Write each of the following in power notation:

$$\begin{split} &i\ \frac{5}{7}\times\frac{5}{7}\times\frac{5}{7}\times\frac{5}{7}\times\frac{5}{7}\\ ⅈ\left(\frac{-4}{3}\right)\times\left(\frac{-4}{3}\right)\times\left(\frac{-4}{3}\right)\times\left(\frac{-4}{3}\right)\times\left(\frac{-4}{3}\right)\\ &iii\left(\frac{-1}{6}\right)\times\left(\frac{-1}{6}\right)\times\left(\frac{-1}{6}\right)\\ &iv-8\times-8\times-8\times-8\times-8 \end{split}$$

Solution:

$$i \frac{5}{7} \times \frac{5}{7} \times \frac{5}{7} \times \frac{5}{7} = \left(\frac{5}{7}\right)^4$$

$$ii\left(rac{-4}{3}
ight) imes\left(rac{-4}{3}
ight) imes\left(rac{-4}{3}
ight) imes\left(rac{-4}{3}
ight) imes\left(rac{-4}{3}
ight)$$

$$iii\left(rac{-1}{6}
ight) imes\left(rac{-1}{6}
ight) imes\left(rac{-1}{6}
ight)=\left(rac{-1}{6}
ight)^3$$

$$iv(-8) \times (-8) \times (-8) \times (-8) \times (-8) = (-8)^5$$

Question:2

Express each of the following in power notation:

$$i \ rac{25}{36} \ ii \ rac{-27}{64} \ iii \ rac{-32}{243} \ iv \ rac{-1}{128}$$

Solution:

$$i \frac{25}{36} = \frac{5^2}{6^2}$$
 [since $25 = 5^2$ and $36 = 6^2$]
$$= \left(\frac{5}{6}\right)^2$$

$$ii \frac{-27}{64} = \frac{(-3)^3}{4^3}$$
 [since -27 = (-3)³ and 64 = 4³]
$$= \left(\frac{-3}{4}\right)^3$$

$$iii \frac{-32}{243} = \frac{\left(-2\right)^5}{3^5}$$
 [since -32 = (-2)⁵ and 243 = 3⁵]
$$= \left(\frac{-2}{3}\right)^5$$

$$iv \frac{-1}{128} = \frac{(-1)^7}{2^7}$$
 [since $(-1)^7 = -1$ and $128 = 2^7$]
$$= \left(\frac{-1}{2}\right)^7$$

Express each of the following as a rational number:

$$i\left(\frac{2}{3}\right)^{5}$$
 $ii\left(\frac{-8}{5}\right)^{3}$
 $iii\left(\frac{-13}{11}\right)^{2}$
 $iv\left(\frac{1}{6}\right)^{3}$
 $v\left(\frac{-1}{2}\right)^{5}$
 $vi\left(\frac{-3}{2}\right)^{4}$
 $vii\left(\frac{-4}{7}\right)^{3}$
 $viii-19$

Solution:

$$i\left(rac{2}{3}
ight)^{5} = rac{{{{\left(2
ight)}^{5}}}}{{{{{\left(3
ight)}^{5}}}}} = rac{{2 imes2 imes2 imes2 imes2 imes2}}{{3 imes3 imes3 imes3 imes3 imes3}} = rac{{32}}{{243}}$$

$$ii\left(rac{-8}{5}
ight)^3 = rac{\left(-8
ight)^3}{\left(5
ight)^3} = rac{\left(-8
ight) imes\left(-8
ight) imes\left(-8
ight)}{5 imes5 imes5} = rac{-512}{125}$$

$$iii\left(rac{-13}{11}
ight)^2 = rac{\left(-13
ight)^2}{\left(11
ight)^2} = rac{\left(-13
ight) imes \left(-13
ight)}{11 imes 11} = rac{169}{121}$$

