How to build an automatic statistician

James Robert Lloyd¹, David Duvenaud¹, Roger Grosse²,

Joshua Tenenbaum², Zoubin Ghahramani¹

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

August 8, 2014

A SYSTEM FOR AUTOMATIC DATA ANALYSIS

DEFINING A LANGUAGE OF MODELS

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

THE ATOMS OF OUR LANGUAGE

Five base kernels

Encoding for the following types of functions

THE COMPOSITION RULES OF OUR LANGUAGE

► Two main operations: addition, multiplication

MODELING CHANGEPOINTS

Time series data often exhibit changepoints:

MODELING CHANGEPOINTS

Time series data often exhibit changepoints:

We can model this by assuming $f_1(x) \sim GP(0, k_1)$ and $f_2(x) \sim GP(0, k_2)$ and then defining

$$f(x) = (1 - \sigma(x)) f_1(x) + \sigma(x) f_2(x)$$

where σ is a sigmoid function between 0 and 1.

MODELING CHANGEPOINTS

We can model this by assuming $f_1(x) \sim GP(0, k_1)$ and $f_2(x) \sim GP(0, k_2)$ and then defining

$$f(x) = (1 - \sigma(x)) f_1(x) + \sigma(x) f_2(x)$$

where σ is a sigmoid function between 0 and 1.

Then $f \sim GP(0, k)$, where

$$k(x, x') = (1 - \sigma(x)) k_1(x, x') (1 - \sigma(x')) + \sigma(x) k_2(x, x') \sigma(x')$$

We define the changepoint operator $k = CP(k_1, k_2)$.

AN EXPRESSIVE LANGUAGE OF MODELS

Regression model	Kernel
GP smoothing	SE + WN
Linear regression	C + Lin + WN
Multiple kernel learning	\sum SE + WN
Trend, cyclical, irregular	\sum SE + \sum PER + WN
Fourier decomposition	$\overline{C} + \sum \cos + WN$
Sparse spectrum GPs	$\sum \cos + WN$
Spectral mixture	$\sum SE \times cos + WN$
Changepoints	$\overline{\text{e.g.}}$ CP(SE, SE) + WN
Heteroscedasticity	e.g. $SE + LIN \times WN$

Note: cos is a special case of our version of PER

DISCOVERING A GOOD MODEL VIA SEARCH

DISCOVERING A GOOD MODEL VIA SEARCH

- ► Language defined as the arbitrary composition of five base kernels (WN, C, LIN, SE, PER) via three operators (+, ×, CP).
- ► The space spanned by this language is open-ended and can have a high branching factor requiring a judicious search
- We propose a greedy search for its simplicity and similarity to human model-building

James Robert Lloyd 11/3.

James Robert Lloyd 12/3:

James Robert Lloyd 12/3:

James Robert Lloyd 12/3:

MODEL EVALUATION

James Robert Lloyd 13/3:

Suppose we have a collection of models $\{M_i\}$ and some data D

Suppose we have a collection of models $\{M_i\}$ and some data D

Bayes rule tells us

$$p(M_i \mid D) = \frac{p(D \mid M_i)p(M_i)}{p(D)}$$

Suppose we have a collection of models $\{M_i\}$ and some data D

Bayes rule tells us

$$p(M_i \mid D) = \frac{p(D \mid M_i)p(M_i)}{p(D)}$$

If $p(M_i)$ is equal for all i (prior ignorance) then

$$p(M_i \mid D) \propto p(D \mid M_i) = \int p(D \mid \theta_i, M_i) p(\theta_i \mid M_i) d\theta_i$$

Suppose we have a collection of models $\{M_i\}$ and some data D

Bayes rule tells us

$$p(M_i \mid D) = \frac{p(D \mid M_i)p(M_i)}{p(D)}$$

If $p(M_i)$ is equal for all i (prior ignorance) then

$$p(M_i \mid D) \propto p(D \mid M_i) = \int p(D \mid \theta_i, M_i) p(\theta_i \mid M_i) d\theta_i$$

i.e. The most likely model has the highest marginal likelihood

AUTOMATIC TRANSLATION OF MODELS

James Robert Lloyd 15/3.

