IMAGE FORMATION AND IMAGE MODELS

Light - a carrier of information

light can be

absorbed

diffracted

refracted

reflected

Light - a carrier of information

- most visual information comes from light reflected from surfaces
 - surface material (colour, fabric) determines which portion of the spectrum is reflected
 - texture how coherently is light reflected
 - any movement (self or in environment) and any change, changes it
- light detected by receptors (natural or human-made)

Light sensing

Human retina

- light sensing takes place on the retina
- light photons hitting the receptors
- chemical reaction (bleaching)
- electric impulses

Receptive fields

- polling responses from a number of receptors
- size of receptive fields increases towards the periphery.

Electronic receptors

- light sensitive diodes
- electric current in proportion to the amount of light
- Analogue-to-Digital Converters (ADCs) convert the voltage magnitude to a number
- stored in a computer memory
- arranged in a regular rectangular grid (array)

Significant parameters

The most important factors in image formation are:

- the relationship between the amount of light and the sensor response (a *response function*)
- the relationship between the sensor response and the digital value (*brightness sampling*, in digital systems only)
- receptive field sizes (spatial resolution)
- geometry of sensors (*spatial sampling*)

Image as a function

fundamental abstraction of an image

2D monochrome image

- a function (I) of two spatial variables x, y
- the value (b) image brightness

$$I(x,y) = b$$

colour image

$$I(x,y) = \overline{c} = [r g b]$$

colour image

$$I(x,y) = \overline{c} = [r g b]$$

spectral bands

$$I(x,y) = \overline{c} = [s_1 \quad s_2 \quad \dots \quad s_n]$$

temporal images

$$I(x,y,t) = b$$

Examples of operations on images

I(x,y) + 20, for all (x,y) value 20 should be added to all image pixels

I'(x,y) = I(x,y)+20, for all (x,y) after the addition, image values will be stored in image I' at the location (x,y)

Digitising model

- A "real" image (a pattern of light falling onto receptors) a continuous function
- Image capture taking measurements (samples)
- Spatial sampling measurements at certain intervals (regularly or irregularly spaced)
- Grey level quantification quantifying brightness at each sample into a number of different levels

Sampling interval (spatial resolution)

- for a given real height and width of a 2D image, into how many pixels should it be divided into?
- the more pixels, the higher resolution the closer to the original
- the amount of memory increases

Sampling Theorem (Nyquist Criterion)

To fully represent detail (the rate of brightness change) in an original image, it has to be sampled at a rate at least twice as high as the highest spatial frequency of the detail.

It is wasteful to sample at a rate faster than twice of the finest detail to be resolved in the image

Tessellation

- The spatial arrangement of a sampling grid
- The cells are called pixels
- The most common tessellations are rectangular, triangular and hexagonal:

Grey level quantisation

How many grey levels to chose to represent accurately the image brightness?

Many factors

- images for further processing or for viewing?
- accurate representation or detection?
- brightness transfer function

Grey level quantisation

grey level resolution determined by the number of bits per pixel (bpp), e.g.

- 8 bpp => 28 = 256 levels (typical for digital images)
- increment by one bit doubles brightness resolution

Response function (brightness transfer function)

Linear

Logarithmic

Gamma

Other mathematical models of the image

Statistical model: describes the image in terms of

statistics of its grey levels

Geometric model: describes how three dimensions

are projected into two.

Radiometric model: shows how the imaging geometry,

light sources and reflectance

properties of objects affect the light

measurement at the sensor.

Spatial frequency model: describes how spatial

variations of the image may be

characterised in a transform

domain.

Colour model: describes how different spatial

frequencies are related to image

colours.