Week 3: Vectors in context

Text Analytics and Natural Language Processing Instructor: Benjamin Batorsky

Bag of words vs natural language

"The movie was good"

"The movie was not bad, it was good"

"The movie was bad"

the	movie	was	good	not	it	bad
1	1	1	1	0	0	0
1	1	1	1	1	1	1
1	1	1	0	0	0	1

Review: Natural language inherently sequential

"A language that has developed naturally in use (as contrasted with an artificial language or computer code)." (Oxford Dictionary definition)

https://www.techbeamers.com/python-for-loop/

What do we lose with bag-of-word representations?

- Negation (as shown in notebook)
- Coreferences
 - "I saw the movie. <u>It</u> was bad"
- Homonyms
 - "Doing well" vs "wishing well"
- Entailment/Contradiction
 - o "I liked the actors. I didn't like the story"
- Directionality/Causation
 - o "Dog bit man" vs "Man bit dog"

(Some) Methods for including context

- Adding context features
 - N-grams
 - Document-level info (e.g. length)
- Auto-regression models
 - Prediction at state x = info from state x + info from state x-1, etc
- Recurrent models
 - Learned "hidden state" passed to each state
- Word representations learned from context
 - Word2Vec, GloVe

"I liked this movie"

1-grams (Unigrams):

["I", "liked", "this", "movie"]

2-grams (Bigrams):

["I liked", "liked this", "this movie"]

4-grams: "I liked this movie"

Issues with context features and autoregression

- Tradeoff between representation and complexity
 - Number of n-grams = number of words (n-1)
 - Total possible n-grams = n(n+1)/2
 - For a 100-word document: 4,950
 - o 1000-word: 499,500
- Extensive feature engineering = time consuming
 - Choosing the N for n-grams
 - Document-level features
 - How many steps back to include

Review: History of NLP

- 40s-50s: Machine translation era
- 60-70s: Shift towards semantic-driven processing
- 70s to 80s: Community expansion
- 90s-00s: Probabilistic/Statistical models
 - Also expansion of available data
- 2000s: Neural Language models
- 2008: Multi-task learning
- 2013: Word embeddings
- 2014: Expansion of Neural models
- 2015: Attention
- 2018 and beyond: Language model advancements

2000s: Advent of Neural Models for NLP

- Focused on language modelling task
 - Given context words, predict next word
 - "Do you want to go out for <mask>"
 - "I ate so much I am so <mask>"
 - "I'm so tired, I think I'll take a <mask>"
- Apply Neural Net architectures to language modelling task
 - Neural Net: Model that connects inputs to outputs through sets of computations
- Bengio et. al. (2001) <u>A Neural Probabilistic Language</u> <u>Model</u>
 - Context words fed into a matrix that "represents" the information
 - These representations then fed into a computation layer
 - Output: Prediction of the target word
 - "Full": 70% likely, "tired" 20% likely, etc

A Neural Probabilistic Language Model

(https://papers.nips.cc/paper/1839-a-neural-probabilistic-language-model.pdf)

Review: Supervised vs unsupervised learning

Unsupervised learning

Unsupervised learning is a type of machine learning that looks for previously undetected patterns in a data set with no pre-existing labels and with a minimum (

Supervised Learning

Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs.

https://lawtomated.com/supervised-vs-unsupervised-learning-which-is-better/

Review: Binary case - Finding a decision boundary

https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148

How would you (linearly) separate these two classes?

Green = positive class, red = negative class

https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b

You need TWO lines; nonlinear function

Green = positive class, red = negative class

https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b

What is a neural network?

https://www.cs.iusb.edu/~danav/teach/c463/12 nn.html

Basic neural network design

Single node:

Loss computation:

$$L_{\text{cross-entropy}}(\mathbf{\hat{y}}, \mathbf{y}) = -\sum_{i} y_i \log(\hat{y}_i)$$

(binary case)

$$-(ylog(\hat{y}) + (1-y)log(1-\hat{y}))$$

Multi-layered "fully connected" network

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6

Forward pass

Take input, apply weights (randomly initialized)

Weighted sum, apply activation get "hidden layer" representation

Each have weights, weighted sum + activation = prediction (calculated)

Loss here: (see previous slide) 0.64

How should we change the weights to reduce this loss?

https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

Backward pass (back propagation)

How should we change the weights to reduce this loss?

For each weight: Adjust based on the change in loss with respect to a change in weight

Want to move the weights in a direction that reduces loss

Visualization of loss with respect to weight

https://mc.ai/gradient-descent-and-its-types/

More detailed outline of backpropagation

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Single-layer fully-connected NN with text

But we're still missing context!

