

beschreibung der schnittstellen zur leistungsreduzierung

Version	Art	Status	(A) Autor (B) Bearbeiter (K) Kommentierung	Erstellt	Kommentar
V01	Erstellung	i.B.	(A) Thomas Dzillak	26.09.18	
V02	Ergänzung	i.B.	(B) Thomas Dzillak	12.02.19	
V03	Freigabe	freigegeben	(B) Thomas Dzillak	15.05.19	
V04	Änderung	freigegeben	(B) Thomas Dzillak	11.11.19	Neue Designvorlage
V05	Ergänzung	freigegeben	(B) Thomas Dzillak	15.09.20	Kap. 5.7

Inhalt

1	Ta	beller	ellenverzeichnis3						
2	All	lgeme	in	3					
	2.1	Abk	kürzungen	3					
	2.2	Rel	evante Dokumente	3					
3	Zie	el des	Dokumentes	4					
4	Eir	nleitui	ng	4					
5	Ве	schre	ibung der Modbus Schnittstelle	4					
	5.1	Allg	emeiner Protokollaufbau (Header)	4					
	5.2	1.1	Transaktionsnummer	5					
	5.2	1.2	Slave ID	5					
	5.2	1.3	Funktionscode allgemein	5					
	5.2	1.4	Daten	6					
	5.2	Fun	ktionscode	6					
	5.3	Reg	isterarten	6					
	5.4	Reg	isterzuordnung	7					
	5.5	Feh	lerbeschreibungen	8					
	5.6	Tele	egramm- Beispiele	9					
	5.6	6.1	Funktion[0x03] Read Holding Register	9					
	5.7	Erg	änzungen und Beispiele	9					
	5.7	7.1	Leistung Ladesäule/ Ladestrang	9					
	5.7	7.2	Einzelne Ladepunkte	10					
	5.7	7.3	Intervallregister/ Fallbackwert	10					
6	Ве	schre	ibung des OCPP Telegramms	10					
7	ما	ictuno	scraguliarung mittals Rundstauaramnfängar	11					

Version: V04

Stand: 17.09.2020

1 Tabellenverzeichnis

Tabelle 1: Abkürzungen	3
Tabelle 2: relevante Dokumente	
Tabelle 3: Modbus Header	5
Tabelle 4: Ausschnitt festgelegter Codes	
Tabelle 5: Registerarten	
Tabelle 6: Registerzuordnung, * noch nicht implementiert	
Tabelle 7: Aufbau Fehlerantwort	
Tabelle 8: Beschreibung Fehlercode	9

2 Allgemein

2.1 Abkürzungen

Abkürzung	Erklärung
LS	Ladesstation = Ladeeinrichtung
LP	Ladepunkt
MBAP	Modbus Application Protocol
TCP/IP	Transmission Control Protocol/ Internet Protocol
MSB	engl. most significant bit
ОСРР	engl. Open Charge Point Protocol

Tabelle 1: Abkürzungen

2.2 Relevante Dokumente

Nr.	Dokument	Bezug	Dateiname und Version
1	Modbus Application Protocol	Referenz	V1.1b
2	Modbus Messageing on	Referenz Guide	V1.0b
	TCP/IP Implementation Guide		
3	OCPP Specification	LM Telegramm	OCPP Spec 1.6 Final 2015

Version: V04

Stand: 17.09.2020

Tabelle 2: relevante Dokumente

3 Ziel des Dokumentes

Ziel dieses Dokumentes ist die möglichst detaillierte Beschreibung der Schnittstelle zur Leistungsregulierung der Ladeeinrichtung.

4 Einleitung

Für ein möglichst effektives Laden von Elektrofahrzeugen sind hohe Anschlussleistungen nötig. Um dennoch komfortabel und wirtschaftlich die Infrastruktur dafür bereit zu stellen, ist ein dynamisches Lastmanagement sinnvoll. Dabei wird die Anschlussleistung für einzelne Fahrzeuge temporär reduziert und führt somit nicht zu einer Überlastung des Anschlusses. Sollten Fahrzeuge fertig geladen sein, so wird die jetzt nicht mehr benötigte Leistung verteilt.

