

ETC3250

Business Analytics

Week 2. Statistical learning 27 July 2017

Outline

1 Introduction

2 Assessing model accuracy in regression

3 Assessing model accuracy in classification

Learning from data

- Better understand or make predictions about a certain phenomenon under study
- Construct a model of that phenomenon by finding relations between several variables
- If phenomenon is complex or depends on a large number of variables, an analytical solution might not be available
- However, we can collect data and learn a model that approximates the true underlying phenomenon

Statistical learning Introduction 3/43

Learning from a dataset

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N \text{ with } x_i = (x_{i1}, \dots, x_{ip})^T$$

Statistical learning provides a framework for constructing models from \mathcal{D} .

Statistical learning Introduction 4/43

Learning from a dataset

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N \text{ with } x_i = (x_{i1}, \dots, x_{ip})^T$$

Statistical learning provides a framework for constructing models from \mathcal{D} .

Statistical learning Introduction 4/43

Different learning problems

- Supervised learning
 - Regression (or prediction)
 - Classification
 - $\rightarrow y_i$ available for all x_i
- Unsupervised learning
 - $\rightarrow y_i$ unavailable for all x_i
- Semi-supervised learning
 - $\rightarrow y_i$ available only for few x_i
- Other types of learning: reinforcement learning, online learning, active learning, etc.

Identification of the best learning problem is important in practice

Statistical learning Introduction 5/43

Supervised learning

$$\mathcal{D} = \{(\mathbf{y}_i, \mathbf{x}_i)\}_{i=1}^N,$$

where

$$(y_i, \mathbf{x}_i) \sim P(Y, \mathbf{X}) = P(\mathbf{X}) \underbrace{P(Y|\mathbf{X})}_{\cdot}.$$

- Y: response (output)
- **X** = $(X_1, ..., X_p)$: set of p predictors (input)

We seek a function $g(\mathbf{X})$ for predicting Y given values of the input \mathbf{X} . This function is computed using \mathcal{D} .

Statistical learning

Supervised learning

We often assume that our data arose from a statistical model

$$Y = f(X) + \varepsilon,$$

where f is the true unknown functoin, ε is the random error term with $E[\varepsilon] = 0$ and is independent of X.

- The additive error model is a useful approximation to the truth
- f(x) = E[Y|X = x]
- Not a deterministic relationship: Y = f(X)

Statistical learning Introduction 7/43

Supervised learning

Figure 1.11: The general (supervised) learning problem

Statistical learning Introduction 8/43

Supervised learning - regression

Statistical learning Introduction 9/43

Supervised learning - regression

Why estimate f?

Prediction:

$$\hat{Y} = \hat{f}(X)$$

Error decomposition in regression:

$$\begin{split} \mathsf{E}[(Y-\hat{Y})^2] &= \mathsf{E}[(f(X)+\varepsilon-\hat{Y})^2] \\ &= \underbrace{\mathsf{E}[(f(X)-\hat{f}(X))^2]}_{\mathsf{Reducible}} + \underbrace{\mathsf{Var}(\varepsilon)}_{\mathsf{Irreducible}} \end{split}$$

Inference (or explanation):

- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?

Statistical learning Introduction 11/43

How do we estimate *f***?**

Parametric methods

- Assumption about the form of f, e.g. linear: $f(X) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$ and $\hat{Y}(x) = \hat{f}(x)$
- The problem of estimating f reduces to estimating a set of parameters
- Usually a good starting point for many learning problems
- Poor performance if linearity assumption is wrong

Non-parametric methods

- No explicit assumptions about the form of f, e.g. nearest neighbours: $\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$
- High flexibility: it can potentially fit a wider range of shapes for f
- A large number of observations is required to estimate f with good accuracy

Statistical learning Introduction 12/43

Regression - estimation of f?

 $\hat{f}(education, seniority) = \hat{\beta}_0 + \hat{\beta}_1 \times education + \hat{\beta}_2 \times seniority$

Statistical learning Introduction 13/43

Regression - estimation of f?

Statistical learning Introduction 14/43

Regression - estimation of *f***?**

"Why would we ever choose to use a **more**restrictive method instead of a very flexible
approach?"

Statistical learning Introduction 15/43

Classification - estimation of *f***?**

KNN: K=1 KNN: K=100

Prediction Accuracy vs Model Interpretability

Statistical learning

Introduction

Outline

1 Introduction

2 Assessing model accuracy in regression

3 Assessing model accuracy in classification

Regression problems

Suppose we have a regression model $y = f(x) + \varepsilon$.

Estimate \hat{f} from some training data, $Tr = \{x_i, y_i\}_1^n$.

One common measure of accuracy is:

Training Mean Squared Error

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2 = \frac{1}{n} \sum_{i=1}^{n} [(y_i - \hat{f}(x_i))]^2$$

Regression problems

Suppose we have a regression model $y = f(x) + \varepsilon$.

Estimate \hat{f} from some training data, $Tr = \{x_i, y_i\}_1^n$.

One common measure of accuracy is:

Training Mean Squared Error

$$MSE_{Tr} = \underset{i \in Tr}{Ave}[y_i - \hat{f}(x_i)]^2 = \frac{1}{n} \sum_{i=1}^n [(y_i - \hat{f}(x_i))]^2$$

Measure real accuracy using **test data** $Te = \{x_j, y_j\}_1^m$

Test Mean Squared Error

$$\mathsf{MSE}_{\mathsf{Te}} = \underset{j \in \mathsf{Te}}{\mathsf{Ave}} [y_j - \hat{f}(x_j)]^2 = \frac{1}{m} \sum_{j=1}^m [(y_j - \hat{f}(x_j)]^2$$

Training vs Test MSEs

- In general, the more flexible a method is, the lower its training MSE will be. i.e. it will "fit" the training data very well.
- However, the test MSE may be higher for a more flexible method than for a simple approach like linear regression.
- Flexibility also makes interpretation more difficult. There is a trade-off between flexibility and model interpretability.

Example: splines

Black: true curve
Orange: linear regression
Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Example: splines

Black: true curve
Orange: linear regression
Blue/green: Smoothing split

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Example: splines

Black: true curve
Orange: linear regression
Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Bias-variance tradeoff

There are two competing forces that govern the choice of learning method: **bias** and **variance**.

Bias

is the error that is introduced by modeling a complicated problem by a simpler problem.

- For example, linear regression assumes a linear relationship when few real relationships are exactly linear.
- In general, the more flexible a method is, the less bias it will have.

Bias-variance tradeoff

There are two competing forces that govern the choice of learning method: **bias** and **variance**.

Variance

refers to how much your estimate would change if you had different training data.

- In general, the more flexible a method is, the more variance it has.
- The size of the training data has an impact on the variance

The bias-variance tradeoff

MSE decomposition

If $Y = f(x) + \varepsilon$ and $f(x) = E[Y \mid X = x]$, then the expected **test** MSE for a new Y at x_0 will be equal to

$$\mathsf{E}[(\mathsf{Y} - \hat{\mathsf{f}}(\mathsf{x}_0))^2] = [\mathsf{Bias}(\hat{\mathsf{f}}(\mathsf{x}_0))]^2 + \mathsf{Var}(\hat{\mathsf{f}}(\mathsf{x}_0)) + \mathsf{Var}(\varepsilon)$$

→ see proof of MSE decomposition

Test $MSE = Bias^2 + Variance + Irreducible variance$

- The expectation averages over the variability of *Y* as well as the variability in the training data.
- As the flexibility of \hat{f} increases, its variance increases and its bias decreases.
- Choosing the flexibility based on average test MSE amounts to a bias-variance trade-off.

Bias-variance trade-off

Optimal prediction

MSE decomposition

If $Y = f(x) + \varepsilon$ and $f(x) = E[Y \mid X = x]$, then the expected **test** MSE for a new Y at x_0 will be equal to

$$\mathsf{E}[(Y-\hat{f}(x_0))^2] = [\mathsf{Bias}(\hat{f}(x_0))]^2 + \mathsf{Var}(\hat{f}(x_0)) + \mathsf{Var}(\varepsilon)$$

The optimal MSE is obtained when

$$\hat{f} = f = \mathsf{E}[\mathsf{Y} \mid \mathsf{X} = \mathsf{x}].$$

Then bias=variance=0 and

MSE = irreducible variance

This is called the "oracle" predictor because it is not achievable in practice.

Outline

1 Introduction

2 Assessing model accuracy in regression

3 Assessing model accuracy in classification

Classification problems

Here the response variable Y is qualitative.

- \blacksquare e.g., email is one of $\mathcal{C} = (\text{spam}, \text{ham})$
- e.g., voters are one ofC = (Liberal, Labor, Green, National, Other)

Our goals are:

- **1** Build a classifier C(x) that assigns a class label from C to a future unlabeled observation X.
- Assess the uncertainty in each classification (i.e., the probability of misclassification).
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Classification problems

Here the response variable Y is qualitative.

- \blacksquare e.g., email is one of $\mathcal{C} = (\text{spam}, \text{ham})$
- e.g., voters are one ofC = (Liberal, Labor, Green, National, Other)

Our goals are:

- Build a classifier C(x) that assigns a class label from C to a future unlabeled observation x.
- 2 Assess the uncertainty in each classification (i.e., the probability of misclassification).
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Classification problem

In place of MSE, we now use:

Error rate

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{C}(x_i))$$

where $\hat{C}(x_i)$ is the predicted class label and $I(y_i \neq \hat{C}(x_i))$ is an indicator function.

