Exercise 1

$$A \cap B = \left\{ \frac{1}{x} \right\} \times \left\{ 0, \frac{1}{x} \right\}$$

$$(A \cap B) \cup C = \left\{ 1, \frac{1}{x} \right\} \times \left\{ 0, \frac{1}{x} \right\}$$

= IR \ {13.

Bnc = C

- IR.

An (BnZ) = AnBnZ

E	× es	U 54		3												
	\circ							C			_				2	
	X	Sr	not	a	Zu	ndha	cn		う しど	top	0	d	efin	l Von	ℓ	
	U							()	0		J	

(x-x2)

$$e) -x^{2} + x = \frac{1}{4}$$

$$e) -x^{1} + x = \frac{1}{4} - \delta$$

$$x_{1} = \frac{1}{2}$$
Inyeche

$$0 (x (\frac{1}{2} 3 - \delta), 0)$$

$$1/2 (x (1 (0), +\delta)$$
Swipethe

Exercise S

O Vai

O Faix

O Vai

O Four

$$(-2)^{2} + 1$$
 $(-2)^{2} + 2$

Exercise 6

$$g(x_1) = g(x_2)$$

$$x_1 = x_2$$

$$\int x_1 + \delta = x_1 + \delta$$

$$= x_1 + \delta$$

$$= x_2 + \delta$$

$$=$$
 $\chi_{\Lambda} = \chi_{\zeta}$

$$\begin{cases} -x_1 + S = -x_2 + S \\ \Rightarrow x_1 = x_2 \end{cases}$$

$$A$$
 $\Delta \gamma = \chi \zeta$

