Magnetismo

Física General III Unidad VI (Parte 2)

Prof. Hamlet Herrera Reyes

Temas en este material

- Regla de la mano derecha
- Diferencias entre campos eléctricos y magnéticos
- Fuerza magnética en un conductor
- Campo magnético en un solenoide

Regla de la Mano Derecha #1

- Con los dedos apuntando a v
- **B** saliendo de la palma
 - Curva los dedos en dirección de B
- El pulgar apuntará en la dirección de $\vec{\mathbf{v}} \times \vec{\mathbf{B}}$ la cual es la dirección de $\vec{\mathbf{F}}_B$

Regla de la Mano Derecha #2

- El pulgar en dirección de $\vec{\mathbf{v}}$
- Los dedos apuntando en dirección de B
- La palma de la mano indica la dirección de $\vec{\mathbf{F}}_{B}$
 - En una partícula positiva
 - Es como empujar la partícula con la mano

Diferencias entre Campos Eléctricos y Magnéticos

- Dirección de la fuerza
 - La fuerza eléctrica actúa en dirección del campo eléctrico
 - La fuerza magnética actúa perpendicular al campo magnético

Movimiento

- La fuerza eléctrica actúa sobre la partícula cargada sin importar si la partícula se mueve
- La fuerza magnética actúa sobre la partícula cargada sólo si se está moviendo

Diferencias entre Campos Eléctricos y Magnéticos

- Trabajo
 - La fuerza eléctrica realiza trabajo sobre la partícula cargada
 - La fuera magnética asociada a un campo magnético estable no realiza trabajo cuando desplaza la partícula
 - Esto es debido a que la fuerza es perpendicular al desplazamiento

Trabajo y Campos

- La energía cinética de una partícula cargada en movimiento dentro de un campo magnético no puede ser alterada sólo por el campo magnético
- Cuando una partícula cargada se mueve con una velocidad dada dentro de un campo magnético, el campo sólo puede alterar la dirección de la velocidad, pero no la rapidez o energía cinética.

Unidad de Campo Magnético

• La unidad en el SI es el tesla (T)

$$T = \frac{N}{C \cdot (m/s)} = \frac{N}{A \cdot m}$$

- Una unidad ajena al SI pero comúnmente usada es el gauss (G)
 - $1 T = 10^4 G$

Notación

- Cuando los vectores son perpendiculares a la página, punto y cruces se utilizan para denotarlos
 - Los puntos representan los vectores saliendo de las páginas
 - Las cruces indican que los vectores están entrando a la página

(a)

$\overrightarrow{\mathbf{B}}$ into page:						
\times	×	X	×	×	X	\times
×	×	X	X	X	X	×
×	×	×	×	X	X	\times
×	×	×	×	X	X	×
×	×	X	×	X	X	×
X	×	×	×	×	×	X

(b

Partícula Cargada en un Campo Magnético

- Considere una partícula moviéndose dentro de un campo magnético externo con su velocidad perpendicular al campo
- La fuerza siempre estará dirigida hacia el centro de la trayectoria circular
- La fuerza magnética produce una aceleración centrípeta, que cambia la dirección de la velocidad d la partícula

Fuerza Magnética en un Conductor con Corriente

- Una fuerza es ejercida sobre un conductor portador de una corriente cuando se coloca dentro de un campo magnético
 - La corriente es una colección de muchas cargas en movimiento
- La dirección de la fuerza es dada por la regla de la mano derecha

- En este caso, no hay corriente, por tanto no hay fuerza
- En consecuencia, el cable permanece vertical

- El campo magnético está dirigido hacia dentro de la página
- La corriente dirigida hacia arriba
- La fuerza está dirigida hacia la izquierda

- El campo magnético está dirigido hacia la pagina
- La corriente, hacia abajo
- La fuerza está hacia la derecha

©2004 Thomson - Brooks/Cole

 La fuerza magnética es ejercida sobre cada carga que se mueve en el cable

$$\cdot \vec{\mathbf{F}} = q \vec{\mathbf{v}}_d \times \vec{\mathbf{B}}$$

 La fuerza total en el conductor es el producto de la fuerza en una, por el número de cargas

$$\vec{\mathbf{F}} = \left(q \vec{\mathbf{v}}_d \times \vec{\mathbf{B}} \right) nAL$$

• En términos de corriente, viene a ser

$$\vec{F}_B = /\vec{L} \times \vec{B}$$

- <u>I</u> es la corriente
- L es el vector que apunta en la dirección de la corriente
 - Su magnitud es la longitud L del segmento
- B es el campo magnético

La magnitud de la fuerza magnética es

$$F_{R} = BIL \sin \theta$$

- B es el campo magnético
- *I* es la corriente
- L es la magnitud de la longitud
- θ es el ángulo entre el campo y la longitud apuntando en la dirección de la corriente

Campo Magnético en un Solenoide

- Un solenoide resulta de un largo cable envuelto en una bobina de varias vueltas colocadas bien cerca una de la otra.
 - También llamado electroimán
- Este dispositivo actúa como un imán sólo cuando porta una corriente
- El campo magnético dentro del solenoide
 - Incrementa con la corriente
 - Es proporcional al número de vueltas de la bobina por unidad de longitud

Campo Magnético en un Solenoide

- Asumiendo que el solenoide tiene una conformación uniforme de vueltas N y de longitud ℓ
 - Se asume que \(\ell\) es mucho más grande que el radio del solenoide
- El campo magnético en el interior es

$$B = \mu_o n I = \mu_o \frac{N}{\ell} I$$

Campo Magnético en un Solenoide

$$n=rac{N}{\ell}$$

- n es el número de Vuelta por unidad de longitud
- μ₀ es la permeabilidad del espacio libre, con un valor de
 - $4\pi \times 10^{-7} \text{ T m/A}$