Mitigating noisy labels and dataset bias in machine learning

2023.08.25 (Fri.)

Superb Al Machine Learning Team

Presenter: Kyeongryeol, Go

Motivation

- For trustworthy application, robust training matters
- Model is expected to generalize well even under
 - Noisy labels
 - Dataset bias
 - Distribution shifts
 - Adversarial attacks
 - •

Typical regularizations (aug., L2, Dropout, BN) are not enough in the presence of noisy labels.

Illustration of noisy labels and dataset bias.

1. Robust architecture

Let $T_{ij} = p(\tilde{y} = j | y = i, (x))$ be noise transition matrix

 (T_{ij}) is conditioned on x if label noise is input-dependent. Otherwise, it is input-independent)

- Noise type
 - 1. Symmetric: $\forall_{i=j}, T_{ij} = 1 \tau$ and $\forall_{i\neq j}, T_{ij} = \frac{\tau}{C-1}$
 - 2. Asymmetric: $\forall_{i=j}, T_{ij} = 1 \tau$ and $\exists_{i \neq j, j \neq k, i \neq k}, T_{ij} > T_{ik} \rightarrow \text{human annotation}$
- Noise adaptation layer
 - T_{ij} is trained to correct the gradient signal from the noisy label (ignored during the inference)

•
$$p(\tilde{y} = j | x) = \sum_{i=1}^{C} p(\tilde{y} = j | y = i) p(y = i | x) = \sum_{i=1}^{C} T_{ij} p(y = i | x)$$

- (i) asymmetric
- (ii) input-independent

For (i) asymmetric and (ii) input-dependent label noise, refer to heteroskedastic layers

2. Robust loss function

- Categorical Cross Entropy (CCE) : $-\log p(y = k|x)$
 - <u>fast convergence</u>, poor generalization in presence of noisy labels
- Mean Absolute Error (MAE): |OneHot(k) p(y|x)| = 2(1 p(y = k|x))
 - slow convergence, better generalization in presence of noisy labels
- Generalized Cross Entropy (GCE) : $(1 p(y = k|x)^q)/q$
 - Consensus of CCE $(q \to 0)$ and MAE $(q \to 1)$
 - up-weights the gradient of CCE for the samples of confident prediction on label (y = k)

$$\frac{\partial GCE(x,k)}{\partial \theta} = p(y = k|x)^q \frac{\partial CCE(x,k)}{\partial \theta}$$

Compared to CCE, GCE compel the wrongly labeled samples to be un-confident.

3. Robust regularization

- Observation: DNNs tend to fit the clean labels first, then the noisy labels later
- Early Learning Regularization (ELR): CCE + $\lambda \cdot \log(1 \langle p(y|x), t(x) \rangle)$ (for every iteration, $t(x) \leftarrow \beta \cdot t(x) + (1 \beta) \cdot p(y|x)$)
 - maximize the similarity b/t the online prediction p(y|x) and the ema. prediction t(x)

$$\nabla S^{-1}(p(y|x))(p(y|x) - OneHot(y) + \lambda \cdot Grad)$$

Additionally introduced gradient

- (i) maintain the gradient of clean labels
- (ii) neutralize the gradient of noisy labels

correct : predict to ground-truth label memorized : overfit to noisy-label Incorrect : neither correct nor memorized

Compared to CCE, ELR does not memorize the noisy labels. (red stays low in the right column)

Liu, Sheng, et al. "Early-learning regularization prevents memorization of noisy labels." Advances in neural information processing systems 33 (2020): 20331-20342.

4. Sample selection

• Small loss trick: the clean label have smaller losses than the noisy label (not appropriate for the asymmetric noise)

(a) Symmetric Noise 40%.

(b) Asymmetric Noise 40%.

