1 10. PLANUL SI DREAPTA

1.1 A. TEORIE

1.1.1 10.1. Planul in E^3

Majoritatea tehnicilor de proiectare apeleaza la geometria analitica. O problema de actualitate in care este folosita masiv geometria analitica este grafica pe calculator.

În cele ce urmează $\mathcal{R}_c = (O, \{\overline{i}, \overline{j}, \overline{k}\})$ este reperul canonic din \mathbf{E}^3 , iar Ox, Oy, Oz sunt axele ortogonale asociate.

- 1. Normala la plan. Un vector \overline{N} nenul din \mathbf{E}^3 se numeste normală la planul π dacă $\overline{N} \perp \overline{PQ}$, pentru orice două puncte $P,Q \in \pi$. In acest caz vom mai spune ca vectorul liber \overline{N} este un vector normal la planul π sau ca \overline{N} este normala la planul π .
- 2. Planul determinat de un punct si de normala sa. Fie $M_0(a,b,c)$ un punct fixat si $\overline{N} = A\overline{i} + B\overline{j} + C\overline{k}$ un vector nenul fixat. Planul ce trece prin M_0 si are normala \overline{N} este locul geometric al punctelor M(x,y,z) din spatiu pentru care $\overline{N} \cdot \overline{M_0M} = \overline{0}$ si are ecuatia

$$A(x-a) + B(y-b) + C(z-c) = 0.$$

Daca π este planul care are ecuatia A(x-a) + B(y-b) + C(z-c) = 0 convenim sa scriem

$$\pi: A(x-a) + B(y-b) + C(z-c) = 0$$

si sa spunem, prin abuz de limbaj, ca $A\bar{i} + B\bar{j} + C\bar{k}$ este normala sa.

Exemplul 10.1.1. Sa determinam ecuatia planului π care este paralel cu planul

$$\alpha: 2x - 3y + z - 5 = 0$$

si care trece prin punctul M (1,1,1). Remarcam ca $\overline{N}=2\overline{i}-3\overline{j}+\overline{k}$ este o normala la planul α , deci si la planul π . Prin urmare ecuatia planului π este 2(x-1)-3(y-1)+1(z-1)=0, deci

$$\pi: 2x - 3y + z = 0.$$

3. Ecuatia generala a planului. Ecuatia

$$Ax + By + Cz + D = 0,$$

unde $A^2 + B^2 + C^2 \neq 0$ se numeste **ecuatia generala a planului**; coeficientii A, B, C reprezinta tocmai coordonatele unei normale la acest plan.

Exemplul 10.1.2. Sa determinam $\alpha \in \mathbb{R}$ astfel incat punctele $M_1(\alpha,0,1)$, $M_2(1,\alpha,0)$, $M_3(0,1,\alpha)$, $M_4(1,1,1)$ sa fie coplanare. Pentru aceasta consideram planul $\pi: Ax + By + Cz + D = 0$ care contine cele patru puncte. Atunci

$$\alpha A + B + D = 0, A + \alpha B + D = 0, B + \alpha C + D = 0, A + B + C + D = 0$$

trebuie sa fie un sistem compatibil. Din conditia de compatibilitate rezulta imediat ca $\alpha=0$. Remarcam si faptul ca planul celor patru puncte este x+y+z-3=0.

4. Plane de coordonate. Planele

xOy: z = 0 (care are normala \overline{k} si trece prin origine),

yOz: x = 0 sizOx: y = 0

se numesc plane de coordonate.

5. Ecuatia planului prin taieturi. Ecuatia planului care taie axele Ox, Oy, Oz in punctele (a,0,0), (0,b,0), respectiv in (0,0,c), cu $abc \neq 0$ este

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

6. Ecuatia planului care trece prin punctele necoliniare $M_i\left(x_i,y_i,z_i\right)$, $i=\overline{1,3}\ este$:

$$\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0.$$

7. Planul determinat de un punct si doua directii. Planul ce trece prin punctul $M_0(a,b,c)$ si este paralel cu vectorii nenuli si necoliniari $l\bar{i}+m\bar{j}+n\bar{k}$ si $l'\bar{i}+m'\bar{j}+n'\bar{k}$ are ecuatia

$$\begin{vmatrix} x-a & y-b & z-c \\ l & m & n \\ l' & m' & n' \end{vmatrix} = 0.$$

8. Unghiul diedru dintre planele π : Ax + By + Cz + D = 0 si π' : A'x + B'y + C'z + D' = 0 are masura unghiului dintre normalele lor i.e.

$$\arccos \frac{AA' + BB' + CC'}{\sqrt{A^2 + B^2 + C^2} \sqrt{A'^2 + B'^2 + C'^2}}.$$

9. Distanta de la punctul $M_0(x_0, y_0, z_0)$ la planul $\pi: Ax + By + Cz + D = 0$ este, prin definitie minimul distantelor de la punctul M_0 la punctul arbitrar $M \in \pi$ si se poate calcula prin formula

$$d(M_0,\pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Distanta dintre planele π si α este, prin definitie, minimul distantatelor dintre punctele arbitrare $M \in \pi$ si $P \in \alpha$.

Exemplul 10.1.3. Fie planele $\alpha : 2x - 3y + z - 5 = 0$ si $\pi : 3x - y - z + 2 = 0$ si punctul $M_0(1,0,0)$.

