CS4349 Ch 3: Growth of Functions

Asymptotic Efficiency of Algorithms

 The asymptotic efficiency of algorithms focuses on how the running time of an algorithm increases with the size of the input in the limit, as the size of the input increases without bound.

• Θ - notation (theta)

- $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ s.t.}$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$
- $\Theta(g(n))$ is the set of functions
- $f(n) = \Theta(g(n))$ really means that f(n) belongs to $\Theta(g(n))$
- g(n) is called an <u>asymptotically tight bound</u> for f(n)

Example: $\Theta(1)$ means a constant or a constant function w.r.t. some variable. $f(n) = \Theta(1)$ means f(n) lies sandwiched between two constants c1, c2 > 0 for all sufficiently large n.

(P) - Notation

• ⊕- notation

 Θ notation bounds a function to within constant factors. We write $f(n)=g(\Theta)$ if there exist positive constants n_0 , c_1 , and c_2 s.t. at and to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive.

If f(n) is a polynomial of degree d, then $f(n) = \Theta(n^d)$

g(n) is an **asymptotically tight bound** for f(n).

Θ - Notation Example 1

- Show that $3n^2 + 4n 2 = \Theta(n^2)$ $c_1 n^2 \le 3n^2 + 4n - 2 \le c_2 n^2$ Left hand inequality: $c_1 \le 3 + 4/n - 2/n^2$
- We can make the left hand inequality hold for any value of $n\geq 1$ by choosing any constant $c_1\leq 5$.
- Right hand inequality: $3 + 4/n 2/n^2 \le c_2 n^2$
 - We can make the right hand inequality hold for any value of n ≥ 1 by choosing any constant $c_2 \ge 5$.
 - We can also make the right hand inequality hold for any value of n ≥ 2 by choosing any constant c₂ ≥ 11/2.
- The point here is that some choice for c_1 , c_2 , and n_0 exists, therefore the given function is $\Theta(n^2)$.

O - Notation Example 2

• Show that $n^2 - 2n = \Theta(n^2)$

$$c_1 n^2 \le n^2 - 2n \le c_2 n^2$$

$$c_1 \le 1 - \frac{2}{n} \le c_2$$

$$c_1 \le \frac{1}{3} \qquad c_2 \ge 1$$

$$n \ge 3$$

$$n_0 = 3$$

- Some choice for c_1 , c_2 , and n_0 exists, therefore the function is $\Theta(n^2)$
- Note: $\Theta(n^0)$ is equivalent to $\Theta(1)$

Θ - Notation Example 3

• Show that $200n^2 - 100n = \Theta(n^2)$

$$c_{1}n^{2} \leq 200n^{2} - 100n \leq c_{2}n^{2}$$

$$c_{1} \leq 200 - \frac{100}{n} \leq c_{2}$$

$$c_{1} \leq 100 \qquad c_{2} \geq 200$$

$$n \geq 1 \qquad n \geq 1$$

$$n_{0} = 1$$

• Some choice for c_1 , c_2 , and n_0 exists, therefore the function is $\Theta(n^2)$

O – Notation (big-oh)

O - notation (big-oh)

- f(n) = O(g(n)): g(n) is an <u>asymptotic upper bound</u> for f(n)
- $O(g(n)) = \{ f(n): \text{ there exist positive constants c and } n_0 \}$ such that for all $0 \le f(n) \le cg(n)$ $n \ge n_0$
- $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)), but f(n) = O(g(n)) does NOT imply $f(n) = \Theta(g(n))$.

Example:

- If $f(n) = n^2 2n$, then $f(n) = O(n^2)$ also $f(n) = O(n^3) = ...$
- If $f(n) = 200n^2 100n$, then $f(n) = O(n^2)$ also $f(n) = O(n^3) = ...$
- O is good for describing the worst-case running time of an algorithm
- Formally, when we say the running time is O(f(n)), we mean all running times on inputs of length n including the worst-case running time is O(f(n)) even if some inputs have better running times.

O - Notation

O - notation

g(n) is an asymptotic upper bound for f(n).

