GenDL Unified Documentation

Dave Cooper

November 19, 2012

 $[\]overline{}^0$ Copyright \bigodot 2012, Genworks International. Duplication, by any means, in whole or in part, requires written consent from Genworks International.

Contents

1	Intr	oduction
	1.1	Welcome
	1.2	Knowledge Base Concepts According to Genworks
	1.3	Goals for this Tutorial
	1.4	What is GenDL?
	1.5	Why GDL (what is GDL good for?)
	1.6	What GDL is not
2	Inst	allation
	2.1	Installation of pre-packaged Gendl
		2.1.1 Download the Software and retrieve a license key
		2.1.2 Unpack the Distribution
		2.1.3 Make a Desktop Shortcut
		2.1.4 Populate your Initialization File
	2.2	Installation of open-source Gendl
		2.2.1 Install and Configure your Common Lisp environment
		2.2.2 Load and Configure Quicklisp
	2.3	System Startup and Testing
		2.3.1 System Startup
		2.3.2 Basic System Test
		2.3.3 Full Regression Test
	2.4	Getting Help and Support
3	Bas	ic Operation of the Gendl Environment
	3.1	What is Different about Gendl?
	3.2	Startup, "Hello, World!" and Shutdown
		3.2.1 Startup
		3.2.2 Developing and Testing a Gendl "Hello World" application
		3.2.3 Shutdown
	3.3	Working with Projects
		3.3.1 Directory Structure
		3.3.2 Source Files within a source/ subdirectory
	3.4	Customizing your Environment
	3.5	Saving the World

iv CONTENTS

Chapter 1

Introduction

1.1 Welcome

Congratulations on your purchase or download of Genworks Gendl. By investing some of your valuable time into learning this system, you are investing in your future productivity and you are becoming part of a quiet revolution. Although you may have come to Genworks Gendl because of an interest in 3D modeling or mechanical engineering, you will find that a whole new world, and a whole new approach to computing, will now be at your fingertips.

1.2 Knowledge Base Concepts According to Genworks

You may have an idea about Knowledge Base Systems, or Knowledge Based Systems, from college textbooks or corporate marketing propaganda, and found the concept too broad to be of practical use. Or you may have heard jabs at the pretentious-sounding name, "Knowledge-based Engineering," as in: "you mean as opposed to Ignorance-based Engineering?"

To provide a clearer picture, we hope you will agree that our concept of a KB system is simple and practical, and in this tutorial our goal is to make you comfortable and excited about the ideas we have implemented in our flagship system, GenDL (or "Gendl"

Our definition of a *Knowledge Base System* is an object-oriented programming environment which implements the features of *Caching* and *Dependency tracking*. Caching means that once the KB has computed something, it might not need to repeat that computation if the same question is asked again. Dependency tracking is the flip side of that coin — it ensures that if a cached result is *stale*, the result will be recomputed the next time it is *demanded*, so as to give a fresh result.

1.3 Goals for this Tutorial

This manual is designed as a companion to a live two-hour GDL/GWL tutorial, but you may also be reading it on your own. In either case, the basic goals are:

- Get you excited about using GDL/GWL
- Enable you to judge whether GDL/GWL is an appropriate tool for a given job

- Arm you with the ability to argue the case for using GDL/GWL when appropriate
- Prepare you to begin maintaining and authoring GDL/GWL applications, or porting apps from similar KB systems into GDL/GWL.

This manual will begin with an introduction to the Common Lisp programming language. If you are new to Common Lisp: congratulations! You have just discovered a powerful tool backed by a powerful standard specification, which will protect your development investment for decades to come. In addition to the brief overview in this manual, many resources are available to get you started in CL — for starters, we recommend <u>Basic Lisp Techniques</u>¹, which was prepared by the author of this tutorial.

1.4 What is GenDL?

GenDL (or Gendl to be a bit more relaxed) is an acronym for "General-purpose Declarative Language."

