Kreweras Walks and Loopless Triangulations

Olivier Bernardi - LaBRI, Bordeaux

FPSAC 2006, San Diego

Kreweras walks

Walks made of West, South and North - East steps, starting and ending at the origin and confined in the first quadrant.

Preliminary remarks

Kreweras walks are words w on $\{a, b, c\}$ such that

$$|w|_{a} = |w|_{b} = |w|_{c},$$

• for any prefix w', $|w'|_a \leq |w'|_c$ and $|w'|_b \leq |w'|_c$.

Preliminary remarks

Kreweras walks are words w on $\{a, b, c\}$ such that

$$|w|_{a} = |w|_{b} = |w|_{c},$$

• for any suffix w', $|w'|_a \ge |w'|_c$ and $|w'|_b \ge |w'|_c$.

Kreweras walks

Theorem (Kreweras 65): The number of Kreweras walks of size n (3n steps) is

$$k_n = \frac{4^n}{(n+1)(2n+1)} \binom{3n}{n}$$
.

Kreweras walks

Theorem (Kreweras 65): The number of Kreweras walks of size n (3n steps) is

$$k_n = \frac{4^n}{(n+1)(2n+1)} \binom{3n}{n}$$
.

[Kreweras 65, Niederhausen 82, 83, Gessel 86, Bousquet-Mélou 05]

Kreweras walks and cubic maps

Cubic maps and depth-trees.

Bijection:

Kreweras walk \iff Cubic map + Depth-tree.

- Counting Kreweras walks and cubic maps.
- Open problems.

Cubic maps and depth-trees

۰

Maps

A map is a connected planar graph properly embedded in the sphere.

The map is considered up to deformation.

Maps

A map is a connected planar graph properly embedded in the sphere.

The map is considered up to deformation.

A map is rooted if a half-edge is distinguished as the root.

Cubic maps

A map is cubic if every vertex has degree 3.

Cubic maps

A map is cubic if every vertex has degree 3.

We focus on cubic maps without isthmus.

Cubic maps - counting result

Remark: The number of edges of a cubic map is always a multiple of 3.

A cubic map of size n has 3n edges, 2n vertices and n+2 faces.

Cubic maps - counting result

Remark: The number of edges of a cubic map is always a multiple of 3.

A cubic map of size n has 3n edges, 2n vertices and n+2 faces.

Theorem [Mullin 65, Poulalhon & Schaeffer 03]:

The number of cubic maps without isthmus of size n is

$$c_n = \frac{2^n}{(n+1)(2n+1)} {3n \choose n} = \frac{k_n}{2^n}.$$

Depth-trees

We consider spanning trees of rooted maps.

Depth-trees

A spanning tree of a rooted map is a depth-tree if every external edge links a vertex to one of its ancestors.

Counting depth-trees

Theorem: For any cubic map of size n (3n edges), there are 2^n depth-trees not containing the root.

Counting depth-trees

Theorem: For any cubic map of size n (3n edges), there are 2^n depth-trees not containing the root.

Example: n=3

Counting depth-trees

(Idea of the) proof:

- The depth-trees are the trees that can be obtained by a depth-first search algorithm (DFS).
- During a DFS, there are n real binary choices. (One for each external edge.)

rrllr

Kreweras walk

Cubic map + Depth-tree

Kreweras walk Cubic map + Depth-tree

$$k_n = c_n \times 2^n$$

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

w = caccbbcbcbbaaaa

FPSAC 2006, San Diego

Example:

w = caccbbcbcbbaaaa

FPSAC 2006, San Diego

Example:

Theorem: This construction is a bijection between Kreweras walks of size n and cubic maps of size n + depth-tree.

$$k_n$$

$$n \rightarrow$$

$$2^n$$

w = caccbbcbcbbaaaa

w = caccbbcbcbbaaaa

FPSAC 2006, San Diego

Counting Kreweras walks and cubic maps

۰

Relaxing some constraints

Kreweras walks are the words w on $\{a, b, c\}$ such that

- for any prefix w', $|w'|_{\mathbf{a}} \leq |w'|_{\mathbf{c}}$ and $|w'|_{\mathbf{b}} \leq |w'|_{\mathbf{c}}$.

۰

Relaxing some constraints

Kreweras walks are the words w on $\{a, b, c\}$ such that

- $|w|_{a} = |w|_{b} = |w|_{c},$
- for any prefix w', $|w'|_a \leq |w'|_c$ and $|w'|_b \leq |w'|_c$.

What about words w on $\{a, b, c\}$ such that

- $|w|_{a} + |w|_{b} = 2|w|_{c},$
- for any prefix w', $|w'|_a + |w'|_b \le 2|w'|_c$?

We call them excursions.

Kreweras

$$w = caccaacbcbbaaaa$$

$$|w'|_{\mathbf{a}} \leq |w'|_{\mathbf{c}}$$
 and $|w'|_{\mathbf{b}} \leq |w'|_{\mathbf{c}}$

Excursion

$$w = caccbbcbcbbaaaa$$

$$|w'|_{a} + |w'|_{b} \le 2|w'|_{c}$$

۰

Proposition: There are $e_n = \frac{4^n}{2n+1} \binom{3n}{n}$ excursions of size n.

Proposition: There are $e_n = \frac{4^n}{2n+1} \binom{3n}{n}$ excursions of size n.

Proof: The excursions w are such that:

$$\begin{split} |w|_{\pmb{a}} + |w|_{\pmb{b}} &= 2|w|_{\pmb{c}},\\ \text{for all prefix } w', \, |w'|_{\pmb{a}} + |w'|_{\pmb{b}} \leq 2|w'|_{\pmb{c}}. \end{split}$$

• Position of the c's: $\frac{1}{2n+1} \binom{3n}{n}$.

Cycle lemma: There are $\frac{1}{2n+1}\binom{3n}{n}$ (one-dimensional) walks with 3n steps +2 and -1.

• Position of the a's and b's: 2^{2n} .

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

Example:

w = caccaacbcbbaaaa

FPSAC 2006, San Diego

Example:

Example:

Example:

Theorem: This construction is a bijection between ecursions of size n and cubic maps of size n + depth-tree + marked external edge.

Corollary:
$$e_n = c_n \times 2^n \times (n+1)$$
.

Theorem: This construction is a bijection between ecursions of size n and cubic maps of size n + depth-tree + marked external edge.

Corollary:
$$e_n = c_n \times 2^n \times (n+1)$$
.

Thus,

$$c_n = \frac{2^n}{(n+1)(2n+1)} {3n \choose n}$$
 and $k_n = \frac{4^n}{(n+1)(2n+1)} {3n \choose n}$.

Concluding remarks

Results

- We established a bijection between Kreweras walks and cubic maps with a depth-tree.
 - \Rightarrow Coding of triangulations with $\log_2(27)$ bits per vertex. (Optimal coding: $\log_2(27) 1$ bits per vertex.)

Results

- We established a bijection between Kreweras walks and cubic maps with a depth-tree.
 - \Rightarrow Coding of triangulations with $\log_2(27)$ bits per vertex. (Optimal coding: $\log_2(27) 1$ bits per vertex.)
- We extended the bijection to a more general class of walks.
 - ⇒ Counting results.
 - ⇒ Random sampling of triangulations in linear time.

$$k_n = \frac{4^n}{(n+1)(2n+1)} \binom{3n}{n}.$$

• Can we count Kreweras walks ending at (i, 0)? at (i, j)?

• Can we count Kreweras walks ending at (i, 0)? at (i, j)? Theorem [Kreweras 65]: There are

$$k_{n,i} = 4^n {2i \choose i} \frac{2i+1}{(n+i+1)(2n+2i+1)} {3n+2i \choose n}$$

Kreweras walks ending at (i, 0).

• Can we count Kreweras walks ending at (i, 0)? at (i, j)? Theorem [Kreweras 65]: There are

$$k_{n,i} = 4^n {2i \choose i} \frac{2i+1}{(n+i+1)(2n+2i+1)} {3n+2i \choose n}$$

Kreweras walks ending at (i, 0).

Remark: Kreweras walks ending at (i, 0) and (i + 2)-near-cubic maps are related:

$$k_{n,i} = 2^n \times c_{n,i}$$
.

- There are similar counting results:
 - Non-separable maps [Tutte].
 - Two-stack sortable permutations [West, Zeilberger].

$$\mathcal{NS}_n = \frac{2}{(n+1)(2n+1)} \binom{3n}{n}.$$

[Dulucq, Gire & Guibert 96, Goulden & West 96]

Thanks.

