Information theory and coding Take home exam

Solignac Robin 235020

November 28, 2016

Ex 1

(a)

We have \tilde{S}^n independent of S^n and Y^n but with the same marginal p(s), so we have

$$\Pr\left(\left(\tilde{S}^{n}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, Y\right)\right) = \sum_{\left(s^{n}, y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, Y\right)} p(s^{n}) p(y^{n})$$

$$\Pr\left(\left(\tilde{S}^{n}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, Y\right)\right) \leq \sum_{\left(s^{n}, y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, Y\right)} 2^{-n(H(S) - \epsilon)} 2^{-n(H(Y) - \epsilon)}$$

$$\Pr\left(\left(\tilde{S}^{n}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, Y\right)\right) \leq 2^{n(H(S, Y) + \epsilon)} 2^{-n(H(S) - \epsilon)} 2^{-n(H(Y) - \epsilon)}$$

$$\Pr\left(\left(\tilde{S}^{n}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, Y\right)\right) \leq 2^{-n(I(S, Y) - 3\epsilon)}$$

$$(1)$$

(b)

We have $\tilde{X^n}$ independent from (S^n, X^n, Y^n) but it has the same marginal as X^n , so in particular $p(s^n, \tilde{x^n}, y^n) = p(\tilde{x^n})p(s^n, y^n)$. And so

$$\Pr\left(\left(S^{n}, \tilde{X^{n}}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S^{n}, X^{n}, Y^{n}\right)\right) = \sum_{\left(s^{n}, x^{n}, y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, X, Y\right)} p(x^{n}) p(s^{n}, y^{n})$$

$$\Pr\left(\left(S^{n}, \tilde{X^{n}}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S^{n}, X^{n}, Y^{n}\right)\right) \leq \sum_{\left(s^{n}, x^{n}, y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, X, Y\right)} 2^{-n(H(X) - \epsilon)} 2^{-n(H(Y, S) - \epsilon)}$$

$$\Pr\left(\left(S^{n}, \tilde{X^{n}}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S^{n}, X^{n}, Y^{n}\right)\right) \leq 2^{n(H(X, Y, S) - \epsilon)} 2^{-n(H(X) - \epsilon)} 2^{-n(H(Y, S) - \epsilon)}$$

$$\Pr\left(\left(S^{n}, \tilde{X^{n}}, Y^{n}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S^{n}, X^{n}, Y^{n}\right)\right) \leq 2^{-n(I(X; Y, S) - 3\epsilon)}$$

$$(2)$$

Note for later: One thing we can note here is that this inequality does not depend on what the distribution of $p(s^n, y^n)$ and $p(x^n)$ it just rely on the fact that \tilde{X}^n is independent of S^n and Y^n and that it has the same marginal as X^n . But if we switch and take \tilde{Y}^n independent of S^n, X^n (with same marginal as Y^n) then we get

$$\Pr\left(\left(S^{n}, X^{n}, \tilde{Y^{n}}\right) \in \mathcal{A}_{\epsilon}^{(n)}\left(S, X, Y\right)\right) \leq 2^{-n(I(X; Y, S) - 3\epsilon)}$$

$$(3)$$

(c)

First, if
$$(s^n, y^n) \in \mathcal{A}^{(n)}_{\epsilon}(S, Y)$$
 then we have $p(s^n, y^n) \leq 2^{-n(H(S, Y) - \epsilon)}$ and $p(s^n) \geq 2^{-n(H(S) + \epsilon)}$ so $p(y^n | s^n) = \frac{p(s^n, y^n)}{p(s^n)} \leq \frac{2^{-n(H(S, Y) - \epsilon)}}{2^{-n(H(S) + \epsilon)}} = 2^{-n(H(Y|S) - 2\epsilon)}$

By replacing Y by X we get also $p(x^n|s^n) \leq 2^{-n(H(X|S)-2\epsilon)}$

Now we have $\tilde{X^n}$ which is also compute from S^n but independent from the computation of X^n from S^n and so independent of the generation of Y^n form S^n by the intermediate of X^n . This mean $p(s^n, \tilde{x^n}, y^n) = p(\tilde{x^n}, y^n|s)p(s) = p(\tilde{x^n}|s)p(y^n|s)p(s)$

so we get

$$\Pr\left((S^{n}, \tilde{X}^{n}, Y^{n}) \in \mathcal{A}_{\epsilon}^{(n)}(S^{n}, X^{n}, Y^{n})\right) = \sum_{(s^{n}, x^{n}, y^{n}) \in \mathcal{A}_{\epsilon}^{(n)}(S, X, Y)} p(x^{n}|s^{n})p(y^{n}|s^{n})p(s^{n})$$

$$\leq 2^{n(H(X, Y, S) - \epsilon)}2^{-n(H(X|S) - 2\epsilon)}2^{-n(H(Y|S) - 2\epsilon)}2^{-n(H(S) - \epsilon)}$$

$$\leq 2^{n(H(X|S) + H(Y|S) - H(X, Y, S) - 6\epsilon)}$$

$$\Pr\left((S^{n}, \tilde{X}^{n}, Y^{n}) \in \mathcal{A}_{\epsilon}^{(n)}(S^{n}, X^{n}, Y^{n})\right) \leq 2^{n(I(X; Y|S) - 6\epsilon)}$$
(4)

Ex 2

First let's define $t_{i,j}$ the event: "the message pair $(m_1 = i, m_2 = j)$ was transmitted"

(a)

We have

$$\Pr(\varepsilon) = \mathbb{E}\left[\frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \lambda_{m_1,m_2}(C)\right]$$

$$\Pr(\varepsilon) = \sum_{C} \Pr(C) \frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \lambda_{m_1,m_2}(C)$$

$$\Pr(\varepsilon) = \sum_{C} \frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \Pr(C) \lambda_{m_1,m_2}(C)$$

But we can use the symmetry of our codebook which implies that λ_{m_1,m_2} does not depend of indexes m_1 and m_2 . so $\lambda_{m_1,m_2} = \lambda_{1,1} \,\forall m_1,m_2$

Thus:

$$\Pr(\varepsilon) = \sum_{C} \frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \Pr(C) \lambda_{1,1}(C)$$

$$\Pr(\varepsilon) = \sum_{C} \frac{1}{2^{nR_1}} 2^{nR_1} \frac{1}{2^{nR_2}} 2^{nR_2} \Pr(C) \lambda_{1,1}(C)$$

$$\Pr(\varepsilon) = \sum_{C} \Pr(C) \lambda_{1,1}(C)$$

$$\Pr(\varepsilon) = \Pr(\varepsilon | W_1 = 1, W_2 = 1)$$

$$\Pr(\varepsilon) = \mathbb{E} [\lambda_{1,1}(C) | W_1 = 1, W_2 = 2]$$

(b)

We have

$$\begin{split} \lambda_{1,1} &= \operatorname{Pr}\left(\varepsilon_{1,(1,1)} \cup \varepsilon_{2,1} | t_{1,1}\right) \\ \lambda_{1,1} &\leq \operatorname{Pr}\left(\varepsilon_{1,(m_1,m_2)} | t_{1,1}\right) + \operatorname{Pr}\left(\varepsilon_{2,m_2} | t_{1,1}\right) \\ \lambda_{1,1} &\leq \lambda_{1,(1,1)} + \lambda_{2,1} \end{split}$$

So:

$$\begin{aligned} & \Pr(\varepsilon) \leq \sum_{C} \Pr(C) \left(\lambda_{1,(1,1)} + \lambda_{2,1} \right) \\ & \Pr(\varepsilon) \leq \left[\lambda_{1,(1,1)} \right] + \left[\lambda_{2,1} \right] \\ & \Pr(\varepsilon) \leq \left[\lambda_{1,(1,1)} | t_{1,1} \right] + \left[\lambda_{2,1} | t_{1,1} \right] \end{aligned}$$

(c)

$$[\lambda_{2,1}|t_{1,1}] = \Pr(\varepsilon_{2,1}|t_{1,1})$$

Let's define $E_{2,i}$ the event $s^n(i)$ and Y_2 are jointly typical. where Y_2^n is the message receive by D_1 . so $E_{2,i} = (s^n(i), Y_2^n) \in \mathcal{A}^{(n)}_{\epsilon}(S, Y_2)$

so $\varepsilon_{2,1}|t_{1,1}=E_{2,1}^c\cup\bigcup_{i=2}^{2^{nR_2}}E_{2,i}|t_{1,1}$ and so by using the union bound

$$[\lambda_{2,1}|t_{1,1}] = \Pr\left(E_{2,1}^c \cup \bigcup_{i=2}^{2^{nR_2}} E_{2,i}|t_{1,1}\right)$$
$$[\lambda_{2,1}|t_{1,1}] \le \Pr(E_{2,1}^c|t_{1,1}) + \sum_{i=2}^{2^{nR_2}} \Pr(E_{2,i}|t_{1,1})$$

by join AEP properties: $\Pr(E_{2,1}^c|t_{1,1}) \leq \epsilon$ for n large enough.

from our codebook generation process $s^n(i)$ is independent from $s^n(1)$ for $i \neq 1$ and so we can apply inequality (1): and get $E_i \leq 2^{-n(I(S,Y)-\epsilon)}$

$$[\lambda_{2,1}|t_{1,1}] \le \epsilon + \sum_{i=2}^{2^{nR_2}} 2^{-n(I(S,Y_2) - 3\epsilon)}$$
$$[\lambda_{2,1}|t_{1,1}] \le \epsilon + 2^{nR_2} * 2^{-n(I(S,Y_2) - 3\epsilon)}$$
$$[\lambda_{2,1}|t_{1,1}] \le \epsilon + 2^{-n(I(S,Y_2) - R_2 - 3\epsilon)}$$

and this upper bound converge to ϵ with $n \to \infty$ if $R_2 < I(S, Y_2)$.

so with $R_2 < I(S, Y_2)$ we can make $[\lambda_{2,1}|t_{1,1}]$ as small as we want by choosing ϵ and a n large enough. It doesn't depend on R_1 .

