МИНОБРНАУКИ РОССИИ ФГБОУ ВО «МИРЭА – Российский технологический университет»

ИПТИП Кафедра ВМП

БИЛЕТ № 0 для проведения ЗАЧЕТА

Дисциплина: *Дискретная математика* Для направления подготовки 09.03.02 Форма обучения: *очная* Курс 2 Семестр 1 Утверждено на заседании кафедры (протокол № 1 от 21.08.2023г.) Заведующий кафедрой А. А. Кытманов 2022-23 учебный год

- 1. Рассчитать количество проверочных символов для построения кода Хемминга для информационных сообщений длины 6.
- 2. Для заданного сообщения X = 0110 построить код Хэмминга при помощи таблиц.
- 3. Подсчитать энтропию текста, имеющего следующие частоты появления символов

Символ	a	б	В	Γ	Д
частота	6	3	4	2	5

4. Закодировать алгоритмом Шеннона-Фано символы сообщения, имеющие следующие частоты появления в тексте

Символ	a	б	В	Γ	Д
частота	6	3	4	2	5

5. Закодировать алгоритмом Хаффмана символы сообщения, имеющие следующие частоты появления в тексте

Символ	a	б	В	Γ	Д
частота	6	3	4	2	5

6. Закодировать равномерным кодом символы сообщения, имеющие следующие частоты появления в тексте

Символ	a	б	В	Γ	Д
частота	6	3	4	2	5

- 7. Подобрать пару открытый и секретный ключ в алгоритме RSA, использовав для ее генерации простые числа 13 и 11.
- 8. Закодировать сообщение с хеш-значением 10 алгоритмом RSA, используя ключи из предыдущей задачи.
- 9. Сгенерировать гамму шифра необходимой длины с помощью линейного конгруэнтного генератора $Y_i = (a \cdot Y_{i-1} + 1) \text{ mod m. B}$ качестве параметров взять a = 5, m = 31, $Y_0 = 3$ (первым символом гаммы считать Y_1). Зашифровать побуквенно сообщение «аб», приняв алфавит из 32 символов:

a	б	В	Γ	Д	e	Ж	3	И		К	Л	M	Н	o	П	p	c	Т	У	ф	X	Ц	ч	Ш	Щ	ъ	ы	Ь	Э	ю	Я
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	17()	21	177	173	17/1	25	26	27	28	29	30	31	0