Aufgabe 397: Unterkörper von $GF(p^{\infty})$

Sei $p \in \mathbb{P}$ eine Primzahl. Zeigen Sie, dass $GF(p^{\infty})$ überabzählbar viele nichtisomorphe Unterkörper hat. Anleitung: Für jede (unendliche) Menge $A \subseteq \mathbb{P}$ sei K_A Vereinigung aller $GF(p^n)$, für die gilt, dass alle Primfaktoren von n in A liegen. Schreiben Sie K_A als aufsteigende Vereinigung $\bigcup_{j=1}^{\infty} U_j$ von Unterkörpern, um zu beweisen, dass K_A ein Körper ist. Für $A \neq A'$ zeigen Sie $K_A \ncong K_{A'}$, indem Sie eine Polynom (wo liegen die Koeffizienten dieses Polynoms?) finden, das zwar in K_A aber nicht in $K_{A'}$ eine Nullstelle hat, oder umgekehrt.

Aufgabe 398: Isomorphie \neq Gleichheit ($\cong \neq =$)

- (a) Seien $K, K' \leq GF(p^{\infty})$. Wenn $K \cong K'$, dann K = K'.
- (b) Finden Sie einen Körper der Charakteristik p, der zwei verschiedene aber isomorphe Unterkörper hat.