

Supervised: Ingredients

Outline

Linear vs non-linear

Inherently non-linear models

Notation

Feature space and decision boundary

Model space

A Simple Model

Simplest model possible

$$f_w\left(\vec{X}^i\right) = \text{const.}$$

Simplest model possible: linear model

$$f_w\left(\vec{X}^i\right) = \sum_j w_j X_j^{(i)}$$

One sample

Vectorization

$$f_{w}(\vec{X}^{i}) = \sum_{j} w_{j} X_{j}^{(i)}$$
$$= \vec{w} \cdot \vec{X}^{i}$$

$$\vec{w} = (w_0, w_1, \dots w_{nf})$$

$$\vec{X} = (1, X_1, \dots X_{nf})$$

Regression

Regression

Classification

What is a good fit?

Linear VS. Non-linear

Polynomial models

How can we make a quadratic model?

$$\vec{X} = (X_1, X_2)$$

$$f_w\left(\vec{X}^i\right) = w_0 + w_1 X_1 + w_2 X_2$$

$$+w_3X_1^2+w_4X_1X_2+w_5X_2^2$$

How?

1. Feature Transformation

$$\vec{X} \Rightarrow \Phi(X)$$

Example: Quadratic model

$$\vec{X} = (1, X_1, X_2) \Rightarrow \Phi(X) = (1, X_1, X_2, X_1^2, X_2^2, X_1 X_2)$$

How?

2. Kernel

Often we are interested in a scalar product $\langle v^{(1)}, v^{(2)} \rangle$

$$\Phi\left(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}\right) = \begin{bmatrix} X_1^2 \\ X_2^2 \\ \sqrt{2}X_1X_2 \end{bmatrix}$$

$$\langle \mathbf{\Phi} \begin{pmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \rangle$$
, $\mathbf{\Phi} \begin{pmatrix} \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \rangle \rangle$

$$\Phi\left(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}\right) = \begin{bmatrix} X_1^2 \\ X_2^2 \\ \sqrt{2}X_1X_2 \end{bmatrix}$$

$$\left\langle \mathbf{\Phi} \left(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \right), \mathbf{\Phi} \left(\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \right) \right\rangle = \left(\begin{bmatrix} X_1^2 \\ X_2^2 \\ \sqrt{2}X_1X_2 \end{bmatrix}, \begin{bmatrix} Z_1^2 \\ Z_2^2 \\ \sqrt{2}Z_1Z_2 \end{bmatrix} \right)$$

$$\Phi\left(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}\right) = \begin{bmatrix} X_1^2 \\ X_2^2 \\ \sqrt{2}X_1X_2 \end{bmatrix}$$

$$\left\langle \mathbf{\Phi} \left(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \right), \mathbf{\Phi} \left(\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \right) \right\rangle = \left\langle \begin{bmatrix} X_1^2 \\ X_2^2 \\ \sqrt{2}X_1X_2 \end{bmatrix}, \begin{bmatrix} Z_1^2 \\ Z_2^2 \\ \sqrt{2}Z_1Z_2 \end{bmatrix} \right\rangle$$

$$= X_1^2 Z_1^2 + X_2^2 Z_2^2 + 2X_1 X_2 Z_1 Z_2$$

$$K(X,Z) = \langle X,Z \rangle^2$$

$$\langle X, Z \rangle^2 = \left\langle \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \right\rangle^2$$

$$K(X,Z) = \langle X,Z \rangle^2$$

$$\langle X, Z \rangle^2 = \left\langle \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \right\rangle^2 = (X_1 Z_1 + X_2 Z_2)^2$$

$$K(X,Z) = \langle X,Z \rangle^2$$

$$\langle X,Z\rangle^2 = \left\langle \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} \right\rangle^2 = (X_1Z_1 + X_2Z_2)^2$$

$$=X_1^2Z_1^2+X_2^2Z_2^2+2X_1X_2Z_1Z_2=\left\langle \Phi\left(\begin{bmatrix}X_1\\X_2\end{bmatrix}\right),\Phi\left(\begin{bmatrix}Z_1\\Z_2\end{bmatrix}\right)\right\rangle$$

Inherently mon-linear models

There are many different techniques ...

Classifier comparison — scikit-learn 1.0 documentation

Kliearest neighbours

Variables of the KNN model

How many neighbours?

- Policy?
 - Majority
 - Weighted distance

Metric

Learning vs memorizing

• Training is roughly equivalent to storing all the data points

- Prediction:
 - Cross-checking the input with the stored data points.

What happens if

- $k \rightarrow n_s$?
- $k \rightarrow 1$?

Decision Trees

Decision tree

What is the main variable?

Depth of the tree

What happens if $depth \rightarrow \infty$?

What are we optimizing? What is the objective?

- What is the most informative questions to ask?
 - Information gain
 - Variance reduction

X2 > d X1 > a X1 > b X1 > c

Ensemble Techniques

Intuition

Simplest way to aggregate models

Bagging (Bootstrap aggregating)

Boosting

Sequential improvement

Put more emphasis on the mislabelled samples and try to force the models to do better.

- Examples:
 - Adaboost
 - Gradient boosting

Stacking

Importance Features

How can we define the importance of features?

Linear models

$$f_{w}\left(\vec{X}^{i}\right) = \sum_{j} w_{j} X_{j}^{(i)}$$

Decision trees

How can we define feature importance?

Information gain/Change in variance

Information gain/Change in variance

Which is better?

KNN

How would you define feature importance for KNN?

Which Model?

Comparison

	Linear	DT	KNN	Random Forest
Performance				
Idea				
Training time				
Prediction time				
Explainability/ Interpretability				

So far ...

