第五章 特征值与特征向量

- 5.1 方阵的特征值与特征向量
- 5.2 矩阵的相似对角化
- 5.3 实对称矩阵的正交相似对角化

第三爷 实对称矩阵的 正交相似对角化

一、向量的内积

二、正交向量组

三、正交矩阵

四、实对称矩阵的性质

一、向量的内积

定义 设
$$\alpha = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}, \beta = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
为 n 维向量,称

$$a_1b_1 + a_2b_2 + \dots + a_nb_n$$

为 α 与 β 的内积,记为 (α,β) ,即

$$(\alpha,\beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n.$$

定义 若两向量 α 与 β 的内积 $(\alpha, \beta) = 0$,则称向量 α 与 β 正交,记为 $\alpha \perp \beta$.

提醒 两列向量 α 与 β 的内积 $(\alpha, \beta) = \alpha^T \beta$.

内积的运算性质

(1)
$$(\alpha, \beta) = \alpha^T \beta = \beta^T \alpha = (\beta, \alpha);$$

(2)
$$(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma);$$

(3)
$$(k\alpha, \beta) = k(\alpha, \beta), \ \forall \ k \in \mathbb{R};$$

(4)
$$\alpha \neq 0 \Leftrightarrow (\alpha, \alpha) > 0, \ \alpha = 0 \Leftrightarrow (\alpha, \alpha) = 0;$$

(5)
$$(0, \alpha) = 0^T \alpha = 0$$
;

(6)
$$(\sum_{i=1}^{m} k_i \alpha_i, \beta) = \sum_{i=1}^{m} k_i (\alpha_i, \beta).$$

定义 $\pi \|\alpha\| \stackrel{\triangle}{=} \sqrt{(\alpha, \alpha)}$ 为 α 的长度; 称长度为 1 的向量为单位向量.

提醒 (1) $||k\alpha|| = |k|||\alpha||$, 其中 k 为任意常数;

(2) 若
$$\alpha = (x_1, x_2, \dots, x_n)^T$$
,则
$$\|\alpha\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

(3) 当 $\|\alpha\| > 0$ 时, $\frac{1}{\|\alpha\|} \alpha$ 是单位向量. 以数 $\frac{1}{\|\alpha\|}$ 乘 α 称为将 α 单位化.

例题 若
$$\alpha = \begin{bmatrix} 3 \\ 2 \\ -4 \\ 1 \end{bmatrix}$$
 , $\beta = \begin{bmatrix} 5 \\ -2 \\ 4 \\ 5 \end{bmatrix}$, 则

$$(\alpha, \beta) = 0 \Rightarrow \alpha \perp \beta.$$

$$\|\beta\| = \sqrt{(\beta, \beta)} = \sqrt{70}.$$

将
$$\beta$$
单位化得 $\frac{1}{\|\beta\|}\beta = \begin{bmatrix} 5/\sqrt{70} \\ -2/\sqrt{70} \\ 4/\sqrt{70} \\ 5/\sqrt{70} \end{bmatrix}$.

二、正交向量组

- - ① 称不含零向量且两两正交的向量组为 正交向量组.
 - ② 由单位向量构成的正交组称为规范正交组或标准正交组;
 - ③ 含n个向量的规范正交组 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 称为 \mathbb{R}^n 的一个规范正交基或标准正交基。

定理 任意正交向量组必为线性无关向量组.

证明 设 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 任意正交组. 考虑

$$\sum_{i=1}^{s} k_{i}\alpha_{i} = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \dots + k_{s}\alpha_{s} = 0$$

$$\Rightarrow \left(\sum_{i=1}^{s} k_{i}\alpha_{i}, \alpha_{j}\right) = 0, \forall j = 1, 2, \dots, s$$

$$\Rightarrow k_{j}(\alpha_{j}, \alpha_{j}) = 0, \forall j = 1, 2, \dots, s$$

$$\stackrel{\alpha_{j} \neq 0}{\Rightarrow} k_{j} = 0, \forall j = 1, 2, \dots, s$$

$$\Rightarrow \alpha_{1}, \alpha_{2}, \dots, \alpha_{s}$$
线性无关.

