Local Probabilistic Models: Independence of Causal Influence

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Local Probabilistic Models
 - Independence of Causal Influence
 - Noisy-OR
 - Generalized Linear Models

Independence of Causal Influence

- Very different type of local probability model
- Consider variable Y whose distribution depends on some set of causes $X_1,...X_k$
 - Y can depend on its parents in arbitrary ways

- If we don't assume independence, we have 2^k possible values for parents
- Assume each parent has an independent influence and their influence is combined in some way

Combining Causal Influence

- Distribution of variable Y depends on several causes $X_1,...,X_k$
- Each parent has an independent influence and their influence is combined

Two types: Noisy-or and Generalized-Linear

From Or to Noisy-Or

- Small seminar course where Professor gets to know each student
- Good Letter ($L=l^1$) depends on two things:
 - class participation (asking good questions, $Q = q^{I}$)
 - good final paper $(F = f^l)$
 - Each event is enough to write good letter

Deterministic CPD (Or Without Noise)

Q	$oldsymbol{F}$	10	11	
q0	f0	1	0	Bad Letter
q0	fI	0	1	Good Letter
q1	f0	0	1	Good Letter
q1	fI	0	1	Good Letter

Noisy Or Example

- Professor fails to remember student's participation
- Professor may not be able to read student's handwriting and may not appreciate the quality of the final paper
- So there is noise in the process

FinalPaper

(FinalPaper'

or

Letter

Noise Parameters

- Q: Good Questions, But Teacher is Forgetful
- $P(l^{1}|q^{1}, f^{0})=0.8$ Prob good Q in isolation causes good L is 0.8
- F: Good Final Paper, But Poor Handwriting

 $P(l^{l} | q^{0}, f^{l})=0.9 \text{ Good } F \text{ causes good } L$

- What if both good Q, good F
 - Independent causal mechanisms
 - · Letter Weak only if neither successful
 - Both q^1 and f^1 occur with prob $0.2 \times 0.1 = 0.02$
 - Noise parameters

$$-\lambda_{Q} = P(q'^{l}|q^{l}) = 0.8$$
$$-\lambda_{F} = P(f'^{l}|f^{l}) = 0.9$$

			P(L Q,F)	
Q	F	<i>l</i> ⁰	l^1	
q^0	f^0	1	0	Bad Letter
q^0	f^{I}	0.1	0.9	Good Letter
q^I	f^0	0.2	0.8	Good Letter
q^{I}	f^{l}	0.02	0.98	Good Letter

Ouestions

Questions'

• If both are bad, $q^0 f^0$, then we still get bad $L=l^0$

Leak Probability

- Professor writes a good recommendation letter for no good reason with probability 0.0001
 - Because Professor is having a good day
- Introduce another parent of Letter variable to represent this event
 - This variable has no parents and is True with probability λ_0 =0.0001
 - It is also a parent of the Letter variable which remains a deterministic Or

General Definition of Noisy-Or

- Let Y be a binary-valued r.v. with parents $X_1,...X_k$
- The CPD $P(Y|X_1,...X_k)$ is a *noisy-or* if there are k+1 parameters $\lambda_0, \lambda_1,...\lambda_k$ such that

$$\begin{split} P\left(y^{0}\mid X1,..Xk\right) &= (1-\lambda_{0}) \prod_{i} (1-\lambda_{i}) \\ P\left(y^{1}\mid X1,..Xk\right) &= 1 - \left[(1-\lambda_{0}) \prod_{i} (1-\lambda_{i}) \right] \end{split}$$

Behavior of Noisy-Or

 All variables have same noise parameter λ

• Probability of child $Y=y^{1}$ in terms of

 $-\lambda$ and number of X_i that have value true

Applicability of Noisy-Or

- Applicable in a wide variety of settings
- Most obvious is the medical domain
- A symptom variable such as Fever has a very large number of parents (Diseases)
- It is reasonable to assume that different diseases have different causal mechanisms
- If any disease succeeds in activating its mechanism, the symptom is present

BN2O Network

- A class of networks that has received attention in medical diagnosis is the class of BN2O networks
- It is a two-layer network where the top layer corresponds to a set of causes, such as diseases, and the second to findings that might indicate the causes, such as symptoms or test results

BN2O

2-Layer Noisy-Or BN for Medical Diagnosis

- BN2O Top layer: causes
 - diseases: flu, pneumonia, etc
- BN2O Bottom layer: findings
 - symptoms (caughing, sneezing), test results
 - All variables in lower layer are Noisy-Or

- CPD of
$$F_i$$
 is given by
$$P\left(f_i^0 \mid \operatorname{Pa}_{F_i}\right) = (1 - \lambda_{i,0}) \prod_{Dj \in \operatorname{Pa}_{F_i}} (1 - \lambda_{i,j})^{d_j}$$

• Where $\lambda_{i,j}$ is probability that d_i in isolation causes f_i

Properties of BN2O

- Conceptually very simple
 - Need a small no. of easy-to-understand parameters
 - Each edge is causal: cause d_i and finding f_i
 - Each has parameter $\lambda_{i,j}$
 - probability that d_i in isolation causes f_i to manifest
- In practice few symptoms present (many false)
 - Parents become independent, reducing cost of inference
- Although simple, BN2O are reasonable first approximations for a medical diagnosis network

BN2O Software

- QMR: Quick Medical Reference
 - Compiled for diagnosis of internal medicine
 - QMR-DT (Decision Theoretic)
 - Contains more than five hundred significant diseases
 - Four thousand associated findings
 - More than forty thousand disease finding associations

• CPCS

- Smaller: 500 variables, 900 edges
 - Has variables for predisposing factors, etc
 - Take four values
 - Full CPDs would take 134 million parameters

Generalized Linear Models

- A very different class of models that also satisfy independence of causal influence
- We focus on models that define probability distributions $P(Y|X_1,...,X_k)$ where Y takes on values in some discrete finite space
- We first consider the case where Y and all the X_is are binary-valued
- We then extend to the multinomial case

Binary Variables and Linear Threshold

- Consider a CPD where each of several binary variables $X_1, ..., X_k$ adds to a total burden.
- Effect on Y is characterized by a linear function $f(X_1,...,X_k) = \sum_k w_k X_k$

- When the total burden exceeds a threshold τ , the probability transitions from 0 to 1
- Use soft threshold and w_{θ} to eliminate τ

Definition of Logistic CPD

- Child value is a linear function of parents
- Y is binary-valued, parents X_i are numerical
- Effect of the X_i 's on Y is a linear function

$$P(y^1 \mid X_1,..X_k) = sigmoid(w_0 + \sum_i w_i X_i)$$

$$sigmoid(z) = \frac{1}{1 + e^{-z}}$$

Interpretation of parameter w_i

- Can be interpreted in terms of its effect on the log-odds of Y
- Log-odds for a binary variable is the ratio of the probability of y^I and the probability of y^0
- Same concept as when we say odds are 2 to 1

Effect of X_j on Log Odds

- Ratio of the probability of y^I and the probability of y^0
- We use Z to represent $w_0 + \sum_i w_i X_i$
- Odds for the variable Y

$$O(X) = \frac{P(y^1 \mid X_1, ... X_k)}{P(y^0 \mid X_1, ... X_k)} = \frac{e^Z / (1 + e^Z)}{1 / (1 + e^Z)} = e^Z$$

• Effect of this odds as some variable X_j changes its value from false to true

$$\frac{O(X_{-j}, x_{j}^{1})}{O(X_{-j}, x_{j}^{0})} = \frac{\exp(w_{0} + \sum_{i \neq j} w_{i} X_{i} + w_{j})}{\exp(w_{0} + \sum_{i \neq j} w_{i} X_{i})} = e^{w_{j}}$$

 $-X_j$ =true changes odds by a multiplicative factor of e^{wj} . If $w_i > 0$ odds increases

Srihari

Behavior of Sigmoid CPD

All variables have same weight w

Multi-valued Variables

- Y takes on multiple-values, $y^1,...y^m$
- Parents $X_1,...,X_k$ are numerical
- CPD is *multinomial logistic* if for each j=1,...,m there are k+1 weights $w_{j,0}$, $w_{j,1}$,... $w_{j,k}$ such that

$$\begin{split} \ell_{j}(X_{1},..X_{k}) &= w_{j,0} + \sum_{i=1}^{k} w_{j,i} X_{i} \\ P\Big(y^{j} \mid X_{1},..X_{k}\Big) &= \frac{\exp\Big(\ell_{j}(X_{1},..X_{k})\Big)}{\sum_{j'=1}^{m} \exp\Big(\ell_{j}(X_{1},..X_{k})\Big)} \end{split}$$

Multinomial Logistic CPD

- Y has multiple-values, Parents X, numerical
- $P(Y|X_1,X_2)$ has the Multinomial logistic model
 - Three-valued child Y

$$l_1(X_1, X_2) = -3X_1 - 2X_2 + 1$$

 $l_2(X_1, X_2) = 5X_1 - 8X_2 - 4$
 $l_3 = x - y + 10$

General Formulation

- Noisy-or and Generalized linear models are special cases of Causal Independence or independence of Causal Influence
- Influence of multiple causes can be decomposed into separate influences

Independence of Causal Influence (ICI)

- Let Y be a variable with parents $X_1,...X_k$.
- The CPD $P(Y|X_1,...X_k)$ exhibits ICI if it can be described by:

Where Z is a deterministic function f

Each variable can be transformed separately

Comparison with Naiive Bayes

 BN for Naiive Bayes Classifier with joint distribution

$$P(Y,X_1,...X_k) = P(Y)P(X_1|Y)...P(X_k|Y)$$

 We are interested here in learning the local CPD, as in

$$P(Y,X_1,...X_k)=P(X_1)...P(X_k) P(Y|X_1,...,X_k)$$

– CPD can be learnt with Naïve Bayes or a neural network!

- Given the joint we can use it to determine $P(X_i/Y)$ which may not be independent (note V-structure)