

# **Causal Inference**

#### Vanessa Didelez and Robin Evans

BIPS, University of Bremen (Germany), and University of Oxford (UK)

August 2023 APTS — Glasgow

## **Overview of Course**



Part 1: Basic Causal Concepts

Part 2: Causal Diagrams
Directed Acyclic Graphs – DAGs; and
Single World Intervention Graphs – SWIGs

Part 3: Estimating a Causal Effect (Point Treatment)

Part 4: Multiple / Sequential Treatments and Causal Mediation

Part 5: Outlook: Instrumental Variables & Causal Discovery

## **Aims of Course**



- Introduce basic concepts of causal learning (reasoning, modelling & inference)
- ... to enable you to read more advanced 'causal' papers
- Focus on:
  - formulating causal (research) questions
  - understanding sources of (avoidable and unavoidable) bias
  - some basic methods: g-methods, propensity score, IVs, causal discovery
- Principles / examples & a some maths

ASK if you have QUESTIONS / comments etc. — ANYTIME!!!

# Who are You?



- Statistics
- Mathematics
- Comp. Science
- Medical / biol / epidemiology
- Econometrics
- Others

# Who are You?



- What is a randomised controlled trial?
- Why do we randomise?
- What is a DAG?
- What is confounding?
- What is Berkson / collider bias?
- What is a propensity score?



• Causality / causal inference very broad topic!



- Causality / causal inference very broad topic!
- Has developed and evolved quite separately in different fields: philosophy, sociology, epidemiology, econometrics, computer science, (statistics), mathematics ...



- Causality / causal inference very broad topic!
- Has developed and evolved quite separately in different fields: philosophy, sociology, epidemiology, econometrics, computer science, (statistics), mathematics ...
- Different terminology, approaches, accepted assumptions, designs / types of data sources



- Causality / causal inference very broad topic!
- Has developed and evolved quite separately in different fields: philosophy, sociology, epidemiology, econometrics, computer science, (statistics), mathematics ...
- Different terminology, approaches, accepted assumptions, designs / types of data sources
- Last few (only!) years: some convergence has emerged across fields



- Causality / causal inference very broad topic!
- Has developed and evolved quite separately in different fields: philosophy, sociology, epidemiology, econometrics, computer science, (statistics), mathematics ...
- Different terminology, approaches, accepted assumptions, designs / types of data sources
- Last few (only!) years: some convergence has emerged across fields
- Causality very fundamental to many research questions in many fields of data science!

# Part 1

# **Basic Causal Concepts**

### **Preamble**



 Causation / causality: philosophical, moral and other usages of the term — not what we are concerned with here

## **Preamble**



- Causation / causality: philosophical, moral and other usages of the term — not what we are concerned with here
- This course: particular (narrow) view of causality most relevant for scientific enquiries: causality we can implement

# **Preamble**



- Causation / causality: philosophical, moral and other usages of the term — not what we are concerned with here
- This course: particular (narrow) view of causality most relevant for scientific enquiries: causality we can implement
- "Causal effect" a difference in outcomes, or their distribution, between (hypothetical) experiments we might do,
  - i.e. effect of (hypothetical) interventions



**Example:** We have data on treatment  $A \in \{0,1\}$  and an outcome Y (positive is better). A further covariate  $Z \in \{0,1\}$  has been measured.



**Example:** We have data on treatment  $A \in \{0,1\}$  and an outcome Y (positive is better). A further covariate  $Z \in \{0,1\}$  has been measured.

 We find that for the treated, the average of Y is considerably larger than for the untreated



**Example:** We have data on treatment  $A \in \{0,1\}$  and an outcome Y (positive is better). A further covariate  $Z \in \{0,1\}$  has been measured.

- We find that for the treated, the average of Y is considerably larger than for the untreated
- However, within each level of Z, we find that the average of Y is considerably smaller for the treated than for the untreated



**Example:** We have data on treatment  $A \in \{0,1\}$  and an outcome Y (positive is better). A further covariate  $Z \in \{0,1\}$  has been measured.

