MATH 680 Computation Intensive Statistics

December 3, 2018

MM & EM Algorithms

Contents

1	MM	Algorithm	2		
	1.1	Descent property of MM algorithm	4		
	1.2	Convergence of an MM Algorithm			
	1.3	Case study: bridge penalty	7		
		1.3.1 Model and properties	8		
		1.3.2 Computation	10		
	1.4	Example: Concave Penalized Linear Regression	12		
	1.5	•			
	1.6	Example: Lasso Penalized Median Regression	14		
	1.7	Example: Bradley-Terry Ranking Model	16		

2	EM	hm	18		
	2.1	Why EM works? – the EM algorithm is an MM algorithm			
	2.2	2.2 Generalized EM (GEM)			
		2.2.1	Example 1. Gaussian Mixture Model	21	
		2.2.2	Example 2. Factor Model	32	
		2.2.3	Example 3. Censored Linear Model	37	

1 MM Algorithm

The MM algorithm is an iterative algorithm to minimize an objective function $f:\Theta\to\mathbb{R}$

$$\arg\min_{\theta\in\Theta}f(\theta)$$

over its open domain $\Theta \subset \mathbb{R}^p$.

Definition 1 (Majorization function). The majorization function $g(\theta|\theta^{(k)})$ is said to majorize the function $f(\theta)$ at $\theta^{(k)}$ provided

$$\begin{split} f(\theta^{(k)}) &= g(\theta^{(k)}|\theta^{(k)}) \\ f(\theta) &\leq g(\theta|\theta^{(k)}) \quad \text{ for all } \theta. \end{split}$$

Remark:

- 1. The majorization relation between functions is closed under
- Formation of sums,

- Nonnegative products,
- Limits,
- Composition with an increasing function.
- 1. If $g(\theta|\theta^{(k)})$ minorizes the function $f(\theta)$ at $\theta^{(k)}$ then $-g(\theta|\theta^{(k)})$ majorizes $-f(\theta)$ at $\theta^{(k)}$.
- 2. In minimization, choose majorization $g(\theta|\theta^{(k)})$ and minimize it. This produces the next point $\theta^{(k+1)}$ in the algorithm.

The MM algorithm is summarized below:

Algorithmus 1 : MM algorithm.

- 1. Initialize $\theta^{(0)}$.
- 2. **Majorization:** at the k-th iteration, for $f(\theta)$ we find its majorization function $g(\theta|\theta^{(k)})$ at $\theta^{(k)}$ and
- 3. Minimization: compute

$$\theta^{(k+1)} = \arg\min_{\theta} g(\theta|\theta^{(k)}).$$

4. Check for convergence of either θ or the objective function. If the convergence criterion is not satisfied then set k := k + 1 and return to step 2.

Figure 1: MM algorithm.

1.1 Descent property of MM algorithm

An MM minimization algorithm satisfies the descent property $f(\theta^{(k+1)}) \leq f(\theta^{(k)})$ with strict inequality unless both

$$g(\theta^{(k+1)}|\theta^{(k)}) = g(\theta^{(k)}|\theta^{(k)})$$

 $f(\theta^{(k+1)}) = g(\theta^{(k+1)}|\theta^{(k)}).$

The descent property follows from the definitions and

$$f(\theta^{(k+1)}) \le g(\theta^{(k+1)}|\theta^{(k)}) \le g(\theta^{(k)}|\theta^{(k)}) = f(\theta^{(k)}).$$

The descent property makes the MM algorithm very stable.

1.2 Convergence of an MM Algorithm

- If an objective function is strictly convex or concave, then the MM algorithm will converge to the unique optimal point, assuming it exists.
- If convexity or concavity fail, but all stationary points are isolated, then the MM algorithm will converge to one of them.
- This point can be a local optimum, or in unusual circumstances, even a saddle point.

Proposition 1. Let $\Theta \subset \mathbb{R}^p$ be open and suppose that the following conditions hold:

- 1. The objective function $f: \Theta \to \mathbb{R}$ is differentiable;
- 2. $S(\theta^{(0)}) = \{\theta \in \Theta : f(\theta) \leq f(\theta^{(0)})\}$ is closed and bounded;
- 3. the majorizing function $g(\theta|\bar{\theta}):\Theta\to\mathbb{R}$ is differentiable with a unique minimizer for each $\bar{\theta}\in\Theta$;
- 4. $g(\cdot|\cdot):\Theta\times\Theta\to\mathbb{R}$ is jointly continuous.

Let $\{\theta^{(k)}\}$ be the sequence of iterates generated by the MM algorithm. Then every limit point of $\{\theta^{(k)}\}$ is a stationary point of f.

Proof. Define $A:\Theta\to\Theta$, where $A(\theta^{(k)})=\arg\min_{\theta\in\Theta}g(\theta|\theta^{(k)})$. Then $\theta^{(k+1)}=A(\theta^{(k)})$. From the MM property $f(\theta^{(k+1)})\leq f(\theta^{(k)})$ so $\{\theta^{(k)}\}\subset S(\theta^{(0)})$, which is closed and bounded. So there exists a subsequence $\{\theta^{j(k)}\}\to\bar{\theta}$. Similarly, $\{A(\theta^{j(k)})\}\subset S(\theta^{(0)})$ so there exists a subsubsequence $\{A(\theta^{m(j(k))})\}\to\bar{A}$ and

$$g(A(\theta^{m(j(k))})|\theta^{m(j(k))}) \le g(\theta|\theta^{m(j(k))}), \tag{1}$$

for all $\theta \in \Theta$. Since $g(\cdot|\cdot)$ is jointly continuous we take limits in (1) and see that

$$g(\bar{A}|\bar{\theta}) = \lim_{k \to \infty} g(A(\theta^{m(j(k))})|\theta^{m(j(k))}) \le \lim_{k \to \infty} g(\theta|\theta^{m(j(k))}) = g(\theta|\bar{\theta}),$$

for all $\theta \in \Theta$. This implies that $\bar{A} = A(\bar{\theta})$. We assumed that the minimizer of $g(\cdot|\bar{\theta})$ is unique, so only one limit point of $\{A(\theta^{j(k)})\}$ exists, thus $\{A(\theta^{j(k)})\} \to A(\bar{\theta})$. Using the MM property,

$$f(\theta^{j(k+1)}) \le f(\theta^{j(k)+1}) = f(A(\theta^{j(k)})) \le f(\theta^{j(k)}).$$
 (2)

Since f is continuous, we take limits in (2) and see that $f(\bar{\theta}) = f(A(\bar{\theta}))$. Also

$$f(A(\bar{\theta})) \le g(A(\bar{\theta})|\bar{\theta}) \le g(\bar{\theta}|\bar{\theta}) = f(\bar{\theta}) = f(A(\bar{\theta})).$$

So $g(A(\bar{\theta})|\bar{\theta})=g(\bar{\theta}|\bar{\theta})$ and since $A(\bar{\theta})$ is the unique minimizer of $g(\cdot|\bar{\theta})$, we have that $A(\bar{\theta})=\bar{\theta}$. Since $g(\cdot|\bar{\theta})$ is differentiable and $\bar{\theta}$ is its unique minimizer, $\nabla g(\bar{\theta}|\bar{\theta})=0$ (meaning $\nabla g(\cdot|\bar{\theta})$ evaluated at $\bar{\theta}$ equals zero). It remains to show that $\nabla g(\bar{\theta}|\bar{\theta})=0$ implies $\nabla g(\bar{\theta})=0$

Suppose that $\nabla g(\bar{\theta}|\bar{\theta})=0$ and $\nabla f(\bar{\theta})\neq 0$, then $d=\nabla f(\bar{\theta})$ is an ascent direction and $\|d\|>0$. Form the definition of differentiability and the definition of a majorization,

$$||d||^{2} + ||d||a_{2}(\lambda d|\bar{\theta}) = \nabla f(\bar{\theta})'d + ||d||a_{2}(\lambda d|\bar{\theta}) = \frac{f(\bar{\theta} + \lambda d) - f(\bar{\theta})}{\lambda}$$

$$\leq \frac{g(\bar{\theta} + \lambda d|\bar{\theta}) - g(\bar{\theta}|\bar{\theta})}{\lambda}$$

$$= \nabla g(\bar{\theta}|\bar{\theta})'d + ||d||a_{1}(\lambda d|\bar{\theta})$$

$$= ||d||a_{1}(\lambda d|\bar{\theta}), \tag{3}$$

Figure 2: A saddle point on the graph of $z = x^2 - y^2$ (in red).

for all $\lambda>0$ sufficiently small, where $\lim_{\lambda\to 0}a_2(\lambda d|\bar{\theta})=0$ and $\lim_{\lambda\to 0}a_1(\lambda d|\bar{\theta})=0$. The inequality in (3) implies that

$$||d|| + a_2(\lambda d|\bar{\theta}) - a_1(\lambda d|\bar{\theta}) \le 0, \tag{4}$$

for all $\lambda > 0$ sufficiently small, but this is impossible because ||d|| > 0 and choosing $\lambda > 0$ sufficiently close to zero will make the left side of (4) positive.

