Corso di Algebra per Ingegneria

Lezione 02: Esercizi

Qualche definizione

Sia \sim un connettivo logico binario. \sim si dice

- (a) *commutativo* se, per ogni coppia di proposizioni p e q, abbiamo $p \sim q$ è logicamente equivalente a $q \sim p$;
- (b) *associativo* se, per ogni terna di proposizioni p, q e r, abbiamo $(p \sim q) \sim r$ è logicamente equivalente a $p \sim (q \sim r)$;
- (c) *transitivo* se, per ogni terna di proposizioni *p*, *q* e *r*, la proposizione

$$((p \sim q) \land (q \sim r)) \longrightarrow (p \sim r)$$

è una tautologia.

Infine, dati due connettivi logici binari \sim e \sim' , \sim è detto essere *distributivo rispetto a* \sim' se, per ogni terna di proposizioni p, q e r, abbiamo $p \sim (q \sim' r)$ è logicamente equivalente a $(p \sim q) \sim' (p \sim r)$.

- (1) Verificare le leggi di De Morgan.
- (2) Dimostrare che \longleftrightarrow e XOR sono commutativi.
- (3) Dimostrare che non vale la commutatività per \longrightarrow .
- (4) Testare l'associatività di \land , \lor e \longleftrightarrow .
- (5) Dimostrare che \land e \lor sono reciprocamente distributivi.
- (6) Dimostrare che \longrightarrow è transitiva.
- (7) Scrivere il connettivo \rightarrow usando soltanto \land e \neg
- (8) Scrivere il connettivo ⇔ usando soltanto NAND (o NOR).