Programming with TensorFlow Autoencoders and CNNs

Soham Pal

Department of Computer Science and Automation Indian Institute of Science

E0 302: ML for SE

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

Multilayer Perceptron

Fully Connected Neural Network

Recall that the (training) Dataset is denoted by:

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$$

where $x_i \in \mathbb{R}^{d_1}$ and $y_i \in \mathbb{R}^{d_2}$.

• Look for $W_1 \in \mathbb{R}^{d_1 \times m}, W_2 \in \mathbb{R}^{m \times d_2}, b_1 \in \mathbb{R}^m, b_2 \in \mathbb{R}^{d_2}$ such that:

$$h_i = \sigma(W_1^T x_i + b_1)$$

$$\hat{y}_i = \sigma(W_2^T h_i + b_2)$$

where $\forall i, \hat{y_i} \approx y_i$ and generalizes well to unseen x.

Training

• Cross-entropy loss:

$$\mathcal{L}(\hat{y}_i, y_i) = -\sum_i y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

where \hat{y}_i is the predicted label and y_i is the expected label.

- Optimization routines
 - GradientDescentOptimizer
 - RMSPropOptimizer
 - MomentumOptimizer
 - AdamOptimizer
 Default parameters "good enough", do not need hyperparameter optimization.

Implementation

Inputs

```
input = tf.placeholder(tf.float32, [None, in_size])
label = tf.placeholder(tf.float32, [None, out_size])
```

Weights

```
w = tf.Variable(tf.random_normal(shape, stddev=0.01))
b = tf.Variable(tf.zeros(shape))
```

Putting it together

```
hidden = tf.sigmoid(tf.matmul(input, W1) + b1)
output = tf.sigmoid(tf.matmul(hidden, W2) + b2)
```

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- 4 Pitfalls
 - Overfitting
 - Assignments

The curse of dimensionality

```
0123456789

0123456789

0123456789

0123456789

0123456789

0123456789
```

- Consider handwritten digits of size 28×28 pixels. Dimension of vector space $\dim(\mathcal{X}) = 784!$
- Not all information is useful: most of it is just a black background.
- Automatically learn what is important unsupervised learning.

Autoencoders

Dataset:

$$\mathcal{D} = \{(x_i, x_i)\}_{i=1}^n$$

where $x_i \in \mathbb{R}^d$.

• Look for $W_1 \in \mathbb{R}^{d \times m}$, $W_2 \in \mathbb{R}^{m \times d}$, $b_1 \in \mathbb{R}^m$, $b_2 \in \mathbb{R}^d$ such that:

$$h_i = \sigma(W_1^T x_i + b_1)$$

$$\hat{x}_i = \sigma(W_2^T h_i + b_2)$$

where $\forall i, x_i \approx \hat{x_i}$ and generalizes well to unseen x.

Autoencoders

- What's the catch? The hidden layer is a vector in \mathbb{R}^m , where $m \neq_n d$.
- Can "compress" information by enforcing $m \ll d$.
- Can impose sparsity constraints on the hidden units h_i for further compression.

Application: Denoising

- Train pairs of noisy and original samples. Input $(z_i) = \text{AddNoise}(x_i; \mu, \sigma)$ Output $= \hat{x}_i$
- Calculate loss with respect to the original input:

$$\mathcal{L}(\hat{x}_i, x_i) = -\sum_i x_i \log(\hat{x}_i) + (1 - x_i) \log(1 - \hat{x}_i)$$

and **not** the input to the autoencoder $\mathcal{L}(\hat{x}_i, z_i)$.

Xavier Initialization

$$W_{ij} \sim U \left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \right]$$

where:

- U[-a, a] is the uniform distribution in the interval (-a, a).
- n is the size of the previous layer (the number of columns in W)

Tied Autoencoder

- Set $W_2 = W_1^T$
- Look for $W_1 \in \mathbb{R}^{d \times m}, b_1 \in \mathbb{R}^m, b_2 \in \mathbb{R}^d$ such that:

$$h_i = \sigma(W_1^T x_i + b_1)$$

$$\hat{x}_i = \sigma((W_1^T)^T h_i + b_2)$$

where $\forall i, x_i \approx \hat{x_i}$ and generalizes well to unseen x.

Tied Autoencoder

• Look for $W \in \mathbb{R}^{d \times m}, b_1 \in \mathbb{R}^m, b_2 \in \mathbb{R}^d$ such that:

$$h_i = \sigma(W^T x_i + b_1)$$

$$\hat{x}_i = \sigma(Wh_i + b_2)$$

where $\forall i, x_i \approx \hat{x_i}$ and generalizes well to unseen x.

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

Discriminative vs Generative Models

• Discriminative: Models the conditional probability distribution

Example: label a handwritten digit.

• Generative: Models the joint probability distribution

Allows us to sample from the learned distribution.

Generative Models

Let $\mathcal{X} = \{x_i\}_{i=1}^n$ be the MNIST dataset of 28×28 pixel images.

A generative model would give us P(X), i.e. the probability distribution over the space of 28×28 pixel images from which the training examples were drawn, this is called the "underlying distribution".

Autoencoders as a Generative Model

Let \tilde{X} denote a corrupted image and \hat{X} denote a reconstruction.

- $R(\hat{X}|\tilde{X})$ is a reconstructing distribution.
- $Q(\tilde{X}|X)$ is a corrupting distribution.

Corruption-Reconstruction Markov Chain

- Start with a draw from the distribution.
- Corrupt it using Q.
- 3 Reconstruct it using R.

Theorem (Y. Bengio et al.)

The stationary distribution of this Markov Chain converges to P(X).

