COMPUTER PROGRAM FOR PERFORMANCE AND SIZING ANALYSIS OF COMPACT COUNTER-FLOW PLATE-FIN HEAT EXCHANGERS

# **DAVID W. TAYLOR NAVAL SHIP** RESEARCH AND DEVELOPMENT CENTER



Bethesda, Maryland 20064

ADA 1 29856

COMPUTER PROGRAM FOR PERFORMANCE AND SIZING ANALYSIS OF COMPACT COUNTER-FLOW PLATE-FIN **HEAT EXCHANGERS** 

by

Jon C. Ness

SOFTWARE DOCUMENTATION RELEASE FOR DOMESTIC (U.S.) USE ONLY



PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT

December 1982

PAS 82-41

076 83 06 21

### MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                   | READ INSTRUCTIONS BEFORE COMPLETING FORM                                            |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                             | O. 3. RECIPIENT'S CATALOG NUMBER                                                    |  |  |  |
| PAS 82-41 DOD/DF-83/005a $AD-A129$                                                                                                                                                                                                                                                                                                                                                          | X56                                                                                 |  |  |  |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                     | 5. TYPE OF REPORT & PERIOD COVERED                                                  |  |  |  |
| COMPUTER PROGRAM FOR PERFORMANCE AND SIZING ANALYSIS OF COMPACT COUNTER-FLOW PLATE-FIN                                                                                                                                                                                                                                                                                                      | RESEARCH AND DEVELOPMENT                                                            |  |  |  |
| HEAT EXCHANGERS 6. PERFORMING ORG. REPORT N                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |  |  |  |
| 7. AUTHOR(a)                                                                                                                                                                                                                                                                                                                                                                                | 8. CONTRACT OR GRANT NUMBER(s)                                                      |  |  |  |
| Jon C. Ness                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |  |  |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                 | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                      |  |  |  |
| David Taylor Naval Ship R&D Center                                                                                                                                                                                                                                                                                                                                                          | Element 62543N                                                                      |  |  |  |
| Annapolis, MD 21402                                                                                                                                                                                                                                                                                                                                                                         | Task Area 50340 SL039                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                             | Work Unit 1-2720-150                                                                |  |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                     | 12. REPORT DATE                                                                     |  |  |  |
| David Taylor Naval Ship R&D Center                                                                                                                                                                                                                                                                                                                                                          | December 1982                                                                       |  |  |  |
| Bethesda, MD 20084                                                                                                                                                                                                                                                                                                                                                                          | 19. NUMBER OF PAGES                                                                 |  |  |  |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)                                                                                                                                                                                                                                                                                                                  |                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                             | UNCLASSIFIED                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                             | 184. DECLASSIFICATION/DOWNGRADING                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                             | SCHEDULE                                                                            |  |  |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                 | <del></del>                                                                         |  |  |  |
| Releaseable for Domestic (U.S.)  Sales Restricted to U.S.  17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, 11 different to                                                                                                                                                                                                                                                 | Sales Only                                                                          |  |  |  |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |  |  |  |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number                                                                                                                                                                                                                                                                                                           | r)                                                                                  |  |  |  |
| Heat Exchangers Performance                                                                                                                                                                                                                                                                                                                                                                 | Size                                                                                |  |  |  |
| Counter-Flow Type Pressure Drops                                                                                                                                                                                                                                                                                                                                                            | Design                                                                              |  |  |  |
| Plate-Fin Type Effectiveness                                                                                                                                                                                                                                                                                                                                                                | Core                                                                                |  |  |  |
| Computer Program Weight                                                                                                                                                                                                                                                                                                                                                                     | Headers                                                                             |  |  |  |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number.  This report presents a computer program for of counter-flow, compact, plate-fin heat exchange based on the effectiveness-NTU relationship analy design begins with assumptions for counter-flow larea and core matrix fin geometry. Using these contexts are a second contexts are a second core matrix. | preliminary design analysis<br>rs. The program method is<br>sis. The heat exchanger |  |  |  |

selected air-side and gas-side fin types; the pressures, temperatures, and mass flows of the air and gas streams; fuel-air ratio; as well as, the maximum air-side inlet header velocity. Heat exchanger designs may be generated based on four different fin types (i.e., plain, louvered, strip/offset or wavy fins) over a varied number of core dimensions. Program output includes inlet and exit conditions on air and gas sides, effectiveness, fin characteristics, core length and volume, total frontal flow area, pressure drops, overall enclosure height, number of transfer units, overall weight, and air-side header diameters and velocities. This report presents the analysis method, description of input and output with sample cases, and a program listing.



# TABLE OF CONTENTS

|                                                     | Page |
|-----------------------------------------------------|------|
| LIST OF FIGURES                                     | 11   |
| SYMBOLS                                             | 111  |
| SUBSCRIPT                                           | vi   |
| LIST OF ABBREVIATIONS                               | vii  |
| ABSTRACT                                            | 1    |
| ADMINISTRATIVE INFORMATION                          | 1    |
| INTRODUCTION                                        | 2    |
| METHOD OF ANALYSIS                                  | 3    |
| HEAT TRANSFER AND FREE-FLOW AREA                    | 7    |
| FLUID PROPERTIES                                    | 8    |
| REYNOLDS NUMBER                                     | 8    |
| STANTON NUMBER, COLBURN FACTOR, AND FRICTION FACTOR | 8    |
| HEAT TRANSFER COEFFICIENT                           | 9    |
| FIN EFFECTIVENESS                                   | 9    |
| SURFACE EFFECTIVENESS                               | 10   |
| OVERALL COEFFICIENT OF HEAT TRANSFER                | 10   |
| NTU AND EXCHANGER EFFECTIVENESS                     | 10   |
| PRESSURE DROP                                       | 11   |
| HEADER DIAMETER AND VELOCITY                        | 14   |
| WEIGHT ESTIMATION                                   | 15   |
| PROGRAM DESCRIPTION                                 | 16   |
| INPUTS                                              | 18   |
| SAMPLE CASES                                        | 19   |
| ERROR MESSAGES                                      | 22   |
| ACKNOWLEDGMENT                                      | 22   |
| REFERENCES                                          | 23   |
| APPENDIX A - FORTRAN LISTING OF COMPUTER PROGRAM    | 24   |
| APPENDIX B - MAIN PROGRAM VARIABLES                 | 39   |
| APPENDIX C - OUTPUT FOR SAMPLE CASES                | 43   |

## LIST OF FIGURES

| 1 | - | Simple (Unrecuperated) and Recuperated Gas-Turbine Cycles | 5  |
|---|---|-----------------------------------------------------------|----|
| 2 | - | Heat Exchanger Arrangement Used For Pressure and Weight   | 12 |
| 3 | - | Sample Cases For Namelist INDATA                          | 20 |

#### **SYMBOLS**

- A Exchanger total heat transfer area on one side, ft<sup>2</sup>
- A<sub>C</sub> Exchanger minimum free-flow area, ft<sup>2</sup>
- $A_{fr}$  Exchanger total frontal area,  $ft^2$
- a Plate thickness, in
- b Plate spacing, in
- C Flow stream capacity rate, BTU/(hr °F)
- C<sub>c</sub> Jet contraction-area ratio, dimensionless
- C<sub>r</sub> Capacity rate ratio
- $c_{\rm p}$  Specific heat at constant pressure, BTU/(1 $b_{\rm m}$  °F)
- D Air-side header diameter, ft
- f Mean friction factor, (Equation 32)
- far Fuel-air ratio
- G Exchanger flow-stream mass velocity,  $lb_m/(hr ft^2)$
- $g_c$  Proportionality factor in Newton's second law,  $lb_m$  ft/( $lb_f$  sec<sup>2</sup>)
- Unit conductance for thermal-convection heat transfer,
   BTU/(hr ft<sup>2</sup> °F)
- j Colburn factor =  $N_{ST} N_{PR}^{2/3}$
- Kb\* Bend loss coefficient
- $K_{C}$  Contraction loss coefficient for flow at heat exchanger entrance, dimensionless
- $\mathbf{K_d}$  Momentum flux correction factor, dimensionless
- Ke Expansion loss coefficient for flow at heat exchanger exit, dimensionless
- $K_1$  Constant used in Equation 14
- K<sub>2</sub> Constant used in Equation 15
- k Unit thermal conductivity, BTU/(hr ft<sup>2</sup> °F/ft)

L - Heat exchanger counter-flow length, ft

L<sub>g</sub> - Gas-side header length, ft

L<sub>n</sub> - Heat exchanger non-flow length, ft

2 - Fin length from root to center, ft

M - Molecular weight

m - A fin effectiveness parameter  $(2h/k\delta)^{1/2}$ 

N<sub>PR</sub> - PrandIt number, dimensionless

N<sub>R</sub> - Reynolds number, dimensionless

 $N_{ST}$  - Stanton number, dimensionless

NTU - Number of transfer units

P - Power

P<sub>f</sub> - Fractional Power

p - Pressure,  $1b_f/in^2$ 

q - Dynamic velocity,  $1b_f/ft^2$ 

 $R_{ii}$  - Universal gas constant, ft  $1b_f/(1b mol)(^{\circ}R)$ 

 $r_h$  - Hydraulic radius =  $A_cL/A$ 

T - Temperature, °F or °R

U - Unit overall thermal conductance, BTU/(hr ft<sup>2</sup> °F)

¥ - Volume, ft<sup>3</sup>

V - Velocity, ft/sec

v - Specific volume, ft<sup>3</sup>/lb<sub>m</sub>

Wa - Weight of air-side fins and plates, 1bf

WENCL - Weight of enclosure, 1bf

 $W_q$  - Weight of gas-side fins and plates,  $1b_f$ 

W<sub>HD</sub> - Weight of headers, 1b<sub>f</sub>

WT - Total weight of heat exchanger, 1bf

- w Mass flow rate, 1b<sub>m</sub>/sec
- Ratio of total transfer area on one side of the exchanger to total volume of the exchanger,  $ft^2/ft^3$
- $^{\beta}$  Ratio of total heat transfer area on one side of a plate-fin heat exchanger to the volume between the plates on that side,  $ft^2/ft^3$
- $\Delta$  Denotes a difference between values of the same parameter
- Fin thickness, in
- ε Heat exchanger effectiveness, dimensionless
- n<sub>f</sub> Fin effectiveness, dimensionless
- n<sub>o</sub> Total surface effectiveness, dimensionless
- Ratio of free flow area to frontal area
- νiscosity coefficient, lb<sub>m</sub>/(hr ft)
- $\pi$  Constant = 3.1416
- $\rho$  Density,  $1b_m/ft^3$
- $\rho_{\rm C}$  Density of core,  $1b_{\rm m}/{\rm ft}^3$
- $\rho_{\rm m}$  Density of material,  $1b_{\rm m}/{\rm ft}^3$
- $\rho_n$  Density of material per unit area,  $1b_m/ft^2$
- Ψ<sub>F</sub> Fin weight factor
- $\Psi_D$  Plate weight factor

#### **SUBSCRIPT**

- a air-side
- av average
- b bend
- c core
- g gas-side
- i inlet
- m mean value
- max maximum value
- min minimum value
- o outlet
- t total
- 1 entrance condition
- 2 exit condition
- 3 compressor exit condition
- 4 turbine inlet condition
- 5 turbine outlet condition
- 6 recuperator outlet condition

#### LIST OF ABBREVIATIONS

BTU - British thermal unit

CDC - Control Data Corporation

°F - Degrees Fahrenheit

ft - Feet

hr - Hour

in - Inch

1bf - Pounds force

1b<sub>m</sub> - Pounds mass

NTU - Number of Transfer Units

psia - Pound force per square inch absolute

°R - Degrees Rankine

sec - Second

#### ABSTRACT

This report presents a computer program for preliminary counter-flow, compact, design analysis of plate-fin exchangers. The program method is based on the effectiveness-NTU relationship analysis. The heat exchanger design begins with assumptions for counter-flow length, total frontal flow area and core matrix fin geometry. Using these constraints, the program proceeds to calculate the resulting effectiveness and pressure drop based on specified air-side and gas-side conditions. design requirements include selected air-side and gas-side fin types; the pressures, temperatures, and mass flows of the air and gas streams; fuel-air ratio; as well as, the maximum air-side inlet header velocity. Heat exchanger designs may be generated based on four different fin types (i.e., plain, louvered, strip/offset or wavy fins) over a varied number of core dimensions. Program output includes inlet and exit conditions on air and gas sides, effectiveness, fin characteristics, core length and volume, total frontal flow area, pressure drops, overall enclosure height, number of transfer units, overall weight, and air-side header diameters and velocities. This report presents the analysis method, description of input and output with sample cases, and a program listing.

#### **ADMINISTRATIVE INFORMATION**

This documentation was accomplished under Work Unit 1-2720-150, Element 62543N, Task Area S 0340 SL039, Task 23556. The project is a part of the Propulsion Technology portion of the Ships, Submarines and Boats Biack Program. The work was done in the Engines Branch of the Power Systems Division, Propulsion and Auxiliary Systems Department, David Taylor Naval Ship Research and Development Center. Program manager at the Naval Sea Systems Command was Mr. D. A. Groghan (SEA 05R13).

#### INTRODUCTION

Preliminary design analysis of compact heat exchangers for gas turbine engine applications involves repetitious calculations varying design and performance over a range of conditions. In order to determine "an optimum" design, thousands of these calculations must be completed. Design accuracy and details which are necessary in manufacturing a heat exchanger are not necessary for this type of preliminary design analysis. General and approximate procedures are sufficient to yield the desired design and performance characteristics.

This report presents a computer program for preliminary design analysis of counterflow, compact, plate-fin heat exchangers. The computer program is based on the effectiveness-NTU relationship, [1]. The heat exchanger design begins with assumptions for counter-flow length, total frontal flow area and core matrix fin geometry. Using these contraints, the program proceeds to calculate the resulting effectiveness and pressure drop based on specified air-side and gas-side inlet conditions. Input requirements are air-side and gas-side fin types; the pressures, temperatures, and mass flows, of the air and gas streams; fuel-air ratio; as well as, the air-side inlet header velocity. The program gives the designer the capability to select from four different fin-types (i.e., plain, louvered, strip/offset, and wavy) with a variety of surfaces (i.e., fins/in and fin heights) for each fin type. All the necessary data and characterisitics for the fin types are located in reference 1. The input data includes assumed values of core counter-flow length and frontal area to be used in the computations described below. Output consists of all input requirements, as well as, calculated parameters including core volume, pressure drops, overall enclosure height, air and gas exit temperatures and pressures, number of transfer units, heat exchanger effectiveness, overall weight, and air-side header exit diameter and velocity.

A complete description of input and output variables, a FORTRAN IV program listing, and discussion of the analysis method are included in the report. Also, included are examples for using the program, and illustrations of output.

#### METHOD OF ANALYSIS

In sizing heat exchangers there are two parameters which affect size and shape. These parameters are effectiveness  $\varepsilon$ , and pressure drop  $\Delta p$ .

The objective of using a heat exchanger as a regenerator in gas turbines is to raise the compressor exit temperature using the waste heat from exhaust gases; therefore, increasing thermal efficiency. Raising the air temperature in a regenerator to that of the entering gas temperature would constitute a perfect heat exchanger. How close the air-side exit temperature reaches the entering gasside temperature defines effectiveness. In order to define heat exchanger effectiveness, a capacity rate is used. The capacity rate is the mass flow rate times the heat capacity. For regeneration in gas turbine engine applications, the capacity rate is slightly lower on the air-side then on the gas-side due to compressor bleeds lowering air-side mass flow rate, combustion products increasing gas-side mass flow rate, and increasing heat capacity as temperature rises. Effectiveness is defined as [1],

$$\varepsilon = \frac{T_{a_0} - T_{a_i}}{T_{g_i} - T_{a_i}}.$$
 (1a)

Alternatively,

$$\varepsilon = (\frac{C_g}{C_a}) \frac{T_{g_i} - T_{g_0}}{T_{g_i} - T_{a_i}}$$
 (1b)

 $T_{a_0}$  = air-side exit temperature  $T_{a_1}$  = air-side entering temperature = gas-side exit temperature  $T_{g_1}^{-1}$  = gas-side entering temperature

C = capacity rate.

Heat transfer can be related to a nondimensional parameter, known as the number of transfer units (NTU), in terms of [1],

$$NTU = \frac{A U_{av}}{C_{min}}$$
 (2)

where.

A = heat transfer area,  $ft^2$ 

 $U_{av}$  = average overall heat transfer coefficient, BTU/(hr ft<sup>2</sup> °F)

 $C_{min}$  = minimum capacity rate, BTU/(hr °F)

For a counterflow heat exchanger, which this computer program is based upon, the relationship of effectiveness to NTU is [1],

$$\varepsilon = \frac{1 - e}{1 - \frac{C_{\min}/C_{\max}}{C_{\max}}} \cdot \frac{-\text{NTU} \left(1 - \frac{C_{\min}/C_{\max}}{C_{\max}}\right)}{1 - \frac{C_{\min}}{C_{\max}}}.$$
 (3)

Equations for other configurations (i.e., crossflow, parallel flow, etc.) can be found in reference 1.

Pressure drop ( $\Delta p$ ) in a heat exchanger can adversely affect the performance of the heat exchanger and the specific power of the gas turbine. Pressure drop can be made nondimensional by dividing the change in pressure by the absolute pressure before the pressure drop occurs. This nondimensional pressure drop can be related to a fractional pressure drop, which is directly related to a power loss in the gas turbine, regardless of whether the  $\Delta p$  occurs on the air-side or gas-side, [2]. The above mentioned statement may be made clearer with the aid of figure 1 and the following derivations: At a given turbine inlet temperature, power is proportional to the pressure ratio across the turbine ( $p_4/p_5$ ). Assume that an overall pressure ratio ( $p_3/p_6$ ) can be related to  $p_4/p_5$  by considering the pressure losses across the heat exchanger and burner ( $\Delta p_a$  = air-side drop,  $\Delta p_g$  = gas-side drop, and  $\Delta p_b$  = burner drop); then the recuperated turbine pressure ratio can be written in terms of the overall pressure ratio.

$$\frac{p_4}{p_5} = \frac{p_3 - \Delta p_b - \Delta p_a}{p_6 + \Delta p_g} = \frac{p_3}{p_6} \frac{\left(1 - \frac{\Delta p_b}{p_3} - \frac{\Delta p_a}{p_3}\right)}{\left(1 + \frac{\Delta p_g}{p_6}\right)}$$
(4)

The fractional power loss due to recuperation can be expressed in the following manner for small pressure losses,

$$\frac{\Delta P_f}{P_{old}} = \frac{P_{new} - P_{old}}{P_{old}} = \frac{P_{new}}{P_{old}} - 1$$
 (5)

where,

$$P_{\text{new}} = \frac{p_3}{p_6} \frac{\left(1 - \frac{\Delta p_b}{p_3} - \frac{\Delta p_a}{p_3}\right)}{\left(1 + \frac{\Delta p_g}{p_6}\right)}$$
(6a)

$$P_{\text{old}} = \frac{P_3}{P_6} \left( 1 - \frac{\Delta P_b}{P_3} \right) \text{ (since } \Delta P_a = \Delta P_g = 0).$$
 (6b)



Figure 1 - Simple (Unrecuperated) and Recuperated Gas Turbine Cycles

Substituting in  $P_{\text{new}}$  and  $P_{\text{old}}$ , remembering that the pressure drops are small relative to the absolute pressures, and ignoring second order terms, equation (5) becomes.

$$\frac{\Delta P_f}{P_{old}} = \frac{\left(1 - \frac{\Delta p_b}{p_3} - \frac{\Delta p_a}{p_3}\right)}{\left(1 + \frac{\Delta p_g}{p_6}\right)\left(1 - \frac{\Delta p_b}{p_3}\right)} - 1 \sim -\left(\frac{\Delta p_a}{p_3} + \frac{\Delta p_g}{p_6}\right). \tag{7}$$

Therefore, the fractional power loss due to regeneration is related to the fractional pressure losses across the recuperator by equation (7). Since power losses in the cycle can result from pressure drops in the heat exchanger, it is desirable to keep pressure losses to a minimum. This can be accomplished by choosing fin types that do not create high pressure losses. For example, plain fins instead of strip fins, short flow lengths, or large frontal areas, which may create other problems that are not dealt with in this manual.

As stated earlier, the heat exchanger design begins with assumptions for counter-flow length, total frontal flow area and core matrix fin geometry. Using these constraints, the program proceeds to calculate the resulting effectiveness and pressure drop based on specified air-side and gas-side inlet conditions. The basic procedure is summarized below:

- (1) GIVEN: Mass flow rates, inlet pressure, and inlet temperatures on both air and gas sides.
- (2) SELECT: Surface characteristics (i.e., fins/in and fin height) both sides
- (3) CALCULATE: Heat transfer and free flow areas on both sides, Equations (9) and (11)
- (4) DETERMINE: Fluid properties on both sides
- (5) CALCULATE: Reynolds number of both sides, Equation (13)
- (6) DETERMINE: Stanton number, Colburn factor and friction factor
- (7) CALCULATE: Heat transfer coefficient on both sides, Equation (17)
- (8) CALCULATE: Fin effectiveness on both sides, Equation (18)
- (9) CALCULATE: Surface effectiveness on both sides, Equation (21)

(10) CALCULATE: Overall coefficient of heat transfer based on the air-side area, Equation (22)

(11) CALCULATE: NTU and exchanger effectiveness, Equations (2) and (25)

(12) CALCULATE: Inlet and exit loss coefficients, Equations (34) and (35); and core pressure drop on both sides, Equations (30), (36), (37), and (38)

This procedure requires the following inputs: air flow rate  $w_a$ , fuel-air ratio far, air-side fin surface, air-side entering pressure  $p_{1a}$ , air-side entering temperature  $T_{1a}$ , gas-side fin surface, gas-side entering pressure  $p_{1g}$ , gas-side entering temperature  $T_{1g}$ , a plate thickness a, and a thermal conductivity k for the fin material and parting plates. By specifying the fin surface, characterisitics accompany the fins, such as, plate spacing b, hydraulic radius  $r_h$ , fin thickness  $\delta$ , ratio of transfer area to volume between plates  $\beta$ , and ratio of fin or extended area to total area are determined. The frontal area  $A_{fr}$ , and the heat exchanger core volume V must be specified for the calculations.

#### HEAT TRANSFER AND FREE-FLOW AREA

The ratio of total transfer area on one side (i.e., air-side, gas-side) of the heat exchanger to the total volume of the exchanger is given by,

$$\alpha_a = \frac{A_a}{V_{total}} = \frac{b_a \beta_a}{b_a + b_g + 2a}$$
, for the air-side, (8a)

and

$$\alpha_g = \frac{A_g}{V_{total}} = \frac{b_g \beta_g}{b_g + b_a + 2a}$$
, for the gas-side. (8b)

Rearrangement of Equation (8a) or (8b) gives the total heat transfer area on one side,

$$A = \alpha V_{total} . (9)$$

The ratio of free-flow area to frontal area is defined as,

$$\sigma = \frac{A_c}{A_{fr}} = \alpha r_h . ag{10}$$

Rearrangement of Equation (10) give the free-flow area on one side as

$$A_{c} = \sigma A_{fr} . \tag{11}$$

#### FLUID PROPERTIES

An initial value for heat exchanger effectiveness is assumed only to estimate an average bulk temperature for both sides to determine the properties. the calculated value for the heat exchanger effectiveness is compared to the initial or previous value for agreement within a specified tolerance. determining the average temperatures, the fluid properties, such as, viscosity u, thermal conductivity k, and specific heat at constant pressure  $c_{\rm p}$  are ascertained which allows a value for Prandtl number to be calculated (i.e.,  $N_{pR} = c_n \mu/k$ ). Curve-fits for the viscosity and thermal conductivity of air or a mixture of air and fuel were generated from tabulated property data published in the open literature [3]. Similar curve-fits for the specific heat of air or a mixture of air and fuel already existed [4]. A value for molecular weight of air or mixture of air and fuel is required to calculate specific volume at the core entrance (i.e.,  $v_1 = R_\mu T/pM$ ). Effects of humidity were not included in the calculations of Specific volumes are calculated using ratios of inlet and fluid properties. outlet conditions, and then a mean specific volume is determined for both air and gas sides.

