A Methodology to Define QoS and SLA Requirements in Service Choreographies

Authors

Victoriano Alfonso Phocco Diaz Daniel Macedo Batista

Departament of Computer Science University of Sao Paulo alfonso7@ime.usp.br, batista@ime.usp.br

September 17, 2012

Agenda

- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- **5** Conclusions and Future Works

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

Key elements:

• Services (mainly Web services).

SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA

SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .

SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .
 - Service Orchestration .

SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .
 - Service Orchestration
 - Service Choreography .

SOC (Service Oriented Computing)

It is a new computing paradigm that utilizes services as the basic constructs to support the development of rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. [Papazoglou et al., 2006].

- Services (mainly Web services).
- SOA
- Service Composition .
 - Service Orchestration .
 - Service Choreography
- ...

Service Orchestration

Figure: Service Orchestration

Service Choreography

- Allows service composition in a collaborative manner.
- Describes the P2P interactions of the externally observable behavior of its participants.
- Don't have a single point of control or coordination.

Figure: Service Choreography

Service Choreography

Figure: Service Choreography

- A Choreography is a type of process.
 - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
 - Formalizes the way business Participants coordinate their interactions.

- A Choreography is a type of process.
 - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
 - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.

- A Choreography is a type of process.
 - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
 - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.
- Two approaches:

- A Choreography is a type of process.
 - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
 - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.
- Two approaches:
 - ► Interconnection Model: With collaborations diagrams.

- A Choreography is a type of process.
 - Differs in purpose and behavior from a standard BPMN Process (Process Orchestration).
 - Formalizes the way business Participants coordinate their interactions.
- Focus on the exchange of information (Messages) between these Participants.
- Two approaches:
 - ▶ Interconnection Model: With collaborations diagrams.
 - ► Interaction Model: BPMN Choreographies. using special activities (*Choreography Activity*).

Interaction Model

- Interactions globally captured.
- Basic building block: atomic interaction between two parties.
- "Choreography" in BPMN 2.0.

BPMN Choreography

Figure: BPMN elements for modeling choreographies (BPMN 2.0).

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

Problem to Solve

• Planning of resources before/during development of choreography.

Problem to Solve

- Planning of resources before/during development of choreography.
- Little approaches don't evaluate choreographies:
 - focusing on QoS or
 - in earlier stages of development.

Problem to Solve

- Planning of resources before/during development of choreography.
- Little approaches don't evaluate choreographies:
 - focusing on QoS or
 - in earlier stages of development.
- To guarantee QoS about communications (network) is important.

Objectives

- To assess the impact of QoS attributes in a choreography interaction model.
- To propose a novel methodology to establish requirements for QoS and SLA in early stages of development.
- To plan the capacity of the network elements in choreographies.
- To convert a interaction model to a GSPN including a QoS model.

- Introduction
- 2 Problem
- Methodology
- Performance Evaluation
- 5 Conclusions and Future Works

Description

- **1** Mapping of a choreography to a GSPN.
 - ▶ The choreography is specified according "interaction model".
 - ▶ The choreography is specified in BPMN 2.0.
 - ► The resulting GSPN include a QoS model.

Description

- **1** Mapping of a choreography to a GSPN.
 - ▶ The choreography is specified according "interaction model".
 - ► The choreography is specified in BPMN 2.0.
 - ▶ The resulting GSPN include a QoS model.
- Configurations of the resulting GSPN.

Description

- Mapping of a choreography to a GSPN.
 - ▶ The choreography is specified according "interaction model".
 - ► The choreography is specified in BPMN 2.0.
 - ► The resulting GSPN include a QoS model.
- Configurations of the resulting GSPN.
- Simulations of scenarios.

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
 - In service operation: time to complete the service.

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
 - In service operation: time to complete the service.
 - ► In network : delay and communication errors.

- Defining the QoS attributes involved in service, network and message aspects.
- QoS attributes:
 - In service operation: time to complete the service.
 - ► In network: delay and communication errors.
 - ► In message : message format.

Mapping BPMN to GSPN (I)

Figure: Mapping of events and gateways elements to modules of Petri nets

Mapping BPMN to GSPN (II)

A) Interaction in BPMN 2

B) GSPN Mapping with QoS

Mapping BPMN to GSPN (II)

A) Interaction in BPMN 2

B) GSPN Mapping with QoS

Mapping BPMN to GSPN (II)

Mapping BPMN to GSPN (II)

Mapping BPMN to GSPN (II)

A) Interaction in BPMN 2

B) GSPN Mapping with QoS

Mapping BPMN to GSPN (II)

Mapping Algorithm

Mapping of choreography in BPMN 2.0 to GSPN with QoS model

Input: Process Choreography $PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F})$ in BPMN 2.0.

