CIRCUITOS DIGITAIS

EXERCÍCIOSCIRCUITOS COMBINACIONAIS

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

Projeto de Circuitos Combinacionais

- 1º Passo Defina as entradas e as saídas
- 2º Passo Defina valores para os estados das estradas e saídas
- 3º Passo Obtenha a(s) função(ões) booleana(s)
- 4º Passo Simplifique a equação se necessário
- 5º Passo Implemente um circuito baseado em portas

Crie um circuito para o museu do Exercício 2.53 que detecta se o guarda está fazendo a ronda no museu de maneira apropriada. Isso pode ser detectado quando há *exatamente* um sensor de movimento em 1. (Se nenhum sensor estiver em 1, o guarda deve estar sentado ou dormindo.)

Inp	uts		Outputs
m2	m1	m0	А
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$A = m2'm1'm0 + m2'm1m0' + m2m1'm0'$$

Considere a função do alarme de segurança para museu do Exercício 2.53, mas para um museu com 10 salões. Uma tabela-verdade não é um bom ponto de partida (linhas demais), nem uma equação que descreva quando o alarme deve soar (equações demais). No entanto, a inversa (NOT) da função de alarme pode ser obtida rapidamente na forma de uma equação. Projete o circuito para um sistema de segurança de 10 salões, projetando o inverso da função e, então, simplesmente acrescentando um inversor antes da saída da função.

```
A' =

m9m8'm7'm6'm5'm4'm3'm2'm1'm0' + m9'm8m7'm6'm5'm4'm3'm2'm1'm0' +

m9'm8'm7m6'm5'm4'm3'm2'm1'm0' + m9'm8'm7'm6m5'm4'm3'm2'm1'm0' +

m9'm8'm7'm6'm5m4'm3'm2'm1'm0' + m9'm8'm7'm6'm5'm4m3'm2'm1'm0' +

m9'm8'm7'm6'm5'm4'm3m2'm1'm0' + m9'm8'm7'm6'm5'm4'm3'm2m1'm0' +
```

m9'm8'm7'm6'm5'm4'm3'm2'*m*1m0' + m9'm8'm7'm6'm5'm4'm3'm2'm1'*m*0 + m9'm8'm7'm6'm5'm4'm3'm2'm1'm0'

Um carro tem um detector de nível baixo de combustível que fornece o nível corrente de combustível na forma de um número binário de três bits, com 000 significando vazio e 111 significando cheio. Crie um circuito que acende a luz indicadora "Pouco combustível" (fazendo uma saída L ir para 1) quando o nível de combustível cai para abaixo do nível 3.

Inpu	ıts	Outputs	
F2	F1	FO	L
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$L = F2'F1'F0' + F2'F1'F0 + F2'F1F0'$$

Um carro tem um sensor para pressão baixa de pneu que fornece a pressão atual do pneu na forma de um número binário de cinco bits. Crie um circuito que acende a luz indicadora "Pressão de pneu baixa" (fazendo uma saída L ir para 1) quando a pressão cai para abaixo do nível 16. Sugestão: pode ser mais fácil criar um circuito que detecta a função inversa. Você poderá então acrescentar simplesmente um inversor à saída do circuito.

Um carro tem um sensor para pressão baixa de pneu que fornece a pressão atual do pneu na forma de um número binário de cinco bits. Crie um circuito que acende a luz indicadora "Pressão de pneu baixa" (fazendo uma saída L ir para 1) quando a pressão cai para abaixo do nível 16. Sugestão: pode ser mais fácil criar um circuito que detecta a função inversa. Você poderá então acrescentar simplesmente um inversor à saída do circuito.

Display de 7 segmentos

Decodificador BCD/display de 7 seg.

Números possíveis e sua representação em display de 7 segmentos

Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							

	Α	В	С	D	a	b	С	d	е	f	g
	0	0	0	0	1	1	1	1	1	1	0
	0	0	0	1	0	1	1	0	0	0	0
•	0	0	1	0	1	1	0	1	1	0	1
	0	0	1	1							
	0	1	0	0							
	0	1	0	1							
	0	1	1	0							
	0	1	1	1							
	1	0	0	0							
	1	0	0	1							

Α	В	С	D	a	b	C	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							

Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							

Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							

Α	В	С	D	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1							
1	0	0	0							
1	0	0	1							

	Α	В	C	D	a	b	C	d	e	Ť	g
	0	0	0	0	1	1	1	1	1	1	0
	0	0	0	1	0	1	1	0	0	0	0
	0	0	1	0	1	1	0	1	1	0	1
	0	0	1	1	1	1	1	1	0	0	1
	0	1	0	0	0	1	1	0	0	1	1
	0	1	0	1	1	0	1	1	0	1	1
	0	1	1	0	1	0	1	1	1	1	1
	0	1	1	1	1	1	1	0	0	0	0
•	1	0	0	0	1	1	1	1	1	1	1
	1	0	0	1							

	A	В	C	ט	a	D	C	a	e	Т	9
	0	0	0	0	1	1	1	1	1	1	0
	0	0	0	1	0	1	1	0	0	0	0
	0	0	1	0	1	1	0	1	1	0	1
	0	0	1	1	1	1	1	1	0	0	1
	0	1	0	0	0	1	1	0	0	1	1
	0	1	0	1	1	0	1	1	0	1	1
	0	1	1	0	1	0	1	1	1	1	1
	0	1	1	1	1	1	1	0	0	0	0
	1	0	0	0	1	1	1	1	1	1	1
. [1	0	0	1	1	1	1	0	0	1	1

Decimal	Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
10	1	0	1	0	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X
13	1	1	0	1	Х	Х	X	Х	X	X	Х
14	1	1	1	0	X	X	X	Х	X	X	Х
15	1	1	1	1	X	X	X	X	X	X	X

Α	В	С	D	а
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	Х

$$a = (A+B+C+D')(B'+C+D)$$

Α	В	С	D	b
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	Х

$$b = (B'+C+D')(B'+C'+D)$$

Α	В	С	D	С
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

$$c = (B + C' + D)$$

Α	В	С	D	d
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

$$d = (B'+C+D)(B'+C'+D')(B+C+D')$$

Α	В	С	D	е
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	Х

$$e = (B'+C)(D')$$

Α	В	С	D	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

$$f = (A+B+D')(C'+D')(B+C')$$

Α	В	С	D	g
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	Х

$$g = (A+B+C)(B'+C'+D')$$

Semáforos

A figura abaixo mostra o entroncamento das ruas A, B e C. Neste cruzamento, queremos instalar um conjunto de semáforos para as seguintes funções:

- Os semáforos somente tem sinais verde e vermelho
- Quando o semáforo 1 abrir para a Rua A, automaticamente os semáforos 2 e 3 devem fechar, para possibilitar ao motorista ambas as conversões.
- Analogamente, quando o semáforo 2 abrir, devem fechar os semáforos 1 e 3.
- Pelo mesmo motivo, quando o semáforo 3 abrir, devem fechar os semáforos 1 e 2.

Semáforos

Devemos seguir também, as seguintes prioridades:

O motorista que está na rua A tem prioridade em relação ao motorista que está na rua B.

O motorista que está na rua B tem prioridade em relação ao motorista que está na rua C.

O motorista que está na rua C tem prioridade em relação ao motorista que está na rua A.

Quando houver carros nas três ruas, a rua A é preferencial.

Quando não houver nenhum carro nas ruas, devemos abrir o sinal para a rua A.

Semáforos

 Obtenha as expressões e os circuitos dos sinais verdes e vermelhos, dos semáforos 1, 2 e 3.

