

TTT4120 Digital Signal Processing Fall 2017

Lecture: Discrete Fourier Transform for Filtering and Frequency Analysis

Prof. Stefan Werner stefan.werner@ntnu.3no Office B329

> Institutt for elektronikk og telekommunikasjor © Stefan Werner

Lecture in course book*

- Proakis, Manolakis Digital Signal Processing, 4th Ed.
 - 7.3.1 Use of DFT in linear filtering
 - 7.3.2 Filtering of long sequences (overlap and add method)
 - 7.4 Frequency analysis using DFT

*Level of detail is defined by lectures and problem sets

Preliminary questions

• The discrete-time Fourier transform (DTFT) allows us to perform frequency analysis of signals and filtering of signals

$$X(\omega)$$
, $Y(\omega)$, and $H(\omega)$

• What practical problems arise when applying the DTFT for these tasks?

3

Contents and learning outcomes

- Linear filtering using discrete Fourier transform (DFT)
- Filtering of long sequences (overlap-add)
- Frequency analysis using DFT

• Remember (Lecture 3):

$$x[n]$$
 $X(\omega)$
 $y[n] = h[n] * x[n]$
 $Y(\omega) = H(\omega) X(\omega)$

- Convolution can sometimes be computationally demanding
- If we know $X(\omega)$ and $H(\omega)$, we can obtain y[n] from

$$y[n] = \mathcal{F}^{-1}{Y(\omega)} = \mathcal{F}^{-1}{H(\omega) X(\omega)}$$

- Conceptually simpler
- How to implement these calculations on a computer?

Ę

Linear filtering using DFT...

• DFT can be implemented efficiently on a computer

$$x[n] \longrightarrow h[n] \qquad y[n] = h[n] * x[n]$$

$$\uparrow ?$$

$$Y(\omega_k) = H(\omega_k) X(\omega_k)?$$

- Can compute $X(k) = DFT_N\{x[n]\}$ and $H(k) = DFT_N\{h[n]\}$
- Convenient if y[n] could be obtained from

$$y[n] = IDFT_N{Y(k)} = IDFT_N{H(k) X(k)}$$

• Not true in general but we investigate when it can be done

6

• Product of two DFTs corresponds to circular convolution

$$x_1[n] \bigotimes_N x_2[n] \stackrel{\mathrm{DFT}_N}{\longleftrightarrow} X_1(k) X_2(k)$$

- Not useful to compute output y[n] of linear filter h[n]
- Assume finite-duration input sequence x[n] and impulse response h[n], i.e.,

$$x[n] = 0, n < 0$$
 and $n \ge L$
 $h[n] = 0, n < 0$ and $n \ge M$

• Output y[n] can be calculated

$$y[n] = \sum_{n=0}^{N-1} h(k)x[n-k] \stackrel{\mathcal{F}}{\leftrightarrow} Y(\omega) = H(\omega)X(\omega)$$

Linear filtering using DFT...

• Output has finite duration M + L - 1

$$y[n] = 0, n < 0 \text{ and } n \ge M + L - 1$$

• We know from before that we can restore spectrum $Y(\omega)$ from its sampled spectrum $Y(\omega_k)$, k = 0,1,...N-1, if

$$N \ge M + L - 1$$

∴ DFT of size $N \ge M + L - 1$ is required to uniquely represent y[n] in frequency domain

• Remember from last lecture, if $N \ge M + L - 1$, $y_p[n] = y[n]$ for $0 \le n \le N - 1$

9

Linear filtering using DFT...

• In interval $0 \le \omega \le 2\pi$, take N equidistant samples,

$$\begin{split} Y(\omega_k) &= Y(\omega)|_{\omega = \frac{2\pi k}{N}} = H(\omega)X(\omega)|_{\omega = \frac{2\pi k}{N}}, \ k = 0, \dots, N-1 \\ \Rightarrow & Y(k) = H(k)X(k), k = 0, \dots, N-1 \\ & N\text{-point DFT} \quad N\text{-point DFT} \\ & \text{of } h[n] \qquad \text{of } x[n] \end{split}$$

• Since x[n] and h[n] have duration less than $N \Rightarrow$ need to pad sequences with zeros to increase lengths to $N \ge M + L - 1$

$$x[n] = \{x[0], x[1], \dots, x[L-1], \underbrace{0, \dots, 0}_{N-L} \}$$

$$h[n] = \{h[0], h[1], \dots, h[M-1], \underbrace{0, \dots, 0}_{N-M} \}$$

• Output sequence can now be computed as

$$y[n] = IDFT_N\{Y(k)\} = IDFT_N\{H(k)X(k)\}$$
$$= IDFT_N\{DFT_N\{h[n]\} \cdot DFT_N\{h[n]\}\}$$

• Note that choosing N < M + L - 1 will lead to time-domain aliasing $(h[n] \bigotimes_N x[n] \neq h[n] * x[n])$

11

Linear filtering using DFT...

- Example 1: Given $x[n] = \{\underline{1}, 2, 2, 1\}$, and $h[n] = \{\underline{1}, 2, 3\}$. Which of the following calculations provide us with correct output sequence y[n]?
- 1. $y[n] = IDFT_4\{DFT_4\{x[n]\} \cdot DFT_4\{h[n]\}\}$
- 2. $y[n] = IDFT_3\{DFT_3\{x[n]\} \cdot DFT_3\{h[n]\}\}$
- 3. $y[n] = IDFT_{16} \{ DFT_{16} \{ x[n] \} \cdot DFT_{16} \{ h[n] \} \}$
- 4. $y[n] = IDFT_6\{DFT_6\{x[n]\} \cdot DFT_6\{h[n]\}\}$

```
Matlab
N = 4; % Try different N
x = [1,2,2,1];
H = [1,2,3];
y1 = ifft(fft(h,N)).*fft(x,N),N)
y2 = conv(x,h)
```

• Example 2: When does frequency-domain filtering outperform time-domain filtering?

