Mordell-Weil Theorem using Galois Cohomology

Mehedi Hasan Nowshad

Department of Mathematics, University of Dhaka.

Prerequisites

- Field extension and its degree, splitting field
- Topological group
- modules, exact sequences
- Variety (affine/algebraic/projective), its dimension
- Morphism of algebraic varieties, product variety
- Group operation on elliptic curve using chord/tangent.

At least knowing their definitions and some very basic results regarding them is needed.

Introduction

- A curve is a Projective variety of dimension 1.
- An elliptic curve E(K) over a field K is a smooth genus 1 curve with a specified base point.
 - Roughly speaking, **genus** $g = \frac{(d-1)(d-2)}{2}$, where d is the degree of the curve
 - **Smooth** curve means the Jacobian formed by the derivatives of the defining equations of the curve at every point has rank 1.
- If char(K) ≠ 2,3, a consequence of Riemann-Roch theorem says that every elliptic curve is isomorphic to this form: (See [Sil09], Ch. 3 or [Mil06], Ch 2)

$$y^2z = x^3 + axz^2 + bz^3$$

This is non-singular if $\Delta = -(4a^3 + 27b^2)$ is non-zero.

Contents

- Galois Theory
- Group (Galois) Cohomology
- Algebraic Geometry
- Selmer and Sha
- 5 Algebraic Number Theory
- 6 Some results in elliptic curves
- Weak Mordell-Weil Theorem
- Mordell-Weil Theorem

Galois Theory

Field Extension

- A number field is a finite field extension of Q.
- A field extension E/K is a **separable field extension** if minimal polynomial of every element in E is separable.
 - Every number field is separable over Q.
- A field extension E/K is a normal field extension if minimal polynomial of every element in E splits in E[x].

Example

The equation $x^3=2$ has roots $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$, and $\omega^2\sqrt[3]{2}$. It can be easily seen that $\mathbb{Q}(\sqrt[3]{2})$ is not normal, while the splitting field of x^3-2 (which is just $\mathbb{Q}(\sqrt[3]{2},\omega)$) is a normal extension of \mathbb{Q} .

• A **Galois extension** is an algebraic field extension E/F that is normal and separable

Field automorphism

- An automorphism of E/F is a field automorphism of E which fixes F.
- Any automorphism just shuffles the roots of any polynomial in F[x].

Example

An automorphism σ of $\mathbb{Q}(\sqrt[3]{2})$ is completely determined by $\sigma(\sqrt[3]{2})$, which is again a root of x^3-2 . However, $\sqrt[3]{2}$ is the only root of x^3-2 in $\mathbb{Q}(\sqrt[3]{2})$. Thus,

$$Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{id\}$$

Subfield Lattice vs Subgroup Lattice

Example

 $Aut(\mathbb{Q}(\sqrt[3]{2},\omega)) = S_3$ (or D_3) where an automorphism is determined by how roots of $x^3 - 2$ is shuffled.

Fundamental theorem of Galois Theory

Theorem

Let E/F be a finite Galois extension with Galois group G = Gal(E/F) = Aut(E/F). Then there is a order reversing correspondence between the subgroups of G and field extensions of F contained in E. ([Mil21], Chapter 3)

- The correspondence is given by $G \supseteq H \to E^H \subseteq E$ with the inverse being $E \supseteq K \to Gal(E/K) \subseteq G$.
- So we have, $Gal(E/E^H) = H$.
- $H \leq G \iff E^H/F$ is normal. Then $Gal(E^H/F) = G/H$

Infinite Galois Theory

Definition (Krull topology)

Let E/F be a Galois extension (possibly infinite). Then Gal(E/F) can be made into a topological group with its neighbourhood basis of the identity being the subgroups Gal(E/K) where K/F is a finite galois extension.

Fundamental Theorem of Galois theory also holds in case of infinite Galois extension if we replace "subgroups" by "closed subgroups". ([Mil21], Ch. 7)

Definition

- A field F is **perfect** if every finite extension of F is separable. (ex: Number fields)
- Absolute Galois group of $F = G_F = Gal(F^{sep}/F)$
- If K is Perfect, $K^{sep} = \overline{K}$ and $G_K = Gal(\overline{K}/K)$

Group (Galois) Cohomology

Group Cohomology

- Let M be a G—module
- Crossed homomorphism is a map $f:G \to M$ such that $f(\sigma \tau) = f(\sigma) + \sigma f(\tau)$
- f is a principal crossed homomorphism if $f(\sigma) = \sigma m m$ for some $m \in M$
- Note that, principal crossed homos \unlhd crossed homos.

Definition (0 - th and 1st cohomology groups)

-
$$H^0(G, M) = M^G = \{ m \in M \mid m^\sigma = m \ \forall \sigma \in G \}$$

-
$$H^1(G,M) = \frac{crossed\ homomorphisms}{principal\ crossed\ homomorphisms}$$

Example

$$H^0(G_{\mathbb{Q}}, E(\overline{\mathbb{Q}})) = E(\overline{\mathbb{Q}})^{G_{\mathbb{Q}}} = E(\overline{\mathbb{Q}})^{Gal(\overline{\mathbb{Q}}/\mathbb{Q})} = E(\mathbb{Q})$$

Group Cohomology

- For an infinite Galois group, crossed homos are replaced by continuous crossed homos (with G having Krull topology and M having discrete topology) and G × M → M needs to be continuous.
- Note that principal crossed homos are always continuous.

Example

If the action of G on M is trivial, then

$$H^0(G, M) = M$$
 , $H^1(G, M) = Hom(G, M)$

Example of Galois Cohomology

Let L/K be a finite Galois extension with Gal(L/K) = G. Then $H^1(G, L^{\times}) = 0$

Proof.

In multiplication notation, crossed homo becomes:

$$f(\sigma\tau) = f(\sigma) \cdot \sigma(f(\tau)), \qquad \sigma, \tau \in G$$

We want $y \in L^{\times}$ such that $f(\sigma) = \sigma(y)/y$ for all $\sigma \in G$. As $f(\tau)$ are nonzero, Dedekind's theorem on the independence of characters implies

$$\sum_{\tau \in G} f(\tau)\tau: L \to L$$

is not the zero map.

