Question Booklet No.:

1121065

CUCET 2020

UI-QP-01

Time: 10:00 AM to 12:00 Noon

Entrance Test for the Course(s): B.Sc. (Physics, Chemistry and Mathematics) [CUKNK], (Textiles) [CUTND], B.Tech. (CSE) [CUHAR], (Electrical Engg.) [CUHAR], [CUKNK], (Civil Engg.) [CUHAR], (Printing and Packaging Technology) [CUHAR], (E&C Engg.) [CUKNK], B.Voc. (Biomedical Sciences) [CUHAR], (Industrial Waste Management) [CUHAR], BCA (Computer Application) [CUODA], Integrated B.Sc. (Hons) M.Sc. (Botany) [CUJAM], (Zoology) [CUJAM], (Chemistry) [CUJAM], (Physics) [CUJAM], Integrated B.Sc. B.Ed. (B.Sc. B.Ed.) [CUSBR], (B.Sc. B.Ed. (Mathematics)) [CUTND], Integrated B.Sc. M.Sc. (Physics) [CUKAS], (Mathematics) [CUKAS], (Zoology) [CUKAS], (Biotechnology) [CUKAS], Integrated M.Sc. (Mathematics) [CUODA], [CUTND], [CURAJ], (Biochemistry) [CURAJ] (Biotechnology) [CURAJ], (Chemistry) [CURAJ], [CUTND] (Computer Science) [CURAJ], (Environmental Science) [CURAJ], (Microbiology) [CURAJ], (Physics) [CURAJ], [CUTND], (Statistics) [CURAJ], (Life Sciences) [CUTND], Integrated MCA (Computer Science) [GSBU]

0 Roll Number 3 7 0

Test Center Code

Ponn aganti Name of the Candidate

pavon KUMWI

Candidate's Signature: P. Paven Kumal.

Invigilator's Signature:

Instructions to Candidates

- Do NOT open the Question Booklet until the Hall Superintendent gives the signal for the commencement of the examination. 1.
- Write your Name, Roll Number and Test Center Code (as given in the Admit Card) and sign in the space provided above. 2
- After the commencement of the examination, open the Question Booklet. If the Question Booklet or the OMR Answer Sheet or both are not in good condition, then ask for immediate replacement. No replacement will be made 5 minutes-after the commencement of the examination.
- In the ANSWER SHEET (OMR) fill up/shade the required entries (Roll Number, Test Center Code, Test Paper Code, Question Booklet Number, Test Paper Series code etc. in the space provided) using black/blue ball point pen.
- This paper comprises of two Parts i.e., Part A and Part B, Part A of Question Booklet contains 25 Questions is 5. compulsory. Part - B Question Booklet contains 100 Questions. Part - B comprising of Section- I: Physics, Section- II: Chemistry, Section- III: Mathematics and Section- IV: Biology. A candidate must answer Section- I (Physics) and Section- II (Chemistry). From Section- III and Section- IV, only one Section either Mathematics (Section -III) or Biology (Section-IV) should be attempted and answered
- All questions are in MCQ Pattern. There is only one most appropriate correct answer for each question. 6.
- All questions carry equal marks. There will be negative marking. Each correct answer carries 01 mark and for each wrong 7. answer 0.25 mark will be deducted. Question not attempted will not be assessed and hence will not be considered for preparing final merit list.
- Darken only one circle for each question. If you darken more than one circle for the question, it will be deemed as incorrect 8. answer. Any change in the answer once marked is NOT allowed.
- Use the Answer Sheet (OMR) carefully. No spare Answer Sheet will be given. 9.
- Do not make stray marks on the OMR Sheet.
- After completion of examination, a candidate will be allowed to take with him Question Booklet and Candidate's copy of OMR answer sheet. However, each candidate must ensure to handover original copy of OMR sheet to the Invigilate In case a candidate takes away the original OMR answer sheet, his/her examination will be treated as consider.
- No candidate will be allowed to leave the examination hall before completion of Entrance Test. Total time allowed for Q paper is 2 Hours
- Calculator, Tables or any other Calculating Devices, Mobiles, Pagers, Booklets, Papers etc. are strictly prohibited.
- Rough work should be done on the blank space provided in this Question Booklet. No extra paper will be provided. 13.

PART-A

Instructions: Part-A consists of 25 questions. Questions No. 1 -10 (English) and Questions No. 11-25 (General Knowledge and Numerical Ability)

. 1	Pick the most appropriate passive transform of	the sentence given below:	
,	We have to pick the fruit very early in the morning	g; otherwise we can't get it to the market in time.	
	(A) Fruits have to be picked very early otherwise		
	Fruit has to be picked very early otherwise th		
	(C) Fruit to be picked very early otherwise it can		
	(D) Fruit has to be picked very early otherwise it		
	Choose the most appropriate set of verbs for th		
	He usually (go) by train, but this weeker (cost) less.	nd he(go) by bus. It (take) longer but it	-
	(A) went, was going, took, cost	(B) went, was going, took, costed	
	(C) goes, is going, takes, costs	(D) goes, is going, take, cost	
3.	Choose the most appropriate word pair for the	blanks given below:	
	We the lettuce and the carrot.		
	(A) tear, peel	(B) shred, dice ·	
	(C) tear, dice	(D) peel, dice	
4.	In a formal business letter in British English, i	f the greeting is 'Dear Sir', the ending should be	
	(A) Yours	(B) Your's faithfully	
	(C) Yours faithfully	(D) Faithfully your	
5.	Identify the underlined clause	If in a certala improper, MADRAN is coded as Astroproper	
	Whatever book you like is yours to take.	- (A) (A) (A) (A)	
	(A) Noun Clause	(B) Relative Clause	
	(C) Adverb Clause	(D) Verbless Clause	
6.	What does the underlined word in the following	ng sentence mean?	
	There is a superb panorama of the mountains from	n the hotel.	
	(A) peak	(B) hill	
	(C) foot	∠D) view	
7.	Choose the most appropriate word from the cl	hoice given below:	
	Most of the employees in private institutions	_ to their boss' wishes.	
	(A) pander	(B) ponder	
	(C) pressurise	(D) accept	
8.	Identify the verb type:		
	They made me call the police.		
	(A) Present participle	(B) Past participle	
	(C) Bare infinitive	(D) Perfect participle	
9.	Select the most suitable synonym for the word	REDEEM	
	(A) heal	(B) regain	
	(C) improve	(D) obtain	
10.		(t)	
		deteriorate.	
	(A) lead	(B) tend	
	(0)	(D) manage	

		he remainder as 21. If the same number is divided by 45 them of
11.	A number when divided by 114 teaves to remainder will be	the remainder as 21. If the same number is divided by 45 then the
	(A) 1 (A) 2	
12.	(10) 15	continue the same pattern as 1, 4, 9, 16, 25, (C) 49 (D) 36
	(A) 48 (B)	their L.C.M are 2400. Their H.C.F is
13.	(A) 48 Three numbers are in the ratio 3:4:5 and (A) 40 (B) 80	11,
	Which of the following fraction is the lar	rgest?
14.	(11) [3/10	
	(A) 7/8 (B) (S/10	and numbers is 2531. Find the smallest number among the
15	The sum of the squares of three consecut	tive old numbers is 2531. Find the smallest number among these. (C) 29 (D) 31
(0.0)	(B) 27	6, 2,
	and a piece of	f work in 18 days. In how many days will 27 men complete the
ye.	Thirty-six men can complete a precession work?	
T.	(18) 18	(C) 22 (D) 24
36/2	Contract the same of the same	mplete a piece of work in 10 days. To complete the same work in 8
17.	Twelve men working 8 hours per day con	er of men required is:
W	days, working 15 hours a day, the number	(C) 6 W (D) 8
У,	(8) 5	
4	Compather of P. Wis mother of S. S is d	daughter of T. T is brother of J. J is mother of L. I. is daughter of
18.	Q. Q is son of D. How is S related to J?	E 127 00
4.		(B) Daughter
40	(A) Son	(D) Niece
y	(C) Nephew	DOMPAN and all in that code?
No.	If in a certain language, MADRAS is cod	led as NBESBT, how is BOMBAY coded in that code?
W	(A) CPNCBX	(b) CINCOL
+3	(C) CPOCBZ	(D) COOCBZ 16) 30(0.8 1 70/10)
1		la join?
150	Where do the Bhagirathi and Alakanand	(B) Vishnuprayag 20
X	(A) Rudraprayag	(D) Nandaprayag
5	(C) Devprayag	100 6 700
21.	The International Kite Festival is celebra	ated in which of the following States of India?
*1.		(B) Tripura 27×2)49
	(A) Gujarat	(D) Odisha 189 2625 176 19
	(C) Maharashtra	(8 h
22.	Which of the following fruits is known as	ananascomosus? 6254 676 +729 27.3×4
	(A) Apple	(D) Pineannie
	(C) Papaya	(D) Pomegranate 72 625 635 12 360
		12.5
23.	BIOS in computer system refers to	36-10 15×18 729 ×60121
1	(A) Beginner's Input Office System	36-14 11210
1	(B) Basic Information Output System	77 -) 364
((C) Basic Instructions Output System	7 35850
6 ((D) Basic Input Output System	31 44 - 04
	Which of the following city is popularly k	known as Black City of India?
		(B) Mumbai
	A) Kolkata	03 11 1 1 1
	C) Delhi	1) (02)
25. 1	When was the Swachh Bharat Mission lau	anched? 4 33 ×33
	A) 2 rd October 2014	(B) 2 nd October 2015
1	C) 2 nd October 2016	(D) 2 rd October 2017
1	841	h HOPEO
	- 0	[2] >4/29 1

PART-B

Instructions : Part-B consists of four sections i.e., Physics, Chemistry, Mathematics and Biology comprising 25 questions each. A candidate must answer Section - I (Physics) and Section - If (Chemistry). From Section - III (Mathematics) and Section - IV (Biology), ONLY one Section either Mathematics (Section - Iff) or Biology (Section - IV) should be attempted and answered.

SECTION - I (PHYSICS)

26. A perfectly elastic ball of mass ro moving with velocity of hits a wall of mass $M \gg m$, moving with velocity V in the opposite direction, see figure. After the collision the ball will rebound back with a speed of

27. Two simple pendula of length L and 4L are pulled aside to the right, and are at rest so that they make an angle 30° with the vertical. They are then released simultaneously at time t=0. The time after which they will be in phase is

(A)
$$\frac{\pi}{2}\sqrt{\frac{L}{g}}$$
 (B) $\pi\sqrt{\frac{L}{g}}$ (C) $2\pi\sqrt{\frac{L}{g}}$ (D) $4\pi\sqrt{\frac{L}{g}}$

28. A cylinder of radius R length L and density p floats upright in a fluid of density po. The cylinder is given a gentle downward push as a result of which there is a vertical displacement of size x; it is then released, the time period of resulting (undamge(D) oscillations is

(A)
$$2\pi\sqrt{\frac{\rho_0 L}{\rho g}}$$
 (B) $2\pi\sqrt{\frac{\rho g}{\rho_0 L}}$ (C) $2\pi\sqrt{\frac{\rho L}{\rho_0 g}}$ (D) $2\pi\sqrt{\frac{\rho_0 g}{\rho a}}$

(B)
$$2\pi \sqrt{\frac{\rho q}{\rho_0 l}}$$

(C)
$$2\pi \sqrt{\frac{\rho L}{\rho a g}}$$

(D)
$$2\pi \sqrt{\frac{\rho \alpha g}{\rho \alpha}}$$

29. Two pith balls, each of mass 1.8 g, are suspended from the same point by silk threads each of length 20 cm. When equal charge Q is given to both the balls, they separate until the two threads become perpendicular. Then the charge Q on each pith ball is

(B)
$$3 \times 10^{-7}$$
 c (C) 4×10^{-7} c (D) 5×10^{-7} c

Note: $\left[\frac{1}{4\pi c_0} = 9 \times 10^9 \text{ n m}^2/c^2\right]$

30. The force acting on a particle in one dimension is $F=-\alpha x-2\beta x^3$. The corresponding potential energy V(x), assuming V(0) = 0 is given by

(A)
$$V(x) = \alpha x^2 - 2\beta x^4$$

(B)
$$V(x) = \frac{1}{2}\alpha x^2 + \frac{1}{2}\beta x^4$$

(D) $V(x) = -\frac{1}{2}\alpha x^2 - \frac{1}{2}\beta x^4$

(C) $V(x) = \alpha x^2 + 2\beta x^4$

(D)
$$V(x) = -\frac{1}{2}\alpha x^2 - \frac{1}{2}\beta$$

31. A Carnot engine operates with a source at a temperature 500 kelvin and sink at 375 kelvin. The engine consumes 600 kilo calories per cycle. The heat rejected per cycle is

32. Two electrons are ejected in opposite directions from radioactive atoms in a sample of radioactive material. Let e denote the speed of light. Each electron has a speed of 0.67 c as measured by an observer in the laboratory. Their relative velocity is given by

[3] (x) "

UI-QP-01

3) The point sharing 1,2 1,3 and 1,5 c, any placed expectation of the control of		
(C) 1× 10 ⁻¹³ gm/sec (D) 7× 10 ⁻¹⁴ gm/sec (C) 1× 10 ⁻¹³ gm/sec (D) 4.2 × 10 ⁻¹⁴ sec (D) 4.2 × 10 ⁻¹⁶ sec (E) 3.3 × 10 ⁻¹⁸ sec (D) 4.2 × 10 ⁻¹⁶ sec (D) 4.2 × 10 ⁻¹⁶ sec (E) 3.5 × 10 ⁻¹⁶ sec (D) 4.2 × 10 ⁻¹⁶ sec (E) 3.5 × 10 ⁻¹⁶ sec (D) 4.2 × 10 ⁻¹⁶ sec (E) 3.5 × 10 ⁻¹⁶ sec (E) 4.2 × 10 ⁻¹⁶ sec (E) 4.3 × 10 ⁻¹⁶ sec (E) 5.5 × 10 ⁻¹⁶ sec (E) 1.5 × 10 ⁻¹⁶ sec	3.6×10^{33} ergs/sec the rate at which the sun is loosing mass is given by	43. Three point charges +2, +2, and +5 uC are placed expectively at the vertices A. B. C. of an equilateral triangle of side
(A) 1× 10 ¹³ gm/sec (C) 1× 10 ²³ gm/sec (D) 1× 10 ²³ gm/sec (D) 42×10 ⁻⁶ sec (D) 92436 (E) 25½ section (C) 45 section (D) 65 sec (D) 42×10 ⁻⁶ sec (D) 92436 (E) 925½ section (D) 92436 (E) 924×10 ⁻¹⁶ m (D) 40×10 ⁻¹⁸ m (D) 50 cm ³ (D	33. If the sun radiates energy at the rate of 3.8 \times 10 ³⁴ gm/sec	
(C) 1 × 10 ¹³ gm/se 34. The life time of muon in the rest frame is 2 × 10 ⁻⁴ sec. A beam of muons emerges from a cycletron with velocity (1.8r., where e is the velocity of light. The mean life of muons observed in the laboratory frame will be where e is the velocity of light. The mean life of muons observed in the laboratory frame will be (1.0 × 10 ⁻⁴ sec.) (C) 3.3 × 10 ⁻⁴ sec. (B) 1.0 × 10 ⁻⁵ sec. (D) 4.2 × 10 ⁻⁶ sec. (D) 535.51 (C) 635.59 (D) 924.36 (D) 924.36 (E) 1.3 × 10 ⁻¹⁸ sec. (E) 3.3 × 10 ⁻¹⁸ sec. (E) 3.4 × 10 ⁻⁶ sec. (E) 3.5 × 10 ⁻⁷⁸ sec. (E) 4.2 × 10 ⁻¹⁸ sec. (E) 4.2 × 10 ⁻¹⁹ sec. (B) 1.2 × 10 ⁻¹⁹ sec. (C) 2.4 × 10 ⁻¹⁹ sec. (B) 2.2 × 10 ⁻¹⁹ sec. (C) 2.4 × 10 ⁻¹⁹ sec. (E) 4.10 × 10 ⁻¹⁹ sec. (E) 4.10 × 10 ⁻¹⁹ sec. (E) 4.10 × 10 ⁻¹⁹ sec. (E) 4.1	(A) $4 \times 10^{12} \text{ gm/sec}$ (D) $7 \times 10^{13} \text{ gm/sec}$	
where is the velocity of light. The international (A) 0.25 x 10 ⁻¹ sec (C) 3.3 x 10 ⁻¹ sec (D) 4.2 x 10 ⁻¹ sec (D) 24.35 (E) 5.35 51 (C) 8.36 59 (D) 924.35 (E) 7.7 Mev alpha particles scattering from aluminium (Z=13), the distance of closest approach in a head on collision is (A) 740.74 (B) 5.35 51 (C) 8.36 59 (D) 924.36 (E) 2.4 x 10 ⁻¹ s m (D) 4.9 x 10 ⁻¹ s m (E) 1.2 x 10 ³ (D) 2.4 x 10 ³ (E)	(C) 1 × 10 ²³ gm/sec	(C) 4.5 newton (D) 4.5√3 newton
where is the velocity of light. The material (A) 0.25 x 10 ⁻¹⁵ sec (D) 4.2 x 10 ⁻¹⁶ sec (D) 924.36 (E) 53.51 (C) 836.59 (D) 924.36 (E) 7.7 Mev alpha particles scattering from aluminium (Z=13), the distance of closest approach in a head on collision is (A) 24 x 10 ⁻¹³ m (D) 4.9 x 10 ⁻¹³ m (E) 4.2 x 10 ⁻¹ (D) 4.9 x 10 ⁻¹³ m (E) 4.1 x 10 ⁻¹³ (D) 5.1 x 10 ⁻¹³ (D) 6.1 x 10 ⁻¹³ (D) 8.1 x 10 ⁻¹³ (D)	the sect frame is 2×10^{-6} sec. A beam of muons emerges from a cyclotron with velocity $0.8c_2$	0.100
at the same temperature, the volume of the gas would now be (C) 3.3×10^{-6} sec (D) 4.2×10^{-16} m (B) 535.51 (C) 336.59 (D) 924.36 (B) 535.51 (C) 33.59 (D) 924.36 (B) 4.5×10^{-15} m (B) 4.5×10^{-15} m (B) 4.5×10^{-15} m (C) 2.4×10^{-15} m (D) 4.9×10^{-16} m (D) 4.2×10^{-16} m (D) 4.9×10^{-16}	34. The life time of muon in the rest trained and life of muons observed in the laboratory frame will be	
(D) 4.2×10^{-16} esc (D) 4.2×10^{-16} (D	(A) 0.25 x 10 ⁻⁰ sec	
35. A block of wood floats in water with 2/3 of its volume submerged. In an oil, the same block of wood floats with 90% of its volume submerged. The density of oil in units of kg/m² is constanted in the submerged. The density of oil in units of kg/m² is (A) 740.74 (B) 535.51 (C) 836.59 (D) 924.36 36. For 7.7 Mev alpha particles scattering from alluminium (Z=13), the distance of closest approach in a head on collision is (A) 2.4 x 10 ^{-1.18} m (B) 4.9 x 10 ^{-1.18} m (B) 4.9 x 10 ^{-1.18} m (D)4.9 x 10 ^{-1.18} m		at the same temperature, the volume of the gas would now be $(AX'.760 \text{ cm}^3) \qquad (B).75 \text{ cm}^3 \qquad (C).800 \text{ cm}^3 \qquad (D).80 \text{ cm}^3$
its volume submerged. The desiry of our minute (N) 335.51 (C) 836.59 (D) 924.36 (A) 740.74 (B) 535.51 (C) 836.59 (D) 924.36 (A) 2.75 nevton (B) 275 nevton (C) 1.10 nevton (D) 275 k nevton (C) 2.4 × 10 ⁻¹⁴ m (D) 4.9 × 10 ⁻¹⁸ m (D) 4.9 × 10 ⁻¹⁹ m (D) 4.9 ×		\$ 00 € × 1/2 = 1/2 so
its volume submerged. The desirely of our manual control of the first interest of the part of the submerged of the part of the	of the same block of wood floats with 2/3 of its volume submerged. In an oil, the same block of wood floats with 90% of	45. A vessel contains oil (density 0.8 g/cm³) over mercury (density 13.6 g/cm³). A sphere of homogeneous composition floats
