Universidade do Minho 2ºSemestre 2014/15 (LEI, 3ºAno)

Modelos Estocásticos de Investigação Operacional

Trabalho Prático Nº 1

(Problema de Programação Dinâmica Estocástica)

Identificação do Grupo

Número:		Retain
69363	Brun Aleundu Torres , Perez-	Ban Been
69854	took faule desting the da likes	Cxyland.
67636	Potricio Sofia Duanta Procha	Patricia Bolla

RESUMO

Como resposta ao desafio da unidade curricular de Modelos Estocásticos de Investigação Operacional, foi construído este relatório por forma a explicar todo o processo e decisões necessárias à resolução do mesmo.

Este trabalho aborda todos os conceitos apresentados nas aulas práticas e teóricas sobre programação dinâmica estocástica, aplicando-os a uma situação de apoio à decisão da política de manutenção de um processo industrial.

Todas as fases de desenvolvimento da solução para o problema proposto serão aqui especificadas e devidamente documentadas.

Palavras-chave: MEIO, Programação Dinâmica Estocástica, Número Infinito de Estágios, Decisões, Estados, Matriz, Eficiência, Minimização, Política.

Índice

Índice	iii
1. INTRODUÇÃO	1
2. ANÁLISE E INTERPRETAÇÃO	2
2.1 Parametrização do Processo	2
2.2 Tempo Não Produtivo	2
2.3 Modelos de Decisão	4
3. RESULTADOS	6
4. CONCLUSÕES	8

1. INTRODUÇÃO

Como referido anteriormente, este trabalho tem como objetivo a abordagem do processo de desenvolvimento de um modelo estocástico de investigação operacional, por forma a avaliar qual a melhor política de decisão. Para tal, serão calculados todos os fatores importantes na escolha da melhor solução.

Organização do Trabalho

Inicia-se o relatório por identificar todos os parâmetros necessários à resolução do problema, em seguida é apresentado o cálculo do tempo não produtivo dos diferentes cenários e apresentados os diferentes modelos/redes de decisão, por último são analisados os resultados e, apresentadas as respostas às diversas alíneas deste trabalho prático.

2. ANÁLISE E INTERPRETAÇÃO

2.1 Parametrização do Processo

Numa fase inicial são identificados todos os parâmetros essenciais para a resolução deste problema, depois de uma leitura cuidada e atenta ao enunciado disponibilizado, identificaram-se os seguintes itens:

- Estados: Níveis de desgaste dos equipamentos que se situam entre 1 (degradação mínima) a 6 (degradação máxima).
- Estágios: Início de cada semana, tendo como uma semana 5 dias (correspondendo aos dias de trabalho "normais"). O número de estágios será no entanto infinito, a solução será encontrada quando houver convergência de valores.
- Decisões: Não realizar manutenção (0), realizar manutenção do tipo 1 (1) e realizar manutenção do tipo 2 (2).
- **Objetivo:** Minimizar o tempo não produtivo do equipamento.

2.2 Tempo Não Produtivo

Com o objetivo de responder ao requerido é necessário calcular o tempo não produtivo de cada equipamento. Neste contexto, o tempo de não produção, é afetado por 2 fatores:

- Degradação do equipamento, pois quanto mais degrado o equipamento pior é a sua eficiência e, consequentemente, menor é o tempo de produção;
- Paragens de produção causadas por uma decisão de manutenção ao equipamento.

É necessário ainda decidir qual o tempo "normal" de produção, foram assumidas 8 horas de trabalho por dia, distribuídas pelos 5 dias da semana de trabalho, logo os tempos de paragem das manutenções 1 e 2 são respetivamente 4 e 8 horas (meio dia e um dia). Da mesma forma a reparação obrigatória (dada a um equipamento no estado máximo de degradação) obriga a parar 8 horas com probabilidade de 0.25 e 12 horas com 0.75 de probabilidade, que gera uma média de 11 horas de paragem devido a reparações forçadas.

O cálculo da eficiência de um equipamento é dado pela expressão do cálculo da eficiência descrita no enunciado:

$$\alpha(eficiência) = 1 - \frac{e^k}{240}$$

Onde k representa a média dos valores dos estados (inicial e seguinte). Isto significa que o valor da eficiência de um dado equipamento, tendo que k é 1, ou seja, não existe ainda degradação o equipamento funciona durante as 8 horas, já para k=0, ou seja, degradação total, o equipamento não funciona permanecendo sem produzir todas as 8 horas de trabalho.

