THE DERIVATIVE

THE DERIVATIVE

DEFINITION

The derivative of f at x equals

$$\lim_{h o 0}rac{f(x+h)-f(x)}{h}$$

provided the limit exists.

DERIVATIVE NOTATION

The derivative may be written as any of

$\frac{df}{dx}$	
$\frac{d}{dx}$	f
f'	
$oldsymbol{\dot{f}}$	

EXAMPLE

Show that

$$\frac{d}{dx}x = 1$$

EXAMPLE

Show that

$$rac{d}{dx}x^2 = 2x$$

SECANT LINE

SECANT LINE

DEFINITION

The secant line for f(x) between x_1, x_2 is the straight line though the points in the plane, $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

DIFFERENCES

DEFINITION

$$\Delta x = x_2 - x_1$$
.

$$\Delta f = f(x_2) - f(x_1).$$

DIFFERENCE QUOTIENT

DEFINITION

The quantity $\frac{\Delta f}{\Delta x}$ is called the difference quotient.

SECANT LINE SLOPE

LEMMA

The slope of the secant line is

$$rac{\Delta f}{\Delta x} = rac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

EXAMPLE

Let $f(x)=x^2$ and let $x_1=2, x_2=3.$ The secant line has equation

$$y = 5x - 6$$

TANGENT LINE

DEFINITION

The tangent line at x is the line with slope f'(x) and passing through the point (x, f(x)) in the plane.

TANGENT LINE SLOPE

LEMMA

$$f'(x_1) = \lim_{x_2 o x_1}rac{f(x_2)-f(x_1)}{x_2-x_1} = \lim_{\Delta x o 0}rac{\Delta f}{\Delta x}.$$

TANGENT LINE AND SECANT LINE

THEOREM

The tangent line at x is the limit of the secant lines as $x_2 o x_1.$

EXAMPLE

 $\overline{\mathsf{Let}\, f(x) = x^2}\, \mathsf{and}\, \mathsf{let}\, x_1 = 2.$

Secant line has slope

$$4 + \Delta x$$
.

Tangent line has slope 4

DIFFERENTIABILITY IMPLIES CONTINUITY

DIFFERENTIABILITY IMPLIES CONTINUITY

THEOREM

If f is differentiable at x_0 , then f is also continuous at x_0 .

$$f(x)-f(x_0)=rac{\Delta f}{\Delta x}\Delta x o 0.$$