

Mark Scheme (Results)

June 2011

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028840
All the material in this publication is copyright
© Edexcel I td 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 6684 Statistics S2 Mark Scheme

Mark Scheme			
Question Number	Scheme	Marks	
1. (a)	The <u>list</u> of <u>ID numbers</u>	B1 (1)	
(b)	$F \sim B(50,0.02)$	B1 B1 (2) 3	
Notes: (a) (b)	B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. These must be in part (b) to gain the marks 1st B1 for Binomial distribution 2^{nd} B1 for $n = 50$ and $p = 0.02$ or $(50,0.02)$ NB $(0.02, 50)$ is B0 Po(1) alone is B0B0 For a probability table 1st B1 Use of B $(50,0.02)$ NB P $(X = 0) = 0.3642$ 2nd B1 Table must have all 50 values and their probabilities.		

Question Number	Scheme		Marks
2. (a)	Poisson		B1 (1
(b)	$H_0: \mu = 9 \text{ (or } \lambda = 36)$ $H_1: \mu > 9 \text{ (or } \lambda > 36)$		B1 B1
	$X \sim Po(9)$ and $P(X \ge 12) = 1 - P(X \le 11)$ or	$P(X \le 14) = 0.9585$	M1
	$= 1 - 0.8030 = \underline{0.197}$	$P(X \ge 15) = 0.0415$ $\underline{CR \ X} \ge \underline{15}$	A1
	(0.197 > 0.05) so not significant/ accept H ₀ / Not in CR he does not have evidence to switch on the speed:	restrictions (o.e)	M1d A1ft
(c)	Let $Y =$ the number of vehicles in 10 s then $Y \sim F$	Po(6)	B1
	Tables: $P(Y \le 10) = 0.9574$ so $P(Y \ge 11) = 0.0426$	j	M1
	so nee	ds <u>11</u> vehicles	A1
			(3
(a) (b)			res M1A1 e table below. Ignore its own scores the speed = 0.022. May M1A1 e table below.

Question	advancing team	ing, changing lives
Number	Schama	
	0.025 $p < 0.025 or p > 0.975$	
	2 nd M1 not significant/ accept H ₀ / Not in CR significant/ reject H ₀ / In CR	
	2 nd A1 Insufficient evidence to switch on the Sufficient evidence to switch on	the
(a)	B1 speed restrictions speed restrictions B1 for identifying Po(6) - may be implied by use of correct tables	
(c)	B1 for identifying Po(6) - may be implied by use of correct tables M1 any one of the probs 0.9574 or 0.0426 or 0.9799 or 0.0201 may be implied by answer of 11 A1 cao do not accept $X \ge 11$ NB answer of 11 with no working gains all three marks.	by correct
3. (a)	Mode = 3 from graph	B1
	2 5 -73	(1)
(b)	$\int_{0}^{3} kx^{2} dx = 0.5 \implies \left[\frac{kx^{3}}{3}\right]_{0}^{3} = 0.5$ So $\frac{27k}{3} - 0 = 0.5 \implies k = \frac{1}{18}$ (using median = 3)	M1 A1
	So $\frac{27k}{3} - 0 = 0.5 \implies k = \frac{1}{18}$ (using median = 3)	M1d A1
		(4)
(c)	Height of triangle = $\frac{1}{18} \times 3^2 = \frac{1}{2}$	B1ft
	Area of triangle = $\frac{1}{2} \times (a-3) \times \frac{1}{2} = \frac{1}{2}$	M1
	so $a = 5$ cao	A1
(4)	From graph distribution is nagative skew (left toil is longer)	B1 (3)
(d)	From graph distribution is negative skew (left tail is longer) μ < median for negative skew so E(X) < 3	B1d
		(2)
	[N.B. $E(X) = 2\frac{23}{24}$]	10
Notes: (b)	1 st M1 for attempt to integrate $f(x)$ (need x^3). Integration must be in part (b) 1 st A1 for correct integration. Ignore limits for these two marks. 2 nd M1 Dependent on the previous M mark being awarded. For use of correct limits and set equal to 0.5 - leading to a linear equation for k . No need to see 0 substituted. 2 nd A1 for $k = \frac{1}{18}$ or exact equivalent	
	NB $k = \frac{1}{18}$ with no working gains M0A0M0A0	
	$k = \frac{\frac{1}{2}}{9} = \frac{1}{18}$ without sight of integration is M0A0M0A0	
	B1 for correct height of triangle using their k . ie $9k$. May be seen in working for area	of triangle.
(c)	Or correct gradient of line ie $\frac{9k}{(3-a)}$ o.e.	

