

Si	f	r	а	k	а	n	d	İ	d	а	t	а	:

Državni izpitni center

JESENSKI IZPITNI ROK

FIZIKA

■ Izpitna pola 1

Četrtek, 29. avgust 2019 / 90 minut

Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik, svinčnik HB ali B, radirko, šilček, računalo in geometrijsko orodje. Kandidat dobi list za odgovore. Priloga s konstantami in enačbami je na perforiranem listu, ki ga kandidat pazljivo iztrga.

SPLOŠNA MATURA

NAVODILA KANDIDATU

Pazljivo preberite ta navodila.

Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli.

Prilepite kodo oziroma vpišite svojo šifro (v okvirček desno zgoraj na tej strani in na list za odgovore).

Izpitna pola vsebuje 35 nalog izbirnega tipa. Vsak pravilen odgovor je vreden 1 točko. Pri reševanju si lahko pomagate s podatki iz periodnega sistema na strani 2 ter s konstantami in enačbami v prilogi.

Rešitve, ki jih pišite z nalivnim peresom ali s kemičnim svinčnikom, vpisujte **v izpitno polo** tako, da obkrožite črko pred pravilnim odgovorom. Sproti izpolnite še **list za odgovore**. Vsaka naloga ima samo **en** pravilen odgovor. Naloge, pri katerih bo izbranih več odgovorov, in nejasni popravki bodo ocenjeni z 0 točkami.

Zaupajte vase in v svoje zmožnosti. Želimo vam veliko uspeha.

PERIODNI SISTEM ELEMENTOV

								1					1	
 	4,00 He nelij	20,2 Ne neon	10	39,9 A r	argon 18	83,8 7	kriptor 36	131	ksenor	54	(222) Rn	radon 86		
	5	19,0 fluor	6	35,5 Cl	klor 17	79,9 Br	brom 35	127	- <u>po</u> [53	(210) At	astat 85		
	5	16,0 Kisik	8	32,1 S	žveplo 16	79,0 Se	selen 34	128 1 28	telur	52	(209) Po	polonij 84		
	>	14,0 N dušik	7	31,0 P	fosfor 15	74,9 As	arzen 33	122 C.B.	antimon	51	209 Bi	bizmut 83		
	≥	12,0 ogljk	9	28,1 Si	silicij 4	72,6 Ge	germanij 32	119	kositer	50	207 Pb	svinec 82		
	≡	10,8 bor	5	27,0 Al	aluminij 13	69,7 Ga	galij 31	115	indij	49	204 TI	talij 81		
						65,4 Zn	cink 30	112	kadmij	48	201 Hq	živo srebro 80		
						63,5 Cu	baker 29	108	srebro	47	197 Au	zlato 79	(272) Ra	rentgenij 111
						58,7 N	nikelj 28	106	paladij	46	195 Pt	platina 78	(281) DS	darmstadtij 110
						6, 0	kobalt 27	103	Lipo Lijpo	45	192 r	iridij 77	(276) Mt	meitnerij 109
				-		55,8 Fe	železo 26	10 1	rutenij	44	190 Os	osmij 76	(277) HS	hassij 108
		a masa ta	ilo			54,9 N	mangan 25	(86) (88)	tehnecij	43	186 Re	renij 75	(272) Bh	bohrij 107
		relativna atomska masa simbol ime elementa	rstno število			ن ور	krom 24	0,9 5	molibden	42	184 X	volfram 74	(271) Sa	seaborgij 106
		relativr	>			^ 6'05	vanadij 23	92,9	S igoin	41	181 Ta	tantal 73	(268) Db	dubnij 105
				•		47,9 Ti	titan 22	91,2	LI cirkonij	40	178 Hf	hafnij 72	(267) Rf	rutherfordij 104
						45,0 Sc	skandij 21	88,9	itri j	39	139 La	lantan 57	(227) Ac	aktinij 89
	=	9,01 Be berilij	4	24,3 Mg	magnezij 12	0,1 D	kalcij 20	87,6	stroncij	38	137 Ba	barij 56	(226) Ra	radij 88
-	1,01 T vodik	6,94 Li litij	၁	23,0 Na	natrij 11	39,1 X	talij 19	85,5	Lubidij	37	133 Cs	cezij 55	(223) Fr	francij 87
		2		~	5	_	i		5.		U		1	

	_				
175 Lu lutecij	را	(262)	֜֡֡֡֡֡֡֡֡֡	lavrencij	103
173 Yb iterbij	0/	(259)	2	nobelij	102
169 Tm tulij	69	(258)	Σ	mendelevij	101
167 Er erbij	99	(257)	E H	fermij	100
165 Ho holmij	67	(252)	ЕS	einsteinij	66
163 Dy disprozij	66	(251)	უ ე	kalifornij	98
159 Tb terbij	65	(247)	置	berkelij	97
157 Gd gadolinij	64	(247)	S	curij	96
152 Eu evropij	63	(243)	Am	americij	92
Sm Samarij	62	(244)	P D	plutonij	94
(145) Pm prometij	61	(237)	Q Z	neptunij	93
144 Nd neodim	60	238	-	uran	92
141 Pr prazeodim	29	231	Ра	protaktinij	91
140 Ce cerij	58	232	드	torij	90

Lantanoidi

Aktinoidi

Konstante in enačbe

srednji polmer Zemlje

težni pospešek

hitrost svetlobe

osnovni naboj

Avogadrovo število

splošna plinska konstanta

gravitacijska konstanta

električna (influenčna) konstanta

magnetna (indukcijska) konstanta

Boltzmannova konstanta

Planckova konstanta

Stefanova konstanta

poenotena atomska masna enota

lastna energija atomske enote mase

masa elektrona

masa protona

masa nevtrona

Gibanje

$$x = x_0 + vt$$

$$s=\overline{v}t$$

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2ax$$

$$\nu = \frac{1}{t_0}$$

$$v_{o} = \frac{2\pi r}{t_{o}}$$

$$a_{\rm r} = \frac{v_{\rm o}^2}{r}$$

$$r_{z} = 6370 \text{ km}$$

$$g = 9.81 \,\mathrm{m \, s^{-2}}$$

$$c = 3.00 \cdot 10^8 \text{ m s}^{-1}$$

$$e_0 = 1,60 \cdot 10^{-19} \text{ As}$$

$$N_{\rm A} = 6.02 \cdot 10^{26} \, {\rm kmol}^{-1}$$

$$R = 8.31 \cdot 10^3 \text{ J kmol}^{-1} \text{ K}^{-1}$$

$$G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \; \mathrm{AsV}^{-1} \, \mathrm{m}^{-1}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ VsA}^{-1} \text{ m}^{-1}$$

$$k = 1.38 \cdot 10^{-23} \text{ J K}^{-1}$$

$$h = 6.63 \cdot 10^{-34} \text{ Js} = 4.14 \cdot 10^{-15} \text{ eVs}$$

$$\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

$$m_{\rm u} = {\rm 1\,u} = {\rm 1,66054\cdot10^{-27}\ kg} = {\rm 931,494\ MeV}/c^2$$

$$m_{\rm u}c^2 = 931,494 \; {\rm MeV}$$

$$m_{\rm e} = 9,109 \cdot 10^{-31} \text{ kg} = 1 \text{ u}/1823 = 0,5110 \text{ MeV}/c^2$$

$$m_{\rm p} = \text{1,67262} \cdot \text{10}^{-27} \ \text{kg} = \text{1,00728 u} = 938,272 \ \text{MeV/}c^2$$

$$m_{\rm n} = \text{1,67493} \cdot \text{10}^{-27} \text{ kg} = \text{1,00866 u} = 939,566 \text{ MeV}/c^2$$

