MOwNit – arytmetyka komputerowa

Przygotował:

Maksymilian Zawiślak

Problem:

Obliczyć k-ty element zależności rekurencyjnej:

$$3x_{k-1} - 10x_k + 3x_{k+1} = 0$$
, $x_0 = 1$, $x_1 = \frac{1}{3}$

Następnie wrócić do wartości początkowych z obliczonych wartości x_k oraz x_{k+1} Ogólny wzór i jego przekształcenia:

$$px_{k-1} - 10x_k + px_{k+1} = 0$$
, $x_0 = 1$, $x_1 = \frac{1}{p}$

p to parametr, który będzie przyjmować inne wartość

Wzór na elementy rosnące:

$$x_{k+1} = \frac{1}{p}(10x_k - px_{k-1})$$

Wzór na elementy malejące

$$x_{k-1} = \frac{1}{p} (10x_k - px_{k+1})$$

W zadaniu zostały wykorzystane 3 typy danych z biblioteki NumPy:

- 1. Float32 typ zmiennoprzecinkowy o pojedynczej precyzji, 32 bity precyzji, 8 to cecha, a 23 to mantysa
- 2. Double typ zmiennoprzecinkowy o podwójnej precyzji, 64 bity precyzji, 11 to cecha, a 54 to mantysa
- 3. Longdouble typ zmiennoprzecinkowy o rozszerzonej precyzji, 80 bitów precyzji

Element	Forward	Backward	
0	1.00000e+00	-1.258582e+27	
1	3.333333e-01	-4.195273e+26	
2	1.111111e-01	-1.398424e+26	
3	3.703713e-02	-4.661414e+25	
4	1.234596e-02	-1.553805e+25	
5	4.116068e-03	-5.179348e+24	
6	1.374266e-03	-1.726449e+24	
7	4.648194e-04	-5.754831e+23	
8	1.751318e-04	-1.918277e+23	
9	1.189533e-04	-6.394257e+22	
10	2.213791e-04	-2.131419e+22	
11	6.189770e-04	-7.104730e+21	
12	1.841878e-03	-2.368243e+21	
13	5.520615e-03	-7.894145e+20	
14	1.656017e-02	-2.631382e+20	
15	4.967995e-02	-8.771272e+19	
16	1.490397e-01	-2.923757e+19	
17	4.471189e-01	-9.745858e+18	
18	1.341357e+00	-3.248619e+18	
19	4.024070e+00	-1.082873e+18	
20	1.207221e+01	-3.609577e+17	
21	3.621663e+01	-1.203192e+17	
22	1.086499e+02		
23	3.259496e+02	-4.010641e+16 -1.336880e+16	
24	9.778489e+02	-4.456268e+15	
25	2.933547e+03	-1.485423e+15	
26	8.800641e+03	-4.951409e+14	
27			
28	2.640192e+04 7.920577e+04	-1.650470e+14 -5.501565e+13	
29		-1.833855e+13	
	2.376173e+05		
30	7.128519e+05	-6.112849e+12	
31	2.138556e+06	-2.037615e+12	
32	6.415666e+06	-6.791991e+11	
33	1.924700e+07	-2.263826e+11	
34	5.774100e+07	-7.540954e+10	
35	1.732230e+08	-2.498254e+10	
36	5.196690e+08	-7.865585e+09	
37	1.559007e+09	-1.236078e+09	
38	4.677021e+09	3.745326e+09	
39	1.403106e+10	1.372050e+10	
40	4.209319e+10	4.198966e+10	
41	1.262796e+11	1.262451e+11	
42	3.788387e+11	3.788272e+11	
43	1.136516e+12	1.136512e+12	
44	3.409548e+12	3.409547e+12	
45	1.022864e+13	1.022864e+13	
46	3.068593e+13	3.068593e+13	