Autoencoders as a Generative Model

Let \tilde{X} denote a corrupted image and \hat{X} denote a reconstruction.

- $R(\hat{X}|\tilde{X})$ is a denoising autoencoder trained on \mathcal{X} (i.e. reconstructing distribution).
- $Q(\tilde{X}|X)$ is a corrupting distribution.

Algorithm 1 sample from P(X)

- 1: previous $\leftarrow x_i \sim \mathcal{X}$
- 2: while The Markov Chain has not Converged do
- 3: $corrupted \sim Q(\tilde{X}|\hat{X}= previous)$
- 4: $previous \sim R(\hat{X}|\tilde{X} = corrupted)$
- 5: end while
- 6: return previous

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

Collection of Homogenous Filters

- A collection of filters is a weight matrix of dimensions $h \times v \times n_{in} \times n_{out}$ where $h \times v$ is the size of the locally receptive field, $n_i n$ is the number of "channels" in the input and n_{out} is the number of such filters.
- From now on, we shall call this a filter.

Such a filter transforms an input volume into an output volume, for example:

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- 4 Pitfalls
 - Overfitting
 - Assignments

2D Convolution in TensorFlow

tf.nn.conv2d(input, filter, strides, padding)

- input is the input image tensor of dimensions
 batch_size × height × width × channels
- filter is a filter collection of dimensions filter_height \times filter_width \times channels \times # filters It is initialized randomly with small weights $W \sim \mathcal{N}(0,0.01)$
- strides specifies the stride in each dimension.
 Typically want this to be [1, v_stride, h_stride, 1]
- padding is one of:
 - "SAME": pad with 0 to ensure all input pixels covered by convolution.
 - "VALID": no padding, some input pixels may not be covered.

Typically, "SAME" is used.

Max Pooling in TensorFlow

tf.nn.max_pool(value, ksize, strides, padding)

- value is the output volume of the filter.
- filter specifies the sliding window size in each dimension.
 Typically want this to be [1, v_size, h_size, 1]
- strides specifies the stride in each dimension.
 Typically want this to be equal to filter.
- padding is one of:
 - \bullet "SAME": pad with $-\infty$ to ensure all input pixels covered by pooling.
 - "VALID": no padding, some input pixels may not be covered.

Typically, "SAME" is used.

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

Classifying Noisy Handwritten Digits

Front end: Denoising Autoencoder (DAE)

Back end: Convolutional Neural Network (CNN)

- The DAE is pretrained on the MNIST dataset to reconstruct noisy samples.
- The CNN then uses the trained DAE to reconstruct the input before convolution.

Image Captioning

Front end: Convolutional Neural Network (CNN)

Back end: Recurrent Neural Network (RNN)

- RNNs provide variable length output the result is thus not a vector but a matrix, Y_i .
- The network is trained end-to-end on image-word pairs.

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

GoogleNet V1

Input size: $128 \times 244 \times 244 \times 3$

Table: Benchmarks of public domain implementations ¹

Library	Time (ms)	Forward (ms)	Back (ms)
Nervana-neon-fp16	230	72	157
Nervana-neon-fp32	270	84	186
TensorFlow	445	135	310
CuDNN[R4]-fp16 (Torch)	462	112	349
CuDNN[R4]-fp32 (Torch)	470	130	340
Caffe	1935	786	1148

AlexNet

Input size: $128 \times 244 \times 244 \times 3$

Table: Benchmarks of public domain implementations ²

Library	Time (ms)	Forward (ms)	Back (ms)
CuDNN[R4]-fp16 (Torch)	71	25	46
Nervana-neon-fp16	78	25	52
Nervana-neon-fp32	81	27	53
TensorFlow	81	26	55
CuDNN[R4]-fp32 (Torch)	81	27	53
Caffe	324	121	203

²https://github.com/soumith/convnet-benchmarks → (□)

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

Overfitting: How to detect it

- Always validate.
- Do not provide the correct labels to the network for validation even if you think the graph doesn't use them. This prevents accidentally training the network on the validation set.
 - Better be safe than sorry use np.zeros_like(valid_y) instead.

- Autoencoders
 - Multilayer Perceptron
 - Autoencoders
 - Xavier Initialization
 - Autoencoders as a Generative Model
- Convolutional Neural Networks
 - Designing Filters
 - Convolution
 - Combination with other networks
- Benchmarks
- Pitfalls
 - Overfitting
 - Assignments

Assignments to tensors

Code Sample

```
x = tf.placeholder(...)
z = tf.zeros(...)
w = tf.add(x, z)
print sess.run(w, feed_dict={x:[1], z:[1])}
```

What will this code fragment print?

- **1**
- **2** 2
- Garbage
- Assertion Failure in framework

Be careful with assignments

Code Sample

```
x = tf.placeholder(...)
z = tf.zeros(...)
w = tf.add(x, z)
print sess.run(w, feed_dict={x:[1], z:[1])}
```

- The value of w printed is 2!
- Every Tensor is mutable in Tensorflow there are no constants!

Summary

- Extensive community support is currently the most used framework on Github. Caffe is a close second.
- Major weakness: static computational graph, that boils down to a series of matrix operations – makes beam search, etc. difficult to implement.
 - Symbolic conditionals
 - Symbolic loops

For Further Reading I

Google TensorFlow API Documentation. https://www.tensorflow.org/api_docs

Soham Pal Tensorflow Tutorial (source code for the examples). https://github.com/peteykun/TensorflowTutorial

Soumith Chintala
 convnet-benchmarks
https://github.com/soumith/convnet-benchmarks

For Further Reading II

Yoshua Bengio et al.

Deep Generative Stochastic Networks Trainable by Backprop. ICML, 2014.