Package 'gtsummary'

February 11, 2020

Title Presentation-Ready Data Summary and Analytic Result Tables

Version 1.2.5

Suggests car, covr,

Description Creates presentation-ready tables summarizing data sets, regression models, and more. The code to create the tables is concise and highly customizable. Data frames can be summarized with any function, e.g. mean(), median(), even user-written functions. Regression models are summarized and include the reference rows for categorical variables. Common regression models, such as logistic regression and Cox proportional hazards regression, are automatically identified and the tables are pre-filled with appropriate column headers. The package is enhanced when the 'gt' package is installed. Use this code to install: 'remotes::install_github(``rstudio/gt", ref = gtsummary::gt_sha)'.

```
License MIT + file LICENSE
URL https://github.com/ddsjoberg/gtsummary,
      http://www.danieldsjoberg.com/gtsummary/
BugReports https://github.com/ddsjoberg/gtsummary/issues
Depends R (>= 3.4)
Imports broom (>= 0.5.3),
      crayon (>= 1.3.4),
      dplyr (>= 0.8.3),
      forcats (>= 0.4.0),
      glue (>= 1.3.1),
      knitr (>= 1.26),
      lifecycle (\geq 0.1.0),
      magrittr (>= 1.5),
      purrr (>= 0.3.3),
      rlang (>= 0.4.2),
      stringr (>= 1.4.0),
      survival,
      tibble (>= 2.1.3),
      tidyr (>= 1.0.0),
      tidyselect (\geq 1.0.0),
      usethis (>= 1.5.1)
```

2 R topics documented:

```
geepack,
     gt,
     Hmisc,
     lme4,
     pkgdown,
     rmarkdown,
     spelling,
     testthat
VignetteBuilder knitr
RdMacros lifecycle
Additional_repositories http://ddsjoberg.github.io/drat
Encoding UTF-8
Language en-US
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.0.2
```

R topics documented:

add_global_p
add_global_p.tbl_regression
add_global_p.tbl_uvregression
$add_{-n} \ \ldots \ $
add_nevent
add_nevent.tbl_regression
add_nevent.tbl_uvregression
add_overall
add_p
add_q
$add_q.tbl_summary \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
add_q.tbl_uvregression
add_stat_label
as_gt
as_kable
as_tibbleS3
bold_italicize_labels_levels
bold_p
bold_p.tbl_regression
bold_p.tbl_stack
bold_p.tbl_summary
bold_p.tbl_uvregression
combine_terms
gtsummary_logo
inline_text
inline_text.tbl_regression
inline_text.tbl_summary
inline_text.tbl_survival
inline_text.tbl_uvregression
modify header

add_global_p	3	
aud_Siccui_p		

35
35
36
37
38
39
39
40
4
42
43
46
47
50
5
53
56
57
3

add_global_p

Adds the global p-value for a categorical variables

Description

Index

This function uses car::Anova with argument type = "III" to calculate global p-values for categorical variables. Output from tbl_regression and tbl_uvregression objects supported.

Usage

```
add_global_p(x, ...)
```

Arguments

x tbl_regression or tbl_uvregression object

... Further arguments passed to or from other methods.

Note

If a needed class of model is not supported by car::Anova, please create a GitHub Issue to request support.

Author(s)

Daniel D. Sjoberg

See Also

```
add_global_p.tbl_regression, add_global_p.tbl_uvregression
```

```
add_global_p.tbl_regression
```

Adds the global p-value for categorical variables

Description

This function uses car::Anova with argument type = "III" to calculate global p-values for categorical variables.

Usage

```
## S3 method for class 'tbl_regression'
add_global_p(
    x,
    include = x$table_body$variable[x$table_body$var_type %in% c("categorical",
        "interaction")],
    keep = FALSE,
    terms = NULL,
    ...
)
```

Arguments

х	Object with class tbl_regression from the tbl_regression function
include	Variables to calculate global p-value for. Input may be a vector of quoted or unquoted variable names. tidyselect and gtsummary select helper functions are also accepted. Default is NULL, which adds global p-values for all categorical and interaction terms.
keep	Logical argument indicating whether to also retain the individual p-values in the table output for each level of the categorical variable. Default is FALSE
terms	DEPRECATED. Use include= argument instead.
	Additional arguments to be passed to car::Anova

Value

A tbl_regression object

Note

If a needed class of model is not supported by car::Anova, please create a GitHub Issue to request support.

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()
```

Examples

```
tbl_lm_global_ex1 <-
  lm(marker ~ age + grade, trial) %>%
  tbl_regression() %>%
  add_global_p()
```

```
add_global_p.tbl_uvregression
```

Adds the global p-value for categorical variables

Description

This function uses car::Anova with argument type = "III" to calculate global p-values for categorical variables.

Usage

```
## S3 method for class 'tbl_uvregression' add_global_p(x, ...)
```

Arguments

- x Object with class tbl_uvregression from the tbl_uvregression function
- ... Additional arguments to be passed to car::Anova.

Value

A tbl_uvregression object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression(), inline_text.tbl_uvregression(), tbl_wregression(), tbl_uvregression()
```

6 add_n

Examples

```
tbl_uv_global_ex2 <-
  trial[c("response", "trt", "age", "grade")] %>%
  tbl_uvregression(
   method = glm,
   y = response,
   method.args = list(family = binomial),
   exponentiate = TRUE
  add_global_p()
```

add_n

Add column with N

Description

For each variable in a tbl_summary table, the add_n function adds a column with the total number of non-missing (or missing) observations

Usage

```
add_n(
 Х,
  statistic = "{n}",
  col_label = "**N**",
  footnote = FALSE,
 last = FALSE,
 missing = NULL
)
```

Arguments

Object with class tbl_summary from the tbl_summary function

statistic

String indicating the statistic to report. Default is the number of non-missing observation for each variable, statistic = "{n}". Other statistics available to report include:

- "{N}" total number of observations,
- "{n}" number of non-missing observations,
- "{n_miss}" number of missing observations,
- "{p}" percent non-missing data,
- "{p_miss}" percent missing data The argument uses glue::glue syntax and multiple statistics may be reported, e.g. statistic = $"\{n\} / \{N\} (\{p\}\%)"$

col_label

String indicating the column label. Default is "**N**"

footnote

Logical argument indicating whether to print a footnote clarifying the statistics presented. Default is FALSE

last

Logical indicator to include N column last in table. Default is FALSE, which will display N column first.

DEPRECATED. Logical argument indicating whether to print N (missing = FALSE), or N missing (missing = TRUE). Default is FALSE

missing

add_nevent 7

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

Examples

```
tbl_n_ex <-
  trial[c("trt", "age", "grade", "response")] %>%
  tbl_summary(by = trt) %>%
  add_n()
```

add_nevent

Add number of events to a regression table

Description

Adds a column of the number of events to tables created with tbl_regression or tbl_uvregression. Supported model types include GLMs with binomial distribution family (e.g. stats::glm, lme4::glmer, and geepack::geeglm) and Cox Proportion Hazards regression models (survival::coxph).

Usage

```
add_nevent(x, ...)
```

Arguments

```
x tbl_regerssion or tbl_uvregression object... Additional arguments passed to or from other methods.
```

Author(s)

Daniel D. Sjoberg

See Also

```
add_nevent.tbl_regression, add_nevent.tbl_uvregression, tbl_regression, tbl_uvregression
```

```
add_nevent.tbl_regression
```

Add number of events to a regression table

Description

This function adds a column of the number of events to tables created with tbl_regression. Supported model types include GLMs with binomial distribution family (e.g. stats::glm, lme4::glmer, and geepack::geeglm) and Cox Proportion Hazards regression models (survival::coxph).

The number of events is added to the internal . $table_body$ tibble, and not printed in the default output table (similar to N). The number of events is accessible via the inline_text function for printing in a report.

Usage

```
## S3 method for class 'tbl_regression'
add_nevent(x, ...)
```

Arguments

```
x tbl_regression object
... Not used
```

Value

A tbl_regression object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()
```

```
tbl_reg_nevent_ex <-
  glm(response ~ trt, trial, family = binomial) %>%
  tbl_regression() %>%
  add_nevent()
```

```
add_nevent.tbl_uvregression
```

Add number of events to a regression table

Description

Adds a column of the number of events to tables created with tbl_uvregression. Supported model types include GLMs with binomial distribution family (e.g. stats::glm, lme4::glmer, and geep-ack::geeglm) and Cox Proportion Hazards regression models (survival::coxph).

Usage

```
## S3 method for class 'tbl_uvregression'
add_nevent(x, ...)
```

Arguments

```
x tbl_uvregerssion object
... Not used
```

Value

A tbl_uvregression object

Reporting Event N

The number of events is added to the internal .\$table_body tibble, and printed to the right of the N column. The number of events is also accessible via the inline_text function for printing in a report.

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression(), inline_text.tbl_uvregression(), tbl_wregression(), tbl_uvregression()
```

```
tbl_uv_nevent_ex <-
  trial[c("response", "trt", "age", "grade")] %>%
  tbl_uvregression(
   method = glm,
    y = response,
   method.args = list(family = binomial)
) %>%
  add_nevent()
```

10 add_overall

add_overall

Add column with overall summary statistics

Description

Adds a column with overall summary statistics to tables created by tbl_summary.

