

Figure 44.2: Figure i. illustrates the hyperplane $H(\varphi)$ for $\varphi(x,y) = 2x + y + 3$, while Figure ii. illustrates the hyperplane $H(\varphi)$ for $\varphi(x,y,z) = x + y + z - 1$.

with $\varphi(x, y, z) = x + y + z - 1$; this affine form defines the plane given by the equation x + y + z = 1, which is the plane through the points (0, 0, 1), (0, 1, 0), and (1, 0, 0). Both of these hyperplanes are illustrated in Figure 44.2.

Definition 44.8. For any two vector $x, y \in \mathbb{R}^n$ with $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ we write $x \leq y$ iff $x_i \leq y_i$ for $i = 1, \dots, n$, and $x \geq y$ iff $y \leq x$. In particular $x \geq 0$ iff $x_i \geq 0$ for $i = 1, \dots, n$.

Certain special types of convex sets called cones and \mathcal{H} -polyhedra play an important role. The set of feasible solutions of a linear program is an \mathcal{H} -polyhedron, and cones play a crucial role in the proof of Proposition 45.1 and in the Farkas–Minkowski proposition (Proposition 47.2).

44.3 Cones, Polyhedral Cones, and \mathcal{H} -Polyhedra

Cones and polyhedral cones are defined as follows.

Definition 44.9. Given a nonempty subset $S \subseteq \mathbb{R}^n$, the *cone* C = cone(S) spanned by S is the convex set

cone(S) =
$$\left\{ \sum_{i=1}^{k} \lambda_i u_i, u_i \in S, \lambda_i \in \mathbb{R}, \lambda_i \geq 0 \right\}$$

of positive combinations of vectors from S. If S consists of a finite set of vectors, the cone C = cone(S) is called a *polyhedral cone*. Figure 44.3 illustrates a polyhedral cone.