PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
 C12N 15/12, C12Q 1/68, C07K 14/47, 16/18, G01N 33/68, A61K 38/17

(11) International Publication Number:

WO 00/44900

A2 |

(43) International Publication Date:

3 August 2000 (03.08.00)

(21) International Application Number:

PCT/US00/02237

(22) International Filing Date:

28 January 2000 (28.01.00)

(30) Priority Data:

60/117,905 29 January 1999 (29.01.99) US 60/117,904 29 January 1999 (29.01.99) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 60/117,904 (CIP)
Filed on 29 January 1999 (29.01.99)
US 60/117,905 (CIP)
Filed on 29 January 1999 (29.01.99)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LAL, Pretti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monrow Drive #12, Mountain View, CA 94040 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US). LU, Aina, M., D. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). TRAN, Bao [US/US]; 744 Kiely Boulevard, Santa Clara, CA 95051 (US). SHIH, Leo, L. [US/US]; Apartment B., 1081 Tanland Drive, Palo Alto, CA 94303 (US). AU—YOUNG, Janice, L. [US/US]; 1419 Kains Avenue, Berkeley, CA 94702 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NUCLEIC-ACID BINDING PROTEINS

(57) Abstract

The invention provides human nucleic-acid binding proteins (NuABP) and polynucleotides which identify and encode NuABP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of NuABP.

ec. 7

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NUCLEIC-ACID BINDING PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of nucleic-acid binding proteins and to the use of these sequences in the diagnosis, treatment, and prevention of reproductive, immune, and neurological disorders, and cell proliferative disorders including cancer.

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

Multicellular organisms are comprised of diverse cell types that differ dramatically both in structure and function. The identity of a cell is determined by its characteristic pattern of gene expression, and different cell types express overlapping but distinct sets of genes throughout development. Spatial and temporal regulation of gene expression is critical for the control of cell proliferation, cell differentiation, apoptosis, and other processes that contribute to organismal development. Furthermore, gene expression is regulated in response to extracellular signals that mediate cell-cell communication and coordinate the activities of different cell types. Appropriate gene regulation also ensures that cells function efficiently by expressing only those genes whose functions are required at a given time.

Transcriptional regulatory proteins are essential for the control of gene expression. Some of these proteins function as transcription factors that initiate, activate, repress, or terminate gene transcription. Transcription factors generally bind to promoter, enhancer, or upstream regulatory regions of a gene in a sequence-specific manner, although some factors bind regulatory elements within or downstream of the coding region. Transcription factors may bind to a specific region of DNA singly or as a complex with other accessory factors. (Reviewed in Lewin, B. (1990) Genes IV, Oxford University Press, New York, NY, pp. 554-570.)

The double helix structure and repeated sequences of DNA create topological and chemical features which can be recognized by transcription factors. These features include hydrogen bond donor and acceptor groups, hydrophobic patches, major and minor grooves, and regular repeated stretches of sequence which induce distinct bends in the helix. Typically, transcription factors recognize specific DNA sequence motifs of about 20 nucleotides in length. Multiple adjacent transcription factor-binding motifs may be required for gene regulation.

Many transcription factors incorporate DNA-binding structural motifs which comprise either α helices or β sheets that bind to the major groove of DNA. Four well-characterized structural motifs are helix-turn-helix, zinc finger, leucine zipper, and helix-loop-helix. Proteins containing these motifs may act alone as monomers or form homo- or heterodimers that interact with DNA.

The helix-turn-helix motif consists of two α helices connected at a fixed angle by a short

chain of amino acids. One of the helices binds to the major groove. Helix-turn-helix motifs are exemplified by the homeobox motif which is present in homeodomain proteins. These proteins are critical for specifying the anterior-posterior body axis during development and are conserved throughout the animal kingdom. The Antennapedia and Ultrabithorax proteins of <u>Drosophila</u> melanogaster are prototypical homeodomain proteins. (Pabo, C.O. and R.T. Sauer (1992) Ann. Rev. Biochem. 61:1053-1095.)

The zinc finger motif, which binds zinc ions, generally contains tandem repeats of about 30 amino acids consisting of periodically spaced cysteine and histidine residues. Examples of this sequence pattern include the C2H2-type and the C3HC4-type zinc fingers, and the PHD domain. (Lewin, supra; Aasland, R., et al. (1995) Trends Biochem. Sci 20:56 - 59.) Zinc finger proteins each contain an α helix and an antiparallel β sheet whose proximity and conformation are maintained by the zinc ion. Contact with DNA is made by the arginine preceding the α helix and by the second, third, and sixth residues of the α helix. Variants of the zinc finger motif include poorly defined cysteine-rich motifs which bind zinc or other metal ions. These motifs may not contain histidine residues and are generally nonrepetitive.

The leucine zipper motif comprises a stretch of amino acids rich in leucine which can form an amphipathic α helix. This structure provides the basis for dimerization of two leucine zipper proteins. The region adjacent to the leucine zipper is usually basic, and upon protein dimerization, is optimally positioned for binding to the major groove. Proteins containing such motifs are generally referred to as bZIP transcription factors.

15

20

25

30

The helix-loop-helix motif (HLH) consists of a short α helix connected by a loop to a longer α helix. The loop is flexible and allows the two helices to fold back against each other and to bind to DNA. The transcription factor Myc contains a prototypical HLH motif.

Most transcription factors contain characteristic DNA binding motifs, and variations on the above motifs and new motifs have been and are currently being characterized. (Faisst, S. and S. Meyer (1992) Nucl. Acids Res. 20:3-26.)

Mutations in transcription factors contribute to oncogenesis. This is likely due to the role of transcription factors in the expression of genes involved in cell proliferation. For example, mutations in transcription factors encoded by proto-oncogenes, such as Fos, Jun, Myc, Rel, and Spil, may be oncogenic due to increased stimulation of cell proliferation. Conversely, mutations in transcription factors encoded by tumor suppressor genes, such as p53, RB1, and WT1, may be oncogenic due to decreased inhibition of cell proliferation. (Latchman, D. (1995) Gene Regulation: A Eukaryotic Perspective, Chapman and Hall, London, UK, pp 242-255.)

Gene expression is also affected by chromatin-associated proteins. In the nucleus, DNA is

packaged into chromatin, the compact organization of which limits the accessibility of DNA to transcription factors and plays a key role in gene regulation. (Lewin, <u>supra</u>, pp. 409-410.) The compact structure of chromatin is determined and influenced by chromatin-associated proteins such as histones, high mobility group (HMG) proteins, helicases, and chromodomain proteins. There are five classes of histones, H1, H2A, H2B, H3, and H4, all of which are highly basic, low molecular weight proteins. The fundamental unit of chromatin, the nucleosome, consists of 200 base pairs of DNA associated with two copies each of H2A, H2B, H3, and H4. H1 links adjacent nucleosomes. HMG proteins are low molecular weight, non-histone proteins that may play a role in unwinding DNA and stabilizing single-stranded DNA. Helicases, which are DNA-dependent ATPases, unwind DNA, allowing access for transcription factors. Chromodomain proteins play a key role in the formation of highly-compacted, transcriptionally silent heterochromatin.

10

15

20

25

30

Much of the regulation of gene expression in eucaryotic cells occurs at the posttranscriptional level. Messenger RNAs (mRNA), which are produced in the cell nucleus from primary transcripts of protein-encoding genes, are processed and transported to the cytoplasm where the protein synthesis machinery is located. RNA-binding proteins are a group of proteins that participate in the processing, editing, transport, localization, and posttranscriptional regulation of mRNAs, and comprise the protein component of ribosomes as well. The RNA-binding activity of many of these proteins is mediated by a series of RNA-binding motifs identified within them. These domains include the RNP motif, the arginine-rich motif, the RGG box, and the KH motif. (Reviewed in Burd, C. G. and Dreyfuss, G. (1994) Science 265:615 - 621.) The RNP motif is the most widely found and best characterized of these motifs. The RNP motif is composed of 90-100 amino acids which form an RNA-binding domain and is found in one or more copies in proteins that bind pre-mRNA, mRNA, pre-ribosomal RNA, and small nuclear RNAs. The RNP motif is composed of two short sequences (RNP-1 and RNP-2) and a number of other mostly hydrophobic, conserved amino acids interspersed throughout the motif. (Burd, supra; ExPASy PROSITE document PDOC0030.)

Many neoplastic disorders in humans can be attributed to inappropriate gene expression. Malignant cell growth may result from either excessive expression of tumor promoting genes or insufficient expression of tumor suppressor genes. (Cleary, M.L. (1992) Cancer Surv. 15:89-104.) Chromosomal translocations may also produce chimeric loci which fuse the coding sequence of one gene with the regulatory regions of a second unrelated gene. Such an arrangement often results in inappropriate gene transcription. The Wilms tumor suppressor gene product, WT1, is a protein containing a DNA-binding domain consisting of four zinc fingers and a proline-glutamine rich region capable of regulating transcription. (ExPASy PROSITE document PR00049.) Deletions of the WT1 gene, or point mutations which destroy the DNA-binding activity of the protein are associated with development of the pediatric nephroblastoma, Wilms tumor, and Denys-Drash syndrome. (Rauscher,

F.J. (1993) FASEB J. 7:896-903.)

10

30

Certain proteins enriched in glutamine are associated with various neurological disorders including spinocerebellar ataxia, bipolar effective disorder, schizophrenia, and autism. (Margolis, R.L. et al. (1997) Human Genetics 100:114-122.) These proteins contain regions with as many as 15 or more consecutive glutamine residues and may function as transcription factors with a potential role in regulation of neurodevelopment or neuroplasticity.

The immune system responds to infection or trauma by activating a cascade of events that coordinate the progressive selection, amplification, and mobilization of cellular defense mechanisms. A complex and balanced program of gene activation and repression is involved in this process. However, hyperactivity of the immune system as a result of improper or insufficient regulation of gene expression may result in considerable tissue or organ damage. This damage is well documented in immunological responses associated with arthritis, allergens, heart attack, stroke, and infections. (Harrison's Principles of Internal Medicine, 13/e, McGraw Hill, Inc. and Teton Data Systems Software, 1996.) In particular, a zinc finger protein termed Staf50 (for Stimulated trans-acting factor of 50 kDa) is a transcriptional regulator and is induced in various cell lines by interferon-I and -II. Staf50 appears to mediate the antiviral activity of interferon by down-regulating the viral transcription directed by the long terminal repeat promoter region of human immunodeficiency virus type-1 in transfected cells. (Tissot, C. (1995) J. Biol. Chem. 270:14891-14898.)

Furthermore, the generation of multicellular organisms is based upon the induction and coordination of cell differentiation at the appropriate stages of development. Central to this process is differential gene expression, which confers the distinct identities of cells and tissues throughout the body. Failure to regulate gene expression during development could result in developmental disorders.

The discovery of new nucleic-acid binding proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of reproductive, immune, and neurological disorders, and cell proliferative disorders including cancer.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, protnames, referred to collectively as "ABBR" and individually as "NuABP-1," "NuABP-2," "NuABP-3," "NuABP-4," "NuABP-5," "NuABP-6," "NuABP-7," "NuABP-8," "NuABP-9," "NuABP-10" "NuABP-11," "NuABP-12," "NuABP-13," "NuABP-14," "NuABP-15," "NuABP-16," "NuABP-17," "NuABP-18," "NuABP-19," "NuABP-20," "NuABP-21," "NuABP-22," "NuABP-23," "NuABP-24," "NuABP-25," "NuABP-26," "NuABP-27," "NuABP-30," "NuABP-31," "NuABP-32," "NuABP-33,"

"NuABP-34," "NuABP-35," "NuABP-36," "NuABP-37," "NuABP-38," "NuABP-39," "NuABP-40" "NuABP-41," "NuABP-42," "NuABP-43," "NuABP-44," "NuABP-45," "NuABP-46," "NuABP-47," "NuABP-48," "NuABP-49," "NuABP-50" "NuABP-51," "NuABP-52," "NuABP-53," "NuABP-54," and "NuABP-55." In one aspect, the invention provides an isolated polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-55.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55. In one alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:56-110.

10

20

25

30

35

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55.

The invention further provides an isolated polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:56-110, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:56-110, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

10

15

20

25

35

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:56-110, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). The method comprises a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 30 contiguous nucleotides. In another alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, and a pharmaceutically acceptable excipient. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional NuABP, comprising administering to a patient in need of such treatment the pharmaceutical composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional NuABP, comprising administering to a patient in need of such treatment the pharmaceutical composition.

10

15

20

35

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-55. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional NuABP, comprising administering to a patient in need of such treatment the pharmaceutical composition.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:56-110, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding NuABP.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of NuABP.

Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding NuABP were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze NuABP, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

35

10

15

"NuABP" refers to the amino acid sequences of substantially purified NuABP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of

NuABP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of NuABP either by directly interacting with NuABP or by acting on components of the biological pathway in which NuABP participates.

An "allelic variant" is an alternative form of the gene encoding NuABP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

10

20

35

"Altered" nucleic acid sequences encoding NuABP include those sequences with deletions. insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as NuABP or a polypeptide with at least one functional characteristic of NuABP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding NuABP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding NuABP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent NuABP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of NuABP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of NuABP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of NuABP either by directly interacting with NuABP or by acting on components of the biological pathway in which NuABP participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind NuABP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

15

20

30

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic NuABP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity

between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.

5

20

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding NuABP or fragments of NuABP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
25	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
30	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
35	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
40	Thr	Ser, Val

Trp	Phe, Tyr
Tyr	His, Phe, Trp
Val	lle, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

5

10

30

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "fragment" is a unique portion of NuABP or the polynucleotide encoding NuABP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:56-110 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:56-110, for example, as distinct from any other sequence in the same genome. A fragment of SEQ ID NO:56-110 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:56-110 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:56-110 and the region of SEQ ID NO:56-110 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-55 is encoded by a fragment of SEQ ID NO:56-110. A

fragment of SEQ ID NO:1-55 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-55. For example, a fragment of SEQ ID NO:1-55 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-55. The precise length of a fragment of SEQ ID NO:1-55 and the region of SEQ ID NO:1-55 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

10

The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at

http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version

2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

15 Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

20 Word Size: 11

30

35

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some

alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10 Word Size: 3

Filter: on

10

15

20

25

30

35

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific

hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

10

15

20

25

30

35

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_0 t or R_0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide

sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

10

20

25

30

The term "modulate" refers to a change in the activity of NuABP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of NuABP.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Probe" refers to nucleic acid sequences encoding NuABP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also

be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

5

25

30

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.

This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, <u>supra</u>. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

10

15

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding NuABP, or fragments thereof, or NuABP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected

based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

30 THE INVENTION

35

10

15

The invention is based on the discovery of new human nucleic-acid binding proteins (NuABP), the polynucleotides encoding NuABP, and the use of these compositions for the diagnosis, treatment, or prevention of reproductive, immune, and neurological disorders, and cell proliferative disorders including cancer.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding

NuABP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each NuABP were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. The Incyte clones in column 5 were used to assemble the consensus nucleotide sequence of each NuABP and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows identification or homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

10

15

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding NuABP. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:56-110 and to distinguish between SEQ ID NO:56-110 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express NuABP as a fraction of total tissues expressing NuABP. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing NuABP as a fraction of total tissues expressing NuABP. Of particular note is the expression of SEQ ID NO:83 and SEQ ID NO:110 in neurological tissue. About 53% of the cDNA libraries expressing SEQ ID NO:83 are derived from neurological tissue. Furthermore, SEQ ID NO:110 expression is detected exclusively in a cDNA library derived from brain tissue afflicted with Huntington's disease. Column 5 lists the vectors used to subclone each cDNA library.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding NuABP were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

Fragments of the nucleotide sequences encoding NuABP are useful, for example, in hybridization or amplification technologies to identify SEQ ID NOS:56-110 and to distinguish between SEQ ID NOS:56-110 and related polynucleotide sequences. The polypeptides encoded by

these fragments are useful, for example, as immunogenic peptides.

01

20

25

30

35

The invention also encompasses NuABP variants. A preferred NuABP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the NuABP amino acid sequence, and which contains at least one functional or structural characteristic of NuABP.

The invention also encompasses polynucleotides which encode NuABP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:56-110, which encodes NuABP.

The invention also encompasses a variant of a polynucleotide sequence encoding NuABP. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding NuABP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:56-110 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:56-110. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of NuABP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding NuABP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring NuABP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode NuABP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring NuABP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding NuABP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding NuABP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode NuABP and NuABP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding NuABP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:56-110 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

10

15

20

25

30

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding NuABP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al.

(1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).

Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode NuABP may be cloned in recombinant DNA molecules that direct expression of NuABP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express NuABP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter NuABP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-

mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding NuABP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)

Alternatively, NuABP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of NuABP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active NuABP, the nucleotide sequences encoding NuABP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding NuABP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding NuABP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding NuABP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an inframe ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

20

35

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding NuABP and appropriate transcriptional and translational control elements. These methods include <u>in vitro</u> recombinant DNA techniques, synthetic techniques,

and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A

<u>Laboratory Manual</u>, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

5

10

15

20

25

30

35

A variety of expression vector/host systems may be utilized to contain and express sequences encoding NuABP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding NuABP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding NuABP can be achieved using a multifunctional <u>E. coli</u> vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding NuABP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of NuABP are needed, e.g. for the production of antibodies, vectors which direct high level expression of NuABP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of NuABP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast <u>Saccharomyces cerevisiae</u> or <u>Pichia pastoris</u>. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, <u>supra</u>; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of NuABP. Transcription of sequences encoding NuABP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al.

(1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.)

These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

5

20

25

30

35

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding NuABP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses NuABP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of NuABP in cell lines is preferred. For example, sequences encoding NuABP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which

alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate ß-glucuronide. or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding NuABP is inserted within a marker gene sequence, transformed cells containing sequences encoding NuABP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding NuABP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

10

15

20

30

In general, host cells that contain the nucleic acid sequence encoding NuABP and that express NuABP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of NuABP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on NuABP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding NuABP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding NuABP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase

such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding NuABP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode NuABP may be designed to contain signal sequences which direct secretion of NuABP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

20

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding NuABP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric NuABP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of NuABP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the NuABP encoding sequence and the heterologous protein sequence, so that NuABP may be cleaved away from the heterologous moiety following purification.

Methods for fusion protein expression and purification are discussed in Ausubel (1995, <u>supra</u>, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled NuABP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

Fragments of NuABP may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer). Various fragments of NuABP may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

10

15

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of NuABP and nucleic-acid binding proteins. In addition, the expression of NuABP is closely associated with proliferative, neuronal, inflamed, and cancerous tissues and tissues of the reproductive system. Therefore, NuABP appears to play a role in reproductive, immune, and neurological disorders, and cell proliferative disorders including cancer. In the treatment of disorders associated with increased NuABP expression or activity, it is desirable to decrease the expression or activity of NuABP. In the treatment of disorders associated with decreased NuABP expression or activity, it is desirable to increase the expression or activity of NuABP.

Therefore, in one embodiment, NuABP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of NuABP. Examples of such disorders include, but are not limited to, a reproductive disorder such as disorders of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, disruptions of the estrous cycle, disruptions of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; an immune disorder such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis,

cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis. Goodpasture's syndrome, gout, Graves' disease. Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome. episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental 20 retardation and other developmental disorders of the central nervous system, cerebral palsy. neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders. dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, 25 myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders. akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, 30 primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

In another embodiment, a vector capable of expressing NuABP or a fragment or derivative

35

thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of NuABP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified NuABP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of NuABP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of NuABP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of NuABP including, but not limited to, those listed above.

10

15

20

25

35

In a further embodiment, an antagonist of NuABP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of NuABP. Examples of such disorders include, but are not limited to, those reproductive, immune, and neurological disorders, and cell proliferative disorders including cancer, described above. In one aspect, an antibody which specifically binds NuABP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express NuABP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding NuABP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of NuABP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of NuABP may be produced using methods which are generally known in the art. In particular, purified NuABP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind NuABP. Antibodies to NuABP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with NuABP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to

increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans. BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

5

20

30

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to NuABP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of NuABP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to NuABP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce NuABP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing <u>in vivo</u> production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for NuABP may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D.

et al. (1989) Science 246:1275-1281.)

10

25

30

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between NuABP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering NuABP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for NuABP. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of NuABP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple NuABP epitopes, represents the average affinity, or avidity, of the antibodies for NuABP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular NuABP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10° to 10¹² L/mole are preferred for use in immunoassays in which the NuABP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10° to 10¹ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of NuABP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of NuABP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding NuABP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding NuABP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding NuABP. Thus, complementary molecules or

fragments may be used to modulate NuABP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding NuABP.

5

10

20

25

30

35

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding NuABP. (See, e.g., Sambrook, <u>supra</u>; Ausubel, 1995, <u>supra</u>.)

Genes encoding NuABP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding NuABP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding NuABP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may be employed. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding NuABP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides,

corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

5

10

20

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding NuABP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use <u>in vivo</u>, <u>in vitro</u>, and <u>ex vivo</u>. For <u>ex vivo</u> therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of NuABP, antibodies to NuABP, and mimetics, agonists, antagonists, or inhibitors of NuABP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered

to a patient alone, or in combination with other agents, drugs, or hormones.

10

15

30

35

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to. oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in

aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

10

15

20

25

30

35

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of NuABP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example NuABP or fragments thereof, antibodies of NuABP, and agonists, antagonists or inhibitors of NuABP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such

as by calculating the ED_{50} (the dose therapeutically effective in 50% of the population) or LD_{50} (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD_{50}/ED_{50} ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED_{50} with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

10

20

25

35

In another embodiment, antibodies which specifically bind NuABP may be used for the diagnosis of disorders characterized by expression of NuABP, or in assays to monitor patients being treated with NuABP or agonists, antagonists, or inhibitors of NuABP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for NuABP include methods which utilize the antibody and a label to detect NuABP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring NuABP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of NuABP expression. Normal or standard values for NuABP expression are established by combining body fluids or cell

extracts taken from normal mammalian subjects, for example, human subjects, with antibody to NuABP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of NuABP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding NuABP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of NuABP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of NuABP, and to monitor regulation of NuABP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding NuABP or closely related molecules may be used to identify nucleic acid sequences which encode NuABP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding NuABP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the NuABP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:56-110 or from genomic sequences including promoters, enhancers, and introns of the NuABP gene.

20

30

Means for producing specific hybridization probes for DNAs encoding NuABP include the cloning of polynucleotide sequences encoding NuABP or NuABP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding NuABP may be used for the diagnosis of disorders associated with expression of NuABP. Examples of such disorders include, but are not limited to, a reproductive disorder such as disorders of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, disruptions of the estrous cycle, disruptions of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the

breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; an immune disorder such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease. adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum. atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal

10

hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. The polynucleotide sequences encoding NuABP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered NuABP expression. Such qualitative or quantitative methods are well known in the art.

10

20

25

30

35

In a particular aspect, the nucleotide sequences encoding NuABP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding NuABP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding NuABP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of NuABP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding NuABP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the

development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

5

10

15

20

25

30

35

Additional diagnostic uses for oligonucleotides designed from the sequences encoding NuABP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding NuABP, or a fragment of a polynucleotide complementary to the polynucleotide encoding NuABP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

Methods which may also be used to quantify the expression of NuABP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding NuABP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price,

C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

10

30

35

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding NuABP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, NuABP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between NuABP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with NuABP, or fragments thereof, and washed. Bound NuABP is then detected by methods well known in the art. Purified NuABP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing

antibodies capable of binding NuABP specifically compete with a test compound for binding NuABP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with NuABP.

In additional embodiments, the nucleotide sequences which encode NuABP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. 60/117,905 and U.S. Ser. No. 60/117,904, are hereby expressly incorporated by reference.

20 EXAMPLES

I. Construction of cDNA Libraries

10

15

25

35

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP

vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, <u>supra</u>, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent <u>E. coli</u> cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

10

20

30

35

Plasmids were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the

ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

20

35

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID

NO:56-110. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

20

30

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel, 1995, <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

% sequence identity x % maximum BLAST score

100

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding NuABP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of NuABP Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:56-110 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target

sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

5

15

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁻. (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min;

Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72 °C, 5 min; Step 7: storage at 4 °C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:56-110 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:56-110 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ -32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

VII. Microarrays

10

20

30

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, <u>supra</u>.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe

which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs). or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the NuABP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring NuABP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of NuABP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the NuABP-encoding transcript.

IX. Expression of NuABP

25

Expression and purification of NuABP is achieved using bacterial or virus-based expression systems. For expression of NuABP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express NuABP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of NuABP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding NuABP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to

infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, NuABP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from NuABP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified NuABP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of NuABP Activity

5

10

30

NuABP activity is measured by its ability to stimulate transcription of a reporter gene (Liu, H.Y. et al. (1997) EMBO J. 16(17):5289-5298.) The assay entails the use of a well characterized reporter gene construct, LexA_{op}-LacZ, that consists of LexA DNA transcriptional control elements (LexA_{op}) fused to sequences encoding the <u>E. coli</u> LacZ enzyme. The methods for constructing and expressing fusions genes, introducing them into cells, and measuring LacZ enzyme activity, are well known to those skilled in the art. Sequences encoding NuABP are cloned into a plasmid that directs the synthesis of a fusion protein, LexA-NuABP, consisting of NuABP and a DNA binding domain derived from the LexA transcription factor. The resulting plasmid, encoding a LexA-NuABP fusion protein, is introduced into yeast cells along with a plasmid containing the LexA_{op}-LacZ reporter gene. The amount of LacZ enzyme activity associated with LexA-NuABP transfected cells, relative to control cells, is proportional to the amount of transcription stimulated by the NuABP.

XI. Functional Assays

NuABP function is assessed by expressing the sequences encoding NuABP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell

line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of NuABP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding NuABP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding NuABP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of NuABP Specific Antibodies

15

20

25

30

35

NuABP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the NuABP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase

immunogenicity. (See. e.g., Ausubel, 1995, <u>supra</u>.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-NuABP activity by, for example, binding the peptide or NuABP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

5 XIII. Purification of Naturally Occurring NuABP Using Specific Antibodies

Naturally occurring or recombinant NuABP is substantially purified by immunoaffinity chromatography using antibodies specific for NuABP. An immunoaffinity column is constructed by covalently coupling anti-NuABP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing NuABP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of NuABP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/NuABP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and NuABP is collected.

XIV. Identification of Molecules Which Interact with NuABP

10

15

NuABP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled NuABP, washed, and any wells with labeled NuABP complex are assayed. Data obtained using different concentrations of NuABP are used to calculate values for the number, affinity, and association of NuABP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

PCT/US00/02237

TABLE

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone	Library	Fragments
	56	025733	SPLNFET01	025733H1 and 025733X307D2 (SPLNFET01), 1519809F1 and 1519809T1 (BLADTUT04), 1526288F6 (UCMCL5T01), 1595557X16C1 and 1595557X19C1 (BRAINOT14), 1903359F6 (OVARNOT07), 2417225F6 (HNT3AZT01), 4283542H1 (LIVRDIR01)
7	57	079702	SYNORAB01	002190H1 (U937NOT01), 079479F1 and 079702H1 (SYNORABO1), 125223T6 (LUNGNOT01), 371006R6 (LUNGNOT02), 2129460T6 (KIDNNOT05), 2999366H1 (TLYMNOT06), 3031905F6 (TLYMNOT05), 4949863H1 (SINTNOT25)
۳	58	116208	KIDNNOT01	2293058R6 (
4	59	179261	PLACNOB01	179261H1 (PLACNOB01), 3666231F6 and 3666231T6 (PANCNOT16)
S	60	259161	HNT2RAT01	259161H1 (HNT2RAT01), 1005021R6 (BRSTNOT03), 2634660H1 (COLNTUT15), 2894335H1 (KIDNTUT14), 2924845H1 (SININOT04), 3659440H1 (ENDPNOT02), SBMA02955F1, SBMA03577F1, SBMA01445F1, SBMA00985F1, SBMA01499F1
55	61	320087	EOSIHET02	016657F1 (HUVELPB01), 320087H1 (EOSIHET02), 824110R1 (PROSNOT06), 987467H1 (LVENNOT03), 1235752F1 (LUNGFET03), 1361280F1 (LUNGNOT12), 1389740H1 (EOSINOT01), 1534332F1 (SPLNNOT04), 1813754F6 (SKINBIT01), 4184915H1 (BRSTNOT31), 5306522H1 (MONOTXT02)
7	62	491271	HNT2AGT01	(PROSNOT01) 967354X15
&	63	585172	PROSNOT02	395188R6 (TMLR2DT01), 585172H1 (PROSNOT02), 864269T1 (BRAITUT03), 1417965F1 (KIDNNOT09)
6	64	615200	COLNTUT02	615200H1 and 615200R6 (COLNTUTO2), 1213980R1 (BRSTTUT01), SBPA02731D1, SBPA00184D1
10	65	790766	KIDNTUT01	125981X3 (LUNGNOT01), 997067H1, 997067R6 and 997067T6 (KIDNTUT01), 1448201H1 (PLACNOT02), 1663447H1 (BRSTNOT09), 1889314H1 (BLADTUT07), 1918706H1 (PROSNOT06), 2699956H1 (OVARTUT10), 2702585H1 (OVARTUT10), 2900479H1 (DRGCNOT01), 3595727T6 (FIBPNOT01), 4309131H1 (BRAINOT01)
11	99	144326 2	THYRNOT03	, 1618906F6 (

TABLE 1 (cont.)

L					
	Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone	Library	Fragments
	. 12	29	152164 8	BLADTUT04	292172H1 (TMLR3DT01), 819925R6 (KERANOT02), 1353913H1 (LATRTUT02), 1521648H1 and 1522364F1 (BLADTUT04), 1963178H1 (BRSTNOT04), 2342505F6 (TESTTUT02), 4899970H1 (OVARDIT01), 5043585H2 (PLACEPEAL)
	13	68	168549 4	PROSNOT15	903980X13, 903980X14 and 903980X17 (COLNNOTO7), 1685494H1 (PROSNOT15), 4164127T6 (BRSTNOT32)
	14	69	173082 9	BRSTTUT08	116146R1 (KIDNNOT01), 836856R1 (PROSNOT07), 1730829H1, 1730829X11C1, 1730829X12C1 and 1730829X13C1 (BRSTTUT08), 1959889R6 (BRSTNOT04), 2188079H1 (PROSNOT26), 3384625H1 (RSGNOT04)
	15	70	186464 1	PROSNOT19	1844972H1 (COLNNOT08), 1864641F6 and 1864641H1 (PROSNOT19), 3090702T6 (BRSTNOT19), 3411665H1 (BRSTTUS08), 5152366H1 (HEARFET03), 5166179H1 (MUSCDMT01)
	16	71	244460 4	THP1NOT03	1506658F1 (BRAITUT07), 1532034F1 (SPLNNOT04), 2444604H1 (THP1NOT03)
56	17	72	244500 8	THP1NOT03	605598X12 (BRSTTUT01), 628644H1 (KIDNNOT05), 732124R1 (LUNGNOT03), 819194R1 (KERANOT02), 1259467H1 (MENITUT03), 1363205F6 (LUNGNOT12), 1901312T6 (BLADTUT06), 2445008H1 (THP1NOT03), 2681125H1 (SINIIGHO)
	18	73	257246 2	HIPOAZT01	863622H1 (BRAITUTO3), 1848956F6 an 11 (TESTTUTO2), 2396384F6 (THPIAZTO1 '6 (LUNGTUT12), 2814325H1 (OVARNOT10
	19	74	257289 2	HIPOAZT01	030596X15R1 (THPINOB01), 539564X11 (LNODNOT02), 1275514F1 and 1275514T6 (TESTTUT02), 2112383H1 (BRAITUT03), 2572892H1 (HIPOAZT01), 2986518H1 (CARGDIT01)
l	20	75	278567 4	BRSTNOT13	261399H1 (HNT2AGT01), 1274739F1 (TESTTUT02), 2785674H1 (BRSTNOT13)
	21	92	279747 9	NPOLNOT01	302614X13 (TESTWOT04), 2797479H1 (NPOLNOT01), SAIA02597F1, SAIA00739F1, SAIA02537F1
	22	77	29606 <u>4</u> 0	ADRENOT09	027211R1, 027211X1 and 027211X3 (SPLNFET01), 1401538F6 (BRAITUT08), 2496984F6 (ADRETUT05), 2960640H1 (ADRENOT09), 3211036FF (RIADMOTOR)
	23	78	345405 1	SPLNNOT11	1 1

TABLE 1 (cont.)

Decotor				
SEQ ID NO:	Nucleotide SEQ ID NO:	Clone	Library	Fragments
24	79	351064 0	CONCNOT01	556354H1 (MPHGLPT02), 581085H1 (BRAVTXT05), 990636R6 (COLNNOT11), 1799185F6 and 1799185T6 (COLNNOT27), 3510640H1 (CONCNOT01), 4326648H1 (TLYMUNT01), SBHA01099F1
25	80	381508 3	TONSNOT03	2026951R6 and 2026951T6 (KERANOTO2), 2300211R6 (BRSTNOTO5), 2505283F6 (CONUTUT01), 3187267R6 (THYMNONO4), 3815083H1 and 3815083T6 (TONSNOTO3)
26	81	398845 7	LUNGNON03	609622R6 (COLNNOTO1), 1710465F6 (PROSNOT16), 3988457H1 (LUNGNON03), SAQA00089F1, SAQA03055F1, SAOB00279F1
27	82	131890	BMARNOT02	131890H1 (BMARNOT02), 131890T6 (BMARNOT02), 132849R6 (BMARNOT02), 3357071F6 (PROSTUT16)
28	83	238642	SINTNOT02	238642H1 (SINTNOTO2), 1620593F6 (BRAITUT13), 1620593H1 (BRAITUT13), 1620593T6 (BRAITUT13), 2534087F6 (BRAINOT18)
5 ⁷	84	669862	CRBLNOT01	347231X7 (THYMNOT02), 669862H1 (CRBLNOT01), 2244458R6 (HIPONON02), 2244458T6 (HIPONON02), 2622610T6 (KERANOT02), 3536262H1 (KIDNNOT25), 4204212H1 (BRAITUT29)
0£	85	100366 3	BRSTNOT03	850478T1 (NGANNOTO1), 1003663H1 (BRSTNOTO3), 1252179F2 (LUNGFETO3), 1293336F1 (PGANNOTO3), 1813002F6 (PROSTUT12), 2101974F6 (REATHT10)
31	98	143255 7	BEPINON01	(BLADTUT02), 1432557H1 (BEPINON01), (DUODNOT02), 2182184F6 (SININOT01)
32	87	144177 0	THYRNOT03	035105R1 (HUVENOB01), 1441770H1 (THYRNOT03), 1500943F1 (SINTBST01), 2542840H1 (UTRSNOT11), 4533672H1 (OVARNOT12)
33	88	145668 4	COLNFET02	1456684F6 (COLNFET02), 1456684H1 (COLNFET02), 1456684F6 (COLNFET02), 1992143H1 (CORPNOT02), 2687476F6 (LUNGNOT23), 3139175F6 (SMCCNOT02), 4746319H1 (SMCRUNT01)
34	89	160291 6	BLADNOT03	6
35	9.0	169281 6	COLINIOT23	999017R6 (KIDNTUT01), 1342490T1 (COLNTUT03), 1421981F1 (KIDNNOT09), 1692816H1 (COLNNOT23), 2176832F6 (ENDCNOT03), 2451404F6 (ENDANOT01)
36	91	196819 1	BRSTNOT04), 1968191T6 (BRSTNOTO4),
37	92	205206	LIVRFET02	003803X8 (HMCINOT01), 027044X1 (SPLNFET01), 027044X101 (SPLNFET01), 2052061H1 (LIVRFET02), 3931936F6 (PROSTUT09)

TABLE 1 (cont.)

Ľ	Dec to				
-	SEQ ID	Nucleotide SEQ ID NO:	Clone	Library	Fragments
	38	93	205620	BEPINOT01	071525F1 (PLACNOB01), 162720R1 (ADENINB01), 270498H1 (HNT2NOT01), 1477853T1 (CORPNOT02), 1931058F6 (COLNTUT03), 2056207H1 (BEPINOT01), 2056207X11R1 (BEPINOT01), 2231060F6 (PROSNOT16), 2420063X309D4 (SCORNON02), 3424630H1 (BRSTNOR01), 3873760F6 (HEARNOT06), 3873760T6 (HEARNOT06), SEOA00627D1, SCJA02192V1, SCJA02089V1
l	39	94	210180	BRAITUT02	399584R6 (PITUNOT02), 399584T6 (PITUNOT02), 1649058F6 (PROSTUT09), 1902809F6 (OVARNOT07), 2101803H1 (BRAITUT02), 2101803H2 (CERVNOT03),
	40	95	211236 2	BRAITUT03	948628R1 (PANCNOTO5), 1209447T1 (BRSTNOTO2), 1814624F6 (PROSNOT20), 2112362H1 (BRAITUT03), 2945621H1 (BRAITUT03), 328563H1 (HEAONOTO5), 3526403H1 (ESOGTUN01), 5032729H1 (ENDITMT01), 509417H1 (PROSENTS20)
<u> </u>	41	96	211734 6	BRSTTUT02	CORNONO1), BRSTTUTO2), 2458342F6 (1 (LUNGNOT27), 3538525F6
8	42	97	211991 7	BRSTTUT02	, 2794083F6
	43	98	212345 6	BRSTNOT07	484031H1 (HNT2RAT01), 617559F1 (PGANNOT01), 617559R1 (PGANNOT01), 1575977F1 (LNODNOT03), 2123456H1 (BRSTNOT07), 2958712H1 (ADRENOT09), 3764961H1 (BRSTNOT24)
<u></u>	44	66	214879	BRAINOT09	1732781F6 (BRSTTUT08), 2050885F6 (LIVRFET02), 2148792H1 (BRAINOT09), 2590822H1 (LUNGNOT22), 2972368F6 (HEAONOT02), SBQA00396D1, SBQA03678D1, SBQA03120D1, SBQA03269D1
į	45	100	275194 3	THP1AZS08	1720187X16C1 (BLADNOT06), 2751943H1 (THP1AZSO8), 3492378H1 (ADRETUT07)
	46	101	312891 3	LUNGTUT12	2551859F6 (LUNGTUT06), 3128913H1 (LUNGTUT12), SBMA01861F1, SBMA02298F1, SBMA01013F1, SBMA02403F1, SBMA01362F1
	47	102	328294 1	HEAONOT05	154741R6 (THP1PLB02), 155904R6 (THP1PLB02), 157816R1 (THP1PLB02), 979920H1 (TONGTUT01), 1233933T6 (LUNGFET03), 1657077F6 (URETTUT01), 2445017F6 (THP1NOT03), 3282941H1 (HEAONOT05), 3341633H1 (SPLNNOT09), 3517140H1 (LUNGNON03)
	48	103	328665 6	HEAONOT05	<u> </u> "_

 TABLE 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone	Library	Fragments
49	104	349080 2	EPIGNOT01	2238441H1 (PANCTUT02), 2700133F6 (OVARTUT10), 2700133T6 (OVARTUT10), 3490226H1 (EPIGNOT01), 3490802H1 (EPIGNOT01), 4822929H1 (PDIGNOT01)
50	105	350736 6	CONCNOT01	2130284H1 (KIDNNOTOS), 3507366H1 (CONCNOTO1), 3557087F6 (LUNGNOT31), 4241774H1 (SYNWDIT01)
51	105	357306 0	BRONNOT01	3573060F6 (BRONNOT01), 3573060H1 (BRONNOT01), 3573060T6 (BRONNOT01), 3867263H1 (BRAITUT07), 5013346H1 (BRAXNOT03)
52	107	357366 1	BRONNOT01	3028034F6 (HEARFET02), 3152642H1 (ADRENON04), 3573661F6 (BRONNOT01), 3573661H1 (BRONNOT01), 3577568F6 (BRONNOT01)
53	108	363342 2	LIVRNOT03	033412R6 (THPINOBO1), 074123F1 (THPIPEBO1), 263241H1 (HNT2AGT01), 748567R1 (BRAITUT01), 1292088T1 (PGANNOT03), 1517449T1 (PANCTUT01), 3633422H1 (LIVRNOT03)
54	109	399337 7	LUNGNON03	3003233H1 (TLYMNOT06), 3993377H1 (LUNGNON03), 3993377T6 (LUNGNON03), 4251662F6 (BRADDIR01), SBSA02001V1
55	110	471793 6	BRAIHCT02	4
50				

FABLE 2

	T		T	·
Analytical Methods and Databases	PFAM, BLOCKS, MOTIFS	BLAST, PFAM, MOTIFS	PFAM, BLOCKS, MOTIFS	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
Identification/ Homologous Sequence	DNA polymerase	PHD finger DNA binding protein (GI 3342452)	DNA polymerase	C2H2-type zinc finger protein (GI 498721)
Signature Sequence(s)	L435 - P474 PFAM	E102 - A157 Q201 - C252	117 - D57 PFAM	Y58 - C86 F141 - H163 Y169 - H191 Y197 - H219 Y225 - H247 PFAM
Potential Glycosylation Sites				
Potential Phosphorylation Sites	S6 T15 S22 S26 S28 S30 S60 Y84 S98 S102 S103 S112 S121 S146 T166 T183 T184 S231 Y253 S303 T304 S308 T327 T361 T393 T394 T399 T448 S496 Y583 S586 T608 S635 S672 S673 S682 S691 S711	S32 Y62 T65 S83 S141 T159 T160 S185 S254 S288 T311 S314 S333 T368 S380 S401 T410 S426 S452 S461 S479 T483 T485 T576	T39 S52 S301 T344 S373 T404 S425 S438 S439 S440 S473 T480 S490 T527	S10 S26 Y35 Y113 S149 T168 Y169 T248
Amino Acid Residues	754	593	534	255
Polypep tide Seq ID NO:	· H	2	т	4

TABLE 2 (cont.)

- 1						
Ac Re	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence(s)	Identification/ Homologous Sequence	Analytical Methods and Databases
26	562	T29 T43 S76 S142 S165 S202 T214 Y302 S305 Y349 S385 S500 T526 S527		Y235 - D312 PFAM	DNA helicase (GI 531243; SEQ ID NO:113)	BLAST, PFAM, BLOCKS, MOTIFS
4	432	S33 S58 T166 T172 S197 T230 T261 S275 S286 S290 S298 S338 T362 S376 T407 T409		E329 - A355 BLOCKS	CCAAT-box-binding transcription factor	BLOCKS, MOTIFS
	667	4 S33 T43 8 S91 S11 19 S262 S 80 S532 S 56 T795		H250 - H291 Y324 - H346 Y253 - H374 Y380 - H402 PFAM	C2H2-type zinc finger protein (GI 498727)	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
	137	S3 T38 S74 S75 S118		R85 - L97 PFAM	BTB domain/C2H2-type zinc finger protein	PFAM, PRINTS, MOTIFS
~	230	T178 S187			sirtuin type 3 (GI 5225322)	BLAST, MOTIFS
4	446	T3 S28 S32 T52 T94 T96 S135 S143 T159 T165 S171 S433		H200 - H222 Y228 - H250 Y256 - H278 Y284 - H306	zinc finger protein ZFP113 (GI 5640017)	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
4	428	S72 S92 S101 S118 S120 S125 T245 T277 S289 S315 S317 Y326 S409			Skeletal muscle BOP2 (GI 5870834; SEQ ID NO:117)	BLAST, MOTIFS

TABLE 2 (cont.)

Ġ.		Ä,					
Analytical Methods and Databases	BLAST, MOTIFS	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS	PFAM, BLOCKS, MOTIFS	BLAST, MOTIFS	BLAST, MOTIFS	BLAST, BLOCKS, MOTIFS	PFAM, BLOCKS, PRINTS, MOTIFS
Identification/ Homologous Sequence	Methyl-CpG binding protein (GI 2239126)	SRE-ZBP (GI 936603)	C3HC4-type zinc finger protein	Zinc finger factor (GI 3150148)	Single-stranded DNA binding protein (csdp) (GI 1562534)	Zinc finger transcription factor (GI 2895870)	HP1-BP74 (GI 1480112)
Signature Sequence(s)		Y232 - H254 H283 - H305 Y311 - H333 Y339 - H361 PFAM	C380 - C421 PFAM			C13 - H41 BLOCKS	P5 - K81 A114 - S179 G186 - P262 PFAM
Potential Glycosylation Sites							
Potential Phosphorylation Sites	S45 Y52 T60 S83 S90 T95 T116 T145 T233 T330 S391 S410 S411 T420 T439 T490 S521	S15 Y29 S30 S118 T173 T183 S203 S217 Y232 S235 T255 S352 S362 Y451	S92 S96 T250 S319 T322 T327 S335 T344	T6 S27 T125 T172 S229 S232 T239 S248 S259 S266 Y267 S291	S11 T21 S46 S140	T73 Y80 S104 Y116 T192 S289 S297 T329 T364 T376 S387	S4 S82 S97 T166 S188 S249 S279 S289 S290 S294 S319 S368 S371 S372 S378 T392 S396
Amino Acid Residues	590	479	433	320	179	494	401
Polypep tide Seq ID NO:	12	13	14	15	16	17	18

Amino Potential Acid Phosphorylation	Potentia	l ylation	Potential Glycosylation	Signature	Identification/	Analytical Methods and
dues Sites	Sites	Sites		Seguence (s)	Homologous Sequence	Databases
S11 S25 S76 S82 S90 S92 S96 S119 T229	876 896			F154 - H176 C180 - H202 F208 - H230 Y236 - C259 PFAM	C2H2-type zinc finger protein (GI 429188)	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
T23 S40 T44 S110 153 S120 T124	T23 S40 T44 S110 S120 T124			R42 - E141 PFAM	High mobility group- like nuclear protein (GI 2822179)	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
S20 S21 S76 S100 S104 S160 T194 S196 S212 T222 Y229	S20 S21 S76 S100 S104 S160 T194 S196 S212 T222 Y229			Y90 - H112 H118 - H140 Y146 - H168 Y174 - H195 PFAM	C2H2-type zinc finger protein (GI 38015)	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
T29 S34 S104 S147 T162 T248 S249 S256 S347 S452 S477	T29 S34 S104 S147 T162 T248 S249 S256 S347 S452 S477			S309 - H331 H337 - H359 Y365 - H387 Y393 - H415 PFAM	BTB domain/C2H2-type zinc finger protein (GI 2843171)	BLAST, PFAM, BLOCKS, PRINTS, MOTIFS
S118 160	\$118			C5 - F62 C80 - F137 PFAM	LIM domain protein/CRP2 (GI 487284)	BLAST, PFAM, BLOCKS, PROFILESCAN, MOTIFS
\$10 T36 \$75 \$90 \$222 T245 T259 \$399 \$405 Y443 \$500	S10 T36 S75 S90 S222 T245 T259 S399 S405 Y443 S500			Y171 - P223 Y267 - K294 BLOCKS	2'-5'oligoadenylate synthetase-related protein p56 (GI 4731857)	BLOCKS, MOTIFS
\$24 \$39 T69 Y104 \$185 T282 T296	S24 S39 T69 Y104 S185 T282 T296				SIR2 family transcriptional regulatory protein (GI 2648874)	BLAST, MOTIFS

Polypep tide Seq ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence(s)	Identification/ Homologous Sequence	Analytical Methods and Databases
26	331	T29 S40 S74 S257 T270 S301		V112 - R134 BLOCKS	Histone protein	BLOCKS, MOTIFS
27	200	T43 S123 T129 S167 S183 S184			Zinc finger protein (q1373394)	MOTIFS
		S44 Y25 Y98		Transcription		
28	100			anti-terminator; bglG family: E47-1100	transcription elongation factor (g4336506)	MOTIFS BLAST BLOCKS
		S204 T487 S29 S34	N24 N52 N100	C2H2 zinc		
		T48 T227 S327	N481	fingers:		
		T367 T423 S483		Y191-H213		
		Y39 Y44 Y112 Y163		Y247-H269		MOTIFS
29	528			Y275-H297	Zinc finger protein	BLAST
) 			X331-H353	(g498721)	BLOCKS
				Y387-H409		PFAM
				Y415-H437		-
				Y443-H465		
		T264 S305	N33 N79	C 5 11 - 17 - 17 - 17 - 17 - 17 - 17 - 17		OHLEON
0	2 10			C3HC4 RING	C3HC4/RING zinc finger	BLAST
)))))			finger: C230-C271	protein (g1321818)	BLOCKS
		S51 T94 S121 S123				PROFILESCAN
31	315	S142 S143 T184			Similar to	MOTIFS
I I	1	S232 S252 T36 T46			CCAAT/enhancer-binding protein (q1947129)	BLAST
			LO LA COLA	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
		FOTO CAT OCC OCC	NYO INTOS	412g		MOTIFIC
32	120			transcription		PFAM
				ractor: P21-P85		BLOCKS

n/ Analytical Methods and Databases	MOTIFS rotein BLAST PFAM BLOCKS	MOTIFS E; BLAST Bin BLOCKS PFAM PRAM		ed MOTIFS BLAST PFAM		MOTIFS Jer) BLAST BLOCKS PFAM PFAM	
Identification/ Homologous Sequence	Zinc finger protein (g220643)	CHOX M product; homeobox protein (g62701)	geminin (g3219357)	Smarcel-related protein (GI 4321968)	BKLF; CACCC-box binding protein (g1244515)	ARI (RING finger) protein (g2058299)	skm-BOP2 zinc finger protein (g1809327)
Signature Sequence(s)	C2H2 zinc fingers: C143-C171 Y169-H191 F197-H219	Homeobox: R14-K70	bZIP transcription factor: K115-E140	HMG box: M1-Q36	C2H2 zinc fingers: F278-C306 Y304-H328 F334-H356	C3HC4 RING fingers: C74-P120 N228-C235	
Potential Glycosylation Sites	N209		N18	Z6N	N45 N340	N337 N374 N388	N169 N206
Potential Phosphorylation Sites	S59 S38 T207 S284 T319 T43 S80 T137 T155 T211 S238 T239		S176 T180 S184 T193 S201 S4 T25 S49	S79 S107 T127 T202 S45 S56 S124 T152 Y35	T329 T50 S125 S224 S230 S235 S344 S31 S215 S312 Y42	S68 T87 S153 S339 S405 S55 T105 S315 S422 Y419	\$283 T44 T57 T123 \$136 T185 T220 \$239 T268 \$313 \$330 T105 T109
Amino Acid Residues	326	106	209	212	359	445	433
Folypep tide Seq ID NO:	33	34	35	36	37	38	39

TABLE 2 (cont.)

