

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امير خورسندي

پاییز ۱۴۰۲

كامپيوتر پايه

اجزای اصلی کامپیوتر پایه

ساختار CPU

برنامه

• مجموعه ای از دستورات که در خانه های متوالی حافظه قرار می گیرند.

• دستور یک مجموعه از بیت ها است که تعیین می کند چه کاری انجام شود.

• واحد كنترل با دريافت دستور به واحدهاي سخت افزاري فرامين لازم را مي دهد.

سيكل كلى دستورالعمل

Fetch

Decode

Execute

ساختار حافظه

آدرس دهی غیر مستقیم

عملكرد	اندازه (بیت)	نام
ثبات اصلی پردازنده	16	AC
ذخيره داده خروجي حافظه	16	DR
ذخيره آدرس حافظه	12	AR
ذخيره دستور	16	IR
آدرس دستور	12	PC
ذخيره داده موقت	16	TR
ذخيره داده ورودى	8	INPR
ذخيره داده خروجي	8	OUTR

گذرگاه مشترک

انواع دستورات

- كار با حافظه (Mem. Ref.): كد دستور مخالف ۷ است.
 - آدرس مستقیم
 - آدرس غير مستقيم
- کار با ثبات (Reg. Ref.): کد دستور برابر با ۷ و بیت ا برابر صفر است.
 - کار با I/O Ref.) ایک دستور برابر با ۷ و بیت ا برابر یک است.

دسته بندي دستورات

- ۱. دستورات ریاضی، منطقی و شیفت
 - ۲. دستورات انتقال به یا از حافظه
 - ۳. دستورات کنترل روند برنامه
 - شرطی
 - غير شرطي
 - ۴. دستورات ورودی / خروجی

مجموعه دستورات

Hexadecimal code

Symbol	I = 0	<i>I</i> = 1	Description	
AND	0xxx	8xxx	AND memory word to AC	
ADD	1xxx	9xxx	Add memory word to AC	
LDA	2xxx	Axxx	Load memory word to AC	
STA	3xxx	Bxxx	Store content of AC in memory	
BUN	4xxx	Cxxx	Branch unconditionally	
BSA	5xxx	Dxxx	Branch and save return address	
ISZ	6xxx	Exxx	Increment and skip if zero	
CLA	78	000	Clear AC	
CLE	74	00	Clear E	
CMA	72	.00	Complement AC	
CME	71	00	Complement E	
CIR	70	80	Circulate right AC and E	
CIL	70	40	Circulate left AC and E	
INC	70	20	Increment AC	
SPA	70	10	Skip next instruction if AC positive	
SNA	7008		Skip next instruction if AC negative	
SZA	7004		Skip next instruction if AC zero	
SZE	E 7002		Skip next instruction if E is 0	
HLT	7001		Halt computer	
INP	INP F800		Input character to AC	
OUT	F4	100	Output character from AC	
SKI	F200		Skip on input flag	
SKO	F100		Skip on output flag	
ION	F(080	Interrupt on	
IOF	F040		Interrupt off	

واحد كنترل

• تولید سیگنال های کنترل و زمان بندی

• بر دو دسته می باشد:

• سخت افزاری

• نرم افزاری (میکرو پروگرام)

واحد كنترل (ادامه)

