n-gramy w analizie sekwencji biologicznych

Michał Burdukiewicz¹, Piotr Sobczyk², Paweł Mackiewicz¹

¹Zakład Genomiki, Uniwersytet Wrocławski

²Instytut Matematyki i Informatyki, Politechnika Wrocławska

Outline

- n-gramy (k-mery)
 - n-gramy (k-mery)
 - Informacja o pozycji
 - Nieciągłe n-gramy
 - Wybór informatywnych n-gramów QuiPT
- signalHSMM
 - Peptydy sygnałowe
 - Ukryte modele semi-Markowskie
 - Porównanie z innymi programami
- 3 Amyloidy
 - Zbiór danych
 - Analiza n-gramów

n-gramy (k-mery, k-tuple) to wektory o długości n zawierające znaki z sekwencji wejściowych.

Pierwotnie analiza n-gramów rozwijana była na potrzeby analizy języka naturalnego, ale ma również zastosowania w genomice (Fang et al., 2011), transkryptomice (Wang et al., 2014) i proteomice (Guo et al., 2014).

	P1	P2	P3	P4	P5	P6
S1	С	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S 3	G	Т	G	Α	Т	Т

Przykładowe sekwencje. S - sekwencje, P - pozycja nukleotydu.

	Α	С	G	Т
S1	1	2	1	2
S2	2	2	2	0
S3	1	0	2	3

Zliczenia 1-gramów.

	P1	P2	P3	P4	P5	P6
S1	C	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S3	G	Т	G	Α	Т	Т

 $\label{eq:przykładowe} Przykładowe sekwencje. \ S - sekwencje, \ P - pozycja \ nukleotydu.$

	AA	CA	GA	TA	AC	CC	GC	TC
S1	0	0	0	1	0	0	1	0
S2	0	1	1	0	1	0	0	0
S3	0	0	1	0	0	0	0	0

Zliczenia 2-gramów (fragment tabeli).

$$n_{\sf max} = u^n$$

 $n_{\sf max}$: liczba wszystkich możliwych n-gramów

 ${\it u}$: liczba liter w alfabecie.

 ${m n}$: długość n-gramu

n-gramy (k-mery) Informacja o pozycji Nieciągłe n-gramy Wybór informatywnych n-gramów - QuiPT

n-gramy mogą być przypisaną informację o pozycjach na których występują.

	P1	P2	P3	P4	P5	P6
S1	С	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S3	G	Т	G	Α	Т	Т

Przykładowe sekwencje. S - sekwencje, P - pozycja nukleotydu.

	1_A.A	2_A.A	3_A.A	4_A.A	5_A.A	1_C.A	2_C.A	3_C.A
S1	0	0	0	0	0	0	0	0
S2	0	0	0	0	0	1	0	0
S3	0	0	0	0	0	0	0	0

Zliczenia 2-gramów z informacją o pozycji (fragment tabeli).

n-gramy (k-mery) Informacja o pozycji Nieciągłe n-gramy Wybór informatywnych n-gramów - QuiP'

$$n_{\sf max} = p imes u^n$$

 n_{max} : liczba wszystkich możliwych n-gramów

p: liczba możliwych pozycji.

 $oldsymbol{u}$: liczba liter w alfabecie.

 $m{n}$: długość n-gramu

n-gramy mogą być nieciągłe - pomiędzy elementami n-gramu mogą występować przerwy.

	P1	P2	P3	P4	P5	P6
S1	C	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S3	G	Т	G	Α	Т	Т

 $Przykładowe \ sekwencje. \ S \ - \ sekwencje, \ P \ - \ pozycja \ nukleotydu.$

	A_A	C_A	G_A	T_A	$A_{-}C$	C_C	G_C	T_C
S1	0	0	0	1	1	0	0	0
S2	1	0	0	0	0	0	1	0
S3	0	0	0	1	0	0	0	0

Zliczenia 2-gramów z przerwą 1 (fragment tabeli).

n-gramy (k-mery) Informacja o pozycji Nieciągłe n-gramy Wybór informatywnych n-gramów - QuiPT

Wielowymiarowa przestrzeń atrybutów jest filtrowana z pomocą QuiPT (**Qui**ck **P**ermutation **T**est) łączącego zalety testów permutacyjnych (brak założeń) z szybkością wykonania.

W trakcie testu permutacyjnego oznaczenia klas są losowo mieszane na potrzeby obliczania statystyki testowej.

p-value
$$= rac{N_{T_P > T_R}}{N}$$

gdzie $N_{T_P>T_R}$ to liczba losowań, kiedy T_P (permutowana statystyka testowa) miała wartość krytyczniejszą niż T_R (statystyka testowa dla niepermutowanych danych).

Outline

- n-gramy (k-mery)
 - n-gramy (k-mery)
 - Informacja o pozycji
 - Nieciągłe n-gramy
 - Wybór informatywnych n-gramów QuiPT
- 2 signalHSMM
 - Peptydy sygnałowe
 - Ukryte modele semi-Markowskie
 - Porównanie z innymi programami
- Amyloidy
 - Zbiór danych
 - Analiza n-gramów

- n-region: głównie zasadowe aminokwasy (Nielsen and Krogh, 1998),
- h-region: silnie hydrofobowe reszty aminokwasy (Nielsen and Krogh, 1998),
- c-region: kilka polarnych aminokwasów bez ładunku (Jain et al., 1994).