Tabela 1: Obliczenia dla p=3 oraz typu Float32

Element	Forward	Backward
0	1.00000e+00	-2.466985e+10
1	3.33333e-01	-8.223285e+09
2	1.111111e-01	-2.741095e+09
3	3.703704e-02	-9.136983e+08
4	1.234568e-02	-3.045661e+08
5	4.115226e-03	-1.015220e+08
6	1.371742e-03	-3.384068e+07
7	4.572474e-04	-1.128023e+07
8	1.524158e-04	-3.760075e+06
9	5.080526e-05	-1.253358e+06
10	1.693509e-05	-4.177862e+05
11	5.645027e-06	-1.392621e+05
12	1.881669e-06	-4.642068e+04
13	6.272038e-07	-1.547356e+04
14	2.090103e-07	-5.157854e+03
15	6.949709e-08	-1.719285e+03
16	2.264668e-08	-5.730949e+02
17	5.991855e-09	-1.910316e+02
18	-2.673835e-09	-6.367721e+01
19	-1.490464e-08	-2.122574e+01
20	-4.700829e-08	-7.075245e+00
21	-1.417897e-07	-2.358415e+00
22	-4.256239e-07	-7.861388e-01
23	-1.276957e-06	-2.620474e-01
24	-3.830898e-06	-8.735254e-02
25	-1.149270e-05	-2.912773e-02
26	-3.447812e-05	-9.739890e-03
27	-1.034343e-04	-3.338572e-03
28	-3.103030e-04	-1.388682e-03
29	-9.309091e-04	-1.290369e-03
30	-2.792727e-03	-2.912547e-03
31	-8.378182e-03	-8.418122e-03
32	-2.513455e-02	-2.514786e-02
33	-7.540364e-02	-7.540808e-02
34	-2.262109e-01	-2.262124e-01
35	-6.786328e-01	-6.786333e-01
36	-2.035898e+00	-2.035898e+00
37	-6.107695e+00	-6.107695e+00
38	-1.832308e+01	-1.832308e+01
39	-5.496925e+01	-5.496925e+01
40	-1.649078e+02	-1.649078e+02
41	-4.947233e+02	-4.947233e+02
42	-1.484170e+03	-1.484170e+03
43	-4.452510e+03	-4.452510e+03
44	-1.335753e+04	-1.335753e+04
45	-4.007259e+04	-4.007259e+04
46	-1.202178e+05	-1.202178e+05
L		

Tabela 2: Obliczenia dla p=3 oraz typu Double

Element	Forward	Backward
0	1.000000e+00	-4.247940e+09
1	3.333333e-01	-1.415980e+09
2	1.111111e-01	-4.719933e+08
3	3.703704e-02	-1.573311e+08
4	1.234568e-02	-5.244370e+07
5	4.115226e-03	-1.748123e+07
6	1.371742e-03	-5.827078e+06
7	4.572474e-04	-1.942359e+06
8	1.524158e-04	-6.474531e+05
9	5.080526e-05	-2.158177e+05
10	1.693509e-05	-7.193923e+04
11	5.645028e-06	-2.397974e+04
12	1.881672e-06	-7.993248e+03
13	6.272130e-07	-2.664416e+03
14	2.090378e-07	-8.881387e+02
15	6.957971e-08	-2.960462e+02
16	2.289453e-08	-9.868208e+01
17	6.735404e-09	-3.289403e+01
18	-4.431858e-10	-1.096468e+01
19	-8.212690e-09	-3.654892e+00
20	-2.693245e-08	-1.218297e+00
21	-8.156214e-08	-4.060992e-01
22	-2.449413e-07	-1.353666e-01
23	-7.349090e-07	-4.512286e-02
24	-2.204755e-06	-1.504291e-02
25	-6.614275e-06	-5.020183e-03
26	-1.984283e-05	-1.691032e-03
27	-5.952849e-05	-6.165917e-04
28	-1.785855e-04	-3.642732e-04
29	-5.357564e-04	-5.976523e-04
30	-1.607269e-03	-1.627901e-03
31	-4.821808e-03	-4.828685e-03
32	-1.446542e-02	-1.446772e-02
33	-4.339627e-02	-4.339703e-02
34	-1.301888e-01	-1.301891e-01
35	-3.905664e-01	-3.905665e-01
36	-1.171699e+00	-1.171699e+00
37	-3.515098e+00	-3.515098e+00
38	-1.054529e+01	-1.054529e+01
39	-3.163588e+01	-3.163588e+01
40	-9.490764e+01	-9.490764e+01
41	-2.847229e+02	-2.847229e+02
42	-8.541688e+02	-8.541688e+02
43	-2.562506e+03	-2.562506e+03
44	-7.687519e+03	-7.687519e+03
45	-2.306256e+04	-2.306256e+04
46	-6.918767e+04	-6.918767e+04

Tabela 3: Obliczenia dla p=3 oraz typu Long double

Wyniki obliczeń dla $x_0 = 1$, $x_1 = \frac{1}{3}$, k = 45,

x_k	Float32	Double	Long double
x_{45}	10228644000000.0	-40072.58604666229	-23062.556331875161478,
<i>x</i> ₄₆	30685933000000.0	-120217.75813998686	-69187.668995625480115

