Inferring Concept Prerequisite Relations from Online Educational Resources

PREREQ

Sudeshna Roy¹ Meghana Madhyastha³ Sheril Lawrence³ Vaibhav Rajan² IAAI 2019

¹VideoKen

³IIIT-B, India (*authors were intern at VideoKen)

²National University of Singapore

Table of Contents

- 1. Introduction
- 2. PREREQ Algorithm
- 3. Experiments
- 4. Illustration
- 5. Conclusion

Introduction

Motivation

Motivation

Motivation

Concept Prerequisite plays a fundamental role in the following applications,

- · Personalized online education
- · Reading list generation
- · Automatic curriculum planning
- · Automatic evaluation of curriculum

Problem Statement

Problem Statement

Problem Statement

[1] CPR-Recover (EAAI '17), [3] MOOC-RF (ACL '17)

PREREQ Algorithm

Our Approach

Our Approach

Problem: We do not have enough annotated data

Our Approach

Concept Representation: Pairwise-link LDA

Concept Representation: Pairwise-link LDA

Concept Representation: Pairwise-link LDA

Observed prerequisite relation, $e_{dd'} \sim Bernoulli(.|\eta_{Z_{dd'},Z_{d'd}})$

Pairwise-link LDA: Discriminatory Signal

Given, *V* is the vocabulary of *n*-grams concepts and *K* be number of topics,

- $\beta_{K \times |V|}$, the word distribution over topics
- $\eta_{K \times K}$, the asymmetric relationship between each pair of topics.

Pairwise-link LDA: Discriminatory Signal

Given, V is the vocabulary of n-grams concepts and K be number of topics,

- $\beta_{K \times |V|}$, the word distribution over topics
- $\eta_{K \times K}$, the asymmetric relationship between each pair of topics.
- Using (β and η), we may predict $c_s \rightarrow c_t$ as $\beta_{c_s}^T \eta \beta_{c_t}$. Later mentioned as **Pairwise LDA**.

Pairwise-link LDA: Discriminatory Signal

Given, *V* is the vocabulary of *n*-grams concepts and *K* be number of topics,

- $\beta_{K \times |V|}$, the word distribution over topics
- $\eta_{K \times K}$, the asymmetric relationship between each pair of topics.
- Using (β and η), we may predict $c_s \rightarrow c_t$ as $\beta_{c_s}^T \eta \beta_{c_t}$. Later mentioned as **Pairwise LDA**.
- Using two different measures that use topics of the learned model, statistical hypothesis testings show that, topics have enough signal to discriminate between related and unrelated documents.

Concept Representation

Represent each concept as distribution over topics, from the learned Pairwise-link LDA model.

Relationship Prediction: Siamese Network

K = number of topics, V = vocabulary $y \in \{0,1\}$ is the label of the corresponding ordered pair

Experiments

Datasets for Evaluation

Datacet	Number	Number	Number of	Number of	
Dataset	Number	number	Number of	Number of	
	of Course/	of Course	Concepts	Concept	
	Lecture	Prerequisite		Prerequisite	
	Document	Edges		Pairs	
University	654	861	365	1008	
Course					
Dataset [1]					
NPTEL	382	1445	345	1008	
MOOC					
Dataset ¹					

¹http://nptel.ac.in/

^[1] Recovering Concept Prerequisite Relations from University Course Dependencies, EAAI 2017

Experimental Settings

- · Results are presented over 5-fold cross validation
- Evaluation metrics, Precision = $\frac{True\ positive}{True\ positive+False\ positive}$, Recall = $\frac{True\ positive}{True\ positive+False\ negative}$ and, F-measure = $2\times\frac{Precision.Recall}{Precision+Recall}$ Also,

Precision@K = $\frac{\sum_{i=1}^{K} rel(i)}{K}$, where rel(.) is a binary indicator of presence of the concept pair (c_s, c_t) in the ground truth

Code and Datasets, https://github.com/suderoy/PREREQ-IAAI-19

Experiments

We did three sets of experiments,

- Performance evaluation against the baseline methods
- · Effect of training data size
- Effectiveness of the learned representation

Performance Evaluation

Dataset	University Course Dataset[1]		NPTEL MOOC Dataset			
Method	Precision	Recall	F-score	Precision	Recall	F-score
PREREQ	46.76	91.64	59.68	55.60	75.74	60.73
Pairwise LDA	98.27	16.42	28.14	48.43	10.47	17.22
CPR-Recover[1]	16.66	46.51	24.54	17.18	52.97	25.94
MOOC-RF[3]	43.70	53.43	50.95	59.74	56.48	58.07

- [1] Recovering Concept Prerequisite Relations from University Course Dependencies, EAAI 2017
- [3] Prerequisite Relation Learning for Concepts in MOOCs, ACL 2017

Evaluation: Precision@K over 5-fold cross validation

Effect of Training Data Size

Effect of training data size, averaged over multiple random train-test splits.

Efficacy of the Learned Representation

Comparison between different Concept Representations, averaged over multiple random train-test splits.

