

Temporal Attentive Alignment for Large-Scale Video Domain Adaptation

Min-Hung Chen¹ Zsolt Kira¹ Ghassan AlRegib¹ Jaekwon Yoo² Ruxin Chen² Jian Zheng³ ¹Georgia Institute of Technology ²Sony Interactive Entertainment LLC ³Binghamton University

Code: https://github.com/cmhungsteve/TA3N
Paper: https://arxiv.org/abs/1907.12743

Summary

- Domain adaptation for videos is an under-explored real-world problem.
- Three contributions:
 - Large-scale Video DA Dataset Collection: UCF-HMDB_{full} & Kinetics-Gameplay
 - Exploration of Feature Alignment for Video DA: Exploration of how to effectively align spatio-temporal features
 - Temporal Attentive Adversarial Adaptation Network (TA³N): Simultaneously attend, align and learn temporal dynamics across domains
- State-of-the-art performance on four cross-domain video datasets

Visual Domain Shift

Domain Shift

- Different data distributions across domains
 - Spatial: frames
 - Temporal: video clips

Domain adaptation (DA):
 Align the spatio-temporal feature representations

Baseline: DANN [1] + TemPooling

- Spatial module G_{sf}
- Temporal module G_{tf}
 - TemPooling
- Adversarial discriminator \widehat{G}_{sd}
- Domain loss \mathcal{L}_{sd}

Main Idea

- Focus more on aligning the video clips with larger domain discrepancy
 higher contribution to overall domain shift
- video feature $\mathbf{h} = \sum \text{attention weight} \cdot \text{local temporal features}$
- Use domain discrepancy to calculate the attention weights
- Simultaneously align and learn temporal dynamics

TA³N: Temporal Attentive Adversarial Adaptation Network

- TemRelation module: n-frame relation features as local temporal features
- Domain attention: get attention weights using domain entropy $H(\hat{d})$
- Attentive entropy loss \mathcal{L}_{ae} : aim to minimize entropy within each domain

Datasets

UCF; H: H	HMDB; O: Olyn	ay Our	Our datase		
	U-H _{small}	U-O	U-H _{full}	K-G	

	U-H _{small}	U-O	U-H _{full}	K-G
Class #	5	6	12	30
Video #	1171	1145	3209	49998

Detroit: Become Human™ ©Sony Interactive Entertainment Europe, developed by Quantic Drean

Experimental Results

Source → Target (S → T)	U → O	$O \rightarrow U$	$U \rightarrow H$	$H \rightarrow U$
W. Sultani et al. [2]	33.3	47.9	68.7	68.7
T. Xu et al. [3]	87.0	75.0	82.0	82.0
AMLS [4]	84.6	86.4	89.5	95.4
DAAA [4]	91.6	90.0	-	-
TemPooling (Source-only)	96.3	87.1	98.7	97.4
TemPooling + DANN [1]	98.2	90.0	99.3	98.4
TA ³ N	98.2	92.9	99.3	99.5

 $S \rightarrow T$ $U \rightarrow H$ $H \rightarrow U$ $K \rightarrow G$ 64.5 94.9 Target-only Gain 71.7 Gain Gain 17.2 73.9 Source-only 0.5 20.6 3.4 **DANN** [1] 74.4 74.4 **JAN** [5] 74.7 3.0 79.7 18.2 1.0 5.8 AdaBN [6] 0.5 77.4 3.5 20.3 MCD [7] 19.8 79.3 2.6 5.4 TA³N 27.5 6.6 81.8 10.3

Source-only: trained with source data only

Gain: accuracy improvement over Source-only

What to align >>> What DA methods to use

TemPooling TemPooling + DANN [1]

TemRelation TA³N

[1] (JMLR 16), [2] (CVPR 14), [3] (IVC 16), [4] (BMVC 18), [5] (ICML 17), [6] (ICLRW 17), [7] (CVPR 18)