

Projective Geometry

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

Outline

- Projective 2D geometry
- Projective 3D geometry

[Slides credit: Marc Pollefeys]

Projective 2D Geometry

Points, lines & conics

Transformations & invariants

1D projective geometry and

the cross-ratio

Homogeneous Coordinates

Homogeneous representation of lines

$$ax + by + c = 0$$
 $(a,b,c)^T$
 $(ka)x + (kb)y + kc = 0, \forall k \neq 0$ $(a,b,c)^T \sim k(a,b,c)^T$
equivalence class of vectors, any vector is representative

Homogeneous representation of points

$$x = (x, y)^{T}$$
 on $1 = (a,b,c)^{T}$ if and only if $ax + by + c = 0$
 $(x,y,1)(a,b,c)^{T} = (x,y,1)1 = 0$ $(x,y,1)^{T} \sim k(x,y,1)^{T}, \forall k \neq 0$

The point x lies on the line I if and only if $x^TI = I^Tx = 0$

Homogeneous coordinates $(x_1, x_2, x_3)^T$ but only 2DOF Inhomogeneous coordinates $(x, y)^T$

The point $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$ represent the point $(x_1/x_3, x_2/x_3)^{\mathrm{T}}$ in \mathbb{R}^2

Points and Lines

Intersections of lines

The intersection of two lines 1 and 1' is $x = 1 \times 1$ '

Line joining two points

The line through two points x and x' is $1 = x \times x'$

Example

Ideal Points and the Line at Infinity

Intersections of parallel lines

$$1 = (a, b, c)^{T}$$
 and $1' = (a, b, c')^{T}$ $1 \times 1' = (b, -a, 0)^{T}$

$$1\times 1' = (b,-a,0)^{\mathsf{T}}$$

Example

$$(b,-a)$$
 tangent vector (line's direction) (a,b) normal direction

Ideal points

$$(x_1, x_2, 0)^T$$

Line at infinity

$$1_{\infty} = (0,0,1)^{\mathsf{T}}$$

$$\mathbf{P}^2 = \mathbf{R}^2 \cup \mathbf{l}_{\infty}$$

Note that in \mathbf{P}^2 there is no distinction between ideal points and others

A Model for the Projective Plane

exactly one line through two points exactly one point at intersection of two lines

Duality

$$x \longrightarrow 1$$

$$x^{\mathsf{T}} 1 = 0 \longleftrightarrow 1^{\mathsf{T}} x = 0$$

$$x = 1 \times 1' \longleftrightarrow 1 = x \times x'$$

Duality principle:

To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

Conics

Curve described by 2nd-degree equation in the plane

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$
or homogenized $x \mapsto \frac{x_{1}}{x_{3}}, y \mapsto \frac{x_{2}}{x_{3}}$

$$ax_{1}^{2} + bx_{1}x_{2} + cx_{2}^{2} + dx_{1}x_{3} + ex_{2}x_{3} + fx_{3}^{2} = 0$$
or in matrix form
$$x^{T} \mathbf{C} \mathbf{x} = 0 \text{ with } \mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

symmetric

5DOF: $\{a:b:c:d:e:f\}$

Five Points Define a Conic

For each point the conic passes through

$$ax_i^2 + bx_iy_i + cy_i^2 + dx_i + ey_i + f = 0$$

or

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = 0$$

Tangent Lines to Conics

The line I tangent to **C** at point x on **C** is given by I=**C**x

Dual Conics

A line tangent to the conic **C** satisfies $1^T \mathbf{C}^* 1 = 0$

In general (**C** full rank):
$$\mathbf{C}^* = \mathbf{C}^{-1}$$

Dual conics = line conics = conic envelopes

Projective Transformations

Definition:

A *projectivity* is an invertible mapping h from P² to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1), h(x_2), h(x_3)$ do.

