

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J

Edge detection example

Computer Vision Problem

Vertical edge detection

1-3×1 + 1×1 +2+1 + 0×0 + 5×0 +7×0+1×+ +8×-1+2×-1=-5

Vertical edge detection

	1	0	[-1]
*	1	0	-1
	1	0	-1
		3×3	

<u> </u>					
0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
14×4					

More edge detection

Vertical edge detection examples

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
					-

0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		

|--|

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
\rightarrow					

	1	0	-1
*	1	0	-1
	1	0	-1
'			

Vertical and Horizontal Edge Detection

Vertical

Horizontal

10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
6 x6						

1	1	1
0	0	0
-1	-1	-1

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

*

Learning to detect edges

				\sim	
3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

		0	1
→	N	0	7
	l	O	-1
	C \		N. 1 I.

	Sobel	filte
		L
ci	nustuti.	N

(•	
	W	$\widehat{w_2}$	W ₃
\times	$\overline{W_4}$	W3	$\overline{w_6}$
	$\overline{w_7}$	$\widehat{w_8}$	W ₉
		~	

	0	
0	0	10
3	7	-3

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 $+$ $f \times f$ $\longrightarrow n - f + 1 \times n - f + 1 \times 6 \times 6 \times 6 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

$$n + 2p - f + 1 = px = p = f - 1$$
 $x + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1 = px = p = f - 1$
 $y + 2p - f + 1$

Strided convolutions

Strided convolution

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(7		
27	3	7 ⁵	4	6	2
69	60	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A * B) * C = A * B * C$$

Convolutions over volumes

Convolutions on RGB images

Multiple filters

A simple convolution network example

Types of layer in a convolutional network:

```
- Convolution (CONV) ←
- Pooling (POOL) ←
- Fully connected (FC) ←
```


Pooling layers

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Pooling layer: Average pooling

	3	2	1					
2	9	1	1				3.75	
1	4	2	3	_			4	
5	6	1	2			f=2 s=2		

Summary of pooling

Hyperparameters:

f: filter size
s: stride
$$f=2, s=2$$

$$f=3, s=2$$

Max or average pooling

$$N_{H} \times N_{W} \times N_{C}$$

$$N_{H} - f + f + f \times N_{S} + f$$

$$\times N_{C}$$

Convolutional neural network example

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{to]}	0
			

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J