Application Note AN0003

Binary Messages

Of

SkyTraq Venus 6 GPS Receiver

Ver 1.4.8

Aug. 21, 2008

Binary Message Protocol

The Skytraq binary message protocol manual provides the detailed descriptions on the SkyTraq binary protocol serving as a communicating interface between SkyTraq GPS receivers and an external host such as PC, Notebook and mobile personal device. It is a standard protocol used by all SkyTraq devices and provides users a satisfactory control over the GPS receivers.

The SkyTraq GPS receiver outputs standard NMEA messages during normal operation. This NMEA messages may be a scheduled output at a specified rate subject to user's requests. The SkyTraq binary message protocol is designed with cares on reliable transmissions of data, ease & efficiency of implement, and payload independence mechanism which ensure users to retrieve data in a most effective & flexible way. The overall binary protocol messages can be categorized as input and output messages. Input messages provide the functionality to users to control the behavior of the GPS receiver and to retrieve the detailed information of the GPS status in real-time. Output messages, on the other hand, are information strings that GPS receiver responses to requests from hosts and can optionally periodically reports the Position, Velocity and Time (PVT) via NMEA or binary messages.

BINARY MESSAGE STRUCTURE

Message Format

The following picture shows the structure of a binary message.

The syntax of the message is shown below.

<0xA0,0xA1><PL><Message ID><Message Body><CS><0x0D,0x0A>

Start of Sequence

This field contains two bytes of values 0xA0, 0xA1 which indicate start of Messages.

Payload Length

The payload length (PL) field contains 16 bits of value which indicates the length of payload.

Payload

The payload field consists of 2 sub-fields, Message ID and Message Body. Message ID field defines the message ID.

Sub-Field	Values
Message ID	0x01~0xFF
Message Body	Data Bytes

Checksum

Checksum (CS) field is transmitted in all messages. The checksum field is the last field in a message before the end of sequence field. The checksum is the 8-bit exclusive OR of only the payload bytes which start from Message ID until the last byte prior to the checksum byte. A reference to the calculation of CS is provided

below,

CS = 0, N=PL; For n = 0 to N $CS = CS ^ < Payload Byte # <math>n > 0$

End of Sequence

This field contains two bytes of values 0x0D, 0x0A which indicate end of Messages.

Data Byte Ordering

All payloads in binary protocol are transferred in little-endian format. The low order byte is transmitted first followed by the high order byte for data size larger than a byte (e.g. UINT32, DPFP).

Data Type Definition

UINT8	8 bit unsigned integer
UINT16	16 bit unsigned integer
UINT32	32 bit unsigned integer
SINT8	8 bit signed integer
SINT16	16 bit signed integer
SINT32	32 bit signed integer
SPFP	32 bit single precision floating point number
DPFP	64 bit double precision floating point number

MESSAGE FLOW

Host can perform actions to GPS receiver by issuing a request or a set message. The message flow between Host and GPS receiver is designed under the considerations of certain reliable transmission. SkyTraq binary message protocol requires an ACK response from the GPS receiver upon receiving a successful input message and on the other hand, requires a NACK response from the receiver to a failed input message. Figure 1 shows a message flow that a host requests information from GPS receiver and the GPS receiver responses with an ACK and information respectively. Figure 2 shows a message flow with un-successful input message. Therefore, all requests (input messages) will have a corresponding ACK or NACK to be related with. However, output messages will not require the host to confirm by an ACK or NACK back in current design.

Figure 1

Figure 2

MESSAGE LIST

This section provides brief information about available SkyTraq binary input and output messages shown in a tabular list. All the messages are listed by Message ID. Full descriptions of input and output messages will be described in later Sections.

Input Syste	em Messages					
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions		
0x1	1	Input	System Restart	Force system to restart		
0x2	2	Input	Query Software version	Query revision information of software		
0x3	3	Input	Query Software CRC	Query the CRC of the software		
0x4	4	Input	Set Factory Defaults	Set system to factory default values		
0x5	5	Input	Configure Serial Port	Set up serial port COM, baud rate, data		
				bits, stop bits and parity		
0x6	6	Input	Reserved	Reserved		
0x7	7	Input	Reserved	Reserved		
0x8	8	Input	Configure NMEA	Configure NMEA output message		
0x9	9	Input	Configure Output	Configure the output message format		
			Message Format	from GPS receiver		
0xC	12	Input	Configure Power Mode	Set system power mode		
0xE	14	Input	Configure position	Configure the position update rate of		
			update rate	GPS system		
0x10	16	Input	Query position update	Query the position update rate of GPS		
			rate	system		
Input GPS	Messages					
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions		
0x30	48	Input	Get ephemeris	Retrieve ephemeris data of the GPS		
				receiver		
0x31	49	Input	Set ephemeris	Set ephemeris data to the GPS receiver		
0x37	55	Input	Configure WAAS	Configure the enable or disable of WAAS		
0x38	56	Input	Query WAAS status	Query WAAS status of GPS receiver		
0x3c	60	Input	Configuration	Configure the navigation mode of GPS		
			navigation mode	system		
0x3d	61	Input	Query navigation mode	Query the navigation mode of GPS		
				receiver		
Output System Messages						
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions		
0x80	128	Output	Software version	Software revision of the receiver		
0x81	129	Output	Software CRC	Software CRC of the receiver		

0x82	130	Output	Reserved	Reserved
0x83	131	Output	ACK	ACK to a successful input message
0x84	132	Output	NACK	Response to an unsuccessful input
				message
0x86	0x86 134 Output		Position update rate	Position update rate of GPS system
Output GP	S Messages			
ID(Hex)	ID(Decimal)	Attribute	Name	Descriptions
0xB3	179	Output	GPS WAAS status	WAAS status of the GSP receiver
0xB5	180	Output	GPS navigation mode	Navigation mode of the GSP receiver

INPUT MESSAGES

SYSTEM RESTART – Force system to restart (0x1)

This is a request message which will reset and restart the GPS receiver. This command is issued from the host to GPS receiver and GPS receiver should respond with an ACK or NACK. The payload length is 15 bytes.

Structure:

<0xA0,0xA1>< PL><01>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 0F 01 01 D6 07 0C 12 08 32 29 C4 09 70 30 64 00 35 0D 0A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	01		UINT8	-
			00 = System Reset, Mode No Change		
			01 = System Reset, Hot start		
2	Start Mode	01	02 = System Reset, Warm start	UINT8	
			03 = System Reset, Cold start		
			04 = Test mode		
3-4	UTC Year	D607	>= 1980	UINT16	
5	UTC Month	0C	1 ~ 12	UINT8	
6	UTC Day	12	1 ~ 31	UINT8	
7	UTC Hour	08	0 ~ 23	UINT8	
8	UTC Minute	32	0 ~ 59	UINT8	
9	UTC Second	19	0 ~ 59	UINT8	
			Between – 9000 and 9000		1/100
10-11	Latitude	C409	> 0: North Hemisphere	SINT16	
			< 0: South Hemisphere		degree
			Between – 18000 and 18000		1/100
12-13	Longitude	7030	> 0: East Hemisphere	SINT16	
			< 0: West Hemisphere		degree
14-15	Altitude	6400	Between –1000 and 18300	SINT16	Meter
Payload	d Length : 15 bytes				

QUERY SOFTWARE VERSION – Query revision information of loaded software (0x2)

This is a request message which is issued from the host to GPS receiver to retrieve loaded software version. The GPS receiver should respond with an ACK along with information on software version when succeeded and should respond with an NACK when failed. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><02>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 02 00 02 0D 0A

1 2

Field	Name	Example(hex)	Description	Type	Unit
1	Message ID	02		UINT8	
2	Software Type	00	00 = Reserved 01 = System code	UINT8	
Payload Length : 2 bytes					

QUERY SOFTWARE CRC – Query CRC information of loaded software (0x3)

This is a request message which is issued from the host to GPS receiver to retrieve loaded software CRC. The GPS receiver should respond with an ACK along with information on software version when succeeded and should respond with an NACK when failed. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><02>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 03 00 03 0D 0A

1 2

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	03		UINT8	
2	Software Type	00	00 = Reserved 01 = System code	UINT8	
Payload Length : 2 bytes					

SET FACTORY DEFAULTS – Set the system to factory default values (0x4)

This is a request message which is issued from the host to GPS receiver. It will reset the GPS receiver's internal parameters to factory default values. The GPS receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The user data will be erased and filled with factory default values. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><04>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 04 00 04 0D 0A

1 2

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	04		UINT8		
			00 = Reserved			
2	Туре	00	01 = reboot after setting to factory	UINT8		
			defaults			
Payload Length : 2 bytes						

CONFIGURE SERIAL PORT – Set up serial port property (0x5)

This is a request message which will configure the serial COM port, baud rate. This command is issued from the host to GPS receiver and GPS receiver should respond with an ACK or NACK. The payload length is 4 bytes.

Structure:

<0xA0,0xA1>< PL><05>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 04 05 00 00 00 05 0D 0A

1 2 3 4

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	05		UINT8	
2	COM port	00	00 = COM 1	UINT8	
			0: 4800		
			1: 9600		
3	Baud Rate	00	2: 19200	UINT8	
3			3: 38400		
			4: 57600		
			5: 115200		
4	Attributes	00	0: update to SRAM	UINT8	
4	Attributes		1: update to both SRAM & FLASH	Olivio	
Payload	d Length : 4 bytes				

CONFIGURE NMEA MESSAGE – Configure NMEA message interval (0x8)

This is a request message which will set NMEA message configuration. This command is issued from the host to GPS receiver and GPS receiver should respond with an ACK or NACK. The payload length is 9 bytes.

Structure:

<0xA0,0xA1>< PL><08>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 09 08 01 01 01 00 01 00 00 00 08 0D 0A

1 2 3 4 5 6 7 8 9

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	08		UINT8			
2	GGA Interval	01	0 ~255, 0: disable	UINT8	Second		
3	GSA Interval	01	0 ~255, 0: disable	UINT8	Second		
4	GSV Interval	01	0 ~255, 0: disable	UINT8	Second		
5	GLL Interval	00	0 ~255, 0: disable	UINT8	Second		
6	RMC Interval	01	0 ~255, 0: disable	UINT8	Second		
7	VTG Interval	00	0 ~255, 0: disable	UINT8	Second		
8	ZDA Interval	00	0 ~255, 0: disable	UINT8	Second		
0	Attributos	00	0: update to SRAM	LUNITO			
9	Attributes	00	1: update to both SRAM & FLASH	UINT8			
Payloa	Payload Length : 9 bytes						

CONFIGURE MESSAGE TYPE – Configure and select output message type (0x9)

This is a request message which will change the GPS receiver output message type. This command is issued from the host to GPS receiver and GPS receiver should respond with an ACK or NACK. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><09>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 09 00 00 09 0D 0A

1 2 3

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	09		UINT8		
			00 : No output			
2	Туре	00	01 : NMEA message	UINT8		
			02 : Binary Message			
2	A		0: update to SRAM	LUNITO		
3	Attributes	00	1: update to both SRAM & FLASH	UINT8		
Payload Length : 3 bytes						

CONFIGURE SYSTEM POWER MODE –Set the power mode of GPS system (0xC)

This is a request message which is issued from the host to GPS receiver to configure the system power mode. The GSP receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><0C>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 0C 00 00 0C 0D 0A

1 2 3

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	0C		UINT8		
2	2 Mode	00	00 = Normal (disable)	UINT8		
			01 = Power Save (enable)			
	Attributes	00	0: update to SRAM			
3			1: update to both SRAM & FLASH	UINT8		
			2: temporarily enabled			
Payload	Payload Length: 3 bytes					

CONFIGURE SYSTEM POSITION RATE – Configure the position update rate of GPS system (0xE)

This is a request message which is issued from the host to GPS receiver to configure the system position update rate. Receivers with position rate 4 or higher needs to configure baud rate to 38400 or higher value. The GSP receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><0E>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 0E 01 00 0F 0D 0A

1 2 3

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	0E		UINT8	
			Value with 1, 2, 4, 5, 8 or 10		
2	Rate	04	01: 1Hz update rate	UINT8	
2	Kale	01	Note: value with 4 or higher should work		
			with baud rate 38400 or higher		
2	Attributoo	00	0: update to SRAM	UINT8	
3	Attributes		1: update to both SRAM & FLASH		
Payload Length : 3 bytes					

QUERY POSITION UPDATE RATE – Query the position update rate of GPS system (0x10)

This is a request message which is issued from the host to GPS receiver to query position update rate. The GSP receiver should respond with an ACK along with information on software version when succeeded and should respond with an NACK when failed. The payload length is 1 byte.

Structure:

<0xA0,0xA1>< PL><10>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 01 10 10 0D 0A

1

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	10		UINT8	
Payload Length : 1 byte					

Get Ephemeris – Get ephemeris used of firmware (0x30)

This is a request message which is issued from the host to GPS receiver to retrieve ephemeris data. The GSP receiver should respond with an ACK along with information on ephemeris when succeeded and should respond with an NACK when failed. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><30>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 30 00 30 0D 0A

1 2

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	30		UINT8	
2	SV#	00	0: means all SVs 1~32 : mean for the particular SV	UINT8	
Payload Length : 2 bytes					

Set Ephemeris – Set ephemeris to GPS firmware (0x31)

This is a request message which is issued from the host to GPS receiver to set ephemeris data (open an ephemeris file) to GPS receiver. The GSP receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The payload length is 87 bytes.

Structure:

<0xA0,0xA1>< PL><31>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 57 31 00 02 00 77 88 04 61 10 00 00 00 00 00 00 00 00 00 00 00 DB DF 59 A6 00 00 1E 0A
1 2 3 28 29
47 7C 00 77 88 88 DF FD 2E 35 A9 CD B0 F0 9F FD A7 04 8E CC A8 10 2C A1 0E 22 31 59 A6 74 00 77
30 31
89 0C FF A3 59 86 C7 77 FF F8 26 97 E3 B9 1C 60 59 C3 07 44 FF A6 37 DF F0 B0 5E 0D 0A
64 65 86 87

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	31		UINT8	
2-3	SV id	0x1	Satellite id	UINT16	
4	SubFrameData[0][0]	00	Eph data subframe 1	UINT8	
5	SubFrameData[0][1]	00	Eph data subframe 1	UINT8	
6	SubFrameData[0][2]	00	Eph data subframe 1	UINT8	
7	SubFrameData[0][3]	00	Eph data subframe 1	UINT8	
8	SubFrameData[0][4]	00	Eph data subframe 1	UINT8	
9	SubFrameData[0][5]	00	Eph data subframe 1	UINT8	
10	SubFrameData[0][6]	00	Eph data subframe 1	UINT8	
11	SubFrameData[0][7]	00	Eph data subframe 1	UINT8	
12	SubFrameData[0][8]	00	Eph data subframe 1	UINT8	
13	SubFrameData[0][9]	00	Eph data subframe 1	UINT8	
14	SubFrameData[0][10]	00	Eph data subframe 1	UINT8	
15	SubFrameData[0][11]	00	Eph data subframe 1	UINT8	
16	SubFrameData[0][12]	00	Eph data subframe 1	UINT8	
17	SubFrameData[0][13]	00	Eph data subframe 1	UINT8	
18	SubFrameData[0][14]	00	Eph data subframe 1	UINT8	
19	SubFrameData[0][15]	00	Eph data subframe 1	UINT8	
20	SubFrameData[0][16]	00	Eph data subframe 1	UINT8	
21	SubFrameData[0][17]	00	Eph data subframe 1	UINT8	
22	SubFrameData[0][18]	00	Eph data subframe 1	UINT8	
23	SubFrameData[0][19]	00	Eph data subframe 1	UINT8	

24	SubFrameData[0][20]	00	Eph data subframe 1	UINT8			
25	SubFrameData[0][21]	00	Eph data subframe 1	UINT8			
26	SubFrameData[0][22]	00	Eph data subframe 1	UINT8			
27	SubFrameData[0][23]	00	Eph data subframe 1	UINT8			
28	SubFrameData[0][24]	00	Eph data subframe 1	UINT8			
29	SubFrameData[0][25]	00	Eph data subframe 1	UINT8			
30	SubFrameData[0][26]	00	Eph data subframe 1	UINT8			
31	SubFrameData[0][27]	00	Eph data subframe 1	UINT8			
32~59	SubFrameData[1][0~27]	00	Eph data subframe 2, same as field 4-31	UINT8			
60-87	SubFrameData[2][0~27]	00	Eph data subframe 3, same as field 4-31	UINT8			
Payload	Payload Length : 87 bytes						

CONFIGURE WAAS - Configure the enable or disable of WAAS (0x37)

This is a request message which is issued from the host to GPS receiver to enable or disable WAAS. The GSP receiver should respond with an ACK when succeeded and should respond with an NACK when failed. The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><37>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 37 01 00 36 0D 0A

1 2 3

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	37		UINT8	
2	enable	1	0: disable	UINT8	
			1: enable	UINTO	
2	Attributes	00	0: update to SRAM	UINT8	
3			1: update to both SRAM & FLASH		
Payload Length: 3 bytes					

QUERY WAAS STATUS - Query WAAS status of GPS receiver (0x38)

This is a request message which is issued from the host to GPS receiver to query WAAS status. The GSP receiver should respond with an ACK along with AGPS aiding status when succeeded and should respond with an NACK when failed. The payload length is 1 bytes.

Structure:

<0xA0,0xA1>< PL><38>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 01 38 38 0D 0A

1

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	38		UINT8	
Payload Length : 1 bytes					

CONFIGURE NAVIGATION MODE – Configure the navigation mode of GPS system (0x3c)

This is a request message which is issued from the host to GPS receiver to configure the system navigation mode. The GSP receiver should respond with an ACK when succeeded and should respond with an NACK when failed.

The payload length is 3 bytes.

Structure:

<0xA0,0xA1>< PL><3c>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 03 3c 00 00 3C 0D 0A

1 2 3

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	3c		UINT8	
2	Navigation mode	00	0: car	UINT8	
2			1: pedestrian	UINTO	
3	Attributes	00	0: update to SRAM	UINT8	
3			1: update to both SRAM & FLASH		
Payload Length: 3 bytes					

QUERY NAVIGATION MODE – Query the navigation mode of GPS receiver (0x3d)

This is a request message which is issued from the host to GPS receiver to query navigation mode. The GSP receiver should respond with an ACK along with navigation mode when succeeded and should respond with an NACK when failed. The payload length is 1 bytes.

Structure:

<0xA0,0xA1>< PL><3d>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 01 3d 3d 0D 0A

1

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	3d		UINT8	
Payload Length : 1 bytes					

OUTPUT MESSAGES

SOFTWARE VERSION - Software version of the GPS receiver (0x80)

This is a response message which provides the software version of the GPS receiver. This message is sent from the GPS receiver to host. The example below output the SkyTraq software version as 01.01.01-01.03.14-07.01.18 on System image. The payload length is 14 bytes.