Recurrent Neural Networks (RNN)

- Specialized structure for handling sequence information
 - Audio
 - Video
 - Text
- Information from previous states maintained in "hidden state"
- Have representations at each state and representation at the end of the sequence

https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9

Recurrent vs Fully-Connected

FCNN RNN

An unrolled recurrent neural network.

https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

How RNNs "learn"

NNs:

- Weight vectors for each input value, adjust based gradient wrt loss
- Bias vectors (also learned)
- 1 vector of each per node/cell
- o activation(Weight * input + bias) = output
- Pass to next layer

RNNs

- Hidden layer reflects "state"
- Combine output (hidden representation)
 from previous state with current sequence
 element = input
- activation(Weight * input + bias) = output (hidden representation)
- Repeat for each element in the sequence

The Artificial Neuron

https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Issues with RNN

- Language often has long-term dependencies
- Backpropagation in RNN
 - Update weights on hidden state at each step
 - Moving further back, smaller updates
- Need to carry through some information, discard other information
- Redesign RNN units to accomplish this task

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)

How LSTMs "learn"

RNNs

- Hidden layer reflects "state"
- Combine output (hidden representation) from previous state with current sequence element = input
- activation(Weight * input + bias) = output (hidden representation)
- Repeat for each element in the sequence

LSTMs

- 4 weight/bias vectors
 - Forget: Weight "useful" info
 - Input: Weight cell candidate info
 - Cell: Cell candidate info
 - Output: Determining new hidden
- Cell state has info from input and forget 0
- Hidden state has info cell state and output 0
- Repeat for each element in sequence 0

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-sa-step-by-step-explanation-44e9eb85bf21

$$f_t = \sigma((W_{hf} \times h_{t-1}) + (W_{xf} \times x_t) + b_f)$$

$$u_t = \sigma((W_{hu} \times h_{t-1}) + (W_{xu} \times x_t) + b_i)$$

$$\tilde{c_t} = \tanh((W_{hc} \times h_{t-1}) + (W_{xc} \times x_t) + b_c)$$

$$o_t = \sigma((W_{ho} \times h_{t-1}) + (W_{xo} \times x_t) + b_o)$$

$$c_t = [\tilde{c_t} \times u_t] + [c_{t-1} \times f_t]$$

https://medium.com/analyti cs-vidhya/demystifying-lst m-weights-and-biases-dim ensions-c47dbd39b30a

$$h t = [o_t \times \tanh c_t]$$

Example with product review

Customers Review 2,491

Thanos

September 2018
Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

A Box of Cereal \$3.99

Example with product review (RNN)

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Example with product review (LSTM)

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

More layers!

LSTM implementation in PyTorch

Sequence length considerations

- For batch processing, need to have consistent "maximum length"
 - o If running one observation at a time, can be of any length
- Formatting batches:
 - Greater than max length = Truncation/splitting
 - E.g. Sentence-wise splitting (BERT trained around sentences)
 - Less than this value = Padding
 - Max length = 4
 - Sequence = ["I", "like", "NLP"]
 - Prepared input = [<index for "I">, <index>, <index>, <index for padding token>]
- To batch or not to batch?
 - Running single observation: Any length, but slower and updating weights for each observation
 - Batching: Need to choose a max length or group by same length

How to represent words

- In notebook: Words as sparse vectors (one-hot encoded)
- "Car" vs "automobile" totally different vectors
- Model needs to learn weights for every word in vocabulary
- Condensed, informative representation
 - Word-level representations from topic models
 - Embeddings

Dense representations from topic models

Language model embeddings

- Language model embeddings
 - Language modelling task: Predict masked word
 - Learned representations of input words
 - These representations then fed into a computation layer
 - Output: Prediction of the target word
 - "Full": 70% likely, "tired" 20% likely, etc
- Issues here
 - Computationally expensive to train representation + prediction
 - Representation trained for task, rather than generalized word representation

A Neural Probabilistic Language Model

(https://papers.nips.cc/paper/1839-a-neural-probabilistic-language-model.pdf)

Word2Vec and GloVe embeddings

- Word2Vec (2013)
 - Directly estimated word representation
 - Proposed two implementations
 - Skip-Gram
 - Continuous Bag of Words
 - More efficient, generalized than language model-based
- GloVe (2014)
 - Based on the co-occurrence of words
 - More efficient to compute, similar performance

[1301.3781] Efficient Estimation of Word Representations in Vector Space

Basic structure of word embedding algorithms

- Using text as supervised learning problem
 - Positive class: target words and their context
 - Negative class: Target words (T) and "noise words"
- Binary classification: Predict whether word c is in context of word t
- Prediction is based on the similarity between the vector for t and vector for c
- Vectors initialized randomly, model "learns" embeddings
 - Maximize distance between t and noise words
 - Minimize distance between t and actual context

lemon,	a [tablespoon	of	apricot	jam,	a] pinch	
	c1	c2	t	c3	c4	

positivo	e examples +	negative examples -					
t	c	t	c	t	c		
apricot	tablespoon	apricot	aardvark	apricot	seven		
apricot	of	apricot	my	apricot	forever		
apricot	jam	apricot	where	apricot	dear		
apricot	•	apricot	coaxial	apricot	if		

$$P(+|t,c)$$

$$Similarity(t,c) \approx t \cdot c$$

Skip-Gram vs CBOW

Global Vectors for Word Representation (GloVe)

Conceptual model for the GloVe model's implementation

Back to our RNN!

Considerations when choosing embeddings

- Availability
 - Usually can rely on pre-trained models
- Applicability
 - Specific domains may require specific embeddings
- Complexity
 - Highly complex likely need more data
- Parameters
 - Context window size
 - Over-sampling rare words
 - Representation dimensionality

Domain-specific word embeddings

https://allenai.github.io/scispacy/

Implementation of Word2vec

https://radimrehurek.com/gensim/models/word2 vec.html

Implementation of GloVe

https://github.com/stanfordnlp/glove

Considerations around bias

Word vector similarity between gender words and occupations

