MATH 245 Homework 4

Ruby Krasnow and Tommy Thach

2024-03-24

Question 1: Find eigenvalues and eigenfunctions

(a)

 $-\frac{d^2}{dx^2}X(x) = \lambda X(x)$ in 0 < x < l with boundary conditions X'(0) = 0 = X(l)

<u>Case 1:</u> Positive eigenvalues, $\lambda = \beta^2 > 0$

Re-writing as $X'' + \lambda X = 0$, we will get the characteristic equation: $r^2 + \beta^2 = 0$. Since our characteristic equation has complex roots $r = \pm i\beta$, our solutions take the form

$$X(x) = A\sin(\beta x) + B\cos(\beta x)$$

Differentiating, we find that

$$X'(x) = \beta A \cos(\beta x) - \beta B \sin(\beta x)$$

Now plugging in our initial condition X'(0) = 0, we get $X'(0) = \beta A = 0$. And since we are in a case where $\beta \neq 0$, this means B = 0 so $X(x) = A\sin(\beta x)$. Now we use our boundary condition X(l) = 0 to get $X(l) = A\sin(\beta l) = 0$. If A = 0, then X(0) = 0 and this contradicts the definition of an eigenfunction. Therefore, we must have $\sin(\beta l) = 0$, which can only occur if $\beta = \frac{(2n+1)\pi}{l}$. Therefore, this case gives us eigenvalues

$$\lambda_n = \left(\frac{(2n+1)\pi}{l}\right)^2 \quad n = 1, 2, 3...$$

with eigenfunctions

$$X_n(x) = \sin\left(\frac{(2n+1)\pi x}{l}\right)$$

<u>Case 2:</u> Zero eigenvalues, $\lambda = 0$ X'' = 0 implies that X(x) is of the form Ax + B, with derivative X'(x) = A. Now plugging in our initial condition X'(0) = 0, we get A = 0, which means X(x) = B. But from the boundary condition X(l) = 0, we get B = 0 and so X(0) = 0. Therefore, there are no eigenfunctions X(x) that satisfy $-\frac{d^2}{dx^2}X(x) = \lambda X(x)$ when $\lambda = 0$ and hence no zero eigenvalues.

<u>Case 3:</u> Negative eigenvalues, $\lambda = -\beta^2 < 0$ This case gives us the characteristic equation: $r^2 - \beta^2 = 0$. Since our characteristic equation has distinct real roots $r = \pm \beta$, our solutions take the form

$$X(x) = Ae^{\beta x} + Be^{-\beta x}$$

Differentiating, we find that

$$X'(x) = \beta A e^{\beta x} - \beta B e^{-\beta x}$$

$$X'(0) = \beta A - \beta B = 0$$

Since we are in a case where $\beta \neq 0$, this means A - B = 0, or A = B. Then the boundary condition gives

$$X(l) = Be^{\beta l} + Be^{-\beta l} = 0$$

Since $e^{\beta l}$ and $e^{-\beta l}$ are nonzero for all values of l, we must have B=0, implying that again X(x)=0. Thus, this problem has only positive eigenvalues and their associated eigenfunctions as found in Case 1.

(b)

$$x^2 X''(x) + x X'(x) + \lambda X(x) = 0$$
 in $1 < x < e$ with boundary conditions $X(1) = 0 = X(e)$.

We recognize this equation as having the same form as a second-order Cauchy-Euler equation, a linear homogeneous ODE of the form $ax^2y + bxy' + cy = 0$ with the auxiliary equation ar(r-1) + br + c = 0. Here, a = b = 1 and $c = \lambda$, so we have

$$r(r-1) + r + \lambda = 0$$
$$r^{2} - r + r + \lambda = 0$$
$$r^{2} + \lambda = 0$$

