SECURITY INFORMATION

258

Copy RM L53108

MACA R.M 1,53108

7483

NACA

RESEARCH MEMORANDUM

AERODYNAMIC CHARACTERISTICS OF A 68.4° DELTA WING AT

MACH NUMBERS OF 1.6 AND 1.9 OVER A

WIDE REYNOLDS NUMBER RANGE

By John E. Hatch, Jr., and James J. Gallagher

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

November 2, 1953

Plassification cancelled (or changed to Machine 1981) By Juliana of Lift Teach 13 American Consultation (OFFICER JUNHO 1750 TO CHANGE)	7
By	
GRADE UF OFFICER MANING CHANGE)	
DATE	•

•

NACA RM L53I08

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

AERODYNAMIC CHARACTERISTICS OF A 68.40 DELTA WING AT

MACH NUMBERS OF 1.6 AND 1.9 OVER A

WIDE REYNOLDS NUMBER RANGE

By John E. Hatch, Jr., and James J. Gallagher

SUMMARY

The results of an experimental investigation to determine the effects of Reynolds number on the aerodynamic characteristics of a 68.4° delta wing at Mach numbers of 1.6 and 1.9 are presented. The wing streamwise airfoil sections are based on the NACA 00-series with the maximum thickness varying from 4 percent at the root section to 6.24 percent at the 90-percent semispan station. At a Mach number of 1.90 force and pressure data were obtained over an angle-of-attack range of 16° at Reynolds numbers of $7.2 \times 10^{\circ}$, $12.6 \times 10^{\circ}$, and $18.4 \times 10^{\circ}$. Pressure data were also obtained at Mach numbers of 1.93 and 1.62 at Reynolds numbers of $2.2 \times 10^{\circ}$ and $3.4 \times 10^{\circ}$ up to an angle of attack of $3.4 \times 10^{\circ}$.

At Mach number 1.90 the force data indicated that Reynolds number had no significant effects on the measured lift and pitching moment. As the Reynolds number increased from 7.2×10^6 to 18.4×10^6 , however, the minimum drag coefficient of the wing (largely turbulent boundary layer) decreased approximately 8 percent. For the same Reynolds number range there was no change in the amount of leading-edge suction developed by the wing which was approximately 15 percent of the theoretical value.

At a given angle of attack the pressure data obtained at Mach numbers of 1.9 and 1.62 showed that an increase in Reynolds number affected the magnitude and distribution of chordwise loading but had little effect on the spanwise loading.

At both test Mach numbers the shape of the spanwise loading curve varied from elliptical at the low angles of attack to more nearly triangular at the higher angles.

INTRODUCTION

The effects of a large change in Reynolds number on the aerodynamic characteristics of a 68.4° delta wing at a Mach number of 2.41 have been reported in reference 1. The greatest effect of an increase in Reynolds number from 1.04×10^6 to 18.3×10^6 was to vary the pressure distribution over the wing upper surface at angle of attack. It was shown that an increase in Reynolds number delayed to a higher angle of attack the formation of a separated region near the wing leading edge. This region terminated in a shock wave lying approximately on a ray through the wing apex.

The purpose of the present paper is to provide further information on the effects of Reynolds number on the aerodynamic characteristics of the wing of reference 1 as well as to provide load distributions for the wing at Mach numbers of 1.6 and 1.9.

Flow-direction surveys on the wing upper surface were made in order to provide additional information on the flow phenomena over the wing.

SYMBOLS

Free-stream conditions:

M Mach number

 $\mathbf{q}_{\mathbf{O}}$ dynamic pressure

p_O static pressure

R Reynolds number, based on wing mean aerodynamic chord

Wing geometry:

A aspect ratio

b span

C tangent of apex angle

c wing chord, measured in direction of flight

ē mean aerodynamic chord

EV. A. C. Markette . Markette at a

cav average chord

S wing area

t thickness

α angle of attack, deg

x coordinate along free-stream direction

y spanwise coordinate

Pressure data:

p local static pressure

 C_p pressure coefficient, $\frac{p - p_0}{q_0}$

 $\frac{\Delta p}{q_0 \alpha}$ lifting-surface pressure coefficient per degree angle of attack, $\frac{p_l - p_u}{q_0 \alpha}$

 $\frac{c_n c}{c_{av}}$ span-loading coefficient, $\int_0^c \frac{c_{p_l} - c_{p_u}}{c_{av}} dc$

 ψ local flow angle

Force data:

 C_{L} wing-lift coefficient, $\frac{Lift}{q_{O}S}$

 C_{D} wing-drag coefficient, $\frac{\mathrm{Drag}}{\mathrm{q_{o}S}}$

 c_{M} wing pitching-moment coefficient about wing centroid of area, $\frac{\text{Pitching moment}}{q_{o}S\tilde{c}}$

 c_c chord-force coefficient, $\frac{chord\ force}{q_o S}$

 $\frac{L}{D}$ lift-drag ratio

 F_s theoretical suction force coefficient, $\frac{C_L^2}{\pi A} \sqrt{1 - \beta^2 C^2}$

 $\beta = \sqrt{M^2 - 1}$

 ΔC_{D} incremental drag coefficient due to lift, C_{D} - C_{D} min

Subscripts:

u conditions on wing upper surface

conditions on wing lower surface

r value at root section

max maximum value

min minimum value

APPARATUS

Blowdown jet. - The high Reynolds number tests at M=1.90 were conducted in one of the 9-inch blowdown jets of the Gas Dynamics Branch at the Langley Laboratory. The jet was so designed that the semispan models could be mounted with or without a boundary-layer scoop (fig. 1). The test section was 9 inches wide and 6 inches high when the scoop was used and 9 inches wide and 6.75 inches high when the scoop was removed.

<u>Tunnel.</u> The low Reynolds number tests at M = 1.62 and M = 1.93 were conducted in the Langley 9-inch supersonic tunnel. This tunnel is a single-return, direct-drive type in which the pressure, temperature, and humidity of the enclosed air can be controlled. The semispan-wing models were mounted directly to the tunnel sidewall with no tunnel boundary-layer scoop.

Models.- The semispan-wing models having an aspect ratio of 1.57 were constructed from steel. Streamwise airfoil sections are based on the NACA 00-thickness series which has its maximum thickness at 30 percent of the chord. Leading-edge radii were modified to average about 0.4 percent of the local chord. The measured wing maximum thickness varied from

4 percent at the root to 6.24 percent at the 90-percent semispan station as shown in figure 2(a). A sketch of the wing showing the locations of the pressure-survey stations is shown in figure 2(b), and the chordwise orifice locations are given in table II. Two pressure-distribution models were used in order to include the desired number of orifices, and another similar model was used for the force tests.

In order to determine the local flow direction over the wing upper surface at angles of attack, small, symmetrical, weathercocking vanes were installed on a full-span sting-mounted model in the 9-inch supersonic tunnel. Figure 3 shows the physical dimensions of the vanes as well as the vane locations on the wing surface.

TESTS AND PRECISION

The following table shows the range of the tests and the facilities used during the present investigation.

