INDEX

Figure No.	Figure Title	Page No.
Figure 1.1:	Boreholes Distribution	13
Figure 1.2:	Procedures for Standard Penetration Test (SPT)	15
Figure 1.3:	Rock Core	16
Figure 1.4:	Pressure Meter / Dilatometer Test	17
Figure 1.5:	Earth Profile	24
Figure 1.6:	Describing Soil Properties	24
Figure 1.7:	Standard Down Hole Seismic	26
Figure 1.8:	Safe angel for open excavation	27
Figure 1.9:	Shoring Systems	28
Figure 1.10:	Surface Dewatering System (French Drains)	29
Figure 1.11:	Well Point Dewatering System	30
Figure 1.12:	Deep Wells Dewatering System	31
Figure 1.13:	Well Pit Details (Running / Finished)	32
Figure 1.14:	Details of Dewatering Deep Well	33
Figure 1.15:	Piles Distribution	35
Figure 1.16:	Wick Drains Technique	36
Figure 1.17:	Method statement of Dynamic Compaction	37
Figure 1.18:	Comparison between Dynamic & Vibro Compaction	37
Figure 1.19:	Range of Soils Suitable for Vibratory Techniques	38
Figure 1.20:	The Most Suitable Improvement Technique for both	
	Cohesive and Granular Soils	39
Figure 1.21:	Cost Comparison for the Different Improvement	
	Techniques for Granular Soils	39
Figure 1.22:	Deep Compaction (Vibro Compaction) Technique	40
Figure 1.23:	Deep Compaction (Vibro Compaction)	
	Method Statement	41
Figure 1.24:	Dynamic Compaction Technique	41
Figure 1.25:	Vibro-replacement Stone Columns Technique	42
Figure 1.26:	Deep Mixing (Soil Mixing) Technique	43
Figure 1.27:	Different Procedures of Grouting Techniques	44
Figure 1.28:	Permeation Grouting Technique	44

Figure No.	Figure Title	Page No.
Figure 1.29:	Cement Grouting (Slurry Grouting) Technique	45
Figure 1.30:	Compaction Grouting Technique	45
Figure 1.31:	Jet Grouting Technique	46
Figure 1.32:	Cone Penetration Test (CPT) Readings	48
Figure 1.33.a:	Contiguous Piles Shoring System	51
Figure 1.33.b:	Secant Piles Shoring System	51
Figure 1.33.c:	Soldier Piles Shoring System	52
Figure 1.34:	Shoring Stages of Construction	52
Figure 1.35:	Tie Back Anchors Method Statement	54
Figure 1.36:	Tie Back Anchors Stressing Testing	55
Figure 1.37:	Method Statement for Different Types of Bored Piles	58
Figure 1.38:	Method Statement for Drilled Bored Piles	59
Figure 3.1:	Pre stress bonded system	80
Figure 3.2:	Anchorage system	81
Figure 3.3:	Pre stress equipment	82
Figure 3.4:	Pre stress strands	82
Figure 3.5:	Ducts	83
Figure 3-6:	Ducts Chairs	83
Figure 3.7:	Shear stud	83
Figure 3.8:	Slab thickness	87
Figure 3.9:	Bonded-distributed systems	88
Figure 3.10:	Factor taking account of long term effects	89
Figure 3.11:	U-Bar at the edge of slab and junction of wall and slab	90
Figure 3.12:	Anti Burst steel at dead and live ends	90
Figure 3.13:	Common Precast Concrete products	93
Figure 3.14.a:	Supplemental Lifting Points	95
Figure 3.14.b:	Force in Lift Lines	95
Figure 3.14.c:	Moment caused by eccentric lifting	96
Figure 3.14.d:	arrangement for equalizing lifting loads	96
Figure 3.14.e:	Hook lifting	97

INDEX