IT융합공학부 권혁동

Contents

ARM 프로세서

레지스터 구조

개발환경

- Advanced RISC Machine
- 임베디드 시스템에 자주 활용되는 프로세서
- 버클리 RISC I, II, Stanford MIPS 기반
 - load-store 아키텍쳐
 - 32비트 인스트럭션
 - 3-address 인스트럭션 규격
- RISC 방식을 사용

• CISC

- Complex Instruction Set Computer
- 명령어의 길이가 길고 연산이 복잡

RISC

- Reduced Instruction Set Computer
- 명령어 길이가 16, 32비트로 균일
- 명령어의 실행 사이클 1사이클로 균일
- 범용 레지스터(GPR) 사용
- 약 100개의 인스트럭션

• 총 **37개**의 레지스터

• 모두 32비트로 동일한 크기

- 사용 가능한 레지스터는 16 + 2개 레지스터
 - 데이터 레지스터 16개
 - 상태 레지스터 2개

• 총 **37개**의 레지스터

• 모두 32비트로 동일한 크기

- 사용 가능한 레지스터는 16 + 2개 레지스터
 - 데이터 레지스터 16개
 - 상태 레지스터 2개

- 데이터 레지스터
- R0 ~ R15까지의 레지스터
- R13, R14, R15는 특정 용도로 사용
 - R13: 스택 포인터
 - R14: 링크 레지스터
 - R15: 프로그램 카운터
- R13, R14는 GPR로도 사용 가능
- R0를 사용하는 인스트럭션은 다른 GPR(R1 ~ R13)과 조합 가능

• 상태 레지스터

CPSR(Current Program Status Register)

SPSR(Saved Program Status Register)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
N	Z	С	٧	Q	R	es	J		R	es		-	GE[3:0]			R	es			Ε	Α	I	F	Т		M	1od	e	

- 8비트 네 구간으로 구성
 - Flag, Status, Extension, Control

필드	기능	필드	기능
N	음수 플래그, 플래그 설정 연산 결과 기록	GE[3:0]	SIMD greater - or - equal
Z	제로 플래그, 플래그 설정 연산 결과 0	Е	엔디안 제어
С	캐리	А	1일 경우, 확실치 않은 abort 실행 안함
V	오버플로우	1	1일 경우, IRQ 비활성화
Q	포화 플래그, 포화 시에 기록	F	1일 경우, FIQ 비활성화
J	1일 경우, 자바 실행 가능	Т	1일 경우, Thumb / 0일 경우, ARM 상태
Res	예비용	Mode	프로세서 모드

개발환경

- 인스트럭션 세트
 - load-store 아키텍쳐
 - 3-address data processing
- 다수의 레지스터를 대상으로 load-store 가능
- 소스파일 규격
 - 작성: C 또는 어셈블리어
 - 컴파일: ARM 오브젝트 포맷(.맬) 파일
 - 링크: ARM 이미지 포맷(.aif) 파일
 - 이미지 파일은 ARM 심볼릭 디버거(ARMsd)로 디버깅 가능

개발환경

- ARM C 컴파일러
 - ANSI C 기준을 따름
 - 외부 함수 ARM 프로시져 호출 함수 사용 가능
 - ARM 오브젝트 포맷 대신 어셈블리 소스 출력 가능

- ARM 링커
 - 오브젝트 파일들을 모아 실행 가능한 프로그램을 생성
 - 오브젝트 파일과 오브젝트 모듈간의 심볼릭 관계를 형성

