Step-1

The number λ is an eigen value of A if and only if $A - \lambda I$ is singular

In other words, det $(A - \lambda I) = 0$

This is the characteristic equation. Each λ is associated with eigen vector x such that

$$Ax = \lambda x$$
.

Further, the eigen vectors corresponding to the distinct eigen values are linearly independent.

Considering the linearly independent eigen vectors as the columns of a matrix S, we can see that $A = S\Lambda S^{-1}$ where Λ is the diagonal matrix whose diagonal entries are nothing but the eigen values of A.

$$A^{n} = \left(S\Lambda S^{-1}\right)^{n}$$

Now, raising both sides to the power *n*, we get = $(S\Lambda S^{-1})(S\Lambda S^{-1})...(S\Lambda S^{-1})$ *n* times

$$= S\Lambda \left(S^{-1}S\right)\Lambda \left(S^{-1}S\right)\Lambda...\Lambda S^{-1}$$

- $= S\Lambda I\Lambda...\Lambda S^{-1}$
- $= S\Lambda^n S^{-1}$

Step-2

In view of the above discussion, we get A^{100} for the given matrix $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$ as

The characteristic equation of A is det $(A - \lambda I) = 0$

$$|A - \lambda I| = \begin{vmatrix} 4 - \lambda & 3 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$
$$= (4 - \lambda)(2 - \lambda) - 3$$
$$= 8 - 4\lambda - 2\lambda + \lambda^2 - 3$$

$$=8-4\lambda-2\lambda+\lambda^2-$$

$$=\lambda^2-6\lambda+5$$

$$\Rightarrow (\lambda - 5)(\lambda - 1) = 0$$

$$\Longrightarrow \lambda_1=1, \lambda_2=5$$

Step-3

Let x_1 is the vector such that $(A - \lambda_1 I)x_1 = 0$

i.e., $\begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Using the row operation $R_2 \rightarrow 3R_2 - R_1$, we get $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Rewriting the system from this, we get $t_1 + t_2 = 0$

Putting $t_1 = 1$, we get $t_2 = -1$ and thus, $x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is the eigen vector corresponding to $\lambda_1 = 1$.

Step-4

Let x_2 is the vector such that $(A - \lambda_2 I)x_2 = 0$

$$\begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
i.e.,

Using the row operation $R_2 \to R_2 + R_1$ on this, we get $\begin{bmatrix} -1 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Rewriting the system, we get $-t_1 + 3t_2 = 0$

Putting $t_2 = 1$, we get $t_1 = 3$ and thus, $x_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is the eigen vector corresponding to $\lambda_2 = 5$

Step-5

Considering the eigen vectors as the columns of *S*, we get $S = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix}$

$$S^{-1} = \frac{1}{4} \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$$

The above notes provides $A^{100} = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}^{100} \frac{1}{4} \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$

$$= \frac{1}{4} \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 5^{100} \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix}$$