Contrôle: Probabilités Conditionnelles

Terminale STMG2

14 Février 2025

- Une présentation soignée est de rigueur.
- Tout effort de recherche, même non abouti, sera valorisé.
- Toute résultat, sauf mention contraire, doit être justifié.
- La calculatrice est Autorisée.

Exercice 1 : Arbre de probabilités (5 points)

On procède à l'expérience aléatoire suivante : il y a dans une urne trois boules rouges et deux boules bleues. On tire successivement deux boules de cette urne, sans remettre la première à l'intérieur. On pose les événements suivants :

- B_1 « La première boule tirée est bleue »
- B_2 « La deuxième boule tirée est bleue »
- (a) (1 point) Décrire en français l'événement $\overline{B_1}$.
- (b) (1 point) Compléter l'arbre pondéré suivant.

- (c) (1 point) Expliquer en une phrase à quelle probabilité correspond $P_{B_1}(B_2)$, et donner sa valeur par lecture sur l'arbre pondéré.
- (d) (1 point) Expliquer en une phrase à quoi correspond l'événement $B_1 \cap B_2$, puis calculer $P(B_1 \cap B_2)$.
- (e) (1 point) Calculer $P(B_2)$.

Exercice 2: Tableau (5 points)

On interroge le public d'un festival de musique sur ce qu'il sont venus voir, ainsi que sur leur âge. Aucun n'est allé voir à la fois du black metal et du death metal. Le résultat de cette étude est consignée sur le tableau suivant :

	Black Metal	Death Metal	Total
Moins de 18 ans	78	72	150
Entre 18 et 30 ans	237	63	300
Plus de 30 ans	135	415	550
Total	450	550	1000

On tire une personne au hasard dans cette foule. On considère les événements suivants :

- B « La personne intérrogée est venu voir du Black Metal »
- D « La personne intérrogée est venu voir du Death Metal »

- M « La personne interrogée a moins de 18 ans »
- V « La personne interrogée a entre 18 ans et 30 ans »
- T « La personne interrogée a plus de 30 ans »
- (a) (1 point) Calculer P(B) et P(T).
- (b) (2 points) Calculer $P(D \cap V)$ et $P(M \cap B)$.
- (c) (2 points) Calculer $P_B(T)$ et $P_V(B)$.

Exercice 3: Ressources humaines (7 points)

Une entreprise fait une campagne de recrutement qui se déroule de la façon suivante : Les candidats et candidates passent un test d'entrée ayant 40% de réussite. Ceux et celles qui réussissent le test passent alors un premier entretien de motivation qui accepte alors 70% des candidats. Enfin, les derniers candidats et candidates retenus rencontrent le directeur des ressources humaines qui n'embauche que 25% des candidats qu'il rencontre.

On choisit au hasard le dossier d'un candidat ou d'une candidate. On considère les événements suivants :

- D « Le candidat ou la candidate a réussi le test d'entrée »
- E « Le candidat ou la candidate a réussi l'entretien de motivation »
- ---F « Le candidat ou la candidate est accepté par le directeur des ressources humaines »
- (a) (1 point) Compléter l'arbre pondéré suivant.

- (b) (1 point) Calculer la probabilité qu'un candidat ou une candidate soit reçu.
- (c) (1 point) En déduire que la probabilité qu'un candidat ne soit pas engagé à la suite de cette campagne est de 0,93.
- (d) (3 points) On suppose qu'un frère et sa sœur passent tous les deux la même campagne de recrutement. Leurs performances sont considérées indépendantes. On note F_1 « Le frère est engagé » et F_2 « La sœur est engagée ».
 - i. Que signifie en français $\overline{F_1} \cap \overline{F_2}$?
 - ii. On admet que puisque F_1 et F_2 sont indépendantes, alors $\overline{F_1}$ et $\overline{F_2}$ sont aussi indépendantes. En déduire que $P(\overline{F_1} \cap \overline{F_2}) \simeq 0,86$.
 - iii. En déduire que la probabilité qu'au moins un des deux soit engagé est d'environ 0,14.
- (e) (1 point) S'inspirer des réponses précédentes pour vérifier que si l'on considère trois candidatures, alors la probabilité qu'au moins un des trois candidats soit embauché est d'environ 0, 2.