Calculando k para todas as passagens de estados i para j em que i, j pertencem ao domínio anteriormente identificado para os estados, obtém-se a matriz apresentada na figura 1. Através desta podemos facilmente calcular a matriz para os valores da eficiência (α) para cada passagem de estados (Figura 2).

k(i,j)	1	2	3	4	5	6
1	1,0	1,5	2,0	2,5	3,0	3,5
2	1,5	2,0	2,0 2,5	3,0	3,5	4,0
3	2,0	2,5	3,0	3,5	4,0	4,5
4	2,5	3,0	3,5	4,0	4,5	5,0
5	3,0	3,5	4,0	4,5	5,0	5,5
6	3,5	4,0	4,5	5,0	5,5	6,0

α(i,j)	1	2	3	4	5	6
1	0,99	0,98	0,97	0,95	0,92	0,86
2	0,98	0,97	0,95	0,92	0,86	0,77
3	0,97	0,95	0,92	0,86 0,77	0,77	0,62
4	0,95	0,92	0,86	0,77	0,62	0,38
5	0,92	0,86	0,77	0,62	0,38	-0,02
6	0,86	0,77	0,62	0,38	-0,02	0,00

Figura 1 - Matriz com os valores de k

Figura 2 - Matriz com os valores de α

Assim sendo, é agora necessário multiplicar pelo número de horas laborais (8 horas*5dias = 40 horas) para obter o número de horas de produção de cada equipamento que sofre dada transição. Como o pretendido é minimizar o tempo não produtivo, faz-se a diferença entre a matriz obtida e o total de horas

	1	2	3	4	5	6
1	0,5	0,7	1,2	2,0	3,3	5,5
2	0,7	1,2	2,0	3,3	5,5	9,1
3	1,2	2,0	3,3	5,5	9,1	15,0
4	2,0	3,3	5,5	9,1	15,0	24,7
5	3,3	5,5	9,1	15,0	24,7	40,8
6	5,5	9,1	15,0	24,7	40,8	40,0

Figura 3 - Matriz de tempo não produtivo

de produção "normais" para um produto 100% eficiente, obtém-se então a última matriz com as horas de produção perdidas (Figura 3).

A esta matriz, excluindo transições com nenhuma probabilidade de ser realizar, como por exemplo, transições de estados de maior degradação para estados onde o equipamento se encontra em melhor estado, ou então do primeiro (estado 1) para o último estado (estado 6) é também considerada como uma transição impossível pois esta matriz ainda não contempla as horas de paragem causadas pelas manutenções/reparações. Para conseguir agora representar também as horas perdidas causadas pelas paragens de manutenção ou reparação temos que usar esta matriz para gerar duas outras, adicionandolhes o número de horas de paragem que as manutenções dos dois tipos exigem, 4 e 8 horas para o tipo 1 (Figura 4) e 2 (Figura 5), respetivamente, no caso de uma reparação forçada é adicionada a média calculada anteriormente de 11 horas.

	1	2	3	4	5	6
1						
2	4,7					
3	5,2	6,0				
4	2,5	7,3	9,5			
5	3,8	6,0	13,1	19,0		
6						

Figura 4	 Matriz de 	tempo não	produtivo	- tipo 1

	1	2	3	4	5	6
1						
2	8,7					
3	9,2					
4	10,0					
5	11,3					
6						

Figura 5 - Matriz de tempo não produtivo - tipo 2

2.3 Modelos de Decisão

Utilizando os valores da matriz de probabilidade que nos foram fornecidos com o número de aluno 69303 (Anexo 1), foram construídos os modelos de decisão para as diferentes alternativas, sem manutenção (0), com manutenção do tipo 1 (1), com manutenção do tipo 2 (2).

