Espaces vectoriels normés 1

Définition 1.1.

Étant donné un \mathbb{K} -ev E, on appelle **norme** sur E toute application $\|.\|: E \to \mathbb{R}_+$ vérifiant les trois propriétés suivantes:

- inégalité triangulaire: $\forall (x,y) \in E^2, ||x+y|| \le ||x|| + ||y||$

Définition 1.2.

Un espace vectoriel muni d'une norme est appelé espace vectoriel normé (abrégé par evn ou e.v.n).

Dans ce chapitre, \mathbb{K} désigne un corps et E et F sont deux \mathbb{K} -espace vectoriels normés.

Exemple 1.1.

- 1. La valeur absolue |.| sur \mathbb{R}
- 2. Le module |.| pour l'espace vectoriel \mathbb{C}
- 3. Pour $n \in \mathbb{N}$ la norme ℓ^1 sur \mathbb{R}^n définie par:

$$\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n, ||x||_1 = \sum_{i=1}^n |x_i|$$

4. Pour $n \in \mathbb{N}$ la norme ℓ^2 sur \mathbb{R}^n définie par:

$$\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n, ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

5. Pour $n \in \mathbb{N}$ la norme ℓ^{∞} sur \mathbb{R}^n définie par:

$$\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n, ||x||_{\infty} = \max(|x_1|, \dots, |x_n|)$$

Définition 1.3.

Pour $x = (x_i)_{1 \le i \le n}, y = (y_i)_{1 \le i \le n} \in \mathbb{R}^n$, le produit scalaire est usuellement définit par:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

noté aussi (x|y) ou même $\langle x|y\rangle$

Remarque 1.1. On $a ||x||_2 = \sqrt{\langle x, x \rangle}$

Lemme 1.1: Inégalité de Cauchy-Schwarz

 $\forall x,y \in \mathbb{R}^n, |\langle x,y \rangle| \leq ||x||_2 ||y||_2$ avec égalité si et seulement si x et y sont colinéaires.

Démonstration 1.1.

Soient $x, y \in \mathbb{R}^n$.

On pose le polynôme $P(t) := \langle x + ty, x + ty \rangle$.

$$P(t) = ||x + ty||$$

$$= \sum_{i=1}^{n} (x_i + ty_i)^2$$

$$= \sum_{i=1}^{n} (x_i^2 + 2tx_iy_i + t^2y_i^2)$$

$$= t^2 \sum_{i=1}^{n} y_i^2 + 2t \sum_{i=1}^{n} x_iy_i + \sum_{i=1}^{n} x_i^2$$

$$= t^2 \langle y, y \rangle + 2t \langle x, y \rangle + \langle x, x \rangle$$

D'une part comme $P(t) = ||x + ty||^2 \ge 0$, le discriminant de P est négatif ou nul:

$$\Delta = 4\langle x, y \rangle^2 - 4\langle y, y \rangle \langle x, x \rangle \le 0$$

$$\implies \langle x, y \rangle^2 \le \langle y, y \rangle \langle x, x \rangle$$

$$\implies |\langle x, y \rangle| \le \sqrt{\langle y, y \rangle} \sqrt{\langle x, x \rangle}$$

$$\implies |\langle x, y \rangle| \le ||x||_2 ||y||_2$$

D'autre part quand P(t) admet une racine double, on a $t_0 = -\frac{\langle x,y \rangle}{\langle y,y \rangle}$ et $P(t_0) = \|x + t_0 y\|^2 = 0 \implies x + t_0 y = 0 \implies x = -t_0 y$ avec $t_0 = -\frac{\langle x,y \rangle}{\langle y,y \rangle}$ d'où x et y colinéaires en cas d'égalité.

Proposition 1.1

La norme euclidienne $||.||_2$ est bien une norme.

De plus ||x+y|| = ||x|| + ||y|| si et seulement si x et y sont colinéaires et de même sens.

Démonstration 1.2 (Norme euclidienne ℓ^2).

Soient
$$x = (x_i)_{1 \le i \le n}, y = (y_i)_{1 \le i \le n} \in \mathbb{R}^n$$
.

1. (Homogénéité) Soit $\lambda \in \mathbb{R}$,

$$||\lambda x||_2 = \sqrt{\sum_{i=1}^n (\lambda x_i)^2}$$

$$= \sqrt{\lambda^2 \sum_{i=1}^n x_i^2}$$

$$= |\lambda| \sqrt{\sum_{i=1}^n x_i^2}$$

$$= |\lambda| ||x||_2$$

2. (Séparation)

La contraposée de la séparation est: $\forall x \in \mathbb{R}^n, x \neq 0 \implies ||x||_2 \neq 0$.

Soit $x \in \mathbb{R}^n$, $x \neq 0$, ainsi $\exists i \in [1, n]$ tel que $x_i \neq 0$.

