Multi-Layer Perceptrons and Deep Learning

Christos Dimitrakakis

October 11, 2024

Outline

Features and layers

Algorithms

Random projection Back propagation Derivatives

2 / 21

Features and layers

Algorithm

Random projection Back propagation

Perceptron/linear regressionx

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Perceptron cost:

$$L = \mathbb{I}\left\{y \neq \hat{y}\right\} |\hat{y}|$$

Linear regression cost:

$$L = (\hat{y} - y)^2$$

Chain rule idea:

$$\nabla_{\beta} L = \nabla_{\hat{y}} L \nabla_{\beta} \hat{y}$$

Layering and features

Fixed layers

- ▶ Input to layer $x \in R^n$
- ▶ Output from layer $\hat{y} \in R^m$.

Intermediate layers

- Linear layer
- ► Non-linear activation function.

Linear layers types

- Dense
- Sparse
- Convolutional

 x_1

 w_1

 z_1

 v_1

 X_2

 W_2

 Z_2

Activation funnction

- ► Sigmoid
- ► Softmax

Linear layers

Example: Linear regression with *n* inputs, *m* outputs.

- lacksquare Input: Features $oldsymbol{x} \in \mathbb{R}^n$
- ▶ Dense linear layer with $B \in \mathbb{R}^{m \times n}$
- Output: $\hat{\boldsymbol{y}} \in \mathbb{R}^m$

Dense linear layer

Parameters
$$B = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$$
,

 $m{\beta}_i = [\beta_{i,1}, \dots, \beta_{i,n}], \, m{\beta}_i$ connects the *i*-th output y_i to the features $m{x}$:

$$y_i = \beta_i x$$

► In compact form:

$$y = Bx$$

Sigmoid activation

Example: Logistic regression

- ▶ Input $x \in \mathbb{R}^n$
- ▶ Intermediate output: $z \in \mathbb{R}$,

$$z=\sum_{i=1}^n\beta_ix_i.$$

▶ Output $\hat{y} \in [0,1]$.

Definition

This activation ensures we get something we can use as a probability

$$f(z) = 1/[1 + \exp(z)].$$

Now we can interpret $\hat{y} = P_{\beta}(y = 1|x)$.

Softmax layer

Example: Multivariate logistic regression with m classes.

- ightharpoonup Input: Features $x\in\mathbb{R}^n$
- lacktriangle Middle: Fully-connected Linear activation layer $oldsymbol{z} = oldsymbol{B} oldsymbol{x}$.
- ▶ Output: $\hat{y} \in \mathbb{R}^m$

Softmax output layer

We want to translate the real-valued z_i into probabilities:

$$\hat{y}_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}.$$

Now we can use $P_B(y = i|x) = \hat{y}_i$

Features and layers

Algorithms

Random projection Back propagation Derivatives

- Features x
- Hidden layer activation z
- Output y

Hidden layer: Random projection

Here we project the input into a high-dimensional space

$$z_i = \operatorname{sgn}(\boldsymbol{\beta}_i^{\top} \boldsymbol{x}) = y_i$$

where $\boldsymbol{B} = [\boldsymbol{\beta}_i]_{i=1}^m$, $\beta_{i,j} \sim \operatorname{Normal}(0,1)$

The reason for random projections

- ▶ The high dimension makes it easier to learn.
- ▶ The randomness ensures we are not learning something spurious.

Background on back-propagation

The problem

- ▶ We need to minimise a loss function L
- We need to calculate

$$\nabla_{\boldsymbol{\beta}} \mathbb{E}_{\boldsymbol{\beta}}[L] \approx \frac{1}{T} \sum_{t=1}^{T} \nabla_{\boldsymbol{\beta}} \ell(x_t, y_t, \boldsymbol{\beta}).$$

However $\ell(x_t, y_t, \beta)$ is a complex non-linear function of β .

The chain rule of differentiation

[1673] Liebniz

Chain rule applied to the perceptron

[1976] Rosenblat

Chain rule for deep neural netowrks

[1982] Werbos

Backpropagation given a name

Rumelhart

Hinton

Williams

Back-propagation

The chain rule

$$f: X \to Z, \qquad g: Z \to Y, \qquad \frac{dg}{dx} = \frac{dg}{df} \frac{df}{dx}, \qquad \nabla_x g = \nabla_f g \nabla_x f$$

Back-propagation

The chain rule

$$f: X \to Z, \qquad g: Z \to Y, \qquad \frac{dg}{dx} = \frac{dg}{df} \frac{df}{dx}, \qquad \nabla_x g = \nabla_f g \nabla_x f$$

Linear regression

- $ightharpoonup f_{\beta}(x) = \sum_{i=1}^{n} \beta_i x_i$
- $\triangleright \mathbb{E}_{\beta}[L] \approx L(D,\beta) = \frac{1}{\pi} \sum_{t=1}^{T} c(\beta, x_t, y_t).$

$$\nabla_{\beta}c(\beta, x_t, y_t) = \nabla_{\beta}[\underbrace{f_{\beta}(x_t) - y_t}_{z}]^2, \qquad g(z) = z^2$$
 (1)

$$= \nabla_z g(z) \nabla_f z \nabla_{\beta} f(x_t) \tag{2}$$

$$=2[f_{\beta}(x_t)-y_t]\nabla_f[f_{\beta}(x_t)-y_t]\nabla_{\beta}f_{\beta}(x_t) \tag{3}$$

$$=2[f_{\beta}(x_t)-y_t]\nabla_{\beta}f_{\beta}(x_t) \tag{4}$$

Gradient descent with back-propagation

Inputs

- ▶ Dataset *D*, cost function $L = \sum_t \ell_t$
- Parametrised architecture with k layers
 - ightharpoonup Parameters B_1,\ldots,B_k
 - lntermediate variables: $z_j = f_j(z_{j-1}, B_j)$, $z_0 = x$, $z_k = \hat{y}$.

Dependency graph

Backpropagation with steepest stochastic gradient descent

- lacksquare Forward step: For $j=1,\ldots,k$, calculate $oldsymbol{z}_i=f_i(k)$ and $\ell(\hat{oldsymbol{y}},oldsymbol{y})$
- lacksquare Backward step: Calculate $abla_{\hat{m{y}}}\ell$ and $d_j riangleq
 abla_{m{B}_i}\ell =
 abla_{m{B}_i}z_jd_{j+1}$ for $j=k\dots,1$
- Apply gradient: $B_j = \alpha d_j$.

 Christos Dimitrakakis

 Multi-Layer Perceptrons and Deep Learning

 October 11, 2024

 17/21

Other algorithms and gradients

Natural gradient

Defined for probabilistic models

ADAM

Exponential moving average of gradient and square gradients

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm

Newton-like method

Linear layer

Definition

This is a linear combination of inputs $x \in \mathbb{R}^n$ and parameter matrix $oldsymbol{B} \in \mathbb{R}^{m imes n}$

where
$$\boldsymbol{B} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \vdots \\ \boldsymbol{\beta}_i \\ \vdots \\ \boldsymbol{\beta}_m \end{bmatrix} = \begin{bmatrix} \beta_{1,1} & \cdots & \beta_{1,j} & \cdots & \beta_{1,m} \\ \vdots & \ddots & \vdots & \ddots & \ddots \\ \beta_{i,1} & \cdots & \beta_{i,j} & \cdots & \beta_{i,m} \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \beta_{n,1} & \cdots & \beta_{i,j} & \cdots & \beta_{n,m} \end{bmatrix}$$

$$f(B,x) = Bx$$
 $f_i(B,x) = \beta_i \cdot x = \sum_{i=1}^n \beta_{i,j} x_j,$

Gradient

Each partial derivative is simple:

$$\frac{\partial}{\partial \beta_{i,j}} f_k(\boldsymbol{B}, \boldsymbol{x}) = \sum_{k=1}^n \frac{\partial}{\partial \beta_{i,j}} \beta_{i,k} x_k = x_j$$

Sigmoid layer

$$f(z) = 1/(1 + \exp(-z))$$

Derivative

So let us ignore the other inputs for simplicity:

$$\frac{d}{dz}f(z) = \exp(-z)/[1 + \exp(-z)]^2$$

Softmax layer

$$y_i(z) = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Derivative

$$rac{\partial}{\partial z_i} y_i(z) = rac{e^{z_i} e^{\sum_{j \neq i} z_j}}{\left(\sum_j e^{z_j}\right)^2} \ rac{\partial}{\partial z_i} y_k(z) = rac{e^{z_i + z_k}}{\left(\sum_j e^{z_j}\right)^2}$$