- 1. More on Boolean function forms
 - a. Boolean function from last time
 - i. True when either, but not both, of the first two variables is true
 - ii. Truth table below

Index	Α	В	С	f(A, B, C)	Minterm	Maxterm
0	0	0	0	0	$m_0 = \overline{ABC}$	$M_0 = A + B + C$
1	0	0	1	0	$m_1 = \overline{ABC}$	$M_1 = A + B + \overline{C}$
2	0	1	0	1	$m_2 = \overline{A}B\overline{C}$	$M_2 = A + \overline{B} + C$
3	0	1	1	1	$m_3 = \overline{A}BC$	$M_3 = A + \overline{B} + \overline{C}$
4	1	0	0	1	$m_4 = A\overline{BC}$	$M_4 = \overline{A} + B + C$
5	1	0	1	1	$m_5 = A\overline{B}C$	$M_5 = \overline{A} + B + \overline{C}$
6	1	1	0	0	$m_6 = AB\overline{C}$	$M_6 = \overline{A} + \overline{B} + C$
7	1	1	1	0	$m_7 = ABC$	$M_7 = \overline{A} + \overline{B} + \overline{C}$

- b. Sum-of-products
 - i. $f = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C = m_2 + m_3 + m_4 + m_5$
 - ii. Can simplify using equivalence laws to reduce number of gates
- c. Product-of-sums
 - i. Can also simplify using laws of equivalence
- 2. Karnaugh maps

a. Hamming distance

		AB				
		00	01	11	10	
_	0	0	0	d	0	
С	1	1	0	d	0	

		AB				
		00	01	11	10	
	00	0	0	0	1	
CD	01	(1	1)	0	1	
	11	d	0	d	0	
	10	d	0	d	0	

Three variable Karnaugh map

Four variable Karnaugh map

- 3. Terminology
 - a. Literal
 - b. Don't cares
 - c. Implicant
 - d. Prime implicant
 - i. Essential prime implicant
 - e. Cover
 - f. Cost of a circuit
- 4. Minimization
 - a. Generate all prime implicants
 - b. Eliminate prime implicants that overlap until you find the essential implicants

5. Examples

a.
$$f_1 = m0 + m1 + m4 + m5 + m7 = \Sigma(0, 1, 4, 5, 7)$$

		AB					
		00	01	11	10		
C	0						
	1						

b. $f_2 = \Sigma(6, 8, 9, 10, 11, 12, 13, 14)$

		AB				
		00	01	11	10	
CD	00					
	01					
	11					
	10					

c. Further example with don't cares and wrapping

i.
$$f_3 = m0 + D2 + D5 + D7 + m8 + m10$$

		AB				
		00	01	11	10	
CD	00					
	01					
	11					
	10					

d. Whether or not don't cares are included depends on your desired use case