Matemáticas para programadores

Sistemas de numeración y Aritmética Binaria William Barden, Jr.

1991 1191 1000 00110 9119 1001 1001 1001 1001001 1 10001001 ps 10001001 101 100011 101 01001 010110101 0 1001 100 10100 100 0110 1001 10 1001001 .01 100011 10001 01001 919119191 .vio 1991 1990 101001

www.FreeLibros.me

100

Matemáticas para programadores Sisteman

y aritmética binaria

William Barden, Jr.

INFORMATICA PERSONAL-PROFESIONAL

Título de la obra original: MICROCOMPUTER MATH

Traducción: Fernando García Diseño de colección: Antonio Lax Diseño de cubierta: Narcís Fernández

Reservados todos los derechos. Ni la totalidad ni parte de este libro puede reproducirse o transmitirse por ningún procedimiento electrónico o mecánico, incluyendo fotocopia, grabación magnética o cualquier almacenamiento de información y sistema de recuperación, sin permiso escrito de Ediciones Anaya Multimedia, S. A.

Copyright © 1982 by Howard W. Sams & Co., Inc. Indianapolis, IN 46268

© EDICIONES ANAYA MULTIMEDIA, S. A., 1986

Villafranca, 22.28028 Madrid Depósito legal: M. 2579-1986

ISBN: 84-7614-070-3 Printed **in** Spain

Imprime: Anzos, S. A. Fuenlabrada (Madrid)

Indice

Intro	oducción	7
1.	El sistema binario: donde empieza todo	11
2.	Octal, hexadecimal y otras bases numéricas	25
	El chile está bien en Casiopea. Hexadecimal. Octal. Trabajando con otras bases numéricas. Convenios estándar. Ejercicios.	
3.	Números con signo y notación en complemento a dos Big Ed y el bínaco. Sumar y restar números binarios. Representación en complemento a dos. Extensión del signo. Suma y resta en complemento a dos. Ejercicios.	37
4.	Acarreos, errores de desbordamiento e indicadores	49
	Este restaurante tiene una capacidad de + 127 personas. ¡Evitando errores de desbordamiento! Errores de desbordamiento. Acarreo. Otros indicadores. Indicadores en los microordenadores. Ejercicios.	
5.	Operaciones lógicas y desplazamientos	57
	El enigma británico. Operaciones lógicas. Operaciones de desplazamiento. Ejercicios.	

6.	Multiplicación y división	73
	Zelda aprende cómo desplazar por sí misma. Algoritmos de multiplicación. Algoritmos de división. Ejercicios.	
7.	Múltiple precisión	87
	¿Tienen algo que ver las series de Fibonacci con la televisión? Suma y resta empleando múltiple precisión. Multiplicación en múltiple precisión. Ejercicios.	
8.	Fracciones y factores de escala	97
	Big Ed pesa los números. Fracciones en sistema binario. Operando con fracciones en sistema binario. Ejercicios.	
9.	Transformaciones ASCII	109
	Big Ed y el inventor. Códigos ASCII. Paso de ASCII a enteros binarios. Paso de ASCII a fracciones binarias. Paso de enteros binarios a ASCII. Paso de fracciones binarias a ASCII. Ejercicios.	
10.	Números en punto flotante	121
	y tres mil platos combinados para la nave nodriza Notación científica en punto flotante. Uso de potencias de dos en lugar de potencias de diez. Números en punto flotante de doble precisión. Cálculos en los que se emplean números binarios en punto flotante. Ejercicios.	
Apé	ndices:	
=	A) Respuestas a los ejercicios	135
	B) Conversiones binario, octal, decimal y hexadecimal	139
	C) Tabla de conversión de números en complemento a dos	147
Glos	sario	149
T., 15	16.1.24	155

Introducción

No pasa mucho tiempo, después de adquirir un microordenador, sin que el usuario tropiece fatalmente con referencias tales como "números binarios", "valor hexadecimal", "efectuar la operación lógica 'Y' con dos números para obtener el resultado" o "desplazar el resultado multiplicando por dos". Algunas veces, estas referencias suponen que el lector conoce el sistema binario y la forma de operar con él; otras, uno tiene la impresión de que el escritor del manual de referencia realmente tampoco sabe demasiado sobre las operaciones a realizar.

El objetivo de *Matemáticas para programadores es* poner fin a algunos de los misterios que rodean las operaciones matemáticas especiales que se emplean en BASIC y en lenguaje ensamblador. Tales operaciones, como sistema binario, octal o hexadecimal, operaciones complemento a dos, suma y resta de números binarios, indicadores en microordenadores, operaciones lógicas y desplazamientos, algoritmos de multiplicación y división, operaciones en múltiple precisión, fracciones, factores de escala y operaciones en punto flotante, se explican detalladamente a lo largo del libro, junto con ejemplos prácticos y ejercicios de autoevaluación.

Si uno puede sumar, restar, multiplicar y dividir con números decimales, entonces podrá ejecutar las mismas operaciones en binario o en cualquier otra base numérica, tal como la hexadecimal. Este libro le enseñará cómo.

También será un excelente compañero en cualquier curso de lenguaje ensamblador o BASIC Avanzado.

Matemáticas para programadores consta de diez capítulos. La mayoría de ellos se basan en el material contenido en los que le preceden. Cada capítulo finaliza con ejercicios de autoevaluación. Es provechoso realizar los ejercicios porque ayudan a fijar la materia en su mente, pero no nos enfadaremos con usted si utiliza el libro sólo como referencia.

Leyendo, se observarán algunas palabras en *cursiva*. La mayoría de ellas son términos informáticos que se definen en el glosario. Utilizándolo, también los neófitos pueden entender y sacar provecho de este libro.

El libro está estructurado como sigue:

El capítulo 1 trata el sistema binario desde la base e incluye las conversiones entre números binarios y decimales, mientras el capítulo 2 describe los números octales y hexadecimales, y las transformaciones entre estas bases y los números decimales. Los números hexadecimales se utilizan en BASIC y en lenguaje ensamblador.

Los números con signo y en complemento a dos se incluyen en el capítulo 3. Los complementos a dos es una notación usada en números negativos.

El capítulo 4 trata de los acarreos, errores de desbordamiento e indicadores. Estos términos se usan principalmente en lenguaje máquina y en programas en lenguaje ensamblador, pero pueden ser también importantes en programas especiales de BASIC.

Las operaciones lógicas, como las "Y" (AND), "O" (OR) y "NO" (NOT) del BASIC, se describen en el capítulo 5 junto con los tipos de desplazamientos posibles en lenguaje máquina. Después, el capítulo 6 habla de los algoritmos de multiplicación y división, incluyendo operaciones con y sin signo.

El capítulo 7 describe operaciones en múltiple precisión. Esta puede utilizarse en BASIC y en lenguaje ensamblador para implementar la "precisión ilimitada" con cualquier número de dígitos.

El capítulo 8 incluye fracciones binarias y factores de escala. Esta materia es necesaria para entender el formato interno de los números en punto flotante en BASIC.

Seguidamente, los códigos y las conversiones ASCII, en cuanto se refieren a cantidades numéricas, se describen en el capítulo 9.

Finalmente, el capítulo 10 proporciona una explicación de la representación de los números en punto flotante en la forma en que éstos se utilizan en muchos intérpretes en el BASIC de Microsoft.

Después, en la última sección del libro, el apéndice A contiene las respuestas a las cuestiones de autoevaluación; el apéndice B contiene una lista de números binarios, octales, decimales y hexadecimales del 0 al 1023.

La lista puede utilizarse para pasar de un tipo de sistema a otro. Por último, el apéndice C contiene una lista de los números en complemento a dos del — 1 al — 128, una referencia que no se encuentra habitualmente en otros textos; a continuación, se incluye un glosario de términos.

WILLIAM BARDEN, JR.

El sistema binario: donde empieza todo

En el sistema binario, todos los números se representan por una condición "encendido/apagado". Veamos un ejemplo rápido de binario en términos fácilmente comprensibles.

Big Ed aprende binario

"Big Ed" Hackenbyte es propietario de "Big Ed's", un restaurante que sirve comidas rápidas y cenas lentas en el área cercana a San José (California). En esta zona, conocida como Valle del Silicio, hay docenas de compañías que fabrican microprocesadores.

Ed tiene ocho personas a su servicio: Zelda, Olive, Trudy, Thelma, Fern, Fran, Selma y Sidney. Debido a la despersonalización existente, tiene asignados números para la nómina. Los números asignados son:

_	Número	<u> </u>	Vúmero
Zelda	0	Fern	4
Olive	1	Fran	5
Trudy	2	Selma	6
Thelma	3	Sidney	7

Cuando Big Ed rellenó por primera vez el panel de llamadas, tenía ocho luces, una para cada persona del servicio, como puede verse en la figura 1.1. Un día, sin embargo, Bob Borrow, ingeniero de diseño de una compañía de microprocesadores conocida como Inlog, llamó a Ed.

"Ed, podrías ser mucho más eficiente con tu panel de llamadas, ¿sabes? Puedo mostrarte cómo hemos diseñado el tablón con uno de nuestros microprocesadores."

Figura 1.1. Panel de llamadas de Big Ed

Ed, interesado en la nueva tecnología, siguió su consejo. El nuevo diseño del tablón de anuncios se muestra en la figura 1.2. Tiene tres luces, controladas desde la cocina. Cuando se llama a alguien del servicio, suena un timbre; ¿cómo es posible llamar a alguna de las ocho personas del servicio por medio de combinaciones luminosas de las tres luces?

Figura 1.2. Panel de llamadas en binario

"¿Ves, Ed? Este panel es muy eficaz. Emplea cinco luces menos que tu primer panel. Hay ocho combinaciones diferentes de luces. En realidad les llamamos *permutaciones*, pues hay un orden definido en la disposición de las luces. He preparado una tabla de las permutaciones de las luces y la persona del servicio llamada." Dio a Ed la tabla mostrada en la figura 1.3.

Sólo hay ocho permutaciones diferentes de luces, Ed, ni más ni menos. Estas luces están ordenadas en forma *binaria*. Utilizamos el sistema binario en nuestros ordenadores por dos razones: primero, se ahorra espacio. **Redu-**

cimos el número de luces de ocho a tres. Segundo, los ordenadores baratos sólo pueden representar normalmente un estado encendido/apagado, igual que las luces están encendidas o apagadas." Hizo una pausa para dar un bocado a su "Big Edburger".

Λ	Λ	Λ	75104	^
U	U	U	ZELDA	0
0	0		OLIVE	1
0		0	TRUDY	2
0	•	•	THELMA	3
	0	0	FERN	4
•	0		FRAN	5
•	•	0	SE LMA	6
•			SIDNEY	7

Figura 1.3. Código para el panel

"Daré estos códigos a mis ayudantes para que los memoricen", dijo Ed. "Cada persona del servicio sólo tiene que memorizar su código, Ed. Te daré la clave, de forma que puedas descifrar qué persona del servicio es llamada, sin necesidad de la tabla.

¿Ves? Cada luz representa una potencia de dos. La luz de la derecha representa dos elevado a cero. La siguiente, dos elevado a uno, y la de más a la izquierda es dos elevado a dos. En realidad es muy parecido al sistema decimal, donde cada dígito representa una potencia de diez." Garabateó un ejemplo en el mantel, como muestra la figura 1.4.

Figura 1.4. Comparación de los sistemas binario y decimal

"De la misma forma que podemos emplear las potencias de diez para números altos, podemos utilizar tantas potencias de dos como queramos. Podríamos usar treinta y dos luces, si quisiéramos. Entonces, para pasar las tres luces en binario a su equivalente en decimal, habría que sumar la potencia de dos correspondiente a cada luz encendida." Garabateó otra figura en el mantel (Fig. 1.5).

Figura 1.5. Paso de binario a decimal

"Bueno, parece bastante sencillo", admitió Ed. "De derecha a izquierda, las luces representan 1, 2 y 4. Si tuviéramos más camareros y camareras, las luces representarían 1, 2, 4, 8, 16, 32, 64, 128..." Su voz dejó de oírse, al no ser capaz de decir la siguiente potencia de dos.

"Exacto, Ed. Frecuentemente, tenemos el equivalente a ocho o dieciséis luces en nuestros microprocesadores. No usamos luces, por supuesto; utilizamos semiconductores que están apagados o encendidos." Dibujó otra figura en el mantel, que por aquel entonces estaba lleno de diagramas (Fig. 1.6).

"Llamamos *bit* a cada una de las ocho o dieciséis posiciones. 'Bit' es una contracción de dígito binario. Después de todo, eso es de lo que hemos estado hablando; los dígitos binarios forman números binarios, igual que los dígitos decimales forman números decimales. Tu panel representa un número de tres bits.

En 8 bits podemos representar cualquier número entre 0 y 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128. Sumando todos ellos, se obtiene 255, el mayor número que puede ser contenido en 8 bits."

"¿Qué ocurre con los 16 bits?', preguntó Ed.

POSICIONES DE 8 BITS

_			2 ¹²												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

POSICIONES DE 16 BITS

Figura 1.6. Representación de 8 y 16 bits

"Te lo puedes imaginar", dijo Bob. "Tengo que volver al trabajo de diseñar microprocesadores."

Ed confeccionó una lista con todas las potencias de dos hasta quince. Entonces, las sumó todas hasta llegar al resultado que muestra la figura 1.7, un total de 65,535 -el mayor número que pueden contener 16 bits.

PESO	POSICION DEL BIT
1	0
2	1
4	2
8	3
16	4
32	5
6 4	6
128	7
256	8
5 1 2	9
1024	10
2048	11
4096	12
8192	13
16384	14
32768	15
65535	

Figura 1.7. Valor máximo de 16 bits

"El asunto de los microprocesadores es fácil", dijo Ed con una mueca, mientras daba a su Big Ed's Jumboburger un "mordisco" de 8 bits.

Más sobre bits, bytes y binario

La explicación de Bob Borrow del binario condensa muy bien la representación binaria de los microordenadores. La unidad básica es un bit o dígito binario. Un bit puede estar encendido o apagado. Porque es mucho más fácil escribir 0 ó 1, estos dígitos se usan en lugar de encendido/apagado cuando representamos valores binarios.

La posición del bit del número binario se refiere a la posición del dígito en el número. La posición del bit en la mayoría de los microordenadores tiene un número asociado, como se muestra en la figura 1.8. Puesto que éstas, en realidad, representan una potencia de dos, es conveniente numerarlas de acuerdo con la potencia de dos representada. El bit de más a la derecha es dos elevado a cero, y la posición del bit es, por tanto, cero. Las posiciones del bit hacia la izquierda se numeran 1 (dos elevado a uno), 2 (dos elevado a dos), 3, 4, 5, etc.

	NUME	RO	DE I	A P	OSIC	NOI	DEL	BIT
-	—							
	7	6	5	4	3	2	1	0
	7 0	0	0	0	0	0	0	0

Figura 1.8. Numeración de las posiciones del bit

En todos los microordenadores actuales, un grupo de ocho bits se denomina un *byte*. De alguna manera, es obvio el origen de esta palabra si nos imaginamos a los primeros ingenieros informáticos comiendo en el equivalente de "Big Ed's" ².

La memoria de un microordenador viene a menudo indicada por el número de bytes de que consta.

Cada byte corresponde aproximadamente a un carácter, como veremos en capítulos posteriores. Las operaciones de entrada y salida de la memoria se hacen generalmente de un byte cada vez.

¹ N. del T.: Se trata de un juego de palabras entre "bite" (morder), "byte" y "bit", que, además de dígito binario, en inglés significa mordisco.

² N. del T.: Continúa con el mismo juego de palabras relativo a byte.

Los registros en el interior de un microprocesador tienen también la extensión de uno o dos bytes. Estos, en realidad, no son más que posiciones de memoria de acceso rápido que se utilizan para almacenamiento temporal en el microprocesador. Normalmente hay diez bytes de registros en los microprocesadores y hasta 65,535 bytes en la memoria de un microordenador, como ilustran las figuras 1.9 y 1.10.

Figura 1.9. Registros y memoria del Z-80

Figura 1.10. Registros y memoria del 6809E

¿Hay otras agrupaciones por encima o por debajo de los bytes? Algunos microordenadores hablan de *palabras*, que pueden ser dos o más bytes, pero, generalmente, byte es el término más utilizado para nombrar un grupo de bits. Algunas veces, las agrupaciones de cuatro *bits se* denominan *nibble* ³ (los primeros ingenieros informáticos debían estar obsesionados con la comida).

El BASIC, generalmente, opera con ocho o dieciséis bits de datos a la vez -uno o dos bytes-. Un byte se utiliza para las instrucciones PEEK o POKE del BASIC, que permiten al usuario leer o escribir datos en una posición de memoria. Esto es útil cuando se usan para cambiar algunos de los parámetros del sistema que, de otra manera, serían inaccesibles desde el BASIC.

Se utilizan dos bytes para representar *variables enteras*. En este tipo de formato, una variable del BASIC puede contener valores desde -32,768 hasta +32,767. Este número se almacena como un valor entero *con signo*, como veremos en el capítulo 3.

³ N. del T.: Nibble, en inglés, significa también "bocadito".

Si está interesado en el **lenguaje** ensamblador de su microordenador. tendrá que operar con bytes para realizar operaciones aritméticas, como suma y resta, y de uno a cuatro bytes para representar el lenguaje *máquina* correspondiente a la instrucción del microprocesador.

Ya que nos referiremos continuamente a valores de uno y dos bytes, vamos a investigar sobre ellos más a fondo.

Paso de binario a decimal

Big Ed encontró los valores máximos que podían ser almacenados en uno o dos bytes, sumando todas las potencias de dos. Eran 255 para un byte y 65,535 para dos bytes. Cualquier número entre ellos puede ser representado empleando los bits apropiados.

Supongamos que tenemos el valor binario de 16 bits 0000101001011101. Para encontrar el número decimal de este valor binario, podríamos utilizar el método de Big Ed de sumar las potencias de dos. Esto se ha hecho en la figura 1.11, donde obtenemos como resultado 2653. ¿Hay alguna forma más sencilla de pasar de binario a decimal? Sí, hay varias.

Figura 1.11. Paso de binario a decimal

El primer procedimiento consiste en usar una tabla de valores. Hemos incluido una tabla de este tipo en el apéndice C, que muestra la relación entre los sistemas binario, octal, decimal y hexadecimal para valores hasta 1023. Como para mostrar valores hasta 65,535 con 16 bits se necesita bastante espacio, tiene que existir un procedimiento más adecuado.

Un método que funciona sorprendentemente bien es el llamado "doblar y sumar". Después de un poco de práctica, resulta muy fácil pasar unos diez bits de binario a decimal. En el siguiente capítulo se muestra un método que

sirve para dieciséis o más bits. Doblar y sumar es un procedimiento estrictamente mecánico, que automatiza el proceso de conversión. Es más difícil describirlo que hacerlo. Para utilizarlo, haga lo siguiente:

- 1. Tome el primer 1 (más a la izquierda) del número binario.
- 2. Multiplique el 1 por dos y sume el siguiente bit de la derecha, sea 0 ó 1.
- 3. Multiplique el resultado por dos y sume este resultado al siguiente bit.
- 4. Repita este proceso hasta que el último dígito haya sido sumado al total. El resultado es el número decimal equivalente al número binario.

Este procedimiento se muestra en la figura 1.12 para la cantidad 2653 utilizada en el ejemplo anterior. Después de haber estado operando con números binarios durante algún tiempo, es probable que reconozca 1111 como el decimal 15 y 111 ll como 31. Puede emplear también pequeños trucos, como darse cuenta que 11110 es uno menos que 31; o que 101000

Figura 1.12. Paso de binario a decimal empleando el método doblar y sumar

es también 1010 = 10 (en decimal) multiplicado por cuatro para obtener un valor de 40. Por el momento, sin embargo, haga unos pocos ejemplos para acostumbrarse al procedimiento; con el tiempo lo hará automáticamente, y probablemente no vale la pena malgastar el tiempo en convertirse en experto en el sistema binario.

Paso de decimal a binario

¿Cómo se hace a la inversa? Es un proceso diferente. Supongamos que tenemos que pasar el número decimal 250 a binario. Analizaremos varios métodos.

El primer método es el de "inspección de potencias de dos". Podría denominarse también resta sucesiva de potencias de dos, pero tal vez a Big Ed no le gustaría el nombre. En este método, todo lo que hacemos es tratar de restar una potencia de dos y poner un 1 en la posición del bit correcta, si se puede (véase Fig. 1.13). Algunas potencias de dos son : 256, 128, 64, 32, 16, 8, 4, 2, 1, comenzando por las mayores. Es obvio que 256 no se podrá restar, luego pondremos un 0 en esa posición. La potencia 128 vale, quedando 122. Ponemos un 1 en la posición 7. La potencia 64 se resta a 122, quedando 58; luego ponemos un 1 en la posición 6. Este proceso se repite hasta calcular la última posición, como muestra la figura 1.13.

El método anterior es muy aburrido. ¿Hay uno mejor? Uno más eficaz es el llamado "dividir por dos y guardar los restos". En este método se hace lo que indica el nombre; esto se explica en la figura 1.14. La primera división es 250 entre dos, resultando 125. Resto 0. La siguiente división es 125 entre dos, dando 62 y quedando 1. El proceso se repite hasta que el "residuo" es 0. Ahora, los restos se colocan en orden inverso. El resultado es el número binario equivalente al decimal.

Rellenar a ceros hasta ocho o dieciséis bits

Este es un punto no carente de importancia. Las posiciones de la izquierda se rellenan con ceros. Esto es una refinada sutileza que se emplea para "completar con ceros" el número binario hasta ocho o dieciséis bits, según el tamaño con el que se esté operando. Tiene, sin embargo, implicación en los *números con signo*, luego es mejor empezar a manejarlos en la práctica cuanto antes.

En el capítulo siguiente trataremos la notación de los números *octales y hexadecimales*. Mientras tanto, intente hacer algunos ejercicios de autoevaluación para practicar el paso entre números decimales y binarios.

Figura 1.13. Paso de decimal a binario por inspección

Figura 1.14. Paso de decimal a binario por el método "dividir y guardar los restos"

Ejercicios

- 1. Hacer una lista de los equivalentes binarios de los números decimales 20 a 32.
- Pasar los siguientes números binarios a sus equivalentes decimales: 00110101; 00010000; 01010101; ll 110000; 0011011101101001.
- 3. Pasar los siguientes números decimales a su forma binaria: 15, 26, 52, 105, 255, 60000.
- "Rellenar a ceros" los siguientes números binarios hasta ocho bits: 101; 110101; 010101.
- 5. ¿Cuál es el mayor número decimal que puede ser almacenado en cuatro bits? ¿Y en seis bits? ¿Y en ocho? ¿Y en dieciséis? Si *n* es el número de bits, ¿qué regla general se puede establecer sobre el mayor número que se puede almacenar en *n* bits? (La respuesta "Unos números enormes", no se considera aceptable.)

Octal, hexadecimal y otras bases numéricas

Los sistemas hexadecimal y octal son variantes de los números binarios. Se utilizan normalmente en sistemas de microordenadores, especialmente el hexadecimal. Los datos pueden especificarse en notación hexadecimal, tanto en BASIC como en lenguaje ensamblador, en muchos microordenadores. Trataremos los sistemas octal y hexadecimal en este capítulo junto a otros sistemas numéricos interesantes. Hagamos otra visita a Big Ed.

El chile está bien en Casiopea,

"No se ve mucha gente como tú por aquí", dijo Big Ed, mientras ponía un cuenco del Chile Sorpresa de Big Ed frente a un cliente de piel verde con escamas.

"Sé que debería decir algo como 'Sí, y con estos precios usted verá muchos menos', pero le diré la verdad. Acabo de llegar de las Naciones Unidas para echar un vistazo a su industria de semiconductores", dijo el visitante. "Es impresionante."

"Yo mismo he trabajado en ella", dijo Big Ed, mirando a su panel de llamadas. "¿De dónde eres, Buddy? No he podido evitar lijarme en tus manos de ocho dedos."

"Probablemente nunca has oído hablar de ello; es una estrella pequeña... ehm... un lugar. Estas manos, por cierto, son las que me trajeron al Valle 'del Silicio. Vuestros últimos microprocesadores son para mi gente algo natural. ¿Te gustaría oír algo sobre ello?"

Ed asintió.

"Verás, nosotros somos los Hackers ¹, y basamos todo en las potencias de dieciséis." Miró a Big Ed para ver si había cogido la idea. "Cuando nuestra civilización se desarrollaba al principio, contábamos con nuestras manos. Encontrábamos muy fácil contar vuestro valor dieciséis utilizando simplemente nuestros dedos. Posteriormente, necesitamos expresar números mayores. Hace muchos eones, uno de nosotros descubrió la *notación posicional*. Como tenemos dieciséis dedos, nuestros números utilizan una base de dieciséis, del mismo modo que los vuestros emplean una de diez. Cada dígito representa una potencia de dieciséis: 1, 16, 256, 4096, etc."

"¿Cómo funciona exactamente?", dijo Big Ed, mirando ansiosamente el mantel limpio que había puesto hacía algunos días.

"He aquí un número típico", dijo el visitante, garabateando repentinamente en el mantel. "Nuestro número A5B1 representa:

$$A \times 16^3 + 5 \times 16^2 + B \times 16^1 + 1 \times 16^0$$
"

"Pero, ¿qué son las Aes y las Bes?", preguntó Big Ed.

"Ah, me olvidaba. Cuando contamos con nuestros dedos decimos 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. De hecho, éstos son sólo quince dedos; nuestro último dedo representa el número después de F, nuestro 10, que es vuestro dieciséis."

"¡Ajá! Luego A representa nuestro 10, B nuestro 11, etc.", dijo Ed, dibujando una tabla como muestra la figura 2.1.

"¡Exactamente!", dijo el visitante. "Ahora puedes ver que el número A5B1, en nuestra base 16, es igual a vuestro número 42,417."

$$A \times 16^3 + 5 \times 16^2 + B \times 16^1 + 1 \times 16^0 =$$

 $10 \times 4096 + 5 \times 256 + 11 \times 16 + 1 \times 1 = 42,417$

"Bueno, resumiendo, vuestro sistema numérico decimal es realmente espantoso. Estuvimos a punto de no comerciar con vosotros después de descubrir que utilizabais números decimales. Afortunadamente, sin embargo, descubrimos que la base numérica que utilizáis con mayor frecuencia en vuestros ordenadores era la hexadecimal, que en nuestra base dieciséis."

