Lógica para Computação Aula 21 - Lógica de Predicados¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

October 11, 2018

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a introduzir Dedução Natural para Lógica de Predicados.
- Este material foi construído com base nos slides do prof. Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica de Predicados

2 Próxima Aula

Lógica de Predicados - Relembrando ...

- Predicado
- Quantificadores: Universal e Existencial
- Definição de Termo
- Definição de Fórmula
- Variável livre / ligada
- Fórmula aberta / fechada
- Substituição de Variáveis
- ∀x e e ∀x i
- ∃*x e* e ∃*x i*

Lógica de Predicados: Regras Derivadas

• Regra de intercâmbio entre os quantificadores:

$$\frac{\exists x. \varphi}{\exists x. \neg \varphi} \frac{\exists x. \varphi}{\forall x. \neg \varphi} |_{\mathsf{Q}}$$

Lógica de Predicados: Regras Derivadas

• Exemplo 1 - Prove o argumento $\forall x . \neg P(x) \vdash \exists x . P(x)$, usando dedução natural.

$\neg \forall x. \neg P(x) \vdash \exists x. P(x)$			
1.	$\neg \forall x. \neg P(x)$	premissa	
2.	$\neg \exists x. P(x)$	hipótese	
3.	$\forall x. \neg P(x)$	IQ 2	
4.		¬e 3,1	
5.	$\exists x.P(x)$	DPA 2-4	

Lógica de Predicados: Regras Derivadas

• Exemplo 2 -Prove o argumento $\exists x. P(x) \vdash \forall x. P(x)$, usando dedução natural.

$\neg \exists x. \neg P(x) \vdash \forall x. P(x)$			
1.	$\neg \exists x. \neg P(x)$	premissa	
2.	$\neg \forall x. P(x)$	hipótese	
3.	$\exists x. \neg P(x)$	IQ 2	
4.		$^{\lnot}e$ 3,1	
5.	$\forall x.P(x)$	DPA 2-4	

Lógica de Predicados: Exercícios

- Atividade I: Prove o sequente dos argumentos abaixo usando dedução natural. Utilize a regra IQ sempre que possível.
 - $\exists x. A(x) \to \exists x. B(x), \neg \exists x. B(x) \vdash \forall x. \neg A(x).$
 - $\forall x. \neg G(x) \rightarrow \forall x. \neg F(x), \exists x. F(x) \vdash \exists x. G(x)$

Leitura

- Mortari, C. A. Introdução à Lógica: Capítulo 14
- Huth & Ryan. Lógica em Ciência da Computação:
 Modelagem e Argumentação sobre Sistemas: Capítulo 2