BI/1 feladat megoldása

Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett.

$$U_{6cm} = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}} = \frac{1}{\frac{1}{24} + \frac{0.015}{0.87} + \frac{0.06}{0.04} + \frac{0.3}{0.52} + \frac{0.015}{0.81} + \frac{1}{8}} = 0.4387 \quad W / m^2 K$$

$$U_{3cm} = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}} = \frac{1}{\frac{1}{24} + \frac{0.015}{0.87} + \frac{0.03}{0.04} + \frac{0.3}{0.52} + \frac{0.015}{0.81} + \frac{1}{8}} = 0,6539 \quad W/m^2 K$$

$$U_{0cm} = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}} = \frac{1}{\frac{1}{24} + \frac{0,015}{0,87} + \frac{0,3}{0,52} + \frac{0,015}{0,81} + \frac{1}{8}} = 1,2831 \quad W/m^2 K$$

A tényleges kialakításhoz tartozó hőátbocsátási tényezőt felületarányosan számítjuk.

$$U_{ered\delta} = (U_{6cm} \cdot h_{6cm} + U_{3cm} \cdot h_{3cm})/(h_{6cm} + h_{3cm}) = (0.439 * 180 + 0.654 * 80)/260 = 0.5049 W/m^2 K$$

Az erősen hőhidas szerkezetre a korrekció a szigeteletlen esetben 40 %, szigetelt esetben 30 %.

A fajlagos hőveszteségtényezőt szintén három esetre határozzuk meg, szigeteletlen, teljes 6cm szigetelés és a megadott kialakítású szigetelés mellett.

$$q = (\Sigma A*U + \Sigma I*Y) / V$$

$$q_{szigeteletlen} = \frac{\sum AU - \frac{Q_{sd}}{72}}{V} = \frac{82 + 80 * 1,2831 * 1,4 - \frac{1450}{72}}{156} = 1,3178 \frac{W}{m^3 K}$$

$$q_{6cm \ szigeteléssel} = \frac{\sum AU - \frac{Q_{sd}}{72}}{V} = \frac{82 + 80 \times 0.4387 \times 1.3 - \frac{1450}{72}}{156} = 0.6890 \frac{W}{m^3 K}$$

$$q_{t\acute{e}nyleges\ szigetel\acute{e}ssel} = \frac{\sum AU - \frac{Q_{sd}}{72}}{V} = \frac{82 + 80 * 0,5049 * 1,3 - \frac{1450}{72}}{156} = 0,7332 \frac{W}{m^3 K}$$

ÉPFIZ 1 feladat megoldása

Határozzuk meg a fajlagos hőveszteségtényező követelményértékét.

$$q = 0.086 + 0.38 * \frac{\sum A}{V} = 0.086 + 0.38 * \frac{360 + 140 + 250 + 250}{1600} = 0.3235 \ W/m^3 K$$

Számítsuk ki a többi szerkezetre a $\sum A\ U$ értéket, figyelembe véve az egyes szerkezetekre a hőhíd és a hőmérsékleti korrekciót. A homlokzati fal a 400/500=0,8 érték alapján közepesen hőhidas kategóriába tartozik.

$$\sum_{\substack{padl\acute{a}sf\ddot{o}d\acute{e}m\\n\acute{a}lk\ddot{u}l}} AU = 360*0.4*1.3+140*1.5+250*0.5*1.2*0.5=472.2 \, W/K$$

A megengedett érték alapján a $\sum A U$ visszaszámítása.

$$q = \frac{\sum AU - \frac{Q_{sd}}{72}}{V}$$

A sugárzási nyereségek elhagyásával a képletet átrendezve:

$$\sum AU = q * V = 0.3235 * 1600 = 517.6 W/K$$

A padlásfödémre eső rész tehát 517,6 – 472,2 = 45,4 W/K.

Ebből a szükséges hőátbocsátási tényező, figyelembe véve ismét a hőhidasság miatti növelést és a hőmérséklet korrekciót is.

$$U = \frac{AU}{A*1.1*0.9} = \frac{45.4}{250*1.1*0.9} = 0.1834 \, W/m^2 K$$

A rétegek szükséges összes hővezetési ellenállása ez alapján:

$$\sum R = \frac{1}{U} - \frac{1}{\alpha_i} - \frac{1}{\alpha_e} = \frac{1}{0,1834} - \frac{1}{12} - \frac{1}{10} = 5,268 \ m^2 K/W$$

A szükséges rétegvastagság:

$$d = \left(\sum R - R_1\right) * \lambda = (5,268 - 0,3) * 0,04 = 0,1987 m$$

Tehát a szükséges vastagság 20 cm.

