Анализ

холодных звонков для предсказания действий клиентов. (покупка автомобильной страховки)

Базы данных

Это набор данных из одного банка в Соединенных Штатах.

Помимо обычных услуг, этот банк также предоставляет услуги по страхованию автомобилей. Банк регулярно проводит акции по привлечению новых клиентов. У банка есть данные потенциальных клиентов, и сотрудники банка звонят им для рекламы доступных вариантов автострахования. Нам предоставляется общая информация о клиентах (возраст, работа и т.д.), а также более конкретная информация о текущей кампании продажи страховки (коммуникация, последний день контакта) и предыдущих кампаниях (такие атрибуты, как предыдущие попытки, результат).

Есть данные о 4000 клиентах, с которыми связывались во время последней кампании и для которых известны результаты кампании (покупал ли клиент страховку или нет).

Описание данных

Feature Description Example

Id Уникальный идентификационный номер. "1" ... "5000"

 Age
 Возраст клиента

 job
 Работа клиента

Marita Семейное положение клиента "разведен", "женат",

"холост

Education Уровень образования клиента "первичный",

"вторичный"

Default Есть ли просроченный кредит? да -1, нет -0

balance Среднегодовой баланс, в долларах США

 HHInsurance
 Есть ли страховка?
 да -1, нет -0

 CarLoan
 Имеет ли клиент автокредит
 да -1, нет -0

 Communication
 Тип контактной связи
 "сотовая связь",

"телефон",

LastContactMonthМесяц последнего контактаLastContactDayДень последнего контакта

 CallStart
 Время начала последнего вызова (ЧЧ:ММ:СС)

 CallEnd
 Время окончания последнего вызова (ЧЧ:ММ:СС)

NoOfContacts Количество контактов, выполненных в ходе данной кампании для данного клиента

DaysPassed Количество дней, прошедших после того, как с клиентом в последний

раз связывались из предыдущей кампании (числовое значение; -1 означает,

что с клиентом ранее не связывались)

PrevAttempts Количество контактов, выполненных до этой кампании и для данного клиента

Outcome Результаты предыдущих маркетинговых кампаний "неудача", "другое",

"успех",

Carinsurance Застрахует ли клиент автомобиль? да -1, нет -0

Что хотим получить?

Задача состоит в том, чтобы построить модель (на выборке 4 000 клиентов), которая бы предсказывала с приемлемой долей вероятности наступит нужное нам событие или нет (покупка страховки). В наличии есть данные по 1000 клиентам, по которым сотрудники сделали холодные звонки. Нам нужно на основании данных определить перспективных клиентов и делать уже горячие звонки, с конкретными предложениями.

ДЛЯ КОГО ДЕЛАЕМ?

- Банки
- Страховые группы

Деньги

Имея прогноз покупки страховки клиентом мы можем сконцентрироваться только на тех клиентах, которые по нашей модели готовы купить страховку. Экономия денег компании и времени сотрудников.

Анализ и преобразование данных

Исходные данные:

lf.dtypes	
Age	int64
Job	object
Marital	object
Education	object
Default	int64
Balance	int64
HHInsurance	int64
CarLoan	int64
Communication	object
LastContactDay	int64
LastContactMonth	object
NoOfContacts	int64
DaysPassed	int64
PrevAttempts	int64
Outcome	object
CallStart	object
CallEnd	object
CarInsurance	int64
dtype: object	

Age	0	
CallStart	0	
PrevAttempts	0	
DaysPassed	0	
NoOfContacts	0	
LastContactMonth	0	
LastContactDay	0	
CallEnd	0	
CarInsurance	0	
HHInsurance	0	
Balance	0	
Default	0	
Marital	0	
CarLoan	0	
Job	19	
Education	169	
Communication	902	
Outcome	3042	

Очень много текстовых данных. Будем их преобразовывать. В столбце Outcom много пропусков- удалим его сразу.

Что меняем...

- Поменяем тип в дате на datetime64
- <u>B 'Job', 'Education', 'Communication' вместо</u> неопределенных данных ставим 0.
- Создаем группы по коммуникации(cellular-1, telephone-2, Nan-0)
- Создаем группы по образованию(primary-1, secondary-2, tertiary -3)
- Создаем группы по семейному положению (primary-1, secondary-2, tertiary -3)
- Создаем группы по возрасту
- <u>Создаем группы по времени от последнего</u> контакта
- Создаем группы по работе клиентов
- Создаем группы по продолжительности общения
- Группы по месяцу последнего общения

График зависимости признаков

Чистим данные

Удалим столбцы с данными, зависимость по которым слабая.

```
df_new=df.drop(columns=['Job', 'Marital',
'Education',
'Communication','CallStart','CallEnd'])
```

Распределение данных после обработки (данные распределены равномерно, выбросов нет)


```
plt.hist(test['LastContactDay'], bins = 10)
(array([ 60., 129., 107., 99., 116., 115., 135., 50., 67., 122.]),
  array([ 1., 4., 7., 10., 13., 16., 19., 22., 25., 28., 31.]),
  <a list of 10 Patch objects>)
  140
  120
  100
  80
   60
   40
   20
 plt.hist(test['LastContactMonth'], bins = 10)
 (array([ 97., 31., 92., 269., 107., 142., 128., 17., 35., 82.]),
  array([ 1. , 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8, 10.9, 12. ]),
  <a list of 10 Patch objects>)
  250
  200
  150
  100
```

Построение модели.

Делим данные на Train и Test(25 %)

Используем модель:

GradientBoostingClassifier test_size = 0.25, random_state = 100

Анализируем полученные данные с исходными: совпадение 80,23%

Приступаем к прогнозированию на выборке 1 000 клиентов

- <u>Делаем преобразование</u> данных как при построении модели
- Применяем выбранную модель на исследуемых данных с прогнозом купит (1) или не купит страховку(0)

Анализ результатов.

'Carlnsurance' = 1 - осталось 527 строк.

Вывод: Анализируя данные 1 000 клиентов банка, по которым были сделаны холодные звонки, приходим к выводу что только 527 клиентов из этого списка купят автомобильную страховку. Данные основаны на построенной нами модели с использованием GradientBoostingClassifier C вероятностью 80,23%

Результат работы

Записываем полученный результат с прогнозом в файл:

IVoznenko_car_insurance.csv