

Paper chromatography

Paper **chromatography** is used to separate mixtures of **soluble** substances. These are often coloured substances such as food colourings, inks, dyes or plant pigments.

Paper chromatography

1. Water and ethanol solution is heated

Phases

Chromatography relies on two different 'phases':

■ the <u>stationary phase</u>, which in paper chromatography is very uniform, absorbent paper

■ the <u>mobile phase</u> is the <u>solvent</u> that moves through the paper, carrying different substances with it

The different <u>dissolved</u> substances in a mixture are attracted to the two phases in different proportions. This causes them to move at different rates through the paper.

Interpreting a chromatogram

Separation by chromatography produces a **<u>chromatogram</u>**.

A paper chromatogram can be used to distinguish between **pure** and impure substances:

- a pure substance produces one spot on the chromatogram
- an impure substance produces two or more spots

A paper chromatogram can also be used to identify substances by comparing them with known substances. Two substances are likely to be the same if:

- they produce the same number of spots, and these match in colour
- \blacksquare the spots travel the same distance up the paper (have the same R_f value)

Interpreting the chromatogram for a brown ink

In this chromatogram, the brown ink is made of a mixture of the red, blue and yellow inks. This is because the spots in the brown ink are at the same heights (and have the same R_f value) as the reference inks.

R_f values

 R_f values can be used to identify unknown chemicals if they can be compared to a range of reference substances. The R_f value is always the same for a particular substance.

The R_f value of a spot is calculated using:

$$R_f = \frac{\textit{distance travelled by substance}}{\textit{distance travelled by solvent}}$$

 R_f values vary from 0 (the substance is not attracted at all to the mobile phase) to 1 (the substance is not attracted at all to the stationary phase).

Glossary v

orindating to der Aoni Hear Loring Leaning (Strangering)

Our tips from experts and exam survivors will help you through.

Get advice here

Links

Personalise your Bitesize!

Sign in, choose your GCSE subjects and see content that's tailored for you.

BBC: Science and Environment

BBC Earth

BBC Tomorrow's World

- Save My Exams SUBSCRIPTION
- **Quizlet**
- **Royal Society of Chemistry**
- Revisio SUBSCRIPTION
- **Science Museum**

GCSE Subjects >

<u>Art and Design</u> <u>Biology (Single Science)</u> <u>Business</u> <u>Chemistry (Single Science)</u>

<u>Combined Science</u> <u>Computer Science</u> <u>Design and Technology</u> <u>Digital Technology (CCEA)</u>

<u>Drama</u> <u>English Language</u> <u>English Literature</u> <u>French</u>

Geography German History Home Economics: Food and

Nutrition (CCEA)

Hospitality (CCEA) ICT Irish – Learners (CCEA) Journalism (CCEA)

<u>Learning for Life and Work (CCEA)</u> <u>Mandarin</u> <u>Maths</u> <u>Maths Numeracy (WJEC)</u>

<u>Media Studies</u> <u>Modern Foreign Languages</u> <u>Moving Image Arts (CCEA)</u> <u>Music</u>

<u>Physical Education</u> <u>Physics (Single Science)</u> <u>PSHE and Citizenship</u> <u>Religious Studies</u>

Science Sociology Spanish Welsh Second Language (WJEC)

Explore the BBC

HomeNewsSportReelWorklifeTravelFutureCultureMusicTVWeatherSounds

Terms of Use About the BBC Privacy Policy Cookies

Accessibility Help Parental Guidance Contact the BBC Get Personalised Newsletters

Advertise with us AdChoices / Do Not Sell My Info

Copyright © 2021 BBC. The BBC is not responsible for the content of external sites. Read about our approach to external linking.