

Introduction to Workflow Management Solutions for Public Health Bioinformatics

Model for Distributed Public Health Bioinformatics: Week 3 – Connecting WDL Workflows with Terra.Bio

Tuesday May 11th, 2022 Kevin G. Libuit, MS | Theiagen Genomics

Training Workshop Overview

Communication and Support

- Slack workspaces:
 - Terra-US-PHL; #wdl-writing
 - StaPH-B; #workflow-management, #cromwell_noobz
- Email: support@terrapublichealth.zendesk.com
- Weekly Office Hours:
 - Mountain Region Friday 9-10AM (PDT)
 - North East Region Friday 10-11AM (PDT)

Training Workshop Overview

Main Course Objective

Learn how to use workflow management systems to develop accessible, interoperable, and reproducible public health bioinformatics solutions

Last Week's Content: WDL Tasks & Workflows

Major Takeaways (WDL Task Files):

- Input Section
 - Obligate Inputs: Required for the task to run successfully
 - Optional Inputs: Not required for the task to run successfully
 - Declared Inputs: Default values of obligate or optional inputs; can be overridden when task is called in workflow
- Command Section
 - Two Options Available to Define a Command Element: <<< >>> or {}
- Output Section
 - Obligate Outputs: Required for the task to run successfully
 - Optional Outputs: Not required for the task to run successfully
- Runtime Section
 - Recognized runtime attributes depend on both workflow engine & compute backend

Last Week's Content: WDL Tasks & Workflows

Major Takeaways (WDL Workflow Files):

- Input Section
 - Obligate Inputs: Required for the workflow to run successfully
 - Optional Inputs: Not required for the workflow to run successfully
 - Declared Inputs: Default values of obligate or optional inputs; can be overridden when workflow is run
- Call Section
 - Task Inputs: Declared for each task called even if no input values are required
 - Task Aliases: Helpful when a single task is called multiple times
- Output Section
 - Obligate Outputs: Required for the task to run successfully
 - Optional Outputs: Not required for the task to run successfully

Executing WDL Workflows

WDL Source Code

Individual step performing a single and specific bioinformatics job

Software that strings together multiple analytical modules

Command-Line Interface (CLI)

Graphic-User Interface (GUI)

Introduction to the Terra Platform

Terra is a **bioinformatics web application** that connects users to bioinformatics workflows (WDL) & dynamic cloud computing resources (GCP) through a clean and intuitive user interface

WDL workflows can be accessed on Terra and run on GCP resources

Terra compatibility expanding:

Will support Nextflow workflows and Azure backend

Bioinformatics workflows

Specialized software written to analyze biological data

Google Cloud Platform

Cloud Computing Resources

Network of remote compute resources hosted on the internet

Introduction to the Terra Platform

Terra users can access WDL workflows hosted on Dockstore

 Workflow repository that enables "researchers and developers to share and reuse analytical workflows and tools in a way that makes them machine readable and runnable in a variety of environments"

