[4]

OR	111.	 (a) Check whether the grammar is ambiguous or not-S -> SS AB, A -> Aala, B -> Bb b (b) What do you mean by left recursion? How it can be removed? Explain with example. 	Ć
Q.5	i. ii.	Explain push down automata with its 7 tuple. Design push down automata which accept the language L={a^nb^nc^m where n>=1 and m>=1 }	3
OR	iii.	Give NPDA which simulates the following grammar where S is starting symbol- $S \to aBB cDD$ $B \to cD aS$ $D \to dD d$	7
Q.6	i. ii.	Attempt any two: Explain decidability and recursive enumerable languages Design turing machine to accept the language L={ WCW $ w\epsilon(a,b)$ }	5
	iii.	Design turing machine to accept the language L={ $WW^R w\epsilon(a,b)$ }	5

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

IT3CO33 Theory of Computation

Programme: B.Tech. Branch/Specialisation: IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

00000	, ar y . r .	outrons and symbols have their asaar meaning.	
Q.1	i.	Which of the following is correct? Statement 1: ε represents a single string in the set. Statement 2: Φ represents the language that consists of no string.	1
		(a) Statement 1 and 2 both are correct	
		(b) Statement 1 is false but 2 is correct	
		(c) Statement 1 and 2 both are false	
		(d) There is no difference between both the statements, ε and Φ are different notation for same reason	
	ii.	Which of the following is a correct statement?	1
		(a) Moore machine has no accepting states	
		(b) Mealy machine has accepting states	
		(c) We can convert Mealy to Moore but not vice versa	
		(d) All of these	
	iii.	Transition function of NDFA maps-	1
		(a) $\Sigma * Q \rightarrow Q$	
		(b) $Q * Q -> 2^{\Sigma}$	
		$(c) \Sigma * \Sigma -> Q$	
		(d) $Q * \Sigma \rightarrow 2^Q$	
	iv.	Finite automata require minimum number of stacks.	1
		(a) 1 (b) 0	
		(c) 2 (d) None of these	

P.T.O.

v.	Which of the following statement is false?		1	
	(a) Context free language is the subset of context language	sensitive		
	(b) Regular language is the subset of context sensitive language			
	(c) Recursively enumerable language is the super set of language			
	(d) Context sensitive language is a subset of con language	text free		
vi.	Production Rule: aAb->agb belongs to which of the following			
	category?			
	(a) Regular Language			
	(b) Context free Language			
	(c) Context Sensitive Language			
	(d) Recursively Enumerable Language			
vii.	A DPDA is a PDA in which:		1	
	(a) No state p has two outgoing transitions			
	(b) More than one state can have two or more outgoing transitions			
	(c) At least one state has more than one transitions	(c) At least one state has more than one transitions		
	(d) None of these			
viii.	Which of the following does not have left recursions?			
	(a) Chomsky Normal Form			
	(b) Greibach Normal Form			
	(c) Both (a) and (b)			
	(d) All of these			
ix.	A language L is said to be if there is a turing			
	machine M such that L(M)=L and M halts at every point.			
	(a) Turing acceptable (b) Decidable			
	(c) Undecidable (d) None of these			
х.	Turing machine can be represented using the following tools:			
	(a) Transition graph (b) Transition table			
	(c) Queue and Input tape (d) All of these			
i.	Write the closure properties of Regular languages.		2	
ii.	Write regular expression which accepts all the string state ending with same symbol.	arting and	3	

Q.2

 $X \to b$ $A \to a$

Marking Scheme

Theory of Computation (T) - IT3CO33 (T)

Q.1	i) a) Statement 1 and 2 both are correct			1
	ii)	a) Moore machine has no accepting states		
	 iii) d) Q * Σ -> 2^Q iv) b) 0 v) d) Context sensitive language is a subset of context free language vi) c) Context Sensitive Language 			1
				1
				1
				1
	vii)	vii) a) No state p has two outgoing transitions		
	viii)	b) Greibach Normal Form		1
	ix)	b) decidable		1
	x)	d) All of the mentioned		1
Q.2	i.	Each property	(0.5 Mark*4)	2
	ii.	RE	(As per explanation)	3
	iii.	Conversion	(As per explanation)	5
OR	iv.	DFA	(As per explanation)	5
Q.3	i.	Statement Proof	1 Mark 3 Marks	4
	ii.	Conversion	(As per explanation)	6
OR	iii.	Minimization Transition table	5 Marks 1 Mark	6

Q.4	i.	Classification	(As per explanation)	4
	ii.	Conversion	(As per explanation)	6
OR	iii.	a) Conversionb) 1 mark for each question	3 Marks (1 Mark*3)	6
Q.5	i.	Definition	(As per explanation)	3
	ii.	PDA construction	(As per explanation)	7
OR	iii.	Converting CFG to NDPDA	(As per explanation)	7
Q.6				
	i.	Decidability Recursive enumerable languages	2.5 Marks 2.5 Marks	5
	ii.	TM construction	(As per explanation)	5
	iii.	TM construction	(As per explanations)	5
