Information Theory, Exam 1 (02 Feb, 2023)

Serial Number:	Serial	Number:	
----------------	--------	---------	--

Roll Number:

Important

- Any malpractice will lead to instant fail grade.
- For Part A: provide only the final answers in this question paper itself. For Part B: provide complete solutions in the answer booklets.
- Write your roll number and "serial number" both in this question paper and in the answer sheet.
- No breaks during the exam. No books, notes, laptops, calculators, mobile devices etc. are allowed.

Part A (7 questions \times 1 mark)

Instructions: Provide your **answers in this question paper** only. Write only the final answers in the space provided here.

- 1. If T is the number of fair coin tosses needed by an optimal algorithm to generate a discrete random variable X, give upper and lower bounds on $\mathbb{E}(T)$.

 Answer:
- 2. Write the expression for the log-sum inequality. Answer:
- 3. Write the expression for data processing inequality if $X \to Y \to Z.$ Answer:
- 4. $H(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i)$ if and only if
- 5. If X and Y are Bernoulli random variables and $\alpha=P[X\neq Y]$. Then Y contains the least information about X for what value of α ?

 Answer:
- 6. Give an upper bound on $P[p_X(X) \le a]$, where a < 1 and X is a discrete random variable. The upper bound must be in terms of H(X) and a.

 Answer:

7. If X_1, \ldots, X_n are i.i.d with probability mass function p_X , what is the limit, in probability, of $(p(X_1, \ldots, X_n))^{\frac{1}{n}}$? Answer:

Part B (3 questions \times 5 marks)

Instructions: Provide mathematically precise answers, with complete proofs, in the answer booklet. Any result proved during the lectures can be stated and used in your answer without giving a proof.

8. Let X be a discrete random variable with probability mass function p(x), $x \in \mathcal{X}$. Let q(x), $x \in \mathcal{X}$ be any probability mass function defined on \mathcal{X} .

Show that $\sum_{x \in \mathcal{X}} p(x) \log \frac{1}{q(x)} \ge H(X)$. When is equality attained in this inequality?

9. Let $\mathcal{N}(\mu, \sigma^2)$ denote the normal (Gaussian) distribution with mean μ and variance σ^2 . Let the parameter $\theta \in \{0,1\}$, i.e., it assumes only two possible values. Let $X = (X_1, X_2)$ and

if
$$\theta = 0 : X_1 \sim \mathcal{N}(1, 1), X_2 \sim \mathcal{N}(0, 1)$$
, and if $\theta = 1 : X_1 \sim \mathcal{N}(0, 1), X_2 \sim \mathcal{N}(1, 1)$.

In both cases X_1, X_2 are independent.

Is $T(X) = X_1 - X_2$ a sufficient statistic of X for θ ? Support your answer with a proof.

10. Scenario: $M = (X_1, ..., X_n) \in \mathcal{X}^n$ where X_i are i.i.d discrete random variables each with probability mass function p_X . We now describe two (deterministic) functions:

(i)
$$f$$
 maps M into a string of ℓ binary digits $C = f(M) \in \{0, 1\}^{\ell}$, i.e., $f((x_1, \dots, x_n)) \in \{0, 1\}^{\ell}$.

(ii) g is a function used for decoding M from C, i.e., $g(C) = g(f(M)) \in \mathcal{X}^n$ is an estimate of M.

Let $P_e = P[g(C) \neq M]$ denote the probability of detection error.

Question: Assuming that $P_e \leq \epsilon$ where $0 < \epsilon < 0.5$, obtain a good lower bound on the ratio $\frac{\ell}{n}$ for all sufficiently large n. Your lower bound must be independent of the functions f and g.

Bonus: (3 marks) If n is allowed grow, and ℓ also grows with n, and $P_e \leq \epsilon$ for all n, find a lower bound on $\lim_{\epsilon \to 0} \left(\lim_{n \to \infty} \frac{\ell}{n} \right)$, assuming that this limit exists. Can you identify functions f and g that attain this limit?