Architektura počítačů 06

<u>Paměti</u>

Registry

Cache

Operační paměť

Sekundární paměť

Terciální paměť

Základní parametry pamětí

- kapacita
- přístupová doba
- přenosová rychlost
- statičnost / dynamičnost
- energetická závislost (Volatile/Non-volatile závislé/nezávislé)
- přístup (sekvenční/přímý)
- destruktivnost při čtení
- spolehlivost
- cena za bit

Parametry pamětí

	registry	Vnitřní paměti	Vnější paměti
kapacita	Velmi malá	Výšší (MB)	Vysoká (GB)
přístupová doba	Nízká	nanosekundy	milisekundy
přenosová rychlost		Vysoká (GB/s)	Nižší (MB/s)
statičnost/ dynamičnost	Statické	Statické i dynamiké	Statické
energetická závislost	Závislé	Závislé	Nezávislé
přístup	Přímý	Přímý	Přímý i sekvenční
destruktivnost při čtení	Nedestruktivní	Destruktivní i nedestruktivní	Nedestruktivní

Hierarchie pamětí

Umístění/typ paměti/rychlost přístupu/kapacita

Latency Percentile, 4KB Random Read - QD1

Registry

- Paměťové bloky s velmi malou kapacitou
- Omezený počet; Velikost 8, 16, 32 či 64 bitů, i více
- Slouží pro ukládání mezivýsledků a informací nutných pro řízení činnosti procesoru
- Jedná o paměť využívanou prakticky všemi instrukcemi
- Přístupová doba odpovídá rychlosti jádra procesoru
- Mohou sloužit jako rychlá vyrovnávací paměť

Registry

- Uživatelsky přístupné registry
 - datové, adresové, obecné a příznakové
- Systémové registry
 - registr masky přerušení,
 - registr počáteční adresy tabulky stránek,
 - registr režimu supervizor/uživatel
- Speciální vnitřní registry
 - čítač instrukcí, registr instrukcí,
 - paměťový datový buffer,
 - paměťový adresový buffer

Některé registry se sdružují do tak zvaného stavového slova procesoru (program status word, **PSW**)- zachycují stav CPU

Cache

- Paměť, která ukládá instrukce a/nebo data, aby mohly být budoucí požadavky obslouženy rychleji.
- V cache může být výsledek dřívějšího výpočtu nebo duplikát dat uložených jinde.
- Implementováno jako bloky paměti + tag (cache lines), např. 64B×16384=1024kiB
- základní přístupy zápisu:
 - Write-through: zápis se provádí synchronně jak do cache, tak do hlavní paměti.
 - Write-back (write-behind): zápis se provádí pouze do cache. Zápis do hlavní paměti je odložen, dokud nemají být data v cache nahrazena novým obsahem.
- cache hit cache miss (Efektivita, Princip lokality)
- Asociativita vyrovnávací paměti (Přímo mapovaná, Asociativní, Dvoucestná, Čtyřcestná, ...)
- Úrovně vyrovnávací paměti
- Vyrovnávací paměť (Buffer vs. Cache)

Asociativita cache

- Asociativita určuje způsob mapování bloků z RAM do cache lines.
 - Jakýkoli blok z RAM nemůže být obecně uložen kdekoli v cache.
- **přímo mapovaná** (direct mapped cache)
 - již přímo z indexu bloku (tj. nejvyšších bitů adresy) určuje, ve kterém místě se blok může nacházet - pozice bloku pevně dána jeho indexem.
- Plně asociativní (fully associative cache)
 - Blok se může nacházet kdekoliv
- **n-cestná** (n-way set associative cache)
 - n je většinou 2, 4, 8, 16

Vnitřní paměti

- matice paměťových buněk
 - Každá buňka má kapacitu jeden bit
 - hodnoty log 1 a log o
- Základní dělení vnitřních pamětí
 - RAM
 - SRAM
 - DRAM
 - ROM, PROM, EPROM, EEPROM, Flash EEPROM

