Листок № 4

Литература: основной конспект, с. 60–72, 76–81.

- 1. Пусть все элементы множества X имеют вид $\{a,b\}$. Что означает аксиома выбора в применении к X? Ясно ли, как без нее обойтись?
 - 2. Есть ли функция выбора у пустого множества?
- **3.** Не используя аксиому выбора, докажите существование функции выбора для следующих множеств:
 - а) множество $\mathcal{P}_1(U)$ всех одноэлементных подмножеств множества U;
 - б) произвольное бинарное отношение R;
 - в) любое множество кругов на плоскости;
 - г) любое множество треугольников (с внутренностью или без) на плоскости.

(Нужно дать точное определение функции выбора с помощью «основных способов задания множеств» и проверить функциональность с тотальностью.)

- **4.** Множество X таково, что $\cap X \neq \emptyset$. Есть ли у X функция выбора? Необходима ли аксиома выбора для ее существования?
- **5.** Рассмотрите несколько конечных отношений и выясните, какими свойствами (рефлексивность и т. п.) они обладают.
 - **6.** Какими свойствами обладает отношение R на $\mathcal{P}(U)$, если $aRb \iff a \cap b = \varnothing$?
- **7.** Как устроены отношения $R \subseteq A^2$, симметричные и антисимметричные одновременно?
 - **8.** Докажите, что отношение $R \circ R^{-1}$ всегда симметрично.
- **9.** Пусть отношения P и Q симметричны. Докажите, что отношение $P \circ Q$ симметрично тогда и только тогда, когда $P \circ Q = Q \circ P$.
 - **10.** Докажите, что если отношения P и Q транзитивны, то таково же $P \cap Q$.
- **11.** Пусть $f: A \to \mathbb{N}$ и отношение \prec на множестве A таково, что $a \prec b \iff f(a) < f(b)$ («сравнение студентов по успеваемости»). Докажите, что \prec есть строгий частичный порядок на A. Сравните нестрогий «напарник» \preccurlyeq порядка \prec с отношением $\{(a,b) \in A^2 \mid f(a) \leqslant f(b)\}$.
- **12.** Докажите, что если P и Q суть строгие (либо нестрогие) частичные порядки на множестве A, то $P\cap Q$ и P^{-1} таковы же.
- 13. Докажите, что $\varphi(P^{-1}) = (\varphi(P))^{-1}$ для всех $P \in S(A)$ (напомним, что φ отображает строгий порядок в его нестрогого «напарника»).
- **14.** Пусть R частичный порядок на A. Докажите, что $\min_R A = \max_{R^{-1}} A$ и $\max_R A = \min_{R^{-1}} A$.
- **15.** Пусть < строгий порядок на A. Если элемент x наибольший во множестве $B \subseteq A$, то $\max_{<} B = \{x\}$. В частности, наибольший элемент B единствен.
- **16.** Пусть на множестве $A = \mathcal{P}(\mathbb{N}) \setminus \{\emptyset, \mathbb{N}\}$ задан порядок \subseteq . Найдите множества $\min A$ и $\max A$.

- **17.** Найдите $\min_{\mathbb{N}} \mathbb{N}$ и $\max_{\mathbb{N}} \mathbb{N}$. Проделайте то же для $\mathbb{N} \setminus \{0,1\}$.
- **18.** Допустим $\max_{<} A = \{x\}$. Всегда ли x есть наибольший элемент ч. у. м. (A, <)?
- 19. Рассмотрите какой-нибудь конечный порядок и для нескольких его подмножеств найдите множества верхних и нижних граней. Найдите инфимумы и супремумы, когда таковые имеются.
- **20.** Пусть (A,<) ч. у. м. и $B,C\subseteq A$. Обозначим B^{\triangle} множество верхних, и B^{∇} множество нижних граней множества B. Докажите, что:
 - a) $(B \cup C)^{\triangle} = B^{\triangle} \cap C^{\triangle}$; $(B \cup C)^{\nabla} = B^{\nabla} \cap C^{\nabla}$;
 - 6) $B \subseteq C \Longrightarrow C^{\triangle} \subseteq B^{\triangle}$ и $C^{\nabla} \subseteq B^{\nabla}$;
 - B) $B \subseteq B^{\triangle \triangledown} \cap B^{\triangledown \triangle}$;
 - $\Gamma) \ B^{\triangle} = B^{\triangle \nabla \triangle}; \ B^{\nabla} = B^{\nabla \triangle \nabla}.$
 - **21.** В ч. у. м. $(\mathcal{P}(A), \subseteq)$ для произвольного $X \subseteq \mathcal{P}(A)$ найдите $\sup X$ и $\inf X$.
- **22.** При каких условиях подмножество является цепью и антицепью одновременно? Найдите все цепи и все антицепи линейно упорядоченного множества.
- **23.** Постройте в ч. у. м. $(\mathcal{P}(\mathbb{N}), \subseteq)$ цепь, имеющую наибольший, но не имеющую наименьшего элемента.
 - **24.** Докажите, что $(\mathbb{Q}, <) \ncong (\mathbb{Z}, <)$ и $(\mathbb{Q}, <) \ncong (\mathbb{R}, <)$.
 - 25. Рассмотрите несколько примеров решеток (полных решеток, полурешеток).
- **26.** Пусть $\varphi \colon A^2 \to A$, причем операция φ на A удовлетворяет условиям коммутативности, ассоциативности и идемпотентности. Пусть $x \le y \iff \varphi(x,y) = x$.
 - а) Докажите, что \leq нестрогий частичный порядок на A.
 - б) Докажите, что $\varphi(x,y) = \inf\{x,y\}$ в смысле введенного порядка для всех $x,y \in A$.
 - в) Приведите естественные примеры такой операции φ .
- **27.** Рассмотрите несколько естественных отношений эквивалентности. Как устроены соответствующие фактор-множества?
 - **28.** Пусть отношение R на множестве \mathbb{N}^2 таково, что $(a,b)R(c,d) \iff a+d=b+c$.
 - **29.** Докажите, что если R и Q эквивалентности на A, то R^{-1} и $R \cap Q$ таковы же.
- **30.** Докажите, что $R \subseteq A^2$ есть эквивалентность тогда и только тогда, когда $(R \circ R^{-1}) \cup \mathrm{id}_A = R$.
 - **31.** Проверьте, что если R и Q эквивалентности на A, то

$$R \circ Q = A^2 \iff Q \circ R = A^2.$$

- **32.** Для функции f найдите отношение $\ker f$ и множество $\mathbb{R}/\ker f$, если
- a) f(x) есть целая часть числа x;
- б) f(x) есть дробная часть числа x.

- **33.** Докажите, что для любого множества A и любой эквивалентности E на нем найдутся множество B и сюръекция $f\colon A\to B$, т. ч. $E=\ker f$.
 - **34.** Найдите все разбиения множества \varnothing .
- **35.** Пусть $\Sigma_1, \Sigma_2 \in \Pi(A)$. Пусть $\Sigma_1 \leq \Sigma_2$ (разбиение Σ_1 мельче разбиения Σ_2), если для каждого $\sigma \in \Sigma_1$ найдется $\tau \in \Sigma_2$, т. ч. $\sigma \subseteq \tau$. Проверьте, что $(\Pi(A), \leq)$ есть ч. у. м. **36.** Докажите, что $(\Pi(A), \leq) \cong (Eq(A), \subseteq)$.