Nonregular Languages

Lecture Outline

- 1. Motivate the Pumping Lemma.
- 2. Present and demonstrate the **pumping** concept.
- 3. Present and prove the **Pumping Lemma**.
- 4. Use the pumping lemma to prove that some languages are not regular.

Introduction and Motivation

In this lecture we ask: Are all languages regular?

The answer is negative.

The simplest example is the language

$$B = \{a^n b^n \mid n \ge 0\}$$

Try to think about this language.

Introduction and Motivation

If we try to find a DFA that recognizes the language $B = \{a^nb^n \mid n \ge 0\}$, it seems that we need an infinite number of states, to "remember" how many a-s we saw so far.

Note: This is not a proof!

Perhaps a DFA recognizing *B* exists, but we are not clever enough to find it?

Introduction and Motivation

The **Pumping Lemma** is the formal tool we use to prove that the language B (as well as many other languages) is not regular.

What is Pumping?

Consider the following NFA, denoted by N:

It accepts all words of the form $(0 \cup 1)(01)^*$.

What is Pumping?

Consider now the word $101 \in L(N)$.

Pumping means that the word 101 can be divided into two parts: 1 and 01, such that for any $i \ge 0$, the word $1(01)^i \in L(N)$.

We say that the word 101 can be **pumped**.

For i = 0 this is called **down pumping**.

For i > 1 this is called *up pumping*.

What is Pumping?

A more general description would be:

A word $w \in L$, can be pumped if w = xy and for each $i \ge 0$, it holds that $xy^i \in L$

Note: the formal definition is a little more complex than this one.

The Pumping Lemma

Let A be a regular language. There exists a number p such that for every $w \in A$, if $|w| \ge p$ then w may be divided into three parts w = xyz, satisfying:

- 1. for each $i \ge 0$, it holds that $xy^i z \in A$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

Note: Without req. 2 the Theorem is trivial.

Demonstration Continuation

In terms of the previous demonstration we have:

- 1. p = 3.
- 2. For w = 110, we get:

$$x=1$$
.

$$y = 10.$$

$$z = \varepsilon$$
.

Let D be a DFA recognizing A and let p be the number of states of D. If A has no words whose length is at least p, the theorem holds vacuously. Let $w \in A$ be an arbitrary word such that $|w| \ge p$. Denote the symbols of w by $w = w_0, w_2, ..., w_m$ where $m = |w| \ge p$.

Assume that $q_1, q_2, ..., q_{m+1}$ is the sequence of states that D goes through while computing with input $w \ (m = w \ge p)$. For each k, $1 \le k \le m$, $\delta(q_k, w_k) = q_{k+1}$. Since $w \in A$, $q_{m+1} \in F$.

Since the sequence q_1 , q_2 ,..., q_{p+1} contains p+1 states and since the number of states of D is p, by the pigeonhole principle there exist two indices $1 \le i < j \le p+1$, such that $q_i = q_j$.

Denote
$$x = w_1 w_2 ... w_{i-1}$$
, $y = w_i w_{i+1} ... w_{j-1}$ and $z = w_j w_{j+1} ... w_m$.

Note: Under this definition |y| > 0 and $|xy| \le p$.

By this definition, the computation of D on $x = w_1 w_2 ... w_{i-1}$ starting from q_1 , ends at q_i .

By this definition, the computation of D on $z = w_j w_{j+1} ... w_m$, starting from q_j , ends at q_{m+1} which is an accepting state.

The computation of D on $y = w_i w_{i+1} ... w_{j-1}$ starting from q_i , ends at q_j . Since $q_i = q_j$, this computation starts and ends at the same state.

Since it is a circular computation, it can repeat itself k times for any $k \ge 0$.

In other words: for each $i \ge 0$, $xy^iz \in A$. Q.E.D.

Example: $L = \{a^n b^n\}$.

Lemma: The language $L = \{a^n b^n\}$ is not regular.

Proof: Assume towards a contradiction that L is regular and let p be the **pumping length** of L.

Let $w = a^p b^p$. By the Pumping Lemma there exists a division of w, w = xyz, such that $|xy| \le p$, and w can be pumped.

This means that $xy = a^k$, where $k \le p$. Since |y| > 0 we conclude $y = a^l$

Example: $L = \{a^n b^n\}$ (Cont.)

This however implies that in xy^0z , the number of a-s is smaller then the number of b-s.

It also means that for every i > 1, the number of a-s in xy^iz is larger then the number of b-s. Both cases constitute a contradiction.

Note: Each one of these cases is separately sufficient for the proof.

Discussion

This is what we got so far:

$$\begin{cases}
RL-s Ex: \left\{ a^{n} \mid n \geq 0 \right\} \\
\left\{ a^{n}b^{n} \mid n \geq 0 \right\}
\end{cases}$$

Lecture Recap

- 1. Motivated the Pumping Lemma.
- 2. Presented and demonstrated the **pumping** concept.
- 3. Presented and proved the Pumping Lemma.
- 4. Used the pumping lemma to prove that some languages are not regular.