# BIKE PRICES – FEATURE ENGINEERING & EXPLORATORY DATA ANALYSIS (EDA)

#### **SUBTITLE:**

A MACHINE LEARNING PROJECT BY SWARAJ VERMA – DATA ANALYST

#### **OBJECTIVE:**

TO ANALYZE USED BIKE LISTINGS AND IDENTIFY KEY FACTORS AFFECTING SELLING PRICES USING FEATURE ENGINEERING AND EXPLORATORY DATA ANALYSIS.

- Understand the **impact of bike features** (e.g., power, mileage, age) on pricing.
- Extract hidden insights from unstructured model data.
- Engineer new variables like bike age, brand, and owner category encoding.
- Identify data quality issues (missing values, inconsistencies) and apply cleaning techniques.
- Perform univariate and bivariate analyses to uncover pricing trends.
- Provide a data-driven foundation for predictive modeling of used bike prices.

#### **Dataset Overview**

#### **Dataset Columns:**

model\_name: Full name (includes model, year, engine info)

•model\_year: Manufacturing year•kms\_driven: Total kilometers driven

•owner: Owner category (1st, 2nd, etc.)

location: City/region of sale
 mileage: Fuel efficiency (kmpl)
 power: Engine power (BHP)
 price: Target variable (INR)

brand: Brand name (to be extracted)cc: Engine capacity (if available)

# STEP I – LOAD & INSPECT DATA DATA COLLECTION & PREPARATION

- Checked dataset shape (rows x columns)
- •Reviewed data types of each column
- Identified missing values using isnull().sum()
- Detected duplicate records using duplicated().sum()
- •Generated summary statistics for numerical & categorical variables
- using describe(include='all')

### **HEAT MAP SHOW**



#### TOP 10 MOST SOLD BIKE MODELS



### **SCATTER PLOT**



# BIKE MODEL YEAR



# BOXPLOT OF BIKE MODEL YEARS



#### DISTRIBUTION OF BIKES BY MODEL YEAR



#### PRICE DISTRIBUTION OF BETWEEN OUTLIERS



### PRICEVS ENGINE POWER



# The correlation between price and engine power is: 0.85



# COUNT OF BIKES WITH DIFFERENT ENGINE TYPES



### **CORRELATION MATRIX**



#### DISTRIBUTION OF BIKES PRICES



#### DISTRIBUTION OF BIKES PRICES



#### **SUMMARY & INSIGHTS**

- •Power, mileage, and bike age emerged as strong predictors of price
- •Owner type and kilometers driven show significant impact on pricing patterns
- •Feature engineering (brand extraction, bike age, owner encoding) greatly enhanced data structure and model-readiness
- •Outliers and missing values were identified and handled to ensure data integrity
- •Insights provide a solid base for **building predictive pricing models**

- •Majority of bikes are listed within the ₹30,000–₹1,00,000 price range
- •High power bikes (above average BHP) tend to demand premium pricing
- •Older bikes (age > 10 years) show a sharp depreciation in price
- •First-owner bikes typically have higher resale value compared to second/third owners
- •Popular brands and models (e.g., Royal Enfield, Honda, Bajaj) retain better market value
- •Missing values in power, mileage, and CC needed careful imputation or exclusion
- •Text fields like model\_name required parsing to extract structured features (brand, engine)
- •Location-wise pricing patterns suggest regional demand-supply influences
- •Dataset was successfully transformed into a clean, structured, and ML-ready format