Universidade Estadual da Paraíba Centro de Ciências e Tecnologia Curso de Engenharia Sanitária e Ambiental

3 Métodos Numéricos – Princípios

- Os princípios utilizados em métodos numéricos têm o objetivo de simplificar a abordagem do problema, pois, às vezes abordar o problema como ele de fato é, torna a resolução de tal problema
- 1. Impossível, ou
- 2. Muito difícil, ou mesmo
- 3. Inadequada (como vimos no tema 1).
 - Ou seja, tais princípios têm o objetivo de tornar a resolução do problema mais simples, rápida e digamos, mais "simpática" aos nossos olhos.

Eita! Será que esse "migué de simpatia" colou?

Vamos à matéria!

1. <u>Iteração com aproximação sucessiva</u>

Iteração é a repetição sucessiva de um conjunto de ações.
Cada ação possui uma estrutura bem definida, finita e não ambígua.

Idéia: Parte-se de uma solução inicial arbitrada (o famoso "chute") e a cada repetição, a solução encontrada se aproxima cada vez mais da solução real.

• Suponha uma função f(x). Encontre $x = \xi$, tal que $f(x) = \theta$.

Ora, pela natureza do problema sabemos que o valor que torna f(x) = 0 é uma raiz dessa equação (vide slide a seguir).

Princípio: O problema inicial de achar x tal que f(x) = 0 é substituído pelo problema de achar x tal que $x = \varphi(x)$, onde $\varphi(x)$ é a função de iteração que foi obtida a partir de f(x) [$\varphi(x)$ não pode ser criada aleatoriamente].

Se a função de iteração ϕ (x) tiver a natureza adequada, o problema da _{φ(x)} figura da esquerda é substituído pelo problema da figura da direita, e o valor $x = \xi$ que "zera" f(x) se encontra na interseção de y = x (função identidade) $com y = \varphi(x)$ (função de iteração), por isso $x = \varphi(x)$.

- Qual deve ser a natureza da função de iteração f(x) para que o processo funcione corretamente?
- São necessárias duas condições:
- 1. $\exists \xi$ tal que $f(\xi) = 0$,
- 2. $\varphi(x) = x + A(x)f(x)$, $A(\xi) \neq \theta$ [note que $\varphi(x)$ é função de f(x)].

Se essas duas condições ocorrem, então $f(\xi) = \emptyset \Leftrightarrow \varphi(\xi) = \xi$.

Demonstração:

- (\Rightarrow) $\exists \xi \text{ tal que } f(\xi) = \theta \cdot \varphi(\xi) = \xi + A(\xi)f(\xi) \cdot \text{Como } f(\xi) = 0, \text{ então } A(\xi)f(\xi) = 0, \text{ daí } \varphi(\xi) = \xi.$
- (\Leftarrow) $\varphi(\xi) = \xi$. $\varphi(\xi) = \xi + A(\xi)f(\xi)$, daí $\xi = \xi + A(\xi)f(\xi)$, assim $A(\xi)f(\xi) = \theta$, mas como $A(\xi) \neq \theta$, então $f(\xi) = \theta$.

Mostrando graficamente como o processo funciona

- = $\varphi(x) \cdot x_1, x_2, x_3, \dots$ são aproximações de ξ .
 - Observe que o processo inicia com x_1 bastante afastado de ξ , e à medida que o processo avança, os valores x_2 , x_3 , ..., x_k , x_{k+1} se aproximam cada vez mais de ξ , de modo que a diferença em valor absoluto $|x_{k+1} \xi| < |x_k \xi|$, ou seja, o valor atual x_{k+1} está cada vez mais próximo da raiz ξ que o valor anterior x_k .

2. <u>Discretização</u>

- Discretizar é passar do domínio contínuo para o domínio discreto. Isso se refere a conjuntos em que não há intervalos vazios entre os números (contínuos) e àqueles em que há intervalos vazios (discretos).
- Ou seja, em um conjunto contínuo como os reais, você pode contar 1,0 1,1 1,2 1,35 ...2,01 2,11 2,24 ... 3,0, enquanto que em um conjunto discreto como os inteiros, você só pode contar 1 2 3 porque no intervalo entre um valor inteiro e outro não existem números.

Contínuo

2.a. Discretização em integração numérica

• No cálculo contínuo, a integral definida de f(x) dá o valor da área abaixo da curva y = f(x) no intervalo [a,b]. A fórmula abaixo é a definição clássica de integral.

$$\int_{a}^{b} f(x) dx = \lim_{h_{i} \to 0} \sum_{i=0}^{\infty} h_{i} f(x_{i}), \quad h_{i} = x_{i+1} - x_{i}$$
 A integral é definida como a soma da infinitos retângulos de largura h_{i} muito estreita e tendendo a θ .

Na discretização, a idéia é muito parecida com a vista acima. A função f(x) e o intervalo [a,b] são os mesmos, mas agora o número n de intervalos é finito e a largura hi de cada intervalo é bem maior que θ. Nessas condições, é claro, o resultado obtido no cálculo da área vai ter apenas um valor aproximado.
O contínuo, isto é, a integral – no lado esquerdo –

$$\int_{a}^{b} f(x)dx \cong \sum_{i=1}^{n-1} h_{i} f(x_{i})$$

O contínuo, isto é, a integral – no lado esquerdo – foi substituída pelo discreto, isto é, o somatório puro (sem o lim) – lado direito. Isto é discretização. Quando o limite desapareceu perdeu-se precisão. Na discretização a perde-se precisão.

- A área tracejada representa o erro cometido no processo de discretização.
- Na figura ao lado o erro é cometido por falta, i.e., a área calculada abaixo da curva é menor que a área real.

• Por que ocorreu isso? Porque o lado maior do retângulo é igual a cota x_i do intervalo, ou seja, a cota inferior.

 Na figura ao lado o erro é cometido por excesso, i.e., a área calculada abaixo da curva é maior que a área real.

• Por que ocorreu isso? Porque o lado maior do retângulo é igual a cota x_{i+1} do intervalo, ou seja, a cota superior.

- Uma maneira de diminuir o erro é "mexer" no valor do lado maior do retângulo.
- Existem duas possibilidades:
- . O lado maior do retângulo não é nem a cota inferior nem a superior, mas toma-se a média aritmética das cotas.

• Observe que, com esse arranjo, os erros por excesso e por falta, praticamente, se anulam.

$$\int_{a}^{b} f(x)dx \cong \sum_{i=0}^{n-1} \frac{h_{i}}{2} [f(x_{i}) + f(x_{i+1})]$$

- . A outra saída é usar trapézios no lugar de retângulos para cobrir os intervalos.
- Nessa técnica, o lado inclinado do trapézio praticamente se confunde com a curva, ou seja, sempre se pode escolher o trapézio mais adequado.

 Observe que, com esse arranjo, no tipo de curva que usamos como exemplo, não dá nem para o erro ser visto.
Embora o cálculo faça uso da mesma fórmula, nesse arranjo a precisão é maior.

$$\int_{a}^{b} f(x)dx \cong \sum_{i=0}^{n-1} \frac{h_{i}}{2} [f(x_{i}) + f(x_{i+1})]$$

2.b. Discretização na diferenciação numérica

- Dada a equação diferencial $\frac{dy}{dt} = f(y,t)$ encontrar o valor de y.
- Substituindo $\frac{dy}{dt}$ pela aproximação $\frac{dy}{dt} = \lim_{\Delta t_i \to 0} \frac{\Delta y}{\Delta t}$ $\begin{cases} \Delta y = y_{i+1} y_i \\ \Delta t = t_{i+1} t_i = h_i \end{cases}$
- Assim, $\frac{dy}{dt} \cong \frac{y_{i+1} y_i}{h_i} = f(y_i, t_i)$: $y_{i+1} = y_i + h_i f(y_i, t_i)$
- Se temos um valor inicial $y(t_0)$ podemos ir calculando o valor y_k de acordo com a equação acima e com a precisão que quisermos.

- . Aproximação (no sentido de substituição)
- Objetivos:
 - a) Substituir f(x) por g(x) mais fácil de manipular;
 - b) Substituir f(x) em x_k pela tangente de f(x) em x_k .
 - c) Substituir f(x) por um polinômio p(x) que mapeie f(x) em alguns pontos no intervalo [a,b].

f(x) foi substituída pela tangente f'(x)em alguns pontos

O polinômio p(x) substitui f(x) que "bate" com p(x)

- . Transformação
- Objetivos: transformar o problema original em um problema equivalente que seja mais simples.
- Transformar o SEL Ax = b no SEL A*x = b*, onde A*x = b* é equivalente a Ax = b (de modo que é mais fácil resolver o equivalente do que o original)

- Usa a equação (II) para achar y, depois substitui y na equação (I) e encontra x.
- U = matriz triangular superior de A
- L = matriz triangular inferior de A

- . Divisão e conquista
- Objetivos: Quebrar o problema em várias partes e resolver as partes de cada vez no lugar de resolver o problema.
- Às vezes, o problema é uma seqüência de pequenos problemas onde a solução do primeiro depende da solução do segundo, a do segundo depende do terceiro, etc., a solução do penúltimo depende do último. A estratégia, portanto, é resolver por partes.
- Ex.: Qual a velocidade final v_f de um móvel de massa m, t segundos depois que é aplicada sobre ele um força F? . Desconsidere o atrito e a resistência do ar. Inicialmente o móvel está parado.
- A velocidade que desejamos é dada pela equação $v_f = v_\theta + \alpha t$. Temos v_θ e t, mas não temos a. Mas podemos achar a por meio da equação F = ma. Uma vez achado o valor de a, fazemos a substituição na equação $v_f = v_\theta + \alpha t$ para achar o valor de v_f .

Exercícios Propostos

 Escolha qualquer um dos princípios - usados no desenvolvimento de técnicas de métodos numéricos - e explique sua fundamentação.

Por enquanto é só...

Estão abençoados!