How can vector calculus be used to model and analyze incompressible fluid flow in two-dimensional spaces, and what insights can this provide about real-world fluid systems?

Mathematics AA HL

Word Count: 86

Contents

1	Introduction		
	1.1	Scope	2
	1.2	Background	2
	1.3	Fluid dynamics	2
	1.4	The Navier-Stokes equations	3
2	Ref	erences	4

1 Introduction

1.1 Scope

This essay will for simplicity's sake only cover fluid flow in \mathbb{R}^2 spaces; an alaysis of fluid flow in \mathbb{R}^3 spaces would be orders of magnitude more complex. Furthermore, only incompressible fluids $(\nabla \cdot \mathbf{F} = 0)$, such that there are no sinks nore wells, will be analyzed. Test

1.2 Background

Vector calculus is the mathematical study of applying multi-variable calculus to vector valued functions, often for the spaces \mathbb{R}^2 and \mathbb{R}^3 .

$$f: \mathbb{R}^n \to \mathbb{R}^n \ni n > 1, n \in \mathbb{Z}$$

$$\frac{\mathbf{D}T}{\mathbf{D}t} = \frac{\partial}{\partial t} + \vec{v} \cdot \nabla \tag{2}$$

1.3 Fluid dynamics

An incompressible fluid is any fluid such that $\nabla \cdot \mathbf{F} = 0$, which is to say that the divergence of the fluid is 0.

1.4 The Navier-Stokes equations

$$\frac{\mathbf{D}f}{\mathbf{D}\mathbf{t}} = \iiint_{V} (\frac{\mathbf{D}\rho}{\mathbf{D}\mathbf{t}} + \rho(\nabla \cdot u))dV$$
 (3)

Lorem ipsum dolor sit amet [Peyret and Taylor, 2012]

2 References

[Peyret and Taylor, 2012] Peyret, R. and Taylor, T. D. (2012). Computational methods for fluid flow. Springer Science & Business Media.