USE IT OR LOSE IT: EFFICIENCY GAINS FROM WEALTH TAXATION

Fatih Guvenen

Gueorgui Kambourov

Burhan Kuruscu

Minnesota and NBER

Toronto

Toronto

Sergio Ocampo

Daphne Chen

Minnesota

Econ One

TAXING CAPITAL

Introduction

•00000

- ► **Question:** How does taxing income flow from capital differ from taxing stock of capital?
 - Capital income tax: $a_{after-tax} = a + (1 \tau_k) \times ra$
 - Wealth tax: $a_{\text{after-tax}} = (1 \tau_a) \times a + (1 \tau_a) \times ra$

TAXING CAPITAL

Introduction •00000

- ▶ Question: How does taxing income flow from capital differ from taxing stock of capital?
 - **Capital income tax:** $a_{\text{after-tax}} = a + (1 \tau_k) \times ra$
 - Wealth tax: $a_{\text{after-tax}} = (1 \tau_a) \times a + (1 \tau_a) \times ra$
- **Standard Answer:** The two taxes are equivalent with $\tau_a = \frac{r\tau_k}{1+r}$... assuming *r* is the same for all individuals.
- ► **This Paper:** Take heterogeneity in r seriously **and** compare the two ways of taxing capital.
 - **Short Answer:** The two taxes have very different—sometimes opposite—implications.

000000

Two Motivations for "Heterogeneous Returns"

- Increasing evidence of large and persistent differences in returns across households:
 - FAGERENG, ET AL (2016), Smith, Yagan, Zidar, Zwick (coming soon)

TWO MOTIVATIONS FOR "HETEROGENEOUS RETURNS"

- Increasing evidence of large and persistent differences in returns across households:
 - FAGERENG, ET AL (2016), Smith, Yagan, Zidar, Zwick (coming soon)
- US wealth distribution extremely concentrated. So:
 - Top 1% pay 44% of capital taxes. Top 10% pay 79% of capital taxes.
 - But generating features of this wealth distribution is hard:
 - ► Data: Top 1% hold 35–40% (Models: 8–10%)
 - Data: Top 10% hold 75–80% (Models: 35–40%)
 - US billionaires: 54% are self made.
 - ► In most models that match top 1% share: nobody with more than \$10M wealth
 - Even when generated, it takes many many (10+) generations to produce them

Two Motivations for "Heterogeneous Returns"

- Increasing evidence of large and persistent differences in returns across households:
 - FAGERENG, ET AL (2016), Smith, Yagan, Zidar, Zwick (coming soon)
- ② US wealth distribution extremely concentrated. So:
 - Top 1% pay 44% of capital taxes. Top 10% pay 79% of capital taxes.
 - But generating features of this wealth distribution is hard:
 - ► Data: Top 1% hold 35–40% (Models: 8–10%)
 - Data: Top 10% hold 75–80% (Models: 35–40%)
 - US billionaires: 54% are self made.
 - In most models that match top 1% share: nobody with more than \$10M wealth
 - Even when generated, it takes many many (10+) generations to produce them
 - Models with return heterogeneity can generate these facts.

000000

RETURN HETEROGENEITY: SIMPLE EXAMPLE

- One-period model.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- Government taxes to finance G = \$50.
 - Tax collected end of period.

RETURN HETEROGENEITY: SIMPLE EXAMPLE

- One-period model.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- Government taxes to finance G = \$50.
 - Tax collected end of period.
- Key heterogeneity: investment/entrepreneurial ability
 - (Fredo) Low ability: earns $r_f = 0\%$ net return
 - (Mike) High ability: earns $r_m = 20\%$ net return.

CAPITAL INCOME VS. WEALTH TAX

Introduction

000000

	Capital income tax	Wealth tax
	$W_{\text{after-tax}} = a + (1 - \tau_k) ra$	$W_{\text{after-tax}} = (1 - \tau_a)a + (1 - \tau_a)ra$
Wealth		
Before-tax Income		
Tax liability		
After-tax return		
After-tax $\frac{W_m}{W_f}$		

After-tax $\frac{W_m}{W_{\epsilon}}$

Wealth tax Capital income tax $W_{\text{after-tax}} = a + (1 - \tau_k) ra$ $W_{\text{after-tax}} = (1 - \tau_a)a + (1 - \tau_a)ra$ Fredo Mike $(r_f = 0\%)$ $(r_m = 20\%)$ Wealth 1000 1000 0 200 Before-tax Income $\tau_k = \frac{50}{200} = 25\%$ Tax liability 50 0 $\frac{200-50}{1000} = 15\%$ After-tax return 0%

1150/1000 = 1.15

000000

CAPITAL INCOME VS. WEALTH TAX

	Capital	l income tax	Weal	th tax	
	$W_{\text{after-tax}} = a + (1 - \tau_k)ra$		$W_{\text{after-tax}} = (1 -$	$(\tau_a)a + (1 - \tau_a)ra$	
	Fredo	Mike	Fredo	Mike	
	$(r_f=0\%)$	$(r_m = 20\%)$	$(r_f = 0\%)$	$(r_m = 20\%)$	
Wealth	1000	1000	1000	1000	
Before-tax Income	0 200		0	200	
	$\tau_k =$	$\frac{50}{200} = 25\%$	$\tau_a = \frac{50}{2200} \approx 2.27\%$		
Tax liability	0	50	$1000\tau_a = 22.7$	$1200\tau_a = 27.3$	
After-tax return	0%	$\frac{200-50}{1000} = 15\%$	$-\frac{22.7}{1000} = -2.3\%$	$\frac{200-27}{1000} = 17.3\%$	
After-tax $\frac{W_m}{W_f}$	1150/	1000 = 1.15	1173/977 ≈ 1.20		

