

Statistisches Praktikum WiSe21/22

> 16.03.2022 Munich

Project partner: Yeganeh Khazaei Project "Betreuer": André Klima

Statistisches Beratungslabor StaBLab der LMU

Institut für Statistik

Group: **Alexander Marquard** Phu Nguyen Qian Fenq

AGENDA

BACKGROUND INFORMATION

• Background:

Meaningful evaluations of the data base and determination of measures (such as the reproduction number, incidence, or hospitalization incidence) serve as guiding criteria for measures against the further spread of the virus.

Task at hand:

Predict hospitalization rate one to two weeks in the future, taking into account both time and geographical factors.

DEFINITIONS

HOSPITALIZATION (RATE)

The number of COVID-19 patients admitted for treatment (per 100,000 population) in a given time period.

 $= \frac{\text{Number of hospitalizations}}{\text{Respective population}} \cdot 100.000$

DEFINITIONS

NOWCASTING

Problem: Delays in reporting

- New hospitalizations being reported daily do not reflect actual numbers
- → Nowcast: An estimate is provided at the current point in time by using a statistical procedure

DEFINITIONS

DELAYED REPORTS

	Reported	Updated
01.08.2021	407	756
02.08.2021	416	786

TYPICAL COVID-19 PROGRESSION

BUREAUCRATIC REPORTING PROCESS OF A COVID-19 CASE

WHAT IS ACTUALLY PREDICTED THEN?

The **updated** hospitalization rate

- on the reported date of infection
- for the next two weeks

DATA COLLECTION

RKI

- New cases
- Hospitalizations
- Vaccination

KITMetricslab

Population

FINALIZED DATA SET

Reported date	Year	Calendar week	Index	State	Age group	Population	New cases	Hospitalizations
2020-03-01	2020	9	9	Bayern	80+	871866	0	0
2020-03-08	2020	10	10	Bayern	80+	871866	3	2
2020-03-15	2020	11	11	Bayern	80+	871866	39	25
2020-03-22	2020	12	12	Bayern	80+	871866	214	132
2020-03-29	2020	13	13	Bayern	80+	871866	759	383

ABSOLUTE NUMBERS OF HOSPITALIZATIONS

NUMBERS REPORTED BY THE RKI

EXPLAINING THE HOSPITALIZATION RATE

HOSPITALIZATION RATE BROKEN DOWN INTO AGE GROUPS

EXPLAINING THE HOSPITALIZATION RATE

HOSPITALIZATION RATE BY <u>AGE GROUP</u> IN <u>BAYERN</u>

ANALYZING BAYERN BY USING GAM

Distribution assumption: Hospitalization_i | $x_i \sim Poi(\lambda)$

Link: Log

 $E(Hospitalization_i) = exp(\beta_0 + Agegroup_i + f(index_i, Agegroup_i))$

Intercept: $exp(1.06) \sim 3$

05-14: $\exp(-0.03) \sim 1$

15-34: $\exp(1.93) \sim 7$

35-59: $\exp(2.77) \sim 16$

60-79: $\exp(2.58) \sim 13$

80+: $\exp(2.3) \sim 10$

00-04 and 05-14 are the least impactful age groups.
This holds true for each individual state.

ANALYZING BAYERN BY USING GAM

The effect of the time varying covariable given the age groups stays nearly the same for each age group.

This holds true for each individual state

CONCLUSION

For each age group:

$$\begin{split} & E(\text{Hospitalization}_{t,j}) \varpropto c_{j} * \theta_{t} \\ & E(\text{Hospitalization}_{t+h,j}) \varpropto c_{j} * \theta_{t+h} \\ & \Rightarrow E(\text{Hospitalization}_{t+h,j}) \varpropto \frac{E(\text{Hospitalization}_{t,j})}{\theta_{t}} * \theta_{t+h} \\ & \text{since } \frac{\theta_{t+h}}{\theta_{t}} \text{ is independent from j} \\ & \Rightarrow X_{t+h,j} \varpropto \theta * X_{t,j} \end{split}$$

Or more general:

$$X_{t+h} \propto \sum_{j=1}^{6} \theta * X_{t,j}$$

$$\Rightarrow X_{t+h} \propto \theta * X_{t}$$

 $j \in \{1, ..., 6\}$

TIME SERIES

Does the time series show a clear trend or is it stable over the course of time

Is there a seasonal pattern?

Such as the time of the year or the day of the week?