MEMORY MATRIX

Přístup do paměti

- Paměťové místo je adresováno
 - Adresa je přivedena na vstup dekodéru.
 - Dekodér pak podle zadané adresy vybere jeden z adresových vodičů a nastaví na něm hodnotu log 1.
 - Hodnota projde/neprojde paměťovou buňkou na datový vodič.
 - V případě, že hodnota logická jedna projde přes paměťovou buňku, obdržíme na výstupu hodnotu 1. V opačném případě je na výstupu hodnota o.
- Jednotlivé typy pamětí se liší způsobem realizace buňky

Paměti ROM

(Read Only Memory)

- určeny pouze pro čtení informací
- Informace pevně zapsány při jejich výroby
- potom již není možné obsah změnit

Paměti PROM

(Programable Read Only Memory)

- Neobsahuje po vyrobení žádnou informaci
- Jedenkrát lze provést zápis informace
- poté paměť slouží stejně jako paměť ROM

Paměti EPROM

Eraseable Programable Read Only Memory

- Lze provést zápis
- Informace lze vymazat působením UV
- realizovány pomocí unipolárních tranzistorů
 - schopny na svém přechodu udržet elektrický náboj po dobu až několika let
- Paměti EPROM jsou charakteristické malým okénkem v pouzdře integrovaného obvodu

Paměti EEPROM Electrically EPROM

- podobné chování jako paměti EPROM
 - možné naprogramovat a později z ní informace vymazat
- vymazání se provádí elektricky

Funkce EEPROM

- Zápis dat
 - přivede se na příslušný adresový vodič záporné napětí -U
 - datový vodič buněk, do nichž se má zaznamenat hodnota 1, se uzemní.
 - Tranzistor se otevře a vznikne v něm náboj, který vytvoří velké prahové napětí.
- Čtení dat
 - přivede na adresový vodič záporný impuls.
 - Tranzistor s malým prahovým napětím se otevře a vede elektrický proud do datového vodiče, zatímco tranzistor s velkým prahovým napětím zůstane uzavřen.
- Vymazání paměti se provádí kladným napětím +U, které se přivede na adresové vodiče.
 - Tunelovaný náboj se tím zmenší a prahové napětí poklesne, čímž je paměť vymazána.

Flash EEPROM

Data jsou ukládána v poli unipolárních tranzistorů s plovoucími hradly,

zvaných "buňky" (cells)

Ovládací hradlo (CG – control gate)

- Plovoucí hradlo (FG floating gate)
 - Izolované od okolí vrstvou oxidu.
 - Všechny přivedené elektrony jsou zde "uvězněny".
 - Tím je uložena informace.
- Elektrony na FG, modifikují (částečně ruší) elektrické pole přicházející z
 CG, což modifikuje prahové napětí (U_t) buňky.
 - Čtení: el. napětí na CG -> průchod proudu překládáme jako Log 1

Flash paměť

- Obdoba pamětí EEPROM
 - Není možné přistupovat k jednotlivým buňkám (NAND)
 - Zápis se provádí po celých stránkách (~2-16 kiB + ECC) a mazání po blocích (32-512 pages)
 - Vymazání se provádí elektrickou cestou
 - přeprogramování je možné provést přímo v počítači
 - **SLC single-level cell** (pouze 1 bit)
 - MLC multi-level cell (2 bity)
 - **TLC triple-level cell** (3 bity)
 - QLC quad-level cell (4 bity)
 - Více úrovní elektrického náboje
 - 2 bity -> 4 stavy
 - 3 bit -> 8 stavů
 - 4 bit -> 16 stavů

https://www.goplextor.com/UploadFile/96972372091d42fb820a9e75454b79b7.jpg

Flash paměť - životnost

- **SLC single-level cell** (pouze 1 bit)
- MLC multi-level cell (2 bity)
- **TLC triple-level cell** (3 bity)
- QLC quad-level cell (4 bity)
- TBW (Terabytes Written)
- Wear leveling

počet přepisů

100 000

10 000

3 000

1000

Paměti RAM (Random Access Memory)

Paměť s náhodným (přímým) přístupem

- SRAM
 - Static Random Access Memory
- DRAM
 - Dynamic Random Access Memory

SRAM

- Statická RAM (technologie CMOS)
- Statická jednou zapsaný bit je v buňce držen po celou dobu
 - pokud se nepřeruší napájení čtení nebývá destruktivní
- bistabilní klopný obvod
 - Jeden ze dvou stavů log 1 nebo log o
- nutnost použití 4-6 tranzistorů pro jednu paměťovou buňku
 - vyšší cena za jeden bit i větší plocha

