Sampling and Quantization

Quantization, in mathematics and digital signal processing, is the process of mapping a large set of input values to a (countable) smaller set such as rounding values to some unit of precision. A device or algorithmic function that performs quantization is called a quantizer. The round-off error introduced by quantization is referred to as quantization error.

Sampling

 In signal processing, sampling is the reduction of a continuous signal to a discrete signal.

Image Sensing

Incoming energy lands on a sensor material responsive to that type of energy and this generates a voltage

Collections of sensors are arranged to capture

images

Imaging Sensor

Line of Image Sensors

Array of Image Sensors

Image Sampling And Quantisation

A digital sensor can only measure a limited number of **samples** at a **discrete** set of energy levels

Quantisation is the process of converting a continuous **analogue** signal into a digital representation of this signal

Image Sampling And Quantisation

Image Sampling And Quantisation

Image Sampling And Quantisation (cont...)

Remember that a digital image is always only an approximation of a real world scene

Spatial Resolution

The spatial resolution of an image is determined by how sampling was carried out

Spatial resolution simply refers to the smallest discernable detail in an image

- Vision specialists will often talk about pixel size
- Graphic designers will talk about dots per inch (DPI)

Intensity Level Resolution

Intensity level resolution refers to the number of intensity levels used to represent the image

- The more intensity levels used, the finer the level of detail discernable in an image
- Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

Resolution: How Much Is Enough?

The big question with resolution is always *how* much is enough?

- This all depends on what is in the image and what you would like to do with it
- Key questions include
 - Does the image look aesthetically pleasing?
 - Can you see what you need to see within the image?

Resolution: How Much Is Enough? (cont...)

The picture on the right is fine for counting the number of cars, but not for reading the number plate