AI Lab Week 5

Session: 2022 - 2026

Submitted by:

Muhammad Saad Akmal

2022-CS-148

Submitted To:

Sir Nauman Shafi

Department of Computer Science

University of Engineering and Technology

Lahore Pakistan

Case-Study 1:

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
np.random.seed(0)
days = 365
temperature = np.random.randint(10, 40, days)
humidity = np.random.randint(30, 90, days)
wind_speed = np.random.randint(0, 20, days)
weather_condition = np.random.choice(['Sunny', 'Rainy', 'Cloudy'], days)
weather_data_gen = pd.DataFrame({
    'Date': pd.date_range(start='2023-01-01', periods=days, freq='D'),
    'Temperature': temperature,
     'Humidity': humidity,
    'Wind Speed': wind_speed,
    'Weather Condition': weather_condition
weather data gen.to excel('weather data.xlsx', index=False)
weather_data = pd.read_excel('weather_data.xlsx')
temp = weather_data['Temperature']
numpy_array = np.array(temp)
mean = np.mean(numpy_array)
median = np.median(numpy_array)
std = np.std(numpy_array)
print(f'Mean: {mean}')
print(f'Meadian: {median}')
print(f'Standard Deviation: {std}')
filtered = weather_data[(weather_data['Temperature'] > 30) & (weather_data['Weather Condition'] == 'Sunny')]
row count = len(filtered)
print(f'Rows with temp > 30 and wether sunny: {row_count}')
grouped = weather_data.groupby('Weather Condition')
average_humidity = grouped['Humidity'].mean()
print(f'Average Humidity: {average humidity}')
temperatures = weather_data['Temperature']
days = weather_data['Date']
temp_array = np.array(temperatures)
days_array = np.array(days)
plt.plot(days_array , temp_array)
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Temperature over the year")
plt.show()
weather_condition = weather_data.groupby('Weather Condition')['Weather Condition'].count()
conditions = weather_condition.index
counts = weather_condition.values
plt.bar(conditions, counts, color =['maroon' , 'blue' , 'green'])
```

Output:

Mean: 23.70958904109589

Meadian: 24.0

Standard Deviation: 8.791218600890723 Rows with temp > 30 and wether sunny: 37

Average Humidity: Weather Condition

Cloudy 59.452174 Rainy 57.796875 Sunny 60.877049

Case-Study 2:

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
np.random.seed(0)
rows = 500
products_array = ['Tea' , 'Coffee' , 'Drink' , 'Sugar' , 'Cake' , 'Pizza' , 'Burger' , 'Pasta' , 'Shawarma' , 'Wrap']
products = np.random.choice(products_array , rows)
prices = np.random.randint(10, 1000, rows)
quantity = np.random.randint(1, 20, rows)
date_of_purchase = pd.date_range(start='2024-01-01', periods=rows)
sales_data_gen = pd.DataFrame({\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{\bigcolor{
sales_data_gen.to_excel('sales_data.xlsx', index=False)
sales_data = pd.read_excel('sales_data.xlsx')
prices = np.array(sales_data['prices'])
quantity = np.array(sales_data['quantity'])
total_sales = np.multiply(prices , quantity)
print(f'Total sales {total_sales}')
sales_data['total_sales'] = total_sales
greater_sales = sales_data[(sales_data['total_sales'] > 100)]
print(greater_sales)
 total_quantity_sales = sales_data.groupby('products')['quantity'].sum()
 print(total_quantity_sales)
plt.scatter(prices, quantity)
plt.hist(np.array(sales_data['total_sales']))
 plt.show()
```

Output:

```
424
                            2024-01-01
      Pizza
                                                 2544
        Tea
               537
                         16
                                 2024-01-02
2
      Sugar
               179
                       14
                                2024-01-03
                                                  2506
                                2024-01-04
               176
                       12
12
      Sugar
                                                  2112
3
                               2024-01-05
4
      Pasta
              319
                                                  3828
                       6
3
18
495 Shawarma
               923
                                2025-05-10
                                                  5538
496
       Tea
              986
                               2025-05-11
                                                 2958
497
      Pasta
              890
                                2025-05-12
                                                 16020
                       16
                                2025-05-13
498 Burger
               53
                                                  848
     Pizza
                                2025-05-14
                                                  480
499
             120
[494 rows x 5 columns]
products
Burger
Cake
          549
Coffee
          423
Drink
          442
          545
Pasta
Pizza
          475
Shawarma
          538
Sugar
          706
Tea
          496
          403
Wrap
Name: quantity, dtype: int64
```

products prices quantity date_of_purchase total_sales

N Figure 1 − □ × Sigure 1 - O X 140 17.5 120 -100 12.5 80 10.0 60 7.5 5.0 20 2500 5000 7500 10000 12500 15000 17500 400 800 600 1000 (x, y) = (588, 16.77) $\bigstar \leftarrow \Rightarrow | \div Q \rightleftharpoons | \Box$ (x, y) = (1.634e+04, 94.4)**☆◆**→ +Q = □

Case-Study 3:

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
 names = ['Ahmed', 'Sarah', 'Ali', 'Fatima', 'Zain', 'Aisha', 'Omar', 'Noor', 'Hassan', 'Maria', 'Bilal', 'Zara', 'Saad', 'Sana', 'Imran', 'Layla', 'Usman', 'Hira', 'Yasir', 'Iman']

department = ['HR', 'Marketing', 'Finanace', 'Development', 'Sales']
 employe_id = [i for i in range(rows)]
 employee_names = np.random.choice(names , rows)
employee_department = np.random.choice(department , rows)
 salary = np.random.randint(30000, 120000, rows)
experience = np.random.randint(1, 25, rows)
employee_data_gen = pd.DataFrame({
    'employee_id' : employe_id,
    'employe_name' : employee_names,
    'employee_department' : employee_department,
    'salary' : salary,
    'exprience' : experience
 employee_data_gen.to_excel('employee_data.xlsx', index=False)
 employee_data = pd.read_excel('employee_data.xlsx')
 salary_array = np.array(employee_data['salary'])
 average_salary = salary_array.mean()
max_salary = salary_array.max()
min_salary = salary_array.min()
 print(f'Average salary: {average_salary}')
 print(f'Max salary: {max_salary}')
print(f'Min salary: {min_salary}')
 filtered\_employees = employee\_data[(employee\_data['exprience'] > 5) & (employee\_data['salary'] > average\_salary)] \\ print(f'Filtered\_employees \{filtered\_employees\}')
 department_group = employee_data.groupby('employee_department')
department_salary_mean = department_group['salary'].mean()
print(f'Department_mean_salaries {department_salary_mean}')
 plt.bar(department , department_salary_mean.values ,color =['red' , 'blue' , 'green' , 'yellow' , 'orange'])
 salaries = np.array(employee_data['salary'])
exprience = np.array(employee_data['exprience'].sort_values())
 plt.plot(exprience , salaries , marker='o')
 plt.xlabel("X-axis")
plt.ylabel("Y-axis")
  plt.title("Experience with salaries")
```

Output:


```
Average salary: 75508.22
 Max salary: 119740
 Min salary: 30592
 Filtered employees
                         employee_id employee_name employee_department salary exprience
                                      Development 115998
Sales 118554
                         Ahmed
                                                                     8
 4
                        Fatima
                4
                                                                    15
 6
                6
                        Maria
                                          Finanace 99140
                                                                    21
                          Iman
                                             Sales
                                                      98816
                                                                     8
                                          Finanace 77042
 13
               13
                         Omar
                                                                    24
 287
              287
                        Ahmed
                                         Marketing 111776
                                                                    20
 288
             288
                         Zara
                                            HR 117051
                                         Marketing 76617
Finanace 101007
 290
              290
                        Ahmed
                                                                     8
              291
                         Bilal
 291
                                                                    22
                                            Sales 98134
 295
             295
                        Fatima
                                                                    13
 [112 rows x 5 columns]
 Department mean salaries employee_department
 Development 74156.303030
 Finanace
                76038.362069
                76087.537037
 Marketing
               75339.032258
                76136.300000
 Sales
 Name: salary, dtype: float64
              76136.300000
                76136.300000
 Sales
Case-Study 4:
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
```