SUMS OF KERNELS ARE SUMS OF FUNCTIONS

If $f_1 \sim \text{GP}(0, k_1)$ and independently $f_2 \sim \text{GP}(0, k_2)$ then

$$f_1 + f_2 \sim \text{GP}(0, k_1 + k_2)$$

e.g.

We can therefore describe each component separately

PRODUCTS OF KERNELS

On their own, each kernel is described by a standard noun phrase

James Robert Lloyd 17/3:

PRODUCTS OF KERNELS - SE

$$\underbrace{SE}_{approximately} \times \underbrace{PER}_{periodic function}$$

Multiplication by SE removes long range correlations from a model since SE(x, x') decreases monotonically to 0 as |x - x'| increases.

PRODUCTS OF KERNELS - LIN

Multiplication by LIN is equivalent to multiplying the function being modeled by a linear function. If $f(x) \sim \text{GP}(0, k)$, then $xf(x) \sim \text{GP}(0, k \times \text{LIN})$. This causes the standard deviation of the model to vary linearly without affecting the correlation.

PRODUCTS OF KERNELS - CHANGEPOINTS

$$\underbrace{\text{SE}}_{\text{approximately}} \times \underbrace{\text{PER}}_{\text{periodic function}} \times \underbrace{\text{LIN}}_{\text{with linearly growing amplitude}} \times \underbrace{\boldsymbol{\sigma}}_{\text{until 1700}}$$

Multiplication by σ is equivalent to multiplying the function being modeled by a sigmoid.

NOUN PHRASE AND POSTMODIFIER FORMS

Kernel	Noun phrase	Postmodifier phrase
WN	uncorrelated noise	n/a
C	constant	n/a
SE	smooth function	whose shape changes smoothly
PER	periodic function	modulated by a periodic function
Lin	linear function	with linearly varying amplitude
$\prod_k \operatorname{Lin}^{(k)}$	polynomial	with polynomially varying amplitude
$\prod_k^{\kappa} \boldsymbol{\sigma}^{(k)}$	n/a	which applies until / from [changepoint]

AUTOMATICALLY GENERATED REPORTS

James Robert Lloyd 22/3.

EXAMPLE: AIRLINE PASSENGER VOLUME

Four additive components have been identified in the data

- ► A linearly increasing function.
- ► An approximately periodic function with a period of 1.0 years and with linearly increasing amplitude.
- A smooth function.
- ▶ Uncorrelated noise with linearly increasing standard deviation.

James Robert Lloyd 23/3:

This component is linearly increasing.

James Robert Lloyd 24/35

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across periods the shape of this function varies very smoothly. The amplitude of the function increases linearly. The shape of this function within each period has a typical lengthscale of 6.0 weeks.

James Robert Lloyd 25/35

This component is a smooth function with a typical lengthscale of 8.1 months.

James Robert Lloyd 26/35

This component models uncorrelated noise. The standard deviation of the noise increases linearly.

James Robert Lloyd 27/3:

This component is constant.

James Robert Lloyd 28/35

This component is constant. This component applies from 1643 until 1716.

James Robert Lloyd 29/35

This component is a smooth function with a typical lengthscale of 23.1 years. This component applies until 1643 and from 1716 onwards.

James Robert Lloyd 30/35

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

James Robert Lloyd 31/35

This component is constant.

James Robert Lloyd 32/3:

This component is constant. This component applies from 1643 until 1716.

James Robert Lloyd 33/35

This component is a smooth function with a typical lengthscale of 23.1 years. This component applies until 1643 and from 1716 onwards.

James Robert Lloyd 34/35

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

James Robert Lloyd 35/35