Chapter 14

Unicast Routing Protocols: RIP, OSPF, and BGP

Objectives

Upon completion you will be able to:

- Distinguish between intra and interdomain routing
- Understand distance vector routing and RIP
- Understand link state routing and OSPF
- Understand path vector routing and BGP

Introduction

To forward a packet on outgoing link, router has to decide optimum pathway.

Router may assign a cost to packet called as *metric*.

In RIP, cost is same for each hop count.

In OSPF, route through network can have different costs based on *type of service* desired.

Routers use routing tables to decide best route.

In BGP, criteria is *policy* decided by Administrator.

Routing table can be *static* or *dynamic*. Internet needs dynamic routing tables.

14.1 INTRA- AND INTERDOMAIN ROUTING

An Autonomous System (AS) is a group of networks and routers under the authority of a single administration.

Routing inside an autonomous system is referred to as intradomain routing. Routing between autonomous systems is referred to as interdomain routing.

Autonomous systems

Popular routing protocols

14.2 DISTANCE VECTOR ROUTING

In distance vector routing, the least cost route between any two nodes is the route with minimum distance. In this protocol each node maintains a vector (table) of minimum distances to every node

Ex. System of five nodes with their corresponding tables.

The topics discussed in this section include:

Initialization
Sharing
Updating
When to Share
Two-Node Loop Instability
Three-Node Instability

Distance vector routing tables

Initialization of tables in distance vector routing

At first, each node only knows the distance between itself and its immediate neighbors.

Each node sends a message to its neighbors and finds the distance.

Fig shows the initial tables.

Initialization of tables in distance vector routing

Initialization of tables in distance vector routing

Sharing:

DV Routing is built on idea of sharing information.

How much of the table should be shared?

Soln. Send the complete table as message to neighbor. Neighbor only needs first two columns.

Updating:

- 1. Receiving node adds the cost of itself and sending node in second column.
- 2. Add the name of sending node to each row in third column.
- 3. Receiving node compares old table with new table
 - a. If next-node entry is different, receiver chooses the low cost.
 - b. If next-node entry is same, receiver chooses the new row.

Updating in distance vector routing

Two-node instability

Figure 14.7 Three-node instability

14.3 RIP

The Routing Information Protocol (RIP) is an intradomain routing protocol used inside an autonomous system. It is a very simple protocol based on distance vector routing.

The topics discussed in this section include:

RIP Message Format Requests and Responses Timers in RIP RIP Version 2 Encapsulation

Figure 14.8 Example of a domain using RIP

Figure 14.9 RIP message format

Figure 14.10 Request messages

Com: 1	Version	Reserved	
Fan	nily	All 0s	
Network address			
All 0s			
All 0s			
	All	l 0s	

Repeated

All 0s		
a. Request for some		

Com: 1	Version	Reserved	
Family		All 0s	
All 0s			
All 0s			
All 0s			
	All 0s		

b. Request for all

Example 1

Figure 14.11 shows the update message sent from router R1 to router R2 in Figure 14.8. The message is sent out of interface 130.10.0.2.

The message is prepared with the combination of split horizon and poison reverse strategy in mind. Router R1 has obtained information about networks 195.2.4.0, 195.2.5.0, and 195.2.6.0 from router R2. When R1 sends an update message to R2, it replaces the actual value of the hop counts for these three networks with 16 (infinity) to prevent any confusion for R2. The figure also shows the table extracted from the message. Router R2 uses the source address of the IP datagram carrying the RIP message from R1 (130.10.02) as the next hop address.

Figure 14.11 *Solution to Example 1*

Figure 14.12 RIP timers

Example 2

A routing table has 20 entries. It does not receive information about five routes for 200 s. How many timers are running at this time?

Solution

The 21 timers are listed below:

Periodic timer: 1

Expiration timer: 20 - 5 = 15

Garbage collection timer: 5

	Command	Version	Reserved	
	Family		Route tag	
	Network address			
	Subnet mask Next-hop address			
L	Distance			

Figure 14.14 Authentication

Command	Version	Reserved
FF	FF	Authentication type
Authentication data 16 bytes		

Note:

RIP uses the services of UDP on well-known port 520.

24

14.4 LINK STATE ROUTING

In link state routing, if each node in the domain has the entire topology of the domain, the node can use Dijkstra's algorithm to build a routing table.

The topics discussed in this section include:

Building Routing Tables

Figure 14.16 Link state knowledge

Figure 14.17 Dijkstra algorithm

Figure 14.18 Example of formation of shortest path tree

Topology

- 1. Set root to A and move A to tentative list
- 2. Move A to permanent list and add B, C, and D to tentative list

- 3. Move C to permanent and add E to tentative list
- $4. \ \ Move\ D\ to\ permanent\ list.$

- 5. Move B to permanent list
- 6. Move E to permanent list (tentative list is empty)

Table 14.1 Routing table for node A

Node	Cost	Next Router
A	0	
В	5	
С	2	
D	3	
Е	6	С

14.5 **OSPF**

The Open Shortest Path First (OSPF) protocol is an intradomain routing protocol based on link state routing. Its domain is also an autonomous system.

The topics discussed in this section include:

Areas

Metric

Types of Links

Graphical Representation

OSPF Packets

Link State Update Packet

Other Packets

Encapsulation

Figure 14.21 Point-to-point link

Figure 14.22 Transient link

a. Transient network

b. Unrealistic representation

c. Realistic representation

a. Stub network

b. Representation

Figure 14.24 Example of an AS and its graphical representation in OSPF

Figure 14.25 Types of OSPF packets

0	7	8 15	16 31			
	Version	Туре	Message length			
	Source router IP address					
	Area Identification					
	Checksum Authentication type					
	Authentication (32 bits)					

Repeated

OSPF common header 24 bytes Type: 4

Number of link state advertisements

Link state advertisement
Any combination of five different kinds
(network link, router link, summary link to network, summary to
boundary router, or external link)

Figure 14.28 LSA general header

Link state age	Reserved	Е	Т	Link state type
Link state ID				
Advertising router				
Link state sequence number				
Link state checksum	Length		gth	

Table 14.2 Link types, link identification, and link data

Link Type	Link Identification	Link Data
Type 1: Point-to-point	Address of neighbor router	Interface number
Type 2: Transient	Address of designated router	Router address
Type 3: Stub	Network address	Network mask
Type 4: Virtual	Address of neighbor router	Router address

Give the router link LSA sent by router 10.24.7.9 in Figure 14.31.

See Next Slide

Solution

This router has three links: two of type 1 (point-to-point) and one of type 3 (stub network). Figure 14.32 shows the router link LSA.

See Figure 14.32

Figure 14.32 Solution to Example 3

Give the network link LSA in Figure 14.35.

See Next Slide

Solution.

See Figure 14.36

Figure 14.36 Solution to Example 4

OSPF common header Type: 4
Number of advertisements: 1
LSA general header Type: 2
255.255.255.0
10.24.7.14
10.24.7.15
10.24.7.16

In Figure 14.37, which router(s) sends out router link LSAs?

See Next Slide

Solution

All routers advertise router link LSAs.

a. R1 has two links, N1 and N2.

b. R2 has one link, N1.

c. R3 has two links, N2 and N3.

In Figure 14.37, which router(s) sends out the network link LSAs?

Solution

All three network must advertise network links:

- a. Advertisement for N1 is done by R1 because it is the only attached router and therefore the designated router.
- b. Advertisement for N2 can be done by either R1, R2, or R3, depending on which one is chosen as the designated router.
- c. Advertisement for N3 is done by R3 because it is the only attached router and therefore the designated router.

Figure 14.42 External link

External route tag

	OSPF com 24 bytes				
	Networ	k mask			
	Hello interval	All 0s	Е	Т	Priority
	Dead interval				
	Designated rou	uter IP address			
pa:	Backup designated	d router IP add	ress	5	
Repeated	Neighbor	IP address			
Re					

Figure 14.45 Database description packet

LSA general header 20 bytes Corresponding type

Note:

OSPF packets are encapsulated in IP datagrams.

14.6 PATH VECTOR ROUTING

Path vector routing is similar to distance vector routing. There is at least one node, called the speaker node, in each AS that creates a routing table and advertises it to speaker nodes in the neighboring ASs..

The topics discussed in this section include:

Initialization Sharing Updating

Figure 14.48 Initial routing tables in path vector routing

Figure 14.49 Stabilized tables for four autonomous systems

st.	Path
	AS1
	AS1
_	AS1-AS2
	A31-A32
	AS1-AS2
	AS1-AS3
	AS1-AS3
	AS1-AS2-AS4
	AS1-AS2-AS4
	st.

Dest	. Path
A1	AS2-AS1
A5	AS2-AS1
В1	AS2
B4	AS2
C1	AS2-AS3
СЗ	AS2-AS3
D1	AS2-AS3-AS4
D4	AS2-AS3-AS4

B1 Table

I	Dest	. Path
	A1	AS3-AS1
		A C 2 A C 1
	A5	AS3-AS1
	В1	AS3-AS2
	В4	AS3-AS2
	C1	AS3
	С3	AS3
	D1	AS3-AS4
	D4	AS3-AS4

C1 Table

Dest	. Path
A1	AS4-AS3-AS1
 A5	AS4-AS3-AS1
	110111001101
B1	AS4-AS3-AS2
	•••
B4	AS4-AS3-AS2
C1	AS4-AS3
С3	AS4-AS3
D1	AS4
Б.	AS4
D4	A34

D1 Table

14.7 BGP

Border Gateway Protocol (BGP) is an interdomain routing protocol using path vector routing. It first appeared in 1989 and has gone through four versions.

The topics discussed in this section include:

Types of Autonomous Systems

Path Attributes

BGP Sessions

External and Internal BGP

Types of Packets

Packet Format

Encapsulation

Figure 14.50 Internal and external BGP sessions

Figure 14.53 Open message

Figure 14.54 Update message

Note:

BGP supports classless addressing and CIDR.

Common header 19 bytes Type: 3

Figure 14.56 *Notification message*

Table 14.3 Error codes

Error Code	Error Code Description	Error Subcode Description
1	Message header error	Three different subcodes are defined for this type of error: synchronization problem (1), bad message length (2), and bad message type (3).
2	Open message error	Six different subcodes are defined for this type of error: unsupported version number (1), bad peer AS (2), bad BGP identifier (3), unsupported optional parameter (4), authentication failure (5), and unacceptable hold time (6).
3	Update message error	Eleven different subcodes are defined for this type of error: malformed attribute list (1), unrecognized well-known attribute (2), missing well-known attribute (3), attribute flag error (4), attribute length error (5), invalid origin attribute (6), AS routing loop (7), invalid next hop attribute (8), optional attribute error (9), invalid network field (10), malformed AS_PATH (11).
4	Hold timer expired	No subcode defined.
5	Finite state machine error	This defines the procedural error. No subcode defined.
6	Cease	No subcode defined.

Note:

BGP uses the services of TCP on port 179.

80