Ergodic theory and Multiple recurrence theorem

Antareep Saud

May 10, 2024

Recurrence

Definition (Measure-preserving system (MPS))

A quadruple (X, \mathcal{B}, μ, T) , where (X, \mathcal{B}, μ) is a probability space and $T: X \to X$ is a *measure-preserving transformation*.

Theorem (Poincare recurrence theorem)

Let A be a measurable set with positive measure, then almost every point of A returns to A, i.e., there is a set $E \subset A$ with 0 measure such that if $x \in A \setminus E$, then there exist $n \in \mathbb{N}$, $T^n x \in A$. Furthermore, the points return infinitely often, i.e., there are infinitely many n such that $T^n x \in A$.

Ergodicity

Definition (Invariant set)

A measurable set A is an invariant set if $T^{-1}A = A$.

Definition (Ergodic system)

A measurable-preserving system (X, \mathcal{B}, μ, T) is *ergodic* if there are no non-trivial invariant sets, i.e., if A is an invariant set, then $\mu(A)=0$ or 1.

Theorem

 (X, \mathcal{B}, μ, T) is a MPS, then the following are equivalent,

- (i) T is ergodic.
- (ii) if $f: X \to \mathbb{R}$ is T-invariant measurable, then f is constant a.e.
- (iii) if $A \in \mathcal{B}$, $\mu(A) > 0$, then $\bigcup_{n=m}^{\infty} T^{-n}A = X \mod \mu \ \forall m$.
- (iv) if $A, B \in \mathcal{B}$, $\mu(A), \mu(B) > 0$, then $\mu(T^{-n}A \cap B) > 0$ for infinitely many n.

Measure Disintegration

Definition (Standard measurable space)

A measurable space (X, \mathcal{B}) is *standard* if there exists a complete and separable metric on X for which \mathcal{B} is the Borel σ -algebra.

Definition (Probability kernel)

Let (X,\mathcal{B}) and (Y,\mathcal{C}) be two measurable spaces and $\{\theta_x\}_{x\in X}$ be a family of probability measures on Y, then $\{\theta_x\}_{x\in X}$ is called a *probability kernel from* (X,\mathcal{B}) *to* (Y,\mathcal{C}) if for each $E\in\mathcal{C}$, the map $x\mapsto\theta_x(E)$ is \mathcal{B} -measurable.

Measure Disintegration

Theorem (Measure disintegration)

Let (X, \mathcal{B}, μ) be a measure space and $\mathcal{F} \subset \mathcal{B}$ a sub- σ -algebra, then there exists a unique kernel from (X, \mathcal{F}) to (X, \mathcal{B}) , $\{\theta_x\}_{x \in X}$, called the disintegration of μ over \mathcal{F} if

- 1. $\mu(E) = \int \theta_x(E) d\mu(x), \ \forall E \in \mathcal{B}.$
- 2. if $f:X\to\mathbb{C}$ is a bounded \mathcal{B} -measurable function, then

$$\mathbb{E}(f|\mathcal{F})(x) = \int f(t)d\theta_x(t) \ \mu\text{-a.e.} \tag{1}$$

Theorem (Ergodic decomposition)

Let (X, \mathcal{B}, μ, T) be a standard measure preserving system, and $\mathcal{F} \subset \mathcal{B}$ the sub- σ -algebra of the T-invariant sets. If $\{\theta_x\}_{x \in X}$ is the disintegration of μ over \mathcal{F} , then θ_x is T-invariant and ergodic for μ -a.e.

Mean Ergodic Theorem

Theorem (von Neumann's mean ergodic theorem for Hilbert spaces)

 ${\mathcal H}$ is a Hilbert space and T is a contraction [i.e. T is a bounded operator and $\|T\| \leq 1$]. Let ${\mathcal M} = \{v \in {\mathcal H} \mid Tv = v\}$ and $\pi: {\mathcal H} \to {\mathcal M}$ be the orthogonal projection. Then

$$S_n(v) := \frac{1}{n} \sum_{k=0}^{n-1} T^k(v) \to \pi(v) \quad \forall v \in \mathcal{H}.$$

Sketch of proof.

