

SEQUENCE LISTING

57
5 <110> Schweifer, Norbert
 Scherl-Mostageer, Marwa
 Sommergruber, Wolfgang
 Abseher, Roger

10 <120> Tumour-associated Antigen (B345)

15 <130> 0652.2280001/EKS/AES

20 <140>
 <141>

25 <150> DE 100 33 080.0
 <151> 2000-07-07

30 <150> DE 101 19 294.0
 <151> 2001-04-19

35 <150> US 60/243,158
 <151> 2000-10-25

40 <150> US 60/297,747
 <151> 2001-06-14

45 <160> 40

50 <170> PatentIn Ver. 2.1

55 <210> 1
 <211> 5897
 <212> DNA
 <213> Homo sapiens
 -->
 <220>
 <221> 5'UTR
 <222> (1)..(214)

60 <220>
 <221> CDS
 <222> (215)..(2464)

65 <220>
 <221> 3'UTR
 <222> (2465)..(5897)

70 <400> 1
 cttgagatata tagaattcgc gactcctgaa ctgcggggtc tctatcgac tgctagggt
75 60
 tctgctgctg ggtgcggcgc gcctgccgcg cggggcagaa gcttttgaga ttgctctgcc
80 120
 acgagaaaagc aacattacag ttctcataaa gctggggacc ccgactctgc tggcaaaacc
85 180

ctgttacatc gtcatttcta aaagacatat aacc atg ttg tcc atc aag tct gga
 235
 Met Leu Ser Ile Lys Ser Gly
 5 1 5

gaa aga ata gtc ttt acc ttt agc tgc cag agt cct gag aat cac ttt
 283
 Glu Arg Ile Val Phe Thr Phe Ser Cys Gln Ser Pro Glu Asn His Phe
 10 10 15 20

gtc ata gag atc cag aaa aat att gac tgt atg tca ggc cca tgt cct
 331
 Val Ile Glu Ile Gln Lys Asn Ile Asp Cys Met Ser Gly Pro Cys Pro
 15 25 30 35

ttt ggg gag gtt cag ctt cag ccc tcg aca tcg ttg ttg cct acc ctc
 379
 Phe Gly Glu Val Gln Leu Gln Pro Ser Thr Ser Leu Leu Pro Thr Leu
 20 40 45 50 55

aac aga act ttc atc tgg gat gtc aaa gct cat aag agc atc ggt tta
 427

25 Asn Arg Thr Phe Ile Trp Asp Val Lys Ala His Lys Ser Ile Gly Leu
 60 65 70

gag ctg cag ttt tcc atc cct cgc ctg agg cag atc ggt ccg ggt gag
 475

30 Glu Leu Gln Phe Ser Ile Pro Arg Leu Arg Gln Ile Gly Pro Gly Glu
 75 80 85

agc tgc cca gac gga gtc act cac tcc atc agc ggc cga atc gat gcc
 523

35 Ser Cys Pro Asp Gly Val Thr His Ser Ile Ser Gly Arg Ile Asp Ala
 90 95 100

acc gtg gtc agg atc gga acc ttc tgc agc aat ggc act gtg tcc cgg
 571

40 Thr Val Val Arg Ile Gly Thr Phe Cys Ser Asn Gly Thr Val Ser Arg
 105 110 115

atc aag atg caa gaa gga gtg aaa atg gcc tta cac ctc cca tgg ttc
 619

45 Ile Lys Met Gln Gln Gly Val Lys Met Ala Leu His Leu Pro Trp Phe
 120 125 130 135

cac ccc aga aat gtc tcc ggc ttc agc att gca aac cgc tca tct ata
 667

50 His Pro Arg Asn Val Ser Gly Phe Ser Ile Ala Asn Arg Ser Ser Ile
 140 145 150

aaa cgt ctg tgc atc atc gag tct gtg ttt gag ggt gaa ggc tca gca
 715

55 Lys Arg Leu Cys Ile Ile Glu Ser Val Phe Glu Gly Glu Gly Ser Ala
 155 160 165

acc ctg atg tct gcc aac tac cca gaa ggc ttc cct gag gat gag ctc
 763
 Thr Leu Met Ser Ala Asn Tyr Pro Glu Gly Phe Pro Glu Asp Glu Leu
 170 175 180
 5
 atg acg tgg cag ttt gtc gtt cct gca cac ctg cgg gcc agc gtc tcc
 811
 Met Thr Trp Gln Phe Val Val Pro Ala His Leu Arg Ala Ser Val Ser
 185 190 195
 10
 ttc ctc aac ttc aac ctc tcc aac tgt gag agg aag gag gag cgg gtt
 859
 Phe Leu Asn Phe Asn Leu Ser Asn Cys Glu Arg Lys Glu Glu Arg Val
 200 205 210 215
 15
 gaa tac tac atc ccg ggc tcc acc acc aac ccc gag gtg ttc aag ctg
 907
 Glu Tyr Tyr Ile Pro Gly Ser Thr Thr Asn Pro Glu Val Phe Lys Leu
 220 225 230
 20
 gag gac aag cag cct ggg aac atg gcg ggg aac ttc aac ctc tct ctg
 955
 Glu Asp Lys Gln Pro Gly Asn Met Ala Gly Asn Phe Asn Leu Ser Leu
 235 240 245
 25
 caa ggc tgt gac caa gat gcc caa agt cca ggg atc ctc cgg ctg cag
 1003
 Gln Gly Cys Asp Gln Asp Ala Gln Ser Pro Gly Ile Leu Arg Leu Gln
 250 255 260
 30
 ttc caa gtt ttg gtc caa cat cca caa aat gaa agc aat aaa atc tac
 1051
 Phe Gln Val Leu Val Gln His Pro Gln Asn Glu Ser Asn Lys Ile Tyr
 265 270 275
 35

 gtg gtt gac ttg agt aat gag cga gcc atg tca ctc acc atc gag cca
 1099
 40 Val Val Asp Leu Ser Asn Glu Arg Ala Met Ser Leu Thr Ile Glu Pro
 280 285 290 295

 cgg ccc gtc aaa cag agc cgc aag ttt gtc cct ggc tgt ttc gtg tgt
 1147
 45 Arg Pro Val Lys Gln Ser Arg Lys Phe Val Pro Gly Cys Phe Val Cys
 300 305 310

 cta gaa tct cgg acc tgc agt agc aac ctc acc ctg aca tct ggc tcc
 1195
 50 Leu Glu Ser Arg Thr Cys Ser Ser Asn Leu Thr Leu Thr Ser Gly Ser
 315 320 325

 aaa cac aaa atc tcc ttc ctt tgt gat gat ctg aca cgt ctg tgg atg
 1243
 55 Lys His Lys Ile Ser Phe Leu Cys Asp Asp Leu Thr Arg Leu Trp Met
 330 335 340

aat gtg gaa aaa acc ata agc tgc aca gac cac cgg tac tgc caa agg
 1291
 Asn Val Glu Lys Thr Ile Ser Cys Thr Asp His Arg Tyr Cys Gln Arg
 345 350 355

5
 aaa tcc tac tca ctc cag gtg ccc agt gac atc ctc cac ctg cct gtg
 1339
 Lys Ser Tyr Ser Leu Gln Val Pro Ser Asp Ile Leu His Leu Pro Val
 360 365 370 375

10
 gag ctg cat gac ttc tcc tgg aag ctg ctg gtg ccc aag gac agg ctc
 1387
 Glu Leu His Asp Phe Ser Trp Lys Leu Leu Val Pro Lys Asp Arg Leu
 380 385 390

