BSTA 478: SAS EM - TUTORIAL WEEK 2

Dziuba Dariia, Winter 2020

Contents

WHERE TO START	
1) OPEN A NEW PROJECT:	
2) CREATE A NEW LIBRARY:	
3) CREATE A DATA SOURCE:	
4) CREATE A DIAGRAM:	
HOW TO EXPLORE DATA	11
A) First way:	11
B) Second way:	11
PARTIONING THE DATA: CREATING A TRAIN AND VALIDATION DATASET	13
LOGISTIC REGRESSION	15
ASSESS A MODEL	18

WHERE TO START

1) OPEN A NEW PROJECT:

OPEN A NEW PROJECT \rightarrow PROJECT NAME (TYPE IN THE NAME) \rightarrow SAS SERVER DIRECTORY \rightarrow BROWSE \rightarrow FIND THE LOCATION TO SAVE YOUR PROJECT \rightarrow OPEN \rightarrow NEXT \rightarrow FINISH

2) CREATE A NEW LIBRARY:

LIBRARY \rightarrow CREATE NEW LIBRARY \rightarrow NEXT \rightarrow NAME (TYPE IN THE LIBRARY NAME) \rightarrow PATH: BROWSE (CHOOSE A LOCATION FOR YOUR NEW LIBRARY) \rightarrow OPEN \rightarrow NEXT \rightarrow FINISH

3) CREATE A DATA SOURCE:

right-click on DATA SOURCES → left-click on CREATE DATA SOURCE → SAS TABLE (LEAVE AT DEFAULT) → NEXT → TABLE: BROWSE → CHOOSE THE LIBRARY(DOUBLE CLICK) → CHOOSE THE FILE → OK → NEXT → STEP 3: LEAVE AT DEFAULT → NEXT → METADATA ADVISOR OPTIONS: BASIC (LEAVE AT DEFAULT) → NEXT → STEP 5: ASSIGN VARIABLE ROLES (!!!SET THE BINARY VARIABLE YOU ARE TRYING TO PREDICT TO TARGET AND ITS LEVEL TO BINARY) → CONTINUE CHANGING THE VARIABLE ROLES AND LEVELS IF NEEDED → NEXT → STEP 6 (LEAVE AT DEFAULT): NEXT → STEP 7 (LEAVE AT DEFAULT): NEXT → STEP 8 (LEAVE AT DEFAULT): NEXT → FINISH

4) CREATE A DIAGRAM:

right-click on DIAGRAM → CREATE DIAGRAM → DIAGRAM NAME → OK

HOW TO EXPLORE DATA

A) First way:

Right-click on the data source and choose EXPLORE

B) Second way:

OPEN THE DIAGRAM → DRAG THE DATA SOURCE INTO THE DIAGRAM → right-click on the file source you have just dragged → EDIT VARIABLES → SELECT THE VARIABLES → EXPLORE

BSTA 478: SAS EM - TUTORIAL WEEK 2

Dziuba Dariia, Winter 2020

Explore... OK Cancel

PARTIONING THE DATA: CREATING A TRAIN AND VALIDATION DATASET

SAMPLE (ON THE RIGHT TAB) \rightarrow DRAG AND DROP DATA PARTITION \rightarrow CONNECT THE TABLE AND THE DATA PARTITION NODES \rightarrow LOOK AT THE RIGHT OF THE DIAGRAM: DATA SET ALLOCATIONS: SET TRAINING TO 70% AND VALIDATION – 30% \rightarrow right-click on the PARTITION NODE \rightarrow RUN \rightarrow YES \rightarrow RESULTS (TO VIEW THE RESULTS OF THE PARTITION)

LOGISTIC REGRESSION

MODEL → REGRESSION → DRAG AND DROP THE REGRESSION TO THE DIAGRAM → CONNECT THE PARTITION TO THE REGRESSION NODE → YOU CAN EDIT VARIABLES IF YOU LIKE (ON THE LEFT; TRAIN) AND MAKE SURE THAT THE CLASS TRAGETS IS SET TO LOGISTIC REGRESSION → MODEL SELECTION: BACKWARD ETC. → Right-click on the regression node → RUN → YES → RESULTS

You will see 4 tables:

- FIT STATISTICS will let you compare different values, i.e. MSE or some other errors for the TRAIN & VALIDATION data sets.
- OUTPUT: EVENT CLASSIFICATION TABLE (CONFUSION MATRIX)
- LIFT: CUMULATIVE AND REGULAR LIFT
- EFFECTS PLOT: TO EVALUATE WHICH VARIABLES HAVE THE HIGHEST IMPACT ON THE MODEL

