PROVA SCRITTA DI ELETTRONICA 15 FEBBRAIO 2007

- 1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{Tn1} = V_{Tn2} = V_{Tn3} = $|V_{Tp4}|$ = V_{T} e dai coefficienti β_{n1} , β_{n2} = β_{n3} , β_{p4} . Si determinino β_{n1} e β_{n2} = β_{n3} in modo che:
 - La tensione di soglia logica V_{LT} del circuito sia uguale a 1.55 V;
 - II valore basso V_L dell'uscita V_U sia pari a 630 mV.

Si determini, quindi, l'escursione logica del circuito e il valore della potenza massima dissipata dallo stesso in condizioni stazionarie.

 $V_{dd} = 3.5 \text{ V}, V_T = 0.5 \text{ V}, \beta_{p4} = 0.5 \text{ m A/V}^2.$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dai coefficienti β_n e β_p e dalle tensioni di soglia $V_{TN} = |V_{TP}| = V_T$. Il segnale di clock V_{CK} e i segnale di ingresso V_a e V_b abbiano l'andamento illustrato dalla figura sottostante. Il segnale V_c sia costante e pari a $V_{dd.}$

Si calcoli l'andamento del segnale di uscita V_u , calcolando, per ogni transitorio nell'intervallo analizzato, l'effettiva escursione del segnale ed il tempo di propagazione relativo.

$$V_{dd} = 3.3 \text{ V}, V_T = 0.4 \text{ V}, \beta_n = 500 \text{ }\mu\text{A}/\text{V}^2, \beta_p = 300 \text{ }\mu\text{A}/\text{V}^2, \text{ C} = 20 \text{ fF}.$$

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m). Esame di FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- · Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

OSS. PRELIMINARI:

- (I) M2 e M3 sono OFF (sse vu>vdd-vt), altrimenti sono sempre SAT (per vu<vdd-vt, poiché $V_{gs}=V_{ds}$). Al fine del calcolo della corrente, i MOS M2 e M3 sono equivalenti ad un unico MOS caratterizzato da un coefficiente $\beta_{eq}=2\beta_{n2}=2\beta_{n3}$.
- (II) M4 è OFF per vu<vt, altrimenti è SAT (per vu>vt, poiché poiché V_{sg}=V_{sd})

Calcolo dei coefficienti β_{n1} e $\beta_{n2} = \beta_{n3}$.

■ Alla soglia logica, per vi=vu=v _{LT} , M1	1) Il bilancio delle correnti è allora il seguente:
è sat, M2 e M3 sono sat e M4 è sat.	$\beta_{eq}/2*(vdd-v_{LT}-vt)^2=\beta_{n1}/2*(v_{LT}-vt)^2+\beta_{p4}/2*(v_{LT}-vt)^2$
	-vt)^2
	,

Quando vi è basso, M1 è OFF e vu=v_H, mentre quando vi è alto M1 è ON. Con M1 ON, in corrispondenza di vi=vdd, si avrà vu=v_L. Ipotesi: M1 lin (sse vu<vi-vt(=vdd-vt)); M2 e M3 saturi (sse vu<vdd-vt) e M4 saturo (sse vu>vt). Ma vu=v_L=630mV, quindi le hp sono tutte soddisfatte.

- 2) Il bilancio delle correnti è allora il seguente (con vu=v_L): $\beta_{eq}/2*(vdd-\ v_L\ -vt)^2=\beta_{n1}((vdd-vt)*v_L-v_L^2/2)+\beta_{p4}/2*(\ v_L\ -vt)^2$
- Risolvendo il sistema formato dalle equazioni 1) e 2) si ottiene:

 β_{n1} = 3.345 mA/V², e β_{eq} =2.016 mA/V², quindi $\beta_{n2} = \beta_{n3} = \beta_{eq}/2 \approx 1$ mA/V².

Calcolo dell'escursione logica:

■ vu=v_H si ottiene con vi=0 V. Ipotesi: M1 OFF; M2 e M3 saturi (sse vu<vdd-vt) e M4 saturo (sse vu>vt). Il bilancio delle correnti è allora il seguente (con vu=v_L):

 $\beta_{eq}/2*(vdd\mbox{-}\mbox{-}\mbox{v}_H\mbox{-}\mbox{-v}t)^2=\beta_{p4}/2*(\mbox{ v}_H\mbox{-v}t)^2$, da cui si ricava che $V_H\mbox{=}2.169$ V (valore che soddisfa tutte le Hp fatte).