Folypep tide Seg ID	Amino	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence(s)	Identification/	Analytical Methods and
NO:	residues			(2) 22	action bac enosorous.	Databases
40	355	T72 T84 T184 S191 T244 S88 T162	N308 N324		Sir2 family protein	MOTIFS
		C. 1			(95353746)	BLAST
		T76 T106 S148	N366 N425			MOTTPS
		T309 S12 T253		Myb-like DNA	ADA2 transcriptional	BLAST
41	443	S299 S357 T373		binding domain:	adaptor protein	BLOCKS
		T427 Y61 Y114		D72-F118	(g170991)	PFAM
		032 mrr m/4 con				PROFILESCAN
42	167	237 TO TO 283	N.T.I.N	mutT domain:		MOTIFS
7	# O	244 1140		V29-L70		BLOCKS
		C70 C127 m12 m1E				PFAM
43	215	5		HMG box:	Sry-related protein	MOTIFS
1)			M1-Q36	(g211510)	BLAST
		H1 T 00 4 00 T H				PFAM
		TLD 524 See 583	N465	C2H2 zinc		
		COLL COLL		tingers:		
		S128 T149 S153		H230-H252		
		S198 T203 T225		Y258-H280		
		T238 T296 S466		Y286-H308		MOTIFS
44	539	Y258		Y314-H336	CZHZ Zinc finger	BLAST
))			Y342-H364	procein	PFAM
-				F370-H392	(679/0/66)	BLOCKS
				Y398-H420		
·				Y426-H448		
				Y482-H504		
				Y510-H532		-
45	182	T59 S112 S120 S100 S139 Y64			Transcriptional	MOTIFS BLAST
					regulator (g2621798)	

Analytical Methods and Databases	MOTIFS BLAST PFAM BLOCKS	MOTIFS BLAST PFAM BLOCKS	MOTIFS	MOTIFS BLAST PFAM BLOCKS	MOTIFS BLAST BLOCKS	MOTIFS BLAST BLOCKS
Identification/ Homologous Sequence	Zinc finger protein (g1373394)	Musculin (g3599519)	KRAB zinc finger protein (#1049295)	Repressor transcriptional factor (g1017722)	Ariadne-2 RING finger protein (g3445441)	Nucleoplasmin (g833629)
Signature Sequence(s)	C2H2 zinc fingers: Y285-H307 Y313-H335 Y341-H363 C369-H391 Y397-H419 Y425-H447 Y483-H475 Y481-H503	Myc-type HLH domain: Q108-R160		C2H2 zinc fingers: F172-H194 Y200-H222	C3HC4 RING finger: P126-L150	Chromodomain: V113-E134
Potential Glycosylation Sites	N29 N39 N250 N351	N44 N177		N210 N214 N238 N260	N40	N2
Potential Phosphorylation Sites	S494 S31 S44 S117 T123 S185 S216 S476 S504 S176 S182 S211 T249 S293 S323 S409 T489 Y76 Y285	S5 S7 S40 S45 S46 S100 S144 S26 S107 T148 S185 Y38	T5 S87 S96 S115 T124 S22 T64	S185 S14 S48 T54 S118 T139 T161 T189 T217 Y256	S157 S42 T167 T222 T81 Y213	S7 S8 S116 T127 S154 S191 T31 S41 T204
Amino Acid Residues	534	206	172	275	236	214
Polypep tide Seq ID NO:	46	67	48	49	50	51

		,		
Analytical Methods and Databases	MOTIFS BLAST PFAM BLOCKS	MOTIFS BLAST	MOTIFS BLAST	MOTIFS BLAST
Identification/ Homologous Sequence	Midline 1/ cerebellar isoform 1 RING finger protein (g3462503)	5'-nucleotidase (g633071)	Transcription termination factor I (TTF-I) interacting peptide 5 isoform (g2183083)	Putative leucine-rich DNA-binding protein
Signature Sequence(s)	C3HC4 RING finger: C26-C50		ATP/GTP binding site (P-loop): A434-T441	
Potential Glycosylation Sites	N2		N25 N66 N246 N364	
Potential Phosphorylation Sites	T348 T392 S118 T193 T201 S270 S294 S80 S112 S206 S260 T313 T355 S375 S387	S29 T58 S155 S239 T292 T379 S146 T271 S425	S432 T502 S68 S195 T199 T226 S315 T379 T441 T534 S170 S248 S282 S291 T327 T336 S391 S422 T481 Y257 Y274	T34 T42 Y48
Amino Acid Residues	396	486	555	61
Polypep tide Seq ID NO:	52	53	ور کړ	55

~	3
	1
_	١
~	١
◀	¢
E	1

1	Coloctod September			
Seq ID NO:		Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
	169-215	Reproductive (0 224)	0011 0001; 500000	
26	_	Nervous (0.198)	(0.725)	ed too out 100
		Cardiovascular (0.112)	Inflammation (0.190)	Laruncanga
	551-595	Hematopoietic/Immune (0.240)	Cell Proliferative	
57			(0.700)	PRIJIRG PTDM
		Gastrointestinal (0.120)	Inflammation (0.360)	1 3111000001
1	541-585	Nervous (0.286)	Cell Proliferative	
28		Reproductive (0.286)	(0.643)	PBLUESCRIPT
		Cardiovascular (0.214)	Trauma (0.214)	
6	109-153		Cell Proliferative	
ט ע		Reproductive (1.000)	(1.000)	PBLUESCRIPT
	207		Intlammation (1.000)	
3	435-479	Hematopoietic/Immune (0.211)	Cell Proliferative	
00		Gastrointestinal (0.183)	(0.620)	PBLUESCRIPT
		Reproductive (0.183)	Inflammation (0.338)	
;	1195-1239	Reproductive (0.248)	Cell Proliferative	
61		Cardiovascular (0.174)	(0.637)	PBI.ITESCRIPT
		Nervous (0.157)	Inflammation (0.256)	111111111111111111111111111111111111111
	217-261	Reproductive (0 429)	Cell Proliferative	
62		Nervous (0.238)	(0.667)	
		Cardiovascular (0.095)	Inflammation (0.143)	PBLUESCRIPT
	919-963	Reproductive (0.265)	Cell Proliferative	
63		Nervous (0.235)	(0.618) Inflammation	D@D00#1
		Cardiovascular (0.088)	(0.206)	TIMOTE
	823-876	Reproductive (0.382)		
64		Nervous (0.176)	Cell Proliferative	1-ma0a5a
		Gastrointestinal (0.118)	(0.794)	1110101
1	380-424	Reproductive (0.346)	Cell Proliferative	
65		Nervous (0.154)	(0.750) Inflammation	PSPOR#1
		Gastrointestinal (0.135)	(0.231)	1

		TABLE 3 (cont.)		
Nucleotide Seq ID NO:	Selected Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
,	757-801	Nervous (0.222)	Cell Proliferative	
99		Hematopoietic/Immune (0.167)	(0.778)	DINCY
		Reproductive (0.167)	Inflammation (0.222)))))
,	812-856	Reproductive (0.246)	Cell Proliferative	
/.9		Nervous (0.180)	(0.639) Inflammation	NTMCV
		Gastrointestinal (0.148)	(0.246)	1
;	326-370	Reproductive (0.500)	Cell Proliferative	
89		Nervous (0.200)	(0.700)	DINCY
		Gastrointestinal (0.150)	Trauma (0.150)	1
ļ	703-747	Reproductive (0.278)	Cell Proliferative	
69		Hematopoietic/Immune (0.204)	(0.777) Inflammation	DTMCY
		Nervous (0.148)	(0.222)	1
İ	759-803	Reproductive (0.261)	Cell Proliferative	
70		Gastrointestinal (0.217)	(0.565)	DINCY
	- 1	Nervous (0.174)	Trauma (0.130)	4
i	110-154	Nervous (0.250)	Cell Proliferative	
7.1		Developmental (0.208)	(0.583)	DINCY
		Gastrointestinal (0.167)	Trauma (0.167)	4
í	529-573	Reproductive (0.186)	Cell Proliferative	
7.7		Gastrointestinal (0.168)	(0.700)	ADNIG
		Hematopoietic/Immune (0.138)	Inflammation (0.251)	4
í	1784-1828	Reproductive (0.286)	Cell Proliferative	
5/		Hematopoietic/Immune (0.190)	(0.667) Inflammation	PSPORT1
		Nervous (0.167)	(0.286)	
ī	111-155	Reproductive (0.316)	Cell Proliferative	
14		Nervous (0.211)	(0.632) Inflammation	PSPORT1
		Hematopoietic/Immune (0.158)	(0.211)	
i	543-587	Reproductive (0.258)	Cell Proliferative	
د/		Nervous (0.206)	(0.608) Inflammation	DINCY
		Gastrointestinal (0.134)	(0.196)	4

	Vector	pINCY	pINCY	PINCY	pincy	pINCY	PSPORT1	PBLUESCRIPT	PBLUESCRIPT	PSPORT1	PSPORT1
	Disease or Condition (Fraction of Total)	Cell Proliferative (0.606) Inflammation	Cell Proliferative (0.666) Inflammation	(0.500) The lammation (0.500)	Cell Proliferative (0.640) Inflammation (0.440)	Cell Proliferative (0.684) Inflammation (0.263)	Cell Proliferative (0.568) Inflammation (0.259)	Cancer (0.600) Trauma (0.200) Inflammation (0.200)	Cancer (0.342) Fetal (0.158) Inflammation (0.158)	Cancer (0.438) Fetal (0.250) Trauma (0.250)	Cancer (0.458) Inflammation (0.232)
TABLE 3 (cont.)	Tissue Expression (Fraction of Total)	Reproductive (0.246) Nervous (0.180) Hematopoietic/Immune (0.148)	Hematopoietic/Immune (0.222) Endocrine (0.167)	Gastrointestinal (0.375) Reproductive (0.250)	Gastrointestinal (0.280) Hematopoietic/Immune (0.240) Reproductive (0.120)	Reproductive (0.211) Gastrointestinal (0.158) Urologic (0.158)	Reproductive (0.222) Gastrointestinal (0.160) Nervous (0.148)	Gastrointestinal (0.200) Hematopoietic/Immune (0.200) Nervous (0.200)	Nervous (0.526) Reproductive (0.132) Cardiovascular (0.105)	Nervous (0.250) Reproductive (0.188) Endocrine (0.125)	Reproductive (0.219) Mervous (0.206) Hematonoieric Tummine (0.116)
	Selected Fragment	272-316	227-271	487-531	111-155	595-639	425-469	774-818	517-561	1944-1988	1027-1071
	Nucleotide Seq ID NO:	76	7.7	78	79	80	81	82	83	84	85

	ı
	ı
	ı
	1
_	i
∵•	ľ
Ξ	ı
	į
COU	1
_	ŀ
_	1
	í
7	t
	ł
_	ı
≏	۱
_	ł
٧,	ļ
	İ
•	۱
	l
	l
	١
	1

		(Olle)		
90	Selected Fragment	Tissue Expression	Disease or Condition	
Seq ID NO:		(Fraction of Total)	(Fraction of Total)	Vector
,	658-702	Reproductive (0.227)	Cancer (0.424)	
98		Hematopoietic/Immune (0.182)	Inflammation (0.318)	PT7T3
		Gastrointestinal (0.167)	Fetal (0.167)	
,	488-532	Nervous (0.200)	Cancer (0.320) Fetal	
87		Reproductive (0.200)	(0.320) Inflammation	DINCY
		Musculoskeletal (0.120)	(0.320)	1
,	379-423	Cardiovascular (0.250)	Cancer (0.417) Fetal	
88		Nervous (0.250)	(0.167) Neurological	DINCY
		Reproductive (0.250)	(0.167)	1
	632-676	Reproductive (0.417)	Cancer (0,333)	
68		Cardiovascular (0.167)	Fetal (0.167)	DINCY
		Gastrointestinal (0.167)	Inflammation (0.167)	2
	258-302	Reproductive (0.294)	Cancer (0.569)	
06		Nervous (0.137)	Fetal (0.431)	DINCY
		Hematopoietic/Immune (0.118)	Inflammation (0.176)	1
91	433-477	Reproductive (0.750)	Cancer (0.500)	
		Nervous (0.250)	Inflammation (0.500)	PSPORT1
•	542-586	Gastrointestinal (0.273)	Cancer (0.455)	
92		Hematopoietic/Immune (0.273)	Inflammation (0.364)	DINCY
		Developmental (0.182)	Fetal (0.182)	<u>.</u>
(218-262	Reproductive (0.272)	Cancer (0.447)	
93		Nervous (0.204)	Inflammation (0.214)	PSPORT1
		Cardiovascular (0.126)	Fetal (0.155)	
•	541-585	Reproductive (0.273)	Cancer (0.364)	
44		Nervous (0,250)	Fetal (0.205)	PSPORT1
		Cardiovascular (0.159)	Inflammation (0.205)	
1	111-155	Reproductive (0.250)	Cancer (0.481)	
95		Gastrointestinal (0.173)	Fetal (0.231)	PSPORT1
		Nervous (0.154)	Inflammation (0.212)	
	597-641	Reproductive (0.261)	Cancer (0.391)	
0		Cardiovascular (0.217)	Fetal (0.304)	PSPORT1
		Nervous (0.130)	Inflammation (0.130)	

		TABLE 3 (cont.)		
Nucleotide Seq ID NO:	Selected Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
97	434-478	Cardiovascular (0.222) Endocrine (0.222)	Cancer (0.667) Fetal (0.111)	PSPORT1
	218-247	Gastrointestinal (0.222)	Neurological (0.111)	
86	920-964	Reproductive (0.333) Gastrointestinal (0.129)	Cancer (0.559) Inflammation (0.204)	AUNIC
		Hematopoietic/Immune (0.118)	Fetal (0.183)	ĎTIVCI
G	327-371	Gastrointestinal (0.211)	Cancer (0.421)	
n n		Reproductive (0.211) Cardiowascular (0.159)	_	pINCY
	596-625	Deproductive (0.130)	Inilammation (0.158)	
100	9	Nervous (0.164)	Cancer (0.590)	1
		Gastrointestinal (0.131)	Fetal (0.082)	LACKE
	487-531	Cardiovascular (0.235)	Cancer (0.588)	
TOT		Reproductive (0.235)	Inflammation (0.176)	DINCY
		Hematopoietic/Immune (0.176)	Trauma (0.118)	<u></u>
	218-247	Gastrointestinal (0.241)	Cancer (0.448)	
707	542-586	Hematopoietic/Immune (0.207)	Fetal (0.276)	DINCY
		Cardiovascular (0.138)	Inflammation (0.276)	4
	219-263	Reproductive (0.500)	1~	
703		Cardiovascular (0.250)	Inflammation (0.250)	DINCY
		Hematopoietic/Immune (0.250)	Trauma (0.250)	•
	111-140	Hematopoietic/Immune (0.286)	Cancer (0.333)	
O	327-371	Nervous (0.238)	Fetal (0.286)	DINCY
		Reproductive (0.143)	Inflammation (0.286)	4
i c	243-281	Musculoskeletal (0.286)	Inflammation (0.429)	
COT		Nervous (0.286)	Fetal (0.286)	DINCY
	- 1	Gastrointestinal (0.143)	Cancer (0.286)	
	271-315	Nervous (0.800)	Cancer (0.400)	
907		Reproductive (0.100)	Inflammation (0.200)	DINCY
		Cardiovascular (0.100)	Trauma (0.200)	4

		TABLE 3 (cont.)		
Nucleotide Seq ID NO:	Selected Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
107	489-533	Cardiovascular (0.364) Gastrointestinal (0.182) Reproductive (0.182)	Cancer (0.273) Trauma (0.273) Treflammation (0.00)	PINCY
108	156-200	Nervous (0.256) Reproductive (0.256) Hematopoietic/Immune (0.128)	Cancer (0.465) Fetal (0.291) Trill armatic (0.705)	pincy
109	1459-1503	Cardiovascular (0.250) Hematopoietic/Immune (0.250) Nervous (0.157)	Inflammation (0.417) Cancer (0.333)	PSPORT1
110	164-208	Nervous (1.000)	Neurological (1.000)	DINCY

TABLE

Man 1 00 to 1		
SEQ ID NO:	Library	Library Comment
99	SPLNFET0 1	Library was constructed at Stratagene, using RNA isolated from a pool of fetal spleen tissue. Following vector packaging, 2x10 ⁶ primary clones were then amplified to stabilize the library for long-term storage. Amplification may significantly skew sequence abundances.
57	SYNORAB0 1	Library was constructed using RNA isolated from the synovial membrane tissue of a 68-year-old Caucasian female with rheumatoid arthritis
28	KIDNNOT0 1	Library was constructed using RNA isolated from the kidney tissue of a 64-year-old Caucasian female, who died from an intracranial bleed. Patient history included rheumatoid arthritis and tobaccouse
59	PLACNOB0 1	Library was constructed using RNA isolated from placenta.
09	HNT2RAT0 1	Library was constructed at Stratagene (STR937231), using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor). Cells were treated with retinoic acid for 24 hours.
19 75	EOSIHETO 2	Library was constructed using RNA isolated from peripheral blood cells apheresed from a 48-year-old Caucasian male. Patient history included hypereosinophilia. The cell population was determined to be greater than 77% eosinophils by Wright's staining.
62	HNT2AGT0 1	Library was constructed at Stratagene (STR937233), using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor). Cells were treated with retinoic acid for 5 weeks and with mitotic inhibitors for two weeks and allowed to mature for an additional 4 weeks in conditioned medium
63	PROSNOT0 2	Library was constructed using RNA isolated from the diseased prostate tissue removed from a 50-year-old Caucasian male during a retropubic prostatectomy. Pathology indicated adenofibromatous hyperplasia was present. Pathology for the associated tumor tissue indicated adenocarcinoma Gleason grade 3+3. Patient history included dysuria, carcinoma in situ of prostate, coronary atherosclerosis, and hyperlipidemia.
64	COLNTUTO 2	Library was constructed using RNA isolated from colon tumor tissue removed from a 75-year-old Caucasian male during a hemicolectomy. Pathology indicated invasive grade 3 adenocarcinoma arising in a tubulovillous adenoma, which was distal to the ileocecal valve in the cecum. The tumor penetrated deeply into the muscularis propria but not through it.

TABLE 4 (cont.)

L			
	SEQ ID NO:	Library	Library Comment
L1	65	KIDNTUT0 1	Library was constructed using RNA isolated from the kidney tumor tissue removed from an 8-month-old female during nephroureterectomy. Pathology indicated Wilms' tumor (nephroblastoma), which involved 90 percent of the renal parenchyma. Prior to surgery, the patient was receiving heparin anticomulant therapy.
	99	THYRNOT0 3	Library was constructed using RNA isolated from thyroid tissue removed from the left thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology indicated a small nodule of adenomatous hyperplasia present in the left thyroid. Pathology for the associated tumor tissue indicated dominant follicular adenoma, forming a well-encabsulated mass in the left thyroid.
<u> </u>	67	BLADTUTO 4	Library was constructed using RNA isolated from bladder tumor tissue removed from a 60-year-old Caucasian male during a radical cystectomy, prostatectomy, and vasectomy. Pathology indicated grade 3 transitional cell carcinoma in the left bladder wall. Carcinoma in-situ was identified in the dome and trigone. Patient history included tobacco use. Family history included type I diabetes, a malignant neoplasm of the stomach, atherosclerotic coronary artery disease, and an acute myocardial infarction.
<u> </u>	89	PROSNOT1 5	Library was constructed using RNA isolated from diseased prostate tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 2+3). The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension
	69	BRSTTUT0 8	Library was constructed using RNA isolated from breast tumor tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology indicated invasive nuclear grade 2-3 adenocarcinoma, ductal type, with 3 of 23 lymph nodes positive for metastatic disease. Greater than 50% of the tumor volume was in situ, both comedo and non-comedo types. Immunostains were positive for estrogen/progesterone receptors, and uninvolved tissue showed proliferative changes. The patient concurrently underwent a total abdominal hysterectomy. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, and rheumatic heart disease. Family history included acute myocardial insufficiency, and themset or the concurrence of the co

TABLE 4 (cont.

SEQ ID NO: To PROSNOT1 PROSNOT1 THPINOTO THPINOTO The property of the pro	Library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph
	Library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph
	node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+3). The patient
	presented with elevated prostate-specific antigen (PSA). Patient history included colon diverticuli, asbestosis, and thrombophlebitis. Previous surgeries included a partial colectomy. Family history included benign hypertension, multiple myeloma, hyperlinidemia and rhometoid activities.
	Library was constructed using RNA isolated from untreated THP-1 cells. THP-1 (ATCC THB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-01d Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980)
72 THPINOTO	Library was constructed using RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-2010 Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26.17)
73 HIPOAZTO	Library was constructed from RNA isolated from diseased hippocampus tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease
74 HIPOAZTO	Library was constructed from RNA isolated from diseased hippocampus trissue removed from the brain of a 74-year-old Caucasian male who died from Altheimer's disease
75 BRSTNOT1	Library was constructed using RNA isolated from breast tissue removed from the left medial lateral breast of a 36-year-old Caucasian female during bilateral simple mastectomy and total breast reconstruction. Pathology indicated benign breast tissue. Patient history included a breast neoplasm, depressive disorder, hyperlipidemia, chronic stomach ulcer, and an ectopic pregnancy. Family history included myocardial infarction, cerebrovascular disease, atherosclerotic coronary artery disease, hyperlipidemia, skin cancer, breast cancer, depressive disorder, esophageal cancer, bone cancer, Hodgkin's lymphoma, bladder cancer, and heart condition
76 NPOLNOTO	Library was constructed using RNA isolated from nasal polyp tissue removed from a 78-year-old Caucasian male during a nasal polypectomy. Pathology indicated a nasal polyp and striking eosinophilia. Patient history included asthma and nasal polyps.

TABLE 4 (cont.)

L	W		
	SEQ ID NO:	Library	Library Comment
	77	ADRENOT0 9	Library was constructed using RNA isolated from left adrenal gland tissue removed from a 43-year-old Caucasian male during nephroureterectomy, regional lymph node excision, and unilateral left adrenalectomy. Pathology indicated no diagnostic abnormalities of the adrenal gland. Pathology for the associated tumor tissue indicated a grade 2 renal cell carcinoma mass in the posterior lower pole of the left kidney with invasion into the renal pelvis.
	78	SPLNNOT1 1	Library was constructed using RNA isolated from diseased spleen tissue removed from a 14-year-old Asian male during a total splenectomy. Pathology indicated changes consistent with idiopathic thrombocytopenic purpura. The patient presented with bruising.
78	79	CONCNOT0 1	Library was constructed using RNA isolated from chest wall soft tissue removed from a 63-year-old Caucasian male during a chest wall lesion destruction. Pathology indicated surgical margins were free of tumor. Pathology for the associated tumor tissue indicated invasive grade 3 adenocarcinoma, forming a mass that extended through the visceral pleura to involve parietal pleura. Patient history included MEN (multiple endocrine neoplasia) syndrome type I, abnormal secretion of gastrin, alcohol and tobacco abuse, calcium metabolism disease, chronic stomach ulcer with hemorrhage, lung cancer, and calculus of the kidney. Family history included prostate cancer, benign hypertension, stroke, atherosclerotic coronary artery disease, type II diabetes, hyperlipidemia, and cancer of an unspecified location.
	80	TONSNOT0	Library was constructed using RNA isolated from diseased left tonsil tissue removed from a 6-year-old Caucasian male during adenotonsillectomy. Pathology indicated reactive lymphoid hyperplasia, bilaterally. Family history included benign hypertension, myocardial infarction, and atherosclerotic coronary artery disease
	81	LUNGNON0 3	This normalized library was constructed from 2.56 x 10° independent clones from a lung tissue library. RNA was made from lung tissue removed from the left lobe a 58-year-old Caucasian male during a segmental lung resection. Pathology for the associated tumor tissue indicated a metastatic grade 3 (of 4) osteosarcoma. Patient history included soft tissue cancer, secondary cancer of the lung, prostate cancer, and an acute duodenal ulcer with hemorrhage. Patient also received radiation therapy to the retroperitoneum. Family history included prostate cancer, breast cancer, and acute leukemia. The normalization and hybridization conditions were adapted from Soares et al., PNAS (1994) 91:9228; Swaroop et al., NAR (1991) 19:1954; and Bonaldo et al., Genome Research (1996) 6:791.

TABLE 4 (cont.)

_	Nucleotide		
	SEQ ID NO:	Library	Library Comment
	82	BMARNOT0 2	The library was constructed using Clontech RNA isolated from the bone marrow of 24 male and female Caucasian donors, 16 to 70 years old.
-	83	SINTNOT0	The library was constructed using RNA isolated from the small intestine of a 55-year-old Caucasian female, who died from a subarachnoid hemorrhage. Serologies were positive for cytomegalovirus (CMV).
	84	CRBLNOT0 1	The library was constructed using RNA isolated from the cerebellum tissue of a 69-year-old Caucasian male who died from chronic obstructive pulmonary disease. Patient history included myocardial infarction, hypertension, and octoorthists.
	8 2	BRSTNOT0 3	The library was constructed using RNA isolated from diseased breast tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy. Pathology for the associated tumor tissue indicated residual invasive grade 3 mammary ductal adenocarcinoma. Patient history included kidney infection and condyloma acuminatum. Family history included benign hypertension, hyperlipidemia and a malignant neoplasm of the colon
79	86	BEPINONO 1	The normalized bronchial epithelium library was constructed from 5.12 million independent clones from a bronchial epithelium library. RNA was isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male. The normalization and hybridization conditions were adapted from Soares et al., PNAS (1994) 91:9228, using a 24-hour reannealing hybridization region and president managements.
,	87	THYRNOTO 3	The library was constructed using RNA isolated from thyroid tissue removed from the left thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology indicated a small nodule of adenomatous hyperplasia present in the left thyroid. Pathology for the associated tumor tissue indicated dominant follicular adenoma, forming a well-encapsulated mass in the left thyroid
	88	COLNFET0 2	The library was constructed using RNA isolated from the colon tissue of a Caucasian female fetus who died at 20 weeks' destation.
	89	BLADNOT0 3	The library was constructed using RNA isolated from bladder tissue removed from an 80-year-old Caucasian female during a radical cystectomy and lymph node excision. Pathology for the associated tumor tissue indicated grade 3 invasive transitional cell carcinoma. Patient history included malignant neoplasm of the uterus, atherosclerosis, and atrial fibrillation. Family history included acute renal failure, osteoarthritis, and atherosclerosis

TABLE 4 (cont.

War and Desired St.		
SEQ ID NO:	Library	Library Comment
06	COLNNOT2 3	The library was constructed using RNA isolated from diseased colon tissue removed from a 16-year-old Caucasian male during a total colectomy with abdominal/perineal resection. Pathology indicated gastritis and pancolonitis consistent with the acute phase of ulcerative colitis. Inflammation was more severe in the transverse colon with inflammation confined to the mucosa. The ascending and sigmoid colon was mildly involved. Family history included irritable bowel syndrome
91	BRSTNOT0	The library was constructed using RNA isolated from breast tissue removed from a 62-year-old East Indian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 ductal carcinoma. Patient history included benign hypertension, hyperlipidemia, and hematuria. Family history included cerebrovascular and cardiovascular disease, hyperlipidemia, and liver cancer.
85	LIVRFETO 2	The library was constructed using RNA isolated from liver tissue removed from a Caucasian female fetus who died at 20 weeks' gestation. Family history included seven days of erythromycin treatment for bronchitis in the mother during the first trimester.
93	BEPINOTO 1	The library was constructed using RNA isolated from a bronchial epithelium primary cell line derived from a 54-year-old Caucasian male.
94	BRAITUTO 2	The library was constructed using RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Family history included a malignant neoplasm of the kidney
95	BRAITUTO 3	The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe a 17-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a grade 4 fibrillary giant and small-cell astrocytoma. Family history included benign hypertension and cerebrovascular disease.
96	BRSTTUTO 2	The library was constructed using RNA isolated from breast tumor tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy with reconstruction. Pathology indicated residual invasive grade 3 mammary ductal adenocarcinoma. The remaining breast parenchyma exhibited proliferative fibrocystic changes without atypia. One of 10 axillary lymph nodes had metastatic tumor. Patient history included kidney infection and condyloma acuminatum. Family history included benign hypertension, hyperlipidemia, and a malignant colon neoplasm.

TABLE 4 (cont.)

March 2001		
SEQ ID NO:	Library	Library Comment
97	BRSTTUT0 2	The library was constructed using RNA isolated from breast tumor tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy with reconstruction. Pathology indicated residual invasive grade 3 mammary ductal adenocarcinoma. The remaining breast parenchyma exhibited proliferative fibrocystic changes without atypia. One of 10 axillary lymph nodes had metastatic tumor. Patient history included kidney infection and condyloma acuminatum. Family history included benign hypertension, hyperlibidemia, and a malignant colon neonlasm
86	BRSTNOTO 7	The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, cardiovascular disease, and type II diabetes.
66 ×	BRAINOTO 9	The library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus who died at 23 weeks' gestation.
100	THP1AZSO 8	The library was constructed using RNA isolated from 5.76 million clones from a 5-aza-2'-deoxycytidine treated THP-1 cell library. The library was subjected to subtractive hybridization using 5 million clones from an untreated THP-1 cell library. Hybridization conditions were adapted from Swaroop et al., NAR (1991) 19:1954; and Bonaldo et al., Genome Research (1996) 6:791. THP-1 (ATCC TIB 202) is a human promonocyte cell line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
101	LUNGTUT1 2	The library was constructed using RNA isolated from tumorous lung tissue removed from a 70-year-old Caucasian female during a lung lobectomy of the left upper lobe. Pathology indicated grade 3 (of 4) adenocarcinoma and vascular invasion. Patient history included tobacco abuse, depressive disorder, anxiety state, and skin cancer. Family history included cerebrovascular disease, congestive heart failure, colon cancer, depressive disorder, and primary liver.
102	HEAONOTO 5	The library was constructed using RNA isolated from aortic tissue removed from a 17-year-old Hispanic female who died from a gunshot wound.
103	HEAONOTO 5	The library was constructed using RNA isolated from aortic tissue removed from a 17-year-old Hispanic female who died from a gunshot wound.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 o less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater. fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88- 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
IIMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

Parameter Threshold	Normalized quality score>GCG- specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.		Score= 120 or greater; Match length= 56 or greater		Score=3.5 or greater	
Reference	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Bairoch et al. <u>supra</u> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.
Description	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	A graphical tool for viewing and editing Phrap assemblies	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	A program that searches amino acid sequences for patterns that matched those defined in Prosite.
Program	ProfileScan	Phred	Phrap	Consed	SPScan	Motifs

What is claimed is:

10

- 1. An isolated polypeptide comprising:
- a) an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID
 NO:3-5, SEQ ID NO:7-14, SEQ ID NO:16-31, SEQ ID NO:33-34, SEQ ID NO:36-40, SEQ ID
 NO:42-48, SEQ ID NO:50-55.
 - b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3-5, SEQ ID NO:7-14, SEQ ID NO:16-31, SEQ ID NO:33-34, SEQ ID NO:36-40, SEQ ID NO:42-48, SEQ ID NO:50-55.
 - c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3-5, SEQ ID NO:7-14, SEQ ID NO:16-31, SEQ ID NO:33-34, SEQ ID NO:36-40, SEQ ID NO:42-48, SEQ ID NO:50-55, or
- d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3-5, SEQ ID NO:7-14, SEQ ID NO:16-31, SEQ ID NO:33-34, SEQ ID NO:36-40, SEQ ID NO:42-48, SEQ ID NO:50-55.
- 2. An isolated polypeptide of claim 1, having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3-5, SEQ ID NO:7-14, SEQ ID NO:16-31, SEQ ID NO:33-34, SEQ ID NO:36-40, SEQ ID NO:42-48, SEQ ID NO:50-55.
 - 3. An isolated polynucleotide encoding a polypeptide of claim 1.
- An isolated polynucleotide of claim 3, having a sequence selected from the group
 consisting of SEQ ID NO:56-110.
 - 5. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
 - 6. A cell transformed with a recombinant polynucleotide of claim 5.
 - 7. A transgenic organism comprising a polynucleotide of claim 5.
 - 8. A method for producing a polypeptide of claim 1, the method comprising:
- a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said

cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and

b) recovering the polypeptide so expressed.

5

10

- 9. An isolated antibody which specifically binds to a polypeptide of claim 1.
- 10. An isolated polynucleotide comprising:
- a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:56-110,
- b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:56-110,
 - c) a polynucleotide sequence complementary to a), or
 - d) a polynucleotide sequence complementary to b).

15

25

- 11. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 10.
- 12. A method for detecting a target polynucleotide in a sample, said target polynucleotide
 20 having a sequence of a polynucleotide of claim 10, the method comprising:
 - a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and
 - b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
 - 13. A method of claim 12, wherein the probe comprises at least 30 contiguous nucleotides.
- 30 14. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.
 - 15. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
 - 16. A method of treating a disease or condition associated with decreased expression of

functional NuABP, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 15.

- 17. A method for screening a compound for effectiveness as an agonist of a polypeptide of5 claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting agonist activity in the sample.
- 18. A pharmaceutical composition comprising an agonist compound identified by a method of claim 17 and a pharmaceutically acceptable excipient.
 - 19. A method of treating a disease or condition associated with decreased expression of functional NuABP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 18.

15

- 20. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting antagonist activity in the sample.

20

- 21. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
- 22. A method for treating a disease or condition associated with overexpression of functional
 NuABP, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 21.
 - 23. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 4, the method comprising:
 - a) exposing a sample comprising the target polynucleotide to a compound, and
 - b) detecting altered expression of the target polynucleotide.

SEQUENCE LISTING

```
<110> INCYTE PHARMACEUTICALS, INC.
      TANG, Y. Tom
      LAL, Preeti
      HILLMAN, Jennifer L.
      YUE, Henry
      AZIMZAI, Yalda
      LU, Aina M.D.
      BAUGHN, Mariah R.
      TRAN, Bao
      SHIH, Leo L.
      AU-YOUNG, Janice
<120> NUCLEIC ACID-BINDING PROTEINS
<130> PF-0662 PCT
<140> To Be Assigned
<141> Herewith
<150> 60/117,905; 60/117,904
<151> 1999-01-29; 1999-01-29
<160> 110
<170> PERL Program
<210> 1
<211> 754
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 025733CD1
<400> 1
Met Ala Ala Gly Ser Arg Lys Arg Arg Leu Ala Glu Leu Thr
 1
                                     10
Val Asp Glu Phe Leu Ala Ser Gly Phe Asp Ser Glu Ser Glu Ser
                                     25
                 20
Glu Ser Glu Asn Ser Pro Gln Ala Glu Thr Arg Glu Ala Arg Glu
                 35
                                     40
                                                         45
Ala Ala Arg Ser Pro Asp Lys Pro Gly Gly Ser Pro Ser Ala Ser
                 50
                                     55
                                                         60
Arg Arg Lys Gly Arg Ala Ser Glu His Lys Asp Gln Leu Ser Arg
                 65
                                     70
Leu Lys Asp Arg Asp Pro Glu Phe Tyr Lys Phe Leu Gln Glu Asn
                                     85
                 80
Asp Gln Ser Leu Leu Asn Phe Ser Asp Ser Asp Ser Ser Glu Glu
                                    100
                 95
                                                        105
Glu Glu Gly Pro Phe His Ser Leu Pro Asp Val Leu Glu Glu Ala
                110
                                    115
                                                        120
Ser Glu Glu Glu Asp Gly Ala Glu Glu Glu Glu Asp Gly Asp Arg
                125
                                    130
                                                        135
Val Pro Arg Gly Leu Lys Gly Lys Lys Asn Ser Val Pro Val Thr
                140
                                    145
Val Ala Met Val Glu Arg Trp Lys Gln Ala Ala Lys Gln Arg Leu
                155
                                    160
```

Thr	Pro	Lys	Leu	Phe 170		Glu	Val	. Val	. Glr. 175		a Ph∈	arg	, Ala	Ala 180
Va1	Ala	Thr	Thr	Arg 185		' Asp	Gln	Glu	Ser 190		. Glu	ı Ala	Asr	Lys 195
Phe	Gln	Val	Thr	Asp 200		Ala	Ala	Phe	Asn 205		Leu	ı Val	Thr	Phe 210
Cys	Ile	Arg	Asp	Leu 215	Ile	Gly	Cys	Leu	Gln 220		Leu	Leu	Phe	Gly 225
Lys	Val	Ala	Lys	Asp 230	Ser	Ser	Arg	Met	Leu 235		Pro	Ser	Ser	Ser 240
Pro	Leu	Trp	Gly	Lys 245	Leu	Arg	Val	Asp	11e 250		Ala	Tyr	Leu	Gly 255
Ser	Ala	Ile	Gln	Leu 260	Val	Ser	Cys	Leu	Ser 265		. Thr	Thr	Val	Leu 270
Ala	Ala	Val	Leu	Arg 275	His	Ile	Ser	Val	Leu 280	Val	Pro	Cys	Phe	Leu 285
Thr	Phe	Pro	Lys	Gln 290	Cys	Arg	Met	Leu	Leu 295	_	Arg	Met	Val	Val 300
Val	Trp	Ser	Thr	Gly 305	Glu	Glu	Ser	Leu	Arg 310	Val	Leu	Ala	Phe	Leu 315
Val	Leu	Ser	Arg	Val 320	Cys	Arg	His	Lys	Lys 325	Asp	Thr	Phe	Leu	Gly 330
Pro	Val	Leu	Lys	Gln 335	Met	Tyr	Ile	Thr	Tyr 340	Val	Arg	Asn	Cys	Lys 345
				350					Ile 355					360
				365					Pro 370	-			-	375
				380		_			Ala 385				_	390
				395					Tyr 400					405
_		_		410	-				Trp 415					420
		_		425					Pro 430			_		435
				440	_	_		_	Leu 445					450
	_			455					Arg 460					465
	_			470					Val 475					480
				.485					Arg 490	_		_	_	495
		_		500					11e 505		_			510
				515					Asp 520					525
	-	_		530			_		His 535					540
				545	-				Val 550					555
				560	_	_			Asn 565	-		-		570
				575					Asn 580					585
				590					Val 595					600
val	GIU	Ala	Trp	605	ьys	ьеи	rnr	Arg	Glu 610	GIU	чТĀ	ınr	PLO	Leu 615

```
Thr Leu Tyr Tyr Ser His Trp Arg Lys Leu Arg Asp Arg Glu Ile
                620
                                    625
Gln Leu Glu Ile Ser Gly Lys Glu Arg Leu Glu Asp Leu Asn Phe
                                                         645
                635
                                    640
Pro Glu Ile Lys Arg Arg Lys Met Ala Asp Arg Lys Asp Glu Asp
                650
                                    655
                                                         660
Arg Lys Gln Phe Lys Asp Leu Phe Asp Leu Asn Ser Ser Glu Glu
                665
                                    670
                                                         675
Asp Asp Thr Glu Gly Phe Ser Glu Arg Gly Ile Leu Arg Pro Leu
                                                         690
                                    685
                680
Ser Thr Arg His Gly Val Glu Asp Asp Glu Glu Asp Glu Glu Glu
                                    700
                                                         705
                695
Gly Glu Glu Asp Ser Ser Asn Ser Glu Gly Glu Trp Ser Trp Asp
                710
                                    715
                                                         720
Gly Asp Pro Asp Ala Glu Ala Gly Leu Ala Pro Gly Glu Leu Gln
                725
                                    730
                                                         735
Gin Leu Ala Gin Gly Pro Glu Asp Glu Leu Glu Asp Leu Gin Leu
                740
Ser Glu Asp Asp
```

```
<210> 2
<211> 593
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 079702CD1
<400> 2
Met Arg Asp Ser Thr Gly Ala Gl
```

Met Arg Asp Ser Thr Gly Ala Gly Asn Ser Leu Val His Lys Arg Ser Pro Leu Arg Arg Asn Gln Lys Thr Pro Thr Ser Leu Thr Lys Leu Ser Leu Gln Asp Gly His Lys Ala Lys Lys Pro Ala Cys Lys Phe Glu Glu Gly Gln Asp Val Leu Ala Arg Trp Ser Asp Gly Leu Phe Tyr Leu Gly Thr Ile Lys Lys Ile Asn Ile Leu Lys Gln Ser Cys Phe Ile Ile Phe Glu Asp Ser Ser Lys Ser Trp Val Leu Trp Lys Asp Ile Gln Thr Gly Ala Thr Gly Ser Gly Glu Met Val Cys Thr Ile Cys Gln Glu Glu Tyr Ser Glu Ala Pro Asn Glu Met Val Ile Cys Asp Lys Cys Gly Gln Gly Tyr His Gln Leu Cys His Thr Pro His Ile Asp Ser Ser Val Ile Asp Ser Asp Glu Lys Trp Leu Cys Arg Gln Cys Val Phe Ala Thr Thr Lys Arg Gly Gly Ala Leu Lys Lys Gly Pro Asn Ala Lys Ala Leu Gln Val Met Lys Gln Thr Leu Pro Tyr Ser Val Ala Asp Leu Glu Trp Asp Ala Gly His Lys Thr Asn Val Gln Gln Cys Tyr Cys Tyr Cys Gly Gly Pro Gly Asp Trp Tyr Leu Lys Met Leu Gln Cys Cys Lys Cys Lys Gln Trp

```
215
                                     220
                                                          225
Phe His Glu Ala Cys Val Gln Cys Leu Gln Lys Pro Met Leu Phe
                230
                                     235
                                                          240
Gly Asp Arg Phe Tyr Thr Phe Ile Cys Ser Val Cys Ser Ser Gly
                                     250
                                                          255
                245
Pro Glu Tyr Leu Lys Arg Leu Pro Leu Gln Trp Val Asp Ile Ala
                260
                                     265
                                                          270
His Leu Cys Leu Tyr Asn Leu Ser Val Ile His Lys Lys Lys Tyr
                275
                                     280
                                                          285
Phe Asp Ser Glu Leu Glu Leu Met Thr Tyr Ile Asn Glu Asn Trp
                290
                                     295
                                                          300
Asp Arg Leu His Pro Gly Glu Leu Ala Asp Thr Pro Lys Ser Glu
                305
                                     310
                                                          315
Arg Tyr Glu His Val Leu Glu Ala Leu Asn Asp Tyr Lys Thr Met
                320
                                     325
                                                         330
Phe Met Ser Gly Lys Glu Ile Lys Lys Lys His Leu Phe Gly
                                                         345
Leu Arg Ile Arg Val Pro Pro Val Pro Pro Asn Val Ala Phe Lys
                350
                                     355
                                                         360
Ala Glu Lys Glu Pro Glu Gly Thr Ser His Glu Phe Lys Ile Lys
                365
                                     370
                                                         375
Gly Arg Lys Ala Ser Lys Pro Ile Ser Asp Ser Arg Glu Val Ser
                380
                                     385
                                                         390
Asn Gly Ile Glu Lys Lys Lys Lys Lys Ser Val Gly Arg Pro
                395
                                     400
                                                         405
Pro Gly Pro Tyr Thr Arg Lys Met Ile Gln Lys Thr Ala Glu Pro
                410
                                     415
                                                         420
Leu Leu Asp Lys Glu Ser Ile Ser Glu Asn Pro Thr Leu Asp Leu
                425
                                     430
Pro Cys Ser Ile Gly Arg Thr Glu Gly Thr Ala His Ser Ser Asn
                440
                                     445
Thr Ser Asp Val Asp Phe Thr Gly Ala Ser Ser Ala Lys Glu Thr
                455
                                     460
                                                         465
Thr Ser Ser Ser Ile Ser Arg His Tyr Gly Leu Ser Asp Ser Arg
                470
                                     475
                                                         480
Lys Arg Thr Arg Thr Gly Arg Ser Trp Pro Ala Ala Ile Pro His
                485
                                    490
                                                         495
Leu Arg Arg Arg Gly Arg Leu Pro Arg Arg Ala Leu Gln Thr
                500
                                    505
                                                         510
Gln Asn Ser Glu Ile Val Lys Asp Asp Glu Gly Lys Glu Asp Tyr
                                    520
                                                         525
                515
Gln Phe Asp Glu Leu Asn Thr Glu Ile Leu Asn Asn Leu Ala Asp
                530
                                    535
                                                         540
Gln Glu Leu Gln Leu Asn His Leu Lys Asn Ser Ile Thr Ser Tyr
                545
                                    550
                                                         555
Phe Gly Ala Ala Gly Arg Ile Ala Cys Gly Glu Lys Tyr Arg Val
                560
                                    565
                                                         570
Leu Ala Arg Arg Val Thr Leu Asp Gly Lys Val Gln Tyr Leu Val
                575
                                    580
Glu Trp Glu Gly Ala Thr Ala Ser
                590
```

```
<210> 3
<211> 534
<212> PRT
```

<213> Homo sapiens

<220>

<221> misc-feature <223> Incyte ID No.: 116208CD1

<400> 3 Met Arg Ala Leu His Leu Leu Lys Ser Gly Cys Ser Pro Ala Val Gln Ile Lys Ile Arg Glu Leu Tyr Arg Arg Arg Tyr Pro Arg Thr Leu Glu Gly Leu Ser Asp Leu Ser Thr Ile Lys Ser Ser Val Phe Ser Leu Asp Gly Gly Ser Ser Pro Val Glu Pro Asp Leu Ala Val Ala Gly Ile His Ser Leu Pro Ser Thr Ser Val Thr Pro His Ser Pro Ser Ser Pro Val Gly Ser Val Leu Leu Gln Asp Thr Lys Pro Thr Phe Glu Met Gln Gln Pro Ser Pro Pro Ile Pro Pro Val His Pro Asp Val Gln Leu Lys Asn Leu Pro Phe Tyr Asp Val Leu Asp Val Leu Ile Lys Pro Thr Ser Leu Val Gln Ser Ser Ile Gln Arg Phe Gln Glu Lys Phe Phe Ile Phe Ala Leu Thr Pro Gln Gln Val Arg Glu Ile Cys Ile Ser Arg Asp Phe Leu Pro Gly Gly Arg Arg Asp Tyr Thr Val Gln Val Gln Leu Arg Leu Cys Leu Ala Glu Thr Ser Cys Pro Gln Glu Asp Asn Tyr Pro Asn Ser Leu Cys Ile Lys Val Asn Gly Lys Leu Phe Pro Leu Pro Gly Tyr Ala Pro Pro Lys Asn Gly Ile Glu Gln Lys Arg Pro Gly Arg Pro Leu Asn Ile Thr Ser Leu Val Arg Leu Ser Ser Ala Val Pro Asn Gln Ile Ser Ile Ser Trp Ala Ser Glu Ile Gly Lys Asn Tyr Ser Met Ser Val Tyr Leu Val Arg Gln Leu Thr Ser Ala Met Leu Leu Gln Arg Leu Lys Met Lys Gly Ile Arg Asn Pro Asp His Ser Arg Ala Leu Ser Lys Glu Lys Leu Thr Ala Asp Pro Asp Ser Glu Ile Ala Thr Thr Ser Leu Arg Val Ser Leu Met Cys Pro Leu Gly Lys Met Arg Leu Thr Ile Pro Cys Arg Ala Val Thr Cys Thr His Leu Gln Cys Phe Asp Ala Ala Leu Tyr Leu Gln Met Asn Glu Lys Lys Pro Thr Trp Ile Cys Pro Val Cys Asp Lys Lys Ala Ala Tyr Glu Ser Leu Ile Leu Asp Gly Leu Phe Met Glu Ile Leu Asn Asp Cys Ser Asp Val Asp Glu Ile Lys Phe Gln Glu Asp Gly Ser Trp Cys Pro Met Arg Pro Lys Lys Glu Ala Met Lys Val Ser Ser Gln Pro Cys Thr Lys Ile Glu Ser Ser Ser Val Leu Ser Lys Pro Cys Ser Val Thr Val Ala Ser Glu Ala Ser Lys Lys Lys Val Asp Val Ile Asp Leu Thr

```
Ile Glu Ser Ser Asp Glu Glu Glu Asp Pro Pro Ala Lys Arg
                440
                                     445
                                                          450
Lys Cys Ile Phe Met Ser Glu Thr Gln Ser Ser Pro Thr Lys Gly
                455
                                     460
                                                          465
Val Leu Met Tyr Gln Pro Ser Ser Val Arg Val Pro Ser Val Thr
                470
                                     475
                                                         480
Ser Val Asp Pro Ala Ala Ile Pro Pro Ser Leu Thr Asp Tyr Ser
                485
                                     490
                                                         495
Val Pro Phe His His Thr Pro Ile Ser Ser Met Ser Ser Asp Leu
                500
                                     505
                                                         510
Pro Gly Glu Gln Arg Arg Asn Asp Ile Asn Asn Glu Leu Lys Leu
                515
                                    520
Gly Thr Ser Ser Asp Thr Val Gln Gln
                530
```

```
<210> 4
<211> 255
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No.: 179261CD1
<400> 4
Met Lys Ile Ile Ser Glu Asn Val Pro Ser Tyr Lys Thr His Glu
  1
                                      10
                                                           15
Ser Leu Thr Leu Pro Arg Arg Thr His Asp Ser Glu Lys Pro Tyr
                 20
                                      25
Glu Tyr Lys Glu Tyr Glu Lys Val Phe Ser Cys Asp Leu Glu Phe
                 35
                                      40
Asp Glu Tyr Gln Lys Ile His Thr Gly Gly Lys Asn Tyr Glu Cys
                 50
                                      55
Asn Gln Cys Trp Lys Thr Phe Gly Ile Asp Asn Ser Ser Met Leu
                 65
                                      70
                                                           75
Gln Leu Asn Ile His Thr Gly Val Lys Pro Cys Lys Tyr Met Glu
                 80
                                      85
                                                           90
Tyr Gly Asn Thr Cys Ser Phe Tyr Lys Asp Phe Asn Val Tyr Gln
                 95
                                     100
                                                          105
Lys Ile His Asn Glu Lys Phe Tyr Lys Cys Lys Glu Tyr Arg Arg
                110
                                     115
                                                          120
Thr Phe Glu Arg Val Gly Lys Val Thr Pro Leu Gln Arg Val His
                125
                                     130
                                                          135
Asp Gly Glu Lys His Phe Glu Cys Ser Phe Cys Gly Lys Ser Phe
                140
                                     145
                                                          150
Arg Val His Ala Gln Leu Thr Arg His Gln Lys Ile His Thr Asp
                155
                                     160
                                                          165
Glu Lys Thr Tyr Lys Cys Met Glu Cys Gly Lys Asp Phe Arg Phe
                170
                                    175
His Ser Gln Leu Thr Glu His Gln Arg Ile His Thr Gly Glu Lys
                185
                                    190
                                                          1.95
Pro Tyr Lys Cys Met His Cys Glu Lys Val Phe Arg Ile Ser Ser
                200
                                    205
                                                         210
Gln Leu Ile Glu His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr
                215
                                    220
                                                         225
Ala Cys Lys Glu Cys Gly Lys Ala Phe Gly Val Cys Arg Glu Leu
```

