Transient Effects in the Optical Pumping of Rubidium

Giacomo Resta

April 3, 2013

Transient Effects

- Measurements of re-population rate with varying,
 - Light Intensity
 - Vapor Temperature
- Measurements of Rabi oscillation period with varying,
 - RF Amplitude
 - RF Frequency

Energy Structure of Hydrogen-Like Atoms in a Magnetic Field \mathcal{B}_z

Energy Structures of Rb⁸⁷

Photon Induced Energy Transitions in a Magnetic Field

Circularly-Polarized Light

$$\label{eq:Right-Handed} \begin{aligned} & \mathsf{Right\text{-}Handed} \to \sigma^+ \\ & \mathsf{Left\text{-}Handed} \to \sigma^- \end{aligned}$$

$$\Delta M_z = +1$$

$$\mathbf{B_z} \cdot \sigma^+ > 0$$
 $\Delta M_z = +1$ $\mathbf{B_z} \cdot \sigma^- < 0$ $\Delta M_z = +1$

$$\Delta M_z = -1$$

$$\mathbf{B_z} \cdot \sigma^+ < 0$$
 $\Delta M_z = -1$ $\Delta M_z = -1$ $\Delta M_z = -1$

Optical Pumping of Hydrogen

Right-Handed Circularly Polarized Light

$$\mathbf{B_z} \cdot \sigma^+ > 0$$

$$\Delta M_z = +1$$

Optical Pumping of Hydrogen Following B_z Reversal

Right-Handed Circularly Polarized Light

$$\mathbf{B_z} \cdot \sigma^+ < 0 \qquad \qquad \Delta M_z = -1$$

Experiment Apparatus

Photo-diode Voltage With B_z Current

Fit of Exponential to Re-population Signal

Simulation of Optical Pumping of Atomic Models with Different Numbers of M_7 Levels

Towards a Functional Approximation for Rubidium Signal

Assuming a Hydrogen like, three M_z level structure,

$$\frac{dn_1}{dt} = n_0 a_0$$

$$\frac{dn_0}{dt} = -n_0 a_0 + n_{-1} a_{-1}$$

$$\frac{dn_{-1}}{dt} = -n_{-1} a_{-1}$$

hence,

$$\frac{d^2n_0}{dt^2} = -(a_{-1} + a_0)\frac{dn_0}{dt} - a_{-1}a_0n_0$$

Assuming $a_{-1} = a_0$,

$$I(x) = c_4 - (c_0t + c_1)\exp(-c_2(t - c_3))$$

Dependency of Inverse Decay Time on Light Intensity

Dependency of Signal Amplitude on Light Intensity

Dependency of Decay Time on Temperature

$$\omega_0 = \gamma B_0$$

$$\gamma = g_f \frac{\mu_0}{\hbar}$$

$$\omega_{RF} = \omega_0$$

$$\omega_{M} = \gamma \frac{B_{r}f}{2}$$

$$\rightarrow$$

$$\overline{\gamma} = rac{4\pi}{\gamma B_{RF}}$$

Theoretical Predictions for Period of Rabi Oscillations

Key relationships,

$$T \propto rac{1}{B_{RF}} \propto rac{1}{V_{RF}}$$

and,

$$\frac{T_{85}}{T_{87}} = \frac{\gamma_{87}}{\gamma_{85}} = \frac{g_{f87}}{g_{f85}} = \frac{3}{2}$$

Rabi Oscillations Signal Overview

Rabi Oscillation Extraction of Period

Rabi Oscillation Period vs RF Amplitude

Rubidium Rabi Oscillation Period Ratio

$\frac{785}{T_{87}} = \frac{a85}{a_{87}}$				
Measured	Accepted	σ Off		
$(1.563 \pm 0.077)[1]$	1.50	0.81		

Tor aor

Concluding Remarks

► Rabi oscillations would make a lovely addition to lab procedure