Álgebra Linear e suas Aplicações

Notas de Aula

Petronio Pulino

$$\begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} = Q \begin{bmatrix} -4 \\ 1 \\ 6 \end{bmatrix} Q^{t}$$

$$Q^t Q = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$$

Álgebra Linear e suas Aplicações Notas de Aula

Petronio Pulino

 $Departamento\ de\ Matemática\ Aplicada$ Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas $E{-}mail{:}\ pulino@ime.unicamp.br$ $www.ime.unicamp.br/{\sim}pulino/ALESA/$

Conteúdo

1	Est	Estruturas Algébricas				
	1.1	Operação Binária. Grupos	2			
	1.2	Corpo Comutativo	7			
	1.3	Corpo com Valor Absoluto	10			
	1.4	Corpo Ordenado	12			
	1.5	Valor Absoluto num Corpo Ordenado	15			
	1.6	Números Reais	17			
	1.7	Números Complexos	20			
	1.8	Característica do Corpo	25			
	1.9	Métricas	27			
2	Ma	trizes e Sistemas Lineares	29			
	2.1	Matrizes	30			
	2.2	Tipos Especiais de Matrizes	41			
	2.3	Inversa de uma Matriz	59			
	2.4	Matrizes em Blocos	63			
	2.5	Operações Elementares. Equivalência	76			
	2.6	Forma Escalonada. Forma Escada	81			
	2.7	Matrizes Elementares	84			
	2.8	Matrizes Congruentes. Lei da Inércia	101			
	2.9	Sistemas de Equações Lineares	107			
3	Esp	paços Vetoriais	L 3 9			
	3.1	Espaço Vetorial. Propriedades	140			
	3.2	Subespaço Vetorial	147			
	3.3	Combinação Linear. Subespaço Gerado	154			
	3.4	Soma e Intersecção. Soma Direta	158			
	3.5	Dependência e Independência Linear	167			
	3.6	Bases e Dimensão	173			
	3.7	Coordenadas	204			
	3.8	Mudança de Base	212			

ii CONTEÚDO

4	Tra	$nsforma \~c\~oes\ Lineares$	219
	4.1	Transformações do Plano no Plano	. 220
	4.2	Transformação Linear	. 221
	4.3	Núcleo e Imagem	. 226
	4.4	Posto e Nulidade	. 232
	4.5	Espaços Vetoriais Isomorfos	. 244
	4.6	Álgebra das Transformações Lineares	. 249
	4.7	Transformação Inversa	. 253
	4.8	Representação Matricial	. 268
5	Pro	$duto\ Interno$	283
	5.1	Introdução	. 284
	5.2	Definição de Produto Interno	. 284
	5.3	Desigualdade de Cauchy–Schwarz	. 297
	5.4	Definição de Norma. Norma Euclidiana	. 299
	5.5	Definição de Ângulo. Ortogonalidade	. 303
	5.6	Base Ortogonal. Coeficientes de Fourier	. 311
	5.7	Processo de Gram–Schmidt	. 316
	5.8	Complemento Ortogonal	. 324
	5.9	Decomposição Ortogonal	. 329
	5.10	Identidade de Parseval	. 337
	5.11	Desigualdade de Bessel	. 339
	5.12	Operadores Simétricos	. 341
	5.13	Operadores Hermitianos	. 345
	5.14	Operadores Ortogonais	. 347
	5.15	Projeção Ortogonal	. 353
	5.16	Reflexão sobre um Subespaço	. 361
	5.17	Melhor Aproximação em Subespaços	. 365
6	Aut	ovalores e Autovetores	369
	6.1	Autovalor e Autovetor de um Operador Linear	. 370
	6.2	Autovalor e Autovetor de uma Matriz	. 379
	6.3	Multiplicidade Algébrica e Geométrica	. 394
	6.4	Matrizes Especiais	. 399
	6.5	Aplicação. Classificação de Pontos Críticos	. 411
	6.6	Diagonalização de Operadores Lineares	. 416
	6.7	Diagonalização de Operadores Hermitianos	. 438

CONTEÚDO iii

7	Fun	Funcionais Lineares e Espaço Dual		
	7.1	Introdução	464	
	7.2	Funcionais Lineares	465	
	7.3	Espaço Dual	471	
	7.4	Teorema de Representação de Riesz	488	
8	$\acute{A}lg$	ebra Linear Computacional	493	
	8.1	Introdução	494	
	8.2	Decomposição de Schur. Teorema Espectral	495	
	8.3	Normas Consistentes em Espaços de Matrizes	501	
	8.4	Análise de Sensibilidade de Sistemas Lineares	514	
	8.5	Sistema Linear Positivo—Definido	532	
	8.6	Métodos dos Gradientes Conjugados	537	
	8.7	Fatoração de Cholesky	555	
	8.8	Métodos Iterativos para Sistemas Lineares	566	
	8.9	Sistema Linear Sobredeterminado	591	
	8.10	Subespaços Fundamentais de uma Matriz	597	
	8.11	Projeções Ortogonais	615	
	8.12	Matriz de Projeção Ortogonal	621	
	8.13	Fatoração QR	629	
		Modelos de Regressão Linear		
	8.15	Solução de norma—2 Mínima	684	
		Problemas de Ponto Sela		
		Decomposição em Valores Singulares		
	Bib	liografia	735	

iv *CONTEÚDO*

1

Estruturas Algébricas

Conteúdo			
1.1	Operação Binária. Grupos		
1.2	Corpo Comutativo		
1.3	Corpo com Valor Absoluto		
1.4	Corpo Ordenado		
1.5	Valor Absoluto num Corpo Ordenado		
1.6	Números Reais		
1.7	Números Complexos		
1.8	Característica do Corpo		
1.9	Métricas		

1.1 Operação Binária. Grupos

Definição 1.1.1 (Operação) Seja \mathbb{E} um conjunto não vazio. Uma operação binária em \mathbb{E} é uma aplicação, que denotamos por \star , que a cada par ordenado $(x,y) \in \mathbb{E} \times \mathbb{E}$ associa o elemento $x \star y \in \mathbb{E}$.

Definição 1.1.2 (Fechamento) Seja \star uma operação binária sobre \mathbb{E} . Dizemos que o subconjunto $\mathcal{A} \subseteq \mathbb{E}$, não vazio, é **fechado** com relação a operação \star se para todo par ordenado $(x,y) \in \mathcal{A} \times \mathcal{A}$ tem-se que $x \star y \in \mathcal{A}$.

Exemplo 1.1.1 Considere $\mathbb{N} = \{1, 2, 3, 4, \cdots\}$, o conjunto dos números naturais. Podemos verificar facilmente que \mathbb{N} é fechado com relação a operação de adição + e também com relação a operação de multiplicação \times .

Exemplo 1.1.2 Considere $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$, o conjunto dos números inteiros. Podemos verificar facilmente que \mathbb{Z} é fechado com relação a operação de adição + e também com relação a operação de multiplicação \times .

Definição 1.1.3 Uma operação * definida em E pode ter as seguintes propriedades:

- Dizemos que uma operação \star definida em E é associativa se $\forall x, y, z \in E$ tem-se que $(x \star y) \star z = x \star (y \star z)$.
- Dizemos que uma operação \star definida em E é comutativa se $\forall x, y \in E$ tem-se que $x \star y = y \star x$.
- Dizemos que o elemento $e \in \mathbb{E}$ é o elemento neutro da operação \star se $\forall x \in \mathbb{E}$ tem-se que $x \star e = e \star x = x$.
- Dizemos que o elemento $x \in \mathbb{E}$ é simetrizável para uma operação \star com o elemento neutro e se existe um elemento $\overline{x} \in E$ tal que $x \star \overline{x} = \overline{x} \star x = e$.

Exemplo 1.1.3 Considere $\mathbb{E} = \mathbb{R}$ o conjunto dos números reais. Vamos definir em \mathbb{E} uma operação \star da seguinte forma: para cada par ordenado $(x,y) \in \mathbb{R} \times \mathbb{R}$ associamos o elemento $x \star y = (x+y) + (x \times y)$. Podemos mostrar facilmente que a operação \star é associativa, comutativa e possui elemento neutro.

Exemplo 1.1.4 Podemos verificar que o conjunto dos números inteiros \mathbb{Z} possui uma estrutura de grupo com relação a operação usual de adição.

Definição 1.1.4 (Grupo) Seja G um conjunto não vazio e * uma operação definida sobre G. Dizemos que G tem uma estrutura de grupo em relação a operação * se essa operação possui as seguintes propriedades:

- (a) Associativa
- (b) Elemento Neutro
- (c) Todo elemento de G é simetrizável

Utilizamos a notação (\mathbb{G}, \star) para denotar que o conjunto \mathbb{G} tem uma operação \star definida nele. Se a operação definida no grupo \mathbb{G} for a adição, dizemos que $(\mathbb{G}, +)$ é um **grupo aditivo**. Se a operação definida no grupo \mathbb{G} for a multiplicação, dizemos que (\mathbb{G}, \times) é um **grupo multiplicativo**. No entanto, existem grupos com outras operações em vários ramos da matemática.

Exemplo 1.1.5 Podemos verificar que a Tabela 1.1 proporciona uma estrutura de grupo ao conjunto $\mathbb{G} = \{e, a, b, c\}$, isto é, (\mathbb{G}, \star) é um grupo. A regra de operação na tabela é definida de forma que o elemento $a_{ij} = a_i \star a_j$.

Tabela 1.1: Grupo de Klein

*	е	a	b	с
е	е	a	b	С
a	a	е	С	b
b	b	с	е	a
С	С	b	a	е

Definição 1.1.5 (Grupo Comutativo) Seja (\mathbb{G}, \star) um grupo. Dizemos que (\mathbb{G}, \star) é um grupo comutativo, ou grupo abeliano, se a operação \star for comutativa.

Exemplo 1.1.6 O conjunto \mathbb{Z} dos números inteiros possui uma estrutura de grupo abeliano em relação a operação usual de adição. Assim, dizemos que $(\mathbb{Z},+)$ é um grupo aditivo abeliano.

Exemplo 1.1.7 O conjunto das matrizes reais de ordem n, que denotamos por $\mathbb{M}_n(\mathbb{R})$, tem uma estrutura de grupo aditivo abeliano, isto \acute{e} , $(\mathbb{M}_n(\mathbb{R}), +)$ tem uma estrutura de grupo abeliano, onde + indica a operação usual de adição de matrizes.

Exemplo 1.1.8 O conjunto $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} / a, b \in \mathbb{Q}\}$ tem uma estrutura de grupo multiplicativo abeliano, com relação a operação usual de multiplicação dos números racionais.

Exemplo 1.1.9 Considere o subconjunto $S \subset M_n(\mathbb{R})$ definido por:

$$S = \{ D \in \mathbb{M}_n(\mathbb{R}) / D \text{ \'e uma matriz diagonal invertivel } \}.$$

Mostre que (S, \star) tem uma estrutura de grupo multiplicativo abeliano, onde \star é a operação usual de multiplicação de matrizes.

Definição 1.1.6 (Subgrupo) Seja (\mathbb{G}, \star) um grupo. Dizemos que um subconjunto $\mathbb{S} \subset \mathbb{G}$ não vazio é um subgrupo de \mathbb{G} se \mathbb{S} for fechado com relação a operação \star e (\mathbb{S}, \star) tem uma estrutura de grupo.

Exemplo 1.1.10 Dado $n \in \mathbb{N}$, o subconjunto $\mathbb{Z}\mathbf{n} \subset \mathbb{Z}$ definido da forma:

$$\mathbb{Z}\mathbf{n} \ = \ \left\{ \ x \ \in \ \mathbb{Z} \ \ / \ \ x \ = \ n \times m \quad ; \quad m \ \in \ \mathbb{Z} \ \right\}$$

 \acute{e} um subgrupo do grupo aditivo $(\mathbb{Z},+)$, onde \times \acute{e} a operação de multiplicação em \mathbb{Z} .

Exercícios

Exercício 1.1 Verifique se (E, \star) tem uma estrutura de grupo abeliano. Em caso negativo, dizer quais propriedades não são satisfeitas.

(a)
$$E = \mathbb{N}_0 = \{0, 1, 2 \cdots\}$$
 $e \ x \star y = x + y$

(b)
$$E = \mathbb{Z}$$
 e $x \star y = x + y - 1$

(c)
$$E = \mathbb{Z}$$
 e $x \star y = x + y + 1$

(d)
$$E = \mathbb{Z}$$
 e $x \star y = 2 \times x + y$

(e)
$$E = \mathbb{Z}$$
 $e \ x \star y = x \times y$

onde + indica a operação usual de adição e × indica a operação usual de multiplicação.

Exercício 1.2 Considere o conjunto dos números reais \mathbb{R} munido da operação \star definida por $x \star y = x + y + 4$. Mostre que (\mathbb{R}, \star) tem uma estrutura de grupo comutativo.

Exercício 1.3 Considere o conjunto dos números reais \mathbb{R} munido da operação \star definida por $x \star y = x + 2 \times y - 4$. Verifique se (\mathbb{R}, \star) tem uma estrutura de grupo comutativo. Em caso negativo, dizer quais propriedades não são satisfeitas.

Exercício 1.4 Considere o conjunto dos números reais positivos \mathbb{R}^+ , isto é,

$$I\!\!R^+ = \{ x \in I\!\!R / x > 0 \},$$

munido da operação \star definida por $x \star y = x + y + 8$. Verifique se (\mathbb{R}^+, \star) possui uma estrutura de grupo comutativo.

Exercício 1.5 Considere o conjunto dos números reais positivos \mathbb{R}^+ munido da operação \star definida por $x \star y = x + y - 6$. Verifique se (\mathbb{R}^+, \star) possui uma estrutura de grupo comutativo.

Exercício 1.6 Considere o subconjunto \mathbb{R}^* dos números reais definido por:

$$I\!\!R^* = \{ x \in I\!\!R / x \neq 0 \},$$

Mostre que (\mathbb{R}^*, \times) possui uma estrutura de grupo multiplicativo abeliano, com relação a operação usual de multiplicação.

Exercício 1.7 Verifique se $(\mathbb{I}M_n(\mathbb{R}), \star)$ tem uma estrutura de grupo multiplicativo, onde \star é a operação usual de multiplicação de matrizes.

Exercício 1.8 Seja $S = \{A \in \mathbb{M}_n(\mathbb{R}) \mid A \text{ \'e invert\'ivel}\}$. Verifique se (S, \star) tem uma estrutura de grupo multiplicativo, onde \star \acute{e} a operação usual de multiplicação de matrizes.

Exercício 1.9 Seja $S = \{A \in M_n(\mathbb{R}) \mid A \text{ \'e invert\'ivel}\}$. Verifique se (S, \star) tem uma estrutura de grupo multiplicativo abeliano, onde \star \acute{e} a operação usual de multiplicação de matrizes.

Exercício 1.10 Considere o conjunto dos números reais \mathbb{R} . Vamos definir em \mathbb{R} uma operação \star da seguinte forma: para cada par ordenado $(x,y) \in \mathbb{R} \times \mathbb{R}$ associamos o elemento $x \star y = x + (x \times y)$. Faça um estudo sobre as propriedades da operação \star , onde + indica a operação usual de adição $e \times indica$ a operação usual de multiplicação.

Exercício 1.11 Mostre que (\mathbb{Z}, \times) , onde \times é a operação usual de multiplicação de números inteiros, não possui uma estrutura de grupo multiplicativo.

Exercício 1.12 Considere o conjunto $G = \{e, a, b, c\}$. Se (G, \star) tem uma estrutura de grupo, complete a tabela abaixo.

*	е	a	b	c
е	е	a	b	С
a	a			
b	b	С		
c	С	е	a	

A regra de operação na tabela é de forma que o elemento $a_{ij} = a_i \star a_j$.

Exercício 1.13 Considere o conjunto dos números racionais

$$\mathbb{Q} \ = \ \left\{ \ \frac{p}{q} \ / \ p, \, q \ \in \ \mathbb{Z} \quad , \quad q \neq 0 \ \right\} \, .$$

Mostre que $(\mathbb{Q},+)$ possui uma estrutura de grupo aditivo abeliano, com relação a operação usual de adição.

