Efficient Algorithms for Smooth Minimax Optimization NeurIPS 2019

Kiran Koshy Thekumparampil[†], Prateek Jain[‡], Praneeth Netrapalli[‡], Sewoong Oh[±]

†University of Illinois at Urbana-Champaign, [‡]Microsoft Research, India, [±]University of Washington, Seattle

Oct 27, 2019

Outline

- Minimax Optimization problem
- Efficient algorithm for Nonconvex–Concave minimax problem
- Optimal algorithm for Strongly-Convex—Concave minimax problem

Minimax problem

• Consider the general minimax problem

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y)$$

- Two player game: y tries to maximize and x tries to minimize.
- The order of min & max or who plays first (x above) is important

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} g(x, y) \le \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y)$$

Examples of Minimax problem

• GAN: $min_G max_D V(G, D)$:

$$\min_{G} \max_{D} \sum_{x \sim P_{X}}^{\mathbb{E}} \left[\log \left(D(x) \right) \right] + \sum_{z \sim Q_{Z}}^{\mathbb{E}} \left[\log \left(1 - D(G(z)) \right) \right] = \operatorname{JS}(P_{X} || Q_{X})$$

② Constrained optimization: $\min_{x} f(x)$, s.t. $f_i(x) \leq 0$, $\forall i \in [m]$

$$\min_{x} \max_{y \ge 0} \left[\mathcal{L}(x, y) = f(x) + \sum_{i=1}^{m} y_i f_i(x) \right]$$

Sobust estimation/optimization:

$$\min_{x} \sum_{i} \max_{\hat{z}_{i}} f(x, \hat{z}_{i})$$
$$\Delta(\hat{z}_{i}, z_{i}) \leq \varepsilon, \ \forall i \in [m].$$

Nonconvex minimax

- In general g(x, y) is non-convex in both x and y. E.g. Neural network based GAN
- Very few works on nonconvex minimax
- We focus on smooth nonconvex–concave minimax problem, i.e. $g(x, \cdot)$ is concave, and g is L-smooth:

$$\max_{a \in \{x,y\}} \left\| \nabla_a g(x,y) - \nabla_a g(x',y') \right\| \le L \left(\left\| x - x' \right\| + \left\| y - y' \right\| \right).$$

E.g. smooth constrained optimization.

- In general: $\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} g(x, y) < \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y)$
- We focus on the non-smooth nonconvex Primal problem: $f(x) = \max_{y} g(x, y)$

$f(x) = \max_{y \in \mathcal{Y}} g(x, y)$ is non-smooth and weakly convex

• f is non-smooth due to maximization over y

ρ -weakly convex function

We say that f is a ρ -weakly convex f if $f + \frac{\rho}{2} \| \cdot \|^2$ is convex, i.e.,

$$f(x) + \left\langle u_x, x' - x \right\rangle - \frac{\rho}{2} \|x' - x\|^2 \ \leq \ f(x') \,,$$

for all Fréchet subgradients $u_x \in \partial f(x)$, for all $x, x' \in \mathcal{X}$.

f is 1-weakly convex as $f + \frac{\|\cdot\|^2}{2}$ is convex

$f(x) = \max_{y \in \mathcal{Y}} g(x, y)$ is non-smooth and weakly convex

• f is non-smooth due to maximization over y

ρ -weakly convex function

We say that f is a ρ -weakly convex f if $f + \frac{\rho}{2} \| \cdot \|^2$ is convex, i.e.,

$$f(x) + \langle u_x, x' - x \rangle - \frac{\rho}{2} ||x' - x||^2 \le f(x'),$$

for all Fréchet subgradients $u_x \in \partial f(x)$, for all $x, x' \in \mathcal{X}$.

• Any L-smooth function is L-weakly convex

$$f(x) + \langle \nabla_x f(x), x' - x \rangle - \frac{L}{2} ||x' - x||^2 \le f(x')$$

• $-\|x\|$ is not weakly convex (due to upward pointing cusp).

$f(x) = \max_{y \in \mathcal{Y}} g(x, y)$ is non-smooth and weakly convex

• f is non-smooth due to maximization over y

ρ -weakly convex function

We say that f is a ρ -weakly convex f if $f + \frac{\rho}{2} \| \cdot \|^2$ is convex, i.e.,

$$f(x) + \langle u_x, x' - x \rangle - \frac{\rho}{2} ||x' - x||^2 \le f(x'),$$

for all Fréchet subgradients $u_x \in \partial f(x)$, for all $x, x' \in \mathcal{X}$.