Structure:

<0xA0,0xA1>< PL><80>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 0E 80 01 00 01 01 01 00 01 03 0E 00 07 01 12 98 0D 0A

1 2 34 5 6 78 9 1011121314

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	80		UINT8			
2	Software Type	00	0: Reserved	UINT8			
	Software Type	00	1: System code	UINTO			
3-6	Kernel Version	00010001	X1.Y1.Z1 = SkyTraq Kernel Version	UINT32			
3-0	Remei version	00010001	Ex. X1=01, Y1=00, Z1=01 (1.0.1)				
7-10	ODM version	00010307	X1.Y1.Z1 = SkyTraq Version	UINT32			
7-10			Ex. X1=01, Y1=03, Z1=01 (1.3.1)				
11 11	Povision	00060005	YYMMDD = SkyTraq Revision	LIINITOO			
11-14	Revision	00060C0F	Ex. YY=06, MM=01, DD=10 (060110)	UINT32			
Payload	Payload Length : 14 bytes						

SOFTWARE CRC - Software CRC of the GPS receiver (0x81)

This is a response message which provides the software CRC of the GPS receiver. This message is sent from the GPS receiver to host. The payload length is 4 bytes.

Structure:

<0xA0,0xA1>< PL><81>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 04 81 01 98 76 6E 0D 0A

1 2 34

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	81		UINT8			
2	Software Type	00	0: Reserved	UINT8			
2			1: System code				
3-4	CRC	9876	CRC value	UINT16			
Payload Length: 4 bytes							

ACK – Acknowledgement to a Request Message (0x83)

This is a response message which is an acknowledgement to a request message. The payload length is 2 bytes

Structure:

<0xA0,0xA1>< PL><83>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 83 02 81 0D 0A

1 2

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	83		UINT8		
2	ACK ID	02	Message ID of the request message	UINT8		
Payload Length : 2 bytes						

NACK – Response to an unsuccessful request message (0x84)

This is a response message which is a response to an unsuccessful request message. This is used to notify the Host that the request message has been rejected. The payload length is 2 bytes

Structure:

<0xA0,0xA1>< PL><84>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 84 01 82 0D 0A

12

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	84		UINT8		
2	ACK ID	01	Message ID of the request message	UINT8		
Payload Length : 2 bytes						

POSITON UPDATE RATE – Position Update rate of the GSP system (0x86)

This is a response message to **QUERY POSITION UPDATE RATE** which provides the position update rate of the GPS receiver. This message is sent from the GPS receiver to host. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><86>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 86 01 87 0D 0A

12

Field	Name	Example(hex)	Description	Туре	Unit		
1	Message ID	86		UINT8			
2	Update Rate	01	01: 1Hz	UINT8			
Payload Length : 2 bytes							

GPS Ephemeris data – ephemeris data of the GSP receiver (0xB1)

This is a response message which provides the Ephemeris Data of the GPS receiver to Host. The Host will save the ephemeris data as an ephemeris file. This message is sent from the GPS receiver to host. The payload length is 87 bytes.

Structure:

<0xA0,0xA1>< PL><B1>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 57 B1 00 02 00 77 88 04 61 10 00 00 00 00 00 00 00 00 00 00 00 DB DF 59 A6 00 00 1E 0A
1 2 3 28 29
47 7C 00 77 88 88 DF FD 2E 35 A9 CD B0 F0 9F FD A7 04 8E CC A8 10 2C A1 0E 22 31 59 A6 74 00 77
30 31
89 0C FF A3 59 86 C7 77 FF F8 26 97 E3 B9 1C 60 59 C3 07 44 FF A6 37 DF F0 B0 5E 0D 0A
64 65

Field	Name	Example(hex)	Description	Туре	Unit
1	Message ID	B1		UINT8	
2-3	SV id	0x1	Satellite id	UINT16	
4	SubFrameData[0][0]	00	Eph data subframe 1	UINT8	
5	SubFrameData[0][1]	00	Eph data subframe 1	UINT8	
6	SubFrameData[0][2]	00	Eph data subframe 1	UINT8	
7	SubFrameData[0][3]	00	Eph data subframe 1	UINT8	
8	SubFrameData[0][4]	00	Eph data subframe 1	UINT8	
9	SubFrameData[0][5]	00	Eph data subframe 1	UINT8	
10	SubFrameData[0][6]	00	Eph data subframe 1	UINT8	
11	SubFrameData[0][7]	00	Eph data subframe 1	UINT8	
12	SubFrameData[0][8]	00	Eph data subframe 1	UINT8	
13	SubFrameData[0][9]	00	Eph data subframe 1	UINT8	
14	SubFrameData[0][10]	00	Eph data subframe 1	UINT8	
15	SubFrameData[0][11]	00	Eph data subframe 1	UINT8	
16	SubFrameData[0][12]	00	Eph data subframe 1	UINT8	
17	SubFrameData[0][13]	00	Eph data subframe 1	UINT8	
18	SubFrameData[0][14]	00	Eph data subframe 1	UINT8	
19	SubFrameData[0][15]	00	Eph data subframe 1	UINT8	
20	SubFrameData[0][16]	00	Eph data subframe 1	UINT8	
21	SubFrameData[0][17]	00	Eph data subframe 1	UINT8	
22	SubFrameData[0][18]	00	Eph data subframe 1	UINT8	
23	SubFrameData[0][19]	00	Eph data subframe 1	UINT8	

24	SubFrameData[0][20]	00	Eph data subframe 1	UINT8	
25	SubFrameData[0][21]	00	Eph data subframe 1	UINT8	
26	SubFrameData[0][22]	00	Eph data subframe 1	UINT8	
27	SubFrameData[0][23]	00	Eph data subframe 1	UINT8	
28	SubFrameData[0][24]	00	Eph data subframe 1	UINT8	
29	SubFrameData[0][25]	00	Eph data subframe 1	UINT8	
30	SubFrameData[0][26]	00	Eph data subframe 1	UINT8	
31	SubFrameData[0][27]	00	Eph data subframe 1	UINT8	
32~59	SubFrameData[1][0~27]	00	Eph data subframe 2, same as field 4-31	UINT8	
60-87	SubFrameData[2][0~27]	00	Eph data subframe 3, same as field 4-31	UINT8	
Payload Length: 87 bytes					

GPS WAAS STATUS - WAAS status of the GSP receiver (0xB3)

This is a response message which provides the status of the WAAS receiver. This message is sent from the GPS receiver to host. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><B3>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 B3 00 B3 0D 0A

12

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	B3		UINT8		
2	WAAS status	00	0: disable	UINT8		
	WAAO Status		1: enable			
Payload Length: 2 bytes						

GPS NAVIGATION MODE – Navigation mode of the GSP receiver (0xB5)

This is a response message to **QUERY NAVIGATION MODE** which provides the navigation mode of the GPS receiver. This message is sent from the GPS receiver to host. The payload length is 2 bytes.

Structure:

<0xA0,0xA1>< PL><B5>< message body><CS><0x0D,0x0A>

Example:

A0 A1 00 02 B5 00 B5 0D 0A

12

Field	Name	Example(hex)	Description	Туре	Unit	
1	Message ID	B5		UINT8		
2	Navigation mode	00	0: car 1: pedestrian	UINT8		
Payload Length : 2 bytes						

Change Log

Ver 1.4.8, Aug 21, 2008

1. Update binary messages in kernel 1.4.8

Ver 0.3.1, Feb 1, 2007

- 2. Format of system restart command (Start Mode field) has been changed.
- 3. Add Kernel version to the output software version message.
- 4. Add GPS ephemeris related commands.
- 5. Change version number of this document to be the same as GUI view version number.

Ver 0.2, Dec 20, 2006

1. modify some examples

Ver 0.1, Nov 29, 2006

1. Initial release.

SkyTraq Technology, Inc.

5F, No.26, Minsiang Street, Hsinchu, Taiwan, 300

Phone: +886 3 5678650 Fax: +886 3 5678680 Email: info@skytraq.com.tw

© 2006 SkyTraq Technology Inc. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of SkyTraq Technology Inc ("SkyTraq"). Information provided by SkyTraq is believed to be accurate and reliable. These materials are provided by SkyTraq as a service to its customers and may be used for informational purposes only. SkyTraq assumes no responsibility for errors or omissions in these materials, nor for its use. SkyTraq reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of SkyTraq products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. SkyTraq further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. SkyTraq shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

SkyTraq products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.