

GOBIERNO DE CHILE MINISTERIO DE OBRAS PUBLICAS DIRECCION GENERAL DE AGUAS

ANTECEDENTES PARA EVALUAR EL IMPACTO ECONÓMICO Y SOCIAL DE UNA NORMA SECUNDARIA DE CALIDAD DE AGUAS EN EL LAGO RANCO, CUENCA DEL RÍO BUENO

INFORME FINAL

REALIZADO POR: UNIVERSIDAD AUSTRAL DE CHILE

> S.I.T. Nº 239 SANTIAGO, MAYO 2011

MINISTERIO DE OBRAS PÚBLICAS

Ministro de Obras Públicas Ingeniero Civil Sr. Hernán de Solminihac Tampier.

> Director General de Aguas Abogado Sr. Matías Desmadryl Lira.

Jefa Departamento de Conservación y Protección de Recursos Hídricos Ingeniero Sra. Mesenia Atenas V.

Inspector Fiscal
Ingeniero Diego San Miguel Cornejo

UNIVERSIDAD AUSTRAL DE CHILE

Jefe de Proyecto Doctor Sr. Stefan Woelfl

Profesionales:

Doctor Sr. Carlos Oyarzún. Doctor Sr. Cristian Duarte Doctor Sr. Luciano Caputo Ing. Sr. José Rodriguez

RESUMEN EJECUTIVO

Este informe final da conocimiento sobre el proyecto %ANTECEDENTES PARA EVALUAR EL IMPACTO ECONÓMICO Y SOCIAL DE UNA NORMA SECUNDARIA DE CALIDAD DE AGUAS EN EL LAGO RANCO, CUENCA DEL RÍO BUENOÎ. Este proyecto consiste en la evaluación crítica de datos limnológicos del lago Ranco, el monitoreo de la columna de agua y sus principales afluentes y efluente, la determinación de la capacidad crítica de nutrientes y fuentes de eutrofización, además de su cuantificación y la propuesta de estudios en el futuro.

La evaluación crítica de la base de datos consistió en la recopilación de datos de los años 2008 y 2009 de la DGA, la evaluación empírica y, con métodos estadísticos, la eliminación de datos dudosos/erróneos. Estos datos se incorporaron en la base de datos de la DGA ya existente del lago Ranco, que ya había sido evaluado en un proyecto anterior. El análisis de los datos mostró incoherencias en varios parámetros y problemas metodológicos. Los parámetros con mayores problemas fueron nitrógeno y fósforo total, amonio y fósforo soluble. En algunos casos los límites de detección fueron muy altos (p.e. fósforo total: 0,2 mgP/L), en otros casos los datos fueron extremadamente altos y estuvieron fuera de rango (> 0,5 mg P/N/L) para ser considerados en el análisis de las generalmente bajas concentraciones presentes en el lago Ranco (p.e. en varios casos la fracción soluble fue mayor que la fracción total. Se detectaron también problemas con los límites de detección, especialmente para amonio y fósforo soluble).

Respecto a los afluentes, se monitorearon 6 ríos (Nilahue, Caunahue, Calcurrupe, Pitreño, Iculpe, Quiman) mensualmente. Se registraron valores altos de N (> 0,1 mgN/L) y P (> 0,02 mgP/L) en los ríos Nilahue, Quimán, Pitreño, indicando un estado contaminado producido principalmente por las descargas de pisciculturas y otras fuentes (p.e. planta de tratamiento).

Para la estimación del aporte de nutrientes por fuentes difusas (uso de suelo), se realizó un análisis para las 13 subcuencas que forman parte de la cuenca del lago Ranco. Sin considerar la superficie del agua presente en la cuenca del Ranco y la

cuenca del lago Maihue, el bosque nativo representa el 46%, seguido por pradera (15%), matorral (16%), bosque renoval (15%), suelo desnudo (5%), nieve (2%) entre otros.

La utilización de suelo para explotación agropecuaria de las comunas de Futrono es 141453 ha. y de la comuna Río Bueno es 172735 ha. Los productos son principalmente hortalizas, entre ellos papas, trigo y legumbres. El ganado bovino es el más importante en ambas comunas, llegando a las 52600 cabezas en la comuna de Futrono y a las 22878 cabezas en la Comuna de Lago Ranco.

Respecto a la exportación de P/N por fuentes difusas se concluyó lo siguiente: Las entradas de nutrientes directamente vía precipitaciones son N-total = 81,41 ton/año y P-total = 7,32 ton/año, las que representan el 13,4 y el 7,2 % de las fuentes difusas en la cuenca del lago Ranco. En contraste, las entradas estimadas de nutrientes vía ríos y esteros son N-total = 533,0 ton/año y P-total = 84,5 ton/año. Las mayores cargas de N-total fueron aportadas por las praderas con el 31%, a pesar de que este uso del suelo representa sólo el 16,0 % de toda la superficie de la cuenca. En el caso del P-total, las mayores cargas provinieron de las superficies de bosques renovales con el 30% y praderas con 18 %, lo que representa el 14,85 y 45,69% de la superficie total de la cuenca, respectivamente. Respecto a fuentes puntuales de contaminación en la cuenca del lago Ranco destacan 4 centros operativos de pisciculturas en tierra y dos centros de balsas jaulas en el lago Ranco.

A través del río Bueno, anualmente salen 70,8 ton de P y 461,4 ton de N. La mayor salida de N y P sucede durante junio, septiembre y octubre con valores aproximadamente de 2 a 4 veces más que lo exportado en otros meses.

Respecto a la carga externa total de P y N provenientes de las fuentes puntuales y difusas identificables en este estudio se puede determinar un aporte de aprox. 160 ton P y 718 ton N al lago Ranco. Estos cálculos coinciden bastante bien con la modelación de la carga externa, usando un modelo predictivo de la literatura, el cual calcula una carga entre 148 y 195 ton P en los aportes al lago Ranco y en consecuencia resultarían en una concentración de P total de 0,0053 mg/L en la columna de agua (es la concentración actual en el lago).

Se calculó la carga crítica para el lago Ranco de 359 ton P (rango 311-399 tonN P) para mantener el lago en condiciones oligotróficas (concentración de P en la columna de agua menor a 0,01 mg/L). En comparación, la carga actual es aprox. 50% de la carga crítica del lago. Esto significa que el lago Ranco mantiene su estado oligotrófico si no se aumenta la carga actual.

Según los valores de los principales parámetros descriptores de la trofía (concentración de nutrientes, concentración de clorofila, transparencia del agua y valores de la productividad primaria) se puede caracterizar al lago Ranco como ambiente generalmente oligotrófico. Los valores físicos y químicos en la columna de agua en las 3 estaciones RE1, RE2 y RE4 monitoreadas en el Lago Ranco fueron generalmente bastante homogéneos y no mostraron diferencias significativas entre las estaciones. En base a los resultados podemos concluir que, en general, las concentraciones de los nutrientes P Total y N total presentan mayor variabilidad entre profundidades que entre estaciones. Adicionalmente se observó que la concentración de la mayoría de los nutrientes durante las 12 campañas mensuales de muestreo, incrementó hacia los estratos más profundos de los lagos.

En el fitoplancton, se observó una variación temporal en el lago, revelando cambios estacionales que coinciden con los patrones generales de sucesión estacional para el lago Ranco y los lagos Nordpatagónicos (Campos 1992), siendo el grupo de las diatomeas el más representativo durante el año.

Respecto a los afluentes monitoreados, se observaron valores altos de N (> 0,1 mgN/L) y P (> 0,02 mgP/L) en los ríos Nilahue, Quimán, Pitreño, indicando un estado contaminado producido principalmente por las descargas de pisciculturas y otras fuentes (p.e. planta de tratamiento).

Para la estimación del aporte de nutrientes por fuentes difusas (uso de suelo), se realizó un análisis para las 13 subcuencas que forman parte de la cuenca del lago Ranco. Sin considerar la superficie del agua presente en la cuenca del Ranco y la cuenca del lago Maihue, el bosque nativo representa el 46%, seguido por pradera (15%), matorral (16%), bosque renoval (15%), suelo desnudo (5%), nieve (2%) entre otros.

Respecto a la exportación de P/N por fuentes difusas se concluyo lo siguiente: Las entradas de nutrientes directamente vía precipitaciones son N-total = 81,41 ton/año y P-total = 7,32 ton/año, lo que representan el 13,4 y el 7,2 % de las fuentes difusas en la cuenca del lago Ranco. En contraste, las entradas de nutrientes vía ríos y esteros son N-total = 533,0 ton/año y P-total = 84,5 ton/año, lo que representan el 86,6 y el 92,8% de las cargas difusas. Las mayores cargas de N-total fueron aportadas por las praderas con el 31%, a pesar de que este uso del suelo representa solo el 16,0 % de toda la superficie de la cuenca. En el caso del P-total, las mayores cargas provinieron de las superficies de bosques renovales con el 30% y praderas con 18 %, que representan el 14,85 y 45,69% de la superficie total de la cuenca.

Respecto a fuentes puntuales de contaminación en la cuenca del lago Ranco destacan 4 centros operativos de pisciculturas en tierra y dos centros de balsas jaulas en el lago Ranco.

INDICE

1. INTRODUCCION	9
2. OBJETIVO DEL ESTUDIO	14
3. Metodología	15
3.1 Evaluación de la base de datos histórica de la DGA para la evaluación de la trof	
balances de nutrientes	•
3.2 Catastro de fuentes emisoras, difusas y puntuales que inciden sobre la condición	
de cada lago	
3.3 Monitoreo del lago Ranco, su efluente y sus afluentes	
3.4. Balance de los nutrientes del lago Ranco	
3.4.1 concepto de balance de nutrientes	
3.4.2 Cálculo del Balance de nutrientes	
3.4.3 Caracterización del aporte de nutrientes al lago	28
3.4.4 Determinación de la carga crítica	
3.4.5 Comparación de la carga actual con la carga crítica	
3.5 Realización de talleres de difusión	
3.6 Propuesta de monitoreo futuro para el lago Ranco, valorizándola	
3.7 Evaluación o discusión del estado ecológico de la cuenca del lago Ranco	
4. RESULTADOS OBTENIDOS.	
4.1 Evaluación de la base de datos histórica de la DGA.	
4.2 Monitoreo del lago ranco	
4.2.1 Temperatura, oxígeno, clorofila a, transparencia	
4.2.3 Fitoplancton	
4.3 Monitoreo de los rios.	
4.3.1 Parámetros físicos	
4.3.2 Parámetros químicos	62
4.4 Análisis de cuenca y estimacion deL ingreso de nutrientes al lago ranco	
4.4.1 Superficie, población y numeros de turistas	
4.4.2 Actividad agropecuaria y producción de ganado	
4.4.3 Empresas pisciculturas/acuicultura	
4.4.4 Otras fuentes de contaminación	
4.5 Aporte de nutrientes por uso de suelo	79
4.5.1 Uso de suelo	
4.5.2 Estimación de caudales medios	82
4.5.3 Índices de aporte de nutrientes	85
4.5.4 aporte de nutrientes según uso de suelo	89
4.6 Balance de nutrientes	
4.6.1 Parametros morfometricos e hidrologicos	91
4.6.2 Cuantificación de N y P en la columna del lago Ranco	92
4.6.4 salida de N y P por el Efluente	101
4.6.5 Estimación de la carga crítica	102
4.6.6 Estimación de la carga actual con modelo predictivo	103
4.6.7 Sumatoria de la carga externa del lago Ranco y balance de N/P	
4.7 Evaluación de la cuenca	
4.8 Propuesta de monitoero en el futuro	
5. Conclusiones	114

6.Composición del equipo técnico	119
Anexo 1 Fotos de terreno	120
Anexo 2 Parametros fisicos y quimicos del Lago Ranco	125
Anexo 3 Informacion adicional sobre piscicultura	154
Anexo 4 Hidrología de cuencas	159
Anexo 5 Procesamiento Digital de Imagen Landsat 7 ETM+ para la Determinación de	la la
Cobertura de Uso Actual del Suelo sobre la Cuenca del Lago Ranco	160
Anexo 6 ejemplo análisis franja costera lago ranco	177

1. INTRODUCCION

EUTROFIZACIÓN

A nivel mundial la calidad del agua se está convirtiendo en una de las variables más importantes cuando se habla de gestionar los recursos acuáticos. Esto se debe principalmente a que muchos lagos y ríos han y están sufriendo un aumento progresivo de nutrientes, especialmente fósforo (P) y nitrógeno (N), que promueven a corto plazo el deterioro de la calidad del agua.

Al aumentar la disponibilidad de nutrientes limitantes (P y N) para el crecimiento de los productores primarios que habitan los cuerpos de agua (algas y plantas macrofitas), éstos ahora muestran un aumento de su biomasa (y aumento de clorofila a) y de su productividad. Este proceso de aumento de la productividad primaria es denominado ‰utrofización+ en Limnología, ciencia que estudia la ecología de aguas continentales. Para determinar el estado trófico de un lago se mide la cantidad de nutrientes (N y P), la cantidad de algas (clorofila a), la transparencia (profundidad disco Secchi, visibilidad), la productividad primaria y la concentración de oxigeno en la columna de agua.

Es así pues que la valoración de la calidad y estimación de la trofía (productividad) de una masa de agua superficial (lago, laguna, estuario o embalse) puede ser considerado un buen reflejo del satud de salud de la cuenca hidrográfica.

En comparación a la eutrofización natural, proceso lento (miles de años) e irreversible de ingreso natural de nutrientes cuyas causas pueden ser inherentes a la propia masa de agua o externas a la misma, la eutrofización antropogénica o cultural es debida exclusivamente a la acción del hombre y genera, a corto tiempo (decenas de años), cambios evidentes en el ecosistema. A diferencia de la eutrofización natural, los efectos asociados a la eutrofización cultural son mitigables e incluso reversibles siempre y cuando se conozcan, controlen y gestionen adecuadamente las causas que le dieron origen.

EFECTOS DE LA EUTROFIZACIÓN

Los efectos negativos de la eutrofización más importantes son:

- aumento de la abundancia, biomasa y productividad primaria de algas/macrofitas
- disminución en la transparencia (visibilidad) del agua debido principalmente al florecimiento masivo (blooms) de algas
- disminución del oxígeno en la columna de agua, principalmente en el hipolimnion (estratos profundos) del lago durante la estratificación térmica en verano aumento de la demanda bioquímica de oxígeno (DBO₅)
- cambio de especies en los distintos nivel tróficos: algas, zooplancton, peces, bentos
- aumento exponencial de algas azules (Cianobacterias) en verano que potencialmente producen toxinas que afectan a vertebrados.
- aumento de la abundancia, biomasa y productividad de organismos heterotróficos (zooplancton, bacterias, peces, bentos)

Como ejemplo se menciona el caso del lago Constanza (un lago con un tamaño similar al lago Ranco, ubicado en el centro de Europa), que mostró una fuerte eutrofización desde 1951 hasta 1978. Después de implementar medidas para bajar el ingreso de nutrientes (se limitó el ingreso a 200 ton de P/año) se observó la re-oligotrofización de este lago que duró aproximadamente 20 años (corresponde a 5 veces la renovación teórica del volumen del lago, lo que es similar al tiempo de renovación que tiene el lago Ranco), Fig. 1.1. Los costos para alcanzar esta re-oligotrofización (vale decir bajar la concentración de P total a valores menores de 10 g P/L) fueron aprox. 2.500 millones de Dólares en total (construcción de plantas depuradoras, implementación de alcantarillado etc.). Cabe mencionar que el uso de este lago (cuenca) es principalmente turístico (varios millones de turistas, 40.000 lanchas).

Fig. 1.1 Desarrollo del fósforo total en el lago Constanza (compartido por Alemania, Austria y Suiza) durante su fase de eutrofización (1951-1978) y re-oligotrofización (1981 en adelante).

En forma general se puede decir, que la eutrofización es un fenómeno a nivel mundial relacionado con la actividad humana y el excesivo ingreso de nutrientes en el lago. Para mejorar esta situación, se requiere un control (disminución) de ingreso de nutrientes a través de un manejo de las actividades humanas en la cuenca hidrográfica del lago.

Dicho aumento está asociado con un cambio de especies de la trama trófica caracterizada por la dominancia de pocas especies tolerantes en ambientes eu - e hipereutróficos. La eutrofización está además asociada con un aumento en la degradación de la materia orgánica (MO) frecuentemente relacionada con malos olores (p.ej. H₂S). Durante la degradación de la MO se consume oxígeno (respiración microbiana principalmente: oxidación de la MO) resultando en la disminución de la concentración de este gas en el agua. Bajo estas condiciones (menos de 4 mg O₂/L) se reportan muertes masivas de peces, especialmente en verano. Adicionalmente a bajas concentraciones de O₂, se producen substancias reducidas que son tóxicas (p.ej. H₂S, amoniaco) para la mayoría de los organismos.

En síntesis se podría decir que un lago impactado por la eutrofización avanzada (hipereutrofía) muere+, es decir, no es capaz de sostener organismos que necesitan oxígeno para su respiración.

Además de los efectos ecosistémicos, la eutrofización afecta también al hombre, porque cambia no sólo el aspecto estético del lago (cambio de color desde azul hacia verde) sino también los potenciales usos del agua (p.e. para recreación, potabilidad, pesca etc.).

Desde el punto de vista sanitario la eutrofización incrementa el riesgo de contraer enfermedades hepáticas y alérgicas producidas por microalgas (p.e. cianobacterias que producen toxinas), especialmente cuando los lagos impactados por la contaminación son usados con fines recreativos y de abastecimiento de agua potable. Desde el punto de vista económico, la eutrofización incrementa los costos de depuración del agua y reduce los ingresos derivados del turismo y recreación.

EUTROFIZACION EN CHILE

En la actualidad, los recursos hídricos chilenos han sufrido considerables alteraciones producto de la intervención antrópica en el ambiente. Debido al mal manejo de las cuencas hidrográficas en el sur de Chile, los lagos Araucanos, cuyo rol es fundamental como moderadores del régimen de los ríos y que representan un ecosistema muy particular y valioso, ven acelerado sus procesos de eutrofización por aporte de nutrientes como ya se ha mencionado anteriormente. Por tal motivo y de acuerdo a diversos estudios realizados en estos lagos, se detecta un aumento del nivel trófico en forma acelerada.

El incremento de la trofía de los lagos se relaciona con las diversas actividades productivas desarrolladas (en la zona de influencia) vecinas al cuerpo de agua, y/o en el resto de la cuenca. Hoy en día está llegando a los lagos una importante cantidad de nutrientes y sedimentos, por lo cual, la trofía de estos sistemas está cambiando de un estado de oligotrofia ‰ajo nivel de nutrientes y productividad+a

un estado de oligo-mesotrofía debido principalmente a un aumento de la carga de nutrientes P y N.

En los procesos de origen antrópico, pueden distinguirse aquellas actividades de acción directa e indirecta. Entre las directas, esta la filtración de un sin número de fosas sépticas de viviendas ubicadas a orilla del lago, y el turismo en menor medida (bañistas, lanchas, desechos, etc.). Por otra parte las actividades indirectas, están relacionadas con la explotación de bosque y la actividad agrícolaganadera que producen arrastre de sólidos (escorrentía agrícola), y que aporta nutrientes (principalmente nitratos) y sedimentos al lago y la piscicultura.

Cabe destacar que la utilización de metodologías orientadas a caracterizar el estado trófico, combinadas con estrategias de gestión y medidas correctoras respecto a la carga de nutrientes que llega a los lagos, es útil y necesario. Sin embargo es justo enfatizar que el conocimiento limnológico detallado sobre el funcionamiento de los lagos del sur de Chile es fundamental. Más aún cuando la gran mayoría de los estimadores de trofía así como los modelos predictivos que se utilizan en la actualidad han sido desarrollados para lagos del hemisferio norte, cuyo funcionamiento difiere de los lagos chilenos. Los lagos de Norteamérica y Europa ven limitada su productividad específicamente por P, mientras que para los lagos Araucanos y Nordpatagónicos la trofía es limitada no sólo por P sino también por N. Por ende es de importancia ahondar en el conocimiento de nuestros lagos con vistas a generar herramientas de manejo y control acorde con el funcionamiento y eventual respuesta de nuestros lagos frente a los efectos combinados de la eutrofización y cambio climático. Por esta razón es indispensable contar con un plan de manejo de las cuencas para mantener lo más bajo posible el ingreso de nutrientes en los lagos araucanos. La base de un plan de manejo debe ser el estudio detallado del uso de las cuencas desde el punto de vista del uso actual y futuro.

2. OBJETIVO DEL ESTUDIO

BASES DEL ESTUDIO.

1. OBJETIVO GENERAL

Hacer el balance de nutrientes de los lagos Ranco, cuenca del Rio Bueno, con la finalidad de apoyar el futuro desarrollo de normas secundarias de calidad de aguas en este cuerpo lacustre, identificando los actores relevantes para la evaluación económica y social de la futura norma.

2. OBJETIVOS ESPECÍFICOS

- 2.1 Identificar los sectores y actores relevantes para la evaluación económica y social de la futura norma (sectores que inciden sobre la condición trófica de los lagos).
- 2.2 Estimar los ingresos y egresos de todos los nutrientes aportados por las diferentes actividades desarrolladas en sus cuencas (silvoagropecuaria, pesquera, acuícola, turística, centros urbanos, etc.), así como de aquellos originados por el uso de suelos, de aguas lluvia, etc.
- 2.3 Determinar el balance de todos los nutrientes, carga crítica y su comparación con la carga actual. Evaluar el estado de trofía del lago.
- 2.4 Fortalecer los conocimientos de los equipos regionales en materias de cálculo y estimación de balance de nutrientes en cuerpos lacustres.

3. METODOLOGÍA

La descripción de la metodología se orienta en los objetivos específicos y en las actividades específicos estipulados en los TDR que se presenta a continuación.

1. BASES DE LA PROPUESTA TECNICA.

3. OBJETIVO GENERAL

Hacer el balance de nutrientes de los lagos Ranco, cuenca del Rio Bueno, con la finalidad de apoyar el futuro desarrollo de normas secundarias de calidad de aguas en este cuerpo lacustre, identificando los actores relevantes para la evaluación económica y social de la futura norma.

- 4. OBJETIVOS ESPECÍFICOS
- 2.5 Identificar los sectores y actores relevantes para la evaluación económica y social de la futura norma (sectores que inciden sobre la condición trófica de los lagos).
- 2.6 Estimar los ingresos y egresos de todos los nutrientes aportados por las diferentes actividades desarrolladas en sus cuencas (silvoagropecuaria, pesquera, acuícola, turística, centros urbanos, etc.), así como de aquellos originados por el uso de suelos, de aguas lluvia, etc.
- 2.7 Determinar el balance de todos los nutrientes, carga crítica y su comparación con la carga actual. Evaluar el estado de trofía del lago.
- 2.8 Fortalecer los conocimientos de los equipos regionales en materias de cálculo y estimación de balance de nutrientes en cuerpos lacustres.
 - 3. ACTIVIDADES

Se presenta una lista de actividades que deberán ser detalladas por la universidad en su oferta técnica.

- 3.1 Proponer y apoyar la selección de una metodología para el desarrollo del trabajo.
- 3.2 Utilizar y depurar la estadística de calidad de aguas histórica de la DGA y de Directemar para la evaluación de la trofía y los balances de nutrientes
- 3.3 Hacer catastro de fuentes emisoras, difusas y puntuales, cartografiadas (coordenadas UTM, Datum y HUSO), identificando los sectores que inciden sobre la condición trófica de cada lago
- 3.4 Hacer los cálculos, estimaciones y balances de todos los nutrientes
- 3.5 Monitorear columna de agua y sedimentos, realizar monitoreo de fitoplancton (cuantitativo y cualitativo) y determinar zona fótica.
- 3.6 Efectuar además los correspondientes muestreos de afluentes y efluentes del lago.
- 3.7 Realizar talleres de difusión, idealmente uno al inicio y uno al final del trabajo.
- 3.8 Realizar una propuesta de monitoreo futuro para el lago Ranco, valorizándola.
- 3.9 En lo posible realizar una evaluación o discusión del estado ecológico de la cuenca
- 5. PRODUCTOS
- 4.1 Talleres regionales realizados.
- 4.2 Informe final con balances de nutrientes calculados. Dicho informe debe ser en lenguaje fácil de entender y con un resumen ejecutivo para apoyar la gestión de los servicios regionales en materias de conservación y protección de cuerpos lacustres.

Todos los productos están orientados a fortalecer la gestión de los servicios públicos regionales en materias de conservación y protección de cuerpos lacustres.

6. PROGRAMA DE TRABAJO

La universidad deberá proponer un Programa de Trabajo en el que se deberán identificar las distintas etapas y actividades incluyendo al menos lo siguiente:

- 5.1 Fechas de inicio y término de cada actividad propuesta en la oferta técnica.
- Fechas de presentación de los Informes de Avance y del Informe Final, al que se refiere el punto 10 de las presentes Bases.
- 5.3 Fecha de entrega de informes parciales, adicionales a los informes de avance e informe final, si lo estima conveniente.
- 5.4 Carta Gantt detallada que sintetice los plazos y actividades.

El programa de trabajo deberá ajustarse a los plazos indicados en los puntos 3, 7, 9, 10 y 17.

7. METODOLOGÍA

La Universidad deberá proponer la metodología que seguirá para el logro de los objetivos y actividades indicados en las presentes bases técnicas, la que tendrá en consideración los resultados del estudio Monitoreo Complementario de los Lagos Ranco y Maihue, DGA. U. Austral de Chile, 2009.

3.1 EVALUACIÓN DE LA BASE DE DATOS HISTÓRICA DE LA DGA PARA LA EVALUACIÓN DE LA TROFÍA Y LOS BALANCES DE NUTRIENTES

En el proyecto MONITOREO COMPLEMENTARIO DE LOS LAGOS RANCO Y MAIHUE, REGION DE LOS RÍOS+, que fue ejecutado con anterioridad por la Universidad Austral de Chile (Woelfl et al., 2009, Informe UACH), ya se estableció una base de datos con los datos de la DGA y de la UACH que la fue sometida a un análisis científico crítico que consistió en la siguiente metodología:

MÉTODOS ESTADÍSTICOS: IDENTIFICACIÓN DE OUTLIERS

Un outlier es una observación o un conjunto de observaciones que están fuera del patrón de distribución de los datos. La principal característica de un dato outlier es que este puede influir de manera negativa sobre nuestros análisis, conduciéndonos a errores en el momento de hacer inferencias acerca de las características del conjunto de datos (por ejemplo tendencia, promedio, desviación estándar). Sin embargo, es muy importante destacar que los datos outliers no necesariamente son erróneos, más aun pueden entregar información importante sobre eventos puntuales, sean estos naturales o de origen antrópico. Por lo anterior, previo a remover este tipo de datos resulta fundamental que estos sean críticamente analizados por un experto del área, el cual indicará finalmente si el o los datos outliers identificados deben ser eliminados.

El presente proyecto utilizó el Rango Intercuartil (RIC) como técnica para identificar posibles datos outliers. Esta técnica incluye el cálculo de los percentiles 25 (Q1) y 75 (Q3) y de la mediana (percentil 50, Q2). Se calcula la diferencia entre Q3 - Q1, lo que es conocido como el rango intercuartil (RIC). Aquellos valores que

se encuentren bajo Q1 - 1,5*RIC o sobre Q3 + 1,5*RIC pueden ser considerados como outliers ‰uaves+en tanto que aquellos valores bajo Q1 - 3,0*RIC o sobre Q3 + 3,0*RIC pueden ser considerados como outliers extremos. Se utilizó un criterio conservador, es decir se consideraron outliers aquellos datos que cumplían con el primer supuesto.

MÉTODOS EMPÍRICOS:

- a) revisión de datos (con ayuda de filtros) para detectar problemas de ingreso de datos en la matriz
- b) determinación de relaciones entre fracción soluble y total de nitrógeno y fósforo para detectar problemas analíticos.
- c) determinación de incoherencias (%altos+) entre perfiles verticales de los parámetros para detectar problemas de muestreo/procesamiento/análisis de muestras
- d) determinación de incoherencias entre diferentes parámetros que están relacionados entre sí (p.e. fracciones de amonio, nitrato, oxigenación, pH, conductividad; clorofila a, transparencia y nutrientes etc.)

ELIMINACIÓN DE DATOS ERRÓNEOS/DUDOSOS

En esta fase se compara los resultados de las dos primeras fases con el fin de definir la base final de los datos eliminando datos identificados como dudosos/erróneos.

En el presente proyecto se actualizó esta base de datos con los datos de la DGA que corresponden al período agosto 2008 . agosto 2009. Estos datos fueron incorporados en la base de datos madre y analizados de acuerdo a la metodología previamente descrita.

Datos de la DIRECTEMAR no fueron incorporados en esta base de datos porque no incluían parámetros tróficos (nutrientes, clorofila a etc.), que son el enfoque de este estudio.

3.2 CATASTRO DE FUENTES EMISORAS, DIFUSAS Y PUNTUALES QUE INCIDEN SOBRE LA CONDICIÓN TRÓFICA DE CADA LAGO

Se recolectó y sistematizó información disponible sobre las fuentes emisoras, difusas y puntuales en la cuenca del Lago Ranco consultando principalmente informes técnicos, publicaciones científico-técnicas y diferentes bases de datos de los servicios estatales como la Superintendencia de Servicio Salud (SISS), el Gobierno Regional (GORE), la Dirección General de Aguas (DGA) y la Subsecretaria Nacional de Pesca (Sernapesca). Dentro de los informes técnicos relevantes se consultó especialmente el proyecto *Levantamiento Plan Ordenamiento Territorial Cuenca Lago Ranco, 2006/2007* (proyecto FNDR Región de los Lagos, Universidad Católica de Temuco).

Se recopiló información especialmente sobre:

- Aspectos socioeconómicos como población y asentamientos humanos, infraestructura sanitaria etc.
- Actividades humanas en la cuenca/lago

3.3 MONITOREO DEL LAGO RANCO, SU EFLUENTE Y SUS AFLUENTES

Una parte importante de este estudio fue la obtención de datos sobre parámetros físicos, químicos y biológicos durante un año en la columna del agua del lago Ranco, en el efluente y los afluentes más importantes. Estos datos posteriormente se usaron para el cálculo del balance de nutrientes.

Se realizaron 12 campañas de muestreo de la columna de agua con tres estaciones (RE1, RE2, RE4) en el Lago Ranco. Estas estaciones son coincidentes con las de estudios previos por lo cual se mantuvo la denominación.

Fig. 3.1 Estaciones de muestreo del lago Ranco y de los afluentes y el efluente.

La ubicación de las estaciones está indicada en la tabla 3.1 y la figura 3.1. Como se ve en la figura 3.1, las estaciones de muestreo en el lago estuvieron más alejadas de la orilla que las estaciones de la red de monitoreo de la DGA, pero en similares partes del lago.

Tabla 3.1 Ubicaciones de las estaciones de muestreo en el lago Ranco y los ríos muestreados

Estación UTM UTM Norte Este	UTM	Latitud	Longitud			
	Norte	Este	S	W		
Lago Ranco						
RE1	18T 5530426	753815	40° 20′ 17.27″	72º 0' 43.04"		
RE2	18T 5545807	723392	40° 12' 30.26"	72° 22' 30.31+		
RE4	18T 5540181	721393	40° 15' 34.45"	72° 23' 47.81"		
Afluentes y efluente (R. Bueno) del Lago Ranco						
Río Bueno	18T 5541210	702487	40° 15' 18.34"	72º 37' 8.65"		
Río	18T 5542463	733027				
Calcurrupe			40° 14' 9.16"	72º 15' 38.82"		
Río Caunahue	18T 5550868	733521	40° 9' 36.37"	72º 15' 28.91"		
Río Iculpe	18T 5533568	717346	40° 19' 12.54"	72º 26' 30.92"		
Río Nilahue	18T 5536563	739915	40° 17' 13.26"	72º 10' 39.73"		
Río Quiman	18T 5555870	725008	40° 7' 2.67"	72º 21' 34.70"		
Río Pitreño	18T 5544678	727947	40° 19' 45"	72º 19' 20"		

Las fechas de las campañas fueron las indicadas en la tabla 3.2. En febrero no se pudo realizar un muestreo debido al terremoto que se produjo a fines de ese mes.

Tabla 3.2 Fechas de los muestreos del Lago Ranco, los afluentes y el efluente

Lago Ranco	Ríos
22/01/10	26/01/10
09/03/10	26/02/10
01/04/10	31/03/10
27/04/10	26/04/10
25/05/10	24/05/10
08/07/10 RE1	07/07/10
13/07/10 RE2, RE4	
06/08/10	03/08/10
08/09/10	31/08/10
07/10/10	30/09/10
04/11/10	03-04/11/10
07/12/10	07/12/10
12/01/11	10-11/01/11

MEDICIONES DE PERFILES VERTICALES DE PARÁMETROS FÍSICOS/QUÍMICOS

Perfiles verticales de la temperatura, conductividad, pH, concentración de oxígeno disuelto y porcentaje de saturación y concentración de clorofila-a se tomaron con una sonda multiparamétrica YSI modelo V2 (provista con cable de 50 metros, enero 2010) y a partir de la segunda campaña con una sonda multiparamétrica Sea & Sun M90 que mide hasta el fondo del lago en intervalos de 0,35 m (véase fotos Anexo 1).

