The Naive Bayes Classifier

Naive Bayes Classifier

2:32 PM

Assume target function $f : X \rightarrow V$, where each instance x described by attributes $(a_1, a_2 ... a_n)$. Most probable value of f(x) is:

$$\begin{aligned} v_{MAP} &= \underset{v_j \in V}{\operatorname{argmax}} P(v_j | a_1, a_2 \dots a_n) \\ v_{MAP} &= \underset{v_j \in V}{\operatorname{argmax}} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)} \\ &= \underset{v_i \in V}{\operatorname{argmax}} P(a_1, a_2 \dots a_n | v_j) P(v_j) \end{aligned}$$

Naive Bayes assumption:

$$P(a_1, a_2 ... a_n | v_j) = \prod_i P(a_i | v_j)$$

which gives

Naive Bayes classifier: $v_{NB} = \underset{v_{i} \in V}{\operatorname{argmax}} P(v_{j}) \prod_{i} P(a_{i}|v_{j})$

The Naive Bayes Classifier

Given a test example with attribute values $(a_1,...,a_n)$ assign x to the class c_i that

pred(x) = argmax
$$p(c_i)$$
 * $p(a_1|c_i)$ * $p(a_2|c_i)$ * ... * $p(a_n|c_i)$
In order to do this, we need to estimate, for every class c_i , $p(c_i)$ and $p(a_j|c_i)$ for j in 1,..., n for every possible value of a_j

· Exercise # 3

where p_class[i] represents the probability that an example belongs to class i and p_att_given_class[i,j] represents the probability that attribute j in an example of class i is equal to 1.

3. How would the Naïve Bayes classifier classify example [1,1,1,0,0]?

which class has highest prob

[,,,,,0,0] let (i= 6) = .33) * $P(a_{1}|C_{0}) = g_{00} = .72$ $P(a_{1}|C_{0}) = g_{01} = .21$ $P(a_{1}|C_{0}) = g_{01} = .89$ $P(a_{2}|C_{0}) = -1 - g_{02} = -1 - .47$ P(a1)(b)=1-gay= 1-.64) P (test point) On class Repeat for all classes and get highest probability

get aganx from this list

get argumy from this list and you are finished