一向量在另一向量上的投影

$$\xi = \|\beta\| \cos \theta \frac{1}{\|\alpha\|} \alpha$$

$$= \frac{\|\beta\| \cdot \|\alpha\| \cos \theta}{\|\alpha\|^2} \alpha$$

$$= \frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$$

 ξ : 向量 β 在向量 α 上的投影 (向量)

施密特正交化方法的几何解释

 ξ : 向量 α_2 在向量 β_1 上的投影(向量)

$$\beta_2 = \alpha_2 - \xi = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

施密特正交化方法的几何解释

海納百川 有容乃大 线性无关向量组必可正交化

定理 设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,令

$$\beta_1 = \alpha_1, \quad \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1,$$

$$\beta_s = \alpha_s - \frac{(\alpha_s, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_s, \beta_2)}{(\beta_2, \beta_2)} \beta_2 - \cdots$$
$$- \frac{(\alpha_s, \beta_{s-1})}{(\beta_{s-1}, \beta_{s-1})} \beta_{s-1},$$

则 $\beta_1, \beta_2, \cdots, \beta_s$ 为正交向量组:

提醒以上正交化方法称为施密特正交化方法.

将向量组 $\beta_1, \beta_2, \cdots, \beta_s$ 单位化,可得

$$\gamma_1 = \frac{1}{\|\beta_1\|} \beta_1, \ \gamma_2 = \frac{1}{\|\beta_2\|} \beta_2, \ \cdots, \ \gamma_s = \frac{1}{\|\beta_s\|} \beta_s$$

则 $\gamma_1, \gamma_2, \cdots, \gamma_s$ 为一规范正交向量组;

且对任意的 $k = 1, 2, \dots, s$, 向量组 $\alpha_1, \alpha_2, \dots, \alpha_k$ 与 $\gamma_1, \gamma_2, \dots, \gamma_k$ 等价.

线性无关组 —— 正交组 —— 规范正交组

例题 用施密特正交化方法将如下向量组

$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 3 \\ 3 \\ -1 \\ -1 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} -2 \\ 0 \\ 6 \\ 8 \end{bmatrix}$$

规范正交化.

解答 首先将向量组正交化

$$eta_1=lpha_1=egin{bmatrix}1\\1\\1\end{bmatrix},$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \begin{vmatrix} 3 \\ 3 \\ -1 \\ -1 \end{vmatrix} - \frac{4}{4} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \\ -2 \end{vmatrix},$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$$

$$= \begin{bmatrix} -2 \\ 0 \\ 6 \\ 8 \end{bmatrix} - \frac{12}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{-32}{16} \begin{bmatrix} 2 \\ 2 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix};$$

则 $\beta_1, \beta_2, \beta_3$ 为正交向量组. 将其单位化得规范 正交组

$$\gamma_1 = \frac{1}{\|\beta_1\|} \beta_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \ \gamma_2 = \frac{1}{\|\beta_2\|} \beta_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \end{bmatrix},$$

$$\gamma_3 = \frac{1}{\|\beta_3\|} \beta_3 = \begin{bmatrix} -1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}.$$

提醒 71,72,73是规范正交组,不是规范正交基.

三、正交矩阵

定义 设n阶实矩阵A满足 $A^TA = E$,则称矩阵 A为正交矩阵.

提醒 A为正交矩阵 $\Leftrightarrow A^T = A^{-1}$.

正交矩阵的性质 设P,Q 为同阶正交矩阵,则

- ① $P^T = P^{-1}$, 且它们都为正交矩阵;
- ② PQ 为正交矩阵;
- ③ |P| = 1或-1.
- 提醒单位矩阵是正交矩阵.正交矩阵的转置矩阵,逆矩阵,负矩阵,幂都是正交矩阵.
- 思考 正交矩阵的伴随矩阵是正交矩阵吗?

定理 设 Q 为 n 阶实矩阵,则 Q 为正交矩阵的充要 条件为: Q 的行或列向量组是规范正交基.