SIMPLE EXAMPLE: REMARKS

- Replacing capital income tax with wealth tax increases dispersion in after-tax returns.
- Potential effects:
 - Positive (+): Efficiency gain
 - (Static): Wealth taxes alleviate misallocation Capital is reallocated (mechanically) to more productive agents.
 - ② (Dynamic): If savings rates respond to changes in returns, this could further increase reallocation of capital toward more productive agents.
 - Negative (-): Increased wealth inequality (but: ambiguous effect on consumption inequality when wage income present).

MODEL

Households

- OLG demographic structure.
- Individuals face mortality risk and can live up to H years (ϕ_h : unconditional probability of survival).
- Accidental bequests are inherited by (newborn) offspring.
- ► Each individual supplies labor in the market and produces a differentiated intermediate good using her capital (wealth) and borrowing from the credit market.
 - Labor market efficiency has a life-cycle, permanent, and a stochastic component.
- ► Individuals maximize $\mathbb{E}_0\left(\sum_{h=1}^H \beta^{h-1} \phi_h u(c_h, \ell_h)\right)$

ENTREPRENEURIAL PRODUCTIVITY

Key source of heterogeneity: in entrepreneurial ability z_i .

▶ Household i produces x_{ih} units of intermediate good i according to

$$x_{ih} = z_{ih} k_{ih},$$

where z_{ih} is idiosyncratic entrepreneurial ability and k_{ih} is capital.

ENTREPRENEURIAL PRODUCTIVITY

Key source of heterogeneity: in entrepreneurial ability z_i .

▶ Household i produces x_{ih} units of intermediate good i according to

$$x_{ih} = z_{ih} k_{ih},$$

where z_{ih} is idiosyncratic entrepreneurial ability and k_{ih} is capital.

 \triangleright z_{ih} has a permanent (z_i^p) and a stochastic (\mathbb{I}_{ih}) component:

$$z_{ih} = f(z_i^p, \mathbb{I}_{ih})$$

 $\mathbf{z}_{:}^{p}$ is constant over the lifecycle and inherited imperfectly:

$$\log(z_{child}^{p}) = \rho_{z} \log(z_{parent}^{p}) + \varepsilon_{z}.$$

 \blacksquare \mathbb{I}_{ih} is governed by transition matrix Π_{z} .

Model 00000

Key source of heterogeneity: in entrepreneurial ability z_i .

 \blacktriangleright Household i produces x_{ih} units of intermediate good i according to

$$x_{ih} = z_{ih} k_{ih},$$

where z_{ih} is idiosyncratic entrepreneurial ability and k_{ih} is capital.

 \triangleright z_{ih} has a permanent (z_i^p) and a stochastic (\mathbb{I}_{ih}) component:

$$z_{ih} = f(z_i^p, \mathbb{I}_{ih})$$

 $\mathbf{z}_{:}^{p}$ is constant over the lifecycle and inherited imperfectly:

$$\log(z_{child}^{p}) = \rho_{z} \log(z_{parent}^{p}) + \varepsilon_{z}.$$

- \blacksquare \mathbb{I}_{ih} is governed by transition matrix Π_{z} .
- ► *x_{ih}* is sold to the competitive final good producer with technology

$$Y = Q^{\alpha} L^{1-\alpha}$$
 where $Q = \left(\int_{i} x_{i}^{\mu} di \right)^{1/\mu}$ and L is aggregate labor.

ENTREPRENEURIAL ABILITY: STOCHASTIC COMPONENT

- ► The **lifecycle pattern of wealth accumulation** for the very rich matters greatly for the effects of wealth taxation:
 - steady accumulation of wealth: the rich today have high expected returns tomorrow.
 - Distortion is smaller. But wealthy are also more in favor of wealth taxation.
 - extremely fast growth followed by stagnation: rich today have low expected returns tomorrow.
 - Distortion is big. Wealthy are not supportive of wealth taxes.

ENTREPRENEURIAL ABILITY: STOCHASTIC COMPONENT

- ► The **lifecycle pattern of wealth accumulation** for the very rich matters greatly for the effects of wealth taxation:
 - steady accumulation of wealth: the rich today have high expected returns tomorrow.
 - Distortion is smaller. But wealthy are also more in favor of wealth taxation.
 - extremely fast growth followed by stagnation: rich today have low expected returns tomorrow.
 - Distortion is big. Wealthy are not supportive of wealth taxes.
- ► So, we consider a process that can nests both scenarios.

HOUSEHOLD'S PROBLEM

- ▶ Households choose consumption, labor and capital for production.
- ► Households can **borrow** up to a limit to finance their production: $k \le \vartheta(z) \times a$
- Borrowing capacity is nondecreasing in ability: $d\vartheta(z)/dz \ge 0$
- ► Households can **lend** at interest rate *r*, determined in equilibrium (zero net supply).

00000 HOUSEHOLD'S PROBLEM

Model

- Households choose consumption, labor and capital for production.
- Households can borrow up to a limit to finance their production: $k \leq \vartheta(z) \times a$
 - Borrowing capacity is nondecreasing in ability: $d\theta(z)/dz \ge 0$
- ▶ Households can **lend** at interest rate r, determined in equilibrium (zero net supply).
- Household's budget is:

$$(1+\tau_c)c + a' = \Pi(a,z;\tau) + \begin{cases} (1-\tau_\ell)(wy_h n) & \text{working life} \\ y_R(\theta,\eta) & \text{retirement} \end{cases}$$

and $a' \ge 0$ at all ages.

After-tax wealth:

$$\Pi(a,z;\tau_k) = a + [ra + \pi^*(a,z)](1-\tau_k) \quad \text{under capital income tax}$$

$$\Pi(a,z;\tau_a) = [(1+r)a + \pi^*(a,z)](1-\tau_a) \quad \text{under wealth tax}$$

PARAMETRIZATION

CALIBRATION: ENTREPRENEURIAL PRODUCTIVITY

- Permanent component (z^p) follows an AR(1):
 - $\rho_z = 0.1$ is set based on Fagereng et al (2016) for Norway. (We have also experimented with values up to 0.5)
 - $\sigma_{\varepsilon_z} = 0.072$ is chosen to match 36% wealth share of top 1% richest.

CALIBRATION: ENTREPRENEURIAL PRODUCTIVITY

- ▶ Permanent component (z^p) follows an AR(1):
 - $\rho_z = 0.1$ is set based on Fagereng et al (2016) for Norway. (We have also experimented with values up to 0.5)
 - σ_{ε_z} = 0.072 is chosen to match 36% wealth share of top 1% richest.
- ▶ Stochastic component (\mathbb{I}_{ih}) is chosen to match:
 - 1 The fraction of Forbes 400 rich that are self-made (54%, we get 50%)
 - 2 The life cycle pattern of wealth accumulation for Forbes 400 (still in progress). FORBES 400 (CIVALE AND DIEZ-CATALÁN (2016))
 - The calibrated process allows entrepreneurs to have extremely fast wealth growth followed by stagnation.

PARETO TAIL ($\mu = 0.9$)

Quantitative Results

1. Tax Reform

Replace capital income taxes with wealth taxes so as to keep government revenue constant.

1. Tax Reform

► Replace capital income taxes with wealth taxes so as to keep government revenue constant.

	Benchmark	Wealth Tax
τ_k	25.0%	0.00
$ au_a$	0.00	1.13%

Note:

► In all experiments, we keep the **pension benefits fixed** at the baseline values.

TAX REFORM: WEALTH DISTRIBUTION

TABLE: Benchmark vs. Wealth Tax Economy

	US Data	Benchmark	Wealth Tax
Top 1%	0.36*	0.36	0.46
Capital/Output	3.00*	3.00	3.25 1.07%
Bequest/Wealth	1–2%	0.99%	
$\sigma(\log(\text{Earnings}))$	0.80*	0.80	0.80
Avg. Hours	0.40*	0.40	0.41

TAX REFORM: WEALTH DISTRIBUTION

TABLE: Benchmark vs. Wealth Tax Economy

	US Data	Benchmark	Wealth Tax
Top 1%	0.36*	0.36	0.46
Capital/Output	3.00*	3.00	3.25 1.07%
Bequest/Wealth	1–2%	0.99%	
$\sigma(\log(\text{Earnings}))$	0.80*	0.80	0.80
Avg. Hours	0.40*	0.40	0.41

	\overline{k}	Q	W	Y	L	С	
% Change	19.4	24.8	8.7	10.1	1.3	10.0	

RATE OF RETURN HETEROGENEITY

TABLE: Benchmark vs. Wealth Tax Economy

	Percentiles of Return Distribution (%)								
	P10 P50 P90 P95 P99								
		Before-tax							
Benchmark	2.00	2.00	17.28	22.35	42.36				
Wealth tax	1.74	1.74	14.62	19.04	36.91				
	After-tax								
Benchmark	1.50	1.50	12.96	16.76	31.77				
Wealth tax	0.59	0.59	13.32	17.69	35.35				

Welfare Analysis: Two Measures

- CE₁: Compute individual specific consumption equivalent welfare and integrate.
- CE₂: Fixed proportional consumption transfer to all individuals in the benchmark economy.

Welfare Analysis: Two Measures

- ► *CE*₁: Compute individual specific consumption equivalent welfare and integrate.
- CE₂: Fixed proportional consumption transfer to all individuals in the benchmark economy.

