Sheet 16: Metric Spaces

Definition 1 Let X be a set. A topology on X is a set A of subsets of X, that we call open sets, satisfying the following:

- 1) $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$;
- 2) if $A, B \in \mathcal{A}$ then $A \cap B \in \mathcal{A}$;
- 3) if $\mathcal{B} \subset \mathcal{A}$ then

$$\bigcup_{B\in\mathcal{B}}B\in\mathcal{A}.$$

Definition 2 A topological space is a pair (X, A) such that A is a topology on X.

Definition 3 Let X be a set and let $d: X \times X \to \mathbb{R}$ be a function. We say that (X, d) is a metric space if the following hold:

- 1) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y;
- 2) d(x, y) = d(y, x);
- 3) $d(x,y) + d(y,z) \ge d(x,z)$.

Definition 4 For $c \in X$ and $r \in \mathbb{R}$ with r > 0 let

$$B(c, r) = \{ x \in X \mid d(c, x) < r \}$$

be the ball of radius r centered at c.

Definition 5 A subset $A \subseteq X$ is open if for every $a \in A$ there exists r > 0 such that $B(a, r) \subseteq A$. This topology is the topology generated by d.

Theorem 6 For all $c \in X$ and r > 0 the ball B(c, r) is open.

Proof. Let $a \in B(c,r)$. Then d(c,a) < r. Consider the ball B(a,r-d(c,a)). For $x \in B(a,r-d(c,a))$ we have d(a,x) < r - d(c,a) so d(c,a) + d(a,x) < r. By the triangle inequality we have d(c,x) < r so $x \in B(c,r)$. Thus, $B(a,r-d(c,a)) \subseteq B(c,r)$ and B(c,r) is open.

Proposition 7 There is a topology on $\{0,1\}$ that cannot be generated by any metric on $\{0,1\}$.

Proof. Consider the topology $\mathcal{A} = \{\emptyset, \{0, 1\}\}$ and consider some arbitrary metric on $\{0, 1\}$, d(0, 1) = a for $a \in \mathbb{R}$. Then the ball B(0, a) will be in the topology generated by this metric, but $B(0, a) = \{0\}$ which is not in \mathcal{A} .

Theorem 8 (Metric Spaces are Hausdorff) Let (X,d) be a metric space and let $a,b \in X$ with $a \neq b$. Then there exist $A,B \subseteq X$ open such that $a \in A, b \in B$ and $A \cap B = \emptyset$.

Proof. Consider the two balls B(a,d(a,b)/2) and B(b,d(a,b)/2). Suppose there exists $x \in X$ such that $x \in B(a,d(a,b)/2)$ and $x \in B(b,d(a,b)/2)$. Then d(a,x) < d(a,b)/2 and d(b,x) < d(a,b)/2 so d(a,x) + d(x,b) < d(a,b) which contradicts the triangle inequality. Thus $B(a,d(a,b)/2) \cap B(b,d(a,b)/2) = \emptyset$. We also have B(a,d(a,b)/2) and B(a,d(a,b)/2) are open (16.6).

Definition 9 Let $A \subseteq X$ be a subset. We say that $x \in X$ is a limit point of A if for all open sets $B \subseteq X$ with $x \in B$ the intersection $A \cap B$ is infinite.

Lemma 10 Let $A \subseteq X$ be a subset. Then $x \in X$ is a limit point of A if for all r > 0 the intersection $A \cap B(x,r)$ is infinite.

Proof. Suppose that for $x \in X$ and all r > 0 we have $A \cap B(x,r)$ is infinite. Consider some open set $B \subseteq X$ with $x \in B$. Then there exists $B(x,r) \subseteq B$ because B is open. But then $B \cap A$ is infinite since $B(x,r) \cap A$ is infinite.

Theorem 11 A subset of X is closed if and only if it contains all its limit points.