Ala Arg His Gln Arg Ile His Thr Gly Lys Tyr Cys Gly Trp Ile

```
<210> 5
<211> 562
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No.: 259161CD1
Met Ala Ser Val Ser Ala Leu Thr Glu Glu Leu Asp Ser Ile Thr
Ser Glu Leu His Ala Val Glu Ile Gln Ile Gln Glu Leu Thr Glu
                 20
                                      25
Arg Gln Glu Leu Ile Gln Lys Lys Lys Val Leu Thr Lys Lys
                 35
                                      40
Ile Lys Gln Cys Leu Glu Asp Ser Asp Ala Gly Ala Ser Asn Glu
                 50
                                      55
                                                           60
Tyr Asp Ser Ser Pro Ala Ala Trp Asn Lys Glu Asp Phe Pro Trp
                 65
                                      70
Ser Gly Lys Val Lys Asp Ile Leu Gln Asn Val Phe Lys Leu Glu
                 80
                                      85
                                                          90
Lys Phe Arg Pro Leu Gln Leu Glu Thr Ile Asn Val Thr Met Ala
                 95
                                     100
                                                          105
Gly Lys Glu Val Phe Leu Val Met Pro Thr Gly Gly Lys Ser
                                                          120
                110
                                     115
Leu Cys Tyr Gln Leu Pro Ala Leu Cys Ser Asp Gly Phe Thr Leu
                                                          135
                125
                                     130
Val Ile Cys Pro Leu Ile Ser Leu Met Glu Asp Gln Leu Met Val
                140
                                     145
                                                          150
Leu Lys Gln Leu Gly Ile Ser Ala Thr Met Leu Asn Ala Ser Ser
                155
                                     160
                                                         165
Ser Lys Glu His Val Lys Trp Val His Ala Glu Met Val Asn Lys
                170
                                     175
                                                          180
Asn Ser Glu Leu Lys Leu Ile Tyr Val Thr Pro Glu Lys Ile Ala
                185
                                     190
Lys Ser Lys Met Phe Met Ser Arg Leu Glu Lys Ala Tyr Glu Ala
                200
                                     205
                                                         210
Arg Arg Phe Thr Arg Ile Ala Val Asp Glu Val His Cys Cys Ser
                215
                                     220
                                                         225
Gln Trp Gly His Asp Phe Arg Pro Asp Tyr Lys Ala Leu Gly Ile
                230
                                     235
                                                         240
Leu Lys Arg Gln Phe Pro Asn Ala Ser Leu Ile Gly Leu Thr Ala
                                                         255
                245
                                    250
Thr Ala Thr Asn His Val Leu Thr Asp Ala Gln Lys Ile Leu Cys
                260
                                    265
                                                         270
Ile Glu Lys Cys Phe Thr Phe Thr Ala Ser Phe Asn Lys Pro Asp
                                                         285
                275
                                    280
Val Arg Phe Val Ile His His Ser Met Ser Lys Ser Met Glu Asn
                290
                                    295
Tyr Tyr Gln Glu Ser Gly Arg Ala Gly Arg Asp Asp Met Lys Ala
                305
                                    310
                                                         315
Asp Cys Ile Leu Tyr Tyr Gly Phe Gly Asp Ile Phe Arg Ile Ser
                320
                                    325
                                                         330
Ser Met Val Val Met Glu Asn Val Gly Gln Gln Lys Leu Tyr Glu
                335
                                    340
                                                         345
Met Val Ser Tyr Cys Gln Asn Ile Ser Lys Cys Arg Arg Val Leu
                350
                                    355
Met Ala Gln His Phe Asp Glu Val Trp Asn Ser Glu Ala Cys Asn
```

```
365
                                     370
                                                          375
Lys Met Cys Asp Asn Cys Cys Lys Asp Ser Ala Phe Glu Arg Lys
                 380
                                     385
                                                          390
Asn Ile Thr Glu Tyr Cys Arg Asp Leu Ile Lys Ile Leu Lys Gln
                 395
                                     400
                                                          405
Ala Glu Glu Leu Asn Glu Lys Leu Thr Pro Leu Lys Leu Ile Asp
                 410
                                     415
                                                          420
Ser Trp Met Gly Lys Gly Ala Ala Lys Leu Arg Val Ala Gly Val
                 425
                                     430
                                                          435
Val Ala Pro Thr Leu Pro Arg Glu Asp Leu Glu Lys Ile Ile Ala
                440
                                     445
                                                          450
His Phe Leu Ile Gln Gln Tyr Leu Lys Glu Asp Tyr Ser Phe Thr
                 455
                                     460
                                                          465
Ala Tyr Ala Thr Ile Ser Tyr Leu Lys Ile Gly Pro Lys Ala Asn
                470
                                     475
                                                          480
Leu Leu Asn Asn Glu Ala His Ala Ile Thr Met Gln Val Thr Lys
                485
                                     490
                                                         495
Ser Thr Gln Asn Ser Phe Arg Ala Glu Ser Ser Gln Thr Cys His
                500
                                     505
                                                         510
Ser Glu Gln Gly Asp Lys Lys Ile Gly Gly Lys Lys Phe Gln Ala
                515
                                     520
                                                         525
Thr Ser Arg Arg Leu Gln Thr Cys Phe Ser Asn Leu Val Leu
                530
                                     535
Arg Ile Gln Glu Leu Arg Lys Glu Lys Ser Met Met Pro Asp Met
                545
                                     550
Thr Val Thr Lys Phe Ser Asn
                560
```

```
<210> 6
<211> 432
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 320087CD1
```

<400> 6 Met Ser Glu Leu Lys Asp Cys Pro Leu Gln Phe His Asp Phe Lys Ser Val Asp His Leu Lys Val Cys Pro Arg Tyr Thr Ala Val Leu Ala Arg Ser Glu Asp Asp Gly Ile Gly Ile Glu Glu Leu Asp Thr Leu Gln Leu Glu Leu Glu Thr Leu Leu Ser Ser Ala Ser Arg Arg Leu Arg Val Leu Glu Ala Glu Thr Gln Ile Leu Thr Asp Trp Gln Asp Lys Lys Gly Asp Arg Arg Phe Leu Lys Leu Gly Arg Asp His Glu Leu Gly Ala Pro Pro Lys His Gly Lys Pro Lys Lys Gln Lys Leu Glu Gly Lys Ala Gly His Gly Pro Gly Pro Gly Pro Gly Arg Pro Lys Ser Lys Asn Leu Gln Pro Lys Ile Gln Glu Tyr Glu Phe Thr Asp Asp Pro Ile Asp Val Pro Arg Ile Pro Lys Asn Asp Ala

```
Pro Asn Arg Phe Trp Ala Ser Val Glu Pro Tyr Cys Ala Asp Ile
                155
                                     160
Thr Ser Glu Glu Val Arg Thr Leu Glu Glu Leu Leu Lys Pro Pro
                170
                                     175
                                                         180
Glu Asp Glu Ala Glu His Tyr Lys Ile Pro Pro Leu Gly Lys His
                                     190
                                                         195
                185
Tyr Ser Gln Arg Trp Ala Gln Glu Asp Leu Leu Glu Glu Gln Lys
                200
                                     205
                                                         210
Asp Gly Ala Arg Ala Ala Ala Val Ala Asp Lys Lys Gly Leu
                215
                                     220
                                                         225
Met Gly Pro Leu Thr Glu Leu Asp Thr Lys Asp Val Asp Ala Leu
                                     235
                                                         240
                230
Leu Lys Lys Ser Glu Ala Gln His Glu Gln Pro Glu Asp Gly Cys
                245
                                     250
                                                         255
Pro Phe Gly Ala Leu Thr Gln Arg Leu Leu Gln Ala Leu Val Glu
                260
                                     265
                                                         270
Glu Asn Ile Ile Ser Pro Met Glu Asp Ser Pro Ile Pro Asp Met
                275
                                     280
                                                         285
Ser Gly Lys Glu Ser Gly Ala Asp Gly Ala Ser Thr Ser Pro Arg
                290
                                     295
                                                         300
Asn Gln Asn Lys Pro Phe Ser Val Pro His Thr Lys Ser Leu Glu
                305
                                    310
                                                         315
Ser Arg Ile Lys Glu Glu Leu Ile Ala Gln Gly Leu Leu Glu Ser
                                    325
                                                         330
                320
Glu Asp Arg Pro Ala Glu Asp Ser Glu Asp Glu Val Leu Ala Glu
                                    340
                                                         345
                335
Leu Arg Lys Arg Gln Ala Glu Leu Lys Ala Leu Ser Ala His Asn
                                    355
                                                         360
                350
Arg Thr Lys Lys His Asp Leu Leu Arg Leu Ala Lys Glu Glu Val
                                    370
                365
Ser Arg Gln Glu Leu Arg Gln Arg Val Arg Met Ala Asp Asn Glu
                                    385
                                                         390
                380
Val Met Asp Ala Phe Arg Lys Ile Met Ala Ala Arg Gln Lys Lys
                395
                                    400
                                                         405
Arg Thr Pro Thr Lys Lys Glu Lys Asp Gln Ala Trp Lys Thr Leu
                410
                                    415
                                                         420
Lys Glu Arg Glu Ser Ile Leu Lys Leu Leu Asp Gly
                425
                                    430
```

```
<210> 7
<211> 799
<212> PRT
<213> Homo sapiens
```

<220>
<221> misc-feature
<223> 491271CD1

Glu	Ala	Glu	Glu	Lys 80	Leu	Trp	Met	Met	Glu 85		Glu	ı Thi	Glr	Arg
Ser	Ser	Lys	His	Gln 95	Asn	Lys	Met	Glu	Thr 100		Glr	ı Lys	Phe	Ala 105
Leu	Lys	Tyr	Leu	Ser 110	Asn	Gln	Glu	Leu	Ser 115		Trr	Glr	ı Ile	Trp 120
Lys	Gln	Val	Ala	Ser 125	Glu	Leu	Thr	Arg	Cys 130		Glr	ı Gly	' Lys	Ser 135
Ser	Gln	Leu	Leu	Gln 140	Gly	Asp	Ser	Ile	Gln 145		Ser	Glu	ı Asn	Glu 150
Asn	Asn	Ile	Met	Asn 155	Pro	Lys	Gly	Asp	Ser 160		Ile	Tyr	Ile	Glu 165
Asn	Gln	Glu	Phe	Pro 170	Phe	Trp	Arg	Thr	Gln 175	His	Ser	. Cys	Gly	Asn 180
Thr	Tyr	Leu	Ser	Glu 185	Ser	Gln	Ile	Gln	Ser 190	Arg	Gly	Lys	Gln	11e 195
Asp	Val	Lys	Asn	Asn 200	Leu	Gln	Ile	Arg	Glu 205	Asp	Phe	Val	Lys	Lys 210
				215			_		220				_	Pro 225
				230				Ile	235					240
	-			245	_		_	Pro	250		-	_	,	255
-	_	_		260	_			Arg	265					270
			_	275	_	-		Ser	280					285
			_	290			_	Glu	295			_	-	300
				305				Ser	310					315
				320				Tyr	325		_			330
_	_			335			_	Leu Cys	340			_	_	345
				350				Суз	355					360
				365				Glu	370					375
				380				Gln	385					390
				395				Gly	400					405
		_	_	410			_	Val	415					420
				425			_	Gly	430		_		_	435
				440				Thr	445					450
				455	3				460				-	465
Cys	Glu	Ala	Cys	Gly 470	Lys	Gly	Phe	Thr	Arg 475	Asn	Thr	Asp	Leu	His 480
Ile	His	Phe	Arg	Val 485	His	Thr	Gly	Glu	Lys 490	Pro	Tyr	Lys	Cys	Lys 495
Glu	Суз	Gly	Lys		Phe	Ser	Gln	Ala		Asn	Leu	Gln	Val	
Gln	Asn	Val	His	Thr 515	Gly	Glu	Lys	Arg	Phe 520	Lys	Суѕ	Glu	Thr	Cys 525
Gly	Lys	Gly	Phe	Ser	Gln	Ser	Ser	Lys	Leu	Gln	Thr	His	Gln	Arg

```
530
                                     535
                                                          540
Val His Thr Gly Glu Lys Pro Tyr Arg Cys Asp Val Cys Gly Lys
                545
                                     550
                                                          555
Asp Phe Ser Tyr Ser Ser Asn Leu Lys Leu His Gln Val Ile His
                560
                                     565
                                                          570
Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Gly Phe
                575
                                     580
                                                          585
Ser Trp Arg Ser Asn Leu His Ala His Gln Arg Val His Ser Gly
                590
                                     595
                                                          600
Glu Lys Pro Tyr Lys Cys Glu Gln Cys Asp Lys Ser Phe Ser Gln
                605
                                     610
                                                          615
Ala Ile Asp Phe Arg Val His Gln Arg Val His Thr Gly Glu Lys
                620
                                     625
                                                          630
Pro Tyr Lys Cys Gly Val Cys Gly Lys Gly Phe Ser Gln Ser Ser
                635
                                     640
                                                          645
Gly Leu Gln Ser His Gln Arg Val His Thr Gly Glu Lys Pro Tyr
                650
                                     655
                                                          660
Lys Cys Asp Val Cys Gly Lys Gly Phe Arg Tyr Ser Ser Gln Phe
                665
                                     670
                                                          675
Ile Tyr His Gln Arg Gly His Thr Gly Glu Lys Pro Tyr Lys Cys
                680
                                     685
                                                          690
Glu Glu Cys Gly Lys Gly Phe Gly Arg Ser Leu Asn Leu Arg His
                695
                                     700
His Gln Arg Val His Thr Gly Glu Lys Pro His Ile Cys Glu Glu
                710
                                     715
                                                          720
Cys Gly Lys Ala Phe Ser Leu Pro Ser Asn Leu Arg Val His Leu
                725
                                     730
Gly Val His Thr Arg Glu Lys Leu Phe Lys Cys Glu Glu Cys Gly
                740
                                     745
Lys Gly Phe Ser Gln Ser Ala Arg Leu Glu Ala His Gln Arg Val
                755
                                    760
                                                         765
His Thr Gly Glu Lys Pro Tyr Lys Cys Asp Ile Cys Asp Lys Asp
                770
                                     775
Phe Arg His Arg Ser Arg Leu Thr Tyr His Gln Lys Val His Thr
                785
                                    790
Gly Lys Lys Leu
```

```
<210> 8
<211> 137
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 585172CD1
Met Leu Ser Gly Arg Leu Val Leu Gly Leu Val Ser Met Ala Gly
                                     10
Arg Val Cys Leu Cys Gln Gly Ser Ala Gly Ser Gly Ala Ile Gly
                 20
                                     25
Pro Val Glu Ala Ala Ile Arg Thr Lys Leu Glu Glu Ala Leu Ser
                 35
                                     40
                                                          45
Pro Glu Val Leu Glu Leu Arg Asn Glu Ser Gly Gly His Ala Val
Pro Pro Gly Ser Glu Thr His Phe Arg Val Ala Val Val Ser Ser
                 65
                                     70
Arg Phe Glu Gly Leu Ser Pro Leu Gln Arg His Arg Leu Val His
```

11/91

105

85

100

Ala Ala Leu Ala Glu Glu Leu Gly Gly Pro Val His Ala Leu Ala

Ile Gln Ala Arg Thr Pro Ala Gln Trp Arg Glu Asn Ser Gln Leu

```
110
                                     115
                                                          120
Asp Thr Ser Pro Pro Cys Leu Gly Gly Asn Lys Lys Thr Leu Gly
                 125
                                     130
<210> 9
<211> 230
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 615200CD1
Met Val Gly Ala Gly Ile Ser Thr Pro Ser Gly Ile Pro Asp Phe
                                      10
Arg Ser Pro Gly Ser Gly Leu Tyr Ser Asn Leu Gln Gln Tyr Asp
                 20
                                      25
Leu Pro Tyr Pro Glu Ala Ile Phe Glu Leu Pro Phe Phe His
                 35
                                      40
Asn Pro Lys Pro Phe Phe Thr Leu Ala Lys Glu Leu Tyr Pro Gly
                 50
                                      55
Asn Tyr Lys Pro Asn Ile Thr His Tyr Phe Leu Arg Leu Leu His
                                      70
                 65
Asp Lys Gly Leu Leu Arg Leu Tyr Thr Gln Asn Ile Asp Gly
                 80
                                     85
                                                          90
Leu Glu Arg Val Ser Gly Ile Pro Ala Ser Lys Leu Val Glu Ala
                 95
                                     100
                                                         105
His Gly Thr Phe Ala Ser Ala Thr Cys Thr Val Cys Gln Arg Pro
                110
                                     115
                                                         120
Phe Pro Gly Glu Asp Ile Arg Ala Asp Val Met Ala Asp Arg Val
                125
                                     130
                                                         135
Pro Arg Cys Pro Val Cys Thr Gly Val Val Lys Pro Asp Ile Val
                140
                                    145
                                                         150
Phe Phe Gly Glu Pro Leu Pro Gln Arg Phe Leu Leu His Val Val
                155
                                    160
Asp Phe Pro Met Ala Asp Leu Leu Leu Ile Leu Gly Thr Ser Leu
                170
                                    175
Glu Val Glu Pro Phe Ala Ser Leu Thr Glu Ala Val Arg Thr Gln
                185
                                    190
Phe Pro Asp Cys Ser Ser Thr Gly Thr Trp Trp Gly Pro Trp Leu
                200
                                    205
Gly Ile Leu Ala Ala Gly Thr Trp Pro Ser Trp Gly Thr Trp Phe
                215
                                    220
Thr Ala Trp Lys Ala
                230
```

80

95

<210> 10 <211> 446 <212> PRT

<213> Homo sapiens

12/91

<221> misc-feature <223> Incyte ID No.: 997067CD1 <400> 10 Met Glu Thr Gln Ala Asp Leu Val Ser Gln Glu Pro Gln Ala Leu Leu Asp Ser Ala Leu Pro Ser Lys Val Pro Ala Phe Ser Asp Lys Asp Ser Leu Gly Asp Glu Met Leu Ala Ala Leu Leu Lys Ala Lys Ser Gln Glu Leu Val Thr Phe Glu Asp Val Ala Val Tyr Phe Ile Arg Lys Glu Trp Lys Arg Leu Glu Pro Ala Gln Arg Asp Leu Tyr Arg Asp Val Met Leu Glu Asn Tyr Gly Asn Val Phe Ser Leu Asp Arg Glu Thr Arg Thr Glu Asn Asp Gln Glu Ile Ser Glu Asp Thr Arg Ser His Gly Val Leu Leu Gly Arg Phe Gln Lys Asp Ile Ser Gln Gly Leu Lys Phe Lys Glu Ala Tyr Glu Arg Glu Val Ser Leu Lys Arg Pro Leu Gly Asn Ser Pro Gly Glu Arg Leu Asn Arg Lys Met Pro Asp Phe Gly Gln Val Thr Val Glu Glu Lys Leu Thr Pro Arg Gly Glu Arg Ser Glu Lys Tyr Asn Asp Phe Gly Asn Ser Phe Thr Val Asn Ser Asn Leu Ile Ser His Gln Arg Leu Pro Val Gly Asp Arg Pro His Lys Cys Asp Glu Cys Ser Lys Ser Phe Asn Arg Thr Ser Asp Leu Ile Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Glu Cys Gly Lys Ala Phe Ser Gln Ser Ser His Leu Ile Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Ser Asp Cys Gly Lys Thr Phe Ser Cys Ser Ser Ala Leu Ile Leu His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Glu Cys Gly Lys Thr Phe Ser Trp Ser Ser Thr Leu Thr His His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Ala Cys Asn Glu Cys Gly Lys Ala Phe Ser Arg Ser Ser Thr Leu Ile His His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Glu Cys Gly Lys Ala Phe Ser Gln Ser Ser His Leu Tyr Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Met Glu Cys Gly Gly Lys Phe Thr Tyr Ser Ser Gly Leu Ile Gln His Gln Arg Ile His Thr Gly Glu Asn Pro Tyr Glu Cys Ser Glu Cys Gly Lys Ala Phe Arg Tyr Ser Ser Ala Leu Val Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Leu Asn Gly Ile Gly Met Ser Lys Ser Ser Leu Arg

<220>

<210> 11 <211> 428 <212> PRT <213> Homo sapiens <220> <221> misc-feature <223> Incyte ID No.: 1443262CD1 <400> 11 Met Glu Pro Leu Lys Val Glu Lys Phe Ala Thr Ala Asn Arg Gly Asn Gly Leu Arg Ala Val Thr Pro Leu Arg Pro Gly Glu Leu Leu Phe Arg Ser Asp Pro Leu Ala Tyr Thr Val Cys Lys Gly Ser Arg Gly Val Val Cys Asp Arg Cys Leu Leu Gly Lys Glu Lys Leu Met Arg Cys Ser Gln Cys Arg Val Ala Lys Tyr Cys Ser Ala Lys Cys Gln Lys Lys Ala Trp Pro Asp His Lys Arg Glu Cys Lys Cys Leu Lys Ser Cys Lys Pro Arg Tyr Pro Pro Asp Ser Val Arg Leu Leu Gly Arg Val Val Phe Lys Leu Met Asp Gly Ala Pro Ser Glu Ser Glu Lys Leu Tyr Ser Phe Tyr Asp Leu Glu Ser Asn Ile Asn Lys Leu Thr Glu Asp Lys Lys Glu Gly Leu Arg Gln Leu Val Met Thr Phe Gln His Phe Met Arg Glu Glu Ile Gln Asp Ala Ser Gln Leu Pro Pro Ala Phe Asp Leu Phe Glu Ala Phe Ala Lys Val Ile Cys Asn Ser Phe Thr Ile Cys Asn Ala Glu Met Gln Glu Val Gly Val Gly Leu Tyr Pro Ser Ile Ser Leu Leu Asn His Ser Cys Asp Pro Asn Cys Ser Ile Val Phe Asn Gly Pro His Leu Leu Leu Arg Ala Val Arg Asp Ile Glu Val Gly Glu Glu Leu Thr Ile Cys Tyr Leu Asp Met Leu Met Thr Ser Glu Glu Arg Arg Lys Gln Leu Arg Asp Gln Tyr Cys Phe Glu Cys Asp Cys Phe Arg Cys Gln Thr Gln Asp Lys Asp Ala Asp Met Leu Thr Gly Asp Glu Gln Val Trp Lys Glu Val Gln Glu Ser Leu Lys Lys Ile Glu Glu Leu Lys Ala His Trp Lys Trp Glu Gln Val Leu Ala Met Cys Gln Ala Ile Ile Ser Ser Asn Ser Glu Arg Leu Pro Asp Ile Asn Ile Tyr Gln Leu Lys Val

Val Thr Thr Glu Leu Asn Ile Arg Glu Ser Thr

```
Leu Asp Cys Ala Met Asp Ala Cys Ile Asn Leu Gly Leu Leu Glu
                                     340
                335
                                                         345
Glu Ala Leu Phe Tyr Gly Thr Arg Thr Met Glu Pro Tyr Arg Ile
                350
                                    355
                                                         360
Phe Phe Pro Gly Ser His Pro Val Arg Gly Val Gln Val Met Lys
                365
                                     370
                                                         375
Val Gly Lys Leu Gln Leu His Gln Gly Met Phe Pro Gln Ala Met
                380
                                     385
                                                         390
Lys Asn Leu Arg Leu Ala Phe Asp Ile Met Arg Val Thr His Gly
                395
                                    400
                                                         405
Arg Glu His Ser Leu Ile Glu Asp Leu Ile Leu Leu Glu Glu
                410
                                    415
                                                         420
Cys Asp Ala Asn Ile Arg Ala Ser
                425
```

```
<210> 12
<211> 590
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1521648CD1
<400> 12
```

Met Ala Glu Asp Trp Leu Asp Cys Pro Ala Leu Gly Pro Gly Trp Lys Arg Arg Glu Val Phe Arg Lys Ser Gly Ala Thr Cys Gly Arg Ser Asp Thr Tyr Tyr Gln Ser Pro Thr Gly Asp Arg Ile Arg Ser Lys Val Glu Leu Thr Arg Tyr Leu Gly Pro Ala Cys Asp Leu Thr Leu Phe Asp Phe Lys Gln Gly Ile Leu Cys Tyr Pro Ala Pro Lys Ala His Pro Val Ala Val Ala Ser Lys Lys Arg Lys Lys Pro Ser Arg Pro Ala Lys Thr Arg Lys Arg Gln Val Gly Pro Gln Ser Gly Glu Val Arg Lys Glu Ala Pro Arg Asp Glu Thr Lys Ala Asp Thr Asp Thr Ala Pro Ala Ser Phe Pro Ala Pro Gly Cys Cys Glu Asn Cys Gly Ile Ser Phe Ser Gly Asp Gly Thr Gln Arg Gln Arg Leu Lys Thr Leu Cys Lys Asp Cys Arg Ala Gln Arg Ile Ala Phe Asn Arg Glu Gln Arg Met Phe Lys Arg Val Gly Cys Gly Glu Cys Ala Ala Cys Gln Val Thr Glu Asp Cys Gly Ala Cys Ser Thr Cys Leu Leu Gln Leu Pro His Asp Val Ala Ser Gly Leu Phe Cys Lys Cys Glu Arg Arg Arg Cys Leu Arg Ile Val Glu Arg Ser Arg Gly Cys Gly Val Cys Arg Gly Cys Gln Thr Gln Glu Asp Cys Gly His Cys Pro Ile Cys Leu Arg Pro Pro Arg Pro Gly Leu Arg Arg Gln Trp

```
Lys Cys Val Gln Arg Arg Cys Leu Arg Gly Lys His Ala Arg Arg
                 260
                                     265
                                                          270
Lys Gly Gly Cys Asp Ser Lys Met Ala Ala Arg Arg Pro Gly
                 275
                                     280
                                                          285
Ala Gln Pro Leu Pro Pro Pro Pro Ser Gln Ser Pro Glu Pro
                290
                                     295
                                                          300
Thr Glu Pro His Pro Arg Ala Leu Ala Pro Ser Pro Pro Ala Glu
                 305
                                     310
Phe Ile Tyr Tyr Cys
                    Val Asp Glu Asp Glu Leu Gln Pro Tyr Thr
                320
                                     325
Asn Arg Arg Gln Asn Arg Lys Cys Gly Ala Cys Ala Ala Cys Leu
                335
                                     340
Arg Arg Met Asp Cys Gly Arg Cys Asp Phe Cys Cys Asp Lys Pro
                350
                                     355
                                                          360
Lys Phe Gly Gly Ser Asn Gln Lys Arg Gln Lys Cys Arg Trp Arg
                365
                                     370
                                                          375
Gln Cys Leu Gln Phe Ala Met Lys Arg Leu Leu Pro Ser Val Trp
                380
                                     385
                                                         390
Ser Glu Ser Glu Asp Gly Ala Gly Ser Pro Pro Pro Tyr Arg Arg
                395
                                     400
                                                         405
Arg Lys Arg Pro Ser Ser Ala Arg Arg His His Leu Gly Pro Thr
                410
                                     415
Leu Lys Pro Thr Leu Ala Thr Arg Thr Ala Gln Pro Asp His Thr
                425
                                     430
                                                         435
Gln Ala Pro Thr Lys Gln Glu Ala Gly Gly Gly Phe Val Leu Pro
                440
                                     445
                                                         450
Pro Pro Gly Thr Asp Leu Val Phe Leu Arg Glu Gly Ala Ser Ser
                455
                                     460
                                                         465
Pro Val Gln Val Pro Gly Pro Val Ala Ala Ser Thr Glu Ala Leu
                470
                                     475
                                                         480
Leu Gln Val Lys Gln Glu Lys Ala Asp Thr Gln Asp Glu Trp Thr
                485
                                     490
                                                         495
Pro Gly Thr Ala Val Leu Thr Ser Pro Val Leu Val Pro Gly Cys
                500
                                    505
                                                         510
Pro Ser Lys Ala Val Asp Pro Gly Leu Pro Ser Val Lys Gln Glu
                515
                                    520
                                                         525
Pro Pro Asp Pro Glu Glu Asp Lys Glu Glu Asn Lys Asp Asp Ser
                530
                                    535
                                                         540
Ala Ser Lys Leu Ala Pro Glu Glu Glu Ala Gly Gly Ala Gly Thr
                545
                                    550
                                                         555
Pro Val Ile Thr Glu Ile Phe Ser Leu Gly Gly Thr Arg Phe Arg
                560
                                    565
                                                         570
Asp Thr Ala Val Trp Leu Pro Arg Ser Lys Asp Leu Lys Lys Pro
                575
                                    580
                                                         585
Gly Ala Arg Lys Gln
                590
```

```
<210> 13
<211> 479
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1685494CD1
<400> 13
Met Ala Thr Ala Leu Val Ser Ala His Ser Leu Ala Pro Leu Ser
```

16/91

```
Leu Lys Lys Glu Gly Leu Arg Val Val Arg Glu Asp His Tyr Ser
                                      25
                 20
Thr Trp Glu Gln Gly Phe Lys Leu Gln Gly Asn Ser Lys Gly Leu
                                      40
                 35
Gly Gln Glu Pro Leu Cys Lys Gln Phe Arg Gln Leu Arg Tyr Glu
                                      55
                 50
Glu Thr Thr Gly Pro Arg Glu Ala Leu Ser Arg Leu Arg Glu Leu
                                      70
                 65
Cys Gln Gln Trp Leu Gln Pro Glu Thr His Thr Lys Glu Gln Ile
                                      85
                 80
Leu Glu Leu Leu Val Leu Glu Gln Phe Leu Ile Ile Leu Pro Lys
                 95
                                    100
Glu Leu Gln Ala Arg Val Gln Glu His His Pro Glu Ser Arg Glu
                110
                                     115
Asp Val Val Val Leu Glu Asp Leu Gln Leu Asp Leu Gly Glu
                125
                                     130
Thr Gly Gln Gln Val Asp Pro Asp Gln Pro Lys Lys Gln Lys Ile
                                     145
                140
                                                          150
Leu Val Glu Glu Met Ala Pro Leu Lys Gly Val Gln Glu Gln Gln
                                     160
                                                         165
                155
Val Arg His Glu Cys Glu Val Thr Lys Pro Glu Lys Glu Lys Gly
                170
                                     175
Glu Glu Thr Arg Ile Glu Asn Gly Lys Leu Ile Val Val Thr Asp
                185
                                     190
                                                         195
Ser Cys Gly Arg Val Glu Ser Ser Gly Lys Ile Ser Glu Pro Met
                                     205
                                                         210
                200
Glu Ala His Asn Glu Gly Ser Asn Leu Glu Arg His Gln Ala Lys
                                                         225
                215
                                    220
Pro Lys Glu Lys Ile Glu Tyr Lys Cys Ser Glu Arg Glu Gln Arg
                                    235
                                                         240
                230
Phe Ile Gln His Leu Asp Leu Ile Glu His Ala Ser Thr His Thr
                245
                                    250
Gly Lys Lys Leu Cys Glu Ser Asp Val Cys Gln Ser Ser Leu
                260
                                    265
                                                         270
Thr Gly His Lys Lys Val Leu Ser Arg Glu Lys Gly His Gln Cys
                275
                                     280
                                                         285
His Glu Cys Gly Lys Ala Phe Gln Arg Ser Ser His Leu Val Arg
                290
                                    295
                                                         300
His Gln Lys Ile His Leu Gly Glu Lys Pro Tyr Gln Cys Asn Glu
                305
                                    310
                                                         315
Cys Gly Lys Val Phe Ser Gln Asn Ala Gly Leu Leu Glu His Leu
                320
                                    325
                                                         330
Arg Ile His Thr Gly Glu Lys Pro Tyr Leu Cys Ile His Cys Gly
                335
                                    340
Lys Asn Phe Arg Arg Ser Ser His Leu Asn Arg His Gln Arg Ile
                                    355
                350
His Ser Gln Glu Glu Pro Cys Glu Cys Lys Glu Cys Gly Lys Thr
                365
                                    370
                                                         375
Phe Ser Gln Ala Leu Leu Leu Thr His His Gln Arg Ile His Ser
                                                         390
                380
                                    385
His Ser Lys Ser His Gln Cys Asn Glu Cys Gly Lys Ala Phe Ser
                                    400
                395
Leu Thr Ser Asp Leu Ile Arg His His Arg Ile His Thr Gly Glu
                410
                                    415
                                                         420
Lys Pro Phe Lys Cys Asn Ile Cys Gln Lys Ala Phe Arg Leu Asn
                                                         435
                425
                                    430
Ser His Leu Ala Gln His Val Arg Ile His Asn Glu Glu Lys Pro
                                                         450
                440
                                    445
Tyr Gln Cys Ser Glu Cys Gly Glu Ala Phe Arg Gln Arg Ser Gly
                                    460
                455
Leu Phe Gln His Gln Arg Tyr His His Lys Asp Lys Leu Ala
```

```
<210> 14
<211> 433
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1730829CD1
<400> 14
Met Glu Ala Val Tyr Leu Val Val Asn Gly Leu Gly Leu Val Leu
                                      10
Asp Val Leu Thr Leu Val Leu Asp Leu Asn Phe Leu Leu Val Ser
                 20
                                      25
Ser Leu Leu Ala Ser Leu Ala Trp Leu Leu Ala Phe Val Tyr Asn
                 35
                                      40
Leu Pro His Thr Val Leu Thr Ser Leu Leu His Leu Gly Arg Gly
                 50
                                      55
Val Leu Leu Ser Leu Leu Ala Leu Ile Glu Ala Val Val Arg Phe
                                                          75
                 65
                                      70
Thr Cys Gly Gly Leu Gln Ala Leu Cys Thr Leu Leu Tyr Ser Cys
                                     85
                 80
Cys Ser Gly Leu Glu Ser Leu Lys Leu Leu Gly His Leu Ala Ser
                                                         105
                 95
                                     100
His Gly Ala Leu Arg Ser Arg Glu Ile Leu His Arg Gly Val Leu
                                     115
                110
Asn Val Val Ser Ser Gly His Ala Leu Leu Arg Gln Ala Cys Asp
                125
                                     130
Ile Cys Ala Ile Ala Met Ser Leu Val Ala Tyr Val Ile Asn Ser
                140
                                     145
                                                         150
Leu Val Asn Ile Cys Leu Ile Gly Thr Gln Asn Leu Phe Ser Leu
                155
                                     160
Val Leu Ala Leu Trp Asp Ala Val Thr Gly Pro Leu Trp Arg Met
                170
                                    175
                                                         180
Thr Asp Val Val Ala Ala Phe Leu Ala His Ile Ser Ser Ala
                185
                                    190
                                                         195
Val Ala Met Ala Ile Leu Leu Trp Thr Pro Cys Gln Leu Ala Leu
                                                         210
                200
                                    205
Glu Leu Leu Ala Ser Ala Ala Arg Leu Leu Ala Ser Phe Val Leu
                215
                                    220
Val Asn Leu Thr Gly Leu Val Leu Leu Ala Cys Val Leu Ala Val
                230
                                    235
Thr Val Thr Val Leu His Pro Asp Phe Thr Leu Arg Leu Ala Thr
                                                         255
                245
                                    250
Gln Ala Leu Ser Gln Leu His Ala Arg Pro Ser Tyr His Arg Leu
                260
                                    265
Arg Glu Asp Val Met Arg Leu Ser Arg Leu Ala Leu Gly Ser Glu
                275
                                    280
Ala Trp Arg Arg Val Trp Ser Arg Ser Leu Gln Leu Ala Ser Trp
                290
                                    295
                                                         300
Pro Asn Arg Gly Gly Ala Pro Gly Ala Pro Gln Gly Asp Pro Met
                305
                                    310
Arg Val Phe Ser Val Arg Thr Arg Arg Gln Asp Thr Leu Pro Glu
                                    325
                                                         330
                320
Ala Gly Arg Arg Ser Glu Ala Glu Glu Glu Glu Ala Arg Thr Ile
                                    340
                335
Arg Val Thr Pro Val Arg Gly Arg Glu Arg Leu Asn Glu Glu Glu
```

```
355
Pro Pro Gly Gly Gln Asp Pro Trp Lys Leu Leu Lys Glu Gln Glu
                365
                                    370
                                                         375
Glu Arg Lys Lys Cys Val Ile Cys Gln Asp Gln Ser Lys Thr Val
                380
                                    385
                                                         390
Leu Leu Leu Pro Cys Arg His Leu Cys Leu Cys Gln Ala Cys Thr
                395
                                    400
Glu Ile Leu Met Arg His Pro Val Tyr His Arg Asn Cys Pro Leu
                410
                                    415
Cys Arg Arg Gly Ile Leu Gln Thr Leu Asn Val Tyr Leu
                425
                                    430
```

```
<210> 15
<211> 320
<212> PRT
<213> Homo sapiens

<220>
<221> misc feature
<223> Incyte ID No.: 1864641CD1
```

<400> 15

Met Pro Lys Lys Lys Thr Gly Ala Arg Lys Lys Ala Glu Asn Arg Arg Glu Arg Glu Lys Gln Leu Arg Ala Ser Arg Ser Thr Ile Asp Leu Ala Lys His Pro Cys Asn Ala Ser Met Glu Cys Asp Lys Cys Gln Arg Arg Gln Lys Asn Arg Ala Phe Cys Tyr Phe Cys Asn Ser Val Gln Lys Leu Pro Ile Cys Ala Gln Cys Gly Lys Thr Lys Cys Met Met Lys Ser Ser Asp Cys Val Ile Lys His Ala Gly Val Tyr Ser Thr Gly Leu Ala Met Val Gly Ala Ile Cys Asp Phe Cys Glu Ala Trp Val Cys His Gly Arg Lys Cys Leu Ser Thr His Ala Cys Ala Cys Pro Leu Thr Asp Ala Glu Cys Val Glu Cys Glu Arg Gly Val Trp Asp His Gly Gly Arg Ile Phe Ser Cys Ser Phe Cys His Asn Phe Leu Cys Glu Asp Asp Gln Phe Glu His Gln Ala Ser Cys Gln Val Leu Glu Ala Glu Thr Phe Lys Cys Val Ser Cys Asn Arg Leu Gly Gln His Ser Cys Leu Arg Cys Lys Ala Cys Phe Cys Asp Asp His Thr Arg Ser Lys Val Phe Lys Gln Glu Lys Gly Lys Gln Pro Pro Cys Pro Lys Cys Gly His Glu Thr Gln Glu Thr Lys Asp Leu Ser Met Ser Thr Arg Ser Leu Lys Phe Gly Arg Gln Thr Gly Gly Glu Glu Gly Asp Gly Ala Ser Gly Tyr Asp Ala Tyr Trp Lys Asn Leu Ser Ser Asp Lys Tyr Gly Asp Thr Ser Tyr His Asp Glu Glu Glu Asp Glu Tyr Glu Ala Glu Asp Asp Glu Glu Glu Glu Asp

```
275
                                      280
 Glu Gly Arg Lys Asp Ser Asp Thr Glu Ser Ser Asp Leu Phe Thr
                 290
                                     295
                                                          300
 Asn Leu Asn Leu Gly Arg Thr Tyr Ala Ser Gly Tyr Ala His Tyr
                 305
                                     310
                                                          315
 Glu Glu Glu Asn
<210> 16
 <211> 179
 <212> PRT
 <213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2444604CD1
<400> 16
Met Ala Ala Gly Phe Phe Gln Pro Phe Met Ser Pro Arg Phe Pro
                  5
                                      10
                                                          15
Gly Gly Pro Arg Pro Thr Leu Arg Met Pro Ser Gln Pro Pro Ala
                 2.0
                                      25
Cys Leu Pro Gly Ser Gln Pro Leu Leu Pro Gly Ala Met Glu Pro
                 35
                                      40
Ser Pro Arg Ala Gln Gly His Pro Ser Met Gly Gly Pro Met Gln
                 50
                                      55
                                                          60
Arg Val Thr Pro Pro Arg Gly Met Ala Ser Val Gly Pro Gln Ser
                 65
                                      70
                                                          75
Tyr Gly Gly Met Arg Pro Pro Pro Asn Ser Leu Ala Gly Pro
                 80
                                     85
                                                          90
Gly Leu Pro Ala Met Asn Met Gly Pro Gly Val Arg Gly Pro Trp
                 95
                                    100
                                                         105
Ala Ser Pro Ser Gly Asn Ser Ile Pro Tyr Ser Ser Ser Pro
                110
                                    115
                                                         120
Gly Ser Tyr Thr Gly Pro Pro Gly Gly Gly Pro Pro Gly Thr
                125
                                    130
Pro Ile Met Pro Ser Pro Gly Asp Ser Thr Asn Ser Ser Glu Asn
                140
                                    145
                                                        150
Met Tyr Thr Ile Met Asn Pro Ile Gly Gln Gly Ala Gly Arg Ala
                155
                                    160
Asn Phe Pro Leu Gly Pro Gly Pro Glu Gly Pro Trp Pro Pro
                170
                                    175
<210> 17
<211> 494
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2445008CD1
<400> 17
Met Gly Arg Lys Lys Lys Gln Leu Lys Pro Trp Cys Trp Tyr
```

20/91

10

Cys Asn Arg Asp Phe Asp Asp Glu Lys Ile Leu Ile Gln His Gln

									25					2.0
Lys	Ala	Lys	His	20 Phe 35	Lys	Cys	His	Ile	25 Cys 40	His	Lys	Lys	Leu	30 Tyr 45
Thi	Gly	Pro	Gly		Ala	Ile	His	Cys		Gln	Val	His	Lys	Glu 60
Thr	: Ile	Asp	Ala		Pro	Asn	Ala	Ile	Pro 70	Gly	Arg	Thr	Asp	Ile 75
Glu	Leu	Glu	Ile		Gly	Met	Glu	Gly	Ile 85		Glu	Lys	Asp	Met 90
Asp	Glu	Arg	Arg	Arg 95	Leu	Leu	Glu	Gln	Lys 100		Gln	Glu	Ser	Gln 105
ГЛS	Lys	Lys	Gln	Gln 110	Asp	Asp	Ser	Asp	Glu 115		Asp	Asp	Asp	Asp 120
Ser	Ala	Ala	Ser	Thr 125	Ser	Phe	Gln	Pro	Gln 130	Pro	Va1	Gln	Pro	Gln 135
	Gly			140					145					150
	Gly			155					160					165
	Val			170					175					180
	Pro			185					190					195
	Gly			200					205					210
	Pro			215					220					225
	Pro			230					235					240
	Ala			245					250					255
	Ala			260					265					270
	Pro			275					280					285
	Ala Phe			290					295					300
	Gly			305					310					315
	Glu			320					325					330
	Ser			335					340					345
	Ser			350					355					360
	Ser			365					370					375
	Arg			380					385					390
9	9		J	395		-,-	-1-		400				3	405
Gly	Gln	Ala	Pro	Ile 410	Gly	Asn	Pro	Pro	Val 415	Gly	Pro	Ile	GlÀ	Gly 420
Met	Met	Pro	Pro		Pro	Gly	Ile	Pro		Gln	Gln	Gly	Met	Arg 435
Pro	Pro	Met	Pro		His	Gly	Gln	Tyr		Gly	His	His	Gln	
Met	Pro	Gly	Туг		Pro	Gly	Ala	Met		Pro	Tyr	Gly	Gln	Gly 465
Pro	Pro	Met	Val		Pro	Tyr	Gln	Gly		Pro	Pro	Arg	Pro	Pro 480

Met Gly Met Arg Pro Pro Val Met Ser Gln Gly Gly Arg Tyr 485 490

```
<210> 18
<211> 401
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2572462CD1
<400> 18
Met Ala Ser Ser Pro Arg Pro Lys Met Asp Ala Ile Leu Thr Glu
  1
                                      10
Ala Ile Lys Ala Cys Phe Gln Lys Ser Gly Ala Ser Val Val Ala
                  20
                                      25
Ile Arg Lys Tyr Ile Ile His Lys Tyr Pro Ser Leu Glu Leu Glu
                  35
                                      40
                                                           45
Arg Arg Gly Tyr Leu Leu Lys Gln Ala Leu Lys Arg Glu Leu Asn
                  50
                                      55
Arg Gly Val Ile Lys Gln Val Lys Gly Lys Gly Ala Ser Gly Ser
                  65
                                      70
Phe Val Val Val Gln Lys Ser Arg Lys Thr Pro Gln Lys Ser Arg
                 80
                                      85
Asn Arg Lys Asn Arg Ser Ser Ala Val Asp Pro Glu Pro Gln Val
                 95
                                     100
                                                          105
Lys Leu Glu Asp Val Leu Pro Leu Ala Phe Thr Arg Leu Cys Glu
                110
                                     115
Pro Lys Glu Ala Ser Tyr Ser Leu Ile Arg Lys Tyr Val Ser Gln
                125
                                     130
                                                          135
Tyr Tyr Pro Lys Leu Arg Val Asp Ile Arg Pro Gln Leu Leu Lys
                140
                                     145
                                                          150
Asn Ala Leu Gln Arg Ala Val Glu Arg Gly Gln Leu Glu Gln Ile
                155
                                     160
                                                          165
Thr Gly Lys Gly Ala Ser Gly Thr Phe Gln Leu Lys Lys Ser Gly
                170
                                     175
                                                         180
Glu Lys Pro Leu Leu Gly Gly Ser Leu Met Glu Tyr Ala Ile Leu
                185
                                     190
                                                         195
Ser Ala Ile Ala Ala Met Asn Glu Pro Lys Thr Cys Ser Thr Thr
                200
                                     205
                                                         210
Ala Leu Lys Lys Tyr Val Leu Glu Asn His Pro Gly Thr Asn Ser
                215
                                     220
                                                         225
Asn Tyr Gln Met His Leu Leu Lys Lys Thr Leu Gln Lys Cys Glu
                230
                                    235
                                                         240
Lys Asn Gly Trp Met Glu Gln Ile Ser Gly Lys Gly Phe Ser Gly
                245
                                    250
                                                         255
Thr Phe Gln Leu Cys Phe Pro Tyr Tyr Pro Ser Pro Gly Val Leu
                260
                                    265
                                                         270
Phe Pro Lys Lys Glu Pro Asp Asp Ser Arg Asp Glu Asp Glu Asp
                275
                                    280
                                                         285
Glu Asp Glu Ser Ser Glu Glu Asp Ser Glu Asp Glu Glu Pro Pro
                290
                                    295
                                                         300
Pro Lys Arg Arg Leu Gln Lys Lys Thr Pro Ala Lys Ser Pro Gly
                305
                                    310
                                                         315
Lys Ala Ala Ser Val Lys Gln Arg Gly Ser Lys Pro Ala Pro Lys
                320
                                    325
                                                         330
Val Ser Ala Ala Gln Arg Gly Lys Ala Arg Pro Leu Pro Lys Lys
```

```
385
                                                         390
                380
Ser Thr Met Lys Lys Ser Phe Arg Val Lys Lys
<210> 19
<211> 264
<212> PRT
<213> Homo sapiens
<221> misc-feature
<223> Incyte ID No.: 2572892CD1
<400> 19
Met Pro Arg Ser Phe Leu Val Arg Lys Pro Ser Asp Pro Asn Arg
                                     10
 1
Lys Pro Asn Tyr Ser Glu Leu Gln Asp Ser Asn Pro Glu Phe Thr
                                      25
                 20
Phe Gln Gln Pro Tyr Asp Gln Ala His Leu Leu Ala Ala Ile Pro
                                      40
                 35
Pro Pro Glu Ile Leu Asn Pro Thr Ala Ser Leu Pro Met Leu Ile
                                      55
                                                          60
                 50
Trp Asp Ser Val Leu Ala Pro Gln Ala Gln Pro Ile Ala Trp Ala
                                      70
                                                          75
                 65
Ser Leu Arg Leu Gln Glu Ser Pro Arg Val Ala Glu Leu Thr Ser
                                                          90
                 80
                                     85
Leu Ser Asp Glu Asp Ser Gly Lys Gly Ser Gln Pro Pro Ser Pro
                 95
                                    100
Pro Ser Pro Ala Pro Ser Ser Phe Ser Ser Thr Ser Ala Ser Ser
                                    115
                                                         120
                110
Leu Glu Ala Glu Ala Tyr Ala Ala Phe Pro Gly Leu Gly Gln Val
                                    130
                                                         135
                125
Pro Lys Gln Leu Ala Gln Leu Ser Glu Ala Lys Asp Leu Gln Ala
                                    145
                                                         150
                140
Arg Lys Ala Phe Asn Cys Lys Tyr Cys Asn Lys Glu Tyr Leu Ser
                                    160
                155
Leu Gly Ala Leu Lys Met His Ile Arg Ser His Thr Leu Pro Cys
                                    175
                                                         180
                170
Val Cys Gly Thr Cys Gly Lys Ala Phe Ser Arg Pro Trp Leu Leu
                                    190
                                                         195
                185
Gln Gly His Val Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys
                200
                                    205
                                                         210
Pro His Cys Ser Arg Ala Phe Ala Asp Arg Ser Asn Leu Arg Ala
                                    220
                                                         225
                215
His Leu Gln Thr His Ser Asp Val Lys Lys Tyr Gln Cys Gln Ala
                                    235
                                                         240
                230
Cys Ala Arg Thr Phe Ser Arg Met Ser Leu Leu His Lys His Gln
                                                         255
                245
Glu Ser Gly Cys Ser Gly Cys Pro Arg
                260
```

Ala Pro Pro Lys Ala Lys Thr Pro Ala Lys Lys Thr Arg Pro Ser

Ser Thr Val Ile Lys Lys Pro Ser Gly Gly Ser Ser Lys Lys Pro

Ala Thr Ser Ala Arg Lys Glu Val Lys Leu Pro Gly Lys Gly Lys

```
<210> 20
<211> 153
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2785674CD1
<400> 20
Met Thr Lys Ile Lys Ala Asp Pro Asp Gly Pro Glu Ala Gln Ala
                                     10
                                                          15
Glu Ala Cys Ser Gly Glu Arg Thr Tyr Gln Glu Leu Leu Val Asn
                 20
                                                          30
                                      25
Gln Asn Pro Ile Ala Gln Pro Leu Ala Ser Arg Arg Leu Thr Arg
                 35
                                      40
Lys Leu Tyr Lys Cys Ile Lys Lys Ala Val Lys Gln Lys Gln Ile
                 50
                                      55
Arg Arg Gly Val Lys Glu Val Gln Lys Phe Val Asn Lys Gly Glu
                 65
                                      70
Lys Gly Ile Met Val Leu Ala Gly Asp Thr Leu Pro Ile Glu Val
                 80
                                      85
Tyr Cys His Leu Pro Val Met Cys Glu Asp Arg Asn Leu Pro Tyr
                 95
                                     100
                                                         105
Val Tyr Ile Pro Ser Lys Thr Asp Leu Gly Ala Ala Ala Gly Ser
                110
                                     115
                                                         120
Lys Arg Pro Thr Cys Val Ile Met Val Lys Pro His Glu Glu Tyr
                125
                                    130
                                                         135
Gln Glu Ala Tyr Asp Glu Cys Leu Glu Glu Val Gln Ser Leu Pro
                                     145
Leu Pro Leu
<210> 21
<211> 243
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2797479CD1
<400> 21
Met Gly Asp Asp Ile Ser Thr His Ile Ala Pro Lys Glu Leu Arg
                                     10
His Lys His Pro Ser Ser Val Asp Glu Val Ala Gln Val Val Lys
                 20
                                     25
Gln Leu Arg Ile Ile Leu Gln Gln Gln Val Arg Pro Gly Glu Ser
Thr Val Leu Ala Leu Arg Pro Asn Val Gln Gln Ile Glu Ala Pro
                 50
                                     55
Asp Val Ser Arg Asp Pro Arg Val Leu Gly Phe Asp Phe Pro Gly
                 65
                                     70
Ser Ala Arg Ile His Glu Gly Thr His Thr Leu Glu Lys Pro Tyr
                80
                                     85
Glu Cys Lys Gln Cys Gly Lys Leu Leu Ser His Arg Ser Ser Phe
```