Los perfiles de luz se midieron con un LICOR-1100 que mide la luz visible entre 400 . 700 nm desde la superficie hasta máximo 50 m de profundidad. Desafortunadamente las mediciones se perdieron por completo por falla del instrumento (la pila de respaldo no duró el tiempo garantizados por la fabrica). Por

lo tanto se calculó la zona eufótica (profundidad con 1% de la luz superficial) en base de los coeficientes de atenuación de Campos 1988 de la siguiente manera:

Zona eufótica (m) =
$$(-0.0324 \times SD + 2.61) \times SD$$

Donde: SD es la profundidad del disco Secchi (visibilidad).

TOMA DE MUESTRAS DE AGUA

Las muestras de agua (para medición de parámetros químicos y biológicos) se tomaron en la estación RE2 en 8 profundidades (0-10-20-30-40-50-75-100 m) y en 11 profundidades en las estaciones RE1 y RE4(0-10-20-30-40-50-75-100-130-160-fondo) usando una botella de Friedinger (volumen 2 L) (véase fotos Anexo 1).

TOMA DE MUESTRAS DE FITOPLANCTON

Para el estudio del fitoplancton del lago Ranco se recolectaron muestras integradas de agua para el punto RE1. En este punto de muestreo se recolectaron muestras de agua integrada desde la superficie hasta los 50m de profundidad utilizando una botella Friedinger de 2 L.. Como criterio de "integración" se recolectaron muestras de agua (500 ml) cada 5 metros de profundidad (0,5 10, 15,......, 50m). Estas muestras de agua representativas de cada estrato de la columna de agua (0-50m) fueron vertidos en un bidón plástico. Una vez finalizada la recolección de muestras de agua en profundidad, se procedió a homogeneizar la muestra final mediante agitación. Sub-muestras de 500 ml fueron almacenadas y fijadas in situ con lugol al 4% (v/v) para su posterior análisis en el laboratorio. El análisis del fitoplancton fue realizado de acuerdo a la metodología de transectos, con observación y registro cuali y cuantitativo de los distintos taxa utilizando un microscopio invertido Leitz (Fluovert . FU, Wetzlar, Alemania) y un aumento 400x. Las determinaciones taxonómicas fueron apoyadas por literatura relacionada a los diferentes grupos de fitoplancton descritos para las aguas continentales de Chile

(Parra et al., 1982; Parra & Bicudo, 1998). Las colonias de algas fueron contadas como colonia, sin considerar la cantidad de células por colonia (p.e. *Aulacoseira, Microcystis* etc.).

MÉTODOS ANALÍTICOS

La medición de los diferentes parámetros físicos, químicos y biológicos se realizó de acuerdo con la siguiente metodología:

Temperatura: Medición con el sensor de temperatura de la sonda multiparamétrica Sea & Sun.

pH: Medición con pH-metro de la sonda multiparamétrica Sea & Sun.

Conductividad eléctrica: Medición con un sensor conductivimétrico de la sonda multiparamétrica Sea & Sun. Los valores posteriormente se estandarizaron a una temperatura de 25°C.

Transparencia: Medición con un disco Secchi (30 cm de diámetro).

Oxígeno disuelto: Medición con oxigenómetro con electrodo de Clark de la sonda multiparamétrica Sea & Sun.

Nitrato: Método de Reducción con Columna de cadmio y medición como nitrito según 4500-NO3 . E Standard Methods APHA (2005).

Nitrito: Método colorimétrico diazonio según 4500-NO2 - B. Standard Methods APHA (2005).

Amonio: 4500-NH3 F Standard Methods Edición 2005,

Fósforo soluble: Método azul del ácido ascórbico según 4500-P . E. Standard Methods APHA (2005).

Fósforo Total (PT): Método de digestión ácida y Persulfato de Potasio según 4500-P B/5 Standard Methods APHA (2005).

Nitrógeno Total: Método de digestión básica con Hidróxido de Sodio y Persulfato de Potasio según 4500-N/C y 4500-NO3 . E. Standard Methods APHA (2005)

Nitrógeno orgánico: $N_{org.} = NT$. $(N-NO_3 + N-NO_2 + N-NH_4)$.

Clorofila a: Medición con la sonda multiparamétrica Sea & Sun, medición de la fluorescencia de clorofila a.

3.4. BALANCE DE LOS NUTRIENTES DEL LAGO RANCO

3.4.1 CONCEPTO DE BALANCE DE NUTRIENTES

Para realizar el balance de los nutrientes . es decir los flujos de ingreso y egreso de los nutrientes hacia y desde el lago - hay que conocer las concentraciones de los nutrientes (aquí P, N: a lo que denominaremos [\mathbf{P}]) en la columna de agua (superficie hasta el fondo), los ingresos externos (\mathbf{J}_{ext}) desde la cuenca (precipitación, afluentes, ingresos difusos por las orillas, actividades humanas etc.), el egreso a través del efluente ($\rho[\mathbf{P}]$), la tasa de sedimentación ($\sigma[\mathbf{P}]$) y el aporte interno de P/N (\mathbf{J}_{int})(Fig. 2). Este modelo conceptual básico según Vollenweider (1986) muestra la siguiente figura:

Fig. 3.2 Esquema del balance másico de nutrientes (explicación de los flujos véase la siguiente ecuación abajo)

Este modelo, que fue desarrollado en el hemisferio Norte, es ampliamente usado en estudios sobre balances de nutrientes. Según este modelo, el balance de nutrientes de un lago depende principalmente de los siguientes factores dinámicos:

- (a) el ingreso de nutrientes (P, N) total al lago,
- (b) la permanencia, sedimentación, deposición y/o resuspensión de los nutrientes a través de la materia orgánica,
- (c) la salida de los nutrientes

Típicamente, en un lago profundo y oligotrófico una buena parte (hasta 80%) de los nutrientes que ingresan al lago, son reciclados dentro del epilimnion, 20-30% sedimentan (incorporados en materia orgánica) hacia el hipolimnion (o la zona afótica durante el invierno) y finalmente se depositan (15-20 %) en los sedimentos. De ahí que la resuspensión (fertilización interna) desde los sedimentos hacia la columna de agua en condiciones bien oxigenadas como se encuentra en lagos oligotróficos es muy baja (< 5%). Al contrario en lagos eutróficos, la fertilización interna se observa en condiciones de un bajo potencial de redox (bajo contenido de oxígeno) cerca de los sedimentos y en el hipolimnion, lo que produce un ingreso importante de nutrientes hacia la columna de agua. Este fenómeno aumenta la eutrofización del lago y los efectos negativos de ésta (crecimiento de las algas, disminución de la transparencia, disminución de oxígeno en las profundidades, muerte de organismos etc.).

a) Ingreso de nutrientes (P, N) total al lago.

El ingreso de nutrientes al lago depende del balance hídrico originado por las precipitaciones, del suelo y su uso dentro de la cuenca hidrográfica, de las actividades humanas y de los nutrientes aportados por las precipitaciones. Es fundamental conocer con precisión el agua caída diaria sobre toda la cuenca, ya que este forma los afluentes que llenan el lago. El balance hídrico se completa con la cantidad de agua que sale del sistema a través de la evapotranspiración y por el efluente del lago. También la lluvia contiene nutrientes que caen directamente en la superficie del lago y en las subcuencas. Se requiere calcular el aporte de Fósforo y Nitrógeno del agua de lluvia directamente al lago.

Se requiere conocer el uso de los suelos de las subcuencas y de acuerdo a este uso calcular y medir directamente (afluentes importantes) su aporte de Fósforo y Nitrógeno al lago, para lo cual se puede obtener información desde el análisis de

fotos satelitales y fotografías aéreas. Asimismo, es necesario un minucioso trabajo cartográfico para así determinar los terrenos agrícolas y su tipo de cultivos, terrenos forestales y su composición, terrenos urbanizados, etc. Otra información que es requerida correponde a las actividades humanas en la cuenca y su aporte de nutrientes al lago, las que para el caso de este lago corresponden a turismo, algunas pisciculturas, entre otras.

(b) Permanencia y sedimentación de los nutrientes a través de la materia orgánica. La permanencia de los nutrientes y su sedimentación a través de la materia orgánica, corresponde dentro del modelo al eje principal del problema. Es necesario conocer varios factores abióticos que influyen directamente en el lago, especialmente de ciclo térmico y la hidrodinámica del lago para determinar la mezcla del agua, las capas de la estratificación (epilimnion e hipolimnion), el centro de gravedad del lago y su estabilidad física. Además se requiere conocer con precisión la concentración de nutrientes en los diferentes estratos del lago. La determinación directa de la sedimentación y deposición es difícil medir directamente, por lo cual se calcula en el balance de masas.

(c) Salida de los nutrientes.

Idealmente la principal salida de nutrientes es por un solo efluente de un lago. Se requiere tener un preciso conocimiento del caudal de este efluente y de las concentraciones de P y N disuelto ya que es un factor determinante para el balance de nutrientes. Las mediciones de estos parámetros deberían ser lo más completas posible.

3.4.2 CÁLCULO DEL BALANCE DE NUTRIENTES

Para calcular el balance de nutrientes se calculó las cargas externas, la salida de N/P y el contenido de N/P en la columna de agua. La diferencia con la entrada y salida de N/P corresponde a la sedimentación.

La carga externa total se calculó de la siguiente forma:

Jext = LN_cuencas + LN_Afluentes + LN_prec + LN_Hum

Donde

 $\begin{array}{lll} J_{\text{ext}} & \text{aporte P/N externo} \\ L_{N_\text{cuencas}} & \text{carga P/N por cuencas} \\ L_{N_\text{Afluentes}} & \text{carga P/N por río afluentes} \\ L_{N_\text{prec}} & \text{carga P/N por precipitaciones} \\ L_{N_\text{Hum}} & \text{carga P/N por actividades humanas} \end{array}$

Se calculó el aporte de nutrientes al lago según el uso de suelos de acuerdo a lo señalado previamente en este estudio. En el caso de los afluentes principales, se comparó las mediciones reales con las estimaciones hechas en base de la literatura para verificar si concuerdan los dos métodos. Esto permitió verificar las estimaciones de cargas de nutrientes realizadas con los índices propuestos por la literatura.

El egreso de nutrientes total por año por el efluente se calculó en la siguiente forma:

LN_efl = Q1 * [P/N] 1 + Q2 * [P/N] 2 + Å Å . + Qn * [P/N] n

Donde:

 $L_{N_{eff}}$: egreso de P/N por efluente durante un año (p.e. mg/año).

Q_n: caudal promedio durante período n (m³)

[P/N]_n: promedio de concentración de P/N que corresponde al

período n (mg/m³)

El contenido de P/N en el lago Ranco en la siguiente forma:

$P/N_{lago} = [P/N]_{lago} * Vol$

Donde:

P/N_{lago} promedio geométrico (basándose en los volúmenes por

estrato) de P/N en la columna del lago (mg/m³)

Vol: volumen de lago (m³)

3.4.3 CARACTERIZACIÓN DEL APORTE DE NUTRIENTES AL LAGO

APORTE DE NUTRIENTES DE SUBCUENCAS: USO DE SUELO, MODELO HIDROLÓGICO, MODELACIÓN APORTE DE NUTRIENTES

Modelación de la hidrología

En el anexo 4 se presenta la metodología para la determinación de los caudales para los ríos en cada subcuenca donde no había datos medidos y la metodología sobre la determinación del uso de suelo (análisis de imágenes satelitales).

Los caudales de los ríos Calcurrupe, Caunahue y Nilahue fueron obtenidos de las estaciones fluviométricas de la Dirección General de Aguas. Con estos caudales que son medidos regularmente, fueron calibradas las demás cuencas sin información fluviométricas. Para esta calibración se utilizó la información morfométrica de las cuencas, especialmente el área de drenaje. Con la relación caudal/área de drenaje fue posible realizar una estimación simple de los caudales de las cuencas sin datos hidrológicos. Se utilizó la serie de precipitaciones del período 1980-2008 correspondientes a la estación lago Maihue proporcionados por la Dirección General de Aguas.

ÍNDICES DE EXPORTACIÓN DE NUTRIENTES PARA DIFERENTES USOS DEL SUELO

A partir de estudios realizados en biogeoquímica de bosques nativos y aporte de nutrientes en microcuencas con distinto uso del suelo en la precordillera de los Andes del sur de Chile (Oyarzún et al. 1997, Godoy et al. 1999, Godoy et al. 2001, Oyarzún & Huber 2003, Oyarzún et al. 2004) se utilizaron índices de entrega de fósforo y nitrógeno para cada uso del suelo o cobertura vegetacional (bosque nativos, bosques renovales, plantaciones forestales, praderas, cultivos agrícolas, matorrales y suelo desnudo). También se utilizó información disponible de sitios experimentales cercanos al área de estudio, especialmente del sitio experimental

de San Pablo de Tregua en la Cordillera de los Andes, obtenida durante el período 2003-2007.

Finalmente, con la combinación de los caudales medidos y/o estimados y los índices de aporte de fósforo y nitrógeno desde los suelos se estimó la entrada de nutrientes hacia el lago, proveniente de cada subcuenca. La sumatoria de todas las subcuencas de drenaje significará el ingreso total de nutrientes como fuentes difusas al lago, excluida las precipitaciones.

ESTIMACIÓN DE CARGAS DE NUTRIENTES SEGÚN SUBCUENCAS

Con la combinación de los caudales medidos y/o estimados y los índices de **exportación** de fósforo y nitrógeno se estimó el ingreso de nutrientes desde cada una de las 13 subcuencas mencionadas. La sumatoria de todas las subcuencas de drenaje significará el ingreso total de nutrientes de fuentes difusas, excluida las precipitaciones, al lago Ranco.

LN_cuencas = Q1 * [P/N] 1 + Q2 * [P/N] 2 + Å Å . + Qn * [P/N] n

donde:

LN_cuencas: carga de P/N por afluente durante un año (p.e. kg/año).

Qn: caudal promedio durante período n (m³)

[P/N]n: promedio de concentración de P/N que corresponde al período n (ug/L)

ESTIMACIÓN DE CARGAS DE NUTRIENTES EN LAS PRECIPITACIONES

Con la combinación de las precipitaciones medidas en las estaciones lago Ranco y lago Maihue y las concentraciones de P y N en el agua de lluvia, obtenidas de la estación experimental de San Pablo de Tregua, se estimó el ingreso de nutrientes al lago Ranco. En los resultados (tabla 4.15) se presentan los índices de exportación de N/P usados.

PISCICULTURAS Y BALSAS JAULAS

Para calcular la carga de N/P por parte de las pisciculturas en la cuenca del lago Ranco se recopiló información sobre la ubicación de estas y las concentraciones de N/P en las descargas a los ríos a través de las INFAS (Información ambiental, monitoreo de las descargas) de los centros de cultivos que fueron entregados por la SISS (Superintendencia de Servicios de Salud). Estos datos consisten en mediciones diarias de los caudales de las descargas y mediciones mensuales de las concentraciones de fósforo total y nitrógeno total (o Kjeldahl). En base de estos datos se calculó la carga mensual y anual multiplicando las concentraciones de N/P con los caudales mensuales y finalmente sumando las cargas mensuales para obtener las cargas anuales.

ESTIMACIÓN DE LA CARGA DE P Y N DELA PRODUCCIÓN DE PECES EN LOS CENTROS DE CULTIVO RANCO I Y II LOCALIZADOS EN EL LAGO RANCO

Debido a la la imposibilidad de contar con al información de la producción de peces por parte de los centros de cultivo Ranco I y II (ver Anexo 3, Fig. A4), se tomó la información sobre la producción de peces de la literatura (período: 1998-2005, Leon-Muñoz et al. 2007). Según esta referencia (que se basa en información de SERNAPESCA) Ranco I y II producen 308 toneladas de peces por año.

La estimación del ingreso de N y P al lago se calculó según el modelo teórico considerando los elementos básicos dentro del sistema productivo de peces, es decir, las variables (Campos 1998):

- a) Producción de peces
- b) Alimento necesario para producir la cantidad de peces usando un factor de conversión de alimento en biomasa de peces
 - c) concentraciones de P en N en el alimento

d) asimilación de P y N por parte del pez

Con estos antecedentes, más las cuantificaciones del contenido de Nitrógeno y Fósforo presente en los peces, fue posible realizar un balance del N y P en los centros de cultivo de peces.

El cálculo acerca de las cantidades de alimento empleadas en el proceso productivo se hizo considerando como base un factor de conversión de peso de alimento en peso de pez de 1,2 (Leon 2007).

Esta información fue manejada considerando una ecuación de balance en que la entrada de N/P es igual a la suma de las cantidades de N/P presentes en la producción de peces más las cantidades de estos nutrientes que son eliminadas como desechos. Los datos sobre el contenido de P y N en los peces se tomaron de Campos (1998).

El cálculo de la carga de P/N al lago se realizó finalmente en la siguiente manera:

Carga de N/P al lago = N/P en alimento Ë N/P asimilado por los peces

CARGAS ARTIFICIALES DIFUSAS QUE LLEGAN AL LAGO RANCO (Casas de verano, turistas etc.)

Cabe destacar que este cuerpo de agua constituye uno de los mayores atractivos turísticos de la cuenca del Lago Ranco. Existen cabañas, campings, casas particulares y ciudades (Futrono, Lago Ranco etc.) en las riberas del lago Ranco, que aportan cargas difusas debido a la infiltración provenientes desde fosas sépticas ubicadas muy cerca de los márgenes del lago, y de cargas directas al lago, incluyendo plantas de tratamiento. Estas, en general, no están diseñadas para la remosion de nutrientes, por cuanto no cuentan con tratamieno terciario, razon por la cual el aporte de nutrientes es levemente disminuido pero no totalmente eliminado.

En base de la información sobre la cantidad de turistas, casas en las orillas del lago Ranco y permanencia de personas en esta zona se estimó el aporte de una persona al día es de 4,1gr de P (fósforo) y 20gr de N (nitrógeno) **Campos 1991.**

Utilizando la misma fórmula de Campos 1991, que se expresa así:

(gr x persona x día) = aporte diario de una persona de P o N.

(1-RS) = coeficiente de retención del suelo de la salida de un tanque

séptico.

RS = 0.20

N = número de habitantes de la franja costera

T = tiempo de residencia de los habitantes en días año.

La cantidad de casas en la franja de 200 m en la orilla del Lago Ranco se determinó a través de fotos satelitales de Google map (Anexo 6). Se contó aprox. 400 casas en esta franja, sin contar las poblaciones mayores (Futrono, Lago Ranco, Llifen).

3.4.4 DETERMINACIÓN DE LA CARGA CRÍTICA

Hay varios modelos (todos elaborados en el hemisferio Norte) para terminar la carga crítica según varios autores. No obstante, los modelos más usados son los de Vollenweider, Dillon y Rigler, Vollenweider y Kerekes y otros. Todos tienen en común que los parámetros claves que influyen sobre la carga permisible y/o excesiva son la profundidad promedio y el tiempo de renovación del agua.

La carga crítica de P se calculó según la ecuación de Vollenweider (1976), que es el modelo actualmente más usado para lagos con una profundidad entre 18 y 300 m (p.e. por la Comunidad Europea):

$$L_c \text{ (mg/m}^2 \cdot \tilde{a}\tilde{n}o) = 10 \text{ x (z/w) x (1+ \left\ w)}$$

donde:

L_c: carga crítica de P (mg/m²₊año)

z: profundidad media (m)

w: tiempo de renovación del agua (año)

3.4.5 COMPARACIÓN DE LA CARGA ACTUAL CON LA CARGA CRÍTICA

Finalmente se comparó la carga actual con la carga crítica y se clasificó el estado trófico actual con el fin de predecir su eventual desarrollo en el futuro. Además se analizó la base de datos depurada para clasificar el estado trófico histórico con el fin de detectar tendencias temporales.

3.5 REALIZACIÓN DE TALLERES DE DIFUSIÓN

Se realizaron dos talleres de difusión con funcionarios de diferentes servicios

estatales (principalmente DGA, Sernapesca), en los cuales participaron también las contrapartes de la DGA Santiago vía videoconferencia. Los talleres se realizaron en abril 2010 y en mayo de 2011.

Adicionalmente se realizó el 22 de octubre de 2010 un mini-taller con se expuso a SERNAPESCA y al director DGA regional los avances del estudio.

3.6 PROPUESTA DE MONITOREO FUTURO PARA EL LAGO RANCO, VALORIZÁNDOLA

En base a los resultados de este estudio y considerando la información recabada por estudios previos (UACH (2009) Monitoreo Complementario de los Lagos Ranco y Maihue, Región de los Ríos), se propone un monitoreo rutinario de largo plazo que permitirá valorar el estado trófico del lago a través de la identificación y medición de las principales variables relacionadas con el proceso de eutrofización.

3.7 EVALUACIÓN O DISCUSIÓN DEL ESTADO ECOLÓGICO DE LA CUENCA DEL LAGO RANCO

De acuerdo con los resultados de este estudio y la revisión de la información disponible sobre la cuenca del lago Ranco, se entrega una evaluación básica del estado ecológico de la cuenca. Esta evaluación sólo contemplará las variables de uso de suelos, cobertura vegetacional y actividades humanas. Toda la parte faunística y florística quedará excluida ya que no forma parte de este estudio.

4. RESULTADOS OBTENIDOS

4.1 EVALUACIÓN DE LA BASE DE DATOS HISTÓRICA DE LA DGA

Para e desarrollo del presente estudio se contó con información proporcionada por la DGA correspondiente a la red de monitoreo en el período agosto 2008. agosto 2009 (tabla 4.1-4.3).

IDENTIFICACIÓN DE OUTLIERS

Del análisis de la información es posible indicar que se categorizaron como outlayer los datos indicados en el siguiente cuadro

Fecha	estación	Dato	
27-08-2008	Futrono	Nitrito 0,003 mg/l	
		Nitrato 0,03 mg/l	
17/02/2009	Futrono	N Kjeldahl: 3,31 mg/L	
		P total: 1,010 mg/L	
		P soluble: 0,007 mg/L	
18/02/2009	Futrono	Clorofila a: 4,3 y 4,4	
		μg/L	

Las concentraciones de nitrito 0.003 mg/L y de nitrato 0.03 mg/L registradas el 27-08-2008 en la estación Futrono pueden ser consideradas datos outliers. La concentración de nitrógeno Kjeldahl 3.31 mg/L, registrada en la estación Riñinahue el día 17/02/2009 puede ser considerado como outlier. Un dato outlier pude ser considerado también la concentración de fósforo total 1.010 mg/L, registrado en esa misma estación y en esa misma fecha de muestreo. La concentración de fosfato 0.007 mg/l registrada en la estación de Futrono el día 17-02-2009 puede ser considerado un outlier. Finalmente, las concentraciones de

clorofila de 4.3 y 4.4 µg/L registradas en la estación Futrono el día 18-02-2009 pueden ser consideradas valores outliers.

EVALUACIÓN EMPIRICA

La evaluación empírica muestra que en general los rangos de los valores para los nutrientes, N total y P total . con excepción de una fecha . son muy similares a los rangos de los años anteriores. Para la primavera 2008 no existen datos. Llama mucho la atención que los valores para nitrato, N Kjeldahl y P total están completamente fuera de lugar para la fecha febrero 2009, siendo prácticamente 50-70 veces mayores que en otras fechas. En relción a esto, la Dirección General de Aguas.informó que estos análisis fueron hechos por un laboratorio externo.

Respecto a los valores de los diferentes fracciones de nitrógeno y fósforo, se detectaron las mismas tendencias como en los datos históricos, especialmente respecto a los límites de detección que fueron 0,003 mgP/L para fosfato y 0,01 mgN/L para amonio.

Aparte de estas observaciones, se puede considerar los restantes valores confiables, especialmente el fósforo total, clorofila y oxígeno.

.

Tabla 4.1 Variables físicas y químicas medidas durante el invierno del 2008 en la estación Futrono (datos DGA)

s.d. sin determinar sm sin medición

color verde: valores bajo del límite de detección

color amarillo: sin medición

color naranjo: límite de detección muy alta, valores bajo del límite de detección

color rojo: valores completamente fuera de rango

	Prof.	Secchi	Temp.	Cond.		Oxi. Dis	Sat. Oxi.	N-NO ₃	N-NO ₂	N-NH ₃	N Kjel.	N Total	P-PO ₄	P-Total	Chl a
Fecha	(m)	(m)	(°C)	(S/cm)	рН	(mg/L)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(g/L)
27/08/2008	0	8,5	10,15	60,0	7,29	10,66	95,8	0,057	0,001	0,010	sd	sd	0,003	0,005	1,40
27/08/2008	15		10,07	60,2	7,09	10,39	93,4	0,059	0,003	0,010	sd	sd	<0,003	0,005	1,70
27/08/2008	30		10,06	60,6	6,97	10,21	91,6	0,065	0,002	0,030	sd	sd	<0,003	0,006	3,20
Primavera 2008	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm
17/02/2009	0	12,5	19,31	62,3	8,07	9,23	101,6	<0,200	<0,001	<0,010	1,590	1,6	0,007	0,620	0,30
17/02/2009	15		19,12	62,6	8,00	9,29	101,7	<0,200	<0,001	<0,010	2,860	2,9	0,003	0,670	0,40
17/02/2009	30		15,34	61,0	7,79	9,85	99,8	<0,200	<0,001	<0,010	3,180	3,2	0,003	0,890	0,40
26/05/2009	0	12,2	14,37	60,8	6,75	9,99	98,0	0,021	<0,001	<0,010	sd	sd	<0,003	0,005	0,80
26/05/2009	15		14,32	60,8	7,45	9,78	95,8	0,023	<0,001	<0,010	sd	sd	<0,003	0,005	0,80
26/05/2009	30		14,31	60,7	7,33	9,64	94,5	0,013	<0,001	<0,010	sd	sd	0,003	0,005	0,80
18/08/2009	0	9,5	10,38	59,0	7,85	11,34	sd	0,025	0,001	<0,010	sd	sd	<0,003	0,008	1,30
18/08/2009	15		10,31	59,2	7,76	10,92	sd	0,023	0,002	<0,010	sd	sd	<0,003	0,008	4,30
18/08/2009	30		10,27	59,2	7,77	10,85	sd	0,021	<0,001	<0,010	sd	sd	<0,003	0,009	4,40

Tabla 4.2 Variables físicas y químicas medidas durante el invierno del 2008 en la estación Riñinahue (datos DGA)

s.d. sin determinar sm sin medición

color verde: valores bajo del límite de detección

color amarillo: sin medición

color naranjo: límite de detección muy alta, valores bajo del límite de detección

color rojo: valores completamente fuera de rango

		Secchi	Temp.	Cond.		Oxi. Dis	Sat. Oxi.	N-NO ₃	N-NO ₂	N-NH ₃	N Kjel.	N Total	P-PO ₄	P-Total	Chl a
Fecha	Prof. (m)	(m)	(°C)	(S/cm)	рН	(mg/L)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(g/L)
27/08/2008	0	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
27/08/2008	15		sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
27/08/2008	30		sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
27/08/2008	80		sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
Primavera 2008	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm
17/02/2009	0	12,1	20,38	62,7	8,01	9,13	102,6	<0,200	<0,001	<0,010	1,46	1,46	0,020	<0,200	0,20
17/02/2009	15		19,23	62,8	8,06	9,44	103,8	<0,200	<0,001	<0,010	1,44	1,44	0,010	<0,200	0,30
17/02/2009	30		19,00	62,8	8,05	9,44	103,2	<0,200	<0,001	<0,010	3,31	3,31	0,013	1,010	0,40
17/02/2009	80		10,15	59,7	7,40	9,72	87,3	<0,200	<0,001	<0,010	1,35	1,35	sd	<0,200	0,40
26/05/2009	0	14,1	14,33	60,5	7,38	10,05	98,6	0,025	<0,001	<0,010	sd	sd	<0,003	0,005	0,70
26/05/2009	15		14,18	60,4	7,54	9,99	96,6	0,015	<0,001	<0,010	sd	sd	<0,003	0,005	0,70
26/05/2009	30		13,65	58,3	7,71	9,84	95,1	0,013	<0,001	<0,010	sd	sd	<0,003	0,005	0,90
26/05/2009	80		10,08	60,6	7,01	8,90	79,2	0,019	<0,001	<0,010	sd	sd	sd	0,005	0,90
18/08/2009	0	8,8	10,29	59,2	7,65	11,05	sd	0,029	<0,001	<0,010	sd	sd	<0,003	0,009	3,70
18/08/2009	15		10,30	59,0	7,41	10,90	sd	0,031	<0,001	<0,010	sd	sd	<0,003	0,009	4,00
18/08/2009	30		10,29	59,2	7,54	10,75	sd	0,033	<0,001	<0,010	sd	sd	<0,003	0,009	3,20
18/08/2009	80		10,30	59,2	7,28	10,20	sd	0,031	0,001	<0,010	sd	sd	sd	0,009	1,80

Tabla 4.3 Variables físicas y químicas medidas durante el invierno del 2008 en la estación Puerto Nuevo (datos DGA)

s.d. sin determinar sm sin medición

color verde: valores bajo del límite de detección

color amarillo: sin medición

color naranjo: límite de detección muy alta, valores bajo del límite de detección

color rojo: valores completamente fuera de rango

	Prof.	Secchi	Temp.	Cond.		Oxi. Dis	Sat. Oxi.	N-NO ₃	N-NO ₂	N-NH ₃	N Kjel.	N Total	P-PO ₄	P-Total	Chl a
Fecha	(m)	(m)	(°C)	(S/cm)	рН	(mg/L)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(g/L)
27/08/2008	0	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
27/08/2008	15		sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
27/08/2008	30		sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd	sd
Primavera 2008	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm	sm
17/02/2009	0	16	19,32	62,5	7,84	9,34	102,8	<0,200	<0,001	<0,010	1,640	1,640	0,003	0,300	0,30
17/02/2009	15		18,97	62,3	7,97	9,36	102,2	<0,200	<0,001	<0,010	2,090	2,090	0,013	0,390	0,50
17/02/2009	30		17,24	61,3	7,86	9,60	101,2	<0,200	<0,001	<0,010	1,530	1,530	0,013	0,510	0,20
26/05/2009	0	11,5	14,42	62,5	7,22	9,99	98,1	0,021	<0,001	<0,010	sd	sd	<0,003	0,006	0,90
26/05/2009	15		14,41	62,3	7,35	9,80	96,3	0,017	<0,001	<0,010	sd	sd	<0,003	0,006	0,50
26/05/2009	30		14,41	61,3	7,35	9,64	94,6	0,035	<0,001	<0,010	sd	sd	<0,003	0,008	0,20
18/08/2009	0	8	10,39	59,2	7,36	11,03	sd	0,029	<0,001	<0,010	sd	sd	<0,003	0,008	2,00
18/08/2009	15		10,38	58,3	7,21	10,84	sd	0,027	<0,001	<0,010	sd	sd	<0,003	0,009	3,80
18/08/2009	30		10,38	59,5	7,16	10,71	sd	0,031	<0,001	<0,010	sd	sd	<0,003	0,010	5,10

4.2 MONITOREO DEL LAGO RANCO

En este apartado se presentan los datos obtenidos y analizados. Las respectivas tablas con los datos se presentan en el Anexo 2.

4.2.1 TEMPERATURA, OXÍGENO, CLOROFILA A, TRANSPARENCIA

TEMPERATURA

Las Figuras 4.1 a la 4.3 muestran los perfiles verticales de temperatura, concentración de oxígeno y clorofila a en las estaciones RE1, RE2 y RE4 entre enero 2010 y enero 2011. Los perfiles de temperatura mostraron, en general, un patrón de variabilidad temporal similar entre las tres estaciones de muestreo, observándose una disminución en la temperatura hacia los meses de invierno y una termoclina entre los 15 y 35 metros de profundidad durante el verano donde se produjo una fuerte disminución de la temperatura. La reestratificación comenzó a fines de abril y terminó en holomixis en julio. Además, los perfiles de temperatura en las estaciones RE2 y RE4 durante el primer terreno muestran que la termoclina en el epilimnion no es siempre homogénea, lo que puede ser el resultado de la influencia de tormentas, las cuales inciden en la variabilidad vertical de la temperatura.

