Nicholas M. Rapidis

Curriculum Vitae

Email: rapidis@berkeley.edu Phone: +1 (510) 847-1414

Languages: English (native), Greek (native), German (Advanced proficiency)

Nationalities: USA & Greece

Education

2015-Present University of California, Berkeley

B.A. in Physics with Honors (Expected Graduation Date: Spring 2019)

GPA-to-date: 3.89/4.0

Upper Division & Graduate Level Physics GPA: 3.97

Relevant courses: Quantum Field Theory I & II (Graduate Level – 232A & 232B), Standard Model and Beyond I & II (Graduate Level – 233A & 233B¹), General Relativity (Graduate Level – 231), Quantum Mechanics I & II (137A-B), Analytic Mechanics (105), Electromagnetism & Optics (110A), Instrumentation Laboratory (111A), Abstract Algebra (Math 113)¹

2018 Institute for Quantum Computing – University of Waterloo

Attended Undergraduate School on Experimental Quantum Information Processing (USEQIP). Selective two week fully funded summer program introducing the fundamentals of Quantum Information.

2011-2015 Psychiko College High School, Athens, Greece

Completed International Baccalaureate Diploma Program in May 2015

Stanford Pre-Collegiate Studies, Stanford University

Course on The Theory of Relativity

Experience

2014

${\small 2018\text{-}present} \quad \textbf{Undergraduate Researcher}$

Computational-phenomenological physics work in collaboration with Professors Karl van Bibber, Peter Graham (Stanford University), and Kent Irwin (Stanford University).

Honors Thesis planned.

2016-present Undergraduate Researcher

Member of Berkeley HAYSTAC group led by Prof. Karl van Bibber in search of the QCD Axion.

- \cdot Use of the bead perturbation technique to study characteristics of annular cavities
- \cdot Determination of frequency scan range for future runs
- · Initial measurements on Photonic Band Gap Cavities

 $^{^{1}}$ Currently enrolled in as of Fall 2018

- · Simulations using CST Microwave Studio for different types of cavities
- · Machining of parts to be used on test cavities

Summer 2017 Reader Quantum Mechanics

Graded weekly problem sets for 65 students in Quantum Mechanics (Physics 137A) taught by Dr. Charles Wohl

Honors & awards

- 2018-2019 Haas Scholar \$13,800 grant awarded to twenty UC Berkeley undergraduates across all disciplines to conduct research in their senior year.
- 2016-2018 4×UC Berkeley Dean's List Dean's List awarded to top 4% of students in College of Letters and Science. Honors to Date as of Fall 2016.
- Member of the Greek National Linguistics Team: Attended 12th International Linguistics Olympiad in Beijing, China.

Publications, Talks, & Conferences

Publications

- 2018 Characterization of the HAYSTAC axion dark matter search cavity using microwave measurement and simulation techniques
 - N.M. Rapidis, et al., Submitted to Review of Scientific Instruments. arXiv:1809.02246 [physics.ins-det]
- Results from Phase 1 of the HAYSTAC microwave cavity axion Experiment
 - L. Zhong, et al., Phys. Rev. D 97, 092001, (2018). doi.org/10.1103/PhysRevD.97.092001.
- Application of the Bead Perturbation Technique to a Study of a Tuneable 5 GHz Annular Cavity
 - N.M. Rapidis (2018), In: Carosi G., Rybka G., van Bibber K. (eds) Microwave Cavities and Detectors for Axion Research. Springer Proceedings in Physics, vol 211. Springer, Cham doi.org/10.1007/978-3-319-92726-8_5.
- Design and Operational Experience of a Microwave Cavity Axion Detector for the 20-100 μeV Range
 - S. Al Kenany, et al., Nuclear Instruments and Methods in Physics Research A 854 (2017) 11–24. doi.org/10.1016/j.nima.2017.02.012.
- First Results from a Microwave Cavity Axion Search at 24 μeV
 - B.M. Brubaker, et al., Phys. Rev. Lett. 118, 061302 (2017). doi.org/10.1103/PhysRevLett.118.061302.

Talks

- 2018 Completion of Phase I and Preparation for Phase II of the HAYSTAC Experiment
 - 14th Patras Workshop on Axions, WIMPs, and WISPs, June 18-22, 2018, DESY, Hamburg, Germany
- Application of the Bead Perturbation Technique to a Study of a Tunable 5 GHz Annular Cavity

2nd Workshop on Microwave Cavities and Detectors for Axion Research, January 10-13, 2017, LLNL, Livermore, CA

Conferences Attended

2nd Workshop on Microwave Cavities and Detectors for Axion Research, January 10-13, 2017, LLNL, Livermore, CA

New Pathways for Physics Beyond the Standard Model, June 13-17, 2016, UC Berkeley, Berkeley, CA

Skills

2017

2016

Programming

Advanced: CST Microwave Studio, \LaTeX Intermediate: Mathematica, Lab VIEW

Basic: Matlab, HTML

Others

Machine Shop Training