2024-02-26

Rappels

Représentation irréductibles de $sl(2\mathbb{C}) = \langle H, X, Y \rangle$

$$V^{(n)} = \bigoplus_{\alpha} V_{\alpha}$$

Notation

Une Représentation est doit

$$\rho: g \to gl(V)$$

ou bien une action

$$g \times V \to V$$

$$\forall Z \in g \quad v \mapsto Xv \quad \text{est linéaire}$$

 \exists une unique représentation de dim n. On peut la construire comme $\mathrm{Sym}^{n-1}(\mathbb{C})$

Produit tensoriel de représentation d'algèbre de Lie,

V,W deux repr de $g,\,V\otimes W$ est une représentation avec $X(v\otimes w=Xv\otimes w+v\otimes Xw$

${\bf Exemple:}$

$$\Lambda^2(\operatorname{Sym}^3(\mathbb{C}^2))$$

$$\mathbb{C}^2 = \langle e_1 m e_2 \rangle$$

$$\operatorname{Sym}^{3}(\mathbb{C}^{2}) = \langle e_{1}^{3}, e_{1}^{2}, e_{2}, e_{1}, e_{2}^{2}, e_{2}^{3} \rangle$$

$$\Lambda^2(\operatorname{Sym}^3(\mathbb{C}^2)) = \left\langle e_1^3 \wedge e_1^2 e_2, e_1^3 \wedge \cdots \right\rangle$$

Calculons les valeurs propres de H pour cette représentation

. . .

Représentation de $SL(2\mathbb{C})$ irréductibles

<u>Fait</u>: Si G est connexe $\rho: G \to \operatorname{GL}(V)$ une représentation est uniquement déterminée par ka représentation

$$d \rho \bigg|_{I} : g \to \operatorname{gl}(V)$$

 $\mathrm{SL}(2,\mathbb{C})$ est connexe. On connait <u>toutes</u> les représentation irréductibles de $\mathrm{sl}(2\mathbb{C})$. On peut les construire avec $\mathrm{Sym}^n(\mathbb{C}^2)$

Conséquences : Les représentations $\operatorname{Sym}^n(\mathbb{C}^2)$ de $\operatorname{SL}(2,\mathbb{C})$ sont toutes les représentation irréductibles de $\operatorname{SL}(2,\mathbb{C})$

Exemple:

Calculons $\operatorname{Sym}^2(\mathbb{C}^2 \text{ pour } \operatorname{SL}(2,\mathbb{C})$

$$\operatorname{Sym}^{2}(\mathbb{C}^{2}) = \langle e_{1}^{2}, e_{1}e_{2}, e_{2}^{2} \rangle$$

. . .

Représentation de $sl(3, \mathbb{C})$

 $\underline{\text{Fait}}: \text{sl}(n,\mathbb{C}) \text{ est une algèbre simple.}$

On veut imiter la stratégie utilisé pour $sl(2\mathbb{C})$

Le sous-espace $h = \{ \begin{pmatrix} a_10 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix} \}$ joue le role de la matrice H

remarquons que les matrices de h commutent entre elles et sont diagonalisables

Si $\rho : \mathrm{sl}(3,\mathbb{C}) \to \mathrm{gl}(V)$

Par préservation de la forme de Jordan $\forall H \in h, \rho(H)$ est diagonalisable

Rappel

Une famille de matrices diagonalisables qui commutent est $\underline{\underline{\text{simultan\'ement diagonalisable}}}$ c-à-d il existe une base dans laquelle elles sont toutes diagonales

$$\implies V = \bigoplus_{\alpha} V_{\alpha}$$

décomposition en sous-espaces propres simultanés de h

On interprète α comme des fonctions $\alpha: h \to \mathbb{C}$ $\alpha(H)$ est la valeur propre de $H \in h$ sur le sous-espace V_{α}

$$\rho(H)v = \alpha(H)v \quad \forall H \in H \quad \forall v \in V_{\alpha}$$

 α est linéaire

$$\alpha(aH_1 + bH_2)v = \rho(aH_1 + bH_2)v = a\rho(H_1)v + b\rho(H_2)v = a\alpha(H_1) + b\alpha(H_2)$$

Autrement dit, $\alpha \in h^*$

On doit comprendre [,] sur $sl(3,\mathbb{C})$

De manière équivalente, on doit comprendre

$$ad: g \to gl(g)$$

 $ad(x)y = [X, Y]$

Par la construction précédente, on peut découper q en sous-espaces propres de ad(h)

$$\operatorname{ad} \begin{pmatrix} a_1 & & \\ & a_2 & \\ & & a_3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \cdots \begin{pmatrix} 0 & a_1 - a_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{(a_1 - a_2)}_{\alpha(H)} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

On viens de trouver un des 8 sous-espace propres, (trouvons les autres?)

Notons E_{ij} matrice avec un 1 en i, j est 0 ailleurs

$$ad(H)E_{1,2} = \alpha(H)E_{1,2}$$

on définit
$$L_i \begin{pmatrix} a_1 & & \\ & 1_2 & \\ & & a_3 \end{pmatrix} = a_i$$

$$ad(H)E_{1,2} = (L_1 - L_2)(H)E_{1,2}$$

$$ad(H)E_{1,3} = (L_1 - L_3)(H)E_{1,3}$$

 $ad(H)E_{2,1} = (L_2 - L_1)(H)E_{2,3}$

2, 1

3, 1

3, 2

de plus $ad(H_1)H_2 = 0$ est de dimension 2

$$g = h???$$