Scilab Textbook Companion for Solid Mechanics by S. M. A. Kazimi¹

Created by
Maloth Thirupathi
Interest
Others
IIT BOMBAY
College Teacher
None
Cross-Checked by
K. V. P. Pradeep

June 21, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid Mechanics

Author: S. M. A. Kazimi

Publisher: Tata McGraw-Hill, New Delhi

Edition: 1

Year: 1976

ISBN: 0070964742

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	ANALYSIS OF STRESS	8
3	ANALYSIS OF STRAINS	14
4	STRESS STRAIN RELATIONS	19
5	UNIAXIAL DEFORMATIONS	23
6	TORSION INCLUDING NON CIRCULAR SECTIONS	32
7	BEAMS AND BENDING	45
8	STABILITY OF EQUILIBRIUM COLUMNS	58
9	COMBINED STRESSES	63
10	INTRODUCTION TO ENERGY METHODS	78

List of Scilab Codes

Exa 2.4	Chapter2 Example 4	8
Exa 2.5	Chapter 2 Example 5	8
Exa 2.7		9
Exa 2.8	Chapter2 Example 8	0
Exa 2.9	Chapter 2 Example 9	1
Exa 2.10	Chapter2 Example 10	2
Exa 2.11	Chapter2 Example 11	3
Exa 3.3	Chapter3 Example 3	4
Exa 3.4	Chapter3 Example 4	5
Exa 3.5	Chapter3 Example 5 1	7
Exa 3.6	Chapter3 Example 6	8
Exa 4.1	Chapter4 Example 1	9
Exa 4.2	Chapter4 Example 2	0
Exa 4.3	Chapter4 Example 3	1
Exa 4.4	Chapter4 Example 4	2
Exa 5.1	Chapter5 Example 1	3
Exa 5.2	Chapter5 Example 2	3
Exa 5.3	Chapter5 Example 3	4
Exa 5.4	Chapter5 Example 4	4
Exa 5.6	Chapter5 Example 6	5
Exa 5.8	Chapter5 Example 8	5
Exa 5.9	Chapter5 Example 9	6
Exa 5.10	Chapter5 Example 10	7
Exa 5.11	Chapter5 Example 11	8
Exa 5.12	Chapter5 Example 12	9
Exa 5.13	Chapter5 Example 13	0
Exa 6.3	Chapter6 Example 3	2
Exa 6.4	Chapter6 Example 4	2

Exa 6.5	Chapter6 Example 5	33
Exa 6.6	Chapter6 Example 6	34
Exa 6.7	Chapter6 Example 7	35
Exa 6.11	Chapter6 Example 11	35
Exa 6.12	Chapter6 Example 12	36
Exa 6.13	Chapter6 Example 13	36
Exa 6.14	Chapter6 Example 14	37
Exa 6.15	Chapter6 Example 15	38
Exa 6.16	Chapter6 Example 16	38
Exa 6.17	Chapter6 Example 17	40
Exa 6.18	Chapter6 Example 18	40
Exa 6.19	Chapter6 Example 19	41
Exa 6.20	Chapter6 Example 20	41
Exa 6.21	Chapter6 Example 21	43
Exa 7.2	Chapter7 Example 2	45
Exa 7.8		46
Exa 7.10	Chapter7 Example 10	49
Exa 7.11	Chapter7 Example 11	49
Exa 7.12	Chapter7 Example 12	50
Exa 7.13	Chapter7 Example 13	51
Exa 7.14	Chapter7 Example 14	52
Exa 7.15	Chapter7 Example 15	53
Exa 7.17	Chapter7 Example 17	53
Exa 7.20		54
Exa 7.21		55
Exa 7.23		56
Exa 7.33		56
Exa 8.1		58
Exa 8.2		59
Exa 8.3	1	60
Exa 8.4		61
Exa 8.5		61
Exa 8.6		62
Exa 9.1		63
Exa 9.3	1	64
Exa 9.4		64
Exa 9.5	1	65
Exa 9.6		66

Exa 9.7	Chapter Example 7	(
Exa 9.8	Chapter9 Example 8	(
Exa 9.9	Chapter9 Example 9	(
Exa 9.10	Chapter9 Example 10	
Exa 9.11	Chapter9 Example 11	1
Exa 9.12	Chapter9 Example 12	1
Exa 9.13	Chapter9 Example 13	1
Exa 9.14	Chapter9 Example 14	1
Exa 9.15	Chapter9 Example 15	
Exa 10.3	Chapter10 Example 3	
Exa 10.4	Chapter10 Example 4	1
Exa 10.7	Chapter10 Example 7	1
Exa 10.8	Chapter10 Example 8	
Exa 10.11	Chapter10 Example 11	
Exa 10.12	Chapter 10 Example 12	

List of Figures

7.1	Chapter 7 Example 2												46
7.2	Chapter 7 Example 2												47

Chapter 2

ANALYSIS OF STRESS

Scilab code Exa 2.4 Chapter 2 Example 4

```
1 clc
2 // initialization of variables
3 clear
4 \text{ tau} = [200 \ 100 \ 0]
        100 0 0
        0 0 500] // some units
7 theta=60 // degrees
8 //calculations
9 theta=theta*%pi/180
10 a = [\cos(theta) \sin(theta) 0
     -sin(theta) cos(theta) 0
12
      0 0 1]
13 b=a.
14 tau_new=a*tau*b
15 // Results
16 printf('The new stress tensor is')
17 disp(tau_new)
```

Scilab code Exa 2.5 Chapter 2 Example 5

```
1 clc
2 // initialization of variables
3 clear
4 sigma_1=100 //kg*f/cm^2
5 sigma_2=100 //kg*f/cm^2
6 sigma_3=-200 //kg*f/cm^2
7 // calculations
8 tau_oct=1/3*sqrt((sigma_1-sigma_2)^2+(sigma_2-sigma_3)^2+(sigma_3-sigma_1)^2)
9 // Results
10 printf('Octahedra shear stress at the point is=%.1fkgf/cm^2',tau_oct)
```

Scilab code Exa 2.7 Chapter 2 Example 7

```
1 clc
2 // initialization of variables
3 clear
4 tau=[200 100 0
        100 0 0
5
        0 0 500] // some units
7 theta=60 // degrees
8 //calculations
9 theta=theta*%pi/180
10 a = [\cos(theta) \sin(theta) 0
    -sin(theta) cos(theta) 0
11
12
     0 0 1]
13 b=a.,
14 tau_new=a*tau*b
15
16 // stress invariants :old
17 I1=tau(1,1)+tau(2,2)+tau(3,3)
18 I2=tau(1,1)*tau(2,2)+tau(2,2)*tau(3,3)+tau(3,3)*tau
      (1,1) - (tau(1,2)^2 + tau(2,3)^2 + tau(3,1)^2)
19 I3=tau(1,1)*tau(2,2)*tau(3,3)+2*tau(1,2)*tau(2,3)*
```

```
tau(3,1)-(tau(1,1)*tau(2,3)^2+tau(2,2)*tau(3,1)
                       ^2+tau(3,3)*tau(1,2)^2)
20
21 // stress invariants :new
22 I11=tau_new(1,1)+tau_new(2,2)+tau_new(3,3)
23 I22=tau_new(1,1)*tau_new(2,2)+tau_new(2,2)*tau_new
                       (3,3)+tau_new(3,3)*tau_new(1,1)-(tau_new(1,2)^2+
                       tau_new(2,3)^2+tau_new(3,1)^2
133 = tau_new(1,1) * tau_new(2,2) * tau_new(3,3) + 2 * tau_new(3,3) 
                       (1,2)*tau_new(2,3)*tau_new(3,1)-(tau_new(1,1)*
                       tau_new(2,3)^2+tau_new(2,2)*tau_new(3,1)^2+
                       tau_new(3,3)*tau_new(1,2)^2
25
26 // Results
27 printf ('The invariants of old stress tensor are I1=
                      \%0.2 \text{ f } 12=\%. \text{ e } 13=\%. \text{ e } \text{ n and that of the new stress}
                           tensor are I1=\%0.2 f I2=\%. e I3=\%. e', I1, I2, I3, I11,
                      I22, I33)
28 printf('\n Hence the same stress tensor invariants')
```

Scilab code Exa 2.8 Chapter 2 Example 8

```
1 clc
2 // initialization of variables
3 clear
4 sigma_3=0 // kgf/cm^2
5 tau_oct=1500 // kgf/cm^2
6 n=2 // given that sigma_1=n*sigma_2
7 // calculations
8 sigma_2=1500*3/(sqrt(2*n^2-2*n+2)) // // kgf/cm^2
9 sigma_1=n*sigma_2 // kgf/cm^2
10 sigma_0=4500/sqrt(2) // kgf/cm^2
11 // Results
12 printf('The necessary stresses sigma_1, sigma_2 for biaxial yielding are \n %d kgf/cm^2, %d kgf/cm^2
```

```
and for uniaxial yielding sigma_0 \%0.2 f kgf/cm^2. ', sigma_1, sigma_2, sigma_0);
```

Scilab code Exa 2.9 Chapter 2 Example 9

```
1 clc
2 // initialization of variables
3 clear
4 // part (a)
5 tau_xx=300 // kgf/cm^2
6 tau_yy=0 // kgf/cm^2
7 tau_xy=600 // kgf/cm^2
8 // calculations
9 sigma_1=(tau_xx+tau_yy)/2+sqrt((1/2*(tau_xx-tau_yy))
      ^2+tau_xy^2)
10 sigma_2=(tau_xx+tau_yy)/2-sqrt((1/2*(tau_xx-tau_yy))
      ^2+tau_xy^2)
11 Beta=atan(2*tau_xy/(tau_xx-tau_yy))
12 Beta=Beta*180/%pi
13 // Results
14 printf('Part (a) \n The magnitude of principal
      stresses are \%d,\%d kgf/cm<sup>2</sup> and \n the direction
      is given by 2*beta=\%.2f degrees', sigma_1, sigma_2,
      Beta)
15
16 //part (b)
17 tau_xx=1000 // kgf/cm^2
18 tau_yy=150 // kgf/cm^2
19 tau_xy = 450 / kgf/cm^2
20 // calculations
21 sigma_1 = (tau_xx + tau_yy)/2 + sqrt((1/2*(tau_xx - tau_yy)))
      ^2+tau_xy^2)
22 \operatorname{sigma}_2 = (\operatorname{tau}_x + \operatorname{tau}_y) / 2 - \operatorname{sqrt} ((1/2 + (\operatorname{tau}_x - \operatorname{tau}_y)))
      ^2+tau_xy^2)
23 Beta=atan(2*tau_xy/(tau_xx-tau_yy))
```

```
24 Beta=Beta*180/%pi
25 // Results
26 printf('\n Part (b) \n The magnitude of principal
      stresses are %d,%d kgf/cm<sup>2</sup> and \n the direction
      is given by 2*beta=\%.2f degrees', sigma_1, sigma_2,
      Beta)
27
28 // part (c)
29 tau_xx=-850 // kgf/cm^2
30 tau_yy=350 // kgf/cm^2
31 tau_xy=700 // kgf/cm^2
32 // calculations
33 sigma_1=(tau_xx+tau_yy)/2+sqrt((1/2*(tau_xx-tau_yy))
      ^2+tau_xy^2)
34 \text{ sigma}_2 = (\text{tau}_xx + \text{tau}_yy)/2 - \text{sqrt}((1/2*(\text{tau}_xx - \text{tau}_yy)))
      ^2+tau_xy^2)
35 Beta=atan(2*tau_xy/(tau_xx-tau_yy))
36 Beta=Beta*180/%pi
37 // Results
38 printf('\n Part (c) \n The magnitude of principal
      stresses are \%d,\%d kgf/cm<sup>2</sup> and \n the direction
      is given by 2*beta=\%0.2 f, sigma_1, sigma_2, -Beta)
39
40 // wrong answers were given in textbook for part (b)
```

