A model of random walk with varying transition probabilities

May 15, 2020

Outline

1. Motivation

Outline

- 1. Motivation
- 2. Model description

Outline

- 1. Motivation
- 2. Model description
- 3. Model application

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

Motivation

- Failure of a machine
 - repair after failure
 - preventive maintenance
- Occcurence of a disease
 - cure of the disease
 - prevention (i.e. lifestyle change)
- Development of sports match
 - goal scored, point achieved
 - period won

Random walk with varying probabilities

- Random walk with memory
- Memory coefficient $\lambda \in (0, 1)$ affecting the transition probabilities
- First step of the walk X₁ depends on an initial transition probability p₀
- Further steps depending on a transition probability p_t evolving as

$$X_{t-1} = 1 \to p_t = \lambda p_{t-1}$$
 $X_{t-1} = -1 \to p_t = 1 - \lambda (1 - p_{t-1})$

"Success punished"

$$X_{t-1} = 1 \to p_t = 1 - \lambda(1 - p_{t-1})$$

 $X_{t-1} = -1 \to p_t = \lambda p_{t-1}$

"Success rewarded

Formal definition

Definition

Let $p_0, \lambda \in (0, 1)$ be constant parameters, $\{P_n\}_{n=0}^{\infty}$ and $\{X_n\}_{n=1}^{\infty}$ sequences of discrete random variables with $P_0 = p_0$ and for t > 1

$$P(X_t = 1 | P_{t-1} = p_{t-1}) = p_{t-1}, \ P(X_t = -1 | P_{t-1} = p_{t-1}) = 1 - p_{t-1},$$

and (success punishing)

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

or (success rewarding)

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1+X_t).$$

The sequence $\{S_n\}_{n=0}^{\infty}$, $S_N = S_0 + \sum_{i=1}^{N} X_i$ for $n \in \mathbb{N}$, with $S_0 \in \mathbb{R}$ some given starting position, is called a *random walk with* varying probabilities with $\{X_n\}_{n=0}^{\infty}$ being the steps of the walker.

Example - RW development

Example - RW development

Walk steps properties

$$EX_t = (2\lambda - 1)^{t-1}(2p_0 - 1),$$

$$\lim_{t \to +\infty} EX_t = 0.$$
 $Var X_t = 1 - (2\lambda - 1)^{2(t-1)}(2p_0 - 1)^2,$
$$\lim_{t \to +\infty} Var X_t = 1.$$

Example - RW steps

Walk probabilities properties

$$\begin{split} \textit{EP}_t &= (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}, \\ &\lim_{t \to +\infty} \textit{EP}_t = \frac{1}{2}. \\ \textit{Var P}_t &= (3\lambda^2 - 2\lambda)^t p_0^2 + \sum_{i=0}^{t-1} \textit{K}(i; p_0, \lambda) (3\lambda^2 - 2\lambda)^{t-1-i} - \textit{k}(t; p_o, \lambda)^2, \\ &\lim_{t \to +\infty} \textit{Var P}_t = \frac{\frac{1}{2}(1 - \lambda^2)}{-3\lambda^2 + 2\lambda + 1} - \frac{1}{4}. \end{split}$$

Example - RW probabilities

Walk position properties

$$ES_t = S_0 + (2p_0 - 1) rac{1 - (2\lambda - 1)^t}{2(1 - \lambda)},$$
 $\lim_{t o +\infty} ES_t = S_0 + rac{(2p_0 - 1)}{2(1 - \lambda)}.$ $Var S_t = t + 4 \sum_{i=0}^{t-1} \sigma(i; p_0, 0, \lambda) - a(t; p_0, \lambda),$ $\lim_{t o +\infty} Var S_t = c_1(p_0, \lambda)t + c_2(p_0, \lambda).$

Example - RW position

Success rewarding model

$$EX_t = 2p_0 - 1,$$

$$Var \, X_t = 4p_0(1 - p_0),$$

$$EP_t = p_0,$$

$$Var \, P_t = (2\lambda - \lambda^2)^t p_0^2 + p_0(1 - \lambda)^2 \sum_{i=0}^{t-1} (2\lambda - \lambda^2)^i - p_0^2,$$

$$ES_t = S_0 + t(2p_0 - 1),$$

$$Var \, S_t = 4p_0(1 - p_0)t^2 + a(p_0, \lambda)t - a(p_0, \lambda)\frac{1 - (2\lambda - \lambda^2)^t}{(1 - \lambda)^2}.$$

Two-parameter model

- ightharpoonup Two parameters λ , each affecting one direction of the walk.
- Again two variants success punishing and success rewarding
- - Two parameter success punishing model
- - Two parameter success rewarding model

Example - two-parameter model

Model fitting

- Find $\overrightarrow{\lambda}$ with known p_0 , model type
- Find p_0 with known $\overrightarrow{\lambda}$, model type
- Find p_0 , $\overrightarrow{\lambda}$ with known model type
 - ▶ Using maximal likelihood estimate & numerical optimization
- Find model type without any prior knowledge
 - Using Akaike information criterion & numerical optimization

Real life application

- Success rewarding model well suited for modelling tennis matches
- ▶ Model trained on 2009 2018 men Grand Slam tournaments
- Model applied on 2019 US Open
 - Live betting against bookmaker
 - 0.52 units total necessary bankroll
 - ightharpoonup 2.24 units total profit ightarrow 430% ROI
 - Only 128 placed bets

Summary

- ► A specific model of a random walk with memory
- Model properties derived
- Application shows big future potencial of the model
- Possible applications in a set of real life scenarios