KÖLTSEGHATÉKONYSÁG-1 feladat megoldása

Kiindulási állapotra számítsuk ki a $\sum A\ U$ értéket, figyelembe véve az egyes szerkezetekre a hőhíd és a hőmérsékleti korrekciót.

Szerkezet	А	U	Korrekciók	A*U*c
Fal	100	0,75	1,4	105
Nyílászárók	20	1,6	-	32
Padlásfödém	100	0,95	1,1*0,9	94
Pincefödém	100	0,6	1,2*0,5	36
Összesen	320			267

A sugárzási nyereség számítása.

$$Q_{sd} = \varepsilon * A_{ii} * g * Q_{tot} = 0,75 * 20 * 0,8 * 0,65 * 100 = 780 \, kWh/a$$

A fajlagos hőveszteségtényező számítása:

$$q = \frac{\sum AU - \frac{Q_{sd}}{72}}{V} = \frac{267 - \frac{780}{72}}{270} = 0.949 \, W/m^3 K$$

A fűtés nettó hőenergia igénye, fajlagos értéke.

$$Q_F = HV(q + 0.35 * n)\sigma - Z_F A_N q_b = 72 * 270 * (0.949 + 0.35 * 0.5) * 0.9 - 4.4 * 100 * 5$$
$$= 17464.6 \, kWh/a$$

$$q_f = \frac{Q_F}{A_N} = \frac{17464.6}{100} = 174.646 \, kWh/m^2 a$$

A fűtési rendszer földgáz illetve elektromos energia fogyasztása.

$$E_{F,f\"{o}ldg\'{a}z} = (q_f + q_{f,h} + q_{f,v} + q_{f,t}) * C_k * A_N = (174,646 + 9,6 + 10,3 + 0) * 1,14 * 100$$
$$= 22178 \, kWh/a$$

$$E_{F,vill} = (E_{FSz} + E_{FT} + q_{k,v}) * A_N = (2.22 + 0 + 0.79) * 100 = 301 \, kWh/a$$

Eredeti állapot energiaköltsége 22178*20 + 301*50= 458616 Ft/a.

A felújított állapothoz tartozó hőátbocsátási tényezők számítása, azok alapján az új $\sum AU$ érték.

Szerkezet	Α	U	Korrekciók	A*U*c
Fal	100	1/(1/0,75+0,1/0,04)=0,261	1,3	33,9
Nyílászárók	20	0,85	-	17
Padlásfödém	100	1/(1/0,95+0,15/0,04)=0,208	1,1*0,9	20,6
Pincefödém	100	1/(1/0,6+0,1/0,036)=0,225	1,1*0,5	13,5
Összesen	320			85

A sugárzási nyereség számítása.

$$Q_{sd} = \varepsilon * A_{ii} * g * Q_{tot} = 0,75 * 20 * 0,8 * 0,55 * 100 = 660 \, kWh/a$$

A fajlagos hőveszteségtényező számítása:

$$q = \frac{\sum AU - \frac{Q_{sd}}{72}}{V} = \frac{85 - \frac{660}{72}}{270} = 0.281 \, W/m^3 K$$

A fűtés nettó hőenergia igénye, fajlagos értéke.

$$Q_F = HV(q + 0.35 * n)\sigma - Z_F A_N q_b = 72 * 270 * (0.281 + 0.35 * 0.5) * 0.9 - 4.4 * 100 * 5$$

= 5777,2 kWh/a

$$q_f = \frac{Q_F}{A_N} = \frac{6664}{100} = 57,772 \, kWh/m^2 a$$

A fűtési rendszer földgáz illetve elektromos energia fogyasztása.

$$E_{F,f\"{o}ldg\'{a}z} = (q_f + q_{f,h} + q_{f,v} + q_{f,t}) * C_k * A_N = (57,772 + 9,6 + 10,3 + 0) * 1,14 * 100$$
$$= 8854.6 \, kWh/a$$

$$E_{F,vill} = (E_{FSz} + E_{FT} + q_{k,v}) * A_N = (2,22 + 0 + 0,79) * 100 = 301 \, kWh/a$$

Felújított állapot energiaköltsége 8854,6*20 + 301*50= 192143 Ft/a.

A költségmegtakarítás 458616-192143 = 266473 Ft/a

A beruházás költsége 100*13e + 100*2,5e + 20*65e + 100*7e = 3550 eFt.

A beruházás megtérülési ideje 3550000/266473 = 13,3 év.