#### REYNOLDS NUMBER

The heat exchanger flow-stream mass velocity is given by,

$$G = \frac{W}{A_C} , \qquad (12)$$

and expressing the Reynolds number in terms of G yields:

$$N_{R} = \frac{4r_{h} G}{u} . ag{13}$$

STANTON NUMBER, COLBURN FACTOR, AND FRICTION FACTOR

The friction factor f, and the Colburn factor j are determined from the tabulated data of reference 1, corresponding to the selected fin surfaces and the calculated Reynolds number. For low Reynolds numbers that are not tabulated in reference 1, the following equations are used for the f and j factors,

$$f = \frac{K_1}{N_p} \tag{14}$$

and,

$$j = \frac{\kappa_2}{N_R^{0.7}} . \tag{15}$$

The value of  $K_1$  and  $K_2$  have been determined by extending the graphs found in reference 1. The Stanton number is extracted from the Colburn factor which is defined as,

$$j = N_{ST} N_{PR}^{2/3}$$
 (16)

#### HEAT TRANSFER COEFFICIENT

The heat transfer coefficient h is a complex function of fluid properties, flow characteristics, and surface geometries and is defined by,

$$h = N_{ST} G c_p . (17)$$

#### FIN EFFECTIVENESS

The fin effectiveness is defined as,

$$\eta_{f} = \frac{\tanh m\ell}{m\ell} \tag{18}$$

where, m is a fin effectiveness parameter given by,

$$m = \left(\frac{2h}{k \delta}\right)^{1/2} \tag{19}$$

and & is the fin length from root to center,

$$z = \frac{b}{2} .$$
(20)

#### SURFACE EFFECTIVENESS

The total surface effectiveness is defined as,

$$\eta_0 = 1 - \frac{A_{fr}}{A} (1 - \eta_f)$$
 (21)

#### OVERALL COEFFICIENT OF HEAT TRANSFER

Using the surface effectiveness, heat transfer coefficient, the total heat transfer area, and the thermal wall resistance; the overall coefficient of heat transfer is expressed by

$$\frac{1}{U_a} = \frac{1}{\eta_{oa} h_a} + \frac{1}{(A_g/A_a) \eta_{oq} h_g} + \frac{1}{k/(a/12)} . \tag{22}$$

#### NTU AND EXCHANGER EFFECTIVENESS

The flow stream capacity rate mentioned earlier is defined as,

$$C = wc_p (23)$$

A capacity rate is determined for both sides of the heat exchanger, and a capacity rate ratio is calculated for use later in the effectiveness equation i.e., Equation (25),

$$C_r = \frac{C_{min}}{C_{max}} = \frac{C_a}{C_g} < 1 \qquad (24)$$

With the aid of Equation (2) the number of transfer units is calculated, which with the capacity rate from Equation (23) are used to calculate heat exchanger effectiveness. Recalling the counterflow effectiveness equation,

$$\varepsilon = \frac{1 - e^{-NTU(1-C_r)}}{1 - C_r e^{-NTU(1-C_r)}} . \tag{25}$$

Based on the above calculated effectiveness and Equation (1a) and (1b), the air and gas outlet temperatures can be calculated.

#### PRESSURE DROP

The total pressure drop in a compact heat exchanger is due to three major effects: (1) air-side header pressure drop, (2) core pressure drop, and (3) bend pressure drop. Different flow arrangements can result in lower or higher pressure losses. The counter-flow configuration shown in Figure 2 can result in a uniform velocity across the entire heat exchanger core, [5]. To keep the air-side header pressure loss at a minimum and for uniform flow distribution, the dynamic velocity ratio must be kept a constant, [5],

$$\frac{q_0}{q_1} = \frac{4}{r^2} = 0.405 \tag{26}$$

where,

$$q_i = \frac{\rho_i}{2g_c} v_i^2 \tag{27}$$

and,

$$q_0 = \frac{\rho_0}{2g_0} V_0^2$$
 (28)

For the counter-flow configuration, the total pressure drop due to the headers on the air-side is defined as

$$\frac{\Delta p_{t_a}}{q_i} = 1 - \frac{q_0}{q_i} = 0.595 . \tag{29}$$

To be consistent with reference 1, the header pressure drop must be divided by the inlet pressure  $\mathbf{p}_1$ ,

$$\frac{\Delta p_{t_a}}{p_{1_a}} = \frac{.595}{p_{1_a}} \frac{\rho V_i^2}{2g_c^2}$$
 (30)

By substituting the values for  $\mathbf{q}_1$  and  $\mathbf{q}_0$  into equation (26) the air-side velocity relationship can be determined,

$$V_0 = .636 \ V_i \ \left(\frac{\rho_i}{\rho_0}\right)^{1/2}$$
 (31)



Figure 2 - Heat Exchanger Arrangement Used for Pressure Drop and Weight Estimations

The core pressure drop equation for a compact heat exchanger is complicated in that it consists of four components, [1]: (1) entrance effects, (2) flow acceleration, (3) core friction, and (4) exit effects. The flow-stream pressure drop relationship is defined as,

$$\frac{\Delta p_c}{p_1} = \frac{G^2 v_1}{2g_c p_1} \left[ \left( K_c + 1 - \sigma^2 \right) + 2 \left( \frac{v_2}{v_1} - 1 \right) + f \frac{A}{A_c} \frac{v_m}{v_1} - \left( 1 - \sigma^2 - K_e \right) \frac{v_2}{v_1} \right]$$
 (32)

entrance flow core exit effect acceleration friction effect

and for the core friction parameter,

$$\frac{A}{A_c} = \frac{L}{r_h} . {33}$$

Definition of the entrance and exit loss coefficient are from the literature [6]. The entrance loss coefficient,  $K_{\rm C}$  is given by,

$$K_c = \frac{1 - 2C_c + C_c^2(2K_d - 1)}{C_c^2}$$
, (34)

and the exit loss coefficient,  $K_{\mbox{\scriptsize e}}$  is defined as,

$$K_e \sim 1 - 2K_d \sigma + \sigma^2$$
 (35)

Additional pressure loss must be considered since the headers have matrices. To account for the added matrix in each header, the core pressure drop has been increased by the percent of additional mean flow length in the headers. Therefore, equation (32) becomes; for the air-side,

$$\frac{\Delta p_a}{p_1} = Eq (32) \times (\frac{L_{g_1}}{2} + L + \frac{L_{g_0}}{2})/L$$
 (36)

and for the gas-side,

$$\frac{\Delta p_{g}}{p_{1}} = Eq (32) \times \left(1 + \frac{(D_{1} + D_{0})}{2L}\right). \tag{37}$$

To estimate the bend pressure loss, it is assumed that a mitre elbow is similar to the configuration under consideration. The bend pressure loss is calculated for the air-side and gas-side inlet and exit conditions using the following expression,

$$\frac{\Delta p_b}{P_1} = \frac{K_b^*}{P_1} \frac{\overline{\rho}}{2g_c}^2 \qquad (38)$$

The bend loss coefficient,  $K_b^*$  is curve fitted for the mitre elbow [7]. Therefore, the total pressure drop of the heat exchanger for the air side is the summation of equations (30), (36), and (38) and for the gas-side is the summation of equations (37) and (38).

#### HEADER DIAMETER AND VELOCITY

Two important parameters which deserve attention during the design of heat exchangers are the diameters and velocities of the air-side inlet and outlet headers. From equation (31), the velocity relationship has already been determined. An inlet velocity must be assumed to calcuate an outlet velocity. By rearranging the equation of continuity, i.e.,

$$w = \rho AV \tag{39}$$

the area of the header pipe or opening is determined,

$$A = \frac{W}{\rho V} . \tag{40}$$

From Figure 2, it is assumed that the area through which the air enters or exits the manifolds is equal to the area of a circular pipe and is given by,

$$A = \frac{\pi D^2}{A} \qquad . \tag{41}$$

Combining Equations (40) and (41) the diameter of the header is determined,

$$D = \left(\frac{4}{\pi} \frac{w}{\rho V}\right)^{1/2} . \tag{42}$$

The conditions at which density is defined depends on whether the inlet or outlet header is under consideration.

#### WEIGHT ESTIMATION

The heat exchanger weight estimation is comprised of five parts: (1) total weight of air-side fins, (2) total weight of gas side fins, (3) sum of separating plates, (4) enclosure weight, and (5) header weights. The calculation of fin and plate weight is combined in a single equation, but done separately for the air-side and gas-side because these fin surfaces may vary within the regenerator. The basic equation for calculating fin and plate weight on either side is defined as,

$$W_a$$
or =  $A\rho_m \left(A_{ft} \delta \psi_f + a(1 - A_{ft}) \psi_p\right)/24$  (43)

A plate factor  $\psi_p$  and a fin factor  $\psi_f$  in the above equation are determined from the physical dimensions of the air-side or gas-side fins. Basically, the plate factor  $\psi_p$ , relates the plate's non-flow length to the portion of non-flow length not accounted for by fin thickness. The fin factor,  $\psi_f$ , is calculated by dividing the total area by the extended fin area. Using the estimated fin and plate weights,  $W_a$  and  $W_g$  from above, and core volume, V, an average density for the core is determined,

$$\rho_{\mathbf{C}} = \frac{\mathbf{W}_{\mathbf{a}} + \mathbf{W}_{\mathbf{g}}}{\mathbf{V}} \quad . \tag{44}$$

To help understand the estimated weight calculations of the headers and enclosure, figure 2 is used. Note that the headers are assumed to be triangular in shape. The total header volume which contributes weight to the heat exchanger is

determined based on the area of these triangle multiplied by the core's non-flow length (i.e., square root of frontal area). Assuming header density is equal to core density, header weight can then be expressed as,

$$W_{HD} = \rho_c (L_{g_i} D_o L_n + L_{g_o} D_i L_n)/2$$
 (45)

The enclosure weight is based on the following assumptions: (1) the average material density per unit surface area,  $\overline{\rho_m}$ , is approximately 15 lb/ft<sup>2</sup> and includes sheet metal, insulation, and supports, (2) the air manifolds have the same perimeter as would the circumferences of a circle with the diameter shown, (3) the enclosure is comprised of a four-sided box with no top and bottom and two air manifolds, and (4) the headers form a 90° triangle. From figure 2 and the preceding assumptions, the enclosure weight is defined as,

$$W_{ENCL} = 15 \times (4 L_{n} L + \pi L_{n} (D_{i} + D_{o}) + L_{g_{i}} D_{o} + L_{g_{o}} D_{i}). \tag{46}$$

Therefore, the total weight of the heat exchanger is the summation of the parts described above,

$$W_{T} = W_{a} + W_{q} + W_{HD} + W_{ENCL} . \tag{47}$$

#### **PROGRAM DESCRIPTION**

The main program is called HTER and includes basic calculations, statements for input and output, and calls the subroutines: BENDLOS, STAT, SURF, and TRANSP. BENDLOS calculates the bend loss coefficient  $K_b^*$ , used in the pressure drop calculations, based on the angle at which the fluid turns through. STAT is a data bank for the friction factor and Colburn factor values from Kays and London [1], and calls a subroutine INT, which is an interpolation routine. SURF is the data bank for the plate fin characteristics, also from Kays and London [1], (Tables 9-3 a, b, c, and d). TRANSP returns fluid properties of air or combustion products, including viscosity, specific heat, and thermal conductivity. Input to the computer program is accomplished by reading a NAMELIST named "INDATA". The

NAMELIST INDATA identifies a succeeding list of input variables which can be input without specifing format. Included in the program is a BLOCK DATA DEFAULT for the NAMELIST INDATA, which defines a default value for each input variable. More about the NAMELIST statement and default values is given in the section titled INPUTS. The main program and subroutines are written in FORTRAN IV language for the CDC 6600 or 6700 computers.

The computer program has the following limitations and features, [2]:

- 1. The program assumes even distribution of flow across the flow cross section; i.e., the mass flow rate through any channel is simply the mass flow for sectional area of the channel. If this assumption is not true, effectiveness drops rapidly. Even flow distribution into the heat exchanger is not easy to achieve, especially in a short flow length, low pressure drop exchanger [8].
- 2. Effects of fouling and fin deformation are not included in the program.
- 3. An additional heat transfer (~2 to 5%) in a counterflow exchanger is obtained from the cross-counterflow in the headers. This was not considered in the program. In a pancake-shaped counterflow exchanger, the error in this assumption becomes appreciable.
- 4. All plate-fin surfaces given in Figures 9-3 to 9-7 of Kays and London [1] are included in the program except for 4.0 fins/in (plain).

The following sections describe the necessary input variables and resultant output variables of the computer program. Several sample cases of input data are given illustrating format, as well as, their corresponding output. Also described are error messages that may occur during the execution of the program. A complete listing of the computer program is included in the report as APPENDIX A, and the main program variables are defined in APPENDIX B.

#### **INPUTS**

Physical heat exchanger core parameters (i.e., lengths, fin types, frontal areas, etc.), air-side inlet header velocity, and heat exchanger flow conditions (i.e., pressure, temperatures, mass flows and fuel-air ratio), are provided to the program in the form of a NAMELIST called INDATA. The input conditions are required to be in U.S. units. A set of default values have been included in the program and include engine cycle data from figure 10 of reference 9. NAMELIST INDATA variables are as follows (with the default values shown to the right):

TYPA - air side fin type Default Value = 1 = 1 - plain fin = 2 - louvered fin = 3 - strip/offset fin = 4 - wavy fin NSA air side surface number = 7 = 1 to 18 for plain fin = 1 to 14 for louvered fin = 1 to 12 for strip/offset fin = 1 to 3 for wavy fin TYPG - gas side fin type = 1 = 1 - plain fin = 2 - louvered fin = 3 - strip/offset fin = 4 - wavy fin NSG gas side surface number = 7 = 1 to 18 for plain fin = 1 to 14 for louvered fin = 1 to 12 for strip/offset fin = 1 to 3 for wavy fin RLENI - initial flow length, ft = 3.0

| RLI     | - incremental flow length, ft                                   | = | 1.0    |
|---------|-----------------------------------------------------------------|---|--------|
| NL      | - number of length iterations                                   | = | 5      |
| IAFRA   | - initial frontal area, ft <sup>2</sup>                         | = | 25.0   |
| AFRAI   | - value of frontal area increase per iteration, ft <sup>2</sup> | = | 25.0   |
| NA      | - number of frontal area iterations                             | = | 4      |
| WA      | - air side mass flow rate, lb <sub>m</sub> /sec                 | = | 90.0   |
| PINA    | - air side inlet pressure, lb <sub>f</sub> /in <sup>2</sup>     | = | 116.4  |
| TINA    | - air side inlet temperature, °R                                | = | 1040.5 |
| PEXG    | - gas side outlet pressure, lb <sub>f</sub> /in <sup>2</sup>    | = | 14.9   |
| WG      | - gas side mass flow rate, lb <sub>m</sub> /sec                 | = | 101.45 |
| TING    | - gas side inlet temperature, °R                                | = | 1646.4 |
| FAR     | - fuel-to-air ratio                                             | = | 0.0145 |
| VINPUT* | - header velocity, ft/sec                                       | = | 90.0   |

#### SAMPLE CASES

Included in this manual are eight (8) sample cases to illustrate using NAMELIST INDATA to define sets of input data. The data cards for these sample cases are shown in Figure 3. INDATA variable sets must begin with a \$INDATA

 $<sup>^{\</sup>star}$  The user is advised to keep inlet air velocity below 100 ft/sec to ensure a design with good flow distribution and low losses

(where the \$ is located in the second column) and each set ends with a \$. The first data card has the \$INDATA \$, therefore, the default values are used to calculate the results shown as TABLE C-1 in APPENDIX C. A set of data items may consist of any subset of the variables names in NAMELIST INDATA. The value of variables not included in the subset on a following card remains unchanged.



Figure 3 - Sample Cases For Namelist INDATA

The output consists of title headings, input variables, and computed results. APPENDIX C contains the corresponding output for the sample cases shown in Figure 3. Each data card produced a page of output. The first line of the output is a title heading: "CORE HEAT TRANSFER SURFACES". The next six lines of output give the heat transfer surface characteristics (i.e., hydraulic radius, compactness, plate spacing, etc.). "HEAT EXCHANGER CONDITIONS" is the next title heading and given on the following four lines are the mass flows, pressures, temperatures, and fuel-air ratio for the air and gas streams. These values are the INDATA variables. The next title heading is "HEADER DESIGN DETAILS," and given on the next four lines are the air-side inlet diameter and velocity. The computed values for the remaining output variables at various combinations of core

counterflow lengths and frontal areas comprise the rest of the output. With each new frontal area iteration, new column descriptors are printed. Contained in the tabulated values are as follows: counterflow length; heat exchanger core volume; frontal area; air side outlet pressure; gas side inlet pressure; air, gas, and total pressure drops in percent; air and gas side outlet temperatures; overall enclosure height; number of transfer units; heat exchanger effectiveness in percent; estimated weight; air-side exit header diameter and exit header velocity.

The results shown in Table C-1 (see APPENDIX C) were generated assuming plain fins, 11 fins per inch, and 0.25 inch plate spacing on both the air and gas sides. Counter-flow lengths are varied from 3 to 7 feet on 1 foot increments and total frontal flow area is varied from 25 to 100  ${\rm ft}^2$  in 25  ${\rm ft}^2$  increments. Air and gas inlet conditions are based on the gas turbine cycle data shown in Figure 10 in reference 9. An air-side inlet header velocity of 90 ft/sec is assumed in all sample cases. Although the physical characterisitics of the heat exchangers remain the same, air and gas side inlet conditions were changed in Tables C-2 and C-3 to reflect gas turbine cycle conditions shown as Figures 11 and 12, respectively, in reference 9. Air and gas side inlet conditions remain the same for Tables C-3 through C-8 while physical characterisitics of the heat exchangers Table C-4 shows the effect of changing the air-side fin type, from plain to louvered, but same fins/in, has on the performance of the heat exchanger. Table C-5 varies the gas-side fins/in from 11.1 to 6.2 and changes the initial flow length from 3 feet to 4 feet. In Table C-6 variations include the following: (1) air-side fin type from louvered to plain, (2) air-side and gas-side fins/in from 11.1 to 19.86 and 6.2 to 11.1, respectively, and (3) redefines the initial flow length from 4 feet to 2 feet. Table C-7 varies the air-side and gasside fins/in from 19.86 to 6.2 and 11.1 to 3.01, respectively, and varies the initial flow length from 2 feet to 14 feet. Also, varied in Table C-7 are the number of length iterations and frontal area iterations from 5 to 8 and 4 to 3, respectively. Table C-8 varies the following assumptions: (1) fin types for both sides (air and gas) from plain to strip/offset, (2) the initial flow length from 14 feet to 1 foot, and (3) fins/in on the air-side and gas-side from 6.2 to 19.82 and 3.01 to 11.1, respectively.

#### **ERROR MESSAGES**

There are two basic error messages that may occur in the execution of the program. These messages are presented in this section along with reasons for their occurance.

- (1) REYNOLDS NUMBER OUT OF RANGE OF PROGRAMMED TABLES The Reynolds number on the air or gas side being too large causes this error message to occur. The reason why it occurs is that only the values from reference 1 were tabulated in the computer program and have an upper limit. The lower limit has been already discussed in the Method of Analysis.
- (2) TRANSP INPUT OUT OF RANGE The reason for this error message is that the entering fuel-air ratio to the subroutine TRANSP is too large or too small. A maximum value of 0.034826, and a minimum value of less than 0.0 are associated with the curve-fits for certain thermodynamic properties. Also, if the temperature is less than 500 °R or greater than 2000 °R the error message will occur. Results obtained within these ranges agree with the data from reference 3 within  $\pm$  1%.

#### **ACKNOWLEDGMENT**

The author wishes to acknowledge the contributions made by Mr. James E. Hubbard and Mr. John G. Purnell, Code 2721, Engines Branch, David Taylor Naval Ship R&D Center. The majority of computer programming was accomplished by Mr. Hubbard in 1974. This initial version of the computer program was improved later in 1979 by Mr. Purnell. Special acknowledgment goes to Ms. M. Phillips, who typed and prepared this manuscript.

#### REFERENCES

- 1. Kays, W. M., and London, A. L., "Compact Heat Exchangers," Second Edition, McGraw-Hill Book Co., 1964.
- 2. Watts, J. W., and Bowen, T. L., "Regenerated Marine Gas Turbines, Part II: Regenerator Technology and Heat Exchanger Sizing," ASME technical paper No. 82-GT-314, April 1982.
- 3. Gordon, S., "Thermodynamic and Transport Combustion Properties of Hydrocarbons With Air, III-Properties in U. S. Customary Units," NASA technical paper No. 1908, July 1982.
- 4. Koenig, R. W., and Fishbach, L. H., "GENENG A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines," NASA TN D-6552, February 1972.
- 5. London, A.L., Klopfer, G., and Wolf, S., "Oblique Flow Headers for Heat Exchangers," ASME Journal of Engineering For Power, pages 271-286, July 1968.
- 6. Kays, W.M., "Loss Coefficients for Abrupt Changes in Flow Cross Section with Low Reynolds Number Flow in Single and Multiple Tube Systems," Transactions of the ASME, Vol. 72, pages 1067-1074 (1950).
- 7. Miller, D. S., "Internal Flow Systems," BHRA Fluid Engineering, 1978.
- 8. Shah, R. K., and London, A. L., "Compact Heat Exchangers," ASME Short Course, Gas Turbine Conference, Houston, Texas, 8 March 1981.
- 9. Bowen, T. L., and Ness, J. C., "Regenerated Marine Gas Turbines, Part I: Cycle Section and Performance Estimation," ASME technical paper No. 82-GT-306, April 1982.

