Лекция 2. Случайные процессы в непрерывном времени

September 24, 2025

Рекап прошлой лекции

- УМО относительно σ -алгебры и с.в.: определение, основные свойства
- Случайный процесс совокупность с.в., проиндексированных временем
- Фильтрация последовательность вложенных σ -алгебр, формализуют поток информации, доступный к моменту t
- Мартингал $\mathbb{E}\left[X_{t+1}|\mathcal{F}_t\right] = X_t$. "Непредсказуемый" процесс. Случайное блуждание как пример мартингала.
- Дискретный стохастический интеграл PnL торговой стратегии.
- ullet Теорема Дуба об остановке: $\mathbb{E} X_{ au} = \mathbb{E} X_0$

Случайные процессы

Пусть (Ω, F, \mathbb{P}) – вероятностное пространство.

Определение

Случайный процесс – набор случайных величин $\xi_t, t \in [0, T]$ заданных на одном и том же вероятностном пространстве.

Конечномерные распределения

Всевозможные совместные распределения с.в. $\xi_{t_1},\dots,\xi_{t_n}$ называются конечномерными распределениями процесса ξ_t :

$$F_{t_1,...,t_n}(x_1,...,x_n) = \mathbb{P}(\xi_{t_1} \leq x_1,...,\xi_{t_n} \leq x_n)$$

- Случайный процесс функция двух переменных $\xi_t = \xi(t, \omega)$, измеримая по второму аргумету $\forall t$.
- Отображение $t: \xi_t(\omega)$ при фиксированном ω траектория(реализация) процесса.

Примеры случайных процессов

Пусть $\mathcal{T} = [0,1], \ \eta \sim \textit{N}(0,1).$ Положим $\xi_t = t \cdot \eta.$ Свойства:

- $\mathbb{E}\xi_t = 0$
- $\operatorname{Var}\xi_t = t^2$
- $cov(\xi_t, \xi_s) = ts$

Примеры случайных процессов

Пусть $\mathcal{T} = \mathbb{N}$, $\xi_t \sim Be(1/2)$ – i.i.d.

$$X_t = \sum_{s=1}^t \xi_s$$

Свойства:

- $\mathbb{E}X_t = 0$, $\operatorname{Var}X_t = t$
- $\bullet \mathbb{E}\left[X_{t}|X_{t-1}\right] = X_{t-1}$
- \bullet cov $(X_t, X_s) = \min(t, s)$
- Приращения $X_t X_s \sim Binom(t s, 0.5)$, независимы.

Предел случайного блуждания

Пусть X_k – случайное блуждание. Введём процесс с непрерывным временем:

$$B_n(t) = \frac{1}{\sqrt{n}} X_{\lfloor n \cdot t \rfloor}$$

- $\mathbb{E}B_n(t) = 0$, $\operatorname{Var}B_n(t) = \frac{\lfloor n \cdot t \rfloor}{n} \approx t$
- $B_t W_s \sim \frac{1}{\sqrt{n}} Binom(t-s,0.5) \to N(0,t-s)$ при $n \to \infty$.

Броуновское движение

Определение

Случайный процесс B_t называется броуновским движением (винеровским процессом), если:

- $B_0 = 0$
- $\forall s < t : B_t B_s \sim N(0, t s)$
- ullet $\forall s_1 < t_1 \leq s_2 < t_2$ приращения $B_{t_2} B_{s_2}, B_{t_1} B_{s_1}$ независимы
- ullet Траектории B_t почти наверное непрерывны по t

Марковский процесс

Определение

Процесс X_t называется марковским, если он удовлетворяет марковскому свойству:

$$\mathbb{P}(X_t \in A|\mathcal{F}_s) = \mathbb{P}(X_t \in A|X_s)$$

где $(\mathcal{F}_t)_{t\geq 0}$ – естественная фильтрация.

Эквивалентное определение: $\forall f$ – ограниченная измеримая функция, выполнено:

$$\mathbb{E}\left[f(X_t)|\mathcal{F}_s\right] = \mathbb{E}\left[f(X_t)|X_s\right] (= g_f(X_s))$$

Будущее, при условии настоящего, не зависит от прошлого.

Непрерывность и дифференцируемость в с.к.

