

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Einführendes Beispiel

- Preisausschreiben gewonnen
- 3 Preise auswählen

Mögliche Preise:

- Haus
- Auto
- Topfpflanze
- Reise nach Australien
- Abendessen

Einführendes Beispiel

- Preisausschreiben gewonnen
- 3 Preise auswählen

Mögliche Preise:

Haus

1

- Auto
- Topfpflanze
- Reise nach Australien
- Abendessen

Einführendes Beispiel

- Preisausschreiben gewonnen
- 3 Preise auswählen

Mögliche Preise:

Haus

2

- Auto
- Topfpflanze
- Reise nach Australien
- Abendessen

Einführendes Beispiel

- Preisausschreiben gewonnen
- 3 Preise auswählen

Mögliche Preise:

Haus

2

- Auto
- Topfpflanze
- Reise nach Australien 3
- Abendessen

Was ist unser Ziel?

Wollen Gewinn maximieren

Wie wollen wir dieses Ziel erreichen?

 In jedem Auswahlschritt wählen wir den teuersten noch nicht gewählten Gewinn

Frage:

Maximieren wir dadurch den Gesamtgewinn?

Was ist unser Ziel?

Wollen Gewinn maximieren

Wie wollen wir dieses Ziel errei

 In jedem Auswahlschritt wählen Gewinn Offensichtlich ja!
Aber wir wollen dies trotzdem formal beweisen, um eine wichtige Beweistechnik kennenzulernen.

wählten

Frage:

Maximieren wir dadurch den Gesamtgewinn?

Formales Problem:

- Eingabe: n unterschiedliche Zahlen C[1, ..., n]
- Problem: Wähle k unterschiedliche Zahlen aus ℓ aus, so dass die Summe der Zahlen maximiert wird
- Ausgabe: Feld J[1, ..., k], das die gewählten Zahlen enthält

GierigeAuswahl(C)

- 1. **for** $i \leftarrow 1$ **to** k **do**
- 2. $J[i] \leftarrow \text{die größte übrige Zahl aus } C$
- 3. return J

Behauptung:

Algorithmus Gierige Auswahl berechnet eine optimale Menge von k Zahlen.

Algorithmus Gierige Auswahl berechnet eine optimale Menge von k Zahlen.

$$a = (a_1, a_2, ..., a_j, ..., a_k)$$
 Lösung von Gierige Auswahl

$$b = (b_1, b_2, ..., b_i, ..., b_k)$$
 optimale Lösung $b \neq a$

Algorithmus Gierige Auswahl berechnet eine optimale Menge von k Zahlen.

$$a=\left(a_1,a_2,...,a_j\,,...,a_k\right)$$
 Lösung von Gierige Auswahl
$$b=(b_1,b_2,...,b_j,...,b_k)$$
 optimale Lösung $b\neq a$

Algorithmus GierigeAuswahl berechnet eine optimale Menge von k Zahlen.

$$a=\left(a_{1},a_{2},...,a_{j},...,a_{k}\right)$$
 Lösung von Gierige Auswahl $b=\left(b_{1},b_{2},...,b_{j},...,b_{k}\right)$ optimale Lösung $b\neq a$

Sei j kleinster Index mit $a_j \neq b_j$

Algorithmus GierigeAuswahl berechnet eine optimale Menge von k Zahlen.

$$a=\left(a_1,a_2,...,a_j,...,a_k\right)$$
 Lösung von Gierige Auswahl $b=(b_1,b_2,...,b_j,...,b_k)$ optimale Lösung $b\neq a$

Wegen unserer gierigen Strategie gilt $a_i > b_i$

Algorithmus GierigeAuswahl berechnet eine optimale Menge von k Zahlen.

$$a=\left(a_{1},a_{2},...,a_{j},...,a_{k}\right)$$
 Lösung von Gierige Auswahl
$$b=\left(b_{1},b_{2},...,b_{j},...,b_{k}\right)$$
 optimale Lösung $b\neq a$

Wegen unserer gierigen Strategie gilt $a_i > b_i$ Weil die b_i absteigend sortiert sind, wird a_j nicht in Lösung b verwendet.

Algorithmus Gierige Auswahl berechnet eine optimale Menge von k Zahlen.

$$a=\left(a_{1},a_{2},...,a_{j},...,a_{k}\right)$$
 Lösung von Gierige Auswahl $b=\left(b_{1},b_{2},...,b_{j},...,b_{k}\right)$ optimale Lösung $b\neq a$

Ersetze b_j durch a_j . Dies verbessert die Lösung. Widerspruch zur Optimalität von b.

Prinzip

- Konstruiere Lösung Schritt für Schritt
- In jedem Schritt: Optimiere ein einfaches, lokales Kriterium

Beobachtung

- Man kann viele unterschiedliche gierige Algorithmen für ein Problem entwickeln
- Nicht jeder dieser Algorithmen löst das Problem korrekt

Interval Scheduling

- Ressource (Hörsaal, Parallelrechner, Elektronenmikroskop,..)
- Anfragen: Kann ich die Ressource für den Zeitraum (t_1, t_2) nutzen?

Ziel: Möglichst viele Anfragen erfüllen

Interval Scheduling

- Ressource (Hörsaal, Parallelrechner, Elektronenmikroskop,..)
- Anfragen: Kann ich die Ressource für den Zeitraum (t_1, t_2) nutzen?

Ziel: Möglichst viele Anfragen erfüllen

Definition

 Zwei Anfragen heißen kompatibel, wenn sich die Intervalle nicht überschneiden.

Ziel: Möglichst viele Anfragen erfüllen

Definition

 Zwei Anfragen heißen kompatibel, wenn sich die Intervalle nicht überschneiden.

Kompatibel

Definition

 Zwei Anfragen heißen kompatibel, wenn sich die Intervalle nicht überschneiden.

Nicht kompatibel

Generelle Überlegung

Wähle erste Anfrage i₁ geschickt

- Wähle erste Anfrage i₁ geschickt
- Ist i₁ akzeptiert, weise alle Anfragen zurück, die nicht kompatibel sind

- Wähle erste Anfrage i₁ geschickt
- Ist i₁ akzeptiert, weise alle Anfragen zurück, die nicht kompatibel sind

- Wähle erste Anfrage i₁ geschickt
- Ist i_1 akzeptiert, weise alle Anfragen zurück, die nicht kompatibel sind
- Wähle nächste Anfrage i₂ geschickt und weise alle Anfragen zurück, die nicht mit i₂ kompatibel sind

- Wähle erste Anfrage i₁ geschickt
- Ist i₁ akzeptiert, weise alle Anfragen zurück, die nicht kompatibel sind
- Wähle nächste Anfrage i₂ geschickt und weise alle Anfragen zurück, die nicht mit i₂ kompatibel sind
- Mache weiter, bis keine Anfragen mehr übrig sind

- Wähle erste Anfrage i₁ geschickt
- Ist i₁ akzeptiert, weise alle Anfragen zurück, die nicht kompatibel sind
- Wähle nächste Anfrage i₂ geschickt und weise alle Anfragen zurück, die nicht mit i₂ kompatibel sind
- Mache weiter, bis keine Anfragen mehr übrig sind

Welche der folgenden Strategien ist optimal? (Mehrfachnennung möglich)

- A) Wähle immer die Anfrage, die am frühesten beginnt
- B) Wähle immer die Anfrage, die am frühesten fertig wird
- C) Wähle immer die Anfrage mit dem kürzesten Zeitintervall
- D) Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen. Bei Gleichheit wähle das kürzeste Intervall

Strategie 1

Strategie 1

Wähle immer die Anfrage, die am frühesten beginnt

Optimalität?

Strategie 1

Wähle immer die Anfrage, die am frühesten beginnt

Optimalität?

Strategie 1

Wähle immer die Anfrage, die am frühesten beginnt

Strategie 1

Wähle immer die Anfrage, die am frühesten beginnt

Optimalität?

Nicht optimal, da eine optimale Lösung 4 Anfragen erfüllen kann

Strategie 2

Strategie 2

Wähle immer das kürzeste Interval

Strategie 2

Wähle immer das kürzeste Interval

Strategie 2

Wähle immer das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Strategie 3

- Wähle immer das Interval mit den wenigsten nicht kompatiblen Intervallen
- bei Gleichheit wähle das kürzeste Interval

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Nimm die Anfrage, die am frühesten fertig ist.

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Nimm die Anfrage, die am frühesten fertig ist.

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Nimm die Anfrage, die am frühesten fertig ist.

Worauf muss man achten?

Ressource muss möglichst früh wieder frei werden!

Neue Strategie

Nimm die Anfrage, die am frühesten fertig ist.

Diese Strategie ist optimal! Aber wie beweist man das?