Facility	М	R	æ	Data obtained
Langley 9-inch	1.62 1.62		0° to 10°	Pressure distributions
supersonic tunnel	1.93 1.93	2.2×10^6 7.2×10^6	0° to 10° 0° to 10°	Pressure distributions
Blowdown jet of	1.90	7.2 × 10 ⁶		Pressure
the Langley Gas	1.90	12.6 × 10 ⁶		distributions
Dynamics Branch	1.90	18.4 × 10 ⁶	0° to 16°	and forces

The wing was tested in a blowdown jet with and without a boundary-layer scoop. Force data and pressure distributions indicated practically no differences in the aerodynamic characteristics of the wing as determined by the two methods of testing. (See appendix.) The data presented for the wing, therefore, are the results obtained from the wall-mounted model with no tunnel boundary-layer scoop.

The turbulence level in the Langley 9-inch supersonic tunnel is known to be relatively low (ref. 2) and extensive laminar boundary layers are found under some conditions. In the blowdown jet, however, the turbulence level is unknown but is believed to be relatively high; this level probably results in the model boundary layers being largely turbulent for all test Reynolds numbers in this facility.

In order to understand better the direction of air flow over the wing surface, small vanes were installed at 16 different locations on the full-span model in the Langley 9-inch supersonic tunnel. The vanes were so located on the wing during each run that no interference effects between vanes were possible.

The angles through which the vanes were turned at each wing angle of attack were read by means of a cathetometer mounted outside of the tunnel. The accuracy of measurement of the indicated flow angles is estimated at $\pm\frac{1}{2}^{0}$. Additional information on the direction of flow in the boundary layer was obtained by an ink-flow method. Ink was allowed to issue from the wing surface through static orifices located in the wing, and the path of the ink taken in the boundary layer was photographed.

The estimated probable errors in the aerodynamic coefficients are as follows:

R	C _p	$c_{ m L}$	c_D	C _M	C _c (α = 0)
2.2×10^{6} 7.2×10^{6} 12.6×10^{6} 18.4×10^{6}	±0.0050 ±0.0015 ±0.0030 ±0.0020	±0.0020 ±0.0010 ±0.0020	±0.0006 ±0.0003 ±0.0003	±0.0006 ±0.0003 ±0.0003	±0.0002 ±0.0001 ±0.0001

Calibration of the tunnel shows the Mach number to be 1.62 ± 0.01 and 1.93 ± 0.015 . For the blowdown jet the Mach number was 1.90 ± 0.015 . The probable error in angle of attack in referencing the models was $\pm0.07^{\circ}$ with respect to the tunnel center line and $\pm0.03^{\circ}$ in relative angle of attack.

RESULTS AND DISCUSSION

Force Data

The force data were obtained only with the semispan model in the blowdown jet at M = 1.90. Data are presented in figure 4 at Reynolds numbers of 7.2×10^6 and 18.4×10^6 based on the mean aerodynamic chord. Force data taken at a R = 12.6×10^6 were the same as those obtained at R = 18.4×10^6 and, therefore, are not presented.

Lift.- No significant effects within the experimental accuracy can be noted on the lift throughout the range of Reynolds numbers tested. The lift-curve slope is linear up to about an angle of attack of 8° where the slope begins to decrease because of separation effects. For the low angles of attack the slope of the lift curve was 0.0290 per degree compared to the value of 0.033 as obtained from theory in reference 3.

<u>Drag.</u>- The only significant change in the drag data with Reynolds number was a variation of ${\rm C_{D_{min}}}$. A value of ${\rm C_{D_{min}}}$ of 0.0094 was obtained at a Reynolds number of 7.2 \times 106 and decreased to 0.0086 at a Reynolds number of 18.4 \times 106. Up to about an angle of attack of 80 a slight decrease in drag coefficient with increasing Reynolds number may also be noted. It is believed that the wing boundary layer is almost entirely turbulent at the test Reynolds numbers, and a decrease of this order of magnitude in drag coefficient is to be expected with increasing Reynolds number.

Integration of the pressure distributions obtained at a Reynolds number of 18.4×10^6 (fig. 5) gives a value of 0.0051 for the pressure drag coefficient for this wing. When the pressure drag coefficient is subtracted from $c_{D_{min}}$ for the wing mounted on the sidewall, a value of 0.0035 for the skin-friction coefficient is obtained at a Reynolds number of 18.4×10^6 . For the wing in the presence of the boundary-layer scoop the skin-friction coefficient was found to be 0.0040. For a flat plate at the same Reynolds number, reference 4 gives an experimental value of 0.0044 for the turbulent skin-friction coefficient; this value compares favorably with that obtained for the wing.

<u>Lift-drag ratio.</u> A value of 7.2 for $(L/D)_{max}$ is obtained at the highest Reynolds number. This value decreases slightly with decreasing Reynolds number; this decrease is due in part to the increase in skin friction obtained at the lower Reynolds numbers.

Pitching moment. The only discernible Reynolds number effects appear in the pitching moment although even these are small. Figure 4 shows that at the higher angles of attack the center of pressure of the wing moves forward slightly with increasing Reynolds number. The shift amounts to a forward movement of the center of pressure of about only 1 percent of the mean aerodynamic chord at an angle of attack of 16°. The reversal in slope in the moment curve at about an angle of attack of 8° coincides with the point at which the lift-curve slope begins to decrease.

<u>Leading-edge suction.-</u> The linearized theory predicts that a suction force is developed on round-nose airfoils at supersonic speeds when the leading edge of the airfoil is swept behind the Mach cone. When the value

of the drag-rise factor $\Delta \text{CD/C}_L^2$ is less than the reciprocal of the lift-curve slope, a suction force is developed which indicates that the resultant lift vector is tilted forward. Experimentally, a decrease in skin friction with increasing angle of attack would also show the same effect. Since it is not possible to isolate completely the skin-friction effects on the drag-rise factor, the concept of leading-edge suction should be used only as a convenient method of comparing the relative merits of different wings.

Figure 6 shows the experimental variation of ΔC_D with C_L^2 as well as the theoretical curve assuming the wing to be developing full leading-edge suction. Only about 15 percent of the theoretical suction force was indicated. Although the data are not shown, a change in Reynolds number from 7.2×10^6 to 18.4×10^6 had no effect on the leading-edge suction for this wing. Figure 7 is presented in order to show more clearly the little drag relief that was obtained. The theoretical chord-force coefficient, assuming the wing to be developing full leading-edge suction, was calculated by the method of reference 2 by using the theoretical liftcurve slope for the wing. The theoretical curve if extended indicates that the wing would actually have a negative value of chord-force coefficient at an angle of attack above 5° if full suction were attained. Actually, of course, the leading-edge-suction force is limited to some value of pressure close to vacuum acting on a small area along the leading edge. The experimental curve does show a decrease in $C_{\rm c}$ but it is nowhere near the order predicted by theory.

FLOW STUDIES

An examination of the pressure data indicated that the character of the flow over the wing is, in general, the same at M=1.6 and 1.9 as it was at M=2.41 (ref. 1). Pressure discontinuities on the wing upper surface show that standing shock waves exist at each of the test Mach numbers. For example, figure 8 shows the spanwise variation of upper-surface pressure coefficients at the 90-percent root-chord station for a wing angle of attack of 10° at M=1.9. The data at each Reynolds number indicate that a separated region exists near the leading edge and is followed by an abrupt change in pressure which usually denotes the presence of a shock wave. From additional spanwise pressure plots, the shock wave was found to lie along a ray through the wing apex.