1.3 Case study: bridge penalty

Figure 3: Compare unit circles of the different penalties. p=1 corresponds to the LASSO, p=2 to the Ridge, and p=1.4 to one possible Bridge. The Elastic Net was generated with equal weighting on ℓ_1 and ℓ_2 penalties.

1.3.1 Model and properties

Suppose we want to compute the bridge penalized least-squares estimate of β_* defined by

$$\hat{\beta}_{-1}^{(\lambda,\gamma)} \in \arg\min_{\tilde{\beta} \in \mathbb{R}^{p-1}} \left\{ \frac{1}{2} \|\tilde{y} - \tilde{X}\tilde{\beta}\|^2 + \frac{\lambda}{\gamma} \sum_{j=1}^{p-1} |\tilde{\beta}_j|^{\gamma} \right\}$$

$$\hat{\beta}_1^{(\lambda,\gamma)} = \bar{y} - \bar{x}' \hat{\beta}_{-1}^{(\lambda,\gamma)}, \tag{5}$$

where $\lambda \geq 0$ and $\gamma \in [1,2]$ are tuning parameters. When $\gamma = 2$, (5) becomes ridges-penalized least-squares. When $\gamma = 1$, (5) becomes lasso-penalized least squares. Please see **Homework 3** for definitions of X, y, \tilde{X} , \tilde{y} and $\tilde{\beta}$.

From Figure 3 we see that Bridge clearly lacks sparsity while Elastic Net preserves sparsity from its LASSO component.

- Lasso ($\gamma = 1$) shrinks small OLS estimates to zero and large by a constant;
- Ridge regression ($\gamma = 2$) shrinks the OLS estimates proportionally;
- Bridge regression (1 $< \gamma < 2$) shrinks small OLS estimates by a large rate and large

Figure 4: Shrinkage Effect of Bridge Regressions for Fixed $\lambda>0$. Solid—the bridge estimator; dashed—the OLS estimator.

Figure 5: Exact solutions for the lasso (----), ridge regression $(-\cdot-\cdot-)$ and the naive elastic net in an orthogonal design (_____): the shrinkage parameters are $\lambda_1=2$ and $\lambda_2=1$.

by a small rate;

• Bridge regression ($\gamma > 2$) shrinks small OLS estimates by a small rate and large by a large rate.

In summary, bridge regression of large value of $\gamma(\gamma \geq 2)$ tends to retain small parameters while small value of γ (γ < 2) tends to shrink small parameters to zero.

1.3.2 Computation

First we majorize the penalty function $p(\theta)$: $\mathbb{R} \to \mathbb{R}$ defined by:

$$p(\theta) = |\theta|^{\gamma}, \qquad \gamma \in [1, 2].$$

Note that p is differentiable for $\gamma > 1$, but not twice differentiable when $\gamma < 2$ at 0.

To construct a majorization of $p(\theta)$ at $\bar{\theta}$, consider the function $h: \mathbb{R}_+ \to \mathbb{R}$, where $h(u) = u^{\gamma/2}$, a first-order Taylor series approximation of h at \bar{u} is

$$h(u) \approx h(\bar{u}) + \nabla h(\bar{u})(u - \bar{u}) = g(u|\bar{u}). \tag{6}$$

where

$$\nabla h(u) = (\gamma/2)u^{\gamma/2-1}.$$

We see that $\nabla^2 h(u) = \frac{\gamma}{2}(\frac{\gamma}{2} - 1)u^{\gamma/2-1} < 0$, when $\gamma \in [1, 2]$, for all $u \in \mathbb{R}$. So h is concave, meaning that $g(u|\bar{u})$ majorizes h at \bar{u} . Plug in $u = |\theta|^2$ and $\bar{u} = |\bar{\theta}|^2$ in (6), we

the majorization function for $|\theta|^{\gamma}$

$$|\theta|^{\gamma} \le |\bar{\theta}|^{\gamma} + \frac{\gamma}{2}|\bar{\theta}|^{\gamma-2}(\theta^2 - \bar{\theta}^2),$$

for all $\theta \in \mathbb{R}$ with equality holding when $\theta = \bar{\theta}$. So the right hand side defines the majorization to p at $\bar{\theta}$.

Let f be the objective function in (5), and let $\beta^{(k)} \in \mathbb{R}^{p-1}$ be our current iterate. Then $g(\cdot|\beta^{(k)}): \mathbb{R}^{p-1} \to \mathbb{R}$ defined by

$$g(\beta|\beta^{(k)}) = \frac{1}{2} \|\tilde{y} - \tilde{X}\tilde{\beta}\|^2 + \frac{\lambda}{\gamma} \sum_{j=1}^{p-1} \left[\left| \beta_j^{(k)} \right|^{\gamma} + \frac{\gamma}{2} \left| \beta_j^{(k)} \right|^{\gamma-2} \left\{ \beta_j^2 - \left(\beta_j^{(k)} \right)^2 \right\} \right]$$

majorizes f at $\beta^{(k)}$. We can write

$$g(\beta|\beta^{(k)}) = \text{constants} + \frac{1}{2}\|\tilde{y} - \tilde{X}\tilde{\beta}\|^2 + \frac{\lambda}{2}\sum_{j=1}^{p-1} m_j \beta_j^2,$$

where $m_j=\left|\beta_j^{(k)}\right|^{\gamma-2}$ for $j=1,\ldots,p-1$ are the non-negative ridge penalty weights. We write

$$\nabla g(\beta^{(k+1)}|\beta^{(k)}) = 0$$

as

$$-\tilde{X}'\tilde{y} + \tilde{X}'\tilde{X}\beta^{(k+1)} + \lambda M\beta^{(k+1)} = 0.$$

So

$$\left(\tilde{X}'\tilde{X} + \lambda M\right)\beta^{(k+1)} = \tilde{X}'\tilde{y}$$

where $M = diag(m_1, \dots, m_{p-1})$. We solve this system of equations using our favorite solver.

1.4 Example: Concave Penalized Linear Regression

$$\min ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda \cdot \sum_{j=1}^p p_{\lambda} (|\beta_j|)$$

Pen(t) is a concave increasing function.

e.g.

$$p_{\lambda}(t) = \lambda^2 - (t - \lambda)^2 I(t < \lambda) \qquad \qquad \cdots \qquad \text{Hard thresholding}$$
 or
$$p_{\lambda}'(t) = (\lambda - \frac{t}{a})_+ \qquad \qquad \cdots \qquad \text{MCP}$$

$$p_{\lambda}'(t) = \lambda I(t \le \lambda) + \frac{(a\lambda - t)_+}{a - 1} I(t > \lambda) \qquad \cdots \qquad \text{SCAD}$$

Given β^0 , majorization can be

$$\sum_{j=1}^{p} p_{\lambda} (|\beta_{j}|) \leq \sum_{j=1}^{p} \left\{ p_{\lambda} (|\beta_{j}^{0}|) + p_{\lambda}' (|\beta_{j}^{0}|) (|\beta_{j}| - |\beta_{j}^{0}|) \right\}$$

$$\leq \sum_{j=1}^{p} p_{\lambda} (|\beta_{j}^{0}|) + \sum_{j=1}^{p} p_{\lambda}' (|\beta_{j}^{0}|) |\beta_{j}| - \sum_{j=1}^{p} p_{\lambda}' (|\beta_{j}^{0}|) |\beta_{j}^{0}|$$

$$Q(\boldsymbol{\beta}|\boldsymbol{\beta}^{0}) = ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^{2} + \sum_{j=1}^{p} p_{\lambda}' (|\beta_{j}^{0}|) |\beta_{j}|$$

$$+ \sum_{j=1}^{p} p_{\lambda} (|\beta_{j}^{0}|) - \sum_{j=1}^{p} p_{\lambda}' (|\beta_{j}^{0}|) |\beta_{j}^{0}|$$

$$\boldsymbol{\beta}^{1} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} Q(\boldsymbol{\beta}|\boldsymbol{\beta}^{0})$$

$$= \operatorname*{arg\,min}_{\boldsymbol{\beta}} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^{2} + \sum_{j=1}^{p} \widehat{w}_{j} \cdot |\beta_{j}|$$

$$\widehat{w}_{j} = p_{\lambda}' \Big(|\beta_{j}^{0}| \Big)$$

This is the <u>LLA</u> for concave penalization.