(d)

$$[\lambda_{1,(1,1)}|t_{1,1}] = \Pr(\varepsilon_{1,(1,1)}|t_{1,1})$$

Let's define $E_{1,(i,j)}$ the event $(s^n(j), x^n(i,j), Y_1^n) \in \mathcal{A}_{\epsilon}^{(n)}(S, X, Y_1)$ where Y_1^n is the message receive from the channel by D_1 , and $E_{1,j}$ the event

$$(s^n(j), Y_1^n) \in \mathcal{A}_{\epsilon}^{(n)}(S, Y_1)$$
. That's mean:

$$\begin{split} \varepsilon_{1,(1,1)}|t_{1,1} &= E_{1(1,1)}^c \cup \bigcup_{i,j \neq 1,1} E_{1,(i,j)}|t_{1,1} \\ \varepsilon_{1,(1,1)}|t_{1,1} &= E_{1(1,1)}^c \cup \bigcup_{i=2}^{2^{nR_1}} E_{1,(i,1)} \cup \bigcup_{j=2}^{2^{nR_2}} E_{j,(1,j)} \cup \bigcup_{j=2}^{2^{nR_2}} \left(\bigcup_{i=2}^{2^{nR_1}} E_{1,(i,j)}\right)|t_{1,1} \\ \Pr\left(\varepsilon_{1,(1,1)}|t_{1,1}\right) &\leq \Pr\left(E_{1(1,1)}^c|t_{1,1}\right) + \sum_{i=2}^{2^{nR_1}} \Pr\left(E_{1,(i,1)}|t_{1,1}\right) \\ &+ \sum_{j=2}^{2^{nR_2}} \Pr\left(E_{j,(1,j)}|t_{1,1}\right) + \sum_{j=2}^{2^{nR_2}} \sum_{i=2}^{2^{nR_1}} \Pr\left(E_{1,(i,j)}|t_{1,1}\right) \\ \Pr\left(\varepsilon_{1,(1,1)}|t_{1,1}\right) &\leq \Pr\left(E_{1,(1,1)}^c|t_{1,1}\right) + \sum_{i=2}^{2^{nR_2}} \Pr\left(E_{1,(i,1)}|t_{1,1}\right) + \sum_{i=2}^{2^{nR_2}} \sum_{i=1}^{2^{nR_1}} \Pr\left(E_{1,(i,j)}|t_{1,1}\right) \end{split}$$

on this sum we can make the following observation

- By join AEP properties: $\Pr(E_{1(1,1)}^c|t_{1,1}) \leq \epsilon$ for n large enough.
- In $E_{1,(i,1)} = s^n(1), x^n(i,1), Y_1^n$ we have that $x^n(i,1)$ and Y_1^n is compute from $s^n(1)$ but independently from each other. this is equivalent to the case covered in Ex 1.(c) and so we can use inequality (4)
- in $E_{1,(i,j)} = s^n(j), x^n(i,j), Y_1^n$ we have $x^n(i,j)$ compute from $s^n(j)$ but Y_1^n is completely independent of both. it's the case covered in Ex 1.(b) and so we can use the inequality (3)

So we have

$$\Pr\left(\varepsilon_{1,(1,1)}|t_{1,1}\right) \leq \epsilon + \sum_{i=2}^{2^{nR_1}} 2^{-n(I(X;Y_1|S) - 6\epsilon)} + \sum_{j=2}^{2^{nR_2}} \sum_{i=1}^{2^{nR_1}} 2^{-n(I(X;Y_1 - 3\epsilon))}$$

$$\Pr\left(\varepsilon_{1,(1,1)}|t_{1,1}\right) \leq \epsilon + \sum_{i=1}^{2^{nR_1}} 2^{-n(I(X;Y_1|S) - 6\epsilon)} + \sum_{j=1}^{2^{nR_2}} \sum_{i=1}^{2^{nR_1}} 2^{-n(I(X;Y_1 - 3\epsilon))}$$

$$\Pr\left(\varepsilon_{1,(1,1)}|t_{1,1}\right) \leq \epsilon + 2^{-n(I(X;Y_1 - 3\epsilon))} + 2^{-n(I(X,S;Y_1 - 3\epsilon))}$$

and we can make this upper bound as small as we want the right chose of ϵ and a n large enough if we have both:

- $R_1 < I(X; Y_1|S)$
- $R_1 + R_2 < I(X, S; Y_1)$

Ex 3

Definitions and result for later

We define $h_b(a)$ the binary entropy with probability a. In other word: H(X) with $X \sim \text{Bernoulli}(a)$

also we assume that for every symmetric channel with binary flip probability a then $a \leq 0.5$ because otherwise we just have to flip every bit at the output of the flip and get a smaller flip probability $1-a \leq 0.5$ and so getting a better channel with 0 effort.

we can also note that if we have $a \le b \le 0.5$ then $h_b(a) \le h(b)$ because binary entropy is an increasing function over [0; 0.5].

if we define

$$f_k(a) = a(1-k) + (1-a)k$$

for a fixed $0 \le k \le 0.5$ and $0 \le a \le 0.5$

then $f_k(a) = a(1-2k) + k$ and so $(1-2k) \ge 0$ and so f_k is an increasing function over $0 \le a \le 0.5$.

That mean for all $0 \le a \le b \le 0.5$:

$$f_k(a) \le f_k(b) \le f_k(0.5) = 0.5$$

$$h_b(f_k(a)) \le h_b(f_k(b)) \le 1 \tag{5}$$

Also, here we assume that:

p(x) and p(y) are binary, and p(s) is binary and uniform.

So $p_x(0) = p_s(0)p_{x|s}(0|0) + p_s(1)p_{x|s}(0|1) = \frac{1}{2}(1-\alpha) + \frac{1}{2}\alpha = \frac{1}{2}$ so marginal p(x) is also uniform.

it's identical for $p_{y1}(0) = p_x(0)p_{y_1|x}(0|0) + p_x(1)p_{y_1|x}(0|1) = \frac{1}{2}(1-q_1) + \frac{1}{2}q_1 = \frac{1}{2}$.

And so on for $p(y_2)$. At the end we can sat that: $p(s), p(x), p(y_1), p(y_2)$ are all binary uniform

Finally as we have p(x, y, z) = p(s)p(x|s)p(y|x).

Then $S \to X \to Y$ is a Markov chain, so p(y|s,x) = p(y|x) and so H(Y|S,X) = H(Y|X)

(a)

Recap:

•
$$R_1 + R_2 < I(X, S; Y_1)$$

•
$$R_1 < I(X; Y_1|S)$$

•
$$R_2 < I(S, Y_2)$$

$$R_1 + R_2 < I(X, S; Y_1)$$

$$R_1 + R_2 < H(Y) - H(Y_1|S, X)$$

$$R_1 + R_2 < H(Y) - H(Y_1|X)$$

$$R_1 + R_2 < 1 - h_b(q_1)$$
(6)

$$R_{1} < I(X; Y_{1}|S)$$

$$R_{1} < H(Y_{1}|S) - H(Y_{1}|X, S)$$

$$R_{1} < H(Y_{1}|S) - H(Y_{1}|X, S)$$

$$R_{1} < H(Y_{1}|S) - H(Y_{1}|X)$$

$$R_{1} < H(Y_{1}|S) - h_{b}(q_{1})$$

$$R_{1} < h_{b}(\alpha(1 - q_{1}) + (1 - \alpha)q_{1}) - h_{b}(q_{1})$$
(7)

$$R_{2} < I(S, Y_{2})$$

$$R_{2} < H(Y) - H(Y_{2}|S)$$

$$R_{2} < 1 - H(Y_{2}|S)$$

$$R_{2} < 1 - h_{b} (\alpha(1 - q_{2}) + (1 - \alpha)q_{2})$$
(8)

So in general we have that the region of all possible rate (R_1, R_2) is the region such that

$$\begin{cases}
R_1 < h_b \left(\alpha(1-q_1) + (1-\alpha)q_1\right) - h_b(q_1) & (i) \\
R_2 < 1 - h_b \left(\alpha(1-q_2) + (1-\alpha)q_2\right) & (ii) \\
R_1 + R_2 < 1 - h_b(q_1) & (iii)
\end{cases}$$
(9)

but here has $q_1 < q_2$ from (5) and (ii)

$$R_2 < 1 - h_b \left(\alpha (1 - q_2) + (1 - \alpha) q_2 \right) < 1 - h_b \left(\alpha (1 - q_1) + (1 - \alpha) q_1 \right)$$

and this mean that with addition of (i)

$$R_1 + R_2 < 1 - h_b(q_1)$$

so in this case (i) and (ii) implies (iii) and so we can simplify our region definition:

if $q_1 < q_2$:

$$\begin{cases} R_1 < h_b \left(\alpha (1 - q_1) + (1 - \alpha) q_1 \right) - h_b (q_1) \\ R_2 < 1 - h_b \left(\alpha (1 - q_2) + (1 - \alpha) q_2 \right) \end{cases}$$

(b)

We can start back from (9).

So we have that

$$\begin{cases} R_1 < h_b \left(\alpha (1 - q_1) + (1 - \alpha) q_1 \right) - h_b (q_1) \\ R_2 < 1 - h_b \left(\alpha (1 - q_2) + (1 - \alpha) q_2 \right) \\ R_1 + R_2 < 1 - h_b (q_1) \end{cases}$$

But now as $q_2 < q_1$ then it's not always true that $R_2 < 1 - h_b (\alpha(1 - q_1) + (1 - \alpha)q1)$ and so (i) and (ii) doesn't always imply (iii)

Now. If we want to make R_2 higher than $1 - h_b (\alpha(1 - q_1) + (1 - \alpha)q_1)$ (so higher than it's the maximum bound in the previous case). this will reduce the bound on R_1 .

Indeed, if

$$1-h_b\left(\alpha(1-q_2)+(1-\alpha)q_2\right)>R_2=1-h_b\left(\alpha(1-q_2)+(1-\alpha)q_3\right)>1-h_b\left(\alpha(1-q_1)+(1-\alpha)q_1\right)$$
 (so if we take $q_2< q_3< q_1$ (5))

then in order to satisfy $R_1 + R_2 < 1 - h_b(q_1)$ we will need

$$R_1 + 1 - h_b \left(\alpha (1 - q_2) + (1 - \alpha) q_3 \right) < 1 - h_b (q_1)$$

 $R_1 < h_b \left(\alpha (1 - q_2) + (1 - \alpha) q_3 \right) - h_b (q_1)$

and as $q_3 < q_1$ this is a smaller bound than (i).

But we still have $R_1 < h_b (\alpha(1-q_1) + (1-\alpha)q_1) - h_b(q_1)$ so taking $q_2 < q_1$ instead of $q_1 < q_2$ doesn't lead to any possibility of increasing the bound of R_1 only the one of R_2 at some cost one the one of R_1 . So making the channel Y_2 better than Y_1 instead of the reverse can let us have a better rate R_2 but it will imply to make the rate R_1 to have a smaller maximum value than before, and will not help us in any way to improve R_1 .

 $\mathbf{Ex} \ \mathbf{4}$

(a)

$$\Pr(\varepsilon) = \mathbb{E}\left[\frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \lambda_{m_1,m_2}(C)\right]$$

$$\Pr(\varepsilon) = \sum_{C} \Pr(C) \frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \lambda_{m_1,m_2}(C)$$

$$\Pr(\varepsilon) = \sum_{C} \frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \Pr(C) \lambda_{m_1,m_2}(C)$$

But as we draw $u_1^n(m_1, m_t)$ and $u_2^n(m_2, m_s)$ independently from independently from the index m_1, m_2, m_s, m_t . so it's the same for v_i^n and x^n so λ_{m_1, m_2} is independent of m_1 and m_2 so $\lambda_{m_1, m_2} = \lambda_{1,1}$

$$\Pr(\varepsilon) = \sum_{C} \frac{1}{2^{nR_1}} \sum_{m_1=1}^{2^{nR_1}} \frac{1}{2^{nR_2}} \sum_{m_2=1}^{2^{nR_2}} \Pr(C) \lambda_{1,1}(C)$$

$$\Pr(\varepsilon) = \sum_{C} \frac{1}{2^{nR_1}} 2^{nR_1} \frac{1}{2^{nR_2}} 2^{nR_2} \Pr(C) \lambda_{1,1}(C)$$

$$\Pr(\varepsilon) = \sum_{C} \Pr(C) \lambda_{1,1}(C)$$

$$\Pr(\varepsilon) = \Pr(\varepsilon|W_1 = 1, W_2 = 1)$$

(b)

if there's no (m_t, m_s) such that $(u_1^n(1, m_t), u_2^n(1, m_s))$ then the pair $(u_1^n(1, m_t^*), u_2^n(1, m_s^*))$ receive will have one of those property:

- $u_1^n(1, m_t)$ is not typical in U_1^n . so $u_1^n(1, m_t), y_1^n$ will not be typical for any y_1^n even if $m_1 = 1$ was send. This will lead to an error a decoding in receiver 1 when $m_1 = 1$ is transmitted
- $u_2^n(1, m_s)$ is not typical in U_2^n . so $u_2^n(1, m_s), y_2^n$ will not be typical for any y_2^n even if $m_2 = 1$ was send. This will lead to an error a decoding in receiver 2 when $m_1 = 1$ is transmitted
- $(u_1^n(1, m_t), u_2^n(1, m_s))$ is not typical in (U_1^n, U_2^n) this may not cause error at description.

So $\varepsilon | t_{1,1} \cap \zeta_0 \neq \emptyset$

In the case where $(v_1^n(1), y_1^n)$ is not jointly typical then receiver 1 will ether declare an error (if there's no other typical $(v_1^n(i), y_1^n)$) or output a wrong $m_1 \neq 1$ so $\zeta_{11}|t_{1,1} \subseteq \varepsilon$ when $m_1 = 1$ is transmitted

In the case where there is $(u_1^n(m_1 \neq 1, m_s), y_1^n)$ then there's a chance that receiver 1 decide to output $m_1 \neq 1$ when $m_1 = 1$ is transmitted. so $\varepsilon | t_{1,1} \cap \zeta_{12} \neq \varnothing$

In the case where $(v_2^n(1), y_2^n)$ is not jointly typical then receiver 2 will ether declare an error (if there's no other typical $(v_2^n(i), y_2^n)$) or output a wrong $m_1 \neq 1$ so $\zeta_{11}|t_{1,1} \subseteq \varepsilon$ when $m_2 = 1$ is transmitted

In the case where there is $(u_2^n(m_2 \neq 1, m_s), y_2^n)$ then there's a chance that receiver 2 decide to output $m_1 \neq 1$ when $m_1 = 1$ is transmitted. so $\varepsilon | t_{1,1} \cap \zeta_{12} \neq \varnothing$

tif an error occur it's come from one of this event. so $\varepsilon|t_{1,1}\subseteq\zeta_0\cup\zeta_{11}\cup\zeta_{12}\cup\zeta_{21}\cup\zeta_{22}$

so

$$\Pr(\varepsilon) = \Pr(\varepsilon|t_{1,1}) \le \Pr(\zeta_0 \cup \zeta_{11} \cup \zeta_{12} \cup \zeta_{21} \cup \zeta_{22}|t_{1,1})$$

(c)

first we have $(\zeta_0 \cup \zeta_{11} \cup \zeta_{12} \cup \zeta_{21} \cup \zeta_{22} | t_{1,1}) = (\zeta_0 \cup (\zeta_{11} \cap \zeta_0^c) \cup \zeta_{12} \cup (\zeta_{21} \cap \zeta_0^c) \cup \zeta_{22} | t_{1,1})$ (because $\zeta_{1i} = (\zeta_{1i} \cap \zeta_0^c) \cup (\zeta_{1i} \cap \zeta_0)$ and $(\zeta_{1i} \cap \zeta_0) \subseteq \zeta_0$

and so by using union bound:

$$\begin{aligned} & \Pr(\varepsilon) \leq \Pr(\zeta_{0} \cup \zeta_{11} \cup \zeta_{12} \cup \zeta_{21} \cup \zeta_{22} | t_{1,1}) \\ & \Pr(\varepsilon) \leq \Pr(\zeta_{0} \cup (\zeta_{11} \cap \zeta_{0}^{c}) \cup \zeta_{12} \cup (\zeta_{21} \cap \zeta_{0}^{c}) \cup \zeta_{22} | t_{1,1}) \\ & \Pr(\varepsilon) \leq \Pr(\zeta_{0} | t_{1,1}) + \Pr(\zeta_{11} \cap \zeta_{0}^{c} | t_{1,1}) + \Pr(\zeta_{12} | t_{1,1}) + \Pr(\zeta_{21} \cap \zeta_{0}^{c} | t_{1,1}) + \Pr(\zeta_{22} | t_{1,1}) \end{aligned}$$

(d)

If we fix $m_1 = m_2 = 1$ then we can apply the lemma on the function $(u_1^n(1, m_t), u_2^n(1, m_s))$ because all component of our system matches condition on the lemma. and we have that $(1, m_t)$ has cardinality 2^{nR_t} and $(1, m_s)$ has cardinality 2^{nR_s} .

And so the lemma give us that as long has $R_s + R_t > I(U_1; U_2)$ then

$$\lim_{n \to \infty} \Pr\left(\exists (1, m_s), (1, m_t) : (u_1^n(1, m_t), u_2^n(1, m_s)) \in \mathcal{A}_{\epsilon}^{(n)}(U_1, U_2)\right) = 1$$

$$\lim_{n \to \infty} \Pr\left(\exists (m_s, m_t) : (u_1^n(1, m_t), u_2^n(1, m_s)) \in \mathcal{A}_{\epsilon}^{(n)}(U_1, U_2)\right) = 1$$

$$\lim_{n \to \infty} \Pr\left(\forall (m_s, m_t) : (u_1^n(1, m_t), u_2^n(1, m_s)) \notin \mathcal{A}_{\epsilon}^{(n)}(U_1, U_2)\right) = 1 - 1 = 0$$

$$\lim_{n \to \infty} \Pr\left(\zeta_0 | t_{1,1}\right) = 0$$

(e)

We have in our system that $x_i^n(v_1^n(1), v_2^n(1)) = x(v_{1,i}^n(1), v_{2,i}^n(1))$ so in our distribution

$$p(x^n(v_1^n(1),v_2^n(1)),v_1^n(1),v_2^n(1)) = p\left(v_{1,i}^n(1),v_{2,i}^n(1)\right) \prod_{i=1}^n p\left(x\left(v_{1,i}^n(1),v_{2,i}^n(1)\right) | v_{1,i}^n(1),v_{2,i}^n(1)\right)$$

And so we can apply the conditional lemma: if $v_1^n(1), v_2^n(1)$ is a typical sequence then $(x^n, v_1^n(1), v_2^n(1))$ is a typical sequence with probability 1

Also we know that (because we assume both channel are memoryless) we have that

$$p\left(y_{1}^{n},y_{2}^{n}|x\left(v_{1}^{n}(1),v_{i}^{n}(1)\right),v_{1}^{n}(1),v_{2}^{n}(1)\right)=\prod_{i=1}^{n}p\left(y_{1,i}^{n},y_{2,i}^{n}|x\left(v_{1,i}^{n}(1),v_{2,i}^{n}(1)\right),v_{1,i}^{n}(1),v_{2,i}^{n}(1)\right)$$

And so can also apply the lemma: if $x(v_1^n(1), v_i^n(1)), v_1^n(1), v_2^n(1)$ is typical then $(y_1^n, y_2^n, x(v_1^n(1), v_i^n(1)), v_1^n(1), v_2^n(1))$ is also typical with probability 1.

But we already have that if $v_1^n(1), v_2^n(1)$ is a typical sequence (so in the event ζ_0^c) then $(x^n, v_1^n(1), v_2^n(1))$ is Typical with probability one (as $x \to \infty$) and so we can extend our result to the combination of these event and have that

$$\begin{split} \lim_{n \to \infty} \Pr\left[y_{1}^{n}, y_{2}^{n}, x\left(v_{1}^{n}(1), v_{i}^{n}(1)\right), v_{1}^{n}(1), v_{2}^{n}(1) \text{is typical} | v_{1}^{n}(1), v_{2}^{n}(1) \text{is typical}, t_{1,1} \right] &= 1 \\ \lim_{n \to \infty} \Pr\left(\zeta_{0}^{c} \cap \zeta_{11} \cap \zeta_{21} | t_{1,1} \right) &= 0 \\ \lim_{n \to \infty} \Pr\left(\zeta_{0}^{c} \cap \zeta_{11} | t_{1,1} \right) &= 0 \\ \lim_{n \to \infty} \Pr\left(\zeta_{0}^{c} \cap \zeta_{21} | t_{1,1} \right) &= 0 \end{split}$$

(f)

From

According to the system specification. We have our distribution $p(u_1^n u_2^n, x^n, y_1^n, y_2^n) = p(u_1^n, u_2^n) p(x^n | u_1^n, u_2^n) p(y_1^n, y_2^n | x^n) = p(u_1^n) p(u_2^n) p(x^n | u_1^n, u_2^n) p(y_1^n | x^n) p(y_2^n | x^n)$

We have that $u_1^n(1, m_t)$ is independent from all other $u_1^n(m'_1, m'_2)$ with $(1, m_t) \neq (m'_1, m'_1)$

And also $u_2^n(1, m_{ts})$ is independent from all other $u_2^n(m_2', m_s')$ with $(1, m_s) \neq (m_2', m_s')$

And as

$$p(u_1^nu_2^n,x^n,y_1^n,y_2^n) = p(u_1^n,u_2^n)p(x^n|u_1^n,u_2^n)p(y_1^n,y_2^n|x^n) = p(u_1^n)p(u_2^n)p(x^n|u_1^n,u_2^n)p(y_1^n|x^n)p(y_2^n|x^n) = p(u_1^n,u_2^n,x^n,y_1^n,y_2^n) = p(u_1^n,u_2^n)p(x^n|u_1^n,u_1^n)p(x^n|u_1^n,u_1$$

In word: as x^n is draw only depending of the given u_1^n, u_2^n and y_1^n and y_2^n only from x^n then the message receive then as the variable y_1^n and y_2^n which are the message receive for initial messages $((1, m_t), (1, m_s))$ are independent tof the message received receive from $(m_1', m_t') \neq (1, m_t)$ and $(m_2', m_s') \neq (1, m_s)$.

In other word $y_1^n|t_{1,1}$ and $y_2^n|t_{1,1}$ are independent of $u_1^n(m_1', m_t')$ for $(m_1', m_t') \neq (1, m_t)$ and $u_1^n(m_1', m_t')$ for $(m_1', m_t') \neq (1, m_t)$

So we can apply the cuckoo's Egg lemma on 2 different case :

$$\Pr\left(u_1^n(m_1', m_t'), y_1^n | t_{1,1} \in \mathcal{A}_{\epsilon}^{(n)}(U_1^n, Y^n)\right) < 2^{-n(I(U_1^n; Y_1^n) - 3\epsilon)}$$

$$\Pr\left(u_2^n(m_2', m_S'), y_2^n | t_{1,1} \in \mathcal{A}_{\epsilon}^{(n)}(U_2^n, Y^n)\right) < 2^{-n(I(U_1^n; Y_1^n) - 3\epsilon - 1\epsilon)}$$

and so

$$\Pr\left(\zeta_{12}|t_{1,1}\right) = \sum_{\forall (m'_{1},m'_{t}) \neq (1,m_{t})} \Pr\left(u_{1}^{n}(m'_{1},m'_{t}),y_{1}^{n}|t_{1,1} \in \mathcal{A}_{\epsilon}^{(n)}(U_{1},Y)\right)$$

$$\Pr\left(\zeta_{12}|t_{1,1}\right) < \sum_{\forall (m'_{1},m'_{t}) \neq (1,m_{t})} 2^{-n(I(U_{1}^{n};Y_{1}^{n})-3\epsilon)}$$

$$\Pr\left(\zeta_{12}|t_{1,1}\right) < \sum_{i=1}^{nR_{1}} \sum_{j=1}^{nR_{t}} 2^{-n(I(U_{1}^{n};Y_{1}^{n})-3\epsilon)}$$

$$\Pr\left(\zeta_{12}|t_{1,1}\right) < 2^{n(R_{1}+R_{t})} 2^{-n(I(U_{1}^{n};Y_{1}^{n})-3\epsilon)}$$

$$\Pr\left(\zeta_{12}|t_{1,1}\right) < 2^{-n(I(U_{1}^{n};Y_{1}^{n})-R_{1}-R_{t}-3\epsilon)}$$

And by the exact same process on the second inequality we have

$$\begin{split} & \Pr\left(\zeta_{22}|t_{1,1}\right) = \sum_{\forall (m_2',m_s') \neq (1,m_s)} \Pr\left(u_2^n(m_2',m_s'),y_1^n|t_{1,1} \in \mathcal{A}_{\epsilon}^{(n)}(U_2^n,Y^n)\right) \\ & \Pr\left(\zeta_{22}|t_{1,1}\right) < \sum_{\forall (m_2',m_s') \neq (1,m_s)} 2^{-n(I(U_2^n;Y_2^n) - 3\epsilon)} \\ & \Pr\left(\zeta_{22}|t_{1,1}\right) < \sum_{i=1}^{nR_2} \sum_{j=1}^{nR_s} 2^{-n(I(U_2^n;Y_2^n) - 3\epsilon)} \\ & \Pr\left(\zeta_{22}|t_{1,1}\right) < 2^{n(R_2 + R_s)} 2^{-n(I(U_2^n;Y_2^n) - 3\epsilon)} \\ & \Pr\left(\zeta_{22}|t_{1,1}\right) < 2^{-n(I(U_2^n;Y_2^n) - R_2 - R_s - 3\epsilon)} \end{split}$$

So we have that these 2 probability vanish for $n \to \infty$ as long as we have $R_1 + R_t \le I(U_1^n; Y_1^n)$ and $R_2 + R_s \le I(U_2^n; Y_2^n)$

(g)

we have

$$\begin{cases} R_1 \leq I(U_1^n; Y_1^n) & (i) \\ R_2 \leq I(U_2^n; Y_2^n) & (ii) \\ R_2 + R_1 \leq I(U_1^n; Y_1^n) + I(U_2^n; Y_2^n) - I(U_1^n; U_2^n) & (iii) \end{cases}$$

If we take $R_t = I(U_1^n; Y_1^n) - R_1$ and $R_s = I(U_2^n; Y_2^n) - R_2$ we get

$$\begin{cases} R_1 + R_t \le I(U_1^n; Y_1^n) \\ R_2 + R_s \le I(U_2^n; Y_2^n) \end{cases}$$

These are regular rate because from from (i) and (ii) we have $0 \le I(U_1^n; Y_1^n) - R_1$, $0 \le I(U_2^n; Y_2^n) - R_2$

Also from (iii) we have $I(U_1^n; U_2^n) \leq I(U_1^n; Y_1^n) + I(U_2^n; Y_2^n) - R_2 - R_1 \Rightarrow R_s + R_t \geq I(U_1^n; U_2^n)$

so if arbitrary R_1, R_2 satisfy (11) then we can always fix R_s, R_t for which (10) is satisfied

(h)

$$\begin{cases}
R_1 + R_t \leq I(U_1^n; Y_1^n) & (i) \\
R_2 + R_s \leq I(U_2^n; Y_2^n) & (ii) \\
R_t + R_s \geq I(U_1^n; U_2^n) & (iii)
\end{cases}$$
(10)

then as $R_t \geq 0$ and $R_s \geq 0$, by losing precision on (i) and (ii) we get

$$\begin{cases} R_1 \le I(U_1^n; Y_1^n) \\ R_2 \le I(U_2^n; Y_2^n) \end{cases}$$

Also by multiplying both side of (iii) by -1 and then add to it (i) we get

$$R_2 + R_s + R_1 + R_t - R_t - R_s \le I(U_1^n; Y_1^n) + I(U_2^n; Y_2^n) - I(U_1^n; U_2^n)$$

$$R_2 + R_1 \le I(U_1^n; Y_1^n) + I(U_2^n; Y_2^n) - I(U_1^n; U_2^n)$$

and so we get that (10) implies:

$$\begin{cases}
R_1 \leq I(U_1^n; Y_1^n) \\
R_2 \leq I(U_2^n; Y_2^n) \\
R_2 + R_1 \leq I(U_1^n; Y_1^n) + I(U_2^n; Y_2^n) - I(U_1^n; U_2^n)
\end{cases}$$
(11)

 $\mathbf{Ex} \ \mathbf{5}$

(a)

We can fix $p(u_1, u_2)$ as

$$p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{w \in f_1^{-1}(u_1)} \frac{1}{|f_1^{-1}(u_1)|} \mathbf{1}_{f_2(w) = u_2}$$

because all element are positive (indicator function and size of set) then $p(u_1, u_2) \ge 0$ for all (u_1, u_2) and:

$$\begin{split} &\sum_{\forall u_1} \sum_{\forall u_2} p(u_1, u_2) = \sum_{\forall u_1} \sum_{\forall u_2} \frac{1}{|\mathcal{U}_1|} \sum_{w \in f_1^{-1}(u_1)} \frac{1}{|f_1^{-1}(u_1)|} \mathbf{1}_{f_2(w) = u_2} \\ &\sum_{\forall u_1} \sum_{\forall u_2} p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{\forall u_1} \frac{1}{|f_1^{-1}(u_1)|} \sum_{w \in f_1^{-1}(u_1)} \sum_{\forall u_2} \mathbf{1}_{f_2(w) = u_2} \\ &\sum_{\forall u_1} \sum_{\forall u_2} p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{\forall u_1} \frac{1}{|f_1^{-1}(u_1)|} \sum_{w \in f_1^{-1}(u_1)} 1 \\ &\sum_{\forall u_1} \sum_{\forall u_2} p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{\forall u_1} \frac{1}{|f_1^{-1}(u_1)|} |f_1^{-1}(u_1)| \\ &\sum_{\forall u_1} \sum_{\forall u_2} p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{\forall u_1} 1 \\ &\sum_{\forall u_1} \sum_{\forall u_2} p(u_1, u_2) = 1 \end{split}$$

so this function is indeed a probability function.

Then if $f_1^{-1}(u_1) \cap f_2^{-1}(u_2) \neq \emptyset$ so by definition $\forall w \in f_1^{-1}(u_1) : f_2(w) \neq u_2$.in this case

$$p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{w \in f_1^{-1}(u_1)} \frac{1}{|f_1^{-1}(u_1)|} \mathbf{1}_{f_2(w) = u_2}$$

$$p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} \sum_{w \in f_1^{-1}(u_1)} \frac{1}{|f_1^{-1}(u_1)|} * 0$$

$$p(u_1, u_2) = \frac{1}{|\mathcal{U}_1|} * 0 = 0$$

Let's note that as we know have $\Pr\left(f_1^{-1}(u_1) \cap f_2^{-1}(u_2) \neq \varnothing\right) = 0$ we can rewrite $x(u_1, u_2)$ simply as $x(u_1, u_2) = \text{some } a \in f_1^{-1}(u_1) \cap f_2^{-1}(u_2)$ so now $\forall u_1 \in \mathcal{U}_1 \forall u_2 \in \mathcal{U}_2 : x(u_1, u_2) \in f_1^{-1}(u_1) \land x(u_1, u_2) \in f_2^{-1}(u_2)$

Now we want $Pr(Y_1 = U_1)$. As deterministically we have $y_1 = f_1(x(u_1, y_2))$ then

$$\Pr(Y_1 = U_1) = \Pr(Y_1 = f_1(x(U_1, U_2))) = \Pr(x(U_1, U_2) \in f_1^{-1}(U_1)) = 1$$

from what we derived in the previous paragraph.

Symmetrically:

$$\Pr(Y_2 = U_2) = \Pr(Y_2 = f_2(x(U_1, U_2))) = \Pr(x(U_1, U_2)) \in f_2^{-1}(U_2)) = 1$$

(b).

case when $f_1^{-1}(u_1) \cap f_2^{-1}(u_2) = \emptyset$ if it exist a and b in such that $f_1^{-1}(a) \cap f_2^{-1}(b) = \emptyset$ then by definition there's no $w \in \mathcal{X}$ such that $f_2(w) = a \wedge f_2(w) = b$.

So $\Pr_{f_1(Z),f_2(Z)}(a,b)=0$. so if we set in our distribution p(a,b)=0, then $\Pr(f_1(x(a,b)),f_2(x(a,b)))=0$ and it's match.

So here we have in distribution $(f_1(Z), f_2(Z)) = (f_1(x(U_1, U_2)), f_2(x(U_1, U_2)))$

case when $f_1^{-1}(u_1) \cap f_2^{-1}(u_2) \neq \emptyset$ Now that we know that

$$\Pr_{U_1, U_2} \left(a, b | f_1^{-1}(a) \cap f_2^{-1}(b) \neq \varnothing \right) = 0$$

then again we have $f_1(x(a,b)) = a$ and $f_2(x(a,b)) = b$. so we want to match the distribution of $(f_1(Z), f_2(Z))$ and (U_1, U_2) . And we have in general that for any function $f \Pr(f(x)) = \sum_{w: f(w) = f(x)} \Pr(w)$. So

$$\Pr(f_1(z), f_2(z)) = \sum_{w: f_1(w), f_2(w) = f_1(z), f_2(z)} p_z(w)$$

$$\Pr(f_1(z), f_2(z)) = \sum_{w: f_1(w) = f_1(z) \land f_2(w) = f_2(z)} p_z(w)$$

$$\Pr(f_1(z), f_2(z)) = \sum_{w: f_1(w) = f_1(z) \land f_2(w) = f_2(z)} p_z(w)$$

$$\Pr(f_1(z), f_2(z)) = \sum_{w \in f_1^{-1}(f_1(z)) \cap f_2^{-1}(f_2(z))} p_z(w)$$

So if we set $p(u_1, u_2) = \sum_{z \in f_1^{-1}(u_1) \cap f_2^{-1}(u_2)} p_z(z)$ we get in distribution $((f_1(Z), f_2(Z)) = (U_1, U_2) = (f_1(x(U_1, U_2), f_2(x(U_1, U_2))).$

Conclusion. Let's note that if $f_1^{-1}(u_1) \cap f_2^{-1}(u_2) = \emptyset$ then $\sum_{z \in f_1^{-1}(u_1) \cap f_2^{-1}(u_2)} p_z(z) = 0$, then we have that the distribution $p(u_1, u_2) = \sum_{z \in f_1^{-1}(u_1) \cap f_2^{-1}(u_2)} p_z(z)$ makes that $(f_1(x(U_1, U_2), f_2(x(U_1, U_2)))$ and $(f_1(Z), f_2(Z))$ to have the same distribution

(c)

we have

$$\mathcal{R} = \bigcup_{p(x)} \begin{cases} R_1 \leq I(U_1^n; Y_1^n) \\ R_2 \leq I(U_2^n; Y_2^n) \\ R_2 + R_1 \leq I(U_1^n; Y_1^n) + I(U_2^n; Y_2^n) - I(U_1^n; U_2^n) \end{cases}$$

But for every p(x) we can find $p(u_1, u_2)$ such that the distribution of (U_1^n, U_2^n) match the one of (Y_1^n, Y_2^n) and so we can reach

$$\bigcup_{p(x)} \begin{cases}
R_{1} \leq I(Y_{1}^{n}; Y_{1}^{n}) \\
R_{2} \leq I(Y_{2}^{n}; Y_{2}^{n}) \\
R_{2} + R_{1} \leq I(Y_{1}^{n}; Y_{1}^{n}) + I(Y_{2}^{n}; Y_{2}^{n}) - I(Y_{1}^{n}; Y_{2}^{n})
\end{cases}$$

$$\bigcup_{p(x)} \begin{cases}
R_{1} \leq H(Y_{1}^{n}) \\
R_{2} \leq H(Y_{2}^{n}) \\
R_{2} + R_{1} \leq H(Y_{1}^{n}) + H(Y_{2}^{n}) - (H(Y_{1}^{n}) + H(Y_{2}^{n}) - H(Y_{1}^{n}; Y_{2}^{n}))
\end{cases}$$

$$\bigcup_{p(x)} \begin{cases}
R_{1} \leq H(Y_{1}^{n}) \\
R_{2} \leq H(Y_{2}^{n}) \\
R_{2} \leq H(Y_{2}^{n})
\end{cases}$$

$$R_{2} \leq H(Y_{2}^{n})$$

$$R_{2} \leq H(Y_{2}^{n})$$

$$R_{2} + R_{1} \leq H(Y_{1}^{n}; Y_{2}^{n})$$

$$(12)$$

and so rate region (12) is reachable

Ex 6

(a)

$$X = \begin{cases} \log p_0 + p_1 \\ \log p_2 \\ \log p_3 \end{cases}$$

we have

$$H(p_0 + p_1, p_2, p_3) = -(p_0 + p_1) \log (p_0 + p_1) - p_3 \log(p_3) - p_2 \log(p_2)$$

$$H(p_0 + p_1, p_2, p_3) < -(p_0 + p_1) \log (p_0 + p_1) - (p_3 + p_2) \log \left(\frac{p_3 + p_2}{1 + 1}\right)$$

$$H(p_0 + p_1, p_2, p_3) < H(p'_0 + p'_1, p'_2, p'_3)$$

where we use the log rule inequality between first and second line.

