Fertility and Family Labor Supply

WORK IN PROGRESS

Katrine Jakobsen^{1,2} **Thomas H. Jørgensen**¹ Hamish Low²

 1 CEBI, University of Copenhagen 2 Oxford University

DSE, August 2021, Bonn

email: tjo@econ.ku.dk

Motivation

Understanding labor supply wage responses is key for policy design.

- Human capital important determinant of labour supply elasticities (Imai and Keane, 2004; Keane and Wasi, 2016)
- Fertility likely important for human capital accumulation (e.g. Francesconi, 2002)
 - Market-work less desirable when children are present
 - Labor income tax reforms might affect labor supply and fertility
 - Fertility adjustments affect labor market responses to tax reforms

Motivation

Understanding labor supply wage responses is key for policy design.

- Human capital important determinant of labour supply elasticities (Imai and Keane, 2004; Keane and Wasi, 2016)
- Fertility likely important for human capital accumulation (e.g. Francesconi, 2002)
 - Market-work less desirable when children are present
 - Labor income tax reforms might affect labor supply and fertility
 - Fertility adjustments affect labor market responses to tax reforms
- Existing research tend to focus on labor supply of either men or women.
 - Many working-age individuals live in couples

Research Agenda and Preliminary Results

Core trade-off: **Fertility and labor supply** in families.

Research Agenda and Preliminary Results

Core trade-off: **Fertility and labor supply** in families.

Empirically show that fertility responds to wage changes (exogenous variation from Danish tax-reform in 2009/10)

Research Agenda and Preliminary Results

Core trade-off: **Fertility and labor supply** in families.

 Empirically show that fertility responds to wage changes (exogenous variation from Danish tax-reform in 2009/10)

- Quantify the dynamic trade-off through an estimated life-cycle model of dual-earner households with:
 - labor supply and human capital accumulation of both household members
 - Fertility (endogenous number and timing)
 - Wealth accumulation

Research Agenda and Preliminary Results

Core trade-off: **Fertility and labor supply** in families.

- ullet Empirically show that fertility responds to wage changes (exogenous variation from Danish tax-reform in 2009/10)
 - Labor market participation and number of children increased from reduction in marginal tax rate
- Quantify the dynamic trade-off through an estimated life-cycle model of dual-earner households with:
 - labor supply and human capital accumulation of both household members
 - Fertility (endogenous number and timing)
 - Wealth accumulation

Research Agenda and Preliminary Results

Core trade-off: Fertility and labor supply in families.

- Empirically show that fertility responds to wage changes (exogenous variation from Danish tax-reform in 2009/10)
 - Labor market participation and number of children increased from reduction in marginal tax rate
- Quantify the dynamic trade-off through an estimated life-cycle model of dual-earner households with:
 - labor supply and human capital accumulation of both household members
 - Fertility (endogenous number and timing)
 - Wealth accumulation
 - Simulations suggest that fertility adjustments to wage-changes are important for understanding labor supply responses

Related Literature (short)

- There is a vast body of literature
- Some main papers are
 - Human capital accumulation (learning by doing): Imai and Keane (2004); Keane and Wasi (2016)
 - Female labor supply and fertility: Hotz and Miller (1988);
 Francesconi (2002); Adda, Dustmann and Stevens (2017);
 Eckstein, Keane and Lifshitz (2019)
 (latter has both male and female labor supply. But no savings.)

Outline

- Empirical Motivation
 - Data
 - Identification Strategy
 - Results

- 2 Life-Cycle Model
 - Model framework
 - Estimation
 - Simulations

Data and Sample Selection

Use several Danish registers for 2003–2017

- Linking household members (married and cohabitating)
- Information on income, fertility, wealth etc.

Restrict attention to individuals who are

- not registered as mainly self-employed or students
- aged 25–40 in 2007 and 2008 (for reduced form)

Marginal tax rates

- Detailed tax simulator: Computing marginal tax rates from small increases in income
- Compute tax instruments, τ_{it-k} : mechanical tax change induced by tax reforms

Identification Strategy: Danish 2009/10 Tax Reform

Control: $T_i = 0$ if $\bar{Y}_{i,2007:2008} \in [270; 280]$ Treatment: $T_i = 1$ if $\bar{Y}_{i,2007:2008} \in (280; 290]$

 likely 6 pp additional reduction in marginal tax rate ~14% increase in net-of-tax wage (mechanical)

Reduce Form Estimation Results

(a) Labour market participation.

(b) Fertility.

Reduce Form Estimation Results

- Birth probability is ~ 1.5 pp higher (baseline is 15%)
 - \rightarrow wage-elasticity is thus 10/14 = 0.74 (95% CI [0.15;1.13])

Outline

- Empirical Motivation
 - Data
 - Identification Strategy
 - Results

- 2 Life-Cycle Model
 - Model framework
 - Estimation
 - Simulations

States and Controls (couples)

- State variables:
 - $K_{w,t}$: Human capital, women
 - \bullet $K_{m,t}$: Human capital, men
 - A_{t-1} : Wealth (end-of-period)
 - n_t : Number of children
 - o_t : Age of youngest child
- Choice variables:
 - *C_t*: Consumption
 - e_t : Fertility effort
 - $I_{w,t}$: Labor supply, women
 - $I_{m,t}$: Labor supply, men

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $l_{j,t} = 0$
 - Part time, $I_{j,t} = 0.75$
 - ullet Full time, $\emph{l}_{j,t}=1$

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $l_{j,t} = 0$
 - Part time, $l_{j,t} = 0.75$
 - Full time, $l_{j,t} = 1$
- Human capital accumulation

$$K_{j,t+1} = [(1-\delta)K_{j,t} + I_{j,t}]\epsilon_{j,t+1}$$

where $\epsilon_{j,t+1}$ is an iid log-normal mean-one shock.

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $I_{j,t} = 0$
 - Part time, $l_{j,t} = 0.75$
 - Full time, $l_{j,t} = 1$
- Human capital accumulation

$$K_{j,t+1} = [(1-\delta)K_{j,t} + I_{j,t}]\epsilon_{j,t+1}$$

where $\epsilon_{j,t+1}$ is an iid log-normal mean-one shock.

Labor income is

$$Y_{j,t} = w_{j,t}I_{j,t}$$

where wages are

$$\log w_{i,t} = \gamma_{i,0} + \gamma_{i,1} K_{i,t}$$

Fertility

- ullet Couples chose **fertility effort**, $e_t \in \{0,1\}$ each period
- Imperfect control

Fertility

- Couples chose **fertility effort**, $e_t \in \{0, 1\}$ each period
- Imperfect control
 Childbirth next period with probability

$$\wp_t(e_t) = \left\{ egin{array}{ll} \overline{\wp}_t & ext{if } e_t = 1 \\ \overline{\wp}_t \underline{\wp} & ext{else} \end{array}
ight.$$

 $\overline{\wp}_t < 1$: biological fecundity (declining in age) $\underline{\wp} > 0$: unintended pregnancies

Children move out stochastically

Institutional environment

- Partnership dissolution is random and absorbing
- Retirement is exogenous and absorbing
- Involuntary unemployment risk of 3 percent each year

Institutional environment

- Partnership dissolution is random and absorbing
- Retirement is exogenous and absorbing
- Involuntary unemployment risk of 3 percent each year
- Parsimonious versions of the Danish institutions (2010 rules)
 - Labor income tax system
 - Unemployment transfers [fixed amount in model]
 - Child care costs
 - Child benefits
 - Parental leave benefits [mother takes all in model]

Preferences

Household preferences are (unitarian)

$$U(C_t, n_t, o_t, I_{w,t}, I_{m,t}) = \lambda u_w(\cdot) + (1 - \lambda) u_m(\cdot)$$

Individual preferences are

$$u_{j}(C_{t}, n_{t}, o_{t}, l_{j,t}) = \frac{(C_{t}/\nu(n_{t}))^{1-\rho}}{1-\rho} + \sum_{i=1}^{\overline{n}} \omega_{i} \mathbf{1}(n_{t} \geq i) + q(l_{j,t}, n_{t}, o_{t})$$

with flexible interaction between labor supply and children in q().

Estimation: two steps

- **① Calibrate** a set of parameters, γ . E.g.
 - eta=0.97 and ho=1.5
 - Investigate the sensitivity to calibrated parameters (Jørgensen, forthcoming)
- **Estimate** the remaining parameters, θ . E.g. value of children, $\omega_1, \omega_2, \omega_3$ and value of leisure, $q(\cdot)$
 - Simulated Method of Moments, using data from 2010 (post-reform)
 - Investigate the "informativeness" of estimation moments (Honoré, Jørgensen and de Paula, 2020)

Model Fit [selected]

- (e) Share Working, Women.
- (f) Share Working, Men.

(g) Number of Children.

Model Validation [selected]

Unanticipated 5% permanent wage increase, women at age 30

- (h) Number of children.
- In line with our own reduced form results
 - \bullet Immediate increase in the probability of birth of ${\sim}5\%$ and thus elasticity of around ${\sim}1$
 - only minor effects on completed fertility

Importance of Fertility for Labor Supply

We simulate 2 versions of the model:

- baseline, with endogenous fertility
- exogenous fertility, where couples cannot choose fertility
 - expect children to arrive probabilistically based on realized fertility from the baseline model
 - The realized fertility (when simulating) is fixed at the baseline simulation
 - \rightarrow Exactly the same realized fertility in the two models

Importance of Fertility for Labor Supply

We simulate 2 versions of the model:

- baseline, with endogenous fertility
- exogenous fertility, where couples cannot choose fertility
 - expect children to arrive probabilistically based on realized fertility from the baseline model
 - The realized fertility (when simulating) is fixed at the baseline simulation
 - ightarrow Exactly the same realized fertility in the two models

Introduce a 5% permanent (unanticipated) increase in women's wage rate *in both models*.

- Compare elasticities of
 - average life-cycle working hours
 - completed fertility (number of children at age 50)

Empirical Motivation Life-Cycle Model References Introduction

Importance of Fertility for Labor Supply [preliminary]

- (i) Number of children.
- Fertility responses clearly interacts with labor responses
 - Fertility increases, leading to increased labor supply responses
 - Driven partly by the intensive margin (more children) in the model

Summary

• Fertility and labor supply are inherently interlinked

 Part of wider agenda to model interactions between family choices and labor market choices

 Currently estimating an extended model and checking reduced-form results

All comments, suggestions, relevant literature are very welcome!

You can send me an email at **tjo@econ.ku.dk** and we can **skype/zoom!**

References I

- ADDA, J., C. DUSTMANN AND K. STEVENS (2017): "The Career Costs of Children," *Journal of Political Economy*, 125(2), 293–337.
- ECKSTEIN, Z., M. KEANE AND O. LIFSHITZ (2019): "Career and Family Decisions: Cohorts Born 1935-1975," *Econometrica*, 87, 217–253.
- Francesconi, M. (2002): "A Joint Dynamic Model of Fertility and Work of Married Women," *Journal of Labor Economics*, 20(2).
- HONORÉ, B. E., T. H. JØRGENSEN AND A. DE PAULA (2020): "The Informativeness of Estimation Moments," *Journal of Applied Econometrics*, 35(7), 797–813.

References II

- HOTZ, V. J. AND R. A. MILLER (1988): "An Empirical Analysis of Life Cycle Fertility and Female Labor Supply," *Econometrica*, 56(1), 91–118.
- IMAI, S. AND M. P. KEANE (2004): "Intertemporal Labor Supply and Human Capital Accumulation," *International Economic Review*, 45(2), 601–641.
- JØRGENSEN, T. H. (forthcoming): "Sensitivity to Calibrated Parameters," *Review of Economics and Statistics*.
- KEANE, M. P. AND N. WASI (2016): "Labour Supply: The Roles of Human Capital and The Extensive Margin," *The Economic Journal*, 126(592), 578–617.