A flow-direction survey was made just above the wing surface by means of weathercocking vanes placed on the full-span wing. In addition, the flow direction in the boundary layer was observed by means of an ink-flow technique. From the results of the vane survey, it was found that outboard

of the shock wave lying along a ray through the wing apex the flow was toward the root chord, whereas, behind the shock wave, the flow was approximately parallel to the root chord. Figure 9 shows some results of the flow-direction survey made at the 70-percent root chord station. At M=1.62 and M=1.93, the local flow angles increased with increasing angle of attack. It should be noted that the abrupt change in the indicated flow angles occurs at the location of the shock wave on the wing surface as determined from the pressure distributions. Complete results of the vane survey are presented in table I.

The flow direction in the boundary layer was observed at M = 1.93in the Langley 9-inch supersonic tunnel over an angle-of-attack range as the Reynolds number varied from 1.3×10^6 to 5×10^6 . Ink was admitted at several points on the full-span wing upper surface and the resulting flow patterns were photographed as the angle of attack and Reynolds number were varied. Figure 10 shows some results of the ink-flow studies obtained at a Reynolds number of 1.3 × 106 over an angle-of-attack range. With the wing at an angle of attack of 00 the ink flowed approximately parallel to the stream direction, but, as the angle of attack increased, the ink showed that the boundary-layer flow at the wing surface was turned outboard and toward the tip. The ink-flow pictures as well as the pressure data show that separation begins at the tip and moves toward the wing apex with increasing angle of attack. Combining the results of pressure distributions, vane surveys, and the ink-flow photographs led to the conclusion that the flow configuration was probably as shown in figure 11. A lambda shock occurred on the wing with the front leg starting at the point of laminar separation and the back leg originating along the line of flow reattachment. Between the two legs of the lambda shock the flow direction was outboard on the wing surface and inboard a small distance above the surface. Behind the back leg of the lambda shock the flow just above the surface is approximately parallel to the stream direction as shown by the vane survey. Similar wing-shock configurations were photographed and reported in reference 5.

Pressure data obtained at a Reynolds number of 18.4×10^6 show that up to an angle of attack of 16^0 (the limit of the present tests) the back leg of the lambda shock moves inboard and the leading-edge separation continues to move toward the wing apex with increasing angle of attack.

Figure 12 shows some ink-flow pictures for the wing at an angle of attack of 2° as the Reynolds number was varied from 1.3×10^{6} to 5×10^{6} at M = 1.93. At a Reynolds number of 1.3×10^{6} , the ink-flow photographs indicate that separation has started near the tip as evidenced by the ink flowing along the leading edge. As the Reynolds number is increased the point of leading-edge separation moves toward the tip until finally the ink spreads out over the wing surface and then flows in the stream direction

which shows that the flow is no longer separated. The pressuredistribution data also indicate that an increase in Reynolds number delays the leading-edge separation to a higher angle of attack.

LOADING

It has been shown that an increase in test Reynolds number changes the flow over the wing. It will, therefore, be of interest to determine the effect that Reynolds number has on the wing loading coefficients. Only representative data which show the effects of Reynolds number are plotted in this paper. Complete pressure data for the wing at M = 1.62 and M = 1.9 are presented in tables II and III.

Figure 13(a) shows the chordwise variation of loading coefficients for the wing at M = 1.9 and $\alpha = 6^{\circ}$ for Reynolds numbers of 2.2 × 10⁶ and 18.4 × 10⁶. At the 11.1-percent semispan station there is little effect of Reynolds number on the loading, but in moving outboard the distribution and magnitude of the chordwise loading coefficients change with Reynolds number. For example, at the 77.7-percent semispan station the higher Reynolds number tests result in loading coefficients on the order of 15 to 20 percent higher than those obtained at a Reynolds number of 2.2 × 10⁶. The agreement between experiment and theory is good at the inboard station, but becomes progressively worse in moving outboard owing to flow separation which begins at the tip. As a result of flow separation the loading over the three outboard stations is not linear with angle of attack. The variation in loading at the inboard station, however, is nearly linear over the entire test range.

It was found that the greatest changes in loading coefficients occurred as the Reynolds number was increased from 2.2×10^6 to 7.2×10^6 . As the Reynolds number was further increased to 18.4×10^6 the loading continued to vary but the changes in loading over that obtained at a Reynolds number 7.2×10^6 were small. As the angle of attack increased above 6° the effects of Reynolds number on the chordwise loading coefficients decreased. The pressure data indicate that at about an angle of attack of 14° Reynolds number will have little effect on the loading coefficients since the flow has separated over most of the wing even at a Reynolds number of 18.4×10^6 . The pressure-distribution data obtained at a Reynolds number of 7.2×10^6 in the Langley 9-inch supersonic tunnel at angles of attack up to 10° (the limit of the tunnel tests) were in good agreement with those data (not presented) for the wing at the same Reynolds number in the blowdown jet.

As shown by figure 13(b) the same general changes in wing loading occurred with Reynolds number at M=1.62 as occurred at M=1.9. Even though the highest test Reynolds number at M=1.62 was 7.2×10^6 it is believed that the loading coefficients presented are approximately the same as would be obtained at higher Reynolds numbers since at M=1.9 and M=2.41 an increase in Reynolds number above 7.2×10^6 had little effect on the wing loading coefficients.

11

Figure 13 illustrated that Reynolds number had significant effects on the distribution and magnitude of chordwise loading coefficients. It is important, then, to examine the effects of Reynolds number on the spanwise loading which was obtained from the integrated pressure distributions at each chordwise station.

Figure 14(a) shows the variation in experimental loading across the span for the wing at angles of attack of 6° , 10° , and 16° at M = 1.9. It may be seen that the effects of Reynolds number on the spanwise loading are small. At an angle of attack of 6° , for example, the integrated data obtained at a Reynolds number of $18.4 \times 10^{\circ}$ result in a lift coefficient approximately 4 percent higher than the lift coefficient obtained at a Reynolds number of $2.2 \times 10^{\circ}$. The experimental data and theory show good agreement at an angle of attack of 6° . As the angle of attack increases to 16° the shape of the span-loading curve changes from near elliptical to approximately a triangular distribution. Figure 14(b) shows that the span loadings at M = 1.62 also follow the same trends.

CONCLUSIONS

From the experimental investigation to determine the effects of Reynolds number on the aerodynamic characteristics of a delta wing the following conclusions may be drawn:

- 1. Over an angle-of-attack range of 0° to 16° at Mach number 1.90 the only significant effect of a Reynolds number change from 7.2×10^{6} to 18.4×10^{6} on the measured force data was to decrease the wing minimum drag coefficient about 8 percent.
- 2. At Mach number 1.90, there was no effect of a Reynolds number increase from 7.2×10^6 to 18.4×10^6 on the amount of leading-edge suction developed by the wing which was approximately 15 percent of the theoretical value.

