ДЗ по ФНП

Задача 1. С помощью линий уровня найти наибольшее и наименьшее значения f(x,y) в области определения функции g(x,y)

функции

	J (135)	f(x,y) is conditing in the deficiency distribution $f(x,y)$				
вар №	f(x,y)	g(x,y)	вар №	f(x,y)	g(x,y)	
1	$\frac{x^2 + y^2}{x}$	$\sqrt{1-(x-3)^2-y^2}$	16	$\frac{x^2 + y^2}{y}$	$\sqrt{1-x^2-(y-3)^2}$	
2	$x^2 - y^2$	$\sqrt{4-x^2-4y^2}$	17	$y^2 - x^2$	$\sqrt{4-4x^2-y^2}$	
3	x -y	$\sqrt{x^2 + y^2 - 1} + \sqrt{1 - x^2 - 2y - y^2}$	18	x- y	$\sqrt{x^2 + y^2 - 1} + \sqrt{1 - x^2 - 2x - y^2}$	
4	ye^{-x}	$\sqrt{1-x^2-y^2- 2xy }$	19	ye ^x	$\sqrt{1-x^2-y^2- 2xy }$	
5	$x^2 - 4y^2$	$\sqrt{4-x^2-y^2}$	20	$4x^2 - y^2$	$\sqrt{4-x^2-y^2}$	
6	xy	$\arcsin(x-y) + \arccos(x-1)$	21	$x^2 - (y-1)^2$	$\arcsin(x-y) + \arccos x$	
7	$(x-2)^2 + (y+1)^2$	$\arcsin(x-y) + \arccos x$	22	$(x-2)^2 + y^2$	$\arcsin(x-y) + \arccos y$	
8	$\frac{x}{x^2 + y^2}$	$\sqrt{1- x^2+y^2-2 }$	23	$\frac{y}{x^2 + y^2}$	$\sqrt{1- x^2+y^2-2 }$	
9	x + y	$\arcsin(x-y) + \arccos(x-1)$	24	y-x	$\arcsin(x+y)+\arccos(x-1)$	
10	$y - \ln x$	$\arcsin y + \arccos(x-2)$	25	$y + \ln x$	$\arccos y + \arcsin(x-2)$	
11	x+ y	$\sqrt{x^2 + y^2 - 1} + \sqrt{1 - x^2 + 2x - y^2}$	26	x +y	$\sqrt{x^2 + y^2 - 1} + \sqrt{1 - x^2 + 2y - y^2}$	
12	$y-e^x$	$\sqrt{2-x^2-y^2- x^2-y^2 }$	27	$y + e^x$	$\sqrt{2-x^2-y^2- x^2-y^2 }$	
13	$(x+2)^2+4y^2$	$\sqrt{2-x^2-y^2- x^2-y^2 }$	28	$4x^2 + (y+2)^2$	$\sqrt{2-x^2-y^2- x^2-y^2 }$	
14	$\frac{y-2}{x+3}$	$\sqrt{1 - x^2 + y^2} + \arcsin y$	29	$\frac{y+3}{x+2}$	$\sqrt{1+x^2-y^2} + \arcsin x$	
15	$y + x^2$	$\sqrt{8 - x^2 - 4y^2 - \left x^2 - 4y^2 \right }$	30	$x + y^2$	$\sqrt{8-4x^2-y^2- 4x^2-y^2 }$	

Задача 2. Показать, что функция z = z(x, y) удовлетворяет данному дифференциальному уравнению, f(t) – произвольная дифференцируемая функция.

п		
1	$x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(y/x\right)$
2	$3\sqrt{y}\frac{\partial z}{\partial x} - 4x\frac{\partial z}{\partial y} = 0$	$z = f\left(x^2 + y^{3/2}\right)$
3	$e^{-x}\frac{\partial z}{\partial x} - y \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(e^x + \ln y\right)$
4	$x\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$	$z = f\left(\frac{e^{y}}{x}\right)$
5	$\frac{\partial z}{\partial x} - (y \ln y) \frac{\partial z}{\partial y} = 0$	$z = f\left(e^x \ln y\right)$
6	$\frac{\partial z}{\partial x} - 3yx^2 \frac{\partial z}{\partial y} = 0$	$z = f\left(x^3 + \ln y\right)$
7	$e^{y} \frac{\partial z}{\partial x} - 3x^{2} \frac{\partial z}{\partial y} = 0$	$z = f\left(x^3 + e^y\right)$
8	$(x \cdot \operatorname{tg} y) \frac{\partial z}{\partial x} + 3 \frac{\partial z}{\partial y} = 0$	$z = f\left(x^3 \cdot \cos y\right)$
9	$x\frac{\partial z}{\partial x} - 2(y \ln y)\frac{\partial z}{\partial y} = 0$	$z = f\left(x^2 \cdot \ln y\right)$
10	$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0$	z = f(xy)
11	$2x\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{x}e^{y}\right)$
12	$\frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$	$z = f\left(\frac{e^x}{y}\right)$
13	$2x\frac{\partial z}{\partial x} - (\sin 2y)\frac{\partial z}{\partial y} = 0$	$z = f\left(x \cdot tgy\right)$
14	$x \cdot \frac{\partial z}{\partial x} + 2y \frac{\partial z}{\partial y} = 0$	$z = f\left(\frac{y}{x^2}\right)$
15	$2x\frac{\partial z}{\partial x} - (y \ln y)\frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{x}\ln y\right)$

вар №	Дифференциальное уравнение	Функция $z = z(x, y)$
16	$3xy^2 \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$	$z = f\left(\ln x + y^3\right)$
17	$\frac{\partial z}{\partial x} + 6x^2 \sqrt{y} \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{y} - x^3\right)$
18	$2e^{y}\frac{\partial z}{\partial x} - 3\sqrt{x} \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(x^{3/2} + e^{y}\right)$
19	$(\cos y) \cdot \frac{\partial z}{\partial x} - (\cos x) \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(\sin x + \sin y\right)$
20	$\sqrt{x} \cdot \frac{\partial z}{\partial x} + \sqrt{y} \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{y} - \sqrt{x}\right)$
21	$2\sqrt{x} \cdot \frac{\partial z}{\partial x} - y \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{x} + \ln y\right)$
22	$4\sqrt{x} \cdot y \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$	$z = f\left(y^2 - \sqrt{x}\right)$
23	$x\frac{\partial z}{\partial x} - 3\frac{\partial z}{\partial y} = 0$	$z = f\left(x^3 e^y\right)$
24	$2(x \cdot \operatorname{tg} y) \cdot \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{x}\cos y\right)$
25	$\frac{\partial z}{\partial x} - e^{x-y} \frac{\partial z}{\partial y} = 0$	$z = f\left(e^x + e^y\right)$
26	$2e^{y}\sqrt{x}\cdot\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=0$	$z = f\left(\sqrt{x} + e^{y}\right)$
27	$\frac{\partial z}{\partial x} - \left(\cos^2 y\right) \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(x + \operatorname{tg} y\right)$
28	$2x \cdot \frac{\partial z}{\partial x} - y \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(xy^2\right)$
29	$x\frac{\partial z}{\partial x} - y \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(\ln x + \ln y\right)$
30	$2y^2 \frac{\partial z}{\partial x} - \sqrt{x} \cdot \frac{\partial z}{\partial y} = 0$	$z = f\left(\sqrt{x^3} + y^3\right)$

Задача 3. Проверить, является ли данная дифференциальная форма (А, Б) полным дифференциалом некоторой функции, если является, найти эту функцию.

