机器学习工程师纳米学位毕业项目

猫狗大战

董进贤 2018年4月3日

1 问题定义

1.1 项目概述

本项目源于 kaggle 竞赛,解决的问题属于计算机视觉智能的研究领域。本项目要求训练出的模型,在给定的图片中识别出猫狗,并且达到指定的识别率。为方便标准的评估,所涉及的数据集亦是源自 kaggle 的原始数据集。这个数据集包含 25000 张已作出标记的用于训练的图片,其中猫狗各占比一半。另外,还有 12500 张的未标记图片,为测试数据集。

卷积神经网络(Convolutional Neural Network, CNN),以其共享超参等方式,极大的提高了传统神经网路的训练效率,目前是图像识别领域公认的解决办法。所以我们的模型也以 CNN 为实现。这种共享超参数,作为卷积核与输入数据作用计算获得结果的方式,等效于矩阵中的卷积运算,故这个神经网络如此得名。

1.2 问题陈述

数据集中的图像均是来自于现实世界中未经过处理的图像,大小不一,图像中的场景也各不相同,另外具体到猫狗的姿态也有非常大的差异,其品种更是各不相同。相较于传统的机器学习算法,实在难以处理此类问题(比如,我们知道在历史上,第一个成功的卷积神经网络 LeNet-5 虽然成功完成了数字识别,但在综合表现上反而被后来的SVM 所超越)。

虽然我们最终的 CNN 是经过优化处理,增加了深度的模型。但是归结起来,我们还是采用了四个步骤:一是输入阶段,预处理数据到方便训练的形态;二是卷积层训练,以提取数据在不同通道不同向量方向上的特征数据;三是池化筛选特征数据,用作下一层的卷积训练或者分类处理;最后则是全联接综合所有的维度特征作出最终的分类预测。

1.3 评价指标

评价指标采用 kaggle 官方的评价公式, 其得分值越低, 效果越好, 公式如下:

$$LogLoss = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

其中:

- 1) n 为测试集中图片的数量;
- 2) \hat{y}_i 为猜测图片是 dog 的概率;
- 3) y_i 为 1 时图片为 dog, 为 0 时图片为 cat;
- 4) log()为自然对数。

目前 CNN 计算较为完善,各个模型的预测率均较高。由公式计算出的对数损失评价 预测效果,而非正确率是合理的。而且在模型在过分肯定预测结果时,在公式的计算下, 也不一定得到较好的结果。这点能够发现过度拟合的模型,评价更为客观合理。

2 分析

2.1 数据的探索

我们采用的数据集来自 kaggle,下载后得到三个文件,test.zip、train.zip 和 sample_submission.csv。其中 test.zip 为测试数据集,大小为 271MB,train.zip 为训练数据集,大小为 544MB,sample_submission.csv 应该是提交样例。解压压缩包,我们发现数据集中均是 jpg 图片,命名格式为"类型.序号.log"的形式,如: cat.1.log,dog.1.log。

进一步探索数据,发现训练集包含 25000 张图片, 猫狗各半 12500 张, 测试集 12500 张图片(测试集图片只有序号,是没有标记的)。浏览图片,发现图片的大小也是不一致的,清晰度,分辨率也有差别。打开图片,发现图片中的场景各异,而且有错误标注的图片如图 1 所示。

The Caring Containment Professionals.™

cat . 7564. j pg

cat . 10712. j pg

图1 错误标注

这些错误标注的数据,如果是 train 中的肯定是需要通过一定的方式进行删选清理的,否则会影响到模型的训练成果。数据集相对较小的情况下,可以直接进行人工清理。而数据量非常大的情况下,我们可以通过预处理模型,先进行简单的预测处理。再根据预测结果,对于筛选后的图片再进行人工判断是否清理。

预处理模型可以大大提高我们清洗数据的工作效率,但是为了更好的训练结果,以 及预处理模型本身的识别能力,最终的人工确认,仍然是比不可少。所以有说法,人工 智能的数据标注是劳动密集型产业。

