PROJECT EZCOIN by. team Coin\$tar\$

team Coin\$tar\$

- @monique_ticzon
- @justin_bernier
- @max_larsen
- @tony_hart

README

Project Description

Create cryptocurrency recommendations by using machine learning modeling to predict performance.

Use Google Colab and scikit learn

Objectives Project Questions to Answer

- -Pull data upon request
- -Examine Technical Indicators
- -Pull in crypto sentiment
- -Which model performs better between Random Forest and AdaBoost
- -Create a all-in-one dashboard

Data Sources

Kraken API

Crypto News API

Libraries

CCXT

TA-lib

Plotly Dash

Scikit-Learn

GitHub Repo: https://github.com/maxla777/Project-2

Google Colab

Compelling Features:

User Input Form

Google Drive Integration

Hardware Acceleration

Kraken API

Use API call to Fetch
open-high-low-close-volume
(OHLCV) data

For a user selected Crypto at interval they specify

Technical INDICATORS

EMA - Exponential Moving Average

Bollinger Bands

RSI - Relative Strength Index

On daily close price or daily return volatility generate crossover signals based on moving averages SMA of closing price with upper and lower bands showing rolling standard deviation Momentum Indicator that uses the magnitude of price change to determine if overbought or oversold

EMA - Exponential Moving Average: Daily Closing Price

On daily close price generate crossover signals on moving averages for closing prices

EMA - Exponential Moving Average: Daily Return Volatility

On volume and daily close price generate crossover signals on moving averages for daily return

Bollinger Bands

SMA of closing price with upper and lower bands showing rolling standard deviation

RSI - Relative Strength Index

Momentum Indicator that uses the magnitude of price change to determine if overbought or oversold

Crypto Sentiment

Crypto News API

limitations

Data

- collection
- exploration

Sentiment

- bearish
- bullish

Machine Learning Algos We Used

Random Forest Classifier

- Based on bagging technique
- Decision trees use different variables or features
- Equally-weighted decision trees

AdaBoost Classifier

- Based on boosting technique
- Used Decision Tree
 Classifier
- Variably-weighted decision stumps

Training & Testing (70/30 Split) - Google Colab and Scikit-learn

Technical Signals (on its own)

- Training Start: 4/21/2019
- Training End: 8/20/2020
- Testing Start: 8/21/2020
- Testing End: 3/20/2021

Sentiment Signal (on its own) and Combined Signals

- Training Start: 12/01/2020
- Training End: 2/16/2021
- Testing Start: 2/17/2021
- Testing End: 3/21/2021

Highlights

- Started with the default parameters and adjusted as needed
- Google Colab made it easier and faster to do model tuning

Machine Learning Algos We Used - Model Evaluation

Random Forest Classifier

- Results for Signals on their own
 - Better overall
 - Extremely well on recall score
- Results for Combined Signals
 - Lower performance than AdaBoost

Technical + Sentiment Signals Result

Machine Learning Algos We Used - Model Evaluation

AdaBoost Classifier

- Results for Signals on their own
 - Did not perform as well overall
- Results for SignalsCombined
 - Performed better than the Random Forest Classifier

Technical + Sentiment Signals Result

DASHBOARD

PROJECT CONCLUSION | HIGHLIGHTS

Thanks! ANY QUESTIONS?