

The Isabelle System Manual

Makarius Wenzel

8 October 2017

Contents

1	The	e Isabelle system environment	1				
	1.1	Isabelle settings	1				
		1.1.1 Bootstrapping the environment	1				
		1.1.2 Common variables	2				
		1.1.3 Additional components	5				
	1.2	The Isabelle tool wrapper	6				
	1.3	The raw Isabelle ML process	7				
		1.3.1 Batch mode	7				
		1.3.2 Interactive mode	8				
	1.4	The raw Isabelle Java process	9				
	1.5	YXML versus XML	10				
2	Isabelle sessions and build management						
	2.1	Session ROOT specifications	11				
	2.2	System build options	16				
	2.3	Invoking the build process	18				
	2.4	Maintain theory imports wrt. session structure	21				
3	Pre	senting theories	23				
	3.1	Generating HTML browser information	23				
	3.2	Preparing session root directories	24				
	3.3	Preparing Isabelle session documents	25				
	3.4	Running LaTeX within the Isabelle environment \dots	27				
4	Isal	pelle/Scala development tools	29				
	4.1	Java Runtime Environment within Isabelle	29				
	4.2	Scala toplevel	29				
	4.3	Scala compiler	30				
	4.4	Scala script wrapper	30				

CONTENTS	ii

5	Miscellaneous tools			
	5.1	Resolving Isabelle components	31	
	5.2	Displaying documents	32	
	5.3	Viewing documentation	32	
	5.4	Shell commands within the settings environment	32	
	5.5	Inspecting the settings environment	33	
	5.6	Installing standalone Isabelle executables	34	
	5.7	Creating instances of the Isabelle logo	34	
	5.8	Output the version identifier of the Isabelle distribution	35	
Bibliography				
In	dex		37	

The Isabelle system environment

This manual describes Isabelle together with related tools as seen from a system oriented view. See also the *Isabelle/Isar Reference Manual* [2] for the actual Isabelle input language and related concepts, and *The Isabelle/Isar Implementation Manual* [1] for the main concepts of the underlying implementation in Isabelle/ML.

1.1 Isabelle settings

Isabelle executables may depend on the *Isabelle settings* within the process environment. This is a statically scoped collection of environment variables, such as <code>ISABELLE_HOME</code>, <code>ML_SYSTEM</code>, <code>ML_HOME</code>. These variables are not intended to be set directly from the shell, but are provided by Isabelle components their settings files as explained below.

1.1.1 Bootstrapping the environment

Isabelle executables need to be run within a proper settings environment. This is bootstrapped as described below, on the first invocation of one of the outer wrapper scripts (such as isabelle). This happens only once for each process tree, i.e. the environment is passed to subprocesses according to regular Unix conventions.

1. The special variable ISABELLE_HOME is determined automatically from the location of the binary that has been run.

You should not try to set ISABELLE_HOME manually. Also note that the Isabelle executables either have to be run from their original location in the distribution directory, or via the executable objects created by the isabelle install tool. Symbolic links are admissible, but a plain copy of the \$ISABELLE_HOME/bin files will not work!

- 2. The file \$ISABELLE_HOME/etc/settings is run as a bash shell script with the auto-export option for variables enabled.
 - This file holds a rather long list of shell variable assignments, thus providing the site-wide default settings. The Isabelle distribution already contains a global settings file with sensible defaults for most variables. When installing the system, only a few of these may have to be adapted (probably ML_SYSTEM etc.).
- 3. The file \$ISABELLE_HOME_USER/etc/settings (if it exists) is run in the same way as the site default settings. Note that the variable ISABELLE_HOME_USER has already been set before usually to something like \$USER_HOME/.isabelle/IsabelleXXXX.

Thus individual users may override the site-wide defaults. Typically, a user settings file contains only a few lines, with some assignments that are actually changed. Never copy the central \$ISABELLE_HOME/etc/settings file!

Since settings files are regular GNU bash scripts, one may use complex shell commands, such as if or case statements to set variables depending on the system architecture or other environment variables. Such advanced features should be added only with great care, though. In particular, external environment references should be kept at a minimum.

A few variables are somewhat special:

- ISABELLE_TOOL is set automatically to the absolute path name of the isabelle executables.
- ISABELLE_OUTPUT will have the identifiers of the Isabelle distribution (cf. ISABELLE_IDENTIFIER) and the ML system (cf. ML_IDENTIFIER) appended automatically to its value.

Note that the settings environment may be inspected with the isabelle getenv tool. This might help to figure out the effect of complex settings scripts.

1.1.2 Common variables

This is a reference of common Isabelle settings variables. Note that the list is somewhat open-ended. Third-party utilities or interfaces may add their own selection. Variables that are special in some sense are marked with *.

- USER_HOME* Is the cross-platform user home directory. On Unix systems this is usually the same as HOME, but on Windows it is the regular home directory of the user, not the one of within the Cygwin root file-system.¹
- ISABELLE_HOME* is the location of the top-level Isabelle distribution directory. This is automatically determined from the Isabelle executable that has been invoked. Do not attempt to set ISABELLE_HOME yourself from the shell!
- ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME. The default value is relative to \$USER_HOME/.isabelle, under rare circumstances this may be changed in the global setting file. Typically, the ISABELLE_HOME_USER directory mimics ISABELLE_HOME to some extend. In particular, site-wide defaults may be overridden by a private \$ISABELLE_HOME_USER/etc/settings.
- ISABELLE_PLATFORM_FAMILY* is automatically set to the general platform family: linux, macos, windows. Note that platform-dependent tools usually need to refer to the more specific identification according to ISABELLE PLATFORM, ISABELLE PLATFORM32, ISABELLE PLATFORM64.
- ISABELLE_PLATFORM* is automatically set to a symbolic identifier for the underlying hardware and operating system. The Isabelle platform identification always refers to the 32 bit variant, even this is a 64 bit machine. Note that the ML or Java runtime may have a different idea, depending on which binaries are actually run.
- ISABELLE_PLATFORM64* is similar to ISABELLE_PLATFORM but refers to the proper 64 bit variant on a platform that supports this; the value is empty for 32 bit. Note that the following bash expression (including the quotes) prefers the 64 bit platform, if that is available:
 - "\${ISABELLE_PLATFORM64:-\$ISABELLE_PLATFORM}"
- ISABELLE_TOOL* is automatically set to the full path name of the isabelle executable.
- ISABELLE_IDENTIFIER* refers to the name of this Isabelle distribution, e.g. "Isabelle2017".