Á matriz gerada foi acrescentada a reparação obrigatório (probabilidade é 1) dos equipamentos no último estado, com o máximo de degradação, esta faz com que o equipamento volte diretamente ao estado 1 (sem degradação) e o tempo de não produção associado a este arco é dado pela média calculada anteriormente (11 horas) somado ao tempo de ineficiência da transição do estado 6 para 1 (5.5 horas consultando a matriz de tempo de não produção – Figura 3). Este arco estará presente em todas as redes do modelo de decisão pois é um requisito obrigatório do problema.

A primeira rede corresponde à decisão "sem manutenção" (0) onde não vão ser utilizados quaisquer tipos de manutenção, apenas considera então a reparação obrigatória. (Figura 7). A segunda (Figura 8) refere-se à decisão de realizar sempre uma manutenção do tipo 1, assumimos aqui que um equipamento que esteja no estado 1 não necessita de qualquer tipo de manutenção (o mesmo é assumido para a decisão de manutenção do tipo 2),

Figura 7 - Rede apenas com reparação obrigatória

nesta rede temos que um equipamento pode transitar para o estado anterior ou para dois estados antes com uma probabilidade de 0.6 e 0.4, respetivamente, no caso do estado 2 apenas haverá um arco para o estado um com a soma das probabilidades (não é possível ir para um estado menor que 1).

No anexo 2 apresenta-se toda a folha de cálculo com a resolução e determinação da melhor política para minimização de tempo de não produção, ou seja, tempo de inatividade dos equipamentos.

Figura 8 - Rede com manutenção do tipo 1

Figura 9 - Rede com manutenção do tipo 2

3. RESULTADOS

Nesta última parte do relatório serão discutidas as resoluções das diversas questões deste trabalho prático. A reposta à primeira pergunta obtém-se pela análise da folha de cálculo gerada (Anexo 2), como seria de esperar para um equipamento no estado 1 não é feito qualquer tipo de reparação ou manutenção, assim como no estado 6 é feita uma reparação obrigatória. Quanto aos outros estados, em 2 e 3 deve ser realizada uma manutenção do tipo 1, já em 3 e 4 uma manutenção do tipo 2 é mais correta para minimizar o tempo de paragem e de não produção.

Tendo em conta este problema esta seria a política de minimização de horas de paragem:

- Estado 1: sem qualquer manutenção;
- Estado 2: manutenção do tipo 1;
- Estado 3: manutenção do tipo 1;
- Estado 4: manutenção do tipo 2;
- Estado 5: manutenção do tipo 3;
- Estado 6: reparação obrigatória.

Em relação às restantes questões, sabe-se que este problema apenas se foca no tempo de não produção o que não representa a realidade das empresas que se sujeitam a muitos mais fatores para decisões de políticas de produção/trabalho.

Os custos das reparações seriam um desses fatores, minimização de custos, caso a fábrica dependesse de transportes de fornecedores para funcionar, este poderia ser outro fator a ter em conta, por exemplo, qual o fornecedor que mais rapidamente realizaria a entrega de forma a minimizar tempos de paragens pela inexistência de matéria prima. O desempenho dos funcionários, caso o equipamento dependesse destes, também influenciaria a rapidez de produção. A qualidade do produto deveria ser também considerada, etc.

Desta forma, foi reformulado o enunciado inicial para o seguinte:

Os custos de paragem (não produção) de um equipamento são dados pela seguinte tabela:

Tabela 1 - Custos de não produção

	1	2	3	4	5	6
1	1	2	4	6		
2		4	6	10	17	
3			10	17	27	45
4				27	45	74
5					74	122
6	395					

Dado que os custos de manutenção do tipo 1 e 2 são dados por:

Tabela 2 - Custos de manutenção do tipo 1

	1	2	3	4	5
1					
2	142				
3	144	146			
4		150	157		
5			167	185	

Tabela 3 - Custos de manutenção do tipo 2

	1	2	3	4	5
1					
2	282				
3	284				
4	286				
5	290				

Estes custos foram calculados assumindo que por hora se cobram 3 euros para manutenções (pela inatividade do equipamento) e 35 euros pelas reparações.

4. CONCLUSÕES

Com a realização deste trabalho surgiu uma melhor percepção deste tipo de problemas, obtidos pela prática e estudo que este exercício exigiu.

Pela reformulação que foi exigida na segunda alínea, que requeria investigação sobre problemas reais foi verificada a importância deste tipo de resoluções para qualquer tipo de empresa cujo modelo de produção/trabalho se encaixe no âmbito da programação dinâmica e daí a vitalidade desta unidade curricular para qualquer

Anexos

Anexo 1

Nº de aluno usado: 69303

Probabilidades de transição entre estados de degradação:									
	(Condição na próxima semana (j)							
dição atua	1	2	3	4	5	6			
1	0,5	0,25	0,25	0	0	0			
2	0	0,65	0,1	0,1	0,15	0			
3	0	0	0,55	0,35	0,05	0,05			
4	0	0	0	0,6	0,15	0,25			
5	0	0	0	0	0,45	0,55			

Anexo 2

Problema:																										
Lotados.						6																				
<u>Nún</u>	Número de estágios: 9																									
<u>Dec</u>	Decisões alternativas: 0,00 1,00 2,00																									
<u>Obj</u> e	Objectivo: mii						iin																			
					D						D					α			D II			17		г		
n	k				P_n						R_n					Q_n			P_nV_n	-1		V_n		F_n		
	\bowtie		\mathbb{X}	\geq	\geq	\geq	\geq	\bowtie	\bowtie	\bowtie	\geq	\geq	\geq	\geq	\bowtie	\leq	\bowtie	\bowtie	$\geq \leq$	\geq	\bowtie	\boxtimes	\bowtie	0,0	Valore	s de inici
	\sim		\Leftrightarrow	\approx	\approx	\approx	\approx	\bowtie	\Leftrightarrow	\approx	\approx	\approx	\approx	\approx	\approx	\Leftrightarrow	\approx	\approx	>	\approx	\bowtie	\approx	\approx	 0,0		
0	\Leftrightarrow		\Leftrightarrow	\iff	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	0,0																	
	\Diamond		\Leftrightarrow	\Diamond	\Diamond	\Leftrightarrow	\Diamond	\Diamond	\Leftrightarrow	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Leftrightarrow	\Diamond	\Diamond	\Leftrightarrow	\Diamond	\Diamond	\Leftrightarrow	\Diamond	0,0		
	\Leftrightarrow		\Leftrightarrow	\Rightarrow	\Leftrightarrow	\Diamond	0,0																			
0			1	2	3	4	5	6	1	2	3	4	5	6												
		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73			0,00			0,73		0,73		
		2	0,00	0,65	0,10	0,10	0,15	0,00	0,00	1,20	2,00	3,30	5,50	0,00		2,14			0,00			2,14		2,14		
	0	3	0,00	0,00	0,55	0,35	0,05	0,05	0,00	0,00	3,30	5,50	9,10	15,00		4,95			0,00			4,95		4,95	\Box	
		4	0,00	0,00	0,00	0,60	0,15	0,25	0,00	0,00	0,00	9,10	15,00	24,70		13,89			0,00			13,89		8,62		
		5	0,00	0,00	0,00	0,00	0,45	0,55	0,00	0,00	0,00	0,00	24,70	40,80		33,56			0,00			33,56 16,50		11,30		
		1	1,00 0,50	0,00	0,00	0,00	0,00	0,00	16,50 0,50	0,00	0,00 1,20	0,00	0,00	0,00		16,50 0,73			0,00	_		0,73		16,50	-	
