Laboratorium 6

Zadanie obowiązkowe

1. PW/MC Lab.5 zad.1:

Przeciąż żądane operatory – jeśli to możliwe – przy użyciu:

- (a) funkcji globalnych;
- (b) funkcji składowych klasy;
- (c) funkcji zaprzyjaźnionych z klasą.

Zadanie obowiązkowe

2. PW/MC Lab.5 zad.2.

Zadanie obowiązkowe

3. PW/MC Lab.5 zad.3:

Macierze

4. Zaimplementuj klasę Macierz (z polem przechowującym macierz m x n liczb całkowitych), definiującą podstawowe działania macierzowe przy użyciu operatorów przeciążonych:

a/ przypisania (=) oraz porównania (==, >, <) np.:

$$X = Y$$
;

Wejście:				Wyjście:			
macierz X :				macie	rz X :		
-1.	-1.			3.	3.	3.	
-1.	-1.			3.	3.	3.	
macie	macierz Y :						
3.	3.	3.					
3.	3.	3.					

b/ dodawania (+, +=), odejmowania (-, -=), mnożenia (*, *=) oraz dzielenia (/, /=) przez stałą wartość k, np.:

X = A*k;

Wejście:					Wyjście:			
macierz A:					macierz X:			
1.	1.	1.	1.	5.	5.	5.	5.	
1.	1.	1.	1.	5.	5.	5.	5.	
1.	1.	1.	1.	5.	5.	5.	5.	
Stała	k:							
5								

c/ dodawania (+, +=), odejmowania (-, -=) oraz mnożenia (*, *=) macierzy przez macierz, np.: **X = A*B**;

Wejście:							Wyjście:		
macierz A :		macierz B :		macierz X:					
1.	0.	2.	3.	1.		5.	1.		
- 1.	3.	1.	2.	1.		4.	2.		
			1.	0.					

d/ drukowania << macierzy na standardowe wyjście; w pierwszej kolejności należy podać wymiary macierzy, po czym wyprowadzić samą macierz w jej właściwym kształcie, np.

cout << X;

We	ejście:		Wyjście:			
maci	erz X:		Standardowe wyjście:			
5.	-1.	3	2 x 3			
-2.	-7.	1	51. 3			
			-27. 1			

Zadanie dla chetnych

Baza figur

5. Na bazie rozwiązania problemu zdefiniowanego w PW/MC Lab.3 zad.1 oraz Lab.4 zad.1, zrealizuj następujące polecenie:

Zaprojektuj klasę BazaFigur, która będzie odpowiadać za zarządzanie zbiorem rozmaitych figur geometrycznych. Wykorzystując mechanizmy dziedziczenia i polimorfizmu, zaprojektuj klasy dla figur: kwadrat, prostokąt, koło, elipsa (wspólna, nadrzędna klasa bazowa Figura). Każda klasa pochodna powinna zawierać metodę do obliczania pola i obwodu figury. Zbiór wszystkich figur powinien być reprezentowany w klasie BazaFigur przy użyciu odpowiedniej struktury tablicowej. Odrębne metody w klasie BazaFigur mają odpowiadać za:

- dodanie pewnego obiektu figury do bazy (przeciążony operator +),
- usunięcie z bazy obiektów figur o zadanym polu (przeciążony operator -),
- wypisanie pól i obwodów wszystkich figur w klasie, z adnotacją o typie figury (przeciążony operator <<),
- podanie liczby wszystkich tych znajdujących się w bazie obiektów figur, których obwód nie przekracza zadanej wartości obwod (przeciążony operator ()).