

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S2 Paper WST02/01

Question Number		Scheme		Marks
	roughout the paper the candidates may use different letters to the ones given in the mark scheme.			me.
1. (a)	[$X \sim$ the number of pansy seeds that $X \sim B(20, 0.05)$ or $Y \sim B(20, 0.05)$		umberthat <u>do</u> germinate]	B1
(i)	$P(X \leq 4) - P(X \leq 2) = 0.9974 - 0.9$	245 <u>or</u>		
	$\binom{20}{3}0.0$	$5^3 \times 0.95^{17} + {20 \choose 4} 0.05^4 \times 0.95^{16}$	r = 0.05958 + 0.01332	M1
	= 0.072909		awrt <u>0.0729</u>	A1
(ii)	$P(X \leq 1)$ or $P(Y \geq 19)$	$=20\times(0.95)^{19}(0.05)+(0.95)$	20	M1
	=0.7358	= 0.735839	awrt <u>0.736</u>	A1 (5)
(b)	[Let $W = \text{no. of packets where } Y >$	181 $P(W=5) = ("0.7358)$	")5	M1
, ,	Let W - no. of packets where T >	= 0.21573	,	A1
		- 0.21373	. awit <u>0.210</u>	(2)
	H 0.05 H 0.05			
(c)	$H_0: p = 0.05$ $H_1: p > 0.05$			B1 (1)
				(1)
(d)	[V= no. of seeds that do not germina	ate $V \sim B(100, 0.05)$ approxim	nates to] $V \sim Po(5)$	M1A1
		CR for 1-tail in (c)	CR for 2-tail in (c)	
	$P(V \ge 8) = 1 - P(V \le 7)$ = 1 - 0.8666	$P(V \geqslant 9) = 0.0681$	$P(V \geqslant 10) = 0.0318$	M1
	= 1 - 0.8666	$P(V \geqslant 10) = 0.0318$	$P(V \geqslant 11) = 0.0137$	
	= 0.1334	$CR V \geqslant 10 \text{ oe}$	$CR V \geqslant 11 \text{ oe}$	A1
	Accept H ₀ or not significant or 8			dM1
	Data consistent with <i>Spany</i> 's claim			Alcso
	or insufficient evidence that perce	ntage of seeds not germinatin	g is more than 5% (o.e.)	(6) Total 14
		Notes		
(a)	B1: writing or using $B(20,0.05)$ [Assume that $B(20,0.05)$ [Assume that $B(20,0.05)$]	Allow $Y \sim B(20, 0.95)$ if Y is cle	early defined]. Implied by 1 corn	rect prob.
(i)	M1: for $P(X \leq 4) - P(X \leq 2)$ and	one correct prob. or $P(X = 1)$	(3) + P(X = 4) and 1 correct prob	•
(ii)	M1: for $P(X \le 1)$ or $[20] \times (0.95)$	$(0.05)^{19} (0.05) + (0.95)^{20}$ - condone r	missing 20	
(b)	M1: for $(their(a)(ii))^5$			
(c)	B1: both hypotheses correct with p	or π		
(d)	1 st M1: for realising a Poisson appropriate A1: writing or using $V \sim \text{Po}(5)$ i.	* * *	NB Po(95) is M0)A0
	2nd M1: for writing or using $1-P$ (
			$P(V \geqslant 11) = 0.0137$ leading to	a CR.
	Implied by correct CR or pr		()) I I I I I I I I I I I I I I I I I	
	2^{nd} A1: for awrt 0.133 or $V \geqslant 10$ or	, -		
	3 rd dM1: dep on 2 nd M1. ft their CR			
			ontradicting non-contextual coment in context. Need Rold words	
	3 rd A1 cso: all previous marks must be awarded. A correct statement in context. Need Bold words . NB award M1A1 for a correct contextual statement on its own.			'•
		es or they are the wrong way ar		
SC1	Normal approximation: Award ma	_		
	Sight of N(5 or 95, $\sqrt{4.75}^2$) M1A			
SC2	No approximation: Use of B(100,	0.05) M0A0; probability awrt	0.128 or CR $\geqslant 10$ M1A1; the	en M0A0

