Data Analysis Assignment

Elijah Verdoorn September 25, 2016

Classification

Setup

```
maxKVal <- 100
means <- matrix(nrow = maxKVal, ncol = 1)</pre>
```

Build a matrix in which to store the means that get calculated, as well as the limiter of the for loop.

Main Loop

The main loop, which builds maxKVal models and calculates the error for those models.

Analysis

```
min(means) # at k = 78
## [1] 0.2404029
```

Find the minimum error, in this case that occurs around k = 40.

Regression

Setup

```
# get the dataset
data <- read.csv("winequality-white.csv")
degrees <- 20 # the number of degrees to test
results.df <- data.frame("degree" = integer(), "train" = double(), "test" = double())</pre>
```

Main Loop

```
for(i in 1:degrees) {
 n <- nrow(data) # get the number of rows</pre>
 train <- sample(1:n, n/2, rep = F) # get subset of the data for training
 test <- setdiff(1:n, train) # and one for testing</pre>
 train.df <- data[train, c("pH", "alcohol")] # set up the data frame for training
  test.df <- data[test, c("pH", "alcohol")] # set up the data frame for testing
  mod <- lm(pH~poly(alcohol, i), data = train.df) # build the linear model with degree i
  pred.train <- predict(mod, newdata = train.df) # traing the model</pre>
  train.df <- mutate(train.df, pred = pred.train) # add the training data to the data frame
 pred.test <- predict(mod, newdata = test.df) # test the model</pre>
  test.df <- mutate(test.df, pred = pred.test) # add the test data to the data frame
  mse.train <- with(train.df, mean((pH - pred)^2)) # calculate information about the model
  mse.test <- with(test.df, mean((pH - pred)^2))</pre>
  c(mse.train, mse.test) # print the information about the model to the console
  results.df <- rbind(results.df, c(i, mse.train, mse.test))</pre>
}
```

Calculate the models, then add information about that degree to the data frame.

Results

```
head(results.df)
```

```
X1 X0.0221162734705131 X0.0228162739161177
##
## 1 1
                0.02211627
                                   0.02281627
## 2 2
                0.02255372
                                   0.02163271
## 3 3
                0.02168366
                                   0.02194662
## 4 4
               0.02195079
                                   0.02165768
## 5 5
                0.02164993
                                   0.02171383
## 6 6
                0.02191057
                                   0.02126057
```