GenDL is a superset of ANSI Common Lisp, and consists mainly of automatic code-expanding extensions to Common Lisp implemented in the form of macros. When you write, let's say, 20 lines in GenDL, you might be writing the equivalent of 200 lines of Common Lisp. Of course, since GenDL is a superset of Common Lisp, you still have the full power of the CL language at your fingertips whenever you are working in GenDL.

Since GDL expands into CL, everything you write in GDL will be compiled "down to the metal" to machine code with all the optimizations and safety that the tested-and-true CL compiler provides. This is an important distinction as contrasted to some other so-called KB systems on the market, which are really nothing more than interpreted scripting languages which often impose arbitrary limits on the size and complexity of your application.

GenDL is also a true *declarative* language. When you put together a GDL application, you write and think mainly in terms of objects and their properties, and how they depend on one another in a direct sense. You do not have to track in your mind explicitly how one object or property will "call" another object or propery, in what order this will happen, etc. Those details are taken care of for you automatically by the language.

Because GDL is object-oriented, you have all the features you would normally expect from an object-oriented language, such as

- Separation between the definition of an object and an instance of an object
- High levels of data abstraction
- The ability for one object to "inherit" from others
- The ability to "use" an object without concern for its "under-the-hood" implementation

GDL supports the "message-passing" paradigm of object orientation, with some extensions. Since full-blown ANSI CLOS (Common Lisp Object System) is always available as well, the Generic

¹ BLT is available at http://www.franz.com/resources/educational_resources/cooper.book.pdf

Function paradigm is supported as well. Do not be concerned at this point if you are not fully aware of the differences between these two paradigms².

1.5 Why GDL (what is GDL good for?)

- Organizing and interrelating large amounts of information in ways not possible or not practical using conventional languages or conventional relational database technology alone;
- Evaluating many design or engineering alternatives and performing various kinds of optimizations within specified design spaces;
- Capturing the procedures and rules used to solve repetitive tasks in engineering and other fields;
- Applying rules to achieve intermediate and final outputs, which may include virtual models of wireframe, surface, and solid geometric objects.

1.6 What GDL is not

- A CAD system (although it may operate on and/or generate geometric entities);
- A drawing program (although it may operate on and/or generate geometric entities);
- An Artificial Intelligence system (although it is an excellent environment for developing capabilities which could be considered as such);
- An Expert System Shell (although one could be easily embedded within it).

Without further ado, then, let's turn the page and get started with some hands-on GDL...

 $^{^2}$ See Paul Graham's ANSI Common Lisp, page 192, for an excellent discussion of the Two Models of Object-oriented Programming.

Chapter 2

Installation

Follow Section 2.1 if your email address is registered with Genworks and you will install a prepackaged Gendl distribution including its own Common Lisp engine. Gendl is also available as open-source software¹; if you want to use that version, then please refer to Section 2.2.

2.1 Installation of pre-packaged Gendl

This section will take you through the installation of Gendl from a prepackaged distribution with the Allegro CL Common Lisp engine and the Slime IDE (based on Gnu Emacs).

2.1.1 Download the Software and retrieve a license key

- 1. Visit the Downloads section of the Genworks Newsite
- 2. Enter your email address².
- 3. Download the latest Payload and gpl.zip for Windows³
- 4. Click to receive license key file by email.

2.1.2 Unpack the Distribution

GenDL is currently distributed for all the platforms as a self-contained "zip" file which does not require official administrator installation. What follows are general instructions; more up-to-date details may be found in the email which accompanies the license key file. A five-minute installation video is also available in the Documentation section of the Genworks Newsite.

- 1. Unzip the gdl1581... zipfile into a location where you have write permissions
- 2. Unzip the gpl.zip file at the same level as the gdl payload
- 3. Copy the license key file as gdl.lic (for Trial, Student, Professional editions), or devel.lic (for Enterprise edition) into the program/ directory within the gdl1581.../ directory.

