Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=11; day=28; hr=11; min=23; sec=47; ms=978;]

Validated By CRFValidator v 1.0.3

Application No: 09800863 Version No: 1.0

Input Set:

Output Set:

Started: 2008-11-05 11:33:21.560

Finished: 2008-11-05 11:33:47.238

Elapsed: 0 hr(s) 0 min(s) 25 sec(s) 678 ms

Total Warnings: 43

Total Errors: 0

No. of SeqIDs Defined: 446

Actual SeqID Count: 446

Err	or code	Error Description
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	402	Undefined organism found in <213> in SEQ ID (5)
W	402	Undefined organism found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	402	Undefined organism found in <213> in SEQ ID (15)
W	402	Undefined organism found in <213> in SEQ ID (16)
W	402	Undefined organism found in <213> in SEQ ID (19)
W	402	Undefined organism found in <213> in SEQ ID (20)
W	402	Undefined organism found in <213> in SEQ ID (29)
W	402	Undefined organism found in <213> in SEQ ID (30)
W	402	Undefined organism found in <213> in SEQ ID (37)
W	402	Undefined organism found in <213> in SEQ ID (38)
W	402	Undefined organism found in <213> in SEQ ID (41)
W	402	Undefined organism found in <213> in SEQ ID (42)
W	402	Undefined organism found in <213> in SEQ ID (43)
W	402	Undefined organism found in <213> in SEQ ID (44)

Input Set:

Output Set:

Started: 2008-11-05 11:33:21.560 **Finished:** 2008-11-05 11:33:47.238

Elapsed: 0 hr(s) 0 min(s) 25 sec(s) 678 ms

Total Warnings: 43

Total Errors: 0

No. of SeqIDs Defined: 446

Actual SeqID Count: 446

Err	or code	Error Description
W	402	Undefined organism found in <213> in SEQ ID (79)
W	402	Undefined organism found in <213> in SEQ ID (80)
W	402	Undefined organism found in <213> in SEQ ID (97)
W	402	Undefined organism found in <213> in SEQ ID (98) This error has occured more than 20 times, will not be displayed
W	213	Artificial or Unknown found in <213> in SEQ ID (441)
W	213	Artificial or Unknown found in <213> in SEQ ID (442)
W	213	Artificial or Unknown found in <213> in SEQ ID (443)
W	213	Artificial or Unknown found in <213> in SEQ ID (444)
W	213	Artificial or Unknown found in <213> in SEQ ID (445)
W	213	Artificial or Unknown found in <213> in SEQ ID (446)

SEQUENCE LISTING

```
<110> Busby, Robert
      Cali, Brian
      Hecht, Peter
      Holtzman, Doug
      Madden, Kevin
      Maxon, Mary
      Milne, Todd
      Norman, Thea
      Royer, John
      Salama, Sofie
      Sherman, Amir
      Silva, Jeff
      Summers, Eric
<120> Methods for Improving Secondary Metabolite Production in Fungi
<130> 23842-0002002
<140> 09800863
<141> 2008-11-05
<150> US 09/801,368
<151> 2001-03-07
<150> US 09/487,558
<151> 2000-01-19
<150> US 60/160,587
<151> 1999-10-20
<160> 446
<170> PatentIn version 4.0
<210> 1
<211> 26
<212> DNA
<213> Aspergillus terreus
<400> 1
                                                                     26
gaattcatgg aattcgttgc agaaag
<210> 2
<211> 26
<212> DNA
<213> Aspergillus terreus
<400> 2
                                                                     26
ggatccttag aaatcttgaa agtatt
```

<211>	34	
<212>	DNA	
<213>	Aspergillus nidulans	
<400>	3	
geggee	gcgg cgcccggccc atgtcaacaa gaat	34
<210>	4	
<211>	25	
<212>	DNA	
<213>	Aspergillus nidulans	
<400>	4	
ccqcqq	ccga gtggagatgt ggagt	25
3 33		
<210>	5	
<211>	30	
<212>		
	Aspergillus nidulans	
<400>	5	
	gece egtgatgtet acetgeceae	30
carggg	geee egegaegeee accegeeeac	30
<210>	6	
<211>	30	
<212>		
<213>	Aspergillus nidulans	
\215/	Aspergritus midurans	
<400>	6	
	cgat tgtgggtagt taatggtatg	30
cacgac	egat tgtgggtagt taatggtatg	50
<210>	7	
<211>	40	
<211>	DNA	
<213>	Artificial Sequence	
(215)	Altificial bequence	
<220>		
<223>	Synthetic oligonucleotide sequence used for PUMP1 PCR.	
\225/	synthetic dilgonaciociae sequence asea for form free.	
<400>	7	
	' aagc aggctccaca atgacatccc accacggtga	40
acaaaa	aage aggeteeaca atgacateee accaeggiga	40
<210>	8	
<211>	35	
	DNA	
<213>	Artificial Sequence	
-110/		
<220>		
<223>	Synthetic oligonucleotide sequence used for PUMP1 PCR.	
.225/	2, orrangement about for form for.	
<400>	8	
	° aage tgggtteatt egeteegtee tttet	35
acaugu		