	Base	eline	Baseline + SS		
	$\overline{\textit{CE}}_1$	\overline{CE}_2	$\overline{\textit{CE}}_1$	Œ ₂	
Av. CE for newborns	7.49% 7.86%		5.58%	4.71%	
Av. CE (all population)	3.14% 5.14%		4.95%	4.10%	
% in favor of reform		67.8%		94.8%	

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>Z</i> ₆	<i>Z</i> 7	<i>Z</i> 8	<i>Z</i> 9
20–25	7.3	7.2	6.8	6.8	7.4	8.8	10.5	11.1	10.7
25–34	7.0	6.9	6.4	6.0	5.9	6.0	5.9	3.7	1.2
35–44	6.1	6.0	5.4	4.9	4.3	3.3	1.4	-1.7	-4.3
45–54	4.6	4.5	4.1	3.5	2.8	1.7	-0.5	-3.1	-5.2
55–64	1.9	1.9	1.6	1.3	0.9	0.0	-1.6	-3.5	-5.3
65–74	-0.3	-0.3	-0.4	-0.5	-0.6	-1.0	-2.1	-3.4	-4.7
75+	-0.1	-0.1	-0.1	-0.1	-0.1	-0.4	-1.0	-1.9	-2.7

Note: Each cell reports the average of $CE_1(\theta,z,a,h) \times 100$ within each age and productivity group

2. Optimal Taxation

TWO OPTIMAL TAX PROBLEMS

Compare:

- (linear) labor taxes and capital income taxes
- 2 (linear) labor taxes and wealth taxes.

The government maximizes ex ante (expected) lifetime utility of newborns.

Then analyze:

► Benchmark vs. Optimal tax (either capital income or wealth)

WELFARE CHANGE: OPTIMAL TAXES

WELFARE CHANGE: OPTIMAL TAXES

WELFARE CHANGE: OPTIMAL TAXES

WEALTH TAXES - DISTORTIONS AND MISALLOCATION

▶ Wealth tax reduces \overline{k} **less** than capital income tax.

WEALTH TAXES - DISTORTIONS AND MISALLOCATION

 \overline{Q} , declines **less** than \overline{k} under wealth taxes. Opposite under capital income taxes.

Baseline

	τ_k	$ au_\ell$	$ au_a$	\overline{k}/Y	\overline{CE}_2	Vote	
					(%)	(%)	
Benchmark	25%	22.4%	_	3.0	_	-	
Tax reform	_	22.4%	1.13%	3.25	7.86	67.8	
Opt. τ_k							
Opt. τ_a							
Opt. τ _a							
Threshold							

Baseline

	τ_k	$ au_\ell$	$ au_a$	\overline{k}/Y	\overline{CE}_2	Vote
					(%)	(%)
Benchmark	25%	22.4%	_	3.0	_	-
Tax reform	_	22.4%	1.13%	3.25	7.86	67.8
Opt. τ_k	-34.4%	36.0%	_	4.04	6.28	69.7
Opt. $ au_a$						
Opt. τ _a						

Threshold

Baseline

$ au_k$	$ au_\ell$	$ au_{a}$	\overline{k}/Y	\overline{CE}_2	Vote	
				(%)	(%)	
25%	22.4%	_	3.0	_	_	
_	22.4%	1.13%	3.25	7.86	67.8	
-34.4%	36.0%	_	4.04	6.28	69.7	
_	14.1%	3.06%	2.90	9.61	60.7	
	25%	25% 22.4% - 22.4% -34.4% 36.0%	25% 22.4% – – 22.4% 1.13% –34.4% 36.0% –	25% 22.4% - 3.0 - 22.4% 1.13% 3.25 -34.4% 36.0% - 4.04	25% 22.4% - 3.0 22.4% 1.13% 3.25 7.86 -34.4% 36.0% - 4.04 6.28	25% 22.4% - 3.0 - - - 22.4% 1.13% 3.25 7.86 67.8 -34.4% 36.0% - 4.04 6.28 69.7

Opt. τ_a

Threshold

Baseline

	$ au_k$	$ au_\ell$	$ au_{a}$	\overline{k}/Y	\overline{CE}_2	Vote	
					(%)	(%)	
Benchmark	25%	22.4%	_	3.0	_	_	
Tax reform	_	22.4%	1.13%	3.25	7.86	67.8	
Opt. τ_k	-34.4%	36.0%	_	4.04	6.28	69.7	
Opt. τ_a	_	14.1%	3.06%	2.90	9.61	60.7	
Opt. τ _a	_	14.2%	3.30%	2.86	9.83	78.9	
Threshold	<u>Thre</u>	$\frac{eshold}{\overline{E}} = 2$	5%	percent taxed = 63%			

COMPARISON TO EARLIER WORK

- Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.

COMPARISON TO EARLIER WORK

- ► Conesa et al (AER, 2009) study optimal capital income taxes in incomplete markets OLG model
 - with idiosyncratic labor risk
 - without return heterogeneity
 - and find optimal $\tau_k = 36\%$
 - increase in welfare of CE = 1.33%.
- Why do we find optimal smaller τ_k or negative (but a large τ_w)?
 - In both Conesa et al and in our model, higher τ_k reduces capital accumulation and leads to lower output.
 - However, in our model, higher τ_k hurts productive agents disproportionately, leading to more misallocation, and further reductions in output.
 - With wealth tax, the tax burden is shared between productive and unproductive agents, leading to smaller misallocation and lower declines in output with τ_a .

PREVIEW OF EXTENSIONS WE HAVE STUDIED

- Progressive labor income taxes (Reform & Optimal)
- Progressive wealth taxes–flat tax, single threshold (Optimal)
- Unlimited borrowing (Reform & Optimal)
- Unlimited borrowing, with $R^{\text{borrow}} \gg R^{\text{save}}$ (Optimal)
- 6 Log utility (Reform and Optimal)
- 6 $z_{ih} = z_i^p$ at all ages (Reform & Optimal)
- $\mu = 0.8$ (Reform & Optimal)
- Estate taxes, calibrated (Reform & Optimal in progress)
- Consumption taxes (Optimal in progress).
- Some more extensions...

