Assignment 4

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.1
                   v purrr
                             0.3.4
                             1.0.2
## v tibble 3.0.4
                    v dplyr
## v tidyr
           1.1.0
                    v stringr 1.4.0
## v readr
           1.4.0
                   v forcats 0.5.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                  masks stats::lag()
## x dplyr::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
      date, intersect, setdiff, union
library(modelr)
library(broom)
##
## Attaching package: 'broom'
## The following object is masked from 'package:modelr':
##
##
      bootstrap
```

Modeller

Leser inn data

```
arblos <- read csv("data/al9914m.csv")</pre>
## -- Column specification -----
## cols(
##
    knr = col_character(),
##
    knavn = col_character(),
##
    aar = col_double(),
##
    mnd = col_double(),
    al_Menn = col_double(),
##
##
    al_Kvinner = col_double(),
##
    alp_Menn = col_double(),
##
    alp_Kvinner = col_double(),
    alp_15_74 = col_double(),
##
```

```
##
     alp_15_29 = col_double(),
##
     alp_30_74 = col_double()
## )
bef <- read_csv("data/bef9914MK.csv")</pre>
##
## -- Column specification --
## cols(
##
     knr = col_character(),
##
     knavn = col_character(),
##
     aar = col_double(),
##
     bef_K_0_14 = col_double(),
##
     bef_K_15_29 = col_double(),
     bef_K_30_74 = col_double(),
##
##
     bef_K_75_105 = col_double(),
##
     bef M 0 14 = col double(),
##
     bef_M_15_29 = col_double(),
##
     bef_M_30_74 = col_double(),
##
     bef_M_75_105 = col_double(),
##
     bef_MK_0_14 = col_double(),
     bef_MK_15_29 = col_double(),
##
##
     bef_MK_30_74 = col_double(),
##
     bef_MK_75_105 = col_double()
## )
```

Modeller med data fra bef (befolkning)

```
names(bef)
    [1] "knr"
                         "knavn"
                                          "aar"
                                                           "bef_K_0_14"
##
                         "bef_K_30_74"
    [5] "bef_K_15_29"
                                          "bef_K_75_105"
                                                           "bef_M_0_14"
   [9] "bef M 15 29"
                         "bef M 30 74"
                                          "bef_M_75_105"
                                                           "bef MK 0 14"
## [13] "bef MK 15 29"
                         "bef MK 30 74"
                                          "bef MK 75 105"
names(arblos)
##
    [1] "knr"
                       "knavn"
                                                     "mnd"
                                                                    "al Menn"
   [6] "al_Kvinner"
                                                                    "alp_15_29"
                       "alp_Menn"
                                      "alp_Kvinner" "alp_15_74"
## [11] "alp_30_74"
```

Arbeidsledighetsprosenten blir beregnet som: arbl% = antall arb. ledige/arbeidsstyrken. Arbeidsstyrken er her dem man anser egnet for arbeid dvs. uføretrygdete etc. er trukket ut. Arbeidsstyren i en aldesrkategori er derfor langt mindre enn befolkningen i den tilsvarende alderskategorien.

Dessverre kjenne vi ikke arbeidsstyrken, men vi kan beregne den vha.: arbeidsstyrken = antall arb. ledige/arb. ledighetsprosent.

```
arblos <- arblos %>%
  mutate(
     wf_K = (al_Kvinner/alp_Kvinner)*100,
     wf_M = (al_Menn/alp_Menn)*100,
     wf_KM = wf_K + wf_M
)
arblos
```

```
## # A tibble: 77,330 x 14
```

```
##
                            mnd al_Menn al_Kvinner alp_Menn alp_Kvinner alp_15_74
      knr
             knavn
                     aar
                                   <dbl>
##
      <chr> <chr> <dbl> <dbl>
                                               <dbl>
                                                        <dbl>
                                                                     <dbl>
                                                                                 <dbl>
##
    1 0101
            Hald~
                    1999
                              1
                                     283
                                                 248
                                                           3.9
                                                                        4.1
                                                                                  4
                                                 236
                                                           4
                                                                        3.9
                                                                                  4
    2 0101
            Hald~
                    1999
                              2
                                     291
##
##
    3 0101
            Hald~
                    1999
                              3
                                     290
                                                 230
                                                           4
                                                                        3.8
                                                                                  3.9
    4 0101
            Hald~
                    1999
                              4
                                                                        3.4
##
                                     244
                                                 207
                                                           3.4
                                                                                  3.4
            Hald~
##
    5 0101
                    1999
                              5
                                     210
                                                 179
                                                           2.9
                                                                        3
                                                                                  2.9
##
    6 0101
            Hald~
                    1999
                              6
                                     227
                                                 203
                                                           3.2
                                                                        3.4
                                                                                  3.2
##
    7 0101
            Hald~
                    1999
                              7
                                     265
                                                 273
                                                           3.7
                                                                        4.5
                                                                                  4.1
                                                                        4.6
##
    8 0101
            Hald~
                    1999
                              8
                                     288
                                                 278
                                                           4
                                                                                  4.3
    9 0101
            Hald~
                    1999
                              9
                                     230
                                                 201
                                                           3.2
                                                                        3.3
                                                                                  3.3
## 10 0101 Hald~
                    1999
                                     225
                                                 207
                                                           3.1
                                                                        3.4
                                                                                  3.3
                             10
## # ... with 77,320 more rows, and 5 more variables: alp_15_29 <dbl>,
       alp_30_74 <dbl>, wf_K <dbl>, wf_M <dbl>, wf_KM <dbl>
```

Arbeidsstyrken

Når befolkningen øker vil også arbeidsstyrken øke. Det er derfor mer naturlig å se på arbeidsstyrken relativt til delen av befolkningen som er i yrkesaktiv alder (15-74 år her).

names(bef)

```
[1] "knr"
                                           "aar"
                                                            "bef_K_0_14"
                         "knavn"
    [5] "bef_K_15_29"
                                                            "bef_M_0_14"
                         "bef_K_30_74"
                                           "bef_K_75_105"
##
                                                            "bef_MK_0_14"
    [9]
       "bef M 15 29"
                         "bef_M_30_74"
                                           "bef_M_75_105"
## [13] "bef_MK_15_29"
                         "bef_MK_30_74"
                                          "bef_MK_75_105"
```

Vi skal starte med å lage et datasett med arbeidsstyrken (wf) for hele landet samlet, men fordelt på de tre kategorien kvinner, menn og kvinner + menn.

Bruk data for januar hvert år til å beregne wf på landsbasis

```
# årlige data landet samlet
wf <- arblos %>%
    filter(mnd == 1) %>%
    group_by(aar) %>%
    summarise(
        wf_K = sum(wf_K, na.rm = TRUE),
        wf_M = sum(wf_M, na.rm = TRUE),
        wf_KM = wf_K + wf_M
)
```

```
## `summarise()` ungrouping output (override with `.groups` argument)
dim(wf)
```

```
## [1] 16 4
names(wf)
```

```
## [1] "aar" "wf_K" "wf_M" "wf_KM"
```

Summer de ulike årskategoriene for de to kjønnene og menn+kvinner for å finne total befolkning de ulike årene. Bruk mutate til å lage de nye variablene.

```
dim(bef)
```

```
## [1] 6688 18
```

names(bef)

```
[1] "knr"
##
                         "knavn"
                                           "aar"
                                                            "bef_K_0_14"
    [5] "bef_K_15_29"
                         "bef_K_30_74"
                                          "bef_K_75_105"
                                                            "bef_M_0_14"
##
                                                           "bef_MK_0_14"
    [9] "bef_M_15_29"
                         "bef_M_30_74"
                                          "bef_M_75_105"
##
## [13] "bef_MK_15_29"
                         "bef_MK_30_74"
                                          "bef_MK_75_105" "bef_K"
## [17] "bef_M"
                         "bef_KM"
```

Legg befolkningsdata varaiablene bef_K, bef_M, bef_KM til wf. Husk at de må aggregeres for hele landet (group_by() og så summarise() før de «joines»). Bruk tilslutt mutate() make_date() for å lage en ny variabel år som er en date, dvs aar + month=1L + day=1L.

`summarise()` ungrouping output (override with `.groups` argument)

Da skal du få

```
wf
```

```
# A tibble: 16 x 8
##
##
              bef_K
                      bef_M bef_KM
                                        wf_K
                                                         wf_KM år
        aar
                                                 wf_M
##
      <dbl>
              <dbl>
                      <dbl>
                              <dbl>
                                       <dbl>
                                                <dbl>
                                                         <dbl> <date>
##
      1999 2172270 2128101 4300371 1031744. 1205745. 2237489. 1999-01-01
   1
      2000 2187760 2145401 4333161 1037097. 1207206. 2244303. 2000-01-01
##
##
   3 2001 2198085 2159014 4357099 1049731. 1218061. 2267791. 2001-01-01
      2002 2207743 2169466 4377209 1061392. 1221762. 2283154. 2002-01-01
##
   5 2003 2221543 2183278 4404821 1077983. 1219325. 2297307. 2003-01-01
##
##
   6 2004 2233444 2195946 4429390 1079308. 1221288. 2300596. 2004-01-01
   7 2005 2247678 2211290 4458968 1081663. 1225478. 2307142. 2005-01-01
##
##
      2006 2263342 2228683 4492025 1089654. 1233306. 2322960. 2006-01-01
##
      2007 2280147 2252098 4532245 1103816. 1249628. 2353444. 2007-01-01
      2008 2301949 2285368 4587317 1132662. 1271414. 2404076. 2008-01-01
      2009 2328143 2319883 4648026 1172942. 1323707. 2496649. 2009-01-01
## 11
      2010 2354699 2350920 4705619 1179755. 1318575. 2498330. 2010-01-01
## 13 2011 2381939 2384191 4766130 1181768. 1330901. 2512669. 2011-01-01
      2012 2408715 2421079 4829794 1194903. 1342914. 2537817. 2012-01-01
      2013 2436406 2457056 4893462 1212788. 1365955. 2578743. 2013-01-01
## 16 2014 2462194 2487875 4950069 1230477. 1381665. 2612141. 2014-01-01
```

Vi vil nå se på arbeidsstyrke relativt til befolkning på landsbasis, dvs. wf_K/bef_K etc. Plot dataen vha. geom_line() for de tre kategoriene. Bruk år som x-variabel.

Hvordan kan pukkelen rett før 2010 forklares?

```
names(arblos)
```

```
## [1] "knr" "knavn" "aar" "mnd" "al_Menn"
## [6] "al_Kvinner" "alp_Menn" "alp_Kvinner" "alp_15_74" "alp_15_29"
## [11] "alp_30_74" "wf_K" "wf_M" "wf_KM"
```

Vi vil nå generere dat for arbeidsstyrken på fylkesbasis. Husk at de to første sifferene i knr angir fylket en kommune ligger i. Bruk dataene i arblos til å finne arbeidsstyrken på fylkesbasis (wf_f). Start med å bruke mutate() til å lage en ny variabel fylke. Grupper så og finn wf_K_f, wf_M_f og wf_KM_f vha. summarise(). Lag til slutt en ny variabel år som en date. Velg til slutt de relevante variabelen vha. select().

`summarise()` regrouping output by 'aar', 'mnd' (override with `.groups` argument)
Vi skal nå ha en tibble wf_f som ser slik ut:

```
print(wf_f, n = 5)
## # A tibble: 3,515 x 7
## # Groups:
                aar, mnd [185]
##
       aar
             mnd år
                              fylke
                                     wf_K_f
                                              wf_M_f wf_KM_f
##
     <dbl> <dbl> <date>
                              <chr>
                                       <dbl>
                                               <dbl>
                                                        <dbl>
## 1
      1999
                1 1999-01-01 01
                                     57671.
                                              67408. 125079.
## 2
      1999
                1 1999-01-01 02
                                    120670. 133018. 253688.
## 3
                                    133500
      1999
                                             147097. 280597.
                1 1999-01-01 03
## 4
      1999
                1 1999-01-01 04
                                     42237.
                                              49356.
                                                      91593.
## 5
      1999
                1 1999-01-01 05
                                     41178.
                                              47990.
                                                      89168.
## # ... with 3,510 more rows
Lag også en ny tibble bef_f fra bef som inneholder befolkningen i hvert fylke hvert år.
## `summarise()` regrouping output by 'aar' (override with `.groups` argument)
bef_f
## # A tibble: 304 x 5
## # Groups:
                aar [16]
##
        aar fylke bef_K_f bef_M_f bef_KM_f
      <dbl> <chr>
##
                     <dbl>
                              <dbl>
                                       <dbl>
##
       1999 01
                    125278
                             120740
                                       246018
    1
       1999 02
                    232564
                             228000
##
    2
                                       460564
##
       1999 03
                    260639
                             242228
                                      502867
##
    4
       1999 04
                     94239
                              92082
                                       186321
##
    5
       1999 05
                     88898
                              87363
                                       176261
##
    6
       1999 06
                    119096
                             115922
                                      235018
##
    7
       1999 07
                     73772
                              70920
                                       144692
##
    8
       1999 08
                     83559
                              80964
                                       164523
##
    9
       1999 09
                     50994
                              50493
                                       101487
## 10 1999 10
                     77789
                              76209
                                       153998
## # ... with 294 more rows
Lag til slutt tibble-en wf_f_bef som innholde arbeidsstyrke (wf-f) og befolkning (bef-f) på fylkesnivå for
hvert år.
Da skal wf f bef se slik ut:
print(arrange(wf_f_bef, fylke, aar, mnd))
## # A tibble: 3,515 x 11
## # Groups:
                aar, mnd [185]
##
        aar
               mnd år
                               fylke wf_K_f wf_M_f wf_KM_f bef_K_f bef_M_f bef_KM_f
##
      <dbl> <dbl> <date>
                                      <dbl> <dbl>
                                                       <dbl>
                                                               <dbl>
                                                                        <dbl>
                                                                                  <dbl>
                               <chr>
##
    1
       1999
                 1 1999-01-01 01
                                     57671. 67408. 125079.
                                                              125278
                                                                       120740
                                                                                 246018
       1999
                                     57693. 67526. 125220.
                                                              125278
                                                                       120740
##
    2
                 2 1999-02-01 01
                                                                                 246018
##
    3
       1999
                 3 1999-03-01 01
                                     57108. 67551. 124659.
                                                              125278
                                                                       120740
                                                                                 246018
##
    4
       1999
                 4 1999-04-01 01
                                     57526. 67355. 124881.
                                                              125278
                                                                       120740
                                                                                 246018
##
    5
      1999
                 5 1999-05-01 01
                                     57285. 67189. 124474.
                                                              125278
                                                                       120740
                                                                                 246018
       1999
                                     57529. 66792. 124321.
##
    6
                 6 1999-06-01 01
                                                              125278
                                                                       120740
                                                                                 246018
##
    7
       1999
                 7 1999-07-01 01
                                     57393. 67690. 125083.
                                                              125278
                                                                       120740
                                                                                 246018
##
    8
      1999
                 8 1999-08-01 01
                                     57531. 66998. 124529.
                                                              125278
                                                                       120740
                                                                                 246018
       1999
##
    9
                 9 1999-09-01 01
                                     57264. 67609. 124873.
                                                              125278
                                                                       120740
                                                                                 246018
## 10
       1999
                10 1999-10-01 01
                                     57702. 66907. 124610.
                                                              125278
                                                                       120740
                                                                                 246018
## # ... with 3,505 more rows, and 1 more variable: dato <date>
```

Plot nå arbeidsstyrke relativt til befolkning vha. geom_line()

Lage regioner

Alle fylkene blir litt rotete så vi definerer istedet seks regioner vha. case_when() og lager en ny tibble wf_r fra wf_f_bef.

```
# region
wf_r <- wf_f_bef %>%
   mutate(
        dato = ymd(paste(aar, mnd, "01", sep = "-")),
        region = case_when(
            as.numeric(fylke) == 3 ~ "Oslo",
            as.numeric(fylke) %in% c(1:2, 4:8) ~ "Østlandet",
            as.numeric(fylke) %in% c(9, 10) ~ "Sørlandet",
            as.numeric(fylke) %in% c(11, 12, 14, 15) ~ "Vestlandet",
            as.numeric(fylke) %in% c(16, 17) ~ "Trøndelag",
            as.numeric(fylke) %in% c(18, 19, 20) ~ "Nord-Norge"
        )
   ) %>%
   group_by(dato, region) %>%
    summarise(
       wf_K_r = sum(wf_K_f, na.rm = TRUE),
        wf_M_r = sum(wf_M_f, na.rm = TRUE),
        wf_KM_r = wf_K_r + wf_M_r,
        bef_K_r = sum(bef_K_f, na.rm = TRUE),
        bef_M_r = sum(bef_M_f, na.rm = TRUE),
        bef_KM_r = bef_K_r + bef_M_r
```

```
) %>%
select(dato, region, wf_K_r, wf_M_r, wf_KM_r, bef_K_r, bef_M_r, bef_KM_r)
```

`summarise()` regrouping output by 'dato' (override with `.groups` argument)

Plot nå for regionene wf_KM_r/bef_KM_r, både vha. geom_line() og geom_smooth(). La farge vise regionene. Sett denne i ggplot() slik at det gjelder for både geom_line() og geom_smooth(). Sett i tillegg alpha = 0.5 for geom_line() og se = FALSE for geom_smooth(). Legg til theme(legend.position = "bottom") til slutt for å få legend under plottet.

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Arbeidsstyrkens andel av befolkningen for regionene.

Lag tilsvarende plot for kvinner.

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Arbeidsstyrkens andel av befolkningen for kvinner per region.

Lag tilsvarende plot for menn

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Forlar kort den generelle utviklingen i arbeidsstyrken. Hva er det som «redder oss»?

nest() arblos

Da skal vi jobbe direkte med arbeidsløshet og lage lineære modeller for hver av de 418 kommunene. Modellen vi skal lage er på ingen måte perfekt. Vi er interessert i selve teknikken med å organisere dataene og kjøre modeller på mange subsett av dataene (her for hver kommune).

Vi vil se på en modell der vi forklarer arbeidsstyrken i en kommune vha. ungdomsledighet og ledighet blant litt eldre arbeidstakere (30-74 år). En hypotese er at vi vil se en negativ sammenheng mellom ungdomsledighet og arbeidsstyrken. De unge flytter hvis det ikke er jobb.

Vi starter med å gruppere på kommune og nest-e dataene.

```
arblos_by_knr <- arblos %>%
    group_by(knr, knavn) %>%
    nest()
print(arblos_by_knr, n = 4)
## # A tibble: 418 x 3
               knr, knavn [418]
  # Groups:
##
     knr
           knavn
                        data
     <chr>>
          <chr>
          Halden
                        <tibble [185 x 12]>
## 1 0101
                        <tibble [185 x 12]>
## 2 0104
           Moss
## 3 0105
           Sarpsborg
                        <tibble [185 x 12]>
          Fredrikstad <tibble [185 x 12]>
  4 0106
    ... with 414 more rows
```

arblos_by_knr\$data[[1]]

```
## # A tibble: 185 x 12
##
               mnd al_Menn al_Kvinner alp_Menn alp_Kvinner alp_15_74 alp_15_29
##
       <dbl> <dbl>
                      <dbl>
                                   <dbl>
                                             <dbl>
                                                          <dbl>
                                                                     <dbl>
                                                                                 <dbl>
##
    1
       1999
                  1
                        283
                                     248
                                               3.9
                                                            4.1
                                                                       4
                                                                                   6.3
##
    2
       1999
                  2
                        291
                                     236
                                               4
                                                            3.9
                                                                       4
                                                                                   6.1
    3
                                               4
                                                            3.8
                                                                       3.9
                                                                                   5.9
##
       1999
                  3
                        290
                                     230
##
       1999
                  4
                                     207
                                               3.4
                                                            3.4
                                                                       3.4
                                                                                   4.9
    4
                        244
##
    5
       1999
                  5
                        210
                                     179
                                               2.9
                                                            3
                                                                       2.9
                                                                                   3.8
##
    6
       1999
                  6
                        227
                                     203
                                               3.2
                                                            3.4
                                                                       3.2
                                                                                   4.2
##
    7
       1999
                  7
                        265
                                               3.7
                                                            4.5
                                                                                   5.2
                                     273
                                                                       4.1
    8
       1999
                        288
                                     278
                                               4
                                                            4.6
                                                                       4.3
                                                                                   6.6
##
                  8
##
    9
       1999
                  9
                        230
                                     201
                                               3.2
                                                            3.3
                                                                       3.3
                                                                                   4.8
## 10 1999
                10
                        225
                                     207
                                               3.1
                                                            3.4
                                                                                   4.8
                                                                       3.3
## # ... with 175 more rows, and 4 more variables: alp_30_74 <dbl>, wf_K <dbl>,
       wf_M <dbl>, wf_KM <dbl>
```

Vi har nå en tibble med data for hver kommune inne i tibble-en arblos_by_knr.

Skriv en funksjon som kjører den lineære modellen wf_KM \sim alp_15_29 + alp_30_74 på en input dataframe a_df. Kall funksjonen mod1 (i magel på noe bedre navn).

KJøre så modellen vha. funksjonen mod1 på data i arblos_by_knr, og lag en list-column i arblos_by_knr som inneholder modellen. Kjør også tidy og glance fra broom på modellene for å få hhv. koeffisienter og ulike summary av modellen. Lagre resultatene i hhv. mod1_arblos, mod1_arblos_coef og mod1_arblos_sum (i siste er sum forkortelse for summary)

arblos by knr skal nå se ut slik:

arblos_by_knr

```
## # A tibble: 418 x 6
##
   # Groups:
                knr, knavn [418]
##
      knr
             knavn
                         data
                                          mod1_arblos mod1_arblos_coef mod1_arblos_sum
##
       <chr> <chr>
                         t>
                                          t>
                                                       st>
                                                                          <list>
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
##
    1 0101
             Halden
    2 0104
             Moss
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
##
##
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
    3 0105
             Sarpsborg
             Fredrikst~ <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
    4 0106
##
    5 0111
            Hvaler
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
    6 0118
             Aremark
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
##
##
    7 0119
             Marker
                         <tibble [185 ~ <lm>
                                                       <tibble [3 \times 5]> <tibble [1 \times 11^{\circ}]
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
##
    8 0121
             Rømskog
                         <tibble [185 ~ <lm>
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
    9 0122
             Trøgstad
                                                       <tibble [3 x 5]> <tibble [1 x 11~</pre>
## 10 0123
             Spydeberg
                         <tibble [185 ~ <lm>
## # ... with 408 more rows
```

Kommunestørrelse

Vi lager oss så en ny kategori variabel for kommunestørrelse.