Определение

Процесс X_t называется непрерывным в среднеквадратичном, если:

$$\lim_{\delta \to 0} \mathbb{E}(X_{t+\delta} - X_t)^2 = 0$$

Определение

Процесс X_t называется дифференцируемым в среднеквадратичном, если \exists процесс $(Y_t)_{t\geq 0}$:

$$\lim_{\delta \to 0} \mathbb{E} \left(\frac{X_{t+\delta} - X_t}{\delta} - Y_t \right)^2 = 0$$

Вариация функции/процесса

Определение

Полная вариацией функции/процесса X_t называется величина:

$$V_t(X) = \lim_{\delta \to 0} \sum_{k=1}^{n} |X_{t_k} - X_{t_{k-1}}|$$

Для дифференцируемых функций $V_t(X) = \int_0^t |X_t'| dt$.

Определение

Квадратичной вариацией процесса X_t называется процесс:

$$[X]_t = \lim_{\delta o 0} \sum_{k=1}^n (X_{t_k} - X_{t_{k-1}})^2$$

где предел берётся по всем разбиениям интервала [0,t] с диаметром δ , стремящимся к нулю.

Свойства броуновского движения

- $B_t \sim N(0,t)$
- Броуновское движение непрерывно в среднеквадратичном:

$$\lim_{\delta \to +0} \mathbb{E} \left(B_{t+\delta} - B_t \right)^2 = 0$$

• Процесс НЕ дифференцируем в среднеквадратичном:

$$\lim_{\delta \to +0} \mathbb{E} \left(\frac{B_{t+\delta} - B_t}{\delta} \right)^2 = \lim_{\delta \to +0} \frac{1}{\delta} = \infty$$

• Конечная квадратичная вариация:

$$[B]_T = \int_0^T (dB_t)^2 = \lim_{n \to \infty} \sum_{k=0}^{n-1} (\Delta B_{t_k})^2 = T$$

- Бесконечная полная вариация: $V_t(B) = \infty$.
- $B_t, B_t^2 t$ мартингалы
- ullet Самоподобие: orall lpha > 0 процесс $C_t = rac{1}{\sqrt{lpha}} B_{lpha t}$ тоже БД.

Квадратичная вариация броуновского движения

• Пусть $0 = t_0 < t_1 < \ldots < t_n = T$ – произвольное разбиение с диаметром δ :

$$\delta = \max_{k} \{t_{k+1} - t_k\}$$

ullet Пусть $S_n = \sum_{k=0}^{n-1} \left[B_{t_{k+1}} - B_{t_k}
ight]^2$. Тогда:

$$\mathbb{E}S_n = \sum_{k=0}^{n-1} \mathbb{E}\left[B_{t_{k+1}} - B_{t_k}\right]^2 = \sum_{k=0}^{n-1} \mathbb{E}(t_{k+1} - t_k) = T$$

$$\operatorname{Var} S_n = \sum_{k=0}^{n-1} \operatorname{Var} \left[B_{t_{k+1}} - B_{t_k} \right]^2 = \sum_{k=0}^{n-1} 2(t_{k+1} - t_k)^2 \le 2 T \delta$$

- ullet По неравенству Чебышева $S_n o T$ при $\delta o 0$.
- $[B]_t = \lim_{\delta \to 0} S_n = T$.

Интеграл Ито для простых процессов

Пусть B_t – броуновское движение, $\mathbb{F}=\{\mathcal{F}_t\}_{t\geq 0}$ – естественная фильтрация.

Определение

Процесс g(t) называется простым, если \exists числа $0 < t_1 < \ldots < t_n = \mathcal{T}$ такие, что $g(t) = g(t_k)$ на $t \in [t_k, t_{k+1})$.

Интеграл Ито для простого процесса

Пусть g(t) – простой процесс, согласованный с фильтрацией \mathbb{F} . Будем называть интегралом Ито случайную величину:

$$\int_0^T g(t)dB_t = \sum_{k=0}^{n-1} g(t_k) \left[B_{t_{k+1}} - B_{t_k} \right]$$

Интеграл Ито для простых процессов: свойства

Пусть
$$Z_t = \int_0^t g(s) dB_s$$
. Тогда:

- $Z_t \in \mathcal{F}_t$
- $\mathbb{E}[Z_t|\mathcal{F}_s] = Z_s$
- $\mathbb{E}Z_t = 0$
- ullet $\operatorname{Var} Z_t = \mathbb{E}\left[\int_0^t g^2(t)dt
 ight]$ изометрия Ито.