SZ6-1 feladat megoldása

A sugárzási nyereség meghatározása.

$$Q_{sd} = \varepsilon \sum_{\tilde{g}} A_{\tilde{u}} Ig = 0.75 * (20 * 0.75 * 27 * 0.65 + 24 * 0.75 * 96 * 0.65 + 64 * 0.75 * 50 * 0.65)$$

$$= 2210 W$$

A $\sum A U + \sum l \Psi$ érték számítása, figyelembe véve az egyes szerkezetekre a hőhíd és a hőmérsékleti korrekciót.

Szerkezet	A vagy l	U vagy ψ	Korrekciók	A*U*c
Fal	310	0,22	1,2	81,8
Ablak	108	1,1	-	118,8
Ajtó	2,4	1,8	-	4,3
Padlásfödém	1000	0,15	1,1*0,9	148,5
Padló	140	0,85	-	119
Összesen	1560,4			472,4

Téli egyensúlyi hőmérsékletkülönbség számítása.

$$\Delta t_b = \frac{Q_{sd} + Q_{sid} + A_N q_b}{\sum AU + \sum l\Psi + 0.35nV} + 2 = \frac{2210 + 0 + 1000 * 5}{472.4 + 0.35 * 0.5 * 2700} + 2 = 9.6 K$$

A fűtési határhőmérséklet.

$$t_{fh} = t_{\acute{a}tl} - \Delta t_b = 21 - 9.6 = 11.4 \,^{\circ}C$$

A hőfokhíd táblázat részlete.

t_fh	Z _F	H ₂₀
10	4073,3	66791,5
11	4361,3	69383,5
12	4615,7	71418,7
13	4886,9	73317,1

A táblázat alapján lineáris interpolációval adódó értékek.

$$Z_{F;11,4} = Z_{F;11} * 0.6 + Z_{F;12} * 0.4 = 4361.3 * 0.6 + 4615.7 * 0.4 = 4463 h$$

 $H_{20;11,4} = H_{20;11} * 0.6 + H_{20;12} * 0.4 = 69383.5 * 0.6 + 71418.7 * 0.4 = 70198 hK$

A tényleges hőfokhíd.

$$H = H_{20} - (20 - t_{\text{átl}})Z_F = 70198 - (20 - 21) * 4463 = 74661 \, hK$$

SZ7-1 feladat megoldása

A fűtési energiaigény fajlagos értékének számítása az első lakástípusra. A táblázati értékeket a 65 m2-hez tartozó értékekkel vesszük fel.

$$E_{F1} = (q_f + q_{f,h} + q_{f,v} + q_{f,t})C_k e_f + (E_{FSZ} + E_{FT} + q_{k,v})e_v$$

= $(130 + 5.5 + 0 + 0) * 1.40 * 1 + (0 + 0 + 0) * 2.5 = 189.7 \text{ kWh/m}^2 a$

A fűtési energiaigény fajlagos értékének számítása a második lakástípusra. A táblázati értékeket a 24*84=2016 m2-hez tartozó értékekkel vesszük fel.

$$E_{F2} = (q_f + q_{f,h} + q_{f,v} + q_{f,t})C_k e_f + (E_{FSZ} + E_{FT} + q_{k,v})e_v$$

= $(130 + 9.6 + 3.4 + 0) * 1.16 * 1 + (0.34 + 0 + 0.18) * 2.5 = 167.18 kWh/m^2a$

A teljes épületre az alapterületekkel súlyozott átlag számítása.

$$E_F = \frac{(E_{F1}A_{N1} + E_{F2}A_{N2})}{(A_{N1} + A_{N2})} = \frac{189,7 * 780 + 167,18 * 2016}{780 + 2016} = 173,46 \, kWh/m^2 a$$

SZ8-1 feladat megoldása

A HMV energiaigény fajlagos értékének számítása az első lakástípusra. A táblázati értékeket a 65 m2-hez tartozó értékekkel vesszük fel.

$$E_{HMV1} = q_{HMV} \left(1 + \frac{q_{HMV,v}}{100} + \frac{q_{HMV,t}}{100} \right) C_k e_{HMV} + (E_C + E_K) e_v$$

= 30 * \left(1 + \frac{0}{100} + \frac{20}{100} \right) * 1 * 1,8 + (0 + 0) * 2,5 = 64,8 kWh/m² a

A HMV energiaigény fajlagos értékének számítása a második lakástípusra. A táblázati értékeket a 30*84=3300 m2-hez tartozó értékekkel vesszük fel.

$$E_{HMV2} = q_{HMV} \left(1 + \frac{q_{HMV,v}}{100} + \frac{q_{HMV,t}}{100} \right) C_k e_{HMV} + (E_C + E_K) e_v$$

$$= 30 * \left(1 + \frac{13}{100} + \frac{4}{100} \right) * 1,09 * 1 + (0,14 + 0,069) * 2,5 = 38,78 \text{ kWh/m}^2 a$$

