National Institute of Technology Delhi

Name of the Examination: B. Tech: Mid Semester
Examination (Spring Semester2022)

Branch

: ECE

Semester

: 4TH

Title of the Course

: Analog Electronics

Course Code

: ECB 252

Time: 1.5 Hours

MaximumMarks:25

Note: All parts of a single question must be answered together & in the same sequence as given in the question paper. **ELSE QUESTION SHALL NOT BE EVALUATED.**

Q1.	Circuit in figure 1 shows a CE amplifier. β of the transistor is 165.	[2+1+4 M]
	 (a) Draw the dc load line with proper labeling i.e. finds and show the values of end points of the load lines in the plot. (b) Find I_{CEQ} and V_{CEQ} i.e. Q-point values. 	
Q2.	Refer to the logic circuit and input waveforms as shown in the in figure 2 and figure 3 respectively. Find the output waveform across resistor R_s . [Assume $V_{\text{CE(SAT)}} = 0$]	[3 M]
Q3.	The input and output characteristics for a given BJT are shown in the figures 4 and 5 respectively. $ (a) \ \ From \ the \ characteristics \ find \ the \ input \ resistance \ of \ the \ BJT. $ $ (b) \ \ Find \ the \ current \ gain \ if \ V_{CE} = 5V $	[3 M]
Q4.	For good stabilized biasing of the transistor of the CE amplifier, as shown in the figure 6, what should be the condition for $R_{\scriptscriptstyle E}$ / $R_{\scriptscriptstyle B}$ ratio?	[2 M]
Q5.	In the following two stage circuit, as shown in figure 7, assume β = 100 for each transistor. (a) Determine the value of R so that the Q-point conditions are V_{CEI} = -4V and V_{CEI} = -6V. (b) Explain how Q-point stabilization is obtained (for V_{BE} = 0.2V)	[2 +1 M]
Q6.	 Consider the transistor switching circuit, as shown in figure 8. (a) Let the input varies between two voltage levels as, V_I = V_{LOW} ≤ 0 and V_I = V_{HIGH} > V_{MIN}, then what will be the expression for the minimum voltage required for the transistor to be operated in the saturation region under non-ideal situation? (b) If now suppose V_I ≥ V_{BE(SAT)} and R_E = 0 in the above circuit and we set R_B ≈ 10 R_C, then what region transistor will operate? What will be the outputs of the two corresponding voltage levels of input i.e. for V_I = V_{LOW} ≤ 0 and V_I = V_{HIGH} ≥ V_{MIN}? 	[1+3 M]
Q7.	For the two battery transistor circuit, as shown in figure 9, determine the expression for the stability factor in terms of β , R_{E} , R_{B} only. You may neglect V_{BE} .	[3 M]

Figure 6

PYCC = -24V

RC1 \$17.8K

VIC

R21

R21 \$2.2K

R21 \$2.2K

Figure 3