TIME SERIES (EXAMPLES)

A stationary time series

A nonstationary time series

TIME SERIES

- Every realisation $y_1,...,y_n$ can be seen as a series of random variables $Y_1,...,Y_n$.
- If the (joint) distribution of Y₁,..., Y_n is known, one can predict every realisation of these random variables

3 IMPORTANT ASPECTS OF THE TIME SERIES

Mean

$$\mu_t = E(Y_t) = \int_{-\infty}^{\infty} y \cdot f_t(y) dy$$

With t time and μ_t mean of each random variable $Y_1,...,Y_n$

Covariance

$$\gamma(s,t) = \text{Cov}(Y_s,Y_t) = \text{E}(Y_s - \mu_s)(Y_t - \mu_t)$$

Is the covariance function.
It depends on the two timestamps s and t

Correlation

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\cdot\gamma(t,t)}}$$
Is the correlation function

LINEAR TIME SERIES

$$Y_{t} = \psi_{0} \cdot a_{t} + \psi_{1} \cdot a_{t-1} + ...$$

$$a_t \sim N(0, \sigma^2)$$

 $t = ..., -1, 0, 1, 2, ...$
 ψ_i weights, $i = 0, 1, 2, ...$

$$\sum_{i=0}^{\infty} \psi_i^2 < \infty$$

Backshift-Operator

$$Bx_{t} = x_{t-1}; Bx_{t-3} = x_{t-4}$$

$$B^{2}x_{t} = x_{t-2}; (1 - B)x_{t} = x_{t} - x_{t-1}$$

$$(1 - B)^{2}x_{t} = (1 - 2B + B^{2})x_{t} = x_{t} - 2x_{t-1} + x_{t-2}$$

IMPORTANT ASPECTS OF THE <u>LINEAR</u> TIME SERIES

ACF/Autocorrelation - ρ(h)

Measurement of information that Y_t provides to estimate Y_{t+h}

PACF/Partial autocorrelation - $\tau(h)$

Measurement of information that Y_t provides to estimate Y_{t+h} given Y_{t+1} ,..., Y_{t+h-1}

DIFFERENT TYPES OF TIME SERIES

- Moving average models MA(q)
- Autoregressive models AR(p)
- Autoregressive moving average models ARMA(p,q)

Suitable for stationary time series

- Autoregressive integrated moving average models
 - ARIMA(p,d,q)
- Autoregressive integrated moving average models with seasonal component - ARIMA(P,D,Q)_s

Suitable for non-stationary time series

EXAMPLE: AUTOREGRESSIVE MODEL - AR(p)

AR(p) model is defined by:
$$Y_t = \phi_1 \cdot Y_{t-1} + \phi_2 \cdot Y_{t-2} + \dots + a_t$$
 (with $t = 1, 2, \dots$)
$$\Leftrightarrow (1 - \phi_1 \cdot B - \phi_2 \cdot B^2 \dots) + Y_t = a_t$$

AR(1):

$$Y_{t} = \phi \cdot Y_{t-1} + a_{t}$$
 (with $t = 1, 2, ...$)
 $\Rightarrow y_{t} = b_{0} + b_{1} \cdot x_{t} + \varepsilon_{t}$
With $b_{0} = 0$ and $x_{t} = y_{t-1}$

ANALYZING THE TIME SERIES (BAYERN)

No clear trend visible

→ Stationary time series

UTILIZING AUTO.ARIMA

- Hyndman-Khandakar algorithm for automatic ARIMA modelling
- auto.arima first checks for stationarity using unit root test
- p and q are chosen by minimising the AIC after differencing the data d times
- Four initial models are fitted:

```
ARIMA(0,d,0)
```

ARIMA(2,d,2)

ARIMA(1,d,0)

ARIMA(0,d,1)

- Best model with the smallest AIC is then tested on different values for p and q
- Steps are repeated until the lowest AIC is reached

UTILIZING AUTO.ARIMA (BAYERN)

Suggested Model

ARIMA(1,0,2)(0,1,0)[53]

ARIMA(1, 0, 2) for trend

X

ARIMA(0, 1, 0)[53] for <u>season</u>

Differences of 1. Order: $W_t = Y_t - Y_{t-1}$ (The differences are the I in ARIMA)

MODEL EVALUATION (BAYERN)

MAPE (Mean Absolute Percentage Error)

Measure of prediction accuracy of a forecasting method

$$MAPE = \frac{1}{n} \cdot \sum_{t=1}^{n} \left| \frac{A_{t} - F_{t}}{A_{t}} \right|$$

A_t: true value

F₊: forecast value

MAPE at one week: 13%

MAPE at two weeks: 25.7%

FORECAST FOR BAYERN

FORECAST FOR <u>NIEDERSACHSEN</u>

SUMMARY

- The predictions should be used with care
 - No information regarding second infections or hospitalizations due to anonymity
 - Only two years of data
 - A lot of potential information that could be missing in the univariate time series

SUMMARY

- Kinds of data we were unable to obtain:
 - The exact number of infections
 - Can people be hospitalized multiple times
 - The exact date of hospitalization
 - Possible indicators (previous illness, smoking etc.)

