INTRO TO DATA SCIENCE MACHINE LEARNING / KNN

What's big data?

The practical viewpoint:

- $O(n^2)$ algorithm feasible: small data
- Pits on one machine: medium data
- Open't fit on one machine: big data

I. WHAT IS MACHINE LEARNING? II. MACHINE LEARNING PROBLEMS III. CLASSIFICATION WITH K NEAREST NEIGHBORS

LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

representation – extracting structure from data

WHAT IS MACHINE LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can *learn from data*."

"The core of machine learning deals with representation and generalization..."

- representation extracting structure from data
- generalization making predictions from data

II. MACHINE LEARNING PROBLEMS

supervised unsupervised

making predictions extracting structure

generalization

supervised unsupervised

making predictions extracting structure

representation

generalization

supervised unsupervised

making predictions extracting structure

representation

NOT EXCLUSIVELY DICHOTOMOUS!

continuous	categorical
quantitative	qualitative

TYPES OF DATA

continuous

categorical

NOTE

The space where data live is called the *feature* space.

Each point in this space is called a *record*.

quantitative

qualitative

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

supervised unsupervised

continuous

regression
dimension reduction

categorical

classification clustering

NOTE

We will implement solutions using *models* and *algorithms*.

Each will fall into one of these four buckets.

WHAT IS THE GOAL OF MACHINE LEARNING?

Academic goal: make good predictions by some metric.

supervised unsupervised

making predictions extracting structure

Practical goal: provide insight and solve problems.

The goal is determined by the type of problem.

HOW DO YOU DETERMINE THE RIGHT APPROACH?

supervised unsupervised

continuous

regression
dimension reduction

categorical

classification clustering

ANSWER

The right approach is determined by the desired solution and the data available.

TYPES OF ML SOLUTIONS 22

What type of problem is this?

Music Recommendation

TYPES OF ML SOLUTIONS 23

What type of problem is this?

Music Recommendation

It could be either.

TYPES OF ML SOLUTIONS

What type of problem is this?

Music Recommendation as Supervised Learning

Predict which songs a user will 'thumbs-up'

What type of problem is this?

Music Recommendation As Unsupervised Learning

Cluster songs based on attributes and recommend songs in the same group

HOW DO YOU KNOW IF YOUR RESULTS ARE GOOD?

EVALUATION

Evaluation metrics and procedures — about which more later.

NHAT DO YOU WITH YOUR RESULTS?

ANSWER

Interpret them and react accordingly - application.

source: http://benfry.com/phd/dissertation-110323c.pdf

ANSWER

NOTE

This also relies on your problem solving skills!

III. CLASSIFICATION WITH KNN

	continuous	categorical
supervised	???	???
unsupervised	???	???

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

class labels (categorical)

CLASSIFICATION PROBLEMS

Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

```
Welcome to R! Thu Feb 28 13:07:25 2013
> summary(iris)
  Sepal.Length
                Sepal.Width
                                 Petal.Length
                                                 Petal.Width
 Min.
       :4.300
                 Min.
                        :2.000
                                Min.
                                       :1.000
                                                Min.
                                                       :0.100
                1st Qu.:2.800
                                1st Qu.:1.600
 1st Qu.:5.100
                                                1st Qu.:0.300
 Median :5.800
                 Median :3.000
                                Median :4.350
                                                Median :1.300
      :5.843
                        :3.057
                                       :3.758
                                                       :1.199
 Mean
                 Mean
                                Mean
                                                Mean
 3rd Qu.:6.400
                 3rd Qu.:3.300
                                 3rd Qu.:5.100
                                                3rd Qu.:1.800
        :7.900 max
                        :4.400
                                        :6.900
                                                       :2.500
                                Max.
                                                Max.
 Max.
       Species
 setosa
 versicolor:50
 virginica:50
```

CLASSIFICATION PROBLEMS

Q: How does a classification problem work?

Q: How does a classification problem work?

A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

QUESTION:

What are the features? What are the labels?

1) Pick a value for k.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

NOTE:

Our definition of "nearest" implicitly uses the *Euclidean distance function*.

INTRO TO DATA SCIENCE