Algebraic Topology

Notes taken by 89hao

May 18, 2020 — May ?, 2020

Abstract

This is a learning note about Zhang Yitang's lectures on modular forms.

Contents

U Categories, Functors, and Natural Transformations	2
1 Singular Homolgy Groups	5
2 Chain complexes	9
3 The singular homology of a star-shaped	10
4 Chain homotopy vs. Homotopy	11
5 Acyclic models theorem	11
6 Subdivision	11
7 Homology exact sequence	11
8 Mayer-Vietoris Sequences	11
9 Some variants of singular homology	11
before 1900 Euler formula $V - E + F = 2$ Winding number	
1000 H D : () . H . H . H . H . H . H . H . H . H .	

1900 H. Poincaré introduce Homology, Fundamental Group

Aimed to study "spaces"
Topological spaces and continuous mappings
Invariants

 $X \in \{ \text{ Topological spaces } \} \Rightarrow \text{e.g. } G(X) \in \{ \text{ abelian groups} \}$ If $X \to G(X), \ Y \to G(Y)$ and $f: X \to Y$, we wish to get G(f):

$$X \longrightarrow G(X)$$

$$f \downarrow \qquad \qquad \downarrow_{G(f)}$$

$$Y \longrightarrow G(Y)$$

and let G(f) be a homomorphism of groups.

Figure 1: boundary of a segment

Boundary of the boundary +C is 0 in Figure 2.

0 Categories, Functors, and Natural Transformations

Definition 0.1 (categories). A category C consists of

a. (objects) $Ob(\mathcal{C})$ consists of the class of objects in \mathcal{C} .

Figure 2: boundary of a surface

- b. (morphisms) $\forall X, Y \in \text{Ob}(\mathcal{C})$, we have a set $\text{Hom}_{\mathcal{C}}(X, Y)$ s.t. $\text{Hom}_{\mathcal{C}}(X, Y) = \text{Hom}_{\mathcal{C}}(X', Y')$ iff X = X', Y = Y'.
- c. (composition law) $\forall X, Y, Z \in Ob(\mathcal{C})$, we have a map:

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \xrightarrow{\circ} \operatorname{Hom}_{\mathcal{C}}(X,Z)$$

 $(f,g) \mapsto g \circ f$

which satisfy the following two axioms:

(1) (Associativity)
$$X \xrightarrow{f} Y, Y \xrightarrow{g} Z, Z \xrightarrow{h} W$$
,

$$h\circ (g\circ f)=(h\circ g)\circ f$$

(2) (Identity) $\forall X \in \text{Ob}(\mathcal{C}), \exists X \xrightarrow{1_X} X \text{ s.t.}$

$$h \circ 1_X = H, 1_X \circ k = k$$

$$\forall X \xrightarrow{h} H, K \xrightarrow{k} X.$$

Example 0.1. a. $C = (\text{set}), (\text{Ab}), (\text{Mod}_R)(R \text{ is a ring}), (\text{Top}), (\text{TopGp}).$

b. C^{op} (the opposite of C):

$$\mathrm{Ob}(\mathcal{C}^{\mathrm{op}}) := \mathrm{Ob}(\mathcal{C})$$

 $\mathrm{Hom}_{\mathcal{C}^{\mathrm{op}}}(X, Y) := \mathrm{Hom}_{\mathcal{C}}(Y, X)$

$$\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(Y,Z) \overset{\circ_{\mathcal{C}^{\operatorname{op}}}}{\to} \operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(X,Z)$$
$$(f,g) \to g \circ_{\mathcal{C}^{\operatorname{op}}} f$$
$$X \overset{f}{\leftarrow} Y, Y \overset{g}{\leftarrow} Z \quad X \overset{f \circ g}{\leftarrow} Z.$$

Definition 0.2. $X, X' \in \text{Ob}(\mathcal{C}), X \overset{f}{\mathcal{C}} X', f \text{ is an } isomorphism \Leftrightarrow \exists X' \overset{\widetilde{f}}{\rightarrow} X \text{ s.t.}$

$$\widetilde{f} \circ f = 1_X$$

 $f \circ \widetilde{f} = 1_{X'}$.

Definition 0.3 (Functors). C, C': categories. A covariant(contravariant) functor $F: C \to C'$ ($C \xrightarrow{F} C'$) consists of

- a rule of associating to each $X \in \mathrm{Ob}(\mathcal{C})$ an object $F(X) \in \mathrm{Ob}(\mathcal{C}')$.
- A map $\operatorname{Hom}_{\mathcal{C}}(X,Y) \xrightarrow{F} \operatorname{Hom}_{\mathcal{C}'}(F(X),F(Y))$ ($\operatorname{Hom}_{\mathcal{C}'}(F(Y),F(X))$) for each pair $X,Y \in \operatorname{Ob}(\mathcal{C})$ s.t. $F(1_X) = 1_{F(X)}$ and $F(g \circ f) = F(g) \circ F(f)(F(g \circ f) = F(f) \circ F(g))$ i.e.

Example 0.2.

- (1) $\mathcal{C} \stackrel{\text{op}}{\to} \mathcal{C}^{\text{op}}, X^{\text{op}} := X$
- (2) $\forall X \in \mathcal{O} \lfloor (\mathcal{C}), h_X : \mathcal{C} \to (\text{set}),$

$$h_X(Y) := \operatorname{Hom}_{\mathcal{C}}(Y, X), \forall Y \in \operatorname{Ob}(\mathcal{C})$$

$$h_X(f) := \circ f : h_X(Y) \to h_X(Y'), \forall Y' \xrightarrow{f} Y(\to X)$$

 h_X is contravariant.

Definition 0.4 (Natural Transformations). $\mathcal{C} \stackrel{F_1}{\Longrightarrow} \mathcal{C}'$ two functors of the same variance.

a. A natural transformation T form F_1 to F_2 (denoted as $F_1 \xrightarrow{T} F_2$) is a rule of associating to each $X \in \text{Ob}(\mathcal{C})$ a morphism $F_1(X) \xrightarrow{T(X)} F_2(X)$ s.t. for each $X \xrightarrow{f} Y$ we have :

$$F_1(X) \xrightarrow{T(X)} F_2(X)$$

$$F_1(f) \downarrow \qquad \qquad \downarrow F_2(f)$$

$$F_1(Y) \xrightarrow{T(Y)} F_2(Y)$$

b. A natural transformation $F_1 \xrightarrow{T} F_2$ is called a *natural equivalence* if $F_1(X) \xrightarrow{T(X)} F_2(X)$ is an isomorphism for each $X \in \text{Ob}(\mathcal{C})$.

$$F_1 \xrightarrow{T} F_2, F_2 \xrightarrow{S} F_3 \leadsto S \circ T.$$

1 Singular Homolgy Groups

Definition 1.1 (Standard simplexes). $k \in \mathbb{N} \cup \{0\}$,

$$\Delta_k := \left\{ (t_0, \dots, t_k) \in \mathbb{R}^{k+1} : \sum_{i=0}^k t_i = 1, t_i \ge 0, i = 0, \dots, k \right\}.$$

Definition 1.2 (The *i*-th face inclusion). $i \le k \in \mathbb{N} \cup \{0\}$,

$$\Delta_k \xrightarrow{l_i} \Delta_{k+1}$$
$$(t_0, \dots, t_k) \mapsto (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_k).$$

Definition 1.3 (Singular complexes, ude to Lefschetz-Eilenberg). X: topological space, $k \in \mathbb{N} \cup \{0\}$. A (singular) k-simplex in X is a continuous map $\sigma: \Delta_k \to X$.

Definition 1.4 (Faces of a singular simplex). $\sigma: \Delta_k \to X$ continuous, $\sigma_i := \sigma \circ l_i$ where $l_i: (t_0, \dots, t_{k-1}) \mapsto (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{k-1}), i = 0, \dots, k$.