Donc
$$||x||_2 \ge \sqrt{x_i^2} = |x_i| > 0.$$

3. (Inégalité triangulaire)

On utilise l'inégalité de Cauchy-Schwarz $|\langle x, y \rangle| \le ||x||_2 ||y||_2$.

$$||x+y||_{2}^{2} = \sqrt{\sum_{i=1}^{n} (x_{i} + y_{i})^{2}}$$

$$= \sqrt{\sum_{i=1}^{n} (x_{i}^{2} + 2x_{i}y_{i} + y_{i}^{2})}$$

$$= \sqrt{\sum_{i=1}^{n} x_{i}^{2} + 2\sum_{i=1}^{n} x_{i}y_{i} + \sum_{i=1}^{n} y_{i}^{2}}$$

$$= \sqrt{\sum_{i=1}^{n} x_{i}^{2} + 2\sqrt{\sum_{i=1}^{n} x_{i}y_{i}} + \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}$$

$$= ||x||_{2}^{2} + 2\langle x, y \rangle + ||y||_{2}^{2}$$

$$\leq ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2}$$

$$= (||x||_{2} + ||y||_{2})^{2}$$

$$\implies ||x+y||_{2} \leq ||x||_{2} + ||y||_{2}$$

Démonstration 1.3 (cas d'égalité dans l'inégalité triangulaire).

 $si\ x\ et\ y\ sont\ colin\'eaires\ avec\ le\ cas\ de\ l'\'egalit\'e\ de\ Cauchy-Schwarz\ on\ a:$

- $si \langle x, y \rangle \ge 0$ $alors ||x + y||_2^2 = ||x||_2^2 + 2|\langle x, y \rangle| + ||y||_2^2 \le (||x||_2 + ||y||_2)^2$
- $si \langle x, y \rangle < 0$ $alors ||x + y||_2^2 = ||x||_2^2 2|\langle x, y \rangle| + ||y||_2^2 \le ||x||_2^2 2||x||_2||y||_2 + ||y||_2^2 = (||x||_2 ||y||_2)^2 \le (||x||_2 + ||y||_2)^2$

à retravailler car pas très clair

Proposition 1.2: Seconde inégalité triangulaire

Soit $(E, \|.\|)$ un evn, $soientx, y \in E$.

$$\forall x, y \in E, ||x - y|| \ge |||x|| - ||y|||$$

avec égalité si et seulement si x et y sont colinéaires.

Démonstration 1.4.

Soient $x, y \in E$

$$||x|| = ||x - y + y||$$

$$\leq ||x - y|| + ||y||$$

$$\implies ||x|| - ||y|| \leq ||x - y||$$

en échangeant x et y, on obtient $\|y\| - \|x\| \le \|y - x\| = \|x - y\|$

d'où $||x|| - ||y|| \le ||x - y||$ avec égalité si et seulement si x et y sont colinéaires.

Point méthode. On peut conclure sur une inégalité triangulaire générale

 $|||x - y||| \le ||x \pm y|| \le ||x|| + ||y||$ pour tous $x, y \in E$.

2 Les boules

Définition 2.1. (Boule ouverte)

On appelle **boule ouverte** de centre a et de rayon r l'ensemble:

$$B(a,r) = \{ x \in E \mid ||x - a|| < r \}$$

Définition 2.2. (Boule fermée)

On appelle **boule fermée** de centre a et de rayon r l'ensemble:

$$\overline{B}(a,r) = \{x \in E \mid ||x - a|| \le r\}$$

peut aussi se noter $B_f(a,r)$

Définition 2.3. (Sphère)

On appelle **sphère** de centre a et de rayon r l'ensemble:

$$S(a,r) = \{ x \in E \mid ||x - a|| = r \}$$

Remarque 2.1. Lorsque qu'on travaille en dimension 2, on parle de **disque** ouvert/fermé. Ainsi on peut retrouver D(a,r) et $\overline{D}(a,r)$ pour les boules ouvertes et fermées respectivement.

Figure 1: Boules pour les normes ℓ^1,ℓ^2 et ℓ^∞ sur \mathbb{R}^2

Définition 2.4.

Soit $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ une suite.

On dit que (x_n) converge vers $l \in E$ si

$$\lim \|x_n - l\| = 0$$

Remarque 2.2. On y voit une meilleure interprétation quand on sait que $||x_n - l||$ est la distance entre x_n et l.

Définition 2.5. (intérieur)

Soit $A \subset E$.

On dit que $a \in A$ est **intérieur** à A si

$$\exists r > 0, B(a,r) \subset A$$

L'intérieur de A est l'ensemble des points intérieurs de A et on le note int(A) ou encore \mathring{A} .

On dit que A est un **ouvert** si $A = \mathring{A}$.

Définition 2.6. (adhérence)

Soit $A \subset E$.

On dit que $a \in E$ est **adhérent** à A si

$$\forall r > 0, B(a,r) \cap A \neq \emptyset$$

L'adhérence de A est l'ensemble des points adhérents de A et on le note adh(A) ou encore \overline{A} .

On dit que A est un **fermé** si $A = \overline{A}$.

Définition 2.7. (Frontière)

Soit $A \subset E$.

On appelle **frontière** de A l'ensemble:

$$\partial A = \overline{A} \setminus \mathring{A}$$

Proposition 2.1

Soit $A \subset E$

$$A = \mathring{A} = \overline{A} \implies A = E \text{ ou } A = \emptyset$$

Démonstration à faire