Fine Control of Demand in Haskell

Bill Harrison, Tim Sheard, & James Hook

Introducing "Phugs"

Programatica Hugs:

- 1. First Haskell implementation to meet the rigorous, internationally-recognized WSHI* standard
- 2. Uses Programatica front-end pfe
- 3. Ex:

```
module Phugs where
  fac n = if n==0 then 1 else n*(fac (n-1))
  odd n = if n==0 then False else (even (n-1))
  even n = if n==0 then True else (odd (n-1))
  topLevel = odd (fac 3)
```

^{* &}quot;World's Slowest Haskell Implementation"

Fine Control of Demand in Haskell

- 1. Functional languages typically have mixed evaluation—i.e., neither completely lazy nor completely eager
 - (a) if-then-else in ML/Scheme, etc.
 - (b) Features such as pattern-matching, guards, etc., in Haskell
- 2. "Textbook" language semantics tend to model pure, (i.e., not mixed) evaluation strategies
- 3. Question: But just how do the semantics of real languages with messy, mixed evaluation relate to these textbook examples?

Goals

Previous denotational approaches to Haskell compile away "hard stuff" (nested patterns,...) into simpler language

- 1. Resulting simplified language is susceptible to standard denotational description
- 2. However, such semantics
 - (a) are non-compositional
- (b) involve semantically-tricky fresh variable generation; these require specialized semantic setting beyond usual CPO semantics

Want to use standard techniques from denotational semantics to produce a semantics for all of Haskell98

- 1. Features described here cover "fine control of demand"
- 2. Not addressing overloading or the IO monad today

"Fine Control of Demand?"

data Tree = T Tree Tree | S Tree | R Tree | L

1. (\ (T (S x) (R y))
$$\rightarrow$$
 L) (T L (R L)) \rightarrow \perp

2. (\
$$\sim$$
(T (S x) (R y)) -> L) (T L (R L)) ---> L

3. (\
$$\sim$$
(T (S x) (R y)) -> x) (T L (R L)) ---> \perp

4. (\
$$\sim$$
(T \sim (S x) (R y)) -> y) (T L (R L)) ---> L

5. (\
$$\sim$$
(T (S x) \sim (R y)) -> y) (T L (R L)) ---> \perp

Methodology

Initially, we constructed a number of elegant, compelling categorical semantics on paper:

The idea: extend standard CCC translations of λ -calculus to Haskell.

Methodology (cont'd)

... unfortunately these "pencil and paper" semantics were also:

Although compelling, etc., these attempts failed. Why?

The interaction of the

Upshot: automated approach was, if not strictly necessary, then certainly extremely useful

Overview

- 1. Semantic setting
- 2. Patterns
- 3. Expressions
- 4. Bodies (i.e., guarded expressions)
- 5. Declarations
- 6. Mutual recursion, let binding, and where clauses
- 7. Summation

Calculational Semantics for Haskell

Scalar, function, and structured data values; Environments bind names to values

```
data V = Z Integer | FV (V -> V) | Tagged Name [V] type Env = Name -> V
```

Meanings for expressions, patterns, bodies, and declarations

```
mE :: E \rightarrow Env \rightarrow V \qquad mB :: B \rightarrow Env \rightarrow Maybe V \\ mP :: P \rightarrow V \rightarrow Maybe [V] \qquad mD :: D \rightarrow Env \rightarrow V
```

Semantic Setting

Rather than giving an explicitly categorical or domain-theoretic treatment, assume existence of certain basic semantic operators:

Function composition (diagrammatic)

$$(>\!\!>\!\!>)::(a\to b)\to (b\to c)\to a\to c$$

$$f>\!\!>\!\!> g=g\circ f$$

Currying

sharp :: Int
$$\rightarrow$$
 [V] \rightarrow (V \rightarrow V) \rightarrow V sharp 0 vs beta = beta (tuple vs) sharp n vs beta = FV (λ v . sharp (n-1) (vs++[v]) beta)

Semantic "seq"

semseq ::
$$V \rightarrow V \rightarrow V$$

semseq x y = case x of (Z _) \rightarrow y ;
 $(FV _-) \rightarrow y$;
 $(Tagged _- _) \rightarrow y$

Function application

app ::
$$V \rightarrow V \rightarrow V$$
 app (FV f) $x = f x$

Domains are pointed

bottom :: a bottom = undefined

Least fixed points exist

fix ::
$$(a \rightarrow a) \rightarrow a$$

fix $f = f (fix f)$

Semantic Setting (cont'd)

