

Database Applications Examples

- Enterprise Information
- Sales: customers, products, purchases
- Accounting: payments, receipts, assets
- Human Resources: Information about employees, salaries, payroll taxes.
- Manufacturing: management of production, inventory, orders, supply
- Banking and finance

Chapter 1: Introduction

- customer information, accounts, loans, and banking transactions.
- Credit card transactions
- Finance: sales and purchases of financial instruments (e.g., stocks and bonds; storing real-time market data
- Universities: registration, grades

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Database Applications Examples (Cont.)

- Airlines: reservations, schedules
- generating monthly bills, maintaining balances on prepaid calling Telecommunication: records of calls, texts, and data usage, cards
- Web-based services
- Online retailers: order tracking, customized recommendations
- Online advertisements
- Document databases
- Navigation systems: For maintaining the locations of varies places of interest along with the exact routes of roads, train systems, buses,

©Silberschatz, Korth and Sudarshan

Purpose of Database Systems

In the early days, database applications were built directly on top of file systems, which leads to:

- Data redundancy and inconsistency: data is stored in multiple file formats resulting induplication of information in different files
- Difficulty in accessing data
- Need to write a new program to carry out each new task
- Data isolation
- Multiple files and formats
- Integrity problems
- Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
- Hard to add new constraints or change existing ones

©Silberschatz, Korth and Sudarshan 1.6 Database System Concepts - 7th Edition ©Silberschatz, Korth and Sudarshan 1.5 Database System Concepts - 7th Edition

Purpose of Database Systems (Cont.)

- Atomicity of updates
- Failures may leave database in an inconsistent state with partial updates carried out
- Example: Transfer of funds from one account to another should either complete or not happen at all
- Concurrent access by multiple users
- Concurrent access needed for performance
- Uncontrolled concurrent accesses can lead to inconsistencies
- Ex: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
- Security problems
- Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Relational Model Example of tabular data in the relational model

All the data is stored in various tables.

Ted Codd Columns

Turing Award 1981 Rows 95000 00006 00009 75000 72000 65000 92000 40000 87000 80000 62000 salary Comp. Sci. Comp. Sci. Comp. Sci. dept_name Elec. Eng. Finance History Biology History Physics Finance Physics Music Srinivasan Califieri Einstein El Said Mozart Brandt Crick Gold Singh Katz name Kim 58583 32343 45565 98345 99/9/ 33456 76543 10101 83821 15151

(a) The instructor table

1.1

Database System Concepts - 7th Edition

Data Models

- A collection of tools for describing
- Data
- Data relationships Data semantics
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semi-structured data model (XML)
- Other older models:
- Network model
- Hierarchical model

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

1.10

A Sample Relational Database

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	00006
32343	El Said	History	00009
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
99/9/	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

1. 1. 1	onagei	100000	00006	85000	80000	120000	50000	70000
1.11.11	punaing	Taylor	Watson	Taylor	Packard	Painter	Painter	Watson
	аерглате	Comp. Sci.	Biology	Elec. Eng.	Music	Finance	History	Physics

(b) The department table

View of Data

An architecture for a database system

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

©Silberschatz, Korth and Sudarshan

Physical Data Independence

- Physical Data Independence the ability to modify the physical schema without changing the logical schema
- Applications depend on the logical schema
- components should be well defined so that changes in some parts In general, the interfaces between the various levels and do not seriously influence others.

Instances and Schemas

- Similar to types and variables in programming languages
- Logical Schema the overall logical structure of the database
- customers and accounts in a bank and the relationship between Example: The database consists of information about a set of them
- Analogous to type information of a variable in a program
- Physical schema- the overall physical structure of the database
- Instance the actual content of the database at a particular point in
- Analogous to the value of a variable

Database System Concepts - 7th Edition

1.15

Data Definition Language (DDL)

Specification notation for defining the database schema

char(5), create table instructor (Example:

varchar(20), name

numeric(8,2)) dept_name varchar(20), salary

- DDL compiler generates a set of table templates stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
- Database schema
- Integrity constraints
- Primary key (ID uniquely identifies instructors)
- Authorization
- Who can access what

Data Manipulation Language (DML)

- Language for accessing and updating the data organized by the appropriate data model
- DML also known as query language
- Two classes of languages
- Pure used for proving properties about computational power and for optimization
- Relational Algebra
- Tuple relational calculus
- Domain relational calculus
- Commercial used in commercial systems
- SQL is the most widely used commercial language

©Silberschatz, Korth and Sudarshan

SQL Query Language

- SQL query language is nonprocedural. A query takes as input several tables (possibly only one) and always returns a single table.
- Example to find all instructors in Comp. Sci. dept

select name

from instructor

where dept_name = 'Comp. Sci.'

- SQL is NOT a Turing machine equivalent language
 To be able to compute complex functions SQL is usually embedded in
- Application programs generally access databases through one of

some higher-level language

- Language extensions to allow embedded SQL
- Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

Data Manipulation Language (Cont.)

- There are basically two types of data-manipulation language
- **Procedural DML** -- require a user to specify what data are needed and how to get those data.
- Declarative DML -- require a user to specify what data are needed without specifying how to get those data.
- Declarative DMLs are usually easier to learn and use than are procedural DMLs.
- Declarative DMLs are also referred to as non-procedural DMLs
- The portion of a DML that involves information retrieval is called a query language.

Database System Concepts - 7th Edition

Silberschatz, Korth and Sudarshan

Database Access from Application Program

- Non-procedural query languages such as SQL are not as powerful as a universal Turing machine.
- SQL does not support actions such as input from users, output to displays, or communication over the network.
- Such computations and actions must be written in a host language, such as C/C++, Java or Python, with embedded SQL queries that access the data in the database.
- Application programs -- are programs that are used to interact with the database in this fashion.

121 Database System Concepts - 7th Edition ©Silberschatz, Korth and Sudarshan 1.20 Database System Concepts - 7th Edition

Database Design

The process of designing the general structure of the database:

design requires that we find a "good" collection of relation schemas. Logical Design – Deciding on the database schema. Database

The functional components of a database system can be divided into

The transaction management component.

The query processor component,

The storage manager,

A database system is partitioned into modules that deal with each of

he responsibilities of the overall system.

Database Engine

- Business decision What attributes should we record in the database?
 - and how should the attributes be distributed among the various relation Computer Science decision - What relation schemas should we have schemas?
 - Physical Design Deciding on the physical layout of the database

©Silberschatz, Korth and Sudarshan

Storage Manager

Database System Concepts - 7th Edition

- data stored in the database and the application programs and queries A program module that provides the interface between the low-level submitted to the system.
- The storage manager is responsible to the following tasks:
- Interaction with the OS file manager
- Efficient storing, retrieving and updating of data\
- The storage manager components include:
- Authorization and integrity manager
- Transaction manager
 - File manager
- **Buffer manager**

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

The storage manager implements several data structures as part of

Storage Manager (Cont.)

Data files -- store the database itself

the physical system implementation:

- Data dictionary stores metadata about the structure of the database, in particular the schema of the database.
- Indices -- can provide fast access to data items. A database index provides pointers to those data items that hold a particular value.

Query Processor

- The query processor components include:
- DDL interpreter -- interprets DDL statements and records the definitions in the data dictionary.
 - DML compiler -- translates DML statements in a query language into an evaluation plan consisting of low-level instructions that the query evaluation engine understands.
- The DML compiler performs query optimization; that is, it picks the lowest cost evaluation plan from among the various alternatives.
- Query evaluation engine -- executes low-level instructions generated by the DML compiler.

Query Processing

- 1. Parsing and translation
- Optimization ۲
- Evaluation

©Silberschatz, Korth and Sudarshan

1.27

©Silberschatz, Korth and Sudarshan

Transaction Management

- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Database System Concepts - 7th Edition

Database Architecture

- Centralized databases
- One to a few cores, shared memory
- Client-server,
- One server machine executes work on behalf of multiple client machines. Parallel databases
- Many core shared memory
- Shared disk
- Shared nothing
- Distributed databases
- Geographical distribution
- Schema/data heterogeneity

Database Applications

Database applications are usually partitioned into two or three parts

- Two-tier architecture -- the application resides at the client machine, where it invokes database system functionality at the server machine
- Three-tier architecture -- the client machine acts as a front end and does not contain any direct database calls.
- The client end communicates with an application server, usually through a forms interface.
- The application server in turn communicates with a database system to access data.

Two-tier and three-tier architectures

©Silberschatz, Korth and Sudarshan

1.31

Database Users

Database System Concepts - 7th Edition

There are four different types of database-system users

- Naive users unsophisticated users who interact with the system by invoking one of the application programs that have been written previously.
- Application programmers -- are computer professionals who write application programs.
- Sophisticated users -- interact with the system without writing programs
- using a database query language or by
- using tools such as data analysis software.
- Specialized users --write specialized database applications that do not fit into the traditional data-processing framework. For example, CAD, graphic data, audio, video.

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Database Administrator

A person who has central control over the system is called a database administrator (DBA), whose functions are:

- Schema definition
- Storage structure and access-method definition
- Schema and physical-organization modification
- Granting of authorization for data access
- Routine maintenance
- Periodically backing up the database
- Ensuring that enough free disk space is available for normal operations, and upgrading disk space as required
- Monitoring jobs running on the database and ensuring that performance is not degraded by very expensive tasks submitted by some users

©Silberschatz, Korth and Sudarshan 133 Database System Concepts - 7th Edition ©Silberschatz, Korth and Sudarshan 1.32 Database System Concepts - 7th Edition

History of Database Systems

- 1950s and early 1960s:
- Data processing using magnetic tapes for storage
- Tapes provided only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
- Hard disks allowed direct access to data
- Network and hierarchical data models in widespread use
- Ted Codd defines the relational data model
- Would win the ACM Turing Award for this work
- IBM Research begins System R prototype
- UC Berkeley (Michael Stonebraker) begins Ingres prototype
- Oracle releases first commercial relational database
- High-performance (for the era) transaction processing

History of Database Systems (Cont.)

- **2000s**
- Big data storage systems
- Google BigTable, Yahoo PNuts, Amazon,
- "NoSQL" systems.
- Big data analysis: beyond SQL
- Map reduce and friends
- SQL reloaded
- SQL front end to Map Reduce systems
- Massively parallel database systems
- Multi-core main-memory databases

History of Database Systems (Cont.)

- Research relational prototypes evolve into commercial systems
- SQL becomes industrial standard
- Parallel and distributed database systems
- Wisconsin, IBM, Teradata
- Object-oriented database systems
- 1990s:
- Large decision support and data-mining applications
- Large multi-terabyte data warehouses
- Emergence of Web commerce

©Silberschatz, Korth and Sudarshan

1.35

©Silberschatz, Korth and Sudarshan

End of Chapter 1

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Database System Concepts - 7th Edition

1.37

END OF CHAPTER 1

©Silberschatz, Korth and Sudarshan

1.38

Database System Concepts - 7th Edition