<u>Case 1:</u> Positive eigenvalues, $\lambda = \beta^2 > 0$

$$X(x) = A\sin(\beta \ln x) + B\cos(\beta \ln x)$$

$$X(1) = A\sin(0) + B\cos(0) = 0 \longrightarrow B = 0$$

$$X(e) = A\sin(\beta \ln e) = 0$$

$$A\sin(\beta) = 0$$

If A = 0, then X(0) = 0 and this contradicts the definition of an eigenfunction. Therefore, we must have $\sin(\beta) = 0$, which can only occur if $\beta = (2n+1)\pi$. Therefore, this case gives us eigenvalues

$$\lambda_n = (2n+1)^2 \pi^2$$
 $n = 1, 2, 3...$

with eigenfunctions

$$X_n(x) = \sin\left((2n+1)\pi \ln x\right)$$

<u>Case 2:</u> Zero eigenvalues, $\lambda = 0$ X'' = 0 implies that X(x) is of the form Ax + B. Now plugging in our initial condition X(1) = 0, we get A + B = 0, which means X(x) = Ax - A. But from the boundary condition X(e) = 0, we get A(e-1) = 0 which is only possible if A = 0 and accordingly X(0) = 0. Therefore, there are no eigenfunctions X(x) that satisfy the boundary conditions when X'' = 0 and hence no zero eigenvalues.

<u>Case 3:</u> Negative eigenvalues, $\lambda = -\beta^2 < 0$ This case gives us the characteristic equation: $r^2 - \beta^2 = 0$. Since our characteristic equation has distinct real roots $r = \pm \beta$, our solutions take the form

$$X(x) = Ax^{\beta} + Bx^{-\beta}$$

$$X(1) = A + B = 0 \longrightarrow A = -B$$

 $X(x) = Ax^{\beta} - Ax^{-\beta}$

Then the other boundary condition gives $X(e) = Ae^{\beta} - Ae^{-\beta} = 0$. Since e^{β} and $e^{-\beta}$ are always nonzero, we must have A = 0, implying that again X(x) = 0. Thus, this problem has only positive eigenvalues and their associated eigenfunctions as found in Case 1.

(c)

On the interval $0 \le x \le 1$ of length one, consider the eigenvalue problem

$$-X'' = \lambda X$$
, $X'(0) + X(0) = 0$, $X(1) = 0$

(i) Find an eigenfunction with eigenvalue zero. Call it $X_0(x)$.

X'' = 0 implies that X(x) is of the form Ax + B and X'(x) = A. Then X(1) = 0 becomes A + B = 0, or A = -B. Now we look at our second condition,

$$X'(0) + X(0) = 0$$

X'(0) is just A and X(0) is just B, so again this gives us A = -B. Thus, we have X(x) = Ax - A = A(x-1), so we have found

$$X_0(x) = x - 1$$

(ii) Find an equation for the positive eigenvalues $\lambda = \beta^2$.

$$X(x) = A\sin(\beta x) + B\cos(\beta x)$$
$$X'(x) = \beta A\cos(\beta x) - \beta B\sin(\beta x)$$

$$X(1) = A\sin(\beta) + B\cos(\beta) = 0$$
$$A\sin(\beta) = -B\cos(\beta)$$

$$-\frac{B}{A} = \frac{\sin(\beta)}{\cos(\beta)} = \tan\beta \tag{1}$$

$$X'(0) = \beta A, \quad X(0) = B$$

 $X'(0) + X(0) = \beta A + B = 0$
 $\beta = -\frac{B}{A}$ (2)

Combining (1) and (2), we get the equation $\beta = \tan(\beta)$ for the positive eigenvalues.

(iii) Show graphically from part (b) that there are an infinite number of positive eigenvalues.

In part (b), we showed that β is a positive eigenvalue if $\beta = \tan(\beta)$. However, plotting the equations $y = \beta$ and $y = \tan \beta$ reveals that these two functions intersect an infinite number of times (Fig. 1), meaning there are an infinite number of positive eigenvalues.

(iv) Is there a negative eigenvalue?

This case gives us the characteristic equation: $r^2 - \beta^2 = 0$. Since our characteristic equation has distinct real roots $r = \pm \beta$, our solutions take the form

$$X(x) = Ae^{\beta x} + Be^{-\beta x}$$

Differentiating, we find that

$$X'(x) = \beta A e^{\beta x} - \beta B e^{-\beta x}$$

$$X'(0) = \beta A - \beta B$$
$$X(0) = A + B$$

$$X'(0) + X(0) = \beta A - \beta B + A + B$$
$$0 = A(\beta + 1) + B(1 - \beta)$$
$$-A(\beta + 1) = B(1 - \beta)$$
$$\frac{\beta + 1}{1 - \beta} = -\frac{B}{A}$$

Now turning to our other boundary condition,

$$X'(1) = \beta A e^{\beta} - \beta B e^{-\beta} = 0$$
$$\beta A e^{\beta} = \beta B e^{-\beta}$$
$$-\frac{B}{A} = -e^{2\beta}$$

This would give us the following equation:

$$\frac{\beta+1}{1-\beta} = -e^{2\beta}$$

But the only time that this equality holds true is when $\beta = 0$ (Fig. 2), but we are in the case when we defined β to be nonzero, meaning that we have reached a contradiction and we cannot have any negative eigenvalues.

Question 2

Find the Fourier series of f(x). Does the Fourier-series converge (i) pointwise, or (ii) uniformly?

(a)

$$f(x) = \begin{cases} 1 - |x| & |x| \le 1\\ 1 & 1 < |x| \le \pi \end{cases}$$

The Fourier series for a function f(x) on an interval -l < x < l is

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \right)$$

where

$$a_0 = \frac{1}{2l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

Let's start with a_0 :

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^{-1} 1 \, dx + \int_{-1}^{1} (1 - |x|) dx + \int_{1}^{\pi} 1 \, dx \right]$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 \, dx - \int_{-1}^{1} |x| \, dx$$

$$= 1 - 2 \int_{0}^{1} x \, dx$$

$$= 1 - 1 = 0$$

where we used the evenness of |x| to rewrite $\int_{-1}^{1} |x| dx$ as $2 \int_{0}^{1} x dx$. Thus, $a_0 = 0$. Now we perform a similar procedure to find a_n :

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{-1} \cos(nx) dx + \int_{-1}^{1} (1 - |x|) \cos(nx) dx + \int_{1}^{\pi} \cos(nx) dx \right]$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nx) dx - \frac{1}{\pi} \int_{-1}^{1} |x| \cos(nx) dx$$

Since $\sin(\pi n)$ and $\sin(-\pi n)$ are zero for any integer n, the first integral vanishes. We use the symmetry of $|x|\cos(nx)$ (both functions are even, and the product of two even functions is even) and rewrite the second integral as

$$-\frac{2}{\pi} \int_0^1 x \cos\left(nx\right) \, dx$$

We then use integration by parts:

$$-\frac{2}{\pi} \int_0^1 x \cos(nx) dx$$

$$= -\frac{2}{n\pi} \left[x \sin(nx) \Big|_0^1 - \int_0^1 \sin(nx) dx \right]$$

$$= -\frac{2}{n\pi} \left[\sin(n) + \frac{1}{n} \cos(nx) \Big|_0^1 \right]$$

$$= -\frac{2}{n\pi} \left[\sin(n) + \frac{1}{n} \cos(n) - \frac{1}{n} \right]$$

$$a_n = -\frac{2\sin n}{n\pi} + \frac{2(\cos n - 1)}{n^2\pi}$$

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^{-1} \sin(nx) \, dx + \int_{-1}^{1} (1 - |x|) \sin(nx) \, dx + \int_{1}^{\pi} \sin(nx) \, dx \right]$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) \, dx - \frac{1}{\pi} \int_{-1}^{1} |x| \sin(nx) \, dx$$

But $\sin x$ is an odd function and so is $|x|\sin(nx)$, so both of these integrals vanish and we find $b_n = 0$.

