# Lighting and Rasterization - Visibles Symmetre Determination

https://eduassistpro.github.io/

## Intended Learning Outcomes

- Understand the goal of visible surface determination
- Describe the method of back-face detection
- Describe the method of Project Exethoblelp
- Describe the mhttps://eduassistpro.github.io/ination techniques

#### Visible Surface Detection

- Also called Hidden Surface Elimination
- Only visible suitaces ish But jeet Fasterized p
- https://eduassistpro.github.io/
   The problem is dle partially visible scenarios Add WeChat edu\_assist\_pro
  - Concave objects
  - one object partially in front of each other

#### Three Methods

- Back-face detection (also called Culling)
- Z buffer (also called depth buffer)
- Ray Castingsignment Project Exam Help

#### https://eduassistpro.github.io/

- Back-face detection is always reliminary test. It is fast and reduces about half edu\_assist problem before further processing.
- Other methods also exist: e.g. painter's algorithm, A buffer method, ...

### Back-Face Detection / Culling

- Fast and simple
- Use as a preliminary step before more sophisticated visibility tests
- Eliminates ASSO Proferences of the Exther Hone ideration



- Sometimes, v is replaced by the VPN for faster approximate processing
- Disadvantage: cannot handle concave object or partially overlapping object
   Assignment Project Exam Help

https://eduassistpro.github.io/

#### Z Buffer

- Also called depth buffer method
- Two buffers
  - Z/Depth building the best values of bach (x, y) position https://eduassistpro.github.io/values for each
  - Frame / Refr values for each (x,y) positionAdd WeChat edu\_assist\_pro
- Buffer stores the current visible surface information, values are updated as soon as new visible information found

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Z buffer algorithm

# Algorithm

 Initialize the depth buffer and frame buffer so that for all buffer positions (x, y)

- 2. Process each p ime.
  - a. for each proje https://eduassistpro.gitlolyboio/calculate the depth z (if not
  - b. If z < depthBufA(v.d/) Worndwate edu\_assist loprot that position and set

depthBuff 
$$(x, y) = z$$
, frameBuff  $(x, y) = surfColor(x, y)$ 

After all surfaces have been processed, the depth buffer contains depth values for the visible surfaces and the frame buffer contains the corresponding colour values for those surfaces.

# Ray Casting

- retrace the light paths of the rays that arrive at the pixel
- for each pixels is and entropy from the pixel
- find all intersechttps://eduassistpro.githurfaice/s
- the nearest intersections is th \_\_\_\_\_\_ rt of the surface for that pixel Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Ray casting

# Comparison of Z buffer and Ray Casting

| Method         | Good for situations                    |
|----------------|----------------------------------------|
| Assignment Pro | <del>ject Exam Help</del><br>at cannot |
| https://edu    | assistpro.gqthate!lo/<br>by simple     |
| Add WeCh       | at edu_assist <sub>ps</sub> pro        |
| Ray casting    | Objects that can                       |
|                | easily be described                    |
|                | by simple equations                    |

# OpenGL Functions

- Back face removal glEnable (GL\_CULL\_FACE); glCullFace (Gligh Mehr), Project Exam Help
- Z Buffer https://eduassistpro.github.io/ glutInitDisplayMode (GLUT GLUT\_DEPTH);

```
glClear (GL_DEPTH_BUFFER_BIT);
glEnable (GL_DEPTH_TEST);
```

#### References

- Text: Ch. 16.1- 16.3, 16.10-11 for various visibility determination methods
- Text: Ch. 146st4gforn@pePGdjeenEmandHelp

https://eduassistpro.github.io/