Dr Jon G. C. Kragskow

Department of Chemistry, University of Bath, UK

www.kragskow.dev

jgck20@bath.ac.uk

A fast and enthusiastic learner with a strong background in computational and theoretical chemistry, particularly as applied to magnetic and spectroscopic properties of transition metal and lanthanide systems. Passionate about building well-documented and open-source tools which make research easier, clearer, and more approachable. Committed to education, particularly through the creation of modern and interactive digital resources.

EMPLOYMENT

UNIVERSITY OF BATH

Bath, UK

January 2023-Ongoing

Post-Doctoral Research Associate

- EPSRC funded position in computational chemistry supervised by Dr Elizaveta Suturina.
- Implemented new computational tools for routine simulation and analysis of paramagnetic NMR spectra in both biological and chemical systems.
- Calculated and simulated of magnetic properties of exchange-coupled transition metal complexes using *ab initio* methods and spin-Hamiltonian modelling.
- Participation in academic exchange visits to Florence, Italy (protein NMR experiments) and Bordeaux, France (proton NMR and magnetochemistry experiments).
- Tutor in first year physical chemistry, and demonstrator/contributor for second year computational chemistry lab experiments.

THE UNIVERSITY OF MANCHESTER

Manchester, UK

Post-Doctoral Research Associate

April 2022-October 2022

- ERC funded position in computational chemistry supervised by Prof. Nicholas Chilton.
- Modelled magnetic behaviour of molecular nanomagnets using ab initio quantum chemistry, particularly in the solid-state.
- Led development of magnetochemistry software such as ccfit2, a python package for fitting experimental magnetic data
- .Trained of group members in python and Fortran software development and best practices for code deployment and version control through codereview sessions, documentation, and workshops.
- Maintained and architected group subversion and git code repositories and created automated pipelines for code documentation and release.

EDUCATION

THE UNIVERSITY OF MANCHESTER

Manchester, UK

PhD in Chemistry Associate - "Chemical Control of Spin-Phonon Coupling"

September 2018-April 2022

- PhD position in group of Prof. Nicholas Chilton funded by EPSRC studentship and University of Manchester President's Doctoral Scholarship.
- Calculated spin-phonon coupling (SPC) in lanthanide coordination complexes using *ab initio* quantum chemistry and spin-Hamiltonian approaches.
- Developed novel methodologies and software for the simulation of SPC-derived properties such as magnetic relaxation rates and magnetic field dependent infrared spectroscopy data.
- Collaborations with experimental groups in Xi'an Jiaotong University (China), the National High Magnetic Field lab (Florida, United States), and University of Copenhagen (Denmark).
- Instructed 2nd year undergraduates in MATLAB programming, marked lab scripts and carried out individual student assessment interviews. Overhauled course material and adapted course for distance learning during COVID-19.

THE UNIVERSITY OF MANCHESTER

Manchester, UK

MChem in Chemistry

September 2014-June 2018

- Degree Classification: First Class
- Outstanding Academic Achievement Award for top 0.5% of graduating students in Faculty of Science and Engineering.

Programming Languages

Beginner JavaScript, Docker, flask, Apache, C++

Intermediate HTML, CSS, Qt, Bash

Experienced Python, Fortran90, Git, Subversion, make, MATLAB, GitLab CI/CD

Open-Source Software Development

ccfit2 A python package for working with experimental magnetometry data. Users can input a magnetometer output file and obtain

a fitted plot of their data using a single command and an interactive interface. Thanks to its modular design and rich

documentation, ccfit2 can be included in users own python code with ease.

Waveplot An online wavefunction viewer which demonstrates simple concepts in quantum chemistry. Waveplot is built with students in

mind and features the model quantum systems they encounter in introductory quantum chemistry. Students can manipulate

input variables, plots, and download raw data to use in their own work.

AtomAccess A python package which quantifies steric hindrance at chemical centres using raytracing. I wrote AtomAccess to be fast and

user-friendly through either its simple web-interface, or through command-line and scripting.

Tau A C++/Fortan90 program for the simulation of magnetic relaxation rates. Tau uses *ab initio* spin-phonon coupling data to

accurately simulate magnetic relaxation under a range of conditions using a semi-classical master equation.

FIRMS_SIM A Fortran90 program for the simulation of magnetic field dependent infrared spectroscopy. FIRMS_SIM uses ab initio spin-

phonon coupling data to simulate the electronic and vibrational signals observed in the infrared spectra of molecules under

applied magnetic fields.

Technical

Quantum Chemistry High-level knowledge of computational and quantum chemistry methods (HF, DFT, CASSCF, CASPT2), and experience in

using established programs (Gaussian, OpenMOLCAS, ORCA).

Magnetism Experienced in analysis and workup of experimental magnetometry data (AC susceptibility, DC decay, magnetisation and

susceptibility). Expert knowledge of phenomenological and spin-Hamiltonian modelling techniques.

HPC Proficient HPC user, familiar with a variety of schedulers and systems of differing scale (AWS, Azure, local clusters, Tier-2

HPC). Experience in creating and maintaining group-level clusters/systems.

FUNDING SECURED___

2023	British Council -	Exchange program	between Universities	of Bath and Bordeaux	(£7k)
------	-------------------	------------------	----------------------	----------------------	-------

Royal Society of Chemistry - Researcher Mobility Grant (£500)

2019 European Cost Action Group on Molecular Spintronics (MOLSPIN) – Travel Support (£500)

2017 Royal Society of Chemistry - Undergraduate Summer Research Bursary (£1.5k)

The University of Manchester - Undergraduate Departmental Research Bursary (£1k)

AWARDS

2021	The University of Manchester	r – Outstanding Postgraduate Academic Achievement Awa	.rd
------	------------------------------	---	-----

The University of Manchester – President's Doctoral Scholarship

The University of Manchester – Outstanding Undergraduate Academic Achievement Award

PUBLICATIONS

- 13. G. K. Gransbury, S. C. Corner, J. G. C. Kragskow, P. Evans, H. Yeung, W. J. A. Blackmore, G. F. S. Whitehead, I. J. Vitorica-Yrezabal, Meagan S. Oakley, N. F. Chilton and D. P. Mills, J. Am. Chem. Soc., 2023, 145, 41, 22814–22825
- 12. R. Nabi, J. K. Staab, A. Mattioni, **J. G. C. Kragskow**, D. Reta, J. M. Skelton and N. F. Chilton, *J. Am. Chem. Soc.*, 2023, **145**, 45, 24558–24567
- 11. B. Alnami, J. G. C. Kragskow, J. K. Staab, J. M. Skelton and N. F. Chilton, J. Am. Chem. Soc., 2023, 145, 25, 13632-13639
- 10. J. G. C. Kragskow, A. Mattioni, J. K. Staab, D. Reta, J. M. Skelton and N. F. Chilton, Chem. Soc. Rev., 2023, 52, 4567
- 9. W J. A. Blackmore, G. K. Gransbury, P. Evans, J. G. C. Kragskow, D. P. Mills, N. F. Chilton, Phys. Chem. Chem. Phys., 2023, 25, 16735-16744
- 8. K. R. McClain, H. Kwon, K. Chakarawet, R. Nabi, **J. G. C. Kragskow**, N. F. Chilton, R. D. Britt, J. R. Long and B. G. Harvey, *J. Am. Chem. Soc.*, 2023, **145**, 8996–9002
- 7. J. G. C. Kragskow, J. Marbey, C. D. Buch, J. Nehrkorn, M. Ozerov, S. Piligkos, S. Hill and N. F. Chilton, Nat. Commun., 2022, 13, 825
- 6. C. A. Gould, K. R. McClain, D. Reta, **J. G. C. Kragskow**, D. A. Marchiori, E. Lachman, E.-S. Choi, J. G. Analytis, R. D. Britt, N. F. Chilton, B. G. Harvey and J. R. Long, *Science*, 2022, **375**, 198-202
- 5. D. Reta, **J. G. C. Kragskow**, N. F. Chilton, J. Am. Chem. Soc., 2021, **143**, 5943–5950
- 4. K.-X. Yu, J. G. C. Kragskow, Y.-S. Ding, Y.-Q. Zhai, D. Reta, N. F. Chilton, Y.-Z. Zheng, Chem, 2020, 6, 1–17
- 3. C. A. P. Goodwin, B. L. L. Réant, G. F. Vettese, **J. G. C. Kragskow**, M. J. Giansiracusa, I. M. Dimucci, K. M. Lancaster, D. P. Mills, S. Sproules, *Inorg. Chem.*, 2020, **59**, 7571–7583
- 2. H. M. Nicholas, C. A. P. Goodwin, J. G. C. Kragskow, S. J. Lockyer, D. P. Mills, Molecules, 2018, 23, 1138
- 1. C. A. P. Goodwin, B. L. L. Réant, J. G. C. Kragskow, I. M. DiMucci, K. M. Lancaster, D. P. Mills and S. Sproules, *Dalton Trans.*, 2018, 47, 10613–1062

PRESENTATIONS

Contributed Talks

- 2022 Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding
 - 7th European Conference on Molecular Magnetism, Rennes
- 2022 Vibronic coupling in a 4f qubit

American Physical Society March Meeting, Chicago

2021 Ab initio relaxation dynamics in Lanthanide Single Molecule Magnets

Department of Chemistry Postgraduate Symposium, The University of Manchester

2021 Vibronic coupling in a 4f qubit

17th International Conference on Molecule Based Magnets Rising Star Symposium, The University of Manchester

2021 Enhancing Magnetic Hysteresis in Single-Molecule Magnets by Ligand Functionalization

Department of Chemistry Staff Symposium, The University of Manchester

2018 Understanding the Crystal Field of Metal Complexes

Midlands Computational Chemistry Conference, Nottingham Trent University

Posters

- 2024 Understanding the Electronic Structures of Transition Metal Complexes using Paramagnetic NMR Spectroscopy
 Spin Meeting 2024, The University of Manchester
- 2023 Understanding the Electronic Structures of Transition Metal Complexes using Paramagnetic NMR Spectroscopy

 19th European Magnetic Resonance Congress, Glasgow
- 2019 Ab initio Relaxation Dynamics of Dysprosium(III) Single Molecule Magnets

7th European Conference on Molecular Magnetism, University of Florence

2019 Ab initio Relaxation Dynamics of Dysprosium(III) Single Molecule Magnets

CASTEP Users Meeting, University of Oxford

2019 Ab initio Relaxation Dynamics of Dysprosium(III) Single Molecule Magnets

Royal Society of Chemistry Theoretical Chemistry Group Graduate Meeting, University of Nottingham