

Prof. Dr.-Ing. A. Bruhn Institute for Visualization and Interactive Systems Department Intelligent Systems University of Stuttgart

Homework Assignment H3

Problem 1 (Variational Methods)

10 Points

Instead of using the grey value constancy assumption, let us assume that the y-derivative of the image f remains constant over time, i.e.

$$f_y(x+u, y+v, t+1) = f_y(x, y, t)$$
(1)

- (a) Linearise the constancy assumption (1) w.r.t the flow functions u and v.
- (b) Write down an energy functional similar to Horn and Schunck based on the linearised constancy assumption from (a).
- (c) Compute the Euler-Lagrange equations for this energy functional.
- (d) Discretise the Euler-Lagrange equations from (c).
- (e) Starting from the discrete equations computed in (d), derive an iterative scheme that computes the minimiser.

Problem 2 (Stereo)

6 Points

Consider a camera with focal distance 2. Its image coordinate system is orthogonal with square pixels of size 1. The principal point in this coordinate system is located in $(2,3)^{\top}$. Furthermore, the position of the world coordinate system relative to the camera coordinate system is given by a rotation around the z-axis by an angle of 90° and a translation by the vector $(5,0,-1)^{\top}$.

- (a) Compute the intrinsic matrix.
- (b) Compute the extrinsic matrix.
- (c) Compute the full projection matrix.

Problem 3 (Horn and Schunck)

8 Points

Please download the required file $cv13_ex04.tgz$ from the lecture webpage. To unpack the data, use $tar xvfz cv13_ex04.tgz$.

In the routine flow, supplement the missing code such that it computes one Jacobi iteration step. Make sure the image boundaries are treated correctly. To compile the program, type

```
gcc -03 -o hsTemplate hsTemplate.c -lm
```

The filling-in effect that is characteristic for variational methods can be studied with the image pair pig1.pgm, pig2.pgm. To this end, investigate the result for different numbers of iterations. What is a good value for the regularisation parameter α in this case?

Submission:

The theoretical Problems 1 and 2 have to be submitted in handwritten form before the next tutorial (December 04). For the practical Problem 3, please submit you files as follows: Rename the main directory cv13_ex04 to cv13_ex04_<your_name> and use the command

```
tar cvfz cv13_ex04_<your_name>.tgz cv13_ex04_<your_name>
```

to pack the data. The directory that you pack should contain the following files:

- the source code of Problem 3
- the created images
 - for at least two different numbers of iteration
 - for at least two different values of α
- a text file readme.txt that contains
 - information on all people working together for this assignment
 - selected parameters for part (c)
 - answers to the question in part (c)

Please make sure that only the final version of the code files and the images are included. Submit the archive via e-mail to your tutor via the address volz@vis.uni-stuttgart.de.

Deadline for Submission is Thursday, December 5th, 2:00 pm (before the tutorial)

Prof. Dr.-Ing. A. Bruhn Institute for Visualization and Interactive Systems Department Intelligent Systems University of Stuttgart

Classroom Assignment C4

Problem 1 (Eigenvalue Analysis)

Let $\mathbf{J} \in \mathbb{R}^{n \times n}$ be a symmetric $(n \times n)$ matrix with real components. We consider its corresponding quadratic form given by

$$E: \mathbb{R}^n \longrightarrow \mathbb{R}, \qquad E(\mathbf{v}) = \mathbf{v}^\top \mathbf{J} \mathbf{v}$$

Show that among all vectors $\mathbf{v} \in \mathbb{R}^n$ with $|\mathbf{v}| = 1$, the function value $E(\mathbf{v})$ is minimal for the eigenvector of \mathbf{J} corresponding to its smallest eigenvalue. What can we say about E if \mathbf{J} is positive definite?