Kongruenz modulo 3

 \mathbf{a}

Zu Beweisen: \equiv_3 ist Äquivalenzrelation.

 $x,y\in\mathbb{Z},x\equiv_3 y$ genau dann, wenn ein $q\in\mathbb{Z}$ mit $x=q\cdot 3+y$ existiert. Seien $x,y,z\in\mathbb{Z}$ mit $x\equiv_3 y$ und $y\equiv_3 z$, das heißt, es existieren $p,q\in\mathbb{Z}$, sodass $x=p\cdot 3+y$ und $y=q\cdot 3+z$ gilt.

T
$$x = p \cdot 3 + y = p \cdot 3 + q \cdot 3 + z = (\underbrace{p+q}_r) \cdot 3 + z$$
, also $x \equiv_3 z$, ergo ist \equiv_3

 ${\it transitiv.}$

R Für alle $x \in \mathbb{Z}$ gilt $x = 0 \cdot 3 + x = x$, also $x \equiv_3 x$, ergo ist \equiv_3 reflexiv.

Sei $x \equiv_3 y$, also $x = q \cdot 3 + y$. $y = -q \cdot 3 + x = (-q) \cdot 3 + x$, also $y \equiv_3 x$, also ist \equiv_3 symmetrisch.

 \mathbf{b}

[1] = [-2] in $\mathbb{Z} \setminus \equiv_3$. Wegen $1 = 1 \cdot 3 + (-2) = 1 \equiv_3 -2$, also [1] = [-2] in $\mathbb{Z} \setminus \equiv_3$ nach (Prop 5.6 b)).