- 1. Sa se determine punctul M aflat la intersectia dintre planele xOy, α si π .
- 2. Sa se determine distanta $d(M_0, \pi)$.
- 3. Sa se determine masura unghiului diedru dintre cele doua plane.
- 4. Sa se determine planul β care este perpendicular pe planele date si trece prin M_0 .
- 5. Sa se determine distanta dintre planele date.

Solutie. 1. Sa determinam coordonatele x, y, z ale lui M. Cum $M \in xOy \cap$ $\pi \cap \alpha$ rezulta ca x, y, z verifica sistemul

$$\begin{cases} z = 0 \\ 3x - y - z + 2 = 0 \\ 2x - 3y + z - 5 = 0 \end{cases}.$$

- Deci obtinem $M(-\frac{11}{7}, -\frac{19}{7}, 0)$. 2. Avem $d(M_0, \pi) = \frac{|3+2|}{\sqrt{3^2+1^2+1^2}} = \frac{5}{\sqrt{11}}$. 3. Normala la planul π este $\overline{N_{\pi}} = 3\overline{i} \overline{j} \overline{k}$, iar $\overline{N_{\alpha}} = 2\overline{i} 3\overline{j} + \overline{k}$ este normala la planul α . Prin urmare masura unghiului diedru este arccos $\frac{6+3-1}{\sqrt{11}\sqrt{14}} = \frac{1}{\sqrt{11}}$ $\arccos 4\sqrt{\frac{2}{77}}$.
 - 4. O'normala la planul β este

$$\overline{N_{eta}} := \overline{N_{lpha}} imes \overline{N_{\pi}} = \left| egin{array}{ccc} \overline{i} & \overline{j} & \overline{k} \ 2 & -3 & 1 \ 3 & -1 & -1 \end{array}
ight| = 4\overline{i} + 5\overline{j} + 7\overline{k}.$$

Prin urmare ecuatia planului este 4(x-1) + 5y + 7z = 0, deci

$$\beta: 4x + 5y + 7z - 4 = 0.$$

5. Deoarece planele date nu sunt paralele rezulta ca distanta dintre ele este nula.

Exemplul 10.1.4. Sa determinam distanta dintre planele $\alpha: x+y+z=1$ si β : 2x+2y+2z=1. Decarece o normala la cele doua plane este $\overline{N}=\overline{i}+\overline{j}+\overline{k}$ si $\alpha \neq \beta$ rezulta ca planele sunt paralele. Sa luam un punct din planul α . Atunci distanta dintre cele doua plane este chiar distanta dintre punctul ales si planul β . Prin urmare luand $P(1,0,0) \in \alpha$ obtinem

$$d(\alpha, \beta) = d(P, \beta) \frac{|2-1|}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{1}{2\sqrt{3}}.$$

1.1.2 10.2. Dreapta in E^3

1. Dreapta d ce trece prin punctul $M_0(x_0, y_0, z_0)$ si are directia \overline{d} = $l\overline{l} + m\overline{j} + n\overline{k} \neq \overline{0}$ este locul geometric al punctelor M(x, y, z) pentru care vectorul $\overline{M_0M}$ este coliniar cu vectorul \overline{d} , adica

$$d = \left\{ M \mid \overline{M_0 M} = t \overline{d}, t \in \mathbb{R} \right\}.$$

Vom spune ca $\overline{d} = l\overline{i} + m\overline{j} + n\overline{k}$ este **vector director** pentru dreapta d; coeficientii l, m, n se numesc **parametri directori** ai dreaptei d; prin abuz de limbaj spunem uneori ca l, m, n sunt parametrii directori ai dreptei d. Deoarece $\overline{M_0M} = (x - x_0)\overline{i} + (y - y_0)\overline{j} + (z - z_0)\overline{k} = t\overline{d}$ daca si numai daca

$$x - x_0 = lt, y - y_0 = mt, z - z_0 = nt,$$

de aici obtinem imediat ecuatiile parametrice ale dreptei d care trece prin punctul $M_0(x_0, y_0, z_0)$ si are directia $\overline{d} = l\overline{i} + m\overline{j} + n\overline{k}$:

$$d: \begin{cases} x = x_0 + lt \\ y = y_0 + mt & t \in \mathbb{R}. \\ z = z_0 + nt, \end{cases}$$

Exemplul 10.2.1. Fie dreapta

$$d: \left\{ \begin{array}{l} x = 1 + t \\ y = 2 + 2t \\ z = 3 - 3t \end{array} \right., t \in \mathbb{R}.$$

Sa determinam dreapta d' paralela cu d care trece prin origine. Deoarece $d \parallel d'$ rezulta ca un vector director pentru cele doua drepte este $\overline{d} = \overline{i} + 2\overline{j} - 3\overline{k}$. Cum $O(0,0,0) \in d'$ rezulta ca ecuatiile parametrice ale dreptei d' sunt

$$d: \left\{ \begin{array}{l} x = t \\ y = 2t \\ z = -3t \end{array} \right., t \in \mathbb{R}.$$

2. Ecuatiile carteziene ale dreptei d care trece punctul $M_0(x_0, y_0, z_0)$ si are directia $\overline{d} = l\overline{i} + m\overline{j} + n\overline{k}$ sunt

$$d: \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}.$$

3. Dreapta care trece prin punctele $M_0(x_0, y_0, z_0)$ si $M_1(x_1, y_1, z_1)$ $(M_0 \neq M_1)$ are ecuatia

(a)
$$d: \frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}$$
.

4. Ecuatia generala a unei drepte determinata de doua plane (neparalele) este

$$d: \left\{ \begin{array}{l} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{array} \right.$$

unde $A\overline{i} + B\overline{j} + C\overline{k} \neq t \left(A'\overline{i} + B'\overline{j} + C'\overline{k} \right)$, oricare ar fi $t \in \mathbb{R}$.

Exemplul 10.2.2. Axa Oz este intersectia planelor yOz (de ecuatie x = 0) si zOx (de ecuatie y = 0). prin urmare **ecuatiile axelor de coordonate** sunt

$$Oz\left\{\begin{array}{ll} x=0\\ y=0 \end{array}\right., Ox\left\{\begin{array}{ll} y=0\\ z=0 \end{array}\right., Oy\left\{\begin{array}{ll} z=0\\ x=0 \end{array}\right..$$

Exemplul 10.2.3. Sa determinam un plan π care trece prin origine si este perpendicular pe dreapta

$$d: \begin{cases} x - y + 2z = 0 \\ 2x + y - z = 3. \end{cases}.$$

Deoarece $d \perp \pi$, un vector director al dreptei d este normala la planul π . Pe de alta parte planul de ecuatie x-y+2z=0 admite normala $\overline{d}_1=\overline{i}-\overline{j}+2\overline{k}$, planul de ecuatie 2x+y-z=3 admite normala $\overline{d}_2=2\overline{i}+\overline{j}-\overline{k}$, iar $\overline{d}=\overline{d}_1\times\overline{d}_2=-\overline{i}+5\overline{j}+3\overline{k}\perp\pi$. Prin urmare ecuatia planului π este -x+5y+3z=0.

5. Ecuatia fascicolului de plane care trec prin dreapta

$$d: \left\{ \begin{array}{l} Ax+By+Cz+D=0 \\ A'x+B'y+C'z+D'=0. \end{array} \right.$$

este

$$\pi_{\alpha,\beta}: \alpha \left(Ax + By + Cz + D\right) + \beta \left(A'x + B'y + C'z + D'\right) = 0,$$

unde $\alpha, \beta \in \mathbb{R}$.

6. **Perpendiculara comuna a doua drepte.** Fie dreptele d_1 si d_2 care tree prin $M_1\left(x_1,y_1,z_1\right)$, respectiv prin $M_2\left(x_2,y_2,z_2\right)$ de vectori directori $\overline{d_1} = \underline{l_1}\overline{i} + m_1\overline{j} + n_1\overline{k}$, respectiv $\overline{d_2} = l_2\overline{i} + m_2\overline{j} + n_2\overline{k}$ si produsul vectorial $\overline{d_1} \times \overline{d_2} = l\overline{i} + m\overline{j} + n\overline{k}$. Ecuatiile dreptei perpendiculare pe dreptele d_1 si d_2 sunt:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l & m & n \end{vmatrix} = 0, \begin{vmatrix} x - x_2 & y - y_2 & z - z_2 \\ l_2 & m_2 & n_2 \\ l & m & n \end{vmatrix} = 0.$$

Distanta dintre dreptele d_1 si d_2 este, prin definitie, minimul distantelor dintre punctele arbitrare $M_1 \in d_1$ si $M_2 \in d_2$ si se poate calcula cu ajutorul formulei

$$d\left(d_{1},d_{2}\right)=\frac{\left|\left(\overline{M_{1}M_{2}},\overline{d_{1}},\overline{d_{2}}\right)\right|}{\left\|\overline{d_{1}}\times\overline{d_{2}}\right\|}.$$

Exemplul 10.2.4. Fie dreapta $d: \left\{ \begin{array}{l} x+y+z=3 \\ x-y+z=1 \end{array} \right.$ si planul $\pi:-x+$

y-z=3. Sa se arate ca dreapta data este paralela cu planul dat, apoi sa se determine cea mai apropiata dreapta d' din planul π care este paralela cu dreapta d.

Rezolvare. Deoarece dreapta d este inclusa in planul $\alpha: x-y+z=1$ si α este paralel cu π rezulta ca $d \parallel \pi$. Dreapta d' este chiar proiectia dreptei d pe planul π . O metoda de determinare a acestei proiectii este urmatoarea: din fascicolul de plane care trec prin d alegem planul perpendicular pe planul π ; intersectia acestuia cu π este dreapta cautata. Fie deci

$$a(x+y+z-3) + b(x-y+z-1) = 0$$

fascicolul de plane ce trec prin d. Normala $(a+b)\bar{i}+(a-b)\bar{j}+(a+b)\bar{k}$ a unui plan din fascicol trebuie sa fie ortogonala pe normala planului $\bar{i}-\bar{j}+\bar{k}$ a planului π , deci (a+b)-(a-b)+(a+b)=0, ori a=-3b. In consecinta dreapta cautata este

$$d' \begin{cases} -x + y - z = 3 \\ x - 2y + z = 4 \end{cases}.$$

Verificati corectitudinea rezultatului rezolvand problema prin alta metoda.

7. Volumul V tetraedrului $M_1M_2M_3M_4$ este

$$V = \frac{1}{6} \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix},$$

unde $M_i(x_i, y_i, z_i)$, $i = \overline{1, 4}$ sunt varfurile acestuia.

