

Description

The VSM20N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

Genera Features

- $V_{DS} = 60V, I_D = 20A$ $R_{DS(ON)} < 44m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM20N06-T1	VSM20N06	TO-251	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	20	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	14	Α	
Pulsed Drain Current	I _{DM}	45	A W	
Maximum Power Dissipation	P _D	30		
Derating factor		0.2	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ ℃	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175		

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	5	°C/W
--	------------------	---	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	2.0	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =10A	-	37	44	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =4.5A	11	-	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}	.,	-	500	-	PF
Output Capacitance	C _{oss}	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	60	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UNITZ	-	25	-	PF
Switching Characteristics (Note 4)			•	•		
Turn-on Delay Time	t _{d(on)}		-	5	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_{D} =2A, R_{L} =6.7 Ω	-	2.6	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =3 Ω	-	16.1	-	nS
Turn-Off Fall Time	t _f		-	2.3	-	nS
Total Gate Charge	Qg	V 00V/1 4.5A	-	14		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=4.5A,$ $V_{GS}=10V$	-	2.9		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	5.2		nC
Drain-Source Diode Characteristics			•	•		•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	20	А
Reverse Recovery Time	erse Recovery Time t_{rr} TJ = 25°C, IF =2		-	35	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	53	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition:Tj=25 $^{\circ}$ C,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 $V_{\text{GS(th)}}$ vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance