# 2.4 Vector Spaces

# Groups (군)

Groups(군)은 **구조화된 연산의 법칙성**을 제공하기 때문에 컴퓨터 공학에서 매우 중요한 역할을 합니다.

암호학(cryptography), 코딩 이론(coding theory), 컴퓨터 그래픽스(Grphics) 등에 사용됩니다.

### 정의

집합  $\mathcal{G}$ 와 연산  $\otimes$  :  $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$  가  $\mathcal{G}$ 에 대해 정의되어 있을 때, 아래의 조건을 만족하는  $G:=(\mathcal{G},\otimes)$  를 Group(군)이라고 부릅니다.

- 1. Closure of  $\mathcal{G}$  under  $\otimes$ :  $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- 2. Associativity:  $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- 3. Neutral element:  $\exists e \in \mathcal{G} \ \forall x \in \mathcal{G} : x \otimes e = x \text{ and } e \otimes x = x$
- 4. Inverse element:  $\forall x \in \mathcal{G} \exists y \in \mathcal{G} : x \otimes y = e \text{ and } y \otimes x = e$ , where e is the neutral element. We often write  $x^{-1}$  to denote the inverse element of x.
- 4가지 성질(닫혀있음, 분배법칙, 항등원, 모든 원소에 대하여 역원 존재)을 만족할 때 그 집합을 연산 ⊗ 에 대하여 Group이라고 합니다.
- 또한 Group G의 임의의 x,y 에 대해서  $x\otimes y=y\otimes x$  가 보장될 경우 (연산에 대하여 교환법칙 성립) 이를 abelian group 이라고 합니다.

# 예시 Groups

#### Example 2.10 (Groups)

다음은 group의 관한 몇 가지 예제들입니다.

- $(\mathbb{Z},+)$  is a group.
- $(\mathbb{N}_0,+)$  is not a group. 항등원(0)은 존재하지만 역원이 존재하지 않음  $(\mathbb{N}_0:=\mathbb{N}\cup\{0\})$ .
- $(\mathbb{Z},\cdot)$  is not a group. 항등원(1)은 존재하지만  $\pm$  1이 아닌 모든 z에 대해 역원이 존재하지 않음.
- $(\mathbb{R},\cdot)$  is not a group. 0에 대한 역원이 존재하지 않음.
- $(\mathbb{R}\setminus\{0\})$  is Abelian.
- $(\mathbb{N}^n,+), (\mathbb{Z}^n,+), n \in \mathbb{N}$  are Abelian if + is defined componentwise, i.e.,

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
 (2.61)

 $(x_1,\cdots,x_n)^{-1}:=(-x_1,\cdots,-x_n)$ 은 역원이고, 항등원은  $e=(0,\cdots,0)$  입니다.

- $(\mathbb{R}^{m \times n}, +)$ , the set of  $m \times n$  -matrices is Abelian (with componentwise addition as defined in (2.61))
- $(\mathbb{R}^{n \times n}, \cdot)$ , 즉,  $n \times n$  행렬 집합에 대해서 살펴보도록 하겠습니다.
  - Matrix multiplication 정의에 의해 Closure과 associativity 성질을 만족합니다.
  - 항등행렬(Identity matrix)  $I_n$  은 주어진 조건에서 행렬  $\mathbf{a}(\cdot)$ 에 대해 항등원입니다.
- 만약 역행렬이 존재한다면, 즉,  $m{A}$  가 regular 라면,  $m{A}^{-1}$  은 행렬  $m{A} \in \mathbb{R}^{n \times n}$  의 역행렬입니다. 따라서,  $(\mathbb{R}^{n \times n}, \cdot)$  은 group이며, general limear group이라고 부릅니다.

https://junstar92.github.io/mml-study-note/2022/07/02/ch2-4.html

역행렬이 존재하는 regular matrices  $A \in \mathbb{R}^{n \times n}$  의 집합은 group입니다.