Definition 1.5 (Singular chain groups). $k \in \mathbb{Z}$,

 $S_k(X) :=$ the free abelian group generated by all singular k-simplexes in X

$$= \bigoplus_{\sigma: \Delta_k \to X} \mathbb{Z}\sigma, k \ge 0$$
$$= \{0\}, k < 0.$$

Figure 3: singular complexes

 $X \xrightarrow{f} Y$, we can define a functor $S_k : S_k(X) \xrightarrow{S_k(f) = f_\#} S_k(Y)$:

$$\sigma: \Delta_k \to X \mapsto \begin{array}{c} \Delta_k \xrightarrow{f \circ \sigma} Y \\ & \swarrow \\ X \end{array}.$$

 $S_k: (\mathrm{Top}) \to (\mathrm{Ab})$ is a covariant functor.

Definition 1.6 (Boundary operation). $S_k(X) \xrightarrow{\partial_k} S_{k-1}(X)$

$$\partial_k \sigma := \sum_{i=0}^k (-1)^i \sigma_i$$

Exercise 1.1. The following two diagrams are commutative:

$$S_k(X) \xrightarrow{f_\#} S_k(Y)$$

$$\partial_k \downarrow \qquad \qquad \downarrow \partial_\#$$

$$S_{k-1}(X) \xrightarrow{f_\#} S_{k-1}(Y)$$

$$\begin{array}{ccc} \Delta_k & \xrightarrow{l_j} & \Delta_{k-1} \\ \downarrow^{l_{i-1}} & & \downarrow^{l_i} \\ \Delta_{k-1} & \xrightarrow{l_j} & \Delta_k \end{array}$$

if $1 \le j + 1 \le i \le k, k \ge 2$.

Definition 1.7 (Singular chain complexes). $\sigma: \Delta_k \to X:$ a singular k-simplex in X,

$$\partial_{k-1} (\partial_k \sigma) = \sum_{j=0}^{k-1} \sum_{i=0}^k (-1)^{i+j} (\sigma_i)_j$$

$$= \sum_{k-1 \ge j \ge i \ge 0} (-1)^{i+j} \sigma \circ l_i \circ l_j + \sum_{1 \le j+1 \le i \le k} (-1)^{i+j} \sigma \circ l_i \circ l_j$$

$$= \sum_{k-1 \ge j \ge i \ge 0} (-1)^{i+j} \sigma \circ l_i \circ l_j + \sum_{1 \le j+1 \le i \le k} \sigma \circ l_j \circ l_{i-1}$$

$$= 0.$$

Then, we have the chain complex:

$$\cdots \xrightarrow{\partial_{k+2}} S_{k+1}(X) \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1} \xrightarrow{\partial_{k-1}} S_{k-2} \cdots$$

Let X be a topological space $k \in \mathbb{Z}$. Recall

$$S_k(X) = \bigoplus_{\sigma: \Delta_k \to X} \mathbb{Z}\sigma, \quad k \ge 0.$$

 \forall set S, define $\mathbb{Z}^{\oplus S} := \{\phi: S \to \mathbb{Z} | \phi(s) \neq 0 \text{ for only finitely many } s \in S\}$, it is an abelian group. Write $\phi = \sum_{s \in S} \phi(s)s$, define the map

$$S \to \mathbb{Z}^{\oplus S}$$
$$s \mapsto e_s : s' \mapsto \begin{cases} 1, s' = s \\ 0, s' \neq s \end{cases}$$

Universal property: consider any map ϕ and any abelian group A, we have

$$S \xrightarrow{\forall \text{ map } \phi} A$$

$$e \xrightarrow{\exists ! \Phi \text{ group homomorphism}}$$

$$\mathbb{Z}^{\oplus S}$$

Example 1.1. Consider $\operatorname{Hom}_{(\operatorname{Top})}(\Delta_k, X) = \{\text{all singular } k\text{-simplexes in } X\}$, then we can define $S_k(X)$ in another way

$$S_k(X) := \mathbb{Z}^{\oplus \operatorname{Hom}_{(\operatorname{top})}(\Delta_k, X)}.$$

Consider the map

$$\mathbb{Z}^{\oplus} : (\operatorname{Set}) \to (\operatorname{Ab})$$

$$S \mapsto \mathbb{Z}^{\oplus S}.$$

$$egin{array}{cccc} S & \mathbb{Z}^{\oplus S} & e_s \ \downarrow_u & \longmapsto & & & \downarrow_{ ext{extend linearly}} \ T & Z^{\oplus T} & e_{u(s)} \ \end{array}$$

Hence we can view S_k as

$$S_k = \mathbb{Z}^{\oplus} \circ \operatorname{Hom}_{(\operatorname{Top})}(\Delta_k, \cdot) = \mathbb{Z}^{\oplus} \circ_{\Delta_k} h$$

where $_{\Delta_k}h$ is a covariant functor.

Consider the following diagram:

$$\operatorname{Hom}_{(\operatorname{top})}(\Delta_{k}, X) \xrightarrow{\partial_{k-1} \circ \partial_{k}} S_{k-2(X)}$$

$$\downarrow e \qquad \qquad \downarrow \\ S_{k}(X)$$

$$S_{k-1} \circ \partial_{k} \circ e = 0$$

This diagram explains why $\partial_{k-1} \circ \partial_k \sigma = 0 \to \partial_{k-1} \circ \partial_k = 0$ through universal property.

Definition 1.8 (Singular homology groups). Let X be a toplogical space, we have a singular chain complexes

$$\cdots \xrightarrow{\partial_{k+2}} S_{k+1}(X) \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1} \xrightarrow{\partial_{k-1}} S_{k-2} \cdots$$

- a. $S_k(X)$: the group of (singular) k-chains in X.
- b. $Z_k(X) := \ker \partial_k(X)$ the group of k-cycles in X.
- c. $B_k(X) := \operatorname{im} \partial_{k+1}$ the group of k-boundaries in X.
- d. $H_k(X) := Z_k(X) / B_k(X)$ the k-th sinular homology group of X.

2 Chain complexes

Definition 2.1 (Chain complexes and chain maps). A chain complex of abelian groups is a sequence of abelian groups linked by homomorphisms

$$C_{\cdot}:\cdots\xrightarrow{\partial_{k+2}} C_{k+1}\xrightarrow{\partial_{k+1}} C_{k}\xrightarrow{\partial_{k}} C_{k-1}\xrightarrow{\partial_{k-1}}\cdots$$

such that $\partial_{k-1} \circ \partial_k = 0, \forall k \in \mathbb{Z}$.

A chain map of $f: C \to C'$ consists of homomorphisms $f_k: C_k \to C'_k, k \in \mathbb{Z}$ such that the following diagram commute:

$$C_{k} \xrightarrow{\partial_{k}} C_{k-1}$$

$$\downarrow^{f_{k}} \qquad \downarrow^{f_{k-1}}$$

$$C'_{k} \xrightarrow{\partial'_{k}} C'_{k-1}$$

Definition 2.2 (Composition of chain maps). Given two chain maps $f : \xrightarrow{f_*} C'_*$ and $C' \xrightarrow{f'} C''_*$, the composition of chain maps $(f' \circ f) : C \to C''_*$ is defined by

$$(f' \circ f)_k := f'_k \circ f_k, k \in \mathbb{Z}.$$

All chain complexes and chain maps form a category, we use "(cKom)" to denote it.

Definition 2.3. Let $f: C \to C'$ be a chain map, then we have

$$f_k(Z_k(C_{\cdot})) \subset Z_k(C'_{\cdot})$$
 and $f_k(B_k(C_{\cdot})) \subset B_k(C_{\cdot})$.