Ω - Notation (big-omega)

- Ω notation (big-omega)
 - $f(n) = \Omega(g(n))$: g(n) is an <u>asymptotic lower bound</u> for f(n)
 - $Ω(g(n)) = {f(n): there exist positive constants c and n₀ such that <math>0 ≤ cg(n) ≤ f(n)$ for all $n ≥ n_0$ }
- $f(n) = \Theta(g(n))$ implies $f(n) = \Omega(g(n))$, but $f(n) = \Omega(g(n))$ does NOT imply $f(n) = \Theta(g(n))$
- Example:
 - $n^2 2n = \Omega (n^2)$
 - 200n² 100n = Ω (n²) = Ω (n) = Ω (1)
 - $n^2 = \Omega (n)$
- Ω is good for describing the <u>best case running time</u> of an algorithm
- Theorem
 - $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Ω - Notation

• Ω - notation (omega)

Insertion Sort revisited

- Based on asymptotic notation definitions:
- The running time of Insertion sort belongs to $\Omega(n)$ and $O(n^2)$, as it lies between a linear function of n (for the best case) and a quadratic function of n (for the worst case).

Asymptotic Notation in Equations

- Below "LHS=RHS" means LHS is RHS (but not vice versa).
 From a set definition point of view, it means LHS belongs to RHS (but not vice versa).
 - $n = O(n^2)$ means "n is $O(n^2)$ " or "n belongs to $O(n^2)$ "
- In general, asymptotic notation stands for some anonymous function

• Example:

- $-2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means
 - there is some function $f(n) \in \Theta(n)$ that makes the equation true, i.e. f(n) = 3n + 1
- $-2n^2 + \Theta(n) = \Theta(n^2)$ means
 - for any function $f(n) \in \Theta(n)$, there is some function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$ for all n
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$

o – Notation (little-oh)

- o notation (little-oh)
 - O notation may or may not be asymptotically tight
 - $2n^2=O(n^2)$ is asymptotically tight, but $2n=O(n^2)$ is not.
 - f(n) = o(g(n)): g(n) is an <u>upper bound</u> of f(n) that is <u>not</u> asymptotically tight
 - $o(g(n)) = \{ f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$
 - $2n = o(n^2)$, but $2n^2 \neq o(n^2)$
- **O**: for some constant c, **o**: for all constant c
- In the o-notation, the function f(n) becomes <u>insignificant</u> relative to g(n) as n approaches infinity

- i.e.,
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

ω - Notation (little-omega)

- ω notation (little-omega)
 - $-2n^2 = \Omega(n^2)$ is asymptotically tight, but $2n^3 = \Omega(n^2)$ is not
 - $f(n) = \omega(g(n))$: g(n) is a <u>lower bound</u> of f(n) that is <u>not asymptotically</u> <u>tight</u>
 - $\omega(g(n)) = \{ f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$
 - $2n^2 = \omega(n), \text{ but } 2n^2 \neq \omega(n^2)$
- In the ω -notation, the function f(n) becomes <u>arbitrarily large</u> relative to g(n) as n approaches infinity
 - i.e.,

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Standard Notations and Common Functions

• *Monotonicity*: A function *f(n)* is:

- monotonically increasing if $a \le b$ implies $f(a) \le f(b)$
- monotonically decreasing if $a \le b$ implies $f(a) \ge f(b)$
- strictly increasing if a < b implies f(a) < f(b)
- strictly decreasing if a < b implies f(a) > f(b)

Floors and ceilings

- Floor: |x| is the greatest integer $\leq x$
- Ceiling: $\lceil x \rceil$ is the least integer $\geq x$
- Examples:

$$\begin{bmatrix} 3 \end{bmatrix} = 3
\begin{bmatrix} 3.3 \end{bmatrix} = 3
\begin{bmatrix} 3.3 \end{bmatrix} = 4
\begin{bmatrix} 3.9 \end{bmatrix} = 3
\begin{bmatrix} n/2 \end{bmatrix} + \begin{bmatrix} n/2 \end{bmatrix} = n, \begin{bmatrix} [n/a]/b \end{bmatrix} = [n/ab], | [n/a]/b | = [n/ab]$$

Standard Notations and Common Functions

Logarithms

- log_b n: logarithm of n base b
- $\lg n = \log_2 n$ (binary logarithm)
- $\ln n = \log_e n$ (natural logarithm, e = 2.7182...)

Factorials

$$- n! = 1$$
 if $n = 0$, $n(n-1)$! if $n > 0$.

- n! = 1 * 2 * 3 * ... * n
- $n! \le n^n$, thus $O(n^n)$

Stirling's Approximation

$$- n! = \sqrt{2 \cdot \pi \cdot n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right)$$

- From Stirling's approximation, the following holds:
 - $n! = o(n^n)$
 - $n! = \omega(2^n)$
 - $\lg (n!) = \Theta(n \lg n)$

Comparison of Running Times

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Common Time Complexities

BETTER

