The Formation and Evolution of Blue Supergiant Stars (BSGs)

Thomas Scattergood and Natasha Jeffrey

BSC (HONS) Physics with Astrophysics

Northumbria University NEWCASTLE

My project

BSGs are very luminous, high mass and temperature O and B type stars with main properties:

- Minimum surface temperature of 11,000K
- Minimum solar radius of 14 R_ο
- Minimum luminosity of around 20,000L_o
- Minimum mass of 10M_o

My project's main aim is to research each phase of BSGs to understand phenomena that occur in its life. My objectives to achieve this are:

- To compare the properties and formation conditions of BSG and solar stars
- To investigate how BSG evolve into one of their death stages and the impacts they have
- Analyse and compare stellar processes of BSG and solar stars

Initial findings

- Using research as my main method of findings I have discovered that:
- BSGs Form in giant molecular clouds with hydrogen densities larger than that of solar stars and radiative forces play a vital role in formation [2]
- The nuclear fusion process in BSG and other high-mass stars is the CNO cycle as opposed to Proton-Proton fusion which is for low-mass stars, produces around 25MeV per cycle [3].
- BSGs have characteristic strong stellar wind caused by radiative pressure in the core which leads to mass loss as material is ejected out of the star
- Goes supernova once fuel runs out, If above $3M_{\odot}$ then a black hole forms, if below then a neutron star forms

Next steps

- Continue research into the CNO cycle and how it compares/differs to P-P fusion
- Analyse mass loss of BSGs to see if it has a substantial effect on the main sequence phase using the equation:
- $\log\left(\frac{dM}{dt}\nu_{\infty}\sqrt{R_*}\right) = -10.47 + 1.557 * \log(L_*)$ [5]
- Compare and determine the constructive and destructive effects of supernovas and black holes caused by the death of BSGs on the local galaxies
- Determine the processes that BSGs experience and compare any that also occur in other types of stars

References

[1] Kaler, J., 2006. The Cambridge Encyclopedia Of Stars. 1st ed. Cambridge: Cambridge University Press, pp.99-102.

[2]Zinnecker, H. and Yorke, H., 2007. Toward Understanding Massive Star Formation. Annual Review of Astronomy and Astrophysics, 45(1), pp.11-15.

[3] Zoppi, G., 2019. Thermal and nuclear energy. pp 64

[4] Grunhut, J., n.d. Magnetic Fields In Early-Type Stars. [3] Astronomy.swin.edu.au. n.d. CNO Cycle | COSMOS.

[5] Castor, J. and Lamers, H., 1979. An atlas of theoretical P Cygni profiles. *The Astrophysical Journal Supplement Series*, 39, p.481.