From Terra, workflows are executed using the

Cromwell engine

- Execution on GCP backend

Running Scan-N-Trim Workflow

```
libuit@klibuit-training:~/wm training$ miniwdl run wdl/workflows/wf scan n trim.wdl -i data/exercise 02/scan n trim inputs.json
  22-05-09 12:48:00.637 wdl.w:scan n trim workflow workflow start :: name: "scan n trim workflow", source: "wdl/workflows/wf scan n trim.wdl", line
 7, column: 1, dir: "/home/klibuit/wm training/20220509 124800 scan n trim workflow"
    .05-09 12:48:00.641 wdl.w:scan_n_trim_workflow miniwdl :: version: "v1.5.1", uname: "Linux klibuit-training 5.13.0-1023-gcp #28-20.04.1-Ubuntu
 IP Wed Mar 30 03:51:07 UTC 2022 x86 64"
          12:48:00.657 wdl.w:scan n trim workflow ready :: job: "call-fastq scan raw", callee: "fastq scan task"
  22-05-09 12:48:00.658 wdl.w:scan_n_trim_workflow ready :: job: "call-trimmomatic_task", callee: "trimmomatic_task"
  22-05-09 12:48:00.658 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_raw task setup :: name: "fastq_scan_task", source: "../tasks/task_fastq_scan.w
dl", line: 3, column: 1, dir: "/home/klibuit/wm training/20220509 124800 scan n trim workflow/call-fastg scan raw", thread: 139719035307776
 22-05-09 12:48:00.660 wdl.w:scan_n_trim_workflow.t:call-trimmomatic_task task setup :: name: "trimmomatic_task", source: "../tasks/task_trimmomat
ic.wdl", line: 3, column: 1, dir: "/home/klibuit/wm_training/20220509_124800_scan_n_trim_workflow/call-trimmomatic_task", thread: 139719026915072
 22-05-09 12:48:00.919 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_raw docker swarm resources :: workers: 1, max_cpus: 4, max_mem_bytes: 16777588
736, total cpus: 4, total mem bytes: 16777588736
    -05-09 12:48:00.922 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_raw ignored runtime settings :: keys: ["disks"]
 22-05-09 12:48:00.924 wdl.w:scan_n_trim_workflow.t:call-trimmomatic_task ignored runtime settings :: keys: ["disks"]
22-05-09 12:48:00.942 wdl.w:scan_n_trim_workflow.t:call-trimmomatic_task_docker_image :: tag: "quay.io/staphb/trimmomatic:0.39", id: "sha256:a4a6
ec88c12253052fb53ea3272fa5c5a5d9cb65867af9da9f85bc0790c9ba4", RepoDigest: "staphb/trimmomatic@sha256:57b673e66313e355a447e4fa1a78fd3ba1ae3ddd8c8f9
 22-05-09 12:48:00.949 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_raw docker image :: tag: "staphb/fastq-scan:0.4.4", id: "sha256:0f3a04160290d2
77ff367ec49486d3a1e7545169891f43d53914197652e67a68", RepoDigest: "staphb/fastq-scan@sha256:3ad95bb5dae8abd31ae5872f5296ca7e5a47827e6843275ff545e9a7
  22-05-09 12:48:02.434 wdl.w:scan_n_trim_workflow.t:call-trimmomatic_task docker task running :: service: "x6wxavd4of", task: "190ydh0emw", node:
 022-05-09 12:48:12.501 wdl.w:scan n trim workflow.t:call-trimmomatic task docker task exit :: state: "complete", exit code: 0
 022-05-09 12:48:13.130 wdl.w:scan n trim workflow.t:call-trimmomatic task done
 022-05-09 12:48:13.131 wdl.w:scan n trim workflow finish :: job: "call-trimmomatic task"
 022-05-09 12:48:13.132 wdl.w:scan_n_trim_workflow ready :: job: "call-fastq_scan_clean", callee: "fastq_scan_task"
 022-05-09 12:48:13.133 wdl.w:scan n trim workflow.t:call-fastq scan clean task setup :: name: "fastq scan task", source: "../tasks/task fastq scan
wdl", line: 3, column: 1, dir: "/home/klibuit/wm training/20220509 124800 scan n trim workflow/call-fastq scan clean", thread: 139719026915072
 22-05-09 12:48:13.157 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_clean ignored runtime settings :: keys: ["disks"]
  22-05-09 12:48:13.174 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_clean_docker_image :: tag: "staphb/fastq-scan:0.4.4", id: "sha256:0f3a04160290
d277ff367ec49486d3a1e7545169891f43d53914197652e67a68". RepoDigest: "staphb/fastg-scan@sha256:3ad95bb5dae8abd31ae5872f5296ca7e5a47827e6843275ff545e9
 22-05-09 12:48:13.818 wdl.w:scan_n_trim_workflow.t:call-fastq_scan_raw docker task running :: service: "2q6boxpwl6", task: "5xyndewyce", node: "c
4c2v6zo7", message: "started"
```


Command-Line Interface (CLI)

Graphic-User Interface (GUI)

Connecting WDL Workflows to Terra.Bio

Publicly Accessible Github Repository

Containerized WDL Workflows

Can continuously configure on GitHub repository after initial setup

Connecting WDL Workflows to Terra.Bio

Hosting a Terra-Accessible WDL Workflow on Dockstore

- 1. Host WDL source code on publicly accessible GitHub repository
- 2. Create a Dockstore account
- 3. Sync GitHub repo with Dockstore account
- 4. Create a .dockstore.yml file into the top level of GitHub repository
- 5. Publish workflow from Dockstore

Running WDL Workflows on Terra.Bio

Terra Platform – Data Tables & Workflows

Terra Data Table

How data is organized within the Terra platform

 Data within a Terra Data Table can be uploaded by the user or generated by a Terra Workflow

Terra Workflows

WDL workflows executable from the Terra platform

- Can take inputs from a Terra Data Table
- Populates outputs to a Terra Data Table

Terra Platform - Data Tables & Workflows

Terra Data Table

Once data has been **uploaded to Terra** and **organized into a Terra Data Table**, we can analyze it with a Terra Workflow

How data is organized within the Terra platform

 Data within a Terra Data Table can be uploaded by the user or generated by a Terra Workflow