Example of Galois Cohomology

Proof.

So there exists $\beta \in L$ has

$$\beta^* = \sum_{\tau \in G} f(\tau) \tau \beta \neq 0.$$

Then for $\sigma \in G$,

$$\sigma\beta^* = \sum_{\tau \in G} \sigma(f(\tau))\sigma\tau\beta = \sum_{\tau \in G} f(\sigma)^{-1} f(\sigma\tau)\sigma\tau\beta$$
$$= f(\sigma)^{-1} \sum_{\tau \in G} f(\tau)\tau\beta = f(\sigma)^{-1}\beta^*,$$

so
$$f(\sigma) = \beta^* / \sigma \beta^* = \sigma(y)/y$$
 with $y = (\beta^*)^{-1}$.

Exact sequence of Cohomology groups

Theorem

Let $0 \longrightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} C \longrightarrow 0$ be a short exact sequence of G-modules. Then there is a natural long exact sequence of cohomology groups

$$0 \longrightarrow H^0(G,A) \xrightarrow{\iota_0} H^0(G,B) \xrightarrow{\pi_0} H^0(G,C) \xrightarrow{\delta} H^1(G,A) \xrightarrow{\iota_1} H^1(G,B) \xrightarrow{\pi_1} H^1(G,C) \longrightarrow \cdots$$

The maps are defined by

- $\iota_0 = i|_{A^G}$
- $\pi_0 = \pi|_{B^G}$
- $\iota_1(f) = i \circ f$
- $\pi_1(g) = \pi \circ g$.

Exact sequence of Cohomology groups

• Let $c \in H^0(G, C) = C^G$ So $\sigma c = c$, $\forall \sigma \in G$. As π is surjective, we have,

$$\exists b \in B \mid \pi(b) = c$$

Let $a' = \sigma b - b$. Then,

$$\pi(a') = \sigma\pi(b) - \pi(b) = \sigma c - c = 0$$

So,
$$a' \in \ker(\pi) = im(\iota)$$

We define, $\delta(\mathbf{c})(\sigma) := \mathbf{a}$ with $\iota(\mathbf{a}) = a'$.

Example of Galois Cohomology exact sequence

- $\bullet \ \mu_n(L) = \{ \zeta \in L^{\times} \mid \zeta^n = 1 \}$
- Exact sequence $1 \to \mu_n(\overline{k}) \to \overline{k}^\times \xrightarrow{()^n} \overline{k}^\times \to 1$ implies the following sequence of cohomology groups:

$$1 \to \mu_n(k) \to k^\times \xrightarrow{(\)^n} k^\times \to H^1(G_k, \mu_n(\overline{k})) \to H^1(G_k, k^\times) = 1$$

- $H^1(G, \mu_n(\overline{k})) \cong k^{\times}/k^{\times n}$
- When k is a number field and n > 1, this group is infinite.
- For example, the numbers

$$(-1)^{\varepsilon(\infty)}\prod_{p \text{ prime}} p^{\varepsilon(p)},$$

with each exponent 0 or 1 and only finitely many nonzero, form a set of representatives for the elements of $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$.

Restriction-Inflation exact sequence

- Let M be a G-module with $H \subseteq G$.
- $f \rightarrow f|_H$ defines the restriction morphism:

$$res: H^1(G,M) \rightarrow H^1(H,M)$$

- M^H is naturally a G/H-module.
- $G \to G/H \to M^H \to M$ defines the inflation morphism:

$$inf: H^1(G/H, M^H) \rightarrow H^1(G, M)$$

• Together we get the exact sequence:

$$0 \to H^1(G/H, M^H) \xrightarrow{inf} H^1(G, M) \xrightarrow{res} H^1(H, M)$$

Algebraic Geometry

Separated variety (analogue of Hausdorffness)

Definition

A variety X is separated if its diagonal Δ_X is closed.

Example

A line with a double origin is not separated.

$$\mathbb{A}^1 \times \{0,1\}/\sim$$
, where $(x,0) \sim (x,1)$ if $x \neq 0$

Example

 \mathbb{A}^n is separated as the diagonal is the zero set of the polynomials $x_i - y_i$.

Example

 \mathbb{P}^n is separated as the diagonal is the zero set of the homogeneous polynomials $x_iy_j - x_jy_i$.

Complete Variety (analogue of compactness)

Definition

An algebraic variety V is said to be complete if for all algebraic varieties W, the projection

$$q: V \times W \rightarrow W$$

is closed.

Example

 \mathbb{A}^1 is not complete as under the projection $(x,y)\mapsto y:\mathbb{A}^1\times\mathbb{A}^1\to\mathbb{A}^1$, the image of V(xy-1) is not closed in \mathbb{A}^1 .

Properties of Complete Variety

Theorem

Let V be a complete variety.

- (a) A closed subvariety of V is complete.
- (b) If V' is complete, so is $V \times V'$.
- (c) For any morphism $\varphi: V \to W$ (W is separated), $\varphi(V)$ is closed and complete; in particular, if V is a subvariety of W, then it is closed in W.
- (d) If V is connected and C is a curve, then any regular map $\varphi: V \to C$ is either constant or onto.
- (e) If V is connected, then any regular function on V is constant.

Proof.

Straightforward definition chasing.

Isogeny

Theorem

Projective space \mathbb{P}^n is complete (so is any projective variety).

 Non-constant morphism between a projective variety and a curve is surjective (so is between two curves)

Definition

An isogeny between E_1 and E_2 is a morphism $\phi: E_1 \to E_2$ satisfying $\phi(O) = O$. $(E_i s \text{ are elliptic curves over } \overline{k})$

Theorem

Isogeny defined by multiplication by m is non-constant, hence surjective.

Selmer and Sha

Elliptic Curve exact sequences

• We have the following exact sequence:

$$0 \longrightarrow E(\overline{k})[n] \longrightarrow E(\overline{k}) \xrightarrow{n} E(\overline{k}) \longrightarrow 0$$

Applying Galois cohomology, we have:

$$0 \longrightarrow E(k)[n] \longrightarrow E(k) \xrightarrow{n} E(k) \longrightarrow H^{1}(k, E[n])$$
$$\longrightarrow H^{1}(k, E) \longrightarrow H^{1}(k, E)$$

• Then we can extract another exact sequence:

$$0 \longrightarrow E(k)/nE(k) \longrightarrow H^{1}(k, E[n]) \longrightarrow H^{1}(k, E)[n] \longrightarrow 0.$$

• We are interested in $k = \mathbb{Q}$ and \mathbb{Q}_p (p prime), but before that, let's see what \mathbb{Q}_p is.

p-adic Numbers, \mathbb{Q}_p

For
$$s = p^n t \in \mathbb{Z}$$
 with $p \nmid t$, define $v_p(s) = n$. For $q = \frac{a}{b} \in \mathbb{Q}$, define $v_p(q) = v_p(a) - v_p(b)$.

Definition

 $|\cdot|_p = p^{-v_p(\cdot)}$ defines a p-adic norm on \mathbb{Q} . The completion of \mathbb{Q} with respect to this norm is the set of p-adic numbers \mathbb{Q}_p .

- $a \in \mathbb{Q}_p$ takes the form $a = \sum_{k=n}^{\infty} p^k a_k$, where $k \in \mathbb{Z}$ and $a_k \in \{0, 1, \cdots, p-1\}$.
- Note that such an expression indeed converges in the p-adic metric.
- Also notice the similarity with the base p—expansion of a number. In fact, it is indeed so, when $a \in \mathbb{N} \subset \mathbb{Q} \subset \mathbb{Q}_p$.
- We will see more on this field later in the algebraic number theory section.

Some embeddings/mappings

We have the following embedding:

$$\begin{array}{ccc} \overline{\mathbb{Q}} & \hookrightarrow & \overline{\mathbb{Q}_p} \\ \cup & & \cup \\ \mathbb{Q} & \hookrightarrow & \mathbb{Q}_p \end{array}$$

Restricting the Galois action on $\overline{Q} \subset \overline{Q_p}$, we have the following embedding:

$$\mathit{G}_{\mathbb{Q}_p} = \mathsf{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) o \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \mathit{G}_{\mathbb{Q}}$$

- Hence, any crossed homo $G_{\mathbb{Q}} \to E(\overline{Q})$ defines a crossed homo $G_{\overline{\mathbb{Q}_p}} \to E(\overline{\mathbb{Q}_p})$
- Thus, we get a homomorphism: $H^1(\mathbb{Q}, E) \to H^1(\mathbb{Q}_p, E)$

Elliptic Curve exact sequences

• Taking $k = \mathbb{Q}$ and \mathbb{Q}_p , and using $\mathbb{Q} \subset \mathbb{Q}_p$, we get the following exact sequence:

$$0 \to E(\mathbb{Q})/nE(\mathbb{Q}) \to H^{1}(\mathbb{Q}, E[n]) \to H^{1}(\mathbb{Q}, E)[n] \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \to E(\mathbb{Q}_{p})/nE(\mathbb{Q}_{p}) \to H^{1}(\mathbb{Q}_{p}, E[n]) \to H^{1}(\mathbb{Q}_{p}, E)[n] \to 0$$

- We want to replace $H^1(\mathbb{Q}, E[n])$ with a subset containing the image of $E(\mathbb{Q})/nE(\mathbb{Q})$, but which we shall be able to prove is finite.
- We do this as: if $\gamma \in H^1(\mathbb{Q}, E[n])$ comes from $E(\mathbb{Q})$, then certainly its image $\gamma_p \in H^1(\mathbb{Q}_p, E[n])$ comes from $E(\mathbb{Q}_p)$. So the following subset is a good candidate.

$$S^n(E/\mathbb{Q}) := \ker \left(H^1(\mathbb{Q}, E[n]) \longrightarrow \prod_p H^1(\mathbb{Q}_p, E) \right).$$

Selmer and Sha

Theorem (kernel-cokernel exact sequence)

From any pair of maps of abelian groups (or modules, etc.)

$$A \xrightarrow{f} B \xrightarrow{g} C$$

there is an exact sequence

$$0 \longrightarrow \ker f \longrightarrow \ker(g \circ f) \longrightarrow \ker g \longrightarrow \operatorname{coker} f$$
$$\longrightarrow \operatorname{coker}(g \circ f) \longrightarrow \operatorname{coker} g \longrightarrow 0.$$

Applying the theorem to

$$H^1(\mathbb{Q}, E[n]) \longrightarrow H^1(\mathbb{Q}, E)[n] \longrightarrow \prod_n H^1(\mathbb{Q}_p, E)[n]$$

Selmer and Sha

We get,

$$0 \longrightarrow E(\mathbb{Q})/nE(\mathbb{Q}) \longrightarrow S^n(E/\mathbb{Q}) \longrightarrow \mathrm{III}(E/\mathbb{Q})[n] \longrightarrow 0.$$

where,

$$S^n(E/\mathbb{Q}) = \ker \left(H^1(\mathbb{Q}, E[n]) \longrightarrow \prod_p H^1(\mathbb{Q}_p, E) \right).$$

$$\mathrm{III}(E/\mathbb{Q})=\mathrm{ker}\bigg(H^1(\mathbb{Q},E)\longrightarrow \prod_{\rho}H^1(\mathbb{Q}_{\rho},E)\bigg)\,.$$

These are called **Selmer** and **Sha** group respectively. We are interested in proving the **finiteness** of the Selmer group as the Weak Mordell-Weil group **injects** into it. **Remark:** (We won't need it later) The Sha group provides a measure of the failure of the Hasse principle for genus 1 curves.

Algebraic Number Theory

Number Field

- Let L be a number field (finite extension of \mathbb{Q})
- Ring of integers, $O_L :=$ all such number in L which is a root of a monic polynomial with integer coefficients.
- In general, factorisation into irreducible elements in O_L is not unique. e.g in $\mathbb{Z}[\sqrt{-5}]$,

$$6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5})$$

• As O_L is not necessarily a PID in general, hence it is not necessarily a UFD. e.g in $\mathbb{Z}[\sqrt{-5}]$, the ideal $(2,1+\sqrt{-5})$ is not principal.

Ideals are the "new numbers"

• However, any proper ideal $\mathfrak{a} \subset O_L$ can be written uniquely as:

$$\mathfrak{a} = \mathfrak{p}_1^{r_1} \mathfrak{p}_2^{r_2} \cdots \mathfrak{p}_n^{r_n}$$
, $\mathfrak{p}_i s$ are prime ideals, $r_i \in \mathbb{N}$

Compare the above with prime power factorisation of a usual integer.

• A fractional ideal is a finitely generated O_L submodule in L. It is principle if it is generated by a single element.

Example

 $\frac{1}{2}\mathbb{Z}$, the set of half integers in \mathbb{Q} is an example of a fractional ideal which is also principal.

In fact, one can show that any fractional ideal in $\mathbb Q$ is principle i.e can be written as $q\mathbb Z$ for some $q\in\mathbb Q$.

Thus an ideal is an analogue of a usual integer, while a fractional ideal resembles a rational number.

Ideal Class Group

- The set of all fractional ideals of L is denoted by $Id(O_L)$ and the set of all principle fractional ideals is denoted by $P(O_L)$.
- Product of two fractional ideals is again a fractional ideal.

$$\mathfrak{a} \cdot \mathfrak{b} = \{ \sum_{\text{finite}} a_i b_i \mid a_i \in \mathfrak{a}, \ b_i \in \mathfrak{b} \}$$

- O_L is a identity as $\mathfrak{a} \cdot O_L = O_L \cdot \mathfrak{a} = \mathfrak{a}$.
- It turns out that every element in $Id(O_L)$ is invertible, hence forms an abelian group with $P(O_L)$ being a subgroup.

Example

Inverse of $q\mathbb{Z}$ in \mathbb{Q} is the fractional ideal $q^{-1}\mathbb{Z}$.

Ideal Class Group

• In fact, any fractional ideal can be uniquely written as:

$$\mathfrak{a}=\mathfrak{p}_1^{r_1}\mathfrak{p}_2^{r_2}\cdots\mathfrak{p}_n^{r_n}$$
 , $\mathfrak{p}_i s$ are prime ideals, $r_i\in\mathbb{Z}$

Thus, fractional ideals indeed mimic the rational numbers, and we further have that $Id(O_L) = \bigoplus_{\mathfrak{p} \ prime} \mathbb{Z}$.

• We write, $v_{\mathfrak{p}_i}(\mathfrak{a}) = r_i$ (valuation of \mathfrak{p}_i at \mathfrak{a})

Definition (Ideal Class group)

$$CI(O_L) = Id(O_L)/P(O_L)$$

 $CI(O_L)$ is a measure of the failure of O_L to be a PID and it is a finite group.

Example

$$CI(\mathbb{Z}) = CL(O_{\mathbb{Q}}) = \{e\}$$

Unit group

• $\mu(L) :=$ group of invertible elements in O_L

Example

$$\mu(\mathbb{Q}) = \{\pm 1\}$$

$$\mu(\mathbb{Q}(i)) = \{\pm 1, \pm i\}$$

$$\mu(\mathbb{Q}(\sqrt{3})) = \{\pm (2 + \sqrt{3})^n \mid n \in \mathbb{Z}\}$$

Theorem

 $\mu(L)$ is finitely generated.

• Note that we have the following exact sequence:

$$0 o \mu(\mathit{L}) o \mathit{L}^{ imes} \overset{\mathit{v}_{\mathfrak{p}}}{\longrightarrow} \bigoplus_{\mathfrak{p} \ \mathit{prime}} \mathbb{Z} o \mathit{Cl}(\mathit{O}_{\mathit{L}}) o 0$$

• Indeed, if $\alpha \in \mu(L)$, $v_{\mathfrak{p}}(\alpha) = 0$ for all \mathfrak{p} .

Units and Ideal Class group

- Let T be a finite set of prime ideals.
- T—units group and T—ideal class group is defined by the exactness of the following sequence:

$$0 o \mu(L)_{\mathcal{T}} o L^{\times} \stackrel{\mathsf{v}_{\mathfrak{p}}}{\longrightarrow} \bigoplus_{\mathfrak{p} \notin \mathcal{T}} \mathbb{Z} o \mathit{Cl}(O_L)_{\mathcal{T}} o 0$$

Theorem

 $\mu_T := \mu(L)_T$ is finitely generated and $C_T := CI(O_L)_T$ is finite.

Proof sketch:

Apply ker-coker exact seq to $L^{\times} \to \bigoplus_{\mathfrak{p}} \mathbb{Z} \to \bigoplus_{\mathfrak{p} \notin T} \mathbb{Z}$ to get

$$0 \to \mu(L) \to \mu_T \to \bigoplus_{\mathfrak{p} \in T} \mathbb{Z} \to \mathit{CL}(O_L) \to \mathit{C}_T \to 0$$

An important theorem

Theorem

Following is a finite set.

$$N = \{ a \in L^{\times} : \nu_{\mathfrak{p}}(a) \equiv 0 \pmod{n} \text{ for all } \mathfrak{p} \notin T \} / L^{\times n}$$

$$= \mathit{Ker} \left(a \mapsto (v_{\mathfrak{p}}(a) \bmod n) : L^{\times}/L^{\times n} \longrightarrow \bigoplus_{\mathfrak{p} \notin T} \mathbb{Z}/n\mathbb{Z} \right)$$

Proof.

As μ_T is finitely generated and C_T is finite, note that it is enough to prove the existence of the following exact sequence:

$$0 \longrightarrow \mu_T/\mu_T^n \longrightarrow N \longrightarrow (C_T)[n]$$

We will chase the following diagram:

An important theorem

Proof.

let $\alpha \in L^{\times}$ represent an element of N. Then $n \mid v_{\mathfrak{p}}(\alpha)$ for all $\mathfrak{p} \notin T$. So if we let c in C_T to be the class of $\frac{v_{\mathfrak{p}}(\alpha)}{n}$, then clearly nc = 0 as nc comes from an element in L^{\times} . If c = 0, then there exists a $\beta \in L^{\times}$ such that $v_{\mathfrak{p}}(\beta) = v_{\mathfrak{p}}(\alpha)/n$ for all $\mathfrak{p} \notin T$. Now α/β^n lies in U_T , and is well-defined up to an element of U_T^n .

Local Fields

Definition

A local field is a locally compact complete field with respect to an absolute value (absolute values are often called primes).

Example

 \mathbb{R} is the completion of \mathbb{Q} with respect to the usual absolute value (which is referred as infinite prime) and \mathbb{Q}_p is the completion of \mathbb{Q} with respect to p-adic absolute value (which is referred as finite prime).

- $\mathbb{Z}_p := \{ a \in \mathbb{Q}_p \mid v_p(a) \geq 0 \}$ is a local ring with its unique maximal ideal being $p\mathbb{Z}_p$ which has p as a generator/uniformizer.
- $\mathbb{Z}_p/p\mathbb{Z}_p\cong F_p$ is its residue field.

Local Fields

Example

Let K be a number field. We get infinite primes from the embeddings $K \to \mathbb{C}$ and finite primes from the prime ideals \mathfrak{p} where the \mathfrak{p} -adic absolute values are defined as:

$$v_{\mathfrak{p}}(\alpha) := v_{\mathfrak{p}}(\alpha O_{K})$$
 (defined in fractional ideal section)

- By Ostrowski, every prime is of this form.
- $K_{\mathfrak{p}}$ is a finite extension of \mathbb{Q}_p .
- Ring of integers (in $K_{\mathfrak{p}}$), $R_{\mathfrak{p}} := \{a \in K_{\mathfrak{p}} \mid v_{\mathfrak{p}}(a) \geq 0\}$ is a local ring with its unique maximal ideal being $\mathfrak{m} := \{a \in K_{\mathfrak{p}} \mid v_{\mathfrak{p}}(a) > 0\}$. Any $\pi \in \mathfrak{m} \setminus \mathfrak{m}^2$ is a generator/uniformizer.
- $R_{\mathfrak{p}}/\mathfrak{m}$ is its residue field which is a finite extension of F_p and denoted as $F_{\mathfrak{p}}$.

Ramification

- Let L/K be finite number field extension and $\mathfrak b$ is a prime ideal in L which is over the prime ideal $\mathfrak p$ in K i.e $\mathfrak p O_L \subset \mathfrak b$.
- Then we have a field extension $L_{\mathfrak{b}}/K_{\mathfrak{p}}$ with uniformizers being $\pi_{\mathfrak{b}}$ and $\pi_{\mathfrak{p}}$ respectively.
- $R_{\mathfrak{b}}$ being a local ring, we have,

$$\pi_{\mathfrak{p}}R_{\mathfrak{b}}=\pi_{\mathfrak{b}}^{e}R_{\mathfrak{b}}$$

for some integer e > 0 which we call ramification index.

• The extension $L_{\mathfrak{b}}/K_{\mathfrak{p}}$ is said to be unramified if e=1.

Ramification

Theorem

Let F/\mathbb{Q}_p be a finite extension. Then there is an absolute value on F which extends the p-adic absolute value.

Theorem

For each integer f > 0, there exists a unique unramified extension F/\mathbb{Q}_p of degree f. It is obtained by adjoining a primitive $(p^f - 1)$ -th root of unity to \mathbb{Q}_p .

Corollary

For any finite extension k of \mathbb{F}_p , there exists an unramified extension K of \mathbb{Q}_p of degree $[k : \mathbb{F}_p]$ such that $\mathcal{O}_K/p\mathcal{O}_K = k$.

See [Feo] for proofs.

More on p-adic numbers

Theorem (Hensel Lemma)

Let $f \in \mathbb{Z}_p[x]$ and $x_0 \in \mathbb{Z}_p$ such that $f(x_0) \equiv 0 \pmod{p}$ and $f'(x_0) \not\equiv 0 \pmod{p}$. Then, $\exists x \in \mathbb{Z}_p$ such that f(x) = 0 and $x \equiv x_0 \pmod{p}$.

The proof is similar to Newton-Raphsan method in numerical analysis and can be found at [Poo09].

The theorem is very powerful as it reduces to finding the solution in \mathbb{F}_p , and so finitely many values to check.

Corollary

 \mathbb{Z}_p contains all (p-1)-th roots of unity.

A filtration on *p*-adics

- Any $x \in \mathbb{Q}_p^{\times}$ can be written uniquely as $x = up^m$ with $u \in \mathbb{Z}_p^{\times}$ and $m \in \mathbb{Z}$.
- k-th principal unit grp, $U^k = \{u \in \mathbb{Z}_p^{\times} \mid u \equiv 1 \pmod{p^k}\}$
- We have the filtration:

$$\mathbb{Q}_p^{\times}\supset U^0=\mathbb{Z}_p^{\times}\supset U^1\supset U^2\supset\cdots$$

- $\cap U^i = \{1\}$
- ullet $\mathbb{Q}_p^ imes/\mathbb{Z}_p^ imes\cong\mathbb{Z}$, and $U^0/U^1\cong\mathbb{F}_p^ imes$
- $U^n/U^{n+1} \cong \mathbb{F}_p^+$ (additive group) where the map is given by $u \to p^{-n}(u-u_0) \mod (p)$ given that the first term in the base-p expansion of u is u_0 .

Theorem

The multiplication by m map, $m: U^1 \to U^1$, is bijective.

A filtration on *p*-adics

Proof.

Let u be in U^1 . Consider the polynomial $f(x) = x^m - u$. $1 \in \mathbb{F}_p$ is a simple root of f mod p. By Hensel's lemma, it lifts to a root of f(x). We are left with proving uniqueness of m-th roots in U^1 .

- We first prove that 1 is the only m-th root of 1 in U^1 . If $u \neq 1$ is an element in $U^{(1)}$ such that $u^m = 1$, there is some n such that u lies in $U^n \setminus U^{n+1}$. If we set \bar{u} to be the image of u in $\mathbb{F}_p^+ \cong U^n/U^{n+1}$, we have $\bar{u} \neq 0$ and thus $m\bar{u} \neq 0$ as (m,p)=1. Under the isomorphism, $m\bar{u}$ corresponds to u^m , so we get a contradiction.
- If a, b are elements in U^1 such that $a^m = b^m = u$, then a/b is an m-th root of 1 which belongs to U^1 . By the above, a/b = 1 so that a = b.

Some results in elliptic curves

Reduction of an Elliptic Curve

Consider an elliptic curve

$$E: Y^2Z = X^3 + aXZ^2 + bZ^3, \quad \Delta = 4a^3 + 27b^2 \neq 0.$$

We make a change of variables $X \mapsto X/c^2$, $Y \mapsto Y/c^3$ with c chosen so that the new a,b are integers and Δ is minimal — the equation is then said to be minimal.

The following equation is called the *reduction of E mod p*.

$$\tilde{E}: Y^2Z = X^3 + \bar{a}XZ^2 + \bar{b}Z^3; \quad (\bar{a}, \bar{b}) = (a, b) \mod p$$

Definition

If $p \neq 2$ and $p \nmid \Delta$ (i.e \tilde{E} is smooth over \mathbb{F}_p), then E is said to have a good reduction modulo p.

Otherwise, it is said to have a bad reduction.

A Filtration

We can define filtration of elliptic curves similar to that of *p*-adics and it has similar results:

$$E(\mathbb{Q}_p) \supseteq E^0(\mathbb{Q}_p) \supseteq E^1(\mathbb{Q}_p) \supseteq \cdots$$

First, define

$$E^0(\mathbb{Q}_p) = \{ P \in E(\mathbb{Q}_p) \mid \bar{P} \text{ is nonsingular} \}.$$

Write $\tilde{E}^{ns} = \tilde{E}/\text{singular points}$. The following reduction map is a homomorphism.:

$$P \mapsto \bar{P} : E^0(\mathbb{Q}_p) \to \tilde{E}^{\mathsf{ns}}(\mathbb{F}_p)$$

We define $E^1(\mathbb{Q}_p)$ to be its kernel which are smooth points (x,y,z) with p|x,z and $p\nmid y$. Generally we define:

$$E^{n}(\mathbb{Q}_{p}) = \{ P \in E^{1}(\mathbb{Q}_{p}) \mid \frac{x(P)}{y(P)} \in p^{n}\mathbb{Z}_{p} \}$$

Filtration theorem

We have similar kind of properties of the filtration like the ones in *p*-adics.

Theorem

The filtration

$$E(\mathbb{Q}_n) \supset E^0(\mathbb{Q}_n) \supset E^1(\mathbb{Q}_n) \supset \cdots$$

has the following properties:

- $E(\mathbb{Q}_p)/E^0(\mathbb{Q}_p)$ is finite;
- ② $P \mapsto \bar{P}$ gives an isomorphism $E^0(\mathbb{Q}_p)/E^1(\mathbb{Q}_p) \cong \tilde{E}^{ns}(\mathbb{F}_p)$;
- ③ $E^n(\mathbb{Q}_p)$ (with $n \ge 1$) is a subgroup of $E(\mathbb{Q}_p)$, and the map $P \mapsto p^{-n} \frac{\times (P)}{y(P)}$ (mod p) mod p is an isomorphism $E^n(\mathbb{Q}_p)/E^{n+1}(\mathbb{Q}_p) \cong \mathbb{F}_p$;
- the filtration is exhaustive, i.e. $\bigcap_n E^n(\mathbb{Q}_n) = \{0\}$.

Filtration theorem

Corollary

For every integer m not divisible by p, the map

$$P\mapsto mP:E^1(\mathbb{Q}_p)\to E^1(\mathbb{Q}_p)$$

is a bijection.

Detailed proofs at [Sza; Mil06].

All theorems we discuss in this section remains valid if we replace \mathbb{Q}_p by a finite unramified extension K of it, p by the uniformizer π , F_p by F_π , v_p by v_π . The reason it remains valid is because we can choose p to be the uniformiser of the extension. For the sake of simplicity, we provide the proofs of the next theorems for \mathbb{Q}_p only, even though they are valid for finite unramified extensions of \mathbb{Q}_p .

Why good reduction is good

Theorem

Let $E(\mathbb{Q}_p)$ has good reduction, and $p \nmid n$. $P \in E(\mathbb{Q}_p)$ is of the form nQ for some $Q \in E(\mathbb{Q}_p)$ iff its image $\bar{P} \in \tilde{E}(\mathbb{F}_p)$ is of the form $n\bar{Q}$ for some $\bar{Q} \in \tilde{E}(\mathbb{F}_p)$.

Proof.

Chase the diagram along with the fact that the first vertical arrow is an isomorphism.

$$\begin{array}{cccc} 0 & \longrightarrow & E^1(\mathbb{Q}_p) & \longrightarrow & E(\mathbb{Q}_p) & \longrightarrow & \tilde{E}(\mathbb{F}_p) & \longrightarrow & 0 \\ & & & \downarrow^n & & \downarrow^n & & \downarrow^n \\ 0 & \longrightarrow & E^1(\mathbb{Q}_p) & \longrightarrow & E(\mathbb{Q}_p) & \longrightarrow & \tilde{E}(\mathbb{F}_p) & \longrightarrow & 0 \end{array}$$

Why good reduction is good

Theorem

Let $E(\mathbb{Q}_p)$ has a good reduction and $p \nmid n$. For any $P \in E(\mathbb{Q}_p)$, there exists a finite unramified extension K of \mathbb{Q}_p such that $P \in nE(K)$.

Proof.

As multiplication by n is surjective on $E(\overline{\mathbb{F}_p})$, there is a finite extension k/\mathbb{F}_p such that $P \in nE(k)$. Recall the theorem:

Theorem

For any finite extension k of \mathbb{F}_p , there exists an unramified extension K of \mathbb{Q}_p of degree $[k : \mathbb{F}_p]$ such that $\mathcal{O}_K/p\mathcal{O}_K = k$.

Then our proof is done using this theorem and the theorem in last slide where \mathbb{Q}_p is replaced by a finite unramified extension (and \mathbb{F}_p by $\mathbb{F}_{p'}$).

Selmer group revisited

Definition

Let m > 1 be an integer. The m-Selmer group of E is

$$S^m(E/K) := \ker \left(H^1(K, E[m]) o \prod_{\mathfrak{p}} H^1(K_{\mathfrak{p}}, E) \right).$$

The Tate-Shafarevich group of E is

$$\mathrm{III}(E/\mathcal{K}) := \ker \left(H^1(\mathcal{K},E)
ightarrow \prod_{\mathfrak{p}} H^1(\mathcal{K}_{\mathfrak{p}},E) \right).$$

We get the following exact sequence:

$$0 \to E(K)/mE(K) \to S^m(E/K) \to \mathrm{III}(E/K)[m] \to 0.$$

Selmer group revisited

Lemma

If L|K is a finite extension, then the following map has finite kernel.

Res:
$$H^1(K, E[m]) \rightarrow H^1(L, E[m])$$

Proof.

Applying the inflation-restriction sequence with $G = Gal(\overline{K}/K)$, $H = Gal(\overline{L}/L) = Gal(\overline{K}/L)$ and M = E[m], there is an exact sequence

$$0 \to H^1(G/H, E[m](L)) \xrightarrow{\operatorname{Inf}} H^1(K, E[m]) \xrightarrow{\operatorname{Res}} H^1(L, E[m]).$$

Selmer group revisited

Proof.

But $H^1(G/H, E[m](L))$ is finite because both $G/H \cong Gal(L/K)$ and E[m](L) are finite (will show finiteness of E[m] later briefly), so there are finitely many maps between them.

As a consequence, we get the following result.

Corollary (Corollary 9.13)

The map $S^{(m)}(E/K) \to S^{(m)}(E/L)$ has finite kernel (the map is induced from restriction map).

Thus to prove Weak Mordell-Weil, we may replace K by a finite extension. So we can assume that K is so large that E[m](K) is contained in E(K) and that K contains μ_m .

Weak Mordell-Weil Theorem

Structure of *m*-th torsion group (quick sketch)

Definition

A lattice in $\mathbb C$ is an additive subgroup $\Lambda\subseteq\mathbb C$ of the form

$$\Lambda = \{ m\omega_1 + n\omega_2 : m, n \in \mathbb{Z} \} \; ; Im(\omega_2/\omega_1) \neq 0$$

Definition

An elliptic function is a meromorphic function on $\mathbb C$ such that $f(z+\omega)=f(z)$ for all $z\in\mathbb C$ and all $\omega\in\Lambda$, where Λ is a lattice in $\mathbb C$.

Example (Weierstrass & function)

$$\wp(z,\Lambda) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

Structure of *m*-th torsion group (quick sketch)

℘' (Complex derivative of ℘) satisfies:

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3,$$

with
$$g_2 = 60 \sum_{\omega \neq 0} \omega^{-4}$$
, $g_3 = 140 \sum_{\omega \neq 0} \omega^{-6}$

- Elliptic curve $E(\mathbb{C})$ defined by the above equation is smooth.
- Every elliptic curve arises as the image of the following group homomorphism:

$$\psi: \mathbb{C}/\Lambda \longrightarrow E(\mathbb{C}) \subset \mathbb{P}^2, \qquad z \mapsto (\wp(z), \wp'(z), 1)$$

- $E(\mathbb{C})[m] \cong \mathbb{C}/\Lambda[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$
- If $E(\mathbb{C})$ is defined by a rational polynomial, it is easy to see that every torsion point is algebraic. Hence,

$$E(\overline{\mathbb{Q}})[m] = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

Theorem

 $E(\mathbb{Q})/mE(\mathbb{Q})$ is finite.

Proof.

- It is enough to show $S^m(E/K)$ is finite with K/\mathbb{Q} finite.
- Let K/\mathbb{Q} be the finite extension which contains all m-torsion points, E[m] and m-th roots of unity, μ_m .
- So action of G_K is trivial on E[m] and μ_m , thus we have:

$$H^{1}(K, E[m]) \cong H^{1}(K, (\mathbb{Z}/m\mathbb{Z})^{2}) \cong Hom(G_{K}, (\mathbb{Z}/m\mathbb{Z})^{2})$$

$$\cong Hom(G_{K}, \mathbb{Z}/m\mathbb{Z})^{2} \cong Hom(G_{K}, \mu_{m})^{2}$$

$$\cong H^{1}(K, \mu_{m})^{2} \cong (K^{\times}/K^{\times^{m}})^{2}$$

Proof.

- Thus $S^m(E/K)$ is a subgroup of $(K^{\times}/K^{\times^m})^2$
- Let $S = S_1 \cup S_2 \cup S_3$ be the finite set of primes, where $S_1 = \text{bad primes}$, $S_2 = \text{primes dividing } (m)$, and $S_3 = \text{infinite primes}$
- Let $\alpha \in S^n(E/K)$ with image $\alpha_{\mathfrak{p}} \in H^1(K_{\mathfrak{p}}, E[m])$, $\mathfrak{p} \notin S$
- As $\alpha_{\mathfrak{p}}$ maps to 0 in $H^1(K_{\mathfrak{p}}, E)$, it comes from an element $\beta_{\mathfrak{p}} \in E(K_{\mathfrak{p}})/mE(K_{\mathfrak{p}})$.
- Let $\beta_{\mathfrak{p}}$ is represented by $\tilde{Q} \in E(K_{\mathfrak{p}})$.
- As $\mathfrak{p} \notin S$, there is a finite unramified extension $L_{\mathfrak{p}}/K_{\mathfrak{p}}$ such that Q is m-divisible in $E(L_{\mathfrak{p}})$

Proof.

• Hence, $\beta_{\mathfrak{p}}$ maps to zero in $E(L_{\mathfrak{p}})/mE(L_{\mathfrak{p}})$, thus $\alpha_{\mathfrak{p}}$ maps to zero in $H^1(L_{\mathfrak{p}}, E[m])$.

$$\beta_{\mathfrak{p}} \qquad E(K_{\mathfrak{p}})/mE(K_{\mathfrak{p}}) \to H^{1}(K_{\mathfrak{p}}, E[m]) \qquad \alpha_{\mathfrak{p}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad E(L_{\mathfrak{p}})/mE(L_{\mathfrak{p}}) \to H^{1}(L_{\mathfrak{p}}, E[m]) \qquad 0$$

• Since L_p/K_p is unramified, we get the following diagram:

$$\begin{array}{cccc} \alpha_{\mathfrak{p}} & H^{1}(K_{\mathfrak{p}}, E[m]) \xrightarrow{\sim} & (K_{\mathfrak{p}}^{\times}/K_{\mathfrak{p}}^{\times^{m}})^{2} \xrightarrow{\nu_{K_{\mathfrak{p}}}} & (\mathbb{Z}/m\mathbb{Z})^{2} \\ \downarrow & \downarrow & \downarrow_{id} \\ 0 & H^{1}(L_{\mathfrak{p}}, E[m]) \xrightarrow{\sim} & (L_{\mathfrak{p}}^{\times}/L_{\mathfrak{p}}^{\times^{m}})^{2} \xrightarrow{\nu_{L_{\mathfrak{p}}}} & (\mathbb{Z}/m\mathbb{Z})^{2} \end{array}$$

Proof.

- So, $\alpha_{\mathfrak{p}}$ corresponds to a pair $(\alpha_1, \alpha_2) \in (K_{\mathfrak{p}}^{\times}/K_{\mathfrak{p}}^{\times^m})^2$ such that $v_{K_{\mathfrak{p}}}(\alpha_1) \equiv v_{K_{\mathfrak{p}}}(\alpha_2) \equiv 0 \pmod{m}$.
- \bullet Hence, finitely many choices for α
- $:: S^m(E/K) < \infty$

Mordell-Weil Theorem

Theorem

Let A be an abelian group. Assume there exists a "height" function

$$h:A\longrightarrow \mathbb{R}$$

with the following properties:

(i) Let $Q \in A$. For all $P \in A$, there exists a constant C_1 (depending only on A and Q) such that

$$h(P+Q)\leq 2h(P)+C_1.$$

(ii) There is an integer $m \ge 2$ and a constant C_2 (depending only on A) such that for all $P \in A$,

$$h(mP) \geq m^2 h(P) - C_2$$
.

Theorem

(iii) For each constant C_3 , the set

$$\{P \in A : h(P) \le C_3\}$$

is finite.

Suppose further that for the integer m in (ii), the quotient group A/mA is finite. Then A is finitely generated.

Proof.

Let $Q_1, \ldots, Q_r \in A$ be representatives of the finitely many cosets of A/mA. The strategy is to subtract suitable multiples of the Q_i from any $P \in A$ so that the resulting point has bounded height independent of P. Thus, the Q_i 's together with finite points of bounded height, will generate A.

Proof.

Let $P \equiv Q_{i_1} \pmod{mA} \implies P = mP_1 + Q_{i_1}$. Proceeding recursively, we obtain

$$P_1 = mP_2 + Q_{i_2}, \quad P_2 = mP_3 + Q_{i_3}, \quad \dots, \quad P_{n-1} = mP_n + Q_{i_n}.$$

Now, for any j, using property (ii) and (i), we compute:

$$h(P_j) \le \frac{1}{m^2} \Big(h(mP_j) + C_2 \Big)$$

= $\frac{1}{m^2} \Big(h(P_{j-1} - Q_{i_j}) + C_2 \Big)$
 $\le \frac{1}{m^2} \Big(2h(mP_{j-1}) + C_0 + C_2 \Big)$

where C_0 is the max of the constants in (i) for $Q = -Q_i$.

Proof.

Iterating the above inequality from P down to P_n , we deduce:

$$h(P_n) \le \left(\frac{2}{m^2}\right)^n h(P) + \left(\frac{1}{m^2} + \frac{2}{m^4} + \frac{4}{m^6} + \dots + \frac{2^{n-1}}{m^{2n}}\right)$$

$$(C_0 + C_2)$$

$$< \left(\frac{2}{m^2}\right)^n h(P) + \frac{C_0 + C_1}{m^2 - 2}$$

$$\le 2^{-n} h(P) + \frac{C_0 + C_1}{2} \quad [Recall \ m \ge 2]$$

For sufficiently large n, we have, $h(P_n) \leq 1 + \frac{C_0 + C_1}{2}$

Hence we are done!

Height on Elliptic Curve

Definition

Let $x = \frac{a}{b} \in \mathbb{Q}$ (a, b coprime) . The height on \mathbb{Q} is defined as:

$$H(x) = \max\{|a|, |b|\}.$$

The **height on** $E(\mathbb{Q})$ (With Weierstrass eqn) is defined by:

$$h(P) = \begin{cases} log(H(x(P)) & if P \neq O \\ 0 & else \end{cases}$$

One can check that the above functions are indeed height functions (using addition formulas for coordinates on Weierstrass elliptic curves),

Mordell-Weil Theorem

Theorem

 $E(\mathbb{Q})$ is finitely generated.

Proof.

Trivial by the Weak Mordell-Weil and the Descent procedure.

References

```
[Feo] Feog. p-adic fields: Chapter 7 of Algebraic Number
Theory Lecture Notes. URL:
https://feog.github.io/antchap7.pdf.
```

- [Mil06] J.S. Milne. *Elliptic Curves*. BookSurge Publishing, 2006. ISBN: 978-1-59973-112-6.
- [Mil21] James S Milne. "Fields and Galois theory (v5. 10)". In: Amer. Math. Monthly 128.8 (2021), pp. 753–754.
- [Poo09] Bjorn Poonen. Introduction to Arithmetic Geometry:
 Lecture Notes for MIT 18.782. MIT. 2009. URL:
 https:
 //math.mit.edu/~poonen/782/782notes.pdf.

References

- [Sil09] Joseph H Silverman. *The arithmetic of elliptic curves.* Vol. 106. Springer, 2009.
- [Sza] Tam'as Szamuely. Lectures On Elliptic Curves. URL: https://pagine.dm.unipi.it/tamas/Elliptic_Curves.pdf.

Thank you!