DRAM

- Dynamická RAM
- Každá buňka vytvořena z tranzistoru a kondenzátoru.
- Uchování informace pomocí náboje v kondenzátoru
 - (konkrétně na parazitní (Müllerově) kapacitě řídícího tranzistoru)
 - kapacita v řádu desetin pikofaradů

Paměti DRAM

Dynamic Random Access Memory

- Nabití kondenzátoru odpovídá uložení jednoho bitu
- Po přivedení Log 1 na řádkový vodič se všechny tranzistory v řádku matice otevřou
 a je možné zapisovat do paměťových buněk informace (nabíjet kondenzátory),
 popř. informace z buněk číst.
 - Při čtení se náboj přenese do záchytných registrů
 - Kondenzátory se vybijí, čtení je destruktivní operací.
 - Zápis je rychlejší jak čtení
- náboj má tendenci se vybíjet i v době, kdy je paměť připojena ke zdroji napájení
 - nutnost periodicky provádět tzv. **refresh**, tj. oživování paměťové buňky speciální obvod (při obnově je paměť nedostupná), 64 ms
 - Provádí se po celých řádcích
 - paralelně sejmuty obsahy buněk na řádku, v budiči zesíleny a opět zapsány na původní místo

Typy DRAM

- Paměti typu **FPM** (Fast Page Mode)
- Paměti typu EDO (Extrended Data Out)
- Paměti typu Burst EDO (BEDO)
- Paměti typu RDRAM (Ramubus)
- Paměti typu SDRAM
 - Synchronnous Dynamic RAM
- Paměti typu DDR SDRAM
 - Double Data Rate SDRAM
- Paměti typu DDR2 SDRAM
- Paměti typu DDR3 SDRAM
- Paměti typu DDR4 SDRAM

Memory Type	Years Popular	Desktop Module Type	Laptop Module Type	Voltage	Max. Clock Speed	Max. Throughput Single- Channel	Max. Throughput Dual- Channel	Max. Throughput Triple- Channel
Fast Page Mode (FPM) DRAM	1987-1995	30/72-pin SIMM	72/144-pin SODIMM	5V	22MHz	177MBps	N/A	N/A
Extended Data Out (EDO) DRAM	1995–1998	72-pin SIMM	72/144-pin SODIMM	5V	33MHz	266MBps	N/A	N/A
Single Data Rate (SDR) SDRAM	1998-2002	168-pin DIMM	144-pin SODIMM	3.3V	133MHz	1,066MBps	N/A	N/A
Double Data Rate (DDR) SDRAM	2002-2005	184-pin DIMM	200-pin SODIMM	2.5V	400MTps	3,200MBps	6,400M8ps	N/A
DDR2 SDRAM	2005-2009	240-pin DDR2 DIMM	200-pin SODIMM	1.8V	1,066MTps	8,533MBps	17,066MBps	N/A
DDR3 SDRAM	2009-2015	240-pin DDR3 DIMM	204-pin SODIMM	1.5V	2,133MTps	17,066MBps	34,133MBps	51,200MBps
DDR4 SDRAM	2015+	284-pin DDR4 DIMM	256-pin SODIMM	1.2V	4,266MTps	34,133MBps	68,266MBps	102,400MBps

SDRAM (Synchronní dynamické RAM)

- Synchronní paměti používají hodinový signál a podpůrné obvody
 - Asynchronní paměti všechno běželo svou maximální rychlostí
- Paměťový čip má svoji vlastní "inteligenci"
 - rozšiřuje se protokol použitý pro přenosy dat z/do paměti
 - čipy většinou dokáží automaticky provádět obnovu (refresh) dat
- Burst režim přenos většího bloku dat
 - Díky hodinovému signálu je možné pouze inicializovat přenos, nastavit adresu řádku i adresu sloupce a po prvotním zpoždění způsobeném výběrem řádku je v každém taktu provedeno přečtení/zápis jedné hodnoty.

