

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

		Выполнили студенты гр. МИР-22-26
		Гребенщиков Кирилл Владимирович (фамилия, имя, отчество)
		(подпись)
Проверил:		
ст. преподаватель Д.А. (должность, Ф.И.О. руководителя по	Карлов практической подготовке от кафедры)	
(оценка)	(подпись)	
(дата)		

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

		Выполнили студенты гр. МИР-22-26	
		Тятенков Артём Александрович (фамилия, имя, отчество)	
		(подпись)	
Проверил:			
<u>ст. преподаватель Д.А.</u>] (должность, Ф.И.О. руководителя по	<u>Карлов</u> практической подготовке от кафедры)		
(оценка)	(подпись)	_	
(дата)			

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

		Выполнили студенты гр. МИР-22-26
		Стрельников Максим Романович (фамилия, имя, отчество)
		(подпись)
Проверил:		
ст. преподаватель Д.А. І (должность, Ф.И.О. руководителя по г		
(оценка)	(подпись)	_
(дата)		

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

	Выполнили студенты гр. МИР-22-26
	<u>Козлов Павел Дмитриевич</u> (фамилия, имя, отчество)
	(подпись)
Проверил:	
<u>ст. преподаватель Д.А. Карлов</u> (должность, Ф.И.О. руководителя по практической подготовке от кафедры)	
(оценка) (подпись)	

РЕФЕРАТ

Лодка на радиоуправлении.

Объём отчёта 16 страниц.

Количество иллюстраций 12.

Количество таблиц 1.

Количество используемых источников 4.

Объектом исследования является

Ключевые слова: лодка, аэровинт, электронные компоненты, радиомодуль, NRF24L01, L298N, сервопривод, MR996R, схемы.

Предметом исследования является лодка на радиоуправлении.

Целью исследования является создание лодки на радиоуправлении.

В результате проведенного исследования разработан план по созданию лодки на радиоуправлении.

Содержание

Введение	4
1.Необходимые материалы	5
2.Организационно-штатная структура	12
Заключение	13
Список литературы	14

Введение

Лодка на радиоуправлении которая будет носить название "Титаник". Лодка будет работать на базе микроконтроллера Arduino Nano с сервоприводом и управляться при помощи пульта дистанционного управления по воде за счёт воздушных винтов, соединённых с электродвигателем. А также лодка будет способна поворачивать за счёт рулей, которые будут расположены за аэровинтами, соединёнными с сервоприводом при помощи рычага. Держаться на плаву лодка будет благодаря воздушной камере от велосипеда.

Цель исследования: спроектировать и запрограммировать лодку на радиоуправлении на базе микроконтроллера Arduino Nano.

Задачи исследования:

- 1. Составить список комплектующих.
- 2. Составить схему подключения электронных компонентов устройства.
 - 3. Собрать схему электронных компонентов.
 - 4. Установить аппаратную часть в корпус.
 - 5. Написать код в Arduino IDE для передвижения лодки.

Необходимые материалы

Мы составили список комплектующих, которые нам понадобятся для создания лодки ду.

Список комплектующих:

- 1. Плата Arduino nano (2шт) (рис.1)
- 2. Сервопривод (1шт) (рис.2)
- 3. Электромотор (5В) (2шт) (рис.3)
- 4. Аккумулятор (9В) (рис.4)
- 5. Н-мост (L298В) (рис.5)
- 6. Радиомодуль (2шт) (рис.6)

Рисунок №1 – Arduino Nano[Источник №1]

Рисунок №2 – Сервопривод[Источник №2]

Рисунок №3 — Электромотор[Источник №3]

Рисунок №4 — Аккумулятор[Источник №4]

Рисунок №5 – Драйвер L298N[Источник №5]

Рисунок №6 — радиомодуль NRF24L01[Источник №6]

В ходе работы, мы использовали следующие схемы (рис.7) и (рис.8)

Рисунок 8 – схема платы

Рисунок 9 – распиновка контроллера

Пользуясь информацией в интернете, мы смогли собрать нашу схему для передвижения лодки. Готовая модель (рис. 10), (рис.11),(рис.12)