```
bef_KM > 2500 & bef_KM <= 6000 ~ "Liten",
            bef_KM > 6000 & bef_KM <= 20000 ~ "Middels",
            bef KM > 20000 & bef KM <= 60000 ~ "Stor",
            bef KM > 60000 & bef KM <= 1000000 ~ "Svært stor"
        )
   ) %>%
    select(knr, knavn, bef_KM, k_str)
head(kom_str)
## # A tibble: 6 x 4
##
    knr
           knavn
                       bef KM k str
##
     <chr> <chr>
                        <dbl> <chr>
## 1 0101 Halden
                        30132 Stor
## 2 0104
                        31308 Stor
           Moss
## 3 0105
           Sarpsborg
                        54059 Stor
## 4 0106
           Fredrikstad
                        77591 Svært stor
## 5 0111
                         4386 Liten
           Hvaler
## 6 0118 Aremark
                         1408 Swært liten
```

Pakker ut og henter model karakteristika

Bruk så unnest() til å pakke ut mod1_arblos_coef og mod1_arblos_coef (husk at de to må stå i en c() og ha anførselstegn). Plukk ut variablene knr, knavn, term, estimate, std.error, p.value...9, adj.r.squared og legg resultatet i mod_arbl_re.

```
## New names:
## * statistic -> statistic...8
## * p.value -> p.value...9
## * statistic -> statistic...13
## * p.value -> p.value...14
```

Du skal da ha noe som ser slik ut:

```
print(mod_arbl_re, n = 10)
```

```
## # A tibble: 1,254 x 7
## # Groups:
               knr, knavn [418]
##
      knr
            knavn
                        term
                                     estimate std.error p.value...9 adj.r.squared
##
      <chr> <chr>
                        <chr>
                                                  <dbl>
                                                               <dbl>
                                        <dbl>
                                                                             <dbl>
   1 0101 Halden
                        (Intercept)
                                      14288.
                                                  153.
                                                          1.23e-155
                                                                            0.110
##
##
  2 0101 Halden
                        alp_15_29
                                        228.
                                                   58.0
                                                          1.19e- 4
                                                                            0.110
  3 0101 Halden
                        alp_30_74
                                       -516.
                                                  105.
                                                          1.97e- 6
                                                                            0.110
  4 0104 Moss
                                                  252.
##
                        (Intercept)
                                      14030.
                                                          3.65e-116
                                                                            0.0102
##
   5 0104
           Moss
                        alp_15_29
                                         47.0
                                                   97.2
                                                          6.30e- 1
                                                                            0.0102
##
  6 0104
           Moss
                        alp_30_74
                                         66.3
                                                  206.
                                                          7.48e- 1
                                                                            0.0102
   7 0105
            Sarpsborg
                        (Intercept)
                                      25250.
                                                  435.
                                                          2.02e-119
                                                                            0.0138
##
  8 0105
            Sarpsborg
                        alp_15_29
                                        273.
                                                  164.
                                                          9.72e-
                                                                            0.0138
## 9 0105
            Sarpsborg
                        alp_30_74
                                       -416.
                                                  381.
                                                          2.77e- 1
                                                                            0.0138
## 10 0106 Fredrikstad (Intercept)
                                                  394.
                                                          1.15e-154
                                                                            0.550
                                      36302.
## # ... with 1,244 more rows
```

Slå sammen kom_str og mod_arbl_re vha. left_join(). Kall resultatet for kom_str_mod.

