

FIT5 I 47 Data Exploration & Visualisation

Kim Marriott

Hall of Fame/Shame (Tue)

Girish Bhatta

https://www.youtube.com/watch?v=PUwmA3Q
0_OE

Hall of Fame/Shame

FIGURE 13. Estimated Mean Annual Ratio of Actual Evapotranspiration (ET) to Precipitation (P) for the Conterminous U.S. for the Period 1971-2900. Estimates are based on the regression equation in Table 1 that includes land cover. Calculations of ET/P were made first at the 800-m resolution of the PRISM climate data. The mean values for the counties (shown) were then calculated by averaging the 800-m values within each county. Areas with fractions >1 are agricultural counties that either import surface water or mine deep groundwater.

Yalong Yang

https://eagereyes.org/basics/rainbow-color-map

Syllabus

Week	Lecture material	Lab/ <u>Tute</u>
. 1	Visual analytics; Tools for data exploration	Intro to Tableau; R; D3
. 2	Visualisation of tabular data	Advanced graphics with R
. 3	Analysis of trends & patterns in tabular data	Interactive graphics with R
alize de la companya	Date pape; Took furnicating gister resembles	
. 5	Spatial analytics	MapBox; Data Exploration Project feedback
C COMMA	Maturate data analysis & visualization	Relational data and daylend to the ask fice with
		R
. 7	Textual data analysis & visualisation	Data Exploration Project Feedback
Break		
. 8	Visualisation design methodology	Five design sheet visualisation design methodology
. 9	Human visual system	Introduction to D3
. 10	Visual communication	More D3;Data VisProject Feedback
. 11	Interactive data visualisation	Data Vis Project Presentations
. 12	History and future of data visualisation	Five design sheet visualisation design methodology

Analytics for Spatial Data

Once the amount of data gets very large we can't visualise all of it

We also want help in drawing conclusions from the data

Analytics helps.

What kinds of analytics are there?

Choice of Classes

Need to choose classes in classed choropleth maps and range graded proportional symbol maps

Typically 4-5 classes but in exploration may use more

Choosing class intervals

- Equal (Size) Interval
- Equal Frequency
- Jenks Optimisation

Example: US Poverty

Guardian data blog – number of people below poverty line in US states

Taken from https://vis4.net/blog/posts/choropleth-maps/

Number of Classes

Play around with the number of classes & boundaries Or try a continuous choropleth map

Aggregation

Aggregation can easily mislead

Aggregation

Spatial Autocorrelation

Spatial Autocorrelation

$$I = \frac{N}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (X_{i} - \bar{X})(X_{j} - \bar{X})}{\sum_{i} (X_{i} - \bar{X})^{2}}$$

One way of measuring this is due to Moran (the Moran coefficient I)

• $w_{ij} = I$ if contiguous, 0 o/w

Spatial Autocorrelation

Moran I ≈ 1

Moran I ≈ 0

Moran I ≈ -1

Using Tabular Analysis

Spatial data can also be analysed using standard tabular visualisations and analyses

- Geographic distance can be used in clustering algorithms
- Contiguous areas can be grouped into regions which are treated as categories
- Latitude, longitude or distance can be treated as a quantitative variable

Falling House Prices

Melbourne

Houses	Units
In September	The share of
2013, 42.0% of	Melbourne
suburbs in	suburbs with
Melbourne had	a median unit
a median	value of more
house value of	than \$500,000
less than	has increased
\$500,000	to 67.9% in
compared to	September
3.8% by the	2018 from
end of	23.0% in
September	September
2018.	2013.
Curren 2013	Curren 2013
t 2013	t

Group Activity: Spatial Data Vis

How would you analyze the trends in house and unit prices in Melbourne? Questions are

- What are the main trends for different kinds of property?
- How does the location of the suburb affect the trend?
- How do features such as proximity to the sea, CBD, railway station affect the trend?

What visualisations and analyses would you use to explore these questions? You should consider a mix of spatial and tabular visualisations and analyses.

Multivariate Spatial Data

It is real challenge to show spatial data with multiple dimensions (x,y already taken)

- Small multiples
- Linked views

Uncertainty

Showing uncertainty

- Intrinsic: combine uncertainty with attribute being visualised
- **Extrinsic**: separate depiction of uncertainty

Announcements

Tutorial Activities

MapBox; discuss project

2nd Online Quiz

Opens next week; covers material from Weeks 4 and 5

Programming Exercise 2: R

Due end of this week (5%)

Data exploration project

Continue exploring your data

Less than 4 weeks until it is due (End Mid-Semester Break)