- 3. At Mach numbers 1.62 and 1.9, a large increase in Reynolds number definitely affected the magnitude and distribution of chordwise loading but had little effect on the resultant spanwise loading.
- 4. The shape of the spanwise loading curve varied from elliptical at the low angles of attack to more nearly triangular at the higher angles.
- 5. With the semispan wing mounted directly to the tunnel side wall at Mach numbers 1.90 and 2.41, the wing aerodynamic characteristics were the same as those obtained with the wing tested in the presence of a tunnel boundary-layer scoop for Reynolds numbers of 12.6×10^6 and 18.4×10^6 .

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 25, 1953.

APPENDIX

The use of a boundary-layer scoop exhausting to the atmosphere presents several problems. For example, the scoop will not start at low stagnation pressure which, of course, means that low Reynolds number tests cannot be made. In addition, a disturbance which is not always easily eliminated originates from the scoop—tunnel-wall juncture. It would be desirable and convenient, therefore, to conduct tests at supersonic speeds without a boundary-layer scoop if the test results would not be adversely affected.

During the present investigation, the effects of testing a 68.4° delta wing with and without a boundary-layer scoop were determined. The ratio of the tunnel boundary-layer thickness to wing semispan was about 1/10 when the wing was tested without the boundary-layer scoop.

Force test.- Figure 15 shows force data obtained at M=1.90 and M=2.41 for the wing tested with and without a boundary-layer scoop. Up to an angle of attack of 16° (the limit of the present tests), the only significant effect on the measured force coefficients of testing the wing mounted directly to the side wall was to lower the minimum drag coefficient approximately 3 to 5 percent. A small decrease in drag coefficient is to be expected since part of the wing was immersed in the tunnel boundary layer. At M=2.41 there was a slight rearward shift in the wing center-of-pressure location when the wing was tested without a boundary-layer scoop in place. At an angle of attack of 16° the rearward center-of-pressure shift was about 1 percent of the mean aerodynamic chord.

Pressure data.- For the no-scoop condition, if the tunnel boundary layer were to influence the pressure distribution over the wing, the pressures at the inboard stations would be most affected. Figure 16 presents representative plots of pressure coefficients at the 11.1-percent semispan station for M=1.9 and a Reynolds number of 18.4×10^6 . Figure 16 shows that the pressure data obtained by the two methods of testing are the same. The agreement shown at the inboard station is typical of the pressure distributions at the other spanwise stations over the test angle-of-attack range of 0° to 16° .

Figure 17 shows some typical pressure distributions at M=2.41 for the ll.1-percent and 33.3-percent semispan stations. At the ll.1-percent semispan station the pressures show some disagreement over the forward 40 percent of the airfoil between the two methods of testing. At angles of attack, the scoop tests result in slightly higher negative pressures on the upper surface than do the no-scoop tests. The trends, which occurred at $\alpha=8^{\circ}$, continued to the higher angles of attack, but the agreement was somewhat improved at the higher angles.

At the 33.3-percent semispan station the pressures obtained show good agreement over the forward 60 percent of the airfoil at $\alpha=0^{\circ}$, but over the remainder of the airfoil the scoop tests again result in higher negative pressures than those pressures obtained without the boundary-layer scoop. When the angle of attack is increased to 8° , no differences in the pressure distributions are noticeable. The pressures obtained at the 55.5-percent and the 77.7-percent semispan stations were the same for both methods of testing over the angle-of-attack range of 0° to 16° .

It may be seen, therefore, that the no-scoop tests result in local decreases in lifting pressures on the order to 5 percent below the pressures obtained with a scoop-mounted model. The local reductions in lift are also apparent in the force data which indicated a slight rearward shift in the center of pressure for the no-scoop tests.

The results of the present tests indicate that, when testing highly sweptback wings at Mach numbers of about 2 and Reynolds numbers of 12×10^6 , if the ratio of tunnel-boundary-layer thickness to wing semispan is of the order of 1/10, correct over-all aerodynamic characteristics can be obtained by mounting the model directly to the tunnel sidewall. Local lifting pressures over inboard stations, however, can be in error approximately 5 percent at low angles of attack.

REFERENCES

- 1. Hatch, John E., Jr., and Hargrave, L. Keith: Effects of Reynolds
 Number on the Aerodynamic Characteristics of a Delta Wing at Mach
 Number of 2.41. NACA RM L51H06, 1951.
- 2. Love, Eugene S., Coletti, Donald E., and Bromm, August F., Jr.: Investigation of the Variation With Reynolds Number of the Base, Wave, and Skin-Friction Drag of a Parabolic Body of Revolution (NACA RM-10) at Mach Numbers of 1.62, 1.93, and 2.41 in Langley 9-Inch Supersonic Tunnel. NACA RM L52H21, 1952.
- 3. Brown, Clinton E.: Theoretical Lift and Drag of Thin Triangular Wings at Supersonic Speeds. NACA Rep. 839, 1946. (Supersedes NACA TN 1183.)
- 4. Wilson, R. E., Young, E. C., and Thompson, M. J.: 2nd Interim Report on Experimentally Determined Turbulent Boundary-Layer Characteristics at Supersonic Speeds. CM 501 (ut/DRL 196), Contract NOrd-9195, Bur. Ord., Univ. Texas, Defense Res. Lab. The Johns Hopkins Univ. Appl. Phys. Lab., Jan. 25, 1949.
- 5. Love, Eugene S., and Grigsby, Carl E.: A New Shadowgraph Technique for the Observation of Conical Flow Phenomena in Supersonic Flow and Preliminary Results Obtained for a Triangular Wing. NACA TN 2950, 1953.

TABLE I

MEASURED LOCAL FLOW ANGLES

All angles in degrees

$$M = 1.93, R = 1.3 \times 10^6$$

Vane no.	o°	20	4º	60	8°	10 ⁰
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16	0.1 4 -1.0 1.3 1.0 9 1.0 5 1.1 1.6 1.5 5 1.0 2.1	0.5 2 1.9 2.7 1.4 2.0 5.5 1.5 2.5 5.0	0.5.7.8.2.4.4.6.7.1.5.8.0.5.6.3 8.4.4.6.7.1.5.8.0.5.6.3	1.0600336150771851 2.46.771851	0.9590586296259508 1.2261359508 15.8	1.950851882646203 11.882646203 14.8316646203

$$M = 1.62$$
, $R = 1.4 \times 10^6$

Vane no.	8	20	40	60	80	10°
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 1 5 6 1 1 2 3 1 4 1 5 6	0.8 8 1.7 2.0 4 1.6 1.6 1.7 1 8 2.6	1.2.2.6.4.0.9.5.3.0.9.8.6.8 2.2.2.2.2.2.3.0.1.5.1	1.8 2.0 5.0 2.9 5.0 2.3 5.0 2.3 5.0 2.3 5.0 2.3 5.0 2.3 5.0 2.3 5.0 2.3 5.0 2.3 5.0 2.0 5.0 2.0 5.0 2.0 5.0 2.0 5.0 2.0 5.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	2.1.30795948081171 2.1.1.71	2.6971279705631016.1073	3.1 4.9 5.6 7.5 15.4 3.3 9.8 18.7 20.8 7.7 10.2

