Sistemas Operacionais Introdução a Processos

Prof. André D'Amato

andredamato@utfpr.edu.br

Gerenciamento de processos

Processo

- É uma instância de um programa em execução
- É uma entidade ativa
- Possui contexto e estado
- É executado sequencialmente
 - Cada instrução executada pertence a um processo
- Outros nomes
 - Job em sistemas de lote (batch systems)
 - Tarefa (task) em sistemas com time-sharing

Estado de um Processo

Estado de um processo

- Em execução (running)
 - Processo cujas instruções estão sendo executadas
- Em espera (waiting)
 - Processo aguardando por algum evento (ex.: operação de I/O)
- Pronto (ready)
 - Processo está pronto para entrar em execução, mas precisa aguardar por um processador disponível

Contexto de Processo

- Contexto de Processo
 - Informação que permite ao SO retomar a execução de um processo
 - Process Control Block (PCB)
 - Estado
 - Registradores da CPU
 - Informação de escalonamento
 - Informação de memória
 - Inforamção de I/O
 - Informação de contabilização
 - Pilha do processo

Process Control Block Típico

Process management

Registers

Program counter

Program status word

Stack pointer

Process state

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started

CPU time used

Children's CPU time

Time of next alarm

Memory management

Pointer to text segment info Pointer to data segment info Pointer to stack segment info

File management

Root directory
Working directory
File descriptors
User ID

Group ID

Troca de Contexto

Espaço de Endereçamento de um Processo

Criação de um Processo

Um processo é criado quando outro processo invoca a chamada de sistema correspondente (ex.: *fork*)

- Criador = processo pai (parent)
- Criado = processo filho (child)
- Recursos do filho podem ser
 - Herdados do pai
 - Alocados no SO
- Quem cria o primeiro processo?
 - Forjado pelo SO na inicialização

Destruição de um Processo

- Natural: quando um processo termina e chama exit
- Forçado
 - Pelo SO quando um processo opera erroneamente (abort)
 - Por outro processo (pai) por qualquer razão (kill)

Processos Concorrentes

- **Processos Concorrentes**
- Compartilhamento de recursos (concorrência)
- Aceleração com múltiplos elementos de processamento
- **Processos Independentes**
- Um prgrama sequencial em execução
- Contexto privado
- Saída depende exclusivamente da entrada Processos Cooperantes
 - Um programa paralelo em execução
 - Contexto compartilhado
 - Saída depende também da ordem relativa de execução

Multiprogramação

Processamento paralelo em uma CPU

- Processos bloqueados deixam a CPU
- Processos prontos assumem a CPU
- Não há processamento simultâneo (uma CPU)

Métricas

- Tempo de resposta (turnaround time)
- Vazão (throughput)
- Utilização da CPU

Multiprogramação

■ SEM multiprogramação

COM multiprogramação

Threads

Também chamados de processos leves (*lightweight*)

Baixo custo de criação
A execução ocorre dentro de
um processo (task)
Compartilha código,
dados e recursos da
Task

Possui sua própria pilha Processo tradicional = task + 1 thread

Threads

Também chamados de processos leves (*lightweight*) Baixo custo de criação

A execução ocorre dentro de um processo (task) Compartilha código, dados e recursos da task

Possui sua própria pilha

Processo tradicional = task + 1 thread

Estruturas de Escalonamento de Processos

■ Filas de prontos (ready) e E/S

Diagrama de filas do sistema

Escalonadores de Processos

- Escalonador de curto prazo (CPU)
 - Seleciona processos da fila de prontos
 - Executa frequentemente precisa ser muito
- eficiente Escalonador de longo prazo (jobs)
 - Seleciona processos autorizados a executar
 - Controle de admissão de processos
 - Tenta balancear processos I/O-bound e CPUbound

Escalonadores de Processos

- Escalonador de médio prazo (swapper)
 - Suspende processos temporariamente
 - Para manter balanço entre o uso de E/S e CPU
 - Devido ao esgotamento de memória

27 de fevereiro de Prof. Arliones 16

Escalonamento Preemptivo e Não-Preemptivo

- Os seguintes eventos modificam o estado de um processo e são observados pelo escalonador:
 - 1 Novo processo no sistema
 - 2 Muda seu estado de executando para em espera
 - 3- Muda seu estado de executando para pronto
 - 4 Muda seu estado de em espera para pronto
 - 5 Termina

Critérios para escalonamento de processos

- Maximizar utilização da CPU
- Maximizar vazão do sistema
- (processos/tempo) Minimizar tempo de
- resposta (tempo total)
- Minimizar tempo de espera dos processos Minimizar e/ou estabilizar tempo de resposta ao usuário

Políticas de Escalonamento de Processos

First-Come First-Served (FCFS)

Shortest Job First Prioridade

Estática Prioridade Dinâmica

Round-Robin

Fila Multinível

E milhares de outros...

First Come First Served (FCFS)

Política

- Fila de prontos (ready) utiliza política FIFO
- Processos novos inseridos no final
- Não-preemptivo

Desempenho

 Extremamente pobre quando um processo CPU-bound bloqueia um processo I/O-bound

Exemplo

■ National X and the last of				
Process	Α	В	C	D
CPU time	9	4	8	5
Arrival time	0	0	0	0

Shortest Job First (SJF)

Política

- Processo que utilizará menos CPU é executado antes
- Preemptivo ou n\(\tilde{a}\)o-preemptivo
 Desempenho
- Algoritmo ótimo em termos de tempo médio de resposta e tempo médio de espera

A b c d

TMR =
$$(a + (a+b) + (a+b+c) + (a+b+c+d)) / 4 = (4a + 3b + 2c + d) / 4 tu$$

TME = $(0 + a + (a+b) + (a+b+c)) / 4 = (3a + 2b + c) / 4 tu$

Útil para processos cujos tempos máximos de execução são conhecidos

Shortest Job First (SJF)

Exemplo

Process	Α	В	С	D
CPU time	9	4	8	5
Arrival	0	1	2	3
time				

SJF Approximation

Política

- Estima tempo futuro baseado no passado recente
- Processos que têm tido menor tempo de CPU é executado antes

Fórmula:

$$\bar{\pi}_{i+1} = a \cdot \pi_i + (1-a) \cdot \bar{\pi}_i$$

 $\bar{\pi}_i =$ estimativa no momento i a = fator de relevância do passado $\pi_i =$ último tempo de execução do processo

■ Exemplo (α = 1/2)

TMR =
$$(22 + 30 + 36) / 3 = 29.3 \text{ tu}$$

TME= $(10 + 18 + 24) / 3 = 17.3 \text{ tu}$

Process	$\pi_{_{0}}$	t _o	$\pi_{_1}$	t ₁	$\pi_2^{}$	t ₂	π_3
Α	1	2	1	4	2	6	4
В	1	4	2	4	3	4	3
С	1	6	3	4	3	2	2

Prioridade

- Política
 - Processo com maior prioridade é executado antes
 - Proridades podem ser estáticas ou dinâmicas
- Preemptivo ou não-preemptivo Processos podem nunca ser
- executados
 - Processos de baixa prioridade só executam quando processos com prioridade maior estão em espera

Típico em sistemas de tempo real

Prioridade Estática

Example

Process	Α	В	C	D
CPU time	2	8	3	5
Priority	3	1	2	3
Arrival	0	1	2	3
time				

Round-Robin

- Política
 - Processos s\(\tilde{a}\) o re-escalonados periodicamente baseados num quantum de tempo
 - Fila circular FIFO
 - Preemptivo
- Fórmula
 - Para um dado conjunto de processos com n elementos e um quantum q:
 - Cada processo recebe 1/n de CPU em ciclos não maiores que
 - **q** unidades de tempo
 - Tempo máximo de espera = $(n 1) \times q$
 - Típico em sistemas com time-sharing

Round-Robin

Exemplo (q = 5 tu)

Process	Α	В	С	D
CPU time	8	5	6	7
Arrival	0	4	9	14
time				

Fila Multinível

Política

- Processos são agrupados
 - Ex.: sistema, interativos, batch
- Cada grupo tem sua própria fila sob uma política específica
- Processos podem trocar de grupos

Exemplo

Calcule o tempo médio de resposta e o tempo médio de espera do sistema considerando o algoritmo SJF approximation.

Processo	$\pi_{_{0}}$	t _o	π_1	t	π_2	t ₂	π_3
Α	1	6					
В	1	9					
С	1	4					

Processo	t ₁	t
Α	4	6
В	4	4
С	4	2

Exemplo

 Calcule o tempo médio de resposta e o tempo médio de espera do sistema considerando o Round-Robin com o quantum = 3;

Processo	Α	В	С	D
Tempo de CPU	3	2	8	5
Chegada(tempo)	0	3	5	10