G53FUZ Fuzzy Sets and Systems

Mamdani Inference and Defuzzification

Jon Garibaldi Intelligent Modelling and Analysis Research Group

Definition of Logical Implication

Logical implication can be defined in terms of other primitives

$$-(p\Rightarrow q)\equiv ((\neg p)\vee q)$$

· Or as a truth table

р	q	$\neg p$	$p \wedge q$	pvq	$p \Rightarrow q$
F	F	Т	F	F	T
T	F	F	F	Τ	F
F	T	T	F	T	T
Т	Т	F	Τ	Т	Τ

Logical Inference

- Modus ponens
 - $-p \Rightarrow q, p; q$
 - $-((p \Rightarrow q) \land p) \perp q$
 - IF p THEN q; p is TRUE; hence q is TRUE
 - IF p THEN q; p is FALSE; hence q is ???
 - we will return to this question later
- · Modus tollens
 - $-((p \Rightarrow q) \land \neg q) \perp \neg p$
 - IF p THEN q; q is FALSE; hence p is FALSE

Example

- IF raining THEN cloudy
 - modus ponens
 - it is raining: it must be cloudy
 - modus tollens
 - $\bullet\,$ it is not cloudy: it is not raining
 - incorrect inference
 - it is not raining: it is not cloudy
 - correct inference
 - $((F \Rightarrow F): T)$ AND $((F \Rightarrow T): T)$
 - it is not raining: it may or may not be cloudy

If-Then Rules

- Inference is performed by utilising a set of rules connecting premises to conclusions
 - premise (if part) is called the antecedent(s)
 - conclusion (then part) is called the *consequent(s)*
- These rules are similar to the production rules of expert systems
- Inference is simplified by putting aside formal considerations of logical implication

If-Then Rules

- Essential operation
 - each of the antecedent(s) is evaluated to a number in [0, 1] and combined into a single number
 - the truth of the rule premise
 - each of the consequent(s) is considered to be true to the same degree as the premise
- IF p THEN q
 - -p is **true**, hence q is **true**
 - -p is half true, hence q is half true
 - -p is **not true**, hence q is **not true**!

Does This Make Sense?

- IF p THEN q; p is FALSE, hence q is FALSE
 - IF the moon is made of cheese THEN I'm a fool!
 - the moon is NOT made of cheese
 - hence I'm not a fool?
 - NO: logically, you have no evidence to support the conclusion one way or another
- We need to specify alternative antecedents
 - IF moon is NOT made of cheese THEN I'm NOT a fool

Outline rule 1 if age is young and height is tall then employ is good rule 2 if age is middle_aged then employ is fair rule 3 if age is old or height is short then employ is bad 1. Fuzzify inputs 2. Combine inputs 3. Perform implication

Background

- Mamdani introduced the first successful form of fuzzy inferencing in 1975
 - E.H. Mamdani and S. Assilian
 - "An experiment in linguistic synthesis with a fuzzy logic controller"; International Journal of Man-Machine Studies; Vol. 7, No. 1, pp. 1-13, 1975
- The fuzzy system was developed to control kiln temperature in a cement factory
 - it is based on pragmatic considerations rather than any theoretical correctness

Methodology

- Comprises a set of rules of the form
 - IF x is A [AND/OR y is B ...] THEN z is C
 - IF crisp_input matches fuzzy_input_term AND/OR ...
 THEN add fuzzy_output_term to fuzzy_output
- · For each rule
 - for each antecedent
 - evaluate m.f. (μ) of the crisp input value at the fuzzy term
 - combine all μ using appropriate fuzzy operator
 - fire the consequence at strength of resultant truth
 - add the output term to a (fuzzy) output set
- Interpret the output set in some way

Example: Variables

- Age
 - -young = 1/0 + 1/10 + .75/20 + .5/30 + .25/40
 - middle_aged = 0/30 + .5/40 + 1/50 + .5/60 + 0/70
 - old = .25/60 + .5/70 + .75/80 + 1/90 + 1/100
- Height
 - short = 1/1.4 + .75/1.5 + .5/1.6 + .25/1.7 + 0/1.8
 - tall = .25/1.6 + .5/1.7 + .75/1.8 + 1/1.9 + 1/2.0
- Employ
 - bad = 0/0 + .5/1 + 1/2 + .5/3 + 0/4
 - fair = 0/3 + .5/4 + 1/5 + .5/6 + 0/7
 - -good = 0/6 + .5/7 + 1/8 + .5/9 + 0/10

