Checkpoint 4: Graph Analytics

OVERVIEW & PURPOSE

Graph analytics can be very useful in analyzing relationships between different groups of people. We can create nodes based on their income, race, neighborhood, and other attributes. After building the graph, we can analyze interactions among different nodes and even graphlets.

Question1

Making nodes of officers and victims by their income, race, locations, and even unsupervised machine learning models to learn the cluster and see if there is a potential connection between officers and victims.

1.1 Learn the Connection from Race

1.1.1 Graph Visualization Sample

In this section, we plot the visualized graph of the connection of the officer and the victim by race with part of the data.

Conclusion from graph

Since the graph is huge, it is not possible to plot the whole graph here. However, we still can see there is tend those officers are more likely to offense black people in the sample graph. Therefore, we may find the potential connection between the victims and the officer by the race with the whole data.

1.1.2 Graph Analysis on Race

Similarly, like the graph visualization, but we use all data now.

Graph Analysis

For this graph, ingress is the number of CRs complained by a race, and outDegrees is the number of Crs an officer received.

+ l id	++ outDegree			
+	++			
13937	89			
14442				
32159	j 87 j			
3764	j 86 j			
3605	j 86 j			
17613	85			
21098	81			
25898	81			
32164	79			
17647	76			
8138	76			
27415	75			
16385	75			
10152	75		+	·
32213			id	inDegree
31631	74		+	+
32016			Black	67923
31872			White	20519
31119			Hispanic	12128
3897	72		Asian/Pacific Isl	768
+	++		Native American/A	108
only sl	howing top 2	20 rows	+	+

1.1.3 Conclusion on Race

We can find that there is a high volume of complaints from black people, since the indegree is 67923 which is 3 times of the second highest complaints race, white, which has 20519 complaints. So, we may assume that there is an over-policing based the race bias due to the extremely large number of complaints from a specific race. However, we are not interested in the bias, this section is only used for proving our main theme, " Is there over-policing in low socio-eco status neighborhoods? " From a different aspect. There is more discussion in the following sections.

1.2 Learn the Connection from Location

1.2.1 Graph Visualization Sample

In this section, we plot the visualized graph of the connection of the officer and the victim by the location with part of the data.

Conclusion from graph

Since the graph is huge, it is not possible to plot the whole graph here. However, we still can see there is tend for officers to have more TRRs and CRs from some communities (East Garfield Park on this graph). Therefore, we may find the potential connection between the victims and the officer by the location.

1.2.2 Graph Analysis on Location

The Dapper Squirrels

Similarly, like the graph visualization, but we use all data now.

CRs:

+src	dst	+ relationship
+Austin	Alan Krok	
Englewood		
Chicago Lawn		
South Deering		
l Woodlawn		
East Garfield Park	, ,	
Near North Side		
Near North Side		
	Jeffrey Fronczak	
	George Mc Murray	
Near West Side	,	
Lower West Side		
l Pullman		
	Latonia Harris	
Lincoln Square		
Austin		
Englewood		
Auburn Gresham		
Beverly		
Ashburn		
only showing top 20	rows	·+

We can split the graph by its relationship between src and dst. For CRs, inDegress is the number of CRs an officer received, and outDegrees is the number of Crs a community complains.

+	++	+	
id	inDegree	id	outDegree
Joe Parker	129	Austin	 10470
Jerome Finnigan	124	West Englewood	7979
Edward May	114	Loop	7927
Charles Toussas	114	Near West Side	7411
David Brown	109	Near North Side	7327
Kevin Osborn	108	Auburn Gresham	6009
Maurice Clayton	107	Humboldt Park	5760
Glenn Evans	106	North Lawndale	5503
Adam Zelitzky	105	Englewood	5360
Jerome Turbyville	99	West Town	5267
Robert Smith	98	South Shore	4932
James Grubbs	93	East Garfield Park	4900
Robert Johnson	93	New City	4891
John Carney	88	Roseland	4763
Gregory Jackson	87	Chicago Lawn	4741
Tyrone Jenkins	87	Logan Square	
Broderick Jones	87	Lake View	
Kevin Ryan	85	Greater Grand Cro	
Eugene Bikulcius	85	Uptown	
Edward Howard	83	Woodlawn	3752
+	++	+	

