```
In[0]:=
 In[0]:=
          (*
          ст.гр.221703
           Воложинец Архип
           Вариант 3
          *)
          (*Задание 1*)
 In[0]:=
 ln[\cdot]:= f[x_] := \sqrt[3]{Log[Cos[x+4]]^2};
        x_0 = 1.82;
        graph = Plot[f[x], \{x, -6, 5\}, PlotStyle \rightarrow Magenta];
                                               _стиль графика _малиновый
 In[0]:= Show[graph]
        показать
Out[•]=
                                         2.5
                                         2.0
                                         1.5
                                         1.0
                                         0.5
         __
_6
                               -2
          (*1.a*)
 In[0]:=
 In[\bullet]:= \ \mathbf{d11} = \mathbf{D[f[x], x]} \ /. \ \mathbf{x} \rightarrow \mathbf{x_0}
               _дифференциировать
        d21 = D[f[x], \{x, 2\}] /. x \rightarrow x_0
               _дифференциировать
Out[0]=
        -0.692084
Out[0]=
        0.696623
 In[+]:= (*1.6*)
        FiniteDiff1[y_, y1_] := y1 - y;
        FiniteDiff2[y_, y1_, y2_] := y2 - 2 y1 + y;
        FiniteDiff3[y_, y1_, y2_, y3_] := y3 - 3 y2 + 3 y1 - y;
```

```
(* \text{War } h = 0.1*)
                             h = 0.1
Out[0]=
                         0.1
    ln[\cdot] := y1 = \frac{1}{h} \left( FiniteDiff1[f[x_0], f[x_0 + h]] - \frac{1}{2} * FiniteDiff2[f[x_0], f[x_0 + h], f[x_0 + 2 h]] + \frac{1}{2} \right)
                                           \frac{1}{3} * FiniteDiff3[f[x<sub>0</sub>], f[x<sub>0</sub> + h], f[x<sub>0</sub> + 2 h], f[x<sub>0</sub> + 3 h]])
Out[0]=
                         -0.690232
    In[0]:= y2 = \frac{1}{h^2} (FiniteDiff2[f[x<sub>0</sub>], f[x<sub>0</sub> + h], f[x<sub>0</sub> + 2 h]] -
                                           FiniteDiff3[f[x_0], f[x_0 + h], f[x_0 + 2h], f[x_0 + 3h]])
Out[0]=
                         0.632285
     In[ \circ ] := \{ Abs[d11 - y1], Abs[d21 - y2] \}
                            _абсолютное зна… _абсолютное значен
Out[0]=
                          {0.00185118, 0.0643387}
                             (*War h = 0.01*)
     In[0]:=
     In[ \circ ] := h = 0.01
Out[0]=
    ln[\cdot] := y1 = \frac{1}{h} \left( FiniteDiff1[f[x_0], f[x_0 + h]] - \frac{1}{2} * FiniteDiff2[f[x_0], f[x_0 + h], f[x_0 + 2 h]] + \frac{1}{2} * FiniteDiff2[f[x_0], f[x_0 + h], f[x_0 + 2 h]] + \frac{1}{2} * FiniteDiff2[f[x_0], f[x_0 + h], f[x_0 + h]] + \frac{1}{2} * FiniteDiff2[f[x_0], f[x_0 + h]] + \frac{1}{2} * FiniteDiff2[f[x_0 + h]] + \frac{1}{2} * FiniteDiff2
                                          \frac{1}{3} * FiniteDiff3[f[x_0], f[x_0 + h], f[x_0 + 2 h], f[x_0 + 3 h]]
                        y2 = \frac{1}{h^2} (FiniteDiff2[f[x<sub>0</sub>], f[x<sub>0</sub> + h], f[x<sub>0</sub> + 2 h]] -
                                           FiniteDiff3[f[x_0], f[x_0 + h], f[x_0 + 2h], f[x_0 + 3h]])
Out[0]=
                         -0.692083
Out[0]=
                         0.696211
     In[0]:= \{Abs[d11 - y1], Abs[d21 - y2]\}
                           абсолютное зна... абсолютное значен
Out[0]=
                          \{1.126 \times 10^{-6}, 0.000411991\}
                              (*При уменьшении шага результат получается более точным*)
     In[0]:=
                             (*Задание 2*)
     In[o]:=
```

$$In[\circ]:= (*2.a*)$$
 $f[x_{-}]:= Tan \Big[1 + Cosh \Big[\frac{1}{x+2}\Big]\Big]^2$
 $In[\circ]:= h = 0.2;$
 $a = -1;$
 $b = 3;$
 $data = Table \Big[\Big\{ x, \frac{f[x+h] - f[x-h]}{2h} \Big\}, \{x, a, b, h\} \Big];$

Out[•]//TableForm=

	Χi	У'і
1	-1.	2.21937
2	-0.8	2.42858
3	-0.6	2.29713
4	-0.4	2.04518
5	-0.2	1.7668
6	0.	1.50402
7	0.2	1.27258
8	0.4	1.07562
9	0.6	0.910864
10	0.8	0.774099
11	1.	0.660835
12	1.2	0.566951
13	1.4	0.488915
14	1.6	0.423798
15	1.8	0.369213
16	2.	0.323234
17	2.2	0.28431
18	2.4	0.251195
19	2.6	0.222881
20	2.8	0.198558
21	3.	0.177566