Question Number	Scheme	Mar	ks
2. (a)	[$X =$ number of faults in 4 m ² so $X \sim Po(3)$]		
	$P(X=5) = P(X \le 5) - P(X \le 4) [= 0.9161 - 0.8153]$ or $\frac{e^{-3}3^5}{5!}$ (allow λ instead of 3)	M1	
		A1	
			(2)
(b)	$[Y = \text{number of faults in } 6 \text{ m}^2 \text{ so}] Y \sim \text{Po}(4.5) \underline{\text{and}} [P(Y > 5)] = 1 - P(Y \leqslant 5) [= 1 - 0.7029]$	M1	
	= 0.2971 or (calc) 0.29706956 awrt $\underline{0.297}$	A1	
			(2)
(c)	0.101 (or ft their answer to (a))	B1ft	
	Faults occur independently/ randomly	B1	(2)
(d)	[$F = \text{number of faults in a small rug}$] $F \sim \text{Po}(0.9)$	B1	
	$e^{-\text{"0.9"}} n \times 80 + (1 - e^{-\text{"0.9"}}) n \times 60 \ge 4000$ or (awrt 0.407) $n \times 80 + (\text{awrt 0.593}) n \times 60 \ge 4000$	M1	
	$n \geqslant \frac{4000}{20e^{-"0.9"} + 60} = 58.71\dots$	M1	
	n = 59	A1	(4)
(a)		D1	
(e)	$H_0: \lambda = 9$ $H_1: \lambda > 9$ $R \sim Po("0.9" \times 10)$ and $[P(R \ge 13)] = 1 - P(R \le 12)$ $[= 1 - 0.8758]$	B1	
	$P(R \le 13) = 0.9261 \text{ or } P(R \ge 14) = 0.0739 \text{ or } P(R \le 14) = 0.9585 \text{ or } P(R \ge 15) = 0.0739 \text{ or } P(R \le 14) = 0.9585 \text{ or } P(R \ge 15) = 0.0739 $	M1	
	$\begin{bmatrix} 0.0415 \\ [P(R \ge 13)] = 0.1242 \text{ awrt } 0.124 \end{bmatrix}$ or CR $R \ge 15$ (oe)	A1	
	so insufficient evidence to reject H_0 /not significant/ not in critical region	M1	
	There is insufficient evidence that the rate at which faults occur is higher for Rhiannon	A1	(5)
		Tota	(5) l 15
	Notes	-	
(a)	M1: for using or writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!}$ (Accept letter λ or any value of	'λ)	
(b)	M1: writing or using Po(4.5) and sight of $P(Y > 5) = 1 - P(Y \le 5)$ Implied by sight of $1 - 0.7$		
(c)	2 nd B1: for a comment about faults occurring randomly/independently or Poisson has "no men	iory"	
(d)	B1: writing or using Po(0.9) May be implied by sight of 0.407 or 0.593	·	
(4)	1st M1: for $e^{-\lambda} n \times 80 + (1 - e^{-\lambda}) n \times 60 > 4000$ any value for λ . Allow = 4000		
	2^{nd} M1: for solving their equation leading to a positive value of n . Allow any value of λ and all A1: for an answer of 59 only	low <i>n</i> =	
(e)	B1: both hypotheses correct with λ or μ . Allow 3 or 0.75 or 0.9 instead of 9		
	B1: both hypotheses correct with λ or μ . Allow 3 or 0.75 or 0.9 instead of 9 1st M1: for writing or using Po("9") and writing or using $1 - P(R \le 12)$ (implied by $1 - 0.8758$) or one of: $P(R \le 13) = 0.9261$, $P(R \ge 14) = 0.0739$, $P(R \le 14) = 0.9585$, $P(R \ge 15) = 0.0415$ leading to a		
	CR 1 st A1: for probability = awrt 0.124 or CR of $R \ge 15$ oe e.g. $R > 14$		
	2 nd M1: for a correct conclusion based on their prob & 0.05 or their CR & 13. Assume correct hypotheses. Do not allow contradicting conclusions		
	2 nd A1: dep on both Ms for a correct contextual comment including the words in bold.		