Semantic operators for pattern-matching:

```
    Purification: the "run" of Maybe monad

 purify :: Maybe a \rightarrow a
 purify (Just x) = x
 purify Nothing = bottom

    Kleisli composition (diagrammatic)

 (\diamond) :: (a \rightarrow Maybe b) \rightarrow (b \rightarrow Maybe c) \rightarrow a \rightarrow Maybe c
f \diamond g = \lambda \times . (f \times) \star g
– Alternation: "app (fatbar m1 m2) v" similar to "case v of { m1 ; m2 }"
 (\parallel) :: (a \rightarrow \mathsf{Maybe} \ \mathsf{b}) \rightarrow (a \rightarrow \mathsf{Maybe} \ \mathsf{b}) \rightarrow (a \rightarrow \mathsf{Maybe} \ \mathsf{b})
   f \parallel g = \lambda \times . (f \times) 'fb' (g \times)
              where fb :: Maybe a \rightarrow Maybe a \rightarrow Maybe a
                     Nothing 'fb' y = y
                     (Just v) 'fb' y = (Just v)
```

Nested Pattern Language P

N.b., this abstract syntax is representative of Haskell's patterns, but not exhaustive.

The "fringe of a pattern" are its variables in order of occurrence.

E.g.,
$$[x,y,u,v]$$

(\sim) shifts matching from binding to evaluation

Consider the following Haskell expressions for datatype

data Tree = T Tree Tree | R Tree | L

Here, match failure occurs at binding-time of x & y:

```
case (T L L) of \{ (T (R x) y) \rightarrow y \} ---fails
```

Match failure occurs (if at all) at evaluation-time of x & y:

```
case (T L L) of { (T \sim(R x) y) -> y } ---produces L case (T L L) of { (T \sim(R x) y) -> x } ---fails
```

Binding-time match failure is modelled by Nothing, and evaluation-time match failure by binding x to bottom

Semantics of P: (mP :: V -> Maybe [V])

```
mP :: P -> V -> Maybe [V]
mP (Pvar x) v
                                          = Just [v]
mP (Pconst i) (Z j)
                                          = if i==j then Just [] else Nothing
mP Pwildcard v
                                          = Just []
mP (Pnewdata n p) v
                                          = mP v
mP (Pcondata n ps) (Tagged t vs)
                                          = if n==t then
                                                 stuple (map mP ps) vs
                                            else Nothing
stuple :: [V -> Maybe [V]] -> [V] -> Maybe [V]
stuple [] [] = Just []
stuple (q:qs) (v:vs) = do { v' \leftarrow q v ; vs' \leftarrow stuple qs vs ; Just (<math>v'++vs')
```

Semantics of P (cont'd)

Why does this work? If (mP p v) is Nothing (i.e., a binding-time match failure), then it is converted into a (potential) evaluation-time match failure. That is,

```
(mP \ p \ v) == Nothing \Leftrightarrow (mP \ (\sim p) \ v) == Just[bottom, ..., bottom]
```

Semantics of E: Simple Expressions

N.b., tuples are treated as Tagged values.

Semantics of E: Application and Abstraction

The Haskell98 report [section 3.3] states:

$$\parbox{$p_1\ldots p_n$} > e = \parbox{$x_1\ldots x_n$} > case (x_1,\ldots,x_n) \ of (p_1,\ldots,p_n) \to e$$

Guarded Expressions (aka "bodies" B)

Guarded expressions occur within cases:

```
case e of \{p \mid g1->e1 \dots gn->en \text{ where } \{decls\}; <rest>\} where g1,\dots,gn are boolean expressions.
```

The semantics for B is then:

Case Expressions

The AST for case expressions has the form:

```
Case e [(p1,b1,ds1),...,(pn,bn,dsn)]
```

where pi, bi, and dsi are patterns, bodies, and where-clause bindings, respectively.

The semantics of a "match" (p,b,ds) is defined by a function:

Here, (mwhere rho b ds) is the meaning of "b where ds", and (mwhere rho b []) is simply (mB b rho).

Case Expressions (cont'd)

```
mE :: E -> Env -> V
 mE (Case e ml) rho = mcase rho ml (mE e rho)
 mcase :: Env -> [(P,B,[D])] -> V -> V
 mcase rho ml = (fatbarL $ map (match rho) ml) >>> purify
          where fatbarL :: [V -> Maybe V] -> V -> Maybe V
                fatbarL ms = foldr fatbar (\ _ -> Nothing) ms
Note that unfolding (mcase rho [m1,...,mn]) has the form:
 ( (match rho m1) 'fatbar'
   (match rho mn) 'fatbar' (\ _ -> Nothing)) ) >>> purify
```

If the Nothing branch is reached, then the purify will convert the resulting match failure into bottom. This occurs when the branches of a case have been exhausted.

