DTE 2 4 25

Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries

Hélène Barucq¹, Michel Duprez², Florian Faucher¹, Emmanuel Franck³, **Frédérique Lecourtier**², Vanessa Lleras⁴, Victor Michel-Dansac³ and Nicolas Victorion¹

¹Project-Team Makutu, Inria, TotalEnergies, Pau, France ²Project-Team MIMESIS, Inria, Strasbourg, France ³Project-Team MACARON, Inria, Strasbourg, France ⁴IMAG, University of Montpellier, Montpellier, France

February 20, 2025

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

accurate quick + parameterized

Parametric elliptic convection/diffusion PDE : For one or several $\mu \in \mathcal{M}$, find $\mu:\Omega \to \mathbb{R}$ such that

$$\mathcal{L}(u; \mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}), \tag{P}$$

where ${\cal L}$ is the parametric differential operator defined by

$$\mathcal{L}(\cdot; \mathbf{x}, \boldsymbol{\mu}) : u \mapsto R(\mathbf{x}, \boldsymbol{\mu})u + C(\boldsymbol{\mu}) \cdot \nabla u - \frac{1}{\mathsf{Pe}} \nabla \cdot (D(\mathbf{x}, \boldsymbol{\mu}) \nabla u),$$

and some Dirichlet, Neumann or Robin BC (which can also depend on μ).

Remark: The PINN prediction enriched Finite element approximation spaces.

Physics-Informed Neural Networks

Standard PINNs ¹ (Weak BC): Find the optimal weights θ^{\star} , such that

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \omega_b J_b(\theta) \right), \tag{\mathcal{P}_{θ}}$$

with

residual loss
$$\int_{r}(\theta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu} \right) - f(\mathbf{x}, \boldsymbol{\mu}) \right|^{2} d\mathbf{x} d\boldsymbol{\mu},$$
 boundary loss
$$\int_{b}(\theta) = \int_{\mathcal{M}} \int_{\partial \Omega} \left| u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) - g(\mathbf{x}, \boldsymbol{\mu}) \right|^{2} d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network, g=0 is the Dirichlet BC.

In (\mathcal{P}_{θ}) , ω_r and ω_b are some weights.

Monte-Carlo method : Discretize the cost functions by random process.

¹[Raissi et al., 2019]

Physics-Informed Neural Networks

Improved PINNs¹ (Strong BC): Find the optimal weights θ^{\star} such that

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \underline{\omega_b} J_b(\theta) \right),$$

with $\omega_r = 1$ and

residual loss
$$\int_{r}(\theta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu} \right) - f(\mathbf{x}, \boldsymbol{\mu}) \right|^{2} d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network defined by

$$u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = \varphi(\mathbf{x})w_{\theta}(\mathbf{x}, \boldsymbol{\mu}) + g(\mathbf{x}, \boldsymbol{\mu}),$$

 $\partial\Omega = \{\varphi = 0\}$ $\Omega = \{\varphi < 0\}$ $\varphi > 0$

with φ a level-set function, \textit{w}_{θ} a NN and g=0 the Dirichlet BC.

Thus, the Dirichlet BC is imposed exactly in the PINN : $u_{\theta} = g$ on $\partial \Omega$.

¹[Lagaris et al., 1998; Franck et al., 2024]

Finite Element Method¹

Variational Problem:

Find
$$u_h \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(u_h, v_h) = I(v_h)$, (\mathcal{P}_h)

with h the characteristic mesh size, a and l the bilinear and linear forms given by

$$a(u_h,v_h) = \frac{1}{\text{Pe}} \int_{\Omega} D \nabla u_h \cdot \nabla v_h + \int_{\Omega} \textit{R} \, u_h \, v_h + \int_{\Omega} v_h \, \textit{C} \cdot \nabla u_h, \quad \textit{I}(v_h) = \int_{\Omega} \textit{f} \, v_h,$$

and V_h^0 the finite element space defined by

$$\textit{V}_{\textit{h}}^{0} = \left\{\textit{v}_{\textit{h}} \in \textit{C}^{0}(\Omega), \; \forall \textit{K} \in \mathcal{T}_{\textit{h}}, \; \textit{v}_{\textit{h}}|_{\textit{K}} \in \mathbb{P}_{\textit{k}}, \textit{v}_{\textit{h}}|_{\partial\Omega} = 0\right\},$$

where \mathbb{P}_k is the space of polynomials of degree at most k.

