

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

ESCUELA DE POSGRADO

MAESTRÍA EN ESTADÍSTICA

ACTIVIDAD 2 ALGEBRA LINEAL

MATEMATICA AVANZADA

AUTOR:

Br. KEVIN HEBERTH HAQUEHUA APAZA

DOCENTE:

Dr. EDISON MARCAVILLACA NIÑO DE GUZMAN

CUSCO - PERÚ

ENERO - 2025

1. Problema

Demuestre que S es un subespacio de \mathbb{R}^3 , donde

$$S = \left\{ \mathbf{x} \in \mathbb{R}^3 : \mathbf{x} = \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \ \alpha, \beta \in \mathbb{R} \right\}.$$

1.1. Solución

Para demostrar que S es un subespacio vectorial de \mathbb{R}^3 , comprobemos que cumpla la siguiente definición

Definición. Espacio vectorial en \mathbb{R}^n

Un conjunto S no vacío de \mathbb{R}^n , es llamado un espacio vectorial en \mathbb{R}^n si verifica las siguientes condiciones

- i) Para $\mathbf{x}, \mathbf{y} \in S$, entonces $\mathbf{x} + \mathbf{y} \in S$
- ii) Para $\alpha \in \mathbb{R}$, $\mathbf{x} \in S$, entonces $\alpha \mathbf{x} \in S$

1.1.1. Primera condición

Sean $\mathbf{x}, \mathbf{y} \in S$, expresados de la siguiente manera:

$$\mathbf{x} = \alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{y} = \alpha_2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix},$$

Donde $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, realizemos la siguiente operación $\mathbf{x} + \mathbf{y}$ el cual debe pertenecer a S

2

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} 1 \\ \alpha_1 \\ 2 \\ 3 \end{pmatrix} + \beta_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{pmatrix} \alpha_2 \\ 2 \\ 3 \end{bmatrix} + \beta_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

En esta parte se puede agrupar los vectores $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ como términos comúnes

$$\mathbf{x} + \mathbf{y} = (\alpha_1 + \alpha_2) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + (\beta_1 + \beta_2) \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Se sabe que si $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ entonces $\alpha_1 + \alpha_2 \in \mathbb{R}$, de igual forma $\beta_1 + \beta_2 \in \mathbb{R}$, entonces se cumple que $\mathbf{x} + \mathbf{y} \in S$

1.1.2. Segunda condición

Sea $x \in S$, esto es

$$\mathbf{x} = \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \alpha, \beta \in \mathbb{R}$$

Multipliquemos por un escalar $\gamma \in \mathbb{R}$:

$$\gamma \mathbf{x} = \gamma \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$$

$$\gamma \mathbf{x} = \gamma \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \gamma \beta \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Se sabe que si $\alpha, \beta, \gamma \in \mathbb{R}$ entonces $\alpha \gamma \in \mathbb{R}$, de igual forma $\beta \gamma \in \mathbb{R}$, entonces se cumple que $\gamma \mathbf{x} \in S$

CONCLUSIÓN: S es un subespacio vectorial de \mathbb{R}^3

2. Problema

Considere el siguiente conjunto de vectores en \mathbb{R}^3 :

$$X = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Demuestre que uno de los dos vectores

$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

pertenece a gen(X), mientras que el otro no.

Encuentre un número real de λ tal que

$$\begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix} \in gen(X)$$

2.1. Solución

Para demostrar que uno de los $\mathbf{u}, \mathbf{v} \in gen(X)$ se debe cumplir la siguiente definición

Definición. Espacio generado por los vectores

El conjunto de todas las posibles combinaciones lineales de v_1, v_2, \dots, v_r es llamado espacio generado gen(X) por v_1, \dots, v_n si

$$gen(v_1, \dots, v_n) = \{\alpha_1 v_1 + \dots + \alpha_r v_r / \alpha_i \in \mathbb{R}, i = 1, \dots, r\}$$

2.1.1. Para el vector u

Se debe cumplir la siguiente combinación lineal

$$\mathbf{u} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Reemplanzado por el vector u se tiene la siguiente igualdad

$$\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Se tienen las siguientes combinaciones lineales

$$\alpha_1 - 2\alpha_2 = -1 \tag{1}$$

$$\alpha_2 = 2 \tag{2}$$

$$-\alpha_1 + \alpha_2 = 1 \tag{3}$$

Del cual de (2) se tiene que $\alpha_2 = 2$, reemplazemos estos valores en (1) y (3):

■ Reemplanzado en (1):

$$\alpha_1 - 2\alpha_2 = -1$$

$$\alpha_1 - 2(2) = -1$$

$$\alpha_1 = 3$$

Se observa que $\alpha_1 = 3$, y cumple la igualdad en **u**, ahora reemplazemos $\alpha_1 = 3$ y $\alpha_2 = 2$ en (3)

■ Reemplanzado en (3):

$$-\alpha_1 + \alpha_2 = 1$$

 $-(3) + (2) = -1 \neq 1$

Se observa que no cumple la igualdad.

Por lo tanto $\mathbf{u} \notin gen(X)$

2.1.2. Para el vector v

Se debe cumplir la siguiente combinación lineal

$$\mathbf{v} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

6

Reemplanzado por el vector v se tiene la siguiente igualdad

$$\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \alpha_2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Se tienen las siguientes combinaciones lineales

$$\alpha_1 - 2\alpha_2 = -1 \tag{1}$$

$$\alpha_2 = 1 \tag{2}$$

$$-\alpha_1 + \alpha_2 = 1 \tag{3}$$

Del cual de (2) se tiene que $\alpha_2 = 1$, reemplazemos estos valores en (1) y (3):

■ Reemplanzado en (1):

$$\alpha_1 - 2\alpha_2 = -1$$

$$\alpha_1 - 2(1) = -1$$

$$\alpha_1 = 1$$

Se observa que $\alpha_1 = 1$, y cumple la igualdad en **v**, ahora reemplazemos $\alpha_1 = 1$ y $\alpha_2 = 1$ en (3)

■ Reemplanzado en (3):

$$-\alpha_1 + \alpha_2 = 1$$

$$-(1) + (1) = 0 \neq 1$$

Se observa que no cumple la igualdad.

Por lo tanto $\mathbf{v} \notin gen(X)$

CONCLUSIÓN: Ninguno de los vectores $\mathbf{u}, \mathbf{v} \notin gen(X)$

2.2. Encontrar un número real λ

De igual forma igualamos la combinación lineal e igualamos al vector para hallar el valor de λ Se tienen las siguientes combinaciones lineales

$$\alpha_1 - 2\alpha_2 = 1 \tag{1}$$

$$\alpha_2 = 1 \tag{2}$$

$$-\alpha_1 + \alpha_2 = \lambda \tag{3}$$

Del cual de (2) se tiene que $\alpha_2 = 1$, reemplazemos estos valores en (1) y (3):

■ Reemplanzado en (1):

$$\alpha_1 - 2\alpha_2 = 1$$

$$\alpha_1 - 2(1) = 1$$

$$\alpha_1 = 3$$

Se observa que $\alpha_1 = 3$ y $\alpha_2 = 1$, reemplazemos estos valores en (3)

■ Reemplanzado en (3):

$$-\alpha_1 + \alpha_2 = \lambda$$

$$-(3) + (1) = \lambda$$

$$\lambda = -2$$

El valor de
$$\lambda$$
 para que el vector $\begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix} \in gen(X)$ es -2

CONCLUSIÓN: El número real de λ es -2

3. Problema

Verifique si cada uno de los siguientes conjuntos de vectores son linealmente independientes:

a)

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}.$$

b)

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}.$$

c)

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} \right\}.$$

d)

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ -4 \\ -1 \end{bmatrix} \right\}.$$

3.1. Solución

Para verificar que uno de los conjuntos de vectores son linealmente independientes de la definición de **Independencia lineal** tomamos los siguientes enunciados:

- El conjunto $A = \{v_1, \dots, v_r\}$ de vectores $v_i \in \mathbb{R}^n$, es llamado conjunto linealmente independiente si los vectores v_1, \dots, v_r son linealmente independientes.
- Sea $A = \{v_1, \dots, v_r\} \subset \mathbb{R}^n$ y sea $A = [v_1 \quad v_2 \quad \dots \quad v_r]$ una matriz de orden nxr. A es linealmente independiente $\iff N(A) = \{0\}$

3.1.1. Para a)

Tenemos los siguientes vectores

- $v_1 = (1, 2, 3)$
- $v_2 = (1, 0, -1)$
- $v_3 = (-2, 1, 1)$

y el conjunto $A = \{v_1, v_2, v_3\}$ expresando el conjunto en una matriz quedaría de la siguiente forma

$$A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \Longrightarrow N(A) = \{\mathbf{0}\}?$$

$$N(A) = \{\mathbf{x} \in \mathbb{R}^3 / A\mathbf{x} = \mathbf{0}\}$$

La solución del sistema lineal estaría representado de la siguiente manera:

$$\begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

El cual nos da el siguiente sistema de combinaciones lineales

$$x_1 + x_2 - 2x_3 = 0 (1)$$

$$2x_1 + x_3 = 0 (2)$$

$$3x_1 - x_2 + x_3 = 0 (3)$$

De lo cual en la ecuación (2) se tiene que $x_3 = -2x_1$, si reemplazamos este valor en la ecuación (1) se tiene

$$x_1 + x_2 - 2x_3 = 0$$

$$x_1 + x_2 - 2(-2x_1) = 0$$

$$x_1 + x_2 + 4x_1 = 0$$

$$x_2 = -5x_1$$

Reemplanzado estos valores en (3)

$$3x_1 - x_2 + x_3 = 0$$

$$3x_1 - (-5x_1) + (-2x_1) = 0$$

$$6x_1 = 0$$

$$x_1 = 0$$

Reemplazando $x_1 = 0$ en (2) se tiene que $x_3 = 0$. Ahora por último si reemplazamos estos valores en (1) o (3) se tiene que $x_2 = 0$. Por lo que el vector \mathbf{x} estaría expresado de la siguiente forma

$$\mathbf{x} = (0, 0, 0)$$

CONCLUSIÓN: A es linealmente independiente

3.1.2. Para b)

Tenemos los siguientes vectores

- $v_1 = (1, 2, 3)$
- $v_2 = (4, 5, 6)$
- $v_3 = (7, 8, 9)$

y el conjunto $B = \{v_1, v_2, v_3\}$ expresando el conjunto en una matriz quedaría de la siguiente forma

$$B = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \Longrightarrow N(B) = \{\mathbf{0}\}?$$

$$N(B) = \{\mathbf{x} \in \mathbb{R}^3 / B\mathbf{x} = \mathbf{0}\}$$

Reduzcamos la matriz escalonada, mediante el programa nos da la siguiente matriz:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

La solución del sistema lineal estaría representado de la siguiente manera:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

El cual nos da el siguiente sistema de combinaciones lineales

$$x_1 - x_3 = 0 (1)$$

$$x_2 + 2x_3 = 0 (2)$$

De lo cual en la ecuación (1) se tiene que $x_1 = x_3$, de la misma forma se tiene mediante la ecuación (2) que $x_2 = -2x_3$ y si reemplazamos x_3 por x_1 en la ecuación (2) se tiene que $x_2 = -2x_1$.

Expresando el vector \mathbf{x} en función de x_1 se tiene lo siguiente

$$\mathbf{x} = (x_1, x_2, x_3) = (x_1, -2x_1, x_1) = x_1(1, -2, 1)$$

CONCLUSIÓN: B no es linealmente independiente

3.1.3. Para c)

Tenemos los siguientes vectores

$$v_1 = (1, 2, 3, 4)$$

$$v_2 = (1, 1, 1, 1)$$

$$v_3 = (1, 3, 1, 2)$$

$$v_4 = (2, 1, 1, 2)$$

y el conjunto $C = \{v_1, v_2, v_3, v_4\}$ expresando el conjunto en una matriz quedaría de la siguiente forma

$$C = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 3 & 1 \\ 3 & 1 & 1 & 1 \\ 4 & 1 & 2 & 2 \end{bmatrix} \Longrightarrow N(C) = \{\mathbf{0}\}?$$

$$N(C) = \{\mathbf{x} \in \mathbb{R}^4 / C\mathbf{x} = \mathbf{0}\}$$

Reduzcamos la matriz escalonada, mediante el programa nos da la siguiente matriz:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La solución del sistema lineal estaría representado de la siguiente manera:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

