1.2.2 k-折交叉验证法 k-Fold Cross-Validation ——概述

- 交叉验证主要思想:数据 集合中的每个样本都有机 会被测试
- k-折交叉验证步骤:
 - (1)在数据集上迭代k次
- (2)在每次迭代中,将数据 集分为k个部分
 - a. k-1部分进行训练
 - b.第k部分用于验证
 - (3)计算性能的平均值

1.2.2 k-折交叉验证法——k的选择

• 增加k值后的k折交叉验证:

偏差和方差 会怎么变化?

- 性能估计的偏差减小(更准确)
- 性能估计的方差增加(更多的可变性)
- 计算成本增加(更多的迭代,在拟合过程中更大的训练集)
- 在实践中, 一般选择k = 5, k=10

1.2.2 k-折交叉验证法——比较

- k-折交叉验证与重复留出法的区别:
 - k-折交叉验证: **使用所有数据**进行训练和测试, 通过使用更多的训练数据来减少验证集的偏差
 - 重复留出法: 重复将相对较大的数据集作为测试数据, 随机抽取导致有些样本可能永远都不会是测试集的一部分

- 类似于留出法,将可用数据随机划分为两个子集:
- 一个训练集和一个测试集

• 选择**不同的超参数**,将k-折交叉验证方法应用于训练集,得到了**多个模型和性能估计**

- 使用由k-折交叉验证产生**最佳性能的超参数设置**
- 使用完整的训练集与这些设置进行模型拟合

使用前面保留的独立测试集来评估获得的模型

• 完成评估后, **拟合所有数据**(训练和测试数据集的组合), 得到部署模型(可选步骤)

1.2.2 k-折交叉验证法评估——小结

k-Fold Cross-Validation Evaluation

1.2.3 特殊交叉验证 k=2

8 9 10

• 2-折交叉验证:使用两次留出法,互换训练集和验证集

例如:

- 使用50%的数据进行训练和50%的数据进行验证
- 交换这些数据,重复训练和验证的步骤
- 最终计算平均性能

•••

1.2.3 特殊交叉验证k=n——LOOCV

- k=n, 将折叠数等于训练样本的数量
- 称为Leave-One-Out Cross-Validation (LOOCV)
- 训练集: n-1个样本
- 验证集: 1个样本
- n次迭代, 计算成本很高
- 对小型数据集很有用

1.2.3 特殊交叉验证k=n——LOOCV

- LOOCV训练集中有n-1个样本,被认为对真实误差的预测是近似无偏的
- 但测试集只包含一个样本,具有很高的方差
- 重复k折交叉验证得到"更可靠"的估计

1.2.3 特殊交叉验证——嵌套交叉验证 Nested Cross-Validation

- 将调参和模型选择 结合
- 内层交叉验证(innner loop): 用于模型选择, 超参数调优
- **外层交叉验证**(outer loop): 用于模型评估, 外层每一折都使用 内层得到的最优参 数组合进行训练

5*2 cross-validation

1.2.4 模型选择——小结1

1.2.4 模型选择——小结2

大数据集 三向留出法 (训练集、验证集、测试集) 模型选择 (超参数调优) 重复的k-折交叉验证 (有独立测试集) LOOCV (有独立测试集)

1.2.4 模型选择——小结3

测试方法	数学表达	注意事项	优缺点	
留出法 Hold-out	$D = S \cup T$ $S \cap T = \emptyset$	可采用分层抽样, 重复多次取平均 值评估结果	测试集小,评估结果方差大;训练集小,评估结果偏差大	
交叉验证法 Cross-validation	$D = D_1 \cup \cdots \cup D_k$ $D_i \cap D_j = \emptyset(i \neq j)$	可取p次k-折交 叉验证求平均值 评估结果	稳定性很大程度 上取决于k	
留一交叉验证法 Leave-one-out cross-validation LOOCV	$D = D_1 \cup \dots \cup D_k$ $D_i \cap D_j = \emptyset (i \neq j)$ $k = D $	每次使用一个样 本进行验证	不受随机样本划 分影响,但数据 量大时计算量大	

1.2模型选择

1.3性能评估

1.3模型性能评估

- 1.3.1混淆矩阵
 - 2*2混淆矩阵
 - 多元混淆矩阵
- 1.3.2查准率、查全率、F1
- 1.3.3灵敏度与特异度
- 1.3.4 FPR与TPR
- 1.3.5ROC曲线
 - ROC曲线
 - ROC曲线绘制
 - ROC-AUC

1.3.1混淆矩阵Confusion Matrix——2×2混淆矩阵

Predicted class

查准率
$$P = \frac{TP}{TP + FP}$$

查全率
$$R = \frac{TP}{TP + FN}$$

$$F1$$
 $F_1 = 2 \cdot \frac{PRE \cdot REC}{PRE + REC}$

1.3.1混淆矩阵Confusion Matrix ——多元混淆矩阵

Predicted Labels

	Class 0	Class 1	Class 2
Class 0	T(0,0)		
Class 1		T(1,1)	
Class 2			T(2,2)

$$ACC = \frac{T}{n}$$

Predicted Labels

	Class 0	Class 1	Class 2
Class 0	3	0	0
Class 1	7	50	12
Class 2	0	0	18

$$ACC = \frac{3 + 50 + 18}{90} \approx 0.79$$

1.3.2查准率与查全率

relevant elements

How many selected items are relevant?

$$PRE = \frac{TP}{TP + FP}$$

How many relevant items are selected?

Recall =
$$\frac{TP}{TP + FN}$$

1.3.3灵敏度与特异度

• 灵敏度sensitivity=查全率recall

$$SEN = TPR = REC = \frac{TP}{P} = \frac{TP}{FN + TP}$$

• 特异度specificity

$$SPC = TNR = \frac{TN}{N} = \frac{TN}{FP + TN}$$

1.3.3灵敏度与特异度举例

糖尿病病人筛查

灵敏度高=漏诊率低 特异度高=误诊率低

1.3.4 FPR与TPR

• False Positive Rate假正例率:

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - \text{specificity}$$

• True Positive Rate真正例率:

$$TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$$
 = sensitivity

1.3.5 ROC曲线

- ROC(Receiver Operating Characteristic) "受试者工作特征"
- 源于二战中用于敌机检测的雷达信号分析技术
- 表示FPR与TPR的变化情况 (灵敏度与非特异度)
- 可以通过改变**预测阈值** (Threshold) 来绘制

(0,0): 均预 测为负样本

1.3.5 ROC曲线绘制

• 二分类问题

• y_true: 真实值

• y score: 预测概率值

• y_pre: 预测值

• 阈值: 当预测概率值大于阈值时判定为真值

名称	阈值	值1	值2	值3	值4	FPR	TPR
y_true	-	0	1	0	1	-	-
y_score	-	0.1	0.35	0.4	0.8	-	-
y_pre	0.1	1	1	1	1	2/2	2/2
y_pre	0.35	0	1	1	1	1/2	2/2
y_pre	0.4	0	0	1	1	1/2	1/2
y_pre	0.8	0	0	0	1	0/2	1/2

1.3.5 ROC曲线绘制

名称	阈值	值1	值2	值3	值4	FPR	TPR
y_true	-	0	1	0	1	-	-
y_score	-	0.1	0.35	0.4	0.8	-	-
y_pre	0.1	1	1	1	1	2/2	2/2
y_pre	0.35	0	1	1	1	1/2	2/2
y_pre	0.4	0	0	1	1	1/2	1/2
y_pre	0.8	0	0	0	1	0/2	1/2

FPR=[1, 0.5, 0.5, 0] TPR=[1, 1, 0.5, 0.5]

ROC曲线绘制示例

1.3.5 ROC-AUC

- AUC(Area Under the Curve)
- ROC曲线下的面积
- AUC值:随机挑选一个正样本和负样本,根据分类器计算得到的Score值将这个正样本排在负样本前面的概率
- 反应了模型的好坏
 - 越接近1, 性能越好
 - 越接近0.5,性能越差

1.3.5 ROC-AUC绘制代码

```
def plotROC(predScores, classLabels):
   cur = (1.0, 1.0) # 光标绘制初始位置
   ySum = 0.0 # 用于计算AUC
   numPosClas = sum(array(classLabels) == 1.0) # \%
计正例个数
   yStep = 1 / float(numPosClas) # y轴步长
   xStep = 1 / float(len(classLabels) - numPosClas)
# x轴步长
   sortedIndicies = predScores.argsort() # 对预测值进
行从小到大的排序,并提取对应索引
   # 构建画笔
   fig = plt.figure()
   fig.clf()
   ax = plt.subplot(111)
```

1.3.5 ROC-AUC绘制代码

```
# 遍历所有预测值索引,并根据真实值绘制线段
for index in sortedIndicies.tolist()[0]:
   if classLabels[index] == 1.0:
       # 延y轴下降一个步长。减小TPR
       delx = 0
       delY = yStep
   else:
       # 延X轴下降一个步长,减小FPR
       delx = xStep
       delY = 0
       ySum += cur[1]
   # draw line from cur to (cur[0]-delx,cur[1]-dely)
   ax.plot([cur[0], cur[0] - delx], [cur[1], cur[1] - dely], c='b')
   cur = (cur[0] - delX, cur[1] - delY)
ax.plot([0, 1], [0, 1], 'b--')
ax.axis([0, 1, 0, 1])
plt.show()
print("the Area Under the Curve is: ", ySum * xStep)
```

1.3.5 ROC-AUC举例

the Area Under the Curve is: 0.8583

小结

• 迁移学习能有效降低数据量、计算量和计算时间。

• 迁移学习不是一种算法而是一种机器学习思想, 应用到深度学习时称为微调(Fine-tune)。

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

1. 在大数 据库上学 习,例如 ImageNet

2. 训练自己

3. 训练自己任 务中的中等规 模数据集

> 固定这些层 的参数,在 学习过程中 不更新

经验:迁移学习(Fine tuning微调)时,学习率设为原始的0.1倍

只训练

此部分

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512 conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

或者下载预训 练模型,Caffe Model Zoo

	自己任务的数据集与预训练模型的数据集相似	自己任务的数 据集与预训练 模型的数据集 差异较大
自己任务数据 集较小	只学习CNN的 分类器部分	是从网络的某层开始取出特征,然后训练SVM分类器
自己任务数据 集较大	微调少部分 CNN层	微调大部分 CNN层

参考资料

- 斯坦福大学机器学习课程 吴恩达 第十章
- 机器学习/周志华 清华大学出版社 2016 P23-47
- 深度学习/Ian Goodfellow,Yoshua Bengio,Aaron Courville 人民邮电出版社 2017 P70-82
- 机器学习实战/Harrington,P, 人民邮电出版社 2013 P128-133
- 模型选择与评估部分课件与代码 Sebastian Raschka 第8-12章
 - https://github.com/rasbt/stat479-machine-learning-fs18