International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 1

teams

Language: cs-CZ

Týmy

Ve třídě je N studentů, které označíme čísly od 0 do N-1. Učitel přináší do třídy každý den zadání několika projektů, na nichž budou studenti pracovat. Každý projekt je určen pro řešitelský tým studentů a bude vyřešen za jeden den. Projekty jsou různě obtížné a učitel pro každý z nich stanoví přesnou velikost řešitelského týmu.

Jednotliví studenti dávají přednost týmům různé velikosti. Přesněji řečeno, student i může být zařazen jedině do týmu velikosti A[i] až B[i] včetně. Každý den může být student zařazen nejvýše do jednoho týmu. Někteří studenti nemusí být zařazeni do žádného týmu. Každý tým pracuje na jednom projektu.

Učitel zvolil projekty pro každý z následujících Q dní. Pro každý z těchto dnů určete, zda je možné sestavit ze studentů řešitelské týmy tak, aby každý z projektů určených pro tento den řešil jeden tým.

Příklad

Mějme ve třídě N=4 studenty a uvažujme období Q=2 dny. Následující tabulka uvádí omezení na velikost týmu pro každého ze studentů.

student	0	1	2	3
\boldsymbol{A}	1	2	2	2
В	2	3	3	4

Na první den má učitel připraveny M=2 projekty. Požadovaná velikost řešitelských týmů je K[0]=1 a K[1]=3. Takové dva týmy lze vytvořit zařazením studenta 0 do týmu velikosti 1 a zbývajících tří studentů do týmu velikosti 3.

Ve druhém dnu se řeší opět M=2 projekty, ale tentokrát jsou požadované velikosti týmů K[0]=1 a K[1]=1. V tomto případě není možné sestavit týmy, neboť pouze jeden student může být zařazen v týmu velikosti 1.

Úloha

Je dán popis všech studentů: N, A a B. Dále je zadána posloupnost Q dotazů — každý dotaz se týká jednoho dne. Dotaz je tvořen počtem M projektů řešených v tomto dni a posloupností čísel K délky M, která popisuje požadovanou velikost řešitelských týmů. Váš program musí na každý dotaz odpovědět, zda je možné všechny potřebné týmy sestavit.

Implementujte funkce init a can:

- init (N, A, B) Vyhodnocovací systém zavolá tuto funkci právě jednou na začátku výpočtu.
 - N: počet studentů.

- A: pole délky N: A[i] je minimální velikost týmu pro studenta *i*.
- B: pole délky N: B[i] je maximální velikost týmu pro studenta i.
- Funkce nevrací žádnou návratovou hodnotu.
- Můžete předpokládat, že $1 \le A[i] \le B[i] \le N$ pro všechna i = 0, ..., N-1.
- lacktriangledown can (M, K) Po jednom počátečním zavolání funkce init bude vyhodnocovací systém volat tuto funkci postupně $m{Q}$ -krát, jednou pro každý den.
 - M: počet projektů řešených v tomto dni.
 - K: pole délky M obsahuje požadovanou velikost řešitelského týmu pro každý z projektů.
 - Funkce vrací 1, pokud je možné sestavit všechny potřebné týmy, v opačném případě vrací 0.
 - Můžete předpokládat, že $1 \le M \le N$, a že pro každé i = 0, ..., M-1 bude $1 \le K[i] \le N$. Dejte pozor na to, že součet všech hodnot K[i] může přesáhnout N.

Podúlohy

Označme symbolem S součet hodnot ${\tt M}$ ve všech voláních funkce can $({\tt M}, {\tt K})$.

podúloha	body	N	Q	další omezení
1	21	$1 \le N \le 100$	$1 \leq Q \leq 100$	žádné
2	13	$1 \le N \le 100000$	Q = 1	žádné
3	43	$1 \le N \le 100000$	$1 \leq Q \leq 100000$	$S \leq 100000$
4	23	$1 \le N \le 500000$	$1 \leq Q \leq 200000$	$S \leq 200000$

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím tvaru:

- řádek 1: N
- řádky 2, ..., N + 1: A[i] B[i]
- řádek N + 2: Q
- \check{r} ádky N + 3, ..., N + Q + 2: M K [0] K [1] ... K [M 1]

Pro každý dotaz vypíše ukázkový vyhodnocovač návratovou hodnotu funkce can.