Classical Hodge Theory Ref: The MHM project, Chapter O, Sabbah-Schnell. X a smooth projective variety / C. $H^*(X, \mathbb{Z}) = \bigoplus_{K} H(X, \mathbb{Z}).$ Basic Thm: K $(X,C) \cong \bigoplus_{P+q=i} H(X)$ $H^{q}(x) = H(X, \Omega_{x}^{p})$ = { Classes of closed (Prop) forms } So $H'(x) = H^{q,p}(x)$ Modge Structure: Abstraction of this decomposition. <u>Defo:</u> A (Z,Q,R)-Hodge structure of weight 1k is a free module H along with a C-linear decomp. $H \otimes C = \bigoplus H^{P,q}$ such that $P^{P,q} = H^{P,q}$ Families: $\pi: \mathcal{X} \to S$ a family g sm proj var. Get $H_{\mathcal{Q}} = \mathcal{R}^{K}\pi_{*}(\mathcal{Q})$, a docal system on S. $H_{\mathbb{C}} = H_{\mathbb{Q}} \otimes \mathbb{C}$ a (Hot) \mathbb{C} -V.b. Then H = PH where $H^{P,q} = R^q + (\Omega^P)$.

Abstract this idea:
A VH3 g wt K on S is a flot C-vector)
bundle. H with a decomposition
$H = \bigoplus_{P+q} H^{P,q} + \cdots$
Ptq
A Z/Q/R structure on this is a local?
A Z/Q/R structure on this is a local ? system Hz/HR/HR & an isomorphism (2)
$H \cong H_{0} \otimes \mathbb{C}$
Part (1) & 2) generalize in separate ways.
(1) → C Hoge modules (built from D-modules)
②→ Perverse sheaves Riemann-Hilb corr.
Hodge module With Q str.
P, q
Rem: In the geometric setting, H'C H are not
holomorphic sub-bundles. (only C^{∞}).
1
But: K,O K-1,1 H DH D DH BH
F.
OR
\leftarrow \vdash \downarrow \leftarrow \vdash \downarrow
i, K-i
$F_{i} = \bigoplus H$
is FOF = 0 if it >x
$E = \oplus H$
$ \frac{E}{5} = \bigoplus_{j \ge 0} H^{-970} $ and
$ \frac{f}{f} = \bigoplus H $ and $ i = \lim_{j \to \infty} H $ $ f \mapsto f \mapsto f = K $

F. CH are holomorphic sub-bundles. • • • (1) ② Giffiths transversality:

FP⊗ Ts - V F i.e. Fr - V - OS & Fr (Will be important in making H a D-module.) Back to Hodge structures: Def1: A C-Hodge structure q weight co is a C vector space H with two ω -opposite filtrations F_i and F_j : $F_i \cap F_j = 0 \text{ if } i + j = K$ $S_i = F_i + F_j \xrightarrow{\sim} H \text{ if } i + j = K.$ Rem: This is equivalent to previdef. in terms of H. Operations (1) Te sur product $F^{P}(H_{1}\otimes H_{2}) = \sum_{\substack{P_{1}+P_{2}=P}} F(H_{1})\otimes F(H_{2})$ 2 Hom: om: FP(Hom(H1, H2)) = {f| f(FH1) C FH2} 3 Dual Hom (-, C) wight -w (a) Conjugation: (H, Fz, F) some weight.

ν.
<, > is Hermitian (-1) Symmetric
Non des paining. Moreover Pn-P
restriction to each Hing is non deg because $H^{P,n-P} = H^{n-P,P}$
because HP,n-P = Hn-P,P
ie. $\langle , \rangle : H \otimes \overline{H} \rightarrow \mathbb{C} (-n)$
or $\langle , \rangle_o : H \xrightarrow{\sim} H(-\omega)$ of: A polarization on a VHS H is a
ef: A polarization on a VHS H is a
map q Hodge structures
$\mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C}(-\omega)$
which is (fiberwise) a non-deg paining. + %-
mk: Map of Hodge structures includes 1) flat map
(i.e. $e_1 \otimes e_2$ is locally constant if $e_1 \otimes e_2$ are)
(i.e. e, ⊗ ez is locally constant if e, & ez are) Deplays well with filtrations.
R): There is a positive definite new condition, which
I am suppressing.
J J
low to get a polarization in other degrees?
Use the Hard lefschetz theorem.
Let $\omega = C_1(L)$, where L is an ample line bundle.
Then we H''(X)
• • •

 $\frac{n-k}{n+k}$: ω^{k} : $H(x) \rightarrow H(x)$ is an iso.

NHK: 110 WK (Hard letsch) N-K: So: if we want to pair a, b ∈ H", then we can set $\langle a,b\rangle = \langle a,\omega^k b\rangle_n$ or to pair a, b E H with Ptg = n-K set $\langle a,b\rangle = \langle a, \omega^{k}b\rangle$ Rmk: There are usually some signs and powers of i to make the resulting from positive definite on primitive Cohomology.