In this example, we will explore the use of various classifiers from the scikit-learn package. Again, we'll use the modified Video Store data.

```
In [1]:
         import numpy as np
         import pandas as pd
In [2]: vstable = pd.read csv("Video Store 2.csv", index col=0)
         vstable.shape
Out[2]: (50, 7)
In [3]: vstable.head()
Out[3]:
                 Gender Income Age Rentals Avg Per Visit
                                                             Genre Incidentals
         Cust ID
                      M
                          45000
                                  25
                                           32
                                                       2.5
                                                             Action
                                                                          Yes
              2
                          54000
                                  33
                                           12
                                                       3.4
                                                            Drama
                                                                           No
              3
                      F
                          32000
                                  20
                                           42
                                                       1.6 Comedy
                                                                           No
                          59000
                                  70
                                           16
                                                       4.2
                                                            Drama
                                                                          Yes
              5
                      Μ
                          37000
                                  35
                                           25
                                                       3.2
                                                             Action
                                                                          Yes
         Let's separate the target attribute and the attributes used for model training
In [4]: vs_records = vstable[['Gender','Income','Age','Rentals','Avg Per Visit','Genre']]
         vs_records.head()
Out[4]:
                 Gender Income Age Rentals Avg Per Visit
                                                             Genre
         Cust ID
              1
                                  25
                                           32
                                                       2.5
                                                             Action
                      M
                          45000
              2
                          54000
                                           12
                                  33
                                                       3.4
                                                            Drama
              3
                          32000
                                  20
                                           42
                                                       1.6 Comedy
              4
                          59000
                                  70
                                           16
                                                       4.2
                                                            Drama
              5
                      M
                          37000
                                  35
                                           25
                                                       3.2
                                                             Action
In [5]: vs target = vstable.Incidentals
         vs_target.head()
Out[5]: Cust ID
              Yes
         2
               No
         3
               No
         4
              Yes
         5
              Yes
```

Name: Incidentals, dtype: object

vs matrix.head(10)

Next, we use Pandas "get dummies" function to create dummy variables.

In [6]: vs matrix = pd.get dummies(vs records[['Gender','Income','Age','Rentals','Avg Per Visit','Genre']])

		Income	Age	Rentals	Avg Per Visit	Gender_F	Gender_M	Genre_Action	Genre_Comedy	Genre_Drama
Cus	st ID									
	1	45000	25	32	2.5	False	True	True	False	False
	2	54000	33	12	3.4	True	False	False	False	True
	3	32000	20	42	1.6	True	False	False	True	False
	4	59000	70	16	4.2	True	False	False	False	True
	5	37000	35	25	3.2	False	True	True	False	False
	6	18000	20	29	1.7	False	True	True	False	False
	7	29000	45	19	3.8	True	False	False	False	True
	8	74000	25	31	2.4	False	True	True	False	False
	9	38000	21	18	2.1	False	True	False	True	False
	10	65000	40	21	3.3	True	False	False	False	True

Next, we divide the data into randomized training and test partitions (note that the same split should also be perfromed on the target attribute). The easiest way to do this is to use the "train_test_split" module of "sklearn.cross_validation".

```
In [7]: from sklearn.model_selection import train_test_split
    vs_train, vs_test, vs_target_train, vs_target_test = train_test_split(vs_matrix, vs_target, test_size=0.2, rando
    print(vs_test.shape)
    vs_test[0:5]
    (10, 9)
```

Out[7]: Income Age Rentals Avg Per Visit Gender_F Gender_M Genre_Action Genre_Comedy Genre_Drama

Cust ID

6	18000	20	29	1.7	False	True	True	False	False
28	57000	52	22	4.1	False	True	False	True	False
38	41000	38	20	3.3	False	True	False	False	True
16	17000	19	26	2.2	False	True	True	False	False
41	50000	33	17	1.4	True	False	False	False	True

```
In [8]: print(vs_train.shape)
vs_train[0:5]
```

(40, 9)

Out[6]:

Out[8]: Income Age Rentals Avg Per Visit Gender_F Gender_M Genre_Action Genre_Comedy Genre_Drama

Cust ID									
30	41000	25	17	1.4	False	True	True	False	False
35	74000	29	43	4.6	False	True	True	False	False
18	6000	16	39	1.8	True	False	True	False	False
40	17000	19	32	1.8	False	True	True	False	False
2	54000	33	12	3.4	True	False	False	False	True

Performing min-max normalization to rescale numeric attributes.

```
In [9]: from sklearn import preprocessing
In [10]: min_max_scaler = preprocessing.MinMaxScaler().fit(vs_train)
    vs_train_norm = min_max_scaler.transform(vs_train)
    vs_train_norm = pd.DataFrame(vs_train_norm, columns=vs_train.columns, index=vs_train.index)
    vs_test_norm = min_max_scaler.transform(vs_test)
    vs_test_norm = pd.DataFrame(vs_test_norm, columns=vs_test.columns, index=vs_test.index)
In [11]: # np.set_printoptions(precision=2, linewidth=80, suppress=True)
    vs_train_norm.head()
```

Out[11]:	Cust ID	Income	Age	Rentals	Avg Per Visit	Gender_F	Gender_M	Genre_Action	Genre_Comedy	Genre_Drama
	Cust ID	0.454545	0.404040	0.400400	0.057440				0.0	
	30		0.181818		0.057143	0.0	1.0	1.0	0.0	0.0
	35	0.829545	0.254545	0.864865	0.971429	0.0	1.0	1.0	0.0	0.0
	18	0.056818	0.018182	0.756757	0.171429	1.0	0.0	1.0	0.0	0.0
	40	0.181818	0.072727	0.567568	0.171429	0.0	1.0	1.0	0.0	0.0
	2	0.602273	0.327273	0.027027	0.628571	1.0	0.0	0.0	0.0	1.0
n [12]:	vs_test	_norm.hea	ad ()							
Out[12]:		Income	Age	Rentals	Avg Per Visit	Gender_F	Gender_M	Genre_Action	Genre_Comedy	Genre_Drama
	Cust ID									
	6	0.193182	0.090909	0.486486	0.142857	0.0	1.0	1.0	0.0	0.0
	28	0.636364	0.672727	0.297297	0.828571	0.0	1.0	0.0	1.0	0.0
	38	0.454545	0.418182	0.243243	0.600000	0.0	1.0	0.0	0.0	1.0
	16	0.181818	0.072727	0.405405	0.285714	0.0	1.0	1.0	0.0	0.0
	41	0.556818	0.327273	0.162162	0.057143	1.0	0.0	0.0	0.0	1.0
	We will	use the	KNN, ded	cision tree	e, and naive	Bayes cla	ssifiers fro	m sklearn.		
In [13]:	from sk	learn im	oort neig	hbors, tr	ree, naive_ba	ayes				
	First, w value.	e'll use K	(NN class	sifer. You	can vary K a	and monit	or the accu	ıracy metrics	(see below) to	find the best
In [14]:	n_neigh	bors = 5								

Next, we call the predict function on the test intances to produce the predicted classes.

```
In [15]: knnpreds test = knnclf.predict(vs test norm)
In [16]: print(knnpreds test)
        ['No' 'No' 'Yes' 'Yes' 'No' 'No' 'Yes' 'Yes' 'Yes' 'Yes']
         scikit-learn has various modules that can be used to evaluate classifier accuracy
In [17]: from sklearn.metrics import classification_report
In [18]: print(classification_report(vs_target_test, knnpreds_test))
                      precision recall f1-score
                                                     support
                           1.00
                                     1.00
                                               1.00
                 No
                 Yes
                           1.00
                                     1.00
                                               1.00
                                                            6
                                                           10
            accuracy
                                               1.00
           macro avg
                           1.00
                                               1.00
                                                           10
                                     1.00
                                               1.00
        weighted avg
                           1.00
                                     1.00
                                                           10
```

