An attempt to give the most abstract possible definition of a blockchain.

1 BlockChain

1.1 Lists and their validation

Given a set S, let SET(S) be the set of sets of elements of S and FLIST(S) be the set of all finite lists of elements of S. Given $L \in FLIST(S)$, we use notation length(L) to refer to the number of elements in L, notation L[i] to refer to the i-th element in L, where $i \in \{1, \ldots, \operatorname{length}(L)\}$, and notation L[i,j] to refer to the sublist $[L[i],\ldots,L[j]]$ of L, where $i,j \in \{1,\ldots,\operatorname{length}(L)\}$ and $i \leq j$. Notice that length(L) = 0 if and only if L is the empty list [I]. Finally, we say that a list I is a prefix of a list I if I is the empty list, or $I \leq \operatorname{length}(L_1) \leq \operatorname{length}(L_2)$ and I and I is I in I is the empty list.

From now on, assume that Σ is a finite alphabet, and that $\mathbf{B} \subseteq \Sigma^*$ is the set of all possible blocks.

Definition 1. A validation rule is a function $V : FLIST(\mathbf{B}) \to SET(\mathbf{B})$

Intuitively, V is a function taking a finite list L of blocks as input, and returning the set of blocks that could be added to L to produce a valid blockchain.

A list $G \in \text{FList}(\mathbf{B})$ is said to be a genesis list of V if length $(G) \geq 1$, $G[1] \in V([\])$ and $G[i+1] \in V(G[1,i])$, for every $i \in \{1,\ldots,\text{length}(G)-1\}$. That is, G is a genesis list if G is a non-empty valid blockchain.

Definition 2. Let V be a validation rule and G be a genesis list of V. Then a list $L \in FLIST(\mathbf{B})$ is valid with respect to (G, V) if:

- 1. $\operatorname{length}(G) \leq \operatorname{length}(L)$ and $G = L[1, \operatorname{length}(G)]$.
- 2. $L[i+1] \in V(L[1,i])$, for every $i \in \{length(G), \ldots, length(L) 1\}$.

The role of G in this definition is to provide the blocks to startup the system. Let LOG(G, V) be the set of valid lists with respect to (G, V).

Two lists $L_1, L_2 \in \text{FList}(\mathbf{B})$ are said to disagree in the last element if one of the following conditions holds: (1) length(L_1) = 0 and length(L_2) > 0, (2) length(L_1) > 0 and length(L_2) = 0, or (3) length(L_1) > 0, length(L_2) > 0 and L_1 [length(L_1)] $\neq L_2$ [length(L_2)].

Definition 3. Let V be a validation rule and G be a genesis list of V. Then LOG(G, V) is safe if for every pair $L_1, L_2 \in FLIST(\mathbf{B})$ that disagree in the last element, it holds that $V(L_1) \cap V(L_2) = \emptyset$.

1.2 Body of knowledge

In this document, we will give a game-theoretic characterization of the notion of blockchain where it plays a key role the knowledge of each participant. More precisely, given a validation rule V and a genesis list G of V, a body of knowledge of (G,V) is a non-empty and finite subset K of LOG(G,V) satisfying the following closure property:

• if $L_1 \in Log(G, V)$, L_1 is a prefix of L_2 and $L_2 \in K$, then $L_1 \in K$.

Intuitively, if at some iteration a participant considers a list $L \in Log(G, V)$ as valid, then she should also consider as valid every prefix of L including the genesis list, that is, every prefix of L belonging to Log(G, V). The set of bodies of knowledge of (G, V) is denoted by BK(G, V).

There is a natural way to visualize a body of knowledge K as a graph $\mathcal{G}(K)$. The set of nodes of $\mathcal{G}(K)$ is the set of blocks occurring in the lists in K, and there is an edge from a block b_1 to a block b_2 if there exists a list $L \in K$ such that $b_1 = L[i]$ and $b_2 = L[i+1]$, where $i \in \{1, \ldots, \operatorname{length}(L) - 1\}$.

Lemma 1. Assume that Log(G, V) is safe. Then for every $K \in BK(G, V)$, it holds that G(K) is a tree rooted at G[1].

1.3 Protocols and blockchain

Definition 4. A relation \leq on LOG(G, V) is said to be a knowledge order over (G, V) if \leq is a total preorder on LOG(G, V), that is, \leq is reflexive, transitive and total.