Tabela 4: Wyniki rekurencji do przodu dla p = 3

x_k	Float32	Double	Long double
x_0	-1.2585818e+27	-24669854823.772236	-4247939848.4530809072
x_1	-4.1952725e+26	-8223284941.257413	-1415979949.4843603909

Tabela 5: Wyniki rekurencji w tył dla p = 3

Niedokładności obliczeń występujące dla wartości p=3 i k=45 powodują, że żaden typ liczbowy nie jest w stanie powrócić do wartości początkowych. Wartości zwrócone są ujemne, a przyczyną błędów obliczeniowych może być błąd zaokrąglenia, który zwiększa się z każdym kolejnym obliczonym elementem, prowadząc do szybkiej utraty dokładności. Ciągłe mnożenie i dzielenie kolejnych elementów również może wprowadzać niedokładności. Im dokładniejszy typ, tym bliżej jest on do wartości startowej. Widoczne jest, że typ float32 traci precyzję najwcześniej, a typ Longdouble najpóźniej.

k	Float32		D	ouble	Longdouble			
	x_0	x_1	x_0	x_1	x_0	x_1		
10	1.0000006	0.3333335	1.0	0.333333333333	0.999999999999999	0.333333333333		
11	1.0000012	0.3333337	1.0	0.3333333333333	0.99999999999999	0.333333333333		
	•••	•••	•••	•••	•••	•••		
27	-6374500.0	-2124833.2	1.0000000007	0.333333335778	0.999999971657778	0.3333333338859		
28	-6374500.0	-6374500.0	0.9999996498	0.3333332166223	0.999999744899743	0.3333332482999		
29	4.077885e+11	1.359295e+11	0.9999985475	0.3333328491695	0.999997703023679	0.3333325676745		
	•••	•••	•••	•••	•••			
38	2.8305794e+20	9.435265e+19	1820.1150969	606.70503231736	-888.722737389341	-296.2409124631		
39	3.3702547e+21	1.1234182e+21	9873.0758698	3291.0252899615	-8002.37380694677	-2667.457935648		

Tabela 6: Wartości do jakich wraca rekurencja gdy zawraca na k-tym elemencie

Im większa wartość parametru k, tym większa jest niedokładność obliczeń. Typ liczbowy Float32 traci precyzję najwcześniej i już dla niskich wartości k nie radzi sobie dobrze. W przypadku Double i Longdouble niedokładności pojawiają się później dopiero dla większych wartości k.

Element	Forward	Backward
0	1.00000e+00	NaN
1	5.00000e-01	NaN
2	1.500000e+00	NaN
3	7.00000e+00	NaN
4	3.350000e+01	NaN
5	1.605000e+02	NaN
6	7.690000e+02	NaN
7	3.684500e+03	NaN
8	1.765350e+04	NaN
9	8.458300e+04	NaN
10	4.052615e+05	NaN
11	1.941724e+06	NaN
12	9.303361e+06	NaN
13	4.457508e+07	NaN
14	2.135720e+08	NaN
15	1.023285e+09	NaN
16	4.902853e+09	NaN
17	2.349098e+10	NaN
18	1.125520e+11	NaN
19	5.392692e+11	-inf
20	2.583794e+12	-inf
21	1.237970e+13	-1.705296e+38
22	5.931471e+13	-3.559159e+37
23	2.841939e+14	-7.428397e+36
24	1.361655e+15	-1.550397e+36
25	6.524079e+15	-3.235866e+35
26	3.125874e+16	-6.753646e+34
27	1.497696e+17	-1.409568e+34
28	7.175893e+17	-2.941940e+33
29	3.438177e+18	-6.140186e+32
30	1.647330e+19	-1.281531e+32
31	7.892830e+19	-2.674712e+31
32	3.781682e+20	-5.582449e+30
33	1.811913e+21	-1.165125e+30
34	8.681395e+21	-2.431757e+29
35	4.159507e+22	-5.075369e+28
36	1.992939e+23	-1.059272e+28
37	9.548747e+23	-2.209916e+27
38	4.575079e+24	-4.568606e+26
39	2.192052e+25	-7.438672e+25
40	1.050275e+26	8.492704e+25
41	5.032171e+26	4.990219e+26
42	2.411058e+27	2.410183e+27
43	1.155207e+28	1.155189e+28
44	5.534931e+28	5.534927e+28
45	2.651945e+29	2.651945e+29
46	1.270623e+30	1.270623e+30
	,	

Tabela 7: Obliczenia dla p=2 oraz typu Float32

W tabeli 7 widać że przy powrocie do wartości początkowych doszło do błędu obliczeń na elemencie numer 18

Wyniki obliczeń dla $x_0=1,\;x_1=\frac{1}{2},\;\;k=45,$

	x _k Float32		Double	Long double	
	x_{45}	2.6519446e+29	2.6519452145503464e+29	2.6519452145503458166e+29	
Ī	x ₄₆ 1.270623e+30		1.27062328786523e+30	1.2706232878652297147e+30	

Tabela 8: Wyniki rekurencji do przodu dla p = 2

x_k	Float32	Double	Long double
x_0	NaN	-7.704010532621838e+43	-1.7351611458615731e+40
x_1	NaN	-1.60792062131628e+43	-3.6214921772544773e+39

Tabela 9: Wyniki rekurencji w tył dla p = 2

W tabeli 8 widać że dla rekurencji do przodu dla każdego typu liczbowego wyniki są podobne. Natomiast wyniki przedstawione w tabeli 9 pokazują że w powrocie do wartości startowych dla każdego typu są inne i żadna się zgadza się z $x_0=1$, $x_1=\frac{1}{2}$

Element	Forward	Backward	Forward	Backward	Forward	Backward
	float	float	double	double	long double	long double
0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
1	0.050000	0.050000	0.050000	0.050000	0.050000	0.050000
2	-0.975000	-0.975000	-0.975000	-0.975000	-0.975000	-0.975000
3	-0.537500	-0.537500	-0.537500	-0.537500	-0.537500	-0.537500
4	0.706250	0.706250	0.706250	0.706250	0.706250	0.706250
5	0.890625	0.890625	0.890625	0.890625	0.890625	0.890625
6	-0.260938	-0.260937	-0.260937	-0.260938	-0.260937	-0.260938
21	-0.944356	-0.944356	-0.944356	-0.944356	-0.944356	-0.944356
22	-0.612161	-0.612161	-0.612161	-0.612161	-0.612161	-0.612161
23	0.638276	0.638275	0.638276	0.638276	0.638276	0.638276
43	0.964676	0.964676	0.964677	0.964677	0.964677	0.964677
44	-0.082963	-0.082963	-0.082963	-0.082963	-0.082963	-0.082963
45	-1.006158	-1.006158	-1.006158	-1.006158	-1.006158	-1.006158
46	-0.420116	-0.420116	-0.420116	-0.420116	-0.420116	-0.420116

Element	Forward	Backward	Forward	Backward	Forward	Backward
	float	float	double	double	long double	long double
0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
1	0.033333	0.033333	0.033333	0.033333	0.033333	0.033333
2	-0.988889	-0.988889	-0.988889	-0.988889	-0.988889	-0.988889
3	-0.362963	-0.362963	-0.362963	-0.362963	-0.362963	-0.362963
4	0.867901	0.867901	0.867901	0.867901	0.867901	0.867901
5	0.652263	0.652263	0.652263	0.652263	0.652263	0.652263
6	-0.650480	-0.650480	-0.650480	-0.650480	-0.650480	-0.650480
•••		•••	•••	•••		•••
21	-0.240266	-0.240266	-0.240266	-0.240266	-0.240266	-0.240266
22	0.926328	0.926328	0.926328	0.926328	0.926328	0.926328
23	0.549042	0.549042	0.549042	0.549042	0.549042	0.549042
		•••	•••	•••		•••
43	-0.711595	-0.711595	-0.711595	-0.711595	-0.711595	-0.711595
44	0.586878	0.586878	0.586878	0.586878	0.586878	0.586878
45	0.907221	0.907221	0.907221	0.907221	0.907221	0.907221
46	-0.284471	-0.284471	-0.284471	-0.284471	-0.284471	-0.284471

Tabela 11: Wyniki dla każdego typu liczbowego i p = 30

W tabelach 10 i 11 widać że wartości wracają dla każdego typu liczbowego poprawnie do wartości startowych.

Podsumowując, dla założonych parametrów p=3 i k=45, nie udało się otrzymać poprawnych wyników dla żadnego typu liczbowego. Dopiero manewrowanie oboma parametrami w górę i dół doprowadzało do poprawnych obliczeń. Przy zmniejszeniu do k=10 dla każdego typu udało się otrzymać poprawne wyniki. Natomiast przy zmianie na p=2 dla typu Float32 doszło nawet do błędu obliczeń. Zmiana na większą wartość parametru (p=20) pozwoliła otrzymać wyniki poprawne. Najmniejsza wartość parametru p, dla którego udało mi się otrzymać poprawne wyniki dla każdego typu to p=6.