95

24/91

100

115

Arg Arg His Met Met Ala His Thr Gly Asp Gly Pro His Lys Cys

Thr Val Cys Gly Lys Ala Phe Asp Ser Pro Ser Val Phe Gln Arg

```
125
                                    130
                                                         135
His Glu Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Lys Gln
                                                         150
                140
                                    145
Cys Gly Lys Ala Phe Arg Thr Ser Ser Leu Arg Lys His Glu
                155
                                    160
                                                         165
Thr Thr His Thr Gly Glu Gln Pro Tyr Lys Cys Lys Cys Gly Lys
                170
Ala Phe Ser Asp Leu Phe Ser Phe Gln Ser His Glu Thr Thr His
                185
                                    190
                                                         195
Ser Glu Glu Glu Pro Tyr Glu Cys Lys Glu Cys Gly Lys Ala Phe
                200
                                    205
                                                         210
Ser Ser Phe Lys Tyr Phe Cys Arg His Glu Arg Thr His Ser Glu
                215
                                    220
                                                         225
Glu Lys Ser Tyr Glu Cys Gln Ile Cys Gly Lys Leu Ser Val Val
                                    235
                230
Ser Val Thr
```

```
<210> 22
<211> 485
<212> PRT
<213> Homo sapiens
<220>
```

<221> misc-feature

<223> Incyte ID No.: 2960640CD1

<400> 22 Met Arg Asp Asn Arg Ala Val Ser Leu Cys Gln Gln Glu Trp Met Cys Pro Gly Pro Ala Gln Arg Ala Leu Tyr Arg Gly Ala Thr Gln Arg Lys Asp Ser His Val Ser Leu Ala Thr Gly Val Pro Trp Gly Tyr Glu Glu Thr Lys Thr Leu Leu Ala Ile Leu Ser Ser Ser Gln Phe Tyr Gly Lys Leu Gln Thr Cys Gln Gln Asn Ser Gln Ile Tyr Arg Ala Met Ala Glu Gly Leu Trp Glu Gln Gly Phe Leu Arg Thr Pro Glu Gln Cys Arg Thr Lys Phe Lys Ser Leu Gln Leu Ser Tyr Arg Lys Val Arg Arg Gly Arg Val Pro Glu Pro Cys Ile Phe Tyr Glu Glu Met Asn Ala Leu Ser Gly Ser Trp Ala Ser Ala Pro Pro Met Ala Ser Asp Ala Val Pro Gly Gln Glu Gly Ser Asp Ile Glu Ala Gly Glu Leu Asn His Gln Asn Gly Glu Pro Thr Glu Val Glu Asp Gly Thr Val Asp Gly Ala Asp Arg Asp Glu Lys Asp Phe Arg Asn Pro Gly Gln Glu Val Arg Lys Leu Asp Leu Pro Val Leu Phe Pro Asn Arg Leu Gly Phe Glu Phe Lys Asn Glu Ile Lys Lys Glu Asn Leu Lys Trp Asp Asp Ser Glu Glu Val Glu Ile Asn Lys Ala Leu Gln Arg Lys Ser Arg Gly Val Tyr Trp His Ser Glu Leu Gln

```
235
                230
Lys Gly Leu Glu Ser Glu Pro Thr Ser Arg Arg Gln Cys Arg Asn
                245
                                    250
                                                         255
Ser Pro Gly Glu Ser Glu Glu Lys Thr Pro Ser Gln Glu Lys Met
                260
                                    265
                                                         270
Ser His Gln Ser Phe Cys Ala Arg Asp Lys Ala Cys Thr His Ile
                275
                                     280
Leu Cys Gly Lys Asn Cys Ser Gln Ser Val His Ser Pro His Lys
                                    295
                290
                                                         300
Pro Ala Leu Lys Leu Glu Lys Val Ser Gln Cys Pro Glu Cys Gly
                                    310
                305
                                                         315
Lys Thr Phe Ser Arg Ser Ser Tyr Leu Val Arg His Gln Arg Ile
                                    325
                320
His Thr Gly Glu Lys Pro His Lys Cys Ser Glu Cys Gly Lys Gly
                                    340
                335
Phe Ser Glu Arg Ser Asn Leu Thr Ala His Leu Arg Thr His Thr
                350
                                    355
                                                         360
Gly Glu Arg Pro Tyr Gln Cys Gly Gln Cys Gly Lys Ser Phe Asn
                365
                                    370
                                                         375
Gln Ser Ser Leu Ile Val His Gln Arg Thr His Thr Gly Glu
                380
                                    385
                                                         390
Lys Pro Tyr Gln Cys Ile Val Cys Gly Lys Arg Phe Asn Asn Ser
                                    400
                395
                                                         405
Ser Gln Phe Ser Ala His Arg Arg Ile His Thr Gly Glu Ser Pro
                410
                                    415
                                                         420
Tyr Lys Cys Ala Val Cys Gly Lys Ile Phe Asn Asn Ser Ser His
                425
                                    430
                                                         435
Phe Ser Ala His Arg Lys Thr His Thr Gly Glu Lys Pro Tyr Arg
                                    445
                                                         450
                440
Cys Ser His Cys Glu Arg Gly Phe Thr Lys Asn Ser Ala Leu Thr
                                    460
                455
Arg His Gln Thr Val His Met Lys Ala Val Leu Ser Ser Gln Glu
                                    475
                470
Gly Arg Asp Ala Leu
```

```
<210> 23
<211> 160
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3454051CD1
<400> 23
Met Ser Trp Thr Cys Pro Arg Cys Gln Gln Pro Val Phe Phe Ala
                  5
                                     10
Glu Lys Val Ser Ser Leu Gly Lys Asn Trp His Arg Phe Cys Leu
                 20
                                     25
Lys Cys Glu Arg Cys His Ser Ile Leu Ser Pro Gly Gly His Ala
                                     40
                 35
Glu His Asn Gly Arg Pro Tyr Cys His Lys Pro Cys Tyr Gly Ala
                                     55
                 50
Leu Phe Gly Pro Arg Gly Pro Pro His Met Lys Thr Phe Thr Gly
                                     70
                 65
Glu Thr Ser Leu Cys Pro Gly Cys Gly Glu Pro Val Tyr Phe Ala
                 80
```

```
Glu Lys Val Met Ser Leu Gly Arg Asn Trp His Arg Pro Cys Leu
                 95
                                     100
Arg Cys Gln Arg Cys His Lys Thr Leu Thr Ala Gly Ser His Ala
                110
                                     115
                                                         120
Glu His Asp Gly Val Pro Tyr Cys His Val Pro Cys Tyr Gly Tyr
                125
                                     130
                                                         135
Leu Phe Gly Pro Lys Gly Val Asn Ile Gly Asp Val Gly Cys Tyr
                140
                                    145
Ile Tyr Asp Pro Val Lys Ile Lys Phe Lys
                155
```

```
<210> 24
<211> 511
<212> PRT
<213> Homo sapiens
```

<220> <221>

<223> Incyte ID No.: 3510640CD1

<400> 24 Met Gln Glu Leu Tyr Ser Thr Pro Ala Ser Arg Leu Asp Ser Phe Val Ala Gln Trp Leu Gln Pro His Arg Glu Trp Lys Glu Glu Val Leu Asp Ala Val Arg Thr Val Glu Glu Phe Leu Arg Gln Glu His Phe Gln Gly Lys Arg Gly Leu Asp Gln Asp Val Arg Val Leu Lys Val Val Lys Val Gly Ser Phe Gly Asn Gly Thr Val Leu Arg Ser Thr Arg Glu Val Glu Leu Val Ala Phe Leu Ser Cys Phe His Ser Phe Gln Glu Ala Ala Lys His His Lys Asp Val Leu Arg Leu Ile Trp Lys Thr Met Trp Gln Ser Gln Asp Leu Leu Asp Leu Gly Leu Glu Asp Leu Arg Met Glu Gln Arg Val Pro Asp Ala Leu Val Phe Thr Ile Gln Thr Arg Gly Thr Ala Glu Pro Ile Thr Val Thr Ile Val Pro Ala Tyr Arg Ala Leu Gly Pro Ser Leu Pro Asn Ser Gln Pro Pro Pro Glu Val Tyr Val Ser Leu Ile Lys Ala Cys Gly Gly 1.80 Pro Gly Asn Phe Cys Pro Phe Phe Ser Glu Leu Gln Arg Asn Phe Val Lys His Arg Pro Thr Lys Leu Lys Ser Leu Leu Arg Leu Val Lys His Trp Tyr Gln Gln Tyr Val Lys Ala Arg Ser Pro Arg Ala Asn Leu Pro Pro Leu Tyr Ala Leu Glu Leu Leu Thr Ile Tyr Ala Trp Glu Met Gly Thr Glu Glu Asp Glu Asn Phe Met Leu Asp Glu Gly Phe Thr Thr Val Met Asp Leu Leu Leu Glu Tyr Glu Val Ile

Cys Ile Tyr Trp Thr Lys Tyr Tyr Thr Leu His Asn Ala Ile Ile

27/91

```
280
                275
Glu Asp Cys Val Arg Lys Gln Leu Lys Lys Glu Arg Pro Ile Ile
                                     295
                290
Leu Asp Pro Ala Asp Pro Thr Leu Asn Val Ala Glu Gly Tyr Arg
                                     310
                                                         315
                305
Trp Asp Ile Val Ala Gln Arg Ala Ser Gln Cys Leu Lys Gln Asp
                                     325
                                                         330
                320
Cys Cys Tyr Asp Asn Arg Glu Asn Pro Ile Ser Ser Trp Asn Val
                335
                                     340
                                                         345
Lys Arg Ala Arg Asp Ile His Leu Thr Val Glu Gln Arg Gly Tyr
                                     355
                                                         360
                350
Pro Asp Phe Asn Leu Ile Val Asn Pro Tyr Glu Pro Ile Arg Lys
                                     370
                                                         375
                365
Val Lys Glu Lys Ile Arg Arg Thr Arg Gly Tyr Ser Gly Leu Gln
                380
                                     385
                                                         390
Arg Leu Ser Phe Gln Val Pro Gly Ser Glu Arg Gln Leu Leu Ser
                                     400
                                                         405
                395
Ser Arg Cys Ser Leu Ala Lys Tyr Gly Ile Phe Ser His Thr His
                                     415
                                                         420
                410
Ile Tyr Leu Leu Glu Thr Ile Pro Ser Glu Ile Gln Val Phe Val
                425
                                     430
                                                         435
Lys Asn Pro Asp Gly Gly Ser Tyr Ala Tyr Ala Ile Asn Pro Asn
                                                         450
                440
                                     445
Ser Phe Ile Leu Gly Leu Lys Gln Gln Ile Glu Asp Gln Gln Gly
                                                         465
                455
                                     460
Leu Pro Lys Lys Gln Gln Gln Leu Glu Phe Gln Gly Gln Val Leu
                                     475
                                                         480
                470
Gln Asp Trp Leu Gly Leu Gly Ile Tyr Gly Ile Gln Asp Ser Asp
                                                         495
                                    490
                485
Thr Leu Ile Leu Ser Lys Lys Lys Gly Glu Ala Leu Phe Pro Ala
                500
                                    505
                                                         510
Ser
```

```
<211> 310
<212> PRT
<213> Homo sapiens
<220> -
<223> Incyte ID No.: 3815083CD1
<400> 25
Met Arg Pro Leu Gln Ile Val Pro Ser Arg Leu Ile Ser Gln Leu
                                     10
Tyr Cys Gly Leu Lys Pro Pro Ala Ser Thr Arg Asn Gln Ile Cys
                 20
                                     25
Leu Lys Met Ala Arg Pro Ser Ser Ser Met Ala Asp Phe Arg Lys
                                     40
Phe Phe Ala Lys Ala Lys His Ile Val Ile Ile Ser Gly Ala Gly
                 50
                                     55
Val Ser Ala Glu Ser Gly Val Pro Thr Phe Arg Gly Ala Gly Gly
                                     70
                 65
```

Tyr Trp Arg Lys Trp Gln Ala Gln Asp Leu Ala Thr Pro Leu Ala

Phe Ala His Asn Pro Ser Arg Val Trp Glu Phe Tyr His Tyr Arg

Arg Glu Val Met Gly Ser Lys Glu Pro Asn Ala Gly His Arg Ala

<210> 25

28/91

```
Ile Ala Glu Cys Glu Thr Arg Leu Gly Lys Gln Gly Arg Arg Val
                125
                                     130
Val Val Ile Thr Gln Asn Ile Asp Glu Leu His Arg Lys Ala Gly
                140
                                     145
                                                          150
Thr Lys Asn Leu Leu Glu Ile His Gly Ser Leu Phe Lys Thr Arg
                155
                                     160
Cys Thr Ser Cys Gly Val Val Ala Glu Asn Tyr Lys Ser Pro Ile
                170
                                     175
                                                          180
Cys Pro Ala Leu Ser Gly Lys Gly Ala Pro Glu Pro Gly Thr Gln
                185
                                     190
Asp Ala Ser Ile Pro Val Glu Lys Leu Pro Arg Cys Glu Glu Ala
                200
                                     205
Gly Cys Gly Gly Leu Leu Arg Pro His Val Val Trp Phe Gly Glu
                215
                                     220
Asn Leu Asp Pro Ala Ile Leu Glu Glu Val Asp Arg Glu Leu Ala
                230
                                     235
                                                          240
His Cys Asp Leu Cys Leu Val Val Gly Thr Ser Ser Val Val Tyr
                245
                                     250
                                                         255
Pro Ala Ala Met Phe Ala Pro Gln Val Ala Ala Arg Gly Val Pro
                260
                                     265
                                                         270
Val Ala Glu Phe Asn Thr Glu Thr Thr Pro Ala Thr Asn Arg Phe
                275
                                     280
                                                         285
Arg Phe His Phe Gln Gly Pro Cys Gly Thr Thr Leu Pro Glu Ala
                290
                                     295
                                                         300
Leu Ala Cys His Glu Asn Glu Thr Val Ser
                305
<210> 26
<211> 331
<212> PRT
<213> Homo sapiens
<220> -
<221> misc-feature
<223> Incyte ID No.: 3988457CD1
<400> 26
Met Ala Ile Asn Arg Phe Arg Leu Glu Asn Asp Leu Glu Glu Leu
                                     10
Ala Leu Tyr Gln Ile Gln Leu Leu Lys Asp Leu Arg His Thr Glu
                 20
                                     25
Asn Glu Glu Asp Lys Val Ser Ser Ser Ser Phe Arg Gln Arg Met
                 35
                                     40
                                                          45
Leu Gly Asn Leu Leu Arg Pro Pro Tyr Glu Arg Pro Glu Leu Pro
                 50
                                     55
                                                          60
Thr Cys Leu Tyr Val Ile Gly Leu Thr Gly Ile Ser Gly Ser Gly
                                     70
                 65
Lys Ser Ser Ile Ala Gln Arg Leu Lys Gly Leu Gly Ala Phe Val
                 80
                                     85
Ile Asp Ser Asp His Leu Gly His Arg Ala Tyr Ala Pro Gly Gly
                95
                                    100
                                                         105
Pro Ala Tyr Gln Pro Val Val Glu Ala Phe Gly Thr Asp Ile Leu
                110
                                    115
                                                        120
His Lys Asp Gly Ile Ile Asn Arg Lys Val Leu Gly Ser Arg Val
                125
                                    130
                                                        135
Phe Gly Asn Lys Lys Gln Leu Lys Ile Leu Thr Asp Ile Met Trp
                140
                                    145
Pro Ile Ile Ala Lys Leu Ala Arg Glu Glu Met Asp Arg Ala Val
                155
                                    160
Ala Glu Gly Lys Arg Val Cys Val Ile Asp Ala Ala Val Leu Leu
                170
                                    175
                                                        180
```

29/91

```
Glu Ala Gly Trp Gln Asn Leu Val His Glu Val Trp Thr Ala Val
                185
                                     190
                                                         195
Ile Pro Glu Thr Glu Ala Val Arg Arg Ile Val Glu Arg Asp Gly
                200
                                    205
                                                         210
Leu Ser Glu Ala Ala Ala Gln Ser Arg Leu Gln Ser Gln Met Ser
                215
                                    220
                                                         225
Gly Gln Gln Leu Val Glu Gln Ser His Val Val Leu Ser Ser Pro
                230
                                    235
                                                         240
Cys Gly Ser Arg Ile Ser Pro Asn Ala Arg Trp Arg Lys Pro Gly
                245
                                    250
                                                         255
Pro Ser Cys Arg Ser Ala Phe Pro Arg Leu Ile Arg Pro Ser Thr
                260
                                    265
                                                         270
Glu Lys Phe Ser Val Gly Pro Asp Trp Leu Leu Glu Leu Thr Ser
                275
                                    280
                                                         285
Asp Pro Val Val Arg Arg Asn Gly Gly Leu Asp Ala His Pro Gly
                290
                                    295
                                                         300
Ser Gly Pro Glu Val Gln Ala Ile Leu Cys Arg Thr Trp Pro Gly
                305
                                    310
                                                         315
Leu Val Asp Thr Gly Ser Leu Pro Asn Thr Leu Val Phe Gly Gln
                320
                                    325
His
```

<210> 27 <211> 200

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 131890CD1
<400> 27
Met Met Thr Ala Glu Ser Arg Glu Ala Thr Gly Leu Ser Pro Gln
  1
                                     10
Ala Ala Gin Glu Lys Asp Gly Ile Val Ile Val Lys Val Glu Glu
                 20
                                      25
Glu Asp Glu Glu Asp His Met Trp Gly Gln Asp Ser Thr Leu Gln
                 35
                                     40
                                                          45
Asp Thr Pro Pro Pro Asp Pro Glu Ile Phe Arg Gln Arg Phe Arg
                 50
                                     55
                                                          60
Arg Phe Cys Tyr Gln Asn Thr Phe Gly Pro Arg Glu Ala Leu Ser
                 65
                                     70
                                                          75
Arg Leu Lys Glu Leu Cys His Gln Trp Leu Arg Pro Glu Ile Asn
                 80
                                     85
Thr Lys Glu Gln Ile Leu Glu Leu Leu Val Leu Glu Gln Phe Leu
                 95
                                    100
                                                         105
Ser Ile Leu Pro Lys Glu Leu Gln Val Trp Leu Gln Glu Tyr Arg
                110
                                    115
                                                         120
Pro Asp Ser Gly Glu Glu Ala Val Thr Leu Leu Glu Asp Leu Glu
                125
                                    130
                                                         135
Leu Asp Leu Ser Gly Gln Gln Val Pro Gly Gln Val His Gly Pro
                140
                                    145
                                                         150
Glu Met Leu Ala Arg Gly Met Val Pro Leu Asp Pro Val Gln Glu
                155
                                    160
                                                         165
Ser Ser Ser Phe Asp Leu His His Glu Ala Thr Gln Ser His Phe
                170
                                   175
                                                        180
Lys His Ser Ser Arg Lys Pro Arg Leu Leu Gln Ser Arg Gly Lys
```

Lys Gln Gly Phe Ile

30/91

```
<210> 28
<211> 100
<212> PRT
<213> Homo sapiens
<221> misc-feature
<223> Incyte ID No.: 238642CD1
Met Gln Lys Pro Cys Lys Glu Asn Glu Gly Lys Pro Lys Cys Ser
                                     10
Val Pro Lys Arg Glu Glu Lys Arg Pro Tyr Gly Glu Phe Glu Arg
                 20
                                      25
                                                          30
Gln Gln Thr Glu Gly Asn Phe Arg Gln Arg Leu Leu Gln Ser Leu
                 35
                                      40
Glu Glu Phe Lys Glu Asp Ile Asp Tyr Arg His Phe Lys Asp Glu
                 50
                                                          60
                                     55
Glu Met Thr Arg Glu Gly Asp Glu Met Glu Arg Cys Leu Glu Glu
                                     70
                 65
Ile Arg Gly Leu Arg Lys Lys Phe Arg Ala Leu His Ser Asn His
                                     85
                80
Arg His Ser Arg Asp Arg Pro Tyr Pro Ile
                 95
```

```
<210> 29
<211> 528
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 669862CD1
Met Ser Ser Pro Tyr Pro Leu Leu Leu Glu Asn Ser Ile Cys Leu
 1
                                     10
Phe Phe His Phe Leu Pro Asp Phe Asn Phe Thr Thr Glu Ser Asn
                 20
                                     25
Lys Leu Ser Ser Glu Lys Arg Asn Tyr Glu Val Asn Ala Tyr His
                                     40
                 35
Gln Glu Thr Trp Lys Arg Asn Lys Thr Phe Asn Leu Met Arg Phe
                                     55
                 50
Ile Phe Arg Thr Asp Pro Gln Tyr Thr Ile Glu Phe Gly Arg Gln
                 65
                                     70
Gln Arg Pro Lys Val Gly Cys Phe Ser Gln Met Ile Phe Lys Lys
                80
                                     85
His Lys Ser Leu Pro Leu His Lys Arg Asn Asn Thr Arg Glu Lys
                 95
                                    100
Ser Tyr Glu Cys Lys Glu Tyr Lys Lys Gly Phe Arg Lys Tyr Leu
                110
                                    115
His Leu Thr Glu His Leu Arg Asp His Thr Gly Val Ile Pro Tyr
                                    130
                125
Glu Cys Asn Glu Cys Gly Lys Ala Phe Val Val Phe Gln His Phe
```

```
140
                                      145
 Ile Arg His Arg Lys Ile His Thr Asp Leu Lys Pro Tyr Glu Cys
                 155
                                      160
                                                           165
 Asn Gly Cys Glu Lys Ala Phe Arg Phe Tyr Ser Gln Leu Ile Gln
                 170
                                      175
 His Gln Ile Ile His Thr Gly Met Lys Pro Tyr Glu Cys Lys Gln
                 185
                                      190
                                                          195
 Cys Gly Lys Ala Phe Arg Arg His Ser His Leu Thr Glu His Gln
                 200
                                      205
                                                          210
Lys Ile His Val Gly Leu Lys Pro Phe Glu Cys Lys Glu Cys Gly
                 215
                                      220
                                                          225
Glu Thr Phe Arg Leu Tyr Arg His Met Cys Leu His Gln Lys Ile
                 230
                                      235
                                                          240
His His Gly Val Lys Pro Tyr Lys Cys Lys Glu Cys Gly Lys Ala
                 245
                                     250
                                                          255
Phe Gly His Arg Ser Ser Leu Tyr Gln His Lys Lys Ile His Ser
                 260
                                     265
                                                          270
Gly Glu Lys Pro Tyr Lys Cys Glu Gln Cys Glu Lys Ala Phe Val
                 275
                                     280
                                                          285
Arg Ser Tyr Leu Leu Val Glu His Gln Arg Ser His Thr Gly Glu
                290
                                     295
                                                          300
Lys Pro His Glu Cys Met Glu Cys Gly Lys Ala Phe Ser Lys Gly
                 305
                                     310
                                                          315
Ser Ser Leu Lys His Lys Arg Ile His Ser Ser Glu Lys Leu
                320
                                     325
                                                          330
Tyr Asp Cys Lys Asp Cys Gly Lys Ala Phe Cys Arg Gly Ser Gln
                 335
                                     340
                                                          345
Leu Thr Gln His Gln Arg Ile His Thr Gly Glu Lys Pro His Glu
                350
                                     355
Cys Lys Glu Cys Gly Lys Thr Phe Lys Leu His Ser Tyr Leu Ile
                365
                                     370
                                                          375
Gln His Gln Ile Ile His Thr Asp Leu Lys Pro Tyr Glu Cys Lys
                380
                                     385
                                                          390
Gln Cys Gly Lys Ala Phe Ser Arg Val Gly Asp Leu Lys Thr His
                395
                                     400
                                                          405
Gln Ser Ile His Ala Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys
                410
                                     415
                                                          420
Gly Lys Thr Phe Arg Leu Asn Ser Gln Leu Ile Tyr His Gln Thr
                                     430
                425
                                                         435
Ile His Thr Gly Leu Lys Pro Tyr Val Cys Lys Glu Cys Lys Lys
                440
                                     445
Ala Phe Arg Ser Ile Ser Gly Leu Ser Gln His Lys Arg Ile His
                455
                                     460
                                                         465
Thr Gly Glu Lys Pro Tyr Glu Cys Lys Glu Cys Asp Lys Ala Phe
                470
                                     475
                                                         480
Asn Arg Ser Asp Arg Leu Thr Gln His Glu Thr Ile His Thr Gly
                485
                                     490
                                                         495
Val Lys Pro Gln Lys Cys Lys Glu Cys Gly Lys Ala Phe Ser His
                500
                                     505
Cys Tyr Gln Leu Ser Gln His Gln Arg Phe His His Gly Glu Arg
Leu Leu Met
```

```
<210> 30
<211> 350
<212> PRT
```

<220>

<221> misc-feature

<223> Incyte ID No.: 1003663CD1

<213> Homo sapiens

```
<400> 30
Met His Pro Ala Ala Phe Pro Leu Pro Val Val Val Ala Ala Val
                                     10
Leu Trp Gly Ala Ala Pro Thr Arg Gly Leu Ile Arg Ala Thr Ser
                 20
                                      25
Asp His Asn Ala Ser Met Asp Phe Ala Asp Leu Pro Ala Leu Phe
                                     40
                 35
Gly Ala Thr Leu Ser Gln Glu Gly Leu Gln Gly Phe Leu Val Glu
                                     55
                                                          60
                 50
Ala His Pro Asp Asn Ala Cys Ser Pro Ile Ala Pro Pro Pro Pro
                                                          75
                                     70
                 65
Ala Pro Val Asn Gly Ser Val Phe Ile Ala Leu Leu Arg Arg Phe
                                     85
                 80
Asp Cys Asn Phe Asp Leu Lys Val Leu Asn Ala Gln Lys Ala Gly
                                    100
                                                         105
                 95
Tyr Gly Ala Ala Val Val His Asn Val Asn Ser Asn Glu Leu Leu
                                    115
                                                         120
                110
Asn Met Val Trp Asn Ser Glu Glu Ile Gln Gln Gln Ile Trp Ile
                                    130
                125
Pro Ser Val Phe Ile Gly Glu Arg Ser Ser Glu Tyr Leu Arg Ala
                                    145
                140
Leu Phe Val Tyr Glu Lys Gly Ala Arg Val Leu Leu Val Pro Asp
                                    160
                                                         165
                155
Asn Thr Phe Pro Leu Gly Tyr Tyr Leu Ile Pro Phe Thr Gly Ile
                                    175
                                                         180
                170
Val Gly Leu Leu Val Leu Ala Met Gly Ala Val Met Ile Ala Arg
                                    190
                                                         195
                185
Cys Ile Gln His Arg Lys Arg Leu Gln Arg Asn Arg Leu Thr Lys
                200
                                    205
                                                         210
Glu Gln Leu Lys Gln Ile Pro Thr His Asp Tyr Gln Lys Gly Asp
                                                         225
                215
                                    220
Gln Tyr Asp Val Cys Ala Ile Cys Leu Asp Glu Tyr Glu Asp Gly
                                    235
                                                         240
                230
Asp Lys Leu Arg Val Leu Pro Cys Ala His Ala Tyr His Ser Arg
                                    250
                245
Cys Val Asp Pro Trp Leu Thr Gln Thr Arg Lys Thr Cys Pro Ile
                                    265
                                                         270
                260
Cys Lys Gln Pro Val His Arg Gly Pro Gly Asp Glu Asp Gln Glu
                                    280
                                                         285
                275
Glu Glu Thr Gln Gly Gln Glu Gly Asp Glu Gly Glu Pro Arg
                                    295
                                                         300
                290
Asp His Pro Ala Ser Glu Arg Thr Pro Leu Leu Gly Ser Ser Pro
                305
                                    310
                                                         315
Thr Leu Pro Thr Ser Phe Gly Ser Leu Ala Pro Ala Pro Leu Val
                                    325
                                                         330
                320
Phe Pro Gly Pro Ser Thr Asp Pro Pro Leu Ser Pro Pro Ser Ser
                                    340
                335
Pro Val Ile Leu Val
```

```
<210> 31
<211> 315
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1432557CD1
```

```
<400> 31
Met Ala Ala Leu Gly Val Leu Glu Ser Asp Leu Pro Ser Ala Val
                                      10
Thr Leu Leu Lys Asn Leu Gln Glu Gln Val Met Ala Val Thr Ala
                                                          30
                 20
                                      25
Gln Val Lys Ser Leu Thr Gln Lys Val Gln Ala Gly Ala Tyr Pro
                 35
                                      40
                                                           45
Thr Glu Lys Gly Leu Ser Phe Leu Glu Val Lys Asp Gln Leu Leu
                 50
                                      55
                                                           60
Leu Met Tyr Leu Met Asp Leu Thr His Leu Ile Leu Asp Lys Ala
                                      70
                                                          75
                 65
Ser Gly Gly Ser Leu Gln Gly His Asp Ala Val Leu Arg Leu Val
                                      85
                                                          90
                 80
Glu Ile Arg Thr Val Leu Glu Lys Leu Arg Pro Leu Asp Gln Lys
                 95
                                     100
                                                         105
Leu Lys Tyr Gln Ile Asp Lys Leu Ile Lys Thr Ala Val Thr Gly
                110
                                     115
                                                         120
Ser Leu Ser Glu Asn Asp Pro Leu Arg Phe Lys Pro His Pro Ser
                125
                                     130
                                                         135
Asn Met Met Ser Lys Leu Ser Ser Glu Asp Glu Glu Glu Asp Glu
                140
                                     145
Ala Glu Asp Asp Gln Ser Glu Ala Ser Gly Lys Lys Ser Val Lys
                                     160
                                                         165
                155
Gly Val Ser Lys Lys Tyr Val Pro Pro Arg Leu Val Pro Val His
                170
                                     175
                                                         180
Tyr Asp Glu Thr Glu Ala Glu Arg Glu Lys Lys Arg Leu Glu Arg
                185
                                     190
                                                         195
Ala Lys Arg Arg Ala Leu Ser Ser Ser Val Ile Arg Glu Leu Lys
                200
                                     205
                                                         210
Glu Gln Tyr Ser Asp Ala Pro Glu Glu Ile Arg Asp Ala Arg His
                215
                                     220
Pro His Val Thr Arg Gln Ser Gln Glu Asp Gln His Arg Ile Asn
                                    235
                230
                                                         240
Tyr Glu Glu Ser Met Met Val Arg Leu Ser Val Ser Lys Arg Glu
                                    250
                                                         255
                245
Lys Gly Arg Arg Lys Arg Ala Asn Val Met Ser Ser Gln Leu His
                260
                                    265
Ser Leu Thr His Phe Ser Asp Ile Ser Ala Leu Thr Gly Gly Thr
                275
                                    280
Val His Leu Asp Glu Asp Gln Asn Pro Ile Lys Lys Arg Lys
                290
                                    295
                                                         300
Ile Pro Gln Lys Gly Arg Lys Lys Lys Gly Phe Arg Arg Arg
                305
                                    310
                                                         315
<210> 32
<211> 120
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> 1441770CD1
```

Met Asp Asp Ser Lys Val Val Gly Gly Lys Val Lys Lys Pro Gly

1 5 10 15
Lys Arg Gly Arg Lys Pro Ala Lys Ile Asp Leu Lys Ala Lys Leu

Glu Arg Ser Arg Gln Ser Ala Arg Glu Cys Arg Ala Arg Lys Lys

<400> 32

34/91

```
Leu Arg Tyr Gln Tyr Leu Glu Glu Leu Val Ser Ser Arg Glu Arg
                 50
                                      55
Ala Ile Cys Ala Leu Arg Glu Glu Leu Glu Met Tyr Lys Gln Trp
                 65
                                      70
                                                           75
Cys Met Ala Met Asp Gln Gly Lys Ile Pro Ser Glu Ile Lys Ala
                 80
                                      85
                                                          90
Leu Leu Thr Gly Glu Glu Gln Asn Lys Ser Gln Gln Asn Ser Ser
                 95
                                     100
                                                         105
Arg His Thr Lys Ala Gly Lys Thr Asp Ala Asn Ser Asn Ser Trp
                110
                                     115
                                                         120
```

```
<210> 33
<211> 326
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1456684CD1
<400> 33
Met Gln Glu Glu Pro Leu Pro Gln Gly Asn Asp Pro Glu Pro Ser
                                      10
Gly Asp Ser Pro Leu Gly Leu Cys Gln Ser Glu Cys Met Glu Met
                 20
Ser Glu Val Phe Asp Asp Ala Ser Asp Gln Asp Ser Thr Asp Lys
                 35
                                      40
Pro Trp Arg Pro Tyr Tyr Asn Tyr Lys Pro Lys Lys Lys Ser Arg
                 50
                                      55
                                                           60
Gln Leu Lys Lys Met Arg Lys Val Asn Trp Arg Lys Glu His Gly
                 65
                                      70
Asn Arg Ser Pro Ser His Lys Cys Lys Tyr Pro Ala Glu Leu Asp
                 80
                                      85
                                                          90
Cys Ala Val Gly Lys Ala Pro Gln Asp Lys Pro Phe Glu Glu Glu
                 95
                                     100
                                                         105
Glu Thr Lys Glu Met Pro Lys Leu Gln Cys Glu Leu Cys Asp Gly
                                     115
                110
                                                         120
Asp Lys Ala Val Gly Ala Gly Asn Gln Gly Arg Pro His Arg His
                125
                                     130
                                                         135
Leu Thr Ser Arg Pro Tyr Ala Cys Glu Leu Cys Ala Lys Gln Phe
                140
                                     145
                                                         150
Gln Ser Pro Ser Thr Leu Lys Met His Met Arg Cys His Thr Gly
                155
                                    160
                                                         165
Glu Lys Pro Tyr Gln Cys Lys Thr Cys Gly Arg Cys Phe Ser Val
                170
                                    175
                                                         180
Gln Gly Asn Leu Gln Lys His Glu Arg Ile His Leu Gly Leu Lys
                                    190
Glu Phe Val Cys Gln Tyr Cys Asn Lys Ala Phe Thr Leu Asn Glu
                200
                                    205
Thr Leu Lys Ile His Glu Arg Ile His Thr Gly Glu Lys Arg Tyr
                215
                                    220
                                                         225
His Cys Gln Phe Cys Phe Gln Arg Phe Leu Tyr Leu Ser Thr Lys
                230
                                    235
                                                         240
Arg Asn His Glu Gln Arg His Ile Arg Glu His Asn Gly Lys Gly
                245
                                    250
                                                         255
Tyr Ala Cys Phe Gln Cys Pro Lys Ile Cys Lys Thr Ala Ala Ala
                260
                                    265
Leu Gly Met His Gln Lys Lys His Leu Phe Lys Ser Pro Ser Gln
                275
                                    280
```

```
<210> 34
<211> 106
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1602916CD1
<400> 34
Met Phe Pro Trp Met Arg Pro Gln Ala Ala Pro Gly Arg Arg Arg
                 5
 1
                                      10
                                                          15
Gly Arg Gln Thr Tyr Ser Arg Phe Gln Thr Leu Glu Leu Glu Lys
                 20
                                     25
Glu Phe Leu Phe Asn Pro Tyr Leu Thr Arg Lys Arg Arg Ile Glu
                 35
                                     40
                                                          45
Val Ser His Ala Leu Ala Leu Thr Glu Arg Gln Val Lys Ile Trp
                                     55
Phe Gln Asn Arg Arg Met Lys Trp Lys Lys Glu Asn Asn Lys Asp
                 65
                                     70
Lys Phe Pro Val Ser Arg Gln Glu Val Lys Asp Gly Glu Thr Lys
                 80
                                     85
                                                          90
Lys Glu Ala Gln Glu Leu Glu Glu Asp Arg Ala Glu Arg Leu Thr
                 95
                                    100
Asn
```

```
<210> 35
<211> 209
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1692816CD1
<400> 35
Met Asn Pro Ser Met Lys Gln Lys Gln Glu Glu Ile Lys Glu Asn
 1
                 5
                                     10
                                                          15
Ile Lys Asn Ser Ser Val Pro Arg Arg Thr Leu Lys Met Ile Gln
                 20
                                     25
                                                          30
Pro Ser Ala Ser Gly Ser Leu Val Gly Arg Glu Asn Glu Leu Ser
                35
                                     40
                                                         45
Ala Gly Leu Ser Lys Arg Lys His Arg Asn Asp His Leu Thr Ser
                                                         60
                 50
                                     55
Thr Thr Ser Ser Pro Gly Val Ile Val Pro Glu Ser Ser Glu Asn
                 65
                                     70
```

Lys Asn Leu Gly Gly Val Thr Gln Glu Ser Phe Asp Leu Met Ile

Lys Glu Asn Pro Ser Ser Gln Tyr Trp Lys Glu Val Ala Glu Lys

80

36/91

```
95
                                     100
Arg Arg Lys Ala Leu Tyr Glu Ala Leu Lys Glu Asn Glu Lys Leu
                110
                                     115
                                                         120
His Lys Glu Ile Glu Gln Lys Asp Asn Glu Ile Ala Arg Leu Lys
                125
                                     130
                                                         135
Lys Glu Asn Lys Glu Leu Ala Glu Val Ala Glu His Val Gln Tyr
                140
                                     145
                                                         150
Met Ala Glu Leu Ile Glu Arg Leu Asn Gly Glu Pro Leu Asp Asn
                155
                                     160
                                                         165
Phe Glu Ser Leu Asp Asn Gln Glu Phe Asp Ser Glu Glu Glu Thr
                170
                                     175
                                                         180
Val Glu Asp Ser Leu Val Glu Asp Ser Glu Ile Gly Thr Cys Ala
                185
                                     190
Glu Gly Thr Val Ser Ser Ser Thr Asp Ala Lys Pro Cys Ile
                200
                                     205
```

```
<210> 36
<211> 212
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1968191CD1
<400> 36
Met Leu Gly Asn Glu Trp Ser Lys Leu Pro Pro Glu Glu Lys Gln
  1
                                      10
Arg Tyr Leu Asp Glu Ala Asp Arg Asp Lys Glu Arg Tyr Met Lys
                 20
                                      25
Glu Leu Glu Gln Tyr Gln Lys Thr Glu Ala Tyr Lys Val Phe Ser
                 35
                                                           45
                                      40
Arg Lys Thr Gln Asp Arg Gln Lys Gly Lys Ser His Arg Gln Asp
                 50
                                      55
                                                           60
Ala Ala Arg Gln Ala Thr His Asp His Glu Lys Glu Thr Glu Val
                 65
                                      70
                                                           75
Lys Glu Arg Ser Val Phe Asp Ile Pro Ile Phe Thr Glu Glu Phe
                 80
                                      85
Leu Asn His Ser Lys Ala Arg Glu Ala Glu Leu Arg Gln Leu Arg
                 95
                                     100
                                                          105
Lys Ser Asn Met Glu Phe Glu Glu Arg Asn Ala Ala Leu Gln Lys
                110
                                     115
His Val Glu Ser Met Arg Thr Ala Val Glu Lys Leu Glu Val Asp
                125
                                     130
Val Ile Gln Glu Arg Ser Arg Asn Thr Val Leu Gln Gln His Leu
                140
                                     145
Glu Thr Leu Arg Gln Val Leu Thr Ser Ser Phe Ala Ser Met Pro
                155
                                     160
Leu Pro Gly Ser Gly Glu Thr Pro Thr Val Asp Thr Ile Asp Ser
                170
                                     175
Tyr Met Asn Arg Leu His Ser Ile Ile Leu Ala Asn Pro Gln Asp
                185
                                    190
                                                         195
Asn Glu Asn Phe Ile Ala Thr Val Arg Glu Val Val Asn Arg Leu
```

Asp Arg

```
<210> 37
<211> 359
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2052061CD1
<400> 37
Met Val Asp Met Asp Lys Leu Ile Asn Asn Leu Glu Val Gln Leu
                                     10
Asn Ser Glu Gly Gly Ser Met Gln Val Phe Lys Gln Val Thr Ala
                 20
                                      25
Ser Val Arg Asn Arg Asp Pro Pro Glu Ile Glu Tyr Thr Ser Asn
                                     40
                                                         45
                 35
Met Thr Ser Pro Thr Leu Leu Asp Ala Asn Pro Met Glu Asn Pro
                 50
                                     55
Ala Leu Phe Asn Asp Ile Lys Ile Glu Pro Pro Glu Glu Leu Leu
                 65
                                     70
Ala Ser Asp Phe Ser Leu Pro Gln Val Glu Pro Val Asp Leu Ser
                                                          90
                 80
                                     85
Phe His Lys Pro Lys Ala Pro Leu Gln Pro Ala Ser Met Leu Gln
                                    100
                                                         105
                 95
Ala Pro Ile Arg Pro Pro Lys Pro Gln Ser Ser Pro Gln Thr Leu
                110
                                    115
                                                         120
Val Val Ser Thr Ser Thr Ser Asp Met Ser Thr Ser Ala Asn Ile
                                    130
                                                         135
                125
Pro Thr Val Leu Thr Pro Gly Ser Val Leu Thr Ser Ser Gln Ser
                140
                                    145
                                                         150
Thr Gly Ser Gln Gln Ile Leu His Val Ile His Thr Ile Pro Ser
                155
                                    160
Val Ser Leu Pro Asn Lys Met Gly Gly Leu Lys Thr Ile Pro Val
                                    175
                170
Val Val Gln Ser Leu Pro Met Val Tyr Thr Thr Leu Pro Ala Asp
                185
                                    190
                                                         195
Gly Gly Pro Ala Ala Ile Thr Val Pro Leu Ile Gly Gly Asp Gly
                200
                                    205
                                                         210
Lys Asn Ala Gly Ser Val Lys Val Asp Pro Thr Ser Met Ser Pro
                215
                                    220
                                                         225
Leu Glu Ile Pro Ser Asp Ser Glu Glu Ser Thr Ile Glu Ser Gly
                                    235
                230
Ser Ser Ala Leu Gln Ser Leu Gln Gly Leu Gln Gln Glu Pro Ala
                                    250
                                                        255
                245
Ala Met Ala Gln Met Gln Gly Glu Glu Ser Leu Asp Leu Lys Arg
                                                        270
                                    265
                260
Arg Arg Ile His Gln Cys Asp Phe Ala Gly Cys Ser Lys Val Tyr
                                                        285
                                    280
                275
Thr Lys Ser Ser His Leu Lys Ala His Arg Arg Ile His Thr Gly
                                   295
                290
Glu Lys Pro Tyr Lys Cys Thr Trp Asp Gly Cys Ser Trp Lys Phe
                305
                                    310
                                                        315
Ala Arg Ser Asp Glu Leu Thr Arg His Phe Arg Lys His Thr Gly
                320
                                    325
Ile Lys Pro Phe Arg Cys Thr Asp Cys Asn Arg Ser Phe Ser Arg
                                    340
                335
Ser Asp His Leu Ser Leu His Arg Arg Arg His Asp Thr Met
                350
```

```
<210> 38
<211> 445
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2056207CD1
<400> 38
Met Val Glu Cys Ile Arg Glu Val Asn Glu Val Ile Gln Asn Pro
                                      10
                                                           15
Ala Thr Ile Thr Arg Ile Leu Leu Ser His Phe Asn Trp Asp Lys
                 20
                                      25
Glu Lys Leu Met Glu Arg Tyr Phe Asp Gly Asn Leu Glu Lys Leu
                 35
                                      40
Phe Ala Glu Cys His Val Ile Asn Pro Ser Lys Lys Ser Arg Thr
                 50
                                      55
                                                           60
Arg Gln Met Asn Thr Arg Ser Ser Ala Gln Asp Met Pro Cys Gln
                                      70
                                                           75
                 65
Ile Cys Tyr Leu Asn Tyr Pro Asn Ser Tyr Phe Thr Gly Leu Glu
                 80
                                      85
                                                           90
Cys Gly His Lys Phe Cys Met Gln Cys Trp Ser Glu Tyr Leu Thr
                                     100
                                                          105
Thr Lys Ile Met Glu Glu Gly Met Gly Gln Thr Ile Ser Cys Pro
                110
                                     115
                                                          120
Ala His Gly Cys Asp Ile Leu Val Asp Asp Asn Thr Val Met Arg
                125
                                     130
                                                          135
Leu Ile Thr Asp Ser Lys Val Lys Leu Lys Tyr Gln His Leu Ile
                140
                                     145
                                                          150
Thr Asn Ser Phe Val Glu Cys Asn Arg Leu Leu Lys Trp Cys Pro
                155
                                     160
                                                          165
Ala Pro Asp Cys His His Val Val Lys Val Gln Tyr Pro Asp Ala
                170
                                     175
                                                          180
Lys Pro Val Arg Cys Lys Cys Gly Arg Gln Phe Cys Phe Asn Cys
                1.85
                                     190
                                                          195
Gly Glu Asn Trp His Asp Pro Val Lys Cys Lys Trp Leu Lys Lys
                                     205
                200
                                                          210
Trp Ile Lys Lys Cys Asp Asp Asp Ser Glu Thr Ser Asn Trp Ile
                215
                                     220
                                                          225
Ala Ala Asn Thr Lys Glu Cys Pro Lys Cys His Val Thr Ile Glu
                230
                                     235
                                                         240
Lys Asp Gly Gly Cys Asn His Met Val Cys Arg Asn Gln Asn Cys
                                     250
                245
                                                         255
Lys Ala Glu Phe Cys Trp Val Cys Leu Gly Pro Trp Glu Pro His
                260
                                     265
Gly Ser Ala Trp Tyr Asn Cys Asn Arg Tyr Asn Glu Asp Asp Ala
                275
                                     280
                                                         285
Lys Ala Ala Arg Asp Ala Gln Glu Arg Ser Arg Ala Ala Leu Gln
                290
                                     295
                                                         300
Arg Tyr Leu Phe Tyr Cys Asn Arg Tyr Met Asn His Met Gln Ser
                305
                                     310
                                                         315
Leu Arg Phe Glu His Lys Leu Tyr Ala Gln Val Lys Gln Lys Met
                320
                                     325
Glu Glu Met Gln Gln His Asn Met Ser Trp Ile Glu Val Gln Phe
                335
                                    340
                                                         345
Leu Lys Lys Ala Val Asp Val Leu Cys Gln Cys Arg Ala Thr Leu
                350
                                    355
Met Tyr Thr Tyr Val Phe Ala Phe Tyr Leu Lys Lys Asn Asn Gln
                365
                                    370
                                                         375
Ser Ile Ile Phe Glu Asn Asn Gln Ala Asp Leu Glu Asn Ala Thr
                380
                                    385
```

Cys

Glu Val Leu Ser Gly Tyr Leu Glu Arg Asp Ile Ser Gln Asp Ser

Leu Gln Asp Ile Lys Gln Lys Val Gln Asp Lys Tyr Arg Tyr

```
Glu Ser Arg Arg Val Leu Leu Gln His Val His Glu Glv
                                                          Tyr
                 425
                                     430
Glu Lys Asp Leu Trp Glu Tyr Ile Glu Asp
                 440
<210> 39
<211> 433
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2101803CD1
Met Arg Ala Glu Gly Leu Gly Gly Leu Glu Arg Phe Cys Ser Pro
Gly Lys Gly Arg Gly Leu Arg Ala Leu Gln Pro Phe Gln Val Gly
                 20
                                      25
Asp Leu Leu Phe Ser Cys Pro Ala Tyr Ala Tyr Val Leu Thr Val
                 35
                                      40
Asn Glu Arg Gly Asn His Cys Glu Tyr Cys Phe Thr Arg Lys Glu
                 50
                                      55
Gly Leu Ser Lys Cys Gly Arg Cys Lys Gln Ala Phe Tyr Cys Asn
                 65
                                      70
Val Glu Cys Gln Lys Glu Asp Trp Pro Met His Lys Leu Glu Cys
                 80
                                      85
                                                          90
Ser Pro Met Val Val Phe Gly Glu Asn Trp Asn Pro Ser Glu Thr
                 95
                                    100
                                                         105
Val Arg Leu Thr Ala Arg Ile Leu Ala Lys Gln Lys Ile His Pro
                110
                                    115
                                                         120
Glu Arg Thr Pro Ser Glu Lys Leu Leu Ala Val Lys Glu Phe Glu
                125
                                    130
                                                         135
Ser His Leu Asp Lys Leu Asp Asn Glu Lys Lys Asp Leu Ile Gln
                140
                                    145
                                                         150
Ser Asp Ile Ala Ala Leu His His Phe Tyr Ser Lys His Leu Glu
                155
                                     160
                                                         165
Phe Pro Asp Asn Asp Ser Leu Val Val Leu Phe Ala Gln Val Asn
                170
                                    175
Cys Asn Gly Phe Thr Ile Glu Asp Glu Glu Leu Ser His Leu Gly
                185
                                    190
                                                         195
Ser Ala Ile Phe Pro Asp Val Ala Leu Met Asn His Ser Cys Cys
                200
                                    205
                                                         210
Pro Asn Val Ile Val Thr Tyr Lys Gly Thr Leu Ala Glu Val Arg
                215
                                    220
                                                         225
Ala Val Glu Glu Ile Lys Pro Gly Glu Glu Val Phe Thr Ser Tyr
                230
                                    235
Ile Asp Leu Leu Tyr Pro Thr Glu Asp Arg Asn Asp Arg Leu Arg
                245
                                    250
                                                         255
Asp Ser Tyr Phe Phe Thr Cys Glu Cys Gln Glu Cys Thr Thr Lys
                260
                                    265
Asp Lys Asp Lys Ala Lys Val Glu Ile Arg Lys Leu Ser Asp Pro
                275
                                    280
Pro Lys Ala Glu Ala Ile Arg Asp Met Val Arg Tyr Ala Arg Asn
```

```
Val Ile Glu Glu Phe Arg Arg Ala Lys His Tyr Lys Ser Pro Ser
                305
                                     310
                                                          315
Glu Leu Leu Glu Ile Cys Glu Leu Ser Gln Glu Lys Met Ser Ser
                320
                                     325
                                                          330
Val Phe Glu Asp Ser Asn Val Tyr Met Leu His Met Met Tyr Gln
                335
                                     340
                                                          345
Ala Met Gly Val Cys Leu Tyr Met Gln Asp Trp Glu Gly Ala Leu
                350
                                     355
                                                          360
Gln Tyr Gly Gln Lys Ile Ile Lys Pro Tyr Ser Lys His Tyr Pro
                365
                                     370
                                                         375
Leu Tyr Ser Leu Asn Val Ala Ser Met Trp Leu Lys Leu Gly Arg
                380
                                     385
                                                         390
Leu Tyr Met Gly Leu Glu His Lys Ala Ala Gly Glu Lys Ala Leu
                395
                                     400
                                                         405
Lys Lys Ala Ile Ala Ile Met Glu Val Ala His Gly Lys Asp His
                410
                                    415
                                                         420
Pro Tyr Ile Ser Glu Ile Lys Gln Glu Ile Glu Ser His
                425
```

```
<210> 40
<211> 355
 <212> PRT
 <213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2112362CD1
<400> 40
Met Ser Val Asn Tyr Ala Ala Gly Leu Ser Pro Tyr Ala Asp Lys
  1
                                      10
Gly Lys Cys Gly Leu Pro Glu Ile Phe Asp Pro Pro Glu Glu Leu
                 20
                                      25
                                                           30
Glu Arg Lys Val Trp Glu Leu Ala Arg Leu Val Trp Gln Ser Ser
                 35
                                      40
Asn Val Val Phe His Thr Gly Ala Gly Ile Ser Thr Ala Ser Gly
                 50
                                                           60
Ile Pro Asp Phe Arg Gly Pro His Gly Val Trp Thr Met Glu Glu
                 65
                                      70
Arg Gly Leu Ala Pro Lys Phe Asp Thr Thr Phe Glu Ser Ala Arg
                 80
                                      85
Pro Thr Gln Thr His Met Ala Leu Val Gln Leu Glu Arg Val Gly
                 95
                                     100
Leu Leu Arg Phe Leu Val Ser Gln Asn Val Asp Gly Leu His Val
                110
                                     115
Arg Ser Gly Phe Pro Arg Asp Lys Leu Ala Glu Leu His Gly Asn
                125
                                     130
                                                          135
Met Phe Val Glu Glu Cys Ala Lys Cys Lys Thr Gln Tyr Val Arg
                140
                                     145
                                                          150
Asp Thr Val Val Gly Thr Met Gly Leu Lys Ala Thr Gly Arg Leu
                155
                                    160
Cys Thr Val Ala Lys Ala Arg Gly Leu Arg Ala Cys Arg Gly Glu
                170
                                    175
                                                         180
Leu Arg Asp Thr Ile Leu Asp Trp Glu Asp Ser Leu Pro Asp Arg
                185
                                    190
                                                         195
Asp Leu Ala Leu Ala Asp Glu Ala Ser Arg Asn Ala Asp Leu Ser
                200
                                    205
                                                         210
Ile Thr Leu Gly Thr Ser Leu Gln Ile Arg Pro Ser Gly Asn Leu
                215
                                    220
```

```
Pro Leu Ala Thr Lys Arg Arg Gly Gly Arg Leu Val Ile Val Asn
                230
                                     235
Leu Gln Pro Thr Lys His Asp Arg His Ala Asp Leu Arg Ile His
                245
                                     250
                                                         255
Gly Tyr Val Asp Glu Val Met Thr Arg Leu Met Lys His Leu Gly
                260
                                     265
                                                         270
Leu Glu Ile Pro Ala Trp Asp Gly Pro Arg Val Leu Glu Arg Ala
                                     280
                275
                                                         285
Leu Pro Pro Leu Pro Arg Pro Pro Thr Pro Lys Leu Glu Pro Lys
                290
                                     295
                                                         300
Glu Glu Ser Pro Thr Arg Ile Asn Gly Ser Ile Pro Ala Gly Pro
                305
                                     310
                                                         315
Lys Gln Glu Pro Cys Ala Gln His Asn Gly Ser Glu Pro Ala Ser
                                    325
                320
                                                         330
Pro Lys Arg Glu Arg Pro Thr Ser Pro Ala Pro His Arg Pro Pro
                335
                                     340
Lys Arg Val Lys Ala Lys Ala Val Pro Ser
                350
```

```
<210> 41
<211> 443
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2117346CD1
<400> 41
Met Asp Arg Leu Gly Ser Phe Ser Asn Asp Pro Ser Asp Lys Pro
                                      10
Pro Cys Arg Gly Cys Ser Ser Tyr Leu Met Glu Pro Tyr Ile Lys
                 20
                                      25
                                                          30
Cys Ala Glu Cys Gly Pro Pro Pro Phe Phe Leu Cys Leu Gln Cys
                 35
                                      40
                                                          45
Phe Thr Arg Gly Phe Glu Tyr Lys Lys His Gln Ser Asp His Thr
                 50
                                      55
                                                          60
Tyr Glu Ile Met Thr Ser Asp Phe Pro Val Leu Asp Pro Ser Trp
                 65
Thr Ala Gln Glu Glu Met Ala Leu Leu Glu Ala Val Met Asp Cys
                 80
                                      85
Gly Phe Gly Asn Trp Gln Asp Val Ala Asn Gln Met Cys Thr Lys
                 95
                                     100
                                                         105
Thr Lys Glu Glu Cys Glu Lys His Tyr Met Lys His Phe Ile Asn
                110
                                    115
Asn Pro Leu Phe Ala Ser Thr Leu Leu Asn Leu Lys Gln Ala Glu
                125
                                     130
                                                         135
Glu Ala Lys Thr Ala Asp Thr Ala Ile Pro Phe His Ser Thr Asp
                140
                                    145
Asp Pro Pro Arg Pro Thr Phe Asp Ser Leu Leu Ser Arg Asp Met
                155
                                    160
                                                         165
Ala Gly Tyr Met Pro Ala Arg Ala Asp Phe Ile Glu Glu Phe Asp
                170
                                    175
                                                         180
Asn Tyr Ala Glu Trp Asp Leu Arg Asp Ile Asp Phe Val Glu Asp
                185
                                    190
Asp Ser Asp Ile Leu His Ala Leu Lys Met Ala Val Val Asp Ile
                200
                                    205
                                                         210
Tyr His Ser Arg Leu Lys Glu Arg Gln Arg Arg Lys Lys Ile Ile
                215
                                    220
                                                         225
```

42/91

```
Arg Asp His Gly Leu Ile Asn Leu Arg Lys Phe Gln Leu Met Glu
                 230
                                     235
                                                          240
Arg Arg Tyr Pro Lys Glu Val Gln Asp Leu Tyr Glu Thr Met Arg
                245
                                     250
                                                          255
Arg Phe Ala Arg Ile Val Gly Pro Val Glu His Asp Lys Phe Ile
                260
                                     265
                                                          270
Glu Ser His Ala Leu Glu Phe Glu Leu Arg Arg Glu Ile Lys Arg
                                     280
                275
                                                          285
                    Thr Ala Gly Ile Thr Asn Phe Cys Ser Ala
Leu Gln Glu Tyr Arg
                                     295
                290
                                                          300
Arg Thr Tyr Asp His Leu Lys Lys Thr Arg Glu Glu Glu Arg Leu
                305
                                     310
                                                          315
Lys Arg Thr Met Leu Ser Glu Val Leu Gln Tyr Ile Gln Asp Ser
                                     325
                                                          330
                320
Ser Ala Cys Gln Gln Trp Leu Arg Arg Gln Ala Asp Ile Asp Ser
                                     340
                                                          345
                335
Gly Leu Ser Pro Ser Ile Pro Met Ala Ser Asn Ser Gly Arg Arg
                350
                                     355
                                                          360
Ser Ala Pro Pro Leu Asn Leu Thr Gly Leu Pro Gly Thr Glu Lys
                                     370
                                                          375
                365
Leu Asn Glu Lys Glu Lys Glu Leu Cys Gln Met Val Arg Leu Val
                380
                                     385
                                                          390
Pro Gly Ala Tyr Leu Glu Tyr Lys Ser Ala Leu Leu Asn Glu Cys
                395
                                     400
                                                          405
Asn Lys Gln Gly Gly Leu Arg Leu Ala Gln Ala Arg Ala Leu Ile
                                     415
                                                          420
                410
Lys Ile Asp Val Asn Lys Thr Arg Lys Ile Tyr Asp Phe Leu Ile
                425
                                     430
                                                          435
Arg Glu Gly Tyr Ile Thr Lys Gly
                440
```

```
<210> 42
<211> 164
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2119917CD1
<400> 42
Met Thr Ala Ser Ala Gln Pro Arg
```

Met Thr Ala Ser Ala Gln Pro Arg Gly Arg Arg Pro Gly Val Gly Val Gly Val Val Thr Ser Cys Lys His Pro Arg Cys Val Leu Leu Gly Lys Arg Lys Gly Ser Val Gly Ala Gly Ser Phe Gln Leu Pro Gly Gly His Leu Glu Phe Gly Glu Thr Trp Glu Glu Cys Ala Gln Arg Glu Thr Trp Glu Glu Ala Ala Leu His Leu Lys Asn Val His Phe Ala Ser Val Val Asn Ser Phe Ile Glu Lys Glu Asn Tyr His Tyr Val Thr Ile Leu Met Lys Gly Glu Val Asp Val Thr His Asp Ser Glu Pro Lys Asn Val Glu Pro Glu Lys Asn Glu Ser Trp Glu Trp Val Pro Trp Glu Glu Leu Pro Pro Leu Asp Gln Leu Phe

43/91

Trp Gly Leu Arg Cys Leu Lys Glu Gln Gly Tyr Asp Pro Phe Lys
140 145 150
Glu Asp Leu Asn His Leu Val Gly Tyr Lys Gly Asn His Leu
155 160

```
<210> 43
<211> 215
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2123456CD1
<400> 43
Met Leu Gly Ala Glu Trp Ser Lys Leu Gln Pro Thr Glu Lys Gln
Arg Tyr Leu Asp Glu Ala Glu Arg Glu Lys Gln Gln Tyr Met Lys
                 20
                                     25
                                                          30
Glu Leu Arg Ala Tyr Gln Gln Ser Glu Ala Tyr Lys Met Cys Thr
                 35
                                      40
Glu Lys Ile Gln Glu Lys Lys Ile Lys Lys Glu Asp Ser Ser Ser
                 50
                                     55
                                                          60
Gly Leu Met Asn Thr Leu Leu Asn Gly His Lys Gly Gly Asp Cys
                                     70
                 65
Asp Gly Phe Ser Thr Phe Asp Val Pro Ile Phe Thr Glu Glu Phe
                                                          90
                 80
                                     85
Leu Asp Gln Asn Lys Ala Arg Glu Ala Glu Leu Arg Arg Leu Arg
                                                         105
                 95
                                    100
Lys Met Asn Val Ala Phe Glu Glu Gln Asn Ala Val Leu Gln Arg
                110
                                    115
                                                         120
His Thr Gln Ser Met Ser Ser Ala Arg Glu Arg Leu Glu Gln Glu
                                                         135
                125
                                    130
Leu Ala Leu Glu Glu Arg Arg Thr Leu Ala Leu Gln Gln Gln Leu
                                    145
                140
Gln Ala Val Arg Gln Ala Leu Thr Ala Ser Phe Ala Ser Leu Pro
                155
                                    160
                                                         165
Val Pro Gly Thr Gly Glu Thr Pro Thr Leu Gly Thr Leu Asp Phe
                170
                                    175
                                                         180
Tyr Met Ala Arg Leu His Gly Ala Ile Glu Arg Asp Pro Ala Gln
                185
                                    190
                                                         195
His Glu Lys Leu Ile Val Arg Ile Lys Glu Ile Leu Ala Gln Val
                200
                                    205
                                                         210
Ala Ser Glu His Leu
                215
```

```
<210> 44

<211> 539

<212> PRT

<213> Homo sapiens

<220>

<221> misc-feature

<223> Incyte ID No.: 2148792CD1

<400> 44
```

Met 1	Ala	Ala	Leu	Phe 5		Ser	Ala	Pro	Pro	Gln	Ala	Glu	Val	. Thr 15
_	Glu	Asp	Val	_	Val	Tyr	Leu	. ser		r Glu	Glu	Trp	Gly	Arg
Leu	Gly	Pro	Ala			Gly	Leu	Tyr	Arg	Asp	Val	Met	Leu	Glu 45
Thr	Tyr	Gly	Asn		Val	Ser	Leu	Gly	Val 55	Gly	Pro	Ala	Gly	Pro 60
Lys	Pro	Gly	Val	Ile 65	Ser	Gln	Leu	Glu	Arg	Gly	Asp	Glu	Pro	Trp
Val	Leu	Asp	Val	Gln 80	Gly	Thr	Ser	Gly	Lys 85	Glu	His	Leu	Arg	Val 90
Asn	Ser	Pro	Ala	Leu 95	Gly	Thr	Arg	Thr	Glu 100	Tyr	Lys	Glu	Leu	Thr 105
				110					115					120
Val	Glu	Ala	Cys	Asp 125	His	Ile	Ser	Lys	Ser 130	Glu	Gly	Ser	Leu	Glu 135
-				140	_	_		_	145	Val				150
_				155			-		160					165
				170					175	Cys				180
				185	_				190	Asn				195
				200					205	Asn				210
				215					220	Gln				225
				230					235	Gly				240
				245					250	Leu				255
_		_	_	260	_		_	_	265	Ala				270
				275				_	280	Ser				285
_	Arg	_	-	290	-				295	Thr	_			300
		-		305					310	Glu				315
				320					325	Tyr				330
_			-	335			_		340	Pro	-			345
				350					355	Ile				360
				365					370	Glu				375
_	_	, -		380					385	Ile				390
			_	395	_		_	-	400	Asn		_		405
				410					415	His				420
				425					430	Cys				435
				440					445	Arg				450
GIU	пλг	PEO	туr	цув 455	суѕ	ser	GIU	cys	460	Lys	AIG	rue	uis	465

```
475
                                                          480
                470
Pro Tyr Arg Cys Ser Asp Cys Lys Lys Ala Phe Ser Gln Ser Thr
                485
                                     490
                                                          495
Tyr Leu Ile Gln His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr
                                                         510
                                     505
                500
Lys Cys Ser Glu Cys Gly Lys Ala Phe Arg His Ser Ser Asn Met
                                     520
                515
Cys Gln His Gln Arg Ile His Leu Arg Glu Asp Phe Ser Met
                                     535
<210> 45
<211> 182
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2751943CD1
<400> 45
Met Ala Arg Leu Leu Trp Leu Leu Arg Gly Leu Thr Leu Gly Thr
                                      10
 1
Ala Pro Arg Arg Ala Val Arg Gly Gln Ala Gly Gly Gly Pro
                                                          30
                 20
Gly Thr Gly Pro Gly Leu Gly Glu Ala Gly Ser Leu Ala Thr Cys
                 35
                                      40
                                                          45
Glu Leu Pro Leu Ala Lys Ser Glu Trp Gln Lys Lys Leu Thr Pro
                 50
                                      55
                                                          60
Glu Gln Phe Tyr Val Thr Arg Glu Lys Gly Thr Glu Pro Pro Phe
                 65
                                      70
                                                          75
Ser Gly Ile Tyr Leu Asn Asn Lys Glu Ala Gly Met Tyr His Cys
                                                          90
                 80
                                      85
Val Cys Cys Asp Ser Pro Leu Phe Ser Ser Glu Lys Lys Tyr Cys
                                     100
                 95
Ser Gly Thr Gly Trp Pro Ser Phe Ser Glu Ala His Gly Thr Ser
                                    115
                                                         120
                110
Gly Ser Asp Glu Ser His Thr Gly Ile Leu Arg Arg Leu Asp Thr
                                     130
                                                         135
                125
Ser Leu Gly Ser Ala Arg Thr Glu Val Val Cys Lys Gln Cys Glu
                140
                                    145
Ala His Leu Gly His Val Phe Pro Asp Gly Pro Gly Pro Asn Gly
                155
                                     160
Gln Arg Phe Cys Ile Asn Ser Val Ala Leu Lys Phe Lys Pro Arg
                170
                                     175
Lys His
<210> 46
<211> 534
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3128913CD1
```

Ser Ser Arg Leu Ile His His Gln Arg Leu His His Gly Glu Lys

<400> 46 Met Ala Val Glu Ser Gly Val Ile Ser Thr Leu Ile Pro Gln Asp Pro Pro Glu Gln Glu Leu Ile Leu Val Lys Val Glu Asp Asn Phe Ser Trp Asp Glu Lys Phe Lys Gln Asn Gly Ser Thr Gln Ser Cys Gln Glu Leu Phe Arg Gln Gln Phe Arg Lys Phe Cys Tyr Gln Glu Pro Gly Pro Arg Glu Ala Leu Ser Arg Leu Gln Glu Leu Cys Tyr Gln Trp Leu Met Pro Glu Leu His Thr Lys Glu Gln Ile Leu Glu Leu Leu Val Leu Glu Gln Phe Leu Ser Ile Leu Pro Glu Glu Leu Gln Ile Trp Val Gln Gln His Asn Pro Glu Ser Gly Glu Glu Ala Val Thr Leu Leu Glu Asp Leu Glu Arg Glu Phe Asp Asp Pro Gly Gln Gln Val Pro Ala Ser Pro Gln Gly Pro Ala Val Pro Trp Lys Asp Leu Thr Cys Leu Arg Ala Ser Gln Glu Ser Thr Asp Ile His Leu Gln Pro Leu Lys Thr Gln Leu Lys Ser Trp Lys Pro Cys Leu Ser Pro Lys Ser Asp Cys Glu Asn Ser Glu Thr Ala Thr Lys Glu Gly Ile Ser Glu Glu Lys Ser Gln Gly Leu Pro Gln Glu Pro Ser Phe Arg Gly Ile Ser Glu His Glu Ser Asn Leu Val Trp Lys Gln Gly Ser Ala Thr Gly Glu Lys Leu Arg Ser Pro Ser Gln Gly Gly Ser Phe Ser Gln Val Ile Phe Thr Asn Lys Ser Leu Gly Lys Arg Asp Leu Tyr Asp Glu Ala Glu Arg Cys Leu Ile Leu Thr Thr Ser Ile Met Cys Gln Lys Val Pro Pro Glu Glu Arg Pro Tyr Cys Asp Val Cys Gly His Ser Phe Lys Gln His Ser Ser Leu Thr Gln His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Asn Gln Cys Gly Lys Ala Phe Ser Leu Arg Ser Tyr Leu Ile Ile His Gln Arg Ile His Ser Gly Glu Lys Ala Tyr Glu Cys Ser Glu Cys Gly Lys Ala Phe Asn Gln Ser Ser Ala Leu Ile Arg His Arg Lys Ile His Thr Gly Glu Lys Ala Cys Lys Cys Asn Glu Cys Gly Lys Ala Phe Ser Gln Ser Ser Tyr Leu Ile Ile His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Glu Cys Gly Lys Thr Phe Ser Gln Ser Ser Lys Leu Ile Arg His Gln Arg Ile His Thr Gly Glu Arg Pro Tyr Glu Cys Asn Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser Glu Leu Ile Thr His Gln Arg Ile His Ser Gly Glu Lys Pro Tyr Glu Cys Ser Glu Cys Gly Lys Ala Phe Ser Leu Ser

460

Ser Asn Leu Ile Arg His Gln Arg Ile His Ser Gly Glu Glu Pro

```
470
                                     475
Tyr Gln Cys Asn Glu Cys Gly Lys Thr Phe Lys Arg Ser Ser Ala
                485
                                     490
Leu Val Gln His Gln Arg Ile His Ser Gly Asp Glu Ala Tyr Ile
                500
                                     505
Cys Asn Glu Cys Gly Lys Ala Phe Arg His Arg Ser Val Leu Met
Arg His Gln Arg Val His Thr Ile Lys
                530
<210> 47
<211> 206
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3282941CD1
<400> 47
Met Ser Thr Gly Ser Val Ser Asp Pro Glu Glu Met Glu Leu Arg
 1
                  5
                                     10
Gly Leu Gln Arg Glu Tyr Pro Val Pro Ala Ser Lys Arg Pro Pro
                 20
                                     25
Leu Arg Gly Val Glu Arg Ser Tyr Ala Ser Pro Ser Asp Asn Ser
                 35
                                     40
                                                          45
Ser Ala Glu Glu Glu Asp Pro Asp Gly Glu Glu Arg Cys Ala
                                     55
                 50
                                                         60
Leu Gly Thr Ala Gly Ser Ala Glu Gly Cys Lys Arg Lys Arg Pro
                                     70
                                                          75
                 65
Arg Val Ala Gly Gly Gly Ala Gly Gly Ser Ala Gly Gly Gly
                 80
                                     85
Gly Lys Lys Pro Leu Pro Ala Lys Gly Ser Ala Ala Glu Cys Lys
                                    100
                95
Gln Ser Gln Arg Asn Ala Ala Asn Ala Arg Glu Arg Ala Arg Met
                110
                                    115
                                                        120
Arg Val Leu Ser Lys Ala Phe Ser Arg Leu Lys Thr Ser Leu Pro
                125
                                    130
Trp Val Pro Pro Asp Thr Lys Leu Ser Lys Leu Asp Thr Leu Arg
                140
                                    145
                                                        150
Leu Ala Ser Ser Tyr Ile Ala His Leu Arg Gln Leu Leu Gln Glu
                155
                                    160
                                                        165
Asp Arg Tyr Glu Asn Gly Tyr Val His Pro Val Asn Leu Thr Trp
                170
                                    175
                                                        180
Pro Phe Val Val Ser Gly Arg Pro Asp Ser Asp Thr Lys Glu Val
                                    190
                185
Ser Ala Ala Asn Arg Leu Cys Gly Thr Thr Ala
                200
                                    205
<210> 48
<211> 172
<212> PRT
<213> Homo sapiens
```

455

48/91

```
<220>
<221> misc-feature
<223> Incyte ID No.: 3286656CD1
<400> 48
Met Glu Ser Val Thr Phe Glu Asp Val Ala Val Glu Phe Ile Gln
                                      10
 1
                                                          15
Glu Trp Ala Leu Leu Asp Ser Ala Arg Arg Ser Leu Cys Lys Tyr
                 20
                                      25
                                                          30
Arg Met Leu Asp Gln Cys Arg Thr Leu Ala Ser Arg Gly Thr Pro
                                     40
                 35
                                                          45
Pro Cys Lys Pro Ser Cys Val Ser Gln Leu Gly Gln Arg Ala Glu
                                     55
                 50
                                                          60
Pro Lys Ala Thr Glu Arg Gly Ile Leu Arg Ala Thr Gly Val Ala
                                     70
                 65
Trp Glu Ser Gln Leu Lys Pro Glu Glu Leu Pro Ser Met Gln Asp
                 80
                                     85
Leu Leu Glu Glu Ala Ser Ser Arg Asp Met Gln Met Gly Pro Gly
                 95
                                    100
                                                         105
Leu Phe Leu Arg Met Gln Leu Val Pro Ser Ile Glu Glu Arg Glu
                110
                                    115
                                                         120
Thr Pro Leu Thr Arg Glu Asp Arg Pro Ala Leu Gln Glu Pro Pro
                                    130
                125
Trp Ser Leu Gly Cys Thr Gly Leu Lys Ala Ala Met Gln Ile Gln
                140
                                    145
Arg Val Val Ile Pro Val Pro Thr Leu Gly His Arg Asn Pro Trp
                155
                                    160
Val Ala Arg Asp Ser Ala Met
                170
```

```
<211> 275
<212> PRT
<213> Homo sapiens
<221> misc-feature
<223> Incyte ID No.: 3490802CD1
<400> 49
Met Gly Pro Leu Gln Phe Arg Asp Val Ala Ile Glu Phe Ser Leu
                  5
                                     10
Glu Glu Trp His Cys Leu Asp Thr Ala Gln Arg Asn Leu Tyr Arg
                 20
                                      25
Asp Val Met Leu Glu Asn Tyr Arg Asn Leu Val Phe Leu Gly Ile
                 35
                                     40
Val Val Ser Lys Pro Asp Leu Val Thr Cys Leu Glu Gln Gly Lys
                 50
                                      55
                                                          60
Lys Pro Leu Thr Met Glu Arg His Glu Met Ile Ala Lys Pro Pro
                 65
                                     70
                                                          75
Val Met Ser Ser His Phe Ala Gln Asp Leu Trp Pro Glu Asn Ile
                 80
                                     85
                                                          90
Gln Asn Ser Phe Gln Ile Gly Met Leu Arg Arg Tyr Glu Glu Cys
                 95
                                    100
                                                         105
Arg His Asp Asn Leu Gln Leu Lys Lys Gly Cys Lys Ser Val Gly
                110
                                    115
                                                         120
Glu His Lys Val His Lys Gly Gly Tyr Asn Gly Leu Asn Gln Cys
                125
                                    130
Leu Thr Thr Gln Lys Glu Ile Phe Gln Cys Asp Lys Tyr Gly
```

<210> 49

```
140
                                     145
Lys Val Phe His Lys Phe Ser Asn Ser Asn Thr Tyr Lys Thr Arg
                                    160
                                                         165
                155
His Thr Gly Ile Asn Leu Phe Lys Cys Ile Ile Cys Gly Lys Ala
                                    175
                                                         180
                170
Phe Lys Arg Ser Ser Thr Leu Thr Thr His Lys Lys Ile His Thr
                                     190
                                                         195
                185
Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Asn
                200
                                     205
                                                         210
Gin Ser Ser Asn Leu Thr Thr His Lys Arg Ile His Thr Gly Glu
                215
                                    220
                                                         225
Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Asn Trp Ser
                230
                                    235
Ser Asp Leu Asn Lys His Lys Lys Ile His Ile Glu Arg Lys Pro
                                    250
                                                         255
                245
Tyr Ile Val Lys Asn Val Thr Asp Leu Leu Asn Val Pro Pro Leu
                260
Leu Ile Ser Ile Arg
                275
```

```
<210> 50
<211> 236
<212> PRT
<213> Homo sapiens
```

<220> <221> misc-feature

<223> Incyte ID No.: 3507366CD1

<400> 50 Met Asp Lys Arg Tyr Leu Gln Phe Asp Ile Lys Ala Phe Val Glu Asn Asn Pro Ala Ile Lys Trp Cys Pro Thr Pro Gly Cys Asp Arg Ala Val Arg Leu Thr Lys Gln Gly Ser Asn Thr Ser Gly Ser Asp Thr Leu Ser Phe Pro Leu Leu Arg Ala Pro Ala Val Asp Cys Gly Lys Gly His Leu Phe Cys Trp Glu Cys Leu Gly Glu Ala His Glu Pro Cys Asp Cys Gln Thr Trp Lys Asn Trp Leu Gln Lys Ile Thr Glu Met Lys Pro Glu Glu Leu Val Gly Val Ser Glu Ala Tyr Glu Asp Ala Ala Asn Cys Leu Trp Leu Leu Thr Asn Ser Lys Pro Cys Ala Asn Cys Lys Ser Pro Ile Gln Lys Asn Glu Gly Cys Asn His Met Gln Cys Ala Lys Cys Lys Tyr Asp Phe Cys Trp Ile Cys Leu Glu Glu Trp Lys Lys His Ser Ser Ser Thr Gly Gly Tyr Tyr Arg Cys Thr Arg Tyr Glu Val Ile Gln His Val Glu Glu Gln Ser Lys Glu Met Thr Val Glu Ala Glu Lys Lys His Lys Arg Phe Gln Glu Leu Asp Arg Phe Met His Tyr Tyr Thr Arg Phe Lys Asn His Glu His Ser Tyr Gln Leu Glu Gln Arg Leu Leu Lys Thr Ala Lys Glu

50/91

225

220

215

Lys Met Glu Gln Met Ser Arg Val Ser Lys Asn 230 235 <210> 51 <211> 214 <212> PRT <213> Homo sapiens <220> <221> misc-feature <223> Incyte ID No.: 3573060CD1 <400> 51 Met Asn Leu Ser Ser Ala Ser Ser Thr Glu Glu Lys Ala Val Thr 10 Thr Val Leu Trp Gly Cys Glu Leu Ser Gln Glu Arg Arg Thr Trp 20 25 Thr Phe Arg Pro Gln Leu Glu Gly Lys Gln Ser Cys Arg Leu Leu 40 Leu His Thr Ile Cys Leu Gly Glu Lys Ala Lys Glu Glu Met His 50 55 Arg Val Glu Ile Leu Pro Pro Ala Asn Gln Glu Asp Lys Lys Met 65 Gln Pro Val Thr Ile Ala Ser Leu Gln Ala Ser Val Leu Pro Met 85 Val Ser Met Val Gly Val Gln Leu Ser Pro Pro Val Thr Phe Gln 95 100 105 Leu Arg Ala Gly Ser Gly Pro Val Phe Leu Ser Gly Gln Glu Arg 110 115 Tyr Glu Ala Ser Asp Leu Thr Trp Glu Glu Glu Glu Glu Glu 125 130 Gly Glu Glu Glu Glu Glu Glu Glu Asp Asp Glu Asp Glu Asp 140 145 150 Ala Asp Ile Ser Leu Glu Glu Gln Ser Pro Val Lys Gln Val Lys 155 160 165 Arg Leu Val Pro Gln Lys Gln Ala Ser Val Ala Lys Lys Lys Lys 170 175 180 Leu Glu Lys Glu Glu Glu Ile Arg Ala Ser Val Arg Asp Lys 185 190 195 Ser Pro Val Lys Lys Ala Lys Ala Thr Ala Arg Ala Lys Lys Pro 200 205 Gly Phe Lys Lys <210> 52 <211> 396 <212> PRT <213> Homo sapiens <220> <221> misc-feature <223> Incyte ID No.: 3573661CD1 <400> 52 Met Asn Phe Thr Val Gly Phe Lys Pro Leu Leu Gly Asp Ala His

51/91

```
5
Ser Met Asp Asn Leu Glu Lys Gln Leu Ile Cys Pro Ile Cys Leu
                 20
                                      25
Glu Met Phe Ser Lys Pro Val Val Ile Leu Pro Cys Gln His Asn
Leu Cys Arg Lys Cys Ala Asn Asp Val Phe Gln Ala Ser Asn Pro
                                      55
Leu Trp Gln Ser Arg Gly Ser Thr Thr Val Ser Ser Gly Gly Arg
                 65
                                      70
Phe Arg Cys Pro Ser Cys Arg His Glu Val Val Leu Asp Arg His
                 80
                                      85
Gly Val Tyr Gly Leu Gln Arg Asn Val Leu Val Glu Asn Ile Ile
                                    100
Asp Ile Tyr Lys Gln Glu Ser Ser Lys Pro Leu His Ser Lys Ala
                110
                                    115
Glu Gln His Leu Met Cys Glu Glu His Glu Glu Glu Lys Ile Asn
                125
                                    130
                                                         135
Ile Tyr Cys Leu Ser Cys Glu Val Pro Thr Cys Ser Leu Cys Lys
                140
                                    145
                                                         150
Val Phe Gly Ala His Lys Asp Cys Glu Val Ala Pro Leu Pro Thr
                155
                                    160
                                                         165
Ile Tyr Lys Arg Gln Lys Ser Glu Leu Ser Asp Gly Ile Ala Met
                170
                                    175
                                                         180
Leu Val Ala Gly Asn Asp Arg Val Gln Ala Val Ile Thr Gln Met
                                    190
                                                         195
                185
Glu Glu Val Cys Gln Thr Ile Glu Asp Asn Ser Arg Arg Gln Lys
                200
                                    205
                                                         210
Gln Leu Leu Asn Gln Arg Phe Glu Ser Leu Cys Ala Val Leu Glu
                215
                                    220
                                                         225
Glu Arg Lys Gly Glu Leu Leu Gln Ala Leu Ala Arg Glu Gln Glu
                230
                                    235
                                                         240
Glu Lys Leu Gln Arg Val Arg Gly Leu Ile Arg Gln Tyr Gly Asp
                                    250
                245
His Leu Glu Ala Ser Ser Lys Leu Val Glu Ser Ala Ile Gln Ser
                260
                                    265
Met Glu Glu Pro Gln Met Ala Leu Tyr Leu Gln Gln Ala Lys Glu
                275
                                    280
                                                         285
Leu Ile Asn Lys Val Gly Ala Met Ser Lys Val Glu Leu Ala Gly
                                    295
                290
                                                         300
Arg Pro Glu Pro Gly Tyr Glu Ser Met Glu Gln Phe Thr Val Arg
                305
                                    310
                                                         315
Val Glu His Val Ala Glu Met Leu Arg Thr Ile Asp Phe Gln Pro
                320
                                    325
Gly Ala Ser Gly Gly Gly Arg Gly Gly Pro Arg Arg Lys Lys
                335
                                    340
                                                        345
Arg Ala Thr Arg Gly Pro Glu Glu Lys Thr Ala Arg Met Gly Pro
                350
                                    355
Tyr Arg Pro Leu Arg Pro Asn Pro Asp Pro Leu Leu Arg Lys Ser
                365
                                    370
                                                        375
Pro Arg Arg Leu Arg Ile Ser Gly Gly Arg Asn Ser Cys Arg Lys
               380
                                    385
                                                        390
Lys Thr Pro Ala Ser Phe
               395
```

<210> 53

<211> 486

<212> PRT

<213> Homo sapiens

<220>

<221> misc-feature <223> Incyte ID No.: 3633422CD1 <400> 53 Met Arg Arg Leu Val His Asp Leu Leu Pro Pro Glu Val Cys Ser Leu Leu Asn Pro Ala Ala Ile Tyr Ala Asn Asn Glu Ile Ser Leu Arg Asp Val Glu Val Tyr Gly Phe Asp Tyr Asp Tyr Thr Leu Ala Gln Tyr Ala Asp Ala Leu His Pro Glu Ile Phe Ser Thr Ala Arg Asp Ile Leu Ile Glu His Tyr Lys Tyr Pro Glu Gly Ile Arg Lys Tyr Asp Tyr Asn Pro Ser Phe Ala Ile Arg Gly Leu His Tyr Asp Ile Gln Lys Ser Leu Leu Met Lys Ile Asp Ala Phe His Tyr Val Gln Leu Gly Thr Ala Tyr Arg Gly Leu Gln Pro Val Pro Asp Glu Glu Val Ile Glu Leu Tyr Gly Gly Thr Gln His Ile Pro Leu Tyr Gln Met Ser Gly Phe Tyr Gly Lys Gly Pro Ser Ile Lys Gln Phe Met Asp Ile Phe Ser Leu Pro Glu Met Ala Leu Leu Ser Cys Val Val Asp Tyr Phe Leu Gly His Ser Leu Glu Phe Asp Gln Ala His Leu Tyr Lys Asp Val Thr Asp Ala Ile Arg Asp Val His Val Lys Gly Leu Met Tyr Gln Trp Ile Glu Gln Asp Met Glu Lys Tyr Ile Leu Arg Gly Asp Glu Thr Phe Ala Val Leu Ser Arg Leu Val Ala His Gly Lys Gln Leu Phe Leu Ile Thr Asn Ser Pro Phe Ser Phe Val Asp Lys Gly Met Arg His Met Val Gly Pro Asp Trp Arg Gln Leu Phe Asp Val Val Ile Val Gln Ala Asp Lys Pro Ser Phe Phe Thr Asp Arg Arg Lys Pro Phe Arg Lys Leu Asp Glu Lys Gly Ser Leu Gln Trp Asp Arg Ile Thr Arg Leu Glu Lys Gly Lys Ile Tyr Arg Gln Gly Asn Leu Phe Asp Phe Leu Arg Leu Thr Glu Trp Arg Gly Pro Arg Val Leu Tyr Phe Gly Asp His Leu Tyr Ser Asp Leu Ala Asp Leu Met Leu Arg His Gly Trp Arg Thr Gly Ala Ile Ile Pro Glu Leu Glu Arg Glu Ile Arg Ile Ile Asn Thr Glu Gln Tyr Met His Ser Leu Thr Trp Gln Gln Ala Leu Thr Gly Leu Leu Glu Arg Met Gln Thr Tyr Gln Asp Ala Glu Ser Arg Gln Val Leu Ala Ala Trp Met Lys Glu Arg Gln Glu Leu Arg Cys Ile Thr Lys Ala Leu Phe Asn Ala Gln Phe Gly Ser Ile Phe Arg Thr Phe His Asn Pro Thr Tyr Phe Ser Arg Arg Leu Val Arg Phe Ser Asp Leu Tyr

Met Ala Ser Leu Ser Cys Leu Leu Asn Tyr Arg Val Asp Phe Thr

Phe Tyr Pro Arg Arg Thr Pro Leu Gln His Glu Ala Pro Leu Trp

```
460
                                                          465
                455
Met Asp Gln Leu Cys Thr Gly Cys Met Lys Thr Pro Phe Leu Gly
                470
                                     475
                                                          480
Asp Met Ala His Ile Arg
<210> 54
<211> 555
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3993377CD1
<400> 54
Met Gly Ala Glu Asp Lys Leu Pro Leu Glu Asp Ser Pro Val Ile
                                      10
 1
Ala Ala Leu Asp Cys Pro Ser Leu Asn Asn Ala Thr Ala Phe Ser
                 20
                                      25
Leu Leu Ala Asp Asp Ser Gln Thr Ser Thr Ser Ile Phe Ala Ser
                 35
                                      40
Pro Thr Ser Pro Pro Val Leu Gly Glu Ser Val Leu Gln Asp Asn
                                     55
                 50
Ser Phe Asp Leu Asn Asn Gly Ser Asp Ala Glu Glu Glu Met
                 65
                                      70
                                                          75
Glu Thr Gln Ser Ser Asp Phe Pro Pro Ser Leu Thr Gln Pro Ala
                                                          90
                 80
                                     85
Pro Asp Gln Ser Ser Thr Ile Gln Leu His Pro Ala Thr Ser Pro
                 95
                                     100
                                                         105
Ala Val Ser Pro Thr Thr Ser Pro Ala Val Ser Leu Val Val Ser
                                    115
                                                         120
                110
Pro Ala Ala Ser Pro Glu Ile Ser Pro Glu Val Cys Pro Ala Ala
                                                         135
                                    130
                125
Ser Thr Val Val Ser Pro Ala Val Phe Ser Val Val Ser Pro Ala
                                                         150
                                    145
                140
Ser Ser Ala Val Leu Pro Ala Val Ser Leu Glu Val Pro Leu Thr
                155
                                    160
Ala Ser Val Thr Ser Pro Lys Ala Ser Pro Val Thr Ser Pro Ala
                170
                                    175
                                                         180
Ala Ala Phe Pro Thr Ala Ser Pro Ala Asn Lys Asp Val Ser Ser
                185
                                    190
Phe Leu Glu Thr Thr Ala Asp Val Glu Glu Ile Thr Gly Glu Gly
                200
                                    205
                                                         210
Leu Thr Ala Ser Gly Ser Gly Asp Val Met Arg Arg Arg Ile Ala
```

54/91

Thr Pro Glu Glu Val Arg Leu Pro Leu Gln His Gly Trp Arg Arg

Glu Val Arg Ile Lys Asn Ser Ser His Arg Trp Gln Gly Glu Thr

Trp Tyr Tyr Gly Pro Cys Gly Lys Arg Met Lys Gln Phe Pro Glu

Val Ile Lys Tyr Leu Ser Arg Asn Val Val His Ser Val Arg Arg

Glu His Phe Ser Phe Ser Pro Arg Met Pro Val Gly Asp Phe Phe

```
295
                290
                                                          300
Glu Glu Arg Asp Thr Pro Glu Gly Leu Gln Trp Val Gln Leu Ser
                305
                                     310
                                                          315
Ala Glu Glu Ile Pro Ser Arg Ile Gln Ala Ile Thr Gly Lys Arg
                320
                                     325
                                                         330
Gly Arg Pro Arg Asn Thr Glu Lys Ala Lys Thr Lys Glu Val Pro
                335
                                    340
                                                         345
Lys Val Lys Arg Gly Arg Gly Arg Pro Pro Lys Val Lys Ile Thr
                350
                                    355
                                                         360
Glu Leu Leu Asn Lys Thr Asp Asn Arg Pro Leu Lys Lys Leu Glu
                365
                                    370
                                                         375
Ala Gln Glu Thr Leu Asn Glu Glu Asp Lys Ala Lys Ile Ala Lys
                                    385
                380
                                                         390
Ser Lys Lys Met Arg Gln Lys Val Gln Arg Gly Glu Cys Gln
                395
                                    400
                                                         405
Thr Thr Ile Gln Gly Gln Ala Arg Asn Lys Arg Lys Gln Glu Thr
                410
                                    415
                                                         420
Lys Ser Leu Lys Gln Lys Glu Ala Lys Lys Lys Ser Lys Ala Glu
                425
                                    430
                                                         435
Lys Glu Lys Gly Lys Thr Lys Gln Glu Lys Leu Lys Glu Lys Val
                440
                                    445
                                                         450
Lys Arg Glu Lys Lys Glu Lys Val Lys Met Lys Glu Lys Glu Glu
                455
                                    460
                                                         465
Val Thr Lys Ala Lys Pro Ala Cys Lys Ala Asp Lys Thr Leu Ala
                470
                                    475
                                                         480
Thr Gln Arg Arg Leu Glu Glu Arg Gln Arg Gln Gln Met Ile Leu
                485
                                    490
                                                         495
Glu Asp Met Lys Lys Pro Thr Glu Asp Met Cys Leu Thr Asp His
                500
                                    505
                                                         510
Gln Pro Leu Pro Asp Phe Ser Arg Val Pro Gly Leu Thr Leu Pro
                515
                                    520
                                                         525
Ser Gly Ala Phe Ser Asp Cys Leu Thr Ile Val Glu Phe Leu His
               530
                                    535
                                                         540
Ser Phe Gly Lys Val Leu Gly Leu Asp Pro Ala Gln Gly Cys Ala
                545
                                    550
```

```
<210> 55
<211> 61
<212> PRT
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 4717936CD1
<400> 55
Met Gln Pro Arg Thr Gln Pro Leu Ala Gln Thr Leu Pro Phe Phe
                  5
                                      10
                                                          15
Leu Gly Gly Ala Pro Arg Asp Thr Gly Leu Arg Val Pro Val Ile
                 20
Lys Met Gly Thr Gly Trp Glu Gly Phe Gln Arg Thr Leu Lys Glu
                 35
                                     40
Val Ala Tyr Ile Leu Leu Cys Cys Trp Cys Ile Lys Glu Leu Leu
Asp
```

```
<210> 56
<211> 2781
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 025733CB1
gaagtggggt geaegetteg ggttggtgte atggeagetg eggggageeg caagaggege 60
ctggcggagc tgacggtgga cgagttccta gcttcgggct ttgactccga gtccgaatcc 120
gagteegaaa atteteeaca ageggagaea egggaageae gegaggetge eeggagteeg 180
gataageegg gegggageee eteggeeage eggegtaaag geegtgeete tgageacaaa 240 gaceagetet eteggetgaa ggacagagac eeegagttet acaagtteet geaggagaat 300
gaccagagcc tgctaaactt cagcgactcg gacagctctg aggaggaaga ggggccgttc 360
cactccctgc cagatgtgct ggaggaagcc agtgaggagg aggatggagc ggaggaagga 420
gaagatgggg acagagtcce cagagggctg aaggggaaga agaattctgt teetgtgace 480
gtcgccatgg ttgagagatg gaagcaggca gcaaagcaac gcctcactcc aaagctgttc 540
catgaagtgg tacaggcgtt ccgagcagct gtggccacca cccgagggga ccaggaaagt 600
getgaggeca acaaatteca ggteaeggae agtgetgeat teaatgetet ggttacette 660
tgcatcagag acctcattgg ctgtctccag aagctgctgt ttggaaaggt ggcaaaggat 720
agcagcagga tgctgcagcc gtccagcagc ccgctctggg ggaagcttcg tgtggacatc 780 aaggcttacc tgggctcggc catacagctg gtgtcctgtc tgtcggagac gacggtgttg 840
geggeegtge tgeggeacat cagegtgetg gtgeeetget teetgacett eeccaageag 900
tgccgcatgc tgctcaagag aatggtggtc gtatggagca ctggggagga gtctctgcgg 960
gtgctggctt tcctggtcct cagcagagtc tgccggcaca agaaggacac tttccttggc 1020
cccgtcctca agcaaatgta catcacgtat gtgaggaact gcaagttcac ctcgcctggt 1080
geoeteceet teateagttt catgeagtgg acettgaegg agetgetgge cetggageeg 1140
ggtgtggcct accagcacgc cttcctctac atccgccagc tcgccataca cctgcgcaac 1209
gecatgacea ecegeaagaa ggaaacatae eagtetgtgt acaaetggea gtatgtgeae 1260
tgcctcttcc tgtggtgccg ggtcctgagc actgcgggcc ccagcgaagc cctccagccc 1320
ttggtctacc cccttgccca agtcatcatt ggctgtatca agctcatccc cactgcccgc 1380
ttetaccege tgegaatgea etgeateegt geeetgaege tgeteteggg gagetegggg 1440
geetteatee eggtgetgee ttteateetg gagatgttee ageaggtega etteaaeagg 1500
aagccagggc gcatgagctc caagcccatc aactteteeg tgateetgaa gctgtecaat 1560
gtcaacctgc aggagaaggc gtaccgggac ggcctggtgg agcagctgta cgacctcacc 1620
ctggagtacc tgcacagcca ggcacactgc atcggcttcc cggagctggt gctgcctgtg 1680
gtcctgcagc tgaagtcgtt cctccgggag tgcaaggtgg ccaactactg ccggcaggtg 1740 cagcagctgc ttgggaaggt tcaggagaac tcggcataca tctgcagccg ccgccagagg 1800
gtttccttcg gcgtctctga gcagcaggca gtggaagcct gggagaagct gaccegggaa 1860
gaggggacac cettgacett gtactacage cactggegea agetgegtga cegggagate 1920
cagetggaga teagtggeaa agageggetg gaagacetga aetteeetga gateaaacga 1980 aggaagatgg etgacaggaa ggatgaggae aggaageaat ttaaagaeet etttgacetg 2040
aacagetetg aagaggaega cacegaggga tteteggaga gagggataet gaggeeeetg 2100
agcactegge atggggtgga agacgatgaa gaggacgagg aggagggcga ggaggacage 2160
agcaactcgg agggtgaatg gtcttgggat ggagacccag acgcagaggc ggggctggcc 2220
cctggggagc tgcagcagct ggcccagggg ccggaggacg agctggagga tctgcagctc 2280
teagaggaeg actgaggeag eccatetggg gggeetgtag gggetgeegg getggtggee 2340
agtgtttcca cctccctggc agtcaggcct agaggctggc gtctgtgcag ttgggggagg 2400
cagtagacac gggacaggct ttattattta tttttcagca tgaaagacca aacgtatcga 2460
gagetggget gggetggget ggtgtggetg etgaageeee acagetgtgg getgetgaag 2520
teageteege gggggagetg accetgaegt eageagaeeg agaceagtee eagtteeagg 2580
gggaggeetg caggeeetg geceetteea ceaectetge ceteegtetg cagacetegt 2640
ccatctgcac caggetetge etteactece ccaagtettt gaaaatttgt teettteett 2700
tgaagtcaca ttttcttta aaattttttg ttttgcatcc gaaaccgaaa gaaataaagc 2760
ggtgggaggc aaaaaaaaa a
                                                                        2781
<210> 57
<211> 2544
<212> DNA
```

```
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 079702CB1
<400> 57
cgggaaacca aaatggcgag gggctgtatt gaagtgggct gtgtttgagg ccggtgtaag 60
aacgetcatt etacceccaa ceettgtete caaggacete ggtttgtgeg tgcatatgtg 120
ccgggtaccc ggtggggcgg gtgcccagta agtgctcgga ctcgcagggg aagcgcccac 180
ggggacggat tggttgtttt ttcctgtatg aagcggttgg caccactgaa gtgaccgaat 240
gagagactet acaggggcag gtaatteact ggtecacaag eggteteett taegtegaaa 300
ccaaaagacc ccaacatcct tgaccaagct gtctttacag gatggacata aagccaaaaa 360
gccagcatgt aaatttgaag agggtcagga tgtcctagct agatggtcag atggcttgtt 420
ttatcttggc actatcaaaa agataaacat attgaaacag agctgcttca tcatatttga 480
agacagttct aaatcctggg ttctctggaa ggacattcaa acaggagcca ctggaagtgg 540
ggaaatggtc tgtacaatat gtcaagaaga gtattcagaa gctcccaatg aaatggttat 600
atgtgacaag tgtggccaag gatatcatca gttgtgtcac acacctcata ttgattccag 660
tgtgattgat tcagatgaaa aatggctctg tcggcagtgt gtttttgcaa caacaacaaa 720
gaggggtggt gcacttaaga aaggaccaaa tgccaaagca ttgcaagtca tgaagcagac 780
attaccetat agtgtggcag accttgaatg ggatgcaggt cataaaacca atgtccagca 840 gtgttactgc tattgtggag gccctggaga ctggtatttg aagatgctac agtgctgcaa 900
atgtaagcag tggtttcatg aggcttgtgt gcaatgcctt caaaagccaa tgctatttgg 960
agacagattt tatacgttta tatgetetgt etgeagttet ggaecagaat aceteaaaeg 1020
tctaccatta cagtgggtag atatagcaca cctatgcctt tacaacctaa gtgttattca 1080
taagaagaaa tactttgatt ctgaacttga gcttatgaca tacattaatg aaaactggga 1140
tagattgcac cctggagagc tggcagacac accaaaatct gaaagatatg agcatgttct 1200
ggaggcatta aatgattaca agaccatgtt tatgtctggg aaagaaataa agaagaagaa 1260
gcatttgttt gggttgcgaa ttcgtgttcc tcctgtgcca ccaaatgtgg ctttcaaagc 1320
agagaaagaa cctgaaggaa catctcatga atttaaaatt aaaggcagaa aggcatccaa 1380
tgtaggtcgt ccacctggcc catatacaag aaaaatgatt caaaaaactg ctgagccact 1500 tttggataag gaatcaattt cagagaatcc tactttggat ttaccttgtt ctatagggag 1560
aactgaggga actgcacatt catccaatac ctcagatgtg gatttcacgg gtgcttccag 1620
tgcaaaagaa actacctcgt ctagcatttc caggcattat ggattatctg actccagaaa 1680
aagaacgcgt acaggaagat cttggcctgc tgcaatacca catttgcgga gaagaagagg 1740
tegtetteca agaagageae teeagaetea gaaeteagaa attgtaaaag atgatgaagg 1800
caaagaagat tatcagtttg atgaactcaa cacagagatt ctgaataact tagcagatca 1860
ggagttacaa eteaateate taaagaaete eattaceagt tattttggtg etgeaggtag 1920
aatagcatgt ggcgaaaaat accgagtttt ggcacgtcgg gtgacacttg atggaaaggt 1980
gcagtatett gtggaatggg aaggagcaac tgcateetga etgtaggaet gaacattatg 2040
ttcactgcac tctgattttc tgtaggtaca gttcaaagcc ctaaaggagt ctggctttta 2100
ctatettet taaaaaaaa aaaaagteaa aaaaatteaa aaaaggggat gataetagee 2160
ttaacatgta cctgtcaatg ttatggatat tgtcataaaa aggtatcttt taaaaaatcag 2220
aacagagact taatttttta aatcttaaga tttgtagaat gtttctagga taggatatta 2280
aaaatgattg aaacccatgc atggtgttag acaatttttc taattattcc attgagtcag 2340
ttttttgtga ttagtgatta tcagagcaaa catcatgtag atagcacaag tatttggaga 2400
aacgttgttt gttttgttac caaaatgttg gaaaaattta tttcaatacc ttttagattt 2460
cataaagtgc agtgtatata atgcctactg aaagactgta aaatattgaa attttctttc 2520
aagcaaagtg taaataaata tatc
<210> 58
<211> 1627
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 116208CB1
<400> 58
```

