

Page: 25

CUSTOMER APPROVAL SHEET

Company Name	
MODEL	H354VL02 V0
CUSTOMER	Title :
APPROVED	Name :
	TIONS ONLY (Spec. Ver) TIONS AND ES SAMPLE (Spec. Ver) TIONS AND CS SAMPLE (Spec. Ver)
CUSTOMER REMARK	TOTO AND GO OAM LE (OPEC. VCI

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C. Tel: +886-3-500-8899

Fax: +886-3-577-2730

 Doc. version :
 0.0

 Total pages :
 30

 Date :
 2011/01/19

Product Specification 3.54" COLOR TFT-LCD MODULE

MODEL NAME: H354VL02 V0

- < ◆ >Preliminary Specification
- < >Final Specification

Note: The content of this specification is subject to change.

© 2010 AU Optronics All Rights Reserved, Do Not Copy.

Page: 1/30

Record of Revision

Version	Revise Date	Page	Content
0.0	2011/01/19		First Draft.

Page: 2/30

0.0

Contents

Α.	Ge	eneral Information	3
В.	Ele	ectrical Specifications	4
	1	Pin Assignment	4
	2	Absolute Maximum Ratings	6
	3	Electrical DC Characteristics	7
	4	Electrical Timing Characteristics	11
	5	Power On/Off Characteristics	17
C.	Ор	ptical Specification	22
D.	Re	eliability test items	25
E.	Pa	acking	26
F	Ou	utline Dimension	27

Page: 3/30

A. General Information

NO.	Item	Unit	Specification	Remark	
1	Screen Size	inch	3.54(Diagonal)		
2	Display Resolution	dot	640RGB(H)×960(V)		
3	Overall Dimension	mm	54.22(H) × 82.73(V) × 1.59max(T)	Note 1	
4	Active Area	mm	49.92(H)×74.88(V)		
5	Pixel Pitch	h mm 0.026(H)×0.078(V)			
6	Color Configuration		R. G. B. Stripe	Note 2	
7	Color Depth		16.7M Colors		
8	NTSC Ratio	%	50		
9	Display Mode		ECB Normally white		
10	Weight	g	11.05g		
11	11 Interface		MIPI I/F		
12	Viewing angle		CR>10:1 at 50 degree		

Note 1: Not include FPCs extrude stucture.

Note 2: Below figure shows dot stripe arrangement.

Page: 4/30

B. Electrical Specifications

1 Pin Assignment

Table 1. TFT LCD Panel Pin Assignment:

No.	Pin Name	I/O	Description	Remarks
1	1V8_DVDD	-	Power supply to interface pins.	
2	5V7_AVDDH	ı	Power supply to the source driver pins and VCOM drive.	
3	GND	-	GND	
4	PIFA	I/O	Panel interface access	
5	MIPI_CKP	I	DSI CLK+ Line.	
6	STSTB	I	Set Rterm Measurement Mode. Active low. STSTB = 0: Rterm Measurement Mode STSTB = 1: Normal Operation	
7	MIPI_CKN	I	DSI CLK- Line.	
8	PWREN	0	The external power supply shut down output. 0: Disables the external power supply for AVDDH.	
9	GND	-	GND	
10	RESETB	I	Reset. Active Low.	
11	MIPI_D2P	I	DSI Data2+ Line.	
12	HIFA	I/O	Host interface access	
13	MIPI_D2N	ı	DSI Data2- Line.	
14	GND	-	GND	
15	GND	-	GND	
16	MIPI_D0P	I/O	DSI Data0+ Line.	
17	NA	-	NA	
18	MIPI_D0N	I/O	DSI Data0- Line.	
19	NA	-	NA	
20	GND	-	GND	
21	GND	-	GND	

Page: 5/30

22	MIPI_D1P	ı	DSI Data1+ Line.	
23	LED_BL_C	I	LED cathode	
24	MIPI_D1N	I	DSI Data1- Line.	
25	LED_BL_A	I	LED anode	
26	GND	-	GND	

Figure 1 : Connector pin assignment

Page: 6/30

2 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings:

