Глава 1. Коды Рида—Соломона

1.1. Построение кода

1.1.1. Выбор поля и канал передачи данных

Код Рида—Соломона — многочлен над некоторым конечным полем GF(q). По-хорошему, выбор поля определяется набором символов, передаваемых по каналу.

Как правило, на практике символом является 8-битный байт (октет), так что код строится над полем $GF(2^8)=GF(256)$ из 256 элементов. Для доски ранее был принят 4-битный байт (тетрада), что требовало бы кода над полем $GF(2^4)=GF(16)$ из 16 элементов.

К сожалению, арифметические действия в полях $GF(2^n)$ при n>1 контринтуитивны (сложение как хог и умножение по таблице степеней примитивного элемента), поэтому на лекции и здесь рассматриваются поля $GF(p)=\mathbb{Z}_p$ из простого количества элементов p>2 (арифметические действия по модулю p).

На данном семинаре было выбрано поле $GF(7)=\mathbb{Z}_7$ из семи элементов: 0,1,2,3,4,5,6. Это соответствует гипотетическому каналу, который умеет передавать символы $\{0,1,2,3,4,5,6\}$ и только их. Ошибка передачи— это замена одного из символов сообщения на другой символ из набора $\{0,1,2,3,4,5,6\}$.

К вопросу «как это реализовать?»

Канал, передающий сообщения на семисимвольном алфавите, можно эмулировать как каналом, передающим октеты, так и каналом, передающим 32-битные числа (int или unsigned), так как в обоих случаях алфавит поля \mathbb{Z}_7 (множество символов $A_7 = \{0, 1, 2, 3, 4, 5, 6\}$) — часть алфавита канала A:

- 1. При передаче символа $a \in A_7 \subseteq A$ передаётся символ a. Значения из $A \setminus A_7$ никогда не передаются.
- 2. При получении символа $a \in A_7 \subseteq A$ он воспринимается как a. При получении символа $b \in A \setminus A_7$ (любого, кроме 0,1,2,3,4,5,6) он воспринимается как один из символов A_7 например, всегда как 0; или как случайно выбранный от 0 до 6.

1.1.2. Длина кода

Максимально возможная длина кода (общее число информационных и проверочных символов) равна количеству ненулевых элементов (6 для \mathbb{Z}_7).

При желании — можно меньше (взять меньше информационных на то же число проверочных; так, для GF(256) максимальная длина 255 нечётна).

Если ниже взять не примитивный β — это технически возможно, но максимальная длина кода будет равна его порядку $< 6 \implies$ не используется.

1.1.3. Примитивный элемент

Для построения кода Рида—Соломона необходим примитивный элемент поля β . На семинаре был выбран $\beta=3$:

Все шесть (по Малой теореме Ферма, x^{p-1} в любом случае равно 1) степеней разные $\implies 3$ — действительно примитивный элемент \mathbb{Z}_7 .

1.1.4. Степень порождающего полинома Рида—Соломона = число проверочных символов κ

В блоке Рида—Соломона с κ проверочных символов может быть исправлено до $\left|\frac{\kappa}{2}\right|$ ошибок.

Таким образом, по-хорошему-2, выбор числа проверочных символов определяется зашумлённостью канала. Для выбора κ необходимо:

- 1. Задаться конкретной общей длиной кода $\mu \leqslant \mu_{\max}$ (для \mathbb{Z}_7 $\mu \leqslant 6$).
- 2. Рассчитать прогнозируемо-максимальное количество ошибок u_{\max} такое, что при передаче блока из μ символов по рассматриваемому каналу:
 - вероятностью $u_{\rm max} + 1$ ошибки в блоке уже можно пренебречь,
 - а вероятностью u_{max} ошибок ещё нельзя.

После расчёта принимается $\kappa = 2u_{\rm max}$.

${\bf K}$ вопросу «всегда ли κ чётно?»

На практике — всегда чётно; в некоторых источниках написано сразу « $2u_{\max}$ проверочных символов». Использовать $\kappa=2u_{\max}+1$ проверочных символов технически можно, но при этом:

- исправляется только u_{max} ошибок, как и для $\kappa = 2u_{\text{max}}$;
- повышается сложность расчёта как при кодировании, так и при проверке;
- при той же общей длине блока μ число информационных символов блока $\nu=\mu-\kappa$ меньше, чем для $\kappa=2u_{\rm max}.$

Если $\kappa=2u_{\rm max}\geqslant\mu$ — по рассматриваемому каналу *невозможно* вести достаточно надёжную (то есть с пренебрежимо малой вероятностью неисправленной и незамеченной ошибки) передачу блоками длины μ при помощи кодов Рида—Соломона (нужны другая μ , другие коды или другой канал).

