VISÃO COMPUTACIONAL

AULA 3

IMAGENS DIGITAIS

Parâmetros de Câmeras, Dados e

Sensores de Profundidade

IMAGENS DIGITAIS

PARÂMETROS DE CÂMERAS

Definições

Assume-se que

- O sistema de referência da câmera pode ser localizado com respeito a algum outro sistema conhecido, p.ex. o sistema de coordenadas externo.
- As coordenadas dos pontos da imagem no sistema de referência da câmera podem ser obtidas das coordenadas de píxeis, os únicos diretamente disponíveis da imagem.

Os parâmetros das câmeras são divididos em

- Parâmetros extrínsecos
 - Definem a localização e orientação do sistema de referência da câmera com respeito a um sistema externo conhecido

Sistemas de Coordenadas: Externo (mm) <==> Câmera (mm)

- Parâmetros intrínsecos
 - Necessários para relacionar as coordenadas de píxeis de uma imagem com as coordenadas correspondentes no sistema de referência da câmera.

Sistemas de Coordenadas: Imagem (pixel) <==> Câmera (mm)

Parâmetros Extrínsecos

(C) $\downarrow j_c$

(W)

 Qualquer conjunto de parâmetros geométricos que identificam univocamente as transformações entre o sistema de referência da câmera desconhecido e um sistema conhecido, chamado sistema de coordenadas externo.

- Uma escolha típica é
 - Um vetor de translação 3-D, T
 - Posições relativas entre a origem de dois sistemas
 - Uma matriz de rotação 3x3, ortogonal, **R**
 - Alinha os eixos de dois sistemas

Um ponto P pode ser representado no sistema externo e da câmera como P_w e P_c respectivamente e

$$P_{c} = R.(P_{w} - T)$$

$$e$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

• Por definição os parâmetros extrínsecos são o vetor de translação, T, e a matriz de rotação, R, que especificam a transformação entre o sistema de coordenadas externo e o sistema de referência da câmera.

Parâmetros Intrínsecos

- Caracterizam as características ópticas, geométricas e digitais da câmera. Em um modelo *pinhole* os p.i. são
 - A projeção de perspectiva, unicamente com f
 - Transformação entre os sistemas da câmera e imagem

(W)

Assume-se que não haja distorções geométricas ópticas, e que o sensor CCD é uma grade retangular de elementos fotossensíveis

$$x = -(x_{im} - o_x).s_x$$
 e $y = -(y_{im} - o_y).s_y$

 $(o_x, o_y) = coord.$ do centro da imagem em píxeis (ponto principal)

 (s_x, s_y) = tamanhos efetivos dos píxeis (em milímetros) nas direções horizontais e verticais respectivamente.

 (x_{im}, y_{im})

O sentido de x_c e z_c pode também ser oposto:

 (x_c, y_c)

(C)

 Distorções geométricas introduzidas pelo sistema óptico.

 A distorção radial é dominante, e aumenta com um maior campo de visão

$$x = x_d.(1 + k_1.r^2 + k_2.r^4)$$
$$y = y_d.(1 + k_1.r^2 + k_2.r^4)$$

 (x_d, y_d) = coordenadas do ponto distorcido, observável (x, y) = coordenadas do ponto corrigido

$$r^2 = x_d^2 + y_d^2$$

Parâmetros Intrínsecos

f = distância focal o_x , o_y = Centro da Imagem (em coord. pixeis) s_x , s_y = fatores de escala k_1 = coef. de distorção radial

Modelos de Câmeras

Pode-se então, agora, relacionar o sistema externo diretamente às coordenadas de imagem, sem passar pelo sistema da câmera como na transformação de perspectiva.

Versão Linear das Equações de Projeção de Perspectiva

Juntando

$$P_c = R.(P_w - T)$$
, $x = -(x_{im} - o_x).s_x$ e $y = -(y_{im} - o_y).s_y$; $(P_c = [X,Y,Z]^T)$

e as equações fundamentais da projeção perspectiva

$$x = f.\frac{X}{Z}$$
; $y = f.\frac{Y}{Z}$

tem-se

$$-(x_{im} - o_x).s_x = f.\frac{R_1^T.(P_w - T)}{R_3^T.(P_w - T)}$$

$$-(y_{im} - o_y).s_y = f.\frac{R_2^T.(P_w - T)}{R_2^T.(P_w - T)}$$

onde R_i , i = 1, 2, 3 é um vetor 3-D formado pela i-ésima linha de R.

Eq. **1**

As equações anteriores podem ser reescritas como uma multiplicação matricial simples. Definindo $2 \text{ matrizes } M_{\text{int}} \text{ e } M_{\text{ext}} \text{ como}$

$$\mathbf{M}_{int} = \begin{pmatrix} -f_{\mathbf{S}_{x}} & 0 & \mathbf{o}_{x} \\ 0 & -f_{\mathbf{S}_{y}} & \mathbf{o}_{y} \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{M}_{ext} = \begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} & \mathbf{r}_{13} & -\mathbf{R}_{1}^{T}\mathbf{T} \\ \mathbf{r}_{21} & \mathbf{r}_{22} & \mathbf{r}_{23} & -\mathbf{R}_{2}^{T}\mathbf{T} \\ \mathbf{r}_{31} & \mathbf{r}_{32} & \mathbf{r}_{33} & -\mathbf{R}_{3}^{T}\mathbf{T} \end{pmatrix}$$

M_{int} depende apenas dos parâmetros intrínsecos M_{ext} depende apenas dos parâmetros extrínsecos

Equação Matricial Linear de Projeções de Perspectiva

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = M_{int}.M_{ext}.\begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$

em que

$$x_{1}/x_{3} = x_{im}$$
 e $x_{2}/x_{3} = y_{im}$

Portanto

- M_{ext} realiza a transformação entre o sistema de coordenadas externo e o sistema de referência da câmera.
- M_{int} realiza a transformação entre o sistema de referencia da câmera e o sistema de coordenadas da imagem.

O Modelo de Câmera Perspectiva

Assumindo $o_x = o_y = 0$ e $s_x = s_y = 1$, $M = M_{int}.M_{ext}$ é

$$\mathbf{M} = \begin{pmatrix} -f.r_{11} & -f.r_{12} & -f.r_{13} & f.R_1^T T \\ -f.r_{21} & -f.r_{22} & -f.r_{23} & f.R_2^T T \\ r_{31} & r_{32} & r_{33} & -R_3^T T \end{pmatrix}$$

M descreve o modelo de câmera de perspectiva completa (fullperspective), e é chamada *Matriz de Projeção*

- Não se preservam distâncias entre pontos, ou ângulos entre linhas
- Mapeiam linhas em linhas

O Modelo de Câmera Perspectiva Fraca

De acordo com a equação Equação Matricial Linear de Projeções de Perspectiva, a imagem p de um ponto P_w é

$$p=M.\begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix} = M.\begin{bmatrix} f.R_{1}^{T}.(T-P_{w}) \\ f.R_{2}^{T}.(T-P_{w}) \\ R_{3}^{T}.(T-P_{w}) \end{bmatrix}$$
 Eq. 1

Mas $\|R_3^T(P_w-T)\|$ é a distância de P do centro de projeção ao longo do eixo óptico; portanto, a restrição básica para a aproximação de perspectiva fraca é

$$\frac{\left|R_{3}^{T}.(P_{i}-\overline{P})\right|}{\left|R_{3}^{T}.(\overline{P}-T)\right|} <<1$$

onde P_1 , P_2 são dois pontos no espaço 3-D, e P o centróide de P_1 e P_2 .

