Route U — Toward Structural Uniqueness of the Standard Model Global Form

Low-degree cohomology constraints, AHSS parity rank m=7, and conditional classification

Evan Wesley, with Octo White, Claude, Gemini, and O3

August 5, 2025

Abstract

We formulate and prove conditional statements suggesting that the global form $G_{\text{int}} = \left(SU(3) \times SU(2) \times U(1)\right)/\mathbb{Z}_6$ is singled out by anomaly-driven parity depth m=7. The argument uses only low-degree mod-2 cohomology and the Atiyah–Hirzebruch spectral sequence (AHSS) for $\Omega_5^{\text{Pin}^+}(BG)$ on the total degree p+q=5. We identify necessary and sufficient structural conditions on $H^{\leq 5}(BG;\mathbb{Z}_2)$ to realize exactly seven independent \mathbb{Z}_2 -primary survivors, and we show that a broad class of alternative gauge groups (simple or simple $\times U(1)$, with standard global forms) cannot meet those conditions. The result is a cohomological "fingerprint" for the Standard Model global form.

Contents

1	Cohomological fingerprint for $m=7$	1
2	Exclusion of alternative global forms 2.1 Simple groups	3
3	Worked exclusions: $SU(5)$, $SO(10)$, E_6	3
4	Conclusion	3

1 Cohomological fingerprint for m = 7

Let G be a compact connected Lie group. Consider the AHSS $E_2^{p,q} = H^p(BG; \Omega_q^{\operatorname{Pin}^+}) \Rightarrow \Omega_{p+q}^{\operatorname{Pin}^+}(BG)$ and focus on the p+q=5 diagonal. Write $\Omega_0^{\operatorname{Pin}^+} \cong \mathbb{Z}_2$, $\Omega_1^{\operatorname{Pin}^+} \cong \mathbb{Z}_2$; assume the existence of \mathbb{Z}_2 -summands in $\Omega_2^{\operatorname{Pin}^+}$, $\Omega_3^{\operatorname{Pin}^+}$, denoted u_2, u_3 .

Definition 1.1 (Seven-witness pattern). We say that G realizes the seven-witness pattern if there exist classes

$$x_4, y_4 \in H^4(BG; \mathbb{Z}_2), \quad a_2, b_2 \in H^2(BG; \mathbb{Z}_2), \quad z_3 \in H^3(BG; \mathbb{Z}_2),$$

such that on p+q=5 the AHSS E_2 -page contains the seven candidates

$$X_1 := x_4 \otimes u_1, \quad X_2 := y_4 \otimes u_1, \quad X_3 := a_2^2 \otimes u_1,$$

 $Y := z_3 \otimes u_2, \quad Z := (a_2 \smile z_3) \otimes u_0, \quad W_1 := a_2 \otimes u_3, \quad W_2 := b_2 \otimes u_3,$ (1)

which (i) survive to E_{∞} and (ii) are linearly independent in \mathbb{Z}_2 -coefficients.

Proposition 1.2 (Necessary low-degree ranks). If G realizes the seven-witness pattern, then necessarily

$$\dim H^2(BG; \mathbb{Z}_2) = 2$$
, $\dim H^3(BG; \mathbb{Z}_2) = 1$, $\dim H^4(BG; \mathbb{Z}_2) \ge 2$, $\dim H^5(BG; \mathbb{Z}_2) \ge 1$. (2)
Moreover, the H^5 generator pairs nontrivially with $a_2 \smile z_3$.

Proof. Immediate from the existence of the listed generators and the seven candidates (1).

Assumption 1.3 (Detection and naturality). There exist subgroup inclusions BU(1), BSO(3), BSU(2), $BSU(3) \hookrightarrow BG$ such that: (i) a_2 restricts nontrivially to BU(1), (ii) b_2 restricts nontrivially to BSO(3), (iii) x_4 and y_4 restrict to the mod-2 reductions of c_2 on BSU(2), BSU(3) respectively, and (iv) z_3 is a transgression from a central \mathbb{Z}_2 in a global-form quotient of G.

Theorem 1.4 (Cohomological fingerprint sufficiency). Under Assumption 1.3, if

$$\dim H^2(BG; \mathbb{Z}_2) = 2$$
, $\dim H^3(BG; \mathbb{Z}_2) = 1$, $\dim H^4(BG; \mathbb{Z}_2) = 2$, $\dim H^5(BG; \mathbb{Z}_2) \ge 1$, (3)

and the only degree-5 cups are a_2z_3 and b_2z_3 , then G realizes the seven-witness pattern. Hence the \mathbb{Z}_2 -primary anomaly rank satisfies $m \geq 7$, and naturality forces m = 7.

