Author: Sanjoy Biswas

Project : Credit Card Fraud Detection

Email: sanjoy.eee32@gmail.com

In this notebook I will try to predict fraud transactions from a given data set. Given that the data is imbalanced, standard metrics for evaluating classification algorithm (such as accuracy) are invalid. I will focus on the following metrics: Sensitivity (true positive rate) and Specificity (true negative rate). Of course, they are dependent on each other, so we want to find optimal trade-off between them. Such trade-off usually depends on the application of the algorithm, and in case of fraud detection I would prefer to see high sensitivity (e.g. given that a transaction is fraud, I want to be able to detect it with high probability).

IMPORTING LIBRARIES:

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pylab import rcParams
import warnings
warnings.filterwarnings('ignore')
```

READING DATASET:

```
In [2]:
```

```
data=pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv')
```

In [3]:

```
data.head()
```

Out[3]:

	Time	V1	V2	V3	V4	V5	V6	V 7	V8	V 9	 V21	V22	V23	
0	0.0	1.359807	0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 0.018307	0.277838	0.110474	(
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	0.082361	0.078803	0.085102	0.255425	 0.225775	0.638672	0.101288	(
2	1.0	1.358354	1.340163	1.773209	0.379780	0.503198	1.800499	0.791461	0.247676	- 1.514654	 0.247998	0.771679	0.909412	(
3	1.0	0.966272	0.185226	1.792993	0.863291	0.010309	1.247203	0.237609	0.377436	1.387024	 0.108300	0.005274	0.190321	
4	2.0	1.158233	0.877737	1.548718	0.403034	0.407193	0.095921	0.592941	0.270533	0.817739	 0.009431	0.798278	0.137458	(

5 rows × 31 columns

NULL VALUES:

```
In [4]:
```

```
data.isnull().sum()
```

Out[4]:

Time	0
V1	0
V2	0
772	\cap

νJ V/4 0 V5 0 V6 V7 0 V8 0 V9 0 V10 0 V11 V12 0 V13 Ω V14 0 V15 0 V16 0 V17 0 0 V18 V19 0 V20 0 V21 0 V22 0 V23 0 V24 0 V25 V26 0 V27 0 V28 0 Amount Class 0 dtype: int64

Thus there are no null values in the dataset.

INFORMATION

data.info()

In [5]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
Time
         284807 non-null float64
V1
          284807 non-null float64
         284807 non-null float64
V2
         284807 non-null float64
V3
V4
         284807 non-null float64
          284807 non-null float64
V5
V6
          284807 non-null float64
          284807 non-null float64
V7
V8
         284807 non-null float64
V9
         284807 non-null float64
V10
         284807 non-null float64
V11
          284807 non-null float64
V12
          284807 non-null float64
          284807 non-null float64
V13
         284807 non-null float64
V14
V15
          284807 non-null float64
V16
          284807 non-null float64
V17
          284807 non-null float64
          284807 non-null float64
V18
V19
         284807 non-null float64
V20
         284807 non-null float64
          284807 non-null float64
V21
V22
          284807 non-null float64
V23
          284807 non-null float64
          284807 non-null float64
V2.4
V25
          284807 non-null float64
V26
          284807 non-null float64
V27
          284807 non-null float64
V28
          284807 non-null float64
          284807 non-null float64
Amount
         284807 non-null int64
Class
dtypes: float64(30), int64(1)
```

memory usage: 67.4 MB

DESCRIPTIVE STATISTICS

```
In [6]:
```

```
data.describe().T.head()
```

Out[6]:

	count	mean	std	min	25%	50%	75%	max
Time	284807.0	9.481386e+04	47488.145955	0.000000	54201.500000	84692.000000	139320.500000	172792.000000
V1	284807.0	3.919560e-15	1.958696	-56.407510	-0.920373	0.018109	1.315642	2.454930
V2	284807.0	5.688174e-16	1.651309	-72.715728	-0.598550	0.065486	0.803724	22.057729
V3	284807.0	-8.769071e-15	1.516255	-48.325589	-0.890365	0.179846	1.027196	9.382558
V4	284807.0	2.782312e-15	1.415869	-5.683171	-0.848640	-0.019847	0.743341	16.875344

```
In [7]:
```

```
data.shape
Out[7]:
```

(284807, 31)

Thus there are 284807 rows and 31 columns.

```
In [8]:
```

```
data.columns
Out[8]:
```

FRAUD CASES AND GENUINE CASES

```
In [9]:
```

```
fraud_cases=len(data[data['Class']==1])
```

```
In [10]:
```

```
print(' Number of Fraud Cases:',fraud_cases)
```

Number of Fraud Cases: 492

In [11]:

```
non_fraud_cases=len(data[data['Class']==0])
```

In [12]:

```
print('Number of Non Fraud Cases:',non_fraud_cases)
```

Number of Non Fraud Cases: 284315

```
In [13]:
```

```
fraud=data[data['Class']==1]
```

In [14]:

```
genuine=data[data['Class']==0]
```

In [15]:

```
fraud.Amount.describe()
```

Out[15]:

count		492.000000	
mean		122.211321	
std		256.683288	
min		0.000000	
25%		1.000000	
50%		9.250000	
75%		105.890000	
max		2125.870000	
	-		

Name: Amount, dtype: float64

In [16]:

```
genuine.Amount.describe()
```

Out[16]:

count	284315.000000
mean	88.291022
std	250.105092
min	0.000000
25%	5.650000
50%	22.000000
75%	77.050000
max	25691.160000
Name:	Amount, dtype: floa

Name: Amount, dtype: float64

EDA

In [17]:

```
data.hist(figsize=(20,20),color='lime')
plt.show()
```


In [18]:

```
rcParams['figure.figsize'] = 16, 8
f,(ax1, ax2) = plt.subplots(2, 1, sharex=True)
f.suptitle('Time of transaction vs Amount by class')
ax1.scatter(fraud.Time, fraud.Amount)
ax1.set_title('Fraud')
ax2.scatter(genuine.Time, genuine.Amount)
ax2.set_title('Genuine')
plt.xlabel('Time (in Seconds)')
plt.ylabel('Amount')
plt.show()
```

Time of transaction vs Amount by class

CORRELATION

In [19]:

```
plt.figure(figsize=(10,8))
corr=data.corr()
sns.heatmap(corr,cmap='BuPu')
```

Out[19]:

Let us build our models:

```
In [20]:
```

```
from sklearn.model_selection import train_test_split
```

Model 1:

```
In [21]:
```

```
X=data.drop(['Class'],axis=1)
```

In [22]:

```
y=data['Class']
```

In [23]:

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=123)
```

In [24]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [25]:

```
rfc=RandomForestClassifier()
```

In [26]:

```
model=rfc.fit(X_train,y_train)
```

In [27]:

prediction=model.predict(X test)

```
arocron moder.breares (v_cees)
In [28]:
from sklearn.metrics import accuracy score
In [29]:
accuracy score(y test,prediction)
Out[29]:
0.9995786664794073
Model 2:
In [30]:
from sklearn.linear_model import LogisticRegression
In [31]:
X1=data.drop(['Class'],axis=1)
In [32]:
y1=data['Class']
In [33]:
X1_train,X1_test,y1_train,y1_test=train_test_split(X1,y1,test_size=0.3,random_state=123)
In [34]:
lr=LogisticRegression()
In [35]:
model2=lr.fit(X1_train,y1_train)
In [36]:
prediction2=model2.predict(X1_test)
In [37]:
accuracy score(y1 test,prediction2)
Out[37]:
0.9988764439450862
Model 3:
from sklearn.tree import DecisionTreeRegressor
In [39]:
X2=data.drop(['Class'],axis=1)
```

```
ın [40]:
y2=data['Class']
In [41]:
dt=DecisionTreeRegressor()
In [42]:
X2_train,X2_test,y2_train,y2_test=train_test_split(X2,y2,test_size=0.3,random_state=123)
In [43]:
model3=dt.fit(X2_train,y2_train)
In [44]:
prediction3=model3.predict(X2_test)
In [45]:
accuracy_score(y2_test,prediction3)
Out[45]:
0.999133925541004
Overall models performed with a very high accuracy.
In [ ]:
```