# **APPENDIX A**FORTRAN LISTING OF COMPUTER PROGRAM

```
*DECK HTER
      PROGRAM HTER (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
C
C***
C
C
      HEAT EXCHANGER TYPE TO BE SPECIFIED AS FOLLOWS-
C
      WHERE TYPE:
C
      TYPE 1 - PLAIN FIN
                                     SURFACE NUMBER = 1 TO 18
C
      TYPE 2 - LOUVERED FIN
                                     SURFACE NUMBER = 1 TO 14
C
      TYPE 3 - STRIP/OFFSET FIN
                                     SURFACE NUMBER = 1 TO 12
C
      TYPE 4 - WAVY FIN
                                     SURFACE NUMBER = 1 TO
C
C
      INTEGER TYPA, TYPG
C
      REAL ILA, ILG, K, KA, KBINA, KBEXA, KBING, KBEXG, KG, KCA, KCG,
           KDA, KDG, KEA, KEG, LA, LG, LHGING, LHGEXG, MA, MG, MAL, MGL,
     2
           MUA, MUG, NARA, NARG, NE, NPRA, NPRG, NRA, NRG, NSTA, NSTG,
           NTU, IAFRA
C
      COMMON/INPUT/TYPA, NSA, TYPG, NSG, RLENI, RLI, NL, IAFRA, AFRAI, NA, WA, PINA
                    ,TINA,PEXG,WG,TING,FAR,VINPUT
C
      NAMELIST/INDATA/TYPA, NSA, TYPG, NSG, RLENI, RLI, NL, IAFRA, AFRAI, NA, WA,
                      PINA, TINA, PEXG, WG, TING, FAR, VINPUT
C
      DATA RHO, PI, RU/ 485., 3.1416, 640.1 /
      DATA A,K,GC,ERROR/.01,12.,32.2,.001/
      DATA E, DELPA, DELPG /.5, Ø.Ø1, Ø.Ø3/
C
   35 READ (5, INDATA)
      IF(EOF(5)) 999,65
C
C
   65 CALL SURF(TYPA, NSA, AXA, BXA, SFA, BA, RHA, DELA, BETA, FRA, WFA, WPA)
      CALL SURF(TYPG.NSG.AXG.BXG.SFG.BG.RHG.DELG.BETG.FRG.WFG.WPG)
C
      VINA=VINPUT
      RHOINA=PINA/TINA/RU*1728.
      DINA=SQRT(4.*WA/RHOINA/VINA/PI)
      WRITE(6,110) TYPA, AXA, NXA, SFA, TYPG, AXG, NXG, SFG, BA, BG, RHA, RHG,
                    DELA, DELG, BETA, BETG, FRA, FRG, WA, WG, PINA, PEXG, TINA, TING
     2
                     ,FAR,FAR
  110 FORMAT (1H1." CORE HEAT TRANSFER SURFACE".18X."AIR-SIDE".29X.
               "GAS-SIDE" // 20X, "TYPE AND FIN DETAIL", 3X, I1,
               "-", F6.4, "-", I1, "-", F5.2,20X, I1, "-", F6.4,
                  , F5.2 / 20X, "PLATE SPACING", 12X, F6.4, 2X, "IN"
                                                                         .26X.
               F6.4, 2X, "IN" /2ØX, "HYDRAULIC RADIUS", 8X, F7.5, " FT", 25X,F7.5, " FT" /2ØX, "FIN THICKNESS", 12X, F6.4, 2X,
     5
           "IN",26X, F6.4, 2X, "IN" /20X, "COMPACTNESS", 13X, F7.1, 2X, "SQFT/CUFT",15X,F10.1, 2X, "SQFT/CUFT" / 20X, "FIN/TOTAL",
     7
     8
               " AREA", 11X, F6.4, 2X, "FT/FT",23X, F6.4, 2X, "FT/FT"//
                  HEAT EXCHANGER CONDITIONS", 18X, "AIR-SIDE INLET", 24X,
               "GAS-SIDE INLET", 10X, "GAS-SIDE EXIT"//20X, "MASSFLOW", 16X,
     1
     2
               F6.2," LB/SEC",23X,F6.2," LB/SEC",17X,"-"/20X,"PRESSURE"
          ,16X,F6.2."
                       PSIA",32X,"-",18X,F6.2," PSIA"/20X,"TEMPERATURE",
               12X,F7.2," DEG R",23X,F7.2," DEG R",18X,"-"/20X,"FUEL-"
     5"AIR RATIO", 12X, "Ø.Ø", 34X, F6.4, 2ØX, F6.4//" HEADER DESIGN DETAILS"
```

```
1)
     WRITE(6,115) VINA, DINA
 115 FORMAT(20X, "INLET AIR HEADER DIAMETER SIZED FOR INLET",
           " AIR VELOCITY =",F8.2," FT/SEC"/20X,"OUTLET ",
    3
            "AIR HEADER DIAMETER SIZED FOR UNIFORM FLOW DISTRIBUTION "
    4
            "AND MINIMUM HEADER LOSS"/20X, "INLET DIAMETER =",
    5
            F6.2," FT"/2ØX,"EXIT AIR DIAMETER AND VELOCITY GIVEN "
           "BELOW"/)
    6
     DO 700 I=1,NA
     I1=I-1
     AFRA=IAFRA+I1*AFRAI
     WRITE(6,130)
 13Ø FORMAT (1HØ, " LENGTH
                        VOLUME
                                                              DPG
                                 AREA
                                        P-A-EX
                                                P-G-IN DPA
    1 DPT
            T-A-EX
                     T-G-EX
                              HEIGHT
                                      NTU
                                           EFFECT
                                                    WEIGHT
                                                             HEADE
        VELOCITY"/"
                      FT
                             CU FT
                                     SQFT
                                            PSIA
                                                     PSIA
                                                            PCT
    3PCT
          PCT
                DEG R
                        DEG R
                                   FT
                                        ",1ØX,"PCT
                                                      LBS
                                                              DIA
          FT/SEC"/)
     DO 600 L=1,NL
     L1=L-1
     RLEN=RLENI+RLI*L1
     VOL=AFRA*RLEN
     PEXA=PINA+(1-DELPA)
     PING=PEXG*(1+DELPG)
C****** HEAT TRANSFER AND FREE FLOW AREAS ************
     PAA=BA/(BA+BG+2.*A)
     PAG=BG/(BA+BG+2.*A)
     ALHA=BETA*PAA
     ALHG=BETG*PAG
     AFRG=AFRA
     AA=ALHA*VOL
     AG=ALHG*VOL
     SIGA=ALHA*RHA
     SIGG=ALHG*RHG
     ACA=SIGA*AFRA
     ACG=SIGG*AFRG
     FLA=VOL/AFRA
     XNCFL=SQRT (AFRA)
     NXA=BXA
     NXG=BXG
     CMIN=1.
     CA=1.
     CG=1.
150 TEXA= E*(TING-TINA)*CMIN/CA+TINA
     TAVA=(TEXA+TINA) *.5
     CALL TRANSP (TAVA, Ø., CPA, KA, MUA, MA)
     TEXG= E*(TINA-TING)*CMIN/CG+TING
     TAVG=(TEXG+TING) +.5
     CALL TRANSP (TAVG, FAR, CPG, KG, MUG, MG)
C
C
     GA=WA/ACA
     NRA=4. *RHA*GA/MUA
     GG=WG/ACG
     NRG=4. *RHG*GG/MUG
```

```
C
  CALL STAT (TYPA, NSA, NRA, COLBFA, FA)
     IF (FA.EQ.Ø.)GO TO 700
     NPRA=CPA+MUA/KA
     NSTA=COLBFA/NPRA**.666
     HA=NSTA*GA*CPA*36ØØ.
     CALL STAT (TYPG, NSG, NRG, COLBFG, FG)
     IF(FG.EQ.Ø.) GO TO 700
     NPRG=CPG*MUG/KG
     NSTG=COLBFG/NPRG**. 666
     HG=NSTG*GG*CPG*36ØØ.
C
    MAL=SQRT((2.*HA)/(K*DELA/12.))
     MGL=SQRT((2.*HG)/(K*DELG/12.))
     LA=(BA/12.)/2.
     LG=(BG/12.)/2.
     MAL=MAL*LA
     MGL=MGL*LG
     ETAFA=TANH (MAL) /MAL
     ETAFG=TANH (MGL) /MGL
C
C********** SURFACE EFFECTIVENESS ***************
C
     ETAGA=1.-FRA*(1.-ETAFA)
     ETAOG=1.-FRG*(1.-ETAFG)
C
C*********** OVERALL COEFFICIENT OF HEAT TRANSFER **********
C
     RA=1./(ETAOA*HA)+1./((AG/AA)*ETAOG*HB)+1./(K/(A/12.))
     UA=1./RA
C********** INLET AND EXIT LOSS COEFFICIENTS ****************
C
     CCA=.6100000000001-.14442945071*SIGA+1.0080347435*SIGA**2
     CCA=CCA-1.7317560083*SIGA**3+1.1559407939*SIGA**4
     CCG=.610000000001-.14442945071*SIGG+1.0080347435*SIGG**2
     CCG=CCG-1.7317560083*SIGG**3+1.1559407939*SIGG**4
     NARA=NRA+1.E-4
     NARG=NRG*1.E-4
     KDA=1.1063960104-.13322445533*NARA+.11885428625*NARA**2
     KDA=KDA-. Ø3317Ø53Ø592*NARA**3
     KDG=1.1063960104-.13322445533*NARG+.11885428625*NARG**2
     KDG=KDG-.033170530592*NARG**3
     KCA=(1.-2.*CCA+CCA+*2*(2.*KDA-1.))/CCA**2
     KCG=(1.-2.*CCG+CCG**2*(2.*KDG~1.))/CCG**2
     KEA= 1.-2.*KDA*SIGA+SIGA**2
     KEG= 1.-2.*KDG*SIGG+SIGG**2
C
C#
  *********** PRESSURE DROPS *****************
C
     RHOEXA=PEXA/TEXA/RU+1728.
     RHOING=PING/TING/RU*1728.
     RHOEXG=PEXG/TEXG/RU+1728.
     VEXA=.636*VINA*SQRT(RHQINA/RHQEXA)
     DEXA=SQRT(4.*WA/RHOEXA/VEXA/PI)
     HINA=RHOINA/2./GC*VINA**2
```

```
DELPAH=.595*HINA/PINA/144.
     ILA=1.-SIGA**2+KCA
     ILG=1.-SIGG**2+KCG
     SPVA=PINA/PEXA*TEXA/TINA
     SPVG=PING/PEXG*TEXG/TING
     ELA=(1.-SIGA**2-KEA)*SPVA
     ELG=(1.-SIGG**2-KEG)*SPVG
     SPVAM=2.*PINA/(PINA+PEXA)*TAVA/TINA
     SPVGM=2.*PING/(PING+PEXG)*TAVG/TING
     CFA=FA*AA/ACA*SPVAM
     CFG=FG*AG/ACG*SPVGM
     FAA=2.*(SPVA-1.)
     FAG=2.*(SPVG-1.)
     TLA=ILA+FAA+CFA-ELA
     TLG=ILG+FAG+CFG-ELG
     LHGING=SQRT(XNCFL**2-DEXA**2)
     LHGEXG=SQRT(XNCFL**2-DINA**2)
     ANGEXG=ATAN(DINA/LHGEXG)
     ANGING=ATAN (DEXA/LHGING)
     ANGINA=PI/2.-ANGEXG
     ANGEXA=PI/2.-ANGING
     HFXG=1.+((DINA+DEXA)/2./FLA)
     HFXA=(LHGING/2.+FLA+LHGEXG/2.)/FLA
     DELPAC=(GA/144./PINA)**2/2./GC*1545./MA*TINA*TLA*HFXA
     DELPGC=(GG/144./PING)**2/2./GC*1545./MG*TING*TLG*HFXG
      AHCMINA=SIGA*DINA*XNCFL
     AHCMING=SIGG*XNCFL*LHGING
     VINAH1=WA/RHOINA/AHCMINA
     VINGH1=WG/RHOING/AHCMING
      VINAC1=VINAH1*COS(ANGINA)
     VINGC1=VINGH1*COS(ANGING)
     CALL BENDLOS (ANGINA, KBINA)
     CALL BENDLOS (ANGING, KBING)
      VINAM=SQRT((VINAH1**2+VINAC1**2)/2.)
     VINGM=SQRT((VINGH1**2+VINGC1**2)/2.)
      DELPAB1=RHOINA*KBINA/2./GC*VINAM**2
      DELPGB1=RHOING*KBING/2./GC*VINGM**2
      AHCMEXA=SIGA*DEXA*XNCFL
      AHCMEXG=SIGG*LHGEXG*XNCFL
      VEXAH2=WA/RHOEXA/AHCMEXA
      VEXGH2=WG/RHOEXG/AHCMEXG
      VEXAC2=VEXAH2*COS (ANGEXA)
      VEXGC2=VEXGH2*COS (ANGEXG)
      CALL BENDLOS (ANGEXA, KBEXA)
      CALL BENDLOS (ANGEXG, KBEXG)
      VEXAM=SQRT((VEXAH2**2+VEXAC2**2)/2.)
      VEXGM=SQRT((VEXGH2**2+VEXGC2**2)/2.)
      DELPAB2=RHOEXA+KBEXA/2./GC+VEXAM++2
      DELPGB2=RHOEXG*KBEXG/2./GC*VEXGM**2
      DELPAB=(DELPAB1+DELPAB2)/PINA/144.
      DELPGB=(DELPGB1+DELPGB2)/PING/144.
      DELPA=DELPAC+DELPAH+DELPAB
      DELPG=DELPGC+DELPGB
      PEXA=PINA*(1.-DELPA)
      PING=PEXG*(1.+DELPG)
      PCDELPA=100.*DELPA
      PCDELPG=100. *DELPG
C********* NTU AND HEAT EXCHANGER EFFECTIVENESS *************
```

28

```
CA=WA*CPA*36ØØ.
      CG=WG*CPG*36ØØ.
      CMIN=AMIN1(CA,CG)
      CR=AMIN1(CMIN/CA, CMIN/CG)
      NTU=AA*UA/CMIN
  COUNTER-FLOW EFFECTIVENESS-NTU RELATIONSHIP
      X=EXP(-NTU*(1.-CR))
      NE=(1.-X)/(1.-CR*X)
      IF (ABS (NE/E-1.) .LT. ERROR) GO TO 300
      E=NE
      GO TO 15Ø
  300 TEXA=NE*(TING-TINA)*CMIN/CA+TINA
      TEXG=NE*(TINA-TING)*CMIN/CG+TING
      DELPT=DELPA+DELPG
      PCDELPT=100.*DELPT
      PCNE=100.*NE
C
       ****** WEIGHT CALCULATIONS OF THE HEAT EXCHANGER *****
      WTA=AA*RHO*(FRA*DELA*WFA + A*(1.-FRA)*WPA)/24.
      WTG=AG*RHO*(FRG*DELG*WFG + A*(1.-FRG)*WPG)/24.
      WPLA=15.*(4.*XNCFL*FLA+PI*XNCFL*(DINA+DEXA)+LHGING*DEXA
     2 +LHGEXG*DINA)
      WIE=(WTA+WTG)/VOL*(LHGING*DEXA*XNCFL+LHGEXG*DINA*XNCFL)/2.
      WHXT=WTA+WTG+WPLA+WIE
      OVALHT=DINA+DEXA+FLA
      WRITE(6,500)RLEN, VOL, AFRA, PEXA, PING, PCDELFA, PCDELPG, PCDELPT, TEXA,
                  TEXG, OVALHT, NTU, PCNE, WHXT, DEXA, VEXA
  500 FORMAT(F7.1,F9.1,F8.1,2F9.2,3F6.2,2F9.1,F9.2,F8.2,F8.2,F9.1,F9.2
      VINA=VINPUT
  600 CONTINUE
  700 CONTINUE
      GO TO 35
  999 STOP
      END
*DECK STATIS
      SUBROUTINE STAT (TYPE, NN, RE, NST, F)
C
C
      SUBROUTINE STAT RETURNS STANTON NUMBERS AND FRICTION FLOW DATA
      FOR THE TYPE HEAT EXCHANGER SPECIFIED
      INTEGER TYPE
      REAL NR.NST, IR. JR, KR.LR. IS. JS. KS.LS. MS.NS. MR
      DIMENSION AR(4,18), BR(4,18), CR(4,18), DR(4,18), ER(4,18), FR(4,18),
     #IR(4,18),JR(4,18),KR(4,18),LR(4,18),MR(4,18),NR(4,18),OR(4,18),
     *PR(4,18),QR(4,18),SR(4,18),TR(4,18),UR(4,18),VR(4,18),WR(4,18),
     *XR(4,18),YR(4,18),AS(4,18),BS(4,18),CS(4,18),DS(4,18),ES(4,18),
     *FS(4,18),GS(4,18),HS(4,18),IS(4,18),JS(4,18),KS(4,18),LS(4,18),
     *MS(4,18),NS(4,18),OS(4,18),PS(4,18),QS(4,18),RS(4,18),TS(4,18),
     *US(4,18),VS(4,18),WS(4,18),YS(4,18),XS(4,18),ZS(4,18)
     *,S(18),S1(18),S2(18),S3(18),C(14),D(14)
      DATA((S(I), I=1, 18) =
     *2.0,3.01,3.97,5.3,6.2,9.03,11.1,11.11,14.77,15.08,19.86,10.27,
     *11.94,12.00,16.96,25.79,30.33,46.45)
      DATA(((AR(N,J),J=1,18),N=1,4)=
     *60000.,50° 7.,40000.,30000.,25000.,20000.,15000.,12000.,10000.,800
     *Ø.,6000.,_100.,4000.,5*0.,.00228,.00237,.00248,.00264,.00274,.0028
     *8,.00305,.00320,.00333,.00347,.00363,.00373,.00379,5*0.,.00549,.00
     *562,.00579,.00601,.00616,.00638,.00672,.00703,.00734,.00778,.00847
```

```
*,.00904,.01023,5*0.,0.8591,25.00,16*0.0)
DATA(((BR(N,J),J=1,18),N=1,4)=
*45000.,40000.,30000.,25000.,20000.,15000.,12000.,10000.,8000.,6000
*.,5000.,4000.,3000.,5*0.,.00233,.00239,.00254,.00264,.00277,.00295
*,.00310,.00322,.00336,.00355,.00366,.00373,.00368,5*0...00602,.006
*08,.Ø0630,.00645,.Ø0667,.Ø07Ø0,.Ø0732,.Ø0762,.Ø0808,.Ø0886,.Ø0950,
*.Ø1Ø45,.Ø119Ø,5*Ø.,Ø.8591,25.ØØ,16*Ø.Ø)
 DATA(((CR(N,J),J=1,1B),N=1,4)=
*35000.,30000.,25000.,20000.,15000.,12000.,10000.,8000.,6000.,5000.
*,4000.,3000.,2500.,5*0.,.00246,.00254,.00263,.00276..00291,.00302.
*.00316,.00330,.00348,.00357,.00367,.00367,.00357,5*0.,.00595..0060
*5,.Ø0620,.Ø0638,.Ø0667,.ØØ695,.ØØ720,.ØØ761,.ØØ826,.ØØ88Ø,.ØØ963,
*.Ø1110,.Ø1230,5*Ø.,Ø.8591,25.ØØ,16*Ø.Ø)
 DATA(((DR(N,J),J=1,18),N=1,4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,5*0.,.00373,.00397,.00427,.00448,.00477,.00515,.00535,.
*Ø0554,.Ø0571,.Ø06Ø6,.Ø0654,.Ø0728,.Ø0851,5*Ø.,.Ø0764,.Ø08Ø6,.Ø087Ø
*,.00913,.00978,.0108,.0115,.0127,.0146,.0167,.0189,.0228,.0299,5*0
*.,Ø.7839,18.36,16*Ø.Ø)
DATA(((ER(N, J), J=1, 18), N=1, 4)=
*12000.,10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200
*.,1000.,800.,5*0.,.00303,.00310,.00317,.00325,.00330,.00333,.00333
*,.00301,.00312,.00371,.00435,.00496,.00581,5*0.,.00708,.00735,.007
*68,.00807,.00838,.00875,.00923,.00958,.0103,.0127,.0152,.0176,.021
*1,5*Ø.,Ø.6251,17.24,16*Ø.Ø)
 DATA(((FR(N,J),J=1,1B),N=1,4)=
*15000.,12000.,10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,150
*Ø.,1200.,1000.,800.,4*0.,.00255,.00265,.00273,.00283,.00296,.00304
*,.00310,.00310,.00318,.00347,.00421,.00499,.00575,.00692,4*0.,.007
*08,.00740,.00763,.00799,.00842,.00870,.00903,.00980,.0106,.0122,
*.0152,.0182,.0214,.0262,4*0.,0.7233,21.40,16*0.0)
 DATA(((IR(N,J),J=1,18),N=1,4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*.800.,600.,500.,4*0.,.00314,.00333,.00356,.00372,.00390,.00412,.00
*424,.00436,.00444,.00471,.00515,.00599,.00733,.00840,4*0.,.00878,.
*00923,.00971,.00991,.0103,.0112,.0119,.0139,.0149,.0169,.0190,.022
*8,.0294,.0350,4*0.,0.6471,17.80,16*0.0)
DATA(((JR(N, J), J=1, 18), N=1, 4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00288,.00333,.00324,.00338,.00353,.00368,.00
*373,.00375,.00420,.00505,.00586,.00704,.00890..0103,4*0.,.00769,.0
*Ø807,.00862,.00900,.00958,.0105,.0112,.0119,.0137,.0166,.0198,.024
*3,.Ø319,.Ø38Ø,4*Ø.,Ø.78ØØ,19.19,16*Ø.Ø)
 DATA(((KR(N,J),J=1,18), N=1,4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00310,.00326,.00352,.00367,.00389,.00417,.00
*435,.00456,.00495,.00538,.00585,.00663,.00791,.00898,4*0.,.00920,.
*00955,.0101,.0106,.0112,.0123,.0133,.0147,.0173,.0202,.0231,.0274,
*.0346,.0403,4*0.,0.7021,20.94,16*0.0)
 DATA(((LR(N,J),J=1,18),N=1,4)=
*6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,600.,
*500.,6*0.,.00308,.00310,.00309,.00309,.00322,.00352,.00420,.00491,
*.00562,.00662,.00815,.00930,6*0.,.00882,.00900,.00925,.00970,.0104
*0,.01205,.0151,.0182,.0215,.0264,.0343,.0405,6*0.,0.7273,20.65,16*
#Ø.Ø)
 DATA(((MR(N,J),J=1,18),N=1,4)=
*8000.,5000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
*600.,500.,400.,4*0.,.00320,.00337,.00348,.00363,.00382,.00395,.004
*10,.00443,.00497,.00567,.00672,.00834,.00960,.0113,4*0.,.00851,.00
*900,.00931,.00972,.0104,.0112,.0123,.0142,.0167,.0197,.0242,.0314,
```

```
*.Ø372,.Ø457,4*Ø.,Ø.7378,18.57,16*Ø.Ø)
 DATA(((NR(N, J), J=1, 18), N=1, 4)=
*10000.,9000.,8000.,7000.,6000.,5000.,4000.,3000.,2000.,1500.,1200.
*,1000.,800.,600.,500.,400.,2*0.,.00295,.00299,.00303,.00310,.00318
*,.00328,.00341,.00372,.00445,.00523,.00608,.00682,.00797,.00869,
*.Ø1101,.Ø129,2*Ø.,.Ø0723,.Ø0740,.Ø0763,.Ø0790,.Ø0826,.Ø0871..Ø0945
*,.01085,.01370,.01645,.0195,.0228,.0278..0357,.0419,.0511,2*0.,0.8
*373,20.42,16*0.0)
 DATA(((OR(N,J),J=1,18), N=1,4) =
*10000.,9000.,8000.,7000.,6000.,5000.,4000.,3000.,2000.,1500.,1200.
*,1000.,800.,600.,500.,400.,300.,0.,.00294,.00302,.00309,.00317..00
*322,.00323,.00330,.00317,.00329,.00379,.00437,.00498,.00589,.00729
*,.00833,.00980,.01215,0.,.00716,.00730,.00755,.00782,.00819,.00856
*,.00885,.00956,.01145,.01350,.0159,.0181,.0220,.0285,.0336,.0411,
*.0535,0.,0.6541,16.25,16*0.0)
 DATA(((PR(N,J),J=1,18),N=1,4)=
*8000.,7000.,6000.,5000.,4000.,3000.,2000.,1500.,1200.,1000.,800.,
*600.,500.,400.,300.,200.,2*0.,.00302,.00312,.00322,.00333..00344,.
*00350,.00346,.00388,.00441,.00493,.00555,.00713,.00815,.00955,.011
*85,.01600,2*0.,.00851,.00881,.00928,.00980,.01045,.01128,.01285,.0
*1475,.0170,.0195,.0238,.0306,.0359,.0437,.0566,.0811,2*0..0.6541,1
*6.25,16*Ø.Ø)
 DATA(((QR(N,J),J=1,18),N=1,4)=
*5000.,4000.,3000.,2000.,1500.,1200.,1000.,800.,600.,500.,400.,300.
*,6*Ø.,.ØØ281,.ØØ281,.ØØ263,.ØØ268,.ØØ294,.ØØ338,.ØØ379,.ØØ448,.ØØ5
*61,.00658,.00796,.01020,6*0.,.00809,.00835,.00875,.00962,.01088,.0
*125,.Ø144,.Ø178,.Ø232,.Ø275,.Ø339,.Ø442,6*Ø.,Ø.6213,13.27,16*Ø.Ø)
 DATA(((SR(N,J),J=1,18),N=1,4)=
*3000.,2000.,1500.,1200.,1000.,800.,600.,500.,400.,300.,8*0.,.00277
*,.00312,.00354,.00401,.00450,.00529,.00670,.00782,.00942,.01193,
*8*Ø.,.ØØ831,.ØØ981,.Ø1165,.Ø134,.Ø153,.Ø185,.Ø24Ø,.Ø286,.Ø351,.Ø46
*Ø,8*Ø.,Ø.6555,13.8Ø,16*Ø.Ø)
 DATA(((TR(N,J),J=1,18),N=1,4)=
#3000.,2000.,1500.,1200.,1000.,800.,500.,500.,400.,300.,8*0.,.00293
*,.00356,.00418,.00481,.00545,.00643,.00802,.00922,.0110,.0138,
*8*0.,.00981,.01185,.01395,.0162,.0189,.0230,.0302,.0361,.0448,.059
*5,8*Ø.,Ø.7352,17.85,16*Ø.Ø)
 DATA((C(I), I=1, 14)=
*.375,.375,.500,.500,.375,.375,.1875,.250,.250,.375,.375,.500,.750,
*.75Ø)
 DATA((D(I), I=1, 14)=
*Ø.,1.,Ø.,1.,Ø.,1.,Ø.,Ø.,2.,Ø.,2.,Ø.,Ø.,2.)
 DATA((S1(I), I=1, 14) =
*11.1)
 DATA(((VR(N,J),J=1,18), N=1,4)=
#10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00551,.00593,.00651,.00690,.00738,.00805,.00
*849,.00900,.00970,.0104,.0112,.0124,.0144,.0160,4*0.,.0331,.0340,.
*Ø354,.Ø363,.Ø375,.Ø394,.Ø4Ø6,.Ø426,.Ø461,.Ø496,.Ø532,.Ø587,.Ø682,.
*Ø755,4*Ø.,1.28Ø9,37.75,16*Ø.Ø)
 DATA(((WR(N, J), J=1, 18), N=1, 4) =
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200..1000.
*,800.,500.,5*0.,.00638,.00688,.00760,.00810,.00878,.00970,.0102..0
*110,.0119,.0127,.0138,.0140,.0149,5*0.,.0494,.0510,.0531,.0547,.05
*68,.Ø596,.Ø620,.Ø646,.Ø696,.Ø745,.Ø795,.Ø860,.Ø962,5*Ø.,1.3119,57.
*72.16*Ø.Ø)
 DATA(((XR(N,J),J=1,18),N=1,4)=
#10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,5*0.,.00568,.00605,.00655,.00690,.00734,.00791,.00829,.
```

```
*.0347,.0366,.0381,.0402,.0438,.0474,.0512,.0571,.0667,5*0.,1.2700,
*4Ø.Ø2,16*Ø.Ø)
 DATA(((YR(N, J), J=1, 18), N=1, 4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,5*0.,.00598,.00645,.00714,.00760,.00809,.00895,.00941,.
*Ø1ØØ,.Ø1ØB,.Ø113,.Ø11B,.Ø122,.Ø12B,5*Ø...Ø4ØØ,.Ø413,.Ø432,.Ø447,.Ø
*463,.0491,.0511,.0540,.0588,.0634,.0680,.0752,.0880,5*0.,1.1270.56
*.48,16*Ø.Ø)
 DATA(((AS(N,J),J=1,18),N=1,4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00542,.00583,.00640,.00678,.00737,.00794..00
*835,.00885,.00951,.0103,.0112,.0126,.0149,.0169,4*0.,.0297,.0306,.
*Ø319,.Ø328,.Ø340,.Ø359,.Ø374,.Ø394,.Ø430,.Ø472,.Ø515,.Ø585,.Ø7ØØ,.
*0793,4*Ø.,1.31Ø8,4Ø.83,16*Ø.Ø)
 DATA(((BS(N, J), J=1, 18), N=1, 4) =
*8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
*600.,500.,5*0.,.00630,.00690,.00730,.00790,.00870,.00950,.00980,.0
*106,.0113,.0121,.0131,.0145,.0154,5*0.,.0340,.0395,.0410,.0428,.04
*20,.0470,.0497,.0550,.0580,.0620,.0680,.0790,.0890,5*0.,1.2351,45.
*95,16*Ø.Ø)
 DATA(((CS(N,J),J=1,18),N=1,4)=
*6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,600.,
*500.,6*0.,.00690,.00740,.00802,.00899,.00960,.0103,.0113,.0122,.01
*30,.0142,.0161,.0177,6*0.,.035D,.0367,.0390,.0426,.0452,.0491,.055
*3,.Ø610,.Ø662,.Ø738,.Ø848,.Ø925,6*0.,1.1946,44.25,16*0.Ø)
 DATA(((DS(N,J),J=1,18),N=1,4)=
*8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
*600.,500.,5*0.,.00666,.00728,.00771,.00825,.00901,.00954,.0102,.01
*12,.Ø119,.Ø125,.Ø137,.Ø155,.Ø168,5*Ø.,.Ø3Ø9,.Ø333,.Ø351,.Ø374,.Ø4Ø
*8,.0461,.0464,.0512,.0558,.0600,.0670,.0772,.0850,5*0.,1.3333,44.4
*1,16*0.0)
 DATA(((ES(N,J),J=1,18),N=1,4)=
*8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
*600.,500.,5*0.,.00701..00761..00800..00853..00922..00972..0103..01
*12,.Ø12Ø,.Ø12B,.Ø139,.Ø157..Ø17Ø,5*Ø.,.Ø349,.Ø364,.Ø375,.Ø39Ø..Ø41
*2,.Ø430,.Ø456,.Ø502,.Ø550,.Ø595,.Ø662,.Ø780,.Ø870,5*0.,1.3332,44.3
*9.16*Ø.Ø)
 DATA(((FS(N,J),J=1,18),N=1,4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00548,.00588,.00645..00684,.00793,.00811..00
*861,.00930,.0102,.0111,.0121,.0135,.0156,.0170,4*0...0242,.0253,.0
*271,.Ø283,.Ø3ØØ,.Ø326,.Ø346,.Ø375,.Ø423,.Ø469,.Ø513,.Ø528,.Ø7ØØ,.Ø
*796,4*Ø.,1.3455,4Ø.9Ø,16*Ø.Ø)
 DATA(((GS(N, J), J=1, 18), N=1, 4)=
*8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
*600.,500.,5*0.,.00590..00650..00694..00752..00835..00889,.00960..0
*105,.0112,.0119,.0130,.0148,.0161,5*0.,.0257,.0271,.0281,.0296,.03
*19,.0336,.0363,.0406,.0442,.0483,.0550,.0659,.0741,5*0.,1.2~T4,38.
*3Ø,16*Ø.Ø)
 DATA(((HS(N,J),J=1,18),N=1,4)=
*8000.,6000.,6000.,5000.,5000.,4000.,3000.,2500.,1500.,1200.,1000.,800.,
*600.,500.,5*0.,.00557..00604..00640..00680..00739..00777..00825..0
*0888,.00950,.0104,.0117,.0137,.0150,5*0.,.0220,.0233,.0242,.0255,.
#0271,.0283,.0299,.0332,.0368,.0410,.0474,.0570,.0641,5*0.,1.1843,3
*3,125,16*Ø.Ø)
 DATA(((IS(N,J),J=1,18),N=1,4)=
*10000.,B000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00432,.00462,.00508,.00537,.00576,.00630,.00
*663,.00711,.00787,.00859,.00928,.0103,.0119,.0132,4*0.,.0151,.0158
```