TABLE II.- EXPERIMENTAL PRESSURE CORPYTOLISMS H = 1.90

									18,4 × 10	6								_
Stat	ion	a = 0°	a =	£0	•	= 4°	α.	60		- 8°	α-	100	α =	12°	α-	1k°	« -	16°
7 2	Par- cent	a _D	a _{Pu}	a _P 1	Opts.	o _p	G ^b	Q _p	Q _{PE}	"D"	o _{Pu}	c ^b ¹	c _{Pu}	o _{Pl}	G _{P∗}	c ^{b⁴}	α _{Pa}	σb ⁵
0-111	0 3-8 7-3 70-6 14-2 17-5 24-7 26-7 26-7 25-0 60-7 77-5 83-7 84-0	2000 - 20	20000000000000000000000000000000000000	0.20 .00 .00 .00 .00 .00 .00 .00 .00 .00	0.176 057 050	55855555555555555555555555555555555555	0.115 -065 -073 -073 -072 -072 -065 -072 -063 -073 -063 -063 -063 -064 -063 -064 -064 -064	0.145 1134 1134 1134 1134 1134 1134 1134 1	0.109111103061085085085086089089101111	0.127 .127 .127 .133 .136 .136 .108 .109 .001 .001 .001 .001 .001 .001 .001	- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	0,000 mm	844444444444444444	0.081 802 117 117 117 118 118 118 118 118 118 118	0.039 -239 -233 -233 -240 -243 -243 -243 -243 -243 -243 -243 -243	- 88 M	0.000 -300 -300 -300 -300 -300 -300 -300	हर्ने इन्द्रेश्ने स्ट्रेड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड्ड
0.333	0 4.8 9.2 13.7 23.2 25.2 15.7 10.2 17.5 62.7 70.2 71.5 92.5	1888 - 888 - 888 - 888 - 888 - 888 - 888 - 888 - 888 - 888 - 888	13966882388823868 	#486688484848484848484848484848484848484	\$ 1171-115 -1171-115 -115 -115 -115 -115 -	1111 65 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 157 - 168 - 178 - 178	142 1152 1152 1056 1056 1056 1056 1056 1056 1056 1056	06i 250 201 201 189 133 117 126 121 128 129 131	.101 .193 .116 .197 .116 .197 .005 .007 .005 .007 .005 .005 .005 .00	***********************	.066 .228 .187 .157 .135 .130 .130 .096 .095 .090 .093	-10 -333 -251 -251 -257 -254 -254 -155 -155 -155	.034 .264 .228 .208 .100 .164 .174 .167 .133 .116 .130 .115 .101 .105	165 335 323 315 315 315 315 315 315 315 315 316	0 .298 .269 .252 .252 .216 .209 .197 .182 .156 .156 .156 .156	171 172 173 173 173 173 173 173 173 173 173 173	- 03 - 13 - 13 - 13 - 13 - 13 - 13 - 13
0 .5 55	0 7.5 14.2 21.2 25.1 25.2 25.0 55.0 17.5 88.7	-163 084 057 066 067 067 067 067	.1h2 093 121 115 112 102 097 093 091 099	.150 .004 .002 019 000 007 007 007 007 006 006	162 205 197 197 195 196 191 118 123 123		.01 - 223 - 159 - 272 - 259 - 203 - 103 - 111 - 115	\$44 44 55 55 55 55 55 55 55 55 55 55 55 5	- 056 - 557 - 515 - 529 - 537 - 535 - 535	041 .187 .169 .119 .100 .07 .061 .066 .060	082 339 326 250 268 300 308 316	068 .227 .193 .157 .125 .125 .126 .099 .093 .093	1944 194 194 195 195 195 195 195 195 195 195 195 195	130 130 130 130 130 130 130 130 130 130	- 1169 - 3784 - 378 - 378 - 375 - 375 - 375 - 375 - 375 - 375 - 375 - 375 - 375	1888 1888 1888 1888 1888 1888 1888 188	- 173 第 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	**************************************
0.777	0 11.2 22.4 31.6 44.8 55.0 67.2 78.4	1881 119 119	.067 177 190 154 188 170 151	- 65 - 65 - 66 - 66 - 66 - 66 - 66 - 66	-242 -267 -267 -272 -272 -273	-06 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05	096 267 309 314 315 314 267	-000 -006 -004 -001 -002 -001	- 167 - 337 - 348 - 348 - 348 - 292 - 265	113 .119 .107 .063 .065 .067	2013年	.156 .175 .143 .122 .090 .091	- 157 - 317 - 316 - 318 - 329	164 .209 .185 .161 .143 .132 .131		- 25 × 25 × 25 × 25 × 25 × 25 × 25 × 25	- 55 - 58 - 58 - 58 - 58 - 58 - 58 - 58	EEREGER

TABLE II.- EPPENIKENTAL RESCRET CONFIGURATS - Continued N = 1.90

	2 - 12.6 × 10 ⁶																	
Stat	100	a = 0°	-	\$0	α =	¥°	۵ =		4 -		4 = 3	ω°		18°	a =	u,°		ıκ°
y 5/2	Par-	а _р	C _{Pm}	a _{P1}	ope	a _P ,	Opm	o _{p1}	c _P	α ^b ¹	O _{PM}	o _{p,}	G _{Pu}	c _{p1}	C _{Pta}	a ^b ³	Op _M	op.
0,111	0 3.8 7.3 10.6 14.5 14.5 21.2 24.7 26.2 14.7 26.2 14.7 26.2 14.7 26.2 14.7 26.2 14.7 26.2 14.7 26.2 26.7 26.7 26.0 26.7 26.0	10000000000000000000000000000000000000	38888888888888888888888888888888888888	- 100 - 100	0.177 - 036 - 056 - 056	0.196 .118 .096 .085 .085 .085 .086 .086 .086 .086 .086 .086 .086 .086		0.14; 153 133 108 088 071 072 089 089 089 089 089 089 089 089 089 089	######################################	0,122 194 171 123 126 106 106 106 106 106 106 107 107 107 107 107 107 107 107		0.072 -201 -172 -183 -183 -183 -183 -183 -183 -183 -183	0.055 - 257 - 159 - 159 - 150 - 150 - 150 - 151 - 151	0.000 279 280 227 205 115 117 117 117 118 119 119 119 119 119 119 119 119 119	885		हे इंबेड्ड इंट्डिड्ड इंट्डिड्ड इंडिड्ड इंडिड्ड इंडिड इंड इंडिड इंडिड इं	64.46.46.46.46.46.46.46.46.46.46.46.46.4
0,333	0 9-2 14-2 16-7 23-2 26-2 16-7 10-5 55-0 62-7 77-5 85-0 92-5		-075 -075 -075 -076 -076 -076 -076 -076 -076 -076	-186 -061 -007 -008 008 020 020 021 021 032 036 043	.069 123 111 117 103 095 094 095 095 095 095 095 095 095 096 095	83328888888888888888888888888888888888	0 186 209 163 112 121 120 117 109 112 111 110 111 111	.140 .156 .107 .067 .066 .066 .051 .034 .036 .036 .090	068 256 276 267 105 105 126 126 127 116 116 110 112	.096 .129 .129 .110 .100 .086 .075 .086 .086 .086 .086 .086	-108 -296 -312 -313 -214 -213 -250 -113 -129 -113 -119 -119 -113 -119 -119	.00 .22 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13	-146 -328 -329 -329 -329 -329 -229 -229 -236 -150 -156 -153 -159	.033 .267 .229 .100 .126 .176 .176 .176 .176 .176 .176 .176 .17	17) 94, 92,	002 .304 .276 .257 .213 .219 .216 .183 .163 .163 .163 .163 .163	203 319 319 318 328 328 325 325 325 325 325 326	-05 -314 -316 -362 -365 -365 -365 -365 -365 -365 -365 -365
0.555	0 7.5 14.2 20.7 35.2 42.2 55.0 66.3 71.5 88.7	.167 056 056 056 059 069 069 066 07h 08h	.116 097 123 112 101 101 095 099 106	.116 .014 .002 025 019 030 037 037 060	063 104 209 200 158 114 121 121 124 126	.09% 1,100 .062 .023 .007 .006 003 003 008 008	.01 -23 -257 -257 -257 -257 -257 -215 -215 -215 -215	.024 .115 .120 .072 .063 .045 .040 .090 .027 .000	056 021 021 266 266 268 262 253 216	-,013 .189 .150 .117 .108 .089 .081 .065 .062 .064	065 325 336 308 366 266 263 264 305	089 .227 .195 .157 .136 .127 .120 .102 .996 .079	128 326 323 317 317 317 323 333 333	131 .857 .228 .196 .179 .166 .156 .156 .177 .113	155 32h 320 321 321 325 327 336 347	166 .292 .267 .216 .214 .212 .204 .150 .172 .136	- 325 - 327 - 332 - 333	177 .320 .301 .270 .252 .252 .212 .214 .215 .215 .215 .215 .215 .215 .215 .215
0.777	0 11.2 22.4 31.6 14.8 56.0 67.2 18.4	.166 090 111 119 120 113 102	074 172 188 181 181 166 119	.85 83 85 85 85 85	002 868 873 873 269 221	003 004 004 003 003 003	099 863 306 306 306 311 273		150 366 359 350 375 371	11k .1kg .105 .035 .066 .060	- 200 - 36 - 31 - 35 - 37 - 33 - 36	.172 .113 .119 .100 .091		105 .210 .188 .164 .142 .136 .134	260 34 320 321 325 327	.209 .239 .234 .202 .101 .174	25 20 20 25 26 11	स्टेड्डिड्डिस स

