Generic Attacks on Double Block Length Hashing

Gaëtan Leurent

Inria, France

GAPS Workshop

Hash functions

- ▶ Public function $H: \{0,1\}^* \rightarrow \{0,1\}^n$
- Should behave like a random function
 - ► No structural property
 - Cryptographic properties without any key!
- ► Concrete security goals

Preimage attack

Given H and \overline{X} , find M s.t. $H(M) = \overline{X}$.

Ideal security: 2^n .

Second-preimage attack

Given H and M_1 , find $M_2 \neq M_1$ s.t. $H(M_1) = H(M_2)$.

Ideal security: 2^n .

Collision attack

Given H, find $M_1 \neq M_2$ s.t. $H(M_1) = H(M_2)$.

Ideal security: $2^{n/2}$.

The Merkle-Damgård construction (SHA-1, SHA-2)

- ▶ *n*-bit state, compression function $h: \{0,1\}^n \times \{0,1\}^r \rightarrow \{0,1\}^n$
- Padding rule (ignored in this talk for simplicity)
- Finalization using message length (MD strengthening)
- Notation: Iterated compression function h*
 - $h^*(x, m_0 \parallel m_1 \parallel m_2) = h(h(h(x, m_0), m_1), m_2)$
- Security reductions:

Introduction

- Hash collisions imply compression function collision
- ► Hash preimages imply finalization preimages
- Indifferentiable up to $2^{n/2}$ queries

(generic security 2ⁿ)

[Coron, Dodis, Malinaud & Puniya, C'05]

(generic security $2^{n/2}$)

Generic attacks on Merkle-Damgård

Many properties "between" collision and preimage broken with birthday complexity, by generic attacks exploiting collisions in smart ways

Second-preimage for long challenges

[Kelsey & Schneier, Eurocrypt '05]

Given a long challenge
$$C$$
 (len(C) = 2^s), find $M \neq C$ with $H(M) = H(C)$

Complexity $\mathcal{O}(2^{n-s})$

Multicollision

[Joux, Crypto '04]

```
Find a large set of message \{M_i\} s.t. \forall i, H(M_i) = H(M_0)
```

Complexity $\tilde{\mathcal{O}}(2^{n/2})$

Chosen-prefix collision

[Stevens, Lenstra & de Weger, EC'07]

Given challenges
$$C, C'$$
, find M, M' s.t. $H(C \parallel M) = H(C' \parallel M')$

Complexity $\mathcal{O}(2^{n/2})$

Diamond structure

[Kelsey & Kohno, EC'06]

Given challenges
$$\{C_i\}$$
, find $\{M_i\}$ s.t. $\forall i$, $H(C_i \parallel M_i) = H(C_0 \parallel M_0)$ C

Complexity $\tilde{\mathcal{O}}(\sqrt{|\{C_i\}|}2^{n/2})$

Introduction

The sponge construction (SHA-3, Ascon)

- ▶ b-bit state, cryptographic permutation $P: \{0,1\}^b \rightarrow \{0,1\}^b$
 - State split into rate r and capacity c: b = c + r
- ▶ Padding rule (ignored in this talk for simplicity)
- Tight security in the random permutation model:
 - ▶ Indifferentiable up to 2^{c/2} queries [Bertoni, Daemen, Peters & Van Assche, EC'08]
 - Collision attack in min($2^{c/2}, 2^{n/2}$)
 - Preimage attack in min(max($2^{c/2}$, 2^{n-r}), 2^n)

[Lefevre & Mennink, Crypto '22]

Second-preimage in min $(2^{c/2}, 2^n)$

Generic attacks on sponge

Notation:

Introduction

- ► State after absorption and processing: $S(m_1 \parallel m_2 \parallel m_3)$
- ▶ Rate and capacity part of S: $\mathcal{R}(S)$ and $\mathcal{C}(S)$

Collision attack

- Find (m_0, m'_0) colliding on capacity: $\mathcal{C}(S(m_0)) = \mathcal{C}(S(m'_0))$
- Choose (m_1, m'_1) with $m_1 \oplus m'_1 = \mathcal{R}(S(m_0)) \oplus \mathcal{R}(S(m'_0))$ Total complexity $2^{c/2}$

Preimage attack: meet-in-the-middle

- 1 Eval $S(m_0) = P(IV + m_0)$ for $2^{c/2} m_0$
- 2 Eval $5(m_2) = P^{-1}(P^{-1}(\overline{X} + m_2))$ for $2^{c/2} m_2$
- Find (m_0, m_2) colliding on capacity $\mathcal{C}(S(m_0)) = \mathcal{C}(\overline{S}(m_2))$
- Choose $m_1 = \mathcal{R}(S(m_0)) \oplus \mathcal{R}(\overline{S}(m_2))$ Total complexity $2^{c/2}$

Increasing state size

- Security of hash functions strongly related to state size
 - Indifferentiability bound $2^{n/2}$ for Merkle-Damgård, $2^{c/2}$ for sponge

Combiners

Introduction 0000000

- \triangleright Compute two hash functions H_1, H_2 in parallel and combine output e.g. $H: M \mapsto H_1(M) \oplus H_2(M)$
- Motivation: robustness

Double block length

- Use two primitives in parallel and mix states
- E.g. double sponge

[ToSC'24]

Outline: Generic security of double block length hashing

Goals of the talk

Introduction

- ► Identify GAPS between proofs and attacks
- ▶ Fill some of them
- Combiners with two Merkle-Damgård hash functions
 - Overview of known results: multicollision and interchange structure
- Combiners with two sponge hash functions
 - Folklore generic attacks using multicollisions
 - New distinguisher (joint work with César Mathéus)
- Double sponge
 - New distinguisher (joint work with César Mathéus)

Outline

Merkle-Damgård Combiners Multicollisions

Preimage attack on the XOR combiner

Sponge Combiners

Multicollisions

New 4-sum distinguisher

The Double Sponge

New 4-sum distinguisher

Concatenation combiner

- \vdash $H(M) = H_1(M) || H_2(M)$
- ▶ 2*n*-bit output

XOR combiner

- \blacktriangleright $H(M) = H_1(M) \oplus H_2(M)$
- ▶ *n*-bit output

Concatenation combiner

- \vdash $H(M) = H_1(M) \parallel H_2(M)$
- ▶ 2*n*-bit output
- ► Generic security: attacks / proofs
 - ightharpoonup Collisions: $2^{n/2}$ $2^{n/2}$
 - ► Preimages: 2ⁿ 2ⁿ
 - Indifferentiability: $2^{n/2}$ $2^{n/2}$

XOR combiner

- \vdash $H(M) = H_1(M) \oplus H_2(M)$
- ▶ *n*-bit output
- ► Generic security: attacks / proofs
 - Collisions: $2^{n/2}$ $2^{n/2}$
 - Preimages: $2^{3n/5}$ $2^{n/2}$
 - Indifferentiability: $2^{n/2}$ $2^{n/2}$

Multicollision

[Joux, C'04]

If H_1 and H_2 are good MD hash functions, $H_1 \parallel H_2$ is not stronger!

Interchange structure

[L & Wang, EC'15]

If H_1 and H_2 are good MD hash functions, $H_1 \oplus H_2$ is weaker!

Concatenation combiner

- \vdash $H(M) = H_1(M) \parallel H_2(M)$
- ▶ 2*n*-bit output
- ► Generic security: attacks / proofs
 - Collisions: $2^{n/2}$ $2^{n/2}$
 - Preimages: 2ⁿ 2ⁿ
 - Indifferentiability: $2^{n/2}$ $2^{n/2}$

XOR combiner

- \blacktriangleright $H(M) = H_1(M) \oplus H_2(M)$
- ► *n*-bit output
- ► Generic security: attacks / proofs
 - Collisions: $2^{n/2}$ $2^{n/2}$
 - Preimages: $2^{3n/5}$ $2^{n/2}$
 - Indifferentiability: $2^{n/2}$ $2^{n/2}$

Multicollision

[Joux, C'04]

If H_1 and H_2 are good MD hash functions, $H_1 \parallel H_2$ is not stronger!

Interchange structure [L &

[L & Wang, EC'15

If H_1 and H_2 are good MD hash functions, $H_1 \oplus H_2$ is weaker!

Multicollisions

[Joux, Crypto '04]

- **I** Find a collision pair m_0/m_0' starting from *IV*
- 2 Find a collision pair m_1/m_1' starting from $x_1 = h^*(m_0)$
- 3 Repeat t times
- 4 This yields 2^t messages with the same hash:

$$m_0 m_1 m_2 \dots \qquad m'_0 m_1 m_2 \dots \qquad m_0 m'_1 m_2 \dots \qquad m'_0 m'_1 m_2 \dots \qquad m'_0 m'_1 m'_2 \dots \qquad$$

Complexity $t \cdot 2^{n/2}$ vs. $\approx 2^{\frac{2^{n-1}}{2^{n}}}$ for a random function

Multicollisions

[Joux, Crypto '04]

- **I** Find a collision pair m_0/m_0' starting from *IV*
- Find a collision pair m_1/m_1' starting from $x_1 = h^*(m_0)$
- 3 Repeat t times
- 4 This yields 2^t messages with the same hash:

$$m_0 m_1 m_2 \dots \qquad m'_0 m_1 m_2 \dots \qquad m_0 m'_1 m_2 \dots \qquad m'_0 m'_1 m_2 \dots \\ m_0 m_1 m'_2 \dots \qquad m'_0 m_1 m'_2 \dots \qquad m'_0 m'_1 m'_2 \dots \qquad m'_0 m'_1 m'_2 \dots$$