	advancing learning	, changing lives
Question Number	Scheme	Marks
	M1 for a correct linear equation for a , in the form $\pm \frac{1}{2} \times (a-3) \times 9k = \frac{1}{2}$ (Must see NB if they have stated their height and then used their height rather than $9k$ allow M1 A1 cao NB stating $a = 5$ and then verifying area of the triangle $= 0.5$ is acceptable. NB $a = 5$ on its own is B0M0A0 SC Integration of both parts $= 1$ or Integration of line $= 0.5$ leading to $a^2 - 8a + 15 = 0$ M1 and if they identify $a = 5$ A1	
(d)	$1^{\text{st}} B1$ for identifying negative skew dependent on previous B mark being awarded. For correct deduction $E(X) < 3$	
4 (a)	$\frac{9.5-7}{10-7}$	M1
	$=\frac{5}{6}$ awrt 0.833	A1 (2)
(b)	P(Longest > 9.5) = 1 - P(all < 9.5) = $1 - \left(\frac{5}{6}\right)^3$	M1
	$= \frac{91}{216} \text{ or } 0.421$	A1 (2)
(c)	$P(a \text{ stick} < 7.6) = \frac{0.6}{3} = 0.2$	B1
	Let $Y =$ number of sticks (out of 6) <7.6 then $Y \sim B(6, 0.2)$ $P(Y > 4) = 1 - P(Y \le 4)$ = 1 - 0.9984	M1 M1
	$= 0.0016 \text{ or } \frac{1}{625}$	A1 (4) 8
Notes: (a)	M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} dx$	
(b)	M1 for $1-(a)^3$ or $(1-a)^3+3(1-a)^2a+3(1-a)a^2$	
(c)	A1 awrt 0.421 B1 0.2 may be implied by at least one correct probability 1^{st} M1 for writing or using B(6, p) may be implied by $np^x(1-p)^{6-x}$ using their p and $n \ge 2^{\text{nd}}$ M1 for writing or using $1 - P(Y \le 4)$ or $np^5(1-p) + p^6$ (n is an integer > 1) A1 cao	 ≥ 1
	NB 0.0016 with no working gets B0M0M0A0	
5. (a)	$X \sim \text{Po}(5); P(X \le 3) = 0.2650$	M1 A1
		(2)

	advancing learnir	0, 0 0
Question Number	Scheme	Marks
(b)	Let $Y =$ the no.of planks with at most 3 defects, $Y \sim \text{Binomial}$ $Y \sim B(6, 0.265)$ $P(Y < 2) = P(Y \le 1)$ $= \left[0.735^6 + 6 \times 0.265 \times 0.735^5 \right]$ = 0.4987 awrt 0.499 or 0.498	M1 A1ft M1 A1
(c)	Let $T = \text{total number of defects on 6 planks}$, $T \sim \text{Po}(30)$ so $T \approx S \sim \text{Normal}$ $S \sim \text{N}(30, 30)$ P(T < 18) = P(S < 17.5) $= P\left(z < \frac{17.5 - 30}{\sqrt{30}}\right)$ = P(Z < -2.28) = 0.01123 awrt 0.0112 or 0.0113	M1 A1 M1 M1 A1 A1 (6)
Notes: (a) (b)	= 0.01123 awrt 0.0112 or 0.0113	

Question		advancing learning	
Number	Scheme		Marks
6. (a)	$H_0: p = 0.15$ $H_1: p \neq 0.15$		B1 B1
(4)	$X \sim B(30, 0.15)$		M1
	$P(X \le 1) = 0.0480 \text{ or CR: } X = 0$		A1
	(0.0480 > 0.025)		
	not a significant result or do not reject H ₀ or not in		M1
	there is no evidence of a <u>change</u> in the <u>proportion</u>	of customers buying an item from	A1ft
	the display.		(6)
(b)	$H_0: p = 0.2$ $H_1: p > 0.2$		B1
(8)	Let $S =$ the number who buy sandwiches, $S \sim B(120)$	0. 0.2).	
		,,,,	N/1 A 1
	$S \approx W \sim N\left(24, \sqrt{19.2}^2\right)$		M1 A1
	$P(S \ge 31) = P(W \ge 30.5)$		M1
	$= P\left(Z > \frac{30.5 - 24}{\sqrt{19.2}}\right) \text{or} \frac{x - 0.5 - 1}{\sqrt{19.2}}$	- <u>24</u> =1.2816	M1
	$\sqrt{19.2}$) $\sqrt{19.2}$	2	1411
	[=P(Z>1.48)]		
	= 1 - 0.9306 = 0.0694	x = 30.1	M1 A1
			B1ft
	< 0.10 so a significant result, there is evidence that more customers are purchasing sandwiches or the shopkeepers claim is correct.		(8)
Notes:			14
(a)	$1^{\text{st}} B1 \text{ for } H_0 \text{ must use } p$ $2^{\text{nd}} B1 \text{ for } H_1 \text{ must use } p$		
	1 st M1 for writing or using B(30,0.15) – may be implied by correct CR 1 st A1 0.0480 or $X = 0$. Allow $X \le 0$. Ignore upper CR. NB Allow CR $X \le 1$ if using one tail test.		
	2^{nd} M1 A correct statement (see table below) Do not allow non-contextual conflicting statements		
	eg"significant" and "accept H_0 ". Ignore comparisons		
	2 nd A1 for a correct statement in context. For context we need idea of <u>change/decrease</u> in <u>number</u>		
	<u>of customers</u> <u>buying from display</u> – may use differe its own scores M1A1	ent words. NB A correct contextual s	statement on
	Two tail $0.025 or$	Two tail $p < 0.025$ or $p > 0.975$ or	,
	One tail 0.05	One tail $p < 0.05$ or $p > 0.95$	
	2 nd not significant/ accept H ₀ / Not in CR or	significant/ reject H ₀ / In CR or con	itextual
	M1 contextual		
	2 nd There is no evidence of a <u>change/decrease</u>	There is evidence of a change/decr	
	A1 in the <u>proportion of customers</u> buying an item from the <u>display</u>	the <u>proportion of customers</u> buying from the <u>display</u> .	g an item
(b)	1^{st} B1 both hypotheses correct – must use p .	from the display.	
. ,	1 st M1 for a normal approx		
	1 st A1 for correct mean and sd		
	2 rd M1 for use of continuity correction, either 30.5		`
	3 rd M1 standardising with their mean and their sd 4 th M1 for 1 - tables value or 1.2816	and 50.5, 51 or 51.5 or x or $(x \pm 0.5)$)
	2^{nd} A1 for awrt 0.069 or $x = 30.1$		
	2 nd B1ft For a correct conclusion in context using	their probability and 0.1 For context	t we need
	idea of more customers buying sandwiches – may		