Moreover, a sequence $\{ \leq_i \}_{i \in \mathbb{N}}$ is said to be a blockchain protocol over (G, V) if every $\leq_i (i \in \mathbb{N})$ is a knowledge order over (G, V).

Definition 5. Let $\{\preceq_i\}_{i\in\mathbb{N}}$ be a blockchain protocol over (G,V), $K\in BK(G,V)$ and $t\in\mathbb{N}$. Then a maximal element of K with respect to \preceq_t is said to be a blockchain of K at iteration t with respect to the protocol $\{\preceq_i\}_{i\in\mathbb{N}}$.

1.4 Definition of the game

Fix a validation rule V and a genesis list G of V. From now on, we assume that $\mathcal{P} = \{1, \ldots, n\}$ is a finite set of players, and we say that a view \mathbf{v} is a tuple $(v_1, \ldots, v_n) \in \mathsf{BK}(G, V)^n$. Intuitively, each component v_i of \mathbf{v} represents the knowledge of player i, so \mathbf{v} contains the knowledge of all the players. Moreover, we denote by \mathcal{V} the set of all possible views, that is, $\mathcal{V} = \mathsf{BK}(G, V)^n$.

Marcelo: Notice that I am using bold font for tuples. Please use the same notation in the rest of the paper.

Definition 6. Given a player $p \in \mathcal{P}$, a function $a : \mathcal{V} \to \mathcal{V}$ is an action for p if

• for every $\mathbf{v} \in \mathcal{V}$ and $q \in \mathcal{P}$, if $\mathbf{v} = (v_1, \dots, v_n)$ and $a(\mathbf{v}) = (w_1, \dots, w_n)$, then it holds that:

$$v_q \subseteq w_q \subseteq v_q \cup w_p$$
.

Moreover, A_p is the set of all actions for player p.

An action of a player p is represented by a modification of the knowledge of p and a round of communication between players.

If we need to restrict the number of blocks that can be added when an action is executed (like in the case of Bitcoin), then we need to include in Definition 6 a condition like the following:

• for every $\mathbf{v} \in \mathcal{V}$, if $\mathbf{v} = (v_1, \dots, v_n)$ and $a(\mathbf{v}) = (w_1, \dots, w_n)$, then it holds that $|w_p| \le |v_p| + 1$.

In this case, at most one block can be added as the result of executing action a by player p.

From now on, assume that $\mathcal{A}=\mathcal{A}_1\times\mathcal{A}_2\times\cdots\times\mathcal{A}_n$. Thus, every element of $\mathbf{a}\in\mathcal{A}$ is a tuple containing exactly one action for each player. Moreover, given a player $p\in\mathcal{P}$, a function $r_p:\mathcal{V}\times\mathcal{A}\to\mathbb{R}$ is called a reward function for p. Intuitively, given the knowledge of each player, encoded as a view \mathbf{v} in \mathcal{V} , and the actions executed by each player, encoded as a tuple \mathbf{a} in \mathcal{A} , function r_p tell us what the reward of player p is if the state of the world is p and the tuple of actions p is executed. Finally, assuming that there is a reward function p for each player $p\in\mathcal{P}$, define p is the reward function of the game.

As a last component of the game, we assume that $\mathbf{Pr}: \mathcal{V} \times \mathcal{A} \times \mathcal{V} \to [0,1]$ is a function such that for every $\mathbf{v} \in \mathcal{V}$ and $\mathbf{a} \in \mathcal{A}$:

$$\sum_{\mathbf{w} \in \mathcal{V}} \mathbf{Pr}(\mathbf{v}, \mathbf{a}, \mathbf{w}) = 1$$

Intuitively, Pr(v, a, w) tell us what the probability of modifying v to generate w is when the tuple of actions a is executed.

Then $\Gamma = (\mathcal{P}, \mathcal{A}, \mathcal{V}, \mathcal{R}, \mathbf{Pr})$ is an infinite stochastic game where :

- \mathcal{P} is the set of player.
- A is the set of available action.
- V is the set of states.
- \mathcal{R} the set of pay-off function.
- Pr is the transition probability function.

1.5 Stationary Nash equilibrium and Reasonable knowledge

Definition 7. We call stationary strategy for a player p a function $s: \mathcal{V} \to \mathcal{A}_p$ Moreover \mathcal{S}_p is the set of all strategy for player p.

