

# Hyperparameter Adjustment in Regression-based Neural Networks for Predicting Support Case Durations

**Master Thesis Presentation** 

Hristo Hristov

Academic supervisor: Assoc Prof. Galina Momcheva

11.04.2020

## **Outline**

- 1. Background and problem description
- 2. Challenge
- 3. Research goal
- 4. Methodology
- 5. Summary of Results
- 6. Conclusion

## 1. Background and problem description

- Support plays a critical role in the software development process
- Prompt action and response are vital for the perception of the good service
- Often times users are unaware of how long the resolution takes
- Need for a model that makes accurate predictions
- Challenge: text data of high cardinality

## 1. Background and problem description

#### **Regression & Neural Networks**

- By combining a regression model with the computational potential of neural network we aim at getting:
  - Powerful model for accurate predictions
  - Flexibility for processing unknown inputs

#### 2.1. Text data

- Must be represented numerically
- Simple forms of representation tend to produce poor predictions
- The representation must be numerically consistent among the various features
- Feature engineering as a super set of hyperparameter engineering

#### 2.2. Cardinality

- Several features have high cardinality
  - User id
  - Support desk handler
  - Symptom
- The model must be able to process unique values

#### 2.3. Case Duration Standardization

- The dependent variable is also standardized
  - Easier for the network to predict
- Min = 0 and max = 341.28 days
- The huge range compromises the model's prediction capacity
  - Could be compensated with more data

#### 2.4. Overfitting

- We are only using I2 regularizer with a value of 0.001
- Other methods such as I1 or dropout are not used
- All methods have an identical baseline
- Result: the best encoding method can stand out naturally, without specific overfitting counter-measures

## 3. Research goal

#### **Cardinality**

- Compare and contrast different string encoding methods in the context of the presented data set
  - Analyze the results by using established loss metrics
  - Determine the best performing encoding method
  - Explain the differences

#### 4.1. One-hot encoder

- The most simple encoding method
- All unique values are converted into features
- The new feature values are 0 or 1
- No explicit hyperparameter
  - Possible to artificially adjust cardinality

#### 4.1. One-hot encoder



|     | Train loss | Val loss | Test loss |
|-----|------------|----------|-----------|
|     | Halli 1055 | vai 1033 | 1631 1033 |
| 10  | 0.0177     | 0.7949   | 1.0902    |
| 100 | 0.0042     | 0.8776   | 1.2711    |



#### 4.2. Target encoder

- Calculate an average of the target value for each unique feature value
- Replace with the calculated mean
- Grouping of the cases with common unique features
- Hyperparemeter: weight of overall mean

#### 4.2. Target encoder



|     | Train loss | Val loss | Test loss |
|-----|------------|----------|-----------|
| 10  | 0.4363     | 0.4520   | 0.6064    |
| 100 | 0.3390     | 0.4236   | 0.6708    |



#### 4.3. Binary encoder

- Convert feature ordinal value into binary value
- Dimensionality is increased at a log scale
- No explicit hyperparameter
  - Possible to artificially adjust cardinality



## 4.3. Binary encoder



|     | Train loss | Val loss | Test loss |
|-----|------------|----------|-----------|
| 10  | 0.5168     | 0.7240   | 0.7429    |
| 100 | 0.2635     | 0.9362   | 1.6971    |



#### 4.4. Hashing encoder

- Suitable for high-cardinality feature vectors
- Values are hashed, converted to integer and mapped to an index in a vector by modulus-dividing by the vector size hyperparameter
- The hashing functions is also a hyperparameter
- Tests showed worse performance after standardization

#### 4.4. Hashing encoder



|     | Hashing Encoding Loss Curves |   |     |           |           |                   |     |
|-----|------------------------------|---|-----|-----------|-----------|-------------------|-----|
|     | 1.3                          |   |     |           |           | training validati |     |
| 1.2 | 1.2                          |   |     |           |           |                   |     |
| 055 | 11                           |   |     |           |           |                   |     |
| _   | 1.0                          |   |     |           |           |                   |     |
|     | 0.9                          | M | M., | ····      | ~///~/    | ·····             |     |
|     | 1                            | 0 | 20  | 40<br>epo | 60<br>och | 80                | 100 |

|     | V = 15     |          |           |  |  |
|-----|------------|----------|-----------|--|--|
|     | Train loss | Val loss | Test loss |  |  |
| 10  | 0.9817     | 0.8485   | 0.7306    |  |  |
| 100 | 0.8860     | 0.8525   | 0.7331    |  |  |

|     | V = 50     |          |           |  |  |
|-----|------------|----------|-----------|--|--|
|     | Train loss | Val loss | Test loss |  |  |
| 10  | 0.6940     | 0.7553   | 0.7360    |  |  |
| 100 | 0.4882     | 0.8556   | 0.8551    |  |  |





#### 4.5. Entity embeddings

- The most complex approach in terms of network topology
- For each feature vector there are 3 layers
  - Input
  - Embedding
  - Reshape
- Hyperparameter: embedding size

### 4.5. Entity embeddings



| EE = 50 |            |          |           |  |
|---------|------------|----------|-----------|--|
|         | Train loss | Val loss | Test loss |  |
| 10      | 0.0356     | 0.8856   | 1.1423    |  |
| 100     | 0.0103     | 0.9805   | 1.2280    |  |





| EE = 100 |            |          |           |  |
|----------|------------|----------|-----------|--|
|          | Train loss | Val loss | Test loss |  |
| 10       | 0.0334     | 0.8171   | 1.0170    |  |
| 100      | 0.0108     | 0.8828   | 1.1383    |  |



5. Summary of results

**Comparative table** 



## 6. Conclusion

#### **Key findings**

- Averaging over groups of unique feature values performs best
- Increasing dimensionality as a factor of cardinality compromises the model
- No approach is data-agnostic

## **THANK YOU**