(A) 740.74 (B) \$35.31 36. For 7.7 Mev alpha particles scattering from aluminium (Z=13), the distance of closest approach in a head on collision is (A) 2.4 × 10 ⁻¹⁵ m (C) 2.4 × 10 ⁻¹⁴ m (D) 4.9 × 10 ⁻¹⁸ m (E) 4.0 × 10 ⁻¹⁹ c. 1eV = 1.60	the density of oil in once	with half its volume immersed in mercury and the other half in oil. The density of the material of the spilete in great
(A) 2.4×10^{-15} m (B) 4.9×10^{-14} m (D) 4.9×10^{-14} m	(A) 740.74 (B) 535.31	(A) 3.3 (B) 6.4 (C) 7.2 (D) 12.8
(A) 2.4×10^{-15} m (B) 4.9×10^{-14} m (D) 4.9×10^{-14}	From aluminium (Z=13), the distance of closest approach in a head on collision is	46 Young's modulus for aluminium is 7 × 10 ¹⁰ Pa. The force needed to stretch an aluminium wire of diameter 2 mm and
(A) 2.75 newton (B) 275 newton (C) 1.10 newton (D) 275 k newton (C) 1.10 newton (D) 275 k newton (C) 1.10 newton (D) 275 k newton (D) 1.0 newto	36. For 7.7 Mev alpha particles scattering from administration (B) 4.9×10^{-15} m	length 800 mm by 1 mm is
1		(A) 2.75 newton (B) 275 newton (C) 1.10 newton (D) 275 k newton
1	(C) 2.4 × 10 ⁻¹⁴ m	3 3 A 1 1 1 A 2 3
37. Hydrogen atom in $n = 3$ state has a lifetime of 10^{-10} sec. The number of revolutions an electron makes in the $n = 3$ state before returning to the ground state is (A) 2.4×10^5 (B) 1.2×10^5 (C) 2.4×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^6 (D) 1.2×10^4 (E) 1.2×10^5 (D) 1.2×10^4 (Useful data $10^{-19}C \cdot 10^{-19}C \cdot 10^{-19}j$.	47. A man standing on the road has to hold his umbrella at 30° with the vertical to keep the rain drops with
37. Hydrogen atom in $n = 3$ state has a lifetime of 10^{-10} sec. The number of revolutions an electron makes in the $n = 3$ state before returning to the ground state is (A) 2.4×10^5 (B) 1.2×10^5 (C) 2.4×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 ($\frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9$ newton m ² C ⁻² ; $\epsilon = 1.00 \times 10^{-2}$	respect to the road is
state before returning to the ground state 3 (B) 1.2 × 10 ⁵ (B) 1.2 × 10 ⁵ (C) 2.4 × 10 ⁴ (D) 1.2 × 10 ⁴	The number of revolutions an electron makes in the $n=3$	(A) 20 km/h (B) 10 km/h (C) $10 \sqrt{3} \text{ km/h}$ (D) $10/\sqrt{3} \text{ km/h}$
(A) 2.4×10^5 (B) 1.2×10^4 (C) 2.4×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1.2×10^4 (D) 1.2×10^4 (E) 1.2×10^4 (D) 1		
Useful data \[\frac{1}{4\tau_0} = 8.99 \times 10^9 \text{N m}^2 \text{C}^2; \text{c} = 1.60 \times 10^{-19} \text{C}; \text{h} = 6.63 \times 10^{-34} \text{J} \text{s}; \text{m}_c = 9 \times 10^{-31} \text{kg} \\ 38. If the length of a simple pendulum increases by 5%, then its period shall increase by (A) 25% (B) 2.24% (C) 2.5% (D) 5%	state before returning to the second γ (B) 1.2×10^5	48. 70 cal of heat is required to raise the temperature of 2 mole of an ideal gas at constant pressure norms of the temperature of the gas through the same range at constant volume will be (assume
Useful data \[\frac{1}{4\tau_0} = 8.99 \times 10^9 \text{N m}^2 \text{C}^2; \text{c} = 1.60 \times 10^{-19} \text{C}; \text{h} = 6.63 \times 10^{-34} \text{J} \text{s}; \text{m}_c = 9 \times 10^{-31} \text{kg} \\ 38. If the length of a simple pendulum increases by 5%, then its period shall increase by (A) 25% (B) 2.24% (C) 2.5% (D) 5%	(A) 2.4×10 (D) 1.2×10 ⁴	D 01/1 (/)
1 = 8.99 × 10 ³ N m ² C ⁻² : $e = 1.60 \times 10^{-4}$ C; $e = 1.60 \times 10^{$	(C) 2.4 × 10°	(D) 70 cal
38. If the length of a simple pendulum increases by 5%, then its period shall increase by (A) 25% (B) 2.24% (C) 2.5% (D) 5% 39. If a heater coil rated 1 kW, 220 V is connected in series with an electric bulb of 100 W, 220 V and are supplied 200V, power consumed by the bulb in this circuit is (A) 68.4 W (B) 45.8 W (C) 10.6 W (D) 29.5 W 40. A particle of mass 10 mg and having a charge of 50 µC is projected with a speed of 15 m/s into a uniform magnetic field of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and having a charge of 50 µC is projected with its velocity perpendicular to the magnetic field, the time after to 1/8 mg and two extra electrons (D) two extra neutrons and two extra electron (D) two extra neutrons and no extra elect	Useful data $h = 6.63 \times 10^{-34} \text{J s};$ $m_e = 9 \times 10^{-8} \text{ J};$ $m_e = 9 \times 10^{-8} \text{ J};$ $m_e = 9 \times 10^{-8} \text{ J};$	Control of the contro
(A) 25% (B) 2.24% (C) 2.5% (D) 5% (A) 25% (B) 2.24% (C) 2.5% (D) 5% (A) 25% (B) 2.24% (C) 2.5% (D) 5% (A) two extra protons and two extra electrons (B) two extra protons and no extra electron (C) two extra neutrons and no extra electron (D) two extra neutrons and two extra electron (D) two extra neu	4π/ ₁₀ 3.55 A seedulum increases by 5% then its period shall increase by	49. As compared to ¹² C _l atom, ¹⁴ C atom has
39. If a heater coil rated 1 kW, 220 V is connected in series with an electric bulb of 100 W, 220 V and are supplied above power consumed by the bulb in this circuit is (A) 68.4 W (B) 45.8 W (C) 10.6 W (D) 29.5 W 40. A particle of mass 10 mg and having a charge of 50 µC is projected with a speed of 15 m/s into a uniform magnetic field of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 126 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 126 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 126 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 126 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 126 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after of 126 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field of 126 mT. Assuming the particle is projected with its velocity perpendicular to the magnetic field of 126 mT. Assuming the 126 mT. Assuming the particle is projected with its velocity perpendicular to the magnetic field of 126 mT. Assuming the 126 mT. Assuming the particle is projected with its velocity perpendicular to the magnetic field of 126 mT. Assuming the particle is projected with its velocity perpendicular to the magnetic field of 126 mT. Assuming the 126 mT. Assuming the 126 mT. Assuming the 12		(A) two extra protons and two extra electrons
(A) 68.4 W (B) 45.8 W (C) 10.6 W (D) 45.8 W (E) 10.6 W (D) 10.6 W (D) 10.6 W (E) 10.6 W (D) 10.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W	(A) 25%	(B) two extra protons and no extra electron
(A) 68.4 W (B) 45.8 W (C) 10.6 W (D) 45.8 W (E) 10.6 W (D) 10.6 W (D) 10.6 W (E) 10.6 W (D) 10.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W	to bester coil rated 1 kW, 220 V is connected in series with an electric bulb of 100 W, 220 V and are supplied 2007	(C) two extra neutrons and no extra electron
(A) 68.4 W (B) 45.8 W (C) 10.6 W (D) 45.8 W (E) 10.6 W (D) 10.6 W (D) 45.8 W (E) 10.6 W (D) 10.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.6 W (E) 10.6 W (D) 1.6 W (D) 1.	power consumed by the ball in this section (1) 20 5 W	(D) two extra neutrons and two extra electrons
40. A particle of mass 10 mg and having a charge of 50 μC is projected with a speed of 15 m/s into a uniform magnetic field, the time after of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time after the particle is projected with its velocity perpendicular to the magnetic field, the time after the particle is projected with its velocity perpendicular to the magnetic field, the time after the particle is projected with its velocity perpendicular to the magnetic field (A) 1/8 (B) 1/2 (C) 1/6	(A) 68.4 W (B) 45.8 W (C) 10.6 W (D) 25.3 W	
40. A particle of mass 10 mg and having a charge of 30 pc is projected with its velocity perpendicular to the magnetic field, the time and of 125 mT. Assuming that the particle is projected with its velocity perpendicular to the magnetic field, the time and (A) 1/8	distance magnetic field	50. The half life of a radioactive nuclide is 20 hrs. The fraction of the original activity that will semant activity that
of 125 m 1. Assuming the original position for the first time is	40. A particle of mass 10 mg and having a charge of 50 μC is projected with a speed of the magnetic field, the time after	
(A) 14s (B) 12s (C) 10s (D) 8s 41. If the frequency of sound waves produced by a siren increases from 400 Hz to 1200 Hz while the amplitude remains constant, then the ratio of intensity of 1200 Hz to the 400 Hz wave will be (A) 1:3 (B) 3:1 (C) 9:1 (D) 1:9 42. A convex lens with radii of curvature R ₁ =R ₂ is immersed in water. Assuming that the refractive indices of glass and water are 3/2 and 4/3 respectively, its focal length f ₁ in comparison to that in air, f, is [5] 200	of 125 m1. Assuming this region position for the first time is	f.)
41. If the frequency of sound waves produced by a siren increases from 400 Hz to 1200 Hz while the amplitude remains constant, then the ratio of intensity of 1200 Hz to the 400 Hz wave will be (A) 1:3 (B) 3:1 (C) 9:1 (D) 1:9 (A) convex lens with radii of curvature R ₁ =R ₂ is immersed in water. Assuming that the refractive indices of glass and water are 3/2 and 4/3 respectively, its focal length f ₁ in comparison to that in air, f, is [5] 200	(r) 12 c (C) 10 c (D) 03	Y- Ac 1 - 12.
41. If the frequency of sound waves produced by a siren increases from 400 Hz to 1200 Hz while the summary constant, then the ratio of intensity of 1200 Hz to the 400 Hz wave will be (A) 1:3 (B) 3:1 (C) 9:1 (D) 1:9 (A) 1:3 (C) 9:1 (D) 1:9 (A) 1:3 (D) 1:9 (D) 1:9 (E) 22 ×10 (D) 1:9 (D) 1:9 (E) 21 ×10 (E) 21 ×10 (E) 3: Immersed in water. Assuming that the refractive indices of glass and water.	(A) 143	2 x18 = F x 800 20 11 -)
constant, then the ratio of intensity of 1200 Hz to the 400 Hz wave will be (A) 1:3 (B) 3:1 (C) 9:1 (D) 1:9 (A) 2:3 (B) 3:1 (C) 9:1 (D) 1:9 42. A convex lens with radii of curvature R ₁ =R ₂ is immersed in water. Assuming that the refractive indices of glass and water are 3/2 and 4/3 respectively, its focal length f ₁ in comparison to that in air, f, is [5] 200	41 If the frequency of sound waves produced by a siren increases from 400 Hz to 1200 Hz while the ampunity	multiple of the medical depth
(A) 1:3 (B) 3:1 (C) 9:1 42. A convex lens with radii of curvature R ₁ =R ₂ is immersed in water. Assuming that the refractive indices of glass and water are 3/2 and 4/3 respectively, its focal length f ₁ in comparison to that in air, f, is [5] 100 [6] 21 (C) 9:1 [7] 21 (C) 9:1 [7] 22 (2.7) 8 [6] 20 (C) 9:1 [7] 21 (C) 9:1 [7] 22 (2.7) 8 [7] 22 (2.7) 8 [8] 3:1 [9] 3:1 [9] 3:1 [9] 3:1 [9] 3:1 [9] 4/3 respectively, its focal length f ₁ in comparison to that in air, f, is	Constant, then the 1.0	lo l
42. A convex lens with radii of curvature R ₁ = R ₂ is immersed in water. Assuming that the large 3/2 and 4/3 respectively, its focal length f ₁ in comparison to that in air, f, is	(A) 1:3 (B) 3:1 (C) 9:1 (D)	WAIN XII
are 3/2 and 4/3 respectively, to 100	42. A convex lens with radii of curvature $R_1 = R_2$ is interested in water. Assuming that the tenses in the tens	UI-QP-01
(B) $f_1 = 2f$ (C) $f_1 = f/4$ (D) $f_1 = f$	arc 3/2 ard 7/2 ard	(1) 23 (2.7 6 10) 800
(A) $f_1 = 4f$ (B) $f_1 = 2f$ (C) $f_1 - f_1 f_2$ (D) $f_1 = 4f$		-10

