

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ім. Ігоря Сікорського» ФАКУЛЬТЕТ ПРИКЛАДНОЇ МАТЕМАТИКИ

Кафедра системного програмування та спеціалізованих комп'ютерних систем

Лабораторна робота № 1

з дисципліни **Бази даних і засоби управління**

на тему: "Проектування бази даних та ознайомлення з базовими операціями СУБД PostgreSQL"

Виконала: студентка III курсу

ФПМ групи КВ-12

Ус В. О.

Перевірив:

Павловський В. І.

 $Mетою роботи \in$ здобуття вмінь проектування бази даних та практичних навичок створення реляційних баз даних за допомогою PostgreSQL.

Завдання роботи полягає у наступному:

- 1. Розробити модель «сутність-зв'язок» предметної галузі, обраної студентом самостійно, відповідно до пункту «Вимоги до ЕR-моделі».
- 2. Перетворити розроблену модель у схему бази даних (таблиці) PostgreSQL.
- 3. Виконати нормалізацію схеми бази даних до третьої нормальної форми $(3H\Phi)$.
- 4. Ознайомитись із інструментарієм PostgreSQL та pgAdmin 4 та внести декілька рядків даних у кожну з таблиць засобами pgAdmin 4.

Модель «сутність-зв'язок» для платформи замовлення та доставки продуктів харчування

Обрана предметна галузь передбачає моделювання платформи для замовлення та доставки продуктів харчування.

Сутності

Згідно цієї області для побудови бази даних було виділено наступні сутності:

Користувач: Представляє користувачів платформи. Має атрибути, такі як ID користувача, прізвище та ім'я і номер телефону.

Заклад: Представляє магазини або заклади, які пропонують продукти харчування для замовлення. Має атрибути, такі як ID закладу, назва закладу та номер телефону для замовлення.

 Π родукти: Описує продукти, доступні для замовлення в закладах. Має атрибути, такі як ID продукту, ID закладу, назва та ціна.

Замовлення: Представляє інформацію про замовлення користувачів. Має такі атрибути, як ID замовлення, ID користувача, ID продуктів та сума для оплати.

Доставка: Відображає інформацію про саму доставку. Має атрибути, такі як ID доставки, ID замовлення, час доставки, адреса доставки.

Опис зв'язків

3 e'язок між "Користувач" і "Замовлення" є 1:N, що означає, що один користувач може мати багато замовлень, але кожне замовлення належить лише одному користувачу. Тобто один користувач може робити багато замовлень, і кожне замовлення належить конкретному користувачеві.

3в'язок між "Заклад" і "Продукт" є 1:N, що означає, що кожен заклад може пропонувати багато продуктів, але кожен продукт належить лише одному закладу. Цей зв'язок визначає, які продукти доступні в кожному закладі.

3в'язок між "Замовлення" і "Продукт" є М:N, що означає, що кожне замовлення може містити багато різних продуктів, і в той же час, кожен продукт може бути частиною багатьох різних замовлень. Тобто кілька замовлень можуть включати один і той самий продукт, і одне замовлення може містити різні продукти.

Зв'язок між "Замовлення" і "Доставка" N:1. Це означає, що кожне замовлення має лише одну доставку, а доставка може мати багато замовлень з різних закладів харчування.

Рисунок 1 - ER-діаграма, побудована за нотацією Чена

Опис процесу перетворення

Сутність Користувач було перетворено в таблицю «User», яка має первинний ключ id_user та атрибути name_user, phone_user.

Сутність Замовлення було перетворено в таблицю «Order», яка має первинний ключ id_order, зовнішній ключ id_user та атрибут sum.

Сутність Продукт було перетворено в таблицю «Product», яка має первинний ключ id_product, зовнішній ключ id_shop та атрибути name_product, price.

В логічній моделі неможливий безпосередній зв'язок М:N, а в концептуальній моделі він існує між сутностями Замовлення і Продукт. Для його представлення було введено допоміжну таблицю Замовлення_Продукт, для збереження даних про продукти в кожному замовленні (рис. 2).

Сутність Заклад було перетворено в таблицю «Shop», яка має первинний ключ id_shop та атрибути name_shop, phone_shop.

Сутність Доставка було перетворено в таблицю «Delivery», яка має первинний ключ id_delivery, зовнішній ключ id_order та атрибути time, adress.

Рисунок 2 – Схема бази даних

Функціональні залежності

Для оцінки відповідності схеми бази даних нормальним формам НФ1, НФ2 та НФ3, спершу розглянемо функціональні залежності в даній схемі:

Сутність "User":

Первинний ключ: id_user

<u>Атрибути:</u> name_user, phone_user

Нормальна форма НФ1: Для НФ1 всі атрибути повинні бути атомарними, тобто не розкладатися на більш дрібні складові. У цій сутності немає атрибутів, які розкладаються, тож вона відповідає НФ1.

Нормальна форма НФ2: Для НФ2 повинні виконуватися всі вимоги НФ1, і кожен неключовий атрибут повинен повністю залежати від первинного ключа. В даній сутності атрибути name_user і phone_user обидва повністю залежать від іd_user, тож вона також відповідає НФ2.

Нормальна форма НФ3: Для НФ3 повинні виконуватися всі вимоги НФ2, і кожен неключовий атрибут повинен бути прямо залежний від первинного ключа, а не через інші неключові атрибути. У даній сутності атрибути name_user і phone_user не залежать від інших атрибутів, окрім іd_user, тому сутність також відповідає НФ3.

Сутність "Order":

Первинний ключ: id_order

Зовнішній ключ: id_user

Атрибути: sum

Нормальна форма НФ1: Сутність відповідає НФ1, оскільки всі атрибути є атомарними.

Нормальна форма НФ2: Сутність відповідає НФ2, оскільки sum повністю залежить від id order.

Нормальна форма НФ3: Сутність відповідає НФ3, оскільки sum не залежить від жодного іншого атрибута окрім id order.

Сутність "Product":

Первинний ключ: id_product

<u>Зовнішній ключ:</u> id_shop

<u>Атрибути:</u> name_product, price

Нормальна форма НФ1: Сутність відповідає НФ1, оскільки всі атрибути є атомарними.

Нормальна форма НФ2: Сутність відповідає НФ2, оскільки name_product і price повністю залежать від іd_product.

Нормальна форма НФ3: Сутність відповідає НФ3, оскільки name_product і ргісе не залежать від жодного іншого атрибута окрім іd product.

Сутність "Shop":

Первинний ключ: id_shop

Атрибути: name_shop, phone_shop

Нормальна форма НФ1: Сутність відповідає НФ1, оскільки всі атрибути є атомарними.

Нормальна форма НФ2: Сутність відповідає НФ2, оскільки name_shop і phone_shop повністю залежать від іd_shop.

Нормальна форма НФ3: Сутність відповідає НФ3, оскільки name_shop і phone_shop не залежать від жодного іншого атрибута окрім іd shop.

Сутність "Delivery":

Первинний ключ: id_delivery

Зовнішній ключ: id_order

Атрибути: time, address

Нормальна форма НФ1: Сутність відповідає НФ1, оскільки всі атрибути є атомарними.

Нормальна форма НФ2: Сутність відповідає НФ2, оскільки time і address повністю залежать від id_delivery.

Нормальна форма НФ3: Сутність відповідає НФ3, оскільки time і address не залежать від жодного іншого атрибута окрім іd delivery.

<u>Загальний висновок:</u> Всі сутності схеми бази даних відповідають $H\Phi 1$, $H\Phi 2$ та $H\Phi 3$, оскільки всі атрибути є атомарними і виконують умови нормальних

форм. Тобто, схема бази даних ϵ добре структурованою з точки зору нормалізації даних.

Таблиці бази даних у pgAdmin4

Копії екрану з pgAdmin4, що відображають назви, типи та обмеження на стовпці:

User

Немає зовнішніх ключів.

Order

Має зовнішній ключ

Product

Має зовнішній ключ

Order_Product

Має зовнішні ключі

Shop

Немає зовнішніх ключів

Delivery

Має зовнішній ключ

Koniï екрану з pgAdmin4, що відображають вміст таблиць бази даних у PostgreSQL

Таблиця «User»

Таблиця «Order»

Таблиця «Product»

Таблиця «Order_Product»

Таблиця «Shop»

Таблиця «Delivery»

Контакти:

GitHub: https://github.com/vickaus/DataBase

Telegram: @vicka_us