Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. A wrench \mathcal{F}_a consists of a linear force $f_a \in \mathbb{R}^3$ and a moment $m_a \in \mathbb{R}^3$, both expressed in the frame {a}. How do we usually write the wrench?

1/1 point

- \bullet $\mathcal{F}_a = (m_a, f_a)$
- $\bigcirc \mathcal{F}_a = (f_a, m_a)$
- **⊘** Correct

Just as a twist $\mathcal{V}=(\omega,v)$ has the angular terms first, so does a wrench, so the dot product $\mathcal{F}\cdot\mathcal{V}=\mathcal{F}^T\mathcal{V}$ is power when \mathcal{F} and \mathcal{V} are expressed in the same frame.

2. We know that the power associated with a wrench and twist pair $(\mathcal{F}, \mathcal{V})$ does not depend on whether they are represented in the frame {a} as $(\mathcal{F}_a, \mathcal{V}_a)$ or the frame {b} as $(\mathcal{F}_b, \mathcal{V}_b)$. Therefore, we can write $\mathcal{F}_a^T \mathcal{V}_a = \mathcal{F}_b^T \mathcal{V}_b$ and then use which identity to derive the equation $\mathcal{F}_a = [\mathrm{Ad}_{T_{ba}}]^T \mathcal{F}_b$ relating the representations \mathcal{F}_a and \mathcal{F}_b ? (Also, remember the matrix identity $(AB)^T = B^T A^T$.)

1/1 point

- $\mathcal{V}_a = T_{ab} \mathcal{V}_b$
- $\mathcal{O} \mathcal{V}_a = T_{ba}\mathcal{V}_b$
- $\bigcirc \ \, \mathcal{V}_a = [\mathrm{Ad}_{T_{ba}}]\mathcal{V}_b$
- **1.** A wrench \mathcal{F}_a consists of a li
 - \odot $\mathcal{F}_a = (m_a, f_a)$
 - $\bigcirc \mathcal{F}_a = (f_a, m_a)$
 - \bigcirc Correct

 Just as a twist $\mathcal{V} = (\mathbf{v})$ in the same frame.
- **1.** A wrench \mathcal{F}_a consists of a li
 - \bigcirc $\mathcal{F}_a = (m_a, f_a)$
 - \bigcirc $\mathcal{F}_a = (f_a, m_a)$
 - **⊘** Correct

Just as a twist $\mathcal{V}=(\mathbf{r}_{\mathbf{r}})$ in the same frame.

- 2. We know that the power ass the frame {b} as $(\mathcal{F}_b, \mathcal{V}_b)$. Trepresentations \mathcal{F}_a and \mathcal{F}_b
 - $\bigcirc \mathcal{V}_a = T_{ab}\mathcal{V}_b$
 - $\mathcal{O} \mathcal{V}_a = T_{ba}\mathcal{V}_b$
 - $\mathcal{O} \mathcal{V}_a = [\mathrm{Ad}_{T_{ba}}] \mathcal{V}_b$