Numerical Analysis

Jacobi's iteration method

Let us consider a system of n linear equations containing n variables:

The above equations can be written as

$$n_{1} = -\frac{1}{a_{11}} \left(a_{12}n_{2} + a_{13}n_{3} + \cdots + a_{1n}n_{n} \right) + \frac{6_{1}}{a_{11}}$$

$$n_{2} = -\frac{1}{a_{22}} \left(a_{21}n_{1} + a_{23}n_{3} + \cdots + a_{2n}n_{n} \right) + \frac{6_{2}}{a_{22}}$$

$$-\frac{1}{a_{22}} \left(a_{21}n_{1} + a_{23}n_{3} + \cdots + a_{2n}n_{n} \right) + \frac{6_{2}}{a_{22}}$$

$$-\frac{1}{a_{nn}} \left(a_{n1}n_{1} + a_{n2}n_{2} + \cdots + a_{nn-1}n_{n-1} \right) + \frac{6_{n}}{a_{nn}}$$

Let $n_1^{(0)}$, $n_2^{(0)}$, - . $n_n^{(0)}$ be the initial guess to the variables n_1, n_2, \cdots, n_n respectively (initial guess may be taken as zeros). Substituting these realues in the right hand side of (B), which yields the first approximation as follows

$$n_n^{(1)} = -\frac{1}{a_{nn}} \left(a_{n1} \gamma_1^{(0)} + a_{n2} \gamma_2^{(0)} + - - \cdot + a_{nn-1} \gamma_{n-1}^{(0)} \right) + \frac{B_n}{a_{nn}}$$

52

Again substituting $n_1^{(1)}, n_2^{(1)}, \dots, n_n^{(1)}$ in the right hand.

Side of (C) and obtain the second approximation $n_1^{(2)}, n_2^{(2)}, \dots$

In general, if $\eta^{(k)}$, $\eta^{(k)}$, ..., $\eta^{(k)}$ be the kth affroximate roots, then the next affroximate roots are given by

By $\eta_{1}^{(k+1)} = -\frac{1}{a_{11}} \left(a_{12} \eta_{2}^{(k)} + a_{13} \eta_{3}^{(k)} + \cdots + a_{1n} \eta_{n}^{(k)} \right) + \frac{b_{1}}{a_{11}}$ $\eta_{2}^{(k+1)} = -\frac{1}{a_{22}} \left(a_{21} \eta_{1}^{(k)} + a_{23} \eta_{3}^{(k)} + \cdots + a_{2n} \eta_{n}^{(k)} \right) + \frac{b_{2}}{a_{22}}$

 $\lambda_{n}^{(k+1)} = -\frac{1}{a_{nn}} \left(a_{n1} \gamma_{1}^{(k)} + a_{n2} \gamma_{2}^{(k)} + \cdots + a_{nn-1} \gamma_{n-1}^{(k)} \right) + \frac{b_{n}}{a_{nn}}$ $k_{20} 1.2.5.5$

The iteration process is continued until all the roots converge to the required number of significant figures i.e.

 $|n_i^{(k+1)}-n_i^{(k)}| \leq \varepsilon + i=1,2,--n$, $\varepsilon>0$ is the error tolerence.

Sufficient condition for convergence

The Jacobi's iteration method surely converges if the coefficient matrix is strictly diagonally dominant by rows i.e.

 $|aii| > \stackrel{\stackrel{\smile}{\underset{j=1}{\sim}}}{=} |aij|$ for $j \neq i$ and i = 1, 2, --, n

In matrix form, the method can be written as $X^{(k+l)} = -D^{-l}(L+U)X^{(k)} + D^{-l}b$

= Hx(k) + C, k20,1,2, --

where $H=-D^{-1}(L+U)$, $C=D^{-1}b$, L and U are lower and upper briangular matrices with zero diagonal entries, D is the diagonal matrix such that A=L+D+U.

Ex Solve the system of equations
$$4n_1 + n_2 + n_3 = 2$$

$$n_1 + 5n_2 + 2n_3 = -6$$

$$n_1 + 2n_2 + 3n_3 = -4$$

Using the Jacobi Etrahion method with the initial approximation as $n^{(0)} = (0.5, -0.5, -0.5)^T$ and forform on three two iterations.

$$c = D^{-1}D = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{6}{5} \\ -4 \end{bmatrix}$$

Jacobi itoration method becomes

$$(k+1) = \begin{bmatrix} 0 & -1 & -1 \\ -1 & -2 & -3 \\ -3 & -3 & 0 \end{bmatrix} \times (k) + \begin{bmatrix} 1/2 \\ -\frac{1}{5} \\ -\frac{1}{3} \end{bmatrix}$$

Starting with
$$x^{(0)} = [0.5, -0.5, -0.5]^T$$
, we obtain

$$x^{(1)} = \begin{bmatrix} 0.75 \\ -1.1 \\ -1.1667 \end{bmatrix}, x^{(2)} = \begin{bmatrix} 1.0667 \\ -0.8833 \\ -6.8500 \end{bmatrix}, x^{(3)} = \begin{bmatrix} 0.933 \\ -1.073 \\ -1.1000 \end{bmatrix}$$

On directly

$$n_1 = \frac{1}{4} \left[2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right]$$

(k+1)

(k)

(k)

$$\eta_{2}^{(k+1)} = \frac{1}{5} \left[-6 - \gamma_{1}^{(k)} - 2\gamma_{3}^{(k)} \right]$$

$$n_3^{(k+1)} = \frac{1}{3} \left[-4, -3, (k) - 2n_2^{(k)} \right]$$

Stanking with $n_1 = 0.5$

$$n_2^{(0)} = -0.5$$

$$\chi^{(1)} = \begin{bmatrix} 0.75, -1.1, -1.1667 \end{bmatrix}^{T}$$

$$\chi^{(2)} = [1.0667, -0.8833, -0.8500]$$

$$\chi^{(3)} = [0.9333, -1.0733, -1.1000]^{T}$$

Ex Solve the following system of linear equations by Gauss-Jacobi's method correct up to four decimal places

$$27x + 6y - 2 = 54$$

 $6x + 15y + 22 = 72$
 $x + y + 542 = 110$

Sd": Obviously, the system as diagonally dominant as 161+1-11 < |27|, |61+|2| < |15|, |11+|11 < |54|

The Jacobi's iteration scheme is

$$\chi^{(k+1)} = \frac{1}{27} \left(54 - 6 \gamma^{(k)} + 2^{(k)} \right)
\gamma^{(k+1)} = \frac{1}{15} \left(472 - 6 \chi^{(k)} - 22^{(k)} \right)
2^{(k+1)} = \frac{1}{54} \left(110 - \chi^{(k)} - \gamma^{(k)} \right)$$

Let the initial sol" be (0,0,0). The next iterations are shown in the following table

	k	7	J	2
Solh.	0	0	0	Ø
n=1:1664	1	2.00000	4.80000	2.03704
·	2	1.00878	3.72839	1.91111
y=4.0748	3	1.24225	1.14167	1.94931
2-1.9400	4	1:15183	1.04319	1.93733
	5	1.17327	1.08096	1.94083
	6	1.16500	1.07191	1.93974
	7	1.16697	4.07537	1.94006
	8	1.166 14	4.07454	1.93996
	9	1.16640 1.16632 1.16635	4.07488 4.07477 4.07181	(93999 1 93998 1 93998

Gauss-Seidel's iteration method A simple modification of Jacobi's iteration sometimes gives faster convergence. The modified method is known as Gaun-Seidal's iteration method. Here we use on the RHS all the available values from the fresent iteration. $n_1^{(k+1)} = -\frac{1}{a_{11}} \left(a_{12} n_2^{(k)} + a_{13} n_3^{(k)} + - + a_{1n} n_n^{(k)} \right) + \frac{b_1}{a_{11}}$ $\chi_{2}^{(k+1)} = -\frac{1}{a_{22}} \left(a_{27} \chi_{1}^{(k+1)} + a_{23} \chi_{3}^{(k)} + - + a_{2n} \chi_{n}^{(k)} \right) + \frac{b_{2}}{a_{22}}$ $n_{N}^{(k+1)} = -\frac{1}{a_{N}n} \left(\frac{a_{N}}{a_{N}} \right) + \frac{a_{N}}{a_{N}} \frac{a_{N}}{a_{N}} + \frac{a_{N}}{a_{N}} \frac{a_{N}}{a_{N}}$ (The method is repeated until $\left| \frac{a_{N}}{a_{N}} \right| \leq 2 + i = 1, 2, -n, \text{ where } \epsilon > 0 \text{ is the orient tolerance}$). which may be written in the form $a_{11}\eta(k+1) = -\sum_{i=2}^{n} a_{ii} \eta_{i}^{(k)} + b_{1}$ $a_{2}1^{3(k+1)} + a_{22}n_{2}^{(k+1)} = -\sum_{i=3}^{n} a_{2i} n_{i}^{(k)} + b_{2}$ $a_n \stackrel{(k+1)}{n} + t \stackrel{a_n}{n} \stackrel{(k+1)}{n} = t n$ In matrix notation, $(D+L) x^{(k+1)} = -Ux^{(k)} + b$. on, $x^{(k+1)} = -(D+L)^{-1}Ux^{(k)} + (D+L)^{-1}D$ = Hx(k)+C k20,1,2,-.

where $H = -(D+L)^{-1}U$ and $C = (D+L)^{-1}b$

Solve by Gauss-Seidel method [matrix format] taking the initial approximation as x (0) = 0 and perform 3 ituations.

$$-3x^{2} + 5x^{3} = 1$$

$$-3x^{1} + 5x^{2} - 3x^{3} = 1$$

$$-3x^{1} - 3x^{2} = 2$$

$$= 2$$

$$Sd''$$
. $D+L = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \end{bmatrix}$, $U = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

$$x^{(k+1)} = -(D+L)^{-1}Ux^{(k)} + (D+L)^{-1}b$$

$$x^{(k+1)} = \begin{bmatrix} 0 & +1 | 2 & 0 \\ 0 & +1 | 4 & 1 | 2 \\ 0 & 1 | 8 & 1 | 4 \end{bmatrix} x^{(k)} + \begin{bmatrix} 7 | 2 \\ 9 | 4 \\ 13 | 8 \end{bmatrix}$$

$$\chi^{(1)} = \begin{bmatrix} 3.5 \\ 2.25 \\ 1.625 \end{bmatrix} \qquad \chi^{(2)} = \begin{bmatrix} 4-625 \\ 3.625 \\ 2.3125 \end{bmatrix} \qquad \chi^{(3)} = \begin{bmatrix} 5.3125 \\ 4.3125 \\ 2.6563 \end{bmatrix}$$

Exact sed". is [6,5,3] T

Ex Solve the following system of egns. by Gauss-Seidel's iteration method correct upto four decimal places. 27n + 6y - 2 = 54

$$27n + 6y - 2 = 54$$

 $6n + 15y + 22 = 72$
 $n + 3y + 542 = 110$

Sol": The iteration ocheme is

$$\chi^{(k+1)} = \frac{1}{27} \left(54 - 6y^{(k)} + 2^{(k)} \right)
y^{(k+1)} = \frac{1}{15} \left(72 - 6\chi^{(k+1)} - 22^{(k)} \right)
2^{(k+1)} = \frac{1}{54} \left(110 - \chi^{(k+1)} - y^{(k+1)} \right)$$

Let y =0, 2=0, be the initial approximation. The successive iterations are shown below

k	γ	y	2
0	_	0	0
1	2.00000	4.00000	1.92593
2	1.18244	4.07023	1.93977
3	1.16735	4.07442	1.93997
4	1.16642	4.07477	1.93998
5	1.16635	4.07480	1.93998
6	1.16634	A: 07480	1.93998

The set" correct upto 4 decimal places is n = 1.1663 y = 4.0748z = 1.9400 Theorem A necessary and sufficient condition for convergence of an iterative method is that the eigenvalues of the iteration matrix satisfy $|\lambda_i(H)| \leq 1$, i = (1)n.

Ex Consider the 3x3 linear systems of the form A(x=bi) where bi is unit vector and the matrices Ai are

$$A_{1} = \begin{bmatrix} 3 & 0 & 4 \\ 7 & 4 & 2 \\ -1 & 1 & 2 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} -3 & 3 & -6 \\ -4 & 7 & -8 \\ 5 & 7 & -9 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 4 & 1 & 1 \\ 2 & -9 & 0 \\ 0 & -8 & -6 \end{bmatrix} \qquad A_{4} = \begin{bmatrix} 7 & 6 & 9 \\ 4 & 5 & -4 \\ -7 & -3 & 8 \end{bmatrix}$$

It can be checked that the Jacobi method fails to converge for A_1 [$S(H_J) = 1.33$], while the Gauss-Seidal scheme is convergent. Conversely, in the case of A_L , the Jacobi method is convergent, while the Gauss-Seidel method fails to converge [$S(H_{GS}) = 1.1$]. In A_3 , G-S method is faster than Jacobi [$S(H_{GS}) = 0.018$, $S(H_J) = 0.44$] and the converse is true for A_A [$S(H_J) = 0.64$, $S(H_{GS}) = 0.77$]