Notes

September 15, 2014

2.7 subsequences

subsequences have infinite increasing sequence of index n.

deciding convergence

- 1. squeeze thm.
- 2. monotone convergence thm: if a sequence is monotone increasing/decreasing and bounded above/below, then it converges.
- 3. if it is the sum, product, square root, quotient, etc, of convergent sequences, then it is convergent.
- 4. cesàro sums converge "better" than original sequence

2.7.2 bolzano-weierstrass theorem

every bounded sequence of real numbers has a convergent subsequence.

think of it as a fixup of the monotone convergent sequence, when the sequence isn't monotone sequence $\{a_n\}$ is bounded by $B \in \mathbb{R}$ so $-B \le a_n \le B$.

if $\{a_n\}$ only takes finitely many values, then nescessarily, one of them can be taken innfinitely many times. this is our constant subsequence, which is convergent.

if $\{a_n\}$ takes infinitely many values, then split [-B, B] into halves, [-B, 0], [0, B]. One of these halves contains infinitely many values of the sequence. Call this half I_1 . Split I_1 into halves, call the one with infinitely many values I_2 and so on. $\{I_n\}$ is a sequence of invervals and each I_n contains infinitely many values of a_n . $I_{n+1} \subseteq I_n$. $|I_n| = \frac{B}{2^{n-1}} \to (n \to \infty) \to 0$

values of a_n . $I_{n+1} \subseteq I_n$. $|I_n| = \frac{B}{2^{n-1}} \to (n \to \infty) \to 0$ by nestedintevals theorem $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$, $[a,b] \subseteq \bigcap_{n=1}^{\infty} I_n$ Because $|I_n| \to 0$ then a=b and it convergences on this point. because each I_n contains some $x_n \in \{a_n\}$ and we can choose them such that