Рисунок 11 – макетная схема устройства лодки

Рисунок 12 – принципиальная схема пульта управления

Для того, чтобы схема правильно работала, в среде программирования Arduino IDE был написан следующий код для приёмника:

```
#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>
Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver(0x40);
#define SERVOMIN 150 // изменять значения пока не откалибруете сервопривод на положение в 0 градусов
```

```
#define SERVOMAX 600 // изменять значения пока не откалибруете сервопривод на по-
ложение в требуемое кол-во градусов
#define SERVO 1 0
#include <SPI.h> // Подключаем библиотеку для работы с SPI-интерфейсом
#include <nRF24L01.h> // Подключаем файл конфигурации из библиотеки RF24
#include <RF24.h> // Подключаем библиотеку для работа для работы с модулем
NRF24L01
#define IN1 8 // Input1 подключен к выводу 8
#define IN2 7 // Input2 подключен к выводу 7
#define IN3 6 // Input3 подключен к выводу 6
#define IN4 2 // Input4 подключен к выводу 2
#define EN1 3 // Input4 подключен к выводу 3
#define EN2 5 // Input4 подключен к выводу 5
#define CE 10 // Номер пина Arduino, к которому подключен вывод СЕ радиомодуля
#define CSN 9 // Homep пина Arduino, к которому подключен вывод CSN радиомодуля
RF24 radio(CE,CSN); // Создаём объект radio с указанием выводов СЕ и CSN
byte recieved_data[2]; // массив принятых данных
byte vint = 3; // EN1 на 3 цифровом
byte address[][6] = {"1Node", "2Node", "4Node", "5Node", "6Node"}; //BO3-
можные номера труб
void setup() {
  Serial.begin(9600);
  pinMode (EN1, OUTPUT);
  pinMode (IN1, OUTPUT);
  pinMode (IN2, OUTPUT);
  pinMode (EN2, OUTPUT);
  pinMode (IN4, OUTPUT);
  pinMode (IN3, OUTPUT);
  pwm1.begin(); // активируем PCA9685
  pwm1.setPWMFreq(50); // Задаём частоту подаваемую на сервопривод
  radio.begin(); //активировать модуль
                       // режим подтверждения приёма, 1 вкл 0 выкл
  radio.setAutoAck(1);
  radio.setRetries(0, 15); // (время между попыткой достучаться, число попыток)
  radio.enableAckPayload(); // разрешить отсылку данных в ответ на входящий сиг-
нал
  radio.setPayloadSize(32); // размер пакета, в байтах
  radio.openReadingPipe(1, address[0]); // хотим слушать трубу 0
  radio.setChannel(0x60); // выбираем канал (в котором нет шумов!)
  radio.setPALevel (RF24 PA MAX);
                                 // уровень мощности передатчика. На выбор
RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX
```

```
radio.setDataRate (RF24 250KBPS); // скорость обмена. На выбор RF24 2MBPS,
RF24_1MBPS, RF24_250KBPS
  //должна быть одинакова на приёмнике и передатчике!
  //при самой низкой скорости имеем самую высокую чувствительность и дальность!!
                     // начать работу
 radio.powerUp();
 radio.startListening(); // начинаем слушать эфир, мы приёмный модуль
}
void loop() {
  byte pipeNo;
 while (radio.available(&pipeNo)) { // есть входящие данные
    // чиатем входящий сигнал
    radio.read(&recieved data, sizeof(recieved data));
    // подать на драйвер сигнал с 0 места массива
    analogWrite(vint, recieved_data[0]);
   // повернуть серво на угол 0..180
   // значение получено с 1 элемента массива
    pwm1.Write(recieved data[1]);
 }
}
```

