Step Counter

Mackenzie Wieberg CSCE 462, Fall 2020

Materials

- Raspberry Pi 3 B+ & power adapter
- MPU-6050
- Jumper wires
- Soldering Iron & solder
- Sweat band or other arm band
- Breadboard & ribbon cable (optional)

MPU-6050

- 3 axis accelerometer and gyroscope
- Uses I2C power and communication with processor
- 8 pins
 - o VDD
 - o GND
 - o SCL
 - o SDA
 - o XCL
 - o XDA
 - o ADO
 - o INT
- You must solder the pins to the chip

Connections:

MPU-6050	Raspberry Pi 3 B+
VDD	3V3 (pin 1)
GND	GND (pin 9)
SCL	SCL1 (pin 5)
SDA	SDA1 (pin 3)

- Each step is a motion made by a person wearing the sensor
- Numerous ways to characterize different types of "steps" Jogging, walking Q: how many different states it can have?
- Approximation is needed to measure steps -different transitional rates
 - Changes in readings on the x, y, and z axises
 - Both + & readings represent opposite motion directions
 - Measurement:

Steps:

- "Stationary positions": the body rebalances itself for the next step, sensor readings very small
- "Transitive positions": the motion of a step, large sensor readings

wants Cartoon
abstract

- High sampling rate: 10ms interval, or 100 samples/sec.
 - minimize loss of motion data, but noise is mixed into real data => noise filtering is required
- Differentiation of human stationary vs. transitive motion data
 - Transitive positions: large readings for a period
 - Stationary positions: nearly no readings for a period
- Algorithms
- Filtering rule => small motion data can be discarded, disconfinking
 - Smoothing of filtered data to reconstruct human motions
 - Measure steps by counting stationary positions

Algorithms

Raw Data Noise Filtering Smoothing Is it a step?

- x, y, z
- Directly from the accelerometer
- S = |x| + |y| + |z|
- S is used to measure the level of motion along all directions
- * So, this method cannot differentiate the motion direction.

- Smax = max[S(n-9), S(n)]
- Only picks the largest motion components collected within the given sample/window length
- Filters S to eliminate minority motion components aka "noise"
- "Generalization"

- Moving Average = average[Smax(n), Smax(n+9)]
- Smoothing effect
- Reduces fluctuation

- if S(n-1) < Moving
 Average(n) and S(n) >=
 Moving Average(n) and
- If Moving Average(n) > threshold
- Find the peaks of the graph and compare to the threshold to determine if peak counts as a step

Implementation

- Hardware
 - o Sensor placement (chest, foot, wrist, etc...)
 - o Wiring, prototype board, power
 - o Communication between processor and sensor
- Software
 - o Language
 - o Library
 - o etc...

optimal working tanges

Experiment Variations & calibration

robustness

- Considering factors
 - o Human behaviors
 - The type(s) of <u>steps</u> that we aim to measure
 - Their dynamic ranges and thus for algorithm calibration
 - o Sensor placement proxy of the actual steps
- Algorithm calibration (hint: every adjustable parameter)
 - o Sampling rate
 - Filtering rule
 - o Transitive positions
 - o Stationary positions
 - Ο ..

which type of users

"speak a few words"

train the artual working

alg.

Experiment Variations & calibration

 One of the most critical step to match the algorithm with human behaviors

- Experiment 1: BASELINE
 - Threshold = 15
 - Sample Length = 10 ms
- Experiment 2: Vary Threshold
 - o 2a
 - Threshold = 9
 - Sample Length = 10 ms
 - o 2b
 - \blacksquare Threshold = 21
 - Sample Length = 10 ms

- Experiment 3: Vary Sample Length
 - o 3a
 - Threshold = 15
 - Sample Length = 1 ms
 - o 3b
 - Threshold = 15
 - Sample Length = 100 ms

Raw data graph

how to make this useable

Smoothing effect

MARKET

interretation

miforn

Experiment 1: BASELINE VIDEO

Optimally Calibrated Use-case (threshold = 15, sample/window length = 10 ms)

Outcomes:

- Actual Steps: 10
- Counted Steps: 10

Calibrated threshold and sample length allow for accurate step calculation.

Uncalibrated Threshold Use-case #1 (threshold = 9, sample/window length = 10 ms)

Outcomes:

• Actual Steps: 10

Counted Steps: 17

Lack of threshold allows micro-movements to be counted as steps.

Uncalibrated Threshold Use-case #2 (threshold = 21, sample/window length = 10 ms)

Outcomes:

Actual Steps: 10

• Counted Steps: 1

Too high of threshold blocks anything from being counted.

Over-Sampled Use-case (threshold = 15, sample/window length = 1 ms)

Outcomes:

• Actual Steps: 10

• Counted Steps: 19

Oversampling, too much data to analyze allows too much noise to get through the filter.

Under-Sampled Use-case (threshold = 15, sample rate from 10ms to 100 ms)

Outcomes:

- Actual Steps: 10
- Counted Steps: 3

Undersampling, not enough data to sample skews the algorithm.

Resources

https://drive.google.com/drive/folders/1-ilULNyBdV8NkojHhqlQZhAuE76lt2JF?usp=sharing

https://github.tamu.edu/mackenzie-wieberg/step_counter_mpu6050

Purchase MPU-6050