

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2002-0086347

**Application Number** 

출 원 년 월 일

2002년 12월 30일

Date of Application DEC 30, 2002

ଠା

물 권 Applicant(s) : 동부전자 주식회사

DONGBU ELECTRONICS CO., LTD.



2003 년 09 월 19 일

특 허 청

COMMISSIONER



【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0045

【제출일자】 2002.12.30

【발명의 명칭】 반도체 장치의 콘택트 홀 형성 방법

【발명의 영문명칭】 METHOD FOR FORMING A CONTACT HOLE IN A SEMICONDUCTOR DEVICE

【출원인】

【명칭】 동부전자 주식회사

【출원인코드】 1-1998-106725-7

【대리인】

【성명】 장성구

【대리인코드】 9-1998-000514-8

【포괄위임등록번호】 1999-059722-7

【대리인】

【성명】 김원준

 【대리인코드】
 9-1998-000104-8

【포괄위임등록번호】 1999-059725-9

【발명자】

【성명의 국문표기】 정병현

【성명의 영문표기】JUNG, Byung Hyun【주민등록번호】641017-1480219

【우편번호】 143-801

【주소】 서울특별시 광진구 광장동 578 금호아파트 103-908

【국적】 KR

【발명자】

【성명의 국문표기】 . 서보민

【성명의 영문표기】 SEO,Bo Min

【주민등록번호】 730612-1069412

【우편번호】 137-776

【주소】 서울특별시 서초구 서초동 진흥아파트 7-205

【국적】 KR

[취지] 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인 장성구 (인) 대리인

김원준 (인)

【수수료】

【기본출원료】 11 면 29,000 원

 【가산출원료】
 0
 면
 0
 원

 【우선권주장료】
 0
 건
 0
 원

 【우선권주장료】
 0
 건
 0
 원

 【심사청구료】
 0
 항
 0
 원

【합계】 29,000 원

【첨부서류】 1. 요약서·명세서(도면)\_1통

### 【요약서】

### 【요약】

반도체 장치의 콘택트 홀 형성 방법을 개시한다.

따라서, 본 발명은 배선 신뢰도를 향상시키고, 나아가서 반도체 수율을 높이는 효과가 있다.

### 【대표도】

도 2e

### 【명세서】

### 【발명의 명칭】

반도체 장치의 콘택트 홀 형성 방법{METHOD FOR FORMING A CONTACT HOLE IN A SEMICONDUCTOR DEVICE}

### 【도면의 간단한 설명】

도 1은 종래의 반도체 장치의 콘택트 홀 형성 과정을 설명하기 위한 공정 단면도,

도 2a 내지 도 2e는 본 발명의 바람직한 실시예에 따른 반도체 장치의 콘택트 홀 형성과정을 설명하기 위한 공정 단면도.

<도면의 주요 부분에 대한 부호의 설명>

1: 기판

2 : 콘택트 홀

3 : 확산방지막

4 : 텅스텐

5 : 금속배선

6 : Si

7 : Si 스페이서

8 : SiN 스페이서

### 【발명의 상세한 설명】

### 【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 반도체 장치의 콘택트 홀 형성 기술에 관한 것으로, 특히, 확산방지막의 콘택트 홀 측벽을 통한 누설전류 특성을 개선하는데 적합한 반도체 장치의 콘택트 홀 형성 방법에 관한 것이다.

도 1은 종래의 전형적인 반도체 장치의 콘택트 홀 형성 기술을 설명하기 위한 공정 단면 도이다.

- <10> 도 1에 도시한 바와 같이, 반도체 기판(1)상에 절연막을 형성하고, 이러한 절연막을 부분적으로 식각하여 반도체 기판(1)의 활성영역을 노출시키는 콘택트 홀(2)을 갖는 절연막 패턴을 형성한다.
- 이 미세 콘택트 홀(2) 내부에 스텝 커버리지(step coverage)가 우수한 CVD TiN막을 증착하여 확산 방지막(3)을 형성한다.
- <12> 그리고, 콘택트 홀(2) 내부에 텅스텐(4)을 매립한 다음 Al 배선막(5)을 증착시킨다.
- <13> 이때, 이러한 TiN막(3)은 MOCVD 방식으로 증착하여 막내에 C, N, O의 불순물 원자들이 많아 저항이 높고 누설 전류 특성이 열악하기 때문에, N<sub>2</sub>와 H<sub>2</sub> 플라즈마 처리로 막질 특성을 개선할 필요가 있다.
- 기계 그러나, 이러한 플라즈마 처리 방법으로는 콘택트 홀(2)의 바닥과 홀(2) 윗 부분은 처리되지만, 홀(2)의 측벽은 처리되지 않아 측벽을 통한 확산 방지막(3) 특성 저하로 측면 홀로의 누설 전류가 발생하여 배선 신뢰도가 떨어질 수 있다는 문제가 야기되었다.

