1FOS 2014									
2 obtain the initial basic feasible solution for the transportation problem by North-western Corner									
- Transportation problem by North-western Corner									
Tule	,		-	-					
Fi		RI	R2	R3	1	Ru	RS	Supply	
F ₂		24	12	13	1	36	51	50	
F_3		14	35	1	0	20	26	150	
		100	70	5	0	40	40	130	
Supply									
aloj	1	9	13	36	5)		50		
	24	12_	16	20	1		100		
	14	35	1,	23	26		150	ATT OF THE PART OF THE	
Demand	100	70	50	1.0	1		-	a me and	
Lemana	100	70	50	40		0			
Hora 5 Day 1- 5 28 440 - 200 10 10 10 1									
Here & Demand = & Supply = 300 (Balanced problem)									
Consider cell [1,1] supply = 50 demand 100 allocate									
50 to it & Stoike now 1 (New demand for colum 1 = 50)									
Now consider cell (2,1) supply = 100 demand = 50, allocate									
Consider cell (1,1) supply = 50, demand 100 allocate 50 to it & Stoike row 1. (New demand for colum 1 = 50) Now consider cell (2,1) supply = 100 demand = 50, allocate 50 to it & Stoike Column 1. (New supply for row 2=50)									
Consider cell (2,2) supply = 50 demand 70, allocate 50 to it & Strike row 2 (New demand for column = 20)									
50 to it & Storke row 2 (New demienta for column)=29									
Conside	C 11 (32) Lukbly = 150 demand = 20, allocate								
20 to it & strike column2 (New supply for rows									
Consider cell (3,2) supply = 150 demand = 20, allocate 20 to it & strike column2. (New supply for rows = 130)									
Consider cell (3,3) supply= 130, domand 50, allocate 50 to it & Strike column 3 (New supply for row 3=80)									
501	DI	LKS	Uscice	ww	mr ,) (New Ma	gray got ours	
-									

consider cell (3,4) slupply = 80, demand = 40, allocate 4000 it & Strike column 4 (New slupply for row3 = 40)
Consider Cell (3,5) supply = 40, domand = 40, allocate 40 to it strike columns & row 5.
100/000 1920/00 of 100/1000 (Basic feasible Solution, initial):
F ₁ $\rightarrow R_1$ - 50 F ₂ $\rightarrow R_2$ - 50 Total transportation (oit F ₂ $\rightarrow R_2$ - 50 = $1\times50+24\times50+12\times50+35\times20$ + $1\times50+23\times40+26\times40=4560$ F ₃ $\rightarrow R_2$ - 20 + $1\times50+23\times40+26\times40=4560$ F ₃ $\rightarrow R_3$ - 50 There total allocations = 7 is equal F ₃ $\rightarrow R_4$ - 40 to m+n-1= 3+5-1=7 so F ₄ $\rightarrow R_5$ - 40 Solution is Non degenerate
Thoseony Solve the following LPP graphically: Maximize $Z = 3x_1 + 4x_2$ Subject to $x_1 + x_2 \le 6$ $x_1 - x_2 \le 2$ $x_2 \le 4$ $x_1, x_2 \ne 0$
Write dual problem of the above & obtain the optimal value of the objective function of the dual without actually

point value of Z
(0,0)
(2,0) 6
(4,2) 20
(214) 22 (Max)
(0,4) 16
10 $2 max = 22 at 2 = 2 2 2 = 4$
Converting to dual
Minimize Z'= 6y1 + 2y2 + 4y3 Subject to
J1+ J2 = 3
J1-J2+J3 ≥ 4
J1, J2, J3 >0.
Using fundamental duality Theorem which states that
either the primal or dual problem has a finite
oplimal solution, then the other peroblem also has
"If either the primal or dual problem has a finite optimal solution, then the other problem also has a finite optimal solution I the values of the two objection functions are ser equal".
we get Z'min = 22