# Predict Hotel Bookings Cancellations

Bharatwaj Majji UB PERSON ID: 50442312 Jayanth Puthineedi UB PERSON ID: 50442725 Vishnu Bhadramraju UB PERSON ID: 50441735

2022 - 12 - 09

## 1. "Visualize And Understand the dataset"

```
set.seed(1) # seed for any random generation
df = read.csv('hotel_bookings.csv')
head(df)

## hotel is_canceled lead_time arrival_date_year arrival_date_month
```

| ##                                     |                                           | hotel                | is_cancel                                        | ed lea                | ad_time  | arrival_                                         | _date_y              | ear arr                  | ival_date_month                                  |     |
|----------------------------------------|-------------------------------------------|----------------------|--------------------------------------------------|-----------------------|----------|--------------------------------------------------|----------------------|--------------------------|--------------------------------------------------|-----|
| ##                                     | 1                                         | Resort Hotel         |                                                  | 0                     | 342      |                                                  | 2                    | 2015                     | July                                             |     |
| ##                                     | 2                                         | Resort Hotel         |                                                  | 0                     | 737      |                                                  | 2                    | 2015                     | July                                             |     |
| ##                                     | 3                                         | Resort Hotel         |                                                  | 0                     | 7        |                                                  | 2                    | 2015                     | July                                             |     |
| ##                                     | 4                                         | Resort Hotel         |                                                  | 0                     | 13       |                                                  | 2                    | 2015                     | July                                             |     |
| ##                                     | 5                                         | Resort Hotel         |                                                  | 0                     | 14       |                                                  | 2                    | 2015                     | July                                             |     |
| ##                                     | 6                                         | Resort Hotel         |                                                  | 0                     | 14       |                                                  | 2                    | 2015                     | July                                             |     |
| ##                                     |                                           | arrival_date_        | week_numb                                        | er arr                | rival_da | te_day_d                                         | of_mont              | h stays                  | _in_weekend_nigh                                 | ıts |
| ##                                     | 1                                         |                      |                                                  | 27                    |          |                                                  |                      | 1                        |                                                  | 0   |
| ##                                     | 2                                         |                      |                                                  | 27                    |          |                                                  |                      | 1                        |                                                  | 0   |
| ##                                     | 3                                         |                      |                                                  | 27                    |          |                                                  |                      | 1                        |                                                  | 0   |
| ##                                     | 4                                         |                      |                                                  | 27                    |          |                                                  |                      | 1                        |                                                  | 0   |
| ##                                     | 5                                         |                      |                                                  | 27                    |          |                                                  |                      | 1                        |                                                  | 0   |
| ##                                     | 6                                         |                      |                                                  | 27                    |          |                                                  |                      | 1                        |                                                  | 0   |
| ##                                     |                                           | stays_in_week        | _nights a                                        | dults                 | childre  | n babies                                         | s meal               | country                  | market_segment                                   |     |
| ##                                     | 1                                         |                      | ^                                                | 0                     |          | 0 (                                              | ) BB                 | PRT                      | Direct                                           |     |
| ππ                                     | 1                                         |                      | 0                                                | 2                     |          | 0 (                                              |                      |                          |                                                  |     |
| ##                                     | _                                         |                      | 0                                                | 2                     |          | 0 (                                              |                      | PRT                      | Direct                                           |     |
|                                        | 2                                         |                      |                                                  |                       |          | 0 (                                              |                      | PRT<br>GBR               | Direct<br>Direct                                 |     |
| ##                                     | 2                                         |                      | 0                                                | 2                     |          | 0 (                                              | BB<br>BB             |                          | Direct                                           |     |
| ##                                     | 2<br>3<br>4                               |                      | 0                                                | 2<br>1<br>1<br>2      |          | 0 (                                              | BB<br>BB<br>BB<br>BB | GBR                      | Direct<br>Corporate                              |     |
| ##<br>##<br>##                         | 2<br>3<br>4<br>5                          |                      | 0<br>1<br>1                                      | 2<br>1<br>1           |          | 0 (0                                             | BB BB BB BB          | GBR<br>GBR               | Direct<br>Corporate<br>Online TA                 |     |
| ##<br>##<br>##<br>##                   | 2<br>3<br>4<br>5                          | distribution_        | 0<br>1<br>1<br>2<br>2                            | 2<br>1<br>1<br>2<br>2 |          | 0 (0<br>0 (0<br>0 (0<br>0 (0                     | BB BB BB BB BB       | GBR<br>GBR<br>GBR<br>GBR | Direct<br>Corporate<br>Online TA<br>Online TA    |     |
| ##<br>##<br>##<br>##                   | 2<br>3<br>4<br>5<br>6                     | $	ext{distribution}$ | 0<br>1<br>1<br>2<br>2                            | 2<br>1<br>1<br>2<br>2 |          | 0 (0<br>0 (0<br>0 (0<br>0 (0                     | BB BB BB BB BB       | GBR<br>GBR<br>GBR<br>GBR | Direct<br>Corporate<br>Online TA<br>Online TA    |     |
| ##<br>##<br>##<br>##<br>##<br>##       | 2<br>3<br>4<br>5<br>6                     | $	ext{distribution}$ | 0<br>1<br>1<br>2<br>2<br>channel i               | 2<br>1<br>1<br>2<br>2 |          | 0 (0<br>0 (0<br>0 (0<br>0 (0<br>est prev         | BB BB BB BB BB       | GBR<br>GBR<br>GBR<br>GBR | Direct Corporate Online TA Online TA             |     |
| ##<br>##<br>##<br>##<br>##<br>##       | 2<br>3<br>4<br>5<br>6                     |                      | 0 1 1 2 2 channel i Direct Direct Direct         | 2<br>1<br>1<br>2<br>2 |          | 0 (0<br>0 (0<br>0 (0<br>0 (0<br>0 (0<br>est prev | BB BB BB BB BB       | GBR<br>GBR<br>GBR<br>GBR | Direct Corporate Online TA Online TA tions 0     |     |
| ##<br>##<br>##<br>##<br>##<br>##       | 2<br>3<br>4<br>5<br>6<br>1<br>2<br>3      |                      | 0 1 1 2 2 channel i Direct Direct Direct rporate | 2<br>1<br>1<br>2<br>2 |          | 0 (0<br>0 (0<br>0 (0<br>0 (0<br>0 (0<br>est prev | BB BB BB BB BB       | GBR<br>GBR<br>GBR<br>GBR | Direct Corporate Online TA Online TA tions 0 0   |     |
| ##<br>##<br>##<br>##<br>##<br>##<br>## | 2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>4 |                      | 0 1 1 2 2 channel i Direct Direct Direct         | 2<br>1<br>1<br>2<br>2 |          | 0 (0<br>0 (0<br>0 (0<br>0 (0<br>0 (0<br>est prev | BB BB BB BB BB       | GBR<br>GBR<br>GBR<br>GBR | Direct Corporate Online TA Online TA tions 0 0 0 |     |

```
previous_bookings_not_canceled reserved_room_type assigned_room_type
## 1
## 2
                                                      C
                                                                          C
                                   0
## 3
                                   0
                                                                          С
                                                      Α
## 4
                                   0
                                                      Α
                                                                          Α
## 5
                                   0
                                                                          Α
##
     booking_changes deposit_type agent company days_in_waiting_list customer_type
## 1
                       No Deposit
                                   NULL
                                            NULL
                                                                           Transient
## 2
                                            NULL
                                                                    0
                       No Deposit
                                   NULL
                                                                           Transient
## 3
                   0
                      No Deposit NULL
                                            NULL
                                                                    0
                                                                           Transient
                                            NULL
                                                                    0
                                                                           Transient
## 4
                   0
                       No Deposit
                                    304
                                            NULL
## 5
                   0
                       No Deposit
                                     240
                                                                    0
                                                                           Transient
                                     240
                                            NULL
## 6
                   0
                       No Deposit
                                                                           Transient
     adr required_car_parking_spaces total_of_special_requests reservation_status
## 1
                                                              0
                                                                          Check-Out
## 2
       0
                                    0
                                                              0
                                                                          Check-Out
                                    0
## 3
     75
                                                              0
                                                                          Check-Out
## 4
     75
                                    0
                                                              0
                                                                          Check-Out
## 5
     98
                                    0
                                                              1
                                                                          Check-Out
## 6 98
                                    0
                                                              1
                                                                          Check-Out
    reservation_status_date
##
                  2015-07-01
## 1
## 2
                  2015-07-01
## 3
                  2015-07-02
                  2015-07-02
## 5
                  2015-07-03
## 6
                  2015-07-03
dim(df)
## [1] 119390
                  32
Columns with MissingValues
cat("Columns with NA values - ", names(which(sapply(df, function(x) any(is.na(x))))), "\n")
## Columns with NA values - children
cat("Columns with NULL values - ", names(which(sapply(df, function(x) any(x=='NULL')))), "\n")
## Columns with NULL values - country agent company
Handle Missing Values columns
df$children = ifelse(is.na(df$children), 0, df$children)
df$country = ifelse(df$country == 'NULL', 'Unknown', df$country)
df$agent = ifelse(df$agent == 'NULL', 0, df$agent)
df$company = ifelse(df$company == 'NULL', 0, df$company)
df$guests_stayed = df$adults + df$children + df$babies
df$nights_stayed = df$stays_in_week_nights + df$stays_in_weekend_nights
df <- subset(df, select = -c(adults, children, babies, stays_in_week_nights, stays_in_weekend_nights))</pre>
```

## Correlation b/w numerical variables

```
res <- cor(df[sapply(df,is.numeric)])
res[order(res[,1],decreasing=TRUE), ncol=1]</pre>
```

```
##
                      is canceled
                                                         lead_time
##
                      1.000000000
                                                       0.293123356
##
           previous cancellations
                                             days_in_waiting_list
                      0.110132808
                                                       0.054185824
##
##
                                                     guests_stayed
##
                      0.047556598
                                                       0.046521756
                    nights_stayed
                                                arrival_date_year
##
                      0.017779269
##
                                                       0.016659860
         arrival_date_week_number
##
                                        arrival_date_day_of_month
                      0.008148065
                                                      -0.006130079
##
   previous_bookings_not_canceled
##
                                                is_repeated_guest
                      -0.057357723
                                                      -0.084793418
##
##
                  booking_changes
                                      required_car_parking_spaces
##
                      -0.144380991
                                                      -0.195497817
##
        total_of_special_requests
                      -0.234657774
##
```

From, this we can understand that lead\_time, previous\_cancellations has strongest correlations > 0.1 while total\_of\_special\_requests, required\_car\_parking\_spaces, booking\_changes has least correlations.

```
cor<- cor(data.matrix(df))
ggcorrplot(cor, lab=TRUE, type='lower')</pre>
```



## Lead Time vs Cancellations

```
lead_100 = ddply(filter(df, lead_time<100), .(is_canceled), nrow)
piepercent<- round(100*lead_100$V1/sum(lead_100$V1), 1)
pie(x=lead_100$V1, labels=piepercent, col=rainbow(length(lead_100$V1)))
legend('topright', c('not_canceled', 'canceled'), cex = 0.8, fill=rainbow(length(lead_100$V1)))</pre>
```



```
lead_365 = ddply(filter(df, lead_time>=100 & lead_time < 365), .(is_canceled), nrow) #less than an year
piepercent<- round(100*lead_365$V1/sum(lead_365$V1), 1)
pie(x=lead_365$V1, labels=piepercent, col=rainbow(length(lead_365$V1)))
legend('topright', c('not_canceled', 'canceled'), cex = 0.8, fill=rainbow(length(lead_365$V1)))</pre>
```



```
lead_365_gt = ddply(filter(df, lead_time >= 365), .(is_canceled), nrow)
piepercent<- round(100*lead_365_gt$V1/sum(lead_365_gt$V1), 1)
pie(x=lead_365_gt$V1, labels=piepercent, col=rainbow(length(lead_365_gt$V1)))
legend('topright', c('not_canceled', 'canceled'), cex = 0.8, fill=rainbow(length(lead_365_gt$V1)))</pre>
```



From this we can understand that as lead\_time increases the chances of booking cancellation as well increases.

## **Previous Cancelations vs Cancelations**

```
cat("Never previously cancelled -", mean(filter(df, previous_cancellations==0)$is_canceled), "%", "\n")
## Never previously cancelled - 0.3390608 %

cat("Previously cancelled once -", mean(filter(df, previous_cancellations==1)$is_canceled), "%", "\n")

## Previously cancelled once - 0.9443067 %

cat("Previously cancelled more than 11 -", mean(filter(df, previous_cancellations>11)$is_canceled), "%"

## Previously cancelled more than 11 - 0.9931034 %
```

As the number of previous cancelations increases the chances of booking cancelations as well increases.

