Homework 2

- 1. For which real values of a does the matrix $A = \begin{pmatrix} 2 & a \\ -1 & 1 \end{pmatrix}$ have real eigenvalues?
- 2. Solve the systems of linear equations using Gaussian elimination:

(a)
$$\begin{cases} 3x - 4y = -7 \\ -6x + 8y = 14 \end{cases}$$

(b)
$$\begin{cases}
-x + 2y - 4z = 8 \\
3y + 8z = -4 \\
-7x + y + 2z = 1
\end{cases}$$

- 3. In a triangle, the smallest angle measures 10° more than one-half of the largest angle. The middle angle measures 12° more than the smallest angle. Find the measure of each angle.
- 4. Find the $\|.\|_1, \|.\|_2, \|.\|_3, \|.\|_{\infty}, \|.\|_A$ norms for the vector

$$v = (-5, 4, 5)^T$$
 if $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

5. Check if the following expression is a norm of a vector $x = (x_1, ..., x_n)$:

$$\sum_{k=1}^{n} \left| \sum_{i=1}^{k} x_i \right|$$

6.

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix}, ||x||_* = 5|x_1| + |x_2|$$

Find the set of points on the plane where $||x||_* = 1$.

- 7. Find the $\|.\|_1$, $\|.\|_2$ $\|.\|_{\infty}$ norms for the matrix $\begin{pmatrix} 0 & 1 \\ 9 & 0 \end{pmatrix}$
- 8. Prove that $||A||_1$, $||A||_2$ are matrix norms.
- 9. The condition number of an invertible matrix A is defined to be $K(A) = \|A\| \|A^{-1}\|$

- (a) Find the condition numbers of a matrix $A=\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ in $\|.\|_1$ norm (b) Find the condition numbers of a matrix $A=\begin{pmatrix} -3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ in infinity norm infinity-norm.