# 西安电子科技大学

考试时间 120 分钟

试

| 题号 | _ |   |   |   |   |   |   |   | = |    |    | Ξ  |    | 总分 |  |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|--|
| 赵与 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |  |
| 分数 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |  |

- 1. 考试形式: 闭卷 √ 开卷口; 2. 本试卷共三大题, 满分 100 分;
- 3. 考试日期:
- 年 月 日;(答题内容请写在装订线外)
- 一、基础部分(共40分)
- 1. (5分)完成下列数制(码制)转换

$$(43.4)_8 = ( )_2 = ( )_{16} = ( )_{10}$$

 $)_{8421BCD} = ($ 

)余3码

2. (6 分)按照规则直接写出函数 $F(A,B,C) = ABC + \overline{(A+BC)}(\overline{A}+C)$ 的 反函数和对偶函数。

F = \_\_\_\_\_\_

- $3.(2 \ \ \%)$  求函数  $F = A \oplus \overline{A} \oplus 1 \oplus A \oplus 1$ 的最简表达式:
- 4. (8分) 已知逻辑函数 $F(A,B,C,D) = \prod M(0,1,4,10)$   $\prod d(5,7,13,14,15)$ , 其中 d 表示无关项。试:
- (1)在下图基础上完成逻辑函数的卡诺图(下画线处也需填写)(4分)



- (2) 化简该函数为最简与或式(2分):
- (3) 画出用与非门实现的最简与或式电路图(2分):

5. (6分)某电路的输入、输出波形如图 1(其中 A 和 B 为输入, F 为输出)。



(1)写出其真值表(2分)。



- (2)写出最小项表达式并化简(2分)。
- (3)该电路完成什么功能? (2分)。

6. (6 分) 在一个 3-8 译码器电路里, 连接了 10 位地址线  $A_9$   $A_0$ , 其中:  $A_2A_1A_0 = 110$ ,  $E_1 = A_3 \cdot A_4$ ,  $\overline{E_2} = A_5 + A_6 + A_7$ ,  $\overline{E_3} = A_8 + A_9$ 。

(1)则译码器的哪一个输出端可能会产生一个有效电平?\_\_\_\_\_\_; 有效电平是(高/低)\_\_\_\_\_\_\_有效?该端口产生有效电平时,对应的 10 位二进制地址是多少?

- (2)如果 $\overline{Y_4}$ 端口上有有效的输出,则对应的 10 位二进制地址又是:
- (3)根据上面题意在图 2 的基础上完成电路图。



7. (3分)已知某电路如图 3 所示,请直接写出 F的表达式。



图 3

F=\_\_\_\_(写成与或表达式)

- (1) 在图 4(b) 的基础上连接电路使其实现 2 分频功能;
- (2) 在图 4(a) 的基础上画出其波形图(设电路初态为 0)。



#### 二、电路分析部分(30分)

9. (6分)某电路如图 5 所示,试写出 F1、F2 的逻辑表达式,列出真值表,并分析该电路功能。



| A | В | C | F1 | F2 |
|---|---|---|----|----|
|   |   |   |    |    |
|   |   |   |    |    |
|   |   |   |    |    |
|   |   |   |    |    |
|   |   |   |    |    |
|   |   |   |    |    |

F1= F2= 该电路的功能是: 装

订

线

10. (14分)试分析图 6所示同步时序电路,按要求完成下列工作。



(1)激励方程、输出方程及状态方程分别如下:

 $J_1 =$  ;  $K_1 =$  ;