• $f(x) = \max_{y \in \mathcal{Y}} g(x, y)$ is L-weakly convex, if g is L-smooth.

$$g(x,y) + \langle \nabla_x g(x,y), x' - x \rangle - \frac{L}{2} \|x' - x\|^2 \le g(x',y)$$

$$\implies f(x) + \langle u_x, x' - x \rangle - \frac{L}{2} \|x' - x\|^2 \le f(x')$$

• Cannot define approx. stationary point directly using subgradients

First order stationary point of weakly-convex function

• Moreau envelope f_{λ} of a L-weakly convex function ($L < \frac{1}{\lambda}$):

$$f_{\lambda}(x) = \min_{x'} f(x') + \frac{1}{2\lambda} ||x - x'||^2.$$

• f_{λ} is a smooth lower bound of $f \colon \nabla f_{\lambda}(x) = 0 \implies 0 \in \partial f(x)$

First order stationary point of weakly-convex function

• Moreau envelope f_{λ} of a L-weakly convex function ($L < \frac{1}{\lambda}$):

$$f_{\lambda}(x) = \min_{x'} f(x') + \frac{1}{2\lambda} ||x - x'||^2.$$

• f_{λ} is a smooth lower bound of $f \colon \nabla f_{\lambda}(x) = 0 \implies 0 \in \partial f(x)$

ε -first order stationary point (ε -FOSP)

We say that x is an ε -first order stationary point of a L-weakly convex f if $\|\nabla f_{\frac{1}{2L}}(x)\| \leq \varepsilon$. Further this implies that there exists \hat{x} s.t.,

$$\|\hat{x} - x\| \le \varepsilon/2L$$
 and $\min_{u \in \partial f(\hat{x})} \|u\| \le \varepsilon$

• Algorithm complexity is the no. of first-order oracle calls to obtain ε -FOSP. Convergence rate is ε_k if after k oracle calls we get ε_k -FOSP.

Smooth nonconvex-concave minimax results

Setting	Previous state-of-the-art	Our result
$\max_{y} g(x, y)$	$O\left(arepsilon^{-5} ight)$ [1]	$\widetilde{O}\left(arepsilon^{-3} ight)$
$\max_{i} f_i(x) = \max_{y \in \Delta_m} \sum_{i}^{m} y_i f_i(x)$	$O\left(\varepsilon^{-4}\right)$ [2]	$\widetilde{O}\left(arepsilon^{-3} ight)$

Δ_m is the simplex of dimension m.

[1] Jin, C., Netrapalli, P., & Jordan, M. I. (2019). Minmax optimization: Stable limit points of gradient descent ascent are locally optimal. arXiv preprint arXiv:1902.00618.

[2] Davis, D., & Drusvyatskiy, D. (2018). Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on weakly convex functions. arXiv preprint arXiv:1802.02988.

Baseline: Subgradient method $O(\varepsilon^{-5})$ [1, 2]

• Apply (inexact) subgradient method

$$u_{x_k} = \nabla_x g(x_k, y_k)$$
, where, $y_k \approx y^*(x) = \arg\max_{y \in \mathcal{Y}} g(x_k, y)$
 $x_{k+1} = \mathcal{P}_{\mathcal{X}}(x_k - \eta u_{x_k})$

• Sufficient condition: $\max_{y} g(x_k, y) - g(x_k, y_k) \leq O(\varepsilon^2)$ [1]

Setting	Per-step (AGD)	# iterations (Subgrad. method)	Total complexity
$\max_{y} g(x, y)$	$O\left(arepsilon^{-1} ight)$	$O\left(arepsilon^{-4} ight)$	$O\left(arepsilon^{-5} ight)$
$\max_i f_i(x)$	O(1)	$O\left(arepsilon^{-4} ight)$	$O\left(\varepsilon^{-4}\right)$

• Does not utilize the smooth minimax structure of $f(x) = max_y g(x, y)$

Proximal Point method (PPM)

(Inexact) Proximal point method

$$\begin{aligned} x_{k+1} &\approx \arg\min_{x \in \mathcal{X}} f(x) + L \|x - x_k\|^2 \\ \iff x_{k+1} &\approx x_k - 2L \, u_{x_{k+1}}, \, u_{x_{k+1}} \in \partial f(x_{k+1}) \end{aligned}$$

• Iterations complexity to get $\varepsilon ext{-FOSP}$ is $O(\frac{1}{\varepsilon^2})$

Proof sketch.

