Neuralangelo: High-Fidelity Neural Surface Reconstruction

Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H. Taylor, Mathias Unberath, Ming-Yu Liu, Chen-Hsuan Lin NVIDIA Research, Johns Hopkins University

Outline

- Introduction
- Citations and Related Works
- Preliminaries
- Proposed Method
- Optimization
- Results

Introduction

Neuralangelo is a framework for high-fidelity 3D surface reconstruction from RGB images using neural volume rendering, without using auxiliary data such as segmentation or depth.

Citations and Related Works

- NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction
 - Yiming Wang et al. (ICCV 2023)

NeuS2

- SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering
 - Antoine Guédon, Vincent Lepetit (CVPR 2024)

Yiwen Chen et al. (CVPR 2024)

¹NVIDIA Research ²Johns Hopkins University

Preliminaries (Neural Volume Rendering)

$$\hat{\mathbf{c}}(\mathbf{o}, \mathbf{d}) = \sum_{i=1}^{N} w_i \mathbf{c}_i, \text{ where } w_i = T_i \alpha_i$$

 $\alpha_i = 1 - \exp(-\sigma_i \delta_i)$ is the opacity of the ith segment.

 $\delta_i = t_{i+1} - t_i$ is the distance between adjacent samples.

 $T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$ is the accumulated transmittance.

Preliminaries (NeuS)

$$\hat{\mathbf{c}}(\mathbf{o}, \mathbf{d}) = \sum_{i=1}^{N} w_i \mathbf{c}_i, \text{ where } w_i = T_i \alpha_i$$

$$\alpha_i = \max\left(\frac{\Phi_s(f(\mathbf{x}_i)) - \Phi_s(f(\mathbf{x}_{i+1}))}{\Phi_s(f(\mathbf{x}_i))}, 0\right)$$
 is the opacity of the ith segment.

 $T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$ is the accumulated transmittance.

Signed Distance Function (SDF)

$$\phi(\mathbf{x}) = \min_{\mathbf{s} \in \mathcal{S}} \frac{\operatorname{sign}(\mathbf{x})}{\|\mathbf{x} - \mathbf{s}\|_{2}}$$

A. Tagliasacchi - 3D Computer Vision: Reconstruction (1/2)

Properties of SDF

Surface Normals: $\mathbf{n} =$

 $\mathbf{n} = \nabla \phi(\mathbf{s}), \quad \forall \mathbf{s} \in \mathcal{S}$

Eikonal Constraint:

 $\|\nabla \phi(\mathbf{x})\|_2 \equiv 1 \quad \forall \mathbf{x} \text{ (almost)}$

Surface Projection:

$$\mathbf{s} = \Pi_{\mathcal{S}}(\mathbf{x}) = -\nabla \phi(\mathbf{x}) \cdot \|\phi(\mathbf{x})\|$$

A. Tagliasacchi - 3D Computer Vision: Reconstruction (1/2)

Requirements on Weight Function

Unbiased: Given a camera ray p(t), w(t) attains a locally maximal value at a surface intersection point $p(t^*)$ (on the zero-level set of the SDF(x)).

Requirements on Weight Function

Occlusion-aware: When two points have the same SDF value, the point nearer to the viewpoint should have a larger contribution to the final output color than does the other point.

Visible Invisible

Preliminaries (NeuS)

$$\hat{\mathbf{c}}(\mathbf{o}, \mathbf{d}) = \sum_{i=1}^{N} w_i \mathbf{c}_i, \text{ where } w_i = T_i \alpha_i$$

$$\alpha_i = \max\left(\frac{\Phi_s(f(\mathbf{x}_i)) - \Phi_s(f(\mathbf{x}_{i+1}))}{\Phi_s(f(\mathbf{x}_i))}, 0\right)$$
 is the opacity of the ith segment.

 $T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$ is the accumulated transmittance.

Can we use other properties of SDF in our modelling?

