Mathematik für Informatik II - Tutorium - Woche 7

Zeigen Sie, dass jedes Polynom ungeraden Grades mindestens eine (reelle) Nullstelle besitzt und schließen Sie daraus, dass jedes $A \in M(3 \times 3, \mathbb{R})$ mindestens einen reellen Eigenwert besitzt.

Zeigen Sie, dass jedes Polynom ungeraden Grades mindestens eine (reelle) Nullstelle besitzt und schließen Sie daraus, dass jedes $A \in M(3 \times 3, \mathbb{R})$ mindestens einen reellen Eigenwert besitzt.

Beweis: Sei $f(x) = c_n x^n + \cdots + c_1 x + c_0$, n ungerade. O.B.d.A. sei $c_n = 1$ (f und λf , $\lambda \neq 0$, besitzen die selben Nullstellen). Es gilt

$$\lim_{x\to\infty} f(x) = \infty, \quad \lim_{x\to-\infty} f(x) = -\infty,$$

also existieren insbesondere Folgen $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ mit $f(x_n) < f(x_{n+1})$ und $f(y_n) > f(y_{n+1})$ und Folgeglieder x^*, y^* mit $f(x^*) > 0$ und $f(y^*) < 0$. Es ist $[x^*, y^*]$ ein kompaktes Intervall mit $f(y^*) < 0 < f(x^*)$, womit die Behauptung aus dem Zwischenwertsatz (10.2.7) folgt.

Zeigen Sie, dass jedes Polynom ungeraden Grades mindestens eine (reelle) Nullstelle besitzt und schließen Sie daraus, dass jedes $A \in M(3 \times 3, \mathbb{R})$ mindestens einen reellen Eigenwert besitzt.

Beweis: ... Ist nun $A \in M(3 \times 3, \mathbb{R})$, so gilt $P_A(\lambda) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$ mit $c_3 \neq 0$. Es ist $P_A(\lambda)$ also insbesondere ein Polynom dritten Grades und besitzt daher nach der obigen Argumentation auch (mindestens) eine (reelle) Nullstelle.

Bestimmen Sie für die folgenden Beispiele von Funktionen $f: \mathbb{R} \to \mathbb{R}$, in welchen Punkten bzw. Bereichen diese stetig sind. Klassifizieren Sie die Unstetigkeitsstellen gemäßt Beispiel 10.2.6.

a)
$$f(x) = |\sin(x^3)|$$

b)
$$f(x) = \begin{cases} \frac{|x|\cos(\frac{1}{x^2})}{1+x^4} & , x \in \mathbb{R} \setminus \{3, -3\} \\ 1 & , x = 0 \end{cases}$$

Aufgabe 7, a)

a)
$$f(x) = |\sin(x^3)|$$

Lösung: Sowohl $|\cdot|$, sin und $x\mapsto x^3$ sind stetige Funktionen auf ganz \mathbb{R} , womit ihre Komposition wieder stetig auf ganz \mathbb{R} ist (vrgl. Lemma 10.2.3 (ii)).

Aufgabe 7, b)

b)
$$f(x) = \begin{cases} \frac{|x|\cos(\frac{1}{x^2})}{1+x^4} & , x \in \mathbb{R} \setminus \{3, -3\} \\ 1 & , x = 0 \end{cases}$$

Lösung: Es ist $\frac{1}{x^2}$ für alle $x \in \mathbb{R} \setminus \{0\}$ stetig. Weiter sind $|\cdot|$, cos und $\frac{1}{1+x^4}$ auf ganz \mathbb{R} stetig. Somit ist f(x) auf $\mathbb{R} \setminus \{0\}$ stetig, als Komposition und Produkt stetiger Funktionen auf $\mathbb{R} \setminus \{0\}$.

Es ist daher ausreichen f(x) auf ihr Verhalten im Punkt $x_0=0$ zu überprüfen. Betrachte dazu eine beliebige Nullfolge $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}\setminus\{0\}$. Aus $|\cos(x)|\leq 1$ für alle $x\in\mathbb{R}$ schließen wir

$$0 \leq |f(x_n)| = \left| \frac{|x_n| \cos\left(\frac{1}{x_n^2}\right)}{1 + x_n^4} \right| \leq \left| \frac{x_n}{1 + x_n^4} \right| \leq |x_n| \stackrel{n \to \infty}{\to} 0$$

Es gilt somit $\lim_{x\to 0} f(x) = 0 \neq 1$, womit f eine hebbare Unstetigkeitsstelle in $x_0 = 0$ besitzt.