HW4

Aeren

October 2022

Throughout this assignment,

- n denotes the number of variables and m the number of clauses in context of CNF formula.
- n denotes the number of vertices plus edges in context of graph.
 - 1. Prove that the following two statements are equivalent.
 - (ETH) For all integer $k \geq 3$, there exists c > 0 such that any algorithm for kSAT requires $\Omega(2^{c \cdot n} \cdot poly(m))$ time.
 - They instead require $\Omega(2^{c \cdot m} \cdot poly(m))$ time.
 - 2. Assuming the ETH, prove the followings.
 - (a) Any algorithm for Hamiltonian-Path = {Undirected Graph $G \mid G$ has a simple path that visits every vertex exactly once.} requires $2^{\Omega(n)}$ time.
 - (b) Any algorithm for Planar-Hamiltonian-Path, Hamiltonian-Path restricted to planar graphs, requires $2^{\Omega(\sqrt{n})}$ time.
 - 3. Recall that
 - For all integer $k \ge 1$, $s_k = \inf\{s | \text{ there is an } 2^{s \cdot n} \text{ algorithm for } kSAT\}.$
 - Exponential Time Hypothesis(ETH): $s_3 > 0$
 - Strong Exponential Time Hypothesis(SETH): $\lim_{k\to\infty} s_k = 1$

Prove that SETH implies ETH.

- 4. Get an AC(accepted) verdict on BOJ 20259 Quality Monitoring. (Attach your submission link)
- 5. Prove that the existence of a kernelization of Vertex-Cover_k with kernel of size $O(\log k)$ implies P=NP.