Алгоритмы и структуры данных. Семинар 7 Григорьев Дмитрий БПМИ-163

Задача 1.

Посмотрим сколько раз изменяется каждый бит "длинного" числа n. Первый бит изменится ровно n раз. Второй бит изменится $\frac{n}{2}$ раз, так как второй бит будет изменяться после полного всех перестановок длины 1, а их всего $2^1=2$, третий бит изменится $\frac{n}{4}$ раз, так как перед этим битом есть последовательность длины 2, т. е. бит будет изменяться каждые 4 инкримента. Итак, получается, что бит, стоящий в позиции l, будет меняться $\frac{n}{2^l}$ раз.

После n инкрементов будет выполнено $n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots$ раз. Эта последовательность стремится к 2n. Получается что фактическая стоимость последовательных операций инкремента длинного двоичного числа это $\mathcal{O}(n)$.

Задача 2.

```
Node*last = list.begin()

Node*next = last - > next

Node*tmp

last - > next = NULL;

while(next! = NULL)

tmp = next - > next

next - > next = last

last = next

next = tmp
```

Задача 3.

Пусть существует такая шаблонная структура данных с операциями вставки, поиска и удаления минимума за $\mathcal{O}(1)$. Мы добавим в нее все элементы за $n \cdot \mathcal{O}(1) = \mathcal{O}(n)$. Мы можем удалять и искать минимум за $\mathcal{O}(1)$. Тогда мы можем отсортировать элементы за $\mathcal{O}(n)$, найдя минимум запомнить его и удалить.

Но мы знаем, что по Теореме о нижней оценке для сортировки сравнениями: в худшем случае любой алгоритм сортировки сравнениями выполняет $\Omega(n \log n)$ сравнений, где n — число сортируемых элементов.

Получается противоречие в том, что наша структура может отсортировать n элементов за $\mathcal{O}(n)$. Значит такой структуры не существует.

Ч.Т.Д.

Задача 4.

Пусть существует такая шаблонная структура данных с операциями вставки, поиска медианы за $\mathcal{O}(1)$. Мы добавим в нее все элементы за $n \cdot \mathcal{O}(1) = \mathcal{O}(n)$. Мы можем искать медиану за $\mathcal{O}(1)$. Тогда мы можем отсортировать элементы за $\mathcal{O}(n)$ следующим образом:

Будем вставлять две $-\infty$ и каждый раз искать и запоминать новую медиану до тех пор пока новая медиана не будет равна $-\infty$. Так мы упорядочим элементы, меньшие первоночальной медианы. Теперь надо вставлять по $2+\infty$ столько же раз, сколько мы вставляли $-\infty$. И далее нужно опять вставлять по $2+\infty$ и каждый раз искать и запоминать медиану до тех пор пока медиана не будет равна $+\infty$.

Таким образом мы получим отсортированный массив за $\mathcal{O}(n)$.

Получается противоречие в том, что наша структура может отсортировать n элементов за $\mathcal{O}(n)$. Значит такой структуры не существует.

ч.т.д.