Изометрия Ито

$$Z_t = \sum_{k=0}^{n-1} g(t_k) \Delta B_{t_k}$$
$$Var Z_t = \mathbb{E} Z_t^2$$

$$\mathbb{E}Z_t^2 = \mathbb{E}\left(\sum_{k=0}^{n-1} g(t_k)^2 (\Delta B_{t_k})^2 + 2\sum_{i < j} g(t_i)g(t_j)\Delta B_{t_i}\Delta B_{t_j}\right) =$$

$$= A_1 + A_2$$

Изометрия Ито: продолжение

$$A_{1} = \mathbb{E} \sum_{k=0}^{n-1} g^{2}(t_{k}) (\Delta B_{t_{k}})^{2} = \mathbb{E} \sum_{k=0}^{n-1} \mathbb{E}^{\mathcal{F}_{t_{k}}} \left[g^{2}(t_{k}) (\Delta B_{t_{k}})^{2} \right] =$$

$$= \mathbb{E} \sum_{k=0}^{n-1} g^{2}(t_{k}) \mathbb{E}^{\mathcal{F}_{t_{k}}} (\Delta B_{t_{k}})^{2} = \mathbb{E} \sum_{k=0}^{n-1} g^{2}(t_{k}) \Delta t = \mathbb{E} \int_{0}^{T} g^{2}(t) dt$$

$$egin{aligned} A_2 &= 2\mathbb{E}\sum_{i < j} g(t_i)g(t_j)\Delta B_{t_i}\Delta B_{t_j} = 2\mathbb{E}\sum_{i < j} \mathbb{E}^{\mathcal{F}_{t_j}}\left[g(t_i)g(t_j)\Delta B_{t_i}\Delta B_{t_j}
ight] = \ &= 2\mathbb{E}\sum_{i < j} g(t_i)g(t_j)\Delta B_{t_i}\mathbb{E}^{\mathcal{F}_{t_j}}\left[\Delta B_{t_j}
ight] = 0 \end{aligned}$$

Итого:

$$\operatorname{Var}\left[\int_{0}^{T}g(t)dB_{t}\right]=\mathbb{E}\left[\int_{0}^{T}g^{2}(t)dt\right]$$

Интеграл Ито для произвольного процесса

- ullet Пусть g(t) согласованный процесс, $\mathbb{E} g^2(t) < \infty$
- Пусть $\{g_n(t)\}_{n=1}^\infty$ последовательность простых процессов таких, что

$$\int_0^t \mathbb{E}[g_n(s) - g(s)]^2 ds \to 0, n \to \infty$$

- ullet Для каждого n определим $Z_n = \int_0^t g_n(s) dB_s$
- ullet Можно показать, что $\exists Z$ такой, что $Z_n o Z$ в с.к..
- Определим интеграл как:

$$\int_{0}^{t} g(s)dB_{s} = \lim_{n \to \infty} \int_{0}^{T} g_{n}(t)dB_{t} = \lim_{n \to \infty} \sum_{k=0}^{n-1} g_{n}(t_{k}) \left[B_{t_{k+1}} - B_{t_{k}} \right]$$

Задача

Вычислить

$$\int_0^t 2B_s dB_s = \dots$$

Задача

Вычислить

$$\int_0^t 2B_s dB_s = \dots$$

Детерминированный случай:

$$\int_0^t 2f(s)df(s) = \int_0^t df^2 = f^2(t)$$

Задача

Вычислить

$$\int_0^t 2B_s dB_s = \dots$$

Детерминированный случай:

$$\int_0^t 2f(s)df(s) = \int_0^t df^2 = f^2(t)$$

Стохастический случай:

$$\Delta (B_{t_k}^2) = B_{t_{k+1}}^2 - B_{t_k}^2 = (B_{t_{k+1}} - B_{t_k}) (B_{t_{k+1}} + B_{t_k})$$
$$= \Delta B_{t_k} (2B_{t_k} + \Delta B_{t_k}) = 2B_{t_k} \Delta B_{t_k} + [\Delta B_{t_k}]^2$$

Задача

Вычислить

$$\int_0^t 2B_s dB_s = \dots$$

Детерминированный случай:

$$\int_0^t 2f(s)df(s) = \int_0^t df^2 = f^2(t)$$

Стохастический случай:

$$\Delta (B_{t_k}^2) = B_{t_{k+1}}^2 - B_{t_k}^2 = (B_{t_{k+1}} - B_{t_k}) (B_{t_{k+1}} + B_{t_k})$$
$$= \Delta B_{t_k} (2B_{t_k} + \Delta B_{t_k}) = 2B_{t_k} \Delta B_{t_k} + [\Delta B_{t_k}]^2$$

$$\sum_{k=0}^{n-1} 2B_{t_k} \Delta B_{t_k} = \sum_{k=0}^{n-1} \Delta \left(B_{t_k}^2 \right) - \left[\Delta B_{t_k} \right]^2 = B_t^2 - \sum_{k=0}^{n-1} \left[\Delta B_{t_k} \right]^2 \rightarrow B_t^2 - t$$

Свойства

• Линейность:

$$\int_0^T \left[\alpha g(t) + \beta h(t)\right] dB_t = \alpha \int_0^T g(t) dB_t + \beta \int_0^T h(t) dB_t$$

• Линейность по пределу интегрирования:

$$\int_{0}^{T} g(t)dB_{t} = \int_{0}^{s} g(t)dB_{t} + \int_{s}^{T} g(t)dB_{t}, \ 0 < s < T$$

• Изометрия Ито:

$$\mathbb{E}\left[\int_0^T g(t)dB_t\right] = 0, \ \mathrm{Var}\left[\int_0^T g(t)dB_t\right] = \int_0^T g^2(t)dt$$

• Таблица умножения стох. дифференциалов:

$$(dB_t)^2 = dt, \ dB_t dt = 0, \ dB_t dB_s = 0, \ t \neq s$$

Процесс Ито

Определение

Пусть μ_t, σ_t – согласованные с $(\mathcal{F}_t)_{t\geq 0}$ процессы, $X_0\in \mathcal{F}_0$. Будем называть процессом Ито процесс вида:

$$X_t = X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dB_s$$

В дифференциальной форме это можно записать как:

$$dX_t = \mu_t dt + \sigma_t dB_t$$

Процесс Ито

Определение

Пусть μ_t, σ_t – согласованные с $(\mathcal{F}_t)_{t\geq 0}$ процессы, $X_0\in \mathcal{F}_0$. Будем называть процессом Ито процесс вида:

$$X_t = X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dB_s$$

В дифференциальной форме это можно записать как:

$$dX_t = \mu_t dt + \sigma_t dB_t$$

Интеграл Ито по процессу Ито

Пусть X_t — процесс Ито, g_t — согласованный процесс. Определим:

$$\int_0^T g_t dX_t = \int_0^T \mu_t g_t dt + \int_0^T \sigma_t g_t dB_t$$

Формула Ито для броуновского движения

Теорема

Пусть B_t — броуновское движение, f(t,x) — гладкая функция. Тогда:

$$f(t, B_t) = f(0, 0) + \int_0^t \left[\frac{1}{2} f_{xx}(s, B_s) + f_s(s, B_s) \right] ds + \int_0^t f_x(s, B_s) dB_s$$

Формула Ито для броуновского движения

Теорема

Пусть B_t — броуновское движение, f(t,x) — гладкая функция. Тогда:

$$f(t, B_t) = f(0, 0) + \int_0^t \left[\frac{1}{2} f_{xx}(s, B_s) + f_s(s, B_s) \right] ds + \int_0^t f_x(s, B_s) dB_s$$

Неформально интегральную запись можно понимать как:

$$df(t,B_t) = \left[\frac{1}{2}f_{xx}(t,B_t) + f_t(t,B_t)\right]dt + f_x(t,B_t)dB_t$$

Формула Ито для броуновского движения

Неформально интегральную запись можно понимать как:

$$df(t,B_t) = \left[\frac{1}{2}f_{xx}(t,B_t) + f_t(t,B_t)\right]dt + f_x(t,B_t)dB_t$$

Доказательство (Для случая f = f(x)) Разложим функцию $f(B_t)$ в ряд Тейлора до второго порядка малости:

$$f(B_t + dB_t) - f(B_t) = f_X(B_t)dB_t + \frac{1}{2}f_{XX}(B_t)dB_t^2 + \dots =$$

$$= f_X(B_t)dB_t + \frac{1}{2}f_{XX}(B_t)dt + o(dt)$$

_

•
$$f(x) = x^2$$
. $Y_t = f(B_t)$
$$dY_t = 2B_t dB_t + dt$$

$$Y_t = t + 2\int_0^t B_s dB_s$$

•
$$f(x) = e^x$$
, $Y_t = f(B_t)$
$$dY_t = \frac{1}{2}Y_tdt + Y_tdB_t$$

ullet При каком lpha процесс $e^{lpha t + \sigma B_t}$ является мартингалом?

