

Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Computação Bacharelado em Ciência da Computação

Sistemas Operacionais

Entrada e Saída

Prof. Rodrigo Campiolo

15/04/21

Introdução

- Duas principais tarefas de um computadores são:
 - Processamento e Entrada/Saída (E/S).
- Sistema Operacional deve:
 - Gerenciar e controlar os dispositivos de E/S.
 - Encapsular os detalhes e especificidades de cada dispositivo.
 - Possibilitar a adição de uma variedade de novos/existentes dispositivos.

- Periféricos: dispositivos externos conectados ao computador que possibilitam E/S.
- Interfaces: componentes de hardware que conectam o periférico ao computador.
- Porta: Ponto de conexão de um dispositivo com o computador.
- Barramentos (bus): ligações internas compartilhadas por dispositivos para transferência de dados/comunicação.
- Controladores: conjunto de componentes eletrônicos que podem operar uma porta, um barramento ou dispositivo.

Estrutura típica de barramento de PC (Fonte: Silberschatz)

- Controladores
 - Simples: chip interno, por exemplo, controlador de porta serial.
 - Externo: placa externa com processador, memória privada, código.
 - Embutido: circuito embutido com processador e microcódigo.
 - Os controladores possuem registradores de dados, estado e controle usados para comunicação com a CPU (lê e escreve para esses registradores).

- Registradores
 - data-in e data-out: obter e enviar dados para o dispositivo.
 - status: indicar estado do dispositivo (ocioso, pronto leitura, ocupado, erro, ...)
 - control: enviar comandos ou alterações de configurações (taxa de transferência, modo de operação, ...)
- Registradores são acessados como posições de memória:
 - E/S mapeada em espaço de E/S.
 - E/S mapeada em espaço de memória.

intervalo de endereços de I/O (hexadecimal)	dispositivo	
000-00F	controlador de DMA	
020–021	controlador de interrupções	
040–043	timer	
200–20F	controlador de jogos	
2F8-2FF	porta serial (secundária)	
320–32F	controlador de disco rígido	
378–37F	porta paralela	
3D0-3DF	controlador gráfico	
3F0-3F7	controlador de drive de disquete	
3F8-3FF	porta serial (primária)	

Exemplos de endereços de E/S.

- Mapeamento em espaço de memória
 - Único espaço de endereçamento.
 - No projeto, reservam-se endereços para acesso a controladores.
- Mapeamento em espaço de E/S
 - Espaço de endereçamento distinto.

Mapeado em memória		Mapeado em entrada e saída		
Le_status: m	ov AL, 315H	Le_status:	in	AL, 315H
_	ov AL, 65H ov 312H, AL	Print_char:		AL, 65H 312H, AL

Dispositivos de E/S

- Dispositivos de E/S podem ser classificados:
 - Orientados a caractere
 - Unidade básica de transferência é o caractere. Por exemplo, teclado.
 - Orientados a bloco
 - Unidade de transferência é um bloco de caracteres.
 Por exemplo, disco.
- Device Driver
 - Módulo adicionado ao sistema para tratar um dispositivo específico ou uma categoria de dispositivos similares.

- E/S programada.
- E/S orientada a interrupções.
- Acesso direto à memória.

- E/S programada
 - Interação entre CPU e controlador é realizado pelo programador.
 - Operação: envia o comando a controladora e espera a conclusão.
 - Controladora atualiza constantemente estado da operação.
 - CPU verifica o estado continuamente (busy waiting).
 - Usar polling: CPU intercala outros processamentos e consulta o estado periodicamente.

- E/S orientada a interrupções
 - CPU é interrompida após o módulo realizar a E/S.
 - CPU apenas inicia a operação de E/S e fica livre para realizar outros processamentos.
 - Faz uso de uma rotina de tratamento de interrupção para processar a E/S.
 - CPU atua como uma intermediária na transferência, pois toda palavra lida ou escrita pelo dispositivo envolve acesso à CPU.

- Acesso direto à memória
 - Faz uso de um módulo de hardware denominado DMA (*Direct Memory Access*).
 - Transfere diretamente blocos de dados entre a memória e o módulo de E/S.
 - CPU atua somente no início e no final da operação.

Técnicas de E/S - Questão

- (POSCOMP 2018) No sistema operacional, existem três métodos fundamentais de realizar entrada e saída (E/S). O método mais simples é chamado de E/S ______, em que se tem a CPU realizando todo o trabalho. Na E/S ______, a CPU não fica tão dedicada à rotina de E/S como no método anterior, podendo realizar outras atividades enquanto a operação de E/S está em andamento. Já a E/S ______ tem o menor consumo de CPU dentre os três métodos, porém, em geral, tem o menor desempenho. Assinale a alternativa que preenche, correta e respectivamente, as lacunas do trecho acima.
- A) usando interrupção programada usando DMA
- B) programada usando interrupção usando DMA
- C) usando interrupção usando DMA programada
- D) usando DMA programada usando interrupção
- E) programada usando DMA usando interrupção

- Objetivos
 - Eficiência
 - Generalidade
 - Abstrair detalhes do serviço
 - Oferecer operações de alto nível: read, write, open e close.
 - Envolve aspectos de hardware e software.

