

FCC PART 15.247 RSS-GEN, ISSUE 5, APRIL 2018 RSS-247, ISSUE 2, FEBRUARY 2017 TEST REPORT

For

SkyHawke Technologies, LLC

274 Commerce Park Drive, Ridgeland, Mississippi United States 39157

FCC ID: X8F-SX400 IC: 12059A-SX400

Report Type: **Product Name:** Original Report Golf GPS Receiver Report Number: RDG190524006-00B **Report Date:** 2019-07-06 Jerry Zhang Jerry Zhang **EMC Manager Reviewed By: Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
FCC §15.247 (i) & §1.1310 & §2.1093, RSS-102 CLAUSE 4- RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §15.203, RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a), RSS-GEN CLAUSE 8.8 – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.209, §15.205 & §15.247(d), RSS-247 CLAUSE 5.5,RSS -GEN CLAUSE 8.10 - SPURIOUS	
EMISSIONS	14
APPLICABLE STANDARD	14
EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1), RSS-247 CLAUSE 5.1 b) - CHANNEL SEPARATION TEST	22
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1), RSS-247 CLUASE 5.1&RSS-GEN CLAUSE 6.7 –BANDWIDTH TESTING	
TEST PROCEDURE	
TEST FROCEDURE TEST EQUIPMENT LIST AND DETAILS.	

TEST DATA	29
FCC §15.247(a) (1) (iii), RSS-247 CLAUSE 5.1 d) - QUANTITY OF HOPPING CHANNEL TE	ST40
APPLICABLE STANDARD	
TEST PROCEDURE	40
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	40
FCC §15.247(a) (1) (iii), RSS-247 CLAUSE 5.1 d) - TIME OF OCCUPANCY (DWELL TIME)	44
APPLICABLE STANDARD	44
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	44
FCC §15.247(b) (1), RSS-247 CLAUSE 5.4 b) - PEAK OUTPUT POWER MEASUREMENT	50
APPLICABLE STANDARD	50
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	50
TEST DATA	50
FCC §15.247(d), RSS-247 CLAUSE 5.5 - BAND EDGES TESTING	52
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	53
TEST DATA	53

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:		Golf GPS Receiver
EUT Model:		SX400
Ope	ration Frequency:	2402-2480 MHz
Maximum Peak Output Power (Conducted):		7.84 dBm
Modulation Type: GFSK, π/4-DQPSK, 8-DPSK		GFSK, π/4-DQPSK, 8-DPSK
	Model:	TPA-46050200UU
Adapter Information	Input:	100-240VAC~50/60Hz Max 0.3A
inioimation	Output:	5V/ 2.0A
Rat	ted Input Voltage:	3.8Vdc from battery or DC 5V from adapter
External Dimension:		127mm(L)*62mm(W)*18mm(H)
Serial Number:		190524006
EU	JT Received Date:	2019-5-30

Report No.: RDG190524006-00B

Objective

This report is prepared on behalf of *SkyHawke Technologies*, *LLC* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules, RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada, RSS-Gen, Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules, RSS-247, Issue 2, February 2017, RSS-Gen, Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: X8F-SX400. RSS-247 DTSs, submissions with IC: 12059A-SX400

Test Methodology

All measurements detailed in this test report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices", RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada, RSS-Gen Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
	·
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Harman A. I. Paringiana and Hara d	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB,
Unwanted Emissions, radiated	6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 ℃
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Report No.: RDG190524006-00B

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

The Engineering Mode configured the maximum power level as default setting.

Equipment Modifications

No modification was made to the EUT.

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From	То
USB Cable	yes	no	1.0	Adapter	EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§15.247 (i) & §1.1310 & §2.1093; RSS-102§4	RF Exposure	Compliance
FCC§15.203; RSS-GEN Clause 6.8	Antenna Requirement	Compliance
FCC§15.207 (a); RSS-Gen Clause 8.8	Conducted Emissions	Compliance
FCC§15.205, §15.209, §15.247(d); RSS-247 Clause 5.5, RSS-Gen Clause 8.10	Spurious Emissions	Compliance
FCC§15.247 (a)(1); RSS-247 Clause 5.1 b) RSS-Gen Clause 6.7	Bandwidth Test	Compliance
FCC§15.247(a)(1); RSS-247 Clause 5.1 b)	Channel Separation Test	Compliance
FCC§15.247(a)(1)(iii); RSS-247 Clause 5.1 d)	Time of Occupancy (Dwell Time)	Compliance
FCC§15.247(a)(1)(iii); RSS-247 Clause 5.1 d)	Quantity of hopping channel Test	Compliance
FCC§15.247(b)(1); RSS-247 Clause 5.4 b)	Peak Output Power Measurement	Compliance
FCC§15.247(d); RSS-247 Clause 5.5	Band Edges	Compliance

FCC §15.247 (i) & §1.1310 & §2.1093, RSS-102 CLAUSE 4- RF EXPOSURE

Report No.: RDG190524006-00B

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to RSS-102 Clause 4 Table 3, SAR limits for device used by the general public.

Body Region	Average SAR (W/Kg)	Averaging Time (minutes)	Mass Average (g)
Whole Body	0.08	6	Whole Body
Localized Head, Neck and Trunk	1.6	6	1
Localized Limbs	4	6	10

Measurement Result

Please refer to the SAR report: RDG190524006-20.

Result: Compliance.

FCC §15.203, RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RDG190524006-00B

According to RSS-Gen §6.8, The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal FPC antenna arrangement for BT/WLAN, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type input impedance (Ohm)		Antenna Gain /Frequency Range		
FPC	50	1.6 dBi/2.4~2.5GHz		

Result: Compliance.

FCC $\S15.207$ (a), RSS-GEN CLAUSE 8.8-AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a), RSS-GEN CLAUSE 8.8.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits and RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein.

V_C: corrected voltage amplitude V_R: reading voltage amplitude A_c: attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	2018-09-05	2019-09-05
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A
R&S	Two-line V-network	ENV 216	101614	2018-12-10	2019-12-10
R&S	EMI Test Receiver	ESPI	100120	2019-05-09	2020-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.7℃
Relative Humidity:	53%
ATM Pressure:	100.1kPa
Tester:	Lily Xie
Test Date:	2019-06-25

Test Mode: Transmitting

AC120V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.151500	42.7	9.000	L1	11.2	23.2	65.9
0.569057	39.0	9.000	L1	9.8	17.0	56.0
1.141962	36.9	9.000	L1	9.8	19.1	56.0
1.339041	36.0	9.000	L1	9.8	20.0	56.0
3.621856	29.3	9.000	L1	9.8	26.7	56.0
11.601974	27.6	9.000	L1	9.8	32.4	60.0

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.319533	28.2	9.000	L1	10.1	21.5	49.7
0.574747	31.8	9.000	L1	9.8	14.2	46.0
0.954700	28.9	9.000	L1	9.8	17.1	46.0
1.339041	27.3	9.000	L1	9.8	18.7	46.0
3.621856	20.0	9.000	L1	9.8	26.0	46.0
11.601974	19.7	9.000	L1	9.8	30.3	50.0

AC120V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.151500	42.8	9.000	N	11.1	23.1	65.9
0.563423	44.3	9.000	N	9.8	11.7	56.0
0.759409	41.1	9.000	N	9.8	14.9	56.0
1.325783	38.4	9.000	N	9.8	17.6	56.0
3.621856	31.2	9.000	N	9.8	24.8	56.0
11.601974	31.9	9.000	N	9.8	28.1	60.0

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.322729	30.9	9.000	N	10.1	18.7	49.6
0.574747	35.3	9.000	N	9.8	10.7	46.0
0.767003	31.8	9.000	N	9.8	14.2	46.0
1.325783	27.5	9.000	N	9.8	18.5	46.0
3.621856	21.1	9.000	N	9.8	25.0	46.0
11.601974	22.5	9.000	N	9.8	27.5	50.0

FCC §15.209, §15.205 & §15.247(d) , RSS-247 CLAUSE 5.5,RSS -GEN CLAUSE 8.10 - SPURIOUS EMISSIONS

Report No.: RDG190524006-00B

Applicable Standard

FCC §15.247 (d); §15.209; §15.205; RSS-247 Clause 5.5, RSS-GEN Clause 8.10

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission below 1GHz tests were performed in the 3 meters chamber test site A, above 1GHz tests were performed in the 3 meters chamber test site B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits and the RSS-247 Clause 5.5, RSS-GEN Clause 8.10 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

According to FCC public notice: DA-00-705, during the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RDG190524006-00B

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
AUUVE I GHZ	1MHz	10 Hz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2018-12-10	2019-12-10
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2018-09-05	2019-09-05
HP	Amplifier	8447D	2727A05902	2018-09-05	2019-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2019-01-04	2020-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2018-06-27	2019-06-27
MITEQ	Amplifier	AFS42-00101800-25- S-42	2001271	2018-09-05	2019-09-05
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2018-06-27	2019-06-27
E-Microwave	Band-stop Filters	OBSF-2400-2483.5-S	OE01601525	2019-06-16	2020-06-16
Micro-tronics	High Pass Filter	HPM50111	S/N-G217	2019-06-16	2020-06-16

Report No.: RDG190524006-00B

Test Data

Environmental Conditions

Test Items	Radiation Below 1GHz	Radiation Above 1GHz
Temperature:	27 °C	28.2 °C
Relative Humidity:	58%	50 %
ATM Pressure:	100.1 kPa	100.1 kPa
Tester:	Sunny Chen	Lucy Lu
Test Date:	2019-06-03	2019-06-19

Test Mode: Transmitting

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

1) 30MHz-1GHz(GFSK High channel was the worst)

Horizontal:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.9700	26.26	peak	0.91	27.17	40.00	12.83
168.7100	30.79	peak	-6.47	24.32	43.50	19.18
381.1400	28.17	peak	-2.52	25.65	46.00	20.35
703.1800	27.92	peak	3.11	31.03	46.00	14.97
829.2800	26.92	peak	5.05	31.97	46.00	14.03
955.3800	36.56	peak	-3.29	33.27	46.00	12.73

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
38.7300	41.65	QP	-4.95	36.70	40.00	3.30
61.0400	40.58	peak	-12.06	28.52	40.00	11.48
219.1500	29.38	peak	-7.03	22.35	46.00	23.65
572.2300	27.68	peak	1.04	28.72	46.00	17.28
770.1100	26.92	peak	4.31	31.23	46.00	14.77
961.2000	11.07	peak	22.90	33.97	54.00	20.03

2) 1GHz-25GHz:

BDR Mode (GFSK) was worst

E	Reco	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	Limit	Mangin
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	(dBµV/m)	Margin (dB)
				Low Chan	nel: 2402	MHz			
2390.00	26.02	PK	V	28.08	1.80	0.00	55.90	74.00	18.10
2390.00	12.94	AV	V	28.08	1.80	0.00	42.82	54.00	11.18
4804.00	45.67	PK	V	32.91	3.17	37.20	44.55	74.00	29.45
4804.00	32.91	AV	V	32.91	3.17	37.20	31.79	54.00	22.21
7206.00	45.35	PK	V	35.74	4.82	37.23	48.68	74.00	25.32
7206.00	32.25	AV	V	35.74	4.82	37.23	35.58	54.00	18.42
			l	Middle Cha	nnel: 244	l MHz			
4882.00	46.35	PK	V	33.06	3.27	37.21	45.47	74.00	28.53
4882.00	33.97	AV	V	33.06	3.27	37.21	33.09	54.00	20.91
7323.00	45.26	PK	V	36.04	4.62	37.38	48.54	74.00	25.46
7323.00	32.61	AV	V	36.04	4.62	37.38	35.89	54.00	18.11
				High Chan	nel: 2480	MHz			
2483.50	26.45	PK	V	28.27	1.84	0.00	56.56	74.00	17.44
2483.50	13.97	AV	V	28.27	1.84	0.00	44.08	54.00	9.92
4960.00	46.25	PK	V	33.22	3.23	37.25	45.45	74.00	28.55
4960.00	33.94	AV	V	33.22	3.23	37.25	33.14	54.00	20.86
7440.00	45.68	PK	V	36.34	4.41	37.52	48.91	74.00	25.09
7440.00	32.74	AV	V	36.34	4.41	37.52	35.97	54.00	18.03

18000.00018700.00 19400.00 20100.00 20800.00 21500.00 22200.00 22900.00 23600.00

25000.00 MHz

FCC §15.247(a) (1), RSS-247 CLAUSE 5.1 b) - CHANNEL SEPARATION TEST

Report No.: RDG190524006-00B

Applicable Standard

According to FCC §15.247(a) (1), RSS-247 Clause 5.1 b)

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0012/04	Each time	N/A

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	24.3 °C
Relative Humidity:	51 %
ATM Pressure:	100.1 kPa
Tester:	Andy Huang
Test Date:	2019-07-01

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)
nnn	Low	2402	0.998	0.55
BDR (GESK)	Middle	2441	1.002	0.56
(GFSK)	High	2480	0.998	0.56
EDD	Low	2402	1.002	0.83
EDR (π/4-DQPSK)	Middle	2441	1.002	0.83
(1/4-DQF3K)	High	2480	1.002	0.83
EDD	Low	2402	1.002	0.83
EDR (8-DPSK)	Middle	2441	1.002	0.84
(0-DI SK)	High	2480	1.006	0.84

Report No.: RDG190524006-00B

Note: $Limit = (2/3) \times 20dB$ bandwidth

BDR Mode (GFSK):

Low Channel

Middle Channel

Report No.: RDG190524006-00B

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Report No.: RDG190524006-00B

Middle Channel

High Channel

Report No.: RDG190524006-00B

EDR Mode (8-DPSK):

Low Channel

Middle Channel

Report No.: RDG190524006-00B

High Channel

FCC §15.247(a) (1), RSS-247 CLUASE 5.1&RSS-GEN CLAUSE 6.7 – BANDWIDTH TESTING

Applicable Standard

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: RDG190524006-00B

According to RSS-247 Clause 5.1 b):

b) FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

According to RSS-Gen Clause 6.7:

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Report No.: RDG190524006-00B

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.
- 5. Use the OBW test function test the 99% Occupied bandwidth.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0012/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.3 °C	
Relative Humidity:	51 %	
ATM Pressure:	100.1 kPa	
Tester:	Andy Huang	
Test Date:	2019-07-01	

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
BDR Mode (GFSK)	Low	2402	0.830	0.737
	Middle	2441	0.834	0.737
	High	2480	0.834	0.741
	Low	2402	1.246	1.146
EDR Mode (π/4-DQPSK)	Middle	2441	1.242	1.150
(M/4-DQI 5K)	High	2480	1.246	1.150
	Low	2402	1.246	1.146
EDR Mode (8-DPSK)	Middle	2441	1.255	1.150
(0-D1 5K)	High	2480	1.259	1.146

Report No.: RDG190524006-00B

20 dB Bandwidth *BDR Mode (GFSK):*

Low Channel

Middle Channel

Report No.: RDG190524006-00B

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Report No.: RDG190524006-00B

Middle Channel

High Channel

Report No.: RDG190524006-00B

EDR Mode (8-DPSK):

Low Channel

Middle Channel

Report No.: RDG190524006-00B

High Channel

99% dB Bandwidth *BDR Mode (GFSK):*

Low Channel

Report No.: RDG190524006-00B

251111 61

Middle Channel

Date: 1.JUL.2019 20:40:41

High Channel

Report No.: RDG190524006-00B

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Middle Channel

Report No.: RDG190524006-00B

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG190524006-00B

Middle Channel

High Channel

Report No.: RDG190524006-00B

FCC §15.247(a) (1) (iii), RSS-247 CLAUSE 5.1 d) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

According to FCC §15.247(a) (1) (iii), RSS-247 Clause 5.1 d)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0012/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.3 °C
Relative Humidity:	51 %
ATM Pressure:	100.1 kPa
Tester:	Andy Huang
Test Date:	2019-07-01

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG190524006-00B

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Report No.: RDG190524006-00B

Number of Hopping Channels

EDR Mode (\pi/4-DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Report No.: RDG190524006-00B

Number of Hopping Channels

EDR Mode (8-DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Report No.: RDG190524006-00B

Number of Hopping Channels

FCC §15.247(a) (1) (iii), RSS-247 CLAUSE 5.1 d) - TIME OF OCCUPANCY (DWELL TIME)

Report No.: RDG190524006-00B

Applicable Standard

According to FCC §15.247(a) (1) (iii), RSS-247 Clause 5.1 d):

