EECS 660: FUNDAMENTALS OF COMPUTER ALGORITHMS

MODULE II: PRELIMINARIES

DISCLAIMER

- This document is intended to be used for studying EECS 660 Data Structures, only by students who are currently enrolled in the course.
- This document is a copyright of Dr. Cuncong Zhong. Distribution of this document, or use it for any purpose other than what is stated above, is considered as a copyright infringement. Dr. Cuncong Zhong reserves the right to take necessary legal action.
- If you disagree, please delete the document immediately.

ACKNOWLEDGEMENT

• Many of the figures, unless otherwise stated, come from *Algorithm Design* 4th edition, by Jon Kleinberg and Eva Tardos.

SUMMARY

- Basic notation conventions
- Time complexity and space complexity analysis
- Recap of data structures
 - array and list
 - hash table
 - queue and stack
 - priority queue
 - disjoint set
 - tree and graph

- While it is free to use any letter or label to represent a variable, everything will be more understandable if we follow the convention when writing.
 - similar to programming, you can use any style in naming your variables
 - but some are more clear

- Before we start, here are some general guide lines for notation convention
 - use notation that is consistent with the meaning
 - we often use U (\underline{U} niverse) to represent all elements in a given domain)
 - we use i (index) to represent an index
 - do not use the same notation for different things
 - do not overcomplicate the definition
 - follow the convention as much as possible

- A set of items (ordered or unordered) are often represented by an uppercase letter
 - say we have a set of different fruits F

- We shall use superscript to distinguish between sets if we have to use the same uppercase letter to represent them (which make things clearer sometimes)
 - we will define a set of red fruits as F^R and a set of green fruits as F^G

- We shall use subscript to represent a specific item in an ordered set
 - we will define a set of fruits ranked by their prices as F
 - the *i*th fruit would be written as F_i
- If we are working on an underorder set, we will simply use a lowercase letter to represent an item
 - we will define a set of fruits as F
 - we define a single type of fruit $f \in F$

- It is possible to combine the use of superscript and subscripts
 - we will define a set of red fruits sorted by their prices as F^R
 - the red fruit that ranked at the ith place can be represented as F_i^R

• Brackets:

- the curly brackets are often used to explicitly represent the specific items within a set
 - $F = \{apple, pear, grape, ...\}$
- the square brackets are often used to indicate an element within a matrix
 - Let M be an matrix, and M[i,j] is the element that locates at the ith row and jth column
- the parenthesis are often used to represent the input arguments for a function
 - Let I be an identity function, I(a,b) = 1 if a = b, and I(a,b) = 0 otherwise

- The above rules are general guidelines, and are not always applicable
 - in statistics, the expected value of a random variable x is often expressed as E[x] and the variance of x is often expressed as Var(x)
 - it is a convention in the field to use square brackets for expected value, although it is in fact a function just like the variance
- If there exists a convention for you to follow, just follow it.

- If you couldn't remember the rules, don't worry
 - we will clearly define the meaning of each notation before proceeding with the algorithm
 - and you should do that too in the homework and exams

- For complexity analysis we have time and space complexity, but the way we measure them are very similar. So, let's just focus on time complexity here.
- Time complexity measures how fast the running time grows with the input size. Basically it makes six fundamental assumptions (or focuses):
 - the measure of input size
 - the relationship between the input size and the running time as a function
 - the ignorance of the constants in the function
 - focusing on the fastest-growing term
 - focusing on asymptotic behavior
 - focusing on the worst-case scenario

- The measure of the input size:
 - the input size is measured as the amount of space to hold the inputs
 - for example, if we were asked to find the most pricy fruit from a set of fruits F, then we expect the input of each fruit's price. If there are n types of fruits, then the amount of space that is required to hold them is thus cn, assuming holding each price takes a space of c

- The relationship between the input size and the running time as a function:
 - the amount of time required by the algorithm, t, is measured as a function that depends on the input size n; that is, t = T(n)

