# Math II Licence Physique - Chimie

Térence Bayen

Université d'Avignon (Laboratoire de Mathématiques)

terence.bayen@univ-avignon.fr

# Programme et intervenants

- Chapitre 0 : Quelques rappels (si le temps le permet)
- Chapitre 1 : Courbes paramétrées (1CM)
- Chapitre 1 (suite): Fonctions de plusieurs variables (2CM)
- Chapitre 3: Nombres complexes (1CM)
- Chapitre 4 : Equations différentielles linéaires d'ordre 1 et 2. (4CM)

#### Intervenants:

- CM + TD1 : Terence Bayen
- TD2: Manel Dali Youcef
- TD3: Fernando Vieira Costa Junior

# Organisation de travail

#### Séances:

- 8 séances de cours CM
- 9 séances de TD (toutes avant le dernier CM): 4 séances de TD avant le CC1 (sur le chapitre 1)

#### Ce qu'il faut savoir faire :

- Bien comprendre les exercices fait en TD
- Relire les exemples du cours ; assimiler les définitions principales / méthodes

EN MATH. IL FAUT SAVOIR FAIRE LES CALCULS ET TRAVAILLER REGULIEMENT

### **Evaluations**

#### Contrôles continus

- CC1 : programme : chapitre 1 et 2 (courbes + fonctions de plusieurs variables) : 11/03/2022 : 8h30-9h30
- CC2 : programme : chapitre 3 et 4 principalement (nombres complexes + EDO linéaires)
   11/04/2022 : 13h-14h



ATTENTION: DANS CE MODULE LES EVALUATIONS VIENNENT TRES VITE NOTAMMENT LA 2EME: IL FAUT IMPERATIVEMENT SUIVRE LE COURS ET TRAVAILLER DES LE SOIR LES EXERCICES + REVOIR LES METHODES DE COURS: LAPS DE TEMPS COURT!!!!!

## Pré-requis

- · Equation du second degré
- Fonctions usuelles (polynômes, exp, In, cos, sin,...)
- Dérivation
- Primitives (super important pour EDO)

VOIR POLY CHAPITRE 0 SUR L'ENT

 $\Rightarrow$  ENT

# Equation du second degré

$$ax^2 + bx + c = 0$$
  $a \neq 0$ 

**Résolution dans**  $\mathbb{R}$  (avec  $a, b, c \in \mathbb{R}$ ). Soit  $\Delta := b^2 - 4ac$ .

- 1.  $\Delta < 0 \Rightarrow$  pas de solutions
- 2.  $\Delta = 0 \Rightarrow$  solution = racine double  $x = -\frac{b}{2a}$
- 3.  $\Delta > 0 \Rightarrow$  il y a deux solutions distinctes  $x = \frac{-b \pm \sqrt{\Delta}}{2a}$

**Résolution dans**  $\mathbb{C}$  avec  $a, b, c \in \mathbb{R}$ ,  $\mathbb{C}$ .(on reverra ce cas au chapitre 2)

$$az^2 + bz + c = 0$$
  $a \neq 0$ 

il y a toujours 2 solutions:

$$z = \frac{-b \pm \delta}{2a}$$

où  $\delta$  est une racine carré dans  $\mathbb{C}$  de  $\Delta$ :  $\delta^2 = \Delta$  ( $\delta$  existe toujours).



### Dérivées usuelles

| f(x)                         | intervalle de définition                                 | f'(x)                               |
|------------------------------|----------------------------------------------------------|-------------------------------------|
| c (constante)                | R                                                        | 0                                   |
| X                            | $\mathbb{R}$                                             | 1                                   |
| $x^n$ , $n \in \mathbb{N}^*$ | $\mathbb{R}$                                             | nx <sup>n-1</sup>                   |
| $\frac{1}{x}$                | ] – ∞, 0[ ou ]0, +∞[                                     | $-\frac{1}{x^2}$                    |
| $\frac{1}{x^n}, n \ge 2$     | ] – ∞, 0[ ou ]0, +∞[                                     | $-\frac{n}{x^{n+1}}$                |
| $\sqrt{x}$                   | ]0, +∞[                                                  | $\frac{1}{2\sqrt{x}}$               |
| ln(x)                        | ]0, +∞[                                                  | $\frac{1}{x}$                       |
| e <sup>x</sup>               | R                                                        | e <sup>x</sup>                      |
| sin X                        | R                                                        | cos X                               |
| cos X                        | R                                                        | – sin <i>X</i>                      |
| tan X                        | $]k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}[,k\in\mathbb{Z}$ | $1 + \tan^2 x = \frac{1}{\cos^2 x}$ |

### **Primitives**

| f(x)                                | intervalle de définition                                          | F(x)                        |
|-------------------------------------|-------------------------------------------------------------------|-----------------------------|
| c (constante)                       | $\mathbb{R}$                                                      | cx + C                      |
| X                                   | $\mathbb{R}$                                                      | $\frac{\chi^2}{2} + C$      |
| $x^n, n \in \mathbb{N}^*$           | $\mathbb{R}$                                                      | $\frac{x^{n+1}}{n+1} + C$   |
| $\frac{1}{X}$                       | ] – ∞, 0[ ou ]0, +∞[                                              | $\ln  x  + C$               |
| $\frac{1}{x^n}, n \geq 2$           | ] – ∞, 0[ ou ]0, +∞[                                              | $-\frac{1}{(n-1)x^{n-1}}+C$ |
| $\frac{1}{\sqrt{x}}$                | ]0,+∞[                                                            | $2\sqrt{x}+C$               |
| ln(x)                               | ]0, +∞[                                                           | $x \ln x - x + C$           |
| e <sup>x</sup>                      | $\mathbb{R}$                                                      | $e^x + C$                   |
| sin X                               | $\mathbb{R}$                                                      | $-\cos x + C$               |
| cos X                               | R                                                                 | $\sin x + C$                |
| $1 + \tan^2 x = \frac{1}{\cos^2 x}$ | $]k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}[, k \in \mathbb{Z}]$ | tan x + C                   |

# Opérations sur les dérivées

| Notation f'                                           | Notation $\frac{df}{dx}$                                                  |
|-------------------------------------------------------|---------------------------------------------------------------------------|
| (f+g)'=f'+g'                                          | $\frac{d(f+g)}{dx} = \frac{df}{dx} + \frac{dg}{dx}$                       |
| (cf)' = cf', avec $c$ constante                       | $\frac{d(cf)}{dx} = c \frac{df}{dx}$                                      |
| (fg)'=f'g+fg'                                         | $\frac{d(fg)}{dx} = f\frac{dg}{dx} + \frac{df}{dx}g$                      |
| $(\frac{1}{f})' = -\frac{f'}{f^2}$                    | $\frac{d(\frac{1}{f})}{dx} = -\frac{1}{f^2} \frac{df}{dx}$                |
| $(rac{f}{g})'=rac{f'g-fg'}{g^2}$                    | $\frac{d(\frac{f}{g})}{dx} = \frac{\frac{df}{dx}g - f\frac{dg}{dx}}{g^2}$ |
| $(f\circ g)'=(f'\circ g)g'$                           | $\frac{d(f \circ g)}{dx} = (\frac{df}{dx} \circ g).\frac{dg}{dx}$         |
| $(u^n)'=nu'u^{n-1}$                                   | $\frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx}$                              |
| $\left(\frac{1}{u^n}\right)' = -n\frac{u'}{u^{n+1}}$  | $\frac{d(\frac{1}{u^n})}{dx} = -\frac{n}{u^{n+1}} \frac{du}{dx}$          |
| $(e^u)'=u'e^u$                                        | $\frac{d(e^u)}{dx} = e^u \frac{du}{dx}$                                   |
| $(\ln  u )' = \frac{u'}{u}$ , avec <i>c</i> constante | $\frac{d(\ln u )}{dx} = \frac{1}{u}\frac{du}{dx}$                         |

# Qu'est ce que la dérivée?



Soit  $f: \mathbb{R} \to \mathbb{R}$  et  $a \in \mathbb{R}$ . Si il existe

$$\lim_{h \to 0, h \neq 0} \underbrace{\frac{f(a+h) - f(a)}{h}}_{\text{taux d'accroissement}} \in \mathbb{R},$$

on dit que f est dérivable en a et on appelle dérivée cette limite que l'on note f'(a).



