Combinational Circuit Design

Chapter 4

Combinational Circuits

★ Output is function of input only

i.e. no feedback

When input changes, output may change (after a delay)

Combinational Circuits

★ Analysis

- Given a circuit, find out its function
- Function may be expressed as:
 - Boolean function
 - **♦** Truth table

★ Design

- Given a desired function, determine its *circuit*
- Function may be expressed as:
 - Boolean function
 - **♦** Truth table

★ Boolean Expression Approach

4 / 65

A B C	F_1	F_2
0 0 0	0	0

F_1	F_2
0	0
1	0
	0

A	B	C	F_{I}	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0

A	B	C	F_{I}	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1

A	B	C	F_{I}	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0

A	B	C	F_{I}	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1

A	B	C	F_{I}	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1

 $F_2 = AB + AC + BC$

Design Procedure

- **★** Given a problem statement:
 - Determine the number of inputs and outputs
 - Derive the truth table
 - Simplify the Boolean expression for each output
 - Produce the required circuit

Example:

Design Procedure

★ BCD-to-Excess 3 Converter

A B C D	w x y z
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	X X X X
1 0 1 1	x x x x
1 1 0 0	x x x x
1 1 0 1	x x x x
1 1 1 0	x x x x
1111	x x x x

$$y = C'D' + CD$$

$$x = B'C + B'D + BC'D'$$

$$z = D'$$

Design Procedure

★ BCD-to-Excess 3 Converter

A	B	CD	w x y z
0	0	0 0	0 0 1 1
0	0	0 1	0 1 0 0
0	0	1 0	0 1 0 1
0	0	1 1	0 1 1 0
0	1	0 0	0 1 1 1
0	1	0 1	1 0 0 0
0	1	1 0	1 0 0 1
0	1	1 1	1 0 1 0
1	0	0 0	1 0 1 1
1	0	0 1	1 1 0 0
1	0	1 0	x x x x
1	0	1 1	x x x x
1	1	0 0	x x x x
1	1	0 1	x x x x
1	1	1 0	x x x x
1	1	1 1	x x x x

$$w = A + B(C+D)$$
 $y = (C+D)' + CD$
 $x = B'(C+D) + B(C+D)'$ $z = D'$

Seven-Segment Decoder

w x y z	abcdefg
0 0 0 0	1111110
0 0 0 1	0110000
0 0 1 0	1101101
0 0 1 1	1111001
0 1 0 0	0110011
0 1 0 1	1011011
0 1 1 0	1011111
0 1 1 1	1110000
1 0 0 0	1111111
1 0 0 1	1111011
1 0 1 0	X X X X X X X
1 0 1 1	X X X X X X X
1 1 0 0	XXXXXXX
1 1 0 1	X X X X X X X
1 1 1 0	X X X X X X X
1111	XXXXXXX

- **★** Half Adder
 - Adds 1-bit plus 1-bit
 - Produces Sum and Carry

x y	C S
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0

$$\frac{x}{C}$$

★ Full Adder

- Adds 1-bit plus 1-bit plus 1-bit
- Produces Sum and Carry

x y z	C S
0 0 0	0 0
0 0 1	0 1
0 1 0	0 1
0 1 1	1 0
1 0 0	0 1
1 0 1	1 0
1 1 0	1 0
1 1 1	1 1

X

★ Full Adder

★ Carry Propagate Adder

★ Carry propagation

- When the correct outputs are available
- The critical path counts (the worst case)
- $(A_1, B_1, C_1) \to C_2 \to C_3 \to C_4 \to (C_5, S_4)$
- When 4-bits full-adder → 8 gate levels (*n*-bits: 2*n* gate levels)

Figure 4.10 Full Adder with *P* and *G* Shown

Parallel Adders

***** Reduce the carry propagation delay

- Employ faster gates
- Look-ahead carry (more complex mechanism, yet faster)
- Carry propagate: $P_i = A_i \oplus B_i$
- Carry generate: $G_i = A_i B_i$
- Sum: $S_i = P_i \oplus C_i$
- Carry: $C_{i+1} = G_i + P_i C_i$
- $C_0 = \text{Input carry}$
- $C_1 = G_0 + P_0 C_0$

- $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
- $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Carry Look-ahead Adder (1/2)

★ Logic diagrar

Fig. 4.11 Logic Diagram of Carry Look-ahead Generator

Carry Look-ahead Adder (2/2)

- **★** 4-bit carry-look ahead adder
 - Propagation delay of C_3 , C_2 and C_1 are equal.

Fig. 4.12 4-Bit Adder with Carry Look-ahead

- **★** 4-bits plus 4-bits

Operands and Result: 0 to 9								$+ y_3 y_2 $	y ₁	y ₀	
	$X_3 X_2 X_1 X_0$						Cy	S ₃	S ₂	S ₁	So

X+Y	$X_3 X_2 X_1 X_0$	$y_3 y_2 y_1 y_0$	Sum	Cy	$S_3 S_2 S_1 S_0$			•
0+0	0 0 0 0	0 0 0 0	= 0	0	0 0 0 0			
0+1	0 0 0 0	0 0 0 1	= 1	0	0 0 0 1			
0+2	0 0 0 0	0 0 1 0	= 2	0	0 0 1 0			
0+9	0 0 0 0	1 0 0 1	= 9	0	1 0 0 1			
1+0	0 0 0 1	0 0 0 0	= 1	0	0 0 0 1			
1+1	0 0 0 1	0 0 0 1	= 2	0	0 0 1 0			
1+8	0 0 0 1	1 0 0 0	= 9	0	1 0 0 1			
1+9	0 0 0 1	1 0 0 1	=A	0	$\boxed{1010}$		- <i>I1</i>	11
2+0	0 0 1 0	0 0 0 0	= 2	0	0 0 1 0			
9+9	1 0 0 1	1 0 0 1	= 12	1	0 0 1 0	<u> </u>	Wro	n

valid Code

 $+ X_2 X_2 X_4 X_0$

ng BCD Value

27 / 65

X+Y	$x_3 x_2 x_1 x_\theta$	$y_3 y_2 y_1 y_0$	Sum	Cy	$S_3 S_2 S_1 S_\theta$	Required BCD Output	Value	
9+0	1 0 0 1	0 0 0 0	= 9	0	1 0 0 1	0 0 0 0 1 0 0 1	= 9	
9+1	1 0 0 1	0 0 0 1	= 10	0	1 0 1 0	0 0 0 1 0 0 0 0	= 16	X
9 + 2	1 0 0 1	0 0 1 0	= 11	0	1 0 1 1	0 0 0 1 0 0 0 1	= 17	X
9+3	1 0 0 1	0 0 1 1	= 12	0	1 1 0 0	0 0 0 1 0 0 1 0	= 18	X
9+4	1 0 0 1	0 1 0 0	= 13	0	1 1 0 1	0 0 0 1 0 0 1 1	= 19	X
9 + 5	1 0 0 1	0 1 0 1	= 14	0	1 1 1 0	0 0 0 1 0 1 0 0	= 20	X
9+6	1 0 0 1	0 1 1 0	= 15	0	1 1 1 1	0 0 0 1 0 1 0 1	= 21	X
9 + 7	1 0 0 1	0 1 1 1	= 16	1	0 0 0 0	0 0 0 1 0 1 1 0	= 22	X
9 + 8	1 0 0 1	1 0 0 0	= 17	1	0 0 0 1	0 0 0 1 0 1 1 1	= 23	X
9+9	1 0 0 1	1 0 0 1	= 18	1	0 0 1 0	0 0 0 1 1 0 0 0	= 24	X
							*	
•								•
						/		
					→	+6		

★ Correct Binary Adder's Output (+6)

- If the result is between 'A' and 'F'
- If Cy = 1

$S_3 S_2 S_1 S_0$	Err
0 0 0 0	0
1 0 0 0	0
1 0 0 1	0
1 0 1 0	1
1 0 1 1	1
1 1 0 0	1
1 1 0 1	1
1 1 1 0	1
1111	1

$$Err = S_3 S_2 + S_3 S_1$$

Binary Subtractor

★ Use 2's complement with binary adder

•
$$x - y = x + (-y) = x + y' + 1$$

Binary Adder/Subtractor

★ *M*: Control Signal (Mode)

Overflow

★ Unsigned Binary Numbers

★ 2's Complement Numbers

Magnitude Comparator

- **★** Compare 4-bit number to 4-bit number
 - 3 Outputs: < , = , >
 - Expandable to more number of bits

$$x_{3} = \overline{A}_{3} \overline{B}_{3} + A_{3} B_{3}$$

$$x_{2} = \overline{A}_{2} \overline{B}_{2} + A_{2} B_{2}$$

$$x_{1} = \overline{A}_{1} \overline{B}_{1} + A_{1} B_{1}$$

$$x_{0} = \overline{A}_{0} \overline{B}_{0} + A_{0} B_{0}$$

$$(A = B) = x_{3} x_{2} x_{1} x_{0}$$

$$(A > B) = A_{3} \overline{B}_{3} + x_{3} A_{2} \overline{B}_{2} + x_{3} x_{2} A_{1} \overline{B}_{1} + x_{3} x_{2} x_{1} \overline{A}_{0} \overline{B}_{0}$$

$$(A < B) = \overline{A}_{3} B_{3} + x_{3} \overline{A}_{2} B_{2} + x_{3} x_{2} \overline{A}_{1} B_{1} + x_{3} x_{2} x_{1} \overline{A}_{0} B_{0}$$

Magnitude Comparator

Magnitude Comparator

- **Extract "Information"** from the code
- **★** Binary Decoder

• Example: 2-bit Binary Number

Only one lamp will turn on

★ 2-to-4 Line Decoder

$I_1 I_0$	Y_3	Y ₂	Y_1	Y_{o}
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

$$Y_3 = I_1 I_0$$
 $Y_2 = I_1 \bar{I}_0$
 $Y_1 = \bar{I}_1 I_0$ $Y_0 = \bar{I}_1 \bar{I}_0$

★ 3-to-8 Line Decoder

* "Enable" Control

E	$I_1 I_0$	Y_3	Y_2	Y_1	Y_{θ}
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

Expansion

I ₂	$I_1 I_0$	Y	Y_{e}	Y_5	Y ₄	Y ₃	Y ₂	Y_1	Y_{θ}
0	0 0	0	0	0	0	0	0	0	1
0	0 1	0	0	0	0	0	0	1	0
0	1 0	0	0	0	0	0	1	0	0
0	1 1	0	0	0	0	1	0	0	0
1	0 0	0	0	0	1	0	0	0	0
1	0 1	0	0	1	0	0	0	0	0
1	1 0	0	1	0	0	0	0	0	0
1	11	1	0	0	0	0	0	0	0

*Active-High / Active-Low

$I_1 I_0$	Y_3	Y_2	Y_1	Y_{θ}	$I_1 I_0$	Y_3	Y_2 Y	Y_0	
0 0	0	0	0	1	0 0	1	1 1	0	
0 1	0	0	1	0	0 1	1	1 0	1	
1 0	0	1	0	0	1 0	1	0 1	1	
1 1	1	0	0	0	1 1	0	1 1	1	
	Decoder	Y_3 Y_2 Y_1 Y_0			$\begin{array}{c} I_{I_{\theta}} \\ Binary \\ Decodor \end{array}$	\overline{Y}_{3} \overline{Y}_{2} Y_{0})—)—)—	$I_1 - I_0$	

Implementation Using Decoders

- **Each output is a minterm**
- **★** All minterms are produced
- **★** Sum the required minterms

Example: Full Adder

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

Implementation Using Decoders

Encoders

- **★ Put "Information"** into code
- **★** Binary Encoder
 - Example: 4-to-2 Binary Encoder

 $\begin{array}{c|c}
 & x_1 \\
\hline
2 & x_2 \\
\hline
8 & x_2 \\
\hline
8 & x_3 \\
\hline
\end{array}$ Binary
Encoder y_0

<i>X</i> ₃	X_2	x_I	$y_1 y_0$
0	0	0	0 0
0	0	1	0 1
0	1	0	1 0
1	0	0	1 1

Encoders

★ Octal-to-Binary Encoder (8-to-3)

I_7	I_6	I_5	I_4	<u>I</u> ₃	I_2	I_1	I_0	Y_2	Y_1	Y_{θ}
0	0	0	0	0	0	0	1		0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$Y_{2} = I_{7} + I_{6} + I_{5} + I_{4}$$

$$Y_{1} = I_{7} + I_{6} + I_{3} + I_{2}$$

$$Y_{0} = I_{7} + I_{5} + I_{3} + I_{1}$$

Priority Encoders

★ 4-Input Priority Encoder

I_3	I_2	I_1	I ₀	Y_{I}	Y_{o}	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Encoder / Decoder Pairs

0

★ 2-to-1 MUX

51 / 62

★ Quad 2-to-1 MUX

$$F(x, y) = \sum (0, 1, 3)$$

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

x	y	<u>z</u>	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

x y z	F		
$\begin{bmatrix} 0 & 0 \end{bmatrix} 0$	0	F	$z \longrightarrow I_{\theta}$
0 0 1	1	F = z	\overline{z} I_1 MUX Y F
$\begin{bmatrix} 0 & 1 \end{bmatrix} 0$	1		I_2
0 1 1	0	$F = \overline{z}$	$I \longrightarrow I_3 S_1 S_0$
1 0 0	0	F=0	
1 0 1	0	$\int \mathbf{I} \cdot - \mathbf{U}$	\boldsymbol{x} \boldsymbol{y}
1 1 0	1	F=1	
1 1 1	1		

$$F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$$

A B C D	F	
0 0 0	0	F = D
0 0 0 1	1	$\int \mathbf{r} = \mathbf{D}$
0 0 1 0	0	F = D
$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ 1	1	
0 1 0 0	1	$F = \overline{D}$
0 1 0 1	0	
0 1 1 0	0	F=0
0 1 1 1	0	ر از
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\mathbf{F} = 0$
1 0 0 1	0	F=0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	F = D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	
1 1 0 0	1	F=1
1 1 0 1	1	J
1 1 1 0	1	F=1
1 1 1	1	J

Multiplexer Expansion

S_1	So	Y ₃	Y ₂	<u>Y</u> 1	Y_{0}
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

Multiplexer / DeMultiplexer Pairs

DeMultiplexers / Decoders

Three-State Gates

★ Tri-State Buffer

★ Tri-State Inverter

C A	Y
0 x	Hi-Z
1 0	0
1 1	1

Three-State Gates

Three-State Gates