Formale Problemformulierung:

- Problem: Interval Scheduling
- Eingabe: Felder s und f, die die Intervalle (s[i], f[i]) beschreiben
- Aufgabe: Finde maximale Menge von paarweise kompatiblen Intervallen
- Ausgabe: Indizes der ausgewählten Intervalle

Wichtige Annahme:

- Eingabe nach Intervallendpunkten sortiert, d.h.
- $f[1] \le f[2] \le \cdots \le f[n]$

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5	
f	3	5	6	8	9	

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5	
f	3	5	6	8	9	

1.
$$n \leftarrow \text{length}[s]$$

$$2. \quad \boxed{A \leftarrow \{1\}}$$

3.
$$j \leftarrow 1$$

- 4. for $i \leftarrow 2$ to n do
- 5. **if** $s[i] \ge f[j]$ **then**
- 6. $A \leftarrow A \cup \{i\}$
- 7. $j \leftarrow i$
- 8. return A

S	1	2	4	7	5
f	3	5	6	8	9

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. **for**
$$i \leftarrow 2$$
 to n **do**

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

- 4. for $i \leftarrow 2$ to n do
- 5. **if** $s[i] \ge f[j]$ **then**

6.
$$A \leftarrow A \cup \{i\}$$

- 7. $j \leftarrow i$
- 8. return A

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. **for**
$$i \leftarrow 2$$
 to n **do**

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

S	1	2	4	7	5
f	3	5	6	8	9

- 1. $n \leftarrow \text{length}[s]$
- 2. $A \leftarrow \{1\}$
- 3. $j \leftarrow 1$
- 4. for $i \leftarrow 2$ to n do
- 5. **if** $s[i] \ge f[j]$ **then**
- 6. $A \leftarrow A \cup \{i\}$
- 7. $j \leftarrow i$
- 8. return A

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. | for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

S	1	2	4	7	5
f	3	5	6	8	9

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

1.
$$n \leftarrow \text{length}[s]$$

2.
$$A \leftarrow \{1\}$$

3.
$$j \leftarrow 1$$

4. for
$$i \leftarrow 2$$
 to n do

5. **if**
$$s[i] \ge f[j]$$
 then

6.
$$A \leftarrow A \cup \{i\}$$

7.
$$j \leftarrow i$$

S	1	2	4	7	5
f	3	5	6	8	9

Beweisidee: Der gierige Algorithmus "liegt vorn"

- Wir vergleichen eine optimale Lösung mit der Lösung des gierigen Algorithmen zu verschiedenen Zeitpunkten
- Wir zeigen: Die Lösung des gierigen Algorithmus ist bzgl. eines bestimmten Kriteriums mindestens genauso gut wie die optimale Lösung

Vergleichzeitpunkte

Nach jedem Hinzufügen eines Intervalls zur aktuellen Lösung

Vergleichskriterium

Maximaler Endzeitpunkt der bisher ausgewählten Anfragen

Erste Beobachtung

A ist eine Menge von kompatiblen Anfragen.

- Sei O eine optimale Menge von Intervallen
- u. U. viele optimale Lösungen
- Wir zeigen: |A| = |O|

- Sei O eine optimale Menge von Intervallen
- u. U. viele optimale Lösungen
- Wir zeigen: |A| = |O|

- Sei O eine optimale Menge von Intervallen
- u. U. viele optimale Lösungen
- Wir zeigen: |A| = |O|

- Sei O eine optimale Menge von Intervallen
- u. U. viele optimale Lösungen
- Wir zeigen: |A| = |O|

- Sei O eine optimale Menge von Intervallen
- u. U. viele optimale Lösungen
- Wir zeigen: |A| = |O|

- Sei O eine optimale Menge von Intervallen
- u. U. viele optimale Lösungen
- Wir zeigen: |A| = |O|

Notation

- i_1, \dots, i_k Intervalle von A in Ordnung des Hinzufügen
- j_1, \dots, j_m Intervalle von O sortiert nach Endpunkt
- Zu zeigen: k = m

Der gierige Algorithmus liegt vorn

- Idee des Algorithmus: Die Ressource soll so früh wie möglich wieder frei werden
- Dies ist wahr für das erste Interval: $f[i_1] \le f[j_1]$
- Zu zeigen: Gilt für alle Intervalle

Lemma 15

Für alle $r \le k$ gilt $f[i_r] \le f[j_r]$.

Lemma 15

Für alle $r \le k$ gilt $f[i_r] \le f[j_r]$.

Lemma 15

Für alle $r \le k$ gilt $f[i_r] \le f[j_r]$.

Lemma 15

Für alle $r \le k$ gilt $f[i_r] \le f[j_r]$.