¹ N. del *T*.: Un "hacker" en Estados Unidos es un maníaco de los ordenadores. Recuérdese que Big Ed se apellida Hackenbyte.

"Espera un segundo", exclamó Big Ed, "utilizamos *binarios* en nuestros ordenadores".

"Bueno, sí, por supuesto, a nivel de *hardware*, pero utilizáis el hexadecimal como una especie de abreviatura para representar valores de datos e instrucciones de memoria. Después de todo, el binario y el hexadecimal son casi idénticos." Continuó después de observar la perplejidad de Big Ed.

DECIMAL	BASE 16
0	0
1	1
2 3	2 3
3	
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F

Figura 2.1. Representación de la base 16

"Mira, supón que tengo el número A1F5. Lo representaré alzando mis manos (Fig. 2.2). Los ocho dedos de la mano a tu derecha representan los dos dígitos hexadecimales de F5. Los ocho dedos a tu izquierda representan los dos dígitos hexadecimales de Al. Cada dígito hexadecimal se representa con cuatro dedos, que contienen cuatro bits o el dígito en binario. ¿Entendido?"

Big Ed se rascó la cabeza. "Veamos, 5 en binario es 0101, y se representa por esos cuatro números. El grupo siguiente de cuatro representa la F, que es en realidad 15, o binario 1111. El grupo siguiente... ¡Oh, claro! En lugar de escribir 1010000111110101, sólo escribís la notación abreviada A1F5."

"¡Big Ed, no sólo sirves el mejor chile de este lado de Altair; eres un matemático de los pies a la cabeza!", exclamó el visitante al tiempo que gesticulaba con su verde y escamosa mano de ocho dedos.

Big Ed miró la moneda de cobre de dieciséis lados dejada como propina y empezó a imaginar sobre el mantel...

Figura 2.2. Abreviatura hexadecimal

Hexadecimal

El visitante de Ed tenía razón. El sistema hexadecimal se usa en microordenadores porque es un método adecuado para acortar largas series de unos y ceros binarios. Cada grupo de cuatro bits se puede convertir en un valor hexadecimal de 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E o F, como muestra la tabla 2.1.

Pasar de binario a hexadecimal es algo muy simple. Empezando por el bit de la derecha (bit 0), divida el número binario en grupos de cuatro. Si no tiene un múltiplo entero de cuatro (4, 8, 12, etc.), quedan algunos bits vacíos a la izquierda; en este caso, rellene a ceros sin más. Después, convierta cada grupo de cuatro bits en un dígito hexadecimal. El resultado es la representación hexadecimal del valor binario, que es la cuarta parte de largo en caracteres. La figura 2.3 muestra un ejemplo. Para pasar de hexa-

Tabla 2.1. Representación binaria, decimal y hexadecimal

Binaria	Decimal	Hex.
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	C
1101	13	D
1110	14	E
1111	15	F

Figura 2.3. Paso de binario a hexadecimal

decimal a binario, haga a la inversa. Tome cada dígito hexadecimal y conviértalo en un grupo de cuatro bits. El ejemplo está en la figura 2.4.

La notación hexadecimal se usa para los microprocesadores Z-80, 6502, 6809 y muchos otros.

Figura 2.4. Paso de hexadecimal a binario

Paso de hexadecimal a decimal

Convertir binario en hexadecimal es fácil. ¿Lo es también entre decimal y hexadecimal? Se pueden aplicar muchos de los principios y técnicas tratados en el primer capítulo.

Para pasar de hexadecimal a decimal por el método de las potencias de dieciséis, tome cada dígito hexadecimal y multiplíquelo por la potencia adecuada de dieciséis, como hizo Big Ed. Para pasar 1F1E, por ejemplo, haríamos:

$$1 \times 4096 + 15 \times 256 + 1 \times 16 + 14 \times 1 = 7966$$

El método doblar y sumar puede también adaptarse a multiplicar por dieciséis y sumar (de hecho, este esquema sirve para cualquier base numérica). Tome el dígito hexadecimal de la izquierda y multiplique por 16. Súmelo al siguiente. Multiplique el resultado por 16. Sume el siguiente dígito. Repita el proceso de multiplicación y sume hasta que el último dígito de la derecha sea operado. La figura 2.5 muestra este procedimiento.

Debería probar este procedimiento y comparar los resultados con los de doblar y sumar del sistema binario (no hace falta decirlo: más vale que el resultado sea el mismo).

Paso de decimal a hexadecimal

El método de la resta sucesiva de potencias de dieciséis no es muy práctico esta vez, ya que tendría que hacer 15 restas para obtener un dígito hexadecimal. El método análogo "dividir por dieciséis y guardar los

Figura 2.5. Paso de hexadecimal a decimal por el método multiplicar por dieciséis y sumar

restos", sin embargo, es muy práctico, como muestra la figura 2.6. Tomemos, como ejemplo, el valor decimal 48,555. Dividiendo por dieciséis se obtiene un valor de 3034, con un resto de ll (B en hexadecimal). Entonces, dividiendo 3034 entre 16 da 189, con un resto de 10 (A en hexadecimal). Dividiendo 189 por 16, resulta ll, con un resto de 13 (D hexadecimal). Finalmente, dividiendo ll por 16 da 0, con un resto de ll. Los restos, en orden inverso, son el equivalente en hexadecimal BDAB.

Figura 2.6. Paso de decimal a hexadecimal

Octal

El sistema hexadecimal es la base más usada en microordenadores. Sin embargo, el octal o base 8 se emplea también. Este último se utiliza preferentemente en los microprocesadores 8080. Como el Z-80 que usan muchos microordenadores, es una mejora del 8080; muchas instrucciones de éste sirven para el Z-80. Algunas de estas instrucciones utilizan campos de tres bits y su posición es tal que la representación octal es adecuada.

Los valores octales emplean potencias de 8, es decir, la posición 1 es para la potencia de cero (8º), la posición 2 es para la primera potencia (8¹), la posición 3 es para la segunda potencia (8²), etc. Aquí no se plantea el problema de asignar nombres a los nuevos dígitos, como sucedía en los hexadecimales A a F. Los dígitos octales son 0, 1, 2, 3, 4, 5, 6, 7. Cada dígito se puede representar por tres bits.

Paso entre binario y octal

El paso de binario a octal es similar a la conversión a hexadecimal. Para pasar de binario a octal, agrupe los bits en grupos de tres, empezando por la derecha. Si opera con números de 8 ó 16 bits, sobrarán algunos. Rellene a ceros. Después, cambie cada grupo de tres bits por un dígito octal. Un ejemplo se da en la figura 2.7. Para pasar de octal a binario, efectúe el proceso inverso.

Figura 2.7. Paso de binario a octal

Paso entre octal y decimal

El paso de octal a decimal puede llevarse a cabo por el método de las potencias de ocho o por el de multiplicar por ocho y sumar. En el primer método, multiplique el dígito octal por la potencia de ocho. Para pasar el octal 360, por ejemplo, haríamos:

$$3 \times 8^{2} + 6 \times 8^{1} + 0 \times 8^{0} =$$

 $3 \times 64 + 6 \times 8 + 0 \times 1 =$
 $192 + 48 + 0 = 240$

Utilizando el método multiplicar por ocho y sumar, tome el dígito octal de la izquierda y multiplíquelo por ocho. Sume el resultado al siguiente dígito. Multiplique este resultado por ocho y súmelo al siguiente. Repita este proceso hasta que el último dígito de la derecha haya sido sumado. Este procedimiento se muestra en la figura 2.8.

Figura 2.8. Paso octal a decimal mediante multiplicación por ocho y suma

Para pasar de decimal a octal se adopta de nuevo la técnica de "dividir y guardar los restos": divida el número octal por ocho y guarde el resto. Divida el resultado de nuevo y repita hasta que el resto sea menor que ocho. Los restos, en orden inverso, son el número octal equivalente. La figura 2.9 muestra un ejemplo.

Figura 2.9. Paso de decimal a octal por el método "dividir y guardar los restos"

Trabajando con otras bases numéricas

Aunque las bases más utilizadas en microordenadores son la octal y la hexadecimal, se puede operar con cualquier base, ya sea base 3, base 5 o base 126. Un popular paquete de programas de Microsoft, muMath®, permite utilizar casi cualquier base para un extenso número de dígitos de *precisión*.

Dos ejemplos del uso de cualquier base pueden ser interesantes. Una vieja técnica para comprimir tres caracteres en dos bytes emplea la *base 40*. Cada uno de los caracteres alfabéticos de la A a la Z, los dígitos del 0 al 9 y cuatro caracteres especiales (punto, coma, interrogación y admiración o cualesquiera otros), forman un código que corresponde del 0 al 30 en decimal. Como el mayor número de tres dígitos en base 40 es 39 x 40² + 39 x 40¹ + 39 x 40⁰, ó 63,999, los tres dígitos en base 40 pueden guardarse perfectamente en dieciséis bits (dos bytes). Generalmente, los tres caracteres deberían contenerse en tres bytes. El resultado de esta compresión consiste en el ahorro de un 50 por 100 del espacio de la memoria para texto utilizando sólo de la A a la Z, del 0 al 9 y cuatro caracteres especiales.

Un segundo ejemplo sería el proceso especia de tres en raya americano (tic-tac toe). Cada uno de los nueve elementos de un tablero de tres en raya contiene un "cuadrado", un "círculo" o una "cruz". Como hay tres caracteres, puede utilizarse ventajosamente una representación en base 3 (espacio = 0, círculo = 1, cruz = 2). El mayor número en base 3 para este código

sería $2 \times 3^8 + 2 \times 3^7 + 2 \times 3^6 + 2 \times 3^5 + 2 \times 3^4 + 2 \times 3^3 + 2 \times 3^2 + 2 \times 3^1 + 2 \times 3^0$, ó 19,682, que de nuevo puede guardarse perfectamente en dieciséis bits o dos bytes.

Los números en otras bases pueden pasarse a decimal, y viceversa, por el método "multiplicar por la base y sumar" y por el de "dividir por la base y guardar los restos", de manera parecida a los números octales y hexadecimales.

Convenios estándar

En el resto de este libro emplearemos ocasionalmente el sufijo "H" para los números hexadecimales. El número "1234H", por ejemplo, significará 1234 hexadecimal y no 1234 decimal. (También será equivalente &H1234 en algunas versiones del BASIC.) Asimismo, expresaremos las potencias de la misma forma que lo hace el BASIC. En lugar de exponentes utilizaremos una flecha hacia arriba (\uparrow) para expresar exponenciales (elevar un número a una potencia). El número 2^8 se representará $2 \uparrow 8, 10^5$ será $10 \uparrow 5$ y 10^{-7} ($0 \frac{1}{10}$) será $10 \uparrow -7$.

En el siguiente capítulo trataremos los números con signo. Mientras tanto, trabaje sobre los siguientes ejercicios en hexadecimal, octal y bases especiales.

Ejercicios

- 1. ¿Qué representa el número hexadecimal 9E2 en potencias de 16?
- 2. Haga una lista de los equivalentes hexadecimales a los decimales 0 a 20.
- 3. Pasar los siguientes números binarios a hexadecimal: 0101, 1010, 10101010, 01001111, 1011011000111010.
- 4. Pasar los siguientes números hexadecimales a binario: AE3, 999, F232.
- 5. Pasar los siguientes números hexadecimales a decimales: E3, 52, AAAA.
- 6. Pasar los siguientes números decimales a hexadecimal: 13, 15, 28, 1000.
- 7. La máxima dirección de memoria en un microordenador de 64K es 64,535. ¿Cuánto es en hexadecimal?
- 8. Pasar los siguientes números octales a decimales: 111, 333.
- 9. Pasar los siguientes números decimales a octal: 7, 113, 200.
- 10. ¿Qué puede decir del número octal 18? (Limite su respuesta a mil palabras o menos, por favor.)
- 11. En un sistema numérico en base 7, ¿cuál sería el equivalente decimal a 636?

Números con signo y notación en complemento a dos

Hasta ahora hemos hablado de los *números binarios sin signo*, que sólo representan valores positivos. En este capítulo aprenderemos cómo representar valores positivos y negativos en microordenadores.

Big Ed y el bínaco

"¡Hola, muchacho! ¿Qué quieres?", preguntó Big Ed a un cliente delgado con un abrigo muy largo de colores y brocado.

"Tomaré un chop suey", dijo el cliente.

"¿Qué traes ahí?", preguntó Big Ed, cotilleando un artilugio de aspecto extraño que parecía un ábaco, con sólo unas pocas cuentas. "Parece un ábaco."

"¡No, es un *bínaco!*", dijo el cliente. "Iba a ser mi camino hacia la fama y la fortuna, pero, ¡ay!, el que busca a aquellas dos como compañeras en el camino de la vida sólo encontrará desengaños. ¿Te importaría escucharme?"

Ed invitó con sus manos a que comenzara su historia, sabiendo que no tenía elección; era una pesada tarde.

"Este aparato es como un ábaco, pero funciona con números binarios.

Por eso tiene dieciséis columnas de ancho y una sola cuenta por columna (Fig. 3.1). Pasé años desarrollándolo y sólo recientemente he intentado comercializarlo a través de alguna firma de microordenadores de aquí. ¡Todas lo rechazaron!"

Figura 3.1. El bínaco

"¿Por qué, hombre?", dijo Ed, sirviéndole el chop suey.

"Puede representar cualquier número de cero a 65,535, y uno puede sumar o restar fácilmente números binarios con él. Pero no hay modo de representar números negativos."

Justo cuando pronunció estas palabras, Bob Borrow, el ingeniero de Inlog, entró. "No he podido evitar el escuchar tu historia", dijo. "Creo que puedo ser de alguna ayuda.

Verás, los ingenieros informáticos se enfrentaron con tu problema hace muchos años. Muchas veces, basta simplemente con almacenar un número absoluto. Por ejemplo, la mayoría de los microprocesadores pueden almacenar 65,536 direcciones separadas, numeradas de 0 a 65,535. No hay razón para tener números negativos en este caso. Por otro lado, los microordenadores son capaces de realizar operaciones aritméticas con datos y deben ser capaces de almacenar valores negativos y positivos.

Hay diferentes esquemas para representar números negativos, observa." Ed respingó cuando Bob se dirigió al mantel.

"Podría sencillamente añadir una cuenta más, la diecisiete, en el extremo izquierdo del bínaco. Si la cuenta estuviese arriba, el número representado sería positivo; si la cuenta estuviese abajo, el número sería negativo. Este esquema se denomina representación signo/magnitud." (Véase la figura 3.2.)

"Es cierto", dijo el forastero. "Desde luego, implicaría un nuevo diseño." Meditó, mirando el invento.

"Espera, todavía no he acabado. Tengo un proyecto para que no tengas que reformar nada. Se llama notación en complemento a dos, y te permite almacenar números de -32,768 a +32,767 sin ninguna modificación."

"¡Oh, señor! Si usted pudiera hacerlo...", dijo el forastero.

"En este proyecto, haremos que la cuenta decimosexta del final, en la posición quince, represente el bit *de signo*. Si la cuenta está arriba o 0, el signo

Figura 3.2. Representación signo/magnitud

será positivo y las cuentas restantes contendrán el valor del número. Desde el momento en que tenemos sólo quince cuentas, el número representado será desde 0 (000 0000 0000 0000) a 32,767 (1 ll ll ll ll ll ll 1 l)."

"¿Y qué sucede con los números negativos?", preguntó el forastero.

"Es lo que iba a decir. Si la cuenta de la posición 15 está abajo o 1, entonces el número representado es negativo. En este caso, mueva todas las cuentas que están arriba o 0 hacia abajo o 1. Mueva todas las cuentas que estén abajo o 1 hacia arriba o 0. Finalmente, sume 1."

"Gracias por su ayuda, señor", dijo el forastero con ojos de incrédulo, mientras cogía el aparato y se dirigía a la puerta.

"¡No, espere, el sistema funciona!", exclamó Bob. "Mire, permítame mostrarle. Suponga que tiene la configuración 0101 1110 1111 0001. La cuenta del signo es un 0, luego el número representa 101 1110 1111 0001 (en hexadecimal, 5EF1; o en decimal, 24,305). Ahora, suponga que la configuración es 1001 1010 0001 0101. La cuenta del signo es un 1, luego el número es negativo. Ahora invierta la posición de todas las cuentas y sume una." (Véase la figura 3.3.)

"El resultado es 0110 0101 1110 1011. Ahora pasamos el número al decimal 26,091; además, el número representado es -26,091. Este esquema es el mismo que usan los microordenadores. ¡Podrá vender fácilmente su idea del bínaco a un fabricante, si le dice que emplea este sistema de notación en *complemento a dos* para los números negativos!"

El forastero parecía dudar. "A ver si entiendo esto. Si la cuenta del signo es un uno, ¿invierto todas las cuentas y añado uno? Déjeme probar unos pocos ejemplos." Movió las cuentas del bínaco y calculó sobre el mantel.

Figura 3.3. Notación en complemento a dos

Ed comenzó a desesperar. La tabla de lo que él obtuvo se muestra en la fígura 3.4.

"Me parece que los números negativos de -1 a -32,768 podrían almacenarse por este procedimiento. Pero, ¿por qué es tan complicado?"

"Para que resulte más fácil en *hardware*, colega", dijo Bob. "Este método implica que todos los números pueden sumarse o restarse sin necesidad de comprobar primero el signo de cada operando. Basta con seguir sumando o restando los números, y el resultado tendrá el signo correcto. Suponga que tenemos los dos números 0011 0101 0111 0100 y 1011 1111 0000 0000. Son + 13,684 y - 16,640, respectivamente. Los sumamos de la manera siguiente:

0011	0101	0111	0100	(+13,684)
1011	1111	0000	0000	(-16,640)
1111	0100	0111	0100	(-2,956)

Figura 3.4. Funcionamiento en complemento a dos para dieciséis bits

El resultado es 1111 0100 0111 0100, ó - 2,956. ¡Como debería ser!"

"Es increíble. Estudiaré esto, venderé mi bínaco y volveré forrado a casa."

"¿Dónde está tu casa?", preguntó Big Ed.

"En Brooklyn", dijo el forastero. "Adiós y gracias; algún día podréis decir que conocisteis a Michael O'Donahue."

Sumar y restar números binarios

Antes de ver el esquema del bínaco que representa números con signo (que duplica el sistema utilizado en todos los microordenadores actuales), veamos el tema de la suma y resta de números binarios en general.

Sumar números binarios es mucho más fácil que sumar números decimales. ¿Recuerda cuando tenía que aprender de memoria las tablas de sumar? Cuatro y cinco, nueve; cuatro y seis, diez, etc. En el sistema binario también hay tablas de sumar, pero son mucho más sencillas: 0 y 0 es 0, 0 y 1 es 1, 1 y 0 es 1, y 1 y 1 es 0, y nos llevamos una a la siguiente posición. Si ésta tiene 1 y 1, entonces la tabla tiene una quinta entrada de 1, y 1 y 1 da 1, llevándonos 1 a la siguiente posición. La figura 3.5 resume la tabla.

Figura 3.5. Suma de binarios

Probemos esto con dos números sin signo de ocho bits, los números con que hemos estado operando en anteriores capítulos. Supongamos que sumamos 0011 0101 y 0011 0111 (53 y 55, respectivamente).

11	111	(Acarreos)
0011 (0101	(53)
0011)111	(55)
0110	1100	(108)

Los unos encima de los operandos representan los acarreos que llevamos a la siguiente posición. El resultado es 0110 1100, ó 108, como esperábamos.

La resta es igual de fácil. 0 menos 0 es 0, 1 menos 0 es 1, 1 menos 1 es 0. Y, el más complicado, 0 menos 1 es 1, con un **acarreo negativo** (borrow) a la siguiente posición, de la misma forma que nos llevamos una en aritmética decimal. Esta tabla está resumida en la figura 3.6.

Figura 3.6. Resta binaria

Probemos con algunos números. Restemos 0001 0001 de 0011 1010, ó 17 de 58:

El uno encima del operando representa el acarreo negativo de la siguiente posición. El resultado es 0010 1001, 41, como era de esperar.

Pongamos ahora otro ejemplo. Restemos 0011 1111 de 0010 1010, ó 63 de 42:

El resultado es 1110 1011, ó 235, un resultado que no nos esperábamos. Pero, espere; ¿podría ser?, ¿es posible? Si aplicamos las reglas de la representación en complemento a dos y consideramos 1110 1011 como un número negativo, entonces tenemos 00010100 después de cambiar todos los unos por ceros y todos los ceros por unos. Añadimos entonces uno para obtener 0001 0101. El resultado es -21, si ponemos el signo negativo, lo cual es correcto. ¡Parece como si nos viésemos forzados a usar los dichosos complemento a dos, queramos o no!

Representación en complemento a dos

Hemos cubierto bastante bien todos los aspectos de la notación en complemento a dos. Si el bit del extremo izquierdo de un valor de 8 ó 16 bits se considera el bit de signo, entonces ha de ser 0 (positivo) o 1 (negativo). La representación en complemento a dos puede, por consiguiente, obtenerse aplicando las reglas tratadas anteriormente: fijándonos en el bit de signo, cambiando todos los ceros por unos, todos los unos por ceros y añadiendo uno.

Los números se almacenan en forma de complemento a dos, como números de 8 ó 16 bits. El bit de signo ocupa siempre la posición extrema de la izquierda y es siempre (1) para un número negativo.

Los formatos para la representación en complemento a dos de 8 y 16 bits se muestran en la figura 3.7.

Figura 3.7. Formatos de complemento a dos

Los valores de 8 bits se utilizan para desplazamientos en las instrucciones del microprocesador para modificar la dirección de un operando guardado en memoria. Los valores de 16 bits se emplean como variables enteras en programas de BASIC. Por supuesto, cualquiera de ellos puede ser utilizado por el programador de BASIC o lenguaje ensamblador para representar lo que desee.

Extensión del signo

Es posible sumar o restar números en complemento a dos, uno de 8 y otro de 16 bits. Cuando se realizan estas operaciones, el signo del menor número debe *extenderse* hacia la izquierda hasta que ambos tengan la misma longitud; es decir, todas las posiciones necesarias para que el menor número tenga el mismo tamaño que el mayor se rellenan con el bit de signo. Si esto no se hace, el resultado será incorrecto. Tomemos, por ejemplo, la

suma del valor de 8 bits 1111 1111 (-1), y el valor de 16 bits 0011 1111 1111 (+16,383). Si no se extiende el signo, tenemos:

El resultado aquí es + 16,638; obviamente incorrecto. Si se extiende el signo correctamente a todas las posiciones de la izquierda, sin embargo, tenemos:

que es el resultado correcto.

Suma y resta en complemento a dos

Todos los microprocesadores usados en microordenadores tienen una instrucción para sumar y otra para restar dos números con signo de 8 bits. Además, algunos microprocesadores permiten la suma y la resta de dos números con signo de 16 bits.

Los dos operandos que aparecen en la suma o en la resta pueden tener cualquier configuración: dos números positivos, uno positivo y otro negativo, o dos números negativos. Al restar, hay que considerar la operación de la siguiente manera: al número que se resta (sustraendo) se le *invierte el signo* haciendo su complemento a dos: cambiando todos los unos por ceros, todos los ceros por unos, y añadiendo uno. Una vez hecho esto, la resta equivale a una suma del mismo número con el signo invertido. Pongamos un ejemplo. Supongamos que 1111 1110 (-2) se va a restar de 0111 0000 (+112). Primero se invierte el signo al sustraendo de – 2. El complemento a dos de 1111 1110 es 0000 0010 (+2). Entonces, se hace la suma.

$$\begin{array}{ccc}
0111 & 0000 & (\$112) \\
\underline{0000} & 0010 & (+2) \\
0111 & 0010 & (+114)
\end{array}$$

Hay que tener claro que el microprocesador no realiza esta operación de inversión antes de la resta. Esto es, simplemente, un medio adecuado para ver lo que sucede en la resta, y tiene alguna relación con las operaciones de que hablaremos en el capítulo siguiente.

Antes de tratar algunas particularidades de la suma y la resta, como errores de desbordamiento y acarreos, y los indicadores de los microprocesadores ordinarios, intente hacer alguno de los siguientes ejercicios para adiestrarse en la suma y la resta en complemento a dos.

Ejercicios

 Sume los siguientes números sin signo, dando los resultados en binario y decimal

01	0111	010101
11	1111	101010

Reste los siguientes números sin signo, dando los resultados en binario y decimal.

3. Halle los complemento a dos de los siguientes números con signo, cuando sea necesario, para obtener los números decimales representados por:

- 4. ¿Cuál es la forma en complemento a dos de 8 bits de -1, -2, -3, -30, +5, y + 127?
- 5. Extienda el signo de los siguientes números de 8 a 16 bits. Escriba los números representados antes y después.

- 6. Sume -5 a -300. (¡No, no, en binario!)
- 7. Reste 5 de -300 en binario.

Acarreos, errores de desbordamiento e indicadores

En este capítulo ampliaremos algunos de los conceptos introducidos en el anterior. Algunos de éstos son sutiles y otros no tanto, y todos ellos se refieren a números con signo. Analizaremos aquí algunos de ellos.

Este restaurante tiene una capacidad de +127 personas. Evitando errores de desbordamiento!

Big Ed estaba sentado frente a una taza del famoso Java de Big Ed después de haberse marchado la multitud de ingenieros; en ese momento, se abrió la puerta del restaurante y entró un hombre uniformado.

"Dígame, señor, ¿en qué puedo servirle?"

"Póngame una taza de café y un suizo", respondió el cliente.

"Veo que va de uniforme. ¿Pertenece usted a las Fuerzas Aéreas de Campo Moffett?", preguntó Ed.

"N'a, soy transportista. Vine a esta zona en respuesta a un anuncio que solicitaba 'especialistas en acarreos y errores de desbordamiento' en Inlog y, aunque no sé lo que es un error de desbordamiento, puedo

acarrear lo que sea; así que pensé que daba el tipo, pero el jefe de personal se rio y me señaló la puerta."

"Creo que entiendo el problema, señor", dijo un cliente de constitución delgada que no aparentaba más de catorce años. Una tarjeta de referencia del Z-80 sobresalía del bolsillo de su camisa. "Soy un programador con mucha experiencia en errores de 'desbordamiento'."

