Linear Algebra: Map of theorems

Tan Wee Han

December 11, 2020

Contents

1	Inner Product Introduction		
	1.1	Vector inequalities	1
	1.2	Orthogonal and Orthonormal basis	1
	1.3	Orthogonal complement and projection	1
	1.4	Adjoint of linear operator	2
		Self-adjoint and Normal Operator	
	1.6	Unitary Operator	3
2	_	erators on Inner Product Spaces Forms on Inner Product Spaces	4
		near Forms Bilinear Forms Introduction	5

1 Inner Product Introduction

1.1 Vector inequalities

Cauchy-Schwarz Inequality: $\|\langle u, v \rangle\| \le \|u\| \|v\|$ Triangle Inequality: $\|u + v\| \le \|u\| + \|v\|$ Pythagoras Theorem: $\|u + v\|^2 = \|u\|^2 + \|v\|^2$

1.2 Orthogonal and Orthonormal basis

Theorem 1.2.1 An orthogonal set of nonzero vectors is linearly independent.

Corollary 1.2.1.1 If V is a finite dimensional inner product space and n = dimV, then any orthogonal set of nonzero vectors in V is finite and contains at most n vectors.

Lemma 1.2.2 Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthonormal basis of V. Then for any $v \in V$,

$$V = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n$$

Corollary 1.2.2.1 Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthonormal basis of $V, T : V \to V$ a linear operator and $[T]_{\mathcal{B}} = (a_{ij})$ Then for all i, j

$$a_{ij} = \langle T(v_j), v_i \rangle$$

Theorem 1.2.3 Every finite dimensional inner product space has an orthonormal basis.

1.3 Orthogonal complement and projection

Theorem 1.3.1 If W is a subspace of an inner product space V, then its orthogonal complement W^{\perp} is a subspace of V. In addition, we have

$$W \cap W^{\perp} = \{\mathbf{0}\}$$

Theorem 1.3.2 If W is a finite dimensional subspace of an inner product space V, then

$$V=W\oplus W^\perp$$

Theorem 1.3.3 If $\{w_1,...,w_k\}$ is an orthonormal basis of W then

$$\mathbf{proj}_{W}(v) = \sum_{j=1}^{k} \langle v, w_{j} \rangle w_{j}$$

Theorem 1.3.4 Best Approximation: If W a finite dimensional subspace of an inner product space V and $v \in V$, then

$$||v - \mathbf{proj}_W(v)|| < ||v - w||$$

for every vector w in W different from $\mathbf{proj}_{W}(v)$.

Theorem 1.3.5 Least Square Solution: For any real linear system $A\mathbf{x} = \mathbf{b}$ the associated normal system

$$(A^t A)\mathbf{x} = A^t \mathbf{b}$$

is consistent, and all its solutions are least square solutions of $A\mathbf{x} = \mathbf{b}$

1.4 Adjoint of linear operator

Theorem 1.4.1 Let V be a finite dimensional inner product space over \mathbb{F} . If $f:V\to\mathbb{F}$ is a linear functional, then there exists a unique vector $u\in V$ such that.

$$f(v) = \langle v, u \rangle$$
 for all $v \in V$

Theorem 1.4.2 Let $T: V \to V$ be a linear operator on a finite dimensional inner product space V. Then there exists a unique linear operator $T^*: V \to V$ such that

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle$$

 T^* is called the adjoint of T.

Theorem 1.4.3 Let $T: V \to V$ a linear operator on a finite dimensional inner product space V and B be an orthonormal basis of V. Then

$$[T^*]_{\mathcal{B}} = ([T]_{\mathcal{B}})^*$$

is the conjugate transpose of the matrix $[T]_{\mathcal{B}}$

Theorem 1.4.4 Let T, T_1 and T_2 be linear operators on a finite dimensional inner product space V. Then:

- (i) $(T_1 + T_2)^* = T_1^* + T_2^*$
- (ii) $c(T)^* = \overline{c}T^*$
- $(iii) \quad (T_1T_2)^* = T_2^*T_1^*$
- $(iv) \quad (T^*)^* = T$

1.5 Self-adjoint and Normal Operator

Main motivation for this section is to find out under what conditions does V have an orthonomal basis of eigenvectors for T.

Definition 1.5.1 A linear operator T on a finite dimensional inner product space V is called **self-adjoint** if $T = T^*$, i.e. it satisfies the equation:

$$\langle T(u), v \rangle = \langle u, T(v) \rangle$$

Theorem 1.5.1 (p. 312) A self-adjoint linear operator T on a finite dimensional inner product space V. Then all eigenvalues of T is real. And the eigenvectors associated with the distinct eigenvalues are orthogonal.

Theorem 1.5.2 (p. 313) On a finite dimensional inner product space of positive dimension, every self-adjoint operator has at least one eigenvalue which also means it has at least one eigenvector.

