CS132: Compiler Construction

Professor Palsberg

Thilan Tran

Fall 2020

Contents

CS132: Compiler Construction	3											
ntroduction Compiler Overview												
Lexical Analysis	6											
Parsing	7											
Top-Down Parsing	8											
Grammar Hacking	9											
	11											
	11											
	12											
	13											
	13											
	15											
<u>-</u>	16											
Handling Syntax Trees	18											
	18											
	20											
Type Checking	23											
	23											
<u> </u>	24											
	25											
	26											
·	27											

CONTENTS CONTENTS

Classes .																					
	a Program																				
	ypes																				
Sparrow																					
Grammar										•		 •		•		•	•	•	•	•	
Translation to	o IR																				
State and '	Transitions																				
Expression	ns																				
Statement	s																				
Examples																					
Arrays																					
Classes .																					
Inhe	ritance																				
	ow Analys																				
	A																				
	xpressions																				
	Form																				
	-Order For																				
	erative Fori																				
Register Allo	cation																				
U	Analysis .																				
	rithm																				
_	loring																				
	leteness .																				
_	pagation .																				
Activation Re	ecords																				
	Linkages																				
	etails																				
Interpreters																					
	nterpreter						•	•		•		 •	•	•	 •	•	•			•	
More Compil	er Optimiz	ati	on	s																	
Appendix																					
	ambda Tra	nsl	at	່າດາ	าร	to	Fi	irs	t-()ra	ler										
Lampic 1	uestions .																				

CS132: Compiler Construction

Introduction

- a **compiler** is a program that *translates* an executable program in one language to an executable program in another language
- an **interpreter** is a program that *reads* an executable program and produces the results of running that program
 - usually involves executing the source program in some fashion, ie. portions at a time
- compiler construction is a *microcosm* of CS fields:
 - AI and algorithms
 - theory
 - systems
 - architecture
- in addition, the field is not a solved problem:
 - changes in architecture lead to changes in compilers
 - * new concerns, re-engineering, etc.
 - compiler changes then prompt new architecture changes, eg. new languages and features
- some compiler motivations:
 - 1. correct output
 - 2. fast output
 - 3. fast translation (proportional to program size)
 - 4. support separate compilation
 - 5. diagnostics for errors
 - 6. works well with debugger
 - 7. cross language calls
 - 8. optimization
- for new languages, how are compilers written for them?
 - eg. early compilers for Java were written in C
 - eg. for early, low level languages like C, **bootstrapping** is done:
 - * a little subset of C is written and compiled in machine code
 - * then a larger subset of C is compiled using that smaller subset, etc.

Compiler Overview

- abstract compiler system overview:
 - input: source code
 - *output*: machine code or errors
 - recognizes illegal programs, and outputs associated errors
- *two-pass* compiler overview:
 - source code eg. Java compiles through a frontend to an intermediate representation (IR) like Sparrow
 - * the **frontend** part of the compiler maps legal code into IR:
 - · language dependent, but machine independent
 - · allows for swappable front ends for different source languages
 - IR then compiles through a backend to machine code
 - * the backend part maps IR onto target machine:
 - · language independent, but machine / architecture dependent
- frontend overview:
 - input: source code
 - output: IR
 - responsibilities:
 - * recognize legality syntactically
 - * produce meaningful error messages
 - * shape the code for the backend
 - 1. the scanner produces a stream of tokens from source code:
 - ie. *lexing* source file into tokens
 - 2. the parser produces the IR:
 - recognizes context free grammars, while guiding context sensitive analysis
 - both steps can be automated to some degree
- backend overview:
 - input: IR
 - *output*: target machine code
 - responsibilities:
 - * translate to machine code
 - * instruction selection:
 - · choose specific instructions for each IR operation
 - · produce compact, fast code
 - * register allocation:
 - · decide what to keep in registers at each points
 - · can move loads and stores
 - · optimal allocation is difficult
 - more difficult to automate
- specific frontends or backends can be swapped
 - eg. use special backend that targets ARM instead of RISC, etc.
- middleend overview:
 - responsibilities:

- * optimize code and perform code improvement by analyzing and changing IR
- * must preserve values while reducing runtime
- optimizations are usually designed as a set of iterative passes through the compiler
- eg. eliminating redundant stores or dead code, storing common subexpressions, etc.
- eg. GCC has 150 optimizations built in

Lexical Analysis

- the role of the **scanner** is to map characters into **tokens**, the basic unit of syntax:
 - while eliminating whitespace, comments, etc.
 - the character string value for a token is a **lexeme**
 - eg. x = x + y; becomes $\langle id, x \rangle = \langle id, x \rangle + \langle id, y \rangle$;
- a scanner must recognize language syntax
 - how to define what the syntax for integers, decimals, etc.
- 1. use regular expressions to specify syntax patterns:
 - eg. the syntax pattern for an integer may be <integer> ::= (+ | -) <digit>*
- 2. regular expressions can then be constructed into a **deterministic finite automaton (DFA)**:
 - a series of states and transitions for accepting or rejecting characters
 - this step also handles state minimization
- 3. the DFA can be easily converted into code using a while loop and states:
 - by using a table that categorizes characters into their language specific identifier types or classes, this code can be language *independent*
 - as long as the underlying DFA is the same
 - a linear operation, considers each character once
- this process can be automated using scanner generators:
 - emit scanner code that may be direct code, or table driven
 - eg. lex is a UNIX scanner generator that emits C code

Parsing

- the role of the **parser** is to recognize whether a stream of tokens forms a program defined by some grammar:
 - performs context-free syntax analysis
 - usually constructs an IR
 - produces meaningful error messages
 - generally want to achieve *linear* time when parsing:
 - * need to impose some restrictions to achieve this, eg. the LL restriction
- context-free syntax is defined by a **context-free grammar (CFG)**:
 - formally, a 4-tuple $G = (V_t, V_n, S, P)$ where:
 - * V_t is the set of **terminal** symbols, ie. tokens returned by the scanner
 - * V_n is the set of **nonterminal** symbols, ie. syntactic variables that denote substrings in the language
 - st S is a distinguished nonterminal representing the **start symbol** or goal
 - $\ast\,\,P$ is a finite set of **productions** specifying how terminals and non-terminals can be combined
 - · each production has a single nonterminal on the LHS
 - * the **vocabulary** of a grammar is $V = V_t \cup V_n$
 - * the motivation for using CFGs instead of simple REs for grammars is that REs are not powerful enough:
 - · REs are used to classify tokens such as identifiers, numbers, keywords
 - while grammars are useful for counting brackets, or imparting structure eg. expressions
 - · factoring out lexical analysis simplifies the CFG dramatically
 - general CFG notation:
 - * $a, b, c, \ldots \in V_t$
 - $* \ A,B,C,... \in V_n$
 - $* U, V, W, \dots \in V$
 - * $\alpha, \beta, \gamma, ... \in V^*$, where V^* is a sequence of symbols
 - * $u,v,w,\ldots \in V_t^*$, where V_t^* is a sequence of terminals
 - * $A o \gamma$ is a production
 - $* \Rightarrow$, \Rightarrow *, \Rightarrow + represent derivations of 1, ≥ 0 , and ≥ 1 steps
 - * if $S \Rightarrow^* \beta$ then β is a sentential form of G
 - * if $L(G) = \{\beta \in V^* | S \Rightarrow^* \beta\} \cap V_t^*$, then L(G) is a sentence of G, ie. a derivation with all nonterminals
- grammars are often written in Backus-Naur form (BNF):
 - non-terminals are represented with angle brackets

- terminals are represented in monospace font or underlined
- productions follow the form <nont> ::= ...expr...
- the productions of a CFG can be viewed as rewriting rules:
 - by repeatedly rewriting rules by replacing nonterminals (starting from goal symbol), we can **derive** a sentence of a programming language
 - * **leftmost derivation** occurs when the *leftmost* nonterminal is replaced at each step
 - * **rightmost derivation** occurs when the *rightmost* nonterminal is replaced at each step
 - this sequence of rewrites is a **derivation** or **parse**
 - discovering a derivation (ie. going backwards) is called parsing
- can also visualize the derivation process as construction a tree:
 - the goal symbol is the root of tree
 - the children of a node represents replacing a nonterminal with the RHS of its production
 - note that the ordering of the tree dictates how the program would be executed
 - * can multiple syntaxes lead to different parse trees depending on the CFG used?
 - parsing can be done **top-down**, from the root of the deriviation tree:
 - * picks a production to try and match input using backtracking
 - * some grammars are backtrack-free, ie. predictive
 - parsing can also be done bottom-up:
 - * start in a state valid for legal first tokens, ie. start at the leaves and fill in
 - * as input is consumed, change state to encode popssibilities, ie. recognize valid prefixes
 - * use a stack to store state and sentential forms

Top-Down Parsing

- try and find a linear parsing algorithm using top-down parsing
- general top-down parsing approach:
 - 1. select a production corresponding to the current node, and construct the appropriate children
 - want to select the right production, somehow guided by input string
 - 2. when a terminal is added to the *fringe* that doesn't match the input string, backtrack
 - 3. find the next nonterminal to expand
- problems that will make the algorithm run worse than linear:

- too much backtracking
- if the parser makes the wrong choices, expansion doesn't even terminate
 - * ie. top-down parsers *cannot* handle left-recursion
- top-down parsers may backtrack when they select the wrong production:
 - do we need arbitrary **lookahead** to parse CFGs? Generally, yes.
 - however, large subclasses of CFGs *can* be parsed with *limited* lookahead:
 - * LL(1): left to right scan, left-most derivation, 1-token lookahead
 - * LR(1): left to right scan, right-most derivation, 1-token lookahead
- to achieve LL(1) we roughly want to have the following initial properties:
 - no left recursion
 - some sort of *predictive* parsing in order to minimize backtracking with a lookahead of only one symbol

Grammar Hacking

Consider the following simple grammar for mathematical operations:

```
<goal> ::= <expr>
<expr> ::= <expr> <op> <expr> | num | id
<op> ::= + | - | * | /
```

- there are multiple ways to rewrite the same grammar:
 - but each of these ways may build different trees, which lead to different executions
 - want to avoid possible grammar issues such as precendence, infinite recursion, etc. by rewriting the grammar
 - eg. classic precedence issue of parsing x + y * z as (x+y) * z vs. x + (y*z)
- to address **precedence**:
 - additional machinery is required in the grammar
 - introduce extra levels
 - eg. introduce new nonterminals that group higher precedence ops like multiplication, and ones that group lower precedence ops like addition
 - * the higher precedence nonterminal cannot reduce down to the lower precedence nonterminal
 - * forces the *correct* tree

Example of fixing precedence in our grammar:

```
<expr> ::= <expr> + <term> | <expr> - <term> | <term>
<term> ::= <term> * <factor> | <factor> | <factor>
<factor> ::= num | id
```

- **ambiguity** occurs when a grammar has more than one derivation for a single sequential form:
 - eg. the classic dangling-else ambiguity if A then if B then C else D
 - to address ambiguity:
 - * rearrange the grammar to select one of the derivations, eg. matching each else with the closest unmatched then
 - another possible ambiguity arises from the context-free specification:
 - \star eg. **overloading** such as f(17), could be a function or a variable subscript
 - * requires context to disambiguate, really an issue of type
 - * rather than complicate parsing, this should be handled separately

Example of fixing the dangling-else ambiguity:

```
<stmt> ::= <matched> | <unmatched>
<matched> ::= if <expr> then <matched> else <matched> | ...
<unmatched> ::= if <expr> then <stmt> | if <expr> then <matched> else <unmatched>
```

- a grammar is **left-recursive** if $\exists A \in V_n s.t. A \Rightarrow^* A \alpha$ for some string α :
 - top-down parsers fail with left-recursive grammars
 - to address left-recursion:
 - * transform the grammar to become right-recursive by introducing new nonterminals
 - eg. in grammar notation, replace the productions $A \to A\alpha |\beta| \gamma$ with:
 - * $A \rightarrow NA'$
 - * $N \to \beta | \gamma$
 - * $A' \to \alpha A' | \varepsilon$

Example of fixing left-recursion (for <expr>, <term>) in our grammar:

```
<expr> ::= <term> <expr'>
<expr'> ::= + <term> <expr'> | - <term> <expr'> | E // epsilon

<term> ::= <factor> <term'>
<term'> ::= * <factor> <term'> | / <factor> <term'> | E
```

- to perform **left-factoring** on a grammar, we want to do repeated prefix factoring until no two alternaties for a single non-terminal have a common prefix:
 - an important property for LL(1) grammars
 - eg. in grammar notation, replace the productions $A \to \alpha\beta |\alpha\gamma$ with:
 - * $A \rightarrow \alpha A'$
 - * $A' \rightarrow \beta | \gamma$
 - note that our example grammar after removing left-recursion is now properly left-factored

Achieving LL(1) Parsing

Predictive Parsing

- for multiple productions, we would like a *distinct* way of choosing the *correct* production to expand:
 - for some RHS $\alpha \in G$, define $\mathit{FIRST}(\alpha)$ as the set of tokens that can appear first in some string derived from α
 - key property: whenever two productions $A \to \alpha$ and $A \to \beta$ both appear in the grammar, we would like:
 - * $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$, ie. the two token sets are disjoint
 - this property of left-factoring would allow the parser to make a correct choice with a lookahead of only *one* symbol
 - if the grammar does not have this property, we can hack the grammar
- by left factoring and eliminating left-recursion can we transform an *arbitrary* CFG to a form where it can be predictively parsed with a single token lookahead?
 - no, it is undecidabe whether an arbitrary equivalent grammar exists that satisfies the conditions
 - eg. the grammar $\{a^n0b^n\} \cup \{a^n1b^{2n}\}$ does not have a satisfying form, since would have to look past an arbitrary number of a to discover the terminal
- idea to translate parsing logic to code:
 - 1. for all terminal symbols, call an eat function that *consumes* the next char in the input stream
 - 2. for all nonterminal symbols, call the corresponding function corresponding to the production of that nonterminal
 - perform predictive parsing by looking *ahead* to the next character and handling it accordingly
 - * there is only one valid way to handle the character in this step due to the left-factoring property
 - how do we handle epsilon?
 - * just do nothing ie. consume nothing, and let recursion handle the rest
 - creates a mutually recursive set of functions for each production
 - * the name is the LHS of production, and body corresponds to RHS of production

Example simple recursive descent parser:

```
Token token;
void eat(char a) {
```

```
if (token = a) token = next_token();
  else error();
}
void goal() { token = next_token(); expr(); eat(EOF); }
void expr() { term(); expr_prime(); }
void expr_prime() {
  if (token = PLUS) { eat(PLUS); expr(); }
  else if (token = MINUS) { eat(MINUS); expr(); }
  else { /* noop for epsilon */ }
}
void term() { factor(); term_prime(); }
void term_prime() {
  if (token = MULT) { eat(MULT); term(); }
  else if (token = DIV) { eat(DIV); term(); }
  else { }
}
void factor() {
  if (token = NUM) eat(NUM);
  else if (token = ID) eat(ID);
  else error(); // not epsilon here
}
```

Handling Epsilon

- handling epsilon is not as simple as just ignoring it in the descent parser
- for a string of grammar symbols α , $\mathit{NULLABLE}(\alpha)$ means α can go to ε :

```
– ie. \mathit{NULLABLE}(\alpha) \Longleftrightarrow \alpha \Rightarrow^* \varepsilon
```

- to compute *NULLABLE*:
 - 1. if a symbol a is terminal, it cannot be nullable
 - 2. otherwise if $a \to Y_1...Y_n$ is a production: - $NULLABLE(Y_1) \land ... \land NULLABLE(Y_k) \Rightarrow NULLABLE(A)$
 - 3. solve the constraints
- again, for a string of grammar symbols α , $FIRST(\alpha)$ is the set of terminal symbols that begin strings derived from α :

```
- ie. FIRST(\alpha) = \{a \in V_t | \alpha \Rightarrow^* aB\}
```

- to compute FIRST:
 - 1. if a symbol a is nonterminal, $\mathit{FIRST}(a) = \{a\}$

LR Parsing PARSING

- 2. otherwise if $a \to Y_1...Y_n$ is a production:
 - $FIRST(Y_1) \subseteq FIRST(A)$
 - $\forall i \in 2...n,$ if $\textit{NULLABLE}(Y_1...Y_{i-1})$:
 - * $FIRST(Y_i) \subseteq FIRST(A)$
- 3. solve the constraints, going for the \subseteq -least solution
- for a nonterminal B, FOLLOW(B) is the set of terminals that can appear immediately to the right of B in some sentential form:
 - ie. $FOLLOW(B) = \{a \in V_t | G \Rightarrow^* \alpha B\beta \land a \in FIRST(\beta\$)\}$
- to compute *FOLLOW*:
 - 1. $\{\$\} \subseteq FOLLOW(G)$ where G is the goal
 - 2. if $A \to \alpha B\beta$ is a production:
 - $FIRST(\beta) \subseteq FOLLOW(B)$
 - if *NULLABLE*(β), then *FOLLOW*(A) ⊆ *FOLLOW*(B)
 - 3. solve the constraints, going for the \subseteq -least solution

Formal Definition

- a grammar G is **LL(1)** iff. for each production $A \to \alpha_1 |\alpha_2| ... |\alpha_n|$:
 - 1. $FIRST(\alpha_1), ..., FIRST(\alpha_n)$ are pairwise disjoint
 - 2. if $NULLABLE(\alpha_i)$, then for all $j \in 1...n \land j \neq i$:
 - $FIRST(\alpha_i) \cap FOLLOW(A) = \emptyset$
 - if G is ε -free, the first condition is sufficient
 - eg. $S \rightarrow aS|a$ is not LL(1)
 - * while $S \to aS', S' \to aS' | \varepsilon$ accepts the same language and is LL(1)
- provable facts about LL(1) grammars:
 - 1. no left-recursive grammar is LL(1)
 - 2. no ambiguous grammar is LL(1)
 - 3. some languages have no LL(1) grammar
 - 4. an ε -free grammar where each alternative expansion for A begins with a distinct terminal is a simple LL(1) grammar
- an LL(1) parse table M can be constructed from a grammar G as follows:
 - 1. \forall productions $A \rightarrow \alpha$:
 - $\forall a \in FIRST(\alpha), \text{ add } A \rightarrow \alpha \text{ to } M[A, a]$
 - if $\varepsilon \in \mathit{FIRST}(\alpha)$:
 - * $\forall b \in \mathit{FOLLOW}(A)$, add $A \to \alpha$ to M[A, b] (including EOF)
 - 2. set each undefined entry of M to an error state
 - if $\exists M[A, a]$ with multiple entries, then the grammar is *not* LL(1)

LR Parsing

LR Parsing PARSING

- recalling definitions:
 - for a grammar G with start symbols S, any string α such that $S \Rightarrow^* \alpha$ is a **sentential form**
 - if $\alpha \in V_t^*$, then α is a sentence in L(G)
 - a left-sentential form is one that occurs in the leftmost derivation of some sentence
 - a right-sentential form is one that occurs in the *rightmost* derivation of some sentence
- bottom-up parsing, ie. LR parsing, is an alternative to parsing top-down:
 - want to construct a parse tree by starting at the leaves and working to the root
 - repeatedly, match a right-sentential form from the language against the tree
 - * ie. for each match, apply some sort of reduction to build on the *frontier* of the tree
 - * conversely to LL parsing, LR parsing prefers left recursion
 - creates a rightmost derivation, in reverse
 - eg. given the grammar $S \rightarrow aABe$, $A \rightarrow Abc|b$, $B \rightarrow d$:
 - * parse abbcde by replacing terminals with nonterminals repetaedly, ie. applying productions backwards
 - * abbcde \longrightarrow aAde \longrightarrow aABe \longrightarrow S
- must scan input and find some kind of a *valid* sentential form:
 - this valid form is called a **handle**:
 - * a handle α is a substring that matches the production $A \to \alpha$ where reducing α to A is one step in the reverse of a rightmost derivation
 - * formally, if $S \Rightarrow_{rm}^* \alpha Aw \Rightarrow_{rm} \alpha \beta w$ then $A \to \beta$ can be used as a handle
 - \star right sentential, so all symbols in w are terminals
 - the process of reducing through handles is called handle pruning
 - how can we find which unique handle to apply?
 - * recognizing handles is out of the scope of this course
- important theorem involving handles:
 - $\operatorname{\mathsf{--if}} G$ is unambiguous, them every right-sentential form has a unique handle
 - this is because an unambiguous grammar has a *unique* rightmost derivation
- general LR algorithm:
 - 1. repeatedly, working backwards, find the handle $A_i \rightarrow B_i$ in the input
 - 2. replace ie. prune the handle to generate γ_{i-1}

LR Parsing PARSING

Stack Implementation

- one way to implement a handle-pruning, bottom-up parser is called a **shift-reduce parser**:
 - uses a stack (handles the shift operation) and an input buffer
 - shift-reduce vs. reduce-descent
- algorithm:
 - 1. initialize stack with EOF \$
 - 2. repeat until the top of the stack is the goal symbol and input token is \$:
 - find the handle:
 - * if we don't have a handle on top of the stack, *shift* an input symbol onto the stack
 - * ie. shift until top of stack is the right end of a handle
 - prune the handle:
 - * if we have a handle $A \to \beta$ on the stack, reduce by:
 - · popping β symbols off the stack
 - \cdot pushing A onto the stack

Simple left-recursive expression grammar:

```
<goal> ::= <expr>
<expr> ::= <expr> + <term> | <expr> - <term> | <term>
<term> ::= <term> * <factor> | <factor> | <factor>
<factor> ::= num | id
// note that left-recursion is fine with LR
```

Running example input id - num * id through a shift-reduce parser:

```
// stack
    // shift next input onto stack
$ id // can reduce, id is a handle
$ <factor>
$ <term>
$ <expr> // out of handles, shift next input
$ <expr> -
$ <expr> - num // can reduce num at top of stack
$ <expr> - <factor>
$ <expr> - <term> // reducing here would disregard the rest of the input stream
$ <expr> - <term> *
$ <expr> - <term> * id
$ <expr> - <term> * <factor> // by looking at input, we should reduce
                      // <factor> → <term>*<factor> instead of <factor> → <term>
$ <expr> - <term>
$ <expr>
$ <goal> // this would be accepted
```

