# Homework #25

20221059 정상목

## 1. 과제 목표

Circuit 성분 중 하나인 R을 기존의 DD식과 coupled 시킨 mix-mode simulation을 한다.

#### 2. Mesh

이번 과제에서 사용할 mesh는 다음과 같습니다.



Fig 1. Double\_gate\_MOSFET

사용된 Doublegate MOSFET과 R이 포함된 회로도는 다음과 같습니다.



Fig 2. 회로도

# 3. Implementation

먼저 기존의 DD를 풀었던 Solution Vector에서 어떠한 Unknown variable을 추가해야하는지 확인해 보았다. 회로의 element는 전압원을 제외한 Doublegate MOSFET과 Register로 보았고, 각 terminal마다 Voltage와 Current를 계산했다. 이때 Gate Voltage와 Current는 Doublegate 구조이지만 1개로 합쳐서 계산하였다.

추가된 Unknown variable과 이에 사용할 Residue Vector는 다음과 같다.

| Variable  | Res                                | 비고                             |  |  |  |  |  |
|-----------|------------------------------------|--------------------------------|--|--|--|--|--|
| $I_D$     | $I_D - \int_{\Omega} J_d \cdot da$ | 연속방정식                          |  |  |  |  |  |
| $I_S$     | $I_D + I_S + I_G$                  | MOSFET에 흐르는 Curret 합은 0        |  |  |  |  |  |
| $I_G$     | 0                                  | DC이므로 displacement current는 없다 |  |  |  |  |  |
| $I_1$     | $I_1 + I_2$                        | 저항 양 terminal에 흐르는 current는 같다 |  |  |  |  |  |
| $I_2$     | $I_2-\left(rac{V_2-V_1}{R} ight)$ | 옴의 법칙 사용                       |  |  |  |  |  |
| $V_D$     | $V_D^{}-V_{out}^{}$                | $V_D$ 와 $V_{out}$ 의 전압은 같다     |  |  |  |  |  |
| $V_S$     | 0                                  | $V_S$ 는 ground에 연결되어 있다        |  |  |  |  |  |
| $V_G$     | $V_{in}$                           |                                |  |  |  |  |  |
| $V_1$     | $V_1 - V_{\scriptscriptstyle out}$ | $V_1$ 와 $V_{out}$ 의 전압은 같다     |  |  |  |  |  |
| $V_2$     | $V_{D\!D}$                         |                                |  |  |  |  |  |
| $V_{out}$ | $I_D - I_1$                        | KCL을 활용했다                      |  |  |  |  |  |

구현 중 신경써야할 부분은  $I_D$ 의 부분이었다. Jacobian 부분은  $I_D$  외에도 각 노드별로  $\phi,n,p$ 로 미분한 값을 넣어 주어야 했다. 이 부분을 구현하기 위해 따로 코드를 작성하지 않고, Drain boundary condtion을 설정하기 위해 작성했던 code부분을 수정하여 Drain contact node에 있는 Jacobian과 res를 이용했다.

또한 I 를 구하기 위한 width는  $1e^{-6}$ m로 설정하여 계산했다.

### 4. Result

## 4.1. Equilibrium condition

먼저 Equilibrium condition에서 구현한 code의 결과를 확인했다. Equilibrium 이기 때문에 모든 값이 0이거나 0에 근사할 것으로 예상할 수 있다. 결과는 다음과 같다.

| Variable | $I_D$    | $I_S$    | $I_G$     | $I_1$ | $I_2$     | $V_D$     | $V_S$ | $V_G$ | $V_1$     | $V_2$ | V <sub>out</sub> |
|----------|----------|----------|-----------|-------|-----------|-----------|-------|-------|-----------|-------|------------------|
|          | 1.23E-20 | 1.23E-20 | -1.23E-20 | 0     | -1.23E-20 | -1.23E-18 | 0     | 0     | -1.23E-18 | 0     | -1.23E-18        |

0이거나 0에 가까운 작은 숫자가 나왔다. 원하는 결과가 나왔음을 확인 할 수 있다. 이때 생기는  $I_D$  는 Doping에 의해 생긴 potential에서 비롯된 current로 생각했다.

### 4.2. Vd ramping

mix-mode simulation 결과와 기존 DD식을 활용한 결과와 비교해 보았다.



fig 3. Id vs Vd

두 결과가 일치함을 확인할 수 있다.

#### 4.3. Vg ramping

Vg ramping에서는 기존 DD식과 비교하지 못했다. Vg ramping 시킴에 따라 Vd가 감소(변화)하여 기존에 DD식과 비교가 불가능했기 때문이다. 그 이유를 생각해보면  $V_G$ 가 증가함에 따라  $I_D$  가 증가하게 될 것이고, 이에 따라 옴의 법칙에 의해  $V_D=V_1=V_2-I_2R$  일 것이고,  $I_1=I_2=I_D$ 이므로  $I_D$ 가 증가함에 따라  $V_D$ 가 감소했을 것으로 예상했다. 따라서 Id vs Vg curve만 관찰했다.



fig 4. Id vs Vg

예상한 그래프 개형으로 나옴을 확인했다.

추가로 다른 Terminal 또는 node의 Current와 Voltage가 계산되었고, KCL과 옴의 법칙 등 사용한 방정식을 만족함을 확인했다.

| 1       |   |    | 1           | 2           | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      |
|---------|---|----|-------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1 ld    | ^ | 1  | 5.0138e-04  | 9.0747e-04  | 0.0014  | 0.0021  | 0.0027  | 0.0033  | 0.0037  | 0.0040  | 0.0042  | 0.0043  | 0.0044  | 0.0045  |
| 2 ls    |   | 2  | -5.0138e-04 | -9.0747e-04 | -0.0014 | -0.0021 | -0.0027 | -0.0033 | -0.0037 | -0.0040 | -0.0042 | -0.0043 | -0.0044 | -0.0045 |
| 3 lg    |   | 3  | 0           | 0           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 4 11    |   | 4  | -5.0138e-04 | -9.0747e-04 | -0.0014 | -0.0021 | -0.0027 | -0.0033 | -0.0037 | -0.0040 | -0.0042 | -0.0043 | -0.0044 | -0.0045 |
| 5 12    |   | 5  | 5.0138e-04  | 9.0747e-04  | 0.0014  | 0.0021  | 0.0027  | 0.0033  | 0.0037  | 0.0040  | 0.0042  | 0.0043  | 0.0044  | 0.0045  |
| 6 Vd    |   | 6  | 0.4499      | 0.4093      | 0.3552  | 0.2922  | 0.2276  | 0.1708  | 0.1290  | 0.1014  | 0.0832  | 0.0704  | 0.0611  | 0.0540  |
| 7 Vs    |   | 7  | 0           | 0           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 8 Vg    |   | 8  | 0           | 0.0500      | 0.1000  | 0.1500  | 0.2000  | 0.2500  | 0.3000  | 0.3500  | 0.4000  | 0.4500  | 0.5000  | 0.5500  |
| 9 V1    |   | 9  | 0.4499      | 0.4093      | 0.3552  | 0.2922  | 0.2276  | 0.1708  | 0.1290  | 0.1014  | 0.0832  | 0.0704  | 0.0611  | 0.0540  |
| 10 V2   |   | 10 | 0.5000      | 0.5000      | 0.5000  | 0.5000  | 0.5000  | 0.5000  | 0.5000  | 0.5000  | 0.5000  | 0.5000  | 0.5000  | 0.5000  |
| 11 Vout |   | 11 | 0.4499      | 0.4093      | 0.3552  | 0.2922  | 0.2276  | 0.1708  | 0.1290  | 0.1014  | 0.0832  | 0.0704  | 0.0611  | 0.0540  |

fig 5. Other voltage and current