Probabilistic Approach to Diffusion-mediated Surface Phenomena

Director: Denis GREBENKOV Laboratoire PMC, Ecole Polytechnique

> Yilin YE May 15, 2023

Academic Training

• Undergraduate, Chemistry.

• Diplôme de l'ENS.

Xiamen University, Xiamen, China

École Normale Supérieure, Paris, Franco	•
 Research Assitant. Hunan University, Changsha, China 	2020.9 - 2021.8
Master 1, Chemistry. École Normale Supérieure, Paris, France	2021.9 - 2022.7 2 15.60 /20.
• Master 2, Physics, ICFP. École Normale Supérieure, Paris, France	2022.9 - 2023.7 (1st semester) 13.70 /20, (2nd semester, without internship) 15.00 /20.

2/13

2015.9 - 2019.6

2019.9 - 2023.7

92.34/100.

• Theoretical Chemistry: Statistical Mechanics applied to Chemistry

Course - M1

16.00 /20.				
15.90 /20.				
15.25 /20.				
14.00 /20.				
14.00 /20.				
13.80 /20.				
et al.				
13.50 /20.				
13.40 /20.				
17.40 /20.				
Feb. \sim Jul. 2022				
15.00 /20.				
Simulation of Vibrational ICD on Model Systems with Reduced Dimensions				
Jun.∼Jul. 2020				

Courses - M2S1

 Physics of Fluids and Nonlinear Physics (Arnaud Antkowiak & Camille Duprat, 6 ECTS) 	14.86 /20.
 Statistical Field Theory and applications (Adam Nahum & Xiangyu Cao, 6 ECTS) 	14.44 /20.
 Computational and Data-Driven Physics (Alberto Rosso & Rémi Monasson, 6 ECTS) 	13.70 /20.
 Soft Matter Physics (Anke Lindner & Vincent Démery, 6 ECTS) 	13.00 /20.
 Advanced Statistical Physics for soft matter (Christophe Texier & Jean-Noël Aqua, 6 ECTS) 	12.50 /20.

Courses - M2S2

N	Machine Learning	(Marc Lelarge,	3 ECTS)	16.00 /20
---------------------	------------------	----------------	---------	------------------

- Advanced Topics in Markov-chain Monte Carlo
 (Werner Krauth, 3 ECTS)
 15.00/20.
- Statistical Physics 2: Disordered Systems and Interdisciplinary Applications (Francesco Zamponi & Gregory Schehr, 3 ECTS)
 15.00/20.
- Conformal Field Theory
 (Benoît Estienne & Yacine IKHLEF, 3 ECTS)
 14.00/20.
- Research Internship M2S2 (Denis Grebenkov, 18 ECTS)

 Probabilistic Approach to Diffusion-mediated Surface Phenomena Apr.~Jul. 2023

ElastoHydroDynamics interactions & Modified fluctuation-dissipation relation

Equations of motion (EOM) are non-linear coupled.

$$\begin{split} \ddot{\boldsymbol{X}}_{\mathbf{G}} + \frac{2\varepsilon\xi}{3}\frac{\dot{\boldsymbol{X}}_{\mathbf{G}}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{\boldsymbol{X}}_{\mathbf{G}}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\boldsymbol{\Theta}}}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{\boldsymbol{\Theta}} - \ddot{\boldsymbol{X}}_{\mathbf{G}}}{\Delta^{5/2}}\right] &= 0\\ \ddot{\boldsymbol{\Delta}} + \xi\frac{\dot{\boldsymbol{\Delta}}}{\Delta^{3/2}} + \frac{\kappa\xi}{4}\left[21\frac{\dot{\Delta}^2}{\Delta^{9/2}} - \frac{(\dot{\boldsymbol{\Theta}} - \dot{\boldsymbol{X}}_{\mathbf{G}})^2}{\Delta^{7/2}} - \frac{15}{2}\frac{\ddot{\boldsymbol{\Delta}}}{\Delta^{7/2}}\right] &= 0\\ \ddot{\boldsymbol{\Theta}} + \frac{4\varepsilon\xi}{3}\frac{\dot{\boldsymbol{\Theta}}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{3}\left[\frac{19}{4}\frac{\dot{\Delta}\dot{\boldsymbol{\Theta}}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\boldsymbol{X}}_{\mathbf{G}}}{\Delta^{7/2}} + \frac{1}{2}\frac{\ddot{\boldsymbol{X}}_{\mathbf{G}} - \ddot{\boldsymbol{\Theta}}}{\Delta^{5/2}}\right] &= 0 \end{split}$$

T. Salez, and L. Mahadevan, J. Fluid Mech. 2015, 779, 181-196

Add random force into EOM for modified fluctuation-dissipation relation.

$$\dot{v} + f(\Delta) \ v + \kappa \ g(\dot{v}, v, \Delta) = 0 \qquad \rightarrow \qquad \dot{v} = -\gamma_{\rm eff} \ v + \delta F/M$$

$$v_i = v_{i0} + \kappa \cdot v_{i1} \longrightarrow \langle v_{i0} v_{i1} \rangle (t, \kappa) \longrightarrow \text{noise correlator amplitude}$$

$$\gamma_i = \gamma_{i0}(\Delta) + \kappa \cdot \gamma_{i1}(\Delta) \longrightarrow \text{noise correlator amplitude}$$

$$\delta F_i = \delta F_{i0} + \kappa \cdot \delta F_{i1} \longrightarrow \langle \delta F_{i0} \delta F_{i1} \rangle (\kappa)$$

$$\boxed{ \langle \delta F_i(\tau_1) \delta F_i(\tau_2) \rangle \propto 2k_{\rm B} T \ m_i \ \gamma_{i0} \ \delta(\tau_1 - \tau_2) \cdot \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right] }$$

Numerical simulations with **fixed** height (Δ) - Effect of compliance ($\kappa \neq 0$)

Diffusion coefficient depends on vertical positions and soft wall modulus.

$$D(\kappa, \Delta) = D(0, \Delta) \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right]$$

How does the complicated confining media affect the diffusion?

B. Augner, and D. Bothe. arXiv:1911.13030 (2019).

F. Zhao, et al. Small, 7(10), 1322-1337 (2011)

Geometry-adapted fast random walk

Find minimal radius & Diffuse uniformly

Thesis Project

$$\vec{x}_{k+1} = \vec{x}_k + \rho(\cos\theta, \sin\theta_k)$$

$$au=rac{\delta^2}{4D} \qquad \qquad t_{k+1}=t_k+ au \ \ell_{t_{k+1}}=\ell_{t_k}+\sqrt{rac{\pi}{2}D au}$$

- Local Time ℓ : How much time would one particle move near the complex surface?
- "Target-finding" diffusion near the surface;
- Collective effect of multiple independently diffusing particles;

D. Grebenkov, Y. YE

Y. Zhou, et al. Comm. Math. Sci., 15, 237-259 (2017).

Y. Lanoiselée, et al. Nature Commun. 9, 4398 (2018).

Programme

- Efficient numerical methods towards different cases:
- Diffusion on the surface & Local residence time;
- Reversible reactions controlled by diffusion on the surface;
- From 2D model to 3D model;

Thanks for your attention!

