

86.29 - Propagacion y sistemas irradiantes

Guía nro. 2 - Antenas Lineales Dipolo y Monopolo

Alumno:

Iglesias, Fernando (94842)

Índice

1.	Dipo	olo Delgado	3
	1.1.	Resistencia	3
		1.1.1. Resistencia de radiación	3
		1.1.2. Resistencia de pérdidas	4
	1.2.	Rendimiento	5
	1.3.	Directividad	6
	1.4.	Ganancia	7
	1.5.	Diagrama de radiación	8
	1.6.	Distribución de corriente	9
2.	Dipo	olo Hertz	10
	2.1.	Resistencia	10
		2.1.1. Resistencia de radiación	10
		2.1.2. Resistencia de pérdidas	10
	2.2.	Rendimiento	11
	2.3.	Directividad	12
	2.4.	Ganancia	13
3.	Dipo	olo Corto	14
	3.1.	Resistencia	14
		3.1.1. Resistencia de radiación	14
		3.1.2. Resistencia de pérdidas	14
	3.2.	Rendimiento	15
	3.3.	Directividad	16
	3.4.	Ganancia	17
4.	Dipo	olo de media onda	18
	4.1.	Resistencia	18
		4.1.1. Resistencia de radiación	18
		4.1.2 Resistencia de pérdidas	18

	4.2.	Rendimiento	19
	4.3.	Directividad	20
	4.4.	Ganancia	21
5.	Mon	opolo	22
	5.1.	Resistencia	22
		5.1.1. Resistencia de radiación	22
		5.1.2. Resistencia de pérdidas	23
	5.2.	Rendimiento	23
	5.3.	Directividad	24
	5.4.	Ganancia	25
	5 5	Diagrama de radiación	26

1. Dipolo Delgado

Un dipolo se considera delgado si se cumple la condición,

$$\frac{L}{radio} >> 1 \tag{1.1}$$

Considerando los datos del problema $L=1\ m$ y radio $a=1\ mm$, el cociente resulta mucho mayor que 1. Por lo tanto, se puede considerar que el dipolo es delgado.

En efecto, se utilizan las ecuaciones referidas dipolos y no debe recurrise al empleo de métodos complejos, ya que se aproxima la densidad de corriente **J** como una corriente unidimensional **I**. En las ecuaciones propuestas a continuación se considera a priori que la distribución de corriente tiene un comportamiento sinusoidal.

A continuación se presentan diferentes parámetros en función del factor $\frac{L}{\lambda}$ en el intervalo (0,01,1).

1.1. Resistencia

1.1.1. Resistencia de radiación

A partir de la expresión de la resistencia de radiación que se presenta a continuación,

$$R_{rad} = 60\Omega \int_0^{\pi} \frac{\left[\cos(\pi \frac{L}{\lambda}\cos(\Theta) - \cos(\pi \frac{L}{\lambda}))\right]^2}{\sin(\Theta)} d\Theta$$
 (1.2)

Se obtiene la representación gráfica de este parámetro en funcion del factor $\frac{L}{\lambda}$.

Figura 1.1: Resistencia de radiación del dipolo delgado.

Es posible observar que para el dipolo de medio onda, la resistencia de radiación es de aproximadamente $73\,\Omega.$

1.1.2. Resistencia de pérdidas

Para el cálculo de la resistencia de pérdidas se utilizó la siguiente expresión,

$$R_{perd} = \frac{(L)^{\frac{1}{2}}}{2\pi a} \left(\frac{\pi c\mu}{\sigma}\right)^{\frac{1}{2}} \left(\frac{L}{\lambda}\right)^{\frac{1}{2}} \left[1 - \frac{\sin(\frac{2\pi L}{\lambda})}{\frac{2\pi L}{\lambda}}\right]$$
(1.3)

Figura 1.2: Resistencia de pérdidas del dipolo delgado.

1.2. Rendimiento

$$\eta = \frac{R_{rad}}{R_{perd} + R_{rad}} \tag{1.4}$$

Figura 1.3: Rendimiento del dipolo delgado.

1.3. Directividad

Para la directividad se utilizó la siguiente expresión,

$$D = \frac{2F(\Theta)|_{max}}{\int_0^{\pi} F(\Theta) sen(\Theta) d\Theta}$$
(1.5)

$$F(\Theta) = \left[\frac{\left(\cos \left(\pi \frac{L}{\lambda} \cos(\Theta) \right) - \cos \left(\pi \frac{L}{\lambda} \right) \right)}{\sin(\Theta)} \right]^{2}$$
(1.6)

$$D_{dBi} = 10 \cdot log_{10}(D) \tag{1.7}$$

Figura 1.4: Directividad del dipolo delgado en veces.

Figura 1.5: Directividad del dipolo delgado en dBi.

1.4. Ganancia

La ganancia se obtiene del producto entre la directividad y el rendimiento como se puede ver en la siguiente expresión,

$$G = D_{max} \cdot \eta \tag{1.8}$$

$$G_{dBi} = 10 \cdot log_{10}(G) \tag{1.9}$$

Figura 1.6: Ganancia del dipolo delgado en veces.

Figura 1.7: Ganancia del dipolo delgado en dBi.

1.5. Diagrama de radiación

A continuación se presentan los diagramas de radiación en función del facto $\frac{L}{\lambda}$.

Figura 1.8: Diagramas de radiación para distintos factores $\frac{L}{\lambda}$.

1.6. Distribución de corriente

La expresión de la distribución de corriente en el dipolo se describe como,

$$I(z) = \begin{cases} I\left(z\right) = I_{m} sin\left[\beta\left(\frac{L}{2} - z\right)\right], & \text{para } z > 0\\ I\left(z\right) = I_{m} sin\left[\beta\left(\frac{L}{2} + z\right)\right], & \text{para } z < 0 \end{cases}$$
(1.10)

Figura 1.9: Distribución de corriente para distintos factores $\frac{L}{\lambda}$.

2. Dipolo Hertz

2.1. Resistencia

2.1.1. Resistencia de radiación

Figura 2.1: Resistencia de radiación del dipolo Hertz.

2.1.2. Resistencia de pérdidas

Figura 2.2: Resistencia de radiación del dipolo Hertz.

2.2. Rendimiento

Figura 2.3: Rendimiento del dipolo Hertz.

2.3. Directividad

Figura 2.4: Directividad del dipolo Hertz en veces.

Figura 2.5: Directividad del dipolo Hertz en dBi.

2.4. Ganancia

Figura 2.6: Ganancia del dipolo Hertz en veces.

Figura 2.7: Ganancia del dipolo Hertz en dBi.

3. Dipolo Corto

3.1. Resistencia

3.1.1. Resistencia de radiación

Figura 3.1: Resistencia de radiación del dipolo corto.

3.1.2. Resistencia de pérdidas

Figura 3.2: Resistencia de radiación del dipolo corto.

3.2. Rendimiento

Figura 3.3: Rendimiento del dipolo corto.

3.3. Directividad

Figura 3.4: Directividad del dipolo corto en veces.

Figura 3.5: Directividad del dipolo corto en *dBi*.

3.4. Ganancia

Figura 3.6: Ganancia del dipolo corto en veces.

Figura 3.7: Ganancia del dipolo corto en dBi.

4. Dipolo de media onda

4.1. Resistencia

4.1.1. Resistencia de radiación

Figura 4.1: Resistencia de radiación del dipolo de media onda.

4.1.2. Resistencia de pérdidas

Figura 4.2: Resistencia de radiación del dipolo de media onda.

4.2. Rendimiento

Figura 4.3: Rendimiento del dipolo de media onda.

4.3. Directividad

Figura 4.4: Directividad del dipolo Hertz en de media onda.

Figura 4.5: Directividad del dipolo de media onda en dBi.

4.4. Ganancia

Figura 4.6: Ganancia del dipolo de media onda en veces.

Figura 4.7: Ganancia del dipolo de media onda en dBi.

5. Monopolo

5.1. Resistencia

5.1.1. Resistencia de radiación

La resistencia de radiacion de un monopolo se expresa como,

$$R_{rad_{monopolo}} = \frac{R_{raddipolo}}{2} \tag{5.1}$$

Figura 5.1: Resistencia de radiación del monopolo.

5.1.2. Resistencia de pérdidas

Por otra parte, la resistencia de pérdidas se expresa según,

$$R_{perdidas} = \frac{1}{2\pi a} \left(\frac{\pi c \mu H}{\sigma}\right)^{\frac{1}{2}} \left(\frac{H}{\lambda}\right)^{\frac{1}{2}} \left[1 - \frac{\sin(\frac{4\pi H}{\lambda})}{\frac{4\pi H}{\lambda}}\right] \text{ con } H = \frac{L}{2}$$
 (5.2)

Figura 5.2: Resistencia de pérdidas del monopolo.

5.2. Rendimiento

Aquí se utiliza la misma fórmula empleada en la expresión del dipolo.

Figura 5.3: Rendimiento del monopolo.

5.3. Directividad

La ecuación de la directividad es directamente proporcional a la directividad del dipolo,

$$D_{monopolo} = 2 \cdot D_{dipolo} \tag{5.3}$$

Figura 5.4: Directividad del monopolo en veces.

Figura 5.5: Directividad del monopolo en dBi.

5.4. Ganancia

La ganancia se expresa tal como en el dipolo siendo el producto entre el rendimiento y la directividad.

Figura 5.6: Ganancia del monopolo en veces.

Figura 5.7: Ganancia del monopolo en dBi.

5.5. Diagrama de radiación

En las siguientes figuras se representan gráficamente los diagramas de radiación del monopolo. Es posible apreciar que a diferencia de los diagramas de radiación del dipolo, el ángulo Θ varía entre 0 y $\frac{\pi}{2}$.

Figura 5.8: Diagramas de radiación para distintos factores $\frac{L}{\lambda}$.