说明:

本部分复习题目,是针对处理机管理部分的单元性复习,也算是个单元性质的总结。

一: 选择题/填空题/判断题

- 1. 操作系统是对 () 进行管理的软件
 - A. 软件 B. 硬件 C. 计算机资源 D. 应用程序
- 2. 操作系统的发展过程是()
 - A. 设备驱动程序组成的原始操作系统,管理程序,操作系统
 - B. 原始操作系统,操作系统,管理程序
 - C. 管理程序, 原始操作系统, 操作系统
 - D. 管理程序,操作系统,原始操作系统
- 3. 下列几种关于进程的叙述, () 最不符合操作系统对进程的理解。
 - A. 进程是在多程序并行环境中的完整的程序
 - B. 进程可以由程序、数据和进程控制块描述
 - C. 讲程是系统讲行并资源分配的一个独立单位
 - D. 进程是程序在一个数据集合上运行的过程
- 4. 从静态角度看,进程由()、()、()三部分组成,其中()是进程存在的唯一标志。当几个进程共享()时,()应该是可重入的。
- (1) JCB (2) PCB (3) DCB (4) TCB (5) 程序段 (6) 数据段 5. 进程的三个基本状态是()、()、()、,其中,由()到()是由进程调度引起的,由()到()是正在执行的进程中发生了某个事件,使之无法继续执行而引起的。
 - (1) 挂起 (2) 阻塞 (3) 就绪 (4) 执行 (5) 完成
- 6. 正在执行的进程由于其时间片用完被暂停执行,此时进程应从执行状态转变为()状态,处于阻塞状态的进程,因为内存空间问题,需要移到外存中,从而状态转换为()。
 - (1) 挂起阻塞 (2)活动就绪 (3)活动阻塞 (4)执行状态
- 7. 在下面对临界区的描述中,选择两条正确的论述

- (1) 指进程中用于实现进程互斥的那段代码
- (2) 进程中用于实现同步的那段代码
- (3) 进程中用于实现进程通信的那段代码
- (4) 进程中用于访问共享资源的那段代码
- (5) 进程中访问临界资源的那段代码
- (6) 若进程 A 与进程 B 必须互斥地进入自己的临界区,则进程 A 处于对应的临界区内时,仍能被 B 进程中断。
- (7) 若进程 A 与进程 B 必须互斥地进入自己的临界区,则进程 A 处于对应的临界区内时,不能被 B 进程中断。
- 8. 对于信号量,执行一次 P 操作时,信号量应该()、当其值为()时,进程应该阻塞;执行一次 V 操作时,信号量应该(),当其值为()时,应该唤醒阻塞队列中的进程。
 - (1) 不变 (2) 加1 (3) 减1 (4) 加指定数 (5) 减指定数
 - (6) 大于 0 (7)) 小于 0 (8) 大于等于 0 (9) 小于等于 0
- 9. 在生产者消费者问题中,应该设置互斥信号量 mutex、资源信号量 full 和 empty,它们的初值分别为()、()、()
 - (1) 0 (2) 1 (3) -1 (4) -n (5) +n
- 10. 从下面的叙述中选出一条正确的论述。
 - (1) 操作系统的一个重要的概念是进程,不同进程所执行的代码也不同。
- (2) 操作系统是通过 PCB 来控制和管理进程,用户进程可从 PCB 中读出与本身运行状态相关的信息。
 - (3) 当进程由执行状态变为就绪状态时, CPU 现场信息必须被保存在 PCB 中。
 - (4) 当进程申请 CPU 得不到满足时,它将处于阻塞状态。
- (5) 进程是可于其它程序并发执行的程序在一个数据集合上的运行过程,所以程序段是进程存在的惟一标志。
- 11. 引入线程概念的主要目的是处理进程与进程之间的竞争()
- 12. 进程同步是进程与进程间的间接制约问题,进程互斥是进程与进程间的直接制约问题()
- 13. 单 CPU 环境下由于任何时刻只有一个进程(线程)能够运行,因此操作系统

不需要实现同步与互斥支持。()
14. 当进行系统调用时,将涉及到进程上下文的保存和恢复,此时系统所保存和
恢复的是同一个进程的上下文。()
15. 在分时系统中,响应时间 时间片.用户数,因此为改善系统的响应时间,
常用的原则是使时间片越小越好。()。
16. 在三种基本类型的操作系统中,都设置了(),在批处理系统中还应该设置
(),在分时系统中,除了()外,通常还设置了(),在多处理机系统中,
则还需要设置()
(1)) 剥夺调度(2)作业调度(3)进程调度(4)中级调度(5)多处理机调度
17. 系统产生死锁是指?产生死锁的基本原因是?和?,产生死锁的四个必要条
件是?
问答题
1. 为什么要引入挂起状态?

2. 试说明进程三种基本状态以及各个状态之间的转换情况。

3. 说明引起进程创建的事件

4.	进程运行时,存在哪两种制约关系? 举例说明
5.	进程调度的主要功能? 高级调度和中级调度主要任务是什么? 为什么要引入中级调度?
6.	进程调度中"可抢占"和"非抢占"两种方式,哪一种系统的开销更大?为什么?
7.	介绍进程调度算法。

8. 如果为每个作业只建立一个进程,为了照顾短作业用户,采用什么调度算法? 为了照顾紧急作业用户,应采用什么算法?为了实现人机交互,应采用什么 算法?为了让短作业、长作业和交互作业用户都满意,应该采用什么算法?

二、算法题

1. 用信号量解决"独木桥"问题: 同一方向的行人可连续过桥,当某一方向有人过桥时,另一个方向的行人必须等待;当某一方向无人过桥时,另一方向的行人可以过桥。

2. 设有三个进程 A、B、C, 其中 A 与 B 构成一对生产者与消费者(A 为生产者,B 为消费者), 共享一个由 n 个缓冲块组成的缓冲池; B 与 C 也构成一对生产者与消费者(此时 B 为生产者,C 为消费者), 共享另一个由 m 个缓冲块组成的缓冲池。用 P、V 操作描述它们之间的同步关系。