"No sabía que trabajabais en transportes."

"Bueno, nosotros manejamos el traslado de datos de los procesadores, pero trabajamos bastante con el error de desbordamiento. ¿Le importa si le explico?" El transportista arqueó las cejas y esperó.

... después de varias tazas de café de Ed, el programador había hablado del sistema binario y de las operaciones aritméticas simples.

"Como puede ver, se puede almacenar cualquier valor de -128 a +127 en 8 bits, o cualquier valor de -32,768 a +32,767 en 16 bits. ¿Entendido?"

El transportista dijo : "Sí, salvo los números sin signo, en cuyo caso se extiende de 0 a 255 o de 0 a 65,535 ó 2 \uparrow (N – 1), donde N es el tamaño del registro en bits."

"Vaya, usted aprende rápido", dijo el programador. "Ahora, continuando... Si realizamos una suma o resta cuyo resultado sea mayor de +32,767 o menor de -32,768 (o mayor de +127 o menor de -128), qué ocurre?"

"Bueno, supongo que se obtiene un resultado incorrecto", dijo el transportista

"Es cierto, se obtiene un resultado incorrecto. El resultado es demasiado grande en sentido positivo o negativo para poder ser almacenado en 8 ó 16 bits. En este caso, se produce un error de desbordamiento porque el resultado excede del valor que puede contenerse en 8 ó 16 bits. Sin embargo, hemos diseñado un indicador de error de desbordamiento como parte del microprocesador. Este indicador puede examinarse por un programador del lenguaje ensamblador para ver si se ha producido un error de desbordamiento después de una suma o de una resta. Y resulta que, cuando pasa lo mismo en operaciones sin signo, se produce un error de acarreo, que es lo que también pedían en el anuncio. No sólo tenemos un indicador de error de desbordamiento, sino un indicador de acarreo, otro de signo, otro de cero..."

"Espera un segundo. ¿Quieres decir que esa gente de personal quería un ingeniero informático especializado en aritmética de microprocesadores?", dijo el transportista con una mueca. "¡Creo que me han tomado el pelo! ¡Me doctoré en Física!"

"¿Tiene usted un doctorado en Física?", escupió Big Ed, esparciendo la mayor parte de un trago de Big Ed's Java sobre el suelo del restaurante.

"Sí, hago mudanzas y portes sólo para ganarme la vida", dijo el transportista al salir por la puerta, moviendo la cabeza con pesadumbre.

Errores de desbordamiento

Como vimos en el ejemplo anterior, el error de desbordamiento es posible cada vez que se hace una suma o resta y el resultado es demasiado grande para almacenarse en el número de bits reservado para el resultado. En la mayoría de los microordenadores, esto significaría que el resultado es mayor que el que puede almacenarse en 8 ó 16 bits.

Supongamos que operamos con un registro de 8 bits en el microprocesador. Una típica instrucción de suma sumaría los contenidos de un registro de 8 bits, llamado **acumulador**, a los contenidos de otro registro o posición de memoria. Ambos **operandos** estarían en complemento a dos con signo. ¿En qué condiciones se produciría el error de desbordamiento? Cualquier resultado mayor de + 127 o menos de — 128 daría lugar a error de desbordamiento. Ejemplos:

Observe que, en ambos casos, el resultado era obviamente incorrecto y el signo era el contrario al verdadero. El error de desbordamiento sólo puede ocurrir cuando la operación consiste en sumar dos números positivos, dos números negativos, restar un número negativo de otro positivo o uno positivo de otro negativo.

El resultado de la suma o resta, en la mayoría de los microprocesadores, sube (1) o baja (0) un *indicador*. Este indicador puede utilizarse en un *salto condicional*: un salto *si huy* error de desbordamiento o un salto *si no lo huy*. La comprobación se hace a nivel de lenguaje máquina y no en BASIC.

Acarreo

Otra condición importante es la de *acarreo*. Hemos visto cómo se usan los acarreos en sumas de números binarios, y cómo los *acarreos negativos se* emplean en restas. El acarreo que se produce por una suma es aquel que se produce a continuación del dígito más significativo del resultado. Un ejemplo: supongamos que sumamos los dos números siguientes:

1	1111	111	(Acarreos)
	0111	1111	(+127)
	1111	1111	(-1)
	0111	1110	(+126)

Los unos encima de los operandos representan los acarreos a la siguiente posición. El acarreo de más a la izquierda, sin embargo, "cae fuera" de las posiciones ocupadas por los bits. De hecho, al no coincidir con estas posiciones, pone el indicador del acarreo a 1 en el microprocesador de que se trate. ¿Es útil este acarreo? No mucho, en este ejemplo. Habrá un acarreo siempre que el resultado no sea negativo. Cuando el resultado cambia de 0000 0000 a 1111 1111, no se produce ningún acarreo. Como este indicador puede comprobarse con un "salto condicional, si hay acarreo" o un "salto condicional, si no hay acarreo" a nivel de lenguaje máquina, el estado del acarreo es útil a veces. También se utiliza para desplazamientos, que veremos más adelante.

Otros indicadores

Los resultados de operaciones aritméticas como suma y resta establecen generalmente otros dos indicadores en el microprocesador. Uno es el indicador "cero". Se pone a (1) cuando el resultado es cero, y se pone a (0) cuando el resultado no es cero. Se pondría a (1) para una suma de +23 y -23, y se pondría a (0) para una suma de -23 y +22. Puesto que constantemente comparamos valores en programas en lenguaje máquina, el indicador cero se maneja mucho en la práctica.

El indicador "signo" también se utiliza generalmente. Este se pone a 1 o a 0 de acuerdo con el resultado de la operación; refleja el valor del bit en la posición más significativa.

El indicador de cero y el de signo pueden comprobarse en programas en lenguaje máquina por medio de saltos condicionales como "salto si es cero", "salto si es positivo" y "salto si es negativo". Nótese que una condición de positivo incluye el caso de que el resultado sea cero. El cero es un número positivo en la notación en complemento a dos.

Indicadores en los microordenadores

Los indicadores en el microprocesador Z-80 son representativos de los de todos los microprocesadores. Se muestran en la figura 4.1. Los indicadores del microprocesador 6809 son un segundo ejemplo de indicadores de un microprocesador cualquiera, como muestra la figura 4.2.

En la sección siguiente analizaremos de forma detallada las operaciones lógicas y de desplazamiento, que también afectan a los indicadores. Antes de empezar dicho capítulo, no obstante, he aquí algunos ejercicios sobre error de desbordamiento, acarreos e indicadores.

F o F'

Figura 4.1. Indicadores del microprocesador Z-80

Figura 4.2. Indicadores del microprocesador 6809

Ejercicios

1. ¿Cuáles de las siguientes operaciones darán error de desbordamiento? Halle su valor.

2. ¿Cuáles de las siguientes operaciones produce un acarreo "fuera del límite" que ponga a (1) este indicador?

3. Supongamos que tenemos un indicador Z (cero) y otro S (signo) en el micro-procesador. ¿Cuáles serán los "estados" (0,1) de los indicadores Z y S después de las operaciones siguientes?

Operaciones lógicas y desplazamientos

Las operaciones lógicas en microordenadores se utilizan para manipular datos en base a un bit o un *campo*. Los desplazamientos también son útiles para procesar bits en números binarios o para implementar multiplicaciones y divisiones simples.

El enigma británico

Las cosas iban tranquilas en el restaurante de Big Ed en el Valle del Silicio. Este se disponía a ojear el periódico local, cuando oyó un frenazo; un imponente autobús rojo de dos pisos se detenía frente al restaurante. Las puertas del autobús se abrieron y una docena o más de personas se precipitaron al exterior. Todas ellas aparecían vestidas con tweed, sombreros hongos y otras prendas típicamente británicas. Uno incluso llevaba un paraguas negro, y no paraba de mirar ansiosamente al cielo.

"¡Hola!¿Puedo servirles en algo?"

"Más bien. ¿Puede usted acomodar a un grupo de diecisiete ingenieros informáticos y científicos británicos?"

"Creo que sí", dijo Big Ed. "Si no les importa juntar dos mesas, podemos poner a ocho de ustedes en la mesa A y a otros ocho en la B.

Uno de ustedes tendrá que sentarse en una silla, cerca de la mesa A. Es la silla de mi hija Carrie, pero creo que servirá. Esto acumulará..., ejem..., acomodará a todos¹¹.

"Muy bien", dijo el portavoz; y el grupo llenó las dos mesas y la silla extra (Fig. 5.1).

Figura 5.1. Disposición de los asientos

"Caramba, nunca pensé que hubiera tantos especialistas en informática en Gran Bretaña", dijo Ed.

"Tantos como yanquis", dijo el portavoz. "¿Ha oído usted hablar de Turing, el Proyecto Coloso para descifrar Enigmas, o los Tubos de Williams?" Big Ed negó con la cabeza. "Lo siento, no tengo ni idea."

"Está bien, yanqui. Vamos a ver: comamos primero, y luego asistamos a una conferencia especial sobre microprocesadores y sus aplicaciones al cricket. Caballeros, ¿pueden prestarme atención, por favor?

Como ustedes saben, el Ministerio nos ha concedido fondos limitados para este viaje. Por tanto, tenemos que poner ciertas restricciones al almuerzo de hoy. He echado un vistazo al menú y he llegado a las siguientes conclusiones:

Uno. Pueden ustedes tomar café (puaj) 0 té, pero NO ambos.

Dos. Pueden tomar sopa 0 ensalada 0 ambos.

Tres. Pueden tomar un sandwich 0 un plato combinado 0 una Sorpresa de Big Ed.

Cuatro. Si toman postre Y copa, deben pagar el suplemento adicional. ¿Alguna pregunta?"

¹ N. del T.: La nota de humor se desprende, en esta ocasión, del hecho de que Carrie y carry (acumular, acarreo) se pronuncian en inglés de manera idéntica.

Uno de los científicos de edad más avanzada habló. "Vamos a ver. Si he entendido bien, tenemos una 0 exclusiva del café y del té; una 0 inclusiva de la sopa y la ensalada; una 0 inclusiva del plato fuerte, y una Y del postre y de la copa con suplemento adicional. ¿Correcto?"

"Correcto, Geoffrey. ¡Bien, compañeros; al ataque!"

"Este aire acondicionado me está dejando el cuello helado", dijo uno de los jóvenes ingenieros.

"Lo que tenemos que hacer entonces es rotar alrededor de la mesa A, pasando por la silla extra, de modo que cada cual reciba por turno el aire frío", dijo el portavoz. "Cada vez que diga: '¡a rotar!', cambiaremos de silla una posición."

"¿Es realmente necesario pasar por mi silla?", preguntó el ingeniero sentado en la silla extra.

"Bueno, podemos elegir entre rotar pasando por la silla o sin pasar, pero creo que es más justo hacerlo como he dicho."

A intervalos espaciados regularmente, a lo largo de la comida, el portavoz gritaría: "¡rotad!", y el grupo de la mesa A y la silla extra se movería como muestra la figura 5.2. Finalmente, todo el grupo de la mesa A se levantó, pagó su cuenta y se fue.

Figura 5.2. El grupo rota

"Creo que hemos acabado aquí, señor", dijo el grupo de la mesa B.

"Muy bien; entonces, desplazaos por orden hacia la izquierda por la silla vacía, para que pueda ver vuestra cuenta", dijo el portavoz.

El científico más próximo a la caja se levantó y ocupó la silla vacía. El portavoz examinó la cuenta. "¡El siguiente!", exclamó. La persona de la silla extra fue hacia la caja, y la persona a continuación ocupó su lugar en la silla extra. Este proceso continuó hasta que la mesa B se vació (véase la figura 5.3).

"Excelente comida", dijo el portavoz a Big Ed al marcharse.

"Encantado de tenerles por aquí", dijo Ed. "Espero que su seminario de cricket tenga éxito."

"Eso no nos preocupa demasiado; lo que nos preocupa son las arañas",

Figura 5.3. El grupo se desplaza

dijo el portavoz, abriendo el paraguas y saliendo por la puerta al soleado cielo de San José. "¡Hasta la vista!"

Operaciones lógicas*

Todos los microordenadores son capaces de realizar las operaciones *lógicas* de Y, 0 y 0 exclusiva a nivel de lenguaje máquina. Además, la mayoría de las versiones del BASIC permiten realizar la Y la 0.

Todas las operaciones lógicas trabajan "bit a bit". No hay acarreos a otras posiciones. A nivel de lenguaje máquina, las operaciones lógicas se ejecutan en un byte de datos; el BASIC permite que las operaciones lógicas tengan lugar con operandos de dos bytes. Siempre hay dos operandos y un resultado.

Operación 0

La operación 0 se muestra en la figura 5.4. Su tabla de verdad establece que habrá un 1 en el resultado si uno de los operandos, o ambos, tienen un 1.

La operación 0 se utiliza, a nivel de lenguaje máquina, para poner a 1 un bit. Una aplicación típica debería emplear los ocho bits de una posición de memoria como ocho *indicadores* para diversas condiciones, según muestra la figura 5.5. La 0 no es tan ampliamente utilizada en BASIC, pero

^{*} N. del T.: Hemos decidido traducir las operaciones lógicas DND, OR, XOR y NOT por Y, 0, O_{ex} y NO, respectivamente, para lograr una más fácil comprensión del texto.

Figura 5.4. Operación 0

INDICADORES EN UNA POSICION DE MEMORIA

Figura 5.5. Usando la operación 0

su uso se requiere ocasionalmente cuando, por ejemplo, se ponen los bits de un byte de una memoria de video para mostrar minúsculas, como ilustra la figura 5.6.

Operación Y

La operación Y se describe gráficamente en la figura 5.7. También opera únicamente a nivel de bit, sin acarreos a otras posiciones. El resultado de Y es un 1 si ambos operandos son 1; si alguno tiene 0, el resultado es 0.

Figura 5.7. Operación Y

La Y se utiliza primordialmente en lenguaje máquina, para poner a 0 un bit o *quitar* ciertas partes de una palabra de 8 bits, como muestra la figura 5.8. En BASIC, la operación Y tiene aplicaciones más limitadas. La figura 5.9 nos ofrece un ejemplo; comprueba los múltiplos de 32 en un contador de 32 líneas por página.

Figura 5.8. Ejemplo de Y

Figura 5.9. Otro ejemplo de operación Y

Operación 0 exclusiva

La figura 5.10 muestra esta operación. Sus reglas establecen que el resultado es un 1, si uno u otro bit, pero no ambos, son unos. En otras palabras, si ambos bits son unos, el resultado es 0.

Figura 5.10. Operación 0 exclusiva

La 0 exclusiva no se utiliza con frecuencia en lenguaje máquina y en BASIC. La figura 5.11 muestra un ejemplo donde el bit menos significativo

se utiliza como un conmutador (toggle), para indicar el número de pasadas: par o impar.

Figura 5.11. Ejemplo de 0 exclusiva

Otras operaciones lógicas

Hay otras operaciones lógicas que se realizan en BASIC y en lenguaje máquina. Una de éstas es la operación NO. Es similar a la operación de *invertir el signo* tratada en el capítulo 4, salvo que ésta da lugar al complemento a uno. El complemento a uno de un número se obtiene cambiando todos los unos por ceros y todos los ceros por unos, *sin* añadir un uno. ¿Qué efecto produce? Analicemos un ejemplo de un número con signo.

Si realizamos la operación NO sobre el número 0101 0101, obtenemos 1010 1010. El valor original era +85; el resultado es un número negativo que, una vez transformado por las reglas del complemento a dos, se convierte en 0101 0101 + 1 = 0101 0110 = -86. Se podría decir, por tanto, que la operación NO suma uno al número y entonces invierte el signo. La versión en lenguaje máquina de la operación NO se denomina habitualmente CPL -para complemento a uno.

La operación NOT de BASIC puede emplearse para comprobar condiciones lógicas en un programa, como muestra la figura 5.12. El lenguaje máquina CPL no se utiliza con frecuencia.

PRINT "NO IMPRESORA-COMPRE UNA-ESPERARE"

ELSE LPRINT "RESULTADO=";A

Figura 5.12. Operación NO

Operaciones de desplazamiento

La reunión de los británicos en el restaurante mostraba dos tipos de desplazamiento comúnmente utilizados en microordenadores: *rotaciones y desplazamientos lógicos*. Son susceptibles de realizarse en lenguaje máquina, pero no en BASIC, y generalmente operan en ocho bits de datos. Están relacionados con el indicador de acarreo tratado en el último capítulo.

Rotaciones

La figura 5.2 mostraba una rotación con la mesa A en el restaurante. Observemos ahora la figura 5.13, donde los datos se rotan a derecha o izquierda, una posición cada vez. Aunque los ordenadores más complejos permitirán cualquier número de desplazamientos con una instrucción, los más simples sólo permiten un desplazamiento por cada instrucción.

Como los datos rotan fuera de los límites del registro del microprocesador o posición de memoria, o bien vuelve al límite opuesto del registro o posición de memoria, o bien va al indicador de acarreo. Si los datos pasan a través del acarreo, se trata en realidad de una rotación de 9 bits. Si los datos pasan por alto el acarreo, se tratará de una rotación de 8 bits. En cualquier cuso, el bit desplazado siempre va al acarreo, como muestra la figura 5.13.

El indicador de acarreo puede comprobarse por una instrucción de salto condicional a nivel de lenguaje máquina para comprobar efectivamente si el bit desplazado era un cero o un uno. La rotación se utiliza para comprobar un bit de una vez para operaciones como multiplicación (véase capítulo siguiente) o el alineamiento de datos en una operación Y.

Desplazamientos lógicos

El segundo tipo de desplazamiento reflejado en la anécdota del restaurante era el *lógico*. Este no es una rotación. Los datos caen fuera del límite, de la misma forma que los científicos se fueron del restaurante.

ROTACION HACIA LA DERECHA

ROTACION HACIA LA IZQUIERDA A TRAVES DEL ACARREO

Figura 5.13. Dos rotaciones

Cuando cada bit es desplazado, sin embargo, va al acarreo de forma que éste siempre almacena el resultado del desplazamiento. El límite opuesto del registro o posición de memoria se rellena con ceros a medida que se desplaza cada bit. Aquí, de nuevo, se desplaza una posición cada vez. La operación de desplazamiento lógico se muestra en la figura 5.14.

En realidad no podemos hablar mucho sobre la rotación, relacionada con lo que sucede aritméticamente con el contenido. Esto se debe a que los datos vuelven a entrar en el registro y, en sentido aritmético, los resultados no se pueden predecir.

En el caso del desplazamiento lógico hacia la derecha o hacia la izquierda, sin embargo, los resultados son plenamente previsibles. Observemos algunos ejemplos. Supongamos que tenemos el valor 0111 1111, con el acarreo conteniendo un valor cualquiera. Mostraremos el registro y el acarreo con nueve bits con el acarreo a la derecha; es decir, 0111 1111 x. Después de una operación lógica de desplazamiento a la derecha tenemos 0011 1 ll 1 1. El valor original era + 127; una vez producido el desplazamiento, el valor es +63 más el acarreo. ¡Parece como si un desplazamiento lógico a la derecha dividiera por dos y pusiera el resto de 0 ó 1 en el acarreo! Esto es cierto,

y la operación lógica de desplazamiento a la derecha puede utilizarse cada vez que se quiera dividir por 2, 4, 8, 16 u otra potencia de dos.

¿Qué sucede con el desplazamiento a la izquierda? ¡Efectivamente! Una operación lógica de desplazamiento a la izquierda multiplica por dos. Por ejemplo, tomemos x 0001 ll 11, donde x es el estado del indicador del acarreo. Después del desplazamiento lógico a la izquierda, el resultado es 0 0011 ll 10. El número original era + 31, y el resultado es +62 con el acarreo puesto a 0 por el bit más significativo. El desplazamiento lógico a la izquierda se puede realizar cada vez que un número ha de multiplicarse por 2, 4, 8 o cualquier otra potencia de dos.

DESPLAZAMIENTO LOGICO HACIA LA DERECHA

DESPLAZAMIENTO LOGICO HACIA LA IZQUIERDA

ACARREO

Figura 5.14. Dos desplazamientos lógicos

Desplazamientos aritméticos

Cuando se realiza un desplazamiento lógico con números con signo, surge un problema. Consideremos el caso del número 1100 ll ll; es un valor de -49. Cuando el número se desplaza hacia la derecha, el resultado es 0110 0111, representando el valor + 103. Obviamente, el desplazamiento no dividió el número – 49 por 2 para obtener un resultado de – 24.

Para resolver el problema de desplazar datos aritméticos, se suele incluir un desplazamiento aritmético en los ordenadores.

El desplazamiento aritmético conserva el signo según se desplaza a la derecha, de forma que el desplazamiento es (casi) aritméticamente correcto.

Si se realizase un desplazamiento aritmético en el ejemplo anterior, el resultado sería el que muestra la figura 5.15.

Figura 5.15. Desplazamiento aritmético a la derecha

¿Qué sucede con los desplazamientos a la izquierda? En algunos microordenadores, el desplazamiento aritmético a la izquierda mantiene el bit de signo y desplaza el siguiente bit más significativo al acarreo, como muestra la figura 5.16. En otros microordenadores no hay auténticos desplazamientos a la izquierda.

Figura 5.16. Desplazamiento aritmético a la derecha

En el próximo capítulo veremos cómo el desplazamiento puede utilizarse para llevar a cabo muchos tipos diferentes de *algoritmos* de multiplicación y división. Mientras tanto, intente contestar a las siguientes preguntas.

Ejercicios

1. Efectúe la operación 0 en los siguientes conjuntos de operandos binarios de 8 bits.

10101010 10110111 0 00001111 0 01100000

2. Realice la operación 0 exclusiva en los siguientes operandos binarios de 8 bits.

- 3. Los bits 3 y 4 de una operación de memoria tienen el código siguiente: OO = PELO CASTAÑO, 01 = PELO NEGRO, 10 = PELO RUBIO, 11 = = CALVO. Utilizando la operación Y, muestre cómo estos bits pueden ordenarse en un único resultado de 8 bits. La posición es XXXYYXXX, donde X = bit desconocido, e Y = bit de código.
- 4. Invierta el signo de los siguientes operandos (con signo). Escriba sus equivalentes en decimal.

00011111, 0101, 10101010

5. Realice una rotación a la izquierda sobre estos operandos:

00101111. 10000000

6. Efectúe una rotación a la derecha sobre los siguientes operandos:

00101111, 10000000

 Efectúe una rotación a la derecha con acarreo sobre estos operandos y acarreos:

c = 1 00101111, c=0 10000000

8. Efectúe una rotación a la izquierda con acarreo sobre estos operandos y acarreos:

 $c = 0 \ 001011111, \ c = 1 \ 100000000$

9. Efectúe un desplazamiento lógico a la derecha de los siguientes operandos.

Escriba el acarreo después del desplazamiento, y el valor decimal de los operandos antes y después de los desplazamientos:

01111111, 01011010, 10000101, 10000000

10. Efectúe un desplazamiento lógico a la izquierda de los siguientes operandos. Escriba el acarreo después del desplazamiento, y el valor decimal de los operandos antes y después de los desplazamientos:

01 11 1111, 01011010, 10000101, 10000000

Il. Efectúe un desplazamiento lógico hacia la derecha sobre los siguientes operandos, y escriba los valores decimales antes y después del desplazamiento:

01111111, 10000101, 10000000

Multiplicación y división

La mayoría de los microordenadores actuales no incluyen instrucciones de multiplicación y división. En consecuencia, estas operaciones han de hacerse en rutinas de software; al menos, en lenguaje máquina. En este capítulo analizaremos algunas de las formas en que la multiplicación y división pueden realizarse en software.

Zelda aprende cómo desplazar por sí misma

"¡Hola, Don! ¿Qué tal la comida?", preguntó Zelda, la camarera, a un ingeniero de Inlog que acababa de llegar a la caja

"Bien, bastante bien. Bueno, la carne estaba un poco correosa..."

"Sucede siempre que no es fresca", dijo Zelda cogiendo la cuenta. "Veamos; una taza de café... un sandwich de carne... y doce postres bajos en calorías..." Cada vez que Zelda leía una partida de la cuenta, realizaba algún tipo de operación fuera del alcance de la vista en la caja registradora. En la última partida, doce postres bajos en calorías, tardó mucho tiempo.

"Zelda, ¿qué estás haciendo?", preguntó el ingeniero.

"Verás, Don; Big Ed quiere que nos acostumbremos a trabajar en binario, ya que este restaurante está en el centro de las industrias de microordenadores y todo eso. Quiere que hagamos todos los cálculos en binario para que practiquemos. No me importa cuando se trata de sumar o restar, pero la multiplicación me vuelve loca."

"¿Qué método empleas, Zelda? Quizá pueda ayudarte."

"Cada vez que multiplico, hago una suma sucesiva. Como en este caso, en que tenías doce postres. Cada uno cuesta 65 centavos, así que sumo 1100, que es doce en binario, 65 veces."

"Sí, eso realmente es correcto; de acuerdo", dijo Don, tratando de no reírse. "Ese método de suma sucesiva es válido, pero lleva mucho tiempo. Permíteme que te enseñe un método más rápido; se llama desplazamiento y suma."

Rápidamente hizo sitio en el mantel de una mesa cercana, amontonando un poco los cubiertos y demás objetos. Sacó un portaminas. "Es una pena que no tengamos papel cuadriculado, pero los cuadros del mantel servirán.

Tomemos estos 65 centavos por postre para un ejemplo de doce unidades. Antes de nada, dibujaremos dos registros. El registro del **producto parcial** tiene una amplitud de 16 bits; así (véase la figura 6.1). El registro de los multiplicandos tiene una amplitud de 8 bits. Entonces, en los ocho bits de arriba del registro del producto parcial pondremos los doce, el **multiplicador**. Lo hemos **rellenado** a ceros hasta ocho bits para obtener 0000 1100. El resto del registro será una serie de ceros. Seguidamente, pondremos el multiplicando en el registro del multiplicando.

Figura 6.1. Multiplicación por desplazamiento y suma

Ya está todo preparado para hacer la multiplicación. Daremos ocho pasos para ello. Los ingenieros informáticos los denominamos *iteraciones*. Para cada iteración, desplazaremos el multiplicador una posición hacia la izquierda; el bit desplazado fuera irá al acarreo. Si el bit del acarreo es un 1,

sumaremos el multiplicando al registro del producto parcial. Si el bit del acarreo es un cero, no haremos la suma. Al final de las ocho iteraciones, estará hecho."

"Pero, ¿no se destruirá el contenido del multiplicador de ocho bits de arriba al sumar el registro del producto parcial?", preguntó Zelda, obviamente orgullosa de haber aprendido un poco de la jerga de los ordenadores.

"No, no se destruirá. Recuerda que los datos se desplazan a fin de hacer sitio para la posible expansión del producto parcial. Después de ocho iteraciones se habrá desplazado totalmente, y el registro del producto parcial será el producto final de la multiplicación. Mira, he dibujado todas las iteraciones para este caso" (véase la figura 6.2).

"¡Oh, sí! Muchas gracias, Don. Seguro que lo utilizaré. Ahora, déjame el resto de tu cuenta. El total es 15.63 más los impuestos. Eso es 1563 centavos dividido por cien veces seis. Veamos: 011000011011 menos 01100100 da 010110110111; esto es una vez. 010110110111 menos 01100100 da 010101001011; esto es dos veces. Restando 01100100 a..."

Algoritmos de multiplicación

Sumas sucesivas

Zelda utilizaba un método de multiplicación sencillo, llamado suma sucesiva (Fig. 6.3). En él, el multiplicando (número que ha de ser multiplicado) es multiplicado por el multiplicador. El proceso se realiza haciendo cero un resultado llamado producto parcial y sumando el multiplicando al producto parcial por el número de veces indicado por el multiplicador. El ejemplo anterior era 65 veces 12, que Zelda resolvió sumando 12 al producto parcial 65 veces.

Aunque este método es sencillo, es muy *largo* en la mayoría de los casos. Supongamos que trabajamos con una multiplicación "ocho por ocho". Una multiplicación de 8 por 8 bits produce un resultado de 16 bits como máximo. El multiplicador promedio es 127, si se hace una *multiplicación sin signo*. Esto quiere decir que, en la mayoría de los casos, tendrían que hacerse 127 sumas separadas del producto parcial.

Esto difiere de la técnica de Don de *desplazamiento y suma* de ocho iteraciones. En el peor de los casos, la suma sucesiva supondrá 255 sumas; en el mejor de los casos, una. Es mejor dejar la multiplicación por suma sucesiva para aquellos casos en que el multiplicador se fija en algún valor bajo y constante; por debajo de 15 o así, o para cuando es necesario hacer multiplicaciones poco frecuentes.

Figura 6.2. Ejemplo de multiplicación por desplazamiento y suma

Figura 6.3. Ejemplo de multiplicación por sumas sucesivas

ITERACION 65

RESULTADO DE LA ITERACION 65

+12

+780

Suma sucesiva de potencias de dos

00001100

El método de la suma sucesiva de potencias de dos consiste en una multiplicación que se realiza a menudo cuando el multiplicador es un valor fijo. Supongamos que tenemos que multiplicar siempre una suma por diez. Diez puede dividirse en un número de sumas; una combinación de éstas es 8+2.

Como vimos en el capítulo anterior, el desplazamiento lógico hacia la izquierda multiplica un valor por dos. Para multiplicar por diez se puede hacer una combinación de desplazamientos y sumas para producir el efecto de la multiplicación. La operación se desarrolla así:

- 1. Desplazar el multiplicando por dos para obtener dos veces X.
- 2. Guardar este valor como "DOSX".

00000000 00001100

00000011

- 3. Desplazar el multiplicando por dos para obtener cuatro veces X.
- 4. Desplazar el multiplicando por dos para obtener ocho veces X.
- 5. Sumar "DOSX" al multiplicando para obtener diez veces X.

Este procedimiento se muestra en la figura 6.4 para un multiplicando de diez. Puede utilizarse cuando el multiplicador es fijo. Multiplicar por 35, por ejemplo, puede hacerse desplazando cinco veces el multiplicando para obtener 32X, y sumando 2X y 1X - 32 + 2 + 1 = 35.

MULTIPLICACION DE II POR 10

00001011 MULTIPLICANDO = II

0000 10 10 MULTIPLICADOR = 10

DESPLAZAR MULTIPLICANDO (DOSX)

DESPLAZAR MULTIPLICANDO (CUATROX)

00101100 MULTIPLICANDO = 22 x 2 = 44

DESPLAZAR MULTIPLICANDO (OCHOX)

SUMAR 01011000 MULTIPLICANDO = 44 x 2 = 88

000 10 1 10 RESULTADO PREVIO

Figura 6.4. Ejemplo de suma sucesiva utilizando potencias de dos

01101110 PRODUCTO=110

Multiplicación por desplazamiento y suma

La multiplicación por desplazamiento y suma que Don enseñó a Zelda es el método más comúnmente utilizado en ordenadores cuyo *hardware* no está provisto de capacidad de multiplicación. Se asemeja a una técnica de papel y lápiz que sigue estrechamente el método de multiplicación decimal normal que se aplicaría en su lugar. Por ejemplo, la figura 6.5 muestra una multiplicación binaria de papel y lápiz que se parece a una multiplicación decimal. La única diferencia real entre el papel y lápiz y el método binario de desplazamiento y suma está en el desplazamiento.

Con papel y lápiz, el multiplicando se desplaza a la izquierda y después se suma. Con desplazamiento y suma, el multiplicando es estacionario, y se desplaza el producto parcial como muestra la figura 6.2.

Esta técnica de desplazamiento y suma puede utilizarse para cualquier tamaño de multiplicando o multiplicador. La regla para el tamaño del pro-

Figura 6.5. Multiplicación binaria en papel y lápiz

ducto es ésta: El producto de una multiplicación binaria nunca puede ser mayor que el número total de bits del multiplicador y del multiplicando. Dicho de otra forma, si el multiplicador y el multiplicando tienen ocho bits cada uno, el producto puede tener hasta dieciséis bits; si el multiplicador tiene doce bits y el multiplicando ocho, el producto puede tener hasta dieciséis bits, etcétera.

Otro dato interesante acerca de la multiplicación por desplazamiento y suma es que el desplazamiento puede ser a la inversa. Podemos operar con multiplicadores, empezando por el lado menos significativo. En este caso, podemos parar el proceso cuando el multiplicador es cero, lo que significa que sólo tenemos que realizar tantas iteraciones como bits significativos haya en el multiplicador. Esto reduce el tiempo medio de la multiplicación hasta la mitad del valor máximo del multiplicador. La figura 6.6 muestra este eficaz método.

Multiplicación con signo y sin signo

En todos los ejemplos anteriores hemos considerado los multiplicadores y multiplicandos *sin signo*. Los productos obtenidos en estos casos son números en valor absoluto, sin un dígito para el signo. Por ejemplo; al multiplicar 1111 1111 (255) por 1011 1011 (187) se obtiene un producto de 1011 1010 0100 0101 (47,685), donde el bit más significativo es 2 ↑ 15 y no un bit de signo.

¿Qué sucede con la multiplicación con signo donde el multiplicador y el multiplicando son números en complemento a dos con signo? En este caso, los números se convierten en su valor absoluto; se realiza el producto y al resultado se le coloca después el signo correspondiente. Por supuesto, más por más es más; más por menos es menos; menos por más es menos, y menos por menos es más, como en aritmética decimal.

He aquí un buen ejemplo de uno de nuestros operadores lógicos, la

Figura 6.6. Ejemplo del método "multiplicar hasta multiplicador cero"

0 exclusiva. Si se toma una 0 exclusiva del multiplicador, el bit más significativo del resultado (signo) será el signo del producto. Por ejemplo,

1011	1010	(-70)
0000	1010	(+ 10)
1011	0000	(O _{ex)}

se obtiene una 0 exclusiva cuyo bit más significativo es un 1; por tanto, el producto será negativo.

El algoritmo para una operación con signo es éste:

- 1. Hacer la 0 exclusiva del multiplicador y del multiplicando. Guardar el resultado.
- 2. Hallar el valor absoluto del multiplicando, cambiando el signo de negativo a positivo si fuere preciso.
- 3. Hallar el valor absoluto del multiplicador cambiando el signo negativo a positivo si fuera preciso.

- 4. Multiplicar los dos números por el método estándar de desplazamiento y suma.
- 5. Si el resultado de aplicar el operador 0 exclusivo tiene un 1 en el bit de signo, cambiar el producto a un número negativo por el método del complemento a dos (operación de inversión del signo).

Hay un pequeño problema en el método anterior. El error de desbordamiento no era posible en el método sin signo, pero es posible en el método con signo tan sólo en un caso. Cuando tanto el multiplicador como el multiplicando son valores negativos máximos, el producto tendrá un error de desbordamiento. Por ejemplo, si en una multiplicación de "ocho por ocho" tanto el multiplicador como el multiplicando son 1000 0000 (-256), el producto será +65,536, que es demasiado grande para ser almacenado en dieciséis bits. Esta condición puede ser comprobada antes de que la multiplicación tenga lugar.

Algoritmos de división

Los algoritmos de división en *software* son algo más difíciles de implementar que los de multiplicación. Uno de los métodos de división es la resta sucesiva, el que Zelda utilizaba cuando la dejamos. El segundo es la "división con recuperación" bit a bit.

Resta sucesiva

La resta sucesiva se muestra en la figura 6.7. En este método el *cociente* se rellena a ceros inicialmente. El *divisor se* resta del *dividendo* sucesivamente hasta que éste se vuelve negativo. Cada vez que se resta el divisor, la cuenta del cociente se incrementa con uno. Cuando el dividendo se vuelve negativo, el divisor se *suma* una vez al *residuo* para recuperar el resto. (El residuo es la cantidad restante del dividendo.) La cuenta es el cociente de la división, mientras el resto está en el residuo, como muestra la figura 6.7.

Como en el caso de la multiplicación por suma sucesiva, la resta sucesiva es muy lenta en la mayoría de los casos. Si operamos con un dividendo de 16 bits y un divisor de 8, el cociente medio es 255. Un total de 255 restas es tan intolerable como en el caso de la multiplicación. La resta sucesiva para una división es buena cuando el tamaño del divisor es grande comparado con el del dividendo; por ejemplo, si el divisor fuese 50 y el dividendo fuera un máximo de 255, sólo habría que hacer cinco restas en el peor de los casos; por lo cual este método de división sería eficaz.

	170	100-1		
				CUENTA (COCIENTE)
DI VI DENDO	00000110	00011011	1563	0
DIVISOR	00000110	01100100	- 100	v
DIVISOR	00000101	10110111	100	1
	00000101	01100100	- 100	
	00000101	01010011	- 100	2
	00000101	01100100	- 100	-
	00000100	11101111	100	3
	00000100	01100100	- 100	· ·
	00000100	10001011	100	4
	00000100	01100100	- 100	
	00000100	00100111	100	5
	00000100	01100100	- 100	v
	00000011	11000011		6
	0000011	01100100	- 100	v
	00000011	01011111		7
		01100100	- 100	
	00000010	11111011	100	8
	0000010	01100100	- 100	-
	00000010	10010111		9
	00000010	01100100	- 100	v
	00000010	00110011		10
		01100100	- 100	
	00000001	11001111		11
	0000001	01100100	- 100	
	00000001	01101011		12
	0000001	01100100	- 100	
	0000001	00000111		13
		01100100	- 100	
	00000000	10100011		14
		01100100	- 100	
	00000000	00111111		15 = COCIENTE
	5500000	01100100	- 100	
(DI VI DENDO	11111111	11011011		
SE VUELVE	-	01100100	+100	(RESTO
NEGATIVO)				RECUPERADO)
·	00000000	00111111	RESTO	•

Figura 6.7. Método de división por resta sucesiva

División con recuperación

La respuesta a una técnica de división relativamente rápida reside en la división bit a bit. El método de la división con recuperación recuerda la forma en que dividimos con lápiz y papel. La figura 6.8 muestra el esquema.

```
DIVIDENDO = 3500

0000110110101100

1100000

0001101011

COCIENTE = 36

1100000

000101 loo

RESTO = 44
```

Figura 6.8. Ejemplo de división bit a bit

Dividimos un dividendo de 16 bits entre un divisor de 8. La regla general para el tamaño del cociente, por cierto, es que debe ser igual el número de bits del dividendo, ya que el valor 1 es un divisor legítimo.

Empezamos con los dos valores absolutos (números positivos) de +96 para el divisor y +3500 para el dividendo.

Para empezar, 0110 0000 (96) se resta del primer 0 del dividendo de 0000 1101 1010 1111. Por supuesto, esta resta es imposible y el resultado es negativo. Si el resultado es negativo después de cualquier resta, "recuperamos" el residuo anterior sumando el divisor, como hacemos en este ejemplo. Continuamos con esta resta, comprobamos si es negativa o positiva y si es preciso recuperar o no para cada uno de los dieciséis bits del dividendo. Cada vez que el resultado es negativo, recuperamos sumando el divisor y poniendo un 0 en el cociente. Cuando el resultado es positivo, no recuperamos y ponemos un 1 en el cociente. Al final de las dieciséis iteraciones, el cociente refleja el valor final, y el residuo es el resto de la operación. Puede que el residuo tenga que ser recuperado por medio de una suma final, para obtener el verdadero resto.

Esta técnica de papel y lápiz puede ser casi duplicada con exactitud por el microordenador. El dividendo se introduce en un registro de 24 bits (tres registros de 8 bits). El divisor se introduce en un registro de 8 bits. Los dos registros se alinean de la forma que muestra la figura 6.9. El divisor se resta de los ocho bits de arriba del dividendo. Si es necesario se hace una recuperación sumando el divisor.

Después de que la resta y la posible recuperación se han efectuado, el dividendo se desplaza hacia la izquierda una posición. Al mismo tiempo, el bit de cociente (0 ó 1) es desplazado hacia la izquierda en el registro del dividendo desde el lado derecho. Al final de las dieciséis iteraciones se habrán desplazado dieciséis cocientes al registro del dividendo, y estarán en los dieciséis bits de abajo. Los ocho bits de arriba almacenarán un resto de 8 bits, suponiendo que se haya hecho alguna recuperación final.

Figura 6.9. Implementación de la división bit a bit

División con signo y sin signo

Los operandos de todas las divisiones anteriores no tenían signo. Como en el caso de la multiplicación, el camino más fácil para realizar una división con signo es encontrar el "sentido" (positivo o negativo) del producto final, tomar el valor absoluto de dividendo y divisor y realizar entonces una división sin signo, dando un valor negativo al cociente, si se dividía una cantidad positiva entre una negativa o una negativa entre una positiva.

Hay un pequeño problema. Cuando -32,768 se divide por -1, el resultado es +32,768, que producirá un error de desbordamiento en el cociente. Se puede comprobar fácilmente esta condición antes de proceder a dividir.

En el capítulo siguiente trataremos las operaciones aritméticas en "múltiple precisión", que nos permitirán trabajar con valores mayores de los que pueden almacenarse en dieciséis bits. Antes de entrar en este tema, sin embargo, los siguientes ejercicios están destinados a lectores que quieren adquirir soltura en los algoritmos y cálculos de multiplicación y división.

Ejercicios

1. ¿Cuál es el resultado de la multiplicación "ocho por ocho" sin signo de ll ll ll ll por ll ll ll ll ? ¿Cuáles son los valores decimales equivalentes?

- 2. ¿Cuál es el resultado de la división sin signo de 1010101011011101 entre 0000 OOOO? ¿Cuál es el resultado de la división sin signo de 1111 1111 1111 1111 entre 0000 0001? ¿En qué condiciones no puede permitirse esta división en un ordenador?
- 3. Si todos los operandos son números con signo, ¿cuál será el signo del resultado de estas operaciones?

 $10111011 \times 00111000 = ?$ 1011011100000000/10000000 = ?

7

Múltiple precisión

Muchas veces es necesario trabajar más allá de la *precisión* ofrecida por ocho o dieciséis bits. Las cantidades del mundo real, como las constantes físicas, datos de cuentas y otros valores numéricos exceden, a menudo, el rango de +32,767 a - 32,768 de cantidades de 16 bits. Los valores mayores pueden expresarse utilizando varios bytes para almacenar cada operando. En este capítulo veremos cómo puede hacerse esto utilizando bytes de 8 bits.

¿Tienen algo que ver las series de Fibonacci con la televisión?

"Scusame. ¿Es éste un ristorante de Big Ed?"

Big Ed se volvió y vio a un hombre sonriente, con un gran cuaderno entrando en su restaurante. "Sí, señor. Aquí es. ¿En qué puedo servirle?"

"Me gustaría una poca de lasagne y chianti, si por favor."

"Por supuesto, señor. Por supuesto, ¿podría usted no pronunciar con acento italiano?" El escritor se pone muy nervioso. "No es muy bueno imitando acentos extranjeros..."

"Oh, lo siento. Tengo que utilizarlo en los ciclos de conferencias. Me temo que he adquirido malos hábitos."

"¿Ciclos de conferencias?"

"Sí. Uno de mis parientes lejanos fue Leonardo de Pisa, también conocido como Fibonacci, el gran matemático italiano. Me encargo de su trabajo. Por eso estoy aquí, en el Valle del Silicio. Quiero usar un ordenador para analizar las series de Fibonacci. Estaba un poco consternado al comprobar que no tienen bastante precisión para hacerlo."

"¿Qué quiere decir con eso? Pensaba que los microordenadores podían manejar cifras de cualquier tamaño."

"Bueno, pueden manejar *aproximadamente* números de cualquier tamaño en *punto flotante*, pero así no se obtiene una precisión exacta. Por ejemplo, el valor 122,234,728,956 sólo podría manejarse en BASIC como 122,235,000,000, perdiendo el resto de los dígitos. Necesito precisión exacta para mi trabajo en las series de Fibonacci."

"Realmente, es que no veo la televisión, ni me interesan los seriales americanos..."

"No, verá, lo siento... Usted verá, las series de Fibonacci funcionan así. Si usted toma los números 1 y 1 y los suma, obtiene 2. Ese es el tercer término de la serie. Ahora, tome el 1 y el 2 y súmelos para obtener 3. Este es el cuarto término. A continuación, sume 2 y 3 para obtener 5. Ese es el quinto término. Bueno, si usted continúa así, obtendrá la serie de 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc."

"Bueno, parece bastante sencillo. ¿Sirve para algo?"

"Tienen ciertas aplicaciones en la representación matemática y en la naturaleza, pero el principal interés de la serie parece centrarse en un grupo especial de gente que se divierte con juegos matemáticos. Hay literalmente decenas de miles de personas en el mundo que investigan las propiedades de las series de Fibonacci. Mire, sólo a mi conferencia de Inlog acudieron 134 ingenieros, programadores y científicos, más un caballero que pedía el precio del alquiler de la sala de conferencias.

Resumiendo, sin embargo, mi principal problema al trabajar con la serie es que los términos se hacen muy grandes rápidamente. El vigésimo cuarto término de la serie es 46,368, demasiado grande para almacenarlo en dieciséis bits. Tuve que acudir a la múltiple precisión para procesar los términos más grandes de la serie."

"¿Múltiple precisión? ¿Cómo funciona eso?"

"Bueno, como usted probablemente ya sabe por su relación con la gente de las fábricas' de ordenadores de aquí, ocho bits almacenan valores de hasta 255, y dieciséis bits hasta 65,535; si los números son sin signo, por supuesto. Yo quería almacenar números de hasta 18,446,745,073,709,548,616; eso cubriría los números de Fibonacci hasta casi el centésimo término."

"Usted necesitaría cientos de bytes para eso", exclamó Ed.

"La verdad es que no; preste atención: cuatro bytes almacenan 4,294,967,296, seis bytes almacenan 281,474,976,710,656, y ocho bytes almacenan 18,446,745,073,709,548,616. Así que puede usted ver que si yo tuviese un programa capaz de procesar únicamente ocho bytes, tendría precisión más que suficiente. Todo lo que este programa tiene que hacer es trabajar con operandos de ocho bytes para la suma y la resta. Al fínal, encontré una casa de software especializada en programas para calcular números grandes en microordenadores."

"Sí, soy todo oídos..."

"Pero, por desgracia, han conseguido un importante contrato federal para procesar los programas del presupuesto estatal. Ellos están ahora en Washington y yo estoy aquí, buscando otra compañía asesora..."

Suma y resta empleando múltiple precisión

La múltiple precisión no se utiliza para manejar números grandes (como se verá en el capítulo 10, se emplea el punto flotante en su lugar), pero viene bien para ciertos tipos de procesos, como el problema de Fibonacci, las operaciones de alta velocidad o las de alta precisión.

En la suma y en la resta en múltiple precisión se suman o restan dos operandos de una longitud de determinado número de bytes. ¿Cuál es la apariencia de los operandos? Supongamos que hemos determinado que queremos representar números hasta un tamaño de la mitad de 18,446,745,073,709,548,616. Sabemos, por la conversación sobre Fibonacci, que esta magnitud podría contenerse en un número con signo de 8 bytes o 64 bits. El valor de +9,223,372,536,854,774,308 se representaría por:

01111111	11111111	11111111	11111111
11111111	11111111	11111111	11111111

Los bits se numerarían según nuestra representación estándar de potencias de dos, con el bit 0 al extremo de la derecha y con el 63 a la izquierda, como un bit *de signo*. El valor de -9,223,372,536,854,774,309 (observe que es uno más que en magnitud que el número positivo), se representaría:

10000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000

Los demás valores estarían entre estos dos límites. Fíjese que hay sólo un bit de signo y que el número se considera como un grupo único de 64 bits, aunque esté *físicamente separado* en ocho bytes.

La suma de los dos operandos en esta precisión de ocho bytes implica tomar los bytes de cada operando de derecha (menos significativo) a izquierda (más significativo) y sumarlos todos. En caso de acarreo de la suma del último, éste debe sumarse al byte menos significativo.

Dado que los acarreos se *propagan* al bit siguiente dentro de cada byte como resultado normal de la suma, cualquier acarreo que se produzca como consecuencia de la suma del bit más significativo afectará al byte siguiente y, por tanto, debe guardarse y añadírsele. El indicador de acarreo se utiliza para registrar cualquier acarreo de la suma anterior y se utiliza una instrucción de "suma con acarreo" para efectuar esta suma.

Para un operando de ocho bytes, la primera suma es un simple "sumar" (no hay acarreo previo), mientras que las siete sumas siguientes son instrucciones de "suma con acarreo". La figura 7.1 muestra esta operación en un ejemplo de suma de dos operandos de 8 bits.

Figura 7.1. Suma de dos bytes en múltiple precisión

La resta en múltiple precisión funciona, en gran parte, de la misma manera, salvo que el acarreo se resta del siguiente byte en lugar de sumarse. La primera resta es normal, mientras que las restantes son opera-

ciones de "resta con acarreo negativo", comúnmente denominadas operaciones de "resta con acarreo". La figura 7.2 muestra la operación de resta con dos operandos de 8 bits.

Figura 7.2. Resta de dos bytes en múltiple precisión

Las anteriores operaciones de suma y resta funcionan bien con cualquier combinación de números en complemento a dos; los operandos no tienen que ser valores absolutos.

Cuando los números en múltiple precisión se almacenan en la memoria, debería añadirse una nota de aviso. En los microordenadores con Z-80, el almacenamiento normal en memoria de 16 bits de datos incluyendo las direcciones de memoria y los valores de dos bytes, es el byte menos significativo, seguido por el más significativo, como muestra la figura 7.3.

Si se almacena un número de múltiple precisión en el formato del byte más significativo al menos significativo, no hay problema si los datos acceden byte a byte para: 1) introducir los datos en un registro, 2) sumar o restar el segundo operando y, después, 3) almacenar el byte de resultado en la memoria. Si los datos se introducen en un registro de 16 bits, sin embargo, el microprocesador dará entrada al primer byte en los ocho bits inferiores

Figura 7.3. Almacenamiento en la memoria con múltiple precisión

del registro, y al segundo byte en los ocho superiores. En este caso, los datos deben disponerse en grupos de dos bytes ordenados del menos al más significativo, como muestra la figura 7.3.

Multiplicación en múltiple precisión

Es muy difícil realizar una multiplicación cuando se utilizan muchos bytes. Una de las razones de ello es que la mayoría de los microprocesadores no tienen registros lo "suficientemente amplios" para llevar a cabo tales multiplicaciones. Lo máximo que se puede hacer es multiplicar un multiplicando y un multiplicador, ambos de dos bytes, para obtener un producto de cuatro bytes. Otro método para llevar a cabo una multiplicación en múltiple precisión es el de aprovechar el **desarrollo** de $(A + B) \times (C + D)$. Este es $(A + B) \times (C + D) = A \times C + B \times C + B \times D + A \times D$.

Suponga que queremos multiplicar los dos números sin signo 778 y 1066. Ambos pueden almacenarse en 16 bits cada uno, como sabemos. Los números aparecen como muestra la figura 7.4. Observe algo interesante: cada número puede almacenarse en dos partes; los ocho bits superiores y los ocho bits inferiores. En el caso de 778, por ejemplo, los superiores son 3 x 256, y los inferiores, 10. La parte superior de 1066 es igual a 4 x 256, y la pequeña inferior es 42. Podríamos expresar 778 x 1066 como:

778 x
$$1066 = ([3 \times 256] + 10) \times ([4 \times 256] + 42)$$

Cuyo desarrollo es:

$$([3 \times 256] \times [4 \times 256]) + (10 \times [4 \times 256]) + ([3 \times 256] \times 42) + (10 \times 42)$$

$$3 \times 256 + 10 = 778$$

$$00000011 \quad 00001010$$

$$00000100 \quad 00101010$$

$$4 \times 256 + 42 = 1066$$

Figura 7.4. Desarrollo en múltiple precisión

El primer término 3 x 256 x 4 x 256 es lo mismo que 3 x 4 desplazado hacia la izquierda dieciséis bits. El segundo término es lo mismo que 10 x 4 desplazado hacia la izquierda ocho bits. El tercero es lo mismo que 42 x 3 desplazado a la izquierda ocho bits. El cuarto es una simple multiplicación de 10 x 42. De hecho, para calcular el producto, todo lo que hay que hacer es:

- 1. Poner a cero un producto de 32 bits (cuatro bytes).
- 2. Multiplicar 3 x 4 y sumar el resultado a los dos primeros bytes del producto.
- 3. Multiplicar 10 x 4 y sumar el resultado a los bytes segundo y tercero del producto.
- 4. Multiplicar 42 x 3 y sumar el resultado a los bytes segundo y tercero del producto.
- 5. Multiplicar 10 x 42 y sumar el resultado a los bytes tercero y cuarto del producto.

Este procedimiento se muestra en la figura 7.5. Sirve, por supuesto, no sólo para este ejemplo, sino para cualquier multiplicador y multiplicando de 16 bits, y también para valores mayores. Divida los operandos en tantas partes como sean necesarias, realice cuatro multiplicaciones, alinee los resultados y sume para obtener el producto.

Figura 7.5. Multiplicación en múltiple precisión

Desgraciadamente, las divisiones en múltiple precisión no pueden ejecutarse tan fácilmente. De nuevo, en este caso, no hay bastantes registros en el microprocesador y no son suficientemente amplios para manejar con eficacia la división de muchos bytes. Trataremos la división de números más grandes, con alguna pérdida de precisión, por el método de puntos flotantes en el capítulo 10. Mientras tanto, intente hacer los siguientes ejercicios para fijar lo que ha aprendido en este capítulo.

Ejercicios

- 1. ¿Cuál es el valor que puede almacenarse en 24 bits?
- 2. Sume los siguientes operandos de múltiple precisión de cuatro bytes:

00010000	11111111	01011011	00111111
+ 00010001	00000000	11111111	00000001

3. Reste los siguientes operandos de cuatro bytes en múltiple precisión:

00010000	11111111	01011011	00000000
- 00010000	00000000	10000001	00000001

4. Halle los complementos a dos del siguiente operando de cuatro bytes en múltiple precisión:

00111111 10101000 10111011 01111111

5. Efectúe un desplazamiento lógico a la derecha del siguiente operando de cuatro bytes de múltiple precisión:

00111111 10101011 101111011 01111111

Fracciones y factores de escala

Hemos hablado mucho acerca de los números binarios a lo largo de este libro, pero todos los números eran valores enteros. En este capítulo veremos cómo se pueden representar fracciones en notación binaria y cómo los números pueden escalarse para representar números mixtos.

Big Ed pesa los números

"¿Es usted el propietario?", preguntó un individuo con una corbata verde, una chaqueta a cuadros rojos y blancos, pantalones color beige y zapatos negros, algo gastados.

"Sí, soy yo", dijo Big Ed, moviendo su cabeza por la falta de pañuelo en el bolsillo de la chaqueta del desconocido. Ciertamente, no tiene muy buen gusto en el vestir, pensó para sus adentros.

"Bueno, ¡hola! Soy John Upchuck, de Ventas Acme. Tengo aquí una muestra de nuestra Balanza Binaria Mark II, especialmente diseñada para restaurantes como el suyo. Este aparatito no es una cortadora, ni una freidora, ni una picadora... o sea... Lo siento; me estoy yendo por las ramas. Lo que quiero decir es que tengo una balanza que a usted le será imprescindible para pesar con precisión sus porciones de carne. He leído su

anuncio, 'Doce onzas de auténtica carne', en su Big Edburger. Bueno, pues con este pequeño artilugio será cierto eso de que cada Big Edburger pesa exactamente doce onzas; ni más, ni menos."

"¿Cómo funciona?', preguntó Ed, intrigado por el calificativo de "binario".

"Permítame mostrarle. ¿Ve usted?, hay ocho pesas. La primera es de ocho onzas; la siguiente, de cuatro; la tercera de dos, y esta otra es de una" (véase la Fig. 8.1).

Figura 8.1. La escala binaria

"Esto me recuerda vagamente algo...", musitó Big Ed.

"Bueno ; como decía, las siguientes pesas son de $^{1}/_{2}$ onza, de $^{1}/_{4}$, de $^{1}/_{8}$ y, la última, de $^{1}/_{16}$. Un total de ocho pesas, que le permiten pesar cualquier ración de carne o verdura entre $^{1}/_{16}$ y 15 con $^{15}/_{16}$ onzas.

Ahora, la operación es simple. Usted pone la carne en la bandeja de la izquierda de la balanza. Luego pulsa uno o algunos de los botones de la parte frontal; puede usted ver que están marcados: 8, 4, 2, 1, $^{1}/_{2}$, $^{1}/_{4}$, $^{1}/_{8}$ y $^{1}/_{16}$. Cada vez que se aprieta un botón, la pesa correspondiente se depo-

sita en la bandeja de la derecha, y una luz ilumina el botón. Pulse otra vez el mismo botón y la pesa se quitará de la bandeja, apagándose la luz. Ahora bien; suponga que usted quiere pesar doce onzas y ¹/₄ de carne. Ponga la carne aquí y apriete a continuación los botones 8, 4 y ¹/₄."

Así lo hizo, y las tres pesas de 8, 4 y ¹/₄ se depositaron en la bandeja; las luces sobre los tres botones se iluminaron. El vendedor colocó carne hasta que la luz llamada de "EQUILIBRIO" se encendió en el centro del panel.

"Bueno, está muy bien", dijo Ed. "Por cierto, quería preguntarle algo: ¿cómo era el modelo Mark I?"

"El modelo Mark 1 era un diseño primitivo ; estaba calibrado en unidades de $^1/_{16}$ de onza. El panel estaba marcado así..." Tomó un trozo de mantel cercano y comenzó a dibujar furiosamente (Fig. 8.2).

Figura 8.2. El modelo primitivo

"El panel frontal, como puede ver, está marcado, 128, 64, 32, 16, 8, 4, 2, 1, representando ¹²⁸/₁₆ de onza, ⁶⁴/₁₆ de onza, ³²/₁₆ de onza, ¹⁶/₁₆ de onza, ⁸/₁₆ de onza, ⁴/₁₆ de onza, ²/₁₆ de onza y ¹/₁₆ de onza. Sin embargo, se notó que su uso era demasiado complicado para profanos, ya que tenían que multiplicar el número de onzas requerido por 16 y, entonces, seleccionar la combinación de botones. La gente que usaba la máquina empezó a referirse a este proceso como *escalamiento*, de forma irónica. El modelo II es mucho más fácil de manejar."

"Bueno, ¿le gustaría quedarse con uno, y ya pagará más adelante?"

"No; ahora mismo, no. Muchas gracias por la demostración, de todas formas. Tenga, coja un sandwich de carne; le hará juego con su corbata verde."

Fracciones en sistema binario

Las fracciones binarias tienen un formato similar al de las decimales. Hay un punto binario en lugar del punto decimal, que separa la porción entera del número binario de la parte fraccionaria (Fig. 8.3). La posición más inmediata a la derecha del punto binario representa un peso de ¹/₂; la siguiente posición es ¹/₄; la siguiente es ¹/₈; la siguiente es ¹/₁₆, etc.

Figura 8.3. Representación binaria de números mixtos

Mientras que las posiciones de los enteros son potencias de dos, las posiciones fraccionarias son los *inversos* de las potencias de dos: $^{1}/_{2} \uparrow 1$, $^{1}/_{2} \uparrow 2$, $^{1}/_{2} \uparrow 3$, etc.

Consideremos algunos ejemplos más. El número binario mixto 0101.1010 se forma a partir del entero 0101, que es el decimal cinco, y la porción fraccionaria .1010. Esto representa $^1/_2 + ^1/_8$ ó $^4/_8 + ^1/_8$, que da $^5/_8$. El número total, pues, equivale al número decimal 5 $^5/_8$ ó 5.625.

El número binario mixto 0111.0101011 se forma a partir del entero 0111, ó 7 decimal, y la parte fraccionaria .0101011. La parte fraccionaria es $^{1}/_{4} + ^{1}/_{16} + ^{1}/_{64} + ^{1}/_{1}$ 28 ó $^{32}/_{128} + ^{8}/_{128} + ^{2}/_{128} + ^{1}/_{128} = ^{43}/_{128}$. El número mixto total es, por tanto, 7.3359375.

Para pasar de un número fraccionario binario a decimal, hay que transformar la parte entera por alguno de los métodos anteriormente vistos; luego hay que transformar la parte fraccionaria como si fuera un número entero. Por ejemplo, transformar 0101011 en 43 como si fuera un entero. Primero, cuente el número de posiciones de la fracción y eleve el número 2 a esa potencia. Así, el número de posiciones es 7 y 2 elevado a la séptima potencia, o 2 ↑ 7, es 128. Dividiendo 43 entre 128 se obtiene $^{43}/_{128}$, el mismo valor que obtuvimos sumando las fracciones separadas. La figura 8.4 muestra este procedimiento.

Operando con fracciones en sistema binario

Hay varias formas diferentes para procesar números mixtos que contienen fracciones en los microordenadores. El BASIC, por supuesto, emplea

Figura 8.4. Transformación de una fracción binaria

rutinas en punto flotante, que, automáticamente, procesan números mixtos; pero nosotros hablamos aquí principalmente de un nivel de lenguaje máquina, o quizá de un código BASIC especializado.

Conservando una fracción separada

El primer método para manejar fracciones consiste en mantener separadas las partes fraccionaria y entera de un número mixto. Este esquema se muestra en la figura 8.5, donde dos bytes de la memoria almacenan la parte entera y un byte adicional almacena la fraccionaria. El punto binario se fija permanentemente entre las partes fraccionaria y entera del número. Ambas partes se procesan separadamente.

Figura 8.5. Manejo de números binarios mixtos

El máximo número positivo que puede almacenarse en este esquema es +32,767.9960..., representado por 01111111 11111111 en la parte entera y ll ll ll en la fraccionaria.

Los puntos de detrás del número indican que el mismo tiene dígitos adicionales. El máximo número negativo que se puede representar es -32,768, y se representa por 10000000 00000000 en la parte entera y

00000000 en la fraccionaria. Para encontrar la magnitud de un número negativo en esta forma hay que utilizar la regla del complemento a dos tratada anteriormente. Cambiar todos los ceros por unos, todos los unos por ceros y sumar uno. En este caso, hay que **sumar uno al bit menos** significativo **de la fracción y** sumar cualquier acarreo de la misma a la siguiente posición superior de la parte entera.

La ventaja de este método es que la parte fraccionaria del número está disponible para realizar operaciones tales como **redondear** a la centena más próxima, si se trata de un cálculo monetario. De hecho, el número puede considerarse como un valor de 24 bits dividido en dos partes cuando se ha de sumar o restar. La parte fraccionaria se procesa primero, y cualquier acarreo positivo (suma) 0 negativo (resta) se lleva a la parte entera. La figura 8.6 muestra un ejemplo de suma y resta utilizando este método.

Figura 8. 6. Suma y resta de números mixtos

Factor de escala

Otro método emplea un punto lijo menos obvio. Este método es parecido al utilizado por la Balanza Binaria Mark 1 de Acme. A cada número se le aplica un cierto factor de escala. El punto binario, aunque no se define con tanta precisión como cuando se situaba entre dos bytes, está ahí en la mente del programador.

He aquí un ejemplo. Supongamos que utilizamos números de 16 bits. Decidimos que queremos tener cuatro bits fraccionarios. Esta decisión se basa en nuestra exigencia de *resolución*. Sabemos que cuatro bits fraccionarios nos permitirán obtener $^1/_{16}$ del valor actual, lo que se ajusta a nuestras necesidades.

La apariencia de nuestros números "con un factor de escala de 16" tendrá el aspecto que muestra la figura 8.7. Hay doce bits de entero, un punto binario invisible entre los bits 4 y 3, y cuatro bits de fracción. El máximo número positivo que podemos manejar es 01111111 111111111, que es +2047.9375; el máximo número negativo que podemos procesar es -2048.0000 que es 10000000 00000000.

Figura 8.7. Ejemplo de escalamiento

Antes de que podamos procesar algún número del mundo exterior, debemos escalarlos hasta la representación de este punto lijo. Hacemos esto introduciendo un número válido en el rango de -2048.0000 a +2047.9375

y, después, multiplicando por 16. Introduciendo 1000.55, por ejemplo, resulta 16008.8. Truncamos el .8 (lo quitamos) e introducimos el número 16008 como un número binario de 16 bits. (El número reconvertido es $^{16008}/_{16} = 1000.5$, perdiendo, por tanto, algo de precisión, como esperábamos.) Otros números se escalan de la misma forma.

Después, seguimos adelante y sumamos, restamos, multiplicamos y dividimos esos números en cualquier operación que queramos. Aquí aparece el obstáculo. Si sumamos o restamos números modificados de esta forma, el punto binario queda fijo en su posición sin problema. ¡Sin embargo, la multiplicación y la división mueven el punto binario! La figura 8.8 muestra algunos ejemplos. Tenemos que seguir la pista al punto en la multiplicación y división. Cada multiplicación mueve el punto del resultado dos posiciones más a la izquierda. Cada división mueve el punto dos posiciones más a la derecha.

Al final del proceso, después que la colocación del punto ha sido determinada por la multiplicación y por la división, reconvertimos los números en los valores actuales, dividiendo por 16. Como multiplicar y dividir por 16 se puede hacer fácilmente por medio de cuatro desplazamientos de un bit, la conversión y reconversión son sencillas. La figura 8.9 muestra un típico proceso para números en este formato.

Aunque tener que seguir la pista del punto binario es aburrido, la ventaja de este método es que podemos operar con las partes fraccionaria y entera de los números mixtos al mismo tiempo, sin tener que procesar la parte fraccionaria separadamente y "propagar el acarreo" a la parte entera. Utilice esta aproximación para cualquier proceso que requiera una serie lija de operaciones cuyo número sea reducido.

Conversión de datos

Si ha leído cuidadosamente este capítulo, probablemente se le planteará una pregunta: ¿cómo se pasan los datos en el formato de caracteres del mundo exterior a la forma binaria, escalada o no, y cómo se reconvierten después en una forma adecuada para mostrarse en una pantalla o en una impresora? Responderemos a esta pregunta en el próximo capítulo. Mientras tanto, hemos incluido algunos ejercicios de autoevaluación sobre fracciones y factores de escala.

NUMEROS ORIGINALES

```
5. 25 0101. 01
2. 5 0010. 10
```

APLICAR UN FACTOR DE ESCALA 4

```
010101 (5.25 \times 4 = 21) 001010 (2.5 \times 4 = 10)
```

SUMA

$$\begin{array}{lll} 010101 \\ \underline{001010} \\ \hline 0111111 &=& 0111.11 &=& 7.75 \end{array}$$

RESTA

MULTI PLI CACI ON

```
\begin{array}{r}
010101 \\
\underline{001010} \\
0101010 \\
\underline{101010} \\
11010010 = 110100.10 = 52.5!! \\
= 1101.0 \sim = 15.125
\end{array}
```

DIVISION

Figura 8.8. Operaciones con factores de escala

```
INTRODUCCION Y
MULTIPLICACION +36.75 POR +20.25
```

INTRODUCCION

```
+36.75 - 00100100.110 X 16 = 0000001001001 100 (+100.75 ESCALADO)
```

MULTIPLICACION

MOVIMIENTO DEL PUNTO PARA MULTIPLICAR

RECONVERSION

Figura 8.9. Proceso de números escalados

Ejercicios

1. ¿Cuáles son las fracciones decimales equivalentes a:

.10111; .1; .1111; .0000000000001?

2. Pasar las siguientes fracciones decimales a valores binarios:

.365; .3125; .777

3. ¿Cuáles son los números decimales equivalentes a los siguientes números binarios mixtos con signo?

00101110.1011; 10110111.1111

4.	Escale estos	números	por	256 y	escriba	el	resultado	en	la	forma	de	números
	binarios con	signo de	16 b	its:								

100; -99

5. Los siguientes números con signo se escalan por ocho. ¿Qué números decimales mixtos representan?

01011100; 1010110101101110

Transformaciones ASCII

Hasta aquí hemos hablado mucho acerca de procesar datos binarios en diversos formatos. Pero, ¿cómo entran los datos en el ordenador? Ciertamente, algunos se almacenan en el programa como constantes, pero otros deben introducirse desde el mundo real por medio de un teclado o terminal y, después, mostrarse en pantalla o por impresora. En este capítulo veremos cómo los datos del mundo real se transforman en su representación binaria y viceversa.

Big Ed y el inventor

Big Ed acababa de abrir el restaurante. Estaba ocupado preparándose para recibir al batallón hambriento de ingenieros, programadores, ejecutivos y científicos procedentes de las muchas industrias de microordenadores y semiconductores de los alrededores.

"¿Llego tarde?", bufó un hombre bajito y gordo, con un traje manchado de tiza y una pajarita.

"¡Oh, hola! ¿Tarde para qué?"

"Para la comida. Quería llegar aquí a tiempo para comer con toda la gente de las compañías de microordenadores."

"No, llega justo a tiempo. Están al llegar. ¿Espera usted a alguien?"

"No, quería hacer amistad con algunos ingenieros. Me llamo Antón Slivovitz. Soy inventor, y quería tener algún apoyo para mi nuevo invento."

"Bueno, puedo presentarle a alguno de nuestros clientes habituales. ¿Qué clase de cosas inventa usted?"

"Principalmente, cosas de alta tecnología. He inventado un sáser."

"¿Un sáser? ¿Es como un láser?"

"Bueno, algo así. Es una ampliación del sonido por emisión estimulada de radiación. Produce haces coherentes de sonido de una frecuencia determinada. Pensé que, posiblemente, podría convertirlo en algún tipo de rayo de la muerte; pero cuando lo intenté en un centro comercial abarrotado de gente, nadie resultó afectado. También he inventado un bínaco."

"¡Oh, oh... eh... hum ¿cuál es su último invento?"

"El que voy a intentar promocionar hoy es un código uniforme para dispositivos periféricos de microordenadores. Verá usted, si todos los fabricantes de terminales, teclados, impresoras, tableros de dibujo electrónicos y otros dispositivos (orientados a caracteres) utilizaran los mismos códigos, entonces se podría emplear fácilmente *cualquier* periférico con cualquier otro, o con cualquier sistema de microordenador. He desarrollado lo que llamo Antón Slivovitz Código de Información Interna, o ASCII, para resumir. Representa todos los caracteres alfabéticos (mayúsculas y minúsculas), dígitos numéricos y caracteres especiales, como el símbolo de la libra, el del dólar y el del tanto por ciento. Incluso está previsto para códigos especiales."

Según Antón describía su código, Bob Borrow, el ingeniero de Inlog, entraba.

"¿Dijo usted que ha desarrollado el código ASCII? ¿Puedo estrecharle la mano, señor... er...?"

"Slivovitz."

"Slivovitz. ¿Puede firmarme un autógrafo en esta tarjeta?"

"Por supuesto, yo... pero... No entiendo. Esta tarjeta dice códigos ASCII. Y ¡son lo mismo que el mío!"

"Señor Slivovitz, éstos son los códigos ASCII!"

"¿Quiere eso decir que alguien ya los utiliza?"

"Todo el mundo, salvo los de IBM. Y usted sabe ese viejo chiste de que cuando el gran gorila duerme, ja, ja, ja..."

"¡Oh, Dios mío! Bueno, volvamos al sáser..."

Diciendo así, el abatido inventor salió rápidamente por la puerta.

Códigos ASCII

Como debería haber deducido de lo anterior, los códigos ASCII son un conjunto estándar de códigos de caracteres de 7 bits, que se utilizan en los dispositivos periféricos para ordenadores, incluyendo microordenadores. Los códigos ASCII se muestran en la figura 9.1. El bit más significativo para

DIGITO HEXADECIMAL MAS SIGNIFICATIVO ОХ 2X 3X 4X 1X 5X 6X 7X 0 e Ρ X0 ESPACIO P Q I 1 A а q x 1 11 2 R x 2 В ь r 3 C S # s х 3 С \$ 4 D Т d t X 4 8 x 5 5 Ε U е u F ٧ f X 6 Š 6 ٧ 7 G W w х 7 g (8 Н X h X 8 × Y) 9 1 x 9 Y LF * J Z j XΑ : z K k XB + < L хс , CR ΧD М m > N Ð ΧE ? 0 ΧF

DIGITO **HEXADECIMAL** MENOS **SIGNIFICATIVO**

LF=SALTO DE LINEA CR = RETORNO DE CARRO

VARIAN

Figura 9.1. Códigos ASCII

todos los códigos no se utiliza y, normalmente, se establece como 0. Los que más nos interesan son los que representan los numerales de 0 a 9, el código para un signo más, el código para un signo menos y el código para un punto. Los códigos del 0 al 9 van de 30 a 39H, respectivamente; mientras el signo más es 2BH, el signo menos es 2DH y el de un punto es 2EH.

Cuando los datos se introducen o se sacan del microordenador, se maneja una cadena de caracteres de estos códigos. Por ejemplo, introduciendo una cadena de datos desde un teclado, el resultado podría ser el de los códigos mostrados en la figura 9.2, siendo almacenados en una memoria temporal que está dedicada al teclado. Sacar datos a una impresora podría tener lugar desde una línea de caracteres en una memoria temporal de impresión, como muestra la misma figura. El programa tiene que pasar los caracteres introducidos a binario antes de que el proceso se lleve a cabo.

Una vez finalizado éste, los resultados binarios se transforman de nuevo a caracteres para sacarlos por pantalla 0 por impresora.

Figura 9.2. Almacenamiento ASCII en una memoria temporal

Paso de ASCII a enteros binarios

Consideremos primero un paso de código ASCII a un valor entero binario. Supongamos que hemos introducido un valor de cinco decimales desde el teclado. El programa del manejo del teclado ha puesto esos caracteres en una memoria temporal, en algún lugar dentro del ordenador.

Antes de convertir los caracteres ASCII (que representan los dígitos del 0 al 9) a un valor binario, tenemos que definir algunas condiciones del valor introducido. Primero, tenemos que definir el tamaño de los datos con que operamos. Si tenemos que operar con enteros binarios de 16 bits, por ejemplo, entonces tendremos que limitar el valor de entrada de — 32,768 a + 32,767. Cualquier número mayor daría lugar a una entrada inválida. Tendremos que limitar también la entrada a valores enteros, sin fracciones.

Finalmente, tendremos que aceptar únicamente los caracteres del 0 al 9 y un prelijo de "+" o "-".

La conversión sería así:

- 1. Poner a cero un producto parcial.
- 2. Multiplicar el producto parcial por 10. En la primera pasada esto produce un cero.
- 3. Empezando por el carácter ASCII más significativo, cogerlo y restarle 30H.
- 4. Sumar el resultado al producto parcial.
- 5. Si éste no fuese el último carácter ASCII, volver al paso 2.
- 6. Si hubiese un prelijo "+", el producto parcial contiene ya el valor binario de 16 bits. Si tiene un prefijo "-", invertir el signo del producto de 16 bits para obtener el valor negativo.

Por supuesto, queda mucho por decir acerca del establecimiento de indicadores de la entrada en la memoria temporal, obtener el carácter, buscar un valor válido entre 30 y 39H, pasando por alto cualquier prefijo de signo, etc., pero éste es el algoritmo de la transformación general. La figura 9.3 muestra un ejemplo de esta transformación.

Este esquema de conversión puede emplearse para cualquier valor entero de entrada, si bien los valores mayores presentarán problemas a la hora de almacenar el producto parcial entero en los registros de una sola vez.

Paso de ASCII a fracciones binarias

Cuando la línea de entrada representa un número mixto con un entero, un punto decimal y una fracción, el problema de la transformación es más difícil. Tomemos el ejemplo que muestra la figura 9.4. La porción entera desde el primer carácter hasta el punto decimal se transforma según el método anterior, y se guarda el resultado.

La parte fraccionaria se transforma ahora en un valor entero (desde el primer carácter después del punto decimal hasta el último). Luego, hay que determinar cuántos bits va a ocupar la fracción. Escalar esa cantidad. Por ejemplo, si la fracción va a ocupar ocho bits, multiplique el resultado de la transformación por 256; esto puede hacerse por simple desplazamiento o, mejor aún, sumando un byte de ceros al resultado.

Después, tome el resultado escalado y efectúe una división de 10 veces el número de las posiciones decimales de la fracción. Si, como sucede en este caso, hay cuatro posiciones, divida la fracción escalada por 10,000. El cociente de la división es una fracción binaria que se ha de utilizar, y el

Figura 9.3. Paso de ASCII a enteros binarios

punto binario se alinea después del valor original de la transformación, como muestra la figura 9.4. Si el valor de entrada es negativo, invertir el signo de la parte entera y de la fracción.

Este esquema puede utilizarse para pasar un número mixto, ya el formato de entero/fracción o al de "punto binario implícito", como se describió en el capítulo anterior.

Figura 9.4. Paso de ASCII a fracción binaria

Paso de enteros binarios a ASCII

Después de haber realizado el proceso en el programa, el resultado debe pasarse a una línea ASCII de dígitos decimales, incluyendo un posible signo y un punto decimal.

Consideremos primero el paso de un valor entero de 8, 16 u otro número de bits. Una primera aproximación sería utilizar el algoritmo "dividir por diez y guardar los restos" para obtener una línea de valores. Cada valor puede variar entre cero y nueve. Como el *último* valor representa el primer carácter a imprimir, la transformación completa debe hacerse

antes de la conversión a ASCII. La figura 9.5 muestra un ejemplo de conversión.

El valor entero que ha de ser convertido está en un registro de 16 bits en el microprocesador. Primero se hace una prueba del signo. Si el signo es negativo, se invierte para obtener el valor absoluto. Se guarda el signo del resultado.

Figura 9.5. Conversión de binario entero a ASCII

El siguiente paso es una división sucesiva por diez, yendo los restos a una *memoria temporal de impresión* en orden inverso. Cuando el cociente es cero, la división se completa y todos los restos están en la memoria temporal.

Después, cada resto se transforma en ASCII sumándole 30H. El resultado es un dígito ASCII de 0 a 9. Después de transformar el último dígito, se almacena un signo + o — al principio de la memoria temporal de impresión, dependiendo del valor inicial. La línea de caracteres ASCII puede imprimirse llamando a una rutina de impresión.

Paso de fracciones binarias a ASCII

Antes de sacar un número, hay que comprobar su signo. Si el signo es negativo, se pone a 1 un indicador, y se *invierte* el signo del número para obtener su valor absoluto, a fin de obtener su transformación.

El número se separa entonces en una parte entera y otra fraccionaria. Puede dividirse de esta forma, si se mantienen separados el entero y la fracción. Si el número se ha escalado y tiene un punto binario fijo implícito, el desplazamiento separará la fracción y el entero en dos componentes. El entero puede transformarse ahora por el esquema "dividir por diez y guardar los restos", como muestra la figura 9.6. Los restos se ponen en orden inverso en una memoria temporal de impresión. El código ASCII para un punto decimal se almacena ahora en la memoria temporal de impresión después del último resto. Entonces se pasa cada resto a ASCII sumándole 30H.

Finalmente, hay que transformar la parte fraccionaria. Se halla el número de bits de la fracción. Este es en realidad el número de bits que se mantuvo mientras el proceso del número binario mixto tenía lugar. Alinee estos bits en un multiplicando. Luego, cada una, multiplique por una potencia de diez. En este caso, se van a emplear tres posiciones decimales, luego la parte fraccionaria se multiplica por 1000.

Luego, divida el resultado de la multiplicación por la potencia de dos igual al número de bits utilizados en la fracción. En este caso, se emplean cuatro bits, luego debería dividirse por dieciséis el resultado de la multiplicación. Esta división se puede hacer por desplazamiento. Descarte los bits desplazados fuera. El número resultante puede ahora pasarse a ASCII por el método empleado para los enteros, anteriormente descrito: "dividir por diez y guardar los restos" en orden inverso y sumando después 30H para pasar a ASCII. Sume un signo negativo en ASCII al principio de la memoria temporal de impresión y utilice una rutina de impresión para mostrar el resultado final.

Si se pregunta por qué se emplea el punto flotante, los anteriores algoritmos de multiplicación y división deberían arrojar alguna luz sobre la cuestión de por qué puede ser necesaria una forma genérica de manejar un amplio abanico de números en formato estándar. Las operaciones de punto flotante se describen en el próximo capítulo. Son aburridas, pero ino tanto como un programa que procese una variedad de números escalados como el que acabamos de ver!

Los siguientes ejercicios le ayudarán a entender el próximo capítulo.

Figura 9.6. Paso de binario a fracción ASCII

Ejercicios

1. Una memoria temporal almacena los siguientes valores ASCII. ¿Qué números decimales representan?

2. Pasar los siguientes números a ASCII (con signo):

Números en punto flotante

Los números en punto flotante de los microordenadores expresan valores en notación *científica*, donde cada uno está formado por una *mantisa y* una potencia de dos. En este capítulo veremos cómo se desarrollan las operaciones en punto flotante.

... y tres mil platos combinados para la nave nodriza...

Estaba empezando la noche, y Big Ed se preparaba para cerrar el restaurante. Después de echar fuera a media docena de ingenieros informáticos, que se quedaron contemplando la clara noche californiana, Big Ed cerró la puerta del edilicio.

"Bueno; buenas noches, muchachos; hasta ma... ¡¿Qué diablos es eso?!" Todas las cabezas giraron en la dirección que Ed señalaba con el dedo. Un gran objeto con luces intermitentes de olor naranja estaba suspendido en el aire, encima de la cabeza de Big Ed. Podía oírse un débil zumbido.

"¡Es un OVNI! ¡Por fin he visto uno!", dijo uno de los ingenieros, excitado y alegre.

Los ojos de todos quedaron fijos en el objeto que flotaba en el aire.

"¡No nos quedemos pasmados, sin hacer nada! ¡Hay que tratar de sacar una foto, o de comunicar con los ocupantes de la nave, o algo!"

"No sé... ¡Recuerden lo que pasó en 'La guerra de los mundos'!"

"Tengo una linterna en el coche. Un momento; la traeré", dijo uno de los ingenieros, de espíritu más aventurero que los demás.

Corrió hacia el coche y volvió con una linterna alargada, bastante potente.

"Más vale que 'ellos' no piensen que se trata de una especie de rayo laser o algo así, Frank", previno uno.

"Escuchad, tenemos que intentarlo. He visto todos los programas de Carl Sagan. Sé lo que hay que hacer. ¡Enviaré un número, a ver si responden!"

Apuntó con la linterna directamente al objeto, y la encendió y apagó varias veces.

"Nueve señales; ¡ahora veremos si responde con el mismo número!" En medio de una gran excitación general, un brillante rayo de luz dio un largo destello, uno corto, uno corto, uno largo y paró.

"¡Eso no es nueve!", dijo uno de los ingenieros.

"Sí; es nueve en binario. ¡Están probándonos para ver si hemos progresado ; si hemos superado la etapa de los equipos perforadores de tarjetas! Vamos a probar otra cosa. Probemos con la series de Fibonacci."

Envió un "1, 1, 2, 3, 5, 8, 13, 21, 34" y esperó. Casi inmediatamente después se recibió un "largo, largo, corto, largo, largo, largo".

"Eso es 110111, para el siguiente término de 55 en la serie", gritó el ingeniero de la literna.

"¿Probamos con pi?", sugirió uno del grupo.

"Sí, vamos a intentarlo. Tres destellos, uno, cuatro, uno..., sí, esos son los cuatro primeros dígitos..."

Todos estaban mirando expectantes, cuando el objeto respondió con una serie de destellos.

"Cópialos, Roy", dijo el ingeniero de la linterna.

El OVNI mandó una explosión de destellos, y la secuencia se paró.

"¡Chicos, esto no tiene ningún sentido!", dijo el ingeniero que estaba grabando la respuesta.

La figura 10.1 muestra lo que grabó:

Figura 10.1. Respuesta del OVNI

"¡Espera!¡Ya sé! ¡Esto es pi en notación en punto flotante!"

Los ingenieros se agruparon con excitación en torno al mensaje. Al cabo de los diez minutos siguientes recibieron algunas otras series.

"¿Qué dice ahora?", preguntó uno de los ingenieros.

"No sé; es diferente del resto. ¡Eh, espera! Esto es ASCII. Se lee... eeeh... '¿PUEDEN LEER ESTO?' Mensaje de vuelta: 'SI'."

El ingeniero de la linterna respondió con un 'SI' en ASCII.

"¿Qué dice ahora?", preguntó uno de los ingenieros, cuando su compañero transformó el mensaje recibido en un texto.

"Parece como un pedido para llevar", exclamó Ed, mirando por encima del hombro del ingeniero que sostenía el texto. "'CUATRO SANDWICHES DE REUBEN, DOS DE PATATAS FRITAS, CUATRO COCACOLAS.' No hay que preguntarse por qué pararon aquí. Al fin y al cabo, un cliente es un cliente..."

Ed volvió hacia la puerta de su restaurante, y sacó las llaves para abrirla...

Notación científica en punto f lotante

El punto flotante es, en realidad, una versión binaria de la notación científica. La notación científica puede expresar fácilmente números muy grandes y muy pequeños, en un formato uniforme que simplifica los procesos. En la notación científica, un valor se representa por un número mixto y una potencia de diez. El número se compone de un dígito y una fracción.

Tomemos el ejemplo del número de pulgadas en un kilómetro cuadrado. Hay que admitir que esto no es algo que se haga normalmente, a menos que uno se dedique a dividir parcelas para construir colonias de hormigas, pero muestra lo fácil que es trabajar con la notación científica. Hay 39 pulgadas en un metro. En un metro cuadrado, por tanto, hay 39 x 39 ó 1529 pulgadas cuadradas. El paso a notación científica es así: $1521 \times 10 \uparrow 0 = 1521$, ya que todo número elevado a 0 es uno. **Normalizando** la parte del número mixto, movemos el punto decimal tres dígitos, de forma que esté entre el 1 y el 5. Por cada desplazamiento a la izquierda, sumamos uno al **exponente**, **o** potencia de diez, y así tenemos:

$$1521 = 1521 \times 10 \uparrow 0 = 152.1 = 15.21 \times 10 \uparrow 2 = 1.521 \times 10 \uparrow 3$$

La última cifra es la forma normalizada, o estándar, de la notación científica. Ahora queremos hallar el número de metros cuadrados que hay en un kilómetro cuadrado. Sabemos que cada kilómetro tiene 1000 metros,

luego debe haber 1000 x 1000 metros cuadrados en un kilómetro cuadrado. Vamos a pasar 1000 a notación científica antes de continuar el proceso.

$$1000 = 100.0 \times 10 \uparrow 1 = 10.00 \times 10 \uparrow 2 = 1.000 \times 10 \uparrow 3$$

Para hallar la respuesta final, el número de pulgadas cuadradas de un kilómetro cuadrado, podemos decir:

Número de pulgadas cuadradas/km² = 1000 x 1000 x 1.521 x 10 \(^{\frac{1}{2}}\)9

que da lugar a 1.521 x 10 ↑ 9. Para expresar esto como un número sin exponente, desplace el punto decimal hacia la derecha y reste uno del exponente. Añada ceros si es necesario.

```
Número de pulgadas/km<sup>2</sup> = 1.521 \times 10 \uparrow 9 = 15.21 \times 10 \uparrow 8 = 152.1 \times 10 \uparrow 7 = 1521 \times 10 \uparrow 6 = 15210 \times 10 \uparrow 5 = 152100 \times 10 \uparrow 4 = 15210000 \times 10 \uparrow 3 = 152100000 \times 10 \uparrow 2 = 1521000000 \times 10 \uparrow 1 = 15210000000 \times 10 \uparrow 0 = 1,521,000,000
```

Los exponentes pueden también utilizarse en notación científica para expresar números muy pequeños. Calculemos cuántos ángeles pueden bailar en la cabeza de un alfiler. Adoptaremos las dimensiones angélicas estándar de un ángel por $^1/_{11,000}$ centímetros cuadrados o 0.0000909. El tamaño de la cabeza de un alfiler corriente (según la Asociación Americana de Fabricantes de Alfileres Corrientes) es 0.000965 centímetros cuadrados. Expresando ambos números en notación científica, tenemos:

```
Area de un ángel = 0.0000909

.0000909 \times 10 \uparrow 0 = 0.000909 \times 10 \uparrow - 1 =

0.00909 \times 10 \uparrow -2 = 0.0909 \times 10 \uparrow -3 =

0.909 \times 10 \uparrow -4 = 9.09 \times 10 \uparrow -5
```

Area de la cabeza de un alfiler = .000965 .000965 x
$$10 \uparrow 0 = 0.00965$$
 x $10 \uparrow - 1 = 0.0965$ x $10 \uparrow -2 = 0.965$ x $10 \uparrow -3 = 9.65$ x $10 \uparrow -4$

En las anteriores conversiones, restamos uno del exponente cada vez que desplazamos el punto decimal a la derecha. La potencia negativa de diez nos permite representar potencias de diez inversas $-\frac{1}{10},\frac{1}{100},\frac{1}{1000}$, etcétera.

Para hallar el número de ángeles bailando el vals del microordenador en la cabeza de un alfiler, dividimos el tamaño de un alfiler por el de un ángel:

Número de ángeles sobre la cabeza = $(9.65 \times 10 \uparrow -4)/(9.09 \times 10 \uparrow -5)$

Se aplica aquí la regla de que, si las bases son iguales, podemos restar los exponentes para dividir:

Número de ángeles sobre la cabeza =
$$9.65/9.09 \times 10 \uparrow (-4 + 5) =$$
 $9.65/9.09 \times 10 \uparrow 1 = 1.06 \times 10 \uparrow 1 =$ $10 \uparrow 6 \times 10 \uparrow 0 = 10.6$ ángeles

El uso de la notación científica estándar ha simplificado mucho los cálculos, puesto que todos los valores estaban en formato estándar en base 10, y podemos sumar exponentes para multiplicar y restarlos para dividir.

Resulta que sumar y restar dos números en notación científica es más complicado, en algunos aspectos, que multiplicarlos. Consideremos los dos números ${}^{3}/_{32}$ y ${}^{6}/_{60}$. En notación científica, son:

$$^{3}/_{32} = 0.09375 = 0.09375 \times 10 \uparrow 0 = .9375 \times 10 \uparrow -1 = 9.375 \times 10 \uparrow -2$$
 Y
$$^{6}/_{60} = 0.1 = 0.1 \times 10 \uparrow 0 = 1.0 \times 10 \uparrow -1$$

Pues bien; a la hora de sumar o restar dos números en notación científica, sus exponentes deben ser los *mismos*. Uno u otro número, por tanto, debe ajustarse para que ambos exponentes sean iguales. Podemos hacer esto, bien moviendo el punto decimal de 9.375 x 10 \uparrow -2 hacia la izquierda y sumando uno para que dé .9375 x $10 \uparrow$ - 1, o bien moviendo el punto decimal de 1.0 x $10 \uparrow$ - 1 a la derecha y restando uno para de dé $10.0 x x 10 \uparrow$ - 2. Una vez igualados los exponentes, podemos sumar o restar.

$$^{3}/_{32} + ^{6}/_{60} = 9.375 \times 10 \uparrow 2$$

$$\frac{+ 10.0 \times 10 \uparrow -2}{19.375 \times 10 \uparrow -2} = 1.9375 \times 10 \uparrow -1 = 0.19375 \times 10 \uparrow 0 = 0.19375$$

Ahora mismo, seguro que usted se estará preguntando: "¿Por qué no se limitaron a sumar las dichosas cantidades en notación 'normal'?' En muchos ordenadores, tiene más sentido pasar a notación científica; es más fácil seguir la pista al punto decimal, por poner un ejemplo.

Uso de potencias de dos en lugar de potencias de diez

Resulta que las reglas para sumar, restar, multiplicar y dividir números de la misma base sirven para cualquier base. ¡Podríamos haber utilizado simplemente la base 8, la base 11 o (dijo, triunfante) la base dos!

Hagamos la definición de un formato estándar en base dos para números. Será el mismo que se utiliza en muchos microordenadores. Para empezar, tenemos que elegir una serie de números. Si utilizamos la base dos (algunas máquinas, más grandes, utilizan la base 6), necesitaremos un lugar para colocar un exponente. Podemos reservar un número conveniente de bits para exponente.

Puesto que todo en los ordenadores parece estar estructurado en torno a los bytes, utilicemos un byte para el exponente. Esto nos dará ocho bits, permitiéndonos una serie de $2 \uparrow 0$ a $2 \uparrow 8 - 1$, o de 0 a 255, lo cual permitirá representar números que serían equivalentes a 5.79 x $10 \uparrow 76$.

Un momento, no obstante. Necesitamos también potencias negativas de dos, ya que hay que representar valores pequeños. Convertiremos los ocho bits de un exponente en un código exceso a 128. Esto significa que sumaremos 128 al valor del exponente para obtener el número almacenado en su byte, y lo restaremos de cualquier resultado para hallar el verdadero exponente. El código exceso a 128 se aplica para simplificar el manejo de números en punto flotante como una simple entidad. La figura 10.2 muestra el formato del exponente y algunos valores de muestra. Tenemos ahora una serie de exponentes, desde $2\uparrow -128$ hasta $2\uparrow +127(3.4 \times 10\uparrow -38 a 1.7 \times 10\uparrow 38)$.

Veamos qué ocurre con la *mantisa*; es decir, el número que se multiplica por la potencia de dos. Más que definir un rango, la mantisa define una *precisión*. Sabemos que dos bytes, o dieciséis bits, nos dan valores desde cero hasta 65,535 y alrededor de 4 $^{1}/_{2}$ dígitos decimales. No parece lo bastante amplio para muchos problemas. Para continuar con múltiplos de bytes, tendremos que acudir a tres bytes, o 24 bits. Ello nos dará de 0 a 16,777,215 o unos 7 dígitos decimales de precisión, que es probablemente una buena solución intermedia para resolver el conflicto entre las necesidades de almacenamiento y la precisión.

Figura 10.2. Formato y valores del exponente

Lo que ahora tenemos como un formato aproximado se muestra en la figura 10.3: tres bits de mantisa, y uno para el exponente. ¿Qué podemos decir de la *normalización?* La regla que nos guía aquí es que nos gustaría alcanzar la máxima precisión posible.

Figura 10.3. Primer esbozo de formato en punto flotante

Para ello, hay que guardar tantos bits significativos como sea posible. Puesto que tenemos un número limitado de bits para almacenar la mantisa, debemos deshacernos de los bits despreciables y conservar sólo los significativos. Esto lo hacemos normalizando la mantisa, de modo que el primer "1" se sitúa inmediatamente a la derecha de un supuesto punto binario, justamente junto al bit de la mantisa, como muestra la figura 10.4. De esta forma, aseguramos la máxima precisión, ya que no hay ceros despreciables junto al primer 1, ni parte truncada de la mantisa al final. El primer bit de la mantisa, por tanto, es siempre un 1.

Figura 10.4. Segundo esbozo de formato en punto flotante

Veamos. Tenemos ahora un byte para el exponente y una mantisa normalizada de tres bytes. ¿Qué se nos ha olvidado? Resulta que podemos expresar números positivos, pero no números con signo. ¡El bit de signo ha desaparecido! Definitivamente, necesitamos un bit de signo, a menos que prefiramos que nuestros usuarios del BASIC se limiten exclusivamente a los números positivos...

Una solución es ésta: como todo número en punto flotante va a ser forzosamente normalizado, ¿por qué no dejar que el primer dígito de la mantisa represente el bit de signo? El resto del número se almacenará en complemento a dos. Nos limitaremos a despreciar el primer 1 cuando sepamos lo que es. El formato final de un cálculo en punto flotante tiene la forma que muestra la figura 10.5.

Se observará en la figura 10.5 que hay dos métodos para almacenar números en punto flotante. Esto se debe a la distinta manera en que los microprocesadores almacenan valores de 16 bits. Si los datos se almacenan en la memoria en dos almacenes de 16 bits (microprocesador Z-80), el formato presenta primero el byte menos significativo, seguido del más significativo. Esto quiere decir que el número en punto flotante se almacena de la manera siguiente: byte menos significativo de la mantisa, el siguiente byte más significativo de la mantisa y byte del exponente.

Figura 10.5. Versión final de formato en punto flotante

La figura 10.6 muestra el ejemplo -tres ejemplos- de constantes almacenadas en la memoria. Es conveniente estudiarlas para aprender mejor cómo se descifran formatos en punto flotante.

Números en punto flotante de doble precisión

El rango de los exponentes es, probablemente, más que adecuado para la mayoría de los procesos. Pocas cantidades son mayores que 10 elevado a 39. El número de dígitos de precisión, sin embargo, debería incrementarse si el coste de almacenaje no es muy elevado. Se añade otro dígito decimal por cada 3 ¹/₂ bits, aproximadamente (3 bits escalados por 8 y

A) Primer ejemplo.

B) Segundo ejemplo.

Figura 10.6. Constantes en punto flotante de la memoria

Fig. 10.6 (cont.). Constantes en punto flotante de la memoria.

4 escalados por 16). Por consiguiente, por cada dos bytes sumados a la mantisa, se añaden alrededor de 5 dígitos decimales.

Un formato de punto flotante en doble precisión que se halla en algunas versiones de BASIC añade cuatro bytes más a la mantisa, para obtener una precisión total de unos 17 dígitos decimales, al tiempo que mantiene el mismo rango de números. Este esquema se muestra en la figura 10.7.

Cálculos en los que se emplean números binarios en punto flotante

Las operaciones en las que se utilizan números binarios en punto flotante se asemejan a las operaciones en notación científica. Se pueden multiplicar o dividir dos números normalizados en punto flotante efectuando una operación de multiplicar enteros en la mantisa, sumando o restando los exponentes.

Las sumas o restas de dos números en punto flotante han de efectuarse igualando los exponentes. Como el formato de la mantisa sólo ad-

Figura 10.7. Formato de punto flotante en doble precisión

mite fracciones de valor menor de 1, el número del menor exponente se ajusta desplazando la mantisa a la derecha y sumando uno al valor del exponente por cada desplazamiento, hasta que se igualen.

Los algoritmos de operaciones en punto flotante son bastante complicados, y el código actual de operaciones en punto flotante constituye una parte considerable del intérprete BASIC. Aunque aquí no podemos entrar en detalles, esperamos que la materia de los dos capítulos anteriores haya proporcionado algún conocimiento de los principios básicos del manejo de fracciones, números mixtos y operaciones en punto flotante.

Ejercicios

1. Pase los números siguientes a notación científica:

3.141600; 93,000,000; -186,000; 0.0000135

2. Efectúe las siguientes operaciones mediante notación científica:

$$3.14 \times .000152 \times 200,000 = ?$$

3. Expresar estas potencias de dos como valores exponenciales de 8 bits con código exceso a 128 :

 $2 \uparrow 0$, $2 \uparrow 1$, $2 \uparrow -5$, $2 \uparrow 35$, $2 \uparrow -40$, $2 \uparrow 128$, $2 \uparrow -129$

4. Pasar estos números en punto flotante a valores decimales. La mantisa va desde el byte más significativo al menos significativo, de izquierda a derecha. El exponente es el byte del extremo de la derecha.

00010000 00000000 00000000 10000111 = ? 10010011 looooooo 00000000 10000111 = ?

Apéndice A

Soluciones de los ejercicios

CAPITULO 1

- 1. 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011; 11100, 11101, 11110, 11111, 100000.
- 2. 53, 16, 85, 240, 14185.
- 4. 00000101, 00110101, 00010101.
- 5. 15, 63, 255, 65535. $(2 \uparrow n)$ 1.

CAPITULO 2

- 1. $9 \times 16 \uparrow 2 + 14 \times 16 \uparrow 1 + 2 \times 16 \uparrow 0$.
- 2. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, ll, 12, 13, 14.
- 3. 5, AH, AAH, 4FH, B63AH.
- 4. 101011100011, 100110011001, 1111001000110010.
- 5. 227, 82, 43690.
- 6. DH, FH, 1CH, 3E8H.
- 7. FFFFH.
- 8. 73, 219.
- 9. 7, 161, 310.
- 10. Es imposible.
- 11. 321.

CAPITULO 3

- 1. 1 + 3 = 4(100), 7 + 15 = 22(10110), 21 + 42 = 63(1111111).
- 2. 2-1=1 (1), 7-5=2 (10), 12-1=11 (1011).
- 3. No es necesario ll 1, es necesario 86, es necesario 128.
- 4. 11111111, 111111110, 111111101, 11100010, 00000101, 01111111.
- 6. 1111111011010100 (-300) + 1111111111111111 (-5) = 1111111011001111 (-305).

CAPITULO 4

- 1. +127 + 1 = +128 (10000000, desbordamiento), +127 1 = +126 (01111110, no hay desbordamiento), -81 + (-1) = -82 (10101110, no hay desbordamiento).
- 2. Resultado = 10000000 (desbordamiento, pero no acarreo), resultado = 0000000 (acarreo, pero no desbordamiento).
- 3. Resultado = 00000000 (Z = 1, S = 0), resultado = 00110101 (Z = 0, S = 0).

CAPITULO 5

- 1. 10101111, 11110111.
- 2. 10100101, 110101 ll.
- 3. XXXYYXXX y 00011000 = 000YY000.
- 4. 11100001 (-31), 1011 (-5), 01010110 (+86).
- 5. 01011110, 00000001.
- 6. 10010111, 01000000.
- 7. c = 0.010111111, c = 1.000000000.
- 8. 000101111 C = 1. 110000000 c = 0.
- 9. 001111111 C = 1 (antes = + 127 después = +63), 00101101 C = 0 (antes = +90 después = +45), 01000010 C = 1 (antes = -123 después = +66), 01000000 C = 0 (antes = -128 después = +64).
- 10. 11111110 C = 0 (antes = + 127 después = -2), 10110100 C = 0 (antes = +90 después = -76), 00001010 C = 1 (antes = 123 después = +10), 00000000 C = 1 (antes = -128 después = 0).
- ll. 00111111 (antes = + 127 después = + 63), 11000010 (antes = 123 después = 62), 11000000 (antes = 128 después = 64).

CAPITULO 6

- 1. 11111111000000001 (255 x 255 = 65025).
- 2. 1111111111111111, 11111111111111111,
- 3. 1 = negativo, 0 = positivo haciendo O-exclusivo con los signos de los operandos.

CAPITULO 7

- 1. 11111111 11111111 11111111 o 16,777,215.
- 2. 00100010 00000000 01011010 01000000.
- 3. 00000000 111111110 11011001 11111111.
- 4. 11000000 01010111 01000100 10000001.
- 5. 00011111 11010101 11011101 10111111 c = 1.

CAPITULO 8

- 1. .71875, .5, .9375, .00012207...
- 2. .01011101..., .0101, .1100011...
- 3. 46.6875, -73.0625.
- 4. 0110010000000000, 1001110100000000.
- 5. 11.5, 2642.25.

CAPITULO 9

- 1. +012391, -098, -01.52, +.768.
- 2. 2B 39 35 38 2E 32. 2D 31 30 31 31 2E 35 39.

CAPITULO 10

- 1. 3.1416 x $10 \uparrow 0$, 9.3 x $10 \uparrow 7$, -1.86 x $10 \uparrow 5$, 1.35 x $10 \uparrow$ -5.
- 2. $3.14 \times 1.52 \times 10 \uparrow -4 \times 2.0 \times 10 \uparrow 5 = 9.5 \times 10 \uparrow 1$ $3.1 \times 10 \uparrow 6/1.5 \times 10 \uparrow -5 = 2.0 \times 10 \uparrow 1$
- 3. 10000000, 10000001, 01111011, 10100011, 01011000, imposible, imposible.
- 4. 72.0, -73.75.

Apéndice B

Conversiones binario, octal, decimal y hexadecimal

Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.	Binario	Octal	Dec.	Hex.
0000000000	0000	0 000	0000011010	0032	26 01A	0000110100	0064	52	034
0000000001	0001	1 001	0000011011	0033	27 01B	0000110101	0065	53	035
0000000010		2 002	0000011100	0034	28 01C	0000110110	0066	54	036
0000000011	0003	3 003	0000011101	0035	29 01D	0000110111	0067	55	037
0000000100	0004	4 004	0000011110	0036	30 01E	0000111000	0070	56	038
0000000101	0005	5 005	0000011111	0037	31 01F	0000111001	0071	57	039
0000000110	0006	6 006	0000100000	0040	32 020	0000111010	0072	58	03A
0000000111	0007	7 007	0000100001	0041	33 021	0000111011	0073	59	03B
0000001000	0010	8 008	0000'00010	0042	34 022	0000111100	0074	60	03C
0000001001	0011	9 009	0000100011	0043	35 023	0000111101	0075	61	03D
0000001010	0012	10 OOA	0000100100	0044	36 024	0000111110	0076	62	03E
0000001010	0012	II OOB	0000100101	0045	37 025	0000111111	0077	63	03F
0000001110		12 00C	0000100110	0046	38 026	0001000000	0100	64	040
0000001101	0015	13 OOD	0000100111	0047	39 027	0001000001	0101	65	041
0000001101	0016	14 00E	0000101000	0050	40 028	0001000010	0102	66	042
0000001111	0017	15 OOF	0000101001	0051	41 029	0001000011	0103	67	043
0000010000	0020	16 010	0000101010	0052	42 02A	0001000100	0104	68	044
0000010000	00-0	17 011	0000101011	0053	43 02B	0001000101	0105	69	045
0000010011	0022	18 012	0000101100		44 02C	0001000110	0106	70	046
0000010011	0023	19 013	0000101101		45 02D	0001000111	0107	71	047
0000010011	0024	20 014	0000101110		46 02E	0001001000	0110	72	048
0000010101	0025	21 015	0000101111		47 02F	0001001001	0111	73	049
0000010101	0026	22 016	0000111111	0060	48 030	0001001001		74	04A
0000010110	0027	23 017	0000110001	0061	49 031	0001001011			04B
000001111	0030	24 018	0000110001	0002	50 032	0001001100		76	04C
0000011001	0031	25 019	0000110010	0063	51 033	0001001101		77	04D
0000011001	0001	20 010	0000110011	0000	01 000		0210	• • •	

Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.
0001001110		78 04E	0010000110 0010000111	0206 0207	134 086 135 087	0010111110 0010111111	0276 0277	190 OBE 191 OBF
0001001111 0001010000		79 04F 80 050	0010000111	0207	136 088	0011000000	0300	191 OBF
0001010000		81 051	0010001000	0211	137 089	0011000001	0301	193 0C1
0001010010		82 052	0010001010	0212	138 08A	0011000010	0302	194 OC2
0001010011		83 053	0010001011	0213	139 08B	0011000011	0303	195 OC3
0001010100	0124	84 054	0010001100 0010001101	0214 0215	140 08C 141 08D	0011000100 0011000101	0304 0305	196 0C4 197 0C5
0001010101 0001010110	0125 0126	85 055 86 056	0010001101	0215	141 08D 142 08E	0011000101	0305	197 0C3
0001010111	0127	87 057	0010001111	0217	143 08F	0011000111	0307	199 Oc7
0001011000	0130	88 058	0010010000	0220	144 090	0011001000	0310	200 0C8
0001011001		89 059	0010010001	0221	145 091	0011001001	0311	201 OC9
0001011010	0132	90 05A 91 05B	0010010010 0010010011	0222 0223	146 092 147 093	0011001010 0011001011	0312 0313	202 OCA 203 OCB
0001011011 0001011100	0133 0134	91 05B 92 05C	0010010011	0223	148 094	0011001011	0313	204 000
0001011101		93 05D	0010010101	0225	149 095	0011001101	0315	205 0CD
0001011110	0136	94 05E	0010010110	0226	150 096	0011001110	0316	206 0CE
0001011111		95 05F	0010010111		151 097	0011001111	0317	207 OCF
0001100000	0140	96 060 97 061	0010011000 0010011001	0230 0231	152 098 153 099	0011010000 0011010001	0320 0321	208 0D0 209 0D1
0001100001 0001100010	0141 0142	98 062	0010011001	0231	153 099 154 09A	0011010001	0321	210 oD2
0001100011	0143	99 063	0010011010	0232	155 09B	0011010011	0323	211 0D3
0001100100	0144	100 064	0010011100	0234	156 09C	0011010100	0324	212 0D4
0001100101	0145	101 065	0010011101	0235	157 09D	0011010101	0325	213 0D5
0001100110 0001100111	0146 0147	102 066 103 067	0010011110 0010011111		158 09E 159 09F	0011010110 0011010111	0326 0327	214 0D6 215 0D7
0001100111	0150	104 068	0010100000	0237	160 OAO		0330	216 0D8
0001101001	0151	105 069	0010100001	0241	161 OA1	0011011001	0331	217 OD9
0001101010	0152	106 06A	0010100010	0242	162 0A2	0011011010	0332	218 ODA
0001101011 0001101100	0153 0154	107 06B 108 06C	0010100011	0243	163 0A3	0011011011	0333	219 ODB
0001101100	0154	100 06D	0010100100 0010100101	0244 0245	164 0A4 165 0A5	0011011100 0011011101	0334 0335	220 0DC 221 0DD
0001101110	0156	110 06E	0010100101	0245	166 0A6	0011011101	0336	222 ODE
0001101111	0157	111 06F	0010100111	0247	167 0A7	0011011111	0337	223 ODF
0001110000	0160	112 070	0010101000	0250	168 0A8	0011100000	0340	224 OEO
0001110001 0001~10010	0161 0162	113 071 114 072	0010101001	0251	169 0A9	0011100001		225 OE1
0001110011	0163	115 073	0010101010 0010101011	0252 0253	170 0AA 171 0AB	0011100010 0011100011	0342 0343	226 0E2 227 0E3
0001110100	0164	116 074	00101011100	0254	172 0AC	0011100100	0344	228 0E4
0001110101	0165	117 075	0010101101	0255	173 OAD	0011100101	0345	229 0E5
0001110110 0001110111	0166 0167	118 076 119 077	0010101110	0256	174 0AE	0011100110	0346	230 0E6
0001110111	0170	120 078	0010101111 0010110000	0257 0260	175 OAF 176 OBO	0011100111 0011101000	0347 0350	231 0E7 232 0E8
0001111001	0171	121 079	0010110000	0261	177 0B1	0011101000	0351	232 0E8
0001111010	0172	122 07A	0010110010	0262	178 0B2	0011101010	0352	234 OEA
0001111011		123 07B	0010110011		179 OB3	0011101011		235 OEB
0001111100 0001111101	0174	124 07C 125 07D	0010110100		180 OB4	0011101100 0011101101		236 OBC 237 OED
0001111101		126 07E	0010110101 0010110110	0265 0266	181 OB5 182 OB6	0011101101		237 OED
0001111111		127 07F		0267	183 OB7	0011101111		239 OEF
0010000000	0200	128 080	0010111000	0270	184 OB8	0011110000	0360	240 OFO
0010000001	0201	129 081 130 082	0010111001 0010111010	0271	185 OB9 186 OBA	0011110001		241 0F1
0010000010 0010000011	0202 0203	130 082 131 083		0272	186 UBA 187 OBB	0011110010 0011110011	0362 0363	242 OF2 243 OF3
0010000100		132 084	0010111100	0274	188 OBC	0011110011	0364	243 OF3
0010000101	0205	133 085	0010111101	0275	189 OBD	0011110101	0365	245 OF5

Binario	Octal	Dec.	Hex.	Binario	Octal	Dec.	Hex.	Binario	Octal	Dec. Hex.
0011110110	0366	246	OF6	0100101110	0456	302	12E	0101100110	0546	356 166
0011110111	0367	247		0100101111 0100110000	0457 0460	303	12P	0101100111 0101101~00	0547 0550	359 167 360 166
0011111000 0011111001	0370 0371	246 249	0F8 0F9	0100110000	0461	304 305	130 131	0101101000		361 169
0011111010	0372	250	0FA	0100110010	0462	306	132	0101101010	0552	362 16A
0011111011	0373	251	0FB 0FC	0100110011	0463	307	133	0101101011	0553	363 16B
0011111100 0011111101	0374 0375	252 253		0100110100 0100110101	0464 0465	306 309	134 135	0101101100 0101101101	0554 0555	364 16C 365 16D
0011111110	0376	254		0100110110	0466	310	136	0101101110	0556	366 16E
0011111111	0377	255	0FF	0100110111	0467	311	137	0101101111		367 16F
0100000000 0100000001	0400 0401	256 257	100 101	0100111000 0100111001	0470 0471	312 313	136 139	0101110000 0101110001	0560 0561	366 170 369 171
0100000001	0402	256	102	0100111001	0471	314	13A	0101110010		370 172
0100000011	0403	259	103	0100111011	0473	315	13B	0101110011	9563	371 173
0100000100 0100000101	0404 0405	260 261	104 105	0100111100 0100111101	0474 0475	316 317	13C 13D	0101110100 0101110101	0564 0565	372 174 373 175
0100000101	0405	262	106	0100111101	0475	316	13E	0101110101	0566	373 175 374 176
0100000111	0407	263	107	0100111111	0477	319	13F	0101110111		375 177
0100001000	0410	264		0101000000	0500	320	140	0101111000	0570	376 176
0100001001 0100001010	0411 0412	265 266	109 10A	0101000001 0101000010	0501 0502	321 322	141 142	0101111001 0101111010	0571 0572	377 179 376 17A
0100001011	0413	267	10B	0101000011	0503	323	143	0101111011	0573	379 17B
0100001100	0414		10C	0101000100	0504	324	144	0101111100	0574	360 17c
0100001101 0100001110	0415 0416	269 270	10D 10E	0101000101 0101000110	0505 0506	325 326	145 146	0101111101 0101111110	0575 0576	361 17D 362 17E
0100001110	0417	271	10F	0101000110	0507	327	147	0101111111	0577	363 17F
0100010000	0420	272	110	0101001000	0510	326	146	0110000000	0600	364 160
0100010001	0421	273	111	0101001001	0511	329	149 14A	0110000001 0110000010	0601 0602	365 161
0100010010 0100010011	0422 0423	274 275	112 113	0101001010 0101001011	0512 0513	330 331	14A 14B	0110000010	0602	366 162 367 163
0100010100	0424	276	114	0101001100	0514	332	14C	0110000100	0604	366 164
0100010101	0425	277	115	0101001101	0515	333	14D	0110000101	0605	369 165
0100010110 0100010111	0426 0427	276 279	116 117	0101001110 0101001111	0516 0517	334 335	14E 14F	0110000110 0110000111	0606 0607	390 166 391 167
0100011000	0430	260		01010101111	0520	336	150	0110001000	0610	392 166
0100011001	0431	261	119	0101010001	0521	337	151	0110001001	0611	393 169
0100011010 0100011011	0432 0433	262 263	11A 11B	0101010010 0101010011	0522 0523	336 339	152 153	0110001010 0110001011	0612 0613	394 18A 395 18B
0100011011	0433		11C	0101010011	0524	340	154	FREE COLUMN TO THE COLUMN TO T	0614	396 18C
0100011101	0435		11D	0101010101	0525	341	155	0110001101	0615	397 18D
0100011110	0436 0437		11E 11F	0101010110	0526	342	156	0110001110 0110001111	0616 0617	396 18E 399 18F
0100011111 0100100000	0437	267 266	120	0101010111 0101011000	0527 0530	343 344	157 156	0110001111	0620	400 190
0100100001	0441	269	121	0101011001	0531	345	159	0110010001	0621	401 191
0100100010	0442	290	122	0101011010	0532	346		0110010010	0622	402 192
0100100011 0100100100	0443 0444	291 292	123 124	0101011011 0101011100	0533 0534	347 348	15B	0110010011 0110010100	0623 0624	403 193 404 194
0100100100	0445	293	125	0101011101	0535	349		0110010101	0625	405 195
0100100110	0446	294	126	0101011110	0536	350	15E	0110010110		406 196
0100100111 0100101000	0447 0450	295 296	127 126	0101011111 0101100000	0537 0540	351 352	15F 160	0110010111 0110011000	0627	407 197 406 196
0100101000		297	129	0101100000	0540	352 353	161	0110011000		409 199
0100101010	0452	296	12A	0101100010	0542	354	162	0110011010		410 19A
0100101011 0100101100	0453 0454	299 300	12B 12c	0101100011	0543	355 356	163 164	0110011011 0110011100		411 19B 412 19C
0100101100	0455	301		0101100100 0101100101	0544 0545	356 357	165	0110011100		412 190 413 19D

Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.
0110011110	0636	414 19E	0111010110	0726	470 1D6	1000001110	1016	526 20E
0110011110		415 19F	0111010111		471 1D7	1000001111		527 20F
0110011111		416 1A0	0111011000		472 1D8	1000010000	1020	528 210
0110100000		417 1A1	0111011000		473 1D9	1000010001	1021	529 211
0110100010		418 1A2	0111011010		474 1DA	1000010010	1022	530 212
0110100011		419 1A3	0111011011		475 1DB	1000010011	1023	531 213
0110100100		420 1A4	0111011100		476 1DC	1000010100	1024	532 214
0110100101	0645	421 1A5	0111011101		477 1DD	1000610101		533 215
0110100110	0646	422 lA6	0111011110	0736	478 1DE	1000010110	1026	534 216
0110100111	0647	423 1A7	0111011111	0737	479 1DF	1000010111		535 217
0110101000	0650	424 1A8	0111100000	0740	480 1E0	1000011000		536 218
0110101001	0651	425 1A9	0111100001		481 1El	1000011001		537 219
0110101010		426 1AA	0111100010		482 1E2	1000011010		538 21A
0110101011		427 1AB	0111100011		483 1E3	1000011011		539 21B
0110101100		428 1AC	0111100100	0744	484 1E4	1000011100		540 21c
0110101101		429 1AD	0111100101		485 1E5	1000011101		541 21D
0110101110		430 1AE	0111100110		486 lE6	1000011110		542 21E
0110101111		431 LAF 432 1B0	0111100111		487 lE7	1000011111		543 21F
0110110000			0111101000		488 1E8	1000100000		544 220 545 221
0110110001 0110110010		433 1B1 434 1B2	0111101001		489 1E9 490 1EA	1000100001 1000100010		546 222
0110110010		434 1B2 435 1B3	0111101010		490 1EA 491 1EB			
0110110011		436 lB4	0111101011 0111101100		491 1EB 492 1EC	1000100011 1000100100		547 223 548 224
0110110100	0665	430 IB4 437 1B5			492 1ED	1000100100		549 225
0110110101	0666	438 1B6	0111101101 0111101110		493 1EE	1000100101		550 226
0110110111		439 1B7	0111101110		495 1EF	1000100110		551 227
01101111000		440 lB8	0111111111		496 1F0	1000100111		552 228
0110111001		441 1B9	0111110000		497 1F1	1000101000		553 229
0110111010		442 1BA	0111110001		498 1F2	1000101001		554 22A
0110111011		443 1BB	0111110011		499 1F3	1000101011		555 22B
0110111100	0674	444 1BC	0111110111		500 1F4	1000101100		556 22C
0110111101	0675	445 1BD	0111110101		501 1F5	1000101101		557 22D
0110111110	0676	446 1BE	0111110110		502 1F6	1000101110		558 22E
0110111111	0677	447 1BF	0111110111	0767	503 1F7	1000101111	1057	559 22F
0111000000	0700	448 1C0	0111111000	0770	504 1F8	1000110000	1060	560 230
0111000001	0701	449 1C1	0111111001	0771	505 1F9	1000110001	1061	561 231
0111000010	0702	450 1C2	0111111010	0772	506 1FA	1000110010	1062	562 232
0111000011	0703	451 1C3	0111111011	0773	507 1FB	1000110011	1063	563 233
0111000100	0704	452 1C4	0111111100	0774	508 1FC	1000110100	1064	564 234
0111000101	0705	453 1C5	0111111101	0775	509 1FD	1000110101	1065	565 235
0111000110	0706	454 106	0111111110	0776	510 1FE	1000110110		566 236
0111000111		455 1C7	0111111111	0777	511 1FF	1000110111	1067	567 237
0111001000	0710	456 1C8	1000000000		512 200	1000111000		568 238
0111001001		457 1C9	1000000001	1001	513 201	1000111001		569 239
0111001010	0712	458 1CA	1000000010		514 202	1000111010		570 23A
0111001011		459 la?	1000000011		515 203	1000111011		571 23B
0111001100		460 1CC	1000000100		516 204	1000111100		572 23C
0111001101		461 1CD 462 1CE	1000000101		517 205	1000111101		573 23D
0111001110		462 ICE 463 ICF	1000000110		518 206	1000111110		574 23E
0111001111		463 ICF 464 ID0	1000000111		519 207	1000111111		575 23F
0111010000 0111010001		464 1D0 465 1D1	1000001000		520 208	1001000000		576 240
0111010001		466 1D2	1000001001 1000001010		521 209 522 20A	1001000001		577 241
0111010010		466 1D2 467 1D3	1000001010			1001000010 1001000011		578 242 579 243
0111010011		468 1D4	1000001011		523 20B 524 20C	1001000011		579 243 580 244
0111010100		469 1D5	1000001100		524 20C 525 20D	1001000100		
0111010101	0123	409 ITM	1000001101	1013	J23 ZUD	1001000101	1103	581 245

Binario	Octal	Dec.	Hex.	Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.
1001000110	1106	582	246	1001111110	1176	638 27E	1010110110	1266	694 2B6
1001000111		583	247	1001111111	1177	639 27F	101011011		
1001001000	1110		248	1010000000		640 280	1010111000		
1001001001		585		1010000001		641 281 642 282	1010111001		
1001001010 1001001011		586 587	24A 24B	1010000010 1010000011		643 283	1010111010 1010111011		
1001001011			24C	1010000011		644 284	1010111011		
1001001101		589	24D	1010000101		645 285	1010111100		
1001001610		590	24E	1010000110	1206	646 286	1010111110		
1001001111	1117	591	24F	1010000111		647 287	1010111111	1277	703 2BF
1001010000		592	250	1010001000		648 288	1011000000		
1001010001		593	251	1010001001		649 289 650 28A	1011000001		
1001010010			252 253	1010001010 1010001011		650 28A 651 28B	1011000010 1011000011		
1001010011 1001010100		595 596	254	1010001011		652 28C	101100001		
1001010101			255	1010001101		653 28D	1011000101		
1001010110			256	1010001110		654 28E	1011000110		
1001010111		599	257	1010001111	1217	655 28F	1011000111	1307	711 2C7
1001011000	1130	600	258	1010010000		656 290	1011001000	1310	712 2C8
1001011001		601	259	1010010001		657 291	1011001001		
1001011010		602	25A	1010010010 1010010011		658 292	1011001010		714 2CA
1001011011			25B 25C	1010010011		659 293 660 294	1011001011 1011001100		715 2CB
1001011100 1001011101			25D	1010010100		661 295	1011001100		716 200 717 200
1001011101			25E	1010010110		662 296	1011001111		
1001011111		607	25F	1010010111	1227	663 297	1011001111		719 2CF
1001100000	1140	608		1010011000	1230	664 298	1011010000	1320	720 2D0
1001100001		609		1010011001		665 299	1011010001		721 2D1
1001100010		610	262	1010011010		666 29A	1011010010		
1001100011 1001100100		611 612	263 264	1010011011		667 29B	1011010011 1011010100		723 2D3
1001100100		613	265	1010011100 1010011101		668 29c 669 29D	1011010100		724 2D4 725 2D5
1001100101			266	1010011101		670 29E	1011010101		726 2D6
1001100111		615	267	1010011111		671 29F	1011010111		727 2D7
1001101000	1150	616	268	1010100000	1240	672 2A0	1011011000	1330	728 2D8
1001101001		617	269	1010100001	1241	673 2A1	1011011001		729 2D9
	1152	618	26A	1010100010		674 2A2	1011011010		730 2DA
1001101011		619	26B	1010100011		675 2A3	1011011011 1011011100		731 2DB
1001101100 1001101101	1154	620 621	26C 26D	1010100100 1010100101		676 2A4 677 2A5	1011011100		732 2DC 733 2DD
1001101101			26E	1010100101		678 2A6	1011011110		733 2DD 734 2DE
1001101111			26F	1010100111		679 2A7	1011011111		735 2DF
1001110000	1160	624	270	1010101000	1250	680 2A8	1011100000	1340	736 2E0
1001110001	1161		271	1010101001	1251	681 2A9	1011100001		737 2E1
1001110010		626	272	1010101010		682 2AA	1011100010		738 2E2
1001110011		627		1010101011		683 2AB	1011100011		
1001110100			274	1010101100		684 2X	1011100100 1011100101		
1001110101 1001110110			275 276	1010101101 1010101110		685 2AD 686 2AE	1011100101		
1001110110		631		10101011110		687 2AF	1011100110		
1001110111			278	1010101111		688 2B0	1011101000		
1001111001		633		1010110000		689 2Bl	1011101001		
1001111010			27A	1010110010		690 2B2	1011101010		
1001111011			27B	1010110011		691 2B3	1011101011		
1001111100			27C	1010110100		692 2B4	1011101100		748 2EC
1001111101	1175	637	27D	1010110101	1265	693 2B5	1011101101	1355	749 2ED

Binario	Octal	Dec. Hex.	Binario	Octal	Dec. I	Hex	Binario	Octal	Dec. Hex.
1011101110 1011101111 1011110000 1011110010 1011110011 1011110101 1011110101 1011110101 1011110111 1011110111 1011111011 1011111011 1011111011 1011111101 1011111101 1011111101 1011111111	1356 1357 1360 1361 1362 1363 1364 1365 1366 1367 1370 1371 1372 1373 1374 1375 1376 1400 1401 1402 1403 1404	750 2EE 751 2EF 752 2F0 753 2F1 754 2F2 755 2F3 757 2F5 758 2F6 759 2F7 760 2F8 761 2F9 762 2FA 763 2FB 764 2FC 765 2FD 766 2FF 768 300 769 301 770 302 771 303 772 304	1100100110 1100100111 1100101000 1100101001 1100101010 11001010101 1100101100 1100101101	1446 1447 1450 1451 1452 1453 1455 1456 1457 1460 1461 1462 1463 1464 1465 1467 1470 1471 1472 1473 1474	806 807 808 809 810 811 812 813 814 815 816 817 818 820 821 822 823 824 825 826 827 828	326 327 328 329 32A 32B 32C 32D 32E 337 331 332 333 333 334 335 336 337 338 338 338 338 338	1101011110 1101011111 1101100000 1101100001 110110	1536 1537 1540 1541 1542 1543 1544 1545 1546 1547 1550 1551 1552 1553 1554 1555 1556 1557 1560 1561 1562 1563 1564	862 35E 863 35F 864 360 865 361 866 362 867 363 868 364 869 365 870 366 871 367 872 368 873 369 874 36A 875 36B 876 36C 877 36D 878 36E 879 36F 880 370 881 371 882 372 883 373 884 374
1100000100 1100000101 1100000111 1100001000 1100001001 11000010101 1100001101 1100001101 1100001101 1100001101 110001000	1404 1405 1406 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1421 1422 1423 1424 1425 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437 1440 1431 1432 1433 1434 1435 1436 1437 1441 1442 1443		1100111100 1100111101 1100111111 1100111111	1474 1475 1476 1477 1500 1501 1502 1503 1504 1505 1506 1507 1510 1511 1512 1513 1514 1515 1516 1517 1520 1521 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533 1533 1533	828 829 830 831 832 8334 835 836 837 838 840 841 842 843 844 845 845 851 855 855 856 855	333C 333D 333E 340 341 342 343 344 345 346 347 348 349 340 341 342 343 344 345 346 347 348 349 340 341 341 342 343 344 345 346 347 347 348 349 349 340 341 340 340 340 340 340 340 340 340		1564 1565 1566 1567 1570 1571 1572 1573 1574 1575 1576 1577 1600 1601 1602 1603 1604 1605 1606 1610 1611 1612 1613 1614 1615 1616 1617 1620 1621 1622 1623	

Binario	Octal	Dec. Hex.	Binario	Octal	Dec. Hex.	Binario	Octal	Dec.	Нех
1110010110	1626	918 396	1110111010	1672	954 3BA	1111011110	1736	990	3DE
1110010111	1627	919 397	1110111011	1673	955 3BB	1111011111	1737	991	3DF
1110011000		920 398	11101111100	1674	956 3BC	1111100000		992	3E0
1110011001		921 399	1110111101	1675	957 3BD	111110000	1741	993	3El
1110011010	1632	922 39A	1110111110	1676	958 3BE	1111100010	1742	994	3E2
1110011011	1633	923 39B	1110111111	1677	959 3BF	111110001	1743	995	3E3
1110011100	1634	924 39c	1111000000	1700	960 3C 0	1111100100	1744	996	3E4
1110011101	1635	925 39D	1111000001	1701	961 3C1	1111100101	1745	997	3E5
1110011110	1636	926 39E	1111000010		962 3C2	1111100110	1746	998	3E6
1110011111	1637	927 39F	1111000011	1703	963 3C3	1111100111	1747	999	3E7
1110100000	1640	928 3A0	1111000100		964 3C4	1111101000	1750	1000	3E8
1110100001	1641	929 3Al	1111000101	1705	965 3C5	1111101001	1751	1001	3E9
1110100010	1642	930 3A2	1111000110	1706	966 3C6	1111101010	1752	1002	3EA
1110100011		931 3A3	1111000111	1707	967 3C7	1111101011	1753	1003	3EB
1110100100		932 3A4	1111001000	1710	968 3C8	1111101100	1754	1004	3EC
1110100101	1645	933 3A5	1111001001		969 3C9	1111101101	1755	1005	3ED
1110100110		934 3A6	1111001010		970 3CA	1111101110	1756	1006	3EE
1110100111		935 3A7		1713	971 3CB	1111101111	1757	1007	3EF
	1650	936 3A8		1714	972 30 C	1111110000			
1110101001		937 3A9		1715	973 3CD	11111110001	1761	1009	3Fl
1110101010		938 3AA	1111001110		974 3Œ	1111110010			
1110101011		939 3AB	1111001111		975 3CF	11111110011	1763	1011	3F3
1110101100	1654	940 3AC		1720	976 3D0	1111110100			
1110101101		941 3AD	1111010001		977 3Dl	11111110101			
1110101110	1656	942 3AE	1111010010	1722	978 3D2	1111110110		1014	
	1657	943 3AF	1111010011	1723	979 3D3	1111110111	1767	1015	
1110110000	1660	944 3B0	1111010100	1724	980 3D4	1111111000		1016	
1110110001		945 3B1	1111010101	1725	981 3D5	1111111001			3F9
1110110010		946 3B2	1111010110		982 3D6	1111111010			3FA
1110110011		947 3B3	1111010111		983 3D7	11111111011			3FB
1110110100		948 3B4		1730	984 3D8	1111111100			
	1665	949 3B5	1111011001	1731	985 3D9	11111111101			3FD
	1666	950 3B6		1732	986 3DA	1111111110			3FE
1110110111		951 3B7	1111011011	1733	987 3DB	1111111111	1777	1023	3FF
1110111000		952 3B8	1111011100	1734	988 3DC				
1110111001	1671	953 3B9	1111011101	1735	989 3DD				

Apéndice C

Tabla de conversión de números en complemento a dos

Complemento a dos	Dec.	Complemento a dos	Dec.	Complemento a dos	Dec.	Complemento a dos	Dec
1111111	1 - 1	11100101	-27	11001011	-53	10110001	-79
1111111		11100101	-28	11001011	-53 -54	10110001	-80
11111111	-3	11100100	-29	11001010		10110000	
11111101	-4	11100011			-55		-81
11111100		11100010	-30 -31	11001000	-56	10101110	-82
1111101				11000111	-57	10101101	-83
		11100000	-32	11000110	-58	10101100	-84
1111100		11011111	-33	11000101	-59	10101011	-85
11111000		11011110	-34	11000100	-60	10101010	-86
1111011		11011101	-35	11000011	-61	10101001	-87
11110110	-10	11011100	-36	11000010	-62	10101000	-88
11110101	-11	11011011	-37	11000001	-63	10100111	-89
11110100	-12	11011010	-38	11000000	-64	10100110	-90
11110011	-13	11011001	-39	10111111	-65	10100101	-91
11110010	-14	11011000	-40	10111110	-66	10100100	-92
11110001	-15	11010111	-41	10111101	-67	10100011	-93
11110000	-16	11010110	-42	10111100	-68	10100010	-94
11101111	-17	11010101	-43	10111011	-69	10100001	-95
11101110	-18	11010100	-44	10111010	-70	10100000	-96
11101101	-19	11010011	-45	10111001	-71	10011111	-97
11101100	-20	11010010	-46	10111000	-72	10011110	-98
11101011	-21	11010001	-47	10110111	-73	10011101	-99
11101010	-22	11010000	-48	10110110	-74	10011100	-100
11101001	-23	11001111	-49	10110101	-75	10011011	-101
11101000	-24	11001110	-50	10110100	-76	10011010	-102
1110100	-25	11001101	-51	10110011	-77	10011001	-103
11100110	-26	11001100	-52	10110011	-78	10011000	-104
11100110	~0	11001100	02	10110010	, 0	10011000	134

Complemento		Complemento		Complemento		Complemento	
a dos	Dec	a dos	Dec	a dos	Dec.	a dos	Dec.
10010111	-105	10010001	-111	10001011	-117	10000101	-123
10010110	-106	10010000	-112	10001010	-118	10000100	-124
10010101	-107	10001111	-113	10001001	-119	10000011	-125
10010100	-108	10001110	-114	10001000	-120	10000010	-126
10010011	-109	10001101	-115	10000111	-121	10000001	-127
10010010	-110	10001100	-116	10000110	-122	10000000	-128

Glosario

- ACARREO (carry). Suma de un dígito 1 a la posición superior siguiente del bit o a indicador de acarreo.
- ACARREO NEGATIVO (borrow). Un bit 1 que se resta del dígito binario superior siguiente.
- ACUMULADOR *(accumulator)*. Registro principal de un microprocesador utilizado para operaciones aritméticas, lógicas, desplazamientos y otras. El microprocesador Z-80 posee uno (registro A), mientras que el microprocesador 6809 tiene dos (registros A y B).
- ALGORITMO (algorithm). Descripción paso a paso de un proceso para ejecutar una tarea.
- ASCII (ASCII). Código estándar para la representación de caracteres en ordenadores y en sus equipos periféricos. Su significado es "American Standard Code for Information Interchange".
- BASE (*base*). Punto de partida para la representación de un número en forma escrita, donde los números se expresan como múltiplos de potencias del valor de la base.
- BINARIO (binary). Representación de números en "base dos", donde todo número se expresa por combinación de los dígitos binarios 0 y 1. BIT (bit). Contracción de "dígito binario" (binary digit).

