CÁLCULO PARA COMPUTAÇÃO

A RESOLUÇÃO ESTÁ NO FINAL 🕹

Questão 1

Podemos derivar funções mais de uma vez. Isso nos leva às derivadas de ordem superior. Considere a função aseguir, e assinale a alternativa que corresponde a sua derivada de segunda ordem, f''(x).

$$f(x) = e^x - 2x^{-2} - x^3$$

a)
$$f''(x) = 12x^{-4} - 6x$$

b)
$$f''(x) = e^x - 12x^{-4} - 6x$$

c)
$$f''(x) = e^x - 20x^{-4} - 6x$$

d)
$$f''(x) = e^x + 20x^{-4} + 7x$$

e)
$$f''(x) = e^x - 12x^{-2} + 7x$$

Questão 2

Considerando as seguintes funções f(x) = 3x + 12 e g(x) = 5x - 15. Assinale a alternativa que apresenta o resultado def(6) / g(4):

- a) 6
- b) 7
- c) 8
- d) 16
- e) 24

Questão 3

Considere a função a seguir, e assinale a alternativa que corresponde a sua derivada, y'(x):

$$y(x) = e^{x} . 4x$$

a)
$$y'(x) = 2e^{x}(x+1)$$

b)
$$y'(x) = 2e^x (3x+1)$$

c)
$$y'(x) = 4e^x (7x+1)$$

d)
$$y'(x) = 4e^x (9x+1)$$

e)
$$y'(x) = 4e^{x}(x+1)$$

Questão 4

É dada a função $f(x) = 9x^2 - x$. Determine o valor da derivada da função no ponto x = 2, assim como comportamento local da função em torno desse mesmo ponto.

- a) F'(2) = 18, sendo que a função é crescente ao redor de x = 2
- b) F'(2) = 35, sendo que a função é decrescente ao redor de x = 2

- c) F'(2) = 35, sendo que a função é crescente ao redor de x = 2
- d) F'(2) = 48, sendo que a função é crescente ao redor de x = 2
- e) F'(2) = 48, sendo que a função é decrescente ao redor de x = 2

É dada a função $f(x) = 5x^2 - 3x$. Determine o valor da derivada da função no ponto x = 2, assim como comportamento local da função em torno desse mesmo ponto.

- a) F'(2) = 16, sendo que a função é crescente ao redor de x = 2
- b) F'(2) = 18, sendo que a função é crescente ao redor de x = 2
- c) F'(2) = 18, sendo que a função é decrescente ao redor de x = 2
- d) F'(2) = 17, sendo que a função é crescente ao redor de x = 2
- e) F'(2) = 17, sendo que a função é decrescente ao redor de x = 2

Questão 6

Podemos derivar funções mais de uma vez. Isso nos leva às derivadas de ordem superior. Considere a função a seguir, e assinale a alternativa que corresponde a sua derivada de segunda ordem, f''(x).

$$f(x) = 7x^4 + 5x^3 + \cos(x)$$

- a) $F''(x) = x^2 + 3x + \cos(x)$
- b) $F''(x) = 8x^2 + 10x sen(x)$
- c) $F''(x) = 44x^2 + 20x + sen(x)$
- d) $F''(X) = 84x^2 + 30x \cos(x)$
- e) $F''(x) = 108x^2 + 47x sex(x)$

Questão 7

Diversos fenômenos são descritos por funções de 1º grau, como o preço pago por um cliente em um posto de combustível, em função do volume de gasolina adquirida. O gráfico a seguir representa uma relação entre duas variáveis, que descrevem uma função de 1º grau. A variável x é descrita no eixo horizontal e a variável y é descrita noeixo vertical:

Observando o gráfico, qual é o valor do coeficiente linear da função de 1º grau descrita?

- a) 1
- b) -1
- c) 2

- d) -2
- e) 3

Com base em seus conhecimentos, encontre a derivada da função a seguir:

$$f(x) = -\cos(60x^2)$$

- a) $f'(x) = 60x \cdot sen(60x^2)$
- b) $f'(x) = 90x . sen(60x^2)$
- c) $f'(x) = 120x \cdot sen(60x^2)$
- d) f'(x) = 60x . sen(60x)
- e) f'(x) = 120x . sen(60x)

Questão 9

Podemos fazer operações matemáticas com limites. Por exemplo, o limite da soma das funções f(x) e g(x) pode ser escrito como a soma entre o limite de f(x) e o limite de g(x). Com base nisso, calcule o limite da função descrita a seguir, para x tendendo a 0.

$$f(x) = 7x^3 + \cos(3x)$$

- a) -3
- b) -2
- c) -1
- d) 0
- e) 1

Questão 10

Considere a função f(x) = 2ex + 2. Sabe-se que a reta tangente tem coeficiente angular igual à derivada da função no ponto solicitado. Com baso nisso, determine a equação tangente à função em x = 1

- A) Y(x) = ex
- B) Y(x) = ex + 1
- C) Y(x) = ex + 2
- D) Y(X) = 2ex + 1
- E) Y(x) = 2ex + 2

Questão 11

Podemos fazer operações matemáticas com limites. Por exemplo, o limite da soma das funções f(x) e g(x) pode ser escrito como a soma entre o limite de f(x) e o limite de g(x). Com base nisso, calcule o limite da função descrita a seguir, para x tendendo a 0.

$$f(x) = \sqrt{2x} + 11x^2$$

- a) -1
- b) 0
- c) 1
- d) 2
- e) 3

O ponto de inflexão é o ponto em que dada função muda a sua curvatura. Dizemos que um ponto c é ponto de inflexão de f(x) quando a sua segunda derivada, F''(c), é igual a 0. Uma função cúbica tem sempre exatamente um ponto de inflexão. Considere a função cúbica $f(x) = x^3 - 3x^2 + 10$. Determine o par ordenado, no formato (x,y), que representa seu ponto de inflexão.

- a) (0, 5)
- b) (0,7)
- c) (1,8)
- d) (1,9)
- e) (1, 13)

Questão 13

Observe o gráfico a seguir, que apresenta uma função entre duas variáveis. A variável x é descrita no eixo horizontale a variável y é descrita no eixo vertical.

A curva do gráfico corresponde a uma função de segundo grau, cuja equação geral é $f(x) = ax^2 + bx + c$. Quais são osvalores das raízes da função?

- a) -1 e 1
- b) 0 e 1
- c) 0 e -1
- d) 2 e -2
- e) A função não tem raízes reais.

Questão 14

Ao calcularmos a derivada de uma divisão de funções, podemos usar a regra do quociente. Considere duas funções, f(x) e g(x), contínuas e deriváveis. A derivada do quociente dessas funções é dada por:

$$\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

A partir disso, encontre a derivada da função apresentada a seguir:

$$y(x) = \frac{2x^2 - 5x}{x + 1}$$

a)
$$y(x) = \frac{5x^2 + x - 1}{x^2 + 2x + 1}$$

b)
$$y(x) = \frac{x^2 + 2x + 1}{x^2 + 2x + 1}$$

c) $y(x) = \frac{4x}{x^2 + 2x + 1}$

c)
$$y(x) = \frac{4x}{x^2 + 2x + 1}$$

d)
$$y(x) = \frac{7x^2 + x - 7}{x^2 + 2x + 1}$$

e)
$$y(x) = \frac{2x^2 + 4x - 5}{x^2 + 2x + 1}$$

Questão 15

Para derivarmos uma função composta, podemos primeiro derivar a função do argumento e, depois, usar essa derivada pela derivada da função externa, colocando novamente o argumento que tínhamos anteriormente. Esse procedimento é conhecido como regra da cadeia. Com base nisso, encontre a derivada da função:

$$f(x) = -sen(30x)$$

a)
$$f'(x) = -90.\cos(30x)$$

b)
$$f'(x) = -30.\cos(30x)$$

c)
$$f'(x) = -90.\cos(60x)$$

d)
$$f'(x) = -30.\cos(90x)$$

e)
$$f'(x) = -90.\cos(90x)$$

Considere a função a seguir. Calcule o limite da função para x tendendo a 3

$$V(X) = \frac{2X^3 - 54}{X^2 - 9}$$

- a) 4
- b)6
- c) 9
- d) 10
- e)11

Questão 17

Podemos derivar funções mais de uma vez. Isso nos leva às derivadas de ordem superior. Considere a função aseguir, e assinale a alternativa que corresponde a sua derivada de segunda ordem, f''(x).

$$f(x) = e^x - 2x^{-2} - x^3$$

- a) $f''(x) = 12x^{-4} 6x$
- b) $f''(x) = e^x 12x^{-4} 6x$
- c) $f''(x) = e^x 20x^{-4} 6x$
- d) $f''(x) = e^x + 20x^{-4} + 7x$
- e) $f''(x) = e^x 12x^{-2} + 7x$

Questão 18

A derivada de uma função representa a sua taxa de variação, de forma que, quanto maior for a derivada em um ponto, maior será a sua taxa de variação naquele ponto. Assim, podemos usar derivadas para avaliar a taxa de crescimento ou de decrescimento de funções. Há várias regras de derivação, que podem ser utilizadas para o cálculode derivadas de forma prática, sem partirmos da definição usando limite. Com base nas regras de derivação estudadas, encontre a derivada da função exposta a seguir:

$$f(x) = x^{-7}$$

- a) -7x⁻⁵
- b) -7x⁻⁶
- c) -7x⁻⁷
- d) -7x⁻⁸
- e) -7x⁻⁹

Podemos derivar funções mais de uma vez. Isso nos leva às derivadas de ordem superior. Considere a função a seguir, e assinale a alternativa que corresponde a sua derivada de segunda ordem, f''(x).

$$f(x) = 7x^4 + 5x^3 + \cos(x)$$

a)
$$F''(x) = x^2 + 3x + \cos(x)$$

b)
$$F''(x) = 8x^2 + 10x - sen(x)$$

c)
$$F''(x) = 44x^2 + 20x + sen(x)$$

d)
$$F''(X) = 84x^2 + 30x - \cos(x)$$

e)
$$F''(x) = 108x^2 + 47x - sex(x)$$

Questão 20

Os pontos de máximo e de mínimo são os pontos onde uma função altera seu regime de crescimento. Já os pontos de inflexão são os pontos onde a função altera sua concavidade. A concavidade da função em dada região é voltada para cima se f'(x) é positiva, e sua concavidade è voltada para baixo se f'(x) é negativa.

Considere a função $f(x) = 2x^4 + 4x^3$. Encontre sua segunda derivada para x = 2, e faça o estudo de sua concavidade nessa região.

- A) f''(2) = 96: a concavidade na região em torno de x = 2 é voltada para cima.
- B) f''(2) = 96: a concavidade na região em torno de x = 2 é voltada para baixo.
- C) f''(2) = 111: a concavidade na região em torno de x = 2 é voltada para cima.
- D) f''(2) = 111: a concavidade na região em torno de x = 2 e voltada para baixo.
- E) f''(2) = 144: a concavidade na região em torno de x = 2 e voltada para cima

Questão 21

Determinado gráfico, no plano cartesiano, descreveu uma função por meio de uma reta paralela ao eixo horizontal(eixo x). Nesse caso, sabemos que se trata de uma função:

- a) De 1º grau
- b) De 2º grau
- c) Constante
- d) Exponencial
- e) Logarítmica

Ao derivarmos um produto de funções, podemos aplicar a regra do produto. Considere duas funções, f(x) e g(x), contínuas e deriváveis. A derivada do produto dessas duas funções é dada por:

$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x)$$
$$\cdot g'(x)$$

A partir disso, encontre a derivada da seguinte função:

$$y(x) = e^{x}.7x$$

- a) $y'(x) = 7e^{x}(x+1)$
- b) $y'(x) = 7e^x (x+2)$
- c) $y'(x) = 7e^x (2x+1)$
- d) $y'(x) = 7e^x (2x+3)$
- e) $y'(x) = 7e^x (3x+2)$

Questão 23

Observe o gráfico a seguir, que apresenta uma função entre duas variáveis. A variável x é descrita no eixo horizontale a variável y é descrita no eixo vertical.

A curva do gráfico corresponde a uma função de segundo grau, cuja equação geral é $f(x) = ax^2 + bx + c$. Quais são osvalores das raízes da função?

- A) 0 e 1
- B) 0 e -2
- C) -1 e -2
- D) 1 e -1
- E) 1 e -2

Questão 24

Ao derivarmos um produto de funções, podemos aplicar a regra do produto. Considere duas funções, f(x) e g(x), contínuas e deriváveis. A derivada do produto dessas duas funções é dada por:

$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x)$$
$$\cdot g'(x)$$

A partir disso, encontre a derivada da seguinte função:

$$y(x) = \operatorname{sen}(x) \cdot 11x^3$$

- a) $y' = 3[x^3\cos(x^2) + 3x^2\sin(x^3)]$
- b) $y' = 7[x^7 \cos(x) + 3x^2 \sin(x)]$
- c) $y' = 11[x^3\cos(x) + 3x^2\sin(x)]$
- d) $y' = 11[x^3\cos(x^3) + 3x^2\sin(x)]$
- e) $y' = 11[x^3\cos(x) + 3x^2\sin(x^3)]$

Questão 25

Considere a função y(x) a seguir. Ao substituirmos a variável x por O. chegamos a uma indeterminação do tipo 0/O. Nesse caso, por meio da regra de L'Hopital, podemos calcular o limite de y(x) para x tendendo a O. Qual é o valor desse limite?

$$F(X) = \frac{15X^3 + 3X^2 + 4X}{2X^2 - X}$$

- a) 2
- b) 1
- c) 0
- d) -2
- e) -4

Questão 26

É dada a função $f(x) = 3x^2 - x + 1$. Sabe-se que a reta tangente tem coeficiente angular igual a derivada da função no ponto solicitado. Com base nisso, determine a equação da reta tangente à função em x = 1.

- a) Y(x) = 5x + 2
- b) Y(x) = 5x 2
- c) Y(x) = 7x + 2
- d) Y(x) = 7x 2
- e) Y(x) = 9x + 2

Questão 27

Sabemos que a matemática não permite que realizemos divisões por zero, mas podemos calcular divisões por valores que se aproximam muito de zero, utilizando o conceito de limite. Com base nisso, calcule o limite da funçãodescrita a seguir, para x tendendo a zero.

$$f(x) = \frac{2x^2 - 48x}{2x}$$

- a) -48
- b) 24
- c) 12
- d) -6

e) -3

Questão 28

É dada a função quadrática $f(x) = x^2 + 2x + 4$. Sabe-se que a reta tangente tem coeficiente angular igual à derivada da função no ponto solicitado. Com base nisso, determine a equação da reta tangente à função em x = 1.

- a) Y(x) = 4x + 3
- b) Y(x) = 5x + 4
- c) Y(x) = 6x + 3
- d) Y(x) = 6x + 4
- e) Y(x) = 7x + 3

Questão 29

Ao calcularmos a derivada de uma divisão de funções, podemos usar a regra do quociente. Considere duas funções, f(x) e g(x), contínuas e deriváveis. A derivada do quociente dessas funções é dada por:

$$\left|\frac{f(x)}{g(x)}\right| = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

A partir disso, encontre a derivada da função apresentada a seguir:

$$y(x) = \frac{x^2 - 5x}{x}$$

- a) -1
- b) 0
- c) 1
- d) 2
- e) 3

Questão 30

Considere a função a seguir. Calcule o limite da função para x tendendo a 2

$$f(x) = \frac{2x^3 - 16}{x^2 - 4}$$

- a) 4
- b) 6
- c) 10
- d) 12
- e) 20

Questão 31

Considere a função y(x) a seguir. Ao substituirmos a variável \times por 0, chegamos a uma indeterminação do tipo 0/0. Nesse caso, por meio da regra de L'Hopital, podemos calcular o limite de y(x) para x tendendo a 0. Qual o valor desse limite?

$$y(x) = \frac{15x^3 + 3x^2 + 4x}{2x^2 - x}$$

- a) 2
- b) 1
- c) 0
- d) -2
- e) -4

Determinado gráfico, no plano cartesiano, descreveu uma função por meio de uma parábola com concavidadevoltada para cima. Nesse caso, sabemos que se trata de uma função:

- a) De 1º grau, com coeficiente a > 0
- b) De 2º grau, com coeficiente a > 0
- c) De 2º grau, com coeficiente a < 0
- d) Exponencial, com base a > 0

Questão 33

Com base em seus conhecimentos, encontre a derivada da função a seguir:

$$y(x) = \sqrt{x^3}$$

RESPOSTA:

$$y'(x) = \frac{3x^2}{2\sqrt{x^3}}$$

Questão 34

O ponto de inflexão é o ponto onde dada função muda a sua curvatura. Dizemos que um ponto c é ponto de inflexão de f(x) quando a sua segunda derivada, F''(c), é igual a 0. Uma função cúbica tem sempre exatamente um ponto de inflexão. Considere a função cúbica $f(x) = x^3 - 2x^2 + 20$. Determine o par ordenado, no formato (x, y), que representa seu ponto de inflexão:

- a) (1/3), (524/27)
- b) (2/3), (524/27)
- c) (2/5), (524/27)
- d) (2/5), (524/7)
- e) (2/7), (524/7)

Questão 35

A derivada de uma função representa a sua taxa de variação, de forma que, quanto maior for a derivada em um ponto, maior será a sua taxa de variação naquele ponto. Assim, podemos usar derivadas para avaliar a taxa de crescimento ou de decrescimento de funções. Há várias regras de derivação, que podem ser utilizadas para o cálculode derivadas de forma prática, sem partirmos da definição usando limite. Com base

nas regras de derivação estudadas, encontre a derivada da função exposta a seguir:

$$f(x) = 2x^{-4}$$

- a) -8x⁻⁵
- b) -8x⁻⁶
- c) $-8x^{-7}$
- d) $-8x^{-8}$
- e) $-8x^{-9}$
 - Questão 36

Questão 6: Usamos a regra do produto quando temos um produto de funções, a regra do quociente quando temos uma divisão entre funções e a regra da cadeia quando temos uma função composta. Podemos, ainda, ter que usar mais de uma regra na derivação de uma função. Com base nisso, considere a função a seguir e encontre a sua derivada.

$$y(x) = \cos(x) \cdot sen(3x^3)$$

$$y'(x) = -sen(x) \cdot sen(3x^3) + 9x^2 \cdot cos(x) \cdot cos(3x^3)$$

$$y'(x) = sen(x) \cdot sen(3x^3) - 9x^2 \cdot cos(x) \cdot cos(3x^3)$$

$$y'(x) = -sen(x) \cdot sen(3x^3) - 9x^2 \cdot cos(x) \cdot cos(3x^4)$$

$$y'(x) = sen(2x) \cdot sen(3x^{7}) - 9x^{2} \cdot \cos(x) \cdot \cos(3x^{3})$$

$$y'(x) = sen(2x) \cdot sen(3x^3) + 9x^2 \cdot \cos(x) \cdot \cos(2x^3)$$

Resposta: A

Questão 5: Ao derivarmos uma função composta, ou seja, a função de uma função, devemos primeiro derivar a função do argumento (a função de dentro) e, depois, multiplicar essa derivada pela derivada da função externa, colocando novamente o argumento que tinhamos originalmente. Esse procedimento é conhecido como regra da cadeia. Com base nisso, encontre a derivada da função a seguir:

$$y(x) = \sqrt{2x^2}$$

Resposta: ALTERNATIVA E

$$f'(x) = \frac{2x}{\sqrt{2x^2}}$$

RESOLUÇÃO DAS QUESTÕES:

QUESTÃO 1:

Resolução:

Regra da potência = $f'(x) = nx^{n-1}$

Para encontrar a segunda derivada, vamos primeiro encontrar a primeira derivada f'(x), e depois $f''(x) \rightarrow$

$$F'(x) = e^x - 2(-2x^{-2-1}) - 3x^{3-1} \rightarrow F'(x) = e^x + 4x^{-3} - 3x^2$$

Segunda derivada:

$$F''(x) = e^x - 3.4x^{-3-1} - 2.3x^{2-1} \rightarrow f''(x) = e^x - 12x^{-4} - 6x$$

```
Resolução:

1- Encontrar os valores de f(6) e g(4)
    (lê-se: "Quando x for 6 o y vale?")

F(x) = 3x + 12
F(6) = 3.(6) + 12 \rightarrow 18 + 12 \rightarrow 30
G(x) = 5x - 15
G(4) = 5.(4) - 15 \rightarrow 20 - 15 \rightarrow 5
```

QUESTÃO 3

```
Resolução: Regra do produto e a regra da potência.

- A derivada da função exponencial ex em relação a x é igual a ex. (u')
- A derivada da função polinomial 4x em relação a x é igual a 4 (v')

Agora, podemos aplicar a regra do produto (uv)'(x) = u(x) . v'(x) + v(x) u'(x)

y'(x) = (ex . 4) + (ex . 4x)

Agora, simplificamos essa expressão:

y'(x) = 4ex + 4xex colocando o 4ex em evidência chegamos na resposta:

y'(x) = 4ex (x+1)
```

QUESTÃO 4

```
1 Para encontrar a derivada, aplicamos a regra de potência e a regra da derivada da constante:

f'(x) = 18x - 1

Agora, podemos encontrar o valor da derivada no ponto x = 2:

f'(2) = 18.2 - 1

f'(2) = 36 - 1

f'(2) = 35

Se f'(2) = 35, significa que a inclinação da reta tangente à curva da função no ponto x = 2 é positiva. Isso indica que a função é crescente na vizinhança de x = 2.
```

QUESTÃO 5

```
Vamos calcular a derivada de f(x): f'(x) = 10x - 3
Agora, podemos encontrar o valor da derivada no ponto x = 2:

f'(2) = 10 * 2 - 3
f'(2) = 20 - 3
f'(2) = 17
Se f'(2) = 17, significa que a inclinação da reta tangente à curva da função no ponto x = 2 é positiva. Isso indica que a função é crescente na vizinhança de x = 2.
```

QUESTÃO 6

Resolução:

Regra da potência = $f'(x) = nx^{n-1}$

- 1- Primeira derivada \rightarrow f'(x) = $28x^3 + 15x^2$ sen (x)
- 2- Segunda derivada \rightarrow f"(x) = 84x² + 30x cos (x)

*Lembrete:

Derivada de cos (x) \rightarrow - sen (x) Derivada de sen (x) \rightarrow cos (x)

Resolução:

Para identificar o coeficiente **linear** (também chamado de termo independente) de uma função linear a partir do gráfico, você deve procurar o ponto em que a reta cruza o eixo vertical (eixo das ordenadas). O valor desse ponto é o coeficiente linear. O ponto que a reta cruza o eixo vertical é 2 (Ponto que x é igual a 0)

Atenção: coeficiente linear é diferente de coeficiente angular

QUESTÃO 8

Primeiro, encontre a derivada da função interna, que é 60x^2:

```
f'(x) = -\cos(60x^2)
```

Para calcular a derivada, aplicamos a regra da cadeia. A derivada de cos(u) é -sin(u), e a derivada de 60x^2 em relação a x é 120x. Portanto:

```
f'(x) = -(-\sin(60x^2))*120x
```

Agora, simplificando: 120x * sin(60x^2)

QUESTÃO 9

Resolução:

- 1. Limite de $7x^3$ tendendo a $0 \rightarrow 7(0)^3 \rightarrow 0$
- 2. Limite de cos(3x) tendendo a $0 \rightarrow cos(3.0) \rightarrow cos(0) = 1$
- 3. $\lim x \to Of(x) = 0 + 1 = 1$

QUESTÃO 10

```
Encontre a derivada da função f(x):
f(x) = 2ex + 2
f'(x) = 2ex
Calcule a derivada no ponto x = 1:
f'(1) = 2e
Use a forma da equação da reta tangente:
Y(x) = f'(1)(x - 1) + f(1)
Substitua os valores conhecidos:
Y(x) = (2e)(x - 1) + (2e + 2) = Y(x) = 2ex - 2e + 2e + 2 = Y(x) = 2ex + 2
```

QUESTÃO 11

Resolução:

1 – Limite da função tendendo a zero apenas substituímos o x por zero na equação:

$$\lim_{x \to 0} f(x) = \sqrt{2x} + 11x^{2}$$

$$\sqrt{2.0} + 11.0^{2} = 0 + 0 \implies 0$$

```
F'(X) = 3x^2 - 6x

F''(X) = 6X - 6

Resolva a equação f''(x) = 0 para encontrar o valor de x:

6x - 6 = 0 \rightarrow 6x = 6

x = 6/6

x = 1

Substituir o x encontrado na função original para encontrar o valor de y:

f(1) = 1^3 - 3*1^2 + 10 = 1 - 3 + 10 = 8

PONTO (1, 8)
```

QUESTÃO 13

Resolução:

Uma função quadrática (de segundo grau) não tem raízes reais quando seu gráfico não cruza o eixo x, ou seja, quando a parábola está completamente acima ou completamente abaixo do eixo x. Isso significa que não existem valores reais de x para os quais a função seja igual a zero.

Esse comportamento depende do valor de delta:

- Se Δ>0, a equação tem duas raízes reais distintas.
- Se Δ =0, a equação tem uma raiz real dupla (ou seja, a parábola toca o eixo x em um ponto).
- Se Δ<0, a equação não tem raízes reais.

QUESTÃO 14

REGRA DA CADEIA:

- 1. Calcule a derivada da função externa em relação à função interna. A derivada de -sin(u) em relação a u é -cos(u) Neste caso, u=30x, então a derivada da função externa em relação à função interna é cos(30x).
 - 2. Calcule a derivada da função interna em relação a x. A derivada de 30x em relação a x é 30
 - 3. Aplique a regra da cadeia multiplicando essas duas derivadas que calculamos nos passos anteriores $f'(x)=-30\cos(30x)$

QUESTÃO 15

REGRA DE L'HOPITAL

Derivada do numerador: 6x² Derivada do denominador: 2x

$$\lim_{x \to 3} = \frac{6x^2}{2x} + \frac{6}{3^2} = \frac{$$

QUESTÃO 16

```
Resolução:
```

Regra da potência = $f'(x) = nx^{n-1}$

Para encontrar a segunda derivada, vamos primeiro encontrar a primeira derivada f'(x), e depois f''(x) →

$$F'(x) = e^x - 2(-2x^{-2-1}) - 3x^{3-1} \rightarrow F'(x) = e^x + 4x^{-3} - 3x^2$$

Segunda derivada:

$$F''(x) = e^x - 3.4x^{-3-1} - 2.3x^{2-1} \rightarrow f''(x) = e^x - 12x^{-4} - 6x$$

Resolução:

Regra de potência

```
f'(x) = nx^{n-1} \rightarrow f'(x) = -7X^{-7-1} \rightarrow -7x^{-8}
```

QUESTÃO 18

Resolução:

Regra da potência = $f'(x) = nx^{n-1}$

- 1- Primeira derivada \rightarrow f'(x) = $28x^3 + 15x^2$ sen (x)
- 2- Segunda derivada \rightarrow f"(x) = 84x² + 30x cos (x)

*Lembrete:

Derivada de cos (x) \rightarrow - sen (x)

Derivada de sen (x) \rightarrow cos (x)

QUESTÃO 19

Resolução:

Regra da potência = $f'(x) = nx^{n-1}$

- 1- Primeira derivada \rightarrow f'(x) = 28x³ + 15x² sen (x)
- 2- Segunda derivada \rightarrow f"(x) = 84x² + 30x cos (x)

*Lembrete:

Derivada de $cos(x) \rightarrow -sen(x)$

Derivada de sen $(x) \rightarrow \cos(x)$

QUESTÃO 20

- 1. PRIMEIRA DERIVADA = $8x^3 + 12x^2$
- 2. SEGUNDA DERIVADA = $24X^2 + 24X$
- 3. $F''(2) = 24(2^2) + 24(2) = 144$
- 4. a segunda derivada f''(2)=144, (positivo) a concavidade na região em torno de x=2 é voltada para cima.

QUESTÃO 21

Resolução: Um gráfico que descreve uma função por meio de uma reta paralela ao eixo horizontal (eixo x) representa uma função constante. Isso ocorre porque, em uma função constante, o valor da função não varia com a mudança de x, resultando em uma linha horizontal no gráfico.

QUESTÃO 22

Resolução: Regra do produto e a regra da potência.

- A derivada da função exponencial e^x em relação a x é igual a e^x . (u')
- A derivada da função polinomial 7x em relação a x é igual a 7 (v')

Agora, podemos aplicar a regra do produto $(uv)'(x) = u(x) \cdot v'(x) + v(x) \cdot u'(x)$

 $y'(x) = (e^x . 7x) + (e^x . 7) \rightarrow 7xe^x + 7e^x$... Colocando o $7e^x$ em evidência, chegaremos na resposta:

$$y'(x) = 7e^{x} (x+1)$$

QUESTÃO 23

Resolução:

As raízes são os pontos onde a função cruza o eixo x (ou seja, onde o valor da função é igual a zero).

São os pontos (-2,0) e (0,0) → -2 e 0

QUESTÃO 24

Resolução:

f(x) = sen(x) $g(x) = 11x^3$

 $f'(x) = \cos(x)$ $g'(x) = 33x^2$

Substituindo na fórmula:

 $Y'(x) = (\cos(x)).(11x^3) + (\sin(x)).(33x^2) \rightarrow y'(x) = 11x^3 \cdot \cos(x) + 33x^2 \cdot \sin(x)$

Para chegar nas alternativas, precisaremos isolar o 11 pois o outro termo 33 também é divisível por ele... simplificando 🛨

$$Y' = 11[x^3.cos(x) + 3x^2.sen(x)]$$

QUESTÃO 25

- 1. CALCULAR AS DERIVADAS $\lim_{x\to0} 0(45x^2+6x+4) / (4x-1)$
- 2. Substituir x por 0

 $\lim_{x\to 0} = 45.(0^2) + 6.(0) + 4 / 4(0) - 1$ 4/ (-1) \rightarrow -4

QUESTÃO 26

1. Derivada de f(x)

F'(x) = 6x - 1

- 2. Ponto $x = 1 \rightarrow 6(1) 1 = 5$ --- coeficiente angular
- 3. Temos que achar o coeficiente linear, usar na função original para f(1)

 $f(1)=3(1)^2-1+1=3-1+1=3$

Agora, temos o ponto x=1,y=3, que pertence à reta tangente.

4. Usar a equação da reta tangente no formato y(x) = mx + b onde m é o coeficiente angular e b é o coeficiente linear:

Y = 5x+b

Ponto (1,3) → 3 = 5.1 + b

b = -3

 Agora que temos o valor de b, podemos escrever a equação da reta tangente completa: y=5x-2

Resolução:

Regra de L'Hôpital

1-Derive o numerador e o denominador separadamente:

$$F(x) = 2x^2 - 48x$$

$$F'(x) = 4x - 48$$

$$G(x) = 2x$$

$$G'(x) = 2$$

2- Calcular o limite da razão das derivadas quando x tende a zero (usando as derivadas) →

$$\lim_{x\to 0} \frac{F'(x)}{G'(x)} \to \lim_{x\to 0} \frac{4x-48}{2}$$

Substituir o x por 0 →

$$4.0 - 48 / 2 \rightarrow -48/2 = -24$$

QUESTÃO 28

1. Derivada de f(x)

$$F'(x) = 2x + 2$$

- 2. Ponto $x = 1 \rightarrow 2$.(1) + 2 = 4 --- coeficiente angular
- 3. Temos que achar o coeficiente linear, usar na função original para f(1)

$$f(1)=(1^2)+2.(1)+4=7$$

Agora, temos o ponto x=1, y=7, que pertence à reta tangente.

4. Usar a equação da reta tangente no formato y(x) = mx + b onde m é o coeficiente angular e b é o coeficiente

Y = 4x+b

Ponto (1,7) \rightarrow 7 = 4.1 + b

b = 3

5. Agora que temos o valor de b, podemos escrever a equação da reta tangente completa:

Y = 4x + 3

QUESTÃO 29

Resolução:

1 - Identificar f(x) e g(x)

3 – Substituir na fórmula dada na questão

$$f(x) = x^2 - 5x$$

$$y'(x) = (2x-5) \cdot x - (x^2-5x) \cdot 1/x^2$$

$$g(x) = x$$

$$y'(x) = (2x^2 - 5x - x^2 + 5x) / x^2$$

$$y'(x) = x$$

2 - Derivar f(x) e g(x) =

$$y'(x) = 1$$

f'(x) = 2x - 5

g'(x) = 1

QUESTÃO 30

1. DERIVAR SEPARADAMENTE

Numerador = $6x^2$

Denominador = 2x

2. Substituir para x tendendo a 2

 $\lim_{x\to 2} x \to 2 = 6.(2^2) / 2.(2) = 24 / 4 = 6$

QUESTÃO 31

1. DERIVAR SEPARADAMENTE

Numerador = $45x^2 + 6x + 4$

Denominador = 4x - 1

2. $\lim_{x \to 0} x \to 0$ 45.(0²) + 6.(0) + 4 / 4(0) - 1 = -4

QUESTÃO 35

Resolução:

Regra da potência

$$f'(x) = nx^{n-1} \rightarrow f'(x) = -8X^{-4-1} \rightarrow -8x^{-5}$$

QUESTÃO 36

A derivada de $\cos(x)$ em relação a x é $-\sin(x)$.

A derivada de $\sin(3x^3)$ em relação a x usando a regra da cadeia é $\cos(3x^3)\cdot 9x^2$ (derivada da função interna multiplicada pela derivada da função externa).

Agora, aplicamos a regra do produto:

$$Y'(x) = \cos(x) \cdot \cos(3x^3) \cdot 9x^2 - \sin(x) \cdot \sin(3x^3)$$

= $9x^2 \cos(x) \cos(3x^3) - \sin(x) \sin(3x^3)$

Portanto, a derivada de $Y(x)=\cos(x)\sin(3x^3)$ em relação a x é $9x^2\cos(x)\cos(3x^3)-\sin(x)\sin(3x^3)$.