only showing top 20 rows only showing top 20 rows

TRRs:

src	+ds	t relationship
Michael Jacob	Rogers Par	·k TRR
Agustin Cervantes	Avondal	.e TRR
Walter Ware		
John Flisk		
David Morales		
Demosthen Balodimas		
	East Garfield Par	
Thomas Davey		
Brian Ferguson		
Paul_Meagher		
Kent Erickson		
Martin Teresi		, ,
Raymond Wilke		, ,
Nicolas Chapello		
Kerry Mc Guire		
	East Garfield Par	
	East Garfield Par	
,	East Garfield Par	
	Humboldt Par	
Stawomir Plewa	Humboldt Par	k TRR

only showing top 20 rows

We can split the graph by its relationship between src and dst. For TRRs, inDgress is the number of TTRs happen in the community, and outDegrees is the number of TRRs an officer has.

+		+	
id	inDegree	id	outDegree
Austin	5721	Cesar Kuri	67
Humboldt Park	2848	George Granias	67
West Garfield Park	2622	Richard Pellerano	66
South Lawndale	2230	Michael Walsh	64
North Lawndale	2092	Patrick Josephs	60
Near North Side	1721	Peter Chambers	59
Near West Side	1648	Robert Roth	56
West Town	1607	Matthew Bouch	56
East Garfield Park	1502	David Kleinfelder	55
Belmont Cragin	1064	Patrick Altwasser	54
Lake View	1033	j John Dalcason	53
Rogers Park	928	Bartholom Murphy	52
North Park	771	Lucas Wise	51
Lincoln Park	765	Christoph Cannata	51
Logan Square	760	Aaron Acevedo	51
West Ridge	757	Tomasz Zatora	51
Norwood Park	747	Daniel Kolodziejski	50
Uptown	703	Samuel Truesdale	49
Edgewater	576	Michael Tews	48
Albany Park	520	Erick Seng	48
+	·	+	·+
only showing top 20	rows	only showing top 20 i	^OWS

1.2.3 Conclusion on Location

We can conclude that communities like Austin, West Englewood, and Loop have a high volume of complaint report to officers, and Austin, Humboldt Park, and West Garfield Park have a large amount of TRRs. From this result we can find in the high-income community, people are more likely to complain about the behavior of the police. People from low-income communities receive more "threats" of tactical response. One possible explanation is that people who live in high-income communities have time to report the misbehavior of over-policing officers. But in the low-income community, people have no power to against the over-policing. Anyway, a high amount of reports of tactical response shows that there is potential over-policing behavior in those areas. Combining with the result we find in Checkpoint 1, a community like West Garfield Park is a low-income area. Therefore, we can assume that there is over-policing in the socio-economy status community.

Question2

Network dynamics of co-accused in each cohort can be interesting. The analytics can be done with the following:

- 1. Make use of Triangle Count Algorithms for each cohort.
- 2. Make use of the Page Rank Algorithm to find the most connected officer in all cohorts.
- 3. How many CRs that officers have and how many co-accused for each cohort.
- 4. Compare the top k largest cohort of police officers in high and low socio-economy status.

And we will answer the following questions:

- 1. Who among the officers has the most triangle counts?
- 2. Who has the most page rank score?
- 3. Are there any communities in the officers?
- 4. What are the allegation reports number for those officers inside a cluster?
- 5. What are the top large cohort of police officers in high and low socio-economy status?

2.1 Prepare the Data

These queries are to draw co-accused officers from the allegation database. The basic logic is to join the allegation table with itself on the condition of the same allegation id and unequal officerid.

Nodes can be generated with data_officer table or allegation id by counting the number of allegation id. Here we chose data officer table by removing Nan or 0s on allegation count.

Note: These queries are copied and modified from the GraphX demo class, which shares a similar analysis goal as ours.

