

Quartus[®] II Software Design Series: Timing Analysis

- Timing analysis basics

Objectives

Display a complete understanding of timing analysis

How does timing verification work?

- Every device path in design must be analyzed with respect to timing specifications/requirements
 - Catch timing-related errors faster and easier than gate-level simulation & board testing
- Designer must enter timing requirements & exceptions
 - Used to guide fitter during placement & routing
 - Used to compare against actual results

Timing Analysis Basics

- Launch vs. latch edges
- Setup & hold times
- Data & clock arrival time
- Data required time
- Setup & hold slack analysis
- I/O analysis
- Recovery & removal
- Timing models

Path & Analysis Types

Three types of Paths:

- Clock Paths
- Data Path
- Asynchronous Paths*

Two types of Analysis:

- 1. Synchronous clock & data paths
- 2. Asynchronous* clock & async paths

^{*}Asynchronous refers to signals feeding the asynchronous control ports of the registers

Launch & Latch Edges

Launch Edge: the edge which "launches" the data from source register

the edge which "latches" the data at destination register (with respect to the launch edge, selected by timing analyzer; typically 1 cycle) Latch Edge:

Setup & Hold

Setup: The minimum time data signal must be stable

BEFORE clock edge

Hold: The minimum time data signal must be stable

AFTER clock edge

Together, the setup time and hold time form a Data Required Window, the time around a clock edge in which data must be stable.

Data Arrival Time

■ The time for data to arrive at destination register's D input

Data Arrival Time = launch edge +
$$T_{clk1}$$
 + T_{co} + T_{data}

Clock Arrival Time

■ The time for clock to arrive at destination register's clock input

Clock Arrival Time = latch edge + T_{clk2}

Data Required Time - Setup

 The minimum time required for the data to get latched into the destination register

Data Required Time = Clock Arrival Time - T_{su} - Setup Uncertainty

Data Required Time - Hold

 The minimum time required for the data to get latched into the destination register

Data Required Time = Clock Arrival Time + T_h + Hold Uncertainty

Setup Slack

The margin by which the setup timing requirement is met. It ensures launched data arrives in time to meet the latching requirement.

Setup Slack (cont'd)

Setup Slack = Data Required Time Data Arrival Time

Positive slack

Timing requirement met

Negative slack

Timing requirement not met

Hold Slack

The margin by which the hold timing requirement is met. It ensures latch data is not corrupted by data from another launch edge.

Hold Slack (cont'd)

Hold Slack = Data Arrival Time Data Required Time

Positive slack

Timing requirement met

Negative slack

Timing requirement not met

I/O Analysis

- Analyzing I/O performance in a synchronous design uses the same slack equations
 - Must include external device & PCB timing parameters

* Represents delay due to capacitive loading

Recovery & Removal

The minimum time an asynchronous signal must Recovery:

be stable BEFORE clock edge

Removal: The minimum time an asynchronous signal must

be stable AFTER clock edge

Asynchronous = Synchronous?

- Asynchronous control signal source is assumed synchronous
 - Slack equations still apply
 - data arrival path = asynchronous control path
 - $T_{su} \approx T_{rec}$; $T_h \approx T_{rem}$
 - External device & board timing parameters may be needed (Ex. 1)

Example 2

© 2009 Altera Corporation

Why Are These Calculations Important?

- Calculations are important when timing violations occur
 - Need to be able to understand cause of violation.
- Example causes
 - Data path too long
 - Requirement too short (incorrect analysis)
 - Large clock skew signifying a gated clock, etc.
- TimeQuest timing analyzer uses them
 - Equations to calculate slack
 - Terminology (launch and latch edges, Data Arrival Path, Data Required Path, etc.) in timing reports

Timing Models in Detail

- Quartus II software models device timing at two PVT conditions by default
 - Slow Corner Model
 - Indicates slowest possible performance for any single path
 - Timing for slowest device at maximum operating temperature and VCC_{MIN}
 - Fast Corner Model
 - Indicates fastest possible performance for any single path
 - Timing for fastest device at minimum operating temperature and VCC_{MAX}
- Why two corner timing models?
 - Ensure setup timing is met in slow model
 - Ensure hold timing is met in fast model
 - Essential for source synchronous interfaces
- Third model (slow, min. temp.) available only for 65 nm and smaller technology devices (temperature inversion phenomenon)

Generating Fast/Slow Netlist

- Specify one of the default timing models to be used when creating your netlist
- Default is the slow timing netlist
- To specify fast timing netlist
 - Use -fast model option with create timing netlist command
 - Choose **Fast corner** in GUI when executing Create Timing Netlist from **Netlist** menu
 - CANNOT select fast corner from Tasks Pane

Specifying Operating Conditions

- Perform timing analysis for different delay models without recreating the existing timing netlist
- Takes precedence over already generated netlist
- Required for selecting slow, min. temp. model and other models (industrial, military, etc.) depending on device

Use get available operating conditions to see available

conditions for target device

Reference Documents

 Quartus II Handbook, Volume 3, Chapter 7 The Quartus II TimeQuest Timing Analyzer

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Quick Start Tutorial

http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf

- Cookbook
 - http://www.altera.com/literature/manual/mnl_timequest_ cookbook.pdf

Reference Documents

- SDC and TimeQuest API Reference Manual
 - http://www.altera.com/literature/manual/mnl_sdctmq.p
 df
- AN 481: Applying Multicycle Exceptions in the TimeQuest Timing Analyzer
 - http://www.altera.com/literature/an/an481.pdf
- AN 433: Constraining and Analyzing Source-Synchronous Interfaces
 - http://www.altera.com/literature/an/an433.pdf

Learn More Through Technical Training

Instructor-Led Training

With Altera's instructor-led training courses, you can:

- Listen to a lecture from an Altera technical training engineer (instructor)
- > Complete hands-on exercises with guidance from an Altera instructor
- > Ask guestions & receive real-time answers from an Altera instructor
- Each instructor-led class is one or two days in length (8 working hours per day).

Online Training

With Altera's online training courses, you can:

- Take a course at any time that is convenient for you
- Take a course from the comfort of your home or office (no need to travel as with instructor-led courses)

Each online course will take approximate one to three hours to complete.

http://www.altera.com/training

View training class schedule & register for a class

Altera Technical Support

- Reference Quartus II software on-line help
- Quartus II Handbook
- Consult Altera applications (factory applications engineers)
 - MySupport: http://www.altera.com/mysupport
 - Hotline: (800) 800-EPLD (7:00 a.m. 5:00 p.m. PST)
- Field applications engineers: contact your local Altera sales office
- Receive literature by mail: (888) 3-ALTERA
- FTP: ftp.altera.com
- World-wide web: http://www.altera.com
 - Use solutions to search for answers to technical problems
 - View design examples