Table 2. About the Maximum Tatings.											
Item	Symbol	Ratings	Unit	Notes							
Analog Supply Voltage	AVDDH	-0.3 ~ +6.4	V								
Analog Supply Current	I AVDDH	100	mA	3							
Digital Logic I/O Voltage	DVDD	-0.3 ~ +2.5	V								
Digital Logic I/O Current	I DVDD	15	mA	3							
Logic Input Voltage	V _{IN}	-0.3 <v<sub>IN<v<sub>DVDD+0.3</v<sub></v<sub>	V	1							
LED Power Consumption	P _{LED}	110	mW	2							
LED Current	I _{LED}	35	mA	2							
Operating Temperature	TOP	-20 ~ +70	€.								
Storage Temperature	TSTG	-30 ~ +80	C								

⁽¹⁾ Applies to RESETB, PIFA, HIFA, PWREN, STSTB

.

⁽²⁾ Applies for each LED individually

⁽³⁾ Inrush current maximum, not operating.

Page: 7/30

3 Electrical Characteristics

Table 3. Electrical Characteristics:

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Analog Supply Voltage	AVDDH	5.21	5.4	5.59	V	
Digital Logic I/O Voltage	DVDD	1.71	1.8	1.89	V	
LED Input Current	ILED			25	mA	
"H" Level Input Voltage	VIH	0.8DVDD	-	-	V	1,2
"L" Level Input Voltage	VIL	-	-	0.2DVDD	V	1,2
"H" Level Output Voltage	VOH	0.8DVDD	-	-	V	1,2
"L" Level Output Voltage	VOL	-	-	0.2DVDD	V	1,2
Driver Power Supply Stability				150	ms	5
Power, MIPI full refresh	PMIPI	-	-	110	mW	1
Power Consumption, Backlight	PB		-	372	mW	3
Power Consumption, Suspend	PS	-	-	60	uW	4

⁽¹⁾ The specified current and power consumption are under the conditions at AVDDH = 5.67V, DVDD = VEE

^{= 1.8}V, T = 25°C, and $f_v = 60$ Hz

⁽²⁾ Input mode of RESETB, PIFA, HIFA, PWREN, STSTB.

⁽³⁾ LED Backlight assumptions: 3.1 V_f, 20 mA, 6 LED's.

⁽⁴⁾ DVDD present only, display off, reset asserted.

⁽⁵⁾ Time from AVDDH and DVDD applied until driver power supplies are stable.

Page: 8/30

3.2 Color Input Data Reference

The brightness of each primary color(R,G,B) is based on 8-8-8 bit gray scale data respectively input for the color. The display outputs 24 bit color data. The higher the binary input, the brighter the color. Table 4 below provides a reference for color versus data input.

Table4 Color Vs. Data

Colors	Gray																								
& Gray Scale	Scale Levels	RO	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	ВО	В1	В2	В3	В4	B5	В6	В7
Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blue		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Green	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Red		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ma-		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
											_											_		_	
t	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker †	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
į	ţ				_				_	_	_			_							_	_			
Brighter J	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker †	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
į	ţ		_		_	_		_	_	_	_			_	_	_	_				_	_	_		
Brighter ↓	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Darker †	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ļ ;	t		_	_		_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_		
Brighter ↓	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Page: 9/30

3.3.Block Diagram

Figure 2 : Display Block Diagram

Page: 10/30

3.4 Timing Characteristics

The system input timing characteristics are provided in Table 3.5.1 and illustrated in Figure 3. The display must support up to 200MHz, and be tested up to 300MHz frequency to confirm the max MIPI functional interface frequency.

