Power and sample size calculations NORBIS Genestat course

Miriam Gjerdevik

Centre for Fertility and Health, NIPH

02.06.22

Hypotheses

- Research questions to be addressed in a study are formulated as hypotheses
- During the planning stage of a study, one has to consider whether relevant quantities can be estimated with sufficient precision and if the study can give conclusive answers to the specified hypotheses
- ► Basically, larger sample size increases the precision of an estimate, i.e., the confidence interval narrows

Hypotheses

The null hypothesis, H_0

► The "no change" hypothesis, e.g., no association between the SNP and disease

The alternative hypothesis, H_1

▶ The "opposite" of H_0 , e.g., there is an association between the SNP and disease

Possible conclusions of a study

There are two ways in which one can conclude from a statistical test:

- ightharpoonup Reject H_0 , e.g., there is an association between the SNP and disease
- ▶ Fail to reject/accept H_0 , e.g., there is no association between the SNP and disease

Error types

Two types of errors in hypothesis testing

		Decision		
		Do not reject H ₀	Reject H ₀	
Truth	H₀ is true	Correct decision	Type I error	
	H_0 is false	Type II error	Correct decision	

Significance level

Significance level (α):

- Probability of making a Type I error
- \blacktriangleright A low significance level protects against falsely rejecting H_0
- Usually, $\alpha = 0.05$ for test of a single hypothesis

Statistical power

Statistical power

- The probability of making a Type II error given an effect size Δ is denoted by $\beta(\Delta)$
- ► The statistical power given an effect size Δ is denoted by $\Pi(\Delta)$ and is related to $\beta(\Delta)$ by the formula

$$\Pi(\Delta) = 1 - \beta(\Delta).$$

That is, the power of a test is the probability of rejecting H_0 for a given value of Δ

▶ Usually, the test is constructed so that $\Pi(\Delta) = 0.8$ for the smallest effect size considered clinically relevant

Error probabilities

		Decision		
		Fail to reject <i>H</i> ₀	Reject H_0	
Truth	H₀ is true	True negative $1-lpha$	False positive α	
	H_0 is false	False negative β	True positive $1-eta$	

Power function

How to increase power?

How can we increase the statistical power?

- ightharpoonup Increase significance level, α
- ► Increase detectable effect size, Δ
- Increase sample size/decrease standard error of parameter estimate

Power function-continued

Increase sample size

Poor statistical power

- Power affects the interpretation of results
- Poor power may result in a high number of false negatives
- Genetic association analyses are generally underpowered due to a large number of SNPs!!!

Issues of multiple testing in GWAS

Conventional significance level: $\alpha = 0.05$

Perform m tests, one for each SNP

Under H_0 :

m = 1,000,000 SNPs

 \implies 50,000 false rejections by chance!

Genome-wide (Bonferroni-corrected) significance threshold:

$$\alpha_{\mathsf{Bonferroni}} = \alpha/m = 5 \times 10^{-8}$$

A typical range of identified effect sizes

OR, Odds ratio Numbers retrieved from Landi et al. *Nat Genet*. 2020;52:494–504.

Minimal detectable effect size

The number of cases in a case-control or a case-parent triad design needed to obtain 80% power. snpSampleSize,

https://people.uib.no/gjessing/genetics/software/haplin/MAF, Minor allele frequency; OR, Odds ratio

Increasing the sample size

Tam et al. Nat Rev Genet. 2019;20:467-484.

Increasing the sample size

Visscher et al. Am J Hum Genet. 2012;90:7-24.

Increasing the sample size

Mills & Rahal. Commun Biol. 2019;2:9.

Sample size in genetic association studies

In genetic association analyses, the effective sample size depends on the number of families, allele/haplotype frequencies and family design

Sample size in genetic association studies/efficiency

```
snpPower(cases = list(c=100), controls = list(c=100),
       RR = 1.7, MAF = 0.2, alpha = 0.05)
cases.c controls.c RR MAF alpha power
             100 1.7 0.2 0.05 0.6178376
   100
snpPower(cases = list(mfc=100), controls = list(mfc=0),
       RR = 1.7, MAF = 0.2, alpha = 0.05)
cases.mfc controls.mfc RR MAF alpha power
     100
                   0 1.7 0.2 0.05 0.6178376
```

Sample size in genetic association studies/efficiency

Analyzing a diallelic SNP using 100 case children and 100 control children

- ▶ 200 case alleles and 200 control alleles
- ► Genotyping cost: 200 individuals

Case-control

Sample size in genetic association studies/efficiency

Analyzing a diallelic SNP using 100 case-triads

- ▶ 200 case alleles, 200 control alleles
- Genotyping cost: 300 individuals

Which design is more efficient?

Power calculations in Haplin-fetal effects

Sample size calculations in Haplin-fetal effects

```
snpSampleSize(fam.cases = "mfc",
        fam.controls = "no_controls", RR = 1.1,
        MAF = 0.1, alpha = 0.05, power = 0.8)
snpSampleSize(fam.cases = "mfc",
        fam.controls = "no_controls", RR = 1.5,
        MAF = 0.1, alpha = 0.05, power = 0.8)
snpSampleSize(fam.cases = "mfc",
        fam.controls = "no_controls", RR = 1.5,
        MAF = 0.15, alpha = 0.05, power = 0.8)
```

Power function-fetal effects

Power function—fetal effects

Power calculations through asymptotic approximations

Fetal effects

```
hapPowerAsymp(cases = c(mfc=100),
controls = c(mfc=100),
haplo.freq = c(0.2,0.8), RR = c(1.7,1))
```

Power calculations asymptotic approximations

Parent-of-origin (PoO) effects

```
hapPowerAsymp(cases = c(mfc=200),
controls = c(mfc=200), haplo.freq = c(0.2,0.8),
RRcm = c(1.7,1), RRcf = c(1,1))
```

NB! Remember that the PoO effect is defined by RRcm/RRcf

Power calculations asymptotic approximations

Gene-environment interactions

Power calculations through simulations

Fetal effects

```
res.hapRun <- hapRun(nall = c(2), cases = c(mfc=100), controls = c(mfc=100), haplo.freq = c(0.2,0.8), RR = c(1.7,1), RRstar = c(1,1), hapfunc = "haplin", response = "mult", n.sim = 200)
```

hapPower(res.hapRun)

Power calculations through simulations

Parent-of-origin effects

```
res.hapRun <- hapRun(nall = c(2), cases = c(mfc=200), controls = c(mfc=200), haplo.freq = c(0.2,0.8), RRcm = c(1.7,1), RRcf = c(1,1), RRstar = c(1,1), hapfunc = "haplin", poo = T, response = "mult", n.sim = 200)
```

hapPower(res.hapRun)

Power calculations through simulations

Gene-environment interaction

hapPower(res.hapRun)