

Artificial Intelligence & Machine Learning

Naive Bayes

- O teorema de Bayes permite o cálculo da posteriori de h
- MAP (Maximum a Posteriori) Hipótese Máxima a Posteriori
 - -P(h|D) = (P(D|h) P(h)) / P(D))
 - Por que P(h|D) deve decrescer quando P(D) cresce?
 - Resposta: quanto mais provável D, menos evidência ele é para h

4

- Considere:
 - P(h): probabilidade da hipótese h (ser verdadeira) priori
 - O que fazer quando n\u00e3o se conhece P(h)?
 - P(D): probabilidade do conjunto de dados D ser observado
 - P(x|y): probabilidade de x dado y
 - P(D|h): probabilidade do conjunto de dados D ser observado dado que h é verdadeira
 - P(h|D): probabilidade de h ser verdadeira dado o conjunto de dados D
- P(h|D) é o foco quando se procura a hipótese mais provável
 - É a probabilidade a posteriori de h

•Se calcularmos a posteriori de todas as hipóteses h ∈ H, podemos encontrar a hipótese (h) mais provável

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h|D)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h)$$

Como D é constante para todas as hipóteses,
 P(D) pode ser retirada do cálculo

- •Quando todas as hipótese são equiprováveis a priori, então a verossimilhança (likelihood) é quem domina o cálculo
- Máxima a Posteriori

Máxima Verossimilhança

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h|D)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h)$$

$$h_{ML} \equiv \underset{h \in H}{\operatorname{argmax}} P(D|h)$$

• Se o conhecimento a priori é uniforme (equiprovável), então, $h_{ML} = h_{MAP}$

•Nem sempre a hipótese de máxima probabilidade a posteriori (h_{MAP}) traz a melhor classificação.

• Exemplo: considere 4 hipóteses h₁, h₂, h₃ e com probabilidades 0.3, 0.25, 0.2 e 0.25 respectivamente. Considere ainda uma nova instância (x) é classificada como negativa por h₁ (h_{MAP}) e como positiva por h_2 , h_3 e h_4 . Neste caso, a classificação mais provável é diferente da hipótese mais provável.

O CBO é computacionalmente caro

 Probabilidade posterior de todas as hipóteses em H

 Combinação da predição de cada h para classificar cada nova instância.

•Pode-se minimizar este custo através de algumas técnicas que tornam o classificador nãoótimo, mas gerando bons resultados a um custo computacional aceitável.

Naive Bayes Classifier

- Um classificador muito simples (ingênuo?)
- Performance surpreendente em vários domínios
- Muito utilizado
- Cada instância de treinamento é considerada uma conjunção dos valores dos atributos
- •Pode-se dizer que não é necessária a construção de um modelo (mesmo sabendo-se que o modelo é gerado)

12

- O NB, simplifica o cálculo de $P(a_1,a_2, ...a_n|v_j)$ assumindo que todos os atributos são condicionalmente independentes entre si dado o valor da classe.
- Independência dos atributos condicionada à classe:

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

•Os termos $P(v_j)$ e $P(a_i|v_j)$ são calculados com base na freqüência com que ocorrem no conjunto de instâncias de treinamento (contagem)

•O número de probabilidades a serem estimadas é linear em relação ao número de atributos (e não mais exponencial)

•Quando o conjunto de instâncias que descrevem o problema respeita a suposição de que todos os atributos são condicionalmente independentes dada a classe, o NB é um CBO.

Exemplo: pelo teorema de Bayes, podemos calcular a probabilidade de uma nova instância *x* ser classificada como 0, e a probabilidade de *x* ser classificada como 1.

Instâncias	Classe	Α1	A2	АЗ	A4
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
6	0	0	0	0	1
7	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0

Exemplo: pelo teorema de Bayes,	Instâncias	Classe	Α1	A2	АЗ	A4
podemos calcular a probabilidade de	1	1	0	1	1	1
uma nova instância x ser classificada	2	1	0	1	1	1
como 0, e a probabilidade de x ser	3	0	1	0	0	0
classificada como 1.	4	1	0	1	1	1
Na sequência, podemos identificar qual classe é a mais provavel.	5	1	0	1	1	1
Ou seja, o que temos que calcular é:	6	0	0	0	0	1
P(Classe=0 A1,A2,A3,A4) e	7	0	1	1	0	0
P(Classe=1 A1,A2,A3,A4),	8	1	0	1	1	1
	9	0	1	0	0	0
usando o tteorema de Bayes e assumindo a independência condicional entre as variáveis.	10	0	1	1	0	0

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11):

Instâncias	Classe	Α1	A2	А3	A4
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
6	0	0	0	0	1
7	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11

Instâncias	Classe	A1	A2	А3	A4
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
6	0	0	0	0	1
1	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0
11	?	0	1	0	1

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11

P(Classe=0|A1=0, A2=1, A3=0, A4=1)=
P(A1=0, A2=1, A3=0, A4=1|Classe=0) * P(Classe=0)
Como assumimos a independência condicional, temos que:
$$P(A1=0,A2=1,A3=0,A4=1|Classe=0) = \prod P(Ai=xi | Classe=0)$$

Prof. Dr. Vinicius F. Caridá

Instâncias	Classe	Α1	A2	А3	A4
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
6	0	0	0	0	1
,	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0
11	?	0	1	0	1

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11

$$P(A1=0,A2=1,A3=0,A4=1|Classe=0) = \prod P(Ai=xi | Classe=0)$$

Assim, temos:

$$P(Classe=0|A1=0, A2=1, A3=0, A4=1) = (\prod P(Ai=xi | Classe=0)) * P(Classe=0)$$

Instâncias	Classe	Α1	A2	А3	A4
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
6	0	0	0	0	1
1	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0
11	?	0	1	0	1

Instâncias Classe A1

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11):

P(Classe=0|A1=0, A2=1, A3=0, A4=1) =
$$(\prod P(Ai=xi \mid Classe=0)) * P(Classe=0)=$$

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11):

(P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0)

(1/5) * (2/5)

Considere por exemplo, que a partir do

conjunto de instâncias de treinamento dado,

deseja-se classificar uma nova instância (11): P(Classe=0|A1=0, A2=1, A3=0, A4=1) = 0 $(\prod P(Ai=xi | Classe=0)) * P(Classe=0) = 0$

 $(\prod P(Ai=xi \mid Classe=0)) * P(Classe=0)=$ (P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0) (1/5) * (2/5)

Considere por exemplo, que a partir do
conjunto de instâncias de treinamento dado,
deseja-se classificar uma nova instância (11): $P(Classe=0|A1=0, A2=1, A3=0, A4=1) = (\prod P(Ai=xi | Classe=0)) * P(Classe=0)=$

(P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0)

(1/5) * (2/5)

Considere por exemplo, que a partir do

Conjunto de instâncias de treinamento dado, $\begin{bmatrix} 2 & 1 & 0 & 1 & 1 & 1 \\ 3 & 0 & 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ deseja-se classificar uma nova instância (11): $\begin{bmatrix} 7 & 0 & 1 & 1 & 0 & 0 \\ 8 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1$

Instâncias Classe A1

Instâncias Classe A1 A2 A3 A4

	2	1	0	1	1	1
	3	0	1	0	0	0
Considere por exemplo, que a partir do	4	1	0	1	1	1
conjunto de inetâncias de trainemente dede	5	1	0	1	1	1
conjunto de instâncias de treinamento dado,	6	0	0	0	0	1
deseja-se classificar uma nova instância (11):	7	0	1	1	0	0
deseja se ciassineai ama nova instancia (11).	8	1	0	1	1	1
	9	0	1	0	0	0
P(Classe=0 A1=0, A2=1, A3=0, A4=1) =	10	0	1	1	0	0
	11	?	0	1	0	1
$(\prod P(Ai=xi \mid Classe=0)) * P(Classe=0)=$						
(P(A1=0 C=0) * P(A2=1 C=0) * P(A3=0 C=0) * P(A4=1	C=0))	* P((clas	sse	= 0	
(1/5) * (2/5) * (5/5) * (1/5)						

Considere por exemplo, que a partir do
conjunto de instâncias de treinamento dado,
deseja-se classificar uma nova instância (11):

P(Classe=0|A1=0, A2=1, A3=0, A4=1) =

(1/5) * (2/5) * (5/5) * (1/5) * (5/10) =

Instâncias Classe A1

P(Classe=0|A1=0, A2=1, A3=0, A4=1) = 10 0 1 1
(
$$\prod P(Ai=xi \mid Classe=0)) * P(Classe=0) = (P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0) (1/5) * (2/5) * (5/5) * (1/5) * (5/10) = 0.2 * 0.4 * 1 * 0.2 * 0.5 = 0.008$$

Agora fazemos o mesmo processo para a classe=1:

(1/5) * (2/5) * (5/5) * (1/5) * (5/10) = 0.2 * 0.4 * 1 * 0.2 * 0.5 = 0.008

Agora fazemos o mesmo processo para a classe=1:

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) = (\prod P(Ai=xi | Classe=1)) * P(Classe=1)=
```


Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11):

```
P(Classe=0|A1=0, A2=1, A3=0, A4=1) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 10 & 0 & 1 & 1 \\ 11 & ? & 0 & 1 \end{pmatrix}

(\prod P(Ai=xi \mid Classe=0)) * P(Classe=0) = \begin{pmatrix} P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0) \end{pmatrix}

(1/5) * (2/5) * (5/5) * (1/5) * (5/10) = \begin{pmatrix} 0.2 * 0.4 * 1 & 0.2 * 0.5 = 0.008 \end{pmatrix}
```

Agora fazemos o mesmo processo para a classe=1:

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) = (\prod P(Ai=xi \mid Classe=1))^* P(Classe=1) = (P(A1=0|C=1)^* P(A2=1|C=1)^* P(A3=0|C=1)^* P(A4=1|C=1))^* P(Classe=1)
```


Considere por exemplo, que a partir do $\begin{pmatrix} 4 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 1 & 1 \\ 4 & 1 & 0 & 1 & 1 \\ 5 & 1 & 0 & 1 & 1 \\ 6 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 7 & 0 & 1 & 1 & 0 \\ 8 & 1 & 0 & 1 & 1 \\ 9 & 0 & 1 & 0 & 0 \\ 10 & 0 & 1 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 11 & ? & 0 & 1 & 0 \\ 12 & 2 & 2 & 2 & 2 \\ 13 & 2 & 2 & 2 & 2 \\ 14 & 2 & 2 & 2 & 2 \\ 15 & 2 & 2 & 2 \\ 15 & 2$

Instâncias Classe A1

Agora fazemos o mesmo processo para a classe=1:

0.2 * 0.4 * 1 * 0.2 * 0.5 = 0.008

(1/5) * (2/5) * (5/5) * (1/5) * (5/10) =

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) =  (\prod P(Ai=xi \mid Classe=1)) * P(Classe=1) = (P(A1=0|C=1) * P(A2=1|C=1) * P(A3=0|C=1) * P(A4=1|C=1)) * P(Classe=1) (5/5) * (5/5) * (0/5) * (5/5) * (5/10) =
```

Instâncias Classe A1

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11):

```
P(Classe=0|A1=0, A2=1, A3=0, A4=1) = \begin{pmatrix} 9 & 0 & 1 & 0 & 0 \\ 10 & 0 & 1 & 1 & 0 \end{pmatrix}

(\prod P(Ai=xi \mid Classe=0)) * P(Classe=0) = \begin{pmatrix} P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0) \end{pmatrix}

(1/5) * (2/5) * (5/5) * (1/5) * (5/10) = \begin{pmatrix} 0.2 & 0.4 & 1 & 0.2 & 0.5 & =0.008 \end{pmatrix}
```

Agora fazemos o mesmo processo para a classe=1:

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) =  (\prod P(Ai=xi \mid Classe=1)) * P(Classe=1) = \\ (P(A1=0|C=1) * P(A2=1|C=1) * P(A3=0|C=1) * P(A4=1|C=1)) * P(Classe=1) \\ (5/5) * (5/5) * (0/5) * (5/5) * (5/10) = \\ 1 * 1 * 0 * 1 * 0.5 = 0
```


Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11):

		_			
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
, 6 \. 7	0	0	0	0	1
): '	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0
11	?	0	1	0	1

Instâncias Classe A1 A2 A3 A4

Normalizando, temos:

$$P(Classe=0|A1=0, A2=1, A3=0, A4=1) = 0.008/(0.008+0) = 1$$

$$P(Classe=1|A1=0, A2=1, A3=0, A4=1) = 0/(0.008+0)=0$$

Considere por exemplo, que a partir do conjunto de instâncias de treinamento dado, deseja-se classificar uma nova instância (11)

	Instâncias	Classe	Α1	A2	A3	A4
	1	1	0	1	1	1
	2	1	0	1	1	1
	3	0	1	0	0	0
	4	1	0	1	1	1
	5	1	0	1	1	1
,	, <u>6</u>	0	0	0	0	1
1) : '	0	1	1	0	0
•	8	1	0	1	1	1
	9	0	1	0	0	0
	10	0	1	1	0	0
	11	?	0	1	0	1