## Special Requests vs Cancelations

```
hist(main='Special Requests vs Cancelations', xlab='Special Requests', filter(df, is_canceled==0)$total hist(filter(df, is_canceled==1)$total_of_special_requests,col="red",pch=20,cex=4,breaks=15,add=TRUE) legend("topright", c("canceled", "not_canceled"), fill=c("red", "green")) box()
```

## **Special Requests vs Cancelations**



From the above graph we can understand that as the number of special requests increases the booking cancelation percentage decreases.

## Parking Spaces vs Cancelations

```
print("Parking spaces for not canceled bookings - ")
## [1] "Parking spaces for not canceled bookings - "
ddply(filter(df, is_canceled==0), .(required_car_parking_spaces), nrow)
##
     required_car_parking_spaces
                                    V1
## 1
                               0 67750
## 2
                                  7383
                               2
## 3
                                     28
                               3
                                      3
## 4
                                      2
## 5
                               8
print("Parking spaces for canceled bookings - ")
## [1] "Parking spaces for canceled bookings - "
ddply(filter(df, is_canceled==1), .(required_car_parking_spaces), nrow)
    required_car_parking_spaces
## 1
                               0 44224
```

From this we can understand the model can tune in such a way that if the number of required spaces is zero the booking can be canceled which is not the case ideally. So, we can ignore this feature while modeling.

### Categorical variables

### **Hotel vs Cancelations**

```
ordered_months <- c("January", "February", "March", "April", "May", "June",
          "July", "August", "September", "October", "November", "December")
city_0 <- ddply(filter(df, is_canceled==0 & hotel=='City Hotel'), .(arrival_date_month), nrow)
city_1 <- ddply(filter(df, is_canceled==1 & hotel=='City Hotel'), .(arrival_date_month), nrow)</pre>
resort_0 <- ddply(filter(df, is_canceled==0 & hotel=='Resort Hotel'), .(arrival_date_month), nrow)
resort_1 <- ddply(filter(df, is_canceled==1 & hotel=='Resort Hotel'), .(arrival_date_month), nrow)
resort_cancel <- rep()</pre>
city_cancel <- rep()</pre>
for (month in ordered_months) {
  resort_0_mon <- filter(resort_0, arrival_date_month==month)</pre>
  resort_1_mon <- filter(resort_1, arrival_date_month==month)</pre>
  resort_cancel <- append(resort_cancel, resort_1_mon[1, "V1"]/(resort_1_mon[1, "V1"]+resort_0_mon[1, "
  city_0_mon <- filter(city_0, arrival_date_month==month)</pre>
  city_1_mon <- filter(city_1, arrival_date_month==month)</pre>
  city_cancel <- append(city_cancel, city_1_mon[1, "V1"]/(city_1_mon[1, "V1"]+city_0_mon[1, "V1"]))</pre>
result <- data.frame(resort_cancel=resort_cancel, city_cancel=city_cancel, row.names=ordered_months)
result
##
             resort_cancel city_cancel
## January
               0.1481988 0.3966809
## February
                 0.2562037 0.3828802
## March
                 0.2287170 0.3694642
                 0.2934331 0.4632353
## April
                 0.2877213 0.4437561
## May
## June
                 0.3307061 0.4469217
## July
                 0.3140171 0.4087537
## August
                 0.3344912 0.4009796
## September
                 0.3236808 0.4202703
## October
                 0.2751055 0.4297173
## November
                 0.1891670
                             0.3812256
## December
                 0.2382931
                             0.4211036
```

From the above stats we can understand that wrt month city hotels has more booking cancelations compared to resort hotels according to arrival months.

#### Meal vs Cancelations

```
cancelled_meal <- ddply(filter(df, is_canceled==1), .(meal), nrow)
uncancelled_meal <- ddply(filter(df, is_canceled==0), .(meal), nrow)
percent <- rep()
for (val in cancelled_meal$meal) {
   cancel_val <- filter(cancelled_meal, meal==val)[1, "V1"]</pre>
```

```
uncancel_val <- filter(uncancelled_meal, meal==val)[1, "V1"]</pre>
  percent <- append(percent, cancel val/(cancel val+uncancel val))</pre>
result <- data.frame(meal=cancelled_meal$meal, percent_cancellations=percent)
result
##
          meal percent_cancellations
## 1
            BB
                            0.3738490
## 2
            FΒ
                            0.5989975
## 3
            HB
                            0.3446035
## A
            SC
                            0.3723944
## 5 Undefined
                            0.2446536
```

From this we can understand that FB meal is the most frequently canceled booking. And meal Undefined can relate to SC no-meal.

### MarketSegment vs Cancelations

```
cancelled_market <- ddply(filter(df, is_canceled==1), .(market_segment), nrow)</pre>
uncancelled_market <- ddply(filter(df, is_canceled==0), .(market_segment), nrow)
percent <- rep()</pre>
for (val in cancelled_market$market_segment) {
  cancel_val <- filter(cancelled_market, market_segment==val)[1, "V1"]</pre>
  uncancel_val <- filter(uncancelled_market, market_segment==val)[1, "V1"]
  percent <- append(percent, cancel_val/(cancel_val+uncancel_val))</pre>
result <- data.frame(market_segment=cancelled_market$market_segment, percent_cancellations=percent)
result
##
     market_segment percent_cancellations
## 1
           Aviation
                                 0.2194093
## 2 Complementary
                                 0.1305518
          Corporate
                                 0.1873466
## 3
## 4
             Direct
                                 0.1534190
## 5
             Groups
                                 0.6106204
## 6 Offline TA/TO
                                 0.3431603
## 7
          Online TA
                                 0.3672114
## 8
          Undefined
                                         NA
```

From the above stats we can understand that cancellations are higher for Groups, Offline and Online TA/TO travel and tour operator bookings

## DistributionChannel vs Cancelations

```
cancelled_channel <- ddply(filter(df, is_canceled==1), .(distribution_channel), nrow)
uncancelled_channel <- ddply(filter(df, is_canceled==0), .(distribution_channel), nrow)
percent <- rep()
for (val in cancelled_channel$distribution_channel) {
   cancel_val <- filter(cancelled_channel, distribution_channel==val)[1, "V1"]
   uncancel_val <- filter(uncancelled_channel, distribution_channel==val)[1, "V1"]
   percent <- append(percent, cancel_val/(cancel_val+uncancel_val))
}
result <- data.frame(distribution_channel=cancelled_channel$distribution_channel, percent_cancellations
result.</pre>
```

```
distribution_channel percent_cancellations
## 1
                                       0.2207578
                Corporate
## 2
                   Direct
                                       0.1745988
## 3
                      GDS
                                       0.1917098
## 4
                    TA/TO
                                       0.4102585
## 5
                Undefined
                                       0.8000000
```

From the above stats we can understand that cancellations are higher for TA/TO travel and tour operator bookings .

### CustomerType vs Cancelations

```
cancelled_cust <- ddply(filter(df, is_canceled==1), .(customer_type), nrow)</pre>
uncancelled cust <- ddply(filter(df, is canceled==0), .(customer type), nrow)
percent <- rep()</pre>
for (val in cancelled_cust$customer_type) {
  cancel_val <- filter(cancelled_cust, customer_type==val)[1, "V1"]</pre>
  uncancel_val <- filter(uncancelled_cust, customer_type==val)[1, "V1"]
  percent <- append(percent, cancel_val/(cancel_val+uncancel_val))</pre>
result <- data.frame(customer_type=cancelled_cust$customer_type, percent_cancellations=percent)
result
##
       customer type percent cancellations
## 1
            Contract
                                  0.3096173
## 2
               Group
                                  0.1022530
## 3
                                  0.4074632
           Transient
## 4 Transient-Party
                                  0.2542987
```

From the above stats we can understand that cancellations are higher for Transient customer\_type bookings.

### DepositType vs Cancelations

```
cancelled_deposit <- ddply(filter(df, is_canceled==1), .(deposit_type), nrow)</pre>
uncancelled deposit <- ddply(filter(df, is canceled==0), .(deposit type), nrow)
percent <- rep()</pre>
for (val in cancelled_deposit$deposit_type) {
  cancel val <- filter(cancelled deposit, deposit type==val)[1, "V1"]
  uncancel val <- filter(uncancelled deposit, deposit type==val)[1, "V1"]
  percent <- append(percent, cancel_val/(cancel_val+uncancel_val))</pre>
result <- data.frame(deposit_type=cancelled_deposit_type, percent_cancellations=percent)
result
     deposit_type percent_cancellations
## 1
      No Deposit
                              0.2837702
## 2
       Non Refund
                              0.9936245
## 3
       Refundable
                              0.222222
```

From the above we can see that non-refund bookings has 99 percent cancelations which is weird since ideally non-refund transactions tend to have lower cancelations. Looks like the values of cancelled and not-cancelled must have swapped up for non-refund transactions. Let us check this while modeling.

## 2. "Data Cleaning"

### Remove rows with zero guests

```
df <- filter(df, guests_stayed>0)
```

#### Drop irrelevant columns

```
df <- subset(df, select = -c(agent, company, booking_changes, arrival_date_day_of_month, arrival_date_y
df <- subset(df, select = -c(reservation_status, reservation_status_date, assigned_room_type, country)</pre>
```

Numerical Columns: - agent & company => These columns are uninformative since they contain discrete codes for the agents and company using which the booking is made. - booking\_changes => Could constantly change over time and has no much effect on the predictor. - arrival\_date\_day\_of\_month & arrival\_date\_year => Prevents the model from generalizing, since we have arrival\_week information that would be sufficient.

Categorical Columns: - reservation\_status => It has values Check-Out, Cancelled and No-Show which means not-canceled and canceled considering this feature can cause the model to overfit. - reservation\_status\_date => Date when the reservation\_status is last changed this is not relevant. - assigned\_room\_type => This is irrelevant and more over reserved\_room\_type makes more sense since the booking can be canceled only before checking-in which means room is assigned. - country => There are many countries and not uniformly distributed so there are higher chances that this model can prevent the model from generalising.

#### Replace value of column

```
df["meal"][df["meal"] == "Undefined"] <- "SC"</pre>
```

## Encode categorical data

```
df$hotel <- as.numeric(as.factor(df$hotel)) # Convert categories to numbers
df$arrival_date_month <- as.numeric(as.factor(df$arrival_date_month))
df$meal <- as.numeric(as.factor(df$meal))
df$market_segment <- as.numeric(as.factor(df$market_segment))
df$distribution_channel <- as.numeric(as.factor(df$distribution_channel))
df$reserved_room_type <- as.numeric(as.factor(df$reserved_room_type))
df$deposit_type <- as.numeric(as.factor(df$deposit_type))
df$customer_type <- as.numeric(as.factor(df$customer_type))</pre>
```

#### Scale the dataset

```
df$lead_time <- scale(df$lead_time)
df$adr <- scale(df$adr)</pre>
```

### Divide the dataset into test and train

```
head(df)
```

```
0 -0.9086205
                                                                                 27
## 3
## 4
         2
                      0 -0.8524804
                                                       6
                                                                                 27
## 5
         2
                      0 -0.8431237
                                                       6
                                                                                 27
## 6
         2
                                                                                 27
                      0 -0.8431237
##
     market_segment distribution_channel is_repeated_guest previous_cancellations
## 1
                   4
                                          2
## 2
                                                             0
                                                                                      0
## 3
                   4
                                          2
                                                             0
                                                                                      0
## 4
                   3
                                          1
                                                             0
                                                                                      0
## 5
                   7
                                                             0
                                                                                      0
## 6
                   7
##
     previous_bookings_not_canceled reserved_room_type deposit_type
                                    0
## 2
                                    0
                                                         3
## 3
                                    0
                                                                       1
                                                         1
## 4
                                    0
## 5
                                    0
                                                                       1
## 6
##
                                                   adr required_car_parking_spaces
     days_in_waiting_list customer_type
## 1
                         0
                                        3 -2.02183206
## 2
                         0
                                         3 -2.02183206
                                                                                    0
## 3
                                         3 -0.53474022
                                                                                    0
                                         3 -0.53474022
                                                                                    0
## 4
                         0
## 5
                                         3 -0.07869872
                                                                                    0
## 6
                                         3 -0.07869872
                                                                                    0
     total_of_special_requests guests_stayed nights_stayed
## 1
## 2
                               0
                                              2
                                                             0
## 3
                               0
                                              1
                                                             1
## 4
                               0
                                              1
                                                             1
                                              2
                                                             2
## 5
                               1
## 6
                               1
idx <- sample(nrow(df), nrow(df)*0.3)</pre>
test <- df[idx,]</pre>
train <-df[-idx,]</pre>
```

## 3. "Data Modeling"

Logistic Regression

```
log_classifier = glm(formula=is_canceled ~ ., family=binomial, data=train)

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(log_classifier)

## Call:
## glm(formula = is_canceled ~ ., family = binomial, data = train)
##
```

```
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                         Max
## -8.4904 -0.7972 -0.4836 0.3275
                                       5.7784
##
## Coefficients:
##
                                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                 -7.382e+00 1.401e-01 -52.693 < 2e-16 ***
                                 -8.204e-02 2.117e-02 -3.876 0.000106 ***
## hotel
## lead time
                                 2.991e-01 1.083e-02 27.620 < 2e-16 ***
                                 -1.812e-02 2.690e-03 -6.738 1.61e-11 ***
## arrival_date_month
## arrival_date_week_number
                                -2.947e-03 7.209e-04 -4.089 4.34e-05 ***
                                  3.749e-04 8.226e-03
## meal
                                                       0.046 0.963651
## market_segment
                                 5.763e-01 1.471e-02 39.191 < 2e-16 ***
## distribution_channel
                                -3.162e-01 1.937e-02 -16.320 < 2e-16 ***
## is_repeated_guest
                                 -5.649e-01 9.796e-02 -5.767 8.07e-09 ***
## previous_cancellations
                                  2.899e+00 7.170e-02 40.431 < 2e-16 ***
## previous_bookings_not_canceled -4.848e-01 2.965e-02 -16.349 < 2e-16 ***
## reserved_room_type
                          -2.307e-03 6.427e-03 -0.359 0.719623
                                 4.633e+00 7.676e-02 60.352 < 2e-16 ***
## deposit_type
## days_in_waiting_list
                                 -1.129e-03 5.600e-04 -2.017 0.043725 *
## customer_type
                                -7.467e-02 1.673e-02 -4.462 8.11e-06 ***
## adr
                                 2.461e-01 1.163e-02 21.166 < 2e-16 ***
## required_car_parking_spaces
                                -6.266e+02 9.159e+05 -0.001 0.999454
## total of special requests
                                -6.297e-01 1.297e-02 -48.530 < 2e-16 ***
## guests stayed
                                 1.328e-01 1.559e-02
                                                        8.516 < 2e-16 ***
## nights_stayed
                                  3.433e-02 3.617e-03
                                                        9.493 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 110021 on 83446 degrees of freedom
## Residual deviance: 75913 on 83427 degrees of freedom
## AIC: 75953
## Number of Fisher Scoring iterations: 12
prob_pred = predict(log_classifier, train, type='response')
y_pred = ifelse(prob_pred > 0.5, 1, 0)
cm=table(y_pred, train$is_canceled)
cat("Prediction vs Actual table for Train Logistic Regression below -", "\n")
## Prediction vs Actual table for Train Logistic Regression below -
print(cm)
##
## y_pred
             0
       0 50135 14717
##
##
       1 2394 16201
```

```
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train error rate for KNN -", mean(y_pred != train$is_canceled), "\n")
## Train error rate for KNN - 0.2050523
cat("Train Accuracy for Logistic Regression -", accuracy, "\n")
## Train Accuracy for Logistic Regression - 0.7949477
prob_pred = predict(log_classifier, test, type='response')
y_pred = ifelse(prob_pred > 0.5, 1, 0)
# Making the Confusion Matrix
cat("Prediction vs Actual table for Test Logistic Regression below -", "\n")
## Prediction vs Actual table for Test Logistic Regression below -
cm=table(y_pred, test$is_canceled)
print(cm)
##
## y_pred
            0
       0 21417 6331
##
       1 1065 6950
cat("Test error rate for Logistic Regression -", mean(y_pred != test$is_canceled), "\n")
## Test error rate for Logistic Regression - 0.2068059
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for Logistic Regression -", accuracy, "\n")
## Test Accuracy for Logistic Regression - 0.7931941
Cross Validation for Logistic Regression
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
folds = createFolds(train$is_canceled, k = 10)
cv = lapply(folds, function(x) {
  training_fold = train[-x, ]
 test_fold = train[x, ]
  log_classifier = glm(formula=is_canceled ~ ., family=binomial, data=training_fold)
 prob_pred = predict(log_classifier, test_fold, type='response')
  y_pred = ifelse(prob_pred > 0.5, 1, 0)
  cm=table(y_pred, test_fold$is_canceled)
  accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
 return(accuracy)
})
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning:
```

## Prediction vs Actual table for Train KNN below -

```
print(cm)

##  y_pred
##     0    1
##     0    48072   4457
##     1    7293   23625

accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for KNN -", accuracy, "\n")
```

## Train Accuracy for KNN - 0.8591921

```
cat("Train error rate for KNN -", mean(y_pred != train$is_canceled), "\n")
## Train error rate for KNN - 0.1408079
y_pred = knn(train=subset(train, select = -c(is_canceled)),
            test=subset(test, select = -c(is_canceled)),
             cl=train$is_canceled,
            k = 5
            prob = TRUE)
cm <- table(test$is_canceled, y_pred)</pre>
cat("Prediction vs Actual table for Test KNN below -", "\n")
## Prediction vs Actual table for Test KNN below -
##
     y_pred
##
          0
     0 19467 3015
##
    1 4237 9044
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for KNN -", accuracy, "\n")
## Test Accuracy for KNN - 0.7972206
cat("Test error rate for KNN -", mean(y_pred != test$is_canceled))
## Test error rate for KNN - 0.2027794
Cross Validation for KNN
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
folds = createFolds(train$is_canceled, k = 10)
cv = lapply(folds, function(x) {
 training_fold = train[-x, ]
 test_fold = train[x, ]
 y_pred = knn(train=subset(training_fold, select = -c(is_canceled)),
             test=subset(test_fold, select = -c(is_canceled)),
             cl=training_fold$is_canceled,
            k = 5,
            prob = TRUE)
  cm=table(y_pred, test_fold$is_canceled)
  accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
 return(accuracy)
accuracy = mean(as.numeric(cv))
```

cat("Test Accuracy for KNN CVV -", accuracy, "\n")

```
## Test Accuracy for KNN CVV - 0.7966254
```

