OMML Assignment MLP and Generalized RBF Network

Submitted by: Sibghat Ullah Maryam Zamanipour Siddhant Tandon

OMML REPORT

Question 1

Part 1

1. HyperParameters

N = 10 roh = 0.0001 sigma = 0.1

Over-fitting occurs when Train error is low but test error is high i.e. approximation function found fits the training data better but doesn't fit the test data.

Under-fitting simply means the Train error is high because the Approximating function doesn't fit the train data.

By doing a gridsearch over the hyperparameters, and choosing those hyperparameters over which both train and test errors are the lowest, these hyperparameters become optimal and result in a good fit.

Evidence: Following screenshot shows the train and test errors over values of hyperparameters.

Final loss function values at optimal hyperparameters:

test_error': 0.011718666353836201 train_error': 0.009188975569789974

2. Optimization routine

Method: BFGS

max-iterations: 30,000

Training objective function: 0.01444

Test MSE: 0.01557

Training computing time: 11.23 seconds

Function evaluations: 36834 Gradient evaluations: 877

3. Training and Test errors

Training objective function: 0.01444

Part 2

1. HyperParameters

N = 20roh = 0.0001sigma = 0.1

Over-fitting occurs when Train error is low but test error is high i.e. approximation function found fits the training data better but doesn't fit the test data.

Under-fitting simply means the Train error is high because the Approximating function doesn't fit the train data.

By doing a gridsearch over the hyperparameters, and choosing those hyperparameters over which both train and test errors are the lowest, these hyperparameters become optimal and result in a good fit.

Evidence: Following screenshot shows the train and test errors over values of hyperparameters.

	19	20	23	24	25	26	27	28	37	38	39	40	41	42	43	44	45	46	47	48	49
N	10	10	10	10	10	10	10	10	20	20	20	20	20	20	20	20	20	20	20	20	20
roh	0.0001	0.0001	0.01	0.01	0.05	0.05	0.05	0.1	0.0001	0.0001	0.0001	0.01	0.01	0.01	0.05	0.05	0.05	0.1	0.1	0.1	3
sigma	0.001	0.1	0.1	0.05	0.001	0.1	0.05	0.001	0.001	0.1	0.05	0.001	0.1	0.05	0.001	0.1	0.05	0.001	0.1	0.05	0.001
test_error	0.1541348633	0.0572771937	0.0826665199	0.1518960721	0.2712704393	0.15094972	0.2019735715	0.3069388056	0.1537476006	0.037945496	0.1886733051	0.1966521714	0.0721175723	0.1395375014	0.3493078164	0.1739616305	0.2913193179	0.5652194322	0.2963063168	0.4183771478	2.3353999644
train_error	0.1454742402	0.0201109648	0.0537326207	0.1223626414	0.2649579444	0.1274603319	0.1720457723	0.3068356682	0.1342989923	0.0036347449	0.0437533844	0.1779885006	0.0445995374	0.1018792104	0.3317338533	0.1432632276	0.2423204353	0.5480040811	0.2690089502	0.3578649474	2.3408779566

Final loss function values at optimal hyperparameters:

test_error': 0.029392371360539207 train_error': 0.0046727970828470515

2. Optimization routine

Method: Nelder-Mead max-iterations: 30,000

Training objective function: 0.0088677 Test MSE:0.057829

Training computing time:50.20 Function evaluations:33698

Gradient evaluations: 0 (Nelder-Mead doesn't use gradient)

3. Training and Test errors

Training objective function: 0.0088677

Question 2 Part 1

1. HyperParameters

N = 20roh = 0.0001sigma = 0.1

Final loss function values at optimal hyperparameters: test_error': 0.017926432537633191 train_error': 0.015139482893578783

2. Optimization routine

Method: BFGS

max-iterations: 30,000

Training objective function: 0.0292170

Test MSE: 0.034264

Training computing time: 0.1207

Function evaluations: 660 Gradient evaluations: 30

3. Training and Test errors

Training objective function: 0.0292170

Question 2

Part 2

1. HyperParameters

N = 20roh = 0.0001sigma = 0.1

Final loss function values at optimal hyperparameters: test_error': 0.034291308898091712 train_error': 0.0007897255290297369

2. Optimization routine

Method: BFGS

max-iterations: 30,000

Training objective function: 0.016697192

Test MSE: 0.07177

Training computing time: 0.70179

Function evaluations: 902 Gradient evaluations: 41

3. Training and Test errors

Training objective function: 0.016697192

Question 3

Network chosen: RBF 1. HyperParameters

N = 20 roh = 0.0001 sigma = 0.1

2. Optimization routine

Method for both blocks: CG max-iterations: 30,000

Training objective function: 0.001467

Test MSE: 0.071312

Training computing time: 331.19175

Function evaluations: 9046 Gradient evaluations: 4871

Total iterations / sub problems solved: 61

3. Stopping Criteria:

Iterate until Gradient with respect to Centers C falls between the tolerance. Tolerance = [1e-6, 1e-3]

4. Training and Test errors

Training objective function: 0.001467

Final Comparison

Ex	FFN	N	Roh	Sigma	Train error	Test error	Optimizat ion time (seconds)
Q1.1	Full MLP	10	0.0001	0.1	0.01444	0.01557	11.23
Q1.2	Full RBF	20	0.0001	0.1	0.008867	0.057829	50.20
Q2.1	Extreme MLP	20	0.0001	0.1	0.029217	0.034264	0.1207
Q2.2	Unsuperv ised c RBF	20	0.0001	0.1	0.016697	0.07177	0.70179
Q3	RBF-Two block	20	0.0001	0.1	0.001467	0.071312	331.191

Q1 part 1Approximating function (FULL MLP):

Q1 part 2Approximating function (FULL RBF):

Q2 part 1Approximating function (Extreme MLP):

Q2 part 2Approximating function (Unsupervised RBF):

Q3 Approximating function (Two blocks RBF) :

