### AIMS 2K28 Recruitments

# Problem Statement: Scene Localization in Dense Images via Natural Language Queries

In many real-world applications such as surveillance, autonomous systems, and contextual visual analytics, dense scenes often contain multiple simultaneous activities. This project aims to build a system that can **identify and localize specific sub-scenes** within a single dense image based on a natural language query describing one of the events occurring in the scene.

Given a high-resolution image depicting multiple activities (e.g. a street market, a park, a railway station), and a textual description such as "a person snatching a chain" or "a vendor selling vegetables to a customer", the model must output a cropped image region that semantically corresponds to the input description.

## Example: Input Image:



Prompt: Multiple people talking Output Image examples:





#### **Objective**

Develop a deep learning model capable of:

- Understanding contextual visual features in dense, multi-activity scenes.
- Parsing textual scene descriptions into semantically meaningful representations.
- Grounding the text in the image by returning accurate bounding box(es) or cropped regions that represent the described scene.

#### Input

- Image: A single dense image (H x W x 3), possibly containing multiple distinct interactions.
- Query: A free-form natural language description (e.g., "a man snatching a chain").

#### **Output**

• A bounding box (x1, y1, x2, y2) or a cropped image patch that corresponds to the described interaction.

#### **Deliverables:**

- A working prototype that:
  - Takes a dense image + scene description as input.
  - Returns the **relevant cropped region** from the image.
- Documentation
- A short demo video (1–2 mins) showing your system working with at least two queries.

It is your responsibility to collect and organize the training data for your project.

#### **Submission Deadline**

Submit the deliverables by 15 August, 2025 by 11:59 pm.

#### **Submission Guidelines**

- Submit all code, model weights (if any), and documentation.
- Include a clear README with setup and usage instructions.
- Share the demo video via Google Drive or YouTube.

**Note:** This assignment is designed to evaluate your approaches and ability to combine vision and language understanding in a practical application. **Creativity, optimization, and intelligent architectural** choices will be valued. Custom modules or techniques over plug-and-play models are highly encouraged.