Summary: The substantive conclusions presented next are robust to these extensions.

CONCLUSIONS AND CURRENT WORK

- Many countries currently have or have had wealth taxes:
 - France, Spain, Norway, Switzerland, Italy, Denmark, Germany, Finland, Sweden, among others.

Conclusions

- However, the rationale for such taxes are often vague:
 - fairness, reducing inequality, etc... and not studied formally
- ► Here, we are proposing a case for wealth taxes based on efficiency and quantitatively evaluating its impact.
 - Wealth taxes reallocate capital from less productive wealthy to the more productive wealthy.
 - Welfare gains are substantial.

Thanks!

Robustness

TAX REFORM: AGGREGATES

% Change	Baseline	No Shock	No Const.	Prog. Labour Tax
\overline{k}	19.37	9.56	6.28	21.27
Q	24.79	22.37	6.28	25.61
W	8.70	7.66	2.10	9.25
Y	10.10	9.54	3.02	10.01
L	1.28	1.75	0.91	0.69
С	10.01	11.25	2.93	10.01

TAX REFORM: WELFARE

	Baseline	No Shock	No Const.	Prog. Labour Tax
Wealth Tax Rate	1.13%	1.23%	1.65%	0.90%
CE ₁ (All)	3.14	2.29	0.44	2.79
CE_1 (NB)	7.40	5.46	1.86	6.48
CE_2 (All)	5.14	2.92	0.36	4.68
CE_2 (NB)	7.86	5.36	1.43	7.06

OPTIMAL TAXES

	τ_k	$ au_\ell$	$ au_{a}$	Top 1%	<u>CE</u> ₂ (%)
Baseline	25%	22.4%	-	0.36	
Opt. τ_k	-34.4%	36.0%	-	0.56	6.28
Opt. τ_a	_	14.1%	3.06%	0.47	9.61
No Shock					
Opt. τ_k	-2.33%	29.0%	_	0.47	3.27
Opt. τ_a	_	18.5%	2.21%	0.46	5.80
No Constraint					
Opt. τ_k	13.6%	26.0%	-	0.39	0.41
Opt. τ_a	_	22.7%	1.57%	0.42	1.43

OPTIMAL TAXES

	τ_k	$ au_a$	$ au_\ell$	ψ	Top 1%	<i>CE</i> ₂ (%)
Baseline						
Opt. τ_k	-34.4%	-			0.56	6.28
Opt. τ_a	_	3.06%			0.47	9.61
Prog. Lab. Tax						
Benchmark	25%	_	15.0%	0.185	0.36	_
Tax reform	_	0.90%	15.0%	0.185	0.67	7.06
Opt. τ_k	-38.8%	-	29.3%	0.280	0.61	9.31
Opt. τ _a	_	2.40%	12.7%	0.280	0.53	10.71

TABLE: Wealth Concentration by Asset Type

	Stocks	All stocks	Non-equity	Housing	Net Worth
	w/o pensions	financial		equity	
Top 0.5%	41.4	37.0 24.2		10.2	25.6
Top 1%	53.2	47.7	32.0	14.8	34.0
Top 10%	91.1	86.1	72.1	51.7	68.7
Bottom 90%	8.9	13.9	27.9	49.3	31.3
			Gini Coef	ficients	
		Financ	ial Wealth		Net Worth
		0	.91	-	0.82

Source: Poterba (2000) and Wolff (2000)

	Calendar Year						
Name	80s	90s	00s	10s			
Warren Buffett	44.37	18.57	0.02	5.81			
Michael Dell		87.94	-5.58	2.97			
Larry Ellison	54.09	31.31	4.90	8.06			
Bill Gates	51.94	48.06	-7.54	5.46			
Elon Musk				107.57			
Larry Page			69.67	11.96			
Mark Zuckerberg		·	33.81	62.24			

- ► $1 + CE = (1 + CE_C)(1 + CE_L)$
- \triangleright *CE*_C is given by

$$V_0((1 + CE_C(s))c_{\text{US}}^*(s), \ell_{\text{US}}^*(s)) = \widetilde{V}_0(c(s), \ell_{\text{US}}^*(s))$$

■ CE_C can be decomposed into level $CE_{\overline{C}}$ and distribution component CE_{σ_C} as

$$V_0((1+CE_{\overline{C}}(\mathbf{s}))c_{\mathrm{US}}^*(\mathbf{s}),\ell_{\mathrm{US}}^*(\mathbf{s}))=\widehat{\mathbb{V}}_0(\widehat{c}(\mathbf{s}),\ell_{\mathrm{US}}^*(\mathbf{s}))$$

where
$$\widehat{c}(\mathbf{s}) = c(\mathbf{s}) \frac{\overline{c}}{\overline{c}_{US}^*}$$
 and

$$\widehat{\mathbb{V}}_0((1+CE_{\sigma_C})\widehat{c}(\mathbf{s}),\ell_{\mathrm{US}}^*(\mathbf{s})) = \widetilde{\mathbb{V}}_0(c(\mathbf{s}),\ell_{\mathrm{US}}^*(\mathbf{s}))$$

 \blacksquare *CE*_L is given by

$$V_0((1+CE_L(\mathbf{s}))c_{\mathrm{US}}^*(\mathbf{s}),\ell_{\mathrm{US}}^*(\mathbf{s})) = \widetilde{\mathbb{V}}_0(c_{\mathrm{US}}^*(\mathbf{s}),\ell(\mathbf{s}))$$

Similar decomposition applies to leisure.

