

Deploying CNN based vision solutions on a \$3 microcontroller

Greg Lytle May 22, 2018

Au-Zone Technologies Inc.

Au-Zone Technologies is a leading provider of development tools and enabling IP used for the design of intelligent embedded vision products and solutions.

Our architecture agnostic development tools (eCV SDK and DeepView) enable our customers quickly to develop and securely deploy machine learning solutions on a range of embedded hardware.

Design Challenge

Toaster Oven Example

Requirements:

- Embedded image capture and classification
- Image Sensor
- LCD & Buttons
- Compute & Memory for vision algorithm and application
- Low BOM cost

Design Considerations

Neural Network Complexity Required Memory Required Accuracy Device Camera Power Selection Consumption Interfaces Cost

Architecture Options

Many Options?

Market Drivers

- Is this practical?
- Why should you care?

Image Classification enabled

Low Incremental Cost

Constraints of Cortex M vs Cortex A

CPU Performance & Memory

Much Lower raw processor performance

Significant Memory Constraints

Network Design

Network Model Design Flow

Network Layer Types

Fully Connected Layer

Convolutional Layer

Fully Connected Operation

One Weight required for every connection

8-bit quantization saves on FLASH size with low impact on error

Parameter	Resource	Size	8bit	32 bit float	Typical
Input Buffer	RAM	6 x 6 x 32	1.1 KB	4.6 KB	4.6 KB
Weights	FLASH	6 x 6 x 32 x 1 x 1 x 75	86.4 KB	345.6 KB	86.4 KB
Output	RAM	1 x 1 x 75	.075 KB	3.00 KB	3 KB
Total Memory			87.6 KB	351 KB	7.6 KB RAM 86.4 KB FLASH
MAC Operations	CPU	(6 x 6 x 32) x (1 x 1 x 75)		86.4 K	86.4K

Convolution Operation

3x3 Convolution x 16 channels

Paramete r	Resource	Size	8bit	32 bit float	Typical
Input Buffer	RAM	26 x 26 x 3. (24x24x3 plus padding)	2.1 KB	8.1 KB	8.1 KB
3x3 Kernel	FLASH	3 x 3 x 3 x 16	0.42 KB	1.73 KB	0.42 KB
Output	RAM	24 x 24 x 16	9.2 KB	36.8 KB	36.8 KB
Total Mem			11.6 KB	46.7 KB	0.42 KB FLASH 44.9 KB RAM
MAC Ops	CPU	(24 x 24 x 3) x (3 x 3 x 16)		248.8 K	

Comparisons using GTSRB Data Set

GTSRB-

- German Traffic Signs in the wild
- 39K Training Samples
- 12.6K Testing Samples
- 43 classes of signs
- Cropped images 24 x 24 x 3

CNN with Fully Connected Layers

Model FL	_ASH
Minimum	RAM
Minimum	Cache
Optimum	Cache

2 MB	MAC Operations	~2M
74 KB	Weights	488K
2 KB	Layers	9
74 KB	Accuracy	94.9

Reduced complexity

Model FLASH
Minimum RAM
Minimum Cache
Optimum Cache

2 M → 195 KB MAC Operations 74 KB Weights 2 KB Layers

74 KB Accuracy

~2M 488K→ 48K 9 → 8

94.9 **→** 92.5%

Fully Convolutional Network (FCN)

Model Size FLASH	109 KB	MAC Operations	~2 M
Minimum RAM	72 KB	Weights	26 K
Minimum Cache	2 KB	Layers	9
Optimum Cache	74 KB	Accuracy	93.3%

Convolutional Network

Model FLASH
Minimum RAM
Minimum Cache
Optimum Cache

109 →54 KB 72 KB 2 K→.57 KB 74 K→37 KB MAC Operations
Weights
Layers
Accuracy

~2M 26K→13K 9→7 93.3 → 92.7%

Convolutional Network FCN_20

(example for 32-bit float Implementation)

Optimum Cache

Accuracy

 $74 \rightarrow 8 \text{ KB}$

 $93.3 \rightarrow 91.5\%$

Target Implementation

Implementation

How to test and deploy on target hardware? Requires optimized inference implementation

Vendor framework with generic network support

- Design flow to benchmark and iterate quicklywith different network designs
- Profile tools for fitting designs
- Support for network update

Custom C code for selected network

- High level of optimization is possible
- Additional effort to prototype and implement

Challenges to address

- Fixed memory allocation at compile time
- Available contiguous memory on target microcontroller?
- Buffer management for best RAM utilization
- Efficient image sensor pipeline
- Validation of accuracy on the target

Fully Convolutional (FCN) – RAM Optimization

Minimum RAM is determined by largest layer for linear network Non-linear networks require RAM buffer management

Image Sensor Pipeline

Sensor	Н	V	Pixels	16bit (RGB565)
VGA	640	480	307 K	614 KB
QVGA	320	240	77 K	154 KB
QQVGA	160	120	19K	38 KB

- Use Binning or Scaling to reduce Image sensor buffer
- Use DMA to minimize slow memory buffer copies
- Use a monochrome sensor if color is not required for application

Benchmark Results

GTSRB Inference Time (ms)

Benchmark Results

Areas for further Optimization

- Implement networks with 8-bit /16-bit arithmetic for devices that do not have hardware FPU support
- Cloud integration for distributed edge and network-based solutions where connectivity is practical

Validation on target demo

Conclusion

- IoT-embedded vision using CNNs is practical on very low-cost microcontrollers
- 2. An appropriate network design is required for design and target fit
- Memory optimization techniques should be carefully implemented
- 4. Specific part selection is driven by performance/accuracy and other system requirements
- 5. Optimized embedded inference code and tools can accelerate implementation

Further Resources

- Drop by Au-Zone booth 802 for further demos and details
- Software Frameworks and Toolsets for Deep Learning-based Vision Processing
- Demonstration of the DeepView ML Toolkit for Embedded Platforms
- www.embeddedml.com/deepview
- ARM CMSIS NN
- NXP i.MX RT Series: Crossover Processor
- NXP Kinetis® K Series:M4 Core MCU

Backup Slides

Data Set Curator and Augmentation

Network Design with profile details

Network Training

Network Validation on Host

Network Validation on Target

	🚜 Run validatio	on on target		
Device Selection				
Remote Devices	FRDM64 [http://192.168.1.72:80]	1	Add Device	Remove
Validation Feedback				
Complete Testing Set	Test Samples 1	○ Generate PDF R	eport	STOP
	Validation Preview L	ayers Inference Time		
	251_00251.ppm.png	100		
Label:		234		sik
Inferred Label: Inference Time (ms):	7			E Are
		HSI	OP	
Device	FRDM64 [http://192.168.1.72:80]	5	1	
Wrong Classifications	202	1	A Partie	AS AS
Good Classifications	1294			7/4
Accuracy	86.4973	10000000000000000000000000000000000000		
Inference Time (ms):	28			
Layer Ops:	27		0	

Network Profile on Target

