SITIPO AN BITE

1.1 Mikroislemci Gelsimin Onemi

12 Karmasıklık Yönetimi

Atom structure

- Proton
- Neutron
- Electron

Maxwell's Equations

Differential form

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

121 Soyutlama

121 Soyutlama

121 Soyutlama

MIPS32 Instruction Set

Instructions that machine executes

```
blez
     $a2, done
      $a7, $zero
move
li
      $t4, 99
move $a4, $a1
move $v1, $zero
li
      $a3, 99
      $a5, 0($a4)
lw
addiu $a4, $a4, 4
slt
      $a6, $a5, $a3
      $v0, $v1, $a6
movn
addiu $v1, $v1, 1
      $a3, $a5, $a6
movn
```

MIPS32 Add Immediate Instruction

001000	00001	00010	0000000101011110
OP Code	Addr 1	Addr 2	Immediate value

Equivalent mnemonic: addi \$

addi \$r1, \$r2, 350

>"hello Application **Programs** world!" Software Operating Device Systems **Drivers** Instructions Architecture ---Registers Micro-Datapaths architecture Controllers Adders Logic Memories Digital **AND Gates NOT Gates** Circuits Analog **Amplifiers** Circuits Filters **Transistors** Devices Diodes

Electrons

Physics

122 Dispin

1.2.3 Karmasıklık için üc Y

Hierarchy

123 Karmasıklık için üc Y

Modularity

123 Karmasıklık için üc Y

13 Sayısal Soyutlama

1.3 Sayısal Soyutlama

Charles Babbage, 1791-1871 Analytical Engine

O dan 9 kadar konumlanan disliler

Her bir satır bir basamak Makinede 25 satır var

13 Sayısal Soyutlama

13 Sayısal Soyutlama

1.4.1 Onluk Sayı Sistemi

most least significant bit bit

$$84_{10} = (1010100)_2$$

84	2		i	Allocont
20	< 2			
20	2	6		Albassalla
	<	8		
	2		i	Movembly
0	<			0
	<	Moreosolie	į	

1.4.3 Onaltilk Sayı Sistemi

Hexadecimal Sayı Sistemi

1's column 16's column 256's column

$$2ED_{16} = 2 \times 16^{2} + E \times 16^{1} + D \times 16^{0} = 749_{10}$$
two two hundred fifty six's the fourteen sixteens ones

Hexadecimal Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

1.4.3 Onaltilk Sayı Sistemi

Hexadecimal Sayı Sistemi

$$(1111010)_2 = (7)_{16}$$

$$(1111010)_2 = (01111010)_2$$

$$(01111010)_2 = (7A)_{16}$$

1.4.3 Onaltilk Sayı Sistemi

Hexadecimal Sayı Sistemi

$$333_{10} = (14D)_{16}$$

1.4.4 Bytes, Nibbles

Byte: 8 bit

Nibble: 4 bit

Word: islemci mimarisine baglı

64 bit islemci → 64 bit word

1.4.4 Bytes, Nibbles

$$2^{10} = 1024 \approx 10^3$$

$$2^{10}(10^3) = 1 \text{ Kilobit (1KB)}$$

$$2^{20}(10^6) = 1 \text{ Megabit } (1MB)$$

1.4.5 ikilik Toplama

Tasma

Tasma

1996 yılında fırlatılan Ariane 5 roketi (7 milyar dolar); fırlatılmasından 40 saniye sonra patladı.

Roketi kontrol eden bilgisayar 16 bitlik islem sınırını astı ve çöktü.

Aynı bilgiyarda aynı kod Ariane 4 roketi kullanılarak defalarça test edildi.

Ancak Ariane 5, daha hızlı bir motora sahipti

1.4.6 isaret/buyukuuk sayıları

2'ye tümleyen sayılar

2'ye tümleyen sayılar

4bit isaretsiz sayılar

16 deger: $0 \rightarrow 15$

4bit ikiye tümleyen sayılar

16 deger: $-8 \rightarrow 7$ (O pozitif)

N bit ikiye tümleyen sayılar

 $2^{N} \text{ deger: } 2^{N-1} \rightarrow 2^{N-1} - 1$

toplama

cikarma

Tasma

Pozitif + Pozitif = Negatif Negatif + Negatif = Pozitif

Tasma

4bit ikiye tümleyen sayılar 16 deger: $-8 \rightarrow 7$ (O pozitif)

isaret ouzenleme

Karsilastirma

System	Range		
Unsigned	$[0, 2^N - 1]$		
Sign/Magnitude	$[-2^{N-1} + 1, 2^{N-1} - 1]$		
Two's Complement	$[-2^{N-1}, 2^{N-1} - 1]$		

Karsilastirma

$$Y = \overline{AB}$$

NOR

$$Y = A + B$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

A silly way to remember the OR symbol is that its input side is curved like Pacman's mouth, so the gate is hungry and willing to eat any TRUE inputs it can find!

XNOR

$$Y = \overline{A \oplus B}$$

A	В	Y
0	0	. 300
0	1	
1	0	
1	1	

A	В	Y
- 0	0	1
0	1	0
1	0	0
1	1	1

NOR3

$$Y = \overline{A + B + C}$$

Α	В	C	Y
0	0	0	14.0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

A	B	C	Y
0	0	0	1
0	0	1	0
0 0 0 1	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Dijital Soyutlamaya yakından bakıs

 $0 V \rightarrow A = 0$; $5 V \rightarrow A = 1$ olarak yorumlansin

Sistemler az miktarda gürültüyü tolere edebilirler:

 $4.97 V \rightarrow A = 1$ olarak yorumlanır.

