

Doc. Version	0.8
Total Page	32
Date	2008/05/15

Product Specification3.5" COLOR TFT-LCD MODULE

MODEL NAME: A035QN02 V7

< □ >Preliminary Specification

< > Final Specification

Note: The content of this specification is subject to change.

© 2008 AU Optronics All Rights Reserved Do Not Copy.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 2/32

8.0

Record of Revision

Version	Revise Date	Page	Content
0.0	2007/12/20		First draft.
0.1	2008/01/24	6	Update drawing
0.2	2008/01/29	6	Update drawing
		10	Add VCOMH/VCOML, Current Consumption Specification
		11, 33	Put "power on/off sequence" to Appendix
0.3	2008/02/01	14	Update SPI Timing Diagram
0.3	2006/02/01	14, 15	Move "SPI timing diagram" forward into "AC timing"
		27, 30	Switch the order of "touch panel" and "reliability"
		30	Update ESD specification
		8	Modify the touch panel pins description
0.4	2008/02/25	15~21	Modify the command register settings
0.4	2006/02/25	29	Update the recommended register settings
		30	Update the power-on sequence
0.5	2008/02/27	6	Update (modify Kapton insulation tape size on FPC)
0.5	2006/02/27	22	Add R/G/B chromaticity
0.6	2008/03/07	22	Update Viewing Angle
0.0	2006/03/07	22	Update R/G/B chromaticity
		8	Modify the LED pins description
		15	Update the serial setting map
0.7	2008/3/21	19	Add R10h register setting description
		28	Update Low Temperature Storage spec
		30	Update the recommended register settings
		6	Update drawing
		8	Update the Pin name of Pin Assignment
		10	Update the Power Voltage
0.8	2008/5/12	13	Update the "Unit" of Reset Pulse Width
		15	Add R12h serial setting map
		19	Add R12h register setting description
		30	Add R12 recommended register settings

3/32

Contents:

<u>A.</u>	<u>General Description</u>	<u>4</u>
<u>В.</u>	<u>Features</u>	4
<u>C.</u>	Physical Specifications	5
<u>D.</u> -		
Ε.	Electrical Specifications	<u>7</u>
	1. Pin Assignment	7
	2. Absolute Maximum Ratings	9
	3. Electrical Characteristics	10
	a. TFT- LCD Panel (GND=0V)	10
	b. Backlight Driving Conditions	10
	4. AC Timing	11
	a. Timing Diagram	11
	b. Timing Condition	13
	c. SPI Timing Diagram	14
	d. SPI Timing Specification	14
	5. Command Register Settings	15
	a. Serial setting map	15
	b. Description of serial control data	16
<u>E.</u>	Optical specifications (Note 1, 2)	23
<u>G.</u>	Touch Screen Panel Specifications	25
	1. Electrical Characteristics	25
	2. Mechanical Characteristics	25
	3. Life test Condition	25
	4. Attention	26
Н.	Reliability Test Items	28
<u>l.</u>	Packing Form	29
<u>J.</u>	Application Note	30
	1. Recommended Register Settings	
	2. Power on/off Sequence	31

Page: 4/32

A. General Description

A035QN02 V7 is an amorphous transmissive type Thin Film Transistor Liquid crystal Display (TFT-LCD). This model is composed of a TFT-LCD, a driver, an FPC (flexible printed circuit), a backlight unit and a touch panel.

B. Features

- 3.5-inch display with integrated resistive type touch panel
- QVGA resolution in RGB stripe dot arrangement
- Single power, DC/DC integrated
- High brightness
- 3-wire register setting
- Interfaces: parallel RGB 18-bit
- Wide viewing angle
- 3-in-1 FPC for LCD signals, backlight LED power and touch panel
- Green design

Page: 5/32

8.0

C. Physical Specifications

NO.	Item	Unit	Specification	Remark
1	Display Resolution	dot	320 RGB (H)×240(V)	
2	Active Area	mm	70.08(H)×52.56(V)	
3	Screen Size	inch	3.5(Diagonal)	
4	Dot Pitch	mm	0.073(H)×0.219(V)	
5	Color Configuration		R. G. B. Stripe	Note 1
6	Color Depth		262K Colors	
7	Overall Dimension	mm	76.9(H) × 63.9(V) × 4.25(T)	Note 2
8	Weight	g	40	
9	Display Mode		Normally White	
10	Gray Level Inversion Direction		6 O'clock	
11	Touch Panel Surface Treatment		AG 8%, hard coating 3H	

Note 1: Below figure shows dot stripe arrangement.

Note 2: Not including FPC. Refer to the drawing next page for further information.

Page: 6/32

D. Outline Dimension

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 7/32

8.0

E. Electrical Specifications

1. Pin Assignment

No.	Pin Name	I/O	Description	Remarks
1	GND	I	Ground	
2	GND	ı	Ground	
3	VCC	I	Power input	
4	VCC	I	Power input	
5	-	-	Don't care	
6	-	-	Don't care	
7	R0	I	Red Data Bit 0 (LSB)	
8	R1	I	Red Data Bit 1	
9	R2	I	Red Data Bit 2	
10	R3	I	Red Data Bit 3	
11	R4	I	Red Data Bit 4	
12	R5	I	Red Data Bit 5 (MSB)	
13	-	-	Don't care	
14	-	-	Don't care	
15	G0	I	Greene Data Bit 0 (LSB)	
16	G1	I	Greene Data Bit 1	
17	G2	I	Greene Data Bit 2	
18	G3	I	Greene Data Bit 3	
19	G4	I	Greene Data Bit 4	
20	G5	I	Greene Data Bit 5 (MSB)	
21	-	-	Don't care	
22	-	-	Don't care	
23	В0	I	Blue Data Bit 0 (LSB)	
24	B1	I	Blue Data Bit 1	
25	B2	I	Blue Data Bit 2	
26	В3	I	Blue Data Bit 3	
27	B4	I	Blue Data Bit 4	
28	B5	I	Blue Data Bit 5 (MSB)	
29	GND	I	Ground	
30	Dot CLK	I	Dot Data Clock	
31	CS	I	Chip select pin of SPI interface	

Page: 8/32

32	Hsync	I	Horizontal Sync Input
33	Vsync	1	Vertical Sync Input
34	Enable	ı	Data Enable
35	GND	ı	Ground
36	Reset	-	Reset
37	N/C	_	Not Connected
38	SCL	I	Clock input pin of SPI mode
39	SDA	I	Data input pin of SPI mode
40	GND	I	Ground
41	X1	I/O	Touch Panel Right Electrode
42	Y2	I/O	Touch Panel Bottom Electrode
43	X 2	I/O	Touch Panel Left Electrode
44	Y 1	I/O	Touch Panel Top Electrode
45	GND	I	Ground
46	LED-	I	LED Cathode
47	Dummy	-	Dummy
48	LED+	I	LED Anode
49	GND	I	Ground
50	GND	I	Ground

Page: 9/32

8.0

2. Absolute Maximum Ratings

Items	Symbol	Va	lues	Unit	Condition	
items	Syllibol	Min.	Max.	Oilit	Condition	
Power Voltage	VCC	-0.3	4	V		
LED Reverse Voltage	Vr		5	V	One LED	
LED Forward Current	lf		30	mA	One LED, Note 2	

Note 1.If the operating condition exceeds the absolute maximum ratings, the TFT-LCD module may be damaged permanently. Also, if the module operated with the absolute maximum ratings for a long time, its reliability may drop.

Note 2. If LED current exceeds the limit curve, the lifetime will drop dramatically.

Page: 10/32

3. Electrical Characteristics

The following items are measured under stable condition and suggested application circuit.

a. TFT- LCD Panel (GND=0V)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power Supply	VCC	2.8	3.3	3.6	V	
Frame Frequency	f _{Frame}		60		Hz	
Dot Data Clock	DCLK		5		MHz	
Input Signal Voltage	Vi	0		0.2 x VDDIO	V	
input Signal Voltage	VI	0.8 x VDDIO		VDDIO	V	
VCOM High Voltage	VCOMH	3.3		6	V	
VCOM Low Voltage	VCOML	-2.5			٧	
Current Consumption	IVCC		7	10	mA	VCC=3.3V

b. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Supply Current	Ι _L		20		mA	single serial
LED Supply Voltage	V_{L}		19.2		V	single serial
LED Life Time	LL	10,000			Hr	Note 2, 3

Note 1: LED backlight is six LEDs serial type.

- Note 2: The "LED Supply Voltage" is defined by the number of LED at Ta=25 $^{\circ}$ C, I_L=20mA. In the case of 6 pcs LED, V_L=3.2*6=19.2V
- Note 3: The "LED life time" is defined as the time for the module brightness to decrease to 50% of the initial value at Ta=25°C, I_L=20mA
- Note 4: The LED lifetime could be decreased if operating I_Lis larger than 25mA

Page: 11/32

8.0

4. AC Timing

a. Timing Diagram

Page: 12/32

NOTE: The falling edge of HSYNC belongs to blanking period is always behind or equal to the one of VSYNC

Page: 13/32

8.0

b. Timing Condition

Characteristics	Symbol	Min	Тур	Max	Unit
DOTCLK Frequency	f _{DOTCLK}		5.0	7.5	MHz
DOTCLK Period	t _{DOTCLK}	133	200		nSec
Vsync Setup Time	t _{vsys}	20			nSec
Vsync Hold Time	t _{vsyh}	20			nSec
Hsync Setup Time	t _{hsys}	20			nSec
Hsync Hold Time	t _{hsyh}	20			nSec
Phase Difference of Sync	+	0		320	4
Signal Falling Edge	t _{hv}	O		320	t _{dotclk}
DOTCLK Low Period	t _{CKL}	66.5			nSec
DOTCLK High Period	t _{CKH}	66.5			nSec
Data Setup Time	t _{ds}	40			nSec
Data Hold Time	t _{dh}	40			nSec
Reset Pulse Width	t _{RES}	10			uSec
Rise / Fall Time	t _r /t _f	20		100	nSec

Page: 14/32

c. SPI Timing Diagram

Write Mode RW="0"

First Transmission (Register/DC="0")

Address

d. SPI Timing Specification

Device ID

Item	Symbol	Conditions	Min	Typical	Max	Unit
Serial clock frequency	tfclk				15	MHz
Serial clock cycle time	tclk		66.6			nsec
Clock low width	tsl		33.3			nsec
Clock high width	tsh		33.3			nsec
Chip select set up time	tcss		0			nsec
Chip select hold time	tcsh		10			nsec
Chip select high delay time	tcsd		20			nsec
Data set up time	tds		5			nsec
Data hold time	tdh		10			nsec

Page: 15/32

8.0

5. Command Register Settings

a. Serial setting map

					-					1	1	l	1				1	l	
Reg#	Register	RW	D/C	IB15	IB14	IB13	IB12	IB11	IB10	IB09	IB08	IB07	IB06	IB05	IB04	IB03	IB02	IB01	IB00
R	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0
R01h	Driver output	0	1	0	0	*	*	*	*	TB	RL	1	1	1	0	1	1	1	1
110111	[00XX][X0XX]EF			0	0	1	0	1	0	1	0	1	1	1	0	1	1	1	1
Dook	Power control (1)	0	1	*	*	*	*	BT2	BT1	ВТ0	0	*	*	*	*	*	*	*	0
R03h	(9490h)			1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0
R0Ch	Power control (2)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
1.0011	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
R0Dh	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
KODII	(000Ah)			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
R0Eh	Power control (4)	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
KOLII	(3200h)			0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
R10h	Uniformity	0	1	0	0	0	0	0	0	0	0	ENSVIN	1	0	1	1	1	0	0
RIUII	(005Ch)			0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0
R12h	Entry Control	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	IFS	0	0
131211	(0064h)			0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
R16h	Horizontal porch	0	1	XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
KTOIT	(9F86h)			1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0
R17h	Vertical porch	0	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
181711	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
R1Eh	Power control (5)	0	1	0	0	0	0	0	0	0	0	nOTP	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
	(002Dh)			0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	1
R30h	γ control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP12	0	0	0	0	0	PKP02	PKP01	PKP00
	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R31h	γ control (1)	0	1	0	0	0	0	0	PKP32	PKP31	PKP32	0	0	0	0	0	PKP22	PKP21	PKP20
110111	(0200h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
R32h	γ control (1)	0	1	0	0	0	0	0	PKP52	PKP51	PKP52	0	0	0	0	0	PKP42	PKP41	PKP40
110211	(0001h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R33h	γ control (1)	0	1	0	0	0	0	0	PRP12	PRP11	PRP12	0	0	0	0	0	PRP02	PRP01	PRP00
110011	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R34h	γ control (1)	0	1	0	0	0	0	0	PKN12	PKN11	PKN12	0	0	0	0	0	PKN02	PKN01	PKN00
	(0405h)			0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
R35h	γ control (1)	0	1	0	0	0	0	0	PKN32	PKN31	PKN32	0	0	0	0	0	PKN22	PKN21	PKN20
110011	(0202h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0