Scilab code Exa 2.10 Chapter 2 Example 10

```
1 clc
2 // initialization of variables
3 clear
4 tau_xx= -1 // kgf/cm^2
5 tau_yy= 0 // kgf/cm^2
6 tau_xy= 7 // kgf/cm^2
7 // calculations
8 sigma_1=(tau_xx+tau_yy)/2+sqrt((1/2*(tau_xx-tau_yy)))
```

Scilab code Exa 2.11 Chapter 2 Example 11

```
1 clc
2 // initialization of variables
3 clear
4 d=2 // m
5 l=10 // m
6 \text{ t=1} // \text{cm}
7 p=15 // kgf/cm^2
8 pitch= 2*\%pi //m
9 //calculations
10 w = 2 * \%pi * d/2 // m
11 theta=atan(w/(2*\%pi))
12 sigma_z=p*d*100/(4*t)
13 sigma_th=p*d*100/(2*t)
14 sigma_th_new=(sigma_th+sigma_z)/2+(sigma_th-sigma_z)
      /2*\cos(2*theta)
15 tau_thz = (sigma_z - sigma_th) * sin(2*theta)/2
16 // results
17 printf('At the junction, the normal and shear
      stresses are %d and %d kgf/cm^2 \n respectively ,
      and the rivets must be designed for this',
      sigma_th_new,-tau_thz)
```

Chapter 3

ANALYSIS OF STRAINS

Scilab code Exa 3.3 Chapter3 Example 3

```
1 clc
2 // initialization of variables
3 clear
4 \text{ epsillon} = [0.01 0 0]
        0 0.02 0.02
        0 0.02 0.01] // dimensionless
7 theta=30 // degrees
8 //calculations
9 theta=theta*%pi/180
10 a = [\cos(theta) \sin(theta) 0
     -sin(theta) cos(theta) 0
11
12
      0 0 1]
13 b=a.,
14 epsillon_new=a*epsillon*b
15 // calculation of strain invariants
16 // for epsillon
17 J1=epsillon(1,1)+epsillon(2,2)+epsillon(3,3)
18 J2=epsillon(1,1)*epsillon(2,2)+epsillon(2,2)*
      epsillon (3,3) + epsillon (3,3) * epsillon (1,1) -2*(
      epsillon(1,2)^2 + epsillon(2,3)^2 + epsillon(3,1)^2
19 J3 = epsillon(1,1) * epsillon(2,2) * epsillon(3,3) + 2*
```

```
epsillon(1,2)*epsillon(2,3)*epsillon(3,1)-(
      epsillon(1,1)*epsillon(2,3)^2+epsillon(2,2)*
      epsillon(3,1)^2+epsillon(3,3)*epsillon(1,2)^2
20
21 // for epsillon_new
22 J11=epsillon_new(1,1)+epsillon_new(2,2)+epsillon_new
      (3,3)
23 J22=epsillon_new(1,1)*epsillon_new(2,2)+epsillon_new
      (2,2)*epsillon_new(3,3)+epsillon_new(3,3)*
      epsillon_new(1,1)-2*(epsillon_new(1,2)^2+
      epsillon_new(2,3)^2+epsillon_new(3,1)^2)
24 J33=epsillon_new(1,1)*epsillon_new(2,2)*epsillon_new
      (3,3)+2*epsillon_new(1,2)*epsillon_new(2,3)*
      epsillon_new(3,1)-(epsillon_new(1,1)*epsillon_new
      (2,3)^2 + epsillon_new(2,2) * epsillon_new(3,1)^2 +
      epsillon_new(3,3)*epsillon_new(1,2)^2)
25
26 // results
27 printf('The new strain tensor is');
28 disp(epsillon_new);
29 printf ('The strain invariants of old strain tensor
      are J1=\%0.2 \text{ f} J2=\%.e J3=\%.e \n and that of the new
       strain tensor are J1=\%0.2 f J2=\%. e J3=\%. e', J1, J2,
     J3, J11, J22, J33)
30 printf('\n Hence the same strain invariants')
```

Scilab code Exa 3.4 Chapter 3 Example 4

```
8 theta=acos(a_xx) // radians
9 //calculations
10 // theta = theta * \%pi / 180
11 a = [\cos(theta) \ 0 \ -\sin(theta)]
12
              1
                        0
13
      sin(theta) 0 cos(theta)]
14 b=a.,
15 epsillon_new=a*epsillon*b
16
17 // calculation of strain invariants
18 // for epsillon
19 J1 = epsillon(1,1) + epsillon(2,2) + epsillon(3,3)
20
21 J2=epsillon(1,1)*epsillon(2,2)+epsillon(2,2)*
      epsillon(3,3)+epsillon(3,3)*epsillon(1,1)-2*(
      epsillon(1,2)^2+epsillon(2,3)^2+epsillon(3,1)^2
22
23 J3 = epsillon(1,1) * epsillon(2,2) * epsillon(3,3) + 2*
      epsillon(1,2)*epsillon(2,3)*epsillon(3,1)-(
      epsillon(1,1)*epsillon(2,3)^2+epsillon(2,2)*
      epsillon(3,1)^2+epsillon(3,3)*epsillon(1,2)^2
24
25 // for epsillon_new
26 J11=epsillon_new(1,1)+epsillon_new(2,2)+epsillon_new
      (3,3)
27
28 J22=epsillon_new(1,1)*epsillon_new(2,2)+epsillon_new
      (2,2)*epsillon_new(3,3)+epsillon_new(3,3)*
      epsillon_new(1,1)-2*(epsillon_new(1,2)^2+
      epsillon_new(2,3)^2+epsillon_new(3,1)^2
29
30 J33=epsillon_new(1,1)*epsillon_new(2,2)*epsillon_new
      (3,3)+2*epsillon_new(1,2)*epsillon_new(2,3)*
      epsillon_new(3,1)-(epsillon_new(1,1)*epsillon_new
      (2,3)^2+epsillon_new(2,2)*epsillon_new(3,1)^2+
      epsillon_new(3,3)*epsillon_new(1,2)^2)
31
32 // Results
```

```
33 printf('The new strain tensor is')
34 disp(epsillon_new)
35 printf('The strain invariants of old stress tensor
are J1=\%0.2 f J2=\%.e J3=\%.e \n and that of the new
stress tensor are J1=\%0.2 f J2=\%.e J3=\%.e', J1, J2,
J3, J11, J22, J33)
```

Scilab code Exa 3.5 Chapter 3 Example 5

```
1 clc
2 // initialization of variables
3 clear
4 epsillon_A= 700*10^-6
5 \text{ epsillon_B= } 300*10^-6
6 \quad epsillon_C = 300*10^-6
7 theta=45 // degrees
8 theta=theta*%pi/180 // radians
9 // calculations
10 epsillon_x=epsillon_A
11 epsillon_y=epsillon_C
12 gamma_xy=(epsillon_B-(epsillon_x*cos(theta)^2+
      epsillon_y*sin(theta)^2))/(sin(theta)*cos(theta))
13 epsillon_1=1/2*(epsillon_x+epsillon_y)+(1/2)*sqrt((
      epsillon_x-epsillon_y)^2+gamma_xy^2)
14 epsillon_2=1/2*(epsillon_x+epsillon_y)-(1/2)*sqrt((
      epsillon_x-epsillon_y)^2+gamma_xy^2)
15 phi=0.5*atan(gamma_xy/(epsillon_x-epsillon_y))
16 phi=phi*180/%pi
17 //results
18 printf ('The principal strains are %.3e, %.3e',
      epsillon_1,epsillon_2)
19 printf('\n phi = \%.2f degrees',phi)
```

Scilab code Exa 3.6 Chapter 3 Example 6

```
1 clc
2 // initialization of variables
3 clear
4 epsillon_A= 1000*10^-6
5 \text{ epsillon}_B = 720*10^-6
6 \quad epsillon_C = 600*10^-6
7 th_B=120 // degrees
8 \text{ th_C=240} // \text{degrees}
9 //calculations
10 \quad th_B=th_B*\%pi/180
11 th_C=th_C*%pi/180
12 // we need to solve for epsillon_y and gamma_xy
13 // Ax=B
14 ep_x=epsillon_A
15 A=[\sin(th_B)^2 \sin(th_B)*\cos(th_B)
      sin(th_C)^2 sin(th_C)*cos(th_C)]
17 C=[epsillon_B-ep_x*cos(th_B)^2; epsillon_C-ep_x*cos(
      th_C)^2]
18 x = inv(A) *C
19 ep_y=x(1,1)
20 \text{ gam}_xy=x(2,1)
21 epsillon_x=ep_x
22 epsillon_y=ep_y
23 gamma_xy=gam_xy
24 epsillon_1=1/2*(epsillon_x+epsillon_y)+(1/2)*sqrt((
      epsillon_x-epsillon_y)^2+gamma_xy^2)
25 epsillon_2=1/2*(epsillon_x+epsillon_y)-(1/2)*sqrt((
      epsillon_x-epsillon_y)^2+gamma_xy^2)
26 // Results
27 printf ('The principal strains are \%.3\,\mathrm{e} , \%.3\,\mathrm{e} ',
      epsillon_1,epsillon_2)
```

Chapter 4

STRESS STRAIN RELATIONS

Scilab code Exa 4.1 Chapter4 Example 1

```
1 clc
2 // initialization of variables
3 clear
4 E=2*10^6 // kg/cm^2
5 G=8*10^5 // kg/cm^2
6 \text{ ep} = [0.001 \ 0 \ -0.002]
       0 -0.003 0.0005
       -0.002 0.0005 0]
9 // calculations
10 nu=E/(2*G)-1
11 lambda=E*nu/((1+nu)*(1-2*nu))
12 \text{ mu} = G
13 sigma(1,1)=2*mu*ep(1,1)+lambda*(ep(1,1)+ep(2,2)+ep
      (3,3))
14 sigma(2,2) = 2*mu*ep(2,2) + lambda*(ep(1,1) + ep(2,2) + ep
      (3,3))
15 sigma(3,3)=2*mu*ep(3,3)+lambda*(ep(1,1)+ep(2,2)+ep
      (3,3))
16 tau(1,2) = 2*mu*ep(1,2)
```

Scilab code Exa 4.2 Chapter4 Example 2

```
1 clc
   2 // initialization of variables
   3 clear
   4 sigma_x=1000 //kg/cm^2
   5 sigma_y=-500 //kg/cm^2
  6 \text{ sigma_z=0} //\text{kg/cm^2}
   7 tau_xy=500 //kg/cm^2
   8 E=2*10^6 / kg/cm^2
  9 \text{ nu} = 0.25
10 //calculations
11 ep_x=1/E*(sigma_x-nu*(sigma_y+sigma_z))
12 ep_y=1/E*(sigma_y-nu*(sigma_x+sigma_z))
13 ep_z=1/E*(sigma_z-nu*(sigma_y+sigma_x))
14 J1 = ep_x + ep_y + ep_z
15 sigma_1=(sigma_x+sigma_y)/2+sqrt((1/2*(sigma_x-
                         sigma_y))^2+tau_xy^2)
16 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(s
                         sigma_y))^2+tau_xy^2)
17 th=1/2*atan(2*tau_xy/(sigma_x-sigma_y))
18 \text{ th=th*} 180/\% pi
19 ep_1=1/E*(sigma_1-nu*sigma_2)
20 \text{ ep}_2=1/E*(sigma_2-nu*sigma_1)
```

Scilab code Exa 4.3 Chapter4 Example 3

```
1 clc
     2 // initialization of variables
     3 clear
     4 sigma_x=1400 //kg/cm^2
     5 tau_xy = 400 / kg/cm^2
     6 \text{ ep_z} = -3.6*10^-6
     7 \, \text{nu} = 1/4
     8 E=2*10^8 / kg/cm^2
     9 // calculations
10 sigma_y=(-ep_z*E/nu)-sigma_x
11 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sq
                                           sigma_y))^2+tau_xy^2)
12 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sq
                                           sigma_y))^2+tau_xy^2)
13 th=0.5*atan(2*tau_xy/(sigma_x-sigma_y))
14 th=th*180/%pi
15 printf('sigma_y is %d kg/cm^2',sigma_y)
16 printf('\n The principal stresses are %d , %d kg/cm
                                            ^2', sigma_1, sigma_2)
17 printf('\n The direction is given by theta = \%.2 \,\mathrm{f}
                                           degrees',th)
18
19 // angle was given wrong in the text
```

Scilab code Exa 4.4 Chapter4 Example 4

```
1 clc
2 //initialization of variables
3 clear
4 C=1000/3 //kg/cm^2
5 \text{ sigma}_x=2*C
6 \text{ sigma_y=4*C}
7 tau_xy=4*C
8 \text{ sigma}_0 = 4 * C
9 sigma_1=3+C*sqrt(2)
10 sigma_2=3-C*sqrt(2)
11 sigma_3=0
12 tau_oct=1/3*sqrt((sigma_1-sigma_2)^2+(sigma_2-
      sigma_3)^2+(sigma_3-sigma_1)^2)
13 tau_max=sigma_1/2
14 \text{ taU}=1.885*C
15 \quad tau_y=2*C
16 printf('Actual tau is %.3f',taU)
17 printf('\n tau_max at yield is \%.3 f', tau_y)
18 printf('\n Hence yielding doesn not occur according
      to Von-Miles condition \n but it occurs due to
      Tresca condition')
```

Chapter 5

UNIAXIAL DEFORMATIONS

Scilab code Exa 5.1 Chapter 5 Example 1

```
1 clc
2 //initialization of variables
3 clear
4 l=20 //cm
5 dL=1 //m
6 dl=0.004 //cm
7 //calculations
8 L=1*dL/dl //m
9 //results
10 printf('The depth of the clay bed is %d m',L)
```

Scilab code Exa 5.2 Chapter 5 Example 2

```
1 clc
2 //initialization of variables
3 clear
4 A=1 //unit area
5 E=2*10^6 //kg/cm^2
```

```
6  // calculations
7  db=3000*90/(A*E)
8  dc=db+5000*60/(A*E)
9  dd=dc+4000*30/(A*E)
10  //results
11  printf('The extension of the rod in part AB is %.2e cm in part BC is %.2e cm \n and in part CD is %.2 e cm', db, dc, dd)
```

Scilab code Exa 5.3 Chapter 5 Example 3

```
1 clc
2 //initialization of variables
3 clear
4 A=3 //cm^2
5 L=18 //m
6 E= 2*10^6 //kg/cm^2
7 r=7833 //kg/m^3
8 //calculations
9 e=r*(L*100)^2/(2*E*10^6)
10 // results
11 printf('The elongation is %.5 f cm',e)
```

Scilab code Exa 5.4 Chapter 5 Example 4

```
1 clc
2 //initialization of variables
3 clear
4 // linked to 5_3
5 P=3 //tonne
6 E=2*10^6 //kg/cm^2
7 d_0= 1 //cm
8 d_1=2.8 //cm
```

Scilab code Exa 5.6 Chapter 5 Example 6

```
1 clc
2 //initialization of variables
3 clear
4 P=10 //tonne
5 E=2*10^6 / kg/cm^2
6 // calculations
7 // We have to solve linear system Ax=B
8 \quad A = [1 \quad 1 \quad 1 \quad 0]
9
       3 1 -3 0
       -2 2 0 -E
10
       0 -1 2 -E]
12 B = [P * 10^3; 0; 0; 0]
13 x = inv(A) *B
14 \text{ W1}=x(1,1)/1000
15 W2=x(2,1)/1000
16 \text{ W3}=x(3,1)/1000
17 th=x(4,1)
18 //results
19 printf ('The load taken by each rod is \%.2 \,\mathrm{f} tonne, \%
      .1 f tonne, \%.3 f tonne', \$1, \$2, \$3)
20 printf('\n and the slope is theta = \%.2e. radians',
      th)
```

Scilab code Exa 5.8 Chapter 5 Example 8

```
1 clc
2 // initialization of variables
3 clear
4 b=30 // cm
5 h=30 //cm
6 n=6
7 A=36 //cm^2
8 ss_s=1500 //kg/cm^2
9 ss_c=60 //kg/cm^2
10 Er=15 // Elasticity ratio
11 // calculations
12 L=A*Er*ss_c+(b*h-A)*ss_c
13 // results
14 printf('The safe load is %d.kg',L)
```

Scilab code Exa 5.9 Chapter 5 Example 9

```
1 clc
 2 // initiaization of variables
3 clear
4 \text{ gs_b=10} //\text{cm}
5 \text{ gs_h=10} //\text{cm}
6 d_b=2 /cm
 7 d_h=2 /cm
8 As= 1 //\text{cm}^2
9 \text{ s} = 10000 //\text{kg/cm}^2
10 // part (a)
11 Es=2*10^6 / kg/cm^2
12 Ec=2*10^5 //kg/cm^2
13 // calculations
14 \text{ e=s/Es}
15 Ac=gs_b*gs_h-(d_b*d_h)
16 \text{ e_c=e*Es*As/(Ec*Ac+Es*As)}
17 \text{ s_c=Ec*e_c}
18 e_s=e-e_c
```

Scilab code Exa 5.10 Chapter 5 Example 10

```
1 clc
2 // initialization
3 clear
4 d=10 /cm
5 id=9.99 //cm
6 t=3 /mm
7 E=1.0*10^6 // kg/cm^2
8 a=2.02*10^-5 // degree/celcius
9 // part(a)
10 Tr=10 // degree C
T=(d-id)/id*1/a
12 printf('part(a) \n The sleeve must be heated to \%.1 f
       degree C or more for this purpose', T+Tr)
13
14 //part(b)
15 \text{ s\_th=a*T*E}
16 p=s_th*t*2/(d*10)
```

```
17 printf('\n part(b) \n The pressure developed between
       the rod and sleeve is %d kg/cm<sup>2</sup>',p)
18
19 // part(c)
20 \text{ f=0.2}
21 o=10 // overlap: cm
22 A=%pi*d*o
23 F = f * p * A
24 printf('\n part (c) \n The axial force required is
      %d kg',F)
25
26 //part (d)
27 // linked to part c
28 T2=20 // degree C
29 a2=1.17*10^-5 // degree C
30 Ts = (a-a2)*(T2-Tr)*E
31 \quad Ts = s_th - Ts
32 p2=p*Ts/s_th
33 F2=F*Ts/s_th
34 printf(') part(d)\n The pressure developed between
      the rod and sleeve is \%.1 \,\mathrm{f}\,\mathrm{kg/cm^2}, p2)
35 printf('\n The axial force required is %d kg',F2)
36 //part(e)
37 T3=Tr+(s_th/((a-a2)*10^6))
38 printf('\n part(e) \n The temperature at which the
      sleeve comes off easily is %.1f C',T3)
39
40 // calculations in the text: rounding off errors
```

Scilab code Exa 5.11 Chapter 5 Example 11

```
1 clc
2 //initialization of variables
3 clear
4 T1=37.8 // degre C
```

```
5 t=0.355 //mm
6 T2=93.3 // degree C
7 L=2 //cm
8 m=1
9 n=1.53
10 a=1.86*10^-5
11 //calculations
12 R=2*t*(3*(1+m)^2+(1+m*n)*(m^2+(m*n)^-1))
13 R=R/(6*a*(T2-T1)*(1+m^2)) // mm
14 R=R/10
15 def=L^2/(8*R)
16 // results
17 printf('The radius of curvature is %.1 f cm',R)
18 printf('\n The deflection is %.6 f cm',def)
```

Scilab code Exa 5.12 Chapter 5 Example 12

```
1 clc
2 // initialization of variables
3 clear
4 L=5 /cm
5 D=1.8 /cm
6 1=2.5 / cm
7 d=1.5 /cm
8 F=1 //tonne
9 E=2.1*10^6 // kg/cm^2
10 // calculations
11 s1=F*1000*4/(D^2*\%pi)
12 	ext{ s2=F*1000*4/(d^2*\%pi)}
13 U1=1/2*s1^2/E
14 \ U1 = U1 * L * D^2 * \%pi/4
15 \quad U2 = 1/2 * s2^2/E
16 \quad U2=U2*1*d^2*\%pi/4
17 U=U1+U2
18 // results
```

```
19 printf('The energy stored in the bolt is \%.3\,\mathrm{f\ kg-cm'}, U)
```

Scilab code Exa 5.13 Chapter 5 Example 13

```
1 clc
2 // initialization of variables
3 clear
4 t = 16 / mm
5 Pt=1500 // kg/cm^2
6 Ps=1025 // kg/cm^2
7 Pb=2360 // kg/cm^2
8
9 // part (a)
10 p=6 //cm
11 r = 24 / mm
12 d=r/10+0.15
13 Ft=t*(p-d)*Pt/10
14 \text{ Fs=\%pi*d^2*Ps/4}
15 \text{ Fb=d*t*Pb}
16 x=min(Ft,Fs,Fb)
17 effA=x*100/(p*t/10*Pt)
18
19 //part (b)
20 p=9 /cm
21 r = 30 / mm
22 d=r/10+0.2
23 \text{ Ft=t*(p-d)*Pt/10}
24 \text{ Fs=\%pi*d^2*Ps/4}
25 Fb=d*t*Pb
26 x=min(Ft,Fs,Fb)
27 \text{ effB}=x*100/(p*t/10*Pt)
28
29 // results
30 printf ('The efficiencies corresponding to cases a
```

```
and b are %.1f, %.1f',effA,effB)
31 printf('\n Hence part b is better than part a')
```

Chapter 6

TORSION INCLUDING NON CIRCULAR SECTIONS

Scilab code Exa 6.3 Chapter 6 Example 3

```
1 clc
2 // initialization o variables
3 clear
4 p=5 //cm
5 D=10 //cm
6 d=2 //mm
7 T= 10 //kgm
8 ss= 785 //kg/cm^2
9 // calculations
10 P= 2*T/(%pi*D^2)
11 P=P*5*100
12 // results
13 printf('Force per rivet is %.1f kg',P)
14 printf('\n The diameter of rivet, using a permissible stress of %d kg/cm^2 = 0.227 cm',ss)
```