32

PAS 82-41

```
*,.Ø17Ø,.Ø17B,.Ø19Ø,.Ø2ØB,.Ø222,.Ø244,.Ø2B9,.Ø314,.Ø37Ø,.Ø427,.Ø516
*,.Ø58Ø,4*Ø.,1.Ø299,29.ØØ,16*Ø.Ø)
DATA(((JS(N,J),J=1,18),N=1,4)=
*10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00440,.00469,.00510,.00537,.00572,.00621,.00
*655,.00699,.00762,.00831,.00894,.00981,.0112,.0122,4*0.,.0156,.016
*8,.Ø175,.Ø183,.Ø194,.Ø213,.Ø227,.Ø248,.Ø288,.Ø313,.Ø362,.Ø416,.Ø5Ø
*Ø,.Ø565,4*Ø.,Ø.9455,28.25,16*Ø.Ø)
 DATA((S2(I), I=1,12)=
*11.1,12.22,15.2,13.95,11.94,15.4,12.18,15.75,20.06,19.82,16.12,
*16.ØØ)
 DATA(((KS(N,J),J=1,18),N=1,4)=
*8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
*600.,500.,5*0.,.00525,.00580,.00620,.00669,.00740,.00789,.00850,.0
*0940,.0102,.0109,.0122,.0139,.0155,5*0.,.0197,.0209,.0218,.0231,.0
*253,.0272,.0298,.0348,.0394,.0438,.0500,.0595,.0665,5*0.,1.2012,33
*.25,16*Ø.Ø)
 DATA(((LS(N,J),J=1,18),N=1,4)=
*10000.,8000.,6000.,5000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
*,800.,600.,500.,4*0.,.00629,.00688,.00770,.00828,.00903,.0101,.010
*8,.Ø119,.Ø133,.Ø146,.Ø156,.Ø171,.Ø192,.Ø2Ø5,4*Ø.,.Ø394,.Ø413,.Ø44Ø
*,.Ø458,.Ø487,.Ø530,.Ø560,.Ø607,.Ø680,.Ø752,.Ø826,.Ø942,.113,.130,
*4*Ø.,1.5887,65.ØØ.16*Ø.Ø)
 DATA(((MS(N,J),J=1,18),N=1,4)=
*6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200,1000.,800.,600.,500
*.,400.,300.,4*0.,.00850,.00896,.00959,.01040,.01110,.01177,.01267,
*.Ø1327,.Ø1373,.Ø1427,.Ø152Ø,.Ø158Ø,.Ø1675,.Ø181Ø,4*Ø.,.Ø487,.Ø498,
*.Ø516,.Ø540,.Ø558,.Ø584,.Ø628,.Ø676,.Ø726,.Ø8Ø0,.Ø913,.1Ø10,.1145,
*.139Ø,4*Ø.,Ø.981Ø,41.7Ø,16*Ø.Ø)
 DATA(((NS(N, J), J=1, 18), N=1, 4)=
*6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,600.,
*500.,400.,5*0.,.01110,.01170,.01250,.0137,.0144,.0155,.0168,.0181,
*.0192,.0204,.0223,.0233,.0247,5*0.,.0650,.0664,.0684,.0712,.0733,.
*Ø765,.Ø817,.Ø87Ø,.Ø927,.1Ø2Ø,.117Ø,.131,.154,5*Ø.,1.6373,61.6Ø,16*
 DATA(((OS(N,J),J=1,18),N=1,4)=
*7000.,6000.,5000.,4000.,3000.,2000.,1500.,1200.,1000.,B00.,600.,
*500.,400.,300.,4*0.,.00452,.00471,.00492,.00522,.00575,.00682..007
*44,.00830,.00911,.01045,.01255,.01415,.0166,.0205,4*0.,.0126,.0131
*,.Ø137,.Ø146,.Ø162,.Ø198,.Ø231,.Ø265,.Ø3Ø6,.Ø347,.Ø429,.Ø493,.Ø592
*,.Ø758,4*Ø.,1.111Ø,22.74,16*Ø.Ø)
 DATA(((PS(N,J),J=1,18),N=1,4)=
*6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,600.,
*500.,400.,300.,4*0.,.00510,.00537,.00570,.00617,.00650,.00692,.007
*56,.00809,.00864,.00952,.01107,.01227,.01407,.0169,4*0.,.0167,.017
*5,.0186,.0202,.0213,.0228,.0255,.0283,.0314,.0362,.0443,.0507,.060
*1..0757.4*Ø.,Ø.9159.22.74.16*Ø.Ø)
 DATA(((QS(N,J),J=1,18),N=1,4)=
*9000.,8000.,7000.,6000.,5000.,4000.,3000.,2000.,1500.,1500.,1200.,1000.,
*800.,600.,500.,400.,300.,2*0.,.00512,.00530,.00557,.00591,.00635,.
*ØØ692,.ØØ782,.ØØ933,.Ø1Ø65,.Ø119,.Ø129,.Ø141,.Ø169,.Ø191,.ØØ23,.Ø2
*78,2*0.,.0183,.0184,.0189,.0196,.0203,.0218,.0241,.0290,.0341,.038
*8,.0438,.0490,.0592,.0695,.0808,.1025,2*0.,1.5067,29.60,16*0.0)
 DATA(((RS(N,J),J=1,18),N=1,4)=
*6000.,5000.,4000.,3000.,2000.,1500.,1200.,1000.,800.,600.,500.,7*0
*.,.00619,.00649,.00713,.00813,.00992,.01125,.0124,.0136,.0154,.018
*5,.0209,7*0.,.0203,.0211,.0227,.0248,.0294,.0339,.0386,.0440,.0499
*..Ø6Ø8,.Ø69Ø,7*Ø.,1.61ØØ,28.5Ø,16*Ø.Ø)
 DATA(((TS(N,J),J=1,18),N=1,4)=
```

\*3000.,2000.,1500.,1200.,1000.,800.,600.,500.,10\*0.,.00855..00995..

```
*Ø1115,.Ø12Ø,.Ø129,.Ø144,.Ø173,.Ø197,1Ø*Ø.,.Ø3Ø9,.Ø349,.Ø3B7,.Ø422,
   *.Ø459,.Ø52Ø,.Ø621,.Ø699,1Ø*Ø.,1.5267,29.65,16*Ø.Ø)
   DATA(((US(N, J), J=1, 18), N=1, 4) =
   *3000.,2000.,1500.,1200.,1000.,800.,600.,500.,10*0.,.00880,.01015..
   *Ø1155,.Ø128,.Ø139,.Ø154,.Ø18Ø,.Ø2Ø2,1Ø*Ø.,.Ø42Ø,.Ø45Ø,.Ø492,.Ø535,
   *.Ø577,.Ø64Ø,.Ø747,.Ø832,1Ø*Ø.,1.5546,31.7Ø,16*Ø.Ø)
   DATA(((VS(N,J),J=1,18),N=1,4)=
   *5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,600.,500.,
   *400.,300.,5*0.,.00721,.00764,.00822,.00859,.00908,.00987,.01060,.0
   *1123,.Ø12Ø5,.Ø1352,.Ø15Ø,.Ø176,.Ø266,5*Ø.,.Ø31Ø,.Ø315,.Ø334,.Ø357,
   *.0379,.0400,.0429,.0464,.0517,.0607,.0679,.0781,.0937,5*0.,1.2249.
   *28.11,16*Ø.Ø)
   DATA(((WS(N,J),J=1,18),N=1,4)=
   *5000.,4000.,3000.,2000.,1500.,1200.,1000.,800.,600.,500.,8*0...007
   *78,.00838,.00925,.01085,.01205,.0132,.0142,.0159,.0188,.0209,8*0.,
   *.0295,.0307,.0328,.0373,.0418,.0460,.0502,.0568,.0675,.0765,8*0..
   *1.6197,33.45,16*Ø.Ø)
   DATA((S3(I), I=1,3) =
   *11.44,11.5,17.8)
   DATA(((YS(N,J),J=1,18),N=1,4)=
   *8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,
   *600.,500.,5*0.,.00712,.00794,.00846,.00920,.01025,.0110,.0119,.013
   *2,.0144,.0153,.0165,.0175,.0179,5*0.,.0359,.0401,.0430..0469,.0524
   *,.Ø563,.Ø615,.Ø691,.Ø758,.Ø819,.Ø888,.Ø984,.1Ø45,5*Ø.,1.3812,49.8Ø
   *,16*Ø.Ø)
   DATA(((XS(N,J),J=1,18), N=1,4)=
   *10000.,8000.,6000.,5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.
   *,800.,600.,500.,400.,3*0.,.00686,.00746,.00831,.00890,.00970,.0107
   *7,.Ø1155,.Ø126,.Ø140,.Ø150,.Ø158,.Ø167,.Ø178,.Ø185,.Ø194,3*Ø.,.Ø33
   *1,.Ø357,.Ø398,.Ø427,.Ø467,.Ø525,.Ø567,.Ø625,.Ø7Ø4,.Ø779,.Ø845,.Ø92
   *6,.1035,.111,.118,3*0.,1.2860,47.20,16*0.0)
   DATA(((ZS(N,J),J=1,18), N=1,4)=
   *5000.,4000.,3000.,2500.,2000.,1500.,1200.,1000.,800.,600.,8*0.,.00
   *675,.00740,.00835,.00900,.00982,.0110,.0120,.0129,.0142,.0158,8*0.
   *,.0293,.0320,.0358,.0385,.0421,.0478,.0530,.0579,.0643,.0738,8*0.,
   *1.3911,44.2B,16*Ø.Ø)
    DATA(((UR(N,J),J=1,18),N=1,4)=
   *2000.,1500.,1200.,1000.,800.,600.,500.,11*0.,.00294..00349,.00418,
   *.00482,.00581,.00735,.00856,11*0.,.00118,.0135,.0157,.0183,.0228,.
   *Ø3Ø1,.Ø359,11*Ø.,Ø.6454,17.85,16*Ø.Ø)
    GO TO (100,1000,3000,5000), TYPE
100 GO TO (110,120,130,140,150,200,210,220,230,240,250,260,270,280,290
   *.300,310,320),NN
110 CALL INT(AR, RE, NST, F), RETURNS(6000)
120 CALL INT(BR, RE, NST, F), RETURNS(6000)
130 CALL INT(CR,RE,NST,F),RETURNS(6000)
140 CALL INT(DR, RE, NST, F), RETURNS(6000)
150 CALL INT(ER, RE, NST, F), RETURNS(6000)
200 CALL INT(FR, RE, NST, F), RETURNS(6000)
21Ø CALL INT(IR, RE, NST, F), RETURNS(6000)
220 CALL INT (JR, RE, NST, F), RETURNS (6000)
230 CALL INT(KR, RE, NST, F), RETURNS(6000)
240 CALL INT(LR, RE, NST, F), RETURNS(6000)
250 CALL INT(MR, RE, NST, F), RETURNS(6000)
260 CALL INT(NR, RE, NST, F), RETURNS(6000)
270 CALL INT(OR, RE, NST, F), RETURNS(6000)
280 CALL INT(PR,RE,NST,F),RETURNS(6000)
290 CALL INT(QR,RE,NST,F),RETURNS(6000)
300 CALL INT(SR,RE,NST,F),RETURNS(6000)
310 CALL INT(TR,RE,NST,F),RETURNS(6000)
```

```
320 CALL INT(UR, RE, NST, F), RETURNS(6000)
1000 GO TO (1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,
     *22ØØ,23ØØ,24ØØ),NN
1100 CALL INT(VR, RE, NST, F), RETURNS(6000)
1200 CALL INT(WR, RE, NST, F), RETURNS(6000)
1300 CALL INT(XR,RE,NST,F),RETURNS(6000)
1400 CALL INT(YR, RE, NST, F), RETURNS(6000)
1500 CALL INT(AS, RE, NST, F), RETURNS(6000)
1600 CALL INT(BS,RE,NST,F),RETURNS(6000)
1700 CALL INT(CS,RE,NST,F),RETURNS(6000)
 1800 CALL INT(DS,RE,NST,F),RETURNS(6000)
1900 CALL INT(ES,RE,NST,F),RETURNS(6000)
2000 CALL INT(FS,RE,NST,F),RETURNS(6000)
2100 CALL INT(GS,RE,NST,F),RETURNS(6000)
2200 CALL INT(HS, RE, NST, F), RETURNS(6000)
2300 CALL INT(IS,RE,NST,F),RETURNS(6000)
2400 CALL INT (JS, RE, NST, F), RETURNS (6000)
3000 GO TO (3100,3200,3300,3400,3500,3600,3700,3800,3900,4000,4100,4200
     *) NN
3100 CALL INT(KS,RE,N3T,F),RETURNS(6000)
3200 CALL INT(LS,RE,NST,F),RETURNS(6000)
3300 CALL INT(MS,RE,NST,F),RETURNS(6000)
3400 CALL INT(NS,RE,NST,F),RETURNS(6000)
3500 CALL INT(OS,RE,NST,F),RETURNS(6000)
3600 CALL INT(PS,RE,NST,F),RETURNS(6000)
3700 CALL INT(QS,RE,NST,F),RETURNS(6000)
3800 CALL INT(RS, RE, NST, F), RETURNS(6000)
3900 CALL INT(TS,RE,NST,F),RETURNS(6000)
4000 CALL INT(US,RE,NST,F),RETURNS(6000)
4100 CALL INT(VS,RE,NST,F),RETURNS(6000)
 4200 CALL INT(WS,RE,NST,F),RETURNS(6000)
5000 GO TO (5100,5200,5300,6000),NN
5100 CALL INT(YS, RE, NST, F), RETURNS(6000)
5200 CALL INT(XS,RE,NST,F),RETURNS(6000)
5300 CALL INT(ZS,RE,NST,F),RETURNS(6000)
6000 RETURN
      END
*DECK SURF
      SUBROUTINE SURF (TYPE,NS,A1,B1,SF,PS,RH,DEL,BET,FR,WF,WP)
      INTEGER TYPE
      DIMENSION S(4, 18, 12)
      DATA(((S(1,I,N),N=1,12),I=1,18)=
     * 1.,.0000,0., 2.00,.750,.04740,.032,12.000,
                                                    76.1,.606,1.693,1.068
     *,2.,.0000,0., 3.01,.750,.03546,.032,12.000,
                                                    98.3,.706,1.460,1.107
     *,3.,.0000,0., 3.97,.750,.02820,.032,12.000, 119.4,.766,1.353,1.145
     *,4.,.0000,0., 5.30,.470,.02016,.006, 2.490, 188.0,.719,1.013,1.033
     *,5.,.0000,0., 6.20,.405,.01820,.010, 1.200, 204.0,.728,1.408,1.066
     *,6.,.0000,0., 9.03,.823,.01522,.008, 1.170, 244.0,.888,1.010,1.078
     *,7.,.0000,0.,11.10,.250,.01012,.006, 2.500, 367.0,.756,1.032,1.071
     *,8.,.0000,0.,11.11,.480,.01153,.008, 8.000, 312.0,.854,1.000,1.089
     *,9.,.0000,0.,14.77,.330,.00848,.006, 2.510, 420.0,.844,1.018,1.097
     1,0.,.0000,0.,15.08,.418,.00876,.006, 6.840, 414.0,.870,1.014,1.100
     1,1.,.0000,0.,19.86,.250,.00615,.006, 2.510, 561.0,.849,1.024,1.135
     1,2.,.0000,0.,10.27,.544,.01259,.010, 5.000, 289.9,.863,1.018,1.114
     1,3.,.0000,0.,11.94,.249,.00940,.006, 5.000, 393.0,.769,1.023,1.077
     1,4.,.0000,0.,12.00,.250,.00941,.006, 2.500, 392.7,.773,1.023,1.078
     1,5.,.0000,0.,16.96,.256,.00565,.006, 5.000, 607.8,.861,1.009,1.113
     1,6.,.0000,0.,25.79,.204,.00377,.006, 2.500, 855.6,.884,1.012,1.183
     1,7.,.0000,0.,30.33,.345,.00401,.006, 2.500, 812.5,.928,1.008,1.223
     1,8.,.0000,0.,46.45,.100,.00264,.002, 2.630,1332.5,.837,1.020,1.102
```

```
* )
     DATA(((S(2, I, N), N=1, 12), I=1, 14)=
    * 1.,.3750,0., 6.06,.250,.01460,.006, 0.055, 256.0,.640,1.024,1.038
    *,2.,.3750,1., 6.06,.250,.01460,.006, 0.130, 256.0,.640,1.024,1.038
    *,3.,.5000,0., 6.06,.250,.01460,.006, 0.055, 256.0,.640,1.024,1.038
    *,4.,.5000,1., 6.06,.250,.01460,.006, 0.130, 256.0,.640,1.024,1.038
    *,5.,.3750,0., 8.70,.250,.01196,.006, 0.055, 307.0,.705,1.024,1.055
    *,6.,.3750,1., 8.70,.250,.01196,.006, 0.080, 307.0,.705,1.024,1.055
    *,7.,.1875,Ø.,11.10,.250,.01012,.006, 0.055, 367.0,.756,1.024,1.071
    *,8.,.2500,0.,11.10,.250,.01012,.006, 0.035, 367.0,.756,1.024,1.071
    *,9.,.2500,2.,11.10,.250,.01012,.006. 0.055, 367.0,.756,1.024,1.071
    1,0.,.3750,0.,11.10,.250,.01012,.006, 0.055, 367.0,.756,1.024,1.071
    1,1.,.3750,2.,11.10,.250,.01012,.006, 0.055, 367.0,.756,1.024,1.071
    1,2.,.5000,0.,11.10,.250,.01012,.006, 0.055, 367.0,.756,1.024,1.071
    DATA(((S(3,I,N),N=1,12), I=1,12)=
    * 1.,.2500,0.,11.10,.250,.01012,.006, 0.250, 367.0,.756,1.024,1.071
    *,2.,.0938,0.,12.22,.485,.01120,.004, 0.094, 340.0,.862,1.000,1.108
    *,3.,.1250,0.,15.20,.414,.00868,.006, 0.125, 417.0,.873,1.015,1.222
    *,4.,.1250,0.,13.95,.375,.00879,.010, 0.125, 381.0,.840,1.027,1.385
    *,5.,.5000,0.,11.94,.237,.00744,.006, 0.500, 461.0,.796,1.512,1.072
    *,6.,.2500,0.,15.40,.206,.00527,.006, 0.250, 642.0,.816,1.404,1.102
    *,7.,.1667,Ø.,12.18,.353,.ØØ885,.ØØ4, Ø.178, 422.Ø,.847,1.362,1.Ø51
    *,8.,.1429,Ø.,15.75,.3Ø4,.ØØ679,.ØØ4, Ø.143, 526.Ø,.859,1.327,1.Ø67
    *,9.,.1250,0.,20.06,.201,.00489,.004, 0.125, 698.0,.843,1.373,1.087
     1,0.,.1250,0.,19.82,.205,.00509,.004, 0.125, 680.0,.841,1.377,1.086
    1,1.,.1250,0.,16.12,.206,.00611,.006, 0.125, 660.0,.823,1.381,1.107
     1,2.,.1250,0.,16.00,.255,.00514,.006, 0.125, 550.0,.845,1.366,1.106
     DATA(((S(4, I, N), N=1, 12), I=1, 3)=
    * 1.,.3750,0.,11.48,.413,.01060,.006, 0.078, 351.0,.847,1.015,1.074
    *,2.,.3750,0.,11.50,.375,.00993,.010, 0.07B, 347.0,.B22,1.027,1.130
     *,3.,.3750,0.,17.80,.413,.00696,.006, 0.078, 514.0,.892,1.015,1.120
     A1=S(TYPE,NS,2)
     B1=S(TYPE,NS,3)
     SF=S(TYPE,NS,4)
     PS=S(TYPE,NS.5)
     RH=S(TYPE,NS,6)/4.
     DEL=S(TYPE,NS.7)
     BET=S(TYPE,NS,9)
     FR=S(TYPE,NS,10)
     WF=S(TYPE,NS,11)
     WP=S(TYPE,NS,12)
     RETURN
      END
*DECK DEFAULT
      BLOCK DATA DEFAULT
C
C
      DEFAULT VALUES FOR NAMELIST INDATA
C
      REM.
          IAFRA
      COMMON/INPUT/TYPA, NSA, TYPG, NSG, RLENI, RLI, NL, IAFRA, AFRAI, NA, WA, PINA
                   ,TINA,PEXG,WG,TING,FAR,VINPUT
C
      DATA TYPA, NSA, TYPG, NSG /1, 7, 1, 7 /
      DATA RLENI, RLI, NL, IAFRA, AFRAI, NA /3.0, 1.0, 5, 25, 25.0, 4 /
      DATA WA, PINA, TINA /90.0, 116.4, 1040.5 /
      DATA WG, PEXG, TING /101.45, 14.90, 1646.4 /
```

```
DATA FAR, VINPUT /Ø.Ø145, 9Ø.Ø /
C
      END
*DECK INTERP
      SUBROUTINE INT(NR, RE, NST, F), RETURNS(A)
      REAL NR. NST
      DIMENSION NR (4,18)
      N=\emptyset
      N=N+1
      J = \emptyset
    5 J=J+1
      IF(RE.LT.NR(N,J)) GO TO 5
      IF(J.EQ.1) GO TO 19
      IF(NR(1,J).EQ.Ø.) GO TO 10
      X=NR(1,J-1)-NR(1,J)
      Y=NR(1,J-1)-RE
      Z=Y/X
      NST=Z*(NR(2,J)-NR(2,J-1))
      NST=NR(2,J-1)+NST
      F=Z*(NR(3,J)-NR(3,J-1))
      F=NR(3,J-1)+F
      GO TO 2Ø
   10 F=NR(4,2)/RE
      NST=NR(4,1)/RE**\emptyset.7
      GO TO 2Ø
   19 WRITE(6,15) RE
   15 FORMAT(1X, "REYNOLDS NUMBER OUT OF RANGE OF PROGRAMMED TABLES = ",
     1F1Ø.1)
      NST=Ø.
      F=Ø.
   20 RETURN A
      END
*DECK TRANSP
      SUBROUTINE TRANSP(T, FAR, CP, TK, MU, MW)
      REAL MU, MUA, MUF, MUG, MW
C
      DATA A1,A2,A3,A4,A5,A6,A7,A8/1.Ø11554ØE-25,-1.452677ØE-21,
     A7.6215767E-18,-1.5128259E-14,-6.7178376E-12,6.5519486E-Ø8,
     B-5.1536879E-Ø5,2.5Ø2ØØ51E-Ø1/
      DATA B1, B2, B3, B4, B5, B6, B7, B8/7. 2678710E-25, -1.3335668E-20,
     A1.0212913E-16,-4.2051104E-13,9.9686793E-10,-1.3771901E-06,
     B1.225863ØE-Ø3,7.3816638E-Ø2/
      DATA C1,C2,C3,C4,C5,C6,C7/-6.2176401E-22,7.1827364E-18,
     A-3.1410386E-14,6.7214720E-11,-7.5336781E-8,6.1979074E-5,
     B-4.81E-3/
      DATA D1,D2,D3,D4,D5,D6,D7/1.0404582E-19,-7.5213293E-16,
     A2.1637607E-12,-3.1593096E-9,2.4649233E-6,-9.0800204E-4,1.1073E-1/
      DATA E1, E2, E3, E4, E5, E6, E7/2.4724974E-21, -1.6756272E-17,
     A4.1505396E-14,-3.9906519E-11,-9.1347177E-9,8.8743855E-5,
     B2.98E-3/
      DATA F1,F2,F3,F4,F5,F6,F7/-2.0255169E-19,1.4196996E-15,
     A-3.9713025E-12.5.6582466E-9.-4.3414613E-6.1.8135009E-3.-3.3929E-1/
```

```
C
      IF(T .LT. 500. .OR. T .GT. 2000.) GO TO 100
      IF(FAR .LT. Ø.Ø .OR. FAR .GT. Ø.Ø34826) GO TO 100
      CPA=((((((A1*T+A2)*T+A3)*T+A4)*T+A5)*T+A6)*T+A7)*T+A8
      CP=CPA
      IF(FAR.EQ.Ø.) GO TO 3Ø
      CPF=((((((B1*T+B2)*T+B3)*T+B4)*T+B5)*T+B6)*T+B7)*T+B8
      CPG=(CPA+FAR*CPF)/(1.+FAR)
      CP=CPG
   3Ø TKA=(((((C1*T+C2)*T+C3)*T+C4)*T+C5)*T+C6)*T+C7
      TK=TKA/3600.
      IF(FAR.EQ.Ø.) GO TO 4Ø
      TKF=(((((D1*T+D2)*T+D3)*T+D4)*T+D5)*T+D6)*T+D7
      TKG=(TKA+FAR*TKF)/(1.+FAR)
      TK=TKG/3600.
   40 MUA=(((((E1*T+E2)*T+E3)*T+E4)*T+E5)*T+E6)*T+E7
      MU=MUA/3600.
      IF(FAR.EQ.Ø.Ø) GO TO 5Ø
      MUF=(((((F1*T+F2)*T+F3)*T+F4)*T+F5)*T+F6)*T+F7
      MUG=(MUA+FAR*MUF)/(1.+FAR)
      MU=MUG/36ØØ.
   50 MW=28.97-.946186*FAR
      RETURN
  100 WRITE (6, 101) T, FAR
  101 FORMAT(10X,25HTRANSP INPUT OUT OF RANGE,5X,7HTEMP = ,F0.2,5X,6HFAR
     * = F7.4
      RETURN
      END
*DECK BENDLOS
      SUBROUTINE BENDLOS(X,Y)
C
      Z=X*57.29578
      Y=.2922713E-01-.2639695E-02*Z+.2272872E-03*Z**2-.1850293E-05*Z**3+
     2 .3655184E-07*Z**4-.449784E-09*Z**5+.2088911E-11*Z**6
C
      RETURN
      END
```