证明 将Q 列分块为 $Q = (\alpha_1, \alpha_2, \dots, \alpha_n)$,则

$$Q^{T}Q = \begin{bmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{bmatrix} (\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n})$$

$$= \begin{bmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{bmatrix}$$

$$\Rightarrow Q^T Q = \begin{bmatrix} \|\alpha_1\|^2 & (\alpha_1, \alpha_2) & \cdots & (\alpha_1, \alpha_n) \\ (\alpha_2, \alpha_1) & \|\alpha_2\|^2 & \cdots & (\alpha_2, \alpha_n) \\ \vdots & \vdots & & \vdots \\ (\alpha_n, \alpha_1) & (\alpha_2, \alpha_n) & \cdots & \|\alpha_n\|^2 \end{bmatrix}$$

于是,

Q为正交矩阵 $\Leftrightarrow Q^TQ = E$

$$\Leftrightarrow \|\alpha_i\|^2 = 1, (\alpha_i, \alpha_j) = 0, \forall i, j, \ i \neq j$$

$$\Leftrightarrow \|\alpha_i\| = 1, \alpha_i \perp \alpha_j = 0, \forall i, j, i \neq j$$

 $\Leftrightarrow \alpha_1, \alpha_2, \cdots, \alpha_n$ 是规范正交基.

例题 判断下列矩阵是否为正交矩阵:

$$\begin{pmatrix}
3 & -3 & 1 \\
-3 & 1 & 3 \\
1 & 3 & -3
\end{pmatrix}$$

$$(2) \begin{bmatrix}
2/3 & 2/3 & 1/3 \\
2/3 & -1/3 & -2/3 \\
1/3 & -2/3 & 2/3
\end{bmatrix}$$

例题 已知 A 为对称矩阵,满足

$$A^2 - 4A + 3E = 0,$$

请问:矩阵A-2E为正交矩阵吗?

解答 易见 A 的列向量组为正交组,长度均为2, 则 $\frac{1}{2}A$ 的列向量组为规范正交基,故 $\frac{1}{2}A$ 为 正交矩阵,从而有

$$\left(\frac{1}{2}A\right)^{-1} = \left(\frac{1}{2}A\right)^{T} \Rightarrow 2A^{-1} = \frac{1}{2}A^{T}$$
$$\Rightarrow A^{-1} = \frac{1}{4}A^{T} = \frac{1}{4}A.$$

四、实对称矩阵的性质

复数域上的一般矩阵,其特征值为复数,但对实对称矩阵而言,其特征值、特征向量具有特殊性质.

性质1 实对称矩阵的特征值都是实数.

证明 对于实对称矩阵A,有

$$\bar{A} = A = A^T$$
.

若 λ 为A的特征值,则存在 $\alpha \neq 0$,使得

$$A\alpha = \lambda \alpha$$
,

从而

$$\alpha^T \overline{A\alpha} = \alpha^T \overline{\lambda\alpha} = \overline{\lambda}\alpha^T \overline{\alpha}.$$

另一方面

$$\alpha^T \overline{A\alpha} = \alpha^T A \overline{\alpha} = (A\alpha)^T \overline{\alpha} = (\lambda \alpha)^T \overline{\alpha} = \lambda \alpha^T \overline{\alpha}.$$

于是有

$$\lambda \alpha^T \alpha = \bar{\lambda} \alpha^T \alpha \xrightarrow{\alpha^T \bar{\alpha} \neq 0} \lambda = \bar{\lambda} \Rightarrow \lambda$$
为实数.

- 推论 实对称矩阵的特征向量均为实向量.
- 性质2 实对称矩阵的属于不同特征值的特征向量不仅线性无关,而且正交.
- 证明 设 α , β 为实对称矩阵 A 的属于不同特征 值 λ_1 , λ_2 的特征向量, 则

$$\alpha \neq 0, \ \beta \neq 0, \ A\alpha = \lambda_1 \alpha, \ A\beta = \lambda_2 \beta,$$

于是有

$$\lambda_{1}\alpha^{T}\beta = (\lambda_{1}\alpha)^{T}\beta = (A\alpha)^{T}\beta = \alpha^{T}A^{T}\beta$$
$$= \alpha^{T}(A\beta) = \alpha^{T}(\lambda_{2}\beta) = \lambda_{2}\alpha^{T}\beta$$
$$\Rightarrow (\lambda_{1} - \lambda_{2})\alpha^{T}\beta = (\lambda_{1} - \lambda_{2})(\alpha, \beta) = 0$$
$$\lambda_{1} \neq \lambda_{2} \Rightarrow (\alpha, \beta) = 0 \Rightarrow \alpha \perp \beta.$$

定义 设A, B为n阶矩阵,若存在正交矩阵Q, 使得 $Q^{-1}AQ = B$,

则称 A 与 B 正交相似.