Usage

```
add_overall(x, last = FALSE)
```

Arguments

x Object with class tbl_summary from the tbl_summary function

last Logical indicator to display overall column last in table. Default is FALSE, which

will display overall column first.

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

```
tbl_overall_ex <-
  trial[c("age", "response", "grade", "trt")] %>%
  tbl_summary(by = trt) %>%
  add_overall()
```

 add_p

add_p

Adds p-values to summary tables

Description

Adds p-values to tables created by tbl_summary by comparing values across groups.

Usage

```
add_p(
    x,
    test = NULL,
    pvalue_fun = NULL,
    group = NULL,
    include = everything(),
    exclude = NULL
)
```

Arguments

Х

Object with class tbl_summary from the tbl_summary function

test

List of formulas specifying statistical tests to perform, e.g. list(all_continuous() \sim "t.test",all_categorical() \sim "fisher.test"). Options include

- "t.test" for a t-test,
- "aov" for a one-way ANOVA test,
- "wilcox.test" for a Wilcoxon rank-sum test,
- "kruskal.test" for a Kruskal-Wallis rank-sum test,
- "chisq.test" for a chi-squared test of independence,
- "chisq.test.no.correct" for a chi-squared test of independence without continuity correction,
- "fisher.test" for a Fisher's exact test,
- "lme4" for a random intercept logistic regression model to account for clustered data, lme4::glmer(by ~ variable + (1 | group), family = binomial). The by argument must be binary for this option.

Tests default to "kruskal.test" for continuous variables, "chisq.test" for categorical variables with all expected cell counts >= 5, and "fisher.test" for categorical variables with any expected cell count < 5. A custom test function can be added for all or some variables. See below for an example.

pvalue_fun

Function to round and format p-values. Default is style_pvalue. The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)).

group

Column name (unquoted or quoted) of an ID or grouping variable. The column can be used to calculate p-values with correlated data (e.g. when the test argument is "lme4"). Default is NULL. If specified, the row associated with this variable is omitted from the summary table.

include

Variables to include in output. Input may be a vector of quoted variable names, unquoted variable names, or tidyselect select helper functions. Default is everything().

exclude

DEPRECATED

12 add_p

Value

A tbl_summary object

Setting Defaults

If you like to consistently use a different function to format p-values or estimates, you can set options in the script or in the user- or project-level startup file, '.Rprofile'. The default confidence level can also be set. Please note the default option for the estimate is the same as it is for tbl_regression().

• options(gtsummary.pvalue_fun = new_function)

Example Output

Author(s)

Emily C. Zabor, Daniel D. Sjoberg

See Also

See tbl_summary vignette for detailed examples

```
Other tbl_summary tools: add_n(), add_overall(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

```
add_p_ex1 <-
  trial[c("age", "grade", "response", "trt")] %>%
  tbl_summary(by = trt) %>%
  add_p()
# Conduct a custom McNemar test for response,
# Function must return a named list of the p-value and the
# test name: list(p = 0.123, test = "McNemar's test")
# The '...' must be included as input
\mbox{\tt\#} This feature is experimental, and the API may change in the future
my_mcnemar <- function(data, variable, by, ...) {</pre>
  result <- list()
  result$p <- stats::mcnemar.test(data[[variable]], data[[by]])$p.value</pre>
  result$test <- "McNemar\\'s test"</pre>
  result
add_p_ex2 <-
  trial[c("response", "trt")] %>%
  tbl_summary(by = trt) %>%
  add_p(test = response ~ "my_mcnemar")
```

add_q 13

add_q

Add a column of q values to account for multiple comparisons

Description

Add a column of q values to account for multiple comparisons

Usage

```
add_q(x, ...)
```

Arguments

x tbl_summary or tbl_uvregression object... Additional arguments passed to other methods.

Author(s)

Esther Drill, Daniel D. Sjoberg

See Also

```
add_q.tbl_summary, add_q.tbl_uvregression, tbl_summary, tbl_uvregression
```

add_q.tbl_summary

Add a column of q-values to account for multiple comparisons

Description

Adjustments to are p-values are performed with stats::p.adjust.

Usage

```
## S3 method for class 'tbl_summary'
add_q(x, method = "fdr", pvalue_fun = x$fmt_fun$p.value, ...)
```

Arguments

. . .

x	tbl_summary object
method	String indicating method to be used for p-value adjustment. Methods from stats::p.adjust are accepted. Default is method = 'fdr'.
pvalue_fun	Function to round and format p-values. Default is <pre>style_pvalue</pre> . The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)).

Additional arguments passed to or from other methods

Value

A tbl_summary object

Example Output

Author(s)

Esther Drill, Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_stat_label(), bold_italicize_labels_levels bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

Examples

```
tbl_sum_q_ex <-
  trial[c("trt", "age", "grade", "response")] %>%
  tbl_summary(by = trt) %>%
  add_p() %>%
  add_q()
```

```
add_q.tbl_uvregression
```

Add a column of q-values to account for multiple comparisons

Description

Adjustments to are p-values are performed with stats::p.adjust.

Usage

```
## S3 method for class 'tbl_uvregression'
add_q(x, method = "fdr", pvalue_fun = x$fmt_fun$p.value, ...)
```

Arguments

x tbl_uvregression object
method String indicating method to be used for p-value adjustment. Methods from
 stats::p.adjust are accepted. Default is method = 'fdr'.

pvalue_fun Function to round and format p-values. Default is style_pvalue. The function
 must have a numeric vector input (the numeric, exact p-value), and return a
 string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x)
 style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)).

.. Additional arguments passed to or from other methods

add_stat_label 15

Value

A tbl_uvregression object

Example Output

Author(s)

Esther Drill, Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression(), inline_text.tbl_uvregression(), tbl_wregression(), tbl_wregression()
```

Examples

```
tbl_uvr_q_ex <-
  trial[c("age", "marker", "grade", "response")] %>%
  tbl_uvregression(
   method = lm,
    y = age
) %>%
  add_global_p() %>%
  add_q()
```

add_stat_label

Add statistic labels column

Description

Adds a column with labels describing the summary statistics presented for each variable in the tbl_summary table.

Usage

```
add_stat_label(x)
```

Arguments

Х

Object with class $\mbox{tbl_summary}$ from the $\mbox{tbl_summary}$ function

Value

A tbl_summary object

Example Output

16 as_gt

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), bold_italicize_labels_lev bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

Examples

```
tbl_stat_ex <-
  trial[c("trt", "age", "grade", "response")] %>%
  tbl_summary() %>%
  add_stat_label()
```

as_gt

Convert gtsummary object to a gt_tbl object

Description

Function converts a gtsummary object to a gt_tbl object. Function is used in the background when the results are printed or knit. A user can use this function if they wish to add customized formatting available via the gt package. You can install gt with remotes::install_github("rstudio/gt", ref = gtsummary::gt_sha).

Review the tbl_summary vignette or tbl_regression vignette for detailed examples in the 'Advanced Customization' section.

Usage

```
as_gt(x, include = everything(), exclude = NULL, omit = NULL)
```

Arguments

x Object created by a function from the gtsummary package (e.g. tbl_summary or

tbl_regression)

include Commands to include in output. Input may be a vector of quoted or unquoted

names. tidyselect and gtsummary select helper functions are also accepted. De-

fault is everything(), which includes all commands in x\$gt_calls.

exclude DEPRECATED.
omit DEPRECATED.

Value

A gt_tbl object

Example Output

as_kable 17

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression tbl_survival

Examples

```
# Requires the gt package
# remotes::install_github("rstudio/gt", ref = gtsummary::gt_sha)
as_gt_ex <-
    trial[c("trt", "age", "response", "grade")] %>%
    tbl_summary(by = trt) %>%
as_gt()
```

as_kable

Convert to knitr_kable object

Description

Function converts a gtsummary object to a knitr_kable object. This function is used in the background when the results are printed or knit. A user can use this function if they wish to add customized formatting available via knitr::kable.

Output from knitr::kable is less full featured compared to summary tables produced with gt. For example, kable summary tables do not include indentation, footnotes, or spanning header rows. To use these features, install gt with remotes::install_github("rstudio/gt", ref = gtsummary::gt_sha).

Usage

```
as_kable(x, include = everything(), exclude = NULL, ...)
```

Arguments

X	Object created by a function from the gtsummary package (e.g. tbl_summary or tbl_regression)
include	Commands to include in output. Input may be a vector of quoted or unquoted names. tidyselect and gtsummary select helper functions are also accepted. Default is everything(), which includes all commands in x\$kable_calls.
exclude	DEPRECATED
• • •	Additional arguments passed to knitr::kable

Details

Tip: To better distinguish variable labels and level labels when indenting is not supported, try bold_labels() or italicize_levels().

Value

```
A knitr_kable object
```

18 as_tibbleS3

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression tbl_survival

Examples

```
trial %>%
  tbl_summary(by = trt) %>%
  bold_labels() %>%
  as_kable()
```

as_tibbleS3

Convert gtsummary object to tibble

Description

Function converts gtsummary objects tibbles. The formatting stored in x\$kable_calls is applied.

