

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2017-2018

EXAMEN

Session principale

Matière: Transferts thermiques Documents Autorisés: NON

Classes: 2TA Enseignant: I. KHABBOUCHI& D. LOUNISSI

Durée: 1h30h Date: 05/01/2018

Exercice 1: (8 points)

Considérons l'écoulement de l'eau le long d'une plaque plane, comme indiqué sur la figure ci-contre. Très loin de la surface de la plaque (suivant la direction des y) l'eau se déplace avec une vitesse uniforme V=5m/s et a une température $T_{\infty} = 20^{\circ}C$. La surface supérieure de la plaque est maintenue à une température uniforme $T_s=60^{\circ}C$.

- 1. Déterminer la longueur x_L de la plaque qui correspond à un régime d'écoulement laminaire.
- 2. En supposant que la plaque est assez courte pour pouvoir considérer que l'écoulement est laminaire et en négligeant la dissipation visqueuse, écrire les équations de conservation de masse, de quantité de mouvement et d'énergie en régime permanent pour cet écoulement tout en précisant les hypthèses simplificatrices et les conditions aux limites.
- 3. Pour une plaque de longueur L=5 cm, le coefficient de frottement global entre l'eau et toute la plaque est mesuré à $C_f = 4.10^{-4}$. En utilisant l'analogie modifiée de Reynolds, déterminer le flux convectif transféré à l'eau, par unité de largeur de la plaque.

Exercice 2: (6 points)

De l'eau entre dans un élément de chauffage cylindrique de diamètre 8cm avec un débit de 0.12kg/s (figure 3). L'eau entre dans le tube à une température de 30°C et la surface du tube est maintenue à 90°C. Déterminer la longueur nécéssaire du tube pour que la température de sortie de l'eau soit égale à 70°C. (Voir annexe 1)

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2017-2018

Exercice 3: (6 points)

Un système de chauffage électrique par plancher est constitué d'une plaque chauffante d'épaisseur 1 cm noyée dans une dalle de béton.

Le flux de chaleur crée par la plaque chauffante (Φ) se partage en un flux ascendant Φ_1 (chauffage par le plancher) et un flux descendant Φ_2 (chauffage par le plafond).

La température de l'air de part et d'autre du plancher est $T_{\infty}=18^{\circ}C$.

La température du plancher T_{S1} est égale à 50°C, tandis que celle du plafond T_{S2} est égale à 35°C.

Déterminer pour une surface carrée de 1 m 2 les flux de chaleur par unité de surface ascendant Φ_1 et descendant Φ_2 . (Voir annexe 1 et 2)

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2017-2018

Annexe 1

Empirical correlations for the average Nusselt number for natural convection over surfaces

Geometry	Characteristic length L_c	Range of Ra	Nu		
Vertical plate	L	10 ⁴ –10 ⁹ 10 ¹⁰ –10 ¹³ Entire range	$\begin{aligned} \text{Nu} &= 0.59 \text{Ra}_L^{1/4} & \text{(9} \\ \text{Nu} &= 0.1 \text{Ra}_L^{1/3} & \text{(9} \\ \text{Nu} &= \left\{ 0.825 + \frac{0.387 \text{Ra}_L^{1/6}}{\left[1 + (0.492/\text{Pr})^{9/16}\right]^{8/27}} \right\}^2 & \text{(9} \\ \text{(complex but more accurate)} \end{aligned}$		
Inclined plate	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate $ \text{Replace } g \text{ by } g \cos \theta \text{for} 0 < \theta < 60^\circ $		
Horizontal plate (Surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface Ts (b) Lower surface of a hot plate (or upper surface of a cold plate) Hot surface	A _s Ip	10 ⁴ -10 ⁷ 10 ⁷ -10 ¹¹	$Nu = 0.59Ra_L^{1/4}$ $Nu = 0.1Ra_L^{1/3}$ $(9-22)$ $(9-23)$ $Nu = 0.27Ra_L^{1/4}$ $(9-24)$		
Vertical cylinder	L		A vertical cylinder can be treated as a vertical plate when $D \geq \frac{35L}{\mathrm{Gr}_L^{1/4}}$		