El cual nos da el siguiente sistema de combinaciones lineales

$$x_1 = 0 \tag{1}$$

$$x_2 = 0 \tag{2}$$

$$x_3 = 0 (3)$$

$$x_4 = 0 \tag{4}$$

Expresando el vector x de la siguiente manera

$$\mathbf{x} = (x_1, x_2, x_3, x_4) = (0, 0, 0, 0)$$

CONCLUSIÓN: C es linealmente independiente

3.1.4. Para d)

Tenemos los siguientes vectores

- $v_1 = (1, 2, -1, 0)$
- $v_2 = (0, 1, 2, 1)$
- $v_3 = (2, 3, -4, -1)$

y el conjunto $D = \{v_1, v_2, v_3\}$ expresando el conjunto en una matriz quedaría de la siguiente forma

$$D = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ -1 & 2 & -4 \\ 0 & 1 & -1 \end{bmatrix} \Longrightarrow N(D) = \{\mathbf{0}\}?$$

$$N(D) = \{ \mathbf{x} \subset \mathbb{R}^4 / D\mathbf{x} = \mathbf{0} \}$$

Reduzcamos la matriz escalonada, mediante el programa nos da la siguiente matriz:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

La solución del sistema lineal estaría representado de la siguiente manera:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

El cual nos da el siguiente sistema de combinaciones lineales

$$x_1 + 2x_3 = 0 (1)$$

$$x_2 - x_3 = 0 (2)$$

De lo cual en la expresión (2) se tiene que $x_2 = x_3$, en la expresión (1) se tiene que $x_1 = -2x_3$.

Asimismo reemplazando x_3 por $-\frac{1}{2}x_1$ en la ecuación (2) se tiene que $x_2 = -\frac{1}{2}x_1$

Expresando el vector \mathbf{x} en función de x_1 se queda de la siguiente manera

$$\mathbf{x} = (x_1, x_2, x_3) = \left(x_1, -\frac{1}{2}x_1, -\frac{1}{2}x_1\right) = x_1\left(1, -\frac{1}{2}, -\frac{1}{2}\right)$$

16

CONCLUSIÓN: D no es linealmente independiente

4. Problema

Sea A una matriz mxn, y sea $X \subseteq \mathbb{R}^n$ un subconjunto arbitrario de \mathbb{R}^n . La imagen de X bajo la transformación de A se define como el conjunto

$$A(X) = \{A\mathbf{x} : \mathbf{x} \in X\}$$

- (a) Demuestre que $A(X) \subseteq C(A)$
- (b) Si X es un subespacio de \mathbb{R}^n , pruebe que A(X) es un subespacio de \mathbb{R}^m .

4.1. Solucion a)

Utilizando la definición de rango de una matriz definimos C(A)

Definición. Rango de matriz

El rango de una matriz A es la dimensión de C(A) donde

$$C(A) = \{ \mathbf{y} \in \mathbb{R}^m / A\mathbf{x} = \mathbf{y}, \text{ para algún } \mathbf{x} \in \mathbb{R}^n \}$$

Tomemos en cuenta que

$$A(X) = \{A\mathbf{x}/\mathbf{x} \in X \subseteq \mathbb{R}^n\}$$

Es decir que cualquier \mathbf{x} que pertenece a X, pertenece a \mathbb{R}^n

Ahora de C(A) se tiene

$$C(A) = \{ \mathbf{y} \in \mathbb{R}^m / A\mathbf{x} = \mathbf{y}, \text{ para algún } \mathbf{x} \in \mathbb{R}^n \}$$