Característica	Variação	Exemplo
Transferência de dados	caractere bloco	terminal disco
Método de acesso	sequencial aleatório	modem CD-ROM
Modo de transferência	síncrono assíncrono	fita Teclado
Compartilhamento	dedicado compartilhado	fita teclado
Velocidade do dispositivo	latência tempo de busca taxa de transferência atrasos entre operações	
Direção de E/S	somente leitura somente escrita leitura e escrita	CD-ROM controlador gráfico disco rígido

Características dos dispositivos E/S. (Fonte: Silberschatz)

Estrutura de E/S do kernel.

- Visão geral do software E/S
 - Tratador de interrupção
 - Aciona o driver ao final da operação de transferência.
 - Driver de dispositivo
 - Configuração controladora e estado.
 - Recebimento de requisições.
 - E/S independente do dispositivo
 - Escalonamento, nomeação.
 - Bufferização, proteção.
 - E/S nível de usuário
 - Chamadas de E/S.
 - Formatação de E/S.

- Driver de dispositivo
 - Conjunto de estruturas de dados e funções que controlam um ou mais dispositivos.
 - Possui uma interface bem definida com o núcleo.
 - Fornecido pelo fabricante do periférico.
 - Vantagens:
 - Isolar código específico de dispositivo.
 - Facilitar adição de novos drivers.
 - Não é necessário alterar o núcleo.
 - Núcleo possui uma visão uniforme de todos os dispositivos via interface bem definida.

- Driver de dispositivo Operação
 - Núcleo aciona driver para:
 - Configurar os dispositivos.
 - Realizar acessos de leitura e escrita.
 - Controlar e obter informações de estado.
 - Tratamento de interrupções.
 - Driver aciona núcleo para:
 - Efetuar gerenciamento de buffers.
 - Escalonamento de requisições.

- Subsistema de E/S
 - Controla a parte independente de dispositivo e interage com o driver para manipular a parte dependente.
 - Responsável por:
 - Distribuição uniforme dos nomes.
 - Proteção.
 - Fornecer uma interface aos processos usuários.
 - Gerenciamento e desempenho do sistema de E/S.

- Subsistema de E/S Linux
 - Nomes dos dispositivos no sistema de arquivos.
 - "c" orientados a caractere e "b" a bloco.
 - Major number e minor number.

Fonte: https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch03s02.html

- Subsistema de E/S Funcionalidades
 - Escalonamento de E/S
 - Determinar a melhor ordem para o atendimento das requisições E/S.
 - Dividir de forma justa o acesso a periféricos.
 - Buffering
 - Área de armazenamento temporário de dados.
 - Cache
 - Acesso rápido aos dados.
 - Spooling
 - Controlar acesso a dispositivos que atendem apenas uma requisição por vez.
 - Reserva de dispositivos
 - Controlar acesso exclusivo a dispositivos (alocação, sincronização).

- E/S em Nível de Usuário
 - Bibliotecas e chamadas de sistema para aplicações do usuário.
 - Interface de programação
 - Síncrona
 - Bloqueante: processo é suspenso até a conclusão da operação.
 - Não bloqueante: Retorna imediatamente com os dados disponíveis no momento.
 - Assíncrona
 - Processo continua execução enquanto E/S é realizada (sinalização x polling).

Gerência de E/S - Síntese

- Ciclo de vida de uma requisição read de E/S (Fonte: Silberschatz).
- Subsistema de E/S:
 - Gerenciamento do espaço de nomes para arquivos e dispositivos.
 - Controle de acesso, operação.
 - Alocação de espaço no sistema de arquivo.
 - Alocação de dispositivo.
 - Buffering, caching e spooling.
 - Escalonamento E/S.
 - Monitoramento de estado do dispositivo, tratamento de erro e recuperação de falha.
 - Inicialização e configuração dos drivers de dispositivos.

Atividade

- Descrever as funcionalidades básicas dos periféricos:
 - Discos rígidos (estrutura, tempo de acesso, entrelaçamento, escalonamento, RAID).
 - Vídeo
 - Teclado
 - Rede
 - Relógio

Referências

- OLIVEIRA, R. S. et al. Sistemas Operacionais. 4ª Edição e Slides online. Bookman. 2010.
- SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Fundamentos de Sistemas Operacionais. 9. ed. LTC, 2015.
- ____, 16 Types of Computer Ports and Their Functions: https://www.electronicshub.org/types-of-computer-ports/