4					ı
į	id	officer_name	allegation_count	label	į
Ì	29	Henry Abrams	6	6534	l
ĺ	474	Ignacio Alvarado	7	28838	İ
ĺ	964	Colleen Austin	6	3744	İ
ĺ	1677	Chad Behrend	25	17372	İ
ĺ	1950	Thomas Beyna	22	442	ĺ
ĺ	2214	Calvin Blunt	21	28273	İ
ĺ	2250	Kathleen Boehmer	2	17372	ĺ
ĺ	2453	Joseph Boston	59	28838	ĺ
	2509	Rosalind Bowie	14	32382	ı
ĺ	2529	Emmett Boyd	11	12644	١
ĺ	3091	Michael Browne	9	32041	ĺ
ĺ	3506	John Butterfield	1	3506	ĺ
	3764	Sean Campbell	90	28838	ı
١	4894	Danyelle Cochran	1	4894	١
ĺ	5385	Gerald Corless	2	27851	ĺ
	5409	Rodolfo Corona	4	17372	I
	5556	Ramon Covington	6	11980	I
	7225	Judy Dotson	2	7225	I
ĺ	7279	Terrence Downes	6	17372	I
Ì	7747	Donald Eddy	4	7747	l
+					۰

only showing top 20 rows

There are 2809 communities in this sample graph.

Recognizing the largest comminutes is important. So, we ranked the label propagation algorithm result by sorting descending the number of members in the community.

++	+		
label			
	+		
17372			
3744	1636		
29511	1224		
11980	652		
28273	596		
[28838]	450 j		
j32014 j	364 j		
32068	323		
	257		
26622	257		
	256		
	243		
32274			
	207		
6534			
18915			
23787			
2981	162		
21912	155		
23033	115		
++	+		
only sh	owing top	20	rows

After identifying those top big communities, we are also interested in how the community is constructed and its internal architecture.

We plotted the 22809 community which is consisted of over 50 nodes. It is clear to us those officers 2612, 30237, and 21028 are among those "leading" nodes with multiple indegrees and outdegrees inside the clique.

2.2 Triangle Count analysis

The triangle counting algorithm is to count the triangle-like relationship among 3 nodes that have connected in pairs. We want to find out those outstanding nodes in the graph which have a lot more triangle counts.

	+		L	
++ id count	count	id	officer_name	allegation_count
++ 1227401	132118	6315	Terence Davis	38
33748 0	32117			'
33751 0	132073			
33724 0		18042		
33798 0	:		,	'
33755 0	27823			
33746 0			Michael Overstreet	· •
j33749j 0j	23518	27349	Charles Stanton	11
j33737 j 0 j	23499	5180	Stephen Conner	9
33725 0	23487	5667	Jerry Crawley	30
33738 0	23477	16747	Evetta Lundin	7
33728 0	23475	8844	Thomas Flynn	19
33752 0	23472	23654	Lloyd Reid	4
33711 0	23472	14750	William Kissane	23
j33723 j 0 j	20185	19856	Ronald Muhammad	11
j33750j 0j	19322	8138	Glenn Evans	132
32312 37	18773	29882	Fred Waller	49
32358 109	18648	28273	James Taylor	36
j33753 j 0 j	18602	28459	Curtis Thomas	36
j33758j 0j	18539	5577	Michael Cox	20
j33709 j 0 j	18502	30841	Teresa Williams	•
++	+	+		·
only showing top 20 rows	only sl	nowing	top 20 rows	

In this part, we sorted all the nodes according to their triangle counts. We can see over 20 nodes appearing in over 18,000 triangle relationships, which indicates strong community leadership potential like officers 6315 and 3033.

2.3 Page Rank analysis to find key nodes

Page rank algorithm is developed to find out important nodes inside a graph by iterations of calculations of the possibilities to get to the node by starting randomly.

	id	officer_name	allegation_count	pagerank
	32442			127.52903862900281
	32440	Mark Zawila	34	90.32581504596747
	32425	Perry Williams	27	75.93393690155354
	32350	Robert Spiegel	20	72.52408784740014
	32410	Joseph Watson	29	71.8959609008098
	32430	Michael Wrobel	22	70.6024730642657
	32074	Ronald Jenkins	46	70.26504490198167
	32284	Mark Reno	76	68.44254003101547
	32351	Boonserm Srisuth	25	66.23218732944623
	32433	Kenneth Yakes	29	63.74966193544296
	32419	Eric Wier	18	60.25243358901534
	32384	Edwin Utreras	47	59.71305480353141
	32435	Mohammad Yusuf	22	59.31175673367685
	32413	Carl Weatherspoon	69	58.047513284732524
	32337	Louis Silva	21	57.93147265165182
	32431	Albert Wyroba	15	57.773544505418506
	32289	John Rivera	44	56.566183401162725
	32401	Joshua Wallace	45	55.97258828063104
	32375	James Triantafillo	31	50.60713162542214
	32436	Edmund Zablocki	28	48.62194138740303
-				·
,	anly ch	owing ton 20 rows		