1.5 Example: Quadratic majorization for logistic regression

$$-\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} -y_{i} \mathbf{x}_{i}^{T} \boldsymbol{\beta} + \log\left(1 + e^{\mathbf{x}_{i}^{T} \boldsymbol{\beta}}\right) \quad \left(=f(\boldsymbol{\beta})\right)$$
$$\widehat{\boldsymbol{\beta}}^{\text{mle}} = \underset{\boldsymbol{\beta}}{\operatorname{arg min}} -\ell(\boldsymbol{\beta})$$

$$\nabla^2 f(\boldsymbol{\beta}) = -\nabla^2 \ell(\boldsymbol{\beta}) = \mathbf{X}^T \cdot \operatorname{Diag}\left(p(\mathbf{x}_i)(1 - p(\mathbf{x}_i))\right) \mathbf{X}$$
$$\leq \mathbf{X}^T \cdot \frac{1}{4} \cdot \mathbf{I} \cdot \mathbf{X} = \frac{1}{4} \mathbf{X}^T \mathbf{X} = \mathbf{H}$$

Then

$$f(\boldsymbol{\beta}) \le f(\boldsymbol{\beta}^0) + \nabla f(\boldsymbol{\beta}^0) \cdot (\boldsymbol{\beta} - \boldsymbol{\beta}^0) + \frac{1}{2} \cdot (\boldsymbol{\beta} - \boldsymbol{\beta}^0)^T \mathbf{H} (\boldsymbol{\beta} - \boldsymbol{\beta}^0)$$
$$= Q(\boldsymbol{\beta} | \boldsymbol{\beta}^0)$$

$$\begin{split} \boldsymbol{\beta}^1 &= \operatorname*{arg\,min}_{\boldsymbol{\beta}} Q(\boldsymbol{\beta}|\boldsymbol{\beta}^0) \\ &= \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{2} (\boldsymbol{\beta} - \boldsymbol{\beta}^0)^T \mathbf{H} (\boldsymbol{\beta} - \boldsymbol{\beta}^0) + \nabla f(\boldsymbol{\beta}^0) \cdot (\boldsymbol{\beta} - \boldsymbol{\beta}^0) \end{split}$$

thus

$$\boldsymbol{\beta}^1 = \boldsymbol{\beta}^0 - \mathbf{H}^{-1} \cdot \nabla f(\boldsymbol{\beta}^0)$$

Compare it to Newton's method

$$oldsymbol{eta}^1 = oldsymbol{eta}^0 - \left(
abla^2 f(oldsymbol{eta}^0)
ight)^{-1} \cdot
abla f(oldsymbol{eta}^0)$$

Newton's may fail to converge, the fixed Hessian method always converges, but at a slower rate.

1.6 Example: Lasso Penalized Median Regression

$$f(\theta) = \sum_{i=1}^{n} |y_i - \theta|$$

$$\widehat{\theta} = \min_{\theta} f(\theta) = \text{sample median of } \{y_i\}$$

$$|y_i - \theta| \le \frac{1}{2} \frac{(y_i - \theta)^2}{|y_i - \theta^0|} + \frac{1}{2} |y_i - \theta^0|$$

$$Q(\theta|\theta^0) = \sum_{i=1}^{n} \frac{1}{2} \frac{(y_i - \theta)^2}{|y_i - \theta^0|} + \frac{1}{2} |y_i - \theta^0|$$

$$\begin{split} \theta^1 &= \arg\min_{\theta} Q(\theta|\theta^0) \\ &= \arg\min_{\theta} \sum_{i=1}^n w_i^0 (y_i - \theta)^2 \qquad w_i^0 = \frac{1}{|y_i - \theta^0|} \\ &= \frac{\sum_{i=1}^n w_i^0 y_i}{\sum_{i=1}^n w_i^0} \quad \text{(weighted average)} \end{split}$$

Warning: $w_i^0 = \infty$ if $\theta^0 = y_i$

Now for the case with covariates.

$$\widehat{\boldsymbol{eta}} = \operatorname*{arg\,min}_{oldsymbol{eta}} \sum_{i=1}^{n} |y_i - \mathbf{x}_i^T oldsymbol{eta}|$$

The same procedure applies.

$$|y_i - \mathbf{x}_i^T \boldsymbol{\beta}| \le \frac{1}{2} \frac{(y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2}{|y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|} + \frac{1}{2} |y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|$$

Thus

$$Q(\boldsymbol{\beta}|\boldsymbol{\beta}^{0}) = \sum_{i=1}^{n} \frac{1}{2} \frac{(y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta})^{2}}{|y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta}^{0}|} + \sum_{i=1}^{n} \frac{1}{2} |y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta}^{0}|$$
$$\boldsymbol{\beta}^{1} = \underset{\boldsymbol{\beta}}{\operatorname{arg min}} \sum_{i=1}^{n} w_{i}^{0} \cdot (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta})^{2}$$
$$w_{i}^{0} = \frac{1}{|y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta}^{0}|}$$

Now consider Lasso Penalized Median Regression.

$$\widehat{oldsymbol{eta}} = rg \min_{oldsymbol{eta}} \sum_{i=1}^n |y_i - \mathbf{x}_i^T oldsymbol{eta}| + \lambda ||oldsymbol{eta}||_1$$

$$|y_i - \mathbf{x}_i^T \boldsymbol{\beta}| \le \frac{1}{2} \frac{(y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2}{|y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|} + \frac{1}{2} |y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|$$

$$Q(\boldsymbol{\beta}|\boldsymbol{\beta}^0) = \sum_{i=1}^n \frac{1}{2} \frac{(y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2}{|y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|} + \lambda ||\boldsymbol{\beta}||_1 + \sum_{i=1}^n \frac{1}{2} |y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|$$

$$\boldsymbol{\beta}^{1} = \underset{\boldsymbol{\beta}}{\operatorname{arg \, min}} Q(\boldsymbol{\beta}|\boldsymbol{\beta}^{0})$$

$$= \underset{\boldsymbol{\beta}}{\operatorname{arg \, min}} \sum_{i=1}^{n} w_{i}^{0} \cdot (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta})^{2} + 2\lambda \cdot ||\boldsymbol{\beta}||_{1}$$

$$w_i^0 = \frac{1}{|y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|}$$

So do not use $|y_i - \mathbf{x}_i^T \boldsymbol{\beta}| \approx \frac{|y_i - \mathbf{x}_i^T \boldsymbol{\beta}|^2}{|y_i - \mathbf{x}_i^T \boldsymbol{\beta}^0|}$ to derive the algorithm.

1.7 Example: Bradley-Terry Ranking Model

A sports league has m teams. Team i has skill level θ_i . Then

$$\operatorname{Prob}\left(\operatorname{team} i \text{ beats team } j\right) = \frac{\theta_i}{\theta_i + \theta_j}, \quad \theta_1 = 1$$

Observe b_{ij} = the number of times team i beats team j. Find $\widehat{\boldsymbol{\theta}}^{\text{mle}}$.