OXÍGENO

Respecto a los perfiles de oxígeno - al igual que lo registrado en la temperatura . no se presentaron diferencias de importancia entre sitios de muestreo, evidenciándose un aumento de las concentraciones hacia el periodo de invierno. Conjuntamente con el incremento temporal de las concentraciones, las estaciones RE1 y RE4, durante los meses de enero y julio muestran una clara disminución en el contenido de oxígeno bajo los 45 metros de profundidad, registrándose valores menores a 8 mg O₂/L. Sobre los 45 metros, los valores de concentración de oxígeno estuvieron, en general, por sobre los 10 mg O₂/L, lo que corresponde a una saturación mayor que 95%, excepto durante la primera fecha de muestreo, donde estos valores descienden hasta 8 mg O₂/L.

CLOROFILA A

Los perfiles de clorofila a no registraron mayores diferencias entre los distintos puntos de muestreo y, al igual que lo observado para el contenido de oxígeno, se registró un claro incremento de este pigmento hacia los meses de invierno. Coincidentemente con el incremento temporal en el contenido de clorofila, este pigmento alcanzó mayores profundidades en la columna de agua, extendiéndose desde los 60 metros, hasta más allá de los 90 metros en la estación RE2 y 180 metros en las estaciones RE1 y RE4. Los valores extremos observados para el contenido de clorofila (independiente del sitio de muestreo y profundidad) fueron de aproximadamente 0,2 g Chl a /L (Abril de 2010) y peaks de aproximadamente 2,3 g Chl a /L (Septiembre-Octubre de 2010).

Fig. 4.2 Perfiles verticales de la temperatura, oxígeno disuelto y clorofila-a en la estación RE2 en el lago Ranco.

Fig. 4.3 Perfiles verticales de la temperatura, oxígeno disuelto y clorofila-a medidos en la estación RE4 en el lago Ranco.

TRANSPARENCIA y ZONA EUFÓTICA

La figura 4.4 muestra los valores de transparencia (equivalente a visibilidad) del lago Ranco, los cuales fueron medidos con disco Secchi entre los meses de enero y octubre de 2010. Los valores de transparencia del agua fueron generalmente similares entre las distintas estaciones de muestreo; aunque es importante destacar que hacia el invierno y comienzos de la primavera la estación RE1 presentó siempre valores de transparencia levemente mayores que el resto de estaciones. La transparencia fue mayor durante el verano y mediados del otoño, registrando valores sobre los 20 metros; en tanto que hacia los meses de invierno, la transparencia del agua fue en general, entre 12 y 17 metros. Finalmente, es posible observar un leve incremento en la transparencia del agua hacia finales del invierno y comienzos de la primavera, donde los valores se empinan por sobre los 15 metros.

Fig. 4.4 Transparencia (profundidad de disco Secchi) medida en las estaciónes RE1-RE4 en el lago Ranco durante 2010.

Estas fluctuaciones temporales en la transparencia del agua están relacionadas principalmente con el desarrollo de las algas (diatomeas) que predominan durante

el invierno y disminuyen la transparencia del agua. No obstante, todos los valores de la transparencia indican una trofía oligotrófico en todas las estaciones del lago Ranco.

Respecto a la zona eufótica, esta fue . de acuerdo al cálculo realizado . entre 1,8 y 2,1 veces mayor que la visibilidad (Fig. 4.5). Fue entre 37 y 45 m durante verano y otoño

En conclusión se puede decir que la zona eufótica fue siempre más profunda que la termoclina.

Fig. 4.5 Zona eufótica calculada en base de la visibilidad medida en las estaciónes RE1-RE4 en el lago Ranco durante 2010.

NITRÓGENO

Las figuras 4.6-4.8 muestran los valores de amonio, nitrato y N total (nitrito estuvo siempre bajo los límites de detección: < 0,002 mg/L) en las tres estaciones del Lago Ranco. Los perfiles verticales de nitrato y N total fueron bastante similares entre las distintas estaciones de muestreo a través del tiempo. Esta distribución vertical mostró una clara variabilidad temporal. Durante los meses de verano y otoño el nitrato (y amonio) en el epilimnion (0-35 (40) m) estuvo prácticamente ausente con valores generalmente < 0,01 mg N/L. Esto fue debido a la incorporación de los nutrientes en las algas que fueron mayoritariamente limitado por nitrógeno. Recién en el hipolimnion (> 40 m) el nitrato aumenta continuamente hasta alcanzar valores máximos de aproximadamente 0,05 mg N-NO3/L. Similar a lo registrado para el contenido de nitrato, el contenido de N total mostró una fuerte variabilidad vertical durante los meses de verano y otoño, con los valores más bajos en el epilimnion (aproximadamente 0,03 mg N/L) y los más altos hacia el hipolimnion alcanzando valores de aproximadamente 0,06 mg N/L (Fig.5). Escapó a este patrón, el contenido de N total registrado en la estación RE2 el cual estuvo distribuido de manera más homogénea en la columna de agua. El contenido de nitratos y N total en la columna de agua fue más homogéneo hacia los meses de invierno, aunque en el caso de los nitratos con valores de concentración más bajos (< 0,02 mg N-NO3/L). En las tres estaciones y durante todas las fechas de muestreo el contenido de amonio no mostró un patrón claro de distribución vertical, registrando concentraciones máximas (0,01 mg N-NH4/L) y mínimas (0,002 mg N-NH4/L) tanto en la superficie como en niveles inferiores de la columna de agua.

FÓSFORO

Las figuras 4.9 a la 4.11 presentan los valores de fósforo soluble y fósforo total en la columna de agua en las tres estaciones en el lago Ranco. Los perfiles de fósforo fueron similares en las tres estaciones con valores de fósforo soluble que generalmente fueron menores en los niveles superiores (epilimnion, < 0,002 mg/L) y mayores hacia los niveles inferiores de la columna de agua (hipolimnion, ~ 0,004 mg/L). El perfil vertical del P total fue relativamente homogéneo con un leve aumento hacia el fondo, donde se acumula la materia orgánica sedimentada y degradada, aunque con valores casi siempre menores que 0,01 mg P/L. La fracción de fósforo soluble fue aproximadamente 30-60% del P total con una tendencia al aumento en el hipolimnion. En general, los valores de P tendieron a disminuir hacia los meses de invierno. Escapa un poco a esta tendencia la estación RE4, la cual mostró las mayores concentraciones de P total en el hipolimnion (~ 0,014 mg/L) hacia fines del invierno.

En términos generales los valores de P indican un estado oligotrófico del Lago Ranco. Las tablas con los valores químicos se presentan en el anexo 2.

Fig. 4.8 Isopletas de nitrato, amonio y nitrógeno orgánico en la estación RE4 en el

Fig. 4.9 Isopletas de fósoforo soluble y fósforo total en la estación RE1 en el lago Ranco

Fig. 4.10 Isopletas de fósoforo soluble y fósforo total en la estación RE2 en el lago Ranco

Fig. 4.11 Isopletas de fósoforo soluble y fósforo total en la estación RE4 en el lago Ranco

4.2.3 FITOPLANCTON

En total se registraron 54 especies de fitoplancton, de las cuales 25 corresponden a Diatomeas, 14 a Clorofíceas, 2 Euglenofíceas, 3 Crisofíceas, 3 Cianobacterias, 3 Criptoficeas y 4 Dinofíceas. Los resultados aquí presentados no contemplan el picoplancton (algas < 2 m).

En general, las estimas de abundancia de organismos fitoplanctonicos (cel. L⁻¹), Anexo, Tabla A6 y Fig. 4.12, 4.13), se enmarcan dentro de rangos de densidad celular descrita para ambientes oligotróficos de los lagos del Sur de Chile con valores entre 75.000 y 700.000 cel. L⁻¹.

La variación temporal del fitoplancton (Fig. 4.12), descrita como abundancia relativa de los principales grupos de algas (Diatomeas, Clorofíceas, Euglenofíceas, Crisofíceas, Cianobacterias, Criptoficeas y Dinofíceas) presentes en el Lago Ranco revela cambios estacionales (temporales), que coinciden con los patrones de sucesión estacional descrito para los lagos Nordpatagónicos.

Como norma la comunidad de fitoplancton del lago Ranco se caracterizó por la codominancia de las Diatomeas, las Crisofíceas y las Clorofíceas durante todo el período de muestreo, Figura 4.13; registrándose valores de abundancia conjunta de entre 59.6 a 97 %.

En términos generales se observa que es durante los meses de estratificación térmica (enero a mayo) cuando la comunidad de fitoplancton estuvo principalmente representada, en términos de abundancia, por especies de microalgas de pequeño tamaño como los son las *Cyclotella sp* (Diatomeas) y *Cromulina sp.* (Crisoficeae), *Clamydomonas sp* (Cloroficeae) y *Rhodomonas lacustr*es (Criptofíceae). De manera contrastante, se observa que durante los periodos de mezcla (julio a octubre) es cuando el fitoplancton y en particular las Diatomeas, muestran un cambio en su dominancia relativa hacia especies de gran tamaño como *Aulacoseira granulata*, *Asterionea formosa* y *Fragilaria sp*; situación

que coincide con una disminución general en la abundancia relativa de *Cyclotella sp.*.

En base a lo anteriormente descrito se infiere que la contribución relativa de la Diatomeas es importante a lo largo de todo ciclo anual no sólo en términos de abundancia relativa sino que, aún más importante, en términos de biomasa. Esto último ha sido previamente reportada para otros lagos del Sur de Chile y coincide además, con los valores de mayor productividad reportados para los lagos Nordpatagónicos.

En cuanto respecta a los otros grupos de fitoplancton se observa que las Criptofíceas estuvieron siempre presentes durante los muestreos, siendo *Rhodomonas lacustris y Cryptomonas sp* los taxa más representativos. Las Euglenofitas fueron más bien esporádicas presentando bajos valores de abundancia; situación similar a lo observado para el grupo de las Cianobacterias y los Dinoflagelados, cuyas especies características, debido a su tamaño y forma son *Anabaena* aff. *circinalis* y *Ceratium hirundinela*.

Fig 4.13 Variación temporal de la contribución relativa de los principales grupos de fitoplancton (grupos) para la estación RE1, Lago Ranco, respecto a la abundancia total

4.3 MONITOREO DE LOS RIOS

4.3.1 PARÁMETROS FÍSICOS

La tabla 4.4 presenta los valores de temperatura, conductividad eléctrica, pH y oxígeno, obtenidos en terreno. Los valores de temperatura muestran un claro patrón estacional, con los valores más altos en los meses estivales y los más bajos en los meses de invierno. Los ríos Calcurrupe y Bueno presentaron, en general, valores más altos de temperatura que el resto de cuerpos de agua, reflejando las temperaturas de los lagos Ranco y Maihue. Mientras el río Calcurrupe registró valores extremos de 8,6 °C (31/08/2010) y 19,7 °C (26/01/2010) el río Bueno registró máximos y mínimos de 18,5 °C (26/01/2010) y 10,1 °C (31/08/2010), respectivamente.

La conductividad también mostró un patrón estacional en sus valores, observándose los valores más bajos durante el invierno, situación que puede estar relacionada con un incremento en el caudal de los ríos lo que diluiría la concentración de las sales. En relación a este último parámetro, destaca el río Nilahue, el cual muestra una conductividad eléctrica considerablemente mayor en comparación con los otros ríos, con valores extremos de 177 μS/cm (31/03/2010) y 70 μS/cm (31/08/2010). Esto probablemente se debe a la piscicultura ubicada río arriba de Nilahue, que aporta sales (y probablemente también nutrientes) a este cuerpo de agua. El río Nilahue registró valores de conductividad por sobre lo que se observa generalmente en riós de esta zona del país (i.e. < 100 μS/cm).

En general, los valores de pH fueron homogeneos entre los distintos ríos y entre las distintas fechas de muestreo. Escapa a este patrón los valores de pH del río Nilahue, el cual mostró valores más altos que el resto de cuerpos de agua, con valores extremos de 8,80 (24/05/2010) y 7,55 (31/08/2010). Los altos valores de pH registrados en el río Nilahue pueden ser atribuidos a la alta biomasa de algas y probablemente a la alta productividad primaria (que basifica el agua). Sin

embargo, estos valores de pH se encuentran dentro del rango normal registrado para estos cuerpos de agua.

El contenido de oxígeno disuelto y la saturación de oxígeno fueron muy buenas con valores que, en general, fueron mayores a 10 mg/L y mayores o cercanos al 100% de saturación, respectivamente. Esta situación es esperable para ríos turbulentos de esta zona.

Tabla 4.4 Parámetros físicos obtenidas en los ríos muestreados.

n.d.: no determinado, las mediciones de oxígeno fallaron en enero y febrero por problemas de calibración.

n.d. no determinado, problemas con sensor de oxígeno

Río	Temperatura (°C)	Cond. S/cm	рН	Oxígeno (mg/L)	Saturación oxígeno (%)
	(0)	26/01/10		(IIIg/L)	Oxigeno (78)
Quiman	15,6	69	7,69	n.d.	n.d.
Caunahue	15,7	66	7,83	n.d.	n.d.
Calcurrupe	19,7	53	7,9	n.d.	n.d.
Nilahue	16,3	152	8,47	n.d.	n.d.
Pitreño	18,4	58	7,13	n.d.	n.d.
Iculpe	18,2	74	7,63	n.d.	n.d.
Bueno	18,5	64	7,87	n.d.	n.d.
		26/02/10			
Quiman	12,2	63	7,41	n.d.	n.d.
Caunahue	12,3	61	7,56	n.d.	n.d.
Calcurrupe	16,1	54	7,7	n.d.	n.d.
Nilahue	13,4	146	8,19	n.d.	n.d.
Pitreño	14,3	54	7,23	n.d.	n.d.
Iculpe	13,4	46	7,78	n.d.	n.d.
Bueno	16,9	64	7,84	n.d.	n.d.
		31/03/10			
Quiman	11,6	56	7,69	10,58	97
Caunahue	12,1	91	7,79	10,86	101
Calcurrupe	16,4	68	7,71	9,81	102
Nilahue	13,6	231	8,2	10,39	100
Pitreño	12,4	40	7,63	10,21	96
Iculpe	12,2	49	7,8	10,51	98
Bueno	16,9	65	7,93	9,85	102

Río	Temperatura (°C)	Cond. S/cm	рН	Oxígeno (mg/L)	Saturación oxígeno (%)
	(- /	26/04/10		(3 /	3 (11)
Quiman	7,9	66	7,83	11,31	96
Caunahue	8,5	45	7,93	11,72	100
Calcurrupe	13,0	58	8,13	10,61	101
Nilahue	10,0	180	8,68	11,26	100
Pitreño	8,4	42	7,74	11,22	96
Iculpe	8,5	45	7,92	11,94	97
Bueno	15,0	64	7,92	10,11	100
		24/05/10			
Quiman	7,5	60	7,92	11,95	100
Caunahue	8,1	63	8,07	12,08	103
Calcurrupe	11,1	57	7,32	10,95	100
Nilahue	8,9	150	8,8	11,78	102
Pitreño	7,8	27	8,14	12,26	103
Iculpe	7,7	35	7,88	11,84	99
Bueno	13,4	64	8,12	10,34	99
		07/07/10			
Quiman	5,7	35	7,95	12,59	101
Caunahue	6,3	44	7,64	12,52	102
Calcurrupe	8,8	54	7,89	10,94	94
Nilahue	7,2	115	8,45	12,63	105
Pitreño	6,5	34	7,86	12,32	100
Iculpe	6,5	28	7,87	12,41	101
Bueno	10,9	64	8,21	11,56	105
		03/08/10			
Quiman	3,5	61	7,56	13,3	101
Caunahue	5,5	63	7,38	12,58	102
Calcurrupe	9,0	57	7,19	11,53	100
Nilahue	6,8	144	7,8	12,32	101
Pitreño	5,6	46	7,33	12,55	100
Iculpe	5,2	40	7,34	12,68	100
Bueno	10,2	64	7,45	11,2	100
	ı	31/08/10		T	T.
Quiman	4,9	46	7,22	12,78	100
Caunahue	7,2	52	7,14	12,08	100
Calcurrupe	8,6	56	6,84	11,04	95
Nilahue	7,0	108	7,55	12,11	100
Pitreño	6,0	46	7,14	12,42	100
Iculpe	5,7	35	7	12,52	102
Bueno	10,1	64	7,25	11,6	101
		30/09/10		10.55	1 45-
Quiman	7,3	52	7,52	12,02	102
Caunahue	9,3	54	7,43	11,44	102
Calcurrupe	11,4	58	7,31	10,89	100
Nilahue	10,3	142	8	11,18	102
Pitreño	7,9	42	6,87	11,84	100

Río	Temperatura	Cond.	рН	Oxígeno	Saturación
	(°C)	S/cm	-	(mg/L)	oxígeno (%)
Iculpe	7,8	39	7,32	11,87	100
Bueno	11,1	64	7,52	10,97	100
		03/11/10			
Quiman	8,8	43	7,4	11,74	102
Caunahue	9,4	41	7,26	11,9	104
Calcurrupe	10,9	54	7,6	11,4	104
Nilahue	9,9	104	8,01	11,28	100
Pitreño	9,6	30	7,1	11,45	101
Iculpe	9,6	29	7,21	11,84	104
Bueno	12,3	65	7,77	11,27	105
		07/12/10			
Quiman	13,6	64	8,43	10,6	102
Caunahue	14,7	60	7,95	10,62	104
Calcurrupe	13,7	36	8,55	11,37	110
Nilahue	11,7	115	8,3	11,5	105
Pitreño	9,9	21	7,86	11,54	102
Iculpe	10,8	35	8,14	11,2	101
Bueno	15,3	64	8,63	10,25	102
		10/01/11			
Quiman	19,7	70	8,12	9,26	101
Caunahue	19,1	55	8,23	9,49	103
Calcurrupe	19,9	147	7,6	9,28	102
Nilahue	19,9	58	8,48	10,43	115
Pitreño	16,9	65	7,78	9,73	100
Iculpe	18,5	62	8	9,45	101
Bueno	18,9	64	7,97	9,3	100

4.3.2 PARÁMETROS QUÍMICOS

La tabla 4.5 y las figuras 4.14 y 4.15 presentan los valores de N-NH₄, N-NO₂, N-NO₃, N-orgánico, P-PO₄ y P-orgánico, obtenidos en terreno durante enero . octubre 2010.

NITRÓGENO

Los valores más altos de estos nutrientes se registraron en los ríos, que fueron contaminados por pisciculturas, especialmente los ríos Quiman, Nilahue y Pitreño. En estos ríos dominó el amonio, seguido por Nitrato y N orgánico. Los ríos Calcurrupe y Bueno presentan valores bajos para estos nutrientes, condición típica para efluentes de lagos Nordpatagónicos. Estos ríos registraron valores de concentración de bajo los 0,05 mg/L durante todas las fechas de muestreo.

En comparación con los ríos Calcurrupe, Bueno y Caunahue las concentraciones de amonio y nitrato en los ríos Quiman, Nilahue y Pitreño, fueron hasta 10 veces (amonio) y dos veces (nitrato) mayores. En el caso de N orgánico las concentraciones fueron hasta 6 veces mayores.

Un aspecto importante de destacar aquí es que la concentración de Nitrógeno en todos los ríos registró una disminución durante las estaciones de invierno y primavera.

FÓSFORO

Como en el caso de nitrógeno, los ríos Quiman, Nilahue y Pitreño fueron los que, en general, registraron los valores más altos de fósforo. En el caso del río Quiman, el contenido de fósforo disminuyó claramente a través del tiempo, registrando un máximo de 0,10 mg/L durante el verano del 2010 y un mínimo menor a 0,02 mg/L

hacia el final del invierno de ese año. Hacia el verano del 2011, el contenido de fósforo del río Quiman vuelve a subir. Un patrón temporal de cambio en el contenido de fósforo también fue observado en las aguas del río Pitreño, aunque aquí estos nutrientes mostraron una disminución hacia los meses de invierno para volver a incrementar hacia comienzos de la primavera (donde alcanzaron la máxima concentración registrada en todas las fechas y estaciones de muestreo: 0,166 mg/L) y verano del 2011. La concentración de fósforo en el río Nilahue fue constante a través del tiempo.

El resto de ríos registró, en general, valores bajo los 0,02 mg/L durante todas las fechas de muestreo, siendo el río Caunahue el que presento las menores concentraciones.

Tabla 4.5 Resultados de los análisis químicos en los ríos muestreados

Fotosián/Fooks	N-NH ₄	N-NO ₂	N-NO ₃	N-TOTAL	P_PO ₄	P-TOTAL
Estación/Fecha	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
			/01/2010			
Quiman	0,158	0,010	0,076	0,296	0,030	0,070
Caunahue	0,029	<0,002	0,017	0,056	0,002	0,006
Calcurrupe	0,008	<0,002	0,006	0,074	0,002	0,008
Nilahue	0,010	<0,002	0,003	0,05	0,031	0,063
Pitreño	0,321	0,003	0,024	0,37	0,050	0,090
Iculpe	0,037	<0,002	0,013	0,056	0,010	0,018
Bueno	0,009	<0,002	0,003	0,067	<0,001	0,005
		26/	02/2010			
Quiman	0,183	0,006	0,034	0,262	0,076	0,100
Caunahue	0,026	<0,002	0,01	0,043	0,002	0,007
Calcurrupe	0,005	<0,002	0,003	0,038	0,002	0,009
Nilahue	0,023	0,003	0,023	0,072	0,048	0,058
Pitreño	0,206	0,004	0,02	0,28	0,072	0,089
Iculpe	0,035	0,002	0,006	0,045	0,008	0,017
Bueno	0,005	<0,002	<0,002	0,044	<0,001	0,007
		31	/03/2010			
Quiman	0,114	0,004	0,021	0,27	0,025	0,058
Caunahue	0,017	<0,002	0,013	0,032	0,004	0,006
Calcurrupe	0,009	<0,002	<0,002	0,060	0,004	0,008
Nilahue	0,022	0,003	0,024	0,056	0,058	0,087
Pitreño	0,030	<0,002	0,013	0,126	0,014	0,039
Iculpe	0,021	<0,002	0,013	0,056	0,009	0,025
Bueno	0,011	<0,002	0,003	0,039	0,003	0,008
		26	/04/2010			
Quiman	0,254	0,005	0,043	0,455	0,047	0,062
Caunahue	0,024	<0,002	0,007	0,034	0,003	0,004
Calcurrupe	0,010	<0,002	0,002	0,042	0,004	0,008
Nilahue	0,028	0,003	0,020	0,092	0,060	0,069
Pitreño	0,027	<0,002	0,005	0,087	0,015	0,018
Iculpe	0,009	<0,002	0,002	0,047	0,010	0,012
Bueno	0,007	<0,002	0,002	0,043	0,003	0,005

	N-NH₄	N-NO ₂	N-NO ₃	N-TOTAL	P_PO ₄	P-TOTAL	
Estación/Fecha	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
		24	/05/2010	1			
Quiman	0,231	0,003	0,030	0,303	0,022	0,045	
Caunahue	0,023	<0,002	0,012	0,042	0,003	0,004	
Calcurrupe	0,010	<0,002	0,005	0,038	0,005	0,007	
Nilahue	0,014	0,002	0,033	0,071	0,051	0,066	
Pitreño	0,004	<0,002	0,006	0,084	0,005	0,024	
Iculpe	0,002	<0,002	0,014	0,054	0,008	0,016	
Bueno	0,002	<0,002	0,005	0,037	0,003	0,006	
		07.	/07/2010			T	
Quiman 0,063 <0,002 0,029 0,134 0,003 0,010							
Caunahue	0,013	<0,002	0,029	0,068	0,003	0,009	
Calcurrupe	0,006	<0,002	0,025	0,061	0,003	0,008	
Nilahue	0,012	<0,002	0,037	0,086	0,032	0,052	
Pitreño	0,015	<0,002	0,015	0,085	0,009	0,024	
Iculpe	0,007	<0,002	0,046	0,077	0,008	0,014	
Bueno	0,001	<0,002	0,010	0,050	0,003	0,010	
		03	/08/2010			T	
Quiman	0,225	<0,002	0,023	0,254	0,014	0,020	
Caunahue	0,003	<0,002	0,022	0,025	<0,002	0,003	
Calcurrupe	0,002	<0,002	0,031	0,050	0,002	0,005	
Nilahue	0,014	0,002	0,045	0,063	0,045	0,046	
Pitreño	0,026	<0,002	0,019	0,100	0,019	0,027	
Iculpe	0,004	<0,002	0,046	0,051	0,008	0,011	
Bueno	0,003	<0,002	0,010	0,045	0,003	0,004	
		31	/08/2010			T	
Quiman	0,070	<0,002	0,017	0,111	0,002	0,004	
Caunahue	0,007	<0,002	0,029	0,049	0,002	0,006	
Calcurrupe	0,002	<0,002	0,034	0,054	0,004	0,005	
Nilahue	0,019	0,002	0,047	0,079	0,031	0,043	
Pitreño	0,058	<0,002	0,018	0,217	0,037	0,051	
Iculpe	0,006	<0,002	0,055	0,087	0,006	0,012	
Bueno	0,003	<0,002	0,016	0,050	0,002	0,004	

	N-NH ₄	N-NO ₂	N-NO ₃	N-TOTAL	P_PO ₄	P-TOTAL	
Estación/Fecha	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
			/09/2010				
Quiman	0,179	<0,002	0,021	0,211	0,005	0,014	
Caunahue	0,003	<0,002	0,006	0,032	0,003	0,004	
Calcurrupe	0,005	<0,002	0,009	0,054	0,002	0,005	
Nilahue	0,007	<0,002	0,019	0,038	0,049	0,055	
Pitreño	0,184	<0,002	0,008	0,524	0,112	0,166	
Iculpe	0,003	<0,002	0,018	0,045	0,007	0,012	
Bueno	0,003	<0,002	0,006	0,043	<0,002	0,010	
		03	/11/2010	T			
Quiman 0,072 < 0,002 0,009 0,158 0,009 0,024							
Caunahue	0,006	< 0,002	0,006	0,054	0,002	<0,003	
Calcurrupe	0,003	< 0,002	0,004	0,046	0,002	0,010	
Nilahue	0,003	< 0,002	0,007	0,052	0,031	0,042	
Pitreño	0,101	< 0,002	0,009	0,200	0,023	0,057	
Iculpe	0,011	< 0,002	0,008	0,039	0,005	0,006	
Bueno	0,002	< 0,002	0,004	0,053	0,002	0,010	
		07	/12/2010				
Quiman	0,183	0,008	0,041	0,297	0,016	0,029	
Caunahue	< 002	< 002	0,017	0,020	0,002	0,005	
Calcurrupe	0,004	< 002	0,008	0,034	0,002	0,007	
Nilahue	0,003	< 002	0,010	0,071	0,041	0,070	
Pitreño	0,008	0,002	0,007	0,193	0,013	0,047	
Iculpe	0,003	< 002	0,015	0,109	0,005	0,036	
Bueno	0,005	< 002	0,007	0,035	< 0,002	0,005	
		10	/01/2011				
Quiman	0,198	0,038	0,188	0,478	0,003	0,008	
Caunahue	0,010	< 0,002	0,000	0,034	< 0,002	0,005	
Calcurrupe	0,011	< 0,002	0,003	0,031	0,003	0,007	
Nilahue	0,007	< 0,002	0,000	0,034	0,050	0,055	
Pitreño	0,295	0,007	0,033	0,407	0,029	0,046	
Iculpe	0,009	< 0,002	0,004	0,049	0,013	0,020	
Bueno	0,005	< 0,002	< 0,002	0,048	< 0,002	0,008	

Fig. 4.14 Amonio, nitrito, nitrato y N orgánico en diferentes ríos durante enero 2010 . enero 2011. Los valores estan presentados en forma acumulativa. El total corresponde a N total.

Fig. 4.15 Fósforo soluble y orgánico en diferentes ríos durante enero 2010 . enero 2011. Los valores estan presentados en forma acumulativa. El total corresponde a P total.

4.4 ANÁLISIS DE CUENCA Y ESTIMACION DEL INGRESO DE NUTRIENTES AL LAGO RANCO

4.4.1 SUPERFICIE, POBLACIÓN Y NUMEROS DE TURISTAS

La superficie total de la Cuenca del Lago Ranco es de 902900 ha, siendo las comunas de La Unión (213700 ha) y Futrono (212100 ha) las de mayor extensión territorial y las de Paillaco (89600 ha) y Lago Ranco (176300 ha) las de menor extensión territorial.

El número total de la población de las comunas Futrono y Lago Ranco son 14981 y 10098 habitantes de acuerdo al censo realizado el año 2002 por el Gobierno de Chile (Tabla 4.6). Entre el censo 1992 y 2002 la población total prácticamente no ha cambiado (Fuente: OTR). Según los datos del Censo 2002, el 32% de la población de Lago Ranco pertenece a alguna etnia y dentro de este grupo el 99,6% declara ser mapuche. La población Mapuche del sector está dividida en 36 comunidades, 7 asociaciones y 5 cacicatos, la mayoría de ellos ubicados en el sector rural (Fuente: OTR).

De acuerdo a las estadísticas del Servicio Nacional de Turismo (Sernatur) el número total de turistas registrados durante el año 2008 en la Provincia del Lago Ranco fue de 1729, siendo los meses estivales donde se presentan los valores más altos de turistas (Tabla 4.6).

4.4.2 ACTIVIDAD AGROPECUARIA Y PRODUCCIÓN DE GANADO

La utilización de suelo para explotación agropecuaria de las comunas de Futrono son 141453 ha y de la comuna Río Bueno son 172735 ha. La agricultura en ambas comunas es en gran parte de subsistencia, con ventas de sus excedentes productivos principalmente en el sector urbano de Futrono y Lago Ranco. Los productos son principalmente hortalizas, entre ellos papas, trigo y legumbres. Las

hortalizas son un producto generalizado, sin embargo, las ferias hortícolas de Futrono son abastecidas en gran parte por agricultores de la Isla Huapi y del sector Pumol, lo cual demuestra cierta concentración de estas actividades agropecuarias (Fuente: OTR).

El ganado bovino es el más importante en ambas comunas, llegando a las 52.600 cabezas en la comuna de Futrono y a las 22.878 cabezas en la Comuna de Lago Ranco. En orden de importancia decreciente siguen el ganado ovino, porcino, caballar y caprino (Tabla 4.6).

Tabla 4.6 Número de habitantes, superficie total, y utilización del suelo para explotación forestal y agropecuaria y producción de ganado bovino en las comunas Futrono y lago Ranco.

Comuna	Futrono	Lago Ranco
N⁰ de habitantes	14981	10098
Superficie (ha)	212100	176300
Explotación Forestal total (ha) (2007)	51393	61403
Plantaciones Forestales (ha)	2769	115
Bosque Nativo (ha)	41168	33835
Explotación Agropecuaria (ha) (2007)	141453	92703
Producción de ganado bovino (nº de cabezas) (2007)	52600	22878

4.4.3 EMPRESAS PISCICULTURAS/ACUICULTURA

De acuerdo a la información recopilada (SISS, Sernapesca) existen 4 centros operativos de pisciculturas en tierra y dos centros de balsas jaulas en el lago Ranco (Tabla 4.7).

Solamente una empresa está ubicada en la comuna Futrono (Vega Quiman), el resto de las empresas está ubicada en la comuna lago Ranco.

Tabla 4.7 Ubicaciones de las estaciones de muestreo en el lago Ranco y los ríos muestreados

		UTM	UTM	Latitud	Longitud
Nombre/ ubicación	Empresa	Norte	Este	S	W
	C	Concesiones a	cuícola		
Ranco I	Marine				
	Harvest Chile S.A.	5537344	728598	40° 16' 25"	72º 18' 40"
Ranco II	Marine Harvest Chile S.A.	5535987	733474	40° 17' 36"	72º 15' 12+
Concesiones p	oisciculturas				
Río Quimán	Vega Quiman (Lican)	5536142	718044	40° 18' 46"	72° 26' 5"
Nilahue/ Riñinahue	Piscicultura Nilahue S.A.	5523467	747528	40° 24' 07"	72º 5' 0"
llihue/	Salmones				
Pitreño	Caleta S.A.	5532643	727771	40° 19' 30"	72º 19' 9"
Rio Iculpe/ Ilihue	Piscicultura Iculpe S.A.	5534291	717991	40° 18' 46"	72º 26' 5"

CUMPLIMIENTO D.S. 90 Y PRODUCCIÓN

De acuerdo con la información recopilada en la SISS, la mayoría de las pisciculturas cumplieron con el D.S. 90 (Descarga de RILES a cuerpos acuáticos superficiales (Tabla 4.8).

Respecto a la producción de peces, solo fue posible recopilar información sobre los centros de piscicultura en tierra (Tabla 4.9), pero no sobre la producción de los centros acuicultores Ranco I y II. Según esta información los centros producen entre 20 y 903 ton peces/año.