Figure 2.1: Several Gendl versions and one GPL

So you now should have two directories at the same level: one named gdl1581.../(the rest of the name will contain the specific dated build stamp), and a gdl/directory at the same level. Note that as seen in Figure 2.1, it is possible to have several Gendl versions installed, but just a single common gpl/ folder.

2.1.3 Make a Desktop Shortcut

- 1. Using the "My Computer" or "Computer" Windows file manager, right-mouse on the run-gdl.bat file.
- 2. Select "Create Shortcut."
- 3. Now drag the new "Run-gdl-shortcut" icon to your desktop.

2.1.4 Populate your Initialization File

The default initialization file for Gendl is called gdlinit.cl,

2.2 Installation of open-source Gendl

This section is only relevant if you have not received a pre-packaged Gendl distribution with its own Common Lisp engine. If you have received a pre-packaged Gendl distribution, then please skip this section. In case you want to use the open-source Gendl, you will use your own Common Lisp installation and fetch Gendl (Genworks-GDL) using a very powerful and convenient CL package/library manager called *Quicklisp*.

2.2.1 Install and Configure your Common Lisp environment

Gendl is currently tested to build on the following Common Lisp engines:

- Allegro CL (commercial product from Franz Inc, free Express Edition available)
- LispWorks (commercial product from LispWorks Ltd, free Personal Edition available)
- Steel Bank Common Lisp (SBCL) (free open-source project with permissive license)

¹http://github.com/genworks/Genworks-GDL

²if your address is not on file, send mail to licensing@genworks.com

³If you already have a gpl.zip from a previous Gendl installation, it is not necessary to download a new one.

Please refer to the documentation for each of these systems for full information on installing and configuring the environment. Typically this will include a text editor, either Gnu Emacs with Superior Lisp Interaction Mode for Emacs (Slime), or a built-in text editing and development environment which comes with the Common Lisp system.

As of this writing, a convenient way to set up Emacs with Slime is to use the Quicklisp-slimehelper.

2.2.2 Load and Configure Quicklisp

As of this writing, Quicklisp is rapidly becoming the defacto standard library manager for Common Lisp.

- Visit the Quicklisp website
- Follow the instructions there to download the quicklisp.lisp bootstrap file and load it to set up your Quicklisp environment.

2.3 System Startup and Testing

2.3.1 System Startup

Startup of prepackaged Gendl distribution

To start a prepackaged system, follow these steps:

- 1. Invoke the run-gdl.bat (Windows), or run-gdl (Linux, MacOS) startup script. This should launch Gnu Emacs with a README file displayed by default. Take the time to look through this README file. Especially the later part of the file contains information about Emacs keyboard shortcuts available.
- 2. In emacs, enter: M-x glime. That is, hold down the "Meta" (or "Alt") key, and press the "X" key, then type "glime." You will see this command shown in the *mini-buffer* at the bottom of the Emacs window, as shown in Figure 2.2
- 3. press the "Enter" key
- 4. On Windows, you will get a new window, named the Genworks Gendl Console, as shown in Figure 2.3. This window might start out in minimized form (as an icon at the bottom of your screen). Click on it to open it. Watch this console for any errors or warnings.

The first time you start up, you may see messages in this console for several minutes while the system is being built (or if you received a completely pre-built system, the messages may last only a few seconds).

On Linux or MacOS, there will be a separate Emacs buffer (available through Emacs' "Buffers" menu) where you will see these messages.

The messages will consist of compiling and loading information, followed by copyright and welcome information for Gendl. After these messages have finished, you should see the following command prompt:

Figure 2.2: The mini-buffer in Emacs

```
Genworks GenDL Console
; Loading "uffi"
To load "uffi":
  Load 1 ASDF system:
   uffi
; Loading "uffi"
     Fast loading
         e:\release\windows\gdl1581-windows-2012091200\smlib\smlib.fasl
Welcome to the Gendl-SMLib Geometry Kernel Interface
********************
This seat of SMLib kernel and Gendl-SMLib Interface
is validated for: TU Delft ADM Student Trial
with email: david.cooper@genworks.com
                                              Dave Cooper,
     Foreign loading e:\release\windows\gdl1581-windows-2012091200\sml
gdl-user(1):
```

Figure 2.3: Genworks Gendl Console

gdl-user(1):

The Genworks GenDL console contains a command prompt, but mostly you will use the *slime-repl...* buffer in Emacs to type commands. The Genworks GenDL console is mainly used for displaying output text from the Gendl system and from your application.

Startup of open-source Gendl distribution

To start an Open-source distribution, follow these steps:

- 1. Start your Common Lisp engine and development environment (e.g. SBCL with Emacs and Superior Lisp Interaction Mode for Emacs).
- 2. After Quicklisp is installed and initialized in your system, type: (ql:quickload :genworks-gdl) to get Genworks Gendl installed and loaded in your environment.
- 3. Type the following to initialize the Gendl environment:

```
(gdl:start-gdl :edition :open-source)
```

2.3.2 Basic System Test

You may test your installation using the following checklist. These tests are optional. You may perform some or all of them in order to ensure that your Gendl is installed correctly and running smoothly. In your Web Browser (e.g. Google Chrome, Firefox, Safari, Opera, Internet Explorer), perform the following steps:

- 1. visit http://localhost:9000/tasty.
- 2. accept default robot:assembly.
- 3. Select "Add Leaves" from the Tree menu.
- 4. Click on the top node in the tree.
- 5. Observe the wireframe graphics for the robot as shown in 2.4.
- 6. Click on the robot to zoom in.
- 7. Select "Clear View!" from the View menu.
- 8. Select "X3DOM" from the View menu.
- 9. Click on the top node in the tree.
- 10. "Refresh" or "Reload" your browser window (may not be necessary).
- 11. If your browser supports WebGL, you will see the robot in shaded dynamic view as shown in Figure 2.5.
- 12. Select "PNG" from the View menu. You will see the wireframe view of the robot as a PNG image.
- 13. Select "X3D" from the View menu. If your browser has an X3D plugin installed (e.g. BS Contact), you will see the robot in a shaded dynamic view.

Figure 2.4: Robot displayed in Tasty

Figure 2.5: Robot x3dom

2.3.3 Full Regression Test

The following commands will invoke a full regression test, including a test of the Surface and Solids primitives provided by the SMLib geometry kernel. Note that the SMLib geometry kernel is only available with proprietary Gendl licenses — therefore if you have an open-source or Trial version, you these regression tests will not all function.

In Emacs at the gdl-user> prompt in the *slime-repl...* buffer, type the following commands:

```
1. (ql:quickload :gdl-regression)
```

```
2. (gdl-lift-utils::define-regression-tests)
```

```
3. (gdl-lift-utils::run-regression-tests-pass-fail)
```

4. (pprint gdl-lift-utils::*regression-test-report*)

2.4 Getting Help and Support

If you run into unexplained errors in the installation and startup process, please contact the following resources:

- 1. Make a posting to the Genworks Google Group
- 2. For pure Common Lisp issues, join the #lisp IRC (Internet Relay Chat) channel and discuss issues there.
- 3. Also for Common Lisp issues, follow the comp.lang.lisp Usenet group.
- 4. If you are a supported Genworks customer, send email to support@genworks.com
- 5. If you are not a supported Genworks customer but you want to report an apparent bug or have other suggestions or inquiries, you may also send email to support@genworks.com, but please understand that Genworks cannot guarantee any response or a particular timeframe for any response.

Chapter 3

Basic Operation of the Gendl Environment

This chapter will step you through all the basic steps of operating a typical Gendl environment. We will not go into any depth about the additional features of the environment or language syntax in this section — this is just for getting familiar and practicing with the mechanics of operating the environment with a keyboard.

3.1 What is Different about Gendl?

Gendl is a dynamic language environment with incremental compiling and in-memory definitions. That means that as long as the system is running, you can *compile* new *definitions* of functions, objects, etc, and they will immediately become available as part of the running system, and you can begin testing them immediately or update an existing set of objects to observe their new behavior.

In many other programming language systems, you have to start the system from the beginning and reload all the files in order to test new functionality.

In Gendl, if you simply shut down the system after having compiled and loaded a set of files with new definitions, then when you restart the system you will have to recompile and/or reload those definitions in order to bring the system back into the same state. This is typically done automatically, using commands placed into the gdlinit.cl initialization file, as introduced in Section 3.4. Alternatively, you can compile and load definitions into your Gendl session, then save the "world" in that state. That way, it is possible to start a new Gendl "world" which already has all your application's definitions loaded and ready for use, without having to procedurally reload any files. You can then begin to make and test new definitions (and re-definitions) starting from this new "world."

3.2 Startup, "Hello, World!" and Shutdown

The typical Gendl environment consists of three programs: Gnu Emacs (the editor), a Common Lisp engine with Gendl system loaded or built into it (e.g. the gdl.exe executable in your program/directory), and (optionally) a web browser such as Firefox, Google Chrome, Safari, Opera, or Internet Explorer. Emacs runs as the main process, and this in turn starts the CL engine with

Gendl as a *sub-process*. The CL engine typically runs an embedded *webserver*, enabling you to access your application through a standard web browser.

As introduced in Chapter 2, the typical way to start a pre-packaged Gendl environment is with the run-gdl.bat (Windows), or run-gdl (MacOS, Linux) script files. Invoke this script file from your computer's file manager, or from a desktop shortcut if you have created one as outlined in section 2.1.3. Your installation executable may also have created a Windows "Start" menu item for Genworks Gendl. Of course you can also invoke run-gdl.bat from the Windows "cmd" command-line, or from another command shell such as Cygwin.¹

3.2.1 Startup

Startup of a typical Gendl development session consists of two fundamental steps: (1) starting the Emacs editing environment, and (2) starting the actual Gendl process as a "sub-process" or "inferior" process within Emacs. The Gendl process should automatically establish a network connection back to Emacs, allowing you to interact directly with the Gendl process from within Emacs.

- 1. Invoke the run-gdl.bat or run-gdl.bat startup script.
- 2. You should see a blue emacs window as in Figure ??. (alternative colors are also possible).
- 3. Press M-x (Alt-x), and type gendl in the mini-buffer, as seen in Figure 2.2.
- 4. (MS Windows): Look for the Genworks Gendl Console window, or (Linux, Mac) use the Emacs "Buffer" menu to visit the "*inferior-lisp*" buffer. Note that the Genworks Gendl Console window might start as a minimized icon; click or double-click it to un-minimize.
- 5. Watch the Genworks GDL Console window for any errors. Depending on your specific installation, it may take from a few seconds to several minutes for the Genworks Gendl Console (or *inferior-lisp* buffer) to settle down and give you a gdl-user(): prompt. This window is where you will see most of your program's textual output, any error messages, warnings, etc.
- 6. In Emacs, type: C-x & (or select Emacs menu item Buffers→*slime-repl...*) to visit the "*slime-repl ...*" buffer. The full name of this buffer depends on the specific CL/Gendl platform which you are running. This buffer contains an interactive prompt, labeled gdl-user>, where you will enter most of your commands to interact with your running Gendl session for testing, debugging, etc. There is also a web-based graphical interactive environment called tasty which will will cover in Chapter ??
- 7. To ensure that the Gendl interpreter is up and running, type: (+ 2 3) and press [Enter].
- 8. You should see the result 5 echoed back to you below the prompt.

¹Cygwin is also useful as a command-line tool on Windows for interacting with a version control system like Subversion (svn).

```
(in-package :gdl-user)
(define-object hello ()
   :computed-slots
   ((greeting "Hello, World!")))
```

Figure 3.1: Example of Simple Object Definition

3.2.2 Developing and Testing a Gendl "Hello World" application

- 1. type C-x (Control-x) 2, or C-x 3, or use the "Split Screen" option of the File menu to split the Emacs frame into two "windows" ("windows" in Emacs are non-overlapping panels, or rectangular areas within the main Emacs window).
- 2. type C-x o several times to move from one window to the other, or move the mouse cursor and click in each window. Notice how the blinking insertion point moves from one window to the other.
- 3. In the top (or left) window, type C-x C-f (or select Emacs menu item "File→Open File") to get the "Find file" prompt in the mini-buffer.
- 4. Type C-a to move the point to the beginning of the mini-buffer line.
- 5. Type C-k to delete from the point to the end of the mini-buffer.
- 6. Type ~/hello.gdl and press [Enter]
- 7. You are now editing a (presumably new) file of Gendl code, located in your HOME directory, called hello.gdl
- 8. Enter the text from Figure 3.1 into the hello.gdl buffer. You do not have to match the line breaks and whitespace as shown in the example. You can auto-indent each new line by pressing [TAB] after pressing [Enter] for the newline.
 - Protip: You can also try using C-j instead of [Enter], which will automatically give a newline and auto-indent.
- 9. type C-x C-s (or choose Emacs menu item $File \rightarrow Save$) to save the contents of the buffer (i.e. the window) to the file in your HOME directory.
- 10. type C-c C-k (or choose Emacs menu item $SLIME \rightarrow Compilation \rightarrow Compile/Load\ File$) to compile & load the code from this file.
- 11. type C-c o (or move and click the mouse) to switch to the bottom window.
- 12. In the bottom window, type C-x & (or choose Emacs menu item *Buffers*→*slime-repl...*) to get the *slime-repl ...* buffer, which should contain a gdl-user> prompt. This is where you normally type interactive Gendl commands.

- 13. If necessary, type M > (that is, hold down Meta (Alt), Shift, and the ">" key) to move the insertion point to the end of this buffer.
- 14. At the gdl-user> prompt, type

```
(make-self 'hello)
and press [Enter].
15. At the gdl-user> prompt, type
  (the greeting)
and press [Enter].
```

16. You should see the words Hello, World! echoed back to you below the prompt.

3.2.3 Shutdown

To shut down a development session gracefully, you should first shut down the Gendl process, then shut down your Emacs.

- Type M-x quit-gendl (that is, hold Alt and press X, then release both while you type quit-gendl in the mini-buffer), then press [Enter]
- Type C-x C-c to quit from Emacs. Emacs will prompt you to save any modified buffers before exiting.

3.3 Working with Projects

Gendl contains utilities which allow you to treat your application as a "project," with the ability to compile, incrementally compile, and load a "project" from a directory tree of source files representing your project. In this section we give an overview of the expected directory structure and available control files, followed by a reference for each of the functions included in the bootstrap module.

3.3.1 Directory Structure

You should structure your applications in a modular fashion, with the directories containing actual Lisp sources called "source."

You may have subdirectories which themselves contain "source" directories.

We recommend keeping your codebase directories relatively flat, however.

In Figure 3.2 is an example application directory, with four source files.

```
apps/yoyodyne/booster-rocket/source/assembly.gdl
apps/yoyodyne/booster-rocket/source/package.gdl
apps/yoyodyne/booster-rocket/source/parameters.gdl
apps/yoyodyne/booster-rocket/source/rules.gdl
```

Figure 3.2: Example project directory with four source files

```
apps/yoyodyne/booster-rocket/source/assembly.gdl
apps/yoyodyne/booster-rocket/source/file-ordering.isc
apps/yoyodyne/booster-rocket/source/package.gdl
apps/yoyodyne/booster-rocket/source/parameters.gdl
apps/yoyodyne/booster-rocket/source/rules.gdl
```

Figure 3.3: Example project directory with file ordering configuration file

3.3.2 Source Files within a source/ subdirectory

Enforcing Ordering

Within a source subdirectory, you may have a file called file-ordering.isc² to enforce a certain ordering on the files. Here is the contents of an example for the above application:

```
("package" "parameters")
```

This will force package lisp to be compiled/loaded first, and parameters lisp to be compiled/loaded next. The ordering on the rest of the files should not matter (although it will default to lexigraphical ordering).