Sila

$$g(r) = g \frac{r_{\rm z}^2}{r^2}$$

$$F = G \frac{m_{\rm 1} m_{\rm 2}}{r^{\rm 2}}$$

$$\frac{r^3}{t_0^2} = \text{konst.}$$

$$F = kx$$

$$F=pS$$

$$F = k_t F_n$$

$$F = \rho g V$$

$$\vec{F} = m\vec{a}$$

$$\overrightarrow{G}=m\overrightarrow{v}$$

$$\vec{F}\Delta t = \Delta \vec{G}$$

$$M = rF \sin \alpha$$

$$\Delta p = \rho g h$$

Energija

$$A = \overrightarrow{F} \cdot \overrightarrow{s}$$

$$A = Fs \cos \varphi$$

$$W_{\mathbf{k}} = \frac{mv^2}{2}$$

$$W_{\rm p} = mgh$$

$$W_{\rm pr} = \frac{kx^2}{2}$$

$$P = \frac{A}{t}$$

$$A = \Delta W_{k} + \Delta W_{p} + \Delta W_{pr}$$

$$A = -p\Delta V$$

Elektrika

$$I = \frac{e}{t}$$

$$F = \frac{e_1 e_2}{4\pi\varepsilon_0 r^2}$$

$$\vec{F} = e\vec{E}$$

$$U = \overrightarrow{E} \cdot \overrightarrow{s} = \frac{A_{\rm e}}{e}$$

$$E = \frac{e}{\mathbf{2}\varepsilon_{\mathbf{0}}S}$$

$$e = CU$$

$$C = \frac{\varepsilon_0 S}{l}$$

$$W_{\rm e} = \frac{CU^2}{\mathbf{2}} = \frac{e^2}{\mathbf{2}C}$$

$$U = RI$$

$$R = \frac{\zeta l}{S}$$

$$U_{\rm ef} = \frac{U_0}{\sqrt{2}}; \ I_{\rm ef} = \frac{I_0}{\sqrt{2}}$$

$$P = UI$$

Magnetizem

$$\vec{F} = I\vec{l} \times \vec{B}$$

$$F = IlB \sin \alpha$$

$$\vec{F} = e\vec{v} \times \vec{B}$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$B = \frac{\mu_0 NI}{l}$$

$$M = NISB \sin \alpha$$

$$\mathbf{\Phi} = BS\cos\alpha$$

$$U_{\rm i} = lvB$$

$$U_{\rm i}=\omega SB\sin\omega t$$

$$U_{\rm i} = -\frac{\Delta \varPhi}{\Delta t}$$

$$L = \frac{\Phi}{I}$$

$$W_{\rm m}=rac{LI^2}{2}$$

$$\frac{U_{\mathbf{1}}}{U_{\mathbf{2}}} = \frac{N_{\mathbf{1}}}{N_{\mathbf{2}}}$$

