Homework 9 Tony Samow Thursday, November 2, 2023 APPU 4600 1. Find the least squares solution to the overdetermined linear system $\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right]$ There The vector \overline{x} that minimizes $||A_x - b||_2$ where $A \in \mathbb{R}^{n \times m}$, n > m is given by the solution of $A^TA \overline{x} = A^T\overline{b}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} u = 1 \\ v = \frac{1}{2} \end{bmatrix}$ 2.) 2. Find the vector x that minimizes the quantity $E^2 = b_1^2 + 4b_2^2 + 25b_3^2 + 9b_4^2$, when it holds that $\begin{bmatrix} 1 & 3 \\ 6 & -1 \\ 4 & 0 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ Hint: When we solve a linear system of equations Ax = b, multiplication from the left with a nonsingular matrix will leave the solution unchanged. This is not the case when finding the least squares solution to an overdetermined system. Exploit this and multiply the system above with a suitable diagonal matrix, so that the problems becomes a regular least squares problem (for which we can apply the normal equation approach.) Given they we want to minimize the quantity E= b, 2+ 4b2 + 25b3 + 9b4? it would seen suitable to multiply the system by the oliagonal marrix arere the entries are He coefficients of E. Using the Theorem from problem I, we can use the least squeres wether to solve

		$\begin{bmatrix} 1 & 12 & 20 & 6 \\ 3 & -2 & 0 & 71 \\ 4 & & & & \\ 15 & & & & \\ 12 \end{bmatrix}$
	$\begin{bmatrix} 581 & 105 \\ 105 & 454 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	12 ()
No	w solving this li	near system for \overline{X} using $\overline{X} = A^{-1}b$,
		$\begin{cases} x_1 = \begin{bmatrix} 0.6536 \\ 0.3929 \end{bmatrix} \Rightarrow \begin{cases} x_1 = 0.6536 \\ x_2 = 0.3929 \end{cases}$
MAT	TLAB Code:	MATLAB Output:
4	%% Main Script	Aadj =
5	A = [1 3; 6 -1;	1 3
7	4 0;	12 -2 20 0
9	2 7]; C = [1 2 3 4]';	6 21
10 11	E = [1 0 0 0;	Cadj =
12	0 2 0 0;	1
13	0 0 5 0; 0 0 0 3];	4 15
15 16	Aadj = E*A	12
17	Cadj = E*C	
18 19	Atrans = Aadj';	M =
20	Michigan ships of drawning a ships of the	581 105 105 454
21 22	M = Atrans*Aadj	
23 24	Cnew ≡ Atrans*Cadj	Cnew =
25	M <mark>\</mark> (Cnew)	421 247
		ans =
		0.6536 0.3929
3.) 3.	If a function is identically zero over a	n interval, all its derivatives must also be identically this observation:
J.)		
	 (a) Prove that {1, x, x²,, xⁿ} are lift (b) Show that the function set 	inearly independent.
	10.00	
		$\{x_1,\ldots,\cos(nx),\sin(x),\ldots,\sin(nx)\}$
	is linearly independent (also over	
(a)	Prove that SI. V	x2,, xn3 are linearly independent
(01)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The state of the s
/.	V 13	
1 0020	. the Wronskran of t	le above vector:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W is a triangular matrix \Rightarrow $de+(w)=17$ wis $de+(w)=n!(n-1)!\cdots 1 \neq 0$
	0 1 2x 3x2 2	i=3=0
(,) -	C) () 7 (x () 1 1 1 2 2	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
11/1/1	0 0 6 0 0 0 1/K	$\mu + (\omega) = n \cdot (n \cdot 1) \cdot 1 + 0$
ľ	0006:	

$W = \left \begin{array}{cccccccccccccccccccccccccccccccccccc$
: :: : : Since de+(w) ≠ 0, the set is linearly independent.
000on!
(b) $\frac{2}{7}$, $\cos(x)$, $\cos(2x)$, $\cos(nx)$, $\sin(x)$, $\sin(2x)$, $\sin(nx)$ $\frac{3}{7}$
To show linear independence, we have to show that
$a_0cos(Ox) + a_1cos(x) + a_2cos(2x) + \cdots + a_ncos(nx) + b_0sin(0x) + b_1sin(x) + \cdots + b_nsin(nx) = 0$
Taking n derivatives of the above furtions will result in the multiplication of each term by n^2 i.e. $a_1 \cdot 1^2 \cos(x) + a_2 \cdot 2^2 \cos(2x) + \cdots + a_n n^2 \cos(nx) + \cdots + b_n n^2 \sin(nx)$ which would result in
$a_n cos(nx) + b_n sin(x) = 0$
and if we create the Wronskian:
$\begin{bmatrix} \cos(nx) & \sin(nx) \\ -n\sin(nx) & n\cos(nx) \end{bmatrix}, \det(W) = n\cos^2(nx) - \left(-n\sin^2(nx)\right) = n\left(\cos^2(nx) + \sin^2(nx)\right) \\ = n \neq 0 \end{bmatrix}$
Here are linearly independent vectors.
Extending this from the n-1, n-2,, 1, 0 soursfirs
$a_0 cos(Ox) + a_1 cos(x) + a_2 cos(2x) + \cdots + a_n cos(nx) + b_0 sin(ox) + b_1 sin(x) + \cdots + b_n sin(nx) = 0$
muning that $\S1$, $cos(x)$, $cos(Zx)$,, $cos(nx)$, $sin(x)$, $sin(Zx)$,, $sin(nx)\S$ is indeed
a linearly independent set of vectors.
a production of the second of
4. Prove the three-term recursion formula for orthogonal polynomials:
$\phi_k(x) = (x - b_k)\phi_{k-1}(x) - c_k\phi_{k-2}(x)$
where $b_k = \frac{\langle x\phi_{k-1}, \phi_{k-1} \rangle}{\langle \phi_{k-1}, \phi_{k-1} \rangle} c_k = \frac{\langle x\phi_{k-1}, \phi_{k-2} \rangle}{\langle \phi_{k-2}, \phi_{k-2} \rangle}$
$\phi_{k-1}, \phi_{k-1} > \phi_{k-2}, \phi_{k-2} >$ Hint: Since $\phi_k(x)$ is a polynomial of degree k and of the form $\phi_k = x^k + \{\text{lower order terms}\},$
we can clearly select b_k and c_k so that the right hand side (RHS) of (1) matches $\phi_k(x)$ for powers x^k , x^{k-1} and x^{k-2} . We have no obvious reason to expect that the two sides will match the other lower order terms. Hence, we would expect to need to include a lot more
terms in the RHS to get the two sides to become equal: $\phi_k(x) = (x - b_k)\phi_{k-1}(x) - c_k\phi_{k-2}(x) - \{a_{k-3}\phi_{k-3}(x) + a_{k-4}\phi_{k-4}(x) + \dots + a_0\phi_0(x)\} (1)$
We now need to show that all these a's are in fact are zero. To show that $a_j = 0, j \le k - 3$,
we form the scalar product of (1) with $\phi_j(x)$ for $j=0,\ldots,k-1$. You need to show that everything in (1) apart from $a_j < \phi_j, \phi_j >$ then vanishes, thereby showing that $a_j = 0$, $j \le k-3$. After that, it remains to determine the values of b_k and c_k . These coefficients follow by again forming suitable scalar products.
