TEORÍA 1er. Parcial (5 cuestiones) (6 puntos). Puntuación: BIEN +1.2 ptos., MAL -0.3 ptos, N.C.: 0

- 1. Teniendo en cuenta que $V\gamma = 1.5V$ para el diodo LED D1 del circuito de la figura siguiente y que la tensión de entrada Vin es una onda cuadrada entre 0V y 5V, se puede afirmar que:
- [A] El diodo D1 no conduce en ningún caso
- [B] El diodo D1 conduce **siempre**, con independencia del estado de Vin
- [C] El diodo D1 conduce cuando Vin = 0V y no conduce cuando Vin = 5V
- [D] El diodo D1 conduce cuando Vin = 5V y no conduce cuando Vin = 0V

2. Dado el circuito lógico con transistores BJT y resistencias de la figura, indique la respuesta FALSA:

(DATOS de los transistores: $V_{BE(on)} = 0.7V$, $V_{CE(sat)} = 0.2V$, $\beta = 500$)

- [A] Cuando A = B = C = "0" (0V), los 3 transistores están en corte y el consumo (la corriente que proporciona Vcc) es nulo.
- [B] Cuando una entrada es "1"(5V), el transistor correspondiente funciona en activa directa, pues $\beta I_B < I_{C(sat)}$
- [C] Con una o más entradas a "1" (5V), la salida es 0.2V, y el consumo (la corriente que proporciona Vcc) es aproximadamente de 4.8 mA.
- [D] Se trata de una puerta NOR de 3 entradas.

3. El circuito de la figura utiliza un transistor MOSFET. Indique cuál de las afirmaciones siguientes es correcta, si la entrada V_1 la conectamos al drenador de M_1 :

- [A] El Mosfet estaría en corte siempre, ya que no circularía corriente por la puerta.
- [B] El Mosfet estaría en saturación, ya que V_{DS}=V_{GS}.
- [C] El Mosfet estaría en Zona Ohmica.
- [D] El estado del transistor dependerá del valor de R2.

- 4. Se quiere conectar las salidas de 2 puertas lógicas TTL (con salida en colector abierto) a 3 entradas de otras puertas de la misma familia, utilizando una resistencia de Pull-Up (R_{PU}). Las especificaciones de la familia se indican en la tabla adjunta. Indique cuál será el valor mínimo necesario de la resistencia R_{PU}
- [A] R_{PUMIN}= 319.4 Ohm
- [B] R_{PUMIN}= 179.7 Ohm
- [C] R_{PUMIN}= 479.2 Ohm
- [D] R_{PUMIN}= 410.7 Ohm

V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}
2 V	0.8 V	2.4 V	0.4 V
I_{IHmax}	I_{ILmax}	I _{OHmax} (Fugas)	I_{OLmax}
40 μΑ	-1.6 mA	0.2 mA	16 mA

5. Si las puertas del circuito de la figura se alimentan con Vcc=5V, y sus consumos estáticos son $I_{CCL}=5mA$, e $I_{CCH}=1mA$, y su retardo de propagación es de 10ns, calcule la potencia estática media consumida por el conjunto del circuito teniendo en cuenta el valor de la entrada A y las demás señales que se indican en el cronograma adjunto.

- [A] 1.4mW
- [B] 4.6mW
- [C] 7mW
- [D] 22mW

TEORÍA 2º. Parcial (8 cuestiones) (6 puntos). Puntuación: BIEN +0.75 ptos., MAL -0.18 ptos, N.C.: 0

6. Sea una puerta de transmisión NMOS, que utiliza un transistor con $|V_T|$ =1.5V. Si aplicamos 5V a la tensión de entrada (V_{IN}) y 5V al terminal de puerta G. ¿Qué voltaje se obtendrá a su salida (V_{OUT}) ?

- [A] 5V
- [B] 1V
- [C] 3.5V
- [D] 2.5V

- 7. Con relación a las familias lógicas CMOS, indica cuál de las siguientes afirmaciones es FALSA:
- [A] El consumo dinámico depende linealmente de la frecuencia.
- [B] La puertas BCT (BiCMOS) son compatibles TTL, pero están realizadas sólo con transistores MOSFETS.
- [C] La subfamilia HCT es CMOS pero con entradas compatibles TTL.
- [D] Los márgenes de ruido dependen linealmente de V_{DD}.
- 8. Un determinado procesador CMOS tiene 10⁷ transistores dedicados a lógica combinacional/secuencial, y 10⁸ transistores dedicados a la memoria. El factor de actividad medio de la lógica es 0.1, y el de la memoria es 0.01. La capacidad media por transistor es de 1 fF (1 femtofaradio = 10⁻¹⁵F), la alimentación es 2V y la frecuencia del reloj es 1000MHz. A la vista de ello, podemos afirmar que la potencia dinámica consumida será, aproximadamente:
- [A] No se puede calcular, depende del núm. de transistores por puerta.
- [B] 2W
- [C] 4W
- [D] 8W
- 9. ¿Cuál de las siguientes funciones lógicas implementa el layout de la figura?
- $[A] \quad Y = A \bullet B \bullet C$
- [B] $Y = \overline{A + B + C}$
- [C] $Y = \overline{A \cdot B \cdot C}$
- [D] $Y = \overline{A \cdot (B + C)}$

