

SEQ.ST25.txt
SEQUENCE LISTING

<110> Samson, Michael
Parmentier, Marc
Vassart, Gilbert

<120> HIV Diagnostic Methods

<130> 9409/2023E

<140> 10/612,791
<141> 2003-07-02

<150> 09/938,703
<151> 2001-08-24

<150> 09/626,939
<151> 2000-07-27

<150> 08/833,752
<151> 1997-04-09

<150> 08/810,028
<151> 1997-03-03

<150> EP 96870021.1
<151> 1996-03-01

<150> EP 96870102.9
<151> 1996-08-06

<160> 18

<170> PatentIn version 3.1

<210> 1
<211> 792
<212> DNA
<213> Homo sapiens

<400> 1
gaattcccc aacagagcca agctctccat ctagtggaca gggaaagctag cagcaaacct 60
tcccttcact acaaaaacttc attgcttggc caaaaagaga gttaattcaa tgttagacatc 120
tatgtaggca attaaaaacc tattgatgta taaaacagtt tgcattcatg gagggcaact 180
aaatacattc taggacttta taaaagatca ctttttattt atgcacaggg tggaaacaaga 240
tggatttatca agtgtcaagt ccaatctatg acatcaatta ttatacatcg gagccctgcc 300
aaaaaatcaa tgtgaagcaa atcgcagccc gcctcctgcc tccgctctac tcactggtgt 360
tcatctttgg ttttgtggc aacatgctgg tcatcctcat cctgataaac tgcaaaaggc 420
tgaagagcat gactgacatc tacctgctca acctggccat ctctgacctg ttttccttc 480
ttactgtccc cttctgggct cactatgctg ccgcccagtg ggactttgga aatacaatgt 540
gtcaactctt gacagggctc tattttatag gcttcttctc tggaaatcttc ttcatcatcc 600
tcctgacaat cgataggtac ctggctgtcg tccatgctgt gtttgcttta aaagccagga 660

SEQ.ST25.txt

cggcacctt	tgggtggtg	acaagtgtga	tcacttgggt	ggtggctgtg	tttgcgtc	720
tcccaggaat	catcttacc	agatctcaa	aagaaggct	tcattacacc	tgcagctc	780
atttccata	ca					792
<210>	2					
<211>	1477					
<212>	DNA					
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	(1377)..(1377)					
<223>	Any nucleotide					
<220>						
<221>	misc_feature					
<222>	(1384)..(1385)					
<223>	Any nucleotide					
<400>	2					
gaattcccc	aacagagcca	agctctccat	ctagtggaca	ggaaagctag	cagcaaacct	60
tcccttact	acaaaacttc	attgcttgc	aaaaagaga	gttaattcaa	tgttagacatc	120
tatgtaggca	attaaaaacc	tattgtat	taaaacagtt	tgcattcatg	gagggcaact	180
aaatacattc	taggactta	taaaagatca	cttttattt	atgcacaggg	tggaacaaga	240
tggattatca	agtgtcaagt	ccaatctatg	acatcaatta	ttatacatcg	gagccctgcc	300
aaaaaatcaa	tgtgaagcaa	atcgagccc	gcctcctgcc	tccgctctac	tcactggtgt	360
tcatcttgg	ttttgtggc	aacatgctgg	tcatcctcat	cctgataaac	tgcaaaaggc	420
tgaagagcat	gactgacatc	tacctgctca	acctggccat	ctctgacctg	ttttcccttc	480
ttactgtccc	cttctggct	cactatgctg	ccgcccagtg	ggactttgga	aatacaatgt	540
gtcaactctt	gacagggctc	tatttatag	gcttcttctc	tggaatcttc	ttcatcatcc	600
tcctgacaat	cgataggtac	ctggctgtcg	tccatgctgt	gtttgcttta	aaagccagga	660
cggcacctt	tgggtggtg	acaagtgtga	tcacttgggt	ggtggctgtg	tttgcgtc	720
tcccaggaat	catcttacc	agatctcaa	aagaaggct	tcattacacc	tgcagctc	780
atttccata	cagtcaat	caattctgga	agaattcca	gacattaaag	atagtcatct	840
tggggctgg	cctgccgctg	cttgcattgg	tcatctgcta	ctcgaaatc	ctaaaaactc	900
tgcttcgg	tcgaaatgag	aagaagaggc	acagggctgt	gaggcttac	ttcaccatca	960
tgattgttt	tttctcttc	tgggctccct	acaacattgt	ccttctcctg	aacaccc	1020
aggaattctt	tggcctgaat	aattgcagta	gctctaacag	gttggaccaa	gctatgcagg	1080
tgacagagac	tcttggatg	acgcactgct	gcatcaaccc	catcatctat	gccttgc	1140

