Electronic supplementary information

INTERACTION OF POLYORGANOSILSESQUIOXANES WITH SULFUR

V. B. Zubchenko, K. A. Pervakov,* I. G. Khalchenko, A. V. Shurygin, and N. P. Shapkin

Far Eastern Federal University, pos. Ayaks 10, Russky Island, Vladivostok, Primorskii Krai, 690922 Russia

Experimental section

The work was concerned with vinyltrichlorosilane (bp = 90.0–91.5 °C) and phenyltrichlorosilane (bp = 201–205 °C). Polyvinylsilsesquioxane was obtained from a water–ether medium and dried at 60 °C under vacuum (20 mmHg). Anal. Calcd: C, 30.0; Si, 35.5. Found: C, 28.9; Si, 34.7%. Polyphenylsilsesquioxane was obtained by the published method [S1]. Anal. Calcd: C, 55.8; Si, 21.7. Found: C, 53.8; Si, 20.9%.

The interaction of polyorganylsilsesquioxanes with sulfur was carried out in a heat-resistant glass vessel at a Si:S ratio of 1:1 (PVSQ) and 1:2 (PPSQ). The mixture was pre-processed in a Pulverisette 6 mill at 600 rpm (10 Hz) for 10 min. The resulting mixture was heated at 160–180 °C for 1 h. Anal. Calcd for polymer 2: C, 21.8; Si, 25.4; S, 28.2. Found: C, 22.0; Si, 24.9; S, 27.5%. Anal. Calcd for polymer 4: C, 44.7; Si, 17.4; S, 19.9. Found: C, 43.1; Si, 16.6; S, 19.9%.

The IR spectra were recorded on a Perkin Elmer Spectrum 1000 FTIR spectrometer (Argentina). The XRD analysis was performed on a Bruker AXS D8 Advance diffractometer (Germany) using a CuKα source, a Ni filter, at an angle range of 1–60°. The TGA analysis was performed on a Shimadzu DTG-60H analyzer (Japan) with a heating rate of 20 deg/min in air using a platinum crucible. The solid-state ²⁹Si NMR spectra were recorded through polarization transition from protons using a Bruker MSL-400 device at a rate of 4 kHz.

References

S1. K. A. Andrianov, *Methods of Organoelement Chemistry*, Nauka, Moscow, **1968**.

Figure S1. IR spectrum of polymer 1.

Figure S2. IR spectrum of polymer 2.

Figure S3. IR spectrum of polymer 3.

Figure S4. IR spectrum of polymer 4.

Figure S5. 13 C NMR spectrum for polymers 2 (a) and 4 (b).

Figure S6. ²⁹Si NMR spectrum for polymers 2 (a) and 4 (b).

Figure S7. Thermogram of the mixture of PVSQ and sulfur.

Figure S8. XRD patterns of polymers 1–4 (a–d).