

ESTRUCTURA DE LA CLASE

INTRODUCCIÓN

Presentación del tema de la clase Introducción a las redes recurrentes

REDES RECURRENTES

Definición
Problemas de secuencia y series de tiempo
Tipos de series
Componentes de una RNN
Funcionamineto de una RNN

CAPAS RECURRENTES

Recurrente Simple LSTM

GRU

Bidireccionales

ANÁLISIS DE SERIES DE TIEMPO

Tendencia

Fluctuaciones cíclicas

Variaciones estacionales e irregulares

ACTIVIDAD PRÁCTICA

Predicción de precios de bitcoin

CONCLUSIONES

Recapitulación de los puntos clave de la clase

MEMORIA EN LA TOMA DE DECISIONES

MEMORIA EN LA TOMA DE DECISIONES

REDES RECURRENTES

Tipo de red neural que usa datos secuenciales

SECUENCIAS Y SERIES DE TIEMPO

- Predecir ventas, demanda, precios, índices bursátiles, etc.
- Generación de texto, música, imágenes, etc.
- Alineamiento de ADN, proteínas, texto, etc.
- Detección de anomalías, comportamientos atípicos o outliers.
- Reconocimiento de voz, música, imágenes, etc.
- Aumentar la cantidad de frames de un vídeo.

TIPOS DE SERIES

SEQ2SEQ

La red toma una secuencia como entrada y genera una secuencia de salida

SEQ2VEC

La red toma una secuencia de entrada y emite un único vector como salida

VEC2SEQ

Toma un único vector de entrada y genera una secuencia

SEQ2VEC2SEQ

Toma una secuencia, genera un vector, toma el vector y genera una secuencia

ESTRUCTURA DE UNA RED RECURRENTE

ESTRUCTURA DE UNA RED RECURRENTE

CELDAS

Unidad básica de procesamiento que guarda un estado oculto calculado de las salidas anteriores

CAPAS

Agrupaciones del mismo conjunto de celdas

FUNCIÓN DE ACTIVACIÓN

No linearidad aplicada para que la red aprenda patrones complejos

FUNCIÓN DE PÉRDIDA

Mide la diferencia entre la salida predicha de la red y la salida real.

ALGORITMO DE OPTIMIZACIÓN

Cómo se actualizan los pesos de la red

FUNCIONAMIENTO DE RNNS

UNELEFANTE SE BALANCEABA...

CELDAS SIMPLES

Es el tipo más simple de celda donde la entrada de una secuencia se une a la salida de la celda anterior

Al ser sencillas son rápidas de entrenar y fácil de comprender

Sufren por el problema del gradiente descendiente y de poca memoria a largo plazo

CELDAS SIMPLES

```
from tensorflow import keras

# Creamos un modelo secuencial
model = keras.models.Sequential()
# Creamos una capa de celdas simples
model.add(keras.layers.SimpleRNN(cantidad, activation=activacion))
# Creamos la capa de salida
model.add(keras.layers.Dense(cantidad_de_clases))
```

CELDAS LSTM

Para resolver el problema del gradiente y la memoria a largo plazo se introdujeron "puertas".

La puerta de olvido (f), la puerta de entrada (i) y celda (C), y la celda de salida (o). Cada una es una RN

Son un modelo muy potente pero demasiado difícil de entrenar al ser tan complejas

CELDAS LSTM

```
from tensorflow import keras

# Creamos un modelo secuencial
model = keras.models.Sequential()
# Creamos un modelo de LSTM
model.add(keras.layers.LSTM(cantidad, activation=activacion))
# Creamos una capa de salida
model.add(keras.layers.Dense(cantidad))
```

CELDAS GRU

Para resolver el problema del entrenamiento, se simplificó el proceso eliminando puertas.

La puerta de actualización (z), puerta de reinicio (r), puerta de celda (c)

Un modelo fuerte que toma lo mejor de las redes recurrentes a costa de sacrificar mecanismos de memoria

CELDAS GRU

```
from tensorflow import keras

# Creamos un modelo secuencial
model = keras.models.Sequential()
# Creamos un modelo de LSTM
model.add(keras.layers.GRU(cantidad, activation=activacion))
# Creamos una capa de salida
model.add(keras.layers.Dense(cantidad))
```

REDES RECURRENTES BIDIRECCIONALES

Toma datos futuros para mejorar precisión

ANÁLISIS DE SERIES DE TIEMPO

TENDENCIA

Movimiento general a largo plazo

FLUCTUACIONES

Movimientos ascendentes y descendentes respecto a la tendencia

VARIACIONES

Son fluctuaciones que se dan en un momento dado. Pueden ser estacionales si se producen periódicamente o irregulares si no son esperadas

CONCLUSIONES

TIPOS DE SECUENCIAS

Existen las seq2seq, seq2vec, vec2sec, seq2vec2sec. Las series de tiempo son secuencia de datos en un momento específico con una tendencia y fluctuaciones

REDES RECURRENTES

Logran predecir o clasificar tomando en cuenta salidas anteriores. Su unidad principal son las celdas que a su vez se suelen componer de otras redes neurales.

TIPOS DE CELDAS

La celda simple, LSTM, y GRU son las celdas principales, cada una con sus ventajas y desventajas.