SEQ.ST25.txt

gggagaagtt cagaaactac	ctcttagtct	tcttccaaaa	gcacattgcc	aaacgcttct	1200
gcaaatgctg	ttcttatttc	cagcaagagg	ctccc gagcg	agcaagctca	1260
gatccactgg	ggagcaggaa	atatctgtgg	gcttgtgaca	cggaactcaag	1320
acccagtcag	agttgtcac	atggcttagt	tttcatacac	agcctgggct	1380
tggnnngaggt	ctttttaaa	aggaagttac	tgttatagag	ggtctaagat	1440
atttggcata	tgtttaaagt	agattagatc	cgaattc		1477

<210> 3
<211> 1442
<212> DNA
<213> Homo sapiens

<400> 3					
gaattcccc aacagagcca	agctctccat	ctagtggaca	ggaaagctag	cagcaaacct	60
tcccttca	actaaaaacttc	attgcttggc	caaaaagaga	gttaattcaa	120
tatgtaggca	attaaaaacc	tattgtat	taaaacagtt	tgcattcatg	180
aaatacattc	taggactta	taaaagatca	ctttttat	atgcacaggg	240
tggattatca	agtgtcaagt	ccaatctatg	acatcaatta	ttatacatcg	300
aaaaaaatcaa	tgtgaagcaa	atcgcagccc	gcctcctgcc	tccgctctac	360
tcatcttgg	ttttgtggc	aacatgctgg	tcatcctcat	cctgataaac	420
tgaagagcat	gactgacatc	tacctgctca	acctggccat	ctctgacctg	480
ttactgtccc	cttctgggct	cactatgctg	ccgcccagtg	ggactttgga	540
gtcaactctt	gacagggctc	tattttatag	gcttcttctc	tggaatcttc	600
tcctgacaat	cgataggta	ctggctgtcg	tccatgctgt	gtttgcttta	660
cggcacctt	tgggtgggt	acaagtgtga	tcacttgggt	ggtggctgtg	720
tcccaggaat	catcttacc	agatctcaaa	aagaaggct	tcattacacc	780
atttccata	cattaaagat	agtcatctt	gggctggtcc	tgccgctgct	840
atctgctact	cgggaatcct	aaaaactctg	cttcggtg	gaaatgagaa	900
agggctgtga	ggcttatctt	caccatcatg	attgttatt	ttctcttctg	960
aacattgtcc	ttctcctgaa	caccccccag	gaattcttgc	gcctgaataa	1020
tctaacaggt	tggaccaagc	tatgcagg	acagagactc	ttgggatgac	1080
atcaacccca	tcatctatgc	cttgcggg	gagaagttca	gaaactacct	1140
ttccaaaagc	acattgccaa	acgcttctgc	aatgctgtt	ctatttcca	1200
cccagcgcag	caagctcagt	ttacacccga	tccactgggg	agcagggaaat	1260
ttgtgacacg	gactcaagt	ggctggtgac	ccagtcagag	ttgtgcacat	1320

SEQ.ST25.txt

tcatacacag cctgggctgg gggtggttgg gaggtcttt taaaaggaa gttactgtta	1380
tagagggtct aagattcatc catttatttg gcatctgttt aaagtagatt agatccgaat	1440
tc	1442

<210> 4
<211> 184
<212> PRT
<213> Homo sapiens
<400> 4

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr
1 5 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu
20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn
35 40 45

Met Leu Val Ile Leu Ile Ile Asn Cys Lys Arg Leu Lys Ser Met
50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu
65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe
85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe
100 105 110

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu
115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe
130 135 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser
145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr
165 170 175

Thr Cys Ser Ser His Phe Pro Tyr
180

<210> 5

SEQ.ST25.txt

<211> 352

<212> PRT

<213> Homo sapiens

<400> 5

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr
1 5 10 15Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu
20 25 30Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn
35 40 45Met Leu Val Ile Leu Ile Ile Asn Cys Lys Arg Leu Lys Ser Met
50 55 60Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu
65 70 75 80Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe
85 90 95Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe
100 105 110Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu
115 120 125Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe
130 135 140Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser
145 150 155 160Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr
165 170 175Thr Cys Ser Ser His Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys Asn
180 185 190Phe Gln Thr Leu Lys Ile Val Ile Leu Gly Leu Val Leu Pro Leu Leu
195 200 205Val Met Val Ile Cys Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys
210 215 220Arg Asn Glu Lys Lys Arg His Arg Ala Val Arg Leu Ile Phe Thr Ile
Page 5

225

230

SEQ.ST25.txt
235

240

Met Ile Val Tyr Phe Leu Phe Trp Ala Pro Tyr Asn Ile Val Leu Leu
245 250 255

Leu Asn Thr Phe Gln Glu Phe Phe Gly Leu Asn Asn Cys Ser Ser Ser
260 265 270

Asn Arg Leu Asp Gln Ala Met Gln Val Thr Glu Thr Leu Gly Met Thr
275 280 285

His Cys Cys Ile Asn Pro Ile Ile Tyr Ala Phe Val Gly Glu Lys Phe
290 295 300

Arg Asn Tyr Leu Leu Val Phe Phe Gln Lys His Ile Ala Lys Arg Phe
305 310 315 320

Cys Lys Cys Cys Ser Ile Phe Gln Gln Glu Ala Pro Glu Arg Ala Ser
325 330 335

Ser Val Tyr Thr Arg Ser Thr Gly Glu Gln Glu Ile Ser Val Gly Leu
340 345 350

<210> 6
<211> 215

<212> PRT

<213> Homo sapiens

<400> 6

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr
1 5 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu
20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn
35 40 45

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met
50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu
65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe
85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe
Page 6

100

105 SEQ.ST25.txt

110

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu
115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe
130 135 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser
145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr
165 170 175

Thr Cys Ser Ser His Phe Pro Tyr Ile Lys Asp Ser His Leu Gly Ala
180 185 190

Gly Pro Ala Ala Ala Cys His Gly His Leu Leu Leu Gly Asn Pro Lys
195 200 205

Asn Ser Ala Ser Val Ser Lys
210 215

<210> 7

<211> 360

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (325)..(327)

<223> Xaa = any amino acid

<400> 7

Met Leu Ser Thr Ser Arg Ser Arg Phe Ile Arg Asn Thr Asn Glu Ser
1 5 10 15

Gly Glu Glu Val Thr Thr Phe Phe Asp Tyr Asp Tyr Gly Ala Pro Cys
20 25 30

His Lys Phe Asp Val Lys Gln Ile Gly Ala Gln Leu Leu Pro Pro Leu
35 40 45

Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn Met Leu Val Val
50 55 60

Leu Ile Leu Ile Asn Cys Lys Lys Leu Lys Cys Leu Thr Asp Ile Tyr
65 70 75 80

SEQ.ST25.txt

Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Ile Ile Thr Leu Pro
85 90 95

Leu Trp Ala His Ser Ala Ala Asn Glu Trp Val Phe Gly Asn Ala Met
100 105 110

Cys Lys Leu Phe Thr Gly Leu Tyr His Ile Gly Tyr Phe Gly Gly Ile
115 120 125

Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His
130 135 140

Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe Gly Val Val Thr
145 150 155 160

Ser Val Ile Thr Trp Leu Val Ala Val Phe Ala Ser Val Pro Gly Ile
165 170 175

Ile Phe Thr Lys Cys Gln Lys Glu Asp Ser Val Tyr Val Cys Gly Pro
180 185 190

Tyr Phe Pro Arg Gly Trp Asn Asn Phe His Thr Ile Met Arg Asn Ile
195 200 205

Leu Gly Leu Val Leu Pro Leu Leu Ile Met Val Ile Cys Tyr Ser Gly
210 215 220

Ile Leu Lys Thr Leu Leu Arg Cys Arg Asn Glu Lys Lys Arg His Arg
225 230 235 240

Ala Val Arg Val Ile Phe Thr Ile Met Ile Val Tyr Phe Leu Phe Trp
245 250 255

Thr Pro Tyr Asn Ile Val Ile Leu Leu Asn Thr Phe Gln Glu Phe Phe
260 265 270

Gly Leu Ser Asn Cys Glu Ser Thr Ser Gln Leu Asp Gln Ala Ile Gln
275 280 285

Val Thr Glu Thr Leu Gly Met Thr His Cys Cys Ile Asn Pro Ile Ile
290 295 300

Tyr Ala Phe Val Gly Glu Lys Phe Arg Arg Tyr Ile Ser Val Phe Phe
305 310 315 320

Arg Lys His Ile Xaa Xaa Xaa Phe Cys Lys Gln Cys Pro Val Phe Tyr
325 330 335

SEQ.ST25.txt

Arg Glu Thr Val Asp Gly Val Thr Ser Thr Asn Thr Pro Ser Thr Gly
340 345 350

Glu Gln Glu Val Ser Ala Gly Leu
355 360

<210> 8
<211> 355
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (231)..(233)
<223> Xaa = amy amino acid

<220>
<221> MISC_FEATURE
<222> (333)..(335)
<223> Xaa = amy amino acid

<400> 8

Met Thr Thr Ser Ile Asp Thr Val Glu Thr Phe Gly Thr Thr Ser Tyr
1 5 10 15

Tyr Asp Asp Val Gly Leu Leu Cys Glu Lys Ala Asp Thr Arg Ala Leu
20 25 30

Met Ala Gln Phe Val Pro Pro Leu Tyr Ser Leu Val Phe Thr Val Gly
35 40 45

Leu Ile Gly Asn Val Val Val Met Ile Leu Ile Lys Tyr Arg Arg
50 55 60

Ile Arg Ile Met Thr Asn Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp
65 70 75 80

Leu Leu Phe Ile Val Thr Leu Pro Phe Trp Thr His Tyr Val Arg Gly
85 90 95

His Asn Trp Val Phe Gly His Gly Met Cys Asn Leu Ile Ser Gly Phe
100 105 110

Tyr His Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr
115 120 125

Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Ile Arg Ala
130 135 140

SEQ.ST25.txt

Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Val Thr Trp Gly Ile
145 150 155 160

