

Vehicle-Track Interaction & Dynamics

National Research Council Canada

Conseil national de recherches Canada

WRI2025HH

Agenda

1. Vehicle steering, stability, and curving forces

2. Wheel-rail profile design and performance

- 3. Vehicle-track interaction derailment mechanisms and risk assessment
 - a. Wheel climb
 - b. Rail rollover

Terminology

WHEELSET & VEHICLE STEERING

The Free Rolling Wheelset

The Free Rolling Wheelset

National Research Council Canada

Conseil national de recherches Canada

The Free Wheelset - Hunting

National Research Council Canada

Conseil national de recherches Canada

Conicity

Equivalent Conicity from the ΔR Plot

British Rail derivation

$$\lambda_e = \frac{1}{2} \int \frac{N(y)(r_R - r_L)}{y} dy$$

A Truck Can Provide Stability

The Yaw Angle

The Wheelset in a Curve

(Leading) wheelset shifts

to outside of curve

Lateral Forces (Creep) in Curves

WHEEL-RAIL PROFILE DESIGN AND PERFORMANCE

Design of Engineered Rail Profiles

Rail design considers:

- Track curvature
- Worn wheel shapes
- Types of vehicle and speed (hunting)
- Dynamic rail rotation
- Rail hardness
- Grinding interval (profile deterioration between intervals)
- Static gage

Goals

- Control contact stress
- Inhibit hunting
- Minimize wear

The NRC Family of Heavy Haul Rail Templates from the 1990s

Rail Profile Design Criteria

Goals are to reduce/control:

- Gauge face and TOR wear
- Rolling contact fatigue (RCF)
- Dynamic instability (hunting)
- Corrugation formation
- Wheel hollowing
- Easily or practically implemented by grinding

Wheel-Rail Contact Stresses

Stress and damage depend on:

- Wheel radius
- Wheel load
- Friction coefficient
- Wheel/rail profiles (contact geometry)

Wheel-Rail Conformality

- Closely conformal
 0.1 mm (0.004") or less
- Conformal
 0.1 mm to 0.4mm
 (0.004" to 0.016")
- Non-conformal
 0.4 mm (0.016") or larger

Some Typical Issues Associated with Wheel-Rail Conformality

Closely conformal profiles

- Dynamic instability (hunting)
- Corrugation formation by spin creepage

Conformal profiles

- Low stress state W/R interface
- Heavy haul = 2PT conformal (balance contact stress steering and wear)

Non-conformal profiles

- High stress state W/R interface
- 1PT: cracks (RCF) at GC of HR and FS of LR
- 2PT: high gauge face wear in curves

Worn Wheel and Rail Profiles are Envelopes of Each Other

Worn wheel is an envelope of all rail profiles it encounters on a particular route

Worn rail is an envelope of all wheel profiles that pass over it

Pummelling Analysis

Simulation

- Measured wheel profiles
- Vehicle characteristics (stiffness, wheelbase etc.)
- Rail hardness (for damage evaluation)
- Rail curvature, super-elevation, dynamic rail rotation etc.

Evaluate distributions of

- Contact stress
- Steering moments
- Effective conicity

National Research Council Canada

Conseil national de recherches Canada

Pummelling: Design/Analysis Tool

National Research Council Canada

Conseil national de recherches Canada

Families of Rail Profiles

VEHICLE-TRACK DERAILMENT MECHANISMS AND RISK ASSESSMENT

WHEEL CLIMB

Wheel-Rail Contact

W/R contact often takes place at two points simultaneously (some new wheels especially)

Wheel-Rail Contact (continued)

Plan view of contact ellipses on high rail for different angles of attack

Deriving Nadal

$$\sum Fx = 0 \Rightarrow N\sin(\delta) - F_T\cos(\delta) - L = 0$$

$$\sum Fy = 0 \Rightarrow F_T\sin(\delta) + N\cos(\delta) - V = 0$$

$$\frac{L}{V} = \frac{\tan\delta - F_T/N}{1 + F_T\tan\delta/N}$$

Nadal's Relationship

Nadal Index (1908)

Slip Vectors at the Gage Face Contact

$$\delta$$
 = wheel flange angle

 β = gage face angle

Lateral wheel/rail forces

Weinstock Derailment Criterion

- Holds for all positive angles of attack,
- Less accurate for +ve cant deficiency

 At incipient wheel climb, the L/V values on the flanging and nonflanging wheels are, for positive angles of attack, separated by a roughly constant value equal to the Nadal limit plus the coefficient of friction on the top of the low rail

An Example

Is lubrication a good thing?

L/V goes up, but Weinstock limit also.

Wheel Climb - Conclusions

- Nadal provides a relationship between contact angle and friction coefficient
- Is based upon simplified view of the slip conditions
- Wheel climb threshold matches Nadal at most practical angles of attack, but not for low angles of attack.
- Weinstock rectifies that (for positive angles of attack) and includes explicitly the effect of friction on top of low rail.
- A safe L/V is some fraction of the (Nadal or Weinstock) threshold value, say 60-80%.
- These are static and quasi-static derivations.

VEHICLE-TRACK DERAILMENT MECHANISMS AND RISK ASSESSMENT

RAIL ROLLOVER

Low Rail Rollover

 Wide gauge, hollow wheels, poor restraint, underbalanced running, high friction

Conclusions

Matching of wheel/rail profiles

- Rolling radius difference: stability and curving
- Strong impact on stress, curving forces, stability, surface damage, safety/derailment (with friction conditions, truck suspensions, track geometry etc.)
- Must consider both new and worn shapes (pummelling)

Nadal formula is adequate for most wheel climb analyses

 Wheel climb risks grow with a sustained increase in lateral force or decrease in vertical force.