Figure 3: timing

Table 5. Interface timing characteristics:

ltem	Symbol	Timing	Unit	Notes
Vertical Cycle	VP	1000	Line	1
Vertical Low Pulse Width	VS	16	Line	1
Vertical Front Porch	VFP	12	Line	1
Vertical Back Porch	VBP	12	Line	1
Vertical Display Area	VDISP	960	Line	1
Horizontal Cycle	НР	684	clk	1
Horizontal Low Pulse Width	HS	16	clk	1, 2
Horizontal Front Porch	HFP	14	clk	1, 2
Horizontal Back Porch	HBP	14	clk	1, 2
Horizontal Display Area	HDISP	640	clk	1
Pixel Clock	fPLCK	N/A	MHz	1
rixei Clock	IPLCK	N/A	ns	1

Page: 11/30

4 Electrical Timing Characteristics

4.1. DSI Characteristics

Table 6. MIPI-DSI interface DC Specifications(See Figure 5):

	ltem	Symbol	Min.	Тур.	Max.	Units	Notes
	Thevenin output low level	VOL	-50	-	50	mV	
LP_TX	Thevenin output high level	VOH	1.1	1.2	1.3	V	
	Output impedance of LP transmitter	ZOLP	(110)	-	-	Ω	2
	Different input high threshold	VIDTH	-	-	70	mV	
	Differential input low threshold	VIDTL	-70	-	-	mV	
	Single-ended input low voltage	VILH	-40	-	-	mV	
	Single-ended input high voltage	VIHH			460	mV	
HS_RX	Common-mode voltage HS receive mode	VCM RX(D	70	-	330	mV	1
	Differential input impedance	ZID		(90)	-	Ω	2
	Logic 0 input voltage not in ULP	VIL	-50	1	550	mV	
LP_RX	Logic 1 input voltage	VIH	880		1350	mV	
	I/O leakage curent	ILEA	-10		10	uA	
	Logic 0 contention threshold	VILCD	-	-	200	mV	
CD-RX	Logic 1 contention threshold	VIHCD	450		-	mV	

Note:

^{1.} VCMRX(DC) = (VDP+VDN)/2

^{2.} Excluding COG Resistance (Contact Resistance and ITO Wiring Resistance). The value is tentative.

Page: 12/30

Table 7. HS-RX Clock and Data-Clock Specifications DVDD=DPHYVDD=1.71~1.89V:

Item	Symbol	Min.	Тур.	Max.	Units	Timing diagram	Notes
DSICLK Frequency	fDISCLK	50	-	250	MHz	-	
DSICLK Cycle time	tCLKP	4.0	-	20	ns	Figure 4	
DSI Data Transfer Rate	tDSIR	100	-	500	Mbps	-	
Data to Clock Setup Time	tSETUP	0.15	-	-	UI	Figure 4	
Data to Clock Setup Time	ISETUP	0.3	-	-	ns	Figure 4	1
0		0.15	-	-	UI	,	
Clock to Data Hold Time	tHOLD	0.3	-	-	Ns	Figure 4	1

Note:

1: @ 500 Mbps

 $0.15 \times 1/(500 \times 10^{**}6) = 0.3 \text{ ns}$

2.The characteristics in Table 7 are measured under the condition of the minmum differential input voltage 110mV becasure the minmum differential output voltage of HS transmitter is 140mV and insertion loss is -2dB(voltage ratio 0.794328)

Table 8. Global Operation Timing Parameters:

Parameter	Description	Min	Тур	Max	Unit	diagram	Notes
THS-PREPAR E	Time to drive LP-00 to prepare for HS Transmission	40 ns + 4*UI	-	85 ns + 6*Ul	ns		
	THS-PREPARE + Time to drive HS-0 before the Sync sequence	145 ns + 10*UI	ı	ı	ns		
TCLK-TRAIL	Time to drive HS differential state after last payload clock bit of a HS transmission burst	Max(n*8* UI,60 ns + n*4*UI)	-	-	ns	Figure 6	1,2
THS-EXIT	Time to drive LP-11 after HS burst	100	-	-	ns		
TTA-GO	Time to drive LP-00 after turnaround request		4*TLPX				
TTA-SURE	Time-out before new TX side starts driving	1*TLPX		2*TLPX			
TTA-GET	Time to drive LP-00 by new TX		5*TLPX				

