

Real-Time Systems

Exercise #7

Victor Wallsten

Department of Computer Science and Engineering Chalmers University of Technology

Multiprocessor scheduling

Partitioned scheduling: "If all tasks are assigned using the Rate-Monotonic-First-Fit (RMFF) algorithm, then all tasks are schedulable if the total task utilization does not exceed 41% of the total processor capacity."

Global scheduling: "If tasks with the highest utilization are given highest priority and the remaining tasks are given RM priorities according to RM-US, then all tasks are schedulable if the total task utilization does not exceed 33.3% of the total processor capacity."

Example 1: RMFF scheduling

Problem:

There are two approaches for scheduling tasks on multiprocessor platform: the *partitioned* approach and the *global* approach. The table below shows C_i (WCET) and T_i (period) for six periodic tasks to be scheduled on m=3 processors. The relative deadline of each periodic task is equal to its period.

$\overline{}$				
	C_i	T_i		
$ au_1$	2	10		
$ au_2$	10	25		
$ au_3$	12	30		
$ au_4$	5	10		
$ au_5$	8	20		
$ au_6$	7	100		

The task set is schedulable using rate-monotonic first-fit (RMFF) partitioned scheduling algorithm. Show how the task set is partitioned on m=3 processors so that all the deadlines are met using RMFF scheduling?

Example 2: RM-US scheduling

Problem: Consider the task set below for a system using global scheduling on m=3 processors. Show that the task set is schedulable on the processors assuming that task priorities are given according to RM-US[m/(3m-2)].

Task	Ci	Ti
$ au_1$	1	7
$ au_2$	4	19
$ au_3$	9	20
$ au_4$	11	22