The likelihood is

$$L(\boldsymbol{\theta}) = \prod_{i,j} \left(\frac{\theta_i}{\theta_i + \theta_s j} \right)^{b_{ij}}$$
$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta}) = \sum_{i,j} b_{ij} \left(\log \theta_i - \log(\theta_i + \theta_j) \right)$$

$$\widehat{\boldsymbol{\theta}}^{\text{mle}} = \underset{\boldsymbol{\theta}}{\operatorname{arg \, min}} - \ell(\boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg \, min}} \sum_{i,j} b_{ij} \Big(-\log \theta_i + \log(\theta_i + \theta_j) \Big)$$

 $\log(t)$ is concave.

$$\log(t) \leq \log(t_0) + \log'(t_0)(t - t_0)$$

$$= \log(t_0) + \frac{1}{t_0}(t - t_0)$$

$$\log(\theta_i + \theta_j) \leq \log(\theta_i^0 + \theta_j^0) + \frac{\theta_i + \theta_j}{\theta_i^0 + \theta_j^0} - 1$$

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^0) = \sum_{i,j} b_{ij} \left(-\log \theta_i + \log(\theta_i^0 + \theta_j^0) + \frac{\theta_i + \theta_j}{\theta_i^0 + \theta_j^0} - 1 \right)$$

$$\boldsymbol{\theta}^1 = \underset{\boldsymbol{\theta}}{\arg \min} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^0)$$

$$= \underset{\boldsymbol{\theta}}{\arg \min} \sum_{i,j} b_{ij} \left(-\log \theta_i + \frac{\theta_i + \theta_j}{\theta_i^0 + \theta_j^0} \right)$$

$$\frac{\partial}{\partial \theta_k} \left(\sum_{i,j} b_{ij} \left(-\log \theta_i + \frac{\theta_i + \theta_j}{\theta_i^0 + \theta_j^0} \right) \right)$$

$$= \sum_{i,j} b_{ij} \left(-\frac{1}{\theta_k} I(i=k) + \frac{1}{\theta_i^0 + \theta_j^0} I(i=k) + \frac{1}{\theta_i^0 + \theta_j^0} I(j=k) \right)$$

$$= -\frac{1}{\theta_k} \sum_{j \neq k} b_{kj} + \sum_{j \neq k} \frac{b_{kj}}{\theta_k^0 + \theta_j^0} + \sum_{i \neq k} \frac{b_{ik}}{\theta_i^0 + \theta_k^0} = 0$$

$$\Longrightarrow \widehat{\theta}_k^1 = \frac{\sum_{j \neq k} b_{kj}}{\sum_{j \neq k} \frac{b_{kj}}{\theta_k^0 + \theta_j^0} + \sum_{i \neq k} \frac{b_{ik}}{\theta_i^0 + \theta_k^0}}$$

2 EM Algorithm

In a statistical model, we have observed variable y and parameter θ . Then the likelihood is

$$L(\boldsymbol{\theta}|\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}).$$

Let **Z** be another random vector. If we consider the joint distribution of $(\mathbf{X}, \mathbf{Z})|\boldsymbol{\theta}$ as $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})$, then

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) \, d\mathbf{z}.$$

The MLE of θ is

$$\widehat{\boldsymbol{\theta}}^{\text{mle}} = \underset{\boldsymbol{\theta}}{\operatorname{arg \, max}} \log L(\boldsymbol{\theta}|\mathbf{x}).$$

The E-M algorithm can be used to find $\widehat{\boldsymbol{\theta}}^{\text{mle}}$ by including \mathbf{Z} variables, although \mathbf{Z} variables are not part of the data. \mathbf{Z} is called "missing data" or "latent variables".

The "complete" likelihood is

$$L(\boldsymbol{\theta}|\mathbf{x}, \mathbf{z}) = p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}).$$

ullet E-step. Compute the Q function

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k) = \mathbb{E}_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}_k} \{ \log L(\boldsymbol{\theta}|\mathbf{x},\mathbf{z}) \}.$$

• M-step.

$$\boldsymbol{\theta}_{k+1} = \underset{\boldsymbol{\theta}}{\operatorname{arg}} \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k).$$

2.1 Why EM works? – the EM algorithm is an MM algorithm

Ascent property: $L(\boldsymbol{\theta}_{k+1}|\mathbf{x}) \geq L(\boldsymbol{\theta}_k|\mathbf{x})$.

Proof.

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})p(\mathbf{x}|\boldsymbol{\theta})$$

$$\iff \log L(\boldsymbol{\theta}|\mathbf{x}, \mathbf{z}) = \log p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) + \log L(\boldsymbol{\theta}|\mathbf{x})$$

$$\iff Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k) = \mathbb{E}_{\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_k} \log L(\boldsymbol{\theta}|\mathbf{x}, \mathbf{z})$$

$$= \int \log p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) \cdot p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_k) \, d\mathbf{z} + \log L(\boldsymbol{\theta}|\mathbf{x}).$$

By the M-step, $Q(\boldsymbol{\theta} = \boldsymbol{\theta}_{k+1} | \boldsymbol{\theta}_k) \geq Q(\boldsymbol{\theta}_k | \boldsymbol{\theta}_k)$, thus

$$\int \log p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k+1}) \cdot p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}) \, d\mathbf{z} + \log L(\boldsymbol{\theta}_{k+1}|\mathbf{x})$$

$$\geq \int \log p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}) \cdot p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}) \, d\mathbf{z} + \log L(\boldsymbol{\theta}_{k}|\mathbf{x})$$

$$\iff \log L(\boldsymbol{\theta}_{k+1}|\mathbf{x}) - \log L(\boldsymbol{\theta}_{k}|\mathbf{x})$$

$$\geq -\int \log \frac{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k+1})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k})} \cdot p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}) \, d\mathbf{z}$$

$$\geq 0,$$

where the last step is from

$$\mathbb{E}(-\log X) \ge -\log(\mathbb{E}X)$$

since $-\log(t)$ is convex, so use Jensen's inequality,

$$\begin{split} &-\int \log \frac{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k+1})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k})} \cdot p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}) \, \mathrm{d}\mathbf{z} \\ &= \mathbb{E}\left(-\log \tilde{\mathbf{X}}\right) \qquad \qquad \tilde{\mathbf{X}} = \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}_{k+1})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}_{k})} \\ &\geq -\log \left(\mathbb{E}\tilde{\mathbf{X}}\right) \qquad \qquad \text{where } \mathbf{Z} \sim p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}), \end{split}$$

but

$$\mathbb{E}\tilde{\mathbf{X}} = \int \frac{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k+1})}{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k})} \cdot p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k}) \, d\mathbf{z}$$
$$= \int p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}_{k+1}) \, d\mathbf{z}$$
$$= 1.$$

2.2 Generalized EM (GEM)

By the proof, we know that if in the M-step we just find Q_{k+1} such that

$$Q(\boldsymbol{\theta} = \boldsymbol{\theta}_{k+1}) > Q(\boldsymbol{\theta} = \boldsymbol{\theta}_k),$$

then the EM algorithm still works.

Sometimes, GEM is preferred because the exact M-step May Not be simple.

2.2.1 Example 1. Gaussian Mixture Model.

 $\mathbf{X}_i \stackrel{iid}{\sim} f(\mathbf{x}|\boldsymbol{\theta})$, where $\mathbf{X}_i = (X_{i1}, \dots, X_{ip})^{\mathrm{T}}$, and

$$f(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{c} r_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j),$$

where $r_j>0,\,\sum_{j=1}^c r_j=1,$ and $({\pmb \mu}_j,{\pmb \Sigma}_j)$ are not the same.

We can derive an EM algorithm to fit this model. One application of this Gaussian mixture model is model-based clustering. The likelihood function is

$$L(\boldsymbol{\theta}|\mathbf{X}) = f(\mathbf{X}|\boldsymbol{\theta}) = \prod_{i=1}^{n} f(\mathbf{x}_{i}|\boldsymbol{\theta})$$
$$= \prod_{i=1}^{n} \left[\sum_{j=1}^{c} r_{j} \mathcal{N}(\mathbf{x}_{i}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \right].$$

Given data $\{\mathbf x_i\}_{i=1}^n$, we maximize the log-likelihood function

$$\log L(\boldsymbol{\theta}|\mathbf{X}) = \sum_{i=1}^{n} \log \sum_{j=1}^{c} r_{j} \mathcal{N}(\mathbf{x}_{i}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}).$$

$$\widehat{\boldsymbol{\theta}}^{\text{mle}} = \underset{\boldsymbol{\theta}}{\operatorname{arg \, max}} \log L(\boldsymbol{\theta}|\mathbf{X}),$$

where
$$\boldsymbol{\theta} = (r_1, \dots, r_c, \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_c)$$
.