若矩阵 A 与某对角阵正交相似,则称 A 可正交相似对角化,简称可正交对角化.

性质3 实对称矩阵一定可以正交相似对角化!即:若A为n阶实对称矩阵,则一定存在正交矩阵Q使得Q⁻¹AQ为对角阵!

- 推论1 若 A为 n 阶实对称矩阵, λ 为 A的 k重特征值,则 A有 k 个属于 λ 的线性无关或正交的特征向量.
- 提醒 对实对称矩阵而言,任意特征值的代数 重数与几何重数总相等!
- $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1$

将实对称矩阵正交对角化的方法与步骤

- ① 求出 A 的全部不同特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$, 其代数重数分别为 k_1, k_2, \dots, k_s ;
- ② 对任意 $i = 1, 2, \dots, s$,求出齐次线性方程 组 $(\lambda_i E A) X = 0$ 的基础解系 $X_{i1}, X_{i2}, \dots, X_{ik_i},$

将其正交化后得 A 的 k_i 个属于 λ_i 的正交的特征向量

$$\beta_{i1}, \beta_{i2}, \cdots, \beta_{ik_i};$$

③ 将正交向量组

```
\beta_{11}, \quad \beta_{12}, \quad \cdots, \quad \beta_{1k_1},
\beta_{21}, \quad \beta_{22}, \quad \cdots, \quad \beta_{2k_2},
\cdots \quad \cdots \quad \cdots
\beta_{s1}, \quad \beta_{s2}, \quad \cdots, \quad \beta_{sk_s}
```

单位化,得规范正交基

```
\gamma_{11}, \quad \gamma_{12}, \quad \cdots, \quad \gamma_{1k_1}, \\ \gamma_{21}, \quad \gamma_{22}, \quad \cdots, \quad \gamma_{2k_2}, \\ \cdots \qquad \cdots \qquad \cdots \\ \gamma_{s1}, \quad \gamma_{s2}, \quad \cdots, \quad \gamma_{sk_s}
```

则矩阵 Q为正交矩阵,使得

海纳百川 有容乃大

$$Q^{-1}AQ = Q^T A Q$$

例题设
$$A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$$
,求正交矩阵 Q 使

 $Q^{-1}AQ$ 为对角矩阵.

解答经计算有 $|\lambda E - A| = (\lambda - 1)^2 (\lambda - 10)$,

则 A 的特征值为 $\lambda_1 = 10$, $\lambda_{2,3} = 1$.

$$\mathbf{M}(\lambda_1 E - A) X = 0$$
 得其基础解系为 $X_1 = \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$;

$\mathbf{M}(\lambda_{2.3}E - A)X = 0$ 得其基础解系为

$$\alpha_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 2\\0\\1 \end{bmatrix};$$

将 α_1 , α_2 正交化得

$$\beta_1 = \alpha_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix},$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{1}{5} \begin{bmatrix} 2\\4\\5 \end{bmatrix};$$

将 X_{11} , β_1 , β_2 单位化得

$$\gamma_1 = \frac{1}{|X_{11}|} X_{11} = \begin{bmatrix} -1/3 \\ -2/3 \\ 2/3 \end{bmatrix},$$

$$\gamma_2 = \frac{1}{|\beta_1|} \beta_1 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{bmatrix},$$

$$\gamma_3 = \frac{1}{|\beta_2|} \beta_2 = \begin{bmatrix} 2\sqrt{5}/15 \\ 4\sqrt{5}/15 \\ \sqrt{5}/3 \end{bmatrix}.$$

则
$$Q$$
为正交矩阵且 $Q^{-1}AQ = \begin{bmatrix} 10 & 1 & 1 \\ & 1 & 1 \end{bmatrix}$.

