Discounted Dynamic programing:

(inflation) \$ now, Syears time is not and the same thing introduce discounted returns

$$\sum_{t=0}^{T} a^{t} R(X_{t}, a_{t}) , \quad \alpha \in (0,1)$$

$$discount Jacha$$

& close to Of do not can much about distant Judin & " ") one can about the what then heavyen

T (a finite houison) or infinite (an infinite houson which makes sense due to downtry as the series can how he conveyent.

Ophral criteria

$$E_{TT}\left(\sum_{t=0}^{T} \alpha^{t} R(X_{t}, q_{t}) \mid X_{o}=i\right) \rightarrow m_{SX} = V_{h}(i)$$
or

where E_{Π} stands for the exp. under the policy Π (
We know that the evaluation of the process $\{X_t\}$ depends
on achieves taken, so we will have different dish
of $\{X_t\}$ for different policies)

-s Find horszen can

$$V_{n}(i) = \max_{\alpha} \left[R(i,\alpha) + \alpha E_{\alpha} \left(V_{n-1}(X_{1}) \middle| X_{0} = i \right) \right]$$

=
$$max \left[R(i,q) + \lambda \sum_{i} b_{i}(a) V_{n-1}(j) \right]$$

j , J - Infinite horizon cese $V(i) = \max_{\alpha} \left[R(i,q) + \prec E_{\alpha}(V(X_i) | X_s = i) \right]$ = max [R(i,a) + \ \ \ pij(a) V(j)] Example Lifetime postfolio selection (optimel (Non orandom environment) Consumption - 59ving) Xt: wealth y particular individual at the beginning of the time period, to 0,1,2,-J Unit X_t (break in non-vislage)

Consume C_t X_t-C_t aret at direct or >1.

 $X_{t+1} = \mathfrak{x}(X_t - C_t)$

Consuming c mits of wealth leads to the willy

U(.) - whility In

 $C_t = X_t - \mathfrak{I}^{-1} X_{t+1}$ $m_{(X_{+})}, t=0$ $(X_{+}), t=0$ $(X_{+}), t=0$ $(X_{+}), t=0$ $(X_{+}), t=0$ $(X_{+}), t=0$ $(X_{+}), t=0$

 $= m_{57} \phi (x_{1/--} x_{7-1})$ x_{t} $(|x_{1} x_{7} | | | |x_{1}|)$

$$0 = \frac{\partial \phi}{\partial x_{+}} = -\frac{d^{-1}}{\partial x_{+}} u'(x_{+} - \frac{1}{2}x_{+}) + d^{+} u'(x_{+} - \frac{1}{2}x_{+})$$

$$\Rightarrow u'(x_{+-1} - \frac{x_{+}}{x_{-}}) = d \pi u'(x_{+} - \frac{1}{2}x_{++})$$
Special causy Bernoulli wilds, $u(x) = d_{2}x_{-}$

(Similar result hold for $u(x) = x_{-}^{n}$, $o(rc)$, swell)
$$u'(x) = \frac{1}{2}$$
From $\Rightarrow \frac{1}{x_{+-1} - \frac{x_{+}}{x_{+}}} = d\pi x_{+-1} - dx_{+}$

$$\Rightarrow x_{+} - \frac{1}{2}x_{++} = d\pi x_{+-1} - dx_{+}$$

$$\Rightarrow x_{+} - \frac{1}{2}x_{++} + (1+\lambda)x_{+} - d\pi x_{+-1} = 0$$

$$\Rightarrow x_{++} - \pi(1-d)x_{+} + d\pi^{2}x_{+-1} = 0$$

$$\Rightarrow x_{++} - \pi(1+\lambda)x_{+} + d\pi^{2}x_{+-1} = 0$$

$$\Rightarrow x_{+} - \pi(1+\lambda)x_{+} + d\pi^{2}x_{+} + d\pi^{2}x_{+}$$

Hen $b_1 + b_2 = X_0$ b, n+ b, d nT = X+ = 5 b, = Xo-or Xt j b1 = Xo-b2 . . Optimel policy has the fun $C^{\dagger} = X^{\dagger} - \frac{1}{T} X^{\dagger+1}$ $= b/n^{t} + b_{2} x^{t} n^{t} - \frac{1}{3n} (b/n^{t+1} + b_{2} x^{t+1} n^{t+1})$ $= b_2(1-d)(dr)^t$ Fer instance T= as lindividual in going to like avery long ly) in the "no-beguest" sidnatu (XT=0) (b)+b, = Xo
b, +b, = XT, , o(xc) A bz= x0, 5,=0

 $C_{t} = (1-4) X^{+}$