Eksamen på Økonomistudiet vinter 2011-2012

Lineære Modeller

valgfag

13. januar 2012

(3-timers prøve med hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2012V-1LM ex

Eksamen i Lineære Modeller

Fredag d.13 januar 2012.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1. I \mathbb{R}^4 er der givet vektorerne $u_1 = (1, 0, 1, 0), u_2 = (1, 1, 0, 0)$ og $u_3 = (-1, -3, 2, 0)$. Vi kalder span $\{u_1, u_2, u_3\} = U$.

- (1) Vis at $U = \text{span}\{u_1, u_2\}$.
- (2) Bestem koordinaterne for u_3 med hensyn til basen u_1, u_2 i U.
- (3) Lad en lineær afbildning $L: U \to U$ være givet ved $Lu_1 = u_1 + u_2$, $L(u_1 + u_2) = u_3$. Bestem matricen hørende til L med hensyn til basen u_1, u_2 i U.
- (4) Gør rede for at L er invertibel.
- (5) Bestem Lu_3 og $L^{-1}u_3$.

Opgave 2. Om en symmetrisk, 3×3 -matrix A, vides, at den har egenværdier 0, 1 og 2, med tilhørende egenvektorer (1, 1, 1), (-1, 0, 1) og (1, -2, 1).

- (1) Bestem en af de mulige versioner af matricen A.
- (2) Gør rede for at A ikke er invertibel.
- (3) Bestem matricen e^A og bestem determinanten for e^A . Er e^A invertibel? (Begrund svaret).

Opgave 3.

- (1) Beregn integralet $\int \cos(2x) \sin^2(3x) dx$.
- (2) Løs den komplekse ligning $2z^2 8z + 10 = 0$.
- (3) Vis at $\sum_{n=0}^{3} e^{in\frac{\pi}{2}} = 0$, hvor *i* betegner den imaginære enhed.

Opgave 4.

For m = 1, 2, ... betegner $p_m(x)$ funktionen

$$p_m(x) = \sum_{n=0}^{\infty} e^{-mnx}.$$

- (1) Gør rede for at $p_m(x)$ er veldefineret for x > 0.
- (2) Bestem en regneforskrift for funktionen $p_m(x)$.
- (3) Bestem værdimængden $R(p_m)$ for funktionen $p_m(x)$, og gør rede for at funktionen er injektiv.
- (4) Løs ligningen $p_m(x) = y$ for $y \in R(p_m)$.