Fazendo a substituição ($P = P_i$)

$$p_{i} \approx \begin{bmatrix} f.R_{1}^{T}.(T-P_{wi}) \\ f.R_{2}^{T}.(T-P_{wi}) \\ R_{3}^{T}.(\overline{P_{w}}-T) \end{bmatrix}$$

e a matriz de projeção M se torna

$$\mathbf{M}_{wp} = \begin{bmatrix} -\text{f.r}_{11} & -\text{f.r}_{12} & -\text{f.r}_{13} & \text{f.R}_{1}^{T}.T \\ -\text{f.r}_{21} & -\text{f.r}_{22} & -\text{f.r}_{23} & \text{f.R}_{2}^{T}.T \\ 0 & 0 & 0 & R_{3}^{T}.(\overline{P_{w}}-T) \end{bmatrix}$$

O Modelo de Câmera Afim (Affine)

$$\mathbf{M}_{aff} = \begin{pmatrix} -f.r_{11} & -f.r_{12} & -f.r_{13} & f.R_1^T T \\ -f.r_{21} & -f.r_{22} & -f.r_{23} & f.R_2^T T \\ 0 & 0 & 0 & -R_3^T.T \end{pmatrix}$$

M perspect. completa com última linha da projeção = 0

- Não preserva ângulos, mas preserva paralelismo
- Em comparação com o modelo de persp. fraca, apenas as razões entre distâncias medidas ao longo de direções paralelas são preservadas.

Modelo Câmera Perspectiva

$$\mathbf{M} = \begin{pmatrix} -f.r_{11} & -f.r_{12} & -f.r_{13} & f.R_1^T T \\ -f.r_{21} & -f.r_{22} & -f.r_{23} & f.R_2^T T \\ r_{31} & r_{32} & r_{33} & -R_3^T T \end{pmatrix}$$

Modelo Câmera Perspectiva Fraca

$$\mathbf{M}_{wp} = \begin{pmatrix} -f.\mathbf{r}_{11} & -f.\mathbf{r}_{12} & -f.\mathbf{r}_{13} & f.\mathbf{R}_{1}^{T}\mathbf{T} \\ -f.\mathbf{r}_{21} & -f.\mathbf{r}_{22} & -f.\mathbf{r}_{23} & f.\mathbf{R}_{2}^{T}\mathbf{T} \\ 0 & 0 & 0 & \mathbf{R}_{3}^{T}.(\overline{P} - \mathbf{T}) \end{pmatrix}$$

Modelo Câmera Affine

$$\mathbf{M}_{aff} = \begin{pmatrix} -f.\mathbf{r}_{11} & -f.\mathbf{r}_{12} & -f.\mathbf{r}_{13} & f.\mathbf{R}_{1}^{T}\mathbf{T} \\ -f.\mathbf{r}_{21} & -f.\mathbf{r}_{22} & -f.\mathbf{r}_{23} & f.\mathbf{R}_{2}^{T}\mathbf{T} \\ 0 & 0 & 0 & -\mathbf{R}_{3}^{T}.\mathbf{T} \end{pmatrix}$$

DADOS E SENSORES DE PROFUNDIDADE

- Nas imagens de profundidade cada pixel expressa a distância entre um sistema de referência conhecido e um ponto visível na cena.
- Reproduz a *estrutura 3-D* de uma cena
- Pode ser vista como uma superficie amostrada
- Também denominadas mapa de profundidade, ou mapas xyz, ou perfil de superfície, ou imagens 2.5-D

• Representação de Imagens de Profundidade

- o Forma xyz ou nuvem de pontos
 - Lista de coordenadas 3-D
 - Não há ordem específica
- \circ Forma r_{i}
 - Matrizes de valores de profundidade de pontos ao longo das direções x,y da imagem
 - Fornece informação espacial explícita
- Sombreamento cossenoidal
 - Valor de intensidade do pixel é proporcional à norma do gradiente nas superfície de profundidade

Imagens de Profundidade de um componente mecânico mostradas como imagem de intensidade. (mais claro mais próximo (esquerda), sombreamento cossenoidal (meio), e superficie 3-D (direita).

• Sensores de Profundidade

- Medem profundidade em apenas um ponto, ou
- Distância e forma de perfil de superfícies ou de superfícies completas

1. Ativos

- O Projetam energia (p. ex. padrão de luz, pulsos de sonar) na cena e detectam sua posição para realizar a medida, ou
- Exploram o efeito de mudanças controladas de parâmetros,
 p. ex. foco, ou calculam tempo de percurso da luz (TOF)

2. Passivos

o Baseiam-se unicamente em imagens de intensidade para reconstruir a profundidade, p. ex. estereoscopia

Ativos

- Radares e Sonares (RADAR = Radio Detection and Ranging)
 - Baseado no cálculo do tempo de resposta de um sinal eletromagnético ou sonoro (time of flight).
 - Usado para varrer uma superfície.
- Detectores a laser (LADAR ou LIDAR Laser (Light)
 Detection and Ranging) emitem sinal com amplitude modulada e medem a diferença de fase.

o Interferometria

- Duas malhas padronizadas (p. ex. linhas) são projetadas em uma superfície e a diferença de fase ou distância entre os dois padrões fornece a distância 3D.
- Mede apenas distância relativa

Focalização/Desfocalização Ativa

 Variação da distância focal de uma lente motorizada permite calcular a distância 3D

Podem ser por:

• Detecção de contraste

O sistema analisa um grupo de pixels na imagem e move a lente para frente e para trás em pequenos incrementos

Detecção de fase

O sistema divide a luz que entra em duas imagens separadas e as compara.

• Triangulação Ativa

Geometria da triangulação óptica ativa (vista plana XZ). Os eixos Y e y são perpendiculares ao plano da figura.

• Triangulação Ativa

Geometria da triangulação óptica ativa (vista plano XZ). Os eixos Y e y são perpendiculares ao plano da figura.

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \frac{b}{f \cdot \cot \theta - x} \cdot \begin{pmatrix} x \\ y \\ f \end{pmatrix}$$

b = linha base conhecida

f = distância focal conhecida

 θ = ângulo monitorado

Um Sensor Simples

Método para calibrar f, b e θ sem o uso da equação

Calibração direta de um sensor de profundidade de perfil simples

- A equação é aplicada a todos os pontos visíveis na linha de luz
- A varredura do objeto, movendo-se a camera ou o objeto, permite a determinação do perfil da superfície
- A linha projetada deve ter contraste com o fundo (objeto), e concavidades ou pontos brilhantes podem confundir a detecção da linha.
- Mais de uma câmera pode ser utilizada para evitar oclusões

Sistema de triangulação 3D. Diodo laser e sistema óptico projetam plano de luz laser sobre componente e câmeras capturam imagem com luz estruturada. Componente se move sobre plataforma motorizada.

Algoritmo RANGE_CAL

- 1. Colocar o bloco G debaixo da linha de luz, com rasgos perpends. ao plano da luz. Assegure que a linha apareça paralela a x (y cte.).
- 2. Adquira uma imagem da linha sobre G. Ache as coords. dos pontos da linha sobre a superfície mais alta do bloco, varrendo as colunas da imagem.
- 3. Calcule as coords. $[x_i, y_Z]^T$, i = 1, ..., n dos centros dos segmentos da linha sobre a parte alta do bloco G, localizando o centro dos segmentos na linha varrida $y = y_Z$. Entre com cada ponto de imagem $[x_i, y_Z]^T$ e seus correspondentes pontos 3-D $[X, Z]^T$ (conhecidos) na tabela T.
- 4. Ponha um outro bloco sob G, elevando a sua superfície de δ. Assegure-se de que as condições do passo 1 ainda se aplicam. Seja cuidadoso para não mover o sistema de referência.

- 5. Repita os passos 2, 3 e 4 até a superfície do topo do bloco G ser visualizada próxima a y = 0.
- 6. Converta T em uma tabela de consulta L, indexada por coords. de imagem [x, y]^T, com x entre 0 e (x_{max} 1), e y entre 0 e (y_{max} 1), e retornando [X, Z]^T. Para associar valores de pixeis não medidos diretamente, interpole linearmente usando os quatro pontos vizinhos mais próximos.

A saída será uma Tabela de Consulta (LUT) associando coords. de pontos de imagem a coords. de pontos da cena.

Algoritmo RANGE_ACQ

Para usar a Tabela de Consulta para obter um perfil de profundidade de um objeto

- 1. Ponha um objeto debaixo da linha e adquira uma imagem da mesma sobre G
- 2. Calcule as coords. de imagem [x, y]^T dos pontos da linha varrendo cada coluna da imagem.
- 3. Indexe L usando as coords. de imagem (x,y) do ponto da linha para obter os pontos de profundidade $[X, Z]^T$.