

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

NiMoNa 2016 08. Juni, 2016

Überblick

Motivation und Ziel

Die Modelle Lineares Modell Bilineraes Modell Hämodynamisches Modell

Numerische Methoden Euler-Verfahren Runge-Kutta-Verfahren (4. Ordnung)

Numerische Simulation 2-Regionen-System

Literatur

```
from programs import RK4 as RK4
         from programs import Euler as RK1
         from programs import hemodynamicModel as HM
         from programs import bilinearModel as BM
          Parameter Beispiel 1
       T = 100.
       to = 0.
       dt = 0.1
                                     # Endzeit
       t = np.arange(t0,T+dt,dt)
                                     # Anfangszeit
                                    # Zeitschrittlaenge
      A = np.array([[-1.,0.,0.],
                                    # Zeitarray
                    [0.3,-1,0.2],
                    [0.6,0.,-1.]]) # Kopplung
     B1 = np.zeros((3,3))
    B2 = np.array([[0 , 0, 0 ], [0 , 0, 0.8]]
                                   # Induzierte Kopplung
                    [0.1, 0, 0 ]])
         np.array([B1, B2])
                                 # Zusammenfassen der ind. Kopplung in ein Ar
                                # äußerer Einfluss auf Hirnaktivität
                   (8), len(t)))
                               # Stimulus u1
  u[1,451:550] = 2.
 u[1,251:350] = 5.
 u[1, 691:910] = 2.
                               # Stimulus u2
                               # Stimulus u2
 # Anfangsbedingunden
                               # Stimulus u2
 x_0 = np.ones(15)
x = 0[0:6] = 0.
# Zusammenfassen der Parameter für das "hemodynamicModel"
```


Einleitung in DCM - <u>Dynamic Causal Model</u>

Interaktion zwischen verschiedenen Hirnregionen

Konnektivität im Gehirn

Über die Mathematische Modellierung von Interaktionen zwischen mehreren Regionen des Gehirns.

Ziel

Das Aufstellen eines einfachen und realistischen neuronalen Modells aller interagierenden Gehirnregionen.

Lineares Modell

u Inputs $\rightarrow z$ Outputs pro Hirnregion

Inputs

- direkten Input: Veränderung des neuronalen Zustands
- ▶ latenten Input: Veränderung der Vernetzung

Outputs

- ▶ neuronale Aktivität in der Hirnregion
- ▶ ...

 $\dot{z} = A + Cu$

Vernetzung von Hirnregionen

Matrix A: Konnektivitätsmatrix - Verschaltung der Hirnregionen Matrix C: Einfluss der Inputs auf die neuronale Aktivität einer Hirnregion

Modell

- ▶ n verschiedene Gehirnregionen mit der Zustandsvariablen z_i mit i = 1, ..., n
- Aktivität durch vorgegebene Eingangssignale bestimmt

Input u_1 , u_2

- direkten Input u₁: Veränderung des neuronalen Zustands
- ► latenten Input *u*₂: Veränderung der Vernetzung

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- Dynamik und Konnektivität durch drei Parameter beschrieben

Aktivität der Regionen

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z}_2 = a_{21}z_1 + a_{22}z_2 + a_{23}z_3 + u_2b_{23}^{(2)}$$

$$\dot{z}_3 = a_{31}z_1 + a_{32}z_2 + a_{33}z_3$$

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- Dynamik und Konnektivität durch drei Parameter beschrieben

Aktivität der Regionen

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z}_2 = a_{21}z_1 + a_{22}z_2 + a_{23}z_3 + u_2b_{23}^{(2)}$$

$$\dot{z}_3 = a_{31}z_1 + a_{32}z_2 + a_{33}z_3$$

$$\dot{z} = (A + \sum_{i} u_{i}B^{(i)})z + Cu$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Parameter A, B, C

- ► A: feste Verknüpfung der Hirnregionen
- ightharpoonup B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

Aktivität der Regionen

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z}_2 = a_{21}z_1 + a_{22}z_2 + a_{23}z_3 + u_2b_{23}^{(2)}$$

$$\dot{z}_3 = a_{31}z_1 + a_{32}z_2 + a_{33}z_3$$

$$\dot{z} = (A + \sum_{i} u_{i} B^{(i)}) z + Cu$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Vergleichbarkeit

Bilineare Modell \Rightarrow Gehirnaktivitäten $z_i(t)$

Vergleichbarkeit

Bilineare Modell \Rightarrow Gehirnaktivitäten $z_i(t)$

Experiment (funktionelle MRT) \Rightarrow BOLD-Signal/Kontrast $y_i(t)$ \approx Sauerstoffgehalt der roten Blutkörperchen

Hämodynamisches Modell

4 biophysikalische Zustandsvariablen übermitteln $z_i(t) \rightarrow y_i(t)$:

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

 $q_i(t)$: Desoxyhämoglobinkonzentration

Biophysikalisch:

$$\begin{split} \dot{s}_{i} &= z_{i} - \kappa s_{i} - \gamma (f_{i}^{in} - 1) \\ \dot{f}_{i}^{in} &= s_{i} \\ \dot{v}_{i} &= \frac{1}{\tau} (f_{i}^{in} - f_{i}^{out}) = \frac{1}{\tau} (f_{i}^{in} - v_{i}^{1/\alpha}) \\ \dot{q}_{i} &= \frac{1}{\tau} (f_{i}^{in} E_{i} / \rho - v_{i}^{1/\alpha} q_{i} / v_{i}) \end{split}$$

BOLD-Signal (fMRT):

$$y_i = V_0(k_1(1-q_i) + k_2(1-q_i/v_i) + k_3(1-v_i))$$

Euler-Verfahren

explizites Verfahren

Runge-Kutta-Verfahren (4. Ordnung)

Analyse der effektiven Konnektivität

Simulation eines 2-Regionen-Systems

$$\dot{z}(t) = A \cdot z(t) + \sum_{i} u_{i} B^{j} \cdot z(t) + C \cdot u(t)$$

$$A = \begin{pmatrix} -1 & 0 \\ 0.5 & -1 \end{pmatrix}$$
 $B_1 = 0$ $B_2 = \begin{pmatrix} 0 & 0 \\ 0.8 & 0 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Zusammenfassung und Ausblick

► Ziel:

Modellierung von Interaktionen in einem neuronalen Netzwerk

► Ansatz:

Taylorentwicklung bis zur 2ten Ordnung für die neuronale Aktivität

Vergleichbarkeit mit Experiment:
 Hämodynamisches Modell Variation
 des Blutvolumens und des
 desoxygenierten Hämoglobins

Hämodynamische Antworten einer Gruppe von fünf Probanden.

(nach Aguirre et al., Neurolmage 8, 1998)

Danke für die Aufmerksamkeit!

Literatur

► Dynamic causal modelling

K.J. Friston et al. / NeuroImage 0 (2003)

 $\verb|web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf|\\$