Fully Automatic Washing Machine

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

- Sensors continually monitor varying conditions inside the machine and accordingly adjust operations for the best wash results.
- As there is no standard for fuzzy logic, different machines perform in different manners.

Control the Washing Process

- Fuzzy logic controls the washing process,
 - water intake
 - water temperature
 - wash time
 - rinse performance
 - and spin speed

Automatic WM Functions

- More sophisticated machines weigh the load (so you can't overload the washing machine)
- Advise on the required amount of detergent.
- Assess cloth material type and water hardness
- Check whether the detergent is in powder or liquid form.
- Some machines even learn from past experience, memorising programs and adjusting them to minimize running costs.

Automatic WM Feature

- Most fuzzy logic machines feature
 'onetouch control.'
- Equipped with energy saving features, these consume less power and are worth paying extra for if you wash full loads more then three times a week.
- Inbuilt sensors monitor the washing process and make corrections to produce the best washing results.

Automatic WM Feature.....

- The **fuzzy logic** checks for the extent of dirt and grease.
- the amount of soap and water to add, direction of spin, and so on.
- The machine rebalances washing load to ensure correct spinning.
- Else, it reduces spinning speed if an imbalance is detected. Even distribution of washing load reduces spinning noise.
- Neuro fuzzy logic incorporates optical sensors to sense the dirt in water and a fabric sensor to detect the type of fabric and accordingly adjust wash cycle.

- Inputs
 - —Laundry Softness
 - —Laundry Quantity
- Outputs
 - —Washing Cycle
 - —Washing Time

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Input Membership functions

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Output Membership functions

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Quantity Softness	Small	Medium	Large
Soft	Delicate	Light	Normal
Normal Soft	Light	Normal	Normal
Normal Hard	Light	Normal	Strong
Hard	Light	Normal	Strong

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Control Surface View (Clipping)

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Control Surface View (Scaling)

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Control Surface View

Clipping

Scaling

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Rule View (Clipping)

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall

Example: Rule View (Scaling)

^{*} Fuzzy Logic: Intelligence, control, and Information, J. Yen and R. Langari, Prentice Hall