Dynamical Systems from a Number Theorists Perspective

Joe Silverman
Brown University

Thursday, January 9, 2003 102 Bradley Hall, 4:00 pm (Tea 3:30 pm Math Lounge)

Abstract

A classical problem in the theory of dynamical systems is to describe the behavior of points under interation $\phi^n = \phi \circ \phi \circ \cdots \circ \phi$ of a rational map $\phi(z) = F(z)/G(z)$, i.e., where F(z) and G(z) are polynomials. The *orbit* of a point α under iteration of ϕ , denoted $O_{\alpha}(\phi)$, is the set of images of α under the iterates of ϕ , $O_{\alpha}(\phi) = \{\phi^n(\alpha) : n \geq 0\}$. The points with finite orbit, called *preperiodic points*, play a particularly important role in the dynamics of ϕ . For a number theorist, it is natural to take F(z) and G(z) to have integer coefficients and to study the orbits of rational numbers $\alpha \in \mathbb{Q}$. In this talk I will survey some of the known results and some of the outstanding conjectures related to this number-theoretic view of dynamics. Typical problems include: (1) How many preperiodic points can be rational numbers $\alpha \in \mathbb{Q}$? (2) For which rational maps ϕ can the orbit $O_{\alpha}(\phi)$ of a rational number α contain infinitely many integers?