Tabla 4.8 Cumplimiento del DS.90/00 2010, informados a la SISS a través del sistema informático SACEI

		ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO
	CULTIVOS						
	ACUATICOS						
	MANANTIALES S.A.		NO	NO			
703	(CENTRO ICULPE)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE
	CULTIVOS						
	ACUATICOS						
	MANANTIALES S.A.						
704	(CENTRO NILALHUE)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE
	PISCICULTURA LICAN						
	(SECTOR QUIMAN,		NO				
726	FUTRONO)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE
	SALMONES CALETA						
	BAY S.A. (SECTOR						
728	PITREÑO)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE

		JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
	CULTIVOS						
	ACUATICOS						
	MANANTIALES S.A.						
703	(CENTRO ICULPE)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE
	CULTIVOS						
	ACUATICOS						
	MANANTIALES S.A.						
704	(CENTRO NILALHUE)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE	CUMPLE
	PISCICULTURA LICAN						
	(SECTOR QUIMAN,	NO	NO	NO			
726	FUTRONO)	DESCARGA	DESCARGA	DESCARGA	CUMPLE	CUMPLE	CUMPLE
	SALMONES CALETA						
	BAY S.A. (SECTOR		NO	NO	NO	NO	NO
728	PITREÑO)	CUMPLE	CUMPLE	CUMPLE	CUMPLE	INFORMA	CUMPLE

Tabla 4.9 Producción de peces (kg/año) de las pisciculturas en la comuna Futrono y lago Ranco (solamente se considera el área de drenaje, véase figura A5). Fuente información: 1 . Solicitada por DGA Santiago a través de DIRECTEMAR; 2 - Sernapesca Valdivia s.i. sin información (véase Anexo figura A4)

Centro/año	2008 ¹	2009 ¹	2009 ²	2010 ¹
Marine Harvest: Ranco I	-	-	-	s.i.
Marine Harvest Ranco II	-	-	-	s.i.
Salmones Caleta Bay	-	-	-	s.i.
VEGA QUIMAN	82.629	104.344		88.974
Piscicultura Iculpe S.A.	20.425	62.584		29.651
Piscicultura Nilahue	452.261	180.320	300.373	903.208

La tabla 10 entrega la carga calculada en base a los datos de monitoreo de las mismas empresas (INFAS). Sin embargo, cabe mencionar que los valores de carga de P son sobreestimados, porque en tres de cuatro centros, el 50-70% de los valores de PT fueron bajo el límite de detección (L.D.: < 0,1 o 0,2 mgP/L):

Tabla 4.10 Descarga de las Pisciculturas en la cuenca del Lago Ranco (Fuente: SISS). * corresponde a N Kjeldahl

Empresa	Carga N ton/a	Carga P ton/a	Observaciones
Piscicultura Nilahue S.A.			50% de valores de
R.Nilahue	170,802*	23,639	P < 0,2 mg/L
Piscicultura Iculpe S.A.			70% de valores de
R.Iculpe	33,051	7,214	P < 0,2 mg/L
Salmones Caleta S.A.			50% de valores de
R.Pitreño	17,263	2,273	P < 0,2 mg/L
Vega Quiman			ningún valor bajo
R.Quiman	4,728	4,099	L.D.
Carga anual ton/año		225,844	37,225

Fig. 4.16 Descargas anuales de nitrógeno y fosforo por pisciculturas en tierra en la cuenca del lago Ranco durante 2010.

Estimación de la carga de P y N de la Producción de peces en los Centros de Cultivo RANCO I Y II localizados en el lago Ranco

Debido al hecho de no contar con la información parcializada de los centros de cultivo Ranco I y II (ver Anexo 3, Fig. A4), se tomó la información sobre la producción de peces de la literatura (período: 1998-2005, Leon-Muñoz et al. 2007). Según esta referencia (que se base en información de la SERNAPESCA) Ranco I y II producirían 308 toneladas de peces por año.

La estimación del ingreso de P y N en el lago se calculó según el modelo teórico, considerando los elementos básicos dentro del sistema productivo de peces, es decir, las variables (Campos 1998):

- a) Producción de peces
- b) Alimento necesario para producir la cantidad de peces usando un factor de conversión de alimento en biomasa de peces
- c) concentraciones de P y N en el alimento
- d) asimilación de P y N por parte del pez

Con estos antecedentes, más las cuantificaciones del contenido de Nitrógeno y Fósforo presente en los peces, fue posible realizar un balance del N y P en los centros de cultivo de peces.

El cálculo acerca de las cantidades de alimento empleadas en el proceso productivo se hicieron considerando como base un factor de conversión de 1,2 (Leon 2007).

Esta información fue manejada considerando una ecuación de balance en que la entrada de N/P es igual a la suma de las cantidades de N/P presentes en la producción de peces más las cantidades de estos nutrientes que son eliminadas como desechos. Los datos sobre el contenido de P y N en los peces se tomaron de Campos (1998).

El cálculo de la carga de P/N al lago se realizó finalmente en la siguiente manera:

Carga de N/P al lago = N/P en alimento Ë N/P asimilado por los peces

Tabla 4.11 Estimación de la carga de N y P para Ranco I y II en el lago Ranco

P y N en Peces						
Producción peces (ton)	308					
P en peces (ton): P= 0,48% Peso						
húmedo	1,48					
N en peces (ton):= 25% del N alimento	6,47					
P y N en alimento						
Factor de conversión alimento en						
biomasa pez	1,2					
Alimento (ton)	369,6					
% P alimento	1					
% N alimento	7					
P en alimento (ton)	3,70					
N en alimento (ton)	25,87					
Carga de P y N al lago						
Carga de P al ambiente (ton)	2,2					
Carga de N al ambiente (ton)	19,4					

4.4.4 OTRAS FUENTES DE CONTAMINACIÓN

CARGAS ARTIFICIALES DIFUSAS QUE LLEGAN AL LAGO RANCO (Casas en la franja costera de 200 m, turistas)

La Comuna de Futrono cuenta con una población de aproximadamente 15.000 habitantes según Censo 2002, con una densidad poblacional de 6,60 hab/km². Esta población se concentra mayoritariamente a partir de este nuevo censo en el sector urbano, con aproximadamente un 56%; mientras el 44% restante se ubica en sectores rurales

La población de la comuna, según los distritos censales, se concentra en Futrono con 8.063 habitantes, que representa el 53,8%, Loncopan con 2.147 habitantes con el 14,3%, Llifén con 2.035 habitantes con el 13,6%, Maihue con 1.487 habitantes con el 9,9%, Huite con 862 habitantes con el 5,8% y Quimán con 387 habitantes con el 2,6%. Curriñe, en este caso, corresponde al distrito censal de Maihue.

En las comunas Futrono y Lago Ranco, lo que nos interesa es la población rural, entiéndase por todas las casas habitaciones, centros de veraneo que se emplazan a orillas del lago y que no poseen sistema de alcantarillado y tratamiento de aguas para sus aguas servidas y que estarías descargando estos desechos ya sea directamente al lago o por acción de escorrentía, aporte directo a esteros, ríos, etc.

En la orilla directa del lago (aproximadamente 200 m. desde la línea de costa) se emplazan alrededor de 400 viviendas individuales, excluyendo grandes centros urbanos que tampoco poseen sistema de tratamiento de aguas, como lo son Llifen Coique, Quiman, por nombrar algunos. Además, se pueden observar alrededor de 130 muelles alrededor del lago Ranco. La mayoría de estas viviendas individuales, suelen ser casas y centros de veraneo, utilizadas solo en temporada de vacaciones (invierno y los meses de Diciembre a Febrero) Este aporte de nutrientes hacia el lago es bastante considerable, tomando en cuenta, que cada una de estas casas alberga durante la temporada a aproximadamente 5 miembros por familia. Además, según información aportada por la oficina de turismo de Futrono, la población flotante que ingresa a la comuna durante la temporada de vacaciones fácilmente pude llegar a 50.000 personas solo en la comuna de Futrono (información municipalidad de Futrono), mas aprox. 25.000 personas en la comuna de Lago Ranco.

Con estos datos se estimó un rango de aporte de N/P hacia el lago. Si se estima una permanencia de 75.000 turistas por un periodo de 3 días en promedio en la franja costera, más un número de habitantes permanentes de 2000 personas en la

franja de 200 m durante 365 días (Tabla 4.12) el aporte de P y N sería aprox. 0,78 ton P/año y 3,82 ton N/año.

Tabla 4.12 Estimación del aporte de N/P de turistas y la población permanente

	turistas flotante		400 casas	Total	Pobació	n residente
		Lago			solamente	descarga directa
	Futrono	Ranco	franja 200 m		fosas septicas	al lago
N personas	50000	25000	2000		25079	25079
N dias	3	3	365		365	365
gP/día*persona	0,82	0,82	0,82		0,82	4,1
gN/dia*persona	4	4	4		4	20
Carga						
ton P/año	0,12	0,06	0,60	0,78	7,51	37,53
ton N/año	0,60	0,30	2,92	3,82	36,62	183,08

Este aporte probablemente es una subestimación del aporte real de las personas residentes alrededor del lago Ranco, porque es sabido que solamente una parte de la población residente esta conectada con redes de alcantarillado. Para obtener una idea sobre el rango del aporte de P y N por la población residente, se estimó el aporte de la población permanente (25079 habitantes) asumiendo una descarga a través de fosas sépticas, que podría aportar 7,5 ton P y 36,6 ton N (si toda esta descarga llegaria al lago). Para el caso hipotético en que las aguas servidas de toda la población llegaran al lago sin tratamiento alguno, se podría esperar un aporte de 37,5 ton P y 183 ton N. Para los fines del balance de N y P (vease abajo) se tomaron el rango de las estimaciones de 0,78 . 7,51 ton P/año y 3,82-36,62 ton N/año.

PLANTAS DE TRATAMIENTOS

Futrono

Según comunicación personal por parte de la municipalidad de Futrono (18.10.2010), desde febrero 2010 opera, en marcha blanca, la nueva planta de tratamiento de la cuidad de Futrono que está ubicada frente a la piscicultura Quiman y descarga al río Quiman. Este aporte esta medido dentro del monitoreo de este estudio. Sin embargo, no está claro que porcentaje de la población de Futrono está conectado a la red de alcantarillado, pero se puede esperar que no sean 100% de la cuidad. Esto significa que probablemente una parte de las aguas servidas llegue al lago.

Lago Ranco

La nueva planta de tratamiento de la cuidad Lago Ranco descarga al rio Bueno por lo cual no está considerado en el balance de nutrientes, sin embargo; existe un tubo de descarga de emergencia en la orilla del lago Ranco (ciudad Lago Ranco 40°19q 452¢; 72°29¢80¢) perteneciente a la planta elevadora de aguas servidas. Este tubo de emergencia tiene una longitud de 200 m y descarga a una profundidad de 25 m en caso de emergencia. No obstante, no existe información sobre eventuales descargas de emergencia de esta planta, por lo tanto no se puede incluir esta posible fuente de emisión en el balance.

4.5 APORTE DE NUTRIENTES POR USO DE SUELO

4.5.1 USO DE SUELO

La figura 4.17 muestra la ubicación de las subcuencas 1-12 con su respectivo uso de suelos. El análisis del uso de suelos en la subcuenca del lago porque esto no fue parte de los objetivos del presente estudio. Además, para la determinación del aporte de nutrientes desde la cuenca del lago Maihue hacia el lago Ranco, los procesos dentro del lago Maihue (reciclaje, sedimentación de nutrientes etc.) son decisivos y no pueden ser calculados a través del uso de suelo de la subcuenca

Maihue. El aporte de nutrientes por la subcuenca del lago Maihue fue estimado a través del aporte de nutrientes transportados por el río Calcurrupe.

Fig. 4.17 Mapa de la ubicación de las subcuencas del Lago Ranco

En la Tabla 4.12 se muestran los diferentes usos del suelo para las 13 subcuencas, en que se dividió la cuenca del lago Ranco. El bosque nativo representa el 35,7% del uso del suelo de la cuenca, los matorrales el 12,7%, bosques renovales el 11,6% y las praderas el 12,5 % como usos principales. El agua es el 21,8 % de la cuenca representada por el lago Ranco.

Tabla 4.12 Usos del suelo (ha) para las distintas subcuencas de la cuenca del lago Ranco (sin considerar la cuenca del lago Maihue). La numeración de las subcuencas corresponde a:

1-Futrono, 2-Quiman, 3-Caunahue, 4-Calcurrupe, 5-Nilahue, 6-

1-Futrono, 2-Quiman, 3-Caunahue, 4-Calcurrupe, 5-Nilahue, 6-Riñinahue, 7-Pitreño, 8-Nihue, 9-Iculpe, 10-Ribera Sur 11-Ribera Oeste, 12-Coigue, 13-Lago Ranco

USO DEL SUELO	1	2	3	4	5	6	7	8	9	10	11	12	13	Total (ha)
Bosque nativo	1382	2594	25612	9650	16872	10260	536	238	3928		39	29	132	71271
Agua	119	14	138	146	224	263	36	66	52		72	25,9	42275	43432
Matorral	1110	1109	6047	2349	6867	4202	401	350	2103		155	105	319	25119
Pradera	5532	152	2919	3598	3124	2773	167	1160		2255	610	808	423	23520
Renoval	1425	234	5304	4747	5184	3246	158	690		1254	277	229	286	23034
Suelo desnudo	15,1	2,8	306	54	4911	2846	9,5	6,8	69				30,3	8250
Nieve			29		1591	1078			0					2699
Plantación			80								13,6	3,8		98
Urbano	70			5,0					5,2					81
Sombra	54,85													55
No clasificado	8,4	3,9	10,5	0,1	9,8	5,3				12,4	5,0	1,9	0,0	57
Total (ha)	9718	4110	40446	20549	38784	24674	1308	2511	6157	3521	1172	1202	43466	197618

Sin considerar la superficie del agua presente en la cuenca del Ranco y la cuenca del lago Maihue, la figura 4.18 muestra la distribución del uso de suelo, según el cual 46% es bosque nativo, seguido por pradera (15%), matorral (16%), bosque renoval (15%), suelo desnudo (5%), nieve (2%) y otros.

Fig. 4.18 Uso de suelo en 12 subcuencas del Lago Ranco (en % del área). Valores están calculados sin considerar la cuenca del lago Maihue y sin la superficie del lago Ranco.

4.5.2 ESTIMACIÓN DE CAUDALES MEDIOS

La Tabla 4.13 muestra una comparación entre los caudales observados según las estaciones fluviométricas de la DGA, incluyendo las estaciones del lago Villarrica, y los caudales estimados con la ecuación que relaciona área de la cuenca y caudal medio anual. Los resultados muestran un buen ajuste entre lo observado y lo estimado para ríos de la cordillera de los Andes en la cuenca del lago Ranco.

Tabla 4.13 Comparación entre los caudales observados (datos DGA) y los estimados con la ecuación de predicción.

Subcuencas	Área (ha)	Q observado	Q estimado
		(m³/seg)	(m³/seg)
Calcurrupe en	174021,9	182,5	182,8
desembocadura			
Caunahue	40445,6	37,4	35,8
Nilahue	38783,7	36,6	34,0
Bueno	352968,7	381,1	379,6
Trancura-Curarrehue	34100,0	30,8	28,9
(Villarrica)			
Trancura-Llafenco	121500,0	114,6	125,0
(Villarrica)			
Liucura (Villarrica)	35900,0	31,5	30,8

La ecuación utilizada fue:

$$Y = 0,0004 X^{1,0709} R^2 = 0,998$$

donde Y es el caudal estimado (m³/seg) y X es el área de la cuenca (ha).

En la siguiente tabla se presentan los caudales de los afluentes que se usaron para calcular las tasas de exportación de los nutrientes. Más informaciones acerca de la metodología para calcular los caudales se encuentra en el anexo 4.

Tabla 4.14 Caudales mensuales promedio de los diferentes ríos muestreados en este estudio. Años de medición: R. Calcurrupe: 1987-2008, R. Caunahue: 1998-2008, R. Nilahue: 1988-2008, R. Bueno: 2002-2007.

	Caudales mensuales (m³/seg)												
Ríos	Área (ha)	Е	F	M	Α	М	J	J	Α	S	0	N	D
Calcurrupe en													
desembocadura	174022	154,9	115,0	86,3	99,5	111,9	208,1	266,52	168,1	175,2	150,3	190,0	176,2
Caunahue	40446	17,4	21,6	10,6	13,0	20,41	66,5	62,2	63,6	33,1	32,7	32,4	19,4
Nilahue	38784	27,4	29,4	18,4	17,7	22,3	52,9	47,6	43,9	27,0	26,6	36,9	33,7
Bueno	352969	304,9	208,1	179,0	219,0	281,0	493,7	653,7	475,2	433,5	441,8	429,4	383,6
Quimán	4106	0,92	0,48	0,90	1,92	4,7	8,7	5,6	5,0	4,0	2,53	2,83	1,44
Pitreño	1308	0,22	0,11	0,22	0,53	1,5	3,0	1,7	1,6	1,2	0,69	0,76	0,33
Iculpe	6157	0,98	0,17	0,48	2,21	6,9	14,2	13,2	7,6	5,2	3,41	2,93	0,16

4.5.3 ÍNDICES DE APORTE DE NUTRIENTES

La Tabla 4.15 muestra los índices de aporte de nutrientes que se utilizaron para estimar la carga de nutrientes que ingresan al lago Ranco según los diversos usos del suelo.

Tabla 4.15 Índices de aportes de nutrientes según la literatura.

	P-total (g/L)	N-total (g/L)	Referencias
Bosque nativo adulto			
Saxegothaea conspicua Laureliopsis philippiana (CA)	4,9 ± 2,4	108,6 ± 23,4	Lozano (2011)
Nothofagus betuloides (CA)	9,2		Godoy et al. (2001)
Nothofagus pumilio (CA)	67,3		
Nothofagus betuloides (CA)		62	Oyarzún et al. (2004)
Siempreverde (CA)	37,4	67,3	SPT-UACH
Siempreverde (CA)	18	157,1	Oyarzún et al. (1997)
Ranguintulelfu 1(CA)		57,4 ± 9,1	Little et al. (2008)
Panco Río (CA)		45 ± 5,1	
Fui Río (CA)		47 ± 7,2	
Fitzroya cuppresoides (CC)	4,6	176,5	Oyarzún et al. (1998)
Siempreverde (CC)	24,1	36,8	Oyarzún et al. (2007)
Promedio (CA)		77,8	
Bosques renovales			
N. nervosa-N.obliqua (CA)	44	73,3	SPT-UACH
Praderas			
Praderas sin ganado (CA)	41,4	64,7	SPT-UACH
Praderas-ganadería (CA)	27,4	318,6	Oyarzún et al. (1997)
Agricultura			
Agricultura-praderas (CA)	28,7	314,7	Oyarzún et al. (1997)
Matorrales (CA)	15,1	180	Oyarzún et al (1997)
Plantaciones			
Eucalyptus spp.(CC)	30,1	94,8	Oyarzún et al. (2007)
Nieve/suelo desnudo	67,3	67,8	Oyarzún sin publicar
Precipitaciones			
CA	38,7	95,6	SPT-UACH
CA	8,6 (-26,2)		Godoy et al. (2001)
CA		174	Oyarzún et al. (2004)
CC	5,6		Oyarzun sin publicar
CC	8,1		Oyarzún et al. (1998)
CC	3,6	105,5	Oyarzún et al. (2007)

Tabla 4.16 Exportación de NT y PT según uso de suelo en la cuenca del lago Ranco (sin cuenca del lago Maihue)

Usos suelo	ton NT/año	ton PT/año
Bosque nativo	152,98	9,63
Matorral	122,52	10,28
Pradera	190,92	16,42
Renoval	45,35	27,22
Suelo desnudo	15,81	15,70
Nieve	5,16	5,12
Agua*	81,41	7,32
Plantación	0,26	0,08
Urbano	0,00	0,00
Suma: ton/año	614,40	91,77

^{*} Agua corresponde a precipitaciones.

Las entradas de nutrientes directamente vía precipitaciones son N-total = 81,41 ton/año y P-total = 7,32 ton/año (Tabla 4.16) lo que representan el 13,4 y el 7,2 % de las fuentes difusas en la cuenca del lago Ranco. Estas cargas provienen principalmente de las precipitaciones en la cuenca lago Ranco (Tabla 4.16) Estas entradas se han calculado considerando el promedio de precipitaciones del período 1980-2009 que fue de 1930,9 mm/año (DS = 377,2 mm) de la estación de la DGA en el lago Ranco.

Las entradas estimadas de nutrientes vía ríos y esteros al lago Ranco son N-total = 533,0 ton/año y P-total = 84,5 ton/año, lo que representan el 86,6 y el 92,8% de las cargas difusas, respectivamente. Estas cargas se estimaron considerando el promedio anual de los caudales según los datos proporcionados por la DGA para las subcuencas calibradas, y la ecuación 3 para las subcuencas sin datos.

Las incertezas asociadas a estas estimaciones están relacionadas con los índices de entrega de nutrientes utilizados. Los índices considerados provienen principalmente de diversos estudios realizados en pequeñas y medianas cuencas situadas en la cordillera de los Andes, centro-sur de Chile. La excepción lo constituye el índice usado para plantaciones exóticas, el cual fue obtenido de un estudio realizado en la Cordillera de la Costa cercano a Valdivia (Oyarzún et al. 2007), ante la inexistencia de estudios realizados en los Andes. Por lo tanto, este índice para plantaciones significa una aproximación, ya que la cordillera de la Costa posee distintos suelos y basamento rocoso, características que influyen en el transporte de nutrientes. El uso de este índice no debería afectar mayormente la estimación de las cargas por subcuencas, ya que la superficie correspondiente a plantaciones representa solo el 0,06% de la superficie total de la cuenca. En el caso del bosque nativo adulto, se han realizado bastantes estudios para diferentes tipos de bosques en ambas cordilleras. En este caso, seleccionamos aquellos índices que representaran de mejor forma la vegetación de bosque adulto presente en la cuenca del lago Ranco. En el caso de las precipitaciones, también hay diversos estudios realizados en ambas cordilleras, y para nuestro caso seleccionamos índices que fueran representativos de los sitios de la cordillera de los Andes cercanos a la cuenca del lago Ranco. En el caso de los índices que representan usos de suelo agrícola, praderas y matorrales se recurrió a un trabajo realizado en la cuenca del lago Rupanco (Oyarzún et al. 1997). Para praderas se consideró un índice que representaran las praderas ganaderas, uso de suelo muy frecuente en las subcuencas del lago Ranco. Para el caso de bosques renovales, solamente existen los datos no publicados (Oyarzún, no publicado) del monitoreo realizado en el sitio experimental de San Pablo de Tregua, durante un período de 5 años (2002-2006). En el caso de los usos de suelo nieve y suelo desnudo se utilizó una aproximación a partir de los estudios realizados en el sitio experimental de San Pablo de Tregua, situado cerca del lago Panguipulli y en el Parque Nacional Puyehue (Godoy et al. 1999). Esta aproximación posee una gran incerteza, ya que no existen estudios donde ambos usos de suelo se hayan medido por separado. Se debe considerar que especialmente para los usos de suelo agrícola, matorrales y plantaciones, los índices provienen de estudios realizados en pequeñas y medianas cuencas donde cada uso de suelo es predominante, coexistiendo con otros usos menores.

Finalmente, para el caso urbano no fue posible estimar la carga de nutrientes debido a la inexistencia de este tipo de estudios en el centro-sur de Chile. Sin embargo, en la estimación de las cargas de nutrientes por subcuencas carece de importancia ya que este uso de suelo representa el 0,05% de la superficie total de la cuenca del lago Ranco.

Fig. 4.19 Exportación de nutrientes (%) NT y PT por usos de suelo en la cuenca del lago Ranco.

4.5.4 APORTE DE NUTRIENTES SEGÚN USO DE SUELO

La Tabla 4.17 y la figura 4.20 muestran las estimaciones del aporte de nutrientes por subcuenca que se calcularon en base de los caudales y los índices de exportación por uso de suelo según la literatura. Sin embargo, en esta estimación no está incluido el aporte de nutrientes por la cuenca del lago Maihue. Este aporte está calculado aparte en base de las mediciones realizadas en este estudio.

Tabla 4.17 Aporte de amonio, nitrato, nitrógeno y fósforo total, calculado en base de los caudales y los índices de exportación según la literatura por subcuenca.

Cuenca	N Cuenca	N-total	P-total
		(ton/año)	(ton/año)
FUTRONO	1	52,58	5,80
QUIMAN	2	10,66	1,01
CAUNAHUE	3	129,63	16,23
CALCURRUPE	4	68,57	10,08
NILAHUE	5	130,60	27,97
RIÑINAHUE	6	76,79	15,48
PITRENO	7	3,87	0,45
NIHUE	8	11,23	1,54
ICULPE	9	16,28	1,32
RIBERA SUR	10	18,21	2,63
RIBERA OESTE	11	5,35	0,68
COIQUE	12	6,21	0,71
LAGO RANCO	13	84,03	7,87
TOTAL		614,40	91,77

Las mayores entradas de N total provinieron de las subcuencas Nilahue y Caunahue con 130,6 ton/año y 129,6 ton/año, respectivamente. En la primera, las principales cargas provienen de matorrales (36,8 ton/año) y bosque nativo adulto (33,8 ton/año). En la cuenca del Caunahue, las principales cargas provienen del bosque nativo adulto (50,28 ton/año), lo que se puede explicar por la gran superficie de este uso de suelo en la cuenca. Las mayores entradas de P total provinieron de las subcuencas Nilahue y Caunahue con 27,9 ton/año y 16,2 ton/año, aportado principalmente por los usos de suelo desnudo y bosques renovales, en el caso de la primera, y por los bosques renovales en el caso de la segunda.

Fig. 4.20 Estimación de la exportación de NT y PT en 12 subcuencas del Lago Ranco (en % del área). Valores están calculados sin considerar la cuenca del lago Maihue y sin la superficie del lago Ranco.

En términos generales, las mayores cargas de N-total fueron aportadas por las praderas con el 31% a pesar de que este uso del suelo representa solo el 16,0 %

de toda la superficie de la cuenca. Esto se puede explicar por los índices de concentración de N-total relativamente altos para este tipo de uso del suelo. En el caso del P-total, las mayores cargas provinieron de las superficies de bosques renovales con el 30% y praderas con 18 %, que representan el 14,85 y 45,69% de la superficie total de la cuenca.

4.6 BALANCE DE NUTRIENTES

4.6.1 PARAMETROS MORFOMETRICOS E HIDROLOGICOS

La tabla 4.18 muestra parámetros morfométricas y hidrológicas del lago Ranco según Campos et al. 1982. El tiempo de renovación teórica del lago varía según la precipitaciones entre 4,1 y 6,0 años (promedio: 4,8 años, Tabla 4.19).

Tabla 4.18 Parámetros morfológicos del lago Ranco (Campos et. Al 1982)

Parámetro	Unidad	Valor
Área (A)	Km ²	442,62
Volumen (Vol.)	Km ³	54,059
Profundidad máxima	m	199
(Z _{max})		
Profundidad media	m	122,13
(z _{mean}): Vol./A		
Diámetro máximo	km	30,43
Ancho máximo	km	29,19

Tabla 4.19 Tiempo de renovación teórica (9_T) calculado para el lago Ranco (fuente datos: DGA)

			Tiempo de				
AÑO	Meses	Caudal	renovación				
	medidos	Km³/año	(Vol./caudal)				
2002	3-12	14,74	4,0				
2003	1-12	11,02	4,9				
2004	1-12	11,59	4,7				
2005	1-12	12,41	4,4				
2006	1-12	13,3	4,1				
2007	1-12	9,047	6,0				
2008	1-4, 8-12	10,11	5,3				
2009	1-4	-	-				
2010	1-10	10,75	5,1				
Tiem	Tiempo de renovación teórica (ℜ⊤): 2003 - 2010						
	Promedio	4.8 ± 0.69					
	Rango		4,1 - 6,0				

4.6.2 CUANTIFICACIÓN DE N Y P EN LA COLUMNA DEL LAGO RANCO

Para poder cuantificar el contenido de P y N en la columna del lago Ranco es necesario

- 1) estimar los volúmenes por estrato de profundidad de la columna de agua para calcular el promedio geométrico de N y P en la columna de agua y
- 2) verificar si hay diferencias significativas entre estaciones de muestreo

ESTIMACIÓN DE LOS VOLÚMENES POR ESTRATO

Según Campos et al. (1982) los volúmenes en cada estrato se puede deducir de la curva hipsográfica (Fig. 4.21).

Fig. 4.21 Curva hipsográfica sobre la distribución del volumen en la columna del lago Ranco (Campos 1982, modificado)

Según esta aproximadamente 37% del volumen del lago esta contenido entre 0 y 50 m de profundidad y disminuye hacia el fondo.

De acuerdo a este gráfico se calculó los correspondientes volúmenes para las profundidades medidas y los volúmenes para cada estrato (Tabla 4.20).

Tabla 4.20 Porcentaje de volumen acumulado y por estrato en la columna de agua del lago Ranco

Prof. m	% volumen	Estrato (m)	% Volumen
	acumulado		
0	100	0-10	8,4
10	91,6	10-20	8,1
20	83,7	20-30	7,7
30	76,0	30-40	7,4
40	68,6	40-50	7,1
50	61,5	50-75	16,1
75	45,3	75-100	14,1
100	31,2	100-130	13,9
130	17,3	130-160	10,5
160	6,7	160-fondo	6,7
180	1,7		

EVALUACIÓN ESTADÍSTICA

Se realizó un análisis estadístico para identificar eventuales diferencias en el contenido de nitrógeno y fósforo total entre las distintas estaciones de muestreo con análisis de varianza de una vía (ANDEVA, Sokal & Rolhf, 1995). Las comparaciones entre estaciones tuvieron dos aproximaciones:

- i) Se obtuvieron los valores promedios para la columna de agua de cada nutriente y estos fueron comparados entre estaciones. Ya que la profundidad en la estación E2 (100 m) es menor que la de las estaciones E1 y E4 (180 m), primero se compararon las tres estaciones promediando los valores de cada nutriente obtenidos hasta los 100 m; luego se compararon solo las estaciones E1 y E4 promediando en este caso los valores de cada nutriente obtenidos hasta los 180 m.
- ii) Los valores obtenidos para cada nutriente en cada profundidad fueron comparados entre estaciones. Desde los 130 m, estas comparaciones fueron hechas sólo entre las estaciones E1 y E4.

En ambas aproximaciones, se consideraron como réplicas los diferentes meses de muestreo. Los supuestos de normalidad y homogeneidad de varianzas, se analizaron mediante las pruebas estadísticas de Kolmogorov-Smirnov y Bartlett, respectivamente (Sokal & Rohlf, 1995).

Los contenidos de nitrógeno y fósforo total obtenido para el total de la columna de agua, no presentaron diferencias significativas entre las tres estaciones muestreadas (Tabla 4.22, Fig. 4.22 y 4.23). Cuando se comparan las estaciones E1 y E4 los análisis de varianza tampoco mostraron diferencias significativas entre los valores promedios de cada nutriente (Tabla 4.22).

Los contenidos de nitrógeno y fósforo de cada profundidad no mostraron diferencias significativas entre las distintas estaciones de muestreo (Fig. 4.24).

Tabla 4.21 Resultados del ANDEVA desarrollado para evaluar las diferencias en el contenido de nitrógeno y fósforo total entre estaciones de muestreo (ver detalles de la metodología). Los valores son promedios con desviación estándar entre paréntesis. Se entregan los valores de F y p resultantes del análisis.

Tipo de análisis		ANDEVA			
	E1	E2	E4	F	р
	39.07	37.15	40.53		
Entre las tres estaciones	(8.98)	(7.55)	(7.00)	0.56	0,579
Entre las estaciones E1 y	41.22		42.83		
E4	(7.05)		(6.40)	0.34	0.563
		P-total μg/L		ANI	DEVA
	E1	E2	E4	F	р
	4.99		5.61		
Entre las tres estaciones	(0.83)	5.21 (1.23)	(0.52)	1.44	0.252
Entre las estaciones E1 y	5.15		5.76		
E4	(1.00)		(0.74)	2.84	0.106

Fig. 4.22. Valores promedios de nitrógeno total en la columna de agua del Lago Ranco, en las estaciones E1, E2 y E4. En **a** se comparan las tres estaciones promediando los valores de este nutriente obtenidos hasta los 100 m; en **b** se compararon solo las estaciones E1 y E4 promediando en este caso los valores de este nutriente obtenidos hasta los 180 m (ver metodologías). Se entregan los valores de F y p resultantes del análisis de varianza.

Fig. 4.23 Valores promedios de fósforo total en la columna de agua del Lago Ranco, en las estaciones E1, E2 y E4. En **a** se comparan las tres estaciones promediando los valores de este nutriente obtenidos hasta los 100 m; en **b** se compararon solo las estaciones E1 y E4 promediando en este caso los valores de este nutriente obtenidos hasta los 180 m (ver metodologías). Se entregan los valores de F y p resultantes del análisis de varianza.

