

ASSIGNMENT FEEDBACK FORM

Student Name/ID/Section	Obada Mohammad Khaled Alhalaybeh - 23110107 - 6				
HTU Course Title and No.	40201201 - Data Structures & Algorithms				
BTEC Unit Code and Title	T/618/7430 - Data Structures & Algorithms				
Assignment Number	1	Assessor Name	Ahmed Bataineh		
Submission Date	Jun 15, 2025	Date Received 1st submission	Jun 15, 2025		
Re-submission Date		Date Received 2nd submission			

Ongoing formative feedback from assessor:

• Attendance: Excellent

• Lab / In-class Activity: Excellent

• One-to-one Formative Discussion: Excellent

Assessor feedback for summative assessment:

General Feedback

The students demonstrated clear, accurate, and direct answers, reflecting deep knowledge and critical thinking. The work was well-organized and professionally presented.

In the exam, the students also performed well.

P2,P3,P6,P7,M1,M2 have been achieved in the exam.

The exam was conducted online; however, due to technical issues during the session, part of it was completed on a hard copy.

Strength of Performance

The student was able to:

- Create a design specification for data structures, explaining the valid operations that can be carried out on the structures.
- Determine the operations of a memory stack and how it is used to implement function calls in a computer.
- Specify the abstract data type for a software stack using an imperative definition.
- Implement a complex ADT and algorithm in an executable programming language to solve a well-defined problem.
- Implement error handling and report test results.
- Discuss how asymptotic analysis can be used to assess the effectiveness of an algorithm.
- Determine two ways in which the efficiency of an algorithm can be measured, illustrating your answer with an example.
- Illustrate, with an example, a concrete data structure for a First in First out (FIFO) queue.
- Compare the performance of two sorting algorithms.
- Examine the advantages of encapsulation and information hiding when using an ADT.
- Demonstrate how the implementation of an ADT/algorithm solves a well-defined problem.
- Interpret what a trade-off is when specifying an ADT, using an example to support your answer.
- Analyse the operation, using illustrations, of two network shortest path algorithms, providing an example of each.
- Discuss the view that imperative ADTs are a basis for object orientation offering a justification for the view.
- Critically evaluate the complexity of an implemented ADT/algorithm.
- Evaluate three benefits of using implementation independent data structures.

Limitation of Performance

Minor comment: Focus more on the philosophical foundation of how Abstract Data Types (ADTs) form the basis for object-oriented programming.

Grade: I						Date: Jun 18, 2025				
Resubmi	ssion Fee	dback (if	required	l):						
Grade:			Asses	Assessor Signature:				Date:		
Criteria (To be filled before resubmission)										
P1 ☑	P2 ☑	P3 ☑	P4 🗹	P5	P6 ☑	P7 ☑	M1 ☑	Final Grade		
M2 ☑	M3 ☑	M4 ☑	M5 ☑	D1	D2 🗹	D3 ☑	D4 ☑	D		

Student Declaration:

I certify that the formative and summative assessments for this assignment have been fully explained and understood by me, I also do understand that the grade above is simply a recommendation that could later be changed during any of the verification processes.

Student Name:	Student Signature:	
	Date:	