Calculus A(2) Spring 2021 Final Exam

Name and Student ID:		

- 1. (40 points) For each of the following questions choose **one answer** from A to D.
 - (a) Let $f(x,y) = \sin(xy)/(x^2+y^2)$ be a function defined on the plane \mathbb{R}^2 except the origin. Which of the following statements is true about $\lim_{(x,y)\to(0,0)} f(x,y)$?
 - A. The limit is 0 because f(0, y) = 0 for all $y \neq 0$.
 - B. The limit does not exist because f is not defined at (0,0).
 - C. The limit does not exist because f approaches different values as (x, y) approaches
 - (0,0) from different directions.
 - D. None of the above is true.
 - (b) Which of the following statements is true about the region in the plane \mathbb{R}^2 defined as the union of the set $\{(x,y) \mid x^2 + y^2 < 2\}$ and the set $\{(x,y) \mid (x-2)^2 + y^2 \le 1\}$?
 - A. The region is open but not closed.
 - B. The region is closed but not open.
 - C. The region is open and closed.
 - D. The region is neither open nor closed.
 - (c) Which of the following statements is true about the function $f(x,y) = \cos(xy)$?
 - A. $f_{xy}(1,\pi) = 0$.
 - B. $f_{xy}(1,\pi) = \pi$.
 - C. $f_{xy}(1,\pi) = -\pi$.
 - D. $f_{xy}(1,\pi)$ is undefined.
 - (d) What is the union of all contour curves of the function $f(x,y)=\sqrt{1-x^2-y^2}$ defined in the region where $x^2+y^2\leq 1$?
 - A. A disk
 - B. A sphere
 - C. A hemisphere
 - D. None of the above
 - (e) What is the spherical coordinates (ρ, ϕ, θ) of the point with Cartesian coordinates $(x, y, z) = (-1, -1, -\sqrt{2})$?
 - A. $(2, \pi/4, \pi/4)$
 - B. $(2, 3\pi/4, \pi/4)$
 - C. $(2, \pi/4, 5\pi/4)$
 - D. None of the above

- (f) Coordinates (u, v, w) are related to the Cartesian coordinates (x, y, z) by $x = u \cos(v)$, $y = u \sin(v)$, z = w. What is the Jacobian $\partial(x, y, z)/\partial(u, v, w)$?
 - A. u
 - B. v
 - C. w
 - D. None of the above
- (g) A two-dimensional object has the shape of a disk of radius 1. Its density function δ is unknown, but we know that the double integral of δ over the object is π . What is the mass of the object?
 - A. 1
 - B. π
 - C. π^2
 - D. None of the above
- (h) Which of the following statements is not true about the standard linear approximation of a function f(x, y) at (a, b)?
 - A. It is equivalent to considering Taylor's formula for f(x,y) about (a,b) to first order.
 - B. It is equivalent to considering the tangent plane to the graph z = f(x, y) through the point (a, b, f(a, b)).
 - C. For some choices of f, this approximation gives an exact (that is, not approximate) answer.
 - D. All of the above are true.
- (i) What is the double integral of $x^2 \sin(x+y)$ over the region defined by $-1 \le x \le 1$, $-1 \le y \le 1$?
 - A. 0
 - B. 1
 - C. -1
 - D. None of the above
- (j) A conservative vector field \mathbf{F} in space has a potential function $f(x,y,z) = x^2 y^2 xz + z^2$. What is the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the helix C given by $\mathbf{r}(t) = \cos(2\pi t)\mathbf{i} + \sin(2\pi t)\mathbf{j} + t\mathbf{k}$, where the parameter t varies from 0 to 1?
 - A. 0
 - B. $\pi/2$
 - C. $\sqrt{3}\pi$
 - D. None of the above

- 2. (18 points) Consider the function $f(x, y, z) = \sin(\pi x y z)$ and the path C: $\mathbf{r}(t) = t\mathbf{i} + 2t\mathbf{j} + \mathbf{k}$, $-\infty \le t \le \infty$, both defined in space \mathbb{R}^3 .
 - (a) Express the value of f along C as a function of t, and calculate its derivative at t = 1.
 - (b) Find the direction in which the value of f increases most rapidly at (x, y, z) = (1, 2, 1).
 - (c) Calculate the derivative of f in the direction of the path C at (x, y, z) = (1, 2, 1).

- 3. (12 points) Consider the function $f(x,y) = e^x(x^2 2x y^2)$ defined on the plane \mathbb{R}^2 .
 - (a) Find all critical points of f.
 - (b) At each of the critical points found above, determine whether f has a local maximum, local minimum or saddle point.

- 4. (16 points) Let D be the region in space \mathbb{R}^3 such that $\sqrt{3(x^2+y^2)} \le z \le \sqrt{1-x^2-y^2}$.
 - (a) Sketch the region D. Make sure to include the x-, y- and z-axes.
 - (b) What values can each of the spherical coordinates ρ , ϕ , θ take in D? Write down the inequalities the coordinates must satisfy.
 - (c) Find the volume of D.

- 5. (14 points) Let $\mathbf{F}(x, y, z) = x^2 \sin(y)\mathbf{i} + 2x \cos(y)\mathbf{j} + 2\mathbf{k}$ be a vector field in space \mathbb{R}^3 .
 - (a) Calculate the divergence $\nabla \cdot \mathbf{F}$.
 - (b) If S_1 and S_2 are two oriented surfaces that share the same oriented boundary C, then $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}\sigma = \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}\sigma.$ Explain why.
 - (c) Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$, where S is the part of the unit sphere defined in the spherical coordinates by $\rho = 1, \ 0 \le \phi \le \pi/3$, and \mathbf{n} is the outward normal vector field.