实对称矩阵与一般方阵之比较

比较项	一般方阵	实对称阵
特征值	可能为实数 也可能是虚数	必为实数
	代数重数≥几何重数	代数重数=几何重数
特征向量	可能为实向量 也可能是虚向量	必为实向量
	属于不同特征值的特 征向量线性无关	属于不同特征值的特 征向量不仅线性无关 而且正交
对角化	可能能对角化 也可能不能对角化	不仅能对角化 还能正交相似对角化

- 例题 已知三阶实对称矩阵 A 的特征值为 $\lambda_1 = 2$, $\lambda_{2,3} = 1$. $\xi_2 = (1,1,-1)^T$, $\xi_3 = (2,3,-3)^T$ 为 属于特征值 $\lambda_{2,3}$ 的特征向量. 求属于特征值 λ_1 的一个特征向量及矩阵 A.
- 解答 设属于 λ_1 的一特征向量 $\xi_1 = (x_1, x_2, x_3)^T$. 因实对称阵的属于不同特征值的特征向量 正交,所以

$$\begin{cases} (\xi_1, \xi_2) = 0 \\ (\xi_1, \xi_3) = 0 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + 3x_2 - 3x_3 = 0 \end{cases}$$
 解之得属于 λ_1 的一特征向量 $\xi_1 = (0, 1, 1)^T$.

$$�$$
 $P = (\xi_1, \xi_2, \xi_3) = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & -1 & -3 \end{bmatrix}$, 则

$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

从而

$$A = P \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3/2 & 1/2 \\ 0 & 1/2 & 3/2 \end{bmatrix}.$$

例题 已知三阶实对称矩阵 A 的特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = -2$. $\xi_1 = (1, -1, 1)^T$ 为属于特征值 λ_1 的特征向量. 且 $B = A^5 - 4A^3 + E$.

- (1) 验证 ξ_1 是 B的特征向量;
- (2) 求 B 的全部特征值与特征向量;
- (3) 求 B.
- 提示 (1)验证略.
 - (2)设A的属于特征值 λ_2 , λ_3 的特征向量为 $(x_1, x_2, x_3)^T$, 则 $x_1 x_2 + x_3 = 0$, 解之 得属于 λ_2 , λ_3 的特征向量分别为 $\xi_2 = (1, 1, 0)^T$, $\xi_3 = (1, -1, -2)^T$.

因B = f(A), 其中 $f(x) = x^5 - 4x^3 + 1$, 故 B 的特征值为

$$f(1) = -2, f(2) = f(-2) = 1.$$

且 B 也为实对称矩阵, ξ_1 , ξ_2 , ξ_3 是 B 的分别属于特征值 -2, 1, 1 的特征向量,所以

$$B(\xi_1, \xi_2, \xi_3) = (-2\xi_1, \xi_2, \xi_3)$$

$$B = (-2\xi_1, \xi_2, \xi_3)(\xi_1, \xi_2, \xi_3)^{-1}$$

$$= \begin{bmatrix} -2 & 1 & 0 \\ 2 & 1 & 1 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

令题 设 A 为方阵, $\mu(A)$ 表 A 的非零特征值个数. 若 A 能对角化,则 $\mu(A) = \operatorname{rank}(A)$.

证明 设A为n阶方阵,特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$.

$$A$$
能对角化,则 $A\sim \Lambda=egin{bmatrix} \lambda_1 & & & \ & \lambda_2 & & \ & & \ddots & \ & & \lambda_n \end{bmatrix},$

从而 $\operatorname{rank}(A) = \operatorname{rank}(\Lambda) = \mu(A)$.

推论 若 A 为实对称阵,则 $\mu(A) = \operatorname{rank}(A)$.

1. 设A 为三阶实对称矩阵,rank(A) = 2, $A^2 = A$. 求A 的特征值.

提示 $A^2 = A \Rightarrow A$ 的特征值 λ 必满足 $\lambda^2 = \lambda$ $\Rightarrow A$ 的特征值 $\lambda = 0$ 或 $\lambda = 1$. 因 A实对称,且 $\mathrm{rank}(A) = 2$,由上页命题知: A恰有两个非零特征值,所以 A的全部特征值为 $\lambda_{1,2} = 1$, $\lambda_3 = 0$.