We can also compute the average accuracy score across the test instances

In [19]: **from** sklearn.metrics **import** confusion matrix

print(knncm)

[[4 0] [0 6]]

In [20]: knncm = confusion matrix(vs target test, knnpreds test)

```
In [21]: print(knnclf.score(vs_test_norm, vs_target_test))
```

This can be compared to the performance on the training data itself (to check for over- or under-fitting)

```
In [22]: print(knnclf.score(vs_train_norm, vs_target_train))
1.0
```

Next, let's use a decision tree classifier:

```
In [23]: treeclf = tree.DecisionTreeClassifier(criterion='entropy', min samples_split=3)
In [24]: treeclf = treeclf.fit(vs_train, vs_target_train)
In [25]: treepreds_test = treeclf.predict(vs_test)
        print(treepreds test)
        ['No' 'Yes' 'No' 'No' 'No' 'Yes' 'Yes' 'Yes' 'No']
In [26]: print(treeclf.score(vs_test, vs_target_test))
       0.6
In [27]: print(treeclf.score(vs_train, vs_target_train))
In [28]: print(classification_report(vs_target_test, treepreds_test))
                     precision recall f1-score support
                                0.75
                                             0.60
                 Nο
                          0.50
                                                          4
                Yes
                          0.75
                                   0.50
                                             0.60
                                                          6
                                             0.60
                                                         10
           accuracy
                               0.62
0.60
                         0.62
                                             0.60
                                                         10
          macro avg
       weighted avg
                         0.65
                                             0.60
                                                         10
In [29]: treecm = confusion matrix(vs target test, treepreds test)
         print(treecm)
       [[3 1]
        [3 3]]
```

We can actually plot the confusion matrix for better visualization:

```
import pylab as plt
%matplotlib inline
plt.matshow(treecm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
```


Now, let's try the (Gaussian) naive Bayes classifier:

```
In [31]: nbclf = naive_bayes.GaussianNB()
         nbclf = nbclf.fit(vs_train, vs_target_train)
         nbpreds_test = nbclf.predict(vs_test)
         print(nbpreds_test)
        ['Yes' 'No' 'No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'Yes' 'Yes']
In [32]: print(nbclf.score(vs_train, vs_target_train))
        0.675
In [33]: print(nbclf.score(vs test, vs target test))
        0.8
         Finally, let's try linear discriminant analysis:
In [34]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
         ldclf = LinearDiscriminantAnalysis()
         ldclf = ldclf.fit(vs_train, vs_target_train)
         ldpreds_test = ldclf.predict(vs_test)
         print(ldpreds_test)
        ['Yes' 'No' 'Yes' 'Yes' 'No' 'No' 'Yes' 'Yes' 'Yes' 'Yes']
In [35]: print(ldclf.score(vs_train, vs_target_train))
        0.725
In [36]: print(ldclf.score(vs_test, vs_target_test))
        0.9
         Next, let's see how we can use the cross-validation module from scikit-learn. This allows for n-fold cross
         validation without the necessity to split the data set manually.
In [37]: from sklearn.model selection import cross val score
In [38]: cv scores = cross val score(treeclf, vs matrix, vs target, cv=5)
         print(cv_scores)
        [0.5 0.4 0.8 0.4 0.7]
In [39]: print("Overall Accuracy: %0.2f (+/- %0.2f)" % (cv scores.mean(), cv scores.std() * 2))
        Overall Accuracy: 0.56 (+/- 0.32)
         Visualizing the decision tree
In [40]: from sklearn.tree import export_graphviz
         from IPython.display import SVG
         from graphviz import Source
         from IPython.display import display
         tree = export graphviz(treeclf, out file=None, feature names=vs train.columns, class names=['No','Yes'])
         graph = Source(tree)
In [41]: display(SVG(graph.pipe(format='svg')))
```


Alternatively, you can use GraphViz or some other tool outside Jupyter environment to convert the dot file into an image file (e.g., a .png file) and save it to a local directory. Then, the image can be displayed in Jupyter as follows.

