Cheat Sheet Base R

Accessing the help files Getting Help

Get help of a particular function.

help.search('weighted mean')

Find help for a package. help(package = 'dplyr') Search the help files for a word or phrase.

str(iris)

class(iris) Get a summary of an object's structure

Find the class an object belongs to.

sing Libraries

Download and install a package from CRAN. install.packages('dplyr')

library(dplyr)

its functions available to use Load the package into the session, making all

dplyr::select

Use a particular function from a package.

data(iris)

Load a build-in dataset into the environment

Working Directory

getwd()

inputs are found and outputs are sent). Find the current working directory (where

setwd('C://file/path')

Change the current working directory.

directory to the folder you are working in Use projects in RStudio to set the working

Creating Vectors

Jectors

ector Functions

sort(x)

table(x) Return x sorted unique(x) Return x reversed rev(x)

See counts of values. See unique values

Selecting Vector Elements

By Position

×[4] The fourth element.

×[-4] All but the fourth.

x[2:4] Elements two to four

x[-(2:4)]All elements except two to four.

x[c(1, 5)]Elements one and

By Value

x[x == 10]are equal to 10. Elements which

x[x < 0] All elements less than zero.

x[x %in% c(1, 2, 5)] Elements in the ser 1, 2, 5.

Named Vectors

x['apple'] name 'apple' Element with

> മ ۵ II

._ II

Ь

Are equal Not equal

a > b a < b

Greater than Less than

മ ۵

ا ا Ň

Less than or equal to Greater than or equal to

> is.null(a) is.na(a)

Is missing Is null

Programming

hile Loop

for (variable in sequence){ Do something

Example

```
print(j)
                 j <- i + 10
```

while (condition){

Do something

```
for (i in 1:4){
```

while (i < 5){ i <- i + 1 Example

f Statements

if (condition){ } else { Do something different Do something

Example

```
if (i > 3){
              else {
print('No')
                           print('Yes')
```

function_name <- function(var){</pre>

return(new_variable) Do something

Example

```
square <- function(x){</pre>
return(squared)
                                             squared <- x*x
```

Reading and Writing Data

<pre>load('file.RData')</pre>	<pre>df <- read.csv('file.csv')</pre>	<pre>df <- read.table('file.txt')</pre>	Input
<pre>save(df, file = 'file.Rdata')</pre>	write.csv(df, 'file.csv')	<pre>write.table(df, 'file.txt')</pre>	Ouput
Read and write an R data file, a file type special for R.	Read and write a comma separated value file. This is a special case of read.table/ write.table.	Read and write a delimited text file.	Description

Converting between common data types in R. Can always go from a higher value in the table to a lower value.

as.factor	as.character	as.numeric	as.logical
'1', '0', '1', levels: '1', '0'	'1', '0', '1'	1, 0, 1	TRUE, FALSE, TRUE
Character strings with preset levels. Needed for some statistical models.	Character strings. Generally preferred to factors.	Integers or floating point numbers.	Boolean values (TRUE or FALSE).

log(x)	Natural log.	sum(x)	Sum.
exp(x)	Exponential.	mean(x)	Mean.
max(x)	Largest element.	median(x)	Median.
min(x)	Smallest element.	quantile(x)	Percentage
round(x, n)	Round to n decimal places.	rank(x)	Rank of elements.
sig.fig(x, n)	Round to n significant figures.	var(x)	The variance.
cor(x, y)	Correlation.	sd(x)	The standard deviation.

Variable Assignment

V V മ <- 'apple'

[1] 'apple'

The Environmen

ไร() environment. List all variables in the

rm(x) environment. Remove x from the

rm(list = ls())Remove all variables from the environment.

You can use the environment panel in Studio to browse variables in your environment.

df[2,

3 ^⊢ matrix(x, nrow = 3, ncol =Create a matrix from > ω

m[2,] - Select a row

Transpose

m[,

1] - Select a column

Matrix Multiplication m %*% ⊓

Find x in: m * x = nsolve(m, n)

m[2, 3] - Select an element

Lists

A list is collection of elements which can be of different types. $l \leftarrow list(x = 1:5, y = c('a',$ 'b')

1[[2]]

Second element

[1]

element.

New list with

only the first Element named

l['y']

only elemen: New list with named y.

dplyr library. Also see the

Data Frames

 $df \leftarrow data.frame(x = 1:3, y = c('a', 'b', 'c'))$ A special case of a list where all elements are the same length.

List subsetting

ω	2	Ъ	×	
C	Б	מ	У	

Matrix subs	
setting	

df[, 2]

df[2,]

2]

columns. Number of ncol(df)

columns and Number of dim(df)

cbind - Bind columns **V**

rbind - Bind rows.

Also see the **stringr** library.

paste(x, y, sep = ' ')

Join multiple vectors together.

paste(x, collapse = ' ')

t(m)

grep(pattern, x) Find regular expression matches in x Join elements of a vector together.

gsub(pattern, replace, toupper(x) × Convert to uppercase Replace matches in x with a string.

tolower(x)

nchar(x)

Convert to lowercase

Number of characters in a string.

Factors

factor(x)

set the levels of the factor and Turn a vector into a factor. Can the order.

Turn a numeric vector into a factor but 'cutting' into sections.

cut(x, breaks = 4)

Statistics

 $lm(x \sim y, data=df)$ Linear model.

 $glm(x \sim y, data=df)$ Generalised linear model

summary

out a model.

Get more detailed information

difference betweer Preform a t-test for t.test(x, y) means.

difference

between

prop.test

Test for a

pairwise t test Preform a t-test for paired data. Analysis of variance. aov

proportions.

Uniform	Binomial	Poison	Normal	
runif	rbinom	rpois	rnorm	Random Variates
dunif	dbinom	dpois	dnorm	Density Function
punif	pbinom	ppois	pnorm	Cumulative Distribution
qunif	qbinom	qpois	qnorm	Quantile

Plotting

Also see the **ggplot2** library.

plot(x)
Values of x in

Histogram o

hist(x)

See the **lubridate** library.