Devoir surveillé n° 8 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Espaces vectoriels supplémentaires.

On désigne par E l'espace vectoriel des fonctions continues sur [0,1] et à valeurs dans \mathbb{R} . On considère $p \in \mathbb{N}^*$ et a_1, \ldots, a_p des réels appartenant à [0,1], deux à deux distincts. On pose enfin $F = \{ f \in E \mid \forall k \in [1,p] \mid f(a_k) = 0 \}$.

- 1) Donner un exemple d'une fonction non nulle appartenant à F (indication : on pourra chercher une fonction polynomiale).
- 2) Démontrer que F est un sous-espace vectoriel de E.
- 3) Montrer que l'application $\psi: E \to \mathbb{R}^p$ est linéaire. $f \mapsto (f(a_1), \dots, f(a_p))$
- 4) Déterminer $Ker(\psi)$.
- **5)** On définit p fonctions g_1, \ldots, g_p de [0,1] dans \mathbb{R} par :

$$\forall k \in [1, p] \quad \forall x \in [0, 1] \quad g_k(x) = \prod_{\substack{j=1\\ j \neq k}}^p \frac{x - a_j}{a_k - a_j}$$

- a) Calculer $g_k(a_i)$ pour tout k et tout i dans [1, p].
- b) On pose $G = \text{Vect}(g_1, \dots, g_p)$. Déterminer la dimension de G.
- c) Soit $f \in E$. On pose $\tilde{f} = f \sum_{k=1}^{p} f(a_k)g_k$. Calculer $\tilde{f}(a_i)$ pour tout $i \in [1, p]$.
- d) Démontrer que $E=F\oplus G.$

II. Étude d'une fonction.

Partie I.

Notons $f: t \in \mathbb{R} \mapsto \frac{e^t}{1+t^2}$. Il est clair que f est définie sur \mathbb{R} tout entier, et que cette fonction est de classe \mathscr{C}^{∞} . Nous noterons \mathscr{C}_f la courbe représentative de f.

- 1) Quelle est la limite de f(t) lorsque t tend vers $-\infty$?
- **2)** Qu'en déduisez-vous au sujet de \mathscr{C}_f ?
- 3) Complétez chacune des phrases suivantes au moyen de l'une des locutions « est équivalent à », « est négligeable devant » et « est dominé par ».
 - $f(t) \cdot \cdots \cdot e^t$ lorsque t tend vers $+\infty$
 - $f(t) \cdot \cdots \cdot \frac{e^t}{t}$ lorsque t tend vers $+\infty$

$$f(t) \cdot \cdots \cdot \frac{e^t}{t^2}$$
 lorsque t tend vers $+\infty$

Lorsque plusieurs réponses sont acceptables, vous donnerez la plus précise. Bien entendu, vous justifierez votre réponse.

- 4) Quelle est la limite de f(t) lorsque t tend vers $+\infty$?
- **5)** Soit $t \in \mathbb{R}$, expliciter f'(t).
- **6)** Dressez le tableau des variations de f.
- 7) Soit $t \in \mathbb{R}$, expliciter f''(t).
- 8) Montrer que l'équation f''(t) = 0 possède deux solutions réelles : l'une est évidente, l'autre sera notée α . Vous ne chercherez pas à calculer α .
- 9) Prouver l'encadrement $-\frac{1}{5} < \alpha < 0$.
- 10) Expliciter le développement limité de f à l'ordre 3 au voisinage de 0.

Que pouvez-vous en déduire concernant \mathscr{C}_f ?

11) Tracez la courbe représentative de f. Vous préciserez son allure au voisinage du point d'abscisse 1.

Partie II.

Au vu des expressions de f(t), f'(t) et f''(t), nous nous proposons d'établir que l'assertion $\mathscr{A}(n)$ suivante est vraie pour tout $n \in \mathbb{N}$:

Il existe un polynôme
$$P_n$$
 tel que $\forall t \in \mathbb{R}, \ f^{(n)}(t) = \frac{P_n(t)e^t}{(1+t^2)^{n+1}}.$

Vous allez raisonner par récurrence sur n.

- 12) Il est clair que $\mathcal{A}(n)$ est vraie pour $n \in \{0, 1, 2\}$; Vous dresserez simplement un tableau donnant l'expression de P_n pour ces valeurs de n.
- 13) Fixons $n \in \mathbb{N}$, et supposons l'assertion $\mathscr{A}(n)$ acquise. Etablissez l'assertion $\mathscr{A}(n+1)$; Vous déterminerez l'expression de P_{n+1} en fonction de P_n et P'_n .

Il résulte donc des questions 12) et 13) que l'assertion $\mathcal{A}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- 14) Montrer que, pour tout $n \in \mathbb{N}$, P_n a tous ses coefficients dans \mathbb{Z} .
- 15) Préciser, pour tout $n \in \mathbb{N}$, le degré et le coefficient dominant de P_n .
- **16)** Donner, pour tout $n \in \mathbb{N}$, une expression simple de $c_n = P_n(i)$, où i est le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

Partie III.

Notons $F: \mathbb{R} \to \mathbb{R}, \ x \mapsto \int_0^x f(t) \, \mathrm{d}t$. Ainsi F est la primitive de f qui s'annule en 0.

- 17) Quel est le sens de variation de F?
- 18) Montrer que F(x) possède une limite ℓ finie lorsque x tend vers $-\infty$. Vous ne chercherez pas à expliciter cette limite.

- **19)** Prouver l'encadrement $-1 \le \ell \le 0$.
- **20)** Donner une équation de la tangente à la courbe représentative de F, au point d'abscisse 0.
- **21)** Expliciter le développement limité de F à l'ordre 4 au voisinage de 0.

Nous nous proposons d'étudier le comportement de F(x) lorsque x tend vers $+\infty$. Nous noterons, pour tout $x \in \mathbb{R}$,

$$J(x) = \int_1^x \frac{t e^t}{(1+t^2)^2} dt, \quad K(x) = \int_1^x \frac{e^t}{t^3} dt \quad \text{et} \quad L(x) = \int_1^x \frac{e^t}{t^4} dt.$$

- 22) Prouver l'existence d'une constante A telle que F(x) = f(x) + A + 2J(x) pour tout réel x.
- **23)** Pour $x \ge 1$, placer les uns par rapport aux autres les réels 0, J(x) et K(x).
- **24)** Avec une intégration par parties soigneusement justifiée, montrer que K(x) 3L(x) est négligeable devant $\frac{e^x}{x^2}$ lorsque x tend vers $+\infty$.
- **25)** En découpant l'intervalle [1,x] sous la forme $[1,x^{3/4}] \cup [x^{3/4},x]$, montrer que L(x) est négligeable devant $\frac{e^x}{r^2}$ lorsque x tend vers $+\infty$.
- **26)** En déduire un équivalent simple de F(x) lorsque x tend vers $+\infty$.
- 27) Exploiter les résultats des questions 17), 19), 20) et 26) pour donner l'allure de la courbe représentative de F.