Ala Val Ile Ala Ala Leu Pro Glu Phe Ile Phe Tyr Glu Thr Glu Glu
165 170 175

Leu Phe Glu Glu Thr Ile Cys Ser Ala Leu Tyr Pro Glu Asp Thr Val
180 185 190

Tyr Ser Trp Arg His Phe His Thr Ile Arg Met Thr Ile Phe Cys Leu
195 200 205

Val Leu Pro Leu Leu Val Met Ala Ile Cys Tyr Thr Gly Ile Ile Lys
210 215 220

Thr Leu Leu Arg Cys Pro Xaa Xaa Xaa Lys Tyr Lys Ala Ile Arg Leu
225 230 240

Ile Phe Val Ile Met Ala Val Phe Phe Ile Glu Trp Thr Pro Tyr Asn
245 250 255

Val Ala Ile Leu Ile Ser Ser Tyr Gln Ser Leu Leu Phe Gly Asn Asn
260 265 270

Cys Glu Arg Ser Lys His Leu Asp Leu Val Met Ile Val Thr Glu Val
275 280 285

Ile Ala Tyr Ser His Cys Cys Met Asn Glu Val Ile Tyr Ala Phe Val
290 295 300

Gly Glu Arg Phe Arg Lys Tyr Ile Arg His Phe Phe His Arg His Leu
305 310 315 320

Leu Met His Leu Gly Arg Tyr Ile Pro Phe Leu Pro Xaa Xaa Xaa Ile
325 330 335

Glu Arg Ile Ser Ser Val Ser Pro Ser Thr Ala Glu Pro Glu Ile Ser
340 345 350

Ile Val Phe
355

<210> 9
<211> 355
<212> PRT
<213> Homo sapiens

SEQ.ST25.txt

<400> 9

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe
1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe
20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly
35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg
50 55 60

Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp
65 70 75 80

Leu Leu Phe Ile Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys
85 90 95

Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Ile Ser Gly Phe
100 105 110

Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr
115 120 125

Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Ile Arg Ala
130 135 140

Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Ile
145 150 155 160

Ala Ile Ile Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp
165 170 175

Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu
180 185 190

Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu
195 200 205

Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Ile Gly Ile Ile Lys
210 215 220

Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu
225 230 235 240

Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Ile Pro Tyr Asn

245

SEQ.ST25.txt
250

255

Leu Thr Ile Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu
260 265 270

Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val
275 280 285

Ile Ala Tyr Thr His Cys Cys Val Asn Glu Val Ile Tyr Ala Phe Val
290 295 300

Gly Glu Arg Phe Arg Lys Tyr Ile Arg Gln Leu Glu His Arg Arg Val
305 310 315 320

Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Ile
325 330 335

Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Ile Ser
340 345 350

Ala Gly Phe
355

<210> 10

<211> 360

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (145)..(147)

<223> Xaa = any amino acid

<220>

<221> MISC_FEATURE

<222> (321)..(323)

<223> Xaa = any amino acid

<400> 10

Met Asn Pro Thr Asp Ile Ala Asp Thr Thr Leu Asp Glu Ser Ile Tyr
1 5 10 15

Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys Pro Cys Thr Lys Glu
20 25 30

Gly Ile Lys Ala Phe Gly Glu Leu Phe Leu Pro Pro Leu Tyr Ser Leu
35 40 45

Val Glu Val Phe Gly Leu Ile Gly Asn Ser Val Val Val Leu Val Leu

50

55

SEQ.ST25.txt

60

Phe Lys Tyr Lys Arg Ile Arg Ser Met Thr Asp Val Tyr Leu Leu Asn
65 70 75 80

Leu Ala Ile Ser Asp Leu Leu Phe Val Phe Ser Leu Pro Phe Trp Gly
85 90 95

Tyr Tyr Ala Ala Asp Gln Trp Val Phe Gly Leu Gly Ile Cys Lys Met
100 105 110

Ile Ser Trp Met Tyr Leu Val Gly Phe Tyr Ser Gly Ile Phe Phe Val
115 120 125

Met Ile Met Ser Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Glu
130 135 140

