Course: Image Segmentation with Python

Course developer and instructor: Antonio Rueda-Toicen, MSc.

- Technical expert and data science mentor at <u>Thinkful</u>
- Research programmer at the <u>Algorithmic Dynamics Lab</u>
- Instructor at the National Institute of Bioengineering (INABIO) Universidad Central de Venezuela
- · Chief Technology Officer at The Chain

emails (use only one): antonio.rueda.toicen@gmail.com, antonio.rueda.toicen@algorithmicnaturelab.org, art@wek.io

homepage: www.digital-spaceti.me

Python Technology stack

- NumPy
- · TensorFlow and Keras
- Sckit-image
- OpenCV
- · Google's Colaboratory

Related courses

- Deep Learning in Python
- Convolutional Neural Networks for Image Processing

Part 1: Image Segmentation Basics

Intro video explaining what image segmentation is (5-10 min)

Synthetic MRI slice generated by TumorSim

Ground truth for 10 tissue classes, including tumor and edema

- · Loading an image with OpenCV
 - Importing medical image data with PyDICOM
- · Using a mask to select regions of an image

Select the tumor region in brain MRI

- Visualizing the tumor region in 3D
- Quick multiple choice quiz about image segmentation (purpose of segmentation, use of masks)
- Intro video explaining segmentation with the GrowCut cellular automaton (5-10 min)
- · Seeded segmentation with the GrowCut cellular automaton
 - o Complete a Numpy implementation of the GrowCut cellular automaton
 - Using entropy minima as segmentation seeds
 - Labeling entropy minima with k-medoids
 - o Defining minima area for segments to avoid oversegmentation

- · Evaluating the quality of a segmentation
 - Counting true positives, true negatives, false positives, and false negatives
 - Computing precision
 - Computing recall
 - Computing the f1-measure
 - Computing Intersection over Union (IoU)
 - Computing the warping error
 - Computing the Rand error

Part 2: Understanding U-net part 1

Segmenting biomedical images

- Intro video explaining what U-net is and how does deep learning enables automatic image segmentation (5-10 min)
 - The intro video mentions the encoder-decoder architecture of U-net and how part 2 focuses on the encoder, part 3 on the decoder, and part 4 on the final layers of U-net and its optimization

- · U-net architecture
 - Quick multiple choice quiz about U-net's architecture (purpose of U-net, contents of layers, what convolution is, what upsampling is)

- · Understanding image convolutions
 - Applying a convolution filter
 - · Changing the weights of a convolution filter
- Video explaining the need of image cropping and data augmentation in U-net (5 min)
- · Doing image cropping
- · Doing data augmentation
 - Mirroring
 - Rotation
 - Vertical/horizontal flips
 - Deformations

- Video explaining the use of pooling (3 min)
- · Understanding pooling
 - · Implement max pooling
- Video explaining activation functions in U-net (3 min)

- · Understanding ReLU
 - · Implement Regular ReLU
 - Implement Leaky ReLU

Part 3: Understanding U-net part 2

Segmenting road images

- Video explaining the decoder part of the U-net learning architecture, explains upsampling, mentions
 what unpooling and transposed convolutions are and their purpose (5-10 min)
- · Understanding unpooling
 - Replacing each entry with an $n \times n$ matrix filled with the original entry (NumPy drill).
 - \circ Replacing each entry with an $n \times n$ matrix with the original entry in the upper left and the other squares set to 0. [1506.02753] (NumPy drill)

• Computing a transposed convolution with tf.nn.conv2d_transpose

Part 4: Understanding U-net part 3

Segmenting multispectral satellite images

Understanding the final layers and the loss function

- Video explaining loss functions (5 min)
- · Quiz on loss functions
- · Understanding loss functions:
 - Computing Cross entropy
 - Computing Mean squared error
 - · Computing Mean absolute error
 - · Using the Dice similarity coefficient as an error metric
- Video explaining optimizers (5 min)
- · Choosing an optimizer:
 - Training a net with Stochastic Gradient Descent (tf.train.GradientDescentOptimizer)
 - Traning a net with ADAM (tf.train.AdamOptimizer)
- Video introduction to regularization and dropout (2-3 min)
- · Regularization with Dropout
 - · Regularization with tf.nn.dropout
- Video introduction to mathematical morphology operations (2-3 min)
- · Mathematical morphology to define borders of the final segmentation mask
 - · Eroding an image
 - Dilation an image
 - Finding borders on image by the composition of dilation and erosion
- · Putting it all together
 - Comparing the performance of networks with different hyperparameters