Computing in Science Education (CSE)

Hans Petter Langtangen^{1,2} Knut Mørken³ Morten Hjorth-Jensen^{4,5} Anders Malthe-Sørenssen⁴

 $Simula^1$

Ifi, UiO²

Dept. of Mathematics, UiO³

Dept. of Physics, UiO⁴

Michigan State Univ.5

May 31, 2013

CSE is about deep integration of computing in the curriculum

Strong focus on IT in eduction but...

- mostly for communication
- minor impact on the contents of courses and textbooks

CSE: Why not...

- use numerics, programming and simulation from day 1?
- create the future science courses?

CSE is about deep integration of computing in the curriculum

Strong focus on IT in eduction but...

- mostly for communication
- minor impact on the contents of courses and textbooks

CSE: Why not...

- use numerics, programming and simulation from day 1?
- create the future science courses?

CSE is about deep integration of computing in the curriculum

Strong focus on IT in eduction but...

- mostly for communication
- minor impact on the contents of courses and textbooks

CSE: Why not...

- use numerics, programming and simulation from day 1?
- create the future science courses?

The science curriculum does not reflect reality

Teaching:

Simplified problems with pen and paper.

Research/industry:

Complex problems solved by computing.

The computing reform is more central than ever

Two paradigms: use software - or do programming?

CSE: strong emphasis on programming.

- Great demand for candidates who master problem solving via programming
- We believe "programming is understanding"

Two paradigms: use software - or do programming?

CSE: strong emphasis on programming.

- Great demand for candidates who master problem solving via programming
- We believe "programming is understanding"

"Programming is understanding" (K. Nygaard)

Make a new data type for polynomials:

```
p1 = Polynomial({0: 1, 1: -1})  # 1 - x

p2 = Polynomial({1: 1, 4: -6, 5: -1})  # x - 6x^4 - x^5

p3 = p1 + p2  # shown in detail

p4 = p1*p2  # exercise

print p4  # x - x^2 - 6x^4 + 5x^5 + x^6
```

Everybody is drilled in polynomial multiplication,

$$(1-x)(1-6x^4-x^5)=...$$

but programming involves general polynomials (not specific ones!):

$$\left(\sum_{i=0}^{M} c_{i} x^{i}\right) \left(\sum_{j=0}^{N} d_{j} x^{j}\right) = \sum_{i=0}^{M} \sum_{j=0}^{N} c_{i} d_{j} x^{i+j}$$

"Programming is understanding" (K. Nygaard)

Make a new data type for polynomials:

Everybody is drilled in polynomial multiplication,

$$(1-x)(1-6x^4-x^5)=...$$

but programming involves general polynomials (not specific ones!):

$$\left(\sum_{i=0}^{M} c_{i} x^{i}\right) \left(\sum_{j=0}^{N} d_{j} x^{j}\right) = \sum_{i=0}^{M} \sum_{j=0}^{N} c_{i} d_{j} x^{i+j}$$

- Lectures and exams must involve programming
- Programming must be a primary activity
- Recall: we learn what we do every day

- Lectures and exams must involve programming
- Programming must be a primary activity
- Recall: we learn what we do every day

- Lectures and exams must involve programming
- Programming must be a primary activity
- Recall: we learn what we do every day

- Lectures and exams must involve programming
- Programming must be a primary activity
- Recall: we learn what we do every day

Integration of mathematics, numerics, programming and simulation at the University of Oslo

1st semester.

Classical calculus I, Numerical calculus, Scientific programming

2nd semester.

Classical calculus II w/numerics, Physics w/numerics

3rd semester and beyond

Classical calculus III w/numerics, lots of science courses use programming and simulation

Challenge: make impact on chemestry, geology and biology

Integration of mathematics, numerics, programming and simulation at the University of Oslo

1st semester.

Classical calculus I, Numerical calculus, Scientific programming

2nd semester.

Classical calculus II w/numerics, Physics w/numerics

3rd semester and beyond.

Classical calculus III w/numerics, lots of science courses use programming and simulation

Challenge: make impact on chemestry, geology and biology

Integration of mathematics, numerics, programming and simulation at the University of Oslo

1st semester.

Classical calculus I, Numerical calculus, Scientific programming

2nd semester.

Classical calculus II w/numerics, Physics w/numerics

3rd semester and beyond.

Classical calculus III w/numerics, lots of science courses use programming and simulation

Challenge: make impact on chemestry, geology and biology

Highlights of great results from the CSE project

From student projects:

- Journal publication (Vistnes)
- Found error in recent paper (Malthe-Sørenssen)

Students are a great resource and have contributed much to the development CSE!

Many rewards of a successful CSE implementation

The student:

- Better motivation and understanding
- More realistic problems and workflow
- More operational: computationally proficient professionals

The researcher:

- Inspiring, renewed teaching environment based on research
- More operational master and phd students

The institution:

- Development of textbooks and material gives visibility
- Increased focus on teaching
- Teaching collaborations foster research initiatives

Computing provides generally applicable solution techniques

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

With computing we can do more realistic problems

Computing emphasizes forward vs inverse modeling

What is the interest rate if an investment doubles in five years?

School:
$$A = A_0 \left(1 + \frac{p}{100}\right)^n$$

Fundamental model:

$$A_{n+1} = A_n + A_n \frac{p_n}{100}, \quad A_0 \text{ given}$$

- Input: *p*, *A*₀
- Output: A_1, \ldots, A_N

Computing frees time for more focus on problem formulation and results

With computing complex is often simpler

$$\ddot{\theta}(t) + \omega^2 \sin(\theta(t)) = 0$$

Original/fundamental model (DAE):

$$m\ddot{\mathbf{r}} = \mathbf{F}$$

 $||\mathbf{r}|| = \text{const}$

Parts of \mathbf{F} unknown, parts of \mathbf{r} known. Elastic rope gives a clean Newton's 2nd law:

$$m\ddot{\mathbf{r}} = \mathbf{F}(\mathbf{r}, \dot{\mathbf{r}})$$

- Need a collaborating and acknowledging culture among the professors
- Need enthusiasm at the top (deans) and bottom (teachers)
- Need support from strategy plans
- 50K award for reforming a course

- Need a collaborating and acknowledging culture among the professors
- Need enthusiasm at the top (deans) and bottom (teachers)
- Need support from strategy plans
- 50K award for reforming a course

- Need a collaborating and acknowledging culture among the professors
- Need enthusiasm at the top (deans) and bottom (teachers)
- Need support from strategy plans
- 50K award for reforming a course

- Need a collaborating and acknowledging culture among the professors
- Need enthusiasm at the top (deans) and bottom (teachers)
- Need support from strategy plans
- 50K award for reforming a course

- Need a collaborating and acknowledging culture among the professors
- Need enthusiasm at the top (deans) and bottom (teachers)
- Need support from strategy plans
- 50K award for reforming a course

Key people involved in running the CSE project

- Knut Mørken, Dept. of Mathematics
- Hanne Sølna, Faculty administration
- Annik Myhre, former Dean of Education
- Solveig Kristensen, Dean of Education
- Morten Hjorth-Jensen, Dept. of Physics
- Anders Malthe-Sørenssen, Dept. of Physics
- Øyvind Ryan, Dept. of Mathematics
- Hans Petter Langtangen, Dept. of Informatics and Simula lab.
- + lots of professors and students