MATH 320: Probability

Lecture 1: Set Theory

Chapter 1: Probability (1.1)

Where does data come from

Definitions

- An **experiment** is the <u>process</u> by which an observation/outcome is made, which cannot be predicted with certainty (outcomes are random).
- An **outcome** of an experiment is <u>any possible observation</u> of that experiment (often called sample points).

Examples: Write the set of all possible outcomes for the following experiments.

1. Sampling students and computing the average number of study hours each day:

$$\langle = [0, 24] \rightarrow$$
 Continuous, uncountable

2. Roll die, record number that appears:

$$\zeta = \begin{cases} 1, 7, 3, 4, 5, 6 \end{cases}$$
 Discrete, countable

3. Roll die, record first role that a one appears:

$$\{z \in \{1, 2, 3, \dots \} \rightarrow \text{Countable, infinite} \}$$

What is probability and how to calculate it

Intuitively, probability is the likelihood of something occurring.

One approach (simplest case)

• Events are <u>not always equally likely</u>, so cannot determine probabilities by counting. But there is a simple way to estimate that probability.

Set Theory 1-2

Another approach

• Empirical probability (based on collected data).

• Relative frequency estimate of the probability of an event

times event occurs

Probability of an event =

of trials

- These are two ways of looking at probability.
 - If outcomes are equally likely, relative frequency \approx counting for a very large number of trials (e.g. if we simulated rolling a fair die 10,000 times, $\frac{\# \, 6s}{10,000} \approx \frac{1}{6}$).

Third approach

- Subjective probability is asking a well-informed person for his/her personal estimate of the probability of an event (relying on experience and personal recollections of relative frequencies in the past).
- The rest of this chapter will be building in more precise mathematical framework for probability.
- Counting will play a big role, but keep in mind that in practice many probability numbers actually used in calculations may come from relative frequencies or subjective estimates.

Set Theory

The mathematical basis of probability is sets. Set theory is useful here to provide a precise language for dealing with the outcomes in a probability experiment.

Definitions

- A set is a collection of objects (such as the numbers 1, 2, 3, 4, 5, 6).
 - The objects are called **elements** of the set. Outcomes of an experiment correspond to elements in a set.

We use capital letters to denote sets such as A, B, C.

Can list the elements in braces if only a few, or use set-builder notation for large or infinite sets.

- Example: All positive numbers can be written as

"A = the set of all x's such that (condition) x > 0"

• The sample space S (aka outcome space) is the set of outcomes of an experiment.

- There are different types of sample spaces.
- Countable or uncountable and if numeric: discrete or continuous.
- An **event** is a collection of possible outcomes of an experiment, that is, any of S.
 - 1. Examples: Roll die, record the number that appears.
 - Define notation: A= 1011 even #
 - Show event: $A = \{ 3, 4, 6 \}$ $C = \{ 1, 2, 3, 4, 5, 6 \}$

An event occurs when at least one element in the event has occurred.

- 2. Is S an event? $\frac{1}{2}$
- The null (empty) set is the set containing No elements . Ø = { }

Basic operations (algebra of sets)

• Union: A U 3 = "A or B"

The set of elements that belong to

An B = "A and B" • Intersection:

The set of elements that belong to

• Complement: $\sim A \cap A'$, A', \bar{A}); "complement of A", "Not A"

The set of elements (in the sample space) that are $\frac{1}{2}$ not in A

So removing all elements of A from the original sample space S.

• Examples: Let $S = \{1, 2, 3, 4, 5, 6\}$ and $A_1 = \{1\}, A_2 = \{2, 3, 4\}, A_3 = \{4, 5, 6\}.$ Find each of the following events:

$$A_1 \cup A_2 = \{1,7,3,4\}$$

$$\sim A_3 = \begin{cases} 1, 5, 6 \end{cases}$$

$$A_2 \cup A_3 = \begin{cases} 2,3,4,5,6 \end{cases}$$

$$A_2 \cap A_3 =$$

$$\sim (A_1 \cup A_2) = \sim \{0.3, 4.5, 6\} = \{1\}$$

Set identities

- These laws help simplify (rewrite) events that are stated verbally or in set notation when solving problems.
- Commutative Law: Reordering

$$A \cup B = \mathcal{C} \circ \mathcal{A}$$
$$A \cap B = \mathcal{C} \circ \mathcal{A}$$

• Associative Law:

Changing location of parentheses

$$(A \cup B) \cup C = A \cup (g \cup c)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Order of operations with () doesn't matter

• Distributive Law: Distribute set operation

$$\widehat{A \cap (B \cup C)} = (A \supseteq B) \supseteq (A \supseteq C)$$

$$\widehat{A \cup (B \cap C)} = (A \subseteq B) \land (A \subseteq C)$$

Distribute to items in ()

• De Morgan's Law: Distributing complement (flip everything)

No overlap

Relationships among sets

- Definitions
 - $-\,$ Two events are $mutually\;exclusive\;({\rm or}\;disjoint)$ if

- The events A_1, A_2, \ldots are pairwise mutually exclusive if ______ every pair is mutually exclusive.

Formally, the condition is stated as: if $A_i \cap A_j = /$ for all $i \neq j$.

- Events A_1, \ldots, A_k are **exhaustive** if when combined, they form entire sample space

Formally, this is written as: $\bigcup_{i=1}^{k} A_i = A_1 \cup \cdots \cup A_k = 5$

- Events A_1, \ldots, A_k form a **partition** of S if they are exhaustive and pairwise mutually exclusive.

Set Theory 1-6

• Examples: Given the sample space and events below, classify the relationship between events.

$$S = \{1, 2, 3, 4, 5, 6\}$$
 and $A_1 = \{1\}, A_2 = \{2, 3, 4\}, A_3 = \{4, 5, 6\}, A_4 = \{5, 6\}.$

- a. A_1 and A_2 are ____Mutually exclusive ightharpoonup No common elements
- b. A_2 and A_3 are ______ not mutually exclusive \rightarrow share element $\mbox{ § 4 3 }$
- c. A_1, A_2, A_3 are _____exhaustive \rightarrow Completes

d. A_1,A_2,A_4 are $_$

To check: 1. exhaustive $\rightarrow A_1 \cup A_2 \cup A_3 = \{13 \cup \{2,3,4\} \cup \{3,6\} = 5\}$

2. pairwise

A, \(A_2 = A, \(A_4 = A_2 \)

mutually exclusive