- 10. La celda de almacenamiento en una FLASH es:
- [A] Un fusible
- [B] Un condensador
- [C] Un biestable
- [D] Un transistor FAMOS
- 11. Si de una memoria semiconductora se nos indica que dispone de 2²¹ palabras y que cada palabra es de 64 bits, podemos deducir que:
- [A] Necesitará 16 líneas de direccionamiento.
- [B] Necesitará 20 líneas de direccionamiento.
- [C] Su capacidad de almacenamiento será de 2MBytes
- [D] Su capacidad de almacenamiento será de 16MBytes
- 12. En relación con la ROM representada en la figura, señale la afirmación FALSA:
- [A] La capacidad es "n" palabras x "b" bits.
- [B] Su contenido se implementa en el momento de la fabricación.
- [C] Necesita un decodificador de n líneas de entrada.
- [D] Permite implementar un circuito combinacional con "n" entradas y "b" salidas.

- 13. A la vista del cronograma de la figura, podemos afirmar que:
- [A] Se trata del cronograma de un refresco "RAS before CAS".
- [B] Corresponde a un refresco oculto en una DRAM.
- [C] Corresponde a un ciclo de lectura normal en una DRAM.
- [D] Es una lectura en ráfaga de 2 bits consecutivos.

Apellidos: Nombre:

Problema 1 (Primer PARCIAL) (4 puntos)

El transistor MOSFET empleado en el circuito de la figura **A** tiene unas curvas características como las mostradas en la figura **B.** A la vista de ello, se pide:

Nota: En zona óhmica utilice la expresión aproximada $R_{ON} = V_{DS} / I_{DS} \approx 1 / (2K(V_{GS} - V_T))$, y en saturación $I_{DS} = K(V_{GS} - V_T)^2$

Fig. A

Nota: Las curvas representadas son para incrementos de 1V de V_{GS}.

Fig. B

A. **(0.3 ptos.)** A partir de las curvas características del transistor, justifique que el valor de V_T (tensión umbral del transistor) es 3V.

B. **(0.3 ptos.)** A partir de las curvas características del transistor, justifique que el valor de la constante K del transistor es 1mA/V².

C. (1.4 ptos.) Calcule el punto de trabajo del transistor y justifique su región de funcionamiento.

V_{GS}	
I _{DS}	
V_{DS}	
Reg. func.	

D. **(0.8 ptos.)** Indique la ecuación de la recta de carga del circuito y represéntela sobre el diagrama de la Fig. B. Sitúe el punto de trabajo sobre la recta de carga.

Ecuación de la recta de carga y puntos de corte:

E. **(1.2 ptos.)** Suponga que se modifica el circuito para encender y apagar un LED con un interruptor, tal como muestra la figura adjunta. Rellene la tabla y calcule la resistencia R para que el LED presente una luminosidad adecuada. Justifique la respuesta. **(Nota**: Se recomienda sustituir el transistor por la resistencia equivalente de zona lineal, R_{on} . Verifique posteriormente que el transistor funciona en zona lineal).

Datos LED: I_{LED} = 10mA, V_{LED} =1.5V Datos Mosfet: V_T =3V, K=1mA/ V^2

Interruptor	V_{GS}	I _{DS}	LED (encendido/apagado)
Abierto			
/			
Cerrado			
			

Valor de R:	Ohms
-------------	------

Apellidos: Nombre:

Problema 2 (Segundo PARCIAL) (4 PTOS)

Se quiere diseñar la función lógica siguiente en Lógica CMOS Complementaria.

$$F = (A \cdot B) + C$$

A.1. (0.8ptos.) Explique el procedimiento de diseño.

A.2. (0.8ptos) Dibuje el circuito con transistores. Se recomienda el uso de los símbolos simplificados.

A.3. (**0.4ptos**) Compruebe el correcto funcionamiento del circuito para la combinación de entradas: A = 1, B = 0, C = 1. Substituya los transistores MOSFET por interruptores abiertos/cerrados y explique el valor lógico de la salida F.

B.1. (0.4ptos) Rellene la tabla de verdad de la función F del primer apartado:

$$F = (A \cdot B) + C$$

Α	В	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

B.2. **(1.2ptos)** Explique el procedimiento de diseño para implementar la tabla de verdad anterior mediante una ROM NMOS con estructura NOR y dibuje el esquema resultante (Ponga inversores en las salidas de datos).

B.3. (0.4ptos) Utilizando el esquema del apartado anterior, justifique el valor de la función cuando A = 1, B = 0, C = 1.