Corrections to Complex Analysis by Stein and Shakarchi

林晓烁

Last updated: 2025-06-06

ISBN: 978-0-691-1138-2 (Princeton University Press), 978-7-5100-4054-2 (世界图书出版公司).

Page 13, third line from the bottom
 原文
 where
$$\psi(h) = \psi_1(h) + \psi_2(h) \to 0$$
 更正
 where $\psi(h) = \psi_1(h) + \psi_2(h) \to 0$

$$\diamond$$
 Page 63, second displayed equation 原文 $\sum_{n=1}^{\infty} -\frac{z^n}{z_1^{n+1}}$ 更正 $\sum_{n=0}^{\infty} -\frac{z^n}{z_1^{n+1}}$

中age 67, Exercise 12 (b)
 原文

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - \varphi) u(\varphi) \, d\varphi$$

 更正
 $u(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - \varphi) u(e^{i\varphi}) \, d\varphi$

Page 69, Problem 5
 原文

$$\lim_{n\to\infty}F(z+N_k)=h(z)$$
 更正
 $\lim_{k\to\infty}F(z+N_k)=h(z)$

$$\diamond$$
 Page 108, Problem 1 原文 $1/n \notin f(\mathbb{D})$ 更正 $1/n \notin f_n(\mathbb{D})$

Page 124, first displayed equation
 原文

$$|\hat{f}_{\varepsilon}(\xi) - \hat{f}(\xi)| \le \int_{-\infty}^{\infty} |f(x)| \left[\frac{1}{(1 + i\varepsilon x)^2} - 1 \right] dx$$

 更正
 $|\hat{f}_{\varepsilon}(\xi) - \hat{f}(\xi)| \le \int_{-\infty}^{\infty} |f(x)| \left| \frac{1}{(1 + i\varepsilon x)^2} - 1 \right| dx$

$$\diamond$$
 Page 127, Exercise 2 原文 whenever $0 \leqslant b < a$. 更正 whenever $0 < b < a$.

$$\diamond$$
 Page 128, Exercise 5 (a) 原文 the roots of R 更正 the roots of Q

$$\diamond$$
 Page 131, Exercise 12 (b)
 原文
 let $\beta \to \pi$
 更正
 let $\beta \to 1$

♦ Page 154, Exercise 4 (a) 原文 hence
$$F$$
 is of order 2 更正 hence F has an order of growth ≤ 2

$$\diamond$$
 Page 155, Exercise 7 (a) One should add the condition $a_n \neq -1$.

$$\diamond$$
 Page 156, Exercise 16 One should add the condition that $\{a_n\}$ are distinct points.

$$\diamond$$
 Page 156, Exercise 16 原文 f has a prescribed poles and principal parts 更正 f has prescribed poles and principal parts

原文
$$\sum_{n=1}^{\infty} \frac{1}{n} - \log N = \sum_{n=1}^{N-1} a_n + \frac{1}{N}$$

更正)
$$\sum_{n=1}^{N} \frac{1}{n} - \log N = \sum_{n=1}^{N-1} a_n + \frac{1}{N}$$

- Page 177, Exercise 11
 原文
 in the strip $\{x+iy:|y|<\pi\}$ 更正
 in the strip $\{x+iy:|y|<\frac{\pi}{2}\}$
- \$\phi\$ Page 177, Exercise 11
 原文
 $\hat{f}(\xi) = \Gamma(a + i\xi)$ 更正
 $\hat{f}(\xi) = \Gamma(a 2\pi i\xi)$
- \diamond Page 179, Exercise 17 (b) 原文 Prove that I(0) = 0 更正 Prove that I(0) = f(0)
- Page 179, Exercise 17 (b)
 原文
 $I(-n) = (-1)^n f^{(n+1)}(0)$ 更正
 $I(-n) = (-1)^n f^{(n)}(0)$
- \diamond Page 179, Problem 1 (a) 原文 $\zeta(s) = \sum_{1 \le n \le N} n^{-s} \frac{N^{s-1}}{s-1} + \sum_{n \ge N} \delta_n(s)$

更正
$$\zeta(s) = \sum_{1 \le n < N} n^{-s} - \frac{N^{1-s}}{1-s} + \sum_{n \ge N} \delta_n(s)$$

 Page 180, Problem 3
 原文
 $\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx$

更正)
$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} - s \int_{1}^{\infty} \frac{Q(x)}{x^{s+1}} dx$$

 \diamond Page 180, Problem 3 原文 $\zeta(s) = \frac{s}{s-1} - \frac{1}{2} + (-1)^k s \int_1^\infty \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} Q_k(x)\right) x^{-s-1} \mathrm{d}x$

更正
$$\zeta(s) = \frac{s}{s-1} - \frac{1}{2} - s \int_1^\infty \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} Q_k(x)\right) x^{-s-1} \,\mathrm{d}x$$

- Page 201, Exercise 4
 原文
 $Q(x) = \sum_{m=0}^{q-1} a_m e^{mx}$ 更正
 $Q(x) = \sum_{m=0}^{q-1} a_{q-m} e^{mx}$
- \diamond Page 204, Problem 2 原文 $\psi_1(x) = \frac{x^2}{2} \sum_{\rho} \frac{x^{\rho}}{\rho(\rho+1)} E(x)$

更正
$$\psi_1(x) = \frac{x^2}{2} - \sum_{\rho} \frac{x^{\rho+1}}{\rho(\rho+1)} - E(x)$$

- ♦ Page 212, Example 7 Replace the second paragraph, except for its first sentence, with the following: "If x travels from 0 to 1, then f(x) goes from $-\infty$ to -1 on the real axis. If $z = e^{i\theta}$, then $f(z) = -\cos\theta$ and as x travels from 1 to -1 along the unit half-circle in the upper half-plane, the f(x) goes from -1 to 1 on the real segment. Finally, when x goes from -1 to 0, f(x) goes from 1 to ∞ along the real axis."
- \diamond Page 212, Example 8 Replace the first sentence by "The map $f(z) = \sin z$ takes the half-strip $\left\{ w = x + \mathrm{i}y : -\frac{\pi}{2} < x < \frac{\pi}{2}, y > 0 \right\}$ conformally onto the upper half-plane."
- ◆ Page 252, Exercise 18 原文 a piecewise-smooth closed curve 更正 a piecewise-smooth simple closed curve
- ♦ Page 309, Exercise 1 原文 the first two derivatives 更正 the first three derivatives

- \diamond Page 311, Exercise 5 原文 Use also $mx^{m-1}(1-x) < 1-x^m < m(1-x)$ 更正 Use also $mx^{m-1}(1-x) \leqslant 1-x^m \leqslant m(1-x)$
- \diamond Page 313, Exercise 12
 原文
 the sum of the divisors of d 更正
 the sum of the divisors of n
- \diamond Page 314, Problem 2
 原文
 $|Im(\tau)| \geqslant 0$ 更正
 $Im(\tau) \geqslant 0$
- \diamond Page 314, Problem 2 原文 w 更正 τ'