October 10, 2018

Assignment 1. Let X_1, \ldots, X_n be an i.i.d. sample from a probability distribution F. Suppose that $\mathbb{E}[X_1^2] < \infty$. Define $\mu = \mathbb{E}[X_1]$ and $\sigma^2 = \operatorname{Var}(X_1)$. Let \overline{X} be the sample mean and $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \overline{X})^2$ be the sample variance.

(a) Show that $S^2 \stackrel{p}{\to} \sigma^2$ as $n \to \infty$.

(Hint: Write $S^2 = (n-1)^{-1} \sum_{i=1}^n X_i^2 - [n/(n-1)] \overline{X}^2$ and apply the large of large numbers to the two terms followed by continuous mapping theorem and Slutsky's theorem.)

(b) Using continuous mapping theorem and Slutsky's theorem, show that

$$T_n := \frac{\sqrt{n}(\overline{X} - \mu)}{S} \stackrel{d}{\to} N(0, 1)$$

as $n \to \infty$.

(c) Suppose that F is the $N(\mu, \sigma^2)$ distribution. What do you know about the exact sampling distribution of T_n for any fixed $n \geq 2$?

(d) Use part (b) to determine the behaviour as $n \to \infty$ of the exact distribution obtained in part (c). (Optional: Compare your answer with that obtained for Exercise 6 in Week 3.)

Assignment 2. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Ber(p)$ for some $p \in (0,1)$. Let $U_n = \overline{X}(1-\overline{X})$, where \overline{X} is the sample mean.

- (a) What is U_n estimating? Why?
- (b) Is U_n an unbiased estimator of p(1-p)? Justify.
- (c) Is U_n a consistent estimator of p(1-p)? Justify.
- (d) Find out the asymptotic distribution of $\sqrt{n}[U_n p(1-p)]$ as $n \to \infty$.

(Hint: Use the central limit theorem and the delta method.)

Assignment 3. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Ber(p)$ for some $p \in (0,1)$. Let $V_n = \sum_{i=1}^n X_i$.

- (a) Is X_1 unbiased for p?
- (b) What is a minimal sufficient statistic for p?
- (c) Find $W_n = \mathbb{E}[X_1 \mid V_n]$.
- (d) Verify that $\mathbb{E}[W_n] = p$. (e) Show directly that $Var(W_n) \leq Var(X_1)$. Is equality attained? (Note: This is a verification of the Rao-Blackwell theorem and W_n is the "Rao-Blackwellised" version of X_1 .)
- (f) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of p. Is this lower bound attained by any estimator of p?

Assignment 4. In a casino one plays the following game. You pay 1 franc. With probability p = 0.49, you win 2 francs, whereas with probability 1 - p = 0.51 you do not win anything.

- (a) Which random variable X will you use in order to describe this game?
- (b) Suppose you start with 1000 francs and play this game 1000 times. Write a formula for the probability that you have at least 1000 francs at the end.
- (c) Use the central limit theorem to approximate the probability in (b). (Your result should depend on the c.d.f. of standard gaussian. You can use the R function pnorm to obtain a real number.)
- (d) (Optional) Use the R commands pnorm and pbinom to visualise the approximation in (c).

Assignment 5. Maximising the likelihood is a way to obtain parameter estimators. In this exercise you are asked to compute the m.l.e.'s for the following distributions:

- (i) The Bernoulli distribution.
- (ii) The Exponential distribution.
- (iii) The Normal distribution (for both μ and σ^2)
- (iv) The uniform distribution $U[0, \theta]$.

Assignment 6. Maximum likelihood estimation is a recipe to construct estimators. In this assignment we introduce another such recipe, the method of moments. Let $X \sim f(x;\theta)$ be a random variable whose distribution depends on a parameter θ . The expectation $\mathbb{E} X$ will therefore also depend on θ . (We assume that it is defined for all θ .) Call this function $m(\theta)$.

- (a) Let X_1, \ldots, X_n be an independent sample from X. What can you say about $\overline{X}_n =$ $\sum_{i=1}^{n} X_i/n$ and $m(\theta)$ when n is large?
- (b) Assume that m is continuously invertible. Explain why $\widetilde{\theta} = m^{-1}(\overline{X}_n)$ is a sensible estimator of θ . It is called the *method of moments* estimator of θ .
- (c) Suppose that $X \sim Exp(\lambda)$. Find the method of moments estimator $\tilde{\lambda}$ of λ and compare with the maximum likelihood estimator $\hat{\lambda}$.
- (d) Suppose that $X \sim Unif(0,\kappa)$. Find the method of moments estimator $\widetilde{\kappa}$ of κ and compare with the maximum likelihood estimator $\hat{\kappa}$.
- (e) Compare the mean squared errors for the two types of estimators in parts (c) and (d). Hint: some of the required calculations have been already carried out in the course.

Assignment 7. Let X_1, \ldots, X_n be a sample from a Poisson(λ) distribution.

- (a) Write the minimal sufficient statistics T and call $\overline{T} = T/n$. Use theorem in Slide 100 to compute the mean and the variance of both T and \overline{T} .
- (b) Use the theorem on Slide 114 to find the approximate sampling distribution for T.

Assignment 8. Last week we have found a sufficient statistics for some member of the exponential family. This week we focus on minimally sufficient.

- (i) Prove that $T(z) = \sum_{i=1}^{n} z_i$ is a minimal sufficient statistics for the Binomial distribu-
- (i) Prove that $T(y) = \sum_{i=1}^{n} y_i$ is a minimal sufficient statistics for the Poisson distribution. (iii) Prove that $T_1(y) = \sum_{i=1}^{n} y_i$ is a minimal sufficient statistics for the mean of a Normal $\mathcal{N}(\mu, \sigma^2)$ distribution and $T = (T_1, T_2)$ with $T_2(y) = \sum_{i=1}^n y_i^2$ is a minimum sufficient statistics for σ (and thus for both parameters).