ASSESS A MODEL

ASSESS \rightarrow DRAG AND DROP: MODEL COMPARISON \rightarrow CONNECT IT TO THE REGRESSION NODE \rightarrow RUN \rightarrow YES \rightarrow RESULTS

- OUTPUT: Fit Statistics it will provide you with the fit statistics of each model and if you
 compare a few models, then it will choose the best model based on the stats; you can also
 find other useful statistics
- LIFT: for train and validation data sets and if you have a few models you will see compared lifts for different models
- ROC CURVES

Reg

Regression

0.20219

0.14661

0.20240

0.14627

e Eu	it View Window	
	♦ ■ •	
Out		
46	put	
47		
48		
49	Fit Statistics Table	
50	Target: crowded	
51 52	Data Role=Train	
53	Daca Rote-Italii	
54	Statistics	Reg
55		00,00050
56	Train: Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff	0.50
57	Train: Kolmogorov-Smirnov Statistic	0.60
58 59	Train: Akaike's Information Criterion Train: Average Squared Error	39501.60 0.15
60	Train: Roc Index	0.13
61	Train: Average Error Function	0.45
62	Train: Cumulative Percent Captured Response	18.64
63	Train: Percent Captured Response	9.22
64	Selection Criterion: Valid: Misclassification Rate	0.20
65	Train: Degrees of Freedom for Error	43519.00
66 67	Train: Model Degrees of Freedom Train: Total Degrees of Freedom	9.00 43528.00
68	Train: Divisor for ASE	87056.00
69	Train: Error Function	39483.60
70	Train: Final Prediction Error	0.15
71	Train: Gain	86.35
72	Train: Gini Coefficient	0.74
73	Train: Bin-Based Two-Way Kolmogorov-Smirnov Statistic	0.60
74 75	Train: Kolmogorov-Smirnov Probability Cutoff	0.45
75 76	Train: Cumulative Lift Train: Lift	1.86 1.84
70 77	Train: Maximum Absolute Error	0.99
78	Train: Misclassification Rate	0.20
79	Train: Mean Square Error	0.15
30	Train: Sum of Frequencies	43528.00
81	Train: Number of Estimate Weights	9.00
82	Train: Root Average Sum of Squares	0.38
83 ea	Train: Cumulative Percent Response	87.53 86.63
84 85	Train: Percent Response Train: Root Final Prediction Error	86.63 0.38
86	Train: Root Mean Squared Error	0.38
87	Train: Schwarz's Bayesian Criterion	39579.73
88	Train: Sum of Squared Errors	12763.36
89	Train: Sum of Case Weights Times Freq	87056.00
90		
91		
92	Data Role=Valid	
93 94	Statistics	Dear
94 95	Statistics	Reg
96	Valid: Kolmogorov-Smirnov Statistic	0.60
97	Valid: Average Squared Error	0.15
98	Valid: Roc Index	0.87

Questions:

Logistic regression

- 1. Create a new project, assign a library, create a data source and a new diagram.
- 2. Open the file called gym_crowd
- 3. Assign variable roles and levels
- 4. Explore the data in two ways and answer the questions:
 - a. What distribution does the number of visitors have?
 - b. What is the minimum and maximum number of gym visitors?
 - c. How many variables and how many observations does the dataset have?
 - d. Are there any variables that have missing observations? What should you do with missing values?
 - e. Which variables do you think should be excluded from the analysis since they will not contribute much to the explanation of the number of visitors to the gym?
 - f. Are there any redundant variables?
 - g. Which variable should you exclude from your analysis?
- 5. Partition the data into TRAIN (70%) and VALIDATION (30%) datasets
- 6. Run a full logistic regression for event = 1:
 - a. Which variables are the most important in the model?
 - b. What is the model's cumulative lift? Interpret it.
 - c. Use a Model Comparison node to get a ROC curve. What is AUC? Interpret it.
- 7. Run the following logistic regressions for event=1:
 - a. Stepwise
 - b. Forward
 - c. Backward
- 8. Compare all four models. Which model is the best? Which criteria have you used?
- Using the output found after running a stepwise regression model, create a CONFUSION MATRIX in EXCEL and calculate the following:
 - a. True positive rate (TPR)
 - b. False negative rate (FNR)
 - c. True negative rate (TNR)
 - d. False positive rate (FPR)
 - e. Misclassification rate
 - f. Sensitivity (TRUE POSITIVE RATE)
 - g. Specificity (TRUE NEGATIVE RATE)
 - h. Horizontal ROC coordinates
 - i. Vertical ROC coordinates
 - j. Event rate
 - k. Actual rate among predicted
 - I. Lift
 - m. Gain