Challenges

- ▶ Many analytical approaches (PGF, ODE) can be adapted to account for stub types, but the graphs considered are infinite in size.
- Sampling naively is easy, sampling right is tricky (ex.: uniform sampling via edge swaps).

The sample space is not necessarily connected under 2-edge swaps.

The onion decomposition accounts for a lot when it comes to the precision of message-passing description of percolation.

Numerical evidence that the ignored graphs could be negligible (using k-edge swaps), but still no formal demonstration.

Main takeaways

- ▶ Local connection rules can enforce strict global topological features.
- > These rules can be leveraged to design
 - new mathematical frameworks (ex.: ODEs, PGFs)
 - new sampling algorithms (ex.: edge swapping)

Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition

Laurent Hébert-Dufresne¹, Joshua A. Grochow¹ & Antoine Allard²

Sci. Rep. 6, 31708 (2016)

Percolation and the Effective Structure of Complex Networks

Antoine Allard^{1,2} and Laurent Hébert-Dufresne^{3,1}

Phys. Rev. X 9, 011023 (2019)

Modeling critical connectivity constraints in random and empirical networks

Laurent Hébert-Dufresne, 1, 2, 3 Márton Pósfai, 4 and Antoine Allard 3, 5, 1

arXiv:2307.03559

On the Uniform Sampling of the Configuration Model with Centrality Constraints

François Thibault,^{1,2} Laurent Hébert-Dufresne,^{3,4} and Antoine Allard^{1,5}

arXiv:2409.20493

Laurent Hébert-Dufresne University of Vermont

Márton Pósfai Central European University

Joshua A. Grochow University of Colorado, Boulder