15
 agc ctg gtg ctg gtg cca gcc cag aag ctg cag cag cat aca cac gag
 1435
 Ser Leu Val Leu Val Pro Ala Gln Lys Leu Gln Gln His Thr His Glu
 395 400 405

20
 aag ccc tgc aac acc agc ttc agc tac ctc gtg gcc agt gcc ata ccc
 1483
 Lys Pro Cys Asn Thr Ser Phe Ser Tyr Leu Val Ala Ser Ala Ile Pro
 410 415 420

25
 agc cag gac ctg tac ttc ggc tcc ttc tgc ccg gga ggc tct atc aag
 1531
 Ser Gln Asp Leu Tyr Phe Gly Ser Phe Cys Pro Gly Gly Ser Ile Lys
 425 430 435

30
 cag atc cag gtg aag cag aac atc tcg gtg acc ctt cgc acc ttt gcc
 1579
 Gln Ile Gln Val Lys Gln Asn Ile Ser Val Thr Leu Arg Thr Phe Ala
 440 445 450 455

35
 ccc agc ttc caa caa gag gcc tcc agg cag ggt ctg acg gtg tcc ttt
 1627
 Pro Ser Phe Gln Gln Glu Ala Ser Arg Gln Gly Leu Thr Val Ser Phe
 460 465 470

40
 ata cct tat ttc aaa gag gaa ggc gtt ttc acg gtg acc cct gac aca
 1675
 Ile Pro Tyr Phe Lys Glu Glu Gly Val Phe Thr Val Thr Pro Asp Thr
 475 480 485

45
 aaa agc aag gtc tac ctg agg acc ccc aac tgg gac cgg cgc ctg cca
 1723
 Lys Ser Lys Val Tyr Leu Arg Thr Pro Asn Trp Asp Arg Gly Leu Pro
 490 495 500

50
 tcc ctc acc tct gtg tcc tgg aac atc agc gtg ccc aga gac cag gtg
 1771
 Ser Leu Thr Ser Val Ser Trp Asn Ile Ser Val Pro Arg Asp Gln Val
 505 510 515

55
 gcc tgc ctg act ttc ttt aag gag cgg agc ggc gtg gtc tgc cag aca
 1819

Ala Cys Leu Thr Phe Phe Lys Glu Arg Ser Gly Val Val Cys Gln Thr
 520 525 530 535
 ggg cgc gca ttc atg atc atc cag gag cag cgg acc cgg gct gag gag
 5 1867
 Gly Arg Ala Phe Met Ile Ile Gln Glu Gln Arg Thr Arg Ala Glu Glu
 540 545 550
 atc ttc agc ctg gac gag gat gtg ctc ccc aag cca agc ttc cac cat
 10 1915
 Ile Phe Ser Leu Asp Glu Asp Val Leu Pro Lys Pro Ser Phe His His
 555 560 565
 cac agc ttc tgg gtc aac atc tct aac tgc agc ccc acg agc ggc aag
 15 1963
 His Ser Phe Trp Val Asn Ile Ser Asn Cys Ser Pro Thr Ser Gly Lys
 570 575 580
 cag cta gac ctg ctc ttc tcg gtg aca ctt acc cca agg act gtg gac
 20 2011
 Gln Leu Asp Leu Leu Phe Ser Val Thr Leu Thr Pro Arg Thr Val Asp
 585 590 595
 ttg act gtc atc ctc atc gca gcg gtg gga ggt gga gtc tta ctg ctg
 25 2059
 Leu Thr Val Ile Leu Ile Ala Ala Val Gly Gly Val Leu Leu Leu
 600 605 610
 tct gcc ctc ggg ctc atc att tgc tgt gtg aaa aag aag aaa aag aag
 30 2107
 Ser Ala Leu Gly Leu Ile Ile Cys Cys Val Lys Lys Lys Lys Lys
 620 625 630
 aca aac aag ggc ccc gct gtg ggt atc tac aat ggc aac atc aat act
 35 2155
 Thr Asn Lys Gly Pro Ala Val Gly Ile Tyr Asn Gly Asn Ile Asn Thr
 635 640 645
 gag atg cca ggc agc caa aaa agt ttc aga aag ggc gaa agg aca atg
 40 2203
 Glu Met Pro Gly Ser Gln Lys Ser Phe Arg Lys Gly Glu Arg Thr Met
 650 655 660
 act ccc atg tgt atg cag tca tcg agg aca cca tgg tat atg ggc atc
 45 2251
 Thr Pro Met Cys Met Gln Ser Ser Arg Thr Pro Trp Tyr Met Gly Ile
 665 670 675
 tgc tac agg att cca gcg gct cct tcc tgc agc cag agg tgg aca cct
 50 2299
 Cys Tyr Arg Ile Pro Ala Ala Pro Ser Cys Ser Gln Arg Trp Thr Pro
 680 685 690 695
 acc ggc cgt tcc agg gca cca tgg ggg tct gtc ctc cct ccc cac cca
 55 2347
 Thr Gly Arg Ser Arg Ala Pro Trp Gly Ser Val Leu Pro Pro His Pro
 700 705 710

cca tat gct cca ggg ccc caa ctg caa agt tgg cca ctg agg agc cac
 2395
 Pro Tyr Ala Pro Gly Pro Gln Leu Gln Ser Trp Pro Leu Arg Ser His
 715 720 725
 5

ctc ctc gct ccc ctc ctg agt ctg aga gtg aac cgt aca cct tct ccc
 2443
 10 Leu Leu Ala Pro Leu Leu Ser Leu Arg Val Asn Arg Thr Pro Ser Pro
 730 735 740

atc cca aca atg ggg atg taa gcagcaaggga cacagacatt cccttactga
 2494
 15 Ile Pro Thr Met Gly Met
 745 750

acactcagga gcccatggag ccagcagaat aacttgatcc attccagacg ctttgctgag
 2554
 20 tttcataaaag cagggcactg agacacccgt ccgtgttcct aaccagaaaat cctaaagaag
 2614

25 aggaattata cagaaggaac agcaggaggt tttcctggac accgccaact tcacattgct
 2674

cagtggactc attctaaggg caagacattg aaaatgatga attccaatct ggatacagtc
 2734

30 atgacagctc atgtgctcct caacttaggc tgtgcggta gccagcctgt aatgagagga
 2794

gagaggcctg agtcacctag catagggtg cagcaagccc tggattcaga gtgttaaaca
 2854
 35 gaggcttgcc ctcttcagga caacagttcc aattccaagg agcctacctg aggtccctac
 2914

40 ttcactggg gtccccagga tgaaaacgac aatgtgcctt tttattatta tttatttggt
 2974

ggtcctgtgt tatttaagag atcaaatgta taaccaccta gctctttca cctgacttag
 3034

45 taataactca tactaactgg tttggatgcc tgggttgtga cttctactga ccgctagata
 3094

aacgtgtgcc tgtcccccag gtgggtggaa taatttacaa tctgtccaac cagaaaagaa
 3154
 50 tgggtgtgtt tgagcagcat tgacacatat ctgctttgat aagagacttc ctgattctct
 3214

55 aggtcggttc gtggatatcc cattgtggaa attcatctt aatcccatttgc ttatagtc
 3274

ctagcaataa gagaaatttc ctcaagttc catgtgcggt tctcctagct gcagcaatac
 3334

tttgacattt aaagagaaaat ttagagaata ttctcatcct ctaaaaatgt ttaaatatat
3394

5 accaaacagt ggccccctgc attagtttc tggccact gcaaccatt actggtagc
3454

ttaaaaacaa cacattagct tatagtcctg gggatcagaa ttccaaaatg gatgtccctg
3514

10 aatgaaaatc aagggtgtcag cagagctgtg ctccctctga aggctctagg gagaagccgg
3574

ttccttgcca tttcaagctt ctagaggctg gctgcattcc caggctccag tggctggtca
15 3634

agctttctc acatggcatc actgtgacac tggccctccc acttccctct ttgacttaca
3694

20 aagcccacca ggaagatcca ggataatctc tccatctaaa gatccttcat catcctggaa
3754

gagccttttgc ccatgcaaga caacatagcc acaggtgggg attaggacca ggacatctt
3814

25 ggggtgctgt tattctgcct accacacctt cctgccacbg actcccacag gagaggctac
3874

aaaatgatct ggcccacagg gatgttttgt ttagcttgcg gactctaaca cttaaaaaaaa
3934

ccccagatca gaagatctgg ccatgctggg gctcacattc tcacctagca acaactggct
3994

35 ggagctgggc accagctctg cctttagaag ggggtccac ttcaccaggc caccacagcc
4054

cacactacgc cctatcactt cccacaatga ggctaagtgt ttgtttctac tgatcaatgc
4114

40 ccctgcaggt tgcatttatt gtaatgaaaa agaaagactg ggattaatct ctaatcaggt
4174

45 gagtagacca tgagaccaat gtgtgctcac attacccttt ttctttttt tctttttctt
4234

tttctttttt ttttaatgt gagacaggat ctcattctgt tgcctaggct ggagtgcagt
4294

50 ggcccaatct cggctcactg caacctctgc ctccctggct caagcaattc tcccacctca
4354

gcctcccaa tagctggat cactggcaca aaccaccatg cccagctaat tttgtatTTT
4414

55 ttgttagagac agggtttcac catgttgccc aggctggtct caacctcctg ggctcaagca
4474

atcctcctgc ctcggcctcc caaagtgtg ggattacaga tgtgagccac cgcatccagc
4534

5 cccacaccct catttatacc aattacctgc ccagtaactg tggactttg cttcctcacc
4594

cctgctctga tctggaagga gagggattat gttatagctt gtcagcacag tcccaagttc
4654

10 aatatttctg cggcaaaaac ttccttcaaa aaataaatgt acttcattgt attcaatgaa
4714

ttcaccttgg aatgcacccg cctcaacttg ttcatatggc ataaatgaaa ggaattttat
4774

15 agtctcctaa atggcgtgta ctgcaagacc tcttgaacac tttccagagg ataggatatt
4834

taagtcatgc ctttggcggtt gcctatggca cctttccctt ctgaaagtct ggttcctgcc
4894

20 cagtgaccct tggccttgg agccgagatg ctgaccctgc ataaagggcc aaaggagggc
4954

25 tgcggcttcc ttccctcaact gaagagccct tatttgaatt cactgtgtgg agccctagcc
5014

ctccattctc gacattcccc aacctcccag ccccttccaa gcaggactag gtgccctgca
5074

30 ttccacccaa ggtgggattt gccttccta ggctggctac ttgtcaccat caccgacatc
5134

actgttgcct gcaaggacac cacgtggcca ttttccttca actgagggtc caaaactcct
5194

35 ggacaagttt ctggctcctg agaccagttt ttccctggagm tgtgcctcag tgaaggggcc
5254

40 cagcctgagg aaccctggct ctttcttta aagcccaggc cccacttaca taaaacattt
5314

caagggtcact ggaaacagtg aagtgcatt tgtnaagcc tactgnatgc cagcccactg
5374

45 ctcatccacg tggatgcca tgcctacagag gaaggccagc gcatgcagga ntggtctcta
5434

50 atgntgtggt cattgcacag aaggaaagg tctcaaggaa gagtcaactg ggacaagcac
5494

aagcccaccc gacatggcct tggtaaaggt tagcagactg gtgtgtgtgg atctgcagtg
5554

55 cttcactgga aataatttat tcattgcaga tacttttag gtggcatttt attcattcc
5614

tttgtttttaaa ataaacaaaat gtacccaaaa acaagtatca agctgtttaa gtgcttcggc
 5674

5 tacttgtccc ctggttcagt agaggccccg gtttcccaagt tgttgactgt gacaggctca
 5734

gcatgggctc agcagatgct gtcttaattt gtggatgata cagaaagcca ggctttggga
 5794

10 tacaagttct ttcctttca tttgatgccg tgcactgtgt gaagcagatg ttttgtccg
 5854

gaaataaaaaa taatagtctt ggagtctcgc caaaaaaaaaa aag
 5897

15

<210> 2
 <211> 749
 20 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Leu Ser Ile Lys Ser Gly Glu Arg Ile Val Phe Thr Phe Ser Cys
 1 5 10 15

