Valószínűségszámítás

1. előadás — 2020. szeptember 10.

Alapfogalmak:

(Ezeket a II. éves valószínűségszámítás előadás már lényegében tartalmazza.)

Valószínűségi mező: (Ω, \mathcal{A}, P)

 Ω – alaphalmaz, elemei az elemi események,

 \mathcal{A} – az események σ -algebrája

P – valószínűségi mérték: $0 \le P(A) \le 1$, $P(\omega) = 1$.

Feltételes valószínűség: $P(A \mid B) = \frac{P(AB)}{P(B)}$, feltéve, hogy P(B) > 0.

Teljes eseményrendszer: A_1, A_2, \ldots, A_n , ha $P(A_i \cap A_j) = 0$, ha $i \neq j$, továbbá $P(\bigcup_{i=1}^n A_i) = 1$.

Teljes valószínűség tétele

Ha az A_1, A_2, \ldots, A_n események teljes eseményrendszert alkotnak, melyben $P(A_j) > 0, j = 1, \ldots, n$, akkor

$$P(A) = \sum_{j=1}^{n} P(A \mid A_j) P(A_j) .$$

Poincaré-formula

Ha A_1, \ldots, A_n tetszőleges események, akkor

$$P(A_1 \cup \ldots \cup A_n) = \sum_{j=1}^{n} (-1)^{j-1} S_j^{(n)},$$

ahol

$$S_j^{(n)} = \sum_{1 \le i_1 < \dots < i_j \le n} P(A_{i_1} \cap \dots \cap A_{i_j})$$

Mérhető terek szorzata. (Már szerepelt analízisben.)

Adott $\{(X_{\gamma}, \mathcal{B}_{\gamma}), \gamma \in \Gamma\}.$

Legyen $\mathcal{X} = \times \mathcal{X}_{\gamma} = \{f : \Gamma \to \cup_{\gamma} \mathcal{X}_{\gamma} \mid f(\gamma) \in \mathcal{X}_{\gamma} \}$. Cilinder(Henger)halmazok:

legyenek $n \in \mathbb{N}$, $\gamma_1, \ldots, \gamma_n \in \Gamma$, $B_1 \in \mathcal{B}_{\gamma_1}, \ldots, B_n \in \mathcal{B}_{\gamma_n}$. ekkor $C_{\gamma_1, \ldots, \gamma_n}^{B_1, \ldots, B_n} = \{ f \in \mathcal{X} : f(\gamma_i) \in B_i, i = 1, \ldots, n \}$.

 C_0 jelöli a cilinderhalmazok félgyűrűjét.

Legyen $\mathcal{B} = \bigotimes_{\gamma} \mathcal{B}_{\gamma} = \sigma(\mathcal{C}_0)$.

1. Megjegyzés. $A \pi_{\gamma} : \mathcal{X} \to \mathcal{X}_{\gamma}$ projekciók mérhetőek. Sőt, $\otimes \mathcal{B}_{\gamma}$ a legszűkebb σ -algebra, melyre nézve a projekciók mérhetőek.

Mérhető terek szorzata mellett mértékterek szorzata is értelmezhető.

2. Tétel. Legyenek $(\Omega_i, \mathcal{A}_i, P_i)$, $i = 1, 2, \ldots$ valószínűségi mezők. A következő konstrukció adja ezen mezők szorzatterét:

$$\Omega = \times_{i=1}^{\infty} \Omega_i ,
\mathcal{A} = \otimes \mathcal{A}_i = \sigma(\mathcal{C}_0) ,$$

és definiáljuk a P halmazfüggvényt a kiterjesztett cilinderhalmazokon a következőképpen: $ha \ B \in \bigotimes_{i=1}^n \mathcal{A}_i, \ akkor$

$$P(B \times \Omega_{n+1} \times \Omega_{n+2} \times \cdots) = (P_1 \otimes P_2 \otimes \cdots \otimes P_n) (B).$$

Ekkor P kiterjeszthető σ -additíven a generált σ -algebrára.

Kicsit általánosabban (de speciális esetben):

Generált mérték $\mathbb{R}^{\mathbb{N}}$, $\mathcal{B}(\mathbb{R}^{\mathbb{N}})$ mérhető téren:

Tegyük fel, hogy adottak az \mathbb{R}^n , \mathcal{B}_n , P_n) mértékterek, ahol P_n valószínűségi mérték, $n \geq 1$, melyekre teljesül, hogy

$$P_{n+1}(B \times \mathbb{R}) = P_n(B)$$
, ha $B \in \mathcal{B}_n$.

Ekkor legyen

$$P(C_n^B) = P_n(B)$$
, ha $B \in \mathcal{B}_n$.

Ez jól definiált, additív halmazfüggvény lesz.

Létezik-e σ -additív kiterjesztés?

3. Tétel (Kolmogorov-alaptétel). P kiterjeszthető σ -additíven a $\mathcal{B}(\mathbb{R}^{\mathbb{N}})$ σ -algebrára

Bizonyítás:

Jelölések: $\underline{x} \in \mathbb{R}^{\mathbb{N}}$, $\underline{x} = (x_1, x_2, \dots)$. $B \in \mathcal{B}_n$ esetén legyen $C_n^B = \{\underline{x} \mid (x_1, x_2, \dots, x_n) \in B\}$.

Ekkor $C_n^B=C_{n+1}^{B\times\mathbb{R}}$. Továbbá $C_{n+1}^A\subset C_n^B$ akkor és csak akkor, ha $A\subset B\times\mathbb{R}$.

Cilinderhalmazok algebrát alkotnak. Így σ -additív kiterjesztés pontosan akkor van, ha P σ -additív a \mathcal{C}

Azaz kell, hogy A_1, A_2, \ldots diszjunktak, $A_j \in \mathcal{C}, \cup A_j = A, A \in \mathcal{C}$ esetén

$$P(A) = \sum P(A_j).$$

Módosítás: legyen $B_n = A \setminus (\bigcup_{i=1}^n A_i)$. $B_n \in \mathcal{C}$. Ekkor

$$B_1 \supset B_2 \supset \dots, \quad \cap_{n=1}^{\infty} B_n = \emptyset.$$

Kell, hogy $P(B_n) \to 0$.

 $B_n = C_{k_n}^{D_n}$. Feltehetjük, hogy $1 < k_1 < k_2 < \dots$

Besűrítjük: Legyen $H_j = C_j^{\mathbb{R}^j}$, ha $j = 1, 2, \dots k_1 - 1$.

Általánosabban: ha $k_n \leq j < k_{n+1}$, akkor $H_j = C_j^{F_j}$, ahol $F_j = D_n \times \mathbb{R}^{j-k_n}$.

Így ekkor $H_j = B_n$, és $F_j \in \mathcal{B}_j$.

Ezért $H_1 \supset H_2 \supset H_3 \supset \ldots, \cap H_i = \emptyset$. És kell, hogy $P(H_i) \to 0$

Indirekt feltevés: létezik $\delta > 0$, melyre $P(H_i) > \delta$, minden $j \ge 1$ esetén.

Megmutatjuk, hogy ez nem lehet. Azaz van közös pont.

További módosítás:

Legyen $G_j \subset F_j$ kompakt, melyre $P_j(F_j \setminus G_j) \leq \frac{\delta}{2^{j+1}}$.

$$V_j = \bigcap_{k=1}^j C_k^{G_k} = \bigcap_{k=1}^j C_j^{G_k \times \mathbb{R}^{j-k}} = C_j^{U_j},$$

ahol $U_j = \bigcap_{k=1}^j (G_k \times \mathbb{R}^{j-k})$ — kompakt. $U_j \subset F_j$.

Ekkor
$$P(H_j \setminus V_j) = P_j(F_j \setminus U_j) \le \sum_{k=1}^j \frac{\delta}{2^{k+1}} \le \frac{\delta}{2}$$
.

Így

$$V_1 \supset V_2 \supset \dots, \quad \cap V_j = \emptyset, \quad P(V_j) \ge \frac{\delta}{2}$$

és U_j kompakt, $j \geq 1$.

Legyen most $\underline{x}^{(j)} = (x_1^{(j)}, x_2^{(j)}, \dots) \in V_j$ tetszőleges, $j \ge 1$. Ekkor $\underline{x}^{(j)} \in V_1$, ezért $x_1^{(j)} \in U_1$, $j \ge 1$.

 U_1 kompakt, van torlódáspont, konvergens részsorozat.

$$x_1^{(j)} \longrightarrow_{j \in \mathbb{N}_1} x_1^0 \in U_1$$

Továbbá $\underline{x}^{(j)} \in V_2$, ha $j \geq 2$. Így $(x_1^{(j)}, x_2^{(j)}) \in U_2$. Kompakt. Létezik $\mathbb{N}_2 \subset \mathbb{N}_1$ részsorozat, hogy

$$(x_1^{(j)}, x_2^{(j)}) \longrightarrow_{j \in \mathbb{N}_2} (x_1^0, x_2^0) \in U_2.$$

Folytatva: létezik $(x_1^0, x_2^0, \dots, x_j^0) \in U_j$. Ekkor $(x_1^0, x_2^0, \dots) \in \cap_{j=1}^{\infty} V_j$.

Valószínűségi változó:

 $X:\Omega\to\mathcal{X}$ mérhető leképezés, ahol $(\mathcal{X},\mathcal{B})$ mérhető tér.

Valószínűségi vektorváltozó: $X: \Omega \to \mathbb{R}^n$.

Legyen $\pi_j : \mathbb{R}^n \to \mathbb{R}$ $\pi_j(\underline{x}) = x_j$.

És $X_j = \pi_j \circ X$. — marginális valószínűségi változó.

Legyenek $X_{\gamma}:(\Omega,\mathcal{A})\to(\mathcal{X}_{\gamma},\mathcal{F}_{\gamma}),\ \gamma\in\Gamma$

Legyen $\mathcal{X} = \times_{\gamma \in \Gamma} \mathcal{X}_{\gamma}, \, \pi_{\gamma} : \mathcal{X} \to \mathcal{X}_{\gamma}.$

Továbbá $X = (X_{\gamma}, \gamma \in \Gamma)$.

Ekkor $X_{\gamma} = \pi_{\gamma} \circ X$.

X mérhető $\iff X_{\gamma}$ mérhető minden $\gamma \in \Gamma$

Bizonyítás:

Ha X mérhető, akkor $X_{\gamma} = \pi_{\gamma} \circ X$ is az.

Megfordítva: Elegendő cilinder halmazok teljes inverz képét ellenőrizni.

$$\left\{\omega\,|\,X(\omega)\in C^{B_1,B_2,\ldots,B_n}_{\gamma_1,\gamma_2,\ldots,\gamma_n}\right\}=\cap_{j=1}^n\left\{\omega\,|\,X_{\gamma_j}\in B_j\right\}\,.$$

4. Definíció. Valószínűségi változó eloszlása – Q_X :

$$Q_X(B) = P\left(X^{-1}(B)\right),\,$$

ahol $B \in \mathcal{B}$.

5. Megjegyzés. Az X valószínűségi változó mértéktartó leképezés lesz.

$$X:(\Omega,\mathcal{A},P)\to(\mathcal{X},\mathcal{B},Q_X)$$

Állítás

Minden valószínűségi mérték egyben eloszlás is.

Bizonyítás: Legyen Q valószínűségi mérték az $(\mathcal{X}, \mathcal{F})$ mérhető téren.

Válasszuk $(\Omega, \mathcal{A}, P) = (\mathcal{X}, \mathcal{F}, Q)$.

És legyen $X = \mathrm{id}_{\Omega}$.

Ekkor

$$Q_X(B) = P(X^{-1}(B)) = Q(B).$$

Valószínűségi változók eloszlásfüggvénye.

1. eset. $X:\Omega\to\mathbb{R}$

$$F_X(x) = P(X < x) = Q_X((-\infty, x)), \qquad x \in \mathbb{R}$$

Tulajdonságai

- Monoton növekvő
- balról folytonos
- $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to\infty} F_X(x) = 1$.

Ezek karakterizálják az eloszlásfüggvényt.

Valóban, legyen Q(([a,b)) = F(b) - F(a). Kiterjeszthető valószínűségi mértékké.

2. eset. $X: \Omega \to \mathbb{R}^n$, $X = (X_1, X_2, \dots, X_n)$.

$$F_X(x) = P(X_1 < x_1, \dots, X_n < x_n) = Q_X(\times_{i=1}^n (-\infty, x_i)), \quad (x_1, \dots, x_n) \in \mathbb{R}^n$$

ha X n-dimenziós vektorértékű.

Tulajdonságok

- (i) mindegyik változójában monoton nő
- (ii) mindegyik változójában balról folytonos
- (iii) $\lim_{\min x_i \to -\infty} F_X(x) = 0$, $\lim_{\min x_i \to \infty} F_X(x) = 1$
- (iv) $\sum_{\epsilon \in \{0,1\}^n} (-1)^{|\epsilon|} F_X(a \circ \epsilon + b \circ (\underline{1} \epsilon)) \ge 0$ minden $a, b \in \mathbb{R}^n, \ a_j \le b_j, \ j = 1, \dots, n$ esetén.

ahol $a \circ \epsilon = (a_1 \epsilon_1, \dots, a_n \epsilon_n)$ és $\underline{1} = (1, 1, \dots, 1)$.

Bizonvítás:

(iv) Legyen $A_i = \{X_i < a_i\}, j = 1, ..., n, B = \bigcap_{i=1}^n \{X_i < b_i\}.$

Èkkor

$$\bigcap_{j=1}^{n} \{X_j \in [a_j, b_j)\} = B \cap \overline{\left(\bigcup_{j=1}^{n} A_j\right)}$$

Ezért

$$P(a_1 \leq X_1 < b_1, \dots, a_n \leq X_n < b_n) = P(B) - P(B \cap (\bigcup_{j=1}^n A_j)) = P(B) - P(\bigcup_j (B \cap A_j)).$$

Alkalmazzuk a Poincaré-formulát:

$$S_k^{(n)} = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} P(B \cap A_{j_1} \cap \dots \cap A_{j_k})$$

Legyen $\epsilon_{j_i}=1,\,i=1,\ldots,k,$ a többi nulla. Ekkor

$$B \cap A_{j_1} \cap \dots \cap A_{j_k} = \bigcap_{i=1}^n \{X_i < a_i \epsilon_i + b_i (1 - \epsilon_i)\}$$

Behelyettesítve:

$$P(a_1 \le X_1 < b_1, \dots, a_n \le X_n < b_n) = P(B) + \sum_{k=1}^n (-1)^k S_k^{(n)} =$$

$$= F_X(b) + \sum_{k=1}^n (-1)^k \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} F_X(a \circ \epsilon + b \circ (\underline{1} - \epsilon)) = \sum_{\epsilon \in \{0,1\}^n} (-1)^{|\epsilon|} F_X(a \circ \epsilon + b \circ (\underline{1} - \epsilon)).$$

Állítás

Ha az $F:\mathbb{R}^n\to\mathbb{R}$ függvény rendelkezik a fenti tulajdonságokkal, akkor eloszlásfüggvény.

Bizonyítás:

Ismét elég egy hozzátartozó eloszlást megkonstruálni.

Legyen

$$Q\left(\times_{j=1}^n[a_j,b_j)\right) = \sum_{\epsilon \in \{0,1\}^n} (-1)^{|\epsilon|} F(a \circ \epsilon + b \circ (\underline{1} - \epsilon)) \ge 0.$$

Ez kiterjeszthető a generált σ -algebrára.

6. Megjegyzés. F és Q kölcsönösen egyértelműen meghatározzák egymást.

2. előadás — 2020. szeptember 17.

Valószínűségi változók sűrűségfüggvénye

7. Definíció. Legyen $X:(\Omega,\mathcal{A},P)\to (\mathcal{X},\mathcal{B},\mu)$ v.v., ahol μ σ -véges mérték. X abszolút folytonos eloszlású v.v., ha

$$Q_X << \mu$$
.

A Radon-Nikodym derivált az ún. sűrűségfüggvény.

$$f_X = \frac{dQ_X}{d\mu} : \mathcal{X} \to \mathbb{R}.$$

Speciális esetek:

- (a) Diszkrét eloszlású valószínűségi változó eloszlása abszolút folytonos a számlálómértékre nézve.
- (b) Valós vagy vektorértékű valószínűségi változó esetén μ természetes választása a λ -val jelölt Lebesguemérték.

Valószínűségi változók függvényei

Ha $X:(\Omega,\mathcal{A},P)\to(\mathcal{X},\mathcal{B},\mu)$ valószínűségi változó abszolút folytonos eloszlású, és $h:(\mathcal{X},\mathcal{B})\to(\mathcal{Y},\mathcal{G})$ mérhető leképezés, akkor h(X) olyan valószínűségi változó, melyre

$$Q_{h(X)} = Q_X \circ h^{-1}$$

$$Q_{h(X)} << \nu = \mu \circ h^{-1}.$$

Bizonyítás: Ha $B \in \mathcal{G}$ esetén $\nu(B) = 0$, akkor $\mu(h^{-1}(B)) = 0$, tehát $Q_{h \circ X}(B) = Q_X(h^{-1}(B)) = 0$. \square Kérdés: hogyan lehet felírni a sűrűségfüggvényt? Kellene tehát

$$\int_{B} f_{h \circ X}(y) d\nu(y) \ = \ Q_{h \circ X}(B) \ = \ P(h \circ X \ \in \ B) \ = \ P(X \ \in \ h^{-1}(B)) \ = \ \int_{h^{-1}(B)} f_{X}(x) d\mu(x) \, , B \ \in \ \mathcal{G}$$

megoldása.

Ez hasonlít az mértéktartó leképezésekre vonatkozó integráltranszformációs képletre. Eszerint valamilyen halmazokon valamilyen függvények ν illetve μ szerinti integráljai megegyeznek. Értelmes választás: $B \iff h^{-1}(B)$ illetve $q \iff g \circ h$. Eszerint

$$\int_{B} g d\nu = \int_{h^{-1}(B)} g \circ h d\mu.$$

Összehasonlítva: $\int_B f_{h\circ X}(y)d\nu(y) = \int_{h^{-1}(B)} f_X(x)d\mu(x)$, azaz, ha f_X a h függvénye, akkor a külső függvénye éppen $f_{h\circ X}$. De erre általában semmi garancia nincsen.

Kivétel: h^{-1} létezik és mérhető. Ekkor $f = f \circ h^{-1} \circ h$, így $f_{h \circ X} = f \circ h^{-1}$.

Vegyük észre, hogy csak a $h^{-1}(B)$ alakú halmazokon kell használni az f_X sűrűségfüggvényt. Azaz az $\sigma(h)$ σ -algebrán. De az nem ugyanaz, mint az eredeti sűrűségfüggvény, az eredeti Radon–Nikodym-derivált? Nem, mert az R-N-derivált a definíció szerint mérhető kell legyen a megfelelő σ -algebrára.

Jelölje $Q_X|_{\sigma(h)}$ illetve $\mu|_{\sigma(h)}$ a $\sigma(h)$ -ra megszorított mértékeket. Ekkor

$$\frac{Q_X|_{\sigma(h)}}{\mu|_{\sigma(h)}}$$

Radon–Nikodym-derivált mérhető lesz a $\sigma(h)$ σ -algebrára. De vajon ekkor függvénye lesz-e a h függvénynek?

8. Lemma (Doob (általános változat)). Legyen $X: \Omega \to \mathcal{X}, Y: \Omega \to \mathbb{R}^n$. Ha Y mérhető az X által generált σ -algebrára, azaz $\sigma(Y) \subset \sigma(X)$, akkor létezik olyan $g: \mathcal{X} \to \mathbb{R}^n$ Borel-mérhető függvény, melyre

$$Y = g \circ X$$
.

Bizonyítás:

Nyilván elég n=1 esetére.

- Tegyük fel, hogy $Y = \chi_B$, $B \in \sigma(X)$. Ekkor $B = X^{-1}(C)$, $C \subset \mathcal{X}$. Ezért $Y = \chi_C \circ X$.
- $Y = \sum_i a_i \chi_{B_i}, B_i \in \sigma(X), j = 1, \dots k.$
- $0 \le Y_1 \le Y_2 \le \dots$ lépcsős függvények, $Y_j = g_j \circ X$, és $Y = \lim Y_j$. Ekkor X képterén $g_j, j \ge 1$ monoton függvénysorozat. Legyen

$$g = \begin{cases} \lim_{j \to \infty} g_j, & \text{ahol ez létezik} \\ 0, & \text{egyébként.} \end{cases}$$

- $Y = Y_1 Y_2$, $Y_1 = g_1 \circ X$, $Y_2 = g_2 \circ X$.
- 9. Megjegyzés. Nyilvánvalóan $Q_X \mid_{\sigma(h)} << \mu \mid_{\sigma(h)}$. Ekkor a Doob-lemma alapján

$$\frac{dQ_X\mid_{\sigma(h)}}{d\mu\mid_{\sigma(h)}}=g\circ h\quad \textit{\'es}\quad g=\frac{dQ_{h(X)}}{d\nu}.$$

Lebesgue-mérték szerinti abszolút folytonosság

10. Tétel. Legyenek $V, W \subset \mathbb{R}^k$ nyílt részhalmazok, $h: V \to W$ diffeomorfizmus (bijektív, differenciálható, $a\left(\frac{\partial h_i}{\partial x_j}\right)_{i,j=1,\dots,k}$ Jacobi mátrix nemszinguláris).

Legyen λ_V és λ_W a Lebesgue-mérték a V, illetve W halmazokon.

 $Ha\ X: \Omega \to \mathbb{R}^k$, $P(X \in V) = 1$ abszolút folytonos eloszlású (a Lebesgue-mértékre nézve), akkor $h \circ X$ is abszolút folytonos eloszlású (a Lebesgue-mértékre nézve), és

$$f_{h(X)}(y) = f_X(h^{-1}(y)) \left| \det \frac{\partial h^{-1}}{\partial y} \right|.$$

Függetlenség

11. Definíció. Események függetlensége:

- $A, B \text{ f\"{u}ggetlenek}, ha P(AB) = P(A)P(B).$
- A_1, \ldots, A_n függetlenek, ha $P(A_{i_1} \cdots A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$, ha $k \leq n$ és $1 \leq i_1 \leq \cdots \leq i_k \leq n$.
- végtelen sok esemény független, ha minden véges részrendszere független.
- 12. Definíció (Eseményosztályok függetlensége). Legyenek $\{A_{\gamma}, \gamma \in \Gamma\}$ eseményosztályok. Ezek függetlennek nevezzük, ha minden olyan $\{A_{\gamma}, \gamma \in \Gamma\}$ részrendszer független, ahol $A_{\gamma} \in A_{\gamma}$.
- 13. Definíció (Valószínűségi változók függetlensége). Legyenek $X_{\gamma}: \Omega \to \mathcal{X}_{\gamma}, \gamma \in \Gamma$ valószínűségi változók.. Ezeket függetlennek nevezzük, ha az $\mathcal{A}_{\gamma} = \sigma(X_{\gamma}), \ \gamma \in \Gamma$ eseményosztályok függetlenek.

Azaz

$$P(\cap_{j=1}^{k} \{X_{\gamma_j} \in B_j\}) = \prod_{j=1}^{k} P(X_{\gamma_j} \in B_j),$$

minden $k \geq 1, \gamma_1, \ldots, \gamma_k \in \Gamma, B_j \in \mathcal{F}_{\gamma_j}, j = 1, \ldots, k$ esetén.

Ez nem egészen ugyanaz, mint a diszkrét eloszlású v.v.-k esetén független megszokott definíciója:

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{j=1}^n P(X_j = x_j).$$

14. Tétel. Legyen (Ω, \mathcal{A}, P) adott valószínűségi mező, és legyenek $\{\mathcal{R}_{\gamma} : \gamma \in \Gamma\}$ $(\mathcal{R}_{\gamma} \subset \mathcal{A})$ metszetre zárt, egymástól független eseményosztályok. Ekkor az $\mathcal{F}_{\gamma} = \sigma(\mathcal{R}_{\gamma})$ σ -algebrák is függetlenek.

Bizonyítás:

- (0) Feltehetjük, hogy $\emptyset, \Omega \in \mathcal{R}_{\gamma}$.
- (1) Azt kell megmutatni, hogy minden $\gamma_1, \ldots, \gamma_n \in \Gamma, A_j \in \mathcal{F}_{\gamma_j}, j = 1, \ldots n$ esetén

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = \prod_{j=1}^n P(A_j).$$

Azaz feltehetjük, hogy Γ véges halmaz.

Tegyük ezt fel, és legyen $\gamma_0 \in \Gamma$. Megmutatjuk, hogy $\mathcal{F}_{\gamma_0}, \mathcal{R}_{\gamma}, \gamma \in \Gamma \setminus \gamma_0$ függetlenek.

(2) Legyen $\mathcal{A}_{\gamma_0} = \{ C \in \mathcal{A} \mid C, \mathcal{R}_{\gamma}, \gamma \in \Gamma \setminus \gamma_0 \text{ függetlenek} \}.$

Ekkor $B,C\in\mathcal{A}_{\gamma_0}$ esetén

 $B \cup C \in \mathcal{A}_{\gamma_0}$ akkor és csak akkor teljesül, ha $B \cap C \in \mathcal{A}_{\gamma_0}$.

Valóban

$$P((B \cup C) \cap A_1 \cap \cdots \cap A_n) + P((B \cap C) \cap A_1 \cap \cdots \cap A_n) = P(B \cap A_1 \cap \cdots \cap A_n) + P(C \cap A_1 \cap \cdots \cap A_n) = P(B) + P(C) \prod_{j=1}^n P(A_j) = (P(B \cup C) + P(B \cap C)) \prod_{j=1}^n P(A_j)$$

(3) Továbbá, ha $B, C \in \mathcal{A}_{\gamma_0}$ és $C \subset B$, akkor $B \setminus C \in \mathcal{A}_{\gamma_0}$. Valóban,

$$P((B \setminus C) \cap A_1 \cap \dots \cap A_n) = P(B \cap A_1 \cap \dots \cap A_n) - P(C \cap A_1 \cap \dots \cap A_n) =$$

$$= (P(B) - P(C)) \prod_{j=1}^n P(A_j) = P(B \setminus C) \prod_{j=1}^n P(A_j).$$

(4) Legyen

$$\mathcal{B}_{\gamma_0} = \left\{ R_1 \cap \overline{R_2} \cap \dots \cap \overline{R_k} \mid R_1, \dots, R_k \in \mathcal{R}_{\gamma_0}, k \ge 1 \right\}$$

Ez is metszetre zárt. Ekkor $\mathcal{B}_{\gamma_0} \subset \mathcal{A}_{\gamma_0}$.

Indukcióval. k=2:

$$R_1 \cap \overline{R_2} = R_1 \setminus (R_1 \cap R_2) \in \mathcal{A}_{\gamma_0}$$
.

 $k \rightarrow k + 1$:

$$R_1 \cap \overline{R_2} \cap \dots \cap \overline{R_k} \cap \overline{R_{k+1}} = \left(R_1 \cap \overline{R_2} \cap \dots \cap \overline{R_k} \right) \setminus \left((R_1 \cap R_{k+1}) \cap \overline{R_2} \cap \dots \cap \overline{R_k} \right)$$

(5) Legyen

$$\mathcal{C}_{\gamma_0} = \{B_1 \cup B_2 \cup \cdots \cup B_k \mid B_1, \dots, B_k \in \mathcal{B}_{\gamma_0}, k \geq 1\}.$$

Ekkor $\mathcal{C}_{\gamma_0} \subset \mathcal{A}_{\gamma_0}$.

Ismét indukcióval. k=1: $B_1 \in \mathcal{B}_{\gamma_0}$

 $k \to k + 1$

 $(B_1 \cup B_2 \cup \cdots \cup B_k) \cup B_{k+1} \in \mathcal{A}_{\gamma_0}$, ha metszetük benn van.

Azaz, ha

$$(B_1 \cap B_{k+1}) \cup (B_2 \cap B_{k+1}) \cup \cdots \cup (B_k \cap B_{k+1}) \in \mathcal{A}_{\gamma_0}$$

De $B_j \cap B_{k+1} \in \mathcal{B}_{\gamma_0}, j = 1, \dots, k$.

(6) A \mathcal{C}_{γ_0} halmazrendszer algebra.

 $\Omega \in \mathcal{C}_{\gamma_0}$ — mert a (0) lépésben beleraktuk.

Az unióra zárt.

Komplementer:

Legyen
$$B_j = \bigcap_{i=1}^h R_{j,i}^{\epsilon_{j,i}}$$
, ahol $\epsilon_{j,i} = 0$, vagy 1, $j = 1, \dots, k$. ($R^0 = R, R^1 = \overline{R}$.)

Ekkor

$$\overline{B_1 \cup B_2 \cup \dots \cup B_k} = \overline{\bigcup_{j=1}^k \cap_{i=1}^h R_{j,i}^{\epsilon_{j,i}}} = \bigcap_{j=1}^k \bigcup_{i=1}^h \overline{R_{j,i}^{\epsilon_{j,i}}} = \bigcup_f \bigcap_{j=1}^k \overline{R_{j,f(j)}^{\epsilon_{j,f(j)}}},$$

ahol $f: \{1, ..., k\} \to \{1, ..., h\}.$

(7) Legyenek most $A_j \in \mathcal{R}_{\gamma_j}, \, \gamma_j \in \Gamma \setminus \gamma_0, \, j = 1, \dots, n.$

Továbbá

$$\mu(A) = P(A \cap A_1 \cap A_2 \cap \dots \cap A_n), \quad A \in \mathcal{A}$$

$$\nu(A) = P(A) \prod_{j=1}^n P(A_j), \quad A \in \mathcal{A}.$$

 \Box .

A két mérték megegyezik a \mathcal{C}_{γ_0} algebrán. Tehát a generált σ -algebrán is. Azaz \mathcal{F}_{γ_0} -n.

Ezért
$$\mathcal{F}_{\gamma_0}, \mathcal{R}_{\gamma}, \gamma \in \Gamma \setminus \gamma_0$$
 függetlenek.

15. Következmény. Ha $\{A_{\gamma}: \gamma \in \Gamma\}$ független σ -algebrák, és $\Gamma = \bigcup_{\lambda \in \Lambda} \Gamma_{\lambda}$ partició, akkor a

$$\mathcal{B}_{\lambda} = \sigma(\mathcal{A}_{\gamma} : \gamma \in \Gamma_{\lambda})$$

 σ -algebrák is függetlenek.

Bizonyítás:

Legyen $\mathcal{H}_{\lambda} = \{ A_1 \cap A_2 \cap \cdots \cap A_n \mid A_j \in \mathcal{A}_{\gamma_j}, \gamma_j \in \Gamma_{\lambda}, j = 1, \dots, n, n \geq 1 \}.$

Ekkor $\mathcal{H}_{\lambda}, \lambda \in \Lambda$ halmazrendszerek metszetre zártak, függetlenek.

Így a generált σ -algebrák is függetlenek. De $\sigma(\mathcal{H}_{\lambda}) = \mathcal{B}_{\lambda}$.

A Kolmogorov-féle 0–1 törvény

16. Tétel. Legyenek \mathcal{F}_i , $i=1,2,\ldots$ független σ -algebrák. Definiáljuk az \mathcal{G}_n σ -algebrát a következőképpen:

$$\mathcal{G}_n = \sigma\left(\mathcal{F}_n, \mathcal{F}_{n+1}, \dots\right)$$

Ekkor tetszőleges

$$B \in \bigcap_{n=1}^{\infty} \mathcal{G}_n$$

eseményre

$$P(B) = 0$$
 vagy 1.

Bizonyítás:

Rögzített $n \ge 2$ tekintsük az indexek következő csoportosítását:

$$\{1, 2, \dots n-1\}, \{n, n+1, \dots\}.$$

Az előző tétel alapján $\sigma(\mathcal{F}_1,\ldots,\mathcal{F}_{n-1}),\mathcal{G}_n$ függetlenek egymástól.

Ha most $B \in \mathcal{G}_n$, akkor tehát B és $\sigma(\mathcal{F}_1, \dots, \mathcal{F}_{n-1})$ függetlenek.

 $n\to\infty$ esetén kapjuk, hogy B és $\cup_{n=2}^\infty\sigma(\mathcal{F}_1,\dots,\mathcal{F}_{n-1})$ is függetlenek.

Ez utóbbi metszetre zárt, tehát B és az ezáltal generált σ -algebra is függetlenek. Ez viszont éppen \mathcal{G}_1 .

Azonban
$$B \in \mathcal{G}_1$$
. Tehát $P(B) = P(B)^2$. Azaz, $P(B) = 0$ vagy 1.

Valószínűségi változók függetlensége

17. Állítás. Legyenek X_1, \ldots, X_n valós értékű valószínűségi változók. Jelölje

$$X = (X_1, \ldots, X_n)$$

a belölük képzett vektorváltozót. Ekkor az alábbi állítások ekvivalensek:

1. X_1, \ldots, X_n függetlenek,

2.
$$Q_X = \times_{i=1}^n Q_{X_i}$$

3.
$$F_X(x_1, \ldots, x_n) = \prod_{i=1}^n F_{X_i}(x_i)$$
.

Bizonyítás:

 $(1) \Rightarrow (2)$ Legyen $B = B_1 \times B_2 \times \cdots \times B_n$. Ekkor

$$Q_X(B) = P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_j P(X_j \in B_j) = \prod_j Q_{X_j}(B_j) = (Q_{X_1} \times \dots \times Q_{X_n})(B).$$

 $(2) \Rightarrow (3)$

$$F_X(x_1,\ldots,x_n) = Q_X((-\infty,x_1),\times\cdots\times(-\infty,x_n)) = (Q_{X_1}\times\cdots\times Q_{X_n})((-\infty,x-1),\times\cdots\times(-\infty,x_n)) = \prod_j Q_{X_j}((-\infty,x_j)) = \prod_j F_{X_j}(x_j).$$

 $(3) \Rightarrow (1)$

Legyen $\mathcal{R}_j = \{\{X_j < x\} \mid x \in \mathbb{R}\}$. Rögzített j mellett ez metszetre zárt halmazrendszer. $j = 1, \ldots, n$ -re függetlenek egymástól.

Így a generált σ -algebrák is függetlenek. Azaz X_1,\ldots,X_n független valószínűségi változók.

Diszkrét ill. abszolút folytonos eloszlás esetén

Legyenek X_1, \ldots, X_n diszkrét eloszlású v.v.-k. Akkor és csak akkor függetlenek, ha

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_j P(X_j = x_j).$$

Bizonyítás. \Rightarrow azonnal látszik.

Visszafelé: Legyen $\mathcal{R}_j = \{\{X_j = x\} \mid x \in \mathbb{R}\}$. Ez metszetre zárt, és $j = 1, \dots, n$ mellett függetlenek. Ezért a generált σ -algebrák is azok.

- **18. Állítás.** Abszolút folytonos esetben a függetlenség az alábbi módon karakterizálható. Legyenek X_1, \ldots, X_n valószínűségi változók. Ekkor,
 - $ha \ X = (X_1, \ldots, X_n)$ abszolút folytonos, akkor X_1, \ldots, X_n akkor és csak akkor függetlenek, ha

$$f_X(x_1, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

• ha X_1, \ldots, X_n függetlenek és abszolút folytonos eloszlásúak, akkor $X = (X_1, \ldots, X_n)$ eloszlása is abszolút folytonos.

Bizonyítás: Ha X eloszlása abszolút folytonos, akkor a marginális változóknak is létezik sűrűségfüggvényük.

Ekkor írhatjuk, hogy

$$P(X_1 \in B_1, \dots X_n \in B_n) = \int_{B_1 \times \dots \times B_n} f_X(x_1, \dots x_n) dx_1 \dots dx_n.$$

Másrészt

$$\prod_{j} P(X_j \in B_j) = \prod_{B_j} \int_{B_j} f_{X_j}(x_j) dx_j = \int_{B_1 \times \dots \times B_n} \prod_{j} f_{X_j}(x_j) dx_1 \dots dx_n.$$

Ha X_1, \ldots, X_n függetlenek, akkor az első tagok egyeznek meg, így az utolsó tagok is. Az egyértelmű mértékkiterjesztés miatt tehát $f_X(x_1, \ldots, x_n) = \prod_j f_{X_j}(x_j)$.

Ha az utolsó tagok egyeznek meg, akkor az első tagok is, tehát X_1, \ldots, X_n függetlenek.

3. előadás — 2020. szeptember 24.

Várható érték

19. Definíció. Legyen X valós értékű valószínűségi változó. Ekkor várható értéke:

$$E(X) = \int_{\Omega} X dP.$$

A várható érték kiszámítása.

• Legyen $X:\Omega\to\mathcal{X}$ v.v. , $h:\mathcal{X}\to\mathbb{R}$ mérhető függvény. Ekkor

$$E(h \circ X) = \int_{\mathcal{X}} h dQ_X.$$

• ha $Q_X << \mu, \mu \sigma$ -véges, akkor

$$E(h \circ X) = \int_{\mathcal{X}} h \frac{dQ_X}{d\mu} d\mu.$$

• ha X diszkrét eloszlású, x_1, x_2, \ldots az értékei, akkor

$$E(h \circ X) = \sum_{i} h(x_i) P(X = x_i)$$

20. Tétel. Összetett valószínűségi változók várható értékének kiszámítása.

- E(X + Y) = E(X) + E(Y), ha a jobboldal létezik és jól definiált.
- E(AX) = AE(X), ha X véges várható értékű (esetleg mátrixértékű) valószínűségi változó, és A pedig konstans (mátrix). (Ha $X = (X_{i,j})_{i=1,...m,j=1,...n}$ akkor $E(X) = (E(X_{i,j}))_{i=1,...m,j=1,...n}$.)
- Ha X és Y függetlenek és várható értékük véges, akkor

$$E(XY) = E(X)E(Y).$$

Az első két állítás adódik azonnal az integrál tulajdonságaiból.

Bizonyítás: (harmadik állítás)

Elég skalár értékű valószínűségi változóra bizonyítani.

Fubini-tételt szeretnénk alkalmazni.

1. lépés

$$E(|XY|) = \int_{\mathbb{R}^2} |xy| dQ_{X,Y} = \int_{\mathbb{R}} |x| \left(\int_{\mathbb{R}} |y| dQ_Y \right) dQ_X = \int_{\mathbb{R}} |x| dQ_X \int_{\mathbb{R}} |y| dQ_Y \ .$$

Nemnegatív függvény esetén alkalmazható a Fubini-tétel.

2. lépés

$$E(XY) = \int_{\mathbb{R}^2} xy dQ_{X,Y} == \int_{\mathbb{R}} x \left(\int_{\mathbb{R}} y dQ_Y \right) dQ_X = \int_{\mathbb{R}} x dQ_X \int_{\mathbb{R}} y dQ_Y = E(X)E(Y).$$

Az abszolút érték integrálja véges, tehát alkalmazható a Fubini-tétel.

A várható értékre vonatkozó egyenlőtlenségek

- 21. Lemma. (A várható érték pozitivitása.)
 - (i) Ha $X \ge 0$, akkor $E(X) \ge 0$.
 - (ii) Legyen $X: \Omega \to \mathbb{R}^n$, $K \subset \mathbb{R}^n$, konvex zárt halmaz. Tegyük fel, hogy $P(X \in K) = 1$. Ekkor $EX \in K$, feltéve, hogy a várható érték véges.

Bizonyítás: Tetszőleges $y \in \mathbb{R}^n$ esetén létezik olyan $\varphi(y) \in K$, melyre

$$||y - \varphi(y)|| = \inf \{||y - x|| \mid x \in K\}.$$

Megmutatható, hogy

$$y^T(y - \varphi(y)) \ge \varphi(y)^T(y - \varphi(y)) \ge x(y - \varphi(y))$$

tetszőleges $x \in K$ esetén.

Tekintsük ugyanis a $t \to |y - ((1-t)\varphi(y) + tx)|^2$ függvényt, $0 \le t \le 1$ esetén. ennek t = 0 helyen minimuma van. Ezért az ottani jobboldali derivált értéke nemnegatív. Így

$$(y - \varphi(y))^T (\varphi(y) - x) \ge 0.$$

Alkalmazzuk ezt a $x=X,\,y=EX$ választással.

$$EX^{T}(EX - \varphi(EX)) \ge \varphi(E(X))^{T}(EX - \varphi(EX)) \ge X^{T}(EX - \varphi(EX)).$$

Várható érteket véve mindhárom kifejezésben adódik, hogy

$$EX^{T}(EX - \varphi(EX)) \ge \varphi(E(X))^{T}(EX - \varphi(EX)) \ge EX^{T}(EX - \varphi(EX)).$$

Tehát egyenlőség kell, hogy teljesüljön. Azaz

$$EX = \varphi(EX).$$

22. Következmény (Jensen-egyenlőtlenség). Ha $X: \Omega \to \mathbb{R}^n$ valószínűségi változó, $f: \mathbb{R}^n \to \mathbb{R}$ konvex függvény. tegyük fel, hogy X és $f \circ X$ véges várható értékűek. Ekkor

$$E(f \circ X) > f(EX).$$

Bizonyítás: Legyen $K \subset \mathbb{R}^{n+1}$

$$K = \{(x,y) \mid x \in \mathbb{R}^n, y \in \mathbb{R}, y \ge f(x)\} .$$

Ez konvex, zárt. Továbbá $(X, f \circ X) \in K$.

Ezért $E[(X, f \circ X)] = (EX, E(f \circ X)) \in K$. Azaz

$$E(f \circ X) \ge f(EX)$$
.

23. Lemma. Legyen $X \geq 0$. Továbbá φ olyan függvény, melyre $\varphi(t) \geq 0$, ha $t \geq 0$. Legyen

$$\varphi(z) = \int_0^z \varphi(t)dt.$$

Ekkor

$$E\varphi(X) = \int_0^\infty \varphi(t)(1 - F(t))dt,$$

ahol F az X eloszlásfüggvénye.

Bizonyítás:

$$\begin{split} E\varphi(X) &= \int \varphi(X) dP = \int_{\Omega} \int_{0}^{X} \varphi(t) dt dP = \int_{\Omega} \int_{0}^{\infty} \varphi(t) \chi_{\{t \leq X\}} dt dP = \int_{0}^{\infty} \varphi(t) \int \chi_{\{t \leq X\}} dP dt = \\ &= \int_{0}^{\infty} \varphi(t) P(X \geq t) dt \,. \end{split}$$

24. Következmény. $Ha \ X \ge 0$, $akkor \ EX = \int_0^\infty (1 - F(t)) dt$. Továbbá,

$$EX \leq \sum_{n=0}^{\infty} P(X \geq n) = 1 + \sum_{n=1}^{\infty} P(X \geq n)$$
$$\geq \sum_{n=1}^{\infty} P(X \geq n)$$

Szórás, kovariancia, korreláció

- **25. Definíció.** Tetszőleges $X: \Omega \to \mathbb{R}$ Valószínűségi változó esetén a $D^2(X) = E\left((X EX)^2\right) = EX^2 (EX)^2$ mennyiség az X szórásnégyzete.
 - $X,Y:\Omega\to\mathbb{R}$ esetén, feltéve, hogy $D^2(X)<\infty$ és $D^2(Y)<\infty$

$$cov(X,Y) = E((X - EX)(Y - EY))$$

az X és Y kovarianciája.

• Ugyancsak a fenti esetben, de feltéve, hogy $0 < D^2(X) < \infty$ és $0 < D^2(Y) < \infty$

$$corr(X,Y) = \frac{cov(X,Y)}{\sqrt{D^2(X)D^2(Y)}}$$

az X és Y közötti korrelációs együttható.

Megjegyzés

Ha X és Y független valószínűségi változók, akkor $D^2(X+Y)=D^2(X)+D^2(Y)$.

26. Definíció. Legyen $X:\Omega\to\mathbb{R}^n$ vektorértékű valószínűségi változó. Ekkor

$$D^{2}(X) = Var(X) = E\left((X - EX)(X - EX)^{T}\right)$$

az ún. szórásmátrix, vagy kovariancia-mátrix.

Főátlóbeli elemei a szórásnégyzetek, a főátlón kívüli elemei a kovarianciák.

27. Állítás. • Markov-egyenlőtlenség: Legyen $X \ge 0$ valószínűségi változó és $\lambda > 0$ szám. Ekkor

$$P(X \ge \lambda) \le \frac{EX}{\lambda} \,,$$

• Csebisev-egyenlőtlenség: Legyen X valószínűségi változó, melyre $D^2(X) < \infty$, $\epsilon > 0$. Ekkor

$$P(|X - EX| \ge \epsilon) \le \frac{D^2(X)}{\epsilon^2}$$

Borel-Cantelli-lemma Erdős-Rényi-féle kiterjesztése.

Legyenek A_1, A_2, \ldots események.

 $\limsup A_n = \{ \omega \in \Omega \mid \omega \text{ az } A_n, n \geq 1 \text{ sorozatból végtelen soknak eleme} \}$

28. Állítás. Tegyük fel, hogy $\sum P(A_n) = \infty$ és

$$\liminf_{n \to \infty} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} P(A_i \cap A_j)}{\left(\sum_{i=1}^{n} P(A_i)\right)^2} = 1.$$

Ekkor $P(\limsup A_n) = 1$.

Bizonyítás: Vegyük észre, hogy

$$\limsup A_n = \left\{ \sum_{j=1}^{\infty} \chi_{A_n} = \infty \right\}.$$

Alkalmazzuk a Csebisev-egyenlőtlenséget:

$$P\left(\left|\sum_{j=1}^{n} \chi_{A_{j}} - \sum_{j=1}^{n} P(A_{j})\right| \ge \epsilon \sum_{j=1}^{n} P(A_{j})\right) \le \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} P(A_{i} \cap A_{j}) - \left(\sum_{i=1}^{n} P(A_{i})\right)^{2}}{\epsilon^{2} \left(\sum_{i=1}^{n} P(A_{i})\right)^{2}}$$

A jobboldal liminf-je nulla. Ezért van olyan n_k , $k \ge 1$ részsorozat, hogy az összege véges. Azaz ekkor (legyen mondjuk $\epsilon = \frac{1}{4}$)

$$\sum_{k=1}^{\infty} P\left(\left| \sum_{j=1}^{n_k} \chi_{A_j} - \sum_{j=1}^{n_k} P(A_j) \right| \ge \frac{1}{4} \sum_{j=1}^{n_k} P(A_j) \right) < \infty.$$

Ekkor *ezekre az eseményekre* alkalmazható az eredeti Borel–Cantelli-lemma. Azaz *limsup-juk* valószínű-sége nulla. Vegyük a komplementer eseményt:

$$P\left(\left\{\omega\,|\, \text{l\'etezik }K(\omega), \text{ hogy ha }k\geq K(\omega), \text{ akkor } \sum_{j=1}^{n_k}\chi_{A_j}(\omega)\geq \frac{3}{4}\sum_{j=1}^{n_k}P(A_j)\right\}\right)=1\,.$$

De

$$\lim_{k \to \infty} \sum_{j=1}^{n_k} P(A_j) = \infty.$$

A χ_{A_n} összeadandók nemnegatívak, ezért

$$P(\sum_{n=1}^{\infty} \chi_{A_n} = \infty) = 1. \quad \Box$$

Konvergenciafajták

1 vsz-ű konvergencia

Ez a majdnem mindenütt való konvergencia megfelelője. Sztochasztikus konvergencia

29. Definíció. $X_n \to X$ sztochasztikusan, ha tetszőleges $\epsilon > 0$ esetén

$$P(|X_n - X| > \epsilon) \to 0.$$

30. Állítás. Az 1 vsz-ű konvergenciából következik a sztochasztikus konvergencia.

Valóban

$$P(|X_n - X| > \epsilon) = E(\chi_{\{|X_n - X| > \epsilon\}}) \to 0$$

mert Lebesgue-tétele alkalmazható.

31. Állítás. A sztochasztikus konvergencia metrizálható.

Nevezetesen, legyen

$$\kappa(X,Y) = \inf \left\{ \epsilon > 0 \mid P\left(|X - Y| > \epsilon\right) \le \epsilon \right\}.$$

Ekkor

- κ metrikát definiál a valószínűségi változók ekvivalenciaosztályain. (X és Y ekvivalensek, ha P(X =Y) = 1.)
- $X_n \to X$ sztochasztikusan $\Leftrightarrow \kappa(X_n, X) \to 0$.
- κ teljes metrikus teret határoz meg.

Bizonvítás:

Megjegyzés: κ definíciójában akár min is írható. Valóban, legyen $\epsilon_n \to \kappa(X,Y)$ szigorúan monoton csökkenően. Ekkor $\cup_n \{|X-Y| > \epsilon_n\} = \{|X-Y| > \kappa(X,Y)\}$ (monoton növekvően), így

$$\lim P(|X - Y| > \epsilon_n) = P(|X - Y| > \kappa(X, Y)).$$

Ezért $P(|X - Y| > \kappa(X, Y)) \le \kappa(X, Y)$.

Háromszög egyenlőtlenség:

Mivel $|X - Z| \le |X - Y| + |Y - Z|$, ezért

$$P(|X - Z| > \kappa(X, Y) + \kappa(Y, Z)) \le P(|X - Y| + |Y - Z| > \kappa(X, Y) + \kappa(Y, Z)) \le$$

$$\le P(|X - Y| > \kappa(X, Y)) + P(|Y - Z| > \kappa(Y, Z)) \le \kappa(X, Y) + \kappa(Y, Z).$$

Ezért $\kappa(X, Z) \leq \kappa(X, Y) + \kappa(Y, Z)$.

Tegyük fel, hogy $\kappa(X_n, X) \to 0$. Legyen $\epsilon > 0$. Ekkor, ha n elég nagy: $\kappa(X_n, X) < \epsilon$. Ezért

$$P(|X_n - X| \ge \epsilon) \le P(|X_n - X| \ge \kappa(X_n, X)) \to 0.$$

Megfordítva, tegyük fel, hogy $X_n \to X$ sztochasztikusan. Ha $\epsilon > 0$, akkor elég nagy n esetén $P(|X_n - X| > 1)$ $\epsilon \leq \epsilon$, ezért ekkor $\kappa(X_n, X) \leq \epsilon$. Teljesség:

Tegyük fel, hogy $\kappa(X_n,X_m) \to 0$, ha $n,m \to \infty$. Válasszunk $n_1 < n_2 < \ldots$ részsorozatot, hogy $\begin{array}{c} \kappa(X_{n_j},X_{n_{j+1}}) \leq \frac{1}{2^{j+1}}. \\ \text{Ekkor} \ \sum_{j=1}^{\infty} P(\left|X_{n_{j+1}} - X_{n_j}\right| > \frac{1}{2^{j+1}}) \leq \sum_j \frac{1}{2^{j+1}} < \infty \,. \end{array}$

Borel–Cantelli-lemma adja, hogy $\sum_j (X_{n_{j+1}} - X_{n_j})$ konvergens 1-valószínűséggel, azaz létezik X, hogy $X_{n_j} \to X$ 1-valószínűséggel, így sztochasztikusan is.

Cauchy-konvergens plusz van konvergens részsorozat $\Rightarrow X_n \to X$.

- 32. Következmény. Ha $X_n o X$ sztochasztikusan, akkor létezik olyan részsorozat, melyre $X_{n_k} o X$ 1 vsz-gel.
- 33. Lemma (Riesz-lemma). Eléggé "gyors" sztochasztikus konvergencia esetén az 1 vsz.-ű konvergencia is teljesül. Pontosabban,
 - $a \sum_{n=1}^{\infty} P(|X_n X| > \epsilon_n) < \infty$, ahol $\epsilon_n \to 0$ feltételekből következik, hogy $X_n \to X$ 1 vsz.-gel;
 - ha tetszőleges $\epsilon > 0$ esetén $\sum_{n=1}^{\infty} P(|X_n X| > \epsilon) < \infty$, akkor $X_n \to X$ 1 vsz.-gel.

 L_p -konvergencia

Legyen $p \geq 1$. Ekkor $X_n \to X$ L_p -ben, ha $E(|X_n - X|^p) \to 0$, ha $n \to \infty$.

Megjegyzés: L_p -beli konvergenciából következik a sztochasztikus konvergencia.

$$P(|X_n - X| > \epsilon) = P(|X_n - X|^p > \epsilon^p) \le \frac{E(|X_n - X|^p}{\epsilon^p}.$$

A fordított irányhoz szükség van a következő definícióra.

34. Definíció. $A \mathcal{H} \subset L_1(P)$ egyenletesen integrálható, ha

$$\lim_{c \to \infty} \sup_{X \in \mathcal{H}} \left\{ \int_{\{|X| > c\}} |X| dP \right\} = 0.$$

Rögtön látszik, hogy ha $\mathcal{H} \subset L_1$ véges halmaz, akkor egyenletesen integrálható.

- **35.** Állítás. $\mathcal{H} \subset L_1$ egyenletesen integrálható akkor és csak akkor, ha
 - $\sup_{X \in \mathcal{H}} E(|X|) < \infty$ és
 - tetszőleges $\epsilon > 0$ esetén létezik olyan $\delta > 0$, hogy bármely A eseményre, ha $P(A) < \delta$, akkor

$$\sup_{X \in \mathcal{H}} \int_{A} |X| dP \le \epsilon.$$

Bizonyítás: Tegyük fel, hogy \mathcal{H} egyenletesen integrálható. Ekkor

$$E(|X|) = \int_{\{|X| \le c\}} |X| dP + \int_{\{|X| > c\}} |X| dP \le c + \sup_{X \in \mathcal{H}} \int_{\{|X| > c\}} |X| dP < \infty.$$

Továbbá

$$\int_{A} |X| dP = \int\limits_{A \cap \{|X| > c\}} |X| dP + \int\limits_{A \cap \{|X| \le c\}} |X| dP \le \int\limits_{\{|X| > c\}} |X| dP + cP(A)$$

Adott ϵ mellett legyen c olyan, hogy $\int\limits_{\{|X|>c\}} |X| dP \le \frac{\epsilon}{2}$, majd $\delta = \frac{\epsilon}{2c}$. Ez jó. Megfordítva: Legyen

- $\epsilon>0.$ válasszuk meg ehhez δ értékét a feltétel szerint. $P(|X|>c)\leq \frac{E(|X|)}{c}<\delta,$ hacelég nagy. Így $\int\limits_{\{|X|>c\}}|X|dP\leq \epsilon.$
- **36. Következmény.** \mathcal{H}_1 és \mathcal{H}_2 egyenletesen integrálhatóak, akkor $\{X + Y \mid X \in \mathcal{H}_1, Y \in \mathcal{H}_2\}$ is egyenletesen integrálható.
 - Ha $E|X| < \infty$, akkor $\{Y \mid |Y| \le |X|\}$ egyenletesen integrálható.
- 37. Lemma (de la Vallée Poussin). A $\mathcal{H} \subset L_1$ akkor és csak akkor egyenletesen integrálható, ha létezik olyan $f: \mathbb{R}^+ \to \mathbb{R}^+$ függvény, melyre

$$\frac{f(x)}{x} \to \infty \text{ és } \sup_{X \in \mathcal{H}} Ef(|X|) < \infty.$$

Így L_p terek véges sugarú gömbjei egyenletesen integrálhatóak, ha p > 1.

38. Tétel. $X_n \to X$ L_p -ben $(p \ge 1)$ akkor és csak akkor, ha $X_n \to X$ sztochasztikusan és emellett még $\{|X_n|^p, n \ge 1\}$ egyenletesen integrálható.

Bizonyítás: Tegyük fel, hogy $X_n \to X$, L_p -ben.

Mivel $\left|\frac{a+b}{2}\right| \leq \sqrt[p]{\frac{|a|^p+|b|^p}{2}}$, ezért $|a+b|^p \leq 2^{p-1} \left(|a|^p+|b|^p\right)$. Tehát $|X_n|^p \leq 2^{p-1} \left(|X_n-X|^p+|X|+p\right)$. Használjuk az ekvivalens megfogalmazását az egyenletes integrálhatóságnak.

 $\sup E|X_n|^p<\infty, \text{ mivel } L_p\text{-ben konvergens, így korlátos is.}$ Továbbá $\int_A|X_n|^pdP\leq 2^{p-1}\left(\int_A|X_n-X|^pdP+\int_A|X|^pdP\right)$. Ha $\epsilon>0$, akkor elég nagy n esetén $E|X_n-X|^pdP$

Az elején véges sok kimarad, de azokhoz és X-hez megválasztható δ úgy, hogy $P(A) < \delta$ esetén a hozadék

Megfordítva, tegyük fel, hogy $X_n \to X$ sztochasztikusan és $|X_n|^p, n \ge 1$ egyenletesen integrálható. Ekkor van 1 valószínűséggel konvergens részsorozat: $n_j, j \ge 1$.

Fatou-lemma adja, hogy $E|X|^p \leq \liminf E|X_{n_i}|^p < \infty$.

Továbbá
$$|X_n-X|^p \leq 2^{p-1} \left(|X_n|^p+|X|^p\right)$$
, így $|X_n-X|^p$, $n\geq 1$ egyenletesen integrálható.
$$E|X_n-X|^p = \int\limits_{\{|X_n-X|>\epsilon\}} |X_n-X|^p dP + \int\limits_{\{|X_n-X|\leq\epsilon\}} |X_n-X|^p dP.$$
 Legyen meet $n\geq 0$. Elberg $\epsilon^p \leq \gamma$

Legyen most $\eta > 0$. Ehhez $\epsilon^p \leq \frac{\eta}{2}$

Létezik $\delta > 0$, hogy $\int_A |X_n - X|^p dP \leq \frac{\eta}{2}$, ha $P(A) \leq \delta$.

Mivel $P(|X_n - X| > \epsilon) \to 0$, ezért elég nagy n esetén értéke legfeljebb δ . De ekkor az első integrál értéke is legfeljebb $\frac{\eta}{2}$.

Ezért elég nagy n mellett $E|X_n - X|^p \le \eta$.

4. előadás — 2020. október 1.

Várható értékkel nem rendelkező valószínűségi változók esetén centrálásra a medián használható.

39. Definíció (Medián). Legyen X valós értékű valószínűségi változó. Ekkor X mediánja – m(X) – minden olyan szám, melyre

$$P(X \le m) \ge \frac{1}{2}, \quad P(X \ge m) \ge \frac{1}{2}$$

teljesülnek.

Példa: Legyen $P(X=1)=P(X=-1)=\frac{1}{2}$. Ekkor $-1 \le m \le 1$ a lehetséges mediánok.

Könnyen megmutatható, hogy a lehetséges mediánok halmaza a

$$\left[\sup\left\{t: F(t) < \frac{1}{2}\right\}, \sup\left\{t: F(t) \le \frac{1}{2}\right\}\right]$$

zárt intervallum.

Megjegyzés:

Ha $P(X \notin [a, b]) < \frac{1}{2}$, akkor $a \le m(X) \le b$.

