Soit $\omega = e^{\frac{2i\pi}{7}}$. On considère $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$

- 1. Calculer $\frac{1}{\omega}$ en fonction de $\overline{\omega}$
- 2. Montrer que pour tout $k \in [0, 7]$ on a

$$\omega^k = \overline{\omega}^{7-k}.$$

- 3. En déduire que $\overline{A} = B$.
- 4. Montrer que la partie imaginaire de A est strictement positive. (On pourra montrer que $\sin\left(\frac{2\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) > 0$.)
- 5. Rappelons la valeur de la somme d'une suite géométrique : $\forall q \neq 1, \forall n \in \mathbb{N}$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

Montrer alors que $\sum_{k=0}^{\infty} \omega^k = 0$. En déduire que A + B = -1.

- 6. Montrer que AB = 2.
- 7. En déduire la valeur exacte de A.