Notes on CFT

1 Review: Galois theory

1.1 Field Extensions

Let L/K be an algebraic extension. It is called:

- \diamond **normal**, if every polynomial $f \in K[T]$ with a root in L splits in L, \iff L is the splitting field of a bunch of polynomials over K;
- \diamond **separable**, if for every element in L, its minimal polynomial over K has no multiple roots in its splitting field, $\iff \gcd(f, f') = 1$;
- \diamond **Galois**, if it is normal and separable, i.e., L is the splitting field of a bunch of separable polynomials over K. We put $\operatorname{Gal}(L/K) := \operatorname{Aut}_K(L)$.
- Remark. 1. For a finite normal extension L/K, $|\operatorname{Aut}_K(L)| \leq [L:K]$, where the equality holds $\iff L/K$ is separable, i.e. Galois. This is because a K-automorphism of L = K[T]/(f) just permutes the roots of f.
 - 2. Normality is NOT transitive. As an example, take $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$.

1.2 Galois theory

Now let L/K be a Galois extension. Equip Gal(L/K) with the following **Krull topology**: $\forall \sigma \in Gal(L/K)$, a basis of nbhd around σ is given by

$$\sigma \operatorname{Gal}(L/F)$$
, where $L/F/K$, $F/K < \infty$ & Galois.

- Two elements $\sigma, \tau \in \text{Gal}(L/K)$ are "close" to each other, if $\sigma|_F = \tau|_F$ for sufficiently large finite Galois subextensions F/K.
- Both multiplication and inverse on Gal(L/K) are continuous for Krull topology.
- The Krull topology is profinite for L/K infinite, whence

$$\operatorname{Gal}(L/K) \simeq \lim_{\stackrel{\longleftarrow}{F/K} < \infty \text{ \& Galois}} \operatorname{Gal}(F/K).$$

When $L/K < \infty$, this is the discrete topology.

• If there is a tower

$$K \subset L_1 \subset L_2 \subset \cdots \subset L$$
,

where all L_n/K 's are Galois, and

$$L = \bigcup_{n} L_n,$$

then

$$\operatorname{Gal}(L/K) = \varprojlim_{n} \operatorname{Gal}(L_{n}/K).$$

Galois theory says that the intermediate fields of L/K corresponds to the closed subgroups of Gal(L/K)bijectively and Gal(L/K)-equivariantly.

- \rightarrow : For an intermediate field F, it gives $\operatorname{Gal}(L/F) \subset \operatorname{Gal}(L/K)$. Note that L/F is Glaois, but F/K is NOT always Galois. The Galois group acts on {intermediate field of L/K} via $(\sigma, F) \mapsto \sigma F = \sigma(F)$.
- \leftarrow : For a closed subgroup H < G, it fixes a subfield $L^H \subset L$. The Galois group acts on $\{H : H < C\}$ Gal(L/K) by conjugation, i.e., $(\sigma, H) \mapsto \sigma H \sigma^{-1}$.

In particular,

- \diamond Galois extensions correspond to normal closed subgroups, and
- ♦ *finite* extensions correspond to *open* subgroups.

Base change

Proposition 1.1. Let L/K be Galois. If M/K is any extension, and both L and M are subextensions of Ω/K , then LM/M is Galois, and

$$\operatorname{Gal}(LM/M) \xrightarrow{\sim} \operatorname{Gal}(L/L \cap M)$$
$$\sigma \longmapsto \sigma|_{L}.$$

As a corollary, if L, L' are Galois subextensions of Ω/K , then LL'/K is also Galois, and

$$\operatorname{Gal}(LL'/K) \hookrightarrow \operatorname{Gal}(L/K) \times \operatorname{Gal}(L'/K)$$

 $\sigma \mapsto (\sigma|_L, \sigma|_{L'});$

this embedding is an isomorphism if $L \cap L' = K$.

Extensions of Local Fields 2

Simple Extensions of DVRs

Let A be a local ring with (\mathfrak{m}, k) , $f \in A[X]$ a monic polynomial of deg n. We consider the extension

$$A \to B_f := A[X]/f$$
.

Let \bar{f} be the image of f in $k[X] \simeq A[X]/\mathfrak{m}$ with decomposition

$$\bar{f} = \prod_i \bar{g}_i^{e_i}, \ g_i \in A[X], \ \bar{g}_i \in k[X] \text{ irreducible.}$$

and

$$\bar{B}_f := B_f/\mathfrak{m}B_f \simeq A[X]/(\mathfrak{m}, f) \simeq k[X]/(\bar{f}).$$

Lemma 2.1. $\mathfrak{m}_i := (\mathfrak{m}, g_i \bmod f) \subset B_f$ are all the distinct maximal ideals of B_f .

Proof. Denote $\pi: B_f \to \bar{B}_f$. We have $B_f/\mathfrak{m}_i \simeq \bar{B}_f/(\bar{g}_i)$, so \mathfrak{m}_i 's are maximal. Note that $\mathfrak{m}_i = \pi^{-1}(\bar{g}_i)$. Take $\mathfrak{n} \in \operatorname{MaxSpec} B_f$. If $\mathfrak{n} \supset \mathfrak{m}$, then $\mathfrak{n} = \pi^{-1}\pi\mathfrak{n}$, and goes to a maximal ideal in \bar{B}_f (because $\bar{B}_f/\pi\mathfrak{n} \simeq B_f/\mathfrak{n}$), so $\mathfrak{n} = \pi^{-1}(\bar{g}_i) = \mathfrak{m}_i$.

So assume that $\mathfrak{m} \not\subset \mathfrak{n}$, then $\mathfrak{n} + \mathfrak{m}B_f = B_f$. Therefore

$$\frac{B_f}{\mathfrak{n}} = \frac{\mathfrak{n} + \mathfrak{m} B_f}{\mathfrak{n}} \simeq \frac{\mathfrak{m} B_f}{\mathfrak{n}}.$$

Since A is local and B_f is a f.g. A-mod, by Nakayama's lemma, we see $\mathfrak{n} = B_f$. Contradiction.

Now take A to be a DVR with $\mathfrak{m}=(\varpi)$ and $K=\operatorname{Frac} A$. Put L:=K[X]/(f). We give two cases where B_f is a DVR.

¹In this case $\mathfrak{n}/(\mathfrak{n}\cap\mathfrak{m})\simeq \bar{B}_f$ as B_f -module, and thus $\pi^{-1}\pi\mathfrak{n}=B_f$.

Unramified case

Let $\bar{f} \in k[X]$ be irreducible. Then B_f is a DVR with maximal ideal $\mathfrak{m}B_f$.

Corollary 2.1. $f \in A[X]$ is also irreducible, so L is a field. Moreover, B_f is the integral closure of A in L, and L/K is unramified if \bar{f} is separable.

Proof. $L = K[X]/f \simeq (A[X]/f) \otimes_A K = B_f \otimes_A K$. As B_f is a domain, L is a field and $L = \operatorname{Frac} B_f$. Since A is integrally closed, B_f is also integrally closed, so B_f is the integral closure of A in L.

Totally ramified case

Let $f \in A[X]$ be an **Eisenstein polynomial**, i.e.,

$$f = X^n + a_{n-1}X^{n-1} + \dots + a_0, \ a_i \in \mathfrak{m}, \ a_0 \notin \mathfrak{m}^2.$$

Proposition 2.1. B_f is a DVR, with maximal ideal generated by the image of X and residue field k.

Proof. Let x be the image of X in B_f . We have $\bar{f} = X^n$, so B_f is a local ring with maximal ideal (\mathfrak{m}, x) . Because $a_0 \in \mathfrak{m} \setminus \mathfrak{m}^2$, a_0 must uniformise $\mathfrak{m} \subset A$, and

$$-a_0 \mod f = x^n + \dots + (a_1 \mod f) x,$$

Therefore $(\mathfrak{m}, x) = (x)$.

Similar to Corollary 2.1, f is irreducible and L is a field with B_f the integral closure of A in L.

2.2 Unramified Extensions of Local Fields

Let K be a CDVF². We assume further that both K and its residue field $k = \mathcal{O}_K/\mathfrak{m}$ are perfect.

The slogan is that unramified extensions are just extensions of residue fields. Using Hensel's lemma, an extension k(a)/k can be lifted to a unique extension $K[\alpha]/K$ over K. Moreover, given an extension L/K, there is a maximal unramified subextension K_0 in L containing every unramified extensions.

Proposition 2.2. Let L/K be a finite extension.

Particularly, if k is finite, adjoining roots of unities with order coprime to $p = \operatorname{char} k$ gives all unramified extensions of K.

Example 1. Let $K/\mathbb{Q}_p < \infty$ and $k = \mathbb{F}_q$.

2.3 Ramification Groups

Let K be a CDVF with perfect residue field $k, L/K < \infty$ Galois. We will study the Galois group

$$G := Gal(L/K)$$

by giving filtrations on it.

3 Lubin-Tate Theory

3.1 Formal Groups

In this section, a formal group means a commutative formal group law of dimension one. If $f \in A[T]$ and $g \in A[X_1, \ldots, X_n]$, then

$$f \circ g := f(g(X_1, \dots, X_n)),$$

$$g \circ f := g(f(X_1), \dots, f(X_n)).$$

 $^{^2\}mathrm{CDVF}$ stands for complete discrete valuation field.

Lemma 3.1. Let $f = \sum_{i>1} a_i T^i \in A[T]$. Then

$$\exists g \in A \llbracket T \rrbracket \text{ s.t. } f \circ g = g \circ f = T \iff a_1 \in A^{\times}.$$

Proof. Use $A[T] = \varprojlim A[T]/T^n$. For details, see the proof of Lemma 3.2.

3.2 Lubin-Tate formal groups

From now on, we write $A := \mathcal{O}_K$.

Choose a uniformiser ϖ of K. Define

$$\mathcal{F}_{\varpi} := \left\{ f \in \mathcal{O}_K \llbracket T \rrbracket \; \middle| \begin{array}{l} f(T) \equiv \varpi T \quad \mod T^2 \\ f(T) \equiv T^q \quad \mod \varpi \end{array} \right\}.$$

For example, $f(T) = T^q + \varpi T \in \mathcal{F}_{\varpi}$. The following lemma is a fundamental property of \mathcal{F}_{ϖ} .

Lemma 3.2. Let $f, g \in \mathcal{F}_{\varpi}$, Φ_1 be a linear form³ over \mathcal{O}_K . Then there is a **unique** $\Phi \in \mathcal{O}_K[X_1, \ldots, X_n]$, s.t.

$$\begin{cases} \Phi \equiv \Phi_1 \mod (X_1, \dots, X_n)^2, \\ f(\Phi(X_1, \dots, X_n)) = \Phi(g(X_1), \dots, g(X_n)). \end{cases}$$

Proof. We use a standard method. Finding Φ is equivalent to finding $\Phi_r \in A[X_1, \dots, X_n]$ s.t.

$$\begin{cases} \Phi_{r+1} \equiv \Phi_r & \text{mod } (\deg \ge r+1), \\ f(\Phi_r) \equiv \Phi_r(g(X_1), \dots, g(X_n)) & \text{mod } (\deg \ge r+1). \end{cases}$$

The second condition is guaranteed because $X \mapsto h(X)$ is X-adic continuous for any power series h.

Suppose we have found Φ_r . We look for Φ_{r+1} of the form $\Phi_{r+1} = \Phi_r + Q$, where Q is homogeneous of degree r+1, s.t.

$$f(\Phi_{r+1}) \equiv \Phi_{r+1}(g(X_1), \dots, g(X_n)) \mod \deg \ge r + 2.$$

The LHS is

$$f(\Phi_r) + f(Q) \equiv f(\Phi_r) + \varpi Q \mod \deg \ge r + 2$$
,

while the RHS is

$$\Phi_r \circ q + Q(\varpi X_1, \dots, \varpi X_n) \equiv \Phi_r \circ q + \varpi^{r+1}Q,$$

so if such a $Q \in A[X_1, ...]$ exists, it must satisfy

$$\varpi(\varpi^r - 1)Q \equiv f \circ \Phi_r - \Phi_r \circ q \mod \deg > r + 2$$

and thus being unique. This procedure also shows that all Φ_r 's are unque if we require $\Phi_{r+1} - \Phi_r$ to be homogeneous.

Because $\varpi^r - 1 \in A^{\times}$, it suffices to show

$$f(\Phi_r) \equiv \Phi_r \circ q \mod \varpi$$
,

which is clear. \Box

By Lemma 3.2, one may define the **Lubin-Tate formal groups**. They are exactly the formal group laws admitting an endomorphism

- that has derivative at the origin equal to a uniformiser of K, and
- reduces mod m to the Frobenius map $T \mapsto T_q$.

Moreover, these formal groups admit \mathcal{O}_K -actions and are isomorphic as formal \mathcal{O}_K -modules.

³A **linear form** is a homogeneous polynomial of degree 1.

Proposition 3.1. For each $f \in \mathcal{F}_{\varpi}$, there is a unique formal group F_f over \mathcal{O}_K admitting f as an endomorphism.

Proof. Lemma 3.2 gives $F_f \in A[X, Y]$ s.t.

$$\begin{cases} F_f = X + Y + \deg \ge 2, \\ f(F_f(X+Y)) = F_f(f(X), f(Y)). \end{cases}$$

The associativity is proved by showing that both $G_1 = F_f(X, F_f(Y, Z))$ and $G_2 = F_f(F_f(X, Y), Z)$ satisfies

$$\begin{cases} G = X + Y + Z + \deg \ge 2, \\ f(G) = G(f(X), f(Y), f(Z)). \end{cases}$$

This is a direct application of Lemma 3.2 and will be used many times.

So Lubin-Tate formal groups exist. Now we investigate their homomorphisms.

Proposition 3.2. For each $f, g \in \mathcal{F}_{\varpi}$ and $a \in \mathcal{O}_K$, there is a unique $[a]_{g,f} \in \mathcal{O}_K[\![T]\!]$ s.t.

$$\begin{cases} [a]_{g,f} = aT + \dots, \\ g \circ [a]_{g,f} = [a]_{g,f} \circ f, \end{cases}$$

and $[a]_{g,f} \in \text{Hom}(F_f, F_g)$, i.e.

$$F_g \circ [a]_{g,f} = [a]_{g,f} \circ F_f.$$

As a corollary of Lemma 3.1, each $u \in A^{\times}$ gives an isomorphism $[u]_{g,f}: F_f \xrightarrow{\sim} F_g$, and there is a unique isomorphism $F_f \simeq F_g$ of the form $T + \cdots$.

We write $[a]_f := [a]_{f,f} \in \operatorname{End} F_f$. Note that

$$[\varpi]_f = f.$$

Proposition 3.3. For any $a, b \in \mathcal{O}_K$,

$$[a+b]_{a,f} = [a]_{a,f} + [b]_{a,f},$$

and

$$[ab]_{h,f} = [a]_{h,q} \circ [b]_{q,f}.$$

In particular, $\mathcal{O}_K \hookrightarrow \operatorname{End} F_f$ as a ring by $a \mapsto [a]_f$, making F_f a formal \mathcal{O}_K -module. The canonical isomorphism $[1]_{g,f}$ is an isomorphism of \mathcal{O}_K -modules.

