KEY Management PCI DSS Reference

Yaron Hakon
WAF TEAM LEADER
Application Security Consultant
2BSecure
yaron@2bsecure.co.il

Agenda:

- The need for key management
- PCI- Key Management overview.
- Key management PAIN points.
- Credit card processing solution.
- Key Management architecture case study.

The need for key management

- Protect Data Encryption \ Signing .
 - Secure Creation of strong keys.
 - Secure usage for Keys.
 - Separation of duties.

Design for:

Confidentiality, Integrity & Availability.

PCI & Card Holder Data

- Apply to all organizations that store, process or transmit cardholder data.
- Cardholder account data includes:
 - pan primary account number, Card holder name, Service code, Expiration date.
 - Sensitive authentication data includes:
 - card's magnetic stripe
 - personal identification numbers CID/ CVC2/CVV2
 - chip

PCI & Card Holder Data

Types of Data on a Payment Card

Requirement 3 – "Protect stored cardholder data"

- Keep cardholder data storage to a minimum.
- Do not store sensitive authentication data after authorization (even if encrypted).
- Mask PAN when displayed: XXXXYY*****ZZZZZ.
- Render PAN, at minimum unreadable anywhere it is stored BY:
 - One-way hashes, Truncation, Index tokens \ pads

PCI requirement 3.5.X

- 3.5 Protect encryption keys used for encryption of cardholder data against both disclosure and misuse.
 - 3.5.1 Restrict Access to keys to the Fewest number of Custodians necessary
 - 3.5.2 Store keys Securely in the fewest possible Locations and forms.

PCI requirement 3.6.X – Encryption Keys

- 3.6 implement all key management
 - 3.6.1 Generation of strong keys
 - 3.6.2 Secure key distribution
 - 3.6.3 Secure key storage
 - 3.6.4 Periodic changing of keys annually.
 - 3.6.5 Retirement or replacement of old or suspected compromised cryptographic keys
 - 3.6.6 Split knowledge and establishment of dual control.
 - 3.6.7 Prevention of unauthorized substitution of keys
 - 3.6.8 key custodians need to sign a form.

Key Management – Pain Points

How to?

- Split knowledge and establishment of dual control of cryptographic keys.
- Encrypt \ decrypt data process.
- Restrict Access to keys.
 - Secure key storage & Prevention of unauthorized substitution of keys.
 - Secure key distribution.
- Periodic changing of keys \ compromised.
 - re-encryption.
- The weakest point interface with existing \ new application

Credit Card transaction processing and reporting architecture

Key Management - Case Study #1

- Only one key
- Symmetric Encryption.
- Split keys:
 - DB
 - FS

Complex – process to change key.

Case Study #1 - generating & using EK

Case Study #1 - Payment Data TBL

Case Study #1 - Transactions process

Credit Card Company

Case Study #1 - Reporting process

Get TX Data ...

Key Management - Case Study #2

- Master and Session keys.
- Master key Asymmetric Encryption X509.
 - Split keys:
 - public
 - private
- Session keys Symmetric

Advantages:

- More Secure strong encryption.
- Split knowledge and establishment of dual control.
- Advantages:
 - process to change key.
 - Add new application.

Case Study #2 – Master & Session Keys

OPEN - U\P

X509 Certificate

CEO

Split Certificate:
Public \ Private

Session Keys -Generate 100 AES -256 symmetric keys in XML format

Master Key

Request For Cert

Authentication & Authorization

U\P

X509 Certificate

- public-

Session Keys

X509 Certificate- PFX password protected - private-

Case Study #2— Master & Session Keys

Case Study #2 - Payment Data TBL

Case Study #2 - Reporting Service - Decryption

Get Mask PAN

Get Clear PAN

Authentication & Authorization

Reporting Server

Get TX DATA

Check user Permission for Certificate

Decrypt Session KEY_X with Master Private Key

User

Case Study #2 - Changing the Master Key

Questions

?

Summary

- Need to design Key Management solution.
- Mast Do Separation of duties.
- Plan for Re Encryption.
 - Consider dawn time.
 - Session key can minimize the RE encryption dawn time.
- Protect the keys!.
- Protect the client side that has permission to view clear –text data (memory protection).

Additional Resources

- PCI requirements https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
- PCI Explain http://www.rapid7.com/pci/pci-dss.jsp
- .NET encryption: AES
 - http://msdn.microsoft.com/enus/library/system.security.cryptography.aes.aspx
 - http://msdn.microsoft.com/en-us/magazine/cc164055.aspx
- .NET DPAPI
 - http://msdn.microsoft.com/en-us/library/ms995355.aspx
- .NET RNGCryptoServiceProvider
 - http://msdn.microsoft.com/enus/library/system.security.cryptography.rngcryptoserviceprovider.aspx

Visit my sites at:

http://www.applicationsecurity.co.il/www.2BSecure.co.il

