Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Feature engineering

Sarah Guido

What is feature engineering?

- Creation of new featured based on existing features
- Insight into relationships between features
- Extract and expand data
- Dataset-dependent

Feature engineering scenarios

ld	Text	
1	"Feature engineering is fun!"	
2	"Feature engineering is a lot of work."	
3	"I don't mind feature engineering."	

user	fav_color
1	blue
2	green
3	orange

Feature engineering scenarios

Id	Date
4	July 30 2011
5	January 29 2011
6	February 05 2011

user	test1	test2	test3
1	90.5	89.6	91.4
2	65.5	70.6	67.3
3	78.1	80.7	81.8

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Let's practice!

② DataCamp

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Encoding categorical variables

Sarah Guido

Categorical variables

Encoding binary variables - Pandas

Encoding binary variables - scikit-learn

One-hot encoding

1	fav_color
	blue
	green
	orange
	green

Values: [blue, green, orange]

• blue: [1, 0, 0]

• green: [0, 1, 0]

• orange: [0, 0, 1]

One-hot encoding

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Let's practice!

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Engineering numerical features

Sarah Guido

Aggregate statistics

```
In [1]: print(df)
      city day1 day2 day3
0     NYC 68.3 67.9 67.8
1     SF 75.1 75.5 74.9
2     LA 80.3 84.0 81.3
3     Boston 63.0 61.0 61.2

In [2]: columns = ["day1", "day2", "day3"]

In [3]: df["mean"] = df.apply(lambda row: row[columns].mean(), axis=1)

In [4]: print(df)

      city day1 day2 day3 mean
0     NYC 68.3 67.9 67.8 68.00
1     SF 75.1 75.5 74.9 75.17
2     LA 80.3 84.0 81.3 81.87
3     Boston 63.0 61.0 61.2 61.73
```

② DataCamp

Preprocessing for Machine L

Dates

```
In [5]: print(df)
              date purchase
      July 30 2011 $45.08
1 February 01 2011 $19.48
   January 29 2011 $76.09
     March 31 2012 $32.61
4 February 05 2011 $75.98
In [6]: df["date_converted"] = pd.to_datetime(df["date"])
In [7]: df["month"] = df["date_converted"].apply(lambda row: row.month)
In [8]: print(df)
              date purchase date converted month
      July 30 2011 $45.08
                                \overline{2}011-07-30
1 February 01 2011 $19.48
                                2011-02-01
   January 29 2011 $76.09
                                2011-01-29
     March 31 2012 $32.61
                                2012-03-31
```

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Let's practice!

② DataCamp

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Engineering features from text

Sarah Guido

Extraction

- \d+
- \.
- \d+

Vectorizing text

- tf = term frequency
- idf = inverse document frequency

Vectorizing text

Text classification

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

Preprocessing for Machine L

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Let's practice!