 $J_2 = ____; K_2 = ___;$ 

 $J_3 = ____; K_3 = ___;$ 

Z=

 $Q_1^{n+1} =$  ;  $Q_2^{n+1} =$  ;  $Q_3^{n+1} =$ 

(2)状态转移表及状态转移图分别如下(状态转移图画在下面空白处)。

| $Q_3$ $Q_2$ $Q_1$ | $Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$ | Z |
|-------------------|-------------------------------|---|
| 0 0 0             |                               |   |
|                   |                               |   |
|                   |                               |   |
|                   |                               |   |
|                   |                               |   |
|                   |                               |   |
|                   |                               |   |
|                   |                               |   |

| (3)电路功能: |  |
|----------|--|
|          |  |

(4)是否可以自启动,并简要说明理由:\_\_\_\_\_\_

线

订

装

- 11. (10 分)分析图 7 所示计数器电路 (74160 的功能表见附件)。完成下列要求内容。(注:数值答案请用二进制书写)
- (1) 试求该计数器的计数初值、计数终值以及模值?该计数器有没有过渡态?说明理由。
- (2)图 7 的电路中,若要得到模值 M=70 的计数器,则予置输入 D'C'B'A'DCBA 为多少?



图 7

| (1) 图 7 计数器的初值:            | ,终值: | 模值: |  |
|----------------------------|------|-----|--|
| 过渡态(有/无):,理由:              |      |     |  |
|                            |      |     |  |
| (2) 预置输入 D' C' B' A' DCBA= |      |     |  |

## 三、电路设计部分(30分)

12. (8分)试设计一个8421BCD 码检码电路,输入为DCBA,其中D为MSB、A为LSB。要求: ①当输入变量DCBA不是8421BCD码时,错误标志位F1输出为高电平,否则为低电平; ②当输入变量DCBA≤2,或≥7时,F2为高电平,否则为低电平。试:

(1) 列出逻辑函数真值表

| D C B A | F1 | F2 |
|---------|----|----|
|         |    |    |
|         |    |    |
|         |    |    |
|         |    |    |
|         |    |    |
|         |    |    |
|         |    |    |
|         |    |    |

(2) 写出电路表达式;

(3) 用或非门设计该电路

13. (10 分)试用 JK 触发器设计一个时序电路,它的状态转移图如下图 8 所示



(1)写出状态表

| $Q_2Q_1Q_0$ | $Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$ | Z |
|-------------|-------------------------------|---|
|             |                               |   |
|             |                               |   |
|             |                               |   |
|             |                               |   |
|             |                               |   |
|             |                               |   |

2)根据所用器件,用卡诺图法化简求出该电路的状态方程、输出方程和激励方程。



 $Q_2^{n+1} =$ 

 ${Q_1}^{n+1} =$ 

 $Q_0^{n+1} =$ 

Z =

 $J_2 = K_2 =$ 

装

订

线

$$\begin{array}{ll} J_1 = & \quad K_1 = \\ & \quad J_0 = & \quad K_0 = \end{array}$$

3) 不考虑是否自启动,试画出该电路的逻辑电路图

装

订

14. (12分)采用 74LS194 和门电路设计序列信号产生器,输出序列信号波形如图 9 所示。(提示:可用 74LS194 组成一个具有自启动功能的扭环计数器;74LS194 的功能表见附件)

线



## 写出设计过程:

- (1) 确定计数器模值,列出状态转移表;
- (2) 写出 Y 逻辑表达式;

(3) 画出序列信号产生器的电路图。(见下页)。

答:

(1) 计数器模值 M=\_\_\_\_\_

状态转移表

| $\mathbf{Q}_0\mathbf{Q}_1\mathbf{Q}_2$ | $Q_0^{n+1}Q_1^{n+1}Q_2^{n+1}$ | Y |
|----------------------------------------|-------------------------------|---|
|                                        |                               |   |
|                                        |                               |   |
|                                        |                               |   |
|                                        |                               |   |
|                                        |                               |   |
|                                        |                               |   |
|                                        |                               |   |