Complexity $t \cdot 2^{n/2}$ vs. $\approx 2^{\frac{2^{t-1}}{2^t}n}$ for a random function

Multicollisions

[Joux, Crypto '04]

- 1 Find a collision pair m_0/m_0' starting from IV
- Find a collision pair m_1/m_1' starting from $x_1 = h^*(m_0)$
- Repeat t times
- 4 This yields 2^t messages with the same hash:

$$m_0 m_1 m_2 \dots \qquad m'_0 m_1 m_2 \dots \qquad m_0 m'_1 m_2 \dots \qquad m'_0 m'_1 m_2 \dots \qquad m'_0 m'_1 m'_2 \dots \qquad$$

► Complexity $t \cdot 2^{n/2}$ vs. $\approx 2^{\frac{2^{\ell}-1}{2^{\ell}}n}$ for a random function

State collision for parallel Merkle-Damgård

[Joux, C'04]

 H_2 $IV_2 \leftarrow M$ M'

1 Build a $2^{n/2}$ -multicollision for H_1

$$\forall M \in \mathcal{M}, H_1(M) = x_1$$

- 2 Find $M, M' \in \mathcal{M}$ s.t. $H_2(M) = H_2(M')$
- ► Complexity $\tilde{\mathcal{O}}(2^{n/2})$ vs. 2^n for a 2n-bit hash function.

State preimage for parallel Merkle-Damgård

[Joux, C'04]

MD Combiners 0000000000

$$\overline{H_2}$$
 $IV_2 \bullet \overline{X}$

- 1 Build a 2^n -multicollision \mathcal{M} for H_1
- Find a preimage for H_1 : $h(h(x_1, r)) = X_1$
- Complexity $\tilde{\mathcal{O}}(2^n)$ vs. 2^{2n} for a 2n-bit hash function.

$$\forall M \in \mathcal{M}, h_1^*(M) = x_1$$

$$dM \in \mathcal{M}, H_1(M \parallel r) = \overline{X}_1$$

State preimage for parallel Merkle-Damgård

[Joux, C'04]

$$H_2$$
 $IV_2 \bullet \overline{X}$

- 1 Build a 2^n -multicollision \mathcal{M} for H_1
- 2 Find a preimage for H_1 : $h(h(x_1, r)) = \overline{X}_1$
- Find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r) = \overline{X}_2$
- ► Complexity $\tilde{\mathcal{O}}(2^n)$ vs. 2^{2n} for a 2n-bit hash function.

 $\forall M \in \mathcal{M}, h_1^*(M) = x_1$ $\forall M \in \mathcal{M}, H_1(M \parallel r) = \overline{X}_1$

G. Leurent (Inria)

13 / 37

State preimage for parallel Merkle-Damgård

[Joux, C'04]

 $\forall M \in \mathcal{M}, h_1^*(M) = x_1$

 $\forall M \in \mathcal{M}, H_1(M \parallel r) = \overline{X}_1$

$$H_2$$
 $IV_2 \sim X$

- 1 Build a 2^n -multicollision \mathcal{M} for H_1
- Find a preimage for H_1 : $h(h(x_1, r)) = \overline{X}_1$
- Find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r) = \overline{X}_2$
- ► Complexity $\tilde{\mathcal{O}}(2^n)$ vs. 2^{2n} for a 2n-bit hash function.

State preimage for parallel Merkle-Damgård

[Joux, C'04]

- 1 Build a 2^n -multicollision \mathcal{M} for H_1
- Find a preimage for H_1 : $h(h(x_1, r)) = \overline{X}_1$
- Find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r) = \overline{X}_2$
- ► Complexity $\tilde{\mathcal{O}}(2^n)$ vs. 2^{2n} for a 2n-bit hash function.

 $\forall M \in \mathcal{M}, h_1^*(M) = x_1$

 $\forall M \in \mathcal{M}, H_1(M \parallel r) = \overline{X}_1$

- \vdash $H(M) = H_1(M) || H_2(M)$
- ► 2*n*-bit output
- ► Generic security:
 - Collisions:
 - Preimages:
 - Indifferentiability: $2^{n/2}$

XOR combiner

- \blacktriangleright $H(M) = H_1(M) \oplus H_2(M)$
- n-bit output
- Generic security: attacks / proofs
 - $2^{n/2}$ $2^{n/2}$ Collisions:
 - 3n/5 $2^{n/2}$ Preimages:
 - $2^{n/2}$ Indifferentiability:

Interchange structure

[L & Wang, EC'15]

If H_1 and H_2 are good MD hash functions, $H_1 \oplus H_2$ is weaker!