Mapping Algorithm

Mapping of choreography in BPMN 2.0 to GSPN with QoS model

 $\begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}$

Output: Generalized Stochastic Petri Net $GSPN_{QoS}$.

Mapping Algorithm

Mapping of choreography in BPMN 2.0 to GSPN with QoS model

```
 \begin{array}{ll} \textbf{Input:} & \textbf{Process Choreography} \ \ PC = (\mathcal{O}, \mathcal{A}, \mathcal{E}, \mathcal{G}, \mathcal{T}, \{e^S\}, \mathcal{E}^I, \{e^E\}, \mathcal{E}^{I_M}, \mathcal{E}^{I_T}, \mathcal{G}^F, \mathcal{G}^J, \\ \mathcal{G}^X, \mathcal{G}^M, \mathcal{G}^V, \mathcal{F}) & \text{in BPMN 2.0.} \end{array}
```

Output: Generalized Stochastic Petri Net $GSPN_{QoS}$.

 $CT_i \in \mathcal{T}$, $G_i \in \mathcal{G}$ and $E_k \in \mathcal{E}$. where $i, j, k \in \mathbb{N}$.

```
\begin{array}{l} PNQoS(CT_i),\ PNQoS(G_j),\ PNQoS(E_k)\ \ \text{are functions return a GSPN according to mapping rules.} \\ \bigoplus \ \ \text{as the operator composition that returns other GSPN.} \\ \\ GSPN_{QoS} \leftarrow Empty\ Petri\ Net \\ For\ CT_i \in \mathcal{T}\ \ \ \text{Do} \\ GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PNQoS(CT_i) \\ \text{Add a arrival timed Transition at beginning of the } GSPN_{QoS}. \\ \\ End \\ For\ G_i \in \mathcal{G}\ \ \text{Do} \\ GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(G_i) \\ End \\ For\ E_k \in \mathcal{E}\ \ \ \text{Do} \\ GSPN_{QoS} \leftarrow GSPN_{QoS} \oplus PN(E_k) \\ \\ End \\ \text{Add a starting Place and immediate Transition at the beginning of the } GSPN_{QoS}. \\ \\ \text{Add a ending Place and immediate Transition at the end of the } GSPN_{QoS}. \\ \end{array}
```

Return GSPN_{OoS}

3) Replacing and composing

3) Replacing and composing

4) Reducing and adding final elements

- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- 5 Conclusions and Future Works

Scenario

Figure: Choreography example using BPMN2 elements.

Scenario

Figure: Choreography example using BPMN2 elements.

Mapping

Figure: GSPN obtained from the choreography.

Table: Weights of Scenario 1 and Scenario 2

	Weights	
Transition	Scenario 1	Scenario 2
$T_{latency1}, T_{latency2}, T_{latency3}$	0.99	0.94
T_{cerr1} , T_{cerr2} , T_{cerr3}	0.01	0.06
$T_{receive}$, $T_{receive2}$, $T_{receive3}$	99	97
T_{merr1} , T_{merr2} , T_{merr3}	1	3
Tarrival2, Tarrival3	0.5	0.5

 \bullet 1 token = 1 choreography instance.

- 1 token = 1 choreography instance.
- 100 tokens are considered to each scenario at the place Start.
- 100 concurrent instances were executed (multiple-server semantic).

- 1 token = 1 choreography instance.
- 100 tokens are considered to each scenario at the place Start.
- 100 concurrent instances were executed (multiple-server semantic).
- The Pipe2 tool was used to model and simulate the GSPN.

- 1 token = 1 choreography instance.
- 100 tokens are considered to each scenario at the place Start.
- 100 concurrent instances were executed (multiple-server semantic).
- The Pipe2 tool was used to model and simulate the GSPN.
- 1500 fires and 10 replications.
- Confidence level of 95%.