Linear system : Let $(\phi_1, \ldots, \phi_{N_b})$ a basis of V_b^0 .

Find
$$U \in \mathbb{R}^{N_h}$$
 such that $AU = b$

with

$$A = (a(\phi_i, \phi_j))_{1 \le i, j \le N_h}$$
 and $b = (I(\phi_j))_{1 \le j \le N_h}$.

$$\mathcal{T}_h = \{K_1, \dots, K_{N_e}\}$$
(N_e: number of elements)

¹[Ern and Guermond, 2004]

How improve PINN prediction with FEM?

Additive approach

Variational Problem : Let $u_{\theta} \in H^{k+1}(\Omega) \cap H_0^1(\Omega)$.

Find
$$p_h^+ \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(p_h^+, v_h) = I(v_h) - a(u_\theta, v_h)$, (\mathcal{P}_h^+)

00000 0000 00000

with the enriched trial space V_h^+ defined by

$$V_h^+ = \left\{ u_h^+ = u_\theta + \rho_h^+, \quad \rho_h^+ \in V_h^0
ight\}.$$

General Dirichlet BC: If u = g on $\partial \Omega$, then

$$p_h^+ = g - u_\theta \quad \text{on } \partial\Omega,$$

with u_{θ} the PINN prior.

Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote $u_h \in V_h$ the solution of (\mathcal{P}_h) with V_h the standard trial space. Then,

$$|u-u_h|_{H^1}\leqslant C_{H^1}\,h^k|u|_{H^{k+1}},$$

$$||u-u_h||_{L^2} \leqslant C_{L^2} h^{k+1} |u|_{H^{k+1}}.$$

Theorem 2: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote $u_h^+ \in V_h^+$ the solution of (\mathcal{P}_h^+) with V_h^+ the enriched trial space. Then,

$$|u-u_h^+|_{H^1} \leqslant \left| \frac{|u-u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} \right| \left(C_{H^1} h^k |u|_{H^{k+1}} \right),$$

$$||u - u_h^+||_{L^2} \leqslant \left| \frac{|u - u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} \right| \left(C_{L^2} h^{k+1} |u|_{H^{k+1}} \right).$$

- 2D Poisson problem on Square Dirichlet BC
- 2D Anisotropic Elliptic problem on a Square Dirichlet BC
- 2D Poisson problem on Annulus Mixed BC

2D Poisson problem on Square - Dirichlet BC

2D Anisotropic Elliptic problem on a Square - Dirichlet BC

2D Poisson problem on Annulus - Mixed BC

Problem considered

Problem statement: Consider the Poisson problem with Dirichlet BC:

$$\begin{cases} -\Delta u = f, & \text{in } \Omega \times \mathcal{M}, \\ u = 0, & \text{on } \partial \Omega \times \mathcal{M}, \end{cases}$$

with $\Omega = [-0.5\pi, 0.5\pi]^2$ and $\mathcal{M} = [-0.5, 0.5]^2$ (p = 2 parameters).

Analytical solution:

$$u(\mathbf{x}, \boldsymbol{\mu}) = \exp\left(-\frac{(\mathbf{x} - \mu_1)^2 + (\mathbf{y} - \mu_2)^2}{2}\right)\sin(2\mathbf{x})\sin(2\mathbf{y}).$$

PINN training: MLP of 5 layers; LBFGs optimizer (5000 epochs). Imposing the Dirichlet BC exactly in the PINN with the levelset φ defined by

$$\varphi(\mathbf{x}) = (x + 0.5\pi)(x - 0.5\pi)(y + 0.5\pi)(y - 0.5\pi).$$

Training time: less than 1 hour on a laptop GPU.

