Generating Realistic Wear Distributions for SSDs

Ziyang Jiao, Bryan S. Kim Syracuse University

In a nutshell

- The rise of SSDs
- SSD development platforms
 - FlashSim SIMUL 2009
 - SSDSim ICS 2011
 - FTLSim SYSTOR 2012
 - FEMU FAST 2018
 - MQSim FAST 2018
 - Amber MICRO 2018

In a nutshell

- The rise of SSDs
- SSD development platforms
- The fail-slow symptom of SSDs

• Haryadi S. Gunawi et al, "Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems", FAST 2018

Current art

Preconditioning:

The process of writing data to the device to prepare it for steady state measurement.

• https://www.snia.org/sites/default/files/technical-work/pts/release/SNIA-SSS-PTS-Enterprise-v1.1.pdf

Current art

Preconditioning:

The process of writing data to the device to prepare it for steady state measurement.

Expensive:

***** Resources

X Time

• https://www.snia.org/sites/default/files/technical-work/pts/release/SNIA-SSS-PTS-Enterprise-v1.1.pdf

Our approach

Fast-Forwardable SSD:

a machine learning-based SSD aging framework that generates representative future wear-out states

Challenges

- The cost of machine learning models → Efficiency
- The internal intricacy of SSDs → Accuracy

• Bryan S. Kim et al, "CPR for SSDs", HotOS 2019

Simulation Stage

- Observe SSD's internal activities
- Output log periodically

Simulation Stage

Prediction Stage

- Observe SSD's internal activities
- Output log periodically

- Predict future state based on the latest history
- Each block has its own model
- Lightweight regression model (LR)

Prior work

Simulation acceleration with ML:

• DEVS

DEVS execution acceleration with machine learning. SpringSim 2016: https://dl.acm.org/doi/10.5555/2975389.2975399

• Consider multiple model candidates

• CML

Using continuous statistical machine learning to enable high-speed performance prediction in hybrid instruction-/cycle-accurate instruction set simulators.

CODES+ISSS 2009: https://dl.acm.org/doi/10.1145/1629435.1629478

• Continuously incorporate the latest data to update model

Evaluations

Evaluation under real-world workloads. With one-third workload saving compared to full simulations, FF-SSD generates the final states of SSD with high accuracy.

Evaluations

Evaluation under real-world workloads. With one-third workload saving compared to full simulations, FF-SSD generates the final states of SSD with high accuracy.

Future work

- Analyze FF-SSD over various workloads
- Expand FF-SSD to support different platforms and SSD models
 - Platforms:
 - Amber
 - FEMU
 - FTLSim
 - •
- Improve both prediction accuracy and aging efficiency further

Thank you!

Ziyang Jiao zjiao04@syr.edu