Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения» Отчет по рубежному контролю №1 «Технологии разведочного анализа и обработки данных» Вариант №11

Выполнил:	Проверил:		
Студент(ка) группы ИУ5-65Б	преподаватель каф. ИУ5		
Тазенков Иван	Гапанюк Юрий		
Дмитриевич	Евгеньевич		
Подпись:	Подпись:		
Дата:	Дата:		

Москва, 2023 г.

Тазенков Иван Дмитриевич, ИУ**5-65**Б Вариант №**11:** номер задачи - **2;** номер набора данных - **3.**

```
In [ ]:
```

```
import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
import seaborn as sns
import matplotlib.pyplot as plt
from pylab import rcParams # для того, чтобы задавать размер диаграмм
%matplotlib inline
```

In [2]:

```
data = pd.read_csv('/kaggle/input/fivethirtyeight-comic-characters-dataset/marvel-wikia-d
ata.csv', sep=',')
```

In [3]:

```
data.head()
```

Out[3]:

	page_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	
0	1678	Spider- Man (Peter Parker)	√Spider-Man_(Peter_Parker)	Secret Identity		Hazel Eyes	Brown Hair	Male Characters	NaN	Cha
1	7139	Captain America (Steven Rogers)	VCaptain_America_(Steven_Rogers)	Public Identity	Good Characters	Blue Eyes	White Hair	Male Characters	NaN	Cha
2	64786	Wolverine (James \"Logan\" Howlett)	\/Wolverine_(James_%22Logan%22_Howlett)	Public Identity	Neutral Characters	Blue Eyes	Black Hair	Male Characters	NaN	Cha
3	1868	Iron Man (Anthony \"Tony\" Stark)	\/Iron_Man_(Anthony_%22Tony%22_Stark)	Public Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Cha
4	2460	Thor (Thor Odinson)	∨Thor_(Thor_Odinson)	No Dual Identity	Good Characters	Blue Eyes	Blond Hair	Male Characters	NaN	Cha
4										Þ

In [4]:

```
data.isnull().sum()
```

Out[4]:

page id	0
page_ru	0
name	0
urlslug	0
ID	3770
ALIGN	2812
EYE	9767
HAIR	4264
SEX	854
GSM	16286
ALIVE	3

```
APPEARANCES 1096
FIRST APPEARANCE 815
Year 815
dtype: int64

In [5]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16376 entries, 0 to 16375
Data columns (total 13 columns):
# Column Non-Null Count Dtype
```

0 page_id 16376 non-null int64 name 16376 non-null object 1 16376 non-null object 2 urlslug 3 ID 12606 non-null object 4 ALIGN 13564 non-null object 5 EYE 6609 non-null object 6 HAIR 12112 non-null object 7 15522 non-null object 8 GSM 90 non-null object 9 ALIVE 16373 non-null object 10 APPEARANCES 15280 non-null float64 11 FIRST APPEARANCE 15561 non-null object 15561 non-null float64 dtypes: float64(2), int64(1), object(10) memory usage: 1.6+ MB

In [6]:

Out[6]:

Количество пропусков Процент пропусков

urlslug	0	0.000000
ALIVE	3	0.018319
FIRST APPEARANCE	815	4.976795
Year	815	4.976795
SEX	854	5.214949
APPEARANCES	1096	6.692721
ALIGN	2812	17.171470
ID	3770	23.021495
HAIR	4264	26.038105
EYE	9767	59.642159
GSM	16286	99.450415

Обработка пропусков для категориального признака "GSM"

Выполним удаление данного признака так как отстутствуют 99% данных

```
In [7]:
```

```
data.drop(['GSM'], axis=1, inplace=True)
```

OFFICE TO THE PARTY OF THE HADDEADANCES!

Оораоотка пропусков для АРРЕАВАНСЕЗ

Заполненим этот признак так как пропуски незначительные (всего 6%)

In [8]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x = "APPEARANCES", y = "Year", data=data, hue='HAIR')
```

Out[8]:

<AxesSubplot: xlabel='APPEARANCES', ylabel='Year'>

Для заполнения будем использовать моду "Наиболее вероятный":

In [9]:

```
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data[['APPEARANCES']])
imp_num = SimpleImputer(strategy='most_frequent')
data_num_imp = imp_num.fit_transform(data[['APPEARANCES']])
data['APPEARANCES'] = data_num_imp
filled_data = data_num_imp[mask_missing_values_only]
print('APPEARANCES', 'most_frequent', filled_data.size, filled_data[0], filled_data[filled_data.size-1], sep='; ')
```

```
APPEARANCES; most_frequent; 1096; 1.0; 1.0
```

Еще один графичек чтобы был)))

```
In [10]:
```

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x = "SEX",y = "Year", data=data, hue='ALIVE')
```

Out[10]:

<AxesSubplot: xlabel='SEX', ylabel='Year'>

Итоговый вид датасета после обработки пропусков в двух признаках

```
In [11]:
```

U	page 1d	16376	non-null	ınt64	
	page_ru				
1	name	16376	non-null	object	
2	urlslug	16376	non-null	object	
3	ID	12606	non-null	object	
4	ALIGN	13564	non-null	object	
5	EYE	6609 r	non-null	object	
6	HAIR	12112	non-null	object	
7	SEX	15522	non-null	object	
8	ALIVE	16373	non-null	object	
9	APPEARANCES	16376	non-null	float64	
10	FIRST APPEARANCE	15561	non-null	object	
11	Year	15561	non-null	float64	
<pre>dtypes: float64(2), int64(1), object(9)</pre>					
memory usage: 1.5+ MB					

Парная диаграмма

In [16]:

sns.pairplot(data)

Out[16]:

<seaborn.axisgrid.PairGrid at 0x7ce0dea41f00>