Fraction with Positive Welfare Gain-Optimal Capital Inc. Tax

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>z</i> ₆	<i>Z</i> 7	<i>z</i> ₈	Z 9
20–25	0.96	0.95	0.95	0.98	0.99	0.99	0.99	0.99	0.99
25–34	0.97	0.97	0.96	0.98	0.97	0.96	0.94	0.90	0.85
35–44	0.95	0.94	0.92	0.95	0.93	0.88	0.80	0.68	0.58
45–54	0.88	0.88	0.86	0.89	0.85	0.78	0.66	0.53	0.43
55-64	0.68	0.67	0.68	0.72	0.69	0.62	0.52	0.41	0.31
65–74	0.09	0.05	0.14	0.22	0.22	0.21	0.18	0.15	0.11
75+	0.12	0.12	0.13	0.15	0.15	0.15	0.13	0.11	0.09

Fraction with Positive Welfare Gain-Optimal Wealth Tax

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>z</i> ₆	<i>Z</i> 7	<i>z</i> ₈	Z 9
20–25	0.97	0.97	0.95	0.93	0.93	0.94	0.93	0.90	0.87
25–34	0.98	0.98	0.96	0.93	0.90	0.86	0.77	0.59	0.43
35–44	0.97	0.97	0.94	0.87	0.80	0.66	0.48	0.35	0.27
45–54	0.93	0.93	0.88	0.79	0.68	0.55	0.42	0.32	0.25
55-64	0.73	0.72	0.67	0.59	0.51	0.41	0.33	0.25	0.19
65–74	0.00	0.02	0.01	0.02	0.01	0.01	0.01	0.00	0.00
75+	0.00	0.00	0.04	0.03	0.02	0.02	0.01	0.01	0.00

Frac. with Pos. Welfare Gain-Optimal Wealth Tax with Threshold

				Produ	<i>ictivity</i>	group			
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>z</i> ₆	<i>Z</i> 7	<i>z</i> ₈	Z 9
20–25	0.97	0.97	0.95	0.93	0.93	0.94	0.93	0.90	0.86
25–34	0.98	0.98	0.96	0.93	0.90	0.85	0.77	0.57	0.42
35–44	0.97	0.97	0.94	0.87	0.79	0.66	0.48	0.35	0.27
45-54	0.93	0.92	0.87	0.79	0.68	0.55	0.42	0.32	0.25
55-64	0.79	0.78	0.74	0.65	0.56	0.46	0.36	0.28	0.21
65–74	0.70	0.63	0.65	0.57	0.49	0.42	0.34	0.26	0.20
75+	0.93	0.92	0.90	0.84	0.78	0.68	0.55	0.43	0.34

		GKOS benchmark
	$\rho = 0.985, \sigma^2 = 0.0234$	Rich process
0.85	0.58	0.66
14.8%	1.1%	2.2%
0.4-0.5%	≈ 0	0.02%
35.5%	7.0%	9.2%
75.0%	37.9%	41.6%
87.0%	48.2%	52.8%
	14.8% 0.4–0.5% 35.5% 75.0%	0.850.58 14.8% 1.1% $0.4-0.5\%$ ≈ 0 35.5% 7.0% 75.0% 37.9%

U.S. Data	Gaussian	GKOS benchmark
	$\rho = 0.985, \sigma^2 = 0.0234$	Rich process
0.85	0.58	0.66
14.8%	1.1%	2.2%
0.4-0.5%	≈ 0	0.02%
35.5%	7.0%	9.2%
75.0%	37.9%	41.6%
87.0%	48.2%	52.8%
	0.85 14.8% 0.4–0.5% 35.5% 75.0%	$\rho = 0.985, \sigma^2 = 0.0234$ 0.85 0.58 14.8% 1.1% 0.4-0.5% ≈ 0 35.5% 7.0% 75.0% 37.9%

	U.S. Data	Gaussian	GKOS benchmark
Parametrization:		$\rho = 0.985, \sigma^2 = 0.0234$	Rich process
Gini	0.85	0.58	0.66

Top 0.1%	14.8%	1.1%	2.2%
Frac > \$10M	0.4-0.5%	≈ 0	0.02%
Top 1%	35.5%	7.0 %	9.2%
Top 10%	75.0%	37.9%	41.6%
Top 20%	87.0%	48.2%	52.8%

U.S. Data	Gaussian	GKOS benchmark
	$\rho = 0.985, \sigma^2 = 0.0234$	Rich process
0.85	0.58	0.66
14.8%	1.1%	2.2%
0.4-0.5%	≈ 0	0.02%
35.5%	7.0%	9.2%
75.0%	37.9%	41.6%
87.0%	48.2%	52.8%
	0.85 14.8% 0.4–0.5% 35.5% 75.0%	$\rho = 0.985, \sigma^2 = 0.0234$ $0.85 \qquad 0.58$ $14.8\% \qquad 1.1\%$ $0.4-0.5\% \qquad \approx 0$ $35.5\% \qquad 7.0\%$ $75.0\% \qquad 37.9\%$

RETURN HETEROGENEITY IN NORWAY

Figure 8. The Sharpe ratio and the level of wealth

LABOR MARKET PRODUCTIVITY

► Labor market efficiency of household *i* at age *h* is

$$\log y_{ih} = \underbrace{\kappa_h}_{\text{life cycle}} + \underbrace{\theta_i}_{\text{permanent}} + \underbrace{\eta_{ih}}_{\text{AR}(1)}$$

► Individual-specific labor market efficiency θ_i is imperfectly inherited from parents:

$$\theta_i^{\textit{child}} = \rho_\theta \theta_i^{\textit{parent}} + \varepsilon_\theta$$

COMPETITIVE FINAL GOOD PRODUCER

► Final good output is $Y = Q^{\alpha} L^{1-\alpha}$, where

$$Q = \left(\int_i x_i^{\mu} di\right)^{1/\mu}, \ \mu < 1,$$

and L is efficiency-adjusted aggregate labor input.

▶ Price of intermediate good *i* is

$$p_i(x_i) = \alpha x_i^{\mu-1} \times Q^{\alpha-\mu} L^{1-\alpha}.$$

Wage rate (per efficiency unit of labor) is

$$w = (1 - \alpha) Q^{\alpha} L^{-\alpha}.$$

Preferences:

$$u(c,\ell) = \frac{\left(c^{\gamma}\ell^{1-\gamma}\right)^{1-\sigma}}{1-\sigma}$$

BACK

PARAMETERS SET OUTSIDE THE MODEL

TABLE: Benchmark Parameters

Parameter		Value
Curvature of utility	σ	4.0
Curvature of CES aggregator of varieties	μ	0.90
Capital share in production	α	0.40
Depreciation rate of capital	δ	0.05
Interg. persistence of invest. ability	$ ho_{z^P}$	0.10
Interg. persistence of labor efficiency	$ ho_{ heta}$	0.50
Persistence of labor efficiency shock	$ ho_\eta$	0.90
Std. dev. of labor efficiency shock	$\sigma_{arepsilon_{\eta}}$	0.20

$$\tau_k = 25\%$$
, $\tau_\ell = 22.4\%$, and $\tau_c = 7.5\%$ (McDaniel, 2007)

LIFE CYCLE EVOLUTION OF ENTREPRENEURIAL ABILITY

- Over the life cycle, entrepreneurial ability evolves as follows:
 - $\mathbb{I}_{ih} \in \{H, L, 0\}$

$$z_{ih} = f(z_i^p, \mathbb{I}_{ih}) = \begin{cases} (z_i^p)^{\lambda} & \text{if } \mathbb{I}_{ih} = H \\ z_i^p & \text{if } \mathbb{I}_{ih} = L \\ z_{min} & \text{if } \mathbb{I}_{ih} = 0 \end{cases}$$
 where $x > 1$

with transition matrix:

$$\Pi_{z^s} = \left[\begin{array}{ccc} 1 - p_1 - p_2 & p_1 & p_2 \\ 0 & 1 - p_2 & p_2 \\ 0 & 0 & 1 \end{array} \right].$$

- \triangleright λ : degree of superstar returns.
- \triangleright p_1 : annual probability of losing superstar returns
- ▶ p_2 : annual probability of losing investment ability completely → become a passive saver.

CALIBRATION TARGETS AND OUTCOMES

- $\rho_{\overline{z}}$ = 0.1 is set based on Fagereng et al (2016) for Norway. (We have also experimented with values up to 0.5)
- We calibrate 4 remaining parameters $(\beta, \gamma, \sigma_{\varepsilon_{z^p}}, \sigma_{\varepsilon_{\theta}})$ to match 4 data moments:

TABLE: Benchmark Parameters Calibrated Jointly in Equilibrium

Parameter		Value	Moment	
Discount factor	β	0.948	Capital/Output	3.00*
Cons. share in <i>U</i>	γ	0.46	Avg. Hours	0.40^{*}
σ of entrepr. ability	$\sigma_{arepsilon_{z^p}}$	0.072	Top 1% share	0.36*
σ of labor fix. eff.	$\sigma_{arepsilon_{ heta}}$	0.305	$\sigma(\log(\text{Earn}))$	0.80^{*}

Other parameters (set outside the model): HERE

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>z</i> ₆	<i>Z</i> 7	<i>Z</i> 8	Z 9
20–25	0.98	0.98	0.96	0.96	0.97	0.97	0.97	0.97	0.94
25–34	0.99	0.99	0.98	0.97	0.95	0.94	0.89	0.78	0.59
35–44	0.98	0.98	0.97	0.95	0.91	0.84	0.67	0.45	0.34
45–54	0.96	0.96	0.93	0.90	0.84	0.71	0.54	0.41	0.31
55–64	0.77	0.77	0.73	0.70	0.64	0.53	0.42	0.32	0.24
65–74	0.00	0.06	0.06	80.0	0.09	80.0	0.06	0.04	0.03
75+	0.00	0.12	0.09	0.11	0.10	0.09	0.07	0.05	0.04

