GRUPO FLIP de Fundamentos Físicos de la Informática

P14. Dado el circuito de la figura:

- a) Determina el valor de la fuerza electromotriz ε para que la intensidad que circula por el circuito sea de **2A** en el sentido indicado.
- b) Calcula la diferencia de potencial entre los puntos **A** y **B** (V_A-V_B).
- c) Indica que elementos del circuito aportan energía y cuales consumen. Haz un balance de potencias.
- d) Calcula el rendimiento del motor.

Solución: ε = 14V, V_A-V_B= 22V, P5 Ω =20W, P4 Ω =16W, P8 Ω =32W, P12 Ω =48W, P1 Ω =4W, PM =20W, Pt =8W Pg60 =120W, Pg14 =28W, PC =148= Pg =120+28, η =29.4%

P15. Dado el circuito de la figura con una corriente I=1A horaria

- a) calcula la fuerza contraelectromotriz del motor (0.3 puntos)
- b) determina la diferencia de potencial entre los puntos A y B (0.5 puntos)
- c) describe el balance de potencia incluyendo todos los elementos (0.9 puntos)
- d) calcula el rendimiento del motor (0.3 puntos)

GRUPO FLIP de Fundamentos Físicos de la Informática

P16. En el circuito de la figura, el motor está alimentado por un **generador ideal** de f.e.m. ε=20 V. La potencia consumida por el motor es Pc=40 w y su rendimiento del 80 %. Calcular:

- a) La potencia suministrada por el generador al circuito Ps.
- b) La intensidad de corriente del circuito, **I**, indicando la **polaridad del motor** (terminales positivo y negativo).
- c) La potencia transformada por el motor en energía mecánica, P_t y la consumida en su resistencia interna $P_{r'}$.
- d) La f.c.e.m. ε' y la resistencia interna r' del motor.
- e) Si la resistencia interna del motor fuera nula, ¿cuál sería su rendimiento?

P17. El motor del circuito de la figura consume **110 W**, de los que un **20%** lo es por efecto Joule. Si la fuente suministra **210 W** al circuito, determina:

- a) Potencia consumida en la resistencia de 25 Ω .
- b) Si la fuente genera una potencia de **220 W**, determina las características de la fuente, ε y r.
- c) Las características del motor ε'y r'.

GRUPO FLIP de Fundamentos Físicos de la Informática

P18. Dado el circuito de la figura, calcula:

- a) La intensidad que circula por cada una de las ramas en el sentido indicado.
- b) El generador equivalente de Thevenin entre **A** y **B**, indicando claramente su polaridad.
- c) La intensidad de corriente que circularía por una resistencia de 5 k Ω que conectásemos a los puntos A y B.

Solución: I_1 =0.225 mA, I_2 =0.212 mA, I_3 =-0.437 mA, V_A - V_D = 6.75 V, Req= 2.5k Ω , placa positiva arriba, $I5k\Omega$ = 0.9 A

P19. Dado el circuito de la figura,

- a) Determina las intensidades de rama I_{AB} , $I_{B-TIERRA}$, I_{BC} , $I_{C-TIERRA}$ y I_{CD} .
- b) Calcula el potencial en el punto D.
- c) Generador equivalente de Thevenin entre el punto *D* y tierra, indicando claramente su polaridad.
- d) ¿Qué corriente circularía por un receptor de 10 V de fuerza contraelectromotriz que se conectase entre D y tierra? Sol: a) $I_{AB} = 32/17$ A; $I_{BC} = I_{C-TIERRA} = -6/17$ A; $I_{B-TIERRA} = 38/17$ A; $I_{CD} = 0$;b) $V_D = 280/17$ V; c) $e_T = 280/17$ V; $R_T = 450/17$ W; d) i = 11/45 A

GRUPO FLIP de Fundamentos Físicos de la Informática

P20. Dado el circuito de la figura, calcula:

- a) La intensidad de corriente en cada rama con los sentidos mostrados, $I_1,\ I_2\ y\ I_3.\ (1.2\ puntos)$
- b) La diferencia de potencial entre los puntos B y D, V_B-generador equivalente de Thevenin entre los puntos B y indicando claramente su polaridad. (0.8 puntos)

- **P21.** La figura muestra dos placas conductoras paralelas y perpendiculares al plano del papel, siendo 5 mm la distancia entre ellas. Un campo magnético de 2 T actúa en el espacio entre ambas placas, tal y como puede verse en la figura. Un electrón entra en el espacio entre placas con velocidad 2·10⁶ m/s. Calcula:
- a) La fuerza debida al campo magnético que actúa sobre el electrón cuando está entrando en el espacio entre placas (q-=-1,6·10⁻¹⁹ C); indica su dirección.
- b) Si la placa inferior está conectada a tierra, ¿qué potencial hay que aplicar a la placa superior para que el electrón no se desvíe de su trayectoria rectilínea?

Cuaderno P2 de problemas 2018 GRUPO FLIP de Fundamentos Físicos de la Informática

P22. Sea la espira rectangular de la figura de lados **2a** y **b**, recorrida por una corriente **I** en el sentido indicado, situada en el interior de un campo magnético no uniforme $\vec{B} = B_0 \frac{a}{x} \vec{k}$

(B₀ constante positiva). Calcular:

- a) La fuerza sobre el lado 1 de la espira.
- b) La fuerza sobre el lado 2 de la espira.
- c) El momento magnético de la espira.

P23. Sean dos conductores paralelos indefinidos, separados una distancia 2d, y con dos corrientes I de sentidos contrarios. Calcula el campo magnético producido por ambos conductores

- a) en el punto A(d,0,0)
- b) en el punto **B(4d,0,0)**
- c) en el punto A si las dos corrientes cambiaran sus sentidos.

GRUPO FLIP de Fundamentos Físicos de la Informática

P24. Sobre la espira rectangular de la figura, de lados **2a** y **b**, y resistencia **R**, actúa un campo magnético uniforme **B** = **2sen(5t) T** perpendicular a la espira. Calcular. en un instante t>0:

- a) El flujo magnético ϕ que atraviesa la espira.
- b) Fuerza electromotriz ε inducida en la espira.
- c) Intensidad de corriente i que circula por la espira.
- d) El módulo de la fuerza que actúa sobre uno de los lados de longitud b.

P25. Una espira cuadrada de lado **a** y resistencia **R** se encuentra en el interior de un campo magnético uniforme que varía con el tiempo según la expresión $\vec{B} = (3t+2)\vec{k}$ \vec{T} siendo \vec{t} el tiempo en segundos. Para un instante de tiempo \vec{t} cualquiera, calcula:

- a) Flujo del campo magnético a través de la espira en función del tiempo.
- b) La fuerza electromotriz inducida en la espira.
- c) La corriente inducida en la espira, indicando clara y razonadamente su sentido.
- d) En el instante *t*=2 *s*, calcula la fuerza magnética que actúa sobre el lado superior de la espira.