40. Lemma (Lévy- egyenlőtlenség). Legyenek X_1, \ldots, X_n független valószínűségi változók. Jelölje $S_k =$ $\sum_{i=1}^{k} X_i$. Ekkor

•
$$P\left(\max_{1 \le j \le n} \left(S_j + m(S_n - S_j)\right) > \epsilon\right) \le 2P(S_n > \epsilon)$$

•
$$P\left(\max_{1 \le j \le n} |S_j + m(S_n - S_j)| > \epsilon\right) \le 2P(|S_n| > \epsilon)$$

Bizonyítás: Legyen

$$\nu = \begin{cases} \inf \left\{ j \mid S_j + m(S_n - S_j) > \epsilon \right\}, & \text{ha van ilyen } 1 \leq j \leq n \\ n + 1 & \text{egyébként} \end{cases}$$

Továbbá $B_j = \{S_n - S_j \ge m(S_n - S_j)\}, j = 1, ..., n.$

Ekkor $\bigcup_{j=1}^{n} (B_j \cap \{\nu = j\}) \subset \{S_n > \epsilon\}$. Ezért

$$P(S_n > \epsilon) \ge \sum_{j=1}^n P(B_j \cap \{\nu = j\}) = \sum_{j=1}^n P(B_j) P(\nu = j) \ge \frac{1}{2} \sum_{j=1}^n P(\nu = j) = \frac{1}{2} P(\nu \le n).$$

Az abszolút érték esetén: Vegyük észre, hogy ha Z=-X, akkor -m(X)=m(Z) jó. Legyen $Z_j=-X_j$, $T_k=\sum_{j=1}^k Z_j$. Ekkor

$$\begin{split} P\left(\max_{1\leq j\leq n}|S_j+m(S_n-S_j)|>\epsilon\right) \leq \\ P\left(\max_{1\leq j\leq n}\left(S_j+m(S_n-S_j)\right)>\epsilon\right) + P\left(\max_{1\leq j\leq n}\left(-S_j-m(S_n-S_j)\right)>\epsilon\right) = \\ = P\left(\max_{1\leq j\leq n}\left(S_j+m(S_n-S_j)\right)>\epsilon\right) + P\left(\max_{1\leq j\leq n}\left(T_j+m(T_n-T_j)\right)>\epsilon\right) \\ \leq 2P(S_n>\epsilon) + 2P(T_n>\epsilon) \,. \end{split}$$

Mivel $T_n = -S_n$, ezért $\{S_n > \epsilon\}$ és $\{T_n > \epsilon\}$ diszjunktak. Így

$$P\left(\max_{1\leq j\leq n}|S_j + m(S_n - S_j)| > \epsilon\right) \leq 2P(|S_n| > \epsilon). \quad \Box$$

41. Tétel (Lévy-tétel). Legyenek X_1, X_2, \ldots független valószínűségi változók. Ekkor

$$\sum_{i=1}^{\infty} X_i \text{ sztochasztikusan konvergens} \Leftrightarrow \sum_{i=1}^{\infty} X_i \text{ 1 vsz-gel konvergens}$$

Bizonyítás: A visszafele irány általánosan is igaz.

Tegyük fel a sor sztochasztikus konvergenciáját. Legyen $S_n = \sum_{j=1}^n X_j$. Megmutatjuk, hogy

Mivel az $Y_k = \sup_{n,m \geq k} |S_n - S_m|$ monoton csökken, tehát biztosan konvergens. Elég azonosítani a határértéket. Ehhez pedig elég a sztochasztikus konvergencia.

Tudjuk, hogy S_n , $n \ge 1$ sztochasztikusan Cauchy-konvergens is. Legyen $0 < \epsilon < \frac{1}{2}$. Elég nagy n, m esetén $P(|S_n - S_m| > \epsilon) \le \epsilon$, ezért ekkor $|m(S_n - S_m)| \le \epsilon$.

Lévy-egyenlőtlenség alapján:

$$P(\max_{m < k \le n} |S_k - S_m| > 2\epsilon) \le P(\max_{m < k \le n} |S_k - S_m + m(S_n - S_k)| > \epsilon) \le 2P(|S_n - S_m| > \epsilon) \le 2\epsilon$$

 $n \to \infty$ esetén adódik, hogy $P(\sup_{m < k} |S_k - S_m| > 2\epsilon) \le 2\epsilon$. Ugyanakkor $|S_k - S_j| \le |S_k - S_m| + |S_k - S_m|$. Így $P(\sup_{k,j>m} |S_k - S_j| > 4\epsilon) \le 2P(\sup_{k>m} |S_k - S_m| > 2\epsilon) \le 4\epsilon$.

Nagy számok gyenge törvényei

42. Definíció. Az X_1, X_2, \ldots valószínűségi változó sorozatra teljesül a nagy számok gyenge törvénye, ha léteznek olyan $b_n > 0$ $b_n \to \infty$, $a_n \in \mathbb{R}$ sorozatok, melyekre teljesül a

$$\frac{X_1 + \dots X_n - a_n}{b_n} \to 0 \quad sztochasztikusan$$

konvergencia.

43. Tétel. Ha X_1, X_2, \ldots páronként korrelálatlan valószínűségi változók sorozata, melyre

$$\frac{1}{n^2} \sum_{i=1}^n D^2(X_i) \to 0,$$

akkor

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-E(X_i))\to 0$$
, sztochasztikusan.

Bizonvítás:

$$P(\left|\frac{1}{n}\sum_{i=1}^{n}(X_{i}-E(X_{i}))\right|>\epsilon)\leq \frac{1}{\epsilon^{2}}D^{2}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-E(X_{i}))\right)==\frac{1}{\epsilon^{2}}\frac{1}{n^{2}}\sum_{i=1}^{n}D^{2}(X_{i}).\quad \Box$$

44. Tétel (Hincsin-féle gyenge törvény, bizonyítás nélkül). Legyenek X_1, X_2, \ldots páronként független, azonos eloszlású valószínűségi változók. Tegyük fel, hogy

$$EX_i = m$$

véges. Ekkor

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to m$$

sztochasztikusan.

45. Tétel (Feller – féle gyenge törvény). Legyenek X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók. Ekkor

$$\exists a_n, \ n \geq 1 \ sorozat, \ hogy \ \frac{S_n - a_n}{n} \to 0 \Leftrightarrow nP(|X_1| > n) \to 0.$$

 $\textit{Továbbá}, \ a_n = n \left(\int_{|X_1| < n} X_1 dP + o(1) \right) \ \textit{definiálja a lehetséges "jó"} \ a_n \ \textit{sorozatokat}.$

46. Megjegyzés.

 $Ha\ X_1 \in L_1,\ akkor\ nP(|X_1| > n) \le E\left(|X_1|\chi_{\{|X_1| > n\}}\right) \to 0.\ \ és\ EX_1 - E\left(X_1\chi_{\{|X_1| \le n\}}\right) \to 0,\ tehát$ megelőlegezve, hogy igaz a tétel — következik, hogy

$$\frac{S_n}{n} \to EX_1$$

sztochasztikusan.

Tegyük fel először, hogy teljesül az $nP(|X_1| > n) \to 0$ feltétel.

Rögzített n mellett legyenek $X_j^{(n)} = X_j \chi_{\{|X_j| \le n\}}$ és $S_n^* = \sum_{j=1}^n X_j^{(n)}$.

Ekkor
$$P(S_n \neq S_n^*) \leq \sum_{j=1}^n P(X_j \neq X_j^{(n)}) = nP(|X_1| > n) \to 0.$$

Megmutatjuk, hogy $\frac{S_n^* - ES_n^*}{n} \to 0$, sztochasztikusan.

Ez elég, mert ekkor

$$P\left(\left|\frac{S_n - ES_n^*}{n}\right| > \epsilon\right) \le P(S_n \ne S_n^*) + P\left(\left|\frac{S_n^* - ES_n^*}{n}\right| > \epsilon\right)$$

Csebisev-egyenlőtlenség:

$$P\left(\left|\frac{S_n^* - ES_n^*}{n}\right| > \epsilon\right) \leq \frac{1}{\epsilon^2} \frac{1}{n^2} D^2(S_n^*) = \frac{D^2(X_1^{(n)})}{n\epsilon^2} \leq \frac{1}{n\epsilon^2} E\left(\left(X_1^{(n)}\right)^2\right)$$

Alkalmazzuk a $\varphi(t) = 2t$ függvényre a korábbi azonosságot. Ekkor $\varphi(z) = z^2$. Ezért

$$\begin{split} \frac{1}{n} E\left(\left(X_{1}^{(n)}\right)^{2}\right) &= \frac{1}{n} \int_{0}^{\infty} 2t P\left(\left|X_{1}^{(n)}\right| > t\right) dt = \frac{2}{n} \int_{0}^{n} t P\left(\left|X_{1}^{(n)}\right| > t\right) dt \leq \frac{2}{n} \int_{0}^{n} t P\left(\left|X_{1}\right| > t\right) dt \leq \frac{2}{n} \sum_{k=0}^{n-1} (k+1) P(\left|X_{1}\right| > k) \to 0 \end{split}$$

Megfordítva, tegyük fel, hogy alkalmas a_n , $n \ge 1$ mellett $\frac{S_n - a_n}{n} \to 0$. Legyen $\delta_1 = a_1$, $\delta_n = a_n - a_{n-1}$, ha $n \ge 2$. Ekkor $a_n = \sum_{k=1}^n \delta_k$. Módosítsunk: legyen $Z_k = X_k - \delta_k$, $k \ge 1$, és $T_k = \sum_{k=1}^n Z_k = S_n - a_n$. Ekkor tehát $\frac{T_n}{n} \to 0$ a feltevés.

Ugyanakkor, $Z_n = T_n - T_{n-1}$. Ezért

$$\frac{Z_n}{n} = \frac{T_n}{n} - \frac{n-1}{n} \frac{T_{n-1}}{n-1} \to 0, \quad \text{sztochasztikusan}.$$

Tehát $P\left(\left|\frac{Z_n}{n}\right| > \epsilon\right) = \to 0.$

De $Z_n = X_n - \delta_n$ és $X_1 - \delta_n$ azonos eloszlásúak, ezért $\frac{X_1 - \delta_n}{n} \to 0$.

Tehát $\frac{\delta_n}{n} \to 0$. Adódik, hogy

$$\frac{\max_{1\leq k\leq n}|\delta_k|}{n}\to 0.$$

Azaz bármely $\varepsilon > 0$ esetén elég nagy n mellett minden $1 \le j \le n$ értékre $|\delta_j| \le n\varepsilon$.

Megmutatjuk, hogy hasonló állítás teljesül a T_n és így a Z_n sorozatra is.

Ehhez a Lévy-egyenlőtlenséget fogjuk használni. Ehhez az $m(T_n-T_j)$ mediánokat kellene először becsülni. Elég nagy n-re, de akkor már minden $1 \le j \le n$ esetén.

$$\begin{aligned} \max_{1 \leq j \leq n} P(|T_n - T_j| > n\varepsilon) &\leq \max_{1 \leq j \leq n} \left(P(|T_n| > \frac{n}{2}\varepsilon) + P(|T_j| > \frac{n}{2}\varepsilon) \right) \leq \\ &\leq P\left(\left| \frac{T_n}{n} \right| > \frac{1}{2}\varepsilon \right) + \max_{j_0 \leq j \leq n} P\left(\left| \frac{T_j}{j} \right| > \frac{1}{2}\varepsilon \right) + \max_{1 \leq j < j_0} P\left(\left| \frac{T_j}{n} \right| > \frac{1}{2}\varepsilon \right) \end{aligned}$$

ahol j_0 olyan, hogy $j \ge j_0$ esetén $P\left(\left|\frac{T_j}{j}\right| > \frac{\varepsilon}{2}\right) < \frac{1}{6}$. Továbbá elég nagy n esetén $\max_{1 \le j \le j_0} P\left(\left|\frac{T_j}{n}\right| > \frac{1}{2}\varepsilon\right) < \frac{1}{6}$

Ezért tehát elég nagy n esetén

$$\max_{1 < j < n} P(|T_n - T_j| > n\varepsilon) < \frac{1}{2},$$

azaz $|m(T_n - T_j)| \le n\varepsilon$, ha n elég nagy, minden $1 \le j \le n$ mellett. Lévy-egyenlőtlenség:

$$P\left(\max_{1\leq j\leq n}|T_j|>2n\varepsilon\right)\leq P\left(\max_{1\leq j\leq n}|T_j+m(T_n-T_j)|>n\varepsilon\right)\leq 2P(|T_n|>n\varepsilon)\to_{n\to\infty}0\,.$$

Így
$$\frac{\max\limits_{1\leq j\leq n}|T_j|}{n} \to 0$$
 sztochasztikusan. Mivel $Z_j = T_j - T_{j-1}$, ezért $\frac{\max\limits_{1\leq j\leq n}|Z_j|}{n} \to 0$

Ezért
$$P\left(\frac{\max\limits_{1\leq j\leq n}|Z_j|}{n}\leq \varepsilon\right)\to 1.$$

Azonban

$$P\left(\frac{\max\limits_{1\leq j\leq n}|Z_j|}{n}\leq \varepsilon\right)=\prod_{j=1}^n P(|Z_j|\leq n\varepsilon)=\prod_{j=1}^n \left(1-P(|Z_j|>n\varepsilon)\right)\leq e^{-\sum_{j=1}^n P(|Z_j|>n\varepsilon)}\leq 1.$$

Így $\sum_{j=1}^{n} P(|Z_j| > n\varepsilon) \to 0.$

Végü

$$\sum_{1 \le j \le n} P(|X_j| > 2n\varepsilon) = \sum_{j=1}^n P(|Z_j + \delta_j| > 2n\varepsilon) \le \sum_{j=1}^n P(|Z_j| > n\varepsilon).$$

Tehát $nP(|X_1| > 2n\varepsilon) \to 0$.

A Kolmogorov-féle 0–1 törvény alkalmazása

47. Definíció. $Az\ A\subset\mathbb{R}^{\mathbb{N}}$ mérhető halmaz ún. aszimptotikus halmaz, ha tetszőleges $x,y\in\mathbb{R}^{\mathbb{N}}$ esetén, ha létezik olyan n, melyre $x_i=y_i$ tetszőleges $i\geq n$ esetén, akkor

$$x \in A \quad \Leftrightarrow \quad y \in A$$

Könnyen megmutatható, hogy ha A aszimptotikus halmaz, akkor

$$A = \mathbb{R}^{n-1} \times A_n,$$

ahol

$$A_n = \{ z \in \mathbb{R}^{\mathbb{N}} \mid \exists x_1, x_2, \dots, x_{n-1}, \text{ hogy } (x_1, x_2, \dots, x_{n-1}, z) \in A \}.$$

48. Következmény. Ha X_1, X_2, \ldots független valószínűségi változók, és A aszimptotikus halmaz, akkor

$$P((X_1, X_2, \dots) \in A) = 0 \ vagy \ 1.$$

Példák

- Tegyük fel, hogy $b_n \to \infty$ rögzített sorozat. Legyen $A = \left\{ x \in \mathbb{R}^{\mathbb{N}} \mid \lim_{n \to \infty} \frac{\sum_{j=1}^n x_j}{b_n} \right.$ létezik $\right\}$,
- $A_c = \left\{ x \in \mathbb{R}^{\mathbb{N}} \mid \lim_{n \to \infty} \frac{\sum_{j=1}^n x_j}{b_n} < c \right\},$
- $A = \left\{ x \in \mathbb{R}^{\mathbb{N}} \mid \sum_{j=1}^{\infty} x_j \quad \text{véges} \right\},$

Kiegészítő állítások — bizonyítás nélkül.

49. Tétel. Legyenek X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók. Tegyük fel, hogy X_1 nem elfajult eloszlású.

Ha valamely $a_j, j \ge 1$ együtthatósorozat esetén

$$\sum_{i=1}^{\infty} a_i X_i$$

konvergens 1 vsz-gel, akkor $\sum_{j=1}^{\infty}a_{j}^{2}<\infty$.

50. Tétel (Marczinkiewicz - Zygmund). Legyen 0 .

 $Ha\ X_1, X_2, \dots$ független, azonos eloszlású valószínűségi változók, akkor

$$E|X_1|^p < \infty \Rightarrow \sum_{i=1}^{\infty} \left(\frac{X_i}{i^{\frac{1}{p}}} - EY_i\right)$$
 konvergens 1 vsz-gel

ahol $Y_i = \frac{X_i}{\frac{1}{i^p}} \chi_{\{|X_i|^p \le i\}}$.

51. Tétel (Marczinkiewicz - Zygmund). Legyen 0 .

 $Ha\ X_1, X_2, \dots$ független, azonos eloszlású valószínűségi változók, akkor

$$E|X_1|^p < \infty \Leftrightarrow \frac{\sum_{i=1}^n X_i - nc}{n^{\frac{1}{p}}} \text{ konvergens 1 vsz-gel}$$

alkalmas c esetén.

Itt c = 0, ha p < 1, illetve $c = E(X_1)$, ha $1 \le p < 2$.

Mi történik p=2 esetén

Legyenek X_1, X_2, \ldots független valószínűségi változók, $P(X_j = 1) = P(X_j = -1) = \frac{1}{2}$.

Legyen $S_n = \sum_{j=1}^n X_j$. Szimmetrikus bolyongás. $E(X_j) = 0$.

Tekintsük az

$$\frac{S_n}{\sqrt{n}}$$
, sorozatot.

Azaz p = 2.

De erről szól a Moivre–Laplace-tétel.

$$P\left(a < \frac{S_n}{\sqrt{n}} < b\right) \longrightarrow \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$
.

Milyen fajta konvergencia ez? Még sztochasztikus konvergencia sem lehet.

5. előadás — 2020. október 8.

Valószínűségi mértékek gyenge konvergenciája

Eloszlásbeli konvergencia

52. Definíció. Legyen (\mathcal{X}, ρ) teljes, szeparábilis, metrikus tér (melyen ρ jelöli a metrikát). Jelölje \mathcal{B} a Borel-halmazokat.

 $A Q_n, n \ge 1$ valószínűségi mértékek sorozata **gyengén** tart Q-hoz, ha tetszőleges $f \in C_b(\mathcal{X})$ folytonos, korlátos függvény esetén

$$\int f dQ_n \to \int f dQ.$$

53. Definíció. Legyenek $X_n: \Omega \to \mathcal{X}$ véletlen mennyiségek, $X: \Omega \to \mathcal{X}$ adott véletlen mennyiség. Ekkor

$$X_n \to X$$
 eloszlásban, ha $Q_{X_n} \to Q_X$ gyengén.

Megjegyzés Tetszőleges $f \in C_b(\mathcal{X})$ esetén legyen M_f az |f| egy felső korlátja. Ekkor a

$$Q \to \left(\int f dQ \right)_{f \in C_b(\mathcal{X})}$$

leképezés beágyazás (?), mely a valószínűségi mértékek terét beleképezi a

$$\prod_{f \in C_b(\mathcal{X})} \left[-M_f, M_f \right]$$

térbe.

Ezen szorzattéren vett szorzattopológia éppen a gyenge konvergenciát indukálja.

Mivel ezen tér kompakt, ezért tetszőleges végtelen részhalmazának van torlódási pontja. Tehát a valószínűségi mértékek tetszőleges végtelen részhalmazának mint ezen szorzattér részhalmazának van torlódási pontja.

Azonban ezen torlódási pont nem feltétlenül áll elő

$$\int f dQ, \quad f \in C_b(\mathcal{X})$$

alakban.

Megjegyzés

 $Ha \mathcal{X}$ kompakt, akkor tetszőleges folytonos lineáris funckcionál előáll a fenti alakban. (Riesz-tétel)

54. Tétel. Az alábbi állítások ekvivalensek.

- (1) $Q_n \to Q$ gyengén,
- (2) $\limsup Q_n(F) \leq Q(F)$ tetszőleges F zárt halmaz esetén,
- (3) $\liminf Q_n(G) \geq Q(G)$ tetszőleges G nyílt halmaz esetén,
- (4) $\lim Q_n(A) = Q(A)$ tetszőleges A halmaz esetén, melyre $Q(\delta A) = 0$.

Bizonyítás:

- $(2) \Leftrightarrow (3)$
- $(2) \Rightarrow (4)$

 $\operatorname{int} A \subset A \subset \overline{A}$. Ezért

$$\limsup_{n \to \infty} Q_n(A) \leq \limsup_{n \to \infty} Q_n(\overline{A}) \leq Q(\overline{A})$$
$$\liminf_{n \to \infty} Q_n(A) \geq \liminf_{n \to \infty} Q_n(\operatorname{int} A) \geq Q(\operatorname{int} A).$$

Ha $Q(\delta A) = 0$, akkor $Q(\overline{A}) = Q(\text{int}A) = Q(A)$.

Ezért $\lim_{n\to\infty} Q_n(A) = Q(A)$.

 $(1) \Rightarrow (2)$

Vezessük a következő jelöléseket:

$$\begin{array}{rcl} F_{\epsilon} &=& \{x \in \mathcal{X} \,|\, \rho(x,F) \leq \epsilon\} \\ h(z) &=& 1-z\,, \quad \text{ha} \ 0 \leq z \leq 1\,, \text{ egy\'ebk\'ent} \ 0\,, \\ f_{\epsilon}(x) &=& h\left(\frac{1}{\epsilon}\rho(x,F)\right)\,. \end{array}$$

Ekkor $\chi_F \leq f_{\epsilon} \leq \chi_{F_{\epsilon}}$. Így

$$\limsup Q_n(F) \le \limsup \int f_{\epsilon} dQ_n = \int f_{\epsilon} dQ \le Q(F_{\epsilon}).$$

 $\epsilon \to 0$ esetén, mivel $\cap_{\epsilon} F_{\epsilon} = F$, (hiszen F zárt halmaz) ezért adódik, hogy $\limsup Q_n(F) \le Q(F)$. (2) \Rightarrow (1) Legyen f folytonos korlátos függvény. |f| < M. Ekkor $g = \frac{1}{2M} f + \frac{1}{2}$ esetén 0 < g < 1. Legyen $k \ge 1$ rögztett:

$$F_{j,k} = \left\{ x \in \mathcal{X} \mid g(x) \ge \frac{j}{k} \right\}, j = 0, \dots, k.$$

Ha valamely x esetén $\frac{i}{k} \leq g(x) < \frac{i+1}{k}$, akkor $x \in F_{j,k}$, ha j = 0, 1, ... i. Tehát

$$\frac{1}{k} \sum_{j=1}^{k} \chi_{F_{j,k}}(x) = \frac{i}{k} \le g(x) < \frac{i+1}{k} = \frac{1}{k} \sum_{j=0}^{k} \chi_{F_{j,k}}(x) = \frac{1}{k} + \frac{1}{k} \sum_{j=1}^{k} \chi_{F_{j,k}}(x).$$

Tehát

$$\limsup_{n\to\infty} \int g dQ_n \leq \limsup \int \frac{1}{k} \sum_{j=0}^k \chi_{F_{j,k}} dQ_n \leq \frac{1}{k} + \int \frac{1}{k} \sum_{j=1}^k \chi_{F_{j,k}} dQ \leq \frac{1}{k} + \int g dQ.$$

 $k \to \infty$: adódik, hogy $\limsup \int g dQ_n \leq \int g dQ$.

Ezért $\limsup \int f dQ_n \leq \int f dQ$.

Ugyanezt alkalmazhatjuk a -f függvényre. Tehát $\limsup \int -fdQ_n \leq \int -fdQ$.

Azaz $\liminf \int f dQ_n \geq \int f dQ$. Tehát $\lim \int g dQ_n = \int g dQ$.

 $(4) \Rightarrow (2)$. Legyen F zárt halmaz. Tekintsük az F_{ϵ} halmazok határpontjait. Ezek diszjunktak. Így legfeljebb megszámlálhatóan végtelen lehet közülük pozitív mértékű. Ezért létezik $\epsilon_k \to 0$ sorozat, hogy $Q(\delta F_{\epsilon_k}) = 0$.

$$\limsup Q_n(F) \leq \limsup Q_n(F_{\epsilon_k}) = Q(F_{\epsilon_k})$$
.

 $k \to \infty$ mellett adódik (2).

Megjegyzés

Ha $Q(\delta A)=0$, akkor χ_A indikátorfüggvény Q majdnem mindenütt folytonos függvény. Ennek általánosítása: ha $Q_n\to Q$, és h a Q mérték szerint majdnem mindenütt folytonos függvény, akkor $\int hdQ_n\to \int hdQ$.

55. Lemma. Legyen $(\mathcal{X}^{'}, \rho^{'})$ teljes, szeparábilis metrikus tér. $h: \mathcal{X} \to \mathcal{X}^{'}$ mérhető leképezés. Jelölje c(h) a h folytonossági pontjainak halmazát. Tegyük fel, hogy $X_n \to X$ eloszlásban, továbbá $Q_X(c(h)) = 1$. Ekkor

$$h(X_n) \to h(X)$$
 eloszlásban.

Bizonyítás:

Legyen $F \subset \mathcal{X}'$ zárt. Ekkor $\overline{h^{-1}(F)} \subset h^{-1}(F) \cup (\mathcal{X} \setminus c(h))$.

Ezért

$$\limsup Q_{h \circ X_n}(F) = \limsup Q_{X_n}(h^{-1}(F)) \le \lim \sup Q_{X_n}(\overline{h^{-1}(F)}) \le Q_X(\overline{h^{-1}(F)}) = Q_X(h^{-1}(F)) = Q_{h \circ X}(F)$$

Kapcsolat más konvergenciafajtákkal

56. Lemma. Ha $\rho(X_n, X) \to 0$ sztochasztikusan, akkor $X_n \to X$ eloszlásban.

Bizonyítás: Legyen F zárt halmaz és $\varepsilon > 0$. Ekkor

$$\limsup Q_{X_n}(F) = \limsup P(X_n \in F) \le$$

$$\leq \lim \sup \left(P(\{X_n \in F\} \cap \{\rho(X_n, X) \le \varepsilon\}) + P(\{X_n \in F\} \cap \{\rho(X_n, X) > \varepsilon\}) \right) \le$$

$$\leq P(X \in F_{\varepsilon}) = Q_X(F_{\varepsilon}).$$

 $\varepsilon \to 0$ mellett kapjuk, hogy $\limsup Q_{X_n}(F) \leq Q_X(F)$.

- Ha $X_n \to X$ eloszlásban, akkor $E|X| \le \liminf E|X_n|$.
- Ha $X_n \to X$ eloszlásban, és az $\{X_n, \ n \ge 1\}$ halmaz egyenletesen integrálható, akkor $EX_n \to EX$.
- Ha $X_n \to X$ eloszlásban, továbbá $X_n \ge 0$ és $EX_n \to EX$, akkor az $\{X_n \ n \ge 1\}$ halmaz egyenletesen integrálható.
- 57. Definíció. Legyen Q valószínűségi mértékek családja az (\mathcal{X}, ρ) téren. Ekkor
 - Q feszes, ha tetszőleges $\epsilon > 0$ esetén létezik olyan K_{ϵ} kompakt halmaz, melyre

$$Q(K_{\epsilon}) \geq 1 - \epsilon$$
, bármely $Q \in \mathcal{Q}$ esetén.

• Q relatív kompakt, ha tetszőleges Q-beli végtelen sorozatból kiválasztható konvergens részsorozat.

Nyilvánvalóan, ha \mathcal{X} maga kompakt, akkor tetszőleges rajta értelmezett mértékcsalád feszes.

58. Tétel (Prohorov). Teljes, szeparábilis metrikus téren értelmezett valószínűségi mértékcsalád esetén a feszesség és relatív kompaktság ekvivalensek.

Bizonyítás:

Tegyük fel, hogy az (\mathcal{X}, ρ) téren értelmezett \mathcal{Q} mértékcsalád relatív kompakt.

Megmutatjuk, hogy ekkor feszes is. Ehhez, rögzített $\varepsilon>0$ mellett alkalmas kompakt halmazt kell konstruálni.

A teljes szeparábilis metrikus tér kompakt részhalmazai a zárt, teljesen korlátos halmazok.

Legyen $\{x_1, x_2 \dots\} \subset \mathcal{X}$ sűrű részhalmaz. Jelölje $G_{j,k} = B(x_j, \frac{1}{k})$ nyílt gömböket.

Ekkor az

$$\bigcap_{k\geq 1} \cup_{j=1}^{i_k} G(j,k)$$

teljesen korlátos. Sőt, $\overline{\cap_{k\geq 1} \cup_{j=1}^{i_k} G(j,k)}$ kompakt lesz.

Úgy kellene az i_1, i_2, \ldots értékeket megválasztani, hogy ennek mértéke minden $Q \in \mathcal{Q}$ esetén legalább $1 - \varepsilon$ legyen.

Ha minden $k \geq 1$ mellett létezik i_k , hogy minden $Q \in \mathcal{Q}$ esetén

$$Q(\cup_{j=1}^{i_k} G(j,k)) \ge 1 - \frac{\varepsilon}{2^k}$$

akkor a

$$K_{\varepsilon} = \overline{\bigcap_{k > 1} \bigcup_{j=1}^{i_k} G(j,k)}$$

megfelelő halmaz lesz.

Indirekt: tegyük fel, hogy ezt nem lehet megcsinálni, megmutatjuk, hogy ekkor $\mathcal Q$ nem lehet relatív kompakt.

Azaz, tegyük fel, hogy létezik $\varepsilon>0$ továbbá $k\geq 1$, hogy bármely $i\geq 1$ esetén van "rossz" mérték: azaz létezik $Q_i\in\mathcal{Q}$, hogy

$$Q_i(\cup_{j=1}^i G_{j,k}) < 1 - \frac{\varepsilon}{2^k}$$
.