- DivideMix
 - fit two-component Gaussian Mixture Model on loss values (small loss → clean, high loss → noise)
 - apply semi-supervised learning (mix-match) (labeled ≈ clean, unlabeled ≈ noise)

Task description

- Setting: x has many attributes (color, digit) and y is one of those (digit)
- **Def.** Dataset is "biased" if there is a highly correlated attribute that incurs bias-aligned samples
- Sample-type
 - bias-aligned: un-intentionally, correctly predicted samples (e.g. camel in the desert)
 - 2. bias-conflicting :intentionally, in-correctly predicted samples (e.g. camel in the forest)

- Evaluation
 - un-biased dataset : same number for every possible combination of attributes
 - bias-conflicting dataset : remove bias-aligned from the un-biased dataset

Analogy to noisy labels

- Bias-type
 - malignant
 - bias is <u>easier</u> to learn than the target attribute
 - bias-aligned is learnt first and bias-conflicting later
 - Benign
 - bias is <u>harder</u> to learn than the target attribute
 - no difference b/t bias-aligned and bias-conflicting
- Training order of data
 - "Clean" → Noisy (noisy labels)
 - Bias-aligned → "Bias-conflicting" (dataset bias)

In contrast to noisy labels, where to focus is different

(a) Colored MNIST, (Digit, Color)

(b) Corrupted CIFAR-10¹, (Object, Corruption)

Learning from Failure (LfF)

- 1. Train a biased classifier (f_B) with GCE loss
 - up-weights samples of confident prediction ("clean" in noisy label, "bias-aligned" in dataset bias)
 - amplify the prejudice from the presence of dataset bias
- 2. Train a de-biased classifier (f_D) with re-weighted CE loss
 - relative difficulty: $\mathcal{W}(x) = \frac{CE_B(x,y)}{CE_B(x,y) + CE_D(x,y)} \left(\Rightarrow \left\| \frac{\nabla_{\theta}CE_B(x,y)}{\sum_{(x_i,y_i) \in \mathcal{D}} \nabla_{\theta}CE_B(x_i,y_i)} \right\| \right)$
 - small weight to bias-aligned samples
 - large weight to "bias-conflicting" samples

Bias-supervision type

un-biased	dataset			†		
Dataset	Ratio (%)	Vanilla	Ours	HEX	REPAIR	Group DRO
Dataset		0	0	•	•	•
Colored MNIST	95.0 98.0 99.0 99.5	$77.63 \pm 0.44 \\ 62.29 \pm 1.47 \\ 50.34 \pm 0.16 \\ 35.34 \pm 0.13$	85.39 ±0.94 80.48 ±0.45 74.01 ±2.21 63.39 ±1.97	$70.44{\scriptstyle\pm1.41}\atop62.03{\scriptstyle\pm0.24}\atop51.99{\scriptstyle\pm1.09}\atop41.38{\scriptstyle\pm1.31}$	$\begin{array}{c} 82.51{\pm}0.59 \\ 72.86{\pm}1.47 \\ 67.28{\pm}1.69 \\ 56.40{\pm}3.74 \end{array}$	$\begin{array}{c} 84.50{\pm}0.46 \\ 76.30{\pm}1.53 \\ 71.33{\pm}1.76 \\ 59.67{\pm}2.73 \end{array}$
Corrupted CIFAR-10 ¹	95.0 98.0 99.0 99.5	$\begin{array}{c} 45.24{\pm}0.22 \\ 30.21{\pm}0.82 \\ 22.72{\pm}0.87 \\ 17.93{\pm}0.66 \end{array}$	59.95 ±0.16 49.43 ±0.78 41.37 ±2.34 31.66 ±1.18	$\begin{array}{c} 21.74 \pm 0.27 \\ 17.81 \pm 0.29 \\ 16.62 \pm 0.80 \\ 15.39 \pm 0.13 \end{array}$	$\begin{array}{c} 48.74{\pm}0.71 \\ 37.89{\pm}0.22 \\ 32.42{\pm}0.35 \\ 26.26{\pm}1.06 \end{array}$	$\begin{array}{c} 53.15{\pm}0.53 \\ 40.19{\pm}0.23 \\ 32.11{\pm}0.83 \\ 29.26{\pm}0.11 \end{array}$
Corrupted CIFAR-10 ²	95.0 98.0 99.0 99.5	$\begin{array}{c} 41.27{\pm}0.98 \\ 28.29{\pm}0.62 \\ 20.71{\pm}0.29 \\ 17.37{\pm}0.31 \end{array}$	58.57 ±1.18 48.75 ±1.68 41.29 ±2.08 34.11±2.39	$\begin{array}{c} 19.25{\pm}0.81 \\ 15.55{\pm}0.84 \\ 14.42{\pm}0.51 \\ 13.63{\pm}0.42 \end{array}$	$\begin{array}{c} 54.05{\pm}1.01 \\ 44.22{\pm}0.84 \\ 38.40{\pm}0.26 \\ 31.03{\pm}0.42 \end{array}$	57.92 ± 0.31 46.12 ± 1.11 39.57 ± 1.04 34.25 ± 0.74
	D 11 C1					