Propriétés de l'eau à la pression atmosphérique latm

Temp °C	Masse volumique ρ(kg/m3)	C _p (kJ/kg.K)	Conductivité λ (W/m.K)	Viscosité dynamique μ (kg/m.s)	Viscosité Cinématique ν (m²/s)	Pr
10	999,7	4,1952	0,57878	1305,9×10 ⁻⁶	13,063×10 ⁻⁷	9,4656
20	998,21	4,1841	0,59801	1001,6×10 ⁻⁶	10,034×10 ⁻⁷	7,0078
30	995,65	4,1798	0,61439	797,22×10 ⁻⁶	8,0071×10 ⁻⁷	5,4236
40	992,22	4,1794	0,62849	652,73×10-6	6,5785×10 ⁻⁷	4,3406
50	988,04	4,1813	0,64062	546,52×10-6	5,5313×10 ⁻⁷	3,5671
60	983,2	4,185	0,651	466,04×10-6	4,74×10 ⁻⁷	2,9959
70	977,76	4,1901	0,65976	403,55×10 ⁻⁶	4,1273×10 ⁻⁷	2,5629
80	971,79	4,1968	0,66699	354,05×10 ⁻⁶	3,6433×10 ⁻⁷	2,2277
90	965,31	4,2052	0,67279	314,18×10 ⁻⁶	3,2547×10 ⁻⁷	1,9637

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées de Borj Cedria

Année Universitaire 2017-2018

Annexe 2

Propert	ies of air	at 1 atm pro	Specific Heat	Thermal Conductivity k, W/m·K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ, kg/m·s	Kinematic Viscosity ν, m ² /s	Prandtl Number Pr
<i>T</i> , °C		ρ , kg/m ³	<i>c_p,</i> J/kg⋅K	И, УУ/ПРТК		8.636×10^{-6}	3.013×10^{-6}	0.7246
		0.066	983	0.01171	4.158×10^{-6}	1.189×10^{-5}	5.837×10^{-6}	0.7263
-150		2.866	966	0.01582	8.036×10^{-6}	1.474×10^{-5}	9.319×10^{-6}	0.7440
-100		2.038	999	0.01979	1.252×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.7436
-50		1.582	1002	0.02057	1.356×10^{-5}	1.527×10^{-5} 1.579×10^{-5}	1.087×10^{-5}	0.7425
-40		1.514	1004	0.02134	1.465×10^{-5}	1.5/9 × 10	1.169×10^{-5}	0.7408
-30		1.451	1004	0.02211	1.578×10^{-5}	1.630×10^{-5}	1.252×10^{-5}	0.7387
-20		1.394	1005	0.02288	1.696×10^{-5}	1.680×10^{-5}	1.338×10^{-5}	0.7362
-10		1.341	1006	0.02364	1.818×10^{-5}	1.729×10^{-5}	1.382×10^{-5}	0.7350
0		1.292		0.02401	1.880×10^{-5}	1.754×10^{-5}	1.426×10^{-5}	0.7336
5		1.269	1006 1006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.470×10^{-5}	0.7323
10		1.246		0.02476	2.009×10^{-5}	1.802×10^{-5}	1.470×10^{-5} 1.516×10^{-5}	0.7309
15		1.225	1007	0.02514	2.074×10^{-5}	1.825×10^{-5}	1.562×10^{-5}	0.7296
20		1.204	1007	0.02514	2.141×10^{-5}	1.849×10^{-5}	1.608×10^{-5}	0.7282
25		1.184	1007	0.02588	2.208×10^{-5}	1.872×10^{-5}	1.608 X 10	0.7268
30		1.164	1007	0.02585	2.277×10^{-5}	1.895×10^{-5}	1.655×10^{-5}	0.7255
35		1.145	1007	0.02662	2.346×10^{-5}	1.918×10^{-5}	1.702×10^{-5}	0.7241
40		1.127	1007	0.02699	2.416×10^{-5}	1.941×10^{-5}	1.750×10^{-5}	0.7228
45		1.109	1007	0.02699	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.7202
50		1.092	1007	0.02733	2.632×10^{-5}	2.008×10^{-5}	1.896×10^{-5}	0.7202
60		1.059	1007		2.780×10^{-5}	2.052×10^{-5}	1.995×10^{-5}	
70		1.028	1007	0.02881	2.931×10^{-5}	2.096×10^{-5}	2.097×10^{-5}	0.7154
80		0.9994	1008	0.02953	3.086×10^{-5}	2.139×10^{-5}	2.201×10^{-5}	0.7132
90		0.9718	1008	0.03024	3.243×10^{-5}	2.181×10^{-5}	2.306×10^{-5}	0.7111
100		0.9458	1009	0.03095	3.565×10^{-5}	2.264×10^{-5}	2.522×10^{-5}	0.7073
120		0.8977	1011	0.03235	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.7041
140		0.8542	1013	0.03374	4.241×10^{-5}	2.420×10^{-5}	2.975×10^{-5}	0.7014
160		0.8148	1016	0.03511	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992
180		0.7788	1019	0.03646	4.954×10^{-5}	2.577×10^{-5}	3.455×10^{-5}	0.6974
200		0.7459	1023	0.03779	5.890×10^{-5}	2.760×10^{-5}	4.091×10^{-5}	0.6946
250		0.6746	1033	0.04104	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.6935
300		0.6158	1044	0.04418	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.6937
350		0.5664	1056	0.04721	7.892 X 10	3.261×10^{-5}	6.219×10^{-5}	0.6948
400		0.5243	1069	0.05015	8.951×10^{-5}	3.415×10^{-5}	6.997×10^{-5}	0.6965
450		0.4880	1081	0.05298	1.004×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.6986
500		0.4565	1093	0.05572	1.117×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.7037
600		0.4042	1115	0.06093	1.352×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092
700		0.3627	1135	0.06581	1.598×10^{-4}	4.111×10^{-5} 4.362×10^{-5}	1.326×10^{-4}	0.7149
800		0.3289	1153	0.07037	1.855×10^{-4}	4.362×10^{-5} 4.600×10^{-5}	1.520×10^{-4} 1.529×10^{-4}	0.7206
900		0.3008	1169	0.07465	2.122×10^{-4}	4.000 X 10 °	1.323 7.10	3., 203

