Berechnung von Dirichletzellen kristallographischer Gruppen mittels endlicher Wortlänge

Lukas Schnelle

Grüppchen 2025 In Zusammenarbeit mit Alice C. Niemeyer und Reymond Akpanya

Ziel

Motivation

•000

Konstruiere eine Anordnung von gleichen Blöcken, sodass wenn ein Teil fixiert ist, alles fixiert ist.

Ziel

Motivation

•000

Konstruiere eine Anordnung von gleichen Blöcken, sodass wenn ein Teil fixiert ist, alles fixiert ist.

Existenz

Gibt es solche Blöcke?

Beispiele

Alle fünf platonischen Körper

- Tetraeder
- Hexaeder (a.k.a. Würfel)
- Oktaeder
- Dodekaeder
- Ikosaeder

Beispiele

Alle fünf platonischen Körper

- Tetraeder
- Hexaeder (a.k.a. Würfel)
- Oktaeder
- Dodekaeder
- Ikosaeder

Definition

Eine solche Anordnung heißt topological Interlocking Assembly oder auch topologisch interlockende Baugruppe.

Anwendungen

- Spröde Materialien d.h. Druck, aber nicht Zug aushalten können
- Viele kleine Blöcke einfacher zu transportieren/herzustellen
- Zugang relativ klein
- Falls Klebstoffe problematisch

Motivation

0000

T. Goertzen [2] hat solche Blöcke durch Deformation von Fundamentalbereichen von kristallographischen Gruppen erzeugt.

Seien $v, w \in \mathbb{R}^n$ Vektoren.

Notation

Seien $v, w \in \mathbb{R}^n$ Vektoren. Dann d(v, w) := ||v - w|| die *Euklidische Distanz*.

Notation

Seien $v, w \in \mathbb{R}^n$ Vektoren. Dann d(v, w) := ||v - w|| die *Euklidische Distanz*.

Definition

Seien $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann φ *Isometrie*, falls $\forall v, w \in \mathbb{R}^n$:

$$d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

Seien $v, w \in \mathbb{R}^n$ Vektoren. Dann d(v, w) := ||v - w|| die Euklidische Distanz.

Definition

Seien $n \in \mathbb{N}$ und $\varphi : \mathbb{R}^n \to \mathbb{R}^n$. Dann φ *Isometrie*, falls $\forall v, w \in \mathbb{R}^n$:

$$d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

Weiterhin

$$E(n) := \{ \varphi \mid \varphi : \mathbb{R}^n \to \mathbb{R}^n \text{ Isometrie} \}.$$

Bemerkung

Sei $n \in \mathbb{N}$ fest. Dann

- $(E(n), \circ)$ ist Gruppe, genannt *Euklidische Gruppe*,
- E(n) wirkt auf \mathbb{R}^n .

Bemerkung

Sei $n \in \mathbb{N}$ fest. Dann

- $(E(n), \circ)$ ist Gruppe, genannt *Euklidische Gruppe*,
- E(n) wirkt auf \mathbb{R}^n .

Notation

Sei $n \in \mathbb{N}$. Wir bezeichnen mit O(n) die *orthogonale Gruppe*. Diese ist isomorph zur Menge der orthogonalen $n \times n$ Matrizen.

Es gilt,
$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
. D.h. für $\varphi \in E(n)$

$$\varphi = (\varphi_o, \varphi_t),$$

wobei $\varphi_o \in O(n)$ orthogonaler Anteil und $\varphi_t \in \mathbb{R}^n$ translatorischer Anteil.

Es gilt,
$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
. D.h. für $\varphi \in E(n)$

$$\varphi = (\varphi_o, \varphi_t),$$

wobei $\varphi_o \in O(n)$ orthogonaler Anteil und $\varphi_t \in \mathbb{R}^n$ translatorischer Anteil.

Betrachte $v \in \mathbb{R}^n$. Dann

$$v^{(\varphi_o,\varphi_t)}=v^{\varphi_o}+\varphi_t.$$

Betrachte

$$p4 := \langle \pi, \tau_1, \tau_2 \rangle$$

wobei

$$\pi = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right),$$

Beispiel

Betrachte

$$p4 := \langle \pi, \tau_1, \tau_2 \rangle$$

wobei

$$\pi = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right),$$

$$\tau_1 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right),$$

Beispiel

Betrachte

$$p4 := \langle \pi, \tau_1, \tau_2 \rangle$$

wobei

$$\pi = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix},$$

$$\tau_1 = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix},$$

$$\tau_2 = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}.$$

Proposition

Sei $\Gamma \leq E(n)$. Dann wird der *Translationennormalteiler* von Γ definiert als

$$\mathcal{T}(\Gamma) := \{ (\varphi_o, \varphi_t) \in \Gamma \mid \varphi_o = Id \}.$$

 $\mathcal{T}(\Gamma)$ ist ein Normalteiler von Γ .

