MACS205: Méthode de Monte-Carlo

1 Introduction

But du cours : étudier des méthodes aléatoires d'approximation d'intégrales.

Soit (S, S, μ) un espace mesuré où μ est une mesure positive. Soit $\varphi \colon S \to \mathbf{R}$ une fonction intégrable. On cherche à approcher $I(\varphi) = \int \varphi \, d\mu$.

Plusieurs cas de figure en pratique :

- φ est une fonction continue avec une expression analytique et on arrive à calculer son intégrale,
- l'intégrale de φ est incalculable. Exemples : Gaussienne ou indicatrice d'ensemble S où l'on ne connaît pas de forme analytique.

Les méthodes considérées sont de la forme suivante :

- 1. choisir/tirer des points $X_1, ..., X_n$ sur S,
- 2. évaluer $\varphi(X_1), \ldots, \varphi(X_n)$,
- 3. trouver une transformation de $(X_1, \varphi(X_1)), \dots, (X_n, \varphi(X_n))$ qui approche $I(\varphi)$.

2 La méthode de Monte-Carlo

$$I(\varphi) = \int \varphi \, dN = \mathbf{E}_{\mu}(\varphi)$$

D'après la LFGN, si X_1, \ldots, X_n sont i.i.d. de loi μ tel que $\mathbf{E}_{\mu} | vf | < \infty$ alors $\frac{1}{n} \sum_i \varphi(X_i) \stackrel{\mathrm{p.s.}}{\longrightarrow} \mathbf{E}_{\mu} (\varphi(X_1))$.

Algorithme 1 : Monte-Carlo

Générer $X_1,...,X_n$ de façon indépendante sous μ ;

Calculer $\varphi(X_1), \ldots, \varphi(X_n)$;

Sorties: $\hat{I}_n(\varphi) = \frac{1}{n} \sum_i \varphi(X_i)$

Prop. Si $\int |\varphi| d\mu < \infty$, $\hat{I}_n(\varphi)$ est non-biaisée et consistante. Si $\int |\varphi|^2 d\mu < \infty$, $Var(\hat{I}_n(\varphi)) = \frac{1}{n} Var(\varphi(X_1)) = \frac{1}{n} \sigma^2$ et $\sqrt{n} (\hat{I}_n(\varphi) - I(\varphi)) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

On estime σ^2 par $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left(\varphi(X_i) - \hat{I}_n(\varphi) \right)^2$.

Prop. Si $\int |\varphi|^2 d\mu < \infty$ alors $\hat{\sigma}^2$ est sans biais et fortement consistant (par la LFGN).

••

Th (Inégalité de Hoeffding). Soit $(X_1, ..., X_n)$ des v.a i.i.d telles que $\forall i \in [[1;n]], a \leq X_1 \leq b$ p.s. Alors

$$\mathbf{P}\left(\left|\sum_{i=1}^{n} (X_i - \mathbf{E}(X_i))\right| > \varepsilon\right) \leqslant 2e^{-\frac{3\varepsilon^2}{n(b-a)^2}}.$$

•••

3 Concentration

4 Déterministe vs aléatoire

On se place dans le cadre de l'approximation de $\int_{[0;1]^d} \varphi(x) dx$ où $\varphi \colon [0;1]^d \longrightarrow \mathbf{R}$.

Méthode déterministe des sommes de Riemann

On se donne n^d points équidistants $\left(\frac{i_1}{n}, \dots, \frac{i_d}{n}\right)$ où $(i_1, \dots, i_d) \in [[1:n]]^d$. La méthode des sommes de Riemann est

$$I_n(\varphi) = \frac{1}{n^d} \sum_{(i_1, \dots, i_d) \in \llbracket [1; n \rrbracket]^d} \varphi\left(\frac{i_1}{n}, \dots, \frac{i_d}{n}\right).$$

Prop. Si $\varphi: [0;1]^d \longrightarrow \mathbf{R}$ est *L*-lipschitzienne alors $|I_n(\varphi) - I(\varphi)| \leq \frac{\sqrt{d}}{n}$.