Directory Location

Configure the data base, taken from https://www.sports-reference.com/cfb/years/2024-passing.html (https://www.sports-reference.com/cfb/years/2024-passing.html)

```
1 import pandas as pd
In [23]:
          2 import numpy as np
          4 # load the data
            gb data = pd.read csv("OBCollegeStats.csv")
          7 # data is stored in one column, separate it into separate columns
          8 if qb data.shape[1] == 1:
                 qb_data = qb_data[qb_data.columns[0]].str.split(",", expand=True)
         10
         11 # Set column headers
         12 qb_data.columns = ["Rk", "Player", "Team", "Conf", "G", "Cmp", "Att", "Cmp%", "Yds",
         13 "TD", "TD%", "Int", "Int%", "Y/A", "AY/A", "Y/C", "Y/G", "Rate",
         14 "Awards", "Player-additional"]
         15
         16 #rename conferences of these two teams as they are stored wrong in database
         17 gb data.loc[gb data["Team"].isin(["Oregon State", "Washington State"]), "Conf"] = "Pac-12"
```

Box plot of QB rating by Conference

```
In [24]:
          1 import matplotlib.pyplot as plt
          3 #ensure OB rating and OB passing attempts is numeric values
          4 | qb | data["Rate"] = pd.to | numeric(qb | data["Rate"])
          5 | gb data["Att"] = pd.to numeric(gb data["Att"])
         7 # Filter for QBs with atleast 200 passing attempts
          8 | gb data filtered = gb data[(gb data["Att"] >= 200)]
         10 # Plot figure
        11 plt.figure(figsize=(10, 6))
         12
        13 # plot boxplot with data grouped conference
        15
         16 #plot axis
         17 plt.title("QB Rating by Conference (with atleast 200 Passing Attempts)")
         18 plt.suptitle("")
        19 plt.xlabel("Conference")
         20 plt.vlabel("OB Rating")
         21
         22 #rotate labels of x axis to make it more legible
         23 plt.xticks(rotation=45)
         24
         25 #store it as pdf in a folder
         26 FIG = "./outputs/"
         27 plt.savefig(FIG+"QBRatingBoxPlot.pdf")
         28
         29 plt.show()
```

<Figure size 1000x600 with 0 Axes>

Import advance modeling tools

```
In [25]:
          1 from econml.dml import CausalForestDML
          2 from sklearn.model_selection import train_test_split
          3 from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
          4 from statsmodels.regression.linear model import OLS
          5 from statsmodels.tools import add constant
          7 #name the power 5 conferences
          8 power5 conferences = ["SEC", "Big Ten", "Big 12", "ACC", "Pac-12"]
         10 # make a copy to avoid SettingWithCopyWarning
         11 gb data filtered = gb data filtered.copy()
         12
         13 # Create a binary Power5 column, uses loc to avoid SettingWithCopyWarning
         14 gb data filtered.loc[:, "Power5"] = gb data filtered["Conf"].apply(lambda x: 1 if x in power5 conferences
         15
         16 | # Select numeric columns for the model, input variable
         17 X = qb data filtered[[
                 "Rk", "G", "Cmp", "Att", "Cmp%", "Yds", "TD", "TD%", "Int", "Int%",
         18
                 "Y/A", "AY/A", "Y/C", "Y/G"
         19
         20 ]]
         21
         22 #dependent variable
         23 D = qb data filtered["Power5"]
         24
         25 #output variable
         26 Y = qb data filtered["Rate"]
         27
         28 #combine input variable with dependent variable
         29 X_with_D = pd.concat([X, D], axis=1)
         30
```

