Lecture notes FY2045 Quantum Mechanics I — 1 Short introduction and recap

Henning G. Hugdal

Last updated: August 22, 2023

1 Why do we need quantum mechanics?

Several experiments in the late 1800s and early 1900s produced results which could not be explained by classical physics. This lead to a crisis! A few examples are

- Black-body radiation
- Photoelectric effect
- Compton effect

To explain these results one had to assume that light can behave like particles — *photons*, coming in quanta of energy

$$E = hf, (1)$$

where h is Planck's constant and f is the light's frequency, with momentum

$$p = \frac{hf}{c},\tag{2}$$

where c is the speed of light. Light has both wave-like and particle-like properties!

Given this realization, it was perhaps natural to ask: **Can matter have wave-like properties?** It turned the answer is yes.

Diffraction of electrons For photons, we have

$$\lambda = \frac{c}{f} = \frac{hc}{E} = \frac{h}{p},$$

where we have used E = hf = pc. de Broglie postulated that also particles have a wavelength given by

$$\lambda = \frac{h}{p}.\tag{3}$$

This gives rise to diffraction patterns, as was confirmed experimentally.

Double-slit experiment If matter behaves like a wave, we should also get interference patterns, e.g. in a double-slit experiment. This was confirmed experimentally: even when sending one electron at a time, one gets an interference pattern.

Note: When the electron travels through the slits it is "wave-like", giving rise to interference. When it hits the screen, it is "particle-like", giving rise to a point on the screen.

If one tries to observe the electron at one of the slits to see which way it goes, the interference pattern disappears!¹

¹ For a great read on the subtleties of double-slit experiment, see Feynman *et al.* (1963) Vol. III, Ch. 1 — Quantum behavior.

Theoretical description — Quantum mechanics

In the mid 1920s the full theory of quantum mechanics was developed, with several alternative formulations, which we will discuss more later. One formulation is Schrödingers formulation — wave mechanics:

A particle with mass m moving in 1D in a potential V(x) is described by a wavefunction $\Psi(x,t)$ that is a solution of the Schrödinger equation (SE)

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] \Psi.$$
 (4)

 $|\Psi|^2$ is interpreted as a probability density.

 $\hbar = h/(2\pi)$ is Planck's *reduced* constant, which is what we will most often use, and often refer to simply as Planck's constant.

When do we need quantum mechanics?

Roughly speaking, one can say that we need quantum mechanics when (1) the characteristic length scale L of the system is comparable to or smaller than the de Broglie wavelength λ [eq. (3)] of the object and (2) the speed v of the object is much lower than the speed of light c, see fig. 1.

References

R. Feynman, R. Leighton, and M. Sands. The Feynman Lectures on Physics (Addison-Wesley, Boston, 1963). URL http://www. feynmanlectures.caltech.edu/.

Figure 1: The figure illustrates what the relevant physical theory is depending on the ratios λ/L and v/c, where λ is the de Broglie wavelength, L is the characteristic system size, vis the speed of the object, and *c* is the speed of light.