Biology

Paolo Bettelini

Contents

1	Sistemi 2			
	1.1	Sistem	i viventi	
		1.1.1	Autopoiesi	
		1.1.2	Dissipazione	
		1.1.3	Cognizione	
2	Biomolecole			
	2.1	Carboi	drati	
	2.2	Proteir	ne	
	2.3			
		2.3.1	Trigliceride	
		2.3.2	Fosfolipide	
		2.3.3	Steroidi	
	2.4		nucleici	
3	Bio	energet	tica	
		_	mbrane	
		3.1.1	Proteine di membrana	
		3.1.2	Trasporto vescicolare	
		3.1.3	Glucotrasportatori di membrana (Glut4)	
	3.2		ni tra enzimi e vie metaboliche	
		3.2.1	Inibitori enzimatici	
	3.3	Respira	azione cellulare	

1 Sistemi

Definition Sistema

Un sistema (vivente e non-vivente) è composto di parti differenti, specializzate e interdipendenti.

- 1. Organizzazione della relazione fra le parti
- 2. Struttura fisica, chimica etc.
- 3. Processo di riproduzione

Definition Emergenza Sistemica

Una emergenza sistemica è lo scopo che le diverse parti riescono ad raggiungere ed eseguire.

Definition Molecola organica

Una molecola organica contiene il carbonio (tranne CO_2).

1.1 Sistemi viventi

Definition ATP

ATP è un composto organico che provvede energia alle cellule per le loro funzioni.

I seguenti processi sono eseguiti da tutti gli organismi viventi.

Nutrizione: Tutti gli organismi viventi si nutrono con del "cibo", ossia materia. In generale, gli esseri viventi necessitano di C, O, H, N, S e P. L'unico nutrimento della pianta è CO_2 (materia inorganica), mentre i nutrimenti degli animali sono materia organica.

Definition Autotrofo

Un organismo *autotrofo* può svolgere la propria funzione di nutrizione, elaborando alimenti inorganici mediante assunzione d'energia dal mondo inorganico.

Definition Eterotrofo

Un organismo eterotrofo si nutre di sostanze organiche prodotte dagli organismi autotrofi.

Respirazione:

Tutti gli organismi viventi respirano

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$$

In assenza di ossigeno (si usa la materia organica per produrre energia), e alcuni organismi fermentano. Nel caso degli umani i muscoli respirano, se non c'è O fermentano e producono acido lattico che deve successivamente essere smaltito.

Le piante respirano mediante la fotosintesi

$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$

Si riproduce e ha un ciclo vitale

Evolve

È sensibile (sa rispondere all'ambiente)

Mantiene stabili le sue condizioni interne

Definition Biotico

Con biotico si intende tutto ciò che è vivente o era vivente.

Definition Abiotico

Con abiotico si intende tutto ciò che non è vivente e non lo è mai stato.

Definition Detrito

Con detrito si intende il resto di ogni organismo vivente che è morto.

Il sistema vivente presenta le medesima ma caratteristiche del sistema non-vivente, ma possiede anche le seguenti componenti.

Definition Componente

Insieme di materia, concreta e tangibile

Example Components

Acqua, suolo, sali minerali, ossigeno.

Definition Fattore

Derive dalla presenza di componenti, produce un determinato effetto o risultato e si può misurare.

Example Fattore

- Decomposizione (fattore biotico).
- Predazione, catena alimentare (fattore biotico).
- Vento (fattore abiotico).
- Luce solare (fattore abiotico).
- Luce della lucciola (fattore biotico).

Un fattore rappresenta tutto ciò che si può misurare e che non è una componente.

1.1.1 Autopoiesi

Definition Autopoiesi

La capacità di ripararsi, modificarsi e riprodursi da solo, internamente ed in maniera autonoma.

I sistemi viventi sono organizzativamente chiusi, per cui hanno un confine.

Example Sistema autopoietico - ciclo

TODO: mettere foto

Example Sistema autopoietico - cellula

TODO: mettere foto

1.1.2 Dissipazione

Definition Dissipazione

La necessità di consumare energia, materia ed informazioni dall'esterno.

I sistemi viventi sono metabolicamente aperti, per cui hanno degli scambi con l'esterno e rinnovano il proprio materiale.

1.1.3 Cognizione

Definition Cognizione

L'attiva conoscenza dell'ambiente, esterno ed interno, da parte del sistema.

