AMENDMENT

Kindly amend the application, without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

IN THE CLAIMS:

Kindly amend the claims, without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, to read as follows:

1-66. (Cancelled)

67. (Currently amended) A method of inhibiting steroid sulphatase activity comprising administering, a non-oestrogenic sulphamate compound suitable for use as an inhibitor of oestrone sulphatase to a patient in need of inhibition of steroid sulphatase activity by a non-oestrogenic sulphamate compound lacking oestrogenic activity, wherein the non-oestrogenic sulphamate compound is a sulphamate compound having Formula IV;

Formula IV

wherein

one of R_1 and R_2 is H and the other of R_1 and R_2 is a substituent other than H or R_1 and R_2 may be the same or different but not both being H, wherein the substituent other than H is alkyl, cycloalkyl, alkoxy, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group;

wherein Y is a suitable linking group comprising one or more of C, O, N, and S; and each of R_3 and R_4 is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, wherein at least one of R_3 and R_4 is H.

68. (Currently amended) A method of treating endocrine-dependent cancer comprising administering a non-oestrogenic sulphamate compound suitable for use as an inhibitor of oestrone sulphamate, to a patient in need of treatment of endocrine-dependent cancer by a non-oestrogenic sulphamate compound lacking oestrogenic activity, wherein the compound is a sulphamate compound having Formula IV;

Formula IV

wherein

one of R_1 and R_2 is H and the other of R_1 and R_2 is a substituent other than H or R_1 and R_2 may be the same or different but not both being H, wherein the substituent other than H is alkyl, cycloalkyl, alkoxy, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group:

Y is a suitable linking group comprising one or more of C, O, N, and S; and each of R_3 and R_4 is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, wherein at least one of R_3 and R_4 is H.

- 69. (Withdrawn) The method according to claim 67 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ cycloalkyl, a C₁₋₆ alkenyl, a substituted C₁₋₆ alkyl, a substituted C₁₋₆ cycloalkyl, a substituted C₁₋₆ alkenyl, a substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.
- 70. (Withdrawn) The method according to claim 68 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ cycloalkyl, a C₁₋₆ alkenyl, a substituted C₁₋₆ alkyl, a substituted C₁₋₆ cycloalkyl, a substituted C₁₋₆ alkenyl, a substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

- 71. (Withdrawn) The method according to claim 69 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.
- 72. (Withdrawn) The method according to claim 70 wherein the substituent of R₁ and R₂ that is other than H is a C_{1.6} alkyl, a C_{1.6} alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.
- 73. (Withdrawn) The method according to claim 71 wherein the substituent of R₁ and R₂ that is other than H is a is selected from C_{1.6} alkyl, C_{1.6} alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms.
- 74. (Withdrawn) The method according to claim 72 wherein the substituent of R₁ and R₂ that is other than H is a is selected from C₁₋₆ alkyl, C₁₋₆ alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms.
- 75. (Withdrawn) The method according to claim 73 wherein the substituent of R_1 and R_2 that is other than H is a C_3 alkyl, a C_3 alkenyl, NO₂, or H_3CO .
- 76. (Withdrawn) The method according to claim 74 wherein the substituent of R₁ and R₂ that is other than H is a C₃ alkyl, a C₃ alkenyl, NO₂, or H₃CO.
- (Currently amended) The method according to claim 67 wherein the substituent of R₁ and R₂ that is other than H is [[a]]an alkoxy group.
- 78. (Previously presented) The method according to claim 68 wherein the substituent of R_1 and R_2 that is other than H is a alkoxy group.
- (Previously presented) The method according to claim 77 wherein the substituent of R₁ and R₂ that is other than H is a methoxy group.