3.3 Construction of K_{ϖ}

Fix an algebraic closure K^{alg} of K. Each $f \in \mathcal{F}_{\varpi}$ associates to $\mathfrak{m}_{K^{\text{alg}}}$ an \mathcal{O}_K -module structure via

$$\alpha +_{F_f} \beta := F_f(\alpha, \beta)$$

and

$$a \cdot \alpha := [a]_f(\alpha)^4$$
.

for $|\alpha|<1, |\beta|<1$ and $a\in\mathcal{O}_K$. We denote this \mathcal{O}_K -module by Λ_f . If $g\in\mathcal{F}_\pi$, then the canonical isomorphism $[1]:F_f\to F_g$ yields $\Lambda_f\overset{\sim}{\to}\Lambda_g$.

The ϖ^n -torsion part of Λ_f is denoted by $\Lambda_{f,n}$, i.e., $\Lambda_{f,n} := \Lambda_f[[\varpi]_f^n]$. Because $[\varpi]_f = f$, $\Lambda_{f,n}$ is the \mathcal{O}_K -module consisting of the roots of $f^{(n)} := f \circ \cdots \circ f$. If one takes f to be an Eisenstein polynomial, then all the roots of $f^{(n)}$ lie in $\mathfrak{m}_{K^{\mathrm{alg}}}$, so $\Lambda_{f,n}$ is precisely the set of roots of $f^{(n)}$ equipped with the \mathcal{O}_K -module structure from F_f .

 $^{^4}$ These power serieses converges because they actually falls in a finite extension of K.

Lemma 3.3. Let M an \mathcal{O}_K -module, $M_n = M[\varpi^n]$. If

- M_1 has $q = [\mathcal{O}_K : \varpi]$ elements, and
- $\varpi: M \to M$ is surjective,

then $M_n \simeq \mathcal{O}_K/\varpi^n$.

Proof. Do induction on n. The structure theorem of f.g. modules over a PID shows that M_1 having q elements implies that $M_1 \simeq A/\varpi$. Now assume it true for n-1. Look at the sequence

$$0 \to M_1 \to M_n \stackrel{\varpi}{\to} M_{n-1} \to 0.$$

Surjectivity of ϖ implies the exactness of this sequence, and thus M_n has q^n elements. In addition, M_n must be cyclic, otherwise $M_1 = M_n[\varpi^n]$ is not cyclic.

Proposition 3.4. The \mathcal{O}_K -module $\Lambda_{f,n}$ is isomorphic to \mathcal{O}_K/ϖ^n , and hence $\operatorname{End}(\Lambda_{f,n}) \simeq \mathcal{O}_K/\varpi^n$.

Proof. It suffices to show for a chosen f, so let's take $f = \varpi T + \cdots + T^q$, an Eisenstein polynomial. We use the above Lemma 3.3 by the following observations.

- All roots of an Eisenstein polynomial have valuation > 0.
- If $|\alpha| < 1$, then the Newton polygon of $f(T) \alpha$ shows that its roots have valuation > 0, and thus $[\varpi] = f(T)$ is surjective on Λ_f .

Lemma 3.4. Let L be a finite Galois extension of K. Then for every $F \in \mathcal{O}_K[X_1, \ldots, X_n]$, $\alpha_1, \ldots, \alpha_n \in \mathfrak{m}_L$ and $\tau \in \operatorname{Gal}(L/K)$,

$$\tau F(\alpha_1, \dots, \alpha_n) = F(\tau \alpha_1, \dots, \alpha_n).$$

Proof. Note that τ acts continuously on L, because the extension of valuation for local fields is unique. Therefore writing $F = \lim_{m \to \infty} F_m$ gives the desired result.

Theorem 1. Let $K_{\varpi,n} := K(\Lambda_{f,n}) \subset K^{\text{alg}}$. These fields are independent to the choice of f.

- (a) $K_{\varpi,n}/K$ is totally ramified of degree $q^{n-1}(q-1)$.
- (b) The action of \mathcal{O}_K on $\Lambda_{f,n}$ defines an isomorphism

$$(\mathcal{O}_K/\mathfrak{m}_K^n)^{\times} \simeq \operatorname{Gal}(K_{\varpi,n}/K).$$
 (1)

(c) For all n, ϖ is a norm from $K_{\varpi,n}$, i.e., $\exists \alpha_n \in K_{\varpi,n}$ with $N_{K_{\varpi,n}/K}(\alpha_n) = \varpi$.

Proof. Let f be a polynomial $T^q + \cdots + \varpi T$.

Choose a nonzero root ϖ_1 of f(T) and, inductively, a root ϖ_n of $f(T) - \varpi_{n-1}$. So $\varpi_n \in \Lambda_{f,n}$, and we obtain a tower of extensions

$$K_{\varpi,n}\supset K(\varpi_n)\stackrel{q}{\supset} K(\varpi_{n-1})\stackrel{q}{\supset} \dots \stackrel{q}{\supset} K(\varpi_1)\stackrel{q-1}{\supset} K.$$

All the extensions with indicated degrees are given by Eisenstein polynomials, and thus Galois and totally ramified.

The field $K_{\varpi,n} = K(\Lambda_{f,n})$ is the splitting field of $f^{(n)}$ over K, hence $Gal(K_{\varpi,n}/K)$ embeds into the permutation group of the set $\Lambda_{f,n}$. By Lemma 3.4, the action of $\operatorname{Gal}(K_{\varpi,n}/K)$ on Λ_n preserves its \mathcal{O}_K -

$$\operatorname{Gal}(K_{\varpi_n}/K) \hookrightarrow \operatorname{Aut}(\Lambda_{f,n}) \simeq (\mathcal{O}_K/\varpi^n)^{\times}.$$

So $[K_{\varpi,n}:K] \leq (q-1)q^{n-1}$. Comparing the degree gives $K_{\varpi,n}=K(\varpi_n)$. Now we prove (c). Let $f^{[n]}:=(f/T)\circ f\circ\cdots\circ f$. Then $f^{[n]}$ is monic with degree $q^{n-1}(q-1)$ and $f^{[n]}(\varpi_n)=0$, and thus $f^{[n]}$ is the minimal polynomial of ϖ_n over K. So we have

$$N_{K_{\varpi,n}/K}(\varpi_n) = (-1)^{q^{n-1}(q-1)}$$

by the following Lemma 3.5.

Lemma 3.5. Let L/K be a finite extension in an algebraic closure K^{alg} , and $\alpha \in L$ has minimal polynomial f over K of degree d. Suppose

$$f(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in K^{\text{alg}}[X],$$

and let $e = [L : K(\alpha)]$ then

$$N_{L/K}(\alpha) = \left(\prod_{i=1}^{d} \alpha_i\right)^e, \quad \operatorname{Tr}_{L/K}(\alpha) = e \sum_{i=1}^{d} \alpha_i.$$

Moreover, if

$$f(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_0,$$

then

$$N_{L/K}(\alpha) = (-1)^{de} a_0^e, \qquad \text{Tr}_{L/K}(\alpha) = -ea_{d-1}.$$

Remark. This can be deduced from $N_{L/K} = N_{L/K(\alpha)} \circ N_{K(\alpha)/K}$ and $\mathrm{Tr}_{L/K} = \mathrm{Tr}_{L/K(\alpha)} \circ \mathrm{Tr}_{K(\alpha)/K}$.