【발명이 이루고자 하는 기술적 과제】

 따라서, 본 발명은 상술한 문제를 해결하기 위해 안출한 것으로, 홀 내의 측벽에만 Si가 남도록 이방성 식각한 후 플라즈마 또는 열처리 공정에 의해 누설 전류 억제막인 SiN막을 측벽 에 형성함으로써 배선 신뢰도를 향상시키도록 한 반도체 장치의 콘택트 홀 형성 방법을 제공하는데 그 목적이 있다.

이러한 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따르면, 반도체 기판상에 절연막을 형성하고, 절연막을 부분 식각하여 반도체 기판의 활성영역을 노출시키는 콘택트 홀을 갖는 절연막 패턴이 형성되는 반도체 장치의 콘택트 홀 형성 방법에 있어서, 콘택트 홀 측면에 실리콘막을 증착하는 제 1 단계와; Cl2와 HBr 가스 분위기의 식각 장비내에서 이방성 식각으로 실리콘 스페이서를 형성하는 제 2 단계와; 동일한 식각 장비내에서 플라즈마 밀도를 증가시켜 콘택트 홀 측벽을 NH3 플라즈마 처리함으로써, 콘택트 홀 측벽에 실리콘 질화막 스페이서를 형성하는 제 3 단계와; 실리콘 질화막 스페이서 상에 확산 방지막을 증착하는 제 4 단계와; CVD 기법에 의해 콘택트 홀을 텅스텐으로 매립한 후 CMP 공정을 수행하고, 콘택트 홀 상에 Al 배선 막을 증착하는 제 5 단계를 포함하는 반도체 장치의 콘택트 홀 형성 방법을 제공한다.

### 【발명의 구성 및 작용】

- <17> 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.
- <18> 도 2a 내지 도 2e는 본 발명의 바람직한 실시예에 따른 반도체 장치의 콘택트 홀 형성 방법을 설명하기 위한 공정 단면도이다.
- <19> 먼저, 반도체 기판(1)상에 절연막을 형성하고, 이러한 절연막을 부분적으로 식각하여 반 도체 기판(1)의 활성영역을 노출시키는 콘택트 홀을 갖는 절연막 패턴을 형성한다.
- <20> 그리고, 도 2a에 도시한 바와 같이 고단차, 미세 콘택트 홀에서 홀 측면의 누설 전류 특성을 개선하기 위한 실리콘막(6)을 예를 들어, 50 내지 200Å 정도의 두께로 증착한다.
- <21> 이러한 실리콘막(6)의 증착 방법은 500 내지 700℃의 온도에서 SiH<sub>4</sub> 가스를 1 내지 5slm 주입하고 0.1 내지 1 Torr의 노(furnace) 압력에서 실리콘을 증착한다.

<22> 이후, 도 2b에서는 Cl<sub>2</sub>와 HBr 가스 분위기에서 챔버 압력이 1 내지 50mTorr를 유지하는 이방성 식각으로 Si 스페이서(7)를 형성한다.

- <23> 이때, 이러한 식각 가스를 챔버내에 주입하는데 있어서, Cl<sub>2</sub>는 10 내지 50sccm, HBr은 100 내지 300sccm으로 설정하는 것이 바람직할 것이다.
- 도 2c에서는, 동일한 식각 장비내에서 플라즈마 밀도를 증가시켜 측벽에 Si막(6)의 질화가 잘 되도록 ICP(Inductive Coupled Plasma) 방식으로 NH<sub>3</sub> 플라즈마 처리함으로써, 콘택트 홀 측벽에 SiN 막의 스페이서(8)를 형성한다. 이때, 챔버는, 바람직하게는, 1 내지 100mTorr 압력과 10 내지 100sccm의 NH<sub>3</sub> 가스 분위기를 유지한다.
- 또한, 다른 실시예로서, 플라즈마 처리 대신 N₂ 또는 NH₃의 가스의 열처리 분위기에서 어 닐링 처리하여 SiN막의 스페이서(8)를 형성할 수도 있다. 이때, 열처리 조건은 5 내지 20slm의 N2와 NH3 가스 주입, 600 내지 800℃의 온도분위기에서 실시한다.
- <26> 이후, 도 2d에서는 SiN의 스페이서 막(8)위에 확산 방지막인 CVD TiN 막(3)을 증착한다.
  이러한 확산 방지막(3)은, 바람직하게는 25 내지 150Å 두께로 증착될 수 있다.
- <27> 도 2e에서는, CVD 기법에 의해 콘택트 홀을 텅스텐(W)(4)으로 매립한 후 CMP 공정을 수 행하여 콘택트 홀에만 텅스텐(4)이 남도록 한다.
- <28> 끝으로, 콘택트 홀 위에 Al 배선막(5)을 증착하여 본 공정을 종료한다.

### 【발명의 효과】

이상 설명한 바와 같이, 본 발명은, 미세 콘택트 홀 내의 누설 전류 특성을 개선하기 위하여 Si을 홀 내의 측벽에만 남도록 이방성 식각한 후, 동일 장비에서 NH3 플라즈마 처리 또는

N<sub>2</sub>와 NH<sub>3</sub> 열처리로 측벽에 누설 전류 억제막인 SiN을 형성하여 배선 신뢰도를 향상시키는 잇점이 있다.

<30> 이상, 본 발명을 실시예에 근거하여 구체적으로 설명하였지만, 본 발명은 이러한 실시예에 한정되는 것이 아니라, 그 요지를 벗어나지 않는 범위내에서 여러 가지 변형이 가능한 것은 물론이다.

#### 【특허청구범위】

# 【청구항 1】

반도체 기판상에 절연막을 형성하고, 상기 절연막을 부분 식각하여 상기 반도체 기판의 활성영역을 노출시키는 콘택트 홀을 갖는 절연막 패턴이 형성되는 반도체 장치의 콘택트 홀 형 성 방법에 있어서,

상기 콘택트 홀 측면에 실리콘막을 증착하는 제 1 단계와;

Cl<sub>2</sub>와 HBr 가스 분위기의 식각 장비내에서 이방성 식각으로 실리콘 스페이서를 형성하는 제 2 단계와;

상기 식각 장비내에서 플라즈마 밀도를 증가시켜 상기 콘택트 홀 측벽을 NH<sub>3</sub> 플라즈마 처리함으로써, 상기 콘택트 홀 측벽에 실리콘 질화막 스페이서를 형성하는 제 3 단계와;

상기 실리콘 질화막 스페이서 상에 확산 방지막을 증착하는 제 4 단계와;

CVD 기법에 의해 상기 콘택트 홀을 텅스텐으로 매립한 후 CMP 공정을 수행하고, 상기 콘택트 홀 상에 Al 배선막을 증착하는 제 5 단계를 포함하는 반도체 장치의 콘택트 홀 형성방법.

### 【청구항 2】

제 1 항에 있어서,

상기 실리콘막은, 500 내지 700℃의 온도에서 SiH<sub>4</sub> 가스를 1 내지 5slm 주입하고, 0.1 내지 1 Torr의 노(furnace) 압력에서 증착되는 것을 특징으로 하는 반도체 장치의 콘택트 홀 형성 방법.

### 【청구항 3】

제 1 항에 있어서,

상기 Cl<sub>2</sub>는 10 내지 50sccm, 상기 HBr은 100 내지 300sccm으로 챔버내에 주입되며, 상기 챔버 압력은 1 내지 50mTorr를 유지하는 것을 특징으로 하는 반도체 장치의 콘택트 홀 형성 방법.

### 【청구항 4】

제 1 항에 있어서.

상기 NH<sub>3</sub> 플라즈마 처리에는 ICP(Inductive Coupled Plasma) 방식이 적용되는 것을 특징으로 하는 반도체 장치의 콘택트 홀 형성 방법.

## 【청구항 5】

제 1 항에 있어서.

상기 NH<sub>3</sub> 플라즈마 처리는 1 내지 100mTorr 압력과 10 내지 100sccm의 NH<sub>3</sub> 가스 분위기를 유지하는 것을 특징으로 하는 반도체 장치의 콘택트 홀 형성 방법.

### 【청구항 6】

제 1 항에 있어서,

상기 제 3 단계는,

N<sub>2</sub> 또는 NH<sub>3</sub> 가스의 열처리 분위기에서 어닐링 처리하여 상기 실리콘 질화막 스페이서를 형성하는 단계를 더 구비하는 것을 특징으로 하는 반도체 장치의 콘택트 홀 형성 방법.

# 【청구항 7】

제 6 항에 있어서,

상기 열처리 분위기 조건은 5 내지 20slm의 N2와 NH3 가스 주입, 600 내지 800℃의 온도인 것을 특징으로 하는 반도체 장치의 콘택트 홀 형성 방법.

【도면】















[도 2e]