Ancak

4.3 V?

2.8 V?

2.500000 V?

Besleme Gerlimi

Sistemdeki en düsük voltaj, toprak(GND)= 0 V

Sistemdeki en yüksek voltaj, VDD=(1970 &1980) =5V

Transistörler küçükdükçe(güç tasarrufu ve asırı yüklenme); VDD= 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V düstü.

Loik Sevive

$$NM_L = V_{IL} - V_{OL}$$

$$NM_H = V_{OH} - V_{IH}$$

CUPULU AFALSI

Interterlerin en yüksek ve en düsük gürültü sınırı nedir? Devre V₀₁ ve V₁₂ arasındaki 1V'luk gürültüyü tolere edebilir mi?

GUIULU AFALSI

Interterlerin en yüksek ve en düsük gürültü sınırı nedir?

Loik Seviye- Curultu Aralgı

Interterlerin en yüksek ve en düsük gürültü sınırı nedir? Devre V₀₁ ve V₁₂ arasındaki 1V'luk gürültüyü tolere edebilir mi?

DC iletim karakteristigi

$$V(A) < V_{DD}/2 \Rightarrow V(Y) = V_{DD}$$

 $V(A) > V_{DD}/2 \Rightarrow V(Y) = 0$

DC iletim karakteristigi

$$V(A) = 0$$
 $V(Y) = V_{DC}$
 $V(A) > V_{DC}$ $V(Y) = 0$

Unity Gain Points: dV(Y) / dV(A) = -1

Lojik seviyeleri (O yada 1) UGP noktaları olarak belirlemek sistemin gürültü toleransını en üst seviyeye çıkaracaktır.

Static displin

Dört büyük Lojik aile (70 ~ 90):

- Transistör-Transistör Logic (TTL)
- Complementary Metal-Oxide-Semiconductor Logic (CMOS)
- Low Voltage TTL Logic (LVTTL)
- Low Voltage CMOS Logic (LVCMOS)

Static displin

Logic Family	V_{DD}	V_{IL}	V_{IH}	V_{OL}	V_{OH}
TTL	5 (4.75-5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5-6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3-3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3-3.6)	0.9	1.8	0.36	2.7

Static displin

		Receiver			
		TTL	CMOS	LVTTL	LVCMOS
Driver	TTL	OK	NO: $V_{OH} < V_{IH}$	MAYBE ^a	MAYBE ^a
	CMOS	OK	OK	MAYBE ^a	MAYBE ^a
	LVTTL	OK	NO: $V_{OH} < V_{IH}$	OK	OK
	LVCMOS	OK	NO: $V_{OH} < V_{IH}$	OK	OK

^a As long as a 5 V HIGH level does not damage the receiver input

cmos transistorler

Babbage Analytical Engine

vakum tüp

role

CMOS Transistorler

MOSFET (metal-oxide-semiconductor field effect transistor)

BJT (bipolar junction transistor)

A Silicon Atom, Atomic number = "14"

Silicon atom showing 4 electrons in its outer valence shell (m)

A Silicon Atom, Atomic number = "14"

Silicon atom showing 4 electrons in its outer valence shell (m)

Silicon Crystal Lattice

Boron atom showing 3 electrons in its outer valence shell (L)

Doping in Semiconductors

Electron

Diyod

Kondansator

https://www.youtube

MOSFET INMOS & pMOSI

https://www.youtube.com/watch?v=stM8dgcY1CA

MOSFET INMOS & pMOSI

https://www.youtube.com/watch?v=aCOyq4YzBtY

MOSFET [nMOS & pMOS]

CMOS (Complementary Mos) Not Kapisi

Two-input NAND gate

\boldsymbol{A}	В	Pull-Down Network	Pull-Up Network	Y
0	0	OFF	ON	1
0	1	OFF	ON	1
1	0	OFF	ON	1
1	1	ON	OFF	0

Two-input NAND gate

THREE NPUT NAND SCHEMATIC

TWO-INPUT AND SCHEMATIC

Transmission Gates

EN=0 & EN'=1
$$\rightarrow$$
 nMOS,pMOs OFF
EN=1 & EN'=0 \rightarrow nMOS,pMOs ON

Pseudo-nMOS Logic

Seri baglı devre elemanları paralel baglı devre elemanlarına göre daha yavastırlar. pMOS transistörler nMOS transistörlere göre daha yavastır.

GUC TUKETIMI AKTIF/Pasif GUC

6 watt saatlik (W-hr) bataryaya sahip bir cep telefonu 1,2 V'da çalıssın;

Aktif kullanıldığı durumda;

Frakansı: 300 MHz

Yonga içindeki ortalama kapasitans miktarı: 10 nF (10 ⁻⁸ Farads)

Anten gücü: 3 W

Batarya ömrü: ?

$$P_{\rm dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Aktif kullanılMAdıgı durumda;

Dinamik güç: Yaklasık O

Sakin Akım: 40 mA

Batarya ömrü:?

$$P_{\text{static}} = I_{DD}V_{DD}$$

GUC TUKETIMI

6 watt saatlik (W-hr) bataryaya sahip bir cep telefonu 1,2 V'da çalıssın;

Aktif kullanılMAdıgı durumda;

Aktif kullanıldığı durumda;

$$P_{dynamic} = (0.5)(10^{-8} \text{ F})(1.2 \text{ V})^2 (3 \times 10^8 \text{ Hz}) = 2.16 \text{ W}$$

Toplam güç: 2.16 W + 0.048 W +3 W = 5.2 W
Bateri ömrü = 6 Whr/5.2 W = 1.15 saat

$$P_{\rm dynamic} = \frac{1}{2}CV_{DD}^2 f$$

$$P_{\text{static}} = I_{DD}V_{DD}$$

