

主要内容

- 1 概述
 - 2 数字程控交换机的构成

3 呼叫处理原理

呼叫处理原理

- 程控交换软件概述
- 扩展有限状态机&SDL
- 呼叫处理原理
- 交换软件设计技术

程控分块

交换软件系统组成

北京邮电大学 计算机学院 卞佳丽

程控交换机的操作系统

交换机的操作系统?

你知道哪些操作系统?

实时多任务操作系统

实时性

多任务性

实时多任务操作系统支持多任务(Task)并发处理,由于多任务的并发性因而必然会引起任务的同步、互斥、通信以及资源共享等问题。

任务的分级

故障级任务

负责故障识别和紧急处理等功能, 具有最高优先级

故障

周期级任务

由时钟中断按周期性启动的任务。如每隔10ms周期性启动的拨号脉冲识别程序,启动周期为100ms的用户群扫描程序等。周期级任务的优先级较故障级任务低、比基本级任务高。

时钟中断

基本级任务

由事件启动的实时性要求不高、可以适当延迟执行的任务,其优先级最低。

事件

不同优先级的任务(举例)

交换软件系统组成

呼叫处理软件

具体完成的功能如下:

- 用户线和中继线上输入信号(呼叫信号、地址信号)检测识别
- **■** 呼叫资源管理(时隙、中继电路、DTMF收号器)
- 用户数据、呼叫状态以及号码等的分析
- 路由选择
- 控制呼叫状态迁移
- 控制计时、送音和交换网络的连接;
- 信令协议的处理等

交换软件系统组成

用户数据

- 用户类别:住宅用户、公用电话用户、PABX用户、传真用户等
- 话机类别: PULSE话机、DTMF话机
- 用户状态:空闲、忙、测试、阻塞等
- 限制情况:呼出限制、呼入限制等
- 呼叫权限:本局呼叫、本地呼叫、国内长途、国际长途等
- 计费类别:定期、立即、免费等
- 优先级:普通用户、优先用户
- 新业务权限:呼叫转移、会议电话、三方通话、呼叫等待等
- 新业务登记的数据:转移号码、热线号码等
- 用户号码:用户电话薄号码、用户设备号等
- 呼叫动态数据: 呼叫状态、时隙、收号器号、计数值等

- 硬件配置:用户端口数、出/入中继线数、DTMF收号器数等
- 各种号码:本地网编号及号长、局号、应收号码等
- 路由数据:局向、路由数
- 计费数据:呼叫详细话单(CDR)等
- 统计数据:话务量、呼损、呼叫情况等
- 交换机类别: C1-C5, C5又分为市话端局、长市合一等
- 复原方式: 主叫控制、被叫控制、互不控制

交换软件系统组成

北京邮电大学 计算机学院 卞佳丽

OAM(操作维护管理)软件

用以保证系统高效、灵活、可靠地运行,具体完成的功能如下:

- 用户数据和局数据管理
- 测试
- 告警
- 故障诊断与处理
- 动态监视
- 话务统计
- 计费
- 过负荷控制等

呼叫处理原理

- 程控交换软件概述
- 扩展有限状态机&SDL
- 呼叫处理原理
- 交换软件设计技术

有限状态自动机: 可定义为一个四元系统 < S, i, E, T > 其中:

■ S: 系统状态集,状态数有限

■ i: 系统初始状态, $i \in S$

■ E: 输入字母集

■ T: 转移函数集, 是从 SxE到S的映射

扩展有限状态机& SDL

扩展有限状态自动机: 定义为一个四元系统 <S, i, E, T> 其中:

- S: 系统状态集, 状态数有限
- i: 系统初始状态, i∈ S
- E: 输入事件集
- T: 转移函数, 是从SxE到S的映射

$$S_i \xrightarrow{t} S_j \in T, S_i, S_j \in S$$

- t = e / p: a; 或
- t = e / a; 或
- t = e

其中: e∈E, p为谓词,表示条件; a表示动作

传输层

传输层(TCP)协议机

SDL(Specification and Description Language)是ITU-T提出的一种*形式化描述语言*,由**Z.100**建议定义。

系统行为:复杂性

自然语言描述

程序设计语言

形式化描述语言

形式化方法(描述语言)特点

- 形式化的语法
- 形式化的语义
- ■清楚的概念模型
- 界面统一表示
- 强大的表达和描述功能
- ■有助于系统的实现和完善

分析、设计

模拟、验证、测试

交流、维护、再开发

SDL的特点

- ■可用于需求分析到具体实现的整个开发过程
- 适应于实时系统
- 基于扩展的有限状态机
- 图形化表示方式,可视性强
- 具有面向对象的特征

SDL图形化表示常用符号

呼叫处理原理

- 程控交换软件概述
- 扩展有限状态机&SDL
- 呼叫处理原理
- 交换软件设计技术

分析本局呼叫的处理过程

呼叫进展状况	交换机处理动作、状态变化
主叫A 摘机呼叫	1、交换机检测到用户A的摘机信号 2、交换机检查用户A的类别,识别是普通电话、公用电话等 3、交换机检查用户呼叫限制情况 4、交换机检查话机类别,以确定是PULSE还是DTMF收号方式
向A送拨号音 准备收号	1、交换机选择一个空闲收号器和空闲的时隙(路由) 2、交换机向主叫A送拨号音 3、监视主叫A所在用户线的输入信号(拨号),准备收号
收号与 号码分析	 交换机收到第一位号码后停拨号音 交换机按位存储收到的号码 交换机对号首进行分析,判定呼叫类别(本局、出局、长途、特服等),并确定应收号长 交换机对"已收号长"进行计数,并与"应收号长"比较 号码收齐后,本局呼叫进行号码翻译,确定被叫 交换机检查被叫用户是否空闲,若空闲则选定该被叫

分析本局呼叫的处理过程

呼叫进展状况	交换机处理动作、状态变化
建立连接 向B振铃 向A送回铃音	1、交换机将路由接至被叫B 2、向被叫B振铃 3、向主叫A送回铃音 4、主、被叫通话路由建立完毕 5、监视主、被叫用户状态
被叫应答 进入通话	1、被叫摘机应答,交换机检测到后,停振铃和停回铃音 2、A、B通话 3、开始计费 4、监视主、被叫用户状态
向另一方送忙	1、如果主叫A先挂机,交换机检测到后,复原路由,停止计费,向被叫B送忙音 2、如果被叫B先挂机,交换机检测到后,复原路由,停止计费,向主叫A送忙音
通话结束	被催挂的用户挂机,释放占用的所有资源,通话结束。

指识别和接收 输入信号的过 程,由输入处 理程序

任务执行中, 要输出一些信 令、消息或动 作命令,该过 程为输出处理

状态迁移

任务执行是指 在迁移到态 个稳定状态 前,理结 根据 处理结 人,完 成相 关任务

- 个呼叫处理过程可分为若干个阶段,每个阶段可以用一个稳定的 状态来表示:
- 整个呼叫处理的过程就是在一个稳定状态下,处理机监视、识别输 入信号,进行分析处理,执行任务和输出命令,然后跃迁到下-稳定状态的循环过程:
- 两个稳定的状态之间要执行各种处理;
- 在一个稳定状态下,若没有输入信号,状态不会迁移;
- 相同的输入信号在不同的状态下会有不同的处理,并迁移到不同的 状态:
- 在同一状态下,对不同输入信号的处理是不同的;
- 一状态下,输入同样信号,也可能因不同情况得出不同结果。

呼叫处理的特点

- □ 总结
 - ✓ 基于扩展的有限状态机
 - ✓ 输入处理、分析处理、任务执行和输出处理

通信软件:输入事件、状态!!

呼叫处理原理——输入处理

输入处理程序需完成的功能主要有:

- □ 用户线扫描监视
- □ 中继线扫描监视(接收公共信道信令)
- **□** 接收拨号脉冲、DTMF信号
- □ 接收操作台(OAM)的各种命令

对用户线、中继线、信令设备进行监视和信号识别,生成相应事件放入队列,供其它程序取用,大多属于周期级程序。

用户线扫描分析

用户线上各种不同的状态具有的共同的特点:

- □ 形成直流回路(续)、断开直流回路(断) 摘机一"续",挂机一"断" 送脉冲一"断",脉冲间隔一"续"
- □ 周期性监视 用户摘挂机扫描周期——100~200ms 拨号脉冲识别周期——8~10ms

摘挂机识别原理

设:用户在挂机状态时扫描输出为"1"(断)用户在摘机状态时扫描输出为"0"(续)摘挂机扫描程序的执行周期为200ms

摘机识别: 就是找到从"1"到"0"的变化点 挂机识别: 就是找到从"0"到"1"的变化点

摘挂机识别原理

呼叫处理原理——分析处理

输入处理得到的各种事件,交分析处理程序 分析,以决定下一步的工作。它没有固定周期, 属于基本级程序。

- 去话分析
- 号码分析
- 来话分析
- 状态分析

基本级程序

去话分析: 主叫用户摘机发起呼叫时进行的分析

分析基于: 主叫用户数据

号码分析: 在收到用户的拨号号码时进行的分析

分析基于: 用户拨号号码(用户线、中继线)

