1. Függvények lokális oszcillációja

1.1. Definíció: Oszcilláció halmazon, lokális oszcilláció

Legyen $f \in \mathbb{R} \to \mathbb{R}$, és $A \subseteq \mathbb{R}$ olyan halmaz, hogy $A \cap \mathcal{D}_f \neq \emptyset$. Ekkor

$$\mathcal{O}(f,A) := \sup \{ |f(x) - f(y)| : x, y \in A \cap \mathcal{D}_f \}$$

az f függvény **oszcillációja** az A halmazon. Továbbá egy $z \in \mathcal{D}_f$ helyen

$$o_z(f) \coloneqq \inf \Big\{ \mathcal{O}(f, I) \ : \ I \subset \mathbb{R} \ \text{intervallum}, \ z \in \text{int}(I) \Big\}$$

az f függvény lokális oszcillációja a z pontban.

1.2. Lemma: Lokális oszcilláció és a folytonosság kapcsolata

Legyen $f \in \mathbb{R} \to \mathbb{R}$, valamint $z \in \mathcal{D}_f$ egy adott pont. Ekkor

$$f \in \mathfrak{C}\{z\} \iff o_z(f) = 0.$$

Bizonyítás.

 \implies Ha az f függvény folytonos z-ben,akkor tetszőleges $\varepsilon>0\text{-hoz}$

$$\exists \delta > 0$$
: $|f(x) - f(z)| < \varepsilon \quad (x \in \mathcal{D}_f, |x - z| < \delta).$

Legyen $I := (z - \delta, z + \delta)$. Ekkor minden $x, t \in I \cap \mathcal{D}_f$ esetén igaz, hogy

$$|f(x) - f(t)| \le |f(x) - f(z)| + |f(t) - f(z)| < 2\varepsilon \implies \mathcal{O}(f, I) < 2\varepsilon.$$

Ebből következik, hogy $0 \le o_z(f) < 2\varepsilon$, ahonnan $o_z(f) = 0$ adódik.

Most tegyük fel, hogy $o_z(f) = 0$, vagyis definíció szerint

$$o_z(f) = \inf \Big\{ \mathcal{O}(f, I) : I \subset \mathbb{R} \text{ intervallum, } z \in \text{int}(I) \Big\} = 0.$$

Ekkor bármilyen $\varepsilon > 0$ -hoz megadható olyan $I \subset \mathbb{R}$ intervallum, hogy

$$z \in \operatorname{int}(I)$$
 és $\mathcal{O}(f, I) < \varepsilon$.

Mivel z belső pontja az I-nek, ezért létezik olyan $\delta > 0$ sugár, amivel

$$K_{\delta}(z) := (z - \delta, z + \delta) \subset I.$$

Ekkor bármely $x \in \mathcal{D}_f \cap K_{\delta}(z)$ pontban

$$|f(x) - f(z)| \le \mathcal{O}(f, I) < \varepsilon \implies f \in \mathfrak{C}\{z\}.$$

Legyen $f:[a,b]\to\mathbb{R}$ korlátos függvény,

$$\tau \coloneqq \{a = x_0 < \dots < x_n = b\}$$

egy felosztás. Ekkor

$$\omega(f,\tau) \coloneqq \sum_{I \in \mathcal{F}(\tau)} \mathcal{O}(f,I) \cdot |I|$$

az f függvény **oszcillációs összege**.

2. Konvergencia

2.1. Definíció: Függvénysorozat, pontonkénti konvergencia

Azt mondjuk, hogy az (f_n) egy **függvénysorozat**, ha egy $\mathcal{D} \neq \emptyset$ halmazzal

$$f_n: \mathcal{D} \to \mathbb{R} \qquad (n \in \mathbb{N}).$$

Az (f_n) függvénysorozat **pontonként konvergens**, ha az $(f_n(x))$ sorozat minden $x \in \mathcal{D}$ esetén konvergens. Ekkor az f határfüggvénye legyen

$$f(x) := \lim_{n \to \infty} f_n(x)$$
 $(x \in \mathcal{D}).$

Legyen adott az $f_n \in \Re[a,b]$ $(n \in \mathbb{N})$ függvényeknek a konvergens sorozata.

Kérdések:

- 1. Konvergens-e az integrálokból képzett $\left(\int_a^b f_n\right)$ számsorozat?
- 2. Igaz-e, hogy az f határfüggvény Riemann-integrálható?
- 3. Ha az előbbi két kérdésre igen a válasz, akkor fennáll-e az

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

egyenlőség?

