Topic Modeling

Topic Models

According to David Blei:

"Topic models are a suite of algorithms that uncover the hidden thematic structure in document collections. These algorithms help us develop new ways to search, browse and summarize large archives of texts"

(http://www.cs.columbia.edu/~blei/topicmodeling.html)

Topic Models

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

LDA Topic Models

LDA = Latent Dirichlet Allocation

- a topic is a distribution of probabilities of words
 - all words in a document can belong to all topics
 - a document is a distribution of probabilities of topics

LDA Topic Models

LDA: How Does it Work?

- Initialize topic assignments randomly
- For each word in each document:
 - ► re-sample topic for word, given all other words and their current topic assignments
- Iterate n times!

LDA: How Does it Work?

LDA'S "BLACK BOX"

12

12

5

2

17

9

branch lake como turns south unbroken chains

```
7 10% (cinema 12%, <u>branch 10%</u>, movie 9.5%, actor 9.5%...)
```

```
12 9% (Como 15%, lake 14%, meatball 10.5%, <u>branch 9%</u>...)
```

2 6%

LDA'S "BLACK BOX"

12

12

5

2

17

9

branch lake como turns south unbroken chains

7 10% (cinema 12%, <u>branch 10%</u>, movie 9.5%, actor 9.5%...)

12 9% (Como 15%, lake 14%, meatball 10.5%, <u>branch 9%</u>...)

2 6%