另外图片中的猫狗也是形态各异,也有其它主体的干扰,这些都增加了识别难度,如图 2 所示。示例中也可以看出,图片大小尺寸,也有不小的差异,其中 dog.9076.jpg 甚至还包含大量的留白。

cat . 10700. j pg

cat . 10778. j pg

dog. 5476. j pg

dog. 9045. j pg

dog. 9076. j pg

图2形态背景各异

2.2 探索性可视化

在这里我们首选对数据集的大小特性作一定的分析,通过散点图绘制,能够比较直观的发现其中的规律。首先我们对 dog 和 cat 的图片,分别以宽为 x 坐标,高为 y 坐标绘制了散点图如图 3 所示。

图3 数据集原始尺寸分布

我们发现,数据集中图片的尺寸,大部分都集中在 500 以下,但是 dog 和 cat 的数据集中,均存在异常的离散点。很显然这个数据属于异常值,并不利于模型的训练,需要 去除。

经过排查处理,我们发现,异常的图片分别是 dog.2317.jpg 和 cat.835.jpg。我们将这两张异常的图片删除后,重新统计分析数据集后,绘制散点图如图 4 所示。

图4清洗异常图片后尺寸分布

2.3 算法和技术

猫狗识别问题属于机器视觉的领域,具体到本项目涉及的算法和技术,需要说明的核心概念是,深度学习、卷积神经网络和迁移学习。其中迁移学习的模型,包括 InceptionV3、Xception 和 Inception ResnetV2,后续也会做一定的说明和阐述。

2.3.1 深度学习

深度学习的概念源于人工神经网络(Artificial Neural Network,ANN),深度学习通过组合低层特征形成更加抽象的高层表示(属性类别或特征),以发现数据的分布式特征^[1]。深度学习是相较于传统机器学习的叫法。普通机器学习通过人工经验抽取样本特征,模型学习后获得单层特性^[2]。深度学习通过对原始数据进行逐层特征提取变换,将样本空间的特征表示变换到新的特征空间,自动地学习得到层次的特征表示,从而更有利于分类或特征的可视化^[3]。

说道深度学习,必须要理清深度神经网络(Deep Neural Network,DNN)的概念。深度学习所得到的模型结构,包含大量的神经元(感受器、回归函数),每个神经元与大量的其他神经元相互连接,神经元连接之间传递信号的强度(权重),会在学习训练的过程不断修正。这种深层的网络结构符合神经网络的特性^[4],因而命名深度神经网络(Deep Neural Network,DNN)。

2.3.2 卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是人工神经网络(Artificial Neural Network,ANN)中的一种。CNN 的基本结构有输入层、卷积层、取样层、全连接层和输出层构成。卷积层和取样层一般会有若干个,采用卷积层和取样层交替设置。由于卷积层中输出特征面的每个神经元与其输入进行局部连接,并通过对应的连接权值与局部输入进行加权求和再加上偏执值,得到该神经元的输入值,该过程等同于矩阵的卷积过程,故该类神经网络由此命名^[5]。

在 CNN 结构中,深度越深,特征面数目越多,则网络能够表示的特征空间越大、网络学习能力也越强,然而也会使网络的计算更复杂,极易出现过度拟合现象。因而,在实际应用中,需要适当选取网络深度、特征面数目、卷积核的大小及卷积时滑动步长,以在较短的时间和计算量下,训练出更好的模型。

目前 CNN 在图像分类和识别中应用广泛,几乎是深度学习中,默认的处理方法。本项目也采用 CNN 进行猫狗的分类识别处理。以下,我们会对卷积神经网络中的关键技术点,作进一步的阐述说明。

