

Clustering und dessen Einsatz bei einer automatischen Fahrspurerkennung

STEFFEN SCHMID, WS 18/19
IT-DESIGNERS GMBH
HOCHSCHULE FURTWANGEN – FAKULTÄT INFORMATIK

Gliederung

- 1. Hintergrund und Ziele der Masterarbeit
- 2. Grundlagen Clusteranalyse
- 3. Realisierung der Fahrspurerkennung
- 4. Ergebnisse der Fahrspurerkennung
- 5. Fazit

1. Hintergrund und Ziele der Arbeit

Hintergrund

- Masterthesis im Rahmen des MEC-View Teilprojektes "Luftbeobachtung"
- Ziele des Projektes:
 - Auswertung von Luftaufnahmen des Straßenverkehrs (Fahrzeugpositionen, Geschwindigkeiten etc.)
 - Analyse des Fahrverhaltens der Verkehrsteilnehmer
 - Erstellung von Verkehrssimulationen

Motivation und Ziele

- Automatische Erkennung von Fahrspuren in Luftaufnahmen
- Kenntnis der Fahrspuren ermöglicht genauere Untersuchung der Fahrverhalten
- Verzicht auf visuell gestützte Verfahren
- Erkennung der Spuren anhand von Trajektoriedaten

1. Hintergrund und Ziele der Arbeit

- Integration der Spurerkennung in die MEC-View "Vehicle-Tracker" Anwendung
- Erkennung von Fahrspuren in unterschiedlichen Straßentopologien
 - Landstraßen
 - Autobahnen
 - Kreuzungen
 - Kreisverkehre
 - etc.

1. Hintergrund und Ziele der Arbeit

Abb. 1.1: Fahrspurdefinition mittels Trajektoriedaten

Methodik aus dem Gebiet Data-Mining / Machine Learning

Gruppierung von Datenobjekten aufgrund ihrer Eigenschaften und Beziehungen, sodass sich die Objekte in einer Gruppe möglichst stark ähneln und sich von Objekten anderer Gruppen möglichst stark unterscheiden.

- Ziele:
 - Datenverständnis
 - Identifikation von "Mustern" in Daten
 - Weiterverarbeitung der einzelnen Cluster
- Einsetzbar in unterschiedlichsten Anwendungsgebieten
- Große Vielfalt an Clustering-Verfahren existiert

Abb. 2.1: Beispiel Cluster-Identifikation [1]

Ablauf einer Clusteranalyse

Abb. 2.2: Ablauf einer Clusteranalyse

Übersicht Clustering-Ansätze

- Vernetzungs-Modelle
 - Clusterbildung anhand von Distanz zwischen Objekten (z.B. Agglomeratives Clustering)
- Prototypen-Modelle
 - Clusterbildung anhand von Distanz von Objekten zu Prototypen (z.B. k-Means Clustering)
- Distributions-Modelle
 - Clusterbildung anhand statistischer Zugehörigkeit zu Wahrscheinlichkeitsverteilung (z.B. EM Clustering)
- Dichte-Modelle
 - Clusterbildung anhand von Regionen hoher Objektdichte (z.B. DBSCAN Clustering)

<u>Distanzmaße</u>

Ein Distanz- oder Ähnlichkeitsmaß definiert zahlenmäßig wie "ähnlich" beziehungsweise "unähnlich" sich zwei Objekte sind.

- Distanzmaß hat maßgeblichen Einfluss auf Ergebnis der Clusteranalyse
- Wahl abhängig von zu untersuchende Daten und Zielen

<u>Herausforderungen</u>

- Angemessene Datenvorbereitung und Vorverarbeitung
- Wahl eines passenden Cluster-Algorithmus
- Wahl eines passenden Distanzmaßes
- Optimale Parametrisierung
- Interpretation und Validierung der Ergebnisse

3. Realisierung der Fahrspurerkennung

Abb. 3.1: Basisablauf der Spurerkennung

3.1 Vorverarbeitung der Trajektoriedaten

Abb. 3.2: Vorverarbeitung Trajektoriedaten

3.2 Clusteranalyse der Trajektorien

- Ziel: Identifikation von Spur-Clustern in Trajektoriedaten
- Gewählter Ansatz: DBSCAN Clusteralgorithmus und LCSS Distanzmaß
- Vorteile des Ansatzes:
 - Automatische Bestimmung der Clusteranzahl
 - Umgang mit Ausreißern
 - Vergleichsweise geringe, intuitive Parametrisierung
 - Gute Performance

3.2 Clusteranalyse der Trajektorien

Abb. 3.3: Clusteranalyse der Trajektorien

3.3 Bestimmung der Spur-Geometrien

- Spur-Geometrien werden aus Trajektorie-Clustern abgeleitet
- Aufbau Spur-Geometrie:
 - Mittellinie
 - Zwei Hüll-Linien

Abb. 3.4: Aufbau Spur-Geometrie

3.3 Bestimmung der Spur-Geometrien

Bestimmung der Spur-Mittellinien

Abb. 3.5: Bestimmung der Spur-Mittellinien

3.3 Bestimmung der Spur-Geometrien

Bestimmung der Spurhüllen

Abb. 3.6: Bestimmung der Spur-Hüllen

3.4 Partitionierung der Spuren

Abb. 3.7: Partitionierung der Spur-Geometrien

Abb. 4.1: Fahrspuren Datensatz *Neckartor*

Abb. 4.2: Fahrspuren Datensatz *Entennest*

Abb. 4.3: Fahrspuren Datensatz *Düsseldorf*

Abb. 4.4: Fahrspuren Datensatz Heilbronner-Straße

Abb. 4.5: Fahrspuren Datensatz Steinheim

5. Fazit

- Clusteranalysen können in den unterschiedlichsten Anwendungsgebieten eingesetzt werden
- Qualität der Clustering-Ergebnisse hängt von vielen Faktoren ab
- Qualität der Spurerkennung auch maßgeblich abhängig von Clusteranalyse

Fragen

Quellen und Referenzen

• [1]: JAIN, Anil K. Data clustering: 50 years beyond K-means. *Pattern recognition letters*, 2010, 31. Jg., Nr. 8, S. 651-666.

MEC-View Projektwebseite: http://mec-view.de/