ELEC-313 Lab 7: MOSFET Amplifier Circuits

November 13, 2013

Date Performed: November 06, 2013 Partners: Charles Pittman

Stephen Wilson

1 Objective

The objective is to observe the basic operation of two MOSFET amplifier circuits: a common-source amplifier, and a source-follower amplifier.

2 Equipment

Transistor: 2N7000 Power supply: HP E3631A Function generator: HP 33120 Multimeter: HP 34401A Capacitors: $0.1\,\mu\text{F}$

Resistors: $100\,\Omega$, $300\,\Omega$, $470\,\Omega$, $1\,\mathrm{k}\Omega$ (x2) $33\,\mathrm{k}\Omega$, $100\,\mathrm{k}\Omega$ (x2)

3 Schematics

- (a) Common-source amplifier
- (b) Source-follower amplifier

Figure 1: Circuits used in this lab. $R_1 = 100 \,\mathrm{k}\Omega, \, R_s = 470 \,\Omega$

4 Procedure

The following procedures were identified to observe the basic operation of MOS-FET amplifier circuits.

4.1 Common-Source Amplifier

1. Build the circuit shown in Figure 1a. Use the closest resistor values available for R1 and Rs.

- 2. Measure and record the drain current and DC voltages at all terminals of the MOSFET.
- 3. Set the function generator for a 200 V_{pp} , 20 kHz sine wave with 0 VDC offset. Connect it to V_{in} .
- 4. Connect a $100\,\mathrm{k}\Omega$ load resistor from V_{out} to ground. This will be considered a no-load scenario.
- 5. Connect channel 1 of the oscilloscope to V_{in} and channel 2 to V_{out} . Set the scope to trigger off of channel 1.
- 6. Adjust the function generator to an amplitude of $200\,\mathrm{V_{pp}}$ as measured on channel 1 of the oscilloscope.
- 7. Measure the peak-to-peak output voltage on channel 2 of the oscilloscope.
- 8. Repeat step 6 for input voltages of 300, 400, 500, 600, 700, 800, 900, and $1000\,\mathrm{mV_{pp}}.$
- 9. Replace the $100 \,\mathrm{k}\Omega$ from V_{out} to ground with a $1 \,\mathrm{k}\Omega$ load resistor.
- 10. Reset the function generator to an amplitude of $200\,\mathrm{V_{pp}}$ as measured on channel 1 of the oscilloscope.
- 11. Measure the peak-to-peak output voltage on channel 2 of the oscilloscope.

4.2 Source-Follower Amplifier

- 1. Construct the circuit shown in Figure 1b by removing the $1\,\mathrm{k}\Omega$ drain resistor and moving the output capacitor to the source of the MOSFET.
- Measure and record the drain current and DC voltages at all terminals of the MOSFET.
- 3. Connect a $100 \,\mathrm{k}\Omega$ load resistor from V_{out} to ground. This will be considered a no-load scenario.
- 4. Adjust the function generator to an amplitude of $200\,\mathrm{V_{pp}}$ as measured on channel 1 of the oscilloscope.
- 5. Measure the peak-to-peak output voltage on channel 2 of the oscilloscope.
- 6. Repeat step 4 for input voltages of 300, 400, 500, 600, 700, 800, 900, and $1000\,\mathrm{mV_{pp}}$.
- 7. Reset the function generator to an amplitude of $200\,\mathrm{V_{pp}}$ as measured on channel 1 of the oscilloscope.
- 8. Replace the $100 \,\mathrm{k}\Omega$ resistor from V_{out} to ground with a $1 \,\mathrm{k}\Omega$ resistor and measure the peak-to-peak output voltage on channel 2 of the oscilloscope.
- 9. Replace the $1\,\mathrm{k}\Omega$ load resistor with a 100 ohm load resistor and measure the peak-to-peak output voltage on channel 2 of the oscilloscope.

5 Results

	$V_G(V)$	V_D (V)	V_S (V)	$I_D \text{ (mA)}$
Measured	4.391	13.498	2.11	4.52
Theoretical	4.466	14.000	2.4214	4.00
% Difference	1.712%	3.719%	14.800%	11.500%

Table 1: Transistor characteristics

$V_{in} (\mathrm{mV})$	V_{out} (V)	A_V
200	0.382	1.91
300	0.566	1.89
400	0.760	1.90
500	0.939	1.88
600	1.140	1.90
700	1.340	1.91
800	1.530	1.91
900	1.721	1.91
1000	1.90	1.90

Table 2: Common-source amplifier

$V_{in} (\mathrm{mV})$	$V_{out} \text{ (mV)}$	A_V
200	182	0.910
300	268	0.893
400	360	0.900
500	451	0.902
600	541	0.902
700	634	0.906
800	725	0.906
900	813	0.903
1000	906	0.906

Table 3: Source-follower amplifier

Figure 2: Gain vs. V_{in}

6 Conclusion

The mean voltage gain (A_V) for the common-source amplifier is 1.90 (Table 2) and the output resistance (R_o) is $9.9\,\mathrm{k}\Omega$ or roughly the same as the $1\,\mathrm{k}\Omega$ drain resistor (R_D) . The output voltage is 180 out of phase from the input voltage. The gain for the source-follower amplifier is 0.903 (Table 3) and the output resistance is relatively low at $43.6\,\Omega$. The input and the output voltages are also in phase. The input resistance is much higher than the output resistance therefore the output current is much higher. A common-source amplifier is useful when a voltage gain is desired and when an output voltage is needed to be 180 out of phase. A source-follower amplifier is useful when no voltage gain is desired, a large current gain is desired, and the output voltage is needed to be in phase with the input voltage.

7 Equations

$$V_{o,L} = V_{o,NL} \frac{R_L}{R_o + R_L} \tag{1}$$

$$V_G = \frac{V_{DD} \cdot 33 \,\mathrm{k}\Omega}{100 \,\mathrm{k}\Omega + 33 \,\mathrm{k}\Omega} \tag{2}$$

$$V_S = V_G \cdot \sqrt{\frac{I_D}{K_N}} - V_{TN} \tag{3}$$

$$V_D = V_{DD} - I_D \cdot 1 \,\mathrm{k}\Omega \tag{4}$$

$$I_D = \frac{V_S}{R_S} \tag{5}$$

$$A_V = \frac{V_{out}}{V_{in}} = \frac{-g_m \cdot R_D}{1 + g_m \cdot R_S} \tag{6}$$

$$\%_{diff} = \frac{|measured - theoretical|}{theoretical} \times 100\%$$
 (7)