Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1+i+(i-1)(1+i)-(i-1)=1+i+(i^2-1)-i+1=$	3 p
	=1+i-2-i+1=0	2 p
2.	f(1) = 0	2 p
	f(f(1)) = f(0) = 1	3 p
3.	$x^2 - 5x + 7 = 3 \Rightarrow x^2 - 5x + 4 = 0$	2p
	x=1 sau $x=4$, care convin	3 p
4.	Mulțimea numerelor naturale pare de două cifre are 45 de elemente, deci sunt 45 de cazuri posibile	1p
	În mulțimea numerelor naturale pare de două cifre sunt 9 numere divizibile cu 5, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{45} = \frac{1}{5}$	2p
5.	$x_A + x_C = 6$, $x_B + x_D = 6 \Rightarrow x_A + x_C = x_B + x_D$	2p
	$y_A+y_C=6$, $y_B+y_D=6 \Rightarrow y_A+y_C=y_B+y_D \Rightarrow$ segmentele AC și BD au același mijloc, deci $ABCD$ este paralelogram	3 p
6.	Cum $x \in \left(0, \frac{\pi}{2}\right)$ și tg $x = 1$, obținem $x = \frac{\pi}{4}$	2 p
	$\sin\frac{\pi}{4} + 3\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} + \frac{3\sqrt{2}}{2} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$X(1) = \begin{pmatrix} 1 & 5 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(X(1)) = \begin{vmatrix} 1 & 5 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot 5 =$	3p
	=1-5=-4	2p
b)	$X(-a) + X(a) = \begin{pmatrix} -a & 5 \\ 1 & -a \end{pmatrix} + \begin{pmatrix} a & 5 \\ 1 & a \end{pmatrix} = \begin{pmatrix} 0 & 10 \\ 2 & 0 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} -2018 & 5 \\ 1 & -2018 \end{pmatrix} + \begin{pmatrix} 2018 & 5 \\ 1 & 2018 \end{pmatrix} = X(-2018) + X(2018), \text{ pentru orice număr real } a$	2p
c)		3p
	Cum $a+b=2$ și $ab=-3$, obținem perechile $(-1,3)$ și $(3,-1)$	2p
2.a)	$f = X^3 - 2X^2 - X + 2 \Rightarrow f(2) = 2^3 - 2 \cdot 2^2 - 2 + 2 =$	3p
	=8-8-2+2=0	2 p
b)	$f(-1) = 0 \Rightarrow m = 2$, deci $f = X^3 - 2X^2 - X + 2$	3 p
	Restul împărțirii lui f la $X^2 - 3X + 2$ este 0, deci f se divide cu $X^2 - 3X + 2$	2p

Probă scrisă la matematică *M_şt-nat*

_			
	c)	$x_1 + x_2 + x_3 = 2$, $x_1x_2 + x_1x_3 + x_2x_3 = -1$, $x_1x_2x_3 = -m$	3p
		$\frac{x_1^2 + x_2^2 + x_3^2}{1 + x_2^2 + x_3^2} = 6 \Leftrightarrow \frac{6}{1 + x_2^2 + x_3^2 + x_3^2 + x_3^2} = 6 \Leftrightarrow \frac{6}{1 + x_2^2 + x_3^2 +$	2р
		$x_1x_2x_3$ —m	

5022	(30 dc pund	
1.a)	$f'(x) = \frac{1 \cdot (x+1) - x \cdot 1}{(x+1)^2} + \frac{1 \cdot (x+2) - (x+1) \cdot 1}{(x+2)^2} + \frac{1 \cdot (x+3) - (x+2) \cdot 1}{(x+3)^2} =$	3p
	$= \frac{x+1-x}{\left(x+1\right)^2} + \frac{x+2-x-1}{\left(x+2\right)^2} + \frac{x+3-x-2}{\left(x+3\right)^2} = \frac{1}{\left(x+1\right)^2} + \frac{1}{\left(x+2\right)^2} + \frac{1}{\left(x+3\right)^2}, \ x \in \left(-1, +\infty\right)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x}{x+1} + \frac{x+1}{x+2} + \frac{x+2}{x+3} \right) = 3$	3p
	Dreapta de ecuație $y = 3$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$f'(x) > 0$, pentru orice $x \in (-1, +\infty) \Rightarrow f$ este crescătoare pe $(-1, +\infty)$	2 p
	f este continuă pe $(-1,+\infty)$, $\lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty$ și $\lim_{x \to +\infty} f(x) = 3$, deci $\text{Im } f = (-\infty,3)$	3p
2.a)	$\int_{1}^{2} (f(x) - \ln x) dx = \int_{1}^{2} (3x^{2} + 2x + 1) dx = (x^{3} + x^{2} + x) \Big _{1}^{2} =$	3p
	=(8+4+2)-(1+1+1)=11	2 p
b)	$\int_{1}^{e} \frac{f(x)}{x} dx = \int_{1}^{e} \left(3x + 2 + \frac{1}{x} + \frac{\ln x}{x} \right) dx = \left(\frac{3x^{2}}{2} + 2x + \ln x \right) \Big _{1}^{e} + \int_{1}^{e} \frac{\ln x}{x} dx =$	3p
	$= \frac{3e^2 + 4e - 5}{2} + \frac{1}{2}\ln^2 x \bigg _{1}^{e} = \frac{3e^2 + 4e - 4}{2}$	2p
c)	$\mathcal{A} = \int_{1}^{a} f(x) dx = \int_{1}^{a} (3x^{2} + 2x + 1 + \ln x) dx = (x^{3} + x^{2} + x) \Big _{1}^{a} + (x \ln x - x) \Big _{1}^{a} = a^{3} + a^{2} + a \ln a - 2$	3p
	$a^{3} + a^{2} + a \ln a - 2 = a^{3} + a^{2} + a - 2 \Rightarrow \ln a = 1$, deci $a = e$	2p

Matematică *M_şt-nat*

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 1+i+(i-1)(1+i)-(i-1)=0, unde $i^2=-1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + 1$. Calculați $(f \circ f)(1)$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2 5x + 7) = \log_2 3$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale pare de două cifre, acesta să fie divizibil cu 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,3), B(-2,1), C(4,3) și D(8,5). Demonstrați că patrulaterul ABCD este paralelogram.
- **5p 6.** Arătați că $\sin x + 3\cos x = 2\sqrt{2}$, știind că $\operatorname{tg} x = 1$ și $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $X(a) = \begin{pmatrix} a & 5 \\ 1 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(X(1)) = -4$.
- **5p b**) Demonstrați că X(-a) + X(a) = X(-2018) + X(2018), pentru orice număr real a.
- **5p** c) Determinați perechile de numere reale (a,b) pentru care X(a)X(b) = X(a) + X(b).
 - **2.** Se consideră polinomul $f = X^3 2X^2 X + m$, unde m este număr real.
- **5p** a) Pentru m = 2, arătați că f(2) = 0.
- **5p b**) Arătați că, dacă polinomul f se divide cu X+1, atunci polinomul f se divide cu X^2-3X+2 .
- **5p** c) Determinați numărul real nenul m, știind că $\frac{x_1}{x_2x_3} + \frac{x_2}{x_3x_1} + \frac{x_3}{x_1x_2} = 6$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x}{x+1} + \frac{x+1}{x+2} + \frac{x+2}{x+3}$
- **5p** a) Arătați că $f'(x) = \frac{1}{(x+1)^2} + \frac{1}{(x+2)^2} + \frac{1}{(x+3)^2}, x \in (-1, +\infty).$
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p c**) Determinați imaginea funcției f.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 3x^2 + 2x + 1 + \ln x$.
- **5p a)** Arătați că $\int_{1}^{2} (f(x) \ln x) dx = 11$.
- **5p b)** Arătați că $\int_{1}^{e} \frac{f(x)}{x} dx = \frac{3e^2 + 4e 4}{2}$.
- **5p** c) Determinați numărul real a, a > 1, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = a are aria egală cu $a^3 + a^2 + a 2$.

