Московский физико-технический институт

Лабораторная работа 2.3.1

Определение C_p/C_v по скорости звука в газе

выполнили студенты группы Б03-302 Танов Константин

1 Цель работы:

- 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу.
- 2) определение показателя адиабаты с помощью уравнения состояния идеального газа

2 Оборудование:

Звуковой генератор, электронный осциллограф, раздвижная труба, теплоизолированная труба, обогреваемая водой из термостата, баллон со сжатым углекислым газом, газгольдер.

3 Теоретические сведения:

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

R - газовая постоянная, T -температура газа, μ - молярная масса, γ - показатель адиабаты Тогда:

$$\gamma = \frac{\mu}{RT}c^2\tag{2}$$

Условие резонанса (амплитуда звуковых колебаний резко возрастает):

$$L = n\frac{\lambda}{2} \tag{3}$$

Связь параметров волны:

$$c = \lambda f \tag{4}$$

Подбор условий резонанса: 1) f = const, $L \neq const$

$$L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2} \tag{5}$$

Тогда $\frac{\lambda}{2}$ - угловой коэффициент графика зависимости L от k.

2) L = const, $f \neq const$

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k)$$
 (6)

Тогда:

$$f_{k+1} = f_1 + \frac{c}{2L}k\tag{7}$$

Тогда c/2L - угловой коэффициент графика зависимости частоты от номера резонанса.

4 Экспериментальная установка

В работе используются установка (рис. 1). Она содержит теплоизолированную трубу, которая нагревается водой из термостата. Измеряется зависимость скорости звука от температуры.

Рис. 1: Схема установки с термостатом

5 Ход работы

Данные измерений представлены в таблице 1. Длина трубы $L=800\pm1$ мм.

	f1, Гц	f2, Гц	f3, Гц	f4, Гц	f6, Гц	f7, Гц
$\mathrm{t1} = 21.6^{\circ}\mathrm{C}$	200	434	658	870	1300	1515
t2 = 30°C	202	454	667	883	1319	1537
t3 = 40°C	206	461	677	896	1340	1562
t4 = 50°C	207	468	687	910	1361	1586
t5 = 60°C	208	474	698	924	1382	1610

Таблица 1: Зависимость частоты от номера резонанса при разных температурах для постоянной длины

Полученные результаты изобразим на графике(рис. 2), откладывая по оси абсцисс номер резонанса k, а по оси ординат - разность между частотой последующих резонансов и частотой первого резонанса: $f_{k+1} - f_1$. Через полученные точки проведем наилучшую прямую. Угловой коэффициент прямой определяет величину c/2L.

Рис. 2: График зависимости частоты от номера резонанса

Коэффициент наклона графика - c/2L. Для каждой температуры посчитаем скорость звука, погрешность и представим в таблице 5:

с, м/с	σ_c , m/c	T, °C
344.949	0.959	21.6
346.977	0.492	30
352.800	0.689	40
358.791	0.401	50
363.981	0.480	60

Таблица 2: Зависимость скорости звука от температуры

Определим значение $\gamma = \frac{C_p}{C_v}$ из формулы 2, как угол наклона графика $c^2(T)$ (рис. 3).

Рис. 3: График зависимости квадрата скорости от температуры

Выходит, что эксперементальное значение показателя адиабаты в воздухе: $\gamma = 1.39 \pm 0.01.$

6 Вывод:

Получено значение показателя адиабаты для воздуха: $\gamma=1.39\pm0.01$. Теоретическое значение $\gamma=1.4$, что сведетельствует о том, что эксперементальное значение совпадает с теоретическим в пределах погрешности.