Analyse du schéma d'Euler explicite

1 Présentation du schéma d'Euler explicite

On cherche à approcher numériquement une EDO de la forme

$$\begin{cases} y'(t) = f(t, y(t)) \text{ sur } [t_0, T], \\ y(t_0) = y_0, \end{cases}$$
 (1)

où f et y_0 sont des données du problème. Ici on considère que le problème est scalaire : $y(t) \in \mathbb{R}$. On peut raisonner de manière analogue s'il est vectoriel : $y(t) \in \mathbb{R}^d$.

Pour approcher numériquement le problème (1), on découpe l'intervalle $[t_0, T]$ en N sous-intervalles de longueur uniforme que l'on appelle pas de discrétisation

$$h = \frac{T - t_0}{N}.$$

On définit ainsi une discrétisation de cet intervalle $t_k = t_0 + kh$ avec $0 \le k \le N$.

Le schéma d'Euler consiste à approcher la dérivée par un taux d'accroissement :

$$y'(t_k) \simeq \frac{y(t_{k+1}) - y(t_k)}{t_{k+1} - t_k} = \frac{y(t_{k+1}) - y(t_k)}{h}.$$
 (2)

On cherche donc à calculer les termes d'une suite $(y_k)_{0 \le k \le N}$ en remplaçant dans (1) la dérivée par le taux d'accroissement (2). Ceci revient donc à calculer la suite $(y_k)_{0 \le k \le N}$ par récurrence comme :

$$\begin{cases} y_{k+1} = y_k + h f(t_k, y_k), & 0 \le k \le N - 1, \\ y_0 = y(t_0). & \end{cases}$$

Nous voyons que la valeur de y_{k+1} peut être calculée de manière explicite à partir de la valeur de y_k . C'est pour cela que l'on parle de schéma d'Euler explicite.

Dans l'ensemble de ce document on utilise les notations standards qui consistent à noter (y_k) la suite calculée par le schéma d'Euler explicite et y(t) la solution exacte (solution de (1)) au temps $t \in [t_0, T]$. Le but d'une telle approche est de construire une suite (y_k) qui s'approche des $(y(t_k))$. Nous allons maintenant étudier sous quelles conditions y_k est une bonne approximation de $y(t_k)$.

2 Analyse du schéma

!! consistance!!

!! stabilité!!

!! convergence!!

!! ordre!!

3 Un exemple

!! but : 3-4 pages!!