Для передатчика:

```
#include <SPI.h> // Подключаем библиотеку для работы с SPI-интерфейсом
#include <nRF24L01.h> // Подключаем файл конфигурации из библиотеки RF24
#include <RF24.h> // Подключаем библиотеку для работа для работы с модулем
NRF241 01
#define CE 10 // Номер пина Arduino, к которому подключен вывод СЕ радиомодуля
#define CSN 9 // Номер пина Arduino, к которому подключен вывод CSN радиомодуля
RF24 radio(CE,CSN); // Создаём объект radio с указанием выводов СЕ и CSN
byte address[][6] = {"1Node", "2Node", "4Node", "5Node", "6Node"}; //BO3-
можные номера труб
byte OX = 4; // Ось X джостика на 4 аналоговом
byte OY = 5; // Ось Y джостика на 5 аналоговом
byte transmit_data[2]; // массив, хранящий передаваемые данные
byte latest_data[2]; // массив, хранящий последние переданные данные
boolean flag;
                   // флажок отправки данных
void setup() {
  Serial.begin(9600); //открываем порт для связи с ПК
  radio.begin();
                            // активировать модуль
  radio.setAutoAck(1);
                           // режим подтверждения приёма, 1 вкл 0 выкл
```

```
radio.setRetries(0, 15); // (время между попыткой достучаться, число попыток)
  radio.enableAckPayload(); // разрешить отсылку данных в ответ на входящий сиг-
  radio.setPayloadSize(32); // размер пакета, в байтах
  radio.openWritingPipe(address[0]); // мы - труба 0, открываем канал для пере-
дачи данных
  radio.setChannel(0x60); // выбираем канал (в котором нет шумов!)
  radio.setPALevel (RF24_PA_MAX); // уровень мощности передатчика. На выбор
RF24 PA MIN, RF24 PA LOW, RF24 PA HIGH, RF24 PA MAX
  radio.setDataRate (RF24 250KBPS); // скорость обмена. На выбор RF24 2MBPS,
RF24_1MBPS, RF24_250KBPS
  //должна быть одинакова на приёмнике и передатчике!
  //при самой низкой скорости имеем самую высокую чувствительность и дальность!!
 radio.powerUp();
                        //начать работу
 radio.stopListening(); //не слушаем радиоэфир, мы передатчик
}
void loop() {
 transmit_data[0] = map(analogRead(OX), 509, 1023, 0, 255); // получить значение
 // в диапазоне 0..1023, перевести в 0..255, и записать на 1 место в массиве
 transmit_data[1] = map(analogRead(OY), 509, 1023, 0, 255);
 for (int i = 0; i < 2; i++) {
                                             // в цикле от 0 до числа каналов
    if (transmit_data[i] != latest_data[i]) { // если есть изменения в trans-
mit_data
     flag = 1;
                                             // поднять флаг отправки по радио
     latest_data[i] = transmit_data[i]; // запомнить последнее изменение
    }
  }
  if (flag == 1) {
    radio.powerUp();
                      // включить передатчик
    radio.write(&transmit data, sizeof(transmit data)); // отправить по радио
    flag = 0;
                       //опустить флаг
    radio.powerDown(); // выключить передатчик
 }
}
```

Организационно-штатная структура

Тятенков Артём Александрович - руководитель группы. Во время проведения летней практики в центре робототехники занимался аппаратной составляющей радиоуправляемой лодки.

Стрельников Максим Романович - программный инженер группы. Во время проведения летней практики в центре робототехники занимался созданием кода.

Козлов Павел Дмитриевич — ответственный за сбор информации. Во время проведения летней практики в центре робототехники занимался сбором необходимой информации для дальнейшего развития проекта.

Гребенщиков Кирилл Владимирович — ответственный за обработку и оформление информации. Во время проведения летней практики в центре робототехники занимался обработкой собранной информации и её конспектированием.

Заключение

Нам удалось выполнить все поставленные задачи:

- 1. Составили список комплектующих.
- 2. Разработали схему подключения электронных компонентов.
- 3. Собрать схему для передвижения лодки.
- 4. Написать программу в Arduino IDE для передвижения лодки.
- В ходе работы над поставленными задачами были выявлены следующие проблемы:
- 1. Слишком большая схема подключения компонентов.
- 2. Не оптимизированный код.
- 3. Много работы с установкой компонентов в готовый копрус. При дальнейшей работе с данным проектом это проблемы можно решить так:
- 1. Упростить схему подключения компонентов.
- 2. Оптимизировать код.
- 3. Создать корпус с выделенными местами под каждый компонент, напечатаный на 3D-принтере.

Список источников

- 1. https://www.pngwing.com/ru/free-png-xzcpk Arduino Nano
- 2. https://www.pngwing.com/ru/free-png-xvdhm Сервопривод
- 3. https://rcdrive.ru/unit.php?unit=24180&pPage=11 Электромотор
- 4. https://www.ozon.ru/product/2-sht-akkumulyator-9v-500mah-6f22-466858374/?sh=6oYUDYFd0Q Аккумулятор
- 5. https://www.pngwing.com/ru/free-png-zdljf Драйвер L298N
- 6. https://voltiq.ru/shop/nrf24l01-pa-lna/ Радиомодуль NRF24L01
- 7. https://arduinomaster.ru/uroki-arduino/shema-raboty-n-mosta-dlya-uprav-leniya-dvigatelyami/ Datasheet драйвера L298N
- 8. http://arduino-kid.ru/arduino nano datasheet Datasheet Arduino Nano
- 9. http://wiki.amperka.ru/articles:servo Datasheet сервопривода