Fig. 4.24 Valores promedios de nitrógeno total en cada profundidad muestreada en el Lago Ranco, en las estaciones E1, E2 y E4. Desde los 130 m, los valores corresponden solo a las estaciones E1 y E4 (ver metodologías). Se entregan los valores de F y p resultantes del análisis de varianza.

DETERMINACIÓN DE N Y P EN LA COLUMNA DEL LAGO RANCO

Considerando que no se encontraron diferencias significativas en las concentraciones de N y P en las tres estaciones muestreadas, se calcularon finalmente el promedio de N/P (en mg/L) y la cantidad absoluta (en toneladas) de N/P en el lago Ranco considerando los volúmenes para cada estrato de la columna del agua (Tabla 4.22).

Tabla 4.22 Promedio de N/P por litro y cantidad absoluta de N/P en toneladas en la columna del lago Ranco 2010

Fecha	mg NT/L	mg PT/L	ton N	ton P
22/01/2010	0,032	0,006	1735	340
09/03/2010	0,039	0,007	2097	362
30/03/2010	0,043	0,007	2326	356
27/04/2010	0,040	0,006	2168	307
25/05/2010	0,035	0,005	1882	289
08/07/2010	0,033	0,005	1772	288
06/08/2010	0,052	0,005	2823	253
08/09/2010	0,045	0,004	2457	221
07/10/2010	0,039	0,005	2102	268
04/11/2010	0,043	0,005	2299	274
07/12/2010	0,045	0,005	2433	260
12/01/2011	0,049	0,005	2671	257
Promedio	0,041	0,005	2230	290
DS	0,006	0,001	339	44
% SD	15,2	15,2	15	15

Como se puede apreciar en la tabla 4.22, la concentración promedia de N y P varía durante el año relativamente poco (desviación estándar fue aprox. 15% del promedio) con valores de 0.041 ± 0.006 mgN/L y 0.005 ± 0.001 mgP/L. Las

correspondientes cantidades absolutas de N y P en el lago Ranco fueron en promedio 2230 ± 339 ton N/lago y 290 ± 44 ton P/lago.

4.6.4 SALIDA DE N Y P POR EL EFLUENTE

En la Tabla 4.23 se presenta la salida de N/P por el efluente del lago Ranco, el río Bueno. Anualmente salen 70,8 ton de P y 461,4 ton de N del lago Ranco a través de su efluente. La mayor salida de N y P sucede durante junio y septiembre y octubre con valores aproximadamente 2 . 4 veces mayores que durante los demás meses.

Tabla 4.23 Salida de N y P por el río Bueno, efluente del lago Ranco

	ton TN/mes	ton TP/mes
ENE	39,9	4,5
FEB	27,9	4,3
MAR	9,2	4,4
ABR	21,7	2,6
MAY	23,1	3,5
JUN	42,2	8,1
JUL	68,9	6,8
AGO	54,0	4,5
SEP	47,7	11,0
OCT	43,5	7,9
NOV	37,2	5,5
DIC	46,0	7,6
Total ton/año	461,4	70,8

Cabe mencionar que el cálculo fue hecho con los datos de los caudales de 2010 (enero-octubre) y con el promedio de los años 2002-2007 para los meses noviembre y diciembre, para los cuales no se contó con los cuadales.

4.6.5 ESTIMACIÓN DE LA CARGA CRÍTICA

De acuerdo a las fórmulas predictivas de Vollenweider (1976), se calculó la carga crítica de acuerdo con la siguiente fórmula:

Lc (mg/m² * año) =
$$10*(z/Tw)*(1+\sqrt{Tw})$$

donde:

Lc: Carga crítica en mgP/m² x año

Z: profundidad media del lago: 122 m

Tw: renovación teórica de todo el volumen del lago: 4,1 . 6,0 años (promedio = 4,8 años)

Luego:

Para la renovación teórica de 4,1 años

Lc (mg/m² * año) =
$$10*(122/4,1)*(1+\sqrt{4},1) = 901$$
 mg m² * año

Para la renovación teórica de 6,0 años

Lc (mg/m² * año) =
$$10*(122/6,0)*(1+\sqrt{6},0) = 702$$
 mg m² * año

Considerando un área de 442,62 km² la carga crítica para mantener el estado trófico del lago Ranco (es decir la concentración de fósforo total < 0,010 mg/L) se calcula la carga total a 311-399 ton P/año con un promedio de 359 ton P/año (Tabla 4.24).

Tabla 4.24 Estimación de la carga crítica del lago Ranco

	Carga critica ton P/año
Tw: 4,1 años	399
Tw: 6,0 años	311
Promedio: Tw: 4,8 años	359

4.6.6 ESTIMACIÓN DE LA CARGA ACTUAL CON MODELO PREDICTIVO

En base a la concentración promedia de PT en la columna de agua se puede calcular la carga actual de Fósforo total en la superficie del lago Ranco de acuerdo a las fórmulas predictivas de Vollenweider (1976). Este ejercicio ayuda a verificar si las estimaciones/mediciones de las cargas externas de nutrientes (ver 4.6.7) en el estudio están en el rango esperado según los modelos predictivos. Con esta información se pueden ajustar las estimaciones, lo que facilita la identificación de los problemas en los cálculos de las cargas externas. El modelo más usado actualmente es el de Vollenweider que calcula la carga actual de fósforo (Lcp) total en el lago de la siguiente manera:

$$L_{cp} (mg^*m^{-2} * a\tilde{n}o^{-1}) = P_{tot} * z/Tw/ (1 - R)$$

donde:

P_{tot}: Concentración actual promedio de PT en la columna del lago: 5,3 mg P/m³ (véase tabla 4.22)

Z: Profundidad media: 122 m

Tw: Renovación teórica del volumen del lago: 5,1 (mas rango: 4,1-6,0 años)

R: Coeficiente de retención = 1 / (1 + (1 / \sqrt{T} w)): 0,67 . 0,71 (promedio: 0,69)

Sin embargo, cabe mencionar que existen también otros modelos para calcular la carga actual que consideran por ejemplo otra estimación del coeficiente de retención R que incide mucho sobre la carga actual (Tabla 4.25). Por ejemplo Prairie 1989 calcula R en forma diferente (R = (0,25+0,18*Tw)/(1+0,18Tw)), lo que lleva a una estimación de la carga actual menor que el modelo de Vollenweider (132 y 162 ton PT/año para un tiempo de renovación de 4,1 . 6 años, respectivamente).

La tabla 4.25 resume los resultados de la estimación de la carga actual incluyendo además dos estimaciones más con otros modelos predictivos de la literatura. Se realizaron las estimaciones para tres diferentes tiempos de renovación teórica (4,1; 6 y 4,8 años) del agua del lago Ranco siendo 4,8 años el promedio del tiempo de renovación teórica para los años 2002 - 2010. Como se puede ver, las cargas actuales calculadas varían relativamente poco entre los tres modelos usados. Para el tiempo de renovación teórica de 4,8 años las cargas estimadas oscilan entre 145 y 190 ton P siendo la estimación con el modelo uno (el más usado) la mayor estimación. Si uno considera que el tiempo de renovación teórica en el lago puede variar entre 4,1 y 6 años, la predicción de la carga varía aproximadamente 25% entre los diferentes años.

Tabla 4.25 Estimación de la carga actual (Lc) en base del tiempo de renovación (T_w) y la concentración de fósforo total (P_{tot}: mg P/m³) en la columna del lago. Todos los valores son expresados en TON P/año. Referencias: 1: Vollenweider 1976, 2: Prairie 1989, 3: OECD 1982 (P_{in}: promedio de la carga en mgP/m³)

	Tiemp			
Formula	4,1 años	6 años	4,8 años	Referencia
$L_c (mg/m^2*a) = P_{tot} * z/T_w / (1 - R)$				
R= 1 / (1 + (1/√Tw)	211	165	190	1
$L_c \text{ (mg/m}^2\text{*a)} = P_{tot} * z/T_w / (1 - R)$				
R = (0.25+0.18*Tw)/(1+0.18Tw)	162	132	148	2
$P_{tot} = 1,55 [(P_{in} / (1+z_{w}))]^{0.82}$	180	140	160	3

4.6.7 SUMATORIA DE LA CARGA EXTERNA DEL LAGO RANCO Y BALANCE DE N/P

SUMATORIA DE LAS CARGAS EXTERNAS

Para estimar la sumatoria de las cargas externas puntuales y difusas (aportes de nutrientes), se eligieron los aportes de N y P entre las cargas medidas en los afluentes y los aportes estimados. En la tabla 4.25 se presentan todos los valores medidos (ríos) y estimados (uso de suelo, piscicultura, balsas jaulas, turistas). Los valores de las celdas grises finalmente fueron sumados para calcular la carga externa total. En el caso de la carga de los ríos, se usaron los valores medidos y los valores estimados para las subcuencas donde no había mediciones propias. A estos valores se sumaron los aportes de las pisciculturas de Quiman (que descarga en una zona no muestreada) y de lculpe (que descarga bajo de la toma de muestras de este estudio). En el caso de las pisciculturas Nilahue y Pitreño, estos aportes ya estan considerados en los aportes de los ríos Nilahue y Pitreño.

Según esta en este estudio la carga actual en 2010 fue aprox. de 686-718 ton N y 153-160 ton P. Estos valores están en el rango de la carga actual calculada con los modelos predictivos (véase 4.6.6).

Tabla 4.26 Estimación de las cargas externas (aportes) de N/P total (en ton/año) en la cuenca del lago Ranco. Los valores en las celdas grises fueron sumados para calcular la carga externa total.

		Uso de	suelo	Carga	medida		rga cultura		balsas las	Carga t	uristas/ épticos	Carga ex	terna total
Cuencas	N cuenca	N	Р	N	Р	N	Р	N	Р	N	Р	N	Р
FUTRONO	1	52,94	5,80									52,94	5,80
QUIMAN	2	10,66	1,01	23,32	2,43	4,73	4,10					28,05	6,53
CAUNAHUE	3	129,63	16,23	44,3	5,34							44,32	5,34
CALCURRUPE	4	68,57	10,08	223,6	35,75							223,55	35,75
NILAHUE	5	130,60	27,97	63,8	56,69	170,80	23,64					63,76	56,69
RIÑINAHUE	6	76,79	15,48									76,79	15,48
PITRENO	7	3,87	0,45	5,51	1,48	17,26	2,27					5,51	1,48
NIHUE	8	11,23	1,54									11,23	1,54
ICULPE	9	16,28	1,32	10,23	2,10	33,05	7,21					43,28	9,32
RIBERA SUR	10	18,209	2,63									18,21	2,63
RIBERA OESTE	11	5,349	0,68									5,35	0,68
COIQUE	12	6,214	0,71									6,21	0,71
LAGO RANCO	13	84,068	7,87					19,40	2,22	3,80 . 36,00	0,78- 7,52	107,27-129,47	10,87 -17,7
										3,80-	0,78-		
TOTAL		614,40	91,77	370,70	103,79	225,84	37,23	19,40	2,22	36,00	7,52	686,48-718,7	152,81-159,6

BALANCE DE P/N

El balance de P/N muestra que en el caso del P, aprox. 56% de los ingresos sedimentan y el resto sale a través del efluente. En caso de N, la tasa de sedimentación es mucho menor (29%). Esto puede significar que exista una fuente interna en el lago que aporta N como por ejemplo la fijación de N por parte de cianobacterias, un fenómeno que se ha observado en años anteriores en el lago Maihue.

				Tasa de
Masa total de				sedimentación
P en el lago	Ingreso P	Egreso	Sedimentación	%
290	160	70,8	89,2	56
2230	735	524,0	211,0	29

COMPARACIÓN DE LA CARGA ACTUAL Y LA CARGA CRÍTICA

La diferencia entre la carga actual y la carga crítica fue la siguiente:

	TON P/año
Carga actual:	~ 160
Carga crítica:	359 (311 . 399)
Diferencia:	~ 200

La estimación de las cargas externas de P revela, que esta es aprox. 50% de la carga crítica de P de acuerdo a los modelos predictivos utilizados. En este momento el Lago Ranco tiene aprox. 0,005 mgP/L lo que corresponde a un estado oligotrófico el cual puede mantenerse si la carga actual **no** aumenta.

4.7 EVALUACIÓN DE LA CUENCA

Este estudio hace una evaluación muy general del estado de la cuenca del Lago Ranco, especialmente desde el punto de vista del riesgo de la eutrofización. Actualmente el lago se encuentra todavía en un estado oligotrófico, el cual es su estado histórico natural, aunque probablemente con concentraciones de P y N todavía más bajas que las medidas en este estudio.

Las concentraciones de fósforo y nitrógeno son generalmente bajas, por lo cual históricamente ha sido difícil medir estas concentraciones. En informes anteriores, este consultor ha hecho énfasis en estos problemas analíticos que hacen hasta hoy difícil determinar precisamente el contenido de P y N en la columna de agua (ver datos históricos de la DGA). Estudios anteriores, especialmente de la Universidad Austral de Chile (Dr. Campos) en los años ochenta y noventa, arrojan valores de P y N similares o incluso menores a los que se reporta en este estudio. Además hay que considerar que un lago con las características del lago Ranco (gran volumen con tiempo de renovación aprox. 5 años) muestra cambios significativos en su estado trófico en un tiempo similar al tiempo de renovación teórica (o sea 5 años), solamente si el aporte de nutrientes es mucho más alto que la carga critica. Cambios (aumento) relativamente pequeños de la carga externa y actual en relación con el contenido total de P/N en el lago no serán detectados en un monitoreo a corto plazo (< 5 años).

Respecto a las amenazas dentro de la cuenca del lago Ranco, se puede identificar claramente las pisciculturas tanto en la orilla norte como en la orilla sur del lago como también el uso de suelo y el uso de las orillas del Lago Ranco. Los aportes de las pisciculturas han aumentado considerablemente en los últimos 20 años y son las fuentes puntuales más importantes de la contaminación por nutrientes en este momento. Esto se puede ver también en las concentraciones de P y N en los afluentes 2010 en comparación con 1991. En los ríos Nilahue y Pitreño, el fósforo aumento tres a cuatro veces debido a la instalación de pisciculturas (Fig. 4.25).

Fig. 4.25 Comparación de las concentraciones de nitrógeno y fósforo total de ríos medidas en 1991 y 2010 (datos 1991: Campos)

Otra probable fuente de contaminación son las pequeñas lecherías y el manejo de praderas con ganadería en general, especialmente en las orillas oeste y sur. Mediciones esporádicas de cauces en estas zonas (rio Coique y Rininahue) arrojaron altas concentraciones de P y N, que deben ser verificados.

4.8 PROPUESTA DE MONITOERO EN EL FUTURO

En base de los resultados de este informe se propone el siguiente monitoreo del lago Ranco:

- De acuerdo a este estudio la masa pelágica del lago Ranco está bien mezclada por lo cual es suficiente muestrear en una o máximo dos estaciones (RE1, RE4). Probablemente es conveniente muestrear durante algunos años en dos estaciones, RE1 y RE4, para verificar que no hayan diferencias significativas. En caso que las actividades de los centros de cultivos en la zona este del lago (Nilahue, Pitreño, Ranco I y II) aumenten, se podría esperar quizás un cambio de la trofía en esta bahía.
- En lo posible sería conveniente realizar un estudio de la hidrodinámica para verificar si el lago está bien mezclado horizontalmente y especialmente la bahía Rininahue donde están concentrados los centros de cultivos.
- El monitoreo del lago se debe realizar con una frecuencia al menos estacional. Sin embargo, se debe considerar además un monitoreo epilimnetica adicional durante el verano en caso que se encuentre blooms de algas, especialmente los eventualmente toxicas algas azules (como ocurrió en 2010).
- El monitoreo pelágico debe ser realizado en el perfil vertical desde la superficie hasta el fondo (profundidad máxima: 200 m). Es muy importante medir especialmente cerca del fondo el oxigeno disuelto, porque indica la degradación de la materia orgánica y es decisivo para los procesos de la reinserción de nutrientes desde el fondo a la columna de agua.
- Para poder calcular el contenido de P y N en la columna del lago es necesario tomar muestras de agua en por lo menos 2 profundidades en el epilimnion, una en el metalimnion y 2-3 en el hipolimnion.
- Es conveniente usar una sonda multiparam´rtrica para la medición de los parámetros físicos (temperatura, conductividad eléctrica, oxigeno) y clorofila a.

- Sería muy conveniente monitorear por lo menos durante el verano el fitoplancton, porque últimamente se observaron en muchos lagos incluyendo el lago Ranco blooms de algas azules. Ya que estas potencialmente pueden producir toxinas, es importante tener registros sobre el fitoplancton.
- Es recomendable monitorear el efluente río Bueno para poder calcular la exportación de N/P por parte del río.
- En el lago Ranco, especialmente las orillas norte, oeste y sur, sufren ya una presión por parte de los turistas que hace necesario poner más énfasis en un monitoreo de las orillas. Hay que fijarse en contaminación puntual de la orilla por parte de casas de verano, lecherías etc.

5. CONCLUSIONES

- El análisis de los datos recopilados de la DGA (2008 y 2009) mostró en varios parámetros incoherencias y problemas metodológicos. Los parámetros con mayores problemas fueron nitrógeno y fósforo total, amonio y fósforo soluble. En algunos casos los límites de detección fueron muy altos (p.e. fósforo total: 0,2 mg P/L) o presentaron problemas analíticos (p.e. en varios casos la fracción soluble fue mayor que la fracción total). Se detectaron también problemas con los límites de detección, especialmente para amonio y fósforo soluble.
- El monitoreo del lago Ranco arrojó los siguientes resultados: La columna de aqua estaba bien oxigenada hasta los 45 m de profundidad, pero después muestra una clara disminución del contenido de oxígeno hasta el fondo con valores mínimos de aprox. 60-70% de saturación. La clorofila a no presentó diferencias marcadas entre los sitios, exhibiendo un aumento hacia los meses de invierno, con valores máximos de 2.3 g/L (Septiembre-Octubre de 2010), y valores mínimos de 0,2 g/L a finales del verano (Abril de 2010), estando dentro de los valores de clasificación de lagos oligotróficos (< 2,5 . 5 g/L). Las fracciones de nitrógeno disuelto más importante fueron el nitrato y amonio, siendo ambas muy bajas en el epilimnion, aumentando considerablemente bajo la termoclina (nitrato) hasta alcanzar valores aprox. 0,05 mg N/L. También se observó una clara variabilidad temporal en estos estratos del verano al invierno coincidente con la mezcla del lago. Los valores de nitrógeno total también fueron bajos (0,04-0,06 mgN/L), siendo característicos para lagos poco productivos. Los valores de fósforo fueron similares y muy bajos (< 0,08 mgP/L) tanto para la fracción soluble, como para el P total. El perfil vertical de P fue bastante homogéneo tanto para P soluble como para P total. Respecto a diferencias entre estaciones, no se encontró diferencias significativas entre las tres estaciones, ni para nitrógeno, ni para el fosforo. Se observó una variación temporal del fitoplancton en el lago, revelando cambios estacionales que coinciden con

- los patrones de sucesión estacional descrito para los lagos Nordpatagónicos, siendo el grupo de las diatomeas el más representativo durante el año.
- Respecto a los afluentes monitoreados, se observaron valores altos de N (> 0,1 mgN/L) y P (> 0,02 mgP/L) en los ríos Nilahue, Quimán, Pitreño, indicando un estado contaminado producido principalmente por las descargas de pisciculturas y otras fuentes (p.e. planta de tratamiento).
- Para la estimación de ingreso de nutrientes por fuentes difusas (uso de suelo), se realizó un análisis para las 13 subcuencas que forman parte de la cuenca del lago Ranco. Sin considerar la superficie del agua presente en la cuenca del Ranco y la cuenca del lago Maihue, el bosque nativo representa el 46%, seguido por pradera (15%), matorral (16%), bosque renoval (15%), suelo desnudo (5%), nieve (2%) entre otros.
- La utilización de suelo para explotación agropecuaria de las comunas de Futrono es 141.453 ha y de la comuna Río Bueno es 172.735 ha. Los productos son principalmente hortalizas, entre ellos papas, trigo y legumbres. El ganado bovino es el más importante en ambas comunas, llegando a las 52.600 cabezas en la comuna de Futrono y a las 22.878 cabezas en la Comuna de Lago Ranco. Respecto a la exportación de P/N por fuentes difusas se concluyo lo siguiente: Las entradas de nutrientes directamente vía precipitaciones son N-total = 81,41 ton/año y P-total = 7,32 ton/año, lo que representan el 13,4 y el 7,2 % de las fuentes difusas en la cuenca del lago Ranco. En contraste, las entradas de nutrientes vía ríos y esteros son N-total = 533,0 ton/año y P-total = 84,5 ton/año, lo que representan el 86,6 y el 92,8% de las cargas difusas. Las mayores cargas de N-total fueron aportadas por las praderas con el 31%, a pesar de que este uso del suelo representa solo el 16,0 % de toda la superficie de la cuenca. En el caso del P-total, las mayores cargas provinieron de las superficies de bosques renovales con el 30% y praderas con 18 %, que representan el 14,85 y 45,69% de la superficie total de la cuenca.

- Respecto a fuentes puntuales de contaminación en la cuenca del lago Ranco destacan 4 centros operativos de pisciculturas en tierra y dos centros de balsas jaulas en el lago Ranco.
- A través del río Bueno, anualmente salen aprox. 71 ton de P y 461 ton de N. La mayor exportación de N y P sucede durante junio, septiembre y octubre con valores aproximadamente de 2 a 4 veces más que lo exportado en otros meses.
- Respecto a la carga externa total de P y N provenientes de las fuentes puntuales y difusas identificables en este estudio se puede determinar un aporte de aprox. 160 ton P y 718 ton N al lago Ranco. Estos cálculos coinciden bastante bien con la modelación de la carga externa, usando un modelo predictivo de la literatura que calcula una carga entre 148 y 190 ton P, para predecir la concentración de P en la columna de agua de 0,0053 mg/L (es la concentración actual en el lago).
- Se calculó la carga critica para el lago Ranco de 359 ton P (rango 311-399 ton P) para mantener el lago en condiciones oligotróficos (concentración de P en la columna de agua de P < 0,01 mg/L). En comparación, la carga actual es aprox. 50% de la carga crítica del lago. Esto significa que el lago Ranco mantiene su estado oligotrófico si no se aumenta la carga actual.
- Según los valores de los principales parámetros descriptores de la trofía (concentración de nutrientes, concentración de clorofila, transparencia del agua y además, valores de la productividad primaria) se puede caracterizar al lago Ranco como ambiente generalmente oligotrófico (fósforo < 0,01 mg P/L, transparencia > 10 m en general). Debido a los incertidumbres de la estimación de las cargas actuales, se considera necesario no permitir un mayor ingreso de nutrientes en el lago, e incluso disminuir el ingreso actual.

Referencias

- APHA (American Public Health Association). Standard methods for the examination of water and wastewater. Washington, D.C., 2005
- CAMPOS, H. 1984. Limnological study of Araucanian lakes (Chile). En Verh.Internat.Verein.Limnol. 22:1319-1327
- Campos, H. 1984. Limnological study of Araucanian lakes (Chile). Ver. Internat. Verein. Limnol. 22:1319-1327.
- Campos, H. et al. 1984. Antecedentes de los lagos Villarrica, Riñihue, Ranco y Llanquihue. Informe a DGA. 90 páginas.
- Campos, H. et al. 1986. Alteraciones en lagos araucanos por aumento del ingreso de nutrientes. 2º Encuentro científico sobre el medio ambiente. CIPMA. 1:76-84.
- Campos, H. et al. 1992. Informe SUBSECRETARIA DE PESCA: Evaluación de la carga de fósforo y nitrógeno en los lagos Ranco y Puyehue.
- Campos, H. et al. 1992. Limnology of lake Ranco. Limnologica 22(4): 337-353.
- Campos, H. et al. Operación parcial de la red minima de control de lagos: Estudio de los lagos Riñihue y Ranco. 1988. Informe DGA.
- Campos, H. et al.. Informe Empresa Pesquera EICOSAL: Estudio del efecto producido sobre el lago Ranco, por el cultivo de especies salmonideas con el sistema de balsas jaula. 1990
- Campos, H. et al.. Informe SERNAPESCA. Proyecto siembra de truchas salmonideas en las hoyas hídricas de los lagos Ranco y Llanquihue. 1983
- Campos, H., J. Arenas, W. Steffen, C. Román, and G. Agüero. Limnological study of lake Ranco (Chile): Morphometry, physics, chemistry and plankton. En Archiv.f.Hydrobiologie. 94. 1982, p. 137-171.
- Campos, H., W. Steffen, and J. Arenas 1984. Informe DGA (MOP). Antecedentes de los lagos Villarrica, Riñihue, Ranco y Llanquihue.
- Campos, H., W. Steffen, G. Agüero, O. Parra, and L. Zúñiga 1992. Limnology of Lake Ranco (Chile). En Limnologica 22.1992, p. 337-354.

- Campos, H. et al %DETERMINACION DE LA CAPACIDAD DE CARGA Y BALANCE DE FOSFORO Y NITROGENO DE LOS LAGOS NATRI, CUCAO, HUILLINCO, TEPUHUEICO Y TARAHUÍN±1997. Informe FIP
- Domínguez, P. & Zuñiga, L. 1979. Perspectiva temporal de la entomostraca fauna limnética del lago Ranco (Valdivia, Chile). Ann.Mus.Hist.Nat., Valparaiso, Chile, 12:53-58*
- Geller,W. 1992. The temperature stratification and related characteristics of Chilean lakes in midsummer. Aquatic Sciences. 54: 37-57.
- Geller, W., S. Hannapel, and H. Campos 1997. Temperature and stratification of southern hemisphere temperate lakes in Patagonia (Chile, Argentina). Verh. Inter. Verein. Limnol. 26: 243-247.
- Löffler, H. 1960. Limnologische Untersuchungen an chilenischen und peruanischen Binnengewässern. Arkiv för Geofysik Band 3 (10): 155-254.
- Parra, O. & C. E. Bicudo. Introducción a la biología y sistemática de las aguas continentales. En Ediciones Universidad de Concepción.1998, p. 1- 268
- Parra, O., M. Gonzalez, V. Dellarossa, P. Rivera, M. Orellana. Manual taxonómico del fitoplancton de aguas continentales, con especial referencia al fitoplancton de Chile. I. Cyanophyceae. II.Chrysophyceae y Xanthophyceae. III. Cryptophyceae, Dinophyceae y Euglenophyceae. IV. Bacillariophyceae. V. Chlorophyceae. En Ediciones Universidad de Concepción.1982
- Plan Ordenamiento Territorial Cuenca Lago Ranco, 2006/2007 Proyecto FNDR Región de los Lagos, Universidad Católica de Temuco.
- Prairie, Y.T., C.M. Duarte and J.Kalff 1989. Unifying Nutrient-Chlorophyll Relationships in Lakes. Can.J.Fish.Aquat.Sci.46: 1176-1182.
- OECD 1982. Eutrophication of Waters . Monitoring, Assessment and Control. Paris: Org. for Econ. Cooperation and Dev.
- Sokal, R. & Rohlf, F. Biometry: the principles and practice of statistics in biological research. En W.-H. Freeman, New York.1995, p.1-877
- Thomasson, K. 1963. Araucanian Lakes. Acta Phytogeographica Suecica 47: 1-139.
- Utermöhl, H.. Zur Vervollkommnung der quantitativen Phytoplankton- Methodik. En Mitt. Internat. Verein. Limnol. 9.1958, p.1-38.

- Vollenweider 1976 Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication. Mem.Ist.Ital.Idrobiol.33:53-83
- Woelfl et al. 2009. MONITOREO COMPLEMENTARIO DE LOS LAGOS RANCO Y MAIHUE, REGION DE LOS RÍOS+Informe UACH, 109 páginas
- Woelfl, S. (2007) The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results Limnologica 37: 28-36

6.COMPOSICIÓN DEL EQUIPO TÉCNICO

- Dr. Stefan Woelfl. INVESTIGADOR RESPONSABLE. Universidad Austral de Chile.
- Dr. Carlos Oyarzún, INVESTIGADOR Universidad Austral de Chile.
- Dr. Cristian Duarte, INVESTIGADOR Universidad Austral de Chile
- Dr. Luciano Caputo, INVESTIGADOR Universidad Austral de Chile.
- Ing. José Luis Rodríguez, INVESTIGADOR CECS, Valdivia

Técnicos.

