Sales and Capacity Planning

Lecture Outline

- The Sales and Operations Planning Process
- Strategies for Adjusting Capacity
- Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services

Sales and Operations Planning

- Determines resource capacity to meet demand over an intermediate time horizon
 - Aggregate refers to sales and operations planning for product lines or families
 - Sales and Operations planning (S&OP) matches supply and demand
- Objectives
 - Establish a company wide plan for allocating resources
 - Develop an economic strategy for meeting demand

The Planning Sequence

Sales and Operations Planning Process

Monthly S&OP Planning Process

Lecture Outline

- The Sales and Operations Planning Process
- Meeting Demand
 - Strategies for Adjusting Capacity
 - Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services

Meeting Demand Strategies

- Adjusting capacity
 - Resources to meet demand are acquired and maintained over the time horizon of the plan
 - Minor variations in demand are handled with overtime or under-time
- Managing demand
 - Proactive demand management

Strategies for Adjusting Capacity

- Level production
 - Producing at a constant rate and using inventory to absorb fluctuations in demand
- Chase demand
 - Hiring and firing workers to match demand
- Peak demand
 - Maintaining resources for high-demand levels

Strategies for Adjusting Capacity

- Overtime and under-time
 - Increase or decrease working hours
- Subcontracting
 - Let outside companies complete the work
- Part-time workers
 - Hire part-time workers to complete the work
- Backordering
 - Provide the service or product at a later time period

Level Production

Chase Demand

Lecture Outline

- The Sales and Operations Planning Process
- Meeting Demand
 - Strategies for Adjusting Capacity
 - Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services

Strategies for Managing Demand

- Shifting demand into other time periods
 - Incentives
 - Sales promotions
 - Advertising campaigns
- Offering products or services with counter-cyclical demand patterns
- Partnering with suppliers to reduce information distortion along the supply chain

Lecture Outline

- The Sales and Operations Planning Process
- Meeting Demand
 - Strategies for Adjusting Capacity
 - Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services

Quantitative Techniques For AP

- Pure Strategies
- Mixed Strategies
- Linear Programming
- Transportation Method
- Other Quantitative Techniques

Pure Strategies

QUARTER	SALES FORECAST (LB)
Spring	80,000
Summer	50,000
Fall	120,000
Winter	150,000

Hiring cost = \$100 per worker

Firing cost = \$500 per worker

Inventory carrying cost = \$0.50 pound per quarter

Regular production cost per pound = \$2.00

Production per employee = 1,000 pounds per quarter

Beginning work force = 100 workers

Level Production Strategy

Level production

_	QUARTER	SALES FORECAST	PRODUCTION PLAN	INVENTORY
	Spring	80,000		
	Summer	50,000		
	Fall	120,000		
_	Winter	150,000		

Cost of Level Production Strategy

Level Production Strategy

Level production $\frac{(50,000 + 120,000 + 150,000 + 80,000)}{4} = 100,000 \text{ pounds}$

QUARTER	SALES FORECAST	PRODUCTION PLAN	INVENTORY
Spring	80,000	100,000	20,000
Summer	50,000	100,000	70,000
Fall	120,000	100,000	50,000
Winter	150,000	100,000	0
		400,000	140,000
Cost of Level	Production Strat	eav	

 $(400,000 \times \$2.00) + (140,00 \times \$.50) = \$870,000$

Chase Demand Strategy

QUARTER	SALES F FORECAST	PRODUCTION PLAN	WORKERS NEEDED	WORKERS HIRED	WORKERS FIRED
Spring	80,000				
Summer	50,000				
Fall	120,000				
Winter	150,000				

Cost of Chase Demand Strategy

Chase Demand Strategy

QUARTER	SALES I FORECAST	PRODUCTION PLAN	WORKERS NEEDED	WORKERS HIRED	WORKERS FIRED
Spring	80,000	80,000	80	0	20
Summer	50,000	50,000	50	0	30
Fall	120,000	120,000	120	70	0
Winter	150,000	150,000	150	30	0
				100	50

Cost of Chase Demand Strategy

 $(400,000 \times \$2.00) + (100 \times \$100) + (50 \times \$500) = \$835,000$

Level Production with Excel

C:	Exhibit 1											
	Home	Insert Page	Layout I	Formu	ulas Data		Review	Cost of	level prod	luction		
	F12	→ (0		tory costs								
1	Α	В	С	D E			produ	iction cost	S			
1												
2									Ψ			
3		Example 14	.1a - Leve	el Pr	roduction			Cost	\$870,000	,		
4												
5		Beg Wkforce	100	Р	rod. Cost	,	2.00	Firing cos	t \$500			
6		Units/wker	1000		Inv. Cost	,	0.50	Hiring cos	t \$100			
7		Beg Inv.	0	Inr	put by us	er			Inventory	at		
8				•	100,000/4				end of su			
9				_4	100,000/4	•			end of su	IIIIIIEI		
10			Quarter	r	Demand	Pro	duction	Inventory	,			
11			Spring		80,000	1	00,000	20,000)			
12			Summe	er	50,000	1	00,000	70,00	0]			
13			Fall		120,000	1	00,000	50,000)			
14			Winter		150,000	1	00,000)			
15			Total		400,000	4	00,000	140,000	Ď .			

Chase Demand with Excel

Mixed Strategy

- Combination of Level Production and Chase Demand strategies
- Example policies
 - no more than x% of workforce can be laid off in one quarter
 - inventory levels cannot exceed x dollars
- Some industries may shut down manufacturing during the low demand season and schedule employee vacations during that time

General Linear Programming (LP) Model

- LP gives an optimal solution, but demand and costs must be linear
- Let
 - W_t = workforce size for period t
 - P_t =units produced in period t
 - I_t = units in inventory at the end of period t
 - F_t =number of workers fired for period t
 - H_t = number of workers hired for period t

LP MODEL

	Minimize Z =	$100 (H_1 + H_2 + H_3 + H_4)$		
		$+ $500 (F_1 + F_2 + F_3 + F_4)$		
		$+ \$0.50 (I_1 + I_2 + I_3 + I_4)$		
		$+ $2 (P_1 + P_2 + P_3 + P_4)$		
Subject to				
		$P_1 - I_1 = 80,000$	(1)	
	Demand	$I_1 + P_2 - I_2 = 50,000$	(2)	
	constraints	$I_2 + P_3 - I_3 = 120,000$	(3)	
		$I_3 + P_4 - I_4 = 150,000$	(4)	
	Production	1000 $W_1 = P_1$	(5)	
	constraints	1000 $W_2 = P_2$	(6)	
		1000 $W_3 = P_3$	(7)	
		1000 $W_4 = P_4$	(8)	
		$100 + H_1 - F_1 = W_1$	(9)	
	Work force	$W_1 + H_2 - F_2 = W_2$	(10)	
	constraints	$W_2 + H_3 - F_3 = W_3$	(11)	
		$W_3 + H_4 - F_4 = W_4$	(12)	

Setting up the Spreadsheet

Setting up the Spreadsheet

The LP Solution

Level Production for Quantum

	Α	В	С	D	E	F	G	Н	I	J	K
1					Example 1	4.3 (a) -	Level Produ	uction			
2					•	()			Cost o	f level	production
3		Input:	Beg. Wkrs	10	Regular	\$10	Hiring	\$1,000			
4			Units/wkr	100	Overtime	\$15	Firing	\$500		Cost:	\$146,000
5			Beg. Inv.	0	Subk	\$25	Inventory	\$1			
6											
7		Month	Demand	Reg	ОТ	Subk	Inv	#Wkrs	#Hired	#Fired	Exce
8		Jan	1000	1,000	0	0	0	10	0	0	calculat
9		Feb	400	1,000	0	0	600	10	0	0	
10		Mar	400	1,000	0	0	1,200	10	0	0	these
11		Apr	400	1,000	0	0	1,800	10	0	0	
12		May	400	1,000	0	0	2,400	10	0	0	
13	Inni	it by u	car $\stackrel{0}{\longrightarrow}$	1,000	0	0	3,000	10	0	0 4	
14	прс	it by u	301 0	1,000	0	0	3,500	10	0	0	
15		Aug	500	1,000	0	0	4,000	10	0	0	
16		Sept	1000	1,000	0	0	4,000	10	0	0	
17		Oct	1500	1,000	0	0	3,500	10	0	0	
18		Nov	2500	1,000	0	0	2,000	10	0	0	
19		Dec	3000	1,000	0	0/	0	10	0	0/	
20		Total	12,000	12,000	0	0	26,000		0	0	

Level = 12,000/12 = 1,000

Chase Demand for Quantum

	hired in I	-eb	D	E	F	G	H	Cost	of cha	se demand
1	5			Example 1	4.3 (b) -	Chase Dem	and	0031	OI OIIA	\
2					(-)					
3	Input:	Beg. Wkrs	10	Regular	\$10	Hiring	\$1,000			\.
4	•	Units/wkr	100	Overtime	\$15	Firing	\$500		Cost:	\$149,000
5		Beg. Inv.	0	Subk	\$25	Inventory	\$1			
6										Exce
7	Month	Demand	Reg	OT	Subk	INV	#Wkrs	#Hired	#Fired	calcula
8	Jan	1000	1000	0	0	0	10	0	0	
9	Feb	400	400	0	0	0	4	0	6	these
10	Mar	400	400	0	0	0	4	0	0	
11	Apr	400	400	0	0	0	4	0	0	
12	May	400	400	0	0	0	4	0	0	
13	Input by i	ISAT 0	400	0	0	0	4	0	0	
14	input by t	1301	500	0	0	0	5	1	0	
15	Aug	500	500	0	0	0	5	0	0	
16	Sept	1000	1000	0	0	0	10	5	0	
17	Oct	1500	1500	0	0	0	15	5	0	
18	Nov	2500	2500	0	0	Q	25	10	0	
19	Dec	3000	3000	0	0 /	0	30	5	0	
20	Total	12,000	12,000	0	0	0		26	6	

LP Solution for Quantum

		J4		• (9	$f_{\infty} = S$	UM((E	3*C20)+(E4	1*D20)+(E	5*E20)+	(G5*F20)	+(G3*H20)+(G4*I20))	
	4	Α	В	С	D	Е	F	G	Н	- 1	J	K	L
	1				Example	14.3 -	LP Mode	el	Onti	mal sc	olution	Con	straint
4	2								Optil	iiai sc	Julion	ean	ations
4	3	Input:	Beg. Wkrs	10	Regular	\$10	Hiring	\$1,000			V	•	these
	4		Units/wkr	100	Overtime	\$15	Firing	\$500		Cost:	\$142,500		
	5		Beg. Inv.	0	Subk	\$25	Inventory	\$1				C	ells
	6			_							Demand	Production	Wkforce
	7 8	Month Jan	Demand 1000 /	Reg 1,000	<i>OT</i>	Subk 0	<u>Inv</u>	#Wkrs	#Hired	#Fired	1,000	Construent 1,000	Constraint
	9		400	-	0				_		400	-	
		Feb		400	_	0	0	4	0	6	1	400	4
	10	Mar	400	400	0	0	0	4	0	0	400	400	4
	11	Apr	400	400	0	0	0	4	0	0	400	400	4
		Mau	400	400	0	0	0	4	0	0	400	400	4
SOIV	er/	found	400	400	0	0	0	4	0	0	400	400	4
his	SC	lution	500	500	0	0	0	5	1	0	500	500	5
- 1	IJ	Aug	500	500	0	0	0	5	0	0	500	500	5
1	16	Sept	1000	2,000	0	0	1,000	20	15	0	1,000	2,000	20
1	17	Oct	1500	2,000	0	0	1,500	20	0	0	1,500	2,000	20
1	18	Nov	2500	2,000	0	0	1,000	20	0	0	2,500	2,000	20
1	19	Dec	3000	2,000	0	0	0	20	0	0/	3,000	2,000	20
2	20	Total	12,000	12,000	0	0	3,500		16	6			