The main step is to prove if $\mathcal{N} = \{v - Tv \mid v \in \mathcal{H}\}$, then $\mathcal{M}^{\perp} = \overline{\mathcal{N}}$.

Mean ergodic theorem

Definitions

▶ Koopman operator, $U_T: L^p(\mu) \to L^p(\mu), \ (1 \le p \le \infty),$

$$U_T f = f \circ T$$

 U_T is an isometry.

▶ The average operator on $L^1(\mu)$,

$$S_n f = \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k.$$

▶ \mathcal{F} be the σ -algebra of T-invariant subsets of \mathcal{B} , i.e. $M_T = \sigma\{E \in \mathcal{B} \mid T^{-1}E = E\}$.

Mean Ergodic Theorem

Corollary (for dynamical systems)

Let (X, \mathcal{B}, μ, T) be a MPS, then for $f \in L^2(X, \mathcal{B}, \mu)$,

$$S_n(f) \to \mathbb{E}(f|M_T) \text{ in } \|\cdot\|_2.$$

If the system is ergodic, then

$$S_n(U_T)(f) o \int f d\mu \ in \ \|\cdot\|_2 \,.$$

Mean Ergodic Theorem

Theorem (for Banach spaces)

Let X be a reflexive Banach space, and $T \in \mathcal{B}(X)$ such that $\sup_{n \in \mathbb{N}} \|T^n\| < \infty$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}T^k(x) \text{ exists for all } x\in X.$$

Pointwise Ergodic Theorem

Theorem (Birkhoff's pointwise ergodic theorem)

For $f \in L^1(\mu)$, the following holds,

$$S_n f(x) \to \mathbb{E}(f|\mathcal{F})(x) \text{ a.e.}$$
 (2)

If the system is ergodic, then $S_n f(x) \to \int f d\mu$ a.e.

Proof.

Steps of proof

i. We first find a dense set $S \subset L^1$, where the statement holds. $S_1 = \{ f \in L^2 \mid fT = f \}$ and $S_2 = \{ g - gT \mid g \in L^{\infty} \}$.

Pointwise Ergodic Theorem

Steps of proof.

ii To extend to all of L^1 , we require the maximal inequality,

Theorem (Maximal inequality)

 $f \in L^1, \ f \ge 0$, then $\forall t > 0$,

$$\mu\{x\in X\mid \sup_{n}S_{n}f(x)>t\}\leq \frac{1}{t}\int fd\mu.$$

iii Then, we can show $\limsup |S_n f - \mathbb{E}(f|\mathcal{F})(x)| = 0$.

Weak-mixing

Theorem

 (X,\mathcal{B},μ,T) is ergodic if and only if $A,B\in\mathcal{B}$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\mu(A\cap T^{-k}B)=\mu(A)\mu(B).$$

Definition (Weakly mixing)

 (X, \mathcal{B}, μ, T) is weakly mixing if for all $A, B \in \mathcal{B}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |\mu(A \cap T^{-k}B) - \mu(A)\mu(B)| = 0.$$

Weak-mixing

Theorem

The following are equivalent definitions of weak-mixing for (X, \mathcal{B}, μ, T) .

- 1. $(X \times X, \mathcal{B} \times \mathcal{B}, \mu \times \mu, T \times T)$ is ergodic.
- 2. $X \times Y$ is ergodic for every ergodic system (Y, \mathcal{C}, ν, S) .
- 3. If T is ergodic, then it is weak mixing if and only if the point-spectrum $\sigma_p = \{1\}$.

Theorem

The following are some properties of a weak-mixing system, (X, \mathcal{B}, μ, T) .

- (i) X_1, X_2 is weak mixing $\implies X_1 \times X_2$ is weak mixing.
- (ii) T is weak mixing \implies Tⁿ is weak mixing for all $n \in \mathbb{N}$
- (iii) if T is invertible, T is weak mixing \iff T^{-1} is weak mixing

Multiple Recurrence

Theorem (Multiple Recurrence Theorem)

For a measure-preserving system (X, \mathcal{B}, μ, T) , and a set $A \in \mathcal{B}$, with $\mu(A) > 0$, and for any $k \in \mathbb{N}$, there is some $n \ge 1$ such that

$$\mu(A\cap T^{-n}A\cap T^{-2n}A\cap \dots T^{-kn}A)>0$$

Multiple Recurrence

Theorem (Multiple Recurrence Theorem)