Nº	которой функции, если является, наити эту q A	Б
1	$(x^2+x)\cos ydx - (x^3+x^2)\sin ydy$	$(2xy + y^2 + 2)dx + (x^2 + 2xy + 3)dy$
2	$\left(\frac{1}{x} + \frac{1}{y} - \frac{y}{x^2}\right) dx + \left(\frac{1}{x} - \frac{x}{y^2} + 3y^2\right) dy$	$4x^2y^3dx + 6x^3y^2dy$
3	$\left(\frac{1}{2\sqrt{x}} + \frac{xy}{\sqrt{x^2 + 1}}\right) dx + \left(\sqrt{x^2 + 1} - 2ye^{-y^2}\right) dy$	$2xe^{xy}dx + ye^{xy}dy$
4	$y\sqrt{x+1}dx + \sqrt{(x+1)^3}dy$	$\left[\left(\frac{1}{3\sqrt[3]{x^2}} + yx^{y-1} \right) dx + \left(\frac{1}{y^2 + 1} + x^y \ln x \right) dy \right]$
5	$\left(1 + \frac{y^2}{\left(x+y\right)^2}\right) dx + \left(2 + \frac{x^2}{\left(x+y\right)^2}\right) dy$	$y\cos xdx + y\sin xdy$
6	$x\sin(xy)dx + y\cos(xy)dy$	$\left[\left(\frac{1}{1+x^2} + \frac{2x}{x^2 + y^2} \right) dx + \left(2^y \ln 2 + \frac{2y}{x^2 + y^2} \right) dy \right]$
7	$(2xy - \sqrt{y})dx + (x^2 - \sqrt{y})dy$	$(x^2 + 2xy - y^2)dx + (x^2 - 2xy - y^2)dy$
8	$\left(\frac{1}{\cos^2 x} + \frac{x}{\sqrt{1 + x^2 - y^2}}\right) dx + \left(\frac{2y}{1 + y^2} - \frac{y}{\sqrt{1 + x^2 - y^2}}\right) dy$	$y\sin xdx + (y+\cos x)dy$
9	$\left(\sin x + 3x^2y\right)dx + \left(x^3 - y^2\right)dy$	$3\sqrt{x}e^{y}dx - 2\sqrt{x^3}e^{y}dy$
10	$\left(\frac{1}{y}-2\right)dx + \left(3-\frac{x}{y^2}\right)dy$	$2\cos\left(x^2+y\right)dx-\sin\left(x^2+y\right)dy$
11	$\left(\frac{x}{\sqrt{x^2 - y}} - \frac{1}{\sin^2 x}\right) dx + \left(\frac{1}{y} - \frac{1}{\sqrt{x^2 - y}}\right) dy$	$6x^5e^ydx - e^y(1+x^6)dy$
12	$x\left(1+y^5\right)dx+x^2y^4dy$	$3(x^2 - y)dx + 3(y^2 - x)dy$
13	$(2xy^3 + 3x^2)dx + (3x^2y^2 + 2y)dy$	$x\sqrt{y}dx + \frac{x^2}{\sqrt{y}}dy$
14	$x \ln y dx + \frac{x^2}{y} dy$	$(\sin 2x + 2x - y)dx - (\sin 2y - y^2 + x)dy$