DDR (Double Data Rate)

- Lepší využití hodinového signálu
- Používá se vzestupná i sestupná hrana hodinového signálu.
- Použití této techniky u sběrnic a pamětí
- DDR neznamená automaticky typ paměti, ale způsob přenosu

Fyzické uspořádání paměti RAM

DIP

- **SIMM**(Single Inline Memory Module)
 - 30-pin SIMM
 - 72-pin SIMM

Fyzické uspořádání paměti RAM

- **DIMM** (Dual Inline Memory Module)
 - **SODIMM** (Small Outline DIMM)
- **DDR DIMM** (Double Data Rate DIMM)
 - DDR SODIMM
- DDR2 DIMM
 - DDR2 SODIMM
- DDR₃ DIMM
 - DDR₃ SODIMM
- DDR₄ DIMM
 - DDR₄ SODIM
- RIMM (Rambus Inline Memory Module)

Časování pamětí

t_{CL} - t_{RCD} - t_{RP} - t_{RAS}

Výběr(zápis) – adresace řádku – počáteční ustálení – aktivní adresace

- DRAM pracují v jednotkách nanosekund
 - Nutno rozdělit čtení a zápis na suboperace
- RAS precharge zpoždění po výběru paměti do adresace řádku
 - Ustálení stavu signálů před adresováním
- RAS to CAS zpoždění mezi výběrem řádků a adresací sloupce
 - Adresace řádku
- CAS nebo CL (CAS Latency) Adresace sloupce
 - zpoždění na vstupu nebo výstupu
 - Poté lze data číst nebo zapisovat.
- tRAS Doba nutná na ponechání aktivní adresace řádku než se může přejít na adresaci dalšího řádku.
- Čím jsou zpoždění menší, tím je reálná propustnost dat vyšší.

Časování pamětí

	PC-3200 (DDR-400)				PC2-6400 (DDR2-800)				PC3-12800 (DDR3-1600)			
	Typical		Fast		Typical		Fast		Typical		Fast	
	cycles	time	cycles	time	cycles	time	cycles	time	cycles	time	cycle s	time
t_{CL}	3	15 ns	2	10 ns	5	12.5 ns	4	10 ns	9	11.25 ns	8	10 ns
t _{RCD}	4	20 ns	2	10 ns	5	12.5 ns	4	10 ns	9	11.25 ns	8	10 ns
t _{RP}	4	20 ns	2	10 ns	5	12.5 ns	4	10 ns	9	11.25 ns	8	10 ns
t _{RAS}	8	40 ns	5	25 ns	16	40 ns	12	30 ns	27	33,75 ns	24	30 ns

$$t_{\text{CL}}$$
- t_{RCD} - t_{RP} - t_{RAS}

Výběr(zápis) – adresace řádku – počáteční ustálení – aktivní adresace

Ochrana operační paměti

- Kontrola Parity
- Kód ECC Error Correcting code
- Technologie Chipkill
- Hot Swap, Hot Add
- Hot Spare Memory
- Memory Scrubbing
- Technologie ProteXion

Kontrola parity

- modul musí mít dodatečné paměťové čipy, do kterých se ukládá paritní bit
- Paritní bit je kontrolou pro dalších 8 bitů
- Kontrola parity neznamená možnost opravy chyb
- Doplnění jednoho bitu tak, aby byl
 - sudý počet jedniček (sudá parita)
 - lichý počet jedniček (lichá parita)

Kód ECC (Error Correcting code)

- Detekce a korekce i chybného bitu na 64b.
 - 64b. šířka datové sběrnice
- Umožňuje i detekci dvou chybných bitů
 - v tomto případě již není možná oprava
- Nutnost navýšit počet bitů (1 chip navíc), 64b. -> 72b.
- Mírné snížení výkonu: 0,5-2%

ChipKill

- Extended ECC, Advanced ECC (a další názvy podle firmy, která vyrábí)
- Vyvíjena původně pro NASA
 - (výzkum Marsu)
- Rozpozná chybu v 8 bitech
- Korekce chyby až ve 4 bitech
- Nevyžaduje speciální moduly
 - Stačí ECC paměť
- Funkce závisí na podpoře chipsetu a BIOSu

Chyby paměťových modulů

- Fyzické chyby obvykle je jediná možná oprava výměna celého modulu.
- Logické chyby většinou dočasné chyby, které se mohou náhodně objevovat
 - Poruchy napájení.
 - Nesprávný typ modulu nebo nevhodná rychlost modulu.
 - Rušení radiovými signály v důsledku indukce mohou vznikat falešné elektrické signály.
 - Statické výboje.
 - Výpadky časování příčinou jsou pomalé paměťové moduly nebo přetaktované procesory

SPD chip (Serial Presence Detect Chip)

Nastavení paměti

	Memory Timir	ng Setting
Parameters	Setting	Current Value
Memory Timing Setting	[Expert]	
tCL (CAS Latency)	[Auto(7)]	7
tRCD	[Auto(7)]	7
tRP	[Auto(7)]	7
tras	[Auto(20)]	20
Command Per Clock (CMD)	[Auto(1T)]	1T
** Advanced Memory Setti	ngs **	
tRRD	[Auto(4)]	4
tRC	[Auto(27)]	27
tWR	[Auto(10)]	10
tWTR	[Auto(14)]	14
tFAW	[Auto(21)]	21
tREF	[Auto]	7.7uS

Adresování operační paměti reálný režim

- Princip adresování paměti mikroprocesor i8086
 - Plně 16bitový procesor. 16 bitová vnitřní architektura
 - možnost zpracovat maximálně 16bitové číslo (tj. číslo o až (2¹⁶-1) neboli 0 až 65535).
- Adresová sběrnice 20 bitů
 - možnost adresovat paměťový prostor o kapacitě max. 1 MB (odpovídá 220 B = 1048576 B).
- Důležité: pro vytvoření 20 bitové adresy jsou k dispozici pouze 16 bitové registry.
- Adresa je tvořena dvěma šestnáctibitovými složkami
 - **segment** a **offset**, které se sečtou posunuty o 4 bity
 - (posunutí o 4 bity = vynásobení 16).
 - Tím je vytvořena výsledná 20bitová adresa.

Příklad

- Původní binární kombinace:
- 1101 desítkově 13
- Posunutí o 4 bity doleva a doplnění zprava nulami: 1101 0000
 - Desítkově 16 + 64 + 128 = 208
- Stejný výsledek dostaneme, když původní číslo vynásobíme 16:
 - 13 x 16 = 208
- Adresa se v reálném režimu počítá podle vztahu:
 16 x segment + offset.

reálný režim

Příklad

- Adresa se zapisuje ve tvaru segment:offset
 - Např. 4000:B000 značí adresu 4B000 (hexadecimálně), tj. 307200 (dekadicky).
- Zápis 1F36:oA5D reprezentuje segment 1F36, offset oA5D
 - adresa je: 1F36 x 16 + oA5D = 7990 x 16 + 2653 = 130 493.
- Praktická realizace součtu:
- Vynásobení čísla segmentu 16 = posunutí čísla segmentu o 4 bity doleva
 - 1F360 + 0A5D = 1FDBD = 130 493
- **Velikost jednoho segmentu**, v jehož rámci je možné se pohybovat pouze pomocí změny hodnoty offsetu, je **64kB**.
 - **Zdůvodnění:** registry jsou 16 bitové, takže je možné v rámci segmentu adresovat pouze 2¹⁶ slabik (64 kB).
- Registr pro uložení segmentu je 16bitový
 - 2¹⁶ možností adresy segmentu (začátku segmentu kapacity 64 kB).

- Důležité:
- Segment může začínat na libovolné adrese dané kombinací uloženou v registru segmentu
 - nikoliv na adresách začínajících hranicích 64kB bloků (každých 16 B může začínat nový segment).
- Zvýšení adresy segmentu o 1 adresa začátku segmentu se zvýší o 16
 - (souvisí s principem adresace v reálném režimu-posunutím o 4 bity doleva).
- Zvýšení offsetu o 1 adresa se zvýší o 1

- mikroprocesor i80286 Šířka sběrnic: 16 bitů, 24 bitů adresa(16 MB).
 - 1MB (reálný režim) nedostatečné ...
- Princip
 - pracuje se zase se 16 bitovými registry, ty jsou však pouze ukazateli na lokality, kde je teprve uložena celá 24bitová adresa.
- Nový režim je neslučitelný s 8086

- Procesor v tomto režimu poskytuje ochranu mezi jednotlivými spuštěnými programy a různé úrovně oprávnění přístupu k prostředkům počítače.
- Procesor v tomto režimu také používá jiný model pro vytváření adresy – dvě 16bit složky nazývané selektor a offset za pomoci tzv. tabulek deskriptorů.
- Adresa je 24b (pro i286)
 - umožňuje procesoru adresovat maximálně 2²⁴ B = 16 MB operační paměti.

- První část logické adresy zvaná selektor je rozdělena na tři části:
 - Nejnižší dva bity jsou nazývány RPL (Requested Privilege Level)
 - určují požadovanou úroveň oprávnění k segmentu paměti
 - podpora 4 úrovní oprávnění.
 - Bit 2 **TI** (Table Index) určuje, zda při tvorbě adresy bude použita lokální tabulka deskriptorů (**LDT** Local Descriptor Table) nebo globální tabulka deskriptorů (**GDT** Global Descriptor Table).
 - LDT určen pro umisťování jedinečných dat
 - GDT ukazuje, kde jsou umístěny LDT, základní globální a systémové věci. Jsou zde programy nebo proměnné přístupné více uživatelům.
 - Nejvyšších třináct bitů potom slouží jako index do příslušné tabulky deskriptorů.
- Jedna položka tabulky deskriptorů má 64 bitů, ze kterých je vybráno 24 bitů sloužících jako tzv. bázová adresa. K této bázové adrese se potom přičte 16b offset uložený v registru (přičtení je provedeno přímo bez jakéhokoliv posunutí).

- Výsledkem je 24 bitová fyzická adresa, pomocí které je možno adresovat maximálně 16 MB operační paměti (plná adresovací kapacita procesoru 80286).
- Jedna položka tabulky deskriptorů obsahuje:
 - bázovou adresu segmentu (24 bitů), tj. adresu, na které segment začíná.
 - přístupová práva k segmentu (8bitů).
 - limit segmentu (16 bitů), který určuje maximální velikost segmentů
 - zbývající bity deskriptoru jsou nastaveny vždy na nulu (kvůli kompatibilitě s procesorem 80386)
- **Velkou nevýhodou** tohoto procesoru je stále **16bitový offset**, který nedovoluje větší segment než 64 kB.

80386 - adresace

Lineární adresa

Schéma stránkovacího mechanismu procesoru 80386

TLB (Translation Lookaside Buffer)

- Vnitřní sběrnice procesoru je 32 bitová,
- Vnitřní registry procesoru jsou také 32b.
- Tento mechanismus umožňuje, aby vytvořená adresa byla 32 bitová.
- Bázová adresa, která se vybírá z tabulky deskriptorů, je 32bitová.
- Velikost offsetu 32 bitů.
- Procesor 80386 adresoval až 4 GB (2³²B) operační paměti
- Max. velikost jednoho segmentu je 4GB (protože registr, v němž byla uložena hodnota segmentu, je 32b).

- Procesory I80386 a vyšší: možnost adresace tzv. oblasti HMA (High Memory Area) oblast prvních 64 kB nad 1 MB paměti (zkrácených o 16 B).
- Jak taková adresa vznikne:
 - Adresu paměti v rámci 1 MB tvoří bity **Ao- A19.**
 - Pokud sečtením čísla segmentu a offsetu nastane **přetečení do bitu A20**, pak se dostaneme do oblasti nad 1 MB (oblast HMA).
- Příklad:

Segment x 16 FFFF0H

Offset FFFFH

Fyzická adresa 10FFEFH

Důsledek: vznikla tak adresa sestávající z 21 bitů.

- Využití této techniky v MS DOSu mohl v reálném režimu rozšířit původních 640 kB o 10 %, přesněji o kapacitu 64 kB a tuto oblast využít pro uložení částí operačního systému a ovladačů
 - podpora v MS DOSu potřebnými příkazy
 - (pokyn pro uložení těchto částí do oblasti HMA).
- Bit A20 bylo možné ignorovat nebo zohledňovat (nastavení v setupu) hardwarově to zařizoval řadič klávesnice.

• Forthcoming non-volatile memory technologies include <u>FeRAM</u>, <u>CBRAM</u>, <u>PRAM</u>, <u>SONOS</u>, <u>RRAM</u>, <u>racetrack memory</u>, <u>NRAM</u>, <u>3D XPoint</u>, and <u>millipede memory</u>.