# Inferring the presence of metabolites

March 2, 2023

## 1 Model

#### 1.1 TODO

We seek to infer the presence or absence of M metabolites in tissue T in S species. We denote by  $x_{smt}$  whether metabolite  $m=1,\ldots,M$  is present  $(x_{smt}=1)$  or absent  $(x_{smt}=0)$  in tissue  $t=1,\ldots,T$  in species  $s=1,\ldots,S$ . We denote  $\vec{x_{st}}=(x_{st1},\ldots,x_{stM})$  the vector of molecules present in a tissue t of a specific species s.

Let us further denote  $\vec{x_s} = (\vec{x_{s1}}, \dots, \vec{x_{sT}}) = (x_{s11}, \dots, x_{s1M}, x_{s21}, \dots, x_{sTM})$  the vector of presence/absence of all molecules across all tissues for species s.

We assume that related species share a similar set of metabolites and that metabolites related in their synthesis share a similar distribution across species. Let  $\mathbb{P}(x_{sm} = 1 | \mu_m, \epsilon_{sm})$  be the probability with which metabolite m is present in species s. We then assume that

$$\operatorname{logit} \mathbb{P}(x_{sm} = 1 | \mu_m, \epsilon_{sm}) = \mu_m + \epsilon_{sm} \tag{1}$$

where  $\mu_m$  is a metabolite-specific intercept and  $\epsilon_{sm}$  is normally distributed with mean 0 and co-variance:

$$cov(\epsilon_{\vec{c}}, \epsilon_{\vec{c'}}) = \sum_{i=1}^{C} \sum_{d \neq i} \sum_{f=1}^{F} \alpha_{df} \sigma_{c_i c'_i}^{(f)}$$

$$\tag{2}$$

between each combination of properties in  $\vec{c} = \{c_1, \dots, c_C\}$ . In our case and based on the definition at the top of Section 1.1, we would define  $\vec{c} = \{s, m, t\}$  being a specific species, molecule and tissue respectively.  $\sigma_{c_i c'_i}^{(f)}$  is defined as a known measure of covariance between property  $c_i$  and  $c'_i$  when looking at feature f. f being a measure of "phenotype", or "environment" or any arbitrary feature one is interested in.

TODO

Furthermore, we have two origins of data, mass spectrometry data and the Lotus database. We denote  $d_{sj}$  the  $j^{th}$  mass spectrometry run for species s and  $\vec{L_s}$  all molecules assigned to species s present in the LOTUS database. Finally we define R, a function representing the research effort produced for either a species s or a specific molecule m. We also define  $\vec{\epsilon_j}$  a vector of error that is specific for each mass-spectrometry run.

A DAG of the model can be seen in Figure 1.

With  $\vec{\mu} = (\mu_1, \dots, \mu_M)$ 

#### 1.2 LOTUS database

Since LOTUS database [1] has no properties in  $\vec{c}$  other than species and molecules, we denote

$$P(\vec{L_S}|\vec{x_s}, \vec{R}) = P(\vec{L_s}|\vec{\xi_s}, \vec{R}),$$

with  $\vec{\xi_s} = (\xi_{s1}, \dots, \xi_{sM})$  the vector of presence/absence of all molecules M in species s. Furthermore,  $\xi_{sm} = min(1, \sum_{t=1}^{T} x_{smt})$  the minimum between 1 and the sum of presence or absence of a molecule across all tissues.



Figure 1: Potential DAG of the model.

#### 1.3 MS data

## 2 Idea and concept

We seek to infer the presence or absence of M metabolites in S species. We denote by  $x_{sm}$  whether metabolite m = 1, ..., M is present  $(x_{sm} = 1)$  or absent  $(x_{sm} = 0)$  in species s = 1, ..., S. To infer the full vector  $\mathbf{x} = (x_{11}, ..., x_{1M}, ..., x_{SM})$ , we assume that related species share a similar set of metabolites and that metabolites related in their synthesis share a similar distribution across species. Let  $\mathbb{P}(x_{sm} = 1|y_{sm}) = y_{sm}$  be the probability with which metabolite m is present in species s. We then assume that

logit 
$$y_{sm} = \mu_m + \epsilon_{sm}$$

where  $\mu$  is a metabolite-specific intercept and  $\epsilon_{sm}$  is normally distributed with mean 0 and co-variance  $\operatorname{cov}(\epsilon_{sm}, \epsilon_{s'm'}) = \alpha \sigma_{ss'} + \beta \sigma_{mm'}$  between each combination of species and metabolite. Here,  $\sigma_{ss'}$  and  $\sigma_{mm'}$  are known measures of covariance between species s and s' and between metabolites m and m', respectively, and  $\alpha$  and  $\beta$  are positive scalars.

We consider two sets of data informative about x: i) Presence-absence data obtained with mass-spectrometry and ii) presence-only reports of specific metabolites in specific specie. Let  $\mathbf{d}_{sj} = (d_{sj1}, \dots, d_{sjM})$  be the presence-absence vector of each metabolite m obtained with mass-spectrometry run  $j = 1, \dots, J_s$  performed on species s. Assuming a false-positive and false-negative error rates  $\epsilon_{01}$  and  $\epsilon_{10}$ , respectively, we have

$$\mathbb{P}(\boldsymbol{d}_{sj}|\boldsymbol{x},\epsilon_{01},\epsilon_{10}) = \prod_{m} \left[ x_{sm} \left( \epsilon_{10}^{1-d_{sjm}} (1-\epsilon_{10})^{d_{sjm}} \right) + (1-x_{sm}) \left( \epsilon_{01}^{d_{sjm}} (1-\epsilon_{01})^{1-d_{sjm}} \right) \right].$$

