Essential Maths for DTC DPhil Students

Michaelmas Term 2021

Problem Sheet 8: complex numbers

Introductory problems

- 1. Simplify:
 - a) 2-2i + 3+i
 - b) 4 6i + 19 + 4i
 - c) $(1-i)^2$
 - d) $(2+i)^2$
 - e) (4-3i)/(2+6i)
 - f) (1+2i)/(1-3i)
 - g) $(2-i)^{-2} + (2+i)^{-2}$
 - h) $(5-i)^{-2} (5+i)^{-2}$
- 2. Find the sum, difference, product and quotient of the complex numbers $z_1 = 5 + 3i$ and $z_2 = -4 + 2i$.

Main problems

- 1. Solve the following equations for z:
 - a) (7+i)z 3i = 6
 - b) $\frac{(z-i)}{(z+i)} = \frac{2}{3}$
 - c) $z^2 + (1+4i)z + (15+27i) = 0$
- 2. Represent the complex numbers $z_1 = 5 2i$ and $z_2 = -2 + 4i$ on a sketch/plot of the complex plane (an Argand diagram). Write down z_1 and z_2 in polar form (either give r and θ for each, or write them as exponentials). What is the product of z_1 and z_2 ?
- 3. Find the sum, difference, product and quotient of the complex numbers $z_1 = 5e^{4i}$ and $z_2 = 3e^{-2i}$. Can you represent the results on an Argand diagram?
- 4. What are the (x, y) coordinates of the complex number $5e^{4i}$?
- 5. If z = 1 + i, mark on an Argand diagram the four points A, B, C and D representing z, z^2, z^3 and z^4 respectively. Find by calculation or from your diagram, the moduli and arguments of the complex numbers $z^2 1$ and $z + z^4$.
- 6. Find the complex numbers represented by the vertices of a square if one vertex represents 3 + 3i and the centre of the square represents 1 + 2i.

Extension problems

1. Experiment with using Python to solve the problems and confirm your pen & paper solutions.

1