3章のストーリー

- ・清原は、教わった方法で100%の正解率を実現し、同僚の九条の助けを借りて糖尿病診断のwebサイトを立ち上げる
- しかし判定精度が悪く、多くの苦情を受ける
- さやかは機械学習を使ったシステムの正しい性能予測法を教える

学習結果の評価 (3章)

p.80 7コマ目

分割学習法

- ・全データを学習用と評価用に分ける
 - データが多くあるときに有効

分割学習法

- •パラメータチューニングを行うときは3分割
 - 検証用データでパラメータの良さを評価
 - 最終的な性能は評価用データで推測

交差確認法

- •データをm分割して、m回の評価の平均をとる
 - •学習データが少ない場合に有効

評価指標

・混同行列から算出

識別器の出力

	予測+	予測一
正解+	true positive (TP)	false negative (FN)
正解一	false positive (FP)	true negative (TN)
データに付いた		

•正解率

正解

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

評価指標

•目的に応じて適切な評価指標を選ぶ

	予測+	予測一
正解+	TP	FN
正解一	FP	TN

• 正解率
$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

• 精度
$$Precision = \frac{TP}{TP + FP}$$

• 再現率
$$Recall = \frac{TP}{TP + FN}$$

• **F値**
$$F$$
-measure = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

正解の割合 クラスの出現率に 偏りがある場合は不適

正例の判定が 正しい割合

正しく判定された 正例の割合

青度と再現率の

精度と再現率の 調和平均