From now on, assume that $S = S_1 \times S_2 \times \cdots \times S_n$. Thus, every element of $s \in S$ is a tuple containing exactly one strategy for each player.

Definition 8. Considering a game Γ and a stationary strategy vector $\mathbf{s} \in \mathcal{S}$, we define the n-reachability probability $\mathcal{P}_n^{\mathbf{s}} : \mathcal{V} \to [0;1]$ by induction such that :

$$\mathcal{P}_0^{\mathbf{s}}(\mathbf{v}_0) = 1 \land \forall \mathbf{v} \in \mathcal{V}, \mathbf{v} \neq \mathbf{v}_0 \implies \mathcal{P}_0^{\mathbf{s}}(\mathbf{v}) = 0$$
$$\mathcal{P}_{n+1}^{\mathbf{s}}(\mathbf{v}) = \sum_{\mathbf{v}' \in \mathcal{V}} \mathcal{P}_n^{\mathbf{s}}(\mathbf{v}') * \mathbf{Pr}(\mathbf{v}', \mathbf{s}(\mathbf{v}'), \mathbf{v})$$

We say that \mathbf{v} is \mathbf{s} reachable if exists $n \in \mathcal{N}$ such that $\mathcal{P}_n^{\mathbf{s}}(\mathbf{v}) > 0$

Definition 9. We call β discounted reward of player p for a strategy vector \mathbf{s} and a game Γ the value

$$u_p(\mathbf{s}) = \sum_{n=0}^{+\infty} \beta^{n+1} * r_p(\mathbf{v}, \mathbf{s}(\mathbf{v})) * \mathbf{Pr}(\mathbf{v}, \mathbf{s}(\mathbf{v}), s_p(\mathbf{v})) * \mathcal{P}_n^{\mathbf{s}}(\mathbf{v})$$

Definition 10. We say that **s** a vector of stationary strategies is a β discounted stationary equilibrium of Γ iff:

$$\forall p \in P, \forall s_p', u_p(\mathbf{s}) \ge u_w((\mathbf{s}_{\neg p}, s_p'))$$

Definition 11. Considering a game Γ and a stationary strategy vector $\mathbf{s} \in \mathcal{S}$, we define the n-reachability probability without cycle $\mathcal{P}_n^{\mathbf{s}+}: \mathcal{V} \to [0;1]$ by induction such that :

$$\mathcal{P}_0^{\mathbf{s}+}(\mathbf{v}_0) = 1 \land \forall \mathbf{v} \in \mathcal{V}, \mathbf{v} \neq \mathbf{v}_0 \implies \mathcal{P}_0^{\mathbf{s}+}(\mathbf{v}) = 0$$
$$\mathcal{P}_{n+1}^{\mathbf{s}+}(\mathbf{v}) = \sum_{\mathbf{v}' \in \mathcal{V} \setminus \{\mathbf{v}\}} \mathcal{P}_n^{\mathbf{s}+}(\mathbf{v}') * \mathbf{Pr}(\mathbf{v}', \mathbf{s}(\mathbf{v}'), \mathbf{v})$$

Definition 12. We say that \mathbf{v} is α reasonable regarding a game Γ if exists a β discounted stationary equilibrium of Γ noted \mathbf{s} such that

$$\sum_{n=0}^{+\infty} \mathcal{P}_n^{\mathbf{s}+}(\mathbf{v}) \ge \alpha$$

2 Etienne 's modification space

Etienne: I can add mix stationary strategy to equilibrium if you want Do not read after

Etienne: -> Simulate network position (constrain communication in action)

Etienne: It seems that we are not able to express behaviour/attack such as blockwitholding for a certain amount of time as we are event based

2.1 Equivalent games

In order to define equivalent game we just have to define equivalent knowledge regarding a game.

Definition 13. Let K = (N, E) and K' = (N', E') two knowledge we say that K and K' are \equiv equivalent if:

≡ is an equivalent function over blocks

$$\forall L \in K, \exists L' \in K', \forall i \in [\![1,|L|]\!], L[i] \equiv L'[i]$$

$$\forall L' \in K', \exists L \in K, \forall i \in [1, |L'|], L[i] \equiv L'[i]$$

We denote K^{\equiv} the set of knowledge equivalent to K.

Definition 14. *Considering a game* Γ *we say that* \equiv *is* γ *fitting if* :