AE 04: NYC flights + data wrangling

Hannah Andronyk

```
library(tidyverse)
library(nycflights13)
```

Exercise 1

Your turn: Fill in the blanks:

The flights data frame has 336,776 rows. Each row represents a flight.

Exercise 2

Your turn: What are the names of the variables in flights.

glimpse(flights)

```
Rows: 336,776
Columns: 19
               <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2~
$ year
$ month
               $ day
               <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, ~
$ dep_time
$ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, ~
               <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1~
$ dep_delay
               <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,~
$ arr time
$ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,~
               <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1~
$ arr_delay
$ carrier
               <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "~
               <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4~
$ flight
               <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394~
$ tailnum
               <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",~
$ origin
```

colnames(flights)

```
[1] "year"
                                          "day"
                                                            "dep_time"
                       "month"
 [5] "sched_dep_time" "dep_delay"
                                                            "sched_arr_time"
                                          "arr_time"
 [9] "arr_delay"
                       "carrier"
                                         "flight"
                                                            "tailnum"
[13] "origin"
                       "dest"
                                                            "distance"
                                         "air_time"
                       "minute"
[17] "hour"
                                          "time_hour"
```

Exercise 3 - select()

Make a data frame that only contains the variables dep_delay and arr_delay.

```
delays <- flights %>%
  select(c(dep_delay, arr_delay))
print(delays)
```

```
# A tibble: 336,776 x 2
   dep_delay arr_delay
       <dbl>
                   <dbl>
            2
 1
                      11
2
            4
                      20
            2
3
                      33
 4
           -1
                     -18
 5
           -6
                     -25
6
           -4
                      12
7
           -5
                      19
8
           -3
                     -14
9
           -3
                      -8
           -2
10
                       8
# i 336,766 more rows
```

• Make a data frame that keeps every variable except dep_delay.

```
not_dep_delay <- flights %>%
   select(-dep_delay)
print(not_dep_delay)
```

A tibble: 336,776 x 18

	year	${\tt month}$	day	${\tt dep_time}$	$sched_dep_time$	${\tt arr_time}$	${\tt sched_arr_time}$	arr_delay
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
1	2013	1	1	517	515	830	819	11
2	2013	1	1	533	529	850	830	20
3	2013	1	1	542	540	923	850	33
4	2013	1	1	544	545	1004	1022	-18
5	2013	1	1	554	600	812	837	-25
6	2013	1	1	554	558	740	728	12
7	2013	1	1	555	600	913	854	19
8	2013	1	1	557	600	709	723	-14
9	2013	1	1	557	600	838	846	-8
10	2013	1	1	558	600	753	745	8

- # i 336,766 more rows
- # i 10 more variables: carrier <chr>, flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>
 - Make a data frame that includes all variables between year through dep_delay (inclusive). These are all variables that provide information about the departure of each flight.

```
rangeflightdf <- flights %>%
  select(c(year:dep_delay))
print(rangeflightdf)
```

A tibble: 336,776 x 6

	year	month	day	dep_time	sched_dep_time	dep_delay
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
1	2013	1	1	517	515	2
2	2013	1	1	533	529	4
3	2013	1	1	542	540	2
4	2013	1	1	544	545	-1
5	2013	1	1	554	600	-6
6	2013	1	1	554	558	-4

```
7 2013
           1
                  1
                          555
                                         600
                                                    -5
8
   2013
                   1
                          557
                                         600
                                                    -3
             1
9 2013
                   1
                                                    -3
             1
                          557
                                         600
10 2013
             1
                   1
                          558
                                         600
                                                    -2
# i 336,766 more rows
```

• Use the select helper contains() to make a data frame that includes the variables associated with the arrival, i.e., contains the string "arr_" in the name.

```
arrival <- flights %>%
  select(contains("arr_"))
print(arrival)
```