It induces a group homomorphism

Exercise 2.1.

$$H_k: (\mathrm{cKom}) \to (\mathrm{Ab})$$

$$C_{\cdot} \to H_k(C_{\cdot})$$

$$C_{\cdot} \xrightarrow{f_{\cdot}} C'_{\cdot} \mapsto H_k(C_{\cdot}) \xrightarrow{f_{*k}} H_k(C'_{\cdot})$$

is a covariant functor.

Let \mathcal{C} be a category. Giving a functor $\mathcal{C} \xrightarrow{K}$ (cKom) is equivalent to giving functor $\mathcal{C} \xrightarrow{K_k}$ (Ab) and natural transformations

$$K_k \xrightarrow{D_k} K_{k-1}, \quad k \in \mathbb{Z}$$

such that

$$D_{k-1} \circ D_k = 0, \quad \forall k \in \mathbb{Z}.$$

Figure 4: $\pi_0: X \to \text{the set of path-connected components of } X$

Definition 2.4. Let X be a topological space,

 $\pi_0(X) :=$ the set of path-connected components of X.

 π_0 is a functor:

$$X \mapsto \pi_0(X)$$
$$X \xrightarrow{f} Y \mapsto \pi_0(X) \xrightarrow{\pi_0(f)} \pi_0(Y)$$

where $\pi_0(f)c :=$ the path-connected components containing f(c) for any $c \in \pi_0(X)$.

Exercise 2.2. For every topological space X, establish a group isomorphism

$$\mathbb{Z}^{\oplus \pi_0(X)} \xrightarrow{T(X)} H_0(X)$$

and show that your T is a natural transformation between $\mathbb{Z}^{\oplus} \circ \pi_0$ and H_0 .

3 The singular homology of a star-shaped

Definition 3.1 (Star-shaped set). Let $0 \in X \subset \mathbb{R}^n$ s.t.

$$\forall p \in X \Rightarrow tp \in X \text{ for any } t \in [0, 1].$$

Then we call X a star-shaped set in \mathbb{R}^n .

Let $\sigma: \Delta_k \to X$ be a singular k-simplex in X, then we define

$$H_{\sigma}: \Delta_{k+1} \to X$$

$$(t_0, \dots, t_n) \mapsto \begin{cases} 0, & (t_0, \dots, t_{k+1}) = (1, 0, \dots, 0) \\ (1 - t_0)\sigma\left(\frac{t_1}{t_1 + \dots t_{k+1}}, \dots, \frac{t_{k+1}}{t_1 + \dots t_{k+1}}\right), & \text{others.} \end{cases}$$

It is easy to verify that

$$(H\sigma)_0 = \sigma, (H\sigma)_i = H(\sigma_{i-1}), \quad i = 1, \dots, k+1.$$

Calculate for $k \geq 1$

$$\partial_{k+1}(H_k\sigma) = \sum_{i=0}^{k+1} (-1)^i (H_k\sigma)_i$$

$$= \sigma + \sum_{i=1}^{k+1} (-1)^i H_{k-1}(\sigma_{i-1})$$

$$= \sigma - \sum_{j=0}^{k} (-1)^j H_{k-1}(\sigma_j)$$

$$= \sigma - H_{k-1}\partial_k\sigma.$$

Hence

$$\sigma = (\partial H + H\partial) \sigma.$$

$$\sigma \in Z_k(X) \Leftrightarrow \partial \sigma = 0 \Rightarrow \sigma = \partial (H\sigma) \in B_k(X) \Rightarrow H_k(X) = 0, k \ge 1.$$

For k = 0, $H_0(X) = \mathbb{Z}$ since a star-shaped set has only one component.

- 4 Chain homotopy vs. Homotopy
 - 5 Acyclic models theorem
 - 6 Subdivision
 - 7 Homology exact sequence
 - 8 Mayer-Vietoris Sequences
- 9 Some variants of singular homology