Now our sample application directory looks like Figure 3.3 is an example application directory, with four source files.

3.4 Customizing your Environment

You may customize your environment in several different ways, for example by loading definitions and settings into your Gendl "world" automatically when the system starts, and by specifying fonts, colors, and default buffers (to name a few) for your emacs editing environment.

3.5 Saving the World

You may customize your environment in several different ways, for example by loading definitions and settings into your Gendl "world" automatically when the system starts, and by specifying fonts, colors, and default buffers (to name a few) for your emacs editing environment.

²isc stands for "Intelligent Source Configuration"

Upgrade Notes

GDL 1580 marked the end of a major branch of GDL development, and 1581 was actually a major new version. With 1581, an open-source version was released, and eventually the name was changed to Gendl.

This chapter lists the typical modifications you will want to consider for upgrading from GDL 1580 to Gendl 1582.

- (update-gdl ..) is not yet available for 1582. Instead of updating incrementally with patches, Gendl 1582 is released on a monthly basis in conjunction with Quicklisp releases. Updating quicklisp involves downloading a full Genworks source code tree and running a build script. Information on this procedure is provided in Section ??.
- (make-gdl-app ..) not yet available for 1582. We are preparing the Enterprise Edition of 1582 which will include the make-gdl-app function, which creates Runtime applications without the compiler or Gendl development facilities. If you are an Enterprise licensee, are ready to release Runtime applications on 1582, and you have not received information on the Enterprise Edition, please contact support@genworks.com
- (register-asdf-systems) and the "3rdpty/" directory are no longer needed or available. Instead, we depend on the Quicklisp system. Details of Quicklisp are available at . See Section ?? for information about how to use Quicklisp with Gendl.
- There is a system-wide gdlinit.cl in the application directory, and this may have some default information which ships with Gendl. There is a personal one in home directory, which you should modify if you want to customize anything.
- Slime debugging is different from the ELI emacs debugger. The main thing to know is to press "a" or "q" to pop out of the current error. Full documentation for the Slime debug mode is available with the Slime documentation.
- color-themes Gendl now ships with the Emacs color-theme package. You can select a different color theme with M-x color-theme-select. Press [Enter] or middle-mouse on a color theme to apply it.
- Gendl files can now end with .lisp or .gdl. The new .gdl extension will work for emacs Lisp mode and will work with cl-lite, ASDF, and Quicklisp for including source files in application systems. We recommend migrating to the new .gdl extension for files containing define-object, define-format, and define-lens forms, and any other future toplevel

defining forms introduced by Gendl, in order to distinguish from files containing raw Common Lisp code.

• in gdlAjax, HTML for a sheet-section is given in the slot called inner-html instead of main-view. This name change was made to clarify what exactly is expected in this slot – it is the innerHTML of the page division represented by the current sheet-section. If you want to make your code back-compatible with GDL 1580, you can use the following form in place of old occurences of main-view:

```
... #+allegro-v8.1 main-view #-allegro-v8.1 inner-html ...
```

Index

```
*slime-repl...*, 9
Basic Lisp Techniques, 2
Caching, 1
Common Lisp, 2
compiled language
    benefits of, 2
declarative, 2
Dependency tracking, 1
gdl-user(1):, 9
Genworks Gendl Console, 7
Ignorance-based Engineering, 1
Knowledge Base System, 1
macros
    code-expanding, 2
object-orientation
    generic-function, 2
    message-passing, 2
regression tests, 11
```