# CoGrammar Tutorial: Multiple Linear and Logistic Regression

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.



#### **Data Science Session Housekeeping**

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
   (Fundamental British Values: Mutual Respect and Tolerance)
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
  wish to ask any follow-up questions. Moderators are going to be
  answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>



#### Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
   www.hyperiondev.com/support
- Report a safeguarding incident:
   www.hyperiondev.com/safeguardreporting
- We would love your feedback on lectures: Feedback on Lectures

### Skills Bootcamp 8-Week Progression Overview

#### **Fulfil 4 Criteria to Graduation**

Criterion 1: Initial Requirements

Timeframe: First 2 Weeks
Guided Learning Hours (GLH):
Minimum of 15 hours
Task Completion: First four tasks

Due Date: 24 March 2024

Criterion 2: Mid-Course Progress

**60** Guided Learning Hours

Data Science - **13 tasks** Software Engineering - **13 tasks** Web Development - **13 tasks** 

Due Date: 28 April 2024



### Skills Bootcamp Progression Overview

#### Criterion 3: Course Progress

Completion: All mandatory tasks, including Build Your Brand and resubmissions by study period end Interview Invitation: Within 4 weeks post-course Guided Learning Hours: Minimum of 112 hours by support end date (10.5 hours average, each week)

#### Criterion 4: Demonstrating Employability

Final Job or Apprenticeship
Outcome: Document within 12
weeks post-graduation
Relevance: Progression to
employment or related
opportunity





#### Learning objectives

Understand and implement Multiple Linear
 Regression and Logistic Regression models

Using Python scikit-learn library for regression and classification tasks



#### Multiple Linear Regression

Recap



#### Multiple Linear Regression

Extension of simple linear regression, uses **several explanatory** (independent) variables  $(x_i)$  to predict the outcome of one response (dependent) variable (y).

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_n x_n + \varepsilon$$

y = **Output/Response/Dependent** variable

 $x_{1}, x_{2}, x_{3}, ..., x_{n} = Various$ 

Feature/Explanatory/Independent

variables

CoGrammar

$$\beta_0$$
 = y-intercept (constant term)

 $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ , ...,  $\beta_n$ = slope coefficient for each explanatory variable

ε = Model's **error** term (also called **residuals**)

#### **Evaluation Metrics**

- Mean Squared Error (MSE), Root mean squared error (RMSE):
  - > MSE = average squared difference between the predicted and actual values. RMSE is root of MSE.
- Mean Absolute Error (MAE)
  - Sum of absolute errors between predicted and actual values.
- R-squared (R<sup>2</sup>) score (coefficient of determination):
  - > R<sup>2</sup> = **proportion of variance** in the target (dependent) variable that can be **explained by the independent variables/model.**

A lower MSE and MAE indicates better model performance.

An R<sup>2</sup> value **closer to 1** indicates a better fit of the model to the data.



## Feature Scaling

| Normalisation                                                   | Standardisation                                                |
|-----------------------------------------------------------------|----------------------------------------------------------------|
| Rescales values to a range<br>between 0 and 1                   | Centers data around mean and scales to standard deviation of 1 |
| Useful when data distribution is unknown or <b>not Gaussian</b> | Useful with <b>Gaussian</b> data<br>distribution               |
| Sensitive to outliers                                           | Less sensitive to outliers                                     |
| Retains shape of original distribution                          | Changes shape of original distribution                         |
| May not preserve relationships<br>between data points           | Preserves relationships<br>between data points                 |
| <b>MinMaxScaler()</b><br>(x – min)/(max – min)                  | <b>StandardScaler()</b><br>(x – mean)/standard deviation       |

CoGrammar

### Which of the following is an example of a regression problem?

- Distinguishing different soil types based on their physical and chemical properties.
- 2. Simulating soil organic carbon and total nitrogen relationship
- 3. Both A and B
- 4. Neither A nor B



### Which of the following is an example of a regression problem?

- Distinguishing different soil types based on their physical and chemical properties.
- 2. Simulating soil organic carbon and total nitrogen relationship
- 3. Both A and B
- Neither A nor B





## In the multiple linear regression equation $y = \beta_0 + \beta_1 x + \beta_2 x_2 + \epsilon$ , what does $\beta_2$ represent?