2 Biomolecole

Definition Biomolecola

Le biomolecole sono le molecole dei processi biologici degli essere viventi.

Tutte le biomolecole contengono C, O e H. Ci sono delle eccezioni, per esempio, gli idrocarburi contengono solamente C e O.

Le biomolecole sono di 4 tipi:

- Lipidi (grasso)
- Acidi nucleici (DNA e RNA)
- Carboidrati
- Proteine

Le macromolecole sono composte da *monomeri* e *polimeri*. Nel corpo umano i polimeri sono creati dalle cellule mediante alle istruzioni nel DNA. Le biomolecole fanno dei polimeri.

Definition Isomero

Gli *isomeri* sono delle molecole distinte con il medesimo numero di atomi, ma con una struttura diversa. Diversi isomeri potrebbero avere proprietà diverse.

Costruzione di polimeri Tutti i monomeri posseggono, da una parte un gruppo di idrogeno H, e dall'altra un gruppo OH. Due monomeri si uniscono mediante una reazione chimica chiamata condensazione o disidratazione, la quale consiste nell'unire un'estremità H con una OH mediante un legame. La condensazione libera una molecola d'acqua come scarto.

Disintegrazione di polimeri Per separare un legame fra due monomeri, viene utilizzata la reazione chimica di idrolisi o idratazione. Questa reazione necessita di una molecola di H_2O .

2.1 Carboidrati

Definition Carboidrato

I carboidrati sono dei tipi di biomolecole composti da carbonio, idrogeno e ossigeno $(CH_2O)_n$.

I monomeri di carboidrati si chiamano monosaccaridi. I polimeri di carboidrati si chiamano polisaccaridi (disaccaridi, trisaccaridi)

Definition Maltosio

Il maltosio è composto da due molecole di glucosio $(C_{12}H_{22}O_{11})$.

Per unire 2 molecole di glucosio è necessario perderne una di H_2O . Per cui il maltosio è dato da $C_{12}H_{22}O_{11}$.

Definition Saccarosio

Il saccarosio è composto da un glucosio e un fruttosio $(C_{12}H_{22}O_{11})$.

Definition Lattosio

Il lattosio è composto da un glucosio e un galattosio $(C_{12}H_{22}O_{11})$.

I monosaccaridi sono glucosio, fruttosio, galattosio (isomeri).

Definition Amido

L'amido è un polisaccaride che viene prodotto dalle piante. Esso è composto da una catena di glucosi arrotolati ad elica.

L'amilasi è l'enzima che rompe l'amido. Esso fa parte della famiglia degli idrolasi, ossia tutti gli enzimi che eseguono l'idrolisi.

Definition Glicogeno

Il glicogeno è un polisaccaride che viene prodotto dagli animali. Esso è composto da diverse diramazioni di catene di glucosio.

Amido e glicogeno occupano meno spazio dei monomeri da soli, per cui sono ottimali per immagazzinare il glucosio.

Gli esseri umani immagazzinano il glucosio in eccesso nei muscoli e nel fegato, dove ci sono degli enzimi che sono in grado di creare questi polimeri di glucosio.

Definition Cellulosa

La cellulosa è un polisaccaride di glucosio prodotto dalle piante. Esso è composto un insieme di fibre lineari.

La cellulosa serve per dare rigidità al tessuto delle piante.

I polisaccaridi sono amido, glicogeno e cellulosa.

2.2 Proteine

I monomero di proteine si chiamano amminoacidi.

Ci sono 20 possibili amminoacidi diversi.

Definition Catena Polipeptidica

Una catena polipeptidica è una catena di amminoacidi.

Definition Proteina

Le proteine sono delle biomolecole costruite da una o più catene polipeptidiche.

Le proteine si distinguono in 7 classi per funzione

- 1. Strutturali: es. unghie (cheratina).
- 2. Contrattili: costituiscono il muscolo.
- 3. Di riserva: costituiscono una riserva di amminoacidi (specialmente per l'embrione).
- 4. Di difesa: costituiscono gli anticorpi, neutralizzano gli agenti patogeni.
- 5. Di trasporto: trasportano l'ossigeno all'interno del sistema circolatorio.
- 6. Regolatrici: costituiscono alcuni ormoni.
- 7. Enzimi: costituiscono gli enzimi.

2.3 Lipidi

Definition Lipido

I *lipidi* sono un insieme di molecole idrofobe.

I lipidi non sono strutturati con monomeri e polimeri.

I lipidi vengono categorizzati nelle seguenti classi:

2.3.1 Trigliceride

Definition Trigliceride

Il trigliceride è una riserva energetica della cellula (comunemente grasso).

Il monogliceride è composto da un glicerolo, attaccato (per condensazione) ad un acido grasso. Il trigliceride è attaccato a 3 catene di acido grasso.

Le catene di acidi grassi possono essere dritti (saturi) oppure piegate (insaturi). Alle catene insature mancano alcuni doppi legami.

2.3.2 Fosfolipide

Definition Fosfolipide

Il fosfolipide sono composti da una testa idrofila e da una code idrofoba.

Le catarriteristiche idrofobe e idrofile permettono ai fosfolipidi di disporsi in maniera ordinata, con la testa verso l'acqua e la coda rivolta verso l'esterno.

2.3.3 Steroidi

Definition Steroide

Lo steroide è una molecola con una struttura di 4 anelli.

Alcuni esempi sono il colesterolo, testosterone ed estrogeno.

2.4 Acidi nucleici

I monomeri degli aicid nucleici si chiamano nucleotidi.

Definition Acido nucleico

 $\mathrm{L}{}'acido~nucleico$ è composto da un gruppo fosfato, zucchero e base azotata.

Definition DNA

Il DNA è composto da due filamenti di nucleotidi.

I nucleotidi del DNA sono 4 (A, C, G, T).

3 Bioenergetica

3.1 Le membrane

Definition Membrana

Le membrane sono dei fosfolipidi con una code e una testa idrofila.

Questi fosfolipidi si attraggono per polarità e possono formare le seguenti composizioni

Le sostanze idrofile (steroidi, grassi, etc.) vengono trasportati nel sangue

3.1.1 Proteine di membrana

Definition Gradiente di concentrazione

Il gradiente di concentrazione è un regolare incremento o diminuzione della concentrazione di una sostanza. Quando è presente un gradiente di concentrazione, gli ioni o le altre sostanze coinvolte tendono a muoversi spontaneamente dalla zona di concentrazione maggiore a quella di concentrazione minore.

Le principali tipologie di proteine che vengono incastrate nelle membrane sono:

Definition Proteina di trasporto

Una proteina di trasporto (canale) è una proteine di membrana che forma un tunnel sempre aperto.

Ogni canale non è direzionale ed ogni canale è specifico per un certo soluto.

Tuttavia, siccome le cellule necessitano un ambiente interno diverso da quello esterno, devono andare contro il gradiente di concentrazione. Per risolvere questo problema vengono utilizzati i trasportatori.

Definition Trasportatore

Un trasportatore è una proteina che sposta una sostanza contro il gradiente.

Ogni tipo di trasportatore è specifico ad un tipo di sostanza. Il trasportatore sposta quindi una sostanza da dove ce n'è poca a dove ce n'è tanta (mediante energia).

Definition Ricettori

Un ricettore è una proteina che comunica dei messaggi alla cellula.

Example Ricettori

Un ricettore potrebbe per esempio comunicare il segnale della presenza di un agente patogeno.

Alcune molecole possono passare direttamente attraverso la membrana, come per esempio l'azoto, l'ossigeno, acqua e glicerolo. Questo movimento è detto diffusione semplice nei fosfolipidi. Chiaramente, la cellula non può controllare queste sostanze.

Le molecole grandi e ioni non passano per i fosfolipidi senza un canale (diffusione facilitata).

Definition Trasporto attivo primario

Il trasporto attivo primario è un trasporto grazie ad un trasportatore e all'ATP.

Se non viene utilizzata direttamente l'ATP, bensì viene sfruttata la differenza di gradiente di concentrazione stabilita da un trasporto primario, si parla di trasporto secondario.

Definition Trasporto secondario

Il trasporto secondario sfrutta il gradiente di concentrazione per trasportare senza costo.

- Uniporto: consente il passaggio di un solo ione o molecola in un'unica direzione.
- Antiporto: consente il passaggio contemporaneo ma in direzioni opposte di due ioni e/o molecole differenti2
- Simporto: consente il passaggio contemporaneo ma nella stessa direzione di due ioni e/o molecole differenti.

