D')

```
In [1]: import pandas as pd
In [3]: # Read the Excel workbook
         df = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls')
In [4]: df.head()
Out[4]:
                   Food Environment Atlas data download
         0 Notes about the Food Environment Atlas downloa...
          1
                    This file contains multiple spreadsheets:
          2
                1. A variable list that includes metadata abo...
               2. Spreadsheets that contain data for each of...
               3. County and State-level supplemental data t...
In [5]: # Load Access, Stores, Assistance, Insecurity, Local, Health, Restaurants, Socioec
         onomic data sheets as dataframes
         access = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls', 'ACCES
         S')
         stores = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls', 'STORE
         S')
         assistance = pd.read_excel('data/2018-usda-food-environment-atlas-dataset.xls', 'A
         SSISTANCE')
         insecurity = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls', 'I
         NSECURITY')
         local = pd.read_excel('data/2018-usda-food-environment-atlas-dataset.xls', 'LOCAL'
         health = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls', 'HEALT
         H')
         restaurants = pd.read_excel('data/2018-usda-food-environment-atlas-dataset.xls', '
         RESTAURANTS')
         socioeconomic = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls',
         'SOCIOECONOMIC')
In [6]: # prices = pd.read excel('data/2018-usda-food-environment-atlas-dataset.xls', 'F00
```

```
In [7]: restaurants.head()
    restaurants_MA = restaurants[restaurants['State'] == 'MA']
    restaurant_cols = ['FIPS', 'State', 'County', 'FFR14', 'FFRPTH14', 'FSR14', 'FSRPT
    H14']
    restaurants_MA = restaurants_MA[restaurant_cols]
    restaurants_MA
```

Out[7]:

	FIPS	State	County	FFR14	FFRPTH14	FSR14	FSRPTH14
1217	25001	MA	Barnstable	216	1.005053	427	1.986841
1218	25003	MA	Berkshire	118	0.916754	215	1.670357
1219	25005	MA	Bristol	386	0.696507	468	0.844470
1220	25007	MA	Dukes	24	1.382807	60	3.457018
1221	25009	MA	Essex	576	0.748936	621	0.807447
1222	25011	MA	Franklin	35	0.493918	65	0.917276
1223	25013	MA	Hampden	293	0.625853	335	0.715566
1224	25015	MA	Hampshire	99	0.615140	168	1.043874
1225	25017	MA	Middlesex	1213	0.772456	1303	0.829770
1226	25019	MA	Nantucket	17	1.565954	54	4.974208
1227	25021	MA	Norfolk	471	0.680386	601	0.868178
1228	25023	MA	Plymouth	306	0.603524	410	0.808643
1229	25025	MA	Suffolk	745	0.970995	918	1.196475
1230	25027	MA	Worcester	581	0.714220	574	0.705615

```
In [8]: stores_MA = stores[stores['State'] == 'MA']
    stores_cols = ['FIPS', 'State', 'County', 'GROCPTH14', 'SUPERCPTH14', 'CONVSPTH14'
    , 'SPECSPTH14', 'SNAPSPTH16']
    stores_MA = stores_MA[stores_cols]
    stores_MA
```

Out[8]:

	FIPS	State	County	GROCPTH14	SUPERCPTH14	CONVSPTH14	SPECSPTH14	SNAPSPTH16
1217	25001	MA	Barnstable	0.348977	0.004653	0.581628	0.251263	0.833038
1218	25003	MA	Berkshire	0.264149	0.007769	0.536068	0.100998	0.742037
1219	25005	MA	Bristol	0.187660	0.012631	0.481781	0.075786	0.881209
1220	25007	MA	Dukes	0.691404	0.000000	0.460936	0.633787	0.497700
1221	25009	MA	Essex	0.243144	0.003901	0.357565	0.100118	0.696817
1222	25011	MA	Franklin	0.282239	0.014112	0.493918	0.098784	0.736457
1223	25013	MA	Hampden	0.209330	0.008544	0.508372	0.061944	1.020705
1224	25015	MA	Hampshire	0.229901	0.006214	0.316890	0.074562	0.606141
1225	25017	MA	Middlesex	0.182766	0.005731	0.362348	0.083423	0.522978
1226	25019	MA	Nantucket	0.368460	0.000000	0.552690	0.552690	0.363372
1227	25021	MA	Norfolk	0.171902	0.010112	0.365473	0.082340	0.489710
1228	25023	MA	Plymouth	0.167646	0.005917	0.455602	0.102560	0.618552
1229	25025	MA	Suffolk	0.282827	0.001303	0.431409	0.099055	0.864011
1230	25027	MA	Worcester	0.167184	0.009834	0.413043	0.057777	0.742344

```
In [ ]:
 In [9]: # We're going to join all these sheets, so we'll drop redundant state and county c
         ols from all but one.
         # We'll also set the FIPS ID col to be index so we can use that for the join.
         dfs = [stores, assistance, insecurity, local, health, restaurants, socioeconomic]
         for df in dfs:
             df.drop(columns=['State', 'County'], axis=1, inplace=True)
             df.set index('FIPS', inplace=True)
         # Then, we'll also set the index on the Access df. This will be the dataframe we j
         oin the others onto.
         access.set index('FIPS', inplace=True)
In [10]: # Combine all sheets into one dataframe by joining on FIPS col.
         # Now we have a master dataframe containing the cols from all sheets.
         master df = access.join(dfs)
In [11]: # These are the features I was interested in. Feel free to change them aroud as yo
         u see fit.
         # The sheeet 'Variable List' contains descriptions of all available vars.
         cols of interest = ['PCT LACCESS POP15', 'GROCPTH14', 'CONVSPTH14', 'SNAPSPTH12',
         'WICSPTH12', 'FFRPTH14',
                              'FOODINSEC_10_12', 'FMRKTPTH16', 'CSA12', 'FARM_TO_SCHOOL09',
         'PCT DIABETES ADULTS13',
                              'PCT OBESE ADULTS13', 'POVRATE15', 'MEDHHINC15', 'RECFACPTH14'
         # Create a dataframe with just the cols of interest.
         df = master_df[cols_of_interest]
         df.shape
Out[11]: (3143, 15)
In [12]: # Check for null values...
         df.isnull().sum()
Out[12]: PCT LACCESS POP15
                                  19
         GROCPTH14
                                   0
         CONVSPTH14
                                   0
         SNAPSPTH12
                                   0
         WICSPTH12
                                   0
         FFRPTH14
                                   0
         FOODINSEC_10_12
                                   0
         FMRKTPTH16
                                   2
         CSA12
                                   63
         FARM_TO_SCHOOL09
                                   5
         PCT_DIABETES_ADULTS13
                                   1
         PCT OBESE ADULTS13
         POVRATE15
         MEDHHINC15
         RECFACPTH14
         dtype: int64
```

```
In [13]: # ...and drop them
         df = df.dropna()
         df.isnull().sum()
Out[13]: PCT LACCESS POP15
                                   0
                                   0
         GROCPTH14
         CONVSPTH14
                                   0
         SNAPSPTH12
                                   0
                                   0
         WICSPTH12
                                   0
         FFRPTH14
                                   0
         FOODINSEC_10_12
         FMRKTPTH16
                                   0
         CSA12
                                   0
         FARM_TO_SCHOOL09
         PCT_DIABETES_ADULTS13
         PCT OBESE ADULTS13
                                   0
         POVRATE15
                                   0
         MEDHHINC15
                                   0
         RECFACPTH14
                                   0
         dtype: int64
In [14]: # dtypes look good
         print(df.dtypes)
                                   float64
         PCT LACCESS POP15
         GROCPTH14
                                   float64
         CONVSPTH14
                                   float64
         SNAPSPTH12
                                   float64
         WICSPTH12
                                   float64
         FFRPTH14
                                   float64
         FOODINSEC_10_12
                                   float64
         FMRKTPTH16
                                   float64
         CSA12
                                   float64
         FARM_TO_SCHOOL09
                                   float64
         PCT_DIABETES_ADULTS13
                                   float64
         PCT_OBESE_ADULTS13
                                   float64
         POVRATE15
                                   float64
         MEDHHINC15
                                   float64
                                   float64
         RECFACPTH14
         dtype: object
In [15]: import seaborn as sns
```

Out[16]: <seaborn.axisgrid.PairGrid at 0x1182faf98>


```
In [17]: from sklearn import linear_model
    from sklearn.metrics import r2_score
    from sklearn.model_selection import train_test_split
```

```
In [19]: # Split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test
_size=0.33)

# Create linear regression object
regr = linear_model.LinearRegression()

# Train our model
regr.fit(X_train, y_train)

# Make predictions
y_pred = regr.predict(X_test)

# R2 scores
print(r2_score(y_train, regr.predict(X_train)))
print(r2_score(y_test, y_pred))
```

0.5472865099050459
0.5013684111771843

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sk learn/linear_model/base.py:509: RuntimeWarning: internal gelsd driver lwork quer y error, required iwork dimension not returned. This is likely the result of LAP ACK bug 0038, fixed in LAPACK 3.2.2 (released July 21, 2010). Falling back to 'g elss' driver.

linalg.lstsq(X, y)

In []: