

Chapitre III - Les fonctions trigonométriques

Bacomathiques -- https://bacomathiqu.es

Table des matières								
I - S in 1.	us et cosinus 1 Définition	L						
2.	Périodicité	<u>)</u>						
3.	Formules de trigonométrie	_						
4. 5.	Résolution d'équations							
II - Étu 1. 2.	1. Dérivée 5 2. Signe et variations 5							
3.	Limite	5						
4.	Valeurs remarquables	j						
5.	Représentation graphique	7						

I - Sinus et cosinus

1. Définition

Dans tout le cours, le plan sera muni d'un repère orthonormé $(O, \vec{\imath}; \vec{\jmath})$. Il sera également muni d'un cercle appelé **cercle trigonométrique** \mathcal{C} de centre O et de rayon 1 orienté dans le sens inverse des aiguilles d'une montre (c'est le sens direct) :

Soit M un point quelconque d'abscisse x et d'ordonnée y situé sur le cercle $\mathcal C.$ Les coordonnées de M sont :

- L'abscisse de M appelée **cosinus** est notée cos(x).
- L'ordonnée de M appelée sinus est notée sin(x).
- Pour tout $x \in \mathbb{R}$, on aura $-1 \le cos(x) \le 1$ et $-1 \le sin(x) \le 1$.

2. Périodicité

Les fonctions sinus et cosinus sont périodiques de période 2π . Ainsi pour tout x réel et k entier relatif :

$$- cos(x) = cos(x + 2k\pi)$$

- $sin(x) = sin(x + 2k\pi)$

Concrètement, cela signifie que $cos(x) = cos(x+2\pi) = cos(x+4\pi) = \ldots = cos(x+2k\pi)$ et idem pour sin(x).

3. Formules de trigonométrie

On a les relations suivantes pour tout $x \in \mathbb{R}$:

```
-\cos(-x) = \cos(x) \text{ (la fonction cosinus est paire)}
-\sin(-x) = -\sin(x) \text{ (la fonction sinus est impaire)}
-\cos(x+\pi) = -\cos(x)
-\sin(x+\pi) = -\sin(x)
-\cos(x-\pi) = -\cos(x)
-\sin(x-\pi) = \sin(x)
-\cos(\frac{\pi}{2}-x) = \sin(x)
-\sin(\frac{\pi}{2}-x) = \cos(x)
-\cos(x+\frac{\pi}{2}) = -\sin(x)
-\sin(x+\frac{\pi}{2}) = \cos(x)
-\cos(x+y) = \cos(x) \times \cos(y) - \sin(x) \times \sin(y)
-\sin(x+y) = \sin(x) \times \cos(y) + \cos(x) \times \sin(y)
-\cos(x)^2 + \sin(x)^2 = 1
```

Il n'est aucunement demandé de mémoriser ces formules (sauf les trois dernières). Cependant, il doit être possible de les retrouver à l'aide du cercle trigonométrique. Ainsi, prenons l'exemple de $cos(x+\pi)$:

On remarque que l'ordonnée reste la même (le sinus est le même). Cependant, on a bien une abscisse opposée. On a retrouvé la formule $cos(x+\pi)=-cos(x)$.

4. Résolution d'équations

Il est possible de résoudre des équations incluant des sinus et des cosinus. Ainsi, soient x et y deux réels et k un entier relatif. On a les relations suivantes :

$$-\cos(x) = \cos(y) \iff \begin{cases} y = x + 2k\pi \\ ou \\ y = -x + 2k\pi \end{cases}$$

$$-\sin(x) = \sin(y) \iff \begin{cases} y = x + 2k\pi \\ ou \\ y = \pi - x + 2k\pi \end{cases}$$

Comme précédemment, ces formules peuvent se retrouver à l'aide du cercle trigonométrique.

5. Fonctions réciproques

Soient $x, y \in \mathbb{R}$, on admettra qu'il existe une fonction réciproque à cos(x) (notée arccos(x)) et une fonction réciproque à sin(x) (notée arcsin(x)). On a les relations suivantes :

$$- cos(x) = y \iff x = arccos(y)$$
$$- sin(x) = y \iff x = sin(y)$$

Cela signifie que à tout réel x, la fonction arccos(x) y associe son **antécédent** y par rapport à cos(x) (pareil pour arcsin(x) avec sin(x)).

II - Étude des fonctions trigonométriques

1. Dérivée

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle :

$$- \cos'(u(x)) = u'(x) * -\sin(u(x))$$
$$- \sin'(u(x)) = u'(x) * \cos(u(x))$$

Ainsi, si on a u(x) = x:

$$- cos'(x) = -sin(x)$$

$$- sin'(x) = cos(x)$$

2. Signe et variations

L'étude du signe des dérivées des fonctions trigonométriques permettent d'obtenir les variations de celles-ci. Voici donc le signe et la variation de ces fonctions. Tout d'abord celui de la fonction cosinus :

х	- π		0		π
(cos(x)) [']	0	+	0	-	0
cos(x)	-1		1_		- 1

Veuillez noter que ce tableau est périodique de période 2π .

Voici maintenant celui de la fonction sinus :

Ce tableau est également périodique de période 2π .

3. Limite

Les fonctions trigonométriques ont pour particularité de ne pas admettre de limite en $\pm\infty$. Ceci provenant du fait que ces fonctions sont périodiques et que leur valeur oscille entre -1 et 1.

4. Valeurs remarquables

Voici un tableau regroupant quelques valeurs remarquables de sinus et de cosinus :

Valeur de x (à $2k\pi$ près, $k \in \mathbb{Z}$)	Valeur de $cos(x)$	Valeur de $sin(x)$
0	1	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
	$\frac{\sqrt{2}}{2}$	$\sqrt{2}$
$\frac{\pi}{4}$	2	2
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	-1	0

5. Représentation graphique

À l'aide de toutes les informations et valeurs données précédemment, il est possible d'établir une représentation graphique de la fonction cosinus :

Ainsi que de la fonction sinus :

On remarque sur ces graphiques plusieurs propriétés données : parité, signe, périodicité, etc...