WHAT IS CLAIMED IS:

1	1.	A method for sputter coating a substrate in a sputter
2	coating reactor, the	method comprising:
3	a)	providing a channel for gas to flow through, the channel
4	defined by a channe	el defining surface wherein one or more portions of the
5	channel-defining su	rface include at least one target material;
6	b)	flowing gas through the channel wherein at least a portion
7	of the gas is a non-l	aminarly flowing gas; and
8	c)	generating a plasma, wherein the target material is
9	sputtered off the cha	annel-defining surface to form a gaseous mixture containing
10	target atoms that is	transported to the substrate.
1	2.	The method of claim 1 wherein the non-laminarly flowing
2	gas is formed by tur	rbulence.
1	3.	The method of claim 1 wherein the non-laminarly flowing
2	gas is formed by flo	owing a first portion of gas in a first direction and a second
3	portion of gas in a s	second direction wherein the first direction and the second
4	direction are substan	ntially non-parallel.
4		
1	4.	The method of claim 1 wherein the non-laminarly flowing
2	·	owing the gas through at least two orifices such that at least
3		erging from the at least two orifices are flowing in
4	substantially non-pa	rallel directions.
1	5.	The method of claim 1 wherein the non-laminarly flowing
		•
2	_	ng the gas through a series of orifices such that adjacent
3	orifices direct the ga	as in non-parallel directions.
1	6.	The method of claim 1 wherein the non-laminarly flowing
2		bulence with a Reynolds number greater than 2000.
_	Sas is formed by tur	caroned with a regional number greater than 2000.

1	7. The method of claim 1 wherein the channel-defining	
2	surface is part of a cathode.	
1	8. The method of claim 1 wherein the channel has a	
2	rectangular cross section.	
1	9. The method of claim 1 wherein the target material is in	
2	electrical contact with a DC potential, a DC potential with a superimposed AC	
3	potential, or a pulsed DC potential.	
1	10. The method of claim 1 wherein the target material is in	
2	electrical contact with a pulsed DC power source that is an asymmetric bipolar	
3	pulsed DC power supply.	
3	pulsed DC power suppry.	
1	11. The method of claim 1 wherein the at least one target	
2	material comprises a metal or metal alloy.	
1	12. The method of claim 1 wherein the at least one target	
2	material comprises a component selected from the group consisting of zinc,	
3	copper, aluminum, silicon, tin, indium, magnesium, titanium, chromium,	
4	molybdenum, nickel, yttrium, zirconium, niobium, cadmium, and mixtures	
5	thereof.	
1	13. The method of claim 1 wherein the at least one target	
2	material includes a first target material and a second target material, the first	
3	target material being opposite the second and wherein the first target material and	
4	the second target material are the same or different.	
1	14. The method of claim 13 wherein the first target material	
2	and the second target material comprise a metal or a metal alloy.	

1	15. The method of claim 13 wherein the first target material	
2	and the second target material independently include a component selected from	
3	the group consisting of zinc, copper, aluminum, silicon, tin, indium, magnesium,	
4	titanium, chromium, molybdenum, nickel, yttrium, zirconium, niobium,	
5	cadmium, and mixtures thereof.	
1	16. The method of claim 13 wherein the at least one target	
2	material includes a third target material and a fourth target material, the third	
3	target material being opposite the fourth target material and wherein the first	
4	target material, the second target material, the third target material, and the	
5	fourth target material are the same or different.	
1	17. The method of claim 13 wherein the at least one target	
2	material includes a first electrically insulating block and a second electrically	
3	insulating block, the first insulating block being opposite the second insulating.	
1	18. The method of claim 13 further comprising introducing a	
2	reactive gas into the sputter coating reactor.	
1	19. The method of claim 18 wherein the reactive gas is	
2	introduced at a position located outside of the channel from which the gaseous	
3	mixture emerges.	
1	20. The method of claim 18 wherein the reactive gas contains	
2	an atom selected from the group consisting of oxygen, nitrogen, selenium, sulfur,	
3	iodine, hydrogen, carbon, boron, and phosphorus.	
1	21. The method of claim 18 wherein the reactive gas is selected	
2	from the group consisting of molecular oxygen, molecular nitrogen, molecular	
3	hydrogen, H ₂ O, H ₂ Se, CH ₄ , C ₂ H ₆ , C ₂ H ₂ , C ₂ H ₄ , B ₂ H ₆ , PH ₃ , CCl ₄ , CF ₄ , HMDSO,	
4	pyrrole and mixture thereof.	

