#### **Predicting Insurance Premiums**

- Our simple dataset contains a few attributes for each person such as
- Age, Sex, BMI, Children, Smoker, Region and their charges

#### Aim

To use this info to predict charges for new customers

```
import pandas as pd
file_name = "insurance.csv"
insurance = pd.read_csv(file_name) #you can use the data uploaded in the same folde
# or not

# Preview our data
insurance.head()
```

```
Out[2]:
                           bmi children smoker
                                                      region
                                                                  charges
            age
                    sex
                 female 27.900
                                       0
                                              yes southwest 16884.92400
         0
             19
             18
                   male 33.770
                                                   southeast
                                                               1725.55230
         2
             28
                   male 33.000
                                       3
                                                   southeast
                                                               4449.46200
             33
                   male 22.705
                                                   northwest 21984.47061
                   male 28.880
                                       0
                                                               3866.85520
             32
                                                   northwest
```

```
In [3]: insurance.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
```

```
Non-Null Count Dtype
    Column
0
            1338 non-null int64
    age
1
    sex
            1338 non-null object
            1338 non-null float64
   children 1338 non-null int64
 3
   smoker
            1338 non-null object
5
    region
             1338 non-null
                            object
    charges
             1338 non-null
                            float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

```
In [4]: insurance.describe()
```

```
Out[4]:
                                     bmi
                                              children
                                                            charges
                        age
          count 1338.000000 1338.000000 1338.000000
                                                        1338.000000
                   39.207025
          mean
                                30.663397
                                              1.094918
                                                      13270.422265
            std
                   14.049960
                                 6.098187
                                              1.205493 12110.011237
            min
                   18.000000
                                15.960000
                                              0.000000
                                                        1121.873900
           25%
                   27.000000
                                26.296250
                                              0.000000
                                                        4740.287150
           50%
                   39.000000
                                30.400000
                                              1.000000
                                                        9382.033000
           75%
                   51.000000
                                34.693750
                                              2.000000 16639.912515
           max
                   64.000000
                                53.130000
                                              5.000000 63770.428010
 In [5]: print ("Rows : " , insurance.shape[0])
print ("Columns : " , insurance.shape[1])
          print ("\nFeatures : \n" , insurance.columns.tolist())
          print ("\nMissing values : ", insurance.isnull().sum().values.sum())
          print ("\nUnique values : \n",insurance.nunique())
        Rows
              : 1338
        Columns : 7
        Features :
         ['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']
        Missing values: 0
        Unique values :
         age
                        47
        sex
                        2
        bmi
                      548
                        6
        children
                        2
        smoker
        region
                        4
        charges
                     1337
        dtype: int64
In [29]: insurance.corr(numeric_only = True)
Out[29]:
                       age
                                 bmi children
                                                charges
              age 1.000000 0.109272 0.042469
                                                0.299008
              bmi 0.109272 1.000000 0.012759
                                                0.198341
          children 0.042469 0.012759 1.000000
                                                0.067998
          charges 0.299008 0.198341 0.067998 1.000000
In [35]: import matplotlib.pyplot as plt
         def plot_corr(df,size=10):
```

```
'''Function plots a graphical correlation matrix for each pair of columns in th

Input:
    df: pandas DataFrame
    size: vertical and horizontal size of the plot'''

corr = df.corr(numeric_only = True)
fig, ax = plt.subplots(figsize=(size, size))
ax.legend()
cax = ax.matshow(corr)
fig.colorbar(cax)
plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical')
plt.yticks(range(len(corr.columns)), corr.columns)
```

C:\Users\Mahaveera Foods\AppData\Local\Temp\ipykernel\_1076\3440799524.py:12: UserWar
ning: No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.
ax.legend()



In [37]: fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10)) insurance.plot(kind="hist", y="age", bins=70, color="b", ax=axes[0][0]) insurance.plot(kind="hist", y="bmi", bins=100, color="r", ax=axes[0][1]) insurance.plot(kind="hist", y="children", bins=6, color="g", ax=axes[1][0]) insurance.plot(kind="hist", y="charges", bins=100, color="orange", ax=axes[1][1]) plt.show() bmi Frequency N Frequency children charges Frequency 80 00 Frequency 8 05 20000 30000 

In [39]: insurance['sex'].value\_counts().plot(kind='bar')

Out[39]: <Axes: xlabel='sex'>