2.3.2.1 卷积

神经网络中的卷积,就是数学上的矩阵卷积计算。含有这种处理方式的神经网络也叫做卷积神经网络。卷积在简化信息处理方面有相当好的效果。

具体到本项目对于图像的处理,我们以第一个卷积层为例。输入图像在RGB三个通道上,以 patch 为卷积核进行操作,输出深度为 k 并且缩小了长度和宽度的另一个图像。这个特征提取的过程,正是深度学习中,卷积层所做的工作,如图 5 所示。

图5 卷积层示例

卷积操作在图片的处理的前几层,往往有一定的物理意义。也可以做一定可视化展示。比如我们常常对图片进行的一系列操作,如锐化(Sharpen)、模糊(Blur)、边缘增强(Edge Enhance)、边缘检测(Edge Detect)、凸印(Emboss)等。总之选用不同

的卷积核,进行操作,就产生不同的效果,如所示,展示了边缘检测(Edge Detect)的 卷积效果。

图6卷积效果展示

2.3.2.2 池化

在深度神经网络中,池化层通常是出现在卷积层之后,主要作用是进一步降低来自 卷积层输出的参数数量。通常有平均池化(Average Pool)和最大池化(Max Pool)的做 法,前者对于图片的背景保留较好,而后者对于图片的纹理特征保留较好。

如图 7 所示,展示最大池化的效果。通过获取特定区域的最大值,将维数据后,我 们得到新的矩阵数据。

图7池化效果展示

2.3.2.3 正则化和 dropout

正则化技术并不特定属于卷积神经网络(CNN),但是在神经网络的构建中,其是 非常重要的一环。常见的正则化技术有:数据增强、L1 和 L2 正则化、Dropout、Drop Connect 和早停法等。

简单的讲,正则化技术保障了算法模型的泛化能力。它以增大训练误差为代价,从 而减少了测试误差。

下面说明其中的一种,Dropout。这种正则化处理是,在模型训练时随机的让隐藏层部分节点的权置 0,效果等同于舍弃了部分神经元。如图 8 所示,其简单展示了处理过程。

图8 Dropout 正则化

2.3.3 迁移学习

CNN 的核心在于对于图像进行特征提取(浅层的特征如边缘、纹理等),随着神经 网络的层数越高,抽线层次也越高。最后的全连接层再基于训练中得到的特征数据,进 行分类鉴别,得到最终的分类结果。

从最原始的图像开始训练神经网络,得到超参和特征数据,需要大量的数据,及大量的计算资源。好在猫狗分类问题,已经拥有可以利用的现有模型和预训练权重。通过此,我们可以直接提取到特征数据,在特征数据上附加以分类器,就可以得到非常优良的结果。

在本项目中,我门选用的预训练模型有三个 InceptionV3、Xception 和 Inception ResnetV2。其中我们对 InceptionV3 作深入讨论。

Xception 模型共 136 层,该文档中不宜展示,可见附件 notebook/model_xception.png。 图中对于模型结构,作了清晰的可视化展示。

Xception 是 google 继 Inception 后提出的对 Inception v3 的另一种改进,主要是采用 depthwise separable convolution 来替换原来 Inception v3 中的卷积操作。这个过程实际上是加宽了网络。这个模型也输出 2048 维的特征向量。

Inception ResnetV2 模型共 784 层,该文档中不宜展示,可见附件 notebook/model inception resnet v2.png。图中对于模型结构,作了清晰的可视化展示。

Inception ResnetV2 模型的诞生源于 ResNet 和 GoogleLeNet,是早期的 InceptionV3 演化而来,其具有相当高的复杂度。该模型中存在 shortcuts,使得我们能训练出更深的神经网络,从而提高识别率。

2.3.3.1 *InceptionV3*

InceptionV3 模型共 315 层,见附件 notebook/model_inceptionv3.png。图中对于模型结构,作了清晰的可视化展示。该模型要求输入图片的分辨率为 299*299,模型的改进主要是增强了卷积模块功能。网络深度也有一定程度的增加。