Gln Ser Pro Glu Asn His Phe Val Ile Glu Ile Gln Lys Asn Ile Asp
 20 25 30

30 Cys Met Ser Gly Pro Cys Pro Phe Gly Glu Val Gln Leu Gln Pro Ser
 35 40 45

Thr Ser Leu Leu Pro Thr Leu Asn Arg Thr Phe Ile Trp Asp Val Lys
 50 55 60

35 Ala His Lys Ser Ile Gly Leu Glu Leu Gln Phe Ser Ile Pro Arg Leu
 65 70 75 80

40 Arg Gln Ile Gly Pro Gly Glu Ser Cys Pro Asp Gly Val Thr His Ser
 85 90 95

Ile Ser Gly Arg Ile Asp Ala Thr Val Val Arg Ile Gly Thr Phe Cys
 100 105 110

45 Ser Asn Gly Thr Val Ser Arg Ile Lys Met Gln Glu Gly Val Lys Met
 115 120 125

Ala Leu His Leu Pro Trp Phe His Pro Arg Asn Val Ser Gly Phe Ser
 130 135 140

50 Ile Ala Asn Arg Ser Ser Ile Lys Arg Leu Cys Ile Ile Glu Ser Val
 145 150 155 160

55 Phe Glu Gly Glu Gly Ser Ala Thr Leu Met Ser Ala Asn Tyr Pro Glu
 165 170 175

Gly Phe Pro Glu Asp Glu Leu Met Thr Trp Gln Phe Val Val Pro Ala
 180 185 190

	His	Leu	Arg	Ala	Ser	Val	Ser	Phe	Leu	Asn	Phe	Asn	Leu	Ser	Asn	Cys	
	195							200					205				
5	Glu	Arg	Lys	Glu	Glu	Arg	Val	Glu	Tyr	Tyr	Ile	Pro	Gly	Ser	Thr	Thr	
	210						215				220						
	Asn	Pro	Glu	Val	Phe	Lys	Leu	Glu	Asp	Lys	Gln	Pro	Gly	Asn	Met	Ala	
	225					230				235		240					
10	Gly	Asn	Phe	Asn	Leu	Ser	Leu	Gln	Gly	Cys	Asp	Gln	Asp	Ala	Gln	Ser	
					245				250			255					
	Pro	Gly	Ile	Leu	Arg	Leu	Gln	Phe	Gln	Val	Leu	Val	Gln	His	Pro	Gln	
15					260				265			270					
	Asn	Glu	Ser	Asn	Lys	Ile	Tyr	Val	Val	Asp	Leu	Ser	Asn	Glu	Arg	Ala	
	275					280					285						
20	Met	Ser	Leu	Thr	Ile	Glu	Pro	Arg	Pro	Val	Lys	Gln	Ser	Arg	Lys	Phe	
	290					295					300						
	Val	Pro	Gly	Cys	Phe	Val	Cys	Leu	Glu	Ser	Arg	Thr	Cys	Ser	Ser	Asn	
	305					310				315		320					
25	Leu	Thr	Leu	Thr	Ser	Gly	Ser	Lys	His	Lys	Ile	Ser	Phe	Leu	Cys	Asp	
					325				330		335						
	Asp	Leu	Thr	Arg	Leu	Trp	Met	Asn	Val	Glu	Lys	Thr	Ile	Ser	Cys	Thr	
30					340				345			350					
	Asp	His	Arg	Tyr	Cys	Gln	Arg	Lys	Ser	Tyr	Ser	Leu	Gln	Val	Pro	Ser	
					355				360			365					
35	Asp	Ile	Leu	His	Leu	Pro	Val	Glu	Leu	His	Asp	Phe	Ser	Trp	Lys	Leu	
		370				375					380						
	Leu	Val	Pro	Lys	Asp	Arg	Leu	Ser	Leu	Val	Leu	Val	Pro	Ala	Gln	Lys	
	385					390					395			400			
40	Leu	Gln	Gln	His	Thr	His	Glu	Lys	Pro	Cys	Asn	Thr	Ser	Phe	Ser	Tyr	
					405				410			415					
	Leu	Val	Ala	Ser	Ala	Ile	Pro	Ser	Gln	Asp	Leu	Tyr	Phe	Gly	Ser	Phe	
45						420			425			430					
	Cys	Pro	Gly	Gly	Ser	Ile	Lys	Gln	Ile	Gln	Val	Lys	Gln	Asn	Ile	Ser	
					435				440			445					
50	Val	Thr	Leu	Arg	Thr	Phe	Ala	Pro	Ser	Phe	Gln	Gln	Glu	Ala	Ser	Arg	
					450				455			460					
	Gln	Gly	Leu	Thr	Val	Ser	Phe	Ile	Pro	Tyr	Phe	Lys	Glu	Gly	Val		
	465					470				475			480				
55	Phe	Thr	Val	Thr	Pro	Asp	Thr	Lys	Ser	Lys	Val	Tyr	Leu	Arg	Thr	Pro	
					485				490			495					

Asn Trp Asp Arg Gly Leu Pro Ser Leu Thr Ser Val Ser Trp Asn Ile
 500 505 510

5 Ser Val Pro Arg Asp Gln Val Ala Cys Leu Thr Phe Phe Lys Glu Arg
 515 520 525

Ser Gly Val Val Cys Gln Thr Gly Arg Ala Phe Met Ile Ile Gln Glu
 530 535 540

10 Gln Arg Thr Arg Ala Glu Glu Ile Phe Ser Leu Asp Glu Asp Val Leu
 545 550 555 560

Pro Lys Pro Ser Phe His His His Ser Phe Trp Val Asn Ile Ser Asn
 565 570 575

15 Cys Ser Pro Thr Ser Gly Lys Gln Leu Asp Leu Leu Phe Ser Val Thr
 580 585 590

Leu Thr Pro Arg Thr Val Asp Leu Thr Val Ile Leu Ile Ala Ala Val
 20 595 600 605

Gly Gly Gly Val Leu Leu Leu Ser Ala Leu Gly Leu Ile Ile Cys Cys
 610 615 620

25 Val Lys Lys Lys Lys Lys Lys Thr Asn Lys Gly Pro Ala Val Gly Ile
 625 630 635 640

Tyr Asn Gly Asn Ile Asn Thr Glu Met Pro Gly Ser Gln Lys Ser Phe
 645 650 655

30 Arg Lys Gly Glu Arg Thr Met Thr Pro Met Cys Met Gln Ser Ser Arg
 660 665 670

Thr Pro Trp Tyr Met Gly Ile Cys Tyr Arg Ile Pro Ala Ala Pro Ser
 35 675 680 685

Cys Ser Gln Arg Trp Thr Pro Thr Gly Arg Ser Arg Ala Pro Trp Gly
 690 695 700

40 Ser Val Leu Pro Pro His Pro Pro Tyr Ala Pro Gly Pro Gln Leu Gln
 705 710 715 720

Ser Trp Pro Leu Arg Ser His Leu Leu Ala Pro Leu Leu Ser Leu Arg
 725 730 735

45 Val Asn Arg Thr Pro Ser Pro Ile Pro Thr Met Gly Met
 740 745

50 <210> 3
 <211> 6163
 <212> DNA
 <213> Homo sapiens

55 <220>
 <221> 5'UTR
 <222> (1)..(282)

```

<220>
<221> GC_signal
<222> (147)..(157)
5
<220>
<221> misc_feature
<222> (201)..(209)
<223> cap signal; Transcription start
10
<220>
<221> 3'UTR
<222> (2794)..(6163)

15 <220>
<221> 3'UTR
<222> (2794)..(6163)

<220>
20 <221> CDS
<222> (283)..(2793)

<400> 3
ccaacgcgc 60
25 aatggggagt agtagggacc cagcaacccg gtgccggag ccctgcaccc
tgggaggag 120
aggcggtcgc tgaggcagga agaggaggag gagagagagg agggacgcac
30 cggtcagct 180
cgcgatcctg ctgcgcaggg cgggctcgg gccggtccgc cgcgcgcag
gtgagtgagc 240
cagggcggag cgcagctgcg ccggcttgg gcgcctgggg cgcgcgtcc
35 ccaccgtcgt 294
tttccccacc gaggccgagg cgtcccgag tc atg gcc ggc ctg
Met Ala Gly Leu
1
40 aac tgc ggg gtc tct atc gca ctg cta ggg gtt ctg ctg ctg ggt gcg
342
Asn Cys Gly Val Ser Ile Ala Leu Leu Gly Val Leu Leu Leu Gly Ala
5 10 15 20
45 gcg cgc ctg ccg cgc ggg gca gaa gct ttt gag att gct ctg cca cga
390
Ala Arg Leu Pro Arg Gly Ala Glu Ala Phe Glu Ile Ala Leu Pro Arg
25 30 35
50 gaa agc aac att aca gtt ctc ata aag ctg ggg acc ccg act ctg ctg
438
Glu Ser Asn Ile Thr Val Leu Ile Lys Leu Gly Thr Pro Thr Leu Leu
40 45 50
55 gca aaa ccc tgt tac atc gtc att tct aaa aga cat ata acc atg ttg
486
Ala Lys Pro Cys Tyr Ile Val Ile Ser Lys Arg His Ile Thr Met Leu

```

	55	60	65	
	tcc atc aag tct gga gaa aga ata gtc ttt acc ttt agc tgc cag agt 534			
5	Ser Ile Lys Ser Gly Glu Arg Ile Val Phe Thr Phe Ser Cys Gln Ser 70	75	80	
	cct gag aat cac ttt gtc ata gag atc cag aaa aat att gac tgt atg 582			
10	Pro Glu Asn His Phe Val Ile Glu Ile Gln Lys Asn Ile Asp Cys Met 85	90	95	100
	tca ggc cca tgt cct ttt ggg gag gtt cag ctt cag ccc tcg aca tcg 630			
15	Ser Gly Pro Cys Pro Phe Gly Glu Val Gln Leu Gln Pro Ser Thr Ser 105	110	115	
	ttg ttg cct acc ctc aac aga act ttc atc tgg gat gtc aaa gct cat 678			
20	Leu Leu Pro Thr Leu Asn Arg Thr Phe Ile Trp Asp Val Lys Ala His 120	125	130	
	aag agc atc ggt tta gag ctg cag ttt tcc atc cct cgc ctg agg cag 726			
25	Lys Ser Ile Gly Leu Glu Leu Gln Phe Ser Ile Pro Arg Leu Arg Gln 135	140	145	
	atc ggt ccg ggt gag agc tgc cca gac gga gtc act cac tcc atc agc 774			
30	Ile Gly Pro Gly Glu Ser Cys Pro Asp Gly Val Thr His Ser Ile Ser 150	155	160	
	ggc cga atc gat gcc acc gtg gtc agg atc gga acc ttc tgc agc aat 822			
35	Gly Arg Ile Asp Ala Thr Val Val Arg Ile Gly Thr Phe Cys Ser Asn 165	170	175	180
	ggc act gtg tcc cggtc aag atg caa gaa gga gtg aaa atg gcc tta 870			
40	Gly Thr Val Ser Arg Ile Lys Met Gln Glu Gly Val Lys Met Ala Leu 185	190	195	
	cac ctc cca tgg ttc cac ccc aga aat gtc tcc ggc ttc agc att gca 918			
45	His Leu Pro Trp Phe His Pro Arg Asn Val Ser Gly Phe Ser Ile Ala 200	205	210	
	aac cgc tca tct ata aaa cgt ctg tgc atc atc gag tct gtg ttt gag 966			
50	Asn Arg Ser Ser Ile Lys Arg Leu Cys Ile Ile Glu Ser Val Phe Glu 215	220	225	
	ggt gaa ggc tca gca acc ctg atg tct gcc aac tac cca gaa ggc ttc 1014			
55	Gly Glu Gly Ser Ala Thr Leu Met Ser Ala Asn Tyr Pro Glu Gly Phe 230	235	240	

cct gag gat gag ctc atg acg tgg cag ttt gtc gtt cct gca cac ctg
 1062
 Pro Glu Asp Glu Leu Met Thr Trp Gln Phe Val Val Pro Ala His Leu
 245 250 255 260
 5
 cg^g gcc agc gtc tcc ttc ctc aac ttc aac ctc tcc aac tgt gag agg
 1110
 Arg Ala Ser Val Ser Phe Leu Asn Phe Asn Leu Ser Asn Cys Glu Arg
 265 270 275
 10
 aag gag gag cg^g gtt gaa tac tac atc ccg ggc tcc acc acc aac ccc
 1158
 Lys Glu Glu Arg Val Glu Tyr Tyr Ile Pro Gly Ser Thr Thr Asn Pro
 280 285 290
 15
 gag gt^g ttc aag ctg gag gac aag cag cct ggg aac atg gc^g ggg aac
 1206
 Glu Val Phe Lys Leu Glu Asp Lys Gln Pro Gly Asn Met Ala Gly Asn
 295 300 305
 20
 tt^c aac ctc tct ctg caa ggc tgt gac caa gat gcc caa agt cca ggg
 1254
 Phe Asn Leu Ser Leu Gln Gly Cys Asp Gln Asp Ala Gln Ser Pro Gly
 310 315 320
 25
 atc ctc cg^g ctg cag tt^c caa gtt tt^c gtc caa cat cca caa aat gaa
 1302
 Ile Leu Arg Leu Gln Phe Gln Val Leu Val Gln His Pro Gln Asn Glu
 325 330 335 340
 30
 agc aat aaa atc tac gt^g gtt gac tt^c agt aat gag cga gcc atg tca
 1350
 Ser Asn Lys Ile Tyr Val Val Asp Leu Ser Asn Glu Arg Ala Met Ser
 345 350 355
 35

 ctc acc atc gag cca cg^g ccc gtc aaa cag agc cg^g aag ttt gtc cct
 1398
 40 Leu Thr Ile Glu Pro Arg Pro Val Lys Gln Ser Arg Lys Phe Val Pro
 360 365 370

 ggc tgt tt^c gt^g tgt cta gaa tct cg^g acc tgc agt agc aac ctc acc
 1446
 45 Gly Cys Phe Val Cys Leu Glu Ser Arg Thr Cys Ser Ser Asn Leu Thr
 375 380 385

 ctg aca tct ggc tcc aaa cac aaa atc tcc tt^c ctt tgt gat gat ctg
 1494
 50 Leu Thr Ser Gly Ser Lys His Lys Ile Ser Phe Leu Cys Asp Asp Leu
 390 395 400

 aca cgt ctg tgg atg aat gt^g gaa aaa acc ata agc tgc aca gac cac
 1542
 55 Thr Arg Leu Trp Met Asn Val Glu Lys Thr Ile Ser Cys Thr Asp His
 405 410 415 420

cggtac tgc caa agg aaa tcc tac tca ctc cag gtg ccc agt gac atc
 1590
 Arg Tyr Cys Gln Arg Lys Ser Tyr Ser Leu Gln Val Pro Ser Asp Ile
 425 430 435
 5
 ctc cac ctg cct gtg gag ctg cat gac ttc tcc tgg aag ctg ctg gtg
 1638
 Leu His Leu Pro Val Glu Leu His Asp Phe Ser Trp Lys Leu Leu Val
 440 445 450
 10
 ccc aag gac agg ctc agc ctg gtg ctg gtg cca gcc cag aag ctg cag
 1686
 Pro Lys Asp Arg Leu Ser Leu Val Leu Val Pro Ala Gln Lys Leu Gln
 455 460 465
 15
 cag cat aca cac gag aag ccc tgc aac acc agc ttc agc tac ctc gtg
 1734
 Gln His Thr His Glu Lys Pro Cys Asn Thr Ser Phe Ser Tyr Leu Val
 470 475 480
 20
 gcc agt gcc ata ccc agc cag gac ctg tac ttc ggc tcc ttc tgc ccg
 1782
 Ala Ser Ala Ile Pro Ser Gln Asp Leu Tyr Phe Gly Ser Phe Cys Pro
 485 490 500
 25
 gga ggc tct atc aag cag atc cag gtg aag cag aac atc tcg gtg acc
 1830
 Gly Gly Ser Ile Lys Gln Ile Gln Val Lys Gln Asn Ile Ser Val Thr
 505 510 515
 30
 ctt cgc acc ttt gcc ccc agc ttc caa caa gag gcc tcc agg cag ggt
 1878
 Leu Arg Thr Phe Ala Pro Ser Phe Gln Gln Glu Ala Ser Arg Gln Gly
 520 525 530
 35
 ctg acg gtg tcc ttt ata cct tat ttc aaa gag gaa ggc gtt ttc acg
 1926
 Leu Thr Val Ser Phe Ile Pro Tyr Phe Lys Glu Glu Gly Val Phe Thr
 535 540 545
 40
 gtg acc cct gac aca aaa agc aag gtc tac ctg agg acc ccc aac tgg
 1974
 Val Thr Pro Asp Thr Lys Ser Lys Val Tyr Leu Arg Thr Pro Asn Trp
 550 555 560
 45
 gac cgg ggc ctg cca tcc ctc acc tct gtg tcc tgg aac atc agc gtg
 2022
 Asp Arg Gly Leu Pro Ser Leu Thr Ser Val Ser Trp Asn Ile Ser Val
 565 570 575 580
 50
 ccc aga gac cag gtg gcc tgc ctg act ttc ttt aag gag cgg agc ggc
 2070
 55 Pro Arg Asp Gln Val Ala Cys Leu Thr Phe Phe Lys Glu Arg Ser Gly
 585 590 595