3.1.2 Trasporto vescicolare

Quando le molecole sono troppo grandi (es. proteine intere) per passare per un canale, possono essere trasportate mediante una *vescicola di trasporto*. Il processo di entrata si chiama *endocitosi*, mediante quello di uscita si chaima *esocitosi*. In questa illustrazione il colore blu rappresenta il contenuto di un organello.

3.1.3 Glucotrasportatori di membrana (Glut4)

Gli enterociti prendono il glucosio e il $\mathrm{Na^+}$ dal lume intestinale e li trasportano fino al sangue grazie a un simporto $\mathrm{Na^+/glucosio}$, una glucosio permeasi (una proteina per la diffusione facilitata del glucosio), e la $\mathrm{Na^+/K^+ATPasi}$.

Definition Endocitosi

L'*encodictosi* è un processo che le cellule utilizzano per l'assunzione di sostanze presenti nell'ambiente extracellulare o aderenti alla membrana della cellula stessa.

I Glut4 verranno inseriti nella cellula quando il sangue è pieno di glucosio (quando la *glicemia* è alta). È necessario che la cellula risponda alla alta glicemia nel sangue per produrre i Glut4, questo messaggio viene spedito attraverso il sangue con l'*insulina*. L'insulina lega il ricettore, cambiandone la struttura. L'insulina viene prodotta dal pancreas, infatti, le cellule del pancreas sono in grado di misurare la glicemia.

Il diabete è un problema nella ricezione dell'insulina.

Definition Omeostasi

 $\mathrm{L}'omeostasi$ è il processo di autoregolazione dei vari valori.

Il seguente diagramma illustra un esempio di omeostasi per la regolazione della glicemia nel sangue.

3.2 Reazioni tra enzimi e vie metaboliche

Definition Enzima

Gli enzimi sono dei catalizzatori per aumentare le tempistiche delle varie reazioni chimiche.

Definition Metabolismo

Il metabolismo è l'insieme di tutte le reazioni chimiche nel corpo, catalizzate da un enzima.

$$A \xrightarrow{\text{enzima}} B \xrightarrow{\text{enzima}} C \xrightarrow{\text{enzima}} D$$

Ogni reazione chimica ha il suo enzima

Example Catabolismo

- Urea (N)
- CO_2
- H₂O

Il catabolismo produce ATP, mentre l'anabolismo serve per produrre materia.

Catalisi: Una reazione chimica necessita che i reagenti si incontrino e si scontrino in una determinata maniera. Questa è una questione probabilistica, e in genere molto rara. Per diminuire la velocità di reazione si possono utilizzare dei catalizzatori. L'esempio più semplice di catalizzatore è la temperatura, siccome l'aumento della temperatura aumenta la velocità di movimento delle molecole e, per cui, porta un aumento della probabilità di collisione. Tuttavia, l'aumento della temperatura nel corpo non è sempre auspicabile, e vengono utilizzati quindi degli anzimi come catalizzatori.

Lo stato di transizione è uno stato intermedio molto instabile.

Gli enzimi offrono un posto dove i reagenti possono adagiarsi in maniera da collidere nella maniera corretta con gli altri reagenti.

L'energia necessaria per arrivare lo stato di transizione (con enzima) è nettamente minore di quella per lo stato di transizione senza enzima. Questo è dato dal fatto che senza enzima vi saranno molti urti fra reagenti ma senza reazione.

$$E_A = Energia\ di\ attivazione$$

Il posto dove vengono ospitati i reagenti nell'enzima si chiamano siti attivi.

L'enzima trascina i reagenti sullo stato di transizione.

3.2.1 Inibitori enzimatici

Definition Inibitore enzimatico

Con il termine *inibitore enzimatico* si indica una molecola in grado di instaurare un legame chimico con un enzima, diminuendone così l'attività.

È possibile che una molecola (inibitore), simile al reagente, occupi il posto nell'enzima dedicato al reagente. Questo blocca l'enzima e, per cui, la reazione chimica. Gli inibitori vengono prodotti quando è necessario ridurre il numero reazioni chimiche (Es. per feedback negativo, farmaco).

Gli inibitori possono essere due tipi:

- competitivo: occupa il posto del reagente nello spazio ativo;
- non competitivo: deforma lo spazio attivo con un legame in un altra posizione.

Entrambi i tipi di inibitori possono essere reversibili o irreversibili.

3.3 Respirazione cellulare