Transportation Method

QUARTER	EXPECTED DEMAND	REGULAR CAPACITY	OVERTIME CAPACITY	SUBCONTRACT CAPACITY
1	900	1000	100	500
2	1500	1200	150	500
3	1600	1300	200	500
4	3000	1300	200	500
	olding cost	\$20/ur \$25/ur \$28/ur \$3/uni 300 ur	nit nit t-period	

Burruss' Production Plan

PERIOD	DEMAND	REGULAR PRODUCTION	OVERTIME	SUB- CONTRACT	ENDING INVENTORY
1	900	1000	100	0	500
2	1500	1200	150	250	600
3	1600	1300	200	500	1000
4	3000	1300	200	500	0
Total	7000	4800	650	1250	2100

Excel and Transportation Method

Other Quantitative Techniques

- Linear decision rule (LDR)
- Search decision rule (SDR)
- Management coefficients model

Lecture Outline

- The Sales and Operations Planning Process
- Meeting Demand
 - Strategies for Adjusting Capacity
 - Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services

Hierarchical Nature of Planning

Disaggregation

Disaggregating the Aggregate Plan

Master schedule:

- The result of disaggregating an aggregate plan
- Shows quantity and timing of specific end items for a scheduled horizon

Master Scheduling

- The heart of production planning and control
 - It determines the quantity needed to meet demand from all sources
 - It interfaces with
 - Marketing
 - Capacity planning
 - Production planning
 - Distribution planning
 - Provides senior management with the ability to determine whether the business plan and its strategic objectives will be achieved

Time Fences

The Master Scheduling Process

Master Scheduling Process

- The master production schedule (MPS) is one of the primary outputs of the master scheduling process
 - Once a *tentative* MPS has been developed, it must be validated
- Rough cut capacity planning (RCCP) is a tool used in the validation process
 - Approximate balancing of capacity and demand to test the feasibility of a master schedule
 - Involves checking the capacities of production and warehouse facilities, labor, and vendors to ensure no gross deficiencies exist that will render the MPS unworkable

MPS – Forecasts and Customer Orders

	June				July			
24	1	2	3	4	5	6	7	8
Forecast	30	30	30	30	40	40	40	40

Beginning inventory		Ju	ine		July			
64	1	2	3	4	5	6	7	8
Forecast	30	30	30	30	40	40	40	40
Customer orders (committed)	33	20	10	4	2			
								122

MPS – Projected On Hand

Beginning inventory	June				July			
64	1	2	3	4	5	6	7	8
Forecast	30	30	30	30	40	40	40	40
Customer orders (committed)	33	20	10	4	2			
Projected on-hand inventory	31	1	-29					
inventory	/-							

Customer orders are larger than forecast in week 1; projected on-hand inventory is 64 – 33 = 31 Forecast is larger than customer orders in week 2; projected on-hand inventory is 31 – 30 = 1

Forecast is larger than customer orders in week 3; projected on-hand inventory is 1-30=-29

Determining MPS and Projected On Hand

Inventory from Previous Week	Requirements	Inventory before MPS				ected ntory
64	33	31				31
31	30	1				1
1	30	-29	+	70	=	41
41	30	11				11
11	40	-29	+	70	=	41
41	40	1				1
1	40	-39	+	70	=	31
31	40	-9	+	70	=	61
	from Previous Week 64 31 1 41 11 41	from Previous Week Requirements 64 33 31 30 1 30 41 30 11 40 41 40 1 40 1 40	from Previous Week Requirements Inventory before MPS 64 33 31 31 30 1 1 30 -29 41 30 11 11 40 -29 41 40 1 1 40 -39	from Previous Week Requirements Inventory before MPS (7 M) 64 33 31 31 30 1 1 30 -29 + 41 30 11 11 40 -29 + 41 40 1 1 40 -39 +	from Previous Week Requirements Inventory before MPS (70) MPS 64 33 31 31 30 1 1 30 -29 + 70 41 30 11 11 40 -29 + 70 41 40 1 1 40 -39 + 70	from Previous Week Requirements Inventory before MPS (70) MPS Projection of Inventory Inventory Inventory Inventory Inventory Inventory Inventory Inventory Inventor Inventory