$$iv\left(\frac{1}{6}\right)^3 = \frac{\left(1\right)^3}{\left(6\right)^3} = \frac{1 \times 1 \times 1}{6 \times 6 \times 6} = \frac{1}{216}$$

$$v\left(rac{-1}{2}
ight)^5 = rac{\left(-1
ight)^5}{\left(2
ight)^5} = rac{\left(-1
ight) imes\left(-1
ight) imes\left(-1
ight) imes\left(-1
ight) imes\left(-1
ight) imes\left(-1
ight)}{2 imes2 imes2 imes2 imes2 imes2 imes2} = rac{-1}{32}$$

$$vi\left(rac{-3}{2}
ight)^4 = rac{\left(-3
ight)^4}{\left(2
ight)^4} = rac{\left(-3
ight) imes\left(-3
ight) imes\left(-3
ight) imes\left(-3
ight) imes\left(-3
ight)}{2 imes2 imes2 imes2} = rac{81}{16}$$

$$vii\left(rac{-4}{7}
ight)^3 = rac{\left(-4
ight)^3}{\left(7
ight)^3} = rac{\left(-4
ight) imes\left(-4
ight) imes\left(-4
ight)}{7 imes 7 imes 7} = rac{-64}{343}$$

$$viii~(-1)^9 = -1$$
 [Since (-1) an odd natural number = -1]

Express each of the following as a rational number:

$$i \ 4^{-1}$$

$$ii-6^{-1}$$

$$iii\left(rac{1}{3}
ight)^{-1}$$

$$iv\left(\frac{-2}{3}\right)^{-1}$$

Solution:

$$i (4)^{-1} = \left(\frac{4}{1}\right)^{-1} = \left(\frac{1}{4}\right)^{1} = \frac{1}{4}$$

[since
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$
]

$$ii(-6)^{-1} = \left(\frac{-6}{1}\right)^{-1} = \left(\frac{1}{-6}\right)^{1} = \frac{-1}{6}$$

[since
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$
]

$$iii\left(\frac{1}{3}\right)^{-1} = \left(\frac{3}{1}\right)^1 = \frac{3}{1}$$

[since
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$
]

$$iv\left(\frac{-2}{3}\right)^{-1} = \left(\frac{3}{-2}\right)^1 = \frac{-3}{2}$$

[since
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$
]

Question:5

Find the reciprocal of each of the following:

$$i\left(\frac{3}{8}\right)^4$$

$$ii\left(\frac{-5}{6}\right)^{11}$$

iii 67

$$iv - 43$$

Solution:

We know that the reciprocal of $\left(\frac{a}{b}\right)^m$ is $\left(\frac{b}{a}\right)^m$.

$$i$$
 Reciprocal of $\left(rac{3}{8}
ight)^4 = \left(rac{8}{3}
ight)^4$

$$ii$$
 Reciprocal of $\left(rac{-5}{6}
ight)^{11}=\left(rac{-6}{5}
ight)^{11}$

$$iii$$
 Reciprocal of 6^7 = Reciprocal of $\left(\frac{6}{1}\right)^7$ = $\left(\frac{1}{6}\right)^7$

$$iv$$
 Reciprocal of -4^3 = Reciprocal of $\left(\frac{-4}{1}\right)^3$ = $\left(\frac{-1}{4}\right)^3$

Find the value of each of the following:

i 8⁰

 $ii-3^0$

 $iii 4^0 + 5^0$

 $iv 6^0 \times 7^0$

Solution:

 $i 8^0 = 1$

 $ii - 3^0 = 1$

 $iii 4^0 + 5^0 = 1 + 1 = 2$

 $iv 6^0 \times 7^0 = 1 \times 1 = 1$

Note: $a^0 = 1$

Question:7

Simplify each of the following and express each as a rational number:

 $i\left(\frac{3}{2}\right)^4 imes\left(\frac{1}{5}\right)^2$

ii

iii

iv

Solution:

ii

=

iii

Simplify and express each as a rational number:

```
iii

Solution:

i = =

(ii) = =

= =

= = =
```

Question:9

Express each of the following as a rational number:

```
i 5^{-3}

ii -2^{-5}

iii

iv

v

vi

vii (5^{-1}-7^{-1})^{-1}
```

VIII ix Solution: Note: i 5⁻³ = ii $-2^{-5} =$ iii i∨ = V vi vii viii = ix

x [since $a^0 = 1$ for every integer a]

Question:10

Simplify:

```
ii
iii
iv
```

Solution:

ii

=
$$[since (-2)^6 = 64 \text{ and } 3^6 = 729]$$

iii

iv

Question:11

By what number should -5^{-1} be multiplied so that the product is 8^{-1} ?

Solution:

Let the required number be x.

$$-5^{-1} x = 8^{-1}$$

$$\therefore X = =$$

Hence, the required number is .

By what number should 3^{-3} be multiplied to obtain 4?

Solution:

Let the required number be x.

$$3^{-3} \times x = 4$$

 \Rightarrow

 \Rightarrow

$$\therefore x = 4 \times 27 = 108$$

Hence, the required number is 108.

Question:13

By what number should -30^{-1} be divided to get 6^{-1} ?

Solution:

Let the required number be x.

$$-30^{-1} \div x = 6^{-1}$$

 \Rightarrow

 \Rightarrow

∴ *X* =

Hence, the required number is .

Question:14

Find x such that.

Solution:

 \Rightarrow

 \Rightarrow

On equating the exponents:

$$-3 = 2x - 1$$

$$\Rightarrow$$
 2 $x = -3 + 1$

$$\Rightarrow 2x = -2$$

$$\therefore X =$$

Question:15

Simplify: .

Solution:

Simplify: .

Solution:

⇒

⇒

 \Rightarrow

 \Rightarrow

Question:17

Find the value of *n* when:

$$15^{2n} \times 5^3 = 5^9$$

ii
$$8 \times 2^{n+2} = 32$$

iii
$$6^{2n+1} \div 36 = 6^3$$

Solution:

$$15^{2n} \times 5^3 = 5^9$$

$$5^{2n+3} = 5^9$$

[since $a^n \times a^m = a^{m+n}$]

On equating the coefficients:

$$2n + 3 = 9$$

$$\Rightarrow$$
 2n = 9 - 3

$$\Rightarrow$$
 2n = 6

ii
$$8 \times 2^{n+2} = 32$$

$$\Rightarrow 2^3 \times 2^{n+2} = 2^5$$
 [since $2^3 = 8$ and $2^5 = 32$]

$$\Rightarrow 2^{3+ n+2} = 2^{5}$$

On equating the coefficients:

$$3 + n + 2 = 5$$

$$\Rightarrow$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 - 5

$$\therefore$$
 n = 0

iii
$$6^{2n+1} \div 36 = 6^3$$

$$\Rightarrow 6^{2n+1} \div 6^2 = 6^3 \quad \text{[since } 36 = 6^2\text{]}$$

$$\Rightarrow$$

$$\Rightarrow \quad \text{[since]}$$

$$\Rightarrow 6^{2n-1} = 6^3$$
On equating the coefficients:
$$2n - 1 = 3$$

$$\Rightarrow 2n = 3 + 1$$

$$\Rightarrow 2n = 4$$

$$\therefore n = 6^3$$

If $2^{n-7} \times 5^{n-4} = 1250$, find the value on *n*.

