MODELAGEM PREDITIVA DO VALOR DE ALUGUEIS DE APARTAMENTOS EM ALGUMAS CIDADES DO BRASIL

Kadu Vinicius Toledo Paulino

PUC MINAS

O problema Proposto

Vamos utilizar análise exploratória e modelar o preço de aluguel de algumas cidades do Brasil através de variáveis relacionadas com o imóvel, mostrando o impacto das mesmas no preço através de Machine Learning. Temos como objetivos:

- Realizar a análise descritiva dos dados;
- Verificar a correlação entre as variáveis;
- Criar modelos preditivos para o preço dos alugueis de apartamentos de algumas cidades brasileiras;
- Buscar o melhor modelo que se encaixa em tal representação.

Coleta de Dados

Para tratamento do problema proposto, foram utilizados dois datasets retirados do site Kaggle.

O primeiro dataset, "sao-paulo-properties-april-2019" (link1) contém cerca de 13000 apartamentos para venda e aluguel na cidade de São Paulo, Brasil. Os dados vêm de várias fontes, especialmente sites de classificados imobiliários. O conjunto de dados representa os dados anunciados no mês de abril de 2019.

Coleta de Dados

O segundo dataset "brazilian-houses-to-rent" (link2) contém cerca de 11000 apartamentos para locação em diferentes cidades brasileiras. Os dados foram retirados de vários sites da internet através de um WebCrawler.

Processamento/Tratamento de Dados

O processamento e o tratamento dos dados foram feitos utilizando a linguagem Python, versão 3.7.13 no ambiente Jupyter Notebook. Inicialmente foram importadas as seguintes bibliotecas que seriam utilizadas no processamento e tratamento de dados, além de análises estatísticas:

```
import pandas as pd #carregamento de arquivos e manipulação csv
import numpy as np #metodos numéricos
import seaborn as sns #visualização de gráficos
import matplotlib.pyplot as plt #visualização de gráficos
import plotly.express as px #gráficos dinâmicos
```

Base de dados das propriedades de São Paulo

```
base sp.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13640 entries, 0 to 13639
Data columns (total 16 columns):
    Column
                      Non-Null Count
                                     Dtvpe
    Price
                                     int64
                      13640 non-null
    Condo
                      13640 non-null int64
    Size
                     13640 non-null int64
                     13640 non-null int64
    Rooms
    Toilets
                     13640 non-null int64
    Suites
                      13640 non-null
                                     int64
    Parking
                      13640 non-null int64
    Elevator
                      13640 non-null int64
    Furnished
                     13640 non-null int64
    Swimming Pool
                     13640 non-null int64
10
    New
                      13640 non-null int64
11
    District
                      13640 non-null object
    Negotiation Type 13640 non-null object
    Property Type
                      13640 non-null
                                     object
14
    Latitude
                      13640 non-null float64
    Longitude
                      13640 non-null float64
dtypes: float64(2), int64(11), object(3)
memory usage: 1.7+ MB
```

Base de dados das propriedades de São Paulo

- Verificar se todos os tipos de dados são apartamentos;
- Excluir algumas colunas que não serão necessárias;
- Só trabalhar com propriedades para locação;
- Excluir linhas que possuem tipo de negociação venda;
- Excluir a coluna que representa o tipo de negociação;
- Somar o valor do condomínio e o preço do aluguel, para termos o preço total;
- Renomear as colunas;
- Formatar a coluna preço e condomínio para float;
- Verificar se existem outliers, algum dado inconsistente.

Base de dados das propriedades de São Paulo

base_sp							
	Tamanho	Quartos	Banheiros	Estacionamento	Mobiliado	Condominio	Preço
0	47	2	2	1	0	220.0	1150.0
1	45	2	2	1	0	148.0	1148.0
2	48	2	2	1	0	100.0	1100.0
3	48	2	2	1	0	200.0	1200.0
4	55	2	2	1	0	410.0	1710.0
11205	73	1	2	1	0	595.0	4295.0
11206	208	4	4	3	1	3000.0	24000.0
11207	55	1	1	1	1	710.0	4510.0
11208	205	3	2	2	0	2354.0	7354.0
11209	162	3	4	3	0	2300.0	17900.0

7220 rows × 7 columns

Base de dados das propriedades de algumas cidades do Brasil

```
base fora.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10692 entries, 0 to 10691
Data columns (total 13 columns):
    Column
                        Non-Null Count
                                        Dtvpe
   -----
    city
                        10692 non-null
                                        object
    area
                        10692 non-null
                                        int64
   rooms
                        10692 non-null int64
   bathroom
                        10692 non-null int64
  parking spaces
                        10692 non-null int64
   floor
                        10692 non-null
                                        object
    animal
                                        object
                        10692 non-null
  furniture
                        10692 non-null
                                        object
 8 hoa (R$)
                        10692 non-null
                                        int64
 9 rent amount (R$)
                        10692 non-null int64
 10 property tax (R$)
                        10692 non-null int64
    fire insurance (R$) 10692 non-null int64
 12 total (R$)
                         10692 non-null int64
dtypes: int64(9), object(4)
memory usage: 1.1+ MB
```

Base de dados das propriedades de algumas cidades do Brasil

- Verificar quais cidades estão incluidas na base de dados;
- Excluir algumas colunas que não serão necessárias;
- Renomear as colunas;
- Trocar não mobiliado por 0 e mobiliado por 1;
- Formatar a coluna mobiliado para o tipo inteiro;
- Visualizar algum dado inconsistente;
- Verificar se existem outliers, algum dado inconsistente.

Base de dados das propriedades de algumas cidades do Brasil

base_fora							
	Tamanho	Quartos	Banheiros	Estacionamento	Mobiliado	Condominio	Preço
0	70	2	1	1	1	2065.0	5618.0
1	320	4	4	0	0	1200.0	7973.0
2	80	1	1	1	0	1000.0	3841.0
3	51	2	1	0	0	270.0	1421.0
4	25	1	1	0	0	0.0	836.0
10687	63	2	1	1	1	402.0	1926.0
10688	285	4	4	4	0	3100.0	19260.0
10689	70	3	3	0	1	980.0	7390.0
10690	120	2	2	2	1	1585.0	14020.0
10691	80	2	1	0	0	0.0	1587.0

10664 rows x 7 columns

Juntando as duas bases de Dados

base_total							
	Tamanho	Quartos	Banheiros	Estacionamento	Mobiliado	Condominio	Preço
0	47	2	2	1	0	220.0	1150.0
1	45	2	2	1	0	148.0	1148.0
2	48	2	2	1	0	100.0	1100.0
3	48	2	2	1	0	200.0	1200.0
4	55	2	2	1	0	410.0	1710.0
10687	63	2	1	1	1	402.0	1926.0
10688	285	4	4	4	0	3100.0	19260.0
10689	70	3	3	0	1	980.0	7390.0
10690	120	2	2	2	1	1585.0	14020.0
10691	80	2	1	0	0	0.0	1587.0

17884 rows x 7 columns

- Analise estatitica do df;
- Histograma das variáveis;
- Correlação entre as variáveis;
- Visualização dos dados.

#Analise estatitica do df.
base_total.describe()

	Tamanho	Quartos	Banheiros	Estacionamento	Mobiliado	Condominio	Preço
count	17884.000000	17884.000000	17884.000000	17884.000000	17884.000000	17884.000000	17884.000000
mean	119.510904	2.419425	2.177868	1.539588	0.215164	875.872456	4658.366249
std	109.926064	1.037972	1.249217	1.339713	0.410948	1002.256489	4360.982563
min	11.000000	1.000000	1.000000	0.000000	0.000000	0.000000	499.000000
25%	54.000000	2.000000	1.000000	1.000000	0.000000	295.000000	1911.000000
50%	76.000000	2.000000	2.000000	1.000000	0.000000	580.000000	3078.000000
75%	145.000000	3.000000	3.000000	2.000000	0.000000	1100.000000	5650.000000
max	1000.000000	9.000000	9.000000	8.000000	1.000000	10000.000000	56800.000000

Divisão entre Previsores e Classe

```
[ ] #Previsores
     X total = base_total.iloc[:, 0:6].values
[ ] X total
    array([[4.700e+01, 2.000e+00, 2.000e+00, 1.000e+00, 0.000e+00, 2.200e+02],
            [4.500e+01, 2.000e+00, 2.000e+00, 1.000e+00, 0.000e+00, 1.480e+02]
           [4.800e+01, 2.000e+00, 2.000e+00, 1.000e+00, 0.000e+00, 1.000e+02],
           [7.000e+01, 3.000e+00, 3.000e+00, 0.000e+00, 1.000e+00, 9.800e+02],
           [1,200e+02, 2,000e+00, 2,000e+00, 2,000e+00, 1,000e+00, 1,585e+03],
           [8.000e+01, 2.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]])
[ ] type(X_total)
    numpy.ndarray
[ ] #Classe
    y total = base total.iloc[:,6].values
[ ] y_total
    array([ 1150., 1148., 1100., ..., 7390., 14020., 1587.])
[ ] type(y_total)
    numpy.ndarray
```

Divisão de bases de Treinamento e Teste

```
[] from sklearn.model_selection import train_test_split

[] X_total_treinamento, X_total_teste, y_total_treinamento, y_total_teste = train_test_split(X_total, y_total, test_size = 0.25, random_state = 42)

[] #Tamanho de cada vetor
    X_total_treinamento.shape, y_total_treinamento.shape, X_total_teste.shape, y_total_teste.shape

((13413, 6), (13413,), (4471, 6), (4471,))
```

Aplicação de Algoritmos de Machine Learning

- Regressão Linear Múltipla;
- SVM (Máquina de vetores de suporte);
- Redes Neurais Artificiais;
- Gradient Boosting

Aplicação de Algoritmos de Machine Learning

O processo para todos foi o mesmo, começando pela importação do respectivo algoritmo, realizando o treinamento por meio da função "fit" nas bases de treinamento e registrando sua performance por meio da função score, que calcula o coeficiente de determinação, R^2 , tanto da base de treinamento como de teste.

Também utilizamos a função mean-absolute-error para calcular o erro médio absoluto de previsões no valor do aluguel.

Interpretação/Apresentação dos Resultados

Algoritmo	Score base de trei- namento	Score base de teste	Erro médio absoluto
Regressão linear múlti- pla	0.71	0.73	1312
SVM	0.75	0.74	1217
Redes Neurais	0.73	0.74	1263
RGB	0.77	0.74	1256

Interpretação/Apresentação dos Resultados

```
plt.figure(figsize=(12,5))
plt.plot(count, y_total_teste, color ="red")
plt.plot(count, previsoes)
plt.title("Comparação entre previsões e os valores de teste")
plt.gca().legend(('Teste', 'Previsões'))
plt.show()
```


Cross-Validation

```
ApplyesKFold(X_total, y_total)
```

```
Linear Regression Média (R^2): 0.7163081629599922

svr Média (R^2): 0.7214209915149702

rna Média (R^2): 0.7298406252503852

rgb Média (R^2): 0.733018815741884

O melhor modelo é: rgb com valor: 0.733018815741884
```