REGULÁCIA BUNKOVÉHO CYKLU

Koordinácia bunkového delenia

- mnohobunkové organizmy potrebuje koordináciu bunkového cyklu medzi rôzne tkanivá a orgány
- o kritické pre normálny rast, vývoj a údržbu
 - koordinovať časovanie bunkového cyklu
 - o koordinovať posudzovanie bunkového cyklu
 - nie všetky bunky môžu mať rovnaký bunkový cyklus

Bunkový cyklus : bunky zdvojnásobia ich obsah a rozdelia sa

Dôkazy o zrážaní (alebo mitóze). Podpora faktora (MPF) - Masui et al. 1971

Cyklus delenia buniek (cdc) mutantov v kvasinkách (neskoršie 1980)

- Hartwell (Nobelova cena, 2001) a kolektív pracovali s rastúcimi kvasinkami S. cerevisiae
 - nájdené mutanty citlivé na teplotu sa zastavili v nejakom bode bunkového cyklu
- Surse (Nobelova cena, 2001) a kolektív pracovali so štiepnými kvasinkami S. pombe

- Nájdený gén, nazývaný cdc2, nevyhnutný na prechod G2 (kontrolný bod)
- cdc2 sa ukázala ako nová proteínová kináza cyklín dependentná kináza (Cdk)
 so všetkými náprotivkami eukaryotických buniek.

Cyclins & Cdks

Signály faktora rastu

Erytropoetín (EPO)

- hormón produkovaný obličkami, ktorá podporuje tvorbu červených krviniek v kostnej dreni
- Obličky, ktoré tvoria EPO, sú špecializované a citlivé na nízky obsah kyslíka v krvi. Tieto bunky uvoľňujú EPO keď je hladina kyslíka v obličkách nízka. EPO potom stimuluje kostnú dreň produkujú viac červených krviniek a tým zvyšujú kapacitu krvi v kyslíku.

Frekvencia bunkového delenia

Frekvencia rozdelenia buniek sa mení podľa typu bunky:

- ➤ EMBYRO
- o bunkový cyklus <20 minút
- ➤ KOŽNÉ BUNKY
- o 12-24- hodinový cyklus
- o často sa rozdeľujú počas celého života
- ➤ PEČEŇOVÉ BUNKY
 - ponechali si schopnosť delenia ale uchovávajú to v rezerve
 - delia sa raz za rok alebo dva
- ZRELÉ NERVOVÉ BUNKY A SVALOVÉ BUNKY
- o po zrelosti sa vôbec nedelia
- o natrvalo v G₀ fáze

Bunkový cyklus môže byť rozdelený do 4 fáz

INTERFÁZA

- o 90% životného cyklu buniek
- o bunka robí svoju "každodennú prácu"
- produkuje RNA, syntetizuje proteíny / enzýmy
- o pripravuje sa pre duplikáciu, ak je spustená

Rozdelené na tri fázy:

1.) $G_1 - 1$. fáza (rast)

- bunka robí svoju každodennú prácu
- bunka rastie

2.) S – fáza – syntéza DNA

- kopíruje chromozómy
- duplikuje centrioly

3.) G₂ fáza – 2. fáza (rast)

- príprava na rozdelenie
- bunka rastie viac
- vyrába proteíny, organely, membrány

Progresia bunkového cyklu je regulovaná spätnou väzbou od intracelulárnych udalostí

SIGNÁLY BUNKOVÉHO CYKLU

Kontroly bunkového cyklu

Cykliny

- regulačné proteíny
- úrovne cyklu v bunke

Cdks

- cyklín-dependentné kinázy
- fosforyluje bunkové proteíny
 - o aktivuje alebo deaktivuje proteiny

komplex Cdk-cyklin

• spúšťa prechod cez rôzne etapy bunkového cyklu

Cyklín-dependentné proteínové kinázy riadia progresie bunkového cyklu

- Cyklín-dependentné kinázy (Cdks) sú neaktívne, ak nie sú viazané na cyklíny
- aktívny komplex fosforylátov nadväzujúcich cieľov
- Cyklin pomáha nasmerovať Cdks na cieľové proteíny

Bunková hladina (mitotického) M-cyklínu stúpa a klesá počas bunkového cyklu

- M-cyklínové hladiny sú nízke počas interfázy, ale postupne zvyšuje sa na maximálnu úroveň počas mitózy
- Aktivita M-cdk je podobne nízka v interfáze, ale zvyšuje sa v mitóze

Bunkové hladiny cyklínov počas bunkového cyklu

Množstvo cyklínov (a aktivita Cdks) je regulovaná degradáciou proteínov

M-cyklín sa stáva kovalentne modifikovaný pridaním viacnásobných kópií ubikvitínu na konci mitózy

- Ubiqutinácia je sprostredkovaná komplexom podporujúcim anafázu (APC)
- Ubiquitácia označuje cyklíny na ničenie veľkými proteolytickými strojmi nazývaný proteazóm

Cdks sú tiež regulované cykly fosforyláciu a defosforyláciu

Cdk sa aktivuje nepriamo pozitívnym spôsobom - spätnou väzbou

Rozličné cyklíny sa spájajú s odlišnými Cdks na spúšťajú rôzne udalosti bunkového cyklu

S-Cdk spúšťa replikáciu DNA - jej zničenie zabezpečuje stane sa to raz za bunkový cyklus

Kontrolné body zabezpečujú pokračovanie bunkového cyklu bez chýb

Figure 17-21 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Kontrolné body - pRB-retinoblastóm proteín