Error estimates : 1 set of parameters.

$$\boldsymbol{\mu}^{(1)} = (0.05, 0.22)$$

Error estimates: 1 set of parameters.

$$\boldsymbol{\mu}^{(1)} = (0.05, 0.22)$$

Gains achieved : $n_p = 50$ sets of parameters.

$$\mathcal{S} = \left\{oldsymbol{\mu}^{(1)}, \dots, oldsymbol{\mu}^{(n_p)}
ight\}$$

Gains in L^2 rel error of our method w.r.t. FEM

k	min	max	mean
1	134.32	377.36	269.39
2	67.02	164.65	134.85
3	39.52	72.65	61.55

$$N = 20$$

Gain:
$$||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$$

Cartesian mesh: N^2 nodes.

Error estimates: 1 set of parameters.

$$\mu^{(1)} = (0.05, 0.22)$$

$$10^{-6}$$

$$10^{-12}$$

$$1.74e-2 \quad 3.50e-2 \quad 7.05e-2 \quad 1.43e-1 \quad 2.96e-1$$

$N_{ m dofs}$ required to reach the same error e :

		N_{dofs}	
k	е	FEM	Add
1	$ \begin{array}{r} \hline 1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \end{array} $	14,161 143,641	64 576
2	$ \begin{array}{r} \hline 1 \cdot 10^{-4} \\ 1 \cdot 10^{-5} \end{array} $	6,889 31,329	225 1,089
3	$ \begin{array}{r} \hline 1 \cdot 10^{-5} \\ 1 \cdot 10^{-6} \end{array} $	6,724 20,164	784 2,704

2D Poisson problem on Square - Dirichlet BC

2D Anisotropic Elliptic problem on a Square - Dirichlet BC

2D Poisson problem on Annulus - Mixed BC

Problem considered

Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:

$$\begin{cases} -\mathrm{div}(\mathbf{D}\nabla u) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$

with $\Omega = [0,1]^2$ and $\mathcal{M} = [0.4,0.6] \times [0.4,0.6] \times [0.01,1] \times [0.1,0.8]$ ($\emph{p}=4$).

Right-hand side:

$$f(\mathbf{x}, \boldsymbol{\mu}) = \exp\left(-\frac{(\mathbf{x} - \mu_1)^2 + (\mathbf{y} - \mu_2)^2}{0.025\sigma^2}\right).$$

Diffusion matrix: (symmetric and positive definite)

$$D(\mathbf{x}, \boldsymbol{\mu}) = \begin{pmatrix} \epsilon x^2 + y^2 & (\epsilon - 1)xy \\ (\epsilon - 1)xy & x^2 + \epsilon y^2 \end{pmatrix}.$$

PINN training: MLP with Fourier Features¹ of 5 layers; Adam optimizer (15000 epochs). Imposing the Dirichlet BC exactly in the PINN with a level-set function.

¹[Tancik et al., 2020]

Error estimates : 1 set of parameters.

$$\boldsymbol{\mu}^{(1)} = (0.51, 0.54, 0.52, 0.55)$$

Error estimates : 1 set of parameters.

$$\boldsymbol{\mu}^{(1)} = (0.51, 0.54, 0.52, 0.55)$$

Gains achieved : $n_p = 50$ sets of parameters.

$$\mathcal{S} = \left\{oldsymbol{\mu}^{(1)}, \dots, oldsymbol{\mu}^{(n_{oldsymbol{
ho}})}
ight\}$$

Gains in L^2 rel error of our method w.r.t. FEM

k	min	max	mean
1	7.12	82.57	35.67
2	3.54	35.88	18.32
3	1.33	26.51	8.32

$$N = 20$$

Gain:
$$||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$$

Cartesian mesh: N^2 nodes.