Usage

```
## S3 method for class 'gtsummary'
as_tibble(x, include = everything(), col_labels = TRUE, exclude = NULL, ...)
```

Arguments

Object created by a function from the gtsummary package (e.g. tbl_summary or tbl_regression)
 Commands to include in output. Input may be a vector of quoted or unquoted

Commands to include in output. Input may be a vector of quoted or unquoted names. tidyselect and gtsummary select helper functions are also accepted. De-

fault is everything(), which includes all commands in x-kable_calls.

col_labels Logical argument adding column labels to output tibble. Default is TRUE.

exclude DEPRECATED
... Not used

Value

a tibble

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression tbl_survival

Examples

```
tbl <-
   trial %>%
   tbl_summary(by = trt)

as_tibble(tbl)

# without column labels
as_tibble(tbl, col_names = FALSE)
```

bold_italicize_labels_levels

Bold or Italicize labels or levels in gtsummary tables

Description

Bold or Italicize labels or levels in gtsummary tables

Usage

```
bold_labels(x)
bold_levels(x)
italicize_labels(x)
italicize_levels(x)
```

Arguments

x Object created using gtsummary functions

Value

Functions return the same class of gtsummary object supplied

Functions

- bold_labels: Bold labels in gtsummary tables
- bold_levels: Bold levels in gtsummary tables
- italicize_labels: Italicize labels in gtsummary tables
- italicize_levels: Italicize levels in gtsummary tables

Example Output

Author(s)

Daniel D. Sjoberg

20 bold_p

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()

Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_p.tbl_regression(), tbl_merge(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()

Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_p.tbl_stack(), bold_p.tbl_uvregression(), inline_text.tbl_uvregression(), inline_text.tbl_uvregression(), tbl_merge(), tbl_stack(), tbl_uvregression()
```

Examples

```
tbl_bold_ital_ex <-
  trial[c("trt", "age", "grade")] %>%
  tbl_summary() %>%
  bold_labels() %>%
  bold_levels() %>%
  italicize_labels() %>%
  italicize_levels()
```

bold_p

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in gtsummary tables.

Usage

```
bold_p(x, ...)
```

Arguments

x Object created using gtsummary functions

... Additional arguments passed to other methods.

Author(s)

```
Daniel D. Sjoberg, Esther Drill
```

See Also

```
bold_p.tbl_summary, bold_p.tbl_regression, bold_p.tbl_uvregression
```

bold_p.tbl_regression 21

bold_p.tbl_regression Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_regression tables.

Usage

```
## S3 method for class 'tbl_regression' bold_p(x, t = 0.05, ...)
```

Arguments

x Object created using tbl_regression function

t Threshold below which values will be bold. Default is 0.05.

... Not used

Value

A tbl_regression object

Example Output

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()
```

```
tbl_lm_bold_p_ex <-
  glm(response ~ trt + grade, trial, family = binomial(link = "logit")) %>%
  tbl_regression(exponentiate = TRUE) %>%
  bold_p()
```

22 bold_p.tbl_stack

bold_p.tbl_stack

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_stack tables.

Usage

```
## S3 method for class 'tbl_stack'
bold_p(x, ...)
```

Arguments

```
x Object created using tbl_stack function
```

... arguments passed to bold_p.*() method that matches the first object in the tbl_stack

Value

A tbl_stack object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_uvregression(), inline_text.tbl_uvregression(), modify_header(), sort_p.tbl_uvregression(), tbl_merge(), tbl_stack(), tbl_uvregression()

Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), combine_terms(), inline_text.tbl_regression() modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()
```

```
t1 <- tbl_regression(lm(age ~ response, trial))
t2 <- tbl_regression(lm(age ~ grade, trial))

bold_p_stack_ex <-
  tbl_stack(list(t1, t2)) %>%
  bold_p(t = 0.10)
```

bold_p.tbl_summary 23

bold_p.tbl_summary

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_summary tables.

Usage

```
## S3 method for class 'tbl_summary'
bold_p(x, t = 0.05, q = FALSE, ...)
```

Arguments

- x Object created using tbl_summary function
- t Threshold below which values will be bold. Default is 0.05.
- q Logical argument. When TRUE will bold the q-value column rather than the
 - p-values. Default is FALSE.
- ... Not used

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

```
tbl_sum_bold_p_ex <-
  trial[c("age", "grade", "response", "trt")] %>%
  tbl_summary(by = trt) %>%
  add_p() %>%
  bold_p()
```

```
bold_p.tbl_uvregression
```

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_uvregression tables.

Usage

```
## S3 method for class 'tbl_uvregression'
bold_p(x, t = 0.05, q = FALSE, ...)
```

Arguments

- x Object created using tbl_uvregression function
- t Threshold below which values will be bold. Default is 0.05.
- q Logical argument. When TRUE will bold the q-value column rather than the
 - p-values. Default is FALSE.
- ... Not used

Value

A tbl_uvregression object

Example Output

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), inline_text.tbl_uvregresmodify_header(), sort_p.tbl_uvregression(), tbl_merge(), tbl_stack(), tbl_uvregression()
```

```
tbl_uvglm_bold_p_ex <-
  trial[c("age", "marker", "response", "grade")] %>%
  tbl_uvregression(
  method = glm,
    y = response,
    method.args = list(family = binomial),
    exponentiate = TRUE
) %>%
bold_p(t = 0.25)
```

combine_terms 25

combine_terms

Combine terms in a regression model

Description

Experimental The function combines terms from a regression model, and replaces the terms with a single row in the output table. The p-value is calculated using stats::anova().

Usage

```
combine_terms(x, formula_update, label = NULL, ...)
```

Arguments

```
x a tbl_regression object

formula_update formula update passed to the stats::update. This updated formula is used to construct a reduced model, and is subsequently passed to stats::anova() to calculate the p-value for the group of removed terms. See the stats::update help file for proper syntax. function's formula.= argument

label Option string argument labeling the combined rows

... Additional arguments passed to stats::anova
```

Value

tbl_regression object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), inline_text.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()
```

```
# fit model with nonlinear terms for marker
nlmod1 <- lm(
   age ~ marker + I(marker^2) + grade,
    trial[c("age", "marker", "grade")] %>% na.omit() # keep complete cases only!
)

combine_terms_ex1 <-
   tbl_regression(nlmod1, label = grade ~ "Grade") %>%
   # collapse non-linear terms to a single row in output using anova
   combine_terms(
```

26 gtsummary_logo

```
formula_update = . ~ . - marker - I(marker^2),
    label = "Marker (non-linear terms)"
# Example with Cubic Splines
library(Hmisc)
mod2 <- lm(
  age ~ rcspline.eval(marker, inclx = TRUE) + grade,
  trial[c("age", "marker", "grade")] %>% na.omit() # keep complete cases only!
combine_terms_ex2 <-</pre>
  tbl_regression(mod2, label = grade ~ "Grade") %>%
  combine_terms(
    formula_update = . ~ . -rcspline.eval(marker, inclx = TRUE),
    label = "Marker (non-linear terms)"
# Logistic Regression Example, LRT p-value
combine_terms_ex3 <-</pre>
  glm(
    response ~ marker + I(marker^2) + grade,
    trial[c("response", "marker", "grade")] %>% na.omit(), # keep complete cases only!
    family = binomial
  ) %>%
  tbl_regression(label = grade ~ "Grade", exponentiate = TRUE) %>%
  # collapse non-linear terms to a single row in output using anova
  combine_terms(
    formula_update = . ~ . - marker - I(marker^2),
    label = "Marker (non-linear terms)",
    test = "LRT"
```

gtsummary_logo

The gtsummary logo, using ASCII or Unicode characters

Description

```
Use crayon::strip_style() to get rid of the colors.
```

Usage

```
gtsummary_logo(unicode = 110n_info()$`UTF-8`)
```

Arguments

unicode

Whether to use Unicode symbols. Default is TRUE on UTF-8 platforms.