Preimage on the XOR of two Merkle-Damgård

[L & Wang, EC'15]

$$H(M) = H_1(M) \oplus H_2(M)$$

Strategy:

- 1 Structure to control H_1 and H_2 independently:
 - ► Sets of states $A = \{A_i\}$, $B = \{B_k\}$
 - Set of messages $\{M_{ik}\}$ with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$
$$h_1^*(\mathbf{M}_{jk}) = B_j$$

$$h_2^*(\mathbf{M}_{jk}) = B_k$$

- 2 Preimage search for \overline{X} :
 - For random blocks r, match $\{g_1(h_1(A_i, r))\}$ and $\{g_2(h_2(B_k, r)) \oplus \overline{X}\}$
 - If there is a match (j, k): Get $\mathbf{M}_{ik'}$ preimage is $M = \mathbf{M}_{ik} \parallel r$
 - ightharpoonup Complexity $\mathcal{O}(2^n/\min\{|\mathcal{A}|,|\mathcal{B}|\})$

Preimage on the XOR of two Merkle-Damgård

[L & Wang, EC'15]

$$H(M) = H_1(M) \oplus H_2(M)$$

MD Combiners 00000000000

$$[H_2] \qquad \Rightarrow \quad B_3$$

$$IV_2 \Leftrightarrow = \qquad \Rightarrow \quad B_2$$

$$\Rightarrow \quad B_1$$

$$\Rightarrow \quad B_0$$

Strategy:

- 1 Structure to control H_1 and H_2 independently:
 - ► Sets of states $A = \{A_i\}$, $B = \{B_k\}$
 - Set of messages {M_{iν}} with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$
$$h_2^*(\mathbf{M}_{ik}) = B_k$$

- - For random blocks r, match $\{g_1(h_1(A_i, r))\}\$ and $\{g_2(h_2(B_k, r)) \oplus \overline{X}\}$
 - If there is a match (i, k): Get M_{ik} , preimage is $M = M_{ik} \parallel r$
 - Complexity $\mathcal{O}(2^n / \min\{|\mathcal{A}|, |\mathcal{B}|\})$

Preimage on the XOR of two Merkle-Damgård

[L & Wang, EC'15]

Strategy:

- 1 Structure to control H_1 and H_2 independently:
 - ► Sets of states $A = \{A_i\}$, $B = \{B_k\}$
 - ► Set of messages $\{\mathbf{M}_{ik}^{'}\}$ with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$

$$h_2^*(\mathbf{M}_{jk}) = B_k$$

- 2 Preimage search for \overline{X} :
 - For random blocks r, match $\{g_1(h_1(A_i, r))\}$ and $\{g_2(h_2(B_k, r)) \oplus \overline{X}\}$
 - If there is a match (j, k): Get \mathbf{M}_{ik} , preimage is $M = \mathbf{M}_{ik} \parallel r$
 - ► Complexity $\mathcal{O}(2^n / \min\{|\mathcal{A}|, |\mathcal{B}|\})$

Interchange structure

[L & Wang, EC'15]

► Interchange structure for a large set of output states

- ► Complexity $\tilde{\mathcal{O}}(2^{n/2+2t})$ to build a structure with $|\mathcal{A}| = |\mathcal{B}| = 2^t$
- ► Complexity $\tilde{\mathcal{O}}(2^{5n/6})$ for preimages (tradeoff)

Alternative structure using cycles

Alternative presentation of "multicycles"

MD Combiners

[Bao, Wang, Guo, Gu, C'17]

• Using a long message repeating a fixed block $M = [0]^{\lambda}$, we iterate fixed functions:

$$\phi: x \mapsto h_1(x,[0])$$

$$\psi: x \mapsto h_2(x,[0])$$

Alternative structure using cycles

- ► Use cyclic nodes as end-point:
 - $ightharpoonup \mathcal{A} = H_1$ cycle, length ℓ_1
 - $\triangleright \mathcal{B} = H_2$ cycle, length ℓ_2
- ightharpoonup With suitable naming, for λ large enough:

$$h_1^{\star}([0]^{\lambda}) = A_{\lambda \bmod \ell_1} \quad h_2^{\star}([0]^{\lambda}) = B_{\lambda \bmod \ell_2}$$

► To reach (A_i, B_k) , use Chinese Remainder

$$\begin{cases} h_1^*([0]^{\lambda}) = A_j \\ h_2^*([0]^{\lambda}) = B_k \end{cases} \iff \begin{cases} \lambda \mod \ell_1 = i \\ \lambda \mod \ell_2 = j \end{cases}$$

- \triangleright λ uniformly distributed in range of size $\ell_1 \ell_2$
- ► Complexity $\tilde{\mathcal{O}}(2^{3n/4})$ for preimages (tradeoff)

18 / 37

Advanced preimage attack

[BHBLS24]

Generic Attacks on Double Block Length Hashing

- Using interchange, small cycles, expandable message
- ► Complexity $\tilde{\mathcal{O}}(2^{3n/5})$

GAPS: Preimage on the XOR of two Merkle-Damgård

Interchange structure

► Complexity $\tilde{\mathcal{O}}(2^{5n/6})$

[LW15]