gtg gtc tgc cag aca ggg cgc gca ttc atg atc atc cag gag cag cgg
2118
Val Val Cys Gln Thr Gly Arg Ala Phe Met Ile Ile Gln Glu Gln Arg
600 605 610
5
acc cgg gct gag gag atc ttc agc ctg gac gag gat gtg ctc ccc aag
2166
Thr Arg Ala Glu Glu Ile Phe Ser Leu Asp Glu Asp Val Leu Pro Lys
615 620 625
10
cca agc ttc cac cat cac agc ttc tgg gtc aac atc tct aac tgc agc
2214
Pro Ser Phe His His Ser Phe Trp Val Asn Ile Ser Asn Cys Ser
630 635 640
15
ccc acg agc ggc aag cag cta gac ctg ctc ttc tcg gtg aca ctt acc
2262
Pro Thr Ser Gly Lys Gln Leu Asp Leu Leu Phe Ser Val Thr Leu Thr
645 650 655 660
20
cca agg act gtg gac ttg act gtc atc ctc atc gca gcg gtg gga ggt
2310
Pro Arg Thr Val Asp Leu Thr Val Ile Leu Ile Ala Ala Val Gly Gly
665 670 675
25
gga gtc tta ctg ctg tct gcc ctc ggg ctc atc att tgc tgt gtg aaa
2358
Gly Val Leu Leu Leu Ser Ala Leu Gly Leu Ile Ile Cys Cys Val Lys
680 685 690
30
aag aag aaa aag aag aca aac aag ggc ccc gct gtg ggt atc tac aat
2406
Lys Lys Lys Lys Thr Asn Lys Gly Pro Ala Val Gly Ile Tyr Asn
695 700 705
35
ggc aac atc aat act gag atg ccg agg cag cca aaa aag ttt cag aaa
2454
Gly Asn Ile Asn Thr Glu Met Pro Arg Gln Pro Lys Lys Phe Gln Lys
710 715 720
40
ggg cga aag gac aat gac tcc cat gtg tat gca gtc atc gag gac acc
2502
Gly Arg Lys Asp Asn Asp Ser His Val Tyr Ala Val Ile Glu Asp Thr
725 730 735 740
45
atg gta tat ggg cat ctg cta cag gat tcc agc ggc tcc ttc ctg cag
2550
Met Val Tyr Gly His Leu Leu Gln Asp Ser Ser Gly Ser Phe Leu Gln
745 750 755
50
cca gag gtg gac acc tac cgg ccg ttc cag ggc acc atg ggg gtc tgt
2598
Pro Glu Val Asp Thr Tyr Arg Pro Phe Gln Gly Thr Met Gly Val Cys
760 765 770
55
cct ccc tcc cca ccc acc ata tgc tcc agg gcc cca act gca aag ttg
2646
Pro Pro Ser Pro Pro Thr Ile Cys Ser Arg Ala Pro Thr Ala Lys Leu

