#### Lecture 2 Predicates & Quantifiers

Ref.: K. H. Rosen, Section 1.3

#### **Predicate: Definition**



Let H(x,y) mean that x is taller than y,

i.e. H(x,y) is true iff x is taller than y.

If we know who x and y are, we know whether H(x,y) is true or not.

E. g., H(Tom, John) = T.

H is called a propositional function (predicate)

-- H assigns to every pair x,y a truth value.

#### **Definition**



H(Tom, John) = T.

#### <u>Subject</u>:

Is the element of the proposition that determines its value.

A variable is a "place holder" for a subject. It is called a *free variable* unless otherwise specified.

H(x, y)

#### **Propositional Function**



- "x > 3" can be expressed by function P(x)
  - > 3 is represented by P
  - P is the predicate
  - x is the variable

When a value is assigned to each variable of a propositional function, the predicate receives a truth value and thus turns into a proposition.



Let P(x) denote "x > 3" Let x = 4, P(4). 4 > 3, therefore P(4) is TRUE

```
Let Q(x,y,z) denote "x + y = z"
Let x = 2, y = 3, z = 6, Q(2, 3, 6)
2 + 3 = 6 is false, therefore Q(2,3,6) is FALSE
```

#### **Universal Quantification**



- "There is a person who is taller than 6 feet".
- "All of us are taller than 4 feet".

When we make such statements we have in mind a universe (e.g., the students in this room?).

These statements have a truth value and thus are propositions.

These statements are about properties of the universe.

#### **Universal Quantification**



#### **Definition:**

The universal quantification of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse".

```
Written as: \forall x P(x)
```

or For all x, P(x)

or For every x, P(x)



"Everyone in this room can see me"

can be represented as a universal quantification.

Let P(x) denote: "Person x can see me"

Let R(x) denote: "Person x is in this room"

$$\forall x(R(x) \rightarrow P(x))$$

Universe of discourse: All people



" $\forall x P(x)$  with P(x) being  $x^2 < 10$ "

Universe of discourse: {1,2,3,4}

 $\forall x P(x)$  is the same as  $P(1) \land P(2) \land P(3) \land P(4)$ 

 $\forall x P(x)$  is false as P(4) is false.

#### **Existential Quantification**



#### **Definition:**

The existential quantification of P(x) is the proposition "There exists an element x in the universe of discourse such that P(x) is true"

```
Written as: \exists x P(x)
```

"There is an x such that P(x)"

or "For some x P(x)"

or "There is at least one x such that P(x)"



```
"I can be seen"
```

Let P(x) denote: "Person x can see me"
∃x P(x)

Universe of discourse: All people

```
"∃x P(x) with P(x) being x²<10"

Universe of discourse: {1,2,3,4}

∃ x P(x) is the same as P(1)∨P(2)∨P(3)∨P(4)

∃ x P(x) is true as P(1) is true.
```

#### ∀ and ∃



| Statement        | When True?                            | When False?                            |
|------------------|---------------------------------------|----------------------------------------|
| $\forall x P(x)$ | P(x) is true for every x.             | There is an x for which P(x) is false. |
| $\exists x P(x)$ | There is an x for which P(x) is true. | P(x) is false for every x.             |



#### Take the English sentence:

"All lions are fierce"

Let P(x) denote the statement "x is a lion" Let Q(x) denote the statement "x is fierce"

 $\forall x \in L$ , Q(x) where L is the set of lions

or 
$$\forall x (P(x) \rightarrow Q(x))$$



"Some programs are object-oriented."

 $\exists x \in P$ , x is object-oriented where P is the set of programs.

or ∃x (x is a program∧ x is object-oriented)



"Every human being needs air."

 $\forall x \in H$ , x needs air where H is the set of human beings.

or  $\forall x \ (x \ is \ a \ human being \land x \ needs \ air)$ ?

∀x (x is a human being →x needs air) ✓



"All even numbers are divisible by 2."