- o pomenovaný tak preto, že v rakovine retinoblastómu oboje alely génu sú mutované, takže nie je žiadny proteín produkovaný
- o pRb zabraňuje rozdeľovaniu alebo postupovaniu bunky prostredníctvom bunkového cyklu, keď je DNA poškodená.
- Kontrola sa vyskytuje pri S (fáza syntézy DNA), pretože pRb viaže a inhibuje transkripčné faktory E2F rodiny
- Keď je pRb v tejto úlohe neúčinná, zmutované bunky môžu pokračovať v rozdelení a môžu sa stať rakovinovými

Kontrolné body - pRB-retinoblastóm proteín - faktory E2F

Family members					Legend
E2F1	сус А	DNA	DP1,2	TA PB	
E2F2	cyc A	DNA	DP1.2	TA PB	
E2F3a	cy	CA DNA	DP1,2	TA PB	I
	-				cyc A - Cyclin A binding domain
E2F3b	cyc A DNA DP1,2 TA DR			TA PB	DNA - DNA-binding domain
E2F4	DNA	DP1,2		TA PB	• DP1,2 - domain for dimerization with DP1, 2
E2F5	DNA	DP1,2	TA	PE	TA - transcriptional activation domain
E2F6	DNA	DP1.2			PB - pocket protein binding domain
CETO					
E2F7	DNA	DNA			
E2F8	DNA	DNA			

Kontrolné body - proteín p53

Kontrolný bod: poškodenie DNA zastavuje bunkový cyklus v G1

Kontrolný bod: zostava vretena:

Mitóza nesmie byť ukončená, pokiaľ niesú všetky chromozómy pripojené k mitotickému vretenu

Mitotický kontrolný bod oneskoruje metafázu na anafyzový prechod do všetkých pripojených chromozómov

Dlhodobá aktivácia kontrolného bodu -> bunková smrť

Mechanizmus mnohých protinádorových liekov

Kontrolné body bunkového cyklu

Zvieracie bunky vyžadujú extracelulárny signály na rozdelenie, rast a prežitie:

Mitogény - stimulujú bunkové delenie prekonaním bunkového cyklu - "brzda", ktorá vedie k G_0

Faktory rastu - stimulácia rastu (zvýšená veľkosť buniek) o podpora syntézy a inhibície degradácie makromolekuly

Faktory prežitia - potlačenie apoptózy

Mitogény stimulujú šírenie inhibíciu proteínu Rb

Rastové faktory zvyšujú syntézu a pokles degradácie makromolekúl

Bunky sa môžu stiahnuť z bunkového cyklu a demontovať regulačný mechanizmus

G0 je pokojový stav

- Cdks a cyklíny zmiznú
- Niektoré bunky sú v G0 dočasne a rozdeľujú sa zriedkavo (hepatocyty)
- Iné diferencované bunkové typy (neuróny) strávia svoj život v G0

Apoptóza: potreba bunkovej smrti v mnohobunkových organizmoch

Embryonálna morfogenéza

- Zabíjanie imunitnými efektorovými bunkami
- Zapojenie rozvíjajúceho sa nervového systému
- Regulácia životaschopnosti buniek hormónmi a rastovými faktormi (väčšina buniek zomrie, ak nedostanú signály prežitia iné bunky)

Vývojovo regulovaná apoptóza

apoptóza vs. nekróza

NEKRÓZA

© Elsevier. Pollard et al: Cell Biology 2e - www.studentconsult.com

APOPTÓZA

0

Kaspázy sú špecializované proteázy ktoré sprostredkovávajú apoptózu

procaspase activation active by cleavage caspase large subunit small NH₂ NH₂ subunit 111111 cleavage sites **CLEAVAGE** 11111 СООН соон active caspase inactive prodomains procaspases Figure 18-5a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Apoptóza je sprostredkovaná intracelulárna proteolytická kaskáda

Bcl-2 rodina proteínov reguluje vnútornou cestou apoptózy

Faktory prežitia potláčajú apoptózu reguláciu Bcl-2 proteínov

Rakovina a bunkový rast

Rakovina je v podstate zlyhanie riadenia bunkového delenia

■ neobmedzený, nekontrolovaný rast buniek

Akú kontrolu stratíte?

- Stratia kontrolný bod
- o Gén p53 hrá kľúčovú úlohu v obmedzení G1 / S bod
- o proteín p53 zastaví bunkové delenie, ak detekuje poškodenú DNA
- o možnosti:
 - stimuluje opravné enzýmy na fixáciu DNA
 - vytláča bunku do G0
- o pokojná fáza
 - udržuje bunku v zástave G1
 - spôsobuje apoptózu poškodenej bunky

Všetky typy rakoviny musia ukončiť aktivitu p53

Vývoj rakoviny

Rakovina sa vyvíja až po tom, čo bunka zažije ~ 6 kľúčových mutácií ("hitov")

- o neobmedzený rast
 - Zapnuté gény stimulujúce rast
- o ignorovať kontrolné body
 - vypnuté gény na potlačenie nádorov (p53)
- úniková apoptóza
 - vypnutie samovražedných génov
- o nesmrtel'nost' = neobmedzené rozdelenie
 - zapnuté gény pre údržbu chromozómov
- o podporuje rast krvných ciev
 - zapnuté gény rastu krvných ciev
- o prekonať závislosť od ukotvenia a hustoty

- vypnutie génu snímača dotyku

NÁDORY

Masa abnormálnych buniek

> Benígny nádor

- abnormálne bunky zostávajú v pôvodnom mieste ako hruda
- p53 zastavil delenie buniekω
- väčšina nespôsobuje vážne problémy & môže byť odstránená operáciou

> Zhubný nádor

- bunky opúšťajú pôvodnú lokalitu
- prichádzajú o pripojenie k blízkym bunkám
- prenášané krvou a lymfatickým systémom do iných tkanív
- viac nádorov = metastáz----- poškodenie funkcií orgánov v celom rozsahu tela