2. 设 α 为三维单位列向量,则 $rank(E - \alpha \alpha^T) = ?$

提示 $\diamondsuit A = E - \alpha \alpha^T$, 则 A 为实对称阵.

因 α 为单位向量,经计算知 $A^2 = A$,

从而 A 的特征值只能为 0 或 1.

综上知 A 的特征值必为 $\lambda_{1,2} = 1, \lambda_3 = 0$.

从而 $\operatorname{rank}(A)$ 为 A 的非零特征值个数2,即 $\operatorname{rank}(E - \alpha \alpha^T) = 2$.

2. 设 α 为三维单位列向量,则 $\operatorname{rank}(E - \alpha \alpha^T) = ?$

另解 令 $A = E - \alpha \alpha^T$, 因 α 为单位向量,则

$$A^2 = (E - \alpha \alpha^T)^2 = A \Rightarrow A(A - E) = 0$$

$$\Rightarrow r(A) + r(A - E) \le 3. \tag{1}$$

又

$$r(A) + r(A - E) \ge r(A - (A - E)) = 3.$$
 (2)

联立(1)(2)知

$$r(A) + r(A - E) = 3$$

$$\Rightarrow$$
 r(A) = 3 - r(A - E) = 3 - r(-\alpha\alpha^{T}) = 2.

3. 设 A 为三阶实对称矩阵,特征值为 3, -6, 0. $\alpha_1 = (1, a, 1)^T$, $\alpha_2 = (a, a + 1, 1)^T$ 为分别属于特征值 3, -6 的特征向量,求矩阵 A.

提示 首先由 $\alpha_1 \perp \alpha_2$ 求出 a = -1.

然后,属于特征值0的特征向量 α_3 应与 α_1 和 α_2 都正交,以此性质求出 α_3 .

最后,因A的特征值,特征向量均已知,从而

可求出
$$A = \begin{bmatrix} -2 & -1 & 4 \\ -1 & 1 & -1 \\ 4 & -1 & -2 \end{bmatrix}$$
.

4. 设A 为三阶实对称矩阵,r(A) = 2, AB = -2B.

其中
$$B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
. 求 A 的特征值和特征向

量,并求 $rank(A^*)$.

4.
$$\lambda_{1,2} = -2, k_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; \lambda_3 = 0, k \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\operatorname{rank}(A^*) = 1$$

5. 已知三阶矩阵 A 的第一行元素全为 1, 且

$$\alpha_1 = (1, 1, 1)^T, \alpha_2 = (1, 0, -1)^T, \alpha_3 = (1, -1, 0)^T$$

为A的三个特征向量,求 $A, (A-1.5E)^{2022}$.

解答设
$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ d & e & f \end{bmatrix}, \alpha_1, \alpha_2, \alpha_3$$
的分别属于特征值

$\lambda_1, \lambda_2, \lambda_3$ 的特征向量,从而有

$$\begin{cases} A\alpha_1 = \lambda_1 \alpha_1 \Rightarrow \lambda_1 = 3, a+b+c = d+e+f = 3 \\ A\alpha_2 = \lambda_2 \alpha_2 \Rightarrow \lambda_2 = 0, a = c, d = f \\ A\alpha_3 = \lambda_3 \alpha_3 \Rightarrow \lambda_3 = 0, a = b, d = e \end{cases}$$

$$\Rightarrow A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

因三阶方阵 A 有三个线性无关特征向量, 故 A 能对角化.

令
$$P = (\alpha_1, \alpha_2, \alpha_3)$$
,则 P 可逆,使得 $P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ & 0 & 0 \end{bmatrix}$ $\Rightarrow P^{-1}(A - 1.5E)P = P^{-1}AP - 1.5E = 1.5\begin{bmatrix} 1 & -1 & -1 \\ & -1 & 1 \end{bmatrix}$ $\Rightarrow P^{-1}(A - 1.5E)^{2022}P = 1.5^{2022}\begin{bmatrix} 1 & 1 & 1 \\ & 1 & 1 \end{bmatrix} = 1.5^{2022}E$

$$\Rightarrow (A - 1.5E)^{2022} = P(1.5^{2022}E)P^{-1} = 1.5^{2022}E.$$