l	i	1	<u>ر'</u> ر	bne	ſ2	b	و (mif	Pwno	y (distr	~i b√	λteo	ا ا	Nw	ber	٠.	It	٧.	re	Con	side	- 0	∿ Sv	vall
1	C	tan	gle	of	Sì,	de	۱e	ngt	'nς	Ŋι	`, c	γſ	,	αſ	m	λ,	ροὶ	H	۲,	ι ,					
	th	en	-h	Ł	ex	pect	еJ	VΛ	mbe	2	of 1	poin	ts in	\ -{h	ደ ፫	ect	wg	le	is	N	٠ ١	ۍ کړ د	\L?) બ	~dv2
									bilitu C																
																									۶C)
											_														ñ~∑)
									(27	,, ₅	, د	The	^	194	Z M	2W	₽0	ימפי	NOV	β'	Ole	~51	6		
						ر ، 1																			
	Th	en	, <i>س</i>	re c	m	ge	1 †	he	Solv	^୧	n	nbe	⁻ C	f e	*10	cted	4	6,V	ts	6	}	laki	, ng		
١	N	٠ ٢) 'د	4,	, t)) 9	الـ فع	α۲.	S		سه	lre.	S	د ی'	he	Q/	ren	Sc	:cd;n	g.	fac	tor		
1	6	$t^{!}$	\mathcal{N}	5	, (ِدِم کام	idu	۲ ۵	٨٨	-cit	ung	le	wï	th	ve	rtio	رى								
(` X ,	ď	dy)																						
						\ 	4 % >	\Y-	(dy)															
	[7	(\hat{\hat{\hat{\hat{\hat{\hat{\hat{			(×-	+Λ×,	4)		-																

The rectangle is linearly transferred into a parallelegram using the approximation (a(x+1), y+dy), b(x+1), b(x+1), a (a(x,y)+ \frac{2}{2}\dx+\frac{2}{2}\dx+\frac{2}{2}\dy), b(x+1), b $(a + \frac{\partial a}{\partial y}, b + \frac{\partial b}{\partial y}dy) \qquad (a + \frac{\partial a}{\partial x}dx + \frac{\partial a}{\partial y}dy, b + \frac{\partial b}{\partial x}dx + \frac{\partial b}{\partial y}dy)$ To find the orca of this new parallelegram, we imagine a parallelegram made of two vectors $\vec{u}=(a,b)$ and $\vec{v}=(c,d)$. The angle between them is arccos $\left(\frac{\alpha C + bd}{(\alpha^2 + b^2)(c^2 + d^2)}\right)$ using the fact that $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$ Since the area of a parallelogram is 10111115in0, we need to find $sin \theta$. $Sin \theta = \sqrt{1-\cos^2\theta} = \frac{(\alpha^2+b^2)(c^2+d^2) - (\alpha c+b d)^2}{(\alpha^2+b^2)(c^2+d^2)} = \frac{(\alpha c+b d)^2}{(\alpha^2+b^2)(c^2+d^2)}$ Applying this formula to our pourallelogram made of two vectors 3= (3x dx, 3x dx) and v= (3x dy, 3b dy), we get that the area

13 N= (30 30 - 36 30) Nxdy = (3(0,0)) dxdy

G	مارم	4 ¹	bocl	ζ.	6	the	D۷	ÌĄ.	lw?	ρ	wbl	en	, w	eη	0	۲۰۸۵	W	+ / ~	ι Η	th	و	ONTE	^	
	,	,						V		•							ø	J	,					
ζω	y),v	ነ	fact	о С	2	ìs	4	he	jnc	أحاه	~	de	term	; MV	1	90	· h	, 1	ر ۱۲					
		J														٦ ١	(^	۱ر۱	(ح)		١			
																						1		
Sì	nu		N	٠6	(r	′√2	7)9	v, d	yr.	2	N.	φ'	(4	. /	፟፟፟፟፟፟፟፟ጟ) y	r, di	`2	2	(11)	(12.	-	,	
																	د ،	(4.	- L	1	-	1	•	
W	و ر	~	Cor	,dv	de	44	tw		Ь, (Lh,	* <i>‡</i>) 2 .) =	90	۲,	(رح)			11/1	2)				
										· ·				<u>ر</u>	•		. ` (, (1	() i	נ צ				
													Uγn	itoc,	م د د ^س	= /								

All that remains is to find it explicitly

$$J = \begin{pmatrix} -\cos(2\pi r_2) & 2\sqrt{2}\pi J - h(r_1)\cos(2\pi r_2) \\ \sqrt{2}r_1J - h(r_1) & \sin(2\pi r_2) & -\frac{\sin(2\pi r_2)}{\sqrt{2}r_1J - h(r_1)} \end{pmatrix}$$

$$= \begin{pmatrix} -2\pi\cos^2(2\pi r_2) & 2\pi\sin^2(2\pi r_2) \\ r_1 & r_2 & r_3 & r_4 \end{pmatrix}$$

$$= \frac{-2\pi}{r_1}$$
And its inverse is $J^{-1} = \frac{r_1}{2\pi}$

From the original transformation we get $r_1 = \exp\left[-\frac{x_1^2 + x_2^2}{2\pi}\right]$

And plugging r_1 in we get $J^{-1} = \frac{1}{2\pi}\exp\left[-\frac{x_1^2 + x_2^2}{2\pi}\right]$

So, the P' is just the inverse jacobin determinant $D^{-1} = \left(\frac{\partial(\Gamma_1, \Gamma_2)}{\partial(X_1, X_2)}\right)^{-1}$

From the original transformation we get
$$r_1 = \exp\left[-\frac{x_1^2 + x_2^2}{2}\right]$$

And plugging r_1 in we get $J^{-1} = \frac{1}{271} \exp\left[-\frac{x_1^2 + x_2^2}{2}\right]$
Since r_2 and r_3 are unclosed variables, r_4 (5, r_5) = r_5 (6,) r_6 (7, r_5) Since they're identically transformed,

P'(3,) = P'(32) = \ J-1 = \ \frac{1}{5271} exp (-\frac{5^2}{2})