Page: 13/30

T_{LPX}	Length of any Low-Power state period	50	-	-	ns		4
Ratio T _{LPX}	Ratio of TLPX(MASTER)/TLPX(SLAVE) between Master and Slave side	2/3		3/2		Figure 6, 7, 8	
TCLK-POST	Time that the transmitter shall continue sending HS clock after the last associated data lane has transitioned to LP mode	60 ns + 52*UI	-	-	UI		
TCLK-PRE	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8	-	,	UI		
TCLK-PREPA RE	Time to drive LP-00 to prepare for HS clock transmission	38		95	ns	Figure 7	
TCLK-PREPA RE + TCLK-ZERO	TCLK-PREPARE + time for lead HS-0 drive period before starting Clock.	300	-	-	ns		
TCLK-TRAIL	Time to drive HS differential state after last payload clock bit of a HS ransmission burst	60			ns		
ТЕОТ	Time from start of THS-TRAIL or TCLK-TRAIL period to start of LP-11 state			105 ns + n*12*UI	ns		2

Notes:

- 1. If a > b then max(a, b) = a, otherwise max(a, b) = b
- 2. Where n = 1 for Forward-direction HS mode.
- 3. The R63303 can work with this specification although the end part of internal process is remained when Clock Lane enter LP-11 and delayed. But the R63303 can work without the remained process if tCLK-POST is more than 256 UI.
- 4. The R63303 uses the divided DSI clock from the Host processor for TX clock.

Page: 14/30

Figure 4. Data to Clock Timing Definitions

Figure 5. DPHY Signaling Levels

Page: 15/30

Figure 6. HS Data Transimission in Burats

Figure 7. Switching the Clock Lane between Clock Transimission and LP mode

Page: 16/30

Figure 8. DSI LP mode

Page: 17/25

0.0

5 System Power On and Reset Sequences

5.1. Power On Sequence

The sequence for power On is shown in Figure 9.

Power On Sequence

Figure 9. Power on Sequence

NOTE:

- 1.AVDDH voltage rail may not be completely discharged during the power on sequence due to residual voltage due to previous turn off. If AVDDH rail is not fully discharged in the off state, the driver and panel power on sequence is guaranteed as long as AVDDH ramps up to the specified value in max 3.5ms after PWREN becomes active (high).
- 2. This display has 4 control signals: RESETB, PWREN, PIFA, & HIFA. RESETB is an input signal with no PU / PD . PWREN, PIFA & HIFA are push pull output signals. The output signals states are specified as follows:
- " Sleep in Mode and Ultra Low Power Mode: PWREN is low. PIFA and HIFA are Hi-Z.
- " Normal Mode : PWREN is active (high). Our normal register settings are such that PIFA & HIFA are configured for low output

Page: 18/25

0.0

5.2. Power Off Sequence

The sequence for power On is shown in Figure 10.

Power OFF Sequence

Figure 10. Power on Sequence

Page: 19/25

0.0

5.3 Software Flow & Register Settings

The display follow the basic software flowchart illustrated in Figure 10 and in following tables.

Figure 11. Software Flowchart

Page: 20/25

0.0

Table 9: Block A: Power on & Reset

Step	Operation
1	Apply DVDD
2	Toggle
3	LCM sends PWREN to logic high to enable AVDDH
4	AVDDH turns on

Table 9.1: Block B: Initialize MIPI

Step	Register/ Command	Parameter/Setting	Operation
1			Initialize System side MIPI block
2	0x00		Send MIPI NOP
3			Delay 6ms
4			Start MIPI Highspeed Clock

Table 9.2:Block C: Display Settings

Step	Register/ Command	Parameter/Setting	Operation			
1	Optionally override EEPROM setting in supplier-specific electrical					
'	specification					

Table 9.3: Block D: Sleep out & Display On

Step	Register/ Command	Parameter/Setting	Operation
1			Delay 10ms
2	0x11		Sleep Out
3			Delay minimum 6 frames(100ms)
4	0x29		Display On
5			Delay minium 3 frames(50ms)
6			Backlight On

Page: 21/25

Table 9.4: Block E: Display Off & Sleep In

Step	Register/ Command	Parameter/Setting	Operation
1			Blacklight Off
2			Send White Image Data
3			Delay minimum 6 frames(100ms)
4	0x28		Display Off
5			Delay 1ms
6	0x10		Sleep In Command

