SC223 - Linear Algebra

Aditya Tatu

Lecture 40

November 22, 2023

Summary of Lecture 39

- **Proposition 26:** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let V be a FD IPS and let U be a subset of V. The **Orthogonal Complement** of U is defined as

$$U^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in U \}$$

- Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$. Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$. P_U is said to be the *Orthogonal Projection Operator on U*.
- Properties: (1) Range(P_U) = U, (2) Null(P_U) = U^{\perp} , (3) Idempotent: $(P_U)^2 = P_U$, (4) (Conjugate) Symmetric: If $V = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$), (5) $\forall v \in V$, $P_U(v) = \arg\min_{u \in U} ||u v||^2$.

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.

$$2e^{-1} = (A^{7}A)^{-1}A^{7}b$$

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$. • Let a_{*i} , i = 1, ..., n denote the n column vectors. Then

$$\langle b - P_{C(A)}(b), a_{*i} \rangle = 0, \forall i = 1, ..., n.$$

$$\downarrow b - P_{C(A)}(b) = 0, \forall i = 1, ..., n.$$

$$a_{xi}(b-c_{xx}(b)) = 0, i=1,--,n$$

$$a_{xi}(b-A_{xx}^{*}) = 0, i=1,--,n$$

$$[-a_{xi}-][-a_{xi}] = 0, i=1,--,n$$

$$\begin{bmatrix} -a_{1} - \\ -a_{2} - \end{bmatrix} \begin{bmatrix} b - A x^{*} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow A^{T}(b - A x^{*}) = 0$$

$$\begin{bmatrix} -a_{1} - \\ -a_{2} - \\ 0 \end{bmatrix} = 0$$
Normal Equation

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.
- Let a_{*i} , $i=1,\ldots,n$ denote the n column vectors. Then $\langle b-P_{C(A)}(b),a_{*i}\rangle=0, \forall i=1,\ldots,n.$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.
- Let a_{*i} , $i=1,\ldots,n$ denote the n column vectors. Then $\langle b-P_{C(A)}(b),a_{*i}\rangle=0, \forall i=1,\ldots,n.$

•

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

Using Euclidean inner product

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$.
- Let $a_{*i}, i = 1, \ldots, n$ denote the n column vectors. Then $\langle b P_{C(A)}(b), a_{*i} \rangle = 0, \forall i = 1, \ldots, n$.

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

Using Euclidean inner product
 $(a_{*i})^T Ax^* = (a_{*i})^T b, \forall i = 1, \dots, n$

- Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank(A) = n.
- Solve for $x \in \mathbb{R}^n$ in Ax = b such that $b \notin C(A)$.
- Solution: $x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax b||^2$
- $Ax^* = P_{C(A)}(b)$, i.e., $\langle b P_{C(A)}(b), Ax \rangle = 0, \forall x \in \mathbb{R}^n$
- Let a_{*i} , $i=1,\ldots,n$ denote the n column vectors. Then $\langle b-P_{C(A)}(b),a_{*i}\rangle=0, \forall i=1,\ldots,n.$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$
Using Euclidean inner product
$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle b, a_{*i} \rangle$$

$$\langle Ax^*, a_{*i} \rangle = \langle a_{*i} \rangle$$

 A^{\dagger} where A^{\dagger} is known as the *Pseudo-inverse* of the matrix A.

yo=mt+c

● Theorem: (Spectral Theorem for Hermitian Matrices) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, i.e., $A = A^*$.

Theorem: (Spectral Theorem for Hermitian Matrices) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, i.e., $A = A^*$. Then (a) all it eigenvalues are real, (b) there exists an orthonormal basis of \mathbb{C}^n containing eigenvectors of A. ACC^{N×n} Let λ EC be an eigenvalue of A. let vo be the associated everlar (x,y) = y x $\langle Au, u \rangle = \langle \lambda u, u \rangle = \frac{\lambda ||u||^2}{2}$ = $9*A0 = 9*A*0 = \langle 0, A0 \rangle = \langle 0, \lambda 0 \rangle = \overline{\lambda} \langle 0, 0 \rangle$

 $= \frac{(40)^{2}}{2}$ $= \frac{(40)^{2$

● **Theorem:** (Spectral Theorem for Hermitian Matrices) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, i.e., $A = A^*$. Then (a) all it eigenvalues are real, (b) there exists an orthonormal basis of \mathbb{C}^n containing eigenvectors of A. **Special Case:** (Spectral Theorem for Real Symmetric Matrices) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, i.e., $A = A^T$. Then (a) all it eigenvalues are real, (b) there exists an orthonormal basis of \mathbb{R}^n containing eigenvectors of A.

- **Theorem:** (Spectral Theorem for Hermitian Matrices) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix, i.e., $A = A^*$. Then (a) all it eigenvalues are real, (b) there exists an orthonormal basis of \mathbb{C}^n containing eigenvectors of A.
- **◆ Special Case:** (Spectral Theorem for Real Symmetric Matrices) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, i.e., $A = A^T$. Then (a) all it eigenvalues are real, (b) there exists an orthonormal basis of \mathbb{R}^n containing eigenvectors of A.
- General Case: (Spectral Theorem for Self-Adjoint Operators) Let $T \in \mathcal{L}(V)$, where V is n-dimensional IP space. If
- $\forall x, y \in V, \langle Tx, y \rangle = \langle x, Ty \rangle$ then, (a) all eigenvalues of T are real, (b) there exists an orthonormal T-eigenbasis of V.

• Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^T A v_i = \lambda_i v_i, i = 1, \dots, n$$

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

• Are $\{Av_1, \ldots, Av_n\}$ eigenvectors of AA^T ?

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

• Are $\{Av_1, \ldots, Av_n\}$ eigenvectors of AA^T ?NO!

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

- Are $\{Av_1, \ldots, Av_n\}$ eigenvectors of AA^T ?NO!
- Let rank(A) = r, and assume $\{Av_1, \ldots, Av_r\}$ be the eigenvectors of AA^T .

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

- Are $\{Av_1, \ldots, Av_n\}$ eigenvectors of AA^T ?NO!
- Let rank(A) = r, and assume $\{Av_1, \ldots, Av_r\}$ be the eigenvectors of AA^T .
- $\bullet ||Av_i|| = ?.$

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

- Are $\{Av_1, \ldots, Av_n\}$ eigenvectors of AA^T ?NO!
- Let rank(A) = r, and assume $\{Av_1, \ldots, Av_r\}$ be the eigenvectors of AA^T .
- $||Av_i|| = ?$.
- Define $u_1 := \frac{Av_1}{\sqrt{\lambda_1}}, \dots, u_r = \frac{Av_r}{\sqrt{\lambda_r}}$.

- Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, can you diagonalize A?
- What about $A^T A \in \mathbb{R}^{n \times n}$, $AA^T \in \mathbb{R}^{m \times m}$, and similarly $A^* A \in \mathbb{C}^{n \times n}$, $AA^* \in \mathbb{C}^{m \times m}$?
- Let $\{v_1, \ldots, v_n\}$ be the ONB of \mathbb{R}^n (or \mathbb{C}^n) containing eigenvectors of A^TA (or A^*A), with real eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A^{T}Av_{i} = \lambda_{i}v_{i}, i = 1, \dots, n$$
$$(AA^{T})Av_{i} = \lambda_{i}(Av_{i}), i = 1, \dots, n$$

- Are $\{Av_1, \ldots, Av_n\}$ eigenvectors of AA^T ?NO!
- Let rank(A) = r, and assume $\{Av_1, \ldots, Av_r\}$ be the eigenvectors of AA^T .
- $\bullet ||Av_i|| = ?.$
- Define $u_1 := \frac{Av_1}{\sqrt{\lambda_1}}, \dots, u_r = \frac{Av_r}{\sqrt{\lambda_r}}$. One can extend this set to a ONB $\{u_1, \dots, u_r, \dots, u_m\}$ of \mathbb{R}^m (or \mathbb{C}^m).

• Let $\sigma_1 = \sqrt{\lambda_1}, \dots, \sigma_r = \sqrt{\lambda_r}$. These are called the *singular values of* A.

- Let $\sigma_1 = \sqrt{\lambda_1}, \dots, \sigma_r = \sqrt{\lambda_r}$. These are called the *singular values of*
- Let

$$V_{n\times n} = \begin{bmatrix} & | & & | & & \\ & v_1 & \dots & v_n & \\ & & | & & | & \end{bmatrix}, U_{m\times m} = \begin{bmatrix} & | & & | & & | & & | & \\ u_1 = \frac{Av_1}{\sigma_1} & \dots & u_r = \frac{Av_r}{\sigma_r} & \dots & u_m & \\ & & & | & & | & & | & & | \end{bmatrix}$$

- Let $\sigma_1 = \sqrt{\lambda_1}, \dots, \sigma_r = \sqrt{\lambda_r}$. These are called the *singular values of* Δ
- Let

$$V_{n\times n} = \begin{bmatrix} & | & & | & & \\ & v_1 & \dots & v_n & \\ & & | & & | & \end{bmatrix}, U_{m\times m} = \begin{bmatrix} & | & & | & & | & & | & & | \\ u_1 = \frac{Av_1}{\sigma_1} & \dots & u_r = \frac{Av_r}{\sigma_r} & \dots & u_m & \\ & & & & | & & | & & | & & | \end{bmatrix}$$

• The vectors $\{v_1, \ldots, v_n\}$ and $\{u_1, \ldots, u_m\}$ are called the *right* and *left singular vectors*.

AV =

$$AV =$$

$$A\begin{bmatrix} & | & | & | \\ v_1 & \dots & v_n \\ | & | & | \end{bmatrix}$$

$$AV = A \begin{bmatrix} & & & & & \\ & v_1 & \dots & v_n \\ & & & & \end{bmatrix}$$
$$= \begin{bmatrix} & & & & \\ & Av_1 & \dots & Av_n \\ & & & & \end{bmatrix} =$$

$$AV = A \begin{bmatrix} & & & & & \\ & v_1 & \dots & v_n \\ & & & & \end{bmatrix}$$

$$= \begin{bmatrix} & & & & \\ & Av_1 & \dots & Av_n \\ & & & & \end{bmatrix} = \begin{bmatrix} & & & & \\ & \sigma_1 u_1 & \dots & \sigma_r u_r & 0 u_{r+1} & 0 u_m \\ & & & & & & \end{bmatrix}$$

$$AV = A \begin{bmatrix} 1 & 1 & 1 & 1 \\ v_1 & \dots & v_n \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} Av_1 & \dots & Av_n \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \sigma_1 u_1 & \dots & \sigma_r u_r & 0 u_{r+1} & 0 u_m \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ u_1 & \dots & u_r & \dots & u_m \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 1 & 1 & 1 & 1 \\ \dots & \sigma_r & 0 & \dots \\ 0 & \dots & \dots & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$AV = U\Sigma$$