Lecture 8: Neural Network & Deep Learning Fall 2022

Kai-Wei Chang CS @ UCLA

kw+cm146@kwchang.net

The instructor gratefully acknowledges Dan Roth, Vivek Srikuar, Sriram Sankararaman, Fei Sha, Ameet Talwalkar, Eric Eaton, and Jessica Wu whose slides are heavily used, and the many others who made their course material freely available online.

Announcements

- Quiz 2 is due today
- Hw 1 is due next Tue
 - The definition of F1 score will be covered today
- Midterm postpones to 11/1?
 - The practice exam will be posted

What you will learn today

- Optimization
 - Gradient descent
 - Stochastic gradient descent (SGD)
- Evaluation Metrics
- Neural network / Deep learning
 - Non-linear classifier
 - Feed-forward neural network
 - Deep learning architecture

Gradient Descent

Example $\min f(\boldsymbol{\theta}) = 0.5(\theta_1^2 - \theta_2)^2 + 0.5(\theta_1 - 1)^2$

- **!** Use the following iterative procedure for gradient descent $\nabla f(\theta) = \begin{bmatrix} 2(\theta_1^2 \theta_2)\theta_1 + \theta_1 1 \\ -(\theta_1^2 \theta_2) \end{bmatrix}$
- ① Initialize $\theta_1^{(0)}$ and $\theta_2^{(0)}$, and t=0
- 2 do
 Type equation here.

$$\theta_1^{(t+1)} \leftarrow \theta_1^{(t)} - \eta \left[2(\theta_1^{(t)^2} - \theta_2^{(t)}) \theta_1^{(t)} + \theta_1^{(t)} - 1 \right]$$

$$\theta_2^{(t+1)} \leftarrow \theta_2^{(t)} - \eta \left[-(\theta_1^{(t)^2} - \theta_2^{(t)}) \right]$$

$$t \leftarrow t + 1$$

lacksquare until $f(oldsymbol{ heta}^{(t)})$ does not change much

Remarks

- η is often called step size or learning rate -- how far our update will go along the the direction of the negative gradient
- * With a suitable choice of η , the iterative procedure converges to a stationary point where

$$\frac{\partial f}{\partial \boldsymbol{\theta}} = 0$$

A stationary point is only necessary for being the minimum

Choosing the right learning rate (η) is important

small η is too slow?

large η is too unstable?

Recap: Logistic Regression

- **Training data:** $S = \{(x_i, y_i)\}$, m examples
- Hypothesis space:

$$H = \{ h \mid h : X \to P(Y \mid X), h(x) = \sigma (w^T x + b) \}$$
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- i.e., model P(Y|X) by $\sigma(w^Tx + b)$
- \clubsuit How to find the best $h \in H$: maximum log-likelihood

$$\arg \max - \sum_{i=1}^{m} \log(1 + \exp(-y_i(w^T x_i + b)))$$

Gradient Descent for Logistic Regression

Maximum log-likelihood

$$arg \max - \sum_{i=1}^{m} \log(1 + \exp(-y_i(w^T x_i + b)))$$

Equivalent to the following minimization problem

$$\arg\min\sum_{i=1}^{m}\log(1+\exp(-y_i(w^Tx_i+b)))$$

$$L(w,b)$$

 \clubsuit Gradient of L(w, b)

$$\nabla L(w,b) = \sum_{i=1}^{m} \nabla \log(1 + \exp(-y_i(w^T x_i + b)))$$

Recap: Gradient

♣ Let z to be a n-dimensional vector of variables, f(z) is a function of z

$$\nabla f(z) = \begin{bmatrix} \partial f(z)/\partial z_1 \\ \partial f(z)/\partial z_2 \\ \vdots \\ \partial f(z)/\partial z_{n-1} \\ \partial f(z)/\partial z_n \end{bmatrix}$$

Exercise

• Let $z = [z_1, z_2, z_3]^T$ to be a 3-dimensional vector of variables, $a = [3, 2, 4]^T$ $\nabla f(z) = \begin{bmatrix} \frac{\partial f(z)}{\partial z_1} \\ \frac{\partial f(z)}{\partial z_2} \\ \vdots \\ \frac{\partial f(z)}{\partial z_{n-1}} \end{bmatrix}$

$$f(z) = \log(a^T z)$$

= $\log(3z_1 + 2z_2 + 4z_3)$

$$\nabla f(z) = \begin{vmatrix} \partial f(z)/\partial z_1 \\ \partial f(z)/\partial z_2 \\ \partial f(z)/\partial z_3 \end{vmatrix} = ?$$