1.2 Corpo Comutativo

Definição 1.2.1 Um corpo comutativo é um conjunto não vazio \mathbb{F} munido de duas operações, denominadas adição e multiplicação, que vamos denotar por + e \times , respectivamente, que satisfazem os seguintes axiomas:

Axiomas de Fechamento

- (F_1) IF é fechado com relação a operação de adição. Para todos $x, y \in \mathbb{F}$ temos que $x + y \in \mathbb{F}$.
- (F_2) IF é fechado com relação a operação de multiplicação. Para todos $x, y \in IF$ temos que $x \times y \in IF$.

Axiomas da Operação de Adição

- (A₁) Associatividade: para todos $x, y, z \in \mathbb{F}$ temos que (x + y) + z = x + (y + z).
- (A₂) Comutatividade: para todos $x, y \in \mathbb{F}$ temos que x + y = y + x.
- (A₃) Elemento Neutro: existe um único elemento em \mathbb{F} , denotado por $0_{\mathbb{F}}$, tal que $x + 0_{\mathbb{F}} = x$; $\forall x \in \mathbb{F}$.
- (A₄) Elemento Simétrico: todo elemento $x \in \mathbb{F}$ possui um único elemento simétrico $(-x) \in \mathbb{F}$ tal que $x + (-x) = 0_{\mathbb{F}}$.

Axiomas da Operação de Multiplicação

- (M_1) Associatividade: $\forall x, y, z \in \mathbb{F}$ temos que $(x \times y) \times z = x \times (y \times z)$.
- (M_2) Comutatividade: $\forall x, y \in \mathbb{F}$ temos que $x \times y = y \times x$.
- (M_3) Elemento Neutro: existe um único elemento em \mathbb{F} , denotado por $1_{\mathbb{F}}$, tal que $x \times 1_{\mathbb{F}} = x$ para todo $x \in \mathbb{F}$.
- (M_4) Inverso Multiplicativo: todo elemento $x \in \mathbb{F}$ com $x \neq 0_{\mathbb{F}}$ possui um único elemento $x^{-1} \in \mathbb{F}$ tal que $x \times x^{-1} = 1_{\mathbb{F}}$.
- (D₁) Distributividade: $\forall x, y, z \in \mathbb{F}$ temos que $x \times (y + z) = (x \times y) + (x \times z)$.

É interessante observar que $(I\!\!F,+)$ tem uma estrutura de grupo aditivo abeliano. Seja o conjunto $I\!\!F^* = \{ x \in I\!\!F \ / \ x \neq 0_{I\!\!F} \}$. Observamos que $(I\!\!F^*,\times)$ tem uma estrutura de grupo multiplicativo abeliano.

Definição 1.2.2 (subcorpo) Seja \mathbb{F} um corpo. Dizemos que um subconjunto $\mathbb{S} \subset \mathbb{F}$, não vazio, é um subcorpo de \mathbb{F} se \mathbb{S} possui uma estrutura de corpo com relação às operações de adição e multiplicação definidas em \mathbb{F} .

Teorema 1.2.1 Sejam $a, b, c \in \mathbb{F}$ com a + b = a + c. Então b = c.

Demonstração – Pelo Axioma (A_4) de corpo, temos que existe um único elemento $d \in \mathbb{F}$ tal que $a + d = 0_{\mathbb{F}}$. Desse modo, obtemos

$$b = (a + d) + b = d + (a + b) = d + (a + c) = (a + d) + c = c$$

utilizando os Axiomas (A_1) e (A_3) de corpo, completando a demonstração.

Essa propriedade é denominada Lei do Cancelamento para a Adição. Em particular, essa propriedade mostra a unicidade do elemento neutro da adição.

Teorema 1.2.2 Sejam $a, b \in \mathbb{F}$. Então, existe um único $x \in \mathbb{F}$ tal que a + x = b.

Demonstração – Pelo Axioma (A_4) de corpo, temos que existe um único elemento $d \in \mathbb{F}$ tal que $a + d = 0_{\mathbb{F}}$. Seja o elemento x = d + b. Assim, temos que

$$a + x = a + (d + b) = (a + d) + b = 0_{\mathbb{F}} + b = b$$

utilizando os Axiomas (A_1) e (A_3) de corpo, completando a demonstração.

Denotamos o elemento x=b-a para indicar a diferença entre os elementos a e b. Em particular, $0_{\mathbb{F}}-a$ é simplesmente escrito como -a que é denominado negativo ou simétrico do elemento a. A operação que a cada par $(a,b) \in \mathbb{F} \times \mathbb{F} \longrightarrow a-b$ é denominada **subtração**.

 $\textbf{Teorema 1.2.3} \hspace{0.2cm} \textit{Sejam} \hspace{0.2cm} a, \, b, \, c \, \in \, I\!\!F \quad \textit{com} \quad a \times b \, = \, a \times c \quad e \quad a \, \neq \, 0_{I\!\!F}. \hspace{0.2cm} \textit{Ent\~ao} \hspace{0.2cm} b \, = \, c.$

Demonstração – Como $a \neq 0_{\mathbb{F}}$, pelo Axioma (M_4) de corpo, temos que existe um único elemento $d \in \mathbb{F}$ tal que $a \times d = 1_{\mathbb{F}}$. Desse modo, obtemos

$$b \; = \; (a \times d) \times b \; = \; d \times (a \times b) \; = \; d \times (a \times c) \; = \; (a \times d) \times c \; = \; c \; ,$$

utilizando os Axiomas (M_1) e (M_3) de corpo, completando a demonstração.

Essa propriedade é denominada Lei do Cancelamento para a Multiplicação. Em particular, essa propriedade mostra a unicidade do elemento neutro da multiplicação.

Teorema 1.2.4 Sejam $a, b \in \mathbb{F}$ com $a \neq 0_{\mathbb{F}}$. Então, existe um único elemento $x \in \mathbb{F}$ tal que $a \times x = b$.

Demonstração – Como $a \neq 0_{\mathbb{F}}$, pelo Axioma (M_4) de corpo, temos que existe um único elemento $d \in \mathbb{F}$ tal que $a \times d = 1_{\mathbb{F}}$. Seja $x = d \times b$. Assim, temos que

$$a \times x = a \times (d \times b) = (a \times d) \times b = b$$

utilizando os Axiomas (M_1) e (M_3) de corpo, completando a demonstração.

Denotamos o elemento $x = \frac{b}{a}$ para indicar o quociente do elemento b pelo elemento a. Em particular, $\frac{1}{a}$ é simplesmente escrito como a^{-1} e é chamado recíproco do elemento a.

A operação que a cada par (b,a) \longrightarrow $\frac{b}{a}$, definida para todo elemento $b \in \mathbb{F}$ e $a \in \mathbb{F}$ não—nulo, é denominada **divisão**.

Teorema 1.2.5 Sejam $a, b, c \in \mathbb{F}$.

- (a) $a \times 0_{\mathbb{F}} = 0_{\mathbb{F}}$.
- $(b) (-a) \times b = a \times (-b) = -(a \times b).$
- (c) $(-a) \times (-b) = a \times b$.

Demonstração – (a) Utilizando o Axioma (D_1) de corpo, temos que

$$a \times 0_{\mathbb{F}} = 0_{\mathbb{F}} + a \times 0_{\mathbb{F}} = a \times (0_{\mathbb{F}} + 0_{\mathbb{F}}) = a \times 0_{\mathbb{F}} + a \times 0_{\mathbb{F}}.$$

Pela Lei do Cancelamento da Adição, obtemos $a \times 0_{I\!\!F} = 0_{I\!\!F}$.

(b) Pelo Axioma (A_4) de corpo, o elemento $-(a \times b)$ é o único elemento em $I\!\!F$ tal que $(a \times b) + (-(a \times b)) = 0_{I\!\!F}$. Além disso, o elemento -a é o único elemento em $I\!\!F$ tal que $a + (-a) = 0_{I\!\!F}$. Desse modo, temos que

$$a \times b \; + \; (-a) \times b \;\; = \;\; \big(\; a \; + \; (-a)\;\big) \times b \;\; = \;\; 0_{I\!\!F} \times b \;\; = \;\; 0_{I\!\!F} \; .$$

Assim, mostramos que $(-a) \times b = -(a \times b)$. De modo análogo, podemos provar que $a \times (-b) = -(a \times b)$.

