Student Name:

University Roll No.:

Printed Pages: 2

o.	T	e	2	7 0	200	
SECTION 'B' O.N.2. Attempt any two parts of the following:	accepted string 2nd from right end is always b.	Design a regular expression that represent all string over the alphabet $\Sigma = \{a, b\}$ such that for every	L'Aplain Nieene's closure and Positive closure.	Explain VI - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Differential Landonata.	unicin First.
Course Marks Objective		CO 2 1	CO 1	CO 1	CO 1	CO 1
Marks		1	1	1 .	1	1

0	(d	02 02 02
by 2.	Construct an DFA equivalent to given NFA whose δ is CO 1 7.5 given by-	$\delta(q1,0) = \{q2, q3\}, \delta(q1,1) = \{q1\},$ $\delta(q2,0) = \{q1, q2\}, \delta(q2,1) = \{\phi\}$ $\delta(q3,0) = \{q2\}, \delta(q3,1) = \{q1, q2\}$
	CO 1	
	7.5	

a

Construct DFA that all binary strings where the number

CO 1

7.5

of 0's is divisible by 3 and the number of 1's is divisible

c) Consider a DFA and convert it into regular expression CO 2 using Arden's theorem.
 δ(A, a) = A, δ(A, h) = h

7.5

 $\delta(A, a) = A, \delta(A, b) = b,$ $\delta(B, a) = B, \delta(B, b) = B$

A is the initial state and B is the final state

0									6)			a	0
Start — (9) Construct Mi	q4	q3	q2	当			Present State	Machine?	Construct a M	Convert the following NFA with 8 moves to DFA without 8 moves.	Start		SECTION 'C' Q.N.3. Attempt any one parts of the following:
finimum	q3	q2	q4	q1	State				loore Ma	es.)) ss	SEC.
State Auto	0	1	1	1	Output	a= 0	Z		ichine equ	NFA WITH))6	SECTION C'
Start (q) (q) (q) (q) (0.1) Construct Minimum State Automata equivalent to given DFA?	q1	q3	q4	q2	State	a	Next State		Construct a Moore Machine equivalent to given Mealy	E moves to Di	J.E.		of the follow
a co	14	1	1	0	output	a = 1			n Mealy	À	C	D°	ing:
CO 1									CO 1			CO 2	Objective
10									10			10	Marks

Table 1: Mapping between COs and questions
COs Questions Numbers Total Marks
CO1 1.a, 1.b, 1.c, 1.d, 2.a, 39
2.b, 3.b, 3.c
CO2 1.e, 2.c, 3.a . 18.5