```
np.random.seed(0)
Table 1. Tab
student_id = [i for i in range(rows)]
student_names = np.random.choice(names , rows)
subject = np.random.choice(subjects , rows)
marks = np.random.randint(0, 100, rows)
student_data_gen = pd.DataFrame({
   'student_id' : student_id,
   'name' : student_names,
   'subject' : subject,
   'marks' : marks,
student_data_gen.to_excel('student_data.xlsx', index=False)
student_data = pd.read_excel('student_data.xlsx')
student_marks = np.array(student_data['marks'])
mean = np.mean(student_marks)
median = np.median(student_marks)
# mode = student_marks.mode()
std = np.std(student_marks)
print(f'Mean: {mean}')
print(f'Meadian: {median}')
# print(f'Mode: {mode}')
print(f'Standard Deviation: {std}')
filtered_student = student_data[(student_data['marks'] > 80)]
print(f'Filtered students {filtered_student}')
subjects_mean = student_data.groupby('subject')['marks'].mean()
print(f'Subjects Mean {subjects_mean}')
plt.hist(np.array(student_data['marks']))
plt.show()
 plt.bar(subjects_mean.index , subjects_mean.values , color =['red' , 'blue' , 'green' , 'yellow' , 'orange'])
```

Output:

Mean: 53.235 Meadian: 57.0

Standard Deviation: 29.75818836891789

Filtered	students	5	student_id	name	subject	marks
2	2	Ahmed	OOP	98		
3	3	Fatima	DM	97		
14	14	Noor	DE	99		
18	18	Sana	DE	98		
25	25	Layla	DM	96		
32	32	Iman	DM	94		
34	34	Imran	DM	84		
37	37	Sarah	OOP	85		
38	38	Maria	PF	91		
40	40	Bilal	DM	84		
42	42	Zara	DM	83		
43	43	Yasir	DE	95		
46	46	Ahmed	DE	91		
49	49	Omar	DE	83		
52	52	Layla	DE	92		
59	59	Maria	DM	89		
61	61	Omar	TOA	98		
62	62	Zara	TOA	87		

Subjects Mean subject

DE 55.218750 DM 53.477273 OOP 57.073171 PF 52.350000 TOA 48.674419

Name: marks, dtype: float64

Ш

```
Case-Study 5:
 import pandas as pd
 import numpy as np
 import matplotlib.pylab as plt
 np.random.seed(0)
 rows = 1000
 date_range = pd.date_range(start='2022-01-01', end='2024-09-30', freq='D')
 companies = ['Apple' , 'Amazon' , 'Google' , 'Microsoft' , 'Meta']
 dates = np.random.choice(date_range, rows , replace=False)
 companies = np.random.choice(companies , rows)
 open_price = np.random.randint(50, 500, rows)
closed_price = np.random.randint(50, 500, rows)
 volume_traded = np.random.randint(1000, 1000000., rows)
 stocks_data_gen = pd.DataFrame({
   'date' : dates,
      cates;
'company' : companies,
'open_price' : open_price,
'close_price' : closed_price,
'volume_traded' : volume_traded
 })
 stocks_data_gen.to_excel('stocks_data.xlsx', index=False)
 stocks_data = pd.read_excel('stocks_data.xlsx')
 close_price_arr = np.array(stocks_data['close_price'])
 open_price_arr = np.array(stocks_data['open_price'])
sub = np.subtract(close_price_arr , open_price_arr)
div = np.divide(sub , open_price_arr)
rounded = np.round(div , decimals=2)
 change = np.multiply(rounded,100)
print(f'Change in stocks {change}')
stock_increase = stocks_data[stocks_data['close_price'].diff() > 2]
print(f'Stock price increase {stock_increase}')
volume_traded = stocks_data.groupby('company')['volume_traded'].sum()
print(f'Stocks sold {volume_traded}')
filtered = stocks data[stocks data['company'] == 'Apple']
dates = filtered['date'].sort_values()
close_price = filtered['close_price']
plt.plot(dates , close_price , marker='o')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.title('Close Price Over Time')
plt.show()
stocks_data['change'] = stocks_data.groupby('company')['close_price'].pct_change() * 100
avg_change = stocks_data.groupby('company')['change'].mean()
plt.bar(avg_change.index , avg_change.values)
plt.xlabel('Company')
plt.ylabel('Average Percentage Change in Close Price')
plt.title('Average Percentage Change in Close Price for Different Companies')
```

plt.show()

Output:

