Improving Tree-to-Tree Translation with Packed Forests

Yang Liu, Yajuan Lü, and Qun Liu

Institute of Computing Technology,

Chinese Academy of Sciences

{yliu,lvyajuan,liuqun}@ict.ac.cn

Tree-to-Tree Translation

Tree-to-Tree (e.g., Eisner 2003, Zhang et al., 2008)

Tree-to-Tree Translation

Tree-to-Tree (e.g., Eisner 2003, Zhang et al., 2008)

Challenges

- Tree-to-tree approaches face two major challenges:
 - most vulnerable to parsing error
 - poorest rule coverage

Parsing Error

Rule Coverage

This Work

- We replace 1-best trees with packed forests to alleviate the two problems:
 - parsing error
 - rule coverage
- Our approach outperforms the tree-based system dramatically (+3.6) and achieves comparable performance with Moses.

Packed Forest

Tomita, 1985; Billot and Lang, 1989

Tree-based Rule Extraction

Forest-based Rule Extraction

Forest-based Rule Extraction

- Following GHKM (Galley et al., 2004), our extraction method invovles three steps:
 - identify the correspondence between nodes
 - identify minimal rules
 - get composed rules

Frontier Nodes

Identify Tree Pairs

Decomposition

Frontier Trees and Tree Pairs

frontier tree

minimal frontier tree

frontier tree pair

minimal frontier tree pair

step 1: identify corresponding frontier nodes

step 2: identify frontier trees for each node

step 2: identify frontier trees for each node

step 2: identify frontier trees for each node

step 3: build frontier trees pairs

step 4: identify minimal frontier trees pairs

Difficulty in Finding Tree Pairs

A minimal frontier tree pair is not necessarily a pair of minimal frontier trees

Difficulty in Finding Tree Pairs

Difficulty in Finding Tree Pairs

minimal frontier tree pair

Get Composed Rules

Experiments

- Chinese-to-English translation
- Training set: 31K sentence pairs with 840K Chinese words and 950K English words
- **Language Model: 3-gram trained on the English side**
- **I** Development set: NIST 2002
- Test set: NIST 2005
- Metric: case-insensitive BLEU4

Tree-based Vs. Forest-based

p	avg. trees	# of rules	BLEU4
0	1	74K	20.21
2	238.94	105K	21.65
5	5.78M	348K	23.36
8	65.9M	574K	23.73
10	105M	743K	23.85

Extraction and Decoding Time

p	avg. trees	extraction	decoding
0	1	1.26	6.76
2	238.94	2.35	8.52
5	5.78M	6.34	14.87
8	65.9M	8.51	19.78
10	105M	10.21	25.81

extraction: milliseconds / sentence pair

decoding: seconds / sentence

Comparison with Moses

training	Moses	this work
840K+950K	23.66	23.85
7.39M+9.41M	30.43	30.59

Conclusion

- Packed forests help alleviate two problems that tree-to-tree approaches face:
 - negative impact of parsing mistakes on translation quality
 - poor rule coverage

Thanks!