Greedy Cover is to pick a set that covers at least $(1 - \epsilon)$ times the maximum number of uncovered elements at each greedy step. Its approximation ratio is $1 - \frac{1}{e^{1-\epsilon}}$, proved as follows.

• Claim 1: $x_{i+1} \ge \frac{z_i * (1-\epsilon)}{k}$.

Pf. Suppose x_i is the number of new elements covered by ith set chosen, y_i the total elements covered after ith set chosen, and $z_i = OPT - y_i$ where OPT is the maximum number of covered elements. k is the number of sets picked when algorithm terminates. The first set covers at least $\frac{1}{k}$ of the uncovered elements and for the same reason we have

$$x_{i+1} \ge \frac{z_i * (1 - \epsilon)}{k}.$$

• Claim 2: $z_k \leq (1 - \frac{1 - \epsilon}{k})^k * OPT$.

Pf. We use mathematical induction. The base case is when i = 1 and $z_1 \leq (1 - \frac{1 - \epsilon}{k}) * OPT$ is trivially true.

Suppose $z_i \leq (1 - \frac{1 - \epsilon}{k})^i * OPT$ is true, then using Claim 1 we get

$$z_{i+1} \le z_i - x_{i+1} \le z_i * (1 - \frac{1 - \epsilon}{k}) \le (1 - \frac{1 - \epsilon}{k})^{i+1} * OPT.$$

After we plug in i = k - 1, it becomes

$$z_k \le (1 - \frac{1 - \epsilon}{k})^k * OPT.$$

Thus the algorithm has an approximation ratio of $(1 - \frac{1-\epsilon}{k})^k = 1 - \frac{1}{e^{1-\epsilon}}$.