Surface Normals: $\mathbf{n} = \nabla \phi(\mathbf{s}), \quad \forall \mathbf{s} \in \mathcal{S}$

Eikonal Constraint: $\|\nabla \phi(\mathbf{x})\|_2 \equiv 1 \quad \forall \mathbf{x} \text{ (almost)}$

Surface Projection: $\mathbf{s} = \Pi_{\mathcal{S}}(\mathbf{x}) = -\nabla \phi(\mathbf{x}) \cdot \|\phi(\mathbf{x})\|$

Preliminaries (Instant-NGP)

Key idea: multi-resolution hash encoding

Preliminaries (NeuS)

$$\hat{\mathbf{c}}(\mathbf{o}, \mathbf{d}) = \sum_{i=1}^{N} w_i \mathbf{c}_i, \text{ where } w_i = T_i \alpha_i$$

$$\alpha_i = \max\left(\frac{\Phi_s(f(\mathbf{x}_i)) - \Phi_s(f(\mathbf{x}_{i+1}))}{\Phi_s(f(\mathbf{x}_i))}, 0\right)$$
 is the opacity of the ith segment.

 $T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$ is the accumulated transmittance.

Comparing NeuS with NeRF

Proposed Method

Two key ideas:

- 1. Numerical Gradient
- 2. Coarse-to-fine Optimization

Johns Hopkins University

Computing Surface Normals

$$\gamma_l(\mathbf{x}_{i,l}) = \gamma_l(\lfloor \mathbf{x}_{i,l} \rfloor) \cdot (1 - \beta) + \gamma_l(\lceil \mathbf{x}_{i,l} \rceil) \cdot \beta$$

 $\mathbf{x}_{i,l} = \mathbf{x}_i \cdot V_l$ is scaled 3D point by the grid resolution.

 $\beta = \mathbf{x}_{i,l} - \lfloor \mathbf{x}_{i,l} \rfloor$ is the coefficient for (tri-)linear interpolation.

Therefore, the derivative of the hash encoding is

$$\frac{\partial \gamma_l(\mathbf{x}_{i,l})}{\partial \mathbf{x}_i} = \gamma_l(\lfloor \mathbf{x}_{i,l} \rfloor) \cdot (-\frac{\partial \beta}{\partial \mathbf{x}_i}) + \gamma_l(\lceil \mathbf{x}_{i,l} \rceil) \cdot \frac{\partial \beta}{\partial \mathbf{x}_i}
= \gamma_l(\lfloor \mathbf{x}_{i,l} \rfloor) \cdot (-V_l) + \gamma_l(\lceil \mathbf{x}_{i,l} \rceil) \cdot V_l .$$

Feature Grid Interpolation

Numerical Gradient

Additional SDF samples are needed.

$$\nabla_x f(\mathbf{x}_i) = \frac{f(\gamma(\mathbf{x}_i + \boldsymbol{\epsilon}_x)) - f(\gamma(\mathbf{x}_i - \boldsymbol{\epsilon}_x))}{2\epsilon}$$

where
$$\epsilon_x = [\epsilon, 0, 0]$$
.

6 additional SDF samples are required.

Numerical Gradients

Progressive Levels of Details (Step size ϵ)

Role of ϵ : Controls the resolution and amount of recovered details in numerical gradients.

Large €: Ensures surface normals are consistent at a larger scale, leading to continuous surfaces.

Small €: Affects a smaller region, preserving finer details.

Progressive Levels of Details (Hash Grid Resolution)

Begin with coarse hash grids.

Gradually enable finer grids to preserve and capture geometric details effectively.

Key ingredients of **Neuralangelo**:

2. Coarse-to-fine optimization for progressive level of details

Curvature (2D)

Curvature k: deviation from straight line

Derivative of tangent:

$$\mathbf{t}'(s) = \mathbf{x}''(s) =: \kappa \mathbf{n}(s) \longrightarrow \kappa := \|\mathbf{x}''(s)\|$$

A. Tagliasacchi - 3D Computer Vision: Polygonal Meshes

Minimal Surfaces

Surfaces minimizing mean curvature

- exact zero is possible.
- e.g. soap bubbles, elastics under tension.