Válaszok: Minden további feltétel nélkül ezek nem teljesülnek. Ellenpéldák.

a) Legyen (r_n) a [0,1] intervallumbeli racionális számoknak egy sorozata, és

$$f_n(x) := \begin{cases} 1, & \text{ha } x \in \{r_0, \dots, r_n\} \\ 0, & \text{ha } x \notin \{r_0, \dots, r_n\} \end{cases} \quad (x \in [0, 1], \ n \in \mathbb{N}).$$

Ezek a függvények mind Riemann-integrálhatóak, továbbá

$$D(x) := \lim_{n \to \infty} f_n(x) = \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \notin \mathbb{Q} \end{cases} \quad (x \in [0, 1]).$$

Ez pedig a híres **Dirichlet-függvény**, amiről ismeretes, hogy $D \notin \mathfrak{R}[0,1]$.

b) Jelöljön $(a_n): \mathbb{N} \to \mathbb{R}$ egy számsorozatot, és legyen (lásd 1. ábra)

$$f_n(x) := \begin{cases} a_n & \text{ha } x \in [0, 1/n) \\ 0 & \text{ha } x \in [1/n, 1] \end{cases}$$
 $(1 \le n \in \mathbb{N}).$

Ekkor (f_n) pontonként konvergens és a határfüggvénye $f \equiv 0$. Nyilván

$$f \in \mathfrak{R}[0,1]$$
 és
$$\int_0^1 \lim_{n \to \infty} f_n(x) \, \mathrm{d}x = \int_0^1 0 \, \mathrm{d}x = 0.$$

Mivel f_n szakaszonként folytonos minden $1 \leq n \in \mathbb{N}$ indexre, ezért

$$f_n \in \mathfrak{R}[0,1]$$
 és $\int_0^1 f_n(x) \, dx = \int_0^{\frac{1}{n}} a_n \, dx + \int_{\frac{1}{n}}^1 0 \, dx = \frac{a_n}{n}.$

Vagyis az (a_n) sorozattól függően nem biztos 1. és 3. teljesülni fog.

Másképp fogalmazva teljesül-e az

$$\int_{a}^{b} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{a}^{b} f_n$$

felcserélhetőség?

Vagyis a 2. kérdésre nem a válasz!

1. ábra. Az (f_n) sorozat egyik tagja.

2.2. Definíció: Egyenletes konvergencia

Azt mondjuk, hogy az (f_n) függvénysorozat **egyenletesen konvergál** az

$$f: \mathcal{D} \to \mathbb{R}$$

függvényhez, ha bármely $\varepsilon>0$ -hoz van olyan $N\in\mathbb{N}$ küszöbindex, hogy

$$\forall n \in \mathbb{N}, \ n > N \text{ és } \forall x \in \mathcal{D}: \qquad |f_n(x) - f(x)| < \varepsilon.$$

2.3. Tétel

Legyen $f_n:[a,b]\to\mathbb{R}$ egy függvénysorozat $(n\in\mathbb{N})$. Tegyük fel, hogy

- i) minden $n \in \mathbb{N}$ index esetén $f_n \in \mathfrak{R}[a, b]$,
- ii) az (f_n) egyenletesen konvergál az $f\coloneqq \lim (f_n)$ határfüggvényhez.

Ekkor $f\in\Re[a,b]$ és az integrálok $\left(\int_a^bf_n\right)$ sorozata konvergens, valamint

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

Bizonyítás.

1. Legyen $I\subseteq [a,b]$ egy intervallum és $n\in\mathbb{N}.$ Ekkor minden $x,y\in I$ -re

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|.$$

Továbbá a ii) feltétel miatt minden $\varepsilon > 0$ -hoz van olyan $N \in \mathbb{N}$ küszöbindex:

$$|f_n(t) - f(t)| < \varepsilon$$
 $(t \in I, N < n \in \mathbb{N}).$

Ebből következik, hogy

$$|f(x) - f(y)| < 2\varepsilon + |f_n(x) - f_n(y)| \qquad (x, y \in I, \ N < n \in \mathbb{N}).$$

Innen szuprémumot véve kapjuk, hogy

$$\mathcal{O}(f, I) < 2\varepsilon + \mathcal{O}(f_n, I) \qquad (N < n \in \mathbb{N}).$$
 (*)

2. Ekkor a (*) becslés felhasználásával bármilyen $\tau \subset [a,b]$ felosztás esetén

$$\omega(f,\tau) = \sum_{I \in \mathcal{F}(\tau)} \mathcal{O}(f,I) \cdot |I| < 2\varepsilon(b-a) + \omega(f_n,\tau) \qquad (N < n \in \mathbb{N}).$$

Mivel az f_n integrálható, ezért megadható olyan $\tau \subset [a,b]$ felosztás, hogy

$$\omega(f_n, \tau) < \varepsilon \implies \omega(f, \tau) < \varepsilon (2(b-a)+1).$$

Következésképpen $f \in \mathfrak{R}[a,b]$.

3. Amennyiben $N < n \in \mathbb{N}$ egy tetszőleges index, akkor

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leq \int_{a}^{b} \left| f_{n} - f \right| < \int_{a}^{b} \varepsilon = \varepsilon (b - a).$$

Ez pontosan azt jelenti, hogy az $\left(\int_a^b f_n\right)$ integrálsorozat konvergens.

Másképp fogalmazva teljesül, hogy

$$\int_{a}^{b} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{a}^{b} f_n.$$

Az alkalmazott becslések részletesen:

$$\omega(f,\tau) \stackrel{*}{<} \sum_{I \in \mathcal{F}(\tau)} (2\varepsilon + \mathcal{O}(f_n, I)) \cdot |I|$$

$$= 2\varepsilon \sum_{I \in \mathcal{F}(\tau)} |I| + \sum_{I \in \mathcal{F}(\tau)} \mathcal{O}(f_n, I) \cdot |I|$$

$$= 2\varepsilon (b - a) + \omega(f_n, \tau)$$

$$< 2\varepsilon (b - a) + \varepsilon.$$

3. Teljesség

Legyen $f,g \in \Re[a,b]$ és értelmezzük az f és g függvények "távolságát" a

$$\varrho(f,g) \coloneqq \int_a^b |f(x) - g(x)| dx.$$

leképezés segítségével. Megjegyezzük, hogy ϱ egy úgynevezett félmetrika.

<u>Kérdés:</u> Amennyiben az $f_n \in \mathfrak{R}[a,b]$ $(n \in \mathbb{N})$ függvénysorozatra igaz, hogy

$$\int_{a}^{b} |f_n - f_m| \longrightarrow 0 \qquad (m, n \to \infty),$$

akkor van-e olyan $f \in \Re[a,b]$ függvény, amelyre

$$\int_{a}^{b} |f_{n} - f| \longrightarrow 0 \qquad (n \to \infty)$$

teljesül? Ezt nevezzük Cauchy-kritériumnak.

<u>Válasz:</u> Nem, mert megmutatható az alábbi ellenpélda. Legyen (lásd 2. ábra)

$$f_n(x) := \begin{cases} \sqrt{n} & \text{ha } x \in [0, 1/n) \\ \frac{1}{\sqrt{x}} & \text{ha } x \in [1/n, 1] \end{cases} \quad (n \in \mathbb{N}).$$

Ekkor szakaszonkénti integrálással adódik, hogy

$$\int_{a}^{b} |f_n - f_m| \longrightarrow 0 \qquad (m, n \to \infty).$$

Indirekt tegyük fel, hogy az (f_n) függvénysorozat konvergens és legyen

$$f \in \mathfrak{R}[0,1], \quad \int_0^1 |f_n - f| \longrightarrow 0 \qquad (n \to \infty).$$
 (**)

Ekkor minden olyan 0 < x < 1 helyen, ahol az f folytonos, szükségképpen

$$f(x) = \frac{1}{\sqrt{x}}.$$

Ugyanis indirekt tegyük fel, hogy valamilyen $\xi \in (0,1)$ folytonossági helyen

$$f(\xi) \neq \frac{1}{\sqrt{\xi}} \implies 3\varepsilon \coloneqq \left| f(\xi) - \frac{1}{\sqrt{\xi}} \right| > 0.$$

Mivel $f \in \mathfrak{C}\{\xi\}$, ezért megadható olyan $\delta > 0$ sugár, amivel (lásd 3. ábra)

$$t \in [\xi - \delta, \, \xi + \delta] \subset [0,1] \qquad \Longrightarrow \qquad \left| f(t) - \frac{1}{\sqrt{t}} \right| \geq \varepsilon.$$

Legyen $N \in \mathbb{N}$ olyan küszöbindex, hogy $1/N < \delta - \xi$. Ekkor minden n > N indexre

$$\int_{0}^{1} |f_{n} - f| \ge \int_{\xi - \delta}^{\xi + \delta} |f(t) - \frac{1}{\sqrt{t}}| dt \ge \int_{\xi - \delta}^{\xi + \delta} \varepsilon dt = 2\delta \cdot \varepsilon > 0.$$

2. ábra. Az (f_n) sorozat egyik tagja.

3. ábra. Az $f(\xi)$ érték környezete.

Vagyis az alábbi ellentmondásra jutunk

$$\int_0^1 |f_n - f| \to 0 \qquad (n \to \infty).$$

Térjünk vissza a (**) ponthoz. A Lebesgue-kritérium miatt az $f \in \mathfrak{R}[0,1]$ függvény szakadási helyeinek a halmaza nullamértékű. Mivel tetszőleges $r \in (0,1)$ esetén a (0,r) intervallum nem nullamértékű, ezért ez tartalmaz folytonossági pontot. Azaz van olyan $\xi_r \in (0,r)$ pont, hogy

$$f\in \mathfrak{C}\{\xi_r\} \qquad \Longrightarrow \qquad f(\xi_r)=\frac{1}{\sqrt{\xi_r}}>\frac{1}{\sqrt{r}}\longrightarrow +\infty \qquad (r\to 0).$$

Ebből következik, hogy az f függvény nem korlátos, ezért $f\notin\Re[0,1].$

Tétel (Lebesgue-kritérium). A $g \in \Re[a,b]$

feltétel azzal ekvivalens, hogy az

$$\mathcal{A}_q := \left\{ x \in [a, b] \mid g \notin \mathfrak{C}\{x\} \right\}$$

halmaza nullamértékű és g korlátos.