

Probabilidades e Estatística

TODOS OS CURSOS

2º semestre – 2020/2021 09/07/2021 – **15:00**

Duração: 60+15 minutos

Teste 2C

Justifique convenientemente todas as respostas

Pergunta 1 4 valores (4.0)

a variável aleatória X, que representa o número de nascimentos por hora em determinado hospital e que se admite ter uma distribuição de Poisson de parâmetro $\lambda > 0$ (desconhecido).

Seja $(X_1,...,X_n)$ uma amostra aleatória de dimensão n proveniente de X e denote-se por \bar{X} a média da amostra aleatória. Sabe-se que $T = \bar{X}(1 + \bar{X})$ é um estimador enviesado de $E(X^2)$.

Calcule o valor do enviesamento de T na estimação de $E(X^2)$, quando n = a e $\lambda = b$.

• V.a. de interesse

X = número de nascimentos por hora durante um dia em determinado hospital

 $X \sim \text{Poisson}(\lambda)$

$$E(X) = V(X) = \lambda$$
 DESCONHECIDO

Outro parâmetro desconhecido

$$E(X^2) = V(X) + E^2(X) = \lambda + \lambda^2 = \lambda(1 + \lambda), \quad \lambda > 0$$

• Estimador de $E(X^2)$

$$T = \bar{X}(1 + \bar{X})$$

• Valor esperado de T

Ao notarmos que $E(\bar{X}) = E(X) = \lambda$, $V(\bar{X}) = \frac{V(X)}{n} = \frac{\lambda}{n}$, segue-se, para qualquer $\lambda > 0$,

$$E(T) = E[\bar{X}(1+\bar{X})]$$

$$= E(\bar{X}) + E(\bar{X}^2)$$

$$= E(\bar{X}) + [V(\bar{X}) + E^2(\bar{X})]$$

$$= \lambda + \left(\frac{\lambda}{n} + \lambda^2\right)$$

$$= \lambda(1+\lambda) + \frac{\lambda}{n}.$$

[Uma vez que $E(T) \neq \lambda(1+\lambda)$, $\forall \lambda > 0$, T é, efectivamente, um estimador enviesado de λ .]

• Enviesamento de T

$$E(T) - E(X^{2}) = \left[\lambda(1+\lambda) + \frac{\lambda}{n}\right] - \lambda(1+\lambda)$$
$$= \frac{\lambda}{n}$$
$$= \frac{b}{a}.$$

Pergunta 2 4 valores

Admita que X_1 (resp. X_2) representa a idade de um indivíduo que teve pelo menos um evento coronário em 2020 (resp. em 2019). Para estimar a diferença de idades esperadas entre doentes coronários em 2020

e 2019, $\mu_1 - \mu_2$, foram recolhidas duas amostras independentes com dimensões n_1 e n_2 (respetivamente), tendo-se obtido os seguintes resultados: $\bar{x}_1 = \bar{x}_1$ e $s_1 = s_1$; $\bar{x}_2 = \bar{x}_2$ e $s_2 = s_2$.

Suponha que X_1 e X_2 são variáveis aleatórias normalmente distribuídas com variâncias desconhecidas mas iguais.

Obtenha um intervalo de confiança a $100 \times (1 - \alpha)\%$ para $\mu_1 - \mu_2$.

· V.a. de interesse

 X_1 = idade de um indivíduo que teve pelo menos um evento coronário em 2020 X_2 = idade de um indivíduo que teve pelo menos um evento coronário em 2019

• Situação

 X_1 e X_1 v.a. independentes com distribuições normais

 $(\mu_1 - \mu_2)$ DESCONHECIDO

 σ_1^2 e σ_2^2 desconhecidas mas iguais

• Obtenção do IC para $\mu_1 - \mu_2$

Passo 1 — Seleção da v.a. fulcral para $(\mu_1 - \mu_2)$

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim t_{(n_1 + n_2 - 2)}$$

Passo 2 — Obtenção dos quantis de probabilidade

$$\left\{ \begin{array}{l} a_{\alpha} = F_{t_{(n_1 + n_2 - 2)}}^{-1}(\frac{\alpha}{2}) = -F_{t_{(n_1 + n_2 - 2)}}^{-1}(1 - \frac{\alpha}{2}) \\ b_{\alpha} = F_{t_{(n_1 + n_2 - 2)}}^{-1}(1 - \frac{\alpha}{2}) \end{array} \right.$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \le Z \le b_{\alpha}$

$$\begin{split} &P(a_{\alpha} \leq Z \leq b_{\alpha}) = 1 - \alpha \\ &P(a_{\alpha} \leq \frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}} \leq b_{\alpha}) = 1 - \alpha \\ &P\left[(\bar{X}_{1} - \bar{X}_{2}) - F_{t_{(n_{1} + n_{2} - 2)}}^{-1} (1 - \frac{\alpha}{2}) \times \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}} \times \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \leq \mu_{1} - \mu_{2} \right] \\ &\leq (\bar{X}_{1} - \bar{X}_{2}) + F_{t_{(n_{1} + n_{2} - 2)}}^{-1} (1 - \frac{\alpha}{2}) \times \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}} \times \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \right] = 1 - \alpha \end{split}$$

Passo 4 — Concretização

Tendo em conta os quantis acima, as dimensões amostrais n_1 e n_2 , bem como as concretizações de \bar{X}_1 , \bar{X}_B , S_A^2 e S_B^2 , temos

$$IC_{(1-\boldsymbol{\alpha})\times 100\%}(\mu_1-\mu_2) = \left[(\bar{\boldsymbol{x}}_1-\bar{\boldsymbol{x}}_2) \pm F_{t_{(n_1+n_2-2)}}^{-1}(1-\frac{\boldsymbol{\alpha}}{2}) \times \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}} \times \left(\frac{1}{n_1}+\frac{1}{n_2}\right) \right].$$

Pergunta 3 4 valores

Uma engenheira biomédica conjetura que o número esperado de mutações em determinadas regiões de um cromossoma é igual a $\lambda_0 = a$. Considere que o número X dessas mutações segue uma distribuição de Poisson.

Supondo que entre n cromossomas observados se identificaram b mutações, teste a conjetura da engenheira biomédica contra a alternativa $H_1: E(X) \neq \lambda_0$. Decida com base no valor-p aproximado.

• V.a. de interesse

X = número de mutações em determinadas regiões de um cromossoma

• Situação

 $X \sim \text{Poisson}(\lambda)$

 λ desconhecido

• Hipóteses

$$H_0: \lambda = \lambda_0$$

$$H_1: \lambda \neq \lambda_0$$

• Estatística de teste

$$T = \frac{\bar{X} - \lambda_0}{\sqrt{\frac{\lambda_0}{n}}} \stackrel{a}{\sim}_{H_0} \text{normal}(0, 1)$$

• Região de rejeição de H_0

Teste bilateral $(H_1: \lambda \neq \lambda_0)$, logo a região de rejeição de H_0 é do tipo $W = (-\infty, -c) \cup (c, +\infty)$.

• Decisão (com base no valor-p)

Atendendo a que o valor observado da estatística de teste é igual a

$$t = \frac{\frac{b}{n} - \lambda_0}{\sqrt{\frac{\lambda_0}{n}}}$$

e

$$valor - p = 2 \times P(|T| > |t| | H_0)$$

$$\simeq 2 \times [1 - \Phi(|t|)],$$

devemos

- não rejeitar H_0 a qualquer n.s. α_0 ≤ valor p;
- rejeitar H_0 a qualquer n.s. $\alpha_0 > valor p$.

Pergunta 4 valores

Seja X a massa (em gramas) de um carapau médio. Uma bióloga defende a hipótese H_0 de esta variável aleatória ter distribuição normal com valor esperado e desvio padrão iguais a 100 e σ gramas (respetivamente). Numa amostra casual de n desses peixes, foram registadas as seguintes frequências por intervalos de massa:

Intervalo de massa]60,80]]80,120]]120,140]	> 140
Frequência absoluta observada		<i>o</i> ₂	0 3	04	<i>0</i> ₅
Frequência absoluta esperada sob H_0	E_1	E_2	E_3	E_4	E_5

Calcule as frequências absolutas esperadas sob H_0 omissas E_1 e E_5 (aproximando-as às décimas). Serão os dados consistentes com H_0 ? Decida com base no valor-p aproximado.

• V.a. de interesse

X =massa (em gramas) de um carapau médio

• Hipóteses

$$H_0: X \sim \text{normal}(\mu = 100, \sigma^2 = \sigma^2)$$

$$H_1: X \not\sim \text{normal}(\mu = 100, \sigma^2 = \sigma^2)$$

• Estatística de teste

$$T = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \stackrel{a}{\sim}_{H_0} \chi_{(k-\beta-1)},$$

onde:

- k = no. de classes = 5;
- O_i = freq. abs. observável da classe i;
- E_i = freq. abs. esperada sob H_0 da classe i;

$$\circ$$
 $\beta = 0$.

• Frequência esperadas sob H_0 omissas

$$E_{1} = n \times P(X \le 60 \mid H_{0})$$

$$= n \times \Phi\left(\frac{60 - 100}{\sigma}\right)$$

$$E_{5} = n - \sum_{i=1}^{4} E_{i}.$$

• Região de rejeição de H_0 (para valores de T)

Tratando-se de um teste de ajustamento do qui-quadrado, a região de rejeição de H_0 escrita para valores observados de T é o intervalo à direita $W = (c, +\infty)$.

• Decisão (com base no valor-p)

	Classe i	Freq. abs. obs.	Freq. abs. esp. sob H_0	Parcelas valor obs. estat. teste
i		o_i	E_i	$\frac{(o_i-e_i)^2}{e_i}$
1	≤ 60	o_1	E_1	$\frac{(o_1 - E_1)^2}{E_1} =$
2]60,80]	o_2	E_2	•
3]80, 120]	<i>0</i> ₃	E_3	
4]120,140]	o_4	E_4	
5	> 140	<i>o</i> ₅	E_5	
		$\sum_{i=1}^{k} o_i = n$ $= n$	$\sum_{i=1}^{k} e_i = n$	$t = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i}$
		= n	= n	=

Dado que o valor observado da estatística de teste é $t=\sum_{i=1}^k \frac{(o_i-E_i)^2}{E_i}=$ e $W=(c,+\infty)$, obtemos

$$valor - p = P(T > t \mid H_0)$$

 $\simeq 1 - F_{\chi^2_{(t+1)}}(t).$

e devemos

- não rejeitar de H_0 a qualquer n.s. α_0 ≤ valor p;
- rejeitar de H_0 a qualquer n.s. $\alpha_0 > valor p$.

Alternativamente e recorrendo às tabelas de quantis da distribuição do qui-quadrado, podemos obter um intervalo para o valor-p deste teste:

$$\begin{split} F_{\chi^2_{(k-1)}}^{-1}(p_1) = & < t = \cdots < = F_{\chi^2_{(k-1)}}^{-1}(p_2) \\ p_1 & < F_{\chi^2_{(k-1)}}(t) < p_2 \\ 1 - p_2 & < valor - p \simeq 1 - F_{\chi^2_{(k-1)}}(t) < 1 - p_1. \end{split}$$

Assim, podemos adiantar que:

- não devemos rejeitar H_0 a qualquer n.s. α_0 ≤ $(1 p_2) \times 100\%$;
- devemos rejeitar H_0 a qualquer n.s. α_0 ≥ $(1 p_1) \times 100\%$.

Pergunta 5 4 valores

Os dados relativos à produção de trigo (x, em toneladas) e ao preço do quilo de farinha de trigo (Y, em cêntimos de euro) em 7 anos consecutivos conduziram a

$$\sum_{i=1}^{7} x_i = \sum_{i=1}^{7} x_i, \quad \sum_{i=1}^{7} x_i^2 = \sum_{i=1}^{7} x_i^2, \quad \sum_{i=1}^{7} y_i = 440, \quad \sum_{i=1}^{7} y_i^2 = 30150, \quad \sum_{i=1}^{7} x_i y_i = \sum_{i=1}^{7} x_i y_i$$

Admita que as variáveis x e Y estão relacionadas de acordo com o modelo de regressão linear simples: $Y = \beta_0 + \beta_1 x + \varepsilon$.