# Opérations sur les primitives

On suppose que  $u : \mathbb{R} \to \mathbb{R}$  est une fonction dérivable sur un intervalle I.

- une primitive de  $u'.u^n$  sur I est  $\frac{u^{n+1}}{n+1}$  avec  $n \in \mathbb{N}^*$ ;
- une primitive de  $\frac{u'}{u^2}$  sur I est  $-\frac{1}{u}$ ;
- une primitive de  $\frac{u'}{u^n}$  sur I est  $-\frac{1}{(n-1)u^{n-1}}$  avec  $n \ge 2$ ;
- une primitive de  $\frac{u'}{\sqrt{u}}$  sur I est  $2\sqrt{u}$  en supposant u > 0 sur I;
- une primitive de  $\frac{u'}{u}$  est  $\ln |u|$ .

Si u > 0 sur I et si  $a \in \mathbb{R} \setminus \{-1\}$ , une primitive de  $u'u^a$  sur I est

$$\int u'u^a = \begin{cases} \frac{u^{a+1}}{a+1} + C & \text{si} \quad a \in \mathbb{R} \setminus \{-1\} \\ \ln u + C & \text{si} \quad a = -1 \end{cases}$$

Chapitre 1: Courbes paramétrées

# Courbes fractales (défini par les nombres complexes)



Flocon de Koch : il a une longueur infinie à la limite!



### Courbes de Péano



on peut paramétrer chaque courbe ; à la limite la courbe remplit l'espace.



# Folium de Descartes



### Folium de Descartes



### Ne pas confondre avec le graphe d'une fonction



# Quelques noms célèbres

- Ovales de Cassini
- Limaçon de Pascal
- Lemniscate de Bernouilli
- Strophoïde
- Quartique
- Astroïde
- Folium de Descartes, trifolium
- Courbe de Lissajous (i.e., de la forme  $x(t) = \cos mt$ ;  $y(t) = \sin nt$ ,  $t \in \mathbb{R}$ )

...

https://mathcurve.com/courbes2d/courbes2d.shtml

# Notion de courbe paramétrée

### Définition

Soit  $n \ge 1$ . On appelle courbe paramétrée toute application  $\gamma : I \to \mathbb{R}^n$  définie sur un intervalle I de  $\mathbb{R}$ :

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)) \quad t \in I.$$

On dit que t est le paramètre et  $\gamma(I)$  (l'image de l'intervalle I par  $\gamma$ ) est le graphe de la courbe. La courbe est continue lorsque l'application  $\gamma$  est continue.



# Notion de courbe paramétrée

### Définition

Soit  $n \ge 1$ . On appelle courbe paramétrée toute application  $\gamma : I \to \mathbb{R}^n$  définie sur un intervalle I de  $\mathbb{R}$ :

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)) \quad t \in I.$$

On dit que t est le paramètre et  $\gamma(I)$  (l'image de l'intervalle I par  $\gamma$ ) est le graphe de la courbe. La courbe est continue lorsque l'application  $\gamma$  est continue.

• Dire que  $\gamma$  est continue signifie que chaque fonction  $\gamma_i$  l'est.



# Exemples dans $\mathbb{R}^2$ (Lissajou) et $\mathbb{R}^3$ (hélice)





### Vecteur vitesse

#### Définition

Une application (courbe)  $\gamma: I \to \mathbb{R}^n$  définie sur un intervalle I de  $\mathbb{R}$  définie par

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$$

est dérivable en un point  $t_0 \in I$  si la limite suivante existe

$$\gamma'(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0} = (\gamma'_1(t_0), \dots, \gamma'_n(t_0)).$$

On l'appelle alors la dérivée (ou vecteur tangent ou vecteur dérivé) de  $\gamma$  en  $t_0$ .

- En physique, on parle de *trajectoire* pour  $\gamma$  et de *vitesse* pour  $\gamma'$ .
- Il arrive de noter  $\dot{\gamma}$  à la place de  $\gamma'$



# Exemple boulet de canon



$$\text{PFD} \quad \Rightarrow \quad m \ddot{\vec{a}} = -\vec{g} \quad \Rightarrow \quad \left\{ \begin{array}{cc} m \ddot{x} & = 0 \\ m \ddot{y} & = -m g \end{array} \right.$$

#### Accélération:

$$\begin{cases} \ddot{x}(t) = 0 \\ \ddot{y}(t) = -g \end{cases}$$

Vecteur vitesse (dérivée):

$$\begin{cases} \dot{x}(t) = v_0^x \\ \dot{y}(t) = -gt + v_0^y \end{cases}$$

Trajectoire (courbe paramétrée):

$$\begin{cases} x(t) = v_0^x t + x_0 \\ y(t) = -\frac{1}{2}gt^2 + v_0^y t + y_0 \end{cases}$$



# Exemples de calcul de vecteur vitesse

(1) La dérivée de la courbe  $t \in \mathbb{R} \mapsto (t, t^2, t^3) \in \mathbb{R}^3$  en  $t_0$  est le vecteur tangent à la courbe en  $\gamma(t_0)$ :

$$\gamma'(t_0) = (1, 2t_0, 3t_0^2).$$

(2) La cycloide : c'est une courbe obtenue en regardant la trajectoire d'un point M sur la roue d'un vélo (qui avance sans glissement avec vitesse v et on pose  $\omega := v/R$ ):

$$\gamma(t) = \begin{cases} x(t) = R(\omega t - \sin(\omega t)) \\ y(t) = R - R\cos\omega t \end{cases}$$

où R est le rayon de la roue et v est la vitesse du vélo.  $\Rightarrow$ 

$$\gamma'(t) = \begin{cases} R\omega - R\omega\cos(\omega t) \\ R\omega\sin(\omega t) \end{cases}$$







Figure: Cycloïde avec R = v = 1 sur plusieurs périodes. On note un point de rebroussement de première espèce<sup>2</sup> avec pente infini en chaque  $2k\pi$ .

### **Exercice**

Montrer l'équation de la courbe (la roue du vélo a pour rayon R; la vitesse angulaire de la roue est  $\omega$ ). L'hypothèse cruciale est qu'il n'y a pas de glissement, donc la longueur parcourue par le point "bas" durant un instant t vaut exactement  $R\omega t$ , l'arc de cercle).



<sup>&</sup>lt;sup>1</sup> Voir plus tard pour la définition.

<sup>&</sup>lt;sup>2</sup>Voir plus tard pour la définition.

# Dérivabilité (suite)

### Proposition

Soit  $\gamma: I \to \mathbb{R}^n$ ,  $t \mapsto \gamma(t) = (\gamma_1(t), ..., \gamma_n(t))$  une courbe.

- (i) La courbe  $\gamma$  est dérivable en  $t_0$  si et seulement si chaque  $\gamma_i$  l'est,  $1 \le i \le n$ .
- (ii) De plus,  $\gamma$  est dérivable en  $t_0$  de dérivée  $\gamma'(t_0)$  si et seulement si elle admet le développement limité suivant

$$\gamma(t) = \gamma(t_0) + (t - t_0)\gamma'(t_0) + o_{t \to t_0}(t - t_0).$$



# Dérivabilité (suite)

### Proposition

Soit  $\gamma: I \to \mathbb{R}^n$ ,  $t \mapsto \gamma(t) = (\gamma_1(t), ..., \gamma_n(t))$  une courbe.

- (i) La courbe  $\gamma$  est dérivable en  $t_0$  si et seulement si chaque  $\gamma_i$  l'est,  $1 \le i \le n$ .
- (ii) De plus,  $\gamma$  est dérivable en  $t_0$  de dérivée  $\gamma'(t_0)$  si et seulement si elle admet le développement limité suivant

$$\gamma(t) = \gamma(t_0) + (t - t_0)\gamma'(t_0) + o_{t \to t_0}(t - t_0).$$

$$o_{t\to t_0}(t-t_0) = o(t-t_0) = \varepsilon(t)(t-t_0)$$

avec  $\varepsilon(t) \to 0$  quand  $t \to t_0$ .



