LEC007 Inventory Management II

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Wagner-Whitin Model

INPUT:

- Deterministic demand (non-stationary) over T periods $(d_1, d_2, d_3, ..., d_{T-1}, d_T)$
- No stockout is allowed
- Lead time L (setting L = 0 WLOG)
- Fixed cost K > 0 per order
- Purchase cost c per unit (setting c = 0 WLOG)
- Inventory hold cost h > 0 per unit per unit of time

OUTPUT:

The optimal ordering strategy

Mixed Integer Linear Program (MILP)

Decision Variables

```
q_t = the number of units ordered in period y_t = 1 if we order in period t, 0 otherwise x_t = the inventory level at the end of period, with x_0 \equiv 0
```


ZIO Property

- It is optimal to place orders only in time periods in which the inventory level is zero.
- This suggests that each order is of a size equal to the total demand in an integer number of subsequent periods, i.e., in period t, we either order d_t ,

```
or d_t + d_{t+1},
or d_t + d_{t+1} + d_{t+2},
and so on.
```

Dynamic Programming

• Define θ_t to be the optimal cost in periods [t, T] if we place optimal orders over [t, T].

$$\theta_t = \min_{t < s \leq T+1} \left\{ K + h \sum_{i=t}^{s-1} (i-t) d_i + \theta_s \right\}$$
 Cost of covering demands of periods
$$t, t+1, \dots, s-1$$

Boundary condition:

$$\theta_{T+1} \equiv 0$$

Dynamic Programming

Backward induction

$$\theta_t = \min_{t < s \le T+1} \left\{ K + h \sum_{i=t}^{s-1} (i-t)d_i + \theta_s \right\}.$$
 (3.39)

Algorithm 3.1 Wagner–Whitin algorithm

Numerical Example

K = 500, h = 2 per period. The demands are 90, 120, 80, and 70.

$$\begin{aligned} \theta_5 &= 0 \\ \theta_4 &= K + h \left(0 \cdot d_4 \right) + \theta_5 \\ &= 500 \quad [s(4) = 5] \\ \theta_3 &= \min \left\{ K + h \left(0 \cdot d_3 \right) + \theta_4, K + h \left(0 \cdot d_3 + 1 \cdot d_4 \right) + \theta_5 \right\} \\ &= \min \left\{ 1000, 640 \right\} \\ &= 640 \quad [s(3) = 5] \\ \theta_2 &= \min \left\{ K + h \left(0 \cdot d_2 \right) + \theta_3, K + h \left(0 \cdot d_2 + 1 \cdot d_3 \right) + \theta_4 \right. \\ &\quad K + h \left(0 \cdot d_2 + 1 \cdot d_3 + 2 \cdot d_4 \right) + \theta_5 \right\} \\ &= \min \left\{ 1140, 1160, 940 \right\} \\ &= 940 \quad [s(2) = 5] \\ \theta_1 &= \min \left\{ K + h \left(0 \cdot d_1 \right) + \theta_2, K + h \left(0 \cdot d_1 + 1 \cdot d_2 \right) + \theta_3 \right. \\ &\quad K + h \left(0 \cdot d_1 + 1 \cdot d_2 + 2 \cdot d_3 \right) + \theta_4 \\ &\quad K + h \left(0 \cdot d_1 + 1 \cdot d_2 + 2 \cdot d_3 \right) + \theta_5 \right\} \\ &= \min \left\{ 1440, 1380, 1560, 1480 \right\} \\ &= 1380 \quad [s(1) = 3] \end{aligned}$$

If you think about this...

Figure 3.12 Wagner–Whitin network.

Shortest Path Problem

Input:

- Directed Graph G(V, E) with |V| = n, |E| = m
- Each edge $e \in E$ has non-negative length $l_e \ge 0$
- Source vertex s

Output:

For each $v \in V$, compute

L(v) = length of a shortest s-v path in G

Fastest algorithm is called Dijkstra's Algorithm

Caveat: length/weight/travel time $l_e \ge 0$!

Dijkstra's Algorithm

- Initialize $X = \{s\}, A[s] = 0, B[s] = \emptyset$
- Main loop
 - While $X \neq V$

- ▶ Of all edges $(v, w) \in E$ with $v \in X$ and $w \notin X$, pick the one that minimizes $A[v] + l_{vw}$ (Dijkstra's greedy criterion)
- ▶ Call the minimizing edge (v^*, w^*) and add vertex w^* to X
- ► Set $A[w^*] = A[v^*] + l_{v^*w^*}$
- $\blacktriangleright \operatorname{Set} B[w^*] = B[v^*] \cup (v^*, w^*)$

An Example

 $A[v] + l_{vw}$ (Dijkstra's greedy criterion) min $(A[s] + l_{sa}, A[s] + l_{sb}) = \min(0 + 1, 0 + 4) = 1$

An Example

 $A[v] + l_{vw}$ (Dijkstra's greedy criterion)

$$\min(A[s] + l_{sb}, A[a] + l_{ab}, A[a] + l_{ac}) = \min(0 + 4, 1 + 2, 1 + 6) = 3$$

An Example

 $A[v] + l_{vw}$ (Dijkstra's greedy criterion)

$$\min(A[a] + l_{ac}, A[b] + l_{bc}) = \min(1 + 6, 3 + 3) = 6$$

Non-Example

· Dijkstra is incorrect on this G

• Use dynamic programming in this case

Proof of Correctness

Claim: A[v] = L[v] where A is the output of Dijkstra and L is true shortest distance

Proof: By induction, base case A[s] = L[s] = 0 is true.

Inductive Hypothesis (I.H.): all previous iterations are corrrect, i.e.,

 $\forall v \in X, A[v] = L[v]$ and B[v] gives the shortest path

In the current iteration, Dijkstra have chosen v^*w^* , we have $A[w^*] = A[v^*] + l_{v^*w^*}$ Now let P be any $s \to w^*$ path and it must "cross the frontier"

Length of $P \ge L(y) + l_{yz} + 0 = A(y) + l_{yz} + 0$, note that L(y) = A(y) by I.H. Also, by Dijkstra's greedy criterion, Our length $= A[v^*] + l_{v^*w^*} \le A(y) + l_{yz} \le Length$ of P

General Graph Search

- Let q be an abstract queue object
 - add(node), which adds a node into q
 - popFirst(), which pops the first node from q
- General graph search

While q is not empty:

- $\triangleright v \leftarrow q.popFirst()$
- ▶ For all neighbors u of v such that $u \notin q$:
 - add(u)

General Graph Search

- General graph search
 While q is not empty:
 - $\triangleright v \leftarrow q.popFirst()$
 - ▶ For all neighbors u of v such that $u \notin q$:
 - add(u)
- If q is a standard LIFO stack, then DFS
- If q is a standard FIFO queue, then BFS
- If q is a priority queue, then Dijkstra
- If q is a priority queue with a heuristic, then A*

Priority Queue Implementation

- $A[s] \leftarrow 0$, and $A[v] \leftarrow \infty$ for all $v \in V \setminus \{s\}$
- q.add(s)
- While q is not empty:

$$\triangleright v \leftarrow q.popFirst()$$

Extract min-q

- ▶ For all neighbors u of v such that $A[v] + l_{vu} \le A[u]$
 - $A[u] \leftarrow A[v] + l_{vu}$
 - q.update(u, A[u])

Runtime: If using binary minheap, O((|E| + |V|)logV)If using Fibonacci minheap, O(|E| + |V|logV)

Summary

- Wagner-Whitin model
- Dynamic Programming
- Shortest Path (Dijkstra's Algorithm)
- Next Up: Stochastic Inventory Model