(c) Aplicando duas vezes o resultado do item (b), obtemos

$$(-a) \times (-b) \ = \ -(\ a \times (-b)\) \ = \ -(\ -(a \times b)\) \ = \ a \times b \ ,$$

que completa a demonstração.

Exemplo 1.2.1 O conjunto dos números racionais

$$\mathbb{Q} = \left\{ \frac{p}{q} / p, q \in \mathbb{Z} , q \neq 0 \right\}$$

tem uma estrutura de corpo, com as operações usuais de adição e multiplicação.

Exemplo 1.2.2 O conjunto dos números inteiros $\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$ não possui uma estrutura de corpo, pois o Axioma (M_4) , da definição de corpo, não é satisfeito, exceto para n = 1 ou n = -1.

Exemplo 1.2.3 O conjunto dos números reais, denotado por \mathbb{R} , tem uma estrutura de corpo, com as operações usuais de adição e multiplicação.

1.3 Corpo com Valor Absoluto

Definição 1.3.1 Seja \mathbb{F} um corpo. Definimos o valor absoluto em \mathbb{F} como sendo uma aplicação $v(\cdot)$ que associa a cada elemento $x \in \mathbb{F}$ um número real v(x), que possui as seguintes propriedades:

- $(a) v(x) \ge 0.$
- (b) v(x) = 0 se, e somente se, $x = 0_{\mathbb{F}}$.
- (c) $v(x \times y) = v(x)v(y)$.
- $(d) v(x+y) \le v(x) + v(y).$

Definição 1.3.2 Seja \mathbb{F} um corpo. A aplicação $v(\cdot)$ que associa a cada elemento $x \in \mathbb{F}$ um número real v(x) definida por:

$$v(x) = \begin{cases} 1 & se & x \neq 0_{\mathbb{F}} \\ 0 & se & x = 0_{\mathbb{F}} \end{cases}$$

é denominada valor absoluto trivial em F.

Lema 1.3.1 Sejam \mathbb{F} um corpo com valor absoluto $v(\cdot)$ e $x \in \mathbb{F}$ tal que $x^n = 1_{\mathbb{F}}$ para todo inteiro positivo n. Então, v(x) = 1.

Demonstração – Primeiramente vamos observar que $v(1_{\mathbb{F}}) = 1$. De fato,

$$(1_{\mathbb{F}})^2 = 1_{\mathbb{F}} \times 1_{\mathbb{F}} = 1_{\mathbb{F}} \implies v((1_{\mathbb{F}})^2) = v(1_{\mathbb{F}})v(1_{\mathbb{F}}) = v(1_{\mathbb{F}}).$$

Assim, concluímos que $v(1_{\mathbb{F}}) = 0$ ou $v(1_{\mathbb{F}}) = 1$. Note que, se $v(1_{\mathbb{F}}) = 0$, então v(a) = 0 para todo $a \in \mathbb{F}$. Portanto, temos que $v(1_{\mathbb{F}}) = 1$.

Finalmente, tomando $x^n = 1_{\mathbb{F}}$, obtemos

$$v(x^n) = v(1_{\mathbb{F}}) \implies (v(x))^n = 1 \implies v(x) = 1,$$

o que completa a demonstração.

Lema 1.3.2 Seja IF um corpo com valor absoluto $v(\cdot)$. Então,

$$v(-x) = v(x)$$
 para todo $x \in \mathbb{F}$.

Demonstração – Sabemos que

$$(-1_{\mathbb{F}})^2 = -1_{\mathbb{F}} \times -1_{\mathbb{F}} = 1_{\mathbb{F}} \times 1_{\mathbb{F}} = 1_{\mathbb{F}}.$$

Portanto, obtemos $v(-1_{\mathbb{F}}) = 1$. Desse modo, temos que

$$v(-x) = v(-1_{I\!\!F} \times x) = v(-1_{I\!\!F})v(x) = v(x),$$

o que completa a demonstração.

Lema 1.3.3 Seja \mathbb{F} um corpo com valor absoluto $v(\cdot)$. Então,

$$v(x) - v(y) \le v(x+y)$$
 para todos $x, y \in \mathbb{F}$.

Demonstração – Considerando x = x + y - y e a propriedade da desigualdade triangular, isto é,

$$v(x+y) \le v(x) + v(y)$$
 para todos $x, y \in \mathbb{F}$,

obtemos

$$v(x) = v(x + y - y) \le v(x + y) + v(-y) = v(x + y) + v(y)$$

Portanto, temos que $v(x) - v(y) \le v(x+y)$.

1.4 Corpo Ordenado

Definição 1.4.1 Um corpo ordenado é um corpo \mathbb{F} com uma relação de ordem, que vamos denotar por <, e escrevemos x < y para indicar que o elemento $x \in \mathbb{F}$ é menor que o elemento $y \in \mathbb{F}$, satisfazendo os seguintes axiomas:

(O₁) Princípio da Comparação: Se $x, y \in \mathbb{F}$, então uma e somente uma das sequintes relações é satisfeita:

$$x < y , y < x , x = y .$$

- (O₂) Transitividade: Se $x, y, z \in \mathbb{F}$, com x < y e y < z, então x < z.
- (O₃) Consistência da Adição com a Relação de Ordem: se $x, y, z \in \mathbb{F}$ e y < z, então x + y < x + z.
- (O₄) Consistência da Multiplicação com a Relação de Ordem: Se $x, y \in \mathbb{F}$, com $0_{\mathbb{F}} < x$ e $0_{\mathbb{F}} < y$, então $0_{\mathbb{F}} < x \times y$.

Equivalentemente, podemos definir um corpo ordenado da forma a seguir.

Definição 1.4.2 Seja \mathbb{F} um corpo. Assumimos que existe um subconjunto $\mathbb{F}^+ \subset \mathbb{F}$, denominado **conjunto dos elementos positivos**, o qual satisfaz os seguinte axiomas:

- (O_1) Se $x, y \in \mathbb{F}^+$, então $x + y \in \mathbb{F}^+$ e $x \times y \in \mathbb{F}^+$.
- (O_2) Para todo elemento $x \neq 0_{\mathbb{F}}$, temos que $x \in \mathbb{F}^+$ ou $-x \in \mathbb{F}^+$.
- (O_3) O elemento neutro $0_{\mathbb{F}} \notin \mathbb{F}^+$.

Note que num corpo ordenado, se $x \neq 0_{\mathbb{F}}$, então $x^2 \in \mathbb{F}^+$. De fato, como o elemento $x \neq 0_{\mathbb{F}}$, temos que $x \in \mathbb{F}^+$ ou $-x \in \mathbb{F}^+$.

No primeiro caso, isto é, $x \in I\!\!F^+$, obtemos $x \times x = x^2 \in I\!\!F^+$.

No segundo caso, isto é, $-x \in \mathbb{F}^+$, obtemos

$$(-x) \times (-x) = -(x \times (-x)) = -(-(x \times x)) = x \times x = x^2 \in \mathbb{F}^+$$

Em particular, num corpo ordenado, o elemento $-1_{I\!\!F}$ não é o quadrado de nenhum elemento de $I\!\!F$.

Num corpo ordenado \mathbb{F} , podemos escrever x < y para indicar que $y - x \in \mathbb{F}^+$, isto é, o elemento y - x é **positivo**. De modo análogo, escrevemos y > x para indicar que o elemento y é **maior** que o elemento x. Em particular, escrevemos $x > 0_{\mathbb{F}}$ para dizer que $x \in \mathbb{F}^+$, isto é, o elemento x é positivo. De mesmo modo, escrevemos $x < 0_{\mathbb{F}}$ para dizer que o elemento x é **negativo**, isto é, o elemento $-x \in \mathbb{F}^+$.

A partir dos axiomas da Definição 1.4.2 vamos mostrar os axiomas da Definição 1.4.1.

(O₁) Princípio da Comparação

Dados os elementos $x, y \in \mathbb{F}$. Pelo axioma (O_2) da Definição 1.4.2, temos as seguintes possibilidades:

(1)
$$y - x \in \mathbb{F}^+$$
 (2) $-(y - x) \in \mathbb{F}^+$ (3) $y - x = 0_{\mathbb{F}}$.