15	$(x+y\ln y)dx+(1+x\ln y)dy$	$\left(\frac{1}{\sqrt{1-x^2}} + y^2 x^{y-1}\right) dx + \left(x^y + y x^y \ln x + 5\right) dy$
		$\sqrt{1-x^2}$
16	$\left[\left(3x^2 + \frac{1}{x+y} \right) dx - \left(\frac{x}{y(x+y)} - 2y \right) dy \right]$	$(2xy + tgy)dx + (x^2 - 2y)dy$
17	$(2x + y^2 - \sin x)dx + (2xy + \cos y)dy$	$xe^{y}dx + ye^{x}dy$
18	$\left(6x - 2\sqrt{y} - 8\right)dx + \left(1 - \frac{x}{\sqrt{y}}\right)dy$	$x\cos(x+y)dx+y\cos(x+y)dy$
19	$(xy - x^2)dx - (2 + xy)dy$	$\left(2x\sin^2 y + 3x^2\right)dx + \left(x^2\sin 2y + y^2\right)dy$
20	$(3x^2 - 4xy^2)dx + (4y^3 - 4x^2y)dy$	$x\sqrt{x+y}dx - y\sqrt{x+y}dy$
21	$y^3dx + 4xy^2dy$	$\left(2x+y-\frac{1}{x^2}\right)dx+\left(x+2y-\frac{1}{y^2}\right)dy$
22	$e^{x+y}dx - e^{x+y}dy$	$\left(1 + \frac{1}{2\sqrt{x - y^2}}\right) dx + \left(2 - \frac{y}{\sqrt{x - y^2}}\right) dy$
23	$(3x^2 - 3 + e^y)dx + (6 - 6y^2 + xe^y)dy$	$(y+y^3)dx + (x+xy^2)dy$
24	$\left(\sin(x+y) + x\cos(x+y)\right)dx + x\cos(x+y)dy$	$ \ln y \cos x dx + \frac{\cos x}{y} dy $
25	$\left(x+y^2\right)dx-\left(1-xy\right)dy$	$\left(y - \frac{y}{x^2} + \frac{1}{\cos^2 x}\right) dx + \left(x + \frac{1}{x} + \sin 2y\right) dy$
26	$\left[\left(\cos x - \frac{2x}{\left(x^2 + 2y^2\right)^2}\right)dx + \left(\cos y - \frac{4y}{\left(x^2 + 2y^2\right)^2}\right)dy\right]$	$\left(\sqrt{x} + \cos y\right) dx + \left(x\sin y + \sqrt{y} + 1\right) dy$
27	$\left(2e^{2x} + \frac{1}{x+y^2}\right)dx + \left(3y^4 + \frac{2y}{x+y^2}\right)dy$	$(y-1)\sin x dx - (x+y+\cos x)dy$
28	(2x-y-2)dx + (1+2y-x)dy	$2xe^{x^2-y}dx + e^{x^2-y}dy$
29	$(x^2y^3+1)dx + (6x + \cos y + x^3y^2)dy$	$\left(y - \frac{50}{x^2}\right)dx + \left(x - \frac{20}{y^2} + 2y\right)dy$
30	$(1+4\cos x\sin y)dx+(2+4\sin x\cos y)dy$	$\left(x^2 - \cos y\right) dx - \left(x\sin y + \sqrt{y}\right) dy$

 $\frac{{\bf 3aдача}\ {\bf 4.}}{\overline{AB}}$ В точке A найти производную функции $u=f\left(x,y,z\right)$ в направлении вектора максимальную производную по направлению. Указать вектор направления максимальной производной.

вар №	f(x, y, z)	точка А	точка В
1	$e^{xyz} + \cos\left(\frac{x}{z}\right) \cdot \ln\left(x^2 + y^2\right)$	(0; 1; 1)	(3; 3; 7)
2	$\sin(xyz) + 2\sqrt{x^2 + y^2} \cdot \arcsin\left(\frac{x}{z} + 1\right)$	(-1; 0; 1)	(1; -1; 3)
3	$\cos(xyz) + \arctan\left(\frac{y}{x} + 1\right) \cdot \left(y^2 + z^2\right)^{-1}$	(1; -1; 0)	(2; 1; 2)
4	$tg(xyz) + 2ln(yz)e^{xz}$	(0;-1;-1)	(1; 1; 1)
5	$\arcsin(xyz) + tg\left(\frac{x}{z} - 1\right)\sqrt{1 + yz}$	(1; 0; 1)	(2; 2; 3)
6	$\arccos(xyz) + 2\sin(\frac{x}{y} + 1) \cdot (x^2 + z^2)^{-1}$	(-1; 1; 0)	(1; 3; 1)
7	$arctg(xyz) + \sqrt{x^2 + z^2} \cdot ln(-yz)$	(0; 1; -1)	(2; -1; -3)
8	$\arctan\left(xyz\right) + 2\sin\left(\frac{z}{x} - 1\right)e^{yz}$	(-1; 0; -1)	(3; 2; 3)
9	$\ln\left(1+xyz\right)+\operatorname{tg}\left(\frac{y}{x}-1\right)\cos\left(\frac{z}{y}\right)$	(1; 1; 0)	(3; -1; 1)
10	$\sqrt{1 + xyz} + \arcsin\left(\frac{z}{y} + 1\right) \cdot \sqrt{1 + xz}$	(0; -1; 1)	(2; -3; 2)
11	$e^{xyz} + 2\arctan\left(\frac{z}{x} + 1\right) \cdot \left(y^2 + z^2\right)^{-1}$	(1; 0; -1)	(3; 1; -3)
12	$\sin(xyz) + \ln(x^2 + z^2) \cdot e^{yz}$	(-1; -1; 0)	(-3; 5; 3)
13	$\cos(xyz) + \sqrt{1+xy} \cdot \sin\left(\frac{y}{z} - 1\right)$	(0; 1; 1)	(2; 2; 3)
14	$tg(xyz) + 2e^{xy} \cdot arcsin(\frac{x}{z} + 1)$	(-1; 0; 1)	(3; 2; -3)
15	$\arcsin(xyz) + \cos(\frac{z}{y}) \cdot \ln(y^2 + z^2)$	(1; - 1; 0)	(7; -3; -3)
16	$\arccos(xyz) + 2(x^2 + y^2)^{-1} \cdot \ln(yz)$	(0; -1; -1)	(2; 0; 1)

17	$\arctan\left(xyz\right) + \sqrt{y^2 + z^2} \cdot \sin\left(\frac{z}{x} - 1\right)$	(1; 0; 1)	(3; 1; 3)
18	$arcctg(xyz) + \sqrt{1 + yz} \cdot tg(\frac{y}{x} + 1)$	(-1; 1; 0)	(0; 3; 2)
19	$\ln(1+xyz) + 2e^{xz} \cdot \arcsin\left(\frac{z}{y} + 1\right)$	(0; 1; -1)	(2; 5; 3)
20	$\sqrt{1 + xyz} + 2\cos\frac{y}{x} \cdot \arctan\left(\frac{x}{z} - 1\right)$	(-1; 0; -1)	(1; 1; 1)
21	$e^{xyz} + (y^2 + z^2)^{-1} \cdot \ln(x^2 + z^2)$	(1; 1; 0)	(3; 7; 3)
22	$\sin(xyz) + 2\sqrt{x^2 + y^2} \cdot \ln(-yz)$	(0; -1; 1)	(2; 0; 3)
23	$\cos(xyz) + \sqrt{1 + yz} \cdot \sin\left(\frac{z}{x} + 1\right)$	(1; 0; -1)	(5; -4; -3)
24	$tg(xyz) + 2e^{yz} \cdot arcsin\left(\frac{y}{x} - 1\right)$	(-1; -1; 0)	(0; -3; 2)
25	$\arcsin(xyz) + \cos(\frac{x}{y}) \cdot \arctan(\frac{y}{z} - 1)$	(0; 1; 1)	(1; 3; 3)
26	$\arccos(xyz) + 2(x^2 + y^2)^{-1} \cdot \sin(\frac{x}{z} + 1)$	(-1; 0; 1)	(0; 2; 3)
27	$\arctan\left(xyz\right) + 2\sqrt{y^2 + z^2} \cdot tg\left(\frac{y}{x} + 1\right)$	(1; - 1; 0)	(3; 1; 1)
28	$\operatorname{arcctg}(xyz) + \sqrt{1 + xy} \cdot \ln(x^2 + z^2)$	(0;-1;-1)	(3; 5; – 3)
29	$\ln(1+xyz)+e^{xy}\cdot\sin(\frac{x}{z}-1)$	(1; 0; 1)	(2; 1; 0)
30	$\sqrt{1+xyz} + \cos\left(\frac{z}{y}\right) \cdot tg\left(\frac{y}{x} + 1\right)$	(- 1; 1; 0)	(-3; -1; 1)

<u>Задача 5. Варианты 1 – 10.</u> Для заданной поверхности найти точки, в которых касательная плоскость к поверхности параллельна плоскости Ax + By + Cz + D = 0. Написать уравнения касательной плоскости и нормали к поверхности в найденных точках.

Вариант	Уравнение поверхности	Уравнение плоскости
1	$4 + x + y^2 = \ln z$	x + 2y - z = 0
2	$x - y^2 - z^2 = 0$	x-4y+2z-1=0
3	$z = 2x^2 + y^2$	4x - 2y - z + 9 = 0
4	$x^2 + y^2 - z^2 = -1$	2x + 2y - 3z - 5 = 0
5	$12x - 2y^2 - 3z^2 = 18$	x + y + z = 10
6	$z = 2x^2 - 4y^2$	8x - 8y - z = 0
7	$x^2 + 2y^2 + 3z^2 = 21$	x+4y+6z=0
8	$z = 3x^2 + y^2$	6x - 4y - z + 3 = 0
9	$5x^2 - y + 2z^2 = 9$	10x - y + 8z - 13 = 0
10	$4x^2 + y^2 + z^2 = 17$	4x - 3y + 2z + 1 = 0