Also in the same way

$$H(p_0, p_1, p_2 + p_3) = -(p_2 + p_3) \log (p_2 + p_3) - p_1 \log(p_1) - p_0 \log(p_0)$$

$$H(p_0 + p_1, p_2, p_3) < -(p_2 + p_3) \log (p_2 + p_3) - (p_1 + p_0) \log \left(\frac{p_1 + p_0}{1 + 1}\right)$$

$$H(p_0 + p_1, p_2, p_3) < H(p'_0, p'_1, p'_2 + p'_3)$$

and finally

$$\begin{split} H(p_0,p_1,p_2,p_3) &= -p_1 \log(p_1) - p_0 \log(p_0) - p_2 \log(p_2) - p_3 \log(p_3) \\ H(p_0,p_1,p_2,p_3) &< -(p_1+p_0) \log\left(\frac{p_1+p_0}{1+1}\right) - (p_3+p_2) \log\left(\frac{p_3+p_2}{1+1}\right) \\ H(p_0,p_1,p_2,p_3) &< -\frac{p_1+p_0}{2} \log\left(\frac{p_1+p_0}{2}\right) - \frac{p_1+p_0}{2} \log\left(\frac{p_1+p_0}{2}\right) \\ &- \frac{p_3+p_2}{2} \log\left(\frac{p_3+p_2}{2}\right) - \frac{p_3+p_2}{2} \log\left(\frac{p_3+p_2}{2}\right) \\ H(p_0,p_1,p_2,p_3) &< H(p_0',p_1',p_2',p_3') \end{split}$$

where we used the inequality twice.

So he have that all upper bound in $\mathcal{R}_{p'}$ are bigger than upper bound in \mathcal{R}_p so $\mathcal{R}_p \subseteq \mathcal{R}_{p'}$

(b)

The variable X as 4 possible value, will will denote these probability by the vector $\vec{p_X} = (p_0 p_1, p_3, p_4)$ where $p_i = \Pr[X = i]$ from these probabilities we can compute deterministacly (because $y_i(x)$ are deterministic) the probability vector of Y_1 and Y_2 :

$$\vec{p}_{Y_1} = (p_0 + p_1, p_2, p_3)$$
 and $\vec{p}_{Y_2} = (p_0, p_1, p_2 + p_3)$

Also we can see that each value of x gives one unique and distinct pair $y_1(x), y_2(x)$ and so we have

$$\begin{cases} p_{Y_1,Y_2}(0,0) = p_X(0) = p_0 \\ p_{Y_1,Y_2}(0,1) = p_X(1) = p_1 \\ p_{Y_1,Y_2}(1,2) = p_X(2) = p_2 \\ p_{Y_1,Y_2}(2,2) = p_X(3) = p_3 \end{cases}$$

and so by applying it to the rate region from Ex5 we get that that the rate region \mathcal{R} is in fact the rate region $\bigcup_{\forall \vec{p_X}} \mathcal{R}_{\vec{p_X}}$ where $\mathcal{R}_{\vec{p_X}}$ is the region define in (a) for a given vector $\vec{p_X}$

We have that all distribution of the form $\vec{p_X} = (p, p, 0.5 - p, 0.5 - p)$ with $0 \le p \le 0, 5$ is a subset of all possible $\vec{p_X}$ so

$$\bigcup_{\forall p\vec{x}} \mathcal{R}_{p\vec{x}} \supseteq \bigcup_{0 \le p \le 0,5} \mathcal{R}_{(p,p,1-p,1-p)}$$
(13)

Now for every channel $\vec{p_X} = (p_0p_1, p_3, p_4)$ if we set that $p' = \frac{p_1+p_0}{2}$ and so $0, 5-p' = \frac{p_2+p_3}{2}$ we have from (a) that $\mathcal{R}_{(p_0p_1,p_3,p_4)} \subseteq \mathcal{R}_{(p',p',0.5-p',0.5-p')}$ and as $p_0+p_1 \leq 1 \Rightarrow p' = \frac{p_1+p_0}{2} \leq 0.5$ then we have that $\mathcal{R}_{(p_0p_1,p_3,p_4)} \subseteq \mathcal{R}_{(p,p,1-p,1-p)}$ for a $p=p' \leq 0.5$. so if we take the union on both side we get:

$$\bigcup_{\forall \vec{p_X}} \mathcal{R}_{\vec{p_X}} \subseteq \bigcup_{0 \le p \le 0,5} \mathcal{R}_{(p,p,0.5-p,0.5-p)}$$

$$\tag{14}$$

and so (13) and (14) implies

$$\bigcup_{\forall p\vec{\chi}} \mathcal{R}_{p\vec{\chi}} = \bigcup_{0 \le p \le 0, 5} \mathcal{R}_{(p, p, 0.5 - p, 0.5 - p)}$$
$$\mathcal{R} = \bigcup_{0 \le p \le 0, 5} \mathcal{R}_{(p, p, 0.5 - p, 0.5 - p)}$$

(c)

We take $p_l = \frac{1}{6}$ and $p_r = \frac{1}{3}$

Preliminary result:

$$H(p, p, 0.5 - p, 0.5 - p) = -2p \log(p) - 2(0.5 - p) \log(0.5 - p)$$

$$H(p, p, 0.5 - p, 0.5 - p) = -2p (\log(2p) - \log 2) - (1 - 2p)(\log(1 - 2p) - \log 2)$$

$$H(p, p, 0.5 - p, 0.5 - p) = h_b(2p) + \log 2$$

as we know that binary entropy is increasing for $x \leq 0.5$, if we have $a \leq 0.25$ and $b \leq 0.25$:

$$H(a, a, 0.5 - a, 0.5 - a) \le H(b, b, 0.5 - b, 0.5 - b) \iff a \le b$$
 (15)

In the same way:

$$H(p, p, 1 - 2p) = -2p \log(p) - (1 - 2p) \log(1 - 2p)$$

$$H(p, p, 1 - 2p) = -2p (\log(2p) - \log 2) - (1 - 2p) \log(1 - 2p)$$

$$H(p, p, 1 - 2p) = h_b(2p) + 2p \log 2$$

Both $h_b(2p)$ and $2p\log 2$ are increasing for $2p\leq 0.5$ so for $a\leq 0.25$ and $b\leq 0.25$:

$$H(a, a, 1 - 2p) \le H(b, b, 1 - 2b) \iff a \le b \tag{16}$$

(i)

for every $p \leq \frac{1}{6}$ we have that

- $R_1 \le H(p+p, 0.5-p, 0.5-p) \le H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, because entropy always reach is maximum at equiprobability for the same number of possible value (here 3)
- $R_2 \le H(p, p, 1 2p) \le H(\frac{1}{6}, \frac{1}{6}, \frac{2}{3})$ because $p \le \frac{1}{6} \le 0.25$ and (16)
- $R_1 + R_2 \le H(p, p, 0.5 p, 0.5 p) \le H(\frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3})$ from $p \le \frac{1}{6} \le 0.25$ and (15)

So all bound of \mathcal{R}_p are bounded by the bound of $\mathcal{R}_{\frac{1}{2}}$

so
$$\mathcal{R}_{(p,p,0.5-p,0.5-p)} \subseteq \mathcal{R}_{\frac{1}{6}} \subseteq \bigcup_{\frac{1}{6} \le p \le \frac{1}{2}} \mathcal{R}_{(p,p,0.5-p,0.5-p)}$$
 for all $p < \frac{1}{6}$

Now for every $p \ge \frac{1}{3}$ we have:

• $R_1 \le H(p+p, 0.5-p, 0.5-p) \le H(\frac{2}{3}, \frac{1}{6}, \frac{1}{6})$ because

$$H(p+p, 0.5-p, 0.5-p) \le H(\frac{2}{3}, \frac{1}{6}, \frac{1}{6}) \iff H(0.5-p, 0.5-p, p+p) \le H(\frac{1}{6}, \frac{1}{6}, \frac{2}{3})$$

and $0.5 - p \le \frac{1}{6} \le 0.25$ and (16)