```
In [41]: insurance['smoker'].value_counts().plot(kind='bar')
```

Out[41]: <Axes: xlabel='smoker'>



In [43]: fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
 insurance.plot(kind='scatter', x='age', y='charges', alpha=0.5, color='green', ax=a
 insurance.plot(kind='scatter', x='bmi', y='charges', alpha=0.5, color='red', ax=axe
 insurance.plot(kind='scatter', x='children', y='charges', alpha=0.5, color='blue',
 plt.show()



```
In [45]: import seaborn as sns # Imorting Seaborn Library
pal = ["#FA5858", "#58D3F7"]
sns.scatterplot(x="bmi", y="charges", data=insurance, palette=pal, hue='smoker')
```

Out[45]: <Axes: xlabel='bmi', ylabel='charges'>



Out[47]: <seaborn.axisgrid.FacetGrid at 0x23e23029a30>



```
In [48]: import seaborn as sns

sns.set(style="ticks")
pal = ["#FA5858", "#58D3F7"]

sns.pairplot(insurance, hue="smoker", palette=pal)
plt.title("Smokers")
```

Out[48]: Text(0.5, 1.0, 'Smokers')



# Preparing Data for Machine Learning Algorithms

| [51]:  | <pre>insurance.head()</pre> |    |         |        |          |        |           |             |  |  |  |  |
|--------|-----------------------------|----|---------|--------|----------|--------|-----------|-------------|--|--|--|--|
| t[51]: | age se                      |    | sex     | bmi    | children | smoker | region    | charges     |  |  |  |  |
|        | 0                           | 19 | female  | 27.900 | 0        | yes    | southwest | 16884.92400 |  |  |  |  |
|        | 1                           | 18 | male    | 33.770 | 1        | no     | southeast | 1725.55230  |  |  |  |  |
|        | 2                           | 28 | male    | 33.000 | 3        | no     | southeast | 4449.46200  |  |  |  |  |
|        | 3                           | 33 | male    | 22.705 | 0        | no     | northwest | 21984.47061 |  |  |  |  |
|        | 4                           | 32 | male    | 28.880 | 0        | no     | northwest | 3866.85520  |  |  |  |  |
| [      |                             |    | ce['reg |        | • ()     |        |           |             |  |  |  |  |

```
Out[54]: array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)
In [56]: insurance.drop(["region"], axis=1, inplace=True)
         insurance.head()
Out[56]:
            age
                           bmi children smoker
                                                     charges
              19
                 female 27.900
                                      0
                                             yes 16884.92400
         0
              18
                   male 33.770
                                                   1725.55230
                                              no
         2
              28
                   male 33.000
                                      3
                                                   4449.46200
         3
              33
                   male 22.705
                                                 21984.47061
                                              no
              32
                   male 28.880
                                      0
                                                   3866.85520
In [58]: # Changing binary categories to 1s and 0s
         insurance['sex'] = insurance['sex'].map(lambda s :1 if s == 'female' else 0)
         insurance['smoker'] = insurance['smoker'].map(lambda s :1 if s == 'yes' else 0)
         insurance.head()
Out[58]:
            age sex
                        bmi children smoker
                                                   charges
         0
              19
                   1 27.900
                                    0
                                            1 16884.92400
              18
                   0 33.770
                                                1725.55230
         2
                                    3
              28
                   0 33.000
                                                4449.46200
                   0 22.705
                                            0 21984.47061
              33
              32
                                    0
                   0 28.880
                                                3866.85520
In [60]: X = insurance.drop(['charges'], axis = 1)
         y = insurance.charges
```

#### **Modeling our Data**

```
In [63]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
    lr = LinearRegression().fit(X_train, y_train)

y_train_pred = lr.predict(X_train)
    y_test_pred = lr.predict(X_test)

print(lr.score(X_test, y_test))
```

**Score** is the R2 score, which varies between 0 and 100%. It is closely related to the MSE but not the same.

Wikipedia defines r2 like this, " ... is the proportion of the variance in the dependent variable that is predictable from the independent variable(s)." Another definition is "(total variance explained by model) / total variance." So if it is 100%, the two variables are perfectly correlated, i.e., with no variance at all. A low value would show a low level of correlation, meaning a regression model that is not valid, but not in all cases.