Direct optimization is OK, just too many parameters involved together. EM can separate them.

We introduce "Missing Data" Y:

$$\mathbf{X}_i|Y_i \sim \mathcal{N}(\pmb{\mu}_{Y_i}, \pmb{\Sigma}_{Y_i});$$

$$Y_i \sim \text{Multinomial}(r_1, \dots, r_c) \qquad p(y_i = j) = r_j, \ j = 1, \dots, c, \ \sum_{j=1}^c r_j = 1;$$
 $(\mathbf{X}_i, Y_i) \ i = 1, \dots, n \ \text{independent samples}.$

The joint density is

$$f_{\mathbf{X},Y}(\mathbf{x},y|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_y,\boldsymbol{\Sigma}_y)r_y$$

The marginal density of x is

$$f(\mathbf{x}|\boldsymbol{\theta}) = \int f_{\mathbf{X},Y}(\mathbf{x},y|\boldsymbol{\theta})dy = \int f_{\mathbf{X}|Y}(\mathbf{x}|y,\boldsymbol{\theta})f_{Y}(y)dy = \sum_{j=1}^{c} r_{j}\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{j},\boldsymbol{\Sigma}_{j})$$

The posterior density of $Y|\mathbf{X}$ is

$$f_{Y|\mathbf{X}}(y|\mathbf{x}, \boldsymbol{\theta}) = \frac{f_{\mathbf{X},Y}(\mathbf{x}, y|\boldsymbol{\theta})}{f(\mathbf{x}|\boldsymbol{\theta})} = \frac{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_y, \boldsymbol{\Sigma}_y)r_y}{\sum_{j=1}^c \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)r_j}.$$

Therefore, the complete log-likelihood is

$$\log L(\boldsymbol{\theta}|\mathbf{X}, \mathbf{y}) = \sum_{i=1}^{n} \left(\log \mathcal{N}(\mathbf{x}_{i}|\boldsymbol{\mu}_{y_{i}}, \boldsymbol{\Sigma}_{y_{i}}) + \log r_{y_{i}} \right)$$
$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{c} \left(\log \mathcal{N}(\mathbf{x}_{i}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) + \log r_{j} \right) I(y_{i} = j) \right).$$

• E-step.

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k) = \mathbb{E}_{\mathbf{Y}|\mathbf{X},\boldsymbol{\theta}_k} \log L(\boldsymbol{\theta}|\mathbf{X},\mathbf{Y})$$
$$= \sum_{i=1}^n \left(\sum_{j=1}^c \left(\log \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_j,\boldsymbol{\Sigma}_j) + \log r_j \right) \cdot \gamma_{ij}^{(k)} \right),$$

where

$$\gamma_{ij}^{(k)} = \hat{p}(y_i = j | \mathbf{x}_i, \boldsymbol{\theta}_k) = \frac{\mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j^{(k)}, \boldsymbol{\Sigma}_j^{(k)}) r_j^{(k)}}{\sum_{j'=1}^c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_{j'}^{(k)}, \boldsymbol{\Sigma}_{j'}^{(k)}) r_{j'}^{(k)}}.$$

M-step.

$$\boldsymbol{\theta}_{k+1} = \underset{\boldsymbol{\theta}}{\operatorname{arg}} \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k),$$

where

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k) = \sum_{i=1}^n \left(\sum_{j=1}^c \left[-\frac{(\mathbf{x}_i - \boldsymbol{\mu}_j)^\mathsf{T} \boldsymbol{\Sigma}_j^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_j)}{2} + \frac{1}{2} \log \det \boldsymbol{\Sigma}_j^{-1} \right. \right. \\ \left. + \log(2\pi)^{p/2} + \log r_j \right] \cdot \gamma_{ij}^{(k)} \right) \\ = \sum_{j=1}^c \log r_j \cdot \left(\sum_{i=1}^n \gamma_{ij}^{(k)} \right) + \sum_{j=1}^c \left(\sum_{i=1}^n \gamma_{ij}^{(k)} \right) \frac{1}{2} \log \det \boldsymbol{\Sigma}_j^{-1} \\ \left. + \sum_{j=1}^c \sum_{i=1}^n -\frac{1}{2} \gamma_{ij}^{(k)} (\mathbf{x}_i - \boldsymbol{\mu}_j)^\mathsf{T} \boldsymbol{\Sigma}_j^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_j). \right.$$

We maximize $Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k)$ with the constraint $\sum_{j=1}^c r_j = 1$, which implies that

$$\begin{split} r_{j}^{(k+1)} &= \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}{\sum_{j=1}^{c} \left(\sum_{i=1}^{n} \gamma_{ij}^{(k)}\right)} = \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}{n} \\ \boldsymbol{\mu}_{j}^{(k+1)} &= \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)} \mathbf{x}_{i}}{\sum_{i=1}^{n} \gamma_{ij}^{(k)}} \\ \boldsymbol{\Sigma}_{j}^{(k+1)} &= \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)} (\mathbf{x}_{i} - \boldsymbol{\mu}_{j}^{(k+1)}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{j}^{(k+1)})^{\mathrm{T}}}{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}, \end{split}$$

where we used the fact that

$$\frac{\partial}{\partial \Omega} \{ - \text{tr}(\mathbf{A}\Omega) + \log \det \Omega \} = -\mathbf{A} + \Omega^{-1}.$$

Try multiple random initial values for θ^0 .


```
##
     tol, the convergence tolerance for the EM algorithm
##
     maxit, the maximum number of iterations allowed
     quiet, should the function stay quiet?
##
##
##
   The function returns a list with elements
##
     mu.mat, this is a p by C matrix, the yth column is
##
             the estimate of the yth mean vector
     Sigma, this is a list of the C covariance matrix estimates
##
     pi.list, this is the vector of the C estimated
##
              probability masses for the maringal distribution of Y
     P.mat, this is an n by C matrix who's (i,j)th element
##
             is the final iterate's estimate of P(Y=j|X=x_i)
##
     total.iterations, the total EM steps taken
##
gmmfit=function(X, C, tol=1e-7, maxit=1e3, quiet=TRUE)
{
 p=ncol(X)
 n=nrow(X)
 ## get starting values
 pi.list=rep(1/C, C)
 mu.mat=matrix(rnorm(p*C), nrow=p, ncol=C) +
apply(X, 2, mean)%*%matrix(1, nrow=1, ncol=C)
 Sigma=vector(length=C, mode="list")
```

```
for(y in 1:C)
{
 Sigma[[y]]=diag(p)
}
objfnval=-Inf
k=0
iterating=TRUE
while(iterating)
{
 k=k+1
  ## Compute the n by C matrix P.mat who's (i,j)th entry
  ## is the current iterate's estimate of P(Y=j/X=x_i)
 logPhinum=matrix(NA, nrow=n, ncol=C)
 for (y in 1:C)
 {
  Xcentered=scale(X, scale=FALSE, center=mu.mat[,y])
  qf=-0.5*apply(t(Xcentered)*qr.solve(Sigma[[y]], t(Xcentered)), 2, sum)
  logPhinum[,y]=qf-0.5*determinant(Sigma[[y]],
logarithm=TRUE)$mod[1]-0.5*p*log(2*pi)+log(pi.list[y])
```

```
newobjfnval=sum(log(apply(exp(logPhinum), 1, sum)))
## control numerical stability by adjusting on the log scale:
## subtract the row maximum from each element in the row
logPhinum = logPhinum - apply(logPhinum, 1, max)%*%matrix(1, nrow=1, ncol=C)
Phinum=exp(logPhinum)
Phiden=apply(Phinum, 1, sum)
P.mat=Phinum/Phiden
if(!quiet) cat("k=", k, "f at kth iterate is" , newobjfnval, "\n")
if( ((newobjfnval - objfnval) < tol) | (k > maxit) )
 iterating=FALSE
objfnval=newobjfnval
for(y in 1:C)
{
 ## update the pi's
 sumprob=sum(P.mat[,y])
 pi.list[y]=sumprob/n
```

```
## update the mu's
      weight.matrix=diag(P.mat[,y]/sumprob)
      mu.mat[,y] = apply(weight.matrix %*% X, 2, sum)
      ## update the Sigma's
      Xcentered=scale(X, scale=FALSE, center=mu.mat[,y])
      Sigma[[y]] = crossprod(Xcentered, weight.matrix%*%Xcentered)
    }
  }
 return(list(mu.mat=mu.mat, Sigma=Sigma,
pi.list=pi.list, P.mat=P.mat,
total.iterations=k))
}
set.seed(5)
n=1000
p=2
C=3
## create the three covariance matrices
## Sigma 1 is diagonal with equal diagonal elements
```

```
Sigma1=0.05*diag(p)
## Sigma 2 is not diagonal:
Evectors=cbind(c(1,1), c(1,-1))/sqrt(2)
Sigma2=Evectors%*% diag(c(0.001, 0.1))%*%t(Evectors)
## Sigma 3 is diagonal with unequal diagonal elements
Sigma3=diag(c(0.1, 0.001))
## compute their matrix square roots for data generation
Sigma1.sqrt=sqrt(0.05)*diag(p)
Sigma2.sqrt=Evectors%*% diag(sqrt(c(0.001, 0.1)))%*%t(Evectors)
Sigma3.sqrt=diag(sqrt(c(0.1, 0.001)))
## Create the three mu's
mu1=c(0,0)
mu2=c(1,0)
mu3=c(0,1)
## Create the three pi's
pi1=1/3
```

```
pi2=1/3
pi3=1/3
## Generate the data matrix:
X=matrix(NA, nrow=n, ncol=p)
y=rep(0,n)
for(i in 1:n)
{
  ## perform a multinomial trial to
  ## generate the response cateogory
  mtrial=rmultinom(1, size=1, prob=c(pi1,pi2,pi3))
  if(mtrial[1]) ## resulted in category 1
  {
   X[i,] = mu1 + Sigma1.sqrt%*%rnorm(p)
   y[i]=1
  } else if(mtrial[2]) ## resulted in category 2
  {
    X[i,] = mu2 + Sigma2.sqrt%*%rnorm(p)
    y[i]=2
  } else ## resulted in category 3
  {
   X[i,] = mu3 + Sigma3.sqrt%*%rnorm(p)
```

```
y[i]=3
}
}
## plot the points without class labels
plot(X)
## plot points with class labels
plot(X, col=y)
## fit the Gaussian mixture model
outfast=gmmfit(X=X, C=C, tol=1e-7)
## get the assigned cluster/class labels
labels=apply(outfast$P.mat, 1, which.max)
## add these labels to the plot
points(X, pch=c("1", "2", "3")[labels]
```