JavaCC PARSING

- shift-reduce parsers support four actions:
 - 1. shift next input symbol onto stack
 - 2. reduce by popping handle off stack and pushing production LHS
 - 3. accept and end parsing
 - 4. error
 - the key problem is recognizing handles
- LR vs. LL grammars and parsing:
 - almost all CFG languages can be expressed in LR(1)
 - LR parsers detect an error as soon as possible
 - naturally, right recursion is used in top-down parsers
 - * while left recursion is used in bottom-up parsers
 - LL dilemma is to pick between different alternate production rules:
 - * $A \rightarrow b$ vs. $A \rightarrow c$
 - \ast ie. LL(k) parser must recognize the use of of a production after seeing only k symbols of its RHS
 - LR dilemma is to pick between different matching productions:
 - * $A \rightarrow b$ vs. $B \rightarrow b$
 - * ie. LR(k) parser must recognize the RHS of a production after having seen all that is derived from RHS with k symbols of lookhead
 - in an LL parsing table:
 - * only need to store nonterminals vs. terminals
 - in an LR parsing table:
 - * need to store all the possible entries at the top of the stack vs. terminals
 - \star top of stack can contain *every* alternate in a production rule
 - · usually much greater than number of nonterminals
 - * more complicated and space consuming, but more powerful as well \cdot in addition, $LL(k)\subseteq LR(k)$

JavaCC

- the **Java Compiler Compiler (JCC)** generates a parser automatically for a given grammar:
 - based on LL(k) vs. LL(1)
 - transforms an EGBNF grammar into a parser
 - can have embedded (additional) action code written in Java
 - javacc fortran.jj \rightarrow javac Main.java \rightarrow java Main < prog.f

JavaCC input format:

```
TOKEN:
{
```

JavaCC PARSING

Handling Syntax Trees

Visitor Pattern

- parsers generate a syntax tree from an input file:
 - this is an aside on design patterns in order to facilitate using the generated tree
 - see Gamma's Design Patterns from 1995
- for OOP, the **visitor pattern** enables the definition of a *new* operation of an object structure *without* changing the classes of the objects:
 - ie. new operation without recompiling
 - set of classes must be fixed in advance, and each class must have a hook called the accept method

Consider the problem of summing up lists using the following list implementation:

```
interface List {}

class Nil implements List {}

class Cons implements List {
  int head;
  List tail;
}
```

First approach using type casts:

```
List 1;
int sum = 0;
while (true) {
   if (1 instanceof Nil)
      break;
   else if (1 instanceof Cons) {
      sum += ((Cons) 1).head;
      l = ((Cons) 1).tail;
   }
}
```

- pros:
 - code is written without touching the classes
- cons:

code constantly uses type casts and instanceof to determine classes
 Second approach using dedicated methods (OO version):

```
interface List { int sum(); }

class Nil implements List {
   public int sum() { return 0; }
}

class Cons implements List {
   int head;
   List tail;
   public int sum() { return head + tail.sum(); }
}
```

- pros:
 - code can be written more systematically, without casts
- cons:
 - for each new operation, need to write new dedicated methods and recompile
- **visitor pattern** approach:
 - divide the code into an object structure and a visitor (akin to functional programming)
 - insert an accept method in each class, which takes a Visitor as an argument
 - a visitor contains a visit method for each class (using overloading)
 - * defines both actions and access of *subobjects*
 - pros:
 - * new methods without recompilation
 - * no frequent type casts
 - cons:
 - * all classes need a hook in the accept method
 - used by tools such as JJTree, Java Tree Builder, JCC
 - summary, visitors:
 - * make adding new operations easily
 - * gather *related* operations
 - * can accumulate state
 - * can break encapsulation, since it needs access to internal operations

Third approach with visitor pattern:

```
interface List {
   // door open to let in a visitor into class internals
   void accept(Visitor v);
```

```
}
interface Visitor {
  void visit(Nil x); // code is packaged into a visitor
  void visit(Cons x);
}
class Nil implements List {
  // `this` is statically defined by the *enclosing* class
 public void accept(Visitor v) { v.visit(this); }
class Cons implements List {
  int head;
  List tail;
  public void accept(Visitor v) { v.visit(this); }
}
class SumVisitor implements Visitor {
  int sum = 0;
  public void visit(Nil x) {}
  public void visit(Cons x) {
   // take an action:
    sum += x.head;
    // handle subojects:
    x.tail.accept(this); // process tail *indirectly* recursively
   // The accept call will in turn call visit...
    // This pattern is called *double dispatching*.
   // Why not just visit(x.tail) ?
   // This *fails*, since x.tail is type List.
}
Using SumVisitor:
SumVisitor sv = new SumVisitor();
1.accept(sv);
System.out.println(sv.sum);
```

Java Tree Builder

• the produced JavaCC grammar can be processed by the JCC to give a parser

that produces syntax trees:

- the produced syntax trees can be traversed by a Java program by writing subclasses of the default visitor
- JavaCC grammar feeds into the Java Tree Builder (JTB)
- JTB creates JavaCC grammar with embedded Java code, syntax-treenode classes, and a default visitor
- the new JavaCC grammar feeds into the JCC, which creates a parser
- jtb fortran.jj \longrightarrow javacc jtb.out.jj \longrightarrow javac Main.java \longrightarrow java Main < prog.f

Translating a grammar production with JTB:

```
// .jj grammar
void assignment() :
{}
{ PrimaryExpression() AssignmentOperator() Expression() }

// jtb.out.jj with embedded java code that builds syntax tree
Assignment Assignment () :
{
    PrimaryExpression n0;
    AssignmentOperator n1;
    Expression n2; {}
}
{
    n0 = PrimaryExpression()
    n1 = AssignmentOperator()
    n2 = Expression()
    { return new Assignment(n0, n1, n2); }
}
```

JTB creates this syntax-tree-node class representing Assignment :

```
public class Assignment implements Node {
   PrimaryExpression f0;
   AssignmentOperator f1;
   Expression f2;

public Assignment(PrimaryExpression n0,
    AssignmentOperator n1, Expression n2) {
   f0 = n0; f1 = n1; f2 = n2;
   }

public void accept(visitor.Visitor v) {
```

```
v.visit(this)
}
```

Default DFS visitor:

```
public class DepthFirstVisitor implements Visitor {
    ...
    // f0 → PrimaryExpression()
    // f1 → AssignmentExpression()
    // f2 ⇒ Expression()
    public void visit(Assignment n) {
        // no action taken on current node,
        // then recurse on subobjects
        n.f0.accept(this);
        n.f1.accept(this);
        n.f2.accept(this);
    }
}
```

Example visitor to print LHS of assignments:

```
public class PrinterVisitor extends DepthFirstVisitor {
   public void visit(Assignment n) {
      // printing identifer on LHS
      System.out.println(n.f0.f0.toString());
      // no need to recurse into subobjects since assignments cannot be nested
   }
}
```

Type Checking

- a program may follow a grammar and parse properly, but other problems may remain
 - eg. type errors, use of undeclared variables, cyclical inheritance, etc.

Simple Expressions

- eg. in Java, 5 + true gives a type error:
 - this type rule could be expressed as:
 - \star if two expressions have type $\,$ int $\,$, then their addition will also be of type $\,$ int
 - in typical notation:

$$\frac{a: \text{int} \quad b: \text{int}}{\text{a+b}: \text{int}}$$

- * in this notation, the **conclusion** appears under the bar, with multiple **hypotheses** above the bar
 - · ie. if hypotheses are true, than conclusion is true
- \ast to check this rule, recursively check if e_1 is type $\,$ int $\,$, and then if $\,e_2$ is also of type $\,$ int $\,$
- when given 5: int and true: boolean, type checker will see that the types don't obey the rule, and should throw an error

Implementing a simple type checker:

Statements TYPE CHECKING

• what about for more complex compound type rules, eg. for parsing 3 + (5 + 7):

- simply by following the recursive calls, the previous type checker would still successfully check the type
 - * ie. type checking in a DFS manner

$$\frac{5: \text{ int } \quad 7: \text{ int}}{\text{5+7}: \text{ int}} \rightarrow \frac{3: \text{ int } \quad 5+7: \text{ int}}{\text{3+(5+7)}: \text{ int}}$$

• handling the simple nonterminal true :

• handling boolean negation:

• handling ternary expressions:

$$\frac{a: \text{boolean}}{\text{(a ? b : c)}} \cdot \frac{b:t \quad c:t}{t}$$

- t is a type variable since b and c should have the same type

Statements

- different types of statements in MiniJava:
 - System.out.println(e), assignments, if and while statements
- unlike expressions, statements don't *return* anything:
 - they may have side effects, but do not have their *own* types
 - type checkers would only either return silently or throw an error
 - no overall type value to return
 - in typical notation \vdash means that a sentence type-checks
 - * not necessarily that it is a particular type
- handling System.out.println :

$$\frac{\vdash e : \mathsf{int}}{\vdash \mathsf{System.out.println(e)}}$$

Declarations TYPE CHECKING

• handling if statements:

$$\frac{\vdash e : \mathsf{boolean} \quad \vdash a \quad \vdash b}{\vdash \mathsf{if} \; (\mathsf{e}) \; \mathsf{a} \; \mathsf{else} \; \mathsf{b}}$$

• handling while statements:

$$\frac{\vdash e : \mathsf{boolean} \quad \vdash s}{\vdash \mathsf{while} \; (\mathsf{e}) \; \mathsf{s}}$$

Declarations

- for declared variables, how can we track what specific identifiers represent?
 - create and add to a **symbol table** that caches the declaration of variables with types
 - maps identifiers to types
- type checking rule for an assignment statement, given the symbol table A:

$$\frac{A(x) = t \quad A \vdash e : t}{A \vdash \mathbf{x} = \mathbf{e}}$$

- by convention, A should go before each \vdash in all type checking rules * this is because any subexpressions may contain variables
- ie. $A \vdash e : t$ can be read as expression e given program context from table A can lead to conclusion t when type checking

Symbol table example:

```
class C {
  boolean f;
  t m(int a) {
    int x,
    ...
    x = a + 5;
    ...
  }
}

// symbol table contains:
// id | type
// ------
// f | boolean
// a | int
// x | int
```

Arrays TYPE CHECKING

• to type check a variable, just look it up in the symbol table:

$$\frac{A(x) = t}{A \vdash \mathbf{x} : t}$$

- rewriting our symbol table lookup using the previous notation
- to type check x = a + 5:

$$\frac{A \vdash a : \mathsf{int} \quad A \vdash 5 : \mathsf{int}}{A \vdash \mathsf{a+5} : \mathsf{int}} \to \frac{A \vdash x : \mathsf{int} \quad A \vdash a + 5 : \mathsf{int}}{A \vdash \mathsf{x=a+5}}$$

Example of variable shadowing:

```
class a {
  int a;
  int a(int a) {
    // int a; // compiler error, can't redeclare parameter
    ... a + 5 ... // checks closest `a`, ie. read from bottom of symbol table
    return 0;
  }
}
```

