Si assuma che un client http in A voglia scaricare una pagina web contenuta del server in S. La capacità del collegamento tra S ed A è limitata dal collegamento che costituisce il collo di bottiglia della rete, e che è condiviso con due flussi interferenti di lunga durata (file transfer) tra D e B e tra C e B. La pagina web è composta da un documento base (html) di 100 byte e da 8 immagini di 1 Mbyte. Si calcoli il tempo di scaricamento della pagina web:

- a) nel caso di connessione http persistente per il documento base e le immagini, e
- b) nel caso di connessione non persistente (prima il documento html e poi le 8 immagini con connessioni in parallelo).

N.B. Per il calcolo delle velocità di trasmissione utilizzabili dalle varie connessioni TCP, si consideri la capacità del "collo di bottiglia" del collegamento, assumendo il principio di *condivisione equa delle risorse*.

a) Nel caso di una connessione persistente la condivisione equa tra i due flussi interferenti e il flusso http tra S e A porta quest'ultimo ad un rate R=2 [Mbit/s] sul link collo di bottiglia R1-R2. Infatti, i due flussi interferenti sono al loro volta limitati ad un totale di 2 [Mbit/s] attraversando il link R3-R1 (collo di bottiglia per i flussi interferenti), quindi sul link R1-R2 rimangono 4 [Mbit/s] – 2 [Mbit/s] = 2 [Mbit/s] per il flusso tra S ed A.

$$RTT = 2(\tau_1 + \tau_2 + \tau_3) = 3.4 [ms]$$

$$T_{html} = \frac{100*8 \text{ [bit]}}{2 \text{ [Mb/s]}} = 0.4 \text{ [ms]}$$

$$T_{obj} = \frac{8 * 10^6 \text{ [bit]}}{2 \text{ [Mbit/s]}} = 4 \text{ [s]}$$

$$T_{tot} = T_{open} + T_{get} + T_{html} + 8(T_{get} + T_{obj})$$

= $RTT + RTT + T_{html} + 8(RTT + T_{obj}) = 32.0344 [s]$

b) Nel caso di connessione non persistente e oggetti in parallelo, la parte del file html non cambia, per gli oggetti invece il rate di condivisione equa risulta 0.4 Mbit/s (4Mbit/s condivisi da 10 flussi: 2

interferenti + 8 immagini in parallelo). In questo caso, il link R1-R2 è il collo di bottiglia anche per i flussi interferenti.

$$T_{obj} = \frac{8 * 10^6 \text{ [bit]}}{0.4 \text{ [Mb/s]}} = 20 \text{ [s]}$$

$$\begin{split} T_{tot} &= T_{open} + T_{get} + T_{html} + T_{open} + T_{get} + T_{obj} \\ &= 2RTT + T_{html} + 2RTT + T_{obj} = 20.014 \; [s] \end{split}$$