Nihanje in valovanje

$$\omega = 2\pi\nu$$

$$x=x_{\mathbf{0}}\sin\omega t$$

$$v=\omega x_0\cos\omega t$$

$$a=-\omega^2x_0\sin\omega t$$

$$t_0 = 2\pi \sqrt{\frac{m}{k}}$$

$$t_0 = 2\pi \sqrt{\frac{l}{g}}$$

$$t_0 = 2\pi \sqrt{LC}$$

$$c = \lambda \nu$$

$$d\sin\alpha=N\lambda$$

$$j = \frac{P}{4\pi r^2}$$

$$\nu = \nu_0 \left(1 \pm \frac{v}{c} \right)$$

$$\nu = \frac{\nu_0}{1 \mp \frac{v}{a}}$$

$$c = \sqrt{\frac{Fl}{m}}$$

$$\sin \varphi = \frac{c}{v}$$

Toplota

$$n = \frac{m}{M} = \frac{N}{N_{\Lambda}}$$

$$pV = nRT$$

$$\Delta l = \alpha l \Delta T$$

$$\Delta V = \beta V \Delta T$$

$$A + Q = \Delta W$$

$$Q = cm\Delta T$$

$$Q = qm$$

$$W_0 = \frac{3}{2}kT$$

$$P = \frac{Q}{t}$$

$$P = \lambda S \frac{\Delta T}{\Delta l}$$

$$j = \frac{P}{S}$$

$$j = \sigma T^4$$

Optika

$$n = \frac{c_0}{c}$$

$$\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$$

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b}$$

$$\frac{s}{p} = \frac{b}{a}$$

Moderna fizika

$$W_{\rm f} = h \nu$$

$$W_{\rm f} = A_{\rm i} + W_{\rm k}$$

$$W_{\rm f} = \Delta W_{\rm n}$$

$$\Delta W = \Delta mc^2$$

$$N = N_0 2^{-\frac{t}{t_{1/2}}} = N_0 e^{-\lambda t}$$

$$\lambda = \frac{\ln 2}{t_{\rm 1/2}}$$

$$A = N\lambda$$

- 1. V katerem odgovoru je zapisan najdaljši čas?
 - A 500 fs
 - B 0,035 ns
 - C 12 ps
 - D 0,013 fs
- 2. Kolesar se iz mesta A pelje v mesto B s hitrostjo v_1 . Nato se hitro obrne in se po isti poti pelje iz mesta B nazaj v mesto A s hitrostjo $v_2 = 5$ km/h. Kolikšna mora biti hitrost v_1 , da bo povprečna hitrost kolesarja na poti enaka 10 km/h?
 - A 5 km/h
 - B 10 km/h
 - C 15 km/h
 - D Povprečna hitrost kolesarja v tem primeru ne more biti 10 km/h.
- 3. Kamen spustimo, da prosto pada štiri sekunde. Kolikšno višino preleti v zadnji sekundi?
 - A 5,0 m
 - B 34 m
 - C 45 m
 - D 80 m
- 4. Opazujemo telo, ki je na razdalji r od središča kroženja. Telo enakomerno kroži s frekvenco ν . Kaj določa izraz $2\pi r \nu$?
 - A Obhodni čas.
 - B Obodno hitrost.
 - C Lok, ki ga telo opiše v obhodnem času.
 - D Čas, v katerem naredi polovico obhoda.
- 5. Enaki kladi z masama po 10 kg sta z vrvico povezani preko škripcev, kakor kaže slika. S kolikšno silo je napeta vrvica?
 - A $F_v = 0 \text{ N}$
 - B $F_{v} = 10 \text{ N}$
 - C $F_{v} = 100 \text{ N}$
 - D $F_{v} = 200 \text{ N}$

- 6. Mirujočo klado pritiskamo ob navpično steno, kakor kaže slika. Sila roke ima smer pravokotno na steno. Kam je usmerjena sila lepenja?
 - A Sila lepenja ima smer pravokotno na silo teže.
 - B Sila lepenja ima nasprotno smer kot sila roke.
 - C Sila lepenja ima nasprotno smer kot sila teže.
 - D Sila lepenja je usmerjena pravokotno v steno ali iz stene, odvisno od hrapavosti podlage.

- 7. Lahka deska je podprta na treh četrtinah svoje dolžine. Na gugalnico delujeta enako veliki sili $F=60~\mathrm{N}$, kakor kaže slika. Kolikšna sila F_1 mora delovati na levem koncu gugalnice in kam naj bo usmerjena, da bo gugalnica v ravnovesju?
 - A $F_1 = 40 \text{ N}$, smer navzdol.
 - B $F_1 = 40 \text{ N}$, smer navzgor.
 - C $F_1 = 60 \text{ N}$, smer navzgor.
 - D $F_1 = 120 \text{ N}$, smer navzgor.

- 8. Telesi 1 in 2 na sliki se gibljeta s konstantno hitrostjo v desno. Puščice na sliki ponazarjajo vse sile, ki delujejo na telesi. Katera izjava <u>ni</u> pravilna?
 - A Koeficient lepenja med telesom 1 in telesom 2 je zagotovo enak 0.
 - B Koeficient trenja med telesom 1 in podlago je zagotovo enak 0.
 - C Sila, s katero deluje telo 1 na telo 2, je nasprotno enaka sili, s katero deluje telo 2 na telo 1.
 - D Vsota vseh sil na vsako izmed teles je enaka 0.

- 9. Katera izjava je pravilna?
 - A Astronavt ima na Luni večjo težo kakor na Zemlji.
 - B Astronavt ima na Luni manjšo težo kakor na Zemlji.
 - C Astronavt ima na Luni večjo maso kakor na Zemlji.
 - D Astronavt ima na Luni manjšo maso kakor na Zemlji.
- 10. Voziček z maso 2,0 kg se s hitrostjo 4,0 m/s zaleti v steno in se od nje odbije v nasprotni smeri s hitrostjo 1,0 m/s. Kolikšna je velikost spremembe gibalne količine vozička pri opisanem trku?
 - A 2,0 Ns
 - B 6,0 Ns
 - C 8,0 Ns
 - D 10 Ns

