

ANOMALY DETECTION PRODUCTI INDUSTRIALI

MATTIA PRESTA 239051

OUTLINE

- Introduzione
- Anomaly Detection
- Modelli
- EfficientAD
- DRÆM
- Dataset
- Sviluppo
- Risultati
- Ulteriori Test

INTRODUZIONE

L'anomaly detection è un compito fondamentale che mira a identificare e localizzare deviazioni significative dall'aspetto "normale" all'interno delle immagini.

Il rilevamento delle anomalie è una task cruciale in vari settori industriali e scientifici

Questo progetto didattico si focalizza sullo sviluppo e l'implementazione di modelli per il rilevamento delle anomalie utilizzando dataset riguardanti prodotti industriali

ANOMLAY DETECTION

- L'Anomaly Detection è una tecnica utilizzata per identificare elementi, eventi o osservazioni che si discostano in modo significativo dal comportamento atteso di un dataset.
- Le anomalie sono dati che non si conformano al modello generale del dataset.
- Applicazioni Comuni:
 - Rilevamento delle frodi
 - Manutenzione predittiva
 - Sicurezza informatica
 - Autoveicoli autonomi
 - Controllo qualità

FAMIGLIE DI ANOMALY DETECTION

Unsupervised Anomaly Detection

Supervised Anomaly Detection

Semi-Supervised Anomaly Detection

MODELLI

- EfficientAD: È un metodo non supervisionato per il rilevamento visivo delle anomalie, addestrato solo su immagini normali (prive di anomalie).
 - Utilizza un approccio studente-insegnante per le anomalie strutturali e incorpora un autoencoder per rilevare le anomalie logiche, ponendo grande enfasi sull'efficienza computazionale.
- DRÆM: È un modello di rilevamento delle anomalie superficiali non supervisionato.
 - Si addestra esclusivamente su immagini prive di anomalie, simulando anomalie per apprendere una rappresentazione dell'immagine e della sua ricostruzione priva di anomalie, consentendo la localizzazione diretta delle anomalie.

ARCHITETTURA EFFICIENT AD

 Costituita da un approccio ibrido che combina un modello studente-insegnante con un autoencoder.

Patch Description Network - PDN

 rete di classificazione profonda pre-addestrata che funge da estrattore di caratteristiche efficiente

Approccio Studente-Insegnante

- la rete insegnante pre-addestrata estrae le caratteristiche dalle immagini normali, mentre una rete studentessa viene addestrata per prevedere queste stesse caratteristiche.
- Al momento del test, se lo studente non riesce a replicare accuratamente le caratteristiche dell'insegnante, ciò indica un'anomalia

Autoencoder

 rilevare le anomalie logiche, che implicano violazioni di vincoli globali o strutturali, come oggetti mancanti, fuori posto o in quantià errata.

ARCHITETTURA DRÆM

Composta da due sotto-reti principali:

sotto-rete ricostruttiva

- architettura encoder-decoder il cui scopo è imparare a rilevare implicitamente le anomalie
- viene addestrata per ricostruire l'immagine originale da una versione artificialmente corrotta, ottenuta tramite un simulatore di anomalie

sotto-rete discriminativa

- achitettura simile a U-Net, impara una rappresentazione congiunta dell'immagine originale e della sua ricostruzione priva di anomalie.
- Il suo compito è produrre una mappa di rilevamento delle anomalie per-pixel ad alta fedeltà.

DATASET

MVTec AD

Contiene oltre 5000 immagini ad alta risoluzione suddivise in quindici diverse categorie di oggetti e texture

ViSa

Contiene 10.821 immagini con 9.621 campioni normali, diviso in 12 sottoinsiemi di oggetti differenti

WFDD

Include 4101 immagini di tessuto, suddivise in 4 categorie,

SVILUPPO

Tramite l'utilizzo della libreria **Anomalib** sono stati implementati l'addestramento e l'inferenza all'interno dell' ambiente notebook fornito da **Kaggle** utilizzando una GPU Nvidia P-100.

METRICHE

Sono state utilizzate metriche per valutare in modo accurato sia la capacità di individuare la presenza di anomalie sia quella di localizzarle correttamente.

Image AUROC

o misura quanto bene un modello è in grado di distinguere tra immagini anomale e normali

Image F1

 media armonica tra precisione e recall nel classificare un'immagine come anomala o normale

Pixel AUROC

 valuta la capacità del modello di distinguere tra pixel normali e pixel anomali

• Pixel F1

 misura la qualità della segmentazione a livello di pixel, confrontandole aree anomale rilevate dal modello con le annotazioni reali.

RISULTATI

	Img-AUROC	Img-F1	Pixel-AUROC	Pixel-F1
MVTec				
DRÆM	0.69	0.86	0.69	0.21
EfficientAD	0.94	0.92	0.94	0.60
ViSa				
DRÆM	0.74	0.77	0.78	0.11
EfficientAD	0.89	0.84	0.97	0.37
WFDD				
DRÆM	0.87	0.81	0.59	0.08
EfficientAD	0.84	0.82	0.84	0.36

RISULTATI

EFFICIENT AD

DRÆM

RISULTATI

	Tempo/Immagine (s) \downarrow	Throughput (img/s) ↑	Tempo Totale (s) \downarrow	Immagini
MVTec				
DRÆM	0.18	5.58	308.30	1,721
EfficientAD	0.1522	6.57	261.95	1,721
ViSa				
DRÆM	0.1072	9.33	115.96	1,082
EfficientAD	0.0734	13.62	79.47	1,082
WFDD				
DRÆM	0.1338	7.47	24.63	184
EfficientAD	0.1222	8.18	22.49	184

ULTERIORI TEST

UNDERSAMPLING TRAIN SET

	Img-AUROC	Img-F1	Pixel-AUROC	Pixel-F1
MVTec				
DRÆM	0.69	0.86	0.69	0.21
DRÆM Under	0.75	0.86	0.69	0.20
EfficientAD	0.94	0.92	0.94	0.60
EfficientAD Under	0.90	0.91	0.93	0.55
ViSa				
DRÆM	0.74	0.77	0.78	0.11
DRÆM Under	0.73	0.75	0.78	0.11
EfficientAD	0.89	0.84	0.97	0.37
EfficientAD Under	0.86	0.83	0.95	0.33
WFDD				
DRÆM	0.87	0.81	0.59	0.08
DRÆM Under	0.86	0.78	0.60	0.14
EfficientAD	0.84	0.82	0.84	0.36
EfficientAD Under	0.85	0.80	0.85	0.36

TUNING IPERPARAMETRI

	Img-AUROC	Img-F1	Pixel-AUROC	Pixel-F1
WFDD				
EfficientAD	0.84	0.82	0.84	0.36
EfficientAD new	0.83	0.81	0.98	0.43

- Learning rate 5x maggiore (0.0001→0.0005)
 - o per accelerare la convergenza
- Aumento del weight decay (0.00001→0.0001)
 - per contrastare l'overfitting in training prolungato

GRAZIE PER L'ATTENSIONE