Theorem:

A mapping $h: P^2 \to P^2$ is a projectivity if and only if there exist a non-singular 3x3 matrix **H** such that for any point in P^2 reprented by a vector x it is true that h(x) = Hx

Definition: Projective transformation

$$\begin{bmatrix}
x'_{1} \\
x'_{2} \\
x'_{3}
\end{bmatrix} = \begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix} \begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3}
\end{bmatrix}$$
 or $x' = \mathbf{H} \times \mathbf{BDOF}$

projectivity=collineation=projective transformation=homography 14

Mapping between Planes

central projection may be expressed by x'=Hx (application of theorem)

Removing Projective Distortion

select four points in a plane with know coordinates

$$x' = \frac{x'_1}{x'_3} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} \qquad y' = \frac{x'_2}{x'_3} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$x'(h_{31}x + h_{32}y + h_{33}) = h_{11}x + h_{12}y + h_{13}$$

$$y'(h_{31}x + h_{32}y + h_{33}) = h_{21}x + h_{22}y + h_{23}$$
 (linear in h_{ij})

(2 constraints/point, 8DOF \Rightarrow 4 points needed)

Remark: no calibration at all necessary

More Application Examples

Transformation of Lines and Conics

For a point transformation

$$x' = H x$$

Transformation for lines

$$1' = \mathbf{H}^{-\mathsf{T}} 1$$

Transformation for conics

$$\mathbf{C}' = \mathbf{H}^{-\mathsf{T}} \mathbf{C} \mathbf{H}^{-\mathsf{1}}$$

Transformation for dual conics

$$\mathbf{C'}^* = \mathbf{HC}^* \mathbf{H}^\mathsf{T}$$

A Hierarchy of Transformations

- Projective linear group
- Affine group (last row (0,0,1))
- Euclidean group (upper left 2x2 orthogonal)
- Oriented Euclidean group (upper left 2x2 det 1)

Alternative, characterize transformation in terms of elements or quantities that are preserved or *invariant* e.g. Euclidean transformations leave distances unchanged

Affine Projective

Class I: Isometries

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \varepsilon \cos \theta & -\sin \theta & t_x \\ \varepsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 $\varepsilon = \pm 1$

orientation preserving: $\varepsilon=1$ (Euclidean transform) orientation reversing: $\varepsilon=-1$

$$\mathbf{x}' = \mathbf{H}_E \mathbf{x} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x} \qquad \mathbf{R}^\mathsf{T} \mathbf{R} = \mathbf{I}$$

3DOF (1 rotation, 2 translation), can be computed from 2 point correspondences special cases: pure rotation, pure translation

Invariants: length, angle, area

Class II: Similarities

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{H}_S \ \mathbf{x} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ 0^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x} \qquad \qquad \mathbf{R}^\mathsf{T} \mathbf{R} = \mathbf{I}$$

4DOF (1 scale, 1 rotation, 2 translation), can be computed from 2 point correspondences also know as *equi-form* (shape preserving)

Invariants: ratios of length, angle, ratios of areas, parallel lines

Class III: Affine Transformations

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{x'} = \mathbf{H}_A \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^T & 1 \end{bmatrix} \mathbf{x}$$

$$\mathbf{A} = \mathbf{R}(\theta) \mathbf{R}(-\phi) \mathbf{D} \mathbf{R}(\phi)$$

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

6DOF (2 scale, 2 rotation, 2 translation), can be computed from 3 point correspondences non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths, ratios of areas

Class VI: Projective Transformations

$$\mathbf{x'} = \mathbf{H}_P \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \mathbf{x} \qquad \mathbf{v} = (v_1, v_2)^\mathsf{T}$$

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) can be computed from 4 point correspondences

Action non-homogeneous over the plane

Invariants: cross-ratio of four points on a line, (ratio of ratio)

Action of Affinities and Projectivities on Line at Infinity

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ \mathbf{0} \end{pmatrix}$$

Line at infinity stays at infinity, but points move along line

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ v_1 x_1 + v_2 x_2 \end{pmatrix}$$

Line at infinity becomes finite, allows to observe vanishing points, horizon

Decomposition of Projective Transformations

$$\mathbf{H} = \mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P} = \begin{bmatrix} s\mathbf{R} & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} & 0 \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & 0 \\ v^{\mathsf{T}} & v \end{bmatrix} = \begin{bmatrix} \mathbf{A} & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$
S: similarity

A: Affine

P: Projective

decomposition unique (if chosen s>0)

$$\mathbf{A} = s\mathbf{R}\mathbf{K} + t\mathbf{v}^{\mathsf{T}}$$

 \mathbf{K} upper-triangular, $\det \mathbf{K} = 1$

Example:

$$\mathbf{H} = \begin{bmatrix} 1.707 & 0.586 & 1.0 \\ 2.707 & 8.242 & 2.0 \\ 1.0 & 2.0 & 1.0 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 2\cos 45^{\circ} & -2\sin 45^{\circ} & 1.0 \\ 2\sin 45^{\circ} & 2\cos 45^{\circ} & 2.0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Summary of Transformations

Projective 8dof

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Affine 6dof

$$\begin{bmatrix} a_{11} & a_{12} & t_x \ a_{21} & a_{22} & t_y \ 0 & 0 & 1 \end{bmatrix}$$

Similarity 4dof

Euclidean 3dof

Invariant Properties

Concurrency, collinearity, order of contact (intersection, tangency, inflection, etc.), cross ratio

Parallellism, ratio of areas, ratio of lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids).

The line at infinity $I_{\scriptscriptstyle \infty}$

Ratios of lengths, angles. The circular points I,J

lengths, areas.

Cross Ratio

$$Cross(\overline{X}_{1}, \overline{X}_{2}, \overline{X}_{3}, \overline{X}_{4}) = \frac{|\overline{X}_{1}, \overline{X}_{2}||\overline{X}_{3}, \overline{X}_{4}|}{|\overline{X}_{1}, \overline{X}_{3}||\overline{X}_{2}, \overline{X}_{4}|} \quad |\overline{X}_{i}, \overline{X}_{j}| = \det\begin{bmatrix} x_{i1} & x_{j1} \\ x_{i2} & x_{j2} \end{bmatrix}$$

Invariant under projective transformations

The Line at Infinity

$$\mathbf{l}_{\infty}' = \mathbf{H}_{\mathbf{A}}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

Affine Properties from Images

$$H'_{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_{1} & l_{2} & l_{3} \end{bmatrix}$$

$$H'_{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_{1} & l_{2} & l_{3} \end{bmatrix} \qquad 1 = \begin{bmatrix} l_{1} & l_{2} & l_{3} \end{bmatrix}^{\mathsf{T}}, l_{3} \neq 0$$

$$H'_{P}^{\mathsf{T}}(l_{1}, l_{2}, l_{3})^{\mathsf{T}} = (0, 0, 1)^{\mathsf{T}} = l_{\infty}$$

$$H_P^{-T}(l_1, l_2, l_3)^{T} = (0, 0, 1)^{T} = l_{\infty}$$

Affine Rectification

Distance Ratios

The Circular Points

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

$$\mathbf{I}' = \mathbf{H}_{S} \mathbf{I} = \begin{bmatrix} s \cos \theta & -s \sin \theta & t_{x} \\ s \sin \theta & s \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = se^{i\theta} \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = \mathbf{I}$$

The circular points I, I are fixed points under the projective transformation **H** iff **H** is a similarity

The Circular Points

"circular points"

$$x_1^2 + x_2^2 + dx_1 x_3 + ex_2 x_3 + fx_3^2 = 0$$
$$x_3 = 0$$

$$x_1^2 + x_2^2 = 0$$

$$\mathbf{I} = (1, i, 0)^{\mathsf{T}}$$

$$\mathbf{J} = (1, -i, 0)^{\mathsf{T}}$$

Algebraically, encodes orthogonal directions

$$I = (1,0,0)^T + i(0,1,0)^T$$

Conic Dual to the Circular Points

$$\mathbf{C}_{\infty}^* = \mathbf{I}\mathbf{J}^\mathsf{T} + \mathbf{J}\mathbf{I}^\mathsf{T} \qquad \mathbf{C}_{\infty}^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C}_{\infty}^* = \mathbf{H}_S \mathbf{C}_{\infty}^* \mathbf{H}_S^{\mathsf{T}}$$

The dual conic ${f C}_{\infty}^*$ is fixed conic under the projective transformation ${f H}$ if ${f H}$ is a similarity

Angles

Euclidean:
$$1 = (l_1, l_2, l_3)^T$$
 $m = (m_1, m_2, m_3)^T$ $\cos \theta = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}$

Projective:
$$\cos \theta = \frac{1^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}}{\sqrt{\left(1^{\mathsf{T}} \mathbf{C}_{\infty}^{*} 1\right) \left(\mathbf{m}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m}\right)}}$$

(This equation is Invariant to projective transform)

$$\mathbf{1}^{\mathsf{T}} \mathbf{C}_{\infty}^* \mathbf{m} = 0$$
 If orthogonal

Length Ratios

$$\frac{d(b,c)}{d(a,c)} = \frac{\sin \alpha}{\sin \beta}$$

 $\cos \alpha$ and $\cos \beta$ can be derived with the equations in the previous page

Metric Properties from Images

$$\mathbf{C}_{\infty}^{*} '= (\mathbf{H}_{P} \mathbf{H}_{A} \mathbf{H}_{S}) \mathbf{C}_{\infty}^{*} (\mathbf{H}_{P} \mathbf{H}_{A} \mathbf{H}_{S})^{\mathsf{T}}$$

$$= (\mathbf{H}_{P} \mathbf{H}_{A}) \mathbf{H}_{S} \mathbf{C}_{\infty}^{*} \mathbf{H}_{S}^{\mathsf{T}} (\mathbf{H}_{P} \mathbf{H}_{A})^{\mathsf{T}}$$

$$= (\mathbf{H}_{P} \mathbf{H}_{A}) \mathbf{C}_{\infty}^{*} (\mathbf{H}_{P} \mathbf{H}_{A})^{\mathsf{T}}$$

$$= \begin{bmatrix} \mathbf{K} \mathbf{K}^{\mathsf{T}} & \mathbf{K}^{\mathsf{T}} \mathbf{v} \\ \mathbf{v}^{\mathsf{T}} \mathbf{K} & \mathbf{v}^{\mathsf{T}} \mathbf{v} \end{bmatrix}$$

Rectifying transformation from SVD

$$\mathbf{C}_{\infty}^* = \mathbf{U} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{U}^\mathsf{T} \qquad \mathbf{H} = \mathbf{U}$$

Metric from Affine

Suppose an image has been affinely rectified (v=0)

$$\begin{pmatrix} l_1' & l_2' & l_3' \end{pmatrix} \begin{bmatrix} \mathbf{K} \mathbf{K}^\mathsf{T} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} m_1' \\ m_2' \\ m_3' \end{pmatrix} = 0$$

$$(l'_1m'_1, l'_1m'_2 + l'_2m'_1, l'_2m'_2)(k_{11}^2 + k_{12}^2, k_{22}k_{12}, k_{22}^2)^{\mathrm{T}} = 0$$

Metric from Projective

$$\mathbf{1}^{\mathsf{T}} \mathbf{C}_{\infty}^{*} \mathbf{m} = \mathbf{0} \qquad \begin{pmatrix} l_{1}' & l_{2}' & l_{3}' \end{pmatrix} \begin{bmatrix} \mathbf{K} \mathbf{K}^{\mathsf{T}} & \mathbf{K}^{\mathsf{T}} \mathbf{v} \\ \mathbf{v}^{\mathsf{T}} \mathbf{K} & \mathbf{v}^{\mathsf{T}} \mathbf{v} \end{bmatrix} \begin{pmatrix} m_{1}' \\ m_{2}' \\ m_{3}' \end{pmatrix} = \mathbf{0}$$

$$(l'_1m'_1, 0.5(l'_1m'_2 + l'_2m'_1), l'_2m'_2, 0.5(l'_1m'_3 + l'_3m'_1), 0.5(l'_2m'_3 + l'_3m'_2), l'_3m'_3)c = 0$$

$$\mathbf{c} = (a, b, c, d, e, f)^{\mathrm{T}}$$

Projective 3D Geometry

• Points, lines, planes and quadrics

Transformations

3D Points

3D point

$$(X,Y,Z)^T$$
 in \mathbb{R}^3

$$X = (X_1, X_2, X_3, X_4)^T$$
 in P^3

$$X = \left(\frac{X_1}{X_4}, \frac{X_2}{X_4}, \frac{X_3}{X_4}, 1\right)^{T} = (X, Y, Z, 1)^{T} \qquad (X_4 \neq 0)$$

projective transformation

$$X' = H X$$
 (4x4-1=15 dof)

Dual: points \leftrightarrow planes, lines \leftrightarrow lines

Planes

3D plane

 $\pi^T X = 0$

$$\pi_1 X + \pi_2 Y + \pi_3 Z + \pi_4 = 0$$

$$\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0$$

Transformation

$$X' = \mathbf{H} X$$
$$\pi' = \mathbf{H}^{-\mathsf{T}} \pi$$

Euclidean representation

$$\widetilde{\mathbf{X}} = (X, Y, Z)^{\mathsf{T}}$$
$$X_{4} = 1$$

Planes from Points

Solve π from $X_1^T \pi = 0$, $X_2^T \pi = 0$ and $X_3^T \pi = 0$

$$\begin{bmatrix} X_1^\mathsf{T} \\ X_2^\mathsf{T} \\ X_3^\mathsf{T} \end{bmatrix} \pi = 0 \quad \text{(solve } \boldsymbol{\pi} \text{ as right nullspace of } \begin{bmatrix} X_1^\mathsf{T} \\ X_2^\mathsf{T} \\ X_3^\mathsf{T} \end{bmatrix} \text{)}$$

Or implicitly from coplanarity condition

$$\det\begin{bmatrix} X_1 & (X_1)_1 & (X_2)_1 & (X_3)_1 \\ X_2 & (X_1)_2 & (X_2)_2 & (X_3)_2 \\ X_3 & (X_1)_3 & (X_2)_3 & (X_3)_3 \\ X_4 & (X_1)_4 & (X_2)_4 & (X_3)_4 \end{bmatrix} = 0$$

$$X_1 D_{234} - X_2 D_{134} + X_3 D_{124} - X_4 D_{123} = 0$$

$$\pi = (D_{234}, -D_{134}, D_{124}, -D_{123})^{\mathsf{T}}$$

Points from Planes

Solve X from
$$\pi_1^T X = 0$$
, $\pi_2^T X = 0$ and $\pi_3^T X = 0$

$$\begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix} \mathbf{X} = \mathbf{0} \ \ (\text{solve } \mathbf{X} \ \text{ as right nullspace of } \begin{bmatrix} \pi_1^\mathsf{T} \\ \pi_2^\mathsf{T} \\ \pi_3^\mathsf{T} \end{bmatrix})$$

Points and Planes

Projective transformation

Under the point transformation X' = HX, a plane transforms as $\pi' = H^{-T}\pi$

Parametrized points on a plane

Representing a plane
$$\pi = (a, b, c, d)^T$$
 by its span

 $\mathbf{X} = \mathbf{M} \mathbf{x}$ x is a 3-vector parameter (a point on the projective plane)

$$\boldsymbol{\pi}^{\mathsf{T}} \, \mathbf{M} = 0$$

$$\text{M is not unique } \mathbf{M} = \begin{bmatrix} \mathbf{p} \\ \mathbf{I}_{3\mathbf{v}3} \end{bmatrix} \quad p = \left(-\frac{b}{a}, -\frac{c}{a}, -\frac{d}{a} \right)$$

Lines

Defined as the join of two points A, B

$$W = \begin{bmatrix} A^{\mathsf{T}} \\ B^{\mathsf{T}} \end{bmatrix} \qquad \lambda A + \mu B$$

(Dual) Defined as the intersection of two planes P, Q

$$W^* = \begin{bmatrix} P^T \\ Q^T \end{bmatrix} \qquad \lambda P + \mu Q$$

$$\mathbf{W}^*\mathbf{W}^\mathsf{T} = \mathbf{W}\mathbf{W}^{*\mathsf{T}} = \mathbf{0}_{2\times 2}$$

Example: *X*-axis

$$\mathbf{W} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{W}^* = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Points, Lines and Planes

$$\mathbf{M} = \begin{bmatrix} \mathbf{W} \\ \mathbf{X}^\mathsf{T} \end{bmatrix} \qquad \mathbf{M} \, \boldsymbol{\pi} = 0$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{W}^* \\ \mathbf{\pi}^T \end{bmatrix} \quad \mathbf{M} \, \mathbf{X} = 0$$

Plücker Matrices

Plücker matrix (4x4 skew-symmetric homogeneous matrix)

$$l_{ij} = A_i B_j - B_i A_j$$
$$L = AB^{\mathsf{T}} - BA^{\mathsf{T}}$$

- 1. L has rank 2 $LW^{*T} = 0_{4\times 2}$
- 2. 4dof
- 3. generalization of $1 = x \times y$
- 4. L independent of choice A and B
- 5. Transformation $L' = HLH^T$

Example: X-axis
$$L = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Plücker Matrices

Dual Plücker matrix L^{\ast}

$$L^* = PQ^{\mathsf{T}} - QP^{\mathsf{T}}$$

$$L^{*'} = H^{-T}LH^{-1}$$

Correspondence

$$l_{12}: l_{13}: l_{14}: l_{23}: l_{42}: l_{34} = l_{34}^*: l_{42}^*: l_{23}^*: l_{14}^*: l_{13}^*: l_{12}^*$$

Join and incidence

$$\pi = L^*X$$
 (plane through point and line)

$$L^*X = 0$$
 (point on line)

$$X = L\pi$$
 (intersection point of plane and line)

$$L\pi = 0$$
 (line in plane)

$$[L_1, L_2, ...]\pi = 0$$
 (coplanar lines)

Quadrics and Dual Quadrics

$$X^{\mathsf{T}}QX = 0$$
 (Q : 4x4 symmetric matrix)

- 1. \forall d.o.f.

 2. in general 9 points define quadric

 3. $\det Q = 0 \iff d = 0$ 3. det Q=0 ↔ degenerate quadric
- 4. Polar plane $\pi = QX$
- 5. (plane \cap quadric)=conic $C = M^TQM \quad \pi: X = Mx$
- 6. transformation $O' = H^{-T}OH^{-1}$

Q*: dual quadric, equations on planes

$$\boldsymbol{\pi}^{\mathsf{T}} \mathbf{Q}^* \boldsymbol{\pi} = 0$$

- 1. relation to quadric $Q^* = Q^{-1}$ (non-degenerate)
- 2. transformation $Q'^* = HQ^*H^T$

Quadric Classification

Rank	Sign.	Diagonal	Equation	Realization
4	4	(1,1,1,1)	$X^2+Y^2+Z^2+1=0$	No real points
	2	(1,1,1,-1)	$X^2 + Y^2 + Z^2 = 1$	Sphere
	0	(1,1,-1,-1)	$X^2 + Y^2 = Z^2 + 1$	Hyperboloid (1S)
3	3	(1,1,1,0)	$X^2 + Y^2 + Z^2 = 0$	Single point
	1	(1,1,-1,0)	$X^2 + Y^2 = Z^2$	Cone
2	2	(1,1,0,0)	$X^2 + Y^2 = 0$	Single line
	0	(1,-1,0,0)	$X^2 = Y^2$	Two planes
1	1	(1,0,0,0)	$X^2 = 0$	Single plane

Quadric Classification

Projectively equivalent to sphere:

sphere

ellipsoid

Ruled quadrics: (contain straight line)

Degenerate ruled quadrics:

hyperboloids of one sheet

Hierarchy of Transformations

Projective 15dof

$$\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

Invariant Properties

Intersection and tangency

5 for affine scaling

Affine 12dof

$$\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}$$

Para Volu The

Parallellism of planes, Volume ratios, centroids, The plane at infinity π_{∞}

3 for rotation3 for translation1 for isotropic scaling

Similarity 7dof

$$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$

The absolute conic Ω_{∞}

Euclidean 6dof

$$\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$$

Volume

Screw Decomposition

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.

Screw Decomposition

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.

screw axis // rotation axis

$$t = t_{/\!/} + t_{\perp}$$

The Plane at Infinity

$$oldsymbol{\pi}_{\infty}' = oldsymbol{H}_{A}^{-\mathsf{T}} oldsymbol{\pi}_{\infty} = egin{bmatrix} \mathbf{A}^{-\mathsf{T}} & 0 \ 0 \ -\mathbf{A} \ t & 1 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = oldsymbol{\pi}_{\infty}$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

- 1. canonical position $\pi_{\infty} = (0,0,0,1)^{T}$
- 2. contains directions $D = (X_1, X_2, X_3, 0)^T$
- 3. two planes are parallel \Leftrightarrow line of intersection in $\pi_{\scriptscriptstyle \infty}$
- 4. line // line (or plane) \Leftrightarrow point of intersection in π_{∞}