이를 general linear group(일반 선형군)이라고 부르면  $GL(n,\mathbb{R})$ 로 표기합니다. (not Abelian)

# Vector Spaces (벡터 공간)

Group에서는 하나의 연산에 대해서만 정의합니다.

즉, G의 원소에만 적용하는 연산을 inner operation이라고 합니다.  $\rightarrow$  +

그러면 G 외의 집합의 원소에 대해서도 적용할 수 있는 연산을 outer operation이라고 합니다.  $\rightarrow \cdot ($ 스칼라배)

해당 연산은 inner/outer products(내적/외적)과는 관련이 없습니다.

# 정의

$$+: V \times V \rightarrow V$$

$$\cdot : \mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$$

실수인 벡터 공간  $V=(V,+,\cdot)$ 은 위 두 연산을 포함하는 집합  ${\cal V}$  입니다.

### 특성

- 1.  $(\mathcal{V}, +)$  is an Abelian group
- 2. Distributivity:
  - 1.  $\forall \lambda \in \mathbb{R}, x, y \in \mathcal{V} : \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$
  - 2.  $\forall \lambda, \psi \in \mathbb{R}, x \in \mathcal{V} : (\lambda + \psi) \cdot x = \lambda \cdot x + \psi \cdot x$
- 3. Associativity (outer operation):  $\forall \lambda, \psi \in \mathbb{R}, x \in \mathcal{V} : \lambda \cdot (\psi \cdot x) = (\lambda \psi) \cdot x$
- 4. Neutral element with respect to the outer operation:  $\forall x \in \mathcal{V} : 1 \cdot x = x$
- 이 집합에 속해있는 원소 x를 벡터(vector)라고 합니다.

## 예시

#### Example 2.11 (Vector Spaces)

Let us have a look at some important examples:

- $V = \mathbb{R}^n, n \in \mathbb{N}$  is a vector space with operations defined as follows:
- Addition:  $x+y=(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$  for all  $x,y\in\mathbb{R}^n$
- Multiplication by scalars: λx = λ(x<sub>1</sub>,...,x<sub>n</sub>) = (λx<sub>1</sub>,...,λx<sub>n</sub>) for all λ∈ ℝ, x ∈ ℝ<sup>n</sup>
- $V = \mathbb{R}^{m \times n}, m, n \in \mathbb{N}$  is a vector space with
- Addition:  $m{A} + m{B} = egin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$  is defined elementwise for all  $m{A}, m{B} \in \mathcal{V}$
- Multiplication by scalars:  $\lambda {m A} = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$  as defined in

Section 2.2. Remember that  $\mathbb{R}^{m \times n}$  is equivalent to  $\mathbb{R}^{mn}$ .

- V = C, with the standard definition of addition of complex numbers.
- n 차원의 실수 tuple 집합은, 성분끼리 더하고 , 실수배를 각 성분마다 해주는 vector space를 형성
- $m \times n$  행렬에서는 각 성분의 덧셈, 그리고 각 성분에 스칼라배를 하는 vector space 를 형성

• 복소수 또한 덧셈과 스칼라배로 vector space를 형성

# Vector Subspaces (벡터 부분공간)

직관적으로 벡터 부분공간은 원래의 벡터 공간에 포함되어 있습니다.

벡터 공간의 정의된 연산을 부분공간에 적용시켜보면 그 연산의 결과가 절대로 벡터의 부분공간을 벗어나지 않게 됩니다.

예를 들어 벡터 공간을 정수, 스칼라 또한 정수를 가정하면 <mark>짝수의 집합</mark>은 부분공간이 됩니다.

<mark>짝수의 집합에서 덧셈과 스칼라배 연산</mark>은 계속 부분공간(짝수의 집합)에 머무르게 됩니다.

이는 벡터의 부분공간은 'closed(닫혀)'있습니다.

벡터의 부분공간은 머신 러닝에서 매우 중요한 아이디어가 됩니다.

예를 들어, ch10 에서는 벡터의 부분공간을 사용해서 차원 축소(dimensionality reduction)을 어떻게 사용하는지 보여줍니다.

## 정의

**Definition 2.10** (Vector Subspace). Let  $V = (\mathcal{V}, +, \cdot)$  be a vector space and  $\mathcal{U} \subseteq \mathcal{V}$ ,  $\mathcal{U} \neq \emptyset$ . Then  $U = (\mathcal{U}, +, \cdot)$  is called *vector subspace* of V (or *linear subspace*) if U is a vector space with the vector space operations + and  $\cdot$  restricted to  $\mathcal{U} \times \mathcal{U}$  and  $\mathbb{R} \times \mathcal{U}$ . We write  $U \subseteq V$  to denote a subspace U of V.

- $V=(\mathcal{V},+,\cdot)$ 가 벡터 공간이고,  $\mathcal{U}\subseteq\mathcal{V},\ \mathcal{U}
  eq\emptyset$  라고 할 때,  $U=(\mathcal{U},+,\cdot)$  을 V의 벡터 부분공간이라고 합니다.
- V의 부분공간 U를  $U \subset V$  로 표기합니다.
  - *U* ≠ ∅, in particular: 0 ∈ *U*
  - Closure of U:
    - a. With respect to the outer operation:  $\forall \lambda \in \mathbb{R} \ \forall x \in \mathcal{U} : \lambda x \in \mathcal{U}$ .
    - b. With respect to the inner operation:  $\forall x, y \in \mathcal{U} : x + y \in \mathcal{U}$ .

만약  $U\subseteq V$  일 경우, U는 V의 많은 성질(properties)를 그대로 받게 됩니다. 예를 들어 abelian group의 성질, 분배법칙, 결합법칙, 항등원등을 모두 포함합니다. 또한 벡터의 부분공간임을 확인하기 위해서는 위 두 가지를 확인하면 됩니다.

- 1. U는 공집합이 아니며, 0은 U의 원소이다.
- 2. U의 Closure
  - a. 벡터의 덧셈, 스칼라배에서도 닫혀있다.

### 예시

#### Example 2.12 (Vector Subspaces)

Let us have a look at some examples:

- For every vector space V, the trivial subspaces are V itself and {0}.
- Only example D in Figure 2.6 is a subspace of R<sup>2</sup> (with the usual inner/outer operations). In A and C, the closure property is violated; B does not contain 0.
- The solution set of a homogeneous system of linear equations Ax = 0
  with n unknowns x = [x<sub>1</sub>,...,x<sub>n</sub>]<sup>T</sup> is a subspace of R<sup>n</sup>.
- The solution of an inhomogeneous system of linear equations Ax = b, b ≠ 0 is not a subspace of R<sup>n</sup>.
- The intersection of arbitrarily many subspaces is a subspace itself.



- 벡터 공간 V에 대해서 V 자신도 부분공간이 됩니다. 또한  $\{0\}$  도 부분공간이 됩니다.  $\rightarrow$  Closure
- A, B, C, D 그림 중에서 D만 벡터의 부분공간이 됩니다.
  - $(A, C \rightarrow not closed) | (B \rightarrow 0 포함 X)$
- Ax=0 을 만족하는 해의 집합은  $\mathbb{R}^n$  의 부분공간이 됩니다.
- Ax=b~(b
  eq0) 의 해들은 부분공간이 되지 않습니다.
- 부분 공간들의 임의의 교집합에 의한 결과도 부분공간이 됩니다.

# 출처

- Mathmatics for Machine Learning (<a href="https://github.com/mml-book/mml-book.github.io">https://github.com/mml-book/mml-book.github.io</a>)
- <a href="https://blog.naver.com/walk\_along/222158878677">https://blog.naver.com/walk\_along/222158878677</a>
- <a href="https://junstar92.github.io/mml-study-note/2022/07/02/ch2-4.html">https://junstar92.github.io/mml-study-note/2022/07/02/ch2-4.html</a>