Wintersemester 2023/24

9. Übung zur Vertiefung Analysis

13. Dezember 2023

Abgabe bis spätestens Mittwoch 20. Dezember 2023 um 18 Uhr per WueCampus (maximal zu dritt).

Aufgabe 9.1 (Integral, 2 Punkte) Sei

$$f: \mathbb{R} \times \mathbb{R} \setminus \{0\} \to \mathbb{R}, \quad (x,y) \mapsto \frac{x^2}{y^2},$$
$$A := \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le x, \ 0 \le x \le 2, \ xy \ge 1\}.$$

Bestimmen Sie $\int_A f \, d\lambda_2$.

Aufgabe 9.2 (Rotation, 4 Punkte) Sei

$$A := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ \frac{1}{2} (x + y)^2 + z^2 \le 1 \right\}.$$

Bestimmen Sie $\lambda_3(A)$.

Hinweis: Rotation

Aufgabe 9.3 (Transformationssatz, 4 Punkte) Sei $S \in \mathbb{R}^{n \times n}$ eine invertierbare Matrix und $a \in \mathbb{R}^n$. Definiere damit die Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto a + Sx$. Sei außerdem $A \in \mathcal{L}(n)$ und $f : \mathbb{R}^n \to \mathbb{R}$ $\mathcal{L}(n) - \mathcal{B}^1$ -messbar, sodass $\chi_{\varphi(A)} f \lambda_n$ -integrierbar ist. Zeigen Sie, dass dann $\chi_A(f \circ \varphi) \lambda_n$ -integrierbar ist mit

$$\int_{\varphi(A)} f \, \mathrm{d}\lambda_n = |\det(S)| \int_A (f \circ \varphi) \, \mathrm{d}\lambda_n.$$

Hinweis: Lemma 2.92

Aufgabe 9.4 (Stetigkeit, 6 Punkte) Sei $f \in \mathcal{L}^1(\lambda_n)$. Für $h \in \mathbb{R}^n$ definiere die Funktion $f_h : \mathbb{R}^n \to \mathbb{R}$ durch $f_h(x) := f(x+h)$. Definiere außerdem die Abbildung

$$T_f: \mathbb{R}^n \to \mathcal{L}^1(\lambda_n), \quad h \mapsto f_h.$$

Zeigen Sie:

- (a) T_f ist wohldefiniert.
- (b) T_f ist stetig.

Hinweis: Approximieren Sie die Funktion f.