Lemma 15

Für alle $r \le k$ gilt $f[i_r] \le f[j_r]$.

Lemma 15

Für alle $r \leq k$ gilt $f[i_r] \leq f[j_r]$.

Beweis

Induktion über r.

(I.A.) Für r = 1 ist die Aussage offensichtlich korrekt.

(I.V.) Die Aussage gelte für r-1.

Lemma 15

Für alle $r \leq k$ gilt $f[i_r] \leq f[j_r]$.

Beweis

Induktion über r.

(I.A.) Für r = 1 ist die Aussage offensichtlich korrekt.

(I.V.) Die Aussage gelte für r-1.

(I.S.) Nach (I.V.) gilt $f[i_{r-1}] \le f[j_{r-1}]$. Da die Intervalle in 0 kompatibel sind, gilt $f[j_{r-1}] \le s[j_r]$ und somit auch $f[i_{r-1}] \le s[j_r]$.

Lemma 15

Für alle $r \leq k$ gilt $f[i_r] \leq f[j_r]$.

Beweis

Induktion über r.

- (I.A.) Für r = 1 ist die Aussage offensichtlich korrekt.
- (I.V.) Die Aussage gelte für r-1.
- (I.S.) Nach (I.V.) gilt $f[i_{r-1}] \le f[j_{r-1}]$. Da die Intervalle in 0 kompatibel sind, gilt $f[j_{r-1}] \le s[j_r]$ und somit auch $f[i_{r-1}] \le s[j_r]$.

Damit ist j_r in der Menge der Intervalle, die mit den ersten r-1 Intervallen kompatibel sind, die IntervalScheduling ausgewählt hat.

Lemma 15

Für alle $r \leq k$ gilt $f[i_r] \leq f[j_r]$.

Beweis

Induktion über r.

- (I.A.) Für r = 1 ist die Aussage offensichtlich korrekt.
- (I.V.) Die Aussage gelte für r-1.
- (I.S.) Nach (I.V.) gilt $f[i_{r-1}] \le f[j_{r-1}]$. Da die Intervalle in 0 kompatibel sind, gilt $f[j_{r-1}] \le s[j_r]$ und somit auch $f[i_{r-1}] \le s[j_r]$.

Damit ist j_r in der Menge der Intervalle, die mit den ersten r-1 Intervallen kompatibel sind, die IntervalScheduling ausgewählt hat.

Da der Algorithmus das Interval mit kleinstem f-Wert auswählt, gilt $f[i_r] \leq f[j_r]$.

Lemma 15

Für alle $r \leq k$ gilt $f[i_r] \leq f[j_r]$.

Beweis

Induktion über r.

- (I.A.) Für r = 1 ist die Aussage offensichtlich korrekt.
- (I.V.) Die Aussage gelte für r-1.
- (I.S.) Nach (I.V.) gilt $f[i_{r-1}] \le f[j_{r-1}]$. Da die Intervalle in O kompatibel sind, gilt $f[j_{r-1}] \le s[j_r]$ und somit auch $f[i_{r-1}] \le s[j_r]$.
- Damit ist j_r in der Menge der Intervalle, die mit den ersten r-1 Intervallen kompatibel sind, die IntervalScheduling ausgewählt hat.

Da der Algorithmus das Interval mit kleinstem f-Wert auswählt, gilt $f[i_r] \leq f[j_r]$.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Beweis (durch Widerspruch)

Ist A nicht optimal, so hat O mehr Anfragen, d.h. es gilt |O| = m > k = |A|. Nach unserem Lemma mit r = k gilt $f[i_k] \le f[j_k]$.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Beweis (durch Widerspruch)

Ist A nicht optimal, so hat O mehr Anfragen, d.h. es gilt |O| = m > k = |A|. Nach unserem Lemma mit r = k gilt $f[i_k] \le f[j_k]$.

Da m > k gibt es eine Anfrage j_{k+1} in O, die startet, nachdem j_k und somit auch i_k endet, d.h. $s[j_{k+1}] \ge f[i_k]$. Außerdem gilt natürlich $f[j_{k+1}] \ge s[j_{k+1}] \ge f[i_k]$.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Beweis (durch Widerspruch)

Ist A nicht optimal, so hat O mehr Anfragen, d.h. es gilt |O| = m > k = |A|. Nach unserem Lemma mit r = k gilt $f[i_k] \le f[j_k]$.