 $^{^1{\}rm Cygwin}$ itself offers another choice whether its HOME should point to the /home directory tree or the Windows user home.

- ML_SYSTEM, ML_HOME, ML_OPTIONS, ML_PLATFORM, ML_IDENTIFIER* specify the underlying ML system to be used for Isabelle. There is only a fixed set of admissable ML_SYSTEM names (see the \$ISABELLE_HOME/etc/settings file of the distribution).
 - The actual compiler binary will be run from the directory ML_HOME, with ML_OPTIONS as first arguments on the command line. The optional ML_PLATFORM may specify the binary format of ML heap images, which is useful for cross-platform installations. The value of ML_IDENTIFIER is automatically obtained by composing the values of ML_SYSTEM, ML_PLATFORM and the Isabelle version values.
- ISABELLE_JDK_HOME needs to point to a full JDK (Java Development Kit) installation with javac and jar executables. This is essential for Isabelle/Scala and other JVM-based tools to work properly. Note that conventional JAVA_HOME usually points to the JRE (Java Runtime Environment), not JDK.
- ISABELLE_PATH is a list of directories (separated by colons) where Isabelle logic images may reside. When looking up heaps files, the value of ML_IDENTIFIER is appended to each component internally.
- ISABELLE_OUTPUT* is a directory where output heap files should be stored by default. The ML system and Isabelle version identifier is appended here, too.
- ISABELLE_BROWSER_INFO is the directory where theory browser information is stored as HTML and PDF (see also §3.1). The default value is \$ISABELLE_HOME_USER/browser_info.
- ISABELLE_LOGIC specifies the default logic to load if none is given explicitely by the user. The default value is HOL.
- ISABELLE_LINE_EDITOR specifies the line editor for the isabelle console
 interface.
- ISABELLE_LATEX, ISABELLE_PDFLATEX, ISABELLE_BIBTEX refer to LATEX related tools for Isabelle document preparation (see also §3.4).
- ISABELLE_TOOLS is a colon separated list of directories that are scanned by isabelle for external utility programs (see also §1.2).
- ISABELLE_DOCS is a colon separated list of directories with documentation files.

PDF VIEWER specifies the program to be used for displaying pdf files.

DVI_VIEWER specifies the program to be used for displaying dvi files.

ISABELLE_TMP_PREFIX* is the prefix from which any running Isabelle ML process derives an individual directory for temporary files.

1.1.3 Additional components

Any directory may be registered as an explicit *Isabelle component*. The general layout conventions are that of the main Isabelle distribution itself, and the following two files (both optional) have a special meaning:

• etc/settings holds additional settings that are initialized when bootstrapping the overall Isabelle environment, cf. §1.1.1. As usual, the content is interpreted as a GNU bash script. It may refer to the component's enclosing directory via the COMPONENT shell variable.

For example, the following setting allows to refer to files within the component later on, without having to hardwire absolute paths:

MY_COMPONENT_HOME="\$COMPONENT"

Components can also add to existing Isabelle settings such as ISABELLE_TOOLS, in order to provide component-specific tools that can be invoked by end-users. For example:

ISABELLE_TOOLS="\$ISABELLE_TOOLS:\$COMPONENT/lib/Tools"

• etc/components holds a list of further sub-components of the same structure. The directory specifications given here can be either absolute (with leading /) or relative to the component's main directory.

The root of component initialization is ISABELLE_HOME itself. After initializing all of its sub-components recursively, ISABELLE_HOME_USER is included in the same manner (if that directory exists). This allows to install private components via \$ISABELLE_HOME_USER/etc/components, although it is often more convenient to do that programmatically via the init_component shell function in the etc/settings script of \$ISABELLE_HOME_USER (or any other component directory). For example:

```
init_component
"$HOME/screwdriver-2.0"
```

This is tolerant wrt. missing component directories, but might produce a warning.

More complex situations may be addressed by initializing components listed in a given catalog file, relatively to some base directory:

```
init_components "$HOME/my_component_store" "some_catalog_file"
```

The component directories listed in the catalog file are treated as relative to the given base directory.

See also §5.1 for some tool-support for resolving components that are formally initialized but not installed yet.

1.2 The Isabelle tool wrapper

The main *Isabelle tool wrapper* provides a generic startup environment for Isabelle-related utilities, user interfaces, add-on applications etc. Such tools automatically benefit from the settings mechanism (§1.1). Moreover, this is the standard way to invoke Isabelle/Scala functionality as a separate operating-system process. Isabelle command-line tools are run uniformly via a common wrapper — isabelle:

```
Usage: isabelle TOOL [ARGS ...]

Start Isabelle TOOL with ARGS; pass "-?" for tool-specific help.

Available tools:
...
```

Tools may be implemented in Isabelle/Scala or as stand-alone executables (usually as GNU bash scripts). In the invocation of "isabelle tool", the named tool is resolved as follows (and in the given order).

- 1. An external tool found on the directories listed in the ISABELLE_TOOLS settings variable (colon-separated list in standard POSIX notation).
 - (a) If a file "tool.scala" is found, the source needs to define some object that extends the class Isabelle_Tool.Body. The Scala compiler is invoked on the spot (which may take some time), and the body function is run with the command-line arguments as List[String].

- (b) If an executable file "tool" is found, it is invoked as stand-alone program with the command-line arguments provided as argv array.
- 2. An internal tool that is registered in Isabelle Tool.internal tools within the Isabelle/Scala namespace of Pure.jar. This is the preferred entry-point for high-end tools implemented in Isabelle/Scala compiled once when the Isabelle distribution is built. These tools are provided by Isabelle/Pure and cannot be augmented in user-space.

There are also some administrative tools that are available from a bare repository clone of Isabelle, but not in regular distributions.

Examples

Show the list of available documentation of the Isabelle distribution:

isabelle doc

View a certain document as follows:

isabelle doc system

Query the Isabelle settings environment:

isabelle getenv ISABELLE_HOME_USER

1.3 The raw Isabelle ML process

1.3.1 Batch mode

The isabelle process tool runs the raw ML process in batch mode:

Usage: isabelle process [OPTIONS]

```
Options are:
```

```
-T THEORY load theory
```

-d DIR include session directory

-e ML_EXPR evaluate ML expression on startup

-f ML_FILE evaluate ML file on startup

-1 NAME -m MODE logic session name (default ISABELLE_LOGIC="HOL")

add print mode for output

-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)

Run the raw Isabelle ML process in batch mode.

Options -e and -f allow to evaluate ML code, before the ML process is started. The source is either given literally or taken from a file. Multiple -e and -f options are evaluated in the given order. Errors lead to premature exit of the ML process with return code 1.

Option -T loads a specified theory file. This is a wrapper for -e with a suitable use thy invocation.

Option -1 specifies the logic session name. Option -d specifies additional directories for session roots, see also §2.3.

The -m option adds identifiers of print modes to be made active for this session. For example, -m ASCII prefers ASCII replacement syntax over mathematical Isabelle symbols.

Option -o allows to override Isabelle system options for this process, see also §2.2.

Example

The subsequent example retrieves the Main theory value from the theory loader within ML:

```
isabelle process -e 'Thy_Info.get_theory "Main"'
```

Observe the delicate quoting rules for the GNU bash shell vs. ML. The Isabelle/ML and Scala libraries provide functions for that, but here we need to do it manually.

1.3.2 Interactive mode

The isabelle console tool runs the raw ML process with interactive console and line editor:

Usage: isabelle console [OPTIONS]

```
Options are:
```

```
-d DIR include session directory
-l NAME logic session name (default ISABELLE_LOGIC)
-m MODE add print mode for output
-n no build of session image on startup
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-r bootstrap from raw Poly/ML
-s system build mode for session image
```

Build a logic session image and run the raw Isabelle ML process in interactive mode, with line editor ISABELLE_LINE_EDITOR.

Option -1 specifies the logic session name. By default, its heap image is checked and built on demand, but the option -n skips that.

Option -r indicates a bootstrap from the raw Poly/ML system, which is relevant for Isabelle/Pure development.

Options -d, -m, -o have the same meaning as for isabelle process (§1.3.1). Option -s has the same meaning as for isabelle build (§2.3).

The Isabelle/ML process is run through the line editor that is specified via the settings variable ISABELLE_LINE_EDITOR (e.g. rlwrap for GNU readline); the fall-back is to use plain standard input/output.

The user is connected to the raw ML toplevel loop: this is neither Isabelle/Isar nor Isabelle/ML within the usual formal context. The most relevant ML commands at this stage are use (for ML files) and use_thy (for theory files).

1.4 The raw Isabelle Java process

The isabelle_java executable allows to run a Java process within the name space of Java and Scala components that are bundled with Isabelle, but without the Isabelle settings environment (§1.1).

After such a JVM cold-start, the Isabelle environment can be accessed via Isabelle_System.getenv as usual, but the underlying process environment remains clean. This is e.g. relevant when invoking other processes that should remain separate from the current Isabelle installation.

Note that under normal circumstances, Isabelle command-line tools are run within the settings environment, as provided by the isabelle wrapper (§1.2 and §4.1).

Example

The subsequent example creates a raw Java process on the command-line and invokes the main Isabelle application entry point:

isabelle_java isabelle.Main

1.5 YXML versus XML

Isabelle tools often use YXML, which is a simple and efficient syntax for untyped XML trees. The YXML format is defined as follows.

- 1. The encoding is always UTF-8.
- 2. Body text is represented verbatim (no escaping, no special treatment of white space, no named entities, no CDATA chunks, no comments).
- 3. Markup elements are represented via ASCII control characters $\mathbf{X}=5$ and $\mathbf{Y}=6$ as follows:

There is no special case for empty body text, i.e. <foo/> is treated like <foo></foo>. Also note that **X** and **Y** may never occur in well-formed XML documents.

Parsing YXML is pretty straight-forward: split the text into chunks separated by **X**, then split each chunk into sub-chunks separated by **Y**. Markup chunks start with an empty sub-chunk, and a second empty sub-chunk indicates close of an element. Any other non-empty chunk consists of plain text. For example, see ~~/src/Pure/PIDE/yxml.ML or ~~/src/Pure/PIDE/yxml.scala.

YXML documents may be detected quickly by checking that the first two characters are **XY**.

Isabelle sessions and build management

An Isabelle session consists of a collection of related theories that may be associated with formal documents (chapter 3). There is also a notion of persistent heap image to capture the state of a session, similar to object-code in compiled programming languages. Thus the concept of session resembles that of a "project" in common IDE environments, but the specific name emphasizes the connection to interactive theorem proving: the session wraps-up the results of user-interaction with the prover in a persistent form.

Application sessions are built on a given parent session, which may be built recursively on other parents. Following this path in the hierarchy eventually leads to some major object-logic session like HOL, which itself is based on Pure as the common root of all sessions.

Processing sessions may take considerable time. Isabelle build management helps to organize this efficiently. This includes support for parallel build jobs, in addition to the multithreaded theory and proof checking that is already provided by the prover process itself.

2.1 Session ROOT specifications

Session specifications reside in files called ROOT within certain directories, such as the home locations of registered Isabelle components or additional project directories given by the user.

The ROOT file format follows the lexical conventions of the *outer syntax* of Isabelle/Isar, see also [2]. This defines common forms like identifiers, names, quoted strings, verbatim text, nested comments etc. The grammar for *session_chapter* and *session_entry* is given as syntax diagram below; each ROOT file may contain multiple specifications like this. Chapters help to organize browser info (§3.1), but have no formal meaning. The default chapter is "*Unsorted*".

Isabelle/jEdit [3] includes a simple editing mode isabelle-root for session ROOT files, which is enabled by default for any file of that name.

description

opts

value

sessions

theories

 $theory_entry$

files

document_files

session A = B + body defines a new session A based on parent session B, with its content given in body (imported sessions, theories and auxiliary source files). Note that a parent (like HOL) is mandatory in practical applications: only Isabelle/Pure can bootstrap itself from nothing.

All such session specifications together describe a hierarchy (graph) of sessions, with globally unique names. The new session name A should be sufficiently long and descriptive to stand on its own in a potentially large library.

session A (groups) indicates a collection of groups where the new session is a member. Group names are uninterpreted and merely follow certain conventions. For example, the Isabelle distribution tags some important sessions by the group name called "main". Other projects may invent their own conventions, but this requires some care to avoid clashes within this unchecked name space.

session A **in** dir specifies an explicit directory for this session; by default this is the current directory of the ROOT file.

