

Automatic Monte Carlo Methods for Bayesian Inference

Noah Grudowski

Applied Mathematics, Illinois Institute of Technology

Bayesian Statistics

- Model parameters are random
- Prior distribution, $\pi(b)$, reflects beliefs about the parameters
- Sampling yields a likelihood function, L(b)
- Posterior density: product of the prior and the likelihood
- Estimates involve integrals, e.g.

$$\hat{eta}_j = rac{\int_{\mathbb{R}^{d+1}} b_j L(b) \pi(b) db}{\int_{\mathbb{R}^{d+1}} L(b) \pi(b) db} =: rac{\mu_j}{\mu}, \ j = 0, \ldots, d$$

Quasi-Monte Carlo Cubature

Helps approximate integrals:

$$\int_{[0,1]^{d+1}} f(x) dx \approx \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)$$

where $\{x_i\}_{i=1}^n$ is a low-discrepancy sequence

- A low-discrepancy sequence is a correlated sequence whose empirical distribution matches the target distribution better than an IID sequence
- Plot of 256 Sobol sequence points that underwent the standard normal transformation:

Model Problem

- Bayesian inference is applied to logistic regression.
- $ullet t_i \sim \mathsf{Ber}\left(rac{\exp\left(eta_0 + \sum_{j=1}^d eta_j s_{ij}
 ight)}{1 + \exp\left(eta_0 + \sum_{j=1}^d eta_j s_{ij}
 ight)}
 ight), \mathsf{for}\ i = 1, 2, \dots, M$
- The prior: standard normal with respect to $\hat{\beta}_j$ $\pi(\beta) = \frac{\exp\left(-\frac{1}{2}\beta^T\beta\right)}{\sqrt{(2\pi)^{d+1}}}$
- Widely used Bayesian inference estimator:

$$\hat{\beta}_j = \frac{\int_{\mathbb{R}^{d+1}} b_j L(b) \pi(b) db}{\int_{\mathbb{R}^{d+1}} L(b) \pi(b) db} =: \frac{\mu_j}{\mu}, for j = 0, 1, 2, \dots, d$$

where $\hat{\beta}$ are the unknown parameters

Choice of Density

- The ratio $\frac{\mu_j}{\mu}$ cannot be calculated analytically
- Thus, we rewrite μ and μ_i as such:

$$\mu=\int_{\Re^{d+1}}L(b)\pi(b)db=\int_{\Re^{d+1}}rac{L(b)\pi(b)}{
ho(b)}
ho(b)db$$
 ,

where $\rho(b)$ is some density. Thus, $\frac{\mu_j}{\mu}$ can be estimated by sampling from $\rho(b)$ and applying quasi-Monte Carlo cubature.

• We have the following choices for $\rho(b)$:

1)
$$\rho = \pi$$

2) $\rho = \rho_{\rm MLE} =$ Gaussian approximation to the likelihood

3) $ho \propto \pi \cdot
ho_{\mathsf{MLE}}$

New MATLAB Function

- Developed function BayesianFunction that automatically estimates the unknown parameters $\hat{\beta}$ using GAIL (Choi Et al, 2015)
- User control over various inputs

Use Case: Uniform Random s-Data

% s-Data:100 uniform random values in [-2,6] M = 100; %number of s-Data values

s = (6+2)*rand(1,M)-2; %s-Data uniform

dim=2; absTol=0.0005; n=5;

densityChoice = [true true];

*Use all 3 densities
BayesianFunction(M, s, dim, absTol,
densityChoice,n)

	, ,	
Density	Runtime (seconds)	Samples Taken
$\rho = \pi$	86.088	2621440
$ ho= ho_{MLE}$	2.4954	81920
$ ho \propto \pi \cdot ho_{ m MLE}$	1.3744	40960

Use Case: Normal Random s-Data

% s-Data: 100 normal random values % with mean 2 and variance 4

M = 100; %number of s-Data values

u = 2; %mean

sd = 2; %standard deviation

s = sd.*randn(1,M)+u; %s-Data normal

dim=2; absTol=0.0005; n=5;

densityChoice = [true true];

%Use all 3 densities

BayesianFunction (M, s, dim, absTol,

densityChoice,n)

Density	Runtime (seconds)	Samples Taker
$\rho = \pi$	13.7314	327680
$ ho= ho_{MLE}$	0.89835	20480
$ ho \propto \pi \cdot ho_{ m MLE}$	1.4781	32768

Discussion

- Add some
- Concluding
- Remarks here

References

- Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jimenez Rugama, Ll.A., Tong, X., Zhang, Y., Zhou, X. GAIL: Guaranteed Automatic Integration Library (version 2.1), MATLAB software, 2015.
- Hickernell, F.J., Jimenez Rugama, Ll.A., Li, D. Adaptive Quasi-Monte Carlo Methods for Cubature.
- Brooks-Bartlett, Jonny. Probability Concepts Explained: Bayesian Inference for Parameter Estimation. Towards Data Science. Retrieved August 5, 2018.

A special appreciation and thank you to the IIT College of Science for providing the funding behind this research project.