#### APPENDIX B

#### MAIN PROGRAM VARIABLES

plate thickness, in AA/G total heat transfer, ft<sup>2</sup> minimum free flow area, ft<sup>2</sup> ACA/G frontal area, ft<sup>2</sup> AFRA/G value of frontal area increase per iteration, ft2 **AFRAI** AHCMEXA/G header core matrix exit area, ft<sup>2</sup> header core matrix inlet area. ft<sup>2</sup> AHCMINA/G ALHA/G ratio of total transfer on one side to total volume of exchanger ANGEXA/G header core exit angle, radians ANGINA/G header core inlet angle, radians AXA/G fins/in BA/G plate spacing, in ratio of total heat transfer area to volume between plates, ft<sup>2</sup>/ft<sup>3</sup> BETA/G BXA/G denotes different fins capacity rate, BTU/(hr °R) CA/G CCA/G jet contraction-area ratio CFA/G pressure effect core friction CMIN minimum flow-stream capacity rate, BTU/(hr °R) COLBFA/G Colburn factor CPA/G specific heat, BTU/(hr °R) CR minimum capacity rate ratio DELA/G fin thickness, in DELPA/G total pressure loss on one side DELPAB/GB bend pressure loss DELPAB1/GB1 inlet bend pressure loss DELPAB2/GB2 exit bend pressure loss DELPAC/GC core pressure loss DELPAH air-side header pressure loss DELPT total heat exchanger pressure loss DEXA air-side exit header diameter, ft

air-side inlet header diameter, ft

DINA

E heat exchanger effectiveness

ELA/G pressure loss exit effects

ERROR heat exchanger effectiveness tolerance

ETAFA fin effectiveness

ETAOA/G surface effectiveness

FA/G friction factor

FAA/G pressure effect flow acceleration

FAR fuel to air ratio

FLA free stream counter-flow length, ft

FRA/G fin area/total area

GA/G flow stream mass velocity,  $lb_m/(hr ft^2)$ 

GC gravitational constant in Newton's second law,  $lb_m ft/(lb_f sec^2)$ 

HA/G unit film conductance, BTU/(hr ft<sup>2</sup> °R)

HFXA/G ratio factor used in core pressure loss to account for matrix in

headers

HINA air-side dynamic velocity,  $lb_f/ft^2$ 

I counter

IAFRA initial frontal area, ft<sup>2</sup>

ILA/G pressure loss entrance effects

Il counter

K unit thermal conductivity, BTU/(hr ft<sup>2</sup> °R/ft)
KA/G fluid thermal conductivity, BTU/(hr ft °R)

KBEXA/G exit bend loss coefficient
KBINA/G inlet bend loss coefficient
KCA/G contraction-loss coefficient

KDA/G momentum velocity-distribution coefficient

KEA/G expansion-loss coefficient

L counter

LA/G fin length from root to center, ft

LHGEXG exit gas-side header length, ft

LHGING inlet gas-side header length, ft

L1 counter

MA/G molecular weight

MAL/GL fin effectiveness parameter

viscosity coefficient, lbm/(hr ft) MUA/G

number of frontal area interations NA

Revnolds number to the  $10^{-4}$ NARA/G NE heat exchanger effectinvess NL. number of length interation

NPRA/G Prandtl number Reynolds number NRA/G

NSA/G surface number used as input parameter

NSTA/G Staton number

NTU number of heat transfer units

NXA/G denotes different fins

overall length of heat exchanger enclosure, ft **OVALHT** PAA/G percent area opening on one side to total area

PCDELPA/G percent total pressure drop on one side, %

**PCDELPT** percent total pressure drop of heat exchanger, %

percent heat exchanger effectiveness, % **PCNE** outlet pressure on one side, lbs/in<sup>2</sup> PEXA/G

PΙ  $\pi$  - constant = 3.1416

inlet pressure on one side,  $1b_f/in^2$ PINA/G

parameter used in overall coefficient of heat transfer, RA

hr ft<sup>2</sup> °R/BTU

hydraulic radius, ft RHA/G

density of heat exchanger material,  $1b_m/ft^3$ RHO

exit density of fluid on one side of heat exchanger headers,  $1b_m/ft^3$ RHOEXA/G inlet density of fluid on one side of heat exchanger headers,  $lb_m/ft^3$ RHOINA/G

**RLEN** flow length, ft

initial flow length, ft RLENI

RL I value of length increase per iteration, ft

RU gas constant, in-1b<sub>f</sub>/(1b<sub>m</sub>  $^{\circ}$ R)

SFA/G fins/in

ratio of free-flow area to frontal area SIGA/G

specific volume,  $ft^3/1b_m$ SPVA/G

mean conditions specific volume,  $ft^3/1b_m$ SPYAM/GM

TAVA/G average temperature, °R TEXA/G outlet temperature, °R

TINA/G inlet temperature, °R

TLA/G sum of pressure loss effects

TYPA/G fin type

UA overall coefficient of heat transfer, BTU/(hr ft<sup>2</sup> °R)

VEXA air-side exit header velocity, ft/sec

VEXAC2/GC2 core exit velocity, ft/sec
VEXAH2/GH2 header exit velocity, ft/sec
VEXAM/GM mean exit velocity, ft/sec

VINA air-side inlet header velocity, ft/sec

VINAC1/GC1 inlet core velocity, ft/sec VINAH1/GH1 inlet header velocity, ft/sec VINAM/GM mean inlet velocity, ft/sec

VINPUT input velocity, ft/sec

VOL volume, ft<sup>3</sup>

WA/G mass flow rate, 1b/sec

WFA/G factor to account for non-extended fin suface weight

WHXT heat exchanger weight, 1b

WIE estimated weight of header. 1b

WPA/G factor to account for plate in weight calculations

WPLA total weight of enclosure, 1b

WTA/G total weight of fins and plate, 1b

X expontial variable used in effectiveness calculations

XNCFL heat exchanger non-flow length, ft

NOTE:

A/G air or gas-side

APPENDIX C
OUTPUT FOR SAMPLE CASES

| CORE HE      | HEAT TRANSFER SUPFACE | ER SUPF                                                                   | ACE                                                                                                                                                                                                                                       |                                            | A I R                                            | A 18-5 10E                         |                                          |                           |                        | GAS-SIN                                         | ř                                               |               |                 |                  |                    |
|--------------|-----------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------------|---------------------------|------------------------|-------------------------------------------------|-------------------------------------------------|---------------|-----------------|------------------|--------------------|
|              |                       | TYPE AND<br>PLATE SPA<br>HYDABULIC<br>FIN THICK<br>COMPACINE<br>FIN/TOTAL | TYPE AND FIN DETAIL PLAIF SPACING HYDARALIC KADIUS FIN INICKNESS COMPACINESS FINTOTAL AREA                                                                                                                                                | A 1.                                       | 1-0.425.<br>0.425.<br>0.425.<br>0.425.<br>0.425. | à                                  | -11.10<br>FT<br>IN<br>SAFT/CUFT<br>FI/FI |                           | <u>.</u>               | . 1550<br>. 00253<br>. 00255<br>. 9460<br>367.0 | 0-11.10<br>IN<br>FT<br>IN<br>SQFF/CUFT<br>FT/FT | <u>.</u>      |                 |                  |                    |
| HEAT EX      | EXCHANGER CONDITIONS  | ON01110                                                                   | SN                                                                                                                                                                                                                                        |                                            | A I R-                                           | AIR-SIDE INLE                      | NLET                                     |                           |                        | GAS-SIDE INL                                    | DE THLE                                         | _             | 6AS-S10E        | E EXII           |                    |
|              |                       | MASSFLOW<br>PRFSSURE<br>IF 4PERATUR<br>FUFL-AIR                           | LOW<br>LUSE<br>RATURE<br>AIK PATIO                                                                                                                                                                                                        |                                            | 90.00<br>111.90<br>794.50                        |                                    | L1/SEC<br>PSIA<br>BEG R                  |                           |                        | 101.49 LB/S<br>1641.30 0FG                      | LB/SEC<br>_ 0FG R                               |               | 14.90           | PS1A             |                    |
| HE ADEP      | HEADER DFSIGN DETAILS | IAILS                                                                     |                                                                                                                                                                                                                                           |                                            |                                                  |                                    |                                          |                           |                        |                                                 |                                                 |               |                 |                  |                    |
|              |                       | INL'T AIR<br>OUTLET AIR<br>INLET DIAR<br>EXIT. AIR U                      | INL-T AIR HEADEY DIAMETER SIZED FOR INLET AIR VELOCITY = 90.00 FIZEC<br>OUTLET AIR HEADE? DIANLTER SIZED FOR UNIFORM FLOW DISTRIDUTION AND MINIMUM HEADIR LOSS<br>INLET DIAMETER = 1.11 FT<br>EXIT. AIF UIAMETER ANJ VELOCITY GIVEN BELOW | E DIAMETI<br>JE DIAME<br>11.81<br>ER ANJ V | ER SIZ<br>TER SI<br>FI<br>ELOGII                 | <u>e</u> d For<br>250 Fo<br>7 GIVE | INLET<br>OR UNIFO                        | AIR VELO<br>Drm flow<br>M | CITY = 9<br>NISTRIBUTI | 0.00 FT/S                                       | SEC<br>SEC                                      | FAUER LO      | S               |                  |                    |
| LENGTH<br>FT | VOLUME<br>CU FT       | AREA<br>SQF I                                                             | P-A-EX<br>FS1A                                                                                                                                                                                                                            | P-6-1N<br>PS IA                            | PCT                                              | 0P6<br>PCT                         | 0P 1                                     | 1-A-EX<br>Df G R          | 1-G-Ex<br>DEG R        | нЕ I GHT<br>F I                                 | 2                                               | EFFECT<br>PCT | WE I GHT<br>LBS | HEADER<br>Dia fi | VELOCIT<br>FT/SEC  |
| 3.0          | 15.0                  | 8.55                                                                      | 110.74                                                                                                                                                                                                                                    | 19.58                                      |                                                  | 31.41                              | \$2.44                                   | 1424.8                    | 1100.7                 | 7.46                                            | 2.43                                            | 74.85         | 8788.9          | 2.65             | 17.74              |
| 0 G          | 100.0                 | 25.0                                                                      | 110.62                                                                                                                                                                                                                                    | 19.39                                      | 1.15                                             | 34.18                              | 15.33                                    | 1476.0                    | 1054.3                 | 64.6                                            | 3.23                                            | 90.00         | 10323.8         | 2.67             | 79.14              |
| 9            | 151.0                 | 25.0                                                                      | 110.37                                                                                                                                                                                                                                    | 20.92                                      |                                                  | 40.40                              | 41.77                                    | 1535.1                    | 9.998                  | 18.52                                           | , ,<br>, ,                                      | 37.66         | 11954.6         | 2. 20            | 80.08              |
| 7.0          | 175.0                 | 25.0                                                                      | 119.25                                                                                                                                                                                                                                    | 21,35                                      |                                                  | 43.30                              | 44.77                                    | 1953.5                    | 982.7                  | 11.53                                           | 5.04                                            | 69.80         | 15147.3         | 2.11             | 01.36              |
| LENGIH<br>FT | VOLUM.<br>CU FI       | APEA                                                                      | F-A-EX<br>PSIA                                                                                                                                                                                                                            | P-C-IN                                     | PCI                                              | 90 G                               | PCI                                      | 1-A-FX<br>066 R           | 1-6-EX<br>DEG R        | HE I GHI<br>F T                                 | J.                                              | EFFECT<br>PCT | HETCHT<br>LBS   | HEADER<br>DIA FT | VELOCI F<br>FT/SEC |
| 9.6          | 150.1                 | 0. ns                                                                     | 111.27                                                                                                                                                                                                                                    | 16.75                                      | •50                                              | 12.44                              | 13.01                                    | 1461.5                    | 1067.4                 | 7.40                                            | 2.97                                            | 79.12         | 16 504.4        | 2.66             | 78.55              |
| <br>         | 250.0                 | 50.0                                                                      | 111.23                                                                                                                                                                                                                                    | 17.43                                      |                                                  | 14.30                              | 14.90                                    | 1507.4                    | 1025.5                 | 8.50<br>3.51                                    | 3,95<br>4,93                                    | 34.44         | 19558.8         | 2.68<br>2.70     | 79.77              |
| 9.0<br>7.0   | 340.0                 | 50.1                                                                      | 111.14                                                                                                                                                                                                                                    | 17.51                                      |                                                  | 17.54                              | 18.22                                    | 1558.8                    | 977.7                  | 10.52                                           | 5.41<br>6.49                                    | 90.42         | 25642.2         | 2.72             | 81.17              |
| LENGTH       | VOLUME                | ARFA                                                                      | P-A-Ex                                                                                                                                                                                                                                    | N1-9-4                                     | DPA                                              | 960                                | 100                                      | 1-A-Ex                    | #-6-E                  | HE I GH1                                        | E N                                             | EFFECT        | WEIGHT          | HFADER           | VFL OCT            |
| E            | CU F1                 | S0r 1                                                                     | PS IA                                                                                                                                                                                                                                     | PSIA                                       | PCI                                              | PC                                 | PCT                                      | Or G R                    | 0EG R                  | -                                               |                                                 | PCT           | 188             | DIA FT           | FT/SEC             |
| 3.0          | 225.0                 | 15.4                                                                      | 111.43                                                                                                                                                                                                                                    | 15.93                                      | . 42                                             | 6.90                               | 7.32                                     | 1478.2                    | 1052.2                 | 7.48                                            | 3.28                                            | 81.05         | 24068.8         | 2.17             | 78.94              |
| •            | 3.0.0                 | 75.9                                                                      | 111.41                                                                                                                                                                                                                                    | 16.08                                      | *                                                | 7.92                               | 8.35                                     | 1521.4                    | 1012.5                 | 8.58                                            | 4,36                                            | 96.87         | 28532.2         | 2.69             | 60.00              |
| 9.           | 450.0                 | 75.0                                                                      | 111.37                                                                                                                                                                                                                                    | 16.37                                      | * 3                                              | 9.30                               | 10.56                                    | 1569.1                    | 968.1                  | 10.53                                           | 6.53                                            | 91.62         | 37420.0         | 2<br>2           | 61.35              |
| :            | 565.0                 | 75.0                                                                      | 111.35                                                                                                                                                                                                                                    | 16.52                                      | .5                                               | 10.46                              | 11.36                                    | 1583.5                    | 954.6                  | 11.53                                           | 7.61                                            | 93.28         | 41954.6         | 2.12             | 61.73              |
| LENGTH<br>FI | VOLUME<br>CU FT       | SOFI                                                                      | F-A-FX<br>PCIA                                                                                                                                                                                                                            | P-6-14                                     | PCT                                              | 10 G                               | 1 de 1                                   | 1-A-EX                    | 1-6-Ex                 | HE I GHI                                        | 2                                               | eFFECT<br>PCT | THOI 3M         | HFADER           | VELOCIT            |
| •            |                       |                                                                           |                                                                                                                                                                                                                                           |                                            | <b>.</b>                                         | ;                                  | ;                                        | i<br>i                    | :                      | •                                               |                                                 | }             | į               |                  | 36.                |
| ., ,         | 3.00.0                | 100.0                                                                     | 111.50                                                                                                                                                                                                                                    | 15.61                                      | ٠<br>ت                                           | 4.74                               | 5.16                                     | 1501.4                    | 1031.0                 | 7.49                                            | 3.60                                            | 13.74         | 31 5 34 . 6     | 2.58             | 79.53              |
| 2.5          | 200.0                 | 100.0                                                                     | 111.46                                                                                                                                                                                                                                    | 15.42                                      | : :                                              | 6.15                               | 6.54                                     | 1565.8                    | 971.2                  | 9.52                                            | 5. 51                                           | 41.23         | 43221.4         | 2.2              | 81.23              |
| ••           | 2.007                 | 1001                                                                      | -                                                                                                                                                                                                                                         | 15.92                                      | 3                                                | 6.45                               | 1.25                                     | 1543.0                    | 955.1                  | 10.53                                           | 1.57                                            | 93.23         | 0.5064          | 2:2              | 81.68              |
| :            | 0.00                  | 700.0                                                                     | 111.45                                                                                                                                                                                                                                    | 16.06                                      | 74.                                              | 1.54                               | 7.96                                     | 1595.5                    | 9.03.4                 | 11.54                                           | A. 8 S                                          | 44.67         | 54462.5         | 2.12             | 82.81              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A113013A                                                                                                                                                                                                                                                                                        | 68.93<br>69.78<br>78.37<br>78.82                                      | FELOCITY<br>FELSEC<br>69.33<br>70.98<br>70.93<br>71.19               | VELOCITY<br>FT/SEC<br>69.58<br>78.27<br>78.27<br>71.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VELOCITY<br>F17SFC<br>70.61<br>71.06<br>71.65                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| DE FXIT<br>PSIA<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                           | 2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05                          | HEADER<br>OIA FI<br>2.85<br>2.85<br>2.85<br>2.87                     | HFADER<br>DIA FT<br>2.84<br>2.85<br>2.86<br>2.87<br>2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEADER<br>DIA FI<br>2.85<br>2.86<br>2.87<br>2.87<br>2.87           |
| 6AS-SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS<br>WEIGHT                                                                                                                                                                                                                                                                                    | ~~~                                                                   | MEIGNT<br>LBS<br>17118.9<br>20164.9<br>23283.7<br>26238.9<br>29271.3 | LBS<br>24989.4<br>29448.2<br>33841.2<br>38315.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METGMT LRS 82750.8 365780.0 44412.9 562430.2                       |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EAUER LO                                                                                                                                                                                                                                                                                        | 74.73                                                                 | FFECT<br>PCI<br>78.60<br>84.24<br>87.78<br>99.27                     | FFECT<br>FCT<br>61.08<br>64.19<br>91.67<br>93.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCI<br>PCI<br>PCI<br>PCI<br>PCI<br>PCI<br>PCI<br>PCI<br>PCI<br>PCI |
| -11.10 IN IN IN IN IN SQFI/CUFI FI/FI JIDE IMLEF LB/SEC LB/SEC LB/SEC LB/SEC LB/SEC LB/SEC LB/SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEC<br>NIMUA H<br>NTU                                                                                                                                                                                                                                                                           | 2.25<br>4.25<br>4.86<br>5.87                                          | 2.97<br>3.95<br>4.93<br>5.91<br>6.89                                 | NTU<br>3.32<br>5.54<br>5.53<br>7.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 10<br>7.95<br>7.57<br>7.64                                       |
| 6AS-SID<br>-0.0100-*-1<br>-2500 II<br>-00253 F<br>-00253 F<br>-002 | ADER DIAMETER SIZED FOR INLET AIP VELOCITY * 90.00 F1/SEC  EADLR DIAMETER SIZED FOR UNIFORM FLOM DISTRIBUTION AND MINIMUM MEADER LOSS  ER * 2.05 FT  METER AND VELOCITY GIVEN BELOM  X P-G-IN DPA DPG DPT F-A-EX T-G-EX MEIGHI NIU EFFECT  X P-G-IN DPA DPG DPT F-A-EX T-G-EX MEIGHI NIU EFFECT | 7 - 7<br>7 - 8<br>8 - 9<br>9 - 9<br>1 0 - 9<br>1 1 0 - 9<br>1 1 0 - 9 | MEIGHT FT 7.89 8.40 9.91 11.52                                       | HFIGHT<br>F T<br>7.89<br>8.31<br>9.92<br>10.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HELGMT FT 7.90 0.91 0.92 10.93                                     |
| <del>.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DISTRIBUT:                                                                                                                                                                                                                                                                                      | 1262.4<br>1230.0<br>1230.0<br>1192.3                                  | F-G-EX<br>DEG R<br>1239.9<br>1210.6<br>1191.1<br>1177.4              | 1-G-EX<br>DEG R<br>1227.9<br>1200.3<br>1162.2<br>1169.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-6-EX<br>0EG R<br>1210.6<br>1170.3<br>1179.4<br>1159.4            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AIP VELO                                                                                                                                                                                                                                                                                        | 1493.3<br>1529.4<br>1553.7<br>1571.2                                  | 7-A-EK<br>OFG R<br>1518-4<br>1550-9<br>1572-3<br>1587-4              | 1-6 K<br>DEG R<br>1531.0<br>1562.3<br>1592.1<br>1595.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-A-Ex<br>DEG 3<br>1550.9<br>157.9<br>1607.1<br>1615.6             |
| 10F<br>IN<br>IN<br>SQFICUFI<br>FYFI<br>FYFI<br>FYFI<br>FYFI<br>FYFI<br>FYFI<br>FYFI<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R INLET DA UNIF IN BELO DAT                                                                                                                                                                                                                                                                     | 3 2 4 4 4<br>3 2 4 4 8 6                                              | 14.31<br>16.34<br>16.34<br>19.97<br>21.69                            | DPT<br>PCT<br>9.17<br>9.34<br>11.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.79<br>6.66<br>9.25                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZED FOG<br>1ZED FC<br>TV G1Vt<br>OP G                                                                                                                                                                                                                                                           | おいこうご                                                                 | 13.78<br>15.77<br>17.59<br>19.32                                     | 0PG<br>PST<br>7.79<br>8.33<br>10.03<br>11.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                           |
| AIK-S-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EFER SIL                                                                                                                                                                                                                                                                                        |                                                                       | 0PA<br>PCT<br>84.<br>54.<br>65.                                      | 404 W 4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FER DIAMET<br>DER DIAME<br>TER AND V                                                                                                                                                                                                                                                            | 7018<br>20.25<br>20.46<br>20.93<br>21.46                              | P-G-IH<br>PSIA<br>16.95<br>17.25<br>17.52<br>17.78                   | P-G-IIN<br>PSIA<br>16-06<br>16-25<br>16-39<br>16-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P-G-IN<br>PSIA<br>15.71<br>15.84<br>15.96<br>16.07                 |
| CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                          | ILS<br>INLET AIR HEAD<br>OUTLET DIAMELY<br>EXIT AIR DIAME<br>EXIT AIR DIAME<br>AREA P-A-EX                                                                                                                                                                                                      | 115.21<br>115.00<br>114.95<br>114.65                                  | P-A-EX<br>PSIA<br>115.73<br>115.74<br>115.69<br>115.69               | P-A-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P-STA-P- | P-A-EX<br>PSIA<br>116.02<br>116.04<br>115.96<br>115.96             |
| TYPE AND F<br>PLATE SPAN<br>HYDKAULIC<br>FIN THICKS<br>CUMPACINE<br>FIN/TOTAL<br>CUMOITIONS<br>MASSFLOM<br>PRESSURE<br>TEMPESSURE<br>TEMPESSURE<br>TEMPESSURE<br>TEMPESSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAILS INLET OUTLE INLET EXIT                                                                                                                                                                                                                                                                    | 25.0<br>25.0<br>25.0<br>25.0<br>25.0                                  | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SQFF<br>SQFF<br>100000<br>10000000000000000000000000000            |
| CORE MEAT THANSFER SURFACE TYPE AND PLATE SP HYDRAULT FIN FALL GUNDACIN FIN/TOTA MASSFLOW TEMPERAT TEMPERAT TEMPERAT TEMPERAT TEMPERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MEADER, DESIGN DETAILS INL OUT INL ENTH VOLUME ARE                                                                                                                                                                                                                                              | 75.0<br>106.0<br>125.0<br>156.0<br>175.0                              | YOLUME<br>CU FT<br>150.6<br>250.8<br>350.0<br>350.0                  | VOLUME<br>CU F1<br>225.0<br>300.0<br>575.0<br>650.0<br>525.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOLUME<br>CU FI<br>300.0<br>400.0<br>500.0<br>700.0                |
| CORE HEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HE ADER.                                                                                                                                                                                                                                                                                        |                                                                       | LE 717 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                           | F F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEEG H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                         |

