1. Coefficients in simple linear regression vs multiple linear regression.

Suppose that there are two covariates, X_1 and X_2 , which are generated from a bivariate normal distribution with correlation ρ . Assume that a normal linear model holds for Y, so that our observations $i = 1, \ldots, n$ follow the distribution

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$$
 where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

- (a) Run a simulation of this problem, and find choices of the parameters ρ , β_0 , β_1 , β_2 , σ^2 such that:
 - If you fit a linear model of Y on covariate X_1 only, then the fitted slope is generally positive,
 - But if you fit a linear model of Y on both covariates X_1 and X_2 , then the coefficient $\hat{\beta}_1$ on X_1 is generally negative.
- (b) Give a concrete example of three variables X_1 , X_2 , Y where you might plausibly expect to see this kind of trend, and explain. Your variables should be intuitive and common quantities, such as income, height, test score, etc.
- 2. Faraway chapter 3 problem 1
- 3. Faraway chapter 3 problem 3
- 4. Suppose that we have a data set following the multiple linear regression model with normal noise,

$$Y_i = \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i,$$

where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. (For simplicity, there's no additional intercept term—as in class, if an intercept is needed then it can be one of the p covariates.) Let $\hat{\beta}$ and $\hat{\sigma}^2$ be the usual estimates of β and σ^2 computed via least squares.

Now let $x^{(0)} \in \mathbb{R}^p$ and $x^{(1)} \in \mathbb{R}^p$ be two new covariate vectors, i.e. you have two new points in your data set, with covariate values $x_1^{(0)}, \dots, x_p^{(0)}$ for the first new data point and similarly $x_1^{(1)}, \dots, x_p^{(1)}$ for the second. Let $y^{(0)}$ and $y^{(1)}$ denote the response values for these two data points, which follow the same model, but are unobserved.

- (a) What is your estimate for the difference in response values, i.e. for $y^{(0)} y^{(1)}$?
- (b) Construct a <u>confidence interval</u> around this estimate with coverage level 1α (e.g. $\alpha = 0.05$ for 95% confidence).
- (c) Construct a prediction interval for the actual difference $y^{(0)} y^{(1)}$ with coverage level 1α .