

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

B Social wireless system

Model No.: B Social Trans

FCC ID: 2AGAH-SOCIAL2

Trademark: ASHDOWN

REPORT NO.: ES151016009E3

ISSUE DATE: November 16, 2015

Prepared for

Ashdown Design & Marketing Ltd.

The Old Maltings, Hall Road, Heybridge, Maldon, Essex, CM9 4NJ, United Kingdom.

Prepared by

SHENZHEN EMTEK CO., LTD

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280

FAX: 86-755-26954282

TRF No.: FCC 15.249/A Page 1 of 38 Report No.: ES151016009E3 Ver.1.0

TABLE OF CONTENTS

1	TES	TEST RESULT CERTIFICATION3				
2	EUT	T TECHNICAL DESCRIPTION	4			
3	SUN	MMARY OF TEST RESULT	6			
4	TES	ST METHODOLOGY	7			
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	7 8			
5	FAC	CILITIES AND ACCREDITATIONS	9			
	5.1 5.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	9			
6	TES	ST SYSTEM UNCERTAINTY	10			
7	SET	TUP OF EQUIPMENT UNDER TEST	11			
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1	11 13			
8	TES	ST REQUIREMENTS	15			
	8.1 8.2 8.3 8.4	BANDWIDTH TEST RADIATED SPURIOUS EMISSION CONDUCTED EMISSIONS TEST ANTENNA APPLICATION	15 18 33			

1 TEST RESULT CERTIFICATION

Applicant:	Ashdown Design & Marketing Ltd. The Old Maltings, Hall Road, Heybridge, Maldon, Essex, CM9 4NJ, United Kingdom.
Manufacturer:	WUHAN ELECA ELECTRONICS CO., LTD. No.12, The 5th Jiangjun Road, Dongxi Lake District, Wuhan, Hubei, China.
Product Description:	B Social wireless system
Model Number:	B Social Trans
File Number:	ES151016009E3
Date of Test:	September 17, 2015 to November 4, 2015

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD	TEST RESULT	
FCC 47 CFR Part 2, Subpart J:2014 FCC 47 CFR Part 15, Subpart C:2014	PASS	

The above equipment was tested by SHENZHEN EMTEK CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.249

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	September 17, 2015 to November 4, 2015		
Prepared by :	Jarle Li		
	Jack Li/Editor		
Reviewer:	Joe Xia		
	Joe Xia/Supervisor		
Approve & Authorized Signer :			
	Lisa Wang/Manager		

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description		
Device Type	2.4GHz ISM Band		
Modulation:	GFSK		
Operating Frequency Range(s):	2404-2476MHz		
Number of Channels:	34 channels		
Channel space:	2MHz		
Antenna Type :	Ceramic Chip Antenna		
Antenna Gian:	1 dBi		
Power supply:	☑DC supply: DC 3.7/500mAh from Li-ion Battery or DC 5V from USB Port.		
	☐Adapter supply:		

Note: for more details, please refer to the User's manual of the EUT.

Modified Information

Version.	Summary	Date of Rev.	Report No.
Ver.1.0	Original Report	2015-11-4	ES151016009E3

3 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209	Radiated Emission	PASS	
15.249	15.249 Radiated Spurious Emission		
15.249	Band edge test	PASS	
15.249	20dB Bandwidth	PASS	

NOTE1: N/A (Not Applicable)

NOTE2: The report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AGAH-SOCIAL2 filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

The system is compliance with Subpart B is authorized under a DOC procedure

TRF No.: FCC 15.249/A Page 6 of 38 Report No.: ES151016009E3 Ver.1.0

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	05/16/2015
L.I.S.N.	Schwarzbeck	NNLK8129	8129203	05/16/2015
50Ω Coaxial Switch	Anritsu	MP59B	M20531	N/A
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	05/16/2015
Voltage Probe	Rohde & Schwarz	TK9416	N/A	05/16/2015
I.S.N	I.S.N Rohde & Schwarz		1109.9508.02	05/16/2015

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	05/16/2015
Pre-Amplifier	HP	8447D	2944A07999	05/16/2015
Bilog Antenna	Schwarzbeck	VULB9163	142	05/16/2015
Loop Antenna	ARA	PLA-1030/B	1029	05/16/2015
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	05/16/2015
Horn Antenna	Horn Antenna Schwarzbeck		D143	05/16/2015
Cable	Schwarzbeck	AK9513	ACRX1	05/16/2015
Cable	Rosenberger	N/A	FP2RX2	05/16/2015
Cable	Schwarzbeck	AK9513	CRPX1	05/16/2015
Cable	Schwarzbeck	AK9513	CRRX2	05/16/2015

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	05/16/2015
EMI Test Receiver	Rohde & Schwarz	FSV30	103040	05/16/2015
Signal Analyzer	Signal Analyzer Agilent		My53470879	05/16/2015
Power meter	Anritsu	ML2495A	0824006	05/16/2015
Power sensor	Anritsu	MA2411B	0738172	05/16/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

TRF No.: FCC 15.249/A Page 7 of 38 Report No.: ES151016009E3 Ver.1.0

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those modulation GFSK were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2404	16	2436		
2	2406	17	2438	32	2472
3	2408	18	2440	33	2474
	•••			34	2476

TRF No.: FCC 15.249/A Page 8 of 38 Report No.: ES151016009E3 Ver.1.0

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2013.10.29

The certificate is valid until 2016.10.28

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)

The Certificate Registration Number is L2291.

Accredited by TUV Rheinland Shenzhen 2015.4

The Laboratory has been assessed according to the requirements

ISO/IEC 17025.

Accredited by FCC, April 17, 2013

The Certificate Registration Number is 709623.

Accredited by FCC, July 24, 2013

The Certificate Registration Number is 406365.

Accredited by Industry Canada, November 29, 2012 The Certificate Registration Number is 4480A-2.

Name of Firm : SHENZHEN EMTEK CO., LTD. Site Location

Bldg 69, Majialong Industry Zone,

Nanshan District, Shenzhen, Guangdong, China

TRF No.: FCC 15.249/A Page 9 of 38 Report No.: ES151016009E3 Ver.1.0

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

The felletting medeal ement ancertainty levele have	been commuted for toole performed on the apparatus.
Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

TRF No.: FCC 15.249/A Page 11 of 38 Report No.: ES151016009E3 Ver.1.0

(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (B Social wireless system) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

TRF No.: FCC 15.249/A Page 13 of 38 Report No.: ES151016009E3 Ver.1.0

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
1	B Social wireless system	ASHDOWN	B Social Trans	2AGAH-SOCIAL2	EUT
2	Adapter	Huoniu	HNB050200X	N/A	auxiliary equipment

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 BANDWIDTH TEST

8.1.1 Applicable Standard

According to FCC Part 15.249

8.1.2 Conformance Limit

N/A

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

8.1.5 Test Results

Temperature : 28° C Test Date : October 23, 2015 Humidity : 65° King Kong

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (KHz)	Limit (kHz)	Verdict
	1	2404	351.7	N/A	PASS
GFSK	18	2440	369.0	N/A	PASS
	34	2476	325.6	N/A	PASS

8.2 RADIATED SPURIOUS EMISSION

8.2.1 Applicable Standard

According to FCC Part 15.249 and 15.209

8.2.2 Conformance Limit

According to FCC Part 15.249: radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

According to 1 CC Fart 13.	200, Nestricted barros		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

TRF No.: FCC 15.249/A Page 18 of 38 Report No.: ES151016009E3 Ver.1.0

Field strength of fundamental and Field strength of harmonics Limit:

	<u> </u>	
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50(94 dBV/m)	500(54 dBV/m)
2400-2483.5 MHz	50(94 dBV/m)	500(54 dBV/m)
5725-5875 MHz	50(94 dBV/m)	500(54 dBV/m)
24.0-24.25 GHz	250(108 dBV/m)	2500(68 dBV/m)

8.2.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.2.4 **Test Procedure**

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured RBW = 9kHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT,