```
In [66]: results = pd.DataFrame({'Actual': y_test, 'Predicted': y_test_pred})
results
Out[66]: Actual Predicted
```

|      | Actual      | Predicted    |
|------|-------------|--------------|
| 578  | 9724.53000  | 11457.247488 |
| 610  | 8547.69130  | 9925.930740  |
| 569  | 45702.02235 | 37768.549419 |
| 1034 | 12950.07120 | 15853.346790 |
| 198  | 9644.25250  | 6939.119725  |
| •••  |             |              |
| 574  | 13224.05705 | 14429.077741 |
| 1174 | 4433.91590  | 6705.247131  |
| 1327 | 9377.90470  | 11152.092298 |
| 817  | 3597.59600  | 7200.555548  |
| 1337 | 29141.36030 | 36542.082417 |

335 rows × 2 columns

```
In [68]: # Normalize the data
    from sklearn.preprocessing import StandardScaler

    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)

In [70]: pd.DataFrame(X_train).head()
```

```
Out[70]:
                   0
                             1
                                       2
                                                 3
                                                           4
         0 -0.514853   0.985155   -0.181331   -0.063607   -0.503736
             1.548746
                       0.985155 -1.393130 -0.892144 -0.503736
         2 -1.439915 -1.015069 -0.982242 -0.063607 -0.503736
          3 -1.368757
                       0.985155 -1.011133 -0.892144
                                                     1.985167
          4 -0.941805  0.985155  -1.362635  -0.892144  -0.503736
         pd.DataFrame(y_train).head()
In [72]:
Out[72]:
                   charges
          1075
                4562.84210
           131
               13616.35860
            15
                 1837.23700
          1223 26125.67477
          1137
                 3176.28770
In [74]: from sklearn.linear_model import LinearRegression # Import Linear Regression model
         multiple_linear_reg = LinearRegression(fit_intercept=False) # Create a instance fo
         multiple_linear_reg.fit(X_train, y_train) # Fit data to the model
Out[74]:
                    LinearRegression
         LinearRegression(fit_intercept=False)
In [76]: from sklearn.preprocessing import PolynomialFeatures
         polynomial_features = PolynomialFeatures(degree=3) # Create a PolynomialFeatures i
         x_train_poly = polynomial_features.fit_transform(X_train) # Fit and transform the
         x_test_poly = polynomial_features.fit_transform(X_test) # Fit and transform the te
         polynomial_reg = LinearRegression(fit_intercept=False) # Create a instance for Lin
         polynomial_reg.fit(x_train_poly, y_train) # Fit data to the model
Out[76]:
                    LinearRegression
         LinearRegression(fit_intercept=False)
In [78]: from sklearn.tree import DecisionTreeRegressor # Import Decision Tree Regression m
         decision_tree_reg = DecisionTreeRegressor(max_depth=5, random_state=13) # Create d
         decision_tree_reg.fit(X_train, y_train) # Fit data to the model
```

**NOTE:** n\_estimators represents the number of trees in the forest. Usually the higher the number of trees the better to learn the data. However, adding a lot of trees can slow down the training process considerably, therefore we do a parameter search to find the sweet spot.

```
In [83]: from sklearn.svm import SVR # Import SVR model

support_vector_reg = SVR(gamma="auto", kernel="linear", C=1000) # Create a instance
support_vector_reg.fit(X_train, y_train) # Fit data to the model

Out[83]:

SVR

SVR(C=1000, gamma='auto', kernel='linear')

In [85]: from sklearn.model_selection import cross_val_predict # For K-Fold Cross Validation
from sklearn.metrics import r2_score # For find accuracy with R2 Score
from sklearn.metrics import mean_squared_error # For MSE
from math import sqrt # For squareroot operation
```

#### **Evaluating Multiple Linear Regression Model**

```
In [88]: # Prediction with training dataset:
    y_pred_MLR_train = multiple_linear_reg.predict(X_train)

# Prediction with testing dataset:
    y_pred_MLR_test = multiple_linear_reg.predict(X_test)

# Find training accuracy for this model:
    accuracy_MLR_train = r2_score(y_train, y_pred_MLR_train)
    print("Training Accuracy for Multiple Linear Regression Model: ", accuracy_MLR_trai

# Find testing accuracy for this model:
    accuracy_MLR_test = r2_score(y_test, y_pred_MLR_test)
    print("Testing Accuracy for Multiple Linear Regression Model: ", accuracy_MLR_test)

# Find RMSE for training data:
    RMSE_MLR_train = sqrt(mean_squared_error(y_train, y_pred_MLR_train))
```

```
print("RMSE for Training Data: ", RMSE_MLR_train)

# Find RMSE for testing data:
RMSE_MLR_test = sqrt(mean_squared_error(y_test, y_pred_MLR_test))
print("RMSE for Testing Data: ", RMSE_MLR_test)

# Prediction with 10-Fold Cross Validation:
y_pred_cv_MLR = cross_val_predict(multiple_linear_reg, X, y, cv=10)

# Find accuracy after 10-Fold Cross Validation
accuracy_cv_MLR = r2_score(y, y_pred_cv_MLR)
print("Accuracy for 10-Fold Cross Predicted Multiple Linaer Regression Model: ", ac

Training Accuracy for Multiple Linear Regression Model: -0.4895607457643889
Testing Accuracy for Multiple Linear Regression Model: -0.324110208111029
RMSE for Training Data: 14589.30728329809
RMSE for Testing Data: 14438.166278828226
Accuracy for 10-Fold Cross Predicted Multiple Linaer Regression Model: 0.7171134192
00113
```

#### **Evaluating Polynomial Regression Model**

```
In [91]: # Prediction with training dataset:
         y pred PR train = polynomial reg.predict(x train poly)
         # Prediction with testing dataset:
         y_pred_PR_test = polynomial_reg.predict(x_test_poly)
         # Find training accuracy for this model:
         accuracy PR train = r2 score(y train, y pred PR train)
         print("Training Accuracy for Polynomial Regression Model: ", accuracy_PR_train)
         # Find testing accuracy for this model:
         accuracy_PR_test = r2_score(y_test, y_pred_PR_test)
         print("Testing Accuracy for Polynomial Regression Model: ", accuracy_PR_test)
         # Find RMSE for training data:
         RMSE_PR_train = sqrt(mean_squared_error(y_train, y_pred_PR_train))
         print("RMSE for Training Data: ", RMSE_PR_train)
         # Find RMSE for testing data:
         RMSE_PR_test = sqrt(mean_squared_error(y_test, y_pred_PR_test))
         print("RMSE for Testing Data: ", RMSE_PR_test)
         # Prediction with 10-Fold Cross Validation:
         y_pred_cv_PR = cross_val_predict(polynomial_reg, polynomial_features.fit_transform(
         # Find accuracy after 10-Fold Cross Validation
         accuracy_cv_PR = r2_score(y, y_pred_cv_PR)
         print("Accuracy for 10-Fold Cross Predicted Polynomial Regression Model: ", accurac
```

```
Training Accuracy for Polynomial Regression Model: 0.8355072839439216
Testing Accuracy for Polynomial Regression Model: 0.881007372576663
RMSE for Training Data: 4848.181811885191
RMSE for Testing Data: 4328.2266950880685
Accuracy for 10-Fold Cross Predicted Polynomial Regression Model: 0.839107291768899
```

#### **Evaluating Decision Tree Regression Model**

```
In [94]: # Prediction with training dataset:
         y_pred_DTR_train = decision_tree_reg.predict(X_train)
         # Prediction with testing dataset:
         y_pred_DTR_test = decision_tree_reg.predict(X_test)
         # Find training accuracy for this model:
         accuracy_DTR_train = r2_score(y_train, y_pred_DTR_train)
         print("Training Accuracy for Decision Tree Regression Model: ", accuracy_DTR_train)
         # Find testing accuracy for this model:
         accuracy_DTR_test = r2_score(y_test, y_pred_DTR_test)
         print("Testing Accuracy for Decision Tree Regression Model: ", accuracy_DTR_test)
         # Find RMSE for training data:
         RMSE_DTR_train = sqrt(mean_squared_error(y_train, y_pred_DTR_train))
         print("RMSE for Training Data: ", RMSE_DTR_train)
         # Find RMSE for testing data:
         RMSE_DTR_test = sqrt(mean_squared_error(y_test, y_pred_DTR_test))
         print("RMSE for Testing Data: ", RMSE_DTR_test)
         # Prediction with 10-Fold Cross Validation:
         y_pred_cv_DTR = cross_val_predict(decision_tree_reg, X, y, cv=10)
         # Find accuracy after 10-Fold Cross Validation
         accuracy_cv_DTR = r2_score(y, y_pred_cv_DTR)
         print("Accuracy for 10-Fold Cross Predicted Decision Tree Regression Model: ", accu
        Training Accuracy for Decision Tree Regression Model: 0.8694256791947466
        Testing Accuracy for Decision Tree Regression Model: 0.8711939682763064
        RMSE for Training Data: 4319.5096631798915
        RMSE for Testing Data: 4503.167201972113
        Accuracy for 10-Fold Cross Predicted Decision Tree Regression Model: 0.849424103159
        5924
```

#### **Evaluating Random Forest Regression Model**

```
In [97]: # Prediction with training dataset:
    y_pred_RFR_train = random_forest_reg.predict(X_train)

# Prediction with testing dataset:
    y_pred_RFR_test = random_forest_reg.predict(X_test)

# Find training accuracy for this model:
    accuracy_RFR_train = r2_score(y_train, y_pred_RFR_train)
```

```
print("Training Accuracy for Random Forest Regression Model: ", accuracy_RFR_train)
 # Find testing accuracy for this model:
 accuracy_RFR_test = r2_score(y_test, y_pred_RFR_test)
 print("Testing Accuracy for Random Forest Regression Model: ", accuracy_RFR_test)
 # Find RMSE for training data:
 RMSE_RFR_train = sqrt(mean_squared_error(y_train, y_pred_RFR_train))
 print("RMSE for Training Data: ", RMSE RFR train)
 # Find RMSE for testing data:
 RMSE_RFR_test = sqrt(mean_squared_error(y_test, y_pred_RFR_test))
 print("RMSE for Testing Data: ", RMSE_RFR_test)
 # Prediction with 10-Fold Cross Validation:
 y_pred_cv_RFR = cross_val_predict(random_forest_reg, X, y, cv=10)
 # Find accuracy after 10-Fold Cross Validation
 accuracy_cv_RFR = r2_score(y, y_pred_cv_RFR)
 print("Accuracy for 10-Fold Cross Predicted Random Forest Regression Model: ", accu
Training Accuracy for Random Forest Regression Model: 0.8786315807304423
Testing Accuracy for Random Forest Regression Model: 0.8969061711453914
RMSE for Training Data: 4164.457266795271
RMSE for Testing Data: 4028.7127866662904
Accuracy for 10-Fold Cross Predicted Random Forest Regression Model: 0.857378869678
```

#### **Evaluating Support Vector Regression Model**

