Import and Export of India

Math2349 Assignment 3

Riya Minesh Amin s3807007

```
# libraries
library(dplyr)
library(tidyr)
library(stringr)
library(knitr)
library(ggplot2)
library(lubridate)
library(vableExtra)
library(outliers)
library(readr)
library(plotly)
library(tidyverse)
library(DT)
```

Executive Summary

India is one of the world's fastest developing nations, and the main component of any developing nation is trade between nations. The datasets consists of the commodities traded in the HS2 basket (import export data EDA | Kaggle. 2019. import export data EDA | Kaggle.). The datasets were used from Kaggle. The dataset consists of exchange values in the sum of US\$ million for exporting and importing goods. There are two datasets imported in this report. The necessary libraries were loaded followed by the two dataset Import and Export csvs' of India. These dataset were than checked for any missing values, tidyness, outliers, classes of all the variables.

Data

```
# Data Import
Import <- read_csv("D:/2018-2010_import.csv")</pre>
```

```
## Parsed with column specification:
## cols(
## HSCode = col_character(),
## Commodity = col_character(),
## value = col_double(),
## country = col_character(),
## year = col_double()
## year = col_double()
```

```
Export <- read_csv("D:/2018-2010_export.csv")
```

```
## Parsed with column specification:
## cols(
## HSCode = col_double(),
## Commodity = col_character(),
## value = col_double(),
## country = col_character(),
## year = col_double()
```

Understand

 This section shows the class of the variables of both the dataset, dimensions, names, sapply and head of the dataset.

```
class(Import)
## [1] "spec_tbl_df" "tbl_df"
                                    "tbl"
                                                   "data.frame"
class(Export)
## [1] "spec_tbl_df" "tbl_df"
                                     "tbl"
                                                   "data.frame"
dim(Import)
## [1] 93095
dim(Export)
## [1] 137023
                   5
names(Import)
## [1] "HSCode"
                    "Commodity" "value"
                                             "country"
                                                         "year"
names(Export)
## [1] "HSCode"
                    "Commodity" "value"
                                             "country"
                                                         "year"
sapply(Import, class)
        HSCode
                 Commodity
                                  value
                                             country
                                                            year
## "character" "character"
                              "numeric" "character"
                                                       "numeric"
```

```
sapply(Export, class)
##
                                   value
        HSCode
                  Commodity
                                              country
                                                              year
     "numeric" "character"
                               "numeric" "character"
##
                                                         "numeric"
head(Import)
HSCode
<chr>
05
07
80
09
11
12
6 rows | 1-1 of 5 columns
head(Export)
                                                                                            HSCode
                                                                                               <dbl>
                                                                                                   2
                                                                                                   3
                                                                                                   4
                                                                                                   6
                                                                                                   7
                                                                                                   8
6 rows | 1-1 of 5 columns
```

Changing the class

Here HSCode should be a Factor instead of Character.

```
Import$HSCode <- factor(Import$HSCode)
Export$HSCode <- factor(Export$HSCode)</pre>
```

• Above we can see that the dataset is tidy and each row consists of a single observation.

Mutating column HSCODE AND COMMODITY

```
#utility function used from stackoverflow
HSC1 <- function(cm,h){
    #cm <- gsub(pattern = ',',replacement = ';',x = cm)
    com <-substr(cm,start = 1,stop = 15)
    # com <- com[1]
HSCode <- paste("HSCode",as.character(h),sep=': ')
paste(com,HSCode,sep=' - ')
}
HSC2 <- function(cmv,hv){
    rtv <- character()
    for(i in 1:length(cmv)){
        rtv[i] <- HSC1(cmv[i],hv[i])
    }
    rtv
}</pre>
```

```
HSC_Commodity <- Import[,c(1,2)] %>% distinct()
HSC_Commodity <- HSC_Commodity %>% mutate(Commodity_HSCode = HSC2(Commodity,HSCode))
```

Scaning MISSING VALUES

```
colSums(is.na.data.frame(Import))
##
      HSCode Commodity
                            value
                                     country
                                                  year
##
                            14027
                                                      0
colSums(is.na.data.frame(Export))
##
      HSCode Commodity
                            value
                                     country
                                                  year
##
                            14038
                                                      0
```

Subsetting the blank columns

To remove the missing values the blank columns are filtered.

```
Import_na <- Import %>% filter(is.na(value))
Export_na <- Export %>% filter(is.na(value))

Import <- Import %>% filter(!is.na(value))
Export <- Export %>% filter(!is.na(value))
```

checking again the missing values

```
colSums(is.na.data.frame(Import))

## HSCode Commodity value country year
## 0 0 0 0 0

colSums(is.na.data.frame(Export))

## HSCode Commodity value country year
## 0 0 0 0 0 0
```

Analysing the data

Now to summarise the Import and Export per year a new data frame is formed for Import and Export each and mutated together to compare the same.

```
summary_Import <- Import %>% group_by(year) %>% summarise(import = sum(value))
summary_Export <- Export %>% group_by(year) %>% summarise(export = sum(value))
summary_Import_Export <- merge(summary_Import,summary_Export,x.by = year, y.by = year) %>% gathe
r('Type','Value',-year)
summary_Import_Export <- summary_Import_Export %>% mutate(V_in_billion = Value/1000)
summary_Import_Export
```

_	Type <chr></chr>	Value <dbl></dbl>	V_in_billion <dbl></dbl>
2010	import	369762.2	369.7622
2011	import	489311.8	489.3118
2012	import	490730.1	490.7301
2013	import	450193.0	450.1930
2014	import	448026.6	448.0266
2015	import	412537.5	412.5375
2016	import	384350.3	384.3503
2017	import	931148.0	931.1480
2018	import	1028142.7	1028.1427
2010	export	249801.2	249.8012
1-10 of 18 row	S		Previous 1 2 Next

To summarise the above new dataframe, below the plot demonstates the over all imports and exports of India over years 2010 to 2018

Analysing cont..

Top 3 Imported and Exported Commodity in India over years.

```
Top_Import <- Import %>% group_by(HSCode) %>% summarise(value = sum(value)) %>% top_n( 3,value)
#Top_Import <- merge(Top_Import,HSC_Commodity,by='HSCode')
Top_Import1 <- Import %>% filter(HSCode %in% Top_Import$HSCode) %>%
    group_by(year,HSCode) %>%
    summarise(v_in_billion = sum(value)/1000)

Top_Import1 <- merge(Top_Import1,HSC_Commodity,by='HSCode')

ImportG2 <- ggplot(Top_Import1)+
    geom_point(aes(x=year,y=v_in_billion,color=Commodity_HSCode),size = 0.5, alpha = 0.9)+
    geom_line(aes(x=year,y=v_in_billion,color=Commodity_HSCode))+
    labs(x = "", y="Imports in billions")+
    theme(panel.border = element_rect(colour = "black", fill=NA, size=2))
ggplotly(ImportG2) %>% hide_legend()
```



```
Top_Export <- Export %>% group_by(HSCode) %>% summarise(value = sum(value)) %>% top_n( 3,value)
Top_Export2 <- Export %>% filter(HSCode %in% Top_Import$HSCode) %>%
    group_by(year,HSCode) %>%
    summarise(v_in_billion = sum(value)/1000)
Top_Export2 <- merge(Top_Export2,HSC_Commodity,by='HSCode')

ExportG2 <- ggplot(Top_Export2)+
    geom_point(aes(x=year,y=v_in_billion,color=Commodity_HSCode),size = 0.5, alpha = 0.9)+
    geom_line(aes(x=year,y=v_in_billion,color=Commodity_HSCode))+
    labs(x = "", y="Exports in billions")+
    theme(panel.border = element_rect(colour = "black", fill=NA, size=2))

ggplotly(ExportG2) %>% hide_legend()
```


Outliers Detection

Below outliers have been detected in the import and export Values

Import\$value %>% boxplot(main="Box plot of values import values", ylab="values", col= "grey")

Box plot of values import values

Export\$value %>% boxplot(main="Box plot of values import values", ylab="values", col= "grey")

Box plot of values import values

To replace the outliers, Capping/Winsorising is used.

Capping or winsorizing involves replacing the outliers that are not outliers with the nearest neighbors.

```
# Capping is use to replace the outliers.
#function to define cap below is used from module notes and stackoverflow

cap <- function(x){
    quantiles <- quantile( x, c(.05, 0.25, 0.75, .95 ) )
    x[ x < quantiles[2] - 1.5*IQR(x) ] <- quantiles[1]
    x[ x > quantiles[3] + 1.5*IQR(x) ] <- quantiles[4]
    x
}
Import_values_capped <- Import$value %>% cap()
Export_values_capped <- Export$value %>% cap()

#subset using value
import_value_sub <- Import %>% dplyr::select(value)
export_value_sub <- Export %>% dplyr::select(value)
#descriptive statistics
summary(import_value_sub)
```

```
value
##
   Min. :
##
                0.00
##
   1st Qu.:
                0.03
##
   Median :
                0.38
##
   Mean
               63.29
   3rd Qu.:
                4.91
##
##
   Max.
          :32781.57
```

```
summary(export_value_sub)
```

```
##
        value
   Min.
                0.00
##
         :
##
   1st Qu.:
                0.03
   Median :
##
                0.36
              21.57
##
   Mean
##
   3rd Qu.:
                3.77
   Max.
           :19805.17
##
```

```
#apply user defined function "cap" to value_sub
Import_values_capped <- sapply(import_value_sub, FUN = cap)
Export_values_capped <- sapply(export_value_sub, FUN = cap)
#check statistics
summary(Import_values_capped)</pre>
```

```
##
       value
##
   Min.
         : 0.00
   1st Qu.: 0.03
##
##
   Median: 0.38
         : 24.19
##
   Mean
   3rd Qu.: 4.91
          :131.51
##
   Max.
```

```
summary(Export_values_capped)
```

```
##
        value
##
   Min. : 0.00
##
   1st Ou.: 0.03
##
   Median: 0.36
   Mean
         :10.94
##
##
   3rd Qu.: 3.77
##
   Max.
          :60.83
```

Transforming

 As the data set have high values (in billions) both log10 and ln have been performed as there are no zero or negative values to check which suits the best #The Log Tranformation
#Hypothetical data on the Import data
hist(Import\$value)

#we apply the log10() transformation
log_import <- log10(Import\$value)
hist(log_import)</pre>

Import\$value

Histogram of log_import

#lets check In transformation
ln_import <- log(Import\$value)
hist(ln_import)</pre>

Histogram of In_import

#The Log Tranformation
#Hypothetical data on the Export data

hist(Export\$value)

Histogram of Export\$value

#we apply the log10() transformation

log_export <- log10(Export\$value)
hist(log_export)</pre>

Histogram of log_export

#lets check In transformation
ln_export <- log(Export\$value)
hist(ln_export)</pre>

we see above that In shape is slightly less right skewed than In transformation for exports. Where as for Imports log10 is preferred.