775

780

785

caagtttcca tgtgcgggtc tcctagctgc agcaatactt tgacatttaa agagaaattt
 3623

5 agagaatatt ctcatcctct aaaaatgttt aaatatatac caaacagtgg cccctgcat
 3683

tagtttctg ttgccactgc aaccattac ttggtagctt aaaaacaaca cattagctta
 3743

10 tagtcctggg gatcagaatt caaaaatgga tgccctgaa taaaaatcaa ggtgtcagca
 3803

15 gagctgtgct cttctgaag gctctaggaa gaagccgggtt ctttgcatt tcaagcttct
 3863

agaggctggc tgcattccca ggctccagtg gctggtcaag cttttcac atggcatcac
 3923

20 tgtgacactg gccctcccac ttccctctt gacttacaaa gcccaccagg aagatccagg
 3983

ataatctctc catctaaaga tccttcatca tcctggaaga gcctttgcc atgcaagaca
 4043

25 acatagccac aggtggggat taggaccagg acatcttgg ggtgctgtta ttctgcctac
 4103

30 cacaccttcc tgccactgac tcccacagga gaggctacaa aatgatctgg cgcacaggga
 4163

tgttttgttt agcttgcgga ctctaacact taaaaaaaaacc ccagatcaga agatctggcc
 4223

35 atgctggggc tcacattctc acctagcaac aactggctgg agctggcac cagctctgcc
 4283

tttagaaggg gtgtccactt caccaggta ccacagcccc cactacgccc tatcacttcc
 4343

40 cacaatgagg ctaagtgttt gtttctactg atcaatgccc ctgcaggttg catttattgt
 4403

45 aatgaaaaag aaagactggg attaatctct aatcaggtga gtagaccatg agaccaatgt
 4463

gtgctcacat taccctttt ctttttttc tttttttt tttttttt tttaatgtga
 4523

50 gacaggatct cattctgttg cctaggctgg agtgcagtgg cgcaatctcg gctcactgca
 4583

acctctgcct cctgggctca agcaattctc ccacctcagc ctcccaaata gctggatca
 4643

55 ctggcacaaa ccaccatgcc cagctaattt tgtatTTTT gtagagacag ggTTTcacca
 4703

tgttgcccaag gctggtctca acctcctggg ctcaagcaat cctcctgcct cggcctccca
4763

5 aagtgctggg attacagatg tgagccaccg catccagccc cacaccctca tttataccaa
4823

ttacacctgcc agtaactgtg gactttgct tcctcacccc tgctctgatc tggaggaga
4883

10 gggattatgt tatacgctgt cagcacagtc ccaagttcaa tatttctgct gcaaaaactt
4943

ccttcaaaaaa ataaatgtac ttcatgttat tcaatgaatt caccttggaa atgcaccgcc
5003

15 tcaacttgtt cacatggcat aaatgaaagg aatttatag tctcctaaat ggctgtact.
5063

20 gcaagacctc ttgaacactt tccagaggat aggatattt agtcatgccccc ttggcggtgc
5123

ctatggcacc ttcccttct gaaagtctgg ttccctgcctt gtgacccttg gccttggtag
5183

25 ccgagatgct gaccctgcat aaaggccaa aggaggctg cggcttcctt ccctcactga
5243

agagccctta ttgaattca ctgtgtggag ccctagccct ccatttcgaa cattccccaa
5303

30 cctcccaagcc cttccaagc aggacttagt gcctgcatt ccacccaaagg tgggattggc
5363

cttccttagg ctggctactt gtcaccatca ccgacatcac tggcctgc aaggacacca
5423

cgtggccatt ttccctcaac tgaggctca aaactcctgg acaagttgtt ggctcctgag
5483

40 accagtattt cctggagctg tgcctcagtg aaggggccaa gcctgaggaa ccctggctct
5543

tttctttaaa gcccaggccc cacttacata aaacattca gggtcactgg aaacagtggaa
5603

45 gtgccatttg ttgaagccta ctgcattgcctt gcccactgtt catccacgtt gtctggccatg
5663

cctacgagga aggccagcgc atgcaggact ggtctctaattt gctgtggta ttgcacagaa
5723

ggaaaagggtc tcaaggaaga gtcaactggg acaagcacaa gcccaccgga catggccttg
5783

55 gtaaaggta gcagactggt gtgtgtggat ctgcagtgtt tcactggaaa taatttattc
5843

```

attgcagata ctttttaggt ggcatttat tcatttcctg tgcttaaat aaacaaatgt
5903

5 accaaaaaac aagtatcaag ctgttaagt gcttcggcta cttgtccctt ggttcagtag
5963

10 aggccccggt ttcccagttg ttgactgtga caggctcagc atgggctcag cagatgctgt
6023

15 cttaatttgt ggatgataca gaaagccagg cttgggata caagttcttt cctcttcatt
6083

tgatgccgtg cactgtgtga acgagatgtt tttgtccgga aataaaaata atagtcttgg
6143

20 agtctcgcca aaaaaaaaaa
6163

25 <210> 4
<211> 836
<212> PRT
<213> Homo sapiens
Met Ala Gly Leu Asn Cys Gly Val Ser Ile Ala Leu Leu Gly Val Leu
1 5 10 15

30 Leu Leu Gly Ala Ala Arg Leu Pro Arg Gly Ala Glu Ala Phe Glu Ile
20 25 30

Ala Leu Pro Arg Glu Ser Asn Ile Thr Val Leu Ile Lys Leu Gly Thr
35 40 45

35 Pro Thr Leu Leu Ala Lys Pro Cys Tyr Ile Val Ile Ser Lys Arg His
50 55 60

Ile Thr Met Leu Ser Ile Lys Ser Gly Glu Arg Ile Val Phe Thr Phe
40 65 70 75 80

Ser Cys Gln Ser Pro Glu Asn His Phe Val Ile Glu Ile Gln Lys Asn
85 90 95

45 Ile Asp Cys Met Ser Gly Pro Cys Pro Phe Gly Glu Val Gln Leu Gln
100 105 110

Pro Ser Thr Ser Leu Leu Pro Thr Leu Asn Arg Thr Phe Ile Trp Asp
115 120 125

50 Val Lys Ala His Lys Ser Ile Gly Leu Glu Leu Gln Phe Ser Ile Pro
130 135 140

Arg Leu Arg Gln Ile Gly Pro Gly Glu Ser Cys Pro Asp Gly Val Thr
55 145 150 155 160

His Ser Ile Ser Gly Arg Ile Asp Ala Thr Val Val Arg Ile Gly Thr
165 170 175

```

	Phe Cys Ser Asn Gly Thr Val Ser Arg Ile Lys Met Gln Glu Gly Val			
	180	185	190	
5	Lys Met Ala Leu His Leu Pro Trp Phe His Pro Arg Asn Val Ser Gly			
	195	200	205	
	Phe Ser Ile Ala Asn Arg Ser Ser Ile Lys Arg Leu Cys Ile Ile Glu			
	210	215	220	
10	Ser Val Phe Glu Gly Glu Gly Ser Ala Thr Leu Met Ser Ala Asn Tyr			
	225	230	235	240
15	Pro Glu Gly Phe Pro Glu Asp Glu Leu Met Thr Trp Gln Phe Val Val			
	245	250	255	
	Pro Ala His Leu Arg Ala Ser Val Ser Phe Leu Asn Phe Asn Leu Ser			
	260	265	270	
20	Asn Cys Glu Arg Lys Glu Glu Arg Val Glu Tyr Tyr Ile Pro Gly Ser			
	275	280	285	
25	Thr Thr Asn Pro Glu Val Phe Lys Leu Glu Asp Lys Gln Pro Gly Asn			
	290	295	300	
	Met Ala Gly Asn Phe Asn Leu Ser Leu Gln Gly Cys Asp Gln Asp Ala			
	305	310	315	320
30	Gln Ser Pro Gly Ile Leu Arg Leu Gln Phe Gln Val Leu Val Gln His			
	325	330	335	
	Pro Gln Asn Glu Ser Asn Lys Ile Tyr Val Val Asp Leu Ser Asn Glu			
	340	345	350	
35	Arg Ala Met Ser Leu Thr Ile Glu Pro Arg Pro Val Lys Gln Ser Arg			
	355	360	365	
	Lys Phe Val Pro Gly Cys Phe Val Cys Leu Glu Ser Arg Thr Cys Ser			
40	370	375	380	
	Ser Asn Leu Thr Leu Thr Ser Gly Ser Lys His Lys Ile Ser Phe Leu			
	385	390	395	400
45	Cys Asp Asp Leu Thr Arg Leu Trp Met Asn Val Glu Lys Thr Ile Ser			
	405	410	415	
	Cys Thr Asp His Arg Tyr Cys Gln Arg Lys Ser Tyr Ser Leu Gln Val			
	420	425	430	
50	Pro Ser Asp Ile Leu His Leu Pro Val Glu Leu His Asp Phe Ser Trp			
	435	440	445	
	Lys Leu Leu Val Pro Lys Asp Arg Leu Ser Leu Val Leu Val Pro Ala			
55	450	455	460	
	Gln Lys Leu Gln Gln His Thr His Glu Lys Pro Cys Asn Thr Ser Phe			
	465	470	475	480