Solution:

$$\Rightarrow \qquad [since 1250 = 2 \times 5^4]$$

$$\Rightarrow \qquad \Rightarrow \qquad using cross multiplication$$

$$\Rightarrow \qquad [since $a^m \times a^n = a^{m+n}]$

$$\Rightarrow \qquad \Rightarrow \qquad [since a^n \times b^n = a \times b^n]$$

$$\Rightarrow \qquad \Rightarrow \qquad n = 8$$$$

Question:19

Express each of the following numbers in standard form:

i 538

ii 6428000

iii 82934000000

iv 94000000000

v 23000000

Solution:

 $i 538 = 5.38 \cdot 10^2$

since the decimal point is moved 2 places to the left

ii $6428000 = 6.428 \cdot 10^6$

since the decimal point is moved 6 places to the left

iii $82934000000 = 8.2934 \ 10^{10}$

since the decimal point is moved 10 places to the left

 $iv 940000000000 = 9.4 \cdot 10^{11}$

since the decimal point is moved 11 places to the left

 $\vee 23000000 = 2.3 \cdot 10^7$

since the decimal point is moved 7 places to the left

Question:20

Express each of the following numbers in standard form:

- i Diameter of Earth = 12756000 m.
- ii Distance between Earth and Moon = 384000000 m.
- iii Population of India in March 2001 = 1027000000.
- iv Number of stars in a galaxy = 100000000000.
- v The present age of universe = 12000000000 years

Solution:

- i Diameter of the Earth = 1.2756 10⁷ m since the decimal point is moved 7 places to the left
- ii Distance between the Earth and the Moon = 3.84 10⁸ m since the decimal point is moved 8 places to the left
- iii Population of India in March 2001 = 1.027 10⁹ since the decimal point is moved 9 places to the left
- iv Number of stars in a galaxy = 1.0 10¹¹ since the decimal point is moved 11 places to the left
- v Present age of the universe = 1.2 10¹⁰ years since the decimal point is moved 10 places to the left

Question:21

Write the following numbers in expanded form:

- i 684502
- ii 4007185
- iii 5807294
- iv 50074

Solution:

 $i 684502 = 6 \times 10^5 + 8 \times 10^4 + 4 \times 10^3 + 5 \times 10^2 + 0 \times 10^1 + 2 \times 10^0$

ii $4007185 = 4 \times 10^6 + 0 \times 10^5 + 0 \times 10^4 + 7 \times 10^3 + 1 \times 10^2 + 8 \times 10^1 + 5 \times 10^0$ iii $5807294 = 5 \times 10^6 + 8 \times 10^5 + 0 \times 10^4 + 7 \times 10^3 + 2 \times 10^2 + 9 \times 10^1 + 4 \times 10^0$ iv $50074 = 5 \times 10^4 + 0 \times 10^3 + 0 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$

Note: $a^0 = 1$

Question:22

Write the numeral whose expanded form is given below:

 $\begin{array}{l} {\rm i} \ 6 \times 10^4 + 3 \times 10^3 + 0 \times 10^2 + 7 \times 10^1 + 8 \times 10^0 \\ {\rm ii} \ 9 \times 10^6 + 7 \times 10^5 + 0 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 6 \times 10^1 + 2 \times 10^0 \\ {\rm iii} \ 8 \times 10^5 + 6 \times 10^4 + 4 \times 10^3 + 2 \times 10^2 + 9 \times 10^1 + 6 \times 10^0 \\ \end{array}$

Solution:

$$i 6 \times 10^4 + 3 \times 10^3 + 0 \times 10^2 + 7 \times 10^1 + 8 \times 10^0$$

= $6 \times 10000 + 3 \times 1000 + 0 \times 100 + 7 \times 10 + 8 \times 1 = 63078$

ii
$$9 \times 10^6 + 7 \times 10^5 + 0 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 6 \times 10^1 + 2 \times 10^0$$

= $9 \times 1000000 + 7 \times 100000 + 0 \times 10000 + 3 \times 1000 + 4 \times 100 + 6 \times 10 + 2 \times 1 = 9703462$

iii
$$8 \times 10^5 + 6 \times 10^4 + 4 \times 10^3 + 2 \times 10^2 + 9 \times 10^1 + 6 \times 10^0$$

= $8 \times 100000 + 6 \times 10000 + 4 \times 1000 + 2 \times 100 + 9 \times 10 + 6 \times 1 = 864296$