Так как мы рассматриваем гипотетический канал передачи данных с неизвестным шумом, κ на семинаре выбиралось произвольно. Рассматривались варианты с общей длиной $\mu=6$:

- $-\kappa = 2 \ (\nu = 4 \ \text{информационных символа, исправление одной ошибки});$
- $\kappa=4$ ($\nu=2$ информационных символа, исправление двух ошибок); выбрано $\kappa=2.$

1.1.5. Порождающий полином Рида—Соломона

Порождающий полином Рида—Соломона имеет вид:

$$g(x) = (x - \beta)(x - \beta^2) \dots (x - \beta^{\kappa}), \tag{1.1}$$

что при выбранных $\beta=3$ и $\kappa=2$ означает

$$g(x) = (x - 3^{1})(x - 3^{2}) = (x - 3)(x - 2) = x^{2} - 5x + 6 = x^{2} + 2x + 6.$$
 (1.2)

1.2. Кодирование

Для порождающего полинома (1.2) с $\kappa=2$ возможно количество информационных символов ν от 1 до 4 и, соответственно, общая длина от 3 до 6. Далее рассматривается случай $\nu=4$ информационных символов и, соответственно, общая длина кода $\mu=\kappa+\nu=2+4=6$.

Сообщение из ν информационных символов $(a_0, a_1, a_2, ..., a_{\nu-1})$ рассматривается как *информационный полином* степени $\nu-1$:

$$a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{\nu-1} x^{\nu-1}.$$
 (1.3)

Cистематический полиномиальный код, в том числе код Рида—Соломона— это полином C(x), который должен:

- делиться на порождающий g(x) как любой полиномиальный код;
- содержать в явном виде информационные символы $(a_0, a_1, a_2, ..., a_{\nu-1})$ (коэффициенты a(x)) как любой систематический код;

и получается следующим образом:

$$C(x) = a(x) \cdot x^{\kappa} - r(x), \tag{1.4}$$

где $r(x) = a(x) \cdot x^{\kappa} \mod g(x)$.

То есть:

- информационные символы сдвигаются на κ позиций, чтобы освободить место для проверочных $(a(x) \cdot x^{\kappa})$ содержит $(a_0, a_1, a_2, ..., a_{\nu-1})$ в правильном порядке, но в общем случае не делится на g(x);
- освободившиеся κ позиций заполняются так, чтобы результат делился на g(x):

$$C(x) \bmod g(x) = \left(a(x) \cdot x^{\kappa} - r(x)\right) \bmod g(x) =$$

$$= \left(a(x) \cdot x^{\kappa} \bmod g(x)\right) - \left(r(x) \bmod g(x)\right) = r(x) - r(x) = 0,$$
(1.5)

r(x) имеет не более κ коэффициентов: $deg(r) \leqslant deg(g) - 1 = \kappa - 1$.

1.3. Кодирование конкретного сообщения

На семинаре рассматривалось сообщение (1, 1, 1, 1), то есть полином

$$a(x) = x^3 + x^2 + x + 1. (1.6)$$

1.3.1. На семинаре обсчитались при делении

При делении на доске в столбик $a(x) \cdot x^2 = x^5 + x^4 + x^3 + x^2$ на $g(x) = x^2 + 2x + 6$ получили r(x) = -x - 3, то есть:

$$C(x) = a(x) \cdot x^2 - r(x) = x^5 + x^4 + x^3 + x^2 + x + 3. \tag{1.7}$$

На семинаре проверяли делением C(x) на $g(x) = x^2 + 2x + 6$ онлайн (над \mathbb{R}) — получили в остатке -7x - 75, а 75 не кратно 7.

Проверим иначе: делится ли C(x) на g(x)=(x-3)(x-2) — рассчитаем в Octave C(2) и C(3) в $\mathbb R$.

```
1 octave:1> x=2
2 x = 2
3 octave:2> x^5 + x^4 + x^3 + x^2 + x + 3
4 ans = 65
5 octave:4> x=3
6 x = 3
7 octave:5> x^5 + x^4 + x^3 + x^2 + x + 3
8 ans = 366
```

Получили значения $65 = 7 \cdot 9 + 2$ и $366 = 52 \cdot 7 + 2$ — то есть в \mathbb{Z}_7 полином (1.7) не имеет корней в точках 2 и 3.

1.3.2. Исправляем ошибку

При повторном делении $a(x)\cdot x^2=x^5+x^4+x^3+x^2$ на $g(x)=x^2+2x+6$ в столбик, уже после семинара, было получено r(x)=-x+6=-x-1, то есть

$$C(x) = a(x) \cdot x^2 - r(x) = x^5 + x^4 + x^3 + x^2 + x + 1.$$
 (1.8)

В этом случае при делении C(x) на g(x) онлайн -7x-77 в остатке—всё-таки и тут коэффициенты должны быть нулевые или кратные 7!

Значения C(2) и C(3) в \mathbb{R} , рассчитанные в Octave:

```
1 octave:10> x=2
2 x = 2
3 octave:11> x^5 + x^4 + x^3 + x^2 + x + 1
4 ans = 63
5 octave:12> x=3
6 x = 3
7 octave:13> x^5 + x^4 + x^3 + x^2 + x + 1
8 ans = 364
9 octave:14> 63/7, 364/7
10 ans = 9
11 ans = 52
```

делятся без остатка на 7 в \mathbb{R} , то есть нулевые в $\mathbb{Z}_7 \implies C(x)$ делится на x-2 и x-3, то есть и на g(x).

1.4. Проверка и декодирование

Декодирование систематического кода тривиально, так как информационные символы содержатся в нём в явном виде. Но они могут оказаться искажёнными, то есть перед чтением необходимо проверить корректность сообщения.

1.4.1. Проверка корректности

Корректность полученного сообщения $\widetilde{C}(x)$ определяет cundpom — многочлен степени $\kappa-1$

$$s(x) = s_0 + s_1 x + \dots + s_{\kappa - 1} x^{\kappa - 1}. \tag{1.9}$$

где

$$s_i = \widetilde{C}(\beta^{i+1}). \tag{1.10}$$

Нулевой синдром соответствует корректному (делящемуся на g(x)) сообщению $\widetilde{C}(x)$. Действительно, если $\widetilde{C}(x)$ делится на g(x) ($\widetilde{C}(x) = A(x) \cdot g(x)$), то все коэффициенты s_i нулевые, так как соответствующие β^{i+1} — корни g(x).

Считается, что делящееся на g(x) (с нулевым синдромом) полученное сообщение $\widetilde{C}(x)$ есть неискажённое C(x).

Сообщение с ненулевым синдромом — искажено:

$$\widetilde{C}(x) = C(x) + e(x), \tag{1.11}$$

необходима коррекция. Степень e(x) в общем случае может быть равна степени C(x), но число ненулевых коэффициентов e(x) (количество ошибок u) не превышает $u_{\max} = \left\lfloor \frac{\kappa}{2} \right\rfloor$ (κ выбиралось так, что вероятностью $u > \frac{\kappa}{2}$ можно пренебречь).

При этом, так как $C(\beta^{i+1}) = 0$ (C(x) делится на g(x), то есть делится и на все его делители $x - \beta^{i+1}$), то синдром характеризует только ошибку e(x):

$$s_i = \widetilde{C}(\beta^{i+1}) = C(\beta^{i+1}) + e(\beta^{i+1}) = e(\beta^{i+1})$$
 (1.12)

1.4.2. Ошибки рассматриваемого кода

Для (1.2) $u_{\text{max}} = 1$, то есть ошибка e(x) либо равна 0 (и делится на g(x)), либо имеет только один ненулевой коэффициент и имеет вид

$$e(x) = Ax^k, (1.13)$$

где $0 \le k \le \mu - 1, A \ne 0.$

При делении на g(x) все возможные e(x) дают разные остатки (таблица 1.1).

Возможные остатки от деления $e(x) = Ax^k$ на g(x) Таблица 1.1

	k = 0	k = 1	k=2	k = 3	k = 4	k = 5
A=1	1	x	5x+1	5x+5	2x+5	x+2
A=2	2	2x	3x+2	3x+3	4x+3	2x+4
A=3	3	3x	x+3	x+1	6x + 1	3x + 6
A=4	4	4x	6x + 4	6x + 6	x+6	4x+1
A=5	5	5x	4x+5	4x+4	3x+4	5x+3
A=6	6	6x	2x+6	2x+2	5x+2	6x+5

Рассмотрим остатки от деления $e(x)=Ax^k$ на x-3 и x-2 (таблица 1.2). По теореме Безу $e(x) \bmod (x-a)=e(a)=Aa^k$. Видно, что ни для одного

Возможные остатки от деления $e(x) = Ax^k$ на двучлены x-3 и x-2

Таблица 1.2

$Ax^k \bmod (x-3) = A \cdot 3^k$	k = 0	k=1	k=2	k=3	k=4	k=5
A = 1	1	3	2	6	4	5
A=2	2	6	4	5	1	3
A=3	3	2	6	4	5	1 1
A=4	4	5	1	3	2	6
A=5	5	1	3	2	6	4
A=6	6	4	5	1	3	2
$Ax^k \bmod (x-2) = A \cdot 2^k$	k = 0	k=1	k=2	k=3	k=4	k=5
$Ax^k \bmod (x-2) = A \cdot 2^k$ $A = 1$	k = 0 1	k = 1 2	k = 2 4	k = 3 1	k = 4 2	
`. · · · ·	k = 0 1 2			k = 3 1 2		
A = 1	1	2		1	2	
A = 1 $A = 2$	1 2	2 4	4 1	1 2	2 4	4 1
A = 1 $A = 2$ $A = 3$	1 2	2 4	4 1 5	1 2	2 4	4 1 5

 $e(x) = Ax^k$ не совпадают оба остатка $Ax^k \mod (x-3) = A \cdot 3^k$ и $Ax^k \mod (x-2) = A \cdot 2^k$, то есть по остатку от деления на g(x) или по значениям e(3) и e(2) (коэффициентам синдрома) можно найти e(x).

