Heat Equation
$$\frac{\partial \omega}{\partial t} = a^2 \frac{\partial^2 \omega}{\partial x^2}$$

$$0) = f(x) \quad \text{initial temperature}$$

$$\omega(x,0)=f(x)$$
 initial temperature

E.g.
$$f(x) = \begin{cases} 100 & 0 < x < \pi \\ 0 & x = 0, \pi \end{cases}$$

Fourier sine series of $f: \frac{400}{\pi} = \frac{5 \sin(2k-1)x}{2k-1}$

Then
$$\omega(x,t) = \frac{400}{\pi} \sum_{k=1}^{\infty} \frac{e^{-(2k+1)^k a^k t}}{2k-1} \sin(2k-1)x$$

- Rmk. 1 t>0: w is infinitely often differentiable i.e. temp. smoothens immediately
 - 2 As $t \to \infty$, $\omega(x,t)$ approaches the solution of the steady-state eqn: $0 = \frac{\partial \omega}{\partial t} = a^{2} \frac{\partial^{2} \omega}{\partial x^{2}} \quad i.e. \quad \frac{\partial^{2} \omega}{\partial x^{2}} = 0$

i.e. ω is linear, since $\omega(0) = \omega(\pi) = 0$ $\longrightarrow \omega(x) = 0$

if $\omega(0) = \omega_1$, $\omega(\pi) = \omega_2$, (*) then $\omega(x) = \omega_1 + \frac{1}{\pi}(\omega_2 - \omega_1)x$

3 If the rod has more dimensions (I, w, h) then heat eqn: $\frac{\partial \omega}{\partial t} = a^2 \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} + \frac{\partial^2 \omega}{\partial z^2} \right)$

The Dirichlet problem for the disk

Solve Laplace eqn
$$0 = \frac{\partial x^{2}}{\partial x^{2}} + \frac{\partial y^{2}}{\partial y^{2}} = \Delta \omega$$

on the unit disk $B_1(0) = \{(x,y) \mid x^1 + y^1 < 1\}$ with boundary conditions $\omega(x,y) = f(x,y)$ on $\int_{-\infty}^{\infty} \{(x,y) \mid x^1 + y^1 = 1\}$

- Rmk. I Solution to $\Delta \omega = 0$ are called harmonic functions
 - 7 The general Dirichlet problem asks for the solutions to $\Delta \omega = 0$ on a domain DSR2 with prescribed values f(x,y) on boundary.

Change to polar coordinates:

$$x = r \cos \theta$$

 $y = r \sin \theta$
and consider $w(r, \theta)$

Boundary condition: $\omega(1,\theta)=f(\theta)$ f must be 2π -periodic

Laplace's equation in polar coordinates: $0 = \Delta \omega = \frac{\partial \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial \omega}{\partial \theta^2}$

Rmk. This relies on chain rule e.g.
$$\frac{\partial \omega}{\partial r} = \frac{\partial \omega}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial \omega}{\partial y} \cdot \frac{\partial y}{\partial r}$$

$$= \frac{\partial \omega}{\partial x} \cdot \cos\theta + \frac{\partial \omega}{\partial y} \cdot \sin\theta$$
Similarly compute $\frac{\partial^2 \omega}{\partial r^2}$, $\frac{\partial^2 \omega}{\partial \theta^2}$

$$\omega(r,\theta) = u(r) \cdot v(\theta)$$

$$\rightarrow 0 = u''v + \frac{1}{7}u'v + \frac{1}{7}uv''$$

$$\rightarrow -\frac{v''}{v} = \frac{u'' + \frac{1}{7}u'}{u}$$
depends
on θ

$$= \frac{r^2u'' + ru'}{u}$$
depends
on $r = const. = \lambda$

$$\Rightarrow v'' + \lambda v = 0 \tag{1}$$

$$r^2u''+ru'-\lambda u=0 \qquad \qquad (2)$$

recall: v(θ) 2π-periodic v(0)=v(2π)

Note | If $\lambda < 0$, acosh($\sqrt{1}\lambda | \theta$) + bsinh($\sqrt{1}\lambda | \theta$) not 2π -periodic (unless a, b=0)

2 If
$$\lambda=0$$
, $v(\theta)=const \in \mathbb{R}$

3 If
$$\lambda>0$$
, acos($\sqrt{\lambda}\theta$)+bsin($\sqrt{\lambda}\theta$)

2π-periodic only if 170=k0

for some ken

i.e. we have $\lambda = \lambda_k = k^2$

and vk(0) = akcos(k0) + bksin(k0)

Eqn. (2) is $r^2u'' + ru' - k^2u = 0$ require u(0) finite Solutions are $u_k(r) = const_k \cdot r^k$ $k \ge 0$ So in total:

 $\omega_{k}(r,\theta) = U_{k}(r)V_{k}(\theta)$ $= \left[\alpha_{k}(\omega_{S}(k\theta) + b_{k}sin(k\theta)\right]r^{k}, \quad k \geq 1$

Superpositioning: $f(\theta) = \omega(r, \theta) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} [a_k \cos(k\theta) + b_k \sin(k\theta)] r^k$ must be the Fourier series of f(this determines a_k , b_k uniquely).