Формула Ито

Формула Ито позволяет разложить процесс $Y_t = f(t, B_t)$ на "предсказуемую" и мартингальную часть:

$$f(t, B_t) = A_t + M_t$$

где

- $A_t = f(0,0) + \int_0^t \left[\frac{1}{2} f_{xx}(s,B_s) + f_s(s,B_s) \right] ds$ процесс ограниченной вариации.
- $M_t = \int_0^t f_x(s, B_s) dB_s$ мартингал.

Формула Ито для процесса Ито

Теорема

Пусть X_t – процесс Ито:

$$dX_t = \mu_t dt + \sigma_t dB_t,$$

f(t,x) – гладкая функция. Тогда $Y_t = f(t,X_t)$ процесс Ито:

$$dY_t = \mu_t^Y dt + \sigma_t^Y dB_t,$$

где

$$\mu_t^Y = f_t(t, X_t) + f_x(t, X_t)\mu_t + \frac{1}{2}f_{xx}(t, X_t)\sigma_t^2$$

$$\sigma_t^Y = f_x(t, X_t)\sigma_t$$

Доказательство Аналогично предыдущему случаю

Стохастические диф. уравнения

Интегральная запись:

$$X_t = X_0 + \int_0^t \mu(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$$

Дифференциальная запись:

$$\begin{cases} dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t \\ X_0 = x_0 \end{cases}$$

Пример. Броуновское движение со сносом

$$dX_t = \mu dt + \sigma dB_t$$

$$X_t = X_0 + \mu t + \sigma B_t$$

Пример. Броуновское движение со сносом

$$dX_t = \mu dt + \sigma dB_t$$

$$X_t = X_0 + \mu t + \sigma B_t$$

Пример. Геометрическое броуновское движение

$$\begin{cases} dX_t = X_t \left(\mu dt + \sigma dB_t \right) \\ X_0 = 1 \end{cases}$$

Рассмотрим детерменированное уравнение:

$$dX_t = X_t \mu dt \rightarrow X_t = e^{\mu t}$$

Замена переменных:

$$X_t = e^{Y_t} \longrightarrow Y_t = \log X_t$$

$$dY_t = \frac{dX_t}{X_t} - \frac{1}{2} \frac{(dX_t)^2}{X_t^2} = \left(\mu - \frac{1}{2}\sigma^2\right) dt + \sigma dB_t$$
$$X_t = \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right]$$

Пример. Геометрическое броуновское движение

$$\begin{split} X_t &= \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right] \\ \mathbb{E} X_t &= \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)t\right]\mathbb{E}\exp\left[\sigma B_t\right] = e^{\mu t} \end{split}$$

Пример. Геометрическое броуновское движение

$$\begin{split} X_t &= \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right] \\ \mathbb{E} X_t &= \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)t\right]\mathbb{E}\exp\left[\sigma B_t\right] = e^{\mu t} \end{split}$$

Пример. Процесс Орнштейна-Уленбека

$$dX_t = -\alpha X_t dt + \sigma dB_t$$

$$\mathbb{E}X_t = \beta_t = \dots$$

$$d\beta_t = -\alpha\beta_t dt \longrightarrow \beta_t = \beta_0 e^{-\alpha t}$$

Пример. Процесс Орнштейна-Уленбека

$$dX_t = -\alpha X_t dt + \sigma dB_t$$

$$\mathbb{E}X_t = \beta_t = \dots$$

$$d\beta_t = -\alpha\beta_t dt \longrightarrow \beta_t = \beta_0 e^{-\alpha t}$$

Теорема существования

Пусть задано стохастическое дифф. уравнение:

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$

Теорема

Пусть

- $|\mu(t,x)-\mu(t,y)| \leq K|x-y|$
- $|\sigma(t,x) \sigma(t,y)| \leq K|x-y|$
- $|\mu(t,x)| + |\sigma(t,y)| \le K(1+|x|)$