Scilab code Exa 6.4 Chapter6 Example 4

```
1 clc
2 // initialization of variables
3 clear
4 D=5 /cm
5 \text{ Y} = 3500 //\text{kg/cm}^2
7 // part (a)
8 \text{ Ta} = 350 //\text{kg} - \text{m}
9 \text{ tau}=Y/2
10 Ip=Ta*D*100/(2*tau)
11 d1=Ip*32/%pi
12 d1 = (D^4 - d1)^(1/4)
13
14 // part (b)
15 Tb= 700 // kg-m
16 \text{ Ip=Tb*D*100/(2*tau)}
17 d2=Ip*32/%pi
18 d2 = (D^4 - d2)
19 T=tau*\%pi*(D^4)*2/(32*D)
20 // results
21 printf ('The maximum diameter corresponding to the
       case a is \%.2 \, \text{f} \, \text{cm}, d1)
22 printf('\n Since the daimeter for the case (b) is
      coming out to be negative, \n The maximum torque
       transmitted is %.d kg-m', T/100)
```

Scilab code Exa 6.5 Chapter 6 Example 5

```
1 clc
2 // initialization of variables
3 clear
4 A=3 //cm<sup>2</sup>
5 E= 2*10<sup>6</sup> //kg/cm<sup>2</sup>
```

```
6  nu= 0.25
7  l= 60  //m
8  L=150  //cm
9  d=0.5  //cm
10  dd=10  //cm
11  D=180  //cm
12  //calculations
13  K=(1*100/(A*E))+(L*D/2*D*32*2*(1+nu)/(E*%pi*dd^4*2))
14  P=d/K
15  // results
16  printf('The weight of the students that entered the length is %d kg',P)
```

Scilab code Exa 6.6 Chapter6 Example 6

```
1 clc
2 // initialization of variables
3 clear
4 // linked to 6.5
5 \text{ A=3 } //\text{cm}^2
6 E = 2*10^6 //kg/cm^2
7 \text{ nu} = 0.25
8 1 = 60 //m
9 L=150 //cm
10 d=0.5 / cm
11 \, dd = 10 \, //cm
12 D=180 //cm
13 //calculations
14 K = (1*100/(A*E)) + (L*D/2*D*32*2*(1+nu)/(E*\%pi*dd^4*2))
15 P=d/K
16 \text{ Ts=P/A}
17 fs=dd*D*P*32/(%pi*4*dd^4)
18
19 // results
20 printf('The tensile stress is \%.1\,\mathrm{f\ kg/cm^2}',Ts)
```

Scilab code Exa 6.7 Chapter6 Example 7

```
1 clc
2 // initialization of variables
3 clear
4 F = 500 / kg
5 \text{ k=25} //\text{kg/cm}
6 dd=15 /cm
7 \text{ ss} = 3500 //\text{kg/cm}^2
8 L=2 /m
9 G=8*10^5 / kg/cm^2
10 // calculations
11 x = sqrt(\%pi*G/(25*L*32*100))
12 d=x*16*(F+dd*k)/(ss*%pi)
13 x2=x*d^2
14 // results
15 printf ('d=\%.2 f cm',d)
16 printf ('\n x=\%.2 f cm', x2)
17
18 // Text: not exact
```

Scilab code Exa 6.11 Chapter6 Example 11

```
1 clc
2 //initialization of variables
3 clear
4 d=5 //cm
5 rpm1=300 //rpm
6 rpm2=30000 //rpm
7 s=1000 //kg/cm^2
8 //calcuations
```

```
9 T=(d/2)*%pi*10^2*s/32
10 hp1= 2*%pi*rpm1*T/4500
11 hp2=hp1*100
12 // results
13 printf('Horse power at 300 rpm and 30000 rpm are respecively %d, %d h.p.',hp1/10,hp2/10)
14
15 // wrong/approximate answers in the text
```

Scilab code Exa 6.12 Chapter 6 Example 12

```
1 clc
2 // initialization of variables
3 clear
4 hp=300 //h.p.
5 \text{ N1=30 } / \text{rpm}
6 N2 = 30000 / rpm
7 fs=600 // kg/cm^2
8 // calculations
9 T1=4500*hp*100/(2*\%pi*N1)
10 T2 = T1/1000
11 D1=16*T1/(\%pi*fs)
12 D1=D1^(1/3)
13 D2=16*T2/(\%pi*fs)
14 D2=D2^(1/3)
15 // results
16 printf('Diameters required are %.1f, %.1f cm',D1,D2)
17
18 // wrong calculations in the text
```

Scilab code Exa 6.13 Chapter6 Example 13

```
1 clc
```

```
2 // initialization of variables
3 clear
4 d=10 //cm
5 t =1 //mm
6 T= 100 //kg-m
7 L=5 //m
8 G=8*10^5 //kg/cm^2
9
10 //calculations
11 r=d/2
12 fs=T*r*100/(r^2*2*%pi*L*t*10^-1)
13 U=fs^2/(2*G)
14 U1=U*(%pi*L*100)
15 // results
16 printf('Energy per unit volume = %.3 f kg-cm/cm^3',U)
17 printf('\n Total strain energy= %d kg-cm',U1)
```

Scilab code Exa 6.14 Chapter6 Example 14

```
1 clc
2 //initialization of variables
3 clear
4 D=10 //cm
5 d= 1 //cm
6 n=20
7 P=60 //kg
8 G=8*10^5 //kg/cm^2
9 //calculations
10 n=n-0.75*2
11 delta=P*n*%pi*D^3*32/(4*%pi*G)
12 // results
13 printf('The deflection is %.1 f cm', delta)
```

Scilab code Exa 6.15 Chapter 6 Example 15

```
1 clc
2 //initialization of variables
3 clear
4 // linked to 6_14
5 D = 10 / cm
6 d = 1 //cm
7 n = 20
8 P = 60 / kg
9 G=8*10^5 / kg/cm^2
10 // calculations
11 \text{ m=D/d}
12 fs=8*P*D/(d^3*\%pi)
13 fs1=fs*(1+0.615/m+3/(4*m-4))
14 // results
15 printf ('The shear stress with and without correction
       facor are \n respectively %d, %d kg/cm^2',fs,fs1
      )
```

Scilab code Exa 6.16 Chapter 6 Example 16

```
1 clc
2 //initialization of variables
3 clear
4
5 // circle
6 D=1 //unit diameter
7 Ip=D^4/32
8 Zp=D^3/16
9
10 //Square
11 s=sqrt(%pi/4)*D
12 Is=0.886*D^4/32
13 Zs=0.7383*D^3/16
```

```
14
15 //Rectangle
16 a=sqrt(%pi/2)*D
17 b=sqrt(%pi/8)*D
18 \text{ Ir} = 0.719 * D^4/32
19 Zr = 0.616 * D^3/16
20
21 // Trianle
22 t=sqrt(%pi/sqrt(3))*D
23 \text{ It} = 0.725 * D^4/32
24 \text{ Zt} = 0.622 * D^3/16
25
26 // Ellipse
27 \text{ A=D/sqrt}(2)
28 B=D/sqrt(8)
29 Ie=A^3*B^3/(A^2+B^2)
30 \text{ Ze} = A * B^2/2
31
32 // Normalization
33 Is=Is/Ip
34 Ie=Ie/Ip
35 It=It/Ip
36 Ir=Ir/Ip
37
38 \text{ Zs} = \text{Zs} / \text{Zp}
39 \text{ Ze=Ze/Zp}
40 \text{ Zt} = \text{Zt} / \text{Zp}
41 \text{ Zr} = \text{Zr} / \text{Zp}
42 \text{ Ip=1}
43 \text{ Zp} = 1
44 //results
45 printf('Z:: Circle: Square: Ellipse: Triangle: Rectangle
         = \%.3 \, f : \%.3 \, f : \%.3 \, f : \%.3 \, f : \%.3 \, f, Zp, Zs, Ze, Zt,
        Zr)
46 printf('\n I:: Circle: Square: Ellipse: Triangle:
        Rectangle = \%.3 f : \%.3 f : \%.3 f : \%.3 f ; \%.3 f , Ip,
        Is, Ie, It, Ir)
```

Scilab code Exa 6.17 Chapter 6 Example 17

```
1 clc
2 //initialization of variables
3 clear
5 \text{ yp} = 2450 //\text{kg/cm}^2
6 \, d=0.4 \, //cm
7 ys = 4200 //kg/cm^2
8 \text{ sa=1.6} / \text{mm}
9 \text{ sb=7 } / \text{mm}
10 // calculations
11 \text{ sa=sa/10}
12 \text{ sb=sb/}10
13 T1 = yp * \%pi * d^3/16
14 \quad T2 = ys * 0.303 * sa^2 * sb
15 // results
16 printf ('The maximum torque that can be transitted by
        the screw-driver is \%.1 \, f \, kg-cm', T2)
```

Scilab code Exa 6.18 Chapter6 Example 18

```
1 clc
2 //initialization of variables
3 clear
4 b=5 //cm
5 h=10 //cm
6 tL=3 //mm
7 tl=1.5 //mm
8 T=100 //kg-cm
9 // calculations
10 tl=tl/10
```

```
11 fs=T*100/(2*b*h*t1)
12 // results
13 printf('The maximum stress is %.1 f kg/cm^2',fs)
```

Scilab code Exa 6.19 Chapter6 Example 19

```
1 clc
2 //initialization of variables
3 clear
4 b=5 //cm
5 h=10 //cm
6 tL=3 //mm
7 tl=1.5 //mm
8 T=100 //kg-cm
9 // calculations
10 D=2*(b+h)/%pi
11 AR=b*h
12 AC=%pi*D^2/4
13 r=AC/AR
14 // results
15 printf('The ratio is 1:%.2f',r)
```

Scilab code Exa 6.20 Chapter6 Example 20

```
1 clc
2 //initialization of variables
3 clear
4 G=8*10^5 //kg/cm^2
5 //part (a)
6 T =20 //kg-m
7 t1=0.9 //cm
8 t2=0.5 //cm
9 b1=6.8 //cm
```

```
10 b2=14.2 /cm
11 I0=1/3*(2*b1*t1^3+b2*t2^3)
12 Zt = I0/max(t1,t2)
13 \text{ fs} = T * 100 / Zt
14 Phi=T*100/(G*I0)
15 printf('part (a)')
16 printf('\n The maximum shear stress and twist rate
       are respectively \n %d kg/cm^2, %.2e radians/cm '
       ,fs,Phi)
17
18 //part (b)
19 t1=1 //cm
20 \text{ t2=1} //\text{cm}
21 \text{ b1=10} //\text{cm}
22 b2=9 //cm
23 \quad I0=1/3*(b1*t1^3+b2*t2^3)
24 \text{ Zt}=I0/\max(t1,t2)
25 \text{ fs=T*100/Zt}
26 \text{ Phi} = T*100/(G*I0)
27 printf('\n part (b)')
28 printf('\n The maximum shear stress and twist rate
       are respectively \n %d kg/cm^2, %.2e radians/cm '
       ,fs,Phi)
29
30 //part (c)
31 \text{ t1=0.76} //\text{cm}
32 t2=0.48 //cm
33 \text{ b1=8} //\text{cm}
34 \text{ b2} = 14.04 //\text{cm}
35 \quad I0=1/3*(2*b1*t1^3+b2*t2^3)
36 \quad Zt=I0/\max(t1,t2)
37 \text{ fs} = T * 100 / Zt
38 Phi = T*100/(G*I0)
39 printf('\n part (c)')
40 printf('\n The maximum shear stress and twist rate
       are respectively \n %d kg/cm^2, %.2e radians/cm '
       ,fs,Phi)
41
```

```
42  //part(d)
43  t=1  //cm
44  b=19  //cm
45  IO=1/3*t^3*b
46  Zt=IO/t
47  fs=T*100/Zt
48  Phi=T*100/(G*IO)
49  printf('\n part (d)')
50  printf('\n The maximum shear stress and twist rate are respectively \n %d kg/cm^2, %.2e radians/cm', fs,Phi)
51
52  // Twist rate: answers differ by a scale of 10. wrong answers in the text
```

