Nature Inspired Search and Optimisation Exercise 2

1429527

November 20, 2016

1 For a multi-objective optimisation problem, what is the difference between Pareto-optimal solutions and Pareto-optimal front?

Pareto-optimal front is a curve of non-dominated points, with respect to the objectives, on the boundary of the feasible region. There are infinite points on this front of optimal solutions and so infinite solutions.

Pareto-optimal solutions are specified points on the Pareto-optimal front. These solutions maximise the objectives.

2

x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3	y_4	y_5
(11,7)	(8,5)	(13,15)	(10,17)	(9,9)	(6,7)	(14,6)	(15,12)	(12,13)	(16,9)

2.1 Identify the Pareto-optimal front of the above bi-objective problem by drawing it on the figure

2.2 Consider search point y_4 . For each of the other search points, state if y_4 dominates the point, is dominated by the point or is incomparable to the point

x_1	Incomparable		
x_2	Incomparable		
x_3	Incomparable		
x_4	Dominates y_4		
x_5	Incomparable		
y_1	Incomparable		
y_2	Dominated by y_4		
y_3	Dominated by y_4		
y_5	Dominated by y_4		

2.3 NSGA-II [1] uses non-dominated sorting to divide the population into different non-dominated classes of solutions. Perform this step of NSGA-II for the given individuals. For each of the individuals indicate its class number, where the best class has number 0

Implementing the fast-non-dominated-sort algorithm on page 184 of [1]. For each individual, find the items that it dominates and is dominated by.

```
\mathcal{F}_1 = \emptyset
    For x_1
    S_{x_1} = \{y_2\}
                              Set dominated by x_1.
    n_{x_1} = 3
                                   Domination Counter - number of solutions x_1 is domi-
nated by.
    S_{x_2} = \{\}
    n_{x_2} = 1
    S_{x_3} = \{y_2, y_3, y_5\}
    n_{x_3} = 1
    S_{x_4} = \{x_1, x_3, y_2, y_3, y_4, y_5\}
    n_{x_4} = 0
    x_{4_{rank}} = 1
    \mathcal{F}_1 = \{x_4\}
    S_{x_5} = \{x_1, y_2, y_5\}
    n_{x_5} = 0
    x_{5_{rank}} = 1
    \mathcal{F}_1 = \{x_4, x_5\}
    S_{y_1} = \{x_1, x_2, y_2\}
    n_{y_1} = 0
    y_{1_{rank}} = 1
    \mathcal{F}_1 = \{x_4, x_5, y_1\}
    S_{y_2} = \{\}
    n_{y_2} = 6
```

$$S_{y_3} = \{y_5\}$$

$$n_{y_3} = 3$$

$$S_{y_4} = \{y_2, y_3, y_5\}$$

$$n_{y_4} = 1$$

$$S_{y_5} = \{\}$$

$$n_{y_5} = 5$$

Remove the current non-dominated set and select the new one.

$$\mathcal{F}_{1} = \{x_{4}, x_{5}, y_{1}\}$$

$$n_{x_{1}} = 0$$

$$n_{x_{3}} = 0$$

$$n_{y_{2}} = 3$$

$$n_{y_{3}} = 2$$

$$n_{y_{4}} = 0$$

$$n_{y_{5}} = 3$$

$$n_{x_{2}} = 0$$

$$\mathcal{F}_{2} = \{x_{1}, x_{3}, y_{4}, x_{2}\}$$

$$n_{y_{2}} = 0$$

$$n_{y_{3}} = 0$$

$$n_{y_{5}} = 1$$

$$\mathcal{F}_{3} = \{y_{2}, y_{3}\}$$

$$n_{y_{5}} = 0$$

$$\mathcal{F}_{4} = \{y_{5}\}$$

The classes are as follows:

Class
$$0 = \{x_4, x_5, y_1\}$$

Class $1 = \{x_1, x_3, y_4, x_2\}$
Class $2 = \{y_2, y_3\}$
Class $3 = \{y_5\}$

2.4 Using your result from c), which individuals does NSGA-II choose for the next iteration?

Five individuals should be chosen for the next iteration. Because of this, all of class 0 should be carried forward. This means that 2 individuals are required from class 1 where there are 4 individuals. NSGA-II performs Crowding Distance Sorting on class 1 in order to find a diverse population for the next iteration. This algorithm is on page 185 [1].

Class 1 has fitness of 5.

Using Manhattan distance function for crowding distance.

	Individual	Crowding Distance	Niching Fitness
	x_1	12	2.5
ĺ	x_2	∞	5
ĺ	x_3	∞	5
ĺ	y_4	10	2.5

So the two individuals to be chosen for the next iteration from class 1 are x_3 and x_2 .

Therefore the set of individuals to choose for the next iteration are: $\{x_4, x_5, y_1, x_3, x_2\}$.