Probability and Random Processes - 3rd ed. Grimmett and Stirzaker (2001)

Robin Aldridge-Sutton

July 1, 2021

1 Events and their probabilities

- $\bullet\,$ Sample space A set Ω of all possible outcomes of an experiment
- σ -field A collection $\mathcal F$ of subsets of Ω with
 - $-\emptyset\in\mathcal{F}$
 - $-A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - $-A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- Probability measure \mathbb{P} on (Ω, \mathcal{F}) A function $\mathbb{P}: \mathcal{F} \to [0, 1]$ with
 - $\mathbb{P}(\emptyset) = 0, \, \mathbb{P}(\Omega) = 1$
 - $-A_1, A_2, ... \in \mathcal{F} \text{ and } \forall i \neq j, A_i \cap A_j = \emptyset \Rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$
- Probability space A triple $(\Omega, \mathcal{F}, \mathbb{P})$ comprising a set Ω , a σ -field \mathcal{F} , and a probability measure \mathbb{P} on (Ω, \mathcal{F})
- \bullet Conditional probability that event A occurs given that event B occurs

$$-\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \mathbb{P}(B) > 0$$

• Lemma - B_1, B_2, \dots a partition of Ω with $\mathbb{P}(B_i) > 0$ for all $i \Rightarrow$

$$- \mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

- Independent events $\{A_i : i \in I\}$
 - $\ \mathbb{P}(\cap_{i \in J} A_i) = \prod_{i \in J} \mathbb{P}(A_i)$ for all finite $J \subset I$

2 Random variables and their distributions

- Random variable (\mathcal{F} -measurable function) A function $X:\Omega\to\mathbb{R}$ with
 - $-\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F} \text{ for each } x \in \mathcal{R}$
- Distribution function of a random variable X A function $F:\mathbb{R}\to [0,1]$ given by
 - $-F(x) = \mathbb{P}(X \le x)$
- Discrete random variable A random variable X taking values in some countable subset $\{x_1, x_2, ...\}$ of \mathbb{R} and has (probability) mass function $f: \mathbb{R} \to [0, 1]$ given by
 - $-f(x) = \mathbb{P}(X=x)$
- ullet Continuous random variable A random variable X with distribution function expressible as
 - $-F(x) = \int_{-\infty}^{x} f(u)du, x \in \mathbb{R}$
 - $-f:\mathbb{R}\to[0,\infty)$ is called the (probability) density function of X
- Joint distribution function of a random vector $\mathbf{X} = \{X_1, X_2, ..., X_n\}$ on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is the function $F_{\mathbf{X}} : \mathbb{R} \to [0, 1]$ given by
 - $-F_{\mathbf{X}}(\mathbf{x}) = \mathbb{P}(\mathbf{X} \leq \mathbf{x}), \text{ for } \mathbf{x} \in \mathbb{R}^n$
 - $-\mathbf{x} \leq \mathbf{y} \iff x_i \leq y_i \text{ for } i \in \{1, ..., n\}$

3 Discrete random variables

- Independent discrete random variables Events $\{X=x\}$ and $\{Y=y\}$ are independent
- Expected value of discrete random variable X with mass function f
 - $-\mathbb{E}(X) = \sum_{x:f(x)>0} x f(x),$
 - where this sum is absolutely convergent so that the order of the terms is irrelevant
- Lemma If X has mass function f, and $g: \mathcal{R} \to \mathcal{R}$ then
 - $-\mathbb{E}(g(X)) = \sum_{x} g(x)f(x),$
 - where this sum is absolutely convergent
- k th moment m_k of X
 - $-m_k = \mathbb{E}(X^k)$
 - $-\sigma_k = \mathbb{E}((X-m_1)^k)$ (kth central moment)

- Theorem The expectation operator \mathbb{E} has the property
 - $-a, b \in \mathbb{R} \Rightarrow \mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$
- Joint distribution function $F: \mathbb{R}^2 \to [0,1]$, and mass function $f: \mathbb{R}^2 \to [0,1]$, of discrete random variables X and Y

$$-F(x,y) = \mathbb{P}(X \le x \text{ and } Y \le y)$$

$$-f(x,y) = \mathbb{P}(X = x \text{ and } Y = y)$$

ullet Lemma - Discrete random variables X and Y are independent if and only if

$$- f_{X,Y}(x,y) = f_X(x) f_Y(y)$$
, or

-
$$f_{X,Y}(x,y) = g(x)h(y)$$
, for all $x, y \in \mathbb{R}$

• Conditional distribution function $F_{Y|X}(.|x)$, and conditional (probability) mass function $f_{Y|X}(.|x)$, of Y given X = x

$$- F_{Y|X}(y|x) = \mathbb{P}(Y \le y|X = x)$$

$$- f_{Y|X}(y|x) = \mathbb{P}(Y = y|X = x),$$

$$- \mathbb{P}(X = x) > 0$$

 \bullet Conditional expectation of Y given X

$$-\mathbb{E}(Y|X) = \sum_{y} y f_{Y|X}(y|X)$$

$$-\mathbb{E}_X(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$$

• Sum of random variables - X and Y independent \Rightarrow

$$- \mathbb{P}(X + Y = z) = f_{X+Y}(z) = (f_X * f_Y)(z)$$

$$- = \sum_{x} f_X(x) f_Y(z - x) = \sum_{y} f_X(z - y) f_Y(y)$$

 $-f_X * f_Y$ is the convolution of the mass functions of X and Y

4 Continuous random variables

- \bullet Independent continuous random variables X and Y
 - $-\{X \leq x\}$ and $\{Y \leq y\}$ are independent events for all $x, y \in \mathbb{R}$
- \bullet Expectation of a continuous random variable X with density function f

$$-\mathbb{E}X = \int_{-\infty}^{\infty} x f(x) dx$$

- whenever this integral exists
- Theorem X and g(X) continuous random variables

$$-\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

- Joint distribution function $F: \mathbb{R}^2 \to [0,1]$, and density function $f: \mathbb{R}^2 \to [0,\infty)$, of continuous random variables X and Y
 - $F(x,y) = \mathbb{P}(X \le x, Y \le y)$
 - $-F(x,y) = \int_{v=-\infty}^{y} \int_{u=-\infty}^{x} f(u,v) du dv$
 - for each $x, y \in \mathbb{R}$
- Conditional distribution function $F_{Y|X}(.|x)$, and conditional (probability) density function $f_{Y|X}(.|x)$, of continuous random variable Y given X = x
 - $F_{Y|X}(y|x) = \int_{-\infty}^{y} \frac{f(x,v)}{f_X(x)} dv,$
 - $-\mathbb{P}(Y|X=x)$ does not exist because $\mathbb{P}(X=x)=0$,
 - $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)},$
 - $-f_X(x) > 0$
- \bullet Conditional expectation of Y given X
 - $\mathbb{E}(Y|X) = \int_{-\infty}^{\infty} y f_{Y|X}(y|X) dy,$
 - $\mathbb{E}_X(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$
- Theorem (Change of variables)
 - $-g:\mathbb{R}^n\to\mathbb{R},$
 - $-T:(x_1,x_2)\in A\subseteq D\subseteq \mathbb{R}^2\to (y_1,y_2)\in B\subseteq R\subseteq \mathbb{R}^2$ one-to-one, and
 - $J(y_1, y_2)$ the determinant of the matrix of first-order partial derivatives of its inverse (both matrix and determinant called the Jacobian)
 - $-\int \int_A g(x_1x_2) dx_1 dx_2 = \int \int_B g(x_1(y_1,y_2),x_2(y_1,y_2)) |J(y_1,y_2)| dy_1 dy_2$
- Corrollary X_1, X_2 joint density function f and $(Y_1, Y_2) = T(X_1, X_2) \Rightarrow$
 - $f_{Y_1,Y_2}(y_1,y_2) = f(x_1(y_1,y_2), x_2(y_1,y_2))|J(y_1,y_2)|,$
 - if $(y_1, y_2) \in R$, and 0 otherwise.
- Sum of random variables X and Y independent \Rightarrow
 - $f_{X+Y}(z) = (f_X * f_Y)(z)$
 - $= \int_{-\infty}^{\infty} f_X(x) f_Y(z x) dx = \int_{-\infty}^{\infty} f_X(z y) f_Y(y) dy$
 - $-f_X * f_Y$ is the convolution of the mass functions of X and Y

5 Generating functions and their applications

- ullet Generating function of a sequence a The function (power series) G_a defined by
 - $-G_a(s) = \sum_{i=0}^{\infty} a_i s^i,$
 - for $s \in \mathbb{R}$ for which the sum converges
 - The sequence a is recoverable by $a_i = \frac{G_a^{(i)}(0)}{i!}$
- (Probability) Generating function The generating function G(s), of the probability mass function $\{f(i): i \geq 0\}$, of a discrete random variable X, taking values in $\{0, 1, ...\}$, taking the form

$$-G(s) = \mathbb{E}(s^X) = \sum_i s^i f(i)$$

- Convolution of real sequences $\{a_i : i \geq 0\}$ and $\{b_i : i \geq 0\}$ The sequence $\{c_i : i \geq 0\}$ defined by
 - $-c_n = a_0 b_n + \dots + a_n b_0$
 - -c=a*b
- The generating function of c = a * b is

$$-G_c(s) = \sum_{n=0}^{\infty} c_n s^n = \sum_{n=0}^{\infty} \left(\sum_{i=0}^n a_i b_{n-i}\right) s^n$$

$$- = \sum_{i=0}^{\infty} a_i s^i \sum_{i=0}^{\infty} b_{n-i} s^{n-i}$$

$$-G_c(s) = G_a(s)G_b(s)$$

 \bullet Theorem - X and Y independent Rightarrow

$$-G_{X+Y}(s) = G_X(s)G_Y(s)$$

6 Random processes (Ch 8)

- Random process A family $X = \{X_t : t \in T\}$ of random variables indexed by an index set T, which map a sample space Ω into a state space S
- Sample path (Realization) of a random process X at a fixed $\omega \in \Omega$ The collection $\{X_t(\omega): t \in T\}$ of members of S
- Finite-dimensional distributions of a random process X The collection $\{F_{\mathbf{t}}\}$ of joint distribution functions $F_{\mathbf{t}}: \mathbb{R}^n \to [0,1]$ given by $F_{\mathbf{t}}(\mathbf{x}) = \mathbb{P}(X_{t_1} \leq x_1,...,X_{t_n} \leq x_n)$ as \mathbf{t} ranges over all vectors $(t_1,t_2,...,t_n)$ of members of T
- Strongly stationary process A process $X = \{X_t : t \ge 0\}$, taking values in \mathbb{R} with families $\{X(t_1),...,X(t_n)\}$ and $\{X(t_1+h),...,X(t_n+h)\}$ having the same distribution for all $t_1,...,t_n$ and h>0

- • Weakly stationary process - A process $X = \{X_t : t \geq 0\}$ with
 - $\mathbb{E}(X(t_1)) = \mathbb{E}(X(t_1))$
 - $cov(X(t_1), X(t_2)) = cov(X(t_1 + h), X(t_2 + h))$
 - for all t_1, t_2 , and h > 0

7 Diffusion processes (Ch 13)

- Wiener process A real-valued Gaussian process $W=\{W(t): t\geq 0\},$ starting from W(0)=w, with
 - Independent increments
 - W(s + t) W(s) ~ N(0, $\sigma^2 t)$ for all $s,t \geq 0$ where σ^2 is a positive constant
 - The sample paths of W are continuous