All theories and auxiliary source files are located relatively to the session directory. The prover process is run within the same as its current working directory.

description text is a free-form annotation for this session.

options [x = a, y = b, z] defines separate options (§2.2) that are used when processing this session, but *without* propagation to child sessions. Note that z abbreviates z = true for Boolean options.

sessions names specifies sessions that are *imported* into the current name space of theories. This allows to refer to a theory A from session B by

the qualified name B.A — although it is loaded again into the current ML process, which is in contrast to a theory that is already present in the parent session.

Theories that are imported from other sessions are excluded from the current session document.

theories options names specifies a block of theories that are processed within an environment that is augmented by the given options, in addition to the global session options given before. Any number of blocks of theories may be given. Options are only active for each theories block separately.

A theory name that is followed by (global) is treated literally in other session specifications or theory imports. In contrast, the default is to qualify theory names by the session name, in order to ensure globally unique names in big session graphs.

- files files lists additional source files that are involved in the processing of this session. This should cover anything outside the formal content of the theory sources. In contrast, files that are loaded formally within a theory, e.g. via ML file, need not be declared again.
- document_files (in base_dir) files lists source files for document preparation, typically .tex and .sty for LATEX. Only these explicitly given files are copied from the base directory to the document output directory, before formal document processing is started (see also §3.3). The local path structure of the *files* is preserved, which allows to reconstruct the original directory hierarchy of base_dir.
- document files files abbreviates document files (in document) files, i.e. document sources are taken from the base directory document within the session root directory.

Examples

See ~~/src/HOL/ROOT for a diversity of practically relevant situations, although it uses relatively complex quasi-hierarchic naming conventions like HOL-SPARK, HOL-SPARK-Examples. An alternative is to use unqualified names that are relatively long and descriptive, as in the Archive of Formal Proofs (http://afp.sourceforge.net), for example.

2.2System build options

See ~~/etc/options for the main defaults provided by the Isabelle distribution. Isabelle/jEdit [3] includes a simple editing mode isabelle-options for this file-format.

The following options are particularly relevant to build Isabelle sessions, in particular with document preparation (chapter 3).

- browser info controls output of HTML browser info, see also §3.1.
- document specifies the document output format, see isabelle document option -o in §3.3. In practice, the most relevant values are document=false or document=pdf.
- document output specifies an alternative directory for generated output of the document preparation system; the default is within the ISABELLE_BROWSER_INFO hierarchy as explained in §3.1. isabelle mkroot, which generates a default configuration with output readily available to the author of the document.
- document variants specifies document variants as a colon-separated list of name=tags entries, corresponding to isabelle document options -n and -t.
 - For example, document_variants=document:outline=/proof,/ML indicates two documents: the one called document with default tags, and the other called **outline** where proofs and ML sections are folded.
 - Document variant names are just a matter of conventions. It is also possible to use different document variant names (without tags) for different document root entries, see also §3.3.
- threads determines the number of worker threads for parallel checking of theories and proofs. The default 0 means that a sensible maximum value is determined by the underlying hardware. For machines with many cores or with hyperthreading, this is often requires manual adjustment (on the command-line or within personal settings or preferences, not within a session ROOT).
- checkpoint helps to fine-tune the global heap space management. This is relevant for big sessions that may exhaust the small 32-bit address space of the ML process (which is used by default). When the option is enabled for some theories block, a full sharing stage of immutable values in memory happens before loading the specified theories.

- condition specifies a comma-separated list of process environment variables (or Isabelle settings) that are required for the subsequent theories to be processed. Conditions are considered "true" if the corresponding environment value is defined and non-empty.
- timeout and timeout scale specify a real wall-clock timeout for the session as a whole: the two values are multiplied and taken as the number of seconds. Typically, timeout is given for individual sessions, and timeout scale as global adjustment to overall hardware performance.

The timer is controlled outside the ML process by the JVM that runs Isabelle/Scala. Thus it is relatively reliable in canceling processes that get out of control, even if there is a deadlock without CPU time usage.

• profiling specifies a mode for global ML profiling. Possible values are the empty string (disabled), time for profile time and allocations for profile allocations. Results appear near the bottom of the session log file.

The isabelle options tool prints Isabelle system options. Its commandline usage is:

```
Usage: isabelle options [OPTIONS] [MORE_OPTIONS ...]
```

Options are:

include \$ISABELLE_BUILD_OPTIONS -b

-g OPTION get value of OPTION

-1 list options

-x FILE export to FILE in YXML format

Report Isabelle system options, augmented by MORE_OPTIONS given as arguments NAME=VAL or NAME.

The command line arguments provide additional system options of the form name=value or name for Boolean options.

Option -b augments the implicit environment of system options by the ones of ISABELLE_BUILD_OPTIONS, cf. §2.3.

Option -g prints the value of the given option. Option -1 lists all options with their declaration and current value.

Option -x specifies a file to export the result in YXML format, instead of printing it in human-readable form.

2.3 Invoking the build process

The isabelle build tool invokes the build process for Isabelle sessions. It manages dependencies between sessions, related sources of theories and auxiliary files, and target heap images. Accordingly, it runs instances of the prover process with optional document preparation. Its command-line usage is:¹

Usage: isabelle build [OPTIONS] [SESSIONS ...]

```
Options are:
  -D DIR
               include session directory and select its sessions
  -N
               cyclic shuffling of NUMA CPU nodes (performance tuning)
  -R
               operate on requirements of selected sessions
  -X NAME
               exclude sessions from group NAME and all descendants
  -a
               select all sessions
  -b
               build heap images
  -c
               clean build
  -d DIR
               include session directory
  -g NAME
               select session group NAME
  -j INT
               maximum number of parallel jobs (default 1)
  -k KEYWORD
              check theory sources for conflicts with proposed keywords
  -1
               list session source files
              no build -- test dependencies only
  -o OPTION
               override Isabelle system OPTION (via NAME=VAL or NAME)
               system build mode: produce output in ISABELLE_HOME
  -s
  -ν
               verbose
  -x NAME
               exclude session NAME and all descendants
Build and manage Isabelle sessions, depending on implicit settings:
ISABELLE_BUILD_OPTIONS="..."
ML PLATFORM="..."
ML HOME="..."
ML SYSTEM="..."
ML OPTIONS="..."
```

Isabelle sessions are defined via session ROOT files as described in ($\S2.1$). The totality of sessions is determined by collecting such specifications from all Isabelle component directories ($\S1.1.3$), augmented by more directories given via options $\neg d$ DIR on the command line. Each such directory may contain a session ROOT file with several session specifications.