(2) 写出 Y 逻辑表达式。

Y=

(3) 画出电路图



### 四、附件:

1、74LS138 功能表。

| $E_1$ | $E_{2A}+E_{2B}$ | $A_2$ | $A_1$    | $A_{0}$  | $oldsymbol{ar{Y}}_{	ext{o}}$ | $\overline{Y}_1$ | $\overline{Y}_2$ | $\overline{Y}_3$ | $\overline{Y}_4$ | $\overline{Y}_5$ | $\overline{Y}_6$ | $\overline{Y}_7$ |
|-------|-----------------|-------|----------|----------|------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0     | ×               | ×     | ×        | ×        | 1                            | 1                | 1                | 1                | 1                | 1                | 1                | 1                |
| ×     | 1               | ×     | $\times$ | $\times$ | 1                            | 1                | 1                | 1                | 1                | 1                | 1                | 1                |
| 1     | 0               | 0     | 0        | 0        | 0                            | 1                | 1                | 1                | 1                | 1                | 1                | 1                |
| 1     | 0               | 0     | 0        | 1        | 1                            | 0                | 1                | 1                | 1                | 1                | 1                | 1                |
| 1     | 0               | 0     | 1        | 0        | 1                            | 1                | 0                | 1                | 1                | 1                | 1                | 1                |
| 1     | О               | 0     | 1        | 1        | 1                            | 1                | 1                | О                | 1                | 1                | 1                | 1                |
| 1     | О               | 1     | 0        | 0        | 1                            | 1                | 1                | 1                | 0                | 1                | 1                | 1                |
| 1     | . 0             | 1     | 0        | 1        | 1                            | 1                | 1                | 1                | 1                | 0                | 1                | 1                |
| 1     | 0               | 1     | 1        | 0        | 1                            | 1                | 1                | 1                | 1                | 1                | 0                | 1                |
| 1     | 0               | 1     | 1        | 1        | 1                            | 1                | 1                | 1                | 1                | 1                | 1                | 0                |

#### 2、74LS160 和 74LS161 功能表

注: 74LS160 是同步十进制计数器, 计数状态从 0000——1001; 74LS161 是同步二进制计数器, 计数状态从 0000——1111。

|          |    |     | 输 |          | 入 |   |          |   |       | 输     | 出        |       |
|----------|----|-----|---|----------|---|---|----------|---|-------|-------|----------|-------|
| CP       | C, | LD  | P | T        | D | С | В        | A | $Q_D$ | $Q_C$ | $Q_B$    | $Q_A$ |
| ×        | 0  | ×   | × | ×        | × | × | ×        | × | 0     | 0     | 0        | 0     |
| <b>↑</b> | 1  | 0   | × | $\times$ | d | с | <i>b</i> | а | d     | с     | b        | a     |
| <b>†</b> | 1  | . 1 | 1 | 1        | × | × | ×        | × |       | 计     | 数        |       |
| ×        | 1  | 1   | 0 | 1        | × | × | $\times$ | × |       | 保     | 持        |       |
| ×        | 1  | 1   | × | 0        | × | × | ×        | × | 保     | 持     | $(O_C =$ | = 0)  |

#### 3、74LS194 功能表

74LS194功能表

|    |              | 输出             |                |    |                |                               |             |
|----|--------------|----------------|----------------|----|----------------|-------------------------------|-------------|
| Cr | CP           | S <sub>1</sub> | S <sub>0</sub> | Sl | Sr             | Do D1 D2 D3                   | Q0 Q1 Q2 Q3 |
| 0  | ×            | ×              | ×              | ×  | ×              | $\times$ $\times$ $\times$    | 0 0 0 0     |
| 1  | $  \times  $ | 0              | 0              | ×  | ×              | $\times \times \times \times$ | 保持          |
| 1  | ↑            | 0              | 1              | ×  | $S_{\text{R}}$ | $\times \times \times \times$ | Sr Qo Q1 Q2 |
| 1  | ★            | 1              | 0              | Sl | ×              | $\times$ $\times$ $\times$    | Q1 Q2 Q3 SL |
| 1  | <b> </b>     | 1              | 1              | ×  | ×              | do d1 d2 d3                   | do d1 d2 d3 |
| 1  | 0            | ×              | ×              | ×  | ×              | $\times$ $\times$ $\times$    | 保持          |