Question Number	Scheme	Marks
3. (a)	12/25 - 6/25 -	M1
		A1 (2)
(b)	$\frac{d\left(\frac{3}{50}(4y^2 - y^3)\right)}{dy} = \frac{3}{50}(8y - 3y^2)$	M1
	$\frac{3}{50}(8y-3y^2)=0$; $y=\frac{8}{3}$ oe	M1; A1
(c)	$E(Y^{2}) = \int_{1}^{2} \left(\frac{6}{25}y^{3} - \frac{6}{25}y^{2}\right) dy + \int_{2}^{4} \left(\frac{12}{50}y^{4} - \frac{3}{50}y^{5}\right) dy$	(3) M1
	$= \left[\frac{6}{100}y^4 - \frac{6}{75}y^3\right]_1^2 + \left[\frac{12}{250}y^5 - \frac{3}{300}y^6\right]_2^4$	A1
	$= \left[\left(\frac{8}{25} \right) - \left(-\frac{1}{50} \right) \right] + \left[\left(\frac{1024}{125} \right) - \left(\frac{112}{125} \right) \right] ; \qquad = \frac{1909}{250} \text{or} 7.636 \text{or} 7.64$	dM1; A1
(d)	$Var(Y) = "\frac{1909}{250}" - 2.696^{2}$ $= 0.367584$ awrt <u>0.368</u>	(4) M1
		A1 (2)
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$	M1
	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \text{or} \frac{6}{25} \left[\left(\frac{x^2}{2} - x \right) + \frac{1}{2} \right] = 0.1 \text{or} \frac{6}{50}(x-1)^2 = 0.1$ $(y-1)^2 = \frac{5}{6} \text{or} y = 1 \pm \sqrt{\frac{5}{6}} ; \qquad y = 1.9128 \text{awrt} \underline{1.91}$	A1
	$(y-1)^2 = \frac{5}{6} \text{ or } y = 1 \pm \sqrt{\frac{5}{6}}$; $y = 1.9128$ awrt <u>1.91</u>	dM1; A1
		(4) Total 15
	Notes	

Notes

- (a) M1: the two parts must be the right shape and not joined. Ignore labels and condone if it goes below x axis A1: for 6/25, 12/25, 1, 2 and 4 and must not go beyond 4 or < 1 [Can allow "freehand" straight line]
- (b) 1st M1: for attempting to differentiate $y^n \to y^{n-1}$ for n = 2 or 3 2nd M1: for equating their differential $(\neq f(y))$ to zero and an attempt at solving so must reach y = ...A1: for $\frac{8}{3}$ oe and allow awrt 2.67 If y = 0 is seen it must be rejected.
- (c) 1st M1: for using $\int y^2 f(y)$ for both parts, and an attempt at integration (some $y^n \to y^{n+1}$) Ignore limits. 1st A1: for correct integration for both parts. Ignore limits. 2nd dM1: dep on 1st M1 for adding the 2 parts together and substituting the correct limits in to each part. 2nd A1: allow 7.64 or 7.636 You will need to check that they have used algebraic integration.
- (d) M1: for "their part(c)" -2.696^2 A1: for awrt 0.368
- (e) 1st M1: allow $\frac{1}{2}t \times \frac{6}{25}(t-1) = 0.1$ or $\int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$ and some integration and sub' of 1 and x 1st A1: for a correct equation in any form

2nd dM1: dependent on 1st M1 for a correct method for solving their equation. Implied by correct answer. 2nd A1: for awrt 1.91 (second solution should be rejected)

