

# NOISYACTIVATION FUNCTIONS



Université CAGLAR GULCEHRE\*, MARCIN MOCZULSKI<sup>†</sup>, MISHA DENIL<sup>†</sup>, YOSHUA de Montréal

BENGIO\*

\*University of Montreal, †University of Oxford

#### MOTIVATION

- Common nonlinear activation functions can have training difficulties.
- Logistic functions (sigmoid and tanh) can be difficult to train.
- Piecewise linear activation functions (i.e. ReLU) are easier to optimize.

# OUR CONTRIBUTIONS

- Applying piecewise linear activation functions to gates of the recurrent models, i.e. LSTMs.
- Investigation of injecting noise to the activations.
- An efficient way to learn the std of noise for each unit.
- Annealing the activation noise can have a continuation effect.

# SATURATING ACTIVATIONS



**Definition 1.** Soft-saturating activation: An activation function softly saturates if it converges to a particular value as  $x \to \infty$  and/or  $x \to -\infty$ .

**Definition 2.** Hard-saturating activation: An activation function hardly saturates if it becomes constant when its input gets larger than a threshold c.

Linearize the activation function and clip it at the threshold:

hard-sigmoid $(x) = \max(\min(\mathbf{u}^s(x), 1), 0)$ hard-tanh $(x) = \max(\min(\mathbf{u}^t(x), 1), -1)$ 

# NOISY ACTIVATIONS (UNBIASED)

h(x): hard activation function. u(x): soft activation function.

$$\phi(x, \xi) = \mathbf{u}(x) + s$$
$$s = \mu + \sigma \xi$$
$$\mathbf{E}_{\xi \sim \mathcal{N}(0, 1)} \approx \mathbf{h}(x)$$

# NOISY ACTIVATIONS (BIASED)





# **Injecting Biased Noise:**

$$\begin{aligned} \mathbf{d}(x) &= -\mathrm{sgn}(x)\mathrm{sgn}(1 - \alpha) \\ &\text{For } \epsilon = |\xi|, \\ &s &= \mu(x) + \mathbf{d}(x)\sigma(x)\epsilon, \\ \phi(x, \, \xi) &= \alpha \mathbf{h}(x) + (1 - \alpha)\mathbf{u}(x) + \mathbf{d}(x)\sigma(x)\epsilon. \end{aligned}$$

Use the expectation of the noise at the test time:

$$E[\phi(x, \boldsymbol{\xi})] = \alpha h(x) + (1 - \alpha) \mathbf{u}(x) + \mathbf{d}(x) \sigma(x) E[\epsilon].$$

# Injecting Noise at the Input:

Noise injection to the input of the activation function can be written as:

$$\phi(x, \boldsymbol{\xi}) = \mathbf{h}(x + \boldsymbol{s}).$$

and s can have different formulations, e.g.  $s = \sigma \xi$ ,  $s = \sigma(x)\xi$  or  $s = \mathbf{1}_{|x| \ge |x_t|}(\sigma \xi)$ 

# ANNEALING THE NOISE

Start with large noise resulting in larger exploration and anneal the noise:

$$\lim_{|\xi| \to \infty} \left| \frac{\partial \phi(x, \xi)}{\partial x} \right| \to \infty$$

A pathological one-dimensional case for SGD:



### **EXPERIMENTS**

Used the same hyperparameters with baselines.

- NAN NormAl Noise at the output.
- NAH Half-NormAl (biased) Noise at the output.
- NANI NormAl Noise at the Input.
- NANIL NormAl Noise with Learned  $\sigma(x)$  at the Input.
- NANIS NormAl Noise at the Input when unit Saturates.

#### **Neural Machine Translation**

|                                  | Valid nll | BLEU  |
|----------------------------------|-----------|-------|
| Sigmoid and Tanh NMT (Reference) | 65.26     | 20.18 |
| Hard-Tanh and Hard-Sigmoid NMT   | 64.27     | 21.59 |
| Noisy (NAH) Tanh and Sigmoid NMT | 63.46     | 22.57 |

# Learning to Execute



# **Image Caption Generation**

\*Image caption generation is both without dropout.

|              | BLEU -1 | BLEU-2      | BLEU-3 | BLEU-4 | METEOR | Test NLL |
|--------------|---------|-------------|--------|--------|--------|----------|
| Soft (Ref.)  | 67      | 44.8        | 29.9   | 19.5   | 18.9   | 40.33    |
| Soft (NAH)   | 66      | <b>45.8</b> | 30.69  | 20.9   | 20.5   | 40.17    |
| Soft (NAH*)  | 64.9    | 44.2        | 30.7   | 20.9   | 20.3   | 39.8     |
| Soft (NANI)  | 66      | 45.0        | 30.6   | 20.7   | 20.5   | 40.0     |
| Soft (NANIL) | 66      | 44.6        | 30.1   | 20.0   | 20.5   | 39.9     |
| Hard         | 67      | 45.7        | 31.4   | 21.3   | 19.5   | _        |

#### PennTreeBank Experiments

| Valid ppl | Test ppl       |
|-----------|----------------|
| 111.7     | 108.0          |
| 112.6     | 108.7          |
| 119.4     | 115.6          |
|           | 111.7<br>112.6 |

# **Annealing Experiments**

|                                      | Test Error % |
|--------------------------------------|--------------|
| LSTM+MLP(Reference)                  | 33.28        |
| Noisy LSTM+MLP(NAN)                  | 31.12        |
| Curriculum LSTM+MLP                  | 14.83        |
| Noisy LSTM+MLP(NAN) Annealed Noise   | 9.53         |
| Noisy LSTM+MLP(NANIL) Annealed Noise | 20.94        |

# NTM Experiments

