Sudoku

1. Quantum-Sudoku: Enforcing Constraints through Quantum Entanglement

1.1. Introduction

Sudoku, a popular logic-based number-placement puzzle, presents an intriguing playground for the implementation of quantum algorithms. Traditionally, Sudoku is a *graph coloring problem*, where graph nodes correspond to puzzle squares and colors are represented by Sudoku numbers. In this work, we can introduce *Quantum-Sudoku*, a groundbreaking approach that employs quantum computing paradigms, specifically quantum entanglement, to enforce the constraints in the game.

1.2. Classical Constraints in Sudoku

In the classical version of Sudoku, the constraints are that each number from 1 to 9 should appear exactly once in each row, each column, and each of the nine 3x3 boxes that compose the grid. These constraints ensure that every number has a unique position within these sub-grids.

$$C(i,j) = \{x_{i,j} \neq x_{m,n}\} \quad \forall (m,n) \in \text{same row, column, or } 3x3 \text{ box}$$
 (1)

where C(i, j) represents the constraint for a number at position (i, j) and $x_{i,j}$ is the number at that position.

1.3. Quantum Entanglement as a Constraint Mechanism

To introduce quantum computing aspects into Sudoku, I propose using quantum entanglement as a constraint mechanism. The idea is to represent each Sudoku square by a qubit. When a player makes a move, we generate an entangled state for the qubits that are in the same row, column, or box as the moved qubit. This quantum entanglement enforces the Sudoku constraints at a quantum level.

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |x_j\rangle \cdots |x_n\rangle$$
 (2)

Here, $|\Psi\rangle$ is the entangled state representing the constraints and N is the number of qubits that are entangled (i.e., in the same row, column, or 3x3 box). The x values are quantum states that correspond to the numbers in the Sudoku squares. When a move is made, the entangled state ensures that no two qubits in the entangled set can exist in the same state, thereby automatically enforcing the Sudoku constraints.

2. Quantum Error Correction in Quantum-Sudoku

Quantum computing is susceptible to errors due to environmental factors, a phenomenon generally termed as *quantum noise*. In the context of Quantum-Sudoku, this noise could potentially disrupt the entangled states, leading to erroneous enforcement of constraints. To combat this, we can incorporate quantum error correction techniques.

2.1. Quantum Noise in Entangled States

The entangled states are sensitive to decoherence and other forms of quantum noise. For example, a noise-affected entangled state can be represented as:

$$|\tilde{\Psi}\rangle = |\Psi\rangle + \varepsilon |\text{noise}\rangle$$
 (3)

where $|\Psi\rangle$ is the ideal entangled state, and ε represents the error term introduced by quantum noise.

2.2. Applying Quantum Error Correction

To correct these errors, one can employ quantum error correction codes, such as the Shor code or the surface code [2, p. 120] [3, p. 250]. These codes work by encoding a logical qubit into a number of physical qubits, allowing for the detection and correction of errors. In the context of Quantum-Sudoku, a noisy qubit representing a Sudoku number could be corrected before a player makes a move, thereby ensuring that the constraints enforced by entanglement are accurate.

Corrected State:
$$|\hat{\Psi}\rangle = \text{QEC}(|\tilde{\Psi}\rangle)$$
 (4)

where QEC represents the quantum error correction operation, and $|\hat{\Psi}\rangle$ is the corrected entangled state.

References

- [1] L. K. Grover. A fast quantum mechanical algorithm for database search. In *Proceedings of the 28th Annual ACM Symposium on Theory of Computing*, pages 212–219, 1996.
- [2] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. *Physical Review A*, 52(4):R2493, 1995.
- [3] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. *Journal of Mathematical Physics*, 43(9):4452–4505, 2002.