CSE221

Lecture 9: Heaps and Priority Queues

Fall 2021

Young-ri Choi

Outline

- Priority queues
- Heaps

Priority Queue

- Queue with priority order for pop
 - Entries pushed upon their arrivals
 - But not FIFO (entries ordered by priority)
- Max priority queue
 - —Pop the entry with a highest priority first
- Min priority queue
 - —Pop the entry with a lowest priority first

Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a (key, value) pair, where the key indicates the priority

- Main methods
 - insert(e)inserts an entry e
 - removeMin() / removeMax()
 removes the entry with
 smallest / largest key
 - min() / max()returns with smallest / largestkey, but does not remove the entry
 - size(), empty()

Total Order Relations

- Keys in a priority queue are ALL pairwise comparable and ordered
- When x ≤ y, we say entry x is related to (or comparable to) entry y
- A binary relation ≤ is a total order on all pairs
 - –Reflexive property: $x \le x$
 - -Antisymmetric property: $x \le y \land y \le x \rightarrow x = y$
 - -Transitive property: $x \le y \land y \le z \xrightarrow{} x \le z$
- Connex property: $x \le y$ or $y \le x$

Total Order Example

Total order

Partial order

A and B are not comparable

Priority Queue Sorting

- Use a priority queue to sort a set of comparable entries
 - 1. Insert the entries one by one with insert operations
 - 2. Remove the entries in sorted order with removeMin operations
- The running time of this sorting method depends on the priority queue implementation

Algorithm *PQ-Sort*(S, C)

Input sequence S, comparator C for the entries of S

Output sequence S sorted in increasing order according to C

```
P \leftarrow priority queue with comparator C
```

```
while !S.empty ()

e ← S.front(); S.eraseFront()

P.insert (e)
```

```
while !P.empty()

e ← P.min(); P.removeMin()

S.insertBack(e)
```


Two Ways of Implementation

 Implementation with an unsorted list

- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take O(n)
 time since we have to traverse
 the entire sequence to find the
 smallest key

 Implementation with a sorted list

- Performance:
 - insert takes O(n) time since
 we have to find the place
 where to insert the item
 - removeMin and min take
 O(1) time, since the smallest key is at the beginning

Selection-Sort

- PQ-sorting where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the entries with n insert operations takes O(n) time
 - 2. Removing the elements in sorted order with *n* removeMin operations takes time proportional to

$$n + n - 1 \dots + 2 + 1$$

• Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority Queue P () (7) (7,4) (7,4,8,2,5,3,9)	
Phase 1 (a) (b) (g)	(4,8,2,5,3,9) (8,2,5,3,9) 		
Phase 2 (a) (b) (c) (d) (e) (f) (g)	(2) (2,3) (2,3,4) (2,3,4,5) (2,3,4,5,7) (2,3,4,5,7,8) (2,3,4,5,7,8,9)	(7,4,8,5,3,9) (7,4,8,5,9) (7,8,5,9) (7,8,9) (8,9) (9)	

Insertion-Sort

- PQ-sorting where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - 1. Inserting the entries with *n* insert operations takes time proportional to

$$1 + 2 \dots + n - 1 + n$$

- 2. Removing the entries in sorted order with *n* removeMin operations takes *O(n)* time
- Insertion-sort runs in $O(n^2)$ time

Insertion-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority queue P ()	
Phase 1	(4,8,2,5,3,9) (8,2,5,3,9) (2,5,3,9) (5,3,9) (3,9) (9)	(7) (4,7) (4,7,8) (2,4,7,8) (2,4,5,7,8) (2,3,4,5,7,8) (2,3,4,5,7,8,9)	
Phase 2 (a) (b) (g)	(2) (2,3) (2,3,4,5,7,8,9)	(3,4,5,7,8,9) (4,5,7,8,9) ()	

Outline

- Priority queues
- Heaps

Heap

- A heap is a tree-based data structure that satisfies the heap property
 - —If A is a <u>parent</u> node of B, then key(A) is <u>ordered</u> with respect to key(B)
- Max (min) heap
 - A complete binary tree with the heap property
 - –Key in each node is not smaller (not larger) than the keys in its <u>children</u>

Heap: Complete Binary Tree

Complete binary trees!

Max Heap

- Push operation
 - -Add new element at the end of the tree
 - -Bubble up
 - We keep maintaining the max heap property
 - key in each node is not smaller than the keys in its children

• Push 21

• Push 21

Create node at the end of the heap (complete binary tree)

• Push 21

Bubbling up: 8 <-> 21, heap property!

• Push 21

Bubbling up : 15 <-> 21

• Push 21

Bubbling up : 20 <-> 21, done!

Max Heap

- Pop operation
 - –Remove the largest value at root
 - -Overwrite root with the last element
 - -Remove last element
 - -Trickle down while maintaining the max heap property

Delete 21

Heap-Sort

- Consider a priority queue with
 n items implemented by
 means of a min heap
 - —the space used is O(n)
 - -methods insert and removeMin take O(log n) time
 - methods size, empty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Implementation

- Can be implemented using array
 - –Why? Complete binary tree
- Parent / children can be efficiently accessed
 - -Parent : floor(i/2)
 - -Left child: 2*i
 - -Right child : 2*i + 1

Array-based Heap Implementation

- n keys on an array of length n + 1
- The cell of at index *o* is not used
- For the node at index i
 - the left child is at index 2i
 - the right child is at index 2i + 1
- Links between nodes are not explicitly stored
- insert corresponds to inserting at index n + 1
- removeMin corresponds to removing at index 1
- Yields in-place heap-sort

	2	5	6	9	7
0	1	2	3	4	5

Push Algorithm

```
template <class Type>
void MaxHeap<Type>::Push(const Element<Type> &x)
{
   if (n==MaxSize) { HeapFull(); return; }
   n++;
   int i; // i : current node
   for(i=n; 1; ) {
      if (i==1) break; // Root reached
      if (x.key <= heap[i/2].key) break;
      // move parent down
      heap[i] = heap[i/2];
      i /= 2;
   }
   heap[i] = x;
}</pre>
```


Pop Algorithm

```
template <class Type>
Element<Type> *MaxHeap<Type>::Pop(Element<Type> &x)
  if (!n) { HeapEmpty(); return 0;}
  x = heap[1];
   Element<Type> k = heap[n];
   n--;
   int i, j; // i : current node, j : child
   for (i=1, j=2; j<=n; )
      if (j < n)
         if (heap[j].key < heap[j+1].key) j++;
      // j is the larger child
      if (k.key >= heap[j].key) break;
     heap[i] = heap[j]; // move the child up
      i = j; j *= 2; // move down a level
   heap[i] = k;
   return &x;
```


Merging Two Heaps

- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We trickle down to restore the heap-order property

Bottom-up Heap Construction

- We can construct a heap storing *n* given keys in using a bottom-up construction with log *n* phases
- In phase *i*, pairs of heaps with 2ⁱ-1 keys are merged into heaps with 2ⁱ⁺¹-1 keys
- Higher opportunity for parallel execution

Questions?