Istnieje szereg programów przewidujących występowanie peptydu sygnałowego:

- signalP 4.1 (sieci neuronowe) (Petersen et al., 2011),
- PrediSi (Position Weight Matrix) (Hiller et al., 2004),
- Signal-3L (k-najbliszych sąsiadów) (Shen and Chou, 2007),
- Phobius (ukryte modele Markowskie) (Käll et al., 2004).

Założenia modelu:

- obserwowany rozkład aminokasów jest wynika z przebywania w określonym regionie (stanie),
- długość regionu (czas trwania stanu) jest modelowana poprzez rozkład prawdopodobieństwa (inny niż rozkład geometryczny jak w ukrytych modelach Markowskich).

- Pozyskanie eukariotycznych białek z bazy UniProtKB 2014_07 (po ocyszczeniu z nietypowych lub niedokładnie opisanych rekordów zbiór danych liczy 3816 białek z peptydem sygnałowym i 9795 białek bez peptydu sygnałowego),
- 2. określenie granic n-, h- i c-regionów przez algorytm heurystyczny,
- 3. redukcja wymiarowości problemu poprzez zagregowanie aminokwasów na podstawie ich właściwości fizykochemicznych do kilku grup,
- 4. obliczenie częstości występowania grup aminokwasowych w danych regionie oraz długości regionów,
- 5. uczenie dwóch HSMM dla białek z peptydem sygnałowym i bez peptydu sygnałowego.

Podczas testowania, każde białko jest dopasowane do dwóch HSMM, które modelują odpowiednio białka bez peptydu sygnałowego i z peptydem sygnałowym. Prawdopodobieństwo obu dopasowań stanowią wynik działania programu.

Zbiór danych do analizy porównawczej: 140 eukariotycznych białek z peptydem sygnałowym i 280 losowo wybranych eukariotycznych bialek bez peptydu sygnałowego dodanych po 2010 do bazy UniProt.

signal.hsmm1987: wytrenowany na zbiorze 496 eukariotycznych białek z peptydem sygnałowym dodanych do bazy przed 1987.

signal.hsmm2010: wytrenowany na zbiorze 3676 eukariotycznych białek z peptydem sygnałowym dodanych do bazy przed 2010.

	AUC	H-measure	Gini index
Phobius	0.9643	0.8844	0.9286
PrediSi	0.9411	0.8238	0.8821
signalP 4.1 (no tm)	0.9679	0.8909	0.9357
signalP 4.1 (tm)	0.9750	0.9261	0.9500
signalhsmm2010	0.9893	0.8963	0.9786
signalhsmm1987	0.9889	0.8994	0.9778

Outline

- n-gramy (k-mery)
 - n-gramy (k-mery)
 - Informacja o pozycji
 - Nieciągłe n-gramy
 - Wybór informatywnych n-gramów QuiPT
- 2 signalHSMN
 - Peptydy sygnałowe
 - Ukryte modele semi-Markowskie
 - Porównanie z innymi programami
- 3 Amyloidy
 - Zbiór danych
 - Analiza n-gramów

Zbiór danych: 146 amyloidów i 290 nieamyloidów (Gasior and Kotulska, 2014).

- Duże różnice w częstościach aminokwasów pozwalają na użycie n-gramów.
- Nierówne długości peptydów wykluczają użycie n-gramów z informacją o pozycji.

- Fang, Y.-C., Lai, P.-T., Dai, H.-J., and Hsu, W.-L. (2011). Meinfotext 2.0: gene methylation and cancer relation extraction from biomedical literature. BMC Bioinformatics, 12(1):471.
- Gasior, P. and Kotulska, M. (2014). Fish amyloid a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids. BMC Bioinformatics, 15(1):54.
- Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., and Chou, K.-C. (2014). inuc-pseknc: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. *Bioinformatics*, 30(11):1522–1529.
- Hiller, K., Grote, A., Scheer, M., Münch, R., and Jahn, D. (2004). PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Research, 32(suppl 2):W375–W379.
- Jain, R. G., Rusch, S. L., and Kendall, D. A. (1994). Signal peptide cleavage regions. functional limits on length and topological implications. The Journal of Biological Chemistry, 269(23):16305–16310.
- Käll, L., Krogh, A., and Sonnhammer, E. L. L. (2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338(5):1027–1036.
- Nielsen, H. and Krogh, A. (1998). Prediction of signal peptides and signal anchors by a hidden markov model. Proceedings / ... International Conference on Intelligent Systems for Molecular Biology; ISMB. International Conference on Intelligent Systems for Molecular Biology, 6:122-130.
- Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10):785–786.
- Shen, H.-B. and Chou, K.-C. (2007). Signal-3l: A 3-layer approach for predicting signal peptides. Biochemical and Biophysical Research Communications, 363(2):297–303.
- Wang, Y., Liu, L., Chen, L., Chen, T., and Sun, F. (2014). Comparison of metatranscriptomic samples based on jitalic¿k-j/italic¿tuple frequencies. PLoS ONE, 9(1):e84348.