A teljes épületre az alapterületekkel súlyozott átlag számítása.

$$E_{HMV} = \frac{(E_{HMV1}A_{N1} + E_{HMV2}A_{N2})}{(A_{N1} + A_{N2})} = \frac{64,8 * 780 + 38,78 * 3300}{780 + 3300} = 44,93 \text{ kWh/m}^2 a$$

EG 1/A feladat megoldása

A HMV energiaigény fajlagos értékének számítása. A táblázati értékeket a 150 m2-hez tartozó értékekkel vesszük fel.

$$E_{HMV} = q_{HMV} \left(1 + \frac{q_{HMV,v}}{100} + \frac{q_{HMV,t}}{100} \right) \sum (C_k \alpha_k e_{HMV}) + (E_C + E_K) e_v$$

$$= 30 * \left(1 + \frac{19}{100} + \frac{17}{100} \right) * \left(0.26 * 0.4 * \left(\frac{2}{3} * 2.5 + \frac{1}{3} * 1.8 \right) + 1 * 0.6 * 0 \right)$$

$$+ (0.82 + 0) * 2.5 = 11.67 \; kWh/a$$

EG 2/B feladat megoldása

A talajon lévő padló felülete $7*11 = 77 \text{ m}^2$, a kerülete 2*(7+11) = 36 m. A többi felület összege $7*11 + 2*(7*12) + 2*(11*12) = 509 \text{ m}^2$. Az épület térfogata $7*11*12 = 924 \text{ m}^3$. A négy szint teljes alapterülete $4*7*11 = 308 \text{ m}^2$.

A fajlagos hőveszteségtényező számítása.

$$q = \frac{\sum AU + \sum l\Psi - \frac{Q_{sd}}{72}}{V} = \frac{509 * 0.45 + 36 * 1.25 - \frac{0}{72}}{924} = 0.2966 W/m^3 K$$

A fűtés nettó hőenergia igénye, fajlagos értéke.

$$Q_F = HV(q + 0.35 * n(1 - \eta_r))\sigma - Z_F A_N q_b$$

$$= 72 * 924 * (0.2966 + 0.35 * 0.5 * (1 - 0.6)) * 0.9 - 4.4 * 308 * 5$$

$$= 15174 \, kWh/a$$

$$q_f = \frac{Q_F}{A_N} = \frac{15174}{308} = 49,27 \; kWh/m^2 a$$

EG 3/C feladat megoldása

A talajon lévő padló felülete $12*14 = 168 \text{ m}^2$, a kerülete 2*(12+14) = 52 m. A többi felület összege $12*14 + 2*(12*14) + 2*(14*14) = 896 \text{ m}^2$. Az épület térfogata $12*14*14 = 2352 \text{ m}^3$. A négy szint teljes alapterülete $4*12*14 = 672 \text{ m}^2$.

A légtechnika a teljes 4400 órából 4400*6*10/168 = 1571 órát üzemel.

A fajlagos hőveszteségtényező számítása.

$$q = \frac{\sum AU + \sum l\Psi - \frac{Q_{sd}}{72}}{V} = \frac{896 * 0.35 + 52 * 1.3 - \frac{0}{72}}{2352} = 0.162 W/m^3 K$$

A fűtés nettó hőenergia igénye, fajlagos értéke.

$$\begin{split} Q_F &= HV \left(q + 0.35 * n_{inf} \frac{Z_F - Z_{LT}}{Z_F} + 0.35 * n_{LT} (1 - \eta_T) \frac{Z_{LT}}{Z_F} \right) \sigma - Z_F A_N q_b \\ &= 72 * 2352 * \left(0.162 + 0.35 * 0.3 * \frac{4400 - 1571}{4400} + 0.35 * 2 * (1 - 0.65) * \frac{1571}{4400} \right) \\ &* 0.8 - 4.4 * 672 * 7 = 22246 \; kWh/a \end{split}$$

$$q_f = \frac{Q_F}{A_N} = \frac{22246}{672} = 33,10 \, kWh/m^2 a$$

A fűtési rendszer fajlagos energiaigénye.

$$E_F = (q_f + q_{f,h} + q_{f,v} + q_{f,t})C_k e_f + (E_{FSZ} + E_{FT} + q_{k,v})e_v$$

= (33,10 + 9,6 + 0,5 + 0) * 0,19 * 1,8 + (0,83 + 0 + 0) * 2,5 = 16,85 kWh/a