- That is, the error rate is the fraction of misclassifications.
- The training error rate is misleading (too small).
- We want to minimize the test error rate: $E(I(y \neq \hat{C}(x)))$

Classification problem

In place of MSE, we now use:

Error rate

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{C}(x_i))$$

where $\hat{C}(x_i)$ is the predicted class label and $I(y_i \neq \hat{C}(x_i))$ is an indicator function.

- That is, the error rate is the fraction of misclassifications.
- The training error rate is misleading (too small).
- We want to minimize the test error rate: $E(I(y \neq \hat{C}(x)))$

Optimal classifier

- A classifier C(x) assigns each value of x to one of the available classes C_1, \ldots, C_K
- Such a classifier will divide the input space into regions \mathcal{R}_k called decision regions, one for each class, such that all points in \mathcal{R}_k are assigned to class \mathcal{C}_k
- In order to find the optimal decision rule, consider first of all the case of two classes. A misclassification occurs when an input vector belonging to class C_1 is assigned to class C_2 or vice versa:

$$\begin{split} \text{Pr}(\text{misclassification}) &= \text{Pr}(\boldsymbol{x} \in \mathcal{R}_1, \mathcal{C}_2) + \text{Pr}(\boldsymbol{x} \in \mathcal{R}_2, \mathcal{C}_1) \\ &= \int_{\mathcal{R}_1} \text{Pr}(\boldsymbol{x}, \mathcal{C}_2) \; d\boldsymbol{x} + \int_{\mathcal{R}_2} \text{Pr}(\boldsymbol{x}, \mathcal{C}_1) \; d\boldsymbol{x} \end{split}$$

To which class should we assign each point x?

- To minimize Pr(misclassification), we should arrange that each x is assigned to whichever class has the smaller value of the integrand
- For a given value of \boldsymbol{x} , if $Pr(\boldsymbol{x}, C_1) > Pr(\boldsymbol{x}, C_2)$, we should assign \boldsymbol{x} to class C_1
- Since $\Pr(\boldsymbol{x}, \mathcal{C}_k) = \Pr(\mathcal{C}_k | \boldsymbol{x}) \Pr(\boldsymbol{x})$, and $\Pr(\boldsymbol{x})$ is common to both terms, the minimum probability of mistake is obtained if each value of \boldsymbol{x} is assigned to the class for which the posterior probability $\Pr(\mathcal{C}_k | \boldsymbol{x})$ is largest

■ For the more general case of K classes, it is slightly easier to maximize the probability of being correct:

$$\begin{aligned} \mathsf{Pr}(\mathsf{correct}) &= \sum_{k=1}^{K} \mathsf{Pr}(\boldsymbol{x} \in \mathcal{R}_k, \mathcal{C}_k) \\ &= \sum_{k=1}^{K} \int_{\mathcal{R}_k} \mathsf{Pr}(\boldsymbol{x}, \mathcal{C}_k) \; d\boldsymbol{x} \end{aligned}$$

- The previous expression is maximized when the regions \mathcal{R}_k are chosen such that each \mathbf{x} is assigned to the class for which $p(\mathbf{x}, \mathcal{C}_k)$ is largest.
- Since $Pr(\mathbf{x}, C_k) = Pr(C_k|\mathbf{x})Pr(\mathbf{x})$, and $Pr(\mathbf{x})$ is common to both terms, each \mathbf{x} should be assigned to the class having the largest posterior probability $Pr(C_k|\mathbf{x})$.

Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x.

Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}\$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x. Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x. Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Bayes error rate

Bayes error rate

$$1 - \mathsf{E}\left(\mathsf{max}_{j} \mathsf{Pr}(Y = j | X)\right)$$

- The "Bayes error rate" is the lowest possible error rate that could be achieved if we knew exactly the "true" probability distribution of the data.
- It is analogous to the "irreducible error" in regression.
- On test data, no classifier can get lower error rates than the Bayes error rate.
- In reality, the Bayes error rate is not known exactly.

Bayes optimal classifier

 X_1

k-Nearest Neighbours

One of the simplest classifiers. Given a test observation x_0 :

- Find the K nearest points to x_0 in the training data: \mathcal{N}_0 .
- Estimate conditional probabilities

$$Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$

■ Apply Bayes rule and classify x_0 to class with largest probability.

$$K = 3$$
.

KNN: K=10

 X_1

KNN: K=1 KNN: K=100

A fundamental picture

Model Complexity

A fundamental picture

Model Complexity

Model Complexity