#### **Decision Tree**

```
y_train = train$is_canceled
y_test = test$is_canceled
tree.fit = rpart(is_canceled ~ ., data=train, method='class')
tree.pred.train <- predict(tree.fit, train, type='class')</pre>
cat("Confusion Matrix for trees - \n")
## Confusion Matrix for trees -
cm <- table(tree.pred.train, y_train)</pre>
cat("Train error for trees -", mean(tree.pred.train != y_train))
## Train error for trees - 0.1936798
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for Decision Tree -", accuracy, "\n")
## Train Accuracy for Decision Tree - 0.8063202
tree.pred.test <- predict(tree.fit, test, type='class')</pre>
cat("Confusion Matrix for trees - \n")
## Confusion Matrix for trees -
cm <- table(tree.pred.test, y_test)</pre>
cat("Test error for trees -", mean(tree.pred.test != y_test))
## Test error for trees - 0.1953975
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for Decision Tree -", accuracy, "\n")
## Test Accuracy for Decision Tree - 0.8046025
rpart.plot(tree.fit)
```



## Cross Validation for Decision Tree

```
folds = createFolds(train$is_canceled, k = 10)
cv = lapply(folds, function(x) {
   training_fold = train[-x, ]
   test_fold = train[x, ]
   tree.fit = rpart(is_canceled ~ ., data=training_fold, method='class')
   tree.pred.test <- predict(tree.fit, test_fold, type='class')
   cm=table(tree.pred.test, test_fold$is_canceled)
   accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
   return(accuracy)
})
accuracy = mean(as.numeric(cv))
cat("Test Accuracy for Decision Tree CV -", accuracy, "\n")</pre>
```

## Test Accuracy for Decision Tree CV - 0.8057089

```
imp <- data.frame(imp = tree.fit$variable.importance)
df2 <- imp %>%
  tibble::rownames_to_column() %>%
  dplyr::rename("variable" = rowname) %>%
  dplyr::arrange(imp) %>%
  dplyr::mutate(variable = forcats::fct_inorder(variable))
ggplot2::ggplot(df2) +
  geom_col(aes(x = variable, y = imp),
```

```
col = "black", show.legend = F) +
coord_flip() +
scale_fill_grey() +
theme_bw()
```



### Random Forest

```
train_rf = train
train_rf$is_canceled = as.factor(train_rf$is_canceled)
rf <- randomForest(is_canceled~., data = train_rf)
pred_train_rf <- predict(rf, train_rf)
cm <- table(pred_train_rf, train_rf$is_canceled)
cat("Confusion Matrix for RandomForest - \n")</pre>
```

## Confusion Matrix for RandomForest -

```
print(cm)
```

```
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for RandomForest -", accuracy, "\n")
## Train Accuracy for RandomForest - 0.9063957
## -----
test rf = test
test_rf$is_canceled = as.factor(test_rf$is_canceled)
pred_test_rf <- predict(rf, test_rf)</pre>
cat("Confusion Matrix for RandomForest - \n")
## Confusion Matrix for RandomForest -
cm <- table(pred_test_rf, test_rf$is_canceled)</pre>
print(cm)
##
## pred_test_rf     0     1
##
      0 20887 3709
            1 1595 9572
##
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for RandomForest -", accuracy, "\n")
## Test Accuracy for RandomForest - 0.8516903
varImpPlot(rf,
          sort = T,
          n.var = 10,
          main = "Top 10 - RF variable importance")
```

Top 10 – RF variable importance





## importance(rf)

varUsed(rf)

| ## |                                           | MeanDecreaseGini |
|----|-------------------------------------------|------------------|
|    | 1 . 7                                     |                  |
|    | hotel                                     | 413.47373        |
| ## | lead_time                                 | 4636.43320       |
| ## | arrival_date_month                        | 918.16558        |
| ## | arrival_date_week_number                  | 1951.41784       |
| ## | meal                                      | 437.41691        |
| ## | market_segment                            | 2039.48285       |
| ## | distribution_channel                      | 427.63873        |
| ## | is_repeated_guest                         | 72.34775         |
| ## | previous_cancellations                    | 1713.04314       |
| ## | <pre>previous_bookings_not_canceled</pre> | 183.79982        |
| ## | reserved_room_type                        | 569.16997        |
| ## | deposit_type                              | 5793.12857       |
| ## | days_in_waiting_list                      | 119.81027        |
| ## | customer_type                             | 1060.62602       |
| ## | adr                                       | 3020.81933       |
| ## | required_car_parking_spaces               | 903.30151        |
| ## | total_of_special_requests                 | 2251.46568       |
| ## | guests_stayed                             | 633.76796        |
| ## | nights_stayed                             | 1423.53708       |

```
## [1] 79798 540172 276993 477728 125962 78679 46732 15173 14307 23453
## [11] 196225 6008 12239 69129 549934 18084 116897 183232 359017
AdaBoost
adaboost <- gbm(is_canceled ~ ., data=train,</pre>
 distribution = "adaboost",
  n.trees = 500
)
adaboost.pred <- predict(adaboost, train, type='response') %>% round()
cm <- table(adaboost.pred, train$is_canceled)</pre>
cat("Confusion Matrix for AdaBoost - \n")
## Confusion Matrix for AdaBoost -
print(cm)
##
## adaboost.pred
                   0
              0 49052 12057
##
               1 3477 18861
##
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for AdaBoost -", accuracy, "\n")
## Train Accuracy for AdaBoost - 0.8138459
adaboost.pred <- predict(adaboost, test, type='response') %>% round()
cm <- table(adaboost.pred, test$is_canceled)</pre>
cat("Confusion Matrix for AdaBoost - \n")
## Confusion Matrix for AdaBoost -
print(cm)
##
## adaboost.pred
                 0
##
               0 20947 5219
##
               1 1535 8062
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for AdaBoost -", accuracy, "\n")
## Test Accuracy for AdaBoost - 0.8111456
```

summary(adaboost)



```
##
                                                                      rel.inf
                                                              var
## deposit_type
                                                     deposit_type 53.53102156
                                                        lead_time 12.26655797
## lead_time
## total_of_special_requests
                                       total_of_special_requests
                                                                  8.10110147
## market_segment
                                                   market_segment
                                                                   7.09569673
## previous_cancellations
                                           previous_cancellations
                                                                   6.63608055
## required_car_parking_spaces
                                      required_car_parking_spaces
                                                                   5.53595331
## customer_type
                                                    customer_type
                                                                   2.56971698
## adr
                                                              adr
                                                                   1.66361322
## previous_bookings_not_canceled previous_bookings_not_canceled
                                                                   1.29683003
## nights_stayed
                                                    nights_stayed
                                                                   0.61048989
## arrival_date_month
                                               arrival_date_month
                                                                   0.18250997
## arrival_date_week_number
                                         arrival_date_week_number
                                                                   0.14502837
## meal
                                                             meal
                                                                   0.09094234
## guests_stayed
                                                    guests_stayed
                                                                   0.08340799
## days_in_waiting_list
                                             days_in_waiting_list
                                                                   0.08004776
## reserved_room_type
                                               reserved_room_type
                                                                   0.06530153
## distribution_channel
                                             distribution_channel
                                                                   0.03439573
## is_repeated_guest
                                                is_repeated_guest
                                                                   0.01130460
## hotel
                                                            hotel 0.00000000
```

