

planetmath.org

Math for the people, by the people.

equivalence of forcing notions

Canonical name EquivalenceOfForcingNotions

Date of creation 2013-03-22 12:54:24 Last modified on 2013-03-22 12:54:24

Owner Henry (455) Last modified by Henry (455)

Numerical id 5

Author Henry (455)
Entry type Definition
Classification msc 03E35
Classification msc 03E40
Synonym equivalent
Related topic Forcing

 $Related\ topic \qquad Proof That Forcing Notions Are Equivalent To Their Composition$

Let P and Q be two forcing notions such that given any generic subset G of P there is a generic subset H of Q with $\mathfrak{M}[G] = \mathfrak{M}[H]$ and vice-versa. Then P and Q are equivalent.

Since if $G \in \mathfrak{M}[H]$, $\tau[G] \in \mathfrak{M}$ for any P-name τ , it follows that if $G \in \mathfrak{M}[H]$ and $H \in \mathfrak{M}[G]$ then $\mathfrak{M}[G] = \mathfrak{M}[H]$.