COMPUTER SCIENCE & IT

Lecture No: 08

Miscellaneous Topics

Recap of Previous Lecture

Concept of Delay

Functionally complete Function

Functionally complete Function

$$f \longrightarrow \begin{cases} f_1, f_2, \dots \end{cases}$$

$$f \longrightarrow \begin{cases} AND, NOT \\ f(A,B), \frac{1}{A} = A \cdot B \end{cases}$$

$$= A \cdot B$$

$$f_{2}(A) = \sum_{i=1}^{\infty} (0)$$

$$= \prod_{i=1}^{\infty} I(1)$$

=
$$\pi(1)$$

Hot To Not M

Not T₁,

f2

$$f_1(A_1B) = \sum (3) \longrightarrow T_0, T_1$$

= $\pi(0,1,2)$

9f there is set of functions: . If there exist atleast one function which does not belong to To. · 9f the exist at least one function which does not belong to II. atleast one function which does not belong to M · 9f thue suist · 9f thu exist at least one function which does not belong to SD then we will say that this set of functions are functionally complete.

$$f(A,B,C) = A + B \overline{C} = Z(0,4,5,6,7)$$

$$functionally | 0 0$$

$$rost | 0 |$$

$$comblete | | 0$$

$$Function | 1 |$$

$$B \overline{C}$$

$$000 \rightarrow 0$$

$$| 00 \rightarrow 4$$

$$(2^{n}-1)$$

$$5,6,7$$
)

NoT L

NoT M

NoT To

 T_1
 000
 010
 001

$$f(A_1B_1,\overline{C}) = \overline{A} + \overline{B}C$$
 \longrightarrow functionally complete function

 $f(A_1B_1,\overline{D}) = \overline{A} + \overline{B}\overline{D} = \Sigma(0,1,2,3,4)$ \longrightarrow NoT L

NoT S

 $\overline{A} \longrightarrow (0,1,2,3)$ $00|-(1)$ NoT T

 $000 \longrightarrow 01$ $000 \longrightarrow (1)$ NoT M

 $0|0$ 011

100 74

$$= \Xi(0,1,2,3,4) \longrightarrow N_0T L$$

$$N_0T S$$

$$N_0T T_0$$

$$N_0T T_0$$

$$N_0T T_1$$

Self Dual (SD) # f(A,B,C) = AB+BC+CA = \(\Sigm(3,5,6,7)\) Not L (2, 2, 2, 3)Not functionally TT (0,1,2,4) Complete ewn, odd, odd, odd

#
$$f(A_1B_1C) = \sum_{j=1}^{n} (1,2,4,7) \longrightarrow D$$
, To, T,

Not functionally $(1,1,1,3) \longrightarrow L$

Complete function.

$$f(A,B) = \overline{A}B = \overline{Z}(1) = \overline{T}(0,2,3)$$

Not L

Not S

Not functionally.

Complete

Not T

Not T

$$(1)$$
 (0)

 $| | \longrightarrow$

 $| \rightarrow 3$

$$f(A,B,C) = \overline{A} + \overline{B}C = \Sigma(0,1,2,3,5)$$

Not L

Not SD

 $\overline{A} \rightarrow (0,1,2,3)$

NoT To

NoT To

NoT To

NoT To

O 0 0

Functionally

O 10

Complete

(1)

Function

 $\overline{B}C$

O 0 | \rightarrow |

Not M

NoT To

NOT TI

$$00 < 01 (1)$$
 (0)

Not SD Not TO NOT M

$$f(P,Q) = \sum (0,1,3)$$

 $f(P,Q) = \sum (0,1,3)$
Not functionally $= (P+Q)$
Complete
function

$$Q \longrightarrow P \longrightarrow f(P,Q) = \overline{Q} + P$$

Nogation $F \rightarrow f(A) = \overline{A} = \Xi 0 = \pi(1)$ $SD \qquad Not To$ $Not M \qquad ,$

$$\begin{array}{c}
0 \longrightarrow 1 \\
(1) \\
\end{array}$$

f = 9 mblication, Negation?

tunctionally complete function

$$f(A_1B) = \overline{A}B + A\overline{B} = \Sigma(1,2) = TT(0,3)$$

$$\begin{cases}
(1,1) \\
\text{Not functionally} \\
\text{Complete function} \\
0| --- 11 \\
(1) \\
(0)
\end{cases}$$

$$\frac{H \cdot W}{\text{QL} \cdot f(A_1B_1C)} = \int f_1(A_1B_1C) = A + \overline{B}C, \quad f_2(A_1B_1C) = \overline{A} + \overline{B}C$$

$$Q.2.f(A,B) = \begin{cases} f_1(A,B) = \overline{A}+B \\ f_2(A,B) = A\overline{B} \end{cases}$$

$$Q.3f(A_1B) = \begin{cases} \\ f_1(A_1B) = A+B \end{cases}, f_2(A_1B) = A.B \end{cases}$$

$$\#Q.4$$
 $+(A,B)=\int f_1(A,B)=A\overline{B}, f_2(A,B)=\overline{A}$

Q.5.
$$f(A,B) = \int f_1(A,B) = \overline{A}B$$
, $f_2(A,B) = \overline{A}$

Conversion of one FF into another FF

Pw

- Procedure:
- -> Write down the characteristic table of durind FF on 1/p Mide
- -> Excitation table of available on 0/12 mide
- -> Then form truth and nimblify and then implement it

> denixed FF JK to D-

available:

FF

D	Q(n)	Q (n+1)	t	K
0	O	D	0	X
O	1	0	X	1
١	0	1	1	×
		1	X	0

J(D,Q(n))=	<u> 5(2)</u>
1. ()	$+ d \leq (1,3)$
K[D,Q(n)] = 3	$\geq (1)$
	+ d \(\int(0,2)\)

$$K = D$$

$$Q(n+1) = J\bar{Q}(n) + \bar{K}Q(n)$$

$$= D\bar{Q}(n) + DQ(n)$$

$$Q(n+1) = D(1) = D$$

• SR to JK: >> denised FF

ovalade Table:

FF

	J	K	Q(n)	Q(ntl)	S	R
0	D	O	0	0	0	X
1	0	0	1	1	X	6
2	0		D	O	0	X
3	0	J	, 1	0	D	1
4		٥	0	1		0
5		0		1	Х	0
6	1		O	1		0
7	1	1	1	0	0	1

All Conversion Results

F Y
W

SR - JK	S=JQ, R=KQ
SR - D	$S=D$, $R=\overline{D}$
SR - T	$S=T\overline{Q}$, $R=TQ$
JK - SR	J=S, K=R
JK - D	$J=D$, $K=\overline{D}$
JK - T	J=T, K=T
D - JK	$D = J \overline{Q} + \overline{K} Q \qquad Q(nt_1) = D = J \overline{Q}(n) + \overline{K} Q(n)$
D - T	$D = T \oplus Q(n)$ $Q(n+1) = D = T \oplus Q(n)$
T - JK	$T=J\bar{Q}(n)+kQ(n)$
T - SR	$T = S\overline{Q}(n) + RQ(n)$
T - D	$T = D \oplus Q(n)$

Topic: 2 Min Summary

By

Functionally Complete function

Onversion one FF into another FF.

Thank you

Seldiers!