|                         | CORE MEAT TRANSFER SUPFACE                                             | A18-510F                                                                                                                                                       | GAS-STRE                                                                                                                                                                     |               |
|-------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                         | TYPE AND FIN DETAIL PLATE SPALING                                      | 1-0.9888-4-11.10<br>.2580 IN                                                                                                                                   | -                                                                                                                                                                            |               |
|                         | HYDRAULIC RADIUS<br>FIN THICKNESS                                      | .00253 FT<br>.0060 IN                                                                                                                                          | . 00253 FT<br>. 0050 TX                                                                                                                                                      |               |
|                         | COMPACTMESS<br>FIN/TOTAL APEA                                          | 367.0 SOFI/CUFI<br>.7560 FI/FI                                                                                                                                 | 367.0 SQFI/CUFI<br>.7560 FI/FI                                                                                                                                               |               |
| HEAT EXCHANGER CONDITIO | NDITIONS                                                               | AIN-SIDE INLFT                                                                                                                                                 | GAS-SIDE INLET                                                                                                                                                               | GAS-SIDE FXIT |
|                         | MASSFLOW                                                               | 90.00 L9/SEC                                                                                                                                                   | 101.75 LB/SEC                                                                                                                                                                | •             |
|                         | PRESSURE<br>TEMPERATUPE                                                | 223.60 PSTA<br>873.90 neg R                                                                                                                                    | 1426.80 JEG R                                                                                                                                                                | 14.98 PSIA    |
|                         | FUEL-AIR SATIO                                                         | 0.0                                                                                                                                                            | . 0175                                                                                                                                                                       | . 1175        |
| HEADER DESIGN DETAILS   | AILS                                                                   |                                                                                                                                                                |                                                                                                                                                                              |               |
|                         | INLET AIR MEADER DIAP<br>OUTLET AIR MEAUER DIA<br>INLET UIAMETER * 1.3 | AIR HEADER DIAMETER SIZED FOR IMLET AIR VELUCITY = 90.00 F1/SEC.<br>I AIR HEADER DIAMETER SIZED FOR UNIFORM FLOM DISTRIBUTION AND MINIMU<br>UIAMETER * 1.36 FT | I AIR HEADER DIAMFTER SIZED FOR IMLET AIR VELUGITY = 90.00 F1/SEC<br>ET AIR HEADER DIAMFTER SIZED FOR UNIFORM FLOM DISTRIBUTION AND MINIMUM HEADER LOSS<br>  Ulameter = 1.36 | רספפ          |

| LENGIH | VOLUME | ARLA  | P-A-EX      | P-6-1N | OPA<br>A | OPG   | UPT   | T-A-EX    | 1-6-Ex | HE I GHT | 2 TC   | EFFECT | WF IGHT  | HEADER  | VELOCITY   |
|--------|--------|-------|-------------|--------|----------|-------|-------|-----------|--------|----------|--------|--------|----------|---------|------------|
| t      | 2      | SQFT  | PSIA        | PSIA   | PCT      | PCI   | PCI   | a.<br>930 | DEG R  | 1        |        | PCI    | rus      | DIA F1  | FT/SEC     |
| 3.8    | 15.8   | 25.0  | 222.71      | 16.85  |          |       | 26.92 | 1207.2    | 1082.1 | 6.24     | 2.41   | 74.51  | 7776.6   | 1.58    | 69.41      |
| ;      | 198.   | 25.3  | 222.56      | 19.30  | 24.      |       | 29.92 | 1320.1    | 1052.8 | 7.25     | 3.21   | 80.53  | 9388.6   | 1.49    | 78.29      |
| 5.1    | 125.0  | 25.0  | 222. 68     | 19.79  | 4.       |       | 33.28 | 1342.4    | 1032.9 | 9.56     | 4.01   | 64.60  | 10995.4  | 1.90    | 70.09      |
|        | 150.0  | 25.0  | 222,54      | 20.31  | . *      |       | 36.76 | 1358.4    | 1018.5 | 9.27     | . 90   | 87.51  | 12690.5  | 1.91    | 71.33      |
| 7.     | 175.1  | 3.62  | 555.49      | 50.75  | • 50     | 39.26 | 19.76 | 1370.3    | 1.001  | 10.27    | 5.68   | 69.69  | 14 204.4 | 1.91    | 71.65      |
| LENGTH | YOLUME | AREA  | P-A-EX      | N1-9-d | OPA      | 0P G  | 1 40  | 1-A-EX    | 1-6-Ex | HEI GHI  | 2 N    | EFFECT | NE I GHT | HE ADER | VELOCITY   |
| FI     | 3      | SQFT  | PSIA        | PSIA   | PCI      | PC1   | PCF   | 0EG R     | 0EG R  | FT       |        | PCI    | rus      | DIA FT  | FIZSEC     |
| 3.0    | 150.0  | 50.3  | 22 3.00     | 16.43  | .27      | 10.29 | 10.55 | 1311.2    | 1060.8 | 6.25     | 2.96   | 78.90  | 14596.8  | 1.89    | 70.01      |
| ;      | 200.0  | 50.0  | 222.99      | 16.69  | .28      | 12.03 | 12.31 | 1340.7    | 1034.4 | 7.26     | 3.93   | 84.29  | 17630.6  | 1.90    | 70.79      |
| 5.8    | 254.0  | 50.0  | 222.97      | 16.94  | . 28     | 13.68 | 13.96 | 1360.2    | 1016.9 | 8.27     | 4.91   | 87.84  | 20474.5  | 1.91    | 71.30      |
| 9<br>• | 360.0  | 50.0  | 222.95      | 17.17  | .29      | 15.22 | 15.52 | 1373.9    | 1004.5 | 9.27     | 5.89   | 90.35  | 23707.6  | 1.91    | 71.67      |
| 7.0    | 350.0  | 58.0  | 222.93      | 17.40  | .30      | 16.75 | 17.05 | 1364.0    | 995.3  | 10.28    | 6.87   | 92.19  | 26730.3  | 16.1    | 71.94      |
| LENGIH | VOLUME | AREA  | P-A-Ex      | M-9-4  | 0PA      | 0P G  | 1 40  | F-A-EX    | 1-6-Ex | HE I GHI | )<br>N | EFFECT | WE TGHT  | HEADER  | VELOCITY   |
| Ē      | C F1   | SAFI  | <b>VISd</b> | PSIA   | PCT      | PCI   | PCT   | DE G R    | 0EG R  | FI       |        | PCI    | LAS      | DIA FI  | FIZEC      |
| 3.6    | 225.0  | 75.4  | 223.10      | 15.73  | .23      | 5.00  | 5.82  | 1321.3    | 1051.8 | 6.25     | 1.24   | 90.74  | 21228.6  | 1.89    | 70.26      |
| ;      | 300.0  | 75.0  | 223.0A      | 15.88  | .23      | 65.9  | 6.82  | 1349.2    | 1026.0 | 1.26     | 4. 32  | 85.84  | 25672.5  | 1.90    | 10.99      |
| 9      | 375.0  | 15.9  | 223.07      | 16.02  | . 23     | 1.55  | 7.78  | 1367.5    | 1010.3 | 8.27     | 5.39   | A9-17  | 30108.7  | 16.1    | 71.48      |
| 9      | 450.0  | 15.0  | 223.06      | 16.17  | . 24     | 60    | 8.73  | 1380.5    | 938.8  | 9.27     | 6.46   | 91.50  | 34540.1  | 1.91    | 71.82      |
|        | 525.0  | 75.0  | 223.05      | 16.30  | ,24      | 3.45  | 9.66  | 1389.5    | 330.4  | 10.28    | 1.54   | 93.19  | 38968.6  | 1.92    | 72.86      |
| LENGTH | VOLUME | ARCA  | P-A-EX      | N1-9-d | A40      | JPG   | 106   | T-A-EX    | T-6-EX | HEIGHE   | )<br>N | EFFECT | WF IGHT  | HEADER  | VEL OCT TY |
| ī      | 3      | SQFT  | PSIA        | PSIA   | PC1      | PCT   | PC    | d 9≘0     | DEG R  | Ē        |        | PC     | LAS      | DIA FT  | FIZEC      |
| 3.0    | 300.0  | 100.0 | 225.13      | 15.47  | .21      | 3.79  | ,0.4  | 1335.0    | 1039.5 | 6.26     | 3.71   | 8 5.24 | 27777.3  | 1.90    | 70.62      |
| ;      | 7.00%  | 108.0 | 223.12      | 15.57  | .21      | 64.4  | 4.70  | 1360.7    | 1016.4 | 7.27     | *6.4   | 87.34  | 33603.0  | 1.91    | 71.30      |
| 5.0    | 500.0  | 100.0 | 223.12      | 15.67  | • 25     | 5.17  | 5.39  | 11/7.2    | 1001.5 | 8.27     | 6.18   | 90.35  | 19422.5  | 1.91    | 71.73      |
| ••     | 600.0  | 100.0 | 22 3. 11    | 15.77  | . 22     | 5.35  | 6.17  | 1348.6    | 391.2  | 9.28     | 7.41   | 93.02  | 45236.4  | 1.92    | 12.03      |
|        | 7.03/  | 169.  | 225.10      | 15.47  | .22      | 6.51  | 2.0   | 1396.8    | 935.8  | 10.28    | A. 55  | 94.52  | 51046.4  | 1.12    | 12.24      |

| CORE HEAL        | TRANSFE         | HEAT TRANSFER SUPFACE                        | Cť                                                                                                        |                                                                                                                          | 4 I V                                       | AIP-SIDE                         |                                                |                        |                                                                                                                                                                                                | GAS-510F                                    | <b>J</b> E                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                    |
|------------------|-----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
|                  |                 | PLATE AND AUTHORITY THE COMPACT              | TYPE AND FIN UETAIL<br>PLATE SPACING<br>HYDAULIC RADIUS<br>FIN THICKNESS<br>COMPACINESS<br>FIN/TOTAL AREA | A I C                                                                                                                    | 21675-<br>.2500<br>.80251<br>.4860<br>367.0 | <u> </u>                         | -11.10<br>IN<br>FT<br>IN<br>SAFI/CUFT<br>FT/FT |                        | •                                                                                                                                                                                              | .0888-<br>.2588<br>.00253<br>.0068<br>367.0 | 10-11.10<br>IN<br>FT<br>IN<br>SQFI/CUFT<br>FI/F | <b>.</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                    |
| HEAT EXCHANGER   |                 | CONDITIONS                                   | v                                                                                                         |                                                                                                                          | AIR-                                        | AIR-SIDE INLEI                   | NLET                                           |                        |                                                                                                                                                                                                | CAS-SI                                      | GAS-SIDE INLEI                                  |               | GAS-SIDE FXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FXIT             |                    |
|                  |                 | MASSFLOW<br>PRESSURE<br>TLYPERATUR           | OH<br>Re<br>Ature<br>IP patio                                                                             |                                                                                                                          | 90.08<br>223.60<br>676.90                   | 18 LB/SEC<br>10 PSIA<br>10 9EG R | SFC<br>A<br>R                                  |                        |                                                                                                                                                                                                | 101.75 LB/5<br>1426.e0 nfG<br>.0175         | LB/SEC<br>_nfg R<br>75                          |               | 14.98 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSIA             |                    |
| MEACER DESIGN DE | 15N 0E1         | 11118                                        |                                                                                                           |                                                                                                                          |                                             |                                  |                                                |                        |                                                                                                                                                                                                |                                             |                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                    |
|                  |                 | IMLET AL<br>OUTLET A<br>IMLET DI<br>EXIT AIR | 3 2 2 2                                                                                                   | EADER DIAMETER SIZED FOR INLET ,<br>HEADER DIAMETER SIZED FOR UNIFOI<br>Ter * 1.36 Ft<br>Ameter and Velocity Given Pflom | ER SIZ<br>TER SI<br>FI<br>ELOCIT            | ED FOR<br>ZED FO                 | INCET !<br>R UNIFOR                            | AIP VELOG<br>Rm flom 0 | FEADER DIAMETER SIZED FOR INLEF AIP VELOCITY = 90.00 F1/SEC<br>Header Diameter Sized for Uniform flow distribution and Minimum Headep Loss<br>Ter = 1.36 Ft<br>Ameter and Velocity Given Aflow | 0.88 FICON AND MI                           | SEC<br>NIMUM HÉ                                 | .ADEP LOS     | ñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                    |
| LENGTH V<br>FT C | WULUME<br>CU FT | AREA                                         | P-A-EX<br>FSIA                                                                                            | P-6-1N<br>PSIA                                                                                                           | PCT                                         | 900<br>-                         | PCT 10                                         | 1-4-FX<br>0FG 2        | 1-6-EX<br>0f6 R                                                                                                                                                                                | HE 16H1<br>F 1                              | )<br> <br>                                      | EFFECT<br>PCI | NE IGHT<br>LBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEADER<br>Dia ft | VELOCITY<br>FI/SEC |
|                  | 75.0            | 25.4                                         | 221.58                                                                                                    | 18.84                                                                                                                    |                                             |                                  | 27.23                                          | 1317.4                 | 1055.5                                                                                                                                                                                         | 6.25                                        | 3, 13                                           | 40.03         | 1774.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.89             | 70.40              |
|                  | 108.8           | 25.0                                         | 221.13                                                                                                    | 19.27                                                                                                                    |                                             |                                  | 58.51<br>33.99                                 | 1345.9                 | 1029.7<br>1812.8                                                                                                                                                                               | 7.27<br>6.27                                | 5.20<br>5.20                                    |               | 10986.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.48             | 71.72              |
| 7.4              | 15u.e<br>175.e  | 25.6                                         | 220.91                                                                                                    | 20.27                                                                                                                    | 1.20                                        | 36:35                            | 37.25<br>40.36                                 | 1377.8                 | 1001.0                                                                                                                                                                                         | 9.26<br>18.28                               | 6.23                                            |               | 12584.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.92             | 72.10              |
| LENGTH V<br>FT C | עסרטאר<br>כט דד | AREA                                         | P-A-EX<br>PSIA                                                                                            | P-6-1N<br>PS1A                                                                                                           | PCI                                         | 960                              | 190                                            | 7-A-EX<br>0fg R        | 1-6-EX<br>DEG R                                                                                                                                                                                | HE 1 GH T<br>F T                            | 2<br>N                                          | EFFEGT<br>PCI | NEIGHT<br>LBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HFADER<br>Dta ft | VELOCITY<br>FT/SEC |
| 3.8              | 150.0           | 56.3                                         | 222.48                                                                                                    | 16.41                                                                                                                    |                                             | 10.14                            | 10.61                                          | 1343.6                 | 1031.8                                                                                                                                                                                         | 6.26                                        | 5.40                                            | 84.82         | 14587.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.98             | 70.94              |
|                  | 250.0           | 200                                          | 222.41                                                                                                    | 16.91                                                                                                                    | 3.                                          | 13.51                            | 14.05                                          | 1382.9                 | 996.3                                                                                                                                                                                          | 6.28                                        | 6.75                                            |               | 20646.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :-               | 71.99              |
|                  | 126.1           | 20.0                                         | 222.27                                                                                                    | 17.30                                                                                                                    |                                             | 16.62                            | 17.22                                          | 1293.4                 | 966.1                                                                                                                                                                                          | 10.28                                       | 9.6                                             | 95.26         | 26694.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.92             | 72.48              |
| LENGTH V<br>FT C | VOLUME<br>CU FT | AREA                                         | P-A-EX<br>PSIA                                                                                            | P-6-IN<br>PSIA                                                                                                           | PCI                                         | PCT                              | 100<br>PCT                                     | 1-A-FX<br>0EG P        | f-G-EX<br>0EG R                                                                                                                                                                                | HEIGHT<br>FT                                | 2                                               | EFFECT<br>PCT | WE I GHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HEANER<br>Ola fi | VELOCITY<br>FT/SEC |
| •                | 225.0           | 15.0                                         | 222.81                                                                                                    | 15.72                                                                                                                    | . 45                                        | 5.51                             | 5.85                                           | 1354.6                 | 1021.9                                                                                                                                                                                         | 6.27                                        | 4.59                                            |               | 21213.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.90             | 71.19              |
| •                | 300.0<br>475.0  | 75.0                                         | 222.77                                                                                                    | 15.47                                                                                                                    | 75.                                         | 6.58                             | 6.87                                           | 1176.5                 | 1002.2                                                                                                                                                                                         | 7.27                                        | 6.11                                            |               | 25642.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.91             | 71.77              |
|                  | 450.0           | 75.)                                         | 222.70                                                                                                    | 16.15                                                                                                                    | 3 4                                         | 24.6                             | 28.0                                           | 1399.4                 | 991.4                                                                                                                                                                                          | 9.26                                        | 9.14                                            | 95.00         | 3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044<br>3.044 | 1.92             | 72.37              |
|                  |                 |                                              |                                                                                                           |                                                                                                                          |                                             |                                  |                                                |                        |                                                                                                                                                                                                |                                             |                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                    |
|                  | 70 CO FT        | SOFT                                         | PSIA                                                                                                      | FS I A                                                                                                                   | PCI                                         | 20                               | PC1                                            | T-A-EX<br>DF G 9       | 1-6-EX<br>Dec P                                                                                                                                                                                | HE I GHI                                    | 2                                               | PCI           | 16 T C HT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HEADEP<br>DIA FI | FI/SEC<br>FI/SEC   |
|                  | 300.0           | :                                            | 222.93                                                                                                    | 15.46                                                                                                                    | 5.                                          | 3.74                             | 4.04                                           | 1365.0                 | 1012.6                                                                                                                                                                                         | 6.27                                        | 5.22                                            |               | 27 747 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.91             | 71.44              |
|                  | 500.0           | 1001                                         | 222.91                                                                                                    | 15.50                                                                                                                    | 3.6                                         | 5.1.5                            | 5 .7 .                                         | 1384.7                 | 7.466                                                                                                                                                                                          | 7.28                                        | 6.34                                            | 92.31         | 13557.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.91             | 72.28              |
| • •              | 6.00.0          | 25                                           | 222.86                                                                                                    | 15.76                                                                                                                    | 55.                                         | 5.40                             | 6.13                                           | 1404.9                 | 976.4                                                                                                                                                                                          | 4.26                                        | 10.34                                           |               | 45156.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.92             | 72.49              |
| ,                |                 |                                              |                                                                                                           |                                                                                                                          | •                                           | ;                                | :                                              |                        | •                                                                                                                                                                                              | ;                                           |                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                |                    |