Exercise

Let $z = [z_1, z_2, z_3]^T$ to be a 3-dimensional vector of variables, $a = [3, 2, 4]^T$

$$f(z) = \log(a^T z)$$

= $\log(3z_1 + 2z_2 + 4z_3)$

$$= \frac{1}{3z_1 + 2z_2 + 4z_3} \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} = \frac{1}{a^T z} a$$

$$\nabla f(z) = \begin{bmatrix} \frac{\partial f(z)}{\partial z_1} \\ \frac{\partial f(z)}{\partial z_2} \\ \vdots \\ \frac{\partial f(z)}{\partial z_{n-1}} \\ \frac{\partial f(z)}{\partial z_n} \end{bmatrix}$$

Gradient of L(w, b)

$$\nabla L(w,b) = \sum_{i=1}^{m} \nabla \log(1 + \exp(-y_i(w^T x_i + b)))$$

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$\nabla \log \frac{1}{\sigma(y_i(w^Tx_i+b))}$$

Gradient of L(w, b)

$$\nabla L(w,b) = \sum_{i=1}^{m} \nabla_{i} \log(1 + \exp(-y_i(w^T x_i + b)))$$

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$\nabla \log \frac{1}{\sigma(y_i(w^Tx_i+b))}$$

 $\text{Using } \nabla \log \frac{1}{\sigma(z)} = \sigma(z) - 1$

Partial gradient w.r.t w

$$\nabla_{w}L(w,b) = \sum_{i=1}^{m} \nabla_{w} \log \frac{1}{\sigma(y_{i}(w^{T}x_{i}+b))}$$

$$= \sum_{i=1}^{m} (\sigma(y_{i}(w^{T}x_{i}+b)) - 1)y_{i}x_{i}$$

$$\nabla_{b}L(w,b) = \sum_{i=1}^{m} (\sigma(y_{i}(w^{T}x_{i}+b)) - 1)y_{i}$$

Gradient descent for logistic regression

Given a training data set $S = \{(x_i, y_i)\}, i = 1 \dots m$

- 1. Initialize w (e.g., $w \leftarrow 0 \in \mathbb{R}^n$)
- 2. For epoch 1 ... *T*:

Loop over instance to compute the summation

3. Compute $\nabla_w L(w, b)$ and $\nabla_b L(w, b)$

$$\nabla_{w} L(w, b) = \sum_{i=1}^{m} (\sigma(y_{i}(w^{T}x_{i} + b)) - 1)y_{i}x_{i}$$

$$\nabla_{b} L(w, b) = \sum_{i=1}^{m} (\sigma(y_{i}(w^{T}x_{i} + b)) - 1)y_{i}$$

4. Update w and b

$$w \leftarrow w - \eta \nabla_w L(w, b)$$
$$b \leftarrow b - \eta \nabla_b L(w, b)$$

5. Return w and b

Remark

$$\nabla_w L(w,b) = \sum_{i=1}^m (\sigma(y_i(w^T x_i + b)) - 1) y_i x_i$$

$$\nabla_b L(w,b) = \sum_{i=1}^m (\sigma(y_i(w^T x_i + b)) - 1) y_i$$

- Need to compute $(\sigma(y_i(w^Tx_i + b)) 1)$ for every data point (x_i, y_i)
- Gradient descent usually needs many iterations to converge
- * When size of data (m) is large, computing $\nabla L(w,b)$ is expensive

Stochastic Gradient Descent

Intuition

Asking direction. Gradient descent: compute gradient of all instances.

Intuition

Asking direction. Stochastic Gradient descent: compute approximate gradient by one instance

Incremental/Stochastic gradient descent

Repeat for each example (**x**_i, y_i)

Use this example to calculate approximate the gradient and update the model

Contrast with *batch gradient descent* which makes one update to the weight vector for every pass over the data

Recap: Gradient Descent

$$\nabla_{w}L(w,b) = \sum_{i=1}^{m} (\sigma(y_{i}(w^{T}x_{i}+b)) - 1)y_{i}x_{i}$$

$$\nabla L_{i}(w,b)$$

Gradient descent update:

$$w \leftarrow w - \eta \sum_{i=1}^{m} \nabla_{\mathbf{w}} L_i(w, b)$$

Alternative way of gradient update

For i = 1 ... m

$$w \leftarrow w - \eta \nabla_w L_i(w, b)$$

Stochastic Gradient Descent

- \star avg $(\nabla_{\mathbf{W}} L_i(w, b)) = E_{(x_i, y_i) \sim S} [\nabla_{\mathbf{W}} L_i(w, b)]$ Average $L_i(w, b)$ over instance
- Gradient descent update:

$$w \leftarrow w - \eta \; \Sigma_{i=1}^m \nabla_{\mathbf{w}} L_i(w, b)$$

Expectation of gradient $L_i(w,b)$ over dataset S

- Stochastic gradient descent
 - Repeat until converge

Sample a data point (x_i, y_i) from S

$$w \leftarrow w - \eta' \nabla_{\mathbf{w}} L_i(w, b)$$

Stochastic Gradient descent for logistic regression

Given a training data set $S = \{(x_i, y_i)\}, i = 1 \dots m$

- 1. Initialize w (e.g., $w \leftarrow 0 \in \mathbb{R}^n$)
- 2. For epoch 1 ... *T*:
- 3. Sample a data point (x_i, y_i) from S
- 4. Compute $\nabla_w L_i(w, b)$ and $\nabla_b L_i(w, b)$ $\nabla_w L_i(w, b) = (\sigma(y_i(w^T x_i + b)) - 1)y_i x_i$ $\nabla_b L_i(w, b) = (\sigma(y_i(w^T x_i + b)) - 1)y_i$
- 5. Update w and b $w \leftarrow w \eta \nabla_w L_i(w, b)$ $b \leftarrow b \eta \nabla_b L_i(w, b)$
- Return w and b

The Perceptron Algorithm [Rosenblatt 1958]

```
Given a training set \mathcal{D} = \{(x,y)\}

1. Initialize w \leftarrow \mathbf{0} \in \mathbb{R}^n

2. For epoch 1 \dots T:

3. For (x,y) in \mathcal{D}:

4. if y(w^Tx) < \mathbf{0}

5. w \leftarrow w + \eta yx
```

Prediction: $y^{\text{test}} \leftarrow \text{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{\text{test}})$

6. Return w

The Perceptron Algorithm [Rosenblatt 1958]

Given a training set $\mathcal{D} = \{(x, y)\}$

- 1. Initialize $\mathbf{w} \leftarrow \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch 1...T:
- 3. For (x,y) in \mathcal{D} :
- $4. if y(w^Tx) < 0$
- 5. $w \leftarrow w + \eta y x$
- 6. Return w

Prediction: y^{test}

Perceptron effectively minimizing:

$$\sum_{i} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i))$$

Linear Regression

Find a line $w^T x + b$ to approximate real-value output y based on input x e.g., predict house price next year

Linear Regression

Find a line to approximate real-value output e.g., predict house price next year

Least Mean Squares (LMS) Regression

Given a dataset $S = \{(x_i, y_i)\}_{i=1..m}, x_i \in \mathbb{R}^n, y \in \mathbb{R}$

$$\arg\min_{w,b} \frac{1}{2} \sum_{i}^{m} (y_i - (w^T x_i + b))^2$$

Learning: minimizing mean squared error

Exercise

Derive the stochastic gradient descent algorithm for solving LMS regression

$$\arg\min_{w,b} \frac{1}{2} \sum_{i}^{m} (y_i - (w^T x_i + b))^2$$

What you will learn today

- Optimization
 - Gradient descent
 - Stochastic gradient descent (SGD)
- Evaluation Metrics
- Neural network / Deep learning
 - Non-linear classifier
 - Feed-forward neural network
 - Deep learning architecture

Accuracy and Error Rate

True label	-	-	-	-	+	-	-	-	-	-	+	-	-	+	-	-
Predicted label	-	-	-	-	+	-	+	-	-	-	-	+	-	+	-	-

Error rate = 3/16Accuracy = 13/16

Accuracy and Error Rate

True label	-	-	-	-	+	-	-	-	-	-	+	-	-	+	-	-
Predicted label	-	-	-	-	+	-	+	-	-	-	-	+	-	+	-	-

Error rate =
$$3/16 = 19\%$$

When data is unbalanced, check the performance of majority baseline

True label	-	-	-	-	+	-	-	-	-	-	+	-	-	+	-	-
Predicted label	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Confusion Matrix

True label	-	-	-	-	+	-	-	-	-	-	+	-	-	+	-	-	
Predicted label	-	-	-	-	+	-	+	-	-	-	-	+	-	+	-	-	

	True Label Positive	True Label Negative
Predicted Label Positive	2 True Positive (TP)	2 False Positive (FP)
Predicted Label Negative	1 False Negative (FN)	16 True Negative (TN)

Accuracy = (TP+TN)/(TP+TN+FN+FP)

Precision, Recall

True label	-	-	-	-	+	-	-	-	-	-	+	-	-	+	-	-
Predicted label	-	-	-	-	+	-	+	-	-	-	-	+	-	+	-	-