```
ctgatgaggg cgctgcattt attgaagagc ggctgcagcc ctgcggttca gattaaaatc
cgagaattgt atagacgccg atatccacga actcttgaag gactttctga tttatccaca 120
atcaaatcat cggttttcag tttggatggt ggctcatcac ctgtagaacc tgacttggcc 180
gtggctggaa tccactcgtt gccttccact tcagttacac ctcactcacc atcctctct 240
gttggttctg tgctgcttca agatactaag cccacatttg agatgcagca gccatctccc 300
ccaattcctc ctgtccatcc tgatgtgcag ttaaaaaaatc tgccctttta tgatgtcctt 360
gatgttetea teaageceae gagtttagtt caaageagta tteagegatt teaagagaag 420
ttttttattt ttgctttgac acctcaacaa gttagagaga tatgcatatc cagggatttt 480
ttgccaggtg gtaggagaga ttatacagtc caagttcagt tgagactttg cctggcagag 540
acaagttgcc ctcaagaaga taactatcca aatagtctat gtataaaagt aaatgggaag 600
ctatttcctt tgcctggcta tgcaccaccg cctaaaaatg ggattgaaca gaagcgccct 660
ggacgcccct tgaatattac atctttagtt aggttatctt cagctgtgcc aaaccaaatt 720
tecatttett gggeateaga aattgggaag aattacteta tgtetgtata tettgtaegg 780
cagcttacat cagccatgtt attacagaga ttaaaaatga aaggtattag aaaccctgat 840
cattccagag cactaagtaa agaaaaactt actgcagatc ctgatagtga aattgctaca 900
actageette gggtateett gatgtgeeet ttaggaaaaa tgaggetgae aateeeatge 960
cgtgcagtga cttgtacaca tctgcagtgt tttgatgctg ccctctatct acaaatgaat 1020
gagaaaaagc ccacctggat ttgtcctgtg tgtgacaaaa aagctgccta tgaaagtcta 1080
atattagatg ggctttttat ggaaattctc aatgactgtt ctgatgtaga tgagatcaaa 1140
ttccaagaag atggttcttg gtgtccaatg agaccgaaga aagaagctat gaaagtatcc 1200
agccaaccgt gtacaaaaat agaaagttca agcgtcctca gtaagccttg ttcagtgact 1260
gtagccagtg aggcaagcaa gaagaaagta gatgttattg atcttacaat agaaagctct 1320
tetgaegaag aggaagaece teetgeeaaa aggaaatgea tetttatgte agaaacacaa 1380
ageageecaa ecaaaggggt teteatgtat eagecatett etgtaagggt geecagtgtg 1440
actteggttg atcetgetge tatteegest teattaacag actacteagt accatteeae 1500
catacgccaa tatcaagcat gtcatcagat ttgccaggag aacaaagaag aaatgatatt 1560
aataatgaac tgaagcttgg aacatcttct gatactgtgc aacagtgaat acaaaataaa 1620
                                                                   1627
accgata
<210> 59
<211> 1043
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 179261CB1
<400> 59
gtgggatatt tcagtcaaat gaaaatcatc tctgaaaatg tgcccagtta caaaactcat 60
gaatetetta etttaeeteg gagaaeteat gaeagtgaga ageeetatga atacaaggaa 120
tatgagaagg tetteagttg tgaettagag tttgatgaat atcagaaaat acatactggt 180
ggaaaaaact atgaatgtaa tcaatgttgg aaaacctttg ggatagataa ctccagtatg 240
ttacaactga atattcatac tggtgtgaaa ccttgtaaat atatggaata tgggaataca 300
tgtagttttt ataaagactt taatgtatac cagaaaattc ataatgagaa gttctataaa 360
tgtaaggaat acagaaggac ctttgaaaga gttggaaaag ttactccact tcaaagagtt 420
catgatggtg agaaacactt tgaatgctca ttctgtggga aatcctttag agtgcatgca 480
caacttactc gacatcagaa aatccatact gatgagaaaa cttacaaatg tatggaatgt 540
ggcaaggact tcagatttca ttcacagett accgaacatc agagaattca tactggtgag 600
aaaccctaca aatgtatgca ctgtgagaag gtttttagaa ttagttcaca gctcattgaa 660
catcagagaa ttcacactgg tgagaaacct tatgcatgta aggaatgtgg gaaggctttt 720
ggagtatgta gagaacttgc tcgtcatcag agaattcata ctggaaaata ctgtggatgg 780
atttaatagg taatcaaggc aattcagtat ctccctctct taaagtctgt ttttagactt 840
catggtcatt ctgtatgtag acgtagaatt gcttagtcat agctgatata tacttatagc 900
tttgttagat gttgccaaat atttctcctt tttatgttaa aaagtttttt tcatgagttt 960
ctcatcctgg catgttttgt ttacaatagc ttttgatgtt tgtattattg ctcttttgac 1020
taatcagttt tttaattctg gat
                                                                  1043
<210> 60
<211> 2448
```

<212> DNA

```
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 259161CB1
<400> 60
ctggcgggaa gattttactc ccgagtagcg gaaagatctg ctcgaggcct gggtgctttg 60
gtgtcggaga tccgagagtc ggagatcgga gagtcggaca caggacagtc ggacaccgga 120
cagtcaaaca ccggagagtt agactgggct tctcggtggg gagaggctct gggataacta 180
ctgttacagc tttgaagggt caagggagga ttggccacca aagcctgttt attagcagct 240
gccatttgtt gaaagaaatt tggattattt tagaaacaaa tttggaaaga aaaagaatgg 300
cgtccgtttc agctctaact gaggaactgg attctataac cagtgagcta catgcagtag 360
aaattcaaat tcaagaactt acggaaaggc aacaagagct tattcagaaa aaaaaagtcc 420
tgacaaagaa aataaagcag tgtttagagg attctgatgc cggggcaagc aatgaatatg 480
attetteace tgeegettgg aataaagaag atttteeatg gtetggtaaa gttaaagata 540
ttctgcaaaa tgtctttaaa ctggaaaagt tcagaccact tcagcttgaa actattaacg 600
taacaatggc tggaaaggag gtatttcttg ttatgcctac aggaggtgga aagagcttat 660
gttaccagtt accagcatta tgttcagatg gttttacact cgtcatttgc ccattgatct 720 ctcttatgga agaccaatta atggttttaa aacaattagg aatttcagca accatgttaa 780
atgettetag ttetaaggag catgttaaat gggtteatge tgaaatggta aataaaaact 840
ccgagttaaa gctgatttat gtgactccag agaaaattgc aaaaagcaaa atgtttatgt 900
caagactaga gaaagcctat gaagcaagga gatttactcg aattgctgtg gatgaagttc 960
actgctgtag tcagtgggga catgatttca gacctgatta taaggcactt ggtatcttaa 1020
ageggeagtt cectaaegea teactaattg ggetgaetge aactgeaaca aatcaegttt 1080
tgacggatgc tcagaaaatt ttgtgcattg aaaagtgttt tacttttaca gcttctttta 1140
ataagccaga tgtgaggttt gttatccatc attcaatgag taaatccatg gaaaattatt 1200
accaagagag tggacgtgca ggtcgagatg acatgaaagc agactgtatt ttgtactacg 1260
gctttggaga tatattcaga ataagttcaa tggtggtgat ggaaaatgtg ggacagcaga 1320
agetttatga gatggtatca tactgtcaaa acataagcaa atgtcgtcgt gtgttgatgg 1380
ctcaacattt tgatgaagta tggaactcag aagcatgtaa caaaatgtgc gataactgct 1440
gtaaagacag tgcatttgaa agaaagaaca taacagagta ctgcagagat ctaatcaaga 1500
tectgaagea ggeagaggaa etgaatgaaa aacteaetee attgaaaetg attgattett 1560
ggatgggaaa gggtgcagca aaactgagag tagcaggtgt tgtggctccc acacttcctc 1620
gtgaagatet ggagaagatt attgcacact ttetaataca gcagtatett aaagaagaet 1680
acagttttac agettatget accatttegt atttgaaaat aggacetaaa getaatette 1740
tgaacaatga ggcacatgct attactatgc aagtgacaaa gtccacgcag aactctttca 1800
gggctgaatc gtctcaaact tgtcattctg aacaaggtga taaaaagatt ggaggaaaaa 1860
aattccaggc aacttccaga agaaggctgc aaacatgctt cagcaatctg gttctaagaa 1920
tacaggaget aagaaaagaa aaategatga tgeetgatat gaetgttaet aaatttteta 1980
attaaagatg gtttatgcat gtatatgcca ttatttttgt agttagacaa tagtttttaa 2040
aagaatttca tagatatttt atatgtatgg atctatattt tcagagctta tctctgaaga 2100
tctaaacttt tgagaatgtt tgaaaattag agatcatgaa ttatataatt ttccagtata 2160
aaacaaggga aaaattttta tgtaaaaccc tttaaatgta aaatatttga gaataagttc 2220
atacaatcgt cttaagtttt ttatgccttt atatacttag ctatattttt tcttttgaca 2280
taactatett tttgaaagca atattatact gacagagget cactgagtga tactttaagt 2340
taaatatgta gatcaaggat gtccaatctt ttggcttccc tgagccacac tggaagaaga 2400
attgtcttgg gccgcacata aaatatgcta acactgatga tagctgat
<210> 61
<211> 2255
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 320087CB1
```

```
<400> 61
ttccggttct gtacccccat cetttctctc gcccctccta cccgcagctc ctggcgctcg 60
geggggetaa etgeageggg gagatetegg eegecaaget eegecteeeg eeeegggetg 120
tgccccgggg ctcgcctgag gccgaccacc cgcaacccac ctctagcggc tttgctcgag 180
geocaccite ticecacce eggeaaacte eagtaggete gesetegetg acteeegge 240
cccgcgtcaa ctgcaagggg cccgcccata gccagttccg gggcggttgc tcacatcgac 300
eggaacteec egeceetee egeggeeet ggggeegtag gaggeegeag egaggaggta 360
gaggggggg gggtcgcact agggtgtccc tagagaacga ggactctgaa ggcgggacat 420
ttgggcgacc cccgggcggg gccagccatt aaacagtccc acttctgtgc cagacactga 480
actgggctct tgacgggcat catctcttaa tcctcagaac atcccaggga gctccacagg 540
atcoccatat cotgggccat gagtgagttg aaagactgcc cottgcagtt ccacgacttc 600
aagtetgtgg atcacetgaa ggtetgteee egetacaegg cagtgetgge aegetetgag 660
gatgatggca teggeatega ggagetggae accetgeage tggagetgga gaceetgetg 720
tettetgeca geeggegeet gegtgtgett gaggeegaaa eeeagateet caeegaetgg 780
caggataaga aaggtgacag acgattcctg aagctgggtc gagaccatga acttggagct 840
ccccccaaac atgggaagcc caagaagcag aaactggaag ggaaggcagg acatgggccg 900
ggccctggcc caggacggcc caaatccaaa aaccttcagc ccaagatcca ggaatatgaa 960
tteactgatg accetatega egtgecaegg atececaaaa atgatgeece caacaggtte 1020
tgggcttcag tggagcccta ctgtgctgac atcaccagcg aggaggtccg cacacttgag 1080
gagttactga agcccccaga agatgaggct gagcattaca agatcccacc cctggggaag 1140
cactactccc agegetggge ccaggaggac ctgctggagg ageagaagga tggggecegg 1200
gcagcggctg tggctgacaa gaagaaaggc ctcatggggc cactgaccga actggacact 1260
aaagatgtgg atgecetget gaagaagtet gaggeeeage atgaacagee ggaagatgga 1320
tgcccctttg gtgccctgac gcagcgcctc ctgcaggccc tggtggagga aaatattatt 1380 tcccctatgg aggattctcc tattcctgac atgtctggga aagaatcagg ggctgacggg 1440
geaageacet ecectegeaa teagaacaag ecetteagtg tgeegeatae taagteeetg 1500
gagageegea teaaggagga getaattgee eagggeettt tggagtetga ggaeegeece 1560
gcagaggact ccgaggatga ggtccttgct gagcttcgca aacggcaggc tgagctgaag 1620
gcacttagtg cccacaaccg caccaagaag cacgacctgc tgaggctggc aaaggaggag 1680
gtgagccggc aggagctgag gcagcgggtg cgcatggctg acaacgaggt catggacgcc 1740
tttcgcaaga tcatggctgc ccggcagaag aagcggactc ccaccaagaa agaaaaggac 1800
caggcetgga agaetetgaa ggagegtgag agcateetga agetgetgga tgggtageee 1860
teacceetge eteaggetga ttatetggee taggggaggg gaagggagge ceaetteett 1920
etttgggcae aggaaacatt ggeetgtgge tgteeeteaa atggeggeag tetetagagg 1980
geogtggeee tteecetgag gtettttgge etagetetgt acaaccagga cacaggaage 2040
cetgetggge tagectgagg cetagtetet gettggtece egagatgggg ttggagggga 2100
ettegtttet gggtetteet etteceetet ttaccatece ceaeteceta ateceetace 2160
cctgtctccc cttcaaggac ttctcccttg tggttttgta aagtgcaaac ttaagaataa 2220
agtgactgct gtggtttttc aaaaaaaaaa aaaaa
<210> 62
<211> 2982
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 491271CB1
gegtggggat gtttacegee gtttateegg gatagagaet ceategtget gaeageatee 60
ttttattcac cgcctccgaa tttgcaaaga ggaggaagga gggacttctt ggcttctccc 120
agcatagece cagttatgee ateteagaae tatgacette eecagaagaa geaggagaaa 180
atgaccaagt ttcaggaggc tgtgacattc aaggatgtgg ctgtggtctt ctccagggag 240
gaactgcgac tgctcgatct tacccagagg aagctgtacc gagatgtcat ggtggagaac 300
ttcaagaacc tggttgcagt ggggcatctt cccttccaac cagatatggt atcccaattg 360
gaagcagaag aaaagctttg gatgatggaa acagaaaccc aaagaagcag caagcatcaa 420
aataagatgg aaacactcca aaaatttgca ttaaaatacc tttcaaatca agagctgtcc 480
tgctggcaaa tctggaaaca ggttgcaagt gaattaacca ggtgtcttca ggggaagagt 540
teccagttat tacaaggtga etetatteag gtttetgaaa atgagaacaa tataatgaac 600
cctaaaggag atagccctat ttatattgaa aatcaagagt ttccattttg gagaacccag 660
```

```
cattettgcg ggaatacata tetgagtgag teacagatte agagtagagg taagcaaatt 720
gatgtgaaaa ataacctgca aatacgtgaa gacttcgtga agaaatcacc atttcatgag 780
catattaaaa ctgacacaga accaaaaccc tgcaaaggta atgaatatgg caaaatcatt 840
agtgatggct ccaaccagaa attaccctta ggagagaaac cccatccatg tggtgagtgt 900
ggaaggggct teagttatag eccaaggett eccetteate egaatgttea eacaggagaa 960
aaatgettea gteaaagete acatetgega acteateaga gaatteaece aggagagaaa 1020
ctcaatagat gtcatgaatc tggtgattgc ttcaataaga gctcttttca ttcttatcaa 1080
tetaateata caggagagaa gtettataga tgegacagtt geggeaaggg atteagtage 1140
agcacgggtc ttatcattca ttacagaact catactggag agaaacccta taaatgcgag 1200
gaatgtggta aatgctttag tcaaagttca aattttcagt gccatcagag agtccacact 1260
gaagaaaaac catacaaatg cgaagagtgt ggtaagggct teggttggag tgttaatete 1320 egtgtteace agagggteea eaggggtgag aageeetata aatgtgagga atgtggtaag 1380
ggetteacte aggetgeaca tttteacate cateagagag tecacactgg agagaaacce 1440
tacaagtgtg atgtgtgtgg taagggcttc agccacaatt caccattaat atgccatcgg 1500
agagtecaca caggagagaa gecatacaag tgtgaggegt gtgggaaagg etttaccegt 1560
aatacagatc tgcatattca tttcagagtt cacacgggag agaaacccta taaatgtaag 1620
gagtgtggta agggcttcag tcaggcttca aatcttcaag tccatcagaa tgtccacact 1680
ggggagaaac gattcaagtg tgaaacgtgt gggaagggct tcagtcagtc ctcaaagctt 1740
gacttcagtt atagttcaaa tottaaacta caccaagtaa ttcacactgg agaaaaacca 1860
tataaatgtg aggaatgtgg gaagggette agttggagat caaatettea tgeacateaa 1920
agagttcact caggagaaaa accetataaa tgtgagcagt gtgataagag cttcagtcag 1980 gccatagatt ttcgggtaca tcagagagtc catactggag agaagccata caaatgtggt 2040
gtetgtggta agggetteag teagteetet ggtetteaat eecateagag agtecaeaeg 2100
ggggaaaagc catacaaatg tgatgtgtgt ggaaagggct ttagatacag ttcgcagttt 2160
atataccatc agagaggcca cactggagaa aaaccttaca aatgtgaaga gtgtgggaaa 2220
ggetttggta ggagettgaa tettegeeat eateagaggg tecacaeggg agagaaacee 2280
catatatgtg aggagtgtgg taaggeette agteteecet caaatetteg agtecacetg 2340
ggtgttcaca ccagggaaaa actetttaaa tgtgaagagt gtggtaaagg ettcagtcag 2400
agtgeaegte ttgaageeea teagagagte casaetggag aaaaaeeata caaatgtgae 2460
atatgtgata aggactteeg teacegttea egtettacat ateatcagaa agtecataet 2520
ggtaaaaagc tttagaaatg agaaatgtgt taccaacttt tgtctgaatg cacatcttca 2580
agtttttggc tagtccatgc tggtggtaaa ccctgtaaaa ctactgagag tggaaggggg 2640
tttgttcaca cttggaatct ttctaacaaa tccatcaaga tgataacaca gaaccatgaa 2700
caggaataga actegtattt aggggagaaa tagggetggt ggetetettg gtaagateta 2760
gttaatataa atgatcacct ttcattgtga atatatgcct gaagataatg tgtggaagga 2820
tatttgccat atgctaactg gttttttggc cagggagagt tttgggttat tatccctttt 2880
ctttaatttt cattttatac ttacagtgat cattattttc ataaaagctg taaagctatg 2940
aaaaatgaat aaaattacta aaaattttct gtaaaaaaaa aa
                                                                    2982
<210> 63
<211> 1185
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 585172CB1
ggagcgtcca gagtcctggc cctgagcggg aatcgcagtg gccgaggctg agcggcaggt 60
agaaggggcg teteeggggc tteacaggga acacaggggc tteggcccaa ccacaagtac 120
geagttgeae atgeeetaet tttgeeeatt etttgeaaat eeeetaagga aegaaegege 180
ctegegtgeg ggeettteta atettegett gteeetteae tteeacaget ggaggtegaa 240
ttcaccacgt cacgtagaga aaaggggcgg tgtctcgggt ctccccgtgt ggcatcaagg 300
cgggctccct ataggagctg gtgtggacgt ccgggcgtgg ggttagggcg gatgcgggga 360
tegeggggeg ggtgttgaea ttgtgetete accaggegga tegeceegae ceteaeteet 420
ggcgtctgag tctctggcgt agccatgctg agtgggcggc tggtcctggg tctggtctcc 480
atggctggcc gcgtttgttt gtgccagggc agcgcgggat ccggggccat cggtccggtg 540
gaggeegeea ttegeaegaa gttggaggag geeetgagee eegaggtget agagettege 600
aacgagageg gtggccaege ggtccegeet ggcagtgaga etcaetteeg egtggetgtg 660
```

```
gtgagetete gtttegaggg aetgageee etacaaegae aeeggetggt eeaegeageg 720
etggeegagg agetgggagg teeggteeat gegetggeea teeaggeaeg gaeeeeegee 780
cagtggagag agaactctca gctggacact agcccccat gcctgggtgg gaacaagaaa 840
actctaggaa ccccctgaac cccaagagag ggaggaccag gatccgaatg ggctgggtga 900
gcacgaatta ccgaggcctt ccctttgata cagtccagga tttgtaaggg atgaagaccc 960
ctgggcccca ttctgttggg gtccatacat actctccgaa gatagcaact tgcttcaggt 1020
caaagtgaac ccgagaaaag agaagaatca ctcactactg ctcttgccct ggactattca 1080
ggaagggcag cccggatgtt ccatgttaaa tcgtgacaga attgcaccag acctgatgag 1140
ttggaaacaa tcctatacat taaaagaaat tacactaaaa aaaaa
<210> 64
<211> 1191
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 615200CB1
<400> 64
tggacggacg cgtgggcttg atttctgatt tatgactgct ttttgttgta ccccaatagt 60
cgtctaagaa aggtgattat tttgagaggc ctggggagac acacatgctc attctcgagg 120
gtggcggtgg tgcagagggc agagccatgc tcgttcttgc tatcctgaga ttggttgcta 180
tetgttteet ttgetgetgt gttttttet gteagtatta aaggtggaag aaggteeata 240
tettttetg tgggtgette aagtgttgtt ggaagtggag geageagtga eaaggggaag 300
ctttccctgc aggatgtagc tgagctgatt cgggccagag cctgccagag ggtggtggtc 360 atggtgggg ccggcatcag cacacccagt ggcattccag acttcagatc tccggggagt 420
ggectgtaca gcaacctcca gcagtacgat ctcccgtacc ccgaggccat ttttgaactc 480
ccattettet tteacaacce caagecettt tteactttgg ccaaggaget gtaccetgga 540
aactacaage ecaacateac teactacttt eteeggetge tteatgacaa ggggetgett 600
ctgcggctct acacgcagaa catcgatggg cttgagagag tgtcgggcat ccctgcctca 660
aagctggttg aagctcatgg aacctttgcc tctgccacct gcacagtctg ccaaagaccc 720
ttcccagggg aggacattcg ggctgacgtg atggcagaca gggttccccg ctgcccggtc 780 tgcaccggcg ttgtgaagcc cgacattgtg ttctttgggg agccgctgcc ccagaggttc 840
ttgctgcatg tggttgattt ccccatggca gatctgctgc tcatccttgg gacctccctg 900
gaggtggage ettttgecag ettgacegag geegtgegga etcagtteee egaetgetea 960
tcaaccggga cttggtgggg cccttggctt ggcatcctcg cagcagggac gtggcccagc 1020 tggggggacgt ggttcacggc gtggaaagcc tagtggagct tctgggctgg acagaagaga 1080
tgcgggacct tgtgcagcgg gaaactggga agcttgatgg accagacaaa taggatgatg 1140
gctgccccca cacaataaat ggtaacatag gagacatcca catcccaatt c
<210> 65
<211> 2596
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 997067CB1
<400> 65
ceggtgtgtg ggtetgtgac agggtecaac agggeetggt cegtgteegg tececcaaat 60
etgtegtece tgeeceagg cattggeate aacaaaagte agaatteeeg ggaacttgaa 120
cagaggetge taaatteeca gtaattgete etttggeett etagggaetg aetteaaaga 180
aggaaggaaa gaatcaggca gtgcttcctc attctcttt aaaacccgct tcccgctgag 240
totgcaccca ggagaccaga gagcaccttg cccttccatg gaaactcagg ctgatctcgt 300
atotoaggaa cotoaggood tgottgadag tgotottoot toaaaagtto otgootttto 360
cgacaaggac agcctggggg atgagatgtt ggcggctgcg ctcctaaagg ccaagtccca 420
ggagctggta accttigagg atgtagctgt gtacttcatc cggaaggagt ggaagcgttt 480
ggaacctgct cagagggacc tctatagaga tgtgatgctg gagaattacg ggaatgtgtt 540
```

```
ctcactggat cgtgagacca ggactgaaaa tgatcaagaa atttctgaag acacaagatc 600
acatggggtc ctactgggaa gatttcaaaa ggatatttct cagggtctca agtttaaaga 660
agectatgaa egagaagtea gtetgaaaag geegetgggg aacteecetg gagaaagaet 720
gaacaggaaa atgccagatt ttggtcaagt gacagttgag gagaagctaa cccccagggg 780
agagagaagc gagaaatata atgattttgg gaacagcttc actgtgaatt ccaaccttat 840
ctcacatcag agactccccg tgggagacag accccataag tgtgatgaat gtagcaagag 900
ctttaatcga acttcagacc ttattcaaca tcagagaatc cacactgggg aaaagcccta 960
tgaatgtaat gagtgtggga aggcetteag ceagagetea cacettatte agcateagag 1020
aatccacact ggggaaaaac cttatgaatg tagtgattgt gggaaaacct tcagctgtag 1080
ctctgccctc attctgcatc ggaggatcca cacgggggag aaaccctatg aatgtaatga 1140
gtgtgggaag accttcagct ggagctccac cctcacccac catcagagaa tccacactgg 1200
tgagaaaccc tacgcctgca atgaatgtgg gaaggccttc agcaggagct caacccttat 1260
tcaccatcag agaatccaca ctggagaaaa accctatgaa tgtaatgaat gtgggaaagc 1320
etteagecag ageteacace tetateagea ecagagaate caeaetggag agaageceta 1380
cgaatgtatg gaatgtggag gaaagtttac ctacagttca ggccttattc agcatcaaag 1440
aatccacacc ggggagaacc cctatgaatg tagtgagtgt gggaaagcct tcaggtacag 1500
ctcggctctt gttcgccatc agagaattca cactggagag aagcctttga atgggatcgg 1560
catgagcaaa agctccctca gagttacgac cgagttaaat atcagagagt ccacgtgaaa 1620
gagecacaea eccattttee teaettteee tgagteteaa gagetettge ettaceetat 1680
aaatctcaac agcttaggat gtgtcccttt caactcagac ttttcatttt agagaatggg 1740
gcagatgggg caaatcgttg aattttccca gaaatcacac cagccttaga aagcgtcaag 1800
gcaagtggat ggcgtgctgg gaatagaaag cagctctggg accagttacc ccatttagga 1860
aaggagtttg cactaaactg tttttctcac agcagaggaa cctttccaag gtggggatgg 1920
aagcacagtc gggacagaat tcgatggatt cctttagttg gagtccgcgt agtcagcaca 1980 gacagcagtg gaaaggacgc tctgggtcct gttatttgct agggagggta aagggagact 2040
atttcaaage tactgtteet agtecagett taagtttegg taagaaacat getgttttgt 2100
ccatgtttcc aagagaaacc tggtgatatt gccagcagac cccctgccat ccccccagt 2280
tgtcctgggg ctgaatgggc aaatctgtcc aaacagctag taaccggctg tgagggagag 2340
ggtcagaage acttagegtt ggeetetgat tgetgteete tettgteete tteecactee 2400
aatgatgaaa atgattttct ctaaatgcct gggtaaggat gctttcaagg agctcacttg 2460
geotgettge cetgecetet cacctetgae acceageece aggagecaga ceacteetge 2520
etecacetet gaetetteag eagetgaaga ttaatgeaga gaaagageaa ageecaaaag 2580
ggagaaaaaa aaaaaa
                                                                   2596
<210> 66
<211> 1574
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1443262CB1
cagcccgtga gacgcccgct gctggacgcg ggtagccgtc tgaggtgccg gagctgcggg 60
aggatggagc cgctgaaggt ggaaaagttc gcaaccgcca acaggggaaa cgggctgcgc 120
geogtgacce egetgegeee eggagageta etetteeget eggateeett ggegtacaeg 180
gtgtgcaagg ggagtcgtgg cgtcgtctgc gaccgctgcc ttctcgggaa ggaaaagctg 240
atgegatget etcagtgeeg egtegeeaaa taetgtagtg etaagtgtea gaaaaaaget 300
tggccagacc acaagcggga atgcaaatgc cttaaaagct gcaaacccag atatcctcca 360
gactccgttc gacttcttgg cagagttgtc ttcaaactta tggatggagc accttcagaa 420
tcagagaagc tttactcatt ttatgatctg gagtcaaata ttaacaaact gactgaagat 480
aagaaagagg gcctcaggca actcgtaatg acatttcaac atttcatgag agaagaaata 540
caggatgeet eteagetgee acctgeettt gacetttttg aageetttge aaaagtgate 600
tgcaactctt tcaccatctg taatgcggag atgcaggaag ttggtgttgg cctatatccc 660
agtatetett tgeteaatea eagetgtgae eecaactgtt egattgtgtt eaatgggeee 720
cacctettae tgegageagt cegagacate gaggtgggag aggageteae catetgetae 780
ctggatatgc tgatgaccag tgaggagcgc cggaagcagc tgagggacca gtactgcttt 840
gaatgtgact gtttccgttg ccaaacccag gacaaggatg ctgatatgct aactggtgat 900
```

```
gagcaagtat ggaaggaagt tcaagaatcc ctgaaaaaaa ttgaagaact gaaggcacac 960
tggaagtggg agcaggttet ggceatgtge caggegatea taagcagcaa ttetgaacgg 1020
cttcccgata tcaacatcta ccagetgaag gtgctcgact gcgccatgga tgcctgcatc 1080
aacctcggcc tgttggagga agccttgttc tatggtactc ggaccatgga gccatacagg 1140
attttttcc caggaagcca tcccgtcaga ggggttcaag tgatgaaagt tggcaaactg 1200
cagctacatc aaggcatgtt tccccaagca atgaagaatc tgagactggc ttttgatatt 1260
atgagagtga cacatggcag agaacacagc ctgattgaag atttgattct acttttagaa 1320
gaatgegacg ccaacateag agcatectaa gggaacgcag tcagagggaa atacggcgtg 1380
tgtctttgtt gaatgcctta ttgaggtcac acactctatg ctttgttagc tgtgtgaacc 1440
tetectattg gaaattetgt teegtgtttg tgtaggtaaa taaaggeaga catggtttgc 1500
aaaccacaag aatcattagt tgtagagaag cacgattata ataaattcaa aacatttggt 1560
tgaaaaaaa aaaa
<210> 67
<211> 2197
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1521648CB1
<400> 67
cccgacgaac gcgaggaggg cgaggcggga ggtgcaggag ggaccctcgc catgggtcca 60 cgggcctaga gtggcggaag ataccggcct ggtgccaaac tggctactgc tgcttcctgt 120
ggcctccatg gctgaggact ggctggactg cccggccctg ggccctggct ggaagcgccg 180
cgaagtcttt cgcaagtcag gggccacctg tggacgctca gacacctatt accagagccc 240
cacaggagac aggateegaa geaaagttga getgaetega taeetgggee etgegtgtga 300
teteacecte ttegacttea aacaaggeat ettgtgetat ccageeceea aggeecatee 360
cgtggcggtt gccagcaaga agcgaaagaa gccttcaagg ccagccaaga ctcggaaacg 420
tcaggttgga ccccagagtg gtgaggtcag gaaggaggcc ccgagggatg agaccaaggc 480 tgacactgac acagccccag cttcattccc tgctcctggg tgctgtgaga actgtggaat 540
cagettetea ggggatggea eccaaaggea geggeteaaa aegttgtgea aagaetgteg 600
agcacagaga attgccttca accgggaaca gagaatgttt aagcgtgtgg gctgtgggga 660
gtgtgcagcc tgccaggtaa cagaagactg tggggcctgc tccacctgcc tcctgcagct 720
gccccatgat gtggcatcgg ggctgttctg caagtgtgaa cggagacgct gcctccggat 780
tgtggaaagg agccgagggt gtggagtatg ccggggctgt cagacccaag aggattgtgg 840
ccattgcccc atotgccttc gccctccccg ccctggtctc aggcgccagt ggaaatgtgt 900
ccagcgacgt tgcctacggg gtaaacatgc ccgccgcaag ggaggctgtg actccaagat 960
ggctgccagg cggcgccccg gagcccagcc actgcctcca ccacccccat cacagtcccc 1020
agageceaca gageegeace ecagageeet ggeeeeeteg ecaeetgeeg agtteateta 1080
ttactgtgta gacgaggacg agctacagcc ctacacgaac cgccggcaga accgcaagtg 1140 cggggcctgt gcagcctgcc tacggcggat ggactgtggc cgctgcgact tctgctgcga 1200
caagcccaaa ttegggggca gcaaccagaa gcgccagaag tgtcgttggc gccaatgcct 1260
gcagtttgcc atgaagcggc tgctgcccag tgtctggtca gagtctgagg atggggcagg 1320
ategececea cettacegte gtegaaagag geceagetet geeegaegge accatettgg 1380
ccctacettg aageccacet tggctacacg cacageccaa ccagaccata eccaggetee 1440
aacgaagcag gaagcaggtg gtggctttgt gctgcccccg cctggcactg accttgtgtt 1500
tttacgggaa ggcgcaagca gtcctgtgca ggtgccgggc cctgttgcag cttccacaga 1560
agecetgttg caggtgaage aagagaagge ggatacccag gacgagtgga caccaggcac 1620 agetgteetg aetteteeg tattggtgee tggetgeeet ageaaggcag tagacccagg 1680
cctgccttct gtgaagcaag agccacctga cccagaggag gacaaggagg agaacaagga 1740
tgattetgee tecaaattgg eeceagagga agaggeagga ggggetggea caccegtgat 1800
cacggagatt ttcagcctgg gtggaacccg cttccgagat acagcagtct ggttgccaag 1860
gtccaaagac cttaaaaaac ctggagctag aaagcagtag actggaggct tctacagact 1920
gaccgaggac acagtggagc ccacgagcac gagctggaac ccacgaggat ggcctggaac 2040
ccatgtcagt ctctcaccac ctccagette gatgatgtgg gtgtcctgca gaagaagetg 2100
gtgcccttcc tcacagagtt aaatatgcat ctggcccagg aattagagaa gctgaaagga 2160
tgatcctggg gaaggtggaa cagctgcagg cctggct
```

```
<210> 68
<211> 2081
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1685494CB1
<400> 68
gcatacgcag teegtgeeta ageggeacga ecategagee aaggteetee agegtteeta 60
gageggagaa gaaagegete egaagageta gagetgaeae teggegatga getaagaege 120
tgtttcagag cgtttgggtc ctctgaggcc ccttgaccag gagtgtctct gaagatacag 180
tccaaagaag gttctccaaa acaaggagag cagtctgaag ctggggatgg caacagcatt 240
ggtgagtgcc cattecetgg etcecetgag tetgaagaag gaggggette gggtagtgag 300
ggaggatcac tactctactt gggaacaggg attcaagctg caaggaaaca gtaaaggcct 360
tggacaggag ccattgtgca aacaattcag gcagttgcgt tatgaagaga ccacaggacc 420
tegagaagea etaagtegge teegggaget etgteaacag tggetacage eegagaceca 480
taccaaggag cagatectgg agetgetggt getggageag tttetgatea teetgeetaa 540
ggagetecag gecegggtge aggageatea eccagagage agggaggaeg tggttgttgt 600
tetggaggat ttgcagetgg atettggaga aacaggacaa caggtggace cagaccagec 660
aaagaaacaa aaaatacttg tggaggagat ggcccctctg aaaggagtac aggaacagca 720
ggttcggcat gagtgtgaag ttacaaagcc tgagaaagag aagggtgagg agacaaggat 780
aatatotgaa cocatggagg otcataatga gggototaac ttggaaaggo atcaggocaa 900
gcccaaagag aagattgagt ataaatgctc agaacgtgag cagagattca tccagcactt 960
ggacctgatt gaacatgcga gtacacacac gggaaagaaa ctctgcgagt ctgatgtgtg 1020
tcagagttcc agtcttacag gacataagaa agtcctctct agagagaaag gtcatcagtg 1080 tcatgagtgt gggaaagcct ttcagaggag ttcacacctc gtcagacatc agaaaatcca 1140
tettggtgag aageettate agtgeaatga gtgtggeaaa gtetttagee agaatgeagg 1200
ccttttggaa catctcagaa ttcatactgg agagaaacct tatctatgta tccattgtgg 1260
aaaaaatttt aggegeaget eteaeettaa tegacateag agaattcaca gteaggagga 1320
gccctgtgag tgcaaggagt gtggaaaaac ctttagtcag gccttactcc tcacccacca 1380
tcagagaatc catagtcact ccaaaagcca tcaatgtaac gagtgtggaa aagctttcag 1440
tttgacctca gaccttattc gacaccacag aattcatact ggagaaaaac ctttcaagtg 1500
taacatatgc cagaaagcct tccgactaaa ctcacacctt gctcagcatg taagaatcca 1560
caatgaagaa aaaccctatc agtgtagtga atgtggagaa gccttcaggc aaaggtcagg 1620
tettttteaa cateagagat ateaceaeaa agacaaaetg gettgatgag gtgttetete 1680
cttgtagaac atcagagaag gcacattgac tagcaaacag cactttagga aaagtcaccg 1740
tagcccactg tggcatcaga aaattcttgg gggctgagtt ggaggctccc tgcctctatt 1800
ctctctcctt tgctttcctt gaagtcagct ttggaccaca ataatttcac tgtagatgat 1860
atgctaggat caaagttaaa cagcattett caetgeagga cateteagag catgtaacat 1920
aactgcatga ttatatactc taagcaatag agagcttcat gactgagtaa gagttttgaa 1980
gtcagcagtg aatcaagtgc ccacagattt gcaggcttaa gcagaacaag ggaagattga 2040
tatttttgga tatgctatag cagctttctc ctatgaaata a
<210> 69
<211> 2785
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1730829CB1
<400> 69
gaccgtgcgg cgcccagcgg agtaggggct gcgcttgggg tttgctgaag ctggctgcct 60
eteceaetec cettttgggt gcaaagegee getageggga agaeggggge egggegggga 120
caggggcacc tgcgtactgg actgagagcc tgcgcccagc ttacatcgac cccacccggc 180
cccggcccga cccgacgcga cccgatccga tccgatccca ttccatccgt tcctcgtctc 240
ctcccggtct gacccgttgc ccggccgtgg ttcgccacac caggcatcca aagctgaggt 300
```

egeteetaeg geetgggete geettegett tagagatgtt tggeetette eeteecaaac 360 ageteatett caaaacetgg actettggae tggeacetgg ceacetttee etetaecaag 420

```
actccacttc cgtcttaccc acttcttcct cagattcttg gtaccccctg ggttggagac 480
tgctcatttt ccttccaaat taatcccaga ccccctaaaa tattgacaac cttgacaacc 540
ccccaaccga ggagccagac tttgttttgg actaacttcc atagccctat catggaggca 600
gtgtacctgg tagtgaatgg gttgggcetg gtgctggacg tgctgacctt ggtgttggac 660
ctcaacttcc tgctggtgtc ctccctcctg gcttccctgg cctggctcct ggccttcgtc 720
tacaacctgc cgcacacggt actgactagt cttctgcact tgggccgcgg agtcttgctt 780
teattgetgg cettgatega ageegtggte eggtteacat gtgggggett geaggeettg 840
tgtactctgc tgtatagctg ctgctctggc ctagagagcc taaagctcct ggggcacctg 900
gcctctcatg gggcactgcg gagcagggag atactgcacc ggggcgtcct caatgtggtc 960
tecagtggcc atgetttget gegecaggee tgtgacatet gtgecattge catgageetg 1020
gtggcttatg tgatcaacag cctggtcaac atctgcctca tcggcactca gaacctcttt 1080
teeetggtge tggeeetgtg ggatgeagtg acegggeete tgtggaggat gacagaegta 1140
gtggctgcct tcctagccca catttccagc agtgctgtgg ccatggccat cctcctttgg 1200
acaccetgee aactageeet ggagetgetg geeteagetg eeegeeteet ggeeagettt 1260 gtgettgtea ateteaetgg ettggtgttg etagettgtg tgetggeagt gaeggtgaet 1320
gtgttgcatc cggacttcac cctgaggctg gctacccagg cactcagcca gctccatgcc 1380
eggecatect accaeegtet tegagaggat gteatgegge tetetegeet ageaetggge 1440
tcagaggcct ggcgccgagt ctggagccgc agtctgcagc tggcgagttg gccaaaccgg 1500 ggaggggcac ctggagctcc ccagggtgac cctatgaggg tattctcagt taggacccgg 1560
agacaggaca etetteetga ageggggege agateagagg cagaagagga ggaggeeagg 1620
accatcagag tgacacctgt caggggccga gagaggctca atgaggagga gcctccaggt 1680
gggcaagacc cttggaaatt gctgaaggag caagaggagc ggaagaagtg tgtcatctgc 1740
caggaccaga gcaagacagt gttgctctg ccctgccggc atctgtgcct gtgccaggcc 1800
tgcactgaaa tcctgatgcg ccaccccgtc taccaccgca attgcccgct ctgccgccgg 1860
ggcatcctgc agaccctcaa tgtctacctc tgaagcctcc ttccctgcct gcccacccct 1920
ccatgeteca egeaggeact caegetagga cageattaac accteatete egggteetgg 1980
tetgaatece etectacee tgtggecate etgecataca tecaggacat tgagttggaa 2040
gactatgate tgggtggggg caggataaca tggettetet ttacccagtg ggtecetteg 2190
atgctgaggg tggtgagtat gtcactatgc aagggccctg agactatttg ctgtgggctc 2160
tcctccagcc tgcccaggge ccacccagat gcctctgggg ttacccctgt ctgcttctgg 2220
tttttctgtt ggagatctat aggtcctttt cctgcctcct tcacatttcc tccccagctt 2280
ttgcggccac aacacatcag tgtcatttgg gtgttttggc aactcagggg ccttcggatg 2340 atcttaaacc tttgtgttca gccagagccc ctgtgccctg gtaggcgttg gggttagtat 2400
ctctcgggtg ccctcagagc cacctctgcc tgtgatcgtc tgatgaggct ccctcccaac 2460
ctgatccaaa agccagtctc aggagtttac ccctgggatg ggggatgeat ctgcacctga 2520
etttggggee aegtgeeetg tggeaeeeea geteaetggg agteteagga gggataaeeg 2580
gatttctgct ctttcccctg tcactcccac atcacacaga aaaatggcat tcctctctgt 2640
ctetecetgg catggagagg geagactgtg cacattteae tagggtteaa atacagaagg 2700
cccagggccc aggggttgca gcttcgtgag gggtctctgg cccagtttcc aatgaataaa 2760
gttctcttga cagctaaaaa aaaaa
                                                                       2785
<210> 70
<211> 1231
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1864641CB1
<400> 70
tecegteeta tgaegteage egtaaggege tgetgtegta aaaggaegte eggteegtet 60
cctagtgtcc ggaateggct gtcagcctcc ctggctgtta gtaccttctt tcccggagtc 120
ctggtccacg agttggattt actgctgtcg cgggtgggcc tcacgccatt ccctgtccct 180
eggeeectg agtgagteeg gteteeegge gaaagtgage gaggtttgee eggagegege 240
acgagggaa aatgcctaaa aaaaagactg gtgcgaggaa gaaggctgag aaccgccgag 300
aacgtgaaaa acaactaaga gcatcaagaa gcactataga tttagctaaa catccatgta 360
atgeetcaat ggaatgtgae aagtgteaga ggeggeagaa gaatagagea ttttgetaet 420
```

```
tttgtaattc tgtacagaag ttaccaattt gtgcacagtg tgggaaaaca aagtgcatga 480
tgaagtette agactgtgte ataaageatg etggtgtata cagtactgge ettgeaatgg 540
tgggtgcaat atgtgacttc tgtgaagctt gggtttgcca tggtaggaaa tgtctcagta 600
cacatgettg tgcctgccct cttaccgatg ctgagtgtgt tgaatgtgaa cgaggcgtgt 660
gggaccatgg aggcagaata ttcagttgtt ctttttgcca taactttctc tgtgaagatg 720
atcaatttga gcatcaagcc agctgccagg ttttagaggc agaaacattt aaatgtgttt 780
catgcaatcg gcttggtcag cactcatgtc tccgttgtaa ggcttgtttc tgtgatgatc 840
atacaaggag caaagtgttt aagcaagaaa aaggaaaaca gcctccttgt cctaaatgtg 900
ggcatgaaac tcaggagact aaggacctta gcatgtcaac acgetccetg aaatttggca 960
ggcagactgg aggtgaagag ggagatggag cttctgggta tgatgcttat tggaagaacc 1020
tttcatctga taagtatggt gataccagct accacgatga ggaggaggat gagtatgaag 1080
cagaggatga tgaagaggaa gaagatgaag gcagaaagga ttcagatact gagtcatcag 1140
attigttiac taattigaat tiaggaagga cetaigetag tiggetaiget cactaigagg 1200
aacaagagaa ctaggggagc tgctctggtg g
<210> 71
<211> 700
<212> DNA
<213> Homo sapiens
<220> -
<221> misc-feature
<223> Incyte ID No.: 2444604CB1
gccccaggtg acacaatggc cgcagtccat ggcggctggc ttcttccagc ccttcatgtc 60
accgcgcttc ccagggggcc cccggcccac cctgcggatg ccgagtcagc ctcccgcatg 120
cotcoctgge teccagecce tectecetgg egecatggag eceteceeae gageceaggg 180
gcatccgage atgggcggcc caatgcagag ggtgacgcct cctcgtggca tggccagcgt 240 ggggccccag agctatggag gtggcatgcg acccccaccc aactccctcg ccggcccagg 300
cctgcctgcc atgaacatgg gcccaggagt tcgtggcccg tgggccagcc ccagtggaaa 360
ctcgatcccc tactcctcct catcccccgg cagctacacc ggacccccag gaggaggtgg 420
gececetgga acacecatea tgectagece tggagattee accaacteca gegaaacat 480
gtacactate atgaacceca tegggeaggg egeeggeagg getaatttee egeteggeee 540
tggcccggag ggcccatggc cgccatgagc gcgatggagc ctcaccacgt gaacggatcc 600
ctgggctcgg gcgacatgga cgggttgccg aagagttccc ccggcgccgt ggccggcctg 660
agcaacgeee eggggcaeee egegggaega eggegagatg
                                                                    700
<210> 72
<211> 2332
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2445008CB1
<400> 72
aggeggaegg ggaaegagge egteggeeat tttgtgtetg etteetgtgg gaegtggtgg 60
tagccgttgg gttgggaaag tgagggattt ttggcctcgt ttctcctgct tcttttctcc 120
tecettttae tttgccggta gaacacagtt atgggtegea agaagaagaa geagetgaag 180
ccgtggtgct ggtattgtaa tagagatttt gatgatgaga agatccttat tcagcaccaa 240
aaagcaaagc attttaaatg ccatatatgt cacaagaaat tgtatacagg acctggctta 300
gctattcatt gcatgcaggt acataaagaa acaatagatg ccgtaccaaa tgcaatacct 360
ggaagaacag acatagagtt ggaaatatat ggtatggaag gtattccaga aaaagacatg 420
gatgaaagac gacgacttct tgaacagaaa acacaagaaa gtcaaaaaaa gaagcaacaa 480
gatgattetg atgaatatga tgatgacgae tetgeageet caaetteatt teagecacag 540
cctgttcaac ctcagcaagg ttatattcct ccaatggcac agccaggact gccaccagta 600
ccaggagcac caggaatgcc tccaggcata cctccattaa tgccaggtgt tcctcctctg 660
atgccaggaa tgccaccagt tatgccaggc atgccacctg gattgcatca tcagagaaaa 720
```

```
tacacccagt cattttgcgg tgaaaacata atgatgccaa tgggtggaat gatgccacct 780
ggaccaggaa taccacctet gatgeetgga atgecaccag gtatgeecce acetgtteea 840
egteetggaa tteeteeaat gaeteaagea caggetgttt cagegecagg tattettaat 900
agaccacetg caccaacage aactgtacet geeccacage etccagttae taageetett 960
ttccccagtg ctggacagat ggggacacct gtcacaagct caagtacagc ttcatccaat 1020
gctgtccaag gacctgttgg tacagatttc aaacccttaa atagtacccc tgcaacaact 1140
acagaacccc caaagcctac attccctgct tatacacagt ctacagcttc aacaactagt 1200
acaacaata gtactgcage taaaccageg getteaataa caagtaagee tgetacaett 1260
acaacaacta gtgcaaccag taagttgatc catccagatg aggatatatc cctggaagag 1320
agaagggcac agttacctaa gtatcaacgt aatctteete ggccaggaca ggcccccate 1380
ggtaatccac cagttggacc aattggaggt atgatgccac cacagccagg catcccacag 1440
caacaaggaa tgagaccccc aatgccacct catggtcagt atggtggtca tcatcaaggc 1500
atgccaggat accttcctgg tgctatgccc ccgtatgggc agggaccgcc aatggtgccc 1560
ccttaccagg gtgggcctcc tcgacctccg atgggaatga gacctcctgt aatgtcgcaa 1620
ggtggccgtt actgatctta cttcatccag tctaataggt ttggagatta aaccttttct 1680
caacttgtgc tgtttatata gccaagette egtcaataag getteattgt gaetttaaca 1740 aacattatet teecacatae eaggaactat tggacattta ttttacatgg gaaaaattat 1800
ttggaataat aaagcaggaa cttttcctga agttgcaatt tatactgtat ggcttctttt 1860
tcatgtttca tctaggtttt tagaagtgaa gtatagtaaa tttggttcgt taaattgtga 1920
aggegetgga attacatgaa cataccacce tagtaaagge aagttetgta agettacatt 1980
gctatttgta aagtttgcct tcacagcatt tcagatgctg ttggacttca tgtccccaac 2040
ctagcttggt gagggctgta actgtttcca agtacttgta cattggaagt ctgaatgtgt 2100
aacaatattt aatgtattta gagtteetea tgttgeaggg tttaagaaat etgaceeace 2160
aaggtcatgt gacttttctg tactgttaaa cttcattgta ataaaatgag agaaaaattt 2220
atgeettttt atteataace cagetgtgga ceaetgeetg aaaggtttgt acagatgeat 2280
<210> 73
<211> 1936
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2572462CB1
<400> 73
ttggttctat attactgttt tatagctgag gagaaagact cacatcattt actaagatca 60
tatagctagc tagtaaatgt ttgagtgaaa atacaaacaa aggttttctg actttaagag 120
cttgagtttt ttccactata ccatattgca tctgttgtaa ttgttaacta atgtgcattt 180
taaaattete atttgtetta tgtactgage cettatacea gtgetaattt atgtgaetee 240
tttctcctgc agctaagaga aaaatacctt tttaattcat ttatagtacc cagtttttaa 300
agaagattta ttttgtaaaa ttttgcttat ggtacatgtc atcttagcct gtaaataaat 360
taaagcatta atttttatee eteeetggte tttteeteet tetgaettta taegtettte 420
tagagagett atettetata ataacaatte tttgttttaa agtgagaaag ateagtetaa 480
agaaaaggag aagaaagtga aaaaaacaat teetteetgg getaceettt etgeeageea 540
gctagccagg gcccagaaac aaacaccgat ggcttcttcc ccacgtccca agatggatgc 600
aatcttaact gaggccatta aggcatgctt ccagaagagt ggtgcatcag tggttgctat 660
tegaaaatac atcatecata agtateette tetggagetg gagagaaggg gttateteet 720
taaacaagca ctgaaaagag aattaaatag aggagtcatc aaacaggtta aaggaaaagg 780
tgcttctgga agttttgttg tggttcagaa atcaagaaaa acacctcaga aatccagaaa 840
cagaaagaat aggagctctg cagtggatcc agaaccacaa gtaaaattgg aggatgtcct 900
cccactggcc tttactcgcc tttgtgaacc taaagaagct tcctacagtc tcatcaggaa 960
atatgtgtct cagtattatc ctaagcttag agtggacatc aggcctcagc tgttgaagaa 1020
cyctctycag agagcagtag agaggggcca gttagaacag ataactggca aaggtgcttc 1080
ggggacattc cagctgaaga aatcagggga gaaacccctg cttggtggaa gcctgatgga 1140
atatgcaate ttgtetgeea ttgetgeeat gaatgageeg aagaeetget etaceaetge 1200
tetgaagaag tatgteetag agaateaece aggaaceaat tetaactate aaatgeattt 1260
gctgaaaaaa accctgcaga aatgcgaaaa gaatgggtgg atggaacaga tctctgggaa 1320
```

```
tccgaagaaa gagccagatg attctagaga tgaggatgaa gatgaagatg agtcatcaga 1440
agaagactet gaggatgaag ageegeeace taagagaagg ttgcagaaga aaaceccage 1500
caagteecca gggaaggeeg catetgtgaa geagagaggg tecaaacetg cacetaaagt 1560
ctcagctgcc cagcggggga aagctaggcc cttgcctaag aaagcacctc ctaaggccaa 1620
aacgeetgee aagaagaeca gacceteate cacagteate aagaaaceta gtggtggete 1680
ctcaaagaag cctgcaacca gtgcaagaaa ggaagtaaaa ttgccgggca agggcaaatc 1740
caccatgaag aagtctttca gagtgaaaaa gtaaatttta taggaaaaaa gggtatcatg 1800
atgaaattca aaatcttatt ttctaaggtc agtgtgcatt tgtttagttt tgatgctttt 1860
caaattacat tattttcctc ccctatgaac attgtgggga gggactctaa ataaaccagt 1920
ttaggcaaaa aaaaaa
<210> 74
<211> 1667
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte ID No.: 2572892CB1
cgcgaatcgg cgacccagt gcctcgacca ctatgccgcg ctctttcctc gtcaggaagc 60
cctecgaccc caateggaag cctaactaca gegagetgca ggactetaat ccagagttta 120
cettecagea gecetaegae caggeceace tgetggeage cateceacet ceggagatee 180
teaaccccac egectegetg ccaatgetea tetgggaete tgtcetggeg ecceaagccc 240
agccaattgc ctgggcctcc cttcggctcc aggagagtcc cagggtggca gagctgacct 300
ccctgtcaga cgaggacagt gggaaaggct cccagccccc cagcccaccc tcaccggctc 360
ettegteett eteetetaet teageetett eettggagge egaggeetat getgeettee 420
caggettggg ccaagtgccc aagcagetgg cccagetete tgaggecaag gatetecagg 480
ctegaaagge etteaactge aaatactgea acaaggaata ceteageetg ggtgeeetea 540
agatgcacat cegaagecac aegetgeeet gegtetgegg aacetgeggg aaggeettet 600
ctaggeectg getgetacaa ggeeatgtee ggaeceacae tggegagaag ceetteteet 660 gteeceactg cageegtgee ttegetgaee getecaacet gegggeecae etecagaece 720
acteagatgt caagaagtac cagtgecagg egtgtgeteg gacettetee egaatgteee 780
tgctccacaa gcaccaagag tccggctgct caggatgtcc ccgctgaccc tcgaggctcc 840
ctcttcctct ccatacctgc ccctgcctga cagccttccc cagctccagc aggaaggacc 900
ccacatectt etcactgeca tggaatteec teetgagtge eccaettetg gecacateag 960
ccccacagga ctttgatgaa gaccattttc tggttctgtg tcctctgcct gggctctgga 1020
agaggeette eegtggeeat ttetgtggag ggagggeage tggeeceeag eeetggggga 1080 tteetgaget ggeetgtetg egtgggtttt tgtateeaga getgtttgga taeagetget 1140
ttgagctaca ggacaaaggc tgacagactc actgggaagc tcccacccca ctcaggggac 1200
eccaetecce teacaeaeae ecceccaeaa ggaaeeetea ggeeaeeete eaegaggtgt 1260
gactaactat gcaataatcc accccaggt gcagcccag ggcctgcgga ggcggtggca 1320 gactagagtc tgagatgccc cgagcccagg cagctatttc agcctcctgt ttggtggggt 1380
ggcacctgtt tecegggcaa tttaacaatg tetgaaaagg gaetgtgagt aatggetgte 1440
acttgteggg ggeecaagtg gggtgetetg gtetgaeega tgtgteteee agaactatte 1500
tgggggcccg acaggtgggc ctgggaggaa gatgtttaca tttttaaagg tacactggta 1560
tttatatttc aaacattttg tatcaaggaa acgttttgta tagttatatg tacagtttat 1620
tgatattcaa taaagcagtt aatttatata ttaaaaaaaa aaaaaaa
<210> 75
<211> 759
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2785674CB1
<400> 75
```

```
tgggctcgcc tccctgggac taggtttcag cggccgctgc gatgaccaaa ataaaggcag
atcccgacgg gecegagget caggeggagg cgtgttccgg ggagegcacc taccaggage 120
tgctggtcaa ccagaacccc atcgcgcagc ccctggcttc tcgccgcctc acgcggaagc 180
tetacaaatg catcaagaaa geggtgaage agaageagat teggegeggg gtgaaagagg 240
ttcagaaatt tgtcaacaaa ggagaaaaag ggatcatggt tttggcagga gacacactgc 300 ccattgaggt atactgccat ctcccagtca tgtgtgagga ccgaaatttg ccctatgtct 360
atateceete taagaeggae etgggtgeag eegeaggete caagegeeee aeetgtgtga 420
taatggtcaa gccccatgag gagtaccagg aggcttacga tgagtgcctg gaggaggtgc 480
agtecetgee cetaceceta tgaggggete eggtageace tgggeacetg eegetggaag 540
ctattgggct ggcagcagga cgactggctg tcctcctgcc cacccacact gacggcatct 600
toccagttoc ccaaggcacg cottottocc aggcagetot aacagecett toatgaaggt 660
aatgctagtc ttctgtccat cagtgccatt tcctgtagaa ctaaaggctg ttccaagaat 720
gtggggtggg gaaagtaaat gctaagacta aaaaaaaa
<210> 76
<211> 1421
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2797479CB1
ceccagteac tgttectgcc cgttgcctgt cagecteact gcctttaatc cgcttccagg 60
geteatteae etgaatatat tggttgeeat gtegagatat ggtgaggata etgegeaagg 120 eateeeggat eegaacette teaagtaget gttgatagtg etggagetee aeggtgaeat 180
gagetaacag gegetgatea teatgggtga tgacatateg acgeacatag ecceeaaaga 240
acttagacac aaacatccca gctctgttga tgaagttgcc caggttgtta agcagctcag 300
aattattett cagcagcagg teegteeagg agaaagcact gteetggeee teaggcegaa 360
tgtacagcag atagaagcgc cagatgtcag cagggatccc cgtgtcctgg gctttgattt 420
tectggttca geacgaatte atgaaggaae teacaeteta gagaaaeeet atgaatgtaa 480
gcaatgtggg aaattgttat ctcatcgctc aagctttcga agacacatga tggcacacac 540 tggagatggc cctcataaat gcacagtatg tgggaaagcc tttgactctc ctagtgtatt 600
tcaaagacat gaaaggactc acactggaga gaaaccctat gaatgcaagc aatgtgggaa 660
agcetteegt aettecagtt ceettegaaa acatgaaaca acacacactg gagageaace 720
ctataaatgt aaatgtggaa aagettttag tgatttattt teettteaaa gteatgaaac 780
aacacacagt gaagaggagc cttatgaatg taaggagtgt gggaaagcat ttagttcttt 840
taaatacttt tgtcgccatg aacggactca cagtgaagaa aaatcttatg agtgtcaaat 900
ttgtggcaaa ctttcagtcg tttcagttac ttaaaaactc atgaaaggac tcacacggca 960
gagaagccat atgaatgtaa gcaatgcagg aaagcattct tttggccctc tttccttcta 1020
agacatgaaa ggactcacac tggagaaaga ccctatgaat gtaaacactg tggtaaagcc 1080
ttcagtcgtt ccagtttctg tcgagaacat gaaagaactc acgctggaga gaagccctat 1140
gaatgtaagg aatgtgggaa agcetteagt teteteagtt eetttaatag acataaaagg 1200
acacactgga aggatattet ataagtgtat ggaatgtggg aaagcattca ttggttttat 1260
cacattcaga tacttgaaag aaataaatcc tgtgaatgta aacgtggtaa agccttaaga 1320
agtttccagg ctgggcgcag cggctcacac ctgtaatccc agcactttga gaggccgagg 1380
agggcatatc acgaggccag gagatcgaga ccagcctggg g
                                                                       1421
<210> 77
<211> 2386
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2960640CB1
<400> 77
gacttttaag ggatcacaga gctcacacca aagaccaggg gaacagtcag aagcctggct 60
```

```
tgeteeteag geteecagga acetgeetea aaacacaggt etecaegace aggagacagg 120
tgctgtggtc tggacagctg ggtcccaggg accagccatg cgtgacaaca gagctgtatc 180
cctctgtcag caagaatgga tgtgcccagg ccctgcacaa agggccctct acaggggtgc 240
cacccagagg aaggacagtc acgtctcgct ggcaacaggt gtgccctggg gctatgaaga 300
gaccaagacg ctcctggcta ttcttagtag ttctcaattt tatggaaaac tccagacctg 360
tcagcagaac agccagatct acagggccat ggcggaagga ctctgggagc agggttttct 420
geggaeeeea gaacagtgte geaceaagtt caaaageeta cagttgagtt aeegeaaagt 480
gaggagaggc cgtgtgcctg agccttgtat cttttatgag gaaatgaatg ctctttcagg 540
ctcctgggcc tctgcacctc ctatggcaag cgatgctgtt cctggccaag aaggaagtga 600
tattgagget ggagagetga ateaecagaa tggggaaeee aeggaggtag aagatggeae 660
tgtggatggt gcagacaggg atgaaaagga cttcaggaat cctggccagg aagtcaggaa 720
actagacctg ccagtgctgt tcccaaacag acttggtttt gagttcaaga acgagattaa 780
aaaagaaaat ctaaaatggg atgattcaga ggaagtagaa ataaacaagg ctttacagag 840
aaagtccaga ggagtttatt ggcactctga gctacaaaaa ggcttggaga gtgagccaac 900
atcaagaagg caatgtagaa attctccagg ggagagtgag gagaaaaccc catcccagga 960
gaagatgagt caccagagtt tttgtgccag ggacaaagcc tgtacacata tcctctgtgg 1020
gaaaaactgc tctcagagtg tgcactctcc ccacaagcca gcgctcaaac tggaaaaagt 1080
atctcaatgt cctgaatgtg ggaaaacctt tagccgaagt tcttatcttg ttcggcatca 1140
aagaatccac acaggcgaga agcctcacaa gtgcagtgag tgcgggaagg gctttagtga 1200
gcgctccaac ctcactgccc acctacgaac tcacacaggg gagaggccct atcagtgtgg 1260 gcaatgtggg aaaagcttca accagagttc cagcctcatt gtccaccaga ggacccatac 1320
cggggaaaag ccttaccagt gcattgtctg tggaaagaga ttcaacaaca gttcccagtt 1380
cagtgctcac cggcgcatcc acactgggga gagcccatac aagtgtgcag tgtgtgggaa 1440
aatetteaae aatageteee aetteagtge eeacegaaaa aeeeacaetg gtgaaaagee 1500
ttacaggtgt tctcactgtg agagaggctt cactaagaac tctgccctca cccgtcatca 1560
gacagtacac atgaaagcag tactctcatc acaggaagga agagatgcgt tatgagtgtg 1620
teggiaaact gteagattaa gtteeteagg teageatgta tgagetttet tetgetgtgg 1680 agagatetag ceagteeetg aetttgeaac agacetaetg aetaetggat ettaagaeec 1740
atgtctagga ccaggagtca gcataaggac gctgacctct cctggctgtg cctgtgactc 1800
cagagtecta tettactgtg acttaaagtt tgatggagag aaagetgtag gatecataaa 1860
ttetaccagg aatccagggt etteetgtte etageactga gaatgggeac ecagtggtee 1920
aagaacactt tetgggetaa catagteete acacaggget gagaaagaaa gtgteteett 1980
tectggaaag cacatgtaaa agttaaggge etgaatetet tetaaaccaa taattgacet 2040
ctaggcaccc accgtaatac tgctacette agagcagaag acactgctct ttgtaaccca 2100 gccaccacca aaaagcaaac agaaagaagg aaggatggtt aagccattgg ataatactga 2160
atotytttoo otaagtgact taacottaga gcaagcacaa catocaggtt aattaattgt 2220
aagatttctc ctctcattat tgccctcatc atagttcctg attgtctctt aaagtaagtg 2280
gtttatagac attactattt ctgataataa tttacaaact actataaaca aatttataaa 2340
cattactaat ttctgatgaa aataaagttg tttctccctc caccac
<210> 78
<211> 1432
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3454051CB1
<400> 78
agtatgaget ggacetgtee gegttgeeag caacetgttt tettegetga gaaggtgage 60
tecctgggea agaactggea cegettetge etgaaatgtg agegetgeea cageateetg 120
teccetggeg ggeatgeaga geacaatggg aggeeatact geeacaagee atgetatggg 180
getetetttg gacceagggg ceeteeceat atgaagacat teaetgggga gacetegetg 240
tgccctggct gtggggagcc cgtctatttt gctgagaagg tgatgtcatt aggcagaaat 300
tggcaccgac cgtgtctgag gtgccagcgt tgccacaaga ccctgactgc tgggagtcat 360 gctgagcatg atggagtccc ctactgccac gtcccctgct acggctacct gtttggcccc 420
aaaggtgtga acattggcga tgtgggctgc tacatctatg acccagtgaa gataaaattc 480
aaatgagacg ctcacaaaaa aggtcaccct aactcaggcc tcccatcatg cccctcatgg 540
tccaatggaa gctacaaaaa tctccagtcc catgggggtt ggggaaggtg ggatcttggg 600
ggcctgggcc taggctccat ggtaggccag agagtctaga ctttctctgc caattttttc 660
```

```
cettteceat ttetatetgg ttagggaaca gecegttttg aagggtatee teeteetgge 720
catcacaacc cettteecca geacattetg gagetteaag gtaeteataa aacttgtgtt 780
 tattgaattt cagcetetgt ggettettea ataaaatgtt ggeteecatg eetteaacte 840
ttctttgggc atgagaccag tgggttggag gatggggagt gtgggggttg ggatgacatg 900
cattgecctg cagggtgect eggaggtage agggecagee atgagaacaa aaagetetgt 960
tetttttgtc cettgggeet ggeattggea gteetageac caeacagtgg acageatgee 1020
caccageece attggtacea gaagteteat atgetagtee tttetttage accateteta 1080
gaagaagcag aagcacctta ttcagtaact catttgagca tggcaacaga tcctatggta 1140
gggcctccca agaggcttca ttatccattt gggagatgaa cagactgagg cccagagagg 1200
gaaagccaca tgcccaaggt cacacagcaa gttaatggtg aaggttttat cagagcccag 1260
ggcagactca gtggcttcct atccagggct cttctcacag ctcgtcacca ctgccccaac 1320
ccaaggggca cetttattta cagaatetee ecaacegtga gaegggtgee ageagaceae 1380
tgcattctgg gaagtcaact gttcctagaa gcaaataatc aaggatggat ga
<210> 79
<211> 1816
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3510640CB1
<400> 79
cactgatgca ggaactgtat agcacaccag cctccaggct ggactccttc gtggctcagt
ggctgcagcc ccaccgggag tggaaggaag aggtgctaga cgctgtgcgg accgtggagg 120
agtttctgag gcaggagcat ttccagggga agcgtgggct ggaccaggat gtgcgggtgc 180
tgaaggtagt caaggtgggc tccttcggga atggcacggt tctcaggagc accagagagg 240
tggagetggt ggegtttetg agetgtttee acagetteea ggaggeagee aageateaca 300
aagatgttet gaggetgata tggaaaaeca tgtggcaaag ecaggacetg etggaeeteg 360
ggctcgagga cctgaggatg gagcagagag tccccgatgc tctcgtcttc accatccaga 420
ccagggggac tgcggagccc atcacggtca ccattgtgcc tgcctacaga gccctggggc 480
cttetettee caacteecag ceaecectg aggtetatgt gageetgate aaggeetgeg 540
gtggtcctgg aaatttctgc ccattcttca gcgagctgca gagaaatttc gtgaaacatc 600
ggccaactaa gctgaagagc ctcctgcgcc tggtgaaaca ctggtaccag cagtatgtga 660
aagccaggtc ccccagagcc aatctgcccc ctctctatgc tcttgaactt ctaaccatct 720
atgeetggga aatgggtaet gaagaagaeg agaattteat gttggaegaa ggetteaeca 780
ctgtgatgga cctgctcctg gagtatgaag tcatctgtat ctactggacc aagtactaca 840
cactccacaa tgcaatcatt gaggattgtg tcagaaaaca gctcaaaaaa gagaggccca 900
teateetgga teeggeegae eccaceetea aegtggeaga agggtacaga tgggacateg 960
ttgctcagag ggcctcccag tgcctgaaac aggactgttg ctatgacaac agggagaacc 1020.
ccatctccag ctggaacgtg aagagggcac gagacatcca cttgacagtg gagcagaggg 1080
gttacccaga tttcaacctc atcgtgaacc cttatgagcc cataaggaag gttaaagaga 1140
aaateeggag gaeeagggge taetetggee tgeagegtet gteetteeag gtteetggea 1200
gtgagaggea getteteage ageaggtget cettageeaa atatgggate tteteeeaea 1260
ctcacateta tetgetggag accateceet eegagateea ggtettegtg aagaateetg 1320
atggtgggag ctacgcctat gccatcaacc ccaacagctt catcctgggt ctgaagcagc 1380
agattgaaga ccagcagggg cttectaaaa agcagcagca getggaatte caaggccaag 1440
teetgeagga etggttgggt etggggatet atggeateca agacagtgae acteteatee 1500
tetegaagaa gaaaggagag getetgttte eagecagtta gttttetetg ggagaettet 1560
ctgtacattt ctgccatgta ctccagaact catcctgtca atcactctgt cccattgtct 1620
actgggaagg teccaggtet teaccagttt tacaatgagt tateccagge cagaegtggt 1680
agctcacacc tgtaatccca gaactttggg aggccgaggt gggaggagcg cttgagccga 1740
ggagttcaag accagectgg gtatcatagg gagacecegt etetacaaaa taaaaaaata 1800
attcactggg aaaaaa
                                                                  1816
<210> 80
<211> 1556
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc-feature
<223> Incyte ID No.: 3815083CB1
<400> 80
ctcaggtccg gagcgcggtc gggacacagc gcctctagga gaaagcctgg aaggcgctcc 60
gggggtatcc agagctctta gcgggccggc agcatgtgcg gggccccagt aaatggaaat 120
gttttctaac atataaaaac ctacagaaga agaaaataat tttctggatc aaattagaag 180
totgtattat attgatgtot coagattoaa atatattaga aagcagcogt ggagacaaco 240
atottcattt tgggagaaat aactaaagcc cgcctcaagc attagaacta cagacaaacc 300
ctgatgegac ctctccagat tgtcccaagt cgattgattt cccagctata ttgtggcctg 360
aagcctccag cgtccacacg aaaccagatt tgcctgaaaa tggctcggcc aagttcaagt 420
atggcagatt ttcgaaagtt ttttgcaaaa gcaaagcaca tagtcatcat ctcaggagct 480
ggtgttagtg cagaaagtgg tgttccgacc ttcagaggag ctggaggtta ttggagaaaa 540
tggcaagece aggacetgge gaetecectg geetttgeee acaacecgte eegggtgtgg 600
gagttctacc actacoggcg ggaggtcatg gggagcaagg agcccaacgc cgggcaccgc 660
gccatagccg agtgtgagac ccggctgggc aagcagggcc ggcgagtcgt ggtcatcacc 720
cagaacatcg atgagctgca ccgcaagget ggcaccaaga accttetgga gatccatggt 780
agettattta aaactegatg tacctettgt ggagttgtgg etgagaatta caagagteea 840
atttgtccag ctttatcagg aaaaggtgct ccagaacctg gaactcaaga tgccagcatc 900
ccagttgaga aacttccccg gtgtgaagag gcaggcttgcg ggggcttgct gcgacctcac 960
gtcgtgtggt ttggagaaaa cctggatcct gccattctgg aggaggttga cagagagctc 1020
geocactgtg atttatgtet agtggtggge actteetetg tggtgtacce ageagecatg 1080
tttgccccc aggtggctgc caggggcgtg ccagtggctg aatttaacac ggagaccacc 1140
ccagetacga acagattcag gtttcatttc cagggaccct gtggaacgac tcttcctgaa 1200
gcccttgcct gtcatgaaaa tgaaactgtt tcttaagtgt cctggggaag aaagaaatta 1260
cagtatatet aagaactagg ecacaegeag aggagaaatg gtettatggg tggtgagetg 1320 agtaetgaac aatetaaaaa tageetetga tteeeteget ggaatecaac etgttgataa 1380
gtgatggggg tttagaagta gcaaagagca cccacattca aaagtcacag aactggaaag 1440
ttaattcata ttatttggtt tgaactgaaa cgtgaggtat ctttgatgtg tatggttggt 1500
tattgggagg gaaaaatttt gtaaattaga ttgtctaaaa aaaataaaaa aaaaaa
<210> 81
<211> 1951
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3988457CB1
<400> 81
ctccgattat gggataggag aagtgcccgt ggagcccctg gatgtcccct taccctccac 60
gatcaggcca gettececeg tggccgggte tecaaagcag ceggtgegtg getactaceg 120 tggcgctgte ggtggcaegt ttgaccgcct geacaacgce cacaaggtgt tgctcagtgt 180
cgcgtgcatc ctggcccagg agcagcttgt ggtgggagta gcagacaaag atctgttgaa 240
gagcaagttg ctccctgagc tgctccaacc ttatacagaa cgtgtggaac atctgagtga 300
attectggtg gacatcaage ceteettgae ttttgatgte ateceeetge tggaceeeta 360
tgggcccgct ggctctgacc cctccctgga gttcctggtg gtcagcgagg agacctatcg 420
tggggggatg gccatcaacc gcttccgcct tgagaatgac ctggaggaac ttgctttgta 480
ccagatccag ctgctgaagg acctcagaca tacagagaat gaagaggaca aagtcagctc 540
ctccagcttc cgccagcgaa tgttggggaa cctgcttcgg cctccatatg aaaggccaga 600
gctccccaca tgtctctatg taattgggct gactggcatc agtggctctg ggaagagctc 660
aatageteag egaetgaagg geetggggge gtttgteatt gaeagtgaee acetgggtea 720
tegggeetat geceeaggtg gecetgeeta ceageetgtg gtggaggeet ttggaacaga 780
tatteteeat aaagatggea teateaacag gaaggteeta ggeageeggg tgtttgggaa 840 taagaageag etgaagatae teaeggacat tatgtggeea attategeaa agetggeeeg 900
agaggagatg gategggetg tggetgaggg aaagegtgtg tgtgtgattg atgeegetgt 960
gttgcttgaa gccggctggc agaacctggt ccatgaggtg tggactgctg tcatcccaga 1020
gactgagget gtaagacgea ttgtggagag ggatggeete agtgaageeg eggeteaaag 1080
ccggctgcag agccagatga gcgggcagca gcttgtggaa cagagccacg tggtgctcag 1140
```

```
cagcccttgt gggagccgca tatcacccaa cgccaggtgg agaaagcctg ggccctcttg 1200
cagaagegea tteccaagae teateaggee etegaetgaa aagtteteag tggggeeaga 1260
ctggctcctg gagctgacaa gcgaccccgt ggtgaggaga aatgggggcc ttgatgctca 1320
ccctggttca ggcccagagg tccaagctat actgtgcagg acatggccag gcctggtgga 1380
cacaggaage ctacceaeca egetggtatt tggccaacac tgaggatgtg gttcatgggg 1440
gagcagteec etececate ttgeecatgg gtgaetetta cecacagetg actagggeca 1500
gcgcaaatac tggaacctgt aacagaatta aaggtgaatg ttctgaaaaa aaaatagaat 1560
tttggacatc tacaactaac tcgatttaca cttacgaaca taatggactc ttaaaaaatg 1620
gaaagggata acagggaccc cccgggttct gcatcttcc tcccggggat ttttttccgg 1680 ccgggtcctt gcgggtgaac tgattttcct tacactgcgc ctatttaaac gttggggtaa 1740
ccagggtegg accttttccc ttggaacttt ttttacccgt cacgatttcc actgcaactt 1800
agacteggga aacttagggt ggaateeetg gggggeetaa ggegggaaet eeeteeettt 1860
atetgetttg ggtcaaagag ecegtttete catetggcaa etetgtecat ecaaggggtt 1920
ttegggttet egggeeaagg eeeggggtgg g
<210> 82
<211> 1313
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 131890CB1
<400> 82
cgtcgggagg gcctaagtcc gtgtgcggtg cccttcggcc ggcctgagcc ccagagtcag 60
ctcccctttc tcgcccagcg cccccaggcc gctcccgggg ctcacggaat agtaaagaaa 120
cacatcataa aacctcccag gacataaagg tgagcacaga ccctgtttgg atcaagtcag 180
ttcctggagc ctgaatgatg actgctgaat cacgggaagc cacgggtctg tccccacagg 240
ctgcacagga gaaggatggt atcgttatag tgaaggtgga agaggaagat gaggaagacc 300
acatgtyggg gcaggattcc accctacagg acacgcctcc tccagaccca gagatattcc 360
gccaacgett caggegette tgttaccaga acacttttgg gccccgagag gctctcagte 420
ggctgaagga actttgtcat cagtggctge ggccagaaat aaacaccaag gaacagatcc 480
tggagettet ggtgetågag eagtttettt ceateetgee eaaggagete eaggtetgge 540
tgcaggaata ccgccccgat agtggagagg aggccgtgac ccttctagaa gacttggagc 600 ttgatttatc aggacaacag gtcccaggtc aagttcatgg acctgagatg ctcgcaaggg 660
ggatggtgcc tetggateca gttcaggagt cetegagett tgacettcat cacgaggeca 720°
cccagtccca ettcaaacat tegtetegga aacceegeet ettacagtca egaggtaaga 780
agcaaggttt catttagggg aagggaaatg attcaggacg agagtctttg tgctgctgag 840
tgcctgtgat gaagaagcat gttagtcctg ggcaacgtag cgagacccca tctctacaaa 900
aaatagaaaa attagccagg tatagtggcg cacacctgtg attccagcta cgcaggaggc 960
tgaggtggga ggattgcttg agcccaggag gttgaggctg cagtgagctg taatcatgcc 1020
actactecaa eetgggeaac acagcaagga eeetgtetea aaagetaett acagaaaaga 1080
attaggeteg geaeggtage teacacetgt aateceagea etttgggagg etgaggeggg 1140
cagatcactt gaggtcagga gtttgagacc agcctggcca acatggtgaa accttgtctc 1200
tactaaaaat atgaaaatta gecaggeatg gtggeacatt cetgtaatce cagetacteg 1260 ggaggetgag geaggagaat caettgaace caggaggtgg aggttgeagt aag 1313
<210> 83
<211> 1197
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte ID No.: 238642CB1
eggetegage gtgaacegaa gteettatat teeegggett ettteteete tgggtaeeag 60
etecttacty ceetgeagac aagegtgeeg tgegtgettg tggecaaggg aaggaagage 120
tggttgatcc acagatagct cettectecc egeceettee tttttgtttg gaggteccag 180
```

```
gatetgtgtt cacagacate tgggggaaga aaaggagcag gaaactacce cgcacagagt 240
taagcaggaa acaacaacaa catcatgcaa aaaccctgca aagaaaacga aggaaagcca 300
aagtgcagcg tgccaaagag ggaggaaaaa cgcccgtatg gagaatttga acgccagcaa 360
acagaaggga attttagaca gaggetgett cagteteteg aagaatttaa agaggacata 420
gactataggc attitaaaga tgaagaaatg acaagggagg gagatgagat ggaaaggtgt 480
ttggaagaga taaggggtct gagaaagaaa tttagggctc tgcattctaa ccataggcat 540
totogggaco gtoottatoo catttaatta atttototga caattcaatt attttotgtt 600
attaatgttg ccactgcttt ctgtttgtct gcactttctt gataaatatt tgctatcgtt 660
ttactccagt cattcgatgt tgctgagatt tacatatgac tcttgtcaac atctcatctt 720
ttgacccaat cttattcatt taataagagg tctcattcat ttgcatggaa aaatgctcat 780
tgtatattgc aaagtgaaaa taacgagttg caaaacagtg tatacatata tgtgtgtata 840
tatgtacact ttatttgtac atttctatgt gacataatgc aaaggaaagt gtctgatttt 900
attatacacc aaaggttaac agtgaatctc tgtgtgatct cttttttttt ctttttgcct 960
atctgcatct tctcacttgc caaaaaatga atatatgttt atgtgtgtat attacttgtg 1020
tcacaaaaaa ccctaaagta gacagtaaaa gaacttgtca atcgcctttg gaaggcaatg 1080
aaacacttaa taaactetca ataacagaag egtaaaaatg aaatgtaaac etecaattae 1140
ctctggatct cttagccaga gtaataaact ggtaattatt acagataaaa aaaaaaa
<210> 84
<211> 2170
<212> DNA
<213> Homo sapiens
<221> misc-feature
<223> Incyte ID No.: 669862CB1
<400> 84
agegtgegeg ataggacagg geettaaatt catggttatg tgtttggttt teattetaag
ataaagccga accactgaca aaattatata gagagcaatg tgataatgtt aggaatagag 120
atattcagga catactcctg tgcattctga tccactcagt ctgagtggat atctaaaaga 180
tagtgtatgt aaaatgctcc tatggtaatt ctgatttgca actaaatatg agaactagtg 240
actttgtctt tgcctactca taaatcttac atcctcctgt gcactttcat aattttctgt 300
gcccttcttg ccttttatat attgcttggc agtactttag aattttctaa actctttgat 360
tactaacaga tacacttttt agttgatcac tatttttaat atagatgtcc tctccctacc 420
cgctattatt ggaaaatagc atttgtttgt tttttcattt tcttccagac tttaatttca 480
caactgaaag caacaagtta tcttcagaaa aaagaaatta tgaagtaaat gcgtaccatc 540
aggagacatg gaaaagaaat aaaaccttca accttatgag gtttattttc agaactgacc 600
cacagtacac aattgaattt gggagacaac agagacctaa agtgggatgt tttagtcaaa 660
tgatattcaa aaaacataaa tcccttcctc tacataagag aaataacaca agagagaaat 720
catatgagtg taaggaatat aagaagggct ttagaaaata tttgcacctt actgaacatc 780
tgagagacca tactggtgtg ataccctatg aatgtaatga atgtggaaaa gcatttgtag 840
ttttccagca ttttattaga catcgaaaaa tccacactga tttgaaaccc tatgaatgca 900
atggatgtga gaaggeettt aggttttatt cacagettat teageateag ataatteata 960
etggtatgaa accetatgaa tgtaagcaat gegggaagge ttttagaegt eatteteace 1020
ttacagaaca tcagaaaatt catgttggct tgaaaccctt tgaatgtaag gaatgtgggg 1080
aaacgtttag attatatcga catatgtgtc tgcatcagaa aattcatcat ggtgtgaaac 1140
cctacaaatg taaagaatgt ggaaaggctt ttggtcatcg ttcaagtctt taccaacata 1200
agaaaattca ttctggtgag aaaccatata aatgtgaaca atgtgaaaag gcctttgttc 1260
gcagctatct acttgttgaa catcaaagaa gtcatactgg tgagaaacct catgaatgca 1320
tggaatgtgg aaaggetttt agtaaggget caageettet taaacataag agaatteata 1380
gtagtgagaa actctatgat tgtaaggatt gtggaaaggc cttttgtaga ggctctcaac 1440
ttacacagca tcagagaatt catactggtg agaagccaca tgaatgtaaa gaatgtggga 1500
agacttttaa getteattea tatettatte aacateagat aatteataet gatttgaage 1560
catatgaatg taagcaatgt gggaaagcet tcagtegtgt tggagacett aagacacate 1620
aatcaattca tgctggggag aaaccctatg aatgtaagga atgtggaaaa acctttagac 1680
ttaattetea actaattat cateagacaa tteataetgg tttgaaacee tatgtatgta 1740
aagaatgtaa gaaggeettt egttetatet eaggtettte teaacataag agaatteata 1800
ctggtgaaaa accctatgaa tgtaaagaat gtgataaggc ctttaatcgc agtgatcgac 1860
ttactcaaca tgagacaatt catactggtg tgaaaccaca gaaatgcaaa gaatgtggta 1920
aggeetttag teattgetat caacttagte aacateaaag attteaceat ggtgagagae 1980
```

```
tettaatgta atgagaggga aageetttag ceatggeaca tttttaetgt tgteactatt 2040
atgatgetat agtgaagatt aaactagtta atatagaata taaataettg gaaaggeate 2100
tggcacatcg tatttgctta ctaaatacat tatttttatg ataattgtta gaattactaa 2160
gaataaatga
<210> 85
<211> 1904
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1003663CB1
<400> 85
cageteteag gteegacace egetggaage eggegeggge geaggegege aegeaaagge 60
ggccgggagt aaggcggact gaaggaggag cttgatggaa gcgtgcgaga aggggcgtaa 120
ctgatttgga aaccagagga aaggegetgt tttcaccgaa ttagaatege gggaaaatag 180
agaagagttt gtttgaaggt ctcgcgagat cgagaccgga agtccttcat ctcaagcatc 240
caatgctgaa agcggcctga ttttctctac cggaagccct tttccagagg ctgggaacac 300
ggcccaccta gcaggaagte ccacctectt gageteegee accetteeeg aagtttttet 360
gteacctgtg ttaggeteeg teccetttee gegttttate ceegtaceag aaaaggatae 420
atttagtgcc tcccacccag ctccactaaa cgggttggat atctcattct ttgagttggt 480
gtteetteec eggegeecee atgtagetgg gaagtgggae etgggggtgg ttggaecet 540 gggateetaa aggaggggea gggagggege agaacteege ttetgeteet tgetaecagg 600
acgegeggee testeagest etttestese getgecatge accetgeage ettesegett 660
cctgtggttg tggccgctgt gctgtgggga gcggccccga cccgggggct cattcgagcg 720
accteggace acaatgccag catggacttt geagacette eagetetgtt tggggetace 780
ttgagccagg agggcctcca ggggttcctt gtggaggctc acccagacaa tgcctgcagc 840
cccattgccc caccacccc agccccggtc aatgggtcag tetttattgc getgettega 900
agattegaet geaactttga ceteaaggte etaaatgeee agaaggetgg atatggtgee 960
gctgtagtac acaatgtgaa ttccaatgaa cttctgaaca tggtgtggaa tagtgaggaa 1020
atccagcage agatetggat ecceptetgta tttattgggg agagaagete egagtacetg 1080
cgtgccctct ttgtctacga gaagggggct cgggtgcttc tggttccaga caataccttc 1140
cccttgggct attacctcat ccctttcaca gggattgtgg gactgctggt ttttggccatg 1200
ggagcagtaa tgatagctcg ttgtatccag caccggaaac ggctccagcg gaatcgactt 1260
accaaagagc aactgaaaca gattcctaca catgactatc agaagggaga ccagtatgat 1320
gtotgtgcca tttgcctgga tgaatatgag gatggggaca agctgcgggt actcccctgt 1380
geteatgeet accaeageeg etgegtggae eeetggetea etcagaeeeg gaagaeetge 1440
cccatttgca agcagcctgt tcatcggggt cctggggacg aagaccaaga ggaagaaact 1500
caagggcaag aggagggtga tgaaggggag ccaagggacc accetgeete agaaaggace 1560
ceactiting gittetagese cactetiese accteeting gitteetiage escagetese 1620
ettgttttte etgggeette aacagatece ceactgtece etceetette ecetgttate 1680
etggtetaat aacccccac acatacacct etggtgacct atttgcacag accgtegtet 1740
tccctccagt cttctgaggg ataggggaca ttccatccca agcttctccc ttacccacac 1800
ctatectttt gaggggettt ggggtgggge tggggcaage agagggaetg ggtetteaet 1860
tottgggcta ataaaattgt ttotttgtgg actaaaaaaa aaaa
                                                                    1904
<210> 86
<211> 1249
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1432557CB1
<400> 86
cgtttatcct gttgggggcg gaagtgagag agcccttatt cgtattggct tagatttgca 60
ageggeagtt gtetateaaa tetateaagt egecettage geteaggaag tacgacaceg 120
```

```
gaaggggtgg getttgegaa gatggeggeg etgggggtge tggagteega eetgeeaagt 180
gccgtgacac ttctgaaaaa tctccaggag caagtgatgg ctgtaactgc acaagtgaaa 240
 tcactgacac aaaaagttca agctggtgcc tatcctacag aaaagggtct cagcttcttg 300
gaagtgaaag accagetget geteatgtae ettatggatt tgaeceaeet eattetggae 360
aaagcctcag gaggatetet teagggacat gatgcagttt tgagaetggt agagattega 420
acggttttgg aaaagcttcg tcccttggac caaaagctga agtatcaaat tgacaagctg 480
atcaagactg cagtgacagg cagccttagt gagaatgacc cacttcgttt taagcctcat 540
cccagcaata tgatgagcaa gttgagctct gaggatgagg aggaagatga agcagaagat 600
gaccagtetg aggetteagg gaagaaatet gtgaagggag tgtetaagaa atatgtteet 660
ccacgcttgg ttccagtaca ttatgatgaa acagaagctg agcgggagaa gaagcgtcta 720
gaacgagcca agagacgggc attgagcagc tctgtcattc gtgaacttaa ggagcagtac 780
teagatgete cagaggaaat eegtgatget eggeateece atgttaceeg eeagagteag 840
gaggaccaac acaggattaa ctatgaggag agcatgatgg tgcgtttgag cgtcagtaag 900
cgagagaaag gacggcgaaa acgagcaaat gtcatgagct cacaacttca ttcccttaca 960
cacttcagtg acatcagtgc tttgacaggg ggaactgttc atcttgatga ggatcagaat 1020
cctattaaga agcggaagaa gatacctcag aaaggtcgga agaaaaaagg ttttcggagg 1080
eggeggtgat tatgggtgta catatttgta tattttttgt catcetgaga tacttetaat 1140
ttcattgtat ataggtggtt ttccctggaa ttcattaatt gtttgctttg gacatgtgga 1200
aagagcctta ctaataaaat tgattttact tatgaaaaaa aaaaaaaaa
<210> 87
<211> 1064
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1441770CB1
<400> 87
cggctctcca gagcgtctgt aaacacccag agactgtcat ggagggggag gaggaggcgg
eggeggegaa gggaggegtt tggggeegee teeagggtee getetgeeat teetgaactg 120
gtccctcgtc cccgtgactc tggcatcagg gaagcgaact gttaggcgag aggaggaggc 180
agccagaacc atateceett etteeteggg gegggggeeg ggccaggeeg getgageegg 240 gggagggete egggagggag tgeetggeea ggeeggeetg tetgeegega tggatgaeag 300
taaggtggtt ggaggcaaag taaagaagcc cggtaaacgt ggtcggaagc cagccaaaat 360
tgacttgaaa gcaaaacttg agaggagccg gcagagtgca agagaatgcc gagcccgaaa 420
aaagctgaga tatcagtatt tggaagagtt ggtatccagt cgagaaagag ctatatgtgc 480
cctcagagag gaactggaaa tgtacaagca gtggtgcatg gcaatggacc aaggaaaaat 540
cccttctgaa ataaaggccc tactcactgg agaagagcag aacaaatctc agcagaactc 600
aagcaggcat accaaggctg ggaagacaga tgctaatagc aattcctggt gaagattata 660
taaagatgag tcagtgattg aagccaatat tctgattccc atggaagatg gatgggcaag 720
agtgtacttc ttggctccat ttactaccta ctgctcagta gtcatctctg taaatctgca 780
atttctacca aaatgtgtga tcgtagatct caaaggatct tgctttaact ttcaacactt 840
agaaaatcta caaacattca gacctgtctg ggttggtatt gccacccatg acatttaaca 900
tgttgtgatg cttgaaaaca caggagtaga gaaaatcgat gaagattgta tttttgcacc 960
ttaactecae attgetttat tggttaatit atattettte catgtaatte atgtaattgt 1020
                                                                    1064
atgtctgtgt gtgttttatg tgtcaccacc tttcatgttt ttga
<210> 88
<211> 1398
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1456684CB1
<400> 88
agacccaaaa gcattaagga gaaaaagaaa actacatcac ataccagggg agaaataccg 60
```

```
gaggagtcaa actatgttgc tgatcctgga ggatcactga gcaaaaccac aaatattgct 120
gaagaaacca gcaaaattga aacctacatt gcaaaacctg ctctgccggg aacctccaca 180
aatagtaatg ttgcacccct ttgccaaata acagtgaaaa ttggaaacga agccattgtg 240
aaaaggcaca ttctaggatc taaattgttt tataaaagag ggagaagacc caagtatcag 300
atgcaggagg agcctttgcc acaggggaat gacccagaac ccagtggaga cagcccactc 360
gggetttgcc aatccgagtg catggagatg agtgaagtgt tcgatgacgc aagtgaccag 420
gattccactg acaaaccgtg gcgcccttac tacaactaca aacccaaaaa gaaatccaga 480
cagttgaaaa aaatgaggaa agtcaactgg aggaaggagc acggaaacag gagcccgagc 540
cataaatgta aatacccagc agaactggat tgcgccgtgg ggaaggctcc tcaggataaa 600
ccctttgagg aagaagaac taaagagatg cccaagctgc agtgtgaact ctgtgatgga 660
gacaaagcag tgggggctgg aaaccaagga aggccccacc gacatcttac ttctcggcca 720
tatgeetgeg agetetgege caageagtte cagageeett ecacaeteaa aatgeacatg 780
agatgtcaca ceggggagaa gccataccag tgcaagacct geggaeggtg etttteggtg 840 caaggaaact tacagaaaca tgaacgcate cacetggget tgaaggagtt egtetgteag 900
tattgcaaca aggcattcac cttgaatgag accctcaaaa tccatgaaag aatccatact 960
ggagaaaagc gttaccactg tcagttctgc tttcagagat ttttgtatct ctccaccaaa 1020
aggaatcacg agcagaggca tattcgggag cataatggga agggctatgc ctgcttccag 1080
tgccccaaaa tttgcaaaac agctgctgcc cttggaatgc accaaaagaa acacttattc 1140
aaaagcccaa gtcagcagga gaaaataggt gacgtgtgcc acgaaaactc aaatcccttg 1200
gagaatcaac atttcattgg ttcagaagac aatgaccaaa aggataacat acaaaccggt 1260
gtggaaaatg ttgtcctttg agtggcaaga attagaaaaa tcttcaaaaa tatagttggt 1320
ggttttttta gttatgattt aagtttagtt tcattttgtc catgtgacag tcatgaagga 1380
gtgaaaaaaa aaaaaaaa
<210> 89
<211> 746
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1602916CB1
<400> 89
eggetegagg egtetttatg ggeeeeettt aaggeeggeg gaggeatete gggeegggeg 60
eggegeteeg teegteggee gtagegaetg aactgegege ggateeetee geggggetee 120
tegteecegt caegetgact tteegtgeag tgeegtggtg egaaaatgee tegeeggtge 180
gcaccggaga cagccgattt ttacgaccca gcaagaggcc gagctggtac aatatcctga 240
ctgtaaatcg tccagtggta atattggcga ggacccagac cacttaaatc agagctcgtc 300
teetteteaa atgttteegt ggatgagace acaageaget eetggtagae gaagaggaag 360
acaaacctac agtegettee aaactetaga gttggaaaag gaatttettt ttaaccecta 420
tetgaccagg aaaagaagaa tegaggttte ceaegeeeta geeetcaeeg agagacaggt 480
aaaaatctgg ttccagaaca ggagaatgaa atggaaaaag gaaaacaaca aggacaaatt 540
tecegtttee eggeaggagg tgaaggaegg ggaaacgaaa aaggaageee aagagetgga 600
ggaagacaga gccgaacgct tgacaaatta acttctacct ttaaaattta ccacagacta 660
ttaaaactaa taatcaccat atgctgtgga caccacctat tttctttgtt ggaaaagacc 720
ttactgtgtt tcaagctacc ttcatg
<210> 90
<211> 1270
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1692816CB1
<400> 90
gttggtcacg tggttgttcg gagcgggcga gcggagttag cagggcttta ctgcagagcg
cgccgggcac tccagcgacc gtggggatca gcgtaggtga gctgtggcct tttgcgaggt 120
```

```
getgeageca tagetaegtg egttegetae gaggattgag egteteeace cagtaagtgg 180
gcaagaggcg gcaggaagtg ggtacgcagg ggcgcaaggc gcacagcete tagacgacte 240
gettteecte eggeeaacet etgaageege gteetaettt gaeagetgea gggeegegge 300
ctggtcttct gtgcttcacc atctacataa tgaatcccag tatgaagcag aaacaagaag 360
aaatcaaaga gaatataaag aatagttetg teecaagaag aactetgaag atgatteage 420
cttctgcatc tggatctctt gttggaagag aaaatgaget gtccgcaggc ttgtccaaaa 480
ggaaacatcg gaatgaccac ttaacatcta caacttccag ccctggggtt attgtcccag 540
aatctagtga aaataaaaat cttggaggag tcacccagga gtcatttgat cttatgatta 600
aagaaaatcc atcctctcag tattggaagg aagtggcaga aaaacggaga aaggcgctgt 660
atgaagcact taaggaaaat gagaaacttc ataaagaaat tgaacaaaag gacaatgaaa 720
ttgcccgcct gaaaaaggag aataaagaac tggcagaagt agcagaacat gtacagtata 780
tggcagaget aatagagaga etgaatggtg aacetetgga taattttgaa teaetggata 840
atcaggaatt tgattctgaa gaagaaactg ttgaggattc tctagtggaa gactcagaaa 900
ttggcacgtg tgctgaagga actgtatett cetetacgga tgcaaagcca tgtatatgaa 960
atgeattaat atttgactgt tgagaatttt actgeegaag tttaeeteea etagttettt 1020
gtagcagagt acataactac ataatgccaa ctctggaatc aaatttcctt gtttgaatcc 1080
tgggacccta ttgcattaaa gtacaaatac tatgtatttt taatctatga tggtttatgt 1140
gaataggatt ttctcagttg tcagccatga cttatgttta ttactaaata aacttcaaac 1200
tcctgttgaa cattgtgtat aacttagaat aatgaaatat aaggagtatg tgtagaaaaa 1260
aaaaaaaaa
<210> 91
<211> 943
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 1968191CB1
<400> 91
gtcccatttc cagaaatcac aaggatgtta ggcaatgaat ggagtaaact gcctcctgag 60
gaaaaacagc gctaccttga tgaagcagac agagataagg agcgttacat gaaggaactg 120
gaacagtatc agaaaacaga ggcctacaag gtcttcagta ggaaaaccca ggaccgtcag 180
aaaggcaaat ctcataggca agatgcagcc cggcaggcca ctcatgatca tgagaaagaa 240
acagaggtaa aggaacggtc tgtttttgac atccctatat ttacagagga attcttgaac 300
catagcaaag ctcgggaagc agagctccgc cagcttcgca aatccaacat ggagtttgag 360
gagaggaatg cagccctgca aaagcacgtg gagagcatgc gcacagcagt ggagaagctg 420
gaggtggatg tgatccagga gcggagccgc aacacagtct tacagcagca cctggagacc 480
ctgcggcagg tgctgaccag cagctttgcc agcatgccct tgcctggaag tggagagaca 540
cctacagtgg acaccattga ctcatatatg aacagactgc acagtattat tttagctaat 600
ccccaagaca atgaaaactt catagctaca gttcgagaag ttgtgaacag actcgatcgt 660
tagggaatgg tgagtgctca ctgataaata tttatatgcc agcacatcat caaaaataag 720
atgtcatcag actttatcaa tactactaaa accctgggat tacattggat gaacaagttg 780
gagacttggt taagatteet gttgcatggt tgttaaatgt agtaaataat attagaaaag 840
agaatcactg tagtcccagc tacttgggag getgaggtgg gaggattgct tgagcccagc 900
agttcaagtc cagagagatc ctgtctctaa aaataaaaga aaa
<210> 92
<211> 1997
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2052061CB1
<400> 92
cgaccacgcg tecgetegeg tggggegega ggtaccccgt ggggcageta ggtgcctcca
agaaaccccg ccccagagga cccgcacgag ttgttgccat ttttcgctga agcccctgcc 120
```

```
ctgggggtgg tgttcttctc tatgattcta ccaatcgtcg gaattttttt cctccttct 180
 ttctttttag gaaggegetg gggtgtgegg eggaaaegge ggeggtgaag ggateetett 240
gtggtatete eteceeggag aaatagggga gtgggggeee aagaacgaga agacgagaac 300
gcgtcgccct gcgctatgtc agaatggggc gggtgtgagg ggaacagctc tcttgcgatc 360 agatcaggag tatgagcctc ccggaggacg gcatgagttc tggacacttc aggagtcctc 420
agctagtgac atggtcgata tggataaact cataaacaac ttggaggtcc aacttaattc 480
agaaggtggc tcaatgcagg tattcaagca ggtcactgct tctgttcgga acagagatcc 540
ccctgagata gaatacacaa gtaatatgac ttctccaaca ctcctggatg ccaaccccat 600
ggagaaccca gcactgttta atgacatcaa gattgagccc ccagaagaac ttttggctag 660
tgatttcagc ctgccccaag tggaaccagt tgacctctcc tttcacaagc ccaaggctcc 720
totocagoet getageatge tacaagetee aatacgteec eccaageeac agtettetee 780
ccagaccett gtggtgtcca cgtcaacate tgacatgage acttcagcaa acattcctae 840
tgttctgacc ccaggetctg tcctgacctc ctctcagagc actggtagcc agcagatctt 900
acatgtcatt cacactatec ceteagteag tetgecaaat aagatgggtg ggetgaagae 960
cateceagtg gtagtgcagt etetgcccat ggtgtatact aetttgcctg cagatggggg 1020
gcctgcagcc attacagtcc cactcattgg gggagatggt aaaaatgctg gatcagtgaa 1080
agttgacccc acctccatgt ctccactgga aattccaagt gacagtgagg agagtacaat 1140
tgagagtgga tcctcagcct tgcagagtct gcagggacta cagcagaac cagcagcaat 1200
ggcccaaatg cagggagaag agtcgcttga cttgaagaga agacggattc accaatgtga 1260
etttgcagga tgcagcaaag tgtacaccaa aageteteae etgaaagete accgcagaat 1320
ccatacagga gagaagcett ataaatgcac ctgggatggc tgctcctgga aatttgctcg 1380
ctcagatgag ctcactcgcc atttccgcaa gcacacaggc atcaagcctt ttcggtgcac 1440
agactgcaac cgcagctttt ctcgttctga ccacctgtcc ctgcatcgcc gtcgccatga 1500
caccatgtga gccgcacagg tcacactaga gaagctgcgc tggtatcttt cctggtcgtg 1560
tgctgaggtt gggacaattt tttcctcttt gacttcagct tgcatatggg gttgaagcag 1620
cccactgagc caagttgagg agactggagg aaaagagagc tggtctcccg tggggctctt 1680
catattetae etceaettet ecaetgteea gaccegtttt ttteaaecce cacatgggtt 1740
gacttccage gtggcaccca tgggtgcctt cccatccccc cctgttctga aatagggaat 1800
ttttccccca gcaacaccac aggaatcaaa ctcaaggctg gcaaccacat ccgctgtttc 1860
ttcctcccac ttccctcttg tctctagaac tcttatccaa tgtcttaaca tcctaccaaa 1920
agggctcgat gcgttccaca gattttcac ttcttattgc agggatacat tcgtggtcgc 1980
cacataaggg ttgcttc
<210> 93
<211> 4334
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2056207CB1
<400> 93
cggtggtggt ggcgggccgg ggcatgagca ggaggaggat taccgctacg aggtgctcac 60
ggccgagcag attctacaac acatggtgga atgtatccgg gaggtcaacg aggtcatcca 120
gaateeagea aetateacaa gaataeteet tageeactte aattgggata aagagaaget 180
aatggaaagg tactttgatg gaaacctgga gaagctcttt gctgagtgtc atgtaattaa 240
tccaagtaaa aagtctcgaa cacgccagat gaatacaagg tcatcagcac aggatatgcc 300
ttgtcagatc tgctacttga actaccctaa ctcgtatttc actggccttg aatgtggaca 360
taagttttgt atgcagtgct ggagtgaata tttaactacc aaaataatgg aagaaggcat 420
gggtcagact atttcgtgtc ctgctcatgg ttgtgatatc ttagtggatg acaacacagt 480
tatgcgcctg atcacagatt caaaagttaa attaaagtat cagcatttaa taacaaatag 540
ctttgtagag tgcaatcgac tgttaaagtg gtgtcctgcc ccagattgcc accatgttgt 600
taaagtccaa tatcctgatg ctaaacctgt tcgctgcaaa tgtgggcgcc aattttgctt 660
taactgtgga gaaaattggc atgatcctgt taaatgtaag tggttaaaga aatggattaa 720
aaagtgtgat gatgacagtg aaacctccaa ttggattgca gccaacacaa aggaatgtcc 780
caaatgccat gtcacaattg agaaggatgg tggttgtaat cacatggtct gtcgtaacca 840
gaattgtaaa gcagagtttt getgggtgtg tettggeeca tgggaaccae atggatetge 900
ctggtacaac tgtaaccgct ataatgaaga tgatgcaaag gcagcaagag atgcacagga 960
gcgatctagg gcagccctgc agaggtacct gttctactgt aatcgctata tgaaccacat 1020
gcagagcetg egetttgage acaaactata tgetcaggtg aaacagaaaa tggaggagat 1080
gcagcagcac aacatgteet ggattgaggt gcagtteetg aagaaggeag ttgatgteet 1140
```

