Predicción de cáncer de pulmón

Computación Evolutiva

Lucía de Ancos, Rodrigo Rivas, Camino Rodríguez, Paula Samper, Lucía Yan

Contenidos

OO Descripción del problema

Predicción CancerPulmon

O1 Solución 1
Cromosoma base 3

O2 Solución 2
Características + Pesos

O3 Solución 3 Árboles de decisión

O4 Conclusiones
Resultados

Descripción del problema

Objetivo:

Predicción del CancerPulmon

Dataset:

- 16 columnas
- 284 instancias

Nuestra propuesta:

3 Métodos Evolutivos

Preprocesamiento

Convertir a binario:

Sexo: M:0, F:1

Edad: < ó > mediana

Dividir en Train (80%) y Test (20%)

• SMOTE: Balanceo de datos

POBLACIÓN INICIAL

Aleatoria

	Sexo	Edad	Fumador	DedosAmarillos	Ansiedad	Hipertension	EnfermedadCronica	Fatiga	Alergia	Silbidos	ConsumidorAlcohol	Tos	DificultadRespirar	DificultadTragar	DolorPecho	CancerPulmon
0	0	1	0	1	1	0	0	1	0	1	1	1	1	1	1	1
1	0	1	1	0	0	0	1	1	1	0	0	0	1	1	1	1
2	1	0	0	0	0	1	0	1	0	1	0	1	1	0	1	0
3	0	1	1	1	1	0	0	0	0	0	1	0	0	1	1	0
4	1	1	0	1	0	0	0	0	0	1	0	1	1	0	0	0
_		-				-					_					
279	1	0	0	1	1	1	0	0	1	1	0	1	0	1	0	1
280	1	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0
281	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0
282	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0
283	0	0	0	1	1	0	0	1	0	1	1	1	1	1	1	1
204 10	ws x 16	Leohum	ms.													

FITNESS

$$fitness = \alpha \times cobertura + \beta \times pureza$$

•
$$\alpha = 1 - \frac{i}{n^o iteraciones}; \quad \beta = 1 - \alpha$$

$$ullet cobertura = rac{filas_cubiertas}{filas_totales}$$

$$egin{aligned} ullet & pureza = 1 - gini \ & = 1 - entropía \end{aligned}$$

Recombinación uniforme

MUTACIÓN

random_prob > mutation_rate

$$mutation_rate = 1 - rac{i}{n^oiteraciones}$$

Antes

Después

n° iteraciones = 500

init_size	accuracy
300	92.98%
500	91.22%
1000	91.22%

O2 Solución 2

Pesos

Encontrar un subconjunto óptimo de carácterísticas y sus correspondientes pesos

POBLACIÓN INICIAL

Conjunto de pesos Asignan importancia

NORMALIZACIÓN

Correcta representación de la influencia de cada característica

Comparaciones justas

FUNCIÓN DE FITNESS

Acuracy, con todo el dataframe

METODOS DE SELECCION

Jerárquico

CRUCES

MUTACIONES

Exploración y Explotación

¿Tasa de mutación? ¿Frecuencia de mutación?

n° iteraciones = 300

init_size	accuracy
300	84,21%
500	86,96%
1000	84,21%

O3 Solución 3

Árboles de Decisión

ÁRBOLES DE DECISIÓN

ALGORITMO

- Población inicial
 - La profundidad máxima de los árboles es el número de atributos.
- Evaluación (función de fitness)

 Accuracy del árbol sobre los datos de train.
- Selección y crossover, o mutación
 O bien los individuos se reproducen, o bien se
 muta un nodo de un individuo de la población.
- Evaluación (función de fitness)

 Evaluación de los nuevos individuos.
- Selección del mejor individuo

 Accuracy del los árboles sobre los datos de validación.

SELECCIÓN

Selección por rango

Probabilidad de ser elegido para la reproducción

por su fitness.

Elitismo

Se conserva el mejor 20% de la población

CROSSOVER

MUTACIÓN

Mutación terminal simple

Mutación funcional simple

SELECCIÓN DEL MEJOR INDIVIDUO

Selección del mejor individuo de la población calculando el accuracy de cada individuo en el **conjunto de validación**.

RESULTADOS

O4 Conclusiones

Resultados

Conclusiones

Solución	accuracy
1	92.98%
2	86.96%
3	91,23%

- Las tres soluciones consiguen el objetivo, clasifican con precisión alta
- Trade-off precisión y velocidad convergencia
- Ayuda a la enfermedad de cáncer pulmonar.