(note proof of this in complex vector space do not require T to be self-adjoint, but in real vector space it does)

Lemma 1.5.3 Let V be a finite dimensional inner product space. Let $T: V \to V$ be any linear operator. Suppose W is a subspace of V which is invariant under T. Then W^{\perp} is invariant under T^*

Theorem 1.5.4 Let V be a finite dimensional inner product space (complex or real). Let $T: V \to V$ be a self adjoint linear operator. T is orthogonally diagonalizable if and only if it is self-adjoint. (proof uses Lemma 1.5.3)

Corollary 1.5.4.1 Let A be an $n \times n$ Hermitian matrix. Then there is a unitary matrix P such that $P^{-1}AP$ is diagonal. (i.e. A is unitarily equivalent to a diagonal matrix). If A is a real symmetric matrix, there is a real orthogonal matrix P such that that $P^{-1}AP$ is diagonal.

Definition 1.5.2 Let V be a finite dimensional inner product space. Let $T: V \to V$ be a linear operator on V. We say that T is normal if it commutes with its adjoint:

$$TT^* = T^*T$$

Lemma 1.5.5 Let V be a finite dimensional complex inner product space and $T: V \to V$ a normal linear operator. Then if $v \in V$ is an eigenvector of T corresponding to the eigenvalue λ , then it is also an eigenvector of T^* corresponding to the eigenvalue $\overline{\lambda}$. That is for $v \in V$,

$$T(v) = \lambda v \Rightarrow T^*(v) = \overline{\lambda}v$$

Lemma 1.5.6 Let V be a finite dimensional complex inner product space and $T:V\to V$ any linear operator. Then V has an orthonormal basis $\mathcal B$ such that matrix $[T]_{\mathcal B}$ is upper triangular.

Theorem 1.5.7 A linear operator on a finite dimensional complex inner product space is orthogonally diagonalizable if and only if it is normal. (proof uses lemma 1.5.5 and 1.5.6)

1.6 Unitary Operator

Theorem 1.6.1 Let V and W be a finite dimensional inner product spaces over the same field. If $f: V \to W$ is a linear transformation, the following are equivalent:

- 1. $\langle T(u), T(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$. i.e. T preserves inner product spaces
- 2. T is an inner product space isomorphism
- 3. T carries every orthonormal basis for V onto an orthonormal basis for W
- 4. ||T(v)|| = ||v|| for all $v \in V$.

Definition 1.6.1 A unitary operator on an inner product space is an isomorphism of the space onto itself.

Theorem 1.6.2 Let T be a linear operator on an inner product space V. Then T is unitary if and only if the adjoint T^* of T exists and $TT^* = T^*T = I$

Theorem 1.6.3 Let V be a finite dimensional inner product space and let $T: V \to V$ be a linear operator. Then T is unitary if and only if the matrix of T in some (or every) ordered basis is a unitary matrix.

Theorem 1.6.4 (p.305) For every invertible complex $n \times n$ matrix B, there exists a unique lower-triangular matrix M with positive entries on the main diagonal such that MB is unitary.

Corollary 1.6.4.1 (p.307) Let $T^+(n)$ be the set of all complex $n \times n$ lower triangular matrices with positive entries on the main diagonal. Let U(n) be a group of unitary matrices. For each B in GL(n) there exists unique matrices N and U such that $N \in T^+(n)$ and $U \in U(n)$.

2 Operators on Inner Product Spaces

Let $\mathcal{L}(V; V)$ denote the space of all linear operators from V to V. Let $\mathcal{F}(V, V, \mathbb{F})$ denote the space of all forms on V.

2.1 Forms on Inner Product Spaces

Definition 2.1.1 A sesquilinear form on a vector space V over \mathbb{F} is a function $f: V \times V \to \mathbb{F}$ such that

(a)
$$f(c\alpha + \beta, \gamma) = cf(\alpha, \gamma) + f(\beta, \gamma)$$

(b)
$$f(\alpha, c\beta + \gamma) = \overline{c}f(\alpha, \beta) + f(\alpha, \gamma)$$

Theorem 2.1.1 (p. 320) Let V be a finite dimensional inner product space and f a form on V. Then

1. If $f \in \mathcal{F}(V, V, \mathbb{F})$, then there exists a unique linear operator $T_f : V \to V$ such that

$$f(\alpha, \beta) = \langle T_f \alpha, \beta \rangle \quad \forall \alpha, \beta \in V$$

2. The map $\phi: \mathcal{F}(V, V, \mathbb{F}) \to \mathcal{L}(V; V)$ defined by $\phi(f) := T_f$ for all $f \in \mathcal{F}(V, V, \mathbb{F})$ is an isomorphism of vector spaces

Definition 2.1.2 If f is a form and $\mathcal{B} = \{\alpha_1, ..., \alpha_n\}$ an arbitrary ordered basis of V, the matrix A with entries

$$A_{ij} = f(\alpha_j, \alpha_i)$$

is called the matrix of f in the ordered basis of \mathcal{B}

Proposition 2.1.1 let V be a finite dimensional inner product space over field \mathbb{F} and f is a form. If \mathcal{B} is an orthonormal basis of V, then $[f]_{\mathcal{B}} = [T_f]_{\mathcal{B}}$. (note that this lemma does not work if basis is not orthonormal)

Theorem 2.1.2 Let f be a form on a finite dimensional complex inner product space V. Then there is an orthonormal basis for V in which the matrix is upper-triangular.

(note that this theorem uses the fact that $\mathcal{F}(V,V,\mathbb{F})$ is isomorphic to $\mathcal{L}(V;V)$, which allows us to transfer the result of lemma 1.5.6)

Definition 2.1.3 A form f on a real or complex vector space V is called **Hermitian** if

$$f(\alpha, \beta) = \overline{f(\beta, \alpha)}$$

Proposition 2.1.2 Let f be a form on complex inner product space. f is Hermitian if and only if T_f is self-adjoint.

Theorem 2.1.3 Let V be a complex vector space and f a form on V such that $f(\alpha, \alpha)$ is real for every $\alpha \in V$. Then f is Hermitian.

Corollary 2.1.3.1 Let T be a linear operator on a complex finite dimensional inner product space V. Then T is self-adjoint if and only if $\langle T\alpha, \alpha \rangle$ is real for every $\alpha \in V$.

Theorem 2.1.4 Principle Axis Theorem: For every Hermitian form f on a finite dimensional inner product space V, there is an orthonormal basis in which f is represented by a diagonal matrix with real entries.

(Proof of this theorem uses results from theorem 1.5.4 and 1.5.1)

3 Bilinear Forms

Let $L(V, V; \mathbb{F})$ denote the space of all bilinear forms.

3.1 Bilinear Forms Introduction

Definition 3.1.1 let V be a vector space over the field F. A bilinear form on V is a function f, which assigns to each ordered pair of vectors α, β in V a scalar $f(\alpha, \beta)$ in F, and which satisfies

(a)
$$f(c\alpha + \beta, \gamma) = cf(\alpha, \gamma) + f(\beta, \gamma)$$

(b)
$$f(\alpha, c\beta + \gamma) = cf(\alpha, \beta) + f(\alpha, \gamma)$$

Definition 3.1.2 let V be a finite-dimensional vector space and let $\mathcal{B} = \alpha_1, ..., \alpha_2$ be an ordered basis for V. If f is a bilinear form on V, the **matrix of** f **in the ordered basis** \mathcal{B} is the $n \times n$ matrix A with entries $A_{ij} = f(\alpha_i, \alpha_j)$. We will denote this matrix by $[f]_{\mathcal{B}}$

Theorem 3.1.1 let V be a finite-dimensional vector space over the field \mathbb{F} . For each ordered basis \mathcal{B} of V, the function which associates each bilinear form on V its matrix in the ordered basis \mathcal{B} is an isomorphism. i.e. The map

$$\phi: L(V, V, \mathbb{F}) \to M_n(\mathbb{F})$$

is an isomorphism.

Corollary 3.1.1.1 If $\mathcal{B} = \{\alpha_1, ... \alpha_n\}$ is an ordered basis for V, and $B* = \{L_1, ..., L_n\}$ is the dual basis for V^* , then the n^2 bilinear forms

$$f_{ij}(\alpha,\beta) = L_i(\alpha)L_j(\beta)$$

form a basis for the space $L(V, V, \mathbb{F})$ and $dim(L(V, V, \mathbb{F})) = n^2$.

Theorem 3.1.2 We denote $L_f(\alpha)$ as the bilinear form that fixes α hence becoming a linear functional on any β in V. We denote $R_f(\beta)$ similarly but fixing β .

Let f be a bilinear form on the finite-dimensional vector space V. Let L_f and R_f be the linear transformation from V to V* defined by $(L_f\alpha)(\beta) = f(\alpha,\beta) = (R_f\beta)(\alpha)$. Then rank $(R_f) = rank(L_f)$.

Definition 3.1.3 if f is a bilinear form on the finite-dimensional space V, the rank of f is the integer r = rank $(L_f) = rank$ (R_f) .

Corollary 3.1.2.1 If f is a bilinear form on the n-dimensional vector space V, the following are equivalent:

- 1. rank(f) = n.
- 2. For each non zero α in V, there is a β in V such that $f(\alpha, \beta) \neq 0$
- 3. For each non zero β in V, there is a α in V such that $f(\alpha, \beta) \neq 0$

Definition 3.1.4 A biliear form f on a vector space V is called **non-degenerate** (or **non-singular**) if it satisfies (2) and (3) of corollary 3.1.2.1.