Examenul de bacalaureat național 2018 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_1 b_3 = b_2^2$ $b_1 b_2 b_3 = b_2^3 = 4^3 = 64$	2p
	$b_1 b_2 b_3 = b_2^3 = 4^3 = 64$	3 p
2.	f(1) = 0	2p
	g(f(1)) = g(0) = 2018	3 p
3.	$5^{2x} = 5^{x^2} \Leftrightarrow x^2 - 2x = 0$	3p
	x = 0 sau $x = 2$	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	1p
	În mulțimea numerelor naturale de două cifre sunt 10 numere care au cifra zecilor egală cu 9, deci sunt 10 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{90} = \frac{1}{9}$	2p
5.	$m_d = \frac{a-1}{a^2}$	2p
	Dreapta d este paralelă cu axa $Ox \Leftrightarrow \frac{a-1}{a^2} = 0$, deci $a = 1$	3 p
6.	Cum $\sin x = \frac{1}{\sqrt{5}}$ și $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\cos x = \frac{2}{\sqrt{5}}$	2p
	$tg x + ctg x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{5}{2}$	3 p
	~	

1.a)	$A(1) = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix} = 3 \cdot (-2) - 1 \cdot 1 =$	3p
	=-6-1=-7	2 p
b)	$xA(y) - yA(x) = x \begin{pmatrix} y+2 & y \\ 1 & -2 \end{pmatrix} - y \begin{pmatrix} x+2 & x \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} xy+2x-yx-2y & xy-yx \\ x-y & -2x+2y \end{pmatrix} =$	2 p
	$= \begin{pmatrix} 2(x-y) & 0 \\ x-y & -2(x-y) \end{pmatrix} = (x-y) \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix} = (x-y)A(0), \text{ pentru orice numere reale } x \text{ §i } y$	3 p
c)	$aA(-1)-(-1)A(a)=(a+1)A(0) \Rightarrow (aA(-1)+A(a))A(0)=(a+1)A(0)A(0)=4(a+1)I_2$	3 p
	$4(a+1) = a^2 + 7 \Leftrightarrow a = 1 \text{ sau } a = 3$	2 p
2.a)	$f = 4X^3 - 6X + 2 \Rightarrow f(1) = 4 \cdot 1^3 - 6 \cdot 1 + 2 =$	3 p
	=4-6+2=0	2p

b)	Restul împărțirii polinomului f la $X^2 + X + 1$ este egal cu $-6X + m + 4$	3p
	Cum pentru orice număr real m restul este nenul, polinomul f nu se divide cu $X^2 + X + 1$	2p
c)	$x_1x_2 + x_1x_3 + x_2x_3 = -\frac{3}{2}, \ x_1x_2x_3 = -\frac{m}{4} \Rightarrow \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = \frac{x_1x_2 + x_2x_3 + x_3x_1}{x_1x_2x_3} = \frac{6}{m}$	3p
	$\left(\frac{6}{m}\right)^2 = -\frac{4}{m}$ şi, cum m este număr real nenul, obținem $m = -9$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\frac{1}{r}$, $r = \ln r$	
	$f'(x) = 0 - \frac{\frac{1}{x} \cdot x - \ln x}{x^2} - \left(-\frac{1}{x^2}\right) =$	3 p
	$= -\frac{1 - \ln x - 1}{x^2} = \frac{\ln x}{x^2}, \ x \in (0, +\infty)$	2p
b)	f(1) = 0, $f'(1) = 0$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 0$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $[1,+\infty)$	2p
	$f(x) \ge f(1) \Rightarrow f(x) \ge 0$, pentru orice $x \in (0, +\infty)$, deci $f(\sqrt{x}) \ge 0 \Rightarrow 1 - \frac{\ln \sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \ge 0$, deci $\frac{\ln x}{2\sqrt{x}} \le 1 - \frac{1}{\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3 p
2.a)	$\int_{0}^{2} (x+1) f(x) dx = \int_{0}^{2} (3x^{3} + 3x^{2} + 1) dx = \left(\frac{3x^{4}}{4} + x^{3} + x\right) \Big _{0}^{2} =$	3 p
-	=12+8+2=22	2p
b)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+1} \right) e^{x^{3}} dx = \int_{0}^{1} 3x^{2} e^{x^{3}} dx = e^{x^{3}} \Big _{0}^{1} =$	3 p
	=e-1	2p
c)	$g(x) = \frac{1}{x+1} \Rightarrow V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} \frac{1}{(x+1)^{2}} dx = -\frac{\pi}{x+1} \Big _{0}^{1} = -\frac{\pi}{2} + \pi = \frac{\pi}{2}$	3 p
	$\frac{\pi}{n} = \frac{\pi}{2} \iff n = 2$	2p

Examenul de bacalaureat național 2018 Proba E. c) Matematică *M_șt-nat*

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte

- **5p 1.** Determinați produsul primilor trei termeni ai progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_2=4$.
- **5p** 2. Se consideră funcțiile $f, g: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)^2$ și g(x) = 2018 x. Calculați g(f(1)).
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $25^x = 5^{x^2}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor egală cu 9.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație $(a-1)x-a^2y-a^2=0$, unde a este număr real nenul. Determinați numărul real nenul a, știind că dreapta d este paralelă cu axa Ox.
- **5p 6.** Arătați că $\operatorname{tg} x + \operatorname{ctg} x = \frac{5}{2}$, știind că $\sin x = \frac{1}{\sqrt{5}}$ și $x \in \left(0, \frac{\pi}{2}\right)$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} x+2 & x \\ 1 & -2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = -7$.
- **5p b**) Demonstrați că xA(y) yA(x) = (x y)A(0), pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale a, știind că $(aA(-1)+A(a))A(0)=(a^2+7)I_2$.
 - **2.** Se consideră polinomul $f = 4X^3 6X + m$, unde m este număr real.
- **5p** a) Pentru m=2, arătați că f(1)=0
- **5p b)** Demonstrați că, oricare ar fi numărul real m, polinomul f **nu** se divide cu polinomul $X^2 + X + 1$.
- **5p** c) Determinați numărul real nenul m, știind că $\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right)^2 = \frac{1}{x_1} \cdot \frac{1}{x_2} \cdot \frac{1}{x_3}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=1-\frac{\ln x}{x}-\frac{1}{x}$.
- **5p a)** Arătați că $f'(x) = \frac{\ln x}{x^2}, x \in (0, +\infty).$
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\frac{\ln x}{2\sqrt{x}} \le 1 \frac{1}{\sqrt{x}}$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = 3x^2 + \frac{1}{x+1}$.
- **5p a)** Arătați că $\int_{0}^{2} (x+1) f(x) dx = 22$.
- **5p b)** Calculați $\int_{0}^{1} \left(f(x) \frac{1}{x+1} \right) e^{x^3} dx$.
- **5p** c) Determinați numărul natural nenul n, știind că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, $g(x) = f(x) 3x^2$ este egal cu $\frac{\pi}{n}$.

Examenul de bacalaureat național 2018 Proba E. c) Matematică M_{st} -nat

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)-\sqrt{12}=\sqrt{3}(3-1)-2\sqrt{3}=$	3 p
	$=2\sqrt{3}-2\sqrt{3}=0$	2 p
2.	$f(1) = g(1) \Leftrightarrow 1^2 + 2 \cdot 1 + 3 = 1 + a \Leftrightarrow 6 = 1 + a$	3 p
	a = 5	2 p
3.	$x+1=1-2\sqrt{x}+x \Rightarrow 2\sqrt{x}=0$	3 p
	x = 0, care convine	2p
4.	Cifra sutelor se poate alege în 4 moduri	1p
	Pentru fiecare alegere a cifrei sutelor, cifra zecilor se poate alege în 4 moduri	1p
	Pentru fiecare alegere a primelor două cifre, cifra unităților se poate alege în 3 moduri, deci	3р
	se pot forma $4 \cdot 4 \cdot 3 = 48$ de numere	Эþ
5.	$m_{d_1} = a \; , \; m_{d_2} = \frac{1}{4}$	2p
	Dreptele d_1 și d_2 sunt paralele $\Leftrightarrow m_{d_1} = m_{d_2} \Leftrightarrow a = \frac{1}{4}$	3 p
6.	$\sin(\pi - x)\cos(2\pi + x) - \sin(2\pi + x)\cos(\pi - x) = \sin x \cos x - \sin x(-\cos x) =$	3 p
	$= 2 \sin x \cos x = \sin 2x$, pentru orice număr real x	2 p

1.a)	$M(1) = \begin{pmatrix} -2 & -2 \\ 3 & 3 \end{pmatrix} \Rightarrow \det(M(1)) = \begin{vmatrix} -2 & -2 \\ 3 & 3 \end{vmatrix} = (-2) \cdot 3 - 3 \cdot (-2) =$	3p
	=-6+6=0	2p
b)	$M(x)-M(2018) = (I_2 + xA)-(I_2 + 2018A) = I_2 + xA - I_2 - 2018A =$	2p
	= $(I_2 + (-2018)A) - (I_2 + (-x)A) = M(-2018) - M(-x)$, pentru orice număr real x	3 p
c)	$(I_2 + mA)(I_2 + nA) = I_2 + mnA \Leftrightarrow I_2 + mA + nA + mnA \cdot A = I_2 + mnA$ şi, cum $A \cdot A = -A$,	3р
	obţinem $m+n-mn=mn$	Sp
	Cum $m ext{ și } n ext{ sunt numere naturale nenule, } m+n=2mn \Rightarrow (m,n)=(1,1)$	2p
2.a)	$x \circ y = 8xy + x + y + \frac{1}{8} - \frac{1}{8} =$	3p
	$=8x\left(y+\frac{1}{8}\right)+\left(y+\frac{1}{8}\right)-\frac{1}{8}=8\left(x+\frac{1}{8}\right)\left(y+\frac{1}{8}\right)-\frac{1}{8}, \text{ pentru orice numere reale } x \text{ $\frac{1}{8}$} i \ y$	2 p
b)	$8\left(x+\frac{1}{8}\right)^2 - \frac{1}{8} = 1 \Leftrightarrow \left(x+\frac{1}{8}\right)^2 = \frac{9}{64}$	3 p
	$x = -\frac{1}{2} \text{ sau } x = \frac{1}{4}$	2p

	$f(x \circ y) = 8(8xy + x + y) + 1 = 64xy + 8x + 8y + 1 = (8x + 1)(8y + 1) = f(x) \cdot f(y)$, pentru orice numere reale $x \neq y$	3p
	$f(x \circ y \circ z) = f(x \circ y) \cdot f(z) = f(x) \cdot f(y) \cdot f(z), \text{ pentru orice numere reale } x, y \text{ si } z$	2 p

1.a)	$f'(x) = \frac{1 \cdot (x^2 + 3) - (x + 1) \cdot 2x}{(x^2 + 3)^2} =$	3р
	$= \frac{-x^2 - 2x + 3}{\left(x^2 + 3\right)^2} = \frac{(1 - x)(x + 3)}{\left(x^2 + 3\right)^2}, \ x \in \mathbb{R}$	2p
b)	$f(0) = \frac{1}{3}, f'(0) = \frac{1}{3}$	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = \frac{1}{3}x + \frac{1}{3}$	3 p
c)	$f'(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict descrescătoare pe $(1, +\infty)$	3 p
	$1 < \sqrt{2} < \sqrt[3]{3} \Rightarrow f\left(\sqrt{2}\right) > f\left(\sqrt[3]{3}\right)$	2p
2.a)	$\int_{0}^{3} \frac{x f(x)}{e^{x}} dx = \int_{0}^{3} \frac{x^{2} e^{x}}{e^{x}} dx = \int_{0}^{3} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{3} =$	3 p
	$=\frac{27}{3}-0=9$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a lui $f \Rightarrow F'(x) = f(x) = xe^x$, $F''(x) = (x+1)e^x$, $x \in \mathbb{R}$	2p
	$F''(x) < 0$, pentru orice $x \in (-\infty, -1)$, $F''(-1) = 0$ şi $F''(x) > 0$, pentru orice $x \in (-1, +\infty)$,	2n
	deci F are un singur punct de inflexiune	3 p
c)	$\mathcal{A} = \int_{0}^{n} f(x) dx = \int_{0}^{n} x e^{x} dx = (x-1)e^{x} \Big _{0}^{n} = (n-1)e^{n} + 1$	3 p
	$(n-1)e^n+1=1 \Leftrightarrow n=1$	2p

