A complex FIR (finite impulse response) filter, takes the digital input date, manipulates it, and outputs the digital data. In this example, a simple convolution operation course between the complex input data (X_I and X_Q), the FIR filter coefficients (a_I and a_Q) to give an output (Y_I and Y_Q) which is the convolution between $X_I + jX_Q$ and $a_I + ja_Q$.

The design of a complex multiplier can be created through 4 multipliers and two adders as shown:

Shown below is a generic design of a 4 tap complex FIR filter. As we can see, a FIR filter tap consists of delay block (Z^{-1}), a multiplication block (\otimes), and the addition block (\oplus). A similar principle can be applied for an n tap complex FIR filter.

The following convolution process between two complex numbers can be confirmed to be correct through by checking the corresponding operation in MATLAB, as shown below: