Special Topic in Computers 2 (ELL 881) Natural Language Processing (Minor 2)

Total Marks: 30 Date: 23.03.23

1. State whether the following statements are **True** or **False** (provide **brief explanation**):

2x5 = 10

- 1. The word **bank** is an example of homonymy. **True** (usage of 'bank' as financial institution vs. slope)
- A very deep feedforward network suffers from the vanishing gradient problem.
 True (successive matrix multiplication will result in diminishing gradient if eigenvalues < 0)
- 3. Pointwise Mutual Information is biased towards frequent words. **False**, it is biased towards infrequent words
- 4. Beam search needs memory in quadratic order of the input length. False, linear complexity
- 5. LSTM solves the vanishing gradient problem via residual connections. False, uses gating mechanism to solve vanishing gradient
- 2. Given below is a cooccurrence matrix of six words. Use it to answer the following questions:

	Cat	Dog	Bird	Fish	Mouse	Rabbit
Cat	0	200	50	20	300	70
Dog	200	0	30	40	150	90
Bird	50	30	0	70	20	10
Fish	20	40	70	0	10	50
Mouse	300	150	20	10	0	80
Rabbit	70	90	10	50	80	0

a. What is the PMI between "cat" and "mouse"?

PMI(cat, mouse) = log_2 N*count(cat, mouse)/(count(cat)*count(mouse)) = log_2 C(RU)*count(cat, mouse)/Sum(row(cat))*Sum(row(mouse)) = -0.005637511

b. Calculate (a) with add-2 smoothing.

 $log_2 C(RU+2*21)*(count(cat, mouse)+2)/(Sum(row(cat))+12)*(Sum(row(mouse))+12)$ = -0.003408211

- 3. Mention two disadvantages of count-based methods to generate word embeddings that are solved using direct-prediction-based methods. How would you deal with the problem of out-of-vocabulary words while using word-embedding methods like Word2Vec/GloVe? Disadvantages of count-based methods:
- a. Biased towards larger counts, b. Primarily used for word similarity

Out-of-vocab solution: Subword tokenization

2+2 = 4

- 4. Assume an LSTM with a hidden state dimension of 128. It is processing a sequence of 10 vectors, each of dimension 128 (assume that there is no input embedding projection).
 - a. What is the total number of parameters in this LSTM?

$$8x(128x128) + 4*128 = 131584$$

b. How many matrix multiplications are needed to perform this processing?

8 for each token, 80 total

$$2+4 = 6$$

5. State the advantages and disadvantages of a vanilla LSTM vs. a vanilla RNN with attention (at least 2 for each) in the context of machine translation. What are the issues (at least 2) with a CNN to design a language model?

4+2 = 6

Advantage of vanilla LSTM over vanilla RNN with attention:

- 1) Better capture long-range dependencies in encoder as well as decoder
- 2) Better at resolving exploding as well as vanishing gradient problem Disadvantage of vanilla LSTM over vanilla RNN with attention:

1) Encoder-decoder bottleneck

2) Alignment between source and target tokens not explainable