Page: 16/32

8.0

R36h	γ control (1)	0	1	0	0	0	0	0	PKN52	PKN51	PKN52	0	0	0	0	0	PKN42	PKN41	PKN40
113011	(0707h)			0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1
R37h	γ control (1)	0	1	0	0	0	0	0	PRN12	PRN11	PRN12	0	0	0	0	0	PRN02	PRN01	PRN00
110711	(0006h)			0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
R3Ah	γ control (2)	0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
NOAII	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R3Bh	γ control (2)	0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
NODII	(0003h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

NOTE:

- 1. "*" is for engineering reserved register setting, and please follow the default value.
- 2. The map shows the power-on default values of the LCM.
- 3. Please refer to our recommended register settings section for better performance.

b. Description of serial control data

R01h	Driver output	0	1	0	0	*	*	*	*	ТВ	RL	1	1	1	0	1	1	1	1
	[00XX][X0XX]EF			0	0	1	0	1	0	1	0	1	1	1	0	1	1	1	1

TB: Selects the vertical scanning direction of the display.

When TB = "1", the scanning direction is from top to bottom.

When TB = "0", the scanning direction is from bottom to top.

RL: Selects the horizontal scanning direction of the display.

When RL = "1", the scanning direction is from right to left.

When RL = "0", the scanning direction is from left to right.

Note:

1. When the display surface is upward and the FPC golden finger is toward the right, "top", "bottom", "left" and "right" are defined as in the picture below:

2. Please refer to our recommended register settings section for better performance.

R03h	Power control	0	1	*	*	*	*	BT2	BT1	ВТ0	0	*	*	*	*	*	*	*	0
110311	(9490h)			1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0

17/32

8.0

BT2-0: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power-supply voltage to be used.

AUO

BT2	BT1	ВТ0	V _{GH} output	V _{GL} output	V _{GH} booster ratio	V _{GL} booster ratio
0	0	0	V _{CIX2} x3	- V _{GH} + VCI	6	-5
0	0	1	V _{CIX2} x3	- V _{GH} + V _{CIX2}	6	-4
0	1	0	V _{CIX2} x3	- V _{CIX2}	6	-2
0	1	1	V _{CIX2} x2+VCI	- V _{GH}	5	-5
1	0	0	V _{CIX2} x2+VCI	- V _{GH} + V _{CIX2}	5	-4
1	0	1	V _{CIX2} x2+VCI	- V _{GH} + V _{CIX2} x2	5	-3
1	1	0	V _{CIX2} x2	- V _{GH}	4	-4
1	1	1	VCIX2x2	- V _{GH} +VCI	4	-3

NOTE: Please refer to our recommended register settings section for better performance.

R0Ch	Power control	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VRC2	VRC1	VRC0
Kocii	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VRC[2:0]: Adjust VCIX2 output voltage. The adjusted level is indicated in the chart below VRC2-0 setting.

VRC2	VRC1	VRC0	V _{CIX2} voltage
0	0	0	5.1V
0	0	1	5.3V
0	1	0	5.5V
0	1	1	5.7V
1	0	0	5.9V
1	0	1	6.1V
1	1	0	Reserved
1	1	1	Reserved

NOTE: Please refer to our recommended register settings section for better performance.

R0Dh	Power control	0	1	0	0	0	0	0	0	0	0	0	0	0	0	VRH3	VRH2	VRH1	VRH0
KUDII	(000Ah)			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

VRH3-0: Set amplitude magnification of gamma reference voltage VLCD63. These bits amplify the VLCD63 voltage 1.78 to 3.00 times the Vref voltage set by VRH3-0.

VRH3	VRH2	VRH1	VRH0	V _{LCD63} Voltage
0	0	0	0	Vref x 2.815
0	0	0	1	Vref x 2.905
0	0	1	0	Vref x 3.000

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 18/32

0	0	1	1	Vref x 1.780
0	1	0	0	Vref x 1.850
0	1	0	1	Vref x 1.930
0	1	1	0	Vref x 2.020
0	1	1	1	Vref x 2.090
1	0	0	0	Vref x 2.165
1	0	0	1	Vref x 2.245
1	0	1	0	Vref x 2.335
1	0	1	1	Vref x 2.400
1	1	0	0	Vref x 2.500
1	1	0	1	Vref x 2.570
1	1	1	0	Vref x 2.645
1	1	1	1	Vref x 2.725

NOTE: Please refer to our recommended register settings section for better performance.

R0Eh	Power control	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
KUEII	(3200h)			0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0

VCOMG: When VCOMG = "1", it is possible to set output voltage of VCOML to any level, and the instruction (VDV4-0) becomes available. When VCOMG = "0", VCOML output is fixed to Hi-z level, VCI2 output for VCOML power supply stops, and the instruction (VDV4-0) becomes unavailable.

Set VCOMG according to the sequence of power supply setting flow as it relates with power supply operating sequence.

VDV4-0: Set the alternating amplitudes of VCOM at the VCOM alternating drive.

These bits amplify VCOM amplitude 0.6 to 1.23 times the VLCD63 voltage.

When VCOMG = "0", the settings become invalid.

VDV4	VDV3	VDV2	VDV1	VDV0	VCOMA
0	0	0	0	0	VLCD63 x 0.60
0	0	0	0	1	VLCD63 x 0.63
		: :			Step = 0.03
0	1	1	0	1	VLCD63 x 0.99
0	1	1	1	0	VLCD63 x 1.02
0	1	1	1	1	Reserved
1	0	0	0	0	VLCD63 x 1.05
1	0	0	0	1	VLCD63 x 1.08

Page: 19/32

8.0

		: :			Step = 0.03
1	0	1	0	1	VLCD63 x 1.20
1	0	1	1	0	VLCD63 x 1.23
1	0	1	1	1	Reserved
1	1	*	*	*	Reserved

NOTE: Please refer to our recommended register settings section for better performance.

R10h	Uniformity	0	1	0	0	0	0	0	0	0	0	ENSVIN	1	0	1	1	1	0	0
KTOII	(005Ch)			0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0

ENSVIN:

When ENSVIN = '1', uniformity improvement scheme is enabled.

When ENSVIN = '0', uniformity improvement scheme is disabled.

D12h	Entry Mode	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	IFS	0	0
KIZII	(0064h)			0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0

IFS: Selection for HV SYNC and DEN modes.

IFS	Interface
0	18-bit digital RGB DEN Mode
1	18-bit digital RGB HV SYNC Mode

R16h	Horizontal	0	1	XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
KIOII	(9F86h)			1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0

XL7-0: Set the number of valid pixel per line.

XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	# of pixels per line
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	1	0	3
				:					:
				:					step = 1
				:					:
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1	1	320
1	0	1	*	*	*	*	*	*	reserved

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 20/32

1	1	*	*	*	*	*	*	*	reserved

HBP5-0: Set the delay period from falling edge of HSYNC signal to first valid data.

The pixel data exceed the range set by XL8-0 and before the first valid data will be treated as dummy data.

HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	# of clock cycle of DOTCLK
0	0	0	0	0	0	2
0	0	0	0	0	1	3
0	0	0	0	1	0	4
			•			:
			:			step = 1
			:			:
1	1	1	1	1	0	64
1	1	1	1	1	1	65

R17h	Vertical porch	0	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
KIIII	(0002h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VBP7-0: Set the delay period from falling edge of VSYNC to first valid line.

The line data within this delay period will be treated as dummy line.

VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	# of lines per frame
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2

Page: 21/32

				:				: step = 1 :
1	1	1	0	1	1	1	1	239
1	1	1	1	0	0	0	0	240
1	1	1	1	*	*	*	*	reserved

VCM5 VCM4 VCM3 VCM2 VCM1 VCM0 Power nOTP R1Eh (002Dh)

nOTP: nOTP equals to "0" after power on reset and VCOMH voltage equals to programmed OTP value.

When nOTP set to "1", setting of VCM5-0 becomes valid and voltage of VCOMH can be adjusted.

VCM5-0: Set the VCOMH voltage if nOTP = "1". These bits amplify the VCOMH voltage 0.36 to 0.99 times the VLCD63 voltage by step = 0.01.

NOTE: Please refer to our recommended register settings section for better performance.

Dage	γ control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP12	0	0	0	0	0	PKP02	PKP01	PKP00
R30h	(0000h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R31h	γ control (1)	0	1	0	0	0	0	0	PKP32	PKP31	PKP32	0	0	0	0	0	PKP22	PKP21	PKP20
KSIII	(0200h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
R32h	γ control (1)	0	1	0	0	0	0	0	PKP52	PKP51	PKP52	0	0	0	0	0	PKP42	PKP41	PKP40
Rozii	(0001h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R33h	γ control (1)	0	1	0	0	0	0	0	PRP12	PRP11	PRP12	0	0	0	0	0	PRP02	PRP01	PRP00
Koon	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R34h	γ control (1)	0	1	0	0	0	0	0	PKN12	PKN11	PKN12	0	0	0	0	0	PKN02	PKN01	PKN00
K3411	(0405h)			0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
R35h	γ control (1)	0	1	0	0	0	0	0	PKN32	PKN31	PKN32	0	0	0	0	0	PKN22	PKN21	PKN20

Page: 22/32

	(0202h)			0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
R36h	γ control (1)	0	1	0	0	0	0	0	PKN52	PKN51	PKN52	0	0	0	0	0	PKN42	PKN41	PKN40
KSOII	(0707h)			0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1
R37h	γ control (1)	0	1	0	0	0	0	0	PRN12	PRN11	PRN12	0	0	0	0	0	PRN02	PRN01	PRN00
KS/II	(0006h)			0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

PKP52-00: Gamma micro adjustment register for the positive polarity output.

PRP12-00: Gradient adjustment register for the positive polarity output.

PKN52-00: Gamma micro adjustment register for the negative polarity output.

PRN12-00: Gradient adjustment register for the negative polarity output.

NOTE: Please refer to our recommended register settings section for better performance.

R3Ah	γ control	0	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
KSAII	(0700h)			0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
R3Bh	γ control	0	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
Kabii	(0003h)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

VRP14-00: Adjustment register for amplification adjustment of the positive polarity output.

VRN14-00: Adjustment register for the amplification adjustment of the negative polarity output.

NOTE: Please refer to our recommended register settings section for better performance.

8.0

F. Optical specifications (Note 1, 2)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time							
Rise	Tr	<i>θ</i> =0°	-	10	20	ms	Note 3
Fall	Tf		-	15	25	ms	
Contrast ratio	CR	At optimized viewing angle	150	300	-		Note 5, 6
Viewing Angle							
Тор			35	50	-		
Bottom		CR≧10	40	75	-	deg.	Note 7, 8
Left			45	75	-		
Right			45	75	-		
Brightness	Y _L	θ =0 °	280	350	-	cd/m ²	Note 9
NTSC			50	60		%	
White Chromaticity	Х	<i>θ</i> =0°	0.26	0.31	0.36		
vviille Cilionialicity	у	<i>θ</i> =0°	0.28	0.33	0.38		
R	х	<i>θ</i> =0°	0.58	0.63	0.68		
IX.	у	<i>θ</i> =0°	0.30	0.35	0.40		
G	х	<i>θ</i> =0°	0.30	0.35	0.40		
5	у	<i>θ</i> =0°	0.53	0.58	0.63		
В	х	<i>θ</i> =0°	0.10	0.15	0.20		
	у	<i>θ</i> =0°	0.05	0.10	0.15		

