Linear Regression as Linear Optimization

Eric Olberding

Linear Regression

- Model a dependent variable y as a linear function of some independent variables x_i . The model usually won't be perfect so there is some error term ϵ .
- Example for 1 independent variable: $y = \beta_0 + \beta x + \epsilon$

Linear Regression: General Form

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \epsilon_i; \qquad i = 1, \dots, n$$

$$i = 1, ..., n$$

- N datapoints $(y_i, x_{i,1}, ..., x_{i,p})$
- 3-dimensional example (y, x_1, x_2)

Minimizing Error

- $\epsilon_i = y_i \beta_0 + \sum_{j=1}^p \beta_j x_{i,j}; \qquad i = 1, ..., n$
- Want to find β_i values that minimize "total error"
- Ordinary Least Squares(OLS) Regression minimizes Squared Error

$$\sum_{i=1}^{n} \left(y_i - \beta_0 + \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 = \sum_{i=1}^{n} \epsilon_i^2$$
 (quadratic optimization)

Least Absolute Deviation(LAD) Regression minimizes Absolute Error $\sum_{i=1}^{n} \left| y_i - \beta_0 + \sum_{j=1}^{p} \beta_j x_{i,j} \right| = \sum_{i=1}^{n} |\epsilon_i|$ (linear optimization)

LAD vs OLS

LAD	OLS
Robust	Not very robust
Possibly many solution	Unique solution
Unstable Solution	Stable Solution

Robustness of LAD

Multiple Solutions using LAD

Least Absolute Deviations as a Linear Program

- ▶ Need fact that $|a| \le b \Leftrightarrow -b \le a \le b$
- ▶ $t_i \ge 0$ i = 1, ..., n such that $|\epsilon_i| \le t_i \Leftrightarrow -t_i \le \epsilon_i \le t_i$
- $\sum_{i=1}^{n} |\epsilon_i| \le \sum_{i=1}^{n} t_i$
- ▶ LP formulation:

$$\min \sum_{i=1}^{n} t_i$$

$$-t_i \le y_i - \beta_0 + \sum_{j=1}^{p} \beta_j x_{i,j} \le t_i; \quad i = 1, \dots, n$$

Examples: mtcars data

Variables in handout

 $mpg = 7.62 + 0.65cyl + 0.02disp - 0.03hp + 0.78drat - 4.56wt + 0.58qsec + 1.59vs + 1.33am + 2.37gear - 0.33carb + \epsilon$

Examples: iris data

Variables in handout

ightharpoonup petallength = -2.636 + 1.72sepallength - 1.22sepalwidth + ϵ

References

- https://en.wikipedia.org/wiki/File:Linear_regression.svg
- https://stackoverflow.com/questions/26431800/plot-linear-model-in-3d-with-matplotlib
- https://demonstrations.wolfram.com/ComparingLeastSquaresFitAndLeastAbs oluteDeviationsFit/
- https://en.wikipedia.org/wiki/Linear_regression
- https://vanderbei.princeton.edu/542/lectures/lec9.pdf
- https://en.wikipedia.org/wiki/Least_absolute_deviations