1

Plantilla LATEX

Eduardo Vázquez (lalohao@gmail.com)

		CONTENIDO			
I.	Objetivo				
II.	Instalación				
III.	Teclas		1		
IV.	Estructura del documento				
	IV-A.	Sección y subseccion	1		
	IV-B.	Titulo y autor	2		
	IV-C.	Resumen	2		
	IV-D.	Ecuaciones	2		
	IV-E.	Tablas	2		
	IV-F.	Hojas de calculo	3		
	IV-G.	Ejecución de código fuente	3		
	IV-H.	Inclusión de imágenes	3		
	IV-I.	Todo en uno	4		
	IV-J.	Enlaces	4		
Refe	rencias		4		
Apén	ndice A:	Videos de emacs	4		

Resumen—El editor de texto emacs se utiliza como una herramienta para generar reportes de investigación reduciendo el uso de LATEX a meramente las ecuaciones, este documento fue generado con dicha herramienta y en el se muestran algunos ejemplos de uso, el código fuente de este pdf se encuentra en el archivo plantilla.org.

I. OBJETIVO

Facilitar la creación de reportes científicos LAT_EX que utilicen la *clase* IEEEtran.

II. INSTALACIÓN

Carga la plantilla en emacs agregando lo siguiente a tu archivo de configuración de emacs init.el.

```
(load "plantilla.el")
```

Recuerda agregar la ruta completa que apunte hacia el archivo.

```
III. TECLAS
C Ctrl
M Alt
S Windows
a a
A Shift+a
C-M-o Ctrl+Alt+o
```

IV. ESTRUCTURA DEL DOCUMENTO

```
#+TITLE: Plantilla \LaIeX

#+AUTHOR: Eduardo Vázquez (lalohao@gmail.com)

#+LaTeX_CLASS: IEEEtran

#+LANGUAGE: es

#+BEGIN_abstract
El editor de texto =emacs= se utiliza como una herramienta para
generar reportes de investigación reduciendo el uso de \LaTeX{} a
meramente las ecuaciones, este documento fue generado con dicha
herramienta y en el se muestran algunos ejemplos de uso, el código
fuente de este pdf se encuentra en el archivo =plantilla.org=.

#+END_abstract

* Objetivo...
* Instalación...
* Teclas...

* Estructura del documento

#+CAPTION: Estructura general del documento.

#+NAME: fig:estructura
file:figures/estructura.nng

** Sección y subseccion...

** Titulo y autor...

** Resumen...

** Ecuaciones...

** Tablas...

** Hojas de calculo...

** Inclusión de imágenes...

** Todo en uno...

** Todo en uno...

** Elaces...
```

Figura 1. Estructura general del documento.

IV-A. Sección y subseccion

```
* Objetivo...
* Instalación...
* Teclas...
* Estructura del documento
```

Figura 2. Las secciones se denotan con un asterisco. C-Enter crea una nueva seccion (o subseccion).

```
* Estructura del documento

#+CAPTION: Estructura general del documento.

#+NAME: fig:estructura
file:figures/estructura.png

** Sección y subseccion...

** Titulo y autor...

** Resumen...

** Ecuaciones...

** Tablas...

** Hojas de calculo...

** Ejecución de código fuente...

** Inclusión de imágenes...

** Todo en uno...

** Enlaces...
```

Figura 3. Se agrega un asterisco por cada subnivel. C-Izquierda, C-Derecha cambia de seccion a subseccion o viceversa.

IV-B. Titulo y autor

```
#+TITLE: Plantilla \LaTeX
#+AUTHOR: Eduardo Vázquez (lalohao@gmail.com)
```

Figura 4. Se utilizan las etiquetas #+TITLE y #+AUTHOR respectivamente.

IV-C. Resumen

```
##HEGIN_abstract
El editor de texto =emacs= se utiliza como una herramienta para
generar reportes de investigación reduciendo el uso de \LaTeX{} a
meramente las ecuaciones, este documento fue generado con dicha
herramienta y en el se muestran algunos ejemplos de uso, el código
fuente de este pdf se encuentra en el archivo =plantilla.org=.
#+END_abstract
```

Figura 5. El resumen se encierra dentro de un bloque abstract.

IV-D. Ecuaciones

Se pueden incluir símbolos directamente: Σ , s= α +j β , o utilizando las etiqueta de dolar \$\$ de LATEX:

```
\pm\sqrt{3}
```

```
#+NAME: eq:ids
\begin{equation}
I_{DS}=K_p' \frac{W}{L}\left( V_{GS}-V_{TH} \right)^2
\end{equation}
```

Figura 6. Tambien se pueden numerar las ecuaciones con la etiqueta #+NAME

$$I_{DS} = K_p' \frac{W}{L} (V_{GS} - V_{TH})^2$$
 (1)

```
** Ecuaciones Se pueden incluir símbolos directamente: \Sigma, s=\alpha+j\beta, o utilizar las etiqueta de dolar $$ de \LaTeX{}: \pm \sqrt{3} Iambien se pueden numerar las ecuaciones con la etiqueta #+NAME: I_{DS} = K_p' \frac{W}{L} \left(V_{GS} - V_{TH}\right)^2 \tag{1} Y visualizarse dentro de <code>gmacs</code> sin necesidad de generar el <code>pdf</code>.
```

Figura 7. Se pueden visualizar los fragmentos LATEX presionando C-c C-x C-1.

IV-E. Tablas

```
|Estudiante|Matemáticas|Físi<mark>c</mark>a|
```

Figura 8. Las tablas se crean escribiendo el caracter barra en donde se quiera designar la separación de columnas.

Estudiante	Matemáticas	Física	
ТШ			

Figura 9. Al presionar TAB estando en la ultima columna la tabla se expande automaticamente permitiendo agregar mas campos.

#+CAPTION: Ejemplo		
Estudiante	Matemáticas +	Física -+
Johnson	13	9 j
Felipe	15	14
Katarina	17	13

Figura 10. C-c Enter crea un separador visible

Tabla I EJEMPLO DE TABLA

Estudiante	Matemáticas	Física
Johnson	13	9
Felipe	15	14
Katarina	17	13

IV-F. Hojas de calculo

Figura 11. Al colocar el cursor en alguna columna y presionar C-c ? se obtienen las coordenadas de dicha columna.

	emplo de hoja d Matemáticas		
Johnson Felipe Katarina		9 14 13	
Promedio #+TBLFM: \$4=vn			

Figura 12. Estas coordenadas se pueden utilizar en conjunto con la etiqueta #+TBLFM para realizar operaciones sobre las tablas.

Tabla II EJEMPLO DE HOJA DE CÁLCULO

Estudiante	Matemáticas	Física	Promedio
Johnson	13	9	11
Felipe	15	14	14.5
Katarina	17	13	15
Promedio	15	12	13.5

IV-G. Ejecución de código fuente

```
src_C[:exports both]{printf("Hola mundo!");}
```

Figura 13. Emacs puede ejecutar directamente código fuente de distintos lenguajes de programación y exportarlo al documento con color.

```
printf("Hola mundo!");
  Hola mundo!
```

```
#+BEGIN_SRC maxima :exports both :results raw
f:x*e^(-x);
  tex(integrate(f, x));
#+END_SRC
```

Figura 14. Para códigos de longitud mayor a 1 linea se utiliza el bloque SRC

Maxima puede entregar los resultados directamente en IATeX:

$$-\frac{(\log e x + 1) e^{-\log e x}}{\log^2 e}$$

IV-H. Inclusión de imágenes

Figura 15. Presionar C-c C-l despliega un menu para seleccionar la imagen que se desea incluir.

IV-I. Todo en uno

Tabla III Los datos de las tablas estan a disposicion del lenguaje con el que se desee trabajar.

X	у	$z=f(x,y)=x^2+y^2$
1	2	5
2	4	20
3	6	45
4	8	80
5	10	125
6	12	180
7	14	245

```
set title "z=x^2+y^2"
set xlabel "X"
set xrange [1:7]
set ylabel "Y"
set yrange [1:14]
set pm3d
splot data u 1:2:3
```


Figura 16. Gráfica de una función con dos variables independientes.

IV-J. Enlaces

Enlace a ecuacion 1; enlace a bibliografia [1].

REFERENCIAS

[1] Microchip. PIC16F88 Datasheet.

APÉNDICE A VIDEOS DE EMACS

https://www.youtube.com/playlist?playnext=1&list=PLGSfBi-tTSsHTksfRwa9RTRx0wFbm--98