DAY 25: Wednesday, October 17th

Subspaces

Definition 1.8. Let V be a vector space. A subspace of V is a subset H of V (i.e. $H \subseteq V$) that satisfies the following

- (a) The zero vector $\vec{0}$ is in H.
- (b) For every \vec{u} and \vec{v} in H, $\vec{u} + \vec{v}$ is also in H (closure under addition).
- (c) For every \vec{u} in H and for every scalar c, $c\vec{u}$ is in H (closure under scalar multiplication).

Example 1.9. For any vector space V, the subset $\{\vec{0}\}$ is a subspace of V.

Example 1.10. Let m and n be positive integers with $m \leq n$. Then the set \mathbb{P}_m of polynomials of degree at most m is a subspace of the vector space \mathbb{P}_n of polynomials of degree at most n.

Example 1.11. Note that \mathbb{R}^2 is not a subspace of \mathbb{R}^3 as \mathbb{R}^2 is not even a subset of \mathbb{R}^3 . However the collection of vectors in \mathbb{R}^3 of the form $\begin{bmatrix} a \\ b \\ 0 \end{bmatrix}$, where a, b in \mathbb{R} , is subsapce of \mathbb{R}^3 .

A subspace Spanned by a Set

Let V be a vector space and let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ be vectors in V. Recall that

$$Span(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p) = \{c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p \mid c_1, c_2, \dots, c_p \in \mathbb{R}\}\$$

is the collection of all linear combinations of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. Clearly, $\mathrm{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ is a subset of V.

Theorem 1.12. Let V be a vector space and let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ be vectors in V. Then $\mathrm{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ is a subspace of V.

We call $H = \text{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ the subspace spanned (or generated) by $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$, and the set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a spanning (or generating) set of H.

Example 1.13. Let H be the set of all vectors in \mathbb{R}^4 of the form $\begin{bmatrix} x_1 - 3x_2 \\ -x_1 + x_2 \\ x_1 \\ x_2 \end{bmatrix}$, where x_1 and x_2 are arbitrary

scalars. Show that H is a subspace of \mathbb{R}^4 .

Solution

For every vector \vec{u} in H, \vec{u} is of the form

$$\vec{u} = \begin{bmatrix} x_1 - 3x_2 \\ -x_1 + x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 \\ x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3x_2 \\ x_2 \\ 0 \\ x_2 \end{bmatrix}$$

$$= x_1 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix} = x_1 \vec{v}_1 + x_2 \vec{v}_2.$$

It follows that $H = \operatorname{Span}(\vec{v}_1, \vec{v}_2)$. Thus by Theorem 1.12, H is a subspace of \mathbb{R}^4 .

2 Null Spaces, Column Spaces, and Linear Transformations (Special subspaces)

The Null Space of a Matrix

Definition 2.1. Let A be an $m \times n$ matrix. The null space of A, denoted by Nul(A), is the set of all solutions of the homogeneous equation $A\vec{x} = \vec{0}$. That is

$$Nul(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0} \}.$$

Proposition 2.2. If A is an $m \times n$ matrix, then the null space Nul(A) of A is a subspace of \mathbb{R}^n .

Proof. We prove that the set Nul(A) satisfies the three properties for subspace in Definition 1.8. Clearly, $A\vec{0} = \vec{0}$, hence $\vec{0}$ is in Nul(A). For \vec{u} and \vec{v} in Nul(A), we have $A\vec{u} = \vec{0}$ and $A\vec{v} = \vec{0}$, hence $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = \vec{0}$. Therefore $\vec{u} + \vec{u}$ is also in Nul(A). For \vec{u} in Nul(A) and for a scalar c, since $A\vec{u} = \vec{0}$, we have $A(c\vec{u}) = cA\vec{u} = c \cdot \vec{0} = \vec{0}$. Hence $c\vec{u}$ is in Nul(A). We conclude that Nul(A) is a subspace of \mathbb{R}^n .

Example 2.3. Let
$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$$
. Are $\vec{u} = \begin{bmatrix} -10 \\ -6 \\ 4 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ in Nul(A)?

Solution

We have

$$A\vec{u} = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} -10 \\ -6 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and } A\vec{v} = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \end{bmatrix}$$

Hence \vec{u} is in Nul(A) and \vec{v} is not in Nul(A).

Example 2.4. Let H be a subset of \mathbb{R}^4 defined by

$$H = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \mid a - 2b + 5c = d \text{ and } c - a = b \right\}$$

Show that H is a subspace of \mathbb{R}^4 by expressing it as a null space of a matrix.

Solution

We look for a matrix A such that Nul(A) = H. For every vector $\vec{u} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ in H, we have

$$a - 2b + 5c = d$$

$$c - a = b$$

By rearranging the equations, we have

$$a - 2b + 5c - d = 0$$
$$-a - b + c = 0$$

It follows that every vector \vec{u} in H is a solution of the homogeneous equation $A\vec{x} = \vec{0}$ where $A = \begin{bmatrix} 1 & -2 & 5 & -1 \\ -1 & -1 & 1 & 0 \end{bmatrix}$, i.e. H = Nul(A). Thus by Proposition 2.2, H is a subspace of \mathbb{R}^4 .

An explicit description of Nul(A)

To describe Nul(A) explicitly, we solve the matrix equation $A\vec{x} = \vec{0}$ and write the parametric vector form of the solutions to determine a spanning set for Nul(A).