- We find that for the treated, the average of Y is considerably *larger* than for the untreated
- However, within each level of Z, we find that the average of Y is considerably smaller for the treated than for the untreated
- ⇒ Do you recommend treatment or not?

# **Causal Questions**



To obtain a causal answer, start with a causal question!

#### **Causal Questions**



To obtain a causal answer, start with a causal question!

Describe the decision problem you would like to solve, or the ideal (hypothetical) experiment with which you could investigate your research question

⇒ Target Trial &

⇒ formal 'language'!

# **Research Questions**



#### **Descriptive / predictive:**

"Is this patient at high risk of developing complications during surgery?"

# **Research Questions**



### Descriptive / predictive:

"Is this patient at high risk of developing complications during surgery?"

#### Causal:

- (A) "Which type of anaesthetic should this patient receive to minimise the risk of complications during surgery?"
- (A') "How does the amount of anaesthetic affect the risk of complications during surgery?"
- (B) "What can be done to reduce the risk of complications during surgery for an average / a particular type of patient?"

# **Causation versus Association**



(Hernan & Robins, 2020:book)



(**Total**) causal effect: contrast of outcome if 'everyone was treated' versus if 'no-one was treated'



### Principle:

(Hernan & Robins, 2016:AJE)

• Start by formulating the **ideal** trial (experiment / ...) that would answer your **desired** research question



#### Principle:

(Hernan & Robins, 2016:AJE)

- Start by formulating the ideal trial (experiment / ...) that would answer your desired research question
- Stick to good practice of trial design (PICOT):
  - eligibility criteria / relevant population
  - interventions / treatment strategies to be compared (controls?)
  - outcome (over what follow-up time)
  - other aspects: randomised? blinded? ...?



#### Principle:

(Hernan & Robins, 2016:AJE)

- Start by formulating the ideal trial (experiment / ...) that would answer your desired research question
- Stick to good practice of trial design (PICOT):
  - eligibility criteria / relevant population
  - interventions / treatment strategies to be compared (controls?)
  - outcome (over what follow-up time)
  - other aspects: randomised? blinded? ...?
- Important: time-zero alignment of eligibility check, treatment assignment, start of follow-up
  - to avoid immortal-time bias
  - or prevalent-user bias



# Principle ctd:

 Note: must not violate laws of physics (e.g. cannot turn back time); should not deliberately kill patients etc.



## Principle ctd:

- Note: must not violate laws of physics (e.g. cannot turn back time); should not deliberately kill patients etc.
- Then: emulate target trial as closely as possible by analysis & with available (obs.) data!
  - use sequence of trials (at all eligible times) for efficiency
  - use 'cloning' to avoid immortal-time bias



### Principle ctd:

- Note: must not violate laws of physics (e.g. cannot turn back time); should not deliberately kill patients etc.
- Then: emulate target trial as closely as possible by analysis & with available (obs.) data!
  - use sequence of trials (at all eligible times) for efficiency
  - use 'cloning' to avoid immortal-time bias
- ⇒ Systematic approach ensures meaningful research question & minimises design-based sources of bias



- Actual RCTs describe 'efficacy': does the new drug have an effect at all?
- Analyse real-world (i.e. observational) data: to describe 'effectiveness' in real population

### Causal Models 1-0-1



Here: all models probabilistic!

Causal model:

describes situation (distribution) under **(hypothetical) interventions** / manipulations / changes

# Causal Models 1-0-1



#### Here: all models probabilistic!

#### Causal model:

describes situation (distribution) under (hypothetical) interventions / manipulations / changes

... needs to be related to:

**observational** (no intervention / 'natural' / 'idle') situation (distribution) generating our data

# Causal Models 1-0-1



#### Here: all models probabilistic!

#### Causal model:

describes situation (distribution) under (hypothetical) interventions / manipulations / changes

... needs to be related to:

**observational** (no intervention / 'natural' / 'idle') situation (distribution) generating our data

# **Identifiability** (informally):

aspects of the interventional situation equal certain unique functions of the observational situation

# **Basic Concepts**



## Conditional (In)dependence

P(Y = y), p(y) etc. probability / density / prob.mass function

# Conditional independence:

A and Y are conditionally independent given Z, write  $Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp A \mid Z$  , if

$$P(Y = y, A = a \mid Z = z) = P(Y = y \mid Z = z)P(A = a \mid Z = z)$$
 for all  $a, y, z$  s.t.  $p(z) > 0$ .

