

ESC201: Introduction to Electronics

MODULE 2: ELEMENTS WITH MEMORY

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Summary

Series/Parallel resistances

Voltage division

$$v_2 = R_2 i = \frac{R_2}{R_1 + R_2 + R_3} v_{\text{total}}$$

Nodal Analysis:

- 1. Identify and number the nodes
- 2. Choose a reference node
- 3. Write KCL for each node such that Sum of currents leaving a node is zero

Mesh Analysis

- 1. Assign mesh currents i_1 , i_2 , ..., in to the n meshes.
- 2. Apply KVL to each of the n meshes. Use Ohm's law to express the voltages in terms of the mesh currents.
- 3. Solve the resulting n simultaneous equations to get the mesh currents.

$$i_2 = \frac{v}{R_2} = \frac{R_1}{R_1 + R_2} i_{\text{total}}$$

Source Transformation

The **superposition principle** states that the total response is the sum of the responses to each of the independent sources acting individually.

Storage devices

- Story so far:
 - Resistors, Independent and dependent voltage and current sources
 - Output depends on current input

$$V_0(t) = f(V_I(t))$$

Memory-less!

- Capacitors & Inductors
 - $V_0(t)$ depends on $V_I(\tau)$ for all $\tau \leq t$

- Elements with memory
 - Depends on the rate of change of input signals

Example: potential divider

Non-zero rise time

Intel i7 Mobile Processors	Freq. (GHz)	Year
Clarksfield (45 nm)	2.13	2009
Arrandale (32 nm)	2.67	2010
Sandy bridge (32 nm)	2.7	2011
Ivy bridge (22 nm)	2.9	2012
Haswell (22nm)	2.9	2013
Broadwell (14 nm)	3.1	2014
Skylake (14 nm)	3.3	2015
Kaby-Lake (14 nm)	3.5	2017

Elements may oppose any change in voltage or current!

MOSFETs: Workhorse of Semiconductor Industry

MOSFET: Metal Oxide Semiconductor Field effect Transistor

Drain current is controlled by gate voltage

MEMORY ORGANIZATION

DRAM

Hard disk

source: H.S.P. Wong et. al., Nature Nanotechnology, Vol. 10, March 2015

Dynamic RAM

We do not have enough pins to individually access each capacitor!

One pin has to be connected to several capacitors!

1101 in binary number format represents number 13

Each capacitor can store 1 bit of information

Reducing pins in DRAMs

Crossbar Organization

Capacitor

- Two sheets of conductors separated by a layer of insulating material
 - Insulating material is called dielectric could be air, polyester, ...

Capacitors

Ideal Capacitor

Lumped circuit assumption

13

Ideal Capacitor

$$C = \frac{i}{q}$$

$$q = C v$$

$$i = \frac{dq}{dt}$$

$$= \frac{d(Cv)}{dt}$$

$$= C \frac{dv}{dt}$$

$$i = C \frac{dv}{dt}$$

$$E = \frac{1}{2}Cv(t)^2$$

Capacitor in steady state

$$i = C \frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int_{t_o}^{t} i dt + v(t_o)$$

For dc or steady state when the voltage does not vary with time.

$$i = 0$$

A capacitor under DC or steady state acts like an open circuit.

Are capacitors linear?

- Yes! Differentiation and integration are linear operators
- Quick check:

$$i_1(t) = C \frac{dv_1(t)}{dt} \qquad i_2(t) = C \frac{dv_2(t)}{dt}$$

$$\alpha i_1(t) + \beta i_2(t) = C \frac{d}{dt} (\alpha v_1(t) + \beta v_2(t)) = \alpha C \frac{dv_1(t)}{dt} + \beta C \frac{dv_2(t)}{dt}$$

• Consequence: can use superposition, combination rules, Thevenin/Norton

Capacitor: series/parallel

$$i_{1} = C_{1} \frac{dv}{dt} \qquad i_{2} = C_{2} \frac{dv}{dt} \qquad i_{3} = C_{3} \frac{dv}{dt}$$

$$i = i_{1} + i_{2} + i_{3} \qquad = C_{1} \frac{dv}{dt} + C_{2} \frac{dv}{dt} + C_{3} \frac{dv}{dt}$$

$$i = (C_{1} + C_{2} + C_{3}) \frac{dv}{dt}$$

$$i = C_{eq} \frac{dv}{dt}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

 $C_{eq} = C_1 + C_2 + C_3$

Inductors

Inductors

Flux lines

$$\varphi = L \times i$$

$$v = \frac{d\varphi}{dt} = L \times \frac{di}{dt}$$

$$E = \frac{1}{2}L\ i(t)^2$$

Inductance

For dc or steady state when the current does not vary with time.

$$v = 0$$

An inductor under DC or steady state acts like a short circuit

Inductors: series/parallel

$$L_{eq} = L_1 + L_2 + L_3$$

$$\frac{1}{L_{eq}} = \frac{1}{L_{1}} + \frac{1}{L_{2}} + \frac{1}{L_{3}}$$

Two things to remember

Voltage across a capacitor cannot change instantaneously

$$i_c = C \frac{dv_c}{dt}$$

 $i_c = C \frac{dv_c}{dt}$ Instantaneous change in voltage implies infinite current!

Current through an inductor cannot change instantaneously

$$v = L \frac{di}{dt}$$

Instantaneous change in current implies infinite voltage!

Circuit analysis: Example 1

What is current through the inductor or voltage across the capacitor?

We cannot have an answer unless we have some knowledge of the past state of the circuit.

Suppose we are told that circuit has been in this state for a very long time.

Circuit analysis: Example 1

Suppose we are told that circuit has been in this state for a very long time.

Example 1: Steady state behavior

$$\frac{\mathrm{d}i_L}{\mathrm{d}t} = 0 \qquad v_L = L \frac{\mathrm{d}i_L}{\mathrm{d}t} = 0$$

$$\frac{\mathrm{d}v_c}{\mathrm{d}t} = 0 \qquad i_C = C \frac{\mathrm{d}v_c}{\mathrm{d}t} = 0$$

A capacitor under dc or steady state acts like an open circuit.

An inductor under dc or steady state acts like a short circuit

Suppose we are told that circuit has been in this state for a very long time.

Example 1: Steady state behavior

$$\frac{\mathrm{d}i_L}{\mathrm{d}t} = 0 \qquad v_L = L \frac{\mathrm{d}i_L}{\mathrm{d}t} = 0$$

$$\frac{\mathrm{d}v_c}{\mathrm{d}t} = 0 \qquad i_C = C \frac{\mathrm{d}v_c}{\mathrm{d}t} = 0$$

A capacitor under dc or steady state acts like an open circuit.

An inductor under dc or steady state acts like a short circuit

Suppose we are told that circuit has been in this state for a very long time.

Example 2: Immediate behavior after a change

Circuit before switching

Switch open -

Disconnected

Switch closed -

connected

Example 2: Immediate behavior after a change

Suppose the circuit was switched on at t=0 second.

Find voltage and current immediately after closing the switch.

Example 2: Immediate behavior after a change

Suppose the circuit was switched on at t=0 second.

Find voltage and current immediately after closing the switch.

Current through an inductor cannot change instantaneously

Voltage across a capacitor cannot change instantaneously

Example 2: Steady state behavior after a change

Find voltage and current a long time after closing the switch

$$t \to \infty$$

Recall

A capacitor under dc or steady state acts like an open circuit. An inductor under dc or steady state acts like a short circuit

$$R_{1} = 5 \Omega$$

$$W$$

$$i_{x}$$

$$v_{x} \geqslant R_{2} = 5 \Omega$$

$$V_{x} \geqslant S_{1} = S_{2} = S_{2} = S_{3} = S_{3$$

$$i_x = \frac{10}{R_1 + R_2} = 1 \text{ A}$$
 $v_x = R_2 i_x = 5 \text{ V}$

$$i_L(t \to \infty) = 1$$
 A
 $v_c(t \to \infty) = 5$ V