chave pública de uma KSK quanto de uma ZSK
- O record RRSIG armazena a assinatura de um RRset realizada tanto por uma KSK quanto por uma ZSK

Apêndice V

Conceito de Chaves (2/2)

Lembrete

- O record DNSKEY pode armazenar tanto a chave pública de uma KSK quanto de uma ZSK
- O record RRSIG armazena a assinatura de um RRset realizada tanto por uma KSK quanto por uma ZSK

Trabalhando com uma única chave!

Entretanto é aconselhavél a utilização de somente uma única chave. Mais informações sobre como proceder no slide 123.

Inclusão dos Records DS das delegações

Caso existam zonas delegadas que utilizem DNSSSEC dentro do seu domínio, os Records DS destas zonas devem ser adicionados no arquivo de zona

Exemplo

```
SHA1 tutorial.foo.eng.br. IN DS 3112 5 1 386B4390C5B30DB65D74EA8B660978077171948C
```

```
SHA256 tutorial.foo.eng.br. IN DS 3112 5 2
```

19602F6089F8877E037AA077B8376F30869E261EB55460F2A74E32AD1424F53A

tutorial.foo.eng.br. IN DS 3112 5 1 386B4390C5B30DB65D74EA8B660978077171948C

OBS

A zona deve ser re-assinada após incluir o record DS

Apêndice VII

Bind no Windows

BIND no Windows

- Faça o download da última versão do BIND em http://www.isc.org
- Descompacte o arquivo ZIP e execute o programa BINDInstall.exe
- Após a instalação, acesse os Serviços (ferramentas administrativas) e inicie o servico "ISC BIND"

Erro ao iniciar o serviço ISC BIND

Acesse a propriedade do serviço, e na aba "Log On" selecione a opção "Local System account"

Bind no Windows

BIND no Windows

O BIND no Windows funciona da mesma forma que no Linux, sendo que os arquivos ficam localizados em locais diferentes.

- Os arquivos de configuração estão localizados em c:\windows\system32\dns\etc
- Os executáveis (named, dig) estão localizados em c:\windows\system32\dns\bin

