

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

OptiMOS™ Small-Signal-Transistor, 100V

BSL372SN

Data Sheet

Rev. 2.0 Final

$\mathbf{OptiMOS}^{^{\mathsf{TM}}}\,\mathbf{Small}\text{-}\mathbf{Signal}\text{-}\mathbf{Transistor}$

Features

- N-channel
- Enhancement mode
- Logic Level (4.5V rated)
- Avalanche rated
- Qualified according to AEC Q101
- RoHS compliant
- Halogen-free according to IEC61249-2-21

Product Summary

V _{DS}	100	٧		
$R_{\mathrm{DS(on),max}}$	$R_{\rm DS(on),max}$ $V_{\rm GS}$ =10 V			
	V _{GS} =4.5 V	0.26		
I _D	2	Α		

PG-TSOP6

Туре	Package	Tape and Reel Info	Marking	Halogen Free	Packing	
BSL372SN	TSOP-6	H6327: 3000 pcs/ reel	sPX	Yes	Non dry	

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	ID	T _A =25 °C	2.0	А
		T _A =70 °C	1.6	1
Pulsed drain current	I _{D,pulse}	T _A =25 °C	8.0	
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ =2 A, $R_{\rm GS}$ =25 Ω	33	mJ
Reverse diode d v /d t	dv/dt	$I_{\rm D}$ =2 A, $V_{\rm DS}$ =50 V, d <i>i</i> /d <i>t</i> =200 A/ μ s, $T_{\rm j,max}$ =150 °C	6	kV/μs
Gate source voltage	V_{GS}		±20	V
Power dissipation ¹⁾	P _{tot}	T _A =25 °C	2.0	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C
ESD Class		JESD22-A114 -HBM	0 (<250V)	1
Soldering Temperature			260 °C	
IEC climatic category; DIN IEC 68-1			55/150/56	

Parameter	Symbol	Symbol Conditions		Values		
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance junction - soldering point	R_{thJS}		-	-	50	K/W
Thermal resistance	R_{thJA}	minimal footprint	-	-	230	
junction - ambient		6 cm ² cooling area ¹⁾	-	-	62.5	1

Electrical characteristics, at $T_{\rm j}$ =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(BR)DSS}$	V _{GS} =0 V, I _D =250 μA	100	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	$V_{\rm DS}$ =Vgs V, $I_{\rm D}$ =218 μ A	0.8	1.4	1.80	
Drain-source leakage current	I _{DSS}	V _{DS} =100 V, V _{GS} =0 V, T _j =25 °C	1	1	0.02	μΑ
		V _{DS} =100 V, V _{GS} =0 V, T _j =150 °C	-	1	10	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	-	10	nA
Gate-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =2 A	-	151	220	mΩ
		V _{GS} =4.5 V, I _D =1.85 A	1	170	260	
Transconductance	g_{fs}	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = 1.6 \text{ A}$		5.3	-	S

 $^{^{1)}}$ Device on 40mm x 40mm x 1.5mm epoxy PCB FR4 with 6cm 2 (one layer, $70\mu m$ thick) copper area for drain connection. PCB is vertical in still air. (t < 5 sec.)

Parameter	Symbol	Symbol Conditions		Values		
			min.	typ.	max.	
Dynamic characteristics ²⁾						
Input capacitance	Ciss		-	247	329	pF
Output capacitance	Coss	V_{GS} =0 V, V_{DS} =25 V, f =1 MHz	_	40	54	
Reverse transfer capacitance	C _{rss}	1	_	19	28	
Turn-on delay time	$t_{d(on)}$		-	3.5	5.2	ns
Rise time	t _r	V _{DD} =50 V, V _{GS} =10 V,	_	4.8	7.3	
Turn-off delay time	$t_{d(off)}$	$I_{\rm D}$ =2 A, $R_{\rm G,ext}$ =6 Ω	_	54.0	81.0	
Fall time	t_{f}]	-	22.1	33.2	
Gate Charge Characteristics ²⁾				,		
Gate to source charge	Q _{gs}		-	0.6	0.8	nC
Gate to drain charge	Q_{gd}	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =2 A, $V_{\rm GS}$ =0 to 10 V	-	3.0	4.5	
Gate charge total	Qg		-	9.5	14.3	
Gate plateau voltage	$V_{\rm plateau}$		-	2.3	_	V
Reverse Diode						
Diode continous forward current	Is	T -25 °C	-	-	2.0	А
Diode pulse current	I _{S,pulse}	− T _A =25 °C	-	-	8.0	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =2 A, T _j =25 °C	-	0.8	1.1	V
Reverse recovery time ²⁾	t _{rr}	V _R =50 V, I _F =2 A,	-	41	62	ns
Reverse recovery charge ²⁾	Q _{rr}	d <i>i_F</i> /d <i>t</i> =100 A/µs	-	47	71	nC

²⁾ Defined by design. Not subjected to production test

1 Power dissipation

$P_{\text{tot}} = f(T_A)$

2 Drain current

3 Safe operating area

 I_D =f(V_{DS}); T_A =25 °C; D=0

parameter: t_p

4 Max. transient thermal impedance

 Z_{thJA} =f(t_{p})

parameter: $D=t_p/T$

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 °C$

parameter: $V_{\rm GS}$

7 Typ. transfer characteristics

 I_{D} =f(V_{GS}); $|V_{DS}|$ >2 $|I_{D}|R_{DS(on)max}$

6 Typ. drain-source on resistance

 $R_{DS(on)}$ =f(I_D); T_j =25 °C

parameter: V_{GS}

8 Typ. forward transconductance

 g_{fs} =f(I_D); T_j =25 °C

9 Drain-source on-state resistance

 $R_{DS(on)} = f(T_i); I_D = 2 A; V_{GS} = 10 V$

600 500 400 $R_{\rm DS(on)}$ [m Ω] 300 200 typ 100 40 60 80 100 120 140 160 -60 -40 -20 0 20 T_j [°C]

10 Typ. gate threshold voltage

 $V_{GS(th)}$ =f(T_j); V_{DS} = V_{GS} ; I_D =218 μ A

parameter: I_D

11 Typ. capacitances

 $C=f(V_{DS}); V_{GS}=0 V; f=1 MHz; T_j=25$ °C

12 Forward characteristics of reverse diode

 $I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$

parameter: T_i

13 Avalanche characteristics

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

14 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =2 A pulsed

parameter: $V_{\rm DD}$

15 Drain-source breakdown voltage

 $V_{BR(DSS)}$ =f(T_j); I_D =250 μ A

16 Gate charge waveforms

1.15

TSOP6

Footprint:

Remark: Wave soldering possible dep. on customers process conditions HLG09283

Packaging:

Dimensions in mm

Note: For symmetric types there is no defined Pin 1 orientation in the reel.

Revision History

BSL372SN

Revision: 2014-10-22, Rev. 2.0

Previous Revision

T TO VIOLOT TO VIOLOTI				
Revision	Date	Subjects (major changes since last revision)		
2.0	2014-10-22	Release of final version		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.