Scilab code Exa 6.21 Chapter6 Example 21

```
1 clc
2 // initialization of variables
3 clear
4 D=5 //cm
5 d=2 /cm
6 \text{ t_y} = 3000 //\text{kg/cm}^2
7 // calculations
8 R=D/2
9 \text{ r=d/2}
10 Tep=2*\%pi*R^3*t_y/3-\%pi*r^3*t_y/6
11 t_er=2*Tep/(%pi*R^3)
12 t_er1=t_er*r/R
13 \text{ prs=t_y-t_er1}
14 \text{ nrs=t_er-t_y}
15 // results
16 printf ('Maximum +ve residual stress occurs at %d cm
      radius and is equal to \n %d kg/cm^2',r,prs)
17 printf('\n Maximum -ve residual stress occurs at %d
```

cm radius and is equal to $n \% d \ kg/cm^2$ ',R,-nrs)

Chapter 7

BEAMS AND BENDING

Scilab code Exa 7.2 Chapter 7 Example 2

```
1 clc
2 //initialization of variables
3 clear
4 s=3 /m
5 n = 60
6 p = 50 / kg
7 // calculations
8 W=n*p
9 Rc=W*2/s
10 Rb = W - Rc
11 dx = 0.001;
12 x = 0:dx:s
13 n = s/dx +1;
14 \text{ for } i = 1:n
       Sx(i) = -Rb + Rc*x(i)^2/6;
15
       Mx(i) = Rb*x(i) - Rc*x(i)^3 /18;
16
17 end
18 // Results
19 figure(1); plot(x,Sx); title("Shear force diagram");
      xlabel("X (in m)");ylabel("Shear force (in kg)");
20 figure(2); plot(x, Mx); title("Bending Moment diagram")
```


Figure 7.1: Chapter 7 Example 2

```
; xlabel("X (in m)"); ylabel("Bending Moment (in kg \rightarrowm)");
```

Scilab code Exa 7.8 Chapter 7 Example 8

```
1 clc
2 //initialization of new variables
3 clear
4 b=10075 //mm
```


Figure 7.2: Chapter 7 Example 2

```
5 h=10 /mm
6 p1=7.5
7 p2=9
8 //part (a)
9 ybar=1*p1*0.5+1*p2*5.5
10 ybar = ybar / 16.5
11 xbar=1*p1*0.5+1*p1*4.75
12 \text{ xbar=xbar/} 16.5
13 printf('part (a)')
14 printf('\n Centroid coordinates (x,y) = (\%.2f, \%.2f)
       cm', xbar, ybar)
15
16 //part (b)
17 Ixx=p1*1^3/12+p1*1*(3.23-0.5)^2+1*p2^3/12+p2
      *1*(5.5-3.23)^2
18 Iyy=1*p1^3/12+p1*1*(3.75-2.43)^2+p2*1^3/12+p2
      *1*(2.43-0.5)^2
19 Ixy=p1*1.32*2.73+9*(-1.93)*(-2.27)
20 printf('\n part (b)')
21 printf('\n Moment of Areas: \n Ixx = \%.1 f cm<sup>4</sup> \n
      Iyy = \%.1 f cm^4 \ n \ Ixy=\%.1 f cm^4', Ixx, Iyy, Ixy)
22
23 // part (c)
24 alpha=0.5*atan(2*Ixy/(Iyy-Ixx))
25 alpha=alpha*180/%pi
26 printf('\n part (c)')
27 printf('\n Direction of principal axes:')
28 printf('\n alpha = \%.2 \, f degrees', alpha)
29
30 //part (d)
31 Iuu = (Ixx+Iyy)/2 + sqrt((Iyy-Ixx)^2/4 + Ixy^2)
32 Ivv = (Ixx + Iyy)/2 - sqrt((Iyy - Ixx)^2/4 + Ixy^2)
33 printf('\n part (d)')
34 printf('\n Iuu = \%.2 \text{ f cm}^4 \text{ \n Ivv} = \%.2 \text{ f cm}^4', Iuu,
      Ivv)
```

Scilab code Exa 7.10 Chapter 7 Example 10

```
1 clc
2 //initialization of variables
3 clear
4 Ys = 17000 / kg/cm^2
5 E=2*10^6 / kg/cm^2
6 d1 = 1 / mm
7 d=1 /cm
8 //calculations: 1 cm
9 R=E*d/(2*Ys)
10 M = Ys * \%pi * d^3/32
11 // results
12 printf('%d cm daimeter wire:',d)
13 printf('\n Minimum radius = \%.2 \text{ f cm',R})
14 printf('\n Bending Moment = \%.2 f kg-cm', M)
15 // calculations: 1 mm
16 R1=R/(d1*10)
17 M1 = M/(d1 * 1000)
18 // results
19 printf('\n %d mm daimeter wire:',d1)
20 printf('\n Minimum radius = \%.2 \text{ f cm'}, R1)
21 printf('\n Bending Moment = \%.2 \, \text{f kg-cm'}, M1)
```

Scilab code Exa 7.11 Chapter 7 Example 11

```
1 clc
2 //initialization of variables
3 clear
4 t=0.5 //cm
5 s=2 //m
6 p1=7.5 //cm
```

```
7 p2=10 //cm
8 d=p2/2
9 str=1650 //kg/cm^2
10 // calculations
11 // ab
12 IxX=p1*t^3/12+t*p1*d^2
13 // bc
14 alpha=atan(3/4)
15 Ixx=t*(p1+d)^3/12
16 \quad Iyy=0
17 \quad Ixy=0
18 Iuu=Ixx*cos(alpha)^2+Iyy*sin(alpha)^2-Ixy*sin(2*
       alpha)
19 Ixx = Iuu + IxX
20 \quad IXX = Ixx * 100 / (2 * p1)
21 Z=IXX/(d+t/2)
22 \text{ w=str}*Z*8/(s^2*100)
23 \text{ w=w/} 1000
24 // Results
25 printf ('w = \%.1 \, \text{f tonne/m'}, w)
```

Scilab code Exa 7.12 Chapter 7 Example 12

```
1 clc
2 //initialization of variables
3 clear
4 wb=10 //cm
5 wh=20 //cm
6 sb=0.5 //cm
7 sh=10 //cm
8 s=6 //m
9 fs=1650 //kg/cm^2
10 fw=150 //kg/cm^2
11 Es=2*10^6 //kg/cm^2
12 Ew=12*10^4 //kg/cm^2
```

```
13
14 //calculations
15 // Method 1
16 \text{ as} = 2*fs/(21*Es)
17 aw = 2*fw/(20*Ew)
18 \quad a = \min(as, aw)
19 ss=a*Ew*wh/2
20 //Moment resistance of steel portion
21 F = (fs + 1573) / 2*sb*sh
22 k=sb/3*(fs+2*1573)/(fs+1573)
23 Ms = 2*F*(10.5-k)
24 //Moment resistance of wooden portion
25 \quad F=ss*wb*wb/2
26 \text{ Mw} = 2*(F*(wb-wb/3))
27 \quad M = Ms + Mw
28 // Total udl supported
29 \quad W=M*8/(s*100)
30
31 // Results
32 printf ('Using method 1')
33 printf ('\n W = \%d kg', W)
34
35 //Method 2
36 \text{ nE=Es/Ew}
37 nf=fs/fw
38 \text{ Is} = 2*(0+\text{sb}*\text{sh}*10.25^2)
39 \text{ Iw=0.6*wh^3/12}
40 \quad I = Is + Iw
41 W=fs*I*8/(s*100*10.5)
42
43 // Results
44 printf('\n Using method 2')
45 printf('\nW = %d kg',W)
```

Scilab code Exa 7.13 Chapter 7 Example 13

```
1 clc
2 //initialization of variables
3 clear
4 p=6 //mm
5 \text{ Ixx} = 2375 //\text{cm}^4
6 Es=2*10^6 / kg/cm^2
7 EA1=0.667*10^6 // kg/cm^2
8 d1 = 10.6 / cm
9 d2=10 //cm
10 // calculations
11 I1=2*(0+p/10*10*10.3^2)
12 \quad I2 = Ixx * EA1 / Es
13 I=I1+I2
14 n=I/I2
15 // results
16 printf ('stiffness ratio = \%.2 \,\mathrm{f}',n)
17 n1=Es*d1/(d2*EA1)
18 printf('\n Stress ration = \%.2 \,\mathrm{f}',n1)
```

Scilab code Exa 7.14 Chapter 7 Example 14

```
1 clc
2 //initilization of new variables
3 clear
4 wt=0.8 //cm
5 ft=1.4 //cm
6 w=10 //cm
7 y=20 //cm
8 // Sigma_y: yield stress is not given explicitly
9 k1=wt*(40-2*ft)/2
10 Zp=(14*19.3+k1*9.3)*2
11 If=2*(w*ft^3/12+w*ft*19.3^2)
12 Iw=wt*(40-2*ft)^3/12
13 I=Iw+If
14 Z=I/y
```

```
15 sf=Zp/Z
16 //Results
17 printf('shape factor = %.2f',sf)
```

Scilab code Exa 7.15 Chapter 7 Example 15

```
1 clc
2 //initilization of new variables
3 clear
4 wt=0.8 //cm
5 ft=1.4 //cm
6 w=10 //cm
7 y=20 //cm
8 T=750 //T==750*sigma_y
9 // calculations
10 MpF=ft*w*(40-2*ft)
11 c1=((40-2*ft)/2)^2-(T-MpF)/wt
12 c=sqrt(3*c1)
13 // results
14 printf('Elastic core of %.1 f cm depth is present',2*c)
```

Scilab code Exa 7.17 Chapter 7 Example 17

```
1 clc
2 //initialization of new variables
3 clear
4 P=2000 //kg
5 a=4 //cm
6 b=1 //cm
7 d=7 //cm
8 r=3 //cm
9 // calculations
```

```
10 A = (a+b)/2*d
11 xbar=(a+b*2)*d/(r*(a+b))
12 rbar=r+xbar
13 I=b*d^3/12+r*d^3/12
14 \quad Ixx = I - A * 2.8^2
15 e=Ixx/(rbar*A)
16 f1=P*5.8*(xbar-0.62)/(A*0.62*r)
17 f2=P*5.8*(-d+2.18)/(A*0.62*(5.18+d-2.18))
18 str=P/A
19 Str_i=f1+str
20 \text{ Str_o} = -f2 - str
21 // Results
22 printf ('stress at the inner side of the hook = \%.1 f
      kg/cm<sup>2</sup> (tensile)',Str_i)
23 printf('\n stress at the outer side of the hook = \%
      .1 f kg/cm^2 (compressive)', Str_o)
24 // approximations involved in the text
```

Scilab code Exa 7.20 Chapter 7 Example 20

```
1 clc
2 //initialization of new variables
3 clear
4 t=1 //cm
5 a=40 //cm
6 A=236
7 // calculations
8 ybar=a*t*0.5+(50-1)*4*0.5/(a*t+(50-1)*4)
9 y1bar=1.25*a-ybar
10 IAA=a*t^3/3+(50-1)^3*4/12+(50-1)*4*25.5^2
11 o=IAA-A*ybar^2
12 //part (1)
13 r=y1bar/ybar
14 // results
15 printf('Ratio of maximum bending stress in the stem
```

```
and flange')
16 printf('\n Ratio = \%.2 \, \text{f}',r)
17 / part(2)
18 // calculations
19 r = (2/3*388*29.56) - (2/3*160*20.44) - (228*20.44)
20 \text{ r=r/}(2*2/3*388*29.56)
21 // results
22 printf('\n Ratio of S.F in flange to total S.F')
23 printf('\n Ratio = \%.2 f percent', r*100)
24 // part (3)
25 // calculations
26 r = 359 * 200 / Io
27 // results
28 printf('\n Ratio of maximum shear stress in the
       flange to average sher stress in the stem')
29 printf('\n Ratio = \%.2 \,\mathrm{f}',r)
30 / part (4)
31 // calculations
32 s = 10 / m
33 r=r/0.922
34 sigma=1650 //kg/cm^2
35 shear=945 //kg/cm^2
36 \text{ wsh}=2*200*\text{shear}/(r*s)
37 \text{ wsi} = 8 \times \text{Io} \times \text{sigma} / (\text{s}^2 \times 10 \times 29.56)
38 \text{ w=min}(\text{wsh},\text{wsi})
39 // results
40 printf ('\n Maximum u.d.l. = \%d kg/m', w)
41
42 //wrong moment of Inertia (Io) in the text and hence
        part (3) and part (4) are wrong
```

Scilab code Exa 7.21 Chapter 7 Example 21

```
1 clc
2 //initialization of new variables
```

```
3 clear
4 a=30 //cm
5 t=2.5 //cm
6 S=15 //cm
7 s=5 //Tonne
8 // calculations
9 I=a*a^3-25*25^3
10 I=I/12
11 tau_zx=s*1000*27.5*t*25/(4*35000*t)
12 FA=S*t*tau_zx
13 tau_xy=s*1000*a*t*27.5/(4*35000*t)
14 FB=tau_xy*t*S
15 // Results
16 printf('case A \n F = %d kg', FA)
17 printf('\n case B \n F= %d kg', FB)
```

Scilab code Exa 7.23 Chapter 7 Example 23

```
1 clc
2 //initialization of variables
3 clear
4 h=40 //cm
5 b=10 //cm
6 t1=1.4 //cm
7 t2=0.8 //cm
8 Ixx=13989.5 //cm^4
9 //calculations
10 e=b^2*h^2*t1/(4*Ixx)*(1-t1/h-t1/b+t1^2/(b*h))*(1-t1/h)
11 //Results
12 printf('Shear center: \n e = \%.2 f cm',e)
```

Scilab code Exa 7.33 Chapter 7 Example 33

```
1 clc
2 //initialization of new variables
3 clear
4 L=50 //cm
5 k=15 //cm
6 I=200 //cm^4
7 II=40 //cm^4
8 d=30 //cm
9 Pd=40 //cm
10 E=0.6667*10^6 //kg/cm^2
11 // calculations
12 delta=(100*10/2*16.33+L*d*35+L*k/2*25+d*k/2*45)
13 delta1=delta/E
14 // Results
15 printf('deflection = %.2 f mm', delta1*10^1)
```

Chapter 8

STABILITY OF EQUILIBRIUM COLUMNS

Scilab code Exa 8.1 Chapter8 Example 1

```
1 clc
2 // initialization of variables
3 clear
4 L=5 //m
5 D=20 /cm
6 \text{ t=1} //\text{cm}
7 E=2*10^6 // kg/cm^2
8 I = 2502 //cm^4
9 L=5*100 //cm
10 // calculations
11 P=E*I/(4*L^2)
12 // results
13 printf('The maximal axial load taken is %.1f Tonne',
     P/100)
14 printf('\n for both ends pinned, P=\%.1f Tonne',P
      *4/100)
15 printf('\n for both ends fixed, P=\%.1f Tonne',P
      *16/100)
16 printf('\n for one end fixed, one pinned, P=\%.1f
```

```
Tonne',P*4*2.13/100)

17

18 // Evaluation of critical load (P) in the text is wrong
```

Scilab code Exa 8.2 Chapter8 Example 2

```
2 //initialization of variables
    3 clear
   4 E=2*10^6 / kg/cm^2
    5 \text{ sigma_y=2600 } //\text{kg/cm}^2
    6 I = 2502 / cm^4
   7 L=500 / cm
   8 A = 59.7 / cm^2
   9 L_tcr=L/sqrt(I/A)
10
11 printf('The actual critical length ratio is %.1f',
                                    L_tcr)
12 / case (b)
13 L_cr=sqrt(E*%pi^2/sigma_y)
14 printf('\n case (b)')
15 printf('\n The critical length ratio is %.1f',L_cr)
16
17 // case (a)
18 L_cr=sqrt(E*%pi^2/(4*sigma_y))
19 printf('\n case (a)')
20 printf('\n The critical length ratio is %.1f',L_cr)
21
\frac{22}{\cos a} = \frac{1}{\cos a} = \frac{1
23 L_cr=sqrt(4*E*%pi^2/sigma_y)
24 printf('\n case (c)')
25 printf('\n The critical length ratio is %.1f',L_cr)
26
27 // case (d)
```

Scilab code Exa 8.3 Chapter8 Example 3

```
1 clc
2 //initialzation of variables
3 clear
4 h=3.5 //m
5 \text{ A} = 22.4 / \text{cm}^2
6 r = 7.08 / cm
7 E=2*10^6 / kg/cm^2
8 Q = 1/2
9 // calculations
10 h=h*100
11 Q1=(Q*h/r)^2
12 s_cr=E*%pi^2/Q1
13 // results
14 printf('The critical stress is %d kg/cm^2',s_cr)
15 printf('\n This is much higher than yield stress for
       the material, \n so the column will fail by
      yielding')
16
17 // rounding off errors in the text
```

Scilab code Exa 8.4 Chapter8 Example 4

```
1 clc
2 //initialization of variables
3 clear
4 r_min=1.17 //cm
5 \text{ A} = 17.21 //\text{cm}^2
6 Q = 1/2
7 h=3.5 / m
8 E=2*10^6 / kg/cm^2
9 h = h * 100
10 // calculations
11 Q1 = (Q*h/r_min)^2
12 \text{ s_cr=E*\%pi^2/Q1}
13 P_{cr} = s_{cr} * A
14 // results
15 printf('The crippling load is %d kg',P_cr)
16
17 // wrong calculations given in the text
```

Scilab code Exa 8.5 Chapter8 Example 5

```
1 clc
2 //initialization of variables
3 clear
4 L=2.5 //m
5 A=6.02 //cm^2
6 Q1=105
7 s=796.5 //kg/cm^2
8 // calculations
9 P=2*A*s
10 printf('The safe load is %d kg',P)
11 // Results
12 // wrong calculations in the text
```

Scilab code Exa 8.6 Chapter8 Example 6

```
1 clc
2 //initialization of variables
3 clear
4 h=3.5 //m
5 \text{ r}_x = 7.08 / \text{cm}
6 \text{ A} = 24.38 //\text{cm}^2
7 Q = 0.5
8 Q1=Q*h*100/r_xx
10 //Permissible load by secent formula
11 P=1231.28*2*A
12 printf('Permissible load by secent formula: %d kg',P
13
14 // Permissible load by Rankine-Gordon formula
15 P=1260/(1+(24.75^2/18000))*2*A
16 printf('\n Permissible load by Rankine-Gordon
      formula: %d kg',P)
17
18 // Permissible load by parabolic formula
19 P = (1050 - 0.0233 * Q1^2) * 2 * A
20 printf('\n Permissible load by parabolic formula: %d
       kg',P)
21
22 // Permissible load by straight-line formula
23 P = (1120 - Q1 * 4.8) * 2 * A
24 printf('\n Permissible load by parabolic formula: %d
       kg',P)
25
26 // Rounding off errors in the text
```

Chapter 9

COMBINED STRESSES

Scilab code Exa 9.1 Chapter 9 Example 1

```
1 clc
2 //initialization of variables
3 clear
4 // case (a)
5 \text{ A} = 72.9 / \text{cm}^2
6 Iy=633 //\text{cm}^4
7 \text{ Ix} = 1199 //\text{cm}^4
8 t=24/(5*Ix)+13.5/(5*Iy)
9 r = 1/(A*t)
10 printf('case (a) n = \%.3 f cm',r)
11 // case (b)
12 t=24/(5*Ix)-13.5/(5*Iy)
13 r=1/(A*t)
14 printf('\n case (b) \n r = \%.1 f cm',r)
15 // case (c)
16 t = -24/(5*Ix) + 13.5/(5*Iy)
17 r=1/(A*t)
18 printf('\n case (a) \n r = \%.1 f cm',r)
19 printf('\n So the load is to be placed on the leg OD
      , at a distance of %.1f cm from O',r)
```

Scilab code Exa 9.3 Chapter 9 Example 3

```
1 clc
2 //initialization of variables
3 clear
4 b=14 / cm
5 d=20 //cm
6 \text{ rx} = 8.46 //\text{cm}
7 \text{ ry} = 2.99 //\text{cm}
8 // calculations
9 \text{ ex=}2*\text{rx}^2/\text{d}
10 \text{ ey=}2*ry^2/b
11 h=2*ex
12 \ w = 2 * ey
13 // results
14 printf('for steel height=%.3f cm and width=%.3f cm',
       h,w)
15 // ISHB 225
16 b = 22.5 / cm
17 d=22.5 /cm
18 rx = 9.8 / cm
19 ry=4.96 / cm
20 // calculations
21 \text{ ex=}2*\text{rx}^2/\text{d}
22 \text{ ey} = 2 * \text{ry}^2 / b
23 h = 2 * ex
24 w = 2 * ey
25 // results
26 printf('\n for an ISHB height=\%.3 f cm and width=\%.3 f
        cm',h,w)
```

Scilab code Exa 9.4 Chapter 9 Example 4

```
1 clc
2 //initialization of variables
3 clear
4 t = 280 //kg/cm^2
5 c = 840 / kg/cm^2
6 \text{ xbar=7.5} //\text{cm} \text{ from AB}
7 \text{ A} = 210 //\text{cm}^2
8 // calculations
9 \text{ e=}50+\text{xbar} //\text{cm}
10 Iyy = 7433 / cm^2
11 k = (1/210 + e * xbar/Iyy)
12 P=t/k
13 k1 = (-1/210 + e * (xbar + 5)/Iyy)
14 P1=c/k1
15 P_safe=min(P1,P)
16 // results
17 printf('The safe load is %d kg',P_safe)
```

