Rachunek prawdopodobieństwa 2R 2023 Lista 8: Definicja Łańcucha Markowa

1. Policja w Nowym Yorku próbuje złapać przestępcę znajdującego się w punkcie ⊗. Obstawiła część ulic, ale nie wszystkie. Przestępca w każdym kroku porusza się losowo (tzn. z prawdopodobieństwem 1/4 w każdym z możliwych kierunków). Jeżeli wpadnie na policję • zostaje złapany, jeżeli dotrze do jednego z pól ∘ ucieka. Oblicz prawdopodobieństwo, że uda mu się uciec.

- **2**. Alicja i Robert rzucają symetryczną monetą tak długo, aż wypadnie *OOOR* lub *ORRR*. Alicja wygrywa, gdy wzorzec *OOOR* wypadnie jako pierwszy, natomiast Robert, gdy wypadnie *ORRR*. Oblicz prawdopodobieństwo, że grę wygra Alicja.
- 3. Niech $\{\xi_k\}_{k\in\mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych z rozkładem $\mathbb{P}[\xi_k=j]=p_j$. Pokaż, że $M_n=\max_{0\leq k\leq n}\xi_k$ jest łańcuchem Markowa. Jaka jest funkcja przejścia?
- 4. Rozważmy łańcuch Markowa na przestrzeni stanów $S = \{s_1, s_2, s_3, s_4\}$ dla którego prawdopodobieństwa przejścia są zadane macierzą

$$P = \left(\begin{array}{cccc} 0 & 1/2 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 1/3 \end{array}\right),$$

tzn. $\mathbb{P}[X_{n+1} = s_j | X_n = s_i] = P(i,j)$. Dla każdego stanu oblicz $\lim_{n\to\infty} \mathbb{P}[X_n = s_i | X_0 = s_1]$.

- 5. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie łańcuchem Markowa o przeliczalnej przestrzeni stanów S i macierzy przejścia P. Pokaż, że
 - 1. $\mathbb{P}[X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0] = \mathbb{P}[X_0 = x_0]P(x_0, x_1)\dots P(x_{n-1}, x_n);$
 - 2. $\mathbb{P}[X_{n+m} = y | X_m = x] = \mathbb{P}[X_n = y | X_0 = x] = P^n(x, y);$

3. (Równanie Chapmana-Kołmogorowa)

$$\mathbb{P}[X_{n+m} = z | X_0 = x] = \sum_{y \in S} \mathbb{P}[X_m = y | X_0 = x] \mathbb{P}[X_n = z | X_0 = y]$$

- 6. Pokaż własność Markowa: Niech $\{X_n\}_{n\geq 0}$ będzie łańcuchem Markowa z przeliczalną przestrzenią stanów, macierzą przejścia P i rozkładem początkowym μ_0 . Załóżmy, że dla pewnego $m\in\mathbb{N}$ i $s\in S$, $\mathbb{P}[X_m=x]>0$. Pokaż, że pod warunkiem $\{X_m=x\}$, proces $\{X_{m+n}\}_{n\geq 0}$ jest łańuchem Markowa z macierzą przejścia P i rozkładem początkowym δ_x niezależnym od X_0, X_1, \ldots, X_m .
- 7. Niech $\{X_n\}$ będzie łańcuchem Markowa. Pokaż, że

$$\mathbb{P}[A|X_0,X_1,\ldots,X_n]=\mathbb{P}[A|X_n]$$

dla każdego $A \in \sigma(X_n, X_{n+1}, \ldots)$. Wskazówka: użyj lematu Dynkina o $\pi - \lambda$ układach.