2º Teste de Álgebra Linear B

Guimarães, Janeiro de 2008

Cursos de Mestrado Integrado em Engenharia

Nome		N ^o			
Curso	Fila	Coluna			
Instruções: Todas as suas respostas terão de ser dadas ne Respostas erradas nas perguntas de verdadeiro/falso têm A duração da prova é de 90 minutos sem tolerância. A preencha o cabeçalho da prova e coloque o seu cartão de de se proceder à sua identificação.	n cotação nega Antes de inici	iar as suas resp			
1. Diga quais das seguintes aplicações são lineares: a) $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2$ $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (2\mathbf{x} + \mathbf{y}, \mathbf{x}\mathbf{y})$ b) $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2$ $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (2\mathbf{x} + \mathbf{y}, 3\mathbf{x})$ c) $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2$ $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (2\mathbf{x} + \mathbf{y}, 3)$		V V V	F F F		
 2. Considere uma aplicação f: ℝ³ → ℝ⁴ tal que f(1 f(0,0,1)=(0,0,-2,-2). a) A aplicação pode ser sobrejectiva. 	,0,0)=(1,2,0,0)), f(0,1,0)=(1,2,2,0) V	,2) e F		
 b) A aplicação é injectiva. c) A matriz da aplicação é A_{3×4}. d) O sistema Ax=b quando possível é indeterminado. 		V V V	F F F		
 3. Considere uma matriz A_{4x4} tal que A = 4. Diga afirmações. a) A matriz A não é invertível. 	se são verd <i>a</i>	adeiras as segu V	iintes F		
 b) A característica da matriz A é 4. c) O determinante de 2A é 8. d) Os vectores formados pelas colunas da matriz A são 	lin. independ	V V dentes. V	F F F		
 4. Considere as matrizes A e B quadradas de ordem 2 . a) Se A ≠0 então AB ≠0. 		V	r F		
 b) Se A = 4 e B = 2A então B = 8. c) Se A = 0 então A admite um valor próprio nulo. 		V V	F F		

	1	0	1
5. Considere a matriz $A =$	0	a	2
	0	a	3

- a) Sendo A a matriz de uma aplicação linear f dê a representação de um vector genérico.
- **b)** Considerando a aplicação linear *f* diga para que valores de a
 - i) a aplicação linear f é injectiva.
 - ii) a aplicação linear f é sobrejectiva.
- **6.** Considere uma aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^2$ tal que Nuc f=<(1,0,0)>. f(0,1,0) = (0,1) , f(0,0,1) = (1,1) e Indique:
 - a) A matriz associada.
 - **b)** Im f.
 - c) A característica de f.
- **7.** Considere o sistema de equações Ax = b com

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & \mathbf{a} \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ \mathbf{c} \end{bmatrix}$$

- a) Condense a matriz ampliada do sistema Ax = b.
- b) Para que valores de a e c o sistema é:i) Possível e determinado.
 - ii) Possível e indeterminado.
 - iii) Impossível.
- c) Dê a solução do sistema para a = 0 e c = 1.

d) Dê a solução do sistema homogéneo associado para a = 0

e) Considere a	aplicação	linear	associada	à	matriz	Α,	diga	para	que	valores	de	a,	a
aplicação é:													
i) injectiva													_

- iii) para a=0, determine o núcleo.
- **8.** Considere uma matriz quadrada de ordem n tal que |A|=2, complete as seguintes asserções, de modo a torná-las verdadeiras:
 - a) Se |2A| = 4, o valor de n é _____
 - **b)** Se B for uma matriz de ordem n e | B | = 3 então | A B⁻¹ | é ______
 - c) Se n=3 o valor de |-A| é _____
- 9. Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$. Determine os valores próprios de A e os vectores próprios associados ao valor próprio 3.