Animal Form and Function

Anatomy

The structure (form) of an organism (i.e. how its parts are organized and of what it's made)

The Anatomy Lesson of Dr. Nicolaes Tulp, 1632, Rembrandt

Anatomy

Microscopic anatomy (histology)

Physiology

The physical and chemical processes (functions) of an organism (i.e. how the body works)

e.g. The mechanics of breathing

e.g. How does the kidney function?

Form Determines Function

Bird beak shape determines what they eat or how they obtain food

Form Determines Function

Like an airplane, a bird's body and wing shape determine how it flies

and thus what/ how they eat

Form Determines Function

The shape of a bird's foot determines what it eats and how it searches for food

Constraints on Form and Function

All is not possible!

(A) Evolutionary history and (B) physical laws place limits on form

(A) Evolutionary history (i.e. ancestry) constrains form

Even though whales spend all of their lives in water, due to their ancestry, whales don't have gills

Mammal Phylogeny

(B) Physical laws constrain form - Speed

Body shape is constrained by need to hunt in water due to the drag imposed by water (46x viscosity of air). i.e. aquatic predators must be hairless and sleek

IOW natural selection results in similar features in independent evolutionary lineages (i.e. convergent evolution)

Physical laws constrain form – Heat & H₂O exchange

Surface Area to volume ratio (SA:V) affects rate of H₂O or heat loss or gain thus body size and shape is constrained by environment

Small animals loose or gain heat & H₂O faster than large animals due to higher SA:V

A small deer in a cold climate would freeze due to a large SA:V

Total surface area (height × width × number of sides × number of boxes)	6 1x1x6x1	150 5x5x6x1
Total volume (height × width × length × number of boxes)	1	125
Surface-to-volume ratio (surface area / volume)	6	1.2

A large deer in a hot climate would overheat due to a low SA:V

Figure 6.7 (Campbell 9th ed)

Both size AND shape affect SA:V

24/8 = 3

Animals with a long body or limbs loose heat & H₂O faster than compact animals due to higher SA:V

Physical laws constrain form – Cell size

Surface Area to volume ratio affects rate of H₂O, gas, nutrient and waste exchange

Thus: Cell size and shape affects rate of exchange with larger cells having more difficulty moving substances in and out

Thus: Cell size is limited since if too large can't maintain cell

So: Organism size is constrained in that to be bigger they must have <u>more</u> cells (i.e. multicellular) <u>not larger</u> cells

- Since: <u>ALL</u> cells must exchange materials with the environment
- Then: If an organism gets thicker then inner cells can't exchange nutrients/wastes with environment
- Thus: Thickness is constrained.

BUT this constraint be circumvented...

(A) Many <u>simple animals</u> are flat or designed so that most cells are in contact with external environment

Figure 40.3 (Campbell 9th ed)

- Since: ALL cells must exchange materials with the environment
 - (B) Complex organisms have:
 - 2. Folded internal surfaces to increase SA:V

- Since: ALL cells must exchange materials with the environment
 - (B) Complex organisms have:
 - 2. Delivery/ removal systems

Interface w/ cells via interstitial fluids

- Since: ALL cells must exchange materials with the environment
 - (B) Complex organisms have:

3. Fluid-filled compartments

Bathe organs in fluid to exchange substances

- A. Coelom or pseudocoelom
- B. Hemocoel
 - In open circulatory system

Pseudocoelom

Figure 33.15 (Campbell 9th ed)

Hierarchy of Form and Function

Greater size allows/necessitates greater complexity / specialization

- Cells many types
 - **Tissues** aggregation of specialized cells
 - Organs aggregation of multiple tissues
 - Organ systems aggregation multiple organs

Tissue: A group of similar specialized cells that function as a unit

Membranous tissue covering nearly all external and internal body surfaces

Morphology

- 1. Tightly packed cells
 - Joined together laterally via tight junctions
 - Very little interstitial fluid between cells
- 2. Top & bottom ends differ (i.e. it is polarized)
 - Free surface exposed to outside or inside (lumen) of organ or duct
 - Attached surface resting on underlying connective tissue
- 3. Separated from the underlying tissue by a basement membrane
 - Thin sheet of collagen and proteins
 - Produced by epithelial cells and partly by underlying connective tissue cells.

Membranous tissue covering covers nearly all external and internal body surfaces

Where does it occur?

- 1. Surfaces that interface w/ outside
 - epidermis, cornea, mouth, rectum
 - digestive, respiratory, reproductive, and urinary tracts
- 2. Lines vessels & ducts
- 3. Glands (skin, liver etc.)
- Membranes
 (peritoneal, pericardial, pleural etc.)

Main functions:

A. Protection

- mechanical damage
- chemical damage
- desiccation
- infection
- cleaning (cilia, mucus)

Trachea

B. Metabolic

- absorption
- secretion (glands)

Classified based on:

- 1. # of layers:
 - simple = 1 layer
 - stratified = > 1 layer
 - Pseudostratified = 1 layer but...
- 2. cell shape:

In pseudostratified, all cells contact basal lamina but not all reach surface layer does not reach the surface

Simple columnar

3. Specialization

- ciliated
- glandular
- keratinized

e.g. keratinized stratified squamous or ciliated pseudostratified epithelia

where each type occurs as described in figure 40.5

(but DO know where epithelial tissue in general occurs)

Connective Tissue

Sparse populations of cells scattered throughout an extracellular matrix

Function

Holds tissues and organs together and in place

General Morphology:

- Abundant Extracellular Matrix (ECM)
 - 2 main components that differ in type and proportion in different connective tissues:
 - A. ground substance (GS) can be 1) liquid; 2) gelatinous: or 3) solid
 - B. fibers (not in blood)
 - 3 types
 - 1. Collagenous: strength & flexibility
 - 2. Reticular: join to other tissues
 - 3. Elastic: resume normal shape spontaneously
- Few & loosely associated cells located within the ECM
 - (vs. epithelial or muscle w/ tightly associated cells)
 - Most cells produce ECM (Fibroblasts, chondrocytes, osteoblasts)
 - Other cells (Macrophages) engulf foreign particles
 - Tissue specific cells: osteoclasts, adipocytes, blood cells, etc.

28

6 types of connective tissues

Loose connective tissue

- ECM: Liquid or gelatenous GS
- Fibers: Loose weave of all 3 types •
- Holds skin & most organs in place

Fibrous connective tissue

- ECM: Very little ground substance
- Fibers: Mainly dense collagen fibers
- In tendons (muscle to bone) and ligaments (bone to bone)

Cartilage

- ECM: Abundant and rubbery
- Fibers: mainly collagen
- Fibers/ECM secreted by cells (chondrocytes)
- Strong yet flexible and cushions (vert disks)

Bone

- ECM: Abundant and solid
- · Fibers: Mainly collagen
- Fibers/ECM secreted by cells (osteoblasts)

Adipose tissue

- Mainly large storage cells
- Very little ECM w/ collagen that binds cells together & in place
- · Cushions, insulates and stores fuel

Blood

- Fibers: none
- ECM: liquid (plasma)
- Various mobile cell types

Figure 40.5 (Campbell 9th ed)

Connective Tissue: Diseases

- Vitamin C deficiency
- Prevents collagen synthesis
- In primates, guinea pigs etc

Muscle Tissue

Contractile tissue responsible for most body movement

Types: 3 main types

Morphology:

Tightly packed cells

Elongated cells (aka fibers)

- Unbranched or branched
- Single or multiple nuclei

Function:

- Movement
- Contract due to nerve signals

Figure 40.5 (Campbell 9th ed)

Muscle tissue + connective tissue + nerves + blood vessels = an organ called a "muscle"

3 types of muscle tissue: A. Skeletal

- Long, wide, || cells
 - Multiple nuclei on edges
 - Striated
- Voluntary
- Location:
 - Attached to bones by tendons
- **Function:**
 - Primarily used for movement

3 types of muscle tissue:

B. Smooth

- Small tapered cells
 - 1 nucleus
 - Not striated;
- involuntary
- Location:
 - In walls of blood vessels digestive tract, urinary bladder, reproductive tract
- •Function: digestion, circulation, reproduction

Is the diaphragm controlled by skeletal or smooth muscle?

What about the urinary bladder?

33 types of muscle tissue: C. Cardiac

- Long, branched cells
- 1 nucleus
- Striated
- involuntary
- Intercalated disks
 - faster communication

Figure 40.5 (Campbell 9th ed)

Nervous Tissue

<u>Types</u>: discussed later

Morphology

- 2 general classes of cells:
 - Neurons
 - Transmit electrochemical signals
 - · Cell body, axon, dendrite
 - Glia
 - Various types which function in:
 - anchoring neurons
 - provide nutrients for neurons
 - remove dead cells
 - form myelin sheath
 - 10x more abundant than neurons

Function:

- Sense stimuli
- Transmit signals btwn body parts
- Process signals

Figure 40.5 (Campbell 9th ed)

Coordination and Control

Nervous system

- Transmit signals
 btwn specific locations
- Better for rapid response
 - Locomotion and behavior

Endocrine system

- Transmit molecules via the blood stream
- Better for gradual changes that affect the entire body
 - Growth, development, reproduction, digestion etc.

Organs

- In most animals, tissues organized into organs
- Tissues may be:
 - intermingled or
 - arranged in distinct layers

Mucosa: Epithelial layer

Submucosa: connective tissue

Muscularis: smooth muscle

Serosa: connective and epithelial tissues

Organ Systems

We will discuss many of these in subsequent lectures...

Organ System	Main Components	Main Functions	
Digestive	Mouth, pharynx, esophagus, stomach, intestines, liver, pancreas, anus	Food processing (ingestion, digestion, absorption, elimination)	
Circulatory	Heart, blood vessels, blood	Internal distribution of materials	
Respiratory	Lungs, trachea, other breathing tubes	Gas exchange (uptake of oxygen; disposal of carbon dioxide	
Immune and lymphatic	Bone marrow, lymph nodes, thymus, spleen, lymph vessels, white blood cells	Body defense (fighting infections and cancer)	
Excretory	Kidneys, ureters, urinary bladder, urethra	Disposal of metabolic wastes; regulation of osmotic balance of blood	
Endocrine	Pituitary, thyroid, pancreas, other hormone-secreting glands	Coordination of body activities (such as digestion, metabolism)	
Reproductive	Ovaries, testes, and associated organs	Reproduction	
Nervous	Brain, spinal cord, nerves, sensory organs	Coordination of body activities; detection of stimuli and formulation of responses to them	
Integumentary	Skin and its derivatives (such as hair, claws, skin glands)	Protection against mechanical injury, infection, drying out; thermoregulation	
Skeletal	Skeleton (bones, tendons, ligaments, cartilage)	Body support, protection of internal organs, movement	
Muscular	Skeletal muscles	Movement, locomotion	

Copyright @ 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Animal Function

Two Basic Questions

(1) How do organisms use energy?

(2) How do organisms cope with changing environment?

(1) How do organisms use energy?

Metabolic rate - amount of energy used per unit time

Measured by amount of O₂ consumed or CO₂ or heat produced

(1) How do organisms use energy?

Metabolic rate - amount of energy used per unit time

Or by calories consumed and energy lost in feces and urine.

(1) How do organisms use energy?

Energy requirements are related to size, activity and environment

- **Basal** metabolic rate (BMR)
 - energy needed for basic functions(e.g. cell maintenance, breathing, heartbeat)
- BMR is positively related to body mass
 - i,.e. The amount of energy needed for basic maintenance is proportional to size.

Figure 40.19 (Campbell 9th ed)

(1) How do organisms use energy?

- •BMR per kg is negatively related to body mass
 - i.e. Smaller animals require more energy per kg of body weight

(b) Relationship of BMR per kilogram of body mass to body size

Energy Budgets

= Energy used for

BMR, activity, growth, reproduction, & temperature regulation

Proportion used for each varies among:

- (A) endotherms; (B) endotherms & ectotherms depending on:
 - (1) activity level, (2) ambient temperature, (3) body size, (4) reproductive state

Energy Conservation

- Torper reduced state of activity and metabolic rate
 - may occur over short or long periods of time

A. <u>Daily Torper</u> – short-term torper seen in small animals with high BMR/kg

Chilean mouse-opossum (*Thylamys elegans*)

Daily torpor in a Chilean mouse-opossum over 3 days [Bars indicated dark hours.]

Bozinovic, F, G RuÍz, A Cortes and M Rosenmann. 2005. Energetics, thermoregulation and torpor in the Chilean mouse-opossum *Thylamys elegans* (Didelphidae). Revista Chilena de Historia Natural 78: 199-206.

Energy Conservation

B. Long-term Torper

1. Hibernation - long term torper in response to cold and food scarcity

Energy Conservation

- B. Long-term Torper
 - **2. Estivation** long term torper in response to <u>heat and H₂O scarcity</u>

Lungfish fossil

Animal Function

Two Basic Questions

- (1) How do organisms use energy?
- (2) How do organisms cope with changing environment?- Regulation

Thermoregulation

Maintenance of internal temperature within tolerable range

Does temp vary? Where is heat from?	Poikilotherm Body heat varies w/ ambient temp	Homeotherm Body heat remains constant
Ectotherm Body heat derived from environment	Most µorganisms, invertabrates, fish, amphibs, reptiles	Many smaller oceanic fish
Endotherm Body heat derived from own metabolism	Many subterranean rodents	Most birds & mammals

^{***}None of these terms indicate what the internal temperature of the organism is.

Thermoregulation

Organisms exchange (+/-) heat with environment by : conduction, convection, radiation, and evaporation

Insulation

Fat, fur, feathers

Evaporative cooling

Behavior

Circulatory adaptation

Vasodilation vs. vasoconstriction

Alteration of amount of blood flowing btwn body core and skin

Figure 40.12 (Campbell 9th ed)

Countercurrent exchange

Transfer of heat (or solutes) btwn fluids flowing in opposite directions

Adjust heat production

- Increase metabolic rate
- Alter mitochondria (via hormones) to produce heat instead of ATP
- Muscle shivering helps endotherms and some ectotherms

Figure 40.15 (Campbell 9th ed)

Readings on which you will NOT be tested

Table 40.1

Section 40.2 (860-862)

Physiological Thermostats and Figure 40.16 (867-868)

Energy Allocation & Quantifying Energy Use and Figure 40.17 (868-869)

Figure 40.21

In general:

- You are NOT responsible for definitions of terms or sections included in the text but which were not discussed in lecture
- You are not responsible for the details of examples used in the text but not discussed in lecture. HOWEVER, these additional examples will help your understanding of concepts discussed and may be used on exams to test if you understand the general concepts.
- You ARE responsible for material covered in lecture but not included in the readings

Next Chapter

Chapter 41 - Nutrition