```
ctgccagtgt cgtgccacac tcatgtacac ttatgtcttc gctttctacc tcaaaaagaa 1200
taaccagtcc attatctttg agaataacca agcagatcta gagaatgcca cagaggtgct 1260
ctcgggctac cttgaacgag atatttccca agattctctg caggatataa agcagaaagt 1320
acaagacaag tacagatact gtgagagteg acgaagggtt ttgttacage atgtgcatga 1380
aggctatgaa aaagatctgt gggagtacat tgaggactga gaatggccct gcataaaatg 1440
aactetgaaa aetttaecat etagagtget eatgeaatta aaacaaaaca aacacaaaca 1500
aggaggcact aagcetatte tgacaceact ggtetgtagt accagaattg ttttgttaat 1560
ggaaagttta agtaaattat attgtaataa aaaggtagat aaaccattgt acaacagtat 1620
tctaggccgc caacaaagt gtgacagaca cactaaaagc cctccaactt taacttgtaa 1680
egtagettea tteteaaage tgaeteettt tttttetttt teetttteet gagtgtagta 1740
cagttaaaat ttcaaacage teettgacac tgetttteat gttcaaacca gecattttgt 1800
tgtactttgg taaaggacct cttccccttc ctcccctaca catacagata cacccacaca 1860
cagactgact ctctttctct cataccccaa ggtcatgagt gaatgatgct tagttccttg 1920
taaagaaaat cttgggatgg ggaaaggggt aggcagcaag aggattcaac aaacgaaaaa 1980
cataaaaact ttgtatatga cttttaaaac aagaggacaa cacagtattt ttcaaaattg 2040
tatatagcgc atatgcatgg acaaagcaag cgtggcacgt gtttgcataa tgtttaatta 2100
caaaaaaata tttattcttt aaaaatcttc aagattatgt ctatttgctg tgcattttct 2160
ttcagtttgc ttatctttcc cgggttgggg ttgggataaa ggtgtgtcgg tttagcacct 2220
ctggaagacc tatctagagc tetttcactt teetgaggtt attttgeeet ttetggtgtt 2280
ggtatgtctg ttgccggcca tgggcctcat gccttgaatt cctgctcttg atcagggaca 2340
agggaggtca agctctgact aatgccatga cctgattaag gggtacagca gggagttttg 2400 ttgctacagc tcatgaatta acctgtccca acctaatccc cctccatggc atcatgcctc 2460
tacccaagec tttgtgtgcc catgttatgc acacagetgc aggeattett aagteeeetg 2520
togcatocag tggaagcatt ttaaaattto ttttactttt tggttttocc ttaattgctg 2580
cttttcagat tttagttatg gctcgtctgc tcacccttc tctacattag ggtgtcaaag 2640
agaatgtttt getttaaata taaatageea tteatttagt eteagattgt gaatttaaaa 2700
tggtggatac cgaaattgct tgtgtgtgtt gctgtgggtt tggtttgaag gcaaacaccc 2760
ctagaacatg atattcccat ctagtgcatt taaatagaaa tcactgagtt tgctgctttt 2820
ttattgtcag cagataggag aattaataat gcattttage tgtgatgtcc atttttatga 2880
aatteetaet aagagetatg ttaaaagtaa aggatggtgg tggttgtatt aactatatae 2940
ctgtttaggc cattctggct gtggtatttt tcaataggtc agcatctgta aatctgtcag 3000
ttttatacag gagtgcagag tgaactaggc aactagatta agaggtctaa atatgaaata 3060
ccagttgagg ctgaggacct cttcgtcttc ctttagatgt cttttgccta gggagtgttt 3120
accatttgtg aggcagettt gtetgetett acactgtaca teetattact eeattgggaa 3180
gtaggtteac tttcctctgg ccttttgcct aagttaggct ttgctgaatc aaccctactt 3240
ttccttttag aaaaggttgt tacaggagat ttactggcaa ctgttctttt cccatcaaaa 3300
atcagtgaat gtttgctgag tataaatgct gcttccttaa accacttgtc gctttaggat 3360
caactttacc tgtacctttt etcettteet eeettgeeae etcaggtgea aatetgaact 3420
cagtgtetge ttetteeatt ttetegtete teteceetet teeceeatta tecatatgae 3480
attattttac ttcaaatgac agcatcaatc ttaaaaagat atacattaaa actaaggagt 3540
ttttttaaag aaagcetgaa taagtteett teeetggtaa etttgaaaag cagteagagt 3600
tgctatatag atatatgtgg ctcctttaaa atgctttgtg tatgtgtggt gtttaaaaaa 3660
aaaaatctta ccagttaact ttgcagtgtc taggtttgag tgtcataaat ccacgtgttc 3720
ctgttgcaac aaatacccaa aaattgtgtg tgcacttcct aataccagtc ttcacccatg 3780
gaggaacagt gctttttaga gatgctttct atttcaatgt tggcatactg cctgagggta 3840
ttgcagttgt gggtgcattc cctaatttgt atgatcaaga tgaactggcc cttttctact 3900
tccaagcttt taacagatac caccatattt gacagaattc ccagagtgaa ttgcttgtgt 3960
tattagtaga ttcagtgccc ccagctggga taggcaagcc atgacagctt ccctgtttca 4020
cctacagaag tettatetga gggatetatt cacagtaage accaaggtet ccatgtettg 4080
aggteagttt cattgtettt tgaaaagtge atgetteatt tgaacaatte atteageage 4140
agatggactt tcagtgattt aaaataaaat tttgatccaa agctcaggac acaaaccaca 4200
gtggtaaaat tgagtagcat ataatatcag actaaattat ctgtaatttt ccacaaccca 4260
gattgtatgt gttttatgtg tgtttaaata aatatgttag atacacgtgt atacatacac 4320
ccatatacag caga
<210> 94
```

```
<210> 94
<211> 1706
<212> DNA
<213> Homo sapiens
<220>
```

<220>

<221> misc-feature

<223> Incyte ID No.: 2101803CB1 <400> 94 cegegeeeeg eegeeaeeat gagggeegag ggeeteggeg geetggageg ettetgeage 60 eegggeaaag geeggggget gegggetetg cagecettee aggtgggggga ettgetgtte 120 tectgecegg cetatgecta egtgeteaeg gteaacgage ggggeaacea etgegagtae 180 tgcttcacca ggaaagaagg attgtccaaa tgtggaagat gcaagcaggc attttactgc 240 aatgtggagt gtcagaaaga agattggccc atgcacaagc tggaatgttc tcccatggtt 300 gtttttgggg aaaactggaa tccctcggag actgtaagac taacagcaag gattctggcc 360 aaacagaaaa teeacecaga gagaacaeet teggaaaaat tgttagetgt gaaggagttt 420 gaatcacatc tggataagtt agacaatgag aagaaggatt tgattcagag tgacatagct 480 getetecate aettttaete caageatete gaatteeetg acaatgatag cetegtagta 540 etetttgeac aggttaactg taatggette acaattgaag atgaagaact tteteatttg 600 ggatcagcga tatttcctga tgttgcattg atgaatcata gctgttgccc caatgtcatt 660 gtgacctaca aagggaccct ggcagaagtc agagctgtac aggaaatcaa gccgggagag 720 gaggttttta ccagctatat tgatctcctg tacccaacgg aagatagaaa tgaccggtta 780 agagattett atttetttae etgtgagtge eaggagtgta eeaccaagga eaaggataag 840 gccaaggtgg aaatccggaa gctcagcgat cccccaaagg cagaagccat ccgagacatg 900 gtcagatatg cacgcaacgt cattgaagag ttccggaggg ccaagcacta taaatcccct 960 agtgagetge tggagatetg egageteage eaggagaaga tgagetetgt gtttgaggae 1020 agtaacgtgt acatgttgca catgatgtac caggccatgg gtgtctgctt gtacatgcag 1080 gactgggaag gagccctgca atatggacag aaaatcatta agccctacag taagcactat 1140 cctttgtact ccctcaacgt ggcctccatg tggttgaagc tagggagact ctacatgggc 1200 ctggaacaca aagccgcagg ggagaaagcc ctgaagaagg ccattgcaat catggaagta 1260 geteacggea aagateatee atatattet gagateaaae aggaaattga aageeactga 1320 aactatgcag catttcagtt ttcatttaaa cacttagttc agaaacctta aaggatttga 1380 atatttcaaa ttgcacacgt cactccagca tctctgtaaa ataattggaa tgaaaatact 1440 tcttgcactt aaacactgca catgccgtac tttgaggtta gtctgaatct tgaactttaa 1500 taccaaatta attttgaatg cttttgtttc ctaagagata atggcatggt ttcatatgtt 1560 atactttgga cagacagagt tttaaaaatg gaattatttt ttctttcatg cctcttgtaa 1620 tgttctgaac aaacttgaat gatgaaagta ttaaagagat atcagtaaaa agaacaaaaa 1680 ataaagatcc agaaagaaaa aaaggg <210> 95 <211> 1602 <212> DNA <213> Homo sapiens <220> <221> misc-feature <223> Incyte ID No.: 2112362CB1 <400> 95 ccgtggggca gtcgaggatg tcggtgaatt acgcggcggg gctgtcgccg tacgcggaca 60 agggcaagtg cggcetcecg gagatetteg accecegga ggagetggag eggaaggtgt 120 gggaactggc gaggctggtc tggcagtctt ccaatgtggt gttccacacg ggtgccggca 180 tragcactge etetggeate eccgaettea ggggteecea eggagtetgg accatggagg 240 agcgaggtet ggcccccaag ttcgacacca cetttgagag cgcgcggccc acgcagaccc 300 acatggeget ggtgeagetg gagegegtgg geeteeteeg etteetggte agecagaacg 360 tggacgggct ccatgtgcgc tcaggcttcc ccagggacaa actggcagag ctccacggga 420 acatgtttgt ggaagaatgt gccaagtgta agacgcagta cgtccgagac acagtcgtgg 480 gcaccatggg cctgaaggcc acgggccggc tctgcaccgt ggctaaggca agggggctgc 540 gageetgeag gggagagetg agggaeacea teetagaetg ggaggaetee etgeeegaee 600 gggacctggc actegecgat gaggecagea ggaacgeega eetgteeate aegetgggta 660 categetgea gateeggeee agegggaace tgeegetgge taccaagege eggggaggee 720 gcctggtcat cgtcaacctg cagcccacca agcacgaccg ccatgctgac ctccgcatcc 780 atggctacgt tgacgaggtc atgacccggc tcatgaagca cctggggctg gagatccccg 840 ectgggacgg cccccgtgtg ctggagaggg cgctgccacc cctgccccgc ccgcccaccc 900 ccaagctgga gcccaaggag gaatctccca cccggatcaa cggctctatc cccgccggcc 960 ecaagcagga geeetgegee cageacaaeg geteagagee egeeageeee aaaegggage 1020 ggcccaccag ccctgccccc cacagacccc ccaaaagggt gaaggccaag gcggtcccca 1080 gctgaccagg gtgcttgggg agggtggggc tttttgtaga aactgtggat tcttttctc 1140

```
tegtggtete actttgttae ttgtttetgt eeeegggage eteagggete tgagagetgt 1200
getecaggee aggggttaca ectgeeetee gtggteeete eetgggetee aggggeetet 1260
ggtgcggttc cgggaagaag ccacacccca gaggtgacag ctgagcccct gccacacccc 1320
agcetetgae ttgetgtgtt gteeagaggt gaggetggge eeteeetggt eteeagetta 1380
aacaggagtg aactocotot gtococaggg cotocottot gggccocota cageccacco 1440
tacccctcct ccatgggccc tgcaggaggg gagacccacc ttgaagtggg ggatcagtag 1500
aggettgeae tgeetttggg getggaggga gaegtgggte caccaggett etggaaaagt 1560
cctcaatgca ataaaaacaa tttctttctt gcaaaaaaaa aa
<210> 96
<211> 1951
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2117346CB1
<400> 96
gaggcgcgcg cgaccggcgg ctctttggcg cggattaggg ggtctcggcg agggagtcat 60
caagetttgg tgtatgtgtt ggeeggttet gaagtettga agaagetetg etgaggaaga 120
ccaaagcagc actcgttgcc aattagggaa tggaccgttt gggttccttt agcaatgatc 180
cctctgataa gccaccttgc cgaggctgct cctcctacct catggagcct tatatcaagt 240
gtgctgaatg tgggccacct cettttttcc tctgcttgca gtgtttcact cgaggctttg 300
agtacaagaa acatcaaagc gatcatactt atgaaataat gacttcagat tttcctgtcc 360
ttgatcccag ctggactgct caagaagaaa tggccctttt agaagctgtg atggactgtg 420
gctttggaaa ttggcaggat gtagccaatc aaatgtgcac caagaccaag gaggagtgtg 480
agaagcacta tatgaagcat ttcatcaata accetetgtt tgeatetace etgetgaace 540
tgaaacaagc agaggaagca aaaactgctg acacagccat tccatttcac tctacagatg 600
accetecceg acetacettt gaeteettge titteteggga catggeeggg tacatgeeag 660
ctcgagcaga tttcattgag gaatttgaca attatgcaga atgggacttg agagacattg 720
attttgttga agatgactcg gacattttac atgctctgaa gatggctgtg gtagatatct 780
atcattccag gttaaaggag agacaaagac gaaaaaaaat tataagagac catggattaa 840 tcaaccttag aaagtttcaa ttaatggaac ggcggtatcc caaggaggtc caggacctgt 900
atgaaacaat gaggcgattt gcaagaattg tggggccagt ggaacatgac aaattcattg 960
aaagccatgc attggaattt gaactccgaa gggaaatcaa gaggctccaa gaatacagga 1020
cagcaggcat taccaatttt tgtagtgcca gaacctacga tcacctcaag aagacacggg 1080
aggaagageg cettaaacge actatgetet cagaagttet ceagtatate caggacagta 1140
gtgcttgcca gcagtggctc cgccggcaag ctgacattga ttccggcctg agtccttcca 1200
ttccaatggc ttcgaattca ggtagacgga gtgcaccacc cttgaacctc actggcctcc 1260
ctggcacaga gaagctgaat gaaaaagaaa aggagctctg tcagatggtg aggttggtcc 1320
ctggagccta tttagaatac aaatctgctc tattgaacga atgtaacaag caaggaggct 1380
taagactggc gcaggcaaga gcactcatca agatagatgt gaacaaaacc cggaaaatct 1440
atgattteet cateagagaa ggatacatea etaaaggeta aggeteeaag agettgggat 1500
cagaagtcag aagtttggaa tgtggtgggt caaaggacaa tatgggtggg cattctggag 1560
agttgttttt cagctgaatt ctcatggtga aaacagggga aaggacaaag gaaaccttaa 1620
gttgtattgt ctactttctt ctccatcctg ctttaaaaca ctcctgttgt tggtattatg 1680
ctgcagagtt gtgtgctaca taagctatta ttaaatgtga gtgggcattc attcctaaca 1740
ctamacccac agtetgtama teccaggagt temageetag mateettamt attgteeggg 1860
gaaaggtttt tctgaataaa acacggcttt ggcctttaaa aaaactttgg ggaaacgaat 1920
tttaaaaatt aaaagggaaa agggtttttt a
<210> 97
<211> 854
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> misc-feature
<223> Incyte ID No.: 2119917CB1
<400> 97
cccacgegtc egeggaeggt gggegegeg tatgaeggec agegeacage egegegggeg 60
geggeeagga gteggagteg gagtegtggt gaceagetge aageateege gttgegteet 120 cetggggaag aggaaagget eggttggage tggeagttte caacteeetg gaggteatet 180
ggagttcggt gaaacctggg aagaatgtgc tcaaagggaa acctgggaag aagcagctct 240
tcacctgaaa aatgttcact ttgcctcagt tgtgaattct ttcattgaga aggagaatta 300
ccattatgtt actatattaa tgaaaggaga agtggatgtg actcatgatt cagaaccaaa 360
gaatgtagag cctgaaaaaa atgaaagttg ggagtgggtt ccttgggaag aactacctcc 420
cctggaccag cttttctggg gactgcgttg tttaaaagaa caaggctatg atccatttaa 480
agaagatetg aaccatetgg tgggatacaa aggaaateat etetaggtgg eegagaagat 540
ttgattttct ttaaaaagac aagaataagg tctggttagg gaatgaaaaa tgtatacatt 600 tcggaacaac tccattttat ctaaaaaagt tcttgtgatt gccagtttat ttgcagtctc 660
ttaatgtatc ccccactctt tcagccagta cttgagaaaa tttttctgaa atatgtcatt 720
gaattgtatt ccagacacag aatacatgat aaatactgat attatgggta atctgctttc 780
catatttacc tatggatatg tacgtgcaat gtgccataac tagttgagag ggtgggtgag 840
gcagattttc cttt
<210> 98
<211> 1581
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2123456CB1
<400> 98
tccgggaaag tttctttgga ggtccggccc ggagcggcca tgtcccacgg ccccaagcag
cccggcgcgg ccgccgtgcc ggcgggcggc aaggctccgg gccagcatgg gggcttcgtg 120
gtgactgtca agcaagagcg cggcgagggt ccacgcgcgg gcgagaaggg gtcccacgag 180
gaggageceg gttetgeage eggtgaagaa aegeggetgg eecaagggea agaageggaa 240
gaagattetg eegaatggge eeaaggeace ggteaeggge taegtgeget teetgaaega 300
geggegegag cagateegea egegeeacee ggatetgeee ttteeegaga teaccaagat 360
gctgggcgcc gagtggagca agctgcagcc aacggaaaag cagcggtacc tggatgaggc 420
cgagagagag aagcagcagt acatgaagga gctgcgggcg taccagcagt ctgaagccta 480
taagatgtgc acggagaaga tccaggagaa gaagatcaag aaagaagact cgagctctgg 540
gctcatgaac actctcctga atggacacaa gggtggggac tgcgatggct tctccacctt 600
cgatgttccc atcttcactg aagagttctt ggaccaaaac aaagcgcgtg aggcggagct 660
teggegettg eggaagatga atgtggeett egaggageag aaegeggtae tgeagaggea 720
cacgcagage atgageageg egegegageg tetggageag gagetggege tggaggageg 780
gaggacgetg gegetgeage ageageteea ggeegtgege eaggegetea eegeeagett 840
egecteactg ceggtgeegg geaegggega aaegeeeaeg etgggeaete tggaetteta 900
catggcccgg cttcacggag ccatcgageg cgaccccgcc cagcacgaga agctcatcgt 960
ccgcatcaag gaaatcctgg cccaggtcgc cagcgagcac ctgtgaggag tgggcgggcc 1020
cacgatgcag aggagaaget gtgggcgcgg ccctgccaca ccccaccccg tggacgagag 1080
getgggggte caccetttgg ggeetggtee cateetgeae ettggggget ceageeeeee 1140
taaaattaaa tttetgeage atecetttag ettteaatet eeccageece etgaaceegg 1200
aaaaagcact cgctgcgcga tacacccaga agaacctcac agccgagggt gcccctcctc 1260
ggaggacage cacgegetae actggetete egggecacee ecaggacaca gggeagaega 1320
aacccacccc cagcacacgg caggaccccc caaattactc actacggggg gctgtgccat 1380
aggccacaca ggaagctgcc ttgtggggac ttacctgggg tgtcccccgc atgcctgtac 1440
eccagatggg tgggggeegg etttgeeeat cetgetetee tecageegag ggaceetggt 1500
gggggtggct cetteteact getggateeg gaetttttaa ataaaaacaa gtaaaatttg 1560
tgttttaaaa aaaaaaaaa a
<210> 99
<211> 2150
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2148792CB1
<400> 99
gtctcgatct cctgacctcg ccatccaccc gcctcagcca cccgaagtgt tgggatttca 60
ggggccaaat agttgcatca catgtatcta atccgagagt ctcatgcttc tggtagctcc 120
tcagtgacca gctcctgctc actgccctca gaaagcccaa ccctcaggca atggcggcct 180
tgttcctgtc tgccccaccc caggccgagg tgaccttcga ggacgtggct gtgtacctct 240
cccgggagga atggggccgc ctgggccctg ctcagagggg cctctacagg gacgtgatgc 300
tggagaccta cgggaaccta gtctcactgg gagtaggacc tgcaggcccc aagcctggag 360 tgatctcgca gttggagcga ggggatgagc cctgggtcct ggatgttcag ggcacctctg 420
ggaaagagca cctgagagtc aacagcccag ctcttgggac cagaactgag tacaaggagt 480
tgacttcaca ggagacattt ggtgaggaag atccccaggg atctgagcca gtagaagcct 540
gtgaccacat cagtaagtca gaggggagcc tggaaaagct agtggagcag agaggcccca 600
gggcagtcac actgaccaac ggggagagca gcagggagtc tgggggaaac ctcaggttgc 660
tgtcaagacc tgttcctgat cagagacctc acaaatgtga tatatgtgag caaagttttg 720
aacagagatc atateteaae aaccataage gtgtacacag gtcaaaaaaa acaaatacag 780
ttcgtaactc tggggaaatc ttcagtgcaa acttagttgt taaagaagat cagaaaattc 840
ctactgggaa aaaattgcat tattgcagtt actgtgggaa aacattcagg tacagtgcca 900
accttgtcaa gcatcagcgg cttcacactg aagagaagcc ctacaaatgt gatgagtgtg 960
ggaaageett cagecagage tgegagttea teaateaceg aaggatgeae teaggagaga 1020
ttccctaccg gtgtgacgag tgtgggaaga cattcacccg gaggcccaac ctcatgaagc 1080
accagaggat tcacactggg gagaaaccct acaagtgtgg ggagtgtggg aagcacttta 1140
gegeetaete tteeetgatt tateaceaga gaateeacae eggagagaaa eeetataaat 1200
gtaatgactg egggaaagee tteagtgatg geteaateet tateegacat egteggaete 1260 acaceggaga gaageeattt gagtgeaagg aatgtggeaa aggetttaca caaagtteta 1320
accttatcca acatcagaga attcacactg gagagaaacc ctataaatgt aatgaatgtg 1380
agaaagettt cattcaaaaa accaaacteg tggaacatca gagaagecac actggagaga 1440 agccctatga atgcaatgac tgtggcaaag ttttcagcca aagcacacac ctcatccagc 1500
accagagaat ccacacagga gagaagccct acaagtgcag cgagtgtggg aaagccttcc 1560
acaacagttc cagactcatc caccaccaga ggctgcacca cggagagaaa ccctacagat 1620
gcagcgattg caagaaagcc ttcagccaga gcacgtactt gattcagcac cggaggatcc 1680
acaccgggga gaagccctac aagtgcagcg agtgtgggaa ggccttccgg cacagttcca 1740
acatgtgtca gcatcagcgg attcacctcc gggaggactt ctccatgtaa cagtggcgcg 1800
gtgtccgagg gcagagtcca gctgagcact tcctgcatgc gccccggca cctgactctg 1860
ecctttatgt attatecaca egatgtttte acagagtgaa aggaegttte teattaaaca 1920
aacctctttt cttaaatcaa aaaaaaaaaa agggggggcc gctttagggg tcccaggggt 1980
tcccaaccc taatcctaaa caatgtaata gctgttcccg gtgtaaaatt gttagcggcc 2040
caaaattccc tggcaaatta tcgaaccggg aatccttaaa tgtttaaaac ccccggggtg 2100
gcccccaaaa agggttgact cgaaacttcc acattaaaat tcgggggggg
                                                                       2150
<210> 100
<211> 691
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 2751943CB1
<400> 100
eggegeegga gegggegtea tggegegget cetetggttg etceggggee tgaceetegg 60
aactgegeet eggegggegg tgeggggeea agegggegge ggegggeeeg geaeegggee 120
gggactgggg gaggcagggt ctcttgcaac gtgtgagctg cctcttgcca agagtgagtg 180
gcaaaagaaa ctaaccccgg agcagttcta cgtcacaaga gaaaagggaa cggaaccgcc 240
tttcagtggg atctacctga ataacaagga agcaggaatg tatcattgcg tgtgctgcga 300
cagtccactc ttcagttctg agaaaaagta ctgctctggc actgggtggc cttcgttttc 360
cgaggeteat ggtacgtetg getetgatga aagecacaca gggateetga gaegtetgga 420
```

```
tacctcgtta ggatcagctc gcacagaggt tgtctgcaag cagtgtgaag ctcatctagg 480
teacgtgttt cctgatggac ctgggcccaa tggtcagagg ttttgcatca acagtgtggc 540
tttgaagttc aaaccaagga aacactgacc atcttcaaga gtcccgttcc cttgccaccc 600
cttcacgtgc accctcaatt tccacaattc acttgaatga cttgttttat ttgcaataaa 660
actgggctga atttgcaaaa aaaaaaaaaa a
<210> 101
<211> 2101
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3128913CB1
<400> 101
gtggcttgca gctcggggtg ggtggctcat ttcctggccg ctcctgggct tcgcggaaag 60
aagagattac tcacactcct tctcaagcac agaaccagtt gtactgagct ttttgctaag 120
ctgtttcagc caagaatggc tgtggaatct ggagtgattt caaccetgat acctcaggat 180
ceteeggaac aagaactaat actagtgaaa gtagaagata actttteetg ggatgagaaa 240
tttaagcaga atgggagtac tcaatcctgc caagaattgt ttcgtcagca attcagaaaa 300
ttttgctacc aggagacacc tgggccccgg gaggctctga gccgactcca ggaactttgc 360
tatcagtggc taatgccaga gttgcacaca aaggagcaga tcttagaact gctggtactg 420
gageagttee tgageattet geetgaggag etgeagatet gggtteagea acataateea 480
gaaagcggcg aggaagctgt gaccctgttg gaggatttag agagggagtt tgatgaccca 540
gggcagcagg teccagetag tecacaggga ecageagtge catggaagga tttaacatgt 600
ctcagagcat cccaagagtc aacagacatc cacctccagc ccttaaagac acagctgaaa 660
teetggaaac catgeettte eectaaaagt gattgtgaga acagtgaaac agcaacaaaa 720
gagggcatet cagaagaaaa atcacaggga eteeeteagg aacetteatt tegaggaatt 780
agtgagcatg aaagcaattt agtgtggaag caaggaagtg ctacagggga gaaactaaga 840
teteetteee aagggggcag tittagteaa gtgatettea caaacaaate tetaggaaag 900 agagacettt atgatgagge tgaaagatge ttgattetaa etacagaete tataatgtgt 960
cagaaagttc ctccagaaga gagaccttat agatgtgatg tatgtgggca cagcttcaag 1020
cagcatteet etetaacaca acateagaga atecataetg gagaaaagee etataaatgt 1080 aaccagtgtg ggaaggeett tagtttgagg teetatetta ttatteatea gagaatteat 1140
agtggtgaga aagcatatga atgtagtgaa tgtgggaaag ctttcaatca gagctcagcc 1200
ctcattagac atcggaaaat ccatactggt gagaaagctt gtaaatgtaa tgagtgtggc 1260
aaagcattca gtcaaagttc atatctcatt atacatcaaa gaattcacac tggtgagaaa 1320
cettatgagt gtaatgaatg tgggaaaace tttagecaga geteaaaaet eattagaeat 1380
cagcgaattc acacaggaga gagaccctat gaatgtaatg aatgtggaaa agctttcagg 1440
cagageteag agetgattae teateagaga atacatagtg gagagaaace etatgaatgt 1500
agtgaatgtg gaaaagcttt cagtttgagc tcaaacctta tcagacatca gagaattcat 1560
agtggggagg aaccttatca gtgtaatgaa tgtggcaaaa ctttcaaaag gagctcagcc 1620
ettgttcage atcagagaat tcattctggg gatgaagett atatatgtaa tgaatgtggg 1680
aaggetttea ggeacagate ggteettatg egecateaaa gagteeacae tataaagtaa 1740
tttgtgaata ctgtgaatag tgtaaatact tcagtcagat ttttaagttt gttagtcaaa 1800
agagtttact ttggagcaaa actccataaa ggttataaaa tactaggtct tgagtctagc 1860
ttgctttgtg cagcatttcc cagtgctaat gtaaagtgtc ccttgaaagc ttttcctgtg 1920
actaatcaga acagaataca gaagaatcat tacttccagc tettetetta ttaggaatac 1980
tcaggaaata cgaaaagtgg gaatgtaaca ttgaaacctc attttgtatg aaagtgtcat 2040 gaatatagca acccaggetc tgtcactgca tctgattgtt agtgtgccag gttatggggg 2100
                                                                       2101
<210> 102
<211> 2196
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3282941CB1
```

```
<400> 102
cetactttet etagaceaga aaatteeeaa aattgtgeae attagaatea egtgggtage 60
ccacaaaatt cccagtgcca aattataacc tgcctttcct gtggcccagt ggtttccaac 120
gacattgggc ceteggtetg agaagtgeet ataatactgg ettacatgge eetcaggetg 180
aaccttggac gtggcaggta ttgcaaatat tttccgcggt gcgcgcggat tctggacttg 240
ggcgccaact cgtagtccac getecceggg gtcagcagag gggcgtcacg etetegccac 300 ccaceteget ttetcacece gegetteceg geetgggttt ttagtettee ttggageget 360
ctctggcctc cgcctccgcc agggagcgga aggcggagac agcgagactg gccagggggg 420
aggaaagagg acgcgtgtgg gcaaggggga caacgggatg tccacgggct cggtgagtga 480
teeggaggag atggagette gggggetgea gegggagtae eeggteeeeg eeteeaagag 540
geegeeeete egeggegtag agegeageta egeetegeee agtgacaaet egteggeaga 600
ggaggaggac cccgacggcg aggaggagcg ctgcgctctg ggcacagccg gcagcggga 660
aggetgeaag aggaagegge eeegtgtgge tgggggegge ggegeaggtg gtagegeggg 720
eggtggtggc aagaagcccc teeeggccaa gggeteagee geagagtgea ageagtegea 780
geggaaegeg gecaaegeee gtgagegtge eeggatgege gtgetgagea aageettete 840
caggeteaag accageetge cetgggtgee eccegacaet aageteteca agetggacae 900
geteeggetg getteeagtt acategetea eetgeggeag etgttgeagg aggaeegeta 960
tgagaacggc tacgtgcacc cagtgaacct gacatggcca ttcgtggtct cgggaagacc 1020
ggactetgac accaaagaag ttteegeage caacagacta tgtggaacca eegettaaat 1080
cggactggaa ctcacttgat gggattattc gttaaatgcg agtgtttggg ggccacggag 1140
agaagggaga getegtgaga tgggaagaag ttteegetgg atteteettg accetteece 1200
tttccctgga actgtgatcg tgacaggtgg cgggtgtggc tgtcactgca cagcgcccac 1260
ggctacaget gegeeggate tgggegacea cgttttgcct etecaaaaag agetteettt 1320
cgtgacgaga cgcggacgca ggtccaccct cgggccctag ctctgtagac taactctcgg 1380
etgetgeece ageeegegee agaeageeca eggateegtt eteageggae geagatteat 1440
cgcacacgtg cgggacggtt ccacacagcc ccggcctttc gcggtgacac aatggttagg 1500
gaacggttag aacgcgctct acatccgctt taaagacaga ggtctagacg tgagatccgc 1560
gtcgggacag ggttttaagt gacaaagaag ggcgagtggc ttctctgggc cgggttcgta 1620
ctccagcaca gegecettet aaegggeggg aggaaggeeg etgetegeag ggetaggtgg 1680
agacacactt cocagatcac cgcaggcggg ttttacccgg agagctctgg gccgttcggc 1740
ctccctgccg ggtggcttct tcaatcccgt ctccttccca agctcccggc tttttctaat 1800
caggeaggeg tetgteaace etetecaett etgggetgaa geeteeceaa geecegetge 1860
gccaacctgt gtggggtett ettegggeet eeeteteege eeegeteetg etectacetg 1920
cagcacccc ageteegact ecagactete tgeateaggt etececaete caegeteegg 1980
gegeeceaac tecaacacca egteetgeeg egeaggttet teceegegeg gaggagegeg 2040
cagggtgggc ggcttaccat agcaagtgat cctgcgatag ggaacgcgcc cttgccccga 2100
ggctgcacta ccacaggaaa taacatatgt aaataaattt attttttat gaataataaa 2160
acgcgctgta aaaaccgtga aaaaaaaaa aaaagg
<210> 103
<211> 749
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 735, 736, 741
<223> a or g or c or t, unknown, or other
<223> Incyte ID No.: 3286656CB1
<400> 103
getgagetgt getgegegge geggegegge geggtgegge aeggeaeggt gggagtgtet 60
ccggctggct tgcagggaga acaccgactg agacctcaaa ccctggctcc agtgtcatgg 120
aatccgtcac ctttgaggat gtggccgtgg agttcatcca ggagtgggca ttgctggaca 180
gcgcacggag gagcctgtgc aaatacagga tgcttgacca gtgcaggacc ctggcctcca 240
ggggaactec accatgcaaa eccagttgtg teteccaget ggggeaaaga geagagecaa 300
aggeaacaga aegagggatt eteegtgeea caggtgttge etgggaatet caacttaaac 360
ccgaagagtt gccttctatg caggatcttt tggaagaagc atcctccagg gacatgcaaa 420
tggggccggg getgtteetg aggatgeage tggtgeeete catagaagag agggagacae 480
cattgacteg agaggacegg ceagetetee aggageegee ttggtetetg ggatgeaegg 540
gactgaaggc cgctatgcag attcagaggg tggtgatacc agtgcctact ctgggccacc 600
gcaacccatg ggtggccagg gattctgcca tgtagcacgt gcctgcttcc cctttgcctt 660
```

```
cegecatgat tgtaagttte tegagteete eecagecatg egteetgtae aacetgtgga 720
accaggcage caaanneagt natagttgt
<210> 104
<211> 1311
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1294
<223> a or g or c or t, unknown, or other
<223> Incyte ID No.: 3490802CB1
<400> 104
gggcctttgt ttctcgctgc agcgggagct ccaggtttat cctctgtgtt ctgtgtcctg
tgcttataga ggcccgtcct ctgtggccgt gtgacctgca agtattggga gagccacagc 120
taaaccccgg gacccctgga agcctagaaa tgggaccatt gcaatttaga gatgtggcca 180
tagaattete tetggaggag tggeattgee tggacaetge acageggaat ttatataggg 240
atgtgatgtt agagaactac agaaacttgg tetteettgg tattgttgte tetaageeag 300 acctggttac etgtetggag caaggaaaaa aacetttaac tatggaaaga catgagatga 360
ttgccaaacc cccagttatg agttctcatt ttgcccaaga cctttggcca gagaacatac 420
aaaattettt eeaaataggg atgetgagaa gatatgaaga atgeagaeat gacaatttae 480
agttaaaaaa aggctgtaaa agcgtgggtg agcataaggt gcacaaagga ggttataatg 540
gacttaacca atgtttgaca actacccaga aagaaatatt tcaatgtgat aaatatggaa 600
aagtetttea taagttttea aatteaaaca catataagae aagacataet ggaataaate 660
ttttcaaatg tataatatgt ggcaaagctt ttaaacggtc ctcaaccctt actacacata 720
agaaaattca tactggagag aaaccttaca aatgtgaaga atgtggcaaa gcttttaacc 780
aateeteaaa eettaetaea eataagagaa tteataetgg agagaaacet taeaaatgtg 840
aagaatgtgg caaagetttt aactggteet cagacettaa taaacataag aaaatteata 900
ttgaacgaaa accctacata gtgaagaatg tgacagatct tttaaatgtt cctccacttt 960
taattagcat aagataattc atactggaga gaaaccctat gaatgtgatg aatgtgggaa 1020
agcetttaac cagecetega etettagtaa atttgagagt ttatatggaa cacaaaccet 1080
acaaatataa agaatgtgac aaagcttttt aaggaagttc tcaaccctta ttacacataa 1140
ttcataccaa acagaagccc tacaagtgtg aagaatgtgg caaaacctat aaacctataa 1200
caagttetea atteetttt ttttgagatg gagttteact ettgteaceg aggeagaggt 1260
tgcagtgagc actccagtct aggcgacaga gtangccttg tcgcgatccc a
<210> 105
<211> 990
<212> DNA
<213> Homo sapiens
<220>
<221>
<223> Incyte ID No.: 3507366CB1
<400> 105
caaaaaggaa agaataaggc aaattcttag aatgtatgca caacttaata tccttgctcg 60
tttgatgtgc attgatctca tttaataggt ttttgaatct gaaaattcaa gaaggtgaag 120
ctcacaacat tittigecet geatatgatt gettecaact tgtacetgtg gatateatag 180
aaagtgtagt ttcaaaggag atggacaaac gatacctaca gtttgatatt aaggcctttg 240
ttgaaaataa tcctgccatt aaatggtgtc ctactccagg ctgtgacaga gcagtaagac 300
taacgaaaca agggtcaaat acatctggat ctgatacact cagcttccca ttgctgagag 360
etectgetgt tgattgtgga aaaggacaee tettetgetg ggagtgeett ggtgaageae 420
atgageettg tgaetgeeaa acatggaaga attggetgea aaaaataace gaaatgaaac 480
cagaagaact tgtgggagtt agtgaagcct acgaggatgc cgccaattgt ctctggttat 540
taactaactc caagccttgt gccaactgta agtctccaat acagaagaat gaaggctgca 600
atcacatgca gtgtgctaag tgcaagtatg acttttgctg gatttgcctt gaagagtgga 660
aaaaacatag ttcgtccact ggaggttatt acagatgtac tcgctatgaa gtcattcaac 720
acgtggagga gcaatccaag gaaatgactg tggaggctga gaaaaaacac aaacgatttc 780
```

```
aggaacttga cagatttatg cactattata caagatttaa aaaccatgag catagttatc 840
agctagaaca acgccttctt aaaacagcca aagaaaagat ggagcaaatg agcagagtct 900
caaagaactg aaggaggetg tecagatace acttteattg gagatgagtt catgtgetet 960
aaaaatcggc gcatctcaag tgtcttatca
<210> 106
<211> 1048
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3573060CB1
<400> 106
ccgctgcagc teteegeggg acateteacc gttetggaga cagggetege tegeteteac
ggettettag geeggggttg gacageegee tteeggeeag aggggatgag gttgegetge 120
geteegggag egeegatgge gtgaetggee eegegeggag eagegaeaet geeeggeeag 180
ecegettete tgeeeggage catgaatete agtagegeea gtageaegga ggaaaaggea 240
gtgacgaccg tgctctgggg ctgcgagctc agtcaggaga ggcggacttg gaccttcaga 300
ecccagetgg aggggaagca gagetgeagg etgttgette atacgatttg ettgggggag 360
aaagccaaag aggagatgca tcgcgtggag atcctgcccc cagcaaacca ggaggacaag 420
aagatgcage eggteaceat tgeeteacte eaggeeteag teeteeceat ggteteeatg 480
gtaggagtgc agetttetec eccagttact ttecagetec gggetggete aggaceegtg 540
ttcctcagtg gccaggaacg ttatgaagca tcagacctaa cctgggagga ggaggaggaa 600
gaagaagggg aggaggagga agaggaagag gaagatgatg aggatgagga tgcagatata 660
tetetggagg ageaaageee tgtcaaacaa gtcaaaagge tggtgeeeca gaageaggeg 720
agcgtggcta agaaaaaaa gctggaaaaa gaagaagagg aaataagagc cagcgttaga 780
gacaagagcc ctgtgaaaaa ggccaaagcc acagccagag ccaagaagcc aggattcaag 840
aaatgaggag ccacgccttg gggggcacgg tgcaaagtgg gccttccctg ggctgtgctg 900 caggcacagg gtgcccctgt ccagccctc cacctgtgtc tgaatgcaac aggggtgttg 960
cgggggcaac atgagagccc ctcaccccca actctccact ttcaggaggc ccccagtgaa 1020
gagececace tegggteaca ataagtgt
<210> 107
<211> 1349
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3573661CB1
<400> 107
gagaaagcag agctatttca agagtgagcc acagaaggga atccagaggc catctaagcg 60
aggaagggtc tacaggcagt gagtgaaggc caggagcagg gcccaggcca ggcacgacca 120
ccgaggggat gaacttcaca gtgggtttca agccgctgct aggggatgca cacagcatgg 180
acaacctgga gaagcagete atetgeeeca tetgeetgga gatgttetee aaaccagtgg 240
tgatectgee etgecaacae aacetgtgee geaaatgtge caacgaegte ttecaggeet 300
egaateetet atggeagtee eggggeteea eeaetgtgte tteaggagge egttteeget 360
gcccatcgtg caggeatgag gttgtcctgg acagacacgg tgtctacggc ctgcagcgaa 420
acgtgctagt ggagaacatt atcgacattt acaagcagga gtcatccaag ccgctgcact 480
cgaaggctga gcagcacctc atgtgcgagg agcatgaaga agagaagatc aatatttact 540
gcctgagctg tgaggtgccc acctgctctc tctgcaaggt cttcggtgcc cacaaggact 600
gtgaggtggc cccactgccc accatttaca aacgccagaa gagtgagctc agcgatggca 660
tegegatget ggtggeagge aatgaeegeg tgeaageagt gateaeaeag atggaggagg 720
tgtgccagac tatcgaggac aatagccgga ggcagaagca gttgttaaac cagaggtttg 780
agageetgtg egeagtgetg gaggagegea agggtgaget getgeaggeg etggeeeggg 840
agcaagagga gaagetgeag egegteegeg geeteateeg teagtatgge gaccaeetgg 900
aggcctcctc taagctggtg gagtctgcca tccagtccat ggaagagcca caaatggcgc 960
```

```
tgtateteca geaggeeaag gagetgatea ataaggtegg ggeeatgteg aaggtggage 1020
tggcagggcg gccggagcca ggctatgaga gcatggagca attcaccgta agggtggagc 1080
acgtggccga aatgctgcgg accatcgact tccagccagg cgcttccggg ggaggaagag 1140
gaggtggccc cagacggaag aagagggcaa cccgggggcc ggaagaaaaa acggcccgga 1200
tggggcctta taggcctttg cgcccgaacc ccgacccct gcttcgaaaa agcccccggc 1260
gettaagaat tteeggggga aggaattett geegcaaaaa aacceeggea agettttaae 1320
ccccaaaat tccggggcgc ccggggccc
<210> 108
<211> 1642
<212> DNA
<213> Homo sapiens
<220>
<221> misc-feature
<223> Incyte ID No.: 3633422CB1
<400> 108
ctagttctag ategegageg ecegeceagg cacceaceag eggegeegae eteagegege 60
acetatggge tegetaceag gacatgegga gactggtgea egaceteetg ecceeegagg 120
tetgeagtet cetgaaceca geagecatet aegecaacaa egagateage etgegtgaeg 180
ttgaggteta eggetttgae taegactaca ecetggeeca gtatgeagae geaetgeaee 240
ccgagatett cagtacegee egtgacatee tgategagea etacaagtae ecagaaggga 300
ttcggaagta tgactacaac cccagctttg ccatccgtgg cctccactat gacattcaga 360
agageettet gatgaagatt gaegeettee actaegtgea getggggaea geetaeaggg 420
geetecagee tgtgecagae gaggaggtga ttgagetgta tggggggtaee cageacatee 480
cactatacca gatgagtggc ttctatggca agggtccctc cattaagcag ttcatggaca 540
tetteteget aceggagatg getetgetgt cetgtgtggt ggactaettt etgggecaca 600
gcetggagtt tgaccaagca catctctaca aggacgtgac ggacgccatc cgagacgtgc 660 atgtgaaggg cctcatgtac cagtggatcg agcaggacat ggagaagtac atcctgagag 720 gggatgagac gttgctgtc ctgagccgcc tggtggccca tgggaaacag ctgttcctca 780
tcaccaacag tcctttcage ttcgtagaca aggggatgcg gcacatggtg ggtcccgatt 840
ggcgccaget cttcgatgtg gtcattgtcc aggcagacaa gcccagette ttcactgace 900
ggcgcaagec tttcagaaaa ctcgatgaga agggctcact tcagtgggac cggatcaccc 960
gettggaaaa gggeaagate tateggeagg gaaacetgtt tgacttetta egettgaegg 1020
aatggcgtgg cccccgcgtg ctctacttcg gggaccacct ctatagtgat ctggcggatc 1080
 teatgetgeg geaeggetgg egeaeaggeg ceatcateee egagetggag egtgagatee 1140 geatcateaa caeggageag tacatgeaet egetgaegtg geageaggeg eteaegggge 1200
 tgctggagcg catgcagacc tatcaggacg cggagtcgag gcaggtgctg gctgcctgga 1260
 tgaaagageg geaggagetg aggtgeatea ceaaggeeet gtteaatgeg eagtteggea 1320
 geatetteeg caectteeac aaccccaect actteteaag gegeetegtg egettetetg 1380
 acctetacat ggeetecete agetgeetge teaactaceg egtggaette acettetace 1440
 cacgccgtac geogetgeag cacgaggeac coetetggat ggaccagete tgcacegget 1500
 gcatgaagac ccccttcctt ggtgacatgg cccacatccg ctgagggcac ctttattgtc 1560
 tgggacagge ceteageece tectgeecea tecacecaga caagcaataa aagtggtete 1620
 ctccctgaaa aaaaaaaaaa aa
 <210> 109
 <211> 1818
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc-feature
 <223> Incyte ID No.: 3993377CB1
 <400> 109
 gaagactete tggagecett caactetetg geaceagage cagtgagtgg aggactatat 60
 ggtattgatg acacggagct gatgggtgca gaggacaagc tgcctcttga ggacagccct 120
 gtgattgctg cecttgattg cecttecete aataatgcta etgeetteag teteetggca 180
 gatgatagte aaacatcaac etetatettt gecagteeca eetetecace tgteetaggg 240
```

```
gagtetgtee tgeaagataa eagetttgae etgaataatg gtagtgaege tgaacaggaa 300
gaaatggaaa ctcaatcttc agacttccca ccatccctga cccagccagc tcctgatcag 360
teatecacta treagetaca tecageaace teaceageag tetegecaac aaceteeca 420 geagteteec tagtggtte tecageagee tececagaaa teteteeaga agtttgteec 480
geagetteta cagttgtete tecageagte tteteagtgg tetetecage tteeteagea 540
gtcctcccag cagtctcctt agaagtcccg ttgacggctt cagtgacatc cccaaaagcc 600
tetecegtaa ettececage agetgeettt ecaacageet ecceageaaa taaggatgte 660
ageagettte tagaaaceae tgetgaegtg gaagagatea etggagaagg aeteaetget 720
tetggtagtg gtgatgtcat gaggagacgt attgctaccc cagaagaagt tegtetteec 780
ctccaacatg ggtggcggag agaggtgcgc atcaagaaca gcagccaccg atggcagggg 840
gagacetggt attatggccc etgtgggaag aggatgaage aatttecaga agtgatcaag 900
tacetgagee geaacgtggt acacagtgte egeegagage actteagett cagteceegt 960
atgeetgttg gagatttett tgaagaaaga gacacgeeag agggettgea gtgggtgeag 1020
ctctcagcag aggagatece gtcgaggatt caggcaatta ctggcaaacg gggtcgacet 1080
cgaaacactg agaaggetaa gactaaggaa gtccccaagg tgaaacgggg tcgaggtcgg 1140
ccacctaagg tcaaaatcac tgagctattg aacaagacag acaaccgccc cctaaagaaa 1200
ctggaggecc aagaaacatt gaatgaggag gataaagcaa agattgetaa aagcaagaag 1260
aagatgaggc agaaggttca acggggagag tgtcagacta ctatccaagg gcaggccaga 1320
aataagegga aacaagagac caagagetta aageagaagg aagetaagaa gaaatecaag 1380
gctgagaaag aaaaaggaaa gacaaagcag gaaaaactga aggaaaaagt caagagggaa 1440
 aagaaggaga aggtaaaaat gaaggaaaag gaggaggtga ccaaagccaa gccagcctgt 1500
 aaagcagata agaccetgge cacacagagg cgettggagg aacggcagag gcagcagatg 1560
 atcttggagg acatgaagaa gccgacagag gatatgtgtc tgactgacca ccagcccctg 1620
 cetgaettet cacgagtece tggtetgaea ttgcccagtg gagcettete agaetgettg 1680
 accattgtgg agttcctgca tagctttggc aaggtgctgg gccttgatcc tgcccaaggt 1740
 tgtgcctagc ctggggggtc ctgcaggaag gggctcctgt gttcaaggtg accactctgg 1800
 gtgaaggtgc aaaacccg
 <210> 110
 <211> 785
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> 738
 <223> a or g or c or t, unknown, or other
 <223> Incyte ID No.: 4717936CB1
 gtctctgtag tcatgaggct gaagggggtg gggacagtgt tgataaaagg cactagaggc
 <400> 110
 ageteceaca ecetteeteg gaactgttge ceacatgeag eceeggacae ageceetage 120
 ccaaacccta cccttcttcc teggagggc ccctcgagac actgggctgc gggtgcctgt 180
 cattaagatg ggcacagggt gggagggctt ccagcggacc ctgaaggaag tcgcctacat 240
 ceteetetge tgetggtgta teaaggaact getggattaa tggtageagg gaactgeete 300
 ctctccccac cagcaccatg gctggcatcg ctcaggtggg cagggtagag taaacaggag 360
  gcatagetge agettetgtg gcagagettg cettagette teattetett etttagecec 420
  cageccaatt gecatcaaga eteetgaage cagetgtget tgaccaagga tgggecataa 480
  acaatgagta aacagtaaag tgtggatcct gctttgagct gtgtcatcta gcagacctgc 540
  ctcatctctg agectccttc attcccaacc cetgectctg gtggacctct ggtgggcagg 600
  agettggaet getetggeta ggaccccagt aagattgtgg caagacetgg cactcctcca 660
  agettggeac agtgagecca ceageteaga tggttgatet taccatacce teatagtace 720
  aagaatggac tgcccccnta agaaacctgt ttgagaatca ctgaattata aatataaacc 780
  cagat
```