Biol.Mar. Ana Lorca, Laboratorio LIMNOLAB Universidad Austral de Chile

Biol.Mar. (cand.) Marcelo Miranda Universidad Austral de Chile

Biol.Mar. (cand.) Diógenes Castro Universidad Austral de Chile

Biol.Mar. (cand.) Marco Kramps Universidad Austral de Chile

Sr. Raúl Arriagada M. Universidad Austral de Chile

Sr. Luis Zapata. Universidad Austral de Chile

ANEXO 1 FOTOS DE TERRENO

Fig. A1 Fotos de los lugares de muestreo (ríos)

Fig. A2 Fotos de los lugares de muestreo (ríos, lagos)

Fig. A3 Sonda multiparamétrica CTD M90 (Sea & Sun, Alemania) con sensores de temperatura, profundidad, conductividad, pH, oxígeno y clorofila a

Fig. A4 Botella Friedinger (con termómetro incluido) para tomar muestras de agua

Fig. A5 Programación de la sonda multiparamétrica CTD M90 para obtención de perfiles verticales en el lago Ranco

ANEXO 2 PARAMETROS FISICOS Y QUIMICOS DEL LAGO RANCO

Tabla A1 Visibilidad (profundidad de Secchi) en las estaciones RE1, RE2 Y RE4 en lago Ranco

FECHA	RE1	RE2	RE4
29/01/10	23,5	23,5	19
09/03/10	22	21	20
01/04/10	23	25,5	24
27/04/10	20	21,5	22
25/05/10	20	19,5	19
08/07/10	13	12	12
06/08/10	16,5	14,5	15,5
08/09/10	14,5	13	13,5
07/10/10	17	15	15
04/11/10	20	16,5	17
07/12/10	15,5	17	16
12/01/11	25	22	16

Tabla A2 Parámetros físicos obtenidos para las profundidades muestreadas con botella Friedinger. Estación lago Ranco RE1

	-	Conductividad	рН	Oxígeno	Oxígeno	Chl_A
m	°C	S/cm		mg/L	%	g/L
_	·		22-01-10			
0	17,63	60	7,72	9,5	100	1,7
10	16,62	59	7,68	9,7	100	0,5
20	14,45	59	7,62	10,1	99	0,8
30	14,16	59	7,6	10,2	99	1,1
40	12,84	59	7,58	10,4	98	0,6
50	11,88	59	7,67	10,0	93	1
75	11,7	nd	nd	9,6	89	nd
100	11.6	nd	nd	9,4	87	nd
130	11.3	nd	nd	9,2	84	nd
160	11.3	nd	nd	8,9	82	nd
180	11.3	nd	nd	8,6	79	nd
			09-03-10			
0	17,96	64	7,61	9,4	100	0,008
10	17,94	64	7,76	10,6	112	0,07
20	16,7	64	7,77	11,4	117	0,058
30	14,64	64	7,75	11,8	116	0,169
40	11,69	63	7,61	12,1	112	0,579
50	11,12	63	7,49	11,8	107	0,519
75	10,39	65	7,31	10,9	98	0,115
100	10,23	65	7,23	10,4	93	0,182
130	10,16	64	7,13	9,4	84	0,203
160	10,14	65	7,05	8,8	78	0,161
180	10,14	65	6,85	6,4	57	0,077
			01-04-10			
0	16,82	64	6,9	9,9	102	0,15
10	16,81	64	7,35	10,5	108	0,06
20	16,78	64	7,27	10,4	107	0,01
30	14,74	64	7,5	10,7	106	0,38
40	11,45	63	7,67	11,0	101	0,42
50	10,93	63	7,44	10,6	96	0,3
75	10,4	63	7,08	10,1	91	0,13
100	10,23	63	n.d.	9,4	84	0,18
130	10,17	63	n.d.	8,7	78	0,19
160	10,14	63	n.d.	8,0	71	0,18
180	10,16	65	n.d.	6,2	55	0,12

Profundidad	_	Conductividad	рН	Oxígeno	Oxígeno	Chl_A
m	°C	S/cm		mg/L	%	g/L
			27-04-10			
0	15,06	64	7,78	10,3	103	0,066
10	15,01	64	7,92	10,0	99	0,088
20	15,01	64	7,97	9,9	99	0,075
30	15,00	64	7,99	10,0	99	0,056
40	11,6	63	7,91	10,1	93	0,175
50	10,96	63	7,81	10,0	91	0,024
75	10,43	63	7,63	9,4	84	0
100	10,24	64	7,51	8,9	79	0
130	10,18	64	7,41	8,4	75	0
160	10,15	64	7,33	7,9	70	0
180	10,16	65	7,2	6,8	60	0
			25-05-10			
0	13,43	64	8,45	10,4	100	0,087
10	13,43	64	8,17	10,3	99	0,28
20	13,43	64	8,13	9,6	92	0,239
30	13,42	64	8,11	9,7	93	0,166
40	13,33	64	8,09	9,5	91	0,333
50	11,05	63	7,91	9,4	86	0
75	10,44	63	7,71	8,7	78	0
100	10,23	64	7,58	8,1	72	0
130	10,18	64	7,46	7,3	65	0
160	10,15	64	7,41	6,9	61	0
180	10,14	64	7,34	7,1	63	0
			08-07-10			
0	11	64	8,24	11,0	100	1,58
10	11,01	64	8,2	11,6	105	1,33
20	11,01	64	8,18	10,9	99	1,56
30	11,01	64	8,15	10,8	98	1,31
40	11,02	64	8,13	10,7	98	1,19
50	11,01	63	8,12	10,7	98	1,71
75	10,84	63	8,06	11,2	101	1,14
100	10,4	63	7,74	9,6	86	0
130	10,29	64	7,62	8,9	82	0
160	10,22	64	7,56	8,5	76	0
180	10,19	64	7,53	8,4	75	0

Profundidad	_	Conductividad	рН	Oxígeno	Oxígeno	Chl_A
m	°C	S/cm		mg/L	%	g/L
			06-08-10	T		
0	10,21	63	6,38	11,2	100	1,12
10	10,2	64	6,8	10,4	93	1,36
20	10,2	64	6,95	10,1	90	0,94
30	10,19	64	7,01	10,0	90	1,12
40	10,19	64	7,04	10,3	92	1,14
50	10,19	64	7,07	10,0	89	1,25
75	10,18	64	7,12	9,7	87	1,15
100	10,18	64	7,15	9,7	87	1,2
130	10,19	64	7,16	9,7	87	1,32
160	10,19	64	7,17	9,6	86	1,3
180	10,18	64	7,15	9,5	85	1,9
			08-09-10			
0	10,98	63	7,19	11,2	100	0,06
10	10,18	64	7,37	12,2	108	1,09
20	10,08	64	7,35	10,8	96	1,93
30	10,03	64	7,3	10,2	90	1,11
40	10,01	64	7,27	9,6	85	0,78
50	9,99	64	7,25	9,7	86	0,51
75	9,98	64	7,22	9,8	87	0,26
100	9,98	64	7,22	10,1	90	0,25
130	9,95	64	7,21	10,1	90	0,29
160	9,9	64	7,2	10,3	91	0,4
180	9,86	64	7,18	10,84	97	0,37
			07-10-10			
0	12,38	63	7,56	n.d.	n.d	0,09
10	11,38	64	7,69	n.d.	n.d	0,28
20	10,82	64	7,69	n.d	n.d	1,82
30	10,16	64	7,58	n.d	n.d	1,42
40	10	64	7,49	n.d	n.d	0,61
50	9,99	64	7,44	n.d	n.d	0,01
75	9,98	64	7,38	n.d	n.d	0
100	9,97	64	7,35	n.d	n.d	0
130	9,93	64	7,31	n.d	n.d	0
160	9,89	64	7,28	n.d	n.d	0
180	9,88	64	7,21	n.d	n.d	0

	-	Conductividad	рН	Oxígeno	Oxígeno	Chl_A
m	°C	S/cm	04.44.40	mg/L	%	g/L
_			04-11-10			_
0	12,99	64	7,5	10,67	101,42	0
10	12,68	64	7,68	10,88	102,71	0
20	12,03	64	7,73	11,02	102,57	,13
30	10,99	63	7,66	11,01	100,01	,83
40	10,42	63	7,59	11,20	100,39	1,13
50	10,12	63	7,52	10,99	97,80	1,27
75	10	64	7,44	11,11	98,58	0,64
100	9,98	64	7,41	10,77	95,50	0
130	9,94	64	7,39	10,34	91,67	0
160	9,92	64	7,34	10,47	92,79	0
180	9,91	64	7,26	10,10	89,41	0
			07-12-10			
0	15,15	63	7,76	10,03	100,00	0,2
10	14,77	63	7,74	10,07	99,54	0
20	13,95	63	7,72	10,29	100,00	0,1
30	12,03	63	7,63	10,74	100,00	0,21
40	10,64	63	7,50	10,36	93,36	1,48
50	10,2	63	7,39	10,39	92,69	1,1
75	9,99	63	7,33	10,25	91,00	0,1
100	9,97	63	7,31	10,14	90,00	0,1
130	9,93	63	7,26	10,14	89,87	0
160	9,91	63	7,21	10,95	96,94	0
180	9,91	64	7,12	10,06	89,14	0
			12-01-11			
0	19,54	64	7,82	9,17	100,00	0
10	17,69	63	7,83	9,64	101,29	0
20	15,0	63	7,77	9,97	99,08	0,1
30	12,72	63	7,65	10,23	96,74	0,21
40	10,84	63	7,46	10,34	93,68	1,13
50	10,31	63	7,33	10,10	90,38	0,87
75	10,04	63	7,18	9,96	88,56	0,0
100	9,98	63	7,12	9,90	87,91	0
130	9,98	63	7,07	10,13	89,89	0
160	9,95	63	8	9,89	87,73	0
180	9,93	64	6,94	9,58	85,00	0

Tabla A3 Parámetros físicos obtenidos para las profundidades muestreadas con botella Friedinger. Estación lago Ranco RE2

	Temperatura °C	Conductividad	рН	Oxígeno	Oxígeno	Chl_a
m	30	S/cm	22-01-10	mg/L	%	g/L
0	16,93	60	8,04	9,8	101	0.50
10		60			100	0,50
20	16,57		7,92	9,8		0,60
30	15,99	60 60	7,96	9,9	100 100	0,60 0,70
40	15,34 12,87	59	7,92 7,64	10,0 10,2	97	0,70
50	12,87	59	7,34	10,2	94	0,40
75			nd			
100	11,3 11	nd nd	nd	9,3 9,3	nd nd	nd nd
100	11	nu nu	09-03-10	9,3	l IIu	nd
0	17,82	64	6,38	9,0	95	0,05
10	17,82	64	7,24	9,5	100	0,067
20	16,3	64	7,48	10,1	103	0,007
30	13,71	63	7,53	10,5	102	0,244
40	11,62	63	7,48	10,8	100	0,366
50	10,85	63	7,42	10,6	96	0,503
75	10,37	63	7,3	9,8	88	0,149
100	10,22	63	7,22	9,1	81	0,172
	. 0,22		01-04-10	<u> </u>	0.	0,112
0	16,89	64	6,88	9,8	102	0,13
10	16,87	64	7,94	11,3	117	0,05
20	16,87	64	7,52	10,8	111	0,01
30	14,18	63	7,75	11,1	108	0,16
40	11,77	63	7,85	11,2	104	0,57
50	11,05	63	7,53	10,8	98	0,56
75	10,43	63	6,98	10,0	89	0,12
100	10,23	63	6,56	9,4	84	0,18
			27-04-10			
0	15,05	64	7,33	10,21	101,6	0,049
10	15,03	64	7,63	10,22	101,6	0,216
20	15,02	64	7,75	10,29	102,3	0,118
30	14,94	64	7,83	10,02	99,4	0,043
40	12,02	64	7,8	10,28	95,7	0,117
50	10,92	63	7,72	10,02	90,9	0,046
75	10,37	63	7,57	9,44	84,6	0
100	10,24	64	7,45	8,87	79,2	0

continuación Tabla A3

Profundidad	Temperatura	Conductividad	рН	Oxígeno	Oxígeno	Chl_a
m	٥C	S/cm		mg/L	%	g/L
			25-05-10			
0	13,41	64	7,31	10,4	100	0,086
10	13,4	64	7,75	10,2	98	0,35
20	13,4	64	7,91	10,2	98	0,439
30	13,4	64	7,98	10,1	97	0,319
40	13,4	64	8,01	10,0	96	0,365
50	10,96	63	7,89	9,9	90	0
75	10,39	63	7,68	9,3	83	0
100	10,19	63	7,53	8,5	76	0
130	10,15	63	7,45	8,2	73	0
			13-07-10			
0	10,77	64	7,94	11,1	100	2
10	10,78	64	8,01	10,9	99	1,49
20	10,77	64	8,04	10,7	97	1,72
30	10,77	64	8,05	11,0	100	1,84
40	10,76	64	8,04	10,5	95	1,52
50	10,76	63	8,04	10,2	92	1,49
75	10,72	63	8,02	10,1	91	2,08
100	10,55	63	7,8	9,8	88	0,91
			06-08-10			
0	10,18	64	6,27	11,2	100	1,02
10	10,19	64	6,75	10,9	97	1,14
20	10,19	64	6,92	11,2	99	1,14
30	10,19	64	7,02	10,5	94	1,01
40	10,19	64	7,07	10,4	92	1,23
50	10,19	64	7,08	10,2	91	0,84
75	10,19	64	7,11	10,1	90	1,08
100	10,19	64	7,12	10,3	91	0,84
116	9,96	64	7,26	10,1	90	0,5
			08-09-10			1
0	11,61	64	7,14	11,2	100	0,18
10	10,24	64	7,53	10,9	97	1,26
20	10,04	64	7,42	11,2	99	1,92
30	10	64	7,37	10,5	94	0,87
40	9,99	64	7,33	10,4	92	0,54
50	9,98	64	7,31	10,2	91	0,45
75	9,97	64	7,28	10,1	90	0,51

Profundidad		Conductividad	рН	Oxígeno	Oxígeno	Chl_a
m	°C	S/cm		mg/L	%	g/L
100	9,96	64	7,27	10,3	91	0,35
			07-10-10			
0	12,91	64	6,64	n.d.	n.d.	0,04
10	11,04	63	7,51	n.d.	n.d.	0,27
20	10,37	64	7,52	n.d.	n.d.	2,44
30	10,04	63	7,42	n.d.	n.d.	0,57
40	10	63	7,36	n.d.	n.d.	0,06
50	10	63	7,32	n.d.	n.d.	0,05
75	9,99	63	7,28	n.d.	n.d.	0
100	9,96	63	7,26	n.d.	n.d.	0
124	9,93	64	7,23	n.d.	n.d.	0
			04-11-10			
0	12,87	64	7,29	10,54	100,00	0
10	12,74	64	7,66	9,99	94,51	0
20	11,52	64	7,7	10,51	96,73	0,25
30	10,64	63	7,64	10,19	91,89	0,91
40	10,16	63	7,53	9,86	87,92	1,02
50	10,07	63	7,46	9,66	85,96	0,84
75	9,99	63	7,4	10,17	90,33	0,12
100	9,96	63	7,37	10,18	90,35	0
130	9,92	64	7,33	9,95	88,23	0
			07-12-10			
0	14,9	64	7,75	10,10	100,16	0,1
10	14,58	63	7,76	9,83	96,81	0
20	12,39	63	7,68	10,54	98,93	0,1
30	11,39	63	7,57	10,43	95,70	1,09
40	10,44	63	7,47	10,08	90,36	1,45
50	10,14	63	7,4	10,04	89,42	1,02
75	9,99	63	7,33	10,30	91,40	0,15
100	9,96	63	7,3	10,14	90,00	0,1
124	9,93	63	7,25	9,92	88,00	0
			12-01-11			
0	17,69	64	7,66	9,52	100,00	0
10	17,26	64	7,79	9,71	101,27	0,1
20	14,2	63	7,72	10,13	98,91	0,13
30	12,71	63	7,58	10,19	96,24	0,30
40	11,2	63	7,45	10,45	95,40	0,62
50	10,44	63	7,34	10,23	91,72	0,77
75	10,04	63	7,21	9,71	86,22	0,16

100	9,97	63	7,16	9,64	85,50	0
114	9,96	63	7,14	9,58	85,00	0

n.d. no determinado, falla del sensor

Tabla A4 Parámetros físicos obtenidos para las profundidades muestreadas con botella Friedinger. Estación lago Ranco RE4

*valor probablemente sobre estimado por 0,5 - 0,8 °C, porque se tomó el valor del termómetro en la botella Friedinger, que probablemente se calentó un poco al subir

Profundidad	Temperatura	Conductividad	рН	Oxígeno	Oxígeno	Chl_a
m	°C	S/cm		mg/L	%	g/L
			22-01-10			
0	18,25	60	6,83	9,5	101	0,3
10	16,99	60	7,48	9,7	101	0,5
20	16,52	60	7,51	9,7	100	0,7
30	15,25	60	7,55	9,8	99	0,6
40	12,26	59	7,22	10,1	94	0,9
50	11,15	59	6,74	9,7	88	1,1
75	11*	nd	nd	9,6	nd	nd
100	11*	nd	nd	9,4	nd	nd
130	11*	nd	nd	9,2	nd	nd
160	11*	nd	nd	8,9	nd	nd
180	11*	nd	nd	8,6	nd	nd
			09-03-10			
0	18,34	64	7,91	9,6	102	0,009
10	18,03	63	7,86	10,2	108	0,028
20	17,09	63	7,83	10,6	110	0,042
30	15,76	63	7,78	10,8	109	0,251
40	11,76	63	7,68	11,2	104	0,565
50	11,13	63	7,56	11,0	100	0,339
75	10,44	63	7,4	10,3	92	0,157
100	10,25	63	7,3	9,8	88	0,213
130	10,18	63	7,25	9,4	84	0,206
160	10,18	63	7,19	9,0	80	0,175
180	10,17	65	7,09	7,9	71	0,114
	,		01-04-10			
0	16,82	64	7,76	9,9	102	0,078
10	16,81	64	7,83	10,5	108	0,06
20	16,78	64	7,87	10,4	107	0,01
30	14,74	65	7,87	10,7	106	0,38
40	11,45	64	7,78	11,0	101	0,521
50	10,93	63	7,6	10,6	96	0,3
75	10,4	64	7,45	10,1	91	0,13
100	10,23	64	7,36	9,4	84	0,18
130	10,17	64	7,28	8,7	78	0,19
160	10,14	64	7,2	8,0	71	0,18
180	10,16	65	7,07	6,2	55	0,12

Profundidad	-	Conductividad	рН	Oxígeno	Oxígeno	Chl_a			
m	۰C	S/cm		mg/L	%	g/L			
	27-04-10								
0	15,18	65	6,95	10,1	101	0,227			
10	15,2	65	7,54	10,0	100	0,214			
20	15,2	65	7,71	9,9	99	0,219			
30	15,2	64	7,79	9,9	99	0,197			
40	11,7	64	7,78	10,2	94	0,092			
50	10,9	65	7,68	9,9	90	0,041			
75	10,4	65	7,52	9,5	85	0			
100	10,26	65	7,44	9,1	81	0			
130	10,19	65	7,38	8,6	77	0			
160	10,18	65	7,31	8,1	72	0			
180	10,18	65	7,18	6,8	60	0			
			25-05-10						
0	13,39	65	8,19	10,4	100	0,284			
10	13,41	65	8,13	10,0	96	0,443			
20	13,41	65	8,11	10,1	97	0,374			
30	13,4	65	8,1	10,5	100	0,364			
40	12,35	65	8,01	9,8	94	0			
50	10,87	65	7,88	9,6	87	0			
75	10,44	64	7,68	9,0	81	0			
100	10,27	65	7,58	8,5	76	0			
130	10,19	65	7,51	8,5	76	0			
160	10,18	65	7,43	7,5	67	0			
180	10,18	66	7,37	7,0	63	0			
			13-07-10						
0	10,72	65	7,41	11,0	100	1,17			
10	10,74	65	7,62	10,8	98	1,94			
20	10,76	65	7,7	11,4	103	1,4			
30	10,76	65	7,73	11,2	101	1,78			
40	10,76	65	7,75	11,1	100	1,66			
50	10,76	65	7,76	11,1	101	1,69			
75	10,67	65	7,72	10,9	99	1,13			
100	10,44	65	7,5	10,1	91	0,19			
130	10,32	65	7,38	9,2	82	0			
160	10,25	65	7,33	8,6	77	0			
180	10,23	65	7,32	8,4	75	0			

continuación Tabla A4

Profundidad	Temperatura	Conductividad	рН	Oxígeno	Oxígeno	Chl_a
m	oC .	S/cm		mg/L	%	g/L
			06-08-10			
0	10,14	65	6,17	11,2	100	1,08
10	10,15	65	6,78	10,5	93	1,19
20	10,15	65	6,91	10,3	92	1,02
30	10,16	65	6,94	10,2	91	1,59
40	10,16	65	6,97	9,9	88	1,32
50	10,16	65	6,99	9,8	88	1,05
75	10,16	65	7	9,8	87	1,16
100	10,17	65	7	9,7	86	1,33
130	10,17	65	7,01	9,5	85	1,13
160	10,16	65	7,01	9,5	85	1,22
180	10,15	65	7,01	9,4	84	1,66
			08-09-10			
0	10,79	65	6,34	11,1	100	0,43
10	10,14	65	6,89	12,8	114	1,63
20	10	65	7,04	11,9	105	1,07
30	9,96	65	7,09	11,4	101	0,58
40	9,95	65	7,12	11,1	99	0,32
50	9,95	65	7,13	11,0	98	0,29
75	9,94	65	7,15	11,0	98	0,26
100	9,94	65	7,15	11,0	98	0,36
130	9,93	65	7,15	10,7	95	0,3
160	9,89	65	7,16	10,8	96	0,21
180	9,88	65	6,72	10,8	96	0,87
			07-10-10			
0	11,98	64	7,23	n.d.	n.d.	0,02
10	11,61	64	7,66	n.d.	n.d.	0,09
20	10,85	64	7,67	n.d.	n.d.	1,38
30	10,6	65	7,6	n.d.	n.d.	1,15
40	10,31	64	7,52	n.d.	n.d.	0,66
50	10,09	64	7,45	n.d.	n.d.	0,35
75	9,97	64	7,33	n.d.	n.d.	0
100	9,95	64	7,29	n.d.	n.d.	0
130	9,93	64	7,27	n.d.	n.d.	0
160	9,9	64	7,24	n.d.	n.d.	0
180	9,89	64	7,21	n.d.	n.d.	0

n.d. no determinado, falla del sensor

Profundidad	-	Conductividad	рН	Oxígeno	Oxígeno	Chl_a
m	۰C	S/cm		mg/L	%	g/L
			04-11-10		T	
0	12,71	0,064	7,04	10,58	100,02	0
10	12,71	0,064	7,65	10,58	100,00	0,00
20	12,32	0,064	7,69	10,75	100,75	0,13
30	11,42	0,064	7,66	10,30	94,58	0,40
40	10,33	0,064	7,57	10,84	97,05	1,16
50	10,07	0,064	7,49	9,97	88,72	0,60
75	9,97	0,064	7,39	9,71	86,20	0
100	9,95	0,064	7,36	10,52	93,35	0
130	9,93	0,064	7,34	10,60	94,01	0
160	9,92	0,064	7,31	9,63	85,39	0
180	9,90	0,064	7,28	9,87	87,47	0
	,		06-12-10			
0	15,02	0,064	7,77	11,29	112,24	0,06
10	15,03	0,064	7,75	10,06	100,00	0,14
20	14,72	0,063	7,72	10,12	100,00	0,21
30	12,64	0,063	7,62	10,59	100,00	0,28
40	10,68	0,064	7,42	10,52	95,00	1,14
50	10,19	0,063	7,34	10,42	93,00	0,47
75	9,99	0,063	7,25	10,53	93,52	0
100	9,97	0,063	7,21	9,63	85,50	0
130	9,94	0,064	7,20	9,55	84,72	0
160	9,93	0,064	7,16	9,60	85,14	0
180	9,93	0,064	7,14	11,28	100,04	0
	,		12-01-11			
0	19,52	0,069	8,24	9,22	100,47	0,07
10	18,42	0,070	7,96	9,30	99,16	0,13
20	15,72	0,070	7,83	9,61	96,96	0,16
30	13,15	0,064	7,62	9,83	93,85	0,34
40	10,92	0,063	7,41	9,86	89,50	0,99
50	10,22	0,064	7,26	9,70	86,62	0,36
75	10,02	0,064	7,12	9,36	83,19	0
100	9,97	0,064	7,08	9,61	85,31	0
130	9,95	0,064	7,02	9,63	85,45	0
160	9,94	0,064	6,95	9,80	86,94	0
180	9,94	0,066	6,87	9,30	82,50	0
	•	,	,	,	,	

Tabla A5 Parámetros químicos en la estación lago Ranco RE1

	N-NH ₄	N-NO ₂	N-NO ₃	N-TOTAL	P_PO ₄	P-TOTAL
PROF (m)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		T	22/01/2010		T	
0	0,005	< 0,002	< 0,002	0,026	< 0,001	0,006
10	< 0,002	< 0,002	< 0,002	0,035	< 0,001	0,005
20	0,004	< 0,002	< 0,002	0,026	< 0,001	0,005
30	0,004	< 0,002	< 0,002	0,036	< 0,001	0,007
40	< 0,002	< 0,002	< 0,002	0,031	0,002	0,006
50	0,004	< 0,002	< 0,002	0,029	< 0,001	0,006
75	0,004	< 0,002	0,009	0,026	0,001	0,004
100	0,004	< 0,002	0,018	0,030	0,001	0,004
130	0,003	< 0,002	0,025	0,032	0,002	0,005
160	0,003	< 0,002	0,031	0,033	0,002	0,007
180	0,003	< 0,002	0,033	0,035	0,003	0,006
			09/03/2010			
0	< 0,002	< 0,002	< 0,002	0,034	0,001	0,010
10	< 0,002	< 0,002	< 0,002	0,037	0,001	0,006
20	0,003	< 0,002	< 0,002	0,025	0,002	0,006
30	< 0,002	< 0,002	< 0,002	0,034	0,001	0,006
40	0,003	< 0,002	< 0,002	0,031	0,001	0,006
50	< 0,002	< 0,002	< 0,002	0,026	0,002	0,005
75	0,002	< 0,002	0,012	0,056	0,004	0,006
100	< 0,002	< 0,002	0,029	0,041	0,004	0,006
130	0,004	< 0,002	0,032	0,047	0,003	0,009
160	0,003	< 0,002	0,041	0,052	0,003	0,008
180	0,005	< 0,002	0,044	0,069	0,001	0,014
			30/03/2010			
0	0,003	< 0,002	< 0,002	0,037	0,002	0,005
10	0,003	< 0,002	< 0,002	0,036	0,002	0,007
20	< 0,002	< 0,002	< 0,002	0,041	0,001	0,005
30	0,003	< 0,002	< 0,002	0,036	0,002	0,007
40	0,002	< 0,002	< 0,002	0,041	< 0,001	0,006
50	0,002	< 0,002	0,004	0,033	0,002	0,007
75	0,004	< 0,002	0,014	0,042	0,001	0,007
100	0,003	< 0,002	0,021	0,046	0,002	0,009
130	< 0,002	< 0,002	0,026	0,050	0,002	0,008
160	0,003	< 0,002	0,030	0,057	0,002	0,005
180	0,004	< 0,002	0,019	0,049	0,002	0,007

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
Titol (III)	ilig/L	my/L	27/04/201	mg/L	mg/L	mg/L
0	< 0,002	< 0,002	< 0,002	0,026	0,002	0,005
10	< 0,002	< 0,002	< 0,002	0,032	0,002	0,005
20	< 0,002	< 0,002	< 0,002	0,031	< 0,001	0,005
30	< 0,002	< 0,002	< 0,002	0,035	0,002	0,005
40	0,003	< 0,002	< 0,002	0,032	0,002	0,005
50	< 0,002	< 0,002	0,004	0,028	0,003	0,004
75	0,002	< 0,002	0,018	0,037	0,003	0,007
100	< 0,002	< 0,002	0,023	0,041	0,003	0,005
130	< 0,002	< 0,002	0,028	0,044	0,004	0,006
160	< 0,002	< 0,002	0,033	0,047	0,004	0,006
180	< 0,002	< 0,002	0,038	0,055	0,004	0,007
	,		25/05/2010	2,000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0	0,006	< 0,002	< 0,002	0,027	0,003	0,004
10	0,006	< 0,002	< 0,002	0,029	0,002	0,006
20	0,008	< 0,002	< 0,002	0,030	0,001	0,004
30	0,003	< 0,002	0,003	0,031	0,001	0,005
40	0,003	< 0,002	< 0,002	0,036	0,001	0,006
50	0,002	< 0,002	< 0,002	0,027	0,002	0,005
75	< 0,002	< 0,002	0,008	0,026	0,003	0,004
100	< 0,002	< 0,002	0,027	0,041	0,003	0,004
130	< 0,002	< 0,002	0,032	0,042	0,003	0,005
160	0,003	< 0,002	0,034	0,046	0,003	0,005
180	< 0,002	< 0,002	0,034	0,048	0,003	0,004
			08/07/2010			
0	0,005	< 0,002	0,009	0,029	0,002	0,005
10	0,009	< 0,002	0,008	0,027	0,002	0,004
20	0,005	< 0,002	0,007	0,033	0,002	0,006
30	0,003	< 0,002	0,006	0,028	0,003	0,006
40	0,004	< 0,002	0,006	0,027	0,002	0,006
50	0,003	< 0,002	0,006	0,026	0,002	0,005
75	0,003	< 0,002	0,006	0,027	0,002	0,005
100	0,007	< 0,002	0,008	0,030	0,002	0,004
130	0,010	< 0,002	0,021	0,042	0,002	0,005
160	0,003	< 0,002	0,027	0,038	0,003	0,005
180	0,006	< 0,002	0,028	0,039	0,003	0,005

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
I KOI (III)	ilig/L	IIIg/L	06/08/2010	mg/L	mg/L	mg/L
0	< 0,002	< 0,002	0,017	0,048	0,001	0,004
10	< 0,002	< 0,002	0,017	0,063	< 0,001	0,004
20	< 0,002	< 0,002	0,017	0,070	< 0,001	0,006
30	< 0,002	< 0,002	0,016	0,064	0,002	0,004
40	0,002	< 0,002	0,017	0,053	< 0,002	0,004
50	< 0,002	< 0,002	0,016	0,055	< 0,001	0,005
75	< 0,002	< 0,002	0,015	0,047	0,001	0,004
100	< 0,002	< 0,002	0,014	0,055	0,002	0,004
130	< 0,002	< 0,002	0,015	0,043	< 0,001	0,004
160	< 0,002	< 0,002	0,015	0,047	< 0,001	0,006
180	< 0,002	< 0,002	0,015	0,052	< 0,001	0,007
.00	, 0,002	, 0,002	08/09/2010	,,,,,,	, 0,001	3,00.
0	0,002	< 0,002	0,004	0,033	< 0,001	0,003
10	0,003	< 0,002	0,003	0,078	< 0,001	0,005
20	< 0,002	< 0,002	0,008	0,047	< 0,001	0,006
30	< 0,002	< 0,002	0,011	0,049	0,001	0,004
40	< 0,002	< 0,002	0,012	0,047	0,002	0,004
50	< 0,002	< 0,002	0,013	0,043	0,001	0,004
75	< 0,002	< 0,002	0,013	0,036	0,002	0,003
100	0,004	< 0,002	0,014	0,038	0,001	0,003
130	0,003	< 0,002	0,014	0,038	0,001	0,005
160	0,003	< 0,002	0,013	0,049	0,002	0,004
180	0,006	< 0,002	0,013	0,039	0,002	0,004
		T	07/10/2010	<u> </u>	T	
0	0,005	< 0,002	0,003	0,044	0,001	0,004
10	0,003	< 0,002	0,003	0,027	0,001	0,005
20	0,003	< 0,002	0,003	0,040	< 0,001	0,005
30	0,002	< 0,002	0,011	0,043	< 0,001	0,005
40	0,003	< 0,002	0,012	0,040	0,001	0,005
50	0,002	< 0,002	0,012	0,042	0,002	0,004
75	0,006	< 0,002	0,019	0,036	0,001	0,004
100	0,005	< 0,002	0,020	0,041	0,002	0,004
130	< 0,002	< 0,002	0,022	0,040	0,002	0,004
160	< 0,002	< 0,002	0,020	0,054	0,002	0,005
180	0,005	< 0,002	0,021	0,067	0,002	0,004

PROF (m)	N-NH₄ mg/L	N-NO ₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
		J	04/11/2010			-
0	< 0,002	< 0,002	0,004	0,033	< 0,001	0,004
10	< 0,002	< 0,002	< 0,002	0,033	< 0,001	0,005
20	0,005	< 0,002	< 0,002	0,038	< 0,001	0,007
30	< 0,002	< 0,002	< 0,002	0,033	< 0,001	0,005
40	< 0,002	< 0,002	< 0,002	0,032	< 0,001	0,005
50	< 0,002	< 0,002	0,005	0,046	< 0,001	0,005
75	0,003	< 0,002	0,020	0,047	< 0,001	0,004
100	0,005	< 0,002	0,021	0,061	< 0,001	0,005
130	< 0,002	< 0,002	0,020	0,049	< 0,001	0,004
160	< 0,002	< 0,002	0,022	0,050	< 0,001	0,004
180	< 0,002	< 0,002	0,024	0,052	< 0,001	0,006
			07/12/2010			
0	< 0,002	< 0,002	0,004	0,030	< 0,001	0,004
10	0,004	< 0,002	0,003	0,043	< 0,001	0,005
20	0,003	< 0,002	0,003	0,029	< 0,001	0,004
30	0,003	< 0,002	0,003	0,029	< 0,001	0,004
40	0,004	< 0,002	0,003	0,028	< 0,001	0,004
50	< 0,002	< 0,002	0,003	0,027	< 0,001	0,005
75	0,002	< 0,002	0,021	0,067	< 0,001	0,004
100	0,002	< 0,002	0,022	0,040	0,001	0,005
130	0,002	< 0,002	0,022	0,056	0,001	0,005
160	0,004	< 0,002	0,023	0,044	0,001	0,005
180	0,004	< 0,002	0,025	0,049	0,001	0,005
			12/01/2011			
0	< 0,002	< 0,002	< 0,002	0,066	0,001	0,005
10	0,003	< 0,002	< 0,002	0,042	0,001	0,006
20	0,004	< 0,002	< 0,002	0,043	< 0,001	0,004
30	0,005	< 0,002	< 0,002	0,047	< 0,001	0,004
40	0,004	< 0,002	< 0,002	0,052	< 0,001	0,005
50	< 0,002	< 0,002	0,006	0,070	0,001	0,005
75	0,003	< 0,002	0,012	0,049	< 0,001	0,005
100	< 0,002	< 0,002	0,013	0,053	< 0,001	0,006
130	0,002	< 0,002	0,011	0,053	0,001	0,005
160	0,002	< 0,002	0,020	0,042	0,001	0,005
180	< 0,002	< 0,002	0,009	0,041	< 0,001	0,004

Tabla A6 Parámetros químicos en la estación lago Ranco RE2

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
, , ,			22/01/2010			
0	< 0,002	< 0,002	< 0,002	0,022	< 0,001	0,005
10	< 0,002	< 0,002	< 0,002	0,032	< 0,001	0,006
20	< 0,002	< 0,002	< 0,002	0,030	0,003	0,008
30	< 0,002	< 0,002	< 0,002	0,031	0,003	0,011
40	< 0,002	< 0,002	< 0,002	0,026	0,001	0,009
50	0,003	< 0,002	< 0,002	0,025	0,001	0,009
75	< 0,002	< 0,002	0,012	0,028	0,001	0,006
100	0,002	< 0,002	0,021	0,040	0,004	0,011
_			09/03/2010			
0	0,003	< 0,002	< 0,002	0,061	0,001	0,006
10	0,003	< 0,002	< 0,002	0,030	0,001	0,008
20	0,003	< 0,002	< 0,002	0,023	0,001	0,009
30	< 0,002	< 0,002	< 0,002	0,037	0,002	0,007
40	0,005	< 0,002	< 0,002	0,036	0,001	0,005
50	0,003	< 0,002	< 0,002	0,028	< 0,001	0,006
75	< 0,002	< 0,002	0,008	0,023	0,001	0,005
100	< 0,002	< 0,002	0,027	0,040	0,004	0,007
			30/03/2010		1	
0	0,003	< 0,002	< 0,002	0,036	0,001	0,004
10	0,002	< 0,002	< 0,002	0,045	0,001	0,004
20	0,003	< 0,002	< 0,002	0,044	0,001	0,006
30	0,003	< 0,002	< 0,002	0,043	0,001	0,005
40	0,003	< 0,002	< 0,002	0,039	0,003	0,008
50	< 0,002	< 0,002	< 0,002	0,048	< 0,001	0,006
75	< 0,002	< 0,002	0,012	0,040	< 0,001	0,005
100	0,003	< 0,002	0,029	0,051	0,001	0,007
			27/04/2010		T	
0	< 0,002	< 0,002	< 0,002	0,033	0,002	0,005
10	< 0,002	< 0,002	< 0,002	0,035	0,002	0,004
20	< 0,002	< 0,002	< 0,002	0,037	0,002	0,006
30	< 0,002	< 0,002	< 0,002	0,032	0,002	0,005
40	0,003	< 0,002	< 0,002	0,038	0,001	0,007
50	0,004	< 0,002	0,005	0,038	0,002	0,006
75	0,003	< 0,002	0,021	0,038	0,003	0,006
100	0,004	< 0,002	0,026	0,041	0,004	0,006