Ratio of bias-aligned samples

bias-conflicting dataset

Dataset	Ratio (%)	Vanilla	Ours	HEX	REPAIR	Group DRO
Dataset		0	0	•	•	•
	95.0	75.17±0.51	85.77 ±0.66	67.75±1.49	83.26±0.42	83.11±0.41
Colored	98.0	58.13 ± 1.63	80.67 ± 0.56	58.80 ± 0.28	73.42 ± 1.42	74.28 ± 1.93
MNIST	99.0	44.83 ± 0.18	74.19 \pm 1.94	46.96 ± 1.20	68.26 ± 1.52	69.58 ± 1.66
	99.5	$28.15{\scriptstyle\pm1.44}$	63.49 ±1.94	$35.05{\scriptstyle\pm1.46}$	$57.27{\scriptstyle\pm3.92}$	$57.07{\pm}3.60$
Corrupted CIFAR-10 ¹	95.0	39.42±0.20	59.62 ±0.03	14.09±0.31	49.99 ± 0.92	49.00±0.45
	98.0	22.65 ± 0.95	48.69 ± 0.70	9.34 ± 0.41	38.94 ± 0.20	35.10 ± 0.49
	99.0	14.24 ± 1.03	39.55 ± 2.56	8.37 ± 0.56	33.05 ± 0.36	$28.04{\scriptstyle\pm1.18}$
	99.5	$10.50{\scriptstyle\pm0.71}$	28.61 ±1.25	$6.38{\scriptstyle\pm0.08}$	$26.52{\scriptstyle\pm0.94}$	$24.40{\scriptstyle\pm0.28}$
Corrupted CIFAR-10 ²	95.0	$34.97{\scriptstyle\pm1.06}$	58.64 ±1.04	$10.79{\scriptstyle\pm0.90}$	$54.46{\scriptstyle\pm1.02}$	54.60±0.11
	98.0	20.52 ± 0.73	48.99 ± 1.61	6.60 ± 7.23	44.63 ± 0.75	42.71 ± 1.24
	99.0	12.11 ± 0.29	40.84 ± 2.06	5.11 ± 0.59	38.81 ± 0.20	$37.07{\scriptstyle\pm1.02}$
	99.5	10.01 ± 0.01	32.03 ±2.51	4.22 ± 0.43	31.45 ± 0.28	30.92±0.86

Nam, Junhyun, et al. "Learning from failure: De-biasing classifier from biased classifier." *Advances in Neural Information Processing Systems* 33 (2020): 20673-20684. Ahn, Sumyeong, Seongyoon Kim, and Se-young Yun. "Mitigating Dataset Bias by Using Per-sample Gradient." *arXiv preprint arXiv:2205.15704* (2022).

BiaSwap

 Goal: Generate bias-swapped image from the bias-aligned to the bias-conflicting (using image-to-image translation modules)

SwapAE: $swap(x^{(a)}, x^{(c)}) \rightarrow x^{(s)}$

• Encoder input : input image (x)(bias-aligned : $x^{(a)}$, bias-conflicting : $x^{(c)}$)

• Encoder output : content feature (z_c) , style feature (z_s) (bias-aligned : $(z_c^{(a)}, z_s^{(a)})$, bias-conflicting : $(z_c^{(c)}, z_s^{(c)})$)

• Generator input : $(z_c^{(a)}, z_s^{(c)})$

• Generator output : $x^{(s)}$

Loss function

• $L_{content}(E,G) = \mathbb{E}_x \left[\left\| x - G(E(x)) \right\|_2^2 \right]$

• $L_{realistic1}(E, G, D) = \mathbb{E}_{x} \left[-\log D \left(G(E(x)) \right) \right]$

• $L_{style}(E, G, D_{patch}) = \mathbb{E}_{x_1, x_2}[-\log D_{patch}(crop(swap(x_1, x_2)), crops(x_2))]$

random

• $L_{realistic2}(E, G, D) = \mathbb{E}_{x_1, x_2, x_1 \neq x_2} \left[-\log D\left(swap(x_1, x_2)\right) \right]$

BiaSwap

How to separate the bias-aligned and the bias-conflicting?

