CS7GV2: Mathematics of Light and Sound, M.Sc. in Computer Science.

Lecture #4: Simulation

Fergal Shevlin, Ph.D.

School of Computer Science and Statistics, Trinity College Dublin

October 7, 2022

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2 \text{ a}}$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}.$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}.$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}.$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- ▶ What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}.$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- ▶ What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}.$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ➤ Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

 We've seen that wave motion is described by the second order PDE known as the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \, \frac{\partial^2 u(x,t)}{\partial x^2}.$$

We've seen a closed-form solution for wave propagation,

$$u(x,t) = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t)$$

- This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://tinyurl.com/y4ncymx7.

▶ We've seen that wave motion is described by the second order PDE known as the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \, \frac{\partial^2 u(x,t)}{\partial x^2}.$$

We've seen a closed-form solution for wave propagation,

$$u(x,t) = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t).$$

- This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://tinyurl.com/y4ncymx7.

▶ We've seen that wave motion is described by the second order PDE known as the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \, \frac{\partial^2 u(x,t)}{\partial x^2}.$$

▶ We've seen a *closed-form* solution for wave propagation,

$$u(x,t) = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t).$$

- This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://tinyurl.com/y4ncymx7.

▶ We've seen that wave motion is described by the second order PDE known as the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \, \frac{\partial^2 u(x,t)}{\partial x^2}.$$

▶ We've seen a *closed-form* solution for wave propagation,

$$u(x,t) = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t).$$

- This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://tinyurl.com/y4ncymx7.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- ► There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- ▶ Approaches like this in general are called *finite element methods* for the approximate solution of *boundary value problems* with *partial differential equations*.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- ▶ Approaches like this in general are called *finite element methods* for the approximate solution of *boundary value problems* with *partial differential equations*.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- ▶ Approaches like this in general are called *finite element methods* for the approximate solution of *boundary value problems* with *partial differential equations*.
- Advantages: can deal with complex geometries and different materials.
- ▶ Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

Initial and Boundary Conditions

ightharpoonup To simulate a specific solution for u(x,t) described by the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad x \in [0,L], \ t \in [0,T],$$

for a string of length L over a time period T, we need:

ightharpoonup two initial conditions at time t=0,

$$u(x,0) = I(x), \quad x \in [0, L]$$

$$\frac{\partial}{\partial t}u(x,0) = 0, \quad x \in [0, L]$$

where I(x) specifies the initial shape of the string,

ightharpoonup and two boundary conditions at distances x=0 and x=L,

$$u(0,t) = 0, \quad t \in [0, T]$$

 $u(L,t) = 0, \quad t \in [0, T]$

Initial and Boundary Conditions

ightharpoonup To simulate a specific solution for u(x,t) described by the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad x \in [0,L], \ t \in [0,T],$$

for a string of length L over a time period T, we need:

ightharpoonup two initial conditions at time t=0,

$$u(x,0) = I(x), \quad x \in [0, L]$$
$$\frac{\partial}{\partial t}u(x,0) = 0, \quad x \in [0, L]$$

where I(x) specifies the initial shape of the string,

ightharpoonup and two boundary conditions at distances x=0 and x=L,

$$u(0, t) = 0, \quad t \in [0, T]$$

 $u(L, t) = 0, \quad t \in [0, T]$

Initial and Boundary Conditions

ightharpoonup To simulate a specific solution for u(x,t) described by the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad x \in [0,L], \ t \in [0,T],$$

for a string of length L over a time period T, we need:

ightharpoonup two initial conditions at time t=0,

$$u(x,0) = I(x), \quad x \in [0, L]$$
$$\frac{\partial}{\partial t}u(x,0) = 0, \quad x \in [0, L]$$

where I(x) specifies the initial shape of the string,

ightharpoonup and two boundary conditions at distances x=0 and x=L,

$$u(0, t) = 0, \quad t \in [0, T]$$

 $u(L, t) = 0, \quad t \in [0, T]$

Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt ,

$$t_i = i \ \Delta t, \quad i = 0, \dots N_t \ ext{(where } N_t = T/\Delta t.)$$

Computer memory is finite so there can't be infinitely many distances in the simulation.

The length [0, L] have to be descretized, e.g. into intervals of equal distance Δx $x_i = i \Delta x, \quad i = 0, \dots N_x$ (where $N_x = L/\Delta x$.)

► Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt ,

$$t_i = i \Delta t$$
, $i = 0, ... N_t$ (where $N_t = T/\Delta t$.)

► Computer memory is finite so there can't be infinitely many distances in the simulation.

The length [0, L] have to be descretized, e.g. into intervals of equal distance Δx $x_i = j \Delta x, \quad j = 0, \dots N_x$ (where $N_x = L/\Delta x$.)

► Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt ,

$$t_i = i \Delta t$$
, $i = 0, ... N_t$ (where $N_t = T/\Delta t$.)

Computer memory is finite so there can't be infinitely many distances in the simulation.

The length [0,L] have to be descretized, e.g. into intervals of equal distance Δx $x_j=j~\Delta x,~~j=0,\ldots N_x$ (where $N_x=L/\Delta x.$)

Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt ,

$$t_i = i \Delta t$$
, $i = 0, ... N_t$ (where $N_t = T/\Delta t$.)

Computer memory is finite so there can't be infinitely many distances in the simulation.

The length [0, L] have to be descretized, e.g. into intervals of equal distance Δx ,

$$x_j = j \Delta x$$
, $j = 0, \dots N_x$ (where $N_x = L/\Delta x$.)

Solution mesh

► The discrete points in space and time can be visualized as a two-dimensional mesh (or net.)

- The solution for wave height $u(x_j, t_i)$ at each mesh point is found using already-calculated solutions at neighbouring mesh points . . .
- \triangleright ... except for certain exterior mesh points whose values have been specified through the initial conditions, i.e. I(x).

Solution mesh

► The discrete points in space and time can be visualized as a two-dimensional *mesh* (or net.)

- The solution for wave height $u(x_j, t_i)$ at each mesh point is found using already-calculated solutions at neighbouring mesh points . . .
- \triangleright ... except for certain exterior mesh points whose values have been specified through the initial conditions, i.e. I(x).

Solution mesh

► The discrete points in space and time can be visualized as a two-dimensional mesh (or net.)

- The solution for wave height $u(x_j, t_i)$ at each mesh point is found using already-calculated solutions at neighbouring mesh points . . .
- \triangleright ... except for certain exterior mesh points whose values have been specified through the initial conditions, i.e. I(x).

Discretization of equations

 Wave equation. Use the symmetric second difference approximation of the second derivative,

$$\frac{u(x_{j},t_{i+1})-2 u(x_{j},t_{i})+u(x_{j},t_{i-1})}{\Delta t^{2}} \approx c^{2} \frac{u(x_{j+1},t_{i})-2 u(x_{j},t_{i})+u(x_{j-1},t_{i})}{\Delta x^{2}}.$$

Alternative notation can be used to make the parameters more obvious

$$\frac{u_j^{i+1} - 2u_j^i + u_j^{i-1}}{\Delta t^2} \approx c^2 \frac{u_{j+1}^i - 2u_j^i + u_{j-1}^i}{\Delta x^2},\tag{1}$$

Initial condition. Use the centered first difference approximation of the first derivative,

$$\frac{\partial}{\partial t}u(x_j, t_i) \approx \frac{u_j^{i+1} - u_j^{i-1}}{2\Delta t} \tag{2}$$

Note division by $2\Delta t$ because the difference is between values of u(x,t) separated by two time intervals.

Discretization of equations

 Wave equation. Use the symmetric second difference approximation of the second derivative,

$$\frac{u(x_{j},t_{i+1})-2 u(x_{j},t_{i})+u(x_{j},t_{i-1})}{\Delta t^{2}} \approx c^{2} \frac{u(x_{j+1},t_{i})-2 u(x_{j},t_{i})+u(x_{j-1},t_{i})}{\Delta x^{2}}.$$

Alternative notation can be used to make the parameters more obvious,

$$\frac{u_j^{i+1} - 2u_j^i + u_j^{i-1}}{\Delta t^2} \approx c^2 \frac{u_{j+1}^i - 2u_j^i + u_{j-1}^i}{\Delta x^2},\tag{1}$$

Initial condition. Use the centered first difference approximation of the first derivative,

$$\frac{\partial}{\partial t}u(x_j,t_i) \approx \frac{u_j^{i+1} - u_j^{i-1}}{2\Delta t} \tag{2}$$

Note division by $2\Delta t$ because the difference is between values of u(x,t) separated by two time intervals.

Discretization of equations

► Wave equation. Use the symmetric second difference approximation of the second derivative,

$$\frac{u(x_{j},t_{i+1})-2 u(x_{j},t_{i})+u(x_{j},t_{i-1})}{\Delta t^{2}} \approx c^{2} \frac{u(x_{j+1},t_{i})-2 u(x_{j},t_{i})+u(x_{j-1},t_{i})}{\Delta x^{2}}.$$

Alternative notation can be used to make the parameters more obvious,

$$\frac{u_j^{i+1} - 2u_j^i + u_j^{i-1}}{\Delta t^2} \approx c^2 \frac{u_{j+1}^i - 2u_j^i + u_{j-1}^i}{\Delta x^2},\tag{1}$$

▶ *Initial condition.* Use the centered first difference approximation of the first derivative,

$$\frac{\partial}{\partial t}u(x_j,t_i)\approx \frac{u_j^{i+1}-u_j^{i-1}}{2\Delta t} \tag{2}$$

Note division by $2\Delta t$ because the difference is between values of u(x, t) separated by two time intervals.

Initial Conditions

▶ Using approximation (2), initial condition $\frac{\partial}{\partial t}u(x_j,0)=0$ means,

$$u_j^{i-1} = u_j^{i+1}, \quad j = 0, \dots, N_x. \quad i = 0.$$

► The intial condition of shape is simply,

$$u_j^0 = I(x_j), \quad j = 0, \ldots, N_x.$$

Initial Conditions

▶ Using approximation (2), initial condition $\frac{\partial}{\partial t}u(x_j,0)=0$ means,

$$u_i^{i-1} = u_i^{i+1}, \quad j = 0, \dots, N_x. \quad i = 0.$$

▶ The intial condition of shape is simply,

$$u_j^0 = I(x_j), \quad j = 0, \ldots, N_x.$$

Formulae

$$ightharpoonup C = c \frac{\Delta t}{\Delta x}$$
.

$$\qquad \qquad \mathbf{u}_{j}^{1} = u_{j}^{0} - \frac{1}{2}C^{2}\left(u_{j+1}^{i} - 2u_{j}^{i} + u_{j-1}^{i}\right)$$

Iterative Simulation Algorithm

- 1. Initialize $u_i^0 = I(x_i)$ for $j = 0, ..., N_x$.
- 2. Compute u_j^1 and set $u_j^1=0$ for the boundary points i=0 and $i=N_x$, for $i=1,\ldots N-1$
- 3. For each time level $i = 1, \dots N_t 1$
 - 3.1 find u_i^{i+1} for $j = 1, ..., N_x 1$.
 - 3.2 set $u_j^{i+1} = 0$ for the boundary points $j = 0, j = N_x$.