# Notations complexes

Il est parfois commmode d'utiliser des notations complexes, par exemple en électricité $^3$  (voir chapitre 3). On peut identifier le plan  $\mathbb{R}^2$  (coordonnées cartésiennes) à  $\mathbb{C}$  (plan complexe) par:

$$(x,y) \in \mathbb{R}^2 \mapsto x + iy \in \mathbb{C}.$$

Par exemple, on peut définir la courbe  $\gamma: \mathbb{R} \to \mathbb{C}$  par  $\gamma(t) = \cos t + i \sin t$ . Alors sa dérivée est donnée par

$$\dot{\gamma}(t) = -\sin t + i\cos t.$$

### **Exercice**

Comment se représente la courbe  $\gamma$  de l'exemple précédent? Même question :

- avec  $t \in \mathbb{R} \mapsto (2\cos 4t, \sin 4t 1)$ ;
- avec  $t \in \mathbb{R} \mapsto (t, t^2)$ ;
- avec  $t \mapsto (\cos(2t), \sin(2t))$  avec  $t \in [0, 2\pi]$ ?

<sup>&</sup>lt;sup>3</sup> Impédances d'un condensateur et d'une bobine pour les circuits électriques RLC « 🗆 » « 👼 » « 👼 » « 👼 » . 💆 » 🦠 🥏 🤄 🔮

# Equation de la tangente

#### Définition

Soit  $\gamma:I\to\mathbb{R}^2$  une courbe paramétrée plane définie sur un intervalle I. Si  $\gamma$  est dérivable en  $t_0\in I$  et si  $\gamma'(t_0)\neq (0,0)$ , la tangente à la courbe au point  $\gamma(t_0)$  est la droite passant par  $\gamma(t_0)$  et de vecteur directeur  $\gamma'(t_0)$ .

### Proposition

Soit  $\gamma = (\gamma_1, \gamma_2): I \to \mathbb{R}^2$  une courbe plane paramétrée définie sur un intervalle I. Si  $\gamma$  est dérivable en  $t_0 \in I$  et si  $\gamma'(t_0) \neq (0,0)$ , l'équation de la tangente à la courbe au point  $\gamma(t_0)$  est

$$\det\begin{pmatrix} x - \gamma_1(t_0) & \gamma_1'(t_0) \\ y - \gamma_2(t_0) & \gamma_2'(t_0) \end{pmatrix} = 0$$

c-à-d

$$(y - \gamma_2(t_0))\gamma_1'(t_0) - (x - \gamma_1(t_0))\gamma_2'(t_0) = 0.$$

#### SAVOIR LA FORMULE DU DETERMINANT PAR COEUR

$$det \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$



et son hypothèse d'application  $\gamma'(t_0) \neq (0,0)$ !

# Exemples

• 
$$x(t) = cos(3t), y(t) = sin(2t)$$
 avec  $t \in \mathbb{R}$ ;  $x'(t) = -3 sin 3t$ ;  $y'(t) = 2 cos 2t$ . En  $t = 0$ 

$$\begin{vmatrix} x - 1 & 0 \\ y - 0 & 2 \end{vmatrix} = 0 \iff x = 1.$$

## Exemples

- x(t) = cos(3t), y(t) = sin(2t) avec  $t \in \mathbb{R}$ ; x'(t) = -3 sin 3t; y'(t) = 2 cos 2t. En t = 0  $\begin{vmatrix} x 1 & 0 \\ y 0 & 2 \end{vmatrix} = 0 \iff x = 1.$
- La courbe  $\gamma: \mathbb{R} \to \mathbb{R}^2$  par  $\gamma(t) = (\cos t, \sin t)$  admet en  $\gamma(t_0)$  pour tangente la droite d'équation  $\begin{vmatrix} x \cos t_0 & -\sin t_0 \\ y \sin t_0 & \cos t_0 \end{vmatrix} = 0 \iff y \sin t_0 + x \cos t_0 = 1.$