Proof. Let $A \subseteq X$ be closed and consider some point $p \in X \setminus A$. Since $X \setminus A$ is open, there exists some ball $B(p,r) \subseteq X \setminus A$. But since this ball is open and disjoint from X we have p is not a limit point of A (16.6). Thus there are no limit points of A in $X \setminus A$ so A must contain all its limit points. Conversely let $A \subseteq X$ be a subset which contains all its limit points and let $p \in X \setminus A$. Since p is not a limit point of A, there exists some ball B(p,r) such that $B(p,r) \cap A$ is finite. Then consider the point $x \in B(p,r) \cap A$ such that $d(p,x) = \min\{d(p,y) \mid y \in B(p,r) \cap A\}$. The ball B(p,x) will then contain no points of A which means $B(p,x) \subseteq X \setminus A$ and thus $X \setminus A$ is open. Then A is closed.

Theorem 12 (Metric Spaces are T3) Let $C \subseteq X$ be closed and let $b \in X$ such that $b \notin C$. Then there exist $A, B \subseteq X$ open such that $C \subseteq A$, $b \in B$ and $A \cap B = \emptyset$.

Proof. Since C is closed, $X \setminus C$ is open and so there exists a ball $B = B(b, r) \subseteq X \setminus C$. Consider the set $S = \{B(a, (d(a, b) - r)/2) \mid a \in C\}$. Then let

$$A = \bigcup_{B(a,r) \in S} B(a,r)$$

so that $C \subseteq A$. Now let $x \in A$. Then there exists some ball $B(a, (d(a,b)-r)/2) \subseteq A$ such that $a \in C$ and $x \in B(a, (d(a,b)-r)/2)$. Then d(x,a) < d(a,b)-r so $r < d(a,b)-d(a,x) \le d(x,b)$. Thus $x \notin B(b,r)$ and so $A \cap B = \emptyset$.

Definition 13 A subset $C \subseteq X$ is compact if every open cover of C has a finite subcover.

Definition 14 A sequence on X is a function from \mathbb{N} to X. The sequence (a_n) converges to a (or $\lim_{n\to\infty} a_n = a$) if for every open set $A \subseteq X$ with $a \in A$ there are only finitely many n with $a_n \notin A$.

Proposition 15 There is a topological space on every set where every sequence converges to every element.

Proof. Consider the trivial topology, $\{\emptyset, X\}$. Consider some sequence $(a_n) \in X$ and let $a \in X$. The only open set which contains a is X, but there are no terms of (a_n) not in X so we have for all open sets A with $a \in A$, there are finitely many terms of (a_n) not in A. Thus (a_n) converges to a. This is true of all sequences and points in X.

Proposition 16 There is a topological space on every set where the only convergent sequences are the ones that are constant up to finitely many elements.

Proof. Consider the full topology where every subset is open. Then for all $x \in X$, the set $\{x\}$ is open. Thus for a sequence (a_n) , there are finitely many n such that $a_n \notin \{x\}$ which means there are finitely many n such that $a_n \neq x$.

Definition 17 Let (X, \mathcal{A}) and (Y, \mathcal{B}) be topological spaces. A function $f: X \to Y$ is continuous if for all $B \in \mathcal{B}$ the preimage $f^{-1}(B) \in \mathcal{A}$

Theorem 18 Let (X, A) be a Hausdorff topological space and let (a_n) be a sequence on X. If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} a_n = b$ then a = b.

Proof. Suppose that $a \neq b$. Then there exist two open sets A and B such that $a \in A$ and $b \in B$ and $A \cap B = \emptyset$ by the Hausdorff property. There are finitely many n with $a_n \notin A$ so there are infinitely many n with $a_n \in A$. But then there are finitely many n with $a_n \notin B$ which is a contradiction because $\lim_{n \to \infty} a_n = b$. Thus a = b.

Theorem 19 Let (X,d) and (X',d') be metric spaces and let $f:X\to X'$ be a function. Then the following are equivalent:

- 1) f is continuous;
- 2) for all $x \in X$ and for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $y \in X$ with $d(x,y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$;
- 3) for all convergent sequences $a_n \in X$ we have

$$\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right).$$

Proof. Let f be continuous and let $x \in X$ and consider the ball $B(f(x), \varepsilon)$ for $\varepsilon > 0$. Then since f is continuous, $f^{-1}(B(f(x), \varepsilon))$ is open. And since $x \in f^{-1}(B(f(x), \varepsilon))$ there exists some ball $B(x, \delta) \subseteq B(f(x), \varepsilon)$. But then for all $y \in B(x, \delta)$, $f(y) \in B(f(x), \varepsilon)$. Thus for all $y \in X$ such that $d(x, y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$.