Matematică *M_st-nat*

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)-\sqrt{12}=0$.
- **5p** 2. Determinați numărul real a, pentru care graficele funcțiilor $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x + 3$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + a se intersectează într-un punct de abscisă x = 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+1} = 1 \sqrt{x}$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte au cifrele elemente ale mulțimii $\{0,1,2,3,4\}$.
- **5p 5.** În reperul cartezian xOy se consideră dreptele d_1 , de ecuație y = ax + 2 și d_2 , de ecuație $y = \frac{x}{4} + 1$. Determinați numărul real a, știind că dreptele d_1 și d_2 sunt paralele.
- **5p** | **6.** Arătați că $\sin(\pi x)\cos(2\pi + x) \sin(2\pi + x)\cos(\pi x) = \sin 2x$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} -3 & -2 \\ 3 & 2 \end{pmatrix}$ și $M(x) = I_2 + xA$, unde x este număr real.
- **5p a**) Arătați că $\det(M(1)) = 0$.
- **5p b**) Demonstrați că M(x) M(2018) = M(-2018) M(-x), pentru orice număr real x.
- **5p** c) Determinați perechea de numere naturale nenule (m,n) pentru care M(m)M(n) = M(mn).
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 8xy + x + y$.
- **5p** a) Arătați că $x \circ y = 8\left(x + \frac{1}{8}\right)\left(y + \frac{1}{8}\right) \frac{1}{8}$, pentru orice numere reale x și y.
- **5p b**) Determinați numerele reale x, pentru care $x \circ x = 1$.
- **5p** c) Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 8x + 1. Demonstrați că $f(x \circ y \circ z) = f(x) \cdot f(y) \cdot f(z)$, pentru orice numere reale x, y și z.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+1}{x^2+3}$
- **5p** a) Arătați că $f'(x) = \frac{(1-x)(x+3)}{(x^2+3)^2}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(\sqrt{2}) > f(\sqrt[3]{3})$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p** a) Arătați că $\int_{0}^{3} \frac{x f(x)}{e^{x}} dx = 9$.
- **5p b)** Demonstrați că orice primitivă a funcției f are un singur punct de inflexiune.
- **5p c**) Determinați numărul natural nenul n, pentru care suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = n are aria egală cu 1.

Examenul de bacalaureat național 2018 Proba E. c) Matematică *M șt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n(n+2) < 14$ și $n \in \mathbb{N} \Rightarrow n = 0$ sau $n = 1$ sau $n = 2$	3 p
	Suma elementelor mulțimii este egală cu $0+1+2=3$	2p
2.	<i>b</i> = 1	2p
	$a(x+1)+1=ax+1+2$, pentru orice număr real $x \Rightarrow a=2$	3 p
3.	(x+2)(x+8) > 0	2p
	Mulțimea soluțiilor inecuației este $(-\infty, -8) \cup (-2, +\infty)$	2p
4.	Numărul submulțimilor ordonate cu două elemente din $\{1, 3, 5, 7, 9\}$ este egal cu A_5^2 =	3p
	= 20	2p
5.	M(1,4) este mijlocul segmentului BC	2p
	Coordonatele simetricului punctului A față de punctul M sunt $x = 2$ și $y = 6$	3 p
6.	EF = 3	2p
	ΔDEF este dreptunghic în E , deci $\sin D = \frac{3}{5}$	3р

1.a)	1 0 1	
	$\det A = \begin{vmatrix} 0 & -1 & 1 \end{vmatrix} = 0 + 0 + 0 - (-1) - (-1) - 0 =$	3 p
	$\begin{vmatrix} 1 & -1 & 0 \end{vmatrix}$	
	=1+1=2	2p
b)	$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 0 & 1 \end{pmatrix}$	
	$A \cdot A = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, A \cdot A \cdot A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	2p
	$A \cdot A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}, \ A \cdot A \cdot A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$	
	$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = x \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow x = 1, y = 2$	
	$\begin{vmatrix} 0 & 1 & 1 \end{vmatrix} = x \begin{vmatrix} 0 & -1 & 1 \end{vmatrix} + y \begin{vmatrix} 0 & 1 & 0 \end{vmatrix} \Leftrightarrow x = 1, y = 2$	3 p
	$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	
c)	$B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det B = 2$	
	$B = \begin{vmatrix} 0 & 0 & 1 \end{vmatrix} \Rightarrow \det B = 2$	2p
	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$	
	$B^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & -1\\ 0 & 1 & 0 \end{pmatrix}$	
	$B^{-1} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & -1 \end{vmatrix}$	3p
	$\left(\begin{array}{ccc}0&1&0\end{array}\right)$	

2.a)	$2 \circ 9 = 2^{2\log_3 9} = 2^{2 \cdot 2} =$	3 p
	$=2^4=16$	2p
b)	$x^{2\log_3 3} = 25 \Leftrightarrow x^2 = 25$	2p
	x = -5 care nu convine, $x = 5$ care convine	3 p
c)	$x \circ y = x^{2\log_3 y} = x^{\log_3 y^2} = (y^2)^{\log_3 x} =$	3p
	$=y^{2\log_3 x}=y\circ x$, pentru orice $x,y\in M$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{\left(e^{x}\right)' \cdot (x-1) - e^{x} \cdot (x-1)'}{(x-1)^{2}} =$	2p
	$= \frac{e^{x}(x-1)-e^{x}}{(x-1)^{2}} = \frac{e^{x}(x-2)}{(x-1)^{2}}, x \in (1,+\infty)$	3р
b)	$f'(x) = 0 \Leftrightarrow x = 2$	2p
	$x \in (1,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(1,2]$ și $x \in [2,+\infty) \Rightarrow f'(x) \ge 0$, deci	3р
	f este crescătoare pe $[2,+\infty)$	3p
c)	$f(x) \ge f(2)$, pentru orice $x \in (1, +\infty)$	2p
	$f(2) = e^2$, deci $\frac{e^x}{x-1} \ge e^2 \Leftrightarrow \frac{e^{x-2}}{x-1} \ge 1 \Leftrightarrow e^{x-2} - x + 1 \ge 0$, pentru orice $x \in (1, +\infty)$	3p
2.a)	$\int_{0}^{\frac{\pi}{3}} f(x) dx = \int_{0}^{\frac{\pi}{3}} \sin x dx = -\cos x \bigg _{0}^{\frac{\pi}{3}} = 0$	3p
	$=-\frac{1}{2}+1=\frac{1}{2}$	2p
b)	$= -\frac{1}{2} + 1 = \frac{1}{2}$ $\int_{0}^{\frac{\pi}{2}} x f(x) dx = \int_{0}^{\frac{\pi}{2}} x \sin x dx = \int_{0}^{\frac{\pi}{2}} x (-\cos x)' dx = -x \cos x \begin{vmatrix} \frac{\pi}{2} & \frac{\pi}{2} \\ 2 & + \int_{0}^{\frac{\pi}{2}} \cos x dx = 0 \end{vmatrix}$	3p
	$= -\frac{\pi}{2} \cdot \cos \frac{\pi}{2} + 0 \cdot \cos 0 + \sin x \begin{vmatrix} \frac{\pi}{2} \\ 0 \end{vmatrix} = \sin \frac{\pi}{2} - \sin 0 = 1$	2p
c)	$V = \pi \int_{0}^{\frac{\pi}{4}} g^{2}(x) dx = \pi \int_{0}^{\frac{\pi}{4}} \sin^{2} x dx = \pi \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2} dx =$	2p
	$= \frac{\pi}{2} x \begin{vmatrix} \frac{\pi}{4} - \frac{\pi}{4} \sin 2x \end{vmatrix} = \frac{\pi^2}{4} = \frac{\pi^2}{8} - \frac{\pi}{4} = \frac{\pi(\pi - 2)}{8}$	3p