Assim, podemos concluir que ou x < y ou y < x ou x = y.

(O_2) Transitividade

Considere os elementos $x, y, z \in \mathbb{F}$ com x < y e y < z. Assim, podemos afirmar que $y - x \in \mathbb{F}^+$ e $z - y \in \mathbb{F}^+$. Pelo axioma (O_1) da Definição 1.4.2, temos que o elemento $(y - x) + (z - y) \in \mathbb{F}^+$. Logo, o elemento $z - x \in \mathbb{F}^+$. Assim, podemos concluir que x < z.

(O₃) Consistência da Adição com a Relação de Ordem

Considere os elementos $x, y, z \in \mathbb{F}$ com y < z, isto é, o elemento $z - y \in \mathbb{F}^+$. Desse modo, temos que $z - y = (z + x) - (y + x) \in \mathbb{F}^+$. Assim, podemos concluir que y + x < z + x.

(O₄) Consistência da Multiplicação com a Relação de Ordem

Considere os elementos $x, y \in F$ com $0_{\mathbb{F}} < x$ e $0_{\mathbb{F}} < y$, isto é, $x \in \mathbb{F}^+$ e $y \in \mathbb{F}^+$. Logo, temos que $x \times y \in \mathbb{F}^+$, pelo axioma (O_1) da Definição 1.4.2. Assim, podemos concluir que $x \times y > 0_{\mathbb{F}}$.

Portanto, tomando os elementos $x, y, z \in \mathbb{F}$ com x < y e $0_{\mathbb{F}} < z$, isto é, $y - x \in \mathbb{F}^+$ e $z \in \mathbb{F}^+$. Pelo axioma (O_1) da Definição 1.4.2, temos que o elemento $(y - x) \times z \in \mathbb{F}^+$, isto é, o elemento $y \times z - x \times z \in \mathbb{F}^+$. Desse modo, podemos concluir que $x \times z < y \times z$.

De modo análogo, a partir dos axiomas da Definição 1.4.1 podemos obter os axiomas da Definição 1.4.2. Assim, essas definições são equivalentes. Para um estudo mais detalhado sobre corpos ordenados podemos consultar a referência [17].

Exemplo 1.4.1 O conjunto dos números racionais

$$\mathbb{Q} = \left\{ \frac{p}{q} / p, q \in \mathbb{Z} , q \neq 0 \right\}$$

é um corpo ordenado, com as operações usuais de adição e multiplicação. O conjunto dos números racionais positivos \mathbb{Q}^+ é definido por:

$$\mathbb{Q}^+ = \left\{ \frac{p}{q} / p, q \in \mathbb{N} \right\}.$$

Exemplo 1.4.2 O conjunto

$$\mathbb{Q}(\sqrt{2}) = \left\{ a + b\sqrt{2} / a, b \in \mathbb{Q} \right\}$$

é um corpo ordenado, com as operações usuais de adição e multiplicação.

Exemplo 1.4.3 Considere o seguinte conjunto $\mathbb{Z}_p = \{0, 1, 2, \dots, (p-1)\}$, onde p é um inteiro positivo, no qual definimos as operações:

• Adição:

 $a\oplus b=c$, onde c é o resto da divisão da soma a+b pelo inteiro p, isto é, $a+b=mp+c \qquad para\ algum \qquad m\in I\!\!N\cup \{\,0\,\}\,.$

• Multiplicação:

 $a \otimes b = d$, onde d é o resto da divisão do produto ab pelo inteiro p, isto é,

$$ab = mp + d$$
 para algum $m \in \mathbb{N} \cup \{0\}$.

Como \mathbb{Z}_p deve ser fechado com relação as operações, temos que $c, d \in \mathbb{Z}_p$.

Podemos mostrar que \mathbb{Z}_p tem um estrutura de corpo quanto p é um número primo. Considere como exemplo $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Faça a verificação que \mathbb{Z}_5 satisfaz os axiomas de corpo.

Exemplo 1.4.4 O corpo $\mathbb{Z}_5 = \{ 0, 1, 2, 3, 4 \}$ não é um corpo ordenado. De fato, tomando por exemplo 2 + 3 = 0 em \mathbb{Z}_5 . Entretanto, num corpo ordenado a soma de dois elementos positivos deve ser igual a um elemento positivo. Assim, mostramos que \mathbb{Z}_5 não comporta uma relação de ordem.

1.5 Valor Absoluto num Corpo Ordenado

Definição 1.5.1 Seja \mathbb{F} um corpo ordenado. O valor absoluto em \mathbb{F} é uma aplicação $|\cdot|$ que associa a cada elemento $x \in \mathbb{F}$ um número real |x| definida por:

$$|x| = \begin{cases} x & se & x > 0 \\ 0 & se & x = 0 \\ -x & se & x < 0 \end{cases}$$

Podemos observar que |x| é escolhido o maior elemento entre x e -x. Logo, temos que $|x| \ge x$ e $|x| \ge -x$. Portanto, podemos concluir que

$$-|x| \le x \le |x|$$

para todo $x \in \mathbb{F}$.

Teorema 1.5.1 Sejam \mathbb{F} um corpo ordenado e os elementos $x, a \in \mathbb{F}$. As seguintes afirmações são equivalentes:

- $(a) -a \le x \le a.$
- (b) $x \le a \quad e \quad -x \le a$.
- $(c) |x| \le a.$

Demonstração - Temos que

$$-a \le x \le a \iff -a \le x \text{ e } x \le a$$
 $\iff a \ge x \text{ e } a \ge -x$
 $\iff a \ge |x|$

a última equivalência vem do fato que |x| é o maior elemento entre x e -x.

Corolário 1.5.1 Sejam $a, b, x \in \mathbb{F}$. Então,

$$|x - a| \le b$$
 se, e somente se, $a - b \le x \le a + b$.

Demonstração – Pelo Teorema 1.5.1, temos que

$$|x-a| < b \iff -b < x-a < b \iff -b+a < x < b+a$$

o que completa a demonstração.

Teorema 1.5.2 Sejam $x, y \in \mathbb{F}$. Então, $|x \times y| = |x| |y|$.

Demonstração – Primeiramente vamos observar que $x^2 = |x|^2$, para todo $x \in \mathbb{R}$, pois |x| = x ou |x| = -x e vale $x^2 = (-x)^2$.

Desse modo, temos que

$$|x \times y|^2 = (x \times y)^2 = x^2 \times y^2 = |x|^2 |y|^2$$
.

Assim, temos que $|x \times y| = \pm |x| |y|$. Entretanto, como $|x \times y|$ e |x| |y| são ambos positivos, concluímos que $|x \times y| = |x| |y|$.

Teorema 1.5.3 Sejam $x, y \in \mathbb{F}$. Então, $|x + y| \leq |x| + |y|$.

Demonstração – Pela definição de valor absoluto em IF, temos que

$$-|x| \le x \le |x|$$
 e $-|y| \le y \le |y|$.

Somando as duas desigualdades acima, obtemos

$$-(|x| + |y|) \le x + y \le (|x| + |y|).$$

Pelo Teorema 1.5.1, concluímos que $|x + y| \le |x| + |y|$.

Teorema 1.5.4 Sejam $x, y \in \mathbb{F}$. Então, $||x| - |y|| \le |x - y|$.

Demonstração – Considerando x = x - y + y e o Teorema 1.5.3, obtemos

$$|x| = |x - y + y| \le |x - y| + |y|$$

Assim, temos que $|x| - |y| \le |x - y|$.

De modo análogo, obtemos $|y|-|x| \le |y-x|$. Podemos verificar facilmente que |y-x|=|x-y|. Portanto, mostramos que

$$|x| - |y| \le |x - y|$$
 e $-(|x| - |y|) \le |x - y|$

Pelo Teorema 1.5.1, obtemos

$$| |x| - |y| | \le |x - y|.$$

1.6 Números Reais

O conjunto dos números reais, denotado por \mathbb{R} , tem uma estrutura de corpo com relação as operações usuais de adição e multiplicação. Assim, o conjunto dos números reais tem as propriedades apresentadas na Seção 1.2. Considerando que existe um subconjunto $\mathbb{R}^+ \subset \mathbb{R}$, denominado conjunto dos números positivos, que satisfaz os seguintes axiomas:

- (O_1) Se $x, y \in \mathbb{R}^+$, então $x + y \in \mathbb{R}^+$ e $xy \in \mathbb{R}^+$.
- (O_2) Para todo elemento $x \neq 0_{\mathbb{R}}$, temos que $x \in \mathbb{R}^+$ ou $-x \in \mathbb{R}^+$.
- (O_3) O elemento neutro $0_{\mathbb{R}} \notin \mathbb{R}^+$.

temos que o conjunto dos números reais \mathbb{R} tem uma estrutura de corpo ordenado. Desse modo, no corpo ordenado \mathbb{R} valem as observações apresentadas na Seção 1.4. Com os axiomas de ordem, podemos obter importantes desigualdades que apresentamos no teorema a seguir.

Teorema 1.6.1 Considere $a, b, c \in \mathbb{R}$.

- 1. Se ab = 0, então a = 0 ou b = 0.
- 2. Se a < b e c > 0, então ac < bc.
- 3. Se $a \neq 0$, então $a^2 > 0$.
- 4. Se a < b e c < 0, então ac > bc.
- 5. Se a < c e b < d, então a + b < c + d.
- 6. Se ab > 0, então a e b são positivos ou ambos são negativos.

Demonstração – A prova pode ficar a cargo do leitor.

Definição 1.6.1 Para $x \in \mathbb{R}$, definimos seu valor absoluto, ou módulo, que vamos denotar por |x|, como sendo o número real não negativo

$$|x| = \begin{cases} x & se & x > 0 \\ 0 & se & x = 0 \\ -x & se & x < 0 \end{cases}$$

Podemos observar que |x| é escolhido o maior número entre x e -x. Logo, temos que $|x| \ge x$ e $|x| \ge -x$. Portanto, podemos concluir que

$$-\left|\,x\,\right| \;\leq\; x\;\leq\; \left|\,x\,\right| \;.$$

Teorema 1.6.2 Seja $a \ge 0$. Então, $|x| \le a$ se, e somente se, $-a \le x \le a$.

Demonstração

(⇒) Da definição de módulo de um número real, temos que

$$-|x| \le x \le |x|,$$

isto é, |x| = x ou |x| = -x.

Tomando a hipótese que $|x| \le a$, podemos escrever

$$-a \le -|x| \le x \le |x| \le a.$$

Assim, provamos que $-a \le x \le a$.

(\Leftarrow) Tomando por hipótese que $-a \le x \le a$. Desse modo, se $x \ge 0$, temos que $|x| = x \le a$. Se x < 0, temos que $|x| = -x \le a$. Portando, provamos que $|x| \le a$, o que completa a demonstração.

Corolário 1.6.1 Sejam $a, b, x \in \mathbb{R}$. Então,

$$|x - a| \le b$$
 se, e somente se, $a - b \le x \le a + b$.

Teorema 1.6.3 Sejam $x, y \in \mathbb{R}$. Então, |xy| = |x| |y|.

Demonstração – Primeiramente vamos observar que $x^2 = |x|^2$, para todo $x \in \mathbb{R}$, pois |x| = x ou |x| = -x e vale $x^2 = (-x)^2$.

Desse modo, temos que

$$|xy|^2 = (xy)^2 = x^2y^2 = |x|^2 |y|^2$$
.

Assim, concluímos que $|xy| = \pm |x||y|$. Entretanto, como |xy| e |x||y| são ambos positivos, obtemos que |xy| = |x||y|.

Teorema 1.6.4 Sejam $x, y \in \mathbb{R}$. Então, $|x + y| \leq |x| + |y|$.

Demonstração – Pela definição de valor absoluto de um número real, temos que

$$-|x| \le x \le |x|$$
 e $-|y| \le y \le |y|$.

Somando as duas desigualdades acima, obtemos

$$-(|x| + |y|) \le x + y \le (|x| + |y|).$$

Pelo Teorema 1.6.2, podemos concluir que $|x + y| \le |x| + |y|$.

Essa propriedade é denominada desigualdade triangular para números reais.

A seguir, apresentamos a desigualdade triangular numa forma que é mais utilizada na prática.

Fazendo x=a-c e y=c-b, temos que x+y=a-b. Agora, utilizando a desigualdade triangular $|x+y| \leq |x| + |y|$, obtemos

$$|a - b| \le |a - c| + |b - c|$$
.

Teorema 1.6.5 Sejam a_1, a_2, \dots, a_n números reais quaisquer. Então,

$$\left| \sum_{k=1}^n a_k \right| \leq \sum_{k=1}^n |a_k|.$$

Demonstração − A prova é feita por indução utilizando a desigualdade triangular. □

Teorema 1.6.6 Sejam $x, y \in \mathbb{R}$. Então, $|x| - |y| \le |x - y|$.

Demonstração – Utilizando a desigualdade triangular para os números reais e o fato que x = x - y + y, obtemos

$$|x| = |x - y + y| \le |x - y| + |y|.$$

Portanto, obtemos $|x| - |y| \le |x - y|$, o que completa a demonstração.

Finalmente, podemos dizer que \mathbb{R} é um corpo ordenado com um valor absoluto $|\cdot|$, que vamos fazer referência como sendo o valor absoluto usual.

1.7 Números Complexos

Definição 1.7.1 Definimos o conjunto dos números complexos da seguinte forma:

$$\mathbb{C} = \{ a + bi / a, b \in \mathbb{R} \}$$

onde $i = \sqrt{-1}$ é a unidade imaginária.

Considere os números complexos z = a + bi e w = c + di. A operação de **adição** de dois números complexos é definida por:

$$z + w = (a + bi) + (c + di) = (a + c) + (b + d)i$$
.

A operação de **multiplicação** de dois números complexos é definida por:

$$z \cdot w = (a + bi) \cdot (c + di) = (ac - bd) + (bc + ad)i.$$

Em particular, temos que $i^2 = i \cdot i = -1$, que é compatível com a definição da unidade imaginária.

Definição 1.7.2 Considere o número complexo z = a + bi. Definimos a **parte real** como sendo o número real Re(z) = a e a **parte imaginária** como sendo o número real Im(z) = b.

Teorema 1.7.1 O conjunto dos números complexos \mathbb{C} com as operações de adição e multiplicação definidas acima tem uma estrutura de corpo.

Demonstração – A prova pode ficar a cargo do leitor.

Devemos observar que \mathbb{C} não é um corpo ordenado. De fato, num corpo ordenado \mathbb{F} , para todo elemento $x \neq 0_{\mathbb{F}}$, tem—se que $x^2 > 0_{\mathbb{F}}$. Desse modo, considerando $z = i \in \mathbb{C}$, que é diferente do elemento neutro, temos que $z^2 = -1 < 0$. Logo, provamos que \mathbb{C} não é um corpo ordenado.

Definição 1.7.3 Definimos o complexo conjugado do número complexo z = a + bi, que denotamos por \overline{z} , como sendo o número complexo $\overline{z} = a - bi$.

Definição 1.7.4 O valor absoluto, ou módulo, do número complexo z = a + bi, que denotamos por |z|, é definido como sendo o número real não negativo

$$|z| = \sqrt{a^2 + b^2}.$$

Definição 1.7.5 Considere o número complexo z = a + bi. O argumento principal do número complexo z é definido da seguinte forma:

$$\arg(z) = \begin{cases} \arctan\left(\frac{b}{a}\right) & para & a \neq 0 \\ \frac{\pi}{2} & para & a = 0, b > 0 \\ -\frac{\pi}{2} & para & a = 0, b < 0 \end{cases}$$

onde $\theta = \arg(z)$ indica o ângulo formado entre o eixo 0x e a reta que passa pela origem do plano \mathbb{R}^2 e pelo ponto (a,b).

Definição 1.7.6 Considere o número complexo z = a + bi. A forma polar do número complexo z é definida da seguinte forma:

$$z = |z| \exp(i\theta) = |z| \cos(\theta) + i|z| \sin(\theta)$$

onde $\theta = \arg(z)$.

