1.1. Геометричен смисъл на понятието производна

Геометричният смисъл на понятието производна е свързан с понятието допирателна към крива линия. Досега сме дали определение само за допирателна към окръжност.

Да разгледаме чертежите.

На първия чертеж правата t има само една обща точка с окръжността и такава права нарекохме допирателна към окръжността.

На втория чертеж оста Oy има само една обща точка с параболата, но по интуитивната ни представа не е допирателна към параболата.

На третия чертеж правата t има две общи точки с графиката на функцията y=f(x), но (отново по интуитивната ни представа) тя е допирателна към графиката в едната обща точка, а в другата не е.

Тези примери показват, че се нуждаем от едно по-прецизно определение на понятието допирателна към крива линия.

Да разгледаме функцията $y=f(x)\,,$ чиято графика е показана на чертежа и нека точка $M_0(x_0,f(x_0))$ лежи на графиката ѝ.

Избираме произволна точка $\xi \neq x_0$, така че точката $M(\xi,f(\xi))$ лежи на графиката на f(x) $(\xi$ – кси – буква от гръцката азбука).

Тогава е определена правата $M_0 M$ с уравнение:

$$M_0M: \frac{x-x_0}{\xi-x_0} = \frac{y-f(x_0)}{f(\xi)-f(x_0)}, \text{ r.e.}$$

(1)
$$M_0 M: y = \frac{f(\xi) - f(x_0)}{\xi - x_0} (x - x_0) + f(x_0).$$

Преговор

Уравнение на права през две точки (x_1, y_1) и (x_2, y_2) :

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Нека точката ξ се "приближава" до точката x_0 .

Тогава секущата $M_0 M$ ще се променя и ако кривата е гладка (каквато е на чертежа), то $M_0 M$ ще се "приближава" до допирателната t в точка M_0 (по интуитивната ни представа).

Нека $\,\xi \to x_0^{}\,,\; \xi \neq x_0^{}\,$ и да направим граничен преход в равенството (1).

Получаваме $y=\lim_{\xi\to x_0} \frac{f(\xi)-f(x_0)}{\xi-x_0}(x-x_0)+f(x_0)$ и ако f(x) е диференцируема, имаме $y=f'(x_0)(x-x_0)+f(x_0)$.

Тези наблюдения ни подсказват да дадем следното определение.

Определение. Правата t с уравнение $y = f'(x_0)(x - x_0) + f(x_0)$ се нарича допирателна към графиката на функцията y = f(x) в точката $(x_0, f(x_0))$.

Геометричен смисъл

Да представим уравнението на допирателната в декартов вид:

$$t: y = f'(x_0)x - f'(x_0)x_0 + f(x_0).$$

Следователно $f'(x_0)$ е ъгловият коефициент на допирателната t и ако α е ъгълът, който тя сключва с положителната посока на оста Ox, имаме $f'(x_0) = \mathrm{tg}\alpha$.

Тогава допирателната има уравнение t: $y = f'(x_0)x + b$, където b се определя от условието, че точката $(x_0, f(x_0))$ лежи на допирателната.

Това е и **геометричният смисъл** на понятието производна – производната $f'(x_0)$ в дадена точка x_0 е равна на ъгловия коефициент на допирателната към графиката в точката $(x_0, f(x_0))$, който от своя страна е равен на $tg\alpha$, където α е ъгълът, който допирателната сключва с положителната посока на оста Ox.

Хоризонтална допирателна

Ако $f'(x_0)=0$, то уравнението на допирателната в точката $(x_0,f(x_0))$ е $y=f(x_0)$, което е уравнение на права, успоредна на оста Ox. В този случай допирателната се нарича **хоризонтална**. Също така, ако в точката $(x_0,f(x_0))$ от графиката на f(x) съществува хоризонтална допирателна, то $f'(x_0)=0$.

Пример. Нека $f(x) = x^2$ и $x_0 = 0$. Имаме f'(x) = 2x и f'(0) = 0.

