Algorithm: RWR_Cluster

Data: $ListofQuerySets \leftarrow \{Lists \ of \ sets \ of \ start \ Nodes\}$ $G \leftarrow Global\ PairWise\ BLAST\ BitScore\ Graph$

RWR Parameters:

restart prob = probability of returning to the start nodes $threshold = repeat\ loop\ till\ L1\ error \leq threshold$

 $iter\ cutoff = maximum\ number\ of\ iterations$ $K = Step \ size$

Permutation Statistics parameters: $num\ replicates = number\ of\ replications$

Result: ClusterMap:

 $Cluster: Map(Node \rightarrow Scores) \leftarrow Cluster \ Map(QuerySet)$ for all the c.member: members of Cluster of Query Set

 $max.norm.score \leftarrow Score \ normalized \ by \ max \ score \ in \ Cluster$

Score normalized by max score within same species in Cluster

Update scores of *Cluster* with [score,p.value,norm.score,species.norm.score]

 $p.value \leftarrow \frac{|scores\ from\ Population(QuerySet) \geq Score|}{size\ of\ Population}$

 $species.norm.score \leftarrow$

Update Cluster_Map with Cluster

 $Map(Query_Name \rightarrow Map(Node \rightarrow Scores(Statistics)))$

begin

 $Cluster_Map \leftarrow Map(Query_Name \rightarrow Map(Node \rightarrow Scores))$

Random Walk Section:

forall the $QuerieSet \in List of Query Sets$ $Cluster_Map \leftarrow RWR \ in \ threads(QuerySet, RWR_Parameters)$

end

do

Permutation Statistics Section:

 $Population \leftarrow Map(Query_Name \rightarrow$ $Random_Permutation(List of Query Sets, RWRP arameters, num_replicates)$

Summarize Statistics Section: forall the $QuerySet \in Keys(Cluster_Map)$

do

end

end

end

Algorithm: RWR in threads

Data: $Queries \rightarrow \{Set\ of\ start\ Nodes\}$

 $G \leftarrow Global\ PairWise\ BLAST\ BitScore\ Graph$

Global variables:

 $threshold = repeat\ loop\ till\ L1\ error < threshold$

 $iter\ cutoff = repeat\ loop\ at\ least\ iteration\ threshold\ times\ K = Step\ size$

Result: $PostProbMap = Map(s \rightarrow probability to end walk at s),$ $s \in Nodes in G with non-zero post-probabilities$

begin

end

 $LocalGraph \leftarrow K - Step \ Neighborhood \ of \ Queries \ in \ G$ $W = Adjacency\ matrix\ from\ LocalGraph$

index name map = $Map(index \ of \ W \rightarrow Query \ Name)$ name index map = $Map(Query\ Name \rightarrow index\ of\ W)$

 $N = Number\ of\ Start\ Nodes$ $QIndices \rightarrow \{Set \ of \ indices \ of \ Queries \ in \ W\}$ $p^0 \leftarrow \{p_i^0\} \text{ for } i \in indices of W$

$$p_i^0 = egin{cases} rac{1}{N}, & ext{if} i \in QIndices \ 0, & ext{otherwise} \end{cases}$$

normalize Wwhile $|p^{t+1} - p^t| \le threshold$ and $iter \le iter_cutoff$ do $p^{t+1} = (1-r)Wp^t + rp^0$ end

 $pfinal = p^{t+1}$ Create a post probability map from p^{final} :

 $PostProbMap = Map(s \rightarrow probability to end walk at s),$ $s \in Nodes in Local Graph with nonzero values in p^{t+1}$

Update Concurrent HashMap holding Results

Algorithm: Permutation Statistics

Degree Node Map $(d \rightarrow \{Set \ of \ Nodes \ with \ degree \ d\})$ Global variables:

 $G \leftarrow Pairwise \ sequence \ similarity \ network$

 $ListofQuerySets \rightarrow \{Listsof \ query \ sets\}$

```
Result: Population Map:
```

 $Map(Query\ Name \rightarrow \{population\ of\ post\ probability\ values\}))$

Get Sample Populations for the QuerySets:

SampleSpace $\leftarrow Get\ SampleSpace\ for\ QuerySets\ Sets(ListofQuerySets)$

Permutation Statistics Section:

Data:

do

Population $Map \leftarrow Post \ rwr \ probability \ values \ from \ permuted \ queries$ forall the $queryset \in ListofQuerySets$

 $q.size \leftarrow number\ of\ nodes\ in\ queryset\ q.name \leftarrow name\ of\ queryset\ \mathbf{repeat}$

 $Update\ Population\ n \leftarrow RWR\ in\ threads(Perm_Query, RWR_Parameters)$

 $Perm \ Query \leftarrow Randomly \ sample \ q.size \ nodes \ from \ Sample Space [q.name]$

rep + +until rep < num replicates;

 $Update: Population Map[n] \leftarrow Population n$ end

```
Algorithm: Get SampleSpace for QuerySets
```

Degree Map $(d \to \{Set \ of \ Nodes \ with \ degree \ d \ for \ G\})$

Result: $SampleSpace Map : Map(querysetid \rightarrow Set of Nodes)$

 $ListofQuerySets \rightarrow \{ListsofQuerySets\}$

Data:

```
forall the queryset \in ListofQuerySets
do
    queryset.size \leftarrow number \ of \ nodes \ in \ queryset
```

 $max.degree \leftarrow max(degree(nodes\ in\ queryset))$ $min.degree \leftarrow min(degree(nodes\ in\ queryset))$

 $SampeSpace \leftarrow \{Pooled \ sets \ of \ nodes \ from \ Degree \ Map[max.degree +$

range to Degree Map[min.degree - range] $Add (querysetid \rightarrow SampleSpace) map to SampleSpace Map$

end