

Designing Vision Front Ends for Embedded Systems

Dr. Fritz Dierks, Director Product Marketing and Development

- Market leader for industrial cameras
 - 150M € revenue in 2017
 - 450k Units camera shipped
- **Headquarter in Germany**
 - Asia focus (46%)
 - EMEA (28%)
 - Americas (26%)
- Partnership with QUALCOMM®
 - Made ISP available under Linux

Agenda

- Choosing the Right Sensor
- The Image Signal Processor
- Designing the System

→ Denotes rule of thumb

Choosing the Right Sensor

- Sensitivity / Image Quality
- Resolution / Pixel Size
- Mono / Color
- Rolling / Global Shutter

Image Quality and Sensitivity

A perfect image is degraded by

- Temporal & Spatial Noise which is measured by Signal to Noise Ratio (SNR)
- Artifacts (stripes, defect pixels, ...); various measures exist; use visual inspection
- → The less noise and artifacts the better the Image Quality

The temporal noise strongly depends on the Amount of Light available.

→ The more light, the less noise, the better the image quality.

For a given amount of light the camera delivering a better image quality is more sensitive.

→ Comparing for sensitivity makes sense only under comparable lighting conditions

Signal to Noise Ratio

- Visual noise = temporal + spatial
- → Only temporal noise is relevant for sensitivity
- SNR = (mean signal dark) / temp noise rms
- Neither depends on Gain nor Offset
- Do not judge sensitivity based on brightness
- → Use tool displaying temporal noise
- 40 dB = "excellent",
- 20 dB = "acceptable"
- 0 dB = "threshold"

```
60 dB = 1000 : 1 = 10 bit
40 \text{ dB} = 100 : 1 = 6.7 \text{ bit}
20 \text{ dB} = 10:1 = 3.3 \text{ bit}
10 dB = 3.2:1 = 1.7 bit
6 dB = 2:1 = 1.0 bit
3 dB = 1.4 : 1 = 0.5 bit
```


Amount of Light

- Amount of light = number of photons hitting a pixel during exposure time
- SNR light = sqrt(#photons) due to Poisson statistics
- → Brighter illumination → more light
- → Longer exposure time → more light
- → Larger aperture opening → more light
- → Larger pixel → larger aperture → more light
- → Lower resolution → more light

(beware: illumination is more expensive)

(beware: motion artifacts occur)

(beware: depth of field degrades)

(beware: larger sensor & lens are expensive)

(don't use more pixels than you actually need)

Resolution and Pixel Size

double pixel size

- → larger image
- → lower refractive power
 - → larger focal length
 - → larger lens
- → larger max aperture size
 - → more light collected from scene

Resolution and Pixel Size

Larger Pixel

- 2x2 binning
 - → fewer #pixels
- → more light per pixel
 - → less resolution

Model of a Single Pixel

A number of photons ...

... hitting a pixel during exposure time ...

The noise per readout can be modelled by a constant number of electrons

... creating a number of electrons ...

... forming a charge which is converted by a capacitor to a voltage ...

Key Performance Indicators

- Quantum Efficiency (QE)
- Read Noise [e-]
- Saturation Capacity [ke-]
- Dynamic Range = sat cap / read noise

... and digitized ...

being amplified ...

42

... resulting in the digital gray value.

Key Performance Indicators for Sensors

but most relevant for NIR light

EMVA 1288 Standard

 EMVA 1288 standard defines how to measure key sensor/camera performance indicators

- Comparing non-standard data from different vendors typically does not work
- Many machine vision camera vendors publish standard data for their cameras

Sensor	IMX 226		IMX 178
Resolution	12 MPx	>	6 MPx
Optical format	1 / 1.7"	≈	1 / 1.8"
Pixel Size	1.85 µ	<	2.4 μ
Dark Noise	3 e-	≈	3 e-
Saturation Capacity	11 ke-	<	14 ke-
SNR max	100 : 1 40 dB	<	125 : 1 42 dB
Dynamic Range	3500 : 1 71 dB 11.8 bit	<	4500 : 1 73 dB 12.1 bit
Quantum Efficiency @545 nm	80%	≈	81%

Mono / Color

- Most color sensors use Bayer pattern filter (red, 2 x green, blue)
 - → 2 out of 3 color components per pixel are thrown away → mono is more sensitive
 - → true spatial resolution is replaced by guesswork → use color only when necessary
- Color filters don't work in near infrared (NIR) → add external IR-cut filter
- For NIR illumination (LED flash), use special sensors with high NIR sensitivity

Rolling / Global Shutter

- Rolling shutter sensors need fewer transistors per pixel
 → smaller/cheaper
- Global shutter sensors
 "freeze" fast moving objects
 → in many cases rolling
 shutter sensors are fast
 enough
- You can freeze the image by using a flash pulse while all lines are exposing

The Image Signal Processor (ISP)

- ISP Stages
- Viewing vs Machine Vision
- ISP Supplier

ISP Overview (simplified)

ISP Stages

Tune ISP to Application

- Viewing: Image to be looked at by human being
 - Image must "look good"
 - Take into account human eye/brain
 - What looks good depends on what people are used to

- Image must be "true"
- Make visible what the vision algorithm is seeking
- Some viewing improvements disturb machine vision (sharpness, de-noising)
- → Make sure you (or your supplier) can tune the ISP

ISP Supplier

- ISP can be part of the processor → low system cost, high performance
- ISP can be part of the camera
 - Sensor with integrated ISP → limited selection, limited performance
 - Dedicated ISP chip → higher system cost, processor independence

Designing the System

- Lens Type
- Modular Design
- SDK

Lens Type

Integrated Lens

- Small form factor
- Limited selection of optical parameters
- Autofocus available
- No customizing except for really large volume
- Longevity problems

Separate Lens

- Optimal fitting lens to application (focal length, ...)
- Long-term availability (sensor & lens separately)
- Customization for medium volume

Modular Design

- For small & medium volume use camera module
 - Unified hardware and software interface
 - Pick suitable module from portfolio
 - Re-use knowhow and HW/SW designs
- For large volume use tailor-made design
 - Start with module and port to tailor-made with raising volume

Which SDK to Use?

Android

Camera2 API - sophisticated interface giving full control

Linux

- **Video4Linux** low level interface
- **Gstreamer** widely used for streaming applications
- **GenlCam** standard for industrial cameras
 - Device discovery, configuration, video & event delivery, chunk data
 - Plug & Play by defining >300 camera features
 - GenICam has >180 member companies
 - Used for all machine vision camera interfaces

SDK – GenlCam based Example

- Client code receives buffer handles through Pylon's fifo
- Buffer handles can be used with native HvX and GPU code
- Pylon gives configuration access to camera and ISP

Conclusion

- Picking the right sensor for your task is key
- Make sure you can tune the ISP to your application
- Start with a modular design switching to tailor-made after volume ramp up
- Get yourself a competent camera partner ©

Resources

- Basler web site: www.baslerweb.com
- EMVA 1288 standard: http://www.emva.org/standards-technology/emva-1288/
- GenlCam standard: <u>www.genicam.org</u>