L-weak convexity implies,

$$f(x_{k+1}) + \langle u_{x_{k+1}}, x_k - x_{k+1} \rangle - L/2 ||x_k - x_{k+1}||^2 \le f(x_k)$$

- Using update $x_{k+1} = x_k 2L u_{x_{k+1}}$ we get a Descent Lemma: $f(x_{k+1}) f(x_k) \le -3L/2 \|u_{x_{k+1}}\|^2$
- After $O(rac{f(x_0) \min_x f(x)}{arepsilon^2})$ steps, $\min_k \|u_{x_{k+1}}\| = O(arepsilon)$.
- Generalized to $\|\nabla_{\frac{1}{M}}f(x_k)\|$ due to inexact update and non-smooth f.

Per-step complexity of PPM

- L-weakly convex + 2L-strongly convex = L-strongly convex $f(x) + L||x x_k||^2$
- Each iteration solves *L*-strongly-convex–concave problem:

$$x_{k+1} = \arg\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} \left[\tilde{g}_k(\mathbf{x}, \mathbf{y}) = g(\mathbf{x}, \mathbf{y}) + 2L/2\|\mathbf{x} - \mathbf{x}_k\|^2 \right]$$

• Primal dual gap of $O(\varepsilon^2)$ is sufficient:

$$\max_{y \in \mathcal{Y}} \tilde{g}_k(x_{k+1}, y) - \min_{x \in \mathcal{X}} \tilde{g}_k(x, y_{k+1}) = O(\varepsilon^2)$$

Algorithm for $\min_{\mathbf{x}} \max_{\mathbf{y}} \tilde{\mathbf{g}}_{\mathbf{k}}(\mathbf{x}, \mathbf{y})$	Per-step	Total
Algorithm for $\min_{\mathbf{x}} \max_{\mathbf{y}} \mathbf{g}_{\mathbf{k}}(\mathbf{x}, \mathbf{y})$	complexity	complexity
$O\left(k^{-1}\right)$ Cvx–Cve [Mirror-Prox, 3]	$O\left(arepsilon^{-2} ight)$	$O\left(\varepsilon^{-4}\right)$
$O(k^{-2})$ Strongly-Cvx-Cve [ours]	$O\left(arepsilon^{-1} ight)$	$O\left(\varepsilon^{-3}\right)$

[3] A. Nemirovski. "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex–concave saddle point problems". In: SIAM Journal on Optimization 15.1 (2004). pp. 229–251.

Nonconvex-concave experiment

$$\min_{x \in \mathbb{R}^2} \left[f(x) = \max_{1 \le i \le m=9} f_i(x) \right]$$
, where $f_i(x) = a_i ||x - b_i||_2^2 + c_i$.

Smooth Convex-Concave minimax problem

• $g(\cdot, y)$ is convex and $g(x, \cdot)$ is concave, and g is L-smooth:

$$\max_{a \in \{x,y\}} \left\| \nabla_a g(x,y) - \nabla_a g(x',y') \right\| \le L \left(\left\| x - x' \right\| + \left\| y - y' \right\| \right).$$

- Primal: $f(x) = \max_{y \in \mathcal{Y}} g(x, y)$. Dual: $h(y) = \min_{x \in \mathcal{X}} g(x, y)$
- If \mathcal{X} , \mathcal{Y} are compact, then there is a saddle point (x^*, y^*) (Sion's minimax theorem):

$$\min_{x \in \mathcal{X}} f(x) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y) = g(x^*, y^*) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y) = \max_{y \in \mathcal{Y}} h(y)$$

ε -primal dual pair (ε -PD pair)

 (\hat{x},\hat{y}) is an ε -primal dual pair if the primal-dual gap is less than ε

$$f(\hat{x}) - h(\hat{y}) = \max_{y \in \mathcal{Y}} g(\hat{x}, y) - \min_{x \in \mathcal{X}} g(x, \hat{y}) \le \varepsilon$$

Optimal algorithms for smooth Convex-Concave minimax

Setting	Previous state-of-the-art	Our results	Lower bound
Strongly convex	$O\left(k^{-1}\right)$ [3]	$\widetilde{O}\left(k^{-2}\right)$	$\Omega(k^{-2}) [4]$

^[3] A. Nemirovski. "Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems". In: SIAM Journal on Optimization 15.1 (2004), pp. 229–251.

^[4] Y. Ouyang, & Y. Xu (2018). Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. arXiv preprint arXiv:1808.02901.

Mirror-Descent (MD) algorithm [5]

For Euclidean norm MD has the following iteration

$$x_{k+1} = \mathcal{P}_{\mathcal{X}} (x_k - \eta \nabla_x g(x_k, y_k)).$$

$$y_{k+1} = \mathcal{P}_{\mathcal{Y}} (y_k + \eta \nabla_y g(x_k, y_k)).$$

• Iterates and function value do not converge. Let z = (x, y).

$$g(x_k, y) - g(x, y_k) \le \frac{1}{2\eta} \left(\underbrace{\|z - z_k\|^2 - \|z - z_{k+1}\|^2}_{\text{telescopes}} + \underbrace{\|z_k - z_{k+1}\|^2}_{\text{residual}} \right)$$

$$g(\frac{1}{k}\sum_{i=0}^{k-1}x_i,y) - g(x,\frac{1}{k}\sum_{i=0}^{k-1}y_i) \le \frac{1}{2k\eta}(\|z-z_0\|^2 + \sum_{i=0}^{k-1}\|z_i-z_{i+1}\|^2)$$

$$\eta = O(\frac{1}{\sqrt{k}}) \implies g(\frac{1}{k}\sum_{i=0}^{k-1}x_i,y) - g(x,\frac{1}{k}\sum_{i=0}^{k-1}y_i) = O(\frac{1}{\sqrt{k}})$$

[5] A. Nemirovski, D. Yudin, Problem complexity and Method Efficiency in Optimization, Wiley, New York, 1983

(Conceptual) Mirror-Prox (MP) algorithm [3]

For Euclidean norm MP has the following iteration

$$\mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{X}} \left(\mathbf{x}_{k} - \eta \nabla_{\mathbf{x}} g \left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1} \right) \right)$$
$$\mathbf{y}_{k+1} = \mathcal{P}_{\mathcal{Y}} \left(\mathbf{y}_{k} + \eta \nabla_{\mathbf{y}} g \left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1} \right) \right)$$

• Iterates and function value converge (z = (x, y))

$$g(x_{k+1},y) - g(x,y_{k+1}) \le \frac{1}{2\eta} \big(\underbrace{\|z - z_k\|^2 - \|z - z_{k+1}\|^2}_{\text{telescopes}} - \underbrace{\|z_k - z_{k+1}\|^2}_{\text{neg. residual}} \big)$$

$$g(\frac{1}{k}\sum_{i=0}^{k-1}x_i,y)-g(x,\frac{1}{k}\sum_{i=0}^{k-1}y_i)\leq \frac{1}{2k\eta}(\|z-z_0\|^2)$$

• Implementable since $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}((x_k, y_k) - \eta \nabla g(x, y))$ is contraction when $\eta L < 1$

Smooth Strongly-Convex-Concave minimax problem

- $g(\cdot, \cdot)$ is L-smooth and $g(x, \cdot)$ is concave
- Additionally, assume that $g(\cdot,y)$ is σ -strongly-convex $(\sigma < L)$

$$g(x,y) + \langle \nabla_x g(x,y), x'-x \rangle + \frac{\sigma}{2} ||x'-x||^2 \le g(x',y)$$

- Then by duality of strong convexity and smoothness the dual problem $h(y) = \min_{x \in \mathcal{X}} g(x, y)$ is $\frac{2L^2}{\sigma}$ -smooth and hence differentiable
- Further by Danskin's theorem [6, Section 6.11] $\nabla h(y) = \nabla_y g(x^*(y), y) \text{ where } x^*(y) = \arg\min_{x \in \mathcal{X}} g(x, y)$
- Dual problem $\min_{y \in \mathcal{Y}} h(y)$ is smooth concave minimization problem.

[6] D. P. Bertsekas. Convex optimization theory. Athena Scientific Belmont, 2009.

Dual Accelerated Gradient Ascent (AGA) method [ours]

• $O(k^{-2})$ AGA [7] on h(y) with $\eta < \sigma/2 L^2$:

$$\begin{aligned} \tau_k &= \frac{2}{(k+2)}, \ \eta_k = \frac{(k+1)\eta}{2} \\ w_k &= (1-\tau_k)y_k + \tau_k v_k \\ x_k &= \min_{x \in \mathcal{X}} g(x, w_k), \ \text{and} \ y_{k+1} = \mathcal{P}_{\mathcal{Y}} \left(w_k + \eta \nabla_y g\left(x_k, w_k \right) \right) \\ v_{k+1} &= \mathcal{P}_{\mathcal{Y}} \left(v_k + \eta_k \nabla_y g\left(x_k, w_k \right) \right) \end{aligned}$$

- AGA on $g(x_k, \cdot)$ at y_k where $x_k = \arg\min_{x \in \mathcal{X}} g(x, w_k)$
- Accelerated rate on the dual, $h(y_k) h(y^*) = O(k^{-2})$.
- Still slow rate for primal-dual gap, $f(x_k) h(y_k) = O(k^{-1})$.

[7] Y.E. Nesterov. "A method for solving the convex programming problem with convergence rate $O(1/k^2)$ ". In: Dokl. akad. nauk Sssr. Vol. 269. 1983, pp. 543–547.

Dual Accelerated Gradient Ascent (AGA) method is slow

- Consider $\min_{x \in [-1,1]} \max_{y \in [-1,1]} g(x,y) = x^2/2 + xy$.
- Then $h(y) = -y^2/2$, $f(x) = x^2/2 + |x|$, and $(x^*, y^*) = (0, 0)$
- Let $h(y_k) h(y^*) = \Theta(k^{-2}) \implies |y_k| = \Theta(k^{-1}).$
- Let $x_k = \arg\min_{x \in \mathcal{X}} g(x, y_k) = -y_k$, $\Longrightarrow |x_k| = |y_k| = \Theta(k^{-1})$.
- Thus $f(x_k) f(x^*) = x_k^2/2 + |x_k| = \Theta(k^{-1})$

Dual Implicit Accelerated Gradient (DIAG) method [ours]

• For each k, apply AGA step of $g(x_{k+1}, \cdot)$

$$\begin{split} \tau_{k} &= \frac{2}{(k+2)}, \ \eta_{k} = \frac{(k+1)\eta}{2} \\ w_{k} &= (1-\tau_{k})y_{k} + \tau_{k}v_{k} \\ x_{k+1} &= \arg\min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}, y_{k+1}), \ \text{and} \ y_{k+1} = \mathcal{P}_{\mathcal{Y}}\left(w_{k} + \eta \nabla_{y} g\left(\mathbf{x}_{k+1}, w_{k}\right)\right) \\ v_{k+1} &= \mathcal{P}_{\mathcal{Y}}\left(v_{k} + \eta_{k} \nabla_{y} g\left(\mathbf{x}_{k+1}, w_{k}\right)\right) \end{split}$$

- AGA on $g(x_k, \cdot)$ at y_k where $x_k = \arg\min_{x \in \mathcal{X}} g(x, y_{k+1})$
- Primal-dual gap inherits the accelerated $O(k^{-2})$ convergence of dual $h(y_k) = \min_{x \in \mathcal{X}} g(x, y_k)$

$$g(\frac{1}{k}\sum_{i=1}^{k}(2i)\cdot x_i,y)-g(x,y_k)\leq \frac{2\|y-y_0\|^2}{k(k+1)\eta}$$

Implementable DIAG

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}, \mathbf{y}_{k+1}), \text{ and } \mathbf{y}_{k+1} = \mathcal{P}_{\mathcal{Y}} \left(\mathbf{w}_k + \eta \nabla_{\mathbf{y}} g\left(\mathbf{x}_{k+1}, \mathbf{w}_k \right) \right)$$

• Since $\eta < 2L^2/\sigma$, the following operator $(\cdot)^+: \mathcal{Y} \to \mathcal{Y}$ is a 1/2-contraction

$$\begin{split} x^*(y) &= \arg\min_{x \in \mathcal{X}} g(x, y) \\ (y)^+ &= \mathcal{P}_{\mathcal{Y}} \left(w_k + \eta \nabla_y g\left(x^*(y), w_k \right) \right). \end{split}$$

• Thus $(x_k^{(i)}, y_k^{(i)})$ converges approximately to (x_{k+1}, y_{k+1}) in $O(\log(\frac{1}{\varepsilon}))$ steps

$$\begin{aligned} x_k^{(i)} &= \arg\min_{x \in \mathcal{X}} g(x, y_k^{(i)}) \\ y_k^{(i+1)} &= \mathcal{P}_{\mathcal{Y}} \left(w_k + \eta \nabla_{\mathcal{Y}} g\left(x_k^{(i)}, w_k \right) \right). \end{aligned}$$

Summary and my contributions

- We studied smooth minimax opitmization problem
- ullet Improved $O(arepsilon^{-3})$ algorithm for smooth Nonconvex–Concave problem
- ullet Optimal $O(k^{-2})$ algorithm for smooth Strongly-convex–Concave problem