Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники

Моделирование Лабораторная работа №2 Вариант № 19

Выполнил: студент группы Р3308,

Васильев Н. А.

Преподаватель: Авксентьева Е. Ю.

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

Исходные данные

Таблица 1 - Параметры структурной и функциональной организации

	Сист	ема 1	Система 2		
Вариант	Приборы	Емкость накопителей	Приборы	Емкость накопителей	
1 / 9	3	2/0/0	2 (E ₂)	0/1	

Критерий эффективности — г (минимальное время пребывания в системе заявок).

Таблица 2 - Параметры нагрузки

Вариант	Интенсивность потока	Ср. длит. обслуж.	Вероятн	Вероятности занятия прибора				
-	λ , 1/c	b , c	П1	П2	П3			
8	0,3	15	0,5	0,15	0,35			

Система 1

Описание исследуемой системы

- Система содержит 3 обслуживающих прибора, к каждому из которых поступают заявки на обслуживание, так как в условиях задана интенсивность λ , что соответствует стандартному допущению в СМО;
- Поток поступающих в систему заявок является однородным (стационарным) и образует простейший поток (поток Пуассона);
- В системе имеется три прибора с разной вероятностью выбора. Это означает, что каждая заявка, поступающая в систему, с вероятностью P_i направляется на обслуживание к соответствующему прибору;
- Перед первым прибором 2 места, перед вторым и третьим прибором 0 мест (то есть прибор обслуживает только 1 заявку, очередь отсутствует);
- Длительность обслуживания заявок в приборе случайная величина.
- Средняя длительность обслуживания одной заявки равна 15 с, тогда можно принять, что распределение экспоненциальное, а интенсивность обслуживания $\mu = \frac{1}{b} = \frac{1}{15}$ с;
- Дисциплина обслуживания «первым пришёл первым обслужен» (FCFS, first come first served);
- Дисциплина буферизации с потерями: если заявка приходит к прибору, перед которым нет свободного места в очереди или сам прибор занят, заявка теряется (отбрасывается без обслуживания);
- Система реализует распределённое обслуживание с вероятностным выбором прибора и ограниченными накопителями.

Рисунок 1 – Схематичное представление Системы 1.

Характеристики системы:

- Интенсивность потока $\lambda = 0.3 \ 1/c$;
- Средняя длительность обслуживания b = 15 c;
- Интенсивность обслуживания прибора: $\mu = \frac{1}{15} \ 1/c$.

Классификация приборов по Кендаллу:

- 1. П1 СМО типа **М/М/1/2**,
- 2. П2 CMO типа **M/M/1/0**,
- 3. П3 СМО типа М/М/1/0.

Таблица 3 – Перечень состояний Системы 1

№ состояния	Обозначение	Описание
S0	0/0/0/0	В системе нет заявок.
S1	1/0/0/0	В системе одна заявка, обрабатываемая на П1.
S2	0/0/1/0	В системе одна заявка, обрабатываемая на П2.
S3	0/0/0/1	В системе одна заявка, обрабатываемая на ПЗ.
S4	1/0/1/0	В системе две заявки, обрабатываемые на П1 и П2.
S5	1/0/0/1	В системе две заявки, обрабатываемые на П1 и П3.
S6	0/0/1/1	В системе две заявки, обрабатываемые на П2 и П3.
S7	1/1/0/0	В системе две заявки, обрабатываемая на П1 и в
5/	1/1/0/0	очереди на П1.
S8	1/0/1/1	В системе три заявки, обрабатываемые на П1, П2 и П3.
S9	1/1/1/0	В системе три заявки, обрабатываемые на П1 и П2 и в
39	1/1/1/0	очереди на П1.
S10	1/1/0/1	В системе три заявки, обрабатываемые на П1 и П3 и в
310	1/1/0/1	очереди на П1.
S11	1/2/0/0	В системе три заявки, обрабатываемая на П1 и две в
511	1/2/0/0	очереди на П1.
S12	1/1/1/1	В системе четыре заявки, обрабатываемые на П1, П2 и
512	1/1/1/1	ПЗ и в очереди на П1.
S13	1/2/1/0	В системе четыре заявки, обрабатываемые на П1 и П2 и
513	1/2/1/0	две в очереди на П1.
S14	1/2/0/1	В системе четыре заявки, обрабатываемые на П1 и П3 и
דוט	1/2/0/1	две в очереди на П1.

S15	1/2/1/1	В системе пять заявок, обрабатываемые на П1, П2 и П3 и две в очереди на П1.
-----	---------	---

Рисунок 2 – Граф переходов Системы 1.

Таблица 4 – Матрица интенсивности переходов Системы 1.

C1	SO	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
SO	1	0,15	0,045	0,105	~ .	50					510	511	512	510	511	510
S1	0,0667	2			0,045	0,105		0,15								
S2	0,0667		3		0,15		0,105									
S3	0,0667			4		0,15	0,045									
S4		0,0667	0,0667		5				0,105	0,15						
S5		0,0667	0,0667	0,0667		6			0,045		0,15					
S6				0,0667			7		0,15							
S7		0,0667						8		0,045	0,105	0,15				
S8					0,0667	0,0667	0,0667		9				0,15			
S9					0,0667			0,0667		10			0,105	0,15		
S10						0,0667		0,0667			11		0,045		0,15	
S11								0,0667				12		0,045	0,105	
S12									0,0667	0,0667	0,0667		13			0,15
S13										0,0667		0,0667		14		0,105
S14											0,0667	0,0667			15	0,045
S15													0,0667	0,0667	0,0667	16

Таблица 5 – Значения стационарных вероятностей в точках Системы 1.

p_0	p_1	p_2	p_3	p_4	p_{5}	p_6	p_7
0,0149	0,0319	0,0085	0,0213	0,0183	0,0456	0,0122	0,0685
p_8	p_9	p_{10}	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}
0,0261	0,0391	0,0978	0,1467	0,0559	0,0838	0,2096	0,1198

$$\lambda_1=0,5\lambda;\;\lambda_2=0,15\lambda;\;\lambda_3=0,35\lambda$$

Таблица 6 – Характеристики Системы 1.

Хар-ка	Прибор	Расчетная формула	Значение
Нагрузка	П1	$y_1 = \lambda_1 \times b$	7,5
	П2	$y_2 = \lambda_2 \times b$	2,25
	П3	$y_3 = \lambda_3 \times b$	5,25
	Сумма	$Y = y_1 + y_2 + y_3$	15
Загрузка	П1	$\rho_1 = 1 - (p_0 + p_2 + p_3 + p_6)$	0,9431
	П2	$\rho_2 = 1 - (p_0 + p_1 + p_3 + p_5 + p_7 + p_{10})$	
	112	$+ p_{11} + p_{14}$	0,3637
	П3	$\rho_3 = 1 - (p_0 + p_1 + p_2 + p_4 + p_7 + p_9)$	
		$+p_{11}+p_{13}$)	0,5883
	Сумма	$\rho = (\rho_1 + \rho_2 + \rho_3)/3$	0,6317
Вероятность потери	П1	$\pi_1 = p_{11} + p_{13} + p_{14} + p_{15}$	0,5599
	П2	$\pi_2 = \rho_2$	0,3637
	П3	$\pi_3 = \rho_3$	0,5883
	Сумма	$\pi = 0.5 \times \pi_1 + 0.15 \times \pi_2 + 0.35 \times \pi_3$	0,54041
Длина очереди	П1	$l_1 = p_{11} + p_{13} + p_{14} + p_{15}$	0,5599
	П2	$l_2 = 0$	0
	П3	$l_3 = 0$	0
	Сумма	$l = l_1 + l_2 + l_3$	0,5599
Число заявок в	П1	$m_1 = l_1 + \rho_1$	1,503
системе	П2	$m_2 = l_2 + \rho_2$	0,3637
	П3	$m_3 = l_3 + \rho_3$	0,5883
	Сумма	$m = m_1 + m_2 + m_3$	2,455
Производительность	П1	$\lambda_1' = (1 - \pi_1) \times \lambda_1$	0,22005
-	П2	$\lambda_2' = (1 - \pi_2) \times \lambda_2$	0,095445
	П3	$\lambda_3' = (1 - \pi_3) \times \lambda_3$	0,144095
	Сумма	$\lambda = \lambda_1' + \lambda_2' + \lambda_3'$	0,45959
Коэффициент	П1	$\eta_1 = 1 - \rho_1$	0,0569
простоя системы	П2	$\eta_2 = 1 - \rho_2$	0,6363
	П3	$\eta_3 = 1 - \rho_3$	0,4117
	Сумма	$\eta = 1 - \rho$	0,3683
Время ожидания	П1	$w_1 = l_1/\lambda_1'$	2,5444
1	П2	$w_2 = l_2/\lambda_2'$	0
	П3	$w_3 = l_3/\lambda_3'$	0
	Сумма	$w = l/\lambda'$	1,2183
Время пребывания	П1	$u_1 = w_1 + b$	17,5444
	П2	$u_2 = w_2 + b$	15
	П3	$u_3 = w_3 + b$	15
	Сумма	u = w + b	16,2183

