Задание по курсу "ВвЧМ 24/25": Приближение функций

Павел Васильев, 213 группа

Декабрь 2024

1 Постановка задачи

Интерполяция - это способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Интерполяция использует значения некоторой функции, заданные в ряде точек, чтобы предсказать значения функции между ними. Перечисленные ниже методы предназначены для создания ряда с более высокой частотой наблюдений на основе ряда с низкой частотой. Например, вычислить ряд с квартальной динамикой на основе ряда годовых данных.

Многие задачи машинного обучения можно сформулировать через интерполяцию "неизвестной" функции [1, 2]

Различные методы численного приближения и их теоретические обоснования можно найти в [3]

1.1 Условия задачи

Построить полином Лагранжа для следующих функций $f_i(x)$ на отрезке $x \in [-2,0]$:

1.
$$f_1(x) = T_5(x)$$
, где $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$, $T_1(x) = x$, $T_0(x) = 1$

2.
$$f_2(x) = |\cos(5x)|e^{-x/2}$$

В качестве узлов интерполяции выбрать узлы равномерной на [-2,0] сетки для количества узлов n=3,5,9,17. Исследовать сходимость интерполяции. Найти максимальное отклонение $\max |P_n(x)-f_i(x)|$ на равномерной сетке из 1001 узла. Построить графики исходных функций и их интерполянтов.

Подобрать более эффективный метод приближения функции для второй задачи.

2 Используемые численные методы

В решении были использованы методы приближения многочленами Лагранжа и кубическими сплайнами.

Приближение многочленами Лагранжа. В [3] представлено теоретическое обоснование данного метода, в частности, доказана теорема о приближении (n+1)-раз дифференцируемой функции.

Теорема 1 Пусть $f \in C^{(n+1)}[a,b]$. Тогда

$$f(x) - L_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \,\omega(x), \quad \omega(x) = \prod_{k=0}^{n} (x - x_k), \tag{1}$$

 $e \partial e$

$$\min\{x, x_0, \dots, x_n\} < \xi(x) < \max\{x, x_0, \dots, x_n\}.$$
 (2)

Как будет видно, требование дифференцируемости здесь существенно, потому что иначе функция может и вовсе не приближаться полиномом.

Приближение кубическими сплайнами. В [3] также представлен метод приближение сплайнами. Сплайн представляет собой кусочно заданный полином.

Определение 2.1 (Естественный сплайн) *Кубический сплайн, обладающий* следующим свойством

$$S''(x_0) = S''(x_n) = 0, (3)$$

называется естественным сплайном.

Теорема 2 Естественный сплайн существует и единственен.

Обозначим

$$h_k = x_k - x_{k-1} \tag{4}$$

Теорема 3 Пусть $1 \le j \le 4$ и $f \in C^j[a,b]$. Тогда

$$||f - S_n||_{C[a,b]} = O(h^j), \quad h \equiv \max_k h_k.$$
 (5)

Таким образом, мы можем приближать функцию сплайнами, тогда нам становится проще бороться с негладкими функциями, если мы выберем точки разбиения там, где производная не существует.

3 Результаты

3.1 Приближение многочленами Лагранжа

3.2 Приближение сплайнами

3.3 Почему так?

Как видим, первый способ позволяет довольно просто интерполировать многочлен, но ломается, когда мы пытаемся приблизить вторую функцию, но можно обратить внимание, что проблема возникает на границах (вблизи x=-2 и x=0), в остальном же функция приближается.

Метод приближения сплайнами позволяет обойти первый метод, когда уже при сетке из 12 точек, мы в разы улучшаем метрику.

Можно ещё заметить на рис.3, что при увеличении числа точек сетки, у нас возникают проблемы на границе, даже у полиномиальной функции, скорее всего из-за потери точности при множественных умножениях/делениях при нахождении коэффицентов полинома.

3.4 Программная реализация

Данные численные методы реализованы на языке Python с использованием NumPy, matplotlib.

 ${\it Kog}$ хранится в репозитории: ${\it https://github.com/GoodDay-lab/practicum-numerical-method}$

4 Выводы

Таким образом, в ходе выполнения задания был реализован метод приближения полиномами Лагранжа и сплайнами. Было отмечено и теоретически доказано, что полиномы Лагранжа могут эффективно приближать функции $f \in C^n[a,b]$, давая достаточно хорошую оценку. При этом совершенно неопределено поведение для негладких функций, и как мы видим, их они могут и вовсе не приближать. В таком случае можно использовать приближение сплайнами

- кусочно-полиномиальными функциями. В этом случае оценка становится в разы лучше для негладких функций.

5 Библиография

- 1. Хайкин С. "Нейронные сети. Полный курс", стр.82
- 2. (url: https://education.yandex.ru/handbook/ml/article/mashinnoye-obucheniye)
- 3. Тыртышников Е.Е. "Методы численного анализа", гл.12,13,14