Measure Theory

R.H. Wang

Contents

1	基本概念回顾	2
	1.1 Sets	2
2	测度空间	2
	2.1 σ代数	2
	2.2 Borel σ-代数	3

1 基本概念回顾 2

1 基本概念回顾

1.1 Sets

2 测度空间

Definition 2.1. (测度) 测度是定义在某个集合上的一个函数,它赋予集合一个非负实数(或 ∞),用以表示该集合的"大小".一个函数 μ 被称为测度,如果它满足以下条件:

- 1. **非负性:** 对于任何集合 A, 测度满足 $\mu(A) \geq 0$.
- 2. **空集的测度为零**: $\mu(\emptyset) = 0$.
- 3. **可数可加性**(σ **-加性)**: 如果 $\{A_i\}_{i=1}^{\infty}$ 是一系列两两不相交的集合,则

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

2.1 σ 代数

Definition 2.2. (σ -代数(Sigma Algebra)) σ -代数是一个集合族,它对于补集和可数并集封闭,具体来说,一个集合族 \mathcal{F} 是 σ -代数,满足以下条件:

- 1. **包含全集**:如果集合 X 是全集,那么 $X \in \mathcal{F}$.
- 2. **封闭性对于补集:** 如果 $A \in \mathcal{F}$,则其补集 $A^c = X \setminus A \in \mathcal{F}$.
- 3. 封闭性对于可数并集: 如果 $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$,则 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Example 2.1. 以下是一些关于 σ -代数的例子:

2 测度空间 3

1. 最小的 σ -代数(平凡 σ -代数): 在任何集合 X 上, $\{\emptyset, X\}$ 是最简单的 σ -代数,只包含空集和全集.

2. 最大的 σ -代数(离散 σ -代数): 在集合 X 上, 2^X (X 的幂集,包含 X 的所有子集)是一个 σ -代数,称为离散 σ -代数.

3. Borel σ -代数:

在 \mathbb{R} 上,由所有开区间 (a,b) 生成的 σ -代数是 Borel σ -代数,记为 $\mathcal{B}(\mathbb{R})$. 它包含所有开集、闭集、可数并和交的集合等.

4. **Lebesgue** σ -代数: 在 \mathbb{R} 上,Lebesgue σ -代数是由 Borel σ -代数通过添加所有测度为零的集合(Lebesgue 测度)得到的 σ -代数.

2.2 Borel σ -代数

Definition 2.3. 设 M 是一个集合,定义在某个基础集合 X 上. 由 M 生成的 σ -代数,记为 $\sigma(M)$,是包含 M 的所有 σ -代数的交集. 形式上,这可以描述为:

 $\sigma(M) = \bigcap \{ \mathcal{F} \mid \mathcal{F} \text{ 是包含} M \text{ 的} \sigma\text{-代数, 定义在} X \perp \}$

这意味着 $\sigma(M)$ 是最小的 σ -代数,包含集合 M,并且满足 σ -代数的三个基本条件:包含全集 X,对于补集封闭,以及对于可数并集封闭.

如何生成 σ -代数〈过程〉

生成 σ-代数的过程涉及以下步骤:

- 1. **包含** M: 首先, 确保所有在 M 中的集合都包含在 σ-代数中.
- 2. **包含补集:** 对于 $\sigma(M)$ 中的每个集合 A, 其补集 $X \setminus A$ 也必须包含在 $\sigma(M)$ 中.

2 测度空间 4

3. **包含可数并:** 对于 $\sigma(M)$ 中的任何可数集合序列 $\{A_i\}_{i=1}^{\infty}$,其并集 $\bigcup_{i=1}^{\infty} A_i$ 也必须包含在 $\sigma(M)$ 中.

4. **最小性:** $\sigma(M)$ 必须是所有满足以上条件的 σ -代数中最小的一个,即任何包含 M 并满足 σ -代数定义的集合系统都必须包含 $\sigma(M)$.

Example 2.2. 这里展示生成 σ -代数的一些例子:

- 1. 单点集合的生成 σ -代数
 - 设 $X = \mathbb{R}$, $M = \{\{0\}\}$, 即 M 只包含实数线上的单点集合 $\{0\}$
 - 生成的 σ -代数 $\sigma(M)$ 将包括 $\{0\}$ 的所有可能的可数并集和补集,这些包括所有包含 0 或不包含 0 的集合,例如 $\mathbb{R}\setminus\{0\}$, $\{0\}$, \emptyset 和 \mathbb{R} .
- 2. 开区间的生成 σ -代数(Borel σ -代数)
 - $\forall X = \mathbb{R}, M = \{(a,b) : a < b\}, \text{ 包含 } \mathbb{R} \text{ 上的所有开区间}$
 - 生成的 σ -代数 $\sigma(M)$ 是实数线上的 Borel σ -代数 $\mathcal{B}(\mathbb{R})$,包括所有开集、闭集、 G_{δ} 集(开集的可数交)、 F_{σ} 集(闭集的可数并)等

通过这些步骤和例子,我们看到生成 σ -代数是构建测度理论和概率论模型的基础过程,为我们提供了一种系统化地处理集合操作的方法,保证了数学模型的严密性和完整性.

Definition 2.4. (Borel σ -代数) Borel σ -代数 $\mathcal{B}(\mathbb{R})$ 是在拓扑空间(如实数 \mathbb{R})上所有开集通过可数并、可数交和补集操作生成的最小 σ -代数. 即:

$$\mathcal{B}(\mathbb{R}) = \sigma($$
所有开区间 (a,b) $)$

Example 2.3. 这里列举 Borel σ -代数的例子:

在实数线 ℝ 上的例子:

1. $\mathcal{B}(\mathbb{R})$ 包括所有单点集合,因为每个单点可以表示为开区间的可数交.

2 测度空间 5

- 2. 它包含所有实数线上的开集和闭集.
- 3. 它还包括所有 G_{δ} 集和 F_{σ} 集,这些集合分别是开集的可数交和闭集的可数并.

应用 在实数 \mathbb{R}^n 上,Borel σ -代数可以通过考虑所有形如 $(a_1,b_1) \times \cdots \times (a_n,b_n)$ 的开矩形区间生成. 这表明在 \mathbb{R}^n 上,Borel σ -代数是由所有开球生成的,因为每个开球都可以用开矩形区间来逼近.

REFERENCES 6

References