MAT 105 - Summary of Lecture 15 Tuesday, March 1, 2016

The 'Law of Frequency of Error'... reigns with serenity and in complete self-effacement amidst the wildest confusion. The huger the mob... the more perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken in hand... an unsuspected and most beautiful form of regularity proves to have been latent all along. (Francis Galton)

Normal random variables

Today we discussed the most important distribution in statistics and probability, the normal distribution. **Definition:** A random variable is said to be **normally distributed** if its distribution (think of it as a histogram) has the shape of a bell curve (or normal curve). We write $X = N(\mu, \sigma^2)$ to say that X is a normal random variable with mean μ (read "mu") and variance σ^2 (read "sigma" squared).

The expectation and variance of X are $E[X] = \mu$ and $Var(X) = \sigma^2$. The four normal distributions above have various means and variances, however their shape is the same and the area under each curve is exactly 1. Examples of normal random variables:

- 1. the weight and height a person;
- 2. velocity of a molecule in gas;
- 3. error in measuring a physical quantity (see quote at top of page);
- 4. grades in MAT 105;
- 5. gestation period of humans.

Note that this kind of random variable is not discrete as the set of all possible values includes intervals of real numbers. Such a random variable is said to be **continuous** and is described by a **probability density**, since for continuous random variables, P(X = a) = 0 for all possible values a. While we will not use the density of $X = N(\mu, \sigma^2)$ in this class, it might be interesting to know that it has the form

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
, for $-\infty < x < \infty$.

Then the probability

$$P(a \le X \le b) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx,$$

which does not have a nice (closed-form) antiderivative, as some of you who studied calculus might know. Therefore, we have to use a numerical approximation method to find these probabilities, which come to us in the form of the z-table, provided in class and available to download from Moodle.

It is important to note that the integral above gives the area under the curve $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, from x = a to x = b.

Definition: A normal random variable with $\mu = 0$ and $\sigma = 1$ is called a **standard normal variable**. Its distribution is given by

 $\phi(a) = P(X \le a) = \text{area under the curve to the left of } a.$

Properties:

- The total area under the curve equals 1.
- $P(X \ge a) = 1 P(X \le a) = 1 \phi(a)$
- The area under the curve to the left of -a is equal to the area under the curve to the right of a, by symmetry with the y-axis, so

$$P(X \le -a) = P(X \ge a) = 1 - \phi(a).$$

• $P(a < X < b) = \phi(b) - \phi(a)$.

Remark: Pay attention that the table of z-scores only applies to N(0,1)! We will find probabilities associated to $N(\mu, \sigma^2)$ by **standardizing** or **normalizing** it. To read the table, we find $\phi(2.34) = .9904$ by looking for the entry in the row starting with 2.3 and the column with .04.

Examples: Let X = N(0,1)

$$P(X \le 1) = \phi(1.00) = .8413$$

$$P(X \le -2) = \phi(-2) = 1 - \phi(2) = 1 - .9772 = .0128$$

$$P(-2 \le X \le 1) = \phi(1) - \phi(-2) = \phi(1) - (1 - \phi(2)) = .8413 - (1 - .9772) = .8185$$

$$P(X \ge 0) = 1 - P(X \le 0) = 1 - \phi(0) = 1 - .5 = .5$$

$$P(X < 1.23) = \phi(1.23) = .8907$$

How does one find probabilities for $N(\mu, \sigma^2)$? We transform $X = N(\mu, \sigma^2)$ into a standard normal by subtracting the mean and dividing by the standard deviation. That is, let

$$z = \frac{X - \mu}{\sigma}.$$

While we will not verify that the resulting random variable is normal, and we'll assume that as a fact, let us verify at least that the mean and variance of z are 0 and 1. Using the properties of expectation and variance we have

$$E[X] = E\left[\frac{X-\mu}{\sigma}\right] = \frac{1}{\sigma}E[X-\mu] = \frac{E[X]-\mu}{\sigma} = \frac{\mu-\mu}{\sigma} = 0$$

$$Var(X) = Var\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}Var(X-\mu) = \frac{1}{\sigma^2}Var(X) = \frac{\sigma^2}{\sigma^2} = 1.$$

Visually, standardizing $N(\mu, \sigma^2)$ works as follows. We start with the red curve, which here is N(2,4). Subtracting the mean, shifts to the brown curve, which is N(0,4); it has the same spread, but its mean is now at 0 (where the axis of symmetry is located). Dividing by the standard deviation changes the brown curve into the blue curve which is N(0,1); the brown and blue curves are both centered at 0 (so they have the same mean), but the blue curve has a smaller spread (and the peak is steeper).

Examples: Let X = N(3,4), so $\mu = 3$ and $\sigma = 2$

$$P(X \le 5) = P\left(\frac{X-3}{2} \le \frac{5-3}{2}\right) = P(z \le 1) = \phi(1) = .8413$$

$$P(X \ge 3) = P\left(\frac{X-3}{2} \ge \frac{3-3}{2}\right) = P(z \ge 0) = 1 - \phi(0) = .5$$

$$P(X \le 2.5) = P\left(\frac{X-3}{2} \le \frac{2.5-3}{2}\right) = P(z \le -.25) = \phi(-.25) = 1 - \phi(.25) = 1 - .5987 = .4013.$$