Any session root directory may refer recursively to further directories of the same kind, by listing them in a catalog file ROOTS line-by-line. This helps to

¹Isabelle/Scala provides the same functionality via isabelle.Build.build.

organize large collections of session specifications, or to make -d command line options persistent (e.g. in \$ISABELLE HOME USER/ROOTS).

The subset of sessions to be managed is determined via individual SESSIONS given as command-line arguments, or session groups that are given via one or more options -g NAME. Option -a selects all sessions. The build tool takes session dependencies into account: the set of selected sessions is completed by including all ancestors.

One or more options -x NAME specify sessions to be excluded. All descendents of excluded sessions are removed from the selection as specified above. Option -X is analogous to this, but excluded sessions are specified by session group membership.

Option -R reverses the selection in the sense that it refers to its requirements: all ancestor sessions excluding the original selection. This allows to prepare the stage for some build process with different options, before running the main build itself (without option -R).

Option -D is similar to -d, but selects all sessions that are defined in the given directories.

The build process depends on additional options (§2.2) that are passed to the prover eventually. The settings variable ISABELLE BUILD OPTIONS allows to provide additional defaults, e.g. ISABELLE BUILD OPTIONS="document=pdf" threads=4". Moreover, the environment of system build options may be augmented on the command line via -o name=value or -o name, which abbreviates -o name=true for Boolean options. Multiple occurrences of -o on the command-line are applied in the given order.

Option -b ensures that heap images are produced for all selected sessions. By default, images are only saved for inner nodes of the hierarchy of sessions, as required for other sessions to continue later on.

Option -c cleans all descendants of the selected sessions before performing the specified build operation.

Option -n omits the actual build process after the preparatory stage (including optional cleanup). Note that the return code always indicates the status of the set of selected sessions.

Option - j specifies the maximum number of parallel build jobs (prover processes). Each prover process is subject to a separate limit of parallel worker threads, cf. system option threads.

Option -N enables cyclic shuffling of NUMA CPU nodes. This may help performance tuning on Linux servers with separate CPU/memory modules.

Option -s enables *system mode*, which means that resulting heap images and log files are stored in \$ISABELLE_HOME/heaps instead of the default location ISABELLE_OUTPUT (which is normally in ISABELLE_HOME_USER, i.e. the user's home directory).

Option -v increases the general level of verbosity. Option -1 lists the source files that contribute to a session.

Option -k specifies a newly proposed keyword for outer syntax (multiple uses allowed). The theory sources are checked for conflicts wrt. this hypothetical change of syntax, e.g. to reveal occurrences of identifiers that need to be quoted.

Examples

Build a specific logic image:

```
isabelle build -b HOLCF
```

Build the main group of logic images:

```
isabelle build -b -g main
```

Provide a general overview of the status of all Isabelle sessions, without building anything:

```
isabelle build -a -n -v
```

Build all sessions with HTML browser info and PDF document preparation:

```
isabelle build -a -o browser_info -o document=pdf
```

Build all sessions with a maximum of 8 parallel prover processes and 4 worker threads each (on a machine with many cores):

```
isabelle build -a -j8 -o threads=4
```

Build some session images with cleanup of their descendants, while retaining their ancestry:

```
isabelle build -b -c HOL-Algebra HOL-Word
```

Clean all sessions without building anything:

```
isabelle build -a -n -c
```

Build all sessions from some other directory hierarchy, according to the settings variable AFP that happens to be defined inside the Isabelle environment:

```
isabelle build -D '$AFP'
```

Inform about the status of all sessions required for AFP, without building anything yet:

```
isabelle build -D '$AFP' -R -v -n
```

Maintain theory imports wrt. session 2.4 structure

The isabelle imports tool helps to maintain theory imports wrt. session structure. It supports three main operations via options -I, -M, -U. Its command-line usage is:

Usage: isabelle imports [OPTIONS] [SESSIONS ...]

Options are: -D DTR.

```
include session directory and select its sessions
-T
            operation: report potential session imports
-M
            operation: Mercurial repository check for theory files
-R
            operate on requirements of selected sessions
-U
            operation: update theory imports to use session qualifiers
-X NAME
            exclude sessions from group NAME and all descendants
-a
            select all sessions
-d DIR
            include session directory
-g NAME
            select session group NAME
-i
            incremental update according to session graph structure
-o OPTION
            override Isabelle system OPTION (via NAME=VAL or NAME)
-₩
            verbose
-x NAME
            exclude session NAME and all descendants
```

Maintain theory imports wrt. session structure. At least one operation needs to be specified (see options -I -M -U).

The selection of sessions and session directories works as for isabelle build via options -D, -R, -X, -a, -d, -g, -x (see §2.3).

Option -o overrides Isabelle system options as for isabelle build (see §2.3).

Option -v increases the general level of verbosity.

Option -I determines potential session imports, which may be turned into sessions within the corresponding ROOT file entry. Thus theory imports from other sessions may use session-qualified names. For example, adhoc imports "~~/src/HOL/Library/Multiset" may become formal imports "HOL-Library.Multiset" after adding sessions "HOL-Library" to the ROOT entry.

Option -M checks imported theories against the Mercurial repositories of the underlying session directories; non-repository directories are ignored. This helps to find files that are accidentally ignored, e.g. due to rearrangements of the session structure.

Option -U updates theory imports with old-style directory specifications to canonical session-qualified theory names, according to the theory name space imported via **sessions** within the ROOT specification.

Option -i modifies the meaning of option -U to proceed incrementally, following to the session graph structure in bottom-up order. This may lead to more accurate results in complex session hierarchies.

Examples

Determine potential session imports for some project directory:

```
isabelle imports -I -D 'some/where/My_Project'
```

Mercurial repository check for some project directory:

```
isabelle imports -M -D 'some/where/My_Project'
```

Incremental update of theory imports for some project directory:

```
isabelle imports -U -i -D 'some/where/My_Project'
```

Presenting theories

Isabelle provides several ways to present the outcome of formal developments, including WWW-based browsable libraries or actual printable documents. Presentation is centered around the concept of *sessions* (chapter 2). The global session structure is that of a tree, with Isabelle Pure at its root, further object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and application sessions further on in the hierarchy.

