Length of Atlantic salmon smolt and their subsequent marine survival

Atlantic salmon life cycle

- Anadromous
 - Freshwater
 - Marine

Atlantic salmon life cycle

- Anadromous
 - Freshwater
 - Marine

- Three major transitions
 - -Egg > Smolt (freshwater survival)
 - -Smolt > Adult (marine survival)
 - -Adult > Spawner (fishing mortality)

Atlantic salmon life cycle

-Smolt > Adult (marine survival)

Atlantic salmon marine survival

- Risks
 - Physiological stress of F/W -> S/W
 - Temperature, salinity, etc.
 - Novel, abundant predators
 - Distant-water fisheries
 - Highly regulated since 1990

Previous research & hypotheses

- Marine survival might be related to:
 - Smolt length
 - Larger smolt better survive
 - Origin
 - Wild (vs hatchery) smolts better survive
 - Environmental conditions
 - Better growth conveys better survival

Potter, E. C. E., Maoileidigh, N. O. & Chaput, G. (Eds.) 2003. Marine mortality of Atlantic salmon, Salmo salar L: methods and measures. DFO Canadian Science Advisory Secretariat - Research Document 2003/101

Question & prediction

Question:

Does marine survival increase with increasing smolt length?

Prediction:

Estimated marine survival will increase with smolt length

- 1) Estimate marine survival from Bayesian State-Space model
- 2) Adapt BSSM to estimate effect of individual smolt length
- 3) Consider alternative hypotheses: model comparison [Todo]

1) Estimate marine survival from Bayesian State-Space model

State matrix of individual i Space matrix of individual *i*

$$z_i = [A,?,B,?]$$

 $w_i = [1,0,1,0]$

Individual i observed in state k = A at time t = 1, was unobserved at t=2, was observed in k=Bat t = 3 and was unobserved at t = 4.

1) Estimate marine survival from Bayesian State-Space model

- Individual-based BSSM:
 - admits individual smolt lengths
- Assimilates information to stock level:
 - admits population-level covariates

Testing: no covariates

- Generate data & estimate parameters from same model
- Generating parameters:

Parameter	Abbreviation	High Ms case	Low Ms case
Mean individual marine survival	Ms	0.70	0.05
Individual detection at release	release	1.00	1.00
Individual detection at first detection station	pES	0.85	0.85
Survival between detection stations	ESBins	1.00	1.00

> gelman.diag(ab)
Potential scale reduction factors:

Point est. Upper C.I. 1.00 a_mu b_mu 1.01

Multivariate psrf

1

pES

Testing: low Ms case

2) Adapt BSSM to estimate effect of individual smolt length

$$\phi = \frac{1}{1 + \exp(-lp)}$$

$$lp \sim \alpha + \beta$$
Length

Testing: length covariate

- Generate data & estimate parameters from same model
- Generating parameters:

Parameter	Abbreviation	High Ms case	Low Ms case
Mean individual marine survival	Ms	0.70	0.05
Individual detection at release	release	1.00	1.00
Individual detection at first detection station	pES	0.85	0.85
Survival between detection stations	ESBins	1.00	1.00
Length-Survival logistic regression coefficients	a_mu, b_mu	-5, 5	-5, 5

> gelman.diag(ab) Potential scale reduction factors:

b_mu

Point est. Upper C.I. a_mu 1 1.00 b_mu 1 1.01

Multivariate psrf

1

a_mu

Testing: low Ms case

Testing: low Ms case

Testing: Next steps

- Better specification of α and β (logistic regression) priors?
- α as a random variable: account for individual variation?

More testing...

Chalk stream

Wild salmon

- 98% smolts age 1
- PIT tags

PIT tagging programme

- Annual from 2003 present
- Cover entire Frome catchment
- Aim to distribute 10,000 PIT tags
- PIT readers throughout catchment

Sample size for analysis

- 8423 PIT tagged smolts
- 191 PIT tagged adult returns

- Frome A. salmon marine survival estimate:
 - Chapman model = 1.8- 2.5%
 - -This BSSM = 2.3%

- PIT reader detection probability estimate:
 - -Chapman model = 0.85
 - -This BSSM = 0.84

• Chapman ≈ BSSM

Conclusions

- BSSM estimates marine survival accounting for imperfect detection
- Admits individual, e.g., length, and other covariates, e.g., SST, etc.
- Frome salmon smolt marine survival related to their length...

Implications

• Salmon parr are shrinking: Frome (UK), Oir & Scorff (France)

Implications

Example: exploratory plots

Example: exploratory plots

Next steps

- Extend model to estimate marine survival for separate years
- Extend model to estimate 1SW & MSW marine survival separately
- Compare models including additional explanatory variables...

3) Consider alternative hypotheses: model comparison [Todo]

Additional variables to explain marine survival:

- Sea surface temperature ~ growth conditions
- -Other...

$$\phi = \frac{1}{1 + \exp(-lp_i)}$$

$$lp_i \sim \alpha_i + \beta_1 Length_i + \beta_2 SST + ... + \beta_k$$

Thanks for listening

sgregory@gwct.org.uk

stephendavidgregory.github.io

