

ANÁLISE DE DADOS UTILIZAND *CLUSTER* E BAIXO CUSTO

Tendências de consumo da azitromicina no Brasil antes e durante a pandemia da COVID-19

Felipe Fonseca Rocha

Orientador: Ítalo Fernando Scotá Cunha

Universidade Federal de Minas Gerais

09 de Fevereiro de 2022

Sumário

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Contexto e Motivação I

A todo momento nós geramos milhões de dados que são coletados por diferentes meios

Existem várias ferramentas disponíveis para transformá-los em informações e embasar decisões

Contexto e Motivação II

lsso também acontece na área da saúde

Porém o uso de ferramentas de *big data* em saúde ainda é pouco significativo

Boa parte dessas ferramentas implica processamento distribuído

Contexto e Motivação III

Potencial de melhora do sistema de saúde através de análise de dados

Integrar times com trabalho interdisciplinar

Uso de ferramentas e recursos já disponíveis de maneira correta

- 1 Contexto e Motivação
- 2 Justificativa
 - Justificativa Social
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Justificativa Social

- Tomada de decisão em saúde
- Escala: 152 milhões dependem exclusivamente do SUS
- Restrição: Gasto de R\$3.83 por pessoa por dia
- Volume de dados disponibilizados
- Assertividade
 - Ações em saúde
 - políticas publicas

- 1 Contexto e Motivação
- 2 Justificativa
 - Iustificativa Econômica
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Iustificativa Econômica

- Gasto na disponibilização dos dados
- Diminuição de verbas para ciência e tecnologia -2, 32%

Justificativa Econômica

- Aumento do dólar em mais de 327% diminuindo o poder de compra
- Aumento do custo de hardware e máquinas

Evolução do taxa de câmbio (IPEA, 2022)

R\$6.00

- 1 Contexto e Motivação
- 2 Justificativa
 - Justificativa Técnica
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
- 6 Resultados
- 7 Conclusão

Justificativa Técnica

- Necessário ser interdisciplinar
- Avaliar alternativas de processamento de dados
- Amenizar questões orçamentárias
- Melhorar uso dos recursos já existentes

UF MG

Objetivo I

Objetivos Geral:

Avaliar a viabilidade de orquestração de recursos em *cluster* de baixo custo em ambientes containerizados, para o processamento e a análise dos dados.

Objetivos Específicos:

- Realizar a orquestração de recursos em cluster de baixo custo;
- Avaliar tempo de provisionamento, tempo de execução e disponibilidade do cluster;
- Validar o uso de um cluster de utilização compartilhada para processamento de dados distribuídos;
- Propor um método de análise em cluster Kubernetes com uso de computadores desktops;
- Disponibilzar um cluster pronto para uso para UFMG, bem como ferramentas de auxilio no provisionamento;

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
 - Análise de dados
- 5 Método
- 6 Resultados
- 7 Conclusão

Análise de dados

- Descisões em saúde costumam ser complexas precisam de suporte científico (dados) e avaliação de Contexto
- Com o crescimento dos 3V's de dados na área da saúde (Big Data) processar e analisar esses dados tornouse fundamental para tomada de descisões adequadas
- Desafios:
 - complexidade dos dados obtidos
 - ausencia de validação de sistemas, métodos e ferramentas para o tratamento de dados na área
 - custos de novos equipamentos capazes de analisar tal volume
- Há grande oportunidade para a proposição de estratégias de processamento e anális de dados na área

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
 - Alternativas open source
- 5 Método
- 6 Resultados
- 7 Conclusão

Alternativas open source

- Considerando
 - O escopo deste trabalho
 - As estratégias para processamento e análise de dados disponíveis no mercado

As soluções encontradas no mercado foram agrupadas em dois grupos:

- Soluções de Computação em nuvem privada:
 - ► Se estendem para além do proposito desse trabalho
 - ► Requisitos de hardware elevados
 - Complexidade de configuração devido a sua abrangência

Alternativas open source

- Soluções de Orquestração de Containers:
 - Kubernetes®
 - Apache Mesos®
 - Hashicorp Nomad®
 - Docker Swarm®

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
 - Cluster orquestrador de container
- 5 Método
- 6 Resultados
- 7 Conclusão

Cluster orquestrador de container

- Kubernetes®:
 - Origem de 15 anos de trabalho da Google (Borg)
 - Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - Kube-controller-manager
 - Kubelet
 - ► Kube-proxy
 - ► Pod

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Abordagem
- 6 Resultados
- 7 Conclusão

Abordagem I

Utilizar u *Cluster* Kubernetes® como plataforma de orquestração de cargas de trabalho em computadores desktops.

- Cargas de trabalho:
 - Analise de tendencia de uso de azitromicina entre 2014 e 2021
- Composição do cluster com computadores desktops reaproveitados
- Minimizar trabalho local e priorizar a possibilidade de provisionamneto remoto
- redução do CAPEX e otimizar utilização de hardware ocioso ou subutilizado
- reaproveitamento de maquinas

Abordagem

O uso de conceitos e metodologias de DevOps:

- Cl (integração contínua)
- CD (entrega contínua)
- Monitoramento
 - método USE, parâmetros de utilização, saturação e erro
 - avaliação de utilização dos nós durante processamento

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Especificações
- 6 Resultados
- 7 Conclusão

Especificações I

- Cluster
 - Composição:
 - ► 4 computadores com 6 CPUs e 8GB de RAM (load balancer e control-plane)
 - 4 computadores com 6 CPUs
 e 16GB de RAM (workers)
 - Containers para processamento e análise:
 - arquitetura: amd64
 - ► 1 vCPU
 - ▶ 2 GB de RAM
 - ▶ 90 containers (1/mês de análise) [procesamento]
 - 1 container / usuário [análise]

Especificações II

- Orquestração do processamento dos dados originias:
 - Apache Airflow®
 - Kubernetes executor
 - Python Operators
- Consumo e análise de dados tratados:
 - JupyterHub gerenciamento de notebooks
 - Jupyter Notebooks análise dos dados

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Arquitetura Orquestrador
- 6 Resultados
- 7 Conclusão

Arquitetura Orquestrador

kubeadm HA topology - stacked etcd

Arquitetura Orquestrador

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Gerenciamento de configuração
- 6 Resultados
- 7 Conclusão

Gerenciamento de configuração

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Monitoramento
- 6 Resultados
- 7 Conclusão

Monitoramento

- Node Exporter Expor métricas de Host
- Prometheus Monitoramento de sistemas e Banco de dados de series temporais
- Grafana Dashboard e observabilidade
- Airflow Relatório de tempo de execução, falhas, tentativas

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Avaliação viabilidade
- 6 Resultados
- 7 Conclusão

Avaliação de utilização do cluster I

- macrobenchmark (system level benchmark) Teste utizando uma solução avaliando tempo de execução métricas de Desempenho (nós do cluster, guests):
- Taxa de Utilização de CPU e Memória
- Taxa de saturação de CPU e Memória
 Tempo de Implementação:
- Tempo de configuração do cluster
 Método base utilizado para coleta de informações:
- Metodo USE de avaliação (Checklist Linux)

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Análise de dados
- 6 Resultados
- 7 Conclusão

Exemplo da Análise de dados

- Vendas de Medicamentos Controlados e Antimicrobianos Medicamentos Industrializados
- 530 · 10⁶ linhas com mais de 70 GB
- Análise de tendência do consumo de azitromicina por região
- Análise de tendência do consumo de azitromicina no país
- Avaliação compartiva de 2 anos anteriores ao COVID-19

- 1 Contexto e Motivação
- 2 Justificativa
- 3 Objetivo
- 4 Revisão de literatura
- 5 Método
 - Cronograma
- 6 Resultados
- 7 Conclusão

		Ondas		Dates	Cascata
Fases de Projeto	Atividades do TCC	Atividades	Objetivos	S Data inicial Data Final	
Exploratório		Elaboração de estratégias de busca	Identificar estudos parecidos, explorar tecnologías disponíveis e avalliar oportunidades e conceitos associados aos usuários	1 17/10/2021 23/10/2021	
		Busca e avaliação dos artigos selecionados		2 24/10/2021 30/10/2021	
		Escrita de revisão bibliográfica		3 31/10/2021 06/11/2021	
Concepção		Descrição formal dos stakeholders	Identificar publico alvo, validar ideia da solução e listar alternativas	7 07/11/2021 04/12/2021	
		Avaliação de alternativas		9 05/12/2021 18/12/2021	
		Elaboração da fundamentação teórica e justificativa		10 19/12/2021 25/12/2021	
Desenvolvimento		Especificação e critérios de aceitação		12 26/12/2021 08/01/2022	
	Marcação da Defesa	Levantamento de Requisitos	Elaborar detalhamento da solução, mapear fronteiras da solução, identificar riscos ao projeto e propor desenho inicial da solução	13 09/01/2022 15/01/2022	
		Levantamento de Lista de Materiais e softwares		15 16/01/2022 29/01/2022	
		Apresentação do estudos e resultados de PoCs		17 30/01/2022 12/02/2022	
		Avaliação de viabilidade do sistema		20 13/02/2022 05/03/2022	
Produção	TOCII	Implementação da montagem (caso viável) e testes de verificação	Produção, Inspeção, Verificação e Validação da solução proposta.	24 06/03/2022 02/04/2022	
		Instrumentação (software) e verificação		26 03/04/2022 16/04/2022	
		Implementação da análise e verificação		28 17/04/2022 30/04/2022	
		Testes de Validação		34 01/05/2022 11/06/2022	
Utilização & Suporte		Coleta dos resultados	Captação da utilização em cenário real em projeto de pesquisa parceiro	35 12/06/2022 18/06/2022	
		Discussao dos resultados obtidos.		36 19/06/2022 25/06/2022	
Encerramento		Definição de proximas etápas	Estudo do caso de uso e sumarização dos resultados para apresentação da solução junto a banca	38 26/06/2022 09/07/2022	
		Formalização dos trabalho e apresentação		39 10/07/2022 16/07/2022	

UF MG

Resultados e discussões

- Provisionamento
 - Tempo de configuração inicial
 - ▶ sem imagem personalizada: 2 dias
 - ► cloud-init: 2h (possivel redução se utilizado imagens em rede)
 - Tempo de configuração cluster
 - ► configuração total manual: ¿¿ 12h
 - ▶ ansible: 15 min
 - ► helm (deploy aplicação) + terraform (orquestração de deploy): 10-20 min
- Execussão dos job:
 - Tempo serial com limite de 2GB de RAM e 1CPU 90 pods: 1h 30m
 - Tempo com orquestrador em paralelo com limite de 2GB de RAM e 1CPU 90 pods: 53m
- · Lead Time:
 - Tempo de deploy Airflow DAG: 3-6 min
 - Tempo de deploy JupyterLab: 4-10 min

Disponibilidade dos recursos deste trabalho

Todos os componentes definidos neste trabalho estarão contidos em um repositório público Github, sob a licença pública geral GNU versão 3, para livre acesso.

Endpoints

An Endpoint is the access point for anything you use with ngrok.

Q Filter endpoints...

ID \$	Region \$	URL 💠
ep_LXT354 🗍	US	tcp:// .tcp.ngrok.io:20003

Figura: Funcionamento NgRok

Figura: Ariflow - Diagrama de Deploy

Figura: Jupyter - Diagrama de Deploy

Figura: Monitoramento - Diagrama de Deploy

Figura: Relatório de orquestração

Figura: Relatório de Orquestração

9

S3ListOperators

PvthonDecoratedOperators

process_data_sets__7[]
resume

Figura: Monitoramento execução

Figura: Monitoramento execução 2

Figura: Monitoramento execução 3

Figura: Ansible inventory

Figura: Airflow - Diagrama de Sequencia

Figura: Jupyter - Diagrama de Sequencia

Conclusão

- Entendimento da complexidade dos fatores considerados no processo de decisão em saúde
- Análise dos impactos sociais-econômicos relativos a restrição orçamentária na ciência
- Seleção de tecnologias com base em requisitos e restrições
- Desenho de uma estratégia de extração de informações em saúde
- Avaliação

Trabalhos futuros contemplarão a implementação, testes e coletas de dados para avaliação comparativa das virtualizações propostas. Baseado nesses resultados pode se evoluir essa discussão na forma de recrutamento de computadores para o *cluster* de maneira a garantir o isolamento da maguina base.

Referências I

OBRIGADO :)