1		2	1,00	0,00	0,00	0,00	0,00	0,00	4,70	0,00	0,00	0,00	0,00	0,00		4,70			0,00			4,70				
	1	3	0,40	0,60	0,00	0,00	0,00	0,00	5,20	6,00	0,00	0,00	0,00	0,00		5,68			0,00			5,68				
		4	0,00	0,40	0,60	0,00	0,00	0,00	0,00	7,30	9,50	0,00	0,00	0,00		8,62			0,00			8,62				
		5	0,00	0,00	0,40	0,60	0,00	0,00	0,00	0,00	13,10	19,00	0,00	0,00		16,64			0,00			16,64				
		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00		16,50			0,00			16,50				
		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73			0,00			0,73				
	2	2	1,00	0,00	0,00	0,00	0,00	0,00	8,70	0,00	0,00	0,00	0,00	0,00		8,70			0,00			8,70				
		3	1,00	0,00	0,00	0,00	0,00	0,00	9,20	0,00	0,00	0,00	0,00	0,00		9,20			0,00			9,20			-	
		5	1,00	0,00	0,00	0,00	0,00	0,00	11,30	0,00	0,00	0,00	0,00	0,00		11,30			0,00			11,30				
		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00		16,50			0,00			16,50				
		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73			2,13			2,86		2,86	:	2,13
		2	0,00	0,65	0,10	0,10	0,15	0,00	0,00	1,20	2,00	3,30	5,50	0,00		2,14			4,44			6,57		5,43	\rightarrow	3,29
	0	3	0,00	0,00	0,55	0,35	0,05	0,05	0,00	0,00	3,30	5,50	9,10	15,00		4,95			7,13			12,07		7,25	_	2,31
		4	0,00	0,00	0,00	0,60	0,15	0,25	0,00	0,00	0,00	9,10	15,00	24,70		13,89			10,99			24,88		12,03	\rightarrow	3,41
		5	0,00	0,00	0,00	0,00	0,45	0,55	0,00	0,00	0,00	0,00	24,70	40,80	\vdash	33,56			14,16			47,72 17,23		12,03	\rightarrow	0,73 0,73
		6 1	1,00	0,00	0,00	0,00	0,00	0,00	16,50 0,50	0,00	1,20	0,00	0,00	0,00		16,50 0,73			0,73 2,13	_		2,86		17,23	\dashv	,,,,
2		2	1,00	0,00	0,00	0,00	0,00	0,00	4,70	0,00	0,00	0,00	0,00	0,00	\vdash	4,70			0,73			5,43				
	1	3	0,40	0,60	0,00	0,00	0,00	0,00	5,20	6,00	0,00	0,00	0,00	0,00		5,68			1,57			7,25				
		4	0,00	0,40	0,60	0,00	0,00	0,00	0,00	7,30	9,50	0,00	0,00	0,00		8,62			3,82			12,44				
		5	0,00	0,00	0,40	0,60	0,00	0,00	0,00	0,00	13,10	19,00	0,00	0,00		16,64			7,15			23,79				
		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00		16,50			0,73			17,23				
		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73			2,13			2,86			\Box	
		2	1,00	0,00	0,00	0,00	0,00	0,00	8,70	0,00	0,00	0,00	0,00	0,00		8,70			0,73	<u> </u>		9,43			\vdash	
	2	3	1,00	0,00	0,00	0,00	0,00	0,00	9,20	0,00	0,00	0,00	0,00	0,00	\vdash	9,20			0,73			9,93			\vdash	
		5	1,00	0,00	0,00	0,00	0,00	0,00	10,00	0,00	0,00	0,00	0,00	0,00	\vdash	10,00			0,73			10,73			\vdash	
		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00		16,50			0,73			17,23				
		Ť	.,00	-,00	-,00	1,00	1,00	-,00	.5,00			,00			_	,00			-,,,			,				

