HW-7

DREW MORRIS

Problem 1. Consider the following Linear Programming Problem.

maximize
$$x_1 + 2x_2 + x_3 + x_4$$

subject to $2x_1 + x_2 + 5x_3 + x_4 \le 8$
 $2x_1 + 2x_2 + 0x_3 + 4x_4 \le 12$
 $3x_1 + x_2 + 2x_3 + 0x_4 \le 18$
 $x_1 , x_2 , x_3 , x_4 \ge 0$

This is its final dictionary where x_5, x_6, x_7 are slack variables.

What is the optimal solution for each of the modified problems?

- (1) The objective function is $3x_1 + 2x_2 + x_3 + x_4$.
- (2) The objective function is $x_1 + 2x_2 + \frac{1}{2}x_3 + x_4$.
- (3) The second constraint is $2x_1 + 2x_2 + 0x_3 + 4x_4 \le 26$.
- (1) The optimal solution is $\mathbf{x} = \begin{bmatrix} 2 & 4 & 0 & 0 & 0 & 8 \end{bmatrix}^T$ with $\zeta = 14$.
- (2) The optimal solution is $\mathbf{x} = \begin{bmatrix} 0 & 6 & \frac{2}{5} & 0 & 0 & 0 & \frac{56}{5} \end{bmatrix}^T$ with $\zeta = \frac{61}{5}$.
- (3) The optimal solution is $\mathbf{x} = \begin{bmatrix} 0 & 8 & 0 & 0 & 10 & 10 \end{bmatrix}^T$ with $\zeta = 16$.

Problem 2. In reference to the previous problem, find the range over the objective coefficients for which the final dictionary remains optimal.

Date: October 24th, 2023.

HW-7 2

Proof. In other words, we wish to find
$$\mathbf{c}$$
 such that $\langle \mathbf{c}, \mathbf{x}_{\mathscr{N}} \rangle$ is optimal where $\mathbf{x}_{\mathscr{N}} = \begin{bmatrix} 0 \\ 6 \\ \frac{2}{5} \\ 0 \end{bmatrix}$. No-

tice in the final dictionary above, x_1, x_4 are non-basic with objective coefficients of $-\frac{6}{5}, -\frac{14}{5}$ respectively. Thus c_1, c_4 must be at most $\frac{6}{5}, \frac{14}{5}$ respectively. Furthermore, c_2, c_3 must be chosen such that the resulting objective coefficients attached to x_5, x_6 are at most $\frac{1}{5}, \frac{9}{10}$ respectively. This yields $c_2 \in [-\frac{6}{5}, \infty)$ and $c_3 \in [-1, 9]$. Thus

$$\mathbf{c} \in \left(-\infty, \frac{6}{5}\right] \times \left[-\frac{6}{5}, \infty\right) \times \left[-1, 9\right] \times \left(-\infty, \frac{14}{5}\right]$$

Problem 3. Consider the following dictionary.

For what values of μ is this dictionary optimal?

Proof. For this dictionary to be optimal, the following must be true.

$$11 + 5\mu \ge 0, -2 + 2\mu \ge 0, -2 + \mu \ge 0, 3 - \mu \ge 0, 1 + 2\mu \ge 0$$

i.e.

$$\mu \ge -\frac{11}{5}, \mu \ge 1, \mu \ge 2, \mu \le 3, \mu \ge \frac{1}{2}$$

Thus

$$\mu \in \left[-\frac{11}{5}, \infty\right) \cap [1, \infty) \cap [2, \infty) \cap (\infty, 3] \cap \left[\frac{1}{2}, \infty\right) = [2, 3]$$

Problem 4. Let $A \in M_{m \times n}(\mathbb{F})$ and $\mathbf{c} \in \mathbb{F}^n$ for some $m, n \in \mathbb{N}_0$. Let $\xi^* : \mathbb{F}^m \to \mathbb{F}$ be a function such that for each $\mathbf{b} \in \mathbb{F}^m, \xi^*(\mathbf{b})$ is the optimal objective function value for the following linear programming problem.

HW-7 3

maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} \leq \mathbf{b}$
 $\forall_{i=1}^n x_i \geq 0$

Suppose $\xi^*(\mathbf{b}) < \infty$ for every $\mathbf{b} \in \mathbb{F}^m$. Prove ξ^* is a concave function.

Proof. Let $\mathbf{u}, \mathbf{v} \in \mathbb{F}^m$ and $t \in (0,1)$. We wish to prove

$$\xi^*(t\mathbf{u} + (1-t)\mathbf{v}) \ge t\xi^*(\mathbf{u}) + (1-t)\xi^*(\mathbf{v})$$

Without loss of generality, assume $\mathbf{v}\mathbf{x}_u \geq \mathbf{v}\mathbf{x}_v$. Observe.

$$t\xi^*(\mathbf{u}) + (1-t)\xi^*\mathbf{v} = t\mathbf{u}^T\mathbf{x}_u + (1-t)\mathbf{v}^T\mathbf{x}_v \le t\mathbf{u}^T\mathbf{x}_u + (1-t)\mathbf{v}^T\mathbf{x}_u =$$

$$(t\mathbf{u} + (1-t)\mathbf{v})^T\mathbf{x}_u \le \xi^*(t\mathbf{u} + (1-t)\mathbf{v})$$