On considère les matrices
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 5 & -9 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & -1 \\ -3 & -1 \\ -14 & -1 \end{pmatrix}$

Justifier que l'on peut effectuer le produit *AB* puis effectuer ce produit.

★★☆☆ Exercice 2

Soit la matrice : $A = \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix}$.

- 1. Calculer A^2 .
- 2. En déduire qu'il existe un unique réel x tel que $A^2 = \begin{pmatrix} 6 & 1 \\ 2 & 11 \end{pmatrix}$

★★★☆☆ Exercice 3 /6

Soit la matrice : $M = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$.

- 1. Calculer $6M M^2$.
- 2. En déduire que la matrice M est inversible et que sa matrice inverse, M^{-1} peut s'écrire sous la forme $M^{-1} = \alpha I_2 + \beta M$ où α et β sont deux réels que l'on précisera.

***☆ Exercice 4 /3

Soit M une matrice carrée d'ordre n. On dit que M est nilpotente d'indice $p \in \mathbb{N}$ si p est le plus petit entier naturel tel que $M^p = 0_n$ où 0_n est la matrice carrée d'ordre n composée uniquement de 0.

Soit *M* une matrice carrée d'ordre *n* nilpotente d'indice 3.

- 1. Développer puis simplifier le produit $(I_n M)(I_n + M + M^2)$.
- 2. En déduire que la matrice $I_n M$ est inversible et préciser son inverse.

**** £xercice 5 /4

1. Soit la matrice *A* carrée d'ordre 3 telle que :

$$a_{ij} = \begin{cases} 0 & \text{si } i = j, \\ 1 & \text{sinon} \end{cases}$$

Écrire la matrice A avec ses coefficients.

- 2. Soit *B* la matrice définie par $B = A + I_3$.
 - (a) Écrire la matrice B avec ses coefficients puis calculer B^2 .
 - (b) La matrice *B* est inversible? Justifier.
 - (c) Démontrer que la matrice A est inversible et préciser A^{-1} avec ses coefficients.

23/09/2022 Lvcée Ravel