Data Structures and Algorithms

Graphs and BFS II

Lecture 15:

Department of Computer Science & Technology United International College

Shortest Path Recording

- BFS we saw only tells us whether a path exists from source s, to other vertices v.
 - It doesn't tell us the path!
 - We need to modify the algorithm to record the path
- How can we do that?
 - Note: we do not know which vertices lie on this path until we reach v!
 - Efficient solution:
 - Use an additional array pred[0..n-1]
 - Pred[w] = v means that vertex w was visited from v

BFS + Path Finding

```
Algorithm BFS(s)
    for each vertex v
        do flag(v) := false;
2.
                                               initialize
            pred[v] := -1;
3.
                                               all pred[v] to -1
4. Q = \text{empty queue};
5. flag[s] := true;
6. enqueue(Q, s);
    while Q is not empty
7.
       do v := dequeue(Q);
8.
9.
           for each w adjacent to v
               do if flag[w] = false
10.
                     then flag[w] := true;
11.
                                                Record where
                           pred[w] := v;
12.
                                                you came from
                           enqueue(Q, w)
13.
```

Example

Visited Table (T/F)

(' '	' /	
0	F	•
1	F	•
2	F	-
3	F	
4	F	
5	F	-
6	F	•
7	F	•
8	F	-
9	F	-

Pred

Initialize visited table (all False)

Initialize Pred to -1

 $Q = \{ \}$

Initialize **Q** to be empty

Adjacency List

Visited Table (T/F)

		•	
0	F		
1	F		
2	T		•
3	F		-
4	F		-
5	F		-
6	F		•
7	F		•
8	F		-
9	F		-
		P	rec

Flag that 2 has been visited.

Place source 2 on the queue.

Adjacency List

Visited Table (T/F)

			- /
0	F		-
1	Т		2
2	Т		•
3	F		•
4	Т		2
5	F		-
6	F		-
7	F		•
3	Т		2
9	F		-
		P	rec

 $\mathbf{Q} = \{ 2 \} \rightarrow \{ 8, 1, 4 \}$

Dequeue 2.

Place all unvisited neighbors of 2 on the queue

Mark neighbors as visited.

Record in Pred that we came from 2.

$$\mathbf{Q} = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}$$

Dequeue 8.

- Place all unvisited neighbors of 8 on the queue.
- Notice that 2 is not placed on the queue again, it has been visited!

Visited Table (T/F)

Mark new visited neighbors.

Record in Pred that we came from 8.

$$\mathbf{Q} = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}$$

Dequeue 1.

- Place all unvisited neighbors of 1 on the queue.
- Only nodes 3 and 7 haven't been visited yet.

Visited Table (T/F)

0	T		8
1	T		2
2	T		-
3	Т		1
4	Т		2
5	F		-
6	F		-
7	T		1
8	Т		2
9	T		8
		P	rec

Mark new visited neighbors.

Record in Pred that we came from 1.

Visited Table (T/F)

		_	
0	Т		8
1	Т		2
2	Т		-
3	Т		1
4	Т		2
5	F		-
6	F		-
7	Т		1
8	Т		2
9	Т		8
		P	rec

 $\mathbf{Q} = \{4, 0, 9, 3, 7\} \rightarrow \{0, 9, 3, 7\}$

Dequeue 4.

4 has no unvisited neighbors!

$$\mathbf{Q} = \{ 0, 9, 3, 7 \} \rightarrow \{ 9, 3, 7 \}$$

Dequeue 0.

0 has no unvisited neighbors!

Visited Table (T/F)

		_	
0	Т		8
1	Т		2
2	Т		-
3	Т		1
4	Т		2
5	F		
6	F		-
7	Т		1
8	Т		2
9	T		8
		P	rec

$$\mathbf{Q} = \{ 9, 3, 7 \} \rightarrow \{ 3, 7 \}$$

Dequeue 9.

9 has no unvisited neighbors!

$$\mathbf{Q} = \{3, 7\} \rightarrow \{7, 5\}$$

Dequeue 3.

place neighbor 5 on the queue.

Visited Table (T/F)

T		8
		٥
T		2
Т		-
Т		1
Т		2
Т		3
F		-
7		1
Т		2
Т		8
	T T F T	T T F T

Mark new visited vertex 5.

Record in Pred that we came from 3.

Adjacency List

Visited Table (T/F)

0	Т		8	
1	Т		2	
2	Т		-	
3	Т		1	
4	Т		2	
5	Т		3	
6	Т		7	
7	Т		1	
8	Т		2	
9	Т		8	
		P	rec	

Mark new visited vertex 6.

Record in Pred that we came from 7.

Q =	{ 7	', 5	} —	→ { 5,	, 6 }
-----	-----	------	-----	--------	-------

Dequeue 7.

place neighbor 6 on the queue.

Visited Table (T/F)

0	Т		8
1	Т		2
2	Т		-
3	Т		1
4	T		2
5	Т		3
6	T		7
7	T		1
8	T		2
9	Т		8
		P	rec

$$Q = \{5, 6\} \rightarrow \{6\}$$

Dequeue 5.

no unvisited neighbors of 5.

Visited Table (T/F)

0	T		8	
1	Т		2	
2	Т		-	
3	Т		1	
4	Т		2	
5	Т		3	
6	T		7	
7	T		1	
8	Т		2	
9	Т		8	
		P	rec	l

$$Q = \{6\} \rightarrow \{\}$$

Dequeue 6.

no unvisited neighbors of 6.

BFS Finished

Adjacency List

Visited Table (T/F)

		`		,
0	Т		8	
1	Т		2	
2	T		ı	
3	Т		1	
4	T		2	
5	T		3	
6	T		7	
7	T		1	
8	Т		2	
9	T		8	
		P	rec	ď

$$Q = \{ \}$$

STOP!!! Q is empty!!!

Pred now can be traced backward to report the path!

Path Reporting

nodes visited from

162		V
	0	8
	1	2
	2	-
	3	1
	4	2
	5	3
	6	7
	7	1
	8	2
	9	8

Recursive algorithm

Algorithm Path(w)

- 1. if $pred[w] \neq -1$
- 2. then
- 3. Path(pred[w]);
- 4. output w

Try some examples, report path from s to v:

Path(0) ->

Path(6) ->

Path(1) ->

The path returned is the shortest from s to v (minimum number of edges).

BFS Tree

• The paths found by BFS is often drawn as a rooted tree (called BFS tree), with the starting vertex as the root of the tree.

BFS tree for vertex s = 2

Question: What would a "level" order traversal tell you?

Record the Shortest Distance

```
Algorithm BFS(s)
    for each vertex v
        do flag(v) := false;
            pred[v] := -1; d(v) = \infty;
3.
4. Q = \text{empty queue};
   flag[s] := true; d(s) = 0;
5.
6. enqueue(Q, s);
    while Q is not empty
7.
       do v := dequeue(Q);
8.
           for each w adjacent to v
9.
               do if flag[w] = false
10.
                     then flag[w] := true;
11.
                d(w)=d(v)+1; pred[w] := v;
12.
13.
                           enqueue(Q, w)
```


Application of BFS

 One application concerns how to find connected components in a graph

- If a graph has more than one connected components, BFS builds a BFS-forest (not just BFS-tree)!
 - Each tree in the forest is a connected component.