PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-255837

(43)Date of publication of application: 25.09.1998

(51)Int.Cl.

H01M 10/40

(21)Application number: 09-076503

(71)Applicant : SANYO ELECTRIC CO LTD

(22)Date of filing:

11.03.1997

(72)Inventor: KIDA YOSHINORI

SHOJI YOSHIHIRO FUJIMOTO MASAHISA

NOMA TOSHIYUKI NISHIO KOJI

(54) LITHIUM SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lithium secondary battery which is excellent in both a chargingdischarging cycle characteristic and a high rate discharging characteristic by adding an aluminum compound to nonaqueous electrolyte, or covering the surface of a carbon material particle of a negative electrode with it. SOLUTION: A lithium secondary battery is constituted by using a positive electrode using LiCoO2 or the like as an active material, a negative electrode using a carbon material as a lithium ion storage material and nonaqueous electrolyte by dissolving lithium salt in an ethylene carbonate or the like. In that case, an aluminum compound is preferably added by 0.001 to 0.1 mole/I to the nonaqueous electrolyte. Or a particle surface of the carbon material is covered with a coating film having a thickness of about 1 to 500Å of an aluminum compound, Ali3, Al(OH)3, AIF3, Al(PE6)3, Al(ClO4)3, Al(BF4)3, Al(N(CF3 SO2)2)3 or the like are preferable as both aluminum compounds. Therefore, the carbon material is protected by a coating film formed at charging time or the coating film, and the degradation is prevented.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-255837

(43)公開日 平成10年(1998) 9月25日

(5	1)	In	ďν	C1	.6

H 0 1 M 10/40

識別記号

FI H01M 10/40

Α

審査請求 未請求 請求項の数6 FD (全 7 頁)

(21)出願番号	特顧平9-76503	(71)出願人 000001889 三洋衛機株式会社	
(22) 出曜日	平成9年(1997)3月11日	大阪府守口市京阪本通2丁目5番5号	
(MA) DIRECT	1220 + (1001) 0 711111	(72) 発明者 喜田 佳典	
		大阪府守口市京阪本通2丁目5番5号	Ξ
		洋電機株式会社内	
		(72)発明者 小路 良浩	
		大阪府守口市京阪本通2丁目5番5号 3	Ξ
		洋電機株式会社内	
		(72)発明者 藤本 正久	
		大阪府守口市京阪本通2丁目5番5号	Ξ
		洋電機株式会社内	
		(74)代理人 弁理士 松尾 智弘	
		最終頁に統・	<

(54) 【発明の名称】 リチウム二次電池

(57)【要約】

【解決手段】非水電解液にアルミニウム化合物を添加するか、或いは、負極の炭素材料の粒子表面をアルミニウム化合物からなる皮膜で披覆する。

【効果】充放電サイクル特性及び高率放電特性が良い。

【特許請求の範囲】

【請求項1】正極と、炭素材料をリチウムイオン吸蔵材 とする負極と、非水電解液とを備えるリチウム二次電池 において、前記非水電解液にアルミニウム化合物が添加 されていることを特徴とするリチウム二次電池。

【請求項2】前記アルミニウム化合物が、A1 I₃、A 1 (OH)₃、A1 F₃、A1 (PF₆)₃、A1 (C 1 O₄)₃、A1 (BF₄)₃及びA1 (N (CF₃ S O₂)₂)₃よりなる群から遊ばれた少なくとも一種である請求項1記載のリチウム二次電池。

【請求項3】前記非水電解液に、前記アルミニウム化合物が0.001~0.1モル/リットル添加されている請求項1又は2記載のリチウム二次電池。

【請求項4】正極と、炭紫材料をリチウムイオン吸蔵材 とする負極と、非水電解液とを備えるリチウム二次電池 において、前記炭紫材料の粒子表面がアルミニウム化合 物からなる皮膜で被覆されていることを特徴するリチウ ムーン質治。

【請求項5】前記アルミニウム化合物が、A1I₃、A 1(OH)₃、A1F₃、A1(PF₆)₃、A1(C 1O₄)₃、A1(BF₄)₃及びA1(N(CF₃S O₂)₂)₃よりなる群から選ばれた少なくとも一種で ある請求項4記載のリチウム二次電池。

【請求項6】前記アルミニウム化合物からなる皮膜の厚みが、1~500Åである請求項4又は5記載のリチウム二次電池。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明はリチウム二次電池に 関する。

[0002]

【従来の技術及び発明が解禁しようとする問題】近年、 非永電解落を使用するリチウム二次電池が、エネルギー 密度が高く、しかも、アルカリ二次電池と異なり、木の 分解電圧を考慮する必要がないために、正極活物質を適 直通資することにより高電圧設計が可能であるなどの理 由から、注目されている。

【0003】ところで、リチウム二次電池の負権材料と しては、コークス、黒鉛等の炭素材料が、金属リチウム と異なり、樹枝状の電析リチウムの成長に因る内部短絡 の废れがないことから、汎用されている。

【0004】しかしながら、炭素材料は非水電解液と反応して劣化するため、炭素材料を負極に使用したリチウム二次電池は、充放電サイクル特性がそれほど良くな

【0005】 炭素材料を負極に使用したリチウム二次電 池の充放電サイクル特性を改善すべく、負極をフッ化リ チウムからなる皮膜で披覆することが提案されている (特開平7-302617号公報参照)

【0006】しかしながら、本発明者らが検討した結

果、この従来電池には、フッ化リチウムのリチウムイオン伝導性があまり良くないために、高率放電特性(負荷 特性)に問題があることが分かった。

【0007】したがって、本発明は、充放電サイクル特 性及び高率放電特性がともに良いリチウム二次電池を提 供することを目的とする。

[8000]

[課題を解決するための手段] 請求項 1 記載の発明に係 ありチウム二次電池 (以下、電池A) と除する 1 正極と、炭素材料をリチウムイオン吸蔵材とする負極 と、非水電解液とを備えるリチウム二次電池において、 前記非水電解液とデルミニウム化合物が添加されている ことを特徴とする。

【0009】また、請求項4記載の発明に係るリチウム 二次電池(以下、「電池B」と称する)は、正略と、炭 素材料をリチウムイオン環境材とする負極と、非大電解 液とを備えるリチウム二次電池において、前記炭素材料 の粒子表面がアルミニウム化合物からなる皮膜で壊遅さ れていることを検討する。交お、この明細書では、産 及び電池Bを、本発明電池と総称することがある。

【0010】非水環等液にアルミニウム化合物を添加してある電池Aにさいては、充電時に、負極の表面にアルミニウムを含有する皮膜(LiーAl含金皮膜など)が形成される。一方、電池Bでは、炭素材料の粒子表面にアルミニウム化合物からなる皮膜が形成されている。これらの皮膜により、非水電解液との反応による炭素材料の劣化炉削削される。したがって、本売明電池法充地電サイクル特性に優れる。また、これらの皮膜はいずれ

も、フッ化リチウム皮膜や炭酸リチウム皮膜に比べて、 リチウムイオン伝導性が良い。これは、フッ化リチウム 皮膜や炭酸リテウム皮膜は減ぎであるためリテウムイオ ンの放出が円滞に行われにくいのに対して、電池Aにお けるアルミニウムを含有する皮膜及び電池Bにおけるア ルミニウム化合物からなる皮膜は空隙が大きいため、リ チウムイオンの放出が円滞に行われるためと考えられ る。したがって、本発明電池は、高率放電特性にも優れ

0011] 非水電解液への添加剤又は負極の被覆材と して使用するアルミニウム化合物の具体例としては、A 11。、A1(OH)。、A1F。、A1(P

F₆)₃ 、A1 (C1O₄)₃ 、A1 (BF₄)₅ 及び A1 (N (CF₃ SO₂)₂)₃ が挙げられる。これら のアルミニウム化合物は、一種単独を用いてもよく、必 要に応じて二種以上を併用してもよい。

[0012]電池人における非水電解液へのアルミニウ ム化合物の好遊な添加量は0.001~0.1セル/リ ットルである。また、電池由におけるアルミニウム化合 物からなる皮膜の好遊な厚みは、1~500人である。 アルミニウム化合物の添加率又は液覆量が過少な場合は 放電解に皮膜の解するお考えがある。一方、アルミニ ウム化合物の添加量又は被覆量が過多な場合は粘度上昇 に因り非水電解液のイオン滞電性が低下して放電容量が 減少したり、皮膜の厚みが厚くなりすぎてリチウムイオ ン伝達性が低下したりもる。

【0013】本発明電池における炭素材料としては、黒 鉛、コークス及び有機物焼体が物示される。また、非 水電解液としては、エチレンカーボネート、プロピレン カーボネート、ブチレンカーボネート、ビニレンカーボ ネート、スルホラン、アーブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、1、2・ジメトル カーボネート、ジエチルカーボネート、1、2・ジメトキ シエタン、テトラとドロフラン、1、3・ジオキソラン 及びこれらの急合解媒に、LiPF。、LiGF。SO 3、LiBF。、LiCIO。、LiASF。等のリチ ウム塩を0、5~1、5モル/リットル着かしたものが 例示される。

[0014]本発明は、男体電解液にアルミニウム化合物を添加することにより、或いは、炭素材料をアルミニウム化合物で施度することにより、炭素材料をリナウムイオン吸素材とすのような、水管したものである。よって、正底活物質、セパレータなどの電池である。他の都材については、炭末公知の材料を特に制限なく使用することができる。正統活物質としては、上1000 、上1N10、上1m10、上1m10、上1m10、上1m10、上1m20、大力では、ポリプロビレン、ポリエチレンなどからなる微多孔性のシート及び不識布が、それぞれ例示される。

[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細 に説明するが、本発明な下記実施例に何ら限定されるも のではなく、その要旨を変更しない範囲において適宜変 更して実施することが可能なものである。

【0016】(実施例1~35)

(正極の仲製) 正極活物費としてのL1CoO₂ 80重 量都と、等電剤としての人造黒約10重量部と、結着剤 としてのポリフッ化ビニリデン10重量部とを混合し、 これにトーメチルー2一ビロリドンを加えて混構してス リリーを削製し、このスラリーを正極紙電化としてのア ルミニウム箱の両面に、ドクターブレード法により塗布 し、150°Cで2時間裏空乾燥して、正極を作製した。

【0017】 〔負極の作製〕 天然黒鉛(格子面(00

2)面の面間隔3.35点:c軸方向の結晶子の大きさ 1000よりかり90重量部と、結寄利としてのボリ フッ化ビニリデン10重量部とを混合し、これたハメ チルー2ービロリドンを加えて混練してスラリーを調製 し、このスラリーを負極無電体としての網路の両面に、 ドクターブレード法により整布し、150°Cで2時間 裏空を操して、負極を作製した。

[0018] [非水電影液の調製] エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶態 に、LiPFg を1モル/リットル、AlI₃、Al (OH)₃、AlF₃、Al (PF₆)₃、Al (CI O₄)₃、Al (BF₄)₃、XはAl (N (CF₃ SO 2)₂)₂)₃ を、0.0008セル/リットル、0.001モル/リットル、0.1モル/リットル、0.1モル/リットル、215モル/リットル・235 種の非土散解を調製した。

【0019】【電池の作製】上記の正紙、負極及び各非水電旅館を用いて、AAサイズのリサウム上水電池(電 組入) A1〜A3ラを作製した。なお、セパレー学として、ポソプロピレン製の腕を孔体シートを使用した、 【0020】(比較例1)非水電解液の開製においてア ルミニウム化合物を添加しなかったこと以外は支援的1 ~35と同様にして、リチウム二次電池(比較電池)C 日を作製した。