2.2.2 Example 2. Factor Model.

 \mathbf{Y}_1,\ldots,bY_n iid in \mathbb{R}^p . The factor model is

$$\mathbf{Y}_i = \boldsymbol{eta}^{\scriptscriptstyle \mathrm{T}} \mathbf{X}_i + \mathbf{e}_i,$$

where $\boldsymbol{\beta}$ is a $q \times p$ matrix and \mathbf{X}_i is a q-dimensional random vector. Note that $\{\mathbf{X}_i\}$ are unobserved, $\mathbb{E}\mathbf{X}_i = \mathbf{0}$ and $\mathrm{Cov}(\mathbf{X}_i) = \mathbf{I}_q$. Moreover, \mathbf{e}_i is a p-dimensional random error vector, $\mathbb{E}\mathbf{e}_i = \mathbf{0}$ and $\mathrm{Cov}(\mathbf{e}_i) = \mathrm{diag}(\tau_1^2, \dots, \tau_p^2)$.

The factor model can be written as

$$\mathbf{Y}_{n imes p} = \mathbf{X}_{n imes q}oldsymbol{eta}_{q imes p} + oldsymbol{arepsilon}_{n imes p}.$$

Note that $X\beta = (XU)(U^{\mathsf{T}}\beta)$, $\mathbb{E}XU = 0$ and $Cov(XU) = I_q$ if $U_{q\times q}$ is an orthogonal matrix.

Let us derive an E-M algorithm for fitting the factor model under the normality assumption. Later we can see that the E-M algorithm does not depend on the normality assumption.

Assume $\mathbf{X}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_q)$, $\boldsymbol{\varepsilon}_i \sim \mathcal{N}(\mathbf{0}, \operatorname{diag}(\tau_1^2, \dots, \tau_p^2))$, then $\mathbf{Y}_i \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{\beta} + \boldsymbol{\tau}^2)$, where $\boldsymbol{\tau}^2 = \operatorname{diag}(\tau_1^2, \dots, \tau_p^2)$. The log-likelihood is

$$\ell(\boldsymbol{\tau}^2,\boldsymbol{\beta}) = -\frac{n}{2}\log\det(\boldsymbol{\tau}^2 + \boldsymbol{\beta}^{\scriptscriptstyle \mathrm{T}}\boldsymbol{\beta}) - \frac{1}{2}\sum_{i=1}^n\mathbf{y}_i^{\scriptscriptstyle \mathrm{T}}(\boldsymbol{\tau}^2 + \boldsymbol{\beta}^{\scriptscriptstyle \mathrm{T}}\boldsymbol{\beta})^{-1}\mathbf{y}_i,$$

or equivalently

$$\ell(oldsymbol{ au}^2,oldsymbol{eta}) = -rac{n}{2} \Big(\log \det(oldsymbol{ au}^2 + oldsymbol{eta}^{ extsf{T}} oldsymbol{eta}) + ext{tr} ig((oldsymbol{ au}^2 + oldsymbol{eta}^{ extsf{T}} oldsymbol{eta})^{-1} \widehat{oldsymbol{\Sigma}}^s ig) \Big),$$

where $\widehat{\mathbf{\Sigma}}^s = n^{-1} \sum_{i=1}^n \mathbf{Y}_i \mathbf{Y}_i^{ \mathrm{\scriptscriptstyle T} }$ is the sample covariance matrix of \mathbf{Y} . Thus,

$$(\widehat{m{eta}}, m{ au}^2)^{
m mle} = rg \min_{m{eta}, m{ au}} \Bigl\{ \log \det(m{ au}^2 + m{eta}^{\scriptscriptstyle {
m T}} m{eta}) + {
m tr} ig((m{ au}^2 + m{eta}^{\scriptscriptstyle {
m T}} m{eta})^{-1} \widehat{m{\Sigma}}^s ig) \Bigr\}.$$

Consider X as the "missing data". By $X_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_q)$, the joint likelihood of (\mathbf{X}, \mathbf{Y}) is

$$L_{\mathbf{Y},\mathbf{X}}(\boldsymbol{\tau}^{2},\boldsymbol{\beta})$$

$$= \left(2\pi \prod_{j=1}^{p} \tau_{j}^{2}\right)^{-n/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{p} \frac{(Y_{ij} - \mathbf{X}[i,]\boldsymbol{\beta}[,j])^{2}}{\tau_{j}^{2}}\right\}$$

$$\times (2\pi \det \mathbf{I})^{-n/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \mathbf{X}[i,]\mathbf{X}[i,]^{\mathsf{T}}\right\} \qquad (\text{R notation}).$$

• E-step.

$$\begin{split} Q(\boldsymbol{\tau}^2,\boldsymbol{\beta}|\boldsymbol{\tau}_{(k)}^2,\boldsymbol{\beta}_{(k)}) &= \mathbb{E}_{\mathbf{X}|\mathbf{Y},\boldsymbol{\tau}_{(k)}^2,\boldsymbol{\beta}_{(k)}}[\log L_{\mathbf{Y},\mathbf{X}}(\boldsymbol{\tau}^2,\boldsymbol{\beta})] \\ &= -\frac{1}{2}\sum_{i=1}^n\sum_{i=1}^p\frac{1}{\tau_j^2}\Big(Y_{ij}^2 - 2Y_{ij}\mathbb{E}\big(\mathbf{X}[i,]|\mathbf{Y},\boldsymbol{\beta}_{(k)},\boldsymbol{\tau}_{(k)}\big)\boldsymbol{\beta}[,j] \\ &+ \boldsymbol{\beta}[,j]^{\mathsf{T}}\mathbb{E}\big(\mathbf{X}[i,]^{\mathsf{T}}\mathbf{X}[i,]|\mathbf{Y},\boldsymbol{\beta}_{(k)},\boldsymbol{\tau}_{(k)}^2\big)\boldsymbol{\beta}[,j]\Big) \\ &-\frac{1}{2}\sum_{i=1}^n\mathbb{E}\Big[\mathbf{X}[i,]\mathbf{X}[i,]^{\mathsf{T}}|\mathbf{Y},\boldsymbol{\beta}_{(k)},\boldsymbol{\tau}_{(k)}^2\Big] \\ &-\frac{n}{2}\sum_{j=1}^p\log\tau_j^2 + \text{constant} \end{split}$$

