2021 年线性代数与解析几何期末试题

一、填空题(共5题,每题3分)

- 1. 设 $\alpha_1, \alpha_2, \alpha_3$ 为 3 元列向量。 $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 3\alpha_2 + 6\alpha_3], \ \mathbf{B} = [\alpha_1, 2\alpha_1 + 3\alpha_2 + 3\alpha_2 + 3\alpha_2 + 3\alpha_3 + 3\alpha_2 + 3\alpha_3 +$ 则 $|\boldsymbol{B}| =$.
- 2. 设 $\boldsymbol{\alpha}_1 = (-1,1,1)^{\mathrm{T}}, \ \boldsymbol{\alpha}_2 = (1,3,x)^{\mathrm{T}}$ 是实对称矩阵 \boldsymbol{A} 的属于不同特征值所对应的特征向量,则
- 3. 设矩阵 A 由 3 阶单位矩阵 E 交换 1,2 行得到,矩阵 B 由单位矩阵 E 交换第 1,3 列得到,矩 阵 $oldsymbol{C} = egin{bmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \ c_{31} & c_{32} & c_{33} \end{bmatrix}$,则 $oldsymbol{A}^{15} oldsymbol{C} oldsymbol{B}^{16} = _$ ______.
- 4. 直线 $\frac{x}{-1} = \frac{y-1}{1} = \frac{z-1}{2}$ 与平面 2x + y z 3 = 0 的交点是______.
- 5. 设实二次型 $f(x_1, x_2, x_3) = tx_1^2 + x_2^2 + 2tx_2x_3 + 4x_3^2$ 的正惯性指数为 3, 则参数 t 的取值范围

二、选择题(共5题,每题3分)

1. 设 4 元非齐次方程组 $AX = \beta$ 的系数矩阵的秩为 2, X_1 , X_2 是 $AX = \beta$ 的两个解, α_1 , α_2 是导出组 AX = 0 的线性无关的解,则 $AX = \beta$ 的通解为

A.
$$\frac{1}{2}(X_1 - X_2) + k_1(\alpha_1 + \alpha_2) + k_2\alpha_2$$

B.
$$\frac{1}{2}(\boldsymbol{X}_1 + \boldsymbol{X}_2) + k_1(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + k_2\boldsymbol{\alpha}_2$$

C.
$$X_1 + k_1(X_1 - X_2) + k_2\alpha_2$$

D.
$$X_1 + k_1(X_1 - X_2) + k_2\alpha_2 + k_3\alpha_2$$

2. 设矩阵 $\mathbf{A} = \begin{bmatrix} -2 & x & 0 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}$ 与 $\mathbf{B} = \begin{bmatrix} y \\ 2 \\ -2 \end{bmatrix}$ 相似,则参数 x, y 的值为

A.
$$x = 0, y = -1$$

B.
$$x = 0, y = 1$$

C.
$$x = y = -1$$
 D. $x = y = 0$

D.
$$x = y = 0$$

3. 设 A, B 为同阶方阵,E 为单位矩阵,则下列说法正确的有多少个?

(a) 若
$$\boldsymbol{A}^2 = \boldsymbol{O}$$
 ,则 $(\boldsymbol{E} - \boldsymbol{A})^{-1} = \boldsymbol{E} + \boldsymbol{A}$

(b) 若
$$\mathbf{A}^2 = \mathbf{A}$$
,则 $\mathbf{A} = \mathbf{O}$ 或 $\mathbf{A} = \mathbf{E}$

(c)
$$AX = AY$$
, 且 A 可逆, 则 $X = Y$

(d)
$$(A + B)^2 = A^2 + 2AB + B^2$$

A. 1

B. 2

C. 3

D. 4

4. 设三个向量 a,b,c 满足 a+b+c=0, 那么 $a\times b=$

A. $\boldsymbol{b} \times \boldsymbol{a}$

B. $\boldsymbol{c} \times \boldsymbol{b}$

C. $\boldsymbol{b} \times \boldsymbol{c}$

D. $\boldsymbol{a} \times \boldsymbol{c}$

- 5. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,n 元向量 β_1 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,n 元向量 β_2 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,则下列说法正确的是
 - A. $\alpha_2, \alpha_3, \beta_1$ 线性无关

B. $\alpha_2, \alpha_3, \beta_2$ 线性无关

C. $\alpha_2, \alpha_3, \beta_1 + \beta_2$ 线性相关

D. $\alpha_2, \alpha_3, \beta_1, \beta_2$ 线性相关

三、(8分)

设线性方程组

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 - 5x_5 = 3\\ 2x_1 - 4x_2 + 3x_3 + x_4 - 11x_5 = 6\\ x_1 - 2x_2 + 2x_3 + 3x_4 - 12x_5 = 6\\ 3x_1 - 6x_2 + 3x_3 + 2x_4 - 13x_5 = t \end{cases}$$

有解, 求参数 t 以及方程组的结构式通解。

四、(8 分) 设实矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 1 & & \\ 1 & & 1 & \\ & -3 & & 4 \end{bmatrix}$$
, 且 $\mathbf{A}\mathbf{X}\mathbf{A}^* = 8\mathbf{X}\mathbf{A}^{-1} + 12\mathbf{E}_4$, 求矩阵 \mathbf{X} .

五、(9 分) 设 $\mathbf{A} = \begin{bmatrix} -1 & 1 & & & \\ 1 & -1 & & & \\ & & -1 & 1 \\ & & & -1 \end{bmatrix}$ 求 \mathbf{A}^{2014} 以及 $|\mathbf{A}^{2014}|$.

六、(9 分) 设向量组 $\alpha_1 = (1,2,1)^{\mathrm{T}}, \ \alpha_2 = (1,3,2)^{\mathrm{T}}, \ \alpha_3 = (1,a,3)^{\mathrm{T}}$ 为 \mathbb{R}^3 的一个基, $\boldsymbol{\beta} = (1,1,1)^{\mathrm{T}}$ 在这个基下的坐标为 $(b,c,1)^{\mathrm{T}}$.

- 1. 求 a, b, c;
- 2. 证明 $\alpha_2, \alpha_3, \beta$ 为 \mathbb{R}^3 的一个基,并求 $\alpha_2, \alpha_3, \beta$ 到 $\alpha_1, \alpha_2, \alpha_3$ 的一个过渡矩阵。

七、(9 分) 在 \mathbb{R}^3 中,对于任意向量 $\boldsymbol{\alpha} = (x,y,z)^{\mathrm{T}}$,规定 $T(\boldsymbol{\alpha}) = (x-y,y-z,z)^{\mathrm{T}}$.

- 1. 求线性变换 T 在基 $\boldsymbol{\alpha}_1 = (0,0,1)^{\mathrm{T}}, \ \boldsymbol{\alpha}_2 = (0,1,1)^{\mathrm{T}}, \ \boldsymbol{\alpha}_3 = (1,1,1)^{\mathrm{T}}$ 下的矩阵.
- 2. 求 T 的值域和秩.

八、(10 分) 已知点
$$P(2,0,1)$$
 和直线 $L: \begin{cases} x-y-4z+12=0\\ 2x+y-2z+3=0 \end{cases}$

- 1. 将直线 L 化为对称式方程;
- 2. 求点 P 关于直线 L 的对称点.

九、(13 分)

1. 用正交线性变换化实二次型

$$f(x_1, x_2, x_3) = 3x_1^2 + 3x_2^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$$

为标准型,并写出所用的正交变换;

2. 求二次型 $f(x_1, x_2, x_3)$ 的规范型.

十、(4 分) 设 n 阶方阵 $A = E_n - \alpha \alpha^T$, 其中 α 是 n 元非零列向量, E_n 为 n 阶单位矩阵. 证明

- 1. $\mathbf{A}^2 = \mathbf{A}$ 的充要条件是 $\mathbf{\alpha}^{\mathrm{T}} \mathbf{\alpha} = 1$
- 2. 当 $\alpha^{T}\alpha = 1$ 时,矩阵 A 为降秩矩阵。