- $R_2 \le H(p,p,1-2p) \le H(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ because entropy always reach is maximum at equiprobability for the same number of possible value (here 3)
- $R_1 + R_2 \le H(p, p, 0.5 p, 0.5 p) \le H(\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$ because

$$H(p,p,0.5-p,0.5-p) \leq H(\frac{1}{3},\frac{1}{3},\frac{1}{6},\frac{1}{6}) \iff H(0.5-p,0.5-p,p,p) \leq H(\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{3})$$

and
$$0.5 - p \le \frac{1}{6} \le 0.25$$
 and (15)

So all bound of \mathcal{R}_p are bounded by the bound of $\mathcal{R}_{(\frac{1}{2},\frac{1}{2},\frac{1}{6},\frac{1}{6})}$

$$\mathcal{R}_{(p,p,0.5-p,0.5-p)} \subseteq \mathcal{R}_{\left(\frac{1}{3},\frac{1}{6},\frac{1}{6},\frac{1}{6}\right)} \subseteq \bigcup_{\frac{1}{6} \le p \le \frac{1}{3}} \mathcal{R}_{(p,p,0.5-p,0.5-p)} \text{ for all } p > \frac{1}{3}$$

Finally obviously for $\frac{1}{6} \leq p' \leq \frac{1}{3}$: $\mathcal{R}_{(p',p',0.5-p',0.5-p')} \subseteq \bigcup_{\frac{1}{6} \leq p \leq \frac{1}{3}} \mathcal{R}_{(p,p,0.5-p,0.5-p)}$

Conclusion: By combination of all the previous paragraph we get that $\bigcup_{0 \le p \le 0,5} \mathcal{R}_{(p,p,0.5-p,0.5-p)} \subseteq \bigcup_{\frac{1}{6} \le p \le \frac{1}{3}} \mathcal{R}_{(p,p,0.5-p,0.5-p)}$

also as
$$\frac{1}{6} \le p \le \frac{1}{3}$$
 is a subset of $0 \le p \le 0, 5$ then $\bigcup_{0 \le p \le 0, 5} \mathcal{R}_{(p, p, 0.5 - p, 0.5 - p)} \supseteq \bigcup_{\frac{1}{6} \le p \le \frac{1}{3}} \mathcal{R}_{(p, p, 0.5 - p, 0.5 - p)}$

So

$$\bigcup_{0 \le p \le 0,5} \mathcal{R}_{(p,p,0.5-p,0.5-p)} = \bigcup_{\frac{1}{6} \le p \le \frac{1}{3}} \mathcal{R}_{(p,p,0.5-p,0.5-p)}$$

$$\mathcal{R} = \bigcup_{\frac{1}{6} \le p \le \frac{1}{3}} \mathcal{R}_{(p,p,0.5-p,0.5-p)}$$

(ii)

In all the following we assume that $\epsilon < 0$.

We know that the entropy of a random variable with 3 possible value only reach it's maximum log 3 at equiprobability.

So
$$H(a,b,c) = \log 3 \iff a = b = c = \frac{1}{3}$$
 otherwise $H(a,b,c) < \log 3$

Lower bound can't be larger than $\frac{1}{6}$: We have:

- $\log 3 \le H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, because $\log 3 = H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
- $0 \le H(\frac{2}{3}, \frac{1}{6}, \frac{1}{6})$, by basic property of entropy and
- $\log 3 + 0 \le H(\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$. by explicit computation

so

$$(\log 3, 0) \in \mathcal{R}_{(\frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3})}$$

Now for every $\mathcal{R}_{(p,p,0.5-p,0.5-p)}$ with $\frac{1}{6} + \epsilon \leq p$ we have that $2p = \frac{1}{3} + 2\epsilon \neq \frac{1}{3}$ so the first bound we get $R_1 \leq H(p+p,0.5-p,0.5-p) < \log 3$ so $(\log 3,0) \notin \mathcal{R}_{(p,p,0.5-p,0.5-p)}$ for any $\frac{1}{6} + \epsilon \leq p$

So

$$(\log 3, 0) \notin \bigcup_{\frac{1}{6} + \epsilon \le p \le \frac{1}{3}} \mathcal{R}_{(p, p, 0.5 - p, 0.5 - p)}$$

Upper bound can't be smaller than $\frac{1}{3}$:

- $0 \le H(\frac{2}{3}, \frac{1}{6}, \frac{1}{6})$, by basic property of entropy and
- $\log 3 \le H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, because $\log 3 = H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• $0 + \log 3 \le H(\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})$. by explicit computation

So

$$(0, \log 3) \in \mathcal{R}_{(\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6})}$$

Now for every $\mathcal{R}_{(p,p,0.5-p,0.5-p)}$ with $p \leq \frac{1}{3} - \epsilon$ we have that $p = \frac{1}{3} - \epsilon \neq \frac{1}{3}$ so in the second bound we get $R_2 \leq H(p,p,1-2p) < \log 3$ so $(0,\log 3) \notin \mathcal{R}_{(p,p,0.5-p,0.5-p)}$ for any $p \leq \frac{1}{3} - \epsilon$ so:

$$(0, \log 3) \notin \bigcup_{\frac{1}{6}$$

So our born wan't be any smaller than $\frac{1}{6}$ or larger than $\frac{1}{3}$

(e)

- 1. $H\left(p_0, 0.5 \frac{p_0}{2} + 0.5 \frac{p_0}{2}\right) = H(p_0, 1 p_0) = H(p_0, p_1 + p_2)$ so $\mathcal{R}_{\left(p_0, 0.5 \frac{p_0}{2}, 0.5 \frac{p_0}{2}\right)}$ and $\mathcal{R}_{\vec{p}}$ have the same bounds on R_1
- 2. $H\left(0.5 \frac{p_2}{2} + 0.5 \frac{p_2}{2}, p_2\right) = H(1 p_2, p_2) = H(p_0, +p_1, p_2)$ so $\mathcal{R}_{\left(0.5 \frac{p_2}{2}, 0.5 \frac{p_2}{2}, p_2\right)}$ and $\mathcal{R}_{\vec{p}}$ have the same bounds on R_2

3.

$$\begin{split} &H(p_0,p_1,p_2) = -p_0 \log p_0 - p_1 \log p_1 - p_2 \log p_2 \\ &H(p_0,p_1,p_2) < -p_0 \log p_0 - (p_1 + p_2) \log \left(\frac{p_1 + p_2}{1+1}\right) \\ &H(p_0,p_1,p_2) < -p_0 \log p_0 - 2\left(\frac{1-p_0}{2}\right) \log \left(\frac{1-p_0}{2}\right) \\ &H(p_0,p_1,p_2) < H\left(p_0,0.5 - \frac{p_0}{2},0.5 - \frac{p_0}{2}\right) \end{split}$$

Where the inequality come from the log-sum inequality.

As $H(p_0, p_1, p_2) = H(p_2, p_0, p_1)$ we also have $H(p_0, p_1, p_2) < H\left(p_2, 0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}\right) = H\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)$

 $H\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)$ So the bound on $R_1 + R_2$ is $\mathcal{R}_{\vec{p}}$ in smaller than the ones in $\mathcal{R}_{\left(p_0, 0.5 - \frac{p_0}{2}, 0.5 - \frac{p_0}{2}\right)}$ and $\mathcal{R}_{\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)}$

4.
$$H\left(p_0 + 0.5 - \frac{p_0}{2}, 0.5 - \frac{p_0}{2}\right) = h_b\left(0.5 - \frac{p_0}{2}\right)$$
 and $H(p_0 + p_1, p_2) = h_b\left(p_2\right)$

5.
$$H(0.5 - \frac{p_2}{2}, 0.5 + \frac{p_2}{2}) = h_b(0.5 - \frac{p_2}{2})$$
 and $H(p_0, p_1 + p_2) = h_b(p_0)$

If $p_2 \leq 0.5 - \frac{p_0}{2}$ then we have as $p_0 \leq 1$ $p_2 \leq 0.5 - \frac{p_0}{2} \leq 0.5$ and so $h_b\left(p_2\right) \leq h_p\left(0.5 - \frac{p_0}{2}\right)$. that's implies, with 1. and 2. that all bound in $\mathcal{R}_{\left(p_0,0.5 - \frac{p_0}{2},0.5 - \frac{p_0}{2}\right)}$ are bigger ore equal than the ones of $\mathcal{R}_{\vec{p}}$ and so $\mathcal{R}_{\vec{p}} \subseteq \mathcal{R}_{\left(p_0,0.5 - \frac{p_0}{2},0.5 - \frac{p_0}{2}\right)}$

If $p_0 \leq 0.5 - \frac{p_2}{2}$ then we have as $p_2 \leq 1$ $p_0 \leq 0.5 - \frac{p_2}{2} \leq 0.5$ and so $h_b\left(p_0\right) \leq h_p\left(0.5 - \frac{p_2}{2}\right)$. that's implies, with 1. and 2. that all bound in $\mathcal{R}_{\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)}$ are bigger ore equal than the ones of $\mathcal{R}_{\vec{p}}$ and so $\mathcal{R}_{\vec{p}} \subseteq \mathcal{R}_{\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)}$

If $p_2 > 0.5 - \frac{p_0}{2}$ and $p_0 > 0.5 - \frac{p_2}{2}$ then by addition we get

$$p_0 + p_1 > 1 - \frac{1}{2}(p_0 + p_1)$$

$$1 - p_1 > \frac{2}{3}$$

$$p_1 < \frac{1}{3}$$

Also we must have for any point (R_1, R_2) :

