URI Online Judge | 1950

Spöhndriger

Por Leandro Zatesko, UFFS 🔯 Brazil

Timelimit: 3

— Taca-lhe pau, Marco véio!

Estas palavras ficaram gravadas para sempre no coração do Dr. Marco Spohn, e é por isso que ele faz tudo com excelência e dedicação. Ultimamente, ele tem trabalhado num sistema operacional que gerencia um robô e um labirinto e que é capaz de fazer o robô encontrar a saída do labirinto. Por enquanto, o projeto está num estágio muito inicial, e na atual versão o robô apenas se move aleatoriamente no labirinto.

O labirinto é uma caixa eletrônica cujas posições formam um *grid* **N** × **M**. Cada posição do *grid* pode estar *bloqueada*, quando uma parede de borracha está erigida na posição do fundo ao topo da caixa, ou*livre*. Assumindo que a indexação das linhas e colunas do *grid* começa em 1, a *saída* do labirinto se encontra sempre na posição (**N**, **M**) e nunca está bloqueada, sendo a única posição não coberta pela tampa da caixa. O robô do Dr. Spohn é esperto e consegue, através de suas câmeras e sensores, saber quais das posições adjacentes à posição em que se encontra estão livres ou bloqueadas. Destarte, a próxima posição para a qual vai é sempre tomada com distribuição uniforme dentre todas as posições livres adjacentes. As adjacências são sempre consideradas apenas nos sentidos horizontal e vertical. Se há posições livres adjacentes, o movimento da posição corrente para a próxima custa uma unidade de tempo constante. Do contrário, o robô fica parado.

Ontem o Dr. Spohn fez um experimento interessante. Primeiramente, ele configurou o labirinto deixando algumas posições livres e as outras bloqueadas. Em seguida, pôs o robô numa posição livre qualquer do labirinto, tampou a caixa, programou dois tempos \mathbf{T}_1 e \mathbf{T}_2 ($\mathbf{T}_1 < \mathbf{T}_2$) e iniciou o sistema. Uma vez iniciado o sistema, o robô, sem poder ser visto pelo Dr. Spohn, começou a se mover dentro do labirinto conforme descrito acima, até não conseguir mais se mover, até chegar na posição (\mathbf{N} , \mathbf{M}), ou até o tempo \mathbf{T}_2 ser excedido e o experimento ser abortado. Após \mathbf{T}_1 unidades de tempo a partir do início do experimento, o sistema sorteou \mathbf{K} posições livres em que não estava o robô e as bloqueou, reportando num visor ao Dr. Spohn quais posições foram bloqueadas.

Dados os tempos T_1 e T_2 , a configuração inicial do labirinto e as K posições livres que foram bloqueadas após T_1 unidades de tempo, calcule a probabilidade de o robô ter conseguido sair do labirinto em no máximo T_2 unidades de tempo contando a partir do início do experimento.

Entrada

A primeira linha da entrada consiste de quatro inteiros, \mathbf{N} , \mathbf{M} , \mathbf{T}_1 e \mathbf{T}_2 ($1 \le \mathbf{N}$, $\mathbf{M} \le 30$, $1 \le \mathbf{T}_1 < \mathbf{T}_2 \le 10^5$), os quais representam respectivamente o número de linhas e o número de colunas do *grid* e os tempos programados no sistema conforme já explanado. As próximas \mathbf{N} linhas descrevem a configuração inicial do labirinto e contêm exatamente \mathbf{M} caracteres cada, sendo o \mathbf{j} -ésimo ($1 \le \mathbf{j} \le \mathbf{M}$) caractere da \mathbf{i} -ésima ($1 \le \mathbf{i} \le \mathbf{N}$) linha \mathbf{i} , \mathbf{m} ou \mathbf{k} se a posição (\mathbf{i} , \mathbf{j}) do *grid* começou, respectivamente, livre, bloqueada ou contendo o robô. A linha seguinte da entrada consiste de um único inteiro \mathbf{K} ($0 \le \mathbf{K} \le \mathbf{N} \times \mathbf{M}$), o qual representa o número de posições livres que foram bloqueadas \mathbf{T}_1 unidades de tempo após o início do experimento, e as \mathbf{K} últimas linhas da entrada descrevem essas posições, cada uma consistindo de dois inteiros \mathbf{i} e \mathbf{j} ($1 \le \mathbf{i} \le \mathbf{N}$, $1 \le \mathbf{j} \le \mathbf{M}$) para designar a posição (\mathbf{i} , \mathbf{j}).

Saída

Imprima uma linha consistindo de um único valor representando a probabilidade de o robô ter conseguido

sair do labirinto em no máximo \mathbf{T}_2 unidades de tempo contando a partir do início do experimento. A probabilidade deve ser exibida como uma porcentagem com duas casas decimais após o ponto decimal.

Exemplos de Entrada	Exemplos de Saída
1 3 1 3	75.00%
.R.	
0	
1 3 1 3	100.00%
.R.	
1	
1 1	
4 3 1 4	22.53%
• • •	
#.#	
.R.	
•••	
2 1 2	
3 3	
4 3 2 4	54.95%
#.#	
.R.	
2	
1 2	
3 2	

^{1&}lt;sup>a</sup> Minimaratona Noturna de Grafos da UFFS - 2015