1.4.3. Синдром рассматриваемого кода

Для (1.2) с $\kappa = 2$ синдром линеен:

$$s(x) = \widetilde{C}(\beta^1)x^0 + \widetilde{C}(\beta^2)x^1 = \widetilde{C}(\beta) + \widetilde{C}(\beta^2)x = \widetilde{C}(3) + \widetilde{C}(2)x. \tag{1.14}$$

1.4.4. Исправление сообщения с ненулевым синдромом

Если у полученного сообщения $\widetilde{C}(x)$ ненулевой синдром, то при передаче произошло u ошибок, $1\leqslant u\leqslant u_{\max}=\left|\frac{\kappa}{2}\right|$.

Для исправления необходимо найти два полинома:

1. Многочлен локаторов L(x) степени u вида:

$$L(x) = (1 - xX_1)(1 - xX_2)\dots(1 - xX_u)$$
(1.15)

где константа $X_i \in \mathbb{Z}_7 \setminus \{0\}$ — локатор ошибки: $X_i = \beta^\ell$ указывает, что коэффициент при x^ℓ был передан с ошибкой.

2. Многочлен ошибок W(x) степени u-1.

Оба многочлена — L(x) и W(x) — находятся из соотношения:

$$L(x) \cdot S(x) = W(x) \mod x^{\kappa}, \tag{1.16}$$

причём поиск их коэффициентов — самая сложная часть исправления ошибок. Неизвестная степень u вначале полагается равной $u_{\max} = \frac{\kappa}{2}$; при вычислении часть коэффициентов может оказаться нулевой.

После вычисления L(x) и W(x) для каждого локатора X_i находим значение, которое необходимо добавить к соответствующему коэффициенту для исправления ошибки

$$Y_i = \frac{W(X_i^{-1})}{L'(X_i^{-1})},\tag{1.17}$$

где штрих — производная по x; тогда

$$C(c) = \widetilde{C}(x) + \sum Y_i \cdot x^{\ell_i}. \tag{1.18}$$

1.4.5. Многочлены локаторов и ошибок рассматриваемого кода

В общем случае для (1.2) с $\kappa=2$, исправляющего $u_{\rm max}=1$ ошибку, многочлен локаторов линеен:

$$L(x) = 1 - xX_1 = 1 - ax, (1.19)$$

а многочлен ошибок степени $u_{\rm max}-1$ представляет собой константу:

$$W(x) = c. (1.20)$$

Таким образом L'(x) = -a, и выражение (1.17) для коррекции ошибки в месте локатора X_i :

$$Y_1 = \frac{W(X_i^{-1})}{L'(X_i^{-1})} = \frac{c}{-a}.$$
 (1.21)

1.5. Проверка и декодирование конкретного сообщения

Для неискажённого $C(x)=x^5+x^4+x^3+x^2+x+1$ синдром равен 0+0x (выше проверено C(3)=C(2)=0).

Внесём искажение: пусть получено

$$\widetilde{C}(x) = x^5 + x^4 + x^3 + x^2 + x + 3$$
 (1.22)

его синдром

$$s(x) = \widetilde{C}(3) + \widetilde{C}(2)x = 2 + 2x.$$
 (1.23)

отличен от нуля, то есть надо найти коэффициенты многочленов L(x) = 1 - ax и W(x) = c из соотношения (1.16):

$$(1 - ax) \cdot S(x) = c \mod x^2, \tag{1.24}$$

то есть

$$(1 - ax) \cdot (2 + 2x) = c \mod x^2, \tag{1.25}$$

$$2 + 2x - 2ax - 2ax^2 = c \mod x^2, \tag{1.26}$$

получаем систему уравнений:

$$\begin{cases} 2 = c \\ 2 - 2a = 0 \end{cases} \tag{1.27}$$

откуда a = 1 и c = 2.

Так как локатор единственной ошибки $X_1 = a = 1 = 3^0$ — ошибка в коэффициенте при x^0 (свободном члене); добавить к нему, согласно (1.21), необходимо величину

$$Y_1 = \frac{c}{-a} = \frac{2}{-1} = -2 = 5. {(1.28)}$$

Действительно,

$$\widetilde{C}(x)+Y_1x^0=x^5+x^4+x^3+x^2+x+3-2=x^5+x^4+x^3+x^2+x+1=C(x)$$
 (1.29)