3

79	54.3	61.8	72.4	88.7	118.6	194	
. P	61.2	49.5	37-5	28.4	19-2	10.1	
			PV			7	
(a)	le	oq (PV	(on t)	log (-) - ''	Constant))
	log	(P) + Y	n log (V) = 1	<		4
	O (P) =	K-n	log(V)			
\$0,	let \	~ (v) =	K-7)		
		h (V') Compari	= K-	n Wot	- W12C	-	
	J & =	1 2m	$\sum_{i=1}^{\infty} \left(K \cdot \right)$	+ n'V' -	- P') are P'=	log P	
<i>9</i> 1	J& =	$\frac{\partial J}{\partial k}$	_ = 0	and	$n' = \frac{\nabla \delta}{\delta n'}$	2 - M	
	+	V - 9	6759	2 =) l	og(c) =	9-675°	12
	0 /	η' =	-1.40	371 =) N= 1.		

=) n = 1.40371, c = 15929.3723241

(b) So,
$$p. y^{1.40371} = 15929.3723241 - (1)$$

is the equation connecting P&Y

(c) given $V = 100$

using equation 1

$$P = \frac{15929.3723241}{(100)^{1.40371}} = 24.81867$$

(y)

(x) 0 1 2 3 4 5 6

(y) 2.4 2.1 3.2 5.6 9.3 14.6 21.9

(b)

$$\frac{\partial J}{\partial \omega_{0}} = \frac{1}{2m} \sum_{i=1}^{m} 2(\omega_{0} + \omega_{1} x_{i} + \omega_{2} x_{i}^{2} - y_{i})^{2}$$

$$\frac{\partial J}{\partial \omega_{0}} = \frac{1}{2m} \sum_{i=1}^{m} 2(\omega_{0} + \omega_{1} x_{i} + \omega_{2} x_{i}^{2} - y_{i}) (1)$$

$$\frac{\partial J}{\partial \omega_{i}} = \frac{1}{2m} \sum_{i=1}^{m} 2(\omega_{0} + \omega_{1} x_{i} + \omega_{2} x_{i}^{2} - y_{i}) (x_{i})$$

$$\frac{\partial J}{\partial \omega_{1}} = \frac{1}{2m} \sum_{i=1}^{m} 2(\omega_{0} + \omega_{1} x_{i} + \omega_{2} x_{i}^{2} + y_{i}) (x_{i}^{2})$$
Soluing $\frac{\partial J}{\partial \omega_{2}} = 0$, $\frac{\partial J}{\partial \omega_{1}} = 0$

Y= Wo + Wix + Wax2