3D Graphs using


```
import numpy as np
import plotly.express as px

fig = px.scatter_3d(df, x='x', y='y', z='z')
fig.show()
```


1. Scatter plot

Scatterplot are used for visualize the relation between continuous numerical data

2. Bubble plot

Bubble plot is a variation of scatterplot used for categorical or discrete numerical data.

3. Line plot

Line plots are used to represent a trend. For example, how the data change over the year


```
import numpy as np
import plotly.express as px

'''some random data'''
x = np.arange(0, 10, 1)
y = [1,3,2,3,5,6,6,8,7,9]
z = [1,2,3,4,5,6,7,8,9,10]

'''creating the figure'''
fig = px.line_3d(x=x, y=y, z=z)
fig.show()
```



```
import numpy as np
import plotly.graph_objects as go

'''creating the grid'''
x = np.arange(-5, 5, 0.25)
y = np.arange(-5, 5, 0.25)

X, Y = np.meshgrid(x, y)
Z = X ** 2 + Y ** 2 - X * Y

'''creating the figure'''
surface = go.Surface(x=X, y=Y, z=Z)
fig = go.Figure(surface)
fig.show()
```


4. Surface plot

Surface plot are commonly used to visualize mathematical function and to do geospatial analysis.

It is only available in the graph_objectsmodule

5.Streamtube plot

Streamtubechartare usedto represent the flow or the vector field. It is commonly used in the field of computational fluids dynamics

6. Volume Charts

Volume chartare used to represent figurein 3 dimensions. They are similar with isobar charts but with more transparency.

7. Trisurfaceplots

They are used to represent the figure with a meshof triangles.

They are particularly useful when dealing with irregular or sparse data and enable the exploration and analysis of complex surface structures.


```
import plotly.figure_factory as ff
import numpy as np
from scipy.spatial import Delaunay
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(0, 2*np.pi, 20)
u,v = np.meshgrid(u,v)
u = u.flatten()
v = v.flatten()
x = (3 + (np.cos(v)))*np.cos(u)
y = (3 + (np.cos(v)))*np.sin(u)
z = np.sin(v)
points2D = np.vstack([u,v]).T
tri = Delaunay(points2D)
simplices = tri.simplices
fig = ff.create_trisurf(x=x, y=y, z=z,
                         simplices=simplices,
                         title="Torus",
                        aspectratio=dict(x=1, y=1, z=0.3))
fig.show()
'''code and figure from plotly.com'''
```


Thank for reading until the end

For more information, check the official documentation at plotly.com/python/3d-charts

Follow Vansh Dahiya