Now suppose that for all $x \in X$ and for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $y \in X$ with $d(x,y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$. Let $a_n \in X$ be a sequence which converges to a and let $\varepsilon > 0$. Consider $B(a, \delta)$. Since $\lim_{n \to \infty} a_n = a$, there are finitely many n with $a_n \notin B(a, \delta)$. But then there are finitely many n such that $d(a, a_n) \ge \delta$ which means there are finitely many n with $d'(f(a), f(a_n)) \ge \varepsilon$. Therefore there are finitely many n with $f(a_n) \notin B(f(a), \varepsilon)$ and since this is true for all $\varepsilon > 0$, we have $\lim_{n \to \infty} f(a_n) = f(a)$.

Finally use the contrapositive and assume that f is not continuous. Then there exists some set $A \subseteq X'$ such that $f^{-1}(A)$ is not open. Then there exists $a \in f^{-1}(A)$ such that for all r > 0 there exists $x \in B(a, r)$ such that $x \notin A$. Create a sequence $a_n \in X$ where $a_n \in B(a, 1/n)$, but $a_n \notin A$. We know that a_n exists for all n because $f^{-1}(A)$ is not open. Note that for the ball B(a, r) with r > 1 there are no terms of (a_n) not in B(a, r) and for $r \le 1$ we can use the Archimedean Property to show that there are finitely many terms not in B(a, r). Thus (a_n) converges to a. Note that for all n, $a_n \notin f^{-1}(A)$ and thus $f(a_n) \notin A$, while $a \in f^{-1}(A)$ and so $f(a) \in A$. But A is open so there exists some ball $B(a, r) \subseteq A$ for which $a_n \notin B(a, r)$ for all n. But then $\lim_{n\to\infty} f(a_n) \ne f(a)$.

Theorem 20 Let (X, \mathcal{A}) and (Y, \mathcal{B}) be topological spaces and let $f: X \to Y$ be continuous. Then for every compact subset $C \subseteq X$ the image f(C) is also compact.

Proof. Let $\mathcal{E} \subseteq \mathcal{B}$ be an open cover of f(C). For all $x \in C$ we have $x \in f(C)$ and so for all $x \in C$ there exist an open set $B \in \mathcal{E}$ such that $f(x) \in B$. But then for all $x \in C$, $x \in f^{-1}(B)$ for some $B \in \mathcal{E}$. So we have $C \subseteq \bigcup_{B \in \mathcal{E}} f^{-1}(B)$ and since f is continuous $\{f^{-1}(B) \mid B \in \mathcal{E}\} \subseteq \mathcal{A}$ is an open cover for C. But C is compact so there exists a finite subcover, $\{f^{-1}(B_1), f^{-1}(B_2), \dots, f^{-1}(B_n)\}$ which covers C. So for all $x \in C$ there exists some $B_i \in \mathcal{E}$ such that $x \in f^{-1}(B_i)$. But then $f(x) \in B_i$ and since $f(C) = \{y \in Y \mid x \in C, y = f(x)\}$, we have for all $y \in f(C), y \in B_i$. Since every $B_i \in \mathcal{E}$ we have found a finite subcover of \mathcal{E} which covers f(C). Thus f(C) is compact.

Theorem 21 Let (X,d) be a metric space. Then every compact subset of X is bounded and closed.

Proof. Let C be a compact subset of X and suppose that C is not bounded below. Let A be the set of all balls centered at $c \in C$. Then A covers C and since C is compact there exists a finite subcover $B \subseteq A$ which covers C. Then $B = \{B(c, r_1), B(c, r_2), \ldots, B(c, r_n)\}$. Take the largest r_i such that $B(c, r_i) \in B$. But we have C is not bounded below so there exists $x \in C$ such that $d(x, c) > r_i$. Thus $C \nsubseteq \bigcup_{B \in B} B$ and so B doesn't cover C. This is a contradiction and so compact sets are bounded below. A similar proof holds to show compact sets must be bounded above.