Система 2

Описание исследуемой системы

- Система содержит два обслуживающих прибора.
- Поток поступающих в систему заявок является однородным (стационарным) и образует простейший поток (поток Пуассона);

- В системе функционируют два прибора: один прибор (E₂) имеет время обслуживания, распределённое по закону Эрланга 2-го порядка, второй прибор имеет экспоненциальное распределение времени обслуживания;
- Перед первым прибором очередь отсутствует (емкость накопителя 0), перед вторым прибором один слот в накопителе;
- Дисциплина обслуживания «первым пришёл первым обслужен» (FCFS, first come first served);
- Дисциплина буферизации с потерями: если заявка приходит к прибору, перед которым нет свободного места в очереди или сам прибор занят, заявка теряется (отбрасывается без обслуживания);
- Система реализует распределённое обслуживание с вероятностным выбором прибора и ограниченными накопителями.
- Прибор 1, среднее время обслуживания в котором равно μ и распределено по закону Эрланга 2 порядка, представим в виде двух последовательных приборов с временем обслуживания 2μ . Это обеспечивает то, что среднее время обслуживания прибора остаётся равным $\frac{1}{\mu}$;
- Граф переходов составим с учетом того, что в прибор 1.1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на приборе 1.2

Рисунок 3 – Схематичное представление Системы 2.

Характеристики системы:

- Интенсивность потока $\lambda = 0.3 \ 1/c$.
- Интенсивность обслуживания прибора: $\mu = \frac{1}{15} 1/c$.

Классификация приборов по Кендаллу:

- 1. П1 CMO типа **M/E₂/1/0**,
- 2. П2 СМО типа **M/M/1/1**.

Таблица 7 – Перечень состояний Системы 2

№ состояния	Обозначение	Описание
S0	0/0/0/0	В системе нет заявок.
C1	1/0/0/0	В системе одна заявка, обрабатываемая на первом этапе
S1	1/0/0/0	П1.
62	0/1/0/0	В системе одна заявка, обрабатываемая на втором этапе
S2		П1.
S3	0/0/1/0	В системе одна заявка, обрабатываемая на П2.
C.A	1/0/1/0	В системе две заявки, обрабатываемые на первом этапе
S4		П1 и П2.

S5	0/1/1/0	В системе две заявки, обрабатываемые на втором этапе П1 и П2.
S6	0/0/1/1	В системе две заявки, обрабатываемая на П2 и в очереди на П2.
S7	1/0/1/1	В системе три заявки, обрабатываемые на первом этапе П1, П2 и в очереди на П2.
S8	0/1/1/1	В системе три заявки, обрабатываемые на втором этапе П1, П2 и в очереди на П2.

Рисунок 4 – Граф переходов Системы 2.

Таблица 8 – Матрица интенсивности переходов Системы 2.

C1	SO	S1	S2	S3	S4	S5	S6	S7	S8
S0	1	0,3		0,3					
S1		2	0,1333		0,3				
S2	0,0667		3			0,3			
S3	0,0667			4	0,3		0,3		
S4		0,0667			5	0,1333		0,3	
S5			0,0667	0,0667		6			0,3
S6				0,0667			7	0,3	
S7					0,0667			8	0,1333
S8						0,0667	0,0667		9

Таблица 9 – Значения стационарных вероятностей в точках Системы 2.

p_0	p_1	p_2	p_3	p_4
0,0049	0,0067	0,0272	0,0172	0,0215
p_5	p_6	p_7	p_8	
0,1361	0,0141	0,0534	0,7188	

$$\lambda_1 = 0.5\lambda; \ \lambda_2 = 0.5\lambda$$

Таблица 10 – Характеристики Системы 2.

Хар-ка	Прибор	Расчетная формула	Значение
Нагрузка	П1	$y_1 = \lambda_1 \times b$	7,5
	П2	$y_2 = \lambda_2 \times b$	7,5
	Сумма	$Y = y_1 + y_2 + y_3$	15
Загрузка	П1	$\rho_1 = 1 - (p_0 + p_3 + p_6)$	0,9637
	П2	$\rho_2 = 1 - (p_0 + p_1 + p_2)$	0,9611
	Сумма	$\rho = (\rho_1 + \rho_2)/2$	0,9624
Вероятность потери	П1	$\pi_1 = \rho_1$	0,9637
	П2	$\pi_2 = p_6 + p_7 + p_8$	0,7863
	Сумма	$\pi = 0.5 \times \pi_1 + 0.5 \times \pi_2$	0,875
Длина очереди	П1	$l_1 = 0$	0
_	П2	$l_2 = p_6 + p_7 + p_8$	0,7863
	Сумма	$l = l_1 + l_2$	0,7863
Число заявок в	П1	$m_1 = l_1 + \rho_1$	0,9637
системе	П2	$m_2 = l_2 + \rho_2$	1,7474
	Сумма	$m = m_1 + m_2$	2,7111
Производительность	П1	$\lambda_1' = (1 - \pi_1) \times \lambda_1$	0,01815
	П2	$\lambda_2' = (1 - \pi_2) \times \lambda_2$	0,10685
	Сумма	$\lambda = \lambda_1' + \lambda_2'$	0,125
Коэффициент	П1	$\eta_1 = 1 - \rho_1$	0,0363
простоя системы	П2	$\eta_2 = 1 - \rho_2$	0,0389
	Сумма	$\eta = 1 - \rho$	0,0376
Время ожидания	П1	$w_1 = l_1/\lambda_1'$	0
	П2	$w_2 = l_2/\lambda_2'$	7,3589
	Сумма	$w = l/\lambda'$	6,2904
Время пребывания	П1	$u_1 = w_1 + b$	15
	П2	$u_2 = w_2 + b$	22
	Сумма	u = w + b	21,2904

Сравнение характеристик

Таблица 11 – Сравнение характеристик Системы 1 и 2.

Хар-ка	Система 1	Система 2	Разница, %
Нагрузка	15	15	0
Загрузка	0,6317	0,9624	167,26
Вероятность потери	0,5404	0,875	387,74
Длина очереди	0,5599	0,7863	1034,63
Число заявок в		2,7111	
системе	2,4550	2,/111	135,85
Производительность	0,4596	0,125	-84,77
Коэффициент		0,0376	
простоя системы	0,3683	0,0370	-94,12
Время ожидания	1,2183	6,2904	7344,26
Время пребывания	16,2183	21,2904	41,14

Время пребывания больше в Системе 2. В Системе 1 поток разделяется между тремя приборами (вероятности 0.5 / 0.15 / 0.35), следовательно, часть заявок обслуживается

сразу, без ожидания. В Системе 2 поток идёт только на два прибора, причём один из них медленнее из-за двухэтапного обслуживания.

Вывод

В ходе выполнения учебно-исследовательской работы были рассмотрены и проанализированы две системы массового обслуживания с различной структурой. Для каждой системы был определён состав состояний, построен граф переходов и сформирована матрица интенсивностей переходов. На основе матриц были рассчитаны стационарные вероятности состояний, что позволило определить основные эксплуатационные характеристики систем: нагрузку, загрузку, вероятность потери, среднюю длину очереди, среднее число заявок в системе, производительность, коэффициент простоя, а также средние времена ожидания и пребывания заявок.