

APPLICATION 1: Median Finding

Given a set S of n numbers, define rank(x) = # of elements of S < X

lower median = element of rank [n+1]

If n is odd, these are equal

Eg: Median $(\{2,-5,3,10,1,-1,8\}) = 2$

We will solve a more general problem:

Given a set 5 of n numbers and a number i ∈ {1,2,3,...,n} find the element $x \in S$ s.t. rank (x) = i (that is, the i-th smallest element)

Naïve algorithm: Sort and return ith element of sorted list

O(n lg n)
e.g, using mergesort Running Time

	- h.	- مال	40.	:	(لم ا	Б	ho	tte.	r 7			(4)	2	(3)
				yd															
)(n)) '	WSI	ゴ	d	iv.	l e	or	nd	6	Sorre	lue	-٧						
	2	D.		501								ر0ء	#(اازب	Sec	how)		
(1)	Pi	cK	501	me	5	X (E 3	>		leve	.100							
(?)	Co	mpi	nte		1	<u>.</u>	٠ -	{ y	j e :	5	1	y ·	ر بر	Z	(no re	pea	も,)
								= 1											
							•		ل ل)		l	J		J				
		S.	5		L			×		(Gi								
				ank	(xi,) =	14	1+	1										
(3)		·		an							JE	(:							
				an k										of					
		'5				-/	1	ran	k	i	in	lhe	, δι	lbse	t L	J			
		lf	r	ank	(n) (_			•	<i>C</i>	
							V	cenk		L - 1	ronl	k (n.)		in (لى .	subsa	et	61	

THE ALGORITHM.

- (Assume |s| = n is a power of 10. If not, add enough small numbers to make it so. This increases the size of S by a factor of 10, at most)
- 1. Divide the n elements into n groups of 5 elements each.

 (Note: Each group descriptions of 5 dements sorting to sortin
- T(3) 3. Recursively find the median x of the 1/5 group medians.
 - (4. (As before) Find sets L and Gr s.+

06)

time

rank (x) = | | | + |

Proof: by inc	duction		Cz = the constant from O(a) ten	
0				— 、
Suppose o	ur claim tree	for < m.		8)
			↓	
Then,	T(n) < T(3)	$+T\left(\frac{3n}{4}\right)+$	C2n	
· ·				
	& Cin + 3	4 + C2 ~		
	= 19 Gn +	(. 0 .		
	= Gn + ($C_2 - \frac{C_1}{2D}$		
	Z CVL	once we s	et c,>20cg.	
Lihy	linear time	(and not,	say, nlogn)?	
	-> Be cause 1/5-	+ 3/4 < 1		
	-> Synificant (c	matant Fact	in) reduction in	v
	problem size	e per steg		
	-> geometric se	eries		
	⇒ o vero	ill time s	time in the firstep of recursion	+
		S	tep of recursion	l
-		1 1 7 ,	4 2 9 2	
tx.:	what if groups	had t elem	ents; s (

App	LICA	T) 07	1 2	: <u>!</u>	レ て	E	'nЕ	R	Mι	ルムフ	ΓIP	LIC	ĄΤ	0 N	<u> </u>
INIDI	u т :	T	~ 0	n-b	it	DU	m be	્ ડ		2 h			(9)
	L :									~, •					
a	rado-	schan		lan	i.H.	Λ.									
J	rade-	54100		gor	6717										
		C	00	0	×										
		1	10	1				4	トラレ	370					
			01							0					
													rdd		
	C	00	0										t e	ch.	
	00							/	UN	J	,,				
	0	0 1	10	10											
						_									
_	bette	3 C	مولد	rit	hm	!									
	Use	0.				Co	nau	ey	1						
	use	Z I V	nae	ω,					•						
	V.	que	4.		Lah	1+	av	le.	the	5 1	ibp.	mbl	ems	2	
	محم	que	siron	•	VUN	0-1					-			•	
1	DEF	+ 1													
					24		K								
•	View		3. =		~ <u>/</u> 2	• >	۲)	٠	~			all	2/2	-bik	
			b =		2 ⁴ /2	. (J -	+ Z			1	Au	mber	3	
							5								

Then, a.b = 2°. XW + YZ+ 2^{1/2}. (xZ+YW) products of 2 1/2-bit numbers T(n) = 4T(n/2) + O(n)= $\Theta(n^{1924})$ by Master theorem $=\Theta\left(\Lambda^{2}\right)$ IDEA 2 : [Anatoli Karatsuba 1962] -> Same way as before to partition a, b > compute X.W and Y.Z > but DO NOT compute X.Z and Y.W separately. - Compute instead (X+Y). (Z+W) KEY "MAGIC" (DENTITY :) $(X+Y)\cdot(Z+U) = (XZ+YW) + XW+YZ$

-> We know

(x+y)(z+w), xw, yz

→ We can compute XZ+YW

= (x+y)(z+w) - xw - yz

-> Now T(n) = 3T(n/2) + B(n)

 $= \Theta(n^{\log_2 3}) = \Theta(n^{1.58})$

Is this the best possible?

(Schönage & Strassen 1971) O(n-lgn-lglgn)

[Fürer 2007] n.lgn. 2 (g*n)

lg*n = prin number of times you take iterated logs starting with n until you reach <1.

Note: (265536) = 5

of atoms in observable universe:)

Additional Material (NOT REQUIRED) (1) Matrix Multiplication: . Given two nxn matrices A and B Compute A.B. · Trivial: O(n) • Best Possible: O(n2) I need to look at each one at least once · Subproblems? Blockvise multiplication $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$ & same for B 8 subproblems ? $T(n) = 8T(\frac{n}{2}) + O(n^2) = O(n^3)$: Strassen 1969: 7 subproblems $\Rightarrow o(n^{1927})$

	We	did not	say	what	these	7 subproblems
	are	: See	CLRS.	•		•
(a)	A Q	mbinator	ial Ag	pli cution	n of M	atrix Mult:
	G	unting	# tric	engles	và a	graph
			ndirected			sith n modes
	•	Given	Graph	(n = ((V, E) L	sith n modes
		outpi	1t #	triangles	5	
			$= \{(i,j)$,k): (Beve an	elges Elg
				(i,j),	(j,k), (ish	$y \in E_{\gamma}$
				. 2\		
	•	Trivia	1: 0	(n³)		
		daim	: Time	to as	unt #	triangles
			$\leq T$	me to	multiph	triangles two y n x n matrices
					' (
	Algorith	nm				
	• 4	et A b	e the	adjacen	ay mo	utrix of Go
						3
= Matrix Mult	\ • c	mpute	A ²			
		claim: G	j)th entr	(of A2	is the #	length-2 paths een i and j
					العام	een I was
	• [7	vitialize	counter	= 0		
	- 1	for each	n i o	nd j:		

