

Contents

Section 1

quick overview of Bayesian statistics

Bayes rule

$$P(\mathsf{Hypothesis}|\mathsf{Data}) = \frac{P(\mathsf{Data}|\mathsf{Hypothesis})P(\mathsf{Hypothesis})}{P(\mathsf{data})}$$

- Prior: Our Hyptothesis (= parameters) before seeing the data, set by the researcher
 - Likelihood: The probability of observing the data given the Hypothesis, our "model"

Bayes rule

$$P(\mathsf{Hypothesis}|\mathsf{Data}) = \frac{P(\mathsf{Data}|\mathsf{Hypothesis})P(\mathsf{Hypothesis})}{P(\mathsf{data})}$$

- Prior: Our Hyptothesis (= parameters) before seeing the data, set by the researcher
 - Likelihood: The probability of observing the data given the Hypothesis, our "model"
 - Posterior: Belief about the Hypothesis (= parameters) given the data, the point of Bayesian statistics

Bayes rule

$$P(\mathsf{Hypothesis}|\mathsf{Data}) = \frac{P(\mathsf{Data}|\mathsf{Hypothesis})P(\mathsf{Hypothesis})}{P(\mathsf{data})}$$

- Prior: Our Hyptothesis (= parameters) before seeing the data, set by the researcher
 - Likelihood: The probability of observing the data given the Hypothesis, our "model"
 - Posterior: Belief about the Hypothesis (= parameters) given the data, the point of Bayesian statistics
 - Evidence: (Usually unobserved) normalising constant

Example model, Bayesian linear regression

Given we chose the model

$$y = \theta_0 + \theta_1 x + \epsilon \quad y, x, \theta_0, \theta_1 \in \mathbb{R} \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

We set relatively uninformative priors

$$\theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & 0 \\ 0 & \sigma_1^2 \end{pmatrix} \right) = \mathcal{N}(\mu_{prior}, \Sigma_{prior}), \quad \sigma^2 \sim \text{Inv-Gamma}$$

The likelihood defined by the model given that we have \boldsymbol{k} samples follows the distribution

$$y|\beta_0,\beta_1 \sim \mathcal{N}_k(X\beta,diag(\sigma^2)), \quad X = \begin{pmatrix} 1 & x_1 \\ \dots & \dots \\ 1 & x_k \end{pmatrix}$$

Therefore the posterior is

$$P((\theta_0,\theta_1)^T|y) \propto \mathcal{N}\left(\Sigma_{posterior}\frac{1}{\sigma^2}X^Ty, (\Sigma_{prior}^{-1} + \frac{1}{\sigma^2}X^TX)^{-1}\right)$$

!!!! Note the above is false, do not bother with the full distribution

Inference: credible intervals

Say, given any sample $Y=(y_1,...,y_n)$ the posterior $P(\mid \mathbf{y}) \$ looks approximately like

Inference: credible intervals

Say, given any sample $Y=(y_1,...,y_n)$ the posterior $P(\mid \mathbf{y}) \$ looks approximately like

 \bullet A parameter set Θ is said to be (point) identified if $\Theta=\{\theta\}$

- A parameter set Θ is said to be (point) identified if $\Theta = \{\theta\}$
- A parameter set Θ is said to be set identified if $\exists \theta_0, \theta_1 \in \Theta s.t.\theta_0 \neq \theta_1$

- A parameter set Θ is said to be (point) identified if $\Theta = \{\theta\}$
- A parameter set Θ is said to be set identified if $\exists \theta_0, \theta_1 \in \Theta s.t.\theta_0 \neq \theta_1$
- In a Bayesian setting parameters are set identified if $\exists \theta_0, \theta_1 \in \Theta \ s.t.\theta_0 \neq \theta_1, \quad p(y|\theta_0) = p(y|\theta_1) \ \forall y \in Y$

- ullet A parameter set Θ is said to be (point) identified if $\Theta=\{\theta\}$
- A parameter set Θ is said to be set identified if $\exists \theta_0, \theta_1 \in \Theta s.t.\theta_0 \neq \theta_1$
- In a Bayesian setting parameters are set identified if $\exists \theta_0, \theta_1 \in \Theta \ s.t.\theta_0 \neq \theta_1, \quad p(y|\theta_0) = p(y|\theta_1) \ \forall y \in Y$
- Note this is for any draw of the data and the priors must be equal.
 Not necessarily the posteriors

Section 2

The paper

• Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta) = g(\theta')$ iff $p(Y|\theta) = p(Y|\theta') \forall Y \in \mathbf{Y}$. Note in set identification g is not injective.

