1179: Probability Lecture 1 — Probability Model

Ping-Chun Hsieh (謝秉均)

September 15, 2021

This Lecture

1. Probability model and basic terminology

2. Review: Set operations

Reading material: Chapter 1.1~1.4

What is Probability?

Tuesday

Wednesday

26

27

- "The probability of rain is 60% at 7pm" means?
 - 1. 60% of historical data?

F

- 2. (On average) 60% of the area?
- 3. (On average) 60% of the time between 7pm and 8pm?
- What does 1.87 meters mean?

Probability = a measure of how likely an event would happen

Probability Model

Experiments

Outcome / Event / Sample Space

Experiments: What is Random?

Experiment: Procedure, model, and outcome

- Example: Roll 2 four-sided dice
 - Procedure: Pick up the dice and roll them without manipulation

Outcome: (2,4)

cover your eyes so that you'll not see the initial condition

Experiments: What is Random?

Experiment: Procedure, model, and outcome

- Example: Photons & a semi-transparent mirror
 - Procedure: Shoot a photon to the mirror
 - Model: Reflection (0) and transmission (1) are equally likely
 - Outcome: 1
- What is random?

Intrinsic randomness in quantum physics

Sample Space Ω

- Sample space = <u>set</u> of <u>all possible outcomes</u> (for an experiment)
 - Use Ω to denote sample space

• Example: Toss a coin for 2 times, Ω = ?

• Example: Student's grade for a course, $\Omega = ?$

$$0 <= x <= 100$$

Sample Space: Countably Infinite Case

有基础发现其N双射到si就是countably infinite

• Example: Toss a coin for <u>infinite</u> number of times and observe the <u>number of heads</u>. What is Ω ?

Definition: Ω is said to be **countably infinite** if there exists a **1-to-1 correspondence** between Ω and the set of all positive integers $\mathbb N$

- Example: Ω = the set of all positive odd integers {1,3,5,...}?
- Example: Ω = the set of tuples of positive integers $\{(p,q):p,q\in\mathbb{N}\}$? $\{(u,v),(u,z),v\}$

Sample Space: Continuous Case

Example: Train arrival time

- Possible outcome = ? [□, /]
- Sample space = ? [0,1]

cross interval means uncountably infinite

- Is the sample space finite? $\mathcal{N}_{\mathcal{O}}$
- Is the sample space countably infinite? \mathcal{N}_{0}

Events

- ► Event → to describe the results of an experiment
- (Math) Event = a set of <u>outcomes</u>
- (Math) Event = a subset of sample space
- ▶ Probability → describe how likely an event will happen
- Example: tossing a coin 4 times
 - (1) The event of having at least 3 heads? {HHHT, HHTH, HTHH, THHH, HHHH}
 - (2) The event of having 0 head? {
 \(\tau \) \(\)

2. Review: Set Theory

Review: Set Operations

Let's set up the <u>notations!</u>

Kuan-Yu A-Shin

Masa

• Universal set Ω (\Leftrightarrow sample space)

- Stone Monster
- ▶ Example: MayDay, Ω = {Monster, A-Shin, Masa, Stone, Kuan-Yu}
- ► Element (⇔ outcome)
 - Example: A-Shin is an element of MayDay →A-Shin ∈ MayDay
- Subset (⇔ event)
 - Example: {A-Shin, Masa} is a subset of MayDay
 - ► {A-Shin, Masa} ⊆ MayDay
- Empty set $\emptyset = \{\}$

Review: Set Operations

- Complement (S^c)
 - Example: $S = \{\text{Monster, A-Shin}\}\$ is the complement of $S^c = \{\text{Masa, Stone, Kuan-Yu}\}\$
- ▶ Union $(S \cup T)$
 - ► Example: $S = \{Masa, A-Shin\}, T = \{Stone\}, then <math>S \cup T = \{Masa, A-Shin, Stone\}$
- ▶ Intersection $(S \cap T)$
 - ► Example: $S = \{Masa, A-Shin, Stone\}, T = \{Stone\}, then <math>S \cap T = \{Stone\}$

