Übungsaufgaben: Abgabe

- 1. Schreiben Sie in Mengenschreibweise:
 - (a) $A = \text{Menge aller durch 3 teilbaren Zahlen von 21 bis 39: } A = \{21, 24, 27, 30, 33, 36, 39\}$ oder $A = \{n \in \mathbb{N} \mid 21 \le n \le 39, \exists k \in \mathbb{N} : n = 3k\}.$
 - (b) B= Menge aller Primzahlen von 13 bis 41: $B=\{13,17,19,23,29,31,37,41\}.$ und bestimmen Sie $A\cup B,\ A\cap B$ sowie $A\setminus B.$ Lösung:

$$A \cup B = \{13, 17, 19, 21, 23, 24, 27, 29, 30, 31, 33, 36, 37, 39, 41\}$$

$$A \cap B = \emptyset$$

$$A \setminus B = A$$

(10 Punkte: jeweils 2 Punkte für A,B und jeweils 2 Punkte für Mengenoperationen)

- 2. Welche Aussagen sind jeweils hinreichend und/oder notwendig füreinander? Geben Sie alle gültigen Implikationen an und begründen Sie diese.
 - A. x > 1
 - B. $x^2 > 1$.
 - C. $x \ge 1$

Lösung:

Aus x > 1 folgt $x^2 > 1$: $x > 1 \implies x^2 > 1$. Die Funktion $f(x) = x^2$ ist eine streng monotone wachsende Funktion, deswegen ist $x > 1 \implies x^2 > 1^2$.

Die Umkehrung ist falsch: Denn für x = -2 ist $x^2 > 1$, aber -2 < 1.

Aus $x > 1 \implies x \ge 1$, denn natürlich ist jede Zahl > 1 auch ≥ 1 . Die Umkehrung ist wiederum falsch, denn $x = 1 \ge 1$, aber nicht größer als 1.

Zwischen $x^2 > 1$ und $x \ge 1$ bestehen keine Implikationen.

Sie können sich die Implikationen auch mit Hilfe der Mengen erklären, für die die Aussagen wahr sind: Aussage A ist wahr genau dann, wenn $x \in (1, \infty)$. Aussage B ist wahr genau dann, wenn |x| > 1, also $x \in (-\infty, -1) \cup (1, \infty)$. Aussage C ist wahr genau dann, wenn $x \in [1, \infty)$. Es gilt nun:

$$(1,\infty) \subset [1,\infty) \iff A \Rightarrow C$$

$$(1,\infty) \subset (-\infty,-1) \cup (1,\infty) \iff A \Rightarrow B$$

(10 Punkte): jeweils 5 Punkte pro richtiger Implikation mit Begründung

3. Zeigen Sie dass

$$(x,y) \in \mathcal{R} :\Leftrightarrow x^2 - y^2 = x - y$$

auf \mathbb{R} eine Äquivalenzrelation ist, und bestimmen Sie die Äquivalenzklassen von [0], [1] und $\left[\frac{1}{2}\right]$.

Lösung:

Reflexiv? Sei $x \in \mathbb{R}$, dann ist $x^2 - x^2 = x - x = 0$. Also $(x, x) \in \mathcal{R}$.

Symmetrisch? Sei $x, y \in \mathbb{R}$ mit $x^2 - y^2 = x - y$, dann ist $y^2 - x^2 = y - x$ (Multiplikation der Gleichung mit -1), also ist $(y, x) \in \mathcal{R}$.

Transitiv? Seien $x, y, z \in \mathbb{R}$ mit $x^2 - y^2 = x - y$ und $y^2 - z^2 = y - z$. Wir stellen die 2. Gleichung nach y^2 um und setzen das in die 1. Gleichung ein:

$$x^{2} - (z^{2} + y - z) = x - y \quad \Leftrightarrow \quad x^{2} - z^{2} = x - z.$$

Also ist $(x, z) \in \mathbb{R}$.

Die Äquivalenzklasse [0] enthält alle $x \in \mathbb{R}$, so dass $(x,0) \in \mathcal{R}$. Also muss für diese x gelten: $x^2 = x$ Ist $x \neq 0$, dann können wir diese Gleichung durch x teilen und erhalten x = 1. Geometrisch interpretiert enthält $x^2 = x$ die Schnittpunkte der Normalparabel mit der Winkelhalbierenden:

$$[0] = \{0, 1\}$$
.

Wir haben eben ausgerechnet, dass $1 \in [0]$, also muss gelten: [0] = [1].

Die Äquivalenzklasse $\left[\frac{1}{2}\right]$ enthält alle $x \in \mathbb{R}$, so dass $\left(x, \frac{1}{2}\right) \in \mathcal{R}$, also muss gelten: $x^2 - \frac{1}{4} = x - \frac{1}{2}$. Ist $x \neq \frac{1}{2}$, dann können wir die Gleichung durch $\left(x - \frac{1}{2}\right)$ teilen und erhalten $x + \frac{1}{2} = 1$, also $x = \frac{1}{2}$:

$$\left[\frac{1}{2}\right] = \left\{\frac{1}{2}\right\}$$

(10 Punkte)

- 4. Welche der folgenden Abbildungen $\mathbb{R} \to \mathbb{R}$ ist bijektiv? Überprüfen Sie bitte, ob die Abbildungen jeweils injektiv und/oder surjektiv sind.
 - (a) f(x) = 5x + 3
 - (b) $f(x) = e^{-x^2}$

Lösung:

- (a) f ist injektiv, denn für beliebige $x_0, x_1 \in \mathbb{R}$ folgt aus $5x_0 + 3 = 5x_1 + 3$ direkt $x_0 = x_1$. Die Funktion ist surjektiv, denn für $y \in \mathbb{R}$ existiert $x = \frac{y-3}{5}$, so dass y = 5x + 3. Also ist f bijektiv.
- (b) Die Funktion f ist nicht injektiv, denn es ist $e^{-(-1)^2} = e^{-1^2} = e^{-1}$, aber $-1 \neq 1$. Die Funktion ist nicht surjektiv auf \mathbb{R} , denn zu y < 0 gibt es kein $x \in \mathbb{R}$, so dass $e^{-x^2} = y$, denn $e^{-x^2} > 0$ für alle $x \in \mathbb{R}$.

(10 Punkte: 5 Punkte je Teilaufgabe

5. Geben Sie alle bijektiven Abbildungen $\{1,2,3\} \rightarrow \{a,b,c\}$ an. Lösung:

Es gibt $2 \cdot 3$ bijektive Abbildungen. Die Abbildungen sind surjektiv, also muss jedes Element aus $\{a, b, c\}$ "getroffen" werden; die Abbildungen sind injektiv, also darf jedes

Element aus $\{a,b,c\}$ höchstens einmal getroffen werden.

$$f_1(1) = a, f_1(2) = b, f_1(3) = c$$

 $f_2(1) = a, f_2(2) = c, f_2(3) = b$
 $f_3(1) = b, f_3(2) = a, f_3(3) = c$
 $f_4(1) = b, f_4(2) = c, f_4(3) = a$
 $f_5(1) = c, f_5(2) = a, f_5(3) = b$
 $f_6(1) = c, f_6(2) = b, f_6(3) = a$

(10 Punkte)