TAUTOLOGY INNOVATION SCHOOL

CROSSENTROPY

BY TAUTOLOGY

MADE BY TAUTOLOGY THAILAND
DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai www.tautology.live

Cross Entropy

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{k-1} [y_{i,c} \log(\hat{y}_{i,c})]$$

Cross Entropy

АUТЫ́LOGY

Information Theory

Concept

Definition

Concept

แนวคิดของ information มี 2 ข้อ ดังต่อไปนี้

- 1. เหตุการณ์ที่มี**โอกาสเกิดขึ้นต่ำ** (low probability) จะมี **information สูง**
- 2. เหตุการณ์ที่มี**โอกาสเกิดขึ้นสูง** (high probability) จะมี **information ต่ำ**

Information Theory

Concept

Definition

Definition

- 1. เหตุการณ์ที่มีความน่าจะเป็น 100% จะไม่มี information ใด ๆ
- 2. ยิ่งเหตุการณ์มีโอกาสเกิดขึ้นน้อยเท่าไหร่ information ก็จะมีค่ามากขึ้นเท่านั้น
- 3.) Information รวมของสองเหตุการณ์ที่เป็นอิสระต่อกันจะเท่ากับผลรวมของ information ของสองเหตุการณ์นั้น ๆ

Information Theory

Concept

Definition

เราต้องการหา function ที่แสดงความสัมพันธ์ระหว่าง information และ probability

information = f(probability)

กำหนดให้ I(x) คือ information ของเหตุการณ์ x และ p(x) คือ probability ของเหตุการณ์ x จะได้ว่า

$$I(x) = f(p(x))$$

จาก definition ข้อที่ 1 "เหตุการณ์ที่มีความน่าจะเป็น 100% จะไม่มี information ใด ๆ" จะได้ว่า

ถ้า
$$p(x) = 1$$
 แล้ว $I(x) = f(1) = 0$

จาก definition ข้อที่ 2 "ยิ่งเหตุการณ์มีโอกาสเกิดขึ้นน้อยเท่าไหร่ information ก็จะมีค่ามากขึ้น เท่านั้น" จะได้ว่า ความสัมพันธ์ระหว่าง I(x) และ p(x) เป็นแบบ monotone function

กำหนดให้เหตุการณ์ A และเหตุการณ์ B เป็นอิสระต่อกัน และกำหนดให้เหตุการณ์ C เป็น เหตุการณ์ A และ B เกิดขึ้นพร้อมกัน จะได้ว่า

$$p(C) = p(A \cap B) = p(A) \cdot p(B)$$

จาก I(x) = f(p(x)) จะได้ว่า

$$I(C) = f(p(C))$$
$$= f(p(A) \cdot p(B))$$

จาก definition ข้อที่ 3 "Information รวมของสองเหตุการณ์ที่เป็นอิสระต่อกันจะเท่ากับผลรวม ของ information ของสองเหตุการณ์นั้น ๆ" จะได้ว่า

$$I(C) = f(p(C))$$

$$= f(p(A) \cdot p(B))$$

$$= f(p(A)) + f(p(B))$$

$$= I(A) + I(B)$$

Function เพียงอันเดียวที่มีคุณสมบัติ

- 1. เป็น monotone function บนช่วง [0,1]
- 2. $f(\Box \cdot \triangle) = f(\Box) + f(\triangle)$
- 3. f(1) = 0

$$f(p(x)) = -\log(p(x))$$

Information Theory

Concept

Definition

Cross Entropy

Таиты́Logy

Uncertainty

Uncertainty คือ ค่าที่ใช้บอกความไม่เป็นระเบียบ/ความยุ่งเหยิงของระบบ ซึ่งเป็นอีก หนึ่งชื่อเรียกของ information

