JORNADA DE APRENDIZAGEM

Douglas Fernandes

Kabele Maia

João Barioni

João Cheutchuk

Sistema Fiep FIEP SESI SENAI IEL

O PROTÓTIPO

DETECÇÃO DE PRESENÇA

DETECÇÃO DE PRESENÇA

ESP32-CAM:

- Modelo: ESP32-CAM;
- Tensão de operação: 5V;
- CPU: Xtensa® Dual-Core 32-bit LX6;
- ROM: 448 Kbytes;
- RAM: 520 Kbytes SRAM;
- Flash: 4 MB PSRAM;
- Resolução da foto: 2 Megapixels;
- Clock máximo: 240MHz;
- Wireless padrão 802.11 b/g/n;
- Conexão: Wifi 2.4Ghz [máximo de 150 Mbps];
- Wi-Fi Direct (P2P), P2P Discovery, P2P Group Owner mode e P2P Power Management;
- Modos de operação: STA/AP/STA+AP;
- Bluetooth: BLE 4.2;
- Portas GPIO: 16;
- Taxa de transferência: 110-460800 bps;
- Dimensões (CxLxE): 40x27x6mm;
- Peso: 7g;
- Peso com embalagem: 10g.

DIMERIZAÇÃO POR PULSO PWM

CONTROLE ANALÓGICO 0-10V

Módulo Conversor 0-10V:

- Tensão de operação: 12 a 30VDC (> 100mA)
- Tensão do sinal PWM (entrada): O a 5V
- Tensão analógica (saída): 0 a 5V / 0 a 10V
- Frequência de entrada do PWM: 1 a 3KHz
- Precisão: +/- 5%
- Faixa de conversão: O a 100%
- Trimpot para ajuste da tensão de saída
- Jumper para configuração 5V ou 24V
- Temperatura de Operação: -25º a 85º celsius
- Dimensões: 33mm(L) X 12mm(A) X 33mm(C)
- Peso: 11g

DETECÇÃO DE LUZ

Sensor de luminosidade:

- Módulo sensor de luminosidade GY-302
- CI BH1750VFI (datasheet)
- Tensão de operação: 3 à 5V DC
- Faixa de medição: 1 à 65.535 Lux
- Interface: I2C
- Conversor AD de 16 bits
- Dimensões: 18,5 x 13,9mm

TEMPERATURA E UMIDADE

TEMPERATURA E UMIDADE

SENSOR DHT22:

- Faixa de umidade relativa: de 0 a 100 %
- Precisão na umidade: ± 2% RH
- Resolução de umidade: 0,1 % RH
- Faixa de temperatura: -40 a 80 °C
- Precisão na temperatura: ± 1 % °C
- Resolução na temperatura: 0,1 °C
- Tempo de resposta: < 5 segundos
- Alimentação: de 3,3V a 5 V
- Consumo máximo de corrente: 0,5 mA

TELEMETRIA

APLICATIVO WEB

APLICATIVO MOBILE

E-mail Senha			Login:
Senha		E-mail	
	Confirmar	Senha	
0	Confirmar		Operformer
Lembrar-se de mim?			

APLICATIVO MOBILE

BANCO DE DADOS

BANCO DE DADOS

FIREBASE REALTIME DATABASE

FIREBASE REALTIME DATABASE

COMUNICAÇÃO ENTRE LUMINÁRIAS

REDE MESH

REDE MESH

TOPOLOGIA

CONSOLE DE COMUNICAÇÃO - PYTHON

 Desenvolvimento em PYTHON de um console responsável por detectar a ESP conectada no computador e estabelecer a comunicação direta com o Database (Banco de Dados) pelo programa em segundo plano.

PROTOBOARD

(Protótipo)

- 1 Regulador de tensão; (LM2596)
- 2 Microcontrolador; (ESP32)
- 3 Sensor de presença; (ESP32-CAM)
- 4 Sensor de temp./umidade; [DHT22]
- 5 Sensor de luz; (BH1750)
- 6 Saída PWM;
- <mark>7</mark> Alimentação 12Vdc;

ESQUEMA ELETRÔNICO

ESQUEMA ELETRÔNICO

IDEIAS DE MELHORIA

ALERTA SONORO

ALIMENTAÇÃO ININTERRUPTA

ELABORAÇÃO DE UMA PCI

ACESSO AO CÓDIGO

Para acessar o código basta clicar <u>aqui</u>!

DUVIDAS?

MUITO OBRIGADO!

JORNADA DE APRENDIZAGEM

Douglas Fernandes

Kabele Maia

João Barioni

João Cheutchuk

Sistema Fiep FIEP SESI SENAI IEL