	11 /	CH	EM	121	DI	/5
SECTION -	Ш	111	H-SIMI	101	1/1	4

SECTION - IL (CHEMISTRY)	64. Which of the following is the definition of chirality?
51. If orbital quantum number (l) has values 0, 1, 2 and 3, deduce the corresponding value of principal quantum number, n. (C) 3	 (A) The superimposability of an object on its mirror image (B) A molecule with a mirror image (P) The non-superimposability of an object on its mirror image (D) A molecule that has a carbon atom with four different substituents
52. The correct order of first ionization energy for the following elements, Hydrogen (H), Helium (He) Lithium (Li) Boron (B) is: (A) H <he (c)="" <="" b="" h<he="" li=""> B (D) H>He > Li > B (E) H<he> Li > B (D) H>He > Li > B (E) H<he> Li > B (E) H</he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he></he>	65. The Williamson ether synthesis produces ethers by reacting an (A) alcohof with a metal (B) alkoxide with a metal (C) alkyl halide with a metal (B) alkoxide with an alkyl halide (C) alkyl halide with a metal (C) alkyl halide with a metal (D) alkoxide with an alkyl halide
53. Use Molecular Orbital theory to determine the bond order in each of species, $[He_2]^4$ and $[He_2]^{2^4}$? (A) 1, 2 (B) 0, $\frac{1}{2}$ (C) $\frac{1}{2}$, 1 (D) 0, 1 54. What hybridization scheme would be appropriate for the C atom in $\{CO_3\}^{2-2}$?	the only alkene product? CH ₃ ·CH ₂ -CH=CH-CH ₃ (A) 1-Chloropentane (C) 3-Chloropentane (D) 1-Chloro-2-methylbutane
(A) sp (B) sp (C) sp (D) pare potentials 55. A metallic ion 'M' reacts with chloride ion to form white precipitate which is readily soluble in aqueous ammonia. Identify 'M'? (A) Cu ² (B) Ni ² (C) Co ² (D) Ag' (A)	67. The Wittig reaction is a reaction between a carbonyl compound (aldebyde or ketone only) and a species known as a phosphoniumylide. What is the expected final product in the Wittig reaction? (A) Alkanes (C) Alkanes (D) Amines 68. The compressibility factor (z) for an ideal gas is
(A) Phosphate salt (C) Ammonium salt (D) All of the above as 1 as 0 as 1 as 0	(A) Zero (B) > f (C) < 1 69. Colloids can
57. Of the following properties about thiosulphate, which one is not applicable? (A) Oxidising agent (C) Used in photography (B) Reducing agent (C) Used in photography (D) Complexing agent	(B) not scatter light (C) adsorb heat (D) evolve heat
58. Identify a mineral for the major source of boron from the following list? (B) Bauxite (C) Cryolite (D) Feldspars	The electrochemical cell stops working after some time because (A) Electrode potential of both the electrodes becomes zero (B) One of electrodes completely vanishes
59. Which element in Group IV can show high catenation property? (A) Silicon (B) Germanium (C) Lead (P) Carbon	(C) Electrode potential of both electrodes equalizes (D) The reaction reverses its direction 71. Which out of the following is an intensive property?
60. Chlorination of alkanes is an example of (A) Substitution (C) Free radical (D) Addition	(A) entropy (C) density (D) volume
61. What is the name of the given reaction of preparation of aldehyde? CH ₃ COCI H ₂ - CH ₃ CHO + HCI Pd/BaSO ₄	72. For the reaction $H_2 + I_3 \rightleftharpoons 2HI$, the relation between equilibrium constants $K\rho$ and Kc is (A) $K\rho / Kc$ (B) $K\rho < Kc$ (C) $Kc > K\rho$ (B) $Kp < Kc$ (C) $Kc > K\rho$ (C) $Kc > K\rho$ (D) $Kp = Kc$
(A) Reimer-Tiemann reaction (B) Cannizzaro reaction (C) Reformatsky reaction (D) Rosenmund reaction	(A) 2 (B) 3 (C) 4
62. Reaction of aqueous sodium hydroxide on chlorobenzene gives which of the following products? (A) o-chlorophenol (C) phenol (D) no reaction	74. A crystal with $a \neq b \neq c$ and $a = \beta = \gamma = 90^{\circ}$ is (A) Tetragonal (C) Monoclinic (B) Trigonal (C) Monoclinic (D) Orthorhombic (E) $a \neq b \neq C$
63. Which of the following compounds gives a secondary alcohol upon reaction with methylmagnesium bromide? (A) Butyl formate (C) 3-pentanone (D) Methyl butanonte (D) Methyl butanonte	75. The coordination number for body center cubic (BCC) system is (A) 6 (C) 10 (D) 12 [7]