uncertainty = information

Uncertainty

ระบบที่มีความยุ่งเหยิง

Uncertainty

ระบบที่ไม่มีความยุ่งเหยิง

Cross Entropy

Entropy คือ ค่าที่บอกถึงค่าเฉลี่ยของ information หรือ uncertainty ในระบบ

$$H(P) = E[I(x)]$$

$$H(P) = E[I(x)]$$

$$= E[-\log(p(x))]$$

$$= -E[\log(p(x))]$$

$$= -\sum_{c=0}^{k-1} p(x_c) \log(p(x_c))$$

Entropy คือ ค่าที่บอกถึงค่าเฉลี่ยของ information หรือ uncertainty ของระบบ

$$H(P) = -\sum_{c=0}^{k-1} p(x_c) \log(p(x_c))$$

ตัวอย่าง (1)

ตัวอย่าง (1)

$$H(P) = -\sum_{c=0}^{1} p(x_c) \log(p(x_c))$$

$$= -p(x_0) \log(p(x_0)) - p(x_1) \log(p(x_1))$$

$$= -p(\text{Tail}) \log(p(\text{Tail})) - p(\text{Head}) \log(p(\text{Head}))$$

$$= -\frac{1}{2} \log\left(\frac{1}{2}\right) - \frac{1}{2} \log\left(\frac{1}{2}\right)$$

$$= 0.6931$$

ตัวอย่าง (2)

ตัวอย่าง (2)

$$H(P) = -\sum_{c=0}^{1} p(x_c) \log(p(x_c))$$

$$= -p(x_0) \log(p(x_0)) - p(x_1) \log(p(x_1))$$

$$= -p(\text{Tail}) \log(p(\text{Tail})) - p(\text{Head}) \log(p(\text{Head}))$$

$$= -0 \log(0) - 1 \log(1)$$

$$= 0$$

Cross Entropy

KL Divergence

What is KL Divergence?

Origin of the Equation

KL as Cost Function

What is KL Divergence?

KL Divergence คือ เครื่องมือที่ใช้ในการวัดความแตกต่างระหว่าง 2 distribution (P,Q) ว่า Q แตกต่างจาก P เท่าไหร่

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=0}^{k-1} p(x_c) \log(q(x_c))$$

What is KL Divergence?

- ถ้า P และ Q เหมือนกันทุกประการ แล้ว $D_{KL}(P \parallel Q) = 0$
- ถ้า P และ Q แตกต่างกัน แล้ว $D_{KL}(P \parallel Q) > 0$ (ยิ่งแตกต่างมาก $D_{KL}(P \parallel Q)$ ยิ่งมีค่า มาก)

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=0}^{k-1} p(x_c) \log(q(x_c))$$

KL Divergence

What is KL
Divergence?

Origin of the Equation

KL as Cost Function

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=0}^{k-1} p(x_c) \log(q(x_c))$$

 \mathbf{Q} : Distribution Q แตกต่างจาก P เท่าไร? จะต้องดูผ่านอะไรดี?

ดูผ่าน $oldsymbol{ratio}$ ของ distribution P และ Q

$$\frac{p(x_c)}{q(x_c)}$$

Example 1

• p(โควิด) = 0.6

q(โควิด) = 0.6

Distribution Q ต่างจาก $P: \frac{0.6}{0.6} = 1$

Example 2

• p(โควิด) = 0.6

q(โควิด) = 0.3

Distribution
$$Q$$
 ต่างจาก $P: \frac{0.6}{0.3} = 2$

NOTE

- ถ้าโอกาสการเกิดโควิด ใน distribution P และ Q **มีค่าเท่ากัน** ค่าของ ratio $\frac{p}{q}=1$
- ถ้าโอกาสการเกิดโควิด ใน distribution P และ Q **มีค่าไม่เท่ากัน** ค่าของ ratio $\frac{p}{q} \neq 1$

แล้วถ้าข้อมูลของเรามีหลาย class ล่ะ?

สำหรับข้อมูลที่มีหลาย class เราจะนำ ratio ของแต่ละ class มาคูณกัน

$$\frac{p(x_c)}{q(x_c)}$$

Û

$$\prod_{c=0}^{k-1} \frac{p(x_c)}{q(x_c)}$$

Example 3 (P และ Q เป็น distribution เดียวกัน)

- p(โควิด) = 0.6
- p(IU1H21U) = 0.3
- p(หัวใจ) = 0.1

- q(โควิด) = 0.6
- $q(\iota \cup 1) = 0.3$
- q(หัวใจ) = 0.1

Example 3 (P และ Q เป็น distribution เดียวกัน)

$$\frac{p(\iota \cup \mathsf{1} \mathsf{H} \mathsf{2} \mathsf{1} \mathsf{u})}{q(\iota \cup \mathsf{1} \mathsf{H} \mathsf{2} \mathsf{1} \mathsf{u})}$$
 $\frac{0.3}{0.3}$
 $\frac{0}{1}$

$$rac{p(extbf{H} extsf{j})}{q(extbf{H} extsf{j})}$$
 $rac{0.1}{0.1}$
 $rac{0}{0}$

Example 3

Distribution Q ต่างจาก P :

$$\Pi_{c=0}^2 \frac{p(x_c)}{q(x_c)} = \frac{p(\tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})} \times \frac{p(\tilde{l} + \tilde{l} + \tilde{l} + \tilde{l} + \tilde{l} + \tilde{l})}{q(\tilde{l} + \tilde{l} + \tilde{l}$$

Example 4 (P และ Q ไม่เป็น distribution เดียวกัน)

- p(โควิด) = 0.5
- p(IU1H21U) = 0.4
- p(หัวใจ) = 0.1

- q(โควิด) = 0.0001
- $q(\iota \cup \iota) = 0.3999$
- q(หัวใจ) = 0.6

Example 4 (P และ Q ไม่เป็น distribution เดียวกัน)

$$p(โควิด)$$
 $q(โควิด)$
 0.5
 0.0001

$$\frac{p(เบาหวาน)}{q(เบาหวาน)}$$
 $\frac{0.4}{0.3999}$
↓
1.00025

Example 4

Distribution Q ต่างจาก P :

$$\Pi_{c=0}^{2} \frac{p(x_{c})}{q(x_{c})} = \frac{p(\tilde{l} + \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} + \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})} \times \frac{p(\tilde{l} - \tilde{l})}{q(\tilde{l} - \tilde{l} - \tilde{l})}$$

NOTE

- ถ้า P และ Q **เป็น** distribution เดียวกัน $\prod_{c=0}^{k-1} \frac{p(x_c)}{q(x_c)} = 1$
- ถ้า P และ Q **ไม่เป็น** distribution เดียวกัน $\prod_{c=0}^{k-1} \frac{p(x_c)}{q(x_c)} \neq 1$

จาก $\underline{\textbf{Example 4}}$ จะเห็นได้ว่า ในกรณีที่ P และ Q **ไม่เป็น** distribution เดียวกัน ถ้าคำนวณด้วย $\prod_{c=0}^{k-1} \frac{p(x_c)}{q(x_c)}$ จะพบปัญหาว่า

- คำนวณค่อนข้างยาก
- ค่าที่คำนวณออกมาได้ค่อนข้างเยอะ และเป็นคนละ scale กับ probability function ทำให้ยากต่อการวิเคราะห์

เพื่อแก้ปัญหาข้างต้น จึงมีแนวคิดที่จะพัฒนาต่อมาคือ
"Take Log"

$$\prod\nolimits_{c=0}^{k-1} \frac{p(x_c)}{q(x_c)}$$

$$\sum_{c=0}^{k-1} \log \frac{p(x_c)}{q(x_c)}$$

Example 1 (P และ Q เป็น distribution เดียวกัน)

- p(โควิด) = 0.6
- p(IU1H21U) = 0.3
- p(หัวใจ) = 0.1

- q(โควิด) = 0.6
- $q(\iota \cup 1) = 0.3$
- q(หัวใจ) = 0.1

Example 1 (P และ Q เป็น distribution เดียวกัน)

$$\log\left(\frac{0.6}{0.6}\right) = \log 1$$

$$\log\left(\frac{p($$
เบาหวาน $)}{q($ เบาหวาน $)}\right)$
 \downarrow
 (0.3)

$$\log\left(\frac{0.3}{0.3}\right) = \log 1$$

$$\log\left(rac{p(หัวใจ)}{q(หัวใจ)}
ight)$$
 $\log\left(rac{0.1}{0.1}
ight) = \log 1$
 0

Example 1

Distribution Q ต่างจาก P :

$$\sum_{c=0}^{k-1} \log \frac{p(x_c)}{q(x_c)} = \log \frac{p(\ln \bar{\partial} \Omega)}{q(\ln \bar{\partial} \Omega)} + \log \frac{p(\ln \bar{\partial} \Omega)}{q(\ln \bar{\partial} \Omega)} + \log \frac{p(\ln \bar{\partial} \Omega)}{q(\ln \bar{\partial} \Omega)}$$
$$= 0 + 0 + 0$$
$$= \mathbf{0}$$

Example 2 (P และ Q ไม่เป็น distribution เดียวกัน)

- p(โควิด) = 0.5
- p(IU1H21U) = 0.4
- p(หัวใจ) = 0.1

- q(โควิด) = 0.0001
- $q(\iota \cup \iota) = 0.3999$
- q(หัวใจ) = 0.6

Example 2 (P และ Q ไม่เป็น distribution เดียวกัน)

$$\log\left(\frac{p(\text{โควิด})}{q(\text{โควิด})}\right)$$
 $\log\left(\frac{0.5}{0.0001}\right) = \log 5000$
 $\frac{1}{8.517}$

$$\log\left(\frac{p(\text{IU1H21U})}{q(\text{IU1H21U})}\right)$$

$$\log\left(\frac{0.4}{0.3999}\right) = \log 1.00025$$

$$0.00025$$

$$\log\left(\frac{p(\mbox{หัวใจ})}{q(\mbox{หัวใจ})}\right)$$
 $\log\left(\frac{0.1}{0.6}\right) = \log 0.16667$
 -1.79174

Example 2

Distribution Q ต่างจาก P :

$$\sum_{c=0}^{k-1} \log \frac{p(x_c)}{q(x_c)} = \log \frac{p(\ln \bar{\partial} \Omega)}{q(\ln \bar{\partial} \Omega)} + \log \frac{p(\ln \bar{\partial} \Omega)}{q(\ln \bar{\partial} \Omega)} + \log \frac{p(\ln \bar{\partial} \Omega)}{q(\ln \bar{\partial} \Omega)}$$

$$= 8.517 + 0.00025 - 1.79174$$

$$= 6.72551$$

NOTE

- ถ้า P และ Q **เป็น** distribution เดียวกัน $\sum_{c=0}^{k-1} \log \frac{p(x_c)}{q(x_c)} = 0$
- ถ้า P และ Q **ไม่เป็น** distribution เดียวกัน $\sum_{c=0}^{k-1} \log \frac{p(x_c)}{q(x_c)} > 0$