Für die Kommunikation sollte eine möglichst offene und störungsresistente Schnittstelle benutzt werden. In der Industrie hat sich Modbus TCP etabliert und ist zum De-facto-Standard geworden. In der Welt der e-mobility hat sich ein offener Standard verbreitet. Dort ist eine Reduzierung der Leistung mit einem OCPP Telegramm. Diese Möglichkeiten bieten Ladesäulen mit einem OCCP 1.6 oder höheren Version.

Eine weitere Notwendigkeit zur Leistungsregulierung ergibt sich aus Netzstabilitätsgründen aus Sicht der Energieversorger. Das Schalten von großen Verbrauchern führt zu einer Destabilisierung des Versorgungsnetzes. Um dem entgegen zu wirken sollte eine Nachregelung des Netzes (andere Lasten reduzieren)erfolgen. Dieses führt zu einer Stabilisierung. Die Leistungsreduzierung wird mittels Rundsteuerempfänger geregelt.

5 Beschreibung der Modbus Schnittstelle

Bei Modbus TCP handelt es sich um eine bidirektionale Client/Server Kommunikation, die Prozessdaten über Ethernet TCP/ IP übertragt. Dabei sind die Rollen des Clients und des Servers nicht fest zugeordnet, jeder Bus-Teilnehmer kann beides. Der Zugriff auf Daten erfolgt lesend oder schreibend und kann auf bestimmte Daten reglementiert werden.

Die Kommunikation erfolgt durch eine Anfrage (request) des Clients an den Server über den TCP Port 502. Dieser bestätigt die Anfrage (response) und gibt dieser Bestätigung angefragte Daten, Statusinformationen oder Fehlerinformationen mit. Die Daten können Bit- und Wortinformationen enthalten. Daten, die länger als ein Byte sind, werden in ein Modbustelegramm eingetragen mit dem höherwertigen Byte zuerst (Big-Endian). Bei einer Bitfolge wird das höchstwertigste Bit zuerst übermittelt, d. h. es steht innerhalb eines Wortes links.

5.1 Allgemeiner Protokollaufbau (Header)

Byte Nr.		Wert (Hex)	Beschreibung
0-1	2		Transaktionsnummer
2-3	2	00 00	Für Modbus- Protokoll immer 00 00

Version: V04

Compleo Charging Solutions GmbH

Dzillak, Thomas Stand: 17.09.2020

Byte Nr.	Größe (Byte)	Wert (Hex)	Beschreibung
4-5	2		Anzahl der noch folgende Bytes, wobei HighByte = 0, da alle Telegramme < 256 Byte sind
6	1		Slave ID (wird ignoriert, da Adressierung über TCP/IP), sollte möglichst 0xFF gesetzt werden, außer bei Kommunikation via Gateway, dann wie gehabt.
7	1		Funktionscode
8-n			n Bytes Daten, ohne CRC Checksumme, da auf TCP/IP die Prüfsumme schon implementiert ist.

Tabelle 3: Modbus Header

5.1.1 Transaktionsnummer

Die Transaktionsnummer (Byte[0,1]) wird benötigt, damit eine Unterscheidung bei gleichzeitig aktiven Anfragen gegeben ist.

5.1.2 Slave ID

Die Slave ID (Byte[6])ist nur der Vollständigkeit halber aufgenommen. Sie wird bei Modbus TCP ignoriert, da die Adressierung der Geräte über den TCP/ IP Layer durchgeführt wird.

5.1.3 Funktionscode allgemein

Der Bereich für den Funktionscode (Byte[7])ist grundlegend in drei Bereiche zu unterteilen.