The tools isabelle mkroot and isabelle build provide the primary means for managing Isabelle sessions, including proper setup for presentation; isabelle build tells the Isabelle process to run any additional stages required for document preparation, notably the isabelle document and isabelle latex. The complete tool chain for managing batch-mode Isabelle sessions is illustrated in figure 3.1.

isabelle mkro	oot	invoked once by the user to initialize the ses-
		sion ROOT with optional document directory;
isabelle buil	ld	invoked repeatedly by the user to keep session
		output up-to-date (HTML, documents etc.);
isabelle prod	cess	run through isabelle build;
isabelle docu	ıment	run by the Isabelle process if document prepa-
		ration is enabled;
isabelle late	ex	universal LATEX tool wrapper invoked multiple
		times by isabelle document; also useful for
		manual experiments;

Figure 3.1: The tool chain of Isabelle session presentation

3.1 Generating HTML browser information

As a side-effect of building sessions, Isabelle is able to generate theory browsing information, including HTML documents that show the theory sources

and the relationship with its ancestors and descendants. Besides the HTML file that is generated for every theory, Isabelle stores links to all theories of a session in an index file. As a second hierarchy, groups of sessions are organized as *chapters*, with a separate index. Note that the implicit tree structure of the session build hierarchy is *not* relevant for the presentation.

To generate theory browsing information for an existing session, just invoke isabelle build with suitable options:

```
isabelle build -o browser_info -v -c FOL
```

The presentation output will appear in \$ISABELLE_BROWSER_INFO/FOL/FOL as reported by the above verbose invocation of the build process.

Many Isabelle sessions (such as HOL-Library in ~~/src/HOL/Library) also provide printable documents in PDF. These are prepared automatically as well if enabled like this:

```
isabelle build -o browser_info -o document=pdf -v -c HOL-Library
```

Enabling both browser info and document preparation simultaneously causes an appropriate "document" link to be included in the HTML index. Documents may be generated independently of browser information as well, see §3.3 for further details.

The theory browsing information is stored in a sub-directory directory determined by the ISABELLE_BROWSER_INFO setting plus a prefix corresponding to the session chapter and identifier. In order to present Isabelle applications on the web, the corresponding subdirectory from ISABELLE_BROWSER_INFO can be put on a WWW server.

3.2 Preparing session root directories

The isabelle mkroot tool configures a given directory as session root, with some ROOT file and optional document source directory. Its usage is:

The results are placed in the given directory *dir*, which refers to the current directory by default. The **isabelle mkroot** tool is conservative in the sense that it does not overwrite existing files or directories. Earlier attempts to generate a session root need to be deleted manually.

Option -d indicates that the session shall be accompanied by a formal document, with *DIR*/document/root.tex as its LaTeX entry point (see also chapter 3).

Option -n allows to specify an alternative session name; otherwise the base name of the given directory is used.

The implicit Isabelle settings variable ISABELLE_LOGIC specifies the parent session, and ISABELLE_DOCUMENT_FORMAT the document format to be filled filled into the generated ROOT file.

Examples

Produce session Test (with document preparation) within a separate directory of the same name:

```
isabelle mkroot -d Test && isabelle build -D Test
```

Upgrade the current directory into a session ROOT with document preparation, and build it:

```
isabelle mkroot -d && isabelle build -D .
```

3.3 Preparing Isabelle session documents

The isabelle document tool prepares logic session documents, processing the sources as provided by the user and generated by Isabelle. Its usage is:

```
Usage: isabelle document [OPTIONS] [DIR]
```

```
Options are:

-c cleanup -- be aggressive in removing old stuff
-n NAME specify document name (default 'document')
-o FORMAT specify output format: pdf (default), dvi
-t TAGS specify tagged region markup
```

Prepare the theory session document in DIR (default 'document') producing the specified output format.

This tool is usually run automatically as part of the Isabelle build process, provided document preparation has been enabled via suitable options. It may be manually invoked on the generated browser information document output as well, e.g. in case of errors encountered in the batch run.

The -c option tells isabelle document to dispose the document sources after successful operation! This is the right thing to do for sources generated by an Isabelle process, but take care of your files in manual document preparation!

The -n and -o option specify the final output file name and format, the default is "document.dvi". Note that the result will appear in the parent of the target DIR.

The -t option tells LATEX how to interpret tagged Isabelle command regions. Tags are specified as a comma separated list of modifier/name pairs: "+foo" (or just "foo") means to keep, "-foo" to drop, and "/foo" to fold text tagged as foo. The builtin default is equivalent to the tag specification "+theory,+proof,+ML,+visible,-invisible"; see also the LATEX macros \isakeeptag, \isadroptag, and \isafoldtag, in ~~/lib/texinputs/isabelle.sty.

Document preparation requires a document directory within the session sources. This directory is supposed to contain all the files needed to produce the final document — apart from the actual theories which are generated by Isabelle.

For most practical purposes, isabelle document is smart enough to create any of the specified output formats, taking root.tex supplied by the user as a starting point. This even includes multiple runs of LATEX to accommodate references and bibliographies (the latter assumes root.bib within the same directory).

In more complex situations, a separate build script for the document sources may be given. It is invoked with command-line arguments for the document format and the document variant name. The script needs to produce corresponding output files, e.g. root.pdf for target format pdf (and default variants). The main work can be again delegated to isabelle latex, but it is also possible to harvest generated LATEX sources and copy them elsewhere.

When running the session, Isabelle copies the content of the original document directory into its proper place within ISABELLE_BROWSER_INFO, according to the session path and document variant. Then, for any processed theory A some LaTeX source is generated and put there as A.tex. Furthermore, a list of all generated theory files is put into session.tex. Typically,

the root LATEX file provided by the user would include session.tex to get a document containing all the theories.

The LATEX versions of the theories require some macros defined in ~~/lib/texinputs/isabelle.sty. Doing \usepackage{isabelle} in root.tex should be fine; the underlying isabelle latex already includes an appropriate path specification for TeX inputs.