- 11. Na telo z maso 50 kg deluje v časovnem intervalu 10 s rezultanta sil 100 N . Nato v časovnem intervalu 3 s na telo deluje enako velika rezultanta sil, vendar v nasprotni smeri. Za koliko se telesu spremeni hitrost od začetka delovanja sil?
 - A Hitrost se poveča za 26 m s⁻¹.
 - B Hitrost se poveča za 20 m s^{-1} .
 - C Hitrost se poveča za 14 m s⁻¹.
 - D Hitrost se zmanjša za 6 m s⁻¹.
- 12. Dve telesi z različnima masama pospešujemo iz mirovanja. Katera od izjav ni pravilna?
 - A Telo z večjo maso moramo pospeševati z večjo silo, da dosežemo enak pospešek.
 - B Telo z večjo maso moramo pospeševati z večjo močjo, da dosežemo v enakem času enako hitrost.
 - C Med pospeševanjem telesa z večjo maso moramo opraviti večje delo, da dosežemo enako kinetično energijo.
 - D Telo z večjo maso moramo z enako silo pospeševati dlje časa, da dosežemo enako hitrost.
- 13. Kroglico vržemo navpično navzdol z začetno kinetično energijo 5,0 J. Nekaj metrov nad tlemi ima kroglica kinetično energijo 9,0 J in potencialno energijo 10 J. Kolikšno potencialno energijo je imela v najvišji točki, ko smo jo vrgli navzdol? Zračni upor zanemarite.
 - A 5,0 J
 - B 14 J
 - C 19 J
 - D Ni dovolj podatkov.
- 14. Krogla iz stiropora je potopljena v vodo tako, da je z vrvico pritrjena na dno posode. Teža krogle je 140 mN, sila vzgona pa 5,27 N. Kolikšna je gostota stiropora?
 - A 20 kg m^{-3}
 - B 23 kg m^{-3}
 - C 27 kg m^{-3}
 - D 200 kg m^{-3}
- 15. Meter dolgo kovinsko palico najprej segrejemo, tako da se raztegne, nato pa jo ohladimo na začetno temperaturo. Koliko znaša dolžina palice na koncu poskusa?
 - A Manj kot en meter.
 - B En meter.
 - C Več kot en meter.
 - D Za odgovor bi morali poznati spremembo temperature.

- 16. Potapljaško jeklenko so napolnili do tlaka 200 bar, pri čemer se je zrak v njej segrel za 30 °C. Kolikšen bo tlak v jeklenki, ko se zrak v njej ohladi na temperaturo okolice, ki je ves čas 300 K?
 - A 200 bar
 - B 190 bar
 - C 180 bar
 - D 170 bar
- 17. V izolirani kovinski posodi je vroča voda s temperaturo 100 °C . Vanjo vržemo uteži s temperaturo 0 °C . Skupna masa uteži je 5,0-krat večja kot masa vode, specifična toplota uteži je 5,0-krat manjša kot specifična toplota vode. Uteži in posoda so narejene iz enake kovine. Kolikšna je zmesna temperatura, ko se vzpostavi toplotno ravnovesje? Izgube toplote v okolico so zanemarljive.
 - A Nad 50 °C.
 - B Pod 50 °C.
 - C 50 °C
 - D 100 °C
- 18. Izkoristek nekega toplotnega stroja je 5 %. Kaj to pomeni?
 - A Stroj za vsak opravljen joule dela odda 0,05 joula toplote.
 - B Stroj za vsak opravljen joule dela odda 20 joulov toplote.
 - C Stroj za vsak prejet joule toplote opravi 0,05 joula dela.
 - D Stroj za vsak prejet joule toplote opravi 20 joulov dela.
- 19. Na nevtralno kovinsko kroglico nanesemo naboj. V katerem primeru je kroglica najbolj negativno naelektrena?
 - A Če jo naelektrimo s 50 enotami negativnega naboja.
 - B Če jo naelektrimo s 40 enotami pozitivnega naboja.
 - C Če jo naelektrimo s 100 enotami negativnega naboja in 40 enotami pozitivnega naboja.
 - D Če jo naelektrimo s 150 enotami negativnega naboja in 110 enotami pozitivnega naboja.
- 20. Katera izjava o jakosti električnega polja je napačna?
 - A Jakost električnega polja je vektor, katerega smer kaže v smeri električne sile na elektron.
 - B V območju z gostejšimi silnicami je jakost električnega polja večja kot v območju, kjer so silnice redkejše.
 - C Enoto za jakost električnega polja lahko zapišemo kot N/As ali V/m.
 - D Velikost jakosti električnega polja je enaka električni sili na proton deljeno z nabojem protona.

- 21. Katera izjava o uporu žice je pravilna?
 - A Upor je sorazmeren z njeno dolžino in obratno sorazmeren s premerom.
 - B Upor je sorazmeren s premerom in obratno sorazmeren z dolžino.
 - C Upor je sorazmeren z dolžino in obratno sorazmeren s kvadratom premera.
 - D Upor je sorazmeren s ploščino preseka in obratno sorazmeren z dolžino.
- 22. Kaj je elektronvolt?
 - A Energija elektrona, izražena v voltih.
 - B Naboj elektrona, izražen v voltih.
 - C Napetost enega elektrona.
 - D Energija, ki jo prejme proton, če ga pospešimo z napetostjo 1 V.
- 23. Dva paličasta magneta stojita drug ob drugem. V katerem odgovoru je pravilno vrisana magnetna sila na desni magnet?