- 1. Train a biased classifier (f_B) with GCE loss
- 2. Split the bias-aligned and the bias-conflicting

$$score(x) = \left| \mathbb{I}\left(\arg\max_{k} f_{B}(x)_{k} = y\right) - \max\left(\exp(f_{B}(x)) / \sum_{k} \exp(f_{B}(x)_{k})\right) \right|$$

- bias-aligned: presumably correct → 1-conf. (≈ small value) → below average
- bias-conflicting : presumably wrong → conf. (≈ large value) → <u>over average</u>

Dataset	Colored MNIST	Corrupted CIFAR10	bFFHQ
Precision (%)	97.54	60.70	65.52
Recall (%)	92.12	87.28	70.62
F1 score (%)	94.74	66.13	67.70

BiaSwap

How to focus on bias?

3. Define Class Activation Map (CAM) for the target attribute

$$f_B(x)_k = \sum_c w_c^k \frac{1}{W \times H} \sum_{x,y}^{\mathsf{GAP}(c)} A_c(x,y) = \sum_{x,y} \sum_c \frac{1}{W \times H} w_c^k \cdot A_c(x,y)$$

- w_c^k : the last linear layer weight from channel c to class k
- $A_c(x,y):(x,y)$ -coordinate value of the last convolutional feature map of channel c
- 4. Substitute the random cropping to the bias-tailored patch sampling

Sampling probability of (x, y)

$$P(x,y) = \frac{\exp(\mathsf{CAM}(x,y))}{\sum_{w=1,h=1}^{w=W,h=H} \exp(\mathsf{CAM}(w,h))}$$

Disentangled Feature Augmentation (DFA)

- Observation
 - Diversity ratio matters more than sampling ratio
 - Diversity ratio : # of bias-conflicting / dataset
 - Sampling ratio: # of bias-conflicting / mini-batch

Dataset	Diversity ratio	Sampling ratio	Accuracy (%)	
	5%	50%	83.77 ±2.03	
Colored MNIST	1%	50%	67.19 ± 1.99	
	5%	1%	77.97 ± 6.00	
	1%	1%	49.91 ± 4.22	
	5%	50%	46.99 ±0.82	
Corrupted CIFAR-10	1%	50%	33.08 ± 0.80	
Corrupted Cirrit-10	5%	1%	36.66 ± 0.55	
	1%	1%	23.98 ± 0.00	

- Goal: Increase diversity of bias-conflicting via feature augmentation

 $L_{dis} = W(z)CE(C_t(z), y) + \lambda_1 \cdot GCE(C_h(z), y)$

(scheduling)

 After some iterations, swap the latent vectors of random pairs within minibatch to increase diversity of bias-conflicting

 $L_{swan} = W(z)CE(C_t(z_{swan})), y + \lambda_2 \cdot GCE(C_h(z_{swan})), y$

Lee, Jungsoo, et al. "Learning debiased representation via disentangled feature augmentation." Advances in Neural Information Processing Systems 34 (2021): 25123-25133.

Disentangled Feature Augmentation (DFA)

T-sne embedding of z_t (left) and z_b (right) labeled by digit (top) and color (bottom). (dataset : ColoredMNIST)

Reconstructed images based on the disentangled features (row: maintain target attribute, column: maintain bias attribute) (freeze the encoders and only train a decoder)

Accuracy(%)	Colored MNIST		Corrupted CIFAR10		BFFHQ	
	Target	Bias	Target	Bias	Target	Bias
Original Swapping	76.08 71.40	98.07 94.29	35.63 35.14	74.16 76.46	57.40 58.40	49.00 51.60

Disentangle	Augment	Scheduled Augment	Colored MNIST	Corrupted CIFAR10	BFFHQ
_	_	_	52.09±2.88	25.82±0.33	56.87±2.69
\checkmark	_	_	74.03 ± 2.40	$27.73{\scriptstyle\pm1.02}$	59.4 ± 2.46
✓	\checkmark	_	72.29 ± 3.82	32.81 ± 2.47	61.27 ± 3.26
\checkmark	\checkmark	✓	81.73 ±2.34	52.31 ±1.00	63.87 ±0.31

Ablation study on disentangled feature, augment, scheduling

E.O.D