Algorithmen und Datenstrukturen Klausur SS 2014

Angewandte Informatik Bachelor

Name	
Matrikelnummer	

Aufgabe 1	B-Bäume	18	
Aufgabe 2	Hash-Verfahren	13	
Aufgabe 3	Floyd-Algorithmus	17	
Aufgabe 4	Dijkstra- und Prim- Algorithmus	12	
Summe		60	

Aufgabe 1 B-Bäume (18 Punkte)

a) Fügen Sie in folgendem B-Baum der Ordnung 4 die Schlüssel 13 und dann 52 ein.

b) <u>Löschen</u> Sie in folgendem B-Baum der Ordnung 4 die Schlüssel 10 und dann 7.

c)	Geben Sie für den B-Baum aus Teilaufgabe a) den entsprechenden Rot-Schwarz-Baum an.
d)	Nennen Sie 2 bis 3 Vorteile von Rot-Schwarz-Bäumen gegenüber B-Bäumen der Ordnung 4 hinsichtlich von Implementierungsaspekten.

Aufgabe 2 Hashverfahren (13 Punkte)

a) Geben Sie die Belegung einer Hash-Tabelle der Größe n = 11 an, wenn folgende Operationen durchgeführt werden:

- Einfügen: 15, 5, 19, 37, 4

Löschen: 37Einfügen: 26

Verwenden Sie <u>offenes Hashing mit quadratischem Sondieren</u> und der Hash-Funktion $h(k) = k \mod n$.

Index	Hash-Tabelle
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Index	Hash-Tabelle
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Index	Hash-Tabelle
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

b) Folgende Klasse beschreibt einen Handelsartikel. Dabei ist EAN (European Article Number) eine eindeutige Artikelcodierung. Eine Menge von Artikel sollen in Java mit einer HashMap verwaltet werden. Wie muss dazu die Klasse Artikel ergänzt werden?

```
class Artikel {
String ean;
String bezeichnung;
double preis;
// ...
```

Aufgabe 3 Algorithmus von Floyd (17 Punkte)

- a) Berechnen Sie für folgenden gerichteten Graphen mit dem Algorithmus von Floyd für alle Knotenpaare die günstigsten Wege. Es müssen nur die Distanzmatrizen D^k berechnet werden. <u>Hinweis:</u> $D^k[i][j] = Distanz$ (Kosten des günstigsten Weges) von Knoten i nach j, wobei nur Wege betrachtet werden, die über Knoten aus $\{0, 1, ..., k\}$ gehen.
- b) Was sind die Kosten für den günstigsten Weg von Knoten 3 nach Knoten 1 und wie lautet der kürzeste Weg?

D^{-1}				
0	3	8	8	1
∞	0	8	4	8
4	2	0	8	8
- 5	8	1	0	4
∞	4	-1	8	0

D^2		

Aufgabe 4 Dijkstra- und Prim-Algorithmus (12 Punkte)

Für diese Aufgaben werden zusammenhängende, ungerichtete Graphen vorausgesetzt.

a)	Belegen Sie folgende Aussage: der Dijkstra-Algorithmus berechnet einen aufspannenden Baum Hinweis: ein Baum ist ein zyklenfreier und zusammenhängender Graph.
b)	Geben Sie einen Beispielgraphen mit 4 Knoten an, bei dem der aufspannende Baum, der im Dijkstra Algorithmus berechnet wird, nicht minimal ist. Geben Sie den aufspannenden Baum an.
c)	Welcher aufspannende Baum wird in Ihrem Beispielgraphen mit dem Prim-Algorithmus berechnet?