Note 1: Measurement should be performed in the dark room, optical ambient temperature =25 $^{\circ}$ C, and backlight current I_1 =20 mA

Note 2: To be measured on the center area of panel with a field angle of 1°by Topcon luminance meter BM-7, after 10 minutes operation.

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

Note 4. From liquid crystal characteristics, response time will become slower and the color of panel will ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 24/32

become darker when ambient temperature is below 25°C.

Note 5. Contrast ratio is calculated with the following formula.

 $Contrastratio = \frac{Photo \ detector \ output \ when \ LCD \ is \ at \ "White" \ state}{Photo \ detector \ output \ when \ LCD \ is \ at \ "Black" \ state}$

Note 6. White Vi=Vi50 μ 1.5V

Black Vi=Vi50 ± 2.0V

"±" means that the analog input signal swings in phase with COM signal.

"µ" means that the analog input signal swings out of phase with COM signal.

Vi50 :The analog input voltage when transmission is 50%

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 7. Definition of viewing angle: refer to figure as below.

Note 8. The viewing angles are measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 9. Brightness is measured at the center point of the display area.

G. Touch Screen Panel Specifications

1. Electrical Characteristics

ltem		Min.	Max.	Unit	Remark	
Rate DC Volta		7	V			
Resistance	X (Film)	350	950	Ω	At connector	
Resistance	Y (Glass)	Y (Glass) 150 800		2.2	At connector	
Linearity	-1.5%	1.5%		Note 1, test by 250 gf		
Chattering		10	ms	At connector pin		
Insulation Resis	10M		Ω	DC 25V		

Note 1: Measurement condition of Linearity: difference between actual voltage & theoretical voltage is an error at any points. Linearity is the value max. error voltage divided by voltage difference on active area.

2. Mechanical Characteristics

ltem	Min.	Max.	Unit	Remark
Hardness of Surface	3		Н	JIS K-5400
Operation Force (Pen or Finger)		100	gf	Note 1

Note 1: Within "guaranteed active area", but not on the edge and dot-spacer.

3. Life test Condition

ltem	Min.	Max.	Unit	Remark
Notes Life	10 ⁵		words	Note 1, 2
Input Life	10 ⁶		times	Note 1, 3

Note 1: Measurement condition of Operation Force: Within "guaranteed active area". Resistance,

Page: 26/32

Insulation resistance, and operation force should be under 5.2 & 5.3 condition. When user pushes down on the film, resistance between X & Y axis must be equal or lower than $2k\Omega$. Below is test figure.

Note 2: Notes Life test condition (by pen): Notes area for pen notes life test is 10×9 mm. Size of word is 7.5×6.75mm. Word is any A.B.C..... letter. Writing speed is 60mm/s. Center of each word is changed at random in notes area.

Note 3: Input Life test condition(by finger): By silicone rubber tapping at same point. Tapping Load is 200g, and tapping frequency is 5Hz.

4. Attention

Please pay attention for below matters at mounting design of touch panel of LCD module.

- 1. Do not design enclosure pressing the view area to prevent from miss input.
- 2. Enclosure support must not touch with view area.
- 3. Use elastic or non-conductive material to enclosure touch panel.
- 4. Do not bond film of touch panel with enclosure.
- 5. The touch panel edge is conductive. Do not touch it with any conductive part after mounting.
- 6. If user wants to cleaning touch panel by air gun, pressure 2kg/cm2 below is suggested. Not to blow glass from FPC site to prevent FPC peeled off.
- 7. Do not put a heavy shock or stress on touch panel and film surface. Ex. Don't lift the panel by film face with vacuum.

Page: 27/32

- 8. Do not lift LCD module by FPC.
- 9. Please use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning.

 Do not use any organic solvent, acid or alkali liquor.
- 10. Do not pile touch panel. Do not put heavy goods on touch panel.

Recommendation of the cushion area:

Page: 28/32

H. Reliability Test Items

Test items	Remark			
High Temperature Storage	Ta= 85°C			
Low Temperature Storage Ta= -40 °C 240Hrs				
High Temperature Operation Ta= 70 °C				
Low Temperature Operation	ture Operation Ta= -20 °C 240Hrs			
High Temperature & High Humidity	mperature & High Humidity Ta= 60 °C. 90% RH 240Hrs			
Heat Shock	Non-operation			
Floring states Disabours	Contact : +/-4 KV , 20times	Non-operation		
Electrostatic Discharge	AIR : +/-8 KV , 20times	Display surface		
Vibration (With Carton)	0.015G ² /Hz from 5~200Hz	IEC 68-34		
	–6dB/Octave from 200∼500H			
	Height: 66cm			
Drop (With Carton)				
	Low Temperature Storage High Temperature Operation Low Temperature Operation High Temperature & High Humidity Heat Shock Electrostatic Discharge Vibration (With Carton)	Low Temperature Storage High Temperature Operation Low Temperature Operation Ta= -20 ° C High Temperature & High Humidity Ta= 60 ° C. 90% RH Heat Shock -25 ° C~70 ° C, 50 cycle, 2 Contact: +/-4 KV, 20times AIR: +/-8 KV, 20times Random vibration: 0.015G²/Hz from 5~200Hz -6dB/Octave from 200~500Hz Height: 66cm	Low Temperature Storage High Temperature Operation Ta= 70 °C 240Hrs Low Temperature Operation Ta= -20 °C 240Hrs High Temperature & High Humidity Ta= 60 °C. 90% RH 240Hrs Heat Shock -25 °C~70 °C, 50 cycle, 2Hrs/cycle Contact: +/-4 KV, 20times AIR: +/-8 KV, 20times Random vibration: Vibration (With Carton) Vibration (With Carton) Height: 66cm	

Note 1: In the standard conditions, there is no display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 2: Ta: Ambient temperature.

Page: 29/32

8.0

I. Packing Form

TBD

Page: 30/32

8.0

J. Application Note

1. Recommended Register Settings

Register	Setting	Register	Setting
R01	"2AEF"h	R31	"0507"h
R03	"920E"h	R32	"0405"h
R0C	"0002"h	R33	"0007"h
R0D	"000C"h	R34	"0507"h
R0E	"3100"h	R35	"0004"h
R10	"00DC"h	R36	"0605"h
R12	"0064"h	R37	"0103"h
R1E	"00A7"h	R3A	"000F"h
R30	"0304"h	R3B	"000F"h

NOTE:

- 1. The different sequence of registers setting would not affect the normal behavior of LCM.
- 2.Please refer to the POWER ON/OFF sequence section for register setting timing as power-on.

MO

Page: 31/32

2. Power on/off Sequence

Power On

Characteristics	Symbol	Min	Тур	Max	Unit
DOTCLK	tclk-shut	1			clk
Rising edge of RESB to display on				10	frame
1 line: 336 clk	tshut-on			10	iranie
1frame: 244 line			164		0
DOTCLK = 5.0 MHz			164		mSec

Note:

- 1. It is necessary to input DOTCLK before the rising edge of RESB.
- 2. Display starts at 10th falling edge of VSYNC after the rising edge of RESB.

Power Off

Characteristics	Symbol	Min	Тур	Max	Unit
Falling edge of RESB to display off		2		10	frame
1 line: 336 clk	tshut-off	2		10	IIaiiie
1frame: 244 line		20.0			mSec
DOTCLK = 5.0 MHz		32.8			
Input-signal-off to Vcc off	toff-vdd	1			uSec

Note:

- 1. DOTCLK must be maintained at lease 2 frames before the falling edge of RESB.
- 2. If RESB signal is necessary for power down, provide it after the 2-frames-cycle of the power-off period.
- 3. There is no SPI setting during POWER-OFF sequence.