Тогда $\exists !$ решение СДУ $(X_t)_{t>0}$, причем:

- ullet $(X_t)_{t\geq 0}$ адаптированный к $(\mathcal{F}_t)_{t\geq 0}$ процесс,
- \bullet $(X_t)_{t>0}$ имеет непрерывные траектории,
- $(X_t)_{t>0}$ марковский процесс,
- $\exists C \in \mathbb{R}^+ : \mathbb{E}X_t^2 \leq Ce^{Ct}(1+x_0^2)$

Формула Феймана-Каца: мотивировка

• Процесс цены X_t :

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$$

- Случайная выплата, зависящая от цены X_T : $Y_T = \Phi(X_T)$.
- Ожидание выплаты в момент t:

$$Y_t = \mathbb{E}\left[\Phi(X_T)|\mathcal{F}_t\right]$$

• В силу марковости:

$$Y_t = \mathbb{E}\left[\Phi(X_T)|\mathcal{F}_t\right] = \mathbb{E}\left[\Phi(X_T)|X_t\right] = f(t, X_t)$$

для некоторой функции $f: \mathbb{R}^+ imes \mathbb{R} o \mathbb{R}$

Постановка задачи

Найти функцию f(t,x) такую, что:

$$f(t,x) = \mathbb{E}[\Phi(X_T)|X_t = x]$$

Формула Феймана-Каца

• Предположим, что f(t,x) гладкая, тогда по формуле Ито:

$$dY_t = \mu_t^Y dt + \sigma_t^Y dB_t,$$

где

$$\mu_t^{Y} = f_t(t, X_t) + f_x(t, X_t)\mu(t, X_t) + 0.5 \cdot f_{xx}(t, X_t)\sigma^2(t, X_t)$$

$$\sigma_t^{Y} = f_x(t, X_t)\sigma^2(t, X_t)$$

ullet Y_t – мартингал Леви, поэтому $\mu_t^Y=0$, откуда:

$$f_t(t,x) + f_x(t,x)\mu(t,x) + 0.5 \cdot f_{xx}(t,x)\sigma^2(t,x) = 0$$

 $f(T,x) = \Phi(x)$

Формула Феймана-Каца

Пусть X_t удовлетворяет СДУ $dX_t = \mu(t,X_t)dt + \sigma(t,X_t)dB_t$.

Теорема

• Пусть f(t,x) удовлетворяет УРЧП:

$$f_t(t,x) + f_x(t,x)\mu(t,x) + 0.5 \cdot f_{xx}(t,x)\sigma^2(t,x) = 0$$

 $f(T,x) = \Phi(x)$

Тогда:

$$Y_t = \mathbb{E}[\Phi(X_T)|\mathcal{F}_t] = f(t, X_t)$$

• Пусть $f(t,x) = \mathbb{E}[\Phi(X_T)|X_t = x]$. Тогда f(t,x) удовлетворяет уравнению:

$$f_t(t,x) + f_x(t,x)\mu(t,x) + 0.5 \cdot f_{xx}(t,x)\sigma^2(t,x) = 0$$

 $f(T,x) = \Phi(x)$

Решить УРЧП:

$$f_t(t,x) + 0.5 \cdot f_{xx}(t,x) = 0$$

 $f(T,x) = x^2$

Решить УРЧП:

$$f_t(t, x) + 0.5 \cdot f_{xx}(t, x) = 0$$

 $f(T, x) = x^2$

- $\mu(t,x) = 0$, $\sigma(t,x) = 1 \rightarrow X_t = B_t$.
- По формуле Феймана-Каца:

$$f(t,x)=\mathbb{E}[B_T^2|B_t=x]=\mathbb{E}[(x+(B_T-B_t))^2|B_t=x]=\mathbb{E}(x+\xi)^2$$
где $\xi\sim N(0,T-t).$

• Отсюда:

$$f(t,x) = x^2 + (T-t)$$

Рекап второй лекции

- Броуновское движение как предел случайных блужданий.
- Основные свойства: мартингальность, самоподобие, бесконечная полная вариация, конечная квадратичная вариация.
- Интеграл Ито: непрерывный аналог дискретного стохастического интеграла
- Изометрия Ито. Таблица умножения стохастических дифференциалов.
- Лемма/формула Ито: формула замены переменных в стохастическом интеграле
- Формула Феймана-Каца связь между УРЧП и СДУ.