To model the presence only data, it must be put in relation to the expected research effort. Let  $p_{sm}$  denote the known number of presence-only reports for metabolite m in species s and  $n_{sm}$  the unknown number of research projects that aimed at discovering metabolite m in species s. Assuming a false-positive and false-negative error rates  $\pi_{01}$  and  $\pi_{10}$ , respectively, we have

$$\mathbb{P}(p_{sm}|n_{sm},\pi_{01},\pi_{10}) =$$

We would have the covariance matrix such as :

$$cov(\epsilon_{smt}, \epsilon_{s'm't'}) = \alpha \sigma_{ss'}^{P} + \beta \sigma_{mm'}^{M} + \gamma \sigma_{ss'}^{E} + \dots$$
(3)

With P the phenotype between two species, E an environment factor between two species and M the TODO

### 3 Formulation

We seek to infer the presence or absence of M metabolites in tissue T in S species. We denote by  $x_{smt}$  whether metabolite m = 1, ..., M is present  $(x_{smt} = 1)$  or absent  $(x_{smt} = 0)$  in tissue t = 1, ..., T in species s = 1, ..., S.



Figure 2: Potential DAG of the model.

We denote  $\vec{x_{st}} = (x_{st1}, \dots, x_{stM})$  the vector of molecules present in a tissue T of a specific species S.

Let us further denote  $\vec{x_s} = (\vec{x_{s1}}, \dots, \vec{x_{sT}}) = (x_{s11}, \dots, x_{s1M}, x_{s21}, \dots, x_{sTM})$  the vector of presence/absence of all molecules across all tissues for species s.

We have two origins of data, mass spectrometry data and the Lotus database. We denote  $d_{sj}$  the  $j^{th}$  mass spectrometry run for species s and  $\vec{L_s}$  all molecules assigned to species s present in the LOTUS database. Finally we define R, a function representing the research effort produced for either a species s or a specific molecule m. We also define  $\vec{\epsilon_j}$  a vector of error that is specific for each mass-spectrometry run.

A DAG of the model can be seen in Figure 1.  $\vec{\mu}$  being the vector of the average presence/absence of each molecule across all species and  $\vec{\alpha}$  represents the vector of all known measures of covariates between species and molecules.

Since the tissue specific origin of a molecule is not known in the LOTUS database [1], we denote

$$P(\vec{L_S}|\vec{x_s}, R) = P(\vec{L_s}|\vec{\xi_s}, \vec{R}),$$

with  $\vec{\xi_s} = (\xi_{s1}, \dots, \xi_{sM})$  the vector of presence/absence of all molecules M in species s. Furthermore,  $\xi_{sm} = min(1, \sum_{t=1}^{T} x_{smt})$  the minimum between 1 and the sum of presence or absence of a molecule across all tissues.

We can also denote  $\vec{R} = (R_{11}, \dots, R_{1M}, R_{21}, \dots, R_{SM})$  the vector of research effort of all molecules across all species.

The probability of having a molecule present in the LOTUS database not only depends on the presence/absence of that molecule in a species but also on the research effort done for a specific molecule or species. We thus have  $R_{sm} = f(n_s, n_m)$  with  $R_{sm} \in [0, 1]$  and where  $n_s$  and  $n_m$  are the number of scientific papers that relate respectively the species or the molecules of interest. We thus have the following matrix:

$$L_{sm} = NA \quad L_{sm} = 1$$

$$x_{sm} = 0 \quad \begin{pmatrix} 1 & 0 \\ 1 - R_{sm} & R_{sm} \end{pmatrix}$$

Tissue of origin is usually known in mass spectrometry analysis. From Figure 1, we have  $P(d_{sj}|\vec{x_s}, \vec{\epsilon_j}) = P(d_{sj}|x_{st(d_{sj})}, \vec{\epsilon_j})$  where  $t(d_{sj})$  reflects the tissue from which mass spectrometry run j in species s was sampled. We thus have:

$$P(\boldsymbol{d}, \boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\alpha}) = P(\boldsymbol{\mu})P(\boldsymbol{\alpha}) \prod_{s=1}^{S} P(\vec{x_s}|\boldsymbol{\mu}, \boldsymbol{\alpha}) \prod_{j=1}^{J} P(d_{sj}|x_{st(d_{sj})}, \vec{\epsilon_j})$$
(4)

Similarly, for LOTUS database we have :

$$P(\mathbf{L}, \boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\alpha}) = P(\boldsymbol{\mu})P(\boldsymbol{\alpha})P(\mathbf{R}) \prod_{s=1}^{S} P(\vec{x_s}|\boldsymbol{\mu}, \boldsymbol{\alpha})P(L_s|\vec{x_s}, \mathbf{R})$$
(5)

### 3.1 Decreasing complexity

If one is interested in the presence/absence of a molecule not in the species but on the Genus/Order level, one can easily remodel the previous model such as  $\vec{x_g} = (\vec{x_{g1}}, \dots, \vec{x_{gM}})$  and where  $\vec{x_{gm}} = min(1, \sum_{s \in g} \sum_t^T x_{smt})$ .

## References

[1] Adriano Rutz, Maria Sorokina, Jakub Galgonek, Daniel Mietchen, Egon Willighagen, Arnaud Gaudry, James G Graham, Ralf Stephan, Roderic Page, Jiří Vondrášek, Christoph Steinbeck, Guido F Pauli, Jean-Luc Wolfender, Jonathan Bisson, and Pierre-Marie Allard. The LOTUS initiative for open knowledge management in natural products research. *eLife*, 11:e70780, May 2022. doi:10.7554/eLife.70780.