If the text contains any references to Isabelle symbols (such as \<forall>) then isabellesym.sty should be included as well. This package contains a standard set of LaTeX macro definitions \isasymfoo corresponding to \<foo>, see [1] for a complete list of predefined Isabelle symbols. Users may invent further symbols as well, just by providing LaTeX macros in a similar fashion as in ~~/lib/texinputs/isabellesym.sty of the Isabelle distribution.

For proper setup of DVI and PDF documents (with hyperlinks and bookmarks), we recommend to include ~~/lib/texinputs/pdfsetup.sty as well.

As a final step of Isabelle document preparation, isabelle document -c is run on the resulting copy of the document directory. Thus the actual output document is built and installed in its proper place. The generated sources are deleted after successful run of LATEX and friends.

Some care is needed if the document output location is configured differently, say within a directory whose content is still required afterwards!

3.4 Running LaTeX within the Isabelle environment

The isabelle latex tool provides the basic interface for Isabelle document preparation. Its usage is:

```
Usage: isabelle latex [OPTIONS] [FILE]

Options are:
-o FORMAT specify output format: pdf (default), dvi, bbl, idx, sty, syms

Run LaTeX (and related tools) on FILE (default root.tex), producing the specified output format.
```

Appropriate LATEX-related programs are run on the input file, according to the given output format: latex, pdflatex, dvips, bibtex (for bbl), and makeindex (for idx). The actual commands are determined from the settings environment (ISABELLE_PDFLATEX etc.).

The sty output format causes the Isabelle style files to be updated from the distribution. This is useful in special situations where the document sources are to be processed another time by separate tools.

The syms output is for internal use; it generates lists of symbols that are available without loading additional LATEX packages.

Examples

Invoking isabelle latex by hand may be occasionally useful when debugging failed attempts of the automatic document preparation stage of batchmode Isabelle. The abortive process leaves the sources at a certain place within ISABELLE_BROWSER_INFO, see the runtime error message for details. This enables users to inspect LATEX runs in further detail, e.g. like this:

cd "\$(isabelle getenv -b ISABELLE_BROWSER_INFO)/Unsorted/Test/document"
isabelle latex -o pdf

Isabelle/Scala development tools

Isabelle/ML and Isabelle/Scala are the two main language environments for Isabelle tool implementations. There are some basic command-line tools to work with the underlying Java Virtual Machine, the Scala toplevel and compiler. Note that Isabelle/jEdit [3] provides a Scala Console for interactive experimentation within the running application.

4.1 Java Runtime Environment within Isabelle

The isabelle java tool is a direct wrapper for the Java Runtime Environment, within the regular Isabelle settings environment (§1.1). The command line arguments are that of the underlying Java version. It is run in -server mode if possible, to improve performance (at the cost of extra startup time). The java executable is the one within ISABELLE_JDK_HOME, according to the standard directory layout for official JDK distributions. The class loader is augmented such that the name space of Isabelle/Pure.jar is available, which is the main Isabelle/Scala module.

For example, the following command-line invokes the main method of class <code>isabelle.GUI_Setup</code>, which opens a windows with some diagnostic information about the Isabelle environment:

isabelle java isabelle.GUI_Setup

4.2 Scala toplevel

The isabelle scala tool is a direct wrapper for the Scala toplevel; see also isabelle java above. The command line arguments are that of the underlying Scala version.

This allows to interact with Isabelle/Scala in TTY mode like this:

```
isabelle scala
scala> isabelle.Isabelle_System.getenv("ISABELLE_HOME")
scala> val options = isabelle.Options.init()
scala> options.bool("browser_info")
scala> options.string("document")
```

4.3 Scala compiler

The isabelle scalac tool is a direct wrapper for the Scala compiler; see also isabelle scala above. The command line arguments are that of the underlying Scala version.

This allows to compile further Scala modules, depending on existing Isabelle/Scala functionality. The resulting class or jar files can be added to the Java classpath using the classpath Bash function that is provided by the Isabelle process environment. Thus add-on components can register themselves in a modular manner, see also §1.1.3.

Note that jEdit [3] has its own mechanisms for adding plugin components, which needs special attention since it overrides the standard Java class loader.

4.4 Scala script wrapper

The executable \$ISABELLE_HOME/bin/isabelle_scala_script allows to run Isabelle/Scala source files stand-alone programs, by using a suitable "hash-bang" line and executable file permissions. For example:

```
#!/usr/bin/env isabelle_scala_script
val options = isabelle.Options.init()
Console.println("browser_info = " + options.bool("browser_info"))
Console.println("document = " + options.string("document"))
```

This assumes that the executable may be found via the PATH from the process environment: this is the case when Isabelle settings are active, e.g. in the context of the main Isabelle tool wrapper §1.2. Alternatively, the full \$ISABELLE_HOME/bin/isabelle_scala_script may be specified in expanded form.

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabetical order.

5.1 Resolving Isabelle components

The isabelle components tool resolves Isabelle components:

```
Usage: isabelle components [OPTIONS] [COMPONENTS ...]
```

Resolve Isabelle components via download and installation. COMPONENTS are identified via base name.

ISABELLE_COMPONENT_REPOSITORY="http://isabelle.in.tum.de/components"

Components are initialized as described in §1.1.3 in a permissive manner, which can mark components as "missing". This state is amended by letting isabelle components download and unpack components that are published on the default component repository http://isabelle.in.tum.de/components in particular.

Option -R specifies an alternative component repository. Note that file:/// URLs can be used for local directories.

Option -a selects all missing components to be resolved. Explicit components may be named as command line-arguments as well. Note that components are uniquely identified by their base name, while the installation takes place in the location that was specified in the attempt to initialize the component before.

Option -1 lists the current state of available and missing components with their location (full name) within the file-system.

Option –I initializes the user settings file to subscribe to the standard components specified in the Isabelle repository clone — this does not make any sense for regular Isabelle releases. If the file already exists, it needs to be edited manually according to the printed explanation.

5.2 Displaying documents

The isabelle display tool displays documents in DVI or PDF format:

Usage: isabelle display DOCUMENT

Display DOCUMENT (in DVI or PDF format).

The settings DVI_VIEWER and PDF_VIEWER determine the programs for viewing the corresponding file formats. Normally this opens the document via the desktop environment, potentially in an asynchronous manner with re-use of previews views.

5.3 Viewing documentation

The isabelle doc tool displays Isabelle documentation:

Usage: isabelle doc [DOC ...]

