Documentation on modelEqn

Numerical approach for a temperature distribution

Contents

1	1D	spherical equations
	1.1	Basic approach and scope
	1.2	Overview of the Problem
	1.3	Numerical approach and governing equations
	1.4	Discretization in physical space
	1.5	Boundary conditions
		1.5.1 Middle of sphere
		1.5.2 Surface of sphere, $r = XMAX \dots \dots \dots \dots \dots \dots$
		1.5.3 NEUMANN
		1.5.4 DIRICHLET
		1.5.5 CONVECTIVE
	1.6	Jacobian matrix coefficients
		1.6.1 Middle of sphere
		1.6.2 Between middle and surface
		1.6.3 Surface of sphere, $r = XMAX \dots \dots \dots \dots \dots \dots$
		1.6.4 DIRICHLET
		1.6.5 NEUMANN
		1.6.6 CONVECTIVE
	1.7	Calculating of average values

1 1D spherical equations

1.1 Basic approach and scope

- Calculate a target property field as a function of time and physical space in a spherical particle
- Discretization for various boundary conditions

1.2 Overview of the Problem

Figure 1: Overview

- Half of particle is discretized starting at r = 0, h = 1
- Every point coordinate until h=MX (MX= number of grid points to be set in input script using e.g. particle_mesh nGridPoints 20) can be obtained using $r=(h-1)\cdot \triangle r$ with $\triangle r=\frac{XMAX}{MX-1}$ with XMAX to be set in input script using e.g. xmax 1.e-3
- Value of target properties (e.g. temperature) obtained from discretization in physical space and integrating governing equations over time

1.3 Numerical approach and governing equations

- Fourier differential equation in spherical coordinates with $\lambda_{eff} = const.$ and no inner heat sources
- Eqn. (2) to Eqn. (3): transport of thermal energy in nothing but radial direction

$$\rho c_p \frac{\partial T}{\partial t} = div(\lambda_{eff} \operatorname{grad} T) + \dot{q}$$
 (1)

$$\rho c_p \frac{\partial T}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\lambda_{eff} r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial}{\partial \psi} \left(\lambda_{eff} \frac{\partial T}{\partial \psi} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial}{\partial \varphi} \left(\lambda_{eff} \frac{\partial T}{\partial \varphi} \right) + \dot{q}$$
(2)

$$\rho c_p \frac{\partial T}{\partial t} = \lambda_{eff} \left(\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} \right)$$
 (3)

with thermal diffusivity

$$a = \frac{\lambda_{eff}}{\rho \, c_p} \tag{4}$$

$$\frac{\partial T}{\partial t} = a \cdot \left(\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} \right) \tag{5}$$

1.4 Discretization in physical space

 \bullet CDS - second order scheme

$$\frac{\partial T}{\partial r} = \frac{T_{h+1} - T_{h-1}}{2 \triangle r} + O(\triangle r^2) \tag{6}$$

$$\frac{\partial^2 T}{\partial r^2} = \frac{T_{h+1} + T_{h-1} - 2T_h}{\Delta r^2} + O(\Delta r^2) \tag{7}$$

1.5 **Boundary conditions**

Middle of sphere 1.5.1

- Singularity in spherical coordinates at r = 0, symmetry
- First derivative of temperature after radius divided by radius is replaced by second derivative of temperature after radius (L'hopital)

$$\frac{\partial T}{\partial t} = 3 a \frac{\partial^2 T}{\partial r^2} \tag{8}$$

with:

$$\frac{\partial^2 T}{\partial r^2} = \frac{T_{h+1} + T_{h-1} - 2T_h}{\triangle r^2} + O(\triangle r^2) \tag{9}$$

and T_{0-1} results of auxiliary point method and boundary condition second order at r= $0, h = 1 \text{ with } T_{0-1} = T_{0+1}$

$$\frac{\partial T}{\partial t} = 6 a \frac{T_{0+1} - T_0}{\Delta r^2} \tag{10}$$

Surface of sphere, r = XMAX

1.5.3 **NEUMANN**

• Fixed heat flux

$$\dot{q} = -\lambda_{eff} \frac{\partial T}{\partial r} \tag{11}$$

$$\dot{q} = -\lambda_{eff} \frac{T_{h+1} - T_{h-1}}{2 \triangle r} \tag{12}$$

$$T_{h+1} = T_{h-1} - \frac{2\dot{q} \triangle r}{\lambda_{eff}} \tag{13}$$

$$\frac{\partial^2 T}{\partial r^2} = \frac{T_{h-1} - \frac{2 \dot{q} \triangle r}{\lambda_{eff}} + T_{h-1} - 2Th}{\triangle r^2}$$

$$= \frac{2 \left(T_{h-1} - \frac{\dot{q} \triangle r}{\lambda_{eff}} - T_h \right)}{\triangle r^2}$$
(14)

$$= \frac{2\left(T_{h-1} - \frac{\dot{q} \triangle r}{\lambda_{eff}} - T_h\right)}{\triangle r^2} \tag{15}$$

$$\frac{\partial T}{\partial r} = \frac{T_{h+1} - \frac{2\dot{q} \triangle r}{\lambda_{eff}} - Th - 1}{2 \triangle r} \tag{16}$$

$$= -\frac{2\,\dot{q}\,\triangle\,r}{2\,\triangle\,r\lambda_{eff}}\tag{17}$$

$$= -\frac{\dot{q}}{\lambda_{eff}} \tag{18}$$

$$\frac{\partial T}{\partial t} = \frac{2\left(T_{h-1} - \frac{\dot{q} \triangle r}{\lambda_{eff}} - T_h\right)}{\triangle r^2} - \frac{2\dot{q}}{R\lambda_{eff}} \tag{19}$$

1.5.4 DIRICHLET

• Fixed wall temperature T_w

$$T_h = T_{wall} (20)$$

1.5.5 CONVECTIVE

• Convective heat transfer at the surface of the particle

$$\alpha \cdot (T_h - T_{enviro}) = -\lambda_{eff} \frac{\partial T}{\partial r}$$
 (21)

• Calculation of auxiliary point

$$\alpha \cdot (T_h - T_{enviro}) = -\lambda_{eff} \frac{T_{h+1} - T_{h-1}}{2 \triangle r}$$
(22)

with Biot number

$$Bi = \frac{\alpha \triangle r}{\lambda_{eff}} \tag{23}$$

$$T_{h+1} = -2 Bi (T_h - T_{enviro}) + T_{h-1}$$
 (24)

with T_{h+1} at x = R, XMAX

$$\frac{\partial T}{\partial t} = a \cdot \left(\frac{\partial^2 T}{\partial r^2} + \frac{2}{R} \frac{\partial T}{\partial r} \right) \tag{25}$$

results in

$$\frac{\partial T}{\partial t} = \frac{a}{\Delta r^2} \left(-2 Bi \left(T_h - T_{enviro} \right) + T_{h-1} + T_{h-1} - 2 T_h \right) + \frac{2 a}{2 R \Delta r} \left(-2 Bi \left(T_h - T_{enviro} \right) + T_{h-1} - T_{h-1} \right) \tag{26}$$

$$\frac{\partial T}{\partial t} = \frac{2a}{\Delta r^2} \left(-Bi \left(T_h - T_{enviro} \right) + T_{h-1} - T_h \right) + \frac{a}{R \wedge r} \left(-2Bi \left(T_h - T_{enviro} \right) \right) = f(RHS - RightHandSide)$$
(27)

If a heat flux from LIGGGHTS is pulled trough a coupling model it acts as a thermal source term and is added for the outer grid point which results in

$$\frac{\partial T}{\partial t} = \frac{2a}{\Delta r^2} \left(-Bi \left(T_h - T_{enviro} \right) + T_{h-1} - T_h \right) + \frac{a}{R \Delta r} \left(-2Bi \left(T_h - T_{enviro} \right) \right) + \frac{\dot{q}}{\rho_{eff} c_{p,eff}} = f(\text{RHS - Right Hand Side})$$
(28)

1.6 Jacobian matrix coefficients

- Function returnJac in modeleqn1Dspherical
- Represents the derivation of RHS by every single component (e.g. $T_h, T_{h+1}, ...$)

1.6.1 Middle of sphere

based on Eqn. (10)

$$\frac{\partial f}{\partial T_0} = -\frac{6a}{\Delta r^2} \tag{29}$$

$$\frac{\partial f}{\partial T_{0+1}} = \frac{6 a}{\triangle r^2} \tag{30}$$

1.6.2 Between middle and surface

- Used for 1 < h < MX
- Based on Eqn. (6), (7) and (5)

$$\frac{\partial f}{\partial T_h} = -\frac{2a}{\Delta r^2} \tag{31}$$

$$\frac{\partial f}{\partial T_{h-1}} = \frac{a}{\triangle r} \left(\frac{1}{\triangle r} - \frac{1}{x} \right) \tag{32}$$

$$\frac{\partial f}{\partial T_{h+1}} = \frac{a}{\Delta r} \left(\frac{1}{\Delta r} + \frac{1}{x} \right) \tag{33}$$

1.6.3 Surface of sphere, r = XMAX

1.6.4 DIRICHLET

based on Eqn. (20)

$$\frac{\partial f}{\partial T_h} = 0 \tag{34}$$

1.6.5 NEUMANN

based on Eqn. (19)

$$\frac{\partial f}{\partial T_h} = -\frac{2}{\triangle r^2} \tag{35}$$

$$\frac{\partial f}{\partial T_{h-1}} = \frac{2}{\triangle r^2} \tag{36}$$

1.6.6 CONVECTIVE

based on Eqn. (27)

$$\frac{\partial f}{\partial T_h} = -\frac{2a}{\Delta r} \left(\frac{Bi}{R} + \frac{Bi}{\Delta r} - \frac{1}{\Delta r} \right) \tag{37}$$

$$\frac{\partial f}{\partial T_{h-1}} = \frac{2a}{\Delta r^2} \tag{38}$$

1.7 Calculating of average values

- Need to compute volume averaged particle properties
- Volume shells defined at every location i with r ranging from $0 \le i < MX$

$$\overline{y} = \frac{\sum_{i=0}^{i} \triangle V \, y_i}{\sum_{i=0}^{i} \triangle V} \tag{39}$$

with

$$\Delta V = \frac{\pi}{6} \left(r_a^3 - r_i^3 \right) \tag{40}$$

$$= \frac{\pi dx^3}{6} \left[(i+0.5)^3 - (i-0.5)^3 \right]$$
 (41)

Figure 2: Averaging shells with $r_a = i + 0.5$ and $r_i = i - 0.5$ and $0 \le i < MX$