Question:23

Mark ✓ against the correct answer

$$(6^{-1} - 8^{-1})^{-1} = ?$$

а

b -2

С

d 24

Solution:

d 24

since L.C.M. of 6 and 8 is 24

=

Mark ✓ against the correct answer

$$(5^{-1} \times 3^{-1})^{-1} = ?$$

а

b

c 15

d –15

Solution:

c 15

We have:

=

=

Question:25

Mark ✓ against the correct answer

$$(2^{-1} - 4^{-1})^2 = ?$$

a 4

b -4

С

d

Solution:

C

We have:

= since L.C.M. of 2 and 4 is 4

=

Mark ✓ against the correct answer

а

b 29

С

d none of these

Solution:

b 29

We have:

$$= (2^2 + 3^2 + 4^2)$$
$$= 4 + 9 + 16$$
$$= 29$$

Question:27

Mark ✓ against the correct answer

а

b

C

d none of these

Solution:

C

We have:

= since L.C.M. of 3 and 6 is 6

=

=

Question:28

a -64		
b 64		
С		
d		
Solution:		
b 64		
We have:		
Question:29		
Mark ✓ against th	ne co	orrect answer
а		
b		
С		
d		
Solution:		
b		
	=	since L.C.M. of 1 and 3 is 3
	=	
	=	
	=	
Question:30		
Mark ✓ against th	ne co	orrect answer
-		

а

b 16

Mark ✓ against the correct answer

а

b 0

c 1

d none of these

Solution:

c 1

$$a^0 = 1$$

:.

Question:32

Mark ✓ against the correct answer

а

b

С

d

Solution:

b

Question:33
Mark ✓ against the correct answer
a
b
С
d
Solution:
b
Question:34
Mark ✓ against the correct answer
mark v against the correct answer
2
a b
C
d none of these
Solution:
b
We have:
=
Question:35
Mark ✓ against the correct answer
a
b
С
d
Solution:
d

Mark ✓ against the correct answer

а

b

С

d none of these

Solution:

а

We have:

=

=

=

=

=

Question:37

Mark ✓ against the correct answer

a

b

c -5⁵

Ы

Solution:

c -5⁵

We have:

Mark ✓ against the correct answer а b С d Solution: а Question:39 Mark ✓ against the correct answer а b С Solution: Question:40 Mark ✓ against the correct answer а b d none of these Solution:

Question:38

We have:

Question:41

Mark ✓ against the correct answer

If, then x = ?

а

b

С

d

Solution:

С

⇒ [since]

 \Rightarrow

On equating the coefficients:

$$6 = 8x$$

Question:42

Mark ✓ against the correct answer

By what number should -8^{-1} be multiplied to get 10^{-1} ?

а

b

C

d none of these

Solution:

С

Let the required number be x.

$$-8^{-1}$$
 x $x = 10^{-1}$

 \Rightarrow

$$\therefore X = =$$

Hence, the required number is .

Mark ✓ against the correct answer

Which of the following numbers is in standard form?

 $a 21.56 \times 10^{5}$

 $b 215.6 \times 10^4$

 $c 2.156 \times 10^6$

d none of these

Solution:

 $c 2.156 \times 10^6$

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

For example: 2.156×10^6

Question:44

Write the reciprocal of:

ii

iii 2⁵

iv - 56

Solution:

We know that the reciprocal of is .

i Reciprocal of =

ii Reciprocal of

iii Reciprocal of 2⁵ = Reciprocal of

iv Reciprocal of -5^6 = Reciprocal of

Question:45

By what number should we multiply -6^{-1} to obtain a product equal to 9^{-1} ?

Solution:

Let the required number be x.

$$-6^{-1} \times x = 9^{-1}$$

$$\therefore X =$$

Hence, the required number is .

Question:46

By what number should -20^{-1} be divided to obtain -10^{-1} ?