| Control   Cont   | COPE HE      | COPE HEAT THANSFER SURFACE | ER SURFA                             | ICE                                                       |                                             | AIR                                  | -S10£                              |                          | -                   |                 | CAS-510                                        | 0£                                |                                        |                    |                                                        |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|--------------------------------------|-----------------------------------------------------------|---------------------------------------------|--------------------------------------|------------------------------------|--------------------------|---------------------|-----------------|------------------------------------------------|-----------------------------------|----------------------------------------|--------------------|--------------------------------------------------------|--------------------|
| CESSION   CASACTO   CASA   |              |                            | PLATE<br>HYDRAL<br>FIN TY<br>COMPACE | AND FIN DE<br>SPACING<br>JLIC FADIU<br>HICKNESS<br>CTHESS | 1 1 1                                       |                                      | 5-0-111<br>53 FT<br>50 IN<br>50 SO | .10<br>:1/CUF1           |                     | <u>.</u>        | 0.0808-0<br>.4658<br>.08455<br>.0108<br>.264.6 | 6.28<br>IN<br>FI<br>IN<br>SOFI/CU | ## ## ## ## ## ## ## ## ## ## ## ## ## |                    |                                                        |                    |
| Harden   H   | HEAT EX      | CHANGER C                  | OND I TION                           | ş                                                         |                                             | AIR-                                 | SIJE II                            | 11.61                    |                     |                 | GAS-SI                                         | DE INLE                           | _                                      | GAS-SID            | FEXIC                                                  |                    |
| WILLIAM   MARCE   LIANGER   SIZED FOR UNIFORF FLOW DISTRIBULION AND MINIMUM HEADER LOSS   MARCE   LIANGER LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                            | MASSFI<br>PRLSSL<br>TEMPER           | _                                                         |                                             | 90.01                                |                                    | SEC.                     |                     |                 |                                                | LB/SEC<br>DEG R                   |                                        | 16.90              | PSIA                                                   |                    |
| UNITE AREA P-A-LY P-G-IN DPP DPC DPT 1-A-EX PEGEN NIU EFFECT NEIGHT NIU EFFECT NEIGHT HEADER CU FT SGFT PSIA PSIA PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEADER       | DESIGN DE                  | 2                                    | AIR MEADE<br>I AIR MEAD<br>UIAMFTER                       | R DIAMET<br>ER DIAME<br>ER 1.36<br>ER AND V | ER SIZN<br>TER SIZN<br>FT<br>ELOCITY | ED FOR                             | IMET<br>TUNIFO<br>FRELOM | NIK WELD<br>RP FLOW | CITY = 9        | 10.88 F1/                                      | SEC<br>NIMUN M                    | EADER LO                               | ν <sub>α</sub>     |                                                        |                    |
| 186.0 25.0 220.34 10.55 1.06 10.77 12.05.0 1001.3 7.25 2.36 70.26 944.2 1.00  186.0 25.0 219.31 17.15 1.05 12.34 15.15 133.10 1001.2 9.26 2.35 79.11 1105.0 1.00  186.0 25.0 219.31 17.15 1.02 17.7 112.4 15.12 133.10 1001.2 9.26 2.35 12.04.1 1105.0 1.00  186.0 25.0 219.31 17.15 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LENGTH<br>FT | VOLUME<br>CU FT            | AREA                                 | PSIA                                                      | P-6-1N<br>PSIA                              | 0 P                                  | 960                                | <b>5</b> 5               | 1-A-EX<br>Of G P    | 7-6-EX<br>DEG R | ME 1 GN 1<br>F 1                               | <b>A</b>                          | EFFECT<br>PCI                          | NETGHT<br>LBS      | HEADER<br>Dia fi                                       | VELOCITY<br>FT/SEC |
| 175.0   25.0   229.31   17.15   19.2   13.7   13.1.0   149.1   9.6   6.55   79.5   180.1   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5   19.5      | *            | 100.0                      | 25.0                                 | 220.34                                                    | 16.53                                       |                                      |                                    | 12.37                    | 1205.0              | 1063.3          | 7.25                                           | 2, 36                             | 74.26                                  | 2-9996             | 1.88                                                   | 69.74              |
| 175.0   25.0   210.31   17.15   1.92   15.0   17.0   1195.7   1129.9   10.27   4.15   65.19   14297.9   1.91     1861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •          | 150.0                      | 22.6<br>25.6                         | 213.65                                                    | 16.95                                       |                                      |                                    | 13.97                    | 1334.0              | 1068.2          | 9.56                                           | 2.97<br>3.56                      | 02.51                                  | 11663.8<br>12641.6 | . 9 <del>.</del> 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 | 71.69              |
| FIT CU FT SNFT PSIA PSIA PGT PGT FG R F-EK F-EK FEIGHT MIU EFECT WEIGHT HEADER  5.8 280.0 50.0 222.10 15.40 .67 3.76 4.05 1305.6 1005.0 7.25 2.41 77.47 1775.9 1.09  5.8 280.0 50.0 222.10 15.40 .67 3.76 4.05 1305.0 1005.0 7.25 2.41 77.47 1775.9 1.09  5.8 280.0 50.0 221.70 15.40 .67 3.76 4.05 1305.0 1005.0 7.25 2.41 77.47 1775.9 1.09  5.8 280.0 50.0 221.70 15.40 .67 3.76 4.05 1305.7 1004.2 0.26 4.25 05.47 2206.1 1.90  5.8 280.0 50.0 221.70 15.40 .67 3.76 1305.2 1305.7 10.27 4.92 07.07 2206.1 1.90  5.8 280.0 50.0 221.70 15.63 .41 4.00 5.49 1305.7 10.27 4.92 07.07 2206.1 1.90  5.8 280.0 50.0 221.70 15.70 .40 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70 14.70  |              | 175.0                      | 25.8                                 | 219.31                                                    | 17.15                                       |                                      |                                    | 10.71                    | 1345.7              | 1829.9          | 10.27                                          | 4.15                              | 65.19                                  | 14297.9            | 1.91                                                   | 71.52              |
| 256.0 56.0 222.10 15.40 .67 3.70 4.05 1305.6 1005.0 7.25 2.01 77.47 17745.9 1.89 256.0 56.0 221.99 15.40 .72 3.90 4.60 1329.7 1044.2 0.26 3.52 02.20 2007.3 1.90 356.0 56.0 221.70 15.55 .77 4.56 5.15 1360.2 1312.6 4.22 02.20 2007.3 1.90 7.0 400.0 56.0 221.70 15.63 .41 4.00 5.64 1360.3 1312.7 6.22 03.47 2.93.77 1.91 8.0 400.0 56.0 221.70 15.63 .41 4.00 5.64 1360.3 1312.7 6.22 03.74 2.973.7 1.91 8.0 400.0 56.0 221.70 15.63 .41 4.00 5.64 1360.3 1312.7 6.22 03.74 2.973.7 1.91 8.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LENGTH<br>FT | VOLUME<br>CU FT            | AREA                                 |                                                           | P-6-1N<br>PS1A                              | PCT                                  | 90.<br>PC1                         | 961<br>PCI               | T-A-EX<br>DE G R    | ) H             | HE 16HT                                        | ¥1<br>⊃                           | EFFECT<br>PCT                          | NE IGHT<br>LOS     | HEADER<br>DIA FI                                       | VELOCITY<br>FT/SEC |
| 250.0 56.0 221.99 15.46 .72 3.98 4.63 1329.7 1044.2 6.26 3.52 82.28 20867.3 1.90 5.8 350.0 56.0 221.98 15.56 .77 4.38 5.15 1347.2 1315.5 4.22 82.54 7 2595.8 1.90 5.0 400.0 56.0 221.67 15.70 .86 5.15 1347.2 1315.5 10.27 4.92 87.47 2595.2 1.91 5.0 400.0 56.0 221.67 15.70 .86 5.15 1347.2 1315.5 11.27 5.62 89.73 25973.7 1.91 5.0 400.0 56.0 221.67 15.70 .86 5.17 6.23 1378.6 1807.5 11.27 5.62 89.73 25973.7 1.91 5.0 400.0 56.0 221.67 15.70 .86 5.17 8.18 11.24 1068.5 11.27 5.62 89.73 25973.7 1.91 5.0 52.0 75.0 222.55 15.16 .47 1.71 2.19 1311.4 1068.5 7.25 2.96 78.95 25838.7 1.09 5.0 52.0 75.0 222.49 15.19 5.0 137 2.47 1374.4 1840.1 8.26 3.69 85.17 34.75.8 1.90 5.0 52.0 75.0 222.49 15.19 5.0 13.7 2.47 1374.4 1840.1 8.26 3.69 85.17 34.75.8 1.90 5.0 52.0 75.0 222.49 15.19 5.0 13.7 2.47 1351.4 1068.5 7.25 2.96 78.95 25838.7 1.09 5.0 52.0 75.0 222.49 15.19 5.0 1373.7 104.8 11.27 5.66 90.27 4.78 85.17 34.75.8 1.90 5.0 52.0 75.0 222.49 15.19 5.0 13.7 2.75 104.8 11.27 5.66 90.27 4.78 85.19 5.0 52.0 75.0 222.47 15.13 5.7 2.75 3.32 1373.5 1044.8 11.27 5.66 90.27 4.780.8 1.91 5.0 50.0 180.0 222.75 15.00 136 1.14 1.56 175.0 1025.4 8.26 5.51 8.26 5.51 8.26 5.51 5.0 50.0 180.0 222.77 15.10 4.40 1.56 175.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 50.0 180.0 222.77 15.10 4.40 1.56 175.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 50.0 180.0 222.57 15.10 4.10 1.56 175.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 50.0 180.0 222.57 15.10 4.40 1.56 175.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 50.0 180.0 222.57 15.10 4.91 2.36 1176.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 50.0 180.0 222.57 15.10 4.91 2.36 1176.1 1012.4 9.27 5.23 80.74 5555.9 1.91                                                                                                                                                                                                                                                                                                                                                                                                                             | .,           | 208.0                      | 58.0                                 | 222.10                                                    | 15.44                                       | .67                                  | 3. 14                              | 4.85                     | 1305.6              | 1065.4          | 1.25                                           | 2.81                              | 77.37                                  | 17745.9            | 1. A9                                                  | 70.11              |
| 7.6 58.0 58.0 221.78 15.67 3.01 4.08 5.19 150.2 110.7 5.62 87.87 2690.2 1.91  8.8 408.0 58.0 221.87 15.73 4.08 5.19 150.2 110.7 5.62 87.87 2690.2 1.91  8.8 408.0 58.0 221.87 15.73 4.08 6.19 110.7 5.62 87.87 26973.7 1.91  8.8 58.0 58.0 58.0 57.8 25.85 15.10 4.7 17.7 2.47 1311.4 1068.5 7.25 2.96 78.95 25838.7 1.89  8.8 375.0 75.0 222.49 15.19 5.2 2.75 1351.8 106.5 1 8.26 3.69 85.13 3830.6 1.90  8.8 525.0 75.0 222.49 15.2 2.75 1351.8 106.5 1 8.26 3.69 85.13 3830.6 1.90  8.8 525.0 75.0 222.3 15.2 2.75 1351.8 10.5 1 8.2 1 8.2 1 8.1 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 9.3 1 |              | 250.0                      | 200                                  | 221.99                                                    | 15.48                                       | 27:                                  |                                    | 4.62                     | 1329.7              | 1044.2          | 8,26                                           | 3,52                              | 82.28                                  | 20807.3            | 1.98                                                   | 78.65              |
| 6.0         400.0         50.0         221.67         15.70         .A6         5.37         6.23         1370.6         1007.5         11.27         5.62         09.73         29973.7         1.91           WGTH VOLUME         AREA         P-A-EX         P-G-IN         OPA         OPG         OPG         I -A-EX         T-G-EX         HEIGHI         NTU         EFFECT         MEIGHI         HEADER           FI         CU FI         SQFI         PSIA         PCI         DCG         OPG         I -A-EX         T-G-EX         HEIGHI         NTU         EFFECT         MEIGHI         HEADER           LOUR         FS.0         272.43         15.10         LAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 350.0                      | e e                                  | 221.78                                                    | 15.63                                       | : ;                                  |                                    | 5.64                     | 1360.3              | 1316.7          | 10.27                                          | 7.66                              | 87.87                                  | 2,02692            | 16:1                                                   | 71.58              |
| FI CU FI SQFT PSIA PSIA PGT PCT PCT PCT PCG R FT PCT LBS 014 FT PCT PCT PCT PCT PCT PCT PCT PCT PCT PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | 400.0                      | 20.7                                 | 251.67                                                    | 15.70                                       | . A6                                 | 5.37                               | 6.23                     | 1370.6              | 1007.5          | 11.27                                          | 29.5                              | 89.73                                  | 29973.7            | 1.91                                                   | 71.79              |
| 5.0 380.0 75.0 222.55 15.15 .47 1.71 2.19 1111.4 1068.5 7.25 2.96 78.95 2588.7 1.89 5.0 375.0 75.3 222.49 15.19 .56 1.37 2.47 1144.4 1444.1 8.26 3.69 85.13 36.17 34.77.6 1.90 5.0 450.0 75.0 222.47 15.23 .52 2.23 2.75 1351.0 10.51 10.27 5.13 06.17 34.77.6 1.90 5.0 600.0 75.0 222.45 15.23 .57 2.75 1351.0 10.51 10.27 5.16 06.17 34.77.6 1.90 5.0 525.0 75.0 222.45 15.21 .57 2.75 13.3 04.47 34.27 5.16 06.17 34.77.6 1.90 5.0 600.0 75.0 222.47 15.21 .57 2.75 3.32 1373.5 1004.0 11.27 5.06 90.27 4.700.8 1.91 5.0 600.0 100.0 222.75 15.06 .30 11.0 1.55 175.6 10.44.3 7.26 3.51 02.26 3362.1 1.90 5.0 500.0 100.0 222.71 15.10 .40 1.86 1.76 1.75.1 10.24 9.27 5.23 06.74 45557.9 1.91 5.0 500.0 100.0 222.71 15.10 .40 1.86 1.76 1.76.3 10.24.1 10.20 5.20 05.17 54.71.3 1.90 5.0 500.0 100.0 222.71 15.10 .40 1.86 1.76 1.76 1.76 1.76 6.9 90.77 54.11.3 1.90 5.0 500.0 100.0 222.71 15.10 .40 1.86 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LENGTH<br>FT | VOLUME<br>CU FI            | AREA                                 |                                                           | P-6-1N<br>PS1A                              | PCF                                  | 966                                | 100<br>100               | 1-A-EX<br>0e6 R     | 1-6-EX<br>DEG R | HE 16H1                                        | N<br>D                            | EFFECT<br>PCT                          | HE I GHT           | HEADER<br>DIA FI                                       | VELOCITY<br>F1/SEC |
| 5.6 375.4 75.4 222.49 15.19 .56 1.37 2.47 1314.4 1444.1 8.26 3.69 81.13 3010.6 1.90 5.6 456.0 75.0 222.31 15.23 2.72 2.23 2.75 1351.0 1025.1 9.27 4.48 46.17 34.73.6 1.90 5.6 500.0 75.0 222.32 15.31 .57 2.75 3.32 1373.5 1404.8 11.27 5.46 90.27 4.780.8 1.91 5.6 500.0 75.0 222.32 15.31 .57 2.75 3.32 1373.5 1404.8 11.27 5.46 90.27 4.780.8 1.91 5.6 500.0 75.0 222.75 15.00 JA 1PG 1PG 1C-EX HEIGHT MIU EFFECT HEIGHT HEADER FT CU FT SQFT PSIA PG 1PG 1729.6 1044.3 7.26 3.51 02.26 3302.7 1907 5.0 500.0 100.0 222.75 15.00 JA 1.1A 1.56 1329.6 1044.3 7.26 3.51 02.26 3.9990.3 1.90 5.0 500.0 100.0 222.75 15.10 .40 1.6 1.76 1375.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 500.0 100.0 222.75 15.13 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 80.74 5555.9 1.91 5.0 500.0 100.0 222.67 15.13 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 80.77 54.11.3 1.91 5.0 700.0 100.0 222.67 15.13 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 80.77 54.71.3 1.91 5.0 700.0 100.0 222.75 15.13 .41 1.54 1.96 1375.1 1012.4 10.57 5.25 10.77 54.11.3 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ;            | 388.6                      | 15.0                                 | 222.55                                                    | 15.16                                       | 14.                                  | 1.71                               | 5.19                     | 1311.4              | 1068.5          | 7.25                                           | 2.96                              | 78.95                                  | 25 8 3 8 . 7       | •                                                      | 78.89              |
| 5.5.6 75.6 222.35 15.27 55.2.49 3.64 1363.7 1013.6 16.27 5.13 68.47 34238.1 1591 6.6 600.0 75.0 222.32 15.31 57 2.75 3.32 1373.5 1004.8 11.27 5.86 90.27 47788.8 1.91 6.6 600.0 75.0 222.32 15.31 57 2.75 3.32 1373.5 1004.8 11.27 5.86 90.27 47788.8 1.91 7. CU FT SQFT PSIA PSIA PG UPI I-A-EX I-G-EX HEIGHT WIU EFFECT MFIGHT HEADER FT CU FT SQFT PSIA PSIA 1.56 10.56 10.56 10.44.3 7.76 3.51 62.26 33821.1 1.90 5.6 5.60.0 100.0 222.75 15.08 .34 1.14 1.56 132.6 1044.3 7.76 3.51 62.26 33821.1 1.90 5.6 5.60.0 100.0 222.75 15.18 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 88.74 4555.9 1.91 6.6 600.0 100.0 222.67 15.18 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 88.74 4555.9 1.91 6.6 600.0 100.0 222.67 15.18 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 88.74 4555.9 1.91 6.6 600.0 100.0 222.67 15.18 .41 1.54 1.96 1375.1 1012.4 9.27 5.23 88.74 45557.9 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 375.0                      | 75.5                                 | 222.49                                                    | 15.19                                       | .56                                  | 1.37                               | 2.47                     | 1374.4              | 1640.1          | 9.56                                           | 3.65                              | 63.13                                  | 30 304.6           | 1.90                                                   | 70.70              |
| Boll         600.0         75.0         222.32         15.31         .57         2.75         3.32         1373.5         1404.8         11.27         5.86         90.27         4780.8         1.91           WGTH         VOLUME         AREA         P-A-EX         P-G-IN         UPA         IPG         UPI         I -A-EX         I -G-EX         HEIGHT         MIU         EFFECT         MFIGHT         HEADER           FI         CU FT         SQFT         PCI         DCI         DCG         DC         DCG         DCI         LBS         DIA FT           No         400.0         100.0         222.75         15-0         .36         1.1A         1.56         112.96         1044.3         7.26         3.51         02.26         39.51.1         1.90           NO         560.0         100.0         222.75         15-10         .40         1.56         1.56.1         1.02.6         3.51         02.26         39.57         9.59.0         39.50.0         1.91           NO         222.0         15-13         .41         1.54         1.56         1.56.1         1.012.4         9.27         5.23         80.74         5555.9         1.91           NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :            | 525.0                      | 75.1                                 | 222.30                                                    | 15.27                                       | . 5.                                 | 2.49                               | 3.0.5                    | 1363.7              | 1013.9          | 10.27                                          | 5.13                              | 49.65                                  | 39238.1            | 1.91                                                   | 64.17              |
| MUTH WOLUME AREA P-A-EX P-G-IN JPA NPG UPI T-A-EX T-G-EX HEIGHI NIU EFFECT WFIGHT NEADER FT CU FT SQFT PSIA PSIA PGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •            | 600.0                      | 75.0                                 | 255.32                                                    | 15.31                                       | .51                                  | 2.75                               | 3. 32                    | 1373.5              | 1904.8          | 11.27                                          | 5.86                              | 90.21                                  | 4 17 88.8          | 1.91                                                   | 71.76              |
| ## 400.0 100.0 222.75 15.06 .36 1.14 1.56 1129.6 1044.3 7.26 3.51 02.26 31021.1 1.90  5.00.0 100.0 222.71 15.10 .40 1.16 1.76 1370.3 1025.4 0.26 4.37 06.04 39690.3 1.90  6.00.0 100.0 222.67 15.13 .41 1.54 1.96 1175.1 1012.4 9.27 5.23 86.74 45557.9 1.91  7.00.0 100.1 222.04 15.16 .43 1.73 2.16 1376.2 1402.7 6.09 90.77 51411.3 1.91  7.00.0 100.1 222.04 15.16 .45 1.91 2.36 1344.7 944.7 11.24 6.95 92.12 57567.0 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LENGTH<br>FT | VOLUME<br>CU FT            | ARca<br>SQF 1                        |                                                           | P-6-IN<br>PSIA                              | PCT                                  | 106<br>PCT                         | 96<br>104                | 1-A-EX<br>OFG P     | -0-E            | HE IGHT                                        | 212                               | EFFECT<br>PCI                          | HF I GHT<br>LBS    | HEADER<br>Dia fi                                       | VELOCITY<br>FT/SEC |
| 1 560.0 100.0 222.71 15.00 .30 11.1 1.70 1162.0 1044.3 7.70 3.51 86.06 3362.1 1.90 1060.0 100.0 222.71 15.10 .40 1.16 1.76 1165.1 1025.8 8.26 4.37 86.04 39690.3 1.90 1000.0 100.0 222.67 15.13 .41 1.54 1.96 1165.1 1012.4 9.27 5.23 86.74 4555.9 1.91 1.91 100.0 100.0 222.69 15.16 .43 1.73 2.16 11676.2 1002.4 10.27 6.09 90.77 51411.3 1.91 1.91 100.0 222.69 15.16 .45 1.91 2.36 1184.7 9.44.7 11.28 6.95 92.17 5756.0 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9            | 6 6 7                      | •                                    | 30.00                                                     | 40                                          | :                                    | :                                  |                          |                     |                 | ,                                              |                                   | ;                                      |                    |                                                        | •                  |
| # 660.u 100.1 222.67 15.13 .41 1.54 1.96 1155.1 1012.4 9.27 5.23 86.74 45552.9 1.91  700.0 100.1 222.0 15.14 1.73 2.16 1156.2 1402.4 10.27 6.09 90.77 51411.3 1.91  900.0 100.0 222.0 15.14 .45 1.91 2.36 1184.7 944.7 11.28 6.95 92.17 5756.0 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 26.0                       | 7 0 0 7                              | 222. 71                                                   | 15.10                                       |                                      | 1.16                               | 1.75<br>1.76             | 1559.0              | 1025.8          | 7.7e                                           | 5.51<br>4.51                      | 97.78                                  | 39690.3            | 1.90                                                   | 70.54              |
| 7 TER. 1 TER. 1 TO THE TOTAL T | •            | 9.00                       | 100.9                                | 222.67                                                    | 15.13                                       | 7                                    | 1.54                               | 1.96                     | 1165.1              | 1012.4          | 4.27                                           | 5.23                              | 88.74                                  | 45557.9            | 1.91                                                   | 71.49              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ::           | 9.000                      | 100.0                                | 222.60                                                    | 15.16                                       |                                      | 1.73                               | 2.16<br>2.36             | 1376.2              | 1.2021          | 10.27                                          |                                   | 90.77                                  | 51411.3            | <del>-</del> -                                         | 71.78              |