L'escursione logica vale allora: v_H - v_L =1.539 V

Calcolo della massima potenza statica dissipata dal circuito.

$$\begin{split} P_{diss} = &vdd*(Id_{M2} + Id_{M3}) = vdd*(Id_{Meq}) = vdd*\beta_{eq}/2*(vdd-vu-vt)^2,\\ e \ sar\grave{a} \ max \ per \ vu=v_L = 0.630V. \end{split}$$

 $P_{dissmax}(vu=v_L)=19.8 \text{ mW}$

L'andamento di Vu è riportato nella figura sottostante, nella quale sono numerati i diversi intervalli di funzionamento:

<u>Intervallo 1:</u> V_{ck} =0, V_a =0, V_b = V_{dd} , V_c = V_{dd} \Rightarrow M1 off, M2 on, M3 off, M4 on \Rightarrow V_u = V_{dd}

<u>Intervallo 2:</u> V_{ck} = V_{dd} , V_a =0, V_b = V_{dd} , V_c = V_{dd} \Rightarrow M1 on, M2 on, M3 off, M4 off \Rightarrow V_u = V_{dd} →0: la scarica avviene tramite la serie di M1 e M2, con tempo di propagazione pari a 33 ps

<u>Intervallo 3:</u> V_{ck} =0, V_a =0, V_b = V_{dd} , V_c = V_{dd} \Rightarrow M1 off, M2 on, M3 off, M4 on \Rightarrow V_u =0→ V_{dd} : carica attraverso M4, con tempo di propagazione pari a 27.5 ps

 $\underline{\textit{Intervallo 5:}} \ V_{ck} = V_{dd}, \ V_a = V_{dd}, \ V_b = 0, \ V_c = V_{dd} \Rightarrow M1 \ on, \ M2 \ off, \ M3 \ off, \ M4 \ off \Rightarrow V_u = V_{dd} \ (alta \ imp.)$

Intervallo 6: $V_{ck}=0$, $V_a=V_{dd}$, $V_b=0$, $V_c=V_{dd} \Rightarrow M1$ off, M2 off, M3 off, M4 on $\Rightarrow V_u=V_{dd}$ (analogo a 4)

Intervallo 7: $V_{ck}=0$, $V_a=0$, $V_b=V_{dd}$, $V_c=V_{dd} \Rightarrow M1$ off, M2 on, M3 off, M4 on $\Rightarrow V_u=V_{dd}$

<u>Intervallo 8:</u> V_{ck} = V_{dd} , V_a =0, V_b = V_{dd} , V_c = V_{dd} \Rightarrow M1 on, M2 on, M3 off, M4 off \Rightarrow V_u = V_{dd} →0 (transitorio identico al caso 2, con tempo di propagazione pari a 33 ps)

<u>Intervallo 9:</u> $V_{ck}=V_{dd}$, $V_a=V_{dd}$, $V_b=0$, $V_c=V_{dd}$ \Rightarrow M1 on, M2 off, M3 on, M4 off \Rightarrow $V_u=0$ → $V_{dd}-V_T$: carica attraverso M3 (sempre saturo: $V_{ds}=V_{gs}=V_{dd}$) con tempo di propagazione pari a 27.6 ps

<u>Intervallo 10:</u> V_{ck} =0, V_a = V_{dd} , V_b =0, V_c = V_{dd} \Rightarrow M1 off, M2 off, M3 on→off, M4 on \Rightarrow V_u = V_{dd} - V_T → V_{dd} : carica attraverso M4 (sempre lineare) con tempo di propagazione pari a 16.8 ps.

Intervallo 11: $V_{ck}=0$, $V_a=V_{dd}$, $V_b=V_{dd}$, $V_c=V_{dd} \Rightarrow M1$ off, M2 on, M3 off, M4 on $\Rightarrow V_u=V_{dd}$

<u>Intervallo 12:</u> V_{ck} = V_{dd} , V_a = V_{dd} , V_b = V_{dd} , V_c = V_{dd} \Rightarrow M1 on, M2 on, M3 off→on, M4 off \Rightarrow V_u = V_{dd} →? V_u comincia a scaricarsi tramite la serie M1 e M2: fino a che V_u > V_{dd} - V_T M1+M2 sat, M3 off, il transitorio richiede 7.6 ps. Per V_u < V_{dd} - V_T , è attiva sia una rete di pull-up (M3, sat) che di pull-down (M1+M2, lin). La tensione di regime si calcola uguagliando le due correnti:

 $Id_{1,2, lin}=I_{d3, sat} \Rightarrow \Rightarrow V_u=V_{fin}=1.22 \text{ V}.$

Il contributo al tempo di propagazione va quindi calcolato per Vu: V_{dd}-V_T → (V_{dd}+ V_{fin})/2, con

C dVu/dT= $I_{d3,sat}$ - $I_{d1,2,lin}$

Integrando, si ottiene un contributo di 12.8 ps, che sommato al precedente, porta a un tempo di propagazione pari a 20.4 ps.