

Wydział Mechaniczno-Energetyczny

Kierunek studiów: **Odnawialne Źródła Energii** Specjalność: **Przemysławe Instalacje OZE**

PODSTAWY KONSTRUKCJI URZĄDZEŃ ENERGETYCZNYCH

Rurowy wymiennik ciepła typu: Rura w rurze - rury gięte

Grzegorz Wyborski

Prowadzący: Dr. inż. Beata Anwajler

Wrocław 2022

Spis treści

1	Wstęp										
	1.1 Opis wymiennika										
	1.2 Założenia projektu										
	1.3 Wybór materiałów oraz technoligii										
	1.4 Rysunki										
2	Charakterystyka techniczna										
	2.1 Dane wejsciowe										
	2.2 Stałe materiałowe										
	2.3 Podsumowanie										

1 Wstęp

1.1 Opis wymiennika

Projektowany będzie wymiennika typu "Rura w rurze - rury gięte", jest to modyfikacja wymiennika typu "Rura w rurze - rury proste". Stosowany jest w sytuacjach kiedy nie mamy wystarczającej ilości miejsca na zbudowanie klasycznego wymiwnnika z rurami prostymi. Dzięki swoim stosunkowo małym rozmiarą wymiennik ten znalazł zastosowanie w urządzeniach chłodniczych takicha jak lodówki. Przestrzeń wewnątrz wymiennika moża być z łatwoącią zagospodarowana przez umieszczenie wewnątrz zbiornika naczynnik, sprężarki lub innego urządzenia. Jego największą wadą jest to, że w trakcie procesu zginania wewętrzna rura może wejś kontakt z rurą zewnętrzną od strony gięcia. Taka sytuacja tworzy przestrzeń w której nie zachodzi wymiana ciepłą między czynnikami. Problem ten rozwiązuje się umieszczają pomiędzy rurami różne rodzaje dystansów.

1.2 Założenia projektu

- Odbieranie ciepła od toulenu w temperaturze $75^{\circ}C$
- \bullet Czynnikiem chłodzącym jest woda o temperaturze $10^{\circ}C$
- \bullet Przepływ czynnika chlądzącego ma zawierać się w przedziale 0.5 1 $\frac{kg}{s}$
- Zapobiec stykaniu się ścianek wymiennika
- Całkowite wymiary wymiennika mają być jak najmniejsze
- Zminimalizować koszta materiału i wykonania

1.3 Wybór materiałów oraz technoligii

1.4 Rysunki

Rysunek 1: Uproszczony shemat wymiennika "Rura w rurze" w układzie przepływu przeciw-prądowego oraz wykres przedstawiający temperaturę czynników dla takiego układu.

Rysunek 2: Poglądowy rysunek wymiennika typu "Rura w rurze - rury gięte".

2 Charakterystyka techniczna

2.1 Dane wejsciowe

- 1. Parametry cieczy schładzanej
 - Toulen
 - $\bullet\,$ Temperatura wejściowa $T_{1we}=75^{\circ}C$
 - $\bullet\,$ Temperatura wyjściowa $T_{1wy}=55^{\circ}C$
 - Strumień przepływu $Q_1 = 0.5 1 \frac{m^3}{s}$
 - Dodatkowe parametry czynnika

