

4^{ème}Math Classe: (Gr Standard)

Série 25 devoir de controle2 corrigée

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Chimie

Exercice 1

(5)

Toutes les solutions sont prises à 25°C, température à laquelle le produit ionique de l'eau est **Ke** = 10⁻¹⁴. On négligera les ions provenant de l'ionisation propre de l'eau devant ceux provenant de l'ionisation de. chacune des monobases étudiées

- 1°) On considère une solution aqueuse (S) d'une monobase B, de concentration molaire C et de pH Montrer que Pour une solution aqueuse de base forte son pH s'écrit : pH = pKe + log C.
- 2°)On dilue **n fois** la solution (S), on obtient une solution aqueuse (S') de concentration molaire C' et dont le **pH** a une valeur **pH**'. Montrer que : $\mathbf{n} = \mathbf{10}^{(\mathbf{pH} \mathbf{pH'})}$.
- 3°) Le taux d'avancement final de la réaction de la monobase B avec l'eau est noté τ_f .

Exprimer τ_f en fonction du **pH** de la solution aqueuse de B, sa concentration molaire C et **pKe**. **4°**)On prépare trois solutions aqueuses (S₁), (S₂) et (S₃) de même concentration molaire C₀ et contenant respectivement les monobases B₁, B₂ et B₃. On dilue **5 fois** chacune des trois solutions précédentes. Les mesures de pH des trois solutions avant et après la dilution, fournissent les résultats consignés dans le tableau suivant :

Solution	(S ₁)	(S ₂)	(S ₃)
pH avant la dilution	10,95	12,70	10,10
pH après la dilution	10,60	12,00	9,75

- a- Montrer que la monobase B₂ est forte.
- b- Déterminer la valeur de Co.
- c- Justifier que les monobases B₁ et B₃ sont faibles
- d- Comparer les forces des monobases B1 et B3.
- 5°) on prepare une solution (S₄)de la baseNH₃ concentration molaire $C_4 = 10^{-1}$ mol L⁻ et de PH₄=11.1
- a- Déduire que NH₃ est faiblement ionise
- b- Montrer alors que laconstante d'acidité Ka du couple NH4/NH3 vérifie La relation

$$\log \tau_f = -\frac{1}{2} \log(C_2, \frac{Ka}{Ke})$$

c- La courbe suivante représente la variation de $\log \tau_f = f(\log c)$ ou c désigne la concentration de la

solution d'ammouniac NH3 préparée a partir de(S4)

- *Justifier que cette courbe est celle d'une base faible
- **Déduire l'effet d'une dilution sur l'ionisation de cette base
- *** déterminer la valeur du pka du couple NH₄/NH₃ et la valeur de a indiquer sur le graphe

Physique

Exercice 2

 \mathcal{L} e circuit électrique du document 1 page annexe, comporte en série une bobine (b) d'inductance L et de résistance $\mathbf{r} = 25 \ \Omega$, un condensateur (c) de **capacité** C, un résistor de résistance R, un ampèremètre (A) et un générateur électrique (G) produisant entres ses bornes une tension alternative sinusoïdale d'amplitude U_m constante, de fréquence Nréglable et de valeur instantanée $\mathbf{u}(\mathbf{t}) = \mathbf{U}_m$ sin $(2 \ \pi \mathbf{N} \ \mathbf{t})$.

On désigne par $\mathbf{u_1(t)} = \mathbf{U_{1m}} \sin{(2 \pi \mathbf{N} \mathbf{t} + \phi_1)}$, la valeur instantanée de la tension aux bornes de l'ensemble résistor et condensateur (c).

I/

- 1°) Faire sur le document 1, les connexions à un oscilloscope permettant de visualiser simultanément la tension u sur la voie Y₁ et la tension u₁ sur la voie Y₂.
- 2°) Etablir l'équation liant l'intensité i(t), sa dérivée première, sa primitive et la tension u(t).

Une solution de l'équation trouvée est de la forme : $i(t) = I_m \sin(2 \pi N t + \phi_i)$.

3°)La tension instantanée aux bornes de la bobine (b), s'écrit sous la forme : $u_2(t) = U_{2m} \sin{(2 \pi N t + \phi_2)}$ Exprimer U_{2m} en fonction de r, L, I_m et N.

II/ Pour la valeur N₁ de la fréquence N du générateur (G), l'ampèremètre (A) indique la

valeur $I_1 = 0.08/\sqrt{2}$ A et sur l'écran de l'oscilloscope, on obtient les courbes de la figure 1

représentant les tensions $u\left(t\right)$ et $u_{l}(t)$.

- 1°) Laquelle des deux courbes C₁ etC₂ Justifier.
- 2°)En se servant des courbes ci-dessus, déterminer :

3°) Sur le document 2 page annexe, on a représenté les vecteurs de Fresnel

$$\overrightarrow{OA}$$
, \overrightarrow{AB} et \overrightarrow{OB}

Correspondent aux tensions u1, u et u2 à la fréquence N1.

- a- En exploitant de la construction de Fresnel du document 2, déterminer la tensionmaximale U_{2m}. En déduire l'inductance L de la bobine (b).
- **b--**Représenter sur le document 2, les vecteurs de Fresnel :
 - * V_1 associé à la tension $u_r = r$ i.

* V_2 associé à la tension $u_R = R$ i.

- c-En déduire la valeur de la résistance R et celle de la capacité C.
- 4°°) Déterminer la phase initiale φ_i. En déduire la nature inductif, capacitif ou résistif ducircuit.

III/ On prend dans ce qui suit : $r = 25 \Omega$, $R = 55 \Omega$, L = 35 mH et $C = 6 \mu\text{F}$.

On change la fréquence du générateur (G) et pour une valeur N₂ de N, la tensionefficace U₃ aux bornes du résistor et la tension efficace U₄ aux bornes de l'ensemble

{condensateur (c) et bobine (b)} vérifie la relation : $U_3 = 2.2 U_4$.

- 1°) Montrer que le circuit RLC série, est le siège d'une résonance d'intensité.
- 2°)Déterminer les tensions U3 et U4.

a-Déterminer Ucm, N2.

b-A-t-on le phénomène de surtension au niveau du condensateur? Justifier laréponse.

Oscilloscope

Document 1

Correction

Exercice 1 (S

