CSPB3202 Artificial Intelligence

Search

Constraint Satisfaction Problems

Review Search

 Assumptions: a single agent, deterministic actions, fully observed state, discrete state space

- Path planning
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

Different Kinds of Search

Planning

- Sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance
- Shortest path finding problem

Identification

- Assignments to variables
- The goal itself is important, not the path
- All paths at the same depth
- Uses general-purpose guideline
- Constraint satisfaction problem

What is Constraint Satisfaction Problems?

- A special subset of search problems
- State is defined by variables $\{X\}$ with values from a domain $\{D\}$

- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

 Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Example: N-Queens

- Formulation 1
 - Variables: X_{ij}
 - **Domains:** {0, 1}
 - Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2
 - Variables: Q_k
 - Domains: $\{1, 2, 3, ... N\}$
 - Constraints:

Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

• • •

Example: Sudoku

					8			4
	8	4		1	6			
			5			1		
1		3	8			9		
6		8				4		3
		2			9	5		1
		7			2			
			7	8		2	6	
2			3					

Variables:

Each (open) square

Domains:

• Constraints:

1-9 each column

1-9 each row

1-9 each region

Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Transportation scheduling
- Factory scheduling
- Hardware configuration
- Circuit layout
- Fault diagnosis
- ... lots more!

Varieties of CSPs

Discrete Variables

- Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
- Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints $SA \neq green$
 - Binary constraints $SA \neq WA$
 - Higher-order constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems