CMPT 733 Advanced Topics in Deep Learning

Sequence learning, Sentiment analysis, Word2Vec, DL-Vis

Steven Bergner

Overview

- Deep learning approaches for sequence learning with RNNs
- Natural language processing (NLP) with Python
 - Sentiment analysis using NLTK
 - Word embeddings
- Visualization for Deep Learning

No structure → fully connected

- No structure → fully connected
- Spatial structure \rightarrow convolutional

- No structure → fully connected
- Spatial structure → convolutional
- Sequential structure \rightarrow recurrent

Types of connectivity

Local connection: like convolution, but no sharing

Types of connectivity

Types of connectivity

Sequence Modeling with Recurrent Nets

Classical Dynamical Systems

- Recurrent network is kind of dynamical system that is updated in discrete steps over time
- Function f takes input from time t to output at time t+1
- Rules persis across time

Unfolding Computation Graphs

- Recurrent graph can be unfolded, where hidden state h is influencing itself
- Backprop through time is just backprop on unfolded graph

Recurrent Hidden Units

More than one layer

Recurrence only through output

- Avoid backprop through time
- Train using teacher forcing technique
 - Backprop stops
 when it reaches
 y(t-1) via o(t-1)

Sequence Input, Single Output

• E.g. sentiment analysis of some review text

Fully Connected Graphical Model

 Too many dependencies among variables, if each has its own set of parameters

RNN Graphical Model

- Organize variables according to time with single update rule
- Finite set of relationships may extend to infinite sequences
- h acts as "memory state" summarizing relevant history

Bidirectional RNN

 Later information may be used to reassess previous observations

Exploding Gradients from Function Composition

- Example: one input variable, color encodes number of times RNN update rule is run
 - Exponentiation of weights from one time step to the next
 - Feed-forward nets don't have this problem, due to different weights in each layer

LSTMs

Use addition over time instead of multiplication

Gradient Clipping

- Add learning rate time gradient to update parameters
- Believe direction of gradient, but not its magnitude

Sentiment Analysis Word embeddings

Sentiment Analysis

- Computational study of opinions, sentiments, subjectivity, evaluations, attitudes, appraisal, affects, views, emotions, etc., expressed in text
- Aka Opionion mining

Step A: Text processing

- Break up text into sentences
- Tokenize words
- Remove stop words [I, had, the, a, as, there]
- What other preprocessing could be useful?

B1: Words -> hash indices

- Each word is a string
- Hash each string to a number

Problems:

Large vocab leads to large vectors -> store as sparse vec

B2: Doc -> word count vector

- Term frequency (TF)
 - Count the number of occurrences of each string in each doc
- Frequent words with less meaning dominate
- Scale down with a measure of ubiquity
 - inverse doc frequency (IDF)
- Semantically equivalent words are **not** grouped together

Better: Use Word2Vec

Distributional Hypothesis

- Word semantics are taken into account
- Words that are used and occur in same context tend to support the same meaning
- "Judge a word by the company it keeps."
- Dense word representation (word2vec, see Spark ML)

C: Document -> average vectors

- Word vectors -> clusters, docs -> avg cluster vectors
- Use k-means, cluster groups synonyms or topics

D: Regression / Classification

- Linear regression: star rating
- Logistic regression: likes, smiley types, etc.

Sentiment using LSTMs

Stanford Sentiment Treebank

https://nlp.stanford.edu/sentiment/treebank.html

Simple LSTM implementation using word2vec:

https://github.com/git-steb/pytorch-sentiment-classification

fork of: https://github.com/clairett/pytorch-sentiment-classification/

Visualization Recap: Data, Task, and Encoding

(3) Targets

- Analyze
 - → Consume

→ Produce

→ Record

Search

	Target known	Target unknown
Location known	·.••• Lookup	·. Browse
Location unknown	₹`@.> Locate	₹ ! Explore

Query

All Data

Attributes

- **Network Data**
 - → Topology * | * 0 → Paths
- **Spatial Data**
 - → Shape

Tasks

- Actions
 - Analyze
 - Search
 - Query
- Targets
 - Item & Attributes
 - Topology & Shape
 - **Models of Data**

Visualization for ML

- Tensorboard: Visualizing Learning
- How to use t-SNE efficiently

Model visualization

- LSTM-Vis: http://lstm.seas.harvard.edu/client/index.html
- Building blocks of interpretability
- SHAP (SHapley Additive exPlanations)
- Lime: Explaining the predictions of any ML classifier

Sources

- I. Goodfellow, Y. Bengio, A. Courville "Deep Learning" MIT Press 2016 [link]
- Apala Guha's slides from 2017-CMPT 733

Extra Slides for Vis Recap

Data Types

- Items and attributes as rows and columns of tables
- Position and time are special attributes
- Spatial data on grids makes computation easier

[T. Munzner, 2014]

36

Visual Encoding – How?

- Marks
 - Geometric primitives
- Channels
 - Appearance of marks
 - Redundant coding with multiple channels possible

[T. Munzner, 2014]