

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

		Fa	him	l		10	01							
UB	Pe	rsor	ı Nı	umb	er:			Instructions:						
5 0 1 2 3 4 6 7 8 9		2 ① ① ③ ③ ④ ⑤ ⑥ ⑦ 8 9	∅00000000	① ① ② ③ ④ ⑤ ⑥ ⑦ ③ 9	2 ① ① ① ③ ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	0 0 2 3 4 6 6 7 8 9		elec You • For	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 					
C. See	2)			3		4	5	6	7	TOTAL	GRADE			

12	9	5	18	20	5	4	2		75	B-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$\frac{1}{2} \left(\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \right) \frac{1}{2} \left(\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \right)$$

its Makrix

.'. A is
invertible and
$$A^{-1} = \begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{7} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 9 \\ 3 & 2 & 1 \end{bmatrix}$

$$C = B \cdot \frac{1}{A^{T}} = B \cdot A^{T-1}$$

$$A^{7} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{7} = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ -1 & 0 & 2 & 0 \\ 2 & 1 & -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 \\ 0 & 1 & 3 & 1 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & -1 & -1 & -2 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \\ 0 & 0 & 0 & 1 & 3 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 & 3 & 3 \\ 0 & 0 & 1 & 2 & 3 & 3 \\ 0 & 0 & 0 & 1 & 3 & 3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 & 3 & 3 \\ 0 & 0 & 1 & 3 &$$

$$= \frac{1}{12} \begin{bmatrix} 6 & 2 & 0 & | & -3 & -3 & 3 \\ 0 & 2 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 2 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 & | & -3 & -3 & 3 \\ 0 & 0 & 0 &$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ 2 \end{bmatrix}$.

a)
$$A = \begin{bmatrix} 7(e_1), 7(e_2) \end{bmatrix}$$
 $e_1 = \begin{bmatrix} 0 \end{bmatrix}$ $e_2 \begin{bmatrix} 0 \end{bmatrix}$

$$T(e_1) = \begin{bmatrix} 1 - 2(0) \\ 1 + 0 \end{bmatrix} = \begin{bmatrix} 1 - 0 \\ 1 + 0 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$T(e_2) = \begin{bmatrix} 0 - 2(0) \\ 0 + 3(0) \end{bmatrix} = \begin{bmatrix} 0 - 2 \\ 0 + 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & -3(0) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to-one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = \overline{T_A(\mathbf{v}_2)}$.

a)
$$A = \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$$

A $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{cases}$

I $= \begin{cases} 1 & 1 & 0 \\$

b)
$$A = \begin{cases} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{cases}$$

$$\frac{1}{2} \begin{cases} 0 & -2 \\ 0 & 1 & 2$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

folse who can be in the span of u, u
but we has no correlation with
the span of u, v since w is added
to u.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True since {v,v, w} in 183 are all vectors
with leading ones and in row reduced e form
to be linearly independent, also to be linearly independent
u,v, w cannot be multiples of each other so
{u,v, w cannot be multiples of each other so
{u,v} must be linearly independent because
they are not multiples of each other as proven
by {v,v,w} linear independence

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent

Au = [1] Au = [1] Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

Au = [1]

b) If $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation and $u,v,w\in\mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

The since T(u) the M is a vector in \mathbb{R}^2 .

The most be in the span of T(u), T(u).