Note that

$$\mathbf{X}|\mathbf{Y},\boldsymbol{\beta}_{(k)},\boldsymbol{\tau}_k^2 \sim \mathcal{N}\Big(\mathbf{Y}(\boldsymbol{\tau}_{(k)}+\boldsymbol{\beta}_{(k)}^{^{\mathrm{T}}}\boldsymbol{\beta}_{(k)})^{-1}\boldsymbol{\beta}_{(k)}^{^{\mathrm{T}}},\mathbf{I}-\boldsymbol{\beta}_{(k)}(\boldsymbol{\tau}_{(k)}^2+\boldsymbol{\beta}_{(k)}^{^{\mathrm{T}}}\boldsymbol{\beta}_{(k)})^{-1}\boldsymbol{\beta}_{(k)}^{^{\mathrm{T}}}\Big)$$

imples that

$$\mathbb{E}ig(\mathbf{X}[i,]|\mathbf{Y},oldsymbol{eta}_{(k)},oldsymbol{ au}_{(k)^2}ig) = oldsymbol{\delta}^{ ext{T}}\mathbf{Y}[i,]^{ ext{T}}, \ ext{Var}ig(\mathbf{X}[i,]|\mathbf{Y},oldsymbol{eta}_{(k)},oldsymbol{ au}_{(k)}^2ig) = oldsymbol{\Delta},$$

and that

$$\mathbb{E}\big(\mathbf{X}[i,]^{\mathsf{T}}\mathbf{X}[i,]|\mathbf{Y},\boldsymbol{\beta}_{(k)},\boldsymbol{\tau}_{(k)}^{2}\big) = \boldsymbol{\Delta} + \boldsymbol{\delta}^{\mathsf{T}}\mathbf{Y}[i,]^{\mathsf{T}}\mathbf{Y}[i,]\boldsymbol{\delta},$$

where

$$oldsymbol{\delta} = \left(oldsymbol{ au}_{(k)}^2 + oldsymbol{eta}_{(k)}^{\scriptscriptstyle extsf{T}} oldsymbol{eta}_{(k)}^{\scriptscriptstyle extsf{T}}
ight)^{-1} oldsymbol{eta}_{(k)}^{\scriptscriptstyle extsf{T}}$$

and

$$oldsymbol{\Delta} = \mathbf{I} - oldsymbol{eta}_{(k)} ig(oldsymbol{ au}_{(k)}^2 + oldsymbol{eta}_{(k)}^{\scriptscriptstyle\mathsf{T}} oldsymbol{eta}_{(k)}ig)^{-1} oldsymbol{eta}_{(k)}^{\scriptscriptstyle\mathsf{T}}.$$

Treat $\mathbb{E}(\mathbf{X}[i,]\mathbf{X}[i,]^{\mathsf{T}}|\mathbf{Y},\boldsymbol{\beta}_{(k)},\boldsymbol{\tau}_{(k)}^2)$ as another constant because it does not involve $\boldsymbol{\beta},\boldsymbol{\tau}^2$. Thus,

$$\begin{split} Q(\boldsymbol{\beta}, \boldsymbol{\tau}^2 | \boldsymbol{\beta}_{(k)}, \boldsymbol{\tau}_{(k)}^2) \\ &= -\frac{1}{2} \sum_{i=1}^n n \log \tau_j^2 - \frac{1}{2} \sum_{j=1}^p \sum_{i=1}^n \frac{Y_{ij}^2 - 2Y_{ij} \mathbf{Y}[i,] \boldsymbol{\delta} \boldsymbol{\beta}[,j]}{\tau_j^2} \\ &- \frac{1}{2} \sum_{j=1}^p \sum_{i=1}^n \frac{\boldsymbol{\beta}[,j]^{\mathsf{T}} \big[\boldsymbol{\Delta} + \boldsymbol{\delta}^{\mathsf{T}} \mathbf{Y}[i,]^{\mathsf{T}} \mathbf{Y}[i,] \boldsymbol{\delta} \big] \boldsymbol{\beta}[,j]}{\tau_j^2} \end{split}$$

+ constant.

• M-step.

$$(\boldsymbol{\beta}_{(k+1)}, \boldsymbol{\tau}_{(k+1)}^2) = \underset{\boldsymbol{\beta}, \boldsymbol{\tau}^2}{\operatorname{arg max}} Q(\boldsymbol{\beta}, \boldsymbol{\tau}^2 | \boldsymbol{\beta}_{(k)}, \boldsymbol{\tau}_{(k)}^2).$$

First, we can do optimization for each j.

$$\begin{split} \left(\boldsymbol{\beta}_{(k+1)}[,j], \boldsymbol{\tau}_{(k+1)_{j}}^{2}\right) &= \arg\max \left\{-\frac{1}{2}n\log\tau_{j}^{2} \\ &-\frac{1}{2}\sum_{i=1}^{n}\frac{Y_{ij}^{2}-2Y_{ij}\mathbf{Y}[i,]\boldsymbol{\delta}\boldsymbol{\beta}[,j]}{\tau_{j}^{2}} \\ &-\frac{1}{2}\sum_{i=1}^{n}\frac{\boldsymbol{\beta}[,j]^{\mathsf{T}}\left[\boldsymbol{\Delta}+\boldsymbol{\delta}^{\mathsf{T}}\mathbf{Y}[i,]^{\mathsf{T}}\mathbf{Y}[i,]\boldsymbol{\delta}\right]\boldsymbol{\beta}[,j]}{\tau_{j}^{2}}\right\}. \end{split}$$

Solve $\widehat{\boldsymbol{\beta}}_{(k+1)}[,j]$ first.

$$\widehat{\boldsymbol{\beta}}_{(k+1)}[,j] = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \boldsymbol{\beta}^{\mathsf{T}}(n\boldsymbol{\Delta} + \boldsymbol{\delta}^{\mathsf{T}}\mathbf{Y}^{\mathsf{T}}\mathbf{Y}\boldsymbol{\delta})\boldsymbol{\beta} - 2\Big(\sum_{i=1}^{n} Y_{ij}\mathbf{Y}[i,]\Big)\boldsymbol{\delta}\boldsymbol{\beta}.$$

Let $\widehat{\boldsymbol{\Sigma}}^s = n^{-1} \mathbf{Y}^{\scriptscriptstyle \mathrm{T}} \mathbf{Y}$. Then,

$$\begin{split} \widehat{\boldsymbol{\beta}}_{(k+1)}[,j] &= \operatorname*{arg\,min}_{\boldsymbol{\beta}} n \boldsymbol{\beta}^{\mathrm{T}} \big(\boldsymbol{\Delta} + \boldsymbol{\delta}^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}^{s} \boldsymbol{\delta} \big) \boldsymbol{\beta} - 2n \widehat{\boldsymbol{\Sigma}}^{s}[j,] \boldsymbol{\delta} \boldsymbol{\beta} \\ &= \big(\boldsymbol{\Delta} + \boldsymbol{\delta}^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}^{s} \boldsymbol{\delta} \big)^{-1} \big(\widehat{\boldsymbol{\Sigma}}^{s}[,j] \boldsymbol{\delta} \big)^{\mathrm{T}} \\ &= \big(\boldsymbol{\Delta} + \boldsymbol{\delta}^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}^{s} \boldsymbol{\delta} \big)^{-1} \boldsymbol{\delta}^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}^{s}[,j]. \end{split}$$

