

SJTU Flow 流体动画模拟框架 开发项目

陆昊天 杨洋 张帅 吴子奇 刘海波

项目简介

- 项目名称
 - SJTU Flow 流体动画模拟框架开发项目

● 项目内容

● 开发适合计算机流体模拟研究者进行流体模拟实验的框架,支持研究者在可视化界面中设计实验场景,支持研究者编写脚本调用已有算法进行实验,提供统一算法接口,支持将研究者自己设计的算法集成进流体模拟框架中。

项目必要性

- 提高代码复用度
 - 每次模拟流体需要新建工程,代码复用度较低
- 适合集成已有算法
 - 斯坦福等一些外国大学已经开发出流体动画模拟框架,但集成实验室已有算法较为困难
- 国内空白领域
 - 国内尚无流体动画模拟框架
 - 可推动国内流体动画研究发展

项目外部落实情况

- 技术基础
 - 已有多年流体动画模拟研究经验
- 研发团队
 - 由数字艺术实验室5位同学组成
 - 由杨旭波教授和实验室学长组成技术支持团队
- 项目组织机制
 - 按照项目管理规范和CMM质量管理体系
 - 基于SCRUM开发模式
- 市场前景和市场基础
 - 增加代码重用度,提高流体动画模拟实验效率,具有扩展性,可满足研究者需求

项目目标

- 主要目标
 - 开发适合流体模拟研究者进行流体模拟实验的流体模拟框架,支持研 究者在可视化界面中设计实验场景,支持研究者编写脚本调用已有算 法进行实验,或将自己设计的算法集成进该流体模拟框架进行测试和 检验。

- 构成模块
 - 场景设计模块
 - 载入场景,调用模拟函数
 - 流体模拟模块
 - 可选择不同模拟框架和同一框架下不同的模拟算法
 - 扩展接口实现算法
 - 渲染显示模块
 - 显示模拟结果

项目创新点

- 提供可视化场景设计
 - ▶ 为流体模拟研究者节省了布置场景的时间,使得研究者能方便地实验不同的场景
- 提供统一接口
 - ▶ 为流体模拟研究者调用已有算法及编写新算法提供了一个规范,并使得新算法易于集成进本项目,即本项目易于扩展
- 国内首个集成众多算法的流体模拟框架
 - 对流体模拟入门者有着极大的帮助
 - 增加流体模拟实验便利性

- 概要需求
 - 实验场景设计
 - 提供可视化创建环境
 - 可载入已有场景
 - 流体模拟框架
 - 提供统一接口
 - 提供不同模拟框架
 - 模拟场景脚本编写
 - 可通过脚本语言调用模拟框架内的函数
 - 算法集成
 - 用户扩展实现已定义接口
 - 结果显示
 - 显示流体模拟结果
 - 支持多平台

项目方案

○ 技术架构

- 开发过程
 - 基于SCRUM的敏捷开发过程
 - 项目规模小,项目开发周期短,存在需求变更
 - 开发成员隶属统一实验室,沟通方便,积极性强
- 开发方法
 - 基于UML的面向对象的开发方法
 - 项目易于理解和维护
 - 开发成员熟悉开发方法,降低开发风险

- 建模工具
 - Power Designer
- 编程语言
 - C++
 - Python :测试脚本
- 开发工具
 - Microsoft Visual Studio

- SWOT分析
 - 优势
 - 团队优势:高效协作,技术顾问
 - 领域优势:实验室积累丰富的流体模拟经验
 - 弱势
 - 团队成员不具备开发流体相关软件经验
 - 可通过学习弥补

- SWOT分析
 - 机遇
 - 流体模拟研究者存在需求
 - 国内这一领域尚属空白
 - 对国内计算机流体动画模拟研究具有推动作用
 - 威胁
 - 国外已存在一些流体模拟框架
 - 开发应注重软件功能的完整性、易用性和可扩展性

计划进度

- 基于SCRUM开发方法
 - 前2个Sprint持续4周
 - 后1个Sprint持续2周

Sprint	1	2	3
时间	2013.10.28	2013.11.25	2013.12.23
	2013.11.24	2013.12.22	2014.1.3
内容	需求分析 学习技术 架构设计 接口设计 系统原型 原型测试	完善系统 场景设计 流体模拟 结果显示 测试	完 善 系统 测试 验收 发布

项目预期成果

- 文档
 - 立项建议书、软件开发计划书、产品订单、冲刺订单、燃尽图、需求 规约文档、架构文档、测试计划、测试用例、测试报告、项目总结报 告、用户使用说明书、风险清单、术语表

- 源代码
 - 项目源代码、测试代码
- 安装包

项目社会经济效益

- 社会效益
 - 针对大学和企业实验室的流体模拟研究者
 - 增强流体模拟代码复用、扩展与管理,提高实验效率
- 经济效益
 - 减少科研人员开发时间和成本
 - 国内尚无同类产品,市场前景良好

Q&A

谢谢!