Assume that both x[n] and h[n] have length L

13

Filtering of long sequences

$$\{...,x[0],x[1],x[2],...,x[1000],x[1001],...\}$$

$$X(k)$$

$$\{...,y[0],y[1],y[2],...,y[1000],y[1001],...\}$$

$$Y(k) = X(k)H(k)$$

- Assume that input sequence x[n] is extremely long
- All N' input samples are required before we can perform DFT
- What are the implications on memory requirements and processing delay?
- Extreme case of real-time processing (no beginning or end)!

Filtering of long sequences...

- All N' input samples are required before we can perform DFT
 ⇒ Delay before output is produced increases with N'
- We need a method that can filter long sequences in time-domain that is memory- and delay-efficient
- Remember the *additivity property* of convolution

$$y[n] = h[n] * (x_1[n] + x_2[n])$$

$$= h[n] * x_1[n] + h[n] * x_2[n]$$

$$= y_1[n] + y_2[n]$$

15

Filtering of long sequences...

Strategy:

- 1. Divide input sequence x[n] into non-overlapping blocks $x_m[n]$ each of length L
- 2. Filter each input block $x_m[n]$ to produce output block $y_m[n]$
- 3. Combine outputs: $y[n] = \sum_{m} y_m[n]$
- If length of h[n] is M, the length of y_m[n] is L + M 1
 ⇒ last M 1 values of y_{m-1}[n] added to beginning of y_m[n]

Filtering of long sequences...

• Filtering using *N*-point DFT requires zero-padding of sequences $x_m[n]$ and h[n]

17

Filtering of long sequences...

Steps of overlap-add:

- 1. Divide x[n] into non-overlapping blocks $x_m[n]$ of length L
- 2. Pad h[n] with zeros to length $N \ge M + L 1$
- 3. Compute $H(k) = DFT_N \{h[n]\}, k = 0, ..., N 1$
- 4. For each block *m*:
 - 4.1 Pad $x_m[n]$ to with zeros to length $N \ge M + L 1$
 - 4.2 Compute $X_m(k) = DFT_N \{x_m[n]\}, k = 0, ..., N-1$
 - 4.3 Multiply $Y_m(k) = H(k)X_m(k), k = 0, ..., N 1$
 - 4.4 Compute $y_m[n] = IDFT_N \{X_m(k)\}, n = 0, ..., N 1$
- 5. Form y[n] by overlapping and adding the last M-1 values of $y_{m-1}[n]$ and the first M-1 values of $y_m[n]$

Filtering of long sequences...

Matlab M = 2000; % Try different N x = rand(1,1e6); h = rand(1,M); y1 = fftfilt(h,x); y2 = filter(h,1,x);

19

Frequency analysis

- DTFT: $X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
- In practice x[n] needs to have finite duration
 ⇒ Spectrum X(ω) approximated from a finite data record
- How does the approximation, $\hat{X}(\omega)$, depend on the number of available samples?

Frequency analysis...

• Limiting the number of samples is the same as multiplying original sequence x[n] by a window w[n]

$$\hat{x}[n] = x[n]w[n]$$

where

$$w[n] = \begin{cases} 1 & \text{for } 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$$

21

Frequency analysis...

• Multiplication in time-domain corresponds to

$$\hat{X}(\omega) = X(\omega) * W(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) W(\omega - \theta) d\theta$$

· Using DFT we would get

$$\hat{X}(k) = \sum_{n=0}^{N-1} \hat{x}[n] e^{-\frac{j2\pi k}{N}n} = \sum_{n=0}^{N-1} x[n] e^{-\frac{j2\pi k}{N}n}$$

$$= \hat{X}(\omega)\big|_{\omega = \frac{2\pi k}{N}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) W\left(\frac{2\pi k}{N} - \theta\right) d\theta$$

Frequency analysis...

• Example: $x[n] = \cos 0.2\pi n$ for N = 2048 and L = 25

Matlab N = 2048; L = 25; n = (0:N-1); k = (-1:2/N:1-2/N); wn = [(L-n) > 0]; x = cos(0.2*pi*n); x_ = wn.*x; plot(k,abs(fftshift(fft(x_hat,N))))

23

Frequency analysis...

• Example: $x[n] = \cos 0.2\pi n + \cos 0.22\pi n + \cos 0.6\pi n$

Frequency analysis ...

- Windowing distorts the signal:
 - Spectrum peaks are smoothened out
 - Sidelobes are causing spectral leakage
- Increasing the window length, increases resolution
- Width of main lobe of rectangular window $4\pi/L$
- Use different windows to reduce spectral sidelobes
 - Width of main lobe is increasing when compared to rectangular window

25

Frequency analysis ...

• Different window types, L = 61

• Frequency response for different window types Frequency response for

Frequency analysis...

• Revisiting: $x[n] = \cos 0.2\pi n + \cos 0.22\pi n + \cos 0.6\pi n$ (Hamming window)

Frequency analysis ...

- Increasing the window length, increases resolution
- Sidelobes are causing spectral leakage
- Width of main lobe versus sidelobe suppression
 - Use of different windows

Summary

- Today we discussed:
 - Filtering and frequency analysis using the DFT
- Next time:
 - Fast Fourier transform (FFT)