- 80. (Previously presented) The method according to claim 78 wherein the substituent of R₁ and R₂ that is other than H is a methoxy group.
- (Previously presented) The method according to claim 67 wherein the group A/ring
 combination contains one or more alkoxy substituents.
- (Previously presented) The method according to claim 68 wherein the group A/ring
 B combination contains one or more alkoxy substituents.
- (Withdrawn) The method according to claim 67 wherein each of R₁ and R₂ is an alkoxy group.
- 84. (Withdrawn) The method according to claim 68 wherein each of R_1 and R_2 is an alkoxy group.
- 85. (Withdrawn) The method according to claim 83 wherein each of R_1 and R_2 is a methoxy group.
- 86. (Withdrawn) The method according to claim 85 wherein each of R_1 and R_2 is a methoxy group.
- 87. (Previously presented) The method according to claim 67 wherein at least one of R_3 and R_4 is H.
- 88. (Currently amended) The method according to any one of claims claim 68 wherein each of R_3 and R_4 is H.
 - 89. (Currently amended) The method according to claim 67 wherein Y is -C(O)-.
 - 90. (Currently amended) The method according to claim 68 wherein Y is -C(O)-.

- 91. (Currently amended) The method of <u>claim</u> 68 wherein the endocrine-dependent cancer is breast, ovarian, endometrial, or prostate cancer.
- 92. (Previously presented) The method of claim 91 wherein the endocrine-dependent cancer is breast cancer.
- 93. (Currently amended) A method of treating endocrine-dependent cancer comprising administering a non-oestrogenic sulphamate compound suitable for use as an inhibitor of oestrone sulphatase to a patient in need of treatment of endocrine-dependent cancer by a non-oestrogenic sulphamate compound lacking oestrogenic activity, wherein the compound has one of Formulae VI IX

. 9		R ₁	R ₂	Formula
	a)	n-	H	VI
R ₁		CH ₂ CH ₂ CH ₃		
H ₂ NSO ₂ O	b)	Н	n-CH ₂ CH ₂ CH ₃	
Ŕ ₂	c)	n-	n-CH ₂ CH ₂ CH ₃	
		CH ₂ CH ₂ CH ₃		

		R ₁	R ₂	Formula
	a)	-	Н	VII
R ₁		CH ₂ CH=CH ₂		
H ₂ NSO ₂ O	b)	Н	-CH ₂ CH=CH ₂	
R ₂	c)	-	-CH ₂ CH=CH ₂	
		CH ₂ CH=CH ₂		

		R ₁	R ₂	Formula
	a)	H ₃ CO-	Н	VIII
R ₁	b)	Н	H₃CO-	
H ₂ NSO ₂ O	c)	H ₃ CO-	H₃CO-	
R ₂				

		R ₁	R ₂	Formula
				IX
R ₁	a)	-NO ₂	Н	
H ₂ NSO ₂ O	b)	Н	-NO ₂	
Ŕ ₂	c)	-NO ₂	-NO ₂	

- 94. (Currently amended) The method of <u>claim</u> 93 wherein the endocrine-dependent cancer is breast, ovarian, endometrial, or prostate cancer.
- (Previously presented) The method of claim 94 wherein the endocrine-dependent cancer is breast cancer.
- 96. (Currently amended) A method of inhibiting steroid sulphatase activity comprising administering a non-oestrogenic sulphamate compound to a patient in need of inhibition of steroid sulphatase activity by a non-oestrogenic sulphamate compound, wherein the compound has one of Formulae VI IX

0		R ₁	R ₂	Formula
	a)	n-	Н	VI
R ₁		CH ₂ CH ₂ CH ₃		
H ₂ NSO ₂ O	b)	H	n-CH ₂ CH ₂ CH ₃	
R ₂	c)	n-	n-CH ₂ CH ₂ CH ₃	
		CH₂CH₂CH₃		

• 1	T	Ri	R ₂	Formula
R ₁	a)	-	Н	VII
N Y Y Y	1	CH ₂ CH=CH ₂		
H ₂ NSO ₂ O	b)	Н	-CH ₂ CH=CH ₂	
R₂	c)	-	-CH ₂ CH=CH ₂	
		CH ₂ CH=CH ₂		

ı		R ₁	R ₂	Formula
	a)	H ₃ CO-	Н	VIII
R ₁	b)	Н	H ₃ CO-	
H ₂ NSO ₂ O	c)	H ₃ CO-	H ₃ CO-	
R ₂				

, (R ₁	R ₂	Formula
	a)	-NO ₂	Н	IX
R ₁	b)	Н	-NO ₂	
H ₂ NSO ₂ O	c)	-NO ₂	-NO ₂	
R ₂		ė.		

÷