ANÁLISE DO NÚMERO DE ESPÉCIES DE MEXILHÕES EM 41 RIOS.

Agatha de Melo, Elias Diniz, Nathalie do Amaral Porto Martins

Sobre o assunto

- O que é um mexilhão?
- Características principais
- Relação com o ambiente
- Danos e problemas

Base de dados

- "Distribution of Freshwater Mussels: Coastal Rivers as Biogeographic Islands", revista Systematic Zoology, vol. 23, #2, pp. 165-188,
 J.J. Sepkoski, Jr., M.A. Rex (1974).
- Dados: http://www.stat.ufl.edu/~winner/data/mussels1.dat
- informações: http://www.stat.ufl.edu/~winner/data/mussels1.txt

Base de dados

- 45 observações.
- 5 Variáveis: área, rios intermediários, concentração de Nitrato, Hidrônio e resíduos sólidos.
- Quantidade de espécies de mexilhões em 41 rios dos EUA.
- Regressão linear generalizada com família poisson.

Fatores

- Área: variação de 349 a 27.900 (milhas quadradas).
- **STEPPING STONE (ST)**: quantidade de rios intermediários em 4 grandes sistemas de rios:

SAC = Alabama-Coosa: 1-33 ST

SAP = Apalachicola: 0-28 ST

SSL = St. Lowrence: 0-21 ST

SSV = Savannah: 4-36 ST

Concentração de nitrato: variação de 0,100 a 8,700

Fatores

- Concentração de hidrônio: variação de 0,200 a 32,000
- Resíduos sólidos: variação de 29,0 a 520,0
- LN área: variação de 5,85 a 10,24
 (O logaritmo natural da área)

Análise exploratória

Fator STEPPING STONE (ST)

	SAC	SAP	SSV	SSL
Mínimo	1	0	0	4
Mediana	15	12	7	22
Média	15	11	8	22
Máximo	33	28	21	36

Sistemas AC e SL possuem uma maior quantidade de rios intermediários do que os sistemas AP e SV

Análise exploratória

Fatores Área, Nitrato, Hidrônio e Resíduos sólidos

	Área	Nitrato	Hidrônio	Resíduos Sólidos
Mínimo	349	0.100	0.200	29.0
Mediana	4.270	0.800	1.600	78.0
Média	6.538	1.464	3.595	111.3
Máximo	27.900	8.700	32.000	520.0

Maior concentração de Hidrônio do que de Nitrato nos rios.

Modelo

2 modelos de regressão linear generalizados: família Poisson e família Binomial Negativa.

Ajuste	AIC	Verossimilhança
Poisson	250.3790	-116.1895
Binomial Negativa	252.1978	-116.0989

- Considerando o índice de Akaike (AIC) e convergência dos modelos, o modelo que apresentou menor AIC e maior Verossimilhança foi o com família Poisson.
- Resultados das análises dos dois modelos foram muito próximas.

m1: glm(species ~ SAC + SAP + SSV + SSL + Nitrate + Solid + Hydronium + InArea , data=dados, family = 'poisson')

Para uma análise com 95% de confiança apenas as variáveis Resíduos sólidos, Hidrônio e Ln área tiveram efeito significativo.

```
Deviance Residuals:
     Min
               10
                     Median
-2.78077 -0.70374 -0.02254
                             0.73226 1.90785
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1437130 1.1322342
            -0.0419453 0.0609624 -0.688 0.49142
            -0.0014954 0.0483279 -0.031 0.97531
            0.0182951 0.0112188
            -0.0114694 0.0324176 -0.354 0.72349
            0.0501249 0.0284532
Nitrate
            -0.0022293 0.0007006 -3.182 0.00146 **
Solid
Hydronium
           -0.0307935 0.0114309 -2.694 0.00706 **
            0.2693949 0.0565389 4.765 1.89e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 136.65 on 44 degrees of freedom
Residual deviance: 45.37 on 36 degrees of freedom
AIC: 250.38
Number of Fisher Scoring iterations: 5
```

m1.1: glm(species ~ Solid + Hydronium + InArea , data = dados, family = 'poisson')

```
Deviance Residuals:
    Min
             1Q Median
                              3Q
                                      Max
-2.5766 -1.0767 -0.2583 0.4830 3.1360
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8440652 0.4579393 1.843 0.06530 .
Solid
           -0.0018974 0.0006203 -3.059 0.00222 **
Hydronium -0.0353186 0.0117210 -3.013 0.00258 **
            0.2237849 0.0497886 4.495 6.97e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 136.652 on 44 degrees of freedom
Residual deviance: 75.234 on 41 degrees of freedom
AIC: 270.24
Number of Fisher Scoring iterations: 4
```

Ajuste	AIC	Verossimilhança
m1	250.3790	-116.1895
m1.1	270.2437	-131.1218

Apesar de o modelo m1.1 ter todas as variáveis significativas, o modelo m1 é melhor pelo critério do menor AIC e maior Verossimilhança.

Relação entre número de espécies de mexilhão em rios (eixo Y) e as demais variáveis (eixo X).

Uma análise de resíduos dos dados originais não demonstra nenhum sinal de alerta, os dados parecem estar bem acomodados no modelo.

Conclusão

- Variáveis Nitrato, Ln área têm relação positiva com o aumento do número de espécies de mexilhões.
- Variáveis Resíduos sólidos e Hidrônio possuem relação negativa com o aumento do número de espécies de mexilhões.