L03a: Introduction to Virtualization

Introduction:

- Virtualization allows for the existence of entire operating systems on top of the same HW.
- It facilitates sharing the same HW resources across multiple applications running on distinct OSs.

Hypervisor:

- A Hypervisor (Virtual Machine Monitor VMM) facilitates sharing the HW resources between the virtual machines (guest Oss).
 - Native (bare metal) Hypervisor: Running directly on top of the HW.
 - Hosted Hypervisor: Running as an application process on top of a host OS.

Full virtualization:

- Guest OSs running on top of the Hypervisor will be full unchanged binaries.
- When a guest OS tries to execute a privileged instruction, a trap will be generated and passed to the Hypervisor, which in turn will emulate the intended functionality of the OS (Trap & Emulate Strategy).
- This makes each guest OS think it's running alone on the HW.
- In some architectures, some privileged instructions may fail silently. This is why the Hypervisor will use a Binary Translation Strategy. The Hypervisor looks into each guest OS binary for the specific instructions that might fail silently and edits the binary to ensure careful handling of these instructions.

Para virtualization:

- The binaries of the guest OSs will be modified to avoid problematic instructions and utilize optimizations.
- The Hypervisor will change only less than 2% of the guest OS code.
- For the user point of view, the OS is not changed.
- Ex.: Xen Hypervisor.

What needs to be done?

- Virtualize HW:
 - Memory hierarchy.
 - CPU.
 - HW devices.
- Facilitate data transfer between the Hypervisor and the guest OS.