ML HW2

107061218 謝霖泳

1. The difference between Maximum Likelihood and Bayesian Linear Regression

definition of w

The main difference between maximum likelihood and Bayesian linear regression is the w they use. Refer to equation 3.15 on the textbook, w for maximum likelihood is given as

$$w_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

And the w for Bayesian linear regression is given in equation 3.53

$$m_N = eta S_N \Phi^T \mathbf{t}$$

where S_N is given in equation 3.54

$$S_N = (\alpha I + \beta \Phi_T \Phi)^{-1}$$

Therefore, majority of codes in BLR() and MLR() are exactly the same, except for the calculation of \mathbf{w} . Accroding to the above-mentioned definitions, we can see corresponding calculation of \mathbf{w} as listed.

regularization term

The second difference of these two methods is the use of regularization term, i.e. α and β which are used in BLR() but not used in MLR().

2. The impact of different choices of O₁ and O₂

I tune the value of (O_1, O_2) from deault value (5, 5) into (2, 2) and (8, 8) and (20, 20). The results are shown below.

01	O2	MSE of BLR	MSE of MLR
2	2	0.00757	0.00700
5	5	0.00743	0.00877
8	8	0.00762	0.09691
20	20	0.00832	5.03062 * 10 ³⁷

I find that no matter how O_1 and O_2 change, MSE of BLR changes very little. However, MSE of MLR() may surge drastically.

The key leading to this difference is the use of regularization term, i.e. α and β . MLR() doesn't involve these terms, so it tends to overfit. Therefore, when O_1 and O_2 change, the error may increase a lot. However, BLR() method involves regularization term, so it lowers the effect of O_1 and O_2 .

As for the best choice for O_1 and O_2 , I think there isn't a specific answer. I use for-loop to iterate over some possible (O_1, O_2) combinations and found that optimal (O_1, O_2) for each method doesn't happen concurrently. Take the above table for example. When we lower (O_1, O_2) from default value (5, 5) to (2, 2), we can find MSE of BLR() slightly increases, but MSE of MLR() drops slightly. However, when we increase (O_1, O_2) to (8, 8), both MSE increase.

3. My result

01	O2	MSE of BLR	MSE of MLR
5	5	0.00743	0.00877

The above result is estimated under $(\alpha, \beta) = (0.5, 0.5)$.