Devoir maison 3 – à rendre pour le 03 janvier

Résonance RLC parallèle

Ce sujet comporte 2 pages et doit être traité en intégralité. Comme pour tous DMs, vous pouvez vous entraider pour les questions les plus difficiles. Cependant, la rédaction doit rester personnelle.

Le circuit ci-contre est constitué d'une source idéale de courant de c.e.m. $\eta(t)=\eta_0\cos(\omega t)$. Cette source alimente une association parallèle constituée d'un condensateur, d'une bobine et d'une résistance. La tension aux bornes de cette association est $u(t)=U_0\cos(\omega t+\phi)$. On note $\underline{U_0}=U_0e^{j\phi}$ l'amplitude complexe de u(t).

Étude de l'amplitude et de la phase

- 1. Exprimer l'impédance équivalente \underline{Z} du dipôle AB.
- 2. Montrer que l'amplitude complexe de la tension u se met sous la forme :

$$\frac{U_0}{1 + jQ\left(x - \frac{1}{x}\right)} \quad \text{avec } x = \omega/\omega_0$$

Exprimer Q et ω_0 en fonction de R, L et C. Comment s'appellent ces deux constantes?

- 3. Exprimer l'amplitude réelle U_0 de la tension u en fonction de R, η_0 , Q et x.
- 4. Y-a-t-il résonance en tension ? Si oui, préciser la valeur de x à la résonance. En déduire la valeur de ω à la résonance.
- 5. Comment définit-on la bande passante $\Delta \omega$? Montrer que $\Delta \omega = \omega_0/Q$.
- 6. Faire l'étude asymptotique de la fonction $U_0(x)$. Tracer l'allure de U_0 en fonction de x.
- 7. Exprimer la phase ϕ en fonction de Q et x. Préciser le domaine de variation de ϕ .
- 8. Faire l'étude asymptotique de la fonction $\phi(x)$. Tracer l'allure de ϕ en fonction de x.

II | Expérience

Pour tracer les graphiques U_0 et ϕ en fonction de ω , il faut pouvoir observer simultanément le courant $\eta(t)$ et la tension u(t). On ajoute une résistance r en série avec le générateur de courant afin de visualiser le courant $\eta(t)$ par l'intermédiaire de la tension $u_r(t)$. On propose le montage ci-contre.

9. Le montage proposé est-il valable? Si oui, à quelle condition?

II. Expérience 2

10. Quelle tension visualise-t-on sur la voie A? sur la voie B? Que faut-il faire pour visualiser $\eta(t)$ et u(t)?

La figure suivante montre une acquisition des tensions u_r et u faite pour une pulsation ω donnée. Le calibre est de 1 V sur les deux voies.

- 11. La tension u est-elle en avance ou en retard par rapport au courant η ?
- 12. Déterminer la valeur de la phase ϕ de la tension u par rapport au courant η . On donnera sa valeur en degré.
- 13. Que vaut l'amplitude U_0 de la tension u?
- 14. Définir mathématiquement la valeur efficace s_{eff} d'un signal s(t) périodique de période T.
- 15. Soit un signal s(t) sinusoïdal de période T, d'amplitude S_0 et de phase à l'origine nulle. Exprimer sa valeur efficace s_{eff} en fonction de S_0 . On étblira cette relation.
- 16. En déduire la valeur efficace de la tension u(t). On donne $\sqrt{2} = 1,4$.