A tibble: 336,776 x 3

	arr_time	sched_arr_time	arr_delay
	<int></int>	<int></int>	<dbl></dbl>
1	830	819	11
2	850	830	20
3	923	850	33
4	1004	1022	-18
5	812	837	-25
6	740	728	12
7	913	854	19
8	709	723	-14
9	838	846	-8
10	753	745	8

i 336,766 more rows

Exercise 4 - slice()

• Display the first five rows of the flights data frame.

```
first5 <- flights %>%
    slice(1:5)

print(first5)
```

```
# A tibble: 5 x 19
  year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
  <int> <int> <int> <int> <int> <int> <int></int>
```

```
2013
                             517
                                               515
                                                             2
                                                                     830
                                                                                       819
1
                     1
   2013
                                               529
                                                             4
                                                                                       830
2
              1
                     1
                             533
                                                                     850
3
   2013
              1
                     1
                             542
                                               540
                                                             2
                                                                     923
                                                                                       850
4
   2013
              1
                     1
                                               545
                                                            -1
                                                                    1004
                                                                                      1022
                             544
              1
                     1
                                               600
                                                            -6
5
   2013
                             554
                                                                     812
                                                                                       837
```

- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>
 - Display the last two rows of the flights data frame.

```
last2 <- flights %>%
  tail(2)
print(last2)
```

```
# A tibble: 2 x 19
```

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time <int> <dbl> <int> <int> <int> <int> <int> <int> 1 2013 NA NANANANA

- # i 11 more variables: arr delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

Exercise 5 - arrange()

• Let's arrange the data by departure delay, so the flights with the shortest departure delays will be at the top of the data frame.

```
depart_delays1 <- flights %>%
    arrange(dep_delay)

print(depart_delays1)
```

A tibble: 336,776 x 19

day dep_time sched_dep_time dep_delay arr_time sched_arr_time year month <int> <int> <int> <int> <int> <dbl> <int> <int> 1 2013 -43 2 2013 -33 3 2013 -32

4	2013	1	11	1900	1930	-30	2233	2243
5	2013	1	29	1703	1730	-27	1947	1957
6	2013	8	9	729	755	-26	1002	955
7	2013	10	23	1907	1932	-25	2143	2143
8	2013	3	30	2030	2055	-25	2213	2250
9	2013	3	2	1431	1455	-24	1601	1631
10	2013	5	5	934	958	-24	1225	1309

- # i 336,766 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>
 - Question: What does it mean for the dep_delay to have a negative value? It means this flight came early by x amount of time, we know this because this value is the difference between scheduled departure time and departure time.
 - Arrange the data by descending departure delay, so the flights with the longest departure delays will be at the top.

```
depart_delays2 <- flights %>%
   arrange(-dep_delay)

print(depart_delays2)
```

A tibble: 336,776 x 19

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	9	641	900	1301	1242	1530
2	2013	6	15	1432	1935	1137	1607	2120
3	2013	1	10	1121	1635	1126	1239	1810
4	2013	9	20	1139	1845	1014	1457	2210
5	2013	7	22	845	1600	1005	1044	1815
6	2013	4	10	1100	1900	960	1342	2211
7	2013	3	17	2321	810	911	135	1020
8	2013	6	27	959	1900	899	1236	2226
9	2013	7	22	2257	759	898	121	1026
10	2013	12	5	756	1700	896	1058	2020

- # i 336,766 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

• Your turn: Create a data frame that only includes the plane tail number (tailnum), carrier (carrier), and departure delay for the flight with the longest departure delay. What is the plane tail number (tailnum) for this flight? N384HA

```
tailnum_delay <- depart_delays2 %>%
  select(c(tailnum, carrier, dep_delay)) %>%
  slice(1)

print(tailnum_delay)
```

Exercise 6 - filter()

• Filter for all rows where the destination airport is RDU.

```
RDU_airport1 <- flights %>%
  filter(dest == "RDU")
print(RDU_airport1)
```