View Isabelle documentation.

If called without arguments, it lists all available documents. Each line starts with an identifier, followed by a short description. Any of these identifiers may be specified as arguments, in order to display the corresponding document (see also §5.2).

The ISABELLE_DOCS setting specifies the list of directories (separated by colons) to be scanned for documentations.

5.4 Shell commands within the settings environment

The isabelle env tool is a direct wrapper for the standard /usr/bin/env command on POSIX systems, running within the Isabelle settings environ-

```
ment (\S1.1).
```

The command-line arguments are that of the underlying version of **env**. For example, the following invokes an instance of the GNU Bash shell within the Isabelle environment:

isabelle env bash

5.5 Inspecting the settings environment

The Isabelle settings environment — as provided by the site-default and user-specific settings files — can be inspected with the isabelle getenv tool:

```
Usage: isabelle getenv [OPTIONS] [VARNAMES ...]

Options are:
-a display complete environment
-b print values only (doesn't work for -a)
-d FILE dump complete environment to FILE
(null terminated entries)

Get value of VARNAMES from the Isabelle settings.
```

With the <code>-a</code> option, one may inspect the full process environment that Isabelle related programs are run in. This usually contains much more variables than are actually Isabelle settings. Normally, output is a list of lines of the form <code>name=value</code>. The <code>-b</code> option causes only the values to be printed. Option <code>-d</code> produces a dump of the complete environment to the specified file. Entries are terminated by the ASCII null character, i.e. the C string terminator.

Examples

Get the location of ISABELLE_HOME_USER where user-specific information is stored:

```
isabelle getenv ISABELLE_HOME_USER
```

Get the value only of the same settings variable, which is particularly useful in shell scripts:

```
isabelle getenv -b ISABELLE_OUTPUT
```

5.6 Installing standalone Isabelle executables

By default, the main Isabelle binaries (isabelle etc.) are just run from their location within the distribution directory, probably indirectly by the shell through its PATH. Other schemes of installation are supported by the isabelle install tool:

```
Usage: isabelle install [OPTIONS] BINDIR

Options are:
  -d DISTDIR refer to DISTDIR as Isabelle distribution (default ISABELLE_HOME)
```

Install Isabelle executables with absolute references to the distribution directory.

The -d option overrides the current Isabelle distribution directory as determined by ISABELLE_HOME.

The *BINDIR* argument tells where executable wrapper scripts for isabelle and isabelle_scala_script should be placed, which is typically a directory in the shell's PATH, such as \$HOME/bin.

It is also possible to make symbolic links of the main Isabelle executables manually, but making separate copies outside the Isabelle distribution directory will not work!

5.7 Creating instances of the Isabelle logo

The isabelle logo tool creates instances of the generic Isabelle logo as EPS and PDF, for inclusion in LaTeX documents.

```
Usage: isabelle logo [OPTIONS] XYZ

Create instance XYZ of the Isabelle logo (as EPS and PDF).

Options are:
-n NAME alternative output base name (default "isabelle_xyx")
-q quiet mode
```

Option $\neg n$ specifies an alternative (base) name for the generated files. The default is $isabelle_xyz$ in lower-case.

Option -q omits printing of the result file name.

Implementors of Isabelle tools and applications are encouraged to make derived Isabelle logos for their own projects using this template.

5.8 Output the version identifier of the Isabelle distribution

The isabelle version tool displays Isabelle version information:

The default is to output the full version string of the Isabelle distribution, e.g. "Isabelle2017: October 2017.

The -i option produces a short identification derived from the Mercurial id of the ISABELLE HOME directory.

Bibliography

- [1] M. Wenzel. *The Isabelle/Isar Implementation*. http://isabelle.in.tum.de/doc/implementation.pdf.
- [2] M. Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.tum.de/doc/isar-ref.pdf.
- [3] M. Wenzel. Isabelle/jEdit. http://isabelle.in.tum.de/doc/jedit.pdf.

Index

bash (executable), 2, 2	isabelle_java (executable), 9 ISABELLE_JDK_HOME (setting),
browser_info (system option), 16 build (tool), 18 , 23	4
1.1	ISABELLE_LATEX (setting), 4
checkpoint (system option), 16	ISABELLE_LINE_EDITOR (set-
components (tool), 31	ting), 4
condition (system option), 17	ISABELLE_LOGIC (setting), 4
console (tool), 4, 8	ISABELLE_OUTPUT (setting), 2,
display (tool), 32	4
doc (tool), 32	ISABELLE_PATH (setting), 4
document (system option), 16	ISABELLE_PDFLATEX (setting),
document (tool), 23, 25	4
document_output (system option),	ISABELLE_PLATFORM (setting),
16	3
document_variants (system option),	ISABELLE_PLATFORM64 (set-
16	ting), 3
DVI_VIEWER (setting), 5	ISABELLE_PLATFORM_FAMILY
env (tool), 32	(setting), 3
env (1001), 32	ISABELLE_TMP_PREFIX (set-
getenv (tool), 33	ting), 5
imments (tool) 21	ISABELLE_TOOL (setting), 2
imports (tool), 21	ISABELLE_TOOLS (setting), 4, 5
install (tool), 34	java (tool), 29
isabelle (executable), 1, 6 ISABELLE_BIBTEX (setting), 4	
ISABELLE_BROWSER_INFO	latex (tool), 23, 27
(setting), 4, 24	logo (tool), 34
ISABELLE_BUILD_OPTIONS	mkroot (tool), 23, 24
(setting), 19	ML_HOME (setting), 4
ISABELLE_DOCS (setting), 4	ML_IDENTIFIER (setting), 4
ISABELLE_HOME (setting), 1, 3	ML_OPTIONS (setting), 4
ISABELLE_HOME_USER (set-	ML_PLATFORM (setting), 4
$\overline{\text{ting}}$, 3	ML_SYSTEM (setting), 4
ISABELLE_IDENTIFIER (setting),	
3	options (tool), 17

INDEX 38

```
PDF_VIEWER (setting), 5
process (tool), 7, 23
profiling (system option), 17
rlwrap (executable), 9
scala (tool), 29
scalac (tool), 30
session_chapter (syntax), 12
session_entry (syntax), 12
threads (system option), 16, 19
timeout (system option), 17
timeout_scale (system option), 17
USER_HOME (setting), 3
version (tool), 35
```