Example: Rules

- · Three rules
 - IF Age is young AND Height is tall THEN Employ is good
 - IF Age is middle aged THEN Employ is fair
 - IF Age is old OR Height is short THEN Employ is bad
- Inputs
 - Age = 40 (years)
 - Height = 1.8 (metres)

Rule 1

- Antecedent 1
 - Age is young: $\mu_{young}(40) = 0.25$
- Antecedent 2
 - *Height* is *tall*: $\mu_{tall}(1.8) = 0.75$
- Rule strength = Ante₁ AND Ante₂
 - $-\min(0.25, 0.75) = 0.25$
- Consequent
 - Employ is good
 - min(0.25, 0/6 + .5/7 + 1/8 + .5/9 + 0/10)
 - 0/6 + 0.25/7 + 0.25/8 + 0.25/9 + 0/10

Rule 2

- Antecedent 1
 - Age is middle_aged: μ_{middle_aged} (40) = 0.5
- Antecedent 2
 - BLANK
- Rule strength = Ante₁
 - 0.5
- Consequent
 - Employ is fair
 - min(0.5, 0/3 + .5/4 + 1/5 + .5/6 + 0/7)
 - 0/3 + 0.5/4 + 0.5/5 + 0.5/6 + 0/7

Rule 3

- Antecedent 1
 - $Age \text{ is old: } \mu_{old}(40) = 0$
- Antecedent 2
 - Height is short: $\mu_{short}(1.8) = 0$
- Rule strength = Ante₁ OR Ante₂
 - $-\max(0,0)=0$
- Consequent
 - Employ is bad
 - min(0.0, 0/0 + .5/1 + 1/2 + .5/3 + 0/4)
 - 0/0 + 0/1 + 0/2 + 0/3 + 0/4

Rule Combination

- · The three rule results
 - $R_1: 0/6 + 0.25/7 + 0.25/8 + 0.25/9 + 0/10$
 - $R_2: 0/3 + 0.5/4 + 0.5/5 + 0.5/6 + 0/7$
 - $R_3: 0/0 + 0/1 + 0/2 + 0/3 + 0/4$
- Rule combination
 - $\max(R_1, R_2, R_3)$
 - $\begin{array}{l} \; \max(0/6 + 0.25/7 + 0.25/8 + 0.25/9 + 0/10, \, 0/3 + 0.5/4 + \\ 0.5/5 + 0.5/6 + 0/7, \, 0/0 + 0/1 + 0/2 + 0/3 + 0/4) \end{array}$
 - $-\max(0)/0 + \max(0)/1 + \max(0)/2 + \max(0,0)/3 + \max(.5,0)/4 + \max(.5)/5 + \max(.5)/6 + \max(.25,0)/7 + \max(.25)/8 + \max(.25)/9 + \max(0)/10$
 - 0/0+0/1+0/2+0/3+.5/4+.5/5+.5/6+.25/7+.25/8+.25/9+0/10

Operators

- Mamdani inference features union and intersection operators, both in two places
 - intersection
 - · combining antecedants joined by AND
 - implication operator to derive each consequent
 - union
 - combining antecedants joined by OR
 - operator used to combine all consequents overall
- Operator families should be used consistently
 - in practice, often AND-OR pair is varied independently of implication/combination

Defuzzification

- In general, the result of Mamdani inference is a complex output fuzzy set
 - what does this mean?
- Often, for example in Mamdani's case, a single (crisp) number is required for output
 - the fuzzy output set is converted to a number
 - this process is termed *defuzzification*
- Mamdani chose to use a method whereby the centre of the area under the output set is used
 - this is called the *centroid* or *centre-of-gravity*

Defuzzification

- There are two principal forms of defuzzification
 - numeric defuzzification
 - linguistic defuzzification
- · Numeric defuzzification
 - often, a single (crisp) number is required as output
 - · e.g. fuzzy control
 - there are many different options
 - COG (centroid), mean-of-maxima, centre-of-area
- · Linguistic defuzzification
 - a linguistic term representing the output set is found
 - some form of similarity or distance metric used

Mean of Maxima

• The mean of the x's which attain the maximal membership grade

Smallest/Largest of Maxima

 The smallest or largest of x's with the maximal grade

Bisector • The value of x which splits the total area into two equal subareas - usually very similar result to the centroid 50% 50% 50%

Problems

- · Information is lost
 - $\boldsymbol{-}$ this is inevitable when reducing to a single number

Other Metrics

- Membership grade at defuzzification point (μ_g) provides an indication of confidence in the result
- Maximum membership grade (μ_h, height)
 provides a direct measure of strength of rules fired
- Normalised area

$$A = \frac{\sum_{i=1}^{N} \mu_i}{N}$$

• Fuzzy entropy

$$S = \frac{\sum_{i=1}^{N} \left(-\mu_{i} \ln(\mu_{i}) - (1 - \mu_{i}) \ln(1 - \mu_{i})\right)}{N}$$

Metric Values set S 3 0.95 Α 1.00 0.07 0.06 40 0.80 0.80 0.32 0.50 С 40 0.80 0.80 0.05 0.08 0.90 D 50 0.90 0.12 0.15 Ε 50 0.16 0.50 0.19 0.60 F (singleton) 80 1.00 1.00 0.00 0.00 unknown 1.0/x 50 1.00 1.00 1.00 0.00 indeterm. 0.5/x 50 0.50 0.50 0.50 1.00 undefined 0/x 50 0.00 0.00 0.00 0.00

Linguistic Approximation

- A similarity measure is used to compute the distance between
 - the actual output set
 - the set of all terms of the linguistic variable
 - collection of primitive terms, connectives and hedges
- Search to find the best term while limiting the complexity to produce comprehensible output
 - e.g. medium or high may be prefered to not extremely low or fairly medium or fairly high
- Special level sets may also be included in search

Similarity Measures

• Euclidean distance

$$\delta^2 = \sum\nolimits_{i=1}^N (\mu_i - \eta_i)^2$$

- where η_i is membership grade of linguistic term
- minimum will determine the best match
- Degree of overlap

$$\gamma = \frac{A \cap B}{A \cup B}$$

- maximum will determine the best match

Example - Sets

- · Recall, our output set
 - .5/4 + .5/5 + .5/6 + .25/7 + .25/8 + .25/9
- · Recall, the output sets for Employ

$$-$$
 bad = $0/0 + .5/1 + 1/2 + .5/3 + 0/4$

$$- fair = 0/3 + .5/4 + 1/5 + .5/6 + 0/7$$

- -good = 0/6 + .5/7 + 1/8 + .5/9 + 0/10
- And, three level sets
 - undefined= 0/0 + 0/1 + 0/2 + ... + 0/8 + 0/9 + 0/10
 - indeterminate = .5/0 + .5/1 + .5/2 + ... + .5/8 + .5/9 + .5/10
 - unknown = 1/0 + 1/1 + 1/2 + ... + 1/8 + 1/9 + 1/10

Example - Similarities

х	output	bad	dist(bad)	fair	dist(fair)	good	dist(good)	undefined	d(undefined)	indet.	d(indet.)	unknown	d(unknown)
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
1	0.00	0.50	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
2	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
3	0.00	0.50	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
4	0.50	0.00	0.25	0.50	0.00	0.00	0.25	0.00	0.25	0.50	0.00	1.00	0.25
5	0.50	0.00	0.25	1.00	0.25	0.00	0.25	0.00	0.25	0.50	0.00	1.00	0.25
6	0.50	0.00	0.25	0.50	0.00	0.00	0.25	0.00	0.25	0.50	0.00	1.00	0.25
7	0.25	0.00	0.06	0.00	0.06	0.50	0.06	0.00	0.06	0.50	0.06	1.00	0.56
8	0.25	0.00	0.06	0.00	0.06	1.00	0.56	0.00	0.06	0.50	0.06	1.00	0.56
9	0.25	0.00	0.06	0.00	0.06	0.50	0.06	0.00	0.06	0.50	0.06	1.00	0.56
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
		Σ	2.44		0.44		1.44		0.94		1.44		7.44

• The best linguistic match is 'fair'

Summary

- Lecture summary
 - Mamdani inference uses a heuristic approximation of inference, inspired by production rules
 - with reasonable choices of variables, terms and rules, it produces reasonable results
 - defuzzification is required as the output is fuzzy
 - there are alternative numeric and linguistic methods
 - no defuzzification technique is 'correct'
- Next lecture
 - Sugeno inference