Ser Tyr Leu Val Ala Ser Ala Ile Pro Ser Gln Asp Leu Tyr Phe Gly
 485 490 495

5 Ser Phe Cys Pro Gly Gly Ser Ile Lys Gln Ile Gln Val Lys Gln Asn
 500 505 510

Ile Ser Val Thr Leu Arg Thr Phe Ala Pro Ser Phe Gln Gln Glu Ala
 515 520 525

10

Ser Arg Gln Gly Leu Thr Val Ser Phe Ile Pro Tyr Phe Lys Glu Glu
 530 535 540

15 Gly Val Phe Thr Val Thr Pro Asp Thr Lys Ser Lys Val Tyr Leu Arg
 545 550 555 560

Thr Pro Asn Trp Asp Arg Gly Leu Pro Ser Leu Thr Ser Val Ser Trp
 565 570 575

20

Asn Ile Ser Val Pro Arg Asp Gln Val Ala Cys Leu Thr Phe Phe Lys
 580 585 590

Glu Arg Ser Gly Val Val Cys Gln Thr Gly Arg Ala Phe Met Ile Ile
 595 600 605

Gln Glu Gln Arg Thr Arg Ala Glu Glu Ile Phe Ser Leu Asp Glu Asp
 610 615 620

30 Val Leu Pro Lys Pro Ser Phe His His His Ser Phe Trp Val Asn Ile
 625 630 635 640

Ser Asn Cys Ser Pro Thr Ser Gly Lys Gln Leu Asp Leu Leu Phe Ser
 645 650 655

35

Val Thr Leu Thr Pro Arg Thr Val Asp Leu Thr Val Ile Leu Ile Ala
 660 665 670

Ala Val Gly Gly Val Leu Leu Leu Ser Ala Leu Gly Leu Ile Ile
 675 680 685

Cys Cys Val Lys Lys Lys Lys Lys Lys Thr Asn Lys Gly Pro Ala Val
 690 695 700

45 Gly Ile Tyr Asn Gly Asn Ile Asn Thr Glu Met Pro Arg Gln Pro Lys
 705 710 715 720

Lys Phe Gln Lys Gly Arg Lys Asp Asn Asp Ser His Val Tyr Ala Val
 725 730 735

50

Ile Glu Asp Thr Met Val Tyr Gly His Leu Leu Gln Asp Ser Ser Gly
 740 745 750

Ser Phe Leu Gln Pro Glu Val Asp Thr Tyr Arg Pro Phe Gln Gly Thr
 755 760 765

Met Gly Val Cys Pro Pro Ser Pro Pro Thr Ile Cys Ser Arg Ala Pro
 770 775 780

Thr Ala Lys Leu Ala Thr Glu Glu Pro Pro Pro Arg Ser Pro Pro Glu
785 790 795 800

5 Ser Glu Ser Glu Pro Tyr Thr Phe Ser His Pro Asn Asn Gly Asp Val
805 810 815

Ser Ser Lys Asp Thr Asp Ile Pro Leu Leu Asn Thr Gln Glu Pro Met
820 825 830

10 Glu Pro Ala Glu
835

15

<210> 5
<211> 23
<212> DNA
20 <213> Artificial sequence

<220>
<223> Description of the artificial sequence: Primer

25 <400> 5
accgcctcaa cttgttcaca tgg
23

30

<210> 6
<211> 26
<212> DNA
<213> Artificial sequence

35

<220>
<223> Description of the artificial sequence: Primer

<400> 6
40 ctgggtctcag gagccagcaa cttgtc
26

45

<210> 7
<211> 25
<212> DNA
<213> Artificial sequence

50 <220>
<223> Description of the artificial sequence: Primer

<400> 7
55 ctcatgacgt ggcagttgt cgttc
25

5 <210> 8
 <211> 26
 <212> DNA
 <213> Artificial sequence

10 <220>
 <223> Description of the artificial sequence: Primer

 <400> 8
10 ggctcgctca ttactcaagt caacca
 26

15 <210> 9
 <211> 36
 <212> DNA
 <213> Artificial sequence

20 <220>
 <223> Description of the artificial sequence: Primer

 <400> 9
25 attcgcgact gatgatcgat tttttttt ttttt
 36

30 <210> 10
 <211> 20
 <212> DNA
 <213> Artificial sequence

35 <220>
 <223> Description of the artificial sequence: Primer

 <400> 10
 attcgcgact gatgatcgat
40 20

45 <210> 11
 <211> 20
 <212> DNA
 <213> Artificial sequence

50 <220>
 <223> Description of the artificial sequence: Primer

 <400> 11
 gagatattag aattctactc
 20
55

<210> 12

<211> 17
<212> DNA
<213> Artificial sequence

5 <220>
<223> Description of the artificial sequence: Primer

<400> 12
gagttagaatt ctaatat

10 17

<210> 13
15 <211> 22
<212> DNA
<213> Artificial sequence

<220>
20 <223> Description of the artificial sequence: Primer

<400> 13
agtccatgtg aacaagttga gg

22
25

<210> 14
20
30 <211> 20
<212> DNA
<213> Artificial sequence

<220>
35 <223> Description of the artificial sequence: Primer

<400> 14
aattctccca cctcagcctc

20

40

<210> 15
<211> 22
<212> DNA

45 <213> Artificial sequence

<220>
<223> Description of the artificial sequence: Primer

50 <400> 15
aggatgaaaa cgacaatgtg cc

22

55

<210> 16
<211> 21
<212> DNA

<213> Artificial sequence
<220>
5 <223> Description of the artificial sequence: Primer
<400> 16
agaattgctt gagcccagga g
21
10
<210> 17
<211> 21
<212> DNA
15 <213> Artificial sequence
<220>
<223> Description of the artificial sequence: Primer
20 <400> 17
caacttcaca ttgctcagtg g
21
25 <210> 18
<211> 25
<212> DNA
<213> Artificial sequence
30 <220>
<223> Description of the artificial sequence: Primer
<400> 18
tgagcaagtt cagcctggtt aagtc
35 25

40 <210> 19
<211> 26
<212> DNA
<213> Artificial sequence
<220>
45 <223> Description of the artificial sequence: Primer
<400> 19
caccgaatac tcataaaagaa ggtccc
26
50
<210> 20
<211> 26
55 <212> DNA
<213> Artificial sequence
<220>

<223> Description of the artificial sequence: Primer
5 <400> 20
 tagacttcga gcaggagatg gccact
 26

10 <210> 21
 <211> 20
 <212> DNA
 <213> Artificial sequence
 <220>
15 <223> Description of the artificial sequence: Primer
 <400> 21
 ccagccatgt acgttagccat
 20
20

25 <210> 22
 <211> 19
 <212> DNA
 <213> Artificial sequence
 <220>
30 <223> Description of the artificial sequence: Primer
 <400> 22
 ccaagaagga aggctggaa
 19
35

40 <210> 23
 <211> 25
 <212> DNA
 <213> Artificial sequence
 <220>
45 <223> Description of the artificial sequence: Primer
 <400> 23
 ccatcaccat cttccaggag cgaga
 25

50

55 <210> 24
 <211> 19
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Description of the artificial sequence: Primer

<400> 24
ccaagaagga aggctggaa
19

5

<210> 25
<211> 20
<212> DNA
10 <213> Artificial sequence

<220>
<223> Description of the artificial sequence: Primer

15 <400> 25
tgcaggaggc attgctgatg
20

20

<210> 26
<211> 19
<212> DNA
<213> Artificial sequence

25 <220>
<223> Description of the artificial sequence: Primer

<400> 26
30 aaatcgtgca cttgcaggc
19

35 <210> 27
<211> 18
<212> DNA
<213> Artificial sequence

<220>
40 <223> Description of the artificial sequence: Primer

<400> 27
ttgatgcgtt ccagctga
18

45

<210> 28
<211> 21
50 <212> DNA
<213> Artificial sequence

<220>
<223> Description of the artificial sequence: Primer

55 <400> 28
ttgaattcac tgtgtggagc c
21

5 <210> 29
 <211> 19
 <212> DNA
 <213> Artificial sequence

10 <220>
 <223> Description of the artificial sequence: Primer

 <400> 29
 tgcaggcaac agtgatgtc
 19
15

 <210> 30
 <211> 24
20 <212> DNA
 <213> Artificial sequence

 <220>
 <223> Description of the artificial sequence: Primer
25
 <400> 30
 attggccttc cttaggctgg ctac
 24

30

 <210> 31
 <211> 43
 <212> DNA
35 <213> Artificial sequence

 <220>
 <223> Description of the artificial sequence: Primer

40 <400> 31
 tgttagcgtga agacgacaga aagggcgtgg taccgagctc gag
 43

45
 <210> 32
 <211> 22
 <212> DNA
 <213> Artificial sequence
50
 <220>
 <223> Description of the artificial sequence: Primer

 <400> 32
55 agggcgtggt accgagctcg ag
 22

5 <210> 33
 <211> 11
 <212> DNA
 5 <213> Artificial sequence

 <220>
 <223> Description of the artificial sequence: Primer

10 <400> 33
 ggctcgagct c
 11

15 <210> 34
 <211> 22
 <212> DNA
 <213> Artificial sequence
20 <220>
 <223> Description of the artificial sequence: Primer

 <400> 34
25 ggccatgtcc ggtgggcttg tg
 22

30 <210> 35
 <211> 26
 <212> DNA
 <213> Artificial sequence

35 <220>
 <223> Description of the artificial sequence: Primer

 <400> 35
 ctcaaaaactc ctggacaagt tgctgg
40 26

 <210> 36
 <211> 22
45 <212> DNA
 <213> Artificial sequence

 <220>
 <223> Description of the artificial sequence: Primer
50 <400> 36
 aagggtgaagg tcggagtcaa cg
 22

55 <210> 37
 <211> 24

<212> DNA
<213> Artificial sequence

5 <220>
<223> Description of the artificial sequence: Primer

<400> 37
ggcagagatg atgacccttt tggc
24

10

<210> 38
<211> 23

15 <212> DNA
<213> Artificial sequence

<220>
<221> 5'UTR
20 <222> (1)..(282)

<220>
<221> GC_signal
<222> (147)..(157)

25 <220>
<221> misc_feature
<222> (201)..(209)
<223> cap signal; Transcription start

30 <220>
<221> 3'UTR
<222> (2794)..(6163)

35 <220>
<221> 3'UTR
<222> (2794)..(6163)

40 <220>
<221> CDS
<222> (283)..(2793)

<400> 38
agcagcgaaa ccccttagcag tgc

45 23

<210> 39
<211> 26

50 <212> DNA
<213> Artificial sequence

<220>
<223> Description of the artificial sequence: Primer

55 <400> 39
agaaccccta gcagtgcgtt agagac
26

5 <210> 40
5 <211> 27
5 <212> DNA
5 <213> Artificial sequence

10 <220>
10 <223> Description of the artificial sequence: Primer

15 <400> 40
15 gaactgtaat gttgcttct cgtggca
15 27