PredictionRMN

Stage M1 – LERIA Université d'Angers

Stagiaire: Yamis MANFALOTI

Encadrant : M. Da Mota

Collaborateur : M. Cauchy

1. Introduction

- 2. Analyse de l'existant
- 3. Conception
- 4. Développement
- 5. Modèles de prédiction
- 6. Conclusion

Contexte Scientifique

COC1=CC(=CC=C1O)C=O

Illustration de la vanilline et de son SMILES

SMILES

- Format textuel pour décrire une molécule
- Lisible par l'humain et les logiciels
- Encodage sous forme de chaîne de caractères

Contexte Scientifique

Résonance Magnétique Nucléaire (RMN)

- Analyser la structure d'une molécule
- **Deux atomes** : hydrogène et carbone
- Spectre : ppm et intensité des signaux
- Pics reflètent l'environnement électronique des atomes

Objectif

Objectif principal

- Conception et développement d'une application ergonomique
- Visualisation de spectres prédits à partir d'une molécule

® Besoins identifiés

- Dessiner une molécule et visualiser le spectre correspondant
- Lire les liens entre atomes et signaux
- Prédire le spectre d'une molécule

Contraintes

- Contraintes ergonomiques
 - Interface claire, fluide et intuitive
 - Facile à prendre en main (utilisateurs non-techniques)

- **Contraintes techniques
 - Open source (usage universitaire)
 - Compatible multi-plateformes (Windows / Linux / Mac)

- 1. Introduction
- 2. Analyse de l'existant
- 3. Conception
- 4. Développement
- 5. Modèles de prédiction
- 6. Conclusion

Solution Similaire

Solutions étudiées :

- NMRium (Zakodium)
- NMRPredict (Mestrelab)

NMRPredict :

- Référence très utilisée par les chimistes
- **Fonctionnalités**: dessin moléculaire, prédiction RMN, analyse de spectres
- Logiciel propriétaire

Composants Existants

🗩 Composants étudiés :

- Jun éditeur moléculaire
- Un visualiseur de spectres RMN

Ketcher (Epam):

- open source (Licence Apache)
- Moderne, complet et maintenu
- Permet le dessin de molécules et l'export en format SMILES

- 1. Introduction
- 2. Analyse de l'existant
- 3. Conception
- 4. Développement
- 5. Modèles de prédiction
- 6. Conclusion

Méthodologie

🔄 Approche itérative

- Échanges fréquents avec le chimiste
- Flexibilité pour s'adapter aux retours
- Conception → prototype → test → retours

📚 Documentation technique

- Diagrammes, spécifications techniques, décisions de conception
- Modélisation C4 et UML
- Traçabilité et support pour futurs développeurs

Architecture Frontend

TATE Architecture Frontend:

- Architecture frontend / backend locale
- React: interface moderne et modulaire

🧩 Composants clés :

- **Ketcher** : éditeur moléculaire
- Plotly: visualisation interactive des spectres

Architecture Backend

T Architecture Backend

- **Python**: incontournable pour accéder aux outils chimiques
- Flask sert le Frontend et l'API interne
- Gère la communication avec le modèle de prédiction

🧪 Outils scientifiques intégrés :

- RDKit: traitement des molécules
- SciPy: traitement des spectres RMN

Interface

- 1. Introduction
- 2. Analyse de l'existant
- 3. Conception
- 4. Développement
- 5. Modèles de prédiction
- 6. Conclusion

Mise en place

音 Dépôts github :

- Un dépôt pour l'interface frontend et la version custom de Ketcher
- Un dépôt pour le backend et l'application finale
- Un dépôt pour la partie modèle de prédiction

X Outils mis en place :

- **Prettier & ESLint**: formatage & détection erreurs style
- Jest : tests unitaires
- Hooks Git (pre-commit & pre-push):
 vérifications automatiques (format, tests,
 typage)

Evolution des fonctionnalités

Itération 1 (10 jours)

Interface principale

Affichage de Ketcher

Affichage du spectre

Simulation de prédiction

Itération 2 (7 jours)

Persistance des paramètres

Gestion des modèles de prédiction

Système d'onglets

Itération 3 (7 jours)

Exports du projet

Sélection d'annotation du spectre

Détection des pics et multiplicités du spectre

Déploiement et documentation

Déploiement :

- Compilation du frontend React (fichiers statiques HTML, CSS, JS)
- **Tests** en conditions réelles
- Packaging avec Pylnstaller (exécutables Linux, Windows, etc)

📚 Documentation :

- Mise à jour documentation technique
- Rédaction guide utilisateur
- Facilite la prise en main et la maintenance

- 1. Introduction
- 2. Analyse de l'existant
- 3. Conception
- 4. Développement
- 5. Modèles de prédiction
- 6. Conclusion

Dataset

X Absence de dataset :

- Aucun dataset public adapté
- Nécessité de créer notre propre dataset

📊 Composition du dataset :

- 500 molécules extraites de PubChem
- Molécules organiques
- Deux datasets distincts (H et C)

Méthode de collecte:

- Utilise le simulateur de nmrdb.org
- Scraping automatisé via Selenium

© Évolution :

- Augmentation à 1000 molécules
- Ajout de molécules non-organiques

Pipeline

- **Trop complexe** de prédire un spectre directement
- Le découpage simplifie la tâche en étapes claires
- Chaque étape améliorable plus facilement
- Assure un **spectre final plus précis et** plus robuste

Pipeline Modèle de Prédiction RMN

Résultats

Critères	Modèle H (v3)	Modèle C (v2)
Erreur Moyenne (ppm)	0.131 échelle [0,10]	2.345 échelle [0,250]
RMSE (ppm)	0.317	5.557
Précision (multiplicité)	85,4 %	-
Points forts	Spectre fidèle, bonne précision globale	
Limites	Erreurs occasionnelles sur les multiplicités	Données initiales limitées

- 1. Introduction
- 2. Analyse de l'existant
- 3. Conception
- 4. Développement
- 5. Modèles de prédiction
- 6. Conclusion

Conclusion

🧠 Ce que j'ai appris :

- Approche interdisciplinaire (informatique / chimie)
- Intégration de projets existants (Ketcher, Plotly)
- Bonnes pratiques de développement : conception, conventions, CI, tests
- **Première vraie expérience** en modèle de prédiction (ML)

🔭 Perspectives :

- Ajout et amélioration des fonctionnalités
- Amélioration des modèles de prédiction

Merci pour votre écoute

CRÉDITS: Ce modèle de présentation a été créé par <u>Slidesgo</u>, et inclut des icônes de <u>Flaticon</u>, et des infographies et images de <u>Freepik</u>.

Conception UI / UX

Charte graphique

- Interface centrée sur la lisibilité et l'ergonomie
- Reprends la charte graphique de Ketcher
- Icônes de Material Symbols pour leur cohérence et leur lisibilité

#FFFFFF #167782 #525252 #D9D9D9

<u>Inter</u>
Aa Bb Cc Dd Ee Ff... Zz