ATTACHMENT

Definition ACF

Def. Linear Time Series:

$$X_t = \psi_0 * a_t + ... = \sum_{i=0}^{\infty} \psi_t * a_{t-i}$$
 With $\sum_{i=0}^{\infty} \psi_i^2 < \infty$

$$E(X_t) = E\left(\sum_{i=0}^{\infty} \psi_i * a_{t-i}\right) = \sum_{i=0}^{\infty} \psi_i * E(a_{t-i}) = 0$$

$$Cov(X_t, X_{t+h}) = E(X_t - E(X_t))(X_{t+h} - E(X_{t+h})) = E(X_t X_{t+h}) =$$

$$E\left(\left(\sum_{i=0}^{\infty}\psi_{i}*a_{t-i}\right)\left(\sum_{i=0}^{\infty}\psi_{i}*a_{t+h-i}\right)\right) = \cdots = \sum_{i=0}^{\infty}\psi_{i}\left(\sum_{j=0}^{\infty}\psi_{j}*E\left(a_{t-i}a_{t+h-j}\right)\right) \quad \text{With } E(a_{r}a_{s}) = \begin{cases} 0, if \ r \neq s \\ \sigma^{2}, else \end{cases}$$

if therefore:
$$j = i + h \Rightarrow E(X_t X_{t+h}) = \sum_{i=0}^{\infty} \psi_i \psi_{i+h} \sigma^2$$

$$\gamma(h) = \sigma^2 * \sum_{i=0}^{\infty} \psi_i \psi_{i+h}$$

and

$$\rho(h) = \frac{\sum_{i=0}^{\infty} \psi_i \psi_{i+h}}{\sum_{i=0}^{\infty} \psi_i^2} \text{ for } h = 0,1,2,...$$

Definition MA(q)

$$X_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_q \ a_{t-q} \ with \ \theta_q \neq 0$$

Therefore it is a linear time series with:

$$\psi_0=1, \psi_1=- heta_1, ..., \psi_q=- heta_q \ and \ \psi_k=0 \ for \ k>q$$

Definition ARMA

Combination of AR(p) and MA(q) models

$$\phi(B)X_t = \theta(B)a_t \leftrightarrow (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)X_t = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q)a_t$$

Definition ARIMA(p,d,q)

Differences of 1. Order: $W_t = X_t - X_{t-1} = (1 - B)X_t$

Differences of d-th Order: $W_t = (1 - B)^d X_t$; t = d + 1, ..., n

If W_t is stationary one can try to fit an ARMA(p,q) - model

Therefore the new model for X_t is: $\phi(B)(1-B)^d X_t = \theta(B)a_t$

Definition ARIMA(P,D,Q)_s

Seasonal component s, so X_t and X_{t+s} are correlated. Due to this additional relationship we try to fit an ARIMA-model to these values. This model is called

Where
$$\Phi(B^s) = (1 - \Phi_1 B^s - \Phi_2 B^{2s} - \dots - \Phi_P B^{Ps})$$

And $\Theta(B^s) = (1 - \Theta_1 B^s - \Theta_2 B^{2s} - \dots - \Theta_Q B^{Qs})$

The B_t can be described by an ordinary ARIMA(p,d,q)-model

By combining those two models we receive the socalled multiplicative $ARIMA(p, d, q)x(P, D, Q)_s$ model

$$\phi(B)\Phi(B^s)(1-B)^d(1-B^s)^D X_t = \theta(B)\Theta(B^s)a_t$$

Definition Unit root Test

Does a time series have a unit root (is it stationary)?

$$I(1): x_t = x_{t-1} + \varepsilon_t$$

$$AR(1): x_t = \phi x_{t-1} + \varepsilon_t$$

How to decide whether it is an AR(1) time series or an I(1) model?

$$H_0$$
: $\phi = 1$ (it is an $I(1)$ process) vs.

$$H_1$$
: $|\phi| < 1$ (it is an AR(1) process)

The teststatistic is defined by:

$$T = n(\hat{\phi} - 1)$$

n: length of the time series

$$\hat{\phi}$$
: Estimation of ϕ

The critical values can be found in f.e. Halton(1994)

HOSPITALIZATION RATE BY STATE

HOSPITALIZATIONS VS. NEW CASES

HOSPITALIZATIONS VS. NEW CASES