为了更清晰的理解,我首先了解一下 CNN 的演化,如图 9 所示。

图9 CNN 演进简图

从图中,我们观察到 InceptionV3 这个演进分支,主要是增强了卷积模块功能。之前,神经网络的改进,主要是增加网络深度即层数,以及增加神经元的数量。但是简单的增大神经网络规模,会导致主要三方面的问题。一是,参数过多,当训练集数据有限时,容易发生过度拟合;二是,巨大的计算复杂度,导致难以应用;三是,过深的网络模型,容易梯度弥散,难以调优。而 Inception 类的网络模型,解决这些问题,主要是通过在增加网络规模的情况下,控制参数的增加。

比如第一代的 Inception 模型,增加了 1*1 的卷积核,降低了特征图的厚度。通过次 降低计算量,如图10所示。

图10 InceptionV1 主要改进

另一方面, inception 也通过替换 5*5 的卷积核为 3*3 的卷积核, 进一步降低参数数 量,如图11所示。

图11 InceptionV2 主要改进

而我们使用的第三代 Inception, 进一步延续了这种改进的思路。将部分层中 7*7 的 卷积核分解为1*7和7*1。这样加速了计算后,又将1个conv分解为2个,增加了网络 的深度。同时将输入由 244*244 调整为 299*299。

2.4 基准模型

我们需要获得 kaggle 前百分之十的排名(即 131 名以前),也就是对数损失得分需要小于 0.06。由于迁移学习的效果,我们应该会得到远远优于此的得分。

3 方法

3.1 模型筛选

筛选之前,我们查询资料,得到如图 12 所示的参数。其中的数据展示了各个模型的 预测能力,大小以及深度。

更具数据情况和我们的实际需要,我们择优选择了 Xception、ResNet50、InceptionV3 和 InceptionResNetV2 为可能需要使用的对象。具体的筛选过程,我们会利用现有数据对这几个模型,各自进行预测,取得分数。具体的实验过程在dog vs cat.ipynb 和 dog vs cat plus.ipynb(补充 ResNet50)中。

本实验中我们发现 ResNet50 其实有较好的预测能力 0.09475。不过我们另外三个模型也表现非常优秀。并且融合处理后。得到最终结果完全满足我们的标准。这里我们在预处理方便,有一定的便捷性。

不过在生产环境条件下,我们的服务器资源相对丰富。完全可以采用更多的模型预训练预测,选取最佳。并且在不同的组合下尝试。我们的学习和探索过程中,因为计算资源有限,经费紧张,阐明其原理,获得我们预期的结果即可。

3.2 数据预处理

数据的预处理解决方案,我们分两个方面进行:一是数据集本身的规划处理,包括图片文件的目录归类,异常值的清洗;二是针对各个模型对于输入数据的不同要求进行预处理。

首先,原始数据为两个压缩文件,test.zip 和 train.zip,分别是测试集和训练集数据。解压后图片分别存在于文件夹 test 和 train。然后创建 train_bad 文件夹,稍后用于存放删除的无效图片文件,可以将这个文件夹理解为垃圾桶,放在其中的图片文件,以后我们并不会再使用。

3.2.1 图片目录规划

由于我们后面会用到 keras 中的 ImageDataGenerator 函数进行数据扩充处理,对于不同种类的图片,我们需要放在不同文件夹中。这里我们只是需要在 train 目录下,在建立两个文件夹 cat 和 dog,分别存放猫狗的图片即可。关于图片的目录结构和涉及到的 shell 脚本,见附件中的 README.md 文件。

3.2.2 异常值清洗

这里对数据集数量较小,对于清洗错误标记我们采用预训练模型,先对数据集进行 一次预测。然后根据评分结果进行二次筛选。

在 imagenet 的预处理模型中,狗的分类一共 118 种,猫的分类一共 7 种。各个模型对于类型识别的准确率如图 12 所示。

Documentation	for	individ	lual	models
----------------------	-----	---------	------	--------

