Miejsce na naklejkę z kodem szkoły

MIN-R2A1P-052

EGZAMIN MATURALNY Z INFORMATYKI

Arkusz II

POZIOM ROZSZERZONY

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron i dołączone są do niego dwa nośniki danych podpisane *DANE* oraz *WYNIKI*. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 3. Jeśli rozwiązanie zadania lub jego części przedstawia program komputerowy, to zapisz go w tym języku programowania, który został wybrany przez Ciebie przed egzaminem.
- 4. Przed upływem czasu przeznaczonego na egzamin nagraj na nośnik *WYNIKI* wszystkie pliki stanowiące rozwiązania zadań i przeznaczone do oceny (i tylko te pliki).
- 5. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 6. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.

Życzymy powodzenia!

ARKUSZ II

MAJ ROK 2005

WYBRANE:

(środowisko)

(kompilator)

(program użytkowy)

Za rozwiązanie wszystkich zadań można otrzymać łącznie 60 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJĄCEGO										

Zadanie 4. Projekt. (20 pkt)

Centrum Projektowe Solaris tworzy prototyp pojazdu kosmicznego, który poleci na Marsa. Upłynął właśnie termin realizacji zlecenia, a Solaris ma jeszcze przed sobą wykonanie wielu obliczeń. Z uwagi na fakt, że są to bardzo specjalistyczne obliczenia, oprogramowanie dla nich oferują tylko firmy D1 i D2. Cena licencji na oprogramowanie zależy od maksymalnego dopuszczalnego rozmiaru przetwarzanych danych N podanego w gigabajtach i wynosi:

- ➤ **0.01***N* dla oprogramowania firmy D1,
- > $0.5 * \sqrt{N}$ w przypadku firmy D2.

Z uwagi na to, że upłynął już termin realizacji projektu, istotny jest również czas obliczeń, ponieważ Solaris ponosi opłaty karne za opóźnienia w realizacji. W przypadku programu D1 obliczenia wykonywane są w czasie $f(N)=10m^3+7m^2+0.1m+0.1$, $gdzie\ m=0.0001N$ sekund. Natomiast program D2 jest pięciokrotnie wolniejszy, wymaga czasu 5f(N) sekund. Kary wyznacza się proporcjonalne do opóźnień. Przyjmujemy więc, że koszt obliczeń (kara za opóźnienie) jest równy jego czasowi. A zatem na koszt wyboru rozwiązania D1 składa się koszt opłat licencyjnych (0.01N) plus koszt obliczeń (f(N)). Podobnie liczymy koszt dla oprogramowania D2.

Celem Solarisa jest zawsze wybór rozwiązania o mniejszym koszcie.

Do oceny oddajesz:

Na nośniku *WYNIKI* pliki zawierające komputerową realizację Twoich obliczeń określonych w punktach a) i b) zadania oraz dokument tekstowy *Raport4* z odpowiedziami do punktów a), b) i c).

a) Przeprowadź obliczenia, na podstawie których wyznaczysz, dla jakich wartości *N*∈ [1, 7 000] należy wybrać firmę D1, a dla jakich firmę D2. Podaj też *koszt realizacji projektu* przy wyborze D1 i D2 dla *N* = 100, 1000 i 5000.

Na nośniku <i>WYNIKI</i> oddajesz plik o nazwie	
3 1	
	tu wpisz nazwę pliku
	/ 11 1 / 1
zawierający komputerową realizację Twoich oblica	zen dia niinkfii a)
	2011 dia p dilitta di).

Do oceny oddajesz w dokumencie Raport4:

- przedział wartości *N*, dla których należy wybrać firmę D1, oraz przedział wartości *N*, dla których należy wybrać firmę D2. Każdy przedział umieść w osobnym wierszu. Końce przedziałów wyznacz z dokładnością do jednej setnej,
- tabelę zawierającą w kolejnych wierszach *koszt realizacji projektu* dla *N* = 100, 1000 i 5000. *Koszty* odpowiadające każdej z firm należy umieścić w osobnych kolumnach i zaokrąglić do jednej setnej. Zadbaj o czytelność tabeli.
- b) Sporządź zestawienie porównujące koszt opłat licencyjnych w przypadku D2 z kosztem obliczeń, również w przypadku wyboru D2, dla wartości N z zakresu [6000, 9000] (z krokiem 100).

Na nośniku <i>WYNIKI</i> oddajesz plik o nazwie	
J = 1	tu wpisz nazwę pliku
zawierający komputerową realizację Twoich obliczeń	punktu b).

W dokumencie *Raport4* należy umieścić:

- zestawienie trzykolumnowe zawierające kolejno w kolumnach: wartości N z zakresu [6000, 9000] (z krokiem 100), koszt opłat licencyjnych dla danego N, koszt obliczeń dla danego N,
- wykres liniowy ilustrujący otrzymane wyniki.
- c) Podziel *Raport4* na rozdziały o nazwach: *Zadanie(4a)*, *Zadanie(4b)*, *Zadanie(4c)*. Odpowiedzi do poszczególnych podpunktów umieść w odpowiednich rozdziałach. Rozdziały utwórz nawet wówczas, gdy nie rozwiązujesz podpunktów (4a) i (4b). W rozdziale (4c) podaj nazwę systemu operacyjnego wykorzystywanego na komputerze, na którym pracujesz. Ponadto opisz sposób uzyskiwania informacji o rozmiarze dysku systemowego oraz wielkości wolnego miejsca na nim. W nagłówku dokumentu *Raport4* wstaw swój kod zdającego.

Punktacja:

Część zadania	Maks.
a	10
b	7
c	3
Razem	20

Zadanie 5. Najlepsze sumy, najpopularniejsze elementy. (20 pkt)

Najlepszą sumą ciągu liczb a_1 , a_2 , ..., a_n nazywamy największą wartość wśród sum złożonych z **sąsiednich** elementów tego ciągu. Na przykład dla ciągu: 1, 2, -5, 7 mamy następujące sumy:

1, 1+2=3, 1+2+(-5)=-2, 1+2+(-5)+7=5, 2, 2+(-5)=-3, 2+(-5)+7=4, -5, -5+7=2, 7. Zatem najlepszą sumą jest 7 (zwróć uwagę, że jeden element też uznajemy za sumę).

Do oceny oddajesz:

Na nośniku WYNIKI dokument tekstowy Raport5 zawierający odpowiedzi do punktów a), b), c).

Wykonaj poniższe polecenia.

a) Dany jest następujący ciąg liczb całkowitych: 1, -2, 6, -5, 7, -3. Wyznacz najlepszą sumę dla tego ciągu i wpisz poniżej jej wartość:

Najlepsza suma:.....

Czy na podstawie uzyskanego wyniku można podać wartość najlepszej sumy dla ciągu: 1, -2, 2, 2, -5, 3, 3, 1, -3.

Do oceny oddajesz w dokumencie Raport5 wartości najlepszej sumy dla ciągu oraz odpowiedź z uzasadnieniem na powyższe pytanie.

b) Zaproponuj algorytm wyznaczania najlepszej sumy dla dowolnego ciągu liczb całkowitych. Na jego podstawie napisz program do obliczenia najlepszych sum ciągów liczb podanych w plikach *dane5-1.txt*, *dane5-2.txt*, *dane5-3.txt* (znajdującym się na nośniku *DANE*). Wpisz poniżej najlepsze sumy dla poszczególnych ciągów:

Najlepsza suma dla dane5-1.txt	
Najlepsza suma dla dane5-2.txt	
Najlepsza suma dla dane5-3.txt	

Do oceny oddajesz także w dokumencie Raport5:

- opis algorytmu zawierającego odpowiednie fragmenty kodu Twojego programu,
- wartości najlepszych sum dla poszczególnych plików, które wpisałeś do powyższej tabeli.
- c) Wyznacz "najpopularniejszy" element w ciągu, czyli element występujący największą liczbę razy. Zaprojektuj jak najszybszy algorytm wyznaczania najpopularniejszego elementu ciągu oraz oszacuj liczbę wykonywanych przez niego operacji (czas działania) jako funkcję od liczby elementów w ciągu. Zaprogramuj swój algorytm i zastosuj go do ciągów znajdujących się w plikach *dane5-1.txt, dane5-2.txt, dane5-3.txt*. W przypadku, gdy w ciągu jest więcej niż jeden najpopularniejszy element, jako wynik podajemy dowolny z nich. Na przykład dla ciągu 1, 3, 5, 1, 3 poprawną odpowiedzią jest zarówno 1, jak i 3 (oba elementy występują dwa razy). Wpisz poniżej najpopularniejsze elementy dla poszczególnych ciągów:

Najpopularniejszy element w dane5-1.txt	
Najpopularniejszy element w dane5-2.txt	
Najpopularniejszy element w dane5-3.txt	

Do oceny oddajesz w dokumencie Raport5:

- najpopularniejsze elementy w plikach *dane5-1.txt, dane5-2.txt, dane5-3.txt* umieszczone w tabeli czytelnie prezentującej te wyniki,
- opis algorytmu zawierającego odpowiednie fragmenty kodu Twojego programu oraz oszacowanie czasu jego działania.

Punktacja:

Część zadania	Maks.
a)	4
b)	8
c)	8
Razem	20

Zadanie 6. Puchar świata w skokach. (20 pkt)

Na nośniku *DANE*, w plikach tekstowych *Panstwa.txt*, *Zawodnicy.txt*, *Kuusamo28.txt*, *Trondheim06.txt*, *Zakopane17.txt* znajdują się dane, dotyczące Pucharu Świata w skokach narciarskich w sezonie 2003/2004.

Plik *Panstwa.txt* zawiera dane dotyczące państw, które są reprezentowane w ramach Pucharu. Dane każdego państwa zostały umieszczone w osobnych wierszach i rozdzielone średnikami. W jednym wierszu znajdują się następujące dane: *nazwa państwa* oraz *skrót nazwy* (oddzielone średnikiem).

Przykład:

Polska;POL

Niemcy;GER

Plik **Zawodnicy.txt** zawiera listę zawodników, którzy uzyskali co najmniej jeden punkt w Pucharze Świata. Dane każdego zawodnika są umieszczone w osobnych wierszach i rozdzielone średnikami. Na dane zawodnika składa się: *numer na liście, imię i nazwisko, skrót nazwy państwa*, które reprezentuje, oraz *liczba punktów* uzyskanych w dotychczasowych zawodach (dane są oddzielone średnikami, pomiędzy imieniem i nazwiskiem jest spacja).

Przykład:

33; Jan Mazoch; CZE; 3

47; Matti Hautamaeki; FIN; 475

Następnie trzy pliki: *Kuusamo28.txt*, *Trondheim06.txt*, *Zakopane17.txt* zawierają wyniki zawodów rozegranych odpowiednio w Kuusamo (2003-11-28), w Trondheim (2003-12-06) i w Zakopanem (2004-01-17). Każde zawody zostały opisane jednakowo. W osobnych wierszach umieszczono wyniki jednego zawodnika, dane oddzielono spacjami. Na dane o zawodniku składają się: numer zawodnika przypisany mu w pliku *Zawodnicy.txt*, długość pierwszego skoku, nota pierwszego skoku, długość drugiego skoku, łączna nota za dwa skoki. *Przykład:*

47 139 150,2 133,5 291,5

gdzie 47 jest numerem zawodnika Matti Hautamaeki, który za skok na odległość 139 m w I serii otrzymał notę 150,2 punktów, zaś po skoku na odległość 133,5 m w II serii otrzymał łączną notę 291,5 punktów.

Do oceny oddajesz:

Na nośniku *WYNIKI* pliki tekstowe wskazane w punkcie a) oraz dokument tekstowy *Raport6*, zawierający odpowiedzi do punktów a), b), c), d).

a) Określ schemat wszystkich tabel (atrybuty i klucze główne) oraz związki między tabelami dla relacyjnej bazy danych zawierającej tabele: państw, zawodników, miast i wyników wszystkich zawodów Pucharu Świata. Wyniki z poszczególnych zawodów muszą być rozróżnialne. Przyjmij, że poszczególne zawody określone są jednoznacznie przez datę i miasto, w którym się one odbywają. Tabela miast zawiera nazwy miast, w których odbywają się zawody i skróty nazw państw, w których one leżą. Określając pozostałe tabele, wykorzystaj opis zawartości plików *Panstwa.txt*, *Zawodnicy.txt*, *Kuusamo28.txt*, *Trondheim06.txt*, *Zakopane17.txt* przedstawiony w tym zadaniu.

Do oceny oddajesz w pliku Raport6:

- opis każdej tabeli (nazwa tabeli, atrybuty, klucz główny) w osobnym wierszu,
- opis każdego związku w osobnym wierszu. Na opis związku składają się nazwy tabel wchodzących w skład związku, typ związku oraz klucz główny/obcy.
- b) Utwórz czytelne zestawienie zawierające następujące informacje: dla każdego państwa liczbę zawodników zanotowanych na punktowanych miejscach (miejsca od 1 do 30) w poszczególnych zawodach, dla których dysponujesz danymi.

Do oceny oddajesz tabelę umieszczoną w dokumencie Raport6.

c) Sporządź zestawienie 30 pierwszych zawodników w kolejności zajętych miejsc na zawodach w Zakopanem. Takie samo zestawienie sporządź również dla zawodów w Kuusamo. O miejscu zawodnika decyduje łączna nota uzyskana za dwa skoki. Wynikowe zestawienie ma zawierać dla każdego zawodnika: zajęte miejsce (numer miejsca), imię i nazwisko zawodnika, skrót nazwy państwa, które reprezentuje, długość pierwszego i drugiego skoku oraz łączną notę za oba skoki.

Do oceny oddajesz:

- pliki tekstowe punkt6a-z.txt i punkt6a-k.txt na nośniku WYNIKI zawierające odpowiednio zestawienie dla zawodów w Zakopanem i Kuusamo (w jednym wierszu umieszczamy informacje dotyczące jednego zawodnika, oddzielone średnikami),
- w dokumencie *Raport6*: opis metody otrzymania wyniku, a także pierwszy wiersz zestawienia dla Zakopanego i pierwszy wiersz zestawienia dla Kuusamo.
- d) Utwórz informację o wynikach Adama Małysza na zawodach w Zakopanem, Kuusamo i Trondheim. Odpowiedź dla jednych zawodów składa się z: nazwy miasta w którym odbyły się zawody, odległości uzyskanej w pierwszej i drugiej serii skoków, uzyskanej noty, zajętego miejsca. Rezultaty wpisz do poniższej tabeli:

Miasto	Pierwsza seria	Druga seria	Nota	Miejsce
Zakopane				
Kuusamo				
Trondheim				

Do oceny oddajesz w dokumencie Raport6 zapytanie użyte do otrzymania wyniku.

Punktacja:

Część zadania	Maks.
a)	4
b)	5
c)	6
d)	5
Razem	20

BRUDNOPIS