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta) = g(\theta')$ iff $p(Y|\theta) = p(Y|\theta') \forall Y \in \mathbf{Y}$. Note in set identification g is not injective.
- Define the identified set $IS_{\theta}(\phi) = \{\theta \in \Theta | g(\theta) = \phi\}$

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta) = g(\theta')$ iff $p(Y|\theta) = p(Y|\theta') \forall Y \in \mathbf{Y}$. Note in set identification g is not injective.
- Define the identified set $IS_{\theta}(\phi) = \{\theta \in \Theta | g(\theta) = \phi\}$
- In set identified structural models the prior $\pi_{\theta|Y}$ can be decomposed as $\pi_{\theta|Y}(\cdot) = \int_{\Phi} \pi_{\theta|\phi}(\cdot) d\pi_{\phi|Y}$.

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta) = g(\theta')$ iff $p(Y|\theta) = p(Y|\theta') \forall Y \in \mathbf{Y}$. Note in set identification g is not injective.
- Define the identified set $IS_{\theta}(\phi) = \{\theta \in \Theta | g(\theta) = \phi\}$
- In set identified structural models the prior $\pi_{\theta|Y}$ can be decomposed as $\pi_{\theta|Y}(\cdot) = \int_{\Phi} \pi_{\theta|\phi}(\cdot) d\pi_{\phi|Y}$.
- $\pi_{\phi|Y}$ is updates as data comes in, $\pi_{\theta|\phi}$ is not.

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta)=g(\theta') \text{ iff } p(Y|\theta)=p(Y|\theta') \forall Y \in \mathbf{Y}.$ Note in set identification q is not injective.
- Define the identified set $IS_{\theta}(\phi) = \{\theta \in \Theta | q(\theta) = \phi\}$
- ullet In set identified structural models the prior $\pi_{ heta|Y}$ can be decomposed as $\pi_{\theta|Y}(\cdot) = \int_{\Phi} \pi_{\theta|\phi}(\cdot) d\pi_{\phi|Y}$.
- $\pi_{\phi|Y}$ is updates as data comes in, $\pi_{\theta|\phi}$ is not.

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta)=g(\theta') \text{ iff } p(Y|\theta)=p(Y|\theta') \forall Y \in \mathbf{Y}.$ Note in set identification q is not injective.
- Define the identified set $IS_{\theta}(\phi) = \{\theta \in \Theta | q(\theta) = \phi\}$
- ullet In set identified structural models the prior $\pi_{ heta|Y}$ can be decomposed as $\pi_{\theta|Y}(\cdot) = \int_{\Phi} \pi_{\theta|\phi}(\cdot) d\pi_{\phi|Y}$.
- $\pi_{\phi|Y}$ is updates as data comes in, $\pi_{\theta|\phi}$ is not.

- Let $\mathbf{Y} \subseteq \mathbb{R}^d$ be the set of samples Y and $\Theta \subseteq \mathbb{R}^d$ be the set of possible parameter values θ .
- Suppose we only observe a reduced for parameter $\phi = g(\theta)$, where $g:\Theta \to \Phi, \quad g(\theta)=g(\theta') \text{ iff } p(Y|\theta)=p(Y|\theta') \forall Y \in \mathbf{Y}.$ Note in set identification q is not injective.
- Define the identified set $IS_{\theta}(\phi) = \{\theta \in \Theta | q(\theta) = \phi\}$
- ullet In set identified structural models the prior $\pi_{ heta|Y}$ can be decomposed as $\pi_{\theta|Y}(\cdot) = \int_{\Phi} \pi_{\theta|\phi}(\cdot) d\pi_{\phi|Y}$.
- $\pi_{\phi|Y}$ is updates as data comes in, $\pi_{\theta|\phi}$ is not.

A running example

• As a running example I will be using an SVAR(0) of the form

$$Ay_t = \epsilon_t, \quad y_t, \epsilon_t \in \mathbb{R}^2, A \in \mathcal{M}(2,2)$$

A running example

ullet As a running example I will be using an SVAR(0) of the form

$$Ay_t = \epsilon_t, \quad y_t, \epsilon_t \in \mathbb{R}^2, A \in \mathcal{M}(2,2)$$

• The reduced form VAR(0) is $y_t=A^{-1}\epsilon_t=\eta_t$ with $E[\eta_t\eta_t^T]=\Sigma=A^{-1}(A^{-1})^T=(A^TA)^{-1}$

A running example

ullet As a running example I will be using an SVAR(0) of the form

$$Ay_t = \epsilon_t, \quad y_t, \epsilon_t \in \mathbb{R}^2, A \in \mathcal{M}(2,2)$$

- The reduced form VAR(0) is $y_t=A^{-1}\epsilon_t=\eta_t$ with $E[\eta_t\eta_t^T]=\Sigma=A^{-1}(A^{-1})^T=(A^TA)^{-1}$
- Note that $\forall Q\in\mathcal{O}(2)$, we have that $\Sigma=(A^TQQ^TA)^{-1}$, the model is set identified

Breaking down the priors in set identified models

Set of posterior means

Robust credible regions

Diagnostic tools

Asymptotic properties 1

Asymp ic properties 2

Thank you

Section 3

Graveyard