4/14/2019 Calc Team

question 2 views

Daily Challenge 25.5

(Due: Thursday 3/28 at 12:00 noon Eastern)

Today you will implement the discrete Fourier transform in Python.

Up to an overall constant, and the choice of whether you put the 2π in the exponent, the Fourier transform of a function f(x) is roughly

$$ilde{f}\left(k
ight)=\int_{-\infty}^{\infty}e^{-ikx}f(x)\,dx.$$

For realistic situations, we assume f(x) is some finite signal or wave train which is *supported* on an interval [-S,S]. That is, we assume that f(x)=0 if |x|>S for some big number S called the support. Then we can cut off the integral as

$$ilde{f}(k) = \int_{-S}^{S} e^{-ikx} f(x) dx.$$

To put this on a computer, we need to replace the integral with a Riemann sum. Let's chop up the interval [-S, S] into N points x_i , using a partition

$$x_0 = -S \le x_1 \le \dots \le x_N = S,$$

and assume for simplicity that the spacing Δx between adjacent points is constant. Then

$$ilde{f}\left(k
ight)pprox\sum_{i=0}^{N-1}e^{-ikx_{j}}f(x_{j})\,\Delta x_{j}.$$

This is now in a form ready to be implemented in Python.

(Part a). Write a function `fourier_transform(f, S=100)` that takes in a Python function and returns another function which gives the Fourier transform of the original function, using the conventions above.

That is, complete the following code skeleton:

```
def fourier_transform(f, S=100):
    """

Computes the Fourier transform of f
Inputs:
    f: a Python function mapping floats to floats
    S: the support such that f(x) = 0 for |x| > S
Outputs:
    a Python function mapping floats to floats, which is the Fourier transform of f
"""

## Chop up the interval [-5, 5] into N pieces

def f_tilde(k):
    ## Implement the sum described above
    return output

return f_tilde
```

I should emphasize that you are writing a function which takes in a function and returns another function.

Hint: you can use `np.exp` with a complex argument. Python knows about Euler's formula; to enter the imaginary unit i, you type `1j` in Python. For example, the statement $e^{\pi i}=-1$ in Python is

```
import numpy as np
print(round(np.exp(np.pi*1j)))
```

(-1+0j)

(Part b) Define a function which gives a finite cosine wave train. That is, implement a Python function that returns

$$f(x) = \begin{cases} \cos(x) & \text{if } -100 \le x \le 100 \\ 0 & \text{otherwise} \end{cases}$$

Compute the Fourier transform $\tilde{f}(k)$. Note that the Fourier transform you get will be purely real, rather than complex, since the input signal is even.

Plot it, by which I mean plot the real part of $\tilde{f}(k)$ using matplotlib. Does it look like what you expect from the last meeting, namely a sharp peak at a particular frequency and then some oscillatory fall-off?

4/14/2019 Calc Team

daily_challenge	
	Updated 17 days ago by Christian Ferko
the students' answer, where students collectively construct a single answer	
soon	
	Updated 17 days ago by Logan Pachulski
the instructors' answer, where instructors collectively construct a single answer	
the instructors' answer, where instructors collectively construct a single answer Click to start off the wiki answer	