Sriharsha Singam

Lab #5 Report

ECE 2031 L08

30 September 2018

APPENDIX A

THE IS THE VHDL (A HARDWARE DESCRIPTION LANGUAGE) IMPLEMENTATION OF A STATE MACHINE WHOSE LOGIC IS DESCRIBED BY THE BOOLEAN EXPRESSIONS: $(Q_1^+ = Q_1 \bullet X_0 \ OR \ X_1 \bullet X_0 \ AND \ Q_0^+ = Q_0 \bullet \overline{X_0} \ OR \ X_1 \bullet \overline{X_0})$.

-		Value	0 ps		4	0.0 ns	3		81	0.0 ns			12	0,0 n		16	60,0	ns		2	00 _, 0 ns			240,0 ns			280 _, 0 ns			320 _, 0 ns			360 _i 0 ns			400 _i 0 ns				440 _i 0 ns					480 _, 0 ns			520.0 ns				
	Name	0 r	0 ps																																																	
→ 0	CLOCK	В		┚	-	匸		_	1	_				┖			ı												L				L		Г		L						$\overline{}$	_	L		⋾	7	L		⋾	
i ≥1	RESETN	В	ᆫ																			- 13	-			-					-			1									$\overline{}$	$\overline{}$			-	T	-		-	
<u>₽</u> 2	± ×	В(00				Х		01		Х	10		X		00		\equiv X		10		\supset		11		X		01		X	1	1		X	0	0			- 1	1		X		10		X		01	
€ 5	∄ Q	В(C						00						Х						01						Х						10						\subset	0)		\subset	7	10		X		01		Х	00
⊕ 8	Z	В				1			1		1			1			-	1	-				1																1			1		_	1		7	1	1	-		1

Figure 2. This is a functional simulation of the State Machine whose logic is described by the SM_VHDL.vhd and whose two Boolean Expressions were: $(Q_1^+ = Q_1 \bullet X_0 \ OR \ X_1 \bullet X_0)$ and $Q_0^+ = Q_0 \bullet \overline{X_0} \ OR \ X_1 \bullet \overline{X_0}$) that used set inputs $(X_1 \ and \ X_0)$ from the file: VECTORL08IN.tbl.

Figure 3. This is the schematic design for the State Machine whose logic is described by the two Boolean Expressions: $(Q_1^+ = Q_1 \cdot X_0 \ OR \ X_1 \cdot X_0 \ and \ Q_0^+ = Q_0 \cdot \overline{X_0} \ OR \ X_1 \cdot \overline{X_0})$ and the State Machine Tester which inputed different values and checked states to see whether the SM_SCHEMATIC (Renamed in diagram as ECE2031Lab5) worked properly.

Figure 4. This is a waveform diagram of all the output and input values (1 or 0) for the State Machine whose logic is described by the Boolean Expressions: $(Q_1^+ = Q_1 \bullet X_0 \ OR \ X_1 \bullet X_0)$ and $Q_0^+ = Q_0 \bullet \overline{X_0} \ OR \ X_1 \bullet \overline{X_0}$.

Figure 5. This is a customized waveform diagram of all the output and input values (1 or 0) for the State Machine whose logic is described by the Boolean Expressions: ($Q_1^+ = Q_1 \cdot X_0 \ OR \ X_1 \cdot X_0 \ and \ Q_0^+ = Q_0 \cdot \overline{X_0} \ OR \ X_1 \cdot \overline{X_0}$). It was specially made to show the State Names (A, B, C) and to highlight state "C" in red.

APPENDIX A

```
-- SM VHDL.vhd
-- Basic State Machine Implementation (Boolean Expression: (Q1 = Q1
AND X0 OR X1 AND X0 and Q0 = Q0 AND X0 OR X1 AND X0))
-- Sriharsha Singam
-- ECE 2031 L08
-- October 2, 2018
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.All;
ENTITY SM VHDL IS -- Do not modify this entity statement!
  PORT (X
              : IN STD LOGIC VECTOR(1 DOWNTO 0);
      RESETN,
      CLOCK : IN STD LOGIC;
            : OUT STD LOGIC;
             : OUT STD LOGIC VECTOR(1 DOWNTO 0) );
END SM VHDL;
                 -- Do not modify this entity statement!
ARCHITECTURE behavior of SM VHDL IS
  TYPE STATE TYPE IS (A, B, C);
 SIGNAL state : STATE TYPE;
 BEGIN
   PROCESS (CLOCK, RESETN)
     BEGIN
       IF RESETN = '0' THEN
         state <= A;
       ELSIF CLOCK'EVENT AND CLOCK = '1' THEN
         CASE state IS
           WHEN A =>
             CASE X IS
                WHEN "00" =>
                         state <= A;
                     WHEN "01" =>
                          state <= A;
                     WHEN "10" =>
                          state <= B;
                     WHEN "11" =>
                         state <= C;
             END CASE;
```

```
WHEN B =>
               CASE X IS
               WHEN "00" =>
                         state <= B;
                    WHEN "01" =>
                         state <= A;
                    WHEN "10" =>
                         state <= B;
                    WHEN "11" =>
                         state <= C;
             END CASE;
           WHEN C =>
               CASE X IS
               WHEN "00" =>
                         state <= A;
                    WHEN "01" =>
                         state <= C;
                    WHEN "10" =>
                         state <= B;
                    WHEN "11" =>
                         state <= C;
             END CASE;
         END CASE;
       END IF;
     END PROCESS;
   Z <= '1' WHEN state = C ELSE '0';</pre>
   Q <= "00" WHEN state = A ELSE "01" WHEN state = B ELSE "10" WHEN
state = C;
 END behavior;
```