

# Chemical Engineering



# **Advisory Board Meeting**

23 April 2021

United States Military Academy
Department of Chemistry and Life Science

4/19/2021

### **Meeting Endstate**



- 1. 100% surveys complete
- 2. Discussions with chemical engineering faculty and cadets complete
- 3. Tours of chemical engineering lab, work, classroom space complete
- 3. Travel paperwork complete



### **Lunch – Subs and Wraps**



Lunch:

- 1. Cold cut Italian mix sandwiches and wraps
- 2. Mixed salad
- 3. Chips: regular/barbeque/sour cream & onion/Cheetos/Doritos
- 4. Iced tea/soda/water/coffee
- 5. Cookie plate



# Chemical Engineering



# **Advisory Board Meeting**

23 April 2021

1. Introductory Remarks

United States Military Academy
Department of Chemistry and Life Science

4/19/2021



### Thank you!

- For the opportunity to show you America's Military Academy
- For your service and insights to help our program improve
- For the time you have dedicated to this visit
- For your dedication to the profession







# CDT Jesse Palmer, '19 Chemical Engineering

- **Won Stamps Scholarship**
- **Won Goldwater Scholarship**
- Tau Beta Pi Honor Society
- Phi Kappa Phi Honor Society
- Phi Sigma Iota Society
- **Won Churchill Scholarship**

#### **Co-Authored Publications**

- Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. *Molecules*, 23(6)
- 2. Gelatin biotemplated platinum aerogels. MRS Advances, 1-6.
- 3. A Rapid Synthesis Method for Au, Pd, Aerogels Via direct Solution-Based Reduction. Journal of visualized experiments: JoVE, (136).

**Second Class** 

4. Direct solution-based reduction synthesis of Au, Pd, and Pt Aerogels. Journal of Materials Research, 32(22).

Australia; Renewable Energy Lab

**Third Class** 

Harvard AIAD: Disease biophysics groups

Sweden: Water NEXUS conference

CH489/CH490 CH389/CH390

#### **USMA Independent Research**

**Fourth Class** 

Jesse has collaborated with the Army Research Labs (ARL) in Adelphi, MD to produce biosensors and has developed novel Kevlar-cellulose composites with Harvard's Disease Biophysics group. As a recipient of Goldwater and Stamps Scholarships Jesse has used his academic funding to attend World Water Week in Stockholm, Sweden and visit the University of New South Wales in Sydney, Australia to pursue his interest in water desalination. Jesse is also completing a minor in Eurasian Studies. He plans on attending graduate school to develop batteries to enhance prosthetic limbs serving wounded veterans.



**Field Artillery Officer** 



**Future Faculty** 

**First Class** 

**Beyond** 



# **USMA MISSION**

To educate, train, and inspire the Corps of Cadets so that each graduate is a commissioned *leader of character* committed to the values of **Duty, Honor, Country** and prepared for a career of professional excellence and service to the Nation as an officer in the United States Army.

# UNITED STATES MILITARY ACADEMY WEST POINT.

### **USMA Vision**

Within an Army in transition, West Point is the preeminent leader

development and academic institution West Point is the preeminent leader whose graduates thrive in tomorrow's development institution in the world. complex security environments,

and are inspired to a lifetime of service to our Army and the Nation as leaders of character.



### **Program Vision**

We envision an Army that is prepared for all dimensions of modern warfare, drawing upon disciplined, highly trained chemical engineers to develop solutions to the challenges facing the nation.

4/19/2021



### **Program Mission**

The mission of the chemical engineering program is to prepare commissioned leaders of character who are proficient in applying chemical and engineering principles to solve problems in a complex operational environment.

4/19/2021



# Engineering Technology Accreditation Commission



Accredited 1 October 2012 to present

Next Record Year: AY2025-2026

**ABET Visit: Early September 2026** 



### Why ABET Accreditation?

- An external certification of quality
- Keeps us in touch with the engineering profession
- Helps USMA (and ChemE) recruiting (2020 29; 2021 20; 2022 29; 2023 -...so far 12)
- Provides important opportunities for graduates
- Allows USMA engineering majors to take the Fundamentals of Engineering Examination
- It is required by Army Regulations (10-87).
- Almost everything that ABET expects us to do is something we should be doing anyway.

### **Thoughts to Consider**

- The ABET process is expensive in terms of faculty time
  - USMA is a <u>small undergraduate college</u> with limited human resources (faculty) and high faculty turnover
- The ABET accreditation is important to the institution and to the Army (so we tend to do it well)
- The only way we can be successful with ABET is to orient our program processes around the ABET criteria
  - By doubling up our efforts we obtain some efficiency
  - Much of what follows is oriented around the ABET processes and terminology
  - We need to be strategic in deciding on new initiatives



### **Terms You Should Know**

#### Program Educational Objectives (PEOs)

- Gleaned by asking program constituents
  - For us: Army, profession, graduate schools, other
- Our external Advisory Board a key resource
- Desired professional accomplishments of <u>graduates</u> 5-7 years after graduation
- Adjust every 3 years or so...



- What <u>students</u> should be able to do at <u>graduation</u>
- Must be measurable
- Designed to lead naturally to the PEOs
- Assess/evaluate some fraction yearly.

### Assessment → Continuous improvement

- Collect meaningful data to evaluate performance indicators (PIs)
- Assess PIs for outcome attainment → information → COAs for change
- Implement change
- Assess its effects and level of success ("closing the loop")
- Repeat all the above
- Periodically check and adjust both Student Outcomes and PEOs





# **Assessment Cycle**



# UNITED STATES MILITARY ACAD WEST POIN

# Timeline of Curricular Actions





#### CH300: Introduction to Biomedical Engineering

Course Director: TBD

Course OIC: MAJ Jeffrey Chin

Credit Hours: 3.0 (BS=0, ET=3.0, MA=0)
Prerequisites: CH102, MA205
Co-requisite: None

Lessons: 30 @ 75 min This course provides a basis for understanding the application of engineering principles to problems in medicine and biology. It provides preparation for future graduate work in medical school, biomedical engineering, and chemical engineering. Specifically, the objectives of the course are: (1) to provide an introduction to the field and how it relates to other fields of engineering and science, (2) the develop the ability to apply mathematics, science, and engineering to solve problems, (3) to develop an understanding of the impact of engineering solutions on the medical field and society as a whole, and (4) to understand current topics within the field.