 $\forall x \in E$ , x is divisible by 2 where E is the set of even numbers.

or ∀x (x is a even number →x is divisible by 2)



"Some fish can climb trees."

 $\exists x \in F$ , x can climb trees where F is the set of fish.

or 
$$\exists x (x \mid s \mid a \mid is \mid \Rightarrow x \in an climb trees) ?$$

or  $\exists x (x \text{ is a fish } \land x \text{ can climb trees})$ 



"Some CS students are babies."

 $\exists x \in S$ , x is a baby where S is the set of CS students.

or  $\exists x (x \text{ is a CS students} \rightarrow x \text{ is a baby})$ ?



or  $\exists x (x \text{ is a CS student } \land x \text{ is a baby})$ 



"Every basketball player is tall"

 $\forall x (x \text{ is a basketball player} \rightarrow x \text{ is tall})$ 



"No dogs have wings."

 $\forall x (x \text{ is a dog} \rightarrow x \text{ has no wings})$ 



"Some CS students are hardworking."

 $\exists x \ (x \ is \ a \ CS \ students \land x \ is \ hardwoking)$ 



"If a number is an integer, then it is a rational number."

 $\forall x \text{ (x is an integer} \rightarrow x \text{ is a rational number)}$ 

# **Negations**



"Every student has seen me"

$$\forall x P(x)$$

"Not every student has seen me"  $\neg \forall x P(x)$ 

$$\neg \forall x P(x) \Leftrightarrow \forall x \neg P(x)$$
?

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$

# **Negations**



"Somebody in this room are hardworking"

$$\exists x P(x)$$

"It's not the case that somebody in this room are hardworking"  $\neg\exists x \ P(x)$ 

$$\neg \exists x P(x) \Leftrightarrow \exists x \neg P(x)$$

$$\neg \exists x P(x) \Leftrightarrow \forall x \neg P(x)$$

# **Negations**



| Negation              | Equivalent            | When True?                             | When False?                           |
|-----------------------|-----------------------|----------------------------------------|---------------------------------------|
| $\neg \exists x P(x)$ | $\forall x \neg P(x)$ | P(x) is false for every x.             | There is an x for which P(x) is true. |
| $\neg \forall x P(x)$ | $\exists x \neg P(x)$ | There is an x for which P(x) is false. | P(x) is true for every x.             |

#### $\forall x > 0$ , $\exists y > 0$ such that y < x

- "For each positive number, there is another positive number smaller than it"
- "Given any positive number, we can find a smaller positive number"
- "There is no smallest positive number"

- "Someone is loved by someone"
- $\equiv \exists$ a person x,  $\exists$ a person y such that y loves x
  - "Everyone is loved by everyone"
  - $\equiv \forall \text{people } x, \forall \text{people } y, y \text{ loves } x$
  - "Everyone is loved by someone"
  - $\equiv \forall \text{people } x$ ,  $\exists \text{a person } y \text{ such that } y \text{ loves } x$ 
    - "Someone is loved by everyone"
  - $\equiv \exists$ a person x such that  $\forall$ people y, y loves x
  - "Everyone loves someone"
  - $\equiv \forall \text{people } y, \exists \text{a person } x \text{ such that } y \text{ loves } x$

Translate the statement into English:

$$\forall x (C(x) \vee \exists y (C(y) \wedge F(x,y)))$$

C(x) is "has a computer"

F(x,y) is "x and y are friends"

Universe of discourse: All students of Curtin.

Every student in Curtin has a computer or has a friend who has a computer.

Translate the statement into English:

$$\exists x \ \forall y \ \forall z \ (((F(x,y) \land F(x,z) \land y\neq z)) \rightarrow \neg F(y,z)))$$

F(x,y) is "x and y are friends"

Universe of discourse: All students.

There is a student none of whose friends are also friends with each other.

Translate the English sentence:

"Everybody has exactly one best friend"

Let B(x,y) denote the statement "x and y are best friends"

Let the universe of discourse be the set of all people.

 $\forall x \exists y B(x,y)$  is "everybody has a best friend".

$$\forall x \exists y \forall z (B(x,y) \land ((z\neq y) \rightarrow \neg B(x,z)))$$

# **Summary:** ∀ and ∃ for x,y

| Statement                                                                                                                                                 | When True?                                          | When False?                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
| $\forall \mathbf{x} \forall \mathbf{y} \ \mathbf{P}(\mathbf{x}, \mathbf{y})$ $\forall \mathbf{y} \forall \mathbf{x} \ \mathbf{P}(\mathbf{x}, \mathbf{y})$ | P(x,y) is true for every pair x,y.                  | There is a pair x,y for which P(x,y) is false.       |
| $\forall x \exists y \ P(x,y)$                                                                                                                            | For every x there is a y for which P(x,y) is true.  | There is an x such that P(x,y) is false for every y. |
| $\exists x \forall y \ P(x,y)$                                                                                                                            | There is an x such that P(x,y) is true for every y. | For every x there is a y for which P(x,y) is false.  |
| $\exists x \exists y \ P(x,y)$ $\exists y \exists x \ P(x,y)$                                                                                             | There is a pair x,y for which P(x,y) is true.       | P(x,y) is false for every pair x,y.                  |

#### Order

 Quantifiers of the <u>same</u> sort can be placed in any order without changing meaning:

```
\forall x, \forall y[x \text{ is mother of } y \rightarrow x \text{ is a parent of } y]

\equiv \forall y, \forall x[x \text{ is mother of } y \rightarrow x \text{ is a parent of } y]
```

#### **Order**

 Quantifiers of <u>different</u> sorts, if placed in different order change the meaning of the sentence

```
\forall x \in \text{people } \exists \text{ a person } y \text{ s.t. } [y \text{ is the mother of } x]

\equiv \text{"everyone has a mother"}
```

```
\exists a person y s.t. \forall x \in people [y is the mother of x] \equiv "someone is everyone's mother"
```

#### **Truth Value\***

- $\forall x \; \exists y \; [P(x) \to \; Q(x,y)]$  is true iff  $\exists y \; [P(x) \to \; Q(x,y)]$  is true for each possible value of x
  - $\exists y \ [P(x) \rightarrow Q(x,y)]$  is true iff for any ( $\geq 1$ ) value of y,  $P(x) \rightarrow Q(x,y)$  is true.
- E.g.  $\forall_{X} \in R \ \exists y \in R \ s.t. \ (x \ge 0 \rightarrow y = \sqrt{x}) \ is \ true$ 
  - : For any x ∈ R:
- when  $x \ge 0$ :  $\exists y \in R [x \ge 0 \rightarrow y = \sqrt{x}]$  is true
- \*when x < 0:  $\exists y \in R[x \ge 0 \rightarrow y = \sqrt{x}]$  is vacuously true

#### **Truth Value**

•  $\exists x \forall y \ [P(x) \rightarrow Q(x,y)]$  is true iff  $\forall y \ [P(x) \rightarrow Q(x,y)]$  is true for any value ( $\geq 1$ ) of x.

 $\forall y \ [P(x) \rightarrow Q(x,y)] \text{ is true iff}$ for all value of y,  $P(x) \rightarrow Q(x,y)$  is true.

# Truth Value: An Example

#### E.g. Given choices on 4 tables:

```
salads : { green salad, fruit salad };
main course: { spaghetti, fish };
dessert : { pie, cake };
beverage: { milk, soda, coffee }
```

#### **Guests' choices:**

Joko: green salad, spaghetti, pie, milk

Sidek: fruit salad, fish, pie, cake, milk, coffee

Zhao: spaghetti, fish, pie, soda

## Truth Value: An Example (con.)

```
\exists a guests g s.t.\forall table t, \exists an item i on t s.t. g chose i \equiv "\geq1 guest who chose \geq 1 item from every table":
```

true; Joko and Sidek

 $\forall$  guests g and  $\forall$  table t,  $\exists$  an item i on t s.t. g chose i

**=** "every guest chose ≥ 1 item from every table";

false; Zhao did not

## Truth Value: A Example (con.)

- $\exists$  an item *i* s.t.  $\forall$ guests *g*, *g* chose *i*
- "there is at least 1 item that's chosen by all guests";

true; e.g. pie

- $\exists$  a guests g s.t.  $\forall$  item i, g chose i
- "there is a guest who chose every available item"

false, none

## Negation of multiple quantifiers

#### **Z**: Prime Numbers

$$\neg(\forall x \in \mathsf{Z}, \exists y \in \mathsf{Z} [(x/y) \in \mathsf{Z} \land y \neq 1 \land y \neq x]) \equiv ?$$

$$\equiv \exists x \in \mathbb{Z}, \text{ s.t. } \neg (\exists y \in \mathbb{Z} [(x/y) \in \mathbb{Z} \land y \neq 1 \land y \neq x])$$

$$\equiv \exists x \in \mathbb{Z}, \text{ s.t. } \forall y \in \mathbb{Z} \{\neg [(x/y) \in \mathbb{Z} \land y \neq 1 \land y \neq x]\}$$

$$\equiv \exists x \in Z, \text{ s.t. } \forall y \in Z [(x/y) \notin Z \lor y=1 \lor y=x]$$

# Negation of multiple quantifiers

#### In general, negation is:

```
\neg (\forall x \exists y \text{ s.t. } [P(x,y)]) \equiv \exists x \text{ s.t. } \forall y [\neg P(x,y)]\neg (\exists x \text{ s.t. } \forall y [P(x,y)]) \equiv \forall x \exists y \text{ s.t. } [\neg P(x,y)]E.g. \quad \neg (\forall n \in Z, \exists k \in Z \text{ s.t. } [n=2k])
```

Not all integers are even

 $\equiv \exists n \in \mathbb{Z}, \text{ s.t. } \forall k \in \mathbb{Z} [n \neq 2k])$ 

There is at least one non-even integer

# Negation of multiple quantifiers

E.g.  $\neg$ ( $\exists$  person x s.t. $\forall$  people y [x loves y])

Negate "someone loves everyone"

 $\equiv \forall$  people  $x \exists$  person y s.t. [x does not loves y]

Nobody loves everybody

Note: negation of ∀ and ∃: generalized DeMorgans's theorem

#### **Other Extension**

- Consider  $\forall x \in D [P(x) \rightarrow Q(x)]$ 
  - Contrapositive:  $\forall x \in D \ [\neg Q(x) \rightarrow \neg P(x)]$  $\equiv \forall x \in D \ [P(x) \rightarrow Q(x)]$
  - Converse:  $\forall x \in D [Q(x) \rightarrow P(x)]$

- Inverse:  $\forall x \in D \left[ \neg P(x) \rightarrow \neg Q(x) \right]$ 

#### Other Extension

- $\forall x, R(x)$  is a sufficient condition for S(x) $\equiv \forall x [ R(x) \rightarrow S(x) ]$
- $\forall x, R(x)$  is a necessary condition for S(x)

$$\equiv \forall x [\neg R(x) \rightarrow \neg S(x)] \equiv \forall x [S(x) \rightarrow R(x)]$$

•  $\forall x, R(x)$  only if S(x)

$$\equiv \forall x \left[ \neg S(x) \rightarrow \neg R(x) \right] \equiv \forall x \left[ R(x) \rightarrow S(x) \right]$$

With the knowledge you have learnt, you will now be able to translate English sentences to logical expressions.

#### This will:

- Eliminate ambiguity.
- Enable reasoning.

