"The non-Riemannian nature of perceptual color space

Еникеев Арнольд

14 апреля, 2025

The non-Riemannian nature of perceptual color space

Roxana Bujack^{a,1}, Emily Teti^{a,b}, Jonah Miller^a, Elektra Caffrey^{a,c}, and Terece L. Turton^a

Edited by Brian Wandell, Stanford University, Stanford, CA; received October 28, 2021; accepted March 13, 2022

- 1. Что такое психофизическая равномерность?
- 2. Что такое неримановость?
- 3. Почему неримановость перцептивного цветового пространства это проблема?
- 4. Какие известные вам формулы цветовых различий являются римановыми? А какие – неримановы?
- 5. Как бы вы продолжили эксперименты авторов статьи?

Почему это важно?

Цветовое отображение - это распостранённый и наглядный метод визуализации данных. Различие воспринимаемых цветов влияет на качество визуализации.

Цветная визуализация

Чёрно-белая визуализация

Цветовые пространства

Цветовые пространства — это определённые системы организации цветов.

CIE LAB*

Психофизическая равномерность

Психофизическая равномерность — это концепция, связанная с восприятием человеком физических стимулов, которая подразумевает, что на самом деле восприятие не всегда линейно.

Закон Вебера-Фехнера

$S=k\cdot log(I)$

S — ощущаемая интенсивность

/ — физическая интенсивность стимула

к — константа

Восприятие цвета тоже не является линейным.

Пример: на каждой картинке в правой части на 10 точек больше, но разница заметнее на первых двух.

Римановы пространства

расстояние:

В римановом пространстве
$$L(\gamma) = \int_{t_0}^{t_1} |\gamma'(t)|_{\gamma(t)} dt = \int_{t_0}^{t_1} \sqrt{\left\langle \frac{d\gamma(t)}{dt}, \frac{d\gamma(t)}{dt} \right\rangle_{\gamma(t)}} dt$$
 [3]

Вдоль геодезических путей выполняется аддитивность:

$$\Delta(A, C) \stackrel{\text{Eq. 3}}{=} \int_{t_0}^{t_2} |\gamma'(t)|_{\gamma(t)} dt$$

$$= \int_{t_0}^{t_1} |\gamma'(t)|_{\gamma(t)} dt + \int_{t_1}^{t_2} |\gamma'(t)|_{\gamma(t)} dt$$

$$\stackrel{\text{Eq. 3}}{=} \Delta(A, B) + \Delta(B, C).$$

Неримановость: принцип убывающей отдачи

Большие цветовые различия недооцениваются при восприятии, поэтому даже на геодезических путях выполняется неравенство:

$$\Delta E(A, B) + \Delta E(B, C) > \Delta E(A, C)$$

Влияние неримановости

Формулы цветовых различий

$$\Delta E_{76} = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}$$

Евклидово расстояние в пространстве CIE L*A*B* 1976.

$$\bar{H} = H_1(g_{11}(\Delta x)^2 + 2g_{12}\Delta x \Delta y + g_{22}(\Delta y)^2)^{\frac{p}{2}}$$

Формула МакАдама в хуҮ для цветов одинаковой яркости, взвешенная адаптация риманова расстояния. Степень р < 1 делает формулу неримановой.

Как бы я продолжил исследование?

Провести эксперимент для других цветов и разных фонов

2-AFC mecm

Регрессионный анализ
Принцип убывающей отдачи
Вероятностная обработка

Обеспечить статистическую достоверность

Изучить эффект в других пространствах

Построить модель, которая учитывает эффект

