Vorlesung: Numerik 1 für Ingenieure

Version 13.11.2018

Michael Karow

6. Vorlesung

Nichtlineare Gleichungen und Iterationsverfahren in $\mathbb R$

Motivation: In vielen Anwendungen kommen nichtlineare Probleme vor. Solche Probleme sind zum Beispiel:

(1) Löse die Gleichungen

$$x = \cos(x), \qquad x = e^{-x}.$$

(2) • Berechne die Nullstellen eines Polynoms.
 Um konkrete Beispiele vor Augen zu haben: Löse

$$5x^7 - 3x^6 + x^3 - 1 = 0,$$
 $x^2 - 5 = 0.$

Finde alle Lösungen von

$$\cos(x)\cosh(x) + 1 = 0.$$

Terminologie:

Probleme vom Typ (1) heißen Fixpunktprobleme. Die allgemeine Form ist

$$x = \phi(x)$$

mit einer gegebenen Funktion $\phi(x)$.

Probleme vom Typ (2) heißen Nullstellenprobleme. Die allgemeine Form ist

$$f(x) = 0$$

mit einer gegebenen Funktion f(x).

Nullstellenprobleme und Fixpunktprobleme können ineinander umgewandelt werden

Umwandlung Fixpunktproblem → Nullstellenproblem: Setze

 $f(x) := x - \phi(x)$

Dann

$$x = \phi(x) \Leftrightarrow f(x) = 0.$$

Umwandlung Nullstellenproblem → Fixpunktproblem: Setze

$$\phi(x) := x + b(x) f(x).$$

mit einer gegebenen Funktion $b(x) \neq 0$. Dann ist

$$f(x) = 0 \Leftrightarrow x = \phi(x).$$

Beliebte Technik in der Numerik: Verwandle Nullstellenprobleme in Fixpunktprobleme

Veranschaulichung von Fixpunktproblemen

Fixpunkte der Funktion ϕ sind diejenigen Stellen, an denen die Kurve $y=\phi(x)$ die Kurve y=x schneidet.

Veranschaulichung nur auf der x-Achse:

Fixpunktiteration (1-dimensional, d.h. in \mathbb{R})

Gegeben sei ein (endliches oder unendliches) Intervall $\mathcal{J} \subseteq \mathbb{R}$ und eine Funktion (Selbstabbildung) $\phi: \mathcal{J} \to \mathcal{J}$.

Iterationsfolge:

- (1) Wähle einen Startwert $x_0 \in \mathcal{J}$.
- (2) Setze $x_{k+1} := \phi(x_k), \quad k = 1, 2, \dots$

Wenn ϕ stetig ist, und die Iterationsfolge x_0, x_1, x_2, \ldots konvergiert, Es gilt: dann ist der Grenzwert ein Fixpunkt von ϕ .

Beweis: Sei $x_* = \lim_{k \to \infty} x_k$. Dann ist

$$\phi(x_*) = \phi(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} \phi(x_k) = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} x_k = x_*.$$
Stetigkeit

Merkbild:

$$x_{k+1} = \phi(x_k)$$
 $\downarrow \qquad \downarrow$
 $x_* = \phi(x_*)$ wenn die Folge konvergiert und ϕ stetig ist.

Fixpunktsatz 1

Sei $\mathcal{J}=[a,b]$ ein endliches, abgeschlossenes Intervall und $\phi:\mathcal{J}\to\mathcal{J}$ stetig. Dann hat ϕ mindestens einen Fixpunkt x_* .

Anschauung dazu:

Anschauliche Begründung des Fixpunktsatzes: Der Graph von ϕ (blaue Kurve) beginnt am linken Rand des Quadrats und endet am rechten Rand. Die Strecke x=y (rote Strecke) teilt das Quadrat in ein linkes und ein rechtes Dreieck. Daher muss der Graph die Strecke y=x in mindestens einem Punkt schneiden.

Formaler Beweis: Die Funktion $f(x) = \phi(x) - x$ ist stetig. Es ist $f(a) \ge 0$ und $f(b) \le 0$. Aus der Stetigkeit von f folgt nach dem Zwischenwertsatz, dass mindestens eine Stelle x_* zwischen a und b existiert, so dass $f(x_*) = 0$.

Fixpunktsatz 2

Sei $\mathcal{J} = [a, b]$ endliches, abgeschlossenes Intervall und $\phi : \mathcal{J} \to \mathcal{J}$ so, dass für alle verschiedenen $x_1, x_2 \in \mathcal{J}$,

$$\left| \frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} \right| < 1. \tag{*}$$

Dann hat ϕ genau einen Fixpunkt $x_* \in \mathcal{J}$.

Beweis. (*) kann man auch so schreiben:

$$|\phi(x_2) - \phi(x_1)| < |x_2 - x_1|$$
 für alle verschiedenen $x_1, x_2 \in \mathcal{J}$. (**)

Dies impliziert die Stetigkeit von ϕ , denn für eine Folge x_k mit Grenzwert x_0 ist

$$0 \le |\phi(x_k) - \phi(x_0)| < |x_k - x_0| \to 0$$
 für $k \to \infty$,

also $\lim_{k\to\infty}\phi(x_k)=\phi(x_0)$. Nach Fixpunktsatz 1 hat ϕ mindestens einen Fixpunkt.

Angenommen, es gibt zwei verschiedene Fixpunkte x_1 und x_2 , also $\phi(x_1) = x_1$ und $\phi(x_2) = x_2$. Dann, wegen (**),

$$|x_2 - x_1| = |\phi(x_2) - \phi(x_1)| < |x_2 - x_1|$$
. Widerspruch.

Dehnungsschranken und Ableitung

Die Bedingung
$$\left| \frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} \right| < 1$$
 im Fixpunktsatz 2

kann man bei differenzierbarem ϕ durch Ableiten prüfen, denn nach dem

Mittelwertsatz der Differentialrechnung gilt

$$\frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} = \phi'(\xi)$$

für ein ξ zwischen x_1 und x_2 .

Lemma (Hilfssatz). Sei \mathcal{J} ein Intervall und $\phi: \mathcal{J} \to \mathbb{R}$ differenzierbar so, dass

$$M \leq |\phi'(\xi)| \leq L$$
 für alle $\xi \in \mathcal{J}$.

Dann gilt für alle verschiedenen $x_1, x_2 \in \mathcal{J}$,

$$M \leq \left| \frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} \right| \leq L,$$

also auch

$$M |x_2 - x_1| \le |\phi(x_2) - \phi(x_1)| \le L |x_2 - x_1|.$$

Der Faktoren L und M in diese Ungleichung heissen **Dehnungsschranken**. Die obere Dehnungsschranke L nennt man auch **Lipschitz-Konstante**.

Anschauung zur Dehnung

Dehnung =
$$\frac{|\phi(x_1) - \phi(x_2)|}{|x_2 - x_1|} = \frac{\text{Abstand der Bilder}}{\text{Abstand der Urbilder}}$$
.

Die Dehnung ist der Betrag der Steigung. Im Kontext des Fixpunktproblems ist das Wort 'Dehnung' jedoch angemessener als 'Steigung'.

Dehnung<1:

Dehnung>1:

Fixpunktsatz 3

Sei $\phi:[a,b] \to [a,b]$ eine differenzierbare Funktion und sei $L < \mathbf{1}$ so, dass

$$|\phi'(x)| \leq L$$
 für alle $x \in [a, b]$.

Dann besitzt ϕ in [a,b] genau einen Fixpunkt x_* .

Jede Iterationsfolge $x_{k+1} = \phi(x_k)$ welche in [a, b] startet, konvergiert gegen x_* . Genauer gilt

$$|x_{k+1} - x_*| \le L |x_k - x_*|$$
 (*)

und folglich

$$|x_k - x_*| \le L^k |x_0 - x_*| \rightarrow 0 \quad \text{für } k \to \infty.$$
 (**)

Merke: Dehnungschranke <1 impliziert (lineare) Konvergenz.