Now suppose that $C \subseteq X$ is compact and C is not closed. Let $p \notin C$ be a limit point of C. Let $\mathcal{A} = \{X \setminus B(p,r) \mid r \in \mathbb{R}\}$. Since $p \notin C$ we see that \mathcal{A} covers C. Since C is compact, let \mathcal{B} be a finite subset of \mathcal{A} which covers C. We have X is open and $X \setminus \emptyset$ is closed so $X \neq \emptyset$. Thus if $\mathcal{B} = \emptyset$, \mathcal{B} does not cover X. Then $\mathcal{B} = \{X \setminus B_1(p,r_1), X \setminus B_2(p,r_2), \ldots, X \setminus B_n(p,r_n)\}$. Take the smallest r_i such that $B_i(p,r_i) \in \mathcal{B}$ and consider $B(p,r_i/2)$. This ball contains p, which is a limit point of C, and since balls are open, $B(p,r_i/2) \cap C \neq \emptyset$. But $B(p,r_i/2)$ is defined such that $B(p,r_i/2) \nsubseteq \bigcup_{B \in \mathcal{B}} B$ and so $C \nsubseteq \bigcup_{B \in \mathcal{B}} B$. But then \mathcal{B} doesn't cover C which is a contradiction. Therefore compact sets are closed.

Proposition 22 Let X be an infinite set. Then there is a metric on X such that there exists a bounded and closed set that is not compact.

Proof. Consider the metric d(x,y) = a for some $a \in \mathbb{R}$. Let $Y \subseteq X$ be a bounded closed infinite set and let $\mathcal{A} = \{B(y,a) \mid y \in Y\}$. This set covers Y, but each element contains only one element of Y so a finite subset of \mathcal{A} will only contain finitely many elements of Y.

Definition 23 Let (X,d) and (X',d') be metric spaces and let $f: X \to X'$ be a function. We say that f is uniformly continuous if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x,y \in X$ with $d(x,y) < \delta$ we have $d'(f(x),f(y)) < \varepsilon$.

Theorem 24 Let (X,d) and (X',d') be metric spaces and let $f:X\to X'$ be a continuous function. If X is compact then f is uniformly continuous.

Proof. Let $\varepsilon > 0$ and consider $\varepsilon/2 > 0$. We have f is continuous so for all $x \in X$ there exists $\delta(x) > 0$ such that for all $y \in X$ with $d(x,y) < \delta(x)$ we have $d'(f(x),f(y)) < \varepsilon/2$ (16.19). Consider the set of balls $\mathcal{A} = \{B(x,\delta(x)) \mid x \in X\}$ and let $\mathcal{A}' = \{B(x,\delta(x)/2) \mid B(x,\delta(x)) \in \mathcal{A}\}$. \mathcal{A}' is an open cover for X and since X is compact there exists a finite subcover, $\mathcal{B} \subseteq \mathcal{A}'$. Let $\delta = \min\{\delta(x)/2 \mid B(x,\delta(x)/2) \in \mathcal{B}\}$. Then consider two points $x,y \in X$ such that $d(x,y) < \delta$. \mathcal{B} is an open cover for X so there exists some ball $B(z,\delta(z)/2) \in \mathcal{B}$ such that $x \in B(z,\delta(z)/2)$. Then $d(x,z) < \delta(z)/2 < \delta(z)$ and $d(x,y) < \delta \le \delta(z)/2$ so $d(z,y) \le d(z,x) + d(x,y) < \delta(z)$. But then $d'(f(z),f(x)) < \varepsilon/2$ and $d'(f(z),f(y)) < \varepsilon/2$ so $d'(f(x),f(y)) \le d'(f(x),f(z)) + d'(f(z),f(y)) < \varepsilon$. Therefore for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x,y \in X$ with $d(x,y) < \delta$ we have $d'(f(x),f(y)) < \varepsilon$.