Proposition

Sei $\Gamma < E(n)$. Dann wird der Translationennormalteiler von Γ definiert als

$$\mathcal{T}(\Gamma) := \{ (\varphi_o, \varphi_t) \in \Gamma \mid \varphi_o = Id \}.$$

 $\mathcal{T}(\Gamma)$ ist ein Normalteiler von Γ .

Definition

Sei $\Gamma \leq E(n)$. Dann definieren wir die *Punktgruppe* von Γ als die **Faktorgruppe**

$$\mathcal{P}(\Gamma) := \Gamma/\mathcal{T}(\Gamma).$$

Sei $\Gamma \leq E(n)$. Die Menge

$$\mathcal{L}(\Gamma) := \{ \varphi_t \mid \varphi \in \mathcal{T}(\Gamma) \}$$

enthält *n* linear unabhängige Vektoren.

Definition

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

(i)
$$\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$$
 und

Definition

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

- (i) $\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$ und
- (ii) es gibt ein Vertretersystem $V\subseteq \mathbb{R}^n$ von den Bahnen von Γ auf \mathbb{R}^n , sodass

$$F^{\circ} \subseteq V \subseteq F$$
.

Definition

Sei $\Gamma \leq E(n)$ eine Untergruppe und $F \subseteq \mathbb{R}^n$ eine abgeschlossene Menge. Dann heißt F ein Fundamentalbereich von Γ falls

- (i) $\bigcup_{\gamma \in \Gamma} F^{\gamma} = \mathbb{R}^n$ und
- (ii) es gibt ein Vertretersystem $V\subseteq \mathbb{R}^n$ von den Bahnen von Γ auf \mathbb{R}^n , sodass

$$F^{\circ} \subseteq V \subseteq F$$
.

Definition

Sei $\Gamma \leq E(n)$ eine Untergruppe. Dann heißt Γ *kristallographische Gruppe* falls Γ eine diskrete Untergruppe ist und ein kompakter Fundamentalbereich von Γ existiert.

In der Literatur für n = 3 auch als Raumgruppen bezeichnet.

In 1900 hat Hilbert 23 Probleme vorgestellt, die zu diesem Zeitpunkt ungelöst waren.

In 1900 hat Hilbert 23 Probleme vorgestellt, die zu diesem Zeitpunkt ungelöst waren.

18. Hilbert Problem

Gegeben n, gibt es **endlich** viele kristallographische Gruppen?

In 1900 hat Hilbert 23 Probleme vorgestellt, die zu diesem Zeitpunkt ungelöst waren.

18. Hilbert Problem

Gegeben n, gibt es endlich viele kristallographische Gruppen?

Bieberbachsche Sätze (1910)

Ja, z.B. für n = 2 gibt es 17, für n = 3 gibt es 230.

Für niedrige Dimensionen sind diese Gruppen bekannt, z.B. Crystallographic Groups of Four-dimensional Space [1].

Problem

Gegeben eine kristallographische Gruppe $\Gamma \leq E(n)$ durch ein endliches Erzeugendensystem. Wie kann ein Fundamentalbereich berechnet werden?

Problem

Gegeben eine kristallographische Gruppe $\Gamma \leq E(n)$ durch ein endliches Erzeugendensystem. Wie kann ein Fundamentalbereich berechnet werden?

Dirichletzellen

•000

Antwort

Hier: Algorithmus für Dirichletzellen

Motivation 0000	Kristallographische Grupper	n Dirichletzellen ⊙●○○	Wortlänge 000000	Ergebnisse 0000
	·	•	•	
	•	•		
	•	•	•	

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe und $u \in \mathbb{R}^n$ in allgemeiner Lage. Dann ist die Dirichletzelle

$$D(u, u^{\Gamma}) := \bigcap_{w \in u^{\Gamma}, w \neq u} \{ w \in \mathbb{R}^n \mid d(u, w) \leq d(v, w) \}.$$

Dirichletzellen

0000

ein Fundamentalbereich von Γ.

$$D(u,u^{\Gamma}) := \bigcap_{w \in u^{\Gamma}, w \neq u} \{ w \in \mathbb{R}^n \mid d(u,w) \leq d(v,w) \}$$

$$D(u,u^{\Gamma}) := \bigcap_{w \in u^{\Gamma}, w \neq u} \{ w \in \mathbb{R}^n \mid d(u,w) \leq d(v,w) \}$$

Problem

 u^{Γ} ist unendlich.

Wortlänge 00000

Halbräume die von zwei weit entfernten Punkten aufgespannt werden, haben weniger Einfluss als Halbräume, die von nahe beieinander liegenden Punkten aufgespannt werden.

Idee

Halbräume die von zwei weit entfernten Punkten aufgespannt werden, haben weniger Einfluss als Halbräume, die von nahe beieinander liegenden Punkten aufgespannt werden.

Ansatz

Betrachte nur Isometrien, die einen Punkt nicht "zu weit weg" operieren.

Sei $\Gamma \leq E(n)$ kristallographische Gruppe und $u \in \mathbb{R}^n$. Dann existiert ein $A \in \mathbb{N}$ sodass die Dirichletzelle $D(u, u^\Gamma)$ berechnet werden kann, als Schnitt der Halbräume $H^+(u, u^\gamma)$ für $\gamma \in \Gamma$ Wörter der Länge maximal A+1.

Sei $\Gamma \leq E(n)$ kristallographische Gruppe und $u \in \mathbb{R}^n$. Dann existiert ein $A \in \mathbb{N}$ sodass die Dirichletzelle $D(u, u^\Gamma)$ berechnet werden kann, als Schnitt der Halbräume $H^+(u, u^\gamma)$ für $\gamma \in \Gamma$ Wörter der Länge maximal A+1.

Ist von uns bewiesen und haben noch keine entsprechende bisherige Veröffentlichung dazu gefunden.

Sei $\Gamma \leq E(n)$ kristallographische Gruppe und $u \in \mathbb{R}^n$. Dann existiert ein $A \in \mathbb{N}$ sodass die Dirichletzelle $D(u, u^{\Gamma})$ berechnet werden kann, als Schnitt der Halbräume $H^+(u, u^{\gamma})$ für $\gamma \in \Gamma$ Wörter der Länge maximal A+1.

Ist von uns bewiesen und haben noch keine entsprechende bisherige Veröffentlichung dazu gefunden.

Damit haben wir einen Zugang, um Fundamentalbereiche in endlichen Schritten (algorithmisch) zu bestimmen. Leider ist A im Allgemeinen nicht einfach bestimmbar.

Sei $\Gamma \leq E(n)$ eine kristallographische Gruppe mit Fundamentalbereich F und Translationszelle C. Dann gilt

$$vol(F) = \frac{vol(C)}{|\mathcal{P}(\Gamma)|}.$$

Data: eine kristallographische Gruppe $\langle \gamma \mid \gamma \in gens \rangle = \Gamma \leq E(n)$ und $u \in \mathbb{R}^n$, ein

Punkt in allgemeiner Lage.

Result: Fin Fundamentalbereich

fundamentalVolume ← Volumen berechnet mit Theorem:

fundamentalDomainCandidate ← gegeben durch Schnitt über gens;

while *vol*(*fundamentalDomainCandidate*) > *fundamentalVolume* **do**

 $fundamentalDomainCandidate \leftarrow gegeben durch Schnitt über Wortlänge +1;$

end

return fundamentalDomainCandidate;

Bisher: zwei-dimensional.

Erweiterung

Alle Aussagen gelten für $n \in \mathbb{N}$. Damit erhalten wir Zugang zu den 230 drei-dimensionalen kristallographischen Gruppen.

- (i) Generiere Fundamentalbereich einer kristallographischen Gruppe
- (ii) Deformiere diesen Fundamentalbereich
- (iii) Prüfe ob topologisches Interlocking vorliegt

- Verbesserung/Nachweis der (optimimalität) der Schranken
- Allgemeine Verfügbarkeit in einer Software
- Charakterisierung wann topologische Interlockings entstehen
- Charakterisierung welche topologische Interlockings "gut" sind

Referenzen:

- [1] H Brown et al. *Crystallographic Groups of Four-dimensional Space*. John Wiley & Sons Inc, 1978. ISBN: 978-0471030959.
- [2] Tom Goertzen. "Construction of Simplicial Surfaces with given Geometric Contraints". To be submitted. Dissertation. RWTH Aachen University, 2024. DOI: tbd. URL: tbd.