

Examination in the School of Mathematical Sciences

Semester 2, 2015

104831 MATHS 2100 Real Analysis II 104830 MATHS 7100 Real Analysis

Official Reading Time:

10 mins

Writing Time:

120 mins

Total Duration:

130 mins

NUMBER OF QUESTIONS:

TOTAL MARKS:

60

Instructions

- Write your name in the tear-out section of your first answer booklet.
 Do NOT write your name anywhere else only your student ID.
- Attempt all questions. Each is worth 10 marks.
- Begin each question on a new page.
- Examination materials may not be removed from the hall.

Materials

- One Blue Book is provided. You may request more if needed.
- Calculators are not permitted.

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.

- 1. Suppose $S \subseteq \mathbb{R}$.
 - (a) What is a *limit point* x_0 of S?
 - (b) Is $\sqrt{5}$ a limit point of \mathbb{Q} ? Explain briefly.
 - (c) Suppose that $F: S \to \mathbb{R}$ is a function and x_0 is a limit point of S. Give a precise definition of the expression $\lim_{x \to x_0} F(x) = L$.
 - (d) With F and x_0 as in (c), suppose that $\lim_{n\to\infty} F(x_n) = L$ for every sequence $(x_n)_{n=1}^{\infty}$ in $S\setminus\{x_0\}$ converging to x_0 . Use proof by contradiction to prove that $\lim_{x\to x_0} F(x) = L$.

[2+2+2+4 = 10 marks.]

- 2. Let \mathcal{P} be a partition of the interval [a,b] into N subintervals: $a = x_0 < x_1 < \cdots < x_N = b$, and let $f: [a,b] \to \mathbb{R}$ be a bounded function.
 - (a) Define the lower and upper sums $L(f, \mathcal{P})$ and $U(f, \mathcal{P})$.
 - (b) Carefully define what it means for f to be *integrable*. (You may quote any facts about upper and lower sums that you need.)
 - (c) Let $C \in \mathbb{R}$ be a constant and let f(x) = C for every $x \in [a, b]$. Apply your definition in (b) to show that f is integrable over [a, b], and use your calculation to determine the value of $\int_a^b f(x) dx$.

[2+3+5 = 10 marks.]

- 3. (a) Let $g:[a,b] \to \mathbb{R}$ be a bounded integrable function with $|g(t)| \le M$ for every $t \in [a,b]$. If $c,d \in [a,b]$, show that $\left| \int_c^d g(t) \, dt \right| \le M \, |c-d|$. [Note: c is not necessarily less than d.]
 - (b) For $x \in [a, b]$, let $F(x) := \int_a^x f(t) dt$. Briefly explaining your calculation(s), show that $F(x) F(x_0) f(x_0)(x x_0) = \int_{x_0}^x (f(t) f(x_0)) dt$.
 - (c) Let $I_x \subseteq [a,b]$ be the closed interval with endpoints x,x_0 . Apply (a) to the integral on the right of (b) to show that $\big|F(x) F(x_0) f(x_0)(x x_0)\big| \le M_x \, |x x_0|$, where $M_x := \sup_{t \in I_x} |f(t) f(x_0)|$.
 - (d) Hence show that if f is continuous at x_0 , then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

[3+2+1+4 = 10 marks.]

- 4. Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be n+1 times differentiable.
 - (a) If $x_0 \in I$, give the formula for the *n*-th Taylor polynomial p_n for f at x_0 .
 - (b) State the Lagrange Remainder theorem for f and p_n as presented in lectures.
 - (c) Suppose that f(x) = 1/x and $x_0 = 1$. Find $p_3(x)$ explicitly, and write down the explicit form of the remainder $f(x) p_3(x)$ in this case. [Don't expand out $p_3(x)$.]
 - (d) Use your calculations to approximate $\ln 2 = \int_1^2 (1/x) dx$, and also estimate the error between your approximation and the true value. Leave your answers as fractions.

$$[2+2+3+3 = 10 \text{ marks.}]$$

- 5. Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers.
 - (a) What does it mean for the series to converge?
 - (b) What does it mean for the series to converge absolutely?
 - (c) Give an example (without proof) of a series that converges, but not absolutely.
 - (d) Prove that if the series converges absolutely, then it converges.

$$[2+2+2+4 = 10 \text{ marks.}]$$

- 6. Suppose that $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0, and for $x \in (-R, R)$, let $f(x) := \sum_{n=0}^{\infty} a_n x^n$. Let r be any number with $0 \le r < R$.
 - (a) Choose s with r < s < R. Briefly explain why $\lim_{n \to \infty} a_n s^n \to 0$ as $n \to \infty$.
 - (b) Briefly explain why $\sum_{n=0}^{\infty} |a_n| r^n$ must therefore converge.
 - (c) Hence show that the sequence of functions $(p_N)_{N=1}^{\infty}$ given by $p_N(x) = \sum_{n=0}^{N} a_n x^n$ converges uniformly to f on [-r, r].

$$[3+3+4 = 10 \text{ marks.}]$$