## Intelligent Resource Management for Energy Efficient Computing

Zhiling Lan (UIC & ANL)



#### <u>Intro</u>

- ➤ Resource management and scheduling
  - In partnership with the Cobalt (now PBSPro) team at ALCF
- ➤ Modeling and simulation
  - Cluster scheduling
  - Interconnect networking



A DES based cluster scheduling simulator: <a href="https://github.com/SPEAR-UIC/CQSim">https://github.com/SPEAR-UIC/CQSim</a>



#### Resource Management and Scheduling (RMS)

- ➤ Different terms: workload management, batch scheduling, cluster management
- ➤ The same design since 1990s
  - For traditional numerical simulations on homogeneous systems
  - Bare metal mode with exclusive node access
  - FCFS, along with resource reservation and backfilling
  - Common metrics: node utilization, job wait time, ...



In cloud computing, users are given time-controlled ownership of resource containers via VM.

#### **Workload Evolution**

#### **Traditional numerical simulation**



#### AI/ML/Data Analytics







# Coupled data processing

#### **AI-enabled Science**



#### **Distributed workflow**









#### **Hardware Evolution**

**Heterogeneity** is manifested across all levels, from chip to multi-system, and in each component per level.





Credit: AMD CEO Lisa Su





### **RMS in 2035**

- > Utilize a diverse mix of power sources (e.g., brown and green energy)
  - Operating leadership facilities solely on renewable energy is controversial
  - Collaboration with DOE EERE and other agencies is required









### **RMS in 2035**

- > Power/energy as a schedulable resource
- > Scheduling, e.g., dynamic power budget, across time and location
  - o Time: Prioritizing jobs in varying orders based on power consumption
  - o Location: Allocating jobs to different resources for optimal energy efficiency





## **Challenges**

- ➤ Managing heterogeneous resources among hybrid workloads is **a multi- dimensional combinatorial optimization problem!** 
  - From node-centric to multi-resource management
  - Strategies for hard/soft constraints, e.g., on-demand and coupled
  - Coordination across the components and the system stack
  - Orchestration of computing and data movement
  - Trade-offs (user vs facility, power vs performance)
  - Rapid decision making in dynamic environment



#### **Challenges:**

- 1. Multi-resource demand
- 3. Tunable shapes for some jobs
- 2. Hard & soft constraints
- 4. Adaptation to changes





## **Research Question**

➤ How can RMS manage various dynamic factors in concert?



https://www.latimes.com/environment/newsletter/2021-04-29/solar-power-water-canals-california-climate-change-boiling-point

Can RMS automatically learn the high-quality policies for energy efficiency specific to the computing environment?





#### **Opportunity 1: Reinforcement Learning**



Game playing



Self-driving cars



Robot control

Agent - learning optimal policies in a dynamic environment





## Reinforcement Learning (cont.)



#### State s<sub>t</sub>:

Include both jobs & resources

#### Action a<sub>t</sub>:

Select a waiting job to run

#### Reward r<sub>t</sub>:

· Reflect scheduling objective

Goal: Maximize the cumulative reward  $\sum_t r_t$ 

#### Features:

- · Maximization of cumulative rewards over time, rather than just immediate gain
- Optimal decision making in dynamic environment
- Autonomous learning and adaptation
- ...



## **Example**

- ➤ DRAS = Deep Reinforcement Agent for Scheduling
- ➤ Key features
  - HPC domain knowledge, e.g., advanced reservation, backfilling
  - Multi-phase training strategy
  - Four RL algorithms: Deep Q-learning (DQL), Policy gradient (PG), Advanced actor critic (A2C),
    Proximal policy optimization (PPO)





## Example (cont.)





- DRAS-PPO achieves the best performance
- Optimization achieves the balanced performance
- FCFS obtains the lowest maximum job wait time

Y. Fan, et al., "DRAS: Deep Reinforcement Learning for Cluster Scheduling in High Performance Computing", *IPDPS 2021* & *IEEE Trans on Parallel and Distributed Systems (TPDS 2022*).



## Example (cont.)

- ➤ Promising, but ...
  - DNN is a blackbox
  - Hard to comprehend, debug, and adjust in practice
- ➤ Can we develop interpretable RL scheduling (IRL) model?



- ✓ IRL ≈ black-box DNN
- ✓ IRL faster decision:
  - IRL: 0.3ms per job selection
  - DNN: 20ms per job selection

Interpretable tree generated from DNN model of 1,664-node DataStar

B. Li, et al., "Interpretable Modeling of Deep Reinforcement Learning Driven Scheduling", MASCOTS 2023.





#### **RL for RMS**

- Reinforcement learning (RL) shows promising for RMS
  - + Autonomous decision-making in dynamic environments
  - + Plan-ahead focused on long-term rewards
- ➤ However, many challenges remain!
  - Problem formulation
  - Stability and convergence
  - State space explosion
  - interpretabilit
  - Training cost and inference latency
  - ...





## **Opportunity 2: Simulator**

- ➤ Simulators are typically used for offline what-if analysis
- Time to harness simulator for dynamic decision making





- Explore exploratory simulation for (near) real-time what-if analysis
- Challenges: (1) power modeling, and (2) trade-off between accuracy and time overhead



## **Takeaway**

- ➤ RMS plays a crucial role in EECS
  - Vertical coordination between applications and resources
  - Horizontal coordination among resources at all levels
- ➤ Lots of knobs & dynamic factors
- ➤ Intelligent resource management
  - Leverage reinforcement learning and other AI/ML technologies
  - Integrate exploratory simulation
- ➤ Many challenges and opportunities remain