Após ter enunciado as hipóteses de trabalho que entender convenientes, obtenha um intervalo de confiança a $100 \times (1 - \alpha)\%$ para β_1 e a amplitude deste intervalo de confiança, tirando partido dos resultados acima.

Modelo de RLS

Y = preço do quilo de farinha (v.a. resposta)

x = produção de trigo (variável explicativa)

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n$$

· Hipóteses de trabalho

$$\varepsilon_i \stackrel{i.i.d.}{\sim} \text{normal}(0, \sigma^2), \quad i = 1, ..., n$$

• Estimativas de MV de β_0 e β_1 ; estimativa de σ^2

Importa notar que

$$\circ \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i$$

$$\bar{x} = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i$$

 \circ n=7

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i^2$$

$$\sum_{i=1}^{n} x_i^2 - n \,\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - n \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2$$

$$\sum_{i=1}^{n} y_i = 440$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{440}{7} \approx 62.857143$$

$$\sum_{i=1}^{n} y_i^2 = 30150$$

$$\sum_{i=1}^{n} y_i^2 - n \,\bar{y}^2 = 30150 - 7 \times 62.857143^2 \simeq 2492.857143$$

$$\circ \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i y_i$$

$$\sum_{i=1}^{n} x_i y_i - n \,\bar{x} \,\bar{y} = \sum_{i=1}^{n} x_i y_i - 7 \times \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) \times 62.857143.$$

Logo,

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}} \\
= \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \left(\frac{1}{n} \sum_{i=1}^{n} y_{i}\right)}{\sum_{i=1}^{n} x_{i}^{2} - n \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}} \\
\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x} \\
= 62.857143 - \hat{\beta}_{1} \times \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \\
\hat{\sigma}^{2} = \frac{1}{n-2} \left[\left(\sum_{i=1}^{n} y_{i}^{2} - n \bar{y}^{2}\right) - (\hat{\beta}_{1})^{2} \left(\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}\right) \right] \\
\approx \frac{1}{7-2} \left\{ 2492.857017 - (\hat{\beta}_{1})^{2} \left[\sum_{i=1}^{n} x_{i}^{2} - n \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \right] \right\}$$

• Obtenção do IC para β_1

Passo 1 — Seleção da v.a. fulcral

$$Z = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}}} \sim t_{(n-2)}$$

Passo 2 — Obtenção dos quantis de probabilidade

$$\begin{cases} a_{\alpha} = F_{t_{(n-2)}}(\alpha/2) = -F_{t_{(7-2)}}(1 - \alpha/2) \\ b_{\alpha} = F_{t_{(n-2)}}(1 - \alpha/2) \end{cases}$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \leq T \leq b_{\alpha}$

$$P(a_{\alpha} \leq Z \leq b_{\alpha}) = 1 - \alpha$$

$$P\left[a_{\alpha} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}}} \leq b_{\alpha}\right] = 1 - \alpha$$

$$P\left[\hat{\beta}_{1} - b_{\alpha} \times \sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}} \leq \beta_{1} \leq \hat{\beta}_{1} - a_{\alpha} \times \sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}}\right] = 1 - \alpha$$

Passo 4 — Concretização

Tendo em conta a expressão geral do IC para β_1 , o IC pretendido e a sua amplitude são iguais a

$$\begin{split} IC_{(1-\alpha)\times 100\%}(\beta_1) &= \left[\ \hat{\beta}_1 \pm F_{t_{(n-2)}}^{-1}(1-\alpha/2) \times \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}} \ \right] \\ & 2 &\times F_{t_{(n-2)}}^{-1}(1-\alpha/2) \times \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}}. \end{split}$$