```
popquizbox[1] colback=nipun-lightblue!10, colframe=nipun-blue,
boxrule=2pt, arc=3pt, left=8pt, right=8pt, top=8pt,
bottom=8pt, title= Quick Quiz 1, fonttitle=,
coltitle=nipun-white, colbacktitle=nipun-blue,
enhanced, attach boxed title to top left=xshift=0pt,
yshift=-2pt, boxed title style=arc=3pt, boxrule=0pt
definitionbox[1] colback=nipun-green!8, colframe=nipun-green,
```

[BoldFont=Fira Sans SemiBold]Fira Sans Book Fira Mono

boxrule=1.5pt, arc=2pt, left=6pt, right=6pt, top=6pt, bottom=6pt, title= **Definition:** 1, fonttitle=, coltitle=nipun-white, colbacktitle=nipun-green

examplebox[1] colback=nipun-orange!8, colframe=nipun-orange,

boxrule=1.5pt, arc=2pt, left=6pt, right=6pt, top=6pt, bottom=6pt, title= **Example:** 1, fonttitle=,

coltitle=nipun-white, colbacktitle=nipun-orange

keypointsbox colback=nipun-blue!8, colframe=nipun-blue,

boxrule=1.5pt, arc=2pt, left=6pt, right=6pt, top=6pt,

bottom=6pt, title= **Key Points**, fonttitle=,

$$P(x_1, x_2, x_3, ..., x_N | y) = P(x_1 | y) P(x_2 | y) ... P(x_N | y)$$

$$P(x_1, x_2, x_3, \dots, x_N | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$$

Why is Naive Bayes model called Naive?

$$P(x_1, x_2, x_3, ..., x_N | y) = P(x_1 | y) P(x_2 | y) ... P(x_N | y)$$

Why is Naive Bayes model called Naive? Naive assumption x_i and x_{i+1} are independent given y

i.e.
$$p(x_2 | x_1, y) = p(x_2 | y)$$

$$P(y = 1|w_1 = 0, w_2 = 0, w_3 = 1)$$

$$= \frac{P(w_1 = 0|y = 1)P(w_2 = 0|y = 1)P(w_3 = 1|y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

$$= \frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

$$P(y = 1|w_1 = 0, w_2 = 0, w_3 = 1)$$

$$= \frac{P(w_1 = 0|y = 1)P(w_2 = 0|y = 1)P(w_3 = 1|y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

$$= \frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

Similarly, we can calculate

$$P(y = 0|w_1 = 0, w_2 = 0, w_3 = 1) = \frac{0.6*0.4*0.6*0.5}{Z}$$

$$P(y = 1|w_1 = 0, w_2 = 0, w_3 = 1)$$

$$= \frac{P(w_1 = 0|y = 1)P(w_2 = 0|y = 1)P(w_3 = 1|y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

$$= \frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

Similarly, we can calculate

$$P(y = 0|w_1 = 0, w_2 = 0, w_3 = 1) = \frac{0.6*0.4*0.6*0.5}{Z}$$

$$\frac{P(y=1|w_1=0,w_2=0,w_3=1)}{P(y=0|w_1=0,w_2=0,w_3=1)}=2>1.$$
 Thus, classified as a spam example.

Note: no cross covariance! Remember all features are independent.

Wikipedia Example

Height	Weight	Footsize	Gender
6	180	12	М
5.92	190	11	М
5.58	170	12	М
5.92	165	10	М
5	100	6	F
5.5	100	6	F
5.42	130	7	F
5.75	150	7	F

Example

	Male	Female
Mean (height)	5.855	5.41
Variance (height)	3.5×10^{-2}	9.7×10^{-2}
Mean (weight)	176.25	132.5
Variance (weight)	1.22×10^2	5.5×10^2
Mean (Foot)	11.25	7.5
Variance (Foot)	9.7×10^{-1}	1.67

• Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify
 if it's male or female.
- P(F|6ft, 130lbs, 8units) = P(6ft|F)P(130lbs|F)P(8units|F)P(F) P(130lbs, 8units, 6ft)

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify
 if it's male or female.
- P(F|6ft, 130lbs, 8units) = P(6ft|F)P(130lbs|F)P(8units|F)P(F) P(130lbs, 8units, 6ft)

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify
 if it's male or female.
- $P(F|6ft, 130lbs, 8units) = \frac{P(6ft|F)P(130lbs|F)P(8units|F)P(F)}{P(130lbs, 8units, 6ft)}$
- $P(130/bs|F) = \frac{1}{\sqrt{2\pi \times 550}} \times \exp{\frac{-(132.5 130)^2}{2 \times 550}} = .0167$

- Given height = 6ft, weight = 130 lbs, feet = 8 units, classify
 if it's male or female.
- $P(F|6ft, 130lbs, 8units) = \frac{P(6ft|F)P(130lbs|F)P(8units|F)P(F)}{P(130lbs, 8units, 6ft)}$
- $P(130/bs|F) = \frac{1}{\sqrt{2\pi \times 550}} \times \exp{\frac{-(132.5 130)^2}{2 \times 550}} = .0167$
- Finally, we get probability of female given data is greater than the probability of class being male given data.