For a measure-preserving system (X, \mathcal{B}, μ, T) , and a set $A \in \mathcal{B}$, with $\mu(A) > 0$, and for any $k \in \mathbb{N}$, there is some $n \ge 1$ such that

$$\mu(A\cap T^{-n}A\cap T^{-2n}A\cap \dots T^{-kn}A)>0$$

We will prove a stronger statement:

Theorem (Uniform Multiple Recurrence Theorem (UMR))

For a measure-preserving system (X, \mathcal{B}, μ, T) , and a set $A \in \mathcal{B}$, with $\mu(A) > 0$, and for any $k \in \mathbb{N}$, we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap T^{-2n}A\cap\ldots T^{-kn}A)>0$$

We first show that UMR property is satisfied by some systems, such as, weak-mixing systems and Kronecker systems. The main ingredient is understanding how the property lifts by weak-mixing and compact extensions, and the understanding the relationship between the two extensions.

We first show that UMR property is satisfied by some systems, such as, weak-mixing systems and Kronecker systems. The main ingredient is understanding how the property lifts by weak-mixing and compact extensions, and the understanding the relationship between the two extensions.

Definition (Extensions and factors)

Let $(X, \mathcal{B}_X, \mu, T)$ and $(Y, \mathcal{B}_Y, \nu, S)$ be two MPS. Y is a factor of X if there are sets $X' \in \mathcal{B}_X$, $Y' \in \mathcal{B}_Y$ with $\mu(X') = 1$, $\nu(Y') = 1$, $TX' \subset X'$, $SY' \subset Y'$, and a measure-preserving map $\phi : X' \to Y'$, such that $\phi \circ T = S \circ \phi$.

And X is called an extension of Y.

Theorem

Factors of a system are in 1-1 correspondence with invariant sub- σ -algebras.

Step 1

Reduction to standard measurable spaces

- i. Every MPS has an invertible extension and UMR property is preserved under these extensions.
- ii. Every invertible system has a standard factor that is a standard measurable space.

Step 1

Reduction to standard measurable spaces

- i. Every MPS has an invertible extension and UMR property is preserved under these extensions.
- ii. Every invertible system has a standard factor that is a standard measurable space.

Now, it is sufficient to prove that any standard measure-preserving system (X, \mathcal{B}, μ, T) satisfies UMR property.

Step 2

- i. Weak-mixing and Kronecker systems satisfy UMR property.
- ii. A system is not weak-mixing if and only if it has a non-trivial Kronecker factor.
- iii. If $A_1 \subset A_2 \subset ...$ is an increasing chain of factors of X that satisfy UMR property, then $\sigma(\cup_{n\geq 1}A_n)$ also satisfies it.

Step 2

- i. Weak-mixing and Kronecker systems satisfy UMR property.
- ii. A system is not weak-mixing if and only if it has a non-trivial Kronecker factor.
- iii. If $A_1 \subset A_2 \subset ...$ is an increasing chain of factors of X that satisfy UMR property, then $\sigma(\cup_{n\geq 1}A_n)$ also satisfies it.

So, if X is weak-mixing, we are done. If it is not weak-mixing, then consider the family of factors, $\mathcal{A} \subset \mathcal{B}$ such that (X,\mathcal{A},μ,T) satisfy UMR property. We know, it is non-empty, since there is a Kronecker factor that satisfies it. Let \mathcal{B}_{∞} be the maximal sub- σ -algebra of this family. (Existence is shown using Zorn's lemma and iii.)

Step 3

- i. If X is a weak-mixing extension of Y, which satisfies UMR property, then X also satisfies UMR property.
- ii. If X is a compact extension of Y, which satisfies UMR property, then X also satisfies UMR property.
- iii. If $X \to Y$ is not a weak-mixing extension, then there exists an intermediate factor of $X \to Z$, such that $Z \to Y$ is a compact extension.

Step 3

Hence, if $(X,\mathcal{B},\mu,T) \to (X,\mathcal{B}_\infty,\mu,T)$ is a weak-mixing extension, we are done. And if it is not, there is a non-trivial compact extension $(X,\mathcal{C}) \to (X,\mathcal{B}_\infty)$. So (X,\mathcal{C}) satisfies UMR property, which contradicts the maximality of \mathcal{B}_∞ . Thus, the extension must be weak-mixing, and this completes the proof.

Step 1

Invertible extension

Any MPS (X, \mathcal{B}, μ, T) has an invertible extension, $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu}, \tilde{T})$, where

- $\tilde{X} = \{ x \in X^{\mathbb{Z}} \mid Tx_k = x_{k+1} \ \forall k \in \mathbb{Z} \}$
- $lackbox (ilde{\mathcal{T}}x)_k = x_{k+1} ext{ for all } k \in \mathbb{Z} ext{ and } x \in ilde{X}$
- $ightharpoonup ilde{\mathcal{B}}$ is the product σ -algebra
- $ightharpoonup ilde{\mu}$ is the product measure

 $\pi_0: \tilde{X} \to X$ is called the invertible extension, where $\pi_0: X^{\mathbb{Z}} \to X$ is the 0-th projection..

Step 1

Theorem

A MPS has the properties: ergodicity, weak-mixing, and UMR if and only if its invertible extension does.

Theorem

An invertible system has a factor which is a standard probability space.

Proof.

Fix $A \in \mathcal{B}$ of positive measure and define

$$\phi: X \to \{0,1\}^{\mathbb{Z}}, \ \phi(x) = \chi_A(T^n x)$$

Step 2 i.

Definition (Kronecker systems)

A Kronecker system is a MPS (X, \mathcal{B}, μ, T) , where X is a compact metrizable group, \mathcal{B} is the Borel σ -algebra, λ is the Haar measure and T is an ergodic rotation, T(x) = ax for a fixed $a \in X$.

Theorem

Kronecker systems satisfy UMR property.

Proof.

- (i) For fixed $f \in L_{\infty}$, the map $\phi: X \to \mathbb{R}, \ \phi(x) = \int f(x)f(xy) \dots f(x^ky)d\lambda(y)$ is continuous.
- (ii) Since T is ergodic and X is compact metrizable, it is uniquely ergodic and,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}U_T^n\phi=\int\phi(x)d\mu(x), \text{ uniformly.}$$

Step 2 ii.

Theorem

 (X, \mathcal{B}, μ, T) is not weak-mixing if and only if it has a non-trivial Kronecker factor.

 \Longrightarrow .

- If T is not weak-mixing, there is a complete metric space (Y, d), with isometry $T : Y \to Y$ and a Borel map $\phi : X \to Y$ such that $\phi T = T\phi$.
- ▶ Define psuedo-metric on \mathcal{B} , $d(A,B) := \mu(A\Delta B)$ = $\|\chi_A - \chi_B\|_1$. By identifying sets that differ by measure 0, we can make \mathcal{B} a complete metric space.
- ▶ The measure on Y is $\nu = \mu \circ \phi^{-1}$.
- ▶ Lastly, we show $supp(\nu)$ is compact.

Step 2 iii.

Theorem

Let (X, \mathcal{B}, μ, T) be a standard invertible MPS and $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \ldots$ is an increasing chain of factors that satisfy UMR property, then $\sigma(\cup_{n\geq 1}\mathcal{A}_n)$ also satisfies it.

- (i) Let $A = \sigma(\bigcup_{n \geq 1} A_n)$, then for $A \in A$, for any $\epsilon > 0$, there exists $A_1 \in A_n$ for some n, such that $\mu(A \triangle A_1) < \epsilon$.
- (ii) Let $\eta=1/2(k+1)$ and $\epsilon=\frac{1}{4}\eta\nu(A)$ and define $A_0=\{x\in A_1\mid \mu_x(A)\geq 1-\eta\}.$
- (iii) We show $\mu(A_0) > \frac{1}{2}\mu(A) > 0$.
- (iv) From definition of A_0 , $\mu_x(A \cap T^{-n}A \cap \cdots \cap T^{-kn}A) \geq \frac{1}{2}$.
- (v) By integrating,

$$\mu(A\cap T^{-n}A\cap\cdots\cap T^{-kn}A)\geq \frac{1}{2}\mu(A_0\cap T^{-n}A_0\cap\cdots\cap T^{-kn}A_0)$$

Step 3 i.