Matematică M şt-nat

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că suma elementelor mulțimii $\{n \in \mathbb{N} \mid n(n+2) < 14\}$ este egală cu 3.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b. Determinați numerele reale a și b, știind că f(0) = 1 și f(x+1) = f(x) + 2, pentru orice număr real x.
- **5p** 3. Rezolvați în mulțimea numerelor reale inecuația $(x+5)^2 9 > 0$.
- **5p 4.** Determinați numărul submulțimilor ordonate cu două elemente ale mulțimii {1, 3, 5, 7, 9}.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,2), B(3,5) și C(-1,3). Determinați coordonatele simetricului punctului A față de mijlocul segmentului BC.
- **5p 6.** Calculați sinusul unghiului D al triunghiului DEF, știind că semiperimetrul triunghiului DEF este egal cu 6, DE = 4 și DF = 5.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ și $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 2.
- **5p b)** Determinați numerele reale x și y pentru care $A \cdot A \cdot A = xA + yI_3$.
- **5p** c) Determinați inversa matricei $B = A + I_3$.
 - **2.** Pe mulțimea $M = (0, +\infty)$ se definește legea de compoziție $x \circ y = x^{2\log_3 y}$.
- **5p a)** Arătați că $2 \circ 9 = 16$.
- **5p b)** Determinați numărul real $x, x \in M$ pentru care $x \circ 3 = 25$.
- **5p** c) Demonstrați că legea de compoziție "o" este comutativă.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{e^x}{x-1}$.
- **5p** a) Arătați că $f'(x) = \frac{e^x(x-2)}{(x-1)^2}, x \in (1,+\infty).$
- **5p b)** Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că $e^{x-2} x + 1 \ge 0$, pentru orice $x \in (1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$.
- **5p** a) Arătați că $\int_{0}^{\frac{\pi}{3}} f(x) dx = \frac{1}{2}$.
- **5p b)** Arătați că $\int_{0}^{\frac{\pi}{2}} x f(x) dx = 1$.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g: \left[0, \frac{\pi}{4}\right] \to \mathbb{R}, \ g(x) = f(x).$

Examenul de bacalaureat național 2018

Proba E. c)

Matematică *M_şt-nat*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	z = 3 + 4i	3p
	$\overline{z} = 3 - 4i$	2p
2.	Cum <i>n</i> este număr natural, $(n+4)(n-3) < 0 \Rightarrow n < 3$	2p
	n = 0, $n = 1$ sau $n = 2$	3 p
3.	$\lg(x+1) = \lg(x-5)^2 \Rightarrow x+1 = (x-5)^2$	2p
	$x^2 - 11x + 24 = 0 \Rightarrow x = 3$, care nu verifică ecuația și $x = 8$, care verifică ecuația	3 p
4.	O mulțime cu n elemente are C_n^2 submulțimi cu două elemente	2p
	$\frac{n(n-1)}{2} = 45 \Rightarrow n = 10$	3p
5.	$\vec{v} = 2\vec{A}\vec{C}$, deci $AC = 10$	3 p
	Cum $ABCD$ este dreptunghi, obținem $BD = 10$	2p
6.	$\left(\sin x + \cos x\right)^2 = 2 \Rightarrow \sin x \cos x = \frac{1}{2}$	2p
	$ tg x + ctg x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{1}{\frac{1}{2}} = 2 $	3p

SUBIECTUL al II-lea

(30 de puncte)

	(** *** F **	
1.a)	$A(2) = \begin{pmatrix} 1 & 0 & 4 \\ -4 & 1 & -8 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 0 & 4 \\ -4 & 1 & -8 \\ 0 & 0 & 1 \end{vmatrix} = $ $= 1 + 0 + 0 - 0 - 0 - 0 = 1$	2p 3p
b)	$\det(A(a) + aA(0)) = \begin{vmatrix} a+1 & 0 & 2a \\ -2a & a+1 & -2a^2 \\ 0 & 0 & a+1 \end{vmatrix} = (a+1)^3$	3p
	$\left(a+1\right)^3 = 2^3 \Longrightarrow a = 1$	2p
c)	$(m+n)^3 = m^3 + n^3 + 18$	2p
	mn(m+n) = 6 deci, cum m şi n sunt numere naturale şi $m < n$, obținem $m = 1$ şi $n = 2$	3 p
2.a)	$x * y = (xy + \hat{6}x) + (\hat{6}y + \hat{1}) + \hat{1} =$	3p
	$=x(y+\hat{6})+\hat{6}(y+\hat{6})+\hat{1}=(x+\hat{6})(y+\hat{6})+\hat{1}$, pentru orice $x,y\in\mathbb{Z}_7$	2p
b)	$x * \hat{1} = (x + \hat{6})(\hat{1} + \hat{6}) + \hat{1} = \hat{0} + \hat{1} = \hat{1}$	2p
	$\hat{1} * x = (\hat{1} + \hat{6})(x + \hat{6}) + \hat{1} = \hat{0} + \hat{1} = \hat{1} = x * \hat{1}$, pentru orice $x \in \mathbb{Z}_7$	3 p

Probă scrisă la matematică *M_şt-nat*

Barem de evaluare și de notare

c)	$\hat{0} * \hat{1} * \hat{2} * \hat{3} * \hat{4} * \hat{5} * \hat{6} = (\hat{0} * \hat{1}) * \hat{2} * \hat{3} * \hat{4} * \hat{5} * \hat{6} =$	3p
	$=\hat{1}*(\hat{2}*\hat{3}*\hat{4}*\hat{5}*\hat{6})=\hat{1}$	2p

~~	COUL at III-lea (50 de pu	11000)
1.a)	$f'(x) = (e^x)'(x^2 - 6x + 9) + e^x(x^2 - 6x + 9)' =$	2p
	$= e^{x} \left(x^{2} - 6x + 9 + 2x - 6 \right) = e^{x} \left(x^{2} - 4x + 3 \right), \ x \in \mathbb{R}$	3 p
b)	$f'(x) = 0 \Leftrightarrow x = 1$ și $x = 3$	2p
	$f'(x) > 0$ pentru orice $x \in (-\infty,1)$, $f'(x) < 0$ pentru orice $x \in (1,3)$ și $f'(x) > 0$ pentru	2
	orice $x \in (3, +\infty)$, deci punctele de extrem ale funcției f sunt $x = 1$ și $x = 3$	3 p
c)	f este crescătoare pe $x \in (-\infty,1]$ și descrescătoare pe $x \in [1,3]$, deci $f(x) \le f(1)$ pentru orice $x \in (-\infty,3]$	3p
	$f(1) = 4e$, deci $f(x) \le 4e \Leftrightarrow e^x(x-3)^2 \le 4e \Leftrightarrow (x-3)^2 \le 4e^{1-x}$, pentru orice $x \in (-\infty,3]$	2p
2.a)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (3x^2 - 4x + 1) = 0, \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{\ln x}{\sqrt{x}} = 0 \text{si, cum} f(1) = 0, \text{obţinem}$ $\lim_{x \to 1} f(x) = f(1), \text{ deci funcția } f \text{ este continuă în } x = 1$	3p
	Cum funcția f este continuă pe $(-\infty,1)$ și pe $(1,+\infty)$, obținem că f este continuă pe $\mathbb R$, deci funcția f admite primitive pe $\mathbb R$	2p
b)	$\int_{-1}^{e} f(x) dx = \int_{-1}^{1} f(x) dx + \int_{1}^{e} f(x) dx = \int_{-1}^{1} (3x^{2} - 4x + 1) dx + \int_{1}^{e} \frac{\ln x}{\sqrt{x}} dx =$	2p
	$= \left(x^3 - 2x^2 + x\right) \begin{vmatrix} 1 \\ -1 \end{vmatrix} + \left(2\sqrt{x}\ln x - 4\sqrt{x}\right) \begin{vmatrix} e \\ 1 \end{vmatrix} = 4 - 2\sqrt{e} + 4 = 2\left(4 - \sqrt{e}\right)$	3 p
c)	$\int_{e^n}^{e^{n+1}} f^2(x) dx = \int_{e^n}^{e^{n+1}} \frac{\ln^2 x}{x} dx = \frac{\ln^3 x}{3} \Big _{e^n}^{e^{n+1}} = \frac{3n^2 + 3n + 1}{3}$	3p
	$\frac{3n^2 + 3n + 1}{3} = \frac{7}{3}$ şi, cum <i>n</i> este număr natural, obținem <i>n</i> = 1	2p