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88
DenseNet121	33 MB	0.745	0.918	8,062,504	121
DenseNet169	57 MB	0.759	0.928	14,307,880	169
DenseNet201	80 MB	0.770	0.933	20,242,984	201

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

图12 类型识别准确率

具体的,我们在操作过程中,我会对训练集数据进行预测处理。对于不属于这 125 类的图片初步筛选。过滤后再进行人工确认。具体的操作过程见附件部分的 pick bad pics.ipyb 文件。

3.2.3 各个模型下的预处理

由于我们选择的预训练模型,对于输入图片的要求都是 299*299,所以在读取图片 到内存的过程中,我门调整图片的尺寸大小为 299*299。这个过程不做持久化处理,保 存在磁盘上的图片文件,依然是原始大小。

另外需要说明的是,我们采取的标签是 0 和 1,分部代表猫和狗。这里需要识别的 类型并不繁多。我们简单的设置标签即可,没有另行定义归一化函数。

整个处理过程,分别由函数 load_train_data 和 load_test_data 完成,至此完成数据的预处理过程。

3.3 执行过程

对于完成了预处理的数据,我们通过 sklearn 的 train_test_split 方法,将数据随机拆分成训练集和测试集(验证集)。为了做最后的陈述分析以及模型的展示分析,我们首先分别使用三个预训练模型训练处理,然后预测结果,分别保存至对应的 csv 文件中。

3.3.1 导出特征向量

对于 InceptionV3、Xception 和 Inception ResetnetV2 三个模型的处理方式,基本一致。估计我们定义函数 pick_features 完成此项任务。我们使用 model.predict 配合原始数据,生成特征向量。GlobalAveragePooling2D 将卷积层输出的每个激活图直接求平均值。提取出的特征向量,实际上就是 numpy 的三个数组数据,分别保存到 feature_Xception.h5、feature InceptionV3.h5 和 feature InceptionResNetV2.h5 三个文件中。

每个模型的特征向量导出,都相当耗时,附件的 notebook 中,我们对每一个导出过程放在单独的 checkpoint 里面进行。另外,最终生成的三个文件过于庞大,我并没有提交到 git 工程,如果感兴趣可以运行我的代码,重新生成。

3.3.2 构建模型

接下来就是构建我们的模型结构,由于采用了预训练模型提取的特征向量。我们实际的工作,其实就是最后的分类处理。构建最后的全连接层即可完成这个目标。实际使用的模型可视化后如图 13 所示。

图13 自定义模型

然而这个可视化的模型结构,并不能展示我们整个项目的解决方案要义,我作了额外的工作。将整个解决方案的连接综合展示,得到如图 14 所示的模型结构图。这张图清晰的展示了,我们这个项目的结构逻辑。即,将原始图片数据预处理后,分别输入三个预训练模型,通过这三个千锤百炼的模型,提取到特征向量后。将便于分类处理的特征数据,输入到最后的全连接层作分类训练。

3.3.3 训练

模型构建完成后,我们以特征数据为输入,训练模型。由于模型层次较浅,发现训练速度非常快。并且,由于特征数据质量非常高,我们发现对数损失下降非常快,10个周期后,可以达到0.0081。准确率及对数损失变化如图15所示。

3.3.4 预测结果

根据训练好的模型,我们对测试数据进行预测处理。结果保存到final_submission.csv。提交 kaggle 后,得到成绩结果如表 1 所示。这个需要注意的是首创预测非常失败,并不成功。具体的改进,我在模型微调中说明。而调整后到预测结果为 0.04030,结果达到我们的要求(小于 0.06)。

模型	首次预测	调整后
InceptionV3	2.35763	0.07372
Xception	2.26968	0.10159
Inception ResnetV2	2.40522	0.06985
Resnet50	缺省	0.09475
Final_model	2.61388	0.04030