Definition (Weak-mixing extension)

Let $\phi: (X, \mathcal{B}_X, \mu, T) \to (Y, \mathcal{B}_Y, \nu, S)$ be an extension. Define a measure $\tilde{\mu}$ on $(X \times X, \mathcal{B} \times \mathcal{B})$ given by disintegration (wrt $\mathcal{A} := \phi^{-1}(\mathcal{B}_Y)$),

$$\tilde{\mu}_{\mathsf{x}} = \mu_{\mathsf{x}} \times \mu_{\mathsf{x}}.$$

Then $(X \times X, \mathcal{B} \times \mathcal{B}, \tilde{\mu}, T \times T)$ is a MPS and the extension is weak-mixing if this system is ergodic.

Theorem

If X is a weak-mixing extension of Y, which satisfies UMR property, then X also satisfies UMR property.

Corollary

If X is weak-mixing, then it satisfies UMR property.

Step 3 ii.

Definition (Relative almost periodic functions)

Let $(X, \mathcal{B}_X, \mu, T) \to (Y, \mathcal{B}_Y, \nu, S)$ be an extension. $f \in L^2_{\mu}(X)$ is almost periodic relative to Y if for every $\epsilon > 0$, there is an $r \in \mathbb{Z}$ and function g_1, \ldots, g_r such that

$$\min_{i=1,\ldots,r}\|U_T^nf-g_i\|_{L^2_{\mu_x}}<\epsilon.$$

for all $n \in \mathbb{N}$ and a.e $x \in X$.

Definition (Compact extension)

 $X \to Y$ is a *compact extension*, if the set of functions almost periodic relative to Y is dense in $L^2_{\mu}(X)$.

Theorem

If X is a compact extension of Y, which satisfies UMR property, then X also satisfies UMR property.

Szemeredi's Theorem

Definition (Upper density)

The *upper density* of a set $A \subset \mathbb{Z}$ is defined as

$$d(A) = \limsup_{Z \to \infty} \frac{1}{2N+1} |S \cap \{-n, -n+1, \dots, n-1, n\}|$$

Szemeredi's Theorem

Definition (Upper density)

The *upper density* of a set $A \subset \mathbb{Z}$ is defined as

$$d(A) = \limsup_{Z \to \infty} \frac{1}{2N+1} |S \cap \{-n, -n+1, \dots, n-1, n\}|$$

Theorem (Szemeredi's Theorem)

If $A \subset \mathbb{Z}$ has positive upper density, then A contains arithmetic progressions of arbitrary length, that is, for all $k \in \mathbb{N}$, there exists $a,b \in \mathbb{Z},\ b \neq 0$ such that $a,a+b,a+2b,\ldots,a+kb \in A$.

Szemeredi's Theorem

Sketch of proof.

i. Define MPS: $X=0,1^{\mathbb{Z}}$, $\sigma:X\to X$, $(\sigma(x))_n=x_{n-1}$. Let $f=\chi_A\in X$, and define

$$\mu_n = \frac{1}{2n+1} \sum_{i=-n}^n \delta_{\sigma^i(f)}.$$

ii. By Riesz representation theorem, the set of probability measures, $\mathcal{P}(X)$ on X is weak-* compact and we can show, if X is metrizable and compact, then C(X) is separable and $\mathcal{P}(X)$ is metrizable: let $\{f_i\}$ be a countable dense subset of C(X), then

$$d(\mu, \nu) = \sum_{i=1}^{\infty} \frac{1}{2^i} |\int f_i d\mu - \int f_i d\nu|$$

is a metric on $\mathcal{P}(X)$.

Szemeredi's theorem

Sketch of proof

- iii. So, $\mathcal{P}(X)$ is sequentially-compact in weak-* topology and let $\mu_{n_k} \to \mu$.
- iv. After showing μ is σ -invariant, we have a MPS (X, \mathcal{B}, μ, T) . This uses the fact that $\mu_{n_k} \to \mu \iff \int f d\mu_{n_k} \to \int f d\mu$.
- v. We use multiple recurrence theorem on X, with $A=\{x\in X\mid x_0=1\}.$ Note, $\mu(A)=d(A)>0.$