Arrays

- type checking arrays:
 - expressions like arr[idx], new int[len], arr.length
 - statements like arr[idx] = val
 - note that it is *unreasonable* for the type checker to check out of bound indices
 - * would require the type checker to do some arithmetic in this stage
- handling array indexing:

$$\frac{A \vdash a : \; \mathsf{int}[] \quad A \vdash b : \; \mathsf{int}}{A \vdash \; \mathsf{a[b]} : \; \mathsf{int}}$$

- in MiniJava, the only array type is \mbox{int} , but arrays can generally hold any type t
- note that the int in the conclusion refers to the array type while the other refers to the index type
- note that this rule is an elimination rule since the int[] type is consumed into an int in the conclusion

Methods TYPE CHECKING

• handling array assignments:

$$\frac{A \vdash x : \ \mathsf{int}[] \quad A \vdash i : \ \mathsf{int} \quad A \vdash v : \ \mathsf{int}}{A \vdash \mathsf{x[i]} = \mathsf{v}}$$

• handling array constructions:

$$\frac{A \vdash e : \mathtt{int}}{A \vdash \mathtt{new} \ \mathtt{int[e]} : \mathtt{int[]}}$$

• handling the array length property:

$$\frac{A \vdash e : \mathsf{int}[]}{A \vdash \mathsf{e.length} : \mathsf{int}}$$

Methods

- what needs to be checked in a method call in Java?
 - the method being called needs to exist
 - the type of the actual parameter should match the formal parameter

Declaring and calling methods in Java:

```
u2 m(u a) { // declaration
    s
    return e2;
}

m(e); // call
```

• when type checking the method body, need to ensure:

$$A \vdash s, A \vdash e_2 : u_2$$

• to type check the method call:

$$\frac{A \vdash e : t \quad A \vdash m : u \to u_2 \quad t = u}{A \vdash \mathbf{m(e)} : u_2}$$

note that we need a mechanism to find the types of the method, eg.
 takes parameter of type u and returns type u2

Classes *TYPE CHECKING*

Classes

• expressions such as new C(), this, (C) e refer to classes:

- - need a new type C, representing some class:
 - * C is another contextual record similar to the symbol table A
 - * $A, C \vdash e : t$
 - * ie. expression e given program context from table A and class Ccan lead to conclusion t when type checking
 - this refers to the lexically enclosing class type
- handling new C():
 - need to check that C exists
- handling casts:

$$\frac{A,C \vdash e:t}{A,C \vdash \text{ (D)e }:D}$$

- again, may need a runtime check (like array indexing) to actually perform the type cast
- in Java, upcasts will always succeed, while downcasts need a runtime check
- handling subtyping:
 - the notation $C \leq D$ indicates the class C is a subclass of the class D, perhaps transitively or reflexively
 - * eg. for primitives as well, char \leq short \leq int \leq long \leq float \leq double
 - note that:

$$\frac{C \le D \quad D \le E}{C \le C}, \frac{C \le D \quad D \le E}{C \le E}$$

- when u < t:
 - * for polymorphic assignments:

$$\frac{A,C \vdash x:t \quad A,C \vdash e:u}{A,C \vdash \mathbf{x=e}}$$

* for method parameters:

$$\frac{A,C \vdash a:D \quad A,C \vdash e:u \quad \text{D.m}:t \rightarrow t_2}{A,C \vdash \text{a.m(e)}:t_2}$$

- note that to check subclassing relationships, we can either use visitors to traverse the extends relationship on the fly, or cache a previous result

Polymorphism in Java:

```
// class B and C both extend class A
A x = (e ? new B() : new C());
// Compiler checks *both* B and C have correct subclassing relationship to A.
// At runtime, the type of x will be related to either B or C.
```

Extended method example:

```
class D {
   t1 f1
   t2 f2
   u3 m(u1 a1, u2 a2) {
     t1_1 x1
     t2_2 x2
     s
     return e;
   }
}
```

- hypotheses for type checking the above method:
 - 1. a1, a2, x1, x2 are all different
 - 2. $A, C \vdash s$, where C = D:
 - but what should the symbol table *A* hold?
 - * f1:t1, f2:t2, a1:u1, a2:u2, x1:t1_1, x2: t2_2
 - * when using *A*, we should search from *bottom* of table to handle variable shadowing
 - 3. $A, C \vdash e : u_3'$, where $u_3' \leq u_3$
- conclusion from the above hypotheses:
 - $-A, C \vdash D.m$ ie. the method D.m type-checks

Entire Java Program

Sample Java program:

```
class Main {...}

class C1 extends D1 {...}
...
class Cn extends Dn {...}
```

- type checking responsibilities:
 - 1. main must exist
 - 2. C1...Cn need to all be different

Generic Types TYPE CHECKING

- 3. D1...Dn need to all exist
- 4. no extends cycle in classes

Generic Types

MiniJava generic type syntax:

```
class C <X*> extends N {
    S* f*; // class fields
    k // class constructor method

// zero or more methods of the following pattern:
    <Y*> U m(U* x*) {
        ...
        return e;
    }
    ...
}

// additional new supported expressions:
e.<V*>m(e*)
new N (e*)

// Where N ::= C<T*>
// and S, T ::= N | X
// and U, V ::= N | Y
// and X, Y are *type parameters*.
// The asterisk indicates a vector of possibly multiple values.
```

Example with generic types:

Generic Types TYPE CHECKING

- statements to type check in the above example:
 - return this.accept(f) trivially type checks due to recursion
 - extends List establishes the inheritance relationship to
 - * while linking together B with the type variable A in the declaration of List
- to typecheck the entire generic class declaration:

$$\frac{\ \ \, \vdash \, \mathsf{M}^* \, in \, \, \mathsf{C} \!\!<\!\! \mathsf{X}\!\!>\!\! }{\vdash \, \mathsf{class} \, \, \mathsf{C} \!\!<\!\! \mathsf{X}\!\!>\!\! \, \mathsf{extends} \, \, \mathsf{N} \, \, \big\{ \, \, \mathsf{S}^* \, \, \, \mathsf{f}^*; \, \, \mathsf{k} \, \, \, \, \mathsf{M}^* \, \big\}}$$

• to typecheck a generic method declaration:

$$\frac{\vdash x^* : U^* \quad \vdash \mathsf{this} : \mathsf{C} < \mathsf{X} * > \quad \vdash e : S, S \leq U \quad \mathit{override}(m, N, < \mathsf{Y} * > \mathsf{U}^* \rightarrow U)}{\vdash < \mathsf{Y} * > \; \mathsf{U} \; \mathsf{m}(\mathsf{U}^* \; \mathsf{x}^*) \; \{ \; \mathsf{return} \; \mathsf{e}; \; \} \; \mathit{in} \; \mathsf{C} < \mathsf{X} * >}$$

to check method overriding:

$$\frac{\textit{mtype}(m,N) = \text{$$^{\text{T*}}$} \cup \text{$$^{\text{T*}}$} \rightarrow U \implies T^* \leq U^*[Y^*/Z^*] \land T \leq U[Y^*/Z^*]}{\textit{override}(m,N,\text{$$^{\text{T*}}$} \rightarrow T)}$$

- where U[Y/Z] indicates the type U with all instances of type Y replaced with Z
 - * this operation is used to *instantiate* a type variable declaration with a different name, ie. replacing a declaration with a usage
- to implement mtype :

$$\frac{\text{class C < X*> \dots \{ \dots M* \}} \quad m \in M^*}{\textit{mtype}(m, \text{ C}) = (\text{ U*} \rightarrow U)[X^*/T^*]}$$

Generic Types TYPE CHECKING

• and if the method is not found:

$$\frac{\text{class C extends N } \{ \text{ } \dots \text{ M* } \} \quad m \notin M^*}{mtype(m,\text{ C}) = mtype(m,N[X^*/T^*])}$$

• to type check a method call expression:

$$\frac{\vdash e: T \quad \textit{mtype}(m, T) = \texttt{U*} \rightarrow U \quad \vdash e^*: S^* \quad S^* \leq U^*[V^*/Y^*]}{\vdash \texttt{e.m(e*)} : [V^*/Y^*]U}$$

Sparrow

- **Sparrow** is the intermediate language used in CS132
- characteristics:
 - no classes
 - * methods in classes have concatenated names, eg. Fac.ComputeFac becomes FacComputeFac
 - uses goto to implement if else
 - uses brackets to indicate heap loads or stores
 - * no global variables, only heap and functions have global visibility
 - functions may have extra parameters added

Grammar

- a program p is a series of functions, p ::= F1...Fm • a function declaration F has syntax F ::= func f(id1...idf) b • a block b is a series of instructions, b ::= i1...in return id • an instruction can be: - a label 1: - an assignment id = c , where c is an integer literal: * or id = Of, where f is a function - an operation id = id + id, id = id - id, id = id * id- a less-than test id = id < id</p> - a heap load or store: * id = [id + c], [id + c] = id, where c is the offset and heap addresses are valid - an allocation id = alloc(id) : * eg. v0 = alloc(12) allocates 12 bytes * creates a 3-tuple of addresses to values accessible by [v0 + 0], [v0 + 4], [v0 + 8]- a print print(id) an error print error(s)

 - an unconditional goto goto 1, where 1 is a label
 - a conditional goto if0 id goto 1, jumps if id contains 0
 - a function call id = call id(id1...idf), where id contains a function
- identifiers can be any reasonable identifiers, except:
 - a2...a7, s1...s11, t0...t5 which are all RISC register names

Translation to IR

- overall translation pipeline is:
 - 1. MiniJava:
 - mostly *unbounded*, eg. in the number of variables, parameters, methods, classes, etc.
 - 2. Sparrow:
 - still unbounded
 - may even generate *new* variables for simplicity / ease of translation
 - 3. Sparrow-V:
 - number of registers becomes bounded
 - want to minimize variables allocated on the stack
 - 4. RISC-V:
 - register count still bounded

State and Transitions

- program *state* consists of the tuple (p, H, b^*, E, b) :
 - -p is the program
 - *H* is the *heap* that maps from heap addresses to *tuples* of values
 - * the tuple can be *indexed* into
 - $-b^*$ is the body of the function that is executing right now
 - * can only perform a goto within this function block
 - $-\ E$ is the environment that maps from identifiers to values
 - b is the remaining part of the block that is executing right now
 - * ie. b^* contains the entire function block, while b only contains the current and remaining statements in the block
- in a state transition, we want to *step* from one state to the next:

$$(p, H, b^*, E, b) \rightarrow (p, H', b^{*'}, E', b')$$

• assignment state transition:

$$(p,H,b^*,E, \text{ id=c} \quad b) \rightarrow (p,H,b^*,E \cdot [id \mapsto c],b)$$

• arithmetic state transition:

$$(p,H,b^*,E, \text{ id=id1+id2} \ b) \rightarrow (p,H,b^*,E \cdot [id \mapsto (c_1+c_2)],b)$$

- where $E(id_1) = c_1$ and $E(id_2) = c_2$

- ie. this transition requires a runtime check in the environment
- heap load state transition:

$$(p, H, b^*, E, id=[id1+c] \ b) \rightarrow (p, H, b^*, E \cdot [id \mapsto (H(a_1))(c_1+c)], b)$$

- where $E(id_1)=(a_1,c_1)$ such that a_1 is a heap address and c_1 its offset, and $(c_1+c)\in domain(H(a_1))$
- ie. the new computed offset is a valid index into the tuple on the heap
- heap allocation state transition:

$$(p, H, b^*, E, \text{id=alloc(id1)} \ b) \rightarrow (p, H \cdot [a \mapsto t], b^*, E, b)$$

- where $E(id_1)=c$ and c is divisible by 4, a is a fresh address, and $t=[0\mapsto 0, 4\mapsto 0, ...(c-4)\mapsto 0]$
- unconditional goto state transition:

$$(p, H, b^*, E, \text{ goto 1} \ b) \to (p, H, b^*, E, b')$$

- where $find(b^*, l) = b'$
- find(b, l) is used to find the label l inside the block b
- conditional goto state transition:

$$(p, H, b^*, E, \text{ if 0 id goto 1} \ b) \rightarrow (p, H, b^*, E, b')$$

- where E(id) = 0 and $find(B^*, l) = b'$
- function call state transition:

$$(p,H,b^*,E, \text{ id = call id0(id1...idf)} \quad b) \rightarrow (p,H',b^*,E \cdot [id \mapsto E'[id']],b)$$

- where $E(id_0)=f$, p contains func f (id1'...idf') b', and $E'=[id_1'\mapsto E(id_1),id_2'\mapsto E(id_2),...]$
- the function f is then *called* through the following state transition: $(p, H, b', E', b') \rightarrow (p, H', b', E', \text{return } id')$
- note the intermediate transfer of control to the callee

Expressions

- want to translate $e, k \to c, k'$ where e is some expression in MiniJava and c is the output code in Sparrow, while managing:
 - 1. additional variables (that could have been added during translation)

- 2. labels used in jumps in IR
- k is a "fresh" or new integer number that has not yet been used
 - * can be utilized to generate variable and label names
- after translation, the number k' should be the next *new* number
- by convention, the *result* of the expression e is stored in the variable t_k
- simple expression:

$$5, k \rightarrow \mathsf{tk} = 5, k+1$$

• expression with a local variable:

$$x, k \rightarrow tk = x, k+1$$

• recursive translations:

e1+e2
$$,k
ightarrow c_1c_2$$
 tk=tl+tk1 $,k_2$

- given that $e_1, k+1 \rightarrow c_1, k_1$ and $e_2, k_1 \rightarrow c_2, k_2$, and where $t_l = t_{k+1}$
- note that by convention, c_1 will be stored in t_{k+1} and c_2 will be stored in t_{k1}
- example addition translation:

$$7+9, 3 \rightarrow t4=7 t5=9 t3=t4+t5, 7$$

- after 7, $4 \rightarrow \text{t4=7}$, 5 and 9, $5 \rightarrow \text{t5=9}$, 6
- example nested addition translation:

$$(7+9)+11, 3 \rightarrow t5=7 t6=9 t4=t5+t6 t7=11 t3=t4+t7, 8$$

- 7,5 \rightarrow t5=7,6 and 9,6 \rightarrow t6=9,7
- 7+9, $4 \rightarrow$ t5=7 t6=9 t4=t5+t6, 7
- 11, $7 \rightarrow$ t7=11, 8
- variables t4...t6 handle 7+9 , t7 handles 11 , and t3 holds the entire expression

Statements

- want to translate $s,k\to c,k'$ where s is some statement in MiniJava and c is the output code in Sparrow
 - $-\ k'$ will differ from k when a subexpression is contained within the statement

• simple recursive statements:

$$s_1 s_2, k \to c_1 c_2, k_2$$

- where $s_1, k \rightarrow c_1, k_1$ and $s_2, k_1 \rightarrow c_2, k_2$
- no return value since statements only have a side effect, so only ordering of output code matters
- simple assignment statement:

$$x=e, k \rightarrow c \quad x=tk, k'$$

- where $e, k \to c, k'$ and the result of c is held in variable t_k by convention
- if else statement:

if(e) s1 else s2
$$,k \rightarrow c_k,k_2$$

- $-e, k+1 \rightarrow c_e, k_e$
- $s_1, k_e \rightarrow c_1, k_1$
- $s_2, k_1 \rightarrow c_2, k_2$
- to generate control code, need to *generate* labels and use jumps:
 - * can use k in order to avoid label duplication
 - * also need to $\it linearize$ the code while allowing s_1 to execute without s_2 , and vice versa
 - * uses an unconditional jump and a conditional jump

 c_k , the generated code from translating the $\,$ if else $\,$ statement:

```
c_e // result stored in temporary t_{k+1}
if0 t_{k+1} goto else_k
  c1
  goto end_k
else_k:
  c2
end_k:
```

• while statement:

while(e) s
$$,k
ightarrow c_k,k_s$$

- $-e, k+1 \rightarrow c_e, k_e$
- $s, k_e \rightarrow c_s, k_s$
- again, need to generate control code
- note that the compiler does not care about how many times the loop runs
 - $\star\,$ thus the label subscript k simply depends on static code structure
- conventially, for loops are usually reduced into while loops

 c_k , the generated code from translating the while statement:

```
loop_k:
c_e // result stored in temporary t_{k+1}
if0 t_{k+1} goto end_k
    c_s
    goto loop_k
end_k:
```

Examples

To translate $s, k \rightarrow, c, k'$ for a simple sequence s of two substatements using visitors:

```
class Result {
   String code;
   int k1;
}

Result visit(Seq n, int k) {
   Result res1 = n.f1.accept(this, k);
   Result res2 = n.f2.accept(this, res1.k);
   return new Result(res1.code + res2.code, res2.k);
}
```

Translating the following code starting from k = 0:

```
while (true) {
   if (false)
      x = 5;
   else
      y = 7;
}
```

Translation process:

```
// handling `while (e) s`:
true, 1 \rightarrow t1 = 1, 2 // e

// handling s, which has the form `if (e1) s1 else s2`:
false, 3 \rightarrow t3 = 0, 4 // e1

5, 4 \rightarrow t4 = 5, 5 // s1
x=5, 4 \rightarrow x = t4, 5
```

```
7, 5 \rightarrow t5 = 7, 6 // s2
y=7, 5 \rightarrow x = t5, 6
if (false) x=5 else y=7, 2 \rightarrow { // s
  t3 = 0
  if0 t3 goto else2
  t4 = 5
  x = t4
  goto end2
  else2:
    t5 = 7
    v = t5
  end2:
}, 6
while (true) {if (false) x=5 else y=7}, 0 \rightarrow \{
  loop0:
    t1 = 1
    if0 t1 goto end0
    // code generated from s, the if-else statement
    goto loop0
  end0:
}, 6
```

Arrays

- need to generate Sparrow IR for the following MiniJava code involving arrays:
 - expressions like arr[idx], new int[len], arr.length
 - statements like arr[idx] = val
- in Sparrow, arrays will be represented on the heap:
 - can create an array by allocating space on the heap
 - need to *track* and store the array length somewhere:
 - * by *convention*, simply store the length of the array at position 0 on the heap, and shift array positions in the heap accordingly
 - * thus in Sparrow, first array element is stored at offset 4, and last element is at offset 4n where n is array length
 - * total amount to allocate is $4 \times (n+1)$ to store length
- array length:

$$\texttt{e.length} \ , k \rightarrow c \quad \texttt{tk=[tl+0]} \ , k'$$

- after evaluating $e, k+1 \rightarrow c, k'$ and where $t_l = t_{k+1}$

• array allocation:

```
new int[e], k \rightarrow c tk'=4*(tl+1) tk=alloc(tk') [tk+0]=tl, k'+1
```

- after evaluating $e, k+1 \rightarrow c, k'$ and where $t_l = t_{k+1}$
- t_k' is a new temporary to store 4*(e+1) while saving the original array length to store back in array
- in the Sparrow spec, alloc will initialize all heap entries to zero
- array indexing:

e1[e2]
$$,k
ightarrow c_1c_2$$
 tk2=4*(tk1+1) tl=tk1+tk2 tk=[t1+0] $,k_2+1$

- after evaluating $e_1, k+1 \to c_1, k_1$ and $e_2, k_1 \to c_2, k_2$, and where $t_l = t_{k+1}$
- note that the second part of a heap lookup must be a constant so we build up the entire dynamic offset in the first parameter
- to check bounds, need to ensure that $0 \le e_2 < n$ where n is the length of the array in e_1
- similar process for array asignments in the form a[e1] = e2

Implementing a bounds check:

```
t_{\{k2+1\}} = -1 < tk1
t_{\{k2+2\}} = [t_{\{k+1\}} + 0]
t_{\{k2+3\}} = tk1 < t_{\{k2+2\}}
t_{\{k2+4\}} = t_{\{k2+1\}} * t_{\{k2+3\}} // \text{ multiplication acts as logical AND}
// including a bounds check uses up to k2+5 for temporaries

if0 t_{\{k2+4\}} goto error
... // loading or storing code here goto end error:
   error("out of bounds")
end:
```

Classes

MiniJava method example:

```
}
}
```

In Sparrow, there are no more classes:

```
func C.m(this a) { // name mangling
  c
  return x
}
```

- how to implement objects in Sparrow?
 - like arrays, represent objects on the heap
 - object fields will be given by offsets into the heap
 - * eg. to access the field $f,k\to \text{tk=[this+L]}, k+1$ where L is the static offset remembered by the compiler associated with the field f
 - but how can we handle this ie. the current object?
 - * need to translate the method call e1.m(e2) into C.m(t1 t2)
 - * where t1, t2 hold the expression results of e1, e2 respectively
 - * note that we can *identity* the full mangled name for e1.m by finding the *type* C of e1

Inheritance

- when we allow for inheritance and extends , we no longer know exactly which methods we are calling
 - similarly, object fields can also be inherited and accessed in subclasses

MiniJava inheritance example:

```
class B {
    t p() { this.m(); }
    u m() { ... }
}

class C extends B {
    u m() { ... } // overrides B.m
}
```

In Sparrow:

```
B.p(this) {
  B.m(...) // this is now *wrong*, could be called with C instead of B
}
B.m(this) { ... }
```

C.m(this) { ... }

- to handle inheritance, need to add an additional level of *indirection*:
 - add a **method table** for all objects:
 - * by convention, method table stored at position 0, similarly to where length is stored in arrays
 - * shift locations of object fields by 4
 - method table contains entries pertaining to all inherited visible methods
 - * each entry holds the address of a function
 - for the above example:
 - * a B object's method table should contains references to B.p, B.m
 - * while a C object's method table should contains references to B.p, C.m
 - * note that the offsets across related objects should line up
 - method tables are *shared* across objects of the same class, so each class can have a single method table allocated and all objects will point to that single copy
 - to call a class function in OOP:
 - 1. *load* method table
 - 2. load function name
 - * additional indirection to handle inheritance
 - 3. call
- consider building method tables for the following inheritance relationship:
 - class A has methods m, n
 - * method table holds refs. to A.m, A.n
 - class B extends A has no methods
 - * method table holds refs. to A.m, A.n
 - class C extends B with methods p, m
 - * method table holds refs. to C.m, A.n, C.p, regardless of method definition order
 - class F extends C with methods q
 - * method table holds refs. to C.m, A.n, C.p, F.q
 - thus compiler needs to associate the method n with offset 4 into method tables, etc.