	True Label Positive	True Label Negative
Predicted Label Positive	2 True Positive (TP)	2 False Positive (FP)
Predicted Label Negative	1 False Negative (FN)	16 True Negative (TN)

Accuracy = (TP+TN)/(TP+TN+FN+FP)

Precision = (TP)/(TP+FP)

Recall = (TP)/(TP+FN)

F1 Score

Harmonic mean of precision and recall:

$$\frac{1}{F_1} = \left(\frac{1}{P} + \frac{1}{R}\right)/2$$

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

What you will learn today

- Optimization
 - Gradient descent
 - Stochastic gradient descent (SGD)
- Evaluation Metrics
- Neural network / Deep learning
 - Non-linear classifier
 - Feed-forward neural network
 - Deep learning architecture

Checkpoint: The bigger picture

Supervised learning: instances, concepts, and hypotheses

Specific learners

Decision trees

- K-NN
- Perceptron
- Logistic regression
- General ML ideas
 - Feature vectors
 - Overfitting
 - Probabilistic model

Non-Linear Decision Boundary

Neural Networks

Design to mimic the brain.

 Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Feed-forward neural network

Layered feed-forward network

- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an **input function** (typically summing over weighted inputs), an **activation function**, and an **output**

Neuron Model Example: Logistic Unit

Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

10

Activation function

https://sefiks.com/2020/02/dance-moves-of-deep-learning-activation-functions/ by Sefik Ilkin Serengil

Activation functions

* sigmoid function $f(x) = \frac{1}{1 + e^{-x}}$

$$f(x)=rac{1}{1+e^{-x}}$$

step function

$$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array}
ight.$$

Rectified linear unit (ReLU)

$$(x)^+ \doteq \left\{egin{array}{ll} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \end{array}
ight.$$

Neural Network

Feed-Forward Process

• Input layer units are set by some exterior function (think of these as **sensors**), which causes their output links to be **activated** at the specified level

13

Feed-Forward Process

- Working forward through the network, the **input function** of each unit is applied to compute the input value
- The **activation function** transforms this input function into a final value

13

Neural Network

 $a_i^{(j)}$ = "activation" of unit i in layer j

 $oldsymbol{\Theta}^{(j)} = ext{weight matrix controlling function}$ mapping from layer j to layer j + 1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{j+1}\times(s_j+1)$.

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4}$$

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Vectorization

$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right) = g\left(z_{1}^{(2)}\right)$$

$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right) = g\left(z_{2}^{(2)}\right)$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right) = g\left(z_{3}^{(2)}\right)$$

$$h_{\Theta}(\mathbf{x}) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}\right) = g\left(z_{1}^{(3)}\right)$$

 $\rightarrow h_{\theta}(\mathbf{x})$

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$

$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$

$$\text{Add } a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)}\mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

15

 x_2

 x_3

 $a_1^{(2)}$

 $a_2^{(2)}$

 $a_3^{(2)}$

Exercise

- Why do we need non-linear activation functions?
 - ***** What happen if g(z) = z

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$

$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$

$$Add \ a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)}\mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

Non-Linear Representations

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(\mathbf{x}) = g(-30 + 20x_1 + 20x_2)$$

x_{1}	x_2	$h_{\Theta}(\mathbf{x})$
0	0	g(-30) ≈ 0
0	1	$g(-10) \approx 0$
1	0	g(-10) ≈ 0
1	1	$g(10) \approx 1$

Lec 8: Neural Network & Deep Learning

Lec 8: Neural Network & Deep Learning

Lec 8: Neural Network & Deep Learning

Combining Representations to Create Non-Linear Functions

XNOR

Lec 8: Neural Network & Deep

Learning

Combining Representations to Create Non-Linear Functions

Exercise

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$
$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$
Add $a_0^{(2)} = 1$

$$\mathbf{z}^{(3)} = \Theta^{(2)} \mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

If all the samples inside the rectangle are positive; otherwise are negative Show a feedforward NN can classify all the samples correctly For simplicity, we assume g(z) is a step function. What are $\Theta^{(1)}$ and $\Theta^{(2)}$

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$

$$\mathbf{a}^{(2)} = q(\mathbf{z}^{(2)})$$

Add
$$a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)} \mathbf{a}^{(2)}$$

$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

If all the samples inside the rectangle are positive; otherwise are negative

Show a feedforward NN can classify all the samples correctly For simplicity, we assume g(z) is a step function.

What are $\Theta^{(1)}$ and $\Theta^{(2)}$

Arbitrary Decision Boundary

Arbitrary Decision Boundary

Neural Network Training Animation

https://playground.tensorflow.org/