- Works for Merkle-Damgård and HAIFA
 - Finalization function, block counter at each round
- ▶ Short messages: length $\tilde{\mathcal{O}}(2^{n/3})$

Using cycles

- ► Complexity $\tilde{\mathcal{O}}(2^{3n/4})$ (simple)
- Complexity $\tilde{\mathcal{O}}(2^{5n/8})$ [BWGG17]
- ► Complexity $\tilde{\mathcal{O}}(2^{11n/18})$ [BDGLW20]
- ► Complexity $\tilde{\mathcal{O}}(2^{3n/5})$ [BHBLS24]
- Works only for Merkle-Damgård mode
 - Finalization function, same function at each step
- Long messages: length $\tilde{\mathcal{O}}(2^{3n/5})$
- ► Security proof (indifferentiability) up to $2^{n/2}$ queries

Outline

Multicollisions Preimage attack on the XOR combiner

Sponge Combiners Multicollisions New 4-sum distinguisher

New 4-sum distinguisher

Generic attacks against sponge combiners

► Consider large n, 2^{nd} -preimage rather than preimage \implies ignore squeezing

Concatenation combiner

- \vdash $H(M) = H_1(M) || H_2(M)$
- ► Generic security: attacks / proofs
 - ightharpoonup Collisions: ? $2^{c/2}$
 - $ightharpoonup 2^{nd}$ -preimages: ? $2^{c/2}$
 - Indifferentiability: $2^{c/2}$ $2^{c/2}$

XOR combiner

- \vdash $H(M) = H_1(M) \oplus H_2(M)$
- ► Generic security: attacks / proofs
 - Collisions: ? $2^{c/2}$
 - $ightharpoonup 2^{nd}$ preimages: ? $2^{c/2}$
 - ► Indifferentiability: ? 2^{c/2}

- Not much analysis of sponge combiners
- Probably because we can increase sponge security by increasing r
- ► Combiner could be useful for small b, if the provide security beyond $2^{c/2}$

Multicollision for a sponge

- I Find (m_0, m'_0) colliding on capacity: $C(S(m_0)) = C(S(m'_0))$
- Choose (m_1, m_1') with $m_1 \oplus m_1' = \mathcal{R}(S(m_0)) \oplus \mathcal{R}(S(m_0'))$
- 3 Repeat
- Complexity $t \cdot 2^{c/2}$

Multicollision for a sponge

- I Find (m_0, m'_0) colliding on capacity: $C(S(m_0)) = C(S(m'_0))$
- Choose (m_1, m_1') with $m_1 \oplus m_1' = \mathcal{R}(S(m_0)) \oplus \mathcal{R}(S(m_0'))$
- 3 Repeat
- ► Complexity $t \cdot 2^{c/2}$

State collision for parallel sponges

Sponge Combiners

- 1 Build a $2^{c/2}$ -multicollision \mathcal{M} for H_1
- Choose s, s' with $s \oplus s' = \mathcal{R}(S_2(M)) \oplus \mathcal{R}(S_2(M'))$
- ► Problem: $S_1(M \parallel s) \neq S_1(M' \parallel s')$

State collision for parallel sponges

Sponge Combiners

- 1 Build a $2^{c/2}$ -multicollision \mathcal{M} for H_1
- Find a pair $M, M' \in \mathcal{M}$ colliding on the capacity: $\mathcal{C}(S_2(M)) = \mathcal{C}(S_2(M'))$
- Choose s, s' with $s \oplus s' = \mathcal{R}(S_2(M)) \oplus \mathcal{R}(S_2(M'))$
- ► Problem: $S_1(M \parallel s) \neq S_1(M' \parallel s')$

State collision for parallel sponges

Sponge Combiners

- 1 Build a $2^{c/2}$ -multicollision \mathcal{M} for H_1
- Find a pair $M, M' \in \mathcal{M}$ colliding on the capacity: $\mathcal{C}(S_2(M)) = \mathcal{C}(S_2(M'))$
- Choose s, s' with $s \oplus s' = \mathcal{R}(S_2(M)) \oplus \mathcal{R}(S_2(M'))$
- ► Problem: $S_1(M \parallel s) \neq S_1(M' \parallel s')$

State collision for parallel sponges

- 1 Build a $2^{b/2}$ -multicollision \mathcal{M} for H_1
- Find a pair $M, M' \in \mathcal{M}$ colliding on the full state: $S_2(M) = S_2(M')$

ightharpoonup Complexity $\tilde{\mathcal{O}}(2^{b/2})$

1 Build a 2^n -multicollision \mathcal{M} for H_1

- $\forall M \in \mathcal{M}, h_1^*(M) =$
- Using meet-in-the-middle, find H_1 preimage: $\forall M \in \mathcal{M}, H_1(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_1$
- Using meet-in-the-middle, find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_2$
- Complexity $\tilde{\mathcal{O}}(2^{b/2})$

