$$P(2,0) = A(1,1)$$

$$= A(0, A(1,0))$$

$$\sqrt{A}(2,0) = A(0,2)$$
= 2+1 $\sqrt{A}(2,0) = A(0,2)$
= 3

.

(1)

=
$$A(1,3)$$

= $3+2$ [ib- $m=1$, $A(m,n)=m+2$]
= 5

$$A(3,n) = 2^{n+3}-3$$

$$A(3,0) = 2^{0+3}-3$$

$$A(3,0) = 2^{0+3}-3$$

2, +3, 3 5, 4, 4, 3 2, 4, 5 2, 4, 1

A(0,n) = n+1 A(1,n) = n+2 A(2,n) = 2n+3

(And ob 02: (b)

Sap. Sample point S= (H, T)

$$P(H) = \frac{1}{2}$$

(iand ob 03: (a)

Dataset	
Data 1	20
Data 2	15
Data 3	16
Data 4	11
Data 5	10
Data G	\ 6

in merannanged bonn;

Dataget	
Pata 5	10
Data ·4	11
Data 2	15
Data G	16
Data 3	16
Data1	20
total	= 88

Med. 15+16

Median = 15+16 = 15.5

Mode - 16 2

(An) ob 03: (b)

Googal -> 10100

Groog of plex-> (1010)100

cropyol con can be debine by in bonn et 10100 and googalplex can be deline in bonn et 1010100

(Ans) of 01:(b)

The samples is born dice . Trolling; {1,2,3,4,5,6}

it all six mumbers were regually likely to appear, then i may have any number brown the diere roll. For say, Tean have I on 2 on 3 on 4 on 5 on G. Henre the probability will be like same. Like;

P(1)=p(2)=p(3)=p(4)=p(5)=p(6).

As the diecis nolling bon 1 time,

P(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1

(An) ob 01: (a)

sample space: {1,2,3,4,5,6}

prime number set: { 2,3,5}

number of sample set = 6 number of prime mamber's set = 3

P (prime-number) = 3 = 1

so probability of getting a prime number: 1