

Simulation d'un compteur 8 bits sur carte Cmod A7

Utilisation d'Analog Discovery 2

Logic Analyzer

Découverte de Vivado: simulation fonctionnelle – testbench VHDL

Simulation d'un compteur 8 bits sur carte Cmod A7 Utilisation d'Analog Discovery 2 Logic Analyzer

Simulation d'un compteur 8 bits sur carte Cmod A7 Utilisation d'Analog Discovery 2 Logic Analyzer

Vivado 2020.1 simulation RTL Test bench Compteur 8bits library IEEE; use IEEE.STD LOGIC 1164.ALL; entity compteur 8bits data th is Q W Q Q X * K N 2 2 4 1 1 1 1 1 -- Port (); end compteur_8bits_data_tb; architecture Behavioral of compteur 8bits data tb is component compteur_8bits_data Port (clk : in STD_LOGIC; reset :in STD LOGIC; sortie_synchro: out STD LOGIC; sortie_compteur_8bits : out STD_LOGIC_VECTOR (7 downto 0) a sortie synchro end component; signal clk : std_logic; signal reset : std logic; **[6]** signal sortie_synchro: STD_LOGIC; signal sortie_compteur_8bits : std_logic_vector(7 downto 0); 16 [4] -- Instantiate the Unit Under Test (UUT) uut: compteur_8bits_data PORT MAP (clk => clk, reset => reset, sortie synchro => sortie synchro, sortie compteur 8bits => sortie compteur 8bits clkgen : process --generation d'un signal d'horloge @ 1KHz begin clk <='1'; wait for 40ns; clk <='0'; wait for 40ns; end process; rst : process begin reset <='1'; wait for lus; reset <='0'; wait; end process; end Behavioral;

Simulation d'un compteur 8 bits sur carte Cmod A7 Utilisation d'Analog Discovery 2

Comparaison entre la simulation fonctionnel et la mesure avec le module Analog Discovery (digital chanel)