号码分析:号首分析、号码翻译

号首分析: 收到的前几位号码的分析, 一般为1~3

位,以判定呼叫的<u>接续类型</u>,获取<u>应</u>

<u>收号长和路由</u>等信息。

号码翻译:对被叫号码进行分析处理,以获得被

<u>叫用户</u>(用户设备号)。

来话分析

来话分析: 在收到它局呼入信号且被叫在本局时进行的分析

分析基于:被叫用户数据

来话分析的一般流程

北京邮电大学 计算机学院 卞佳丽

状态分析

状态分析的信息源是状态和输入事件。

呼叫状态:空闲、等待收号、收号、振铃、通话、忙音 空号音、催挂音、挂起等

事件: 摘机、挂机、超时、号码、空错号(分析结果产生)等

呼叫处理原理——任务执行和输出处理

- 启动和停止各种计时器
- 分配和释放各种资源(DTMF收号器、时隙)
- 形成信令、处理机间通信消息和驱动硬件的控制命令
- 开始和停止计费、计算操作、存储各种号码
- 对用户数据、局数据的读写操作
- 驱动交换网络建立或拆除话路
- 送/停各种信号音、振铃和停振铃
- 连接DTMF收号器
- 发送公共信道信令、发送处理机间通信信息等

北京邮电大学 计算机学院 卞佳丽

呼叫处理原理

- 程控交换软件概述
- 扩展有限状态机&SDL
- 呼叫处理原理
- 交换软件设计技术

(1) 群处理

群处理:

为提高效率,在软件设计中尽可能对一群对象同时进行逻辑运算和处理。

群处理——摘挂机识别(检测)

用户群扫描处理程序

200ms用户扫描群处理 确定用户扫描组的起始地址 读当前用户扫描数据 读200ms前用户扫描数据 这人前 =0结果=0? 逐位检查摘机用户 将"摘机事件"送入相应队列等待处理 换一组用户 这△前 =0结果=0? 逐位检查挂机用户 将"挂机事件"送入相应队列等待处理 N 是最后一组用户吗? Y 返回

(2) 逐次展开法

*逐次展开法*基于逐次展开的分析表,该表为多级检索表,呈树型结构。

(2) 逐次展开法——号首分析

(2) 逐次展开法——号首分析

(2) 逐次展开法——号码翻译

(2) 逐次展开法——周期级程序调度

举例:

周期级程序调度: 时钟中断

应用需求:周期10ms(k个)

周期200ms (m个)

周期1s(q个)

周期15s(j个)

时钟: 10ms

(2)逐次展开法——周期级程序调度 程序1 表0指针 程序2 表1指针 时钟10ms 程序k 表n指针 程序 周期10ms 计数器 (20) 计数器 (5) 计数器 (15) 程序1 程序1 程序1 程序2 程序2 程序2 程序m 程序q 程序i 周期**15s** 周期200ms 周期』s 北京邮电大学 计算机学院 卞佳丽

(3) 表格驱动

表格驱动是根据所给参数查表来启动程序 执行的方法,可灵活地实现程序的调用执行。 表格驱动技术包括两部分内容:

- □ 驱动表格
- □ 调度管理程序

(4) 有限状态机的实现

呼叫处理过程可以用扩展的有限状态机来描述,因而呼叫处理程序的实现,就是实现呼叫处理的有限状态机。

设计实现有限状态机的方法有很多,常用的 两种实现方法有:二维数组法、多级表法。

基于二维数组的有限状态机的实现

任务执行程序入口地址

状态:

事件:

0 (空闲)

0(主叫摘机)

1(准备收号)

1 (拨号)

2 (收号)

2(主叫挂机)

3(听忙音)

3(被叫摘机)

4 (振铃)

4 (被叫挂机)

5 (通话)

5 (TO超时)

.

- 6 (T1超时)
- 7 (T3超时)
- 8 (T4超时)

• • • • •

基于多级表的有限状态机的实现

北京邮电大学 计算机学院 卞佳丽

呼叫处理软件设计与实现

学习要求:

- ■结合课堂所讲内容,认真阅读教材第三章, 体会本章"小结";
- ■深刻理解下列重点内容:
 - □ 程控交换系统的体系结构
 - □用户电路、数字中继电路的工作原理
 - □ 控制系统多处理机的工作方式
 - □ 程控交换软件系统的特点
 - □ 呼叫处理的基本原理
- ■完成作业。

- 1、完成图3.36 "听忙音"状态直到呼叫释放的呼叫处理的SDL图描述。
- 2、给出图3.36整个本局呼叫处理过程的程序架构,包括主程序、子程序和主要的数据结构。
- 3、某程控交换机装有32个模块,已知每8个模块合用一台处理机,每台处理机完成一次呼叫平均需要执行36000条指令,每条指令平均执行时间为1微秒,固定开销a=0.15,最大占用率t=0.95,试求该交换机总呼叫处理能力N值是多少?