Enample 2. May 2017 (10M)

Apply the Naive Bayes classifier algorithm for buys computer classification and classify the tuple,

	Ca	ecu- 1			
RLD	age	income	student	coredit_rating	class: buys_comp
	U	1	no	tau	no
1.	young	hìgh		good	no
	•	high	10	1	yes
2.	Ronnd	high	No	fair.	4
3.	middle	medium	10	fair	A 60.
4.	019	The state of the state of	140	fair	100
5.	019	/ow	460	good	no
6 .	019	(ow		good	Yes
7.	middle	ad	160	~	Mo
		medium.	No	fair	
8.	young	and the second second	YU	fair	AGT .
9.	young	aol		fair	Yes
\o .	old	medium	294		
		medium	40	good	Yes.
* 1.11.1	young	and the same		good	yes
12.	middle	medium	in no	U	V
10.	middle	high	70	fair	Yes
(0)	all and me	- (d) = (5)	9/0	good	200
14.	old	medium	110	ď	
	J ET E. K. L	- 1 to 100	11. 1 1 2 1	1974 Jan. 14 D	the land

Step2 :-

P(age=young | buys_computer = yes) =
$$\frac{2}{9}$$
 = 0.222.

P(age=young | buys_computer = No) = $\frac{3}{3}$ = 0.600.

P(age=middle | No) = $\frac{5}{9}$ = 0.600.

P(age=middle | No) = $\frac{5}{9}$ = 0.600.

P(age=old | Yes) = $\frac{3}{9}$.

P(age=old | No) = $\frac{2}{5}$.

Now,

P(income = high | Yes) = $\frac{2}{9}$.

P(income = medium | Yes) = $\frac{4}{9}$.

P(income = medium | No) = $\frac{2}{5}$.

P(income = low | Yes) = $\frac{3}{9}$.

P(income = low | No) = $\frac{1}{5}$.

Now,

P(student = Yes | Yes) = $\frac{6}{9}$

P(student = Yes | No) = $\frac{4}{5}$.

Now,

P(X) buys_computer = No) x p(buys_computer = No). = 0.019 x 0.357 6

= 0.007.

P(X/ Yes) > P(X/NO)

Therefore, the naive Bayesian classifier predicts buys_computer = yes for tuple X.