```
In [99]: # Prediction with training dataset:
         y_pred_SVR_train = support_vector_reg.predict(X_train)
         # Prediction with testing dataset:
         y_pred_SVR_test = support_vector_reg.predict(X_test)
         # Find training accuracy for this model:
         accuracy_SVR_train = r2_score(y_train, y_pred_SVR_train)
         print("Training Accuracy for Support Vector Regression Model: ", accuracy_SVR_train
         # Find testing accuracy for this model:
         accuracy_SVR_test = r2_score(y_test, y_pred_SVR_test)
         print("Testing Accuracy for Support Vector Regression Model: ", accuracy_SVR_test)
         # Find RMSE for training data:
         RMSE_SVR_train = sqrt(mean_squared_error(y_train, y_pred_SVR_train))
         print("RMSE for Training Data: ", RMSE_SVR_train)
         # Find RMSE for testing data:
         RMSE_SVR_test = sqrt(mean_squared_error(y_test, y_pred_SVR_test))
         print("RMSE for Testing Data: ", RMSE_SVR_test)
         # Prediction with 10-Fold Cross Validation:
         y_pred_cv_SVR = cross_val_predict(support_vector_reg, X, y, cv=10)
```

```
# Find accuracy after 10-Fold Cross Validation
accuracy_cv_SVR = r2_score(y, y_pred_cv_SVR)
print("Accuracy for 10-Fold Cross Predicted Support Vector Regression Model: ", acc
```

Training Accuracy for Support Vector Regression Model: 0.6522181188488032 Testing Accuracy for Support Vector Regression Model: 0.734317356160165

RMSE for Training Data: 7049.511742429496 RMSE for Testing Data: 6467.427432129216

Accuracy for 10-Fold Cross Predicted Support Vector Regression Model: 0.70581312219

77515

In [100...

Out[100...

|                                  | Parameters                       | Training<br>Accuracy | Testing<br>Accuracy | Training<br>RMSE | Testing<br>RMSE | 10-Fold<br>Score |
|----------------------------------|----------------------------------|----------------------|---------------------|------------------|-----------------|------------------|
| Multiple<br>Linear<br>Regression | fit_intercept=False              | -0.489561            | -0.324110           | 14589.307283     | 14438.166279    | 0.717113         |
| Polynomial<br>Regression         | fit_intercept=False              | 0.835507             | 0.881007            | 4848.181812      | 4328.226695     | 0.839107         |
| Decision<br>Tree<br>Regression   | max_depth=5                      | 0.869426             | 0.871194            | 4319.509663      | 4503.167202     | 0.849424         |
| Random<br>Forest<br>Regression   | n_estimators=400,<br>max_depth=5 | 0.878632             | 0.896906            | 4164.457267      | 4028.712787     | 0.857379         |
| Support<br>Vector<br>Regression  | kernel="linear",<br>C=1000       | 0.652218             | 0.734317            | 7049.511742      | 6467.427432     | 0.705813         |

### Our best classifier is our Random Forests using 400 estimators and a max\_depth of 5

R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

## Let's test our best regression on some new data

```
input_data = { 'age': [35],
In [107...
                         'sex': ['male'],
                         'bmi': [26],
                         'children': [0],
                         'smoker': ['no'],
                         'region': ['southeast']}
          input_data = pd.DataFrame(input_data)
          input_data
Out[107...
             age
                   sex bmi children smoker
                                                 region
              35 male
                         26
                                          no southeast
In [109...
          # Our simple pre-processing
          input_data.drop(["region"], axis=1, inplace=True)
          input_data['sex'] = input_data['sex'].map(lambda s :1 if s == 'female' else 0)
          input_data['smoker'] = input_data['smoker'].map(lambda s :1 if s == 'yes' else 0)
          input_data
Out[109...
             age sex bmi children smoker
                                          0
          0 35
                    0
                        26
                                  0
In [111...
          # Scale our input data
          input_data = sc.transform(input_data)
          input_data
Out[111... array([[-0.30137763, -1.01506865, -0.75753763, -0.89214407, -0.50373604]])
          # Reshape our input data in the format required by sklearn models
In [113...
          input_data = input_data.reshape(1, -1)
          print(input_data.shape)
          input_data
         (1, 5)
Out[113... array([[-0.30137763, -1.01506865, -0.75753763, -0.89214407, -0.50373604]])
         # Get our predicted insurance rate for our new customer
In [115...
          random_forest_reg.predict(input_data)
Out[115... array([5961.85333748])
```