- BIT DE SIGNO (sign bit). Bit más a la izquierda (posición 15 ó 7) de un número en complemento a dos. Si es un cero, el signo del número es positivo. Si es un uno, el signo del número es negativo.
- BIT MAS SIGNIFICATIVO (most significant bit). El bit de más a la izquierda en un valor binario, representa el orden superior de potencias de dos. En notación en complemento a dos este bit es el signo.
- BIT MENOS SIGNIFICATIVO (least significant bit). El bit más a la derecha de un valor binario, representado por $2 \uparrow 0$.
- BITS SIGNIFICATIVOS (significant bits). Número de bits en un valor binario, después de quitar los ceros a la izquierda.
- BYTE (byte). Colección de 8 bits. Cada posición de memoria en la mayoría de los microordenadores tiene el tamaño de un byte.
- BYTE MAS SIGNIFICATIVO (most significant byte). El byte de orden superior. En el número A13EF122H de múltiple precisión, los dígitos hexadecimales A y 1 forman el byte más significativo.
- CLOBBER (clobber). Destruir el contenido de una memoria o de un registro.
- COCIENTE (quotient). Resultado de una división.
- CODIGO EXCESO A 128 (excess code 128). Método estándar para poner el exponente en el BASIC de MicrosoftTM. El valor 128 se añade a la potencia actual de dos y luego se almacena como un exponente en una representación de punto flotante.
- COLOSSUS (Colossus). Ordenador británico utilizado durante la Segunda Guerra Mundial para descifrar los códigos germanos "Enigma".
- COMPLEMENTO A DOS (two's complement). Forma estándar de representar números positivos y negativos en microordenadores.
- DATOS (data). Término genérico que designa números, operandos, instrucciones del programa, indicadores o cualquier representación de información utilizando unos o ceros binarios.
- DESPLAZAMIENTO (displacement). Valor con signo utilizado en lenguaje máquina, que se emplea para definir una dirección de memoria.
- DESPLAZAMIENTO ARITMETICO (urithmetic shift). Tipo de desplazamiento en el que un operando es movido a derecha o a izquierda usando el bit de signo (desplazamiento a la derecha) o manteniéndolo (desplazamiento a la izquierda).
- DESPLAZAMIENTO LOGICO (logical shift). Tipo de desplazamiento en el que un operando se desplaza a derecha o izquierda, con un cero ocupando la posición vacante del bit.
- DESPLAZAMIENTO Y SUMA (shift and udd). Método en el que la multiplicación se ejecuta por desplazamiento y suma del multiplicando.

- DIGITO BINARIO (binary digit). Los dos dígitos (0 y 1) utilizados en notación binaria. A menudo abreviados por "bit".
- DISPOSITIVOS PERIFERICOS (peripherical devices). Término genérico para definir el equipo conectado a un ordenador, tal como teclados, unidades de disco, magnetófonos de cassette, impresoras, tableros de dibujo electrónicos, sintetizadores de voz, etc.
- DIVIDENDO (dividend). Número por el que se divide al divisor. En A/B, A es el dividendo.
- DIVISION CON RECUPERACION (restoring division). División en la que el divisor se recupera si la operación no efectúa ninguna iteración. Técnica común de división en microordenadores.
- DIVISOR *(divisor)*. Número que va bajo el dividendo en una división. En A/B, B es el divisor.
- DOBLAR Y SUMAR (double-dabble). Método para convertir de binario a representación decimal por duplicación del bit más a la izquierda, sumando el próximo bit y continuando hasta que se use el bit de más a la derecha.
- ENIGMA (enigma). Máquina de claves alemana (Segunda Guerra Mundial). EQUIPO PERFORADOR DE TARJETAS (punched-card equipment). Dispositivos periféricos que permiten perforar o leer las tarjetas de papel empleadas para almacenar caracteres o datos binarios.
- ERROR DE DESBORDAMIENTO (overflow error). Condición que se da cuando el resultado de una suma, resta u otra operación aritmética es demasiado grande para poderlo meter en el número de bits que se le asignaron.
- EXPONENTE (exponent). En este libro, normalmente, la potencia de dos de un número binario en punto flotante.
- EXTENSION DEL SIGNO (sign extension). Extender el bit de signo de un número en complemento a dos a la izquierda por duplicación.
- FACTOR DE ESCALA (scaling). Cantidad fija por la que hay que multiplicar un número de forma que pueda procesarse como un valor entero.
- H (H). Sufijo para números hexadecimales.
- HEXADECIMAL (hexadecimal). Representación de números en "base dieciséis" utilizando los dígitos hexadecimales 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F.
- INDICADOR DE ACARREO (carry flag). Un bit en el microprocesador utilizado para almacenar el acarreo resultante de una instrucción en lenguaje máquina.

- INDICADOR DE CERO (zero flag). Un bit del microprocesador utilizado para almacenar el resultado cero/no cero de una instrucción en lenguaje máquina.
- INDICADOR DE ERROR DE DESBORDAMIENTO (overflow flag). Bit en el microprocesador utilizado para almacenar una condición de error de desbordamiento producido en las operaciones en lenguaje máquina.
- INDICADOR DE SIGNO (sign flag). Bit en el microprocesador que se usa para almacenar el signo del resultado de una operación en lenguaje máquina.
- INVERSION DE SIGNO. Véase NEGACION.
- ITERACION (iteration). Una pasada a través de un conjunto dado de instrucciones.
- LENGUAJE ENSAMBLADOR (assembly lunguage). Lenguaje simbólico de ordenadores que se traduce por medio de un programa ensamblador al lenguaje máquina (códigos numéricos que son equivalentes a las instrucciones del microprocesador).
- LENGUAJE MAQUINA (muchine lunguuge). Conjunto ordenado de códigos numéricos compuesto por instrucciones del microporcesador. Estos valores son producidos por un programa ensamblador desde el código de lenguaje ensamblador.
- MAGNITUD Y SIGNO (sign magnitude). Forma no estándar de representar números positivos y negativos en microordenadores.
- MANTISA (muntissu). Porción fraccionaria de un número en punto flotante.
- MEMORIA TEMPORAL (buffer). Porción de memoria destinada a almacenar caracteres (u otros datos) cuando son leídos, o utilizada para almacenar caracteres (u otros datos) para salida.
- MEMORIA TEMPORAL DE IMPRESION (print buffer). Lugar de la memoria dedicado a almacenar las líneas de caracteres que se van a imprimir.
- MINUENDO (minuend). Número al que se le resta el sustraendo. En 5-3, 5 es el minuendo.
- MULTIPLICACION DE OCHO POR OCHO (eight-by-eight multiply). Multiplicación de ocho bits por ocho bits para generar un resultado de dieciséis bits.
- MULTIPLICACION POR DIECISEIS Y SUMA (hexa-dabble). Conversión de hexadecimal a decimal multiplicando cada dígito hexadecimal por 16 y sumando el siguiente dígito hasta llegar al último dígito (el de más a la derecha).

- MULTIPLICADOR (*multiplier*). Número que se multiplica por el multiplicando. El número "de abajo".
- MULTIPLICANDO (multiplicand). Número multiplicado por el multiplicador. El número de "arriba".
- MULTIPLICAR POR OCHO Y SUMAR (octal-dabble). Transformación de un número octal en decimal multiplicando por ocho y sumando el siguiente dígito octal, continuando así hasta que el último dígito se transforme (el de más a la derecha).
- NEGACION (negation). Cambiar un valor positivo por otro negativo o viceversa. En complemento a dos significa cambiar todos los unos por ceros, todos los ceros por unos, y sumar un uno.
- NO (OPERACION) (not). Operación lógica que invierte el número 0 realiza su complemento a uno.
- NORMALIZACION (normalization). Convertir un dato a un formato estándar para procesarlo. En formato de punto flotante, convertir un número de modo que un bit significativo (o dígito hexadecimal) esté en el primer bit (o cuarto bit) de la fracción.
- NOTACION CIENTIFICA (scientific notation). Forma estándar de representar cualquier tipo de número con una mantisa y una potencia de diez.
- NOTACION POSICIONAL (positional notation). Representación de un número donde cada dígito representa una potencia superior de la base.
- NUMERO CON SIGNO (signed numbers). Números que pueden ser positivos 0 negativos.
- NUMERO EN PUNTO FLOTANTE (floating-point number). Forma estándar de representar un número de cualquier tamaño en microordenadores. Los números en punto flotante constan de una parte fraccionaria (mantisa) y de una potencia de dos (exponente) en una forma similar a la notación científica.
- NUMERO ESCALADO (sculing up). Se reliere a un número que se ha multiplicado por un factor de escala para procesarlo.
- NUMERO MIXTO (mixed number). Número que consta de un entero y una fracción, como, por ejemplo, 4.35 o (en binario) 1010.1011.
- NUMEROS DE MULTIPLE PRECISION (multiple-precision numbers). Números de varios bytes, que permiten aumentar la precisión.
- NUMEROS SIN SIGNO (unsigned numbers). Números que sólo pueden ser positivos. Números en valor absoluto.
- 0 (OPERACION) (or). Véase 0 INCLUSIVA.

- **0** EXCLUSIVA (OPERACION) (exclusive-or). Operación lógica bit a bit que produce un 1 en el resultado sólo si uno u otro (pero no ambos) de los bits operados es un 1.
- **0** INCLUSIVA (OPERACION) (inclusive-or). Operación lógica bit a bit en la que se obtiene un 1 como resultado si uno u otro de los bits que operan, o ambos, es un 1.
- OCTAL (octal). Representación de números en "base ocho", utilizando los dígitos octales: 0, 1, 2, 3, 4, 5, 6 y 7.
- OPERANDOS (operands). Valores numéricos empleados en sumas, restas y otras operaciones.
- PALABRA (word). Colección de dieciséis dígitos binarios. Dos bytes.
- PERMUTACION (permutation). Colocación de cosas en un orden definido. Dos dígitos binarios tienen cuatro permutaciones: OO, 01, 10 y ll.
- POSICION DEL BIT (bit position). Posición de un dígito binario dentro de un byte o de un grupo más largo de dígitos binarios. Las posiciones de los bits en la mayoría de los microordenadores están numeradas de derecha a izquierda, de 0 a N, donde este número corresponde a la potencia de 2 representada.
- PRECISION (precision). Número de dígitos significativos que puede contener una variable o el formato de un número.
- PRODUCTO (product). Resultado de una multiplicación.
- PRODUCTO PARCIAL (partial product). Resultado intermedio de una multiplicación. Al final, el producto parcial pasa a ser el producto final.
- PROPAGACION *(propugation)*. Sistema por el que el acarreo (positivo o negativo) viaja a la posición del bit más alto siguiente.
- PUNTO BINARIO (binar-y point). El punto, análogo al punto decimal, que separa porciones enteras y fraccionarias de un número puesto en sistema binario.
- REDONDEO (rounding). Proceso de quitar los bits a la derecha de una posición y añadir un 0 o un 1 a la siguiente superior, basada en el valor de la derecha. Redondear la fracción binaria 1011.1011 a dos bits fraccionarios, por ejemplo, da como resultado 1011.11.
- REGISTRO (register). Posición de memoria de acceso rápido en el microprocesador de un microordenador. Se utiliza para almacenar resultados parciales y, también, para operaciones en lenguaje máquina.
- REGISTRO DE MULTIPLICANDOS (multiplicand register). Registro utilizado para almacenar el multiplicando en una operación en lenguaje máquina.

- REGISTRO DE PRODUCTOS PARCIALES (partial-product register). Registro utilizado para almacenar los resultados parciales de una multiplicación en lenguaje máquina.
- RELLENO A CEROS (padding). Rellenar posiciones a la izquierda de una cifra con ceros para formar un total de 8 ó 16 bits.
- RESIDUO (residue). Cantidad que queda como dividendo cuando una división no está terminada.
- RESTA CON ACARREO (substract with carry). Instrucción en lenguaje máquina en la que un operando se resta de otro, junto con un posible acarreo negativo de un byte anterior.
- RESTO (remuinder). Cantidad que queda como dividendo después de terminada una división.
- ROTAR (rotate). Tipo de desplazamiento en el que el dato que sale por la derecha o por la izquierda entra por el lado opuesto.
- SALTO CONDICIONAL (conditional jump). Instrucción en lenguaje máquina que realiza un salto a otra instrucción si un indicador o indicadores determinados están a nivel alto o a nivel bajo.
- SERIES DE FIBONACCI (*Fibonucci series*). La secuencia de números 1, 1, 2, 3, 5, 8, 13, *21, 34, ...*, donde cada término se obtiene por la adición de los dos términos que le preceden.
- SUSTRAENDO (subtruĥend). El número que se resta del minuendo. En 5 3 = 2, 3 es el sustraendo.
- SUMA CON ACARREO (udd with carry). Instrucción en lenguaje máquina en la que un operando se suma a otro, con un posible acarreo de la suma anterior de orden inferior.
- SUMAS SUCESIVAS (succesive uddition). Método de multiplicación en el que el multiplicando se suma un número de veces igual al multiplicador para encontrar el resultado.
- TABLA DE VERDAD (truth table). Tabla que define los resultados de varias variables diferentes y que contiene todos los posibles estados de éstas.
- TRUNCAR (truncution). Proceso de quitar bits de la derecha de la posición de un bit. Truncar la fracción binaria de 1011.1011 a un número con una fracción de dos bits, por ejemplo, resulta 1011.10.
- TUBO DE WILLIAMS (*Williams tube*). Primitivo tipo de memoria basado en el almacenaje de los datos en la superficie de un tubo de rayos catódicos. Diseñado por F. C. Williams, Universidad de Manchester.
- TURING (*Turing*). Científico y matemático británico, pionero en la ciencia de los ordenadores.

- VARIABLE ENTERA *(integer variable).* Tipo de variable en BASIC. Puede tomar valores desde 32,768 hasta + 32,767, en una notación en complemento a dos de dos bytes.
- Y (OPERACION) (and). Operación lógica bit a bit que produce un 1 en el bit de resultado sólo cuando los dos operandos son unos.

Indice alfabético

Acarreo, 42, 46, 51-52, 66-67, 94, 102.

Acarreo negativo (borrow), 42-43, 51, 149.

Acarreos, 8, 49, 60, 62, 149.

Acumulador, 5 1, 149.

Algoritmo, 149.

AND, 8.

Aritmética decimal, 42, 79.

Base 126, 34.
Base 3, 34.
Base 40, 34.
Base 5, 34.
Base 8, 32.
BASIC, 7-8, 18, 25, 35, 44, 51, 60, 62-65, 88, 100-101, 128, 132.
Binario, 14, 16, 27-29, 149.
Bit, 14, 21, 28, 43, 57, 62, 66-67, 90, 149.
"Bit a bit", 60, 81.
Bit de acarreo, 75.

Bit de signo, 38, 43, 68, 89, 150. Bit más significativo, 68, 80, 90, 111, 150. Bit menos significativo, 63, 102, 150. Bits, 15-16, 19, 27, 29, 32, 35, 42, 44-45, 50-52, 62-63, 65, 74-75, 79, 81, 83, 87-88, 104, 1 ll. Bits de datos, 18. Bits significativos, 150. Buffer, 152. Byte del exponente, 128. Byte más significativo, 128, 150. Byte menos significativo, 90-91, 128. Bytes, 16-19, 34-35, 60, 62, 87, 89-92, 103, 150.

Campo, 57. Carácter ASCII, 113. *Clobber*, 150. Cociente, 150. Códigos ASCII, 8, 110-111.
Código exceso a 128, 150.
Complemento a dos, 7-9, 41, 43, 46, 51, 91, 147, 150.
Complemento a uno, 64.
Condiciones lógicas, 64.
Conmutador (toggle), 64.
Constantes, 129.
Convenios estándar, 35.
Conversiones, 139-145.
CPU, 17-18.

Datos binarios, 109, 150. Decimal, 7, 14, 29-31, 34-35. Desplazamiento, 44, 57, 66, 79, 150. Desplazamiento aritmético, 67-68, Desplazamiento lógico, 65-66, 77, 150. Dispositivos periféricos, 15 1. Direcciones de memoria, 91. División, 73. División bit a bit, 82. División con "recuperación", 8 1-82, 151. División con signo, 84. División sin signo, 84. Divisiones en múltiple precisión, 95.

Errores de desbordamiento, 8, 46, 49-52, 81, 151. Exponente, 123, 151. Extensión del signo, 44, 151.

Factor de escala, 103, 151. Forma escalada, 104. Formatos, 44, 91, 109. Formatos en punto flotante, 129.

H, 151. *Hardware*, 27, 40, 78. Hexadecimal, 25, 27-29, 31-32, 34, 151. Indicador "cero", 52, 152. Indicador de acarreo, 52, 65, 90, 151. Indicador de error, 50, 152. Indicador "signo", 52, 152. Indicadores, 46, 52-53, 60. Instrucción PEEK, 18. Instrucción POKE, 18. Intérprete BASIC, 132. Iteraciones, 74-75, 152.

Lenguaje ensamblador, 7-8, 19, 25, 44, 50, 152. Lenguaje máquina, 8, 19, 51-52, 60, 62-65, 73, 101, 152. Lenguaje máquina CPL, 64.

Magnitud y signo, 152.

Mantisa, 121, 128, 152. Memoria, 16, 18, 27, 34, 44, 91. Memoria de video, 62. Método "desplazamiento y suma", 74. Método "dividir por dos y guardar los restos", 21. Método "doblar y sumar", 19. Método de "inspección de potencias de dos", 21. Microordenadores, 7, 16-19, 25, 28, 32, 37-39, 41, 45, 51, 57, 73, 83, 88-89. Microprocesador, 17, 19, 44, 50, 52, 65. Microprocesador 6809, 52. Microprocesador Z-80, 52. Microprocesadores, ll, 14- 16, 26, 38, 45, 58. Microprocesadores 6502, 29. Microprocesadores 6809, 29. Microprocesadores 8080, 32. Microprocesadores Z-80, 29. Múltiple precisión, 87-88, 91. Multiplicación, 73. Multiplicación con signo, 79. Multiplicación en múltiple precisión, 92.

Multiplicación por desplazamiento y suma, 78. Multiplicación sin signo, 79. MuMath, 34.

Negación, 153. Nibble, 18. Normalización, 127, 153. Normalizar, 123. Notación científica, 121, 153. Notación científica en punto flotante, 123. Notación en complemento a dos, 37-40. Notación en punto flotante, 122. Notación posicional, 26, 153. Número binario, 16. Números binarios, 7, 14, 20, 25, 41, 57, 97. Números binarios sin signo, 37. Números con signo, 37, 41, 49, 67, Números decimales, 8, 14, 26, 41. Números en punto flotante, 121, Números en punto flotante de do-

ble precisión, 129. Números escalados, 153. Números hexadecimales, 8, 21, 35. Números mixtos, 100-101, 153. Números negativos, 38-39. Números octales, 8, 21, 35.

Octal, 7, 25, 32, 34, 154.
Operación NO, 64, 153.
Operación NOT, 8, 64, 153.
Operación 0 exclusiva, 59-60, 63, 80, 154.
Operación 0, 60-61, 153.
Operación 0 inclusiva, 59, 154.
Operación de invertir el signo, 64.
Operación lógica, 7.
Operación lógica de desplazamiento, 67.

Operaciones aritméticas, 19, 38, 50, 52.
Operaciones de desplazamiento, 52, 65.
Operaciones lógicas, 8, 52, 57, 60.
Operadores lógicos, 79.
OR, 8.

Ordenadores, 65, 67, 75, 78, 88. Palabras, 18, 154. Paso de ASCII a enteros binarios, 112. Paso de ASCII a fracciones binarias, 113. Paso de binario a decimal, 19. Paso de binario a hexadecimal, 29. Paso de decimal a binario, 21. Paso de decimal a hexadecimal, Paso de enteros binarios a ASCII, Paso de fracciones binarias a ASCI, 117. Paso de hexadecimal a binario, 30. Paso entre binario y octal, 32. Paso entre octal y decimal, 33. Permutación, 154. Posiciones de memoria, 17-18, 51, 65. Potencias de diez, 126. Potencias de dos, 126. Punto flotante, 88-89, 101.

RAM, 17-18.
Rango de números, 131.
Redondeo, 154.
Registro de los multiplicandos, 74, 154.
Registro de producto parcial, 74-75, 154.
Registros, 17, 50-51, 65-66, 74, 83, 92, 154.
Representación "signo/magnitud", 38.

Residuos, 155. Resta sucesiva, 8 1. ROM, 17-18. Rotaciones, 65-66. Rutinas, 73, 101.

Salto condicional, 51-52, 65, 155. Semiconductores, 14, 25, 109. Series de Fibonacci, 155. Sistema binario, 7-8, 11-12, 19, 50. Sistema decimal, 13, 19. Sistema hexadecimal, 19. Sistema octal, 19. Software, 73, 81, 89. Suma sucesiva de potencias de dos, 77. Suma y resta de números binarios, 41.

Suma y resta en complemento a dos, 45. Sumas sucesivas, 75, 155.

Tabla de verdad, 60, 155. Transformaciones ASCII, 109. Truncar, 128, 155.

Valor hexadecimal, 7. Valores absolutos, 79, 91. Valores enteros, 97. Variables enteras, 18, 44, 156.

Y, 59-60, 156.

Z-80, 32, 50, 91, 128.

Matemáticas programadores

Cuando se programa en BASIC suele ocurrir que, para ganar efectividad, hay que trabajar en binario o hexadecimal y realizar operaciones lógicas, desplazamientos y otras manipulaciones de bits; cuando se trabaja en ensamblador es necesario operar con números en punto flotante o con signo y realizar operaciones matemáticas que van más allá de lo que permite el microprocesador.

El objetivo de MATEMATICAS PARA PROGRAMADORES es desvelar y aclarar eficazmente los algoritmos de las operaciones matemáticas involucradas en la programación BASIC o máquina.

A lo largo del libro encontrará:

- Definición de bases y algoritmos de transformación entre ellas.
- Sistemas de notación de números con signo.
- Sumas y restas en complemento a uno y a dos.
- Algoritmos de multiplicación y división en lenguaje máquina.
- Estructura de los valores de precisión múltiple y punto flotante.
- Códigos y conversiones ASCII.

MATEMATICAS PARA PROGRAMADORES posee, además, numerosisimos ejemplos y ejercicios de evaluación que facilitan el uso del libro, bien como referencia, o como manual de aprendizaje.

MATEMATICAS PARA PROGRAMADORES es un texto imprescindible en la biblioteca de cualquier programador y será tu mejor compañero cuando programes en ensamblador o en BASIC Avanzado.

www.FreeLibros.me