PART - I CONVERGENCE IN PROBABILITY

1. a)
$$f_{Y}(y) = \frac{1}{2b} e^{-\left(\frac{|y-y|}{b}\right)}$$

Given: $\mu = 0$, $b = 5$
 $\Rightarrow f_{Y}(y) = \frac{1}{10} e^{-\frac{|y|}{b}}$
 $E(Y) = \int_{-\infty}^{\infty} y + f_{0} e^{\frac{y}{2}} dy + \int_{0}^{\infty} y + \int_{0}^{\infty} e^{-\frac{y}{2}} dy$
 $= \frac{1}{10} \left[\int_{0}^{\infty} y \cdot e^{\frac{y}{2}} dy + \int_{0}^{\infty} y \cdot e^{\frac{y}{2}} dy \right]$
 $= \frac{1}{10} \left[\left[(5y - 25) e^{\frac{y}{2}} \right]_{0}^{\infty} + \left[(-5y - 25) e^{-\frac{y}{2}} \right]_{0}^{\infty} \right]$
 $= \frac{1}{10} \left[-25 + 25 \right]$
 $\Rightarrow \left[E(Y) = 0 \right]$
 $E(Y^{2}) = \int_{-\infty}^{\infty} y^{2} \cdot f_{y} dy = \int_{0}^{\infty} y^{2} \cdot \int_{0}^{\infty} e^{\frac{y}{2}} dy + \int_{0}^{\infty} y^{2} \cdot \int_{0}^{\infty} e^{\frac{y}{2}} dy$
 $= \frac{1}{10} \left[250 + 250 \right]$
 $= \frac{1}{10} \times 500$
 $= \frac{1}{10} \times 500$
 $= \frac{1}{10} \times 500$

E(Y)=0, $E(Y^2)=50$, \Rightarrow Var(Y)=50 by variance computing formula $L=\frac{1}{2},\frac{\pi}{2},\frac{\pi}{2}$ By LLN, $\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}$ By continuity theorem, $\frac{\pi}{2},\frac{\pi}{2}$ By continuity theorem, $\frac{\pi}{2},\frac{\pi}{2}$ By continuity theorem, $\frac{\pi}{2},\frac{\pi}{2}$ By continuity theorem, $\frac{\pi}{2},\frac{\pi}{2}$

 $\Rightarrow \left[K \xrightarrow{P} J_{50} \right]$

b)