Linear Regression Model

```
1 # Combine all variables
In [26]:
          2 combined = pd.concat([Y, X with D], axis=1)
          4 # Drop rows that contain values such as "NaNs"
          5 combined clean = combined.dropna()
          6 Y clean = combined clean["Rate"]
          7 X clean = combined clean.drop(columns=["Rate"])
          9 # Data stored were still objects, convert it all to numerical
         10 X clean = X clean.apply(pd.to numeric)
         11 Y clean = pd.to numeric(Y clean)
         12
         13 # merge again and drop rows that converted into "NaNs" value after conversio;
         14 combined final = pd.concat([Y clean, X clean], axis=1).dropna()
         15
         16 # Split it back to X and Y
         17 Y clean = combined final.iloc[:, 0]
         18 X_clean = combined_final.iloc[:, 1:]
         19
         20 #add a constant term for X
         21 X clean = add constant(X clean)
         22
         23 #create a OLS regression model
         24 OLS regression model = OLS(Y clean, X clean).fit()
         25
         26 # Create a figure (to store it as a pdf)
         27 fig. ax = plt.subplots(figsize=(12, 8))
         28 #remove axis
         29 ax.axis("off")
         30
         31 # Convert the summary to a string
         32 OLS_summary = OLS_regression_model.summary().as_text()
         33
         34 # Plot the text which was converted as a string onto the figure
         35 ax.text(0, 1, OLS_summary, fontsize=10, va="top", family="monospace")
         36
         37 # Store as PDF
         38 plt.savefig(FIG + "OLS_Regression_Summary.pdf", bbox_inches="tight")
         39
         40 #output
```

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	tions: s: Type:	nonro	2025 03:07 121 105 15	Adj. F-st Prob Log- AIC: BIC:		======	1.000 1.000 2.823e+05 2.03e-234 145.38 -258.8 -214.0
	coef	std err		t	P> t	[0.025	0.975]
const Rk G Cmp Att Cmp% Yds TD TD% Int Int% Y/A AY/A Y/C Y/G Power5 =========	-1.6657 0.0017 -0.0056 -0.0035 -4.73e-05 1.0343 0.0005 -0.0013 1.7179 -0.0146 1.6200 0.1327 7.9417 0.1298 -0.0006	0.001 0.030 0.003 0.002 0.019 0.000 0.008 0.069 0.015 0.132 0.276 0.301 0.068 0.068	1 - 0 - 1 - 0 55 - 0 24 - 1 12 0 26 1	522 617 187 373 026 440 498 159 955 003 310 481 344 909 366 779	0.131 0.109 0.852 0.173 0.979 0.000 0.014 0.874 0.000 0.318 0.000 0.632 0.000 0.059 0.715 0.438	-3.836 -0.000 -0.065 -0.009 -0.004 0.997 0.000 -0.017 1.581 -0.044 1.359 -0.415 7.344 -0.005 -0.004 -0.044	0.504 0.004 0.054 0.002 0.004 1.071 0.001 0.015 1.854 0.014 1.881 0.680 8.539 0.265 0.003 0.019
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	- G	0.816 0.665 0.001 2.590	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.999 0.848 0.654 4.20e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 4.2e+05. This might indicate that there are
- strong multicollinearity or other numerical problems.

Estimate casual forest

```
1 cf = CausalForestDML(
In [27]:
                 model y=GradientBoostingRegressor(),
                 model t=GradientBoostingClassifier(), #use a classifier for treatement
           3
                 discrete_treatment=True,
           4
           5
                 random_state=42
           6
           8 #fitting the treatment effects into the model
           9 cf.fit(Y, D, X=X)
         10 tau hat = cf.effect(X)
         11 tau hat_se = cf.effect_interval(X)
         12
         13 #check and print summary
         14 cf.summary()
```

Population summary results are available only if `cache_values=True` at fit time!