<210>	9	
<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
	1	
<220>		
<223>	Conthotic cliconyaloctide companya yand for DIMD2 DCD	
<223>	Synthetic oligonucleotide sequence used for PUMP2 PCR	
<400>	9	
acaaaaa	aagc aggctccaca atgggccgcg gtgacactga	40
<210>	10	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic oligonucleotide sequence for PUMP2 PCR.	
\ZZ3/	Synthetic originational sequence for FoMF2 FCK.	
. 4.0.0.	10	
<400>	10	
acaagaa	aagc tgggtctatt gggtaggcag gttga	35
<210>	11	
<211>	29	
<212>	DNA	
<213>	Saccharomyces cerevisiae	
<400>	11	
cacaaat	ccc gacatattcg aggttgact	29
2 22		
<210>	12	
<211>	29	
<212>	DNA	
<213>	Saccharomyces cerevisiae	
<400>	12	
cccaago	cttg ctagaaatat gaaccttcc	29
<210>	13	
<211>	34	
<212>	DNA	
	Aspergillus niger	
.510,		
<400>	13	
		2.4
catgggg	gccc tctctccacc ggcactaaga tagc	34

```
<210> 14
<211> 35
<212> DNA
<213> Aspergillus niger
<400> 14
                                                                    35
cgcggatcca gcattggaaa aggagggggg ggaag
<210> 15
<211> 34
<212> DNA
<213> Aspergillus nidulans
<400> 15
                                                                    34
cgcggatcca tcacaacaag ttggtaacag tatc
<210> 16
<211> 32
<212> DNA
<213> Aspergillus nidulans
<400> 16
                                                                    32
ggactagtta acaagacaca cttcttcttc tt
<210> 17
<211> 33
<212> DNA
<213> Saccharomyces cerevisiae
<400> 17
                                                                    33
cgcggatcct atcttcactc aatatacttc cta
<210> 18
<211> 33
<212> DNA
<213> Saccharomyces cerevisiae
<400> 18
cccaagcttc atcgttgaaa cttgataacg cac
                                                                    33
<210> 19
<211> 33
<212> DNA
<213> Aspergillus nidulans
```

<400> 19

1140

gcaatcatcg gtaaaacagg ctattacgtt ccgtgggcgc tcgcaagcgg gatccttgtg

tccatatccg	ccggactggt	atcgaccttc	cagccggaaa	cctcgattgc	agcatgggtc	1200
atgtatcagt	tcctgggagg	cgtgggccga	ggatgcggaa	tgcaaacccc	tgtcgtcgcc	1260
attcaaaatg	cgctgcctcc	acaaacgagc	cccatcggca	tttcgctagc	catgttcggc	1320
cagacattcg	gtggctcgct	ttttctcacc	ctgaccgaat	tggtttttag	caatggtttg	1380
gactctggtc	tgcgccaata	tgcgccaacc	ctcaatgcac	aggaggtaac	agccgcaggg	1440
gccaccggct	tccgccaagt	ggtccccgct	cctctcatct	ctcgggtcct	cttagcatac	1500
agtaaaggcg	tggaccatgc	attctacgtt	geggteggtg	cgtctggagc	taccttcatc	1560
ttcgcctggg	gtatgggccg	gcttgcctgg	agaggctggc	ggatgcagga	gaaaggacgg	1620
agcgaatga						1629

<210> 22

<211> 542

<212> PRT

<213> Aspergillus terreus

<400> 22

Met Thr Ser His His Gly Glu Thr Glu Lys Pro Gln Ser Asn Thr Ala 1 5 10 15

Gln Met Gln Ile Asn His Val Thr Gly Leu Arg Leu Gly Leu Val Val 20 25 30

Val Ser Val Thr Leu Val Ala Phe Leu Met Leu Leu Asp Met Ser Ile 35 40 45

Ile Val Thr Ala Ile Pro His Ile Thr Ala Gln Phe His Ser Leu Gly 50 55 60

Asp Val Gly Trp Tyr Gly Ser Ala Tyr Leu Leu Ser Ser Cys Ala Leu 65 70 75 80

Gln Pro Leu Ala Gly Lys Leu Tyr Thr Leu Leu Thr Leu Lys Tyr Thr

85 90 95

Phe Leu Ala Phe Leu Gly Leu Phe Glu Ile Gly Ser Val Leu Cys Gly
100 105 110

Thr Ala Arg Ser Ser Thr Met Leu Ile Val Gly Arg Ala Val Ala Gly
115 120 125

Met Gly Gly Ser Gly Leu Thr Asn Gly Ala Ile Thr Ile Leu Ser Ala 130 135 140

Leu Ser Gln Ile Ala Ile Val Cys Gly Pro Leu Leu Gly Gly Ala Phe 165 170 175

Thr	Gln	His	Ala 180	Ser	Trp	Arg	Trp	Cys 185	Phe	Tyr	Ile	Asn	Leu 190	Pro	Ile	
Gly	Ala	Phe 195	Ala	Thr	Phe	Leu	Leu 200	Leu	Val	Ile	Gln	Ile 205	Pro	Asn	Arg	
Leu	Pro 210	Ser	Thr	Ser	Asp	Ser 215	Thr	Thr	Asp	Gly	Thr 220	Asn	Pro	Lys	Arg	
Arg 225	Gly	Ala	Arg	Asp	Val 230	Leu	Thr	Gln	Leu	Asp 235	Phe	Leu	Gly	Phe	Val 240	
Leu	Phe	Ala	Gly	Phe 245	Ala	Ile	Met	Ile	Ser 250	Leu	Ala	Leu	Glu	Trp 255	Gly	
Gly	Ser	Asp	Tyr 260	Ala	Trp	Asn	Ser	Ser 265	Val	Ile	Ile	Gly	Leu 270	Phe	Cys	
Ala	Ala	Gly 275	Val	Ser	Leu	Val	Leu 280	Phe	Gly	Cys	Trp	Glu 285	Arg	His	Val	
Gly	Gly 290	Ala	Val	Ala	Met	Ile 295	Pro	Ile	Ser	Val	Ala 300	Ser	Arg	Arg	Gln	
Val 305	Trp	Cys	Ser	Cys	Phe 310	Phe	Leu	Gly	Phe	Phe 315	Ser	Gly	Ala	Leu	Leu 320	
Ile	Phe	Ser	Tyr	Tyr 325	Leu	Pro	Ile	Tyr	Phe 330	Gln	Ala	Val	Lys	Asn 335	Val	
Ser	Pro	Thr	Met 340	Ser	Gly	Val	Tyr	Met 345	Leu	Pro	Gly	Ile	Gly 350	Gly	Gln	
Ile	Val	Met 355	Ala	Ile	Val	Thr	Gly 360	Ala	Ile	Ile	Gly	Lys 365	Thr	Gly	Tyr	
Tyr	Val 370	Pro	Trp	Ala	Leu	Ala 375	Ser	Gly	Ile	Leu	Val 380	Ser	Ile	Ser	Ala	
Gly 385	Leu	Val	Ser	Thr	Phe 390	Gln	Pro	Glu	Thr	Ser 395	Ile	Ala	Ala	Trp	Val 400	
Met	Tyr	Gln	Phe	Leu 405	Gly	Gly	Val	Gly	Arg 410	Gly	Суз	Gly	Met	Gln 415	Thr	
Pro	Val	Val	Ala 420	Ile	Gln	Asn	Ala	Leu 425	Pro	Pro	Gln	Thr	Ser 430	Pro	Ile	
Gly	Ile	Ser 435	Leu	Ala	Met	Phe	Gly 440	Gln	Thr	Phe	Gly	Gly 445	Ser	Leu	Phe	
Leu	Thr 450	Leu	Thr	Glu	Leu	Val 455	Phe	Ser	Asn	Gly	Leu 460	Asp	Ser	Gly	Leu	
Arg	Gln	Tyr	Ala	Pro	Thr	Leu	Asn	Ala	Gln	Glu	Val	Thr	Ala	Ala	Gly	