TRF No.: FCC 15.249/A Page 19 of 38 Report No.: ES151016009E3 Ver.1.0

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.2.5 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature: 24℃ Test Date: October 23, 2015

Humidity: 53 % Test By: King Kong

Test mode: TX Mode

Freq.	Ant.Pol.	Emission Le	evel(dBuV/m)	Limit 3r	n(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

TRF No.: FCC 15.249/A Page 20 of 38 Report No.: ES151016009E3 Ver.1.0

53 %

Spurious Emission below 1GHz (30MHz to 1GHz)

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 1

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		106.6300	26.64	-14.15	12.49	43.50	-31.01	QP			
2		175.5000	33.77	-19.17	14.60	43.50	-28.90	QP			
3		207.5100	34.54	-16.38	18.16	43.50	-25.34	QP			
4		271.5300	32.68	-12.67	20.01	46.00	-25.99	QP			
5		480.0800	33.33	-9.53	23.80	46.00	-22.20	QP			
6	*	830.2500	28.66	-2.19	26.47	46.00	-19.53	QP			

Power:DC 3.7V

*:Maximum data Operator: KK x:Over limit !:over margin

TRF No.: FCC 15.249/A Page 21 of 38 Report No.: ES151016009E3 Ver.1.0

53 %

. Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 1

Note:

No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.5500	26.17	-13.37	12.80	40.00	-27.20	QP			
2		112.4500	26.69	-14.74	11.95	43.50	-31.55	QP			
3		239.5200	26.76	-13.89	12.87	46.00	-33.13	QP			
4		387.9300	25.77	-9.55	16.22	46.00	-29.78	QP			
5		512.0900	29.42	-7.70	21.72	46.00	-24.28	QP			
6	*	768.1700	25.87	-3.87	22.00	46.00	-24.00	QP			

Power:DC 3.7V

*:Maximum data x:Over limit !:over margin Operator: KK

TRF No.: FCC 15.249/A Page 22 of 38 Report No.: ES151016009E3 Ver.1.0

53 %

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 18

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	2	207.5100	33.49	-16.38	17.11	43.50	-26.39	QP			
2	2	239.5200	32.61	-13.89	18.72	46.00	-27.28	QP			
3	2	271.5300	31.73	-12.67	19.06	46.00	-26.94	QP			
4	Ę	512.0900	29.96	-7.70	22.26	46.00	-23.74	QP			
5	(670.2000	26.99	-6.28	20.71	46.00	-25.29	QP			
6	* {	348.6800	30.54	-1.77	28.77	46.00	-17.23	QP			

Power:DC 3.7V

^{*:}Maximum data x:Over limit !:over margin Operator: KK

53 %

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 18

Note:

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		109.5400	25.53	-14.21	11.32	43.50	-32.18	QP			
2		207.5100	29.59	-16.38	13.21	43.50	-30.29	QP			
3		256.0100	26.61	-13.01	13.60	46.00	-32.40	QP			
4		400.5400	25.45	-8.89	16.56	46.00	-29.44	QP			
5	*	512.0900	29.58	-7.70	21.88	46.00	-24.12	QP			
6		559.6200	28.19	-7.31	20.88	46.00	-25.12	QP			

Power:DC 3.7V

*:Maximum data Operator: KK x:Over limit !:over margin

TRF No.: FCC 15.249/A Page 24 of 38 Report No.: ES151016009E3 Ver.1.0

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 34

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		207.5100	35.54	-16.38	19.16	43.50	-24.34	QP			
2		256.0100	34.33	-13.01	21.32	46.00	-24.68	QP			
3		495.6000	36.19	-8.17	28.02	46.00	-17.98	QP			
4	*	512.0900	37.69	-7.70	29.99	46.00	-16.01	QP			
5		630.4300	26.99	-6.69	20.30	46.00	-25.70	QP			
6		848.6800	30.71	-1.77	28.94	46.00	-17.06	QP			

Power:DC 3.7V

TRF No.: FCC 15.249/A Page 25 of 38 Report No.: ES151016009E3 Ver.1.0

^{*:}Maximum data Operator: KK x:Over limit !:over margin

53 %

Power:DC 3.7V

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 34

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		110.5100	26.75	-14.33	12.42	43.50	-31.08	QP			
2		256.0100	28.85	-13.01	15.84	46.00	-30.16	QP			
3		399.5700	25.87	-8.89	16.98	46.00	-29.02	QP			
4		512.0900	29.59	-7.70	21.89	46.00	-24.11	QP			
5		667.2900	25.57	-6.30	19.27	46.00	-26.73	QP			
6	*	820.5500	26.81	-2.41	24.40	46.00	-21.60	QP			

*:Maximum data x:Over limit !:over margin Operator: KK

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

Temperature : 28° Test Date : October 23, 2015

Humidity: 65 % Test By: King Kong Test mode: GFSK Frequency: 2404MHz

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4842.00	V	55.37	30.91	74.00	54.00	-18.63	-23.09	
11064.00	V	51.18	30.82	74.00	54.00	-22.82	-23.18	
13342.00	V	51.70	33.42	74.00	54.00	-22.30	-20.58	
				-				
4825.00	Н	57.66	41.52	74.00	54.00	-16.34	-12.48	
11387.00	Н	50.20	35.92	74.00	54.00	-23.80	-18.08	
13308.00	Н	50.59	36.12	74.00	54.00	-23.41	-17.88	

Temperature : 28℃ Test Date : October 23, 2015

Humidity: 65 % Test By: King Kong Test mode: GFSK Frequency: 2440MHz

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)	Over(d	dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4893.00	V	57.43	33.51	74.00	54.00	-16.57	-20.49
7307.00	V	51.07	33.98	74.00	54.00	-22.93	-20.02
12968.00	V	51.93	35.97	74.00	54.00	-22.07	-18.03
			-	-		-	
			1	1		1	
4893.00	Н	57.48	33.42	74.00	54.00	-16.52	-20.58
7307.00	Н	54.50	32.98	74.00	54.00	-19.50	-21.02
12815.00	Н	50.80	35.72	74.00	54.00	-23.20	-18.28

Temperature : 28° Test Date : October 23, 2015

Humidity:65 %Test By:King KongTest mode:GFSKFrequency:2476MHz

Freq.	Ant.Pol.	Emission Lev	rel(dBuV/m)	Limit 3m(d	dBuV/m)	Over(d	dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4961.00	V	57.98	32.31	74.00	54.00	-16.02	-21.69
7426.00	V	56.25	33.68	74.00	54.00	-17.75	-20.32
13937.00	V	50.77	36.51	74.00	54.00	-23.23	-17.49
4927.00	Н	57.89	33.51	74.00	54.00	-16.11	-20.49
7426.00	Н	55.84	33.98	74.00	54.00	-18.16	-20.02
13376.00	Н	52.84	35.64	74.00	54.00	-21.16	-18.36

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

TRF No.: FCC 15.249/A Page 27 of 38 Report No.: ES151016009E3 Ver.1.0

■ Transmitter Fundamental Field Strength(2400MHz~2483.5MHz)

Temperature : 28° C Test Date : October 23, 2015

Humidity: 65 % Test By: King Kong Test mode: GFSK Frequency: 2404MHz

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
2404.00	V	91.89	50.27	114	94	-22.11	-43.73	
2404.00	Н	91.39	50.07	114	94	-22.61	-43.93	

Temperature : 28℃ Test Date : October 23, 2015

Humidity: 65 % Test By: King Kong Test mode: GFSK Frequency: 2440MHz

Freq.	Ant.Pol.	Emission Lev	rel(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
2440.00	V	91.52	50.59	114	94	-22.48	-43.41	
2440.00	Н	93.76	52.84	114	94	-20.24	-41.16	

Temperature : 28° Test Date : October 23, 2015 Humidity : 65° Test By: King Kong

Test mode: GFSK Frequency: 2476MHz

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
2476.00	V	91.37	49.71	114	94	-22.63	-44.29	
2476.00	Н	94.02	53.25	114	94	-19.98	-40.75	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

TRF No.: FCC 15.249/A Page 28 of 38 Report No.: ES151016009E3 Ver.1.0

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

st Mode					o Dana 2	2010-20	390MHz				
	<u> </u>	SK									
st ivioue	Ch	annel 1:	2404MHz				Polarity:	Н			
	VB	SW=3MH	<u> </u>				Test By:	King Ko	ng		
80.0	dBuV/m										
										Limit1: —	-
70									-	Limit2:	=
70											Tj.
60											
											\dashv
50										_	
										ىلىد 🕯	M
40	with the work	ymphorodytes	production which	haranted by Athen Ja	HARAMAN ALAK	by word partly	rdinangladananan	mary market depth of the te	Army party	Way and Way of the Assessment	'
30										2	4
										1	1
20											-
10											\dashv
											- 1
											- 1
0.0	0.000 2319	NN 2328	NN 2337 N	2346 (n 2355 n	n 236	L NN 237	3 00 23	82 NN	2400.0	 N MH2
231	0.000 2319. Chamber		00 2337.00	2346.0					82.00 Te		0 MHz 24 C
231 ite 3m	Chamber	#3		2346.0	Pol	arizatior	n: Horiz		Te	emperature:	24 C
ite 3m (imit: (R	Chamber RE)FCC P.	#3 ART 15 SI	00 2337.00 JBPART C	2346.0	Pol		n: Horiz		Te		
ite 3m (imit: (R lode:GF	Chamber	#3 ART 15 SI		2346.0	Pol	arizatior	n: Horiz		Te	emperature:	24 C
ite 3m (mit: (R lode:GF	Chamber RE)FCC P.	#3 ART 15 SI		2346.0	Pol	arizatior	n: Horiz		Te	emperature:	24 C
ite 3m (mit: (R lode:GF	Chamber RE)FCC P.	#3 ART 15 SI nannel 1	JBPART C		Pol F	arizatior	n: Horiz	ontal	T€ Hı	emperature:	24 C
ite 3m (imit: (Riode:GF	Chamber RE)FCC P. SK TX CI	#3 ART 15 SI	JBPART C		Pol F	arizatior	n: Horiz	ontal Antenna	Te Hu Table	emperature: umidity:	24 C
ite 3m (mit: (R lode:GF ote:	Chamber RE)FCC P. SK TX CI Freq.	#3 ART 15 SI nannel 1 Reading Level	JBPART C Correct Factor	Measur ment	Pol F e- Limit	arizatior Power: Over	n: Horiz DC 3.7V	Antenna Height	Table Degree	emperature: umidity:	24 C
231 ite 3m (mit: (R lode:GF ote: o. Mk.	Chamber RE)FCC P. SK TX CI Freq. MHz	#3 ART 15 SI nannel 1 Reading Level	Correct Factor	Measur ment dBuV/m	Pol F Limit	over	DC 3.7V	ontal Antenna	Te Hu Table	emperature: umidity:	24 C
231 ite 3m (mit: (R lode:GF ote: o. Mk.	Chamber RE)FCC P. SK TX CI Freq. MHz	#3 ART 15 Stannel 1 Reading Level dBuV 64.79	Correct Factor dB -21.85	Measur ment dBuV/m 42.94	Pol F Limit dBuV/m 74.00	Over dB -31.06	Detector	Antenna Height	Table Degree	emperature: umidity:	24 C
ite 3m (mit: (Riode:GFote:	Chamber RE)FCC P. SK TX CI Freq. MHz 2389.550	#3 ART 15 SI nannel 1 Reading Level dBuV 64.79 47.72	Correct Factor dB -21.85	Measurement dBuV/m 42.94 25.87	Pol F Limit dBuV/m 74.00 54.00	Over dB -31.06	Detector peak AVG	Antenna Height	Table Degree	emperature: umidity:	24 C
231 ite 3m (imit: (Riode:GF ote: 0. Mk.	Chamber RE)FCC P. SK TX CI Freq. MHz	#3 ART 15 Stannel 1 Reading Level dBuV 64.79	Correct Factor dB -21.85	Measur ment dBuV/m 42.94	Pol F Limit dBuV/m 74.00 54.00	Over dB -31.06	Detector	Antenna Height	Table Degree	emperature: umidity:	24 C
231 ite 3m (imit: (R lode:GF ote: 0. Mk. 1 2 2 2 3 2	Chamber RE)FCC P. SK TX CI Freq. MHz 2389.550	#3 ART 15 SI nannel 1 Reading Level dBuV 64.79 47.72	Correct Factor dB -21.85	Measurement dBuV/m 42.94 25.87	Pol F Limit dBuV/m 74.00 54.00 74.00	Over dB -31.06	Detector peak AVG peak	Antenna Height	Table Degree	emperature: umidity:	24 C
ite 3m (imit: (Ridote: GF	Chamber RE)FCC P. SK TX CI Freq. MHz	#3 ART 15 Stannel 1 Reading Level dBuV 64.79	Correct Factor	Measur ment dBuV/m	Pol F Limit dBuV/m 74.00	Over dB -31.06	Detector	Antenna Height	Table Degree	emperature: umidity:	<u> </u>

Operator:

*:Maximum data

x:Over limit

!:over margin

53 %

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX Channel 1

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2387.670	63.35	-21.85	41.50	74.00	-32.50	peak			
2		2387.670	47.53	-21.85	25.68	54.00	-28.32	AVG			
3		2400.000	64.80	-21.82	42.98	74.00	-31.02	peak			
4	*	2400.000	48.03	-21.82	26.21	54.00	-27.79	AVG			

Power: DC 3.7V

*:Maximum data x:Over limit !:over margin Operator:

53 %

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 34

Mode. GFSK TX Channel 34

Note:

No.	MŁ	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.929	67.44	-23.43	44.01	74.00	-29.99	peak			
2	*	2483.929	52.98	-23.43	29.55	54.00	-24.45	AVG			

Power:DC 3.7V

Operator: KK

53 %

_

: :--::t- / DE\EOO DADT 45 OUDDADT

Limit: (RE)FCC PART 15 SUBPART C

Mode: GFSK TX CHannel 34

Note:

*:Maximum data

x:Over limit

!:over margin

No.	Mł	K. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.814	66.54	-23.44	43.10	74.00	-30.90	peak			
2	*	2483.814	50.66	-23.44	27.22	54.00	-26.78	AVG			

Power:DC 3.7V

8.3 CONDUCTED EMISSIONS TEST

8.3.1 Applicable Standard

According to FCC Part 15.207(a)

8.3.2 Conformance Limit

Conducted Emission Limit								
Frequency(MHz)	Frequency(MHz) Quasi-peak Average							
0.15-0.5	66-56	56-46						
0.5-5.0	56	46						
5.0-30.0	60	50						

Note: 1. The lower limit shall apply at the transition frequencies

8.3.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

8.3.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.

8.3.5 Test Results

Pass

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

50 %

Power: AC 120V/60Hz

Site Conduction #1

Limit: (CE)FCC PART 15 class B_QP

Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.1550	43.33	0.00	43.33	65.73	-22.40	QP	
2		0.1550	24.39	0.00	24.39	55.73	-31.34	AVG	
3		0.4000	37.20	0.00	37.20	57.85	-20.65	QP	
4	*	0.4000	30.25	0.00	30.25	47.85	-17.60	AVG	
5		1.3100	29.55	0.00	29.55	56.00	-26.45	QP	
6		1.3100	15.64	0.00	15.64	46.00	-30.36	AVG	
7		4.3000	26.19	0.00	26.19	56.00	-29.81	QP	
8		4.3000	12.88	0.00	12.88	46.00	-33.12	AVG	
9		7.3400	24.06	0.00	24.06	60.00	-35.94	QP	
10		7.3400	14.21	0.00	14.21	50.00	-35.79	AVG	
11		19.2250	26.71	0.00	26.71	60.00	-33.29	QP	
12		19.2250	18.44	0.00	18.44	50.00	-31.56	AVG	

*:Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator:

TRF No.: FCC 15.249/A Page 34 of 38 Report No.: ES151016009E3 Ver.1.0

50 %

Power: AC 120V/60Hz

Site Conduction #1

Limit: (CE)FCC PART 15 class B_QP

Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.1500	42.07	0.00	42.07	66.00	-23.93	QP	
2		0.1500	22.31	0.00	22.31	56.00	-33.69	AVG	
3		0.4000	36.83	0.00	36.83	57.85	-21.02	QP	
4	*	0.4000	27.68	0.00	27.68	47.85	-20.17	AVG	
5		1.4000	27.15	0.00	27.15	56.00	-28.85	QP	
6		1.4000	15.15	0.00	15.15	46.00	-30.85	AVG	
7		2.2250	25.59	0.00	25.59	56.00	-30.41	QP	
8		2.2250	13.33	0.00	13.33	46.00	-32.67	AVG	
9		3.9650	25.63	0.00	25.63	56.00	-30.37	QP	
10		3.9650	9.88	0.00	9.88	46.00	-36.12	AVG	
11		15.6750	27.35	0.00	27.35	60.00	-32.65	QP	
12		15.6750	17.22	0.00	17.22	50.00	-32.78	AVG	

*:Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator:

TRF No.: FCC 15.249/A Page 35 of 38 Report No.: ES151016009E3 Ver.1.0

50 %

Power: AC 240V/50Hz

Site Conduction #1

Limit: (CE)FCC PART 15 class B_QP

Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1550	42.80	0.00	42.80	65.73	-22.93	QP	
2		0.1550	21.57	0.00	21.57	55.73	-34.16	AVG	
3		0.3900	38.71	0.00	38.71	58.06	-19.35	QP	
4	*	0.3900	29.25	0.00	29.25	48.06	-18.81	AVG	
5		0.7400	32.57	0.00	32.57	56.00	-23.43	QP	
6		0.7400	20.09	0.00	20.09	46.00	-25.91	AVG	
7		1.5550	27.68	0.00	27.68	56.00	-28.32	QP	
8		1.5550	16.09	0.00	16.09	46.00	-29.91	AVG	
9		4.5900	28.42	0.00	28.42	56.00	-27.58	QP	
10		4.5900	18.31	0.00	18.31	46.00	-27.69	AVG	
11		18.7750	31.22	0.00	31.22	60.00	-28.78	QP	
12		18.7750	23.59	0.00	23.59	50.00	-26.41	AVG	

*:Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator:

50 %

Power: AC 240V/50Hz

Site Conduction #1

Limit: (CE)FCC PART 15 class B_QP

Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1500	43.14	0.00	43.14	66.00	-22.86	QP	
2		0.1500	21.00	0.00	21.00	56.00	-35.00	AVG	
3	*	0.3500	38.04	0.00	38.04	58.96	-20.92	QP	
4		0.3500	25.89	0.00	25.89	48.96	-23.07	AVG	
5		0.7900	31.35	0.00	31.35	56.00	-24.65	QP	
6		0.7900	17.83	0.00	17.83	46.00	-28.17	AVG	
7		2.1250	24.07	0.00	24.07	56.00	-31.93	QP	
8		2.1250	14.61	0.00	14.61	46.00	-31.39	AVG	
9		5.2400	24.92	0.00	24.92	60.00	-35.08	QP	
10		5.2400	13.07	0.00	13.07	50.00	-36.93	AVG	
11		19.6500	32.37	0.00	32.37	60.00	-27.63	QP	
12		19.6500	24.26	0.00	24.26	50.00	-25.74	AVG	

*:Maximum data Comment: Factor build in receiver. x:Over limit !:over margin Operator:

TRF No.: FCC 15.249/A Page 37 of 38 Report No.: ES151016009E3 Ver.1.0

8.4 ANTENNA APPLICATION

8.4.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.4.2 **Result**

The EUT'S antenna is Ceramic Chip Antenna, and the antenna can't be replaced by the user, which in accordance to section 15.203, please refer to the internal photos. The antenna's gain is 2dBi and meets the requirement.