МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Вычислительные системы» І семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Фомин И.Д.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 9:

Ряд Тэйлора:

$$1+2\frac{x}{2}+...+\frac{n^2+1}{n!}(\frac{x}{2})^n$$

Функция:

$$(\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}}$$

Значения а и b: 0.1 и 0.6

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название	Тип	Смысл переменной				
переменной	переменной					
n	int64_t	То самое число N, на которое нужно разбить отрезок				
k	int	То самое число K, используемое для вычисления точности.				
FLT_EPSILON	float	То самое машинное эпсилон.				
		1.192092896e-07F				
step	long double	Формально разница между предыдущим значением из отрезка и следующим, если отрезок разбит на правных частей.				
currentX	long double	Переменная, для которой будем производить вычисления				
getTaylorSeries (currentX, i)	double	То самое значение А1, вычисленное с помощью формулы Тейлора				
func(currentX)	double	То самое значение A2, вычисленное с помощью встроенных функций языка				
i	double	Счётчик члена формулы Тейлора + кол- во итераций				

Исходный код программы:

```
int64 t factorial(int64 t n) {
   int64 t res = 1;
printf("
printf("
printf("
            if (getTaylorSeries(currentX, i) < FLT EPSILON) break;</pre>
```

return (

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное с помощью формулы Тейлора, A_2 — значение, вычисленное с помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены с точностью 16 знаков после запятой.

Протокол исполнения и тесты

Tect №1

Ввод:

2

Вывод:

```
Machine epsilon is equal to: 1,19209e-07

Table for values of Taylor series and of base function

| x | sum | f(x) | number of iterations |
| 0,100 | 1,0000000000000000 | 1,0630778008560868 | 0 |
| 0,350 | 1,35000000000000001 | 1,3627409891392295 | 1 |
| 0,850 | 1,80156250000000002 | 3,3069062640244331 | 2 |
| 1,600 | 2,65489583333333337 | 31,5633942499251283 | 3 |
```

Process finished with exit code 0

Тест №2

Ввод: 200

Вывод:

Тест №3

Ввод:

100000

Вывод:

Machine epsilon is equal to: 1,19209e-07													
Table for values of Taylor series and of base function													
1	:	x	I		sum	I		f(x)		numbe	r of	iterations	_ -
1	0,	100	I	1,000000	900000000	00	1,06307	77800856	0868	l	0	l	
1	0,	100	1	1,100004	499999999 	99	1,06308	31641608	0464 	I	1	l 	_
1	0,	100	1	1,106256	687514062 	50	1,06308	39323329	1612	l	2	l 	
1	0,	100	1	1,106465	539603021	40	1,06316	00846453	8332 	I	3	l 	
1	0,	100	1	1,106469	983197435 	69	1,06311	16211633	6879 	l	4	l 	_
1	0,	100	1	1,106469	989993697 	75	1,06313	35419737 	6031	T	5	<u> </u>	

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора