# ENE 104 Electric Circuit Theory



# Lecture 04: Useful Circuit Analysis Techniques

Week #4: Dejwoot KHAWPARISUTH

office: CB40906 Tel: 02-470-9065

Email: dejwoot.kha@mail.kmutt.ac.th

http://webstaff.kmutt.ac.th/~dejwoot.kha/

# Objectives:

- Superposition
- Source transformation
- the Thevenin equivalent of any network
- the Norton equivalent of any network
- the load resistance that will result in maximum power transfer
- a ∆-connected network, a Y-connected network
- a dc sweep in PSpice

# Ch5-Useful Techniques:

Learning methods of simplifying the analysis of more complicated circuits.

#### The principle of superposition:

The response in a linear circuit having more than one independent source can be obtained by adding the responses caused by the separate independent sources acting alone.



(a) A voltage source set to zero acts like a short circuit.



(b) A current source set to zero acts like an open circuit.

#### Use superposition to find the current $i_x$ .



#### Use superposition to find the current $i_x$ .



$$i_x = i_x' + i_x'' = \frac{3}{6+9} + 2\left(\frac{6}{6+9}\right) = 0.2 + 0.8 = 1.0 \text{ A}.$$



Sources are often called forcing functions.

----- responses



Nodal equations:

$$0.7v_1 - 0.2v_2 = i_a \qquad \dots [1]$$
$$-0.2v_1 + 1.2v_2 = i_b \qquad \dots [2]$$

#### Change the two forcing functions:

$$0.7v_{1x} - 0.2v_{2x} = i_{ax} \quad \dots [3]$$
  
- 
$$0.2v_{1x} + 1.2v_{2x} = i_{bx} \quad \dots [4]$$

$$0.7v_{1y} - 0.2v_{2y} = i_{ay}$$
 ... [5]

$$-0.2v_{1y} + 1.2v_{2y} = i_{by}$$
 ... [6]



$$(0.7v_{1x} + 0.7v_{1y}) - (0.2v_{2x} + 0.2v_{2y}) = (i_{ax} + i_{ay}) \dots [7]$$
  
$$0.7v_1 - 0.2v_2 = i_a \dots [1]$$

$$-(0.2v_{1x} + 0.2v_{1y}) + (1.2v_{2x} + 1.2v_{2y}) = (i_{bx} + i_{by}) \dots [8]$$
$$-0.2v_1 + 1.2v_2 = i_b \dots [2]$$

#### Use superposition to find the current $i_x$ .



### Practice: 5.1



$$i_x = i_x|_{2A} + i_x|_{3.5V} = \frac{10}{(10+15)}(2A) + \frac{-3.5V}{25\Omega}$$

#### Use superposition to find the current $i_x$ .



#### Use superposition to find the current $i_x$ .



$$i_{x}=i_{x}^{'}+i_{x}^{''}$$





#### Use superposition to find the current $i_x$ .





Figure b:

$$-10 + 2i'_{x} + 1i'_{x} + 2i'_{x} = 0$$

$$\therefore i'_{x} = 2 \text{ A}.$$

Figure c:

$$\frac{v''}{2} + \frac{v'' - 2i_x''}{1} = 3 \qquad \dots [1]$$

And

$$v'' = -2i_x''$$

... [2]

#### Use superposition to find the current $i_x$ .



$$i_x = i'_x + i''_x A.$$
  
= 2+(-0.6) A.  
= 1.4 A.





# Practice: 5.2

Use superposition to obtain the voltage across each current source.



## Practice: 5.2



$$|v_1|_{2A} = \frac{5}{(22+5)} (4i)(7\Omega) = \frac{5}{(22+5)} \left(4\frac{v_2}{5\Omega}\right)(7\Omega)$$

$$|v_2|_{2A} = \frac{5}{(22+5)} (4i)(5\Omega) = \frac{5}{(22+5)} \left(4\frac{v_2}{5\Omega}\right) (5\Omega)$$

## Pspice: dc sweep





#### **Source Transformation:**



(a) A general practical voltage source connected to a load resistor  $R_L$ . (b) The terminal characteristics compared to an ideal source.



(a) A general practical current source connected to a load resistor  $R_L$ . (b) The terminal characteristics compared to an ideal source.

# **Equivalent Sources:**





$$v_{L} = v_{s} \frac{R_{L}}{R_{s} + R_{L}}$$

$$= \left(\frac{v_{s}}{R_{s} + R_{L}}\right) \cdot R_{L}$$

$$\begin{aligned} \boldsymbol{v}_{L} &= & \left( i_{s} \frac{R_{p}}{R_{p} + R_{L}} \right) \cdot R_{L} \\ &= & \left( \frac{i_{s} R_{p}}{R_{p} + R_{L}} \right) \cdot R_{L} \end{aligned}$$

# **Equivalent Sources:**



The two practical sources are electrically equivalent, If

$$R_s = R_p$$

And

$$v_s = R_p i_s = R_s i_s$$

# Example 5.4:



# Practice: 5.3

compute the current  $i_x$  after performing a source transformation on the voltage source



# Example 5.5:















# The equivalents:



# Practice: 5.4

#### Compute the voltage V



#### Find the voltage v<sub>o</sub>



Find the voltage v<sub>o</sub>









# Thevenin and Norton Equi.:



- (a) A complex network including a load resistor  $R_1$ .
- (b) A Thévenin equivalent network connected to R<sub>L</sub>.
- (c) A Norton equivalent network connected to R<sub>L</sub>.

#### Thevenin's theorem:

Given any linear circuit, rearrange it in the form of two networks A and B connected by two wires. Define a voltage  $v_{oc}$  as the open-circuit voltage which appears across the terminals of A when B is disconnected. Then all currents and voltages in B will remain unchanged if all independent voltage and current sources in A are "killed" or "zeroed out," and an independent voltage source  $v_{oc}$  is connected, with proper polarity, in series with the dead (inactive) A network.

# Example 5.6:

#### Determine the Thevenin equivalent.



#### Determine the Thevenin equivalent. (use Theory)





Using repeated source transformations, determine the Norton equivalent of the highlighted network



Use Thevenin's theorem to find the current through the  $2-\Omega$  resistor



## Example 5.8:

Determine the Thevenin equivalent for the network faced by 1-kohm.



Determine the Thevenin equivalent.



### Norton's theorem:

Given any linear circuit, rearrange it in the form of two networks A and B connected by two wires. If either network contains a dependent source, its control variable must be in that same network. Define a current  $i_{sc}$  as the short circuit current that appears when B is disconnected and the terminals of A are short-circuited. Then all currents and voltages in B will remain unchanged if all independent voltage and current sources in A are "killed" or "zeroed out," and an independent current source  $i_{sc}$  is connected, with proper polarity, in parallel with the dead (inactive) A network

Determine the Norton equivalent for the network faced by 1-kohm.



Determine the Norton equivalent.





Determine the Thevenin and Norton equivalents



## Example 5.9:

Determine the Thevenin equivalent.



#### Determine the Thevenin equivalent.



Find 
$$V_{oc}$$
:  $V_{oc} = V_x$ 

$$\frac{v_x}{4000} \qquad \frac{v_x}{-4 + 2k} \left(\frac{-V_x}{4000}\right) + 3k(0) + V_x = 0$$

$$: V_x = 8 \text{ V}.$$

Find 
$$I_{sc}$$
:  $I_{sc} = \frac{4}{(2k+3k)} = 0.8 \,\text{mA}.$ 

$$\therefore R_{TH} = \frac{V_{oc}}{I_{sc}} = \frac{8}{0.8 \times 10^{-3}} = 10k\Omega$$



#### Determine the Thevenin equivalent



## Example 5.10:

Find the Thévenin equivalent of the circuit shown.



#### Find the Thévenin equivalent of the circuit shown.





Find 
$$V_{oc}$$
:  $: : i = 0; : : V_{oc} = 0$ 

Apply a 1-A. source,

$$\frac{v_{test} - 1.5(-1)}{3} + \frac{v_{test}}{2} - 1 = 0$$

$$\therefore v_{test} = 0.6 \text{ V}.$$

Thus 
$$R_{TH} = \frac{v_{test}}{1A} = 0.6\Omega$$

#### the Thévenin equivalent



Determine the Thevenin equivalent



### Maximum Power Transfer:

The power delivered to the load  $R_L$  is

$$p_{L} = i_{L}^{2} R_{L} = \frac{v_{s}^{2} R_{L}}{(R_{s} + R_{L})^{2}}$$

To find the value of  $R_L$  that absorbed a maximum power from the given practical source, we differentiate with respect to  $R_L$ :



Or

$$R_s = R_L$$



Ex55p141: Select R1 so that maximum power is transferred from stage 1 to stage 2



# Ex55p141: Select R1 so that maximum power is transferred from stage 1 to stage 2

Thévenize the left-hand network, assigning the nodal voltage  $V_x$  at the free end of right-most 1-k $\Omega$  resistor.

A single nodal equation: 
$$40 \times 10^{-3} = \frac{V_x|_{oc}}{7 \times 10^3}$$

So 
$$V_{TH} = V_x \Big|_{cc} = 280 \text{ V}$$
  
 $R_{TH} = 1 \text{ k} + 7 \text{ k} = 8 \text{ k}\Omega$ 

Select 
$$R_1 = R_{TH} = 8 k\Omega$$
.

## Example 5.11:

the circuit shown is a model of a two-stage bipolar junction transistor amplifier. Determine the value of RC required for the first stage to deliver maximum power to the second stage.











- (a) If Rout =  $3k\Omega$ , find the power delivered to it
- (b) What is the maximum power that can be delivered to any Rout
- (c) What two different values of Rout will have exactly 20 mW delivered too them?



## Delta-Wye Conversion:

#### A delta network: $(\Delta)$





#### A Wye network: (Y)





## Delta-Wye Conversion:

$$R_{ab} = R_1 + R_2$$
  
 $= R_B //(R_A + R_C) \dots (1)$   
 $R_{bc} = R_2 + R_3$   
 $= R_C //(R_A + R_B) \dots (2)$   
 $R_{ac} = R_1 + R_3$   
 $= R_A //(R_B + R_C) \dots (2)$ 

$$R_{A} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$R_{B} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

$$R_{C} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{1} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$R_{2} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2} + R_{3} + R_{C}}$$

$$R_{3} = \frac{R_{2}R_{2}}{R_{2} + R_{3} + R_{C}}$$

$$R_{3} = \frac{R_{2}R_{2}}{R_{2} + R_{3} + R_{C}}$$

## Example 5.12:



Use the technique of Y-\Delta conversion to find the thevenin equivalent resistance of the circuit



#### Ch5-66, page 143, Sixth Edition



## Homework:

## Reference:

W.H. Hayt, Jr., J.E. Kemmerly, S.M. Durbin, Engineering Circuit Analysis, Sixth Edition.

Copyright ©2002 McGraw-Hill. All rights reserved.