MT2123 - Advanced Linear Algebra

Nachiketa Kulkarni

Contents

	Fields and Vector Spaces			
	1.1	Groups	1	
	1.2	Rings]	
	1.3	Fields	1	
		1.3.1 Detour 1 - Finite Fields	2	
2	Line	ear Transformations	3	

Chapter 1

Fields and Vector Spaces

1.1 Groups

Definition A group $\langle G, * \rangle$ is a set G with a binary operation * such that the following axioms are satisfied:

- 1. Closure: For all $a, b \in G$, $a * b \in G$.
- 2. Associativity: For all $a, b, c \in G$, a * (b * c) = (a * b) * c.
- 3. Identity Element: There exists an element $I \in G$ such that for all $I \in G$, a * I = I * a = a. Here, I is called as the identity element of * in G.
- 4. Inverse: corresponding to every element $a \in G$, there exists an element $a' \in G$ such that a*a' = a'*a = I. Here, a' is called as the inverse of a in G.

1.2 Rings

Definition A ring $\langle R, +, \cdot \rangle$ is a set R with two binary operations + and \cdot , which we call addition and multiplication, such that the following axioms are satisfied:

- 1. $\langle R, + \rangle$ is an abelian/commutative group.
- 2. Multiplication is associative: For all $a, b, c \in R$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 3. Distributive Property: For all $a, b, c \in R$, the Left Distributive Law, $a \cdot (b + c) = a \cdot b + a \cdot c$ and Right Distributive Law, $(a + b) \cdot c = a \cdot c + b \cdot c$.

1.3 Fields

Definition A field $\langle F, +, \cdot \rangle$ is a set F with two binary operations + and \cdot , which we call addition and multiplication, such that the following axioms are satisfied:

- 1. Closure: For all $a, b \in F$, $a + b \in F$ and $a \cdot b \in F$.
- 2. Associativity: For all $a, b, c \in F$, a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 3. Commutativity: For all $a, b \in F$, a + b = b + a and $a \cdot b = b \cdot a$.
- 4. Identity Elements: There exist two elements $I, O \in F$ such that for all $a \in F$, $I \cdot a = a$ and O + a = a. Here, I is called as the multiplicative identity and O is called as the additive identity.
- 5. Additive Inverse: For all $a \in F$, there exists an element $-a \in F$ such that a + (-a) = O. Here, -a is called as the additive inverse of a.

- 6. Multiplicative Inverse: For all $a \neq O \in F$, there exists an element $a^{-1} \in F$ such that $a \cdot a^{-1} = I$. Here, a^{-1} is called as the multiplicative inverse of a.
- 7. Distributivity: For all $a,b,c\in F$, the Left Distributive Law, $a\cdot (b+c)=a\cdot b+a\cdot c$ and Right Distributive Law, $(a+b)\cdot c=a\cdot c+b\cdot c$.

1.3.1 Detour 1 - Finite Fields

another long wall of text

Chapter 2

Linear Transformations

long wall of text incoming