Scientific Research: Report Assignment

Scientific Research

Report Assignment

ID: 1Y21AF01

Name: Hiroto Kanda

ID: 1Y21AF01 Name: Hiroto Kanda

1.

In an non-interacting electron gas, the electrons fill up the momentum space from the lower energy states up to the Fermi energy E_F .

$$N(E_F) = N_{\text{tot}} \tag{1}$$

At the Fermi energy, the electrons have a corresponding wave number k_F :

$$E_F = \frac{\hbar^2 k_F^2}{2m} \iff k_F = \frac{\sqrt{2mE_F}}{\hbar} \tag{2}$$

and the total number of electrons in the gas is given by

$$N_{\text{tot}} = \int_{|k| < k_F} dN = \int_0^{k_F} dk \, \frac{V}{\pi^2} k^2 = \frac{V}{3\pi^2} k_F^3 \tag{3}$$

The energy of a relativistic particle is given by

$$E(p) = \sqrt{p^2 c^2 + m^2 c^4} \tag{4}$$

in terms of the wave number,

$$E(k) = \sqrt{(\hbar k)^2 c^2 + m^2 c^4}$$
 (5)

So the total energy of the electron gas is given by

$$E_{\text{tot}} = \int_0^N dN \, E(k) \tag{6}$$

$$= \int_0^{k_F} dk \, \frac{V}{\pi^2} k^2 E(k) \tag{7}$$

$$\Longrightarrow \varepsilon_e = \frac{1}{\pi^2} \int_0^{k_F} dk \, k^2 \sqrt{(\hbar k)^2 c^2 + m_e^2 c^4} \tag{8}$$

now set $k = \frac{m_e c}{\hbar} \sinh \theta$ (i.e. $x_F = \sinh \theta_F$), and so

$$dk = \frac{m_e c}{\hbar} \cosh \theta \, d\theta, \quad E(\theta) = m_e c^2 \cosh \theta \tag{9}$$

then the integral becomes

$$\varepsilon_e = \frac{1}{\pi^2} \int_0^{\theta_F} d\theta \left(\frac{m_e c}{\hbar} \cosh \theta \right) \left(\frac{m_e c}{\hbar} \sinh \theta \right)^2 \left(m_e c^2 \cosh \theta \right) \tag{10}$$

$$=\frac{m_e^4 c^5}{\pi^2 \hbar^2} \int_0^{\theta_F} d\theta \cosh^2 \theta \sinh^2 \theta \tag{11}$$

To calculate this integral, let us use a few formulas for hyperbolic functions:

$$\sinh x \cosh x = \frac{1}{2} \sinh(2x), \quad \sinh^2 x = \frac{1}{2} (\cosh(2x) - 1), \quad \cosh(2x) = 1 + 2\sinh^2 x \quad (12)$$

ID: 1Y21AF01 Name: Hiroto Kanda

using these, we can rewrite the integral as

$$\int_0^{\theta_F} d\theta \cosh^2 \theta \sinh^2 \theta = \frac{1}{8} \int_0^{\theta_F} d\theta \cosh(4\theta) - 1 \tag{13}$$

$$= \frac{1}{8} \left[\frac{1}{4} \sinh(4\theta) - \theta \right]_0^{\theta_F} \tag{14}$$

$$= \frac{1}{8} \left[\frac{1}{4} \sinh(4\theta_F) - \theta_F \right] \tag{15}$$

and the expressino inside the brackets can be simplified further:

$$\frac{1}{4}\sinh(4\theta) = \frac{1}{2}\sinh(2\theta)\cosh(2\theta) \tag{16}$$

$$= \sinh\theta \cosh\theta \left(1 + 2\sinh^2\theta\right) \tag{17}$$

here, since $x_F = \sinh \theta_F$,

$$\cosh \theta_F = \sqrt{1 + x_F^2}, \quad \theta_F = \operatorname{arsinh} x_F = \ln \left(x_F + \sqrt{1 + x_F^2} \right)$$
 (18)

thus,

$$\varepsilon_e = \frac{m_e^4 c^5}{8\pi^2 \hbar^2} \left(\frac{1}{4} \sinh(4\theta_F) - \theta_F \right) \tag{19}$$

$$= \frac{m_e^4 c^5}{8\pi^2 \hbar^2} \left(\sinh \theta_F \cosh \theta_F (1 + 2x_F^2) - \ln(x_F + \sqrt{1 + x_F^2}) \right)$$
 (20)

Table 1: Properties of 12 sequential nuclides in the outer crust of a neutron star.

Nuclide	Z	N	A	n_B	$M_{\rm cal}$	$n_N M_{ m nuc} c^2$	ϵ_e'	ϵ_L	Total $\epsilon(n_B)$
				$[\mathrm{fm}^{-3}]$	[MeV]		$[{ m MeVfm}^{-3}]$		
⁵⁶ Fe	26	30	56	4.75×10^{-8}	-60.61	0.043916	1.83×10^{-5}	-2.71×10^{-7}	0.043940
$^{62}\mathrm{Ni}$	28	34	62	1.61×10^{-6}	-66.75	0.047870	2.65×10^{-4}	-3.53×10^{-6}	0.048184
$^{64}\mathrm{Ni}$	28	36	64	7.87×10^{-6}	-67.09	0.050479	8.84×10^{-4}	-1.04×10^{-5}	0.051448
$^{86}{ m Kr}$	36	50	86	1.83×10^{-5}	-82.90	0.053181	1.83×10^{-3}	-2.04×10^{-5}	0.055171
$^{84}\mathrm{Se}$	34	50	84	6.29×10^{-5}	-82.35	0.060155	5.25×10^{-3}	-5.19×10^{-5}	0.065747
$^{82}\mathrm{Ge}$	32	50	82	1.66×10^{-4}	-79.62	0.068225	1.18×10^{-2}	-1.10×10^{-4}	0.080517
$^{80}\mathrm{Zn}$	30	50	80	3.60×10^{-4}	-74.96	0.077259	2.27×10^{-2}	-2.02×10^{-4}	0.100913
$^{78}\mathrm{Ni}$	28	50	78	4.80×10^{-4}	-66.86	0.081182	2.80×10^{-2}	-2.43×10^{-4}	0.109893
$^{124}\mathrm{Mo}$	42	82	124	7.30×10^{-4}	-85.73	0.084478	4.50×10^{-2}	-3.42×10^{-4}	0.130638
$^{122}\mathrm{Zr}$	40	82	122	1.25×10^{-3}	-84.38	0.091391	7.04×10^{-2}	-5.16×10^{-4}	0.163351
$^{120}\mathrm{Sr}$	38	82	120	2.10×10^{-3}	-81.98	0.100230	1.08×10^{-1}	-7.53×10^{-4}	0.210080
$^{118}{ m Kr}$	36	82	118	2.53×10^{-3}	-77.41	0.104646	1.25×10^{-1}	-8.54×10^{-4}	0.231142

The structure of a neutron star's outer crust is determined by several important physical processes. As the density increases, nuclei become progressively more neutron-rich through neutron capture processes. As a result that can be seen in Table 1, the neutron/proton increases from 1.15 in 56 Fe to 2.16 in 118 Kr.

Regarding energy contributions, the nuclear mass energy is the largest component of the total energy density. However, the kinetic energy of the electrons grows much more rapidly with density. A much smaller component, the lattice energy, is a negative correction that accounts for the electrostatic arrangement of nuclei into a crystal lattice.

This sequence of increasingly dense and neutron-rich nuclei ends at the neutron drip point, where the neutron is no longer energetically bound to the nucleus.