Selimitie. Fie ACH & multime numarabila (i.e. Fg: A>N, g bijectiva). 0 functie f: A -> IR se numerte sir de numere Leale. Motatie. 1) f(n) not $x_n + n \in A$. 2) Jinând cont de definiția de mai sus si de notația 1) obținem sirul de numere reale

Merratii. 1) Atunci când A se subințelege vom sais doar (xn)n.

2) In general A = H (sau $A = H^*$) si vom soir $(X_m)_{n \in H}$, $(X_m)_{n \geq 0}$, $(X_m)_n$ (sau $(X_m)_{n \in H}$) $(X_m)_{n \geq 0}$ $(x_n)_{n\in\mathbb{N}^*}$, $(x_n)_{n\geq 1}$, $(x_n)_n$.

Fie (Xn) CR silER.

Definitie. 1) Grunem ca sirul (xn)n are li-mital si scriem lim xn=l daca + E>0,

 $\exists m_{\varepsilon} \in \mathbb{N} \quad \text{a.i.} \quad \forall m \geq m_{\varepsilon}, \text{ arum } |x_{n} - l| < \varepsilon.$ $x_{n} \in (l - \varepsilon, l + \varepsilon)$

2) Junem că sirul $(x_m)_m$ are limita $+\infty$ si scriem lim $x_m = +\infty$ dacă $+\varepsilon>0$, $\exists m\varepsilon\in \mathbb{N}$ a.î. $+m\geq m\varepsilon$, avem $x_m>\varepsilon$.

3) Spunem ca jund (**n)n are limita- po je soiem lim *= - po daca + E>0, 7 n E E A a. 2.

+n≥nε, raven €n<-ε.

gent dacă $\exists l \in \mathbb{R}$ a. \tilde{z} . $\lim_{n \to \infty} f_n = l$.

gent dacă $\exists l \in \mathbb{R}$ a. \tilde{z} . $\lim_{n \to \infty} f_n = l$.

2) Grunem că sirul $(f_n)_n$ este divergent dacă mu este convergent.

firmi de numere reale cu limità finità (convergente)

ru limità
infinità (divergente)

» fara limità (divergente)

Definitie. 1) Spunem cà sirul (Xn)n este crescatel (respectiv descrescator) dacă xm < xm+1 + n EH (respective Xm & Xm+M & MEH). 2) Spunem cà juil (xn)n este strict assats (respectiv strict descrisation) danca of < xn+1 + net (respectiv of > xn+1 + net). 3) Spunem så sirul (xn)n este monoton (respectiv strict monoton) daca este crescator sau descrescator (respectiv strict crescator sau strict descrescator). 4) Grunem så jurul (£n)n este marginit dacă JM>0 a.î. 4 nEN, avem $|\mathcal{H}_m| \leq M$.

Testema (Criteriul Chertelie). Fie (Xn)n, (Yn)n, si (Zn)n thei siruri de numere reale a. î. 7 noch ou proprietatea că + n>no, avem Xn < yn < 2n

Desupunem cà 3 l CR a. r. lin xn = lim zn = - Attance lim y=l.

Jedema (Jedema lui Meierstrass). Orice sir de numere reale monoton si marginit este consor-agent.

Observatie. Reciproca teorement precedente mu este, in general, adevarata (excistà sinuri de numere reale convergente, care mu sunt mono-

Cexercitiu. Fie ×n= (-1)ⁿ + n ∈ N*.

a) tratati ca (Xm)n me este monoton. B) tratati ca (Xm)n este convergent.

a) Fie LEH*

 $\varkappa_{2k} = \frac{(-1)^{2k}}{2k} = \frac{1}{2k}.$ trem X2k > X2k+1 si X2k+1 Deci (Xm)n nu este monoton. B) -1 ≤ (-1)ⁿ ≤ 1 + n € | * => - \(\frac{1}{n} \) ≤ \(\frac{1}{n} \) ≤ \(\frac{1}{n} \) Conform Chriteriului Chestelui lim $\frac{(-1)^n}{n} = 0$, i.l. $(2\pi)_n$ este convergent. [Repozitie. Vice in de numere reale convergent este marginit. Ropoziție (operații cu siruri -convergente). Fie (xn)n si (yn)n douà sirvi de numere nale, a ER si x, y ER a. 2. lin xn = x si

lim y = y. Atunci:

- 1) $\lim_{n\to\infty} (x_n + y_n) = x + y$.
- 2) $\lim_{n\to\infty} (x_n y_n) = x \cdot y$.
- 3) lim (a: xn) = a: x.
- 4) $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}$ (au presupernerea suplimentation of the form $y \neq 0$).

Propositie. Fie (£n)n si (yn)n douà simi de numere reale si £ ER. Itunci:

1) $\left(\lim_{n\to\infty} x_n = 0\right) \Leftrightarrow \left(\lim_{n\to\infty} |x_n| = 0\right)$.

- 2) $\left(\lim_{n\to\infty} \pm_n = \pm\right) = \left(\lim_{n\to\infty} |\pm_n| = |\pm|\right)$.
- 3) Daca lim $x_m = 0$ si $(y_m)_n$ l'marginit atunci lim $x_n : y_m = 0$ (, o. marginit = o").

Definitie. Fie $(x_n)_n \subset \mathbb{R}$. Younem ca $(x_n)_n$

este sie bauchy dacă + E>O, Fre Fla. 2. +m, n EH, m>ne, n=ne, novem |xm-xn|< E. Propozitie. Fie (Xn)n < R. Sunt echivalente: 1) I (xm) n este sir convergent. 2) (xm)m este sir bouchy. Terminologie. Sirvile bauchey se numer si siruri fundamentale. Exercitive. Fix $x_n = 1 + \frac{1}{2} + ... + \frac{1}{n} + n \in \mathbb{N}^*$, Aratati cà $(x_m)_n$ mu este convergent. Solutie. Fratam ca (In) nu este sir Couchy. EH, m≥ne, n≥ne, avem (xm-xn)<E. (xn)m mu este sin bouchy => 7 Eo>0 a.î. +kEH, I me, me EH, me Zk, me Zk cu proprietatea ia | tmg- xng | > Eo. them $|x_{2n}-x_n|=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \frac{2n}{2n}=\frac{1}{2}$ duam Ep= 1/2. Avem: + ke H, 7 mg = k+1≥k si 3 mg=2(k+1)≥k a.2. Tien urmore, (**n)n nu este sie Cauchy, deci nice convergent

Lema (Lema lui Chesaro). Orice sir de numere reale marginit are (macar) un subsir convergents (i.e. + (xm)n C R, (xn)n marginit, 3 (xnx)& C $[C(x_m)_m \ \alpha : \alpha : (x_{mp})_k - convergent).$

Limitele extreme ale unui sir de numere reale

Definitie. Fie $X \in \mathbb{R}$ not $\mathbb{R} \cup \{\pm \infty\}$. Spunem $-ca \times \mathbb{R}$ punct limita al sirului $(\times_n)_n$ daca $\mathbb{R} \cup \{\pm \infty\}_k \subset (\times_n)_n$ a. î. lim $\times_{n_k} = \times$. $\mathbb{R} \cup \{\pm \infty\}_k \subset (\times_n)_n = \{\pm \infty\}_k \subset \mathbb{R} \mid \times \text{ punct limita}$

at his (xn)n }.

Propozitie: Beista un cel mai mare punct li-mita (finit sau infinit) al simului (Xn)n si un cel mai mic punct limita (finit sau infinit) al simului (Xn)n.

Definitie. 1. bel mai mare punct limità al sirulii

(*n)n se numerte limita superioarà a sa si se noteazà lim sup ×n sau lim ×n.

2. Gel mai mic punct limite al simbili (*n) n se numeste limita inferioara a sa si se no traza liminf &n san lim &n.

Propozitie. 1) lim $x_n \leq \lim x_n$.

2) final $(x_n)_n$ are limita dacă și

numai dacă $\lim x_n = \lim x_n$, caz în care

lim $x_n = \lim x_n = \lim x_n$.

Coschatiu. Determinati $\lim_{n \to \infty} x_n$, $\lim_{n \to \infty} x_n$,

$$=0-\frac{2n+1}{4n+3} \xrightarrow{n\to\infty} -\frac{1}{2}.$$

burn H = 2 H U(2H+1) resultà cà L((±n)m) =

$$= \left\{ -\frac{1}{2} ; \frac{3}{2} \right\}.$$

Prin wronare $\lim_{n \to \infty} x_n = -\frac{1}{2}$ six $\lim_{n \to \infty} x_n = \frac{3}{2}$.

Devarece lim *n + lim *n rezultà cà mu

existà lim xn.