| SIOF INLET  LB/SEC  10EG R  75  17/SEC  11NIMUM PEADER LOS  1.97  2.08  7.95  5.94  90.45  90.45  1.95  8.94  90.45  1.95  8.94  90.45  1.95  8.94  90.45  1.95  8.94  90.45  1.95  8.94  90.45  1.95  8.94  90.45  1.95  8.94  90.45  1.95  8.94  90.45  8.94  90.45  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8.94  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CHINIMUM PEADER LOSS  CHINIMUM PEFECT MEIGHT  CHINIMUM PEFECT MEIGHT  CHINIMUM PEFECT MEIGHT  CHINIMUM EFFECT MEIGHT  CHINIMUM PEADER LOSS  CHINIMUM PEADER LOSS  CHINIMUM PEADER LOSS  CHINIMUM PEFECT MEIGHT  CHINIMUM PEADER LOSS  CHINIMUM PEADER LOSS  CHINIMUM PEFECT MEIGHT  CHINIMUM PEADER LOSS  CHINIMUM P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NTU EFFECT<br>2.00 70.11<br>2.948 79.98<br>3.978 79.98<br>4.95 87.96<br>5.94 90.45<br>NTU EFFECT<br>7.58 91.26<br>7.58 91.26<br>7.58 91.26<br>7.58 91.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.98 79.98<br>3.97 84.43<br>4.95 87.95<br>5.94 90.45<br>5.94 90.45<br>7.95 87.95<br>7.54 75.72<br>3.81 89.26<br>7.68 93.28<br>7.68 93.28<br>7.68 93.28<br>7.68 75.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3,97<br>6,95<br>87,96<br>87,96<br>8,95<br>87,96<br>8,95<br>87,96<br>8,91<br>8,91<br>8,91<br>8,91<br>8,91<br>8,91<br>8,91<br>8,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6,49<br>5,94<br>NTU EFFECT<br>2,54<br>3,81<br>3,81<br>5,84<br>75,72<br>5,84<br>75,72<br>5,84<br>75,72<br>7,84<br>93,73<br>7,84<br>93,28<br>7,68<br>93,28<br>7,68<br>93,28<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68<br>7,68 |
| NTU EFFECT<br>2.54 75.72<br>3.81 83.73<br>5.87 88.32<br>6.34 93.28<br>7.58 93.28<br>7.58 93.28<br>7.58 93.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.54 75.73<br>5.81 83.73<br>5.81 83.73<br>6.34 91.26<br>7.68 93.28<br>7.68 93.28<br>7.68 93.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.87 68.35<br>6.34 91.26<br>7.68 93.28<br>NTU EFFECT<br>5.82 79.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.66 93.28<br>NTU EFFECT<br>N.02 79.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NTU EFFECT<br>PCT<br>3.82 79.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.82 79.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 777 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.81 90.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9.28 7.51 93.15 35956.1<br>9.28 9.01 94.87 41268.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Les Les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.54 82.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.27 5.30 68.93 33231.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.86 94.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.55 96.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| CO RE  | HEAT TRANSFER     | E4 SUPFACE                                                                | JV.                                                                                                                                                                                                                                       |                                  | 4 I b                             | 3LIS-d                     |                                          |                      |                        | GAS-SINE                                 | JE                                             |               |                |                  |                    |
|--------|-------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------|------------------------------------------|----------------------|------------------------|------------------------------------------|------------------------------------------------|---------------|----------------|------------------|--------------------|
|        |                   | TYPE AND<br>PLATE SPA<br>HYUFAULIC<br>FIN THICK<br>GOMPACTNE<br>FIN/10FAL | TYPF AND FIN DETAIL<br>PLATE SPACING<br>HYUPAULIC RADIUS<br>FIN THICKNESS<br>COMPACINESS<br>FIN/101AL AREA                                                                                                                                | J                                |                                   | · ·                        | . 6.20<br>IN<br>IN<br>SQFT/CUFT<br>FI/FI |                      | <u> </u>               | -0-6030<br>-0-6097<br>-0-6097<br>-0-6097 | . 3.01<br>IN<br>FT<br>IN<br>SQFF/CUFT<br>FT/FT | =             |                |                  |                    |
| HEAT & | HEAT EXCHANGEP C  | COMBI 11 ON                                                               | SNO                                                                                                                                                                                                                                       |                                  | -9 I V                            | 1-201S-1                   | INLFT                                    | •                    |                        | GAS-SIDE INL                             | NE INLE                                        | 13            | GAS-SIDE       | E EXIT           |                    |
|        |                   | MASSFLOW<br>PRESSURF<br>TEMPERATUN<br>FUEL-AIP                            | FLOW<br>SURF<br>RATUKE<br>AIP 9ATIO                                                                                                                                                                                                       |                                  | 90.00<br>223.61<br>874.90         |                            | LB/SEC<br>PSIA<br>PEG R                  |                      |                        | 1426.80                                  | LB/SEC<br>                                     |               | 14.90          | PS1A<br>5        |                    |
| HEADER | DEST GN DE        | TATES                                                                     |                                                                                                                                                                                                                                           |                                  |                                   |                            |                                          |                      |                        |                                          |                                                |               |                |                  |                    |
|        |                   | INLLI<br>OUTLE<br>INLTE<br>Ext                                            | INLLT AIQ HEADER WIAMFTER SIZED FOR IMLET AIR VELOCITY = 90.00 F1/SEC.<br>Outlet air header Wiamfer Sized for Uniforh flom distribution and Minimum Header Loss<br>Inlet diameter = 1.36 Ft<br>Exit air diameter and velocity given below | ER UIAMET<br>DEP UIAME<br>* 1.36 | ER S17<br>TER S1<br>FT<br>EL OCIT | ED FOR<br>ZEU FO<br>Y GIVE | INLET<br>R UNIFO<br>N BELOW              | AIR VELO<br>DRM FLOW | CITY = 9<br>Distributi | 30.88 FI/'                               | SEC.<br>NIMUM M                                | EADER LO      | SS             |                  |                    |
| LENGT  | N VOLUME<br>CU FT | SQFT                                                                      | P-A-EX<br>PSIA                                                                                                                                                                                                                            | P-G-IN<br>PSIA                   | PCT                               | uP6<br>PCT                 | 00 I                                     | 1-A-EX<br>DEG R      | F-G-EX<br>DEG R        | HE I GHT<br>F R                          | 2                                              | EFFEGT<br>PCT | HE IGHT<br>LBS | HEADER<br>Dia fi | VEL 0C 1 T         |
| 14.0   | 350.6             | 25.8                                                                      | 222.25                                                                                                                                                                                                                                    | 16.88                            | .64                               | 13.51                      | 13.91                                    | 1324.4               | 1049.0                 | 17.26                                    | 3.34                                           | 81.31         | 30294.1        | 1.89             | 70.4               |
| 16.0   |                   | 25.e.                                                                     | 222.16                                                                                                                                                                                                                                    | 17.87                            |                                   |                            | 15.21                                    | 1331.7               | 1042.7                 | 19.26                                    | 3.61                                           | 83.74         | 34130.3        | 7.7              | 76.07              |
| 17.0   |                   | 25.0                                                                      | 222.12                                                                                                                                                                                                                                    | 17.17                            |                                   |                            | 15.89                                    | 1 34 3 . 4           | 1036.0                 | 20.26                                    | 4.05                                           | 84.78         | 36048.1        | 1.90             | 71.0               |
| 3.6    | 450.0             | 25.6                                                                      | 222.08                                                                                                                                                                                                                                    | 17.26                            |                                   |                            | 16.53                                    | 1348.6               | 1027.3                 | 21.26                                    | 4.28                                           | 85.72         | 37965.A        | 1.90<br>1.90     | 71.15              |
| 28.0   |                   | 65.3                                                                      | 221.99                                                                                                                                                                                                                                    | 17.44                            |                                   | 17.07                      | 17.79                                    | 1357.6               | 1019.2                 | 23.27                                    | 4.76                                           | 87.36         | 41900.6        | 16:1             | 71.40              |
| 21.0   | 525.0             | 25.0                                                                      | 721.95                                                                                                                                                                                                                                    | 17.53                            |                                   |                            | 19.41                                    | 1361.5               | 1015.7                 | 24.27                                    | 4.99                                           | 88.09         | 43717.8        | 1.91             | 71.51              |
| LENGTH | 4 VOLUME<br>CU FT | SOFT                                                                      | F-A-EX<br>PSIA                                                                                                                                                                                                                            | P-G-IN<br>PSIA                   | PC1                               | 9 G<br>6 C                 | 00 I                                     | T-A-EX<br>DFG R      | 1-6-EX<br>0EG R        | HFTGHT<br>FT                             | J.                                             | EFFECT<br>PCT | NF IGHT<br>LBS | HEADER<br>Dia fi | VELOCITY<br>FT/SEC |
| 14.6   |                   | 50.0                                                                      |                                                                                                                                                                                                                                           | 15.56                            | . 32                              | 94.4                       | 4.78                                     | 1344.7               | 1030.6                 | 17.26                                    | 4.11                                           | 85.02         | 57723.5        | 1.90             | 78.92              |
| 15.0   | 2000              | 50.0                                                                      |                                                                                                                                                                                                                                           | 15.64                            | 25.                               | 1 6 9                      | 5.04                                     | 3 5                  | 1025.3                 | 18.26                                    |                                                | 86.14         | 61383.6        | 1.90<br>9.90     | 71.06              |
| 17.0   |                   | 50.1                                                                      |                                                                                                                                                                                                                                           | 15.08                            | . 54                              | 5.20                       | 5.54                                     | 1361.3               | 1015.9                 | 20.27                                    | . 98                                           | 98.04         | 64702.5        | 1.91             | 71.36              |
| 9 6    |                   | 50.0                                                                      |                                                                                                                                                                                                                                           | 15.71                            | ż.                                | 2.45                       | 5.79                                     | 1765.8               | 1011.9                 | 21.27                                    | 5.27                                           | 48.86         | 72361.5        | 1.92             | 71.4               |
| 20.0   | -                 | 5 ee c                                                                    |                                                                                                                                                                                                                                           | 15.78                            | 35                                | 5.43                       | 6.29                                     | 1373.5               |                        | 23.27                                    | 5.85                                           | 90.27         | 74578.6        | 16:1             | 71.68              |
| 21.0   |                   | 50.0                                                                      |                                                                                                                                                                                                                                           | 15.82                            | . 36                              | 6.17                       | 6.53                                     | 1376.8               | 1001.9                 | 24.27                                    | 5.14                                           | 90.06         | 136.           | 1.91             | 71.77              |
| LENGTH | H VOLUME          | ARCA                                                                      | P-A-EX                                                                                                                                                                                                                                    | F-6-IN                           | Ado                               | 946                        | 140                                      | T-A-L X              | 1-6-E x                | HE IGHT                                  | ) I                                            | EFFECT        | WF IGHT        | ADE              | VELOCIT            |
|        |                   | SÚFI                                                                      | PSIA                                                                                                                                                                                                                                      | PSIA                             | PCT                               | Lud                        | PCI                                      | 0r G P               | 0.50                   | E                                        |                                                | 134           | rus            | DIA FT           | FIZEC              |
| 14.0   |                   | 75.0                                                                      | 22                                                                                                                                                                                                                                        | 15.26                            | . 25                              | 2.48                       | 59.2                                     | 1351.3               | 1024.8                 | 17.26                                    | 4.42                                           | 86.23         | 9.949.0        | 1.98             | 71.0               |
| 15.0   |                   | 75.0                                                                      | 25                                                                                                                                                                                                                                        | 15.29                            | • 25                              | 2.54                       | 2.79                                     | 1357.2               | 1019.6                 | 19.27                                    | 4.73                                           | 87.29         | 90019. 3       | 1.90             | 71.22              |
| 10.0   |                   | 75.0                                                                      | 3 6                                                                                                                                                                                                                                       | 15.50                            | 92.                               | 2.56                       | 2.93                                     | 1 162.4              | 1014.9                 | 19.27                                    | 5.05                                           | 98.25         | 95 491.7       | 1.91             | 71.36              |
| =      |                   | 75.0                                                                      | 22                                                                                                                                                                                                                                        | 15.34                            | . 26                              | 2.95                       | 3.21                                     | 1371.3               | 1406.9                 | 21.27                                    | 5.69                                           | 89.87         | 185134.6       | 1.91             | 71.59              |
| 19.0   |                   | 75.0                                                                      | 22                                                                                                                                                                                                                                        | 15.36                            | • 56                              | 8.99                       | 3, 35                                    | 1.571                | 1113.4                 | 22.27                                    | 5.99                                           | 90.56         | 111505.7       | 16.1             | 71.69              |
| 20.0   | 1580.0            | 75.4                                                                      | 223.00                                                                                                                                                                                                                                    | 15.38                            | .27                               | 1.22                       | 3.49                                     | 1178.6               | 1040.3                 | 23.27                                    | 6.30                                           | 91.19         | 116476.1       | 1.91             | 71.78              |
|        | 2121              | 121                                                                       | <b>3</b>                                                                                                                                                                                                                                  | 12.46                            | • • •                             | 3. 36                      | 70.0                                     | _                    | •                      | 12.42                                    | 29.9                                           |               | 122246.6       | 1.91             | 71.87              |

| CORE HEAT                                |                          | TRANSFER SUPF                       | <b>4</b> 0f                                          |                                           | 7            | AIR-SINE                                                         | -                                     |                  |                                                                                                                                                                                                                     | GAS-SE                                                                              | 96                                 |               |                    |                    |      |
|------------------------------------------|--------------------------|-------------------------------------|------------------------------------------------------|-------------------------------------------|--------------|------------------------------------------------------------------|---------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|---------------|--------------------|--------------------|------|
|                                          |                          | PLATE<br>HVOFAL<br>FIN TH<br>COMPAC | AND FIN DETAIL SPACING NULIC RADIUS HICKNESS NOTHESS | ETAIL                                     | 312          | .1250-0-19.8<br>.2050 IN<br>.06127 FT<br>.0640 IN<br>.500.0 SJFT | -19.82<br>IN<br>FI<br>IN<br>SOFT/CUFT | <b>-</b>         | <b>.</b>                                                                                                                                                                                                            | 2500-u-11.10<br>.2500 IN<br>.01253 FT<br>.6606 IN<br>367.0 SQFF/CUFT<br>.7560 FT/FT | 11.10<br>IN<br>FT<br>IN<br>SQFF/CU | =             |                    |                    |      |
| HEAT EX                                  | WEAT EXCHANGER CONDITION | 01110NO                             | MS                                                   |                                           | A16          | AIR-SIDE INLFT                                                   | INLFT                                 |                  |                                                                                                                                                                                                                     | GAS-SI                                                                              | DE INLF                            | _             | GAS-SIDE EXIT      | E EXII             |      |
|                                          |                          | PKESSL                              | LON<br>URE                                           |                                           | 90.          |                                                                  | LD/SEC                                |                  |                                                                                                                                                                                                                     | 101.75                                                                              | LB/SEC                             |               | 14.98              | PSIA               |      |
|                                          |                          | TEMPE<br>FUEL-1                     | RATURE<br>AIR PATIO                                  |                                           | 670.98       |                                                                  | er<br>                                |                  | -                                                                                                                                                                                                                   | 1426.88                                                                             | DEG R                              |               | . 0175             | 16                 |      |
| MEADER DESIGN                            | DESIGN DE                | DETAILS                             |                                                      |                                           |              |                                                                  |                                       |                  |                                                                                                                                                                                                                     |                                                                                     |                                    |               |                    |                    |      |
|                                          |                          | INLET<br>OUTLE<br>INLET<br>EXIT     | AIR NEADE<br>I AIR NEAC<br>Ulameter<br>Air Diames    | ER DIAME<br>Der Diam<br>= 1.36<br>Ier anj | TER SI       | 12EO FO<br>112EO F<br>1TY SIV                                    | R INLET<br>OR UNIF<br>EN BELO         | ATR VELCORN FLOW | AIG HEADER DIAMETER SIZED FOR INLET AIR VELOGITY = 90.00 FT/SEC<br>T AIR MEADER DIAMETER SIZED FOR UNIFORM FLOW DISTRIBUTION AND HINIMUM PEADER LOSS<br>UIAMETER = 1.36 FT<br>AIR DIAMETER AND VELOGITY SIVEN BELOW | 10.88 FI/                                                                           | SEC<br>NIMUM FI                    | EADER LOS     | y,                 |                    |      |
| LENGTH                                   | VOLUME<br>CU FT          | ARFA<br>SQFT                        | P-A-EX<br>PSIA                                       | P-6-1M<br>PS1A                            | PCT          | 1000                                                             | 106<br>104                            | T-A-EX<br>DFG R  | 1-6-EX<br>DEG R                                                                                                                                                                                                     | HEIGHT<br>FT                                                                        | 3                                  | EFFECT<br>PCI | NE IGHT<br>LBS     | HEADER<br>Dia fi   | VELO |
| **                                       | 25.0                     | 25.6                                | 219.47                                               | 19.24                                     |              | 29-13                                                            | 30.98                                 | 1250.0           | 1114.1                                                                                                                                                                                                              | 4.24                                                                                | 1.62                               | 67.68         | 5457.4             | 1.87               | 9    |
| 3.6                                      | 75.6                     | 25.0                                | 219.00                                               | 29.76                                     |              | 39.35                                                            | 41.85                                 | 1357.6           | 1010.2                                                                                                                                                                                                              | 6.28                                                                                | 5.40                               | 89.20         | 9401.6             | 1.92               | - ~  |
| <b>.</b>                                 | 100                      | 25.8                                | 217.30                                               | 21.76                                     |              | 45.64                                                            | 48.46                                 | 1386.7           | 6.266                                                                                                                                                                                                               | 7.29                                                                                | 7.10                               | 92.69         | 11360.6            | 1.93               | 2    |
|                                          | 155.0                    | 25.6                                | 216.64                                               | 22.46                                     |              | 56.33                                                            | 53.46                                 | 1398.5           | 982.2                                                                                                                                                                                                               | 6.29<br>9.40                                                                        | 16.75                              | 94.83         | 13316.8            | 1.93               | ~ ~  |
|                                          | 175.6                    | 25.0                                | 215.20                                               | 23.70                                     | 3.76         | · R 4                                                            | 62.79                                 | 1411.6           | 970.3                                                                                                                                                                                                               | 10.30                                                                               | 12.54                              | 97.22         | 17226.1            | 1.9                | - N  |
|                                          |                          |                                     |                                                      |                                           |              | 9                                                                |                                       |                  | 0 1006                                                                                                                                                                                                              | 11.36                                                                               | 1 4. 32                            | 36 - 16       | 9.6.116.           | • • •              |      |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | VOLUME<br>CU FI          | SUFT                                | P-A-EX<br>PSIA                                       | P-C-IN                                    | 4 5<br>6 4   | 00 L                                                             | PCI                                   | T-A-EX<br>Deg R  | 1-G-EX<br>DEG R                                                                                                                                                                                                     | HE IGHT                                                                             | 2<br>E                             | EFFECT<br>PCT | WE IGHT            | HEADER<br>• DIA FI | VELO |
|                                          | 5.4.6                    | 58.3                                | 221.62                                               | 16.54                                     |              | 11.32                                                            | 11.91                                 |                  | 1073.9                                                                                                                                                                                                              | 4.25                                                                                | 2.68                               | 76.29         | 10349.7            | 1.89               | 9    |
| , n                                      | 150.0                    | 2.0                                 | 221.15                                               | 17.42                                     |              | 16.88                                                            | 17.38                                 | 1398.9           | 989.1                                                                                                                                                                                                               | 9.54<br>6.28                                                                        | 7.73                               | 93.45         | 17867.5            | 1.92               | 2.2  |
| • • • • • • • • • • • • • • • • • • •    | 240.0                    | 50.0                                | 220.93                                               | 17.83                                     |              | 19.64                                                            | 20.84                                 |                  | 976.7                                                                                                                                                                                                               | 7.29                                                                                | 10.29                              | 95.93         | 21604.1            | 1.93               | 2.5  |
| 9                                        | 300.0                    | 2                                   | 220.51                                               | 18.58                                     |              | 1 24.69                                                          | 26.87                                 |                  | 965.1                                                                                                                                                                                                               | 4.29                                                                                | 15.41                              | 98.25         | 23867.8            | 1.93               | 22   |
|                                          | 150.0                    | 50.0<br>50.0                        | 220.29                                               | 19.30                                     | 1.57         | 27.28                                                            | 31.09                                 | 1420.3           | 962.3                                                                                                                                                                                                               | 10.29                                                                               | 17.97                              | 98.81         | 32796.0<br>36524.7 | 1.93               | m m  |
| LENGTH                                   | WOLUME<br>CU FT          | ARFA                                | P-A-EX<br>PSIA                                       | P-G-IN<br>PSIA                            | I DPA<br>PCT | 100                                                              | 100 P                                 | T-4-EX           | , I-6-EX                                                                                                                                                                                                            | HE I GHI<br>FT                                                                      | ) I                                | EFFECT<br>PCT | WE IGHT            | HEADER<br>OIA FR   | VELO |
| 4                                        | 25.0                     | 36                                  | 222                                                  | 4                                         | 4            |                                                                  | •                                     |                  |                                                                                                                                                                                                                     |                                                                                     |                                    |               |                    |                    |      |
| 2.0                                      | 150.0                    | 75.8                                | 222.45                                               | 16.14                                     |              | 9.30                                                             | 7                                     | 1379.2           | 1,000                                                                                                                                                                                                               | 5.28                                                                                | 9                                  | 3.5           | 15160.1<br>20651.6 | f                  |      |
| <b>9.</b> M                              | 225.0                    | 75.0                                | 221.93                                               | 16.42                                     |              | 10.18                                                            | 10.93                                 | 1401.2           | 979.7                                                                                                                                                                                                               | 6.28                                                                                | 9.52                               | 95.33         | 26148.1            | 1.92               | ~    |
| • •                                      | 300.0                    | 75.0                                | 221.41                                               | 16.64                                     |              | 111.97                                                           | 12.77                                 | 1411.9           | 969.9                                                                                                                                                                                                               | 7.29                                                                                | 12.68                              | 97.29         | 31632.6            | 1.93               | 22   |
| • •                                      | 450.0                    |                                     | 221.58                                               | 17.20                                     |              |                                                                  | 16.34                                 | 1417.0           | 961.4                                                                                                                                                                                                               | 4, 24<br>4, 29                                                                      | 19.01                              | 98.36         | 57111.3<br>62588.3 |                    | ~ ~  |
| 9.6                                      | 525.0                    | 75.d                                | 221.47                                               | 17.44                                     | •            | 17.08                                                            | 10.03                                 | 1423.3           | 959.5                                                                                                                                                                                                               | 10.29                                                                               | 22.17                              | 99.36         |                    | 1.93               | 2    |
|                                          |                          | •                                   | 0: 177                                               | 17.00                                     |              |                                                                  | 19.00                                 | 1424.0           | 458.5                                                                                                                                                                                                               | 11.29                                                                               | 25.33                              | 99.66         | 535 38.4           | 1.43               | 2    |

## DTNSRDC PAS 82-41 ATTACHMENT A

KEY TO AIR-SIDE OR GAS-SIDE FIN GEOMETRIES\*

# PLAIN FINS (TYPA/G = 1)

| NSA/G  | FINS/IN | PLATE SPACING, IN |
|--------|---------|-------------------|
| 1      | 2.00    | 0.750             |
| 2      | 3.01    | 0.750             |
| 3      | 3.97    | 0.750             |
| 4      | 5.30    | 0.470             |
| 5      | 6.20    | 0.405             |
| 6<br>7 | 9.03    | 0.823             |
| 7      | 11.10   | 0.250             |
| 8      | 11.11   | 0.480             |
| 8<br>9 | 14.77   | 0.330             |
| 10     | 15.08   | 0.418             |
| 11     | 19.86   | 0.250             |
| 12     | 10.27   | 0.544             |
| 13     | 11.94   | 0.249             |
| 14     | 12.00   | 0.250             |
| 15     | 16.96   | 0.256             |
| 16     | 25.79   | 0.204             |
| 17     | 30.33   | 0.345             |
| 18     | 46.45   | 0.100             |

# LOUVERED FINS (TYPA/G = 2)

| NSA/G | FINS/IN<br>6.06 | PLATE SPACING, IN 0.250 | LOUVER SPACING, IN | LOUVER GAP, IN |
|-------|-----------------|-------------------------|--------------------|----------------|
| 2     | 6.06            | 0.250                   | 0.375              | 0.130          |
| ร     | 6.06            | 0.250                   | 0.500              | 0.130          |
| ,     |                 |                         |                    |                |
| 4     | 6.06            | 0.250                   | 0.500              | 0.130          |
| 5     | 8.70            | 0.250                   | 0.375              | 0.055          |
| 6     | 8.70            | 0.250                   | 0.375              | 0.080          |
| 7     | 11.10           | 0.250                   | 0.1875             | 0.055          |
| 8     | 11.10           | 0.250                   | 0.250              | 0.035          |
| 9     | 11.10           | 0.250                   | 0.250              | 0.055          |
| 10    | 11.10           | 0.250                   | 0.375              | 0.055          |
| 11    | 11.10           | 0.250                   | 0.375              | 0.055          |
| 12    | 11.10           | 0.250                   | 0.500              | 0.055          |
| 13    | 11.10           | 0.250                   | 0.750              | 0.040          |
| 14    | 11.10           | 0.250                   | 0.750              | 0.040          |

## STRIP/OFFSET FINS (TYPA/G = 3)

| NSA/G | FINS/IN | PLATE SPACING, IN |
|-------|---------|-------------------|
| 1     | 11.10   | 0.250             |
| 2     | 12.20   | 0.485             |
| 3     | 15.20   | 0.414             |
| 4     | 13.95   | 0.375             |
| 5     | 11.94   | 0.237             |
| 6     | 15.40   | 0.206             |
| 7     | 12.18   | 0.353             |
| 8     | 15.75   | 0.304             |
| 9     | 20.06   | 0.201             |
| 10    | 19.82   | 0.205             |
| 11    | 16.12   | 0.206             |
| 12    | 16.00   | 0.255             |

# WAVY FINS (TYPA/G = 4)

| NSA/G | FINS/IN | PLATE SPACING, IN |
|-------|---------|-------------------|
| _1_   | 11.44   | 0.413             |
| 2     | 11.50   | 0.375             |
| 3     | 17.80   | 0.413             |

 $<sup>\</sup>mbox{\ensuremath{\mbox{^{\mbox{\tiny Tables}}}}\ 9\text{--}3 (a), (b), (c) and (d) in Kay's and London "Compact Heat Exchangers."$ 

#### DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.