Control Flow Analysis

- generally, calling a method e.m() is implemented using a load, load, call on the method table:
 - in some *special* scenarios involving a **unique target**, we can replace this implementation with a single *direct* call

- ie. statically replacing a general call sequence with a much faster, specialized one
- what are the characteristics that make a call have a unique target?
 - 1. what are the classes of the results of e in e.m()?
 - eg. classes A, B, C
 - 2. which methods m can be called?
 - eg. two methods, A.m and C.m
 - 3. is the m that is called always the same?
 - if not, eg. A.m is different from C.m , cannot go to specialized sequence
 - but e may have nested callsites within it
 - * thus answering question (1) requires cyclically answering (2)
- old approach used at *runtime* in Objective-C:
 - instead of having individual method tables for each object, have one giant method table at runtime representing the methods for all possible object types and their method names
 - at runtime, check this large method table to find which method to call
 - * requires a lookup into the table, as well as storing a representation of the type in each object
- a static approach is to perform Class Hierarchy Analysis (CHA):
 - revolves around knowing class hierarchies
 - consider the simple hierarchy $A \rightarrow B \rightarrow C$, with methods A.m, C.m:
 - * the declaration C x and later call x.m() has multiple possibilities, according to the hierarchy
 - * the code x = new C() whould lead to calling C.m, while x = new B() would call A.m
 - CHA approach:
 - 1. use type declarations
 - 2. use the class hierarchy
- another static approach called Rapid Type Analysis (RTA):
 - again uses class hirearchies
 - consider the previous example from CHA:
 - * RTA would notice that there is no x = new C() in the program
 - * thus RTA will realize that x.m() has the unique target of A.m
 - requires just another linear scan to check for new statements
 - RTA approach:
 - 1. use type declarations
 - 2. use the class hierarchy
 - 3. use new statements
- another *static* approach called **Type-Safe Method Inlining (TSMI)**:
 - takes an entire method and inlines it in the call whenever it is a unique target

- not as expensive or good as CFA

Illustrating issue with TSMI:

0CFA

- another *static* approach is called level 0 Control Flow Analysis (0CFA)
- goes from syntax, to constraints, to information
- CFA approach:
 - 1. starting from syntax, *generate* constraints by performing a linear pass over the code
 - 2. solve constraints to get the desired sets of class names
 - runs in $O(n^3)$
- syntax of interest and the constraints they imply:
 - new C():

 * implies the constraint [new C()] = {C}

 x = e :

 * implies the constraint $[e] \subseteq [x]$ e1.m(e2) and class C { _ m (_ a) { return e } :

 * imply the constraint:

 if $C \subseteq [e1]$, then $[e2] \subseteq [a] \land [e] \subseteq [e1.m(e2)]$

Code example:

```
A x = new A();
B y = new B();
x.m(new Q());
```

```
v.m(new S());

class A {
    void m(Q arg) {
        arg.p();
    }
}

class B extends A {
    void m(Q arg) {...}
}

class Q { ... }
    class S extends Q { ... }

    · CHA:
```

- 1. x.m no unique target
- 2. y.m unique target, nothing overrides B.m
- 3. arg.p no unique target
- RTA:
 - 1. x.m still no unique target, both new A() and new B() occur
 - 2. y.m unique target, only one new
 - 3. arg.p no unique target
- CFA:
 - A x = new A() implies $[x] \subseteq [$ new A() $] \land [$ new A() $] = \{A\}$
 - x.m(new Q()) and class A { void m(Q arg) { return arg.p(); }}
 - * implies that if $A \in [x]$ then [new Q()] $\subseteq [arg]$
 - * and $[arg.p()] \subseteq [x.m(new Q())]$
 - etc.
 - 1. x.m unique target
 - 2. y.m unique target
 - 3. arg.p unique target
- 1CFA:
 - spends *exponential* time when generating constraints
 - but is able to catch inconsistencies in 0CFA that are more likely to detect unique targets
 - essentially, uses separate copies of constrained methods instead of just one

Lambda Expressions

- want to compile lambda expressions while moving from recursion (more expensive stack) to iteration
- translate lambda expressions to an intermediate form in three steps / approaches:
 - 1. tail form
 - functions never return
 - using continuations
 - 2. first-order form
 - functions are all top level
 - using data structures
 - 3. imperative form
 - functions take no arguments
 - using register allocation

Illustrating recursion vs. iteration:

```
// recursion:
static Function<Integer, Integer> // in class Test
                ^param(s) ^return type
//
fact = n \rightarrow
  n = 0? 1: n * Test.fact.apply(n-1); // builds up a stack
// iteration:
static int factIter(int n) {
  int a = 1;
  while (n \neq 0) {
    a = n * a;
    n = n - 1;
  }
  return a;
}
// low-level iteration with goto:
factIter: a = 1;
          if (n = 0) \{ \}
Loop:
          else { a = n*a; n = n-1; goto Loop }
```

Tail Form

- in continuation passing style (CPS):
 - the continuation is the code representing the returning of the computation
 - instead of returning from a function, just call the continuation

General program to tail form:

```
// use CPS:
static BiFunction<Integer, Function<Integer, Integer>, Integer>
factCPS = (n, k) →
    n == 0 ?
    k.apply(1)
    : Test.factCPS.apply(n-1, v → k.apply(n * v)); // builds up continuation

factCPS.apply(4, v → v); // how to actually call CPS function
// evaluation of a tail form has *one call* as the last operation
```

- evaluation of a **tail form** expression has *one call* as the last operation:
 - Tail ::= Simple | Simple.apply(Simple*) | Simple ? Tail : Tail
 - while evaluation of a **simple** expression has *no* calls
 - * Simple ::= Id | Constant | Simple PrimitiveOp Simple | Id → Tail

CPS transformation rules:

```
static Function<...> foo = x \rightarrow ...
// \Longrightarrow
static BiFunction<...'> fooCPS = (x, k) \rightarrow k.apply(...)
k.apply(...(foo.apply(a, n-1))...) // can only have one call in CPS!
// \Longrightarrow
fooCPS.apply(a, n-1, v \rightarrow k.apply(... v ...)) // extract out foo.apply call
k.apply(foo.apply(a, n-1)) // special case
// \Longrightarrow
fooCPS.apply(a, n-1, k);
k.apply(y ? ... : ...)
// \Longrightarrow
y ? k.apply(...) : k.apply(...)
k.apply(foo.apply(a) ? ... : ...)
// \Longrightarrow
fooCPS(x, v \rightarrow k.apply(v ? ... : ...))
// \Longrightarrow
fooCPS(x, v \rightarrow v ? k.apply(...) : k.apply(...))
```

Translating original fact into its tail form, factCPS:

```
fact = n \rightarrow n = 0 ? 1 : n * Test.fact.apply(n-1);
// \Longrightarrow
```

```
factCPS = (n, k) \rightarrow k.apply(
  n = 0 ? 1 : n * Test.fact.apply(n-1));
// \Longrightarrow
factCPS = (n, k) \rightarrow
  n = 0 ? k.apply(1) : k.apply(n * Test.fact.apply(n-1));
// \Longrightarrow
factCPS = (n, k) \rightarrow
  n = 0 ? k.apply(1) : Test.factCPS.apply(n-1, v \rightarrow k.apply(n * v))
```

First-Order Form

- in CPS form, there are really *two* continuations at play, k and $v \rightarrow k.apply(...)$:
 - Cont ::= $v \rightarrow v \mid v \rightarrow Cont.apply(n * v)$
 - if we can represent continuations without lambda functions, would only have functions at the top level

Implementing continuations as purely datatypes:

```
interface Continuation {
    Integer apply(Integer a);
}

class Identity implements Continuation {
    public Integer apply(Integer a) { return a; }
}

class FactRec implements Continuation {
    Integer n; Continuation k;
    public FactRec(Integer n, Continuation k) {
        this.n = n; this.k = k;
    }

    public Integer apply(Integer v) { return k.apply(n * v); }
}
```

CPS to first-order form:

```
static BiFunction<Integer, Continuation, Integer>
facCPSadt = (n, k) → // adt - abstract data type
  n == 0 ? k.apply(1) :
   Test.factCPSadt.apply(n-1, new FactRec(n, k));
```

Imperative Form

- from first-order, we can prove that it is possible to purely represent a continuation as a *number*:
 - every continuation (at least for factCPS) is of the form $v \rightarrow p * v$
 - eg. k.apply(1) is just p * 1 = p
 - eg. $v \rightarrow k.apply(n * v)$ is just $v \rightarrow (p * n) * v$ or just (p * n)
 - this simplification can only work for some primitive operations, but in general, all first-order forms can be expressed as iteration

First-order form to imperative form:

```
static BiFunction<Integer, Integer, Integer>
factCPSnum = (n, k) → n = 0 ? k:
    Test.factCPSnum.apply(n-1, k * n);

// get rid of function parameters and use global registers:

static Integer n; static Integer k;
static void factCPSimp() {
    if (n = 0) { }
        else { k = k*n; n = n-1; factCPSimp(); }
}

// to low-level iteration with gotos:

static Integer n; static Integer k;
factCPSimp:
    if (n = 0) { }
    else { k = k*n; n = n-1; goto factCPSimp }
```

Register Allocation

- in Sparrow, all variables are on the stack, which forces relatively *slow* access:
 - in the Sparrow-V IR, *some* variables are held in registers for *faster* access
 - want to fit as many variables as possible into the registers in a process called register allocation
- register allocation can be broken down into two subproblems:
 - 1. liveness analysis
 - 2. graph coloring (such that no adjacent nodes are the same color)
 - interface betwen the two steps is an **interference graph**
 - an approach using heuristics
- incremental steps for saving stack variables:
 - 1. no registers used
 - 2. use registers for storing all subcomputations
 - 3. use registers to pass function parameters
 - have to save all registers before function calls in case they are *clob*bered
 - 4. avoid saving registers that are not utilized after function calls
 - 5. using liveness analysis to reuse registers

Liveness Analysis

Sparrow to Sparrow-V example:

```
// Sparrow
a = 1
            // prog. pt. 1 (point lies just before instruction)
b = 2
           // prog. pt. 2
c = a + 3 // prog. pt. 3
print b + c // prog. pt. 4
// Sparrow-V with two registers (s0, s1)
s0 = 1
          // cannot assign to s0, would clobber `a`
c = s0 + 3 // leave `c` on the stack
// but `a` is no longer used, can reuse a register
print s1 + c
// Sparrow-V attempt 2
s0 = 1
s1 = 2
```

```
s0 = s0 + 3 // load before store
print s1 + s0
```

- **program points** lie between lines of instructions:
 - ie. where labels can be introduced
 - first program point lies before the first instruction
- in liveness analysis, want to examine:
 - when is a variable *live*, or what is its **live range**?
 - * a is live in the range [1, 3], ie. from 1 up to 3
 - * b is live in [2,4]
 - * c is live in [3,4]
 - note that the live ranges for a, b and b, c overlap, while the live ranges for a, c do not
 - * ie. overlapping live ranges conflict
- in an inteference graph:
 - nodes represents variables
 - edges represent conflicts
 - allocating registers is similar to coloring this graph

