REGRESSION ASSIGNMENT

1) Identified problem statement:

Predict the Insurance charges for people with the given input.

2) Rows and Columns:

1338*6

3) Preprocessing Method:

Categorical Data converted to numbers:

Column— Sex and Smoker=>Nominal => One hot Encoding (from pd.get.dummies)

4) Developed Model with R2 score :

Attached with detailed documents below.

TO FIND BEST MODEL FROM R2 SCORE WITH HYPER PARAMETE

1.MULTIPLE LINEAR REGRESSION	R2 Score	0.78
------------------------------	----------	------

		2.SUPPORT VECTOR MACHINE- REG					
HYPER.PARAMETER	LINEAR (R2)	RBF (R2)	POLY (R2)	SIGMOID (R2)			
C =1.0	-0.01	-0.08	-0.07	-0.075			
C=10	0.46	-0.03	0.038	0.039			
C=100	0.62	0.32	0.61	0.52			
C=1000	0.76	0.81	0.85	0.28			
C=2000	0.74	0.85	0.86	-0.59			
	C =1.0 C=10 C=100 C=1000	C = 1.0	C = 1.0	C = 1.0 -0.01 -0.08 -0.07 C=10 0.46 -0.03 0.038 C=100 0.62 0.32 0.61 C=1000 0.76 0.81 0.85			

SVMR	R2 Score	0.86	(Poly,C=2000)

3.DECISION TREE-REG					
S.NO	CRITERION	MAX-FEATURES	SPILTTER	R2 SCORE	
1	squared_error	auto	best	-0.025	
2	squared_error	sqrt	best	-0.017	
3	squared_error	log2	best	-0.082	
4	squared_error	auto	random	0.089	
5	squared_error	sqrt	random	-0.016	
6	squared_error	log2	random	0.06	
7	friedman_mse	auto	best	-0.23	
8	friedman_mse	sqrt	best	-0.21	
9	friedman_mse	log2	best	0.048	
10	friedman_mse	auto	random	-0.4	
11	friedman_mse	sqrt	random	-0.046	
12	friedman_mse	log2	random	-0.16	
13	absolute_error	auto	best	-0.24	
14	absolute_error	sqrt	best	-0.019	
15	absolute_error	log2	best	-0.17	
16	absolute_error	auto	random	-0.14	
17	absolute_error	sqrt	random	-0.32	
18	absolute_error	log2	random	-0.26	
19	poisson	auto	best	-0.31	
20	poisson	sqrt	best	-0.14	
21	poisson	log2	best	-0.15	
22	poisson	auto	random	0.084	
23	poisson	sqrt	random	0.087	
24	poisson	log2	random	-0.022	

	DTR	R2 Score	less than (0.08)	Model can not be generated in Decision tree as r2 score very less
--	-----	----------	------------------	---

4.RANDOM FOREST-REG				
S.NO	CRITERION	MAX-FEATURES	n_estimators	R2 SCORE

1	squared_error	sqrt	100	0.87
2	squared_error	log2	100	0.86
3	squared_error	None	100	0.84
4	absolute_error	sqrt	100	0.87
5	absolute_error	log2	100	0.86
6	absolute_error	None	100	0.85
7	friedman_mse	sqrt	100	0.86
8	friedman_mse	log2	100	0.86
9	friedman_mse	None	100	0.85
10	poisson	sqrt	100	0.83
11	poisson	log2	100	0.83
12	poisson	None	100	0.83

RFR R2 Score	0.87 (MAE,max-feature=sqrt,n-estima	tor=100)
--------------	-------------------------------------	----------

	BEST MODEL:					
1		Random Forest Regression	0.87(R2 Score)	(MAE,max-feature=sqrt, n		
1 Random Forest Regression		0.87 (NZ 3001E)	estimator=100)			
2	<u>-</u>	Support Vector Machine Regression	0.86(R2 Score)	(Poly,C=2000)		