# **Basic Concepts**



# Conditional (In)dependence

P(Y = y), p(y) etc. probability / density / prob.mass function

# Conditional independence:

A and Y are conditionally independent given Z, write  $Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp A \mid Z$  , if

$$P(Y = y, A = a \mid Z = z) = P(Y = y \mid Z = z)P(A = a \mid Z = z)$$

for all a, y, z s.t. p(z) > 0. Or, equivalently if:

$$P(Y = y \mid A = a, Z = z) = P(Y = y \mid Z = z)$$

or 
$$p(y|a,z) = p(y|z)$$

# **Basic Concepts**



# Conditional (In)dependence

P(Y = y), p(y) etc. probability / density / prob.mass function

# Conditional independence:

A and Y are conditionally independent given Z, write  $Y \perp \!\!\! \perp \!\!\! \perp A \mid Z$ , if

$$P(Y = y, A = a \mid Z = z) = P(Y = y \mid Z = z)P(A = a \mid Z = z)$$

for all a, y, z s.t. p(z) > 0. Or, equivalently if:

$$P(Y = y \mid A = a, Z = z) = P(Y = y \mid Z = z)$$

or p(y|a,z) = p(y|z) — relate this to regression models!

# Basic Concepts Conditional Independence



In words: if we already know (observed) the value of Z then knowing the value A is not informative with respect to the distribution (prediction) of Y

# **Basic Concepts**



## **Conditional Independence**

In words: if we already know (observed) the value of Z then knowing the value A is not informative with respect to the distribution (prediction) of Y

#### **Example:**

- while knowing (only) that some-one has tar-stained fingers is informative to predict if they will develop lung-cancer...
- ... once we also know that they are a smoker, the information on their tar-stained fingers becomes irrelevant

lung-cancer ⊥⊥ tar-fingers | smoking-status

## **Basic Causal Concepts**



Formalisms to make interventions explicit:

do-notation / causal DAGs / decision theory

Potential outcomes / counterfactuals

Structural equations / structural causal models: not much time to cover these...

#### do-Notation



(Pearl, 2000/9:book)

**Judea Pearl** introduced intuitve notation to distinguish association and causation: 'do' and 'see'

$$p(y | \text{intervene to set } A = a) = p(y | \text{do}(A = a))$$

and

$$p(y | \mathsf{observe}\ A = a) = p(y | \mathsf{see}(A = a))$$

 $\Rightarrow$  do-calculus / axioms / directed acyclic graphs (DAGs).

Usually 
$$p(y | see(A = a)) = p(y | a)$$

#### do-Intervention



p(y | do(A = a)) denotes point-intervention in wider system.

#### do-Intervention



 $p(y \mid do(A = a))$  denotes point-intervention in wider system.

Consider:  $Y, A, X_1, X_2$  such that *observationally ('see')*:

$$p(y, a, x_1, x_2) = p(y|a, x_1, x_2)p(a|x_1, x_2)p(x_2|x_1)p(x_1)$$

#### do-Intervention



p(y | do(A = a)) denotes point-intervention in wider system.

Consider:  $Y, A, X_1, X_2$  such that *observationally ('see')*:

$$p(y, a, x_1, x_2) = p(y|a, x_1, x_2)p(a|x_1, x_2)p(x_2|x_1)p(x_1)$$

May have reasons to believe that under intervention on A:

$$p(y, x_1, x_2 | \mathbf{do}(A = \tilde{a})) = p(y | \tilde{a}, x_1, x_2) p(x_2 | x_1) p(x_1).$$

**DAGs** help to structure the *factorisation* so as to represent prior-causal knowledge

# Identifiability



Will see that under **three structural assumptions** we have for suitable set X of covariates:

$$p(y\,|\operatorname{do}(A=a)) = \sum_x p(y\,|\,a,x) p(a)$$

left: interventional distribution; right: observational distrib.

# Identifiability



Will see that under **three structural assumptions** we have for suitable set X of covariates:

$$p(y\,|\operatorname{do}(A=a)) = \sum_x p(y\,|\,a,x) p(a)$$

left: interventional distribution; right: observational distrib.

⇒ **non-parametrically identified**, i.e. without parametric assumptions like linearity, Gaussianity etc.

# **Potential Outcomes (POs)**



(Rubin, 1974; many others)

Consider binary 'treatment'  $A^i \in \{0,1\}$ , individual i

 $Y^i(0)$  = response under intervention setting  $A^i=0$   $Y^i(1)$  = response under intervention setting  $A^i=1$  for same subject (at the same time)

- $\Rightarrow \{Y^i(0), Y^i(1)\}$  can never be observed together
- ⇒ potential outcomes.

#### Note:

POs only well defined if way of manipulating A well defined!

#### **Potential Outcomes**



More generally, for arbitrary treatment type  $A \in \mathcal{A}$   $Y^i(a)$  = response if we  $\textit{set } A^i = a$ 

#### **Counterfactuals**



Once a treatment has been realised, say  $A^i=1$ , then  $Y^i(1)$  can be observed and  $Y^i(0)$  becomes *counterfactual* (and vice versa).

#### **Counterfactuals**



Once a treatment has been realised, say  $A^i=1$ , then  $Y^i(1)$  can be observed and  $Y^i(0)$  becomes *counterfactual* (and vice versa).

Approaches relying on assumptions / properties of the joint distribution of (Y(0),Y(1)) can be called counterfactual as these assumptions are never empirically verifiable.

#### **Counterfactuals**



Once a treatment has been realised, say  $A^i=1$ , then  $Y^i(1)$  can be observed and  $Y^i(0)$  becomes *counterfactual* (and vice versa).

Approaches relying on assumptions / properties of the joint distribution of (Y(0),Y(1)) can be called counterfactual as these assumptions are never empirically verifiable.

**Missing data?** Causal inference sometimes seen as missing data problem — counterfactual outcomes always missing!



Many approaches, in fact, do not rely on *joint* distribution of (Y(0),Y(1)), and could equivalently be expressed using  $do(\cdot)$ -notation.

(but POs strong tradition in biomedical / econometric literature.)



Many approaches, in fact, do not rely on *joint* distribution of (Y(0),Y(1)), and could equivalently be expressed using  $do(\cdot)$ -notation.

(but POs strong tradition in biomedical / econometric literature.)

Can regard p(Y(a)) = p(y | do(A = a))



Many approaches, in fact, do not rely on *joint* distribution of (Y(0),Y(1)), and could equivalently be expressed using  $do(\cdot)$ -notation.

(but POs strong tradition in biomedical / econometric literature.)

Can regard p(Y(a)) = p(y | do(A = a))

But joint distribution of (Y(0), Y(1)) has no counterpart in do–notation.



Many approaches, in fact, do not rely on *joint* distribution of (Y(0),Y(1)), and could equivalently be expressed using  $do(\cdot)$ -notation.

(but POs strong tradition in biomedical / econometric literature.)

Can regard p(Y(a)) = p(y | do(A = a))

But joint distribution of (Y(0),Y(1)) has no counterpart in do–notation.

⇒ Can express more (also more dubious) concepts with POs. (for critique see e.g. Dawid, 2000)

# **Structural Equations Models (SEMs)**



#### aka Structural Causal Models (SCMs)

What makes them structural? (Peters, Janzig, Schölkopf, 2018:book)

 $\mathsf{output} \ \leftarrow f(\mathsf{input})$ 

function  $f(\cdot)$  is invariant to how the 'input' is chosen / generated, e.g. observed or manipulated.

# **Structural Equations Models (SEMs)**



#### aka Structural Causal Models (SCMs)

What makes them structural? (Peters, Janzig, Schölkopf, 2018:book)

 $\mathsf{output} \ \leftarrow f(\mathsf{input})$ 

function  $f(\cdot)$  is invariant to how the 'input' is chosen / generated, e.g. observed or manipulated.

**Caveat:** strong modelling assumption — system considered essentially a 'machine' with some random noise.

- ⇒ allows 'cross-world' assumptions (like counterfactuals)
- ⇒ see single world intervention graphs SWIGs as alternative (Richardson & Robins, 2013:TechRep)





 $A = \text{treatment / exposure}, \quad Y = \text{response}, \quad C = \text{covariate}$ 

#### Structural equation model (SEM) — ingredients:

• Directed acyclic graph (DAG) defines 'parents' = inputs;



(NPSEMs-IE) (Pearl, 2000/9:book)

 $A = \text{treatment / exposure}, \quad Y = \text{response}, \quad C = \text{covariate}$ 

#### Structural equation model (SEM) — ingredients:

- Directed acyclic graph (DAG) defines 'parents' = inputs;
- equations:  $A := f_A(pa(A), U_A)$  $Y := f_Y(\mathsf{pa}(Y), U_Y)$  $C := f_C(\mathsf{pa}(C), U_C)$

where  $f_A$ ,  $f_V$ ,  $f_C$  describe 'stable' functional relations



(Pearl, 2000/9:book)



 $A = \text{treatment / exposure}, \quad Y = \text{response}, \quad C = \text{covariate}$ 

#### Structural equation model (SEM) — ingredients:

- Directed acyclic graph (DAG) defines 'parents' = inputs;
- equations:  $A := f_A(\mathsf{pa}(A), U_A)$   $Y := f_Y(\mathsf{pa}(Y), U_Y)$   $C := f_C(\mathsf{pa}(C), U_C)$

where  $f_A, f_Y, f_C$  describe 'stable' functional relations

• probability distribution on  $(U_A, U_Y, U_C)$ 



(Pearl, 2000/9:book)



 $A = \text{treatment / exposure}, \quad Y = \text{response}, \quad C = \text{covariate}$ 

#### Structural equation model (SEM) — ingredients:

- Directed acyclic graph (DAG) defines 'parents' = inputs;
- equations:  $A := f_A(\mathsf{pa}(A), U_A)$

$$Y:=f_Y(\mathsf{pa}(Y),U_Y)$$

$$C := f_C(\mathsf{pa}(C), U_C)$$

where  $f_A, f_Y, f_C$  describe 'stable' functional relations

- probability distribution on  $(U_A, U_Y, U_C)$
- $\Rightarrow$  induce probability distribution on (A, Y, C).

Often:  $(U_A, U_Y, U_C)$  mutually independent  $\Rightarrow$  NPSEM-IE

#### **NPSEMs and POs**



#### With NPSEM-IE we have

$$Y(\mathbf{0}) = f_Y(\mathsf{pa}(Y) \backslash A, A = \mathbf{0}, U_Y)$$
$$Y(\mathbf{1}) = f_Y(\mathsf{pa}(Y) \backslash A, A = \mathbf{1}, U_Y)$$

with the same 
$$U_Y$$

#### **NPSEMs and POs**



#### With NPSEM-IE we have

$$Y(0) = f_Y(\operatorname{pa}(Y) \setminus A, A = 0, U_Y)$$
  
 $Y(1) = f_Y(\operatorname{pa}(Y) \setminus A, A = 1, U_Y)$  with the same  $U_Y$ 

- $\Rightarrow$  distribution on  $(U_A,U_Y,U_C)$  also induces a probability distribution on (Y(0),Y(1),A,Y,C)
- ... in particular a joint distribution for (Y(0), Y(1))!