```
gtsummary_logo()
```

inline_text 27

 $inline_text$

Report statistics from gtsummary tables inline

Description

Report statistics from gtsummary tables inline

Usage

```
inline_text(x, ...)
```

Arguments

x Object created from a gtsummary function

... Additional arguments passed to other methods.

Value

A string reporting results from a gtsummary table

Author(s)

Daniel D. Sjoberg

See Also

inline_text.tbl_summary, inline_text.tbl_regression, inline_text.tbl_uvregression, inline_text.tbl_survival

```
inline_text.tbl_regression
```

Report statistics from regression summary tables inline

Description

Takes an object with class tbl_regression, and the location of the statistic to report and returns statistics for reporting inline in an R markdown document. Detailed examples in the inline_text vignette

Usage

```
## S3 method for class 'tbl_regression'
inline_text(
    x,
    variable,
    level = NULL,
    pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high}; {p.value})",
    estimate_fun = x$fmt_fun$estimate,
    pvalue_fun = function(x) style_pvalue(x, prepend_p = TRUE),
    ...
)
```

Arguments

Х	Object created from tbl_regression
variable	Variable name of statistics to present
level	Level of the variable to display for categorical variables. Default is NULL, returning the top row in the table for the variable.
pattern	String indicating the statistics to return. Uses glue::glue formatting. Default is "{estimate} ({conf.level }% CI {conf.low}, {conf.high}; {p.value})". All columns from x\$table_body are available to print as well as the confidence level (conf.level). See below for details.
estimate_fun	function to style model coefficient estimates. Columns 'estimate', 'conf.low', and 'conf.high' are formatted. Default is x\$inputs\$estimate_fun
pvalue_fun	function to style p-values and/or q-values. Default is function(x) $style_pvalue(x,prepend_p = TRUE)$
	Not used

Value

A string reporting results from a gtsummary table

pattern argument

The following items are available to print. Use print(x\$table_body) to print the table the estimates are extracted from.

- {estimate} coefficient estimate formatted with 'estimate_fun'
- {conf.low} lower limit of confidence interval formatted with 'estimate_fun'
- {conf.high} upper limit of confidence interval formatted with 'estimate_fun'
- {ci} confidence interval formatted with x\$estimate_fun
- {p.value} p-value formatted with 'pvalue_fun'
- {N} number of observations in model
- {label} variable/variable level label

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()
```

```
inline_text_ex1 <-
   glm(response ~ age + grade, trial, family = binomial(link = "logit")) %>%
   tbl_regression(exponentiate = TRUE)

inline_text(inline_text_ex1, variable = age)
inline_text(inline_text_ex1, variable = grade, level = "III")
```

```
inline_text.tbl_summary
```

Report statistics from summary tables inline

Description

Extracts and returns statistics from a tbl_summary object for inline reporting in an R markdown document. Detailed examples in the inline_text vignette

Usage

```
## S3 method for class 'tbl_summary'
inline_text(
    x,
    variable,
    column = NULL,
    level = NULL,
    pattern = NULL,
    pvalue_fun = function(x) style_pvalue(x, prepend_p = TRUE),
    ...
)
```

Arguments

X	Object created from tbl_summary
variable	Variable name of statistic to present
column	Column name to return from x\$table_body. Can also pass the level of a by variable.
level	Level of the variable to display for categorical variables. Can also specify the 'Unknown' row. Default is NULL
pattern	String indicating the statistics to return. Uses glue::glue formatting. Default is pattern shown in tb1_summary() output
pvalue_fun	Function to round and format p-values. Default is style_pvalue . The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)).
	Not used

Value

A string reporting results from a gtsummary table

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack(), tbl_summary()
```

Examples

```
t1 <- tbl_summary(trial)
t2 <- tbl_summary(trial, by = trt) %>% add_p()

inline_text(t1, variable = age)
inline_text(t2, variable = grade, level = "I", column = "Drug A",
pattern = "{n}/{N} ({p})%")
inline_text(t2, variable = grade, column = "p.value")
```

inline_text.tbl_survival

Report statistics from survival summary tables inline

Description

for inline reporting in an R markdown document.

Usage

```
## S3 method for class 'tbl_survival'
inline_text(
    x,
    strata = NULL,
    time = NULL,
    prob = NULL,
    prob = NULL,
    pattern = "{estimate} ({conf.level*100}% CI {ci})",
    estimate_fun = x$fmt_fun$estimate,
    ...
)
```

Arguments

X	Object created from tbl_survival
strata	If tbl_survival estimates are stratified, level of the stratum to report. Default is NULL when tbl_survival have no specified strata.
time	Time for which to return survival probability
prob	Probability for which to return survival time. For median survival use prob = 0.50
pattern	String indicating the statistics to return. Uses glue::glue formatting. Default is '{estimate} ({conf.level*100}% {ci})'. All columns from x\$table_long are available to print as well as the confidence level (conf.level). See below for details.
estimate_fun	function to round/style estimate and lower/upper confidence interval estimates. Note, this does not style the 'ci' column, which is a string. Default is x\$estimate_fun
	Not used

Value

A string reporting results from a gtsummary table

pattern argument

The following items are available to print. Use print(x\$table_long) to print the table the estimates are extracted from.

- {label} 'time' or 'prob' label
- {estimate} survival or survival time estimate formatted with 'estimate_fun'
- {conf.low} lower limit of confidence interval formatted with 'estimate_fun'
- {conf.high} upper limit of confidence interval formatted with 'estimate_fun'
- {ci} confidence interval formatted with x\$estimate_fun (pre-formatted)
- {time}/{prob} time or survival quantile (numeric)
- {n.risk} number at risk at 'time' (within stratum if applicable)
- {n.event} number of observed events at 'time' (within stratum if applicable)
- {n} number of observations (within stratum if applicable)
- {variable} stratum variable (if applicable)
- {level} stratum level (if applicable)
- {groupname} label_level from original tbl_survival() call

Author(s)

Karissa Whiting

See Also

Other tbl_survival tools: modify_header(), tbl_survival.survfit()

```
library(survival)
surv_table <-
    survfit(Surv(ttdeath, death) ~ trt, trial) %>%
    tbl_survival(times = c(12, 24))

inline_text(surv_table,
    strata = "Drug A",
    time = 12
)
```

```
inline_text.tbl_uvregression
```

Report statistics from regression summary tables inline

Description

Extracts and returns statistics from a table created by the tbl_uvregression function for inline reporting in an R markdown document. Detailed examples in the inline_text vignette

Usage

```
## S3 method for class 'tbl_uvregression'
inline_text(
    x,
    variable,
    level = NULL,
    pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high}; {p.value})",
    estimate_fun = x$fmt_fun$estimate,
    pvalue_fun = function(x) style_pvalue(x, prepend_p = TRUE),
    ...
)
```

Arguments

X	Object created from tbl_uvregression
variable	Variable name of statistics to present
level	Level of the variable to display for categorical variables. Default is NULL, returning the top row in the table for the variable.
pattern	String indicating the statistics to return. Uses glue::glue formatting. Default is "{estimate} ({conf.level }% CI {conf.low}, {conf.high}; {p.value})". All columns from x\$table_body are available to print as well as the confidence level (conf.level). See below for details.
estimate_fun	function to style model coefficient estimates. Columns 'estimate', 'conf.low', and 'conf.high' are formatted. Default is x\$inputs\$estimate_fun
pvalue_fun	function to style p-values and/or q-values. Default is function(x) $style_pvalue(x,prepend_p = TRUE)$
	Not used

Value

A string reporting results from a gtsummary table

pattern argument

The following items are available to print. Use print(x\$table_body) to print the table the estimates are extracted from.

- {estimate} coefficient estimate formatted with 'estimate_fun'
- {conf.low} lower limit of confidence interval formatted with 'estimate_fun'

modify_header 33

- {conf.high} upper limit of confidence interval formatted with 'estimate_fun'
- {ci} confidence interval formatted with x\$estimate_fun
- {p.value} p-value formatted with 'pvalue_fun'
- {N} number of observations in model
- {label} variable/variable level label

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression modify_header(), sort_p.tbl_uvregression(), tbl_merge(), tbl_stack(), tbl_uvregression()
```

Examples

```
inline_text_ex1 <-
    trial[c("response", "age", "grade")] %>%
    tbl_uvregression(
    method = glm,
    method.args = list(family = binomial),
    y = response,
    exponentiate = TRUE
    )

inline_text(inline_text_ex1, variable = age)
inline_text(inline_text_ex1, variable = grade, level = "III")
```

modify_header

Modify column headers in gtsummary tables

Description

Column labels can be modified to include calculated statistics; e.g. the N can be dynamically included by wrapping it in curly brackets (following glue::glue syntax).

Usage

```
modify_header(x, stat_by = NULL, ..., text_interpret = c("md", "html"))
```

Arguments

stat_by

gtsummary object, e.g. tbl_summary or tbl_regression

String specifying text to include above the summary statistics stratified by a variable. Only use with stratified tbl_summary objects. The following fields are available for use in the headers:

- {n} number of observations in each group,
- {N} total number of observations,
- {p} percentage in each group,

34 modify_header

```
• {level} the 'by' variable level,
```

• "fisher.test" for a Fisher's exact test,

Syntax follows glue::glue, e.g. stat_by = "**{level}**, N = {n} ({style_percent(p)\%})". The by argument from the parent tbl_summary() cannot be NULL.

Specifies column label of any other column in .\$table_body. Argument is the column name, and the value is the new column header (e.g. p.value = "Model P-values"). Use print(x\$table_body) to see columns available.

text_interpret indicates whether text will be interpreted as markdown ("md") or HTML ("html").

The text is interpreted with the gt package's md() or html() functions. The de-

fault is "md", and is ignored when the print engine is not gt.

Value

Function return the same class of gtsummary object supplied

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), sort_p.tbl_summary() tbl_merge(), tbl_stack(), tbl_summary()

Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), sort_p.tbl_regression(), tbl_merge(), tbl_regression(), tbl_stack()

Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression inline_text.tbl_uvregression(), sort_p.tbl_uvregression(), tbl_merge(), tbl_stack(), tbl_uvregression()

Other tbl_survival tools: inline_text.tbl_survival(), tbl_survival.survfit()
```

```
tbl_col_ex1 <-
    trial[c("age", "grade", "response")] %>%
    tbl_summary() %>%
    modify_header(stat_0 = "**All Patients**, N = {N}")

tbl_col_ex2 <-
    trial[c("age", "grade", "response", "trt")] %>%
    tbl_summary(by = trt) %>%
    modify_header(
    stat_by = "**{level}***, N = {n} ({style_percent(p, symbol = TRUE)})"
)
```

print_gtsummary 35

print_gtsummary

print and knit_print methods for gtsummary objects

Description

print and knit_print methods for gtsummary objects

Usage

```
## S3 method for class 'gtsummary'
print(x, ...)
## S3 method for class 'gtsummary'
knit_print(x, ...)
```

Arguments

x An object created using gtsummary functions
... Not used

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression tbl_merge tbl_stack

select_helpers

Select helper functions

Description

Set of functions to supplement the tidyselect set of functions for selecting columns of data frames. all_continuous(), all_categorical(), and all_dichotomous() may only be used with tbl_summary(), where each variable has been classified into one of these three groups. All other helpers are available throughout the package.

Usage

```
all_numeric()
all_character()
all_integer()
all_double()
all_logical()
```

36 sort_p.tbl_regression

```
all_factor()
all_continuous()
all_categorical(dichotomous = TRUE)
all_dichotomous()
```

Arguments

dichotomous Logical indicating whether to include dichotomous variables. Default is TRUE

Value

A character vector of column names selected

sort_p.tbl_regression Sort variables in table by ascending p-values

Description

Sort variables in tables created by tbl_regression by ascending p-values

Usage

```
## S3 method for class 'tbl_regression'
sort_p(x, ...)
```

Arguments

x An object created using tbl_regression function... Not used

Value

 $A \ tbl_regression \ object$

Example Output

Author(s)

Karissa Whiting

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), tbl_merge(), tbl_regression(), tbl_stack()
```

sort_p.tbl_summary 37

Examples

```
tbl_lm_sort_p_ex <-
  glm(response ~ trt + grade, trial, family = binomial(link = "logit")) %>%
  tbl_regression(exponentiate = TRUE) %>%
  sort_p()
```

sort_p.tbl_summary

Sort variables in table by ascending p-values

Description

Sort variables in tables created by tbl_summary by ascending p-values

Usage

```
## S3 method for class 'tbl_summary'
sort_p(x, q = FALSE, ...)
```

Arguments

x An object created using tbl_summary function

q Logical argument. When TRUE will sort by the q-value column rather than the

p-values

... Not used

Value

A tbl_summary object

Example Output

Author(s)

Karissa Whiting

See Also

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), tbl_merge(), tbl_stack(), tbl_summary()
```

```
tbl_sum_sort_p_ex <-
  trial[c("age", "grade", "response", "trt")] %>%
  tbl_summary(by = trt) %>%
  add_p() %>%
  sort_p()
```

```
sort_p.tbl_uvregression
```

Sort variables in table by ascending p-values

Description

Sort variables in tables created by tbl_uvregression by ascending p-values

Usage

```
## S3 method for class 'tbl_uvregression'
sort_p(x, q = FALSE, ...)
```

Arguments

```
x an object created using tbl_uvregression function
```

q logical argument. When TRUE will sort by the q-value column rather than the

p-values

... Not used

Value

A tbl_uvregression object

Example Output

Author(s)

Karissa Whiting

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression inline_text.tbl_uvregression(), modify_header(), tbl_merge(), tbl_stack(), tbl_uvregression()
```

```
tbl_uvglm_sort_p_ex <-
  trial[c("age", "marker", "response", "grade")] %>%
  tbl_uvregression(
   method = glm,
    y = response,
   method.args = list(family = binomial),
    exponentiate = TRUE
) %>%
  sort_p()
```

style_percent 39

ctule percent	Style percentages to be displayed in tables on text
style_percent	Style percentages to be displayed in tables or text

Description

Style percentages to be displayed in tables or text

Usage

```
style_percent(x, symbol = FALSE)
```

Arguments

x numeric vector of percentages

symbol Logical indicator to include percent symbol in output. Default is FALSE.

Value

A character vector of styled percentages

Author(s)

Daniel D. Sjoberg

See Also

```
See Table Gallery vignette for example

Other style tools: style_pvalue(), style_ratio(), style_sigfig()
```

Examples

```
percent_vals <- c(-1, 0, 0.0001, 0.005, 0.01, 0.10, 0.45356, 0.99, 1.45)

style\_percent(percent\_vals)

style\_percent(percent\_vals, symbol = TRUE)
```

style_pvalue

Style p-values to be displayed in tables or text

Description

Style p-values to be displayed in tables or text

Usage

```
style_pvalue(x, digits = 1, prepend_p = FALSE)
```

Arguments

x Numeric vector of p-values.

digits Number of digits large p-values are rounded. Must be 1 or 2. Default is 1. prepend_p Logical. Should 'p=' be prepended to formatted p-value. Default is FALSE

40 style_ratio

Value

A character vector of styled p-values

Author(s)

Daniel D. Sjoberg

See Also

```
See tbl_summary vignette for examples

Other style tools: style_percent(), style_ratio(), style_sigfig()
```

Examples

```
pvals <- c(
   1.5, 1, 0.999, 0.5, 0.25, 0.2, 0.197, 0.12, 0.10, 0.0999, 0.06,
   0.03, 0.002, 0.001, 0.00099, 0.0002, 0.00002, -1
)
style_pvalue(pvals)
style_pvalue(pvals, digits = 2, prepend_p = TRUE)</pre>
```

style_ratio

Implement significant figure-like rounding for ratios

Description

When reporting ratios, such as relative risk or an odds ratio, we'll often want the rounding to be similar on each side of the number 1. For example, if we report an odds ratio of 0.95 with a confidence interval of 0.70 to 1.24, we would want to round to two decimal places for all values. In other words, 2 significant figures for numbers less than 1 and 3 significant figures 1 and larger. style_ratio() performs significant figure-like rounding in this manner.

Usage

```
style_ratio(x, digits = 2)
```

Arguments

x Numeric vector

digits Integer specifying the number of significant digits to display for numbers below 1. Numbers larger than 1 will be be digits + 1. Default is digits = 2.

Value

A character vector of styled ratios

Author(s)

Daniel D. Sjoberg

style_sigfig 41

See Also

```
Other style tools: style_percent(), style_pvalue(), style_sigfig()
```

Examples

```
c(
 0.123, 0.9, 1.1234, 12.345, 101.234, -0.123,
 -0.9, -1.1234, -12.345, -101.234
) %>%
 style_ratio()
```

style_sigfig

Implement significant figure-like rounding

Description

Converts a numeric argument into a string that has been rounded to a significant figure-like number. Scientific notation output is avoided, however, and additional significant figures may be displayed for large numbers. For example, if the number of significant digits requested is 2, 123 will be displayed (rather than 120 or 1.2x10^2).

Usage

```
style\_sigfig(x, digits = 2)
```

Arguments

x Numeric vector

digits Integer specifying the minimum number of significant digits to display

Details

If 2 sig figs are input, the number is rounded to 2 decimal places when abs(x) < 1, 1 decimal place when abs(x) >= 1 & abs(x) < 10, and to the nearest integer when abs(x) >= 10.

Value

A character vector of styled numbers

Author(s)

Daniel D. Sjoberg

See Also

```
Other style tools: style_percent(), style_pvalue(), style_ratio()
```

```
c(0.123, 0.9, 1.1234, 12.345, -0.123, -0.9, -1.1234, -12.345, NA, -0.001) %>% style_sigfig()
```

42 tbl_merge

tbl_merge

Merge two or more gtsummary objects

Description

Merges two or more tbl_regression, tbl_uvregression, tbl_stack, or tbl_summary objects and adds appropriate spanning headers.

Usage

```
tbl_merge(tbls, tab_spanner = NULL)
```

Arguments

tbls List of gtsummary objects to merge

tab_spanner Character vector specifying the spanning headers. Must be the same length as

tbls. The strings are interpreted with gt::md. Must be same length as tbls

argument

Value

A tbl_merge object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
tbl stack
```

```
Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_regression(), tbl_stack()
```

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression inline_text.tbl_uvregression(), modify_header(), sort_p.tbl_uvregression(), tbl_stack(), tbl_uvregression()
```

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_stack(), tbl_summary()
```

tbl_regression 43

Examples

```
# Side-by-side Regression Models
library(survival)
t1 <-
  glm(response ~ trt + grade + age, trial, family = binomial) %>%
  tbl_regression(exponentiate = TRUE)
  coxph(Surv(ttdeath, death) ~ trt + grade + age, trial) %>%
  tbl_regression(exponentiate = TRUE)
tbl_merge_ex1 <-
  tbl_merge(
    tbls = list(t1, t2),
    tab_spanner = c("**Tumor Response**", "**Time to Death**")
# Descriptive statistics alongside univariate regression, with no spanning header
  trial[c("age", "grade", "response")] %>%
  tbl_summary(missing = "no") %>%
  add_n()
t4 <-
  tbl_uvregression(
    trial[c("ttdeath", "death", "age", "grade", "response")],
    method = coxph,
   y = Surv(ttdeath, death),
    exponentiate = TRUE,
    hide_n = TRUE
  )
tbl_merge_ex2 <-
  tbl_merge(tbls = list(t3, t4)) %>%
  as_gt(include = -tab_spanner) %>%
  gt::cols_label(stat_0_1 = gt::md("**Summary Statistics**"))
```

tbl_regression

Display regression model results in table

Description

This function takes a regression model object and returns a formatted table that is publication-ready. The function is highly customizable allowing the user to obtain a bespoke summary table of the regression model results. Review the tbl_regression vignette for detailed examples.

Usage

```
tbl_regression(
    x,
    label = NULL,
    exponentiate = FALSE,
    include = everything(),
    show_single_row = NULL,
    conf.level = NULL,
```

44 tbl_regression

```
intercept = FALSE,
  estimate_fun = NULL,
  pvalue_fun = NULL,
  tidy_fun = NULL,
  show_yesno = NULL,
  exclude = NULL
```

Arguments

Regression model object

label List of formulas specifying variables labels, e.g. list(age ~ "Age, yrs", stage

~ "Path T Stage")

exponentiate Logical indicating whether to exponentiate the coefficient estimates. Default is

FALSE.

include Variables to include in output. Input may be a vector of quoted variable names,

unquoted variable names, or tidyselect select helper functions. Default is everything().

show_single_row

By default categorical variables are printed on multiple rows. If a variable is dichotomous (e.g. Yes/No) and you wish to print the regression coefficient on a single row, include the variable name(s) here—quoted and unquoted variable

name accepted.

conf.level Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corre-

sponds to a 95 percent confidence interval.

intercept Logical argument indicating whether to include the intercept in the output. De-

fault is FALSE

estimate_fun Function to round and format coefficient estimates. Default is style_sigfig when

the coefficients are not transformed, and style_ratio when the coefficients have

been exponentiated.

pvalue_fun Function to round and format p-values. Default is style_pvalue. The function

must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x)

style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits

= 2)).

tidy_fun Option to specify a particular tidier function if the model is not a vetted model

or you need to implement a custom method. Default is NULL

show_yesno DEPRECATED exclude DEPRECATED

Value

A tbl_regression object

Setting Defaults

If you prefer to consistently use a different function to format p-values or estimates, you can set options in the script or in the user- or project-level startup file, '.Rprofile'. The default confidence level can also be set.

- options(gtsummary.pvalue_fun = new_function)
- options(gtsummary.tbl_regression.estimate_fun = new_function)
- options(gtsummary.conf.level = 0.90)

tbl_regression 45

Note

The N reported in the output is the number of observations in the data frame model.frame(x). Depending on the model input, this N may represent different quantities. In most cases, it is the number of people or units in your model. Here are some common exceptions.

- 1. Survival regression models including time dependent covariates.
- 2. Random- or mixed-effects regression models with clustered data.
- 3. GEE regression models with clustered data.

This list is not exhaustive, and care should be taken for each number reported.

Example Output

Author(s)

Daniel D. Sjoberg

See Also

See tbl_regression vignette for detailed examples

```
Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_stack()
```

```
library(survival)
tbl_regression_ex1 <-
    coxph(Surv(ttdeath, death) ~ age + marker, trial) %>%
    tbl_regression(exponentiate = TRUE)

tbl_regression_ex2 <-
    glm(response ~ age + grade, trial, family = binomial(link = "logit")) %>%
    tbl_regression(exponentiate = TRUE)

library(lme4)
tbl_regression_ex3 <-
    glmer(am ~ hp + (1 | gear), mtcars, family = binomial) %>%
    tbl_regression(exponentiate = TRUE)

# for convenience, you can also pass named lists to any arguments
# that accept formulas (e.g label, etc.)
glm(response ~ age + grade, trial, family = binomial(link = "logit")) %>%
    tbl_regression(exponentiate = TRUE, label = list(age = "Patient Age"))
```

46 *tbl_stack*

tbl_stack

Stacks two or more gtsummary objects

Description

Assists in patching together more complex tables. tbl_stack() appends two or more tbl_regression, tbl_summary, or tbl_merge objects. gt attributes from the first regression object are utilized for output table.

Usage

```
tbl_stack(tbls)
```

Arguments

tbls

List of gtsummary objects

Value

A tbl_stack object

Example Output

Author(s)

Daniel D. Sjoberg

tbl_uvregression()

See Also

```
tbl_merge
```

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_summary()

Other tbl_regression tools: add_global_p.tbl_regression(), add_nevent.tbl_regression(), bold_italicize_labels_levels, bold_p.tbl_regression(), bold_p.tbl_stack(), combine_terms(), inline_text.tbl_regression(), modify_header(), sort_p.tbl_regression(), tbl_merge(), tbl_regression()

Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression()
```

inline_text.tbl_uvregression(), modify_header(), sort_p.tbl_uvregression(), tbl_merge(),

```
# Example 1 - stacking two tbl_regression objects
t1 <-
  glm(response ~ trt, trial, family = binomial) %>%
tbl_regression(
  exponentiate = TRUE,
```

tbl_summary 47

```
label = list(trt ~ "Treatment (unadjusted)")
t2 <-
  glm(response ~ trt + grade + stage + marker, trial, family = binomial) %>%
  tbl_regression(
    include = "trt",
    exponentiate = TRUE.
    label = list(trt ~ "Treatment (adjusted)")
  )
tbl_stack_ex1 <- tbl_stack(list(t1, t2))</pre>
# Example 2 - stacking two tbl_merge objects
library(survival)
t3 <-
  coxph(Surv(ttdeath, death) ~ trt, trial) %>%
  tbl\_regression(
    exponentiate = TRUE,
    label = list(trt ~ "Treatment (unadjusted)")
t4 <-
  coxph(Surv(ttdeath, death) ~ trt + grade + stage + marker, trial) %>%
  tbl_regression(
    include = "trt"
    exponentiate = TRUE,
    label = list(trt ~ "Treatment (adjusted)")
# first merging, then stacking
row1 <- tbl_merge(list(t1, t3), tab_spanner = c("Tumor Response", "Death"))</pre>
row2 <- tbl_merge(list(t2, t4))</pre>
tbl_stack_ex2 <-
  tbl_stack(list(row1, row2))
```

tbl_summary

Create a table of summary statistics

Description

The tbl_summary function calculates descriptive statistics for continuous, categorical, and dichotomous variables. Review the tbl_summary vignette for detailed examples.

Usage

```
tbl_summary(
  data,
  by = NULL,
  label = NULL,
  statistic = NULL,
  digits = NULL,
  type = NULL,
```

48 tbl_summary

```
value = NULL,
missing = c("ifany", "always", "no"),
missing_text = "Unknown",
sort = NULL,
percent = c("column", "row", "cell"),
group = NULL
)
```

Arguments

data	A data frame
by	A column name (quoted or unquoted) in data. Summary statistics will be calculated separately for each level of the by variable (e.g. by = trt). If NULL, summary statistics are calculated using all observations.
label	List of formulas specifying variables labels, e.g. list(age ~ "Age,yrs", stage ~ "Path T Stage"). If a variable's label is not specified here, the label attribute (attr(data\$age,"label")) is used. If attribute label is NULL, the variable name will be used.
statistic	List of formulas specifying types of summary statistics to display for each variable. The default is list(all_continuous() ~ "{median} ({p25},{p75})",all_categorical() ~ "{n} ({p}%)"). See below for details.
digits	List of formulas specifying the number of decimal places to round continuous summary statistics. If not specified, tbl_summary guesses an appropriate number of decimals to round statistics. When multiple statistics are displayed for a single variable, supply a vector rather than an integer. For example, if the statistic being calculated is "{mean} ({sd})" and you want the mean rounded to 1 decimal place, and the SD to 2 use digits = list(age ~ c(1,2)).
type	List of formulas specifying variable types. Accepted values are c("continuous", "categorical", "e.g. type = list(starts_with(age) ~ "continuous", female ~ "dichotomous"). If type not specified for a variable, the function will default to an appropriate summary type. See below for details.
value	List of formulas specifying the value to display for dichotomous variables. See below for details.
missing	Indicates whether to include counts of NA values in the table. Allowed values are "no" (never display NA values), "ifany" (only display if any NA values), and "always" (includes NA count row for all variables). Default is "ifany".
missing_text	String to display for count of missing observations. Default is "Unknown".
sort	List of formulas specifying the type of sorting to perform for categorical data. Options are frequency where results are sorted in descending order of frequency and alphanumeric, e.g. sort = list(everything() ~ "frequency")
percent	Indicates the type of percentage to return. Must be one of "column", "row", or "cell". Default is "column".
group	DEPRECATED. Migrated to add_p

Value

A tbl_summary object

tbl_summary 49

select helpers

Select helpers from the \tidyselect\ package and \gtsummary\ package are available to modify default behavior for groups of variables. For example, by default continuous variables are reported with the median and IQR. To change all continuous variables to mean and standard deviation use statistic = list(all_continuous() ~ "{mean} ({sd})").

All columns with class logical are displayed as dichotomous variables showing the proportion of events that are TRUE on a single row. To show both rows (i.e. a row for TRUE and a row for FALSE) use type = list(all_logical() ~ "categorical").

The select helpers are available for use in any argument that accepts a list of formulas (e.g. statistic, type, digits, value, sort, etc.)

statistic argument

The statistic argument specifies the statistics presented in the table. The input is a list of formulas that specify the statistics to report. For example, statistic = list(age ~ "{mean} ({sd})") would report the mean and standard deviation for age; statistic = list(all_continuous() ~ "{mean} ({sd})") would report the mean and standard deviation for all continuous variables. A statistic name that appears between curly brackets will be replaced with the numeric statistic (see glue::glue).

For categorical variables the following statistics are available to display.

- {n} frequency
- {N} denominator, or cohort size
- {p} formatted percentage

For continuous variables the following statistics are available to display.

- {median} median
- {mean} mean
- {sd} standard deviation
- {var} variance
- {min} minimum
- {max} maximum
- {p##} any integer percentile, where ## is an integer from 0 to 100
- {foo} any function of the form foo(x) is accepted where x is a numeric vector

type argument

tbl_summary displays summary statistics for three types of data: continuous, categorical, and dichotomous. If the type is not specified, tbl_summary will do its best to guess the type. Dichotomous variables are categorical variables that are displayed on a single row in the output table, rather than one row per level of the variable. Variables coded as TRUE/FALSE, 0/1, or yes/no are assumed to be dichotomous, and the TRUE, 1, and yes rows are displayed. Otherwise, the value to display must be specified in the value argument, e.g. value = list(varname ~ "level to show")

Example Output

50 tbl_survival

Author(s)

Daniel D. Sjoberg

See Also

```
See tbl_summary vignette for detailed examples
```

```
Other tbl_summary tools: add_n(), add_overall(), add_p(), add_q.tbl_summary(), add_stat_label(), bold_italicize_labels_levels, bold_p.tbl_summary(), inline_text.tbl_summary(), modify_header(), sort_p.tbl_summary(), tbl_merge(), tbl_stack()
```

Examples

```
tbl_summary_ex1 <-
  trial[c("age", "grade", "response")] %>%
  tbl_summary()
tbl_summary_ex2 <-
  trial[c("age", "grade", "response", "trt")] %>%
  tbl_summary(
    by = trt,
   label = list(age ~ "Patient Age"),
    statistic = list(all\_continuous() ~ "\{mean\} ~ (\{sd\})"),
    digits = list(age \sim c(0, 1))
# for convenience, you can also pass named lists to any arguments
# that accept formulas (e.g label, digits, etc.)
tbl_summary_ex3 <-
  trial[c("age", "trt")] %>%
  tbl_summary(
   by = trt,
   label = list(age = "Patient Age")
```

tbl_survival

Creates table of univariate summary statistics for time-to-event endpoints

Description

Questioning Questioning whether gtsummary is the place for our univariate survival functions to live. This may be exported to another package in the future.

Usage

```
tbl_survival(x, ...)
```

Arguments

x A survfit object

... Additional arguments passed to other methods

tbl_survival.survfit 51

See Also

 $tbl_survival.surv fit$

```
tbl_survival.survfit Creates table of survival probabilities
```

Description

Questioning Questioning whether gtsummary is the place for our univariate survival functions to live. This may be exported to another package in the future. Function takes a survfit object as an argument, and provides a formatted summary of the results

Usage

```
## S3 method for class 'survfit'
tbl_survival(
    x,
    times = NULL,
    probs = NULL,
    label = ifelse(is.null(probs), "{time}", "{prob*100}%"),
    level_label = "{level}, N = {n}",
    header_label = NULL,
    header_estimate = NULL,
    failure = FALSE,
    missing = "-",
    estimate_fun = NULL,
    ...
)
```

Arguments

X	A survfit object with a no stratification (e.g. survfit(Surv(ttdeath, death) ~ 1, trial)), or a single stratifying variable (e.g. survfit(Surv(ttdeath, death) ~ trt, trial))
times	Numeric vector of times for which to return survival probabilities.
probs	Numeric vector of probabilities with values in $(0,1)$ specifying the survival quantiles to return
label	String defining the label shown for the time or prob column. Default is "{time}" or "{prob*100}%". The input uses glue::glue notation to convert the string into a label. A common label may be "{time} Months", which would resolve to "6 Months" or "12 Months" depending on specified times.
level_label	Used when survival results are stratified. It is a string defining the label shown. The input uses <code>glue::glue</code> notation to convert the string into a label. The default is "{level},N = {n}". Other information available to call are '{n}', '{level}', '{n.event.tot}', '{n.event.strata}', and '{strata}'. See below for details.
header_label	String to be displayed as column header. Default is '**Time**' when time is

specified, and '**Quantile**' when probs is specified.

52 tbl_survival.survfit

header_estimate

String to be displayed as column header of the Kaplan-Meier estimate. Default is '**Probability**' when time is specified, and '**Time**' when probs

is specified.

failure Calculate failure probabilities rather than survival probabilities. Default is FALSE.

Does NOT apply to survival quantile requests

missing String indicating what to replace missing confidence limits with in output. De-

fault is missing = "-"

estimate_fun Function used to format the estimate and confidence limits. The default is

style_percent(x,symbol = TRUE) for survival probabilities, and style_sigfig(x,digits

= 3) for time estimates.

... Not used

Value

A tbl_survival object

level_label argument

The level_label is used to modify the stratum labels. The default is level_label = "{level}, N = {n}". The quantities in the curly brackets evaluate to stratum-specific values. For example, in the trial data set, there is a column called trt with levels 'Drug A' and 'Drug B'. In this example, {level} would evaluate to either 'Drug A' or 'Drug B' depending on the stratum. Other quantities available to print are:

- {level} level of the stratification variable
- {level_label} label of level for the stratification variable
- {n} number of observations, or number within stratum
- {n.event.tot} total number of events (total across stratum, if applicable)
- {n.event.strata} total number of events within stratum, if applicable
- {strata} raw stratum specification from survfit object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_survival tools: inline_text.tbl_survival(), modify_header()
```

```
library(survival)
fit1 <- survfit(Surv(ttdeath, death) ~ trt, trial)
tbl_strata_ex1 <-
  tbl_survival(
  fit1,
   times = c(12, 24),</pre>
```

tbl_uvregression 53

```
label = "{time} Months"
)

fit2 <- survfit(Surv(ttdeath, death) ~ 1, trial)
tbl_nostrata_ex2 <-
  tbl_survival(
   fit2,
   probs = c(0.1, 0.2),
   header_estimate = "**Months**"
)</pre>
```

tbl_uvregression

Display univariate regression model results in table

Description

This function estimates univariate regression models and returns them in a publication-ready table. It can create univariate regression models holding either a covariate or outcome constant.

For models holding outcome constant, the function takes as arguments a data frame, the type of regression model, and the outcome variable y=. Each column in the data frame is regressed on the specified outcome. The tbl_uvregression function arguments are similar to the tbl_regression arguments. Review the tbl_uvregression vignette for detailed examples.

You may alternatively hold a single covariate constant. For this, pass a data frame, the type of regression model, and a single covariate in the x= argument. Each column of the data frame will serve as the outcome in a univariate regression model. Take care using the x argument that each of the columns in the data frame are appropriate for the same type of model, e.g. they are all continuous variables appropriate for lm, or dichotomous variables appropriate for logistic regression with glm.

Usage

```
tbl_uvregression(
 data,
 method,
 y = NULL,
  x = NULL,
 method.args = NULL,
  formula = "{y} \sim {x}",
  exponentiate = FALSE,
  label = NULL,
  include = everything(),
 exclude = NULL,
 hide_n = FALSE,
  show_single_row = NULL,
 conf.level = NULL,
  estimate_fun = NULL,
 pvalue_fun = NULL,
  show_yesno = NULL,
  tidy_fun = NULL
)
```

54 tbl_uvregression

Arguments

data Data frame to be used in univariate regression modeling. Data frame includes the outcome variable(s) and the independent variables. method Regression method (e.g. lm, glm, survival::coxph, and more). Model outcome (e.g. y = recurrence or y = Surv(time, recur)). All other У column in data will be regressed on y. Specify one and only one of y or x Model covariate (e.g. x = trt). All other columns in data will serve as the х outcome in a regression model with x as a covariate. Output table is best when x is a continuous or dichotomous variable displayed on a single row. Specify one and only one of y or x method.args List of additional arguments passed on to the regression function defined by method. formula String of the model formula. Uses glue::glue syntax. Default is " $\{y\} \sim \{x\}$ ", where {y} is the dependent variable, and {x} represents a single covariate. For a random intercept model, the formula may be formula = " $\{y\} \sim \{x\} + (1 \mid x)$ " gear)". Logical indicating whether to exponentiate the coefficient estimates. Default is exponentiate List of formulas specifying variables labels, e.g. list(age ~ "Age, yrs", stage label ~ "Path T Stage") include Variables to include in output. Input may be a vector of quoted variable names, unquoted variable names, or tidyselect select helper functions. Default is everything(). exclude **DEPRECATED** Hide N column. Default is FALSE hide_n show_single_row By default categorical variables are printed on multiple rows. If a variable is dichotomous (e.g. Yes/No) and you wish to print the regression coefficient on a single row, include the variable name(s) here-quoted and unquoted variable name accepted. conf.level Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval. estimate_fun Function to round and format coefficient estimates. Default is style_sigfig when the coefficients are not transformed, and style_ratio when the coefficients have been exponentiated. pvalue_fun Function to round and format p-values. Default is style_pvalue. The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)). show_yesno **DEPRECATED** Option to specify a particular tidier function if the model is not a vetted model tidy_fun

or you need to implement a custom method. Default is NULL

Value

A tbl_uvregression object

tbl_uvregression 55

Example Output

Setting Defaults

If you prefer to consistently use a different function to format p-values or estimates, you can set options in the script or in the user- or project-level startup file, '.Rprofile'. The default confidence level can also be set.

```
• options(gtsummary.pvalue_fun = new_function)
```

- options(gtsummary.tbl_regression.estimate_fun = new_function)
- options(gtsummary.conf.level = 0.90)

Note

The N reported in the output is the number of observations in the data frame model.frame(x). Depending on the model input, this N may represent different quantities. In most cases, it is the number of people or units in your model. Here are some common exceptions.

- 1. Survival regression models including time dependent covariates.
- 2. Random- or mixed-effects regression models with clustered data.
- 3. GEE regression models with clustered data.

This list is not exhaustive, and care should be taken for each number reported.

Author(s)

Daniel D. Sjoberg

See Also

See tbl_regression vignette for detailed examples

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression(), add_nevent.tbl_uvregression(), add_q.tbl_uvregression(), bold_italicize_labels_levels, bold_p.tbl_stack(), bold_p.tbl_uvregression inline_text.tbl_uvregression(), modify_header(), sort_p.tbl_uvregression(), tbl_merge(), tbl_stack()
```

```
tbl_uv_ex1 <-
  tbl_uvregression(
    trial[c("response", "age", "grade")],
    method = glm,
    y = response,
    method.args = list(family = binomial),
    exponentiate = TRUE
)

# rounding pvalues to 2 decimal places
library(survival)
tbl_uv_ex2 <-
  tbl_uvregression(
    trial[c("ttdeath", "death", "age", "grade", "response")],
    method = coxph,</pre>
```

56 trial

```
y = Surv(ttdeath, death),
    exponentiate = TRUE,
    pvalue_fun = function(x) style_pvalue(x, digits = 2)
)

# for convenience, you can also pass named lists to any arguments
# that accept formulas (e.g label, etc.)
library(survival)
trial[c("ttdeath", "death", "age", "grade", "response")] %>%
    tbl_uvregression(
    method = coxph,
    y = Surv(ttdeath, death),
    exponentiate = TRUE
)
```

trial

Results from a simulated study of two chemotherapy agents: Drug A and Drug B

Description

A dataset containing the baseline characteristics of 200 patients who received Drug A or Drug B. Dataset also contains the outcome of tumor response to the treatment.

Usage

trial

Format

```
trt Chemotherapy Treatment
age Age, yrs
marker Marker Level, ng/mL
stage T Stage
grade Grade
response Tumor Response
death Patient Died
```

A data frame with 200 rows-one row per patient

ttdeath Months to Death/Censor

Index

*Topic datasets trial, 56	<pre>bold_labels</pre>
add_global_p, 3	bold_labels(), 17
add_global_p.tbl_regression, 3, 4, 8,	bold_levels
20–22, 25, 28, 34, 36, 42, 45, 46	<pre>(bold_italicize_labels_levels),</pre>
add_global_p.tbl_uvregression, 3, 5, 9,	19
15, 20, 22, 24, 33, 34, 38, 42, 46, 55	$bold_p, 20$
add_n, 6, 10, 12, 14, 16, 20, 23, 30, 34, 37, 42,	bold_p.tbl_regression, 5, 8, 20, 21, 22, 25,
46, 50	28, 34, 36, 42, 45, 46
add_nevent, 7	bold_p.tbl_stack, 5, 8, 9, 15, 20, 21, 22, 24,
add_nevent.tbl_regression, 5 , 7 , 8 , $20-22$,	25, 28, 33, 34, 36, 38, 42, 45, 46, 55
25, 28, 34, 36, 42, 45, 46	bold_p.tbl_summary, 7, 10, 12, 14, 16, 20,
add_nevent.tbl_uvregression, $5, 7, 9, 15$,	23, 30, 34, 37, 42, 46, 50
20, 22, 24, 33, 34, 38, 42, 46, 55	bold_p.tbl_uvregression, 5, 9, 15, 20, 22, 24, 33, 34, 38, 42, 46, 55
add_overall, 7, 10, 12, 14, 16, 20, 23, 30, 34,	24, 33, 34, 38, 42, 40, 33
37, 42, 46, 50	car::Anova, <i>3-5</i>
add_p, 7, 10, 11, 14, 16, 20, 23, 30, 34, 37, 42,	combine_terms, 5, 8, 20-22, 25, 28, 34, 36,
46, 48, 50	42, 45, 46
add_q, 13	<pre>crayon::strip_style(), 26</pre>
add_q.tbl_summary, 7, 10, 12, 13, 13, 16, 20,	
23, 30, 34, 37, 42, 46, 50 add_q.tbl_uvregression, 5, 9, 13, 14, 20,	geepack::geeglm, $7-9$ glm, 53 , 54
22, 24, 33, 34, 38, 42, 46, 55	glue::glue, 6, 28–30, 32–34, 49, 51, 54
add_stat_label, 7, 10, 12, 14, 15, 20, 23, 30,	gtsummary_logo, 26
34, 37, 42, 46, 50	g t 3 dillillar y _ 10g0, 20
all_categorical (select_helpers), 35	inline_text, <i>8</i> , <i>9</i> , 27
all_character (select_helpers), 35	$inline_text.tbl_regression, 5, 8, 20-22,$
all_continuous (select_helpers), 35	25, 27, 27, 34, 36, 42, 45, 46
all_dichotomous (select_helpers), 35	inline_text.tbl_summary, 7, 10, 12, 14, 16,
all_double (select_helpers), 35	20, 23, 27, 29, 34, 37, 42, 46, 50
all_factor(select_helpers), 35	inline_text.tbl_survival, 27, 30, 34, 52
all_integer(select_helpers), 35	inline_text.tbl_uvregression, 5, 9, 15,
all_logical (select_helpers), 35	20, 22, 24, 27, 32, 34, 38, 42, 46, 55
all_numeric(select_helpers), 35	italicize_labels
as_gt, 16	<pre>(bold_italicize_labels_levels), 19</pre>
as_kable, 17	italicize_levels
as_tibble.gtsummary(as_tibbleS3), 18	(bold_italicize_labels_levels),
as_tibbleS3, 18	19
	italicize_levels(), <i>17</i>
bold_italicize_labels_levels, 5, 7-10,	
12, 14–16, 19, 21–25, 28, 30, 33, 34,	<pre>knit_print.gtsummary(print_gtsummary),</pre>
36–38, 42, 45, 46, 50, 55	35

58 INDEX

```
knitr::kable, 17
1m, 53, 54
lme4::glmer, 7-9
modify_header, 5, 7-10, 12, 14-16, 20-25,
         28, 30, 31, 33, 33, 36–38, 42, 45, 46,
         50, 52, 55
print.gtsummary(print_gtsummary), 35
print_gtsummary, 35
select_helpers, 35
sort_p.tbl_regression, 5, 8, 20-22, 25, 28,
         34, 36, 42, 45, 46
sort_p.tbl_summary, 7, 10, 12, 14, 16, 20,
         23, 30, 34, 37, 42, 46, 50
sort_p.tbl_uvregression, 5, 9, 15, 20, 22,
         24, 33, 34, 38, 42, 46, 55
stats::anova, 25
stats::anova(), 25
stats::glm, 7-9
stats::p.adjust, 13, 14
stats::update, 25
style_percent, 39, 40, 41
style_pvalue, 11, 13, 14, 29, 39, 39, 41, 44,
         54
style_ratio, 39, 40, 40, 41, 44, 54
style_sigfig, 39-41, 41, 44, 54
survival::coxph, 7-9, 54
tbl_merge, 5, 7-10, 12, 14-16, 20-25, 28, 30,
         33–38, 42, 45, 46, 50, 55
tbl_regression, 4, 5, 7, 8, 16–18, 20–22, 25,
         28, 34–36, 42, 43, 46, 53
tbl_stack, 5, 7-10, 12, 14-16, 20-25, 28, 30,
         33–38, 42, 45, 46, 50, 55
tbl_summary, 6, 7, 10–18, 20, 23, 29, 30, 34,
         35, 37, 42, 46, 47
tbl_survival, 17, 18, 30, 50
tbl_survival.survfit, 31, 34, 51, 51
tbl_uvregression, 5, 7, 9, 13, 15, 17, 18, 20,
         22, 24, 32–35, 38, 42, 46, 53
tibble, 18
trial, 56
vetted model, 44, 54
```