<u>Beweis:</u> Existenz und Eindeutigkeit des Fixpunktes folgen aus Fixpunktsatz 2 und dem Lemma. Ebenfalls aus dem Lemma folgt

$$|\phi(x_k) - \phi(x_*)| \le L |x_k - x_*|.$$

Also, wegen $x_{k+1} = \phi(x_k)$ und $\phi(x_*) = x_*$,

$$|x_{k+1} - x_*| \le L |x_k - x_*|.$$

Dies mehrmals ineinander eingesetzt ergibt (**). Beispiel:

$$|x_3 - x_*| \le L |x_2 - x_*| \le L L |x_1 - x_*| \le L L L |x_0 - x_*| = L^3 |x_0 - x_*|.$$

Graphische Veranschaulichung einer Fixpunktiteration

In den Bildern unten sieht man die Veranschaulichung der Fixpunktiteration für die Funktion (Parabel)

$$\phi_a(x) = a x (1 - x), \qquad a = 2.8.$$

Die Kreuze auf der x-Achse sind die Werte x_k der Iterationsfolge $x_{k+1} = \phi(x_k)$ mit Startwert $x_0 = 0.1$. Genauere Erklärung in der Vorlesung.

2. Schritt

3. Schritt

4. Schritt

10. Schritt

Beispiel eines abstoßenden Fixpunkts

In den Bildern unten sieht man die Veranschaulichung der Fixpunktiteration für die Funktion (Parabel)

$$\phi_a(x) = a x (1 - x), \qquad a = 3.5.$$

Obwohl der Starwert $x_0 = 0.7$ nahe beim Fixpunkt liegt, konvergiert die Iterationsfolge nicht. In den ersten Schritten entfernen sich die Folgenglieder vom Fixpunkt. Einen solchen Fixpunkt nennt man abstoßend.

Anziehende und abstoßende Fixpunkte. Definition

Sei \mathcal{J} ein Intervall und $\phi: \mathcal{J} \to \mathcal{J}$ eine Selbstabbildung.

- 1. Ein Fixpunkt x_* von ϕ heißt (lokal) anziehend, falls es ein Intervall $\mathcal I$ um x_* gibt so, dass für jede Iterationsfolge $x_{k+1} = \phi(x_k)$, welche in $\mathcal I$ startet, die zugehörige Abstandsfolge $|x_k x_*|$ monoton fallend gegen 0 konvergiert.
- 2. Ein Fixpunkt x_* von ϕ heißt **abstoßend**, falls es ein Intervall \mathcal{I} um x_* gibt so, dass

$$|x_{k+1} - x_*| > |x_k - x_*|$$
 für $x_k \in \mathcal{I}$ und $x_{k+1} = \phi(x_k)$.

Abstoßende Fixpunkte können mit einem Iterationsverfahren nicht berechnet werden.

Wann ist ein Fixpunkt anziehend oder abstoßend?

Satz: Sei $\phi: \mathcal{J} \to \mathcal{J}$ stetig differenzierbar am Fixpunkt x_* .

- 1. Wenn $|\phi'(x_*)| < 1$, dann ist x_* anziehend.
- 2. Wenn $|\phi'(x_*)| > 1$, dann ist x_* abstoßend.

Begründung: Wähle im Folgenden $\epsilon > 0$ hinreichend klein.

1. Wenn $|\phi'(x_*)| < 1$, dann ist (wegen der Stetigkeit der Ableitung)

$$|\phi'(\xi)| \le L := |\phi'(x_*)| + \epsilon < 1$$

für alle ξ in einem hinreichen kleinen Intervall \mathcal{I} um x_* . (Ableitung macht keinen Sprung). Wende nun den 3. Fixpunktsatz an. Insbesondere gilt

$$|x_k - x_*| \le L^k |x_0 - x_*|$$

für jede Iterationsfolge, die in \mathcal{I} startet.

2. Wenn $|\phi'(x_*)| > 1$, dann ist (wegen der Stetigkeit der Ableitung)

$$|\phi'(\xi)| \ge M := |\phi'(x_*)| - \epsilon > 1.$$

für alle ξ in einem hinreichen kleinen Intervall $\mathcal I$ um x_* . Mit Mittelwertsatz folgt:

$$|\phi(x) - x_*| = |\phi(x) - \phi(x_*)| = |\phi'(\xi)| |x - x_*| \ge M |x - x_*|,$$
 wenn $x \in \mathcal{I}$.

Also

$$|x_{k+1} - x_*| \ge M |x_k - x_*| > |x_k - x_*|$$
 wenn $x_k \in \mathcal{I}$.

(*M* ist untere Dehnungsschranke)

Das Heron-Verfahren zur Berechnung von \sqrt{a}

Sei
$$a > 0$$
 und $\phi(x) = \frac{1}{2} \left(x + \frac{a}{x} \right), x > 0.$

Dann konvergiert die Folge

$$x_{k+1} = \phi(x_k) = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right)$$

für jeden positiven Startwert x_0 gegen \sqrt{a} .

Beweisschritte: Man zeigt (siehe Bild)

- (1) $\sqrt{a} \le \phi(x)$ für alle x > 0,
- (2) $\phi(x) \le x$ für alle $x \ge \sqrt{a}$.
- (3) Der einzige Fixpunkt von ϕ ist \sqrt{a} .

Aus (1) und (2) folgt, dass die Folge x_k spätestens nach dem zweiten Folgenglied monoton fallend und außerdem durch \sqrt{a} nach unten beschränkt ist. Monotone und beschränkte Folgen sind konvergent. Wie bereits allgemein gezeigt wurde, ist der Grenzwert ein Fixpunkt von ϕ , also \sqrt{a} .

In diesem Beispiel ist $\phi'(x_*) = \phi'(\sqrt{a}) = 0$.

Die Dehnungsschranke L wird beliebig klein, wenn man sich x_* nähert.

Lineare und superlineare Konvergenz

Wir haben gesehen: Wenn $|\phi'(x_*)| < 1$, dann konveriert eine Iterationsfolge, die hinreichend nah an x_* startet, gegen x_* , wobei

$$|x_{k+1} - x_*| \le L |x_k - x_*|.$$
 (*)

Dabei ist L etwas größer als $|\phi'(x_*)|$. Eine solche Konvergenz heißt (mindestens) linear.

Definition. Eine Folge x_k konvergiert **superlinear** gegen x_* , wenn

$$|x_{k+1}-x_*| \leq L_k |x_k-x_*|$$
 und $\lim_{k\to\infty} L_k = 0$.

Satz. Sei $\phi: \mathcal{J} \to \mathcal{J}$ stetig differenzierbar am Fixpunkt x_* mit $\phi'(x_*) = 0$. Dann konvergiert jede Iterationsfolge, die hinreichend nah an x_* startet, **superlinear** gegen x_* .

Wenn $\phi'(x_*) = 0$ und ϕ 2-mal stetig differenzierbar ist, dann hat man noch schnellere Konvergenz. Siehe die nächsten Seiten.

Konvergenzordnung von Folgen

Definition:

Eine Folge $x_k \in \mathbb{R}$ mit Grenzwert x_* konvergiert mindestens von der Ordnung $p \ge 1$ wenn eine Konstante L > 0 und ein Index k_0 existiert, so dass

$$|x_{k+1} - x_*| \le L |x_k - x_*|^p$$
 für alle $k \ge k_0$ (*)

Wenn p=1, dann nennt man die Konvergenz (mindestens) linear. Wenn p=2, dann nennt man die Konvergenz (mindestens) quadratisch.

Faustregel: Je höher die Konvergenzordnung, desto schneller ist die Konvergenz.

Bemerkung: Die Ungleichung (*) impliziert bereits Konvergenz, wenn 1) p=1 und L<1, oder 2) $p\geq 2$ und $|x_{k_0}-x_*|<\min\{1,1/L\}$.

Frage: Wann hat eine Iterationsfolge eine besonders hohe Konvergenzordnung?

Die Konvergenzordnung einer Iterationsfolge

Satz: Sei $\phi: \mathcal{J} \to \mathcal{J}$ p-mal stetig differenzierbar, wobei $p \geq 2$, und sei x_* Fixpunkt von ϕ , so dass

$$\phi'(x_*) = \dots = \phi^{(p-1)}(x_*) = 0.$$
 (*)

Dann konvergiert jede Iterationsfolge, die hinreichend nahe an x_* startet, mindestens von der Ordnung p gegen x_* .

Begründung: Nach dem Satz von Taylor ist

$$\phi(x) = \underbrace{\phi(x_*)}_{=x_*} + \phi'(x_*) (x - x_*) + \dots + \underbrace{\frac{\phi^{(p-1)}(x_*)}{(p-1)!}}_{(p-1)!} (x - x_*)^{p-1} + \underbrace{\frac{\phi^{(p)}(\xi)}{p!}}_{Restglied} (x - x_*)^p$$

mit einer Stelle ξ zwischen x und x_* . Unter der Voraussetzung (*) folgt

$$\phi(x) - x_* = \frac{\phi^{(p)}(\xi)}{p!} (x - x_*)^p.$$

Also auch

$$|\phi(x)-x_*| \leq \underbrace{\frac{1}{p!}\max_{\xi\in U_\epsilon}|\phi^{(p)}(\xi)|}_{L}|x-x_*|^p,$$

wobei $x \in U_{\epsilon} := \mathcal{J} \cap [x_* - \epsilon, x_* + \epsilon].$

Nullstellenprobleme und das Newton-Verfahren

Problem: Finde Nullstelle x_* von $f: \mathbb{R} \to \mathbb{R}$

Umwandlung des Nullstellenproblems in ein Fixpunktproblem:

Sei $b: \mathbb{R} \to \mathbb{R}$ eine Funktion, die in einer Umgebung von x_* nicht null wird. Setze

$$\phi(x) = x + b(x)f(x)$$

Dann ist die Nullstelle x_* ein Fixpunkt von ϕ .

Frage:

Kann man den Faktor b(x) so wählen, dass man quadratische Konvergenz bekommt?

Antwort: Setze $b(x) = -\frac{1}{f'(x)}$, also

$$\phi(x) = x - \frac{f(x)}{f'(x)} \qquad (*)$$

Dann hat man

$$\phi'(x_*) = 1 - \frac{f'(x_*)f'(x_*) - f(x_*)f''(x_*)}{f'(x_*)^2} = 0$$

und damit quadratische Konvergenz.

Voraussetzungen für diese Überlegungen sind aber:

f ist in einer Umgebung von x_* 2-mal stetig differenzierbar und $f'(x_*) \neq 0$.

Das Iterationsverfahren mit der Funktion (*) heißt Newton-Verfahren.

Eine andere Herleitung des Newton-Verfahrens

Problem: Finde eine Nullstelle x_* von $f: \mathbb{R} \to \mathbb{R}$

Angenommen, man weiss, dass die Nullstelle x_* in der Nähe von $x_0 \in \mathbb{R}$ liegt.

Dann ist $x_* = x_0 + h$ mit einer kleinen Korrektur h. Nach Taylor hat man

$$0 = f(x_*) = f(x_0 + h) = f(x_0) + f'(x_0)h + o(h).$$

Ignorieren des Restglieds o(h) und Umstellen nach h ergibt

$$h \approx -\frac{f(x_0)}{f'(x_0)}$$
, also $x_* = x_0 + h \approx x_0 - \frac{f(x_0)}{f'(x_0)}$

Die rechte Seite dieser approximativen Gleichung definiert man als x_1 :

$$x_1 := x_0 - \frac{f(x_0)}{f'(x_0)}.$$

 x_1 ist (hoffentlich) eine bessere Näherung an x_* als x_0 . Um noch bessere Näherungen zu bekommen, wiederholt man das Verfahren und erhält so die Iterationsfolge

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)}.$$

Geometrische Deutung des Newton-Verfahrens:

 x_{k+1} ist die Nullstelle der Tangente von f an der Stelle x_k (siehe nächste Seite).

Zur geometrischen Deutung des Newton-Verfahrens

Taylorentwickung von f an der Stelle x_k

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + o(x - x_k)$$

Gleichung der Tangente an f an der Stelle x_k :

$$T(x) = f(x_k) + f'(x_k)(x - x_k)$$

Nullstelle der Tangente:

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)} \qquad \Leftrightarrow \qquad T(x_{k+1}) = 0.$$

Eine Newton-Iteration muss nicht konvergieren

Hier ein Beispiel in dem eine Newton-Folge zwischen 2 Punkten oszilliert:

Eine Newton-Folge kann auch nach ∞ divergieren.

Ein weiterer unangenehmer Fall: Nach k Schritten ist man an einer Stelle x_k mit $f'(x_k) = 0$. Dann kann das nächste Folgenglied $x_{k+1} = x_k - f(x_k)/f'(x_k)$ nicht gebildet werden. (Geometrisch: Die Tangente an der Stelle x_k ist parallel zur x-Achse)

Eine hinreichende Bedingung für die Konvergenz des Newton-Verfahrens

Satz:

Die reellwertige Funktion f sei mindestens auf dem Intervall $\mathcal{J}=[x_0-\epsilon,x_0+\epsilon]$ definiert und dort 2mal stetig diff'bar. Angenommen $f'(x)\neq 0$ für alle $x\in \mathcal{J}$, und es gibt eine Konstante 0< L<1 so dass gilt

$$\left| \frac{f(x_0)}{f'(x_0)} \right| \le (1 - L)\epsilon, \qquad \left| \frac{f(x) f''(x)}{f'(x)^2} \right| \le L \quad \text{für alle } x \in \mathcal{J}.$$

Dann konvergiert die Newton-Folge

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

mit Startwert x_0 quadratisch gegen die eindeutige Nullstelle $x_* \in \mathcal{J}$ von f.

Beweis: Dies folgt aus dem Banachschen Fixpunktsatz (siehe Folien der nächsten Vorlesung).

Bemerkung: Die Bedingungen des Satzes sind hinreichend, aber nicht notwendig. Die Newton-Folge kann auch dann konvergieren, wenn sie nicht erfüllt sind.

Andere Verfahren zur Berechnung einer Nullstelle

Die einfachste, allerdings langsame Methode, eine Nullstelle einer Funktion f in einem Intervall zu finden, ist das

Bisektionsverfahren (Halbierungsverfahren)

Eingabe: $a, b \in \mathbb{R}$, a < b, so dass f(a) und f(b) verschiedenes Vorzeichen haben.

Setze $\ell = a$, r = b

Wiederhole solange $r - \ell > tol$:

Setze
$$x_k = \frac{\ell + r}{2}$$
 (*)

Wenn $f(x_k)$ und $f(\ell)$ gleiches Vorzeichen haben, setze $\ell = x_k$.

Anderenfalls setze $r = x_k$

Regula Falsi

Ersetzt man im Bisektionsverfahren die Eintrittsbedingung durch $|x_{k+1}-x_k|>tol$ und die Zeile (*) durch die Vorschrift

$$x_k = \frac{\ell f(r) - r f(\ell)}{f(r) - f(\ell)}, \qquad (**)$$

so erhält man das Regula-Falsi-Verfahren.

 x_k in (**) ist die Nullstelle der Geraden (Sekante, Sehne), die durch die Punkte $(\ell, f(\ell))$ und (r, f(r)) geht (siehe Bild auf der nächsten Seite).

Bilder zum Bisektionsverfahren und zur Regula Falsi

Beide Verfahren setzen voraus, dass die Funktion f an der Nullstelle einen Vorzeichenwechsel hat.

Das Sekantenverfahren

Beim Sekantenverfahren zur Berechnung einer Nullstelle der Funktion f setzt man

 x_{k+1} := Schnittstelle der Geraden durch $(x_k, f(x_k))$ und $(x_{k-1}, f(x_{k-1}))$ (Sekante) mit der x-Achse

$$= \frac{x_k f(x_{k-1}) - x_{k-1} f(x_k)}{f(x_{k-1}) - f(x_k)} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}$$

Das Sekantenverfahren braucht zwei Startwerte. Wenn f stetig diff'bar ist und die Ableitung an der Nullstelle $\neq 0$ ist, dann konvergiert das Sekantenverfahren bei Startwerten die nahe genug an der Nullstelle liegen, und zwar mit der Konvergenzordnung $p=\frac{1+\sqrt{5}}{2}$ (Goldener Schnitt), also langsamer als Newton. Vorteil des Sekantenverfahrens: Man braucht keine Ableitung auszurechnen.

Newton-Verfahren:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Sekantenverfahren:

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}.$$

Das Newton-Verfahren und das Sekantenverfahren in C

Alle bisher gemachten Aussagen über Iterationsverfahren (mit Ausnahme von Bisektion und Regula Falsi) lassen sich sinngemäß auf Funktionen $\phi:\mathbb{C}\to\mathbb{C}$ und $f:\mathbb{C}\to\mathbb{C}$ übertragen (abstoßende und anziehende Fixpunkte, Konvergenzordung usw.). Man kann sie aber nicht mehr so schön veranschaulichen. Newton- und Sekantenverfahren zur Bestimmung von Nullstellen lauten wie für reelle Funktionen:

Newton-Verfahren:

Sekantenverfahren:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}.$$

Die Folgenglieder x_k sind nun aber im allgemeinen komplexe Zahlen, also Punkte in der komplexen Zahlenebene.

Wichtige Anwendung: Berechnung komplexer Nullstellen von Polynomen.