Now inserting the coefficients a_n we found above, we get the Fourier series:

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{\sin n}{n} + \frac{\cos n + 1}{n^2} \right) \cos(nx)$$

(b)

$$f(x) = |x| = \begin{cases} -x & -\pi \le x \le 0\\ x & 0 < x \le \pi \end{cases}$$

Let's start with a_0 :

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| \, dx$$
$$= \frac{1}{\pi} \int_{0}^{\pi} x \, dx$$
$$= \frac{1}{2\pi} x^2 \Big|_{0}^{\pi} = \frac{\pi}{2}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{2}{n\pi} x \sin(nx) \Big|_{0}^{\pi} - \frac{2}{n\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$= 0 + \frac{2}{n^2 \pi} \cos(nx) \Big|_{0}^{\pi}$$

$$= \frac{2}{n^2 \pi} (-1)^{n+1}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin{(nx)} dx$$

But since |x| is even and $\sin(nx)$ is odd, the product of the two functions is odd and so the integral vanishes over the symmetric interval.

Then we plug in our formulas for a_0 and a_n :

$$f(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\frac{1}{n^2} (-1)^{n+1} \cos(nx) \right]$$

(c)

$$f(x) = x + x^2, \quad -\pi \le x \le \pi$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x + x^2 dx$$

$$= \frac{1}{2\pi} \left(\frac{x^2}{2} + \frac{x^3}{3} \right) \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{2\pi} \left(\frac{\pi^2}{2} + \frac{\pi^3}{3} - \frac{\pi^2}{2} + \frac{\pi^3}{3} \right)$$

$$= \frac{1}{2\pi} \left(\frac{2\pi^3}{3} \right) = \frac{\pi^2}{3}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) + \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx$$

Applying integration by parts to the first integral,

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) = \frac{1}{n\pi} x \sin(nx) \Big|_{-\pi}^{\pi} + \frac{1}{n\pi} \int_{-\pi}^{\pi} \sin(nx)$$
$$= \frac{1}{n\pi} x \sin(nx) \Big|_{-\pi}^{\pi} + \frac{-1}{n^2 \pi} \cos(nx) \Big|_{-\pi}^{\pi} = 0 + 0 = 0$$

We then use the integration by parts table method demonstrated in class to find that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) = \frac{x^2}{n} \sin(nx) \Big|_{-\pi}^{\pi} + \frac{2x}{n^2} \cos(nx) \Big|_{-\pi}^{\pi} + \frac{2}{n^3} \sin(nx) \Big|_{-\pi}^{\pi}$$

The first and last terms (with $\sin{(nx)}$) vanish, while the middle term evaluates to $\frac{4\cos{(n\pi)}}{n^2}$.

$$\frac{4\cos(n\pi)}{n^2} = \frac{4}{n^2}(-1)^n$$

Thus, we add this to the result of first integral to find that

$$a_n = \frac{4}{n^2}(-1)^n$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

= $\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) + \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin(nx) dx$

But since x^2 is even and sin is odd, the product under the second integral is odd functions and thus evaluates to zero over the symmetric interval $-\pi < x < \pi$. Applying integration by parts to the first integral,

$$b_n = \frac{-1}{n\pi} x \cos(nx) \Big|_{-\pi}^{\pi} + \frac{1}{n\pi} \int_{-\pi}^{\pi} \cos(nx)$$

But since cos is even and $\cos \pi = \cos -\pi$, both terms are zero. Thus, $b_n = 0$ and

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{l}\right)$$

$$f(x) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos(nx)}{n^2}$$

Question 3

a)