1	22. A method for depositing an oxide film on a substrate in a	
2	sputter coating reactor, the method comprising:	
3	a) providing a channel for a working gas to flow through, the	
4	channel defined by a channel-defining surface wherein one or more portions of	
5	the channel-defining surface include at least one target material;	
6	b) flowing the working gas through the channel wherein at	
7	least a portion of the working gas flows non-laminarly;	
8	c) generating a plasma wherein a portion of the target	
9	material is sputtered off the at least one target material to form a gaseous mixture	
10	containing target atoms; and	
11	d) introducing into the sputter coating reactor a reactive gas	
12	comprising oxygen, wherein an oxide film is deposited on the substrate.	
1	23. The method of claim 22 wherein the reactive gas is	
2	introduced at a position located outside of the channel from which the gaseous	
3	mixture emerges.	
1	24. The method of claim 22 wherein the at least one target	
2	material comprises a metal, metal alloy, or semiconductor.	
1	25. The method of claim 22 wherein the at least one target	
2	material comprises a component selected from the group consisting of zinc,	
3	copper, aluminum, silicon, tin, indium, magnesium, titanium, chromium,	
4	molybdenum, nickel, yttrium, zirconium, niobium, cadmium, and mixtures	
5	thereof.	
1	26 The week of a falcing 22 releasing the social film in Cafic	
1	26. The method of claim 22 wherein the oxide film is CrSiO _x ,	
2	ZnO:B (boron doped zinc oxide), CuAlO ₂ , CuBO ₂ , In ₂ O ₃ , In ₂ O ₃ :Mo, ITO, MgO	
3	Al ₂ O ₃ or mixtures thereof.	
1	27. The method of claim 22 wherein the at least one target	
2	material comprises zinc and the oxide film is zinc oxide.	
~	material comprises and and are orner min to ante orner.	

i	28. The method of claim 27 wherein the at least one target
2	material further comprises aluminum.
1	29. The method of claim 22 wherein the reactive gas contains
2	oxygen atoms.
1	30. The method of claim 22 wherein the reactive gas is
2	molecular oxygen or H_2O .
1	31. The method of claim 22 wherein the at least one target
2	material includes a first target material and a second target material; and the first
3	target material and the second target material are the same or different.
1	32. The method of claim 31 wherein the first target material is
2	opposite the second target material.
1	33. The method of claim 31 wherein the first target material
2	and the second target material comprise a metal or a metal alloy.
1	34. The method of claim 31 wherein the first target material
2	and the second target material independently comprise a component selected from
3	the group consisting of zinc, copper, aluminum, silicon, tin, indium, magnesium,
4	titanium, chromium, molybdenum, nickel, yttrium, zirconium, niobium,
5	cadmium, and mixtures thereof.
1	35. The method of claim 31 wherein the first target material
2	comprises zinc and the second target comprises aluminum wherein the oxide film
3	is aluminum-doped zinc oxide.
1	36. A sputter-coating system for coating a substrate, the
2	sputter-coating system comprising:
3	at least one target material