Terra Workflows

Bioinformatics Workflows executable from the Terra platform

- Takes input from a Terra Data Table
- Populates outputs to a Terra Data Table

Inputs defined using "this.{attribute}" notation

this = selected root entity

{attribute} = attribute within proceeding item

this.reads = reads attribute within the root entity

OUTPUTS SCRIPT **INPUTS** OUTPUTS form selected Output files will be saved to

Files / submission unique ID / scan_n_trim_workflow / workflow unique ID

References to outputs will be written to

■ Tables / wm_training_specimen

Fill in the attributes below to add or update columns in your data table

Select "Use defaults" to ensure all workflow outputs are populated to your Terra table

,					
Task name ↓	Variable	Туре	Attribute Use defaults		
scan_n_trim_workflow	read1_clean_total_reads	Int	this.read1_clean_total_reads		
scan_n_trim_workflow		Will create a column to populate every output defined in the output section of the WDL workflow			
scan_n_trim_workflow	read2_clean_total_reads	Int	this.read2_clean_total_reads		
scan_n_trim_workflow	read2_raw_total_reads	Int	this.read2_raw_total_reads		

Connecting WDL Workflows with Terra.Bio

Major Takeaways:

- Terra is a **bioinformatics web application** that connects users to bioinformatics workflows (WDL) & dynamic cloud computing resources (GCP) through a **clean and intuitive user interface**
 - Terra compatibility expanding to support Nextflow workflows and Azure backend
- Terra runs WDL workflows using the Cromwell engine and executes on GCP resources
 - Terra account setup requires GCP account
- WDL workflows must be hosted on Dockstore to enable Terra access
 - Requires synchronizing a public GitHub repository with Dockstore account

Lecture Exercise: Running the Scan-N-Trim WDL Workflow From Terra

Scan N Trim:

- Navigate to the Terra workspace provided to you for this training
- From the Workflows tab, select the Scan-N-Trim workflow
- Run this workflow with inputs defined by data table
 - Select the wm_training_specimen as the root entity
 - Define the required inputs and use defaults for the outputs
 - Run this workflow on sample_01

Complete this exercise during our 20m session break; we will begin again at 12:08PM (PT)

Lecture Exercise: Linking Your WDL Workflow to Terra

We will regroup again at 12:58AM (PT)

For Trainees that Have Shared a GitHub Username:

- Create a dev branch on the wm_training repository
- Merge your work onto this branch and push all commits to GitHub
- Write a .dockstore.yml file to host your Week 2 solution to Dockstore and push commit
 - Workflow name must be set as Scan-N-Trim
- Run this workflow from your Terra workspace

For Trainees that Have Not Shared a GitHub Username:

- Modify your Week 2 solution to capture the cleaned read files
- Add a task to your Week 2 solution to:
 - Perform Shovill assembly using these cleaned read files
 - Assess the quality of this assembly using QUAST

Linked to GitHub Version Releases and Branches

- Version Release: Static iteration of a GitHub repository
 - Ideally a validated release of a code base that will not change

Linked to GitHub Version Releases and Branches

- Version Release: Static iteration of a GitHub repository
 - Ideally a validated release of a code base that will not change

Linked to GitHub Version Releases and Branches

- Branches: Dynamic iteration of a GitHub repository
 - Unvalidated and under active development; susceptible to more regular code changes for optimization and testing
 - Utilized to validate patches or new workflow functions before including into a versioned release
 - Theiagen practice:
 - Designate the name of the branch with the developer, new function/patch, and "dev", e.g. "kgl-wastewater-dev"

Linked to GitHub Version Releases and Branches

- **Branches**: Dynamic iteration of a GitHub repository

Linked to GitHub Version Releases and Branches

- **Branches**: Dynamic iteration of a GitHub repository

Linked to GitHub Version Releases and Branches

- **Branches**: Dynamic iteration of a GitHub repository

Workflows defined in a .dockstore.yml file on any branch will be made available on **Terra via Dockstore Dockstore GitHub** Dev_02 Dev_01 Terra **MAIN MAIN** v1.5.3 v2.0.0

Lecture Exercise: Linking Your WDL Workflow to Terra

For Trainees that Have Shared a GitHub Username:

- Create a dev branch on the wm_training repository
- Merge your work onto this branch and push all commits to GitHub
- Write a .dockstore.yml file to host your Week 2 solution to Dockstore and push commit
 - Workflow name must be set as Scan-N-Trim
- Run this workflow from your Terra workspace

From Terra Workspace

Week 3 Exercise

- Create a Dev Branch
- Write a .dockstore.yml file to run form Terra

From Terra Workspace

Workflow Management Training

10m to begin Exercise Part 2

We will regroup again at 10:58AM (PT)