Question Number	Scheme	Marks	
4.	[A = the number on the ball] $P(A=1) = \frac{2}{9}$ $P(A=2) = \frac{1}{3}$ $P(A=5) = \frac{4}{9}$	B1	
(i)	Possible samples with a range of 4 are: (1,1,5) (1,2,5) (1,5,5)		
	$(1,1,5) \frac{2}{9} \times \frac{2}{9} \times \frac{4}{9} \times 3 = \frac{16}{243} \qquad \underline{\text{or}} \qquad (1,5,5) \frac{2}{9} \times \frac{4}{9} \times \frac{4}{9} \times 3 = \frac{32}{243}$	M1	
	$(1,2,5)$ $\frac{2}{9} \times \frac{1}{3} \times \frac{4}{9} \times 6 = \frac{16}{81}$	M1	
	$P(B=4) = \frac{16}{243} + \frac{32}{243} + \frac{16}{81} = \frac{32}{81}$	A1	
(ii)	$P(B=0) = \left(\frac{2}{9}\right)^{3} + \left(\frac{1}{3}\right)^{3} + \left(\frac{4}{9}\right)^{3} = \frac{11}{81}$	M1	
	$P(B=1) = 3 \times \frac{2}{9} \times \left(\frac{1}{3}\right)^{2} + 3 \times \frac{1}{3} \times \left(\frac{2}{9}\right)^{2} = \frac{10}{81} \text{ or } P(B=3) = 3 \times \frac{1}{3} \times \left(\frac{4}{9}\right)^{2} + 3 \times \frac{4}{9} \times \left(\frac{1}{3}\right)^{2} = \frac{28}{81}$		
	$1 - \frac{11}{81} - \frac{10}{81} - \frac{32}{81} = \frac{28}{81} \qquad \underline{\text{or}} 1 - \frac{11}{81} - \frac{28}{81} - \frac{32}{81} = \frac{10}{81}$	M1	
	b 0 1 3 4	B1	
	P(B=b)	A1	
		(10) Total 10	
	Notes		
(2)	, , , , , , , , , , , , , , , , , , , ,		
(i)			
	2nd M1: for $p \times p \times q \times 3$ or $p \times q \times q \times 3$ where p and q are probabilities with $(p+q) < 1$ 3rd M1: for $p \times q \times r \times 6$ where p , q and r are probabilities with $(p+q+r) = 1$		
	A1: for $\frac{32}{81}$ or awrt 0.395 [Calc: 0.3950617]		
(ii)	1st M1: for $p^3 + q^3 + r^3$ (for their p, q and r)		
	2nd M1: for $3 \times p \times (q)^2 + 3 \times q \times (p)^2$ or $3 \times q \times (r)^2 + 3 \times r \times (q)^2$ (for their p, q and r)		
	3rd M1: for use of all probabilities of $P(B=b)$ adding to 1 [Must have 3, 4 or 5 values for b]		
	B1: for ranges $0, 1, 3$ and 4 with none omitted and no extras. Allow extras if assigned proba-	ability of 0	
	A1: for a fully correct probability distribution.		
SC A0 in (i)	If A0 scored in (i) and all other marks scored in (ii) and correct prob's for 2 values of b: award A	A1 in (ii)	

Question Number	Scheme	Marks
5 (a)(i)	If $y = 0$ then $1 - (\alpha + \beta y^2) = 0$ $\therefore \alpha = 1$ *	B1cso
(ii)	If $y = 5$ then $1 - (\alpha + \beta y^2) = 1$	
	$1+25\beta=0 \therefore \beta=-\frac{1}{25} \qquad *$	B1cso (2)
(b)	$F(y) = \frac{1}{25}y^2$ so $f(y) = \frac{dF(y)}{dy} = \frac{2}{25}y$	M1
	$\therefore [f(y)] = \begin{cases} \frac{2}{25}y & 0 \le y \le 5\\ 0 & \text{otherwise} \end{cases}$	A1
(c)	$\left[P\left(R > \frac{11}{5}\right) = P\left(Y > \frac{5}{3}\right) = 1 - \frac{1}{25} \times \left(\frac{5}{3}\right)^2 = \frac{8}{9} \text{ oe} \right]$	(2) B1
	$\frac{3d - \frac{11}{5}}{3d - d} = \frac{8}{9} \text{ oe } \frac{\frac{11}{5} - d}{3d - d} = \frac{1}{9} \text{ oe}$	M1
	$d = \frac{9}{\underline{5}}$ oe	A1
(d)	$P\left(Y < \frac{11}{5}\right) = \frac{121}{625}$ or 0.1936	(3) B1
	[Let $G =$ the number of spins with distance < 2.2 m] $[P(G \ge 5) =]$	
	$ \left(\frac{1}{9} \right)^{3} \times \left(\frac{121}{625} \right)^{3} + 3 \times \left(\frac{1}{9} \right)^{2} \times \left(\frac{8}{9} \right) \times \left(\frac{121}{625} \right)^{3} + 3 \times \left(\frac{1}{9} \right)^{3} \times \left(\frac{121}{625} \right)^{2} \times \left(\frac{504}{625} \right) $	M1, M1
	= $0.000\ 373226$ awrt $0.000\ 373$	A1
		(4) Total 11
	Notes	Total 11
	11000	