seq, strict and newtype constructors

```
mE :: E -> Env -> V
-- Miscellaneous Functions
mE (Seq e1 e2) rho = semseq (mE e1 rho) (mE e2 rho)
 -- Strict and Lazy Constructor Applications
mE (ConApp n el) rho = evalL el rho n []
  where
   evalL :: [(E,LS)] -> Env -> Name -> [V] -> V
   evalL [] rho n vs
                                  = Tagged n vs
   evalL ((e,Strict):es) rho n vs =
               semseq (mE e rho) (evalL es rho n (vs ++ [mE e rho]))
   evalL ((e,Lazy):es) rho n vs = evalL es rho n (vs ++ [mE e rho])
-- New type constructor applications
mE (NewApp n e) rho = mE e rho
```

Multi-line function & pattern declarations

Haskell98 Report[Section 4.4.3] defines these by translation into a single case expression:

The general binding form for functions is semantically equivalent to the equation (i.e. simple pattern binding):

$$x = \langle \mathbf{x_1} \dots \mathbf{x_k} \text{--} \text{case} (\mathbf{x_1}, \dots, \mathbf{x_k}) \text{ of } (p_{11}, \dots, p_{1k}) \text{ } match_1$$
 \vdots $(p_{m1}, \dots, p_{mk}) \text{ } match_m$

where the " x_i " are new identifiers.

Use sharp and mcase as in case expressions

Multi-line function & pattern declarations (cont'd)

Compare the translation:

```
x = \langle \mathtt{x_1} \dots \mathtt{x_k} \text{--} \mathsf{case} \ (\mathtt{x_1}, \dots, \mathtt{x_k}) \ \text{of} \ (p_{11}, \dots, p_{1k}) \ match_1 \ \vdots \ (p_{m1}, \dots, p_{mk}) \ match_m
```

with the semantics:

```
mD :: D -> Env -> V
mD (Fun f cs) rho = sharp k [] body
    where
        body = mcase rho (map (\((ps,b,ds) -> (ptuple ps, b,ds)) cs))
        k = length ((\((pl,_,,_)->pl) (head cs)))

mD (Val p b ds) rho = purify (mwhere rho b ds)
```

Using sharp eliminates the need for name generation here

Approach to mutually-recursive let-binding

Mutual recursion and recursive let achieved by combining standard techniques in the following scheme:

let
$$\{ p_1 = e_1 ; \ldots ; p_n = e_n \}$$
 in $e = (\ ``("p_1, \ldots, "p_n)" \rightarrow e) (fix (\ ``("p_1, \ldots, "p_n)" \rightarrow (e_1, \ldots, e_n)))$

- 1. Recursion resolved with explicit fix,
- 2. Pattern-matching makes abstractions less-than-lazy—mysterious appearances of (\sim) to recover laziness,
- 3. Both letbind and mwhere are defined using the scheme above.

Comparing the semantics to Hugs

```
e1 = seq ((\setminus (Just x) y \rightarrow x) Nothing) 3 e4 = case 1 of
e2 = seq ((\setminus (Just x) \rightarrow (\setminus y \rightarrow x)) Nothing) 3
                                                                x \mid x==z \rightarrow (case 1 of w \mid False \rightarrow 33)
e3 = (\ ^{(x, Just y)} \rightarrow x) (0, Nothing)
                                                                      where z = 1
                                                                v -> 101
e5 = case 1 of
                                                          e6 = let fac 0 = 1
           x \mid x==z \rightarrow (case 1 of w \mid True \rightarrow 33)
                                                                    fac n = n * (fac (n-1))
                  where z = 2
                                                               in fac 3
           y -> 101
Semantics> mE e1 rho0
                                     Hugs> e1
Semantics> mE e2 rho0
                                     Hugs> e2
    Program error: {undefined}
                                         Program error: {e2_v2550 Maybe_Nothing}
Semantics> mE e3 rho0
                                     Hugs> e3
    Program error: {undefined}
                                        Program error: {e3_v2558 (Num_fromInt instNum_v35 0, Maybe_Nothing)
Semantics> mE e4 rho0
                                     Hugs> e4
    Program error: {undefined}
                                          Program error: {e4_v2562 (Num_fromInt instNum_v35 1)}
Semantics> mE e5 rho0
                                     Hugs> e5
                                          101
    101
Semantics> mE e6 rho0
                                     Hugs> e6
                                          6
```

Conclusions

- 1. Semantics is compositional,
- 2. And have not used fresh name generation,
- 3. To do:
 - (a) Finish proving that semantics validates the Haskell98 Report translations
 - (b) Add overloading