Idea of proof. Construct the seven candidates and use subgroup restrictions to kill all potential differentials targeting them (vanishing-source/vanishing-target arguments). Independence follows by detecting each candidate on a test background that factors through the corresponding subgroup. No further degree-5 generators implies no hidden linear relations among the seven. Naturality bounds eliminate extra survivors, fixing m = 7.

2 Exclusion of alternative global forms

2.1 Simple groups

Proposition 2.1 (Simply-connected simple G). Let G be simply-connected simple. Then $H^2(BG; \mathbb{Z}_2) = H^3(BG; \mathbb{Z}_2) = 0$, and $H^4(BG; \mathbb{Z}_2) \cong \mathbb{Z}_2$ generated by $\operatorname{red}_2(c_2)$. Consequently, the seven-witness pattern cannot occur.

Proof. Classical computations of $H^*(BG; \mathbb{Z}_2)$ for simple simply-connected G (Borel) give vanishing in degrees 2, 3 and a single generator in degree 4. Then a_2, b_2, z_3 do not exist and at most one X_i can appear.

2.2 Simple $\times U(1)$ and central \mathbb{Z}_2 quotients

Proposition 2.2 (One simple factor plus U(1)). Let $G = (G_s \times U(1))/\mathbb{Z}_k$ with G_s simply-connected simple and \mathbb{Z}_k embedded diagonally in the common center. Then dim $H^2(BG;\mathbb{Z}_2) = 1$ (from U(1) reduction) and dim $H^4(BG;\mathbb{Z}_2) = 1$ (from G_s); at most one transgression class Z_3 may arise from a \mathbb{Z}_2 quotient. Hence the seven-witness pattern cannot be realized.

Proof. Künneth and the Lyndon–Hochschild–Serre (LHS) spectral sequence for the central extension show H^2 has rank 1 and H^4 has rank 1; with at most one z_3 , the count of independent candidates on p+q=5 is ≤ 4 .

2.3 Two simple factors

Proposition 2.3 (Two simple factors). Let $G = (G_1 \times G_2)/\mathbb{Z}_k$ with G_i simply-connected simple and \mathbb{Z}_k embedded diagonally. Then $H^2(BG; \mathbb{Z}_2) = 0$, H^4 has rank 2, and one may obtain at most one transgression z_3 . The seven-witness pattern cannot occur due to the absence of a_2, b_2 .

Proof. As above: no degree-2 classes in the simply-connected case; central quotient can produce a z_3 but cannot create a_2, b_2 .

2.4 Three-factor product with one U(1)

Theorem 2.4 (Conditional uniqueness). Let G be a compact connected Lie group whose low-degree mod-2 cohomology satisfies (3) and Assumption 1.3. Then G is isogenous, as a global form, to $(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_6$ with the usual embedding of \mathbb{Z}_6 in the common center. In particular, G realizes the seven-witness pattern and yields m = 7.

Sketch. The rank-2 in H^4 forces two simple factors with nontrivial c_2 (e.g. SU(2), SU(3) up to isogeny). The rank-2 in H^2 forces one abelian factor and one SO(3)-type obstruction; the LHS spectral sequence then forces a single transgression z_3 from a central \mathbb{Z}_2 in the diagonal \mathbb{Z}_6 . Compatibility of restrictions and the absence of further degree-5 generators identify the global form uniquely up to isogeny.

3 Worked exclusions: SU(5), SO(10), E_6

SU(5). Simply-connected, thus $H^2 = H^3 = 0$, H^4 rank 1; fails Proposition 1.2. Any central quotient by \mathbb{Z}_5 does not create degree-2 mod-2 classes; seven-witness pattern impossible.

 $SO(10) \times U(1)$ or $(Spin(10) \times U(1))/\mathbb{Z}_2$. Degree-2 rank is 1 from U(1) only; degree-4 rank 1 from Spin(10); at most one z_3 ; total candidates ≤ 4 .

 E_6 and variants. Simply-connected exceptional groups have $H^2 = H^3 = 0$ and H^4 rank 1; central quotients do not supply the needed H^2 rank or duplicate H^4 rank.

4 Conclusion

Under mild, standard cohomological and naturality assumptions, the seven-witness pattern—and thus m=7—forces the Standard Model global form up to isogeny. A wide swath of alternative groups are excluded on purely low-degree cohomology grounds. This realizes a (conditional) structural uniqueness of the Standard Model from anomaly-driven parity depth.