only showing top 20 rows

From the above calculations, we can identify officers with significant impact in the graph. For example, officers 32442 and 32440 are a major part of the clique and maybe the "bad apple" in the organization.

2.4 The Correlations Between Police Cohort and CRs/TRRs

In this section, each police are counted for the time they had the same allegation with other police officers. The counted number will then be compared with the CRs and TRRs they gave and received to find the correlation between them. The goal of the correlation is to find whether police officers are more likely to misconduct when working as a group.

Graph Analysis

	id i	nDegree o	utDegree of	ficer_id coha	art count		member1	member2	co-case count
0	Joe Parker	129	0.0	21837.0	None				
1	Jerome Finnigan	124	1.0	8562.0	None	0	12478	32166	53
2	Edward May	114	2.0	17816.0	None				
3	Charles Toussas	114	0.0	NaN	None	1	8562	27778	47
4	David Brown	109	0.0	3005.0	None		0002	2,,,,	
						2	1553	10724	43
21811	Ronald Truhlar	1	0.0	NaN	None	_	1333	10724	40
21812	Gregory Czyznik	1	0.0	NaN	None	•	0705	04700	4.4
21813	Anthony Alviani	1	0.0	NaN	None	3	2725	21703	41
21814	C Ahern	1	0.0	NaN	None				
21815	Brittni Martinez	1	0.0	NaN	None	4	3605	14442	41
21816 rows x 5 columns									
	JWS X 3 COIUIIIIIS								
		inDegree	outDegree	officer_id	cohart co	ount			
0		inDegree			cohart co	ount 27			
	id		0.0	_					
0	id Joe Parker	129	0.0	21837.0 8562.0		27			
0	id Joe Parker Jerome Finnigan	129 124	0.0	21837.0 8562.0		27 119			
0 1 2	Joe Parker Jerome Finnigan Edward May	129 124 114	0.0 1.0 2.0 0.0	21837.0 8562.0 17816.0 NaN		27 119 86			
0 1 2 3	Joe Parker Jerome Finnigan Edward May Charles Toussas	129 124 114	0.0 1.0 2.0 0.0 0.0	21837.0 8562.0 17816.0 NaN		27 119 86 0			
0 1 2 3 4	Joe Parker Jerome Finnigan Edward May Charles Toussas David Brown	129 124 114 114 109	0.0 1.0 2.0 0.0 0.0	21837.0 8562.0 17816.0 NaN 3005.0		27 119 86 0 9			
0 1 2 3 4	Joe Parker Jerome Finnigan Edward May Charles Toussas David Brown Ronald Truhlar	129 124 114 114 109	0.0 1.0 2.0 0.0 0.0 0.0	21837.0 8562.0 17816.0 NaN 3005.0		27 119 86 0 9			
0 1 2 3 4 	Joe Parker Jerome Finnigan Edward May Charles Toussas David Brown Ronald Truhlar	129 124 114 114 109 	0.0 1.0 2.0 0.0 0.0 0.0 0.0	21837.0 8562.0 17816.0 NaN 3005.0		27 119 86 0 9 			

For the above chart, we can get the correlation of CRs is 0.4151983851569962 and correlation of TRRs is 0.21054139647875614

Conclusion

21816 rows x 5 columns

21814 C Ahern 1 0.0

21815 Brittni Martinez 1 0.0 NaN 0

The correlation between group allegation and complaint reports is positively correlated, and the group allegation is less correlated to tactical response reports. It is possible that when police officers are co-accused, they are more likely to have actual misconduct activity. It is because if they gave more tactical responses than receive complaints, or if they have an equal number of tactical responses and complaints, they would be less likely to have misconduct.