【0021】(比較例2) 非水電解液の調製においてアルミニウム化合物を添加せずに、水を400ppm添加したこと以外は減極例~35と同様にして、リチウム二次電池(比較電池) C2を作製した。この電池は、特開平7-302617号公報に開示されている従来電池に相当する。

【0022】(各電池の高率放電での放電容量〉実施例 1~35及び比較例1,2个件製した名電池を200m 和で4.1 Vまで充電した後、1000mA(2C相 当)で2.75Vまで放電して、各電池の高率放電での 放電容量(高率放電容量)を求めた。結果を表1、表 2、図1及び図2に示す。図1及び図2はいずれた。表 解能に各電池の事を放電容量(mAh)を、標準に非水電 解液へのアルミニウム化合物の添加量(モル/リット ル)をとったグラフである。 [0023]

10023

【表1】

電池	アルミニウム化合物 (モル/リッ	及びその添加量 トル)	高率放電容量 (mAh)
A 1 A 2 A 3 A 4 A 5	A 1 I 3 A 1 I 3 A 1 I 3 A 1 I 3	0. 0008 0. 001 0. 01 0. 1 0. 15	5 5 0 6 3 0 6 3 0 6 2 0 5 4 0
A 6 A 7 A 8 A 9 A 1 0	A 1 (OH) s A 1 (OH) s A 1 (OH) s A 1 (OH) s A 1 (OH) s	0. 0008 0. 001 0. 01 0. 1 0. 15	550 610 600 590 520
A 1 1 A 1 2 A 1 3 A 1 4 A 1 5	A F ₂ A F ₂ A F ₃ A F ₃	0. 0008 0. 001 0. 01 0. 1 0. 15	550 600 610 610 550
A 1 6 A 1 7 A 1 8 A 1 9 A 2 0	Al (PF6) 3 Al (PF6) 3 Al (PF6) 3 Al (PF6) 3	0. 0008 0. 001 0. 01 0. 1 0. 15	550 630 610 600 540

[0024]

【表2】

電池	アルミニウム化合物及びその添加量 (モル/リットル)	高率放電容量 (mAh)
A 2 1 A 2 2 A 2 3 A 2 4 A 2 5	A1(C10 ₄) ₃ 0. 0 0 0 8 A1(C10 ₄) ₃ 0. 0 0 1 A1(C10 ₄) ₃ 0. 0 1 A1(C10 ₄) ₂ 0. 1 A1(C10 ₄) ₃ 0. 1 5	550 630 620 630 530
A 2 6 A 2 7 A 2 8 A 2 9 A 3 0	A1(BF4)3 0.0008 A1(BF4)3 0.001 A1(BF4)3 0.01 A1(BF4)3 0.1 A1(BF4)3 0.15	550 590 600 520
A 3 1 A 3 2 A 3 3 A 3 4 A 3 5	A1(N(CF ₃ SO ₂) ₂) ₂ 0. 0 0 0 8 A1(N(CF ₃ SO ₂) ₂) ₃ 0. 0 0 1 A1(N(CF ₃ SO ₂) ₂) ₃ 0. 0 1 A1(N(CF ₃ SO ₂) ₂) ₃ 0. 1 A1(N(CF ₃ SO ₂) ₂) ₃ 0. 1 5	550 600 610 600 500
C 1 C 2		4 8 0 4 9 5

[0025]表1、表2、図1及び図とに示すように、電池A1~A35は、比較電池C1、C2に比べて、高率放電電量が大きい、この事実から、非水電解液にアルミニウム化合物を添加することにより、高率放電物性が向上することが分かる。また、電池A1~A35の中でもアルミニウム化合物の添加重が0、001~0、1モル/リットルの電池の高率放電容量が物に大きいことから、電池Aにおける非水電解液へのアルミニウム化合物の添加量は0、001~0、1モル/リットルが好ましいことが分かる。

[0026] (実施例36,37) 天送黒船 (実施例1 ~35で用いたものと同じもの) 98重量部とA1 I3 2重量部とを到鉢中にてらいかい混合して、天然風鉛の 粒子表面をA1 I3 で被覆した (実施例36)。また、 天然風鉛の (東部例1~35で用いたものと同じもの) 9 5. 5重量能とA1 (OH) 0.5 重量能と乳鉢中 にてらいかい混合して、天然県館の粒子表面を入1(0 用)。 で被覆した(実施例37)。非水電解液にアルミ 二ウム化合物を添加せず、且つ負極にアルミニウム化合 物で粒子表面を被覆した上配の天然黒鉛を用いたこと以 外は実施例1~35と同様にして、リチウム二次電池 (電池B) B1 B2 を伸撃した。これらの者で過につ いて先と同じ充放電試験を行い、各電池の高等放電容量 を求めたところ、電池B1の高率放電容量は600mA かまり、電池B2の高率放電登量は615mAhであ った。これらは比較電池C1、C2のそれらに比べて途 に大きい、この事実から、炭素材料の粒子表面をアルミ 二ウム化合物で被覆することにより、高率放電特性が向 上することが分かる。

【0027】〈充放電サイクル特性〉電池A1, A2, A3, A4, A5, B1, B2及び比較電池C1, C2について、200mAで4.1Vまで充電した後、10

00mAで2.75Vまで放電する工程を1サイクルと する充放電を200サイクル行い、各電池の充放電サイ クル特件を調べた。結果を図3及び図4に示す。図3及 び図4はいずれも、縦軸に各電池の高率放電容量 (mA h)を、横軸に充放電サイクルをとったグラフである。 【0028】図3及び図4より、本発明電池は、比較電 池に比べて、充放電サイクル特性が良いことが分かる。 【0029】(実施例38~41)表3に示す重量比の 天然黒鉛(実施例1~35で用いたものと同じもの)と A1F。とを乳鉢中にてらいかい混合して、天然黒鉛の 粒子表面をA1F。で被覆した。非水電解液にアルミニ ウム化合物を添加せず、且つ負極にA1F。で粒子表面 が被覆された上記の天然黒鉛を用いたこと以外は実施例 1~35と同様にして、リチウム二次電池(電池B)B 3, B4, B5, B6を作製した。これらの各電池につ いて先と同じ充放電試験を行い、各電池の高率放電容量 を求めた、結果を表3に示す。 [0030]

【表3】

電池	天然黒鉛とAIF ₃ 量比	との混合重	皮膜の厚み (A)	高率放電容量 (mAh)
B38 B39 B40 B41	99.95:0. 99.7:0. 97:3 95:5	0 5 8	0. 5 1 500 1000	550 615 610 550

【0031】表3より、電池Bにおける天然黒鉛の粒子 表面を被覆するAIF。皮膜の厚みは、1~500Åが 好ましいことが分かる。他のアルミニウム化合物からな る皮膜で被覆する場合も、この範囲の厚みが好ましいこ とを別途確認した。

[0032]

【発明の効果】本発明により充放電サイクル特性及び高 率放電特性の良いリチウム二次電池が提供される。 【図面の簡単な説明】

【図1】非水電解液へのアルミニウム化合物「A1

I。、A1 (OH)。又はA1F。] の添加量と高率放 雷容量の関係を示すグラフである.

【図2】非水電解液へのアルミニウム化合物 [A1(P F₆) 2、A1 (C1O₄) 2、A1 (BF₄) 2 又は A1 (N (CF₃ SO₂)₂)₃)の添加量と高率放電 容量の関係を示すグラフである。

【図3】本発明電池の充放電サイクル特性を示すグラフ である。

【図4】本発明電池及び比較電池の充放電サイクル特性 を示すグラフである。

フロントページの続き

(72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72) 発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電標株式会社内