Exemplul 10.2.5. Sa determinam distanta d(P,Oz), unde P este punctul de coordonate (1,2,3). Deoarece d(P,Oz) = d(P,P'), unde P' este proiectia punctului P pe axa Oz, o metoda de determinare a distantei cautate este urmatoarea:

- scriem ecuatia planului π perpendicular pe Oz care trece prin P: cum \overline{k} este normala la acest plan obtinem imediat ca

$$\pi: z - 3 = 0;$$

- deoarece proiectia $P' \in \pi \cap Oz$ obtinem P'(0,0,3);

- distanta cautata este $d(P, Oz) = d(P, P') = \sqrt{1+4+0} = \sqrt{5}$.

Verificati rezultatul rezolvand problema prin alta metoda (de exemplu folosind proiectia punctului P in planul xOy).

Exemplul 10.2.6. Sa determinam planul π care trece prin punctul P(1,2,3) si prin dreapta

$$d: \left\{ \begin{array}{l} x - y = 0 \\ x + z = 1 \end{array} \right.$$

Din fascicolul de plane care trec prin dreapta data il vom alege pe acela care contine punctul P. Fascicolul cautat este

$$\pi_{\alpha,\beta}: \alpha(x-y) + \beta(x+z-1) = 0.$$

Cum $P(1,2,3) \in \pi_{\alpha,\beta}$ avem $-\alpha + 3\beta = 0$. Planul care trece prin P si d are, asadar, ecuatia 3(x-y) + (x+z-1) = 0, ori

$$\pi : 4x - 3y + z = 4.$$

1.1.3 B. Probleme rezolvate

1. Fie $\alpha: x+2y-z+1=0$. Să se verifice dacă $A\in\alpha$, unde A(-1,2,2) şi în caz contrar să se scrie ecuația unui plan $\alpha'\parallel\alpha$ cu $A\in\alpha'$ REZOLVARE:

Verificăm dacă coordonatele lui A satisfac ecuația planului. Avem $x_A+2y_A-z_A+1=2\neq 0,$ deci $A\notin \alpha.$

Pentru că $\alpha' \parallel \alpha$, putem alege pentru α' același vector normal ca cel al planului α , adică $\bar{N}_{\alpha} = (1, 2, -1)$. Deci α' este planului determinat de punctul A și vectorul normal \bar{N}_{α} , astfel

$$\alpha': 1(x+1) + 2(y-2) - 1(z-2) = 0$$

sau echivalent, alpha': x + 2y - z - 1 = 0.

2. Să se verifice dacă planul $\alpha_1:-2x-4y+2z+3=0$ este paralel cu planul α din problema precedentă.

REZOLVARE:

 $\alpha \parallel \alpha_1$ dacă și numai dacă \bar{N}_{α} și \bar{N}_{α_1} sunt vectori coliniari, adică $\bar{N}_{\alpha} = \lambda \bar{N}_{\alpha_1}$ ceea ce e echivalent cu faptul că cei doi vectori au coordonate proporționale. Verificăm acest lucru: $\frac{-2}{1} = \frac{-4}{2} = \frac{2}{-1}$ e adevărat, deci $\alpha \parallel \alpha_1$.

3. Să se verifice dacă $\alpha_1 \parallel \alpha_2$, unde

$$\alpha_1: x+2y+z-1=0; \quad \alpha_2: 2x-4y+2z-2=0$$

REZOLVARE:

Cele două plane au normalele $\bar{N}_{\alpha_1}=(1,2,1)$ şi $\bar{N}_{\alpha_2}=(2,-4,2)$. Calculăm produsul scalar $\bar{N}_{\alpha_1}\cdot\bar{N}_{\alpha_2}=2-4+2=0$ şi vedem că normalele sunt vectori ortogonali, deci planele sunt perpendiculare.

4. Să se scrie ecuația planului (ABC) cu $A(1,2,-1),\,B(1,2,3)$ și C(2,1,1). REZOLVARE:

Planul (ABC) este determinat de punctul A și vectorii directori

$$\bar{AB} = \bar{OB} - \bar{OA} = (1 - 1, 2 - 2, 3 + 1) = (0, 0, 4)$$

şi

$$\bar{AC} = \bar{OC} - \bar{OA} = (1, -1, 2)$$

Atunci

$$(ABC) = \begin{vmatrix} x-1 & y-2 & z+1 \\ 0 & 0 & 4 \\ 1 & -1 & 2 \end{vmatrix} = 0$$

adică (ABC): x+y-3=0

5. Fie $d: \frac{x+1}{1} = \frac{y-2}{1} = \frac{z+3}{0}$, A(1,2,-1) şi planul $\alpha: 2x+y-z+1=0$. Să se scrie ecuațiile unei drepte $d_1 \parallel d$ cu $A \in d_1$ precum şi ale unei drepte d_2 cu $d_2 \perp \alpha$, $A \in d_2$.

REZOLVARE:

 $d_1 \parallel d$, deci putem alege ca vector director al dreptei d_1 acelasi vector director ca cel al dreptei d, adică $\bar{v} = (1, 1, 0)$. Astfel d_1 e dreapta determinată de punctul A și vectorul director \bar{v} , deci

$$d_1: \frac{x-1}{1} = \frac{y-2}{1} = \frac{z+1}{0}.$$

Avem $d_2 \perp \alpha$ deci putem alege ca vector director al dreptei d_2 , vectorul $\bar{N}_{\alpha} = (2, 1, -1)$ normal la planul α . Astfel d_2 e dreapta determinată de punctul A și vectorul director \bar{N}_{α} , deci

$$d_2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{-1}.$$

6. Fie A(1,2,3) și B(-1,1,2). Să se scrie ecuațiile dreptei AB. REZOLVARE:

ABeste dreapta determinată de punctul A și de vectorul director $\bar{AB}=\bar{OB}-\bar{OA}=(-2,-1,-1).$ Deci

$$AB: \frac{x-1}{-2} = \frac{y-2}{-1} = \frac{z-3}{-1}.$$

7. Să se scrie ecuația unui plan α , cu $\alpha \parallel d_1$, $\alpha \parallel d_2$ și $A \in \alpha$, unde A(1,2,3)

$$d_1: \frac{x+1}{2} = \frac{y-1}{1} = \frac{z}{3}, \quad d_2: \frac{x+2}{1} = \frac{y+3}{-2} = \frac{z+1}{-1}$$

