Mathematik für Anwender II — Blatt 2

Rasmus Diederichsen Laura Goerke Tim Brockmeyer Katharina Filodda

8. April 2016

Aufgabe 2.1

(1)

f:

$$f(A+D) = f\left(\begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & c_1 + c_2 \end{pmatrix}\right)$$

$$= \begin{pmatrix} (a_1 + a_2) - (c_1 + c_2) \\ 3(b_1 + b_2) \\ -2(a_1 + a_2) + 2(c_1 + c_2) \end{pmatrix}$$

$$= \begin{pmatrix} (a_1 - c_1) + (a_2 - c_2) \\ 3b_1 + 3b_2 \\ -2a_1 + 2c_1 - 2a_2 + 2c_2 \end{pmatrix} = f(A) + f(D)$$

f ist also linear.

g: Es seien $p_1(x) = a_1x^2 + b_1x + c_1$ und $p_2(x) = a_2x^2 + b_2x + c_2$.

$$\begin{split} g(p_1+p_2) &= \begin{pmatrix} 0 & a_1+a_2-2 \\ 0 & -b_1-b_2+c_1+c_2 \end{pmatrix} \\ g(p_1) + g(p_2) &= \begin{pmatrix} 0 & a_1-2 \\ 0 & -b_2+c_1 \end{pmatrix} + \begin{pmatrix} 0 & a_2-2 \\ 0 & -b_2+c_2 \end{pmatrix} = \begin{pmatrix} 0 & a_1+a_2-4 \\ 0 & -b_1-b_2+c_1+c_2 \end{pmatrix} \neq g(p_1+p_2) \end{split}$$

g ist also nicht linear.

(2)

Um Ker(f) zu berechnen, muss folgendes Gleichungssystem gelöst werden.

$$a-c=0$$

$$3b=0$$

$$-2a+2c=0$$

$$\Rightarrow b=0$$

$$a=c$$

Also
$$Ker(f) = \left\{ k \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mid k \in \mathbb{R} \right\}$$

(3)

Für
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$
 gilt

$$a-c = x_1$$
$$3b = x_2$$
$$-2a+2c = x_3,$$

was sich umformen lässt zu

$$a = x_1 + c$$

$$3b = x_2$$

$$-2(x_1 + c) + 2c = x_3$$

$$\Rightarrow -2x_1 = x_3$$

Es ist daher nicht möglich, x_1 und x_3 frei zu wählen. Der Vektor $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ wird z. B. nicht getroffen. Somit ist f nicht surjektiv und auch nicht bijektiv. Der Kern von f ist $\neq \{0\}$. Nach Satz 1.11 ist f also nicht injektiv.