Lab 1:

store 67
gi Write a C or C++ foregram to do the following Pass matries as parameters in all of them i) Matrin addition of sub ii) Matrin multiplication ii) Matrin multiplication
ii) Natrin multiplications iii) Sum of principle & non principle diagohol. iv) Sum of rows & columns. v) Transpos of & a matrix. vi) Check if the given matrix is symmetrix or not.
$\begin{bmatrix} a_{01} & a_{02} & a_{03} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{00} & a_{01} & a_{02} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$
// For add or fultrait word add (int m, int MI[m][m], int M2[m][m] or sub
firint (" Sum: \\n");
for (intio; $i < m; i + t$) $\begin{cases} for (j = 0; j < m; j + t) \\ \end{cases}$
To all: M3[i7[j] = M/[i][j] + M2[i][j]; frintf ("od", M3[i7[j]); frintf ("n");
<u></u>
To substract: M3[i7[j]=M([i][j]-M2[i][j])

void multiply (int m) int MCm7[m], wit ms (s);

See int M3[m][m];

wit i, j, k; for (i=0, i < m; i++) for (1=0; 1 < m; j++) M3[i][j]=0; for (int K=0; K(m; k++) M3(17[g]+= \$M1[17[K]*M2[x][j]. Display Matrin M3 void Sun sum RC (int m, int MI [m] (m]) int sum R, sum C, i, j; unt M3[m+1][m+2]; for(i=0; i<n; i+t) for (j=0; j<n; j++) M3[i][j]= M1[i][j]

void transposeM (int m, int MI[m] [m]) 111 2/0 d 1 t ", MI[i][y]); void is Symmetrin (int m, int MI[m][m]) =0; j<m; j++) prints ("Not symmetric \n"); 3 print (" Matrin is Sympetrie In

	store 67
	Dutfut:
	Enter order of the square matri
	Enter a square matrix
	3 4
	Mestel
	MENU 1. Add Matrin
	2. Sultract Matrix
	3. Multiply Matrix.
	4. Sum of principle of non principle diagonal of Mutrice 5. Sum of rows of columns of Matrin
	6. Transpose 7. Check Symmetria
	8. Enit
	Enter a square matrix to apt to MI
5	
	The Sum is:
	2 3 14/6/23
	7
	2
	Enter a square matrix to sulctract from MI

The Difference is 3 Enter a square matrix to Multiply to my The Product is: 2 3 3 + 7The Transpose of the matrix: 2 4 7 Not Symmetric

OUTPUT:

"C:\Users\HP\Desktop\BMSCE studies new\LAB Sem4\OS Lab\Lab1.exe"

```
Enter order of the square matrix
Enter a square matrix
1 2
3 4
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
Enter a square matrix to add to M1
1 1
1 1
The Sum is :
2 3
4 5
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
Enter a square matrix to subtract from M1
1 1
The Difference is :
0 1
2 3
MENU
1.Add Matrix
2.Subtract Matrix
```

```
"C:\Users\HP\Desktop\BMSCE studies new\LAB Sem4\OS Lab\Lab1.exe"
2 3
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
Enter a square matrix to Multiply to M1
1 2
3 4
7 10
15 22
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
```

Sum of principal diagonal: 5 Sum of non-principal diagonal: 5

```
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
1 2 3
3 4 7
460
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
Transpose of the matrix:
       3
       4
MENU
1.Add Matrix
2.Subtract Matrix
3.Multiply Matrix
4.Sum of Principle and non principle diagonal of a Matrix
5.Sum of rows and columns of Matrix
6.Transpose of a Matrix
7.Check if matrix is symmetric
8.Exit
Not Symmetric
```