REZOLVARE:

 $\alpha \parallel d_1$ deci \bar{N}_{α} va fi un vector ortogonal pe vectorul director $\bar{u}=(2,1,3)$ al dreptei d_1 . Analog $\alpha \parallel d_2$ deci \bar{N}_{α} va fi un vector ortogonal pe vectorul director $\bar{v}=(1,-2,-1)$ al dreptei d_2 . Aşadar \bar{N}_{α} este un vector simultan ortogonal pe \bar{u} şi pe \bar{v} . Putem alege

$$ar{N}_{lpha} = ar{u} imes ar{v} = \left| egin{array}{ccc} i & j & k \ 2 & 1 & 3 \ 1 & -2 & -1 \end{array}
ight| = 5i + 5j - 5k$$

Astfel, α este planul determinat de punctul A și de vectorul normal $\bar{N}_{\alpha}=(5,5,-5).$ Deci

$$\alpha: 5(x-1) + 5(y-2) - 5(z-3) = 0$$

sau $\alpha: x+y-z=0$. alternativ, se putea scrie ecuația planului α ca fiind determinat de punctul A și vectorii directori \bar{u} și \bar{v} .

8. Fie $\alpha_1: x+y-2z-1=0, \ \alpha_2: 2x+y+z-2=0$ și A(1,2,-1). Să se scrie ecuațiile unei drepte d, cu $A\in d$, $d\parallel\alpha_1,\ d\parallel\alpha_2$.

REZOLVARE:

METODA I:

Fie \bar{u} vectorul director al dreptei d. Pentru că $d \parallel \alpha_1$ avem că $\bar{u} \cdot \bar{N}_{\alpha_1}$ şi pentru că $d \parallel \alpha_2$ avem că $\bar{u} \cdot \bar{N}_{\alpha_2}$, deci \bar{u} este un vector simultan ortogonal pe \bar{N}_{α_1} şi pe \bar{N}_{α_2} . Putem alege

$$\bar{u} = \bar{N}\alpha_1 \times \bar{N}_{\alpha_2} \begin{vmatrix} i & j & k \\ 1 & 1 & -2 \\ 2 & 1 & 1 \end{vmatrix} = 3i - 5j - k$$

Astfel, d e dreapta determinată de punctul A și de vectorul director $\bar{u} = (3, -5, -1)$ și în final găsim

$$d: \frac{x-1}{3} = \frac{y-2}{-5} = \frac{z+1}{-1}.$$

METODA II:

Fie d' dreapta de intersecție a celor două plane, $d' = \alpha_1 \cap \alpha_2$, deci

$$d': \begin{cases} x + y - 2z - 1 = 0\\ 2x + y + z - 2 = 0 \end{cases}$$

Rangul sistemului e 2 și notăm z=t, necunoscută secundară. Sistemul devine

$$\begin{cases} x + y = 1 + 2t \\ 2x + y = 2 - t \end{cases}$$

de unde x=1-3t și y=2+5t. Am găsit astfel că ecuațiile parametrice ale dreptei d' sunt

$$d': \begin{cases} x = 1 - 3t \\ y = 2 + 5t \\ z = t \end{cases}$$

și d' are direcția dată de vectorul $\bar{u}=(-3,5,1)$. Dar $d\parallel\alpha_1,\ d\parallel\alpha_2,$ deci $d\parallel d'$ și putem alege pentru d același vector director u. Astfel

$$d: \frac{x-1}{-1} = \frac{y-2}{5} = \frac{z+1}{1}$$

9. Są se determine proiecția dreptei AB pe planul $\alpha: 2x+y-z+1=0,$ unde A(1,2,3) și B(2,1,-1).

REZOLVARE:

O dreaptă e determinată de două puncte. În particular, proiecția dreptei AB pe planul α va fi determinată de proiecțiile A', B' ale punctelor A și respectiv B pe planul α .

Proiecția A' a lui A pe α este punctul de intersecție dintre α și dreapta d_1 ce conține punctul A și $d_1 \perp \alpha$. Dreapta va avea direcția dată de $\bar{N}_{\alpha} = (2, 1, -1)$ și va avea ecuațiile parametrice:

$$d_1: \begin{cases} x = 1 + 2t \\ y = 2 + t \\ z = 3 - t \end{cases}$$

Punctul A' este obținut pentru acel t pentru care x, y, z din ecuațiile dreptei satisfac ecuația planului, adică pentru 2(1+2t)+(2+t)-(3-t)+1=0, mai precis pentru t=1/3. Înlocuind în ecuațiile dreptei d_1 , găsim A'(5/3,7/3,8/3).

Analog, construim o dreaptă d_2 cu $B \in d_2$ și $d_2 \perp \alpha$. Astfel, $B' = d_2 \cap \alpha$. Repetând raționamentul de mai sus, găsim

$$d_2: \begin{cases} x = 2 + 2t \\ y = 1 + t \\ z = -1 - t \end{cases}$$

și vom avea că punctul B' e obținut pentru t = -7/6, deci B'(-1/3, -1/6, 1/6). Dreapta A'B' e determinată de punctul A' și de vectorul director $A^{\bar{I}}B' = O\bar{B}' - O\bar{A}' = (-2, -5/3, -5/3)$, deci

$$A'B': \frac{x-5/3}{-2} = \frac{y-7/3}{-5/3} = \frac{z-8/3}{-5/3}$$

10. Să se determine simetricul punctului A față de planul α , unde A și α sunt cele din problema precedentă.

REZOLVARE:

Dacă notăm cu A'' simetricul lui A în raport cu planul α , avem că proiecția A' este mijlocul segmentului [AA''], deci $A' = \frac{1}{2}A + \frac{1}{2}A''$, adică

$$x_{A'} = \frac{x_A + x_{A''}}{2} \Rightarrow x_{A''} = 2x_{A'} - x_A = 2\frac{5}{3} - 1 = 7/3$$

apoi

$$y_{A'} = \frac{y_A + y_{A''}}{2} \Rightarrow y_{A''} = 2y_{A'} - y_A = 8/3$$

şi

$$z_{A'} = \frac{z_A + z_{A''}}{2} \Rightarrow z_{A''} = 2z_{A'} - z_A = 2\frac{5}{3} - 1 = 7/3$$

11. Să se determine proiecția punctului A(1,2,3) pe dreapta $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{-1}$, apoi să se calculeze distanța de la punct la dreaptă REZOLVARE:

Fie α planul $\alpha \perp d$, $A \in \alpha$. Atunci, punctul $A' = \alpha \cap d$ va fi proiecția lui A pe d. Planul α esste determinat de punctul A și de vectorul normal $\bar{N}_{\alpha} = (2,1,-1)$ care e vectorul director al dreptei d. Găsim $\alpha: 2x+y-z+1=0$. Scriem ecuațiile dreptei d în formă parametrică:

$$d: \begin{cases} x = -1 + 2t \\ y = t \\ z = -2 - 2t \end{cases}$$

și punctul A' se obține pentru acel t ce satisface 2(-1+2t)+t+(-2-t)-1=0, deci pentru t=1/6. Astfel A'(-2/3,1/6,-13/6).

Distanța
$$d(A,d) = ||\bar{AA'}|| = \sqrt{(-\frac{1}{3}-1)^2 + (\frac{1}{6}-2)^2 + (-\frac{13}{6}-3)^2} = \sqrt{\frac{697}{12}}$$

12. Fie $d_1: \frac{x+1}{1} = \frac{y}{2} = \frac{z}{1}$, $d_2: \frac{x+2}{-1} = \frac{y}{2} = \frac{z}{3}$ şi A(1,2,3). Să se scrie ecuația unei drepte d astfel încât $A \in d$ şi d intersectează dreptele d_1 şi d_2 . REZOLVARE:

Fie α_1 planul ce conține dreapta d_1 și punctul A. Avemcă $A_1(-1,0,0)$ e un punct de pe dreapta d_1 , care are direcția dată de $u_1 = (1,-2,1)$. Atunci α_1 e determinat de punctul A_1 și de vectorii directori liniar independenți u_1 și $A_1\bar{A} = \bar{O}A - \bar{O}A_1 = (2,2,3)$. Deci

$$\alpha_1: \begin{vmatrix} x+1 & y & z \\ 1 & -2 & 1 \\ 2 & 2 & 3 \end{vmatrix} = 0 \iff \alpha_1: -8x - y + 6z - 8 = 0$$

Analog, fie α_2 planul ce conține dreapta d_2 și punctul A. Avemcă $A_1(-2,0,0)$ e un punct de pe dreapta d_2 , care are direcția dată de $u_2 = (-1,2,3)$.

Atunci α_2 e determinat de punctul A_2 și de vectorii directori liniar independenți u_2 și $\bar{A_2}A = \bar{OA} - \bar{OA}_2 = (3, 2, 3)$. Deci

$$\alpha_2 : \begin{vmatrix} x+2 & y & z \\ -1 & 2 & 3 \\ 3 & 2 & 3 \end{vmatrix} = 0 \iff \alpha_1 : 3y - 2z = 0$$

Dar dar pentru că $d_1 \subset \alpha_1$ şi $A \in \alpha_1$, vom avea că $d \subset \alpha_1$, iar cum $d_2 \subset \alpha_2$ şi $A \in \alpha_2$, rezultă că $d \subset \alpha_2$. Deci $d \subset \alpha_1 \cap \alpha_2$, dar cum intersecția a două plane distincte nu poate fi mai mult decât o dreaptă, rezultă că:

$$d: \begin{cases} -8x - y + 6z - 8 = 0\\ 3y - 2z = 0 \end{cases}$$

13. Să se scrie ecuațiile perpendicularei comune a dreptelor d_1 și d_2 de la problema precedentă.

REZOLVARE:

Dacă d_1 conține punctul $A_1(-1,0,0)$ și are direcția dată de $u_1 = (1,-2,1)$ iar d_2 conține punctul $A_2(-2,0,0)$ și are direcția dată de $u_2 = (-1,2,3)$, atunci perpendiculara comună d va avea direcția dată de vectorul

$$w = u_1 \times u_2 = \begin{vmatrix} i & j & k \\ 1 & -2 & 1 \\ -1 & 2 & 3 \end{vmatrix} = -8i - 4j$$

și intersectează cele două drepte date.