4 5

6	material;	
7	a source of non-laminarly flowing working gas; wherein during	
8	operation of the sputter-coating system a plasma is generated whereby the at least	
9	one target material is sputtered off the channel-defining surface to form a gaseous	
10	reactive composition that is transported to the substrate.	
1	37. The sputter-coating system of claim 36 wherein the source	
2	of non-laminarly flowing gas includes a series of orifices such that at least two	
3	gas streams emerging from the series of orifices are substantially flowing in non-	
4	parallel directions.	
1	38. The sputter-coating system of claim 36 wherein the source	
2	of non-laminarly flowing gas includes a series of orifices such adjacent orifice	
3	direct the gas in non-parallel directions.	
1	39. The sputter-coating system of claim 36 wherein the	
2	enclosing surface is part of a cathode.	
1	40. The sputter-coating system of claim 36 wherein the channel	
2	is characterized by a rectangular cross section.	
1	41. The sputter-coating system of claim 36 wherein the at least	
2	one target material includes a first target material and a second target material,	
3	the first target material being opposite the second and wherein the first target	
4	material and the second target material are the same or different.	
1	42. The sputter-coating system of claim 41 wherein the first	
2	target material and the second target material comprise a metal or a metal alloy.	
1	43. The sputter-coating system of claim 41 wherein the first	
1		
2	target material and the second target material individually include a component	

an electrode having a channel-defining surface wherein one or

more portions of the channel-defining surface contains the at least one target

2

3	selected from the	group consisting of zinc, copper, aluminum, silicon, tin,	
4	indium, magnesiu	m, titanium, chromium, molybdenum, nickel, yttrium,	
5	zirconium, niobiu	m, cadmium, and mixtures thereof.	
1	44.	The sputter-coating system of claim 41 wherein the at least	
2	one target materia	l includes a third target material and a fourth target material,	
3	the third target m	aterial being opposite the fourth target material and wherein the	
4	first target material, the second target material, the third target material, and the		
5	fourth target mate	rial are the same or different.	
1	45.	The sputter-coating system of claim 36 further comprising	
2	a source of a reac	tive gas.	
l	46.	The sputter-coating system of claim 45 wherein the source	
2	of a reactive gas i	s located at proximate position to the exit of the channel.	
1	47.	A method for depositing nitride film on a substrate in a	
2	sputter coating rea	actor, the method comprising:	
3	a)	providing a channel for a working gas to flow through, the	
4	channel defined b	y a channel-defining surface wherein one or more portions of	
5	the channel-defini	ng surface include at least one target material;	
6	b)	flowing the working gas through the channel wherein at	
7	least a portion of	the working gas flows non-laminarly;	
8	c)	generating a plasma wherein a portion of the target	
9	material is sputter	ed off the at least one target material to form a gaseous mixture	
10	containing target	containing target atoms; and	
11	d)	introducing into the sputter coating reactor a reactive gas	
12	comprising molec	ular nitrogen, wherein a nitride film is deposited on the	
13	substrate.		
1	48.	The method of claim 47 wherein the reactive gas is	

combined with the working gas while it is flowed through the channel.

1	49. The method of claim 47 wherein the reactive gas is
2	introduced at a position located outside of the channel from which the gaseous
3	mixture emerges.
1	50. The method of claim 47 wherein the at least one target
2	material comprises a metal, metal alloy, or semiconductor.
1	51. The method of claim 47 wherein the at least one target
2	material comprises a component selected from the group consisting of zinc,
3	copper, aluminum, silicon, tin, indium, magnesium, titanium, chromium,
4	molybdenum, nickel, yttrium, zirconium, niobium, cadmium, vanadium,
5	hafnium, tungsten, and mixtures thereof.
1	52. The method of claim 47 wherein the nitride film is titanium
2	nitride, indium nitride, aluminum nitride, chromium nitride, vanadium nitride,
3	zirconium nitride, tungsten nitride, copper nitride, or mixtures thereof.
1	53. The method of claim 47 wherein the at least one target
2	material includes a first target material and a second target material; and the first
3	target material and the second target material are the same or different.
1	54. The method of claim 53 wherein the first target material is
2	opposite the second target material.