#### **NPSEMs and POs**



#### With NPSEM-IE we have

$$Y(\mathbf{0}) = f_Y(\mathsf{pa}(Y) \backslash A, A = 0, U_Y)$$
$$Y(\mathbf{1}) = f_Y(\mathsf{pa}(Y) \backslash A, A = 1, U_Y)$$

with the same  $U_Y$ 

- $\Rightarrow$  distribution on  $(U_A,U_Y,U_C)$  also induces a probability distribution on (Y(0),Y(1),A,Y,C)
- ... in particular a joint distribution for (Y(0), Y(1))!

**Example:** linear case  $Y := \alpha + \beta x + U_Y$ 

- $\Rightarrow Y^i(0) = \alpha + u^i_Y \text{ and } Y^i(1) = \alpha + \beta + u^i_Y$
- $\Rightarrow$  individual causal effect:  $Y^{i}(1) Y^{i}(0) = \beta$

Known as **treatment—unit additivity** assumption.

#### **Causal Frameworks?**



- 1) do(A=a) approach at distributional level: imposes least structure
- 2) FFRCISTG: uses POs but only allows 'single world'
- 3) PO's Y(a): imposes more structure as it allows counterfactual variables and cross-worlds
- 4) NPSEM-IE: imposes most structure as it allows to construct joint distributions of all counterfactuals under 'multiple worlds'

#### **Causal Effects**



Let's use the above causal languages to express our target of inference.

#### **Causal Effects**



Let's use the above causal languages to express our target of inference.

Note: no such thing as 'the' causal effect

— always need to choose what to contrast with what and how

#### **Causal Effects**



Typically formulated as contrasts of some aspect of

$$p(y | do(A = a))$$
 versus  $p(y | do(A = a'))$ 

or of p(Y(a)) versus p(Y(a')),

possibly conditional on further variables

For simplicity: A binary, but with obvious generalisations.



(Population) Total / Average Treatment Effect (ATE)

$$ACE = E(Y \mid \operatorname{do}(A=1)) - E(Y \mid \operatorname{do}(A=0))$$
 or with POs 
$$ACE = E(Y(1)) - E(Y(0))$$



(Population) Total / Average Treatment Effect (ATE)

$$ACE = E(Y \mid do(A = 1)) - E(Y \mid do(A = 0))$$

or with POs

$$ACE = E(Y(1)) - E(Y(0))$$

'Population': in expectation over whole underlying population (effect may change with population)



## (Population) Total / Average Treatment Effect (ATE)

$$ACE = E(Y \mid do(A = 1)) - E(Y \mid do(A = 0))$$

or with POs

$$ACE = E(Y(1)) - E(Y(0))$$

'Population': in expectation over whole underlying population (effect may change with population)

'Total': can be indirect, via multiple causal paths, or combination of direct / indirect effects.



#### (Population) Total / Average Treatment Effect (ATE)

$$ACE = E(Y \mid do(A = 1)) - E(Y \mid do(A = 0))$$

or with POs

$$ACE = E(Y(1)) - E(Y(0))$$

'Population': in expectation over whole underlying population (effect may change with population)

'Total': can be indirect, via multiple causal paths, or combination of direct / indirect effects.

Note: can consider ratio, odds-ratio etc. if preferred

#### Cause and Effect



#### Can now define:

A is a **cause** of Y (and Y is an effect of A) if for some  $a \neq a'$ 

$$p(y \mid \mathsf{do}(A = a)) \neq p(y \mid \mathsf{do}(A = a'))$$

or 
$$p(Y(a)) \neq p(Y(a'))$$

i.e. if (hypothetically) intervening in A setting it to different values changes some aspect of the distribution of Y

### **Cause and Effect**



#### Can now define:

A is a **cause** of Y (and Y is an effect of A) if for some  $a \neq a'$ 

$$p(y \mid \mathsf{do}(A = a)) \neq p(y \mid \mathsf{do}(A = a'))$$

or 
$$p(Y(a)) \neq p(Y(a'))$$

i.e. if (hypothetically) intervening in A setting it to different values changes some aspect of the distribution of Y

**Note:** this corresponds to how we check causation in a basic randomised experiment

### **Other Causal Effects**



### **Conditional Causal / Treatment Effect (CATE)**

#### ... or subgroup causal effect

Let Z=z characterise subset of population, e.g. age group Conditional causal effect of A on Y given Z=z:

$$E(Y|\mathbf{Z}=\mathbf{z};\mathsf{do}(A=1)) - E(Y|\mathbf{Z}=\mathbf{z};\mathsf{do}(A=0))$$

or, with POs

$$E(Y(1)|Z = z) - E(Y(0)|Z = z)$$

**Note:** Z must **not** itself be causally affected by A, i.e. must be pre-treatment

# Other Causal Effects Joint Causal Effect



# Consider two (possibly sequential) exposures $A_1, A_2$ .

The joint (total) causal effect of  $A_1$  and  $A_2$  on Y is

$$E(Y|\mathsf{do}(A_1=a_1,A_2=a_2)) - E(Y|\mathsf{do}(A_1=a_1',A_2=a_2'))$$

# Other Causal Effects Joint Causal Effect



Consider two (possibly sequential) exposures  $A_1, A_2$ .

The joint (total) causal effect of  $A_1$  and  $A_2$  on Y is

$$E(Y|\mathsf{do}(A_1=a_1,A_2=a_2)) - E(Y|\mathsf{do}(A_1=a_1',A_2=a_2'))$$

**Note:** potential issue here: 'time-dependent' confounding  $\rightarrow$  Part 4

# Other Causal Effects Controlled Direct Effect (CDE)



Consider again two sequential exposures  $A_1, A_2$ 

Controlled direct effect of  $A_1$  while controlling  $A_2$  means: hold fixed  $do(A_2 = 0)$  and contrast different values for  $A_1$ , e.g.

$$CDE = E(Y|do(A_1 = a, A_2 = 0)) - E(Y|do(A_1 = a', A_2 = 0))$$

**Note:** 'direct' means this effect is not possibly mediated by  ${\cal A}_2$  (but other mediators allowed)

### **Further Causal Effects**



"Individual Causal Effect": requires counterfactual concepts

"Population intervention effect"

"Effect of treatment on the treated (ETT)"

various versions of "(in) direct causal effects" (natural, interventional, separable...)

#### Other interventions:

- dynamic / adaptive: e.g. adapt dosage to patient history
- shift / random: add a constant or noise to the 'treatment'

"Principal Stratum Effect" (or local average treatment effect): requires counterfactual concepts



# identifiability of ACE

### **Causal Consistency Assumption:**

if we observe A = a then Y = Y(a)

# **Key Assumptions** identifiability of *ACE*



### **Causal Consistency Assumption:**

if we observe A = a then Y = Y(a)

### **Positivity Assumption:**

$$p(a | x) > 0 \text{ for all } a, x \quad (p(x) > 0)$$

where X is sufficient for adjustment as defined next



#### Assumption of conditional exchangeability:

(aka: random treatment assignment, or no unmeasured confounding / ignorability, ...)



#### Assumption of conditional exchangeability:

(aka: random treatment assignment, or no unmeasured confounding / ignorability, ...)

Set X of observed (measured) pre-treatment covariates exists such that

$$A \perp \!\!\!\perp Y(a) \mid X$$

for all a to be considered as treatment values



#### Assumption of conditional exchangeability:

(aka: random treatment assignment, or no unmeasured confounding / ignorability, ...)

Set X of observed (measured) pre-treatment covariates exists such that

$$A \perp \!\!\!\perp Y(a) \mid X$$

for all a to be considered as treatment values

#### Interpretation:

within values of X, can consider A like randomised wrt Y



#### Assumption of conditional exchangeability:

(aka: random treatment assignment, or no unmeasured confounding / ignorability,  $\ldots$ )

Set X of observed (measured) pre-treatment covariates exists such that

$$A \perp \!\!\!\perp Y(a) \mid X$$

for all a to be considered as treatment values

#### Interpretation:

within values of X, can consider A like randomised wrt Y

**Denote:** X is *sufficient* to adjust (control) for confounding; or 'valid adjustment set'

# No-Unmeasured-Confounding with $do(\cdot)$



Assumption of **no unmeasured confounding** & **'consistency'** with do-notation:

$$p(y \mid x; \mathsf{do}(A = a)) = p(y \mid x, a)$$

#### Interpretation:

within values of X, whether A=a obtained by intervention or observation makes no difference wrt. distribution of Y.

Note: graphical check by back-door criterion (Pearl, 1995:Btka)

### **Randomisation**



Under full randomisation:  $A \perp \!\!\! \perp$  of all (pre-)baseline variables.

 $\Rightarrow$  Exchangeability / no-confounding satisfied for  $X=\emptyset$  (or any pre-A set X).

In non-randomised studies: expert judgement required to determine / justify X as sufficient; very helpful to use causal DAGs.



We consider p(y | do(A = a)) or equivalently p(Y(a)).

With the above assumptions:

$$p(Y(a)) \stackrel{(i)}{=} \sum_{x} p(Y(a)|x) p(x) \stackrel{(ii)}{=} \sum_{x} p(Y(a)|a, x) p(x)$$

$$\dots \stackrel{(iii)}{=} \sum_{x} p(y|a, x) p(x)$$



We consider p(y | do(A = a)) or equivalently p(Y(a)).

With the above assumptions:

$$p(Y(a)) \stackrel{(i)}{=} \sum_{x} p(Y(a)|x) p(x) \stackrel{(ii)}{=} \sum_{x} p(Y(a)|a,x) p(x)$$

$$\dots \stackrel{(iii)}{=} \sum_{x} p(y|a,x) p(x)$$

(i) probability calculus



We consider p(y | do(A = a)) or equivalently p(Y(a)).

With the above assumptions:

$$p(Y(a)) \stackrel{(i)}{=} \sum_{x} p(Y(a)|x)p(x) \stackrel{(ii)}{=} \sum_{x} p(Y(a)|a,x)p(x)$$

$$\dots \stackrel{(iii)}{=} \sum_{x} p(y|a,x)p(x)$$

- (i) probability calculus
- (ii) valid adjustment set



We consider p(y | do(A = a)) or equivalently p(Y(a)).

With the above assumptions:

$$p(Y(a)) \stackrel{(i)}{=} \sum_{x} p(Y(a)|x)p(x) \stackrel{(ii)}{=} \sum_{x} p(Y(a)|a,x)p(x)$$

$$\dots \stackrel{(iii)}{=} \sum_{x} p(y|a,x)p(x)$$

- (i) probability calculus
- (ii) valid adjustment set
- (iii) causal consistency & positivity

# **Adjustment / Standardisation**



#### Consider the above result

$$p(y \mid \mathsf{do}(A = a)) = \sum_{x} p(y \mid a, x) p(x)$$

- left = causal quantity; right = observational quantity
   ⇒ identified if covariates C measured
- right hand side = identifying functional (under the assumptions)
- know as adjustment formula, or standardisation (to the marginal distribution of X)
- also: simplest case of so-called 'g-formula' (Robins, 1986)

# Confounding



Above: confounding is present if

$$Y(a) \not\perp \!\!\!\perp A$$

or if 
$$p(y \mid do(A = a)) \neq p(y \mid A = a)$$

# Confounding



Above: confounding is present if

$$Y(a) \perp \!\!\! \perp A$$

or if 
$$p(y \mid do(A = a)) \neq p(y \mid A = a)$$

Usually:

Confounding = some (unobserved) common cause of A and Y

⇒ Use causal DAGs to clarify!

# **Summary**



- For causal answers, start with an explicit causal question: use formal notation ('do' or PO) or describe target trial
- Different causal parameters correspond to different research questions
- Key: establish identifiability of causal parameter from observable data
  - so far: 'g-formula' / standardisation to adjust for confounding
- Structural assumtpions: causal consistency, positivity & conditional exchangeability.

### Thank You!

www.leibniz-bips.de/en

Contact
Vanessa Didelez
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
didelez@leibniz-bips.de

