Dimension von Varietäten

Yvan Ngumeteh

Emma Ahrens

15. April 2018

Inhaltsverzeichnis

1	Abstract	1
2	Einleitung	1
3	Dimension von Monomidealen	1
	Dimension von beliebigen Idealen 4.1 Das Hilbert-Polynom	2

1 Abstract

2 Einleitung

3 Dimension von Monomidealen

Lemma 1. Sei $I \subseteq k[X_1, ..., X_n]$ ein Ideal, das von einer Menge G von Monomen erzeugt wird. Dann liegt ein Polynom $f \in k[X_1, ..., X_n]$ in I genau dann, wenn für jeden Term $a_j X^{\alpha_j}$ von f ein $g \in G$ existiert, welches $a_j X^{\alpha_j}$ teilt.

Beweis. Sei $f \in I$. Dann gilt $f = \sum_{i=1}^{s} h_i g_i$ mit $h_i \in R$ und $g_i \in G$. Damit hat jeder Term die Form $h_i g_i$ und ist somit durch ein Element aus G teilbar. Sei nun andersherum $f \in k[X_1, \ldots, X_n]$ und für jeden Term $a_j X^{\alpha_j}$ von f existiert ein $g \in G$, welches $a_j X^{\alpha_j}$ teilt. Dann kann man f als Linearkombination von Elementen aus G schreiben und damit liegt f nach der Definition eines Ideals in I.

Lemma 2. Sei $(g_i)_{i\geq 1}$ eine Folge von Monomen in $k[X_1,\ldots,X_n]$ mit $g_1 \succeq g_2 \succeq \ldots$ für eine Monomialordnung \preceq . Dann existiert ein $r \in \mathbb{N}$ mit $g_n = g_r$ für alle $n \geq r$.

Beweis. Sei $I=((g_i)_{i\geq 1})$, dann ist I ein Ideal. Nach dem Hilbert'schen Basissatz wissen wir, dass I endlich erzeugt ist. Also existiert ein r, so dass die Menge $G=\{g_1,\ldots,g_r\}$ I erzeugt. Für ein $i\geq r$ und $g_i\in I$ existiert ein $j\in\underline{r}$, so dass $g_j\mid (g_i$ nach Lemma 1. Also $g_i\succeq g_j\succeq g_r$. Andererseits gilt nach Voraussetzung, dass $g_i\preceq g_r$, also folgt $g_i=g_r$.

Lemma 2 sagt uns, dass jede absteigende Kette von Monomen stationär wird und insbesondere in jeder abzählbaren Menge von Monomen ein kleinstes Element existiert.

Proposition 3 (Divisionsalgorithmus). Sei \leq eine Monomialordnung und $f, f_1, \ldots, f_s \in k[X_1, \ldots, X_n]$ nicht null. Dann gilt

$$f = \sum_{i=1}^{s} h_i f_i + r,$$

 $mit\ r, h_1, \ldots, h_s \in k[X_1, \ldots, X_n]$ und $LT(h_i f_i \leq LT(f))$ für alle $h_i \neq 0$ und r = 0 oder kein Term von r wird durch ein $LT(f_i)$ geteilt für $i \in \underline{s}$.

Beweis. \Box

Satz 4. Sei $\{0\} \neq I \subseteq k[X_1,\ldots,X_n]$ ein Ideal und \leq eine Monomialordnung auf $Z_{\geq 0}^n$. Sei G eine Gröbnerbasis von I mit I = (G). Dann ist eine k-Basis von $k[X_1,\ldots,X_n]/I$ gegeben durch die Restklassen von X^{α} mit

$$\alpha \in C(I) := \{ \alpha \in Z^n_{>0} \mid LT(g) \nmid X^\alpha \quad \forall g \in G \}.$$

Beweis. Wir zeigen erst, dass die Monome mit Exponent aus C(I) ganz $k[X_1, \ldots, X_n]/I$ aufspannen und anschließend, dass kein Element aus I durch echte Linearkombination solcher Monome dargestellt werden kann.

Sei $G = \{f_1, \ldots, f_s\}$ und $0 \neq f \in k[X_1, \ldots, X_n]$. Dann ist $f = \sum_{i=1}^s h_i f_i + r = f' + r$ nach Proposition 3 mit r = 0 oder $r = a_l X^{\alpha_l} + \ldots + a_0$ mit $LT(f_i) \nmid X^{\alpha_j}$ für jedes $i \in \underline{s}$ und $j \in \underline{l}$. Also ist r eine Linearkombination von Monomen X^{α_j} mit $\alpha_j \in C(I)$. Es gilt außerdem [f] = [r] in $k[X_1, \ldots, X_n]/(G)$ und damit erzeugen die Monome mit $\alpha \in C(I)$ den ganzen Restklassenring.

Angenommen es existiert $f = f' + r \in I$ mit $r \neq 0$ und f' und r wie oben. Dann gilt $0 \neq r = f - f'$. Da $f \in I$ und $f' \in I$ folgt $r \in I$, womit folgt, dass $(LT(r) \in (LT(f_1), \ldots, LT(f_s))$. Nach Lemma 1 existiert dann ein f_i mit $LT(f_i) \mid LT(r)$. Dies ist ein Widerspruch, also folgt r = 0 und die Restklassen von X^{α} mit $\alpha \in C(I)$ sind linear unabhängig in $k[X_1, \ldots, X_n]/I$.

4 Dimension von beliebigen Idealen

4.1 Das Hilbert-Polynom

Im folgenden sei $n \in \mathbb{N}$ fest.

Satz 5. Sei $I \subset k[X_1, ..., X_n]$, dann existiert es einen eindeutigen Polynom ${}^aHP_I(t) \in \mathbb{Q}[t]$ (mit t eine variable) und $s_0 \geq 0$, sodass ${}^aHP_I(s) = {}^aHF_I(s) = {}$

- Der Grad von ${}^aHP_I(t)$ ist der größte $d \in \mathbb{N}$, sodass es $1 \le i_1 < i_2 < i_3 < ... < i_d \le n$ existieren mit $I \cap k[X_{i_1}, \ldots, X_{i_d}] = \emptyset$.
- Sei $d = grad(^aHP_I(\mathbf{t}))$. Dann gilt $^aHP_I(\mathbf{t}) = \sum_{k=0}^d a_k t^k$ mit $a_k d! \in \mathbf{Z}, \forall k \in \underline{d_0}$ und $a_k d! > 0$

Beweis 1. Wir bemerken dass ${}^aHP_I(t)$ eindeutig ist, da es ein Polynom ist. Es nur die Existenz nachgewiesen werden. Sei $M = \{\alpha \in \mathbb{N}_0 : |\alpha| \leq s\}$

• Für die trivialen Fällen I = (0) hat man, wegen ${}^aHF_I(s) = dim_k \ (k[X_1, \dots, X_n]_{\leq s}/I_{\leq s}) = |M| = \binom{n+s}{s}, \forall s \in \mathbb{N}_0.$

Oder $I = k[X_1, ..., X_n]$ gilt ${}^aHF_I(s) = dim_k$ $(k[X_1, ..., X_n]_{\leq s}/I_{\leq s}) = 0, \forall s \in \mathbb{N}_0$ und somit entspricht in diesem Fall ${}^aHP_I = 0$ (Das Nullpolynom!) Nehmen wir also an, dass I nicht trivial ist. Sei G eine Gröbner-Basis von I (bzgl. eine graduierte lexikographische Ordnung) und

$$\{LM(g): g \in G\} = \{X_{\beta}: \beta \in M\}$$

 $wir\ setzen$

$$C(I) := \{\alpha \in \mathcal{N}_0 : X^\beta \nmid X^\alpha \forall \in \beta \in M\} \text{ und } C(I)_{\leq s} := C(I) \cap \{\alpha \in \mathcal{N}_0 : |\alpha| \leq s\}$$

Behauptung: Für $s \ge 0$ gilt ${}^aHF_I(s) = |C(I)_{\le s}|, \forall s \ge 0.$

Für den Beweis benutzt man (Macaulay), dann gilt ${}^aHF_I(s)={}^aHF_{(LT(I))}(s), \forall \in s \geq 0.$ Das heißt,

$$dim_k(k[X_1,\ldots,X_n]_{< s}/I_{\le s}) = dim_k(k[X_1,\ldots,X_n]_{< s}/(LT(I))_{< s}).$$

Weiterhin gilt mit der Buchberger-Definition (1.2.7), dass $\{X^{\beta}: \beta \in M\}$ ist eine Gröebner-Basis von (LT(I)), deshalb mit Satz 1.2.8 habt man, dass die Restklassen von X^{β} ($\alpha \in C(I)$) bilden eine K-Vektorraum Basis von $k[X_1, \ldots, X_n]/(LT(I))$. Daraus folgt die Behauptung.

• Sei $J \subseteq \underline{n}$ und eine Funktion $\tau : J \longrightarrow N_0$. Wir definieren

$$C(J,\tau) := \{ \alpha \in N : \alpha_j = \tau(j), \forall \in J \}$$

Behauptung: Es existiert eine endliche Anzahl χ von Tupeln (J,τ) , sodass

$$C(I) = \bigcup_{(J,\tau) \in \chi}$$

Proof. Für $\beta := (\beta_1, \dots, \beta_n) \in \mathbb{N}_0$, definiert man

$$C(\beta) := \{ \alpha \in \mathbb{N}_0^n : X^\beta \nmid X^\alpha \}$$

Dann haben wir $C(I) = \bigcap_{\beta \in M} C(\beta)$. Weiterhin bemerken wir, dass falls $(J, \tau), (J', \tau')$ zwei Tupeln, wie oben definiert bezeichnet, dann gilt

$$C(J,\tau)\cap C(J\prime,\tau\prime)=\left\{\begin{array}{ll}\emptyset, & falls\tau(j)=\tau\prime(j)\\ C(J\cup J\prime,\tau_0), & sonst\end{array}\right.$$

wobei
$$\tau_0: J \cup J' \longrightarrow \mathcal{N}_0, \ j \mapsto \tau_0(j) = \left\{ \begin{array}{ll} \tau(j), & fallsj \in J \\ \tau'(j), & fallsj \in J' \\ 0, & sonst \end{array} \right.$$

Das heißt man kann O.B.d.A annehmen, dass in

Literatur

- [1] HEUSER, Harro: Lehrbuch der Analysis. 15. Aufl. Vieweg-Verlag, Braunschweig-Wiesbaden, 2003
- [2] GRÖGER, Detlef; MARTI, Kurt: Grundkurs Mathematik für Ingenieure, Natur- und Wirtschaftswissenschaftler. 2. Aufl. Physica-Verlag, 2004