Results (I)

Table: Simulation results

Place	Average num Scenario 1	ber of tokens (%) Scenario 2	95% Confider	nce interval (+/- %) Scenario 2
Start	35.28	40.15	5.83	6.23
End	41.95	38.78	2.53	3.82
M_{err1}	0.39	0.91	0.95	1.92
M_{err2}	0.00	0.93	0.63	0.64
M_{err3}	0.00	0.66	0.87	0.74
C_{err1}	0.74	2.94	0.82	2.02
C_{err2}	0.00	0.00	0.67	1.75
C_{err3}	0.78	0.16	0.92	1.52
C _{i1}	8.32	8.90	5.33	7.48
C_{i2}	0.63	0.69	0.23	0.52
C_{i3}	0.75	8.90	0.39	0.21

Results (I)

Table: Simulation results

Place	Average num Scenario 1	ber of tokens (% Scenario 2) 95% Confider Scenario 1	nce interval (+/- %) Scenario 2
Start	35.28	40.15	5.83	6.23
End	41.95	38.78	2.53	3.82
M _{err1}	0.39	0.91	0.95	1.92
M _{err2}	0.00	0.93	0.63	0.64
M _{err3}	0.00	0.66	0.87	0.74
C_{err1} C_{err2} C_{err3}	0.74	2.94	0.82	2.02
	0.00	0.00	0.67	1.75
	0.78	0.16	0.92	1.52
C _{i1}	8.32	8.90	5.33	7.48
C _{i2}	0.63	0.69	0.23	0.52
C _{i3}	0.75	8.90	0.39	0.21

Results (II)

- Communication errors: An average of $C_{err1} + C_{err2} + C_{err3}$ of instances didn't finish the process.
 - ► Scenario 1: 1.52%.
 - ► Scenario 2: 3.10% (more errors).

Results (II)

- Communication errors: An average of $C_{err1} + C_{err2} + C_{err3}$ of instances didn't finish the process.
 - ► Scenario 1: 1.52%.
 - ► Scenario 2: 3.10% (more errors).
- Invalid format message: An average of M_{err1} + M_{err2} + M_{err3} of instances didn't finish the process.
 - ► Scenario 1: 0.39%.
 - Scenario 2: 2.50% (more invalid messages).

Results (II)

- Communication errors: An average of C_{err1} + C_{err2} + C_{err3} of instances didn't finish the process.
 - ► Scenario 1: 1.52%.
 - ► Scenario 2: 3.10% (more errors).
- Invalid format message: An average of M_{err1} + M_{err2} + M_{err3} of instances didn't finish the process.
 - ► Scenario 1: 0.39%.
 - Scenario 2: 2.50% (more invalid messages).
- **Bottleneck**: It was found a communication bottleneck in the first interaction (C_i place).
 - ► Scenario 1: 8.32%.
 - ► Scenario 2: 8.90%.

- Introduction
- 2 Problem
- Methodology
- 4 Performance Evaluation
- **5** Conclusions and Future Works

 We have proposed a Novel methodology to define QoS and SLA requirements in service Choreography.

- We have proposed a Novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).

- We have proposed a Novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).
- The GSPN is good to model and analyze several aspects involved into service choreography.

- We have proposed a Novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).
- The GSPN is good to model and analyze several aspects involved into service choreography.
- The simulation is needed for supporting analysis of complex process (e.g. process choreography).

- We have proposed a Novel methodology to define QoS and SLA requirements in service Choreography.
- It's a initial approach using the "interaction model" (supported by BPMN 2.0).
- The GSPN is good to model and analyze several aspects involved into service choreography.
- The simulation is needed for supporting analysis of complex process (e.g. process choreography).
- The simulation results can be used to establish early QoS and SLA constraints.
 - Integration is expensive, then early detections are needed.
 - Establishing SLAs according to resources.
 - Planning in order to reduce failures.

To extend the mapping to support more choreography BPMN elements.

- To extend the mapping to support more choreography BPMN elements.
- To expand our methodology to support generic probability distributions in the decision points. Use of Colored Petri Nets (CPNs) can be a alternative.

- To extend the mapping to support more choreography BPMN elements.
- To expand our methodology to support generic probability distributions in the decision points. Use of Colored Petri Nets (CPNs) can be a alternative.
- To make more analysis and to use complex scenarios, where correlation problems could happen.

- To extend the mapping to support more choreography BPMN elements.
- To expand our methodology to support generic probability distributions in the decision points. Use of Colored Petri Nets (CPNs) can be a alternative.
- To make more analysis and to use complex scenarios, where correlation problems could happen.
- To include more QoS attributes.

Thanks!