Regularizing the Mean Curvature

Encourage the smoothness of reconstructed surfaces.

$$\mathcal{L}_{\text{curv}} = \frac{1}{N} \sum_{i=1}^{N} \left| \nabla^2 f(\mathbf{x}_i) \right|$$

Optimization

$$\mathcal{L} = \mathcal{L}_{RGB} + w_{eik}\mathcal{L}_{eik} + w_{curv}\mathcal{L}_{curv}$$

RGB synthesis loss: RGB reconstruction loss between the input image and synthesized images.

Eikonal loss: regularize underlying SDF such that the surface normals are unit-norm.

Curvature loss: regularize underlying SDF such that the mean-curvature is not arbitrarily large.

NVIDIA HQ Park

Quantitative Results

		24	37	40	55	63	65	69	83	97	105	106	110	114	118	122	Mean
Chamfer distance $(mm) \downarrow$	NeRF [25]	1.90	1.60	1.85	0.58	2.28	1.27	1.47	1.67	2.05	1.07	0.88	2.53	1.06	1.15	0.96	1.49
	VolSDF [47]	1.14	1.26	0.81	0.49	1.25	0.70	0.72	1.29	1.18	0.70	0.66	1.08	0.42	0.61	0.55	0.86
	NeuS [41]	1.00	1.37	0.93	0.43	1.10	0.65	0.57	1.48	1.09	0.83	0.52	1.20	0.35	0.49	0.54	0.84
	HF-NeuS [43]	0.76	1.32	0.70	0.39	1.06	0.63	0.63	1.15	1.12	0.80	0.52	1.22	0.33	0.49	0.50	0.77
	RegSDF [51] †	0.60	1.41	0.64	0.43	1.34	0.62	0.60	0.90	0.92	1.02	0.60	0.59	0.30	0.41	0.39	0.72
	NeuralWarp [3] †	0.49	0.71	0.38	0.38	0.79	0.81	0.82	1.20	1.06	0.68	0.66	0.74	0.41	0.63	0.51	0.68
	AG	0.67	1.04	0.84	0.39	1.43	1.23	1.11	1.24	1.54	0.85	0.50	1.01	0.37	0.51	0.44	0.88
	AG+P	0.59	0.95	0.46	0.34	1.19	0.70	0.79	1.19	1.37	0.69	0.49	0.93	0.33	0.44	0.44	0.73
	NG	0.48	0.81	0.43	0.35	0.89	0.71	0.61	1.26	1.06	0.74	0.47	0.79	0.33	0.45	0.43	0.65
	NG+P (Ours)	0.37	0.72	0.35	0.35	0.87	0.54	0.53	1.29	0.97	0.73	0.47	0.74	0.32	0.41	0.43	0.61
	RegSDF [51] †	24.78	23.06	23.47	22.21	28.57	25.53	21.81	28.89	26.81	27.91	24.71	25.13	26.84	21.67	28.25	25.31
	NeuS [41]	26.62	23.64	26.43	25.59	30.61	32.83	29.24	33.71	26.85	31.97	32.18	28.92	28.41	35.00	34.81	29.79
PSNR ↑	VolSDF [47]	26.28	25.61	26.55	26.76	31.57	31.50	29.38	33.23	28.03	32.13	33.16	31.49	30.33	34.90	34.75	30.38
	NeRF [25]	26.24	25.74	26.79	27.57	31.96	31.50	29.58	32.78	28.35	32.08	33.49	31.54	31.00	35.59	35.51	30.65
	AG	29.97	24.98	23.11	30.27	30.60	31.27	29.27	34.22	27.47	33.09	33.85	29.98	29.41	35.69	35.11	30.55
	AG+P	30.12	24.63	29.59	30.29	31.60	32.04	29.85	34.19	27.82	33.23	33.95	29.15	29.44	35.99	35.67	31.17
	NG	30.34	25.14	30.20	30.79	31.72	31.86	29.81	34.36	28.01	33.45	34.38	30.39	29.88	36.02	35.74	31.47
	NG+P (Ours)	30.64	27.78	32.70	34.18	35.15	35.89	31.47	36.82	30.13	35.92	36.61	32.60	31.20	38.41	38.05	33.84

Thank you!

- Thank you for your attention!
- I appreciate your time and interest.
- If you have any questions, please feel free to ask.
- Contact information: alimohammadiamirhossein@gmail.com

