1. Find the characteristic polynomial and the eigenvalues of the matrix A.

$$A = \begin{bmatrix} 3 & -4 \\ 4 & 8 \end{bmatrix}$$

2. It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ . Find h in the matrix A below such that the eigenspace for $\lambda=5$ is two-dimensional:

$$A = \begin{bmatrix} 5 & -2 & 6 & 1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 3. True or false
 - a. The determinant of A is the product of the diagonal entries in A.
 - b. An elementary row operation on $\,A\,$ does not change the determinant.
 - c. $(\det A)(\det B) = \det AB$
 - d. If $\lambda + 5$ is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
- 4. Given two matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 1 \\ 2 & 0 & 1 \end{bmatrix}$, if A is similar to B (given your reason).
- 5. Suppose the matrix $A = \begin{bmatrix} 1 & a & -3 \\ -1 & 4 & -3 \\ 1 & -2 & 5 \end{bmatrix}$ has *multiplicity* eigenvalue. If the matrix A could

be Diagonalizable (given your reason).

6. Suppose
$$A = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$$
, compute $\varphi(A) = A^{10} - 5A^9$.

7. Suppose matrix
$$B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 and matrix A is similar to B . Compute the $\mathrm{Rank}(A - A)$

2I) + Rank(A - I), where I is the identity matrix.

8. Suppose the vector space $V=\mathbb{R}^3$, $\{\mathcal{E}_1,\mathcal{E}_2,\mathcal{E}_3\}$ is a basis of V. Given a linear transformation $T\colon V\to V$:

$$T(\varepsilon_1) = \varepsilon_1, T(\varepsilon_2) = \varepsilon_1 + \varepsilon_2, T(\varepsilon_3) = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$

- (1) Find β -matrix for T, when β is the basis $\{\mathcal{E}_1,\mathcal{E}_2,\mathcal{E}_3\}$.
- (2) Find β -matrix for T^{-1} , when β is the basis $\{\mathcal{E}_1,\mathcal{E}_2,\mathcal{E}_3\}$.
- (3) Find β -matrix for T^{-1} , when β is the basis $\{T(\varepsilon_1), T(\varepsilon_2), T(\varepsilon_3)\}$.

9. Define
$$T: P_3 \to R^4$$
 by $T(p) = \begin{bmatrix} p(-3) \\ p(-1) \\ p(1) \\ p(3) \end{bmatrix}$.

- a. Show that T is a linear transformation.
- b. Find the matrix for T relative to the basis $\left\{1,t,t^2,t^3\right\}$ for P₃ and the standard basis for R⁴.
- 10. 课本 P341: 第一题