Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт
з лабораторної роботи №6 з дисципліни
«Основи програмування»
«Організація підпрограм»
Варіант 34

Виконав студент <u>III-1134 Шамков Іван Дмитрович</u> (прізвище, ім'я, по батькові)

Перевірив викладач <u>Вітковська Ірина Іванівна</u> (прізвище, ім'я, по батькові)

Київ 2021 Лабораторна робота №5 Організація підпрограм

Лабораторна робота 6

Організація підпрограм

Mema – набути навичок складання і використання підпрограм користувача.

Варіант: 34

Умова задачі:

Нехай п трикутників задані двома сторонами і кутом між ними.
 Визначити трикутник, що має максимальну площу.

Математична модель:

Змінна	Тип	Ім'я	Призначення
Кількість	Цілий	N	Початкове дане
трикутників, що			
треба вивести			
Сторона А	Дійсний	side_a	Початкове дане
Сторона В	Дійсний	side_b	Початкове дане
Кут між ними	Дійсний	angle	Початкове дане
Число ПІ	Дійсний,	PI	Початкове дане
	константа		
Номер поточної	Цілий	index	Проміжне
найбільшої			значення
змінної			
Початкова	Цілий	number	Початкове дане
кількість			
трикутників			
Площа	Дійсний	square	Проміжне
трикутника			значення
Максимальна	Дійсний	max_square	Результат
площа			

Постановка задачі:

Отже, математичне формулювання нашої задачі полягає в тому, щоб отримати значення n, яке є кількістю трикутників. n разів ми питаємо у користувача потрібні параметри для обчислення площі трикутника. Перевіряємо розмір поточної площі із останньою

максимальною площею, що записали. Якщо вона більше, то записуємо нове значення.

Текст файла проекту:

Python:

```
from math import sin, pi #imnopтуємо з бібліотеки функцію сінус та константу ПІ

@def deg_to_rad(angle): #Функція, що переводить градуси в радіани angle=angle*(pi/180) return angle

@def max_triangle(n:int, number, max_square=0, index=0): #Функція для обрахунку площі заданих трикутників та пошуку найбільшої серед них if n==0;#Крайній випадок: обраховано п площ трикутників print("Трикутник niд номером", number+1-index, "має максимальну площу", max_square) return

#Запитуємо довжини сторін трикутника та значення кута між ними side_a=float(input("Enter length of side_a ")) side_b-float(input("Enter length of side_b ")) angle=float(input("Enter angle ")) # обчислюємо площу трикутника square=0.5*side_a*side_b*sin(deg_to_rad(angle))

© if square>max_square:#Перевіряємо, чи поточна максимальна площа менша за площу тільки-но знайденого трикунтика max_square=0.5*side_a*side_b*sin(deg_to_rad(angle)) index=n=3anam'ятовуємо номер трикутника з максимальною площею max_triangle(n-1, number, max_square, index)#Викликаємо цю ж функцію, в яку записуємо нові дані

n=int(input("Enter number of triangles"))#Запитуємо в користувача кількість трикутників max_triangle(n, n)#Викликаємо функцію для пошуку найбільшої площі трикутника
```

C++:

```
#define _USE_MATH_DEFINES //Для константи M_PI
double deg_to_rad(double angle); //функція, що переводить градуси в радіани
void max_triangle(int n, int number, double max_square = 0, int index = 0);//функція для обрахунку площі заданих трикутників та пошуку найбільшої серед них
     //Запитуемо в користувача кількість трикутників cout << "Enter number of triangles" << endl;
                          кцію для пошуку найбільшої площі трикутника
    max triangle(n, n);
double deg_to_rad(double angle) { ... }
void max_triangle(int n, int number, double max_square, int index )
     double side_a, side_b, angle;
         cout << "triangle with the number " << number + 1 - index << " has the biggest square and it is equal to: " << max_square;</pre>
     //Запитуємо довжини сторін трику
cout << "Enter side_a" << endl;
     cin >> side_a;
cout << "Enter side_b" << endl;</pre>
     cin >> side_b;
cout << "Enter angle" << endl;</pre>
     cin >> angle;
     //обчислюемо площу трикутника
double square = 0.5 * side_a * side_b * sin(deg_to_rad(angle));
     //Перевіряємо, чи поточна максимальна площа мен if (square > max_square)
         max_square = square;
index = n;
     //Викликаемо цю ж функцію, в яку записуємо нові max_triangle(n - 1, number, max_square, index);
```

Копії екранних форм:

Python:

```
Enter number of triangles 5
Enter length of side a 12
Enter length of side b 6
Enter angle 67
Enter length of side a 14
Enter length of side_b 15
Enter angle 21
Enter length of side a 2
Enter length of side_b 5
Enter angle 13
Enter length of side a 60
Enter length of side_b 1
Enter angle 30
Enter length of side a 5
Enter length of side_b 5
Enter angle 45
Трикутник під номером 2 має максимальну площу 37.62863470225653
```

C++:

```
Enter number of triangles
Enter side_a
Enter side_b
Enter angle
Enter side_a
14
Enter side_b
Enter angle
Enter side_a
_
Enter side_b
Enter angle
Enter side_a
Enter side_b
Enter angle
Enter side_a
Enter side_b
Enter angle
triangle with the number 2 has the biggest square and it is equal to: 37.6286
```

Висновок

Отже, виконавши цю лабораторну роботу, ми навчилися використовувати пыдпрограми. Проекти, на мою думку, розроблені коректно, адже заплановані елементи працюють, а саме: отримання даних від користувача, виклик функції пошуку найбільшого значення площі та переведення градусів у радіани. Перша функція викликає саму себе до того моменту, поки не буде обрахована задана кількість площ трикутників. До того моменту ми у самій же функції викликаємо її, але вже задаємо нові параметри. При цьому ми постійно запам'ятовуємо найбільшу площу трикутника та його номер. У кінці виводимо їх.