Adding MPS and Projected On Hand to the MPS

		Ju	ine		July			
64	1	2	3	4	5	6	7	8
Forecast	30	30	30	30	40	40	40	40
Customer orders (committed)	33	20	10	4	2			
Projected on-hand inventory	31	1	41	11	41	1	31	61
MPS			70		70		70	70

Available-to-Promise

		June				July			
64	1	2	3	4	5	6	7	8	
Forecast	30	30	30	30	40	40	40	40	
Customer orders (committed)	(33	20	(10	4)	2				
Projected on-hand inventory	31	1	41/	11	41	1	31	61	
MPS			70		70		70	70	
Available-to- promise inventory (uncommitted)	11		56		68		70	70	

Collaborative Planning

- Sharing information and synchronizing production across supply chain
- Part of CPFR (collaborative planning, forecasting, and replenishment)
 - involves selecting products to be jointly managed, creating a single forecast of customer demand, and synchronizing production across supply chain

Rule Based ATP

Lecture Outline

- The Sales and Operations Planning Process
- Meeting Demand
 - Strategies for Adjusting Capacity
 - Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services

Aggregate Planning for Services

- Most services cannot be inventoried
- Demand for services is difficult to predict
- Capacity is also difficult to predict
- Service capacity must be provided at the appropriate place and time
- Labor is usually the most constraining resource for services

Yield Management

Type of Problem	Type of Business	Probability of Overestimating Demand or No-Shows, P(N < X)	Optimal Probability of Demand or No-Shows $\frac{C_u}{(C_u + C_o)}$	Cost Description
Overbooking	Hotel, airlines, restaurants	N = number of no-showsX = number of overbookedrooms or seats	$C_o = \mathrm{cost}$ of overbooking $C_u = \mathrm{cost}$ of understanding	Replacement cost Lost profit
Fare Classes	Airlines, cruise ships, passenger trains, extended stay hotel	N = number of full-fare tickets that can be soldX = seats reserved for full fare passengers	$C_o = \cos t$ of overestimating full fare passengers $C_u = \cos t$ of underestimating full fare passengers	Lost full-fare (Fulll-Fare — discounted fare)
Premium Seats	Stadiums, theaters	N = number of premiumtickets that can be soldX = seats reserved forpremium ticket holders	$C_o = \cos t$ of overestimating premium ticket sales $C_u = \cos t$ of underestimating premium ticket sales	Lost regular revenue (Premium ticket – regular ticket revenue)
Single Order Quantities	Newspapers, magazines, florists, nurseries, bakeries, sale items	N = number of itemsthat can be soldX = number of items ordered	$C_o = \mathrm{cost}$ of overestimating demand $C_u = \mathrm{cost}$ of underestimating demand	(Cost-salvage value) Lost profit

Yield Management

NO-SHOWS	PROBABILITY	P(N < X)
0	.15	.00
1	.25	.15
2	.30	.40
3	.30	.70

Revenue = \$100/night

Maintenance = \$25/night

Overflow = \$70/night

Optimal probability of no-shows

$$P(n < x) \le \frac{C_u}{C_u + C_o} =$$

$$C_o = $70$$

 $C_u = $100 - $25 = 75

Yield Management

NO-SHOWS	PROBABILITY	P(N < X)	
0	.15	.00	
1	.25	.15	
2	.30	.40	.517
3	.30	.70	

Optimal probability of no-shows

$$P(n < x) \le \frac{C_u}{C_u + C_o} = \frac{75}{75 + 70} = .517$$

Hotel should be overbooked by two rooms