Da m > k gibt es eine Anfrage j_{k+1} in O, die startet, nachdem j_k und somit auch i_k endet, d.h. $s[j_{k+1}] \ge f[i_k]$. Außerdem gilt natürlich $f[j_{k+1}] \ge s[j_{k+1}] \ge f[i_k]$.

Betrachten wir nun den Zeitpunkt, zu dem IntervalScheduling Interval i_k in A aufnimmt. Da die Intervalle nach Endzeitpunkten sortiert sind, wurde j_{k+1} noch nicht betrachtet.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Beweis (durch Widerspruch)

- Ist A nicht optimal, so hat O mehr Anfragen, d.h. es gilt |O| = m > k = |A|. Nach unserem Lemma mit r = k gilt $f[i_k] \le f[j_k]$.
- Da m > k gibt es eine Anfrage j_{k+1} in O, die startet, nachdem j_k und somit auch i_k endet, d.h. $s[j_{k+1}] \ge f[i_k]$. Außerdem gilt natürlich $f[j_{k+1}] \ge s[j_{k+1}] \ge f[i_k]$.
- Betrachten wir nun den Zeitpunkt, zu dem IntervalScheduling Interval i_k in A aufnimmt. Da die Intervalle nach Endzeitpunkten sortiert sind, wurde j_{k+1} noch nicht betrachtet.
- Da kein weiteres Interval in A aufgenommen wird, muss für alle noch nicht betrachteten Intervalle der Startzeitpunkt vor $f[i_k]$ liegen.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Beweis (durch Widerspruch)

- Ist A nicht optimal, so hat O mehr Anfragen, d.h. es gilt |O| = m > k = |A|. Nach unserem Lemma mit r = k gilt $f[i_k] \le f[j_k]$.
- Da m > k gibt es eine Anfrage j_{k+1} in O, die startet, nachdem j_k und somit auch i_k endet, d.h. $s[j_{k+1}] \ge f[i_k]$. Außerdem gilt natürlich $f[j_{k+1}] \ge s[j_{k+1}] \ge f[i_k]$.
- Betrachten wir nun den Zeitpunkt, zu dem IntervalScheduling Interval i_k in A aufnimmt. Da die Intervalle nach Endzeitpunkten sortiert sind, wurde j_{k+1} noch nicht betrachtet.
- Da kein weiteres Interval in A aufgenommen wird, muss für alle noch nicht betrachteten Intervalle der Startzeitpunkt vor $f[i_k]$ liegen.

Satz 16

Die von Algorithmus IntervalScheduling berechnete Lösung A ist optimal.

Beweis (durch Widerspruch)

- Ist A nicht optimal, so hat O mehr Anfragen, d.h. es gilt |O| = m > k = |A|. Nach unserem Lemma mit r = k gilt $f[i_k] \le f[j_k]$.
- Da m > k gibt es eine Anfrage j_{k+1} in O, die startet, nachdem j_k und somit auch i_k endet, d.h. $s[j_{k+1}] \ge f[i_k]$. Außerdem gilt natürlich $f[j_{k+1}] \ge s[j_{k+1}] \ge f[i_k]$.
- Betrachten wir nun den Zeitpunkt, zu dem IntervalScheduling Interval i_k in A aufnimmt. Da die Intervalle nach Endzeitpunkten sortiert sind, wurde j_{k+1} noch nicht betrachtet.
- Da kein weiteres Interval in A aufgenommen wird, muss für alle noch nicht betrachteten Intervalle der Startzeitpunkt vor $f[i_k]$ liegen.
- Widerspruch, denn wir haben bereits gezeigt, dass $s[j_{k+1}] \ge f[i_k]$ gilt.

IntervalScheduling(s, f)

1.
$$n \leftarrow \text{length}[s]$$

2. $A \leftarrow \{1\}$
3. $j \leftarrow 1$
4. $\mathbf{for}\ i \leftarrow 2\ \mathbf{to}\ n\ \mathbf{do}$
5. $\mathbf{if}\ s[i] \ge f[j]\ \mathbf{then}$
6. $A \leftarrow A \cup \{i\}$
7. $j \leftarrow i$
8. $\mathbf{return}\ A$
 $\mathbf{\Theta}(n)$
 $\mathbf{\Theta}(n)$

Satz 17

Algorithmus IntervalScheduling berechnet in $\Theta(n)$ Zeit eine optimale Lösung, wenn die Eingabe nach Endzeit der Intervalle (rechter Endpunkt) sortiert ist. Die Sortierung kann in $\Theta(n \log n)$ Zeit berechnet werden.