Priv.-Doz. Dr. S.-J. Kimmerle

Thursday, 14.10.2021

Exercise 2 (live tutorial): bounds, inequalities, and logic

Exercise 5

Let A, B, C be three statements. Please check, whether the following linked statements are always true.

a)
$$(A \Longleftrightarrow C) \Longrightarrow ((A \Longleftrightarrow B) \land (B \Longleftrightarrow C))$$

b)
$$((A \Longleftrightarrow B) \land (B \Longleftrightarrow C)) \Longrightarrow (A \Longleftrightarrow C)$$

c)
$$((A \Longleftrightarrow B) \land (B \Longleftrightarrow C)) \Longleftrightarrow (A \Longleftrightarrow C)$$

Solution for exercise 5

$$A_1 := (A \Longleftrightarrow C) \Longrightarrow ((A \Longleftrightarrow B) \land (B \Longleftrightarrow C))$$

$$A_2 := ((A \Longleftrightarrow B) \land (B \Longleftrightarrow C)) \Longrightarrow (A \Longleftrightarrow C)$$

$$A_3 := ((A \Longleftrightarrow B) \land (B \Longleftrightarrow C)) \Longleftrightarrow (A \Longleftrightarrow C)$$

A	В	C	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$((A \Longleftrightarrow B) \land (B \Longleftrightarrow C))$	$A \Leftrightarrow C$	A_1	A_2	A_3
W	w	w	w	W	W	w	w	w	w
w	w	f	w	f	f	f	w	w	w
w	f	$ \mathbf{w} $	f	f	f	w	f	w	f
W	f	f	f	w	f	f	w	w	w
f	w	$ \mathbf{w} $	f	w	f	f	w	w	w
f	w	f	f	f	f	w	f	w	f
f	f	$ \mathbf{w} $	w	f	f	f	w	w	w
f	f	f	w	w	W	w	W	W	w

Thus only statement A_2 , i.e. part b), is always true.

Exercise 6

Determine the solution sets of the following inequalities and represent the solution sets graphically:

a)
$$|x-5|-|x| \ge 4$$

b)
$$2|x-1|+|y-2| \ge 1$$

Solution for exercise 6

a)
$$|x-5|-|x| \ge 4$$

Case-by-case analysis:

$$x < 0$$
: $5 - x + x \ge 4 \Leftrightarrow 5 \ge 4$ always true $0 \le x < 5$: $5 - x - x \ge 4 \Leftrightarrow 1 \ge 2x \Leftrightarrow x \le \frac{1}{2}$ $5 \le x$: $x - 5 - x \ge 4 \Leftrightarrow -5 \ge 4$ being unsolvable

The solution set

$$\mathbb{L} = \{ x \in \mathbb{R} \, | \, x \le 1/2 \}$$

is the part of number line from the left until x = 1/2 (inclusive).

b) $2|x-1|+|y-2| \ge 1$

Case-by-case analysis:

$$x < 1 \land y < 2: 2(1-x) + 2 - y \ge 1 \Leftrightarrow -2x - y \ge -3 \Leftrightarrow y \le 3 - 2x$$

 $x < 1 \land 2 \le y: 2(1-x) + y - 2 \ge 1 \Leftrightarrow -2x + y \ge 1 \Leftrightarrow y \ge 1 + 2x$
 $1 \le x \land y < 2: 2(x-1) + 2 - y \ge 1 \Leftrightarrow 2x - y \ge 1 \Leftrightarrow y \le -1 + 2x$
 $1 \le x \land 2 \le y: 2(x-1) + y - 2 \ge 1 \Leftrightarrow 2x + y \ge 5 \Leftrightarrow y \ge 5 - 2x$

The solution set

$$\mathbb{L} = \overline{\left\{ (x,y) \in \mathbb{R}^2 \, \middle| \, \left(\frac{1}{2} < x < 1, \, 3 - 2x < y < 1 + 2x \right) \lor \left(1 < x < \frac{3}{2}, \, -1 + 2x < y < 5 - 2x \right) \right\}}$$

is the subset (with border lines) of \mathbb{R}^2 excluding an **open** rhombus with corners (0.5,2), (1,1), (1.5,2), and (1,3).

Exercise 7

Determine the supremum in \mathbb{R} of the following sets:

a)
$$A = \left\{1 - \frac{1}{n} \left| n \in \mathbb{N} \right.\right\}$$

b)
$$B = \left\{ -\frac{1}{2^n} \left| n \in \mathbb{N} \right. \right\}$$

c)
$$C = \left\{ 1 + (-1)^n - \frac{1}{n} \left| n \in \mathbb{N} \right. \right\}$$

Solution for exercise 7

a) Since 1/n tends to 0 for large n, we see that

$$\sup(A) = 1$$
.

b) Since 2^n tends to 0 for large n, we see that

$$\sup(B) = 0.$$

c) We see that $(-1)^n$ "oscillates" between 1 for n even and -1 for n odd. Using the result from A, we get ("convergence" is not required!)

$$\sup(C) = 2$$
.