Chapter 11: Computations in a functor context III Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

Programs often need to combine monadic effects

- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - ▶ Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ► Either computation may fail to obtain its result, reports error
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) accumulator
 - ► Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

- The code will work if we "unify" all effects in a new, larger monad
- Need to compute the type of new monad that contains all given effects

Combining monadic effects I. Trial and error

There are several ways of combining two monads into a new monad:

- If M_1^A and M_2^A are monads then $M_1^A \times M_2^A$ is also a monad
 - lacktriangle But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- ullet If M_1^A and M_2^A are monads then $M_1^A+M_2^A$ is usually not a monad
 - ▶ If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples for functor composition:
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ► Combine Future [A] and Option [A] as Future [Option [A]]
 - ▶ But Either[Z, Future[A]] and Option[Z \Rightarrow A] are not monads
 - ► Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad with combined effects
- Derive properties required for the new monad

Combining monadic effects II. Lifting into a larger monad

If a "big monad" BigM[A] somehow combines all the needed effects:

```
// This could be valid Scala...

val result: BigM[Int] = for {
    i \leftarrow lift1(1 to n)
    j \leftarrow lift2(Future{ q(i) })
    k \leftarrow lift3(maybeError(j))

} yield f(k)

// If we define the various

// required "lifting" functions:

def lift1[A]: Seq[A] \Rightarrow BigM[A] = ???

def lift2[A]: Future[A] \Rightarrow BigM[A] = ???

def lift3[A]: Try[A] \Rightarrow BigM[A] = ???
```

• Example 1: combining as BigM[A] = Future[Option[A]] with liftings:

```
\begin{array}{lll} \text{def lift}_1[A]\colon \text{Option}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \text{Future}.\text{successful}(\_) \\ \text{def lift}_2[A]\colon \text{Future}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Some}(x)) \end{array}
```

• Example 2: combining as BigM[A] = List[Try[A]] with liftings:

```
\begin{array}{lll} def \ lift_1[A] \colon Try[A] \ \Rightarrow \ List[Try[A]] \ = \ x \ \Rightarrow \ List(x) \\ def \ lift_2[A] \colon \ List[A] \ \Rightarrow \ List[Try[A]] \ = \ \_.map(x \ \Rightarrow \ Success(x)) \end{array}
```

Remains to be understood:

- Finding suitable laws for the liftings; checking that the laws hold
- Building a "big monad" out of "smaller" ones, with lawful liftings
 - ▶ Is this always possible? Unique? Are there alternative solutions?
- Ways of reducing the complexity of code; make liftings automatic

Laws for monad liftings I. Identity laws

Whatever identities we expect to hold for monadic programs must continue to hold after lifting M_1 or M_2 values into the "big monad" BigM

ullet We assume that M_1 , M_2 , and BigM already satisfy all the monad laws Consider the various functor block constructions containing the liftings

```
    Left identity law after lift<sub>1</sub>

      // Anywhere inside a for/yield:
                                                // Must be equivalent to...
      i \leftarrow lift_1(M_1.pure(x))
      j \leftarrow bigM(i) // Any BigM value. j \leftarrow bigM(x)
lift_1(M_1.pure(x)).flatMap(b) = b(x) — in terms of Kleisli composition (\diamond):
                             (pure_{M_{\bullet}}; lift_1)^{:X \Rightarrow BigM^X} \diamond b^{:X \Rightarrow BigM^Y} = b

    Right identity law after lift<sub>1</sub>

      // Anywhere inside a for/yield: // Must be equivalent to...
      x \leftarrow bigM // Any BigM value. x \leftarrow bigM
      i \leftarrow lift_1(M_1.pure(x))
                                                            i = x
b.flatMap(M_1.pure andThen lift<sub>1</sub>) = b — in terms of Kleisli composition:
                             b^{:X \Rightarrow \mathsf{BigM}^Y} \diamond (\mathsf{pure}_{M_1} \circ \mathsf{lift}_1)^{:Y \Rightarrow \mathsf{BigM}^Y} = b
```

• The same identity laws must hold for M2 and lift2 as well

Exercises

① Show that $M_1^A + M_2^A$ is not a monad when $M_1^A \equiv 1 + A$ and $M_2^A \equiv Z \Rightarrow A$.