Course:- Expert Systems
Exam:- Final September 2017
Fourth Year

Year:- 2016/2017 Department:- CS Time:- 2 Hours

Question One:

Suppose an expert, given three conditionally independent evidences E_1 , E_2 and E_3 , creates three mutually exclusive and exhaustive hypotheses H_1 , H_2 and H_3 , and provides prior probabilities for these hypotheses – $p(H_1)$, $p(H_2)$ and $p(H_3)$, respectively.

The expert also determines the conditional probabilities of observing each evidence for all possible hypotheses. The following Table illustrates the prior and conditional probabilities provided by the expert.

a. compute the followi	ng
------------------------	----

- 1. $P(Hi|E_1)$ where i=1.
- 2. $P(Hi|E_1E_2)$, $P(Hi|E_1E_3)$, $P(Hi|E_2E_3)$ where i=2.
- 3. $P(Hi | E_1E_2 E_3)$ where i=3.

Probability	Hypothesis		
	i=1	i=2	i=3
P(H _i)	0.25	0.40	0.35
$P(E_1 H_i)$	0.5	0.3	0.8
$P(E_2 H_i)$	0.7	0.9	0.0
$P(E_3 H_i)$	0.9	0.6	0.7

$$p(H_i|E_3) = \frac{p(E_3|H_i) \times p(H_i)}{\sum_{k=1}^{3} p(E_3|H_i) \times p(H_k)}, \quad i = 1, 2, 3$$
Thus,
$$p(H_1|E_3) = \frac{0.6 \cdot 0.40}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.34$$

$$p(H_2|E_3) = \frac{0.7 \cdot 0.35}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.34$$

$$p(H_3|E_3) = \frac{0.9 \cdot 0.25}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.32$$

After evidence E_3 is observed, belief in hypothesis H_2 increases and becomes equal to belief in hypothesis H_1 . Belief in hypothesis H_3 also increases and even nearly reaches beliefs in hypotheses H_1 and H_2 .

Course:- Expert Systems
Exam:- Final September 2017
Fourth Year

Year:- 2016/2017 Department:- CS Time:- 2 Hours

Suppose now that we observe evidence E_1 . The posterior probabilities are calculated as

$$p(H_i|E_1E_3) = \frac{p(E_1|H_i) \times p(E_3|H_i) \times p(H_i)}{\sum_{k=1}^{3} p(E_1|H_i) \times p(E_3|H_i) \times p(H_k)}, \qquad i = 1, 2, 3$$

Hence.

$$p(H_1|E_1E_3) = \frac{0.3 \cdot 0.6 \cdot 0.40}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.19$$

$$p(H_2|E_1E_3) = \frac{0.8 \cdot 0.7 \cdot 0.35}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.52$$

$$p(H_3|E_1E_3) = \frac{0.5 \cdot 0.9 \cdot 0.25}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.29$$

Hypothesis H_2 has now become the most likely one.

After observing evidence E_2 , the final posterior probabilities for all hypotheses are calculated:

$$p(H_i|E_1E_2E_3) = \frac{p(E_1|H_i) \times p(E_2|H_i) \times p(E_3|H_i) \times p(H_i)}{\sum_{k=1}^{3} p(E_1|H_i) \times p(E_2|H_i) \times p(E_3|H_i) \times p(H_k)}, \qquad i = 1, 2, 3$$

$$p(H_1|E_1E_2E_3) = \frac{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40}{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25} = 0.45$$

$$p(H_2|E_1E_2E_3) = \frac{0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35}{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25} = 0$$

$$p(H_3|E_1E_2E_3) = \frac{0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25}{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25} = 0.55$$

Although the initial ranking was H_1 , H_2 and H_3 , only hypotheses H_1 and H_3 remain under consideration after all evidences $(E_1, E_2 \text{ and } E_3)$ were observed.

The Higher Ministry of Education	Course:- Expert Systems	Year:- 2016/2017
The Higher Future Institute for	Exam:- Final September 2017	Department:- CS
Specialized Technology Studies	Fourth Year	Time:- 2 Hours

Question Two:

a. What is the difference between a crisp set and a fuzzy set?

b. Compute the membership in the set of the following hedges:

very, extremely, very very, more or less

for a man has a 0.91 membership in the set of tall men.

c. Suppose we have the following fuzzy sets of tall men and very tall men which define as follow:

 $Tall\ men = \{0/180,\ 0.25/182.5,\ 0.50/185,\ 0.75/187.5,\ 0.5/185,\ 1/190\}$

Very tall men = $\{0/180, 0.06/182.5, 0.25/185, 0.56/187.5, 0.5/185, 1/190\}$

where each element in the set defines as membership degree / the actual tall

Compute the fuzzy set of the following fuzzy sets operations:

Complement of tall men fuzzy set, intersection of tall men fuzzy set and very tall men fuzzy set, union of tall men fuzzy set and very tall men fuzzy set.

Course:- Expert Systems
Exam:- Final September 2017

Fourth Year

Hedge	Mathematical Expression	Graphical Representation
A little	$\left[\mu_A(x)\right]^{1.3}$	
Slightly	$\left[\mu_A(x)\right]^{1.7}$	
Very	$\left[\mu_A(x)\right]^2$	
Extremely	$[\mu_A(x)]^3$	

Course:- Expert Systems
Exam:- Final September 2017
Fourth Year

Year:- 2016/2017 Department:- CS Time:- 2 Hours

Representation of hedges in fuzzy logic (continued)

Hedge	Mathematical Expression	Graphical Representation
Very very	$\left[\mu_A(x)\right]^4$	
More or less	$\sqrt{\mu_A(x)}$	
Somewhat	$\sqrt{\mu_A(x)}$	
Indeed	$2 [\mu_{A}(x)]^{2}$ if $0 \le \mu_{A} \le 0.5$ $1 - 2 [1 - \mu_{A}(x)]^{2}$ if $0.5 \le \mu_{A} \le 1$	

$$tall\ men = (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190)$$

 $NOT\ tall\ men = (1/180, 0.75/182.5, 0.5/185, 0.25/187.5, 0/190)$

tall men \cap average men = (0/165, 0/175, 0/180, 0.25/182.5, 0/185, 0/190)

 $tall\ men \cup average\ men = (0/165, 1/175, 0.5/180, 0.25/182.5, 0.5/185, 1/190)$

Course:- Expert Systems
Exam:- Final September 2017
Fourth Year

Year:- 2016/2017 Department:- CS Time:- 2 Hours

Question Three:

- a) Explain the main players in the development team of expert systems.
- b) Describe the complete structure of a rule-based expert system.
- c) Compare between the expert systems with conventional systems and human experts.
- d) Let you have the following rules

$$Y & D \longrightarrow Z$$

$$X & B & E \longrightarrow Y$$

$$A \longrightarrow X$$

$$C \longrightarrow L$$

$$L & M \longrightarrow N$$

And the facts A, B, C, D and E are true, where Z is the goal Show: how forward chaining and backward chaining works for this simple set of rules?

Course:- Expert Systems
Exam:- Final September 2017

Fourth Year

The Higher Ministry of Education	Course:- Expert Systems	Year:- 2016/2017
The Higher Future Institute for	Exam:- Final September 2017	Department:- CS
Specialized Technology Studies	Fourth Year	Time:- 2 Hours

Question Four:

Draw the basic structure (Mamdani-style) that simulate the Fuzzy inference(Fuzzification, Rule evaluation, Aggregation of rule consequents, Defuzzification) for the following rules

- 1. IF project_funding is adequate OR project_staffing is small THEN risk is low
- 2. IF project_funding is marginal AND project_staffing is large THEN risk is normal
- 3. IF project_funding is inadequate THEN risk is high

Suppose the ranges of project funding and project staffing between 1 to 100 per cent.

And the crisp input x1=0.35 and y1=0.6

The membership degree for project funding and project staffing and risk as follow:

The membership degree for project funding and project staffing

The membership degree for risk

Course:- Expert Systems
Exam:- Final September 2017

Fourth Year

Course:- Expert Systems
Exam:- Final September 2017

Fourth Year