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
	9/ =	g/ =	25/05/2010	9, =	g/ =	9, =
0	< 0,002	< 0,002	< 0,002	0,026	0,003	0,005
10	< 0,002	< 0,002	< 0,002	0,029	0,002	0,005
20	< 0,002	< 0,002	< 0,002	0,030	0,003	0,004
30	< 0,002	< 0,002	< 0,002	0,030	0,001	0,005
40	< 0,002	< 0,002	< 0,002	0,036	0,003	0,005
50	< 0,002	< 0,002	< 0,002	0,029	0,002	0,005
75	< 0,002	< 0,002	0,014	0,030	0,002	0,005
100	< 0,002	< 0,002	0,024	0,042	0,003	0,005
			13/07/2010		1	
0	0,003	< 0,002	0,009	0,031	< 0,001	0,004
10	< 0,002	< 0,002	0,008	0,032	< 0,001	0,005
20	< 0,002	< 0,002	0,008	0,034	< 0,001	0,004
30	0,002	< 0,002	0,008	0,029	< 0,001	0,005
40	0,006	< 0,002	0,008	0,026	< 0,001	0,005
50	0,005	< 0,002	0,008	0,029	< 0,001	0,006
75	0,005	< 0,002	0,007	0,032	< 0,001	0,006
100	0,005	< 0,002	0,010	0,033	< 0,001	0,005
			06/08/2010		T	ı
0	< 0,002	< 0,002	0,015	0,050	< 0,001	0,005
10	< 0,002	< 0,002	0,016	0,050	< 0,001	0,004
20	< 0,002	< 0,002	0,016	0,050	0,001	0,005
30	< 0,002	< 0,002	0,016	0,058	< 0,001	0,004
40	< 0,002	< 0,002	0,016	0,057	< 0,001	0,005
50	< 0,002	< 0,002	0,016	0,052	< 0,001	0,004
75	< 0,002	< 0,002	0,014	0,052	< 0,001	0,005
100	< 0,002	< 0,002	0,013	0,051	0,002	0,004
			08/09/2010			
0	0,003	< 0,002	0,002	0,032	< 0,001	0,003
10	0,003	< 0,002	< 0,002	0,039	< 0,001	0,004
20	< 0,002	< 0,002	0,008	0,041	0,002	0,004
30	< 0,002	< 0,002	0,008	0,042	0,001	0.005
40	0,003	< 0,002	0,011	0,041	0,002	0,003
50	0,005	< 0,002	0,011	0,041	0,002	0,003
75	0,004	< 0,002	0,013	0,037	0,001	0,003
100	0,006	< 0,002	0,013	0,041	0,002	0,003

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
and the same		<u> </u>	07/10/2010			g , _
0	< 0,002	< 0,002	0,002	0,032	< 0,001	0,004
10	0,002	< 0,002	0,002	0,032	< 0,001	0,004
20	< 0,002	< 0,002	0,003	0,045	0,001	0,006
30	0,003	< 0,002	0,006	0,040	< 0,001	0,005
40	< 0,002	< 0,002	0,018	0,032	0,001	0,004
50	< 0,002	< 0,002	0,020	0,043	0,002	0,004
75	< 0,002	< 0,002	0,022	0,033	0,001	0,004
100	< 0,002	< 0,002	0,022	0,033	0,001	0,007
			04/11/2010			
0	0,002	< 0,002	< 0,002	0,024	< 0,001	0,004
10	< 0,002	< 0,002	< 0,002	0,022	< 0,001	0,005
20	< 0,002	< 0,002	< 0,002	0,023	< 0,001	0,006
30	0,004	< 0,002	< 0,002	0,022	< 0,001	0,004
40	< 0,002	< 0,002	< 0,002	0,028	< 0,001	0,004
50	< 0,002	< 0,002	0,012	0,026	< 0,001	0,004
75	0,002	< 0,002	0,017	0,030	< 0,001	0,005
100	< 0,002	< 0,002	0,021	0,031	0,001	0,004
			07/12/2010			
0	0,002	< 0,002	0,003	0,037	< 0,001	0,004
10	0,005	< 0,002	0,002	0,052	< 0,001	0,005
20	0,003	< 0,002	< 0,002	0,036	< 0,001	0,007
30	< 0,002	< 0,002	< 0,002	0,037	< 0,001	0,006
40	< 0,002	< 0,002	0,003	0,044	< 0,001	0,005
50	< 0,002	< 0,002	0,010	0,052	< 0,001	0,004
75	< 0,002	< 0,002	0,021	0,045	0,001	0,005
100	< 0,002	< 0,002	0,022	0,047	0,002	0,005
			12/01/2011			
0	0,004	< 0,002	< 0,002	0,040	< 0,001	0,004
10	0,002	< 0,002	< 0,002	0,048	< 0,001	0,006
20	0,004	< 0,002	< 0,002	0,041	< 0,001	0,004
30	0,003	< 0,002	< 0,002	0,039	< 0,001	0,005
40	0,003	< 0,002	< 0,002	0,039	0,001	0,004
50	0,004	< 0,002	< 0,002	0,045	< 0,001	0,005
75	0,005	< 0,002	0,013	0,039	< 0,001	0,005
100	0,003	< 0,002	0,020	0,049	0,001	0,005

Tabla A7 Parámetros químicos obtenidos para las profundidades muestreadas con botella Friedinger. Estación lago Ranco RE4

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO ₄ mg/L	P-TOTAL mg/L
11101 (111)	3/ =	g , _	21/01/2010		g/ =	9, =
0	< 0,002	< 0,002	< 0,002	0,037	0,002	0,008
10	0,002	< 0,002	< 0,002	0,052	0,003	0,004
20	< 0,002	< 0,002	< 0,002	0,043	0,004	0,005
30	< 0,002	< 0,002	< 0,002	0,040	0,005	0,005
40	< 0,002	< 0,002	< 0,002	0,026	0,003	0,006
50	< 0,002	< 0,002	< 0,002	0,034	0,002	0,005
75	0,006	< 0,002	0,009	0,025	0,003	0,005
100	< 0,002	< 0,002	0,007	0,024	0,002	0,007
130	0,006	< 0,002	0,021	0,044	0,005	0,009
160	0,005	< 0,002	0,025	0,043	0,004	0,006
180	0,008	< 0,002	0,026	0,041	0,006	0,008
	•	<u> </u>	09/03/2010	,	,	,
0	0,003	< 0,002	< 0,002	0,024	0,002	0,006
10	0,002	< 0,002	< 0,002	0,031	0,001	0,005
20	< 0,002	< 0,002	< 0,002	0,032	0,001	0,006
30	0,002	< 0,002	< 0,002	0,037	0,002	0,005
40	0,003	< 0,002	< 0,002	0,044	0,003	0,004
50	< 0,002	< 0,002	< 0,002	0,032	0,003	0,004
75	0,005	< 0,002	0,016	0,038	0,004	0,005
100	0,004	< 0,002	0,023	0,041	0,005	0,008
130	< 0,002	< 0,002	0,029	0,043	0,006	0,006
160	< 0,002	< 0,002	0,025	0,050	0,006	0,011
190	< 0,002	< 0,002	0,036	0,058	0,005	0,012
			30/03/2010			
0	0,005	< 0,002	< 0,002	0,036	< 0,001	0,006
10	0,004	< 0,002	< 0,002	0,033	< 0,001	0,006
20	0,005	< 0,002	< 0,002	0,037	< 0,001	0,007
30	0,003	< 0,002	< 0,002	0,033	< 0,001	0,010
40	0,004	< 0,002	< 0,002	0,043	0,001	0,006
50	0,003	< 0,002	< 0,002	0,036	0,003	0,007
75	< 0,002	< 0,002	0,015	0,038	0,002	0,006
100	0,004	< 0,002	0,027	0,054	0,004	0,007
130	0,004	< 0,002	0,025	0,044	0,003	0,008
160	0,008	< 0,002	0,026	0,045	0,002	0,006
180	0,009	< 0,002	0,027	0,052	0,003	0,009

PROF (m)	N-NH₄ mg/L	N-NO ₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
Control (Control		<u> </u>	27/04/2010	g -		-
0	0,006	< 0,002	< 0,002	0,038	0,001	0,005
10	0,005	< 0,002	< 0,002	0,038	< 0,001	0,006
20	0,006	< 0,002	< 0,002	0,039	0,001	0,007
30	0,009	< 0,002	< 0,002	0,035	0,002	0,005
40	0,008	< 0,002	< 0,002	0,044	0,003	0,006
50	0,007	< 0,002	0,007	0,034	0,003	0,006
75	0,007	< 0,002	0,018	0,039	0,004	0,005
100	0,005	< 0,002	0,025	0,054	0,005	0,006
130	0,006	< 0,002	0,029	0,051	0,004	0,005
160	0,005	< 0,002	0,033	0,048	0,004	0,008
180	0,004	< 0,002	0,037	0,056	0,006	0,008
			25/05/2010			
0	0,007	< 0,002	< 0,002	0,029	0,003	0,006
10	0,005	< 0,002	< 0,002	0,028	0,002	0,005
20	0,007	< 0,002	< 0,002	0,032	0,002	0,005
30	0,003	< 0,002	< 0,002	0,031	0,002	0,006
40	0,005	< 0,002	< 0,002	0,032	0,003	0,007
50	0,006	< 0,002	0,009	0,028	0,004	0,006
75	0,003	< 0,002	0,020	0,033	0,004	0,006
100	0,004	< 0,002	0,024	0,044	0,005	0,007
130	0,005	< 0,002	0,030	0,040	0,005	0,008
160	0,006	< 0,002	0,035	0,044	0,004	0,008
180	0,005	< 0,002	0,038	0,047	0,004	0,006
			13/07/2010		T	
0	0,004	< 0,002	0,009	0,036	< 0,001	0,006
10	0,005	< 0,002	0,008	0,031	< 0,001	0,005
20	0,005	< 0,002	0,007	0,031	< 0,001	0,005
30	0,003	< 0,002	0,008	0,034	< 0,001	0,006
40	0,004	< 0,002	0,008	0,033	< 0,001	0,005
50	0,004	< 0,002	0,007	0,029	< 0,001	0,006
75	0,004	< 0,002	0,009	0,029	< 0,001	0,006
100	0,004	< 0,002	0,010	0,028	< 0,001	0,005
130	0,004	< 0,002	0,032	0,044	0,002	0,006
160	0,004	0,002	0,038	0,043	0,001	0,006
180	0,005	< 0,002	0,041	0,044	0,002	0,006

PROF (m)	N-NH₄ mg/L	N-NO ₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
· ·····	9/ =	y/ =	06/08/2010	9, =	9/ =	9/ =
0	< 0,002	< 0,002	0,018	0,056	0,002	0,005
10	< 0,002	< 0,002	0,019	0,056	0,003	0,002
20	< 0,002	< 0,002	0,018	0,053	0,002	0,005
30	< 0,002	< 0,002	0,019	0,049	0,002	0,005
40	< 0,002	< 0,002	0,020	0,047	0,002	0,005
50	< 0,002	< 0,002	0,016	0,054	0,003	0,007
75	< 0,002	< 0,002	0,015	0,051	0,002	0,006
100	< 0,002	< 0,002	0,017	0,051	0,002	0,006
130	0,002	< 0,002	0,017	0,052	0,002	0,004
160	< 0,002	< 0,002	0,017	0,049	0,002	0,004
180	< 0,002	< 0,002	0,018	0,053	0,002	0,005
			08/09/2010			
0	0,003	< 0,002	0,007	0,048	0,002	0,006
10	0,003	< 0,002	0,007	0,048	0,002	0,005
20	0,003	< 0,002	0,015	0,046	0,002	0,005
30	< 0,002	< 0,002	0,019	0,049	0,002	0,005
40	0,003	< 0,002	0,019	0,052	0,002	0,004
50	0,004	< 0,002	0,019	0,051	0,003	0,004
75	0,012	< 0,002	0,019	0,049	0,003	0,005
100	0,003	< 0,002	0,020	0,050	0,003	0,004
130	< 0,002	< 0,002	0,019	0,051	0,003	0,004
160	0,002	< 0,002	0,019	0,054	0,002	0,005
180	0,004	< 0,002	0,019	0,058	0,003	0,004
			07/10/2010			
0	< 0,002	< 0,002	< 0,002	0,026	0,001	0,005
10	< 0,002	< 0,002	< 0,002	0,035	0,001	0,005
20	< 0,002	< 0,002	< 0,002	0,043	0,001	0,007
30	< 0,002	< 0,002	0,002	0,040	< 0,001	0,007
40	< 0,002	< 0,002	0,004	0,041	0,001	0,005
50	< 0,002	< 0,002	0,007	0,037	0,002	0,007
75	< 0,002	< 0,002	0,017	0,038	0,002	0,006
100	< 0,002	< 0,002	0,023	0,039	0,002	0,006
130	< 0,002	< 0,002	0,022	0,036	0,003	0,006
160	< 0,002	< 0,002	0,021	0,040	0,003	0,006
180	< 0,002	< 0,002	0,023	0,036	0,003	0,005

PROF (m)	N-NH₄ mg/L	N-NO₂ mg/L	N-NO₃ mg/L	N-TOTAL mg/L	P_PO₄ mg/L	P-TOTAL mg/L
			04/11/2010			
0	< 0,002	< 0,002	< 0,002	0,034	< 0,001	0,006
10	< 0,002	< 0,002	< 0,002	0,045	< 0,001	0,005
20	< 0,002	< 0,002	< 0,002	0,053	< 0,001	0,006
30	< 0,002	< 0,002	< 0,002	0,046	< 0,001	0,007
40	< 0,002	< 0,002	< 0,002	0,037	< 0,001	0,005
50	0,002	< 0,002	0,006	0,041	< 0,001	0,006
75	< 0,002	< 0,002	0,021	0,056	0,002	0,006
100	< 0,002	< 0,002	0,021	0,058	< 0,001	0,005
130	0,004	< 0,002	0,022	0,049	0,001	0,006
160	0,008	< 0,002	0,022	0,057	0,001	0,006
180	0,006	< 0,002	0,024	0,065	0,002	0,005
			07/12/2010			
0	0,004	< 0,002	< 0,002	0,037	0,001	0,004
10	0,003	< 0,002	0,002	0,037	0,001	0,007
20	< 0,002	< 0,002	0,002	0,039	0,001	0,005
30	< 0,002	< 0,002	0,002	0,043	0,001	0,005
40	0,001	< 0,002	< 0,002	0,032	0,002	0,006
50	0,002	< 0,002	< 0,002	0,028	0,002	0,006
75	< 0,002	< 0,002	0,018	0,043	0,002	0,005
100	< 0,002	< 0,002	0,021	0,070	0,002	0,005
130	< 0,002	< 0,002	0,021	0,052	0,002	0,004
160	< 0,002	< 0,002	0,018	0,060	0,002	0,005
180	< 0,002	< 0,002	0,020	0,045	0,003	0,005
			12/01/2011			
0	0,004	< 0,002	< 0,002	0,045	< 0,001	0,008
10	0,003	< 0,002	< 0,002	0,047	< 0,001	0,006
20	0,004	< 0,002	< 0,002	0,045	< 0,001	0,006
30	0,003	< 0,002	< 0,002	0,041	< 0,001	0,006
40	0,002	< 0,002	< 0,002	0,047	< 0,001	0,005
50	0,004	< 0,002	0,002	0,052	< 0,001	0,005
75	0,004	< 0,002	0,018	0,052	0,001	0,005
100	0,004	< 0,002	0,020	0,061	< 0,001	0,004
130	0,005	< 0,002	0,014	0,057	0,001	0,003
160	0,007	< 0,002	0,021	0,055	0,001	0,004
180	0,005	< 0,002	0,015	0,055	0,001	0,004

Tabla A8 Estimas de densidad de fitoplanctónicos para la estacion RE1 del Lago Ranco (abundancia y porcentajes relativos)

INAIIC	o (abu		сіа у р	orcer	itajes	relativ	705)					
Fecha Volumen and mentode	22/01/	2010	09/03/	2010	31/03/	2010	27/04/	2010	25/05/	2010	08/07/	2010
Volumen sedimentado (ml)	10	0	10	0	10	0	10	0	10	0	10	0
Abundancia Total (cel L ⁻¹)	137336		300000		148495		96667		74450		119289	
DIATOMEAS	1	ı	ı		T		1	ı	1		ı	
Achnanthes sp	0	0,0	0	0,0	1500	1,0	3000	3,1	500	0,7	0	0,0
Asterionella formosa	75	0,1	16000	5,3	0	0,0	80	0,1	10	0,0	22500	18,9
Aulacoseria granulata	3000	2,2	34000	11,3	19498	13,1	3000	3,1	2000	2,8	24000	20,1
Centronella aff. reicheltii	0	0,0	0	0,0	0	0,0	500	0,5	0	0,0	0	0,0
Coccineis sp	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Cyclotella aff. ocellata	15000	10,9	46000	15,3	20998	14,1	4500	4,7	3500	4,7	4500	3,8
Cyclotella aff. stelligera	3000	2,2	0	0,0	0	0,0	0	0,0	500	0,7	3000	2,5
Cymbella minuta	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Cymbella sp	0	0,0	0	0,0	0	0,0	37	0,0	0	0,0	0	0,0
Denticula sp	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Diatoma sp	0	0,0	0	0,0	0	0,0	4500	4,7	0	0,0	1500	1,3
Eunotia sp	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Fragilaria crotonensis	0	0,0	74000	24,7	17998	12,1	0	0,0	100	0,1	4500	3,8
Fragilaria sp	3000	2,2	34000	11,3	1500	1,0	0	0,0	500	0,7	9000	7,5
Gomphonema sp	0	0,0	0	0,0	1500	1,0	0	0,0	0	0,0	750	0,6
Melosira varians	3000	2,2	4000	1,3	1500	1,0	0	0,0	10	0,0	1500	1,3
Navicula aff. capitella	0	0,0	0	0,0	1500	1,0	0	0,0	0	0,0	0	0,0
Navicula sp	0	0,0	0	0,0	0	0,0	1500	1,6	0	0,0	0	0,0
Navicula sp1	0	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	1500	1,3
Nitzschia acicularis	11	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	0	0,0
Nitzschia sp1	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Nitzschia sp2	0	0,0	0	0,0	0	0,0	1500	1,6	0	0,0	0	0,0
Rhizosolenia sp	0	0,0	8000	2,7	0	0,0	1500	1,6	2000	2,7	4500	3,8
Stephanodiscus sp	0	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	0	0,0
Synedra ulna	3000	2,2	0	0,0	0	0,0	1500	1,6	0	0,0	0	0,0
CLOROFICEAS												
Ankistrodesmus sp	0	0,0	2000	0,7	0	0,0	0	0,0	1000	1,3	1500	1,3
Botrioccocus sp	30000	21,8	0	0,0	7499	5,1	6000	6,2	2500	3,4	10500	8,8
Chlamidomonas sp 1	9000	6,6	0	0,0	4500	3,0	3000	3,1	500	0,7	1500	1,3
Chlamidomonas sp2	9000	6,6	0	0,0	7499	5,1	6000	6,2	3000	4,0	1500	1,3
Chlorella sp	6000	4,4	0	0,0	1500	1,0	4500	4,7	10000	13,4	4500	3,8
Chlorogonium sp	3000	2,2	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Closterium sp	0	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	1500	1,3
Coelastrum reticulatum	0	0,0	0	0,0	0	0,0	10	0,0	0	0,0	0	0,0
Crucigeniella sp.	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Bambusina sp	0	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	0	0,0
Dictyosphaerium sp	0	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	0	0,0
Eudorina sp	0	0,0	2000	0,7	0	0,0	0	0,0	0	0,0	0	0,0
Kirchneriella lunaris	0	0,0	2000	0,7	0	0,0	3000	3,1	0	0,0	0	0,0
Oocystis lacustris	3000	2,2	0	0,0	1500	1,0	0	0,0	500	0,7	0	0,0

Fecha	22/01/2	2010	09/03/2	2010	31/03/2	2010	27/04/	2010	25/05/	2010	08/07/	/2010
Volumen sedimentado (ml)	10	0	100)	100)	10	0	10	0	10	00
Abundancia Total (cel L ⁻¹)	137336		300000		148495		96667		74450		119289)
		%		%		%		%		%		%
EUGLENOFICEAS												
Euglena sp	3000	2,2	0	0,0	0	0,0	0	0,0	0	0,0	1500	1,3
Trachelomonas sp	3000	2,2	0	0,0	7499	5,1	0	0,0	1000	1,3	0	0,0
CRISOFICEAS												
Mallomonas sp	0	0,0	0	0,0	0	0,0	0	0,0	7500	10,1	1500	1,3
Cromulina sp	21000	15,3	36000	12,0	10499	7,1	13500	14,0	16500	22,2	7500	6,3
Dynobrion sp	9000	6,6	2000	0,7	10499	7,1	20	0,0	0	0,0	0	0,0
CIANOBACTERIAS												
Synechococcus sp	1500	1,1	0	0,0	3000	2,0	0	0,0	2000	2,7	1500	1,3
Anabaena aff. circinalis	0	0,0	0	0,0	1500	1,0	1500	1,6	200	0,3	0	0,0
Aphanothece sp	0	0,0	0	0,0	1500	1,0	0	0,0	0	0,0	0	0,0
CRYPTOFICEAS												
Rhodomona lacustris	3000	2,2	14000	4,7	10499	7,1	31500	32,6	10500	14,1	3000	2,5
Cryptomonas aff. erosa	750	0,5	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Cryptomonas sp (aff. ovata)	0	0,0	14000	4,7	10499	7,1	3000	3,1	8000	10,7	6000	5,0
DINOFICEAS							•					
Ceratium hirundinella	0	0,0	0	0,0	10	0	20	0	130	0	40	0
Gymnodinion sp	0	0,0	0	0,0	0	0,0	1500	1,6	500	0,7	0	0,0
Glenodinium sp	0	0,0	0	0,0	1500	1,0	0	0,0	0	0,0	0	0,0
Gymnodinion aff. sanguineum	6000	4,4	0	0,0	3000	2,0	1500	1,6	1500	2,0	0	0,0

Fecha	04/08/	2010	01/09/	2010	07/10/2	2010	07/12	2/2010	12/01	/2011
Volumen sedimentado (ml)	10	0	10	0	100)	1	00	10	00
Abundancia Total (cel L ⁻¹)	220030		699000		639750		860267		313173	
		%		%		%		%		%
DIATOMEAS										
Achnanthes sp	0	0,0	2000	0,3	0	0,0	0	0,0	0	0,0
Asterionella formosa	21000	9,5	43000	6,2	8000	1,3	2953	0,3432	44850	14,3
Aulacoseria granulata	65500	29,8	17000	2,4	12000	1,9	44289	5,1483	52325	16,7
Centronella aff. reicheltii	0	0,0	0	0,0	500	0,1	0	0,0	0	0,0
Coccineis sp	10	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Cyclotella aff. ocellata	5000	2,3	102000	14,6	39000	6,1	64958	7,5509	5980	1,9
Cyclotella aff. stelligera	4000	1,8	0	0,0	4500	0,7	2953	0,3432	0	0,0
Cymbella minuta	500	0,2	0	0,0	0	0,0	0	0,0	0	0,0
Cymbella sp	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Denticula sp	500	0,2	0	0,0	0	0,0	0	0,0	0	0,0
Diatoma sp	500	0,2	0	0,0	0	0,0	0	0,0	1495	0,5
Eunotia sp	1000	0,5	0	0,0	0	0,0	0	0,0	0	0,0
Fragilaria crotonensis	66000	30,0	6000	0,9	436000	68,2	218494	25,398	2990	1,0
Fragilaria sp	13500	6,1	19000	2,7	7000	1,1	0	0,0	0	0,0
Gomphonema sp	0	0,0	0	0,0	250	0,0	0	0,0	0	0,0
Melosira varians	1500	0,7	0	0,0	500	0,1	0	0,0	0	0,0
Navicula aff. capitella	500	0,2	0	0,0	0	0,0	0	0,0	0	0,0
Navicula sp	0	0,0	0	0,0	1500	0,2	0	0,0	2953	0,9
Navicula sp1	1000	0,5	0	0,0	0	0,0	0	0,0	0	0,0
Nitzschia acicularis	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Nitzschia sp1	500	0,2	0	0,0	0	0,0	0	0,0	0	0,0
Nitzschia sp2	1500	0,7	0	0,0	1500	0,2	0	0,0	0	0,0
Rhizosolenia sp	1500	0,7	35000	5,0	0	0,0	0	0,0	0	0,0
Stephanodiscus sp	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
Synedra ulna	500	0,2	2000	0,3	1000	0,2	0	0,0	0	0,0
CLOROFICEAS										
Ankistrodesmus sp	2000	0,9	13000	1,9	500	0,1	2953	0,3432	1495	0,5
Botrioccocus sp	8000	3,6	19000	2,7	9500	1,5	35432	4,1187	10465	3,3
Chlamidomonas sp 1	4500	2,0	20000	2,9	16000	2,5	5905	0,6864	0	0,0
Chlamidomonas sp2	0	0,0	15000	2,1	15000	2,3	26574	3,089	0	0,0
Chlorella sp	9000	4,1	17000	2,4	1000	0,2	0	0	8970	2,9
Chlorogonium sp	0	0,0	0	0,0	0	0,0	38384	4,4619	19435	6,2
Closterium sp	0	0,0	0	0,0	0	0,0	11811	1,3729	4485	1,4
Coelastrum reticulatum	0	0,0	0	0,0	0	0,0	8858	1,0297	750	0,2
Crucigeniella sp.	500	0,2	0	0,0	0	0,0	0	0	0	0,0
Bambusina sp	0	0,0	0	0,0	0	0,0	5905	0,6864	0	0,0
Dictyosphaerium sp	500	0,2	0	0,0	0	0,0	0	0	0	0,0
Eudorina sp	0	0,0	0	0,0	0	0,0	2953	0,3432	0	0,0
Kirchneriella lunaris	500	0,2	0	0,0	500	0,1	0	0	0	0,0
Oocystis lacustris	0	0,0	0	0,0	0	0,0	38384	4,4619	19435	6,2

Fecha	04/08/2010		01/09/2010		07/10/2010		07/12/2010		12/01/2011	
									12/01/	
Volumen sedimentado (ml)	100	J	100 699000			100		100		U
Abundancia Total (cel L ⁻¹)	220030				639750		860267		313173	
		%		%		%		%		%
EUGLENOFICEAS			I	I	Г		Г		Π	
Euglena sp	0	0,0	0	0,0	0	0,0	0	0	0	0,0
Trachelomonas sp	0	0,0	3000	0,4	0	0,0	0	0	2990	1,0
CRISOFICEAS										
Mallomonas sp	1000	0,5	0	0,0	0	0,0	0	0	0	0,0
Cromulina sp	3000	1,4	302000	43,2	36000	5,6	32479	3,775	10465	3,3
Dynobrion sp	0	0,0	0	0,0	0	0,0	2E+05	28,83	64285	20,5
CIANOBACTERIAS										
Synechococcus sp	0	0,0	17000	2,4	1500	0,2	2953	0,343	1500	0,5
Anabaena aff. circinalis	0	0,0	0	0,0	0	0,0	0	0	25415	8,1
Aphanothece sp	0	0,0	0	0,0	0	0,0	11811	1,373	0	0,0
CRYPTOFICEAS										
Rhodomona lacustris	0	0,0	39000	5,6	36500	5,7	36500	4,243	5980	1,9
Cryptomonas aff. erosa	2000	0,9	0	0,0	0	0,0	0	0	4485	1,4
Cryptomonas sp (aff. ovata)	2000	0,9	26000	3,7	9500	1,5	5905	0,686	5980	1,9
DINOFICEAS										
Ceratium hirundinella	20	0	0	0,0	0	0,0	2990	0,348	1495	0,5
Gymnodinion sp	0	0,0	0	0,0	0	0,0	0	0	0	0,0
Glenodinium sp	0	0,0	0	0,0	0	0,0	0	0	5980	1,9
Gymnodinion aff. sanguineum	2500	1,1	2000	0,3	2000	0,3	0	0	0	0,0

Tabla A9. Variación temporal (mensual) de la comunidad del fitoplancton del Lago Ranco, estación RE1, en términos de abundancia relativa para los principales grupos de algas registrados en la columna de agua (0 -50 m).

Grupo	22/01/10	09/03/10	01/04/10	27/04/10	25/05/10	08/07/10
	%	%	%	%	%	%
Diatomeas	21,9	74,0	44,4	22,4	12,3	64,8
Clorofíceas	43,7	4,0	15,2	23,3	23,5	17,6
Euglenofíceas	4,4	0,0	5,1	0,0	1,3	1,3
Crisofíceas	21,8	12,7	14,1	14,0	32,2	7,5
Cianobaterias	1,1	0,0	4,0	1,6	3,0	1,3
Cripotofíceas	2,7	9,3	14,1	35,7	24,8	7,5
Dinofíceas	4,4	0,0	3,0	3,1	2,9	0,0
	04/08/10	01/09/10	07/10/10	07/12/10	12/01/11	
	%	%	%	%	%	
Diatomeas	83,9	32,3	80,0	38,8	35,3	
Clorofíceas	11,4	12,0	6,6	20,6	20,8	
Euglenofíceas	0,0	0,4	0,0	0,0	1,0	=
Crisofíceas	1,8	43,2	5,6	32,6	23,9	=
Cianobaterias	0,0	2,4	0,2	2,1	10,0	-
Cripotofíceas	1,8	9,3	7,2	5,6	6,7	
Dinofíceas	1,1	0,3	0,3	0,3	2,4	

ANEXO 3 INFORMACION ADICIONAL SOBRE PISCICULTURA

Fig. A6 Fotos de terreno de la Piscicultura Vega Quiman

Fig. A7 Fotos de terreno de la Piscicultura Caleta Bay Centro Pitreño

Fig. A8 Fotos de terreno de la Piscicultura Iculpa S.A.

Fig. A9 Respuesta Sernapesca acerca de producción pisciculturas

Ly laus

ORD./XIV/Nº:

5801510

ANT : Su solicitud de fecha 20.04.10 (Nº

460134110)

MAT. : Responde a lo solicitado

Valdivia, 1 0 MAY 2018

DE: DIRECTOR REGIONAL DE PESCA REGION DE LOS RIOS

A: SR. CRISTIAN DUARTE VALENZUELA.
INSTITUTO DE BIOLOGÍA MARINA-UACH

Con relación a su solicitud de información, correspondiente a Ley Nº 20.285 sobre acceso a Información Pública, cumplo con informar a Ud., lo siguiente:

1. Nombre y la ubicación de las pisciculturas ubicadas en la cuenca del Ranco:

CODIGO	NOMBRE	UBICACIÓN	EMPRESA
103645	HUACAMALAL	RIO IGNAO	CULTIVOS HUACAMALAL LTDA
100972	RANCO I	SENO RIÑINAHUE, SECTOR 1	MARINE HARVEST CHILE S.A.
101955	RANCO II	SENO RIÑINAHUE, SECTOR 2	MARINE HARVEST CHILE S.A.
100543	ICULPE	RIO ICULPE - ILIHUE	PISCICULTURA ICULPE S.A.
101137	PITREÑO	ILIHUE	SALMONES CALETA BAY S.A.
102912	NILAHUE	RIÑINAHUE	PISCICULTURA NILAHUE S.A.

2. Estadísticas de producción anual de las pisciculturas (cifras preliminares año 2009):

ESPECIES	PISC.ICULPE (Rio Iculpe-Ilihue)	PISC.NILAHUE (Riñinahue)	CULT.HUACAMALAL (Rio Ignao)
Salmón del Atlántico	95.838	194.852	390.000
Salmon Plateado	240.877	0	337.000
Trucha Arco iris	327.141	105.521	0

3. Con relación a los centros de las empresas Salmones Caleta Bay y Marine Harvest Chile, informo a Ud, que la información de producción no podrá ser entregada, en virtud a la oposición presentada por las señaladas empresas, tal como lo indica la Resolución Exenta Nº 120, de fecha 30 de abril de 2010 (adjunta).

Saluda atentamente a Ud.,

GUILLERMO PIVERA SÁNCHEZ PIRECTOR REGIONAL DE PESCA REGIÓN DE LOS RÍOS

GRS/CSM/csm. DISTRIBUCION:

- Sr. Paolo Pinna Valverde
- Encargado SIAC Dirección Nacional
- Archivo SIAC Dirección Regional
- Archivo

Tabla A10 Descarga de piscicultura en la cuenca del Lago Ranco (Fuente: SISS)

Centro/ PUNTO DESCARGA	PERIODO INFORMADO	Carga N TON/mes	Carga P TON/mes	Carga N TON/a	Carga P TON/a
Piscicultura Iculpe S.A.	2009 - 08	3,383	0,890		
RIO ICULPE	2009 - 09	2,196	1,098		
	2009 - 10	2,059	1,057		
	2009 - 11	0,996	0,280		
	2009 - 12	0,926	0,214		
	2010 - 01	0,349	0,078		
	2010 - 02	1,250	0,105		
	2010 - 03	3,733	1,956		
	2010 - 04	4,713	0,334		
	2010 - 05	6,530	0,280		
	2010 - 06	3,150	0,271		
	2010 - 07	3,388	0,963		
	2010 - 08	3,133	0,289		
	Promedio	2,754	0,601	33,051	7,214
		,	,	•	•
Piscicultura Nilahue S.A.	2010 - 01	2,350	1,091		
Río Nilahue	2010 - 02	20,550	1,657		
	2010 - 03	7,476	7,285		
	2010 - 04	16,347	2,049		
	2010 - 05	43,438	0,976		
	2010 - 06	10,524	0,907		
	2010 - 07	7,743	0,916		
	2010 - 08	5,441	0,878		
	Promedio	14,233	1,970	170,802	23,639
Salmones Caleta S.A.	2009 - 08	0,625	0,124		
RIO PITREÑO	2009 - 08	1,600	0,124		
RIOFITRENO	2009 - 09	1,390	0,102		
	2009 - 11	1,954	0,211		
	2009 - 12	1,853	0,308		
	2010 - 01	1,681	0,084		
	2010 - 02	2,347	0,004		
	2010 - 03	1,570	0,123		
	2010 - 04	0,548	0,054		
	2010 - 05	1,463	0,613		
	2010 - 06	1,388	0,115		
	2010 - 07	0,847	0,057		
		2,2	2,23.		
	Promedio	1,439	0,189	17,263	2,273

Centro/ PUNTO DESCARGA	PERIODO INFORMADO	Carga N TON/mes	Carga P TON/mes	Carga N TON/a	Carga P TON/a
Vega Quiman (Lican)	2009 - 08	0,255	0,163		
Río Quiman	2009 - 12	0,198	0,385		
	2010 - 01	0,399	0,332		
	2010 - 02	0,908	0,348		
	2010 - 03	0,235	0,521		
	2010 - 04	0,309	0,468		
	2010 - 05	0,263	0,294		
	2010 - 06	0,586	0,222		
	Promedio	0,394	0,342	4,728	4,099

ANEXO 4 HIDROLOGÍA DE CUENCAS

Para caracterizar el régimen hidrológico de las distintas subcuencas que componen la cuenca del lago Ranco, se utilizaron como base los datos proporcionados por la Dirección General de Aguas de las siguientes estaciones: río Calcurrupe en desembocadura, río Caunahue camino a Llifén, río Nilahue en Mayay y río Bueno en Bueno. Los datos utilizados comprendieron períodos variables entre 1987-2008, dependiendo de la serie de datos disponibles para cada estación.

Primero se completaron las bases de datos hidrológicos mensuales faltantes, especialmente para la estación Caunahue. Para ello se utilizaron relaciones estacionales precipitación-caudal entre las precipitaciones de la estación lago Maihue y la estación hidrológica del río Caunahue.

Las ecuaciones de calibración usadas fueron:

Verano:

Q _{Caunahue}
$$(m^3/seg) = 0.0645*P + 3.8016$$
 (1)

Donde P es la precipitación en mm/mes Invierno:

$$Q_{Caunahue} (m^3/seg) = 0.1766*P + 6.0864$$
 (2)

En una segunda etapa, una vez completadas las bases de datos de las estaciones hidrológicas de la DGA, se calibraron las demás subcuencas sin información hidrológica. Para esta calibración se utilizó una relación entre el área de drenaje y el caudal, considerando 4 estaciones de la DGA en la cuenca del lago Ranco y 3 estaciones ubicadas en la cuenca del lago Villarrica. Con la ecuación de calibración fue posible realizar una estimación simple de los caudales anuales de las subcuencas restantes.

La ecuación que relaciona el área de la cuenca (A) y el caudal Q (m³/seg) es:

$$Q (m^3/seg) = 0.0011^* A - 8.6532$$
 (3
 $R^2 = 0.998$

donde A es el área de drenaje (ha).

Fig. A10 Relación entre área de la cuenca (ha) y caudal (m³/seg)

ANEXO 5 PROCESAMIENTO DIGITAL DE IMAGEN LANDSAT 7 ETM+ PARA LA DETERMINACIÓN DE LA COBERTURA DE USO ACTUAL DEL SUELO SOBRE LA CUENCA DEL LAGO RANCO

INTRODUCCIÓN

La tecnología existente en imágenes de percepción remota se ha transformado en un elemento clave para la elaboración de cartografía digital e identificación de las clases de uso de suelo, esto es así porque a igual escala ofrecen una mayor cantidad de observaciones que un levantamiento terrestre (Speranza y Zerda 2005).

El sentido de la clasificación de imágenes radica en la determinación y localización de los distintos tipos de coberturas del terreno, en ese contexto, la meta de este estudio es identificar los tipos de cubiertas existentes en la cuenca del Lago Ranco, luego de utilizar algunos procesos digitales, tales como corrección atmosférica, ajuste geométrico, corrección topográfica y MSAVI, para mejorar los valores de reflectancia de las imágenes y a la postre la discriminación de las coberturas del suelo.

MATERIAL Y MÉTODO

Procesamiento Digital de las Imágenes

Existe un gran número de factores que contribuyen a la codificación final de los niveles digitales asociados a cada píxel como las distorsiones radiométricas y geométricas: efecto de iluminación, dispersión y absorción atmosférica, efecto del relieve y tipo de cobertura. Para este estudio el procesamiento y análisis de las imágenes de satélite fue aplicado desarrollando las siguientes etapas:

- 1. Selección de las imágenes de satélite correspondientes al área de estudio.
- Selección de fotografía aérea de referencia e información del ‰evantamiento Plan Ordenamiento Territorial Cuenca Lago Ranco+para control posterior.
- 3. Ajuste geométrico de la información.
- 4. Generación del modelo digital de terreno (MDT) y sus derivados (pendiente y exposición) para ser utilizados en el proceso de corrección topográfica.
- 5. Corrección del efecto atmosférico sobre las imágenes de satélite.
- 6. Corrección del efecto topográfico, que conlleva una diferente iluminación en distintas zonas de las imágenes de satélite.
- 7. Relleno de la información faltante.

- 8. Calculo del Indice de Vegetación con Ajuste del Efecto de Suelo modificado.
- Proceso de clasificación digital supervisada y validación de la exactitud de esta.

Ajuste Geométrico

Consiste en la homogenización de la información cartográfica e imágenes, en lo que se refiere a la asimilación de una proyección y datum idéntico para todos los datos.

Generación del MDT

El Modelo digital de terreno se elabora a partir de la información vectorial correspondiente al eje Z o la cota de altura en una coordenada determinada, con la nube de puntos se procede a la interpolación con el algoritmo Non-Linear Rubber Shetting de Erdas, para generar un manto que simula el relieve del terreno.

La construcción del modelo obedece a la necesidad de contar con la información de pendiente y exposición, con la que se realiza el cálculo de la corrección topográfica.

Corrección Atmosférica

Para efectuar la corrección atmosférica de las imágenes, se convirtieron a valores de reflectividad empleando el método de corrección de transmisividad de la atmósfera descendente por defecto propuesto por Chávez (1996).

$$\rho_{i,k} = \frac{D\pi((L_{sen,k} - L_{a,k})/\tau_{k,a})}{E_{0,k}sen\theta_{i}\tau_{k,i} + E_{di,k}}$$
[1]

donde $_{i,k}$ es la reflectividad del píxel i para la banda k; D es un factor que tiene en cuenta la variación de la distancia Tierra-Sol al cuadrado, la cual se deriva a partir del día juliano desde el Cuadro 1; L_{sen} es la radiancia en el sensor para esa banda ($L_{sen} = \operatorname{Gain}_k \times \operatorname{ND}_k + \operatorname{Bias}_k$) [2]; $L_{a,k}$ la radiancia atmosférica para esa banda; $_{k,a}$ transmisividad ascendente; $E_{0,k}$ es la irradiancia solar en el techo de la atmósfera; $_i$ el ángulo de elevación solar; $_{k,i}$ la transmisividad para el flujo descendente, y $E_{di,k}$ la irradiancia difusa. En el método propuesto por Chávez, algunos términos se simplifican, $L_{a,k}$ se obtiene a partir del valor observado en un objeto obscuro o sombra ($L_{a,k} = \operatorname{Gain}_k \times \operatorname{ND}_{min \ k} + \operatorname{Bias}_k$) [3], $_{k,a}$ se calcula a partir del cos $_i$ (1, para observaciones verticales); $_{k,i}$ se estima a partir de valores promedio para cada banda (0,70; 0,78; 0,85; 0,91; 1; 1 para las bandas ETM1, ETM2, ETM3, ETM4, ETM5 y ETM7) y $E_{dik} = 0$ (ignora irradiancia difusa) (Riaño et al 2000).

Este procedimiento recurre a lo que se denomina extracción de objeto oscuro, para la determinación del ND mínimo de cada banda como estimación de la radiancia debido a la dispersión atmosférica, mientras que la transmisividad atmosférica para el flujo descendente se extrapola de experimentos físicos llevados a cabo sobre atmósferas reales sin cobertura nubosa. (Riaño et al 2000).

CUADRO 1
Distancia tierra . sol en Unidades Astronómicas (Chander, 2003)

Julian Day	Distance								
1	0,9832	74	0,9945	152	1,0140	227	1,0128	305	0,9925
15	0,9836	91	0,9993	166	1,0158	242	1,0092	319	0,9892
32	0,9853	106	1,0033	182	1,0167	258	1,0057	335	0,9860
46	0,9878	121	1,0076	196	1,0165	274	1,0011	349	0,9843
60	0,9909	135	1,0109	213	1,0149	288	0,9972	365	0,9833

CUADRO 2
Parámetros para la conversión a reflectividad de las imágenes landsat (USGS, 2006).

Banda	$E_{0,k}$	Gain	Bias
ETM1	1969	0,77568627	-6,2
ETM2	1840	0,79568627	-6,4
ETM3	1551	0,61921569	-5,0
ETM4	1044	0,9654902	-5,1
ETM5	225,7	0,12572549	-1,0
ETM7	82,07	0,04372549	-0,35

Corrección Topográfica

Para corregir el efecto que produce el relieve se utiliza el MDT en un proceso de dos fases. Primero se calcula el ángulo de iluminación de cada píxel (considerando la posición solar y topográfica) y luego se corrige la reflectividad de entrada de acuerdo con el valor de ese ángulo (Heredia et al 2003). La iluminación se calcula a partir de los ángulos cenital solar, acimutal solar, de orientación y de pendiente de acuerdo a:

$$IL = \cos \gamma_i = \cos \theta_c \cos \theta_n + \sin \theta_c \sin \theta_n \cos(\phi_c - \phi_n)$$
 [4]

donde *IL* corresponde al coseno del ángulo de iluminación, *c* indica el ángulo cenital solar, *n* la pendiente del terreno, *c* el ángulo acimutal solar y *n* el ángulo de orientación de la vertiente. Los ángulos solares se pueden obtener de la fecha y hora de adquisición de la imagen, aunque suelen aparecer en la cabecera de la misma, mientras que la pendiente y la orientación se obtienen desde el MDT. Una vez calculada la imagen con el ángulo de iluminación (que equivale a un sombreado del terreno), puede aplicarse alguna de las fórmulas para la corrección de iluminación topográfica sugeridas en la literatura (Heredia et al 2003), una factible de utilizar es la propuesta por Civco (1989):

$$\rho_{h,i,k} = \rho_{i,k} + \rho_{i,k} \frac{(IL_m - IL_i)}{IL_m}$$
 [5]

donde $_{h,i,k}$ es la reflectividad de la superficie horizontal del píxel i para la banda k, IL_m indica la media de la imagen de iluminación para toda la imagen, y IL_i es el valor de iluminación para el píxel a corregir.

Relleno de la Información Faltante

Se utiliza la metodología propuesta por Scaramuzza et al (2004), que consiste en la utilización de una máscara que abarca el área sin datos con la que se rellena con otra imagen con datos.

Índice de Vegetación con Ajuste del efecto de Suelo Modificado (MSAVI)

El cálculo de índices de vegetación es una técnica de uso habitual en teledetección y es comúnmente utilizada para mejorar la discriminación entre dos cubiertas que presenten un comportamiento reflectivo muy distinto en dos o más bandas, por ejemplo para realzar suelos y vegetación en el visible e infrarrojo cercano, y para reducir el efecto del relieve (pendiente y orientación) en la caracterización espectral de distintas cubiertas (Chuvieco 1996).

Según Chuvieco (1996), para aplicar estos índices con rigor deberían aplicarse previamente las correcciones atmosféricas y la conversión de ND (número digital, es el valor que devuelve el sensor) a reflectividades. De todas maneras, siempre que no se pretenda conceder un valor físico a los resultados, el índice puede aplicarse directamente a los ND originales de la imagen. En este caso la valoración será relativa, pero sigue manteniéndose el mismo principio; cuanto mayor sea el resultado obtenido, tanto mayor será el vigor vegetal presente en la zona observada (Parimbelli 2005).

El MSAVI se define como:

$$MSAVI_{i} = \frac{2\rho_{i,IRC} + 1 - \sqrt{(2\rho_{i,IRC} + 1)^{2} - 8(\rho_{i,IRC} - \rho_{i,R})}}{2}$$
 [6]

donde _{i,IRC} y _{i,R} indican las reflectividades del píxel i en la banda del infrarrojo cercano y del rojo, respectivamente (Qi et al. (1994)).

Clasificación Digital Supervisada

En este procedimiento se seleccionan píxeles que representen los patrones de las distintas coberturas del suelo. Una vez que se identifican estos patrones, se comienza a definir las clases de coberturas del suelo y a entrenar al computador para identificar píxeles con características similares (Segura y Trincado 2003).

a) Fase de entrenamiento: El método utilizado para la selección de las áreas de entrenamiento es el denominado píxel semilla con límites espaciales. Este consiste en identificar píxeles puros que son representativos del área de entrenamiento (Chuvieco 1996). Cuando uno o más píxeles contiguos al píxel semilla son aceptados, se calcula la media espectral del área de entrenamiento. Posteriormente cada área de entrenamiento se une a una firma determinada y se calculan sus estadísticos. Una vez definidas las firmas y antes de abordar el proceso de clasificación propiamente tal, es necesario evaluar la viabilidad de que esas categorías puedan clasificarse sin grave riesgo de error (Segura y Trincado 2003).

Para la elección del grupo óptimo de bandas para la clasificación se utiliza la divergencia estadística transformada. La divergencia estadística parte de la base de que los niveles digitales en una categoría se distribuyen normalmente, considerando la separabilidad como medida del solape entre categorías vecinas. Un valor de divergencia transformada de 2.000 sugiere excelente separación de clases, sobre 1.900 provee una buena separación, mientras que bajo 1.700 indica una pobre separación entre clases (Jensen 1996).

- **b)** Fase de asignación: El método empleado es el de máxima probabilidad, siendo el que presenta una mejor base teórica, aún cuando es considerado un método complejo y que demanda un mayor tiempo de cálculo (Chuvieco 1996). Después de finalizado el proceso de clasificación, la imagen es filtrada para remover el aspecto de sal y pimienta, para esto se utiliza un filtro de mayoría, en que el píxel central se asigna a la categoría que cuenta con la mitad más uno de los píxeles vecinos, en caso de que ninguna categoría sobrepase ese valor el píxel central mantiene su asignación anterior. Esta comparación se realiza a partir de una ventana móvil de 5 x 5 píxeles por su facilidad de aplicación y mínimo sesgo (Bauer et al 1994, Chuvieco 1996).
- c) Fase de comprobación y verificación: Toda clasificación presenta un margen de error que está dado por la calidad de los datos y por el método de clasificación empleado, por ello es necesario aplicar un procedimiento de verificación que permita cuantificar el error obtenido. El diseño de muestreo empleado es el aleatorio estratificado, en que cada clase temática tiene un cierto número de

puntos de muestreo de acuerdo a la superficie de cada unidad temática. Se considera un total de 256 puntos de muestreo (Segura y Trincado 2003).

Después que la información de referencia (fotografía aérea, catastro, visita a terreno) es recogida desde los puntos localizados aleatoriamente, éstos son comparados píxel a píxel con la información derivada de la clasificación digital. Las concordancias y no-concordancias son resumidas en una matriz de error (Segura y Trincado 2003).

Para el cálculo de la exactitud global (*ExG*) se relacionan los elementos de la diagonal con el total de puntos de muestreo según:

$$ExG = \sum_{i=1,a}^{\infty} X_{ii} / \sum_{j=1,n}^{\infty} \sum_{j=1,n}^{\infty} X_{ij}$$
 [7]

donde X_{ii} son los elementos de la diagonal y los X_{ij} son el total de puntos muestreados.

Además se realiza un análisis de las relaciones múltiples entre las categorías. Para esto se recurre al análisis categórico multivariado denominado estadístico Kappa (K^), que mide la diferencia entre el acuerdo mapa/realidad observado y lo que se podría esperar simplemente por azar (Lillesand y Kiefer 1994). Un valor de K^ igual a 1 indica un acuerdo pleno entre la realidad y el mapa, mientras que un valor cercano a 0 sugiere que el acuerdo observado es puramente debido al azar (Segura y Trincado 2003). El estadístico K^ se calcula a través de la siguiente fórmula:

$$K^{\wedge} = \frac{N \sum_{i=1}^{r} X_{ii} - \sum_{i=1}^{r} (X_{i+} \times X_{+i})}{N^{2} - \sum_{i=1}^{r} (X_{i+} \times X_{+i})}$$
 [8]

donde r es el número de filas en la matriz, X_{ii} es el número de observaciones en la fila i y columna i, X_{i+} ; X_{+i} es el total marginal para la fila i y columna i, N es el número total de observaciones (N=256).

Análisis Morfométrico de la Cuenca.

El análisis morfométrico de la cuenca, implica la determinación de una serie de parámetros, que la hagan comparable con otras cuencas de iguales o similares condiciones.

Secuencialmente los pasos son los siguientes:

1. **Determinación del área de estudio**: Se define como la superficie que drena el Lago Ranco en el punto de desagüe de este cuerpo de agua. La cuenca del Lago Ranco ocupa una superficie de 361.638 has (Fig. A5).

Fig. A11 Área de estudio definida para el Lago Ranco, corresponde al territorio que drena el lago.

Fig. A12 Imagen Google compuestos de la cuenca del Lago Ranco

La misma área de estudio se superpuso sobre la imagen disponible de Google Earth, a través de un archivo de exportación KML, que permite formarse una idea cabal del área de trabajo. Aquellas zonas con la imagen más oscura corresponde a una imagen Quickbird de 60 cm de resolución, en el resto de los casos corresponde a una imagen Spot, con la resolución típica de 10 metros.

2.- Colección de las curvas: Para la zona en cuestión se adquirió el modelo digital de elevación de la NASA PROCESSED SRTM DATA VERSION 4.1, del cual fue necesario derivar las curvas de nivel cada 50 metros para luego cortarlas de acuerdo a un marco que involucraba, un área superior al area de trabajo.

3. Generación del DEM: con las curvas de nivel, se procedió a la generación de un Modelo de Elevación Digital (DEM). Para este efecto se utilizó la extensión 3D Analyst dentro del software ArcGIS.

El método de interpolación utilizado fue el de Spline dentro de la generación de un TIN. Este módulo genera resultados y es el recomendado para ser utilizado en estos casos.

4. Derivación de subcuencas: a partir del DEM, se generaran una serie de subproductos.

5. Clasificación de uso de suelo.

El área de estudio corresponde a la Cuenca Hidrográfica del Lago Ranco la cual se sitúa en la parte alta de la Cuenca del Río Bueno, curso que nace de la desembocadura de este lago. Para cubrir toda la extensión de la cuenca fue necesario la adquisición de dos escenas del Landsat 7 ETM+ georreferenciadas a la proyección UTM, Elipsoide y Datum WGS 84 huso 18 y 19 norte, y con resolución espacial de 28,5 metros. La corrección geométrica fue ejecutada por USGS a través del sistema NLAPS (Nacional Landsat Archive Production System) (Chander y Markham 2003). Desde estas imágenes se cortó el área que pertenece a la cuenca considerando una zona de borde alrededor del límite de esta, en las que se realizará la corrección atmosférica, ajuste geométrico, corrección topográfica, MSAVI y clasificación supervisada

Desde las imágenes adquiridas p232r088_7t20011208_z19n.img del 08-12-2001 y L72233088_08820011129_B12345.tif del 29-11-2001, se cortó el área de estudio, dejando la escena 233-88 como imagen central ya que esta abarca la mayor parte de la superficie de la cuenca, con estas se realizará el cubrir la información faltante en las imágenes que su utilizarán en la determinación de la Cobertura de Uso Actual del Suelo de la Cuenca del Lago Ranco. Las imágenes utilizadas para determinar el uso actual del suelo corresponden a las siguientes fechas:

- 1. L71232088 08820080227 B12345.TIF del 27-02-2008
- 2. L71232088_08820100131_B12345.TIF del 31-01-2010
- 3. L71233088 08820080202 B12345.TIF del 02-02-2008
- 4. L71233088_08820090220_B12345.TIF del 20-02-2009

Los criterios de selección que deben satisfacer estas imágenes son; épocas del año similares, minimizar el uso de la imagen de relleno, mínima cobertura de nubes, data reciente.

Fig. A13 Mapa de ubicación de la zona de estudio y escenas adquiridas

Ajuste Geométrico

Se realizó un ajuste geométrico a las imágenes debido a que estas estaban referidas a la proyección UTM WGS84 huso 18 y 19 norte, por lo tanto la operación de ajuste produjo imágenes referidas a la proyección UTM WGS84 huso 19 sur, con lo que estas quedaron en la posición que corresponde a la zona de estudio. Además para mantener la integridad de la información, se optó por georeferenciar todo al huso 19 sur, aún cuando parte de la cuenca corresponde al huso 18 sur en el sistema de referencia UTM WGS84.

Corrección Atmosférica

Como se ha descrito anteriormente, la corrección atmosférica tiene como finalidad reducir el efecto de dispersión del haz de luz en el rango del espectro visible, que influye principalmente en la energía captada por el sensor en las bandas ETM1, ETM2 y ETM3.

Aplicando [1] se obtiene una imagen en la que se ha atenuado el Scattering de Rayleigh o efecto de los Gases Atmosféricos. El resultado de la corrección transforma los valores de ND de 8 bits a valores de reflectancia de superficie en formato de 32 bits, estos últimos son adimensionales hallándose en el rango de 0 a 1, luego, para efectos de reducir el espacio que ocupa en disco, se multiplican

por 400 y se escalan a 8 bits obteniendo valores de reflectancia que van de 0 a 255 (USGS, 2006). Los valores resultantes de la corrección de la imagen se muestran en el Cuadro 3.

CUADRO 3
Estadísticas de las bandas de la imagen Landsat ETM+.

	p	233r08	38	p232r088			
Bandas	Mín.	Máx.		Mín.	Máx.		
ETM1	0	255	23,31	0	255	26,17	
ETM2	0	255	20,19	0	255	22,83	
ETM3	0	255	21,28	0	255	22,97	
ETM4	0	255	32,83	0	255	40,61	
ETM5	0	255	21,18	0	255	19,86	

Corrección Topográfica

La corrección topográfica requiere de la información de pendiente y orientación que se obtiene a partir del modelo digital de terreno (figura A8). Una vez construido el modelo, se procede al cálculo de la corrección topográfica.

Fig. A14. Izq., Modelo digital de terreno; Centro, Imagen de exposición; Der., Imagen de pendiente.

Tras realizar la corrección topográfica se verificó visualmente si se habían eliminado ciertas sombras que aparecían en la imagen por la baja iluminación (figura A8). De esta manera se consiguió homogeneizar la variabilidad espectral de la imagen.

Índice de Vegetación

En la figura A9 se muestra la imagen resultante del cálculo del MSAVI que será utilizada posteriormente en la clasificación digital agregándose como otra banda de la imagen raíz, para obtener una mejor discriminación de la vegetación.

Fig. A15. Izq., Imagen sin correcciones; Centro, Imagen corregida; Der., Imagen MSAVI.

Clasificación Supervisada

Para realizar la clasificación supervisada se definieron 10 clases de cobertura del suelo; agua, suelo desnudo, nieve, sombra, pradera, matorral, bosque nativo, urbano, plantaciones y renovales, con ellas se entrenó al computador tomando las muestras respectivas desde la imagen (Cuadro 4).

CUADRO 4 Clases temáticas y descripción de las áreas de entrenamiento.

CLASE	TAMAÑO MUESTRA (pixeles)	SUP. EQUIVALENTE (has)
Nieve	238	21.42
Suelo desnudo	137	12.33
Sombra	17	1.53
Agua	51272	4614.48
Bosque nativo	4508	405.72
Renoval	742	66.78
Pradera	430	38.7
Matorral	629	56.61

Urbano	86	7.74
Plantaciones	75	6.75

De todas las combinaciones de bandas evaluadas los mejores resultados se obtuvieron con la combinación ETM1, ETM2, ETM3, ETM4, ETM5 y MSAVI, con un valor medio de 2.000 de separabilidad espectral de pares de clases medido a través de la divergencia transformada y un valor mínimo de 1.998 para el par bosque nativo adulto y renovales. Teniendo en cuenta las bandas mejor evaluadas se procedió con la fase de asignación, en la figura A10 muestra la imagen obtenida después de la clasificación.

Fig. A16. Imagen resultante de la clasificación supervisada.

CUADRO 5 Resumen superficie por clase.

Nº Clase	USO DEL		Superficie	
IN Clase	SUELO	Leyenda	(has)	(%)
1	Sombra		54,85	0,02
2	Pradera		31.765,45	9,00
3	Matorral		48.230,26	13,66
4	Renoval		36.930,06	10,46
5	Bosque nativo		161.633,89	45,79
6	Nieve		6.573,84	1,86
7	Suelo desnudo		16.472,55	4,67
8	Agua		50.996,78	14,45
9	Urbano		80,77	0,02
10	Plantación		97,78	0,03
	No clasificado		132,47	0,04
	Total (has)		352.968,69	100.00

Como se puede observar en el cuadro 5, la mayor superficie de la cuenca se encuentra ocupada por bosques de especies nativas en las categorías de matorral, renoval y bosque nativo respectivamente. En resumen, más del 60% de la superficie se encuentra cubierta por vegetación mayor lo cual indica una situación de estabilidad del suelo por la protección que brinda este tipo de cobertura.

CUADRO 6 Matriz de error para la clasificación global.

Datos Clasifi- cados				Dato		eferer					Total fila	Exacti- tud del usua- rio (%)	Error de comisi ón (%)
	1	2	3	4	5	6	7	8	9	10			
1	6	0	0	0	0	0	0	6	0	0	12	50	50
2	0	70	3	0	0	0	0	0	0	0	73	96	4
3	0	0	45	3	3	0	0	0	0	0	51	88	12
4	0	3	1	37	3	0	0	0	0	0	44	84	16
5	0	0	3	4	63	0	0	0	0	0	70	90	10
6	0	0	0	0	0	12	0	0	0	0	12	100	0
7	0	1	0	0	0	0	35	0	0	0	36	97	3
8	3	0	0	0	0	0	0	20	0	0	23	87	13
9	0	0	0	0	0	0	0	2	5	0	7	71	29
10	0	0	0	0	0	0	0	0	0	3	3	100	0
Total Columna	9	74	52	44	69	12	35	28	5	3	331		
Exactitud del productor (%)	67	95	87	84	91	100	100	71	100	100			
Error de omisión (%)	33	5	13	16	9	0	0	29	0	0			
ExG (%)	•							= 296					

Para evaluar el resultado de la clasificación se utilizó la matriz de confusión que compara lo clasificado digitalmente con lo observado en terreno (Cuadro 6).

La exactitud global de la clasificación fue de 89,4%, con un coeficiente de Kappa de 0,88, lo que indica que la clasificación es 88% mejor que la esperada al azar. Este resultado se puede considerar como bueno y esperado para este tipo de clasificación.

REFERENCIAS

- BAUER M., BURK T., EK A., COPPIN P., LIME S., WALSH T., WALTERS D. 1993. Satellite inventory of Minnesota forest resources. Final Report to NASA. Minnesota University. 25 p.
- CHANDER G., MARKHAM B. 2003. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No 11. pp. 2674-2677.
- CHAVEZ P. 1996. *Image-based atmospheric corrections. Revisited and improved.*Photogrammetric Engineering and Remote Sensing. Vol. 62, No 9. pp. 1025-1036.
- CHUVIECO E. 1996. Fundamentos de teledetección espacial. 3ª ed. Revisada. Madrid (España), Rialp S.A. 568 p.
- CIVCO D. 1989. *Topographic normalization of Landsat Thematic Mapper digital imagery*. Photogrammetric Engineering and Remote Sensing. Vol. 55, No 9, pp. 1303-1309.
- GILABERT M., CONESE C., MASELLI F. 1994. An Atmospheric Correction Method for the Automatic Retrieval of Surface Reflectances from TM Images. International Journal of Remote Sensing Vol. 15, No 10. pp. 2065-2086.
- HEREDIA A., MARTÍNEZ S., QUINTERO E., PIÑEROS W., CHUVIECO E. 2003. Comparación de Distintas Técnicas de Análisis Digital para la Cartografía de Areas Quemadas con Imágenes LANDSAT ETM+. GeoFocus (Artículos), Nº 3. pp. 216-234. ISSN: 1578-5157.
- JENSEN J. 1996. *Introductory digital image processing*. 2nd Edition. Ed. Prentice hall, New Yersey, USA. 316 p.
- LILLESAND T., KIEFER R. 1994. *Remote sensing and image interpretation*. 3rd ed. New York, John Wiley and Sons. 750 p.
- PARIMBELLI M. 2005. Cálculo de NDVI con Multispec©. Técnicas Espaciales de Análisis. Universidad CAECE.
- PATILLO C., HONORATO R., COVACEVIC N., SANTANA A., MALEBRAN C., PEZOA E. 1997. Aplicación de teledetección y SIG en la evaluación de los recursos pratenses en la Región de Magallanes, Ciencia e investigación agraria. Vol. 24, № 2. pp. 103-111.
- PINO F. 1995. Comparación de Métodos de Clasificación Digital de Imágenes de Satélite: Una Aplicación a un Sector de la Ciudad de Santiago. Revista Trilogía, Vol. 15, № 23.
- QI J, A CHEHBOUNI, & A HUETE. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment 48: 119-126.
- RIAÑO D., SALAS J., CHUVIECO E. 2000. Corrección Atmosférica y Topográfica, Información Multitemporal y Auxiliar Aplicadas a la Cartografía de Modelos de Combustibles con Imágenes Landsat-TM. Tecnologías Geográficas para el Desarrollo Sostenible, Departamento de Geografía. Universidad de Alcalá. pp. 222-239.
- SCARAMUZZA P., MICIJEVIC E., CHANDER G. 2004 *SLC gap-filled products: Phase one methodoloy.* Technical report, United States Geological Survey. http://landsat.usgs.gov/data_products/slc_off_data_products/documents/SLC_Gap_Fill_Methodology.pdf.
- SEGURA R., TRINCADO G. 2003. Cartografía digital de la Reserva Nacional Valdivia a partir de imágenes satelitales Landsat TM. Bosque (Valdivia), Vol. 24, Nº 2, p. 43-52. ISSN 0717-9200.
- SPERANZA F., ZERDA H. 2005. Clasificación digital de coberturas vegetales a partir de datos satelitales multiespectrales. Actas del VIII Congreso Argentino de Ingeniería Rural, Villa de Merlo, San Luis, Argentina.
- USGS. 2006. MRLC 2001 IMAGE PROCESSING PROCEDURE REVISED MAY 22, 2006.
- WOLTER P., MLADENOFF D., HOST G., CROW T. 1995. *Improved forest classification in the Northern lake states using multi-temporal Landsat imagery*, Photogrammetric Engineering and Remote Sensing. Vol. 61, No 9, pp. 1129-1143.

ANEXO 6 EJEMPLO ANÁLISIS FRANJA COSTERA LAGO RANCO