TABLE II. - EXPERIMENTAL PRESSURE COEFFICIENTS - Continued
H = 1.93

							.2 × 10 ⁶					
Stat	ion	α =·0°		20		μ°	α •	• 6°	α =	8°		10°
<u>у</u> b/2	Per- cent c	C _p	c _{pu}	c _p ,	C Pu	c _{pl}	C Pu	c P _l	C P u	c _p	C Pu	C _p
0.111	0 3.8 7.3 10.6 11.5 21.2 24.7 28.2 31.7 28.2 31.7 49.2 55.0 7 66.7 77.5 83.2 88.7 94.0	0.193 054 057 050 006 004 - 007 - 007 - 026 - 036 - 036 - 038 - 033 - 049 - 049 - 046 - 073	a a a a a a a a a a a a a a a a a a a	0.134 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.0		0.175 133 14 0.05년 15년 15년 15년 15년 15년 15년 15년 15년 15년 1	0.129057053062063064064082076089087087098096101	0.151 .167 .137 .105 .089 .077 .072 .088 .056 .047 .044 .031 .032 .030 .030	0.094 103 089 080 082 083 081 082 086 097 097 105 097 103 107 103 113 111	0.000	0.668155117113105102100100100108113113114116121126125138	0.075 .224 .219 .129 .142 .138 .138 .138 .135 .109 .106 .091 .096 .091 .098
0•333	0 4.8 9.2 11.2 18.7 23.2 28.2 32.7 40.2 47.5 55.0 70.2 77.5 85.0 92.5	•171 •017 •018 •033 •033 •032 •042 •043 •052 •053 •056 •056 •056 •056 •056	.134 046 062 069 063 069 067 077 076 075 075 075 075 075	.18l4 .072 .026 .010 .005 .003 009 013 026 028 031 031 032 032 036 0ly	.072120124114109096101096097096097096	•168 •118 •074 •048 •041 •036 •022 •017 •001 •007 •007 •009 •008 •019	.007172198163114126120122119118126117124	•132 •157 •113 •086 •076 •069 •029 •028 •021 •019 •017 •017 •007	064 239 258 258 197 172 162 113 136 129 131 129 128 133 139	.088 .197 .157 .128 .116 .069 .081 .062 .060 .053 .049 .018 .018	098 285 300 293 262 236 234 225 200 158 135 135 136 142 150	.051 .235 .198 .168 .155 .146 .126 .117 .097 .093 .080 .079 .069
0.555	0 7.5 14.2 21.2 28.7 35.2 42.2 55.0 66.3 77.5 88.7	.166 023 055 073 074 076 075 080 071 073 083	.1148 093 118 120 117 112 107 106 096 098 105	•150 •045 •003 •020 •029 •038 •038 •047 •040 •046 •059	.087 165 203 200 167 153 114 138 124 123 128	.097 .096 .049 .020 003 002 006 020 010 033 035	.023 220 255 267 265 211 193 175 155 147	.031 .137 .09l4 .058 .046 .033 .030 .017 .020 .010 004	032 28l ₄ 300 309 310 282 21 ₇ 238 23l ₄ 223 209	032 .181 .137 .099 .086 .072 .066 .051 .051 .043	070318329319316302292287287289292	082 .216 .179 .142 .125 .111 .104 .084 .089 .073
0.777	0 11.2 22.4 33.6 44.8 56.0 67.2 78.4	.119 078 107 113 118 110 106 105	.098 161 182 180 181 163 150 146	.084 002 039 0514 067 063 063 066	.017 229 258 265 266 257 228 199	.020 .053 .017 006 023 022 023 033	063 273 295 301 305 303 300 284	009 .102 .068 .038 .022 .019 .014	131 320 330 333 335 334 332 318	078 .114 .082 .064 .058 .055 .033	176 342 329 330 330 327 324	116 .183 .156 .121 .103 .096 .088 .078

TABLE II. - EXPERIMENTAL PRESSURE COEFFICIENTS - Concluded
M = 1.93

							1.93						
							.2 x 10 ⁶				7		
	Per	a = 0	-	= 2°		= 4°		- 6°		- 8°		- 10°	
b/2	cent	1 0	C _{pu}	C _p	C _p u	C _p	c _{pu}	c _{p1}	· c _{pu}	c _{p_l}	C _{pu}	C _p	
0-111	0 3.6 7.5 10.6 11.3 21.3 21.3 21.3 31.7 38.2 43.7 19.2 55.0 60.7 77.5 83.2 88.7 94.0	3 .029 .010 .001 .003 .001 .001 .002 .017 .020 .026 .022 .032 .038 .039 .039	0.187 .021 .001 -018 -020 -022 -021 -022 -033 -037 -038 -046 -043 -052 -052 -052 -052 -052	0.195 .089 .060 .037 .029 .025 .025 .020 .008 .000 007 004 001 013 019 018	0.155021029040043043043042042057063061069070075092	0.177 .125 .093 .073 .062 .058 .051 .015 .033 .025 .016 .020 .011 .009 .002	0.123 056 058 067 068 056 056 057 066 073 078 078 078 078 078 078	0.152 .157 .127 .096 .087 .078 .073 .071 .059 .041 .045 .041 .025 .036 .026	099 097 099 092 079	0.117 .190 .165 .114 .132 .121 .110 .110 .105 .102 .089 .074 .070 .069 .074 .070 .064 .053 .055 .021	0.0631l ₃ 1l ₄ 31l ₄ 1120095091091089090092099104107110108111115118122122	0.078 .224 .204 .184 .168 .157 .1/4 .143	
0.333	0 4.8 9.2 14.2 18.7 23.2 28.2 32.7 40.2 47.5 55.0 70.2 77.5 85.0 92.5	032 036 039 047 045 045	041061064064065071072071066067073	.166 .064 .027 .010 .005 007 010 020 021 021 023 025 025 034	.065 106 110 105 100 106 105 102 085 086 087 087 087 092 098	.152 .108 .066 .046 .038 .029 .022 .016 .009 .005 0 004 004	.001 166 150 155 170 166 151 103 103 104 104 104 105 109 113	.121 .1148 .109 .0814 .0714 .056 .0418 .038 .038 .0314 .028 .021 .017 .007	068 205 198 210 221 219 206 175 136 125 123 121 122 121 125 130	.075 .167 .151 .125 .113 .102 .091 .085 .068 .065 .056 .056 .056 .052 .050	105247243251255255252240218147130135140	.043 .224 .192 .167 .154 .136 .130 .120 .102 .100 .093 .088 .084 .082 .073	
0.555	66.3	.161 021 054 069 070 073 075 075 0767 075	-141 089 115 120 111 107 112 108 100 092 096	001 025 028 032 038 041 034		.087 .088 .014 .016 .008 .002 006 015 003 015 026	.018 215 210 212 220 232 231 206 119 128 132	.026 .132 .089 .061 .056 .038 .030 .018 .026 .013 0	038 271 258 260 266 271 273 271 218 229 208	.051 .172 .134 .102 .088 .076 .056 .056 .058 .014	077 279 278 280 285 287 290 288 282 283 283	-086 -212 -179 -145 -128 -116 -112 -091 -083 -060	
0.777	0 11.2 22.4 33.6 44.8 56.0 67.2 78.4	.126 078 107 114 116 110 104 106	.095 .159 178 171 168 168 166 164	041 056 069 067 063	2h2 239	.029 .053 .016 005 021 025 024 032	063 271 260 262 267 272 279 275	027 .100 .063 .038 .019 .014 .012	134 290 284 236 286 289 291 291	079 .1l,li .110 .083 .061 .053 .053 .01,3	180 297 297 299 302 304 305 306	118 .185 .154 .124 .101 .093 .098 .082	

TABLE III. - EXPERIMENTAL PRESSURE COEFFICIENTS

M = 1.62

						R = 7.2	x 10 ⁶					
Stat	ion	α = 0°	α =	20		- 1 ₀	· a =	6°	a =	. 8°	Œ =	10°
У b/2	Per- cent	c _p	c _{pu}	c _{p1}	c _{pu}	c _p ,	°p _u	c _p ,	c p _u	c _p ,	c _p u	c p _l
0.111	0 3.8 7.3 10.6 114.2 17.5 21.7 28.2 31.7 38.2 43.7 49.2 55.0 66.2 71.7 77.5 83.2 88.7 94.0	0,210 048 052 030 025 017 008 008 006 003 -009 -014 -017 -021 -029 -036 -043 -056 -089	0.193 .009 .018 0 .001 .010 .015 .018 .021 .031 .036 .039 .050 .057 .063 .080 .075 .080	0.201 .094 .086 .056 .048 .038 .037 .033 .029 .016 .008 .005 004 013 021 0140 033 072	0.163 029 017 031 031 041 040 041 043 053 060 063 076 082 098 093 093	0.181 .134 .124 .096 .088 .079 .067 .066 .062 .057 .013 .039 .035 .031 .024 .013 .004 017 008	0.122 068 051 060 060 062 061 062 063 078 079 081 089 099 114 110 133	0.147 .168 .163 .131 .121 .113 .099 .098 .093 .087 .072 .067 .063 .060 .050 .041 .031 .010	0.0681130860900860870814084099099099107111117131128119	0.098 .203 .205 .168 .1149 .133 .128 .120 .106 .100 .095 .093 .081 .072 .063 .040 .053 .008	0.023 -154 -122 -117 -110 -109 -108 -105 -105 -107 -114 -118 -118 -125 -125 -128 -134 -147 -143 -163	0.037 .239 .251 .210 .200 .187 .171 .166 .157 .112 .136 .129 .125 .117 .097 .073 .092
0.333	0 4.8 9.2 14.2 18.7 23.2 28.2 32.7 40.2 47.5 55.0 62.7 70.2 77.5 85.0 92.5	.184 .021 .021 .024 .021 .020 .033 .035 .047 .046 .048 .049 .054 .060	.135 035 065 069 061 056 064 074 070 071 070 076 080 093 108	.192 .082 .041 .021 .020 .017 -003 -017 -021 -024 -030 -037 -053 -063	.041 128 131 122 103 093 097 094 101 095 096 092 098 101 115 127	•157 •131 •089 •065 •285 •054 •036 •036 •015 •014 •007 •004 •003 •010 -026 -040	067 249 188 165 141 126 127 126 117 118 113 117 119 134 114	.100 .174 .130 .107 .099 .091 .070 .055 .050 .043 .046 .034 .036 .017 .004	152 343 328 328 223 181 156 156 154 151 140 134 154 154	•0\42 •2\1\4 •175 •150 •1\40 •130 •108 •101 •08\4 •076 •079 •06\4 •055 •050 •033 •02\4	199l ₁ 18399362332277130155148150119152153167174	014 .252 .219 .193 .183 .172 .149 .141 .123 .114 .116 .091 .081
0.555	0 7.5 14.2 21.2 28.7 35.2 42.2 55.0 66.3 77.5 88.7	.171 014 048 063 065 069 071 079 070 086 102	.134 105 116 117 108 110 106 105 100 113 129	.11/14 .060 .015 012 020 029 032 055 01/0 057	.040 233 211 183 160 153 145 137 129 139 153	.051 .116 .068 .038 .023 .011 .012 009 010 029	061 320 3144 273 215 192 177 167 149 159	050 .162 .116 .083 .066 .051 .052 .022 .021 005 009	135 426 420 394 352 342 325 240 134 158 180	139 -202 -160 -127 -107 -096 -089 -061 -057 -042 -023	184 1,35 1,26 1,107 383 380 387 1,104 381 364 286	200 .237 .202 .168 .1140 .127 .099 .087 .083 .058
0.777	0 11.2 22.4 33.6 141.8 56.0 67.2 78.4	-132 103 115 119 129 126 119 125	.083 219 220 197 186 167 164 165	.065 001 032 058 078 074 072 083	057 345 368 353 271 229 210 206	046 .065 .025 008 027 026 029 039	177 419 433 424 351 325 324	125 .114 .073 .036 .014 .014 .015 .003	264 483 167 164 153 131 125 120	191 .15h .116 .080 .080 .080 .059 .046	323 448 405 383 391 397 402 408	242 .191 .154 .122 .098 .101 .107 .085