## Exemples

- x(t) = cos(3t), y(t) = sin(2t) avec  $t \in \mathbb{R}$ ; x'(t) = -3 sin 3t; y'(t) = 2 cos 2t. En t = 0  $\begin{vmatrix} x 1 & 0 \\ y 0 & 2 \end{vmatrix} = 0 \iff x = 1.$
- La courbe  $\gamma: \mathbb{R} \to \mathbb{R}^2$  par  $\gamma(t) = (\cos t, \sin t)$  admet en  $\gamma(t_0)$  pour tangente la droite d'équation  $\begin{vmatrix} x \cos t_0 & -\sin t_0 \\ y \sin t_0 & \cos t_0 \end{vmatrix} = 0 \iff y \sin t_0 + x \cos t_0 = 1.$
- Cas du graphe d'une fonction. Soit f: I → ℝ une fonction numérique et soit γ: I → ℝ² la courbe paramétrée définie par γ(t) = (t, f(t)). L'ensemble des points γ(t) est le graphe de f. Si f est dérivable en t<sub>0</sub>, alors γ'(t<sub>0</sub>) = (1, f'(t<sub>0</sub>)) ≠ (0,0) et l'équation de la tangente est

$$\begin{vmatrix} x - t_0 & 1 \\ y - f(t_0) & f'(t_0) \end{vmatrix} = 0 \iff y - f(t_0) - (x - t_0)f'(t_0) = 0$$

(on retrouve l'expression connue).



## Exemple où la formule ne marche pas : cycloïde avec $R = \omega = 1$



$$\begin{cases} x(t) = t - \sin t \\ y(t) = 1 - \cos t \end{cases} \Rightarrow \begin{cases} x'(t) = 1 - \cos t \\ y'(t) = \sin t \end{cases}$$

On voie qu'à chaque fois que le point collé à la roue touche le sol, on a  $\cos t = 1$  i.e.  $t = 2k\pi$  et donc x'(t) = y'(t) = 0. Ainsi, tous les points  $(2k\pi, 0)$  sont des points stationnaires.

Lorsque  $\gamma'(t_0) = 0$ , on ne peut appliquer la formule du déterminant pour calculer la tangente.



# Point régulier / point double

#### Définition

Soit  $\gamma: I \to \mathbb{R}^2$  une courbe paramétrée plane définie sur un intervalle I et dérivable sur I.

(i) On dit que to est régulier si

$$\gamma'(t_0) \neq 0.$$

(ii) On dit que  $t_0$  est un point stationnaire (ou que la courbe est **stationnaire** en  $t_0$ ) si

$$\gamma'(t_0) = (0,0).$$

(iii) On dit qu'un point de la courbe est un point double si il existe  $s, t \in I$  avec  $s \neq t$  tels que

$$\gamma(s) = \gamma(t)$$

(autrement dit, le point est atteint pour deux valeurs distinctes du paramètre.

<sup>&</sup>lt;sup>4</sup>ou point non régulier

## Exemple

Exemple :  $t \in [0, 2\pi] \mapsto (\sin t \cos(2t), \cos t)$  : faire  $t = \pi/4$  et  $t = 2\pi - \pi/4$ .



Figure: Courbe de Lissajou :  $t \in [0, 2\pi] \mapsto (\sin t \cos(2t), \cos t)$ . Pour  $t = \pi/4$  et  $t = 2\pi - \pi/4$ , on trouve deux fois le point de coordonnées (0, 1) qui est donc un point double

# Rappel: équation du second degré

1) Soit  $a \neq 0$  et  $\Delta := b^2 - 4ac \geq 0$ . Alors, on a :

$$ax^2 + bx + c = 0$$
  $x = \frac{-b \pm \sqrt{\Delta}}{2a}$ 

2) Connaissant deux nombres S (somme) et P (produit) t.q.  $S^2 - 4P \ge 0$  on cherche  $x_1, x_2$  t.q.

$$x_1 + x_2 = S$$
 et  $x_1 x_2 = P$ .

Alors  $x_1$  et  $x_2$  sont solutions de l'équation

$$X^2 - SX + P = 0$$

et donc

$$x_i = \frac{S \pm \sqrt{S^2 - 4P}}{2}$$
  $i = 1, 2.$ 



# Exemple détaillé

$$\begin{cases} x(t) = 3t^3 + 2t^2 - t - 1 \\ y(t) = 3t^2 + 2t + 1 \end{cases}$$

On cherche  $s \neq t$  t.q. x(s) = x(t) et y(s) = y(t). Ceci donne:

# Exemple détaillé

$$\begin{cases} x(t) = 3t^3 + 2t^2 - t - 1 \\ y(t) = 3t^2 + 2t + 1 \end{cases}$$

On cherche  $s \neq t$  t.q. x(s) = x(t) et y(s) = y(t). Ceci donne:

$$x(t) = x(s) \iff 3(t^3 - s^3) + 2(t^2 - s^2) - (t - s) = 0 \iff 3(t^2 + st + s^2) + 2(t + s) - 1 = 0$$
  
 $y(t) = y(s) \iff 3(t^2 - s^2) + 2(t - s) = 0 \iff 3(t + s) + 2 = 0$ 

## Exemple détaillé

$$\begin{cases} x(t) = 3t^3 + 2t^2 - t - 1 \\ y(t) = 3t^2 + 2t + 1 \end{cases}$$

On cherche  $s \neq t$  t.q. x(s) = x(t) et y(s) = y(t). Ceci donne:

$$x(t) = x(s) \iff 3(t^3 - s^3) + 2(t^2 - s^2) - (t - s) = 0 \iff 3(t^2 + st + s^2) + 2(t + s) - 1 = 0$$
  
 $y(t) = y(s) \iff 3(t^2 - s^2) + 2(t - s) = 0 \iff 3(t + s) + 2 = 0$ 

On pose S = t + s ce qui donne 3S + 2 = 0 i.e. S = -2/3. La première équation donne

$$3((t+s)^2 - st) = 1 - 2S$$
  $\iff$   $st = \frac{2S - 1 + 3S^2}{3}$   $\iff$   $st = -1/3$ 

d'où *s, t* est solution<sup>5</sup> de  $X^2 - (-2/3)X - 1/3 = 0$ 

Résolution de l'équation du second degré :  $X^2 + 2/3X - 1/3 = 0$ .  $X = \frac{1}{2}(-2/3 \pm \sqrt{4/9 + 4/3})$  et s = 1/3; t = -1.

<sup>&</sup>lt;sup>5</sup>Connaissant s + t = S et st = P, s et t sont solutions de  $X^2 - SX + P = 0$ .

#### Points stationnaires

Rappel: Soit  $\gamma:I\to\mathbb{R}^2$  une courbe paramétrée plane définie sur un intervalle I et dérivable sur I. Le point  $t_0$  est régulier si  $\gamma'(t_0)\neq 0$ . Lorsqu'un point  $t_0$  est stationnaire, on ne peut plus écrire l'équation de la tangente avec le déterminant.

 $\Rightarrow$ 

#### Question

Lorsque  $\gamma'(t_0) = 0$ , quelle est l'équation de la tangente à la courbe en  $t_0$  et la position de la courbe par rapport à sa tangente?

- Il peut exister une tangente en un point stationnaire (ce qui sort du contenu de ce cours), et pour la trouver on est amené à utiliser des développements limités d'ordre au moins 2. Ceci fait l'objet du paragraphe suivant qui est hors programme pour le programme des contrôles.
- Dans ce qui suit, on demande de savoir faire quelques calculs de dérivée sur les exemples; on ne demande pas de savoir la théorie générale.



#### Méthode

On suppose que  $\gamma$  est dérivable autant de fois que l'on veut. On fait un DL de Taylor:

$$\gamma(t) = \gamma(t_0) + \gamma'(t_0)(t-t_0) + \frac{1}{2}\gamma''(t_0)(t-t_0)^2 + \frac{1}{6}\gamma''(t_0)(t-t_0)^3 + \dots + \frac{1}{k!}\gamma^{(k)}(t_0)(t-t_0)^k + o(t-t_0)^k$$

Ceci est un développement limité de la courbe  $\gamma$  à l'ordre k. Ainsi, on cherche à obtenir un développement de la courbe en  $t_0$  de la forme:

$$\gamma(t) = \gamma(t_0) + \sum_{k=1}^{n} \frac{(t-t_0)^k}{k!} \gamma^{(k)}(t_0).$$

Dans l'expression précédente, certains  $\gamma^{(k)}(t_0)$  peuvent être nuls (par exemple si k=1, on a vu qu'alors le point est stationnaire). Soit alors m < n les deux entiers supérieurs ou égaux à 1 tels que  $\gamma^{(m)}(t_0)$  et  $\gamma^{(n)}(t_0)$  soient linéairement indépendants de sorte que:

#### Classification

Bref, on suppose avoir fait un DL

$$\gamma(t) = \frac{(t-t_0)^m}{m!} \begin{vmatrix} a \\ b \end{vmatrix} + \frac{(t-t_0)^n}{n!} \begin{vmatrix} a' \\ b' \end{vmatrix} + o(t-t_0)^n$$

où les deux vecteurs  $\begin{vmatrix} a \\ b \end{vmatrix}$  et  $\begin{vmatrix} a' \\ b' \end{vmatrix}$  sont linéairement indépendants.