Normalizando, temos:

$$P(Classe=0|A1=0, A2=1, A3=0, A4=1) = 0.008/(0.008+0) = 1$$

$$P(Classe=1|A1=0, A2=1, A3=0, A4=1) = 0/(0.008+0) = 0$$

Instâncias Classe A1 A2 A3 A4

Solução de Engenharia

Agora fazemos o mesmo processo para a classe=1:

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) =  (\prod P(Ai=xi \mid Classe=1)) * P(Classe=1) = \\ (P(A1=0|C=1) * P(A2=1|C=1) * P(A3=0|C=1) * P(A4=1|C=1)) * P(Classe=1) \\ (5/5) * (5/5) * (0/5) * (5/5) * (5/10) = \\ 1 * 1 * 0 * 1 * 0.5 = 0
```


Solução de Engenharia

```
P(Classe=0|A1=0,A2=1,A3=0,A4=1) = \begin{cases} 7 & 0 & 1 & 1 & 0 & 0 \\ 8 & 1 & 0 & 1 & 1 & 1 \\ 9 & 0 & 1 & 0 & 0 & 0 \\ (\prod P(Ai=xi \mid Classe=0)) * P(Classe=0) = \begin{cases} 10 & 0 & 1 & 1 & 0 & 0 \\ 11 & ? & 0 & 1 & 0 & 0 \\ 11 & ? & 0 & 1 & 0 & 1 \\ (P(A1=0|C=0) * P(A2=1|C=0) * P(A3=0|C=0) * P(A4=1|C=0)) * P(Classe=0) \\ (1/5) * (2/5) * (5/5) * (1/5) * (5/10) = \\ 0.2 * 0.4 * 1 * 0.2 * 0.5 = 0.008 \end{cases}
```

Instâncias Classe A1

Agora fazemos o mesmo processo para a classe=1:

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) = 

(\prod P(Ai=xi \mid Classe=1)) * P(Classe=1) = 

(P(A1=0|C=1) * P(A2=1|C=1) * P(A3=0|C=1) * P(A4=1|C=1)) * P(Classe=1) = 

(5/5) * (5/5) * (0/5) * (5/5) * (5/10) = 

1 * 1 *0.00001 * 1 * 0.5 = 0.000005
```

Solução de Engenharia

000005 9

Instâncias Classe A1 A2 A3 A4

Normalizando, temos:

$$P(Classe=1|A1=0, A2=1, A3=0, A4=1) = 0.000005/(0.008+0.000005) = 0.01$$

A classe mais provável é a classe 0.

Instâncias Classe A1 A2 A3 A4

Solução de Engenharia

```
 P(Classe=0|A1=0, A2=1, A3=0, A4=1) = \begin{cases} 8 & 1 & 0 & 1 & 1 & 1 \\ 9 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\
```

Agora fazemos o mesmo processo para a classe=1:

```
P(Classe=1|A1=0, A2=1, A3=0, A4=1) =  (\prod P(Ai=xi \mid Classe=1)) * P(Classe=1) = (P(A1=0|C=1) * P(A2=1|C=1) * P(A3=0|C=1) * P(A4=1|C=1)) * P(Classe=1) = (5+0.5)/(5+1) * (5+0.5)/(5+1) * (0+0.5)/(5+1) * (5/10) = 0.91 * 0.91 * 0.09 * 0.91 * 0.5 = 0.033
```


Solução de Engenharia

Instâncias	Classe	Α1	A2	А3	A4
1	1	0	1	1	1
2	1	0	1	1	1
3	0	1	0	0	0
4	1	0	1	1	1
5	1	0	1	1	1
6	0	0	0	0	1
7	0	1	1	0	0
8	1	0	1	1	1
9	0	1	0	0	0
10	0	1	1	0	0
11	?	0	1	0	1

Normalizando, temos:

$$P(Classe=0|A1=0, A2=1, A3=0, A4=1) = 0.011/(0.011+0.033) = 0.25$$

 $P(Classe=1|A1=0, A2=1, A3=0, A4=1) = 0.033/(0.011+0.033) = 0.75$

A classe mais provável é a classe 1.

Rede Bayesiana

Figura gerada com o software MSBN – Microsoft Research (http://research.microsoft.com)

Questions and Feedback

Thank you!

Obrigado!

Vinicius Fernandes Caridá vfcarida@gmail.com

Copyright © 2018 Prof. Vinicius Fernandes Caridá Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).