		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73		16,81		17,54		17,54		2,4	4
		2	0,00	0,65	0,10	0,10	0,15	0,00	0,00	1,20	2,00	3,30	5,50	0,00		2,14		19,34		21,48		19,80		2,4	
	0	3	0.00	0,00	0,10	0,35	0,05	0,05	0,00	0,00	3,30	5,50	9,10	15,00	-+	4,95		22,22		27.16		22,13		2,4	
		4	0.00	0,00	0,00	0,60	0,15	0,05	0,00	0,00	0,00	9,10	15,00	24,70	-+	13,89		25,85		39,73		27,38		2,4	
		5	0,00	0,00	0,00	0,00	0,15	0,55	0,00	0,00	0,00	0,00	24,70	40,80	\rightarrow	33,56		26,82		60,37		26,40		2,4	
		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00	\rightarrow	16,50		15,10		31,60		31,60		2,4	
-		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73		16.81		17.54		31,00		2,-	-
8		2	1.00	0,00	0,00	0,00	0,00	0,00	4,70	0,00	0,00	0,00	0,00	0,00	-+	4,70		15,10		19,80					
	1	3	0,40	0,60	0,00	0,00	0,00	0,00	5,20	6,00	0,00	0,00	0,00	0,00		5,68		16,45		22,13					
		4	0,00	0,40	0,60	0,00	0,00	0,00	0,00	7,30	9,50	0,00	0,00	0,00		8,62		18,76		27,38					
		5	0,00			_	0,00	-	0,00	_	_	19,00	_	0,00		16,64		22,84		39,48					
		6	1,00	0,00	0,40	0,60	0,00	0,00	16,50	0,00	0,00		0,00	0,00	\rightarrow	16,50		15,10		31,60					
ŀ		1	0,50	_	0,00	0,00	0,00	0,00	0,50			0,00		0,00		0,73		16.81		17,54	-				
		2	1.00	0,25	0,25	0,00	0,00	0,00	8,70	0,70	1,20 0,00	0,00	0,00		\vdash	8,70		15,10	\vdash	23,80		_			
	2		,			_		-			_	0,00	0,00	0,00	\vdash	-			\vdash	_		_			
	-	3	1,00	0,00	0,00	0,00	0,00	0,00	9,20	0,00	0,00	0,00	0,00	0,00	\vdash	9,20		15,10 15,10	\vdash	24,30 25,10		_			
		5	1,00		0,00		_	-	_		0,00	0,00		0,00	-+	11,30		15,10		26,40		_			
		6	1,00	0,00		0,00	0,00	0,00	11,30	0,00	_	_	0,00	_	-+	-				_		_			
			0.50	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00	-	16,50 0.73		15,10		31,60 19.98		19.98		2.4	14
		2	-7	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00	-+	-, -						/		2,4	
	0		0,00	0,65	0,10	0,10	0,15	0,00	0,00	1,20	2,00	3,30	5,50	0,00		2,14		21,78		23,92		22,24		2,4	
	-	3	0,00	0,00	0,55	0,35	0,05	0,05	0,00	0,00	3,30	5,50	9,10	15,00		4,95		24,66		29,60		24,57		2,4	
		4	0,00	0,00	0,00	0,60	0,15	0,25	0,00	0,00	0,00	9,10	15,00	24,70	\rightarrow	13,89		28,29		42,17		29,82		2,4	
		5	0,00	0,00	0,00	0,00	0,45	0,55	0,00	0,00	0,00	0,00	24,70	40,80	\rightarrow	33,56		29,26		62,81		28,84		2,4	
-		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00		16,50		17,54		34,04		34,04		2,4	4
9		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00		0,73		19,25		19,98					
9	1	2	1,00	0,00	0,00	0,00	0,00	0,00	4,70	0,00	0,00	0,00	0,00	0,00	-	4,70		17,54		22,24					
		3	0,40	0,60	0,00	0,00	0,00	0,00	5,20	6,00	0,00	0,00	0,00	0,00	\vdash	5,68		18,89	\vdash	24,57			_		
		4	0,00	0,40	0,60	0,00	0,00	0,00	0,00	7,30	9,50	0,00	0,00	0,00	\vdash	8,62		21,20	\vdash	29,82		-			
		5	0,00	0,00	0,40	0,60	0,00	0,00	0,00	0,00	13,10	19,00	0,00	0,00	\vdash	16,64		25,28	\vdash	41,92			_		
ŀ		6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00	\vdash	16,50		17,54	\vdash	34,04					
		1	0,50	0,25	0,25	0,00	0,00	0,00	0,50	0,70	1,20	0,00	0,00	0,00	\vdash	0,73		19,25	\vdash	19,98			_		
_	_	2	1,00	0,00	0,00	0,00	0,00	0,00	8,70	0,00	0,00	0,00	0,00	0,00	\vdash	8,70		17,54	\vdash	26,24					
_	2	3	1,00	0,00	0,00	0,00	0,00	0,00	9,20	0,00	0,00	0,00	0,00	0,00	\vdash	9,20		17,54	\vdash	26,74					
		4	1,00	0,00	0,00	0,00	0,00	0,00	10,00	0,00	0,00	0,00	0,00	0,00	\vdash	10,00		17,54	\vdash	27,54			_		
		5	1,00	0,00	0,00	0,00	0,00	0,00	11,30	0,00	0,00	0,00	0,00	0,00	\rightarrow	11,30		17,54	\vdash	28,84			_		
_	_	6	1,00	0,00	0,00	0,00	0,00	0,00	16,50	0,00	0,00	0,00	0,00	0,00		16,50		17,54		34,04					