Corrigé du devoir maison 7.

Exercice 1

1°) Posons, pour tout $x \in I_n = \left] -\frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi \right[, f(x) = \tan x - x.$

f est dérivable sur I_n , et pour tout $x \in I_n$, $f'(x) = 1 + \tan^2 x - 1 = \tan^2 x$. On constate que $f' \ge 0$ sur I_n , et que f' ne s'annule qu'en $n\pi$ sur cet intervalle. Donc f est strictement croissante sur I_n .

De plus, f est continue, et I_n est un intervalle.

D'après le théorème de la bijection, f réalise une bijection de I_n dans $f(I_n)$.

La limite de tan à droite en $-\frac{\pi}{2} + n\pi$ est $-\infty$, et la limite de tan à gauche en $\frac{\pi}{2} + n\pi$ est $+\infty$, donc il en est de même pour $f: x \mapsto \tan(x) - x$, et $f(I_n) =]-\infty, +\infty [= \mathbb{R}.$

Comme $0 \in \mathbb{R}$, on en déduit qu' il existe un unique réel $u_n \in I_n$ tel que $f(u_n) = 0$, autrement $dit tel que | tan(u_n) = u_n |$

Comme tan(0) = 0 et que $0 \in I_0 =]-\frac{\pi}{2}, \frac{\pi}{2}[$, on a $|u_0| = 0$ par unicité.

- **2°)** a) Soit $n \in \mathbb{N}^*$. On a $f(n\pi) = -n\pi < 0 = f(u_n)$ donc, comme f est croissante, on a $n\pi < u_n$. Comme $u_n < n\pi + \frac{\pi}{2}$ par définition de u_n , on a bien $n\pi < u_n < n\pi + \frac{\pi}{2}$.
 - **b)** Comme $n\pi \xrightarrow[n \to +\infty]{} +\infty$, par minoration, on a $n \xrightarrow[n \to +\infty]{} +\infty$. Pour tout $n \in \mathbb{N}^*$,

$$1 < \frac{u_n}{n\pi} < 1 + \frac{1}{2n}$$

Donc, d'après le théorème des gendarmes, comme $1 + \frac{1}{2n} \xrightarrow[n \to +\infty]{} 1$, on a $\left| \frac{u_n}{n\pi} \xrightarrow[n \to +\infty]{} 1 \right|$.

3°) a) Pour tout $n \in \mathbb{N}^*$, $u_n = \tan(u_n) = \tan(u_n - n\pi)$ puisque tan est π -périodique. D'où Arctan (u_n) = Arctan $(\tan(u_n - n\pi))$.

Mais $u_n - n\pi \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ par hypothèse, donc Arctan $(\tan(u_n - n\pi)) = u_n - n\pi$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $u_n - n\pi = \operatorname{Arctan}(u_n)$.

b) On a donc, pour tout $n \in \mathbb{N}^*$, $u_n = n\pi + \operatorname{Arctan}(u_n)$. Comme $u_n \xrightarrow[n \to +\infty]{} +\infty$ et que $\operatorname{Arctan}(x) \xrightarrow[x_n \to +\infty]{} \frac{\pi}{2}$, on a $\operatorname{Arctan}(u_n) \xrightarrow[n \to +\infty]{} \frac{\pi}{2}$.

On peut donc écrire : Arctan $(u_n) = \frac{n}{n \to +\infty} \frac{n}{2} + o(1)$.

D'où
$$u_n = n\pi + \frac{\pi}{2} + o(1).$$

4°) a) On peut donc écrire :

$$\frac{1}{u_n} \underset{n \to +\infty}{=} \frac{1}{n\pi + \frac{\pi}{2} + o(1)}$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{1}{n\pi \left(1 + \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)}$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{1}{n\pi} \left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right) \qquad \text{car } \frac{1}{1+u} \underset{u \to 0}{=} 1 - u + o(u) \text{ et } \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{1}{n\pi} - \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right)$$

Donc
$$\alpha = \frac{1}{\pi}$$
 et $\beta = -\frac{1}{2\pi}$ conviennent.

b) Posons, pour tout x > 0, $g(x) = \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x}$.