^{*}word2vec embeddings are trained on latest wikipedia corpus, with best threshold to get all the ngram concept phrases.

Illustration

<u>Illustration</u>

mit 6.041	An introduction to probabilisty theory, and the modeling and analysis of probabilistic systems. Probabilistic models, conditional probabilist, Discrete and continuous random variables. Expectation and conditional expectation. Limit Theorems. Bernoulli and Poisson processes. Markov chains. Bayesian estimation and hypothesis testing. Elements of statistical inference. Meets with graduate subject 6.431, but assignments differ.		
mit 6.438	Introduction to statistical inference with probabilistic graphical models. Directed and undirected graphical models, and factor graphs, ower discrete and Gaussian distributions; hidden Markov models, junction tree algorithms; forward-backward algorithms. Variational methods, mean-field theory, and loopy belief propagation and Chow-Liu algorithms.		
mit 6.345	Automatic Speech Recognition. Introduces the rapidly developing fields of automatic speech recognition and spoken language processing. Topics include acoustic theory of speech production and perception, acoustic-phonetics, signal representation, acoustic and language modeling, search, hidden Markov modeling, robustness,		
purdue_CS 603	Design and control of distributed computing systems (operating systems and database systems). Topics include principles of naming and location, atomicity, resource sharing, concurrency control and other synchronization, deadlock detection and avoidance, security, distributed data access and control, integration of operating systems and computer networks, distributed systems design, consistency control, and fault tolerance		
purdue_CS 503	Basic principles of operating systems: addressing modes, indexing, relative addressing, indirect addressing, stack maintenance; implementation of multitask systems; control and coordination of tasks, deadlocks, synchronization, mutual exclusion; storage management, segmentation, paging, virtual memory; protection, sharing, access control; file systems; resource management; using and modifying a small operating system		
stanford_CS 103	Mathematical foundations required for computer science, including propositional predicate logic, induction, sets, functions, and relations. Formal language theory, including regular expressions, grammars, finite automata, Turing machines, and NP-completeness. Mathematical rigor, proof techniques, and applications		
stanford_CS 154	Introduction to Automata and Complexity Theory. This course provides a mathematical introduction to the following questions: What is computation? Given a computational model, problems can we hope to efficiently solve? In many cases we can give completely rigorous answers, able to classify computational problems in terms of their computational complexity (Is the problem regular? Not regular? Poctable? Reference 284 Portional Problems in P? NP-complete? PSPACE-complete?, etc.) technology, such as the Church-Turing Thesis and the P versus NP problem.		

Illustration

mit 6.041	An introduction to probability theory, and the modeling and analysis of probabilistic systems. Probabilistic models, conditional probability. Discrete and continuous random variables. Expectation and conditional expectation. Limit Theorems. Bernoulli and Poisson processes. Markov chains. Bayesian estimation and hypothesis testing. Elements of statistical inference. Meets with graduate subject 6.431, but assignments differ.		
mit 6.438	Introduction to statistical inference with probabilistic graphical models. Directed and undirected graphical models, and factor graphs, over discrete and Gaussian distributions; hidden Markov models, junction tree algorithms; forward-backward algorithms. Variational methods, mean-field theory, and loopy belief propagation and Chow-Lu algorithms.		
mit 6.345	Automatic Speech Recognition. Introduces the rapidly developing fields of automatic speech recognition and spoken language processing. Topics include acoustic theory of speech production and perception, acoustic-phonetics, signal representation, acoustic and language modeling, search, hidden Markov modeling, robustness,		
purdue_CS 603	Design and control of distributed computing systems (operating systems and database systems). Topics include principles of naming and location, atomicity, resource sharing, concurrency control and other synchronization, deadlock detection and avoidance, security, distributed data access and control, integration of operating systems and computer networks, distributed systems design, consistency control, and fault tolerance		
purdue_CS 503	Basic principles of operating systems: addressing modes, indexing, relative addressing, indirect addressing, stack maintenance; implementation of multitask systems; control and coordination of tasks, deadlocks, synchronization, mutual exclusion; storage management, segmentation, paging, virtual memory; protection, sharing, access control; file systems; resource management; using and modifying a small operating system		
stanford_CS 103	Mathematical foundations required for computer science, including propositional predicate logic, induction, sets, functions, and relations. Formal language theory, including regular expressions, grammars, finite automata, Turing machines, and NP-completeness. Mathematical rigor, proof techniques, and applications		
stanford_CS 154	Introduction to Automata and Complexity Theory. This course provides a mathematical introduction to the following questions: What is computation? Given a computational model problems can we hope to efficiently solve? In many cases we can give completely rigorous answers; able to classify computational problems in terms of their computational complexity (Is the problem regular? Not regular? Pocidable? Recognizable? Netdrey? Solvable in P? NP-complete? PSPACE complete?, etc.) technology, such as the Church-Turing Thesis and the P versus NP problem.		

Illustration

stanford CS

154

Introduction to Automata and Complexity Theory. This course provides a mathematical introduction to the following questions: What is computation? Given a computational model, ... problems can we hope to efficiently solve? In many cases we can give

completely rigorous answers; ... able to classify computational problems in terms of their computational complexity (Is the problem regular? Not regular? Decidable? Recognizable? Neither? Solvable in P? NP-complete? PSPACE-complete?, etc.), ...

completeness. Mathematical rigor, proof techniques, and applications

technology, such as the Church-Turing Thesis and the P versus NP problem

Demo

A Demo

Conclusion

Summary

Model PREREQ obtains concept representations through the Pairwise-Link LDA model, followed by, Siamese net based classifier to identify prerequisite relations.

Generic PREREQ can learn effectively from course webpages as well as unlabeled video playlists, using minimal training data.

Utility PREREQ can effectively utlize the large course corpora and MOOCs to solve a fundamental problem, essential for online educational technology applications.

References

C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles.

Recovering concept prerequisite relations from university course dependencies.

In AAAI, 2017.

R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen. Joint latent topic models for text and citations. In ACM SIGKDD, 2008.

L. Pan, C. Li, J. Li, and J. Tang.

Prerequisite relation learning for concepts in moocs.

In ACL, volume 1, pages 1447–1456, 2017.

Pairwise Link-LDA: Generative Process

```
For each document d \in \mathcal{D}
      \theta_d \sim \text{Dirichlet}(.|\alpha)
      For each w_n \in d
             z_n \sim Multinomial(.|\theta_d)
             w_n \sim Multinomial(.|\beta_{z_n})
For each document pair (d, d')
      z_{dd'} \sim Multinomial(.|\theta_d)
      z_{d'd} \sim Multinomial(.|\theta_{d'})
      e_{dd'} \sim \text{Bernoulli}(.|\eta_{Z_{dd'},Z_{d'd}})
```

Pairwise Link-LDA: Likelihood

let d be a prerequisite of d' and $z_{dd'}$ and $z_{d'd}$ be the latent topics sampled from d and d' respectively for this interaction. Then the parameter used to generate the Bernoulli random variable $e_{d,d'}$ will be $\eta_{Z_{dd'},Z_{d'd}}$ which is different from $\eta_{Z_{d'd},Z_{dd'}}$ thus modeling the directionality in the relationship.

The likelihood of the observed data with respect to the model parameters is,

$$p(c, w, \theta, z | \alpha, \beta, \eta) = \left(\prod_{d=1}^{\mathcal{D}} p(\theta_d | \alpha) \prod_{n=1}^{N} p(z_{dn} | \theta_d) p(w_{dn} | z_{dn}, \beta)\right)$$

$$\left(\prod_{d,d'} p(z_{dd'}, z_{d'd} | \theta_d, \theta_{d'}) p(c_{dd'} | z_{dd'}, zd'd, \eta)\right)$$
(1)

We refer the readers to [2] for more details of the model.

Pairwise Link-LDA: Evidence Lower BOund (ELBO)

ELBO = The expected log-likelihood of the data + the KL divergence between the prior and approximate conditionals. Say, variational params for the RV θ_d , z_d and $z_{dd'}$ are γ_d , ϕ_d and $\lambda_{dd'}$.

$$\mathcal{L}(\phi, \lambda, \gamma; \alpha, \beta, \eta) = \sum_{d=1}^{D} (E_{q}[logp(\theta|\alpha)] + \sum_{n=1}^{N} E_{q}[logp(z_{dn}|\theta_{d})] E_{q}[p(w_{dn}|z_{dn}, \beta))]) + \sum_{n=1}^{N} (E_{q}[logp(z_{dd'}, z_{d'd}|\theta_{d}, \theta_{d'})] + E_{q}[logp(c_{dd'}|z_{dd'}, zd'd, \eta)] - \sum_{d=1}^{D} (E_{q}[logq(\theta_{d})] - \sum_{n=1}^{N} E_{q}[logq(z_{dn})]) - \sum_{d,d'} E_{q}[logq(z_{dd'}, z_{d'd})]$$

$$(2)$$

Mean-field variational approximation is used to infer the values of β and η by alternately maximizing the ELBO on log-likelihood and estimating the variational parameters.

Topics in Related and Unrelated Documents

 E_D be the set of document pairs (d_i, d_j) such that there is a prerequisite relation between d_i and d_j in either direction. $\overline{E_D}$ be the set of document pairs (d_i, d_j) such that there is no prerequisite relation between d_i and d_j in either direction.

- Jaccard Index $\frac{\theta_i \cap \theta_j}{\theta_i \cup \theta_j}$ is significantly different between document pairs in the sets E_D and $\overline{E_D}$, using the University Course dataset[1], p-value: 1.54901e-51.
- Kullback-Leibler divergence $D_{KL}(\theta_i||\theta_j)$ between topics in the document pairs are significantly different between document sets E_D and $\overline{E_D}$, using the University Course dataset, p-value: 5.14549e-31.
- The tests suggest that inferred topics have discriminatory signal at the document level.