독립표본 검정

			Levene의 등분산 검정		평균의 동일성에 대한 t-검정						
						XI		차이의 959	차이의 95% 신뢰구간		
			F	유의확률	t	자유도	유의확률 (양폭)	평균차	차이의 표준오차	하한	상한
الماراء	분배공정	등분산이 가정됨	.693	.406	-1.678	393	.094	13951	.08315	30297	.02396
집산 기		등분산이 가정되지 않음			-1.679	362.866	.094	13951	.08309	30292	.02390
장산 2 /	절차공정	등분산이 가정됨	2.118	.146	1.273	393	.204	.10339	.08119	05623	.26300
ACT 2 .		등분산이 가정되지 않음			1.260	347.235	.208	.10339	.08204	05796	.26474
A	상호작용	등분산이 가정됨	.002	.967	2.391	393	.017	.18496	.07736	.03287	.33706
/ 1		등분산이 가정되지 않음			2.399	366.449	.017	.18496	.07710	.03335	.33658
집관3'											

우선 어떤 자료를 검정했더니 위와 같이 독립표본 검정 결과가 나왔다고 가정할께요. 이때 Levene의 등분산 검정 값을 확인해야 하는데요. "F값과 유의확률"을 봐야 합니다.

Levene의 등분산 검정은 등분산 가정결과를 파악할 때 사용하는데요.
Levene의 F검정은 분산의 동일성을 검정하는 것으로
독립집단, 즉 각 집단의 분산이 동일한지를 검사해주는 것입니다.

먼저 독립표본 검정에서 "등분산이 가정됨"의 F값은 0.693이고 F값의 유의확률은 0.406입니다.

이때 등분산 가정여부에서 중요한 점이 귀무가설인데요.

귀무가설 즉 H0은 "집단의 분산이 같다"이고 연구가설 즉 H1은 "집단의 분산이 다르다" 입니다. 그리고 F값의 유의확률이 0.406으로

유의확률 기준인 0.05보다 큽니다.

"등분산이 가정됨"을 기준으로 분배공정 가설을 검토하면 됩니다.

즉 유의수준 5%보다 큰 값에 있으므로 연구가설이 기각되고 귀무가설을 따르게 됩니다. 즉, 귀무가설에 따르면 등분산이 같으므로 결과표에서

그렇다면 분산의 동질성을 검정하는 이유는 무엇일까요?

그 이유는 통계 분석대상이 같은 모집단에서 추출되었는지를 간접적으로 확인할 수 있기 때 문입니다.

예를들어, 남녀 고등학생들이 학교 생활에 만족하는 정도의 차이를 분석하는 경우,

남자 학생들의 학교생활 만족도와 여자 학생들의 학교생활 만족도에 대한 분산의 동질성을 검정하여, 두 집단의 분산이 동일하다면 동일한 모집단에서 표본이 추출되었다고 추정할 수 있습니다.

반면, 남자 고등학교에서 남학생의 표본을 채집하고, 여자 고등학교에서 여학생의 표본을 추출했다면, 남학생과 여학생이 다니는 학교가 서로 다른 학교이므로 두 집단간의 만족도의 분산이 다를것이고, 이를 Leven's Test를 통해 분석하여 남학생의 표본을 추출한 모집단과 여학생의 표본을 추출한 모집단이 다르다고 추정할 수 있습니다.