#### COA 1

#### Block I: Molecular and cellular principles

- Biomolecular principles (Ch. 2)
- Biomolecular principles: Nucleic acids (Ch. 3)
- Biomolecular principles: proteins (Ch. 4)
- Cellular principles (Ch. 5)

#### Block II: Physiological principles

- Communication systems in the body (Ch. 6)
- Engineering balances: respiration and digestion (Ch. 7)
- Circulation (Ch. 8)
- Removal of molecules from the body (Ch. 9)

#### Assessment – Graded Events

| 6 *HWs@ 50 pts each     | 300  | 21.4% |
|-------------------------|------|-------|
| 2 *WPRs @ 200 pts each: | 400  | 28.6% |
| 1 *Capstone             | 200  | 14.3% |
| 1 *TEE                  | 500  | 35.7% |
| Total:                  | 1400 |       |

\*Individual Points : 1400 100%

*TEXT: Biomedical Engineering*, 2<sup>nd</sup> Edition, by W. Mark Saltzman; Cambridge University Press, 2015.

#### COA 2

#### Block I: Molecular and cellular principles

- Biomolecular principles (Ch. 2)
- Biomolecular principles: Nucleic acids (Ch. 3)
- Biomolecular principles: proteins (Ch. 4)
- Cellular principles (Ch. 5)

#### Block II: Physiological principles

- Communication systems in the body (Ch. 6)
- Engineering balances: respiration and digestion (Ch. 7)
- Circulation (Ch. 8)
- Removal of molecules from the body (Ch. 9)

#### Block III: Biomedical Engineering

- Biomechanics (Ch. 10)
- Bioinstrumentation (Ch. 11)
- Bioimaging (Ch. 12)
- Biomolecular Engineering I: Biotechnology (Ch. 13)
- Biomolecular Engineering II: Engineering of Immunity (Ch. 14)



# CH350: Introduction to Bioengineering Course Director: Dr. Simuck Yuk

Credit Hours: 3.0 (BS=0, ET=3.0, MA=0)
Prerequisites:
Co-requisite: None
Lessons: 30 @ 75 min
Special Requirements: None

The purpose of this course is to provide the introductory knowledge for understanding the biotechnology/bioprocessing engineering. Topic includes enzyme kinetics, molecular biology, cell growth, bioreactors, and bioprocesses. The bioprocess control and its application to different biological systems are covered in the classroom instruction. An important emphasis is made on the use of kinetics and process controls on the biological systems for engineering application.

#### Course Assessment – Items from Section III

#### **Sustain:**

N/A at this point.

#### Improve:

N/A at this point.

#### Topics – by Chapter

*Bioprocess Engineering Basic Concepts,* 3rd Ed., by Michael L. Shulter, Fikret Kargi, Matthew DeLisa, Prentice Hall.

Quantitative Fundamentals of Molecular and Cellular Bioengineering, by K. Dane Wittrup, Brice Tidor, Benjamin J. Hackel, and Casim A. Sarkar, The MIT Press.

- Introduction
- Enzyme Kinetics
- Central Dogma to Molecular Biology
- Cell Growth
- · Bioreactor Selection
- Bioprocess Consideration

#### Assessment - Graded Events

| 1 *Capstone Presentation               | 200  | 14%     |
|----------------------------------------|------|---------|
| 2 *WPRs                                | 400  | 28%     |
| 5 *After-class Problem Sets(20pts/ea.) | 100  | 7%      |
| 5 *In-class Problem Sets (50pts/ea.)   | 250  | 17%     |
| 1 *Term End Exam                       | 500  | 34%     |
| Total:                                 | 1450 | 100.00% |



#### CH450: Bioengineering Modeling and Analysis

Course Director: COL John Burpo Credit Hours: 3.0 (BS=0, ET=3.0, MA=0)

dit Hours: 3.0 (BS=0, ET=3.0, MA= Prerequisites: CH102, MA205 Co-requisite: None Lessons: 30 @ 75 min Special Requirements: None

This course provides a broad understanding of bioengineering disciplines to include biomechanics, biomaterials, tissue engineering, biocatalysis, biochemical engineering, and biosensors. Fundamental concepts of molecular kinetics, thermodynamics, and mass transport are applied in problem sets in each bioengineering sub-discipline and capstone design project providing students the opportunity for modeling, analysis, and design from the biomolecular to physiological length scale and across multiple time scales. Modeling software such as MATLAB and Mathematica is extensively used.

#### Topics – by Chapter

*TEXT: Introduction to Biomedical Engineering*, 3<sup>rd</sup> Edition, by John Enderle and Joseph Bronzino; Academic Press, 2012.

- Part I: Biomechanics (Ch. 1 and 4)
- Part II: Biomaterials (Ch. 5)
- Part III: Tissue Engineering (Ch. 6)
- Part IV: Biomedical Enzyme Kinetics (Ch. 7 and 8)
- Part V: Biochemical Engineering (Handouts)
- Part VI: Biosensors (Ch. 10)

#### Course Assessment – Items from Section III

#### Sustain:

- Best looking Dept Head/CD/ Prof at the academy
- Strong instructor personal experience in mathematics, engineering, and chemistry
  - Each lesson considers interdisciplinary science and engineering topics –science topics are taught in context of engineering applications

#### Improve:

CH450

#### Assessment – Graded Events

| 5 *Problem Sets@ 25 pts each | 500  | 47.2% |
|------------------------------|------|-------|
| 6 *Quizes @ 200 pts each:    | 180  | 17.0% |
| 1 *Paper                     | 150  | 14.1% |
| 1 *Presentation              | 50   | 4.7%  |
| 6 *Discussion                | 180  | 17.0% |
| Total:                       | 1060 |       |
|                              |      |       |

\*Individual Points : 1060 100%



### **Advisory Board Findings**

#### **Excerpts from Minutes of 26 April 2019**

- CH400 professional practice was discussed at length with cadet panel; and faculty; overall stay on current azimuth
- Desire for continued program improvement; program has good balance between theory and hands-on experience
- Some members of board would like to see more flexibility
- Cadets lamented about lack of chemical engineering electives
- Cadet feedback focused on various courses
- Cadets appreciate going to other departments for some courses (CME)
- General Chemistry discussion
- CH485 tough but useful and important to curriculum



### **End of Section 1**

4/19/2021



# Chemical Engineering



# **Advisory Board Meeting**

23 April 2021

2. Program Assessment

United States Military Academy
Department of Chemistry and Life Science

4/19/2021 22



# Student Outcomes (new used for AY19 & beyond)

#### Identical to ABET 1-7 plus one additional outcome (8)

#### On completion of the chemical engineering program, our graduates will be able to:

- 1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. Communicate effectively with a range of audiences.
- 4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. Acquire and apply new knowledge as needed, using appropriate learning strategies.
- 8. Understand the chemical engineering curriculum, including chemistry, material and energy balances, safety and environmental factors, thermodynamics of physical and chemical equilibria, heat, mass, and momentum transfer, chemical reaction engineering, continuous and staged separation processes, process dynamics and control, modern experimental and computing techniques, and process design.