Table 9.5: Block F: Power Off & Reset

Step	Register/ Command	Parameter/Setting	Operation			
1	LCM turns off PWREN (logic low) to disable AVDDH					
2	Disable Host side MIPI I/F					
3	Reset low					

Page: 22/25

0.0

C. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min	١.	Тур.	Max	(.	Unit	Remark	
Response Time											
Rise		Tr	θ=0°			6	15		ms	Note 3	
Fall		Tf				20	30		ms		
Contrast	ratio	CR	At optimized	100)	150				Note 4	
	Top					50					
Viewing	Bottom		OD □ 40			50			-1	Note 5	
Angle	Left		CR□10			50			deg.	Note 5	
	Right					50					
I li ala anav	Тор					50					
High gray	Bottom		CR≧10			50			مامم	Note 5	
level	Left					50			deg.	Note 5	
inversion	Right					35					
	Тор					50					
Low gray	Bottom		CR≧10			50			مام ما	Note 5	
level	Left			CR≦10			50			deg.	Note 5
inversion	Right					50					
Brightne	SS	Bottom	θ=0°	450		500			cd/m ²	Note 6	
NTSC	•	Left	θ=0°			50					
	\//bito	Х	θ=0°			0.309					
	White	Y	θ=0°			0.324					
	D. I	Х	θ=0°			0.610					
01	Red	Y	θ=0°			0.345					
Chromaticity		Х	θ=0°			0.320					
	Green	Y	θ=0°			0.555					
	Divi	Х	θ=0°			0.150					
	Blue	Υ	θ=0°			0.120					
Uniform	ity	ΔYL	%			80			%	Note 7	

Note 1: Measured under Ambient temperature =25 $^{\circ}$ C, and LED lightbar current I_L = 20mA in the dark room.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Page: 23/25

0.0

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

 $Contrast\ ratio\ (CR) = \frac{Photo\ detector\ output\ when\ LCD\ is\ at\ "\ White"\ status}{Photo\ detector\ output\ when\ LCD\ is\ at\ "\ Black"\ status}$

Page: 24/25

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 7: Luminance Uniformity of these 9 points is defined as below:

Uniformity = $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$

Page: 25/25

0.0

D. Reliability test items

1. Test items and conditions:

No.	Test items	Condition	Remark	
1	High temperature storage	Ta= 80 ℃	500H	
2	Low temperature storage	Ta= -30 ℃	500H	
3	High temperature operation	Ta= 70 ℃	500H	
4	Low temperature operation	Ta= -20 ℃	500H	
5	High temperature and high humidity	Ta= 50℃. 90% RH	240H	Operation
6	Heat shock	-30 °C ~80 °C /50 cycles	1H/cycle	Non-operation
7	Electrostatic discharge	±HBM 2KV, once for the non-operation mod	each terminal in	Non-operation

Note: After finishing the test, leave the samples under room temperature and normal humidity for 2 hours, and then this module should work normally.

2. Failure Judgment Criterion:

- a. Neither abnormality nor significant visible deterioration should be found on display quality and appearance.
- b. There should be no functional abnormalities on display quality.

Page: 26/25

0.0

E. Packing

Page:

27/25

F. Outline Dimension

0.0

Page:

28/25

Page:

29/25

ш ORIGINAL MODEL of 3rd Angle SIZE TFT-LCD MODULE 97.03H29.000 ANGLE GENERAL TOLERANCE AU Optronics DESCRIPTION () NO: H354VL02 DRAWING NO.(PART Š. S REV CRITICAL DIABBIGON MAJOR DIABBIGON CHECK-CODE DINES 2010/07/12 ⊚≭⊕ CHECKED MATERIAL PINISHED ±0.13 (FIDUCIAL TO P-CHASSIS EDGE) (LCM AA TO P-CHASSIS EDGE) This drawing is the property of AU Optronics Corp. and should not be disclosed to any third party without prior permission of AU Optronics Corp.