tolu	en - właś	ściwości ci	eczy							
t	р	ρ	v	h	s	Cp	λ	η	v	Pr
°C	bar	kg/m³	m³/kg	kJ/kg	kJ/kg·K	kJ/kg·K	W/m·K	μPa·s	m²/s	_
		_			_					
40	0,0789	848,1	0,001179	-132,4	-0,380	1,750	0,126	466,0	5,495E-07	6,458
41	0,0826	847,2	0,001180	-130,6	-0,374	1,753	0,126	461,0	5,442E-07	6,416
42	0,0865	846,2	0,001182	-128,9	-0,369	1,757	0,126	456,1	5,390E-07	6,375
43	0,0905	845,3	0,001183	-127,1	-0,363	1,760	0,125	451,3	5,339E-07	6,334
44	0,0946	844,4	0,001184	-125,3	-0,358	1,764	0,125	446,6	5,289E-07	6,295
45	0,0989	843,4	0,001186	-123,6	-0,352	1,767	0,125	442,0	5,240E-07	6,255
46	0,1034	842,5	0,001187	-121,8	-0,347	1,770	0,125	437,4	5,192E-07	6,217
47	0,1080	841,5	0,001188	-120,0	-0,341	1,774	0,124	432,9	5,144E-07	6,179
48	0,1128	840,6	0,001190	-118,2	-0,335	1,777	0,124	428,5	5,097E-07	6,142
49	0,1177	839,6	0,001191	-116,5	-0,330	1,780	0,124	424,1	5,051E-07	6,105
50	0,1229	838,7	0,001192	-114,7	-0,324	1,784	0,123	419,8	5,006E-07	6,070
51	0,1282	837,7	0,001194	-112,9	-0,319	1,787	0,123	415,6	4,961E-07	6,034
52	0,1337	836,8	0,001195	-111,1	-0,313	1,791	0,123	411,5	4,917E-07	5,999
53	0,1395	835,8	-	-109,3	-0,308	1,794	0,123	407,4	4,874E-07	5,965
54	0,1454	834,9	0,001198	-107,5	-0,302	1,798	0,122	403,4	4,831E-07	5,932
55	0,1515	833,9		-105,7	-0,297	1,801	0,122	399,4		5,898
56	0,1578	833,0		-103,9			0,122	395,5		5,866
57	0,1644	832,0	-	-102,1			0,121	391,7		5,833
58	0,1712	831,1	0,001203	-100,3			0,121	387,9		5,802
59	0,1782	830,1	0,001205	-98,5		1,815	0,121	384,1		5,771
60	0,1854	829,2	-	-96,7			0,121	380,5		5,740
61	0,1929	828,2		-94,8			0,120	376,9		5,710
62	0,2006	827,2	0,001209	-93,0			0,120	373,3		5,680
63	0,2086	826,3	0,001210	-91,2		1,829	0,120	369,8		5,651
64	0,2168	825,3	0,001212	-89,4		1,832	0,119	366,3		5,622
65	0,2253	824,4	0,001213	-87,5			0,119	362,9		5,594
66	0,2340	823,4	0,001215	-85,7		1,840	0,119	359,6		5,566
67	0,2431	822,4	0,001216	-83,8		1,843	0,119	356,2		5,539
68	0,2524	821,5		-82,0			0,118	353,0		5,512
69	0,2620	820,5	,	-80,2	,		0,118	349,8		5,485
70	0,2719	819,5		-78,3			0,118	346,6		5,459
71	0,2821	818,6	-	-76,4			0,117	343,5		5,433
72	0,2926	817,6	-	-74,6			0,117	340,4		5,408
73	0,3035	816,6			-0,199	,	0,117	337,3		5,383
74	0,3146	815,7	0,001226	-70,9		1,868	0,117	334,3		5,358
75	0,3261	814,7		-69,0		1,872	0,116	331,4		5,334
76	0,3379	813,7	0,001229	-67,1		1,875	0,116	328,5		5,310
77	0,3501	812,7	0,001230	-65,2	-0,178	1,879	0,116	325,6	4,006E-07	5,286

2. Parametry cieczy chłodzącej

- Woda
- $\bullet\,$ Temperatura wejściowa $T_{2we}=10^{\circ}C$
- $\bullet\,$ Temperatura wyjściowa $T_{2wy}=30^{\circ}C$
- $\bullet \,$ Strumień przepływu $Q_2=3\frac{m^3}{s}$
- Dodatkowe parametry czynnika

