Reconocimiento de Patrones Temporales en Series de Tiempo para la Predicción

Anderson Brian Flores Suaña

^{1,2,3}Facultad de Ingeniería Estadística e Informática, Universidad Nacional del Altiplano

1. RESUMEN

Este estudio compara tres modelos de series temporales (Prophet, ARIMA y LSTM) para predecir brotes de dengue en Perú usando datos 2020-2023. Se identificaron patrones temporales y tendencias epidemiológicas mediante análisis estadístico y modelado predictivo. ARIMA presentó el mejor rendimiento general con $R^2 = 0.96$, seguido por LSTM ($R^2 = 0.72$) y Prophet ($R^2 = 0.44$). Los modelos permiten anticipar períodos de alto riesgo epidemiológico y optimizar la vigilancia en salud pública.

Palabras clave: ARIMA, dengue, LSTM, predicción epidemiológica, Prophet, series temporales.

2. METODOLOGÍA

Datos: Casos de dengue reportados en Perú (2020-2023) obtenidos del MINSA.

Preprocesamiento:

- Agrupación semanal de datos diarios
- Tratamiento de valores atípicos (método Tukey)
- Interpolación lineal para valores faltantes
- Transformación logarítmica para estabilizar varianza

Modelos Implementados:

- Prophet: Descomposición bayesiana con componentes de tendencia y estacionalidad
- ARIMA(2,1,2): Modelo autorregresivo integrado de media móvil
- LSTM: Red neuronal recurrente con 50 unidades y ventana temporal de 4 semanas

Evaluación: Validación temporal (80/20), métricas RMSE, MAE, MAPE y R².

3. ANÁLISIS DE DATOS

Total de casos (2020-2023): 412,580 Distribución por Edad:

Grupo Etario	Casos	%
0-11 meses	2,393	0.6%
1-4 años	15,208	3.7%
5-14 años	80,597	19.5%
15-29 años	121,805	29.5%
30-59 años	155,216	37.6%
$60 + a\tilde{n}os$	37,361	9.1%

Departamentos más afectados:

1. Piura: 95,651 casos

2. Lambayeque: 35,257 casos

3. Lima: 33,213 casos 4. Ica: 33,325 casos 5. Loreto: 28,423 casos

Estacionalidad: Pico máximo en mayo 2023 con 53,510 casos. Patrón estacional marcado con mayor incidencia entre marzo-junio.

RESULTADOS COMPARATIVO

Métricas de Rendimiento:

	Modelo	RMSE	MAE	MAPE	I	$\mathbf{l^2}$
	ARIMA	556.60	221.29	11.15%	0.	96
	LSTM	2,663.19	1,553.03	19.20%	0.	72
	Prophet	2,220.03	1,462.15	116.98%	0.	44
_						

Predicciones 2024 (Enero-Marzo):

Mes	ARIMA	LSTM	Prophet
Enero	1,022	1,083	1,380
Febrero	936	994	1,350
Marzo	908	878	1,320

Conclusión de Modelos:

• ARIMA: Mejor precisión general

• LSTM: Captura patrones complejos

• Prophet: Detecta estacionalidad pero con menor precisión

Gráfico de Predicciones Temporales

5. DISTRIBUCIÓN GEOGRÁFICA

(2020-2023)

Mapa 1: Casos Totales por Departamento Mapa 2: Predicción por Departamento (2024)

> Mapa de Calor Casos Históricos

Mapa de Calor Predicciones 2024

Análisis Regional - Predicciones ARIMA 2024 (12 semanas):

Departamento	Histórico	Predicción	Departamento	Histórico	Predicción
San Martín	20,647	1,954	Ucayali	25,937	845
Piura	95,651	1,945	Ica	33,325	671
La Libertad	27,316	1,846	Junín	16,565	612
Lambayeque	$35,\!257$	912	Loreto	28,423	816
Ancash	13,831	933	Tumbes	18,161	271

Observaciones Regionales: Costa norte (Piura, Lambayeque) y selva (San Martín) mantienen mayor riesgo epidemiológico. Sierra presenta baja incidencia general.

7. REFERENCIAS

- 1. Dostal, T., Meisner, J., et al. (2022). "The effect of weather and climate on dengue outbreak risk in Peru, 2000–2018: A time-series analysis". PLOS Neglected Tropical Diseases.
- 2. Goche, K.S.R., Castro, M.V.L., et al. (2025). "Epidemiological dynamics of dengue in Peru: Temporal and spatial drivers between 2000 and 2022". PLOS ONE.
- 3. Attanayake, A.M.C.H. & Perera, S.S.N. (2021). "Time series analysis for modeling the transmission of

6. CONCLUSIONES

- 1. Modelo Óptimo: ARIMA(2,1,2) demostró superior rendimiento con $R^2 = 0.96$ y MAPE = 11.15% para predicción epidemiológica.
- 2. Estacionalidad: Se identificó patrón estacional marcado con picos mayo-junio y valle agosto-octubre.
- 3. Distribución Regional: Costa norte y selva mantienen mayor riesgo epidemiológico.
- 4. Herramienta Efectiva: Los modelos de series temporales son útiles para vigilancia epidemiológica y planificación sanitaria.
- 5. Impacto: Permite implementar medidas preventivas oportunas y optimizar recursos de salud pública.

Recomendaciones:

- Implementar monitoreo continuo
- Incorporar variables climáticas
- Desarrollar sistema de alerta temprana
- Validar con datos externos