POLITICAL SUPPORT WITH RETIREES ON BOARD

				Produ	uctivity	group			
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>z</i> ₆	<i>Z</i> 7	<i>Z</i> 8	<i>Z</i> 9
20–25	0.97	0.97	0.95	0.94	0.96	0.97	0.97	0.96	0.94
25–34	0.98	0.98	0.96	0.95	0.94	0.93	0.88	0.77	0.59
35–44	0.98	0.98	0.96	0.93	0.90	0.83	0.67	0.45	0.34
45–54	0.98	0.98	0.96	0.93	0.89	0.78	0.60	0.46	0.35
55-64	0.99	0.98	0.97	0.95	0.92	0.81	0.65	0.50	0.38
65-74	1.00	1.00	0.99	0.98	0.96	0.87	0.71	0.56	0.43
75+	1.00	1.00	1.00	1.00	0.99	0.94	0.81	0.66	0.52

Welfare: Levels vs. Redistribution

FORMULA

	Tax Reform	Opt. τ_k	Opt. τ _a
CE ₂ (NB)	7.86	6.28	9.61
	Con	sumption	
Total	8.27		
Level	10.01		
Dist.	-1.58		
]	Leisure	
Total	-0.38		
Level	-0.66		
Dist.	0.27		

Welfare: Levels vs. Redistribution

FORMULA

	T D - C	O+ -	O 4
	Tax Reform	Opt. τ_k	Opt. τ_a
CE_2 (NB)	7.86	6.28	9.61
	Con	sumption	
Total	8.27	5.90	
Level	10.01	21.04	
Dist.	-1.58	-12.51	
]	Leisure	
Total	-0.38	0.36	
Level	-0.66	0.73	
Dist.	0.27	-0.38	

Welfare: Levels vs. Redistribution

FORMULA

	Tax Reform	Opt. τ_k	Opt. τ _a
CE ₂ (NB)	7.86	6.28	9.61
	Con	sumption	
Total	8.27	5.90	11.02
Level	10.01	21.04	8.28
Dist.	-1.58	-12.51	2.53
]	Leisure	
Total	-0.38	0.36	-1.27
Level	-0.66	0.73	-2.21
Dist.	0.27	-0.38	0.76

OPTIMAL CAPITAL INCOME TAX: WELFARE

Optimal Capital Income Taxes

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>z</i> ₃	<i>Z</i> ₄	<i>z</i> ₅	<i>z</i> ₆	<i>Z</i> ₇	<i>z</i> ₈	<i>Z</i> 9
20–25	3.7	3.6	3.7	4.9	7.1	10.7	14.8	16.7	17.1
25–34	3.5	3.4	3.4	4.4	5.9	8.2	10.1	8.9	7.3
35–44	2.9	2.8	2.7	3.4	4.1	4.7	3.8	1.5	-0.6
45–54	2.1	2.0	1.9	2.4	2.7	2.6	1.0	-1.1	-3.2
55-64	0.7	0.7	0.6	1.0	1.2	1.0	-0.2	-2.0	-3.9
65–74	-0.3	-0.3	-0.3	0.0	0.2	0.1	-0.7	-2.0	-3.5
75+	-0.1	-0.1	-0.1	0.1	0.2	0.2	-0.3	-1.0	-1.9

OPTIMAL WEALTH TAX: WELFARE

Optimal Wealth Taxes

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>z</i> ₃	<i>Z</i> ₄	<i>Z</i> 5	<i>z</i> ₆	<i>Z</i> 7	<i>z</i> ₈	<i>Z</i> 9
20–25	11.0	10.7	9.9	9.1	9.2	10.3	12.1	12.4	11.3
25–34	10.5	10.2	9.1	7.7	6.6	5.7	4.3	-0.1	-5.5
35–44	8.9	8.6	7.5	5.8	4.1	1.7	-2.4	-8.2	-13.1
45–54	6.5	6.3	5.4	3.9	2.3	-0.3	-4.6	-9.3	-13.2
55-64	2.5	2.4	1.8	0.9	-0.1	-2.1	-5.4	-9.1	-12.3
65–74	-0.7	-0.7	-0.9	-1.3	-1.8	-3.0	-5.3	-7.9	-10.4
75+	-0.1	-0.1	-0.2	-0.3	-0.6	-1.3	-2.7	-4.5	-6.2

SHARING THE GAINS WITH RETIREES

	Productivity group								
Age	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4	<i>Z</i> 5	<i>Z</i> ₆	<i>Z</i> 7	<i>Z</i> 8	<i>Z</i> 9
20–25	5.3	5.2	4.8	4.9	5.7	7.4	9.6	10.6	10.4
25–34	5.3	5.1	4.6	4.4	4.5	5.0	5.2	3.2	0.6
35–44	4.9	4.8	4.3	3.8	3.4	2.8	0.9	-2.4	-5.3
45–54	4.8	4.7	4.3	3.8	3.3	2.1	-0.2	-3.1	-5.6
55-64	5.6	5.6	5.3	4.8	4.3	3.1	8.0	-1.9	-4.3
65–74	7.0	7.0	6.8	6.3	5.8	4.7	2.6	0.1	-2.2
75+	7.7	7.7	7.6	7.4	7.0	6.2	4.5	2.5	0.6

Note: Each cell reports the average of $CE_1(\theta, z, a, h) \times 100$ within each age and productivity group