- The ignorance of the constants in the function:
 - for each term in the function T(n), its associated constant is ignored
 - for example, let $T(n) = an^2 + bn + c$; we do not care about what the constants a, b, and c are
 - we can simplify the function as $T(n) = n^2 + n + 1$ by making all constants I
 - this is because the constants depends on specific primitive operation, computer architecture, and CPU speed etc. that are hard to measure and consolidate

- Focusing on the fastest-growing term:
 - for the previous example where $T(n) = n^2 + n + 1$, we only care about the fastest-growing term n^2 , and ignores the other slower-growing terms
 - this is because when n gets larger enough, the fastest growing term will dominate T(n)
 - in theoretical computer science, there is a very clear distinction between polynomial and exponential time complexity
 - it is often of less interest (at least in this course) in identifying the fastest-growing term among many exponential terms, as any of them will be too slow to be practical

- Focusing on asymptotic behavior:
 - we are more interested in how fast the algorithm runs when the input gets large, that is, when $n>n_0$ where n_0 is an arbitrary constant
 - this assumption is sufficient to make the constant-free fastest-growing term dominate the total running time
 - you can think in this way: if the algorithm can handle large inputs well, then it can handle small inputs too, but not the vice versa; so, we care more about its behavior when the input gets large.

- Focusing on the worst-case scenario:
 - we similar to the rationale of focusing on large inputs, we also focus on the worse-case scenario the algorithm may encounter
 - for example, we are asked to find the maximum among a set of random numbers
 - in the ideal case, the set of numbers are sorted in a descending order, so we simply take the first one and it requires a constant time
 - in the worst-case scenario, they could be sorted in an ascending order, so we will have to go through the entire set to find the maximum
 - in some cases we are interested in average-case analysis, which is similar to finding the expected value of a variable in statistics

- In complexity analysis, the mostly used measure is the upper bound:
 - upper bound, denoted using O(.), and called big-O; substitute "." with the fastest growing term in T(n), for example we can write $O(n^2)$ for $T(n) = an^2 + bn + c$
 - it simply says that, we can assign a constant c_0 , and multiply it with the complexity term, and the product will be larger than T(n) no matter now large n will be
 - that is $c_0 * (.) \ge T(n)$ (note that .= f(n))
 - for $T(n) = an^2 + bn + c$, we know that any $c_0 \ge a + b + c$ is going to satisfy the definition when we set its time complexity to be $O(n^2)$
 - we can also set the upper bound to be any higher polynomial time, say $O(n^3)$
 - but not any lower, for example, we know that no matter how large c_0 would be $c_0*(n) < T(n)$ when $n > \frac{c_0}{a}$

- Upper bound continued:
 - using upper bound, we will have a guarantee of the running time
 - it says "we should be able to finish the job within that amount of time, no matter what will happen"

- The second type of bound is called lower bound:
 - we use $\Omega(.)$ to denote that, and call it the big-omega notation
 - it is defined similarly as the upper bound, but in a reverse way that for any constant $c_o', T(n) \ge c_o'^*(.)$ when n gets large enough
 - it says "no one can finish the job sooner than indicated, no matter what will happen"
 - it is often viewed as a termination of inventing a theoretically more efficient algorithm for the problem
 - of course, we can also plug in any lower-than-necessary term to fulfill the definition of lower bound

- As discussed previously, we can use arbitrarily fast-growing function to satisfy the upper bound definition, and arbitrarily slow-growing function to satisfy the lower bound
 - to address the issue, tight bound was introduced
 - if T(n) is in both O(.) and $\Omega(.)$, with the same function ".", we say "." is a tight bound for T(n) and use $\Theta(.)$ to indicate it and call it the big-theta notation
 - tight bound is the best way to describe the time complexity of an algorithm, if one can establish

- The pessimistic nature of computer scientists:
 - we have encountered three pessimistic assumptions in the definitions and analysis of time complexity
 - large inputs
 - worst-case scenario
 - upper bound for running time
 - but we need to distinguish their meanings (e.g., the find maximum problem)
 - large inputs: we are asked to work on a huge amount of numbers
 - worst-case scenario: if the maximum number happens to locate at the last position
 - upper bound for running time: finding the maximum will not take longer than the indicated time

- The most straightforward way to perform time complexity analysis is to solve for the function T(n).
- But in most cases we do not have to do that:
 - we can analyze the algorithm to find the number of iterations or recursions
 - and multiply them with the amount of work we need to do in each iteration or recursion
 - solving recursion could be a bit more challenging, but we will discuss that in detail later in the class

- Note: the analysis of space complexity is similar to the analysis of time complexity.
 - except that we are working on the amount of space rather than the amount of time
 - we don't care constants either (e.g., don't care 32-bit for integer or 8-bit for character)
 - some upper bound, lower bound, and tight bound defined

- Array and (linked) list
 - linear representation of a set of elements (both sorted and unsorted)
 - because their different implementation, they may differ in the time complexity for some operations:
 - find the kth element: O(1) for array, O(n) for linked list
 - insert/delete a specific element: O(n) for array, O(1) for linked list
 - merging two sets: O(n) for array, O(1) for linked list
 - enumeration of all elements: O(n) for both array and linked list

- Hash table:
 - a set of key-value pairs
 - recall the basic concepts of hash function, load factor, and table doubling/halving
 - time complexity for the associated operations:
 - find a specific key: O(1)
 - insert/delete a specific key: O(1)
 - merge two hash tables: O(n)
 - enumerate all elements: O(n)
 - note that hash table operations are often associated with large constants, so it is not often involved in theoretical algorithm development unless one can come up with a simple hash function with guaranteed bound (it is very frequently used in practice though)

- Queue and stack:
 - queue and stack are sets with different insert/delete priorities
 - queue: first in first out
 - stack: first in last out
 - time complexity
 - find a specific element: prohibited
 - insert/delete: O(1) (note that you cannot choose which element to delete, it has to comply with the defined behavior)
 - merge two queues/stacks: prohibited, or O(1) or O(n) depending on implementation
 - enumerate all elements: O(n)

- Priority queue
 - allows ordering of elements according user-defined priority, rather then simply by their order of insertion
 - the element with the highest/lowest priority will be taken out the queue first
 - time complexity
 - find a specific element: prohibited
 - insert/delete: $O(\log n)$
 - merge two queues/stacks: O(n) (better to reconstruct a new priority queue with both sets of elements)
 - enumerate all elements: O(n)

- Disjoint set:
 - also known as the union-find data structure
 - time complexity
 - find the label of a specific element: O(1)
 - merge two disjoint sets: $O(\log n)$

- Tree and graph:
 - non-linear data structures that are more powerful, especially in representing sophisticated relationships
 - tree is a graph without cycle
 - basic concepts:
 - nodes (or vertices)
 - edges
 - weight
 - degree
 - children and parent (as in tree); source and target (as in graph)
 - directed and undirected graphs
 - path and cycle

- Tree and graph:
 - implementation (assuming |V| nodes and an average degree of d)
 - matrix: O(1) to determine whether a edge exists given two nodes, O(|V|) to enumerate all neighbors, $O(|V|^2)$ storage
 - list: O(d) to determine whether a edge exists given two nodes, O(d) to enumerate all neighbors, O(|V| + |E|) storage
 - fundamental algorithms in graph:
 - BFS and DFS: O(|V| + |E|)
 - Finding connected components: O(|V| + |E|)

SUMMARY

- Basic notation conventions
- Time complexity and space complexity analysis
- Recap of data structures
 - array and list
 - hash table
 - queue and stack
 - priority queue
 - disjoint set
 - tree and graph