Xaa Xaa Xaa Ala Arg Thr Ile Ile Tyr Gly Val Ile Thr Ser Leu Ala
145 150 155 160

Thr Trp Ser Val Ala Val Phe Ala Ser Leu Pro Gly Phe Ile Phe Ser
165 170 175

Thr Cys Tyr Thr Glu Arg Asn His Thr Tyr Cys Lys Thr Lys Tyr Ser
180 185 190

Leu Asn Ser Thr Thr Trp Lys Val Leu Ser Ser Leu Glu Ile Asn Ile
195 200 205

Leu Gly Leu Val Ile Pro Leu Gly Ile Met Leu Phe Cys Tyr Ser Met
210 215 220

Ile Ile Arg Thr Leu Gln His Cys Lys Asn Glu Lys Lys Asn Lys Ala
225 230 235 240

Val Lys Met Ile Phe Ala Val Val Leu Phe Leu Gly Phe Trp Thr
245 250 255

Pro Tyr Asn Ile Val Leu Phe Leu Glu Thr Leu Val Glu Leu Glu Val
260 265 270

Ile Gln Asp Cys Thr Phe Glu Arg Tyr Leu Asp Tyr Ala Ile Gln Ala
275 280 285

Thr Glu Thr Leu Ala Phe Val His Cys Cys Leu Asn Pro Ile Ile Tyr
290 295 300

SEQ.ST25.txt

Phe Phe Leu Gly Glu Lys Phe Arg Lys Tyr Ile Ile Gln Leu Phe Lys
 305 310 315 320

Xaa Xaa Xaa Gly Leu Phe Val Ile Cys Gln Tyr Cys Gly Leu Leu Gln
 325 330 335

Ile Tyr Ser Ala Asp Thr Pro Ser Ser Ser Tyr Thr Thr Gln Ser Thr Met
 340 345 350

Asp His Asp Leu His Asp Ala Leu
 355 360

<210> 11

<211> 49

<212> PRT

<213> Homo sapiens

<400> 11

Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys Asn Phe Gln Thr Leu Lys
 1 5 10 15

Ile Val Ile Leu Gly Leu Val Leu Pro Leu Leu Val Met Val Ile Cys
 20 25 30

Tyr Ser Gly Ile Leu Lys Thr Leu Leu Arg Cys Arg Asn Glu Lys Lys
 35 40 45

Arg

<210> 12

<211> 147

<212> DNA

<213> Homo sapiens

<400> 12

tttccataca gtcagtatca attctggaag aatttccaga cattaaagat agtcatcttg 60

gggctggtcc tgccgctgct tgtcatggtc atctgctact cgggaatcct aaaaactctg 120

cttcggtgtc gaaatgagaa gaagagg 147

<210> 13

<211> 34

<212> PRT

<213> Homo sapiens

<400> 13

Phe Pro Tyr Ile Lys Asp Ser His Leu Gly Ala Gly Pro Ala Ala Ala
 1 5 10 15

SEQ.ST25.txt

Cys His Gly His Leu Leu Leu Gly Asn Pro Lys Asn Ser Ala Ser Val
20 25 30

Ser Lys

<210> 14
<211> 27
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<221> primer_bind
<222> (1)..(27)
<223> Primer used to amplify the full size coding region of the CCR5 gene

<400> 14
tcgaggatcc aagatggatt atcaagt

27

<210> 15
<211> 27
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<221> primer_bind
<222> (1)..(27)
<223> Primer to amplify the full size coding region of the CCR5 gene

<400> 15
ctgatctaga gccatgtgca caactct

27

<210> 16
<211> 20
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<221> primer_bind
<222> (1)..(20)
<223> Primer used to amplify CCR5 from genomic DNA samples

<400> 16
cctggctgtc gtccatgctg

20

<210> 17
<211> 27
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<221> primer_bind
<222> (1)..(27)
<223> primer used to amplify CCR5 from genomic DNA samples

SEQ.ST25.txt

<400> 17
ctgatctaga gccatgtgca caactct

27

<210> 18
<211> 215
<212> PRT
<213> Homo sapiens

<400> 18

Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr
1 5 10 15

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu
20 25 30

Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn
35 40 45

Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met
50 55 60

Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu
65 70 75 80

Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe
85 90 95

Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe
100 105 110

Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu
115 120 125

Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe
130 135 140

Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser
145 150 155 160

Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr
165 170 175

Thr Cys Ser Ser His Phe Pro Tyr Ile Lys Asp Ser His Leu Gly Ala
180 185 190

Gly Pro Ala Ala Ala Cys His Gly His Leu Leu Leu Gly Asn Pro Lys
195 200 205

SEQ.ST25.txt

Asn Ser Ala Ser Val Ser Lys
210 215