مثال کنترل زمان بندی

سيكل دستورالعمل كامپيوتر پايه

واكشى دستور

 T_0 : AR \leftarrow PC

 $T_1: IR \leftarrow M[AR], PC \leftarrow PC + 1$

دیکد دستور

سیکل آدرس غیر مستقیم

 $T_3D_7'I: AR \leftarrow M[AR]$

T₃D₇'I': NOP

T₃D₇I': Execute Reg. Ref. Instruction

T₃D₇I: Execute I/O Instruction

اجراي دستور

۱. اجرای دستور مراجعه به حافظه، ثبات و یا ورودی اخروجی

SC مفر کردن .۲

اجرای دستور کار با ثبات

```
D_7I'T_3 = r (common to all register-reference instructions)

IR(i) = B_i [bit in IR(0-11) that specifies the operation]
```

```
SC \leftarrow 0
                                                                 Clear SC
          r:
CLA rB_{11}: AC \leftarrow 0
                                                                 Clear AC
CLE rB_{10}: E \leftarrow 0
                                                                 Clear E
CMA rB_9: AC \leftarrow \overline{AC}
                                                                 Complement AC
CME rB_8: E \leftarrow \overline{E}
                                                                 Complement E
CIR rB_7: AC \leftarrow \text{shr } AC, AC(15) \leftarrow E, E \leftarrow AC(0) Circulate right
CIL rB_6: AC \leftarrow \text{shl } AC, AC(0) \leftarrow E, E \leftarrow AC(15)
                                                                Circulate left
INC rB_5: AC \leftarrow AC + 1
                                                                Increment AC
SPA rB_4: If (AC(15) = 0) then (PC \leftarrow PC + 1)
                                                                Skip if positive
SNA rB_3: If (AC(15) = 1) then (PC \leftarrow PC + 1)
                                                                Skip if negative
SZA rB_2: If (AC = 0) then PC \leftarrow PC + 1
                                                                Skip if AC zero
SZE rB_1: If (E = 0) then (PC \leftarrow PC + 1)
                                                                Skip if E zero
HLT
                S \leftarrow 0 (S is a start-stop flip-flop)
                                                                 Halt computer
        rB_0:
```

دستورهای کار با حافظه

Symbol	Operation decoder	Symbolic description
AND	D_0	$AC \leftarrow AC \land M[AR]$
ADD	D_1	$AC \leftarrow AC + M[AR], E \leftarrow C_{out}$
LDA	D_2	$AC \leftarrow M[AR]$
STA	D_3	$M[AR] \leftarrow AC$
BUN	D_4	$PC \leftarrow AR$
BSA	D_5	$M[AR] \leftarrow PC, PC \leftarrow AR + 1$
ISZ	D_6	$M[AR] \leftarrow M[AR] + 1,$ If $M[AR] + 1 = 0$ then $PC \leftarrow PC + 1$

دستور AND

- D_0T_4 : DR \leftarrow M[AR] .
- D_0T_5 : AC \leftarrow AC \land DR, SC \leftarrow 0 . \checkmark

دستور ADD

- D_1T_4 : DR \leftarrow M[AR] .
- D_1T_5 : AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0 . \uparrow

دستور LDA

- D_2T_4 : DR \leftarrow M[AR] .
- D_2T_5 : AC \leftarrow DR, SC \leftarrow 0 . \uparrow

دستور STA

 D_3T_4 : M[AR] \leftarrow AC, SC \leftarrow 0 .

دستور BUN

 D_4T_4 : PC \leftarrow AR, SC \leftarrow 0 .

دستور BSA

$$D_5T_4$$
: M[AR] \leftarrow PC, AR \leftarrow AR + 1 .

 D_5T_5 : PC \leftarrow AR, SC \leftarrow 0 .

79

دستور SZا

$$D_6T_4$$
: DR \leftarrow M[AR] .

$$D_6T_5$$
: DR \leftarrow DR + 1 . \checkmark

$$D_6T_6$$
: M[AR] \leftarrow DR, SC \leftarrow 0 .

$$D_6T_6Z: PC \leftarrow PC + 1$$

ورودي/خروجي

اجرای دستور کار ورودی/خروجی

```
D_7IT_3 = p (common to all input-output instructions)

IR(i) = B_i [bit in IR(6-11) that specifies the instruction]
```

	p:	SC ←0	Clear SC
INP	pB ₁₁ :	$AC(0-7) \leftarrow INPR, FGI \leftarrow 0$	Input character
OUT	pB_{10} :	$OUTR \leftarrow AC(0-7), FGO \leftarrow 0$	Output character
SKI	pB_9 :	If $(FGI = 1)$ then $(PC \leftarrow PC + 1)$	Skip on input flag
SKO	pB_8 :	If $(FGO = 1)$ then $(PC \leftarrow PC + 1)$	Skip on output flag
ION	pB_7 :	IEN ←1	Interrupt enable on
IOF	pB_6 :	IEN ←0	Interrupt enable off

انواع روش های سرویس دهی به ورودی/خروجی

۱. سرکشی

۲. وقفه

سيكل وقفه

سيكل وقفه (ادامه)

 $T_0' T_1' T_2' (IEN) (FGI + FGO): R \leftarrow 1 \bullet$

 RT_0 : AR \leftarrow 0, TR \leftarrow PC .

 $RT_1: M[AR] \leftarrow TR, PC \leftarrow 0$.

 RT_2 : $PC \leftarrow PC + 1$, $IEN \leftarrow 0$, $SC \leftarrow 0$, $R \leftarrow 0$.

مدار کنترل AR

مدار کنترل AC

ساختار یک طبقه از ALU

