UCS1504 - Artificial Intelligence Lab

Department of CSE, SSN College of Engineering

6. Inference from Knowledge Base

11.10.2022

1. Show that the hypotheses:

- It is not sunny this afternoon and it is colder than yesterday. ¬s ∧ c
- We will go swimming only if it is sunny. $\mathbf{w} \to \mathbf{s}$
- If we do not go swimming, then we will take a canoe trip. $\neg w \rightarrow t$
- If we take a canoe trip, then we will be home by sunset. $\mathbf{t} \to \mathbf{h}$

lead to the conclusion:

- We will be home by the sunset. h
- a) Translate the statements into propositional logic. (Already given in **RED**)
- b) Write a formal proof, a sequence of steps that state hypotheses or apply **inference rules** to previous steps.
- c) Write the same above proof based on **resolution** also.

2. Using the Inference Rules

From	Can Derive	Abbreviation for rule
$R, R \rightarrow S$	S	Modus Ponens- mp
$R \rightarrow S, S'$	R'	Modus Tollens- mt
R, S	RΛS	Conjunction-con
RΛS	R, S	Simplification- sim
R	RVS	Addition- add

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

R1:
$$\neg P_{1,1}$$

$$R2: \neg B_{1,1} \leftrightarrow P_{1,2} \vee P_{2,1}$$

R3:
$$B_{2,1} \leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

Prove that $\neg P1,2$

3. Given Atomic Propositions are:

 $S_{1,2}$ = There is a Stench in cell (1,2)

 $B_{3,4}$ = There is a breeze in cell (3,4)

 $W_{2,2} = Wumpus is in cell (2,2)$

 $V_{1,1}$ = We have visited cell (1,1)

 $OK_{1,1}=Cell(1,1)$ is safe

Some rules

$$(R1) \neg S_{1,1} \rightarrow \neg W_{1,1} \wedge \neg W_{1,2} \wedge \neg W_{2,1}$$

$$(R2) \neg S_{2,1} \rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$$

$$(R3) \neg S_{1,,2} \rightarrow \neg W_{1,1} \wedge \neg W_{1,2} \wedge \neg W_{2,2} \wedge \neg W_{1,3}$$

$$(R4) S_{1,2} \rightarrow W_{1,1} \lor W_{1,2} \lor W_{2,2} \lor W_{1,3}$$

Prove that Wumpus is in (1,3)

Content to be written in Observation for output verification:

- i. Solve the problem manually at the back side of your AI class Note
- ii. Date
- iii. Ex. No
- iv. Title
- v. Aim v. Data structure used (with justification)
- vi. Logic applied or Algorithm (short description)
- vii. Sample input and output