(***2.6***)

In[o]:= derivateOfFunc = D[f[x], x]

Out[•]=

$$-\frac{2\, \mathsf{Sec} \left[\, 1 + \mathsf{Cosh} \left[\, \frac{1}{2 + \mathsf{x}} \,\right]\, \right]^2 \, \mathsf{Sinh} \left[\, \frac{1}{2 + \mathsf{x}}\, \right] \, \mathsf{Tan} \left[\, 1 + \mathsf{Cosh} \left[\, \frac{1}{2 + \mathsf{x}}\, \right]\, \right]}{\left(\, 2 + \mathsf{x}\, \right)^{\,2}}$$

Show[graph, dots]

_показать

Out[•]=

In[*]:=
$$f[x_] := \frac{2 + \sqrt[4]{3 \times 1, 7}}{x + \sqrt{1.5 \times^2 + 1}};$$

$$In[\bullet]:= a = 0.3;$$

$$b = 0.9;$$

$$x_0 = a;$$

$$step = \frac{(b-a)}{n1};$$

$$In[\cdot]:=$$
 For[i = 1, i ≤ n1, i++, $x_i = step + x_{i-1};$]
 Цикл ДЛЯ

$$ln[\cdot]:=$$
 averageRectangle1 = $\frac{(b-a)}{n1} * \sum_{i=1}^{n1} f[x_{i-1} + \frac{(b-a)}{2*n1}]$

Out[•]=

step =
$$\frac{(b-a)}{n2}$$
;

For
$$[i = 1, i \le n2, i++, x_i = step + x_{i-1};]$$

$$In[a]:=$$
 averageRectangle2 = $\frac{(b-a)}{n2} * \sum_{i=1}^{n2} f[x_{i-1} + \frac{(b-a)}{2*n2}]$

Out[0]=

```
(*по Ричардсону*)
  In[0]:= k = 2;
         Richardson = averageRectangle2 + \frac{n1^k}{n2^k - n1^k} (averageRectangle2 - averageRectangle1)
Out[0]=
         1.96511
           (*3.6*)
  In[0]:=
  In[ \circ ] := n1 = 8;
         step = \frac{(b-a)}{n1};
         For [i = 1, i \le n1, i++,
         цикл ДЛЯ
           x_i = step + x_{i-1};
         trapezoid1 = \frac{(b-a)}{n1} * \left( \sum_{i=1}^{n1-1} f[x_i] + \frac{f[x_0]}{2} + \frac{f[x_{n1}]}{2} \right)
Out[0]=
         1.9649
  In[.]:= n2 = 10;
         step = \frac{(b-a)}{n2};
         For [i = 1, i \le n2, i++,
         цикл ДЛЯ
           x_i = step + x_{i-1};
         trapezoid2 = \frac{(b-a)}{n2} * \left( \sum_{i=1}^{n2-1} f[x_i] + \frac{f[x_0]}{2} + \frac{f[x_{n2}]}{2} \right)
Out[0]=
         1.96498
           (*По Ричардсону*)
  ln[\cdot]:= Richardson = trapezoid2 + \frac{n1^k}{n2^k - n1^k} (trapezoid2 - trapezoid1)
Out[0]=
         1.96511
           (*Задание 4*)
```

In[•]:= (*8 частей*)

In[*]:= SimpsonFormula =
$$\sum_{i=0}^{n-1} \frac{h}{3} * (y_{2i} + 4 y_{2i+1} + y_{2i+2})$$

Out[•]=
0.438667

In[•]:= (*16 частей*)

0.05

$$\begin{aligned} & \text{Im}(\cdot) - & \text{SimpsonFormula} = \sum_{i=0}^{n-1} \frac{h}{3} * (y_{2\,i+4} \, 4 \, y_{2\,i+1} \, + \, y_{2\,i+2}) \\ & \text{out}(\cdot) - \\ & \text{out}(\cdot) - & \text{f}[X_-] = \frac{\text{Cos}[5 \, x \, + \, 2]}{x} \\ & \text{out}(\cdot) - & \text{cos}[2 \, + \, 5 \, x] \\ & \text{in}(\cdot) \cdot + & \text{a} = 0.8; \\ & \text{b} = 2.1; \\ & \text{n} = 7; \\ & \text{LegendreP}[n, t] \\ & \text{p-dynatum } \text{Dexamps} \\ & \text{out}(\cdot) - & \text{dis}[-1] -$$

$$ln[*]:= int = \frac{(b-a)}{2} * \sum_{i=1}^{n} A[[i]] * f[\frac{b+a}{2} + \frac{b-a}{2} * tt[[i]]]$$

Out[•]=

0.0969024

In[*]:= PaddedForm[int, {19, 18}]

форма числа с заполнением нулями

Out[•]//PaddedForm=

0.096902358500152500