Cada $A\mathbf{x} \in A(X)$ también está incluido en C(A) por lo que generalizando se tiene que

$$A(X) \subseteq C(A)$$

4.2. Solucion b)

Para probar tenemos que comprobar la misma definición que se planteo en el problema 1 acerca de espacio vectorial en \mathbb{R}^n

4.2.1. Primera condición

Sean los vectores $\mathbf{u}, \mathbf{v} \in A(X)$ de donde podemos expresarlos de la siguiente manera:

$$\mathbf{u} = Ax$$
 \mathbf{y} $\mathbf{v} = Ay$

Lo cual indica que $x, y \in X$ entonces tenemos que demostrar que $\mathbf{u} + \mathbf{v} \in A(X)$, desarrollando esto tenemos

$$\mathbf{u} + \mathbf{v} = Ax + Ay = A(x + y)$$

De lo cual se sabe que como $x, y \in X$, también $(x + y) \in X$, se observa que A(x + y) esta incluido en el conjunto, es decir $\mathbf{u} + \mathbf{v} \in A(X)$

4.2.2. Segunda condición

Sea $c \in \mathbb{R}$ un escalar, debemos demotrar que $c\mathbf{u} \in A(X)$, desarrollando se tiene la siguiente expresión

$$c\mathbf{u} = c(Ax) = A(cx)$$

De lo cual se sabe que como $x \in X$, también $cx \in X$, para todo $c \in \mathbb{R}$ se observa que A(cx) esta incluido en el conjunto, es decir $c\mathbf{u} \in A(X)$

CONCLUSIÓN: Si X es un subespacio de \mathbb{R}^n , A(X) es un subespacio de \mathbb{R}^m

5. Problema

Considere los siguientes vectores en \mathbb{R}^4 :

$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1$$

Aplique el procedimiento de Gram-Schmidt a estos vectores para obtener una base ortonormal de \mathbb{R}^4 .

5.1. Solución

Para obtener la base ortonormal utilizamos la definición de Ortogonalización de Gram-Schmidt

Definición. Ortogonalización de Gram-Schmidt

Sea $A = \{v_1, \dots, v_n\}$ una base para un espacio euclidiano

•
$$w_1 = v_1$$
 ; $u_1 = \frac{w_1}{\|w_1\|}$

•
$$w_2 = v_2 - proy_{w_1}(v_2)$$
 ; $u_2 = \frac{w_2}{\|w_2\|}$

•
$$w_3 = v_3 - proy_{w_1}(v_2) - proy_{w_2}(v_3)$$
 ; $u_3 = \frac{w_3}{\|w_3\|}$

:

•
$$w_n = v_n - proy_{w_1}(v_2) - \dots - proy_{w_{n-1}}(v_n)$$
 ; $u_n = \frac{w_n}{\|w_n\|}$

- $\{w_1, \dots, w_n\}$ es ortogonal.
- $\{u_1, \dots, u_n\}$ es ortonormal.

En nuestro caso tenemos los vectores en \mathbb{R}^4 de la siguiente manera $A = \{v_1, v_2, v_3, v_4\}$ donde los vectores estan expresados de la siguiente manera

- $v_1 = (1, 1, 1, 1)$
- $v_2 = (0, 1, 1, 1)$
- $v_3 = (0, 0, 1, 1)$
- $v_4 = (0, 0, 0, 1)$

Tenemos los siguientes ejemplos hasta n = 4

•
$$w_1 = v_1$$
 ; $u_1 = \frac{w_1}{\|w_1\|}$

•
$$w_2 = v_2 - proy_{w_1}(v_2)$$
 ; $u_2 = \frac{w_2}{\|w_2\|}$

•
$$w_3 = v_3 - proy_{w_1}(v_2) - proy_{w_2}(v_3)$$
 ; $u_3 = \frac{w_3}{\|w_3\|}$

•
$$w_4 = v_4 - proy_{w_1}(v_2) - proy_{w_2}(v_3) - proy_{w_3}(v_4)$$
 ; $u_4 = \frac{w_4}{\|w_4\|}$

- $\{w_1, w_2, w_3, w_4\}$ es ortogonal.
- $\{u_1, u_2, u_3, u_4\}$ es ortonormal.

En lo cual debemos hallar los vectores ortonormales u_i , desarrollemos de la siguiente manera

1. Hallar el primer vector ortonormal

Como $w_1 = v_1$, reemplazamos en la ecuación

$$u_{1} = \frac{w_{1}}{\|w_{1}\|}$$

$$u_{1} = \frac{v_{1}}{\|v_{1}\|}$$

$$u_{1} = \frac{(1,1,1,1)}{\sqrt{\langle v_{1},v_{1}\rangle}}$$

$$u_{1} = \frac{(1,1,1,1)}{\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}}$$

$$u_{1} = \frac{(1,1,1,1)}{\sqrt{4}}$$

$$u_{1} = \frac{(1,1,1,1)}{2}$$

$$u_{1} = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$$

2. Hallar el segundo vector ortonormal

En este caso primero tenemos que calcular w_2 el cual sería de la siguiente manera

$$w_{2} = v_{2} - proy_{w_{1}}(v_{2})$$

$$w_{2} = (0, 1, 1, 1) - \frac{\langle w_{1}, v_{2} \rangle}{\|w_{1}\|^{2}} w_{1}$$

$$w_{2} = (0, 1, 1, 1) - \frac{\langle (1, 1, 1, 1), (0, 1, 1, 1) \rangle}{2^{2}} (1, 1, 1, 1)$$

$$w_{2} = (0, 1, 1, 1) - \frac{0 + 1 + 1 + 1}{4} (1, 1, 1, 1)$$

$$w_{2} = (0, 1, 1, 1) - \frac{3}{4} (1, 1, 1, 1)$$

$$w_{2} = (0, 1, 1, 1) - \left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right)$$

$$w_{2} = \left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$$

Ahora calculemos el segundo vector ortonormal u_2

$$u_{2} = \frac{w_{2}}{\|w_{2}\|}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\langle w_{2}, w_{2} \rangle}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\left(-\frac{3}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2}}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\left(\frac{9}{16}\right) + \left(\frac{1}{16}\right) + \left(\frac{1}{16}\right) + \left(\frac{1}{16}\right)}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\left(\frac{12}{16}\right)}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\frac{2\sqrt{3}}{4}}$$

$$u_{2} = \left(-\frac{3}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}\right)$$

3. Hallar el tercer vector ortonormal

En este caso primero tenemos que calcular w_3 el cual sería de la siguiente manera

$$w_{3} = v_{3} - proy_{w_{1}}(v_{2}) - proy_{w_{2}}(v_{3})$$

$$w_{3} = (0, 0, 1, 1) - \frac{\langle w_{1}, v_{2} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle w_{2}, v_{3} \rangle}{\|w_{2}\|^{2}} w_{2}$$

$$w_{3} = (0, 0, 1, 1) - \left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right) - \frac{\langle \left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right), (0, 0, 1, 1)\rangle}{\left(\frac{2\sqrt{3}}{4}\right)^{2}} \left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$$

$$w_{2} = (0, 1, 1, 1) - \frac{0 + 1 + 1 + 1}{4} (1, 1, 1, 1)$$

$$w_{2} = (0, 1, 1, 1) - \left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right)$$

$$w_{2} = \left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$$

Ahora calculemos el segundo vector ortonormal u_2

$$u_{2} = \frac{w_{2}}{\|w_{2}\|}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\langle w_{2}, w_{2} \rangle}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\left(-\frac{3}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2}}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\left(\frac{9}{16}\right) + \left(\frac{1}{16}\right) + \left(\frac{1}{16}\right) + \left(\frac{1}{16}\right)}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\sqrt{\left(\frac{12}{16}\right)}}$$

$$u_{2} = \frac{\left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)}{\frac{2\sqrt{3}}{4}}$$

$$u_{2} = \left(-\frac{3}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}\right)$$