Teorema 1.7.2 Considere os números complexos z = a + bi e w = c + di. Então,

- $(a) \ \overline{\overline{z}} = z.$
- (b) $z + \overline{z} = 2Re(z)$ e $z \overline{z} = 2iIm(z)$.
- (c) $z \cdot \overline{z} = |z|^2$ e $|\overline{z}| = |z|$.
- $(d) \ \overline{z+w} = \overline{z} + \overline{w}.$
- $(e) \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}.$

 ${\bf Demonstração}$ — Vamos fazer a prova o item (e). Temos que

$$\overline{z \cdot w} = \overline{(a+bi) \cdot (c+di)} = (ac-bd) - (ad+bc)i$$
$$= (a-bi) \cdot (c-di) = \overline{z} \cdot \overline{w}.$$

Vamos fazer a prova o item (d). Temos que

$$\overline{z+w} = \overline{(a+bi) + (c+di)} = (a+c) - (b+d)i$$
$$= (a-bi) + (c-di) = \overline{z} + \overline{w}.$$

A prova dos outros ítens pode ficar a cargo do leitor.

Teorema 1.7.3 Considere os números complexos z = a + bi e w = c + di. Então,

- (a) $|z \cdot w| = |z| |w|$.
- (b) |Re(z)| < |z| e |Im(z)| < |z|.

(c)
$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{\overline{z}}{|z|^2}$$
 com $z \neq 0$.

Demonstração – Vamos fazer a prova o item (a). Pelo Teorema 1.7.2, temos que

$$|z \cdot w|^2 = (z \cdot w) \cdot \overline{(z \cdot w)} = (z \cdot \overline{z}) \cdot (w \cdot \overline{w}) = |z|^2 |w|^2$$

o que completa a prova do item (a).

A prova dos outros ítens pode ficar a cargo do leitor.

Exemplo 1.7.1 Considere o número complexo z=3+4i. Como $z\neq 0$, temos que

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{3 - 4i}{25}.$$

Exemplo 1.7.2 Considere os números complexos z=3+4i e w=1+2i. Como $z\neq 0$, temos que

$$\frac{w}{z} = \frac{w \cdot \overline{z}}{z \cdot \overline{z}} = \frac{w \cdot \overline{z}}{|z|^2} = \frac{(1+2i) \cdot (3-4i)}{25} = \frac{11+2i}{25}.$$

Lema 1.7.1 Se $z, w \in \mathbb{C}$, então

$$|z + w|^2 = |z|^2 + |w|^2 + 2Re(z \cdot \overline{w}).$$

Demonstração – Inicialmente, vamos escrever

$$|z + w|^2 = (z + w) \cdot (\overline{z} + \overline{w}) = z \cdot \overline{z} + w \cdot \overline{w} + (z \cdot \overline{w} + \overline{z} \cdot w)$$
$$= |z|^2 + |w|^2 + (z \cdot \overline{w} + \overline{z} \cdot w)$$

Podemos observar que, $\overline{z} \cdot w$ é o conjugado de $z \cdot \overline{w}$. Portanto, temos que

$$z \cdot \overline{w} + \overline{z} \cdot w = 2Re(z \cdot \overline{w}),$$

o que completa a prova.

Teorema 1.7.4 Se $z, w \in \mathbb{C}$, então $|z + w| \leq |z| + |w|$.

Demonstração – Utilizando o resultado do Lema 1.7.1, temos que

$$|z + w|^2 - (|z| + |w|)^2 = -2|z||w| + 2Re(z \cdot \overline{w}).$$

Sabemos que $Re(z \cdot \overline{w}) \leq |z \cdot \overline{w}| = |z| |w|$. Logo,

$$|z + w|^2 - (|z| + |w|)^2 \le 0$$

o que completa a prova da desigualdade triangular para os números complexos.

Lema 1.7.2 Sejam z e w dois números complexos. Então, $|z| - |w| \le |z + w|$.

Demonstração — Utilizando a desigualdade triangular para os números complexos e a propriedade $|z \cdot w| = |z| |w|$, temos que

$$|z| = |(z + w) - w| \le |z + w| + |-w| = |z + w| + |w|$$
.

Portanto, temos que $|z| - |w| \le |z + w|$.

Lema 1.7.3 Se $z, w \in \mathbb{C}$ com $w \neq 0$, então

$$\overline{\left(\frac{z}{w}\right)} \; = \; \frac{\overline{z}}{\overline{w}} \qquad e \qquad \left|\frac{z}{w}\right| \; = \; \frac{|z|}{|w|} \; .$$

Demonstração – A prova pode ficar a cargo do leitor.

Assim, podemos dizer que \mathbb{C} é um corpo com um valor absoluto $|\cdot|$, que vamos fazer referência como sendo o valor absoluto usual. Finalmente, podemos apresentar os seguintes exemplos de subcorpos de \mathbb{C} .

Exemplo 1.7.3 O conjunto dos números reais \mathbb{R} é um subcorpo do corpo dos números complexos \mathbb{C} .

Exemplo 1.7.4 O conjunto dos números racionais \mathbb{Q} é um subcorpo do corpo dos números complexos \mathbb{C} .

Exemplo 1.7.5 O conjunto $\mathbb{Q}(\sqrt{2})$ é um subcorpo do corpo dos números complexos \mathbb{C} .

Exercícios

Exercício 1.14 Calcule o módulo e o argumento dos seguintes números complexos.

(a)
$$z = (1+2i)\cdot(3-i)$$
 (b) $z = \frac{2+3i}{2+i}$ (c) $z = \frac{1}{(1+i)^2}$

Exercício 1.15 Determine a forma polar dos seguintes números complexos.

(a)
$$z = (1+i)^2$$
 (b) $z = 2+2i$ (c) $z = \frac{1}{(1+i)}$

Exercício 1.16 Verifique que os números complexos z=1+i e w=1-i satisfazem a equação $z^2-2z+2=0$.

Exercício 1.17 Seja z um número complexo. Mostre que

$$|z|\sqrt{2} \geq |Re(z)| + |Im(z)|$$
.

Exercício 1.18 Sejam $z, w, u \in \mathbb{C}$ com $|z| \neq |w|$, mostre que

$$\left|\frac{u}{z+w}\right| \leq \frac{|u|}{||z|-|w||}.$$

Exercício 1.19 Faça a representação gráfica no plano complexo dos subconjuntos.

(a)
$$S = \{ z \in \mathbb{C} / |z| = 1 \}.$$

(b)
$$S = \{ z \in \mathbb{C} / z + \overline{z} = 1 \}.$$

(c)
$$S = \{ z \in \mathbb{C} / z - \overline{z} = i \}.$$

Exercício 1.20 Determine os números reais a e b tais que

$$\sum_{k=0}^{100} i^k = a + bi.$$

Exercício 1.21 Expresse o número complexo

$$z = \frac{1+i}{2-i} \, .$$

na forma z = a + bi.

1.8 Característica do Corpo

Definição 1.8.1 Seja \mathbb{F} um corpo. Definimos a característica do corpo \mathbb{F} como sendo o menor inteiro positivo p tal que $1_{\mathbb{F}} + 1_{\mathbb{F}} + \cdots + 1_{\mathbb{F}} = 0_{\mathbb{F}}$, com p termos no somatório. O corpo \mathbb{F} tem característica zero se $1_{\mathbb{F}} + 1_{\mathbb{F}} + \cdots + 1_{\mathbb{F}} \neq 0_{\mathbb{F}}$, para qualquer quantidade de termos no somatório.

Podemos verificar que se o corpo IF tem característica $p \neq 0$, então

$$x + x + \dots + x = 0$$

com p termos no somatório, para todo $x \in \mathbb{F}$.

Exemplo 1.8.1 O corpo do números reais IR tem característica zero.

Exemplo 1.8.2 O corpo do números racionais \mathbb{Q} tem característica zero.

Exemplo 1.8.3 O corpo do números complexos \mathbb{C} tem característica zero.

Exemplo 1.8.4 O corpo $\mathbb{Z}_2 = \{0, 1\}$, definido no Exemplo 1.4.3, tem característica p = 2. De fato, 1 + 1 = 0 no corpo \mathbb{Z}_2 .

Exemplo 1.8.5 O corpo $\mathbb{Z}_5 = \{ 0, 1, 2, 3, 4 \}$ tem característica p = 5. De fato, 1 + 1 + 1 + 1 = 0 no corpo \mathbb{Z}_5 .