Scilab code Exa 9.5 Chapter 9 Example 5

```
1 clc
2 //initialization of the variables
3 clear
4 s=1.6 //m
5 s1=4 //m
6 pi=28 //degrees
7 w=16 //kg/m^2
8 p=100 //kg/m^2
9 pl=20 //cm
10 pb=10 //cm
11 r=500 //kg/m^3
12 // calculations
13 pi=pi*%pi/180 //radians
14 W=w*s+(r*pl*pb/(100*100))
15 P=p*s
```

Scilab code Exa 9.6 Chapter 9 Example 6

```
1 clc
2 //initialization of the problems
3 clear
4 \text{ s=1.6} / \text{m}
5 \text{ s1=4} //\text{m}
6 pi=28 // degrees
7 \text{ w=} 16 / \text{kg/m}^2
8 p=100 // kg/m^2
9 p1=20 //cm
10 pb=10 //cm
11 r=500 // kg/m^3
12 Zx = 54.8 / cm^3
13 Zy = 3.9 / cm^3
14 // calculations
15 pi=pi*%pi/180 //radians
16 \ W = w * s + 8.1
17 P=p*s
18 L=P+W*cos(pi)
19 Mx=L*s1^2*100/8
20 sigma_1=Mx/Zx
21 \text{ My=W*sin}(pi)*s1^2*100/8
```

```
22 sigma_2=My/Zy
23 sigma=sigma_1+sigma_2
24 // results
25 printf('Maximum stresses are %d kg/cm^2, tension or compression', sigma)
```

Scilab code Exa 9.7 Chapter 9 Example 7

```
1 clc
2 //initialization of variables
3 clear
4 \text{ s} = 1.6 / \text{m}
5 \text{ s1=4} / \text{m}
6 pi=28 // degrees
7 \text{ w=16} / \text{kg/m}^2
8 p=100 / kg/m^2
9 p1=20 //cm
10 pb=10 //cm
11 r=500 // kg/m^3
12 \text{ sg=5} //\text{cm}
13 E=12*10<sup>4</sup>
14 pi=pi*%pi/180 //radians
15 // calculations
16 \ W=w*s+(r*pl*pb/(100*100))
17 P=p*s
18 L=P+W*cos(pi)
19 Mx=L*s1^2*100/8
20 sigma_1=Mx*6/(pb*pl^2)
21 \text{ My=W*sin}(pi)*s1^2*100/8
22 \text{ sigma}_2=\text{My}*6/(pl*pb^2)
23 \text{ st=sigma}_1 * \text{sg}/10
24 Ts=st-sigma_2
25 \text{ ez=Ts/E}
26 // results
27 printf ('The strain gauge, aligned to the z axis will
```

Scilab code Exa 9.8 Chapter 9 Example 8

```
1 clc
     2 //initialization of variables
     3 clear
    4 P=3 //tonne/m
     5 \text{ s=} 6 \text{ //m}
     6 1=50 /cm
    7 b = 20 / cm
    8 \text{ k=0.5} / \text{m}
    9 //calculations
10 R = P * s / 2
11 sf=R-k*P
12 bm=R*k-P*k^2/2
13 tau_xy=1.5*sf*1000/(1*b)
14 tau_max=tau_xy
15 \text{ str=bm*s*10^5/(b*l*l)}
16
17 // consider the line a-a
18
19 sigma_x=str*12.5/25
20 \text{ sigma_y=0}
21 tau_xy = tau_xy * (1 - (12.5/25)^2)
22
23 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sqrt((1/2*(s
                                         sigma_y))^2+tau_xy^2)
24 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(s
                                         sigma_y))^2+tau_xy^2)
25
26 printf ('For the line a-a the bending stress and
                                         shearing stress are \n respectively \%.2 f kg/cm^2,
                                            \%.2 \text{ f kg/cm}^2 ', sigma_x, tau_xy)
27 printf('\n The principal stresses are \%.2 f kg/cm^2 (
```

```
tension) \%.2 \, \text{f} \, \text{kg/cm}^2 \, (\text{compression}) ', sigma_1,
                                       sigma_2)
28
29 //consider the line c-c
30 printf('\n For the line c-c the bending stress and
                                        shearing stress are \n respectively \%.2 f kg/cm^2,
                                           \%.2 \text{ f kg/cm}^2 ', sigma_x, tau_xy)
31 printf('\n The principal stresses are \%.2 f kg/cm^2 (
                                        compression) %.2 f kg/cm<sup>2</sup> (tension) ',sigma_2,
                                       sigma_1)
32
33 //for the line b-b
34 tau_xy=tau_max
35 \text{ sigma}_x=0
36 \text{ sigma_y=0}
37 \text{ sigma}_1 = (\text{sigma}_x + \text{sigma}_y)/2 + \text{sqrt}((1/2*(\text{sigma}_x - \text{sigma}_y))/2 + \text{sqrt}((1/2*(\text{sigma}_x - \text{sigma}_x))/2 + \text{sqrt}((1/2*(\text{s
                                        sigma_y))^2+tau_xy^2)
38 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(s
                                        sigma_y))^2+tau_xy^2)
39 // results
40 printf('\n For the line b-b the bending stress and
                                        shearing stress are \n respectively \%.2 f kg/cm^2,
                                            \%.2 \text{ f kg/cm}^2 ', sigma_x, tau_xy)
41 printf('\n The principal stresses are \%.2 \, f \, kg/cm^2 (
                                         tension) \%.2 \, \text{f} \, \text{kg/cm}^2 \, (\text{compression}) ', sigma_1,
                                       sigma_2)
```

Scilab code Exa 9.9 Chapter 9 Example 9

```
1 clc
2 //initialization of variables
3 clear
4 P=3 //tonne/m
5 s=6 //m
6 l=50 //cm
```

```
7 b=20 //cm
   8 \text{ k=0.5} / \text{m}
    9 //calculations
10 R = P * s / 2
11 sf=R-k*P
12 bm=R*k-P*k^2/2
13 tau_xy=1.5*sf*1000/(1*b) //max shear stress
14 tau_max=tau_xy
15 str=bm*s*10^5/(b*l*1) //max bending stress
16
17 // consider the line a-a
18
19 \text{ sigma}_x=\text{str}*12.5/25
20 \text{ sigma_y=0}
21 tau_xy=tau_xy*(1-(12.5/25)^2)
22
23 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sqrt((1/2*(s
                                sigma_y))^2+tau_xy^2)
24 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(s
                                sigma_y))^2+tau_xy^2)
25
26 theta=1/2*atan(2*tau_xy/(sigma_x-sigma_y))
27 sigma_p=sigma_1/cos(theta)
P = sigma_p * 2 * 1 * b / (3 * 1000)
29 printf ('A prestressing force of %.2 f Tonne must be
                                 applied to balance the tension at a-a',P)
30
31 //At bottom point D or C
32 \text{ pre_str=P*2*1000/(1*b)}
33 net=str-pre_str
34 printf('\n At bottom point D or C')
35 printf('\n Net tension = \%.2 \, \text{f kg/cm}^2',net)
36
37 //consider the line b-b
38 pre_str=P
39 sigma_x=pre_str
40 \text{ sigma_y=0}
41 tau_xy=tau_max
```

```
42 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - s
                                                           sigma_y))^2+tau_xy^2)
43 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - s
                                                          sigma_y))^2+tau_xy^2)
 44 printf('\n At section b-b')
45 printf('\n pre-stress=\%.2 f kg/cm^2',pre_str)
46 printf('\n principal stresses are %.2f, %.2f kg/cm^2
                                                                     ',sigma_1,sigma_2)
47
 48 //for the line c-c
 49 sigma_x=str*12.5/25
 50 \text{ sigma_y=0}
51 \quad tau_xy = tau_xy * (1 - (12.5/25)^2)
 52 \text{ sigma}_1 = (\text{sigma}_x + \text{sigma}_y)/2 + \text{sqrt}((1/2*(\text{sigma}_x - \text{sigma}_y))/2 + \text{sqrt}((1/2*(\text{sigma}_x - \text{sigma}_x))/2 + \text{sqrt}((1/2*(\text{s
                                                          sigma_y))^2+tau_xy^2)
 53 sigma_2=(sigma_x+sigma_y)/2-sqrt((1/2*(sigma_x-
                                                          sigma_y))^2+tau_xy^2)
54 pre_str=pre_str/2
55 net=sigma_1+pre_str
 56 sigma_x=net
57 \text{ sigma_y=0}
 58 \text{ sigma}_1 = (\text{sigma}_x + \text{sigma}_y)/2 + \text{sqrt}((1/2*(\text{sigma}_x - \text{sigma}_x))/2 + \text{sqrt}((1/2*(\text{sigma}_x) + \text{sigma}_x)/2 + \text{sqrt}((1/2*(\text{sigma}_x) + \text{sqrt}((1/2*(\text{sigma}_x) + \text{sqrt})/2 + \text{sqrt}(
                                                          sigma_y))^2+tau_xy^2)
 59 sigma_2=(sigma_x+sigma_y)/2-sqrt((1/2*(sigma_x-
                                                           sigma_y))^2+tau_xy^2)
60 // results
 61 printf('\n At section c-c')
 62 printf('\n the direct stress is \%.2 \,\mathrm{f} \,\mathrm{kg/cm^2}',net)
63 printf('\n pre-stress = \%.2 \,\mathrm{f} \,\mathrm{kg/cm^2}',pre_str)
64 printf('\n principal stresses are \%.2f, \%.2f kg/cm^2
                                                                     ',sigma_1,sigma_2)
65
66 // wrong calculations in the thext for some parts
```

Scilab code Exa 9.10 Chapter 9 Example 10

```
1 clc
    2 //initialization of variables
    3 clear
   4 b=2 /cm
    5 h=2 /cm
    6 T = 2000 / kg - cm
    7 V = 250 / kg
   8 M = 2000 //kg-cm
   9 // calculations
10 \operatorname{Mmax}=M*6/(b*h*b)
11 Vmax=3*V/(2*b*h)
12 \text{ Zt} = 0.208 * b^2 * h
13 \text{ Tmax=T/(Zt)}
14
15 sigma=Mmax
16 printf ('points A,B,')
17 printf('\n sigma=\%d kg/cm^2 (tension)', sigma)
18 printf('\n points C,D,')
19 printf('\n sigma=\%d kg/cm^2 (cmpression)', sigma)
20 tau=Vmax+Tmax
21 printf('\n point E')
22 printf('\n tau=\%.2 f kg/cm^2 shear',tau)
23 tau=Vmax-Tmax
24 printf('\n tau=\%.2 f kg/cm^2 shear',tau)
25 // at G
26 sigma_x=sigma
27 \text{ sigma_y=0}
28 \quad tau_xy=Tmax
29 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sqrt((1/2*(s
                                 sigma_y))^2+tau_xy^2)
30 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(s
                                 sigma_y))^2+tau_xy^2)
31 // results
32 printf('\n at point G')
33 printf('\n sigma_1 = \%d kg/cm^2 (tension)', sigma_1)
34 printf('\n sigma_2 = \%d kg/cm^2 (compression)',
                                 sigma_2)
35
```

```
36 // Question was asked only to find out at A,B,C,D,E, F and G
```