În particular, d e conținută în planul α_1 determinat de punctul A_1 și de vectorii directori u_1 și w. Avem

$$\alpha_1 : \begin{vmatrix} x+1 & y & z \\ 1 & -2 & 1 \\ -8 & -4 & 0 \end{vmatrix} = 0 \iff \alpha_1 : x+2y-5z+1=0$$

Analog, d e conținută în planul α_2 determinat de punctul A_2 și de vectorii directori u_2 și w și avem

$$\alpha_2 : \begin{vmatrix} x+2 & y & z \\ -1 & 2 & 3 \\ -8 & -4 & 0 \end{vmatrix} = 0 \iff \alpha_2 : 3x + 6y + 5z + 6 = 0$$

Deci $d = \alpha_1 \cap \alpha_2$, adică

$$d: \begin{cases} x - 2y - 5z + 1 = 0\\ 3x + 65 + 5z + 6 = 0 \end{cases}$$

Alternativ, se puteau folosi direct formulele corespunzătoare.

14. Să se scrie eccuațiile unei drepte d cu $A \in d$ și d intersectează dreptele

$$d_1, d_2, \text{ cu } d_1 : \begin{cases} x + 2y + z - 1 = 0 \\ 2x + y + 2z - 4 = 0 \end{cases} \quad \text{si } d_2 : \begin{cases} x + y - z + 5 = 0 \\ x + y + 3z - 1 = 0 \end{cases}$$

Evident, se poate rezolva ca și problema 12. Dar cum ecuațiile dreptelor d_1, d_2 sunt scrise ca intersecție de plane, ne e mai ușor să folosim fascicole. Fie

$$\pi_{a,b}: a(x+2y+z-1) + b(2x+y+2z-4) = 0 \tag{1}$$

fascicolul de plane ce conțin dreapta d_1 . Vrem să determinăm acel plan din fascicol care conține punctul A. Observăm că pentru b=0, planul $\pi_{a,0}: x+2y+z-1=0$ nu conține punctul A, deci planul pe care îl căutăm are $b\neq 0$. Împărțind ecuația (1) cu b și notând c=b/a, ecuația fascicolului devine c(x+2y+z-1)+(2x+y+2z-4)=0, adică (c+2)x+(2c+1)y+(c+2)z-(c+4)=0. α_1 , planul din fascicol care conține punctul A este cel pentru care (c+2)+2(2c+1)+3(c+2)-(c+4)=0, adică cel cu c=-6/7. Rezultă că

$$\alpha_1 : 8x - 5y + 8z - 22 = 0$$

.

Repetăm raționamentul pentru fascicolul de plane ce conține dreapta d_2 și găsim că planul ce conține dreapta d_2 și punctul A este $\alpha_2: 3x+3y-13z+30=0$. Dar $d=d_1\cap d_2$, deci

$$\begin{cases} 8x - 5y + 8z - 22 = 0\\ 3x + 3y - 13z + 30 = 0 \end{cases}$$

1.1.4 C. Exercitii

1. Gasiti planul care trece prin P(-3,0,7) si este perpendicular pe $\overline{N}=5\overline{i}+2\overline{j}-\overline{k}$.

Raspuns. 5x + 2y - z + 22 = 0.

2. Determinati un set de ecuatii parametrice ale dreptei ce trece prin P(-2,0,4) si este paralela cu $\bar{a} = 2\bar{i} + 4\bar{j} - 2\bar{k}$.

Raspuns.E.g. x = -2 + t, y = 2t, z = 4 - t.

- 3. Aratati ca x = -3 + 4t, y = 2 3t, z = -3 + 7t sunt ecuatii parametrice ale dreptei care trece prin P(-7, 6, -10) si Q(1, -1, 4).
- 4. Determinati punctul in care dreapta $x=\frac{8}{3}+2t,\ y=-2t,\ z=1+t$ intersecteaza planul 3x+2y+6z=6.

Raspuns. $(\frac{2}{3}, 2, 0)$.

5. Se dau planele de ecuatii : 3x - 2y + z = 0 si Ax + By + Cz + D = 0. Sa se determine constantele $A, B, C, D \in \mathbb{R}$ astfel incat planele date sa fie paralele, iar punctul M(1,1,1) sa se gaseasca intr-unul dintre ele.

Raspuns. A = 3, B = D = -2, C = 1.

- 6. Calculati distanta de la punctul P(1,1,3) la planul 3x+2y+6z=6. Raspuns. $\frac{17}{7}$.
- 7. Aratati ca masura unghiului dintre planele de ecuatii 3x 6y 2z = 15 si 2x + y 2z = 5 este $\arccos\left(\frac{4}{21}\right)$.
- 8. Fie punctul P(1, -2, 2) si planul $\pi : x + 2y + 2z + 5 = 0$.
 - (a) Sa se determine ecuatia planului ce trece prin P si este paralel cu π .
 - (b) Sa se calculeze distanta dintre cele doua plane.

Raspuns. **a.** $\alpha : x + 2y + 2z = 1$. **b.** $d(\pi, \alpha) = 2$.

- 9. Fie planele $\alpha : x y = 5 \text{ si } \beta : 2x y + 2z = 0.$
 - (a) Sa se determine ecuatia planului ce trece prin P(3,4,-2) si este perpendicular pe cele doua plane.
 - (b) Sa se calculeze masura unghiului dintre planele α si β .

