that 2(x-y)=0, so the set V of solutions is given by

$$y = x$$
$$z = 0.$$

This is a one dimensional subspace of \mathbb{R}^3 . Geometrically, this is the line of equation y = x in the plane z = 0 as illustrated by Figure 11.1.

Figure 11.1: The intersection of the magenta plane x - y + z = 0 with the blue-gray plane x - y - z = 0 is the pink line y = x.

Now why did we say that the above equations are linear? Because as functions of (x, y, z), both maps $f_1: (x, y, z) \mapsto x - y + z$ and $f_2: (x, y, z) \mapsto x - y - z$ are linear. The set of all such linear functions from \mathbb{R}^3 to \mathbb{R} is a vector space; we used this fact to form linear combinations of the "equations" f_1 and f_2 . Observe that the dimension of the subspace V is 1. The ambient space has dimension n=3 and there are two "independent" equations f_1, f_2 , so it appears that the dimension $\dim(V)$ of the subspace V defined by m independent equations is

$$\dim(V) = n - m,$$

which is indeed a general fact (proven in Theorem 11.4).

More generally, in \mathbb{R}^n , a linear equation is determined by an n-tuple $(a_1, \ldots, a_n) \in \mathbb{R}^n$, and the solutions of this linear equation are given by the n-tuples $(x_1, \ldots, x_n) \in \mathbb{R}^n$ such that

$$a_1x_1 + \dots + a_nx_n = 0;$$

these solutions constitute the kernel of the linear map $(x_1, \ldots, x_n) \mapsto a_1 x_1 + \cdots + a_n x_n$. The above considerations assume that we are working in the canonical basis (e_1, \ldots, e_n) of