

<u>Course</u> > <u>Unit 2:</u>... > <u>4 Eigen</u>... > 3. Geo...

3. Geometric meaning

Geometric meaning of real eigenvalues and eigenvectors

Recall that any $n \times n$ matrix **A** represents a function from \mathbb{R}^n to \mathbb{R}^n . Therefore, an eigenvector **v** of **A**, which satisfies the equation

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
 for some scalar λ ,

is a vector whose image under \mathbf{A} is a scalar multiple of itself. When the eigenvalue $\boldsymbol{\lambda}$ is real, this means that an eigenvector is a vector \mathbf{v} whose image lies on the line in \mathbb{R}^n through $\mathbf{0}$ and \mathbf{v} , with the eigenvalue $\boldsymbol{\lambda}$ as the scaling factor.

Let us revisit the examples above.

Example 3.1 The function represented by $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ stretches every vector in \mathbb{R}^3 to $\mathbf{5}$ times its length but does not change its

direction; hence, every vector is an eigenvector associated to the eigenvalue ${\bf 5}$.

- **Example 3.2** The function represented by the matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
- stretches the eigenvector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ to **2** times (**2** is the corresponding eigenvalue) its length but does not change its direction;
- collapses the eigenvector $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ to the **0** vector, since **0** is the corresponding eigenvalue;
- flips the eigenvector $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ across the origin to the other side of the z-axis without changing its length, since -1 is the corresponding eigenvalue.
- **Example 3.3** The (function represented by the) matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,
- does not change the direction or length of the eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ since the corresponding eigenvalue is 1;
- flips the eigenvector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ across the origin to the other side of the line $\pmb{y} = -\pmb{x}$, since the eigenvalue is -1.

In each case, the image of the eigenvector lies on the same line as the eigenvector itself.

Matrix vector mathlet

The mathlet below shows the input and output vectors of a $\mathbf{2} \times \mathbf{2}$ matrix \mathbf{A} and their relationship with the eigenlines. Recall from the course *Differential equations: 2 by 2 systems* that when the eigenvectors of an eigenvalue are all scalar mulitiples of just one eigenvector, then the line consisting of all the eigenvectors is called an **eigenline**.

To see the action of \mathbf{A} on its eigenvector:

- 1. click on all three boxes "Show eigenlines," "Show eigenvalues," and "Show eigenvectors";
- 2. choose values of $\bf A$ (on the right) so that two eigenlines (green) are shown on the graph (on the left);
- 3. click on a point along the eigenlines (green on the graph) to select an eigenvector \mathbf{v} (blue) as an input to \mathbf{A} ;
- 4. observe that the output \mathbf{Av} (red) lies along the same line as \mathbf{v} , with the corresponding eigenvalue, λ_1 or λ_2 , (bottom right) as scalar factors.

Observe that when the input vector \mathbf{v} (blue) is **not** an eigenvector (i.e. not on an eigenline), the output $\mathbf{A}\mathbf{v}$ (red) is not on the same line as \mathbf{v} .

Projections

2/2 points (graded)

There are two eigenvalues for the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, namely 0 and 1.

Which of the following are eigenvectors associated to

the eigenvalue **1**: the eigenvalue **0**: (Choose all that apply.)

Solution:

Since
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $\mathbf{v} = \mathbf{v}$ for the choices $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1/3 \\ -1/3 \\ 0 \end{pmatrix}$, these are the eigenvectors for the eigenvalue $\mathbf{1}$.

Note: Any vector of the form $\begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$ is an eigenvector of **1**. Geometrically, any vector lying on the xy-plane is unchanged by the matrix.

On the other hand, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix} = \mathbf{0}$, so $\begin{pmatrix} 0 \\ 0 \\ 1/2 \end{pmatrix}$ is an eigenvector of $\mathbf{0}$.

Note: $\begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$ for any number c is an eigenvector of c. Geometrically, any vector lying on the c-axis is collapsed to the origin by the matrix.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},$$

which is not a scalar multiple of $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. So $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ is not an eigenvector associated to any eigenvalue. Therefore, the matrix represents the projection function that sends any vector in \mathbb{R}^3 to its "shadow" on the xy-plane.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