Finding a Spanning set for Nul(A)

- (1) Solve $A\vec{x} = \vec{0}$ and write the solutions in parametric vector form.
- (2) Note that parameters are only the free variables.
- (3) If the solutions of $A\vec{x} = \vec{0}$ are of the form

(**)
$$\vec{x}=t_1\vec{v}_1+t_2\vec{v}_2+\cdots+t_p\vec{v}_p, \text{ where } t_1,t_2,\ldots,t_p\in\mathbb{R}.$$
 then $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\}$ spans $\mathrm{Nul}(A).$

Note 2.5. If $Nul(A) \neq \{\vec{0}\}$, then the vectors defined in equation (**) are linearly independent. In this case the size of the spanning set is the number of free variables.

Example 2.6. Find a spanning set for the null space of
$$A = \begin{bmatrix} 1 & -2 & 2 & -3 & -1 \\ 2 & -4 & 5 & -6 & -3 \\ -3 & 6 & -4 & 1 & -7 \end{bmatrix}$$
.

The Column Space of a Matrix

Definition 2.7. Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix. The column space of A, denoted by Col(A), is the set of all linear combinations of the columns of A. That is

$$Col(A) = Span(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$$

Theorem 2.8. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Note 2.9. Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix.

- (a) By definition, $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^m spanned by $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$.
- (b) The following statements are equivalent:
 - $\operatorname{Col}(A) = \mathbb{R}^m$.
 - For every \vec{b} in \mathbb{R}^m , the equation $A\vec{x} = \vec{b}$ has a solution.
 - The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A is onto.

Example 2.10. Find a matrix A such that $W = \operatorname{Col}(A)$ where

$$W = \left\{ \begin{bmatrix} a+b \\ 2a-b \\ -3a \end{bmatrix} \mid a, b \text{ in } \mathbb{R} \right\}$$

Solution

We write each element of W as a linear combination of some vectors. For each \vec{u} in W, we have

$$\vec{u} = \begin{bmatrix} a+b \\ 2a-b \\ -3a \end{bmatrix} = \begin{bmatrix} a \\ 2a \\ -3a \end{bmatrix} + \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}$$
$$= a \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} + b \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = a\vec{v}_1 + b\vec{v}_2.$$

It follows that $W=\mathrm{Span}(\vec{v}_1,\vec{v}_2).$ Let $A=\begin{bmatrix}&1&1\\2&-1\\-3&0&\end{bmatrix}.$ Then $W=\mathrm{Col}(A).$

Fact 2.11. Let A be an $m \times n$ matrix. We compare the null space and the column space of A as follows:

- Nul(A) is a subspace of \mathbb{R}^n .
- Null space of A is implicitly defined: the vectors in Nul(A) solve $A\vec{x} = \vec{0}$.
- It takes time to describe Nul(A) as row reduction of $\left[\begin{array}{cc}A&\vec{0}\end{array}\right]$ is required.
- There is no obvious relation between Nul(A) and the entries in A.
- A typical vector \vec{v} in Nul(A) has the property $A\vec{v} = \vec{0}$.
- It is easy to check if a given vector \$\vec{v}\$ is in Nul(\$A\$) by computing \$A\vec{v}\$.
- Nul(A) = $\{\vec{0}\}$ if and only if the equation $A\vec{x} = \vec{0}$ has only the trivial solution.
- Nul(A) = $\{\vec{0}\}$ if and only the linear transformation $\vec{x} \mapsto A\vec{x}$ is one-to-one.

- Col(A) is a subspace of \mathbb{R}^m .
- Col(A) is explicitly defined since it is spanned by described vectors (the columns of A).
- It is easy to find vectors in Col(A) since they are linear combinations of the columns of A.
- There is an obvious relation between Col(A) and the entries of A since the columns of A generate Col(A).
- A typical vector \vec{v} in Col(A) has the property that $A\vec{x} = \vec{v}$ is consistent.
- It may take time to check if a given vector \vec{v} is in $\operatorname{Col}(A)$ as row reduction of $\begin{bmatrix} A & \vec{v} \end{bmatrix}$ is required.
- $\operatorname{Col}(A) = \mathbb{R}^m$ if and only if the equation $A\vec{x} = \vec{b}$ has a solution for every \vec{b} in \mathbb{R}^m .
- $\operatorname{Col}(A) = \mathbb{R}^m$ if and only if the linear transformation $\vec{x} \mapsto A\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Linear Transformations of Vector Spaces

Definition 2.12. Let V and W be vector spaces. A linear transformation T from V into W, denoted by $T: V \to W$, is a rule that assigns to each vector \vec{x} in V a unique vector $T(\vec{x})$ in W, such that

- (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u}, \vec{v} in V,
- (b) $T(c\vec{u}) = cT(\vec{u})$ for all \vec{u} in V and all scalars c.

Definition 2.13. Let $T: V \to W$ be a linear transformation.

- (a) V is called the domain of T, and W is its codomain.
- (b) The **kernel** of T, denoted by $\ker(T)$, is the set of all vectors \vec{u} in V such that $T(\vec{u}) = \vec{0}$. That is

$$\ker(T) = \{ \vec{u} \text{ in } V \mid T(\vec{u}) = \vec{0} \}$$

(c) The **range** or **image** of T, denoted by range(T) or $\operatorname{im}(T)$, is the set of all vectors in W which are of the form $T(\vec{v})$ for some \vec{v} in V. That is

$$range(T) = im(T) = \{T(\vec{v}) \mid \vec{v} \text{ in } V\}$$

Fact 2.14. Let $T: V \to W$ be a linear transformation of vector spaces. Then,

(a) $\ker(T)$ is a subspace of V,

- (b) im(T) is a subspace W.
- (c) if $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is the standard matrix of T, then $\ker(T)$ the null space of A, and $\operatorname{im}(T)$ is the column space of A.