- "All tourists need visas to come into Australia"
  - $\equiv \forall x \in \text{tourists of Australia}$  [x needs a visa to come into Australia]
  - $\equiv \forall x \in \text{tourists of Australia}[NeedVisa(x)]$
  - $\equiv \forall x \in \text{people } [AustraliaTourist(x) \rightarrow NeedVisa(x)]$
- "Some tourists need visas to come into Australia"
  - $\equiv \exists x \in \text{tourists of Australia s.t.}$  [x needs a visa to come into Australia]
  - $\equiv \exists x \in \text{people } [AustraliaTourist(x) \land NeedVisa(x)]$

- "Mary likes <u>everyone</u> who likes cats"
  - $\equiv \forall x \in \text{people who likes cats}[Mary likes } x]$
  - $\equiv \forall x \in \text{people } [Likes(x, \text{cat}) \rightarrow Likes(\text{Mary}, x)]$

Various predicate symbols must be appropriately pre-defined, Such as

 $Likes(x,y) \equiv x \text{ likes } y.$ 

The pre-definition is omitted for many examples here.

"A program is correct if it terminates for all suitable inputs and delivers an output which is always in the required relation S to the input"

```
≡ \forall p \in \text{programs} 

∀i \in \text{suitable input } [p \text{ terminates } \land (p \text{ delivers an output } o \text{ s.t. } S(i,o))] 

→p is correct]
```

```
\equiv \forall p \in \text{programs}
   \forall i \in \text{suitable input } \{Terminates(p, i)\}
   \land (\existsoutput o s.t.[Delivers(p,o) \land S(i,o)])}
   \rightarrow Correct(p)
\equiv \forall p \in \text{programs}
   \forall i \{SuitableInput(i) \rightarrow
       Terminates(p,i) \land( \existsoutput o s.t.
        [Delivers(p,o) \land S(i,o)])} \rightarrow Correct(p)]
```

• "An integer x is smaller than an integer y if ( x+1=y) or x is smaller than a third integer z and z is smaller than y"

$$\equiv \forall x \in Z \ \forall y \in Z \ [(x+1=y) \lor \exists z \in Z \\ [Smaller(x,z) \land Smaller(z,y)] \rightarrow Smaller(x,y)]$$

A recursive relationship and the expression itself define the predicate Smaller(x,y)

• "A positive integer x is a multiple of 5 if x=5 or (x-5=y) and y is a multiple of 5"

$$\equiv \forall x \in Z^+ \{ (x=5) \lor \exists y [(x-5=y) \land Multiple (y,5)] \\ \rightarrow Multiple (x,5) \}$$

- It is reasonably easy to recognize a correctly formed sentence in predicate logic. It is a little harder to translate such a sentence into English given the informal meaning of ∀ and ∃.
- It is even harder to translate English into predicate logic. Some useful rules of thumb are provided here to aid the process of translation.

#### Some useful rules

 Get the structure correct, as regards the use of quantifiers and Boolean connectives; the latter include, "onlyif", "sufficient/necessary condition for", 'unless", "if and only if" etc.

#### Some useful rules

• If the sentence has a universal quantifier governing some part(s) of it, it is quite likely that the variable needs qualifying; if so, it is done by an implication.

E.g.

 $\forall x \in \text{people } [AustraliaTourist(x) \rightarrow NeedVisa(x)]$ 

 $\forall x \in \text{people } [Likes(x, \text{cat}) \rightarrow Likes(\text{Mary}, x)]$ 

#### Some useful rules

 If a sentence is existentially quantified, then there is likely to be a conjunction to link the main part with the qualifying part.

E.g.

 $\exists x \in \text{people } [AustraliaTourist(x) \land NeedVisa(x)]$ 

Some CS students like FCS152

 $\equiv \exists x \in \text{students} [CS(x) \land Likes(x, FCS152)]$ 

## Summary



- Definition of Predicates
- Universal Quantifiers
- Existantial Quantifiers
- Translation to logical forms
- Negation of Quantifiers
- Order of multiple quantifiers
- Truth Value

## **Summary (cont.)**

- Negation of multiple quantifiers
- English-predicate logic translation