Review: Set Operations

▶ Difference (S - T)

- Example: $S = \{\text{Masa, Stone, Kuan-Yu}\}, T = \{\text{Stone, Kuan-Yu}\}, then <math>S T = \{\text{Masa}\}$
- ▶ Disjoint: S, T are disjoint if $S \cap T = \emptyset$
 - ► Example: $S = \{\text{Masa, Stone}\}, T = \{\text{A-shin}\} \Rightarrow S, T \text{ are disjoint }$
- ▶ Mutually exclusive: S_1, S_2, S_3, \cdots are mutually exclusive if $S_i \cap S_j = \emptyset$, for every pair i, j with $i \neq j$
 - Example: $S_1 = \{\text{Masa, Stone}\}, S_2 = \{\text{A-shin}\}, S_3 = \{\text{Monster}\}$ $\Rightarrow S_1, S_2, S_3$ are mutually exclusive

Review: Set Operations in Math

- \blacktriangleright Let S, T be two sets
 - 1. (Union): $S \cup T = \{ x: x \in S \text{ or } x \in T \}$
 - 2. (Intersection): $S \cap T = \{ x : x \in S \text{ and } x \in T \}$
 - 3. (complement): $S^c = \{x: x \in S \text{ and } x \in \Omega\}$
 - \int 4. (subset): $S \subseteq T \Leftrightarrow$ For every xes, we have xet
 - $\sqrt{5}$. (equal): $S = T \Leftrightarrow S \subseteq T \text{ and } T \subseteq S$

Set Operations: Countable Union/Intersection

Let $S_1, S_2, S_3 \cdots$ be a sequence of sets

1.
$$\bigcup_{n=1}^{\infty} S_n = \left\{ \text{X-XGSn, for some neM} \right\}$$
 big up

2.
$$\bigcap_{n=1}^{\infty} S_n = \left\{ X - X \in S_n, for \text{ every } n \in \mathcal{N} \right\}$$

A Useful Set Operation: Finding Elements that Appears in Infinitely Many Sets?

- Example: Avengers Infinity War
 - Let $S_1, S_2, S_3 \cdots$ be an infinite sequence of sets
 - $S_n := \{A \text{ Venger members who survive in the } n \text{-th possible outcome} \}$
 - Question: How to represent the set {x: Avenger member x who survives in infinitely many possible outcomes}?

- Example: Avengers Infinity War
 - Let $S_1, S_2, S_3 \cdots$ be an infinite sequence of sets
 - $S_n := \{\text{Avenger members who survive in the } \underline{n}\text{-th possible outcome}\}$
 - Question: How to represent the set $\{x: Avenger member x who \}$ survives in infinitely many possible outcomes?
- 46A

Set Operations: Countable Union/Intersection

Let $S_1, S_2, S_3 \cdots$ be a sequence of sets

3.
$$\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} S_n = \left\{ \begin{array}{l} \text{$\chi : \chi \in S_n$, for infinitely many n} \end{array} \right\}$$
4.
$$\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S_n = \left\{ \begin{array}{l} \text{$\chi : \chi \in S_n$, for almost all n except $f_{initely many n}$} \end{array} \right\}$$

$$\bigcup_{k=1}^{\infty} \sum_{n=k}^{\infty} S_n = \left\{ \begin{array}{l} \text{$\chi : \chi \in S_n$, for almost all n except $f_{initely many n}$} \end{array} \right\}$$

$$\bigcup_{k=1}^{\infty} \sum_{n=k}^{\infty} S_n = \left\{ \begin{array}{l} \text{$\chi : \chi \in S_n$, $f_{k} \in S_n$, $f_{k}$$

► Show: $\bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} S_n = \{x : x \in S_k, \text{ for all except for finitely many } k\}$

k=1 n=k

De Morgan's Laws

Let S_1 , S_2 be two sets

1.
$$(S_1 \cup S_2)^c = S_1^c \cap S_2^c$$

$$2. \left(S_1 \cap S_2 \right)^c = S_1^c \cup S_2^c$$

Prove this by Venn diagram

De Morgan's Laws (General Case)

Let $S_1, S_2, S_3 \cdots$ be a sequence of sets

$$1. \left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c}$$

$$2. \left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

3. Axioms of Probability

Probability Axioms

- In a probabilistic model, we assign probability to events (How?)
- Axioms: rules to verify a probabilistic model
- Example: 8 axioms of vector space in linear algebra

Axiom	Meaning
Associativity of addition	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
Commutativity of addition	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
Identity element of addition	There exists an element $0 \in V$, called the <i>zero vector</i> , such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.
Inverse elements of addition	For every $v \in V$, there exists an element $-v \in V$, called the <i>additive inverse</i> of v , such that $v + (-v) = 0$.
Compatibility of scalar multiplication with field multiplication	$a(b\mathbf{v}) = (ab)\mathbf{v}$ [nb 2]
Identity element of scalar multiplication	$1\mathbf{v} = \mathbf{v}$, where 1 denotes the multiplicative identity in F .
Distributivity of scalar multiplication with respect to vector addition	$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
Distributivity of scalar multiplication with respect to field addition	$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

- Why are axioms useful?
- Can we prove axioms?

3 Axioms of Probability

A probability assignment is valid if:

- 1. $P(A) \ge 0$, for any event A
- $2. P(\Omega) = 1$
- 3. A_1, A_2, \cdots is an infinite sequence of <u>mutually exclusive</u> events, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

• Can we find
$$P(\emptyset) = ?$$

- ► A_1, \dots, A_n are disjoint events, then $P(\bigcup_{i=1}^n A_i) = ?$
- ▶ Do we have $P(A) \le 1$, for any A?

Examples: Probability Assignment

- Example: $\Omega = \{1,2,3,4\}$
 - $P(\{1,2\}) = 3/4$
 - $P(\{1,3,4\}) = 7/8$
 - $P(\{1,3\}) = 1/2$
 - Can this be made a <u>valid</u> probability assignment?
- Example: $\Omega = \{0, 1, 2, 3 \dots \}$
 - $P(\{k\}) = 2^{-k} \cdot |\cos(k\pi + \frac{\pi}{3})|, \text{ for all } k$
 - Is this a <u>valid</u> probability assignment?

Discrete Uniform Probability Law

Theorem: Let Ω be the sample space of an experiment. If Ω has N elements that are <u>equally likely</u> to occur, then for any event A of Ω , we have

$$P(A) = \frac{\text{Number of elements in A}}{N}$$

How to verify this using the axioms?

Recap: Probability of Rain?

Experiment for probability of rain forecast:

例	降水量
1	0.1mm
2	0.0mm
3	4.8mm
4	0.3mm
5	0.0mm
6	1.2mm
7	0.0mm
8	2.4mm
9	0.9mm
10	0.5mm

- Procedure: Collect all historical data points of <u>similar</u> weather condition
- Model: All data points are equally likely to occur
- ► The rainy event = $\{\text{rainfall} \ge 1 \text{mm}\}$
- P(rainy event) = ?

Useful Properties

$$P(A^c) = 1 - P(A)$$

$$P(A) = P(A - B) + P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If $A \subseteq B$, then $P(A) \le P(B)$

Union Bound

For any events A_1, A_2, \dots, A_n , we have

$$P(\bigcup_{n=1}^{N} A_n) \le \sum_{n=1}^{N} P(A_n)$$

1-Minute Summary

1. Probability model and basic terminology

- Experiment / outcome / sample space / event
- Probability axioms

2. Review: Set operations

- Definitions (union / intersection / disjoint / mutually exclusive)
- Algebra of sets and De Morgan's laws