เพื่อที่จะคำนวณว่า distribution Q แตกต่างจาก P เท่าไหร่ ในมุมมอง ของ distribution P เราหาค่าเฉลี่ยถ่วงน้ำหนักด้วย $p(x_c)$

$$D_{KL}(P \parallel Q) = \sum_{c=0}^{k-1} p(x_c) \log \left(\frac{p(x_c)}{q(x_c)}\right)$$

$$D_{KL}(P \parallel Q) = \sum_{c=0}^{k-1} p(x_c) [\log(p(x_c)) - \log(q(x_c))]$$
$$= \sum_{c=0}^{k-1} [p(x_c) \log(p(x_c)) - p(x_c) \log(q(x_c))]$$

$$D_{KL}(P \parallel Q) = \sum_{c=0}^{k-1} p(x_c) \log(p(x_c)) - \sum_{c=0}^{k-1} p(x_c) \log(q(x_c))$$

$$= -H(P) - \sum_{c=0}^{k-1} p(x_c) \log(q(x_c))$$

$$(\because H(P) = -\sum_{c=0}^{k-1} p(x_c) \log(p(x_c)))$$

KL Divergence

What is KL
Divergence?

Origin of the Equation

KL as Cost Function

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{k-1} [y_{i,c} \log(\hat{y}_{i,c})]$$

x ₁	x ₂	У0	y ₁	y 2
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

ตารางแสดง dataset

Model	

$\hat{\mathbf{y}}_{0}$	$\hat{\mathrm{y}}_1$	$\hat{\mathrm{y}}_2$
0.5	0.3	0.2
0.2	0.7	0.1
:	:	:
0.1	0.3	0.6

ตารางแสดง \hat{y} ที่ได้จาก model

Model

x ₁	x ₂	У0	у ₁	У2	
0	1	1	0	0	(
1	0	0	1	0	(
:	:	:	:	:	
-1	0	0	0	1	(

ตารางแสดง dataset

$\hat{\mathbf{y}}_0$	$\hat{\mathrm{y}}_1$	$\hat{\mathrm{y}}_2$
0.5	0.3	0.2
0.2	0.7	0.1
:	:	:
0.1	0.3	0.6

ตารางแสดง \hat{y} ที่ได้จาก model

$$x_1=0,$$

$$x_1=0, \qquad x_2=1$$

facebook/tautologyai www.tautology.live

KL as Cost Function

Model	

x ₁	x ₂	У0	y ₁	У2
0	1	1	0	0
1	0	0	1	0
:	:	÷	÷	:
-1	0	0	0	1

ตารางแสดง dataset

$\hat{\mathbf{y}}_0$	$\hat{\mathrm{y}}_1$	$\hat{\mathrm{y}}_2$
0.5	0.3	0.2
0.2	0.7	0.1
÷	÷	÷
0.1	0.3	0.6

ตารางแสดง \hat{y} ที่ได้จาก model

$$x_1 = 1$$
,

$$x_1=1, \qquad x_2=0$$

Model

x ₁	X ₂	У0	y ₁	y ₂	$\hat{\mathbf{y}}_{0}$	$\hat{\mathrm{y}}_1$	$\hat{\mathrm{y}}_2$
0	1	1	0	0	0.5	0.3	0.2
1	0	0	1	0	0.2	0.7	0.1
i	:	i	÷	÷	:	i .	i _
-1	0	0	0	1	0.1	0.3	0.6

ตารางแสดง dataset

ตารางแสดง \hat{y} ที่ได้จาก model

$$x_1 = -1, \qquad x_2 = 0$$

$$x_2 = 0$$

$$D_{KL}(P \parallel Q) = -H(P) - \sum_{c=0}^{k-1} p(x_c) \log(q(x_c))$$

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) = -H(\mathbf{y_i}) - \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	X ₂	y ₁	y ₂	y ₃
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) = -H(\mathbf{y_i}) - \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	X ₂	y ₁	y ₂	y ₃
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

ค่าคงที่
$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) = -H(\mathbf{y_i}) - \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	x ₂	y ₁	У2	у ₃
0	1	1	0	0
1	0	0	1	0
:	:	:	:	:
-1	0	0	0	1

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y_i}}) \propto -\sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) \propto -\sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	x ₂	y ₁	y ₂	y ₃
0	1	1	0	0
1	0	0	1	0
:	ŧ	i	ŧ	i
-1	0	0	0	1

