20

25

CLAIMS

I CLAIM AS MY INVENTION:

- A thermal barrier coating material comprising a cubic matrix structure of
 ZrO₂ stabilized by a concentration of Y₂O₃ greater than that concentration of Y₂O₃ that would result in a peak ionic conductivity in the matrix.
 - 2. The thermal barrier coating material of claim 1, further comprising at least 30 wt. % Y₂O₃.
 - 3. The thermal barrier coating material of claim 1, further comprising at least 40 wt. % Y₂O₃.
 - 4. The thermal barrier coating material of claim 1, further comprising at least 50 wt. $\% Y_2O_3$.
 - 5. A thermal barrier coating material comprising a cubic matrix structure of ZrO_2 stabilized by a concentration of Y_2O_3 , wherein the concentration of Y_2O_3 is sufficiently high to create a quantity of multi-vacancy defect clusters in the cubic matrix structure such that the material exhibits a resistance to sintering measured as linear shrinkage to be less than 4000 ppm after exposure to 1400 °C. for 24 hours.
 - 6. A thermal barrier coating material comprising a cubic matrix structure of a rare earth oxide selected from the group of zirconia, hafnia and titania and containing a stabilizer selected from the group of lanthia, ytterbia and yttria, the material comprising a concentration of the stabilizer greater than that concentration of the stabilizer that would result in a peak ionic conductivity in the matrix.
- 7. The thermal barrier coating material of claim 6, further comprising at least 30 30 wt. % stabilizer.

- 8. The thermal barrier coating material of claim 6, further comprising at least 40 wt. % stabilizer.
- 9. The thermal barrier coating material of claim 6, further comprising at least 5 50 wt. % stabilizer.
 - 10. A thermal barrier coating material comprising a cubic matrix structure of HfO₂ stabilized by a concentration of a rare earth oxide that is greater than that concentration of the rare earth oxide that would result in a peak ionic conductivity in the matrix.
 - 11. The thermal barrier coating of claim 10, wherein the rare earth oxide comprises Gd_2O_3 .
 - 12. The thermal barrier coating material of claim 11, further comprising at least 30 wt. % Gd₂O₃.
 - 13. The thermal barrier coating material of claim 11, further comprising at least 40 wt. % Gd₂O₃.
 - 14. The thermal barrier coating material of claim 11, further comprising at least 50 wt. % Gd_2O_3 .

20