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0012/04	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.3 °C	
Relative Humidity:	51 %	
ATM Pressure:	100.1 kPa	
Tester:	Andy Huang	
Test Date:	2019-07-01	

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Packet type	Channel	Frequency (MHz)	Puse width (ms)	Result (s)	Limit (s)
	DH1	Middle	2441	0.393	0.126	
GFSK	DH3	Middle	2441	1.653	0.264	
	DH5	Middle	2441	2.916	0.311	
-/4	2DH1	Middle	2441	0.399	0.128	
π/4 DQPSK	2DH3	Middle	2441	1.653	0.264	0.4
DQF5K	2DH5	Middle	2441	2.916	0.311	
	3DH1	Middle	2441	0.399	0.128	
8DPSK	3DH3	Middle	2441	1.654	0.265	
	3DH5	Middle	2441	2.916	0.311	

Report No.: RDG190524006-00B

Note:

DH1:Dwell time=Pulse time (ms) \times (1600/2/79) \times 31.6 s

DH3:Dwell time=Pulse time (ms) \times (1600/4/79) \times 31.6 s

DH5:Dwell time=Pulse time (ms) \times (1600/6/79) \times 31.6 s

BDR Mode (GFSK):

DH1: Middle Channel

DH3: Middle Channel

Report No.: RDG190524006-00B

DH5: Middle Channel

EDR Mode ($\pi/4$ -DQPSK):

2DH1: Middle Channel

Report No.: RDG190524006-00B

2DH3: Middle Channel

2DH5: Middle Channel

Report No.: RDG190524006-00B

EDR Mode (8DPSK):

3DH1: Middle Channel

3DH3: Middle Channel

Report No.: RDG190524006-00B

FCC §15.247(b) (1), RSS-247 CLAUSE 5.4 b) - PEAK OUTPUT POWER MEASUREMENT

Report No.: RDG190524006-00B

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

According to RSS-247 Clause 5.4 b)

b) For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Unknown	Coaxial Cable	C-SJ00-0010	C0012/04	Each time	N/A
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2018-12-10	2019-12-10

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.3 °C
Relative Humidity:	51 %
ATM Pressure:	100.1 kPa
Tester:	Andy Huang
Test Date:	2019-07-01

Test Result: Compliance.

Test Mode: Transmitting

Mode	Frequency (MHz)	Peak Conducted Output power (dBm)	Limit (dBm)
	2402	5.52	21
BDR Mode	2441	4.56	21
(GFSK)	2480	3.13	21
	2454	7.84	21
	2402	5.52	21
EDR Mode	2441	4.68	21
(π/4-DQPSK)	2480	3.00	21
	2408	7.10	21
	2402	5.52	21
EDR Mode	2441	4.68	21
(8-DPSK)	2480	3.00	21
	2454	7.23	21

Report No.: RDG190524006-00B

Note: The data above was tested in conducted mode and the antenna gain is 1.6dBi, so it meets the EIRP limit for ISED.

FCC §15.247(d), RSS-247 CLAUSE 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RDG190524006-00B

According to RSS-247 Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW/ VBW of spectrum analyzer to 100/300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	on Model Serial Number		Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0012/04	Each time	N/A

Report No.: RDG190524006-00B

Test Data

Environmental Conditions

Temperature:	24.3 °C
Relative Humidity:	51 %
ATM Pressure:	100.1 kPa
Tester:	Andy Huang
Test Date:	2019-07-01

Test Result: Compliance

Single mode:

BDR Mode (GFSK):

Band Edge, Left Side

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Band Edge, Right Side

Report No.: RDG190524006-00B

EDR Mode (\pi/4-DQPSK):

Band Edge, Left Side

Band Edge, Right Side

Report No.: RDG190524006-00B

EDR Mode (8-DPSK):

Band Edge, Left Side

Hopping mode: BDR Mode (GFSK):

Band Edge, Left Side

Report No.: RDG190524006-00B

Band Edge, Right Side

EDR Mode (\pi/4-DQPSK):

Band Edge, Left Side

Report No.: RDG190524006-00B

Band Edge, Right Side

EDR Mode (8-DPSK):

Band Edge, Left Side

Report No.: RDG190524006-00B

1.00L.2019 21.19.17

Band Edge, Right Side

***** END OF REPORT *****