

Feedforward Neural Networks as Statistical Models

Andrew McInerney, Kevin Burke

University of Limerick

CMStatistics, 19 Dec 2022

Feedforward Neural Networks

Data Application

Boston Housing Data (Kaggle)

506 communities in Boston, MA.

Response:

• medv (median value of owner-occupied homes)

12 Explanatory Variables:

- rm (average number of rooms per dwelling)
- 1stat (proportion of population that are disadvantaged)

R Implementation

Many packages available to fit neural networks in R.

Some popular packages are:

- nnet
- neuralnet
- keras

R Implementation: nnet

```
## a 11-8-1 network with 105 weights
## options were - linear output units
## b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->
## 2.79 5.92 0.34 1.31 0.23 -1.31 -2.67 0.77 -0.22 1.
## i10->h1 i11->h1
## 1.20 1.26
## b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2 i8->h2 i9->
## 20.53 5.59 3.52 -0.64 12.64 -5.25 -4.12 0.24 2.64 0.
## i10->h2 i11->h2
## -21.17 4.03
## [...]
```

Statistical Perspective

$$y_i = ext{NN}(x_i) + arepsilon_i,$$

where

$$arepsilon_i \sim N(0,\sigma^2)$$

$$\ell(heta) = -rac{n}{2}\mathrm{log}(2\pi\sigma^2) - rac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \mathrm{NN}(x_i))^2$$

Uncertainty Quantification

Then, as $n o \infty$

$$\hat{ heta} \sim N[heta, \Sigma = \mathcal{I}(heta)^{-1}]$$

Estimate Σ using

$$\hat{\Sigma} = I_o(\hat{ heta})^{-1}$$

However, inverting $I_o(\hat{ heta})$ can be problematic in neural networks.

Redundancy

Redundant hidden nodes can lead to issues of unidentifiability for some of the parameters (Fukumizu 1996).

Redundant hidden nodes \implies Singular information matrix.

Model selection is required.

Model Selection

A Statistically-Based Approach to Feedforward Neural Network Model Selection (arXiv:2207.04248)

Hypothesis Testing

Wald test:

$$egin{align} \omega_j &= (\omega_{j1}, \omega_{j2}, \ldots, \omega_{jq})^T \ &H_0: \omega_j &= 0 \ &(\hat{\omega}_j - \omega_j)^T \Sigma_{\hat{\omega}_j}^{-1} (\hat{\omega}_j - \omega_j) \sim \chi_q^2 \ \end{gathered}$$

Covariate-Effect Plots

$$\overline{ ext{NN}}_j(x) = rac{1}{n} \sum_{i=1}^n ext{NN}(x_{i,1}, \ldots, x_{i,j-1}, x, x_{i,j+1}, \ldots)$$

Propose covariate-effect plots of the following form:

$$\hat{eta}_j(x,d) = \overline{ ext{NN}}_j(x+d) - \overline{ ext{NN}}_j(x)$$

Usually set $d = \mathrm{SD}(x_j)$

Associated uncertainty via delta method.

R Implementation


```
# install.packages("devtools")
library(devtools)
install_github("andrew-mcinerney/statnn")
```

Data Application (Revistied)

Boston Housing Data (Kaggle)

506 communities in Boston, MA.

Response:

• medv (median value of owner-occupied homes)

12 Explanatory Variables:

- rm (average number of rooms per dwelling)
- 1stat (proportion of population that are disadvantaged)

Boston Housing: Model Selection

```
## Call:
## selectnn.formula(formula = medv ~ ., data = Boston, Q = 10, n_init = 10,
## maxit = 5000)
##

## Number of input nodes: 8
## Number of hidden nodes: 4
##

## Inputs:
## Covariate Selected Delta.BIC
## rm Yes 236.907
## lstat Yes 168.023
## [...]
```

Boston Housing: Model Summary

```
stnn <- statnn(nn)
summary(stnn)</pre>
```

```
## [...]
## Coefficients:
                                    Wald
         Estimate Std. Error |
                                 X^2 Pr(> X^2)
  crim -0.115769    0.019085 | 109.8369    0.00e+00 ***
   indus -0.176500  0.018028 | 51.6302 1.65e-10 ***
    nox -0.163091 0.020639 | 39.4919 5.51e-08 ***
  rm 0.201211 0.017924 | 45.5051 3.12e-09 ***
                   0.022437 | 14.6031 5.60e-03 **
  dis 0.101701
      ## ptratio -0.192649 0.016672 | 7.8733 9.63e-02 .
   lstat -0.263402
                   0.014443 | 50.2500 3.20e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [...]
```

Boston Housing: Covariate-Effect Plots

plot(stnn, conf_int = TRUE, method = "deltamethod", which = c(4, 8))

Summary

Feedforward neural networks are non-linear regression models.

Calculation of a likelihood function allows for uncertainty quantification.

Our R package extends existing neural network packages to allow for a more interpretable, statistically-based output.

References

Fukumizu, K. (1996). A regularity condition of the information matrix of a multilayer perceptron network. Neural Networks, 9(5):871–879.

McInerney, A. and Burke, K. (2022). A Statistically-Based Approach to Feedforward Neural Network Model Selection. arXiv preprint arXiv:2207.04248.

R Package

devtools::install github("andrew-mcinerney/statnn")

andrew-mcinerney 🏏 @amcinerney_ 🖂 andrew.mcinerney@ul.ie