BACHELOR OF COMPUTER Sc. & ENGG. EXAMINATION, 2011 (2nd Year, 1st Semester)

DIGITAL CIRCUITS

Time: Three hours Full Marks: 100

Answer any five questions

- a) With the help of a circuit diagram explain the operations of a DTL gate.
 - Draw the transfer characteristics of the same at 25°C.4
 - Estimate the steady state power dissipation at no load,
 assuming power supply voltage of 5V.
- 2. a) Explain the operations of a standard TTL gate. 8
 - b) What are the modifications required for wired–OR Connection? 4
 - c) An wired -OR circuit has fan-in and fan-out of 3 and 4 respectively. Estimate the value of the pull-up resistor with the following parameters: $V_{OHmin} = 2.4V$; $V_{OLmax} = 0.4$; $I_{IH} = 40$ **m** A; $I_{OHmax} = 250$ **m**A; $I_{ILmax} = 1.6$ mA and $I_{OLmax} = 16$ mA.

[Turn Over]

		(2)
3.	a)	sExplain the operations of an nMOS inverter. 8
	b)	Estimate the voltage rise time of an nMOS inverter interms of its circuit Parameters.
	c)	Calculate t_r when $C_L = 6pf$; $K_L = 16 \text{m/A}/ \text{V}^2$ and $V_f = 12 \text{V}$.
4.	a)	Explain the operations of a clock generator using an 555 IC timer.
	b)	Deduce the Expressions for the frequency and duty cycle. 6+2
	c)	Design a clock working at 1KHz with 30% duty cycle using a.01 <i>m</i> f capacitor. 4
5.	a)	With the help of a circuit diagram explain the operations of a static MOS memory cell. 12
	b)	How can the stored information be retained even when the power supply is switched off?
6.	a)	Explain the operation of a R-2R Ladder type DAC. 12
	b)	What are the basic differences in the working principles of weighted resistor type DAC's with that of R-2R Ladder type DAC's? 4
	c)	What are their relative merits and demerits? 4
7.	a)	Explain the operation of a Successive Aproximation type ADC.

	b)	What are its relative merits and demerits?	2
	c)	Explain the functions of the interfacing signals associate with same.	;c
8.		Write notes on any <i>four</i> of the following: 5x	(4
	a)	Current hogging in DCTL;	
	b)	RTL NOR gates;	
	c)	ECL;	
	d)	Realise $X = \overline{A.B. + (C+D).E}$ using a single nMOS gate	е
	e)	EAPROM's;	
	f)	Frequency Multiplications;	
	g)	Sample & Hold circuits;	
	h)	Analog Multiplexers.	