1 Lezione del 02-12-24

1.1 Ricavo dei punti di ottimo dall'LKT

Dopo aver introdotto il sistema LKT, vediamo il seguente teorema:

Teorema 1.1: Condizione sufficiente di minimo per problemi convessi

Sia un problema di ottimizzazione vincolata posto su un dominio Ω regolare, con $f,g,h\in C^1$, f,g convesse e h lineare. Se \bar{x} soddisfa il sistema LKT con la coppia $(\bar{\lambda},\bar{x})\in\mathbb{R}^{n+p}$ dove n conta le g e p le h, e inoltre $\bar{\lambda}\geq 0$, allora \bar{x} è minimo globale.

Un problema che rispetta le condizioni stabilite dal teorema viene detto **problema convesso** di PNL (f, g) convesse e h lineare), in quanto il dominio Ω su tali condizioni risulta effettivamente **convesso**.

Chiaramente, vale l'opposto per $\bar{\lambda} \leq 0$ su funzioni **concave**:

Teorema 1.2: Condizione sufficiente di massimo per problemi concavi

Sia un problema di ottimizzazione vincolata posto su un dominio Ω regolare, con $f,g,h\in C^1$, f concava, f convessa e h lineare. Se \bar{x} soddisfa il sistema LKT con la coppia $(\bar{\lambda},\bar{x})\in\mathbb{R}^{n+p}$ dove n conta le g e p le h, e inoltre $\bar{\lambda}\leq 0$, allora \bar{x} è massimo globale.

Notiamo che non ha significato parlare di *domini concavi* (nel nostro caso g concava), in quanto non si è data alcuna definizione a riguardo.

Abbiamo quindi che il teorema è una condizione sufficiente per minimi globali, mentre il teorema LKT è una condizione necessaria per minimi locali.

Teorema 1.3: Condizione sufficiente di minimo su poliedri

Sia un problema di ottimizzazione, con Ω un poliedro limitato e $f \in C^1$. Se f è convessa, allora uno dei vertici del poliedro è massimo globale.

Ancora una volta, vale il caso concavo:

Teorema 1.4: Condizione sufficiente di massimo su poliedri

Sia un problema di ottimizzazione, con Ω un poliedro limitato e $f \in C^1$. Se f è concava, allora uno dei vertici del poliedro è minimo globale.