Automatique Département Sciences du numérique

Informatique, Mathématiques Appliquées, Réseaux, Télécommunications

TD 4

7 octobre 2022

- ightharpoonup Exercice 1. On considère un point de fonctionnement (x_e, u_e) d'un système contrôlé $\dot{x}(t) = f(x(t), u(t))$ où $x(t) \in \mathbf{R}^n$ et $u(t) \in \mathbf{R}^m$ et un contrôle par retour d'état : $u(t) = u_e + K(x(t) x_e)$.
 - **1.1.** Écrire l'équation différentielle $\dot{x}(t) = g(x(t))$ dont est solution l'état x(t) (on donnera l'application g), et vérifier que x_e est un point d'équilibre de cette équation différentielle.
 - **1.2.** Donner l'expression de $J_g(x_e)$ en fonction des dérivées partielles

$$\frac{\partial f}{\partial x}(x_e, u_e), \frac{\partial f}{\partial u}(x_e, u_e)$$
 et de la matrice K .

- **1.3.** Si le système de départ s'écrit $\dot{x}(t) = Ax(t) + Bu(t)$, qu'obtient-on ?
- ⊳ Exercice 2. On considère l'équation différentielle suivante

$$\dot{q}(t) = p(t) \tag{1}$$

$$\dot{p}(t) = -q(t),\tag{2}$$

et on note x(t) = (q(t), p(t)).

2.1. On pose

$$V : \mathbf{R}^2 \longrightarrow \mathbf{R}$$
$$x \longmapsto ||x||^2.$$

Montrer que le long de toutes solutions de l'équation différentielle x(t), V(x(t)) est constant.

- **2.2.** Écrire le schéma d'Euler explicite sur cet exemple et montrer que $||x_1||^2 = (1+h^2)||x_0||^2$.
- **2.3.** On appelle le schéma d'Euler implicite le schéma $x_1 = x_0 + \varphi(t_1, x_1)$. Écrire le schéma d'Euler implicite sur cet exemple et montrer que $||x_1||^2 = \frac{1}{(1+h^2)}||x_0||^2$.
- 2.4. On considère maintenant le schéma d'Euler symplectique de type A. C'est-à-dire le schéma défini par :
 - Un pas d'Euler implicite sur la première équation (1);
 - Un pas d'Euler explicite sur la deuxième équation (2);

Montrer que dans ce cas x_0 et x_1 appartienne à la même ellipse d'équation $p^2 + q^2 - hpq = cte$.

2.5. Quels commentaires pouvez-vous faire sur ces deux exercices?