Out[27]:

Doubly Robust ATE on Training Data Results

```
        point_estimate
        stderr
        zstat
        pvalue
        ci_lower
        ci_upper

        ATE
        -8.53
        6.951
        -1.227
        0.22
        -22.154
        5.094
```

Doubly Robust ATT(T=0) on Training Data Results

```
point_estimate stderr zstat pvalue ci_lower ci_upper 
ATT -9.661 11.014 -0.877 0.38 -31.249 11.926
```

Doubly Robust ATT(T=1) on Training Data Results

```
point_estimate stderr zstat pvalue ci_lower ci_upper

ATT -7.488 8.682 -0.862 0.388 -24.504 9.528
```

Histogram of treatment effects

```
In [28]:
          1 # Separate based on actual Power 5 status
          2 tau power5 = tau hat[D == 1]
          3 tau nonpower5 = tau hat[D == 0]
          5 #plot histogram
          6 plt.hist(tau power5, bins=20, alpha=0.6, label="Power 5", color="blue")
          7 plt.hist(tau nonpower5, bins=20, alpha=0.6, label="Non-Power 5", color="orange")
          8 #plot average treatement effect line
          9 plt.axvline(np.mean(tau_hat), color="red", linestyle="--", label= "Average Treatment Effect (ATE)")
         10 plt.axvline(np.mean(tau power5), color="blue", linestyle="--", label= "Power 5 College ATE")
         11 plt.axvline(np.mean(tau nonpower5), color="orange", linestyle="--", label= "Non-Power 5 College ATE")
         12
         13 #plot axis, legend and grid
         14 plt.title("Distribution of Treatment Effects\n(Power 5 College vs. Non-Power 5 College)")
         15 plt.xlabel("Effect on OB Rating")
         16 plt.vlabel("Frequency")
         17 plt.legend(fontsize = "small")
         18 plt.grid(True)
         19
         20 #store it as pdf in a folder
         21 plt.savefig(FIG+"OBRatingATE.pdf")
         22
         23 #output diagram
         24 plt.show()
         25
         26 #print the values of ATE
         27 print("ATE (All):", np.mean(tau_hat))
         28 print("ATE (Power 5):", np.mean(tau_power5))
         29 print("ATE (Non-Power 5):", np.mean(tau_nonpower5))
```

Distribution of Treatment Effects (Power 5 College vs. Non-Power 5 College)

ATE (All): -0.14431797340206004 ATE (Power 5): -0.1381118511303841 ATE (Non-Power 5): -0.1510591062143977

Ordered treatment effects

```
In [29]:
          1 #flatten treatment effect to estimate effects of a 1D array
          2 effects = tau_hat.flatten()
            #calculate confidence intervals
          5 ci = tau hat se[1] - effects
          7 #sort treatment effects for a clearer visualisation
          8 | sorted index= np.argsort(effects)
         10 #plot treatment effects with error bars which are confidence intervals,
         11 #each point is a OB and sorted by their estimated treatement effect
         12 plt.errorbar(
         13
                 np.arange(len(effects)),
                 effects[sorted index].
         14
         15
                 yerr=ci[sorted_index],
                fmt='o',
         16
                 alpha=0.3)
         17
         18
         19 #plot axis
         20 plt.title("Ordered Treatment Effects with Convidence Intervals")
         21 plt.xlabel("OB (sorted based on treatment effect estimate)")
         22 plt.ylabel("Treatment Effect")
         23 plt.grid(True)
         24
         25 #store as pdf
         26 plt.savefig(FIG+"CIOTE.pdf")
         27
         28 #output diagram
         29 plt.show()
```


Subgroup Treatment effect

```
In [30]:
          1 #make a copy to avoid SettingWithCopyWarning
          2 | gb data filtered = gb data filtered.copy()
            #Convert "Y/G" Column to numerical as it is stored as a string
          5 qb data filtered["Y/G"] = pd.to numeric(qb data filtered["Y/G"])
          7 #split data into high yards per game and low yards per game using the median
          8 high vards per game = qb data filtered["Y/G"] > qb data filtered["Y/G"].median()
          9 low yards per game = ~high yards per game
         10
         11 #get treatment effects of both groups
         12 tau_high = cf.effect(X[high_yards_per_game])
         13 tau low = cf.effect(X[low yards per game])
         14
         15 #plot treatment effect for each group using histogram
         16 plt.hist(tau high, alpha=0.5, color="blue", label="High Y/G")
         17 plt.hist(tau low, alpha=0.5, color="orange", label="Low Y/G")
         18
         19 # Plot ATE lines for each group
         20 plt.axvline(np.mean(tau high), color="blue", linestyle="--", label="High Y/G ATE")
         21 plt.axvline(np.mean(tau low), color="orange", linestyle="--", label="Low Y/G ATE")
         22
         23 #plot labels
         24 plt.legend()
         25 plt.title("Treatment Effects by Yards/Game Subgroup")
         26 plt.xlabel("Estimated Effect on QB Rating")
         27 plt.ylabel("Frequency")
         28
         29 #store as pdf
         30 plt.savefig(FIG+"TreatmentEffectsSubgroup.pdf")
         31
         32 #output diagram
         33 plt.show()
```


SHAP Summary

```
In [31]:
          1 import shap
          3 # Ensure X is all numeric
             X = X.apply(pd.to numeric, errors="coerce").dropna()
            #create a function to get treatment effect from cf model
             def model_for_shap(X_input):
                 return cf.const marginal effect(X input).flatten()
          8
         10 #create a background data set
         11 background = shap.sample(X, 100, random state=0)
         12
         13 # Create SHAP explainer
         14 explainer = shap.Explainer(model for shap, background)
         15
         16 # Compute SHAP values
         17 | shap values = explainer(X)
         18
         19 # Plot SHAP summary bar chart
         20 shap.summary plot(
                 shap_values.values,
         21
         22
                 features=X,
                 feature_names=X.columns,
         23
         24
                 plot_type="bar",
         25
                 show=False)
         26
         27 #plot axis
         28 plt.title("QB Performance Metrics Importance for Treatment Effects (SHAP)")
         29 plt.xlabel("Mean SHAP Value \n (Treatment Effects)", fontsize=12)
         30 plt.ylabel("OB Performance Metrics", fontsize = 12)
         31
         32
         33 #store as pdf
         34 plt.savefig(FIG+"SHAPvalues.pdf")
         35
         36 #out
         37 plt.show()
         38
```

PermutationExplainer explainer: 122it [01:19, 1.35it/s]

QB Performance Metrics Importance for Treatment Effects (SHAP)

1 import matplotlib.pyplot as plt In [32]: 2 import numpy as np 3 from sklearn.linear model import LinearRegression 5 # Convert "Cmp%" values to numeric as they are stored as strings 6 cmp percent = pd.to numeric(qb data filtered.loc[X.index, "Cmp%"], errors='coerce').values 8 # Get predicted treatment effects 9 te predicts = cf.const marginal effect(X).flatten() 10 11 # Remove any missing values so we can plot properly 12 valid data = ~np.isnan(cmp percent) & ~np.isnan(te predicts) 13 cmp percent = cmp percent[valid data] 14 15 #reverse the data as retrieved treatment effect is reversed 16 te predicts = 1 - te predicts[valid data] 17 18 # generate a simple linear regression model to show relation between "cmp%" and predicted treatment effect 19 model = LinearRegression() 20 cmp_reshaped = cmp_percent.reshape(-1, 1) 21 model.fit(cmp reshaped, te predicts) 22 line_x = np.linspace(cmp_percent.min(), cmp_percent.max(), 100).reshape(-1, 1) 23 line y = model.predict(line x) 24 25 # Plot the scatter graph and the trend line 26 plt.figure(figsize=(8, 6)) 27 plt.scatter(cmp percent, te predicts, label="OBs") 28 plt.plot(line_x, line_y, color="red", linewidth=2, label="General Correlation") 29 30 # plot axis, title and legend 31 plt.xlabel("Completion Percentage (Cmp%)") 32 plt.ylabel("Predicted Treatment Effect") 33 plt.title("Correlation between Cmp% & Predicted Treatment Effect") 34 plt.legend() 35 36 # store as pdf 37 plt.savefig(FIG + "Cmp vs TreatmentEffect MPL.pdf") 38 39 #output

40 plt.show()