Правата y=f(0), т.е. y=0 е хоризонтална допирателна към графиката на $y=x^2$ в точката (0,0) .lacktriangle

Вертикална допирателна

В случая, когато първата производна в точката x_0 не съществува, ще дадем следното определение.

Определение. Ако $\lim_{\xi \to x_0} \frac{f(\xi) - f(x_0)}{\xi - x_0} = \pm \infty$, то правата с уравнение $x = x_0$ се нарича допирателна към графиката на функцията y = f(x) в точката $(x_0, f(x_0))$.

Правата с уравнение $x = x_0$ е успоредна на оста Oy. Допирателната се нарича **вертикална**.

Пример. Нека $f(x) = \sqrt[3]{x}$ и $x_0 = 0$.

$$\text{Имаме } \lim_{\xi \to 0} \frac{f(\xi) - f(0)}{\xi - 0} = \lim_{\xi \to 0} \frac{\sqrt[3]{\xi}}{\xi} = \lim_{\xi \to 0} \frac{1}{\sqrt[3]{\xi^2}} = +\infty \; .$$

Ето защо правата с уравнение x=0 е вертикална допирателна към графиката на функцията $f(x) = \sqrt[3]{x}$ в точката (0,0).

1. Да се намери уравнението на допирателната към графиката на функцията $f(x) = x^2 + 3x + 3$ в точката (3, f(3)).

Решение. Уравнението на допирателната е y = f'(3)x + b. Пресмятаме f'(x) = 2x + 3, $f'(3) = 9 \implies y = 9x + b$.

Точката (3, f(3)) лежи на допирателната $\Rightarrow f(3) = 9.3 + b$, 21 = 27 + b , откъдето b = -6 . Окончателно уравнението на допирателната е y = 9x - 6 или 9x - y - 6 = 0 .

2. Да се намери уравнението на допирателната към графиката на функцията f(x) в точката с абсциса x_0 , ако:

a)
$$f(x) = x^2 + x + 1$$
, $x_0 = 2$;

6)
$$f(x) = \frac{x+1}{x-1}$$
, $x \ne 1$, $x_0 = 3$;

B)
$$f(x) = 3^{2x+1}, x_0 = 0$$
;

r)
$$f(x) = \ln(x+1), x > -1, x_0 = 3;$$

д)
$$f(x) = \sin x + \cos x$$
, $x_0 = \frac{\pi}{6}$.

- **3.** Намерете абсцисите на точките от графиката на функцията y = f(x), в които:
 - а) допирателната е успоредна на абсцисната ос и $f(x) = \frac{2}{3}x^3 5x^2 + 8x + 3$;
 - б) допирателната сключва с положителната посока на оста Ox ъгъл, чийто тангенс е равен на 2 и $f(x) = x^3 x^2 + x 1$.
- **4.** Да се намерят координатите на точките от графиката на функцията $f(x) = \sqrt{1-x^2}$, в които:
 - а) допирателната сключва с положителната посока на оста Ox ъгъл, равен на 150° ;
 - б) допирателната е хоризонтална;
 - в) допирателната е вертикална

и да се напише уравнението на допирателната.

5. Намерете уравнението на допирателната към графиката на функцията f(x) в точката $(x_0, f(x_0))$ и намерете ъгъла α , който тя сключва с положителната посока на оста Ox.

a)
$$f(x) = x^2 - 2x + 2$$
, $x_0 = \frac{1}{2}$;

6)
$$f(x) = x^2 + 3x + 5$$
, $x_0 = \sqrt{2}$;

B)
$$f(x) = \lg x, \ x_0 = \frac{\pi}{4};$$

r)
$$f(x) = \frac{1}{x+2}$$
, $x_0 = -3$;

д)
$$f(x) = \sqrt{x^2 + 1}$$
, $x_0 = 0$;

e)
$$f(x) = e^x$$
, $x_0 = 0$;

ж)
$$f(x) = \ln x$$
, $x_0 = 1$.

6. Намерете координатите на точките, в които допирателната към графиката на функцията f(x) е успоредна на абсцисната ос.

a)
$$f(x) = 2x^3 - 9x^2 + 12x - 8$$
;

6)
$$f(x) = \frac{x^2}{2x+1}$$
;

$$f(x) = x - \sqrt{x} ;$$

r)
$$f(x) = \cos x, x \in [0; 2\pi];$$

д)
$$3x^4 + 4x^3 - 18x^2 - 36x + 3$$
.

7. Да се намерят стойностите на параметъра a, за които допирателната към графиката на функцията f(x) в точката с абсциса x_0 е успоредна на абсцисната ос.

a)
$$f(x) = x^2 + 3ax - 4$$
, $x_0 = -3$;

6)
$$f(x) = (a+1)x^2 - 2x$$
, $x_0 = 2$.

1.2. Производни на функции от по-висок ред. Втора производна на функция

Нека функцията f(x) е диференцируема в D. Тогава за всяко x от D е определена производната ѝ f'(x).

Ако функцията f'(x) е диференцируема в D, то можем да намерим нейната производна, която се нарича **втора производна** на f(x). Означаваме f''(x) или само f'', четем "еф секонд". Имаме f''(x) = (f'(x))'.

Ако f'' е диференцируема в D, то нейната производна се нарича **трета производна** на f(x) . Означаваме f'''(x) = (f''(x))'.

Ако третата производна е диференцируема функция, получаваме четвърта $f'^{\nu}(x)$ и т.н.

- 1. Да се намери третата производна на функцията:
 - a) $f(x) = 2x^2 + 5x 6$;
 - $f(x) = x^3 2x^2 + 3x + 1;$
 - B) $f(x) = x^4 + x^3 x^2 + 3x + 5$.

Решение.

a)
$$f'(x) = 4x + 5$$
; $f''(x) = (f'(x))' = (4x + 5)' = 4$; $f'''(x) = (f''(x))' = (4)' = 0$.

6)
$$f'(x) = 3x^2 - 4x + 3$$
; $f''(x) = 6x - 4$; $f'''(x) = 6$.

B)
$$f'(x) = 4x^3 + 3x^2 - 2x + 3$$
; $f''(x) = 12x^2 + 6x - 2$; $f'''(x) = 24x + 6$.

2. Да се намери третата производна на функцията в областта, в която е дефинирана:

a)
$$f(x) = \frac{x+1}{x-1}$$
;

6)
$$f(x) = \frac{3x-4}{x+5}$$
; B) $f(x) = \frac{ax+b}{cx+d}$.

B)
$$f(x) = \frac{ax+b}{cx+d}$$

- 3. Да се намери втората производна на функцията:
 - a) $\ln x^2$:

б)
$$e^{\frac{1}{x}}$$

4. Докажете, че xf''(x) - f'(x) > 0 за всяко x, където $f(x) = x^2 + \frac{1}{x}$.

1.3. Механичен смисъл на понятието производна

Нека точка M се движи по реалната права в някакъв интервал от време и за произволно t от този интервал заема положение $\mathit{s}(t)$. Да разгледаме два момента t и $\mathit{t}_{\scriptscriptstyle 0}$. Както знаем от механиката, частното $V_{\rm cp} = \frac{S(t) - S(t_0)}{t - t_0}$ се нарича средна скорост на движението на M в интервала от време $[t_0;t]$.

Границата $V(t_0) = \lim_{t \to t_0} \frac{S(t) - S(t_0)}{t - t_0}$ се нарича скорост на точката M в момента t_0 . Като вземем предвид определението на понятието производна, стигаме до извода, че $V(t_{\scriptscriptstyle 0})$ е производната на функцията S(t) в момента t_0 : $V(t_0) = S'(t_0)$.