Scilab code Exa 9.11 Chapter 9 Example 11

```
1 clc
2 //initialization of variables
3 clear
4 \text{ w} = 10 / \text{cm}
5 \text{ s} = 2.8 / \text{m}
6 \text{ P=1} // \text{tonne}
7 Ft=1.4 //cm
8 \text{ Wt} = 0.8 //\text{cm}
9 Ix=13989.5 //\text{cm}^4
10 Z = 699.5 / cm^3
11 // calculations
12 \text{ BM} = 2.8
13 T=P*1000*8.21
14 SF=P*1000
15 BS=BM*10^5/(Z)
16 \text{ sigmaXA=BS*18.6/20}
17 K=w*Ft*19.3+18.6*Wt*9.3
18 tau_xy_C=SF/(Ix*Wt)*K
19 tau_xy_A=tau_xy_C*(w*Ft*19.3)/K
20 tau_xy_B=tau_xy_A*0.5*Wt/w
21 sigmaXB=sigmaXA*19.3/20
22
23 tau_max=3*Ft*8210/(w*Ft^3+37.2*Wt^3)
24 tau_A=3*Wt*8210/(w*Ft^3+37.2*Wt^3)
25
26 //For point A
27 Shear=tau_xy_A-tau_A
28 \text{ sigma_x=sigmaXA}
29 \text{ sigma_y=0}
30 \text{ tau_xy=Shear}
```

```
31 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sqrt((1/2*(s
                                                 sigma_y))^2+tau_xy^2)
32 \text{ sigma}_2 = (\text{sigma}_x + \text{sigma}_y)/2 - \text{sqrt}((1/2*(\text{sigma}_x - \text{sigma}_y))/2)
                                                sigma_y))^2+tau_xy^2)
33
34 printf('For point A')
35 printf('\n Total shear= \%.1 \, \text{f kg/cm}^2', Shear)
36 printf('\n Bending stress = \%d kg/cm<sup>2</sup> (Compr.)',
                                                sigma_x)
37 printf('\n Principal stresses are %d (tension), %d (
                                               comp.) kg/cm^2 ', sigma_1, sigma_2)
38
39 //For point B
40 printf('\n FOr point B')
41 printf('\n Bending shear stress is \%.2 \, f \, k/cm^2',
                                               tau_xy_B)
42 sigmaXB=BS*19.3/20
43 sigma_x=sigmaXB
44 sigma_y=0
45 tau_xy=tau_max
46 sigma_1 = (sigma_x + sigma_y)/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x - sigma_x))/2 + sqrt((1/2*(sigma_x))/2 + sqrt((1/2*(s
                                                sigma_y))^2+tau_xy^2)
47 sigma_2 = (sigma_x + sigma_y)/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x - sigma_x))/2 - sqrt((1/2*(sigma_x))/2 - sqrt((1/2*(s
                                                sigma_y))^2+tau_xy^2)
48 printf('\n Principal stresses are %d (tension), %d (
                                               comp.) kg/cm<sup>2</sup> ',sigma_1,sigma_2)
49
50 // Answers in the text are approximations
```

Scilab code Exa 9.12 Chapter 9 Example 12

```
1 clc
2 //initialization of variables
3 clear
4 b=10 //cm
```

```
5 h = 10 / cm
6 \text{ P=5} //\text{tonne}
7 \text{ e=1} //\text{cm}
8 E=12*10^4 / kg/cm^2
9 \text{ str} = 130 // \text{ kg/cm}^2
10 \quad n=3
11 L=2 //m
12 // calculations
13 L=L*100 //cm
14 Pcr=%pi^2*E*b*h^3/(12*L^2)
15 Pcr=Pcr/1000
Pcr))
17 // results
18 printf('permissible stress = %d kg/cm^2',str)
19 printf('\n develoed stress = \%.1 \,\mathrm{f} \,\mathrm{kg/cm^2}', Smax)
20 printf('\n Since it is below the permissible stress,
       the design is safe')
```

Scilab code Exa 9.13 Chapter 9 Example 13

```
1 clc
2 //initializatio of variables
3 clear
4 // linked to 9.13
5 b=10 //cm
6 h=10 //cm
7 P=5 //tonne
8 e=1 //cm
9 E=12*10^4 //kg/cm^2
10 str=130 // kg/cm^2
11 n=3
12 L=2 //m
13 // calculations
14 L=L*100 //cm
```

```
15 Pcr=%pi^2*E*b*h^3/(12*L^2)
16 Pcr=Pcr/1000
17 Smax = -P*1000/(b*h) - (P*1000*1*5*12/10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10^4)*1/(1-(n*P/100*1)*10
                              Pcr))
18 Smax=abs(Smax)
19
20 \text{ rr}=b*h^3/(12*100)
21 Smax_se=P*1000/(b*h)*(1+e*5/rr*sec(%pi/2*sqrt(n*P/
                              Pcr)))
22 Perror=(Smax-Smax_se)/Smax
23 Perror=Perror*100
24 Perror = abs (Perror)
25 // results
26 printf ('Using secent formula, stress obtained is %d
                              kg/cm^2', Smax_se)
27 printf('\n hence, the percentage error \%.2\,\mathrm{f}', Perror)
28 // approximate answees in the text
```

Scilab code Exa 9.14 Chapter 9 Example 14

```
1 clc
2 //initialization of variables
3 clear
4 P=400 //kg/m
5 L=10 //m
6 F=10 //tonne
7 n=3
8 Ixx=5943.1 //cm^4
9 A=52.03 //cm^2
10 rx=10.69 //cm
11 E=2*10^6 //kg/cm^2
12 // calculations
13 Pcr=%pi^2*E*Ixx/((L*100)^2)
14 Pcr=Pcr/1000
15 e=P*L^2/(8*F*1000)
```

Scilab code Exa 9.15 Chapter 9 Example 15

```
1 clc
2 //initialization of variables
3 clear
4 // linked to 9_14
5 // calculations
6 P = 400 / kg/m
7 L = 10 / m
8 F=10 //tonne
9 n=3
10 Ixx = 5943.1 //cm^4
11 A=52.03 / \text{cm}^2
12 rx = 10.69 / cm
13 E=2*10^6 / kg/cm^2
14 Pcr=%pi^2*E*Ixx/((L*100)^2)
15 Pcr=Pcr/1000
16 \text{ e=P*L^2/(8*F*1000)}
17 g=e*12.5*100/rx^2
18 Smax=F*1000/A*(1+g*1/(1+n*(F/Pcr)))
19 // results
20 printf('The maximum stress developed is %d kg/cm^2',
21
22 // approximate answer in the text
```

Chapter 10

INTRODUCTION TO ENERGY METHODS

Scilab code Exa 10.3 Chapter10 Example 3

```
1 clc
2 //initialization of variables
3 clear
4 L=6000 //cm
5 L1 = 150 / cm
6 T = 90 / W
7 Ip = \%pi * 10^4/32
8 E=2*10^6 / kg/cm^2
9 G=E/2.5
10 A=3 //cm^2
11 \text{ delta=0.5}
12 //calculations
13 U=L/(2*E*A)+(T*T*L1/(2*G*Ip))
14 // U=0.5*W* delta
15 \ W=0.25/U
16 //results
17 printf ('W = \%.1 \,\mathrm{f}\,\mathrm{kg}', W)
```

Scilab code Exa 10.4 Chapter10 Example 4

```
1 clc
2 //initialization of variabes
3 clear
4 cA=10 //\text{cm}^2
5 \text{ wA}=5 //\text{cm}^2
6 P=1 //tonne
7 E=2*10^6 // kg/cm^2
8 P = P * 1000 // kg
9 // calculations
10 U_{p=P^2*200/(2*E*cA)*1/sqrt(3)*(2+4+6+8+10+12)
11 U_{do}=P^2*200/(2*E*cA)*1/sqrt(3)*(1+3+5+7+9+11+13/2)
12 U_{web=P^2*200/(2*E*wA)*1/sqrt(3)*(2*13)}
13 \quad U=U_up+U_do+U_web
14 delta=U*2/(P)
15 // results
16 printf ('deflection = \%.3 \, \text{f cm'}, delta)
```

Scilab code Exa 10.7 Chapter 10 Example 7

```
1 clc
2 //initialization of variables
3 clear
4 L=1 //m
5 w=10 //kg
6 h=50 //cm
7 A=1 //cm^2
8 E=2*10^6 //kg/cm^2
9 Ar=1 //cm^2
10 Ec=3*10^4 //kg/cm^2
11 // For steel
```

```
12 del=w*L*100/(A*E)
13 P=w*(1+sqrt(1+(2*h/del)))
14 printf('Stress in steeel = %d kg/cm^2 ',P)
15
16 // for cloth laminate
17 del=w*L*100/(A*Ec)
18 P=w*(1+sqrt(1+(2*h/del)))
19 printf('\n Stress in cloth laminate = %.1 f kg/cm^2 ',P)
```

Scilab code Exa 10.8 Chapter10 Example 8

```
1 clc
 2 //initialization of variables
 3 clear
 4 \text{ w} = 64 //\text{kg}
 5 \text{ H} = 60 \text{ //cm}
 6 b = 40 / cm
7 h=5 /cm
8 E=0.12*10^6 // kg/cm^2
9 Es=2*10^6 / kg/cm^2
10 // for part (a) and (b)
11 I=b*h^3/12
12 \text{ del} = 4*w*120^3/(E*I)
13 P=w*(1+sqrt(1+(2*H/del)))
14 \text{ str} = P * 240 * 6/(b*h^2)
15 printf('part (a) and (b)')
16 printf('\n Maximum stress in wood = \%d kg/cm^2', str)
17 printf('\n Max. force on divers feet = \%d kg',P)
18
19 //for part (c)
20 \quad Ixx = I * E / Es
21 \text{ Zxx} = 19.4 //\text{cm}^2
22 \text{ Ixx} = 72.7 / \text{cm}^4
23 del=4*w*120^3/(Es*Ixx)
```

```
24 P=w*(1+sqrt(1+(2*H/del)))
25 str=P*240/Zxx
26 // results
27 printf('\n part (c)')
28 printf('\n Maximum stress in steel = %d kg/cm^2',str
)
29 printf('\n Max. force on divers feet = %d kg',P)
30 printf('\n Hence wood is better than steel')
31
32 // wrong calculations in some parts
```

Scilab code Exa 10.11 Chapter10 Example 11

```
1 clc
2 //initialization of variables
3 clear
4 A=100 //cm^2
5 E=2*10^6 //kg/cm^2
6 // calculations
7 del=1093.5*10^6/(E*A)
8 // 1093.5 from the table
9 // results
10 printf('Central deflection = %.2 f mm', del)
```

Scilab code Exa 10.12 Chapter 10 Example 12

```
1 clc
2 //initialization of variables
3 clear
4 T=30 //degree celcius
5 alpha=0.0000117 // per degree celcius
6 //AB
7 L=6 //m
```

```
8 dl=T*alpha*L
9 df=0.375 //kg
10 tot=dl*df
11 //BC
12 dl=T*alpha*L
13 df=0.375 //kg
14 tot=tot+dl*df
15 //CD
16 dl=T*alpha*L
17 df=0.75 //kg
18 tot=tot+dl*df
19 tot=tot*100*2
20 // results
21 printf('The deflection is %.4 f cm',tot)
```