Zusammengesetzte Funktionen

Jan Kunde

Im folgenden gilt $x \in \mathbb{R} \ \forall f(x)$

Arten zusammengetzter Funktionen und ihre Ableitungen

Summenfunktionen

Wenn:

f(x) = u(x) + v(x)

Dann gilt:

f'(x) = u'(x) + v'(x)

Beispiel:

$$f(x) = x^3 + ln(x)$$

$$f'(x) = 3x^2 + \frac{1}{x}$$

Differenzfunktionen

Wenn:

f(x) = u(x) - v(x)

Dann gilt:

$$f'(x) = u'(x) - v'(x)$$

Beispiel:

$$f(x) = x^3 - \ln(x)$$

$$f'(x) = 3x^2 - \frac{1}{x}$$

Produktfunktionen

Wenn:

$$f(x) = u(x) \cdot v(x)$$

Dann gilt:

$$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Beispiel:

$$\begin{split} f(x) &= e^x \cdot x^3 \\ f'(x) &= e^x \cdot x^3 + e^x \cdot 3x^2 = e^x (x^3 + 3x^2) \end{split}$$

Gebrochenrationale Funktionen

Wenn:

$$f(x) = \frac{u(x)}{v(x)}$$

Dann gilt:

Funktion $f(x) = \frac{v(x) \cdot u'(x) - v'(x) \cdot u(x)}{v(x)^2}$ Alternativ lässt sich eine gebrochenrationale Funktion $f(x) = \frac{u(x)}{v(x)}$ zu $f(x) = u(x) \cdot v(x)^{-1}$ umformen und mit Produktund Kettenregel ableiten.

Beispiel:

$$f(x) = \frac{3x^4}{4x+3}$$

$$f'(x) = \frac{4 \cdot 3x^4 - (4x+3) \cdot 12x^3}{(4x+3)^2} = \frac{36x^3 \cdot (x+1)}{(4x+3)^2}$$

Verkettete Funktionen

Wenn:

$$f(x) = (u \circ v)(x) = u(v(x))$$

Dann gilt:

$$f'(x) = v'(x) \cdot u'(v(x))$$

Beispiel:

$$f(x) = e^{3x^2}$$

$$f'(x) = 6x \cdot e^{3x^2}$$

Untersuchung zusammengesetzte Funktionen

Bestimmung von Definitionsmengen

Außer bei gebrochen
rationalen Funktionen und Funktionen die als Term einen
 ln oder tan enthalten ist die Definitionsmenge aller abitur
relevanten Funktionen: $D=\mathbb{R}$

Definitionsmengen gebrochenrationaler Funktionen

Gebrochenrationale Funktionen weisen Definitionslücke an den Nullstellen des Nenners auf.

Beispiel:

$$f(x) = \frac{3x^5 + 2x}{x^2 - 3}$$

$$x^2 - 3 = 0 \quad |+3$$

$$x^2 = 3$$

$$x_{1,2} = \pm\sqrt{3}$$

$$D = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

Definitionsmengen bei ln-Funktionen

Der natürliche Logarithmus ist nur für Eingabewerte größer als Null definitiert. Besteht eine Funktion aus einer Verkettung aus natürlichem Logarithmus und einer weiteren Funktion, umfasst die Definitionsmenge nur die X-Werte, für die der innere Teil der Funktion größere Werte als Null annimmt. Zur Bestimmung der Definitionsmenge muss also die Ungleichung v(x) > 0 gelöst werden, wobei v(x) der innere Teil der zusammengesetzten ln-Funktion ist.

Beispiel 1:

$$f(x) = \ln(x+3)$$

$$x+3>0 \quad |-3$$

$$x>-3$$

$$D = \{x \in \mathbb{R} : x > -3\}$$

Beispiel 2:

$$f(x) = \ln(x^2 - 6)$$

$$x^{2} - 6 = 0 | + 6$$

$$x^{2} = 6 | \sqrt{6}$$

$$x_{1,2} = \pm \sqrt{6}$$

da f(0) = -6, und somit < 0 ist, ist die Definitionsmenge $D = \mathbb{R} \setminus [-\sqrt{6}; \sqrt{6}]$.

Nullstellen bei zusammengesetzten Funktionen

Nullstellen bei Produktfunktionen

Wenn $f(x) = u(x) \cdot v(x)$ ist, ist f(x) = 0 dann gegeben, wenn mindestens eine der Beiden Funktion u(x) und v(x) gleich Null ist. Daher können zur Findung der Nullenstellen u(x) und v(x) seperat untersucht werden.

Nullstellen bei gebrochenrationalen Funktionen

Wenn $f(x) = \frac{u(x)}{v(x)}$ ist, ist f(x) = 0 dann gegeben, wenn u(x) = 0, also die im Zähler stehende Funktion gleich Null ist.

Nullstellen bei verketteten Funktionen

Wenn $f(x) = (u \circ v)(x)$ ist, ist f(x) = 0 dann gegeben wenn v(x) einen Wert annimmt, für den u(x) den Wert Null annimmt. Ist die äußere Funktion, in diesem Fall u(x) eine Funktion, die für alle $x \in \mathbb{R}$ keine Nullstellen besitzt (z.B. e^x), besitzt f(x) keine Nullenstellen.