Find the Fourier sine series of

$$f(x) = \begin{cases} 1 & 0 < x < \pi/2 \\ 2 & \pi/2 < x < \pi \end{cases}$$

The Fourier sine series of a function f(x) is

$$f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l}\right)$$

where

$$A_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$
$$A_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$

$$A_{n} = \frac{2}{\pi} \left[\int_{0}^{\pi/2} \sin(nx) dx + 2 \int_{\pi/2}^{\pi} \sin(nx) dx \right]$$
$$= \frac{2}{\pi} \left[\frac{-1}{n} \cos(nx) \Big|_{0}^{\pi/2} - \frac{2}{n} \cos(nx) \Big|_{\pi/2}^{\pi} \right]$$
$$= \frac{2}{n\pi} \left[\cos\left(\frac{n\pi}{2}\right) + 1 - 2\cos(n\pi) \right]$$

$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left[1 + \cos\left(\frac{n\pi}{2}\right) - 2\cos\left(n\pi\right) \right] \sin\left(nx\right)$$

b)

Find the Fourier-cosine-series of $f(x) = |\sin x|$. Then find

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1}$$

The Fourier cosine series of a function f(x) is

$$f(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{l}\right)$$

where

$$A_n = \frac{2}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

Assuming $l = \pi$, we have

$$A_n = \frac{2}{\pi} \int_0^\pi |\sin x| \cos(nx) dx \tag{3}$$

But since sin is non-negative on the interval $0 \le x \le \pi$, we can drop the absolute value bars and use the following trigonometric identity to rewrite the integral: $\sin \alpha \cos \beta = \frac{1}{2} [\sin (\alpha + \beta) + \sin (\alpha - \beta)]$

$$A_n = \frac{1}{\pi} \int_0^{\pi} \sin((1+n)x) + \sin((1-n)x) dx$$

$$= \frac{1}{\pi} \left[\frac{-1}{1+n} \cos((1+n)x) \Big|_0^{\pi} - \frac{1}{1-n} \cos((1-n)x) \Big|_0^{\pi} \right]$$

$$= \frac{1}{\pi} \left[\frac{-1}{1+n} [(-1)^{1+n} - 1] - \frac{1}{1-n} [(-1)^{1-n} - 1] \right]$$

$$= \frac{1}{\pi} \left[(-1)^{1+n} - 1 \right] \left(\frac{-1}{1+n} - \frac{1}{1-n} \right)$$

Thus, we have found a formula for A_n ,

$$A_n = \frac{-2}{\pi} \frac{(-1)^n + 1}{n^2 - 1}$$

This formula works for all $n \neq 1$ For n = 0,

$$A_0 = \frac{-2}{\pi} \frac{(-1)^0 + 1}{0 - 1} = \frac{4}{\pi}$$

For n = 1, we can go back to (3) and plug in the appropriate value of n:

$$A_1 = \frac{1}{\pi} \int_0^{\pi} \sin(2x) \ dx = \frac{1}{2\pi} \cos(2x) \Big|_0^{\pi} \ dx = 0$$

The Fourier cosine series is therefore

$$f(x) = \frac{2}{\pi} - \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{n^2 - 1} \cos(nx)$$

Now, $(-1)^n + 1$ will be zero for all odd n and two for all even n. So substituting n = 2k, we gwt

$$|\sin x| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{2k=2}^{\infty} \frac{1}{4k^2 - 1} \cos(2kx)$$

Starting the index at 2k = 2 is equivalent to starting it at k = 1, so after making that change and evaluating both sides at x = 0, we can solve for the sum given in the question:

$$0 = \frac{2}{\pi} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{4k^2 - 1}$$

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2}$$

c)

The Riemann Zeta function is defined for s > 1 by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

By computing the Fourier series of x^2 over $-\pi < x < \pi$ and using Parseval's identity, compute $\zeta(4)$.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx$$

$$= \frac{1}{2\pi} \left(\frac{x^3}{3} \right) \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{2\pi} \left(\frac{\pi^3}{3} - \frac{-\pi^3}{3} \right)$$

$$= \frac{1}{2\pi} \left(\frac{2\pi^3}{3} \right) = \frac{\pi^2}{3}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) dx$$

But in part (2b), we found that this evaluates to zero.