TABLE III. - EXPERIMENTAL PRESSURE COEFFICIENTS - Concluded

M = 1.62

						R = 2.4	x 10 ⁶					
Stat	ion	α = 0°	α	- 2°	α	- 4°	α:	• 6°	α,	- 8°	α •	10°
<u>p/2</u>	Per- cent c	C _p	C _p u	C _p	c _{pu}	c p _l	°p _u	c _p	· C p u	c _p ,	c p u	c _p
0.111	0 3.8 7.3 10.6 14.2 17.5 21.2 24.7 28.2 31.7 38.2 43.7 49.2	0.201 0.48 0.35 0.09 0.08 0.002 0.008 0.002 0.003 0.003	0.187 .009 .002 011 019 021 020 030 037 038	0.190 .081 .066 .037 .037 .037 .037 .037 .037 .037 .037 .037 .037 .037 .037 .037	0.156 027 033 045 045 047 043 053 053 058 060	0.172 .125 .106 .081 .071 .064 .062 .057 .053 .040	0.116 065 065 071 071 068 063 060 062 077 078	0.137 .160 .119 .114 .103 .085 .086 .083 .061	0.068114110100089081083080084091096098	0.091 .196 .189 .156 .151 .139 .130 .126 .121 .102 .095 .092	0.020 178 133 116 109 108 104 104 103 113 118 119	0.036 .233 .232 .196 .187 .178 .168 .163 .158 .151 .137 .130
	60.7 66.2 71.7 77.5 83.2 88.7 94.0	020 026 036 041 051 051 081	042 046 056 060 069 071 095	007 017 023 032 031 068	062 068 076 080 089 090 111	.027 .021 .011 .005 005 005 044	086 094 098 106 109 128	.039 .039 .032 .023 .026	107 113 118 125 126 146	.081 .070 .064 .054 .062 .026	126 131 137 144 143 163	.121 .115 .103 .099 .092 .104 .078
0.333	0 4.8 9.2 14.2 18.7 23.2 28.2 32.7 40.2 47.5 55.0 70.2 77.5 85.0 92.5	.165 .011 018 029 030 032 038 039 047 047 053 056 051 071	019019071071068070071076076070077089091	.173 .071 .034 .036 .012 .005 008 017 018 018 023 026 035 047 052	.032 133 129 116 119 116 111 096 095 091 095 100 110 111	.143 .118 .077 .057 .050 .040 .031 .014 .015 .004 005 001 020	072 195 185 197 185 107 108 114 114 114 119 119 129 133	\$55 \$155 \$155 \$155 \$155 \$155 \$155 \$155	163 280 295 287 240 152 143 139 145 136 138 138 152 155	.030 .200 .166 .1143 .132 .128 .106 .078 .078 .078 .057 .051	205 352 355 319 279 250 214 171 146 149 153 164	022 .240 .211 .189 .174 .164 .136 .121 .110 .098 .089 .086 .083 .110
0.555	0 7.5 14.2 21.2 28.7 35.2 42.2 55.0 66.3 77.5 88.7	.161 026 059 070 071 073 075 081 080 090 098	122 113 122 122 117 115 119 115 105 105 116	.128 .046 .005 018 026 032 035 047 046 055	.035 21/4 201 203 197 182 138 126 125 134 11/6	.014 .101 .056 .029 .016 .008 .005 020 020 022	061 300 297 294 279 193 157 152 149 167	-054 -145 -162 -070 -057 -051 -020 -020 -023 -088 -005	140 370 382 381 371 340 274 194 175 182 190	142 .189 .151 .118 .101 .097 .080 .057 .056 .052 .034	189 379 386 384 384 386 390 400 400 401 335	202 .229 .196 .164 .146 .140 .121 .095 .092 .089 .077
0.777	0 11.2 22.4 33.6 44.8 56.0 67.2 78.4	.121 100 116 124 132 128 123 127	.075 210 204 193 199 178 175	0514 008 0144 066 082 083 078 083	055 325 325 322 319 298 247 178	051 .060 .017 012 032 034 029 037	177 357 367 376 384 376 355 322	130 .108 .067 .035 .013 .010 .015 .008	266 394 399 404 408 411 409 408	198 .152 .113 .080 .059 .060 .067	321 403 404 402 406 412 418 426	249 .185 .153 .123 .106 .108 .112 .089

L-80472

Figure 1.- M = 1.90 blowdown jet.

(a) Spanwise variation of maximum thickness ratio.

(b) Sketch of wing and pressure survey stations.

Figure 2.- Spanwise variation of maximum thickness ratio and location of pressure-survey stations.

Figure 3.- Location of flow-survey vanes on wing upper surface.

Figure 4.- Variation of wing aerodynamic characteristics with angle of attack for different Reynolds numbers. M = 1.90.

Figure 5.- Variation of pressure coefficient with thickness ratio. M = 1.90; $R = 18.4 \times 10^6$; $\alpha = 0^\circ$.

Figure 6.- Variation of ΔC_D with C_L^2 . M = 1.90; $R = 18.4 \times 10^6$.

Figure 7.- Comparison of experimental and theoretical chord-force coefficients. M=1.90.

Figure 8.- Spanwise variation of upper-surface pressure coefficient at 0.90c at different Reynolds numbers. M = 1.90; α = 10°.

Figure 9.- Measured local flow angles at $0.70c_r$ station. $R = 1.3 \times 10^6$.

(b) M = 1.62.

Figure 9.- Concluded.

L-81213 Figure 10.- Ink-flow studies of boundary-layer flow on wing upper surface. Angle-of-attack effects; $R = 1.3 \times 10^6$; M = 1.93.

Figure 11.- Pictorial sketch of flow over the wing upper surface at moderate angles of attack. M=1.90.

A-A

 $L-8121 l_{\downarrow}$ Figure 12.- Ink-flow studies of boundary-layer flow on wing upper surface. Reynolds number effects; $\alpha=2^{\circ};~M=1.93.$

Figure 13.- Chordwise variation of loading coefficients at different Reynolds numbers. $\alpha = 6^{\circ}$.

(b) M = 1.62.

Figure 13.- Concluded.

Figure 14.- Spanwise load distribution at different Reynolds numbers.

(b) M = 1.62.

Figure 14.- Concluded.

Figure 15.- Variation of wing aerodynamic characteristics with angle of attack showing the effects of testing with and without a boundary-layer scoop. $R = 18.4 \times 10^6$.

(b)
$$M = 2.4$$
; $R = 18.4 \times 10^6$.

Figure 15.- Concluded.

Figure 16.- Comparison of pressure distribution at ll.1-percent semispan station obtained with and without boundary-layer scoop. M = 1.90; $R = 18.4 \times 10^{6}$.

CONFIDENTIAL

(a) 11.1-percent semispan station.

Figure 17.- Comparison of pressure distributions obtained with and without boundary-layer scoop. M = 2.41; $R = 18.4 \times 106$.

(b) 33.3 semispan station.

Figure 17.- Concluded.