- 24. Skozi homogeno magnetno polje leti proton pravokotno na silnice magnetnega polja. Kakšna je smer magnetne sile na proton?
 - A Sila kaže v smeri hitrosti protona.
 - B Sila kaže v nasprotni smeri hitrosti protona.
 - C Sila je pravokotna na hitrost protona.
 - D Sili ne moremo določiti smeri, ker je enaka nič.
- 25. Slike kažejo navpično padanje zanke, v katero je priključen voltmeter, v treh zaporednih trenutkih. Magnetno polje je homogeno v delu prostora, označenem sivo, drugje pa ga ni; smer gostote magnetnega polja je označena. Vpliv zemeljskega magnetnega polja zanemarite. Ob katerem času kaže voltmeter napetost različno od nič?

- 26. Utež vzmetnega nihala v prvih desetih sekundah opravi pot 100 cm . S kolikšno amplitudo niha nihalo? Nihajni čas nihala je enak 1,0 s .
 - A 2,5 cm
 - B 5,0 cm
 - C 10 cm
 - D 100 cm
- 27. Vzmetno nihalo niha v vodoravni smeri. Katera slika pravilno kaže potek prožnostne (polna črta) in kinetične energije (prekinjena črta) nihala v odvisnosti od odmika *y*?

- 28. Slika kaže trenutno sliko sinusnega valovanja. Kolikšna je amplituda valovanja?
 - A 1,0 cm
 - B 2,0 cm
 - C 2,5 cm
 - D 5,0 cm

- 29. Zvonec je v škatli. Kateri pojav omogoča, da zvonjenje zvonca slišimo tudi takrat, ko je škatla zaprta?
 - A Dušenje.
 - B Lom.
 - C Uklon.
 - D Odboj.
- 30. Na uklonsko mrežico svetimo z laserjem z določeno valovno dolžino. Kaj se zgodi s kotom, pod katerim nastane ojačitev 1. reda, če laser nadomestimo s takim, ki ima 2-krat krajšo valovno dolžino, uklonsko mrežico pa zamenjamo s tako, ki ima 2-krat manj rež na milimeter?
 - A Kot se zmanjša.
 - B Kot se poveča.
 - C Kot se ne spremeni.
 - D Ni dovolj podatkov.

- 31. Na dnu med vzporednima navpičnima zrcaloma je točkast vir svetlobe P. V kateri točki nastane slika vira svetlobe, ki jo vidi narisano oko?
 - A V točki A.
 - B V točki B.
 - C V točki C.
 - D V točki D.

- 32. Približno kolikšno je število molekul H₂O v 2-decilitrskem kozarcu, napolnjenem z vodo?
 - A $7 \cdot 10^{21}$
 - B 7.10^{22}
 - $C 7 \cdot 10^{23}$
 - D 7.10^{24}
- 33. Katera izjava o sestavi jedra elementa fermij (257 Fm) ni pravilna?
 - A Jedro elementa fermij ima 157 nevtronov.
 - B Jedro elementa fermij ima 257 nukleonov.
 - C Jedro elementa fermij ima 100 elektronov.
 - D Jedro elementa fermij ima 100 protonov.
- 34. Katera od spodnjih izjav daje pravilen primer masnega defekta?
 - A Masa vseh nukleonov v jedru je manjša od skupne mase enakega števila prostih nukleonov.
 - B Pri beta razpadu nastane iz nevtrona proton, ki ima nekoliko manjšo maso.
 - C Pri beta razpadu nastane jedro z nekoliko manjšo maso od mase prvotnega jedra.
 - D Masa razpadnih produktov pri razpadu beta je nekoliko večja od mase prvotnega jedra.
- 35. Kaj je eno svetlobno leto?
 - A Razdalja, ki jo Zemlja v enem letu prepotuje na svoji poti okrog Sonca.
 - B Je tisto leto, ko ima Sonce največji sij svetlobe.
 - C Je razdalja, ki jo svetloba prepotuje v enem letu.
 - D Je čas, ko svetloba prepotuje enako razdaljo, kakršna je pot, ki jo Zemlja v enem letu prepotuje na svoji poti okrog Sonca.

Prazna stran