Podemos verificar facilmente que se $I\!\!F$ é um corpo de característica zero, então $I\!\!N \subset I\!\!F$. De fato, fazendo a identificação $1_{I\!\!F}=1$, temos que

$$1+1=2$$
 , $1+1+1=3$ e $\sum_{i=1}^{n} 1 = 1+1+1+\dots+1 = n$.

Finalmente, os elementos simétricos -n dos elementos $n \in \mathbb{N}$ também pertencem ao corpo \mathbb{F} . Desse modo, temos que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{F}$. Em particular, todo corpo de característica zero é infinito.

Podemos verificar que todo corpo ordenado tem característica zero, tendo em vista que

$$1 + 1 + 1 + \cdots + 1 \neq 0$$

para qualquer quantidade de termos no somatório, pois num corpo ordenado a soma de elementos positivos é sempre um elemento positivo.

Definição 1.8.2 Seja \mathbb{F} um corpo de característica p. Definimos n em \mathbb{F} da seguinte forma:

$$n := 1_{\mathbb{F}} + 1_{\mathbb{F}} + \cdots + 1_{\mathbb{F}}$$

com n termos no somatório.

Podemos observar que vamos tomar $\,n\,$ como sendo o resto da divisão do somatório

$$1_F + 1_F + \cdots + 1_F$$

pelo inteiro positivo p, que é a característica do corpo F.

1.9 Métricas

Definição 1.9.1 Seja \mathbb{X} um conjunto não vazio. Uma **métrica** ou uma **distância** em \mathbb{X} é uma aplicação $d(\cdot,\cdot): \mathbb{X} \times \mathbb{X} \longrightarrow \mathbb{R}$ satisfazendo as seguintes propriedades:

- 1. Simetria: d(x,y) = d(y,x) para todos $x, y \in X$.
- 2. **Positividade:** $d(x,y) \geq 0$ com $d(x,y) = 0 \iff x = y$.
- 3. **Designaldade Triangular:** $d(x,z) \leq d(x,y) + d(y,z)$ para todos $x, y, z \in X$.

Utilizamos a notação (X, d) para denotar que o conjunto X está munido com a métrica $d(\cdot, \cdot)$ e dizemos que (X, d) é um **espaço métrico**.

Proposição 1.9.1 Seja \mathbb{F} um corpo com valor absoluto $v(\cdot)$. A aplicação

$$d(x,y) \ = \ v(x-y) \qquad para \ todos \qquad x, \, y \, \in \, I\!\!F \, ,$$

define uma métrica no corpo IF.

Demonstração – Para todos $x, y \in \mathbb{F}$, temos que

$$d(x,y) = v(x-y) = v(-(y-x)) = v(y-x) = d(y,x),$$

provando a propriedade de simetria.

Considerando a propriedade de positividade do valor absoluto $v(\cdot)$, temos que

$$d(x,y) = v(x-y) \ge 0$$

com

$$d(x,y) = v(x-y) = 0 \qquad \Longleftrightarrow \qquad x-y = 0_{\mathbb{F}} \qquad \Longleftrightarrow \qquad x = y,$$

provando a propriedade de positividade.

Para todos $x, y, z \in \mathbb{F}$, temos que

$$d(x,z) = v(x-z) = v(x-y+y-z) \le v(x-y) + v(y-z) = d(x,y) + d(y,z),$$

provando a desigualdade triangular, o que completa a demonstração.

Definição 1.9.2 O valor absoluto trivial $v(\cdot)$ em qualquer corpo F, define uma métrica discreta

$$d(x,y) = v(x-y) = \begin{cases} 1 & se & x \neq y \\ 0 & se & x = y \end{cases}$$

para todos $x, y \in \mathbb{F}$.

Exemplo 1.9.1 A aplicação d(x,y) = |x - y| para todos $x, y \in \mathbb{R}$, define uma métrica no corpo dos números reais \mathbb{R} , onde $|\cdot|$ é o valor absoluto usual em \mathbb{R} .

Exemplo 1.9.2 A aplicação d(z,w) = |z - w| para todos $z, w \in \mathbb{C}$, define uma métrica no corpo dos números complexos \mathbb{C} , onde $|\cdot|$ é o valor absoluto usual em \mathbb{C} .

Exemplo 1.9.3 Considere o sequinte conjunto

$$\mathcal{C}([a,b]) \; = \; \{ \, f: [a,b] \longrightarrow I\!\!R \; / \; f \; \; \acute{e} \; uma \; função \; contínua \, \} \, .$$

Podemos verificar facilmente que a aplicação

$$d_{\infty}(f,g) = \max\{ |f(x) - g(x)| : x \in [a,b] \}$$
 ; $\forall f, g \in \mathcal{C}([a,b])$

define uma métrica no conjunto C([a,b]), onde $|\cdot|$ é o valor absoluto usual em $I\!\!R$.

Exemplo 1.9.4 Determine $d_{\infty}(f,g)$, com f(x)=x e $g(x)=x^2$ para $x \in [0,1]$.

Devemos calcular

$$d_{\infty}(f,g) = \max\{ |x - x^2| ; x \in [0,1] \} = \frac{1}{4}.$$

Exemplo 1.9.5 A aplicação

$$d_1(f,g) = \int_a^b |f(x) - g(x)| dx$$

define uma métrica no conjunto C([a,b]), onde $|\cdot|$ é o valor absoluto usual em IR.

Considerando as funções f(x) = x e $g(x) = x^2$ para $x \in [0,1]$, determine $d_1(f,g)$.

Bibliografia

- [1] Tom M. Apostol, Análisis Matemático, Segunda Edición, Editorial Reverté, 1977.
- [2] Tom M. Apostol, Calculus, Volume I, Second Edition, John Wiley & Sons, 1976.
- [3] Tom M. Apostol, Calculus, Volume II, Second Edition, John Wiley & Sons, 1976.
- [4] Tom M. Apostol, Linear Algebra–A First Course with Applications to Differential Equations, John Wiley & Sons, 1997.
- [5] Alexander Basilevsky, Applied Matrix Algebra in the Statistical Sciences, Dover, 1983.
- [6] J. L. Boldrini, S. I. R. Costa, V. L. Figueiredo e H. G. Wetzler, Álgebra Linear, Terceira Edição, Editora Harbra Ltda, 1986.
- [7] C. A. Callioli, H. H. Domingues e R. C. F. Costa, Álgebra Linear e Aplicações, Sexta Edição, Atual Editora, 2003.
- [8] R. Charnet, C. A. L. Freire, E. M. R. Charnet e H. Bonvino, *Análise de Modelos de Regressão Linear com Aplicações*, Editora da Unicamp, Segunda Edição, 2008.
- [9] F. U. Coelho e M. L. Lourenço, Um Curso de Álgebra Linear, edusp, 2001.
- [10] S. H. Friedberg, A. J. Insel and L. E. Spence, *Linear Algebra*, Prentice—Hall, Third Edition, 1997.
- [11] Gene H. Golub & Charles F. Van Loan, *Matrix Computations*, Third Edition, John Hopkins, 1996.
- [12] K. Hoffman e R. Kunze, Álgebra Linear, Editora da USP, 1971.
- [13] Roger A. Horn and Charles R. Johnson, *Matrix Analysis*, Cambridge University Press, 1996.
- [14] Bernard Kolman e David R. Hill, *Introdução à Álgebra Lienar com Aplicações*, LTC, Oitava Edição, 2006.
- [15] Serge Lang, Introduction to Linear Algebra, Second Edition, Springer, 1986.
- [16] Elon L. Lima, Álgebra Linear, Coleção Matemática Universitária, IMPA, 1996.
- [17] Elon L. Lima, Curso de Análise, Projeto Euclides, IMPA, 1996.

- [18] Seymour Lipschutz, Álgebra Linear, Terceira Edição, Makron Books, 1994.
- [19] LUENBERGER, D. D. (1973), Introduction to Linear and Nonlinear Programming, Addison—Wesley.
- [20] Patricia R. de Peláez, Rosa F. Arbeláez y Luz E. M. Sierra, *Algebra Lineal con Aplicaciones*, Universidad Nacional de Colombia, 1997.
- [21] Gilbert Strang, *Linear Algebra and its Applications*, Third Edition, Harcourt Brace Jovanovich Publishers, 1988.
- [22] David S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, 1991.