Raspuns. **a.** 2x + 2y - z = 16. **b.** $\frac{\pi}{4}$.

10. Care este ecuatia planului care trece prin mijlocul segmentului de capete P(2,1,-3) si Q(0,-3,3), este paralel cu dreapta $d:\frac{x-1}{2}=y-4=\frac{z-1}{-3}$ si este perpendicular pe planul $\pi:z=5$?

Raspuns. x - 2y = 3.

11. Care este ecuatia planului ce trece prin P(2, 1, -3) si este perpendicular pe vectorul \overline{OP} ?

Raspuns. 2x + y - 3z = 14.

- 12. Determinati ecuatii parametrice ale dreptei de intersectie a planelor 3x 6y 2z = 15 si 2x + y 2z = 5.
- 13. Calculati distanta de la punctul P la dreapta d, unde:
 - (a) P(0,0,0), d: x = t, y = 2t, z = 3t;
 - (b) P(1,2,3), d: x = t, y = 2t, z = 3t;
 - (c) P(0,0,0), d: x = y = z 3;
 - (d) P(1,2,3) d: x+y-z-3=0, x+2y-z=0.

Raspunsuri. a. 0; b. 0; c. $\sqrt{6}$;

- 14. Determinati distanta de la planul de ecuatie x + 2y + 3z = 4 la planul de ecuatie 2x + 4y + 6z = 13.
- 15. Determinati distanta de la planul de ecuatie x + 2y + 6z = 10 la dreapta de ecuatii $x = 2 + t, y = 1 + t, z = -\frac{1+t}{2}$.
- 16. Sa se determine care dintre cele trei drepte luate cate doua sunt paralele, sunt concurente, sau oblice (i.e. nici concurente, nici paralele).
 - (a) $d_1: x = 3 + 2t, y = -1 + 4t, z = 2 t; d_2: x = 1 + 4s, y = 1 + 2s, z = -3 + 4s; d_3: x = 3 + 2r, y = 2 + r, z = -2 + 2r.$
 - (b) $d_1: x = 1 + 2t, y = -1 t, z = 3t; d_2: x = 2 s, y = 3s, z = 1 + s; d_3: x = 5 + 2r, y = 1 r, z = 8 + 3r.$
- 17. Determinati punctele de intersectie ale dreptei d: x = 1 + 2t, y = -1 t, z = 3t cu planele de coordonate.
- 18. Care sunt ecuatiile dreptei din planul z=3 care face un unghi de $\frac{\pi}{6}$ radiani cu vectorul \bar{i} si un unghi de $\frac{\pi}{3}$ radiani cu vectorul \bar{j} ?
- 19. Sa se scrie ecuatia planului care contine dreapta $d: \frac{x-2}{2} = y+1 = \frac{z}{3}$ si este paralel cu dreapta determinata de punctele P(2,1,1) si Q(-1,-2,-1). Raspuns. x+y-z=1.
- 20. Sa se scrie ecuatia planului care contine dreapta d: 2x = y + z, y z + 2 = 0 si este perpendicular pe planul care trece prin punctele P(2,0,0), Q(0,-1,0) si R(0,0,-1).

 Raspuns. y-z-2=0.
- 21. Sa se demonstreze ca dreapta care trece prin simetricul punctului P(1,1,1) fata de dreapta d: x 2z + 4 = 0, y = z si este perpendiculara pe planul $\pi: 2x + y + z = 4$ are ecuatiile y = z, 2x y z + 8 = 0.
- 22. Dreapta care trece prin proiectia punctului P(1, -1, 2) pe planul $\pi : x + y + z = 5$ si este paralela cu dreapta d : z = -3, x y = 3 are ecuatiile z = 3 si x y = 2?
- 23. Daca dreapta care se sprijina pe dreptele $d_1: x+y-z+2=0, y+z=5x+9, d_2: y=2x+3, z=3x+5$ si este paralela cu dreapta d: 2x-y+2=0, 2x-z+2=0 are ecuatiile D: 2x-y+3=0, y-z+1=0 sa se afle distanta dintre punctele de intersectie dintre D si d_1 , respectiv d_2 . Raspuns. 3.
- 24. Justificati existenta perpendicularei comune a doua drepte disjuncte si neparalele.
- 25. Determinati perpendiculara comuna a dreptelor $d_1: y-z=7x-7, y+z=x+3$ si $d_2: y=-4x+3, z=3x-5$ si distanta dintre ele. Raspuns. E.g. x=1, 4y-3z=2; 5.

- 26. In computer graphics este nevoie sa reprezentam in plan obiectele din spatiu. Sa presupunem ca ochiul privitorului este in $Q(x_0, 0, 0)$ si vrem sa reprezentam punctul $P_1(x_1, y_1, z_1)$ ca un punct P(0, y, z) din planul yOz; realizam acest lucru proiectand P_1 pe plan. de-a lungul dreptei QP_1 .
 - (a) Determinati coodonatele punctului P in functie de x_0, x_1, y_1, z_1 .
 - (b) Examinati comportarea coordonatelor gasite cand $x_1 = 0$, cand $x_1 = x_0$ si cand $x_0 \to \infty$.
- 27. *O problema in computer graphics este depistarea liniilor ascunse. Sa presupunem ca ochiul tau este in Q(4,0,0) si privesti o placa triunghiulara de varfuri (1,0,1),(1,1,0) si (-2,2,2). Segmentul ce uneste (1,0,0) cu (0,2,2) trece prin placa. Ce portiune din segment este ascunsa vederii tale de placa?