- 1. The intercept of the second independent variable.
- 2. The intercept of the second dependent variable.
- 3. The slope of the second independent variable.
- 4. The slope of the second dependent variable.



## In the multiple linear regression equation $y = \beta_0 + \beta_1 x + \beta_2 x_2 + \epsilon$ , what does $\beta_2$ represent?

- 1. The intercept of the second independent variable.
- 2. The intercept of the second dependent variable.
- 3. The slope of the second independent variable.
- 4. The slope of the second dependent variable.



# When the independent variables are correlated with one another in a multiple regression analysis, this condition is called:

- 1. Linearity
- 2. Multicollinearity
- 3. Homoscedasticity
- 4. Normality



# When the independent variables are correlated with one another in a multiple regression analysis, this condition is called:

- 1. Linearity
- 2. Multicollinearity
- 3. Homoscedasticity
- 4. Normality



### In the context of linear regression, what does the term "residual" refer to?

- 1. The difference between the predicted and actual values
- 2. The correlation between the independent and dependent variables
- 3. The statistical significance of the regression coefficients
- 4. The proportion of variance in the target variable explained by the model



### In the context of linear regression, what does the term "residual" refer to?

- 1. The difference between the predicted and actual values
- The correlation between the independent and dependent variables
- 3. The statistical significance of the regression coefficients
- 4. The proportion of variance in the target variable explained by the model



### In a multiple regression analysis, if the model provides a poor fit, this indicates that:

- 1. The sum of squares for error will be large
- The standard error of estimate will be large
- 3. The multiple coefficient of determination will be close to zero
- 4. All of the above



### In a multiple regression analysis, if the model provides a poor fit, this indicates that:

- 1. The sum of squares for error will be large
- 2. The standard error of estimate will be large
- 3. The multiple coefficient of determination will be close to zero
- 4. All of the above



# A scatter plot between the residuals and predicted values in linear regression shows a relationship between them. Which statement is true?

- 1. Since there is a relationship means our model is not good
- 2. Since there is a relationship means our model is good
- 3. Cannot judge
- 4. None of these



# A scatter plot between the residuals and predicted values in linear regression shows a relationship between them. Which statement is true?

- 1. Since there is a relationship means our model is not good
- 2. Since there is a relationship means our model is good
- 3. Cannot judge
- 4. None of these





#### Logistic Regression

Recap





#### **Logistic Regression**

- Linear regression models make predictions for the datasets for which dependent variables have continuous numerical values.
- Logistic Regression
  - > supervised learning algorithm
  - > classification algorithm
  - > dependent variables are distinct, non-continuous, categorical
- Classification predicting probability of categorical variables for a given observation and assigning the observation to the category with the highest probability.



#### Logistic function

Logistic regression: statistical model that uses the logistic (logit) function, as the equation between x and y (also called sigmoid function or S-shaped curve).

- A Returns only values between 0 and 1 for the dependent variable, irrespective of the values of the independent variable.
- Also model equations between multiple independent variables and one dependent variable.

#### **Sigmoid function**

$$p = \frac{1}{(1 + e^{-y})}$$





#### **Categorical Encoding**

| Label Encoding                                                                                         | One-hot Encoding                                                                                               |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Categorical feature is ordinal                                                                         | Categorical feature is not ordinal                                                                             |
| Categorical values are labeled into<br>numeric values by assigning each<br>category to a unique number | A column with categorical values is split into a binary vector, creating new binary columns for each category. |
| Categories are converted into unique numeric values. Fewer computations                                | Add more columns and will be computationally heavy                                                             |
| Unique information                                                                                     | Redundant information                                                                                          |
| Different integers are used to represent data                                                          | Only 0 and 1 are used to represent data                                                                        |



#### **Evaluation Metrics**

#### **Confusion matrix, Accuracy**

Precision, Recall, F1 score

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Precision = \frac{TP}{TP + FP}$$



$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

#### **Evaluation Metrics**

| Metric    | Definition                                                                                                    | Use Case                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Accuracy  | The proportion of correctly classified instances (both true positive and true negative) over all instances.   | Measures the overall performance of a classifier                                                                     |
| Precision | The proportion of correctly classified positive instances over all instances that are classified as positive. | Measures the ability of the classifier to avoid false positives                                                      |
| Recall    | The proportion of correctly classified positive instances over all actual positive instances.                 | Measures the ability of the classifier to identify all actual positive instances                                     |
| F1-Score  | The harmonic mean of precision and recall, providing a balanced measure of both precision and recall.         | A good indicator of the performance of a classifier when the number of positive and negative instances is unbalanced |

CoGrammar

#### Logistic regression assumes a:

- 1. Linear relationship between continuous predictor variables and the outcome variable.
- 2. Linear relationship between continuous predictor variables and the logit of the outcome variable.
- 3. Linear relationship between continuous predictor variables.
- 4. Linear relationship between observations.



#### Logistic regression assumes a:

- 1. Linear relationship between continuous predictor variables and the outcome variable.
- 2. Linear relationship between continuous predictor variables and the logit of the outcome variable.
- 3. Linear relationship between continuous predictor variables.
- 4. Linear relationship between observations.



#### Which of the following is true?

- 1. Linear Regression errors values has to be normally distributed but in case of Logistic Regression it is not the case
- 2. Logistic Regression errors values has to be normally distributed but in case of Linear Regression it is not the case
- Both Linear Regression and Logistic Regression error values have to be normally distributed
- 4. both Linear Regression and Logistic Regression error values have not to be normally distributed



#### Which of the following is true?

- 1. Linear Regression errors values has to be normally distributed but in case of Logistic Regression it is not the case
- 2. Logistic Regression errors values has to be normally distributed but in case of Linear Regression it is not the case
- Both Linear Regression and Logistic Regression error values have to be normally distributed
- 4. both Linear Regression and Logistic Regression error values have not to be normally distributed



# Marks Primary School High School Undergraduate Postgraduate

# Country South Africa UK India Germany France China USA

# Which encoder should be used for the two categorical columns (ideally)?

- 1. LabelEncoder for Marks and Country
- 2. OneHotEncoder for Marks and Country
- LabelEncoder for Marks and OneHotEncoder for Country
- 4. OneHotEncoder for Marks and LabelEncoder for Country



# Marks Primary School High School Undergraduate Postgraduate

# Country South Africa UK India Germany France China USA

# Which encoder should be used for the two categorical columns (ideally)?

- 1. LabelEncoder for Marks and Country
- 2. OneHotEncoder for Marks and Country
- 3. LabelEncoder for Marks and OneHotEncoder for Country
- 4. OneHotEncoder for Marks and LabelEncoder for Country



### Which of the following statements are true?

- 1. Precision measures the accuracy of positive predictions.
- 2. Recall Precision measures the accuracy of positive predictions.
- 3. Precision measures the completeness of positive predictions.
- 4. Recall measures the completeness of positive predictions.



### Which of the following statements are true?

- 1. Precision measures the accuracy of positive predictions.
- 2. Recall Precision measures the accuracy of positive predictions.
- 3. Precision measures the completeness of positive predictions.
- 4. Recall measures the completeness of positive predictions.





# Confusion matrix for credit card debt model. Default status is 0 (did not default) and 1 (defaulted). Which statements are True?



Note: TP = 0
CoGrammar

- 1. Accuracy of the model is 97% (=2907/(2907+2+91), so the model has a great performance.
- Accuracy of the model is zero, so the model has a poor performance.
- 3. The precision, recall and F1-score is zero, so the model has an excellent performance.
- 4. The precision, recall and F1-score is zero, so the model performs poorly.

# Confusion matrix for credit card debt model. Default status is 0 (did not default) and 1 (defaulted). Which statements are True?



Note: TP = 0
CoGrammar

- 1. Accuracy of the model is 97% (=2907/(2907+2+91), so the model has a great performance.
- Accuracy of the model is zero, so the model has a poor performance.
- 3. The precision, recall and F1-score is zero, so the model has an excellent performance.
- 4. The precision, recall and F1-score is zero, so the model performs poorly.

### Questions and Answers





Thank you for attending