$\hat{\mathbf{y}}_1$	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
÷	:	:
0.1	0.3	0.6

$$D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i}) \propto -\sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

x ₁	x ₂	y ₁	У2	y ₃
0	1	1	0	0
1	0	0	1	0
÷	:	i	:	:
-1	0	0	0	1

$\hat{\mathbf{y}}_1$	$\hat{\mathrm{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
:	:	:
0.1	0.3	0.6

$$\sum_{i=1}^{n} D_{KL}(\mathbf{y}_i, \hat{\mathbf{y}}_i) \propto -\sum_{i=1}^{n} \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

เราต้องการ model ที่ทำให้ $\sum_{i=1}^n D_{KL}(\mathbf{y_i}, \hat{\mathbf{y}_i})$ มีค่าน้อยที่สุด ($\hat{\mathbf{y}_i}$ เหมือนกับ \mathbf{y}_i บนทุก sample มากที่สุด)

facebook/tautologyai www.tautology.live

x ₁	X ₂	y ₁	y ₂	y ₃
0	1	1	0	0
1	0	0	1	0
i	ŧ	i	i	:
-1	0	0	0	1

$\hat{\mathbf{y}}_1$	$\hat{\mathbf{y}}_2$	$\hat{\mathbf{y}}_3$
0.5	0.3	0.2
0.2	0.7	0.1
÷	:	:
0.1	0.3	0.6

min
$$\sum_{i=1}^{n} D_{KL}(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}) \equiv \min -\sum_{i=1}^{n} \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

min
$$-\sum_{i=1}^{n} \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

เพื่อความสะดวกในการใช้ gradient descent เราจึงใช้ ค่าเฉลี่ยของ cross entropy ในการ train model

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{k-1} [y_{i,c} \log(\hat{y}_{i,c})]$$

พิจารณา Cost สำหรับ 2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{k-1} y_{i,c} \log(\hat{y}_{i,c})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{1} y_{i,c} \log(\hat{y}_{i,c})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} [y_{i,0} \log(\hat{y}_{i,0}) + y_{i,1} \log(\hat{y}_{i,1})]$$

พิจารณา Cost สำหรับ 2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_{i,0} \log(\hat{y}_{i,0}) + y_{i,1} \log(\hat{y}_{i,1})]$$

$$= -\frac{1}{n} \sum_{i=1}^{n} [y_{i,0} \log(\hat{y}_{i,0}) + (1 - y_{i,0}) \log(1 - \hat{y}_{i,0})]$$

$$(\because y_{i,0} + y_{i,1} = 1)$$

$$\hat{y}_{i,0} + \hat{y}_{i,1} = 1)$$

y_0	y_1
1	0
0	1
:	i
1	0

У
1
0
:
1

$$y_0 + y_1 = 1$$

$\widehat{oldsymbol{y}}_{oldsymbol{0}}$	$\widehat{oldsymbol{y}}_1$
0.7	0.3
0.2	0.8
:	ŧ
0.6	0.4

ŷ	
0.7	
0.2	
:	
0.6	

$$: \hat{y}_0 + \hat{y}_1 = 1$$

พิจารณา Cost สำหรับ 2-class

$$\begin{aligned} Cost &= -\frac{1}{n} \sum_{i=1}^{n} \left[y_{i,0} \log(\hat{y}_{i,0}) + (1 - y_{i,0}) \log(1 - \hat{y}_{i,0}) \right] \\ &= -\frac{1}{n} \sum_{i=1}^{n} \left[y_{i} \log(\hat{y}_{i}) + (1 - y_{i}) \log(1 - \hat{y}_{i}) \right] \end{aligned}$$

2-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Multi-class

$$Cost = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=0}^{k-1} [y_{i,c} \log(\hat{y}_{i,c})]$$

KL Divergence

What is KL
Divergence?

Origin of the Equation

Cross Entropy