From the mint:
$\phi_{k}(x) = (x - b_{k})\phi_{k-1}(x) - c_{k}\phi_{k-2}(x) - \frac{2}{2}a_{k-3}\phi_{k-3}(x) + a_{k-4}\phi_{k-4}(x) + a_{0}\phi_{0}(x)$
$\Phi_{k}(x) = (x - b_{k}) \Phi_{k-1}(x) - C_{k} \Phi_{k-2}(x) - \sum_{i=1}^{k-3} a_{i} \Phi_{i}(x)$
$\frac{1}{2} \kappa (x) - (x) \frac{1}{2} (x) \frac{1}{2} (x) - \frac{1}{2} (x) \frac{1}{2} (x)$

 $\Phi_{\kappa}(x) = (x - b_{\kappa}) \Phi_{\kappa-1}(x) - C_{\kappa} \Phi_{\kappa-2}(x) - \sum_{i=1}^{k-3} a_i \Phi_i(x)$ To show aj=0, j \(k-3, \) form a scalar product of ϕ_k and ϕ_j , for j=0,..., k-1 $\times d_{j}(x)$ is a polynomial of degree j+1, so we can rewrite as $\times d_{j}(x) = \sum_{i=1}^{3} d_{i} \partial_{i}(x)$ j+1 4 k-2 => every term w/in the sum is O $0 = \alpha_{j} \langle \delta_{j}, \delta_{j} \rangle, j \leq k-3$ Now we can solve for bx and cx. Twee He inner product of Dx and Ox-1: $\langle \Phi_{k_1} \Phi_{k-1} \rangle = \langle \times \Phi_{k-1}, \Phi_{k-1} \rangle - b_k \langle \Phi_{k-1}, \Phi_{k-1} \rangle - c_k \langle \Phi_{k-2}, \Phi_{k-1} \rangle$ $0 = \langle \times \Phi_{k-1}, \Phi_{k-1} \rangle - b_k \langle \Phi_{k-1}, \Phi_{k-1} \rangle - 0$ $\Rightarrow b_{k} = \frac{\langle \chi \phi_{k-1}, \phi_{k-1} \rangle}{\langle \phi_{k-1}, \phi_{k-1} \rangle}$ Toxe the inner product of DK and Ox-2: $\langle \Phi_{\kappa}, \Phi_{\kappa-2} \rangle = \langle \chi \Phi_{\kappa-1}, \Phi_{\kappa-2} \rangle - b_{\kappa} \langle \Phi_{\kappa-1}, \Phi_{\kappa-2} \rangle - c_{\kappa} \langle \Phi_{\kappa-2}, \Phi_{\kappa-2} \rangle$ $C = \langle \chi \Phi_{\kappa-1}, \Phi_{\kappa-2} \rangle - C_{\kappa} \langle \Phi_{\kappa-2}, \Phi_{\kappa-2} \rangle$ \Rightarrow $C_{\nu} = \langle X \phi_{\nu-1}, \phi_{\nu-2} \rangle$ 5. One of the many formulas for computing the Chebychev polynomials $T_n(x)$ is $T_n(x) = \frac{1}{2} \left(z^n + \frac{1}{z^n} \right),$ where z is implicitly defined through x via $x = \frac{1}{2} \left(z + \frac{1}{z}\right)$. Confirm that the formula (2) indeed generates the same polynomials as the standard definition of the Chebychev polynomials. Hint: One way would be to verify that it produces the correct result for T_0 and T_1 and that $T_n(x) = \frac{1}{2} \left(z^n + \frac{1}{z^n} \right)$, where z is defined implicitly through x via $X = \frac{1}{2} \left(z + \frac{1}{z} \right)$ The standard 3-term recursion for the Chebyshev polynemials is defined as To = 1

															ı			,										
-	- s =	ı																										
	;																											
			2x.	T	(x) -	- T,	1-1 (X	7	⇒	7	- n+1	(X)	+	T _{n-1}	(r)	=	Z	? x	T_n	(x)								
G) 71ve	n t	forum	wa	(z) a:	5 c	ЦFi	red	a	bovi	ر د	ļu	upliz	it d	cfni	itron	of	X									
													/							^		レノ						
	2	そ	+	Z^+1	.) +	之	(Z	+	. 5	m)	=	1	· /z	? (Z	+ -	<u>.</u>) ·	2	(?	2.	† 7	z'n/						
	<u> </u>	2 ⁿ .	7 (. 7	2-N	₹ ⁻¹		≯^ .:	ر 2	7	-n - 7	1	=	Ī	12	· 7	<u>^</u>	(2 ⁿ		- (¬ ^{_h}		~ `\		.n7		
	_														_													
	$\frac{1}{2}$	2 ⁿ⁺¹	1	- (n Z	+1)+	₹^^	.1 +	- (2	n-1)	7	=	1/2	7	nrl	+ -	-(n	1+()	+	2	1-1	+ 2	- (·	n - 1)	7	V			
The	refo.	re,	for	mw	n (Z)	αS	g	lver	n ;	in	He	P	able	im	84	wa	rec	+ 71	ide	ed	Sei	3 -/s(7127		Hc		
8	land	'wd		3-	tern	n	reci	xrsi	on																			