Ala Thr Gly Phe Arg Gln Val Val Pro Ala Pro Leu Ile Ser Arg Val
485 490 495

Leu Leu Ala Tyr Ser Lys Gly Val Asp His Ala Phe Tyr Val Ala Val
500 505 510

Gly Ala Ser Gly Ala Thr Phe Ile Phe Ala Trp Gly Met Gly Arg Leu 515 520 525

Ala Trp Arg Gly Trp Arg Met Gln Glu Lys Gly Arg Ser Glu 530 535 540

<210> 23

<211> 1464

<212> DNA

<213> Aspergillus terreus

<400> 23

atgggccgcg gtgacactga gtccccgaac ccagcgacga cctcggaagg tagcggacaa 120 aacgagccag agaaaaaggg ccgtgatatt ccattatgga gaaaatgtgt cattacgttt gttgttagtt ggatgactct agtcgttact ttctccagta cttgtcttct tcctgccgcc 180 cctgaaatcg cgaatgaatt tgatatgact gtcgagacta tcaatatctc caatgctggt 240 300 gtcttggttg ccatgggata ttcatccctc atatggggtc ccatgaacaa gttagtcggc aggeggaeat catacaatet ggeeatttea atgetttgtg egtgeteege tggaaeggea 360 gcggcgataa acgagaaaat gttcatagcg ttcagagtat tgagcggctt aaccggaacc 420 tegtteatgg teteaggeea aactgttett geagatatet ttgageetgt ttacegtggg 480 acggccgtag gtttcttcat ggccgggact ctttctggcc ctgcaatagc ctgcgtggga 540 ggggtcatcg tcactttcac gagttggcgt gttatcttct ggcttcaact aggtatgagc 600 ggactggggc tcgtgctttc cctgctattt ttcccgaaaa tcgaaggaac ttctgagaag gtctcaacgg cgtttaaacc gaccacactt gtttcaatca tatcgaaatt ctccccaacg 720 gatgtgctca agcagtgggt gtatccaaat gtctttcttg ccgtaagtgc ctgggagata 780 tgccctctgc atctactgga aacgaaatgc tcatgccgca aacaaaagga cttatgctgt 840 ggcctcctgg cgattacgca atattcgatc ctgacttcag ctcgtgctat attcaactca 900 cggtttcatt taacqactgc cctagtatcg ggtctcttct acctcgctcc aggtgccggg 960 ttcctgatag ggagtctcgt cggcggtaaa ctttcggatc gcaccgttcg gagatacata 1020 gtaaagcgcg gattccgtct ccctcaggat cgactccaca gcgggctcat cacattgttt 1080 1140 gccgtgctgc ctgcgggaac gctcatttac gggtggacac tccaagagga taagggtggg

atg	gtagt	igc (ccata	aatco	gc g	gcgti	ctto	c gcd	gggct	ggg	ggct	cato	ggg '	cagti	ttaac	1200
tgc	ctgaa	aca (ctta	cgtg	gc to	gtaga	aagco	c tto	gcca	cgga	acc	ggtci	gc (agtca	attgca	1260
ggaa	aagta	ata t	gati	caat	ca ct	cctt	ttct	c gca	aggga	agta	gtg	cgct	cgt ·	tgtg	cccgtc	1320
ataq	gacgo	ccc t	cgga	agtto	gg at	Egga	cgtt	c aco	gctat	igtg	tggt	tgct	tc (gacta	atagct	1380
ggat	tgat	cca (cggc	ggcc	at co	gcac	ggtg	g ggg	gata	aata	tgca	aaag	gtg (ggca	gaaagg	1440
gctt	tcaa	acc t	gcct	cacco	ca at	ag										1464
<210 <211 <212 <213	1> 4 2> I	24 487 PRT Aspe:	rgil:	lus 1	terre	eus										
< 400	0> 2	24														
Met 1	Gly	Arg	Gly	Asp 5	Thr	Glu	Ser	Pro	Asn 10	Pro	Ala	Thr	Thr	Ser 15	Glu	
Gly	Ser	Gly	Gln 20	Asn	Glu	Pro	Glu	Lys 25	Lys	Gly	Arg	Asp	Ile 30	Pro	Leu	
Trp	Arg	Lys 35	Суз	Val	Ile	Thr	Phe 40	Val	Val	Ser	Trp	Met 45	Thr	Leu	Val	
Val	Thr 50	Phe	Ser	Ser	Thr	Суs 55	Leu	Leu	Pro	Ala	Ala 60	Pro	Glu	Ile	Ala	
Asn 65	Glu	Phe	Asp	Met	Thr 70	Val	Glu	Thr	Ile	Asn 75	Ile	Ser	Asn	Ala	Gly 80	
Val	Leu	Val	Ala	Met 85	Gly	Tyr	Ser	Ser	Leu 90	Ile	Trp	Gly	Pro	Met 95	Asn	
Lys	Leu	Val	Gly 100	Arg	Arg	Thr	Ser	Tyr 105	Asn	Leu	Ala	Ile	Ser 110	Met	Leu	
Cys	Ala	Cys 115	Ser	Ala	Gly	Thr	Ala 120	Ala	Ala	Ile	Asn	Glu 125	Lys	Met	Phe	
Ile	Ala 130	Phe	Arg	Val	Leu	Ser 135	Gly	Leu	Thr	Gly	Thr 140	Ser	Phe	Met	Val	
Ser 145	Gly	Gln	Thr	Val	Leu 150	Ala	Asp	Ile	Phe	Glu 155	Pro	Val	Tyr	Arg	Gly 160	
Thr	Ala	Val	Gly	Phe 165	Phe	Met	Ala	Gly	Thr 170	Leu	Ser	Gly	Pro	Ala 175	Ile	
Ala	Суз	Val	Gly 180	Gly	Val	Ile	Val	Thr 185	Phe	Thr	Ser	Trp	Arg 190	Val	Ile	

Phe Trp Leu Gln Leu Gly Met Ser Gly Leu Gly Leu Val Leu Ser Leu

200 205

Leu Phe Phe Pro Lys Ile Glu Gly Thr Ser Glu Lys Val Ser Thr Ala Phe Lys Pro Thr Thr Leu Val Ser Ile Ile Ser Lys Phe Ser Pro Thr Asp Val Leu Lys Gln Trp Val Tyr Pro Asn Val Phe Leu Ala Val Ser Ala Trp Glu Ile Cys Pro Leu His Leu Leu Glu Thr Lys Cys Ser Cys Arg Lys Gln Lys Asp Leu Cys Cys Gly Leu Leu Ala Ile Thr Gln Tyr Ser Ile Leu Thr Ser Ala Arg Ala Ile Phe Asn Ser Arg Phe His Leu Thr Thr Ala Leu Val Ser Gly Leu Phe Tyr Leu Ala Pro Gly Ala Gly Phe Leu Ile Gly Ser Leu Val Gly Gly Lys Leu Ser Asp Arg Thr Val Arg Arg Tyr Ile Val Lys Arg Gly Phe Arg Leu Pro Gln Asp Arg Leu His Ser Gly Leu Ile Thr Leu Phe Ala Val Leu Pro Ala Gly Thr Leu Ile Tyr Gly Trp Thr Leu Gln Glu Asp Lys Gly Gly Met Val Val Pro Ile Ile Ala Ala Phe Phe Ala Gly Trp Gly Leu Met Gly Ser Phe Asn Cys Leu Asn Thr Tyr Val Ala Val Glu Ala Leu Pro Arg Asn Arg Ser Ala Val Ile Ala Gly Lys Tyr Met Ile Gln Tyr Ser Phe Ser Ala Gly Ser Ser Ala Leu Val Val Pro Val Ile Asp Ala Leu Gly Val Gly Trp Thr Phe Thr Leu Cys Val Val Ala Ser Thr Ile Ala Gly Leu Ile Thr Ala Ala Ile Ala Arg Trp Gly Ile Asn Met Gln Arg Trp Ala Glu Arg

Ala Phe Asn Leu Pro Thr Gln

<210> 25 <211> 2229 <212> DNA <213> Aspergillus terreus

<400> 25

atggagagtg cagagetgte gtegaagegg caggeattte etgeatgtga tgagtgeegg 60 atccgtaagg tccgatgcag caaggagggt ccaaagtgct cccattgcct ccgatataac 120 180 ctaccetgtg aatteteeaa caaagtggeg egegaegteg agaagetegg gagtegggtt ggagatatcg aacatgccct ccaacgatgc ctgtccttta ttgatgccca tcagggcttt 240 cqtqatctat caaqqccaca qtcacaaqaa aqcqqqtaca caaqctcaac caqctcaqaa 300 gagtgtgaag taaacttgta ctcaggcaaa cacacttcac ccaccgagga agatggattc 360 tggcctctcc acggttatgg ctcttttgtt tcactcgtca tggaggcaca ggctgctaac 420 gccaacctaa cctcttggtt accggtcgat atgaccagcg gccaagtcgc agagatggtc 480 gcatttgacc gccaagctgt gtcagctgtg cgctcgaagg tggctgaggc gaatgaaacg 540 cttcaacaga tcattgagga tatcccaaca ctatcggcat ccgaaaacga tacctttctc 600 ccgtctcttc caccccgcgc tctagtggag ccgtctatca acgaatattt caagaagctg 660 catccacgac tccctatatt tagtcgacag actatta