• Simple npn CM:

- \triangleright Q₁ has its **B** and C shorted
 - Can never saturate $(V_{BC} = 0)$
 - Known as diode-connectedBJT
- \triangleright Q₁ and Q₂ have *same* V_{BE}
- $I_{REF} = Reference Current$ $= (V_{CC} V_{BE})/R$
- $ightharpoonup I_0 = Output Current = I_{C2}$
- $> V_0 = Output Voltage$
 - Variable, depends on the load connected to it

> General Analysis:

$$I_{REF} = I_{C1} + I_{B1} + I_{B2} = I_{C1} \left(1 + \frac{1}{\beta_1} \right) + \frac{I_{C2}}{\beta_2}$$

> Now:

$$V_{BE} = V_{T} \ln \left(\frac{I_{C2}}{I_{S2}} \right) = V_{T} \ln \left(\frac{I_{C1}}{I_{S1}} \right)$$

$$\Rightarrow I_{C2} = KI_{C1} \quad (K = I_{S2}/I_{S1})$$

> Thus:

$$I_{REF} = I_{C2} \left[\frac{1}{\beta_2} + \frac{1}{K} \left(1 + \frac{1}{\beta_1} \right) \right]$$

> Finally:

$$I_{0} = I_{C2} = \frac{I_{REF}}{\frac{1}{\beta_{2}} + \frac{1}{K} \left(1 + \frac{1}{\beta_{1}}\right)}$$

- This is the *exact expression* of I₀, *without* making any assumptions/approximations whatsoever
- The *only assumption* so far is that we have neglected Early effect, which we would include soon

> Now, we *make approximations/assumptions*:

1.
$$\beta_1 = \beta_2 = \beta$$
:

$$\Rightarrow I_0 = \frac{KI_{REF}}{1 + \frac{1 + K}{\beta}}$$

2.
$$I_{S1} = I_{S2} = I_{S}$$
 (K = 1):

$$\Rightarrow I_0 = \frac{I_{REF}}{1 + 2/\beta}$$

3. And finally $\beta >> 2$:

$$\Rightarrow$$
 $I_0 = I_{REF} \Rightarrow Current Mirror!$

- For this to happen, Q_1 and Q_2 must have $same \beta (>> 2)$, and $same I_S$
- If two BJTs have same β , I_S , and V_A , they are known as a matched pair
- If $I_{S1} \neq I_{S2}$ and/or $\beta_1 \neq \beta_2$, then $I_0 \neq I_{REF}$
 - Leads to *random error* (*process induced*)
- If $\beta_1 = \beta_2$, but $I_{S1} \neq I_{S2}$, then $I_0 = KI_{REF}$
 - > K or 1/K can only be integers
 - I_0 and I_{REF} become integer multiples of each other

• Multi-Emitter BJT:

$$\succ I_{S1} = I_{S2} \Rightarrow I_{E1} = I_{E2} = I_{E} \Rightarrow I_{C} \approx 2I_{E}$$

• This does not imply that $\alpha = 2$, since there are two emitters

• Systematic Error:

- From if Q_1 and Q_2 are perfectly matched and $\beta >> 2$, still I_0 may not equal I_{REF} !
- > Recall:

$$I_{C} = I_{S}[exp(V_{BE}/V_{T})](1 + V_{CE}/V_{A})$$

> Thus:

$$\frac{I_{C2}}{I_{C1}} = \frac{I_0}{I_{C1}} = \frac{1 + V_{CE2}/V_A}{1 + V_{CE1}/V_A} = \frac{1 + V_0/V_A}{1 + V_{BE}/V_A}$$

 \succ Therefore, $I_0 = I_{C1}$ only when $V_0 = V_{BE}$

$$V_{0,min} = V_{CE2}(SS) = 0.2 V$$