- 1. Öffentlicher Bereich (standarisiert und veröffentlicht) => Definition und Validierung durch Modbus Org.
- Nutzerspezifische Bereich => Funktion und Implementierung durch den Benutzer/ Anwendung
- Reservierter Bereich => Nutzung durch Legacy-Anwendungen und zur Fehlersignalisierung

Der Funktionscode 0 ist dabei nicht zu verwenden. Die Aufteilung sieht wie folgt aus:

Version: V04

Stand: 17.09.2020

Abbildung 1: Bereiche Funktionscode

5.1.4 Daten

Der Datenbereich entspricht dem des Modbus Standard Protokoll. Die CRC Checksumme für die Prüfung der Datenintegrität entfällt, da sie auf dem TCP/IP Layer implementiert ist.

5.2 Funktionscode

Durch die Modbus Org. festgelegte Funktionscodes:

Code	Modbus Funktion	Beschreibung
0x01	Read Coil	
0x02	Read Discrete	
0x03	Read Holding	
0x04	Read Input	
0x05	Write Single Coil	
0x06	Write Single Register	
0x0F	Write Multiple Coils	
0x10	Write Multiple Register	

Tabelle 4: Ausschnitt festgelegter Codes

5.3 Registerarten

Registerart	Wert	Zugriff				
Input	16 Bit	Lesen				
Discrete	1 Bit	Lesen				
Holding	16 Bit	Lesen / Schreiben				
Coil	1 Bit	Lesen / Schreiben				

Tabelle 5: Registerarten

Compleo Charging Solutions GmbH
Dzillak, Thomas

Version: V04 Stand: 17.09.2020

Seite 6 / 11

5.4 Registerzuordnung

Тур	Adresse	Wert	Zugriff	Funktion	Kodierung
Holding	0x0000	16 Bit	r/w	Max. Einspeiseleistung LS, 3 phasig. Die maximale Leistung pro Phase ist der eingestellte Wert / 3	Unsigned Integer, 100W-Schritte
Holding	0x0001	16 Bit	r/w	Leistungsvorgabe in % der Anschlussleistung	Integer, %
Holding	0x0002	16 Bit	r/w	Max. erlaubte Schieflast	Integer, 0,1A, I≥ 20, Default 20 A
Holding	0x0003	16 Bit	r/w	Max. Einspeiseleistung LS, 3 phasig, wird als Fallbackwert bei Ausfall der Kommunikation benutzt.	Unsigned Integer, 100W-Schritte
Holding	0x0004	16 Bit	r/w	Sollwert in % der max. Anschlussleistung der LS, wird als Fallbackwert bei Ausfall der Kommunikation benutzt	Integer, %
Holding	0x0005	16 Bit	r/w	Wenn Zeitpunkt des letzten Kommandos > 2 x Intervallzeit ist, dann wird auf den Fallbackwert zurückgestellt	Integer, Sekunden
Input	0x0006 0x0007	32 Bit	r	Firmware-Version	Main << 24 Minor << 16 Patch << 8 Add (little endian)n
Input	0x0008	16 Bit	r	Anzahl der Ladepunkte	
Input	0x0009	16 Bit	r	Aktuelle Leistung	Unsigned Integer, 100W-Schritte
Input	0x000A	16 Bit	r	Gesamtstrom Phase 1	Integer, 0,1 A- Schritte
Input	0x000B	16 Bit	r	Gesamtstrom Phase 2	Integer, 0,1 A- Schritte
Input	0x000C	16 Bit	r	Gesamtstrom Phase 3	Integer, 0,1 A- Schritte
Input	0x000D	16 Bit	r	Nicht verwendete Leistung	Unsigned Integer, 100W-Schritte

Version: V04

Stand: 17.09.2020

Register pro Ladepunkt. Basisadresse: 0x0100 + Ladepunktnummer (nullbasiert) * 0x0010