Examenul de bacalaureat național 2018

Proba E. c)

Matematică M st-nat

Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **1.** Determinați conjugatul numărului complex z = (1-i)(2+i)+5i.
- **2.** Determinati numerele naturale n pentru care $n^2 + n 12 < 0$. 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $\lg(x+1) = 2\lg(x-5)$. **5**p
- **5**p 4. Determinați numărul de elemente ale unei mulțimi, știind că aceasta are 45 de submulțimi cu două elemente.
- 5. Se consideră dreptunghiul \overrightarrow{ABCD} și $\overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$. Știind că lungimea vectorului \overrightarrow{v} este 5p egală cu 20, determinați lungimea vectorului \overrightarrow{BD} .
- **6.** Arătați că, dacă x este număr real pentru care $\sin x + \cos x = \sqrt{2}$, atunci $\tan x + \cot x = 2$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{bmatrix} -2x & 1 & -2x^2 \\ 0 & 0 & 1 \end{bmatrix}$, unde x este număr real.
- a) Calculați $\det(A(2))$. **5p**
- **b**) Determinați numărul real a pentru care $\det(A(a) + aA(0)) = 8$. 5p
- c) Știind că $\det((m+n)A(x)) = \det(mA(x)) + \det(nA(x)) + 18$, pentru orice număr real x, **5**p determinați numerele naturale m și n, m < n.
 - **2.** Pe mulțimea \mathbb{Z}_7 se definește legea de compoziție asociativă $x * y = xy + \hat{6}x + \hat{6}y + \hat{2}$.
- **5p** a) Demonstrați că $x * y = (x + \hat{6})(y + \hat{6}) + \hat{1}$, pentru orice $x, y \in \mathbb{Z}_7$.
- **b)** Demonstrați că $x * \hat{1} = \hat{1} * x = \hat{1}$, pentru orice $x \in \mathbb{Z}_7$. 5p
- **5p c**) Calculati $\hat{0} * \hat{1} * \hat{2} * \hat{3} * \hat{4} * \hat{5} * \hat{6}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x(x^2 6x + 9)$.
- a) Arătați că $f'(x) = e^x(x^2 4x + 3), x \in \mathbb{R}$. **5**p
- **b**) Determinați punctele de extrem ale funcției f. 5p
- c) Demonstrați că $(x-3)^2 \le 4e^{1-x}$, pentru orice $x \in (-\infty,3]$ **5p**
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 3x^2 4x + 1, & x \in (-\infty, 1) \\ \frac{\ln x}{\sqrt{1-x}}, & x \in [1, +\infty) \end{cases}$.
- a) Demonstrați că funcția f admite primitive pe $\mathbb R$. **5**p
- **b**) Arătați că $\int_{-1}^{1} f(x) dx = 2(4 \sqrt{e})$. **5**p
- c) Determinați numărul natural *n* pentru care $\int_{0}^{e^{-x}} f^{2}(x) dx = \frac{7}{3}$. **5p**

Matematică *M_şt-nat*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte) $N = \log_5(7.35) - \log_5\left(\frac{7}{25}\right)^2 =$ 2p $= \log_5 \left(7 \cdot 35 \cdot \frac{25^2}{7^2} \right) = \log_5 \left(5^5 \right) = 5 \in \mathbb{N}$ $S = f\left(f\left(1 \right) \right) + f\left(f\left(2 \right) \right) + \dots + f\left(f\left(10 \right) \right) = 5 + 6 + 7 + \dots + 14 = 10$ **3p 3p** 2p $\log_2(x^2+1) + \log_2 8 = \log_2(7x^2+9) \Rightarrow 8(x^2+1) = 7x^2+9 \Rightarrow x^2=1$ 3p x = -1 sau x = 1, care verifică ecuația 2p Multimea A are 4 elemente, deci sunt 4 cazuri posibile 1p În mulțimea A sunt 2 numere reale, deci sunt 2 cazuri favorabile 2p $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{4} = \frac{1}{2}$ $\overrightarrow{MN} = (n-1)\overrightarrow{i} + (3-n)\overrightarrow{j}, \overrightarrow{MP} = (2n-1)\overrightarrow{i} + (5-n)\overrightarrow{j}$ 2p 2p $\frac{n-1}{2n-1} = \frac{3-n}{5-n}$ şi, cum *n* este număr natural, obținem *n* = 2 **3p** $\cos\frac{\pi}{3} = \sin\frac{\pi}{6}, \sin\frac{\pi}{3} = \cos\frac{\pi}{6}$ 2p $\sin\left(x - \frac{\pi}{3}\right) + \cos\left(x + \frac{\pi}{6}\right) = \sin x \cos\frac{\pi}{3} - \sin\frac{\pi}{3}\cos x + \cos x \cos\frac{\pi}{6} - \sin x \sin\frac{\pi}{6} = 0$ **3**p

SUBII	ECTUL al II-lea (30 de pu	ncte)
1.a)	$X(-1) = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 9 & 1 \\ -1 & 1 & 1 \end{pmatrix} \Rightarrow \det(X(-1)) = \begin{vmatrix} 2 & 4 & 1 \\ 3 & 9 & 1 \\ -1 & 1 & 1 \end{vmatrix} = $ $= 18 + 3 + (-4) - (-9) - 12 - 2 = 12$	2p 3p
b)	$\det(X(a) - I_3) = \begin{vmatrix} 1 & 4 & 1 \\ 3 & 8 & 1 \\ a & a^2 & 0 \end{vmatrix} = 2a^2 - 4a$	3p
	$2a^2 - 4a = 0 \Leftrightarrow a = 0 \text{ sau } a = 2$	2p
c)	$\Delta = \begin{vmatrix} 2 & 4 & 1 \\ 3 & 9 & 1 \\ a & a^2 & 1 \end{vmatrix} = a^2 - 5a + 6 \text{ si, cum } ABC \text{ este triunghi, obținem } a^2 - 5a + 6 \neq 0$	2p
	$\mathcal{A}_{\Delta ABC} = \frac{1}{2} \Delta $, deci $ a^2 - 5a + 6 < 6$ şi, cum a este număr natural, obținem $a = 1$ sau $a = 4$	3 p

