MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 6, 2024 Lecture 10 D3

Matrices as Transformations: Examples

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then
$$A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$
. Let $\mathbf{x} = (2, 1)^T$. What

is **A**x? How does A transform x? A reflects vectors across the X-axis.

Q: Do reflections preserve scalar multiples? Sums of vectors?

Let
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Then
$$B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$
. If $\mathbf{x} = (-1, 0.5)^T$,

then $\mathbf{B}x = (0.5, -1)^T$. How does B transform x?

B reflects vectors across the line $x_1 = x_2$.

Matrices as Transformations: Examples

•
$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
 transforms $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $Px = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix}$.

$$Pe_1 = \binom{1/2}{1/2} \binom{1/2}{1/2} = Pe_2.$$

P transforms the vector $\begin{pmatrix} -1\\1 \end{pmatrix}$ to the origin.

Question: Geometrically, how is *P* transforming the vectors?

Answer: Projects onto the line

 $x_1=x_2.$

Question: What happens to sums of vectors when you project them? What about scalar multiples?

Question: Understand the effect of $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ on e_1 and e_2 and interpret what P represents geometrically!

Matrices as transformations: Examples

Let
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cos(45^{\circ}) & -\sin(45^{\circ}) \\ \sin(45^{\circ}) & \cos(45^{\circ}) \end{pmatrix}$$
.

How does Q transform the standard basis vectors \mathbf{e}_1 and \mathbf{e}_2 ?

Q: What does the transformation $x = {x_1 \choose x_2} \mapsto Qx$ represent geometrically?

Rotations also map sum of vectors to sum of their images and a scalar multiple of a vector to the scalar multiple of its image.

Lecture 14 D3

Matrices as Transformations

- An $m \times n$ matrix A transforms a vector x in \mathbb{R}^n into the vector Ax in \mathbb{R}^m . Thus T(x) = Ax defines a function $T: \mathbb{R}^n \to \mathbb{R}^m$.
- ullet The domain of T is . The codomain of T is .
- Let $b \in \mathbb{R}^m$. Then b is in $C(A) \Leftrightarrow Ax = b$ is consistent $\Leftrightarrow T(x) = b$, i.e., b is in the image (or range) of T.

Hence, the range of T is $_{--}$.

Example: Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
. Then $T(x) = Ax$ is a function with

domain \mathbb{R}^4 , codomain \mathbb{R}^3 , and range equal to $C(A) = \{(a, b, c)^T \mid 2a - b - c = 0\} \subseteq \mathbb{R}^3.$

Question: How does T transform sums and scalar multiples of vectors? Ans. Nicely! For scalars a and b, and vectors x and y,

$$T(ax + by) = A(ax + by) = aAx + bAy = aT(x) + bT(y)$$
. Thus

T takes linear combinations to linear combinations.

Lecture 14 D3

Linear Transformations

Defn. Let V and W be vector spaces.

• A linear transformation from V to W is a function $T: V \to W$ such that for $x, y \in V$, scalars a and b,

$$T(ax + by) = aT(x) + bT(y)$$

i.e., T takes linear combinations of vectors in V to the linear combinations of their images in W.

- If T is also a bijection, we say T is a linear isomorphism.
- The *image* (or *range*) of T is defined to be $C(T) = \{ y \in W \mid T(x) = y \text{ for some } x \in V \}.$
- The kernel (or null space) of T is defined as $N(T) = \{x \in V \mid T(x) = 0\}.$

Main Example: Let A be an $m \times n$ matrix. Define T(x) = Ax.

- This defines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.
- The image of T is the column space of A, i.e., C(T) = C(A).
- The kernel of T is the null space of A, i.e., N(T) = N(A).

Lecture 14 D3

Linear Transformations: Examples

Which of the following functions are linear transformations?

• $g : \mathbb{R}^3 \to \mathbb{R}^3$ defined as $g(x_1, x_2, x_3)^T = (x_1, x_2, 0)^T$

$$ag(x) + bg(y) = ag\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + bg\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} ax_1 \\ ax_2 \\ 0 \end{pmatrix} + \begin{pmatrix} by_1 \\ by_2 \\ 0 \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ 0 \end{pmatrix}$$

= g(ax + by) is a linear transformation.

Exercise: Find N(g) and C(g).

• $h: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $h(x_1, x_2, x_3)^T = (x_1, x_2, 5)^T$.

Note: $h(0+0) \neq h(0) + h(0)$.

Observe: A linear transformation must map $0 \in V$ to $0 \in W$.

• $f: \mathbb{R}^2 \to \mathbb{R}^4$ defined by $f(x_1, x_2)^T = (x_1, 0, x_2, x_2^2)^T$.

Note: f transforms the Y-axis in \mathbb{R}^2 to $\{(0,0,y,y^2)^T \mid y \in \mathbb{R}\}$.

Observe: A linear transformation must transform a subspace of V into a subspace of W.

• $S: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ defined by $S\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a, b, c, d)^T$ is a linear

transformation.

Observe: S is also a bijection, and hence an isomorphism! S is onto $\Rightarrow C(S) = \mathbb{R}^4$, and $S(A) = S(B) \Rightarrow A = B$, i.e., S is one-one. In particular, $N(S) = \{0\}$.

Linear Transformations: Examples

Show that the following functions are linear transformations.

 $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $T(x_1, x_2, ...) = (x_1 + x_2, x_2 + x_3, ...,)$. Exercise: What is N(T)? What is C(T)?