```
kom_str_mod <- mod_arbl_re %>%
    left_join(kom_str, by = c("knr", "knavn"))
```

Da skal du ha noe som ser slik ut:

```
print(kom_str_mod, n = 5)
## # A tibble: 1,254 x 9
## # Groups:
               knr, knavn [418]
           knavn term
                          estimate std.error p.value...9 adj.r.squared bef_KM k_str
##
     knr
##
     <chr> <chr>
                  <chr>
                             <dbl>
                                       <dbl>
                                                    <dbl>
                                                                  <dbl> <dbl> <chr>
                                                                 0.110
## 1 0101 Halden (Inter~
                           14288.
                                       153.
                                                1.23e-155
                                                                         30132 Stor
## 2 0101 Halden alp_15~
                             228.
                                        58.0
                                                1.19e- 4
                                                                 0.110
                                                                         30132 Stor
## 3 0101 Halden alp_30~
                            -516.
                                       105.
                                                1.97e- 6
                                                                 0.110
                                                                         30132 Stor
## 4 0104 Moss
                                                                         31308 Stor
                  (Inter~
                           14030.
                                       252.
                                               3.65e-116
                                                                 0.0102
## 5 0104 Moss
                  alp_15~
                              47.0
                                        97.2
                                               6.30e- 1
                                                                 0.0102 31308 Stor
## # ... with 1,249 more rows
```

Vi plotter koeffisientene som er signifikante og lar farge vise kommune størrelse. Tar vekk ekstreme estimat.

Lag tilsvarende plot for alp_30_74.

Hvor mange har vi?

##

<chr>

<int>

```
kom_str_mod %>%
    filter(term == "alp_15_29") %>%
    group_by(k_str) %>%
    summarise(n = n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 2
##
    k_str
                     n
     <chr>
##
                 <int>
## 1 Liten
                   126
## 2 Middels
                   114
## 3 Stor
                    40
## 4 Svært liten
                   128
## 5 Svært stor
                    10
kom_str_mod %>%
    filter(term == "alp_15_29") %>%
    filter(estimate > - 500 & estimate < 500 ) %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(n = n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 4 x 2
##
     k_str
```

```
## 1 Liten
                    64
## 2 Middels
                    74
## 3 Stor
                    16
## 4 Svært liten
                    58
kom_str_mod %>%
    filter(term == "alp_30_74") %>%
    filter(estimate > - 500 & estimate < 500 ) %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(n = n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 4 x 2
##
    k_str
##
     <chr>
                 <int>
## 1 Liten
                    68
## 2 Middels
                    66
## 3 Stor
                     5
## 4 Svært liten
                    71
kom_str_mod %>%
    filter(term == "alp_15_29") %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(mean_15_29 = mean(estimate))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 2
##
                 mean_15_29
    k_str
##
     <chr>>
                  <dbl>
## 1 Liten
                      -2.93
## 2 Middels
                      -6.53
## 3 Stor
                     -18.5
## 4 Svært liten
                      -1.64
## 5 Svært stor
                   -9901.
kom_str_mod %>%
    filter(term == "alp_30_74") %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(mean_30_74 = mean(estimate))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 2
                 mean_30_74
##
    k_str
##
     <chr>>
                      <dbl>
                      -1.47
## 1 Liten
## 2 Middels
                      3.42
## 3 Stor
                     -10.4
## 4 Svært liten
                       4.75
## 5 Svært stor
                   11076.
kom_str_mod %>%
    filter(term == "alp_15_29") %>%
```

```
filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(n = n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 2
##
    k_str
##
     <chr>
                 <int>
## 1 Liten
                    64
## 2 Middels
                    74
## 3 Stor
                    24
## 4 Svært liten
                    58
## 5 Svært stor
                    7
kom_str_mod %>%
    filter(term == "alp_30_74") %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(n = n())
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 \times 2
##
    k_str
     <chr>
##
                 <int>
                    68
## 1 Liten
## 2 Middels
                    69
## 3 Stor
                    26
## 4 Svært liten
                    71
## 5 Svært stor
```

I litt over 50% av kommunene, hovedsaklig de små, ser modellen ut til virke. Kanskje noe å bygge videre på.

#siste