

Einführung in die Rechnerarchitektur

Speicherwerk und Stack

Lukas Hertel

Lehrstuhl für Rechnerarchitektur und Parallele Systeme Fakultät für Informatik Technische Universität München

08. November 2021

Hausaufgabe

Speicherorganisation Speicherpyramide

Speicherorganisation Struktur

- Wie ist der Speicher strukturiert?
- Wie ist der Speicher mit dem Leit- und Rechenwerk verbunden?
- Was muss man beim Datenzugriff beachten, wenn das gesuchte Datenwort im Cache steht?

SpeicherorganisationLittle- und Big-Endian

- Was ist der Unterschied zwischen Little- und Big-Endian?
- Ablage des Wortes 0x76543210 im Speicher

Little Endian	N+3		Big Endian	N+3	
	N+2			N+2	
	N+1			N+1	
	Adresse N			Adresse N	

Speicherorganisation .bss und .data

- bss für statische Variablen die deklariert wurden, aber nicht initialisiert
- . data für statische Variablen, die initialisiert wurden

Speicherzugriffe

i386 manual

Speicherzugriffe

- i386 manual
- Auf der x86 Architektur kann immer nur ein Operand ein Speicherzugriff sein

Zeichenketten & Arrays Adressierungsarten

- Direkte Adressierung MOV EAX, [ADRESSE]
- Indirekte Adressierung MOV EAX, [ADRESSE + INDEX * SCALE + DISPLACEMENT]
 - ☐ SCALE muss 1, 2, 4 oder 8 sein

Der Stack