23



| Required                                                                  | Courses *                            | (for classes 2020 and beyond)                    |    |  |  |
|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|----|--|--|
| MA364                                                                     | A364 Engineering Mathematics         |                                                  |    |  |  |
| CH362                                                                     | CH362 Mass & Energy Balances         |                                                  |    |  |  |
| CH363 Separation Processes                                                |                                      |                                                  |    |  |  |
| CH364 Chemical Reaction Engineering                                       |                                      |                                                  |    |  |  |
| CH367 Introduction to Automatic Process Control (XE472 2019 and previous) |                                      |                                                  |    |  |  |
| CH485 Heat & Mass Transfer                                                |                                      |                                                  |    |  |  |
| CH459                                                                     | l459 Chemical Engineering Laboratory |                                                  |    |  |  |
| CH402 Chemical Engineering Process Design                                 |                                      |                                                  |    |  |  |
| CH400 Professional Practice                                               |                                      |                                                  |    |  |  |
| MC311 Thermal-Fluid Systems I                                             |                                      |                                                  |    |  |  |
| MC312 Thermal-Fluid Systems II                                            |                                      |                                                  |    |  |  |
| EE301 Fundamentals of Electrical Engineering                              |                                      |                                                  |    |  |  |
| MC300                                                                     | Fundamentals of Eng                  | ineering Mechanics & Design (Statics & Dynamics) |    |  |  |
| CH365                                                                     | Chemical Engineering                 | g Thermodynamics                                 |    |  |  |
| CH383                                                                     | Organic Chemistry 1                  |                                                  | 24 |  |  |



# CDT Matthew Dibiase, '20 Chemical Engineering



- Goldwater Scholarship Recipient
- Fullbright Scholarship Semifinalist
- Phi Kappa Phi Honor &Tau Beta Phi Honor Society

#### **Co-Authored Conference Proceedings and Publications**

- 1. Army Research Lab (ARL) Technical Symposium "Catalysts for fuel cell electronics". (Poster)
- 2. 1st Place Catalysts and Reaction Engineering, Presentation: "Nickel catalysts and graphene for lithium ion batteries". American Institute of Chemical Engineering Annual Meeting, Orlando, FL, 10-15 NOV19.
- 2. Manuscript in progress, "Electroless deposition of Noble Metal Nanoparticles onto Silk Fibroin Films", (to be submitted, Spring 2020)



| CH290: Modeling; Rheology of Blood | CH389/390: Fuel Cell<br>Polymers | AIAD: ARL, Nickel Based<br>Catalysts | CH490: Functionalized<br>Graphene |
|------------------------------------|----------------------------------|--------------------------------------|-----------------------------------|
| Fourth Class Third Class           | Second Class                     | First Class                          | Beyond                            |
| CH290 CH389/CH39                   | 0 CH489/CH490                    |                                      | Future Signal Officer             |

#### **USMA Independent Research**

Cadet Dibiase has been working on a Proton Exchange Membrane (PEM) Fuel Cell project; a field of great interest for their efficiency advantages over combustion technology. However, conventional methods of electrolysis to produce H<sub>2</sub> and O<sub>2</sub> gas necessary for PEM fuel cells rely on expensive catalysts, Pt and IrO<sub>2</sub>. Despite exceptional efficiency of these catalysts, their high costs prevent industry scale up and production. We present alternative Ni-based catalysts to replace Pt and IrO<sub>2</sub>. Of the Ni catalysts characterized, NiS and NiFe LDH together provided the smallest total overpotentials of 1.7 V (vs SHE) for Hydrogen Evolution Reactions (HER) and Oxygen Evolution reactions (OER), respectively. However, Linear Sweep Voltammetry illustrated that NiFe LDH had the lowest overpotential of the two, contributing only 0.3 V to the total overpotential. Nevertheless, the total overpotential of 1.7 V is still only 0.2 V above the industry standard of 1.5 V from a combination of Pt and IrO<sub>2</sub>





### **Assessment**

**CHEME Coursework Embedded Indicators** 

**MECHE Coursework Embedded Indicators** 

Fundamentals of Engineering Exam Topics

Participation in FE Exam (not pass rate)

Student end of semester surveys

Student CHEME Program Exit Surveys

**Course Grades** 



4/19/2021 26



### Chemical Engineering 8TAP

#### Example Schedule for Chemical Engineering, Classes of 2021 and Beyond

| Fall Term | Course                                 |       | Credit | Spring          | Course                                    | Credit |
|-----------|----------------------------------------|-------|--------|-----------------|-------------------------------------------|--------|
| 4th CLASS |                                        |       | Hours  | Term            |                                           | Hours  |
| MA103     | Math. Modeling & Intro. Calculus       |       | 4.5    | <b>MA104</b>    | Calculus I                                | 4.5    |
| CH101     | General Chemistry I                    |       | 4.0    | CH102           | General Chemistry II                      | 4.0    |
| EN101     | Composition                            |       | 3.0    | EN102           | Literature                                | 3.0    |
| HI107     | Western Civilization                   |       | 3.0    | HI108           | Regional Studies in World History         | 3.0    |
| IT105     | Introduction to Computing & IT         |       | 3.0    | PL100           | General Psychology                        | 3.0    |
| PE11x     | Combatives / Boxing / Movement         |       | 0.5    | MS100           | Introduction to Warfighting               | 1.5    |
|           | _                                      |       |        | PE150           | Fundamentals/Personal Fitness             | 1.5    |
| 3rd CLASS |                                        | Total | 18.0   |                 | Tota                                      | l 20.5 |
| MA205     | Calculus II                            |       | 4.0    | CH362           | Mass and Energy Balances                  | 3.5    |
| PH205     | Physics I                              |       | 4.0    | MA364           | Applied Engineering Math                  | 3.0    |
| Lx203     | Foreign Language                       |       | 4.0    | PH206           | Physics II                                | 4.0    |
| SS201     | Economics                              |       | 3.0    | Lx204           | Foreign Language                          | 4.0    |
| PY201     | Philosophy                             |       | 3.0    | <b>SS202</b>    | American Politics                         | 3.0    |
| MS200     | Fundamentals: Army Operations          |       | 1.5    | EV203           | Physical Geography                        | 3.0    |
|           | • •                                    |       |        | PE 2xx          | Lifetime Physical Activity                | 0.5    |
| 2nd CLASS |                                        | Total | 19.5   |                 | Tota                                      | l 21.0 |
| CH363     | Separation Processes                   |       | 3.5    | CH364           | Chemical Reaction Engineering             | 3.5    |
| EE301     | Fundamentals of Electrical Engineering |       | 3.5    | CH367           | Introduction to Automatic Process Control | 3.0    |
| CH383     | Organic Chemistry 1                    |       | 3.5    | MC312           | Thermal-Fluid Systems 2                   | 3.0    |
| MC311     | Thermal-Fluid Systems 1                |       | 3.5    | MC300           | Fundamentals of Eng. Mech. & Design       | 3.0    |
| PL300     | Military Leadership                    |       | 3.0    | SS307           | International Relations                   | 3.0    |
| MA206     | Probability and Statistics             |       | 3.0    | MS300           | Platoon Operations                        | 1.5    |
| PE32x     | Survival Swimming                      |       | 0.5    | PE360           | Combat Applications                       | 1.5    |
| 1st CLASS |                                        | Total | 20.5   |                 | Tota                                      | l 18.5 |
| CH459     | Chemical Engineering Laboratory        |       | 3.5    | CH402           | Chemical Engineering Process Design       | 3.5    |
| CH365     | Chemical Engineering Thermodynamics    |       | 3.0    | CH400           | Chemical Engineering Prof. Practice       | 1.5    |
| CH485     | Heat & Mass Transfer                   |       | 3.5    | <b>Elective</b> | Engineering Elective 3                    | 3.0    |
| Elective  | Engineering Elective 1                 |       | 3.0    | HI302           | History of the Military Art               | 3.0    |
| Elective  | Engineering Elective 2                 |       | 3.0    | LW403           | Constitutional & Military Law             | 3.0    |
| PE450     | Army Fitness Development               |       | 1.5    | MX400           | Officership                               | 3.0    |
|           | •                                      | Total | 17.5   |                 |                                           | I 17.0 |

UNITED STATES MILITARY ACADEMY

# Coursework Embedded Indicators Student Outcome 1

**Example Data:** 

Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.



Values in parentheses are coverage ratings from Table 5-3 in the 2014 Self Study, page 5-9, updated for 2019.

#### Rubric:.

- 3: Unique embedded indicator with clear rubric or cut scale.
- 2: Outcome was graded but grades are convoluted, or part of the outcome is not covered.
- 1: Correlation to outcome but no assessment
- 0: No coverage or correlation

Data shown here is for Class of 2020 Similar data is collected for all 7 ABET student outcomes Summary of all data is shown on next slide



# Performance on Embedded Indicators Program Averages AY2015-20



# UNITED STATES MILITARY ACADEMY WEST POINT.

# Example Data: End-of-Semester Surveys

Student Outcome 1

This course has improved my ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.



Data shown here is for Class of 2020 Similar data is collected for all 8 ABET student outcomes Summary of all data is shown on next slide



# **End-of-Semester Surveys Program Aves. From AY15-20**

Error bars are standard deviations.



# Fundamentals of Engineering Exam

Student Outcome 7: Acquire and apply new knowledge as needed, using appropriate learning strategies

Percent of cadets taking the FE Exam





# Fundamentals of Engineering Exam





O Tes Absolutely Les traditions to the Forthe most mass due to

National, (+/- ~1%):

74.6%

77.0%

75.0% 74.0%

79.0%

77.4%

89.0%

86.3%

85.1%

87.0%

87.0%

84.0%

87.0%

87.0%

2006 87.0%

Question 4

2020

2019

2013

2012

2011

2010

2009

2008

2007

25

20

15

10

Question 4, Post FEE Survey: Percent Passing

For the questions on the exam that seemed new to you, were you able to learn the material on the spot?



Safety, Health & Environment

Ethics & Professional Practice

Year-to-year variations in the difficulty of the exam are accounted for by normalizing with respect to the national average on the next slide.

**2007** 

**2008 2009** 

**2010 2011** 

**2012** 

**2013** 

**2014** 

**2015 2016** 

□2017 **2018** 

□2019 **2020** 

The error bars are the individual standard deviations for the

The average standard deviation over all data is 3.0.



# UNITED STATES MILITARY ACADEMY WEST POINT.

**Topical Outcomes Evaluation** 

Student Outcome 8: Understanding of the Chemical Engineering Curriculum



program is B- (2.67, red dotted line).



## **Faculty Student Outcomes Surveys**

#### Student Outcomes 1-8

Program Averages from AY15-20

Data labels are response frequencies for 2-5 on the 1-5 Survey Likert Scale (# of 2 / # of 3 / # 4 / # of 5) Standard deviations range from .08 to .23





## **Advisory Board Student Outcomes Surveys**

#### Student Outcomes 1-8

Program Averages from AY14-19

Data labels are response frequencies for 4 or 5 (# of 4s / # of 5s) on the 1-5 Survey Likert Scale Standard deviations range from .26 to .53





# Advisory Board Completes Survey Part 1



# ABET Criterion 2: Objectives

The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program's various constituencies, and these criteria.

There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program's constituents' needs, and these criteria.



# Program Objectives (Current Redbook)

During a career as commissioned officers in the United States Army and beyond, program graduates:

- 1. Demonstrate effective leadership and chemical engineering expertise.
- 2. Contribute to the solution of infrastructure and operational problems in a complex operational environment.
- 3. Succeed in graduate school or advanced study programs.
- 4. Advance their careers through clear and precise technical communication.

Advisory Board Recommended: October 2012



## Assessment Instruments for Objectives

## **Program Surveys**

Program Advisory Board Surveys
Program Faculty Surveys
Program Cadet Surveys

## UNITED STATES MILITARY ACADEMY WEST POINT.

## **Enrichment Opportunities**

**Cadet AIAD** 

### Advanced Individual Academic Development (AIAD)

Goal: Faculty Collaboration

Cadet Mentoring/Research

**Cadet Mentoring/Research** 

- Lawrence Livermore National Lab
- Sandia National Lab
- Army Research Labs
- Picatinny Arsenal
- BAE Systems Radford AAP
- BAE Systems Holston AAP
- Southern Polymer
- Uniform Color Company
- Renewable Energy Group





# Advisory Board Completes Survey Part 2

### **Board – Cadet Discussions**

### Concept (flexible) of discussions

- ~ 1000-1045 Board ask questions of cadets Any courses in curriculum cadets are unhappy with? Any general issues with the program they would like to discuss?
- ~ 1045-1115 Cadets ask questions of board



### **Lunch – Subs and Wraps**



Lunch:

- 1. Cold cut Italian mix sandwiches and wraps
- 2. Mixed salad
- 3. Chips: regular/barbeque/sour cream & onion/Cheetos/Doritos
- 4. Iced tea/soda/water/coffee
- 5. Cookie plate



## Chemical Engineering



## **Advisory Board Meeting**

23 April 2021

4. Future Challenges

United States Military Academy
Department of Chemistry and Life Science



### **Academic Excellence**



## **Academic Excellence**

#1 Most Accessible Professors #2 Best College Library



U.S.News

#2 Top Public Schools (Liberal Arts)

#3 Best Undergrad Engineering Program

#4 Civil Engineering Program

**#7 Mechanical Engineering Program** 

**#19 National Liberal Arts College** 

**#1 Public College in the country** 

#6 Liberal Arts Universities

#11 In the Northeast

**#14 Overall College in the country** 



### **Strategic Influence**

#### Governmental Strategic Guidance

- President
- Congress
- Department of Defense
- Government Agencies (e.g., NSA, FBI, CIA, ...)



- Army Goals and Priorities
- Army Regulations
- Army Doctrine

Higher Education Communities

- Professional Societies
- Accreditation Agencies
- Best Practices
- Peer Institutions



West Point Mission and Strategic Plan

Academic Program
Vision
and
Strategic Plan



Academic Program Goals

Core Courses

**Academic Majors** 

Enrichment Experiences



# CDT Anchor Losch, '20 Chemical Engineering



- Fullbright Scholarship Semifinalist
- Anna Sobol Levy Scholarship
- Rotary Scholarship Semifinalist
- · Tau Beta Phi Honor Society

#### **Co-Authored Conference Proceedings and Publications**

- F. John Burpo\*, Anchor R. Losch, Enoch A. Nagelli, Stephen J. Winter, Stephen F. Bartolucci, Joshua P. McClure, David R. Baker, Jack Bui, Alvin R. Burns, Sean F. O'Brien, Brittany Aikin, Kelsey Healy, Alexander N. Mitropoulos, J. Kenneth Wickiser, Greg Forcherio, and Deryn D. Chu "Salt-Templated Synthesis Method fo Porous Noble Metal Platinum-based Macrobeams and Macrotubes." J. Vis Exp. (Invited Paper)
- Burpo, F., Nagelli, E., Losch, A., Bui, J., Forcherio, G., Baker, D., McClure, P., Bartolucci, S., Chu, D. "Salt-templated Cu-Pt Alloy Macrobeams for Ethanol Oxidation." Catalysts, 2019, 9(8), 662.
  - Burpo, F., Nagelli, E., Bartolucci, S., Mitropoulos, A., McClure, J., Baker, D., **Losch, A.**, Chu, D. "Salt-Templated Platinum-Palladium Porous Macrobeam Synthesis." *MRS Communications*, 2019, 9(1), 280-287.

CH489: Multi-Functional Materials

Materials
Fourth Class

CH289/CH290: Multi-Functional

Third Class

**Second Class** 

CH290

CH389/CH390

CH489/CH490

#### **USMA Independent Research and Activities**

Cadet Losch researches in the Multi-Functional Materials Laboratory. She has completed synthesis work on Salt-Templated Platinum-Palladium and Copper-Platinum Alloy Porous Macrotubes, and presented at the Inter-Academy Chemistry Symposium and Projects Day. Outside of class and research, Anchor is a conductor in the Cadet Spirit Band, and President of the Model Arab League and American Institute of Chemical Engineers. As a part of the Peace and Dialogue Leadership Initiative, she has traveled to Israel and Palestinian territories to participate in a nuanced conversation about the US role in the Middle East, with a focus on Israeli-Palestinian relations, society, and culture. She studied Arabic abroad in Morocco, where she taught English at a local NGO. She travelled to Qatar with the National Council on U.S-Arab Relations on a cultural exchange program between U.S. and Qatari servicemembers. She also has completed service work in Viet Nam, Mongolia, Papua New Guinea, and the Galapagos Islands.



### **ABET Criteria**



- ABET Criteria changed this year, officially
  - Critical change is the reduction of dedicated engineering credit hours from 48.0 to 45.0
- Also, the Student Outcomes, what graduates of programs are expected to be able to do upon graduation, have changed
  - Fundamentally the same, but some consolidation, wording changes, and enhancements that may impact the collection of some assessment data
  - We already leaned forward to include the new SOs in our AY19 assessments, and are currently utilizing during AY20 record year.



# Chemical Engineering Faculty

|           | AY21 | AY22 | AY23 | AY24 | AY25 | AY26 | AY27 |
|-----------|------|------|------|------|------|------|------|
| Burpo     | X    | X    | X    | Χ    | X    | Χ    | X    |
| Biaglow   | Χ    | Χ    | Χ    | Χ    | Х    | Χ    |      |
| Lachance  | а    | ?    | ?    | ?    | ?    | ?    | ?    |
| Nagelli   | Χ    | Χ    | Χ    | Χ    | Χ    | Χ    | Χ    |
| James     | Χ    | Χ    | Χ    | Χ    | Χ    | Χ    | Χ    |
| Yuk       | Χ    | Χ    | Χ    | Χ    | X    | Χ    | X    |
| Corrigan  | Χ    |      |      |      |      |      |      |
| Cowart    | Χ    | Χ    | Χ    |      |      |      |      |
| Armstrong | Χ    | Χ    |      |      |      |      |      |
| Chin      | Χ    | Χ    | Χ    |      |      |      |      |
| Yi        | Χ    | Χ    | Χ    |      |      |      |      |
| Bowers    |      | Χ    | Χ    | Χ    |      |      |      |
| Mandes    |      | X    | Χ    | Х    |      |      |      |
| Belanger  |      |      | Χ    | Χ    | Χ    |      |      |
| Rogers    |      |      |      |      |      | Х    | X    |
| Golonski  |      |      |      |      | Χ    | Χ    | Χ    |
| Totals    | 10+  | 11+  | 11+  | 8+   | 7+   | 7+   | 6+   |

a – available to teach; currently in registrar's office

<sup>? –</sup> uncertain availability



## Effects of COVID: AY20/ AY21

- Spring AY20-2 transition to remote learning
- Cadets left for Spring Break 6MAR→ came back JUN20
- 10/30 Class of '20 chemical engineers took FEE
- Fall AY21-1 was a combination of in person, fully remote and hybrid
- Fall AY21-1 no TEE in chemical engineering courses
- Spring AY21-2 first 10 days remote
- Hybrid/remote for remainder of Spring AY21-2 semester



# Implementing Schedule Change

- Since AY19 the Academy's 1-day/2-day schedule has changed
  - Now 40x 1-days and 30x 2-days
  - Some courses have shifted to a 30-lesson sequence (CH363; CH485), IOT deconflict cadet schedules
- The additional 10 2-days are now 'Study Days'
- Biggest impact on Chemical Engineering is CH459 (ChemE Laboratory)
  - Back-to-back sections: experiment reset time?
- Major impacts to core classes, CH101/102
  - Full impact on base knowledge and understanding uncertain



## Chemical Engineering Program 10+ year vision

- 1. Stabilized at ~40 +/- (1-5) cadets per class year; if >40 establish OML; Recommended GPA: ~2.3
- 2. Chemical engineering faculty:
  - a. Senior faculty: AP; 2<sup>nd</sup> time rotators; Associate Professors; Title 10s; PhDs. Teach chemical engineering course 3-6 years in a row.
  - b. Junior faculty: 1st time rotators. Teach CH101/102 (not both); collaborate with Senior Faculty on research. No CH102 without CH101.
  - c. Minimize churn; "Do less better."...Stability; efficiency; optimization; transparency
- 3. Curriculum:

#### Bioengineering

- a. 3x Bio.-Eng. track: CH300, CH350, CH4; validate the ET credit
- b. Stand up bioengineering sequence
- c. Stand up bioengineering major
- d. Currently: Bio.-Eng. AP search; Ongoing Title10 hiring action

#### **Chemical Engineering:**

- a. Expand CH400 to 3.0 credits
- b. Expand CH459 to 4.0 credits cadet feedback
- c. Expand CH402 to 7.0 credits (2 sem.)
- d. Other Chem E. electives: (Numerical methods; explosives)

#### 4. Pedagogy:

- a. Intensive problem solving with instructors as coaches and role models
- b. classroom/lab workshop experience (theory + demo + practice)
- c. faculty <u>demonstrate</u> proficiency at problem solving as well as depth of knowledge; multi-year faculty development

#### 5. Ranked undergraduate program

- a. ABET recertifications (15-19 NOV20); maintain ABET efforts; assessment; strength use of SSI software/CHEMCAD
- b. Establish "footprint" at National level conferences: AIChE; SOR; ACS & communicate USMA Chem. E. vision to other Universities
- c. Get more Chemical Engineers PEV training here (James, Nagelli)
- d. Maintain BH331 computer room; chemical engineering work/research space (Applications Rm.; BH136); Network
- 6. AIChE Club stability...and consistency of student involvement; strength of last ABET certification in 2014





### **Electives Proposals**

- Cadets have expressed ongoing interest in more bioengineering electives
- Currently have 3 engineering electives in our major (to meet ABET requirements; 9 credit hours)
- ABET change lowered the required number of strictly engineering credit hours to 45
  - Options: retain engineering elective (at least in short term, will do so)? Chemistry elective? MSE at large? Others?

4/19/2021



### Other Electives / Thoughts

- CH450 Bioengineering Modeling and Analysis added to Redbook (more details next slide)
- Numerical Methods for Chemical Engineering Problems
  - Enhance cadet experience with computational tools (MMA, Matlab)
  - Ready to execute
  - FEE data seems to support this
- Chemical Explosives
  - Taught before, ready to execute with instructor prep

#### CH300: Introduction to Biomedical Engineering

Course Director: TBD

Course OIC: MAJ Jeffrey Chin

Credit Hours: 3.0 (BS=0, ET=3.0, MA=0) Prerequisites: CH102, MA205 Co-requisite: None Lessons: 30 @ 75 min

Special Requirements: None

This course provides a basis for understanding the application of engineering principles to problems in medicine and biology. It provides preparation for future graduate work in medical school, biomedical engineering, and chemical engineering. Specifically, the objectives of the course are: (1) to provide an introduction to the field and how it relates to other fields of engineering and science, (2) the develop the ability to apply mathematics, science, and engineering to solve problems, (3) to develop an understanding of the impact of engineering solutions on the medical field and society as a whole, and (4) to understand current topics within the field.

#### COA 1

#### Block I: Molecular and cellular principles

- Biomolecular principles (Ch. 2)
- Biomolecular principles: Nucleic acids (Ch. 3)
- Biomolecular principles: proteins (Ch. 4)
- Cellular principles (Ch. 5)

#### Block II: Physiological principles

- Communication systems in the body (Ch. 6)
- Engineering balances: respiration and digestion (Ch. 7)
- Circulation (Ch. 8)
- Removal of molecules from the body (Ch. 9)

#### Assessment – Graded Events

| 6 *HWs@ 50 pts each     | 300  | 21.4% |
|-------------------------|------|-------|
| 2 *WPRs @ 200 pts each: | 400  | 28.6% |
| 1 *Capstone             | 200  | 14.3% |
| 1 *TEE                  | 500  | 35.7% |
| Total:                  | 1400 |       |
|                         |      |       |

\*Individual Points : 100% 1400

TEXT: Biomedical Engineering, 2<sup>nd</sup> Edition, by W. Mark Saltzman; Cambridge University Press, 2015.

