Machine Learning Assignment

Outline

- Introduction
 - Abstract
 - Context
- Problem Formulation
- Online Dynamics Learning
 - KNODE
 - Online Data Collection and Learning
 - Applying learned Models in MPC
- Simulation
 - Dynamics of a Quadrotor
 - Simulation Setup and Results
- Physical Experiments
- Conclusion
- Limitations
- References

Introduction

Abstract

- Goal: Improving the accuracy of dynamic models for Model Predictive Control (MPC) in an online setting.
- In offline learning:
 - Training data is collected.
 - A prediction model is learned via an elaborate training procedure.
 - However, the model does not adapt to disturbances or model errors observed during deployment.
- This adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models.
 - Techniques inspired by transfer learning are used to improve model accuracy continually.
- Demonstrated with a quadrotor:
 - This verify the framework through simulations and physical experiments.
 - Results show that the approach can account for time-varying disturbances while maintaining good trajectory tracking performance.

Context

- MPC:
 - Is an optimization-based approach using prediction models.
 - Leverages physics models or accurate data-driven models for good closed-loop performance.
- Challenge:
 - Reliance on accurate dynamic models makes it hard for the controller to adapt to system changes or environmental uncertainties.
 - If robot dynamics change or disturbances occur during deployment, the controller must update its dynamic model to maintain performance.
- Recent advancements in **deep learning** have shown potential in modeling dynamical systems.
 - Neural networks offer:
 - A bypass to the **bottom-up construction** of dynamics that requires expert knowledge or physical intuition.
 - Faster optimization due to modern optimization algorithms.

Problem Formulation

• The robot dynamics are given by:

$$\left|\dot{x}=f(x,u)
ight|$$

- where:
 - \dot{x} : State derivative (rate of change of the state).
 - f: True dynamics of the robot.
 - x: State of the robot.
 - u: Control input to the robot.
- The updated dynamics model is represented by:

$$\left|\dot{x}=\hat{f}(x,u)
ight|$$

- o where:
 - \hat{f} : **Updated estimate** of the dynamics model.
 - x: State of the robot.
 - u: Control input to the robot.

• The sequence of collected data samples is denoted by:

$$S:=[(x(t_0),u(t_0)),(x(t_1),u(t_1)),\dots]$$

- o where:
 - S: Sequence of data samples consisting of states and control inputs.
 - $x(t_0), x(t_1), \ldots$ States of the robot at different timestamps.
 - $u(t_0), u(t_1), \ldots$: Control inputs at different timestamps.
 - t_0, t_1, \ldots : Timestamps at which the data is collected.
- ullet $f_{ heta}$: Neural Network parametrised with heta
- $oldsymbol{ ilde{f}}$:Physics Knowldege

Online Dynamics Learning

KNODE

- Three aspects of KNODE:
 - It requires less data for training.(Improving adaptiveness)
 - It is a continuous-time dynamic model. (Compactability)
 - Many robotics systems have readily available physics mpdel that can be used as knowledge.
- State and control concatenated and represented as:

$$oxed{z = [x^T, u^T]^T}$$

• The dynamics is expressed as:

$$\left| \hat{f}(z,t) = M_{\psi}(ilde{f}(z,t),f_{ heta}(z,t))
ight|$$

where

 $\circ M_{\psi}$ = Selection Matrix parametrized with ψ (which couples neural network with knowledge)

• The loss function is defined as:

$$oxed{L(heta,\psi) = rac{1}{m-1} \sum_{i=1}^{m-1} \int_{t_i}^{t_{i+1}} \delta(t_s - au) \|\hat{x}(au) - x(au)\|^2 d au + R(heta,\psi)}$$

- where:
 - \circ m: Number of points in the training trajectory.
 - \circ δ : Dirac delta function.
 - $\circ \ t_s \in T$: Any sampling time in set T.
 - $\circ~R(heta,\psi)$: Regularization term on the neural network and coupling matrix parameters.
 - $\hat{x}(au)$: The estimated state at time au.
 - $\circ x(au)$: The ground truth state at time au.
 - $\|\hat{x}(au) x(au)\|^2$: Squared error between the estimated and true states.

ullet The estimated state $\hat{x}(au)$ comes from the state $\hat{z}(au)$, which is given by:

$$\left|\hat{z}(au)=z(t_i)+\int_{t_i}^{ au}\hat{f}(z(\omega),\omega)d\omega
ight|$$

- where:
 - $\hat{z}(au)$: The **state at time** au generated using the model \hat{f} .
 - $z(t_i)$: The initial condition at time t_i .
 - $\hat{f}(z(\omega),\omega)$: The updated dynamics model.
- The optimization of the neural network parameters in KNODE can be done using:
 - Backpropagation.
 - Adjoint sensitivity method, a memory-efficient alternative to backpropagation (used in this work, similar to [6]).

Online Data Collection and Learning

Algorithm 1 Data collection and model updates

```
1: Initialize the current time, last save time, total duration, and the
      collection interval as t_i, t_s, t_N, and t_{col}
 2: t_i \leftarrow 0
     OnlineData ← []
     while t_i < t_N do
 5:
         if New model is available then
 6:
              Controller updates new model
 7:
              t_s \leftarrow t_i
 8:
          end if
 9:
         if t_i is not 0 and t_i - t_s == t_{col} then
10:
              Save OnlineData
11:
              t_s \leftarrow t_i
12:
              OnlineData ← []
13:
          end if
14:
          Robot updates state using control input
15:
          Append new robot state and control input to OnlineData
16:
          t_i \leftarrow \text{current time}
17: end while
```

Algorithm 2 Online dynamics learning

```
    Initialize the current time and total duration as t<sub>i</sub> and t<sub>N</sub>
    t<sub>i</sub> ← 0
    while t<sub>i</sub> < t<sub>N</sub> do
    while No new data available do
    Wait
    end while
    Train a new model with the newest data
    Save the trained model
    t<sub>i</sub> ← current time
    end while
```

$$f^{(i+1)} = M \psi_{(i+1)} \left(\hat{f}^{(i)}, e^{i+1-p} f_{ heta(i+1)}
ight) \quad ext{for } i < p,$$

with the initial condition:

$$\hat{f}^{(0)} = \tilde{f}$$

Applying learned Models in MPC

• Objective: Solve the following constrained optimization problem in a receding horizon manner:

$$igg| \min_{x_0, \dots, x_N, u_0, \dots, u_{N-1}} \sum_{i=1}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T P x_N igg|$$

• subject to:

$$egin{aligned} x_{i+1} &= f(x_i, u_i), & orall i &= 0, \dots, N-1 \ x_i &\in X, \ u_i &\in U, & orall i &= 0, \dots, N-1 \ x_0 &= x(t), \ x_N &\in X_f \end{aligned}$$

• Variables:

 $\circ x_i$: Predicted states.

 $\circ u_i$: Control inputs.

 $\circ~N$: The horizon length.

 $\circ~X$, U , X_f : The state, control input, and terminal state constraint sets.

 $\circ f(\cdot,\cdot)$: A discretized version of the learned KNODE model.

• Purpose:

- \circ The model $f(\cdot,\cdot)$ is used to **predict future states** within the horizon.
- A precise model results in more accurate predictions of the states, which leads to more effective control actions.

• Cost Function Weights:

- $\circ~Q$: Weighting matrix penalizing the states.
- $\circ~R$: Weighting matrix penalizing the control inputs.
- $\circ P$: Terminal state cost matrix.

• Initial Condition:

 $\circ x(t)$: The state obtained at time step t, which acts as an input to the optimization problem.

• Control Action:

 \circ Upon solving the optimization problem, the first element of the **optimal control sequence** u_0^* is applied to the robot as the control action.

• Receding Horizon Execution:

- \circ The robot moves according to the control action and generates new state measurements x(t+1) .
- These new measurements are used to solve the optimization problem at the next time step.

• Implementation:

- The optimization problem is implemented and solved using CasADi
- **IPOPT**, an interior-point method within the CasADi library, is used to solve the problem.
- o The solver is warm-started at each time step by providing an initial guess of the solution, based on the optimal solution from the previous time step (both primal and dual variables).

Simulation

Dynamics of a Quadrotor

- To apply the KNODE-MPC-Online framework, we first construct a KNODE model by combining a nominal model derived from physics with a neural network.
- Nominal Model: For the quadrotor, the nominal model is derived from its equations of motion:

$$egin{aligned} m\ddot{r} = mg + R\eta, \quad I\dot{\omega} = au - \omega imes I\omega \end{aligned}$$

- where:
 - r: **Position** of the quadrotor.
 - ω : Angular rates of the quadrotor.
 - η : Thrust generated by the motors.
 - τ : **Moments** generated by the motors.
 - g: Gravity vector.
 - lacktriangledown R: Transformation matrix mapping η to accelerations.
 - m: Mass of the quadrotor.
 - I: Inertia matrix of the quadrotor.

- State and Control Input:
 - Define the **state** as:

$$oxed{x := [r^ op, \dot{r}^ op, q^ op, \omega^ op]^ op}$$

- lacktriangle where q denotes the quaternions representing the orientation of the quadrotor.
- Define the control input as:

$$oxed{u := [\eta^ op, au^ op]^ op}$$

- Nominal Component of KNODE:
 - The nominal component of the KNODE model can be expressed as:

$$ilde{f}(x,u)$$

- where:
 - $oldsymbol{ ilde{f}}(x,u)$: The **nominal dynamics model** based on physics for the quadrotor.

Simulation Setup and Results

Radius [m]	2.0			3.0			4.0		
Speed [m/s]	0.8	1.0	1.2	0.8	1.0	1.2	0.8	1.0	1.2
MPC	0.0904	0.1280	0.1705	0.0949	0.1371	0.1861	0.0967	0.1412	0.1937
KNODE-MPC [25]	0.1222	0.1945	0.2555	0.1974	0.1769	0.2098	0.5303	0.4175	0.3418
Geometric Control [34]	0.2168	0.2572	0.3253	0.2067	0.2267	0.2606	0.2046	0.2194	0.2416
KNODE-MPC-Online (ours)	0.0660	0.1113	0.1678	0.0657	0.1043	0.1554	0.0709	0.1092	0.1571

Physical Experiments

SMLab Talks | Rishi Raj

Performance of KNODE-MPC-Online

Conclusion

- Proposed Framework:
 - We introduce a novel and sample-efficient framework called KNODE-MPC-Online.
 - The framework learns the dynamics of a quadrotor robot in an online setting.
- Application in MPC:
 - The learned KNODE model is applied in a Model Predictive Control (MPC) scheme.
 - The dynamic model is adaptively updated during deployment to respond to changes.
- Key Results:
 - Simulations and real-world experiments demonstrate that:
 - The proposed framework enables the quadrotor to adapt and compensate for uncertainty and disturbances during flight.
 - It improves the closed-loop trajectory tracking performance.
- Future Work:
 - Applying this framework to other robotic applications where dynamic models can be learned to achieve enhanced control performance.

Limitations

- Assumption:
 - The framework assumes a continuous-time nature of system dynamics.
 - This limits its applicability to stochastic systems.
- Potential Improvements:
 - There are variants of NODE that model stochastic differential equations.
 - Future work will aim to extend the algorithm to incorporate stochastic models to broaden its applicability.

References

- Github repo link
- Main papers:
 - 1. Online Dynamics Learning for predictive Control with an Application to aerial Robots
 - 2. KNODE-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for aerial Robots
- Images sources:
 - o All images
- Video Sources:
 - Video zip

Questions?