Fundamentos de IA - Planejamento - Prof Edjard Mota Estendendo a estrutura de planejamento STRIPS para um mundo de blocos com tamanhos heterogêneos e restrições espaciais: uma abordagem de programação lógica

Tabela de Conceitos e Representação

Conceito	STRIPS	Prolog es- tendido	Proposta de mo- delo NuSMV	Justificativa para projeto NuSMV
Block Properties	block(X)	size(X, W)	DEFINE size_a := 1; DEFINE size_b := 2; DEFINE size_c := 3;	Codifica dimensões físicas imutáveis como constantes de tempo de compilação, permitindo representar blocos de tamanhos variados (1, 2, 3) para maior flexibilidade e eficiência, evitando variáveis de estado.
Table Representation	lugar(N)	table_slot(N)	<pre>DEFINE table_slot := {06};</pre>	Estabelece uma grade fixa de 0 a 6 como conjunto constante, facilitando o raciocínio sobre posições absolutas e ocupação espacial, superando a abstração do STRIPS.
Block Position	on(Block, Object)	<pre>pos(Block, table(X)) or pos(Block, on(OtherBlock))</pre>	<pre>VAR pos_C : {table(0)table(6), on(A), on(B), on(C)}; VAR pos_A : {table(0)table(6), on(B), on(C)};</pre>	Permite rastrear posições absolutas na mesa ou relativas a múltiplos blocos (A, B, C), resolvendo a limitação relacional do on/2 e suportando cenários complexos com vários objetos.
Clear Status	clear(Object)	clear(Block)	VAR clear_C : boolean; VAR clear_A : boolean; VAR clear_B : boolean;	Representa o estado de desobstrução por bloco de forma binária, adaptando-se a múltiplas interações e pré-condições de mobilidade, como exigido pelo operador move.
Stability Constraint	Não representado	<pre>size(Block1, W1), size(Block2, W2), W1 <= W2</pre>	<pre>DEFINE stability_rule := (size(C) <= size(A) & size(A) <= size(B));</pre>	Garante estabilidade ao limitar a largura do bloco superior à do inferior em empilhamentos múltiplos, corrigindo a ausência de propriedades físicas no STRIPS.
Spatial Occupancy	Não representado	occupies(Block, Start, End)	VAR occupied_slots : array[06] of boolean; VAR occupied_by : array[06] of {none, A, B, C};	Registra ocupação de slots e proprietário (A, B, C) na grade, permitindo verificar disponibilidade contígua para blocos largos e rastrear alocações, essencial para restrições espaciais.
Action Definition	move(Block, From, To)	<pre>can(move(Block, From, To), [clear(Block), clear(To), on(Block, From)])</pre>	<pre>DEFINE move_action := (pos_C = table(2) & clear_C & forall(S in {22+size(C)-1}, is_free(S)));</pre>	Define ações com pré-condições espaciais e de mobilidade, expandindo o esquema tripartite do STRIPS para incluir verificação de espaço livre na mesa.
State Transition	adds/move(X,From,To deletes/move(X,From	•	<pre>XNEXTMoTampied_slots) := update_occupied(pos_C, size_C); NEXT(clear_A) := update_clear(pos_A);</pre>	Atualiza dinamicamente ocupação e status de desobstrução após movimentos, refletindo transições espaciais e lógicas no ambiente.

Conceito	STRIPS	Prolog estendido	Proposta de mo- delo NuSMV	Justificativa para projeto NuSMV
Goal Representa- tion	[on(a,b), clear(a)]	<pre>goal_state([on(a,b) clear(a)])</pre>	<pre>,SPEC AG (on_goal_state => goal_reached); SPEC EF (pos_C = on(A));</pre>	Especifica objetivos como propriedades verificáveis e estados futuros desejados, integrando planejamento com verificação de modelo em NuSMV.
Environment Constraints	Não representado	max_height(N)	<pre>DEFINE max_height := 3; DEFINE max_width := 6;</pre>	Impõe restrições ambientais como altura máxima e largura total da mesa, atendendo a limitações implícitas nos cenários e garantindo viabilidade física.
Initial State	<pre>[clear(2), clear(4), on(a,1)]</pre>	<pre>initial_state([clea clear(4), on(a,1)])</pre>	r(N)T(occupied_slots) := {false, false, false, false, false, false, false}; INIT(pos_C) := table(1);	Define um estado inicial explícito, permitindo simulações consistentes e rastreamento desde o início, superando a abstração inicial do STRIPS.
Error Handling	Não representado	error_check(move(X,	FDEE[NE) pror_condition := (pos_C = on(C));	Incorpora verificação de erros (ex.: movimento inválido como sobre si mesmo), aumentando a robustez do modelo.
Temporal Consistency	Não representado	time_step(T)	VAR time : 0100; NEXT(time) := time + 1;	Adiciona uma dimensão temporal para rastrear a sequência de ações, essencial para planejamento dinâmico e análise de regressão.