	advancing learnin	g, changing lives
Question Number	Scheme	Marks
	One tail $0.1 or Two tail 0.05 One tail p < 0.1 or p > 0.9 or Two tail 0.05 One tail 0.1 0.9 or Two tail 0.05 0.95 One tail 0.1 0.9 or Two tail 0.05 0.95 One tail 0.1 0.9 or Two tail 0.1 0.9 or Two tail 0.05 0.9 or Two tail 0.05 < p$	•
	M1 contextual 2 nd There is no evidence of an increase in the proportion of customers buying sandwiches There is evidence of a change/increa proportion of customers buying sandwiches	se in the
	SC using $P(X<31.5) - P(X<30.5)$ can get B1M1 A1 M1 M1M0A0B0	
7 (a)	\bigcirc shape which does not go below the <i>x</i> -axis [condone missing patios] B Graph must end at the points (1,0) and (5,0) and the points labelled at 1 and 5	
(b)	E(X) = 3 (by symmetry)	B1
(c)	$[E(X^{2}] = \int x^{2} f(x) dx = \frac{3}{32} \int (6x^{3} - x^{4} - 5x^{2}) dx$	(1) M1
	$= \frac{3}{32} \left[\frac{6x^4}{4} - \frac{x^5}{5} - \frac{5x^3}{3} \right]_1^5$	
	$= \frac{3}{32} \left(\left[\frac{6 \times 625}{4} - 625 - \frac{625}{3} \right] - \left[\frac{6}{4} - \frac{1}{5} - \frac{5}{3} \right] \right) = 9.8 $ (*)	M1 A1 cso (4)
(d)	s.d. = $\sqrt{9.8 - E(X)^2}$, = 0.8944 awrt 0.894	M1 A1 (2)
(e)	$F(1) = 0 \Rightarrow \frac{1}{32} (a - 15 + 9 - 1) = 0$, leading to $\underline{a} = 7$	M1 A1 (2)
(f)	F(2.29) = 0.2449, F(2.31) = 0.2515 Since $F(q_1) = 0.25$ and these values are either side of 0.25 then 2.29< $q_1 < 2.31$	M1 A1 A1 (3)
(g)	Since the distribution is symmetric $q_3 = 5 - 1.3 = \underline{3.7}$ cao	B1 (1)
(h)	We know P($q_1=2.3 < X < 3.7=q_3$) = 0.5 so $k\sigma = 0.7$ so $k = \frac{0.7}{0.894} = 0.7826 = awrt 0.78$	M1
		A1 (2)
		17

	advanting team	ing, changing lives	
Question Number	Scheme	Marks	
Notes:			
(c)	This part is a "show that" therefore we need to see all the steps in the working		
	1 st M1 for showing intention of doing $\int x^2 f(x)$ and attempt to multiply out bracket		
	1 st A1 for correct integration, cao, ignore limits for this mark. 2 nd M1 for use of correct limits. Need to see evidence of subst both 5 and 1. 2 nd A1 for cso leading to 9.8. Do not ignore subsequent working for this final A mark.		
(d)	M1 for a correct expression for standard deviation, must include $$		
	A1 allow awrt 0.894, $\sqrt{0.8}$, $\frac{2\sqrt{5}}{5}$ oe		
(e)	M1 for a correct method to find a. e.g $F(5) = 1$ or $\int_1^5 f(x) = 1$		
(f)	M1 for an attempt at F(2.29) or F(2.31) or put $F(x) = 0.25$ (ft t a)	heir value of	
	1 st A1 for both values seen. awrt 0.245 and 0.252 find 3 solutions awrt 6 2.305, -0.064	5.76/6.75,	
	2^{nd} A1 for comparison with 0.25 and stating Q_1 state only 2.30 in range	e and stating	
	Q_1	J	
	lies between 2.29 and 2.31 lies between 2.29 and 2	2.31	
(h)	M1 For $k\sigma = \text{awrt } 0.7$		
	A1 Allow awrt 0.78		
	NB a correct awrt 0.78 gains M1 A1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028840 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