On donne pour les écoulements forcés internes :

Régime Turbulent : $Nu_D = 0.023$. $Re^{0.8}$. $Pr^{1/3}$ pour $0.5 \le Pr \le 100$ Régime laminaire : $Nu_D = 1.86$. $(Re. Pr)^{0.33}$. $\left(\frac{D}{L}\right)^{0.33}$. $\left(\frac{\mu}{\mu_s}\right)^{0.14}$ pour $Re. Pr. \frac{D}{L} > 10$

Faeraie 1

my be the state of the state of

Exerci & 1 2?; \$ = A. #OL (Ts-Tm) = m Cp (Tsate - Tato). Ls $h = \frac{m G \left(T_{sut} - T_{entre}\right)}{T D h \left(T_{s} - T_{m}\right)}$ ou $T_{m} = \frac{T_{suit} \cdot + T_{entre}}{2}$ h?; evoulent force inter: f = 9 + 1, +6 kg/m $T_f = \frac{T_{s+}T_m}{z} = fo^2c$ $f = \frac{4}{3} + \frac{4}{3} = \frac{4}{$ 1 = 0,689 w/x. - $Re = \frac{V.D}{D} \quad \alpha \quad V = \frac{m}{\rho \pi D^2} = D \quad Re = \frac{m}{\rho \pi D V} = 1A85/85$ Régin Laminain (Re (2300) Nu = 0,023 Ro. Pr = 223 9,06 LA= Mu. 1 - 7253 W/km2. d'où 2 = 2,68 cm

(2)

Excrem 3

$$\phi_1 = f_n \cdot (T_{s_n} - T_{oo}) =$$

$$h_{n}$$
 et h_{e} ?

 h_{n} et h_{e} ?

 h_{n} : $T_{e} = \frac{T_{sn} + T_{oo}}{2} = 442$
 $h_{e} = 1,941 = 5 + 4 = 1,941 = 1$

$$Ra = Gr. Pr = gp. \frac{(T_s - T_e)}{p^2} \cdot L_e^3 \cdot Pr ; L_c = 1 m$$

$$p = \frac{1}{T_f} = 3,154 \cdot 10^{-3} \text{ k}^{-1}$$

$$R_{c} = 23,8610^{8}$$

$$= 8 \quad N_{u} = 0,1 R_{u_{L}}^{3}; N_{u} = 133,62$$

$$= 1 \quad N_{u} = 133,62$$