SECTION - III (MATHEMATICS)

- 76. If A is a finite set consisting of a elements, then the number of reflexive relations on A is
 - (A) $2^{\frac{1}{2}(n^2-n)}$

(A) one - one

- (D) 2n2+n
- 77. The function f: N →N, where
 - $\frac{1}{2}(n+1)$, if n is odd -n, if niseven
- 20b x Vab = 76 (B) many - one
- (C) one one onto 78. The set of all real numbers x for which $x^2 - |x + 2| + x > 0$ holds, is
 - (A) (-00,-2) U(2,0)

- (B) $\left(-\infty, -\sqrt{2}\right) \cup \left(\sqrt{2}, \infty\right)$
- (C) (-0,-1) U(1,0) 79. The nth term of the series 2+4+7+11+.... is

(C) $\frac{1}{2}(n^2+2n+2)$

 (n^2+n+2) (D) $\frac{1}{2}(n^2+3n+2)$

(D) many - one onto

- 80. If the ratio of the H.M. and G.M. between two numbers a and b is 4:5, then a: b is
 - JA) 1:2 or 2:

- (B) 1:3 or 3:1 (D) 2:3 or 3:2
- 81. The sum of the infinite series $x + \frac{1+2}{2!}x^2 + \frac{1+2+3}{3!}x^3 + \dots$ equals

- (B) $\frac{1}{2}x(x+2)e^x$
- (D) x(x+2) ex 245 ! [5] = 4:5 x+6 : (5) = 1/.8 Vah= = 2ab (ab - 4)
- 82. If A = -sinx cosx
 - cos 2x sin 2x
- 83. The existence of unique solution of the system of linear equations x + y + z = a, 5x y + bz = 10, 2x + 3y z= 6 depends on

[8]

- (A) a only
- (C) a but not b

- (B) b only (D) a and b both

- 84. The letters of the word "ATTRACTION" are written randomly. The probability that no two T's appear
 - (A) 15

- 85. If 0 < P(A) < 1, 0 < P(B) < 1 and P(A B) P(A) P(B) P(A) P(B), then
 - (A) P(B/A) = P(B) P(A)
 - (B) $P\{(A \cup B)\} = P(A') + P(B')$
 - P {(AUB)] = P(A') P(B') (D) P(A UB) = P(A) + P(B)

- MAUD) = P(A) LP(B) PFA HA
- 86. If α , β are different values of x satisfying the equation a $\cos x + b \sin x = c$, where a, b and c are constants. then $\tan \left(\frac{\alpha + \beta}{2} \right)$ is
 - (A) a+b

- 87. If $z + z^{-1} = 1$, then $z^{160} + z^{-160}$ is equal to
 - (C) -i

- The value of $\lim_{x\to 0} \frac{d}{dx} \int_0^{x^2} \sec^2 x \, dx$ $\frac{\mathrm{d}}{\mathrm{d}x}(x\sin x)$
 - (A) 0

- 89. The value of f(0) for the function $f(x) = \frac{1}{x} \left[log(1+x) log(1-x) \right]$ to be continuous at x = 0 should be
 - $\{C\}$ -2

- (D) 2
- 90. The minimum value of $\frac{1}{x} \log x$ in the interval $[2, \infty]$ is

 - (C) $\frac{1}{e}$ $\frac{1}{x} \frac{1}{x} \log x$ (D) minimum value does not exist
- $\frac{\cos 2x}{-\sin 2x} \frac{\sin 2x}{\cos x} = \frac{1}{\sin 2x} \frac{\cos x}{\cos x} = \frac{\sin 2x}{\sin 2x} \frac{\sin 2x}{\cos x} = \frac{\sin 2x}{\sin 2x} \frac{\sin 2x}{\sin 2x}$

- 92. The solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, when y = 0 at x = -1 is
 - (A) $e^{\frac{1}{2}(1+x^2)}$ (B) $e^{\frac{1}{2}(1+x^2)}$
- (C) $e^{\frac{1}{2}(1+e^2)}+1$ (D) None of these

2

[9]

UI-QP-01

- AC 330 LANCE 1 1 + 1 + 5 1 1 1 + 5 WINDLAND
 - Strack & My presting one (")

- deferred a (th)
- Com a companie proprie
- whose one of the ends of the minor axis is the point B If

to public the to spin warm the wife . We - 1921.