Then,

$$\begin{split} \boldsymbol{\tau}_{(k+1)_{j}}^{2} &= \frac{1}{n} \sum_{i=1}^{n} Y_{ij}^{2} + \widehat{\boldsymbol{\beta}}^{^{\mathrm{T}}} \big(\boldsymbol{\Delta} + \boldsymbol{\delta}^{^{\mathrm{T}}} \widehat{\boldsymbol{\Sigma}}^{s} \boldsymbol{\delta} \big) \widehat{\boldsymbol{\beta}} - 2 \widehat{\boldsymbol{\Sigma}}^{s}[j,] \boldsymbol{\delta} \widehat{\boldsymbol{\beta}} \\ &= \widehat{\boldsymbol{\Sigma}}_{jj}^{s} - \widehat{\boldsymbol{\Sigma}}^{s}[j,] \boldsymbol{\delta} \Big(\boldsymbol{\Delta} + \boldsymbol{\delta}^{^{\mathrm{T}}} \widehat{\boldsymbol{\Sigma}}^{s} \boldsymbol{\delta} \Big)^{-1} \boldsymbol{\delta}^{^{\mathrm{T}}} \widehat{\boldsymbol{\Sigma}}^{s}[j,j] \\ &= \widehat{\boldsymbol{\Sigma}}_{jj}^{s} - \widehat{\boldsymbol{\Sigma}}^{s}[j,] \boldsymbol{\delta} \widehat{\boldsymbol{\beta}}. \end{split}$$

E-M algorithm for factor analysis:

- (1) Initialization $\boldsymbol{\beta}^0$, $(\boldsymbol{\tau}^2)^0$.
- (2) Compute $\widehat{\boldsymbol{\Sigma}}^s = n^{-1} \mathbf{Y}^{\mathsf{T}} \mathbf{Y}$.

For $k = 1, 2, \ldots$, compute

$$oldsymbol{\delta} = \left(oldsymbol{ au}_{(k-1)}^2 + oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}
ight)^{-1} oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}^{ extsf{T}} oldsymbol{eta}_{(k-1)}^{ extsf{T}}.$$

Compute $\mathbf{\Delta} + \mathbf{\delta}^{\scriptscriptstyle{\mathrm{T}}} \widehat{\mathbf{\Sigma}}^{^s} \mathbf{\delta} = \mathbf{M}$. Do Cholesky of \mathbf{M} .

For j = 1, 2, ..., q,

$$egin{align} oldsymbol{eta}_{(k)_j} &= \mathbf{M}^{-1} oldsymbol{\delta}^{\mathrm{T}} \widehat{oldsymbol{\Sigma}}^s[,j] \ oldsymbol{ au}_{(k+1)_j}^2 &= \widehat{oldsymbol{\Sigma}}_{jj}^s - \widehat{oldsymbol{\Sigma}}^s[j,] oldsymbol{\delta} oldsymbol{eta}_{(k)_j}. \end{split}$$

2.2.3 Example 3. Censored Linear Model.

$$y_i = \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i + \varepsilon_i, \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2).$$

Only observed y_i when $y_i < C$, where C is known. Let

$$z_i = \begin{cases} y_i, & \text{if } y_i < C \\ C, & \text{if } y_i \ge C. \end{cases}$$

The observed data are $\{(\mathbf{x}_i, z_i)\}$. Without loss of generality, let

$$z_1 = y_1, \dots, z_m = y_m,$$

 $z_{m+1} = C, \dots, z_n = C.$

Therefore, y_1, \ldots, y_m are observed and non-random, and y_{m+1}, \ldots, y_n are unobserved and random. Treat y_{m+1}, \ldots, y_n as "missing data". The complete log-likelihood is

$$\ell(\boldsymbol{\theta}; \text{complete}) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2.$$

• E-step.

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}_{t}) = -\frac{n}{2}\log\sigma^{2} - \frac{1}{2\sigma^{2}}\mathbb{E}_{Y|\mathbf{X},\boldsymbol{\theta}_{t}} \left\{ \sum_{i=1}^{n} (y_{i} - \beta_{0} - \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta})^{2} \middle| \begin{array}{l} y_{1}, \dots, y_{m} \text{ are non - random} \\ y_{m+1} \geq C, \dots, y_{n} \geq C \\ \boldsymbol{\theta}_{t} \end{array} \right\}$$

$$= -\frac{n}{2}\log\sigma^{2} - \frac{1}{2\sigma^{2}}\sum_{i=1}^{m} (y_{i} - \beta_{0} - \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta})^{2}$$

$$- \frac{1}{2\sigma^{2}}\sum_{i=m+1}^{n} \mathbb{E}_{Y|\mathbf{X},\boldsymbol{\theta}_{t}} \left[(y_{i} - \beta_{0} - \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta})^{2} | y_{i} \geq C, \ \boldsymbol{\theta}_{t} \right]$$

$$(7)$$

In the above equation, $\sum_{i=1}^m (y_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 = \mathbb{E}_{Y|\mathbf{X},\boldsymbol{\theta}_t} \left[\sum_{i=1}^m (y_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 \right]$ since y_1,\ldots,y_m are observed and non-random. Note that

$$\mathbb{E}\left[(y_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2 | y_i \ge C, \; \boldsymbol{\theta}_t \right]$$

$$= \mathbb{E}\left[y_i^2 | y_i \ge C, \; \boldsymbol{\theta}_t \right] - 2\mathbb{E}(y_i | y_i \ge C, \; \boldsymbol{\theta}_t)(\beta_0 + \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}) + (\beta_0 + \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2$$
(8)

We know that

$$\mathbb{E}(y_i^2|y_i \ge C, \ \boldsymbol{\theta}_t) = [\mathbb{E}(y_i|y_i \ge C, \ \boldsymbol{\theta}_t)]^2 + \text{Var}(y_i|y_i \ge C, \ \boldsymbol{\theta}_t) = [\mathbb{E}(y_i|y_i \ge C, \ \boldsymbol{\theta}_t)]^2 + \text{const},$$
(9)

Let $\tilde{y}_i = y_i$ for $i \leq m$ and $\tilde{y}_i = \mathbb{E}(\tilde{y}_i | y_i \geq C, \boldsymbol{\theta}_t)$ for $i \geq m+1$. Plug in (9) into (8), we can show that

$$\mathbb{E}\left[\left(y_{i} - \beta_{0} - \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}\right)^{2} | y_{i} \geq C, \; \boldsymbol{\theta}_{t}\right]$$

$$= \left[\tilde{y}_{i}^{2} - 2\tilde{y}_{i}(\beta_{0} + \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}) + (\beta_{0} + \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta})^{2} + \operatorname{const}\right] | (y_{i} \geq C, \; \boldsymbol{\theta}_{t})$$

$$= \left[\left(\tilde{y}_{i} - \beta_{0} - \mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}\right)^{2} + \operatorname{const}\right] | (y_{i} \geq C, \; \boldsymbol{\theta}_{t})$$

$$(10)$$

Then it follows from (7) and (10) that

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}_t) = -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^m (y_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2 - \frac{1}{2\sigma^2}\sum_{i\geq m+1} (\tilde{y}_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2 + \text{const}$$
$$= -\frac{n}{2}\log\sigma^2 - \sum_{i=1}^n (\tilde{y}_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta})^2 + \text{const},$$

• M-step.

To compute β_t .

$$\begin{split} \boldsymbol{\beta}_{t+1} &= \underset{(\boldsymbol{\beta}, \beta_0)}{\operatorname{arg\,max}} Q(\boldsymbol{\beta}, \beta_0 \mid \boldsymbol{\beta}_t, \beta_{0t}), \\ &= \underset{(\boldsymbol{\beta}, \beta_0)}{\operatorname{arg\,max}} \sum_{i=1}^n (\tilde{y}_i - \beta_0 - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2, \end{split}$$

where $\tilde{y}_i = y_i$ for $i \leq m$ and $\tilde{y}_i = \mathbb{E}(\tilde{y}_i | y_i \geq C, \boldsymbol{\theta}_t)$ for $i \geq m+1$.

After β_{t+1} , then update

$$\sigma_{t+1}^2 = \frac{1}{n} \sum_{i=1}^n (\tilde{y}_i - (\beta_0)_{t+1} - \mathbf{x}_i^{\scriptscriptstyle\mathsf{T}} \boldsymbol{\beta}_{t+1})^2$$