Priyadarshini College of Engineering, Nagpur Sessional Examination (2022-23) Odd Semester

B. Tech. Fifth Semester (Computer Technology) (C. B. C. S.) Design and Analysis of Algorithms

P. Pages: 2 Time: Three Hours PCE/KW/22/BECT501T Max. Marks: 70

Notes:

- 1) All questions carry marks as indicated.
- 2) Solve Question 1 or Question 2
- 3) Solve Question 3 or Question 4
- 4) Solve Question 5 or Question 6
- 5) Solve Question 7 or Question 8
- 6) Solve Question 9 or Question 10
- 7) Due credit will be given to neatness and adequate dimensions.
- 8) Assume suitable data wherever necessary.
- 9) Illustrate your answers whenever necessary with the help of neat sketches.

Q. No.		Questions	со	BL	Marks	
1_	a) b)	State and explain Asymptotic notations used for analyzing the algorithms Solve the following recurrence relation, t(n) = 2 if $n=0= 2t_{n-1} + 2^n + 3, otherwise t(n) = 2 (n) = 2 ($	CO1	Ш	8	(E)
		OR				
2	a) b)	Find best case and worst case complexity of Insertion sort. Solve the given Recurrences using Master Theorem:	CO1	Ш	7	
	U)	1) $T(n) = 4T(n/2) + n$ 2) $T(n) = 4T(n/2) + n^2$ 3) $T(n) = 4T(n/2) + n^3$		III	7	
3	a)	Use Stressen's algorithm to compute the matrix product and Find the Recurrence	CO2	Ш	7	
		relation and its time complexity. $A = \begin{pmatrix} 1 & 3 \\ 6 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 4 \\ 6 & 2 \end{pmatrix}$				

b) Write an algorithm for Binary search using divide and conquer strategy. Also give its stepwise execution for searching element X = 45 in the following Input array.

A = <9,12,7,24,36,45,70>

OR

4 a) What is Minimum Cost Spanning Tree? Obtain MST with its cost for given CO2 I 8 (2) undirected graph using PRIM's algorithm.

b) Write the algorithm of Optimal Huffman Code. Find Optimal Huffman codes for following set of frequencies and discuss its complexity.

1 6 4

a:25, b:50, c:10, d:75, e:35

	a) Determine LCS of X=(A,B,C,B,D,A,B) and Y=(B,D,C,A,B,A) b) Find optimal solution using 0/1 Knapsack problem for given data:			7	
	$M=6, n=3, (w_1,w_2,w_3)=(2,2,3), (p_1,p_2,p_3)=(1,3,4)$	0	00	7	
	OR				0
6	a) Find All pair shortest Paths using Floyd Warshall algorithm for given graph:	03 1	00	8-	8
	1 4 5 5 1/3 2 1 4 5 5 7/4 3/2 3/2				10
	b) Differentiate between Greedy approach and Dynamic programming		1V	6	
7	a) Implement travelling salesman problem for the given matrix.	04	100	8	
	(0 8 16 15)				
	14 0 9 12				
4	(b) Explain Graph coloring method with example. Give algorithm for it.		11	6	3
-93	OR				
8	a) Discuss 4-Queen problem and give its algorithm using backtracking method	204	11	7	
	 Discuss Hamiltonian cycle. Also write an algorithm for finding Hamiltonian cycle for a graph. 		11	7	
9	a) Explain Decision and Optimization problems.	CO5	11	7	
	b) Give the definitions of NP hard and NP-complete class of problems.		1	7	
	OR				
10	Explain Non deterministic algorithm. Give non deterministic algorithm for searching and sorting problem.	COS	11	7	
	b) Explain the concept of Polynomial Reduction and how it can be used for showing NP completeness of problem.		11	7	

May 25/3