表1. 预测结果

3.3.5 改进处理

首次完成这个项目的结果,我发现结果非常的不理想。远远低于我的预期。得到的结果如表1所示。我对于程序进行检测后发现,根本原因是测试集预测结果保存时顺序不一致,导致了重大偏差。调整后得到第二列结果,达到项目要求。

不过在排查问题的过程中,我也作了大量的尝试和改进,如下:

首先数据的预处理阶段,虽然对于不合尺寸的图片进行了删除处理,但是对于错误标注的图片,没有引起足够的重视,予以删除。

- 2) 对于训练好的模型,还可以进行一定的微调。比如通过 fine-tune 来解冻靠近输出的层,改善结果。
- 3) 另外我吧 Dropout 的参数设置为 0.5, 防止过度拟合。

4 结果

4.1 模型的评价与验证

经过前面的测试和实践,我们发现预训练模型确实能够降低我们的设计难度和训练量,但是所得到的结果排名也并非特别优秀。综合几种模型的特征数据,并进行微调处理,才能得到我们可靠结果。

经过微调处理后,我们模型得分达到了预期的水平。证明我们的推测和处理是可靠的。另外,如果想得到更好的结果,我们还可以寻找更优秀的预训练模型,以及进一步 微调模型。

4.2 合理性分析

经过反复的调整参数,我的得分0.04030,达到预期。

5 项目结论

5.1 对项目的思考

猫狗大战是非常成熟的项目,选用预训练模型也是常规的做法。通过挑选合适的预训练模型,提取到高质量到特征数据。我们可以通过非常小的计算量,达到非常好的预测效果。

这一点,对于缺乏大量数据的公司和个人,有非常好的启发和参考意义!

5.2 需要作出的改进

本项目采用模型融合到方式,借用了预训练模型的特征向量,再进行分类训练。如果需要进一步改进,可以采用更优秀的模型,导出的特征数据。另外对模型进行对预训练模型进行微调(fine-tune),也是一种方式。

- ** 在提交之前, 问一下自己... **
 - 你所写的项目报告结构对比于这个模板而言足够清晰了没有?
 - 每一个部分(尤其**分析**和**方法**)是否清晰,简洁,明了?有没有存在歧义的术语 和用语需要进一步说明的?
 - 你的目标读者是不是能够明白你的分析, 方法和结果?
 - 报告里面是否有语法错误或拼写错误?
 - 报告里提到的一些外部资料及来源是不是都正确引述或引用了?
 - 代码可读性是否良好?必要的注释是否加上了?
 - 代码是否可以顺利运行并重现跟报告相似的结果?

参考文献:

- [1] Bengio Y,Delalleau O. On the expressive power of deep architectures[C] // Proc of the 14th International Conference on Discovery Science. Berlin:Springer-Verlag,2011:18-36.
- [2] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// Computer Vision and Pattern Recognition, 2005. IEEE Computer Society Conference on. Piscataway, NJ:IEEE Computer Society Conference on. Piscataway, NJ:IEEE,2005:886-893.
- [3] Hinton GE(1), Osindero S, Teh YW. A fast learning algorithm for deep belief ntes[J]. Neural Computation, 2006, 18(7):1527-1554.
- [4] Psaltis D, Sideris A, Yamamura A. A multilayered neural network controller[J]. IEEE Control Systems Magazine, 1988, 8(2): 17-21.
- [5] Yann LeCun, Leon Bottou, Yoshua Bengio, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324.
- [6] https://github.com/mrgloom/kaggle-dogs-vs-cats-solution
- [7] https://zhuanlan.zhihu.com/p/34068451
- [8] https://blog.csdn.net/qq 20909377/article/details/78976056
- [9] https://arxiv.org/abs/1512.00567
- [10]https://arxiv.org/abs/1610.02357
- [11]https://arxiv.org/abs/1602.07261