Brandeis

COSI 104a Introduction to machine learning

Chapter 3 – Data

Instructor: Dr. Hongfu Liu

Email: hongfuliu@brandeis.edu

Outline

Attributes and Objects

Types of Data

• Data Quality

What is Data?

Collection of data objects and their attributes (features)

- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an object
 - · Object is also known as record, point, case, sample, entity, or instance

Attributes

1				1
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attribute (Feature) Values

• Attribute values are numbers or symbols assigned to an attribute for a particular object

Distinction between attributes and attribute values

- Same attribute can be mapped to different attribute values
- Example: height can be measured in feet or meters

Different attributes can be mapped to the same set of values

- Example: Attribute values for ID and age are integers
- But properties of attribute values can be different

Types of Attributes

There are different types of attributes

- Categorical (Discrete)
 - Nominal: ID numbers, eye color, zip codes
 - Ordinal: rankings (e.g., taste of potato chips, grades)
- Numerical (Continous)
 - Interval: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio: temperature in Kelvin, length, time, counts

Categorical Qualitative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ2 test	
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests	
Numeric Nuantitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests	
Nui	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation	

Examples

Operations

Attribute Description

Type

Difference Between Ratio and Interval

- Is it physically meaningful to say that a temperature of 10 ° is twice that of 5°
- If Bill's height is three inches above average and Bob's height is six inches above average, then would we say that Bob is twice as tall as Bill?

Types of Data

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes

- If data objects have the same fixed set of numeric attributes, then
 the data objects can be thought of as points in a multi-dimensional
 space, where each dimension represents a distinct attribute
- Such data set can be represented by an n by m matrix, where there are n rows, one for each object, and m columns, one for each attribute
- What about document and transaction data?

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

id	Refund	Marital Status	Taxable Income	Cheat
	Yes	Single	125K	No
2	No	Married	100K	No
}	No	Single	70K	No
	Yes	Married	120K	No
,	No	Divorced	95K	Yes
;	No	Married	60K	No
•	Yes	Divorced	220K	No
3	No	Single	85K	Yes
)	No	Married	75K	No
0	No	Single	90K	Yes

Graph Data

Graph data consists of nodes and edges

Homogeneous graph

Heterogenous graph

Multi-attributes graph

Ordered Data

Sequences of transactions, Genomic sequence data, Spatio-Temporal Data

Data Quality

Problems

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

Examples

- Noise and outliers
- Missing values
- Duplicate data
- Wrong data

Solutions

- Data level
- Algorithm level

Data Quality

Noise

- For objects, noise is an extraneous object (outlier)
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
- Outlier are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Outliers are noise that interferes with data analysis
 - Outliers are the goal of our analysis (Credit card fraud, Intrusion detection)

Two Sine Waves

Two Sine Waves + Noise

Data Quality

Why Missing Values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handle missing values

- Eliminate data objects or variables
- Estimate missing values
 - Statistics: average value, mode value
 - Model: nearest neighbor, prediction, centroid
- Ignore the missing value during analysis