Beispiel: Berechnung der dritten Einheitswurzeln

Die Gleichung $x^3 = 1$ hat die komplexen Lösungen (=dritte Wurzeln von 1)

$$x_1^* = 1,$$
 $x_2^* = \frac{-1 + \sqrt{3}i}{2},$ $x_3^* = \frac{-1 - \sqrt{3}i}{2}.$

Die Iterationsvorschrift für das Newton-Verfahren zur Berechnung der Lösungen lautet

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad f(x) = x^3 - 1.$$

Gegen welche Wurzel die Folge konvergiert (oder ob sie divergiert, bzw. wegen Teilung durch Null abbricht), hängt vom Startwert x_0 ab

 x_0 im grünen Bereich \Rightarrow Konvergenz gegen x_1^* x_0 im roten Bereich \Rightarrow Konvergenz gegen x_2^* x_0 im blauen Bereich \Rightarrow Konvergenz gegen x_3^*

Alle drei Bereiche haben einen gemeinsamen Rand (im Bild nicht zu sehen). Wenn man einen Randpunkt als Startpunkt wählt, dann konvergiert die Newton-Folge nicht.

Beispiele zur Iteration in \mathbb{C} :

Julia-Mengen und die Mandelbrot-Menge (Apfelmännchen)

Seien $z, c \in \mathbb{C}$. Betrachte die Folge

$$x_{k+1} = x_k^2 + c, x_0 = z (*)$$

Julia-Mengen:

$$J_c := \{ z \in \mathbb{C} \mid \text{ Die Folge (*) ist beschränkt } \}$$

Mandelbrot-Menge:

$$M := \{ c \in \mathbb{C} \mid \text{ Die Menge } J_c \text{ ist zusammenhängend } \}$$

= $\{ c \in \mathbb{C} \mid \text{ Die Folge } x_{k+1} = x_k^2 + c, \ x_0 = 0, \text{ ist beschränkt } \}$

Bild von http://astronomy.swin.edu.au/ pbourke/fractals/juliaset/

Weitere Varianten des Newton-Verfahrens

Vereinfachtes Newton-Verfahren:

$$x_{k+1} = \underbrace{x_k - \frac{f(x_k)}{f'(x_0)}}_{\phi(x_k)}.$$

Es wird nur die Ableitung am Startpunkt verwendet.

Gedämpftes Newton-Verfahren:

$$x_{k+1} = x_k - \frac{\lambda_k}{f'(x_k)}.$$

Dabei wird $\lambda_k \in [0,1]$ geeignet gewählt, so dass Konvergenz eintritt.

Newton-Verfahren für Nullstellen *m*-ter Ordnung:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Hier hat man quadratische Konvergenz gegen x_* , wenn $f(x) = (x - x_*)^m g(x), g(x_*) \neq 0$.

Literatur:

Dahmen, Reusken. Numerik für Ingenieure und Naturwissenschaftler

Newton-Verfahren in \mathbb{R}^n

Vektorielles Newton-Verfahren zur Berechnung einer (vektoriellen) Nullstelle $x_* \in \mathbb{R}^n$ der (vektorwertigen) differenzierbaren Funktion $f : \mathbb{R}^n \to \mathbb{R}^n$:

$$x_{k+1} = \underbrace{x_k - f'(x_k)^{-1} f(x_k)}_{\phi(x_k)}.$$
 (*)

Dabei ist

$$f'(x) = egin{bmatrix} rac{\partial f_1}{\partial x^1}(x) & \dots & rac{\partial f_1}{\partial x^n}(x) \ dots & dots \ rac{\partial f_n}{\partial x^1}(x) & \dots & rac{\partial f_n}{\partial x^n}(x) \end{bmatrix}$$

die **Jacobi-Matrix** von f an der Stelle $x = [x^1 \dots x^n] \in \mathbb{R}^n$.

Bemerkungen:

1. Beim Programmieren des Verfahrens wird die Inverse $f'(x_k)^{-1}$ nicht gebildet.

Stattdessen: Löse $f'(x_k) h = f(x_k)$, setze $x_{k+1} = x_k - h$.

MATLAB: $h=f'(xk) \setminus f(xk)$.

2. Wenn die Folge gegen die Nullstelle x_* konvergiert, und $f'(x_*)$ invertierbar ist, dann ist die Konvergenz quadratisch.