Solution:

Let the required number be x.

$$-20^{-1} \div x = -10^{-1}$$

⇒

 \Rightarrow

$$\therefore X =$$

Hence, the required number is 2⁻¹.

Question:47

- i Express 2000000 in standard form.
- ii Express 6.4×10^5 in usual form.

Solution:

$$i\ 2000000 = 2.000000 \times 10^6$$

= 2×10^6

since the decimal point is moved 6 places to the left

ii
$$6.4 \times 10^5 = 6.4 \times 100000$$

= 640000

Question:48

Simplify:

Solution:

We have:

⇒

⇒

If $2^{n-7} \times 5^{n-4} = 1250$, find the value of *n*.

Solution:

We have:

$$\Rightarrow \qquad [\text{since } 1250 = 2 \times 5^4]$$

⇒

⇒ using cross multiplication

$$\Rightarrow \qquad [\text{since } a^m \times a^n = a^{m+n}]$$

⇒

$$\Rightarrow$$
 [since $a^n \times b^n = a \times b^n$]

⇒

$$\Rightarrow n = 8$$

Question:50

Mark ✓ against the correct answer

a 0

b

c 1

d none of these

Solution:

c 1

We know:

$$a^0 = 1$$

:.

Question:51

Mark ✓ against the correct answer

d
Solution:
d
=
=
=
Question:52
Mark ✓ against the correct answer
a
b
С
d
Solution:
b
=
Overation 52
Question:53
Mark ✓ against the correct answer
a 19
b
c –19
d
Solution:
a 19

=

= 27 - 8 = 19

Question:54

Mark ✓ against the correct answer

а

b

С

d none of these

Solution:

а

=

=

=

Question:55

Which of the following numbers is in standard form?

 $a 32.63 \times 10^4$

 $b 326.3 \times 10^3$

 $c 3.263 \times 10^5$

d none of these

Solution:

 $c 3.263 \times 10^5$

A given number is said to be in standard form if it can be expressed as $k \times 10^n$, where k is a real number such that $1 \le k < 10$ and n is a positive integer.

For example: 3.263×10^5

Question:56

Fill in the blanks.

i If $9 \times 3^n = 3^6$, then n =

ii
$$8^0 = ?$$

iii

$$iv - 2^{-5} =$$

Solution:

i If $9 \times 3^n = 3^6$, then n = 4.

Explanation:

If
$$9 \times 3^n = 3^6$$

$$\Rightarrow 3^2 \times 3^n = 3^6$$

$$\Rightarrow 3^{(2+n)} = 3^6$$

Equating the powers:

$$\Rightarrow$$
 $(2 + n) = 6$

$$\Rightarrow n = 6 - 2 = 4$$

ii
$$8^0 = 1$$

Explanation:

By definition, we have $a^0 = 1$ for every integer a.

$$\therefore 8^0 = 1$$

iii =

Explanation:

We know:

$$iv - 2^{-5} =$$

Explanation:

$$-2^{-5} =$$

=

Question:57

Write 'T' for true and 'F' for false for each of the following.

- i 645 in standard form is 6.45×10^2 .
- ii 27000 in standard form is 27×10^{3} .

iii
$$(3^0 + 4^0 + 5^0) = 12$$
.

- iv Reciprocal of 5^6 is 6^5 .
- \vee If $5^{-1} \times x = 8^{-1}$, then x = .

Solution:

i True

$$645 = 6.45 \times 10^2$$

since the decimal point is moved 2 places to the left

ii False

$$27000 = 2.7 \times 10^4$$

since the decimal point is moved 4 places to the left

iii False

$$(3^0 + 4^0 + 5^0) = 1$$

 $(3^0 + 4^0 + 5^0) = 1$ [since $a^0 = 1$ for every integer a]

iv False

Reciprocal of 5^6 = Reciprocal of

v False

$$5^{-1} \times x = 8^{-1}$$

$$\Rightarrow x =$$

Typesetting math: 21%