Holding	0x0	16 Bit	r/w	Max. Leistung	Unsigned Integer,
					100W-Schritte
Input	0x1	16 Bit	r	Status-Code.	Bit 0: Aktiv
					Bit 1: Lädt
					Bit 2: Begrenzt
					Bit 3: Fehler
					Bit 4: Bevorzugter
					Ladepunkt 1P*
					Bit 5: Bevorzugter
					Ladepunkt 2P*
Input	0x2	16 Bit	r	Aktuelle Leistung	Unsigned Integer,
					100W Schritte
	0x3	16 Bit	r	Strom Phase 1	Integer, 0,1 A-
					Schritte
	0x4	16 Bit	r	Strom Phase 2	Integer, 0,1 A-
					Schritte
	0x5	16 Bit	r	Strom Phase 3	Integer, 0,1 A-
					Schritte
	0x6	32 Bit	r	Ist-Ladezeit	Sekunden, LSW
	0x7				first
	0x8	16 Bit	r	Geladene Energiemenge	Unsigned Integer
				(nicht zu	100Wh-Schritte
				Abrechnungszwecken)	

Tabelle 6: Registerzuordnung, * noch nicht implementiert

5.5 Fehlerbeschreibungen

Fehler werden vom Empfänger mit einer Fehlerkennung an den Sender zurückgeschickt. Dabei wird von der Anforderung (request) eine Kopie erzeugt und zu dem Funktionscode wird das höchstwertige Bit (MSB) als Maskierung für einen Fehler gesetzt. Anschließend wird ein standarisierter Fehlercode mitgeliefert.

MBAP Header	Funktions-Code	Daten
Kopie des Request	Funktions-Code + 0x80	Fehlercode

Tabelle 7: Aufbau Fehlerantwort

Fehlercode	Bedeutung
0x01	Verwendung eines nicht unterstützten Funktionscode
0x02	Verwendung einer ungültigen Speicheradresse: Ungültige Registeradresse verwendet oder Versuch auf eine schreibgeschützte Registeradresse zu schreiben
0x03	Verwendung unerlaubter Datenwerte, z.B. eine unerlaubte Anzahl Register
0x06	Server busy (max. Anzahl gleichzeitiger Transaktionen erreicht)

Version: V04

Compleo Charging Solutions GmbH

Dzillak, Thomas Stand: 17.09.2020

0x0B	Fehlermeldung des Gateways: Keine Antwort vom adressierten Gerät
	(Timeout)

Tabelle 8: Beschreibung Fehlercode

5.6 Telegramm- Beispiele

5.6.1 Funktion[0x03] Read Holding Register

Beispiel: Auslesen einer Int16-Zahl aus der Registeradresse 0x0100 vom Gerät 17

Request: Client -> Server

Transaktions-		Protokoll ID		Anzahl		Geräte	Funktion		Dat	en	
ID				Datenbytes		ID		Startadresse		Anzah	I
										Regist	er
0x00	0x00	0x00	0x00	0x00	0x06	0x11	0x03	0x01	0x00	0x00	0x02

Response: Server -> Client

Transaktions-		Protokoll ID		Anzahl		Geräte	Funktion	Daten		
ID				Datenbytes		ID		Anzahl Info		nation
								Bytes		
0x00	0x00	0x00	0x00	0x00	0x05	0x11	0x03	0x02	0x00	0x3F

Bsp.: >>> 00 00 00 00 00 06 11 03 01 00 00 02

<<< 00 00 00 00 00 05 11 03 02 **00 3F**

5.7 Ergänzungen und Beispiele

5.7.1 Leistung Ladesäule/ Ladestrang

Die Register 0x0000 und 0x0001 beschreiben denselben Wert und repräsentieren die maximale Leistung am Anschlusspunkt der einzelnen Ladesäule oder des Ladestranges. Zu diesem extern beschreibbaren Wert existiert ein interner nicht veränderbarer Konfigurationswert. Der jeweils kleinere Wert wird dann für die Leistungsvorgabe für die Ladesäule/Ladestrang benutzt.

Wenn in das Register 0x0001 der Wert 50 geschrieben würde, wird der Leistungswert des Registers 0x0000 von der LS neu berechnet und dort hinterlegt. Folgend zwei Beispiele:

Ausgangspunkt 44 kW Anschlussleistung der LS.

Register 0x0000 wird mit dem Wert 220 vom Client (entspricht einem Leistungswert von 22 kW) beschrieben

⇒ Register 0x0001 wird von der LS (Master) geupdatet mit dem Wert 50 (22 kW entspricht 50% der Anschlussleistung)

Ausgangspunkt wie oben

Register 0x0001 wird mit dem Wert 75 vom Client beschrieben

Register 0x0000 wird vom Master mit dem Wert 330 (entspricht einer Leistung von 33 kW) geupdatet

Compleo Charging Solutions GmbH Version: V04

Dzillak, Thomas Stand: 17.09.2020

09.2020 Seite 9 / 11

5.7.2 Einzelne Ladepunkte

Die Abfrage/ das Setzten des einzelnen Ladepunkt funktioniert wie folgt: Ausgangspunkt ist eine LS mit 2 Ladepunkten (Ladepunktnummer 0 und 1).

[Formel]

Registeradresse = Basisadresse + Ladepunktnummer * Offset

Annahme:

Sie wollen die max. Leistung vom Ladepunkt **0** lesen/schreiben.

0x0100 + 0 * 0x0010 = 0x0100 = max. Leistung

= 0x0101 = Status

= 0x0102 = aktuelle Leistung

....

Annahme:

Sie wollen die max. Leistung vom Ladepunkt 1 lesen/schreiben.

0x0100 + 1 * 0x0010 = 0x0110 = max. Leistung

= 0x0111 = Status

= 0x0112 = aktuelle Leistung

....

Anmerkung:

Nachdem die Leistung für die Ladesäule/ Ladestrang (Register 0x0000 oder 0x0001) gesetzt wurde, muss den einzelnen Ladepunkten die Leistung zugewiesen werden.

5.7.3 Intervallregister/ Fallbackwert

Das Intervallregister ist so zu verstehen, dass wenn der interne Timer den 2 fachen Wert des Registers 0x0005 (Beispiel 60 Sekunden \triangleq 2 x 60 Sekunden =120 Sekunden) überschritten wird und keine Kommunikation mehr stattgefunden hat, die Leistung auf den im Register 0x0003/4 Wert gesetzt wird. Für das Zurücksetzten des Timers wird das Lesen oder Schreiben eines beliebigen Registers benutzt.

6 Beschreibung des OCPP Telegramms

Bei einer OCPP Verbindung handelt es sich um eine TCP/IP Verbindung, bei der die entsprechenden OCCP Telegramme versendet werden. Dabei kann die physikalische Schnittstelle eine lokale Ethernetschnittstelle oder eine GSM Schnittstelle sein. Die Interpretation der Daten erfolgt dann gemäß Spezifikation. Diese ist so umfangreich, dass in diesem Dokument nur auf das spezielle "SmartChargingShedule" bzw. auf das "ChargingShedule" eingegangen wird. Das ChargingShedule hat neben der erlaubten Ladeleistung noch viele weitere Attribute.

Stand: 17.09.2020

Version: V04

Abbildung 2: UML- Klassendiagram ChargingProfile

Zu erkennen sind die Attribute "minChargingRate" in der Teilklasse ChargingShedule, sowie "limit" in ChargingShedulePeriod. Diese Attribute enthalten den Stromwert in Ampere mit einer Nachkommastelle (z.B. 8.1) und erlauben eine untere und obere Grenze.

7 Leistungsregulierung mittels Rundsteuerempfänger

Die Leistungsregulierung mittels Rundsteuerempfänger ist die unflexibelste Variante. Mittels Rundsteuerempfänger wird ein Relaiskontakt geschaltet, der eine Spannung unterbricht, wodurch der Ladevorgang beendet wird.

Version: V04

Stand: 17.09.2020

Über den Rundsteuerempfänger kann später das Einschaltsignal erfolgen und je nach Konfiguration der Ladeeinrichtung wird der Ladevorgang automatisch fortgesetzt oder muss neu gestartet werden.