What is the fewest number of registers to entirely allocate the following code?

```
a = 1
            // p.1
b = 10
           // p.2
         // p.3
c = 8 + b
d = a + c // p.4
e = a + d // p.5
f = c + e // p.6
         // p.7
d = a + f
c = d + f
          // p.8
f = a + c
         // p.9
return c + f // p.10
```

Live ranges, from inspection:

```
a: [1, 9]
b: [2, 3]
c: [3, 6] *and* [8, 10] (c can be reused before it is declared again)
d: [4, 5] and [7, 8]
e: [5, 6]
f: [6, 8] and [9, 10]
```

Corresponding inteference graph:

Sparrow-V output code:

```
s0 = 1

s1 = 10

s3 = 8 + s1

s2 = s0 + s3

s1 = s0 + s2

s1 = s3 + s1

s2 = s0 + s1

s3 = s2 + s1

s1 = s0 + s3

return s3 + s1
```

Algorithm

- given some statement n:
 - def[n] includes the variables defined or assigned in n
 - use[n] includes the variables used in n
 - -in[n] includes the variables live coming in to n
 - out[n] includes the variables live coming out of n
- in a control-flow graph:
 - nodes are statements
 - directed edges are possible control flow directions
 - a node's successor(s) are the nodes reachable from it
- defining liveness equations:

$$\begin{aligned} out[n] &= \bigcup_{s \in succ(n)} in[s] \\ in[n] &= use[n] \ \bigcup \ (out[n] - def[n]) \end{aligned}$$

Example code:

Building liveness equations for example code:

\overline{n}	def	use	in_1	out_1	in_2	out_2	in_3	out_3
1	a			a		a, c	c	a, c
2	b	a	a	b, c	a, c	b, c	a, c	b, c
3	c	b, c	b, c	b	b, c	b	b, c	b, c
4	a	b	b	a	b	a, c	b, c	a, c
5		a	a	a, c	a, c	a, c	a, c	a, c
6		c	c		c		c	

- algorithm steps:
 - 1. initially, in and out are both \emptyset
 - 2. use liveness equations as update steps, iteratively
 - in the table, in_k represents in at iteration k
 - 3. keep iterating until *no* change
 - give the final in and out values, we can determine intefering variables:
 - * every variable in the same box interferes with each other, pairwise
 - given n statements and O(n) variables, there are $O(n^2)$ iterations:
 - \star ie. at each stage, at least one element will be added to out
 - * at each iteration, n set-unions are performed each with a runtime of O(n)
 - thus, the algorithm has $O(n^4)$ runtime
 - * can be reduced to $O(n^2)$ with more detailed analysis

Graph Coloring

- **graph coloring** ie. **liveness allocation** is the problem of allocating colors / registers given live ranges
- liveness analysis in *linear* time:

- instead of the full $O(n^4)$ liveness analysis algorithm, is there a linear time approximation?
- instead of dividing up live ranges, simply take the entire interval from a variable's first declaration to its last use:
 - * intervals can be retrieved in linear time
 - * ignores gaps in live ranges, and interpolates them
 - seems to be a reasonable approximation that still indicates intefering variables

• linear scan liveness allocation:

- now that we have a linear liveness analysis algorithm, want to achieve liveness *allocation* in linear time as well:
 - * will not be as thorough of an allocation as running the full $O(n^4)$ liveness analysis and a complete graph coloring in exponential time
 - * but should be a good estimate, using heuristics

• linear scan algorithm:

- 1. sort live range intervals by starting point
- 2. perform a *greedy* coloring in a left-to-right scan:
 - tentatively assign different color ranges to colors ie. registers while the ranges overlap
 - once a previous interval *expires* before the start time of the current interval, *finalize* its coloring
- when we have run out of registers, we have to **spill** a variable onto the stack:
 - * ie. store it on the stack instead of in registers
 - * as a heuristic, spill the one that extends the *furthest* into the future (based on end time)
 - * note that we can *only* take over ie. spill tentatively assigned registers
- thus, this algorithm has O(n) time
 - * there are only a constant number of registers to track tentative assignments for

Liveness analysis and allocation example using linear algorithms:

```
a = 1  // 1
b = 10  // 2
c = 9 + a  // 3
d = a + c  // 4
e = c + d  // 5
f = b + 8  // 6
c = f + e  // 7
```

```
f = e + c // 8
b = c + 5 // 9
return f // 10
```

Live range intervals (using linear approximation):

```
a: [1, 4]
b: [2, 9]
c: [3, 9]
d: [4, 5]
e: [5, 8]
f: [6, 10]
// note here that the intervals in this problem are already in sorted order
```

- given three registers r1, r2, r3 to color with:
 - 1. assign r1 to a
 - 2. assign r2 to b
 - 3. assign r3 to c
 - 4. a has expired, finalize r1 for a
 - assign r1 to d
 - 5. d immediately expires, finalize r1 for d as well
 - assign r1 to e
 - 6. no more registers, have to spill:
 - spill f onto the stack
 - coloring is complete

Allocation results using three registers:

```
a: r1
b: r2
c: r3
d: r1
e: r1
f: <mem>
// r1 can be reused multiple times without inteferences
```

- given two registers r1, r2 to color with:
 - 1. assign r1 to a
 - 2. assign r2 to b
 - 3. no more registers, have to spill:
 - spill b onto the stack (could also spill c)
 - assign r2 to c
 - 4. a has expired, finalize r1 for a
 - assign r1 to d
 - 5. d immediately expires, finalize r1 for d as well

```
- assign r1 to e
```

6. no more registers, have to spill:

- spill f onto the stack
- coloring is complete

Allocation results using two registers:

```
a: r1
b: <mem>
c: r2
d: r1
e: r1
f: <mem>
// r1 can be reused multiple times without inteferences
```

NP-Completeness

- in a full interence graph, generated from running the full liveness analysis algorithm:
 - $k \ge s$, where k is the minimum number of colors and s is the size of the max clique
 - however, if all the live ranges are presented as intervals, k = s
 - in general, graph coloring is NP-complete
 - * by using intervals, graph coloring becomes a polynomial time operation
- liveness analysis transforms the register allocation problem into a graph coloring problem:
 - do we *lose* anything in this transformation?
 - * ie. is the register allocation problem itself also an NP-complete problem?
 - * can transform in the other direction, from a coloring to an allocation problem
 - * eg. transform a certain graph into an equivalent code segment to run register allocation over, and run it through liveness allocation in order to color it

Graph coloring example:

From graph coloring to a representative program:

```
a = 1
b = 2
c = 3

// consider the graph as an inteference graph
print(a + b) // a and b overlap, ie. both are live
print(b + c) // b and c overlap
// meanwhile, a and c are never live at the same time
```

- because this problem is transformable, register allocation is indeed an NP-complete problem:
 - thus, if the compiler should perform anything *smart* in its execution, it should do register allocation
 - register allocation by hand is unfeasible considering the very good linear approximation the compiler can quickly perform

Copy Propagation

Sample code illustrating when copy propagation can be used:

```
b = a // copying statement from a to b (without changes), can we get rid of it?
c = b
d = b
// ⇒
b = a // this is a useless statement
c = a
d = a
// ⇒
c = a
d = a
```

- when could this type of copy propagation be performed?
 - 1. formally, given the control flow graph of the code:
 - the top node (b = a) dominates the other lower node (c = b)
 - ie. every path from above one node that makes it to the other, must go through the first node
 - ie. we will always "hit" it
 - 2. there are no *updates* to a or b between b = a and c = b
 - then we can update b = a and c = b as just c = a
 - when translating Java to Sparrow, we generated a lot of extra copy statements for ease of development

- * this is handled by copy propagation
- comparing types of data-flow analysis:
 - in **liveness analysis**, we keep track of defines and uses in the sets in and out:
 - * the variables range over sets of program *variables*
 - * given constraints of equalities over sets, we work backwards
 - in **copy propagation**, we keep track of "gens" and "kills" again in the sets in and out:
 - * the variables range over sets of copy *statements*
 - * given constraints of equalities over sets, we work forwards, ie. push copy statements *forward*
- defining copy propagation equations:

$$in[n] = \bigcap_{p \in pred(n)} out(p)$$

$$out[n] = gen(n) \ \bigcup \ (in(n) - kill(n))$$

- for the statement n in the program, where:
 - pred(n) contains the predecessors of the statement in the control flow graph
 - $gen(n) = \{n\}$ if n is a copy statement, and \emptyset otherwise
 - kill(n) contains the statement b = a anywhere in the program, or whenever n assigns to either b or a
 - very similar equations to the liveness analysis equations, but working backwards in the other direction
 - * in addition, liveness analysis uses a large union ie. cares about all live variables
 - * while copy propagation uses a large intersection ie. picking which statements to propagate
- algorithm:
 - 1. initialize all set variables to \emptyset
 - 2. repeatedly update in, until no change
 - with ${\cal O}(n^4)$ complexity, or ${\cal O}(n^2)$ complexity with more detailed analysis
- another similar optimization called **constant propagation** can also performed

Activation Records

- we have not yet addressed **calling conventions**, ie. implementing the procedure abstraction in the compiler
- need to *ensure* that every procedure:
 - inherits a valid run-time environment
 - restores an environment for its parent
- the **procedure abstraction** involves some caller p and callee q:
 - on entry of p, establish an environment
 - around a call of q, preserve the environment of p
 - on exit of p, tear down its environment
 - in between, handle addressability and proper lifetimes
- an activation record is a stack frame:
 - each procedure call will have an associated activation record at run time
 - two registers point to relevant activation records:
 - * the **stack pointer** pointing to the end of the current stack
 - * the **frame pointer** pointing to the end of the parent's stack
 - information stored on the stack:
 - * *incoming* arguments from the caller
 - · by convention, saved right before the frame pointer
 - return address
 - * local variables
 - * temporaries
 - * saved registers
 - * outgoing arguments
 - * return value?
 - because functions may make different method calls dynamically, the number of outgoing arguments varies from call to call
 - * thus frame sizes will vary as well
 - how can we pass return values backwards up the stack to the caller?
 - * in addition to storing outgoing arguments just before its stack pointer, the caller will also allocate space for callee to place the return value in
 - · ie. in the callee's frame pointer
 - * thus this *shared* area between the two stack frames will hold arguments and return values
 - * better to address values near the frame pointer, whose offsets are known, rather than the stack pointer

Procedure Linkages

- the procedure linkage convention divides responsibility between the caller and callee
 - caller pre-call \rightarrow callee prologue \rightarrow callee epilogue \rightarrow caller post-call

• caller pre-call:

- 1. allocate basic frame
- 2. evaluate and store params
- 3. store return address (may be a callee responsibility on different systems)
- 4. jump to child

• callee prologue:

- 1. save registers, state
- 2. store FP ie. perform the *dynamic* link
- 3. set new FP
- 4. store *static* link
- 5. extend basic frame for local data and initializations
- 6. fall through to code
- steps 1-5 may be done in varying orders
- the static link is a feature used in languages that allow for nested functions:
 - * the **dynamic link** points back up to the calling procedure's frame
 - · following these links creates a **dynamic chain** of nested calls
 - * while the static link will point up to the statically nested parent's frame:
 - specifically, the frame corresponding to the nearest parent call (since parent may have been called multiple times)
 - following these links creates a static chain of statically nested methods
 - * ie. static links allow accessing of nonlocal values

• callee epilogue:

- 1. store return value (in shared frame area)
- 2. restore registers, state
- 3. cut back to basic frame
- 4. restore parent's FP
- 5. jump to return address

• caller **post-call**:

- 1. copy return value
- 2. deallocate basic frame
- 3. restore parameters (if copy out)
- possibilities for dividing up the work of saving and restoring registers:
 - 1. difficult: callee saves caller's registers
 - call must include a bitmap of caller's used registers

- 2. easy: caller saves and restores its own registers
- 3. easy: callee saves and restores its own registers
- 4. difficult: caller saves callee's registers
 - caller must use a bitmap held in callee's stack frame, or some method table
- 5. easy: callee saves and restores all registers
- 6. easy: caller saves and restores all registers
- in practice, approaches (2) and (3) are used

RISC-V Details

- RISC-V registers:
 - x0 or zero holds hard-wired zero
 - x1 or ra holds the return address (caller-saved)
 - x2 or sp holds the stack pointer (callee-saved)
 - x3 or gp holds the global pointer
 - x4 or tp holds the thread pointer
 - x5-7 or t0-2 hold temporaries (caller-saved)
 - x8 or s0/fp holds the frame pointer (callee-saved)
 - x9 or s1 is a callee-saved register
 - x10-11 or a0-1 hold function arguments and return values (caller-saved)
 - x12-17 or a2-7 hold function arguments (caller-saved)
 - x18-27 or s2-11 are callee-saved registers
 - x28-31 or t3-6 are caller-saved registers
- RISC-V linkage:
 - pre-call:
 - 1. pass arguments in registers a0-7 or the stack
 - 2. save caller-saved registers
 - 3. execute a jalr that jumps to target address and saves the return address in ra
 - post-call:
 - 1. move return value from a0
 - 2. remove space for arguments from stack
 - prologue:
 - 1. allocate space for local variables and saved registers
 - 2. save registers eg. ra and callee-saved registers
 - epilogue:
 - 1. restore saved registers
 - 2. copy return value into a0
 - 3. clean up stack and return

Interpreters

- interpreters are *not* compilers:
 - an **interpreter** executes a program "on-the-fly", without an explicit total translation to another language:
 - * will still take in code *parsed* into a data structure, as a compiler does
 - * ie. interpreter works with a single language, while a compiler works with at least two
 - * typically incurs a performance overhead of ~10x
 - a Java program may be converted to Java bytecode using javac :
 - * the bytecode is then often run using an interpreter
 - * JavaVM has the choice of using an interpreter or a compiler
 - · compiling the bytecode is an *investment* into the future, and if the time lost isn't regained, better to just run the interpreter
 - * Java bytecode is more stable than Java source code, and was originally intended to be used for easy distribution
 - could we write an interpreter for source-level Java code?
 - * eg. like interpreter in CS132 used for Sparrow, Sparrow-V, and RISC-V
 - * all outputs / result states should be *comparable*
- given the simple grammar e ::= c | e + e :
 - our interpreter should take a single expression e as an input and give a numeric output
 - going from program syntax to a different type like a Java integer, rather than to another *language's* syntax

Implementing a simple interpreter:

```
class Interpreter implements Visitor {
  int visit(Nat n) { return n.f0; }
  int visit(Plus n) {
    return (n.f0).accept(this) + (n.f1).accept(this);
  }
}
```

Compared to a simple compiler for the same grammar:

```
class State { String p, int k }

class Compiler implements Visitor {
   String visit(Nat n, State s) {
      s.p += String.format("v%s = %s", s.k, n.f0);
      return String.format("v%s", s.k++);
}
```

```
String visit(Plus n, State s) {
    String v0 = n.f0.accept(this, s);
    String v1 = n.f1.accept(this, s);
    s.p += String.format("%s = %s + %s", s.k, v0, v1);
    return String.format("v%s", s.k++);
}
```

- same grammer with boolean extension:
 - e ::= true | !e as well as previous rules
 - with more types, the interpreter has to work with many different types at once:
 - * contrasted with compilers which only handle strings
 - thus, this is the fundamental reason why interpreters are so much slower:
 - * types have to be *unpacked* and *repacked* together
 - * ie. untagged and tagged
 - in addition, with loops and recursions, compilers compile to some code just *once*
 - * while interpreters have to recursively re-visit and re-execute loops multiple times

Another interpreter for more types:

```
class Value {}
class Nat Extends Value {
  int i;
  Nat(int i) { this.i = i; }
  <A> A accept(ValueVisitor v) {
    return v.visit(this);
  }
}
class Boolean extends Value { ... }

class Interpreter implements Visitor {
  Value visit(Plus n) {
    // n.f0 → check isNat → unpack and getNat →
    // n.f1 → check isNat → unpack and getNat →
    // Pack both ints using addition (+) into a Value, and return it,
    // ie. unpack, and then repack into a value.
}
...
```

}

Sparrow Interpreter

- interpreter must maintain *state* of the Sparrow program:
 - 1. program
 - 2. heap
 - 3. current block
 - 4. environment
 - 5. remaining executing block ie. program counter
 - must distinguish between local and global state:
 - * program and heap are global
 - * rest are local (can be represented in some kind of stack)
 - · stack of maps!

Part of the Sparrow interpreter:

```
public class Interpreter extends Visitor() {
 Program prog;
 List<Value[]> heap = new ArrayList<Value[]>(); // Value tuples
 Stack<LocalState> state = new State<LocalState>(); // block, environment, and pc
 public void visit(Subtract n) {
    Value v1 = access(n.arg1); // unpacking to Value
    Value v2 = access(n.arg2);
    if ((v1 instanceof IntegerConstant) && (v2 instanceof IntegerConstant)) {
      int rhs = ((IntegerConstant) v1).i - ((IntegerConstant) v2).i;
      Value v = new IntegerConstant(rhs); // repack
      update(n.lhs, v);
      state.peek().pc = state.peek().pc + 1;
 }
 public void visit(Store n) {
    Value v1 = access(n.base);
    Value vr = access(n.rhs);
    if (vl instanceof HeapAddressWithOffset) {
      HeapAddressWithOffset hawo = (HeapAddressWithOffset) vl;
      heap.get(hawo.heapAddress)[(hawo.offset + n.offset)/4] = vr;
      state.peek().pc = state.peek().pc + 1;
```

```
}
public void visit(Call n) {
  Value v = access(n.callee);
  if (v instanceof FunctionName) {
    FunctionName ce = (FunctionName) v;
    GetFunctionDecl gfd = new GetFunctionDecl(ce);
    prog.accept(gfd);
    FunctionDecl fd = gfd.result;
    List<Identifier> formalParameters = fd.formalParameters;
    List<Value> actualParameters = new ArrayList<Value>();
    for (Identifier s : n.args) {
      actualParameters.add(access(s));
    // create and push new local environment
    Map<String, Value> m = new HashMap<String, Value>();
    for (int i = 0; i < formalParameters.size(); i++) {</pre>
      m.put(formalParameters.get(i).toString(), actualParameters.get(i));
    state.push(new LocalState(fd.block, m, 0)); // func's block, new env, pc = 0
    stepUntilReturn();
    Value result = access(fd.block.return_id);
    state.pop();
    update(n.lhsm, result);
    state.peek().pc = state.peek().pc + 1;
}
```

Interpreter helper functions:

```
Value access(Identifier id) {
   return state.peek().env.get(id.toString());
}

void update(Identifier id, Value v) {
   state.peek().env.put(id.toString(), v);
}
```

```
void update(Register id, Value v) {
  registerFile.put(r.toString(), v);
}
```

More Compiler Optimizations

• constant propagation:

similar to copy propagations, use constants instead of additional variables

• loop unrolling:

 loop is always run the same number of times, so we can get rid of the code used to maintain loop state and just duplicate body code

• loop invariant code motion:

- move a part of the loop outside the loop since it performs the same thing each iteration
- eg. some kind of loop initialization

common subexpression elimination:

- motivation of working with arrays
- caching an array element where it would be accessed more expensively multiple times without *changing* its value
- done similarly to copy propagations

• polyhedral optimization:

- motivation of working with loops and nested loops
- reorders or splits loops to allow for optimal parallelism
 - * loops themselves can also be run in any order
- tries many different loop orderings

Appendix

Example Lambda Translations to First-Order

Euclid's algorithm:

```
public static int gcd(int x, int y) {
  return y = 0 ? x : gcd(y, (x % y));
} // already first-order form
```

Even-Odd deciders:

```
static Function <Integer, Boolean>
even = n \rightarrow n = 0 ? true : Test.odd.apply(n-1);
static Function <Integer, Boolean>
odd = n \rightarrow n = 0 ? false : Test.even.apply(n-1);
// already first-order form
```

Fibonacci to tail form:

```
static Function<Integer, Integer>
fib = n → n ≤ 2 ? 1 : Test.fib.apply(n-1) + Test.fib.apply(n-2);

static BiFunction<Integer, Function<Integer, Integer>, Integer>
fibCPS = (n, k) → n ≤ 2
? k.apply(1)
: Test.fibCPS.apply(n-1,
    v1 → Test.fibCPS.apply(n-2,
    v2 → k.apply(v1 + v2)));
```

Tail form Fibonacci to first-order:

```
class FibRec1 implements Continuation {
   Integer n; Continuation k;
   public FibRec1(Integer n, Continuation k) {
      this.n = n; this.k = k;
   }
   public Integer apply(Integer v) {
      return Test.fibCPSadt.apply(n-2, new FibRec2(v, k));
   }
}
class FibRec2 implements Continuation {
   Integer v1; Continuation k;
```

```
public FibRec1(Integer v1, Continuation k) {
    this.v1 = v1; this.k = k;
}
public Integer apply(Integer v) {
    return k.apply(v1 + v);
}

static BiFunction<Integer, Continuation, Integer>
fibCPSadt = (n, k) → n ≤ 2 ? k.apply(1) :
    Test.fibCPSadt.apply(n-1, new FibRec1(n, k));
```

Practice Questions

1. given the following grammar:

```
• A ::= \varepsilon | zCw

• B ::= Ayx

• C ::= ywz | \varepsilon | BAx

• then:

• FIRST(A) = \{z\}

• FIRST(B) = \{y, z\}

• FIRST(C) = \{y, z\}

• NULLABLE(A) = true

• NULLABLE(B) = false
```

• we can make the following observations for each nonterminal on the RHS:

```
- w \in FOLLOW(C)

- y \in FOLLOW(A)

- FIRST(A) \subseteq FOLLOW(B)

- x \in FOLLOW(B)

- x \in FOLLOW(A)

• thus:

- FOLLOW(A) = \{x, y\}

- FOLLOW(B) = \{x, z\}

- FOLLOW(C) = \{w\}
```

-NULLABLE(C) = true

- therefore the grammar is *not* LL(1), since for *C*:
 - $\mathit{FIRST}(ywz) \cap \mathit{FIRST}(BAx) \neq \emptyset$
- 2. What is the fewest number of registers to entirely allocate the following code?

Live ranges, from inspection:

```
a: [1, 4]
b: [2, 6], [9, 10]
c: [2, 6], [7, 9]
d: [4, 5]
e: [5, 8]
f: [6, 7], [8, 10]
```

Corresponding inteference graph:

