4

1. Sprawdzić, czy formuła zdaniowa $[(\sim p \lor \sim q) \land p] \Rightarrow \sim q$ jest tautologią.

2. Formułę zdaniową $p \Rightarrow (\sim q \Rightarrow p)$ zapisać za pomocą funktora NAND (czyli za pomocą kreski Sheffera). Przedstawić poszczególne etapy dochodzenia do ostatecznej postaci.

3. Sprawdzić, czy schemat $\frac{(p\Rightarrow q)\Rightarrow r,\ \sim p}{r}$ jest regułą wnioskowania.

4. Czy dla każdych zbiorów A, B i C prawdziwa jest równoważność $A \subseteq B \Leftrightarrow C - B \subseteq C - A$. Uzasadnić swoje stwierdzenia.

5. Indukcyjnie wykazać, że liczba $x_n = 5 \cdot 2^{3n+1} + 3^{3n+2}$ jest podzielna przez 19 dla każdej liczby $n \in \mathbb{N}$.

6. Wykazać, że jeśli $\{A_i\}_{i\in I}$ i $\{B_i\}_{i\in I}$ są rodzinami podzbiorów danego zbioru X, to $\bigcap_{i\in I}A_i\cup\bigcap_{i\in I}B_i\subseteq\bigcap_{i\in I}(A_i\cup B_i)$. Wskazać przykład rodzin pokazujących, że $\bigcap_{i\in I}A_i\cup\bigcap_{i\in I}B_i$ może być podzbiorem właściwym zbioru $\bigcap_{i\in I}(A_i\cup B_i)$.

7. Dany jest zbiór $A = \langle -1; 3 \rangle$ i funkcja $f: R \to R$, gdzie $f(x) = x-2 $. Wyznaczyć:	4
f(A)	
$f^{-1}(A)$	
f(f(A))	
$f^{-1}(f(A))$	
$f(f^{-1}(A))$	
8. Dane są funkcje $f:A\to B$ i $g:B\to C$. Wykazać, że jeśli f i g są różnowartościowe, to także funkcja $g\circ f:A\to C$ jest różnowartościowa. Czy z faktu, że funkcja $g\circ f:A\to C$ jest różnowartościowa wynika, że funkcje f i g są różnowartościowe? Podać odpowiedni przykład.	4
9. Podać definicję relacji przechodniej. Niech R i S będą relacjami przechodnimi w zbiorze X . Wykazać przechodniość relacji $R \cup S$, albo wskazać (z uzasadnieniem) przykład pokazujący, że tak nie musi być.	4
10. Podać definicję zbiorów równolicznych. Formalnie wykazać, że zbiór $N=\{0,1,2,3,\ldots\}$ jest równoliczny ze zbiorem $M=\{3,6,9,\ldots\}$. Wskazać odpowiednią funkcję i wykazać, że ma ona żądane własności.	4
11. Narysować diagram Hassego relacji podzielności w zbiorze $A=\{1,2,3,4,6,8,9,12,18,24\}$. Dany jest zbiór $B=\{2,3,4,6,8\}$. Wskazać (jeśli to możliwe):	4
element(y) najmniejsze zbioru B :	
element(y) największe zbioru B :	
element(y) minimalne zbioru B :	
ograniczenia górne zbioru B :	
kres górny zbioru B :	
kres górny zbioru $\{2,4,6\}$:	