2.a)	$M(x)M(y) = \begin{pmatrix} 1+3y+3x+9xy-9xy & 3y+9xy+3x-9xy \\ -3x-9xy-3y+9xy & -9xy+1-3y-3x+9xy \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1+3(x+y) & 3(x+y) \\ -3(x+y) & 1-3(x+y) \end{pmatrix} = M(x+y), \text{ pentru orice numere reale } x \text{ §i } y$	2p
b)	$M(x)M(-x) = M(x+(-x)) = M(0) = I_2$, pentru orice număr real x	2p
	$M(-x)M(x) = M((-x)+x) = M(0) = I_2$, pentru orice număr real x , deci inversa matricei	
	$M(x)$ este matricea $M(-x) = \begin{pmatrix} 1-3x & -3x \\ 3x & 1+3x \end{pmatrix}, x \in \mathbb{R}$	3p
c)	$M\left(\sqrt{x} + \sqrt{x+5}\right) = M\left(5\right)$, deci $\sqrt{x} + \sqrt{x+5} = 5$	2p
	x = 4	3p

c)	$M\left(\sqrt{x} + \sqrt{x+5}\right) = M\left(5\right)$, deci $\sqrt{x} + \sqrt{x+5} = 5$	2 p
	x = 4	3 p
SUBII	ECTUL al III-lea (30 de pu	ncte)
1.a)	$\lim_{x \to 2} \frac{f(x)}{x - 2} = \lim_{x \to 2} \frac{x^2 - x - 2}{x(x - 2)} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x(x - 2)} =$	3p
	$= \lim_{x \to 2} \frac{x+1}{x} = \frac{3}{2}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - x - 2}{x^2} = 1$	2 p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{-x - 2}{x} = -1, \text{ deci dreapta de ecuație } y = x - 1 \text{ este asimptotă oblică spre } +\infty \text{ la graficul funcției } f$	3 p
c)	$\lim_{x \to +\infty} \frac{f(mx)}{f(x)} = \lim_{x \to +\infty} \left(\frac{m^2 x^2 - mx - 2}{mx} \cdot \frac{x}{x^2 - x - 2} \right) = m$	3 p
	Cum m este nenul, din $m = m^2 - m$, obținem $m = 2$, deci există un singur număr natural nenul m care verifică relația	2p
2.a)	$\lim_{x \to -\infty} \frac{4f(x)}{(1-2x)^2} = \lim_{x \to -\infty} \frac{4(x^2 - ax + 2a - 4)}{1 - 4x + 4x^2} =$	2p
	$= \lim_{x \to -\infty} \frac{4x^2 - 4ax + 8a - 16}{4x^2 - 4x + 1} = 1$, pentru orice număr real a	3 p
b)	$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = \lim_{\substack{x \to 2 \\ x < 2}} \left(x^2 - ax + 2a - 4\right) = 0, \lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} \left(2^{x-1} - 2\right) = 0 \text{si, cum} f(2) = 0,$ obţinem $\lim_{x \to 2} f(x) = f(2)$, deci funcţia f este continuă în $x = 2$, pentru orice număr real a	3 p
	Cum, pentru orice număr real a , funcția f este continuă pe $(-\infty,2)$ și pe $(2,+\infty)$, obținem că f este continuă pe $\mathbb R$, pentru orice număr real a	2p
c)	$f(1) = a - 3, \ f(3) = 2$	3p
	Pentru orice număr real a , $a < 3$, $f(1) \cdot f(3) < 0$ și, cum funcția f este continuă, ecuația $f(x) = 0$ are cel puțin o soluție în intervalul $(1,3)$	2p

Examenul de bacalaureat național 2018

Proba E. c)

Matematică *M_şt-nat* Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $N = \log_5 7 + \log_5 35 2\log_5 \frac{7}{25}$ este natural.
- **5p** 2. Știind că $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 2, calculați $S = (f \circ f)(1) + (f \circ f)(2) + \ldots + (f \circ f)(10)$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2+1)+3=\log_2(7x^2+9)$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr din mulțimea $A = \{i, i^2, i^3, i^4\}$, unde $i^2 = -1$, acesta să fie număr real.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(1,n), N(n,3) și P(2n,5), unde n este număr natural. Știind că vectorii \overrightarrow{MN} și \overrightarrow{MP} sunt coliniari, determinați numărul natural n.
- **5p 6.** Arătați că $\sin\left(x \frac{\pi}{3}\right) + \cos\left(x + \frac{\pi}{6}\right) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $X(a) = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 9 & 1 \\ a & a^2 & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(X(-1)) = 12$.
- **5p b**) Determinați numerele reale a pentru care $\det(X(a)-I_3)=0$.
- **5p** c) În reperul cartezian xOy se consideră punctele A(2,4), B(3,9) și $C(a,a^2)$, unde a este număr natural. Determinați numerele naturale a pentru care ABC este triunghi și are aria mai mică decât 3.
 - **2.** Se consideră matricea $M(x) = \begin{pmatrix} 1+3x & 3x \\ -3x & 1-3x \end{pmatrix}$, unde x este număr real.
- **5p** a) Demonstrați că M(x)M(y) = M(x+y), pentru orice numere reale x și y.
- **5p b**) Determinați inversa matricei M(x), unde x este număr real.
- **5p** c) Determinați numărul real pozitiv x pentru care are loc egalitatea $M(\sqrt{x})M(\sqrt{x+5}) = M(5)$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 x 2}{x}$.
- **5p** a) Calculați $\lim_{x\to 2} \frac{f(x)}{x-2}$.
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că există un singur număr natural nenul m pentru care $\lim_{x \to +\infty} \frac{f(mx)}{f(x)} = m^2 m$.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 ax + 2a 4, & x \in (-\infty, 2) \\ 2^{x-1} 2, & x \in [2, +\infty) \end{cases}$, unde a este număr real.
- **5p** a) Arătați că $\lim_{x \to -\infty} \frac{4f(x)}{(1-2x)^2} = 1$, pentru orice număr real a.

- **5p** \mid **b**) Demonstrați că funcția f este continuă pe $\mathbb R$, pentru orice număr real a .
- **5p** c) Demonstrați că, pentru orice număr real a, a < 3, ecuația f(x) = 0 are cel puțin o soluție în intervalul (1,3).