A tibble: 8,163 x 19

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	800	810	-10	949	955
2	2013	1	1	832	840	-8	1006	1030
3	2013	1	1	851	851	0	1032	1036
4	2013	1	1	917	920	-3	1052	1108
5	2013	1	1	1024	1030	-6	1204	1215
6	2013	1	1	1127	1129	-2	1303	1309
7	2013	1	1	1157	1205	-8	1342	1345
8	2013	1	1	1240	1235	5	1415	1415
9	2013	1	1	1317	1325	-8	1454	1505
10	2013	1	1	1449	1450	-1	1651	1640

- # i 8,153 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

• Filter for all rows where the destination airport is RDU and the arrival delay is less than 0.

```
RDU_airport2 <- flights %>%
  filter(dest == "RDU") %>%
  filter(arr_delay < 0)
print(RDU_airport2)</pre>
```

A tibble: 4,232 x 19

	year	month	day	dep_time	sched_dep_time	<pre>dep_delay</pre>	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	800	810	-10	949	955
2	2013	1	1	832	840	-8	1006	1030
3	2013	1	1	851	851	0	1032	1036
4	2013	1	1	917	920	-3	1052	1108
5	2013	1	1	1024	1030	-6	1204	1215
6	2013	1	1	1127	1129	-2	1303	1309
7	2013	1	1	1157	1205	-8	1342	1345
8	2013	1	1	1317	1325	-8	1454	1505
9	2013	1	1	1505	1510	-5	1654	1655
10	2013	1	1	1800	1800	0	1945	1951

- # i 4,222 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>
 - Your turn: Describe what the code is doing in words.

The code is filtering the flights data set for "RDU" and "GSO" in the dest column and keeping rows for these values that correspond to less than 0 rows in arr_delay or dep_delay columns.

```
flights |>
  filter(
   dest %in% c("RDU", "GSO"),
   arr_delay < 0 | dep_delay < 0
)</pre>
```

```
# A tibble: 6,203 x 19
```

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <int><</pre>

1	2013	1	1	800	810	-10	949	955
2	2013	1	1	832	840	-8	1006	1030
3	2013	1	1	851	851	0	1032	1036
4	2013	1	1	917	920	-3	1052	1108
5	2013	1	1	1024	1030	-6	1204	1215
6	2013	1	1	1127	1129	-2	1303	1309
7	2013	1	1	1157	1205	-8	1342	1345
8	2013	1	1	1317	1325	-8	1454	1505
9	2013	1	1	1449	1450	-1	1651	1640
10	2013	1	1	1505	1510	-5	1654	1655

[#] i 6,193 more rows

Hint: Logical operators in R:

operator	definition
<	is less than?
<=	is less than or equal to?
>	is greater than?
>=	is greater than or equal to?
==	is exactly equal to?
! =	is not equal to?
x & y	is x AND y?
x \ y	is x OR y?
is.na(x)	is x NA?
!is.na(x)	is x not NA?
x %in% y	is x in y?
!(x %in% y)	is x not in y?
!x	is not x ? (only makes sense if x is TRUE or FALSE)

Exercise 7 - count()

• Create a frequency table of the destination locations for flights from New York.

```
freq_flights <- flights %>%
   count(dest)

print(freq_flights)
```

[#] i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,

[#] tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

[#] hour <dbl>, minute <dbl>, time_hour <dttm>

```
# A tibble: 105 x 2
   dest
              n
   <chr> <int>
 1 ABQ
            254
 2 ACK
            265
 3 ALB
            439
 4 ANC
              8
 5 ATL
          17215
 6 AUS
           2439
 7 AVL
            275
 8 BDL
            443
 9 BGR
            375
10 BHM
            297
# i 95 more rows
```

• In which month was there the fewest number of flights? How many flights were there in that month? February had the fewest number of flights with a total of 24951 flights

```
freq_month <- flights %>%
  count(month) %>%
  arrange(n)

print(freq_month)
```

```
# A tibble: 12 x 2
   month
   <int> <int>
       2 24951
 1
2
       1 27004
 3
      11 27268
 4
       9 27574
 5
      12 28135
 6
       6 28243
 7
       4 28330
8
       5 28796
9
       3 28834
10
      10 28889
       8 29327
11
12
       7 29425
```

• Your turn: On which date (month + day) was there the largest number of flights? How many flights were there on that day? The largest number of flights was on November 27th with a total of 1014 flights

```
freq_day <- flights %>%
  count(month, day) %>%
  arrange(-n)

print(freq_day)
```

```
# A tibble: 365 x 3
  month
          day
  <int> <int> <int>
1
     11
           27 1014
2
      7
           11 1006
3
      7
           8 1004
4
     7
           10 1004
5
     12
          2 1004
6
      7
           18 1003
7
      7
           25 1003
8
      7
           12 1002
9
      7
           9 1001
10
      7
           17 1001
# i 355 more rows
```

Exercise 8 - mutate()

• Convert air_time (minutes in the air) to hours and then create a new variable, mph, the miles per hour of the flight.

```
flight_timehr <- flights %>%
  mutate(air_time = air_time/60) %>%
  mutate(mph = distance/air_time)

print(flight_timehr)
```

A tibble: 336,776 x 20

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	517	515	2	830	819
2	2013	1	1	533	529	4	850	830
3	2013	1	1	542	540	2	923	850
4	2013	1	1	544	545	-1	1004	1022
5	2013	1	1	554	600	-6	812	837

```
2013
              1
                             554
                                              558
                                                           -4
                                                                   740
                                                                                     728
6
                     1
7
    2013
                     1
                             555
                                              600
                                                           -5
                                                                   913
                                                                                     854
              1
8
   2013
              1
                     1
                             557
                                              600
                                                           -3
                                                                   709
                                                                                     723
9
   2013
              1
                     1
                             557
                                              600
                                                           -3
                                                                   838
                                                                                     846
              1
                     1
10 2013
                                                           -2
                             558
                                              600
                                                                   753
                                                                                     745
```

- # i 336,766 more rows
- # i 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>, mph <dbl>
 - Your turn: First, count the number of flights each month, and then calculate the proportion of flights in each month. What proportion of flights take place in July? 0.087

```
month_prop <- flights %>%
  count(month) %>%
  mutate(prop_flight = n/sum(n))

print(month_prop)
```

```
# A tibble: 12 x 3
```

			0
	${\tt month}$	n	<pre>prop_flight</pre>
	<int></int>	<int></int>	<dbl></dbl>
1	1	27004	0.0802
2	2	24951	0.0741
3	3	28834	0.0856
4	4	28330	0.0841
5	5	28796	0.0855
6	6	28243	0.0839
7	7	29425	0.0874
8	8	29327	0.0871
9	9	27574	0.0819
10	10	28889	0.0858
11	11	27268	0.0810
12	12	28135	0.0835

• Create a new variable, rdu_bound, which indicates whether the flight is to RDU or not. Then, for each departure airport (origin), calculate what proportion of flights originating from that airport are to RDU.

```
RDU_flights <- flights %>%
  mutate(rdu_bound = if_else(dest == "RDU", "Yes", "No")) %>%
  group_by(origin) %>%
```

```
mutate(prop_rdu = sum(rdu_bound == "Yes")/n()) %>%
  count(prop_rdu)
print(RDU_flights)
```

Exercise 9 - summarize()

• Find mean arrival delay for all flights.

Exercise 10 - group_by()

- Find mean arrival delay for for each month.
- Your turn: What is the median departure delay for each airports around NYC (origin)? Which airport has the shortest median departure delay?

```
# add code here
```

Additional Practice

Try these on your own, either in class if you finish early, or after class.

Create a new dataset that only contains flights that do not have a missing departure time.
 Include the columns year, month, day, dep_time, dep_delay, and dep_delay_hours
 (the departure delay in hours). Hint: Note you may need to use mutate() to make one
 or more of these variables.

add code here

2. For each airplane (uniquely identified by tailnum), use a group_by() paired with summarize() to find the sample size, mean, and standard deviation of flight distances. Then include only the top 5 and bottom 5 airplanes in terms of mean distance traveled per flight in the final data frame.

add code here