

分类专栏: 可怕的生成网络系列 (GAN、VAE。。。。。) 深度学习——旧坛新酒系列 文章标签: VAE

忏悔

前段时间学习了《Auto encoding variational bayes》这篇文章,处 于种种原因,还写了一篇博客,

https://blog.csdn.net/qq 31456593/article/details/77743840, 近日 想要自己再重新复习一下,发现当时的理解是相当的不到位,叙述 也是模棱两可的,花了很大力气,又重新看了两天,有了许多新的 理解, 我决定把它写下来。当然认知水平的高低不可能一蹴而就, 我希望下次我继续读这个内容的时候又会有新的理解。

1) 关于VAE还是AEV

在上一篇博客中,我主要学习的是《Auto encoding variational bayes》这篇文章,所以我自作主张的讲它缩写为AEV。这几天, 在大量阅读相关文献博客期间,发现,卧槽,人家叫VAE,全称 variational auto encoding。经验主义害死人,看文献细看几眼总归 是不会有错的。

言归正传,那么什么是VAE呢?简单来讲,一个可以和GAN相媲美 的生成网络。我们可以输入一个低维空间的Z,映射到高维空间的 真实数据。比如,生成不同样的数字,人脸,卡通头像等等。

讲的天花乱坠,不如一张图片来的实在,上图就具体展示了VAE的 作用,作图是经过一轮训练之后的输出结果,中间的图是经过9轮 训练之后的输出结果,而右图就是我们真实地数据。(这里我猜测 是将图片先编码,再解码这个全过程,而不是仅仅通过一个随机量 去生成)。

2) VAE与GAN之间的差异性

既然VAE与GAN都是属于最近很火的生成网络序列,那么他们之间 有什么不同呢?

假设,给定一系列猫的照片,我希望你能够对应我随机输入的一个 n维向量,生成一张新的猫的照片,你需要怎么去做?对于GAN就 是典型的深度学习时代的逻辑,你不是不清楚这个n维向量与猫的 图片之间的关系嘛,没关系,我直接拟合出来猫的图片对于n维向 量的分布,通过对抗学习的方式获得较好的模型效果,这个方法虽 然很暴力,但是却是有效的。

VAE则不同, 他通过说我希望生成一张新的猫脸, 那么这个n维向 量代表的就是n个决定最终猫脸模样的隐形因素。对于每个因素, 都对应产生一种分布,从这些分布关系中进行采样,那么我就可以 通过一个深度网络恢复出最终的猫脸。VAE相比较于GAN它的效果 往往会略微模糊一点,但是也不失为一种良好的解决方案。并且相

对于GAN的暴力求解,VAE的建模思路无疑要复杂的多,它更能点赞Mark关注该博主,随时了解TA的最新博文 📀 现理科思维的艺术感

想象这样一个网络, 输入是一组全部为一的问量, 目标是一张人 脸,经过好多好多轮的训练。我们只要输入这个全部唯一的向量就 可以得到这张你熟悉的脸。其实这是因为在训练的过程中, 我们通 过不断地训练,网络已经将这张人脸图片的参数保存起来了。

这个工作其实已经可以看出他的意义所在了,通过一个网络,将一 个高维空间的人脸映射为低维空间的一个向量。那么如果我将这个 向量定义为四维,采用one-hot的表达方式表达四张不同的脸,那 么这个网络就可以表达四个脸, emm, 你输入不同的数据, 他就 会输出不同的脸来。

你也许会说, 那这个几维向量又代表什么呢? 如果每增加一个脸就 要相应增加空间的维度,那么这个过程也就太不科学了吧。 嗯,科 学的是,以上只是我随手为了方便大家理解举的例子,其实,在实 际应用中,这个维度往往代表的是决定最后成型的各个因素,大家 往往称之为隐形因素,也就是在大量的博客推导中我们所看到的 Z。在下面这个图中, 我们通过六个因素来描述最终的人脸形状, 而这些因素不同的值则代表了不同的特性。

是不是有朋友会觉得,那你这个VAE到底有什么用呢,就为了把大 量的数据存储到网络结构中去呀,当然不能是这么简单的一个事。 想象一下,在一个末日大片中,我们需要去搞出一个许多机器人占 领世界的场面, 但是我们的特效师一张张去画, 这无疑会是一个令 人头疼的工作,利用VAE,只需要使用有限的数据输入,我们就可 以通过隐形参数的调节,获得几乎无限的数量。

有人也许会问了, 你为什么可以生成从来没有出现过的图片。这里 就要介绍一下VAE中的编码器,对于每个隐性参数他不会去只生成 固定的一个数,而是会产生一个置信值得分布区间,这是一种连续 的表达方式,通过采样,我们就可以获得许多从来没有见过的数据 了。

点赞Mark关注该博主, 随时了解TA的最新博文

这一篇先到这里,更多内容请阅读《VAE全面理解(下)》

Latent attributes

参考:

- 1、VAE(Variational Autoencoder)的原理
- 2、https://www.jeremyjordan.me/variational-autoencoders/
- 3、读论文《Auto-Encoding Variational Bayes》
- 4、变分自编码器VAE:原来是这么一回事 | 附开源代码

学术交流可以关注我的公众号,后台留言,粉丝不多,看到必回

2020年 2篇 2018年 36篇

点赞Mark关注该博主,随时了解TA的最新博文 😢