#### COA 2

#### Block I: Molecular and cellular principles

- Biomolecular principles (Ch. 2)
- Biomolecular principles: Nucleic acids (Ch. 3)
- Biomolecular principles: proteins (Ch. 4)
- Cellular principles (Ch. 5)

#### Block II: Physiological principles

- Communication systems in the body (Ch. 6)
- Engineering balances: respiration and digestion (Ch. 7)
- Circulation (Ch. 8)
- Removal of molecules from the body (Ch. 9)

#### Block III: Biomedical Engineering

- Biomechanics (Ch. 10)
- Bioinstrumentation (Ch. 11)
- Bioimaging (Ch. 12)
- Biomolecular Engineering I: Biotechnology (Ch. 13)
- Biomolecular Engineering II: Engineering of Immunity (Ch. 14)

## CH350: Introduction to Bioengineering Course Director: Dr. Simuck Yuk

Credit Hours: 3.0 (BS=0, ET=3.0, MA=0)
Prerequisites:
Co-requisite: None
Lessons: 30 @ 75 min
Special Requirements: None

The purpose of this course is to provide the introductory knowledge for understanding the biotechnology/bioprocessing engineering. Topic includes enzyme kinetics, molecular biology, cell growth, bioreactors, and bioprocesses. The bioprocess control and its application to different biological systems are covered in the classroom instruction. An important emphasis is made on the use of kinetics and process controls on the biological systems for engineering application.

#### Course Assessment – Items from Section III

#### **Sustain:**

N/A at this point.

#### <u>Improve</u>:

N/A at this point.

#### Topics – by Chapter

*Bioprocess Engineering Basic Concepts,* 3rd Ed., by Michael L. Shulter, Fikret Kargi, Matthew DeLisa, Prentice Hall.

Quantitative Fundamentals of Molecular and Cellular Bioengineering, by K. Dane Wittrup, Brice Tidor, Benjamin J. Hackel, and Casim A. Sarkar, The MIT Press.

- Introduction
- Enzyme Kinetics
- Central Dogma to Molecular Biology
- Cell Growth
- Bioreactor Selection
- Bioprocess Consideration

#### Assessment - Graded Events

| 1 *Capstone Presentation               | 200  | 14%     |
|----------------------------------------|------|---------|
| 2 *WPRs                                | 400  | 28%     |
| 5 *After-class Problem Sets(20pts/ea.) | 100  | 7%      |
| 5 *In-class Problem Sets (50pts/ea.)   | 250  | 17%     |
| 1 *Term End Exam                       | 500  | 34%     |
| Total:                                 | 1450 | 100.00% |

## CH450: Bioengineering Modeling and Analysis Course Director: COL John Burpo

Credit Hours: 3.0 (BS=0, ET=3.0, MA=0)
Prerequisites: CH102, MA205
Co-requisite: None
Lessons: 30 @ 75 min
Special Requirements: None

This course provides a broad understanding of bioengineering disciplines to include biomechanics, biomaterials, tissue engineering, biocatalysis, biochemical engineering, and biosensors. Fundamental concepts of molecular kinetics, thermodynamics, and mass transport are applied in problem sets in each bioengineering sub-discipline and capstone design project providing students the opportunity for modeling, analysis, and design from the biomolecular to physiological length scale and across multiple time scales. Modeling software such as MATLAB and Mathematica is extensively used.

#### Topics – by Chapter

*TEXT: Introduction to Biomedical Engineering*, 3<sup>rd</sup> Edition, by John Enderle and Joseph Bronzino; Academic Press, 2012.

- Part I: Biomechanics (Ch. 1 and 4)
- Part II: Biomaterials (Ch. 5)
- Part III: Tissue Engineering (Ch. 6)
- Part IV: Biomedical Enzyme Kinetics (Ch. 7 and 8)
- Part V: Biochemical Engineering (Handouts)
- Part VI: Biosensors (Ch. 10)

#### Course Assessment – Items from Section III

#### Sustain:

- Best looking Dept Head/CD/ Prof at the academy
- Strong instructor personal experience in mathematics, engineering, and chemistry

Each lesson considers interdisciplinary science and engineering topics –science topics are taught in context of engineering applications

Improve:

#### Assessment – Graded Events

| 5 *Problem Sets@ 25 pts each | 500  | 47.2% |
|------------------------------|------|-------|
| 6 *Quizes @ 200 pts each:    | 180  | 17.0% |
| 1 *Paper                     | 150  | 14.1% |
| 1 *Presentation              | 50   | 4.7%  |
| 6 *Discussion                | 180  | 17.0% |
| Total:                       | 1060 |       |
|                              |      |       |
| *Individual Points :         | 1060 | 100%  |



### **Bioengineering Track**

- Bio-Engineer Title 10 Ph.D. Spring 2020
- Bioengineer Academy Professor Spring 2021
- Stand up bioengineering track (1-2 years)
  - CH300
  - CH350
- Bioengineering sequence (2-5 years)
- Bioengineering minor/ major (7 10 years)

4/19/2021



## **Undergraduate Research**

### Securing external resources through collaborations



#### **Funded Collaborations:**

UC Santa Barbara
Florida Institute of Technology
Cornell
University of Michigan













**CARE Consortium** 



## Promoting Cadet Development in Chem. E.



### **Faculty and Cadet Developmental Model**

Principal investigators with DoD supporting projects, funding, and collaborators facilitate cadet research through a progressive series of courses – CH290 (1 CR), CH389/390 (1.5 CR), CH489-492 (3 CR). This course progression allows cadets to begin research as early as their first year and participate in a multi-year project. Every effort is made to link research AIAD's with the collaborating DoD labs.

#### \*Promoting Research and Scholarship

- 10 Cadet co-authored papers in AY20
- 24 Cadet conference proceedings AY20
  - AIChE; SOR; ACS
  - 200/300/400 level research

#### \*Modeling Institutional Values:

- Department Character development strategy
- 3 Leadership Challenge Facilitators
- 3 PL300 Mentors (25 cadets)
- 3 SLDP Developmental Coaches

#### \*Engaging with Cadets:

- Club Affiliations: 3 Faculty/2 Clubs (1 OIC)
- USMA Chapters: AIChE and ACS
- ODIA Sport: 4 Faculty/ 4 Teams

1 Head OR- Men's Hockey

3 Asst. OR-Swimming & Diving

Rifle

Men's Basketball

- First-year Sponsorship Program: ~53 Cadets
- Unofficial Sponsor: >25

\*Instituting research-based instructional practices to support APGs and WPLDS outcomes

Every interaction is a developmental event



# CDT Matthew Dibiase, '20 Chemical Engineering



- Goldwater Scholarship Recipient
- Fullbright Scholarship Semifinalist
- Phi Kappa Phi Honor &Tau Beta Phi Honor Society

#### **Co-Authored Conference Proceedings and Publications**

- 1. Army Research Lab (ARL) Technical Symposium "Catalysts for fuel cell electronics". (Poster)
- 2. 1st Place Catalysts and Reaction Engineering, Presentation: "Nickel catalysts and graphene for lithium ion batteries". American Institute of Chemical Engineering Annual Meeting, Orlando, FL, 10-15 NOV19.
- 2. Manuscript in progress, "Electroless deposition of Noble Metal Nanoparticles onto Silk Fibroin Films", (to be submitted, Spring 2020)



| CH290: Modeling; Rheology of Blood |                          | CH389/390: Fuel Cell<br>Polymers | AIAD: ARL, Nickel Based<br>Catalysts | CH490: Functionalized Graphene |  |
|------------------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------------|--|
|                                    | Fourth Class Third Class | Second Class                     | First Class                          | Beyond                         |  |
|                                    | CH290 CH389/CH39         | 0 CH489/CH490                    |                                      | Future Signal Officer          |  |

#### **USMA Independent Research**

Cadet Dibiase has been working on a Proton Exchange Membrane (PEM) Fuel Cell project; a field of great interest for their efficiency advantages over combustion technology. However, conventional methods of electrolysis to produce H<sub>2</sub> and O<sub>2</sub> gas necessary for PEM fuel cells rely on expensive catalysts, Pt and IrO<sub>2</sub>. Despite exceptional efficiency of these catalysts, their high costs prevent industry scale up and production. We present alternative Ni-based catalysts to replace Pt and IrO<sub>2</sub>. Of the Ni catalysts characterized, NiS and NiFe LDH together provided the smallest total overpotentials of 1.7 V (vs SHE) for Hydrogen Evolution Reactions (HER) and Oxygen Evolution reactions (OER), respectively. However, Linear Sweep Voltammetry illustrated that NiFe LDH had the lowest overpotential of the two, contributing only 0.3 V to the total overpotential. Nevertheless, the total overpotential of 1.7 V is still only 0.2 V above the industry standard of 1.5 V from a combination of Pt and IrO<sub>2</sub>





# CDT Jesse Palmer, '19 Chemical Engineering



- Won Stamps Scholarship
- Won Goldwater Scholarship
- Tau Beta Pi Honor Society
- Phi Kappa Phi Honor Society
- Phi Sigma lota Society
- Won Churchill Scholarship

#### **Co-Authored Publications**

- L. Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. *Molecules*, 23(6)
- 2. Gelatin biotemplated platinum aerogels. MRS Advances, 1-6.
- 3. A Rapid Synthesis Method for Au, Pd, Aerogels Via direct Solution-Based Reduction. *Journal of visualized experiments: JoVE*, (136).
- 4. Direct solution-based reduction synthesis of Au, Pd, and Pt Aerogels. *Journal of Materials Research*, 32(22).

Australia; Renewable Energy Lab Sweden: Water NEXUS conference Harvard AIAD; Disease biophysics groups

Fourth Class Second Class First Class Beyond

CH290 CH389/CH390 CH489/CH490

#### **USMA Independent Research**

Jesse has collaborated with the Army Research Labs (ARL) in Adelphi, MD to produce biosensors and has developed novel Kevlar-cellulose composites with Harvard's Disease Biophysics group. As a recipient of Goldwater and Stamps Scholarships Jesse has used his academic funding to attend World Water Week in Stockholm, Sweden and visit the University of New South Wales in Sydney, Australia to pursue his interest in water desalination. Jesse is also completing a minor in Eurasian Studies. He plans on attending graduate school to develop batteries to enhance prosthetic limbs serving wounded veterans.



**Field Artillery Officer** 



**Future Faculty** 



## Engineering Concentrations

## Pre-approved elective sequences, but ultimately cadet choice (can choose any 3)

#### **Materials Engineering**

MC364 Mechanics of Materials MC380 Engineering Materials Open Elective

#### **Nuclear Engineering**

NE300 Nuclear Reactor Analysis NE350 Nuclear Reactor Design NE450 Nuclear Systems Design

#### **Decision Analysis**

SE301 Foundations of Engineering Design & Systems Management SE 481 Systems Simulation EM484 Dynamic Systems Analysis

#### **Advanced Control Systems**

EE360 Digital Computer Logic EM484 Dynamic Systems Analysis XE475 Mechatronics

#### **Energy Conversion Systems**

EE377 Electrical Power Generation ME472 Energy Conversion Systems ME480 Heat Transfer

#### **Power Systems**

ME306 Dynamics
ME491 Mechanical Power Plants
EE377 Electrical Power Generation
XE442 Alternative Energy Engineering
Industrial Engineering

SE301 Foundations of Engineering Design
& Systems Management
EM411 Project Management
EM420 Production Operations Management

#### **Other Advanced Engineering Electives**

Satisfy prerequisites
Engineering Science or design = 3.0 credits
Program director approval

## UNITED STATES MILITARY ACADEMY WEST POINT.

### **Some Administrative**

- Next Advisory Board on-site
  - Late April/Early May 2022...close out Class of '21
- Travel Paperwork/Dinner settle
- Tour of Unit Operations Lab...UTC



### **End of Section 4**

4/19/2021



## Chemical Engineering



## **Advisory Board Meeting**

23 April 2021

## Thank you!

United States Military Academy
Department of Chemistry and Life Science

## Back Up Slides

4/19/2021