woda - właściwości cieczy										
t	р	ρ	v	h	5	Сp	λ	η	v	Pr
°C	bar	kg/m³	m³/kg	kJ/kg	kJ/kg·K	kJ/kg·K	W/m·K	μPa-s	m²/s	-
1	0,0066	999,9	0,001000	4,2	0,015	4,217	0,563	1731,2	1,732E-06	12,968
2	0,0071	999,9	0,001000	8,4	0,031	4,214	0,565	1673,7	1,674E-06	12,486
3	0,0076	999,9	0,001000	12,6	0,046	4,211	0,567	1619,2	1,619E-06	12,030
4	0,0081	999,9	0,001000	16,8	0,061	4,208	0,569	1567,4	1,568E-06	11,600
5	0,0087	999,9	0,001000	21,0	0,076	4,206	0,571	1518,3	1,518E-06	11,192
6	0,0094	999,9	0,001000	25,2	0,091	4,203	0,572	1471,6	1,472E-06	10,806
7	0,0100	999,9	0,001000	29,4	0,106	4,201		1427,2	1,427E-06	10,439
8	0,0107	999,8	0,001000	33,6	0,121	4,199	0,576	1384,8	1,385E-06	10,092
9	0,0115	999,7	0,001000	37,8	0,136	4,197	0,578	1344,5	1,345E-06	9,761
10	0,0123	999,7	0,001000	42,0	0,151	4,196	0,580	1306,0	1,306E-06	9,447
11	0,0131	999,6	0,001000	46,2	0,166	4,194	0,582	1269,2	1,270E-06	9,148
12	0,0140	999,5	0,001001	50,4	0,181	4,193		1234,1	1,235E-06	8,863
13	0,0150	999,3	0,001001	54,6	0,195	4,191	0,586	1200,5	1,201E-06	8,592
14	0,0160	999,2	0,001001	58,8	0,210	4,190	0,587	1168,4	1,169E-06	8,333
15	0,0171	999,1	0,001001	63,0	0,224	4,189	0,589	1137,6	1,139E-06	8,086
16	0,0182	998,9	0,001001	67,2	0,239	4,188		1108,1	1,109E-06	7,850
17	0,0194	998,7	0,001001	71,4		4,187	0,593		1,081E-06	7,624
18	0,0206	998,6	0,001001	75,5	0,268	4,186	0,595	1052,7	1,054E-06	7,408
19	0,0220	998,4	0,001002	79,7	0,282	4,185	0,597	1026,7	1,028E-06	7,202
20	0,0234	998,2	0,001002	83,9	0,296		0,598	1001,6	1,004E-06	7,004
21	0,0249	998,0	0,001002	88,1	0,311	4,184	0,600	977,6	9,796E-07	6,814
22	0,0265	997,7	0,001002	92,3	0,325	4,183	0,602	954,4	9,566E-07	6,632
23	0,0281	997,5	0,001003	96,5	0,339	4,183	0,604	932,2	9,345E-07	6,458
24	0,0299	997,3	0,001003	100,7	0,353	4,182	0,605	910,7	9,132E-07	6,291
25	0,0317	997,0	0,001003	104,8	0,367	4,182	0,607	890,0	8,927E-07	6,130
26	0,0336	996,7	0,001003	109,0	0,381	4,181	0,609	870,1	8,730E-07	5,976
27	0,0357	996,5	0,001004	113,2	0,395	4,181	0,611	850,9	8,539E-07	5,827
28	0,0378	996,2	0,001004	117,4	0,409	4,181	0,612	832,4	8,356E-07	5,684
29	0,0401	995,9	0,001004	121,6	0,423	4,180	0,614	814,5	8,179E-07	5,547
30	0,0425	995,6	0,001004	125,7	0,437	4,180	0,615	797,2	8,007E-07	5,415
31	0,0450	995,3	0,001005	129,9	0,451	4,180	0,617	780,5	7,842E-07	5,287
32	0,0476	995,0	0,001005	134,1	0,464	4,180	0,619	764,4	7,683E-07	5,165
33	0,0504	994,7	0,001005	138,3	0,478	4,180	0,620	748,8	7,528E-07	5,046
34	0,0533	994,3	0,001006	142,5	0,492	4,180	0,622	733,7	7,379E-07	4,932
35	0,0563	994,0	0,001006	146,6	0,505	4,180	0,623	719,1	7,235E-07	4,822