Matematică *M_st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = \frac{a_1 + a_3}{2} = \frac{7 + 15}{2} =$	3 p
	=11	2 p
2.	$3n+2 < 8 \Leftrightarrow n < 2$	2p
	Cum n este număr natural, obținem $n = 0$ sau $n = 1$	3 p
3.	$x^{2}-1=(x+1)^{2} \Rightarrow 2x+2=0$	3p
	x = -1, care convine	2 p
4.	$C_5^3 = \frac{5!}{3! \cdot 2!} =$	3 p
	=10	2p
5.	$m_{d_1} = \frac{1}{2}, \ m_{d_2} = m - 3$	2p
	d_1 şi d_2 sunt perpendiculare $\Leftrightarrow m_{d_1} \cdot m_{d_2} = -1 \Leftrightarrow \frac{1}{2}(m-3) = -1 \Leftrightarrow m=1$	3 p
6.	$\sin 2x = \frac{1}{2} \Rightarrow \left(\sin x + \cos x\right)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + \sin 2x =$	3p
	$=1+\frac{1}{2}=\frac{3}{2}$	2p

1.a)	$X(3,1) = \begin{pmatrix} 3 & 1 \\ 9 & 3 \end{pmatrix} \Rightarrow \det(X(3,1)) = \begin{vmatrix} 3 & 1 \\ 9 & 3 \end{vmatrix} = 3 \cdot 3 - 9 \cdot 1 =$	3 p
	=9-9=0	2 p
b)	$X(a,b)X(c,d) = \begin{vmatrix} a & b \\ 9b & a \end{vmatrix} \begin{vmatrix} 9d & c \end{vmatrix} = \begin{vmatrix} abc+9ad & 9bd+ac \end{vmatrix} =$	3 p
	$= \begin{pmatrix} ac + 9bd & ad + bc \\ 9(ad + bc) & ac + 9bd \end{pmatrix} = X(ac + 9bd, ad + bc), \text{ pentru orice numere reale } a, b, c \text{ si } d$	2p
c)	$\det\left(X\left(m,n\right)\right) = m^2 - 9n^2$	2p
	Cum m şi n sunt numere întregi, $(m-3n)(m+3n)=1 \Rightarrow m-3n=m+3n=-1$ sau $m-3n=m+3n=1$ şi obţinem $(-1,0)$ sau $(1,0)$	3р
2.a)	$f = 2X^3 - 4X^2 - 7X + 9 \Rightarrow f(1) = 2 \cdot 1^3 - 4 \cdot 1^2 - 7 \cdot 1 + 9 =$	2p
	=2-4-7+9=0	3р
b)	$f\left(-\sqrt{2}\right) = 0 \Leftrightarrow 2 \cdot \left(-2\sqrt{2}\right) - 4 \cdot 2 - 7 \cdot \left(-\sqrt{2}\right) + m = 0$	3 p
	$m = 8 - 3\sqrt{2}$	2p

c)	$x_1 + x_2 = 1$ şi $x_1 + x_2 + x_3 = 2 \Rightarrow x_3 = 1$	3p
	$f(1) = 0 \Rightarrow m = 9$	2p

(30 de puncte) SUBIECTUL al III-lea

	·	
1.a)	$f'(x) = (x-1)'e^x + (x-1)(e^x)' =$	2p
	$=e^{x}+(x-1)e^{x}=xe^{x}, x \in \mathbb{R}$	3p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x-1}{e^{-x}} + 1 \right) = 1, \text{ deoarece } \lim_{x \to -\infty} \frac{x-1}{e^{-x}} = \lim_{x \to -\infty} \frac{1}{-e^{-x}} = 0$	3 p
	Dreapta de ecuație $y = 1$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2 p
c)	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty) \Rightarrow f$ este crescătoare pe $[0, +\infty)$ și, cum $f(0) = 0$, obținem $f(x) \ge 0$, pentru orice $x \in [0, +\infty)$	3p
	1	
	$f\left(\frac{1}{n}\right) \ge 0$, pentru orice număr natural n , $n \ge 2$, deci $\left(\frac{1}{n} - 1\right)e^{\frac{1}{n}} + 1 \ge 0 \Rightarrow \sqrt[n]{e} \le \frac{n}{n-1}$	2p
2.a)	$\int_{2}^{3} f(x)\sqrt{x-2} dx = \int_{2}^{3} x(x-2) dx = \left(\frac{x^{3}}{3} - x^{2}\right) \Big _{2}^{3} =$	3p
	$=9-9-\frac{8}{3}+4=\frac{4}{3}$	2p
b)	$g(x) = \sqrt{xe^x} \Rightarrow V = \pi \int_0^1 g^2(x) dx = \pi \int_0^1 xe^x dx = \pi (x-1)e^x \Big _0^1 =$	3p
	$=0-\pi\cdot(-1)\cdot e^0=\pi$	2p
c)	$\int_{3}^{x} f(t) \cdot \frac{1}{\sqrt{t-2}} dt = \int_{3}^{x} t dt = \frac{t^{2}}{2} \Big _{3}^{x} = \frac{x^{2}-9}{2}$	3p
	$\lim_{x \to +\infty} \frac{\int_{3}^{x} f(t) \cdot \frac{1}{\sqrt{t-2}} dt}{x^{2}} = \lim_{x \to +\infty} \frac{x^{2} - 9}{2x^{2}} = \frac{1}{2}$	2 p

Matematică *M_st-nat*

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați al doilea termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=7$ și $a_3=15$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2. Determinați numerele naturale n, pentru care f(n) < 8.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 1} = x + 1$.
- **5p 4.** Determinați numărul submulțimilor cu trei elemente ale mulțimii $\{0, 1, 2, 3, 4\}$.
- **5.** În reperul cartezian xOy se consideră dreptele $d_1: y = \frac{x}{2} + 2$ și $d_2: y = (m-3)x + 1$, unde m este număr real. Determinați numărul real m, pentru care dreptele d_1 și d_2 sunt perpendiculare.
- **5p 6.** Arătați că, dacă $\sin 2x = \frac{1}{2}$, atunci $(\sin x + \cos x)^2 = \frac{3}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $X(a,b) = \begin{pmatrix} a & b \\ 9b & a \end{pmatrix}$, unde a și b sunt numere reale.
- **5p** a) Arătați că $\det(X(3,1)) = 0$.
- **5p b**) Demonstrați că X(a,b)X(c,d) = X(ac+9bd,ad+bc), pentru orice numere reale a, b, c și d.
- **5p** c) Determinați perechile de numere întregi (m,n) pentru care $\det(X(m,n)) = 1$.
 - **2.** Se consideră polinomul $f = 2X^3 4X^2 7X + m$, unde m este număr real.
- **5p** a) Pentru m = 9, arătați că f(1) = 0.
- **5p b)** Determinați numărul real m pentru care polinomul f este divizibil cu $X + \sqrt{2}$.
- $[\mathbf{5p} \mid \mathbf{c})$ Determinați numărul real m, știind că suma a două rădăcini ale polinomului f este egală cu 1.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)e^x + 1$.
- **5p a)** Arătați că $f'(x) = xe^x$, $x \in \mathbb{R}$.
- **5p b)** Determinați ecuația asimptotei orizontale spre $-\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $\sqrt[n]{e} \le \frac{n}{n-1}$, pentru orice număr natural $n, n \ge 2$.
 - **2.** Se consideră funcția $f:[2,+\infty) \to \mathbb{R}$, $f(x) = x\sqrt{x-2}$.
- **5p** a) Arătați că $\int_{2}^{3} f(x) \sqrt{x-2} \, dx = \frac{4}{3}$.
- **5p b**) Arătați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, $g(x) = \frac{f(x+2)}{x+2} \cdot \sqrt{e^x}$ este egal cu π .
- **5p** c) Calculați $\lim_{x \to +\infty} \frac{\int_{3}^{x} f(t) \cdot \frac{1}{\sqrt{t-2}} dt}{x^{2}}$