1 Build a 2^n -multicollision \mathcal{M} for H_1

 $\forall M \in \mathcal{M}, h_1^*(M) =$

2 Using meet-in-the-middle, find H_1 preimage:

$$\forall M \in \mathcal{M}, H_1(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_1$$

- Using meet-in-the-middle, find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_2$
- Complexity $\tilde{\mathcal{O}}(2^{b/2})$

1 Build a 2^n -multicollision \mathcal{M} for H_1

$$\forall M \in \mathcal{M}, h_1^*(M) =$$

2 Using meet-in-the-middle, find H_1 preimage:

$$\forall M \in \mathcal{M}, H_1(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_1$$

- Using meet-in-the-middle, find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_2$
- Complexity $\tilde{\mathcal{O}}(2^{b/2})$

1 Build a 2^n -multicollision \mathcal{M} for H_1

 $\forall M \in \mathcal{M}, h_1^*(M) =$

2 Using meet-in-the-middle, find H_1 preimage:

$$\forall M \in \mathcal{M}, H_1(M \parallel r_1 \parallel r_2 \parallel r_3) = \overline{X}_1$$

- Using meet-in-the-middle, find $M \in \mathcal{M}$ s.t. $H_2(M \parallel r_1 \parallel r_2 \parallel r_3) = X_2$
- ightharpoonup Complexity $\tilde{\mathcal{O}}(2^{b/2})$

25 / 37

Generic attacks against sponge combiners

► Consider large n, 2^{nd} -preimage rather than preimage \implies ignore squeezing

Concatenation combiner

- \vdash $H(M) = H_1(M) || H_2(M)$
- attacks / proofs Generic security:
 - $2^{b/2}$ $\mathbf{j}^{c/2}$ Collisions:
 - $2^{b/2}$ $\mathbf{j}^{c/2}$ ► 2nd-preimages:
 - $2^{c/2}$ $\mathbf{j}^{c/2}$ Indifferentiability:

XOR combiner

- \blacktriangleright $H(M) = H_1(M) \oplus H_2(M)$
- Generic security: attacks / proofs
 - $2^{b/2}$ $2^{c/2}$ Collisions:
 - $2^{b/2}$ $\mathbf{r}^{c/2}$ ▶ 2nd preimages:
 - $\mathbf{r}^{c/2}$ Indifferentiability:
- Attacks based on multicollisions have complexity order $2^{b/2} = 2^{c/2+r/2}$

Generic Attacks on Double Block Length Hashing

- Rate seems to contribute to the security!
- Focus on indistinguishability gap for XOR combiner

Start from failed collision attempt, use 4 messages

$$M \parallel s - H_{2}(M \parallel s) = H_{2}(M' \parallel s') - M' \parallel s'$$

$$H_{1}(M \parallel s) = H_{1}(M' \parallel s) - H_{1}(M \parallel s') - H_{1}(M \parallel s')$$

$$M' \parallel s - H_{2}(M' \parallel s) = H_{2}(M \parallel s') - M \parallel s'$$

Sponge Combiners

Start from failed collision attempt, use 4 messages

$$M \parallel s \longrightarrow H_{2}(M \parallel s) = H_{2}(M' \parallel s') \longrightarrow M' \parallel s'$$

$$H_{1}(M \parallel s) = H_{1}(M' \parallel s) \longrightarrow H_{1}(M \parallel s') \longrightarrow M \parallel s'$$

$$M' \parallel s \longrightarrow H_{2}(M' \parallel s) = H_{2}(M \parallel s') \longrightarrow M \parallel s'$$

Start from failed collision attempt, use 4 messages

$$M \parallel s \longrightarrow H_{2}(M \parallel s) = H_{2}(M' \parallel s') \longrightarrow M' \parallel s'$$

$$H_{1}(M \parallel s) = H_{1}(M' \parallel s) = H_{1}(M \parallel s') = H_{1}(M \parallel s')$$

$$M' \parallel s \longrightarrow H_{2}(M' \parallel s) = H_{2}(M \parallel s') \longrightarrow M \parallel s'$$

Output on the 4 messages sums to zero:

$$H(M \parallel s) \oplus H(M \parallel s') = H_1(M \parallel s) \oplus H_2(M \parallel s) \oplus H_1(M \parallel s') \oplus H_2(M \parallel s') \oplus H_2(M \parallel s') \oplus H_2(M \parallel s') = 0$$

$$\oplus H(M' \parallel s) \oplus H(M' \parallel s') \oplus H_2(M' \parallel s) \oplus H_2(M' \parallel s') \oplus H_2($$

Also true with arbitrary suffix: strong distinguisher:

$$\forall \sigma$$
, $H(M \parallel s \parallel \sigma) \oplus H(M' \parallel s \parallel \sigma) \oplus H(M \parallel s' \parallel \sigma) \oplus H(M' \parallel s' \parallel \sigma) = 0$