Define

$$K_{\varpi} := \bigcup_{n} K_{\varpi,n}.$$

The isomorphisms in Theorem 1 (b) are

$$(\mathcal{O}_K/\varpi^n)^{\times} \to \operatorname{Gal}(K_{\varpi,n}/K) \quad \bar{u} \mapsto (\Lambda_{f,n} \ni \alpha \mapsto [u]_f(\alpha)),$$

and clearly lift to an isomorphism

$$A^{\times} \simeq \operatorname{Gal}(K_{\varpi}/K).$$

The local Artin map

The local Artin map is a homomorphism

$$\phi_{\varpi}: K^{\times} \to \operatorname{Gal}(K_{\varpi}K^{\operatorname{nr}}/K) = \operatorname{Gal}(K^{\operatorname{nr}}/K) \times \operatorname{Gal}(K_{\varpi}/K)$$

defined as follows. Let $a = u\varpi^m \in K^{\times}$, then

- $\phi_{\varpi}(a)|_{K^{\operatorname{nr}}} := \operatorname{Frob}^m;$
- $\phi_{\varpi}(a)(\lambda) := [u^{-1}]_f(\lambda), \forall \lambda \in \bigcup_n \Lambda_n$.

Theorem 2. Both K_{ϖ} and K^{nr} are independent of the choice of ϖ .

3.4 The Local Kronecker-Weber theorem

3.5 The Case of \mathbb{Q}_p

Let $K = \mathbb{Q}_p$ and $\varpi = p$. Then $f(T) := (1+T)^p - 1 \in \mathcal{F}_p$. Note that f is an endomorphism of

$$\mathbb{G}_{\mathrm{m}}(X,Y) = X + Y + XY,$$

so $F_f = \mathbb{G}_{\mathrm{m}/\mathbb{Z}_p}$. Under the isomorphism

$$(\mathfrak{m}, +_{\mathbb{G}_m}) \simeq (1 + \mathfrak{m}, \cdot),$$

the endomorphism $f: a \mapsto (1+a)^p - 1$ is converted to the Frobenius map $a \mapsto a^p$.

The field $(\mathbb{Q}_p)_p$

For each $r \geq 1$, the p^r -torsion part of Λ_f is

$$\Lambda_{f,r} = \left\{\alpha \in \mathbb{Q}_p^{\mathrm{alg}} \left| (1+\alpha)^{p^r} = 1 \right. \right\} \simeq \left\{\zeta \in (\mathbb{Q}_p^{\mathrm{alg}})^\times \left| \zeta^{p^r} = 1 \right. \right\} = \mu_{p^r}.$$

The isomorphism is for \mathcal{O}_K -modules. So choose primitive p^r -th roots of unity ζ_{p^r} s.t. $\zeta_{p^r}^p = \zeta_{p^{r-1}}$, then $\varpi_r := \zeta_{p^r} - 1$ forms a sequence of compatible generators of $\Lambda_{f,r}$. Therefore

$$(\mathbb{Q}_p)_{p,r} = \mathbb{Q}_p(\varpi_r) = \mathbb{Q}_p(\mu_{p^r}),$$

and the "maximal totally ramified abelian extension" of \mathbb{Q}_p is $(\mathbb{Q}_p)_p = \mathbb{Q}_p(\mu_{p^{\infty}})$.

The local Artin map $\phi_p:\mathbb{Q}_p^{\times} \to \mathrm{Gal}(\mathbb{Q}_p^{\mathrm{ab}}/\mathbb{Q}_p)$

It suffices to look at every

$$\phi_p: \mathbb{Q}_p^{\times} \to \operatorname{Gal}(\mathbb{Q}_p(\mu_n)/\mathbb{Q}_p).$$

- If n is prime to p, then $\mathbb{Q}_p(\mu_n)/\mathbb{Q}_p$ is unramified.
- If $n=p^r$, then $\mathbb{Q}_p(\mu_{p^r})/\mathbb{Q}_p$ is totally ramified.

⁵Not sure if this terminology is correct ...?