# 4. "Data Modeling with Important Features"

Create Dataframe with important 5 features

```
df_features <- df</pre>
df_features <- subset(df_features, select=c(deposit_type, adr, total_of_special_requests, market_segmen
head(df features)
##
    deposit_type
                          adr total_of_special_requests market_segment lead_time
## 1
               1 -2.02183206
                                                       0
                                                                      4 2.2258692
## 2
               1 -2.02183206
                                                       0
                                                                      4 5.9217601
                                                                     4 -0.9086205
## 3
               1 -0.53474022
                                                       0
## 4
               1 -0.53474022
                                                       0
                                                                      3 -0.8524804
## 5
               1 -0.07869872
                                                       1
                                                                     7 -0.8431237
## 6
                1 -0.07869872
                                                                      7 -0.8431237
## is_canceled
## 1
               0
## 2
               0
## 3
               0
## 4
               0
## 5
               0
## 6
```

## Split into test and train dataset

```
idx <- sample(nrow(df_features), nrow(df_features)*0.3)
test_features <- df_features[idx,]
train_features <- df_features[-idx,]</pre>
```

## Logistic Regression with features

```
log_classifier = glm(formula=is_canceled ~ ., family=binomial, data=train_features)
summary(log_classifier)
```

```
##
## Call:
## glm(formula = is_canceled ~ ., family = binomial, data = train_features)
## Deviance Residuals:
      Min
               10 Median
                                 30
                                         Max
## -4.1003 -0.8169 -0.5518 0.7186
                                      3.1733
##
## Coefficients:
                           Estimate Std. Error z value Pr(>|z|)
                           -7.434707 0.089268 -83.28 <2e-16 ***
## (Intercept)
                            4.340116
                                     0.064713
                                                 67.07
                                                         <2e-16 ***
## deposit_type
                            0.244822
                                     0.009047
                                                 27.06 <2e-16 ***
                                      0.012465 -51.04 <2e-16 ***
## total_of_special_requests -0.636219
## market_segment
                            0.417823
                                      0.008503
                                                 49.14
                                                        <2e-16 ***
## lead_time
                            0.379298
                                     0.009343
                                                40.60 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 110214 on 83446 degrees of freedom
##
```

```
## Residual deviance: 82638 on 83441 degrees of freedom
## ATC: 82650
##
## Number of Fisher Scoring iterations: 6
prob_pred = predict(log_classifier, train_features, type='response')
y_pred = ifelse(prob_pred > 0.5, 1, 0)
cm=table(y_pred, train_features$is_canceled)
cat("Prediction vs Actual table for Train Logistic Regression below -", "\n")
## Prediction vs Actual table for Train Logistic Regression below -
print(cm)
##
## y_pred
##
       0 50086 17199
##
       1 2259 13903
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train error rate for KNN -", mean(y_pred != train_features$is_canceled), "\n")
## Train error rate for KNN - 0.2331779
cat("Train Accuracy for Logistic Regression -", accuracy, "\n")
## Train Accuracy for Logistic Regression - 0.7668221
## -----
prob_pred = predict(log_classifier, test_features, type='response')
y_pred = ifelse(prob_pred > 0.5, 1, 0)
# Making the Confusion Matrix
cat("Prediction vs Actual table for Test Logistic Regression below -", "\n")
## Prediction vs Actual table for Test Logistic Regression below -
cm=table(y_pred, test_features$is_canceled)
print(cm)
##
## y_pred
           0
##
       0 21715 7228
          951 5869
##
       1
```

```
cat("Test error rate for Logistic Regression -", mean(y_pred != test_features$is_canceled), "\n")
## Test error rate for Logistic Regression - 0.2287001
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for Logistic Regression -", accuracy, "\n")
```

## Test Accuracy for Logistic Regression - 0.7712999

Cross Validation for Logistic Regression With Imp Features

```
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
folds = createFolds(train_features$is_canceled, k = 10)
cv = lapply(folds, function(x) {
    training_fold = train_features[-x, ]
    test_fold = train_features[x, ]
    log_classifier = glm(formula=is_canceled ~ ., family=binomial, data=training_fold)
    prob_pred = predict(log_classifier, test_fold, type='response')
    y_pred = ifelse(prob_pred > 0.5, 1, 0)
    cm=table(y_pred, test_fold$is_canceled)
    accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
    return(accuracy)
})
accuracy = mean(as.numeric(cv))
cat("Test Accuracy for Logistic Regression CV -", accuracy)
```

## Test Accuracy for Logistic Regression CV - 0.766738

### KNN With Imp Features

## Prediction vs Actual table for Train KNN below -

```
print(cm)
```

```
## y_pred
## 0 1
## 0 47709 4636
## 1 8060 23042
```

```
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for KNN -", accuracy, "\n")
## Train Accuracy for KNN - 0.8478555
cat("Train error rate for KNN -", mean(y_pred != train_features$is_canceled), "\n")
## Train error rate for KNN - 0.1521445
y_pred = knn(train=subset(train_features, select = -c(is_canceled)),
             test=subset(test_features, select = -c(is_canceled)),
             cl=train_features$is_canceled,
            k = 5,
            prob = TRUE)
cm <- table(test_features$is_canceled, y_pred)</pre>
cat("Prediction vs Actual table for Test KNN below -", "\n")
## Prediction vs Actual table for Test KNN below -
##
     y_pred
##
##
    0 19796 2870
    1 4346 8751
##
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for KNN -", accuracy, "\n")
## Test Accuracy for KNN - 0.7982272
cat("Test error rate for KNN -", mean(y_pred != test_features$is_canceled))
## Test error rate for KNN - 0.2017728
Cross Validation for KNN
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
folds = createFolds(train_features$is_canceled, k = 10)
cv = lapply(folds, function(x) {
 training_fold = train_features[-x, ]
 test_fold = train_features[x, ]
 y_pred = knn(train=subset(training_fold, select = -c(is_canceled)),
            test=subset(test_fold, select = -c(is_canceled)),
```

```
cl=training_fold$is_canceled,
             k = 5.
             prob = TRUE)
  cm=table(y_pred, test_fold$is_canceled)
  accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
 return(accuracy)
})
accuracy = mean(as.numeric(cv))
cat("Test Accuracy for KNN CVV -", accuracy, "\n")
## Test Accuracy for KNN CVV - 0.7931861
Decision Tree With Imp Features
y_train = train_features$is_canceled
y_test = test_features$is_canceled
tree.fit = rpart(is canceled ~ ., data=train features, method='class')
tree.pred.train <- predict(tree.fit, train_features, type='class')</pre>
cat("Confusion Matrix for trees - \n")
## Confusion Matrix for trees -
cm <- table(tree.pred.train, y_train)</pre>
cat("Train error for trees -", mean(tree.pred.train != y_train))
## Train error for trees - 0.2149388
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for Decision Tree -", accuracy, "\n")
## Train Accuracy for Decision Tree - 0.7850612
tree.pred.test <- predict(tree.fit, test_features, type='class')</pre>
cat("Confusion Matrix for trees - \n")
## Confusion Matrix for trees -
cm <- table(tree.pred.test, y_test)</pre>
cat("Test error for trees -", mean(tree.pred.test != y_test))
## Test error for trees - 0.2127898
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for Decision Tree -", accuracy, "\n")
```

## Test Accuracy for Decision Tree - 0.7872102



### Cross Validation for Decision Tree

```
folds = createFolds(train_features$is_canceled, k = 10)
cv = lapply(folds, function(x) {
    training_fold = train_features[-x, ]
    test_fold = train_features[x, ]
    tree.fit = rpart(is_canceled ~ ., data=training_fold, method='class')
    tree.pred.test <- predict(tree.fit, test_fold, type='class')
    cm=table(tree.pred.test, test_fold$is_canceled)
    accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
    return(accuracy)
})
accuracy = mean(as.numeric(cv))
cat("Test Accuracy for Decision Tree CV -", accuracy, "\n")</pre>
```

## Test Accuracy for Decision Tree CV - 0.7849535

### Random Forest With Imp Features

```
train_rf = train_features
train_rf$is_canceled = as.factor(train_rf$is_canceled)
rf <- randomForest(is_canceled~., data = train_rf)
pred_train_rf <- predict(rf, train_rf)</pre>
```

```
cm <- table(pred_train_rf, train_rf$is_canceled)</pre>
cat("Confusion Matrix for RandomForest - \n")
## Confusion Matrix for RandomForest -
print(cm)
##
## pred_train_rf 0
     0 48146 12480
##
              1 4199 18622
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for RandomForest -", accuracy, "\n")
## Train Accuracy for RandomForest - 0.8001246
test rf = test features
test_rf$is_canceled = as.factor(test_rf$is_canceled)
pred_test_rf <- predict(rf, test_rf)</pre>
cat("Confusion Matrix for RandomForest - \n")
## Confusion Matrix for RandomForest -
cm <- table(pred_test_rf, test_rf$is_canceled)</pre>
print(cm)
##
## pred_test_rf 0
       0 20811 5336
             1 1855 7761
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for RandomForest -", accuracy, "\n")
## Test Accuracy for RandomForest - 0.7989263
AdaBoost With Imp Features
adaboost <- gbm(is_canceled ~ ., data=train_features,</pre>
 distribution = "adaboost",
 n.trees = 500
adaboost.pred <- predict(adaboost, train_features, type='response') %>% round()
cm <- table(adaboost.pred, train_features$is_canceled)</pre>
cat("Confusion Matrix for AdaBoost - \n")
```

```
## Confusion Matrix for AdaBoost -
print(cm)
##
## adaboost.pred
##
               0 48258 13162
               1 4087 17940
##
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for AdaBoost -", accuracy, "\n")
## Train Accuracy for AdaBoost - 0.7932939
adaboost.pred <- predict(adaboost, test_features, type='response') %>% round()
cm <- table(adaboost.pred, test_features$is_canceled)</pre>
cat("Confusion Matrix for AdaBoost - \n")
## Confusion Matrix for AdaBoost -
print(cm)
##
## adaboost.pred
                     0
               0 20896 5546
##
               1 1770 7551
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for AdaBoost -", accuracy, "\n")
```

## Test Accuracy for AdaBoost - 0.795431

## 5. "Outliers with Important Features"

#### **BoxPlots**





```
idx <- sample(nrow(outlier_df), nrow(outlier_df)*0.3)
outlier_test <- outlier_df[idx,]
outlier_train <-outlier_df[-idx,]</pre>
```

## RandomForest With Imp Features and no outliers

```
outlier_train_rf = outlier_train
outlier_train_rf$is_canceled = as.factor(outlier_train_rf$is_canceled)
outlier_rf <- randomForest(is_canceled~., data = outlier_train_rf)
pred_train_rf <- predict(outlier_rf, outlier_train_rf)
cm <- table(pred_train_rf, outlier_train_rf$is_canceled)
cat("Confusion Matrix for RandomForest No Outliers and Imp Features - \n")</pre>
```

## Confusion Matrix for RandomForest No Outliers and Imp Features -

```
print(cm)
```

```
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Train Accuracy for RandomForest Without Outliers -", accuracy, "\n")
\mbox{\tt \#\#} Train Accuracy for RandomForest Without Outliers - 0.800724
## -----
outlier_test_rf = outlier_test
outlier_test_rf$is_canceled = as.factor(outlier_test_rf$is_canceled)
outlier_p2_rf <- predict(outlier_rf, outlier_test_rf)</pre>
cm <- table(outlier_p2_rf, outlier_test_rf$is_canceled)</pre>
cat("Confusion Matrix for RandomForest No Outliers and Imp Features - \n")
## Confusion Matrix for RandomForest No Outliers and Imp Features -
print(cm)
## outlier_p2_rf 0 1
##
              0 19742 5258
##
              1 1681 7057
accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
cat("Test Accuracy for RandomForest Without Outliers -", accuracy, "\n")
```

## Test Accuracy for RandomForest Without Outliers - 0.7943269