2.2 Stałe materiałowe

2.3 Podsumowanie

Element	Symbol	Atomic number	Relative atomic mass	Density P kg/dm ^{3 1)}	Melting point °C	Boiling point °C	$\begin{array}{l} \text{Thermal} \\ \text{conductivity} \\ \lambda \\ \text{W/(m \cdot K)} \end{array}$	Thermal capacity c _p kJ/(kg·K)
Actinium	Ac	89	(227)	-	1050	3 200	-	0,12
Aluminium	Al	13	26,98	2,70	660	2 450	238	0,88
Americium	Am	95	(243)	11,7	>850	2 600	-	0,14
Antimony	Sb	51	121,75	6,68	631	1 380	19	0,21
Argon	Ar	18	39,95	1,40 ¹⁾	-189	-186	0,02	0,52

Rysunek 3: kjyfgvkhnil

Chemistry

Continuation of table, Physical properties: Chemical elements, from Page 104.

Element	Symbol	Atomic number	Relative atomic mass	Density ρ kg/dm ^{3 1)}	Melting point °C	Boiling point °C	Thermal conductivity λ W/(m·K)	Thermal capacity c _p kJ/(kg·K)
Calcium	Ca	20	40,08	1,55	838	1490	130	0,66
Californium	Cf	98	(251)	-	-	-	-	-
Carbon	C	6	12,01	2,26	3730	4830	168	0,65
Cerium	Ce	58	140,12	6,78	795	3470	10,9	0,18
Chlorine	Cl	17	35,45	1,56 ¹⁾	-101	-35	0,008	0,47
Chromium	Cr	24	52,00	7,19	1900	2 642	69	0,44
Cobalt	Co	27	58,93	8,90	1490	2 900	96	0,43
Copper	Cu	29	63,55	8,96	1083	2 600	398	0,38
Curium	Cm	96	(247)	7	-	-	-	-
Dysprosium	Dy	66	162,50	8,54	1410	2 600	10	0,17

Rysunek 4: kjyfgvkhnil

Chemistry

Physical properties: The following table shows the physical properties for a selection **Solids** of solids.

Substance	Density ρ kg/dm ³	Melting point	Boiling point	Thermal conductivity \(\lambda\)	Thermal capacity c _p kJ/(kg · K)
Annto		≃ 1600	≈ 2 590	10,68	0,79
Agate Asphalt	2,5 2,8 1,1 1,5	80 100	≃ 2 390 ≃ 300	0.69	0,79
Barium chloride (BaCl ₂)	3,10	956	1830	0,09	0,37
Basalt	2,9	950	1030	1.67	0,37
Boiler scale	2,9 ≈ 2,5	≃ 1200	_		0,86
Boller Scale	,-	⇒ 1200	-	0,12 2,3	
Borax, anhydrous	1,72	741	-	-	0,99
Brass (63 Cu, 37 Zn)	8,5	900	-	116	0,38
Bronze (94 Cu, 6 Sn)	8,73	910	2300	64	0,37
Charcoal	0,3 0,5	_	≈ 3 540	0,08	1,0
Chromium(III) oxide (Cr ₂ O ₃)	5,22	2 3 3 0	-	0,4 (powder)	0,75
Coke	1,6 1,9	-	-	0,183	0,84
Concrete	1,8 2,45	_	-	0,8 1,4	0,87
Corundum (Al ₂ O ₂)	3,9 4,0	2 050	2700	12 23	0,96
Diamond	3,51	_	-	_	0,52
Flake graphite cast iron	7,25	1150 1250	2500	≈ 52	≈ 0,5
Glass fibre mats	0,03 0,2	≈ 700	-	0,04	0,84
Glass (window)	2,4 2,7	≈ 700	_	0,58 1,0	0,84
Granite	2,6 2,8	_	-	3,5	0,82
Graphite, pure	2,26	≃ 3 830	≈ 4 200	168	0.71
Greases	0,92 0,94	300- 175	≃ 300	0,2	0,62 0,79
Gypsum (CaSO ₄)	2,3	1200	-	0,34 0,46	1,1
Hard metal K20	14,8	≈ 2 000	≈ 4 000	81,4	0,80
Heat conducting alloy	8,3	1400	2300	14,6	0,50
(80 Ni, 20 Cr)					
Hydrated ferric oxide (rust)	5,1	1565	-	0,58 (powder)	0,67
Ice	0,92	_	100	2.3	2.1