Ceci permet alors de discuter en fonction des entiers m et n la tangente à la courbe en  $t_0$  ainsi que sa position par rapport à celle-ci:

### Propriété

- m impair n impair : point d'inflexion (Exemple:  $(t, t^3)$
- m impair et n pair : cas standard (point banal) (Exemple: (t, t²))
- m pair et n impair : point de rebroussement de première espèce (Exemple :  $(t^2, t^5)$ ) : on rebrousse et on traverse la tangente.
- m pair et n pair : points de rebroussement de seconde espèces (Exemple : (t², t² + 2t⁴)) : on rebrousse et on ne traverse pas la tangente.





Figure: Inflexion  $(t,t^3)$ ; cas standard  $(t,t^2)$ ; rebroussement première espèce  $(t^2,t^5)$ ; rebroussement seconde espèce  $(t^2,t^2+2t^4)$ 

### Plan d'étude d'une courbe

- Domaine de définition D
- Période (pour réduire *D* si possible)
- Tableau de variation
- Points doubles
- Points singuliers
- Asymptotes éventuelles

#### **Astroide**

#### **Rappels**: pour tout $t \in \mathbb{R}$

$$\begin{array}{lll} \cos(t+2\pi) &= \cos t & \sin(t+2\pi) &= \sin t \\ \cos(\pi+t) &= -\cos t & \sin(\pi+t) &= -\sin t \\ \cos(\pi-t) &= -\cos t & \sin(\pi-t) &= \sin t \\ \cos(\pi/2+t) &= -\sin t & \sin(\pi/2+t) &= \cos t \\ \cos(\pi/2-t) &= \sin t & \sin(\pi/2-t) &= \cos t \end{array}$$

#### Astroide

$$(x(t), y(t)) = (\cos^3 t, \sin^3 t)$$

- La courbe est  $2\pi$ -périodique :  $[-\pi, \pi]$
- Changer  $t \to t + \pi$  (symétrie par rapport à l'origine) :  $[0, \pi]$
- Faire  $t \to \pi t$ : symétrie par rapport à (Oy):  $[0, \pi/2]$

D'où étude sur  $[0, \pi/2]$ . Vecteur vitesse:

$$(x'(t), y'(t)) = (-3\cos^2 t \sin t, 3\sin^2 t \cos t) = 3\cos t \sin t(-\cos t, \sin t)$$

Les points singuliers sont donc lorsque cos ou sin s'annule c.a.d. en  $k\pi/2$ ,  $k \in \mathbb{Z}$ . Par la périodicité + symétrie, on regarde juste<sup>6</sup> en t = 0:

$$(x'(t), y'(t)) \sim (-3t, 3t^2)$$

d'où une pente horizontale. On trace sur  $[0, \pi/2]$  et on complète par symétrie.

<sup>&</sup>lt;sup>6</sup>En 0, on a le DL:  $x'(t) = -3\cos^2 t \sin t = -3t + o(t^2)$ ;  $y'(t) = 3\sin^2 t \cos t = 3t^2 + o(t^2)$ 

$$plot\left(\left[\cos(t)^3,\sin(t)^3,t=0..\frac{Pi}{2}\right]\right);$$



$$plot([\cos(t)^3, \sin(t)^3, t=0...Pi]);$$



$$plot\left(\left[\cos(t)^3,\sin(t)^3,t=0...\frac{3\cdot Pi}{2}\right]\right)$$





### Conclusion : ce qu'il faut savoir faire dans ce chapitre

- Calculer l'équation de la tangente dans le cas où  $\gamma'(t_0) \neq 0$
- Calculer les points doubles
- Représenter des courbes (pas trop dures).

Exercice fondamentaux à chercher: 1, 2, 3, 4, 5, 6