Tittel

Andreas M. Kristensen

March 15, 2025

Her definerer vi hva kjernen, kokjernen og hva bildet til en overlapp-matching er.

La $\sigma:\mathcal{C}\to\mathcal{D}$ være en overlapp-matching dette betyr at hvis $\sigma(I)=J$ så har vi

- $I \cap J \neq \emptyset$
- I begrenser J over
- \bullet *J* begrenser *I* over

Kjernen til σ er definert ved det kommutative diagrammet

Dette betyr at $\sigma \circ \gamma = \emptyset$. Vi velger et intervall $I \in \mathcal{C}$, hvis σ ikke matcher I lar vi $I \in \ker \sigma$ og $\gamma(I) = I$, hvis $\sigma(I) = J$ slik at $I - J \neq \emptyset$ lar vi $I - J \in \ker \sigma$ og $\gamma(I - J) = I$.

Proposisjon 0.0.1. γ er en overlapp-matching.

Proof. For $K \in \ker \sigma$ må vi vise følgende:

- 1. $K \cap \gamma(K) \neq \emptyset$.
- 2. K begrenser $\gamma(K)$ over.
- 3. $\gamma(K)$ begrenser K under.

Vi starter med 1. Enten har vi at $K \in \mathcal{C}$ og σ ikke matcher K eller så er K = I - J for en $I \in \mathcal{C}$ og $J = \sigma(I)$. Hvis K ikke er matchet av sigma, har vi at $\gamma(K) \cap K = K \cap K = K \neq \emptyset$. Hvis K = I - J har vi at $K \cap \gamma(K) = (I - J) \cap \gamma(I - J) = (I - K) \cap I = I - J$ og siden vi $I - J \neq \emptyset$ per definisjon av intervallene i ker σ , dermed er 1. tilfredstilt.

Siden K er enten $\gamma(K)$ eller den øvre delen av $\gamma(K)$ begrenser K $\gamma(K)$ over. For samme grunn begrenser $\gamma(K)$ K under. Dermed er γ en overlappmatching.

Siden γ er en overlapp-matching og $\sigma\circ\gamma=\emptyset$ så er ker σ kjernen til

 $A \bullet B$