International Rectifier

- Surface Mount
- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SOT-223 package is designed for surface-mount using vapor phase, infra red, or wave soldering techniques. Its unique package design allows for easy automatic pickand-place as with other SOT or SOIC packages but has the added advantage of improved thermal performance due to an enlarged tab for heatsinking. Power dissipation of 1.0W is possible in a typical surface mount application.

IRFL024NPbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V**	4.0		
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V* 2.8		A	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V*	rain Current, V _{GS} @ 10V* 2.3		
I _{DM}	Pulsed Drain Current ①	11.2		
P _D @T _A = 25°C	Power Dissipation (PCB Mount)**	2.1	W	
P _D @T _A = 25°C	Power Dissipation (PCB Mount)*	1.0	W	
	Linear Derating Factor (PCB Mount)*	8.3	mW/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy®	214	mJ	
I _{AR}	Avalanche Current①	2.8	Α	
E _{AR}	Repetitive Avalanche Energy①*	0.1	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Amb. (PCB Mount, steady state)*	90	120	°C/W
$R_{\theta JA}$	Junction-to-Amb. (PCB Mount, steady state)**	50	60	- C/VV

^{*} When mounted on FR-4 board using minimum recommended footprint.

^{**} When mounted on 1 inch square copper board, for comparison with other SMD devices.

IRFL024NPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.056		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.075	Ω	V _{GS} = 10V, I _D = 2.8A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	3.0			S	V _{DS} = 25V, I _D = 1.68A
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
יטאא	Brain to course Ecanage Carrent			250	μΛ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I_{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			18.3		I _D = 1.68A
Q _{gs}	Gate-to-Source Charge			3.0	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			7.7		V _{GS} = 10V, See Fig. 6 and 9 @
t _{d(on)}	Turn-On Delay Time		8.1			V _{DD} = 28V
t _r	Rise Time		13.4		no l	$I_D = 1.68A$
t _{d(off)}	Turn-Off Delay Time		22.2		ns	$R_G = 24\Omega$
t _f	Fall Time		17.7			$R_D = 17\Omega$, See Fig. 10 \oplus
C _{iss}	Input Capacitance		400			V _{GS} = 0V
Coss	Output Capacitance		145		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		60			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.0		MOSFET symbol
	(Body Diode)			- 2.8	_	showing the
I _{SM}	Pulsed Source Current			44.0	A	integral reverse
	(Body Diode) ①		11.2	1.2	p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.0	V	T _J = 25°C, I _S =1.68A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25^{\circ}C, I_F = 1.68A$
Q _{rr}	Reverse RecoveryCharge		50	75	nC	di/dt = 100A/µs ⊕
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @ \mbox{ Starting $T_J=25^\circ$C, $L=$54.7 mH$} \\ \mbox{ $R_G=25\Omega$, $I_{AS}=2.8A$. (See Figure 12)$} \\ \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } \Im \text{ } I_{SD} \leq 1.68A, \text{ } di/dt \leq 155A/\mu s, \text{ } V_{DD} \leq V_{(BR)DSS}, \\ \text{ } T_{J} \leq 150 ^{\circ}C \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

International TOR Rectifier

IRFL024NPbF

Fig 1. Typical Output Characteristics,

Fig 2. Typical Output Characteristics,

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFL024NPbF

Fig 9a. Basic Gate Charge Waveform

Fig 10a. Switching Time Test Circuit

Fig 9b. Gate Charge Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12a. Unclamped Inductive Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 12b. Unclamped Inductive Waveforms

IRFL024NPbF

SOT-223 (TO-261AA) Package Outline

Dimensions are shown in milimeters (inches)

SOT-223 (TO-261AA) Part Marking Information

HEXFET PRODUCT MARKING

EXAMPLE: THIS IS AN IRFL014

IRFL024NPbF

International

TOR Rectifier

SOT-223 (TO-261AA) Tape & Reel Information

Dimensions are shown in milimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 05/04