9 分離的代数拡大

9.1 多項式の分離性

命題 9.1. 代数拡大 L/K について次は同値。

- (1) L/K: 分離的。
- (2) L/K の \forall 部分拡大 M/K は分離的。

Proof. 定義 (??) から明らか。

命題 9.2. $f \in K[X] - K$ について以下は同値。

- (1) (f, f') = 1 ($\Leftrightarrow f$ とその形式微分 f'が互いに素)
- (2) f の判別式 $\operatorname{disc}(f) \neq 0$ $(f = \prod_{i=1}^{n} (X \alpha_i))$ のとき $\operatorname{dics}(f) := \prod_{i < j} (\alpha_i \alpha_j)^2$ と定義する)

- (3) K のある拡大 L 上で f は相異なる一次式の積になる。
- (4) f の任意の根は単根 (重解でない)
- (5) K[X]/(f) は etale/K (⇔ K 上分離的)

Proof. $(5) \Leftrightarrow (1)$

系 (??) で示した。

 $(2) \Leftrightarrow (3) \Leftrightarrow (4)$

明らか。

 $(1) \Rightarrow (2) (\deg f > 1$ のときを考える) 対偶 $\operatorname{disc}(f) = 0 \Rightarrow (f, f') \neq 1$ を示す。

 $\mathrm{dics}(f)=0$ よりある $0\leq i< j\leq n$ があり $\alpha_i=\alpha_j$ となる。i=1,j=2 としても一般性を失わない。これは f の根なので $f=(X-\alpha_1)^2Q(X)$ となる $Q(X)\in K[X]$ が存在する。よって $f'=2(X-\alpha_1)Q(X)+(X-\alpha_1)^2Q'(X)=(X-\alpha_1)(2Q(X)+(X-\alpha_1)^2Q'(X))$ となるから f,f' は共通の α_1 という根を持つので互いに素でないから $(f,f')\neq 1$ となる。

 $(2) \Rightarrow (1) (\deg f > 1$ のときを考える) 対偶 $(f, f') \neq 1 \Rightarrow \operatorname{disc}(f) = 0$ を示す。

 $(f,f') \neq 1$ よりある α があってそれを $f = (X-\alpha)Q_1(X), f' = (X-\alpha)Q_2(X)$ として共通根として持つ。 この二つから $f' = Q_1(X) + (X-\alpha)Q_1'(X) = (X-\alpha)Q_2(X)$ より $(X-\alpha)(Q_1'(X)-Q_2(X)) = Q_1(X)$ となるから $f = (X-\alpha)^2(Q_1'(X)-Q_2(X))$ より重根をもつ。したがって根の差の積である $\mathrm{disc}(f) = 0$ である。

 $\deg f = 1$ のときは f の根は 0 より常に $\operatorname{disc}(f) = 0$ となるからこの命題には不適。

定義 9.3. これらが成り立つとき f を分離的という。

命題 9.4. 既約多項式 $f \in K[X]$ について次は同値。

- (1) f は分離的。
- (2) f は $(^{\exists}L)$ に) 少なくとも一つの単根をもつ。
- (3) $f' \neq 0$
- (4) $\operatorname{char}(K) = 0$ か、または $\operatorname{char}(K) = p > 0$ で $f \notin K[X^p]$

Proof. (1) \Rightarrow (2) は命題 (9.2) で示した。

 $(2) \Rightarrow (3)$

 α を f の単根とする。 $f'(\alpha)=0$ とすると命題 (9.2) の $(2)\Rightarrow (1)$ の証明より $f=(X-\alpha)^2Q(X)$ となるから α が単根に矛盾するので $f'(\alpha)\neq 0$ である。よって $f'\neq 0$

 $(3) \Rightarrow (1)$

体上の多項式より f を monic としてよい。 α を f の任意の根とする。f が既約多項式で monic より f は 最小多項式であるからその次数の最小性と $f' \neq 0$ より f' は多項式で $f'(\alpha) \neq 0$ であるから α は単根。これ が任意の f の根について成り立つから f は分離的。

 $(3) \Leftrightarrow (4)$

 $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ について

$$f' = \sum_{i=0}^{n} a_i i X^{i-1} = 0$$

$$\Leftrightarrow \begin{cases} a_1 = \dots = a_n = 0 & (\operatorname{char}(K) = 0) \\ a_i = 0 & (p \nmid i) & (\operatorname{char}(K) = p > 0) \end{cases}$$

$$\Leftrightarrow \begin{cases} f = a_0 & (\operatorname{char}(K) = 0) \\ f = \sum a_{pk} X^{pk} \in K[X^p] & (\operatorname{char}(K) = p > 0) \end{cases}$$

より、 既約多項式は $f \in K[X] - K$ で否定を考えれば成立。

 \mathbf{X} 9.5. 体 K について次は同値。

- (1) K は完全体
- (2) 任意の既約多項式 $f \in K[X]$ は分離的
- $((3)^{\forall}L/K:$ 代数拡大は分離的)

Proof. (1) \Leftrightarrow (2) のみ示す。

 $\operatorname{char}(K) = 0$ のとき命題 (9.4) の $(1) \Leftrightarrow (4)$ から \forall 既約多項式 $f \in K[X]$ は分離的。

char(K) = p > 0 のとき

$$K$$
 が完全体 \Leftrightarrow $\forall f \in K[X^p] - K$ は可約

を示す。これより、既約ならば $f \notin K[X^p] - K$ が言えて命題 (9.4) の $(4) \Leftrightarrow (1)$ より既約ならば分離的が言える。

 (\Rightarrow)

 $f=\sum a_i X^{pi}\in K[X^p]-K$ で $K^p:=\{x^p|x\in K\}$ (p 乗元の集合) とする。K が完全体なので Frobenius が全射だから $K=K^p$ なので $\forall a_i\in K$ に対して $\exists b_i\in K, a_i=b_i^p\in K^p=K$ である。したがって $\mathrm{char}(K)=p>0$ に注意すれば $f=\sum b_i^p X^{pi}=(\sum b_i X^i)^p$ より $\sum b_i X^i\in K[X]$ で分解できるから f は 可約。

 (\Leftarrow) 対偶の K: 非完全 $\Rightarrow \exists f \in K[X^p] - K$ は既約 を示す。

K: 非完全とする。このとき $K^p \neq K$ から $\exists a \in K^\times - K^p$ が取れる。ここで $f = X^p 0 a \in K[X]$ は既約になる。

b を f の根 $(b^p=a)$ とし、g を b の K 上の最小多項式とする。最小性から $g\mid f$ で $\mathrm{char}(K)=p>0$ より $f=(X-b)^p$ となるから $g=(X-b)^d$ $(d^e=p)$ と書ける。 $f=g^e$ の形になり、 p が素数から d=p または d=1 になる。d=1 とすると $g\in K[X]$ より $b\in K$ であり、 $a=b^p\in K^p$ から $a\in K^\times-K^p$ に矛盾する。

よって d=p で f=g となるから f は既約。これより既約な $f\in K[K^p]-K$ が存在するので対偶が示された。

9.2 元の分離性

定義 9.6. L/K : 拡大としたとき、K 上代数的な元 $x \in L$ がK 上分離的とは K(x)/K が分離的であること。