If $R_1 \leq h_p\left(0.5 - \frac{p_2}{2}\right)$ then as $R_2 \leq H(p_0 + p_1, p_2)$ we have $(R_1, R_2) \in \mathcal{R}_{\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)}$

If $R_2 \leq h_p\left(0.5 - \frac{p_0}{2}\right)$ then as $R_1 \leq H(p_0, p_1 + p_2)$ we have $(R_1, R_2) \in \mathcal{R}_{(0.5 - \frac{p_0}{2}, 0.5 - \frac{p_0}{2}, p_0)}$

If there's a point (R_1, R_2) in $\mathcal{R}_{\vec{p}}$ such that $h_b(p_2) \geq R_1 > h\left(0.5 - \frac{p_0}{2}\right)$ and $h_b(p_0) \geq R_2 > h_p\left(0.5 - \frac{p_2}{2}\right)$

then

$$\begin{split} R_1 + R_2 > h\left(0.5 - \frac{p_0}{2}\right) + h_p\left(0.5 - \frac{p_2}{2}\right) \\ R_1 + R_2 - H(p_0, p_1, p_2) > -\left(0.5 - \frac{p_0}{2}\right) \log\left(0.5 - \frac{p_0}{2}\right) - \left(0.5 + \frac{p_0}{2}\right) \log\left(0.5 + \frac{p_0}{2}\right) \\ -\left(0.5 - \frac{p_2}{2}\right) \log\left(0.5 - \frac{p_2}{2}\right) - \left(0.5 + \frac{p_2}{2}\right) \log\left(0.5 + \frac{p_2}{2}\right) \\ + p_0 \log\left(p_0\right) + \left(p_2\right) \log\left(p_2\right) + \left(p_1\right) \log\left(p_1\right) \end{split}$$

$$R_1 + R_2 - H(p_0, p_1, p_2) > 0$$

Where we used the fact that $p_2 > 0.5 - \frac{p_0}{2}$ and $p_0 > 0.5 - \frac{p_2}{2}$ then that $-x \log x$ increase for x > 0.5

and finally that as $p_1<\frac{1}{3}$ then $-(p_1)\log(p_1)<\left(\frac{1}{3}\right)\log\left(\frac{1}{3}\right)<1$ because $-x\log x$ increasing on $x\leq\frac{1}{3}$

So a such point can't exist in $\mathcal{R}_{\vec{p}}$ so in all case $\mathcal{R}_{\vec{p}}$ is either in $\mathcal{R}_{(0.5-\frac{p_2}{2},0.5-\frac{p_2}{2},p_2)}$ or $\mathcal{R}_{(p_0,0.5-\frac{p_0}{2},0.5-\frac{p_0}{2})}$ so in every for every $\mathcal{R}_{\vec{p}}$ so

$$\mathcal{R}_{\vec{p_X}} \subseteq \mathcal{R}_{\left(p_0, 0.5 - \frac{p_0}{2}, 0.5 - \frac{p_0}{2}\right)} \cup \mathcal{R}_{\left(0.5 - \frac{p_2}{2}, 0.5 - \frac{p_2}{2}, p_2\right)}$$

(f)

form our information in the channel we can deterministically compute the probability vector of Y_1 and Y_2 and (Y_1, Y_2) given $\vec{p}_X = (p_0, p_1, p_2)$

$$\vec{p}_{Y_1} = (p_0, p_1 + p_2)$$
$$\vec{p}_{Y_2} = (p_0 + p_1, p_2)$$
$$\vec{p}_{Y_1, Y_2} = (p_0, p_1, p_2)$$

So $H(Y_1) = H(p_0, p_1 + p_2)$, $H(Y_2) = H(p_0 + p_1, p_2)$ and $H(Y_1, Y_2) = H(p_0, p_1, p_2)$ So by applying this to rate region from Ex 5 we get

$$\mathcal{R} = igcup_{orall ec{p}_X} \mathcal{R}_{ec{p}_X}$$

As all $(p,0.5-\frac{p}{2},0.5-\frac{p}{2})$ for $0\leq p\leq 1$ and all $(0.5-\frac{p}{2},0.5-\frac{p}{2},p)$ for $0\leq p\leq 1$ are a subset of all possible \vec{p}_X then

$$\mathcal{R}\supseteq\left(\bigcup_{0\leq p\leq 1}\mathcal{R}_{(p,0.5-\frac{p}{2},0.5-\frac{p}{2})}\right)\cup\left(\bigcup_{0\leq p\leq 1}\mathcal{R}_{(0.5-\frac{p}{2},0.5-\frac{p}{2},p)}\right)$$

but as for all possible \vec{p}_X We have (from (e)) that $\mathcal{R}_{\vec{p}_X} \subseteq \mathcal{R}_{(p_0,0.5-\frac{p_0}{2},0.5-\frac{p_0}{2})} \cup \mathcal{R}_{(0.5-\frac{p_2}{2},0.5-\frac{p_2}{2},p)}$ then every $\mathcal{R}_{\vec{p}_X}$ is include in $\left(\bigcup_{0\leq p\leq 1}\mathcal{R}_{(p,0.5-\frac{p}{2},0.5-\frac{p}{2})}\right)\cup \left(\bigcup_{0\leq p\leq 1}\mathcal{R}_{(0.5-\frac{p}{2},0.5-\frac{p}{2},p)}\right)$ and so the union of all possible $\mathcal{R}_{\vec{p}_X}$ is included too

$$\mathcal{R} \subseteq \left(\bigcup_{0 \leq p \leq 1} \mathcal{R}_{(p,0.5-\frac{p}{2},0.5-\frac{p}{2})}\right) \cup \left(\bigcup_{0 \leq p \leq 1} \mathcal{R}_{(0.5-\frac{p}{2},0.5-\frac{p}{2},p)}\right)$$

This mean

$$\mathcal{R} = \left(\bigcup_{0 \le p \le 1} \mathcal{R}_{(p,0.5 - \frac{p}{2}, 0.5 - \frac{p}{2})}\right) \cup \left(\bigcup_{0 \le p \le 1} \mathcal{R}_{(0.5 - \frac{p}{2}, 0.5 - \frac{p}{2}, p)}\right)$$

(g)

(i)

$$\mathcal{R} = \left(\bigcup_{0 \le p \le 1} \mathcal{R}_{(p,0.5 - \frac{p}{2}, 0.5 - \frac{p}{2})} \right) \cup \left(\bigcup_{0 \le p \le 1} \mathcal{R}_{(0.5 - \frac{p}{2}, 0.5 - \frac{p}{2}, p)} \right) \\
\mathcal{R} = \bigcup_{0 \le p \le 1} \left(\mathcal{R}_{(p,0.5 - \frac{p}{2}, 0.5 - \frac{p}{2})} \cup \mathcal{R}_{(0.5 - \frac{p}{2}, 0.5 - \frac{p}{2}, p)} \right) \\
R = \bigcup_{0 \le p \le 1} \left\{ (R_1, R_2) : R_1 \le h_b(p) R_2 \le H\left(0.5 - \frac{p}{2}, 0.5 + \frac{p}{2}\right) R_1 + R_2 \le H\left(p, 0.5 - \frac{p}{2}, 0.5 - \frac{p}{2}\right) \right\} \\
\cup \left\{ (R_1, R_2) : R_1 \le h_b\left(0.5 - \frac{p}{2}\right) R_2 \le h_b(p) R_1 + R_2 \le H\left(p, 0.5 - \frac{p}{2}, 0.5 - \frac{p}{2}\right) \right\}$$

We can chose ether $p_l = 0$ or $p_r = \frac{1}{3}$

if $p>\frac{1}{3}$ then we' have that every point of $\mathcal{R}_{(p,0.5-\frac{p}{2},0.5-\frac{p}{2})}$ is in $\mathcal{R}_{(0.5-\frac{0.5-p}{2},0.5-\frac{0.5-p}{2},0.5-p)}$ because as $p>\frac{1}{3}$ then 0.5-p>p and so $h_b(0.5-p)\geq h_b(p)$ and $h_b(p)\leq h_b(0.5-\frac{p}{2})$ and also so all 3 bound are over bounded

the reverse work: every point of $\mathcal{R}_{(0.5-\frac{p}{2},0.5-\frac{p}{2},p)}$ is in $\mathcal{R}_{(0.5-p,0.5-\frac{0.5-p}{2},0.5-\frac{0.5-p}{2})}$

(ii)

So
$$\mathcal{R} = \bigcup_{0 \leq p \leq \frac{1}{3}} \left(\mathcal{R}_{(p,0.5-\frac{p}{2},0.5-\frac{p}{2})} \cup \mathcal{R}_{(0.5-\frac{p}{2},0.5-\frac{p}{2},p)} \right)$$

if we take $0+\epsilon$ instead of 0 we have that the point $(0,1)\in\mathcal{R}_{(0,0.5,0.5)}$ isn't in our rate because because for all $0< p<\frac{1}{3}$ $h_b(p)<1$ and $h_b(0.5-\frac{p}{2})<1$ because $0.5-\frac{p}{2}<0$ and so isn't in any $\mathcal{R}_{(p,0.5-\frac{p}{2},0.5-\frac{p}{2})}\cup\mathcal{R}_{(0.5-\frac{p}{2},0.5-\frac{p}{2},p)}$ for $0< p\leq \frac{1}{3}$