The multiple 4-sum problem

Sponge Combiners

Definition (4-sum problem (with random functions) [Wagner, Crypto'02])

```
Given f: \{0,1\}^* \to \{0,1\}^n,
```

Find distinct (x_1, x_2, x_3, x_4) s.t. $f(x_1) \oplus f(x_2) \oplus f(x_3) \oplus f(x_4) = 0$

► Generic complexity: $\approx 2^{n/4}$

Definition (multiple 4-sum problem)

```
Given f: \{0,1\}^* \to \{0,1\}^n, \phi_i: \{0,1\}^* \to \{0,1\}^*, i \le m (some technical restriction),
Find distinct (x_1, x_2, x_3, x_4) s.t. \forall i < m, f(\phi_i(x_1)) \oplus f(\phi_i(x_2)) \oplus f(\phi_i(x_3)) \oplus f(\phi_i(x_4)) = 0
```

- Generic complexity: ≥ 2^{nm/52}
- ϕ_i are message expansion function: expand quartet (x_1, x_2, x_3, x_4) into m related quartets
- Finding *m* related 4-sums on *n* bits is hard if *n* or *m* is large

Generic attacks against sponge combiners

▶ Consider large n, 2^{nd} -preimage rather than preimage \implies ignore squeezing

Concatenation combiner

- \vdash $H(M) = H_1(M) || H_2(M)$
- ► Generic security: attacks / proofs
 - Collisions: $2^{b/2}$ $2^{c/2}$
 - $ightharpoonup 2^{nd}$ -preimages: $2^{b/2}$ $2^{c/2}$
 - ► Indifferentiability: $2^{c/2}$ $2^{c/2}$

XOR combiner

- \blacktriangleright $H(M) = H_1(M) \oplus H_2(M)$
- ► Generic security: attacks / proofs
 - Collisions: $2^{b/2}$ $2^{c/2}$
 - $ightharpoonup 2^{nd}$ preimages: $2^{b/2}$ $2^{c/2}$
 - Indifferentiability: $2^{c/2}$ $2^{c/2}$
- ▶ Distinguisher on the XOR of two sponges with complexity $\tilde{\mathcal{O}}(2^{c/2})$
- ▶ Tight indistinguishability of the XOR of two sponge: $2^{c/2}$
- GAPS for collision and preimage security

Outline

Merkle-Damgård Combiners

Multicollisions

Preimage attack on the XOR combiner

Sponge Combiners

Multicollisions

New 4-sum distinguisher

The Double Sponge
New 4-sum distinguisher

The double sponge construction

[Lefevre & Mennink, ToSC'24]

- ▶ 2b-bit state, 2 permutations $P_1, P_2 : \{0,1\}^b \rightarrow \{0,1\}^b$
 - Linear operation MIX to mix both states
 - Notation: State after absorption: $(S_1(m_0 \parallel m_1), S_2(m_0 \parallel m_1))$
- Security beyond the birthday bound
 - Indifferentiability proof up to $2^{2b/3}$ queries
 - Generic attack with complexity $2^{c+r/2}$ (state collision)
 - ► Simulator-specific attack with complexity 2^{2c/3+r/3}

4-sum for the double sponge (I)

- ► Consider 4 states A, B, C, D after final message absorption
- Assume pairwise collisions of half-states:

$$(A_1, A_2)$$
 — $A_1 = B_1$ — (B_1, B_2)
 $A_2 = C_2$ $B_2 = D_2$
 (C_1, C_2) — $C_1 = D_1$ — (D_1, D_2)

- Pairwise collisions preserved by P.
- Sum is preserved by linear operation MIX

4-sum for the double sponge (I)

- ► Consider 4 states A, B, C, D after final message absorption
- Assume pairwise collisions of half-states:

$$(A_1, A_2)$$
 — $A_1 = B_1$ — (B_1, B_2)
 $A_2 = C_2$ $B_2 = D_2$
 (C_1, C_2) — $C_1 = D_1$ — (D_1, D_2)

- Pairwise collisions preserved by P_i
- ► In particular, states after P; sum to zero
- Sum is preserved by linear operation MIX
- \triangleright Outputs z_0 sum to zero

4-sum for the double sponge (II)

- ightharpoonup 2 prefixes M, M'; states X = S(M), Y = S(M')
- \blacktriangleright 4 messages $M \parallel m_A, M' \parallel m_B, M' \parallel m_C, M \parallel m_D$; corresponding states after last message XOR:

$$A_i = X_i \oplus (m_A \parallel 0^c) \qquad D_i = X_i \oplus (m_D \parallel 0^c)$$

$$B_i = Y_i \oplus (m_B \parallel 0^c) \qquad C_i = Y_i \oplus (m_C \parallel 0^c)$$

Goal: pairwise collisions:

$$\begin{cases} A_1 = B_1 & A_2 = C_2 \\ C_1 = D_1 & B_2 = D_2 \end{cases}$$

$$\iff \begin{cases} X_1 \oplus Y_1 = (m_A \oplus m_B) \parallel 0^c & X_2 \oplus Y_2 = (m_A \oplus m_C) \parallel 0^c \\ X_1 \oplus Y_1 = (m_C \oplus m_D) \parallel 0^c & X_2 \oplus Y_2 = (m_B \oplus m_D) \parallel 0^c \end{cases}$$

▶ 2^r solutions if $C(X_1) = C(Y_1)$ and $C(X_2) = C(Y_2)$

4-sum for the double sponge: summary

1 Find messages (M, M') s.t. X = S(M) and Y = S(M') satisfy

$$C(X_1) = C(Y_1)$$
 and $C(X_2) = C(Y_2)$

2 Solve linear system to find 2^r solutions

$$\begin{split} m_A &= \mathcal{R}(Y_1 \oplus X_2) \oplus i & m_B &= \mathcal{R}(X_2 \oplus X_1) \oplus i \\ m_C &= \mathcal{R}(Y_2 \oplus Y_1) \oplus i & m_D &= \mathcal{R}(Y_2 \oplus X_1) \oplus i \end{split}$$

Bach solution defines a 4-sum over r bits:

$$H(M \parallel m_A) \oplus H(M' \parallel m_B) \oplus H(M' \parallel m_C) \oplus H(M \parallel m_D) = 0$$

- Multiple 4-sum unlikely with random oracle
- ▶ Distinguisher with complexity $\mathcal{O}(2^c)$

Improvement with low-diffusion MIX

Goal

Find messages (M, M') s.t. X = S(M) and Y = S(M') satisfy

$$C(X_1) = C(Y_1)$$
 and $C(X_2) = C(Y_2)$

MIX does not mix rate and capacity parts of state

$$MIX = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Sufficient condition on $U = P^{-1}(X)$ and $V = P^{-1}(Y)$

$$C(U_1) = C(V_1)$$
 $C(U_2) = C(V_2)$
 $U_1[b-1] = V_1[b-1]$ $U_2[b-1] = V_2[b-1]$

Meet-in-the-middle with with low-diffusion MIX

Goal

Find (M, M') s.t. $U = MIX^{-1}(S(M))$ and $V = MIX^{-1}(S(M'))$ satisfy

$$C(U_1) = C(V_1)$$
 $C(U_2) = C(V_2)$
 $U_1[b-1] = V_1[b-1]$ $U_2[b-1] = V_2[b-1]$

- 1 Generate $2^{3c/4}$ messages m_0 ; compute $S_1(m_0)$
- Generate $2^{3c/4}$ states U_1 with $C(U_1) = 0$; compute $P_!^{-1}(U_1)$
- Find $2^{c/2}$ matches on the capacity Deduce $2^{c/2}$ messages M_i with $\mathcal{C}(MIX^{-1}(S(M_i)) = 0)$
- With high probably, one pair (M_i, M_j) satisfies remaining c + 2-bit condition
- Complexity $\mathcal{O}(2^{3c/4})$ if $r \ge 3c/4$

Meet-in-the-middle with with low-diffusion MIX

Goal

Find (M, M') s.t. $U = MIX^{-1}(S(M))$ and $V = MIX^{-1}(S(M'))$ satisfy

$$C(U_1) = C(V_1)$$
 $C(U_2) = C(V_2)$
 $U_1[b-1] = V_1[b-1]$ $U_2[b-1] = V_2[b-1]$

- **1** Generate $2^{3c/4}$ messages m_0 ; compute $S_1(m_0)$
- Generate $2^{3c/4}$ states U_1 with $C(U_1) = 0$; compute $P_!^{-1}(U_1)$
- Find $2^{c/2}$ matches on the capacity

 Deduce $2^{c/2}$ messages M_i , with $C(MIX^{-1}(S(M_i)) = 0)$
- 4 With high probably, one pair (M_i, M_j) satisfies remaining c + 2-bit condition
- ► Complexity $\mathcal{O}(2^{3c/4})$ if $r \ge 3c/4$

Double sponge security

Conclusion

- New distinguishers based on multiple 4-sums
 - ▶ Distinguisher on the XOR of 2 sponges with $\tilde{\mathcal{O}}(2^{c/2})$ operations
 - Distinguisher on the double sponge
 - \triangleright $\mathcal{O}(2^{3c/4})$ operations if $r \ge 3c/4$
 - \triangleright $\mathcal{O}(2^{c-r/3})$ operations if $r \le 3c/4$
- Indifferentiability does not increase with rate
- Combiners don't improve indifferentiability bound (sponge and Merkle-Damgård)
 - Merkle-Damgård-XOR has less preimage security than Merkle-Damgård
- Still significant GAPS
 - Double sponge security
 - MD-XOR preimage, sponge-combiner preimage, sponge-combiner collision