A relatív kompaktság miatt van gyengén konvergens részsorozat. Legyen ez i_h , $h \ge 1$, és $Q = \lim_{h \to \infty} Q_{i_h}$. Legyen most i rögzített szám. Ekkor elég nagy h mellett $i_h \ge i$. Ezért

$$Q(\cup_{j=1}^{i}G_{j,k}) \leq \liminf_{h \to \infty} Q_{i_h}(\cup_{j=1}^{i}G_{j,k}) \leq \liminf_{h \to \infty} Q_{i_h}(\cup_{j=1}^{i_h}G_{j,k}) \leq 1 - \frac{\varepsilon}{2^k}.$$

Mivel $\bigcup_{j=1}^{\infty} G_{j,k} = \mathcal{X}$, ezért $Q(\mathcal{X}) \leq 1 - \frac{\varepsilon}{2^k} < 1$. Ez nem lehet.

Tehát a relatív kompaktságból következik a feszesség.

6. előadás — 2020. október 15.

A visszafele irányt csak \mathbb{R}^n -n.

Ebben az alábbi két lemma játszik fontos szerepet.

59. Lemma. Legyenek Q_n , $n \ge 1$ az $(\mathbb{R}, \mathcal{B})$ -n értelmezett eloszlások, F_n jelölje a megfelelő eloszlásfüggvényeket. Ekkor

$$Q_n \to Q$$
 gyengén \Leftrightarrow $F_n(x) \to F(x)$, tetszőleges $x \in c(F)$ esetén.

Bizonyítás:

Tegyük fel, hogy $Q_n \to Q$ gyengén, és legyen $x \in c(F)$. Ekkor $Q(\delta(-\infty, x)) = 0$. Tehát

$$F_n(x) = Q_n((-\infty, x)) \rightarrow Q((-\infty, x)) = F(x)$$
.

Megfordítva, tegyük fel, hogy $F_n(x) \to F(x)$ tetszőleges $x \in c(F)$ esetén. Azaz bizonyos félegyenes indikátor függvények integráljai konvergálnak. Közelítsünk ilyenek lineáris kombinációjával tetszőleges folytonos, korlátos függvényt. Ezt az egész számegyenesen egyenletesen nem lehet. Ezért "levágjuk" a végeket.

Legyen $\varepsilon > 0$, a, -a az F folytossági pontjai, melyekre $F(-a) < \varepsilon, 1 - F(a) < \varepsilon$.

f folytonos, korlátos függvény, |f| < M. Ekkor létezik $g = \sum_{j=1}^{J} c_j \chi_{(-\infty, x_j)}$, hogy $|f(x) - g(x)| \le \varepsilon$, ha $|x| \le a$, |g| < M és $x_1, x_2, \ldots, x_J \in c(F)$.

Ekkor

$$\begin{split} \left| \int f dQ_n - \int f dQ \right| & \leq \left| \int_{|x| > a} f dQ_n \right| + \left| \int_{|x| > a} f dQ \right| + \left| \int_{|x| \le a} f dQ_n - \int_{|x| \le a} f dQ \right| \le \\ & \leq M \left| \int_{|x| > a} 1 dQ_n \right| + M \left| \int_{|x| > a} 1 dQ \right| + \left| \int_{|x| \le a} f dQ_n - \int_{|x| \le a} g dQ_n \right| + \left| \int_{|x| \le a} f dQ - \int_{|x| \le a} g dQ \right| + \left| \int_{|x| \le a} g dQ_n - \int_{|x| \le a} g dQ \right| \le \\ & \leq M \left| \int_{|x| > a} 1 dQ_n \right| + M \left| \int_{|x| > a} 1 dQ \right| + 2\varepsilon + \left| \int g dQ_n - \int g dQ \right| + \left| \int_{|x| > a} g dQ_n \right| + \int_{|x| > a} g dQ \right| \end{split}$$

Ezért

$$\limsup \left| \int f dQ_n - \int f dQ \right| \le 4MQ(\{x \mid |x| > a\}) + 2\varepsilon \le 8M\varepsilon + 2\varepsilon$$

Mivel ε akármilyen kicsiny lehet, kapjuk, hogy $\int f dQ_n \to \int f dQ$.

60. Lemma (Helly-Bray). Eloszlásfüggvények tetszőleges F_n sorozatának van olyan részsorozata, melyre

$$F_{n,i}(x) \to G(x)$$
, $x \in c(G)$,

ahol G monoton növő, balról folytonos függvény.

Bizonyítás:

Az $F_n(x), n \ge 1$ korlátos halmaz, így van konvergens részsorozat.

Sorban véve \mathbb{Q} pontjait kaphatunk $n_k, k \geq 1$ részsorozatot, hogy $\lim_{k \to \infty} F_{n_k}(r) = H(r), r \in \mathbb{Q}$.

Legyen most $G(x) = \sup \{H(r) \mid r < x\}$. Ez balról folytonos, monoton növekvő.

Ekkor $H(r) \geq G(r), r \in \mathbb{Q}$.Legyen $x \in c(G)$

Válasszunk $r_2 > r_1 > x > r_3$ racionális számokat.

$$\limsup F_{n_k}(x) \le \limsup F_{n_k}(r_1) = H(r_1) \le G(r_2),$$

 $\liminf F_{n_k}(x) \ge \liminf F_{n_k}(r_3) = H(r_3) \ge G(r_3).$

 $r_2 \to x, r_3 \to x$. Adódik, hogy $F_{n_k}(x) \to G(x)$.

61. Megjegyzés. Az előző két lemma állításának bizonyítása kis körültekintéssel és az indexek gondos alkalmazásával könnyen átvihető véges-dimenziós euklidészi téren értelmezett valószínűségi mértékekre is.

Prohorov-tétel — visszafele irány

Tegyük fel tehát, hogy az $(\mathbb{R}, \mathcal{B})$ -n értelmezett $\{Q_n, n \geq 1\}$ mértékcsalád feszes. Ekkor egyben relatív kompakt is.

Bizonyítás:

Legyen $\mathbb{N}_1 \subset \mathbb{N}$ tetszőleges részsorozat. A Helly–Bray-féle kiválasztási tétel alapján van $\mathbb{N}_2 \subset \mathbb{N}_1$ újabb részsorozat és G monoton növekvő, balról folytonos függvény, hogy $\lim_{n \to \infty, n \in \mathbb{N}_2} F_n(x) = G(x)$, ha $x \in c(G)$.

Ha G egyben eloszlásfüggvény, akkor a másik lemma alapján a kiválasztott \mathbb{N}_2 részsorozat mentén Q_n tart a G által meghatározott mértékhez.

Legyen $\varepsilon > 0$. Mivel $Q_n, n \ge 1$ feszes, így létezik $c < \infty$, hogy $Q_n(\mathbb{R} \setminus [-c, c]) < \varepsilon$. Legyen a < -c, b > c, $a, b \in c(G)$. Ekkor

$$G(a) = \lim_{n \to \infty, n \in \mathbb{N}_2} F_n(a) < \varepsilon, 1 - G(b) = \lim_{n \to \infty, n \in \mathbb{N}_2} (1 - F_n(b)) < \varepsilon$$

Tehát $\lim_{x\to-\infty} G(x) = 0, \lim_{x\to\infty} G(x) = 1.$

62. Megjegyzés. A Prohorov-tétel általános bizonyítása a Stone-féle reprezentációs tétel felhasználásával is történhet.

Láttuk, hogy a mértékcsalád beágyazható egy alkalmas kompakt térbe, továbbá, hogy tetszőleges torlódási pont lineáris funkcionált határoz meg a folytonos, korlátos függvények terén.

Ezen funkcionál nyilvánvalóan pozitív, azaz nemnegatív függvényhez nemnegatív értéket rendel.

A Stone-tétel értelmében, ha ezen felül még monoton is, akkor létezik olyan mérték, amely szerinti integrál éppen az adott funkcionált adja meg.

A monotonitás azt jelenti, hogy ha $f_n \in C_b(\mathcal{X})$, $n \ge 1$ és $f_1 \ge \cdots \ge f_n \ge f_{n+1} \ge \cdots$, továbbá $f_n \to 0$, akkor az f_n sorozat mentén a funkcionál értéke is tart nullához.

Megjegyzés (folytatás)

Könnyen látható, hogyha a függvények monoton konvergenciája helyett egyenletes konvergenciát is tudnánk, akkor teljesülne ez a feltétel.

Ismert azonban, hogy kompakt halmazon a folytonos függvények monoton konvergenciájából (ha a határérték folytonos függvény) következik az egyenletes konvergencia.

A mértékek feszességének feltétele éppen azt biztosítja, hogy létezzék olyan kompakt halmaz, amelyen kívül mindegyik szóbanforgó mérték egyszerre kicsi, tehát azon korlátos függvény integrálja is kicsi marad.

A gyenge konvergencia metrizálása

- **63. Tétel.** Teljes, szeparábilis metrikus téren értelmezett valószínűségi mértékek gyenge konvergenciája metrizálható. Speciálisan,
 - [Lévy-metrika] ℝ esetén legyen

$$L(F,G) = \inf \{ \varepsilon > 0 : F(x-\varepsilon) - \varepsilon < G(x) < F(x+\varepsilon) + \varepsilon \quad \forall x \in \mathbb{R} \},$$

ahol F, G eloszlásfüggvények.

• [Lévy-Prohorov-metrika] tetszőleges teljes, szeparábilis metrikus téren legyen

$$\pi(R,Q) = \inf \{ \varepsilon > 0 : R(A) < Q(A_{\varepsilon}) + \varepsilon, Q(A) < R(A_{\varepsilon}) + \varepsilon, \forall A \in \mathcal{B} \}$$

Ezek a qyenge konvergenciát metrizálják, és az így keletkező metrikus tér teljes.

Megjegyzés. A π metrika az alábbi módon is megkapható. Legyenek X, Y olyan \mathcal{X} -értékű valószínűségi változók, melyek eloszlása rendre R, illetve Q. Legyen ekkor

$$\kappa(X,Y) = \inf \{ \epsilon \ge 0 \mid P(\rho(X,Y) > \epsilon) \le \epsilon \}$$
.

Ekkor

$$\pi(R,Q) = \inf \{ \kappa(X,Y) \mid X \text{ eloszlása } R, \quad Y \text{ eloszlása } Q \}$$

Kérdés

Hogyan lehet független valószínűségi változók összegének eloszlásbeli konvergenciáját kezelni?

$$\int f dQ_{X+Y} = Ef(X+Y)$$

Ha f multiplikatív függvény, akkor szorzatra bomlik a várható érték.

Az eloszlások karakterisztikus függvénye

64. Definíció. Legyen X valós értékű valószínűségi változó. Legyen

$$\varphi_X(t) = E(e^{itx}) = E(\cos tX) + iE(\sin tX),$$

ahol $i = \sqrt{-1}$

65. Állítás. Teljesülnek az alábbi tulajdonságok:

- $\varphi_X(0) = 1$, $|\varphi_X(t)| \le 1$, $\varphi_X(-t) = \overline{\varphi_X(t)}$
- φ_X egyenletesen folytonos,
- φ_X pozitív szemidefinit függvény. Azaz $\sum_{j,k=1}^n \varphi_X(t_j-t_k)z_j\overline{z_k} \geq 0, t_1,\ldots,t_n \in \mathbb{R}, z_1,\ldots,z_n \in \mathbb{C}.$
- $\varphi_{aX+b}(t) = \varphi_X(at)e^{itb}$,
- ha X, Y függetlenek, akkor $\varphi_{X+Y} = \varphi_X \varphi_Y$

Bizonyítás:

- $|\varphi_X(t)| = |E(e^{itX})| < E|e^{itX}| = 1$
- $|\varphi_X(t+h) \varphi_X(t)| = |E(e^{itX}(e^{ihX} 1))| \le E(|e^{ihX} 1| \to 0, \text{ ha } h \to 0.$

 $\sum_{j,k=1}^{n} \varphi_X(t_j - t_k) z_j \overline{z_k} = E\left(\sum_{j,k=1}^{n} e^{i(t_j - t_k)X} z_j \overline{z_k}\right) = E\left(\sum_{j=1}^{n} e^{it_j X} z_j \sum_{k=1}^{n} \overline{e^{it_k X} z_k}\right) \ge 0.$

- $\bullet \ \varphi_{aX+b}(t) = E\left(e^{it(aX+b)}\right) = e^{itb}E\left(e^{itaX}\right) = e^{itb}\varphi_X(at)$
- $\varphi_{X+Y} = E\left(e^{it(X+Y)}\right) = E\left(e^{itX}\right)E\left(e^{itY}\right) = \varphi_X(t)\varphi_Y(t)$

66. Állítás. Legyen $n \ge 1$, egész. Ha $E|X|^n < \infty$, akkor φ n-szer folytonosan deriválható függvény, és

$$\varphi_X^{(k)}(t) = i^k E\left(X^k e^{itX}\right) \quad 1 \le k \le n$$

Emellett

$$\varphi_X(t) = \sum_{j=0}^n \frac{i^j E(X^j)}{j!} t^j + R_n(t),$$

ahol $R_n(t) = o(|t|^n)$, ha $t \to 0$.

Továbbá, ha valamely $0 < \delta \le 1$ esetén $E(|X|^{n+\delta}) < \infty$, akkor

$$|R_n(t)| \le \frac{2^{1-\delta} E|X|^{n+\delta}}{(1+\delta)(2+\delta)\cdots(n+\delta)} |t|^{n+\delta}.$$

Bizonyítás: Folytonosság: $\left|\varphi_X^{(n)}(t+h) - \varphi_X^{(n)}(t)\right| \leq E\left(|X|^n \left|e^{ihX} - 1\right| \left|e^{itX}i^n\right|\right) \to 0 \,.$

Deriválhatóság és előállítás: Indukcióval. n=0 esetén a definíció. Használni fogjuk, hogy $\left|e^{it}-1\right|=\left|2\sin\frac{t}{2}\right|$, ezért $\left|e^{it}-1\right|\leq |t|$. $\left|\frac{e^{ihX}-1}{h}\right|\leq |X|$. Tegyük fel most, hogy $E(|X|^{n+1}) < \infty.$

$$\frac{\varphi_X^{(n)}(t+h)-\varphi_X^{(n)}(t)}{h}=E\left(X^n\frac{e^{ihX}-1}{h}e^{itX}i^n\right)\to E\left(X^{n+1}e^{itX}\right)i^{n+1}.$$

Maradéktagos Taylor-formula.

 $|e^{it} - 1| = |2\sin\frac{t}{2}| \le 2|\frac{t}{2}|^{\delta} = 2^{1-\delta}|t|^{\delta}$. Ezért

$$e^{it} - \sum_{j=0}^{n} \frac{(it)^{j}}{j!} = e^{it} - 1 - \sum_{j=1}^{n} \frac{(it)^{j}}{j!} = i \int_{0}^{t} \left(e^{is} - \sum_{j=0}^{n-1} \frac{(is)^{j}}{j!} \right) ds$$

$$\left| e^{it} - \sum_{j=0}^{n} \frac{(it)^{j}}{j!} \right| \le \int_{0}^{|t|} \frac{2^{1-\delta} s^{n-1+\delta}}{(1+\delta)\cdots(n-1+\delta)} \, ds = \frac{2^{1-\delta} |t|^{n+\delta}}{(1+\delta)\cdots(n+\delta)}$$

Ezért

$$\left| \varphi_X(t) - \sum_{j=0}^n \frac{(it)^j E(X^j)}{j!} \right| \le E \left| e^{itX} - \sum_{j=0}^n \frac{(it)^j X^j}{j!} \right| \le E \left(\frac{2^{1-\delta} |tX|^{n+\delta}}{(1+\delta)\cdots(n+\delta)} \right)$$

Speciális eset:

- $n = 1, \delta = 1$: $\left| e^{it} 1 it \right| \le \frac{1}{2} |t|^2$
- $n=2, \delta=1$: $\left|e^{it}-1-it+\frac{1}{2}t^2\right| \leq \frac{1}{6}|t|^3$

Inverziós formulák

67. Tétel (Lévy-inverziós képlet). Legyen a < b. Ekkor

$$\lim_{c \to \infty} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt = P(a < X < b) + \frac{1}{2} \left[P(X = a) + P(X = b) \right].$$

Vegyük észre, hogy $\frac{e^{-ita}-e^{-itb}}{it}=\int_a^b e^{-its}ds$. Ezért

$$\begin{split} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt &= \frac{1}{2\pi} \int_{-c}^{c} \int_{a}^{b} e^{-its} ds \int_{\Omega} e^{itX} dP dt = \\ &= \frac{1}{2\pi} \int_{\Omega} \int_{a}^{b} \int_{-c}^{c} \Big(\cos(t(X-s)) + i \sin(t(X-s)) \Big) dt ds dP = 0 \end{split}$$

$$\frac{1}{2\pi} \int_{\Omega} \int_{a}^{b} \int_{-c}^{c} \left(\cos(t(X-s)) \right) dt ds dP = \frac{1}{2\pi} \int_{\Omega} 2 \int_{0}^{c} \int_{a}^{b} \cos(t(X-s)) ds dt dP = \frac{1}{2\pi} \int_{\Omega} 2 \int_{0}^{c} \left[\frac{\sin t(X-s)}{-t} \right]_{a}^{b} dt dP = \frac{1}{\pi} \int_{\Omega} \int_{0}^{c} \left[\frac{\sin t(X-a)}{t} - \frac{\sin t(X-b)}{t} \right] dt dP = \int_{\Omega} \frac{1}{\pi} \left[\int_{0}^{c(X-a)} \frac{\sin u}{u} - \int_{0}^{c(X-b)} \frac{\sin u}{u} du \right] dP$$

az u = t(X - a) illetve u = t(X - b) cserével.

Röviden d -t írva (X - a) illetve (X - b) helyébe, szükség lenne a

$$\lim_{c \to \infty} \int_0^{cd} \frac{\sin u}{u} du$$

értékére. De ez d>0 esetén
 $\frac{\pi}{2},\ d<0$ esetén ennek ellentetje, d=0 mellet
t0. Továbbá $\left|\int_0^c \frac{\sin u}{u} du\right| \leq \int_0^\pi \frac{\sin u}{u} du \leq \pi.$ Ezért Lebesgue-tétel alkalmazható. Szükség van a belső interan-

dus határértékére.
$$\lim_{c \to \infty} \left[\int_0^{c(X-a)} \frac{\sin u}{u} - \int_0^{c(X-b)} \frac{\sin u}{u} du \right] = \begin{cases} 0 \,, & \text{ha } X > b \\ \frac{\pi}{2} \,, & \text{ha } X = b \\ \pi \,, & \text{ha } a < X < b \\ \frac{\pi}{2} \,, & \text{ha } X = a \\ 0 \,, & \text{ha } X < a \end{cases}$$

Adódik tehát, hogy

$$\lim_{c \to \infty} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt = \int_{\Omega} \left(\frac{1}{2} \chi_{\{X=b\}} + \chi_{\{a < X < b\}} + \frac{1}{2} \chi_{\{X=a\}} \right) dP$$

68. Következmény. Az eloszlásfüggvény és a karakterisztikus függvény kölcsönösen meghatározzák egymást.

Bizonyítás: Legyen a, b folytonossági pont. Ekkor P(a < X < b) meghatározott. $a \to -\infty$ esetén kapjuk $F_X(b), b \in c(F_X)$ értékét. $b \nearrow x$ esetén pedig $F_X(x)$.

7. előadás — 2020. október 22.

69. Következmény. Ha $\varphi_X \in L_1$, akkor létezik sűrűségfüggvény, amely folytonos, és értéke

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt.$$

Bizonyítás: Ha $\varphi_X \in L_1$, akkor elvégezhető a $c \to \infty$ határátmenet. Adódik tehát

$$P(a < X < b) + \frac{1}{2} \left(P(X = a) + P(X = b) \right) =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{a}^{b} e^{-itx} dx \varphi_{X}(t) dt = \int_{a}^{b} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_{X}(t) dt \right) dx$$

Az a = b választás adja, hogy P(X = a) = 0. Ezért $P(a < X < b) = Q_X(\chi_{(a,b)}) = \int_a^b \left(\frac{1}{2\pi} \int_{-\infty}^\infty e^{-itx} \varphi_X(t) dt\right) dx$.

Lebesgue-tétele adja, hogy folytonos az fenti f függvény.

70. Megjegyzés. Vektorváltozó esetén a Lévy-féle inverziós formula a következő alakban írható fel: Legyen $X = (X_1, ..., X_n)$ n-dimenziós vektorváltozó. Jelölje

$$\varphi_X(t_1,\ldots,t_n) = E(e^{i\sum_{j=1}^n t_j X_j})$$

az együttes karakterisztikus függvényt. Ekkor

$$\lim_{c \to \infty} \frac{1}{(2\pi)^n} \int_{\{|t_j| < c, j = 1, \dots, n\}} \prod_{j=1}^n \frac{e^{-it_j a_j} - e^{-it_j b_j}}{it_j} \varphi_X(t_1, \dots, t_n) dt_1 \dots dt_n =$$

$$= E \left[\prod_{j=1}^n \left(\chi_{(a_j, b_j)} + \frac{1}{2} \chi_{\{a_j\}} + \frac{1}{2} \chi_{\{b_j\}} \right) (X_j) \right]$$

71. Lemma (Doob-lemma). Legyen φ_X az X valószínűségi változó karakterisztikus függvénye. Ekkor

$$P(|X| > c) \le K(cd) \frac{1}{2d} \int_{-d}^{d} (1 - \varphi_X(t)) dt,$$

ahol $K(x) = \max_{t > x} \left(1 - \frac{\sin t}{t}\right)^{-1}$.

Bizonyítás:

$$\begin{split} \frac{1}{2d} \int_{-d}^{d} \left(1 - \varphi_X(t)\right) dt &= E \Big(\frac{1}{2d} \int_{-d}^{d} \left(1 - \cos(tX) - i\sin(tX)\right) dt \Big) = \\ &= E \Big(\frac{1}{2d} \int_{-d}^{d} \left(1 - \cos(tX)\right) dt \Big) = E \Big(1 - \frac{1}{d} \frac{\sin(dX)}{X} \Big) \geq \\ &\geq \int_{\{|X| > c\}} \Big(1 - \frac{\sin dX}{dX} \Big) dP \geq \inf_{t \geq cd} \left(1 - \frac{\sin t}{t} \right) P\left(|X| > c\right) \;. \quad \Box \end{split}$$

- **72. Tétel** (Folytonossági tétel). Legyenek F_n , $n \ge 1$ eloszlásfüggvények, φ_n a megfelelő karakterisztikus függvények. Ekkor,
 - (i) ha $F_n(t) \to F(t)$, $t \in c(F)$, akkor $\varphi_n \to \varphi$ véges intervallumon egyenletesen, ahol φ az F-hez tartozó karakterisztikus függvény,
- (ii) ha $\varphi_n \to \psi$ pontonként, ahol ψ a nullában folytonos függvény, akkor létezik olyan F eloszlásfüggvény, melyre $F_n(t) \to F(t)$, $t \in c(F)$.

Bizonvítás:

(i) Mivel e^{itx} folytonos, ezért a pontonként konvergencia adódik.

Egyenletesség:

Legyen $\varepsilon > 0$. Létezik olyan $-a, a \in c(F)$, melyre $F(-a) + (1 - F(a)) \le \varepsilon$.

$$|\varphi_n(t) - \varphi(t)| = \left| \int e^{itx} d\left(F_n(x) - F(x) \right) \right| \le$$

$$\le \left| \int_{\mathbb{R} \setminus [-a,a)} e^{itx} dF_n(x) \right| + \left| \int_{\mathbb{R} \setminus [-a,a)} e^{itx} dF(x) \right| + \left| \int_{[-a,a)} e^{itx} d\left(F_n(x) - F(x) \right) \right|$$

Első tag

$$\left| \int_{\mathbb{R}\setminus[-a,a)} e^{itx} dF_n(x) \right| \le \left(F_n(-a) + (1 - F_n(a)) \right) \to \left(F(-a) + (1 - F(a)) \le \varepsilon \right).$$

Második tag: $\left|\int\limits_{\mathbb{R}\backslash[-a,a)}e^{itx}dF(x)\right|\leq \left(F(-a)+(1-F(a))\leq\varepsilon\right.$ Utolsá öccszel

$$\int_{[-a,a)} e^{itx} d(F_n(x) - F(x)) = \left[(F_n(x) - F(x)) e^{itx} \right]_{-a}^a - \int_{[-a,a)} (F_n(x) - F(x)) ite^{itx} dx$$

Itt $(F_n(a) - F(a)) e^{ita} \to 0$, és $(F_n(-a) - F(-a)) e^{-ita} \to 0$.

Itt
$$(F_n(a) - F(a)) e^{ita} \to 0$$
, és $(F_n(-a) - F(-a)) e^{-ita} \to 0$.
Ugyanakkor $\sup_{|t| \le T} \left| \int_{[-a,a)} (F_n(x) - F(x)) ite^{itx} dx \right| \le T \int_{[-a,a)} |F_n(x) - F(x)| dx \to 0$.
Tehát $\limsup_{n \to \infty} \sup_{|t| \le T} |\varphi_n(t) - \varphi(t)| \le 2\varepsilon$.

(ii) Megmutatjuk, hogy az $F_n, n \geq 1$ eloszlásfüggvények által meghatározott $Q_n, n \geq 1$ mértékcsalád feszes.

Ehhez Doob-lemma: (cd = 1 választással)

$$Q_n\left(\mathbb{R}\setminus\left[-\frac{1}{d},\frac{1}{d}\right]\right) \leq K(1)\frac{1}{2d}\int_{-d}^d (1-\varphi_n(t))\,dt \longrightarrow K(1)\frac{1}{2d}\int_{-d}^d (1-\psi(t))\,dt$$

Mivel $\frac{1}{2d} \int_{-d}^{d} (1 - \psi(t)) dt \to 0$, ha $d \to 0$ (ψ folytonos a nulla pontban), ezért adott $\varepsilon > 0$ esetén létezik d, hogy a fenti határérték kisebb, mint $\frac{\varepsilon}{2}$. Ezért elég nagy n mellett

$$Q_n\left(\mathbb{R}\setminus\left[-\frac{1}{d},\frac{1}{d}\right]\right)\leq \varepsilon$$
.

Adott ε mellett véges sok mérték marad ki. Azokhoz külön-külön beállítható a keresett kompakt halmaz. Ezek uniója már minden n esetén jó.

Mivel feszes, ezért realatív kompakt. Ezért van konvergens részsorozata. $Q_{n_k} \to Q$. Ekkor (i) alapján φ_{n_k} konvergál Q karakterisztikus függvényéhez. Jelölje ezt φ . De $\lim \varphi_n = \psi$. Ezért $\psi = \varphi$, azaz ψ karakterisztikus függvény.

Tegyük fel, hogy a teljes sorozat nem konvergál Q-hoz (gyengén). Ekkor létezik $f \in C_b(\mathbb{R}), \eta > 0$ és $m_i, j \geq 1$ részsorozat, hogy

$$\left| \int f dQ_{m_j} - \int f dQ \right| \ge \eta \,, \, j \ge 1 \,.$$

De relatív kompakt: létezik $\mathbb{J}\subset\mathbb{N}$ részsorozat, hogy Q_{m_j} konvergál valahova. Legyen a határérték R. Ekkor $\varphi_{m_j}, j \in \mathbb{J}$ is konvergens. Ugyanakkor ez csak $\psi = \varphi$ -hez tarthat. Tehát R karakterisztikus függvénye φ . Az egyértelműség miatt ekkor R=Q. Tehát

$$\int f \, dQ_{m_j} \longrightarrow_{j \in \mathbb{J}} \int f \, dQ \, .$$

Ez ellentmond az $Q_{m_j}, j \geq 1$ mértékek megválasztásának.

73. Tétel (Lévy). Legyenek X_1, X_2, \ldots független valószínűségi változók. Az $S_n = \sum_{j=1}^n X_j$ sorozat akkor és csak akkor konvergál eloszlásban, ha 1 vsz.-gel konvergál.

Bizonyítás: Legyen φ_n az S_n karakterisztikus függvénye. Tegyük fel, hogy $\varphi_n \to \varphi$ véges intervallumon egyenletesen. Elég a sztochasztikus Cauchy-konvergenciát igazolni. Legyen n > m. Ekkor $S_n = (S_n - S_m) +$ S_m . Tehát $\varphi_n(t) = \varphi_{S_n - S_m}(t)\varphi_m(t)$. Ha ez utóbbi nem nulla, akkor megkapjuk $S_n - S_m$ karakterisztikus függvényének értékét az adott t helyen. Doob-lemma alkalmazásával

$$P\left(|S_n - S_m| > \varepsilon\right) \le K(\varepsilon d) \frac{1}{2d} \int_{-d}^{d} \left(1 - \frac{\varphi_n(t)}{\varphi_m(t)}\right) dt \le K(\varepsilon d) \frac{1}{2d} \int_{-d}^{d} \frac{|\varphi_n(t) - \varphi(t)| + |\varphi_m(t) - \varphi(t)|}{|\varphi_m(t)|} dt$$

$$P\left(|S_n - S_m| > \varepsilon\right) \le K(\varepsilon d) \frac{1}{2d} \int_{-d}^d \frac{|\varphi_n(t) - \varphi(t)| + |\varphi_m(t) - \varphi(t)|}{|\varphi(t)| - |\varphi(t) - \varphi_m(t)|} dt.$$

Legyen d olyan, hogy $|\varphi(t)| > \frac{1}{2}$, ha $|t| \leq d$. Mivel ezen a halmazon $\varphi_m(t)$ egyenletesen tart φ -hez, ezért elég nagy m esetén itt φ_m sem nulla. Kapjuk

$$P(|S_n - S_m| > \varepsilon) \le K(\varepsilon d) \frac{1}{2d} \int_{-d}^d \frac{|\varphi_n(t) - \varphi(t)| + |\varphi_m(t) - \varphi(t)|}{\frac{1}{2} - |\varphi(t) - \varphi_m(t)|} dt \to 0.$$

Centrális határeloszlás tétel és általánosításai

74. Tétel (centrális határeloszlástétel). Legyenek X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók, melyekre $D^2(X_1) < \infty$. Ekkor

$$\frac{\sum_{j=1}^{n} (X_i - E(X_i))}{\sqrt{nD^2(X_1)}} \to N(0,1)$$

eloszlásban

Bizonyítás: Legyen φ az $X_i - EX_i$ valószínűségi változó karakterisztikus függvénye, továbbá S_n $\sum_{i=1}^{n} X_{i}, \, \sigma^{2} = D^{2}(X_{1}).$

$$\varphi_{\frac{S_n-ES_n}{\sqrt{n}\sigma}}(t) = \left(\varphi\left(\frac{t}{\sqrt{n}\sigma}\right)\right)^n = \left(1 - \frac{t^2}{2n\sigma^2}D^2(X_1) + o(\frac{1}{n})\right)^n \to e^{-\frac{1}{2}t^2}$$

Legyen most $X_{n,j},\ j=1,\dots k_n,\ n\geq 1$ valószínűségi változók független szériasorozata, azaz tetszőleges rögzített nmellett $X_{n,1},\dots X_{n,k_n}$ függetlenek. Tegyük fel, hogy $\sigma_{n,j}^2=E(X_{n,j}^2)<\infty$ és

$$E(X_{n,j}) = 0, \quad \sum_{i=1}^{k_n} \sigma_{n,j}^2 = 1.$$

Jelölje

$$b_n^2 = \max_{1 \le i \le k_n} \sigma_{n,j}^2$$

és

$$L(n,\varepsilon) = \sum_{j=1}^{k_n} E\left(X_{n,j}^2 \chi_{\{|X_{n,j}| > \varepsilon\}}\right)$$

- 75. Tétel (Lindeberg-Feller). Az alábbi állítások ekvivalensek.
 - $tetsz \tilde{o} leges \ \varepsilon > 0 \ eset \acute{e} n \ L(n, \varepsilon) \to 0$

• $b_n^2 \to 0$, (AK) és $S_n = \sum_{j=1}^{k_n} X_{nj} \to N(0,1)$ (CHT) eloszlásban.

Bizonyítás: Karakterisztikus függvények konvergiáját vizsgáljuk. Jelölje $\varphi_{n,j} = \varphi_{X_{n,j}} \ \varphi_{S_n} = \prod_{j=1}^{n_j} \varphi_{X_{n,j}}$. Alapötlet: logaritmust veszünk, hogy szorzat helyett összeg legyen. Majd sorba fejtünk. Logaritmust lineárisan, a karakterisztikus függvényt négyzetes polinommal közelítve.

Maradéktagok becsléséhez kellenek:

- Ha $z \in \mathbb{C}$, és $|z-1| \leq \frac{1}{2}$, akkor $|\log z + 1 z| \leq |z-1|^2$.
- Legyen $x \in \mathbb{R}$ esetén $e^{ix} 1 ix + \frac{x^2}{2} = \frac{x^2}{2}Q(x)$. Ekkor $|1 Q(x)| \le 1$, $|Q(x)| \le \frac{|x|}{3}$ és $Re Q(x) \ge \frac{3}{4}\chi_{\{|x| \ge 4\}}$

Ezek igazolása:

Legyen u=1-z. Ekkor $\log(1-u)=-u-\frac{u^2}{2}-\frac{u^3}{3}-\ldots$...Ezért

$$\|\log(1-u) + u\| \le \frac{|u^2|}{2} \left(1 + \frac{2|u|}{3} + \frac{2|u|^2}{4} + \dots \right) \le$$

$$\le \frac{|u^2|}{2} \left(1 + |u| + |u|^2 + |u|^3 + \dots \right) = \frac{|u^2|}{2(1-|u|)} \le |u|^2,$$

ha $|u| \leq \frac{1}{2}$.

Az $|e^{ix}-1-ix| \leq \frac{x^2}{2}$, illetve $|e^{ix}-1-ix+\frac{x^2}{2}| \leq \frac{|x|^3}{6}$ adják az első két egyenlőtlenséget. Speciálisan $|Q(x)| \leq 2$ és $Re\ Q(x) \geq 0$.

Ha most $x \neq 0,$ akkor $Q(x) = 1 - 2\frac{1 - e^{ix}}{x^2} - i\frac{2}{x}.$ Tehát

$$Re Q(x) = 1 - \frac{2(1 - \cos x)}{x^2} \ge \frac{3}{4}, \quad \text{ha} |x| \ge 4.$$

1. lépés.(L) \rightarrow (AK)

$$\sigma_{n,j}^2 = E(X_{n,j}^2) = \int\limits_{\{|X_{n,j}| \leq \varepsilon\}} X_{n,j}^2 dP + \int\limits_{\{|X_{n,j}| > \varepsilon\}} X_{n,j}^2 dP \leq \varepsilon^2 + L(n,\varepsilon) \,,$$

tehát $b_n^2 \le \varepsilon^2 + L(n,\varepsilon) \to \varepsilon^2$. Ezért $b_n^2 \to 0$.

2. lépés. Megmutatjuk, hogy (AK) mellett (L) és (CHT) ekvivalensek egymással.

Tegyük fel tehát, hogy $b_n \to 0$.

Ahhoz, hogy a logaritmus közelítését használni tudjuk, ellenőrizni kell a $|z-1| \leq \frac{1}{2}$ feltételt.

$$|\varphi_{n,j}(t) - 1| = |E(e^{itX_{n,j}} - 1)| = |E(e^{itX_{n,j}} - 1 - itX_{n,j})| \le \frac{t^2}{2}E(X_{n,j}^2) \le b_n^2 \frac{t^2}{2}$$

Rögzített t mellett, ha n elég nagy, teljesül a $b_n t^2 \le 1$ feltétel.

Ekkor — a $\varphi_{n,j}(t)$ esetén a logaritmus főértékét véve, és ezek összege adja majd φ_{S_n} logaritmusát: $\log \varphi_{S_n}(t) = \sum_{j=1}^{k_n} \log \varphi_{n,j}(t)$ — kapjuk, hogy

$$\left| \sum_{j=1}^{k_n} \log \varphi_{n,j}(t) - \sum_{j=1}^{k_n} (\varphi_{n,j}(t) - 1) \right| \le \sum_{j=1}^{k_n} |\varphi_{n,j}(t) - 1|^2 \le \sum_{j=1}^{k_n} \frac{t^4}{4} \sigma_{n,j}^4 \le \frac{t^4}{4} b_n^2 \sum_{j=1}^{k_n} \sigma_{n,j}^2 = \frac{t^4}{4} b_n^2 \to 0.$$

Továbbá

$$\begin{split} \sum_{j=1}^{k_n} \left(\varphi_{n,j}(t) - 1 \right) - \left(-\frac{t^2}{2} \right) &= \sum_{j=1}^{k_n} \left(\varphi_{n,j}(t) - 1 \right) + \sum_{j=1}^{k_n} \sigma_{n,j}^2 \frac{t^2}{2} = \\ &= \sum_{j=1}^{k_n} E\left(e^{itX_{n,j}} - 1 - itX_{n,j} + \frac{t^2}{2} X_{n,j}^2 \right) = \sum_{j=1}^{k_n} E\left(\frac{t^2 X_{n,j}^2}{2} Q(tX_{n,j}) \right) \end{split}$$

Ha ez utóbbi nullához tart, akkor tehát $\sum_{j=1}^{k_n} \log \varphi_{n,j}(t) \to -\frac{t^2}{2}$, így $\varphi_{S_n}(t) \to e^{-\frac{t^2}{2}}$, teljesül (függetlenül attól, hogy $\varphi_{S_n}(t)$ logaritmusának melyik ágát tekintettük.

Megfordítva, ha teljesül (CHT), akkor a folytonossági tétel alapján $\varphi_{S_n}(t) \to e^{-\frac{t^2}{2}}$ (véges intervallumon egyenletesen), ezért ekkor $\log \varphi_{S_n}(t)$ főértékét véve lesz igaz, hogy $\log \varphi_{S_n}(t) \to -\frac{t^2}{2}$. Szükség lenne tehát arra, hogy adott t esetén elég nagy n mellett mindenütt a logaritmusok főértékét véve teljesül, hogy $\log \varphi_{S_n}(t) = \sum_{j=1}^{k_n} \log \varphi_{n,j}(t)$.

Legyen $0 < \varepsilon < \frac{1}{2}e^{-\frac{t^2}{2}}$. Ekkor — kihasználva az egyenletes konvergenciát — $|s| \le |t|$ esetén elég nagy n esetén $|\varphi_{S_n}(s) - e^{-\frac{s^2}{2}}| \le \varepsilon$, így ekkor Re $\varphi_{S_n}(s) > \varepsilon$. Ezen a tartományon a logaritmus főértéke folytonos függvény. Tekintsük most a $\log \varphi_{S_n}(s) - \sum_{j=1}^{k_n} \log \varphi_{n,j}(s)$ függvényt az $|s| \le |t|$ tartományon. (Mindegyik tagban a logaritmus főértékét véve.) Ez folytonos függvény, ugyanakkor értéke bármely helyen $2\pi i$ egész számú többszöröse. Azaz konstans kell legyen. Mivel s=0 helyen értéke 0, ezért adódik, hogy $\log \varphi_{S_n}(t) = \sum_{j=1}^{k_n} \log \varphi_{n,j}(t)$.

8. előadás — 2020. november 5.

Összefoglalva: (AK) mellett (CHT) ekvivalens azzal, hogy $\sum_{j=1}^{k_n} E\left(\frac{t^2 X_{n,j}^2}{2} Q(t X_{n,j})\right) \to 0.$

$$\begin{split} \left| \sum_{j=1}^{k_n} E\left(\frac{t^2 X_{n,j}^2}{2} Q(t X_{n,j})\right) \right| \leq \\ & \leq \sum_{j=1}^{k_n} \left(\int\limits_{\{|X_{n,j}| \leq \varepsilon\}} \frac{t^2 X_{n,j}^2}{2} |Q(t X_{n,j})| \ dP + \int\limits_{\{|X_{n,j}| > \varepsilon\}} \frac{t^2 X_{n,j}^2}{2} |Q(t X_{n,j})| \ dP \right) \leq \\ & \leq \frac{|t|^3}{6} \sum_{j=1}^{k_n} \varepsilon E(X_{n,j}^2) + \frac{|t|^2}{2} 2 \sum_{i=1}^{k_n} E(X_{n,j}^2 \chi_{\{|X_{n,j}| > \varepsilon\}}) = \frac{|t|^3}{6} \varepsilon + \frac{|t|^2}{2} 2 L(n, \varepsilon) \end{split}$$

Tehát, ha $L(n,\varepsilon) \to 0$, akkor (CHT) teljesül.

Másfelől, tegyük fel, hogy (CHT) teljesül. Ekkor

$$Re\sum_{j=1}^{k_n} E\left(\frac{t^2 X_{n,j}^2}{2} Q(t X_{n,j})\right) \to 0.$$

De

$$Re \sum_{j=1}^{k_n} E\left(\frac{t^2 X_{n,j}^2}{2} Q(t X_{n,j})\right) \geq \sum_{j=1}^{k_n} \frac{3}{4} \frac{t^2}{2} E\left(X_{n,j}^2 \chi_{\{|t X_{n,j}| > 4\}}\right) \ .$$
 Adott $\varepsilon > 0$ értékhez választható t úgy, hogy $\frac{4}{|t|} \leq \varepsilon$. Tehát $L(n,\varepsilon) \to 0$.

76. Következmény. (Ljapunov) Legyenek X_1, X_2, \ldots független valószínűségi változók. Tegyük fel, hogy $EX_i = 0$, és

$$\Gamma_n^{2+\delta} = \sum_{j=1}^n E|X_j|^{2+\delta} < \infty$$

 $valamely \delta > 0$ esetén. Ekkor,

$$ha \frac{\Gamma_n}{s_n} \to 0$$
, $akkor \frac{S_n}{s_n} \to N(0,1)$,

ahol $s_n^2 = \sum_{i=1}^n E(X_i^2)$.

Bizonyítás: Legyen $k_n=n$, és $X_{n,j}=\frac{X_j}{s_n}$. Ekkor $D^2\left(\sum_{j=1}^n X_{n,j}\right)=1$. Továbbá

$$\begin{split} L(n,\varepsilon) &= \sum_{j=1}^n E\left(X_{n,j}^2\chi_{\{|X_{n,j}|>\varepsilon\}}\right) = \sum_{j=1}^n E\left(\left(\frac{X_j}{s_n}\right)^2\chi_{\{|X_j|>s_n\varepsilon\}}\right) = \\ &= \sum_{j=1}^n \frac{1}{s_n^2} \int\limits_{\{|X_j|>s_n\varepsilon\}} X_j^2 \, dP \leq \sum_{j=1}^n \frac{1}{s_n^2} \int\limits_{\{|X_j|>s_n\varepsilon\}} X_j^2 \, \left|\frac{X_j}{s_n\varepsilon}\right|^{\delta} \, dP \leq \frac{1}{\varepsilon^{\delta}} \left(\frac{\Gamma_n}{s_n}\right)^{2+\delta} \, . \end{split}$$

Konvergenciagyorsaság

77. **Tétel** (Berry-Esseén). Legyen $X_{n,j}$, $j=1,\ldots k_n$, $n\geq 1$ független, nulla várható értékű szériasorozat. Tegyük fel, hogy $\sum_{j=1}^{k_n} \sigma_{n,j}^2 = 1$ és valamely $0 < \delta \leq 1$ esetén $\Gamma_n \to 0$. (Itt most $\Gamma_n^{2+\delta} = \sum_{j=1}^{k_n} E\left(|X_{n,j}|^{2+\delta}\right)$.) Ekkor

$$\sup_{x} |P(S_n < x) - \Phi(x)| \le C_{\delta} \Gamma_n^{2+\delta}$$

A bizonyítás lelke a következő becslés.

78. Lemma. Legyenek X_1, X_2 valószínűségi változók. Tegyük fel, hogy X_2 abszolút folytonos. Jelölje φ_1, φ_2 a megfelelő karakterisztikus függvényeket, f_2 a sűrűségfüggvényt. Ekkor T > 0 esetén

$$\sup_{x} |F_1(x) - F_2(x)| \le \frac{1}{\pi} \int_{-T}^{T} \left| \frac{\varphi_1(t) - \varphi_2(t)}{t} \right| dt + \frac{24}{\pi T} \sup_{x} f_2(x).$$

Speciálisan, ha X_1, X_2, \ldots azonos eloszlású, független v.v-k, $E(X_i) = \mu$, $D^2(X_i) = \sigma^2$ és $E|X_1 - \mu|^{2+\delta} < \infty$, ahol $0 < \delta \le 1$ rögzített szám, akkor

$$\sup_{x} \left| P\left(\frac{S_n - n\mu}{\sqrt{n}\sigma} < x \right) - \Phi(x) \right| \le C_{\delta} \frac{E|X_1 - \mu|^{2+\delta}}{\sigma^{2+\delta}} n^{-\frac{\delta}{2}}$$

Ha $E|X_1|^3 < \infty$, akkor a konvergenciasebesség $O\left(\frac{1}{\sqrt{n}}\right)$. Ez nem javítható.

A határeloszlástétel néhány általánosítása

Néhány fontos tétel — bizonyítás nélkül.

Legyenek X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók, melyek közös eloszlásfüggvénye F. Ekkor

$$\frac{x^2 \left(F(-x) + 1 - F(x)\right)}{\int_{-x}^{x} t^2 dF(t)} \to 0 \Leftrightarrow \exists a_n, b_n \text{ melyre } \frac{1}{a_n} \sum_{k=1}^{n} X_k - b_n \to N(0, 1)$$

Legyenek X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók, melyre $E(X_i) = 0$, $E(X_i^2) = \sigma^2 < \infty$, $E|X_1|^3 < \infty$. Ekkor

$$\left| P\left(\frac{\sum_{i=1}^{n} X_i}{\sigma \sqrt{n}} < x \right) - \varPhi(x) \right| \le \frac{cE|X_1|^3}{\sigma^3 \sqrt{n} \left(1 + |x| \right)^3}$$

alkalmas c konstans mellett.

Legyenek X_1,X_2,\ldots független, azonos eloszlású valószínűségi változók, melyre $EX_i=0,\ EX_1^2=\sigma^2,\ E|X_1|^3<\infty.$ Ekkor

$$\sup_{x} \left| P\left(\frac{\sum_{i=1}^{n} X_{i}}{\sigma \sqrt{n}} < x \right) - \varPhi(x) - \frac{EX_{1}^{3}}{6\sigma^{3}\sqrt{n}} (1 - x^{2}) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \right| = o\left(\frac{1}{\sqrt{n}} \right)$$

Legyenek $X_{n,j}, j=1,\ldots k_n, n\geq 1$ független szériasorozat elemei. Ekkor a következő állítások ekvivalensek:

- tetszőleges $\epsilon > 0$ esetén $\max_j P(|X_{n,j}| > \epsilon) \to 0$ és $\sum_{j=1}^{k_n} X_{n,j} \to N(a,\sigma)$
- tetszőleges $\epsilon > 0$ esetén $\sum_j P|X_{n,j}| > \epsilon) \to 0$ és létezik $\tau > 0$, melyre $\sum_j D^2(X_{n,j}^\tau) \to \sigma^2$, $\sum_j E(X_{n,j}^\tau) \to a$, ahol $X_{n,j}^\tau = X_{n,j} \chi_{\{|X_{n,j}| < \tau\}}$.

Feltételes várható érték

Legyenek A_1, A_2, \ldots pozitív valószínűségű események, melyek particiót alkotnak. Jelölje \mathcal{F} az általuk generált σ -algebrát.

Ez tehát atomos σ -algebra. Így $B \in \mathcal{F}$ esetén $B = \bigcup \{A_i \mid A_i \subset B\}$.

Legyen X tetszőleges, véges várható értékű valószínűségi változó. Ekkor

$$E(X|A_i) = \frac{1}{P(A_i)} \int_{A_i} X \ dP$$

. Ezért

$$\sum_{A_i \subset B} E(X|A_i)P(A_i) = \sum_{A_i \subset B} \int_{A_i} X \ dP = \int_B X dP$$

ha $B \in \mathcal{F}$.

Jelölje $Z = \sum_i E(X|A_i)\chi_{A_i}$. Ekkor Z mérhető az \mathcal{F} σ -algebrára és

$$\int_{B} XdP = \int_{B} ZdP.$$

79. Definíció. Legyen $\mathcal{F} \subset \mathcal{A}$ tetszőleges σ -algebra, $X \in L_1$. Az X valószínűségi változó \mathcal{F} -re vonatkozó feltételes várható értéke – jelölje ezt $E(X|\mathcal{F})$ – tetszőleges olyan valószínűségi változó, mely

- F-mérhető
- $\int_B E(X|\mathcal{F})dP = \int_B XdP$, ha $B \in \mathcal{F}$

Tulajdonságok

- (1) $E(X|\mathcal{F})$ létezik és m.m. egyértelmű,
- (2) Ha $X \geq 0$, akkor $E(X|\mathcal{F}) \geq 0$,
- (3) $|E(X|\mathcal{F})| < E(|X||\mathcal{F}),$
- (4) $E(E(X|\mathcal{F})) = E(X)$,
- (5) Ha Y \mathcal{F} -mérhető, $X, XY \in L_1$, akkor $E(XY|\mathcal{F}) = YE(X|\mathcal{F})$,
- (6) Ha $\mathcal{F} \subset \mathcal{G}$, akkor $E(E(X|\mathcal{G})|\mathcal{F}) = E(X|\mathcal{F})$.
- (7) Ha X független \mathcal{F} -től, $X \in L_1$, akkor $E(X|\mathcal{F}) = E(X)$.
 - (1) Legyen μ mérték, amely az \mathcal{F} σ -algebrán definiált:

$$\mu(B) = \int_B X \ dP \,,$$

és jelölje $P_{|\mathcal{F}}$ a P mérték megszorítását erre a σ -algebrára. Ekkor $\mu << P_{|\mathcal{F}}$. A

$$\frac{d\mu}{P_{|\mathcal{F}}}$$

Radon-Nikodym derivált rendelkezik a megkívánt tulajdonságokkal.

- (2) Ha $\mu \geq 0$, akkor a Radon-Nikodym derivált is ilyen.
- (3) Mivel $|X| + X \ge 0$ és $|X| X \ge 0$, ezért (2)-ből adódik, hogy

$$E(|X| | \mathcal{F}) \ge -E(X | \mathcal{F})$$
 s $E(|X| | \mathcal{F}) \ge E(X | \mathcal{F})$.

- (4) Mivel $\Omega \in \mathcal{F}$ ezért $\int_{\Omega} X \ dP = \int_{\Omega} E(X \mid \mathcal{F}) \ dP$. (5) Megmutatjuk, hogy az $YE(X \mid \mathcal{F})$ eleget tesz a feltételes várható tulajdonságainak. Nyilván \mathcal{F} mér-

Legyen ν az A-n értelmezett mérték. $\nu(A) = \int_A X \ dP$. (Ekkor $\mu = \nu_{|\mathcal{F}}$.)

$$\int_B XY \ dP = \int_B Y d\nu = \int_B Y d\nu_{|\mathcal{F}} = \int_B Y d\mu = \int_B Y E(X \mid \mathcal{F}) \ dP_{|\mathcal{F}} = \int_B Y E(X \mid \mathcal{F}) \ dP \ .$$

(6) Megmutatjuk, hogy az $E(E(X|\mathcal{G})|\mathcal{F})$ valószínűségi változó eleget tesz az $E(X|\mathcal{F})$ feltételes várható értéket definiáló követelményeknek. Nyilván \mathcal{F} -mérhető. Továbbá, $B \in \mathcal{F}$ esetén

$$\int_{B} E(E(X|\mathcal{G})|\mathcal{F}) \ dP = \int_{B} E(X|\mathcal{G}) \ dP = \int_{B} X \ dP,$$

mivel $B \in \mathcal{F} \subset \mathcal{G}$.

(7) Ismét: megmutatjuk, hogy a konstans E(X) értékű valószínűségi változó eleget tesz a feltételes várható érték követelményeinek.

A mérhetőség teljesül. Legyen most $B \in \mathcal{F}$. Ekkor B és X függetlenek egymástól. Ezért χ_B és X is azok.

$$\int_{B} X \ dP = \int_{\Omega} X \chi_{B} \ dP = E(X \chi_{B}) = E(X) E(\chi_{B}) = \int_{B} E(X) \ dP.$$

 \Box .

Többdimenziós valószínűségi változó esetén a feltételes várható értéket koordinátánként definiáljuk.

80. Lemma. • Ha $K \subset \mathbb{R}^n$ konvex, zárt, $P(X \in K) = 1$, $X \in L_1$, akkor

$$P(E(X|\mathcal{F}) \in K) = 1.$$

• Ha $f: \mathbb{R}^n \to \mathbb{R}$ konvex, X n-dimenziós, véges várható értékű valószínűségi változó és $f \circ X \in L_1$, akkor

$$E(f(X)|\mathcal{F}) \ge f(E(X|\mathcal{F}))$$
 m.m..

Bizonyítás: Láttuk már korábban, hogy tetszőleges $y \in \mathbb{R}^n$ esetén létezik olyan $\varphi(y) \in K$, melyre

$$||y - \varphi(y)|| = \inf \{||y - x|| \mid x \in K\}.$$

Ekkor

$$y^T(y - \varphi(y)) \ge \varphi(y)^T(y - \varphi(y)) \ge x^T(y - \varphi(y))$$

tetszőleges $x \in K$ esetén.

x helyébe X-t, y helyébe $E(X|\mathcal{F})$ -et akarjuk behelyettesíteni. De kell ekkor, hogy φ mérhető függvény. Ennél többet mutatunk meg: folytonos függvény.

Legyen $z \in \mathbb{R}^n$ tetszőleges. Ekkor (megcserélve a kétoldalt)

$$\varphi(z)^T (y - \varphi(y)) \le \varphi(y)^T (y - \varphi(y)),$$

így

$$(\varphi(y) - \varphi(z))^T \varphi(y) \le (\varphi(y) - \varphi(z))^T y$$

Felcserélve y és z szerepét:

$$(\varphi(z) - \varphi(y))^T \varphi(z) \le (\varphi(z) - \varphi(y))^T z$$

Összeadva ezeket

$$\left(\varphi(y)-\varphi(z)\right)^T\left(\varphi(y)-\varphi(z)\right) \leq \left(\varphi(y)-\varphi(z)\right)^T\left(y-z\right) \leq \|\varphi(y)-\varphi(z)\|\|y-z\|\,.$$

Tehát $\|\varphi(y) - \varphi(z)\| \le \|y - z\|.$

Legyen $M < \infty$ és alkalmazzuk az eredeti egyenlőtlenséget $x = X, y = E(X \mid \mathcal{F})$ választással.

$$\chi_{\{|E(X\mid\mathcal{F})|\leq M\}}E(X\mid\mathcal{F})^{T}(E(X\mid\mathcal{F})-\varphi(E(X\mid\mathcal{F}))) \geq \\ \geq \chi_{\{|E(X\mid\mathcal{F})|\leq M\}}\varphi(E(X\mid\mathcal{F}))^{T}(E(X\mid\mathcal{F})-\varphi(E(X\mid\mathcal{F}))) \geq \\ \geq \chi_{\{|E(X\mid\mathcal{F})|\leq M\}}X^{T}(E(X\mid\mathcal{F})-\varphi(E(X\mid\mathcal{F}))).$$

Feltételes várható érteket véve — és kihasználva hogy az egyenlőtlenségsorozat utolsó tagjában az \mathcal{F} -mérhető tényező kiemelhető — a legnagyobb és legkisebb elem megegyeznek.

Tehát — egy oldalra rendezve az első két elemet:

$$\chi_{\{\mid E(X\mid\mathcal{F})\mid\leq M\}} \left\lVert E(X\mid\mathcal{F}) - \varphi(E(X\mid\mathcal{F})) \right\rVert^2 = 0.$$

 $M \to \infty$ esetén adódik, hogy

$$E(X \mid \mathcal{F}) = \varphi(E(X \mid \mathcal{F})) \in K$$
. m.m..

Jensen-egyenlőtlenség

Bizonyítás: Legyen $K \subset \mathbb{R}^{n+1}$

$$K = \{(x,y) \mid x \in \mathbb{R}^n, y \in \mathbb{R}, y \ge f(x)\} .$$

Ez konvex, zárt. Továbbá $(X, f \circ X) \in K$.

Ezért
$$E((X, f \circ X) | \mathcal{F}) = (E(X|\mathcal{F}), E(f \circ X|\mathcal{F})) \in K$$
. Azaz

$$E(f \circ X | \mathcal{F}) \ge f(E(X | \mathcal{F}))$$
. \square

Állítás

Monoton konvergencia tétel, Fatou-lemma, Lebesgue-tétel érvényben maradnak a feltételes várható értékre

Bizonyítás:

Monoton konvergencia tétel: Legyen $0 \le X_1 \le X_2 \le \dots, X_n \to X$. Tegyük fel, hogy E(X) véges. Ekkor $E(X_n|\mathcal{F}) \to E(X|\mathcal{F}).$

Tudjuk, hogy $0 \le E(X_1|\mathcal{F}) \le E(X_2|\mathcal{F}) \le \cdots \le E(X|\mathcal{F}).$

Jelölje $Y = \lim E(X_n|\mathcal{F})$. Ekkor $Y \leq E(X|\mathcal{F})$.

Ugyanakkor $E(X_n) \to E(X)$ és $E(X_n) = E(E(X_n|\mathcal{F})) \to E(Y)$.

Tehát $E(Y) = E(X) = E(E(X|\mathcal{F})).$

Azaz $Y = E(X|\mathcal{F})$ 1-valószínűséggel

Fatou-lemma: Legyenek $0 \le X_n$. Ekkor

$$\liminf E(X_n|\mathcal{F}) \geq E(\liminf X_n|\mathcal{F})$$
.

Valóban, legyen $Y_k = \inf_{n \geq k} X_n$. Ekkor $E(Y_k | \mathcal{F}) \leq E(X_n | \mathcal{F})$, ha $n \geq k$. Így $E(Y_k | \mathcal{F}) \leq \inf_{n \geq k} E(X_n | \mathcal{F})$. Továbbá $0 \leq Y_1 \leq Y_2 \leq \ldots$. Alkalmazható a monoton konvergencia tétel. Ezért

$$E\left(\liminf X_n|\mathcal{F}\right) = E\left(\lim_{k \to \infty} Y_k|\mathcal{F}\right) = \lim_{k \to \infty} E(Y_k|\mathcal{F}) \le \lim_{k \to \infty} \inf_{n \ge k} E(X_n|\mathcal{F}) = \liminf E(X_n|\mathcal{F}).$$

Lebesgue-tétel: Legyen $X_n, n \geq 1$ valószínűségi változó sorozat, melyre $|X_n| \leq Y$, ahol $E(Y) < \infty$. Tegyük fel, hogy $X_n \to X$ m.m. . Ekkor

$$E(X_n|\mathcal{F}) \to E(X|\mathcal{F})$$
.

Valóban: Alkalmazzuk a Fatou-lemmát az $Y+X_n\geq 0$ és az $Y-X_n\geq 0$ sorozatokra. Kapjuk, hogy

$$\liminf E(Y+X_n|\mathcal{F}) = E(Y|\mathcal{F}) + \liminf E(X_n|\mathcal{F}) \ge E(\liminf (Y+X_n)|\mathcal{F}) = E(Y|\mathcal{F}) + E(X|\mathcal{F})$$

$$\liminf E(Y - X_n | \mathcal{F}) = E(Y | \mathcal{F}) - \limsup E(X_n | \mathcal{F}) \ge E(\liminf (Y - X_n) | \mathcal{F}) = E(Y | \mathcal{F}) - E(X | \mathcal{F})$$

Tehát

$$E(X|\mathcal{F}) < \liminf E(X_n|\mathcal{F}) < \limsup E(X_n|\mathcal{F}) < E(X|\mathcal{F}) \quad \Box$$

9. előadás — 2020. november 12

Megjegyzés

 L_2 -térben a feltételes várható érték ortogonális projekció.

Valóban: legyen $X \in L_2$, $\mathcal{F} \subset \mathcal{A}$ σ -algebra. Jelölje $L_2(\mathcal{F})$ az \mathcal{F} -mérhető, L_2 -beli valószínűségi változók alterét. Ekkor $Z \in L_2(\mathcal{F})$ esetén $E(XZ \mid \mathcal{F}) = ZE(X \mid \mathcal{F})$. Ezért

$$E[(X - E(X \mid \mathcal{F})) \mid Z] = E(XZ) - E(E(X \mid \mathcal{F})Z) = E(XZ) - E(XZ) = 0. \quad \Box$$

Állítás

Legyenek \mathcal{F} és \mathcal{G} σ -algebrák, $X \in L_1$. Tegyük fel, hogy X, \mathcal{F} függetlenek \mathcal{G} -től. Ekkor

$$E(X \mid \sigma(\mathcal{F}, \mathcal{G})) = E(X \mid \mathcal{F}).$$

Bizonyítás:

Megmutatjuk, hogy $E(X \mid \mathcal{F})$ a feltételes várható érték $\sigma(\mathcal{F}, \mathcal{G})$ -re. Mérhetőség teljesül. Legyen most $A \in \mathcal{F}, B \in \mathcal{G}$. Ekkor

$$\int_{A\cap B} X \, dP = E(X\chi_A\chi_B) = E(X\chi_A)E(\chi_B) = \left(\int_A X \, dP\right)E(\chi_B) =$$

$$= \left(\int_A E(X\mid \mathcal{F}) \, dP\right)E(\chi_B) = E(E(X\mid \mathcal{F})\chi_A)E(\chi_B) =$$

$$= E\left(E(X\mid \mathcal{F})\chi_A\chi_B\right) = \int_{A\cap B} E(X\mid \mathcal{F})dP.$$

Ilyenek diszjunkt unióján is megegyezik a két integrál.Legyen

$$\mathcal{C} = \left\{ \bigcup_{j=1}^{n} \left(A_j \cap B_j \right) : A_j \in \mathcal{F}, B_j \in \mathcal{G}, j = 1, \dots, n, \right.$$

$$B_1, B_2, \ldots, B_n$$
 partíció, $n \ge 1$

Továbbá legyen $\mu(D) = \int_D X \, dP$, illetve $\nu(D) = \int_D E(X \, | \, \mathcal{F}) \, dP$.

Ekkor $\mu_{|\mathcal{C}} = \nu_{|\mathcal{C}}$.

De \mathcal{C} algebra.

Metszetre zárt: $C_1 = \bigcup_{j=1}^n (A_j \cap B_j), C_2 = \bigcup_{i=1}^m (\tilde{A}_i \cap \tilde{B}_i)$ esetén

$$C_1 \cap C_2 = \cup_{j=1}^n \cup_{i=1}^m \left((A_j \cap \tilde{A}_i) \cap (B_j \cap \tilde{B}_i) \right).$$

Továbbá $C = \bigcup_{j=1}^{n} (A_j \cap B_j)$ esetén

$$\Omega \setminus C = \cup_{j=1}^{n} \left((\Omega \setminus A_j) \cap B_j \right) .$$

Így
$$\mu_{|\sigma(\mathcal{C})} = \nu_{|\sigma(\mathcal{C})}$$
, és $\sigma(\mathcal{C}) = \sigma(\mathcal{F}, \mathcal{G})$.

Jelölés:

Ha Y valószínűségi változó, akkor E(X|Y) jelöli az $E(X|\sigma(Y))$ feltételes várható értéket.

Mivel E(X|Y) mérhető $\sigma(Y)$ -ra, ezért létezik olyan g függvény, melyre E(X|Y)=g(Y). Jelölje ezt a g függvényt

$$E(X|Y=y).$$

Legyen $Y:(\Omega,\mathcal{A})\to(\mathcal{Y},\mathcal{G})$. Ekkor a fenti g függvény megadható a következőképpen. Legyen

$$\mu(B) = \int_{Y^{-1}(B)} XdP,$$

ahol $B \in \mathcal{G}$. Ekkor $\mu \ll Q_Y$ és

$$E(X|Y=y) = \frac{d\mu}{dQ_Y}.$$

Valóban,

$$\int_{Y^{-1}(B)} \frac{d\mu}{dQ_Y}(Y)dP = \int_{B} \frac{d\mu}{dQ_Y}dQ_Y = \mu(B) = \int_{Y^{-1}(B)} XdP. \quad \Box$$

81. Állítás. Legyenek X,Y valószínűségi változók, $\mathcal{F} \subset \mathcal{A}$ σ -algebra. Tegyük fel, hogy Y \mathcal{F} -mérhető, és X független \mathcal{F} -től. Legyen h(x,y)mérhető függvény, melyre $E\left(h(X,Y)\right)$ véges. Jelölje $g(y) = E\left(h(X,y)\right)$ tetszőleges y esetén. Ekkor

$$E(h(X,Y)|\mathcal{F}) = g(Y) \quad P - m.m.$$

Bizonyítás:

g(Y) mérhető az Y által generált σ -algebrára, így \mathcal{F} mérhető is. Legyen most $B \in \mathcal{F}$. Ekkor

$$\begin{split} \int_B h(X,Y)dP &= E(h(X,Y)\chi_B) = \int h(x,y)zdQ_{(X,Y,\chi_B)} = \\ &= \int h(x,y)z\,d(Q_X\times Q_{(Y,\chi_B)}) = \int z\left(\int h(x,y)dQ_X\right)dQ_{(Y,\chi_B)} = \\ &= \int z\,g(y)dQ_{(Y,\chi_B)} = E\left(\chi_B g(Y)\right) = \int_B g(Y)dP\,. \end{split}$$

82. Definíció (Feltételes valószínűség). Legyen $A \in \mathcal{A}$. Ekkor

$$P(A|\mathcal{F}) = E(\chi_A|\mathcal{F}).$$

83. Tétel (Feltételes sűrűségfüggvény). Ha X,Y együttes eloszlása abszolút folytonos, f(x,y) jelöli a sűtűségfüggvényt, akkor

$$f_{X|Y}(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & ha \ f_Y(y) > 0 \\ f_X(x) & ha \ f_Y(y) = 0 \end{cases}$$

a feltételes sűrűségfüggvény, melyre tetszőleges $\varphi: \mathbb{R}^2 \to \mathbb{R}$ esetén, ha $\varphi(X,Y) \in L_1$, akkor

$$\int \varphi(x,y) f_{X|Y}(x|y) dx = E(\varphi(X,Y)|Y=y).$$

Jelölje $g(y) = \int \varphi(x,y) f_{X|Y}(x|y) dx$.

Ellenőrizzük a feltételes várható értékre előírt integrálokat.

$$\begin{split} \int_{Y^{-1}(B)} \varphi(X,Y) dP &= \int_{\mathbb{R} \times B} \varphi(x,y) dQ_{(X,Y)} = \int_{\mathbb{R} \times B} \varphi(x,y) f_{(X,Y)}(x,y) \, dx \, dy = \\ &= \int_{B \cap \{f_Y(y) > 0\}} \left(\int_{\mathbb{R}} \varphi(x,y) f_{X|Y}(x|y) dx \right) f_Y(y) dy = \int_{B \cap \{f_Y(y) > 0\}} g(y) f_Y(y) dy = \int_{B} g(Y) \, dP \end{split}$$

Azaz $g(Y) = E(\varphi(X, Y) | Y)$.

Speciálisan, ha $\varphi(x) = \chi_{(a,b)}(x)$, akkor

$$\int_{a}^{b} f_{X|Y}(x|y) dx = P(a < X < b|Y = y), \text{ adódik.}$$

Állítás

Legyen $X \in L_1$. Ekkor a

$$\{E(X \mid \mathcal{F}) : \mathcal{F} \subset \mathcal{A} \quad \sigma\text{-algebra}\}$$

halmaz egyenletesen integrálható.

Bizonyítás:

$$\int\limits_{\{|E(X\,|\,\mathcal{F})|>c\}}|E(X\,|\,\mathcal{F})|\;dP\leq\int\limits_{\{|E(X\,|\,\mathcal{F})|>c\}}E(|X|\,|\,\mathcal{F})\,dP=\int\limits_{\{|E(X\,|\,\mathcal{F})|>c\}}|X|\,dP\leq\int\limits_{\{E(|X|\,|\,\mathcal{F})>c\}}|X|\,dP$$

Továbbá

$$P\left(E(|X||\mathcal{F}) > c\right) \le \frac{1}{c} E\left(E(|X||\mathcal{F})\right) = \frac{E(|X|)}{c}.$$

84. Definíció (Martingál). $Az(X_n, \mathcal{F}_n), n = 1, 2, ...$ sorozatot, ahol $X_n : \Omega \to \mathbb{R}$ valószínűségi változó, $\mathcal{F}_0 \subset \cdots \subset \mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \cdots \subset \sigma$ -algebák, martingálnak nevezzük, ha

- X_n mérhető \mathcal{F}_n -re,
- $X_n \in L_1, n \ge 1$,
- $E(X_{n+1}|\mathcal{F}_n) = X_n, n \ge 1$ esetén.

Megjegyzés A martingál definíciójából azonnal adódik, hogy

$$E(X_n|\mathcal{F}_k) = E(E(X_n|\mathcal{F}_{n-1})|\mathcal{F}_k) = E(X_{n-1}|\mathcal{F}_k) = \cdots = X_k$$

ha $n \geq k$.

Legyenek

$$d_1 = X_1, \quad d_k = X_k - X_{k-1}$$

martingáldifferenciák. Ekkor $E(X_n \mid \mathcal{F}_{n-1}) = X_{n-1}$ ekvivalens azzal, hogy $E(d_n \mid \mathcal{F}_{n-1}) = 0$.

Megjegyzés

Ha martingál definiciójában az = helyett \geq teljesül, akkor szubmartingálról, ha \leq , akkor szupermartingálról beszélünk.

Η

a (X_n, \mathcal{F}_n) martingál, f konvex függvény, $E(f(X_n))$ véges, akkor $f(X_n), \mathcal{F}_n, \geq 1$ szubmartingál.

Ha (X_n, \mathcal{F}_n) szubmartingál, f konvex, monoton növő függvény, $E(f(X_n))$ véges, akkor $f(X_n), \mathcal{F}_n, \geq 1$ szubmartingál.

Bizonyítás: Jensen-egyenlőtlenséget alkalmazzuk.

$$E(f(X_n) | \mathcal{F}_{n-1}) \ge f(E(X_n | \mathcal{F}_{n-1})) = f(X_{n-1}).$$

A második esetben

$$E(f(X_n) \mid \mathcal{F}_{n-1}) \ge f(E(X_n \mid \mathcal{F}_{n-1})) \ge f(X_{n-1}).$$

a monotonitás miatt.

Speciális martingálok

• $X_1, X_2 \dots$ független valószínűségi változók, $E(X_j) = 0$. Legyen $S_n = \sum_{j=1}^n X_j, \mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$. Ekkor $(S_n, \mathcal{F}_n), n \geq 1$ martingál.

$$E(S_{n+1} | \mathcal{F}_n) = S_n + E(X_{n+1} | \mathcal{F}_n) = S_n + E(X_{n+1}) = S_n$$

• $X_1, X_2...$ független valószínűségi változók, $E(X_j)=1$. Legyen $S_n=\prod_{j=1}^n X_j, \mathcal{F}_n=\sigma(X_1,X_2,\ldots,X_n)$. Ekkor $(S_n, \mathcal{F}_n), n \geq 1$ martingál.

$$E(S_{n+1} | \mathcal{F}_n) = S_n \cdot E(X_{n+1} | \mathcal{F}_n) = S_n \cdot E(X_{n+1}) = S_n$$

• E(X) véges, $X_n = E(X \mid \mathcal{F}_n)$. reguláris martingál

Megjegyzés

Ha $(X_n, \mathcal{F}_n), n \geq 1$ martingál, és $\mathcal{G}_n = \sigma(X_1, X_2, \dots, X_n)$, akkor $(X_n, \mathcal{G}_n), n \geq 1$ is martingál.

Valóban,
$$E(X_{n+1} | \mathcal{G}_n) = E(E(X_{n+1} | \mathcal{F}_n) | \mathcal{G}_n) = (X_n | \mathcal{G}_n) = X_n$$
, mivel $\mathcal{G}_n \subset \mathcal{F}_n$.

Maximálegyenlőtlenségek

Jelölés $X_n^* = \max_{1 \le k \le n} X_k$.

85. Állítás (Doob). Legyen $(X_n, \mathcal{F}_n)_{n\geq 1}$ szubmartingál. Ekkor $\lambda \geq 0$ esetén

$$\lambda P(X_n^* \ge \lambda) \le \int_{\{X_n^* > \lambda\}} X_n dP.$$

Legyen
$$\nu = \begin{cases} \min \left\{ k \le n \, | \, X_k \ge \lambda \right\} , & \text{ha van ilyen,} \\ n+1 \, , & \text{ha } X_n^* < \lambda \, . \end{cases}$$
 Ekkor

$$\int_{\{X_n^* \ge \lambda\}} X_n dP = \sum_{k=1}^n \int_{\{\nu=k\}} X_n dP = \sum_{k=1}^n \int_{\{\nu=k\}} E(X_n \mid \mathcal{F}_k) dP \ge \sum_{k=1}^n \int_{\{\nu=k\}} X_k dP \ge \lambda P(\nu \le n).$$

86. Állítás (Doob). Ha $(X_n, \mathcal{F}_n)_{n\geq 1}, X_n \geq 0$, szubmartingál, akkor p > 1 esetén

$$||X_n^*||_{L_p} \le \frac{p}{p-1} ||X_n||_{L_p}.$$

Használjuk, hogy $x^p = \int_0^x pu^{p-1} \ du$. Ezért

$$\int X_n^{*p} dP = \int_0^\infty px^{p-1} P(X_n^* \ge x) dx \le \int_0^\infty px^{p-1} \frac{1}{x} \int_{\{X_n^* \ge x\}} X_n dP dx =$$

$$= \int_0^\infty px^{p-2} \int_\Omega \chi_{\{X_n^* \ge x\}} X_n dP dx = \int_\Omega p \frac{1}{p-1} X_n^{*(p-1)} X_n dP \le$$

$$\le \frac{p}{p-1} \left(\int X_n^p dP \right)^{\frac{1}{p}} \left(\int \left(X_n^{*(p-1)} \right)^{\frac{p}{p-1}} dP \right)^{\frac{p-1}{p}}.$$

Osztva a második tényezővel kapjuk, hogy

$$||X_n^*||_p \le \frac{p}{p-1} ||X_n||_p$$
. \square

87. Következmény (Kolmogorov). Ha Y_1, Y_2, \ldots független valószínűségi változók, $EY_i = 0$, akkor

$$P(S_n^* \ge \lambda) \le \frac{1}{\lambda^2} D^2(S_n),$$

ahol $S_n = \sum_{k=1}^n Y_i$, és $S_n^* = \max_{1 \le k \le n} |S_k|$.

Ugyanis $S_n, n \ge 1$ martingál, ezért $S_n^2, n \ge 1$ szubmartingál. Doob-egyenlőtlenség alapján

$$P(S_n^* \ge \lambda) = P(S_n^{*2} \ge \lambda^2) \le \frac{1}{\lambda^2} \int_{\{S_n^{*2} > \lambda^2\}} S_n^2 dP \le \frac{1}{\lambda^2} E(S_n^2).$$

10. előadás — 2020. november 19.

Megállási idő

88. Definíció. Legyen $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \sigma$ -algebra sorozat. A $\tau: \Omega \to \{1, 2, \ldots\} \cup \{\infty\}$ valószínűségi változó megállási idő, $ha \{ \tau = k \} \in \mathcal{F}_k, k \geq 1.$

Ekkor $\{\tau \leq k\} \in \mathcal{F}_k$, és $\{\tau \geq k\} \in \mathcal{F}_{k-1}$.

89. Állítás. Legyen (X_n, \mathcal{F}_n) , $n \geq 1$ (szub)martingál, τ megállási idő.Legyen $Y_n(\omega) = X_{\min(n,\tau(\omega))}(\omega)$. Ekkor $(Y_n, \mathcal{F}_n), n \geq 1$ is (szub)martingál.

Valóban, legyen d_1, d_2, \ldots a (szub)martingál differencia sorozat. Ekkor

$$Y_n = X_{n \wedge \tau} = \sum_{i=1}^{n \wedge \tau} d_j = \sum_{i=1}^n d_j \chi_{\{\tau \ge j\}}.$$

Ennek differenciasorozata $d_j\chi_{\{\tau\geq j\}},\,j\geq 2$. Azonban $E(d_j\chi_{\{\tau\geq j\}}\,|\,\mathcal{F}_{j-1})=\chi_{\{\tau\geq j\}}E(d_j\,|\,\mathcal{F}_{j-1})=0\ (\geq 0)$.

Legyenek X_1, X_2, \ldots független valószínűségi változók, $P(X_j = 1) = P(X_j = -1) = 1/2$.

 $S_n = \sum_{k=1}^n X_k, S_0 = 0.$

Legyen a, b > 0. A két játékos kezdeti tőkéje.

 $X_k = 1$ esetén a "b" kezdeti tőkéjű pénze növekszik 1-gyel, $X_k = -1$ esetén az "a" kezdeti tőkéjűé.

Legyen $\tau = \inf \{ n \mid S_n = a \text{ vagy } S_n = -b \}$. Ez megállási idő, és $P(\tau < \infty) = 1$. Így $P(S_\tau = a) + P(S_\tau = a)$ -b) = 1.

Másfelől $S_{n\wedge\tau}, n\geq 0$ is martingál. Ezért

$$E(S_{n\wedge\tau}) = E(S_0) = 0,$$

és $S_{n \wedge \tau} \to S_{\tau}$ 1-valószínűséggel, mivel $P(\tau < \infty) = 1$.

De $|S_{n\wedge\tau}| \leq \max(a,b)$, így

$$E(S_{\tau}) = 0 = aP(S_{\tau} = a) - bP(S_{\tau} = -b).$$

Tehát $P(S_{\tau}=a)=\frac{b}{a+b}$. Jelölje Z_n az n-dik játékban feltett összeget. Ekkor a tőkeváltozás n játék alatt

$$S_n = \sum_{k=1}^n Z_k X_k \,.$$

Feltevések: $1 \le Z_n \le \min(a - S_{n-1}, S_{n-1} - b)$, egész értékű.

Továbbá Z_n mérhető az $\mathcal{F}_{n-1}=\sigma(S_1,S_2,\dots S_{n-1})$ σ -algebrára. ("Nem látunk a jövőbe".)

Ekkor legyen ismét $\tau = \inf \{ n : S_n = a \text{ vagy } S_n = -b \}.$

 τ megállási idő. $S_n, n \geq 0$ martingál. Valóban

$$E(S_{n+1} | \mathcal{F}_n) = S_n + E(Z_{n+1} X_{n+1} | \mathcal{F}_n) = S_n + Z_{n+1} E(X_{n+1} | \mathcal{F}_n) = S_n.$$

Így, ha $P(\tau < \infty) = 1$, akkor az előző gondolatmenet megismételhető.

Röviden: $P(S_{\tau} = a \ vagy - b) = 1$, és $0 = E(S_0) = E(S_{\min(n,\tau)})$, így $n \to \infty$ mellett $E(S_{\tau}) = 0$.

Martingálok 1 valószínűségű konvergenciája.

Ha X_1, X_2, \ldots tetszőleges sorozata valószínűségi változóknak, akkor az 1 valószínűségi konvergenciához a $\{\liminf X_n < \limsup X_n\}$ halmaz mértéke kell 0 legyen.

Legyen $C_{a,b} = \{ \liminf X_n < a < b < \limsup X_n \}$

Ekkor

$$\{\liminf X_n < \limsup X_n\} = \bigcup_{a < b, a, b \in \mathbb{Q}} C_{a,b} \,.$$

Kell tehát $P(C_{a,b}) = 0$.

Ha $\limsup z_n > b$, akkor végtelen sokszor van a sorozat "b" felett, ha $\liminf z_n < a$, akkor végtelen sokszor van "a" alatt. Tehát végtelen sokszor "a" alulról "b" felülre megy át.

90. Definíció (Átmetszési szám). Tetszőleges z_1, z_2, \ldots, z_n számsorozat és a < b esetén jelölje $N_n[a, b]$ az [a, b] intervallum átmetszéseinek számát, azaz

$$N_n^z[a, b] = N_n[a, b] = \max\{k \mid l \text{ \'etezik } 1 \le s_1 < t_1 < \dots s_k < t_k \le n, \quad melyre \quad z_{s_i} \le a, \ z_{t_i} \ge b\}$$

Hasonlóan lehetne a felülről-lefelé való átmetszéseket tekinteni.

91. Definíció (Átmetszési szám). Tetszőleges z_1, z_2, \ldots, z_n számsorozat és a < b esetén jelölje $N_n[b, a]$ az [a, b] intervallum felülről-lefelé való átmetszéseinek számát, azaz

$$N_n^z[b,a] = N_n[b,a] = \max \left\{ k \mid l\acute{e}tezik \quad 1 \leq s_1 < t_1 < \dots s_k < t_k \leq n, \quad melyre \quad z_{s_j} \geq b, \ z_{t_j} \leq a \right\}$$

Vegyük észre, hogy ha $y_k = z_{n+1-k}$, akkor $N_n^y[a,b] = N_n^z[b,a]$.

Legyen most X_1, X_2, \ldots valószínűségi változó sorozat.

 $\begin{array}{ll} \sigma_1 = \inf \left\{ n : X_n \leq a \right\} & \nu_1 = \inf \left\{ n > \sigma_1 : X_n \geq b \right\}. \\ \text{Altalában } \sigma_k = \inf \left\{ n > \nu_{k-1} : X_n \leq a \right\} & \nu_k = \inf \left\{ n > \sigma_k : X_n \geq b \right\}. \end{array}$

És $N_n^X[a, b] = \max\{k : \nu_k \le n\}.$

Adódik, hogy $C_{a,b} \subset \{N_{\infty}^X[a,b] = \infty\}.$

92. Lemma (Átmetszési lemma). Ha a < b, akkor tetszőleges $(X_n, \mathcal{F}_n), n \geq 1$ szubmartingál átmetszési számaira teljesül az

$$E\left(N_n^X[a,b]\right) \le \frac{E(X_n - a)^+}{b - a}$$

egyenlőtlenség.

Bizonyítás

Legyen $Y_n = (X_n - a)^+$. Ez is szubmartingál. Ekkor $N_n^X[a, b] = N_n^Y[0, b - a]$. Jelölje $d_1 = Y_1, d_j = Y_j - Y_{j-1}, \text{ ha } j \geq 2.$ Ekkor

$$\sum_{j=1}^{N_n^Y[0,b-a]} \sum_{\sigma_j < i \le \nu_j} (Y_i - Y_{i-1}) = \sum_{i=2}^n d_i \sum_{j=1}^{N_n^Y[0,b-a]} \chi_{\{\sigma_j < i \le \nu_j\}} \ge N_n^Y[0,b-a](b-a)$$

Legyen $H_i = \sum_{j=1}^{N_n^Y[0,b-a]} \chi_{\{\sigma_j < i \leq \nu_j\}}$, mivel $\sigma_j, \nu_j, j \geq 1$ megállási idők, ezért H_i \mathcal{F}_{i-1} mérhető.

Továbbá $0 \le H_i \le 1$.

Vegyük észre, hogy

$$E(d_i(1-H_i)) = E(E(d_i(1-H_i) | \mathcal{F}_{i-1})) = E((1-H_i)E(d_i | \mathcal{F}_{i-1})) \ge 0.$$

Ezért

$$E(N_n^Y[0, b-a](b-a)) \le E(\sum_{i=2}^n d_i H_i) \le E(\sum_{i=2}^n d_i) = E(Y_n) - E(Y_1).$$

Tehát

$$E(N_n^Y[0, b-a]) \le \frac{1}{b-a} (E(Y_n) - E(Y_1)) \le \frac{E(X_n - a)^+}{b-a}.$$

93. Tétel. Ha (X_n, \mathcal{F}_n) L_1 -ben korlátos szubmartingál, akkor 1 vsz-gel konvergens.

Bizonyítás: Az átmetszési lemma alapján:

$$E(N_n^X[a,b]) \le \frac{E(X_n - a)^+}{b - a} \le \frac{E(X_n^+) + |a|}{b - a}.$$

Ha $n\to\infty,$ akkor $N_n^X[a,b]\to N_\infty^X[a,b].$

Ezért

$$E\left(N_{\infty}^{X}[a,b]\right) \le \frac{\sup_{n} E|X_{n}| + |a|}{b-a}.$$

Tehát $P(N_{\infty}^{X}[a,b]=\infty)=0$. Tehát $P(C_{a,b})=0$

$$P\left(\liminf X_n < \limsup X_n\right) = P\left(\bigcup_{a,b \in \mathbb{Q}, a < b} C_{a,b}\right) = 0.$$

Megjegyzés

$$X_n^+ \le |X_n|$$
 és $|X_n| = X_n^+ + X_n^- = X_n^+ + (X_n^+ - X_n) = 2X_n^+ - X_n$.

Ezért
$$EX_n^+ \le E|X_n|$$
 és $E|X_n| = 2EX_n^+ - EX_n \le 2E_n^+ - EX_1$

Tehát $\sup E(X_n^+) < \infty \Leftrightarrow \sup E|X_n| < \infty.$

Megjegyzés.

Legyenek Y_1,Y_2,\ldots független, azonos eloszlású valószínűségi változók, melyekre

$$P(Y_i = 4) = P(Y_i = 0) = P(Y_i = -1) = \frac{1}{3}.$$

Ekkor $X_n = \prod_{i=1}^n Y_i$ martingál, melyre

$$E(|X_n|) = \left(\frac{5}{3}\right)^n \to \infty$$
 és $P(X_n \neq 0) = \left(\frac{2}{3}\right)^n \to 0$

emiatt

$$X_n \to 0$$
 1 – valószínűséggel,

de X_n L_1 -ben nem korlátos martingál.

94. Tétel (Reguláris martingálok konvergenciája). Legyen $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$, és $\mathcal{F}_{\infty} = \sigma (\cup_{n \geq 1} \mathcal{F}_n)$. $X \in L_1$ esetén legyen

$$X_n = E(X|\mathcal{F}_n)$$
.

Ekkor $X_n \to E(X \mid \mathcal{F}_{\infty}) L_1$ -ben is.

Sőt, a L₁-beli konvergenciából adódik a martingál regularitása.

Bizonyítás:

Az $E(X|\mathcal{F}_n)$, $n \geq 1$ halmaz egyenletesen integrálható.

Ezért az X_n sorozat 1 vsz-ű konvergenciájából következik az L_1 -beli konvergencia is.

Jelölje X_{∞} a határértéket. Megmutatjuk, hogy

$$X_{\infty} = E(X|\mathcal{F}_{\infty}),$$

ahol $\mathcal{F}_{\infty} = \sigma\left(\bigcup_{n\geq 1}\mathcal{F}_{n}\right)$. Ehhez a várható érték tulajdonságait ellenőrizzük.

Nyilvánvalóan $\lim_{n\to\infty} X_n$ mérhető az \mathcal{F}_{∞} σ -algebrára.

Meg kell mutatnunk, hogy tetszőleges \mathcal{F}_{∞} -beli esemény esetén X integrálja megegyezik X_{∞} integráljával. Mivel $\cup_{n\geq 1}\mathcal{F}_n$ algebrát alkot, a mértékkiterjesztés egyértelműsége miatt elég ezen az algebrán ellenőrizni. Legyen tehát $A\in\mathcal{F}_n$ valamely $n\geq 1$ esetén. Ekkor

$$\int_{A} X_{\infty} dP = \lim_{k \to \infty} \int_{A} X_{k} dP = \lim_{k \to \infty} \int_{A} E(X_{k} | \mathcal{F}_{n}) dP$$
$$= \lim_{k \to \infty} \int_{A} X_{n} dP = \int_{A} X dP,$$

ahol az utolsó két egyenlőségben a martingáltulajdonságot használtuk $k \geq n$ esetén.

Megfordítva, legyen most (X_n, \mathcal{F}_n) , $n \geq 1$ L_1 -ben konvergens martingál, $X_n \to X_\infty$. Ekkor $A \in \mathcal{F}_k$ esetén, $n \geq k$ $\int_A X_k dP = \int_A X_n dP \to_n \int_A X_\infty dP$. Így $X_k = E(X_\infty \mid \mathcal{F}_k)$.

Fordított martingál

95. Definíció. $Az(X_n, \mathcal{F}_n), n \geq 1$ sorozat fordított martingál, ha $\mathcal{F}_1 \supset \mathcal{F}_2 \supset \dots$ monoton csökkenő, $X_n \mathcal{F}_n$ mérhető, $E(X_n)$ véges, és

$$E(X_n \mid \mathcal{F}_{n+1}) = X_{n+1}.$$

Ekkor $X_n = E(X_1 | \mathcal{F}_n)$.

Ha (X_k, \mathcal{F}_k) , $1 \le k \le n$ fordított martingál, akkor az $Y_k = X_{n+1-k}$, $\mathcal{G}_k = \mathcal{F}_{n+1-k}$, $1 \le k \le n$ martingál. Valóban.

$$E(Y_{k+1} | \mathcal{G}_k) = E(X_{n+1-k-1} | \mathcal{F}_{n+1-k}) = X_{n+1-k} = Y_k.$$

Ezért

$$E(N_n^X[b,a]) \le \frac{E(X_1-a)^+}{b-a} \le \frac{E(X_1^+)+|a|}{b-a}.$$

96. Következmény. Legyen (X_n, \mathcal{F}_n) , $n \geq 1$ sorozat fordított martingál. Ekkor X_n 1-valószínűséggel és L_1 -ben is konvergens.

Bizonyítás:

Adódik, hogy

$$E(N_{\infty}^{X}[b,a]) \le \frac{E(X_{1}-a)^{+}}{b-a} \le \frac{E(X_{1}^{+})+|a|}{b-a}$$

Így $P\left(N_{\infty}^{X}[b,a]=\infty\right)=0.$ Ugyanakkor

$$C_{a,b} \subset \{N_{\infty}^X[b,a] = \infty\}.$$

97. Következmény. Legyenek Y_1, Y_2, \ldots , független, azonos eloszlású valószínűségi változók. Tegyük fel, hogy $E(Y_1)$ véges. Ekkor

$$\frac{\sum_{k=1}^{n} Y_k}{n} \to E(Y_1), \ 1 \ valószínűséggel.$$

Legyen
$$S_n = \sum_{k=1}^n Y_k$$
, $X_n = \frac{S_n}{n}$ és $\mathcal{F}_n = \sigma(S_n, Y_{n+1}, Y_{n+2}, \dots)$.

Ekkor $(X_n, \mathcal{F}_n), n \geq 1$ fordított martingál.

Mérhetőség teljesül. Feltételes várható érték:

$$E(X_n, | \mathcal{F}_{n+1}) = E(X_n | S_{n+1}, Y_{n+2}, Y_{n+3}, \dots) = E(X_n | S_{n+1}) = \frac{1}{n} \sum_{j=1}^n E(Y_j | S_{n+1})$$

Jelölje $f: f(S_{n+1}) = E(Y_1 \mid S_{n+1})$. Ekkor $B \subset \mathbb{R}$ esetén

$$\int_{S_{n+1}^{-1}(B)} Y_1 dP = \int_{\left\{\sum_{j=1}^{n+1} y_j \in B\right\}} y_1 d \otimes_{j=1}^{n+1} Q_{Y_j}(y_j) =$$

$$= \int_{S_{n+1}^{-1}(B)} f(S_{n+1}) dP = \int_{\left\{\sum_{j=1}^{n+1} y_j \in B\right\}} f(\sum_{j=1}^{n+1} y_j) d \otimes_{j=1}^{n+1} Q_{Y_j}(y_j).$$

De ez utóbbi nem függ az y_1, y_2, \dots, y_n változók sorrendjétől. Felcserélve az y_1 és y_i változókat kapjuk,

$$\int_{S_{n+1}^{-1}(B)} f(S_{n+1}) dP = \int_{\left\{\sum_{j=1}^{n+1} y_j \in B\right\}} f(\sum_{j=1}^{n+1} y_j) d \otimes_{j=1}^{n+1} Q_{Y_j}(y_j) =$$

$$= \int_{\left\{\sum_{j=1}^{n+1} y_j \in B\right\}} y_i d \otimes_{j=1}^{n+1} Q_{Y_j}(y_j) = = \int_{S_{n+1}^{-1}(B)} Y_i dP$$

Azaz $E(Y_i \mid S_{n+1}) = E(Y_1 \mid S_{n+1})$ minden $i = 1, 2, \dots, n+1$ esetén. De $\sum_{i=1}^{n+1} Y_i = S_{n+1}$. Ezért $E(Y_i \mid S_{n+1}) = \frac{1}{n+1} S_{n+1}$.

Tehát
$$E(X_n \mid \mathcal{F}_{n+1}) = E(X_n \mid S_{n+1}) = \frac{1}{n} \frac{n}{n+1} S_{n+1} = X_{n+1}$$
.

Tehát $E(X_n \mid \mathcal{F}_{n+1}) = E(X_n \mid S_{n+1}) = \frac{1}{n} \frac{n}{n+1} S_{n+1} = X_{n+1}$. Mivel tehát fordított martingál, ezért 1 valószínűséggel és L_1 -ben is konvergens. Határérték csak konstans lehet. (Kolmogorov 0-1 törvény.) Várható értéke is konvergál. De $E(X_n)=E(Y_1)$.

Nagy számok erős törvényei

98. Tétel (Kolmogorov-féle erős törvény). Legyenek Y₁, Y₂,... független, azonos eloszlású valószínűségi változók. Ekkor,

• ha létezik $E(Y_1)$ – akár véges, akár végtelen –, akkor

$$\frac{\sum_{i=1}^{n} Y_i}{n} \to E(Y_1) \quad m.m.,$$

ullet ha $rac{\sum_{i=1}^n Y_i}{n}$ 1 vsz-gel konvergál valamely véges számhoz, akkor $E(Y_1)$ is véges.

Bizonyitás: Ha $E(Y_1)$ véges, akkor már láttuk.

Legyen most $E(Y_1^-)$ véges, de $E(Y_1^+) = \infty$.

Ekkor $0 < c < \infty$ mellett legyen $Y_i^c = \min(Y_j, c)$.

$$\liminf \frac{\sum_{i=1}^n Y_i}{n} \geq \liminf \frac{\sum_{i=1}^n Y_i^c}{n} = E(Y_1^c) \to_{c \to \infty} \infty \,. \quad \Box$$

Megfordítva, ha most $\lim \frac{\sum_{i=1}^{n} Y_i}{n} = c$, akkor

$$\frac{Y_n}{n} = \frac{S_n - S_{n-1}}{n} = \frac{S_n}{n} - \frac{n-1}{n} \frac{S_{n-1}}{n-1} \to 0.$$

Tehát az $\left\{\left|\frac{Y_n}{n}\right|\geq 1\right\}$ független események lim
 sup-ja nullmértékű. Így

$$\sum_{n=1}^{\infty} P(|Y_1| \ge n) = \sum_{n=1}^{\infty} P(|Y_n| \ge n) < \infty.$$

 $E(|Y_1|) \leq \sum_{n=0}^{\infty} P(|Y_1| \geq n) < \infty.$

11. előadás — 2020. november 26.

Nagy számok erős törvénye nem azonos eloszlású esetben

Ekkor a számtani közép már nem lesz fordított martingál.

99. Lemma (Kronecker-lemma). Tegyük fel, hogy $\sum_{i=1}^{\infty} a_i$ konvergens, és $0 < q_1 \le q_2 < \dots, q_n \to \infty$.

$$\frac{1}{q_n} \sum_{i=1}^n a_i q_i \to 0.$$

Legyen $R_n = \sum_{i=n}^{\infty} a_i$. Ekkor $a_n = R_n - R_{n+1}$. Legyen $\varepsilon > 0$. Ekkor van olyan N, hogy $n \ge N$ esetén már $|R_n| \le \varepsilon$.

Ekkor n > N mellett

$$\sum_{i=1}^{n} a_i q_i = \sum_{i=1}^{n} (R_i - R_{i+1}) q_i = \sum_{i=1}^{n} R_i q_i - \sum_{i=1}^{n} R_{i+1} q_i =$$

$$= \sum_{i=1}^{n} R_i q_i - \sum_{i=2}^{n+1} R_i q_{i-1} = R_1 q_1 + \sum_{i=2}^{n} R_i (q_i - q_{i-1}) + R_{n+1} q_n$$

Ezért

$$\left| \frac{1}{q_n} \sum_{i=1}^n a_i q_i \right| \le \frac{|R_1| q_1 + \sum_{i=2}^N |R_i| (q_i - q_{i-1})}{q_n} + \sum_{i=N+1}^n |R_i| \frac{q_i - q_{i-1}}{q_n} + |R_{n+1}|$$

Az első tag nullához tart. a másik kettőben használjuk az $|R_i| \le \varepsilon$ becslést. Ezért

$$\limsup \left| \frac{1}{q_n} \sum_{i=1}^n a_i q_i \right| \le 2\varepsilon \,. \quad \Box$$

Speciálisan: ha $q_n = n$, akkor $\sum_i a_i$ konvergenciájából adódik, hogy $\frac{1}{n} \sum_{i=1}^n i a_i \to 0$.

100. Lemma. Legyen (X_n, \mathcal{F}_n) martingál, melyre $\sum \frac{E(d_n^2)}{n^2} < \infty$, ahol $d_1 = X_1$, $d_k = X_k - X_{k-1}$, $k \ge 2$. $\frac{X_n}{n} \to 0$ 1 vsz.-gel.

Legyen $Y_n = \sum_{k=1}^n \frac{d_k}{k}$. Ez is martingál.

Továbbá $E(Y_n^2) = \sum_{k=1}^n \frac{E(d_k^2)}{k^2}$. Így sup $E(Y_n^2) < \infty$. Azaz $Y_n, n \to \infty$ esetén konvergens. (1-valószínűséggel.) Mivel $X_n = \sum_{k=1}^n k \frac{d_k}{k}$, ezért Kronecker-lemma adja, hogy $\frac{1}{n} X_n \to 0$.

101. Következmény. Legyenek Y_1, Y_2, \ldots független valószínűségi változók. Tegyük fel, hogy $\sum_{k=1}^{\infty} \frac{D^2(Y_k)}{k^2} < \infty$ ∞ . Ekkor

$$\frac{1}{n}\sum_{k=1}^{n}(Y_k-E(Y_k))\to 0\quad m.m.$$

Bizonyítás:

Legyen $X_n = \sum_{j=1}^n (Y_j - EY_j), \mathcal{F}_n = \sigma(Y_1, \dots, Y_n).$

Ez martingál. Továbbá $d_j = Y_j - EY_j$, ha $j \ge 2$.

Feltettük, hogy
$$\sum_{k=2}^{\infty}\frac{E(d_k^2)}{k^2}=\sum_{k=2}^{\infty}\frac{D^2(Y_k)}{k^2}<\infty.$$

Független tagú sorok

102. Tétel. Legyenek X_1, X_2, \ldots független valószínűségi változók. Tegyük fel, hogy

$$E(X_i) = 0$$
, és $\sum_{n=1}^{\infty} D^2(X_n) < \infty$

Ekkor

$$\sum X_n$$
 1 vsz-gel konv.

 $S_n = \sum_{k=1}^n X_k$ martingál az $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n), n \ge 1$ σ -algebra sorozatra. Továbbá

$$\sup_{n} E|S_n| \le \sup \sqrt{E(S_n^2)} = \sqrt{\sum_{k=1}^{\infty} D^2(X_k)} < \infty.$$

Tehát $S_n, n \to \infty$ esetén 1 valószínűséggel konvergens.

Követ mény

Legyenek X_1, X_2, \ldots független valószínűségi változók. Tegyük fel, hogy

$$\sum_{n=1}^{\infty} E(X_i) , \text{ konvergens \'es } \sum_{n=1}^{\infty} D^2(X_n) < \infty$$

Ekkor

$$\sum X_n$$
 1 vsz-gel konv.

Bizonyítás: Az előző tétel alapján $\sum_{n=1}^{\infty} (X_n - EX_n)$ konvergens 1-valószínűséggel.

Mivel $\sum_{i=1}^{\infty} E(X_i)$ konvergens, tehát az összegük is konvergens.

103. Tétel. Legyenek X_1, X_2, \ldots független valószínűségi változók. Tegyük fel, hogy

$$E(X_i) = 0$$
, és $|X_i| < c$.

Ekkor

$$\sum X_n \quad \text{1 vsz-gel konv.} \Leftrightarrow \sum D^2(X_n) < \infty.$$

 $Az \Rightarrow$ irány bizonyításához az alábbi egyenlőtlenség szükséges.

104. Lemma. Legyenek X_1, X_2, \ldots, X_n független valószínűségi változók, melyekre $E(X_i) = 0$, és alkalmas c esetén $|X_i| < c$ teljesül. Legyen $S_n = \sum_{k=1}^n X_k$. Ekkor $0 < d < \infty$ esetén

$$E(S_n)^2 \le d^2 + \frac{P(\max_{k=1}^n |S_k| \ge d)}{P(\max_{k=1}^n |S_k| < d)} (c+d)^2.$$

 $\textit{Bizonyîtás:} \text{ (Lemma) Legyen } \nu = \begin{cases} \min\left\{k \,|\, |S_k| \geq d\right\} \;, &\quad \text{ha } \max_{1 \leq k \leq n} |S_k| \geq d \\ n+1 \;, &\quad \text{egyébként }. \end{cases}$

Ekkor

$$\begin{split} E(S_n^2) &= E\left(S_n^2 \chi_{\{\nu \leq n\}}\right) + E\left(S_n^2 \chi_{\{\nu > n\}}\right) = \sum_{k=1}^n E\left(S_n^2 \chi_{\{\nu = k\}}\right) + E\left(S_n^2 \chi_{\{\nu > n\}}\right) = \\ &= \sum_{k=1}^n E\left((S_n - S_k)^2 \chi_{\{\nu = k\}}\right) + \sum_{k=1}^n E\left(S_k^2 \chi_{\{\nu = k\}}\right) + \sum_{k=1}^n 2E\left((S_n - S_k)S_k \chi_{\{\nu = k\}}\right) + E\left(S_n^2 \chi_{\{\nu > n\}}\right) = \\ &= \sum_{k=1}^n E\left((S_n - S_k)^2\right) P(\nu = k) + \sum_{k=1}^n E\left(S_k^2 \chi_{\{\nu = k\}}\right) + \sum_{k=1}^n 2E(S_n - S_k)E\left(S_k \chi_{\{\nu = k\}}\right) + E\left(S_n^2 \chi_{\{\nu > n\}}\right) \;. \end{split}$$

mivel $S_n - S_k$ és $S_k \chi_{\{\nu=k\}}$ függetlenek.

$$E(S_n - S_k) = 0.$$

A $\{\nu = k\}$ eseményen $|S_k| \le c + d$.

Továbbá $E\left((S_n - S_k)^2\right) \le ES_n^2$, végül a $\{\nu > n\}$ eseményen $|S_n| \le d$.

Ezért

$$E(S_n^2) \le E(S_n^2) P(\nu \le n) + (c+d)^2 P(\nu \le n) + d^2 P(\nu > n)$$

Átrendezve

$$E(S_n^2) \left(1 - P(\nu \le n) \right) \le (c+d)^2 P(\nu \le n) + d^2 P(\nu > n)$$

Átosztva

$$E(S_n^2) \le d^2 + \frac{(c+d)^2 P(\nu \le n)}{P(\nu > n)}$$
. \square

A tétel bizonyítása:

 $\operatorname{Ha} \sum X_n$ 1 valószínűséggel konvergens, akkor tehát $\lim_{n\to\infty} S_n$ határérték 1 valószínűséggel létezik, tehát

$$P\left(\sup_{n}|S_n|<\infty\right)=1.$$

Ezért létezik olyan $0 < d < \infty$ szám, hogy $P(\sup_n |S_n| < d) > 0$.

Ekkor $P(\max_{k=1}^{n} |S_k| < d) > P(\sup_{n} |S_n| < d)$ és $P(\max_{k=1}^{n} |S_k| \ge d) < P(\sup_{n} |S_n| \ge d)$.

Ezért

$$\sum_{k=1}^{n} D^{2}(X_{k}) = D^{2}(S_{n}) = E(S_{n}^{2}) \leq d^{2} + \frac{P(\max_{k=1}^{n} |S_{k}| \geq d)}{P(\max_{k=1}^{n} |S_{k}| < d)} (c+d)^{2} \leq d^{2} + \frac{P(\sup_{j} |S_{j}| \geq d)}{P(\sup_{j} |S_{j}| < d)} (c+d)^{2} < \infty$$

Tehát

$$\sum_{k=1}^{\infty} D^2(X_k) < d^2 + \frac{P(\sup_j |S_j| \ge d)}{P(\sup_j |S_j| < d)} (c+d)^2. \quad \Box$$

105. Tétel. Legyenek X_1, X_2, \ldots független valószínűségi változók. Tegyük fel, $|X_n| < c$. Ekkor

$$\sum X_n \quad \text{1 vsz-gel konv.} \Leftrightarrow \sum E(X_n) \text{ konvergens, \'es } \sum D^2(X_n) < \infty.$$

Bizonyítás:

Az ⇒ esetet visszavezetjük a nulla várható értékű esetre.

Legyenek Y_1, Y_2, \ldots független valószínűségi változók, melyek együttes eloszlása megegyezik az X_1, X_2, \ldots sorozat együttes eloszlásával, és egyben független azoktól.

Mivel ugyanaz az együttes eloszlás, ezért $\sum Y_n$ 1-valószínűséggel konvergens.

Legyen $Z_n = X_n - Y_n$, $n \ge 1$. Ezek független valószínűségi változók, melyekre $E(Z_n) = 0$ és $D^2(Z_n) = D^2(X_n) + D^2(Y_n) = 2D^2(X_n)$.

$$E(Z_n) = 0$$
 és $D^2(Z_n) = D^2(X_n) + D^2(Y_n) = 2D^2(X_n)$

Továbbá $|Z_n| \leq 2c$.

Egyben $\sum Z_n$ is konvergens 1-valószínűséggel.

Ezért alkalmazható az előző tétel.

Adódik, hogy $\sum D^2(Z_n) < \infty$. Így $\sum D^2(X_n) < \infty$.

De ekkor $\sum (X_n - E(X_n))$ is 1-valószínűséggel konvergens.

Tehát $\sum E(X_n)$ konvergenciája is adódik.

A visszafele irányt már korábban igazoltuk.

Vajon mindig *létezik* ilyen "extra" valószínűségi változó sorozat?

Sajnos nem. Ha $\mathcal{A} = \sigma(X_1, X_2, \dots)$, akkor nincsen ilyen.

Hogyan menthető meg a bizonyítás?

A konvergencia csak az együttes eloszlástól függ. Az (Ω, \mathcal{A}, P) hármastól nem.

Ezért vegyük Az (Ω, \mathcal{A}, P) valószínűségi mezőt még egy példányban — legyen ez — (Ξ, \mathcal{G}, Q) ennek elemeit majd θ jelöli, és rajta az eredeti X_1, X_2, \ldots sorozattal megegyező együttes eloszlású valószínűségi változó sorozatot — legyenek ezek Y_1, Y_2, \ldots

Ekkor $\sum Y_n$ Q szerint 1-valószínűséggel konvergens.

Legven most $\tilde{\Omega} = \Omega \times \Xi$, $\tilde{\mathcal{A}} = \mathcal{A} \otimes \mathcal{G}$, $\tilde{P} = P \otimes Q$

Továbbá
$$\tilde{X}_n(\omega, \theta) = X_n(\omega), \, \tilde{Y}_n(\omega, \theta) = Y_n(\theta), \, n \geq 1$$

Ekkor az $\tilde{X}_n, n \geq 1$ és a $\tilde{Y}_n, n \geq 1$ sorozat a \tilde{P} mérték szerint függetlenek egymástól, és \tilde{P} szerint vett eloszlásuk megegyezik az X_1, X_2, \ldots sorozat P szerinti eloszlásával.

Legyen
$$\tilde{Z}_n = \tilde{X}_n - \tilde{Y}_n$$
.

Így $\sum \tilde{Z}_n$ a \tilde{P} mérték szerint 1-valószínűséggel konvergens.

Továbbá $|\tilde{Z}_n| \leq 2c, \, \tilde{E}(\tilde{Z}_n) = 0.$

Alkalmazhatjuk erre a sorozatra az előző tételt. Adódik, hogy

$$\sum \tilde{D}^2(\tilde{Z}_n) < \infty.$$

De
$$\tilde{D}^2(\tilde{Z}_n) = \tilde{D}^2(\tilde{X}_n) + \tilde{D}^2(\tilde{Y}_n) = D^2(X_n) + D_O^2(Y_n) = 2D^2(X_n).$$

106. Tétel (Kolmogorov-féle 3-sor tétel). Legyenek X_1, X_2, \ldots független valószínűségi változók. Tetszőleges c>0 esetén jelölje $X_n^c=X_n$ $\chi_{\{|X_n|\leq c\}}$. Ekkor, ha valamely c>0 esetén

 \Box .

- $\sum P(|X_n| > c) < \infty$,
- $\sum E(X_n^c)$ konvergens,
- $\sum D^2(X_n^c) < \infty$,

akkor

$$\sum X_n$$
 1 vsz-gel konvergens.

Megfordítva, ha $\sum X_n$ 1 vsz-gel konvergens, akkor a fenti három sor tetszőleges c > 0 esetén konvergens.

Bizonyítás:

Vegyük észre, hogy $\{X_n \neq X_n^c\} = \{|X_n| > c\}.$

Tegyük fel a 3 sor konvergenciáját.

Mivel $\sum P(|X_n| > c) < \infty$, alkalmazható a Borel–Cantelli-lemma. Azaz $P(\limsup \{X_n \neq X_n^c\}) = 0$. Ezért az

$$\{\omega \mid \text{létezik } N(\omega), \text{ hogy minden } n \geq N(\omega) \text{ esetén } X_n(\omega) = X_n^c(\omega)\}$$

halmaz mértéke 1.

Ezen a halmazon viszont $\sum X_n$ és $\sum X_n^c$ ekvikonvergens.

A második két sor konvergenciája biztosítja $\sum X_n^c$ 1-valószínűségű konvergenciáját.

Tehát $\sum X_n$ 1-valószínűséggel konvergens.

Fordított irány. Tegyük fel, hogy $\sum X_n$ 1-valószínűséggel konvergens.

Legyen c > 0.

Adódik, hogy $X_n \to 0$ 1-valószínűséggel, tehát a $\{|X_n| > c\}$ (független) események közül egy 1-valószínűségű halmazon csak véges sok "következik" be.

Borel–Cantelli-lemma másik változata adja, hogy $\sum P(|X_n| > c) < \infty$.

És mellesleg azt is, hogy $\sum X_n$ és $\geq X_n^c$ egy 1-valószínűségi halmazon ekvikonvergensek.

 $\sum X_n$ konvergens m.m., ezért tehat $\sum X_n^c$ is az. De $|X_n^c| \le c$, tehát alkalmazhatjuk az előző tételt.

Ez adja a másik két sor konvergenciáját.

Független tagú sor L_p konvergenciája

107. Tétel. Legyenek X_1, X_2, \ldots független valószínűségi változók és $p \ge 1$ rögzített szám. Tegyük fel, hogy $\sum X_n$ 1-valószínűséggel konvergens. Legyen $X = \sum X_n$.

Ekkor, ha $E|X|^p < \infty$, akkor a konvergencia L_p -ben is teljesül.

Bizonyítás: Ehhez egy segédlemma.

108. Lemma. Legyen $Y \in L_p$, $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ monoton növő σ -algebra sorozat. $Y_n = E(Y \mid \mathcal{F}_n)$ reguláris martingál.

Ekkor az Y_n sorozat $n \to \infty$ esetén L_p -ben is konvergens.

Valóban, a Jensen-egyenlőtlenség adja, hogy $|Y_n|^p = |E(Y \mid \mathcal{F}_n)|^p \le E(|Y|^p \mid \mathcal{F}_n)$. Ez utóbbi egyenletesen integrálható halmaz, tehát $|Y_n|^p, n \ge 1$ is az.

Továbbá Y_n , $n \to \infty$ esetén 1-valószínűséggel konvergens. Az egyenletes integrálhatóság miatt tehát L_p -ben is az.

Visszatérve a tétel bizonyításához legyen most $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$. Ekkor $\sum_{k=n+1}^{\infty} X_k$ független \mathcal{F}_n -től. Tehát

$$E(X \mid \mathcal{F}_n) = \sum_{k=1}^n X_k + E\left(\sum_{k=n+1}^{\infty} X_k\right).$$

Mivel X mérhető az \mathcal{F}_{∞} σ -algebrára, ezért $E(X \mid \mathcal{F}_n) \to X$ 1-valószínűséggel.

De $\sum_{k=1}^n X_k \to X$ szintén 1-valószínűséggel.

Ezért
$$E\left(\sum_{k=n+1}^{\infty} X_k\right) \to 0.$$

Azonban, $E(X \mid \mathcal{F}_n) \to X L_p$ -ben is — a lemma miatt.

Tehát
$$X_n \to X$$
 L_p -ben.

Martingálok L_p konvergenciája

109. Tétel. Legyen $(X_n, \mathcal{F}_n)_{n\geq 1}$ martingál és p>1. Tegyük fel, hogy

$$\sup E(|X_n|^p) < \infty.$$

 \Box .

Ekkor X_n $n \to \infty$ esetén L_p -ben is konvergens.

Bizonuítás:

Alkalmazzuk a Doob–maximálegyenlőtlenséget az $|X_n|^p$ szubmartingálra. Ekkor

$$E\left(\sup_{n\geq 1}|X_n|^p\right) = \lim_{n\to\infty} E\left(\max_{1\leq k\leq n}|X_k|^p\right) \leq \left(\frac{p}{p-1}\right)^p \lim_{n\to\infty} E(|X_n|^p) < \infty.$$

Ezért az $|X_n|^p, n \ge 1$ halmaz egyenletesen integrálható. De egyben 1-valószínűséggel is konvergens. Tehát L_p -ben is az.

Marcinkiewicz-Zygmund-tétel

Független összegre.

110. Tétel. Legyen $0 rögzített szám és <math>X_1, X_2, \ldots$ független, azonos eloszlású valószínűségi változók, melyekre $E(|X_1|^p) < \infty$. Ekkor

$$\sum \left(\frac{X_n}{n^{1/p}} - E(Y_n)\right) \quad 1 - val\'{o}sz\'{i}n\~{u}s\'{e}ggel\ konvergens\,,$$

ahol $Y_n = \frac{X_n}{n^{1/p}} \chi_{\{|X_n| < n^{1/p}\}}$.

Bizonyítás:

$$E(|X_1|^p) \ge \sum_{n=1}^{\infty} P(|X_1|^p \ge n) = \sum_{n=1}^{\infty} P(|X_n| \ge n^{1/p}).$$

Ez utóbbiak független események. Tehát

$$P\left(\limsup\left\{|X_n| \ge n^{1/p}\right\}\right) = 0.$$

Tehát

$$\sum \left(\frac{X_n}{n^{1/p}} - Y_n\right)$$

konvergens.

Tekintsük tehát az $\sum (Y_n - E(Y_n))$ sort.

Megmutatjuk, hogy $\sum E(Y_n^2) < \infty$.

$$\sum_{n=1}^{\infty} E(Y_n^2) = \sum_{n=1}^{\infty} E(\frac{X_n^2}{n^{2/p}} \chi_{\left\{|X_n| < n^{1/p}\right\}}) \\ \equiv \sum_{j=1}^{\infty} E\left(X_1^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}\right) \sum_{n=j}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right) = \sum_{n=1}^{\infty} \frac{1}{n^{2/p}} \left(\frac{X_n^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}}{n^{2/p}}\right)$$

Becsüljük meg az $\sum_{n=j}^{\infty} \frac{1}{n^{2/p}}$ összeg nagyságát. Legyen $\alpha<0$. Az x^{α} függvény x>0 halmazon konvex, monoton csökkenő. Ezért

$$n^{\alpha} - (n-1)^{\alpha} \le \alpha n^{\alpha - 1}.$$

(A $x^{-\alpha}$ függvény abszolút értékben jobban csökken n-1 és n között, mint az x=n pontban vett érintője.) Átrendezve

$$n^{\alpha-1} \le \frac{1}{\alpha} (n^{\alpha} - (n-1)^{\alpha}) = \frac{1}{-\alpha} ((n-1)^{\alpha} - n^{\alpha}).$$

Legyen $1 - \alpha = \frac{2}{p} > 1$. Ekkor tehát

$$n^{-2/p} \le \frac{1}{\frac{2}{n} - 1} \left[(n - 1)^{1 - 2/p} - n^{1 - 2/p} \right].$$

Tehát — leválasztva az első összeadandót —

$$\sum_{n=j}^{\infty} \frac{1}{n^{2/p}} \le \frac{1}{\frac{2}{p} - 1} \frac{1}{j^{\frac{2}{p} - 1}} + \frac{1}{j^{2/p}} \,.$$

Visszahelyettesítve

$$\begin{split} \sum_{n=1}^{\infty} E(Y_n^2) & \leq \sum_{j=1}^{\infty} E\left(X_1^2 \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}\right) \left(\frac{1}{j^{2/p}} + \frac{1}{\frac{2}{p}-1} \frac{1}{j^{\frac{2}{p}-1}}\right) \leq \\ & \leq \sum_{j=1}^{\infty} E\left(|X_1|^p \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}\right) j^{\frac{2-p}{p}} \left(\frac{1}{j^{2/p}} + \frac{1}{\frac{2}{p}-1} \frac{1}{j^{\frac{2}{p}-1}}\right) = \\ & = \sum_{j=1}^{\infty} E\left(|X_1|^p \chi_{\left\{(j-1)^{1/p} \leq |X_n| < j^{1/p}\right\}}\right) \left(\frac{1}{j} + \frac{p}{2-p}\right) \leq \\ & \leq \left(1 + \frac{p}{2-p}\right) E(|X_1|^p) \propto. \end{split}$$

Ezért $\sum (Y_n - E(Y_n))$ konvergens 1-valószínűséggel.

12. előadás — 2020. december 3.

Hiánypótlás:

Legyenek Y,Z független valószínűségi változók, és $p\geq 1$. Tegyük fel, hogy $E|Y+Z|^p<\infty$. Ekkor $E|Y|^p < \infty$, és $E|Z|^p < \infty$.

Valóban

$$E|Y + Z|^p = \int_{\mathbb{R}^2} |y + z|^p dQ_{Y,Z}(y,z) = \int_{\mathbb{R}} \int_{\mathbb{R}} |y + z|^p dQ_Y(y) dQ_Z(z) = \int_{\mathbb{R}} E(|Y + z|^p) dQ_Z(z)$$

Tehát létezik olyan $z \in \mathbb{R}$, melyre $||Y + z||_{L_n}$ véges.

De

$$||Y||_{L_p} \le ||Y + z||_{L_p} + |z|.$$

Kiegészítés:

Megmutattuk tehát, hogy ha X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók, és $E(|X_1|^p) <$ ∞ , ahol 0 , akkor

$$\sum \left(\frac{X_n}{n^{1/p}} - E(Y_n)\right) 1 - \text{valószínűséggel konvergens},$$

ahol $Y_n = \frac{X_n}{n^{1/p}} \chi_{\left\{|X_n| < n^{1/p}\right\}}$. Lehet-e valamit mondani a $\sum E(Y_n)$ sor konvergenciájáról?

Állítás

Ha $0 , akkor <math>\sum E|Y_n| < \infty$.

Ha pedig $1 , és <math>EX_1 = 0$, akkor $\sum |EY_n| < \infty$.

Bizonyítás: Az első állítás bizonyításának "lelke" ismét az

$$\sum_{n=i}^{\infty} \frac{1}{n^{2/p}} \le \frac{1}{\frac{2}{p} - 1} \frac{1}{j^{\frac{2}{p} - 1}} + \frac{1}{j^{2/p}} \,.$$

becslés, de most p helyett 2p-re alkalmazva.

$$\begin{split} \sum_{n=1}^{\infty} E(|Y_n|) &= \sum_{n=1}^{\infty} E(\frac{|X_n|}{n^{1/p}} \chi_{\left\{|X_n| < n^{1/p}\right\}}) = \sum_{j=1}^{\infty} E\left(|X_1| \chi_{\left\{(j-1)^{1/p} \le |X_1| < j^{1/p}\right\}}\right) \sum_{n=j}^{\infty} \frac{1}{n^{1/p}} \le \\ &\le \sum_{j=1}^{\infty} E\left(|X_1| \chi_{\left\{(j-1)^{1/p} \le |X_1| < j^{1/p}\right\}}\right) \left(\frac{1}{j^{1/p}} + \frac{1}{\frac{1}{p} - 1} \frac{1}{j^{\frac{1}{p} - 1}}\right) \le \\ &\le \sum_{j=1}^{\infty} E\left(|X_1|^p \chi_{\left\{(j-1)^{1/p} \le |X_1| < j^{1/p}\right\}}\right) j^{\frac{1-p}{p}} \left(\frac{1}{j^{1/p}} + \frac{1}{\frac{1}{p} - 1} \frac{1}{j^{\frac{1}{p} - 1}}\right) = \\ &= \sum_{j=1}^{\infty} E\left(|X_1|^p \chi_{\left\{(j-1)^{1/p} \le |X_1| < j^{1/p}\right\}}\right) \left(\frac{1}{j} + \frac{p}{1-p}\right) \le \\ &\le \left(1 + \frac{p}{1-p}\right) E(|X_1|^p) < \infty \,. \end{split}$$

Második állítás:

$$E(Y_n) = \frac{1}{n^{1/p}} \int\limits_{\left\{|X_n| < n^{1/p}\right\}} X_n \, dP = -\frac{1}{n^{1/p}} \int\limits_{\left\{|X_n| \ge n^{1/p}\right\}} X_n \, dP = -\sum_{j=n+1}^{\infty} \frac{1}{n^{1/p}} \int\limits_{\left\{(j-1)^{1/p} \le |X_n| < j^{1/p}\right\}} X_n \, dP$$

kihasználva, hogy $EX_n = 0$.

$$\begin{split} \sum_{n=1}^{\infty} |E(Y_n)| &\leq \sum_{j=2}^{\infty} E\left(|X_1| \chi_{\left\{(j-1)^{1/p} \leq |X_1| < j^{1/p}\right\}}\right) \sum_{n=1}^{j-1} \frac{1}{n^{1/p}} \leq \\ &\leq \sum_{j=2}^{\infty} E\left(|X_1| \chi_{\left\{(j-1)^{1/p} \leq |X_1| < j^{1/p}\right\}}\right) \int_0^{j-1} x^{-1/p} \ dx \, . \end{split}$$

Ezért — mivel 1 - 1/p > 0

$$\sum_{n=1}^{\infty} |E(Y_n)| \le \sum_{j=2}^{\infty} E\left(|X_1|\chi_{\left\{(j-1)^{1/p} \le |X_1| < j^{1/p}\right\}}\right) \frac{1}{1 - \frac{1}{p}} (j-1)^{1 - \frac{1}{p}} \le$$

$$\le \sum_{j=2}^{\infty} E\left(|X_1|^p \chi_{\left\{(j-1)^{1/p} \le |X_1| < j^{1/p}\right\}}\right) \frac{1}{(j-1)^{\frac{p-1}{p}}} \frac{1}{1 - \frac{1}{p}} (j-1)^{1 - \frac{1}{p}} =$$

$$= \frac{p}{p-1} E(|X_1|^p) < \infty.$$

Tehát $0 , illetve <math>1 és <math>E(X_1) = 0$ esetén az $\sum \frac{X_n}{n^{1/p}}$ sor 1-valószínűséggel konvergens.

Az $n^{1/p}$ számsorozat monoton növekedve végtelenhez tart. Kíséreljük meg alkalmazni a Kroneckerlemmát.

Állítás

Legyenek X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók, továbbá $0 rögzített érték. Legyen <math>S_n = \sum_{k=1}^n X_k$. Ekkor a következő két állítás ekvivalens:

- Létezik $c,\ \mathrm{hogy}\ \frac{S_n-nc}{n^{1/p}} \to 0$ 1-valószínűséggel,
- $E(|X_1|^p)$ véges.

Ekkor
$$c = \begin{cases} E(X_1), & \text{ha } 1 \le p < 2 \\ \text{tetszőleges}, & \text{ha } 0 < p < 1 \end{cases}$$

Bizonyítás: Tegyük fel az 1-valószínűségű konvergenciát. Ekkor

$$\frac{X_n}{n^{1/p}} = \frac{S_n - nc}{n^{1/p}} - \left(\frac{n-1}{n}\right)^{1/p} \frac{S_{n-1} - nc}{(n-1)^{1/p}} \to 0.$$

Borel–Cantelli-lemmából $\sum_{n=1}^{\infty}P(|X_1|^p\geq n)<\infty, \text{ fgy } E(|X_1|^p) \text{ véges}.$

Legyen most $E|X_1|^p$ véges.

Ha $0 akkor <math display="inline">\sum \frac{X_n}{n^{1/p}}$ 1-valószínűséggel konvergens. Ezért — $q_n = n^{1/p}$ választással — a Kroneckerlemma adja, hogy

$$\frac{1}{n^{1/p}} \sum_{k=1}^{n} X_k \to 0$$
.

Ha $1 , akkor <math>X_n - EX_1$ várható értéke már 0. Ismét alkalmazható a Kronecker-lemma:

$$\frac{1}{n^{1/p}} \sum_{k=1}^{n} (X_k - EX_1) \to 0.$$

A p=1 eset pedig a Kolmogorov-féle nagy számok erős törvénye.

Kiegészítés [Kesten]

 X_1, X_2, \dots függetlenek, azonos eloszlásúak. Tegyük fel, hogy $EX_1^+ = EX_1^- = \infty$. Ekkor

$$\lim \frac{S_n}{n} = \infty, \text{ vagy } \lim \frac{S_n}{n} = -\infty, \text{ vagy}$$

$$\lim \sup \frac{S_n}{n} = \infty \text{ \'es } \lim \inf \frac{S_n}{n} = -\infty$$

1-valószínűséggel.

Tétel

Legyen $(X_n, \mathcal{F}_n)_{n\geq 1}$ martingál. Tegyük fel, hogy

$$E\left(\sup_{n\geq 2}|X_n-X_{n-1}|\right)<\infty.$$

Ekkor $\{\limsup X_n < \infty\} = \{\liminf X_n > -\infty\} = \{X_n \text{ konvergens}\}$

Legyen 0 < c és $\tau_c = \inf\{n : X_n > c\}$. Ez megállási idő, ezért $X_{\min(\tau_c, n)}$ is martingál.

Továbbá
$$EX_{\min(\tau_c,n)}^+ \leq E\left(c + \sup_{n \geq 2} |X_n - X_{n-1}|\right) < \infty.$$

Ezért $X_{\min(\tau_c,n)}$ konvergens 1-valószínűséggel, ha $n \to \infty$.

Az $\{\tau_c = \infty\} = \{\sup X_n \le c\}$ halmazon maga az $X_n, n \ge 1$ sorozat konvergens.

Tehát $\{\limsup X_n < \infty\} \subset \{X_n \text{ konvergens}\}$. De a fordított irányban mindig teljesül.

 $A - X_n$ sorozatra alkalmazva kapjuk az állítás másik részét.

Alkalmazás:

Állítás (Borel–Cantelli-lemma általánosítása)

Legyenek A_1, \ldots tetszőleges események. $\mathcal{F}_n = \sigma(A_1, A_2, \ldots, A_n)$. Ekkor

$$\lim \sup A_n = \left\{ \sum_n \chi_{A_n} = \infty \right\} = \left\{ \sum_n P(A_{n+1} \mid \mathcal{F}_n) = \infty \right\}$$

Bizonyítás:

Legyen $X_n = \sum_{j=2}^n (\chi_{A_j} - P(A_j | \mathcal{F}_{j-1}))$. Ez martingál, korlátos differenciával.

Ahol $X_n, n \ge 2$ konvergens, ott a két sor egyszerre véges illetve egyszerre tart ∞ -hez.

Ahol $X_n, n \ge 2$ divergens, ott $\limsup X_n = \infty$, azaz $\sum_n \chi_{A_n} = \infty$, továbbá $\liminf X_n = -\infty$, tehát ott $\sum_n P(A_{n+1} \mid \mathcal{F}_n) = \infty$.

Apróságok martingálokkal

Doob-felbontás

Legyen $(X_n, \mathcal{F}_n)_{n\geq 1}$ szubmartingál. Ekkor előáll

$$X_n = M_n + A_n$$
 alakban, ahol M_n martingál $0 \le A_n \le A_{n+1} \le$

és A_n \mathcal{F}_{n-1} -mérhető.

Bizonyítás:

Legyen
$$A_1 = 0$$
, és $A_n = A_{n-1} + E(X_n - X_{n-1} | \mathcal{F}_{n-1})$

Ez monoton növekvő, és a megfelelő mérhetőség is teljesül.

Továbbá $M_n = X_n - A_n$. Ekkor

$$E(M_n - M_{n-1} | \mathcal{F}_{n-1}) = E(X_n - X_{n-1} | \mathcal{F}_{n-1}) - (A_n - A_{n-1}) = 0.$$

Megjegyzés: $A_n, n \ge 1$ ún. jósolható folyamat.

Krickeberg-felbontás

Legyen $(X_n, \mathcal{F}_n)_{n\geq 1}$ martingál, melyre sup $E|X_n| < \infty$. Ekkor

$$X_n = Y_n - Z_n \ \text{ ahol } Y_n, n \geq 1 \text{ \'es } Z_n, n \geq 1 \text{ marting\'al, } Y_n \geq 0, Z_n \geq 0 \,.$$

Bizonyítás:

 $Y_k \geq E(X_n^+ \mid \mathcal{F}_k).$ Ötlet: $Y_n \geq X_n^+$. Feltételes várható értéket véve:

Legyen $Y_k = \sup_n E(X_n^+ \mid \mathcal{F}_k) = \lim_n E(X_n^+ \mid \mathcal{F}_k)$. Ugyanis X_n^+ szubmartingál, ezért $E(X_{n+1}^+ \mid \mathcal{F}_k) \geq E(X_n^+ \mid \mathcal{F}_k)$ és mivel $E(E(X_n^+ \mid \mathcal{F}_k)) = E(X_n^+) \leq E(X_n^+ \mid \mathcal{F}_k)$ $\sup E|X_n|<\infty,$ ezért Y_k véges várható értékű lesz.

 $E(Y_{k+1} | \mathcal{F}_k) = \lim_n E(E(X_n^+ | \mathcal{F}_{k+1}) | \mathcal{F}_k) = Y_k$. Azaz martingál.

Ekkor
$$Z_k = Y_k - X_k = \lim E(X_n^+ | \mathcal{F}_k) - X_k = \lim E(X_n^+ - X_n | \mathcal{F}_k) = \lim E(X_n^- | \mathcal{F}_k) \ge 0.$$

Ez a két felbontás másik lehetőséget ad a martingál konvergencia tétel bizonyítására.

Ennek vázlata a következő lehetne:

- 1. Első lépésként nemnegatív, L_2 -ben korlátos szubmartingál konvergenciáját igazolni a Doob-féle maximálegyenlőtlenség segítségével.
- 2. Majd nemnegatív martingálok konvergenciáját, kihasználva azt, hogy az e^{-x} függvénybe behelyettesítve korlátos szubmartingált kapunk.
- 3. Végül a Krickeberg-felbontással L_1 -ben korlátos martingálok konvergenciája megmutatható.
- 4. A Doob-felbontás segít visszavezetni szubmartingálok konvergenciáját a martingálokéra.

Martingál-tulajdonság kiterjesztése megállási időkre

Megállási időhöz tartozó σ -algebra

Legyen $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \text{adott } \sigma\text{-algebra sorozat}, \ \mathcal{F}_{\infty} = \sigma\left(\cup_n \mathcal{F}_n\right), \ \tau:\Omega \to \{1,2,\dots\} \cup \{\infty\} \text{ megállási idő.}$

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F}_{\infty} \mid A \cap \{ \tau = n \} \in \mathcal{F}_n , \ n \ge 1 \}$$

Azaz a $\{\tau = n\} \in \mathcal{F}_n$ eseményen éppen \mathcal{F}_n .

Állítás

Legyen $X \in L_1$. Ekkor

$$E(X \mid \mathcal{F}_{\tau}) = \sum_{n=1}^{\infty} E(X \mid \mathcal{F}_{n}) \chi_{\{\tau=n\}} + E(X \mid \mathcal{F}_{\infty}) \chi_{\{\tau=\infty\}}$$

Megmutatjuk, hogy a jobboldal megfelel X feltételes várható értékének. Mivel $E(X | \mathcal{F}_n)$ mérhető az \mathcal{F}_n σ -algebrára, ezért a jobboldal \mathcal{F}_{τ} -mérhető. Legyen most $A \in \mathcal{F}_{\tau}$. Ekkor

$$\int_{A} \left(\sum_{n=1}^{\infty} E(X \mid \mathcal{F}_{n}) \chi_{\{\tau=n\}} + E(X \mid \mathcal{F}_{\infty}) \chi_{\{\tau=\infty\}} \right) dP =
= \sum_{n=1}^{\infty} \int_{A \cap \{\tau=n\}} E(X \mid \mathcal{F}_{n}) dP + \int_{A \cap \{\tau=\infty\}} E(X \mid \mathcal{F}_{\infty}) dP =
= \sum_{n=1}^{\infty} \int_{A \cap \{\tau=n\}} X dP + \int_{A \cap \{\tau=\infty\}} X dP = \int_{A} X dP. \quad \Box$$

Legyen most $(X_n, \mathcal{F}_n)_{n\geq 1}$ martingál és $1 \leq \tau \leq \nu$ két megállási idő. Igaz-e hogy $E(X_\nu \mid \mathcal{F}_\tau) = X_\tau$? Azaz, a martingál tulajdonság kiterjeszthető-e tetszőleges megállási időkre?

Ez nem igaz.

Vegyük pl. a szimmetrikus bolyongásban a $\nu = \inf \{ n \mid S_n = 1 \}$ megállási időt. Ekkor $E(S_{\nu}) = 1$, de $E(S_n) = 0$.

Állítás

Legyen $(X_n, \mathcal{F}_n)_{n \geq 1}$ martingál és $1 \leq \tau \leq \nu \leq M < \infty$ két korlátos megállási idő. Ekkor

$$E(X_{\nu} \mid \mathcal{F}_{\tau}) = X_{\tau}$$
.

Először megmutatjuk, hogy $E(X_{\nu} | \mathcal{F}_n) = X_{\min(\nu,n)}$.

Indukcióval: Tudjuk, hogy $\nu < M$.

Ezért $\{\nu \leq M-1\}$ és $\{\nu=M\} \in \mathcal{F}_{M-1}$. Ekkor

$$E(X_{\nu} | \mathcal{F}_{M-1}) = E(X_{\nu} \chi_{\{\nu = M\}} + X_{\nu} \chi_{\{\nu \leq M-1\}} | \mathcal{F}_{M-1}) =$$

$$= \chi_{\{\nu = M\}} E(X_{M} | \mathcal{F}_{M-1}) + X_{\nu} \chi_{\{\nu \leq M-1\}} =$$

$$= \chi_{\{\nu = M\}} X_{M-1} + X_{\nu} \chi_{\{\nu \leq M-1\}} = X_{\min(\nu, M-1)},$$

kihasználva martingáltulajdonságot, és hogy $X_{\nu}\chi_{\{\nu\leq M-1\}}$ mérhető az \mathcal{F}_{M-1} σ -algebrára.

Most viszont $\nu' = \min(\nu, M - 1) \le M - 1$. Erre alkalmazható ismét az előző gondolatmenet. Adódik, hogy $E(X_{\nu} \mid \mathcal{F}_{M-2}) = X_{\min(\nu, M-2)}$. És így tovább.

$$E(X_{\nu} \mid \mathcal{F}_{\tau}) = \sum_{n=1}^{M} E(X_{\nu} \mid \mathcal{F}_{n}) \chi_{\{\tau=n\}} = \sum_{n=1}^{M} X_{\min(\nu,n)} \chi_{\{\tau=n\}} = X_{\tau}. \quad \Box$$

Optimális megállítás

Legyen X_0, X_1, \ldots, X_n valószínűségi változó sorozat, $E(X_k)$ véges, $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ σ -algebrák, ahol X_k \mathcal{F}_k -mérhető, $0 \leq k \leq n$. Keresendő olyan τ megállási idő, melyre $E(X_\tau)$ maximális.

Konstrukció:

Legyen $Z_n = X_n$, és $Z_k = \max(X_k, E(Z_{k+1} | \mathcal{F}_k)), 0 \le k \le n - 1$.

Ekkor $\tau = \min \{k \mid X_k = Z_k\}$ optimális.

 $Igazolás: E(Z_{k+1} | \mathcal{F}_k) \leq Z_k$, azaz $Z_k, 1 \leq k \leq n$ szupermartingál. Továbbá $Z_k \geq X_k$, azaz majoráló szupermartingál.

Ezért tetszőleges ν megállási idő esetén

$$E(X_{\nu}) \leq E(Z_{\nu}) \leq E(Z_0) .$$

Azonban $Z_{\min(\tau,k)}$, $0 \le k \le n$ martingál. Valóban: $E\left(Z_{\min(\tau,(k+1))} \mid \mathcal{F}_k\right) = E\left(Z_{\tau}\chi_{\{\tau \le k\}} + Z_{k+1}\chi_{\{\tau > k\}} \mid \mathcal{F}_k\right) = Z_{\tau}\chi_{\{\tau \le k\}} + Z_k\chi_{\{\tau > k\}} = Z_{\min(\tau,k)}.$

$$E(X_{\tau}) = E(Z_{\tau}) = E(Z_0)$$
. \square

13. előadás — 2020. december 10.

Feltételes valószínűség

A feltételes valószínűségre a σ -additívitásból a következő marad meg:

$$\sum_{i=1}^{\infty} P(A_i|\mathcal{F}) = P(A|\mathcal{F}) \quad \text{m.m.}$$

tetszőleges A_1, A_2, \ldots diszjunkt események esetén, ahol $A = \bigcup A_i$.

111. Definíció (Feltételes valószínűség reguláris változata). Legyenek $A_1, \mathcal{F} \subset A$ rész σ - algebrák. Az A_1 σ -algebra \mathcal{F} -re vonatkozó feltételes valószínűségének reguláris változata a következő tulajdonságokkal rendelkező

$$P(A,\omega) \in \mathbb{R} \quad A \in \mathcal{A}_1, \omega \in \Omega$$

függvény:

- (1) $P(A,\omega)$ rögzített ω esetén vsz-i mérték A_1 -en, (Jel.: P_{ω})
- (2) Rögzített $A \in \mathcal{A}_1$ esetén \mathcal{F} -mérhető
- (3) $\int_B P(A,\omega)dP(\omega) = \int_B \chi_A dP = P(A\cap B)$, midőn $B\in\mathcal{F}$.

Állítás

Ha létezik reguláris változat, akkor tetszőleges véges várható értékű, A_1 mérhető X valószínűségi változó esetén

$$E(X \mid \mathcal{F})(\omega) = \int_{\Omega} X dP_{\omega}, \ P \text{ m.m. } \omega \text{ eset\'en }.$$

Bizonyítás: Ha $X=\chi_A$, akkor $\int XdP_\omega=P(A,\omega)$, tehát a (3) tulajdonság éppen a fenti összefüggést jelenti.

Továbbá X-ben mindkét oldal lineáris, így lineáris kombinációra is kiterjeszthető az azonosság.

A feltételes várható értékre is teljesül a monoton konvergencia tétel, tehát $X \ge 0$ esetére is öröklődik az egyenlőség.

Végezetül:
$$X = X^+ - X^-$$
.

Megjegyzés. Megmutatható, hogy ha Ω teljes, szeparábilis metrikus tér, \mathcal{A} a Borel-halmazok σ -algebrája, akkor tetszőleges \mathcal{F} esetén létezik reguláris változat.

Speciális eset

- 112. Definíció. Legyen $X: \Omega \to \mathbb{R}^n$ valószínűségi változó. Ekkor a $Q_X(B,\omega)$ a feltételes eloszlás reguláris változata, ha
 - rögzített ω esetén $B \in \mathcal{B}_n$ szerint vsz. mérték;
 - rögzített $B \in \mathcal{B}_n$ esetén ω szerint \mathcal{F} -mérhető;

• $P(X \in B|\mathcal{F})(\omega) = Q_X(B,\omega) \quad P - m.m.$

Megjegyzés: Ez lényegében azt az esetet jelenti, amikor $A_1 = \sigma(X)$. Ugyanis ekkor $A \in A_1$ esetén létezik $B \in \mathcal{B}$, hogy $A = X^{-1}(B)$. Legyen tehát

$$P(A, \omega) = Q_X(B, \omega)$$
.

Ez a feltételes valószínűség reguláris változata mindhárom tulajdonságával rendelkezik.

Mivel vektorértékű valószínűségi változó esetén az eloszlás és az eloszlásfüggvény meghatározzák egymást, ezért elég a feltételes eloszlásfüggvény reguláris változatát vizsgálni.

- 113. Definíció (Feltételes eloszlásfüggvény reguláris változata). A valós értékű X valószínűségi változó feltételes eloszlásfüggvényének reguláris változata az $F(x,\omega)$ függvény, ha
 - $F(x,\omega)$ rögzített $x \in \mathbb{R}$ esetén \mathcal{F} mérhető,
 - $r\ddot{o}gz$ ített $\omega \in \Omega$ esetén x szerint eloszlásfüggvény,
 - $\int_B F(x,\omega)dP = \int_B \chi_{\{X < x\}}dP$ tetszőleges $B \in \mathcal{F}$ esetén.
- 114. Tétel (Doob). Tetszőleges X vektorértékű valószínűségi változó esetén létezik a feltételes eloszlásfüggvény reguláris változata.

Bizonyítás: Csak n=1 esetén. (Az általános eset hasonlóan megy.)

Minden rögzített $x \in \mathbb{Q}$ esetén vegyük a $P(X < x \mid \mathcal{F})$ egy változatát. (Nullmértékű szabadságunk van.) Jelölje ezt $F(x,\omega)$.

Rögzített ω mellett ez nem feltétlen monoton növekvő x-ben. De x < y esetén

$$P(X < x \mid \mathcal{F}) \le P(X < y \mid \mathcal{F})$$
, 1-valószínűséggel.

Legyen tehát $x < y, \, x, y \in \mathbb{Q}$ esetén

$$N_{x,y} = \{\omega \mid F(x,\omega) > F(y,\omega)\}$$
. Ekkor $P(N_{x,y}) = 0$.

Legyen $N_{\text{mon}} = \bigcup_{x,y \in \mathbb{Q}, x < y} N_{x,y}$. $P(N_{\text{mon}}) = 0$. Balról folytonosság: (a racionális számokon). $\omega \notin N_{\text{mon}}$ esetén már monoton növekvő. Legyen $x \in \mathbb{Q}$ esetén

$$N_x = \left\{ \omega \notin N_{\text{mon}} \mid F(x, \omega) > \lim_{y \nearrow x, y \in \mathbb{Q}} F(y, \omega) \right\}$$

A feltételes várható értékre általánosított monoton konvergencia tétel adja, hogy $P(N_x) = 0$. Legyen $N_b =$ $\bigcup_{x\in\mathbb{O}} N_x. \text{ Ekkor } P(N_{\text{mon}} \cup N_b) = 0.$

Hasonlóan

$$N_{\infty} = \left\{ \omega \notin N_{\text{mon}} \mid \lim_{x \to \infty, x \in \mathbb{Q}} F(x, \omega) \neq 1 \right\}$$

Illetve

$$N_{-\infty} = \left\{\omega \notin N_{\text{\tiny mon}} \,|\, \lim_{x \to -\infty, x \in \mathbb{Q}} F(x,\omega) \neq 0\right\}$$

Ekkor $P(N_{\infty}) = 0$ és $P(N_{-\infty}) = 0$

Legyen végül $N = N_{\text{mon}} \cup N_b \cup N_{\infty} \cup N_{-\infty}$.

Erre is teljesül, hogy P(N) = 0.

Vegyük észre, hogy $\omega \notin N$ esetén a racionális számokon az $F(x,\omega)$ függvénycsalád rendelkezik (x-ben) az eloszlásfüggvény összes tulajdonságával.

Kiterjesztjük: Legyen

$$F(x,\omega) = \begin{cases} \lim_{r \nearrow x, r \in \mathbb{Q}} F(r,\omega), & \text{ha } \omega \notin N, \\ F_X(x), & \text{ha } \omega \in N. \end{cases}$$

Ez jó, mert \mathcal{F} -mérhető ω -ban, eloszlásfüggvény x-ben és az $\int_B F(x,\omega)dP = \int_B \chi_{\{X < x\}}dP$ tetszőleges $B \in \mathcal{F}$ esetén teljesül minden $x \in \mathbb{Q}$ esetén (csak nullmértékű halmazon módosítottunk), és $r \nearrow x$, $r \in \mathbb{Q}$ esetén mindkét integrálra alkalmazható a monoton konvergencia tétel.

115. Következmény (Doob). A fenti tétel feltételei mellett létezik a feltételes eloszlásnak reguláris változata.

Kolmogorov 3-sor tétel újabb alkalmazása

Legyen X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók, melyek közös eloszlása nem elfajult, $a_n \neq 0, n \geq 1$ tetszőleges számsorozat. Ekkor

$$\sum_{n} a_n X_n \text{ konvergens} \Longrightarrow \sum_{n} a_n^2 < \infty.$$

Bizonyítás: Ekkor $a_n X_n \to 0$ 1-valószínűséggel, így $\varepsilon > 0$ esetén $P\left(|a_n X_n| \ge \varepsilon\right) \to 0$. Azonos eloszlásúak, ezért $P\left(|a_n X_1| \ge \varepsilon\right) \to 0$, tehát $|a_n| \to 0$. A 3-sor tétel adja, hogy

$$\sum D^2\left(a_nX_n\chi\left\{|a_nX_n|\leq 1\right\}\right)=\sum a_n^2D^2\left(X_n\chi_{\{|a_nX_n|\leq 1\}}\right)<\infty$$

Ha inf $D^2(X_n\chi\{|a_nX_n|\leq 1\})>0$, akkor $\sum a_n^2<\infty$.

Tegyük fel, hogy létezik olyan $n_j, j \ge 1$ részsorozat, melyre

$$\lim_{j \to \infty} D^2 \left(X_{n_j} \chi_{\left\{ |a_{n_j} X_{n_j}| \le 1 \right\}} \right) \to 0.$$

Megmutatjuk, hogy ez ellentmondásra vezet.

Legyen $b_j = E\left(X_{n_j}\chi_{\left\{|a_{n_j}X_{n_j}|\leq 1\right\}}\right)$. Adódik, hogy $X_{n_j}\chi_{\left\{|a_{n_j}X_{n_j}|\leq 1\right\}} - b_j \to 0$ sztochasztikusan.

Legyen $\delta > 0$. Ekkor elég nagy j esetén (azonos eloszlásúak):

$$P\left(\left|X_1\chi_{\left\{|a_{n_j}X_1|\leq 1\right\}}-b_j\right|>\epsilon\right)<\delta.$$

De

$$\left\{\left|X_1\chi_{\left\{|a_{n_j}X_1|\leq 1\right\}}-b_j\right|>\epsilon\right\}\supset \left\{|X_1-b_j|>\varepsilon\right\}\cap \left\{|X_1|\leq \frac{1}{a_{n_j}}\right\}$$

Elég nagy j esetén tehát $P(|X_1-b_j|>\varepsilon)<2\delta$, így $X_1-b_j\to 0$ sztochasztikusan. Tehát $b_j,\ j\to\infty$ esetén konvergens: $b=\lim b_j$ és $X_1=b$ 1-valószínűséggel.

De feltettük, hogy X_1 eloszlása nem elfajult eloszlás.