Laura Smith

Berkeley, CA

smithlaura@berkeley.edu
github.com/lauramsmith

EDUCATION

University of California, Berkeley, Berkeley CA B.A. Computer Science

2016 – present GPA: 3.96/4.00

Technical Coursework: Deep Reinforcement Learning, Artificial Intelligence, Machine Learning, Operating Systems & System Programming, Convex Optimization, Real Analysis, Probability & Random Processes, Discrete Math & Probability, Web Architecture, Computer Architecture, Data Science, Data Structures & Algorithms, Statistics

EXPERIENCE

Undergraduate Student Researcher

May 2018 - present

Robot Learning Lab (RLL), Advised by Prof. Pieter Abbeel

- Worked on developing representation learning and model-based reinforcement learning methods to allow robots to learn complex skills for practical deployment in real-world systems.
- Involved in outreach including invited lectures on Artificial Intelligence for UC Berkeley's CS 10 as well as for its annual CS Education Day for high school students.

Undergraduate Student Instructor

Fall 2018, Spring 2019

Introduction to Artificial Intelligence (CS 188)

- Introduced students to a breadth of ideas at the core of Artificial Intelligence. Topics include search, games, reinforcement learning, constraint satisfaction problems, bayesian networks, and machine learning.
- Held weekly sections and office hours, engaging with students on and offline along with handling exam logistics.

Course Reader & Tutor

Fall 2017, Spring 2018

Data Science (CS C8), Discrete Math & Probability (CS 70)

- (CS C8) Covered concepts in programming and statistical inference in conjunction with analyses of real-world datasets and ethical considerations. Held small-group tutoring sections and facilitated office hours.
- (CS 70) Helped students in one-on-one setting with formalizing logic, proofs, graph theory, and probability.

Publications

Marvin Zhang*, Sharad Vikram*, **Laura Smith**, Pieter Abbeel, Matthew Johnson, Sergey Levine. **SOLAR: Deep Structured Latent Representations for Model-Based Reinforcement Learning.** in *International Conference on Machine Learning (ICML)*, 2019

INDEPENDENT PROJECTS

Unsupervised Learning of Object-Centric Representations for Vision-Based Planning

- Incorporated the notion of physical priors to enable learning dynamics generalizable to environments in which the same physical properties hold as seen in training and to perform physics-aware planning.
- Derived graphical model structure and resulting variational objective to learn a sparse representation of highdimensional input to handle arbitrarily many objects of few classes. This sparse representation is coupled with modular dynamics models for sensible planning.

Unbiased News Generation

- Wrote a program which aims to remove bias from news reports, motivated by the prevalent fake-news problem.
- Given a user's query, performed sentiment analysis on related, as determined by unsupervised clustering, articles taken from 5 major outlets. Averaged over emotionally-charged statements to return an 'unbiased' article stitched together using a sequence-to-sequence model for meaningful language.