Comme Arctan est dérivable sur \mathbb{R} et $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}_+^* , par somme et composition, g est dérivable sur \mathbb{R}_+^* . On a, pour tout x > 0:

$$g'(x) = \frac{1}{1+x^2} + \left(-\frac{1}{x^2}\right) \frac{1}{1+\left(\frac{1}{x}\right)^2} = \frac{1}{1+x^2} - \frac{1}{x^2\left(1+\frac{1}{x^2}\right)} = 0$$

Comme \mathbb{R}_+^* est un intervalle, on en déduit que g est constante sur \mathbb{R}_+^* .

Or $g(1) = 2 \operatorname{Arctan}(1) = 2 \frac{\pi}{4} = \frac{\pi}{2}$, d'où finalement :

$$\forall x > 0$$
, Arctan $x + Arctan \frac{1}{x} = \frac{\pi}{2}$.

c) On a donc, pour tout $n \in \mathbb{N}^*$,

$$u_n = n\pi + \frac{\pi}{2} - \operatorname{Arctan}\left(\frac{1}{u_n}\right) \underset{n \to +\infty}{=} n\pi + \frac{\pi}{2} - \operatorname{Arctan}\left(\frac{1}{n\pi} - \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right)\right)$$

Or Arctan $x = x - \frac{x^3}{3} + o(x^3)$; on a donc Arctan $x = x + o(x^2)$.

Posons
$$x = \frac{1}{n\pi} - \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right)$$
; on a $x \underset{n \to +\infty}{\longrightarrow} 0$ et un $o(x^2)$ est un $o\left(\frac{1}{n^2}\right)$.

D'où:

$$u_{n} = n\pi + \frac{\pi}{2} - \left(\frac{1}{n\pi} - \frac{1}{2n^{2}\pi} + o\left(\frac{1}{n^{2}}\right)\right)$$
$$u_{n} = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^{2}\pi} + o\left(\frac{1}{n^{2}}\right).$$

Exercice 2

1°) On se ramène en 0 en posant h = x - 1, de sorte que x = 1 + h, et que x tend vers 1 si et seulement si h tend vers 0.

Alors
$$f(x) = f(1+h) = \frac{\ln(1-h)}{1+h+3\sqrt{1+h}-4}$$
.

D'une part $\ln(1-h) \underset{h\to 0}{=} -h + o(h)$ car $-h \underset{h\to 0}{\longrightarrow} 0$.

D'autre part
$$1 + h + 3\sqrt{1+h} - 4 = 1 + h + 3\left(1 + \frac{h}{2} + o(h)\right) - 4 = \frac{5}{2}h + o(h)$$
.

Donc,
$$f(x) = f(1+h) = \frac{-h + o(h)}{\frac{5}{2}h + o(h)} = \frac{-1 + o(1)}{\frac{5}{2} + o(1)}$$
.

Dans cette fraction, le numérateur a pour limite -1 et le dénominateur a pour limite $\frac{5}{2}$, donc par quotient de limites, $f(1+h) \xrightarrow[h\to 0]{} -\frac{2}{5}$ donc $f(x) \xrightarrow[x\to 1]{} -\frac{2}{5}$.

2

2°)

$$f(x) \underset{x \to 0}{=} \frac{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4) - \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right) - x}{x - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)\right)}$$

$$\stackrel{=}{=} \frac{x^2 + \frac{x^3}{6} + o(x^4)}{\frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} + o(x^4)}$$

$$\stackrel{=}{=} \frac{x^2 \left(1 + \frac{x}{6} + o(x^2)\right)}{\frac{x^2}{2} \left(1 - \frac{2x}{3} + \frac{x^2}{2} + o(x^2)\right)} \underset{x \to 0}{=} 2\left(1 + \frac{x}{6} + o(x^2)\right) \frac{1}{1 - \frac{2x}{3} + \frac{x^2}{2} + o(x^2)}$$

Posons $u = -\frac{2x}{3} + \frac{x^2}{2} + o(x^2)$. On a $u \xrightarrow[x \to 0]{} 0$ et $u \sim -\frac{2x}{3}$ donc un $o(u^2)$ est un $o(x^2)$. D'où:

$$f(x) \underset{x \to 0}{=} 2\left(1 + \frac{x}{6} + o(x^2)\right) \left(1 - \left(-\frac{2x}{3} + \frac{x^2}{2} + o(x^2)\right) + \left(-\frac{2x}{3} + \frac{x^2}{2} + o(x^2)\right)^2 + o(x^2)\right)$$

$$= \left(2 + \frac{x}{3} + o(x^2)\right) \left(1 + \frac{2x}{3} - \frac{x^2}{2} + \left(-\frac{2x}{3}\right)^2 + o(x^2)\right)$$

$$= \left(2 + \frac{x}{3} + o(x^2)\right) \left(1 + \frac{2x}{3} - \frac{x^2}{18} + o(x^2)\right) \quad \text{car } \frac{-1}{2} + \frac{4}{9} = \frac{-1}{18}$$

$$= 2 + \frac{4x}{3} - \frac{x^2}{9} + \frac{x}{3} + \frac{2x^2}{9} + o(x^2)$$

$$f(x) \underset{x \to 0}{=} 2 + \frac{5x}{3} + \frac{x^2}{9} + o(x^2)$$

3°) f est définie sur $D = \mathbb{R} \setminus \{-\frac{1}{2}\}$. Prenons $x \in \mathbb{R}_+^*$.

$$f(x) = (x-1) \exp\left(\frac{1}{2x} \frac{1}{1 + \frac{1}{2x}}\right)$$

$$\underset{x \to +\infty}{=} (x-1) \exp\left(\frac{1}{2x} \left(1 - \frac{1}{2x} + o\left(\frac{1}{2x}\right)\right)\right) \quad \text{car } \frac{1}{2x} \underset{x \to +\infty}{\longrightarrow} 0$$

$$\underset{x \to +\infty}{=} (x-1) \exp\left(\frac{1}{2x} - \frac{1}{4x^2} + o\left(\frac{1}{x^2}\right)\right)$$

Posons $u = \frac{1}{2x} - \frac{1}{4x^2} + o\left(\frac{1}{x^2}\right)$. On a $u \underset{x \to +\infty}{\longrightarrow} 0$ et $u \underset{x \to +\infty}{\sim} \frac{1}{2x}$ donc un $o(u^2)$ est un $o\left(\frac{1}{x^2}\right)$.

$$\begin{split} f(x) &\underset{x \to +\infty}{=} (x-1) \left(1 + \frac{1}{2x} - \frac{1}{4x^2} + o\left(\frac{1}{x^2}\right) + \frac{1}{2} \left(\frac{1}{2x} - \frac{1}{4x^2} + o\left(\frac{1}{x^2}\right)\right)^2 + o\left(\frac{1}{x^2}\right) \right) \\ &\underset{x \to +\infty}{=} (x-1) \left(1 + \frac{1}{2x} - \frac{1}{4x^2} + \frac{1}{2} \left(\frac{1}{2x}\right)^2 + o\left(\frac{1}{x^2}\right) \right) \\ &\underset{x \to +\infty}{=} (x-1) \left(1 + \frac{1}{2x} - \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right) \right) \\ &\underset{x \to +\infty}{=} x + \frac{1}{2} - \frac{1}{8x} + o\left(\frac{1}{x}\right) - 1 - \frac{1}{2x} + \frac{1}{8x^2} - o\left(\frac{1}{x^2}\right) \\ &\underset{x \to +\infty}{=} x - \frac{1}{2} - \frac{5}{8x} + o\left(\frac{1}{x}\right) \end{split}$$

On a donc : $f(x) - \left(x - \frac{1}{2}\right) \underset{x \to +\infty}{=} -\frac{5}{8x} + o\left(\frac{1}{x}\right)$ i.e. $f(x) - \left(x - \frac{1}{2}\right) \underset{x \to +\infty}{\sim} -\frac{5}{8x}$. Ainsi,

★ Comme $-\frac{5}{8x} \underset{x \to +\infty}{\longrightarrow} 0$, on a $f(x) - \left(x - \frac{1}{2}\right) \underset{x \to +\infty}{\longrightarrow} 0$.

Donc la droite Δ d'équation $y = x - \frac{1}{2}$ est asymptote à la courbe $\mathcal C$ de f en $+\infty$.

★ Pour tout x > 0, $-\frac{5}{8x} < 0$ donc, au voisinage de $+\infty$, $f(x) - \left(x - \frac{1}{2}\right) < 0$. Cela signifie qu'au voisinage de $+\infty$, \mathcal{C} est en-dessous de Δ .