- (a) (i) B1: for stating or using the fact that when y = 0 then $\alpha + \beta y^2 = 1$
 - (ii) B1: for stating or using that when y = 5 then $\alpha + \beta y^2 = 0$ and setting up the equation leading to $\beta = -\frac{1}{25}$
 - **(b)** M1: for differentiating. Implied by $\pm \frac{2}{"25"}y$ can ft their value of β

A1: for a fully correct f(y) defined for the whole range.

(c) B1: for using F(y) and $\frac{5}{3}$ to find $P(Y > \frac{5}{3})$. Allow $\frac{8}{9}$ or any exact equivalent.

M1: for LHS = p where 0

A1: for $\frac{9}{5}$ or any exact equivalent e.g. 1.8

(d) B1: for $\frac{121}{625}$ or awrt 0.194 This mark could be implied by a correct answer.

1st M1: for $p^3q^3 + np^2(1-p)q^3 + np^3q^2(1-q)$ where p and q are probabilities and n is an integer > 0

2nd M1: for $p^3q^3 + 3p^2(1-p)q^3 + 3p^3q^2(1-q)$ where p and q are probabilities.

A1: for awrt 0.000 373

Question Number	Scheme	Marks	
6. (i)	z = 1.25	B1	
	$\frac{187.5 - \mu}{\sigma} = 1.25$	M1 M1 A1	
	$187.5 - \mu = 1.25\sigma$		
	$\mu = 225 p$	M1	
	$\sigma = \sqrt{225 p(1-p)}$		
	$(187.5 - 225p)^2 = (1.25)^2 \times 225p(1-p)$ or $(150 - 180p)^2 = 225p(1-p)$ (o.e.)	M1	
	e.g. $900(5-6p)^2 = 225(p-p^2) \Rightarrow 4(25-60p+36p^2) = p-p^2$	A1*	
	Leading to $145 p^2 - 241 p + 100 = 0 *$	Al	
(ii)	$\left[(29p - 25)(5p - 4) = 0 \Rightarrow \right] \qquad p = 0.8 \underline{\text{or}} p = \frac{25}{29} \text{ (accept: } 0.862(0689))$	M1	
	[$p = $] <u>0.8</u> because 0.862 gives a mean greater than 188 (oe)	A1	
		(10) Total 10	
	Notes	1000110	
(i)	B1: for 1.25 or better (calculator gives: 1.25027)		
	1 st M1: for attempting to use a continuity correction i.e. for sight of 188 ± 0.5		
	2nd M1: for standardising using μ and σ or np and $\sqrt{np(1-p)}$ (Condone letter n or any integer > 0)		
	1 st A1: for a correct equation with compatible signs, allow 1.250 If using a value for <i>n</i> it must be 225 3 rd M1: for $\mu = 225p$ seen at any stage in the working.		
	4th M1: for $\sigma = \sqrt{225 p(1-p)}$ seen at any stage in the working. Must be for σ not $\sigma^2 = 225 p(1-p)$		
	5 th M1: for squaring to get a quadratic equation in p		
	2 nd A1*: dep on all previous Ms and use of 1.25 (with correct sign) for at least 1 correct interme	diate step	
(ii)	from a correct quadratic equation e.g one of those in scheme for 5^{th} M1 for solving the quadratic correctly–leading to $p = \dots$ or implied by 0.8 or awrt 0.862	2	
	A1: for 0.8 and a correct reason to eliminate 0.862		