- = 1 at the point 3,3 cox 0, sin 0 , 0 <0 1. The sum of the intercepts on the axes made by the tangent is unfailment if q is equal to

- a, b and c are three sections such that $\bar{a} = 1$. b = 2 and $\bar{c} = 3$. Then a, b + b, c + c, a is equal to

- Let a, b and c be three vectors, then a x (b xe) = (a x b) xe if

- (A) 6×6×2=0
- (5) bre=axb

- (O 2 = 3 %
- 100 2×3=0×2

- 45. A besty of 6 kg rests in limiting equilibrium on an inclined plane whose slope is 30'. If the plane is raised to a slope of 66°, then the force along the plane to support the body is

- A stone is dropped from the top of a cliff 40 m high and at the same instant another stone is shot vertically un from the foot of the cliff with a velocity 20 m per sec. Both stones meet each other after
 - (4) -80

(C) 2 sec

- (D) 4 sx
- 10. If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection

MCTRIN - IN (BROLOGY)

- 101 Double fertilization is a distinctive feature of
 - (A) Champageon
 - (C) Alesee

- (B) Angiosperm (E) Encephysia
- (c) Pollination in Ficus plant is dependent on
 - (A) A: (C) Insect

- restable (El)
- (D) Bird
- (d). Name the scientist's who experimentally demonstrated that "DNA is the genetic material."
 - (A) Forderick Griffish
 - (B) Chughi Avers
 - (C) Hersbey and Chase
 - (D) G.N. Ramochamirae
- 104. Which ecosystem has the maximum biomass."
 - (A) Lake econstem
 - (B) Pand consistem
 - (C) Grassland conviction
 - (D) Ferest econstem
- 105. If there are 300 bases in an RNA which codes for a protein with 100 amino acids, and a base at position 162 is deleted such that the length of RNA become 209, how many codons will be aftered.
 - (A) 47 (C) 99

- 180 48 4Dh 300
- 10s. The DNA fragment separated on an agaryse gel can be visualized by staining with
 - (A) Bromonhenol blue

(8) Xylene evanol

(C) Ethidium bermide

- (D) EDTA
- 107. Premature fruit and kaf dropping can be minimized by the application of
 - (A) Ethylene

(S) Auxin

(C) Gibberellic acid

- (D) Chrokinins
- 100. What is the water potential of pure water in an open tlask."
 - (A) +1 (0) 0.

- (D) 1(0)
- 109. Cerebral materia is caused by
 - (A) Plasmadium vivat
 - (B) Plesmedium falcinarum
 - (C) Plasmedian malarise
 - (D) Plasmadam coule
- 110. Which species does not release oxygen during photosynthesis."
 - (A) Ocas

(B) Vista

(C) Fixus

- (D) Heliobacteria
- 111. Sperms can be stored for several years in liquid mirrogen with a temperature of
 - 922 (A) JE381- (D)

- (8) 2190
- 29001- (C)
- 112. Concentrations of which vitamin increases, while the unilk is converted into curri by the process of Remountation
 - (A) Vitamin A (C) Vitamin Bo

- (B) Vitumin K
- (D) Vitamin (

113 Marginal placentation is present in	(B) Tomato
(A) Lemon	(D) Cucumber
(C) Per	
114 On 11th Murch 2020, the World Healt	b Organisation characterized COVID-19 outbreak as
(A) Endemic	(b) randemic
(C) Epidemic	(D) Outbreak
115. The most significant percentage of im	angoolobulin in cow's milk is
	(B) IgM
(A) IgA	(D) IgE
(C) 1gG	
116. What is the lifespan of RBC in a healt	by homan?
(A) 3 days	(B) 120 days (D) 30 days
(C) 34 hours	
117. Name the correct taxonomic hierarchy	in the classification of the plant kingdom
(A) Phylum-order-genus-Kingdom-fami	ly-class-species
(D) Phylum Kingdom-order-class-famil	y-genus-species
(C) Phylogrander genus family-Class-50	ecies-kinggion
(D) Kingdom-Phylum-class-order-famil	ly- genus- species
18. Acceptable noise pollution levels in res	idential areas of India ranges between
	(B) 16-35 dB
(A) 10-15 dB	(D) 70-90 dB
(C) 45-55 dD	
19. The secondary cell wall of the plant is l	ocated
(A) Outside of the primary wall	
(B) Inside the primary wall	
(C) loside the plasma membrane	
(D) Justide the mitochondrial membrane	
Co. Hojpologous organs are	
(A) The similar basic structure and differ	ent in function
(B) Different in basic structure and similar	or in function
(C) Similar basic structure with similar for	metion
(D) Different basic structure with a differ	ent function
Leisbmaniasis a disease caused by a pro	tozogo parasite transmitted by biting of
(A) Masquito	(B) Wanp
(C) Sand fly	(D) Bee
2. Which blood cells secrete antibodies?	(5) Fasingulille
(A) Monocytes	(B) Easimphils (B) Neutrophils
(C) Lymphneytes	(E) recuropinos
1. The lease in the human eye is	
(A) Concave	(B) Biconcave
(C) Censes	(D) Bicsuvex
Which of the following is called as itoyol	disease?
(A) 21 trisony	(B) Color blindness
	(D) Sielle cell anemia
(C) Hasmaphilla	(D) Siekle cell anemia
(C) Hasmaphilla In the Unite Weinberg equilibrium equ	attan, the homosygous mutant is represented as
(C) Hasmaphilla	oting, the homosygous mutant is represented as

SPACE FOR ROUGH WORK drer=211-12) 1= = 161 = 161 = 16:4 y=nx+Vanz+1 Jah 25 12 Ket 1154 Augrosoxi + sinos=1 a+25 Ma a-Vi. Treaso + actions =9 165 JE 48050 = 9 x = 1 = = soa = not + 100