Project Title: Melano Al: Intelligent Skin Cancer Screening

Objective:

Build an Artificial Intelligence model to accurately classify skin lesions as benign or malignant, and provide a user-friendly interface for interaction.

Dataset:

 Dataset: A dataset containing images of skin lesions and their corresponding labels (benign or malignant).

Project Workflow:

- 1. Data Collection and Exploration
- 2. Exploratory Data Analysis (EDA)
- 3. Data Preprocessing
- 4. Model Building
- 5. Model Evaluation
- 6. Deployment and Documentation

Architecture Diagram

Components

User Interface

- Image Upload: Allows users to upload diagnostic images.
- Prediction Display: Shows the malignancy probability prediction.

Data Processing Pipeline

- **Data Preprocessing:** The uploaded images undergo preprocessing steps such as resizing and normalization to prepare them for classification.
- **Model Training and Optimization:** The preprocessed images are used to train and optimize the AI model for image recognition.

Storage and Model Deployment

• **Storage:** The trained model and any necessary data are stored in a database or file storage system.

Detailed Plan:

Milestone 1: Weeks 1-2

Data Collection and Exploration

- Understand the Problem Statement
 - Define the classification task for skin cancer detection.
 - Understand the features and labels available in the dataset.
- Collect Data
 - Download and load the dataset.
 - o Familiarize with the structure and content of the dataset.
- Initial Data Exploration
 - Examine the dataset for initial insights.
 - o Identify the types of features (image data, metadata).

Exploratory Data Analysis (EDA)

- Image Analysis
 - o Analyze the images to understand their quality and characteristics.
 - Visualize the distribution of benign vs. malignant lesions.
- Metadata Analysis
 - Explore any additional metadata provided.
 - o Identify any patterns or correlations with the labels.
- Visualization
 - Use image visualization tools to examine sample images.
 - o Summarize insights from the EDA.

Milestone 2: Weeks 3-4

Data Preprocessing

• Image Preprocessing

- o Resize images to a consistent size.
- Normalize pixel values.

• Data Augmentation

 Apply techniques such as rotation, flipping, and zooming to augment the dataset.

Handling Missing Values

o Identify and treat any missing values in the metadata.

Feature Engineering

• Extract relevant features from the images (if applicable).

UI Development

- Begin UI development focusing on image upload functionality and basic layout.
- Develop components for image upload and display, considering user experience and design.

Milestone 3: Weeks 5-6

Model Building

Split Data

Split the dataset into training and testing sets.

Model Selection

• Explore various deep learning architectures (e.g., CNN, ResNet, EfficientNet).

Model Training

- o Train multiple models on the training data.
- o Use cross-validation to evaluate models.

Hyperparameter Tuning

 Use techniques like grid search or random search to tune hyperparameters for the best-performing models.

Model Evaluation

• Evaluate Models

• Use metrics such as accuracy, precision, recall, F1-score, and ROC-AUC.

Compare Models

- o Compare the performance of different models.
- Select the best model based on evaluation metrics.

Final Model Training

o Retrain the best model on the entire training set.

Milestone 4: Weeks 7-8

Deployment and Documentation

• Model Deployment

- o Deploy the final model using a web framework like Flask or Django.
- o Create an API for the skin cancer detection model.

Presentation and Documentation

- Prepare a presentation detailing the problem statement, data collection, preprocessing steps, model building, and evaluation.
- Document the project comprehensively, including code, methodologies, and findings.

• GitHub Submission

Upload the final code, documentation, and presentation to GitHub.

Milestone Evaluation:

Milestone 1: Week 2

- Understanding of the problem statement and dataset.
- Initial data exploration and insights.
- Completed EDA with visualizations.

Milestone 2: Week 4

- Completed data preprocessing.
- Data augmentation and handling of missing values.

Milestone 3: Week 6

- Model building and initial training results.
- Selection of the best model based on evaluation metrics.

Milestone 4: Week 8

Deployment of the model.

• Comprehensive project documentation and final presentation.