

Limit cycles cannot exist

Jean-Christophe Loiseau

jean-christophe. loiseau@ensam. eu Laboratoire DynFluid Arts et Métiers, France.

Limit cycles

Closed orbits are not always limit cycles!

Linear systems $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x}$ can have periodic solutions if $\operatorname{eig}(\boldsymbol{A}) = \pm i\omega$. They are not limit cycles though. If $\boldsymbol{x}(t)$ is a periodic solution, so is $\alpha\boldsymbol{x}(t) \ \ \forall \alpha \neq 0$. These closed orbits are not **isolated**.

Limit cycles at not always circle in phase space

van der Pol oscillator

$$\ddot{x} + \mu \left(x^2 - 1\right)\dot{x} + x = 0$$

Gradient systems

Consider the single-valued scalar function $V(\boldsymbol{x})$ such that the system we consider can be written as

$$\dot{\boldsymbol{x}} = -\nabla V(\boldsymbol{x}).$$

This is a gradient system with potential function $V(\boldsymbol{x})$.

Gradient systems

Theorem: Closed orbits are impossible in gradient systems.

Lyapunov functions

It is sometimes possible to construct an energy-like function that decreases along trajectories. This is known as a ${\bf Lyapunov}$ function.

Lyapunov functions

Consider a system $\dot{x}=f(x)$ with a fixed point at x^* . A Lyapunov function $V(x):\mathbb{R}^n\to\mathbb{R}$ needs to satisfy the following properties

- 1. It is continuously differentiable.
- 2. $V(\boldsymbol{x}) > 0$ for all $\boldsymbol{x} \neq \boldsymbol{x}^*$ and $V(\boldsymbol{x}^*) = 0$.
- 3. $\dot{V} < 0$ for all $x \neq x^*$.

If such a function function exists, $oldsymbol{x}^*$ is globally asymptotically stable.

Dulac's criterion

Let $\dot{x}=f(x)$ be a continuously differentiable vector field defined on a simply connected subset R of the plane. If there exists a continuously differentiable function $g:\mathbb{R}^2\to\mathbb{R}$ such that $\nabla\cdot(g\dot{x})$ has one sign throughout R, then there are no closed orbits lying entirely in R.

Divine inspiration

Checking if the system is a **gradient system** is relatively simple. Unfortunately, there is no systematic way to construct **Lyapunov functions** or the $g(\boldsymbol{x})$ function in **Dulac's criterion**. If you can find such functions for your problem, these are however very powerful results.