2D Poisson problem on Square - Dirichlet BC
2D Anisotropic Elliptic problem on a Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC

Problem considered

Problem statement: Considering the Poisson problem with mixed BC:

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega \times \mathcal{M}, \\
u = g, & \text{on } \Gamma_E \times \mathcal{M}, \\
\frac{\partial u}{\partial n} + u = g_R, & \text{on } \Gamma_I \times \mathcal{M},
\end{cases}$$

with
$$\Omega=\{(\textbf{x},\textbf{y})\in\mathbb{R}^2,\ 0.25\leq \textbf{x}^2+\textbf{y}^2\leq 1\}$$
 and $\mathcal{M}=[2.4,2.6]$ ($\textbf{p}=1$).

Analytical solution :

$$u(\mathbf{x}; \boldsymbol{\mu}) = 1 - \frac{\ln\left(\mu_1 \sqrt{x^2 + y^2}\right)}{\ln(4)},$$

Boundary conditions:

$$g(\mathbf{x};\boldsymbol{\mu}) = 1 - \frac{\ln(\mu_1)}{\ln(4)} \quad \text{and} \quad g_{\mathrm{R}}(\mathbf{x};\boldsymbol{\mu}) = 2 + \frac{4 - \ln(\mu_1)}{\ln(4)}.$$

PINN training: MLP of 5 layers; LBFGs optimizer (4000 epochs). Imposing the mixed BC exactly in the PINN¹.

¹[Sukumar and Srivastava, 2022]

Error estimates: 1 set of parameters.

$$\mu^{(1)} = \mu_1 = 2.51$$

Error estimates: 1 set of parameters.

$$\mu^{(1)} = \mu_1 = 2.51$$

Gains achieved : $n_p = 50$ sets of parameters.

$$\mathcal{S} = \left\{oldsymbol{\mu}^{(1)}, \dots, oldsymbol{\mu}^{(n_p)}
ight\}$$

Gains in L^2 rel error of our method w.r.t. FEM

k	min	max	mean
1	15.12	137.72	55.5
2	31	77.46	58.41
3	18.72	21.49	20.6

$$h = 1.33 \cdot 10^{-1}$$

Gain:
$$||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$$

Conclusion

Conclusion and Perspectives

- PINNs are good candidates for the enriched approach. Appendix 1

- Numerical validation of the theoretical results.
- The enriched approach provides the same results as the standard FEM method, but with coarser meshes. \Rightarrow Reduction of the computational cost.

Perspectives:

- Consider non-linear problems. Appendix 3
- Use PINN prediction to build an optimal mesh, via a posteriori error estimates.
- Validate the additive approach on more complex geometry.

References

- A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer New York, 2004. doi: 10.1007/978-1-4757-4355-5.
- E. Franck, V. Michel-Dansac, and L. Navoret. Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks. J. Comput. Phys., 512:113144, 2024. ISSN 0021-9991. doi: 10.1016/j.jcp.2024.113144.
- I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. *IEEE Trans. Neural Netw.*, 9(5):987-1000, 1998. ISSN 1045-9227. doi: 10.1109/72.712178.
- F. Lecourtier, H. Barucq, M. Duprez, F. Faucher, E. Franck, V. Lleras, V. Michel-Dansac, and N. Victorion. Enriching continuous lagrange finite element approximation spaces using neural networks. 2025.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *J. Comput. Phys.*, 378:686–707, 2019. doi: 10.1016/j.jcp.2018.10.045.
- N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput. Method. Appl. M., 389:114333, 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2021.114333.
- M. Tancik, P. Srinivasan, and al. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. In Advances in Neural Information Processing Systems, volume 33, pages 7537–7547. Curran Associates, Inc., 2020.

Appendix

Appendix 1: Data vs PINNs

TODO

Appendix 2: Multiplicative approach

TODO

Appendix 3: Non-linear problems

TODO