Варианты 11 – 15. На поверхности, заданной уравнением F(x; y; z) = 0, найти точки, в которых нормаль к поверхности параллельна прямой $\frac{x - x_0}{m} = \frac{x - y_0}{n} = \frac{x - z_0}{p}$, или Ax + By + Cz + Dz = 0

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

Написать уравнения касательной плоскости и нормали к поверхности в найденной точке (точках).

Вариант	Уравнение поверхности	Уравнения прямой
11	$x^2 + y^2 - 4z = 0$	x = y = z
12	$x^2 - y^2 - 2z = 0$	$\frac{x}{3} = \frac{y+51}{1} = \frac{z-2}{-1}$
13	z = xy	$\frac{x+2}{2} = \frac{y+2}{2} = \frac{z-1}{-1}$
14	$x^2 - z^2 - 2x + 6y + 4 = 0$	$\begin{cases} x + y - z + 1 = 0 \\ x - 3y + z + 9 = 0 \end{cases}$
15	$x^2 - 2y - z^2 = 4$	$\begin{cases} -x - y + 2z = 0 \\ x - 3z + 8 = 0 \end{cases}$

Варианты 16 – 20. На поверхности, заданной уравнением F(x;y;z)=0, найти точки, в которых касательная плоскость к поверхности перпендикулярна заданному вектору s(p;q;r). Для каждой из найденных точек написать уравнения касательной плоскости и нормали.

Вариант	Уравнение поверхности	s(p;q;r).
16	$x^2 - xy - 8x - z + 5 = 0$	s(1;2;1)
17	$z = 1 + x^2 + y^2$	s(2;2;-1)
18	$x^2 + y^2 - xz - yz = 7$	s (-6;0;1)
19	$x^2 + y^2 - 4x + 2y + 2z + 10 = 0$	s(1;2;-1)
20	$x^2 - y^2 + xy - yz = 2$	s (5;-3;-1)

Варианты 21 – 25. Для заданной поверхности найти точки, в которых касательная плоскость к поверхности параллельна плоскости Ax + By + Cz + D = 0.

Написать уравнения касательной плоскости и нормали к поверхности в найденных точках.

Вариант	Уравнение поверхности	Уравнение плоскости
21	$x^{2} + y^{2} + z^{2} + xy + yz + zx - 5 = 0$	3x + 4y + z - 1 = 0
22	$4 + \sqrt{x^2 + y^2 + z^2} = x + y + z$	5x + 4y + z + 3 = 0
23	$z = x^4 - y^4 + 5$	32x - 108y - z + 1 = 0
24	$e^z - z + xy = 3$	2x + y + 5 = 0
25	$z = \sqrt{x^2 + y^2} - x^2 - y^2$	27x + 36y + 5z - 1 = 0

Варианты 26 – 30. На данной поверхности найти точки, в которых нормаль к поверхности параллельна указанной прямой. Написать уравнения касательной плоскости и нормали к поверхности в найденных точках.

Вариант	Уравнение поверхности	Уравнения прямой
26	$z = \operatorname{arctg} \frac{y}{x}$	$\frac{x-7}{1} = \frac{y+2}{-1} = \frac{z}{2}$
27	$2^{\frac{x}{y}} = 2^z + 4$	$\frac{x-5}{2} = \frac{y-5}{-6} = \frac{z+4}{-1}$
28	$z = x^3 - 3x^2y + xy^2 + y^3$	$\frac{x+7}{1} = \frac{y-12}{-5} = \frac{z+3}{-1}$
29		$\begin{cases} x + 3z - 8 = 0 \\ y + 13 = 0 \end{cases}$
30	$z = \cos(x) + e^{xy} + y$	$\frac{x+8}{2} = \frac{y-3}{1} = \frac{z+20}{-1}$

Задача 6. Найти экстремум функции A) f(x,y), **Б**) f(x,y,z).

Bