ECE 469/ECE 568 Machine Learning

Textbook:

Machine Learning: a Probabilistic Perspective by Kevin Patrick Murphy

Southern Illinois University

August 26, 2024

Supervised Learning - Training

- Supervised learning is the form of ML most widely used in practice.
- The goal of supervised learning is to learn a mapping from inputs x to outputs y, given a labeled set of input-output pairs $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$.
- Here \mathcal{D} is referred to as the training set, and N is the number of training examples.

- Simply, each training input \mathbf{x}_i can be a D-dimensional vector of numbers, representing, say, the height and weight of a person (features).
- \mathbf{x}_i can also be a complex structured object, such as an image of person/thing, a written sentence, an email message, a time series, a molecular shape, or a graph.

Supervised Learning - A formal definition

- We can define a training experience as a set of labeled examples (a.k.a., instances, samples) in the form: $\langle x_1, x_2, \cdots, x_N, y_1, \cdots, y_M \rangle$, where x_i for $i \in \{1, \cdots, N\}$ are input variables (features/attributes), and y_j $j \in \{1, \cdots, M\}$ are the output variables.
- Our task is to learn a function $f: X_1 \times X_2, \dots \times X_N \to Y$, which maps the input variables to the output domain.
- Our goal/objective is to minimize an error or a loss function.

Supervised Learning - Testing

• We need to reserve some labeled data for testing.

Supervised Learning - Testing

- We can apply the trained model to the raw test data.
- Performance can be evaluated by comparing predicted labels against the test labels.

What is data?

- We can define data as a collection of examples and their features.
- Attributes and covariates are synonyms for features.

Age	Job?	City	Rating	\supset	Income	
						_
23	Yes	Van	А		22,000.00	1 100
23	Yes	Bur	BBB		21,000.00	L"feature"
22	No	Van	CC		0.00	, talnue.
25	Yes	Sur	AAA		57,000.00	
19	No	Bur	BB	- 1	13,500.00	
22	Yes	Van	Α		20,000.00	W. 1 II
21	Yes	Ric	А	丆	18,000.00	"example"
				_		

- Terminology:
 - Columns are called input variable, features or attributes.
 - Rows are called examples or samples

Types of Data

- Categorical features > come from an unordered set:
 - Binary -> job? (yes/no)
 - Nominal -> city
- Numerical features -> come from ordered sets:
 - Discrete counts -> age
 - Ordinal -> rating
 - Continuous/real valued -> height

Terminology:

Input variables, Features or Attributes									
Tumor size	Texture	Perimeter	Outcome	Time					
14.2	113	13.65	N	34					
15.4	117	92.50	N	39					
16.1	122	33.33	\mathbf{R}	40					
15.0	111	8.99	N	65					

N = Non re-occurrence and R = Re-occurrence

- Firs three columns are called input variable, features or attributes.
- The last two columns are output variables (what we are trying to predict).
- The rows are called examples, samples or instances.
- Whole table is a data set.
- The problem of predicting re-occurrence/non re-occurrence is a (binary) classification problem.
- The problem of predicting time is a regression problem.

Representing data

- The kind of supervised learning task that we are dealing with is determined by the label space \mathcal{Y} .
- If the output labels $\mathbf{y} \in \mathcal{Y}$ are categorical, then
 - Binary classification: Two possible labels
 - \bullet Multiclass classification: K possible labels
- If output labels $y \in \mathcal{Y}$ are numerical, then
 - Regression (linear/polynomial): Labels are continuous valued and task is to learn a linear/polynomial function f(x)
 - Ranking: Labels are ordinal, and task is to learn an ordering $f(x_1) > f(x_2)$ over input

Supervised Learning - A formal definition

- ullet Let ${\mathcal X}$ be the space of the input variables.
- ullet Let ${\mathcal Y}$ be the space of the output variables.
- Given a data set $\mathcal{D} \in \mathcal{X} \times \mathcal{Y}$, find a mapping function $f : \mathcal{X} \to \mathcal{Y}$ such that f(x) is a good predictor for the output variables y.
- \bullet Here, f is called a hypothesis.
- Supervised learning problems are categorized based on the type of the output domain.
 - If $\mathcal{Y} \in \mathbb{R}$, this is called a regression problem.
 - ullet If ${\mathcal Y}$ is a categorical variable, it is called a classification problem
 - Generally, \mathcal{Y} could be a lot more complex (graph, tree, etc). Then the underlying problem is called structured prediction.
- Typically, the parametric function f is in the hypothesis class \mathcal{H} .

Steps to solving a supervised learning problem

- Decide what the input-output pairs are.
- ② Decide how to encode inputs and outputs \rightarrow This defines the input space \mathcal{X} , and the output space \mathcal{Y} .
- \bullet Choose a class of hypotheses/representations \mathcal{H} .
- Ohoose an error function (cost function) to define the best hypothesis
- Choose an algorithm for searching efficiently through the space of hypotheses.

When $\mathcal{Y} = \mathbb{R}^N$, a supervised learning problem can be viewed as a regression (curve fitting) problem.

When $\mathcal{Y} = \mathbb{R}^N$, a supervised learning problem can be viewed as a regression (curve fitting) problem.

- This is linearly separable.
- Linearly separable means if f is a linear function of \mathbf{x} , we can perfectly fit the training data.

$$f(\mathbf{x}, \boldsymbol{w}) = \operatorname{sgn}(\boldsymbol{w}^T \mathbf{x})$$

• If $\mathbf{w} = [w_0, w_1, w_2]^T$ and $\mathbf{x} = [1, x_1, x_2]^T$, then

$$f(\mathbf{x}, \mathbf{w}) = \operatorname{sgn}(w_0 + w_1 x_1 + w_2 x_2) \in \{+1, -1\}$$

• Is this linearly separable?

 \bullet No. This is quadratically separable.

$$f(\mathbf{x}, \mathbf{w}) = \operatorname{sgn}(w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1 x_2) \in \{+1, -1\}$$

• Is this noisy/ mislabeled data?

An overly flexible function memorizes irrelevant details of training set.

- Try to predict label of green points.
- Can overfitted functions predict test data?
- No. Overfitted functions DO NOT predict test data accurately.

- Overfitted functions DO NOT predict test data accurately.
- Test points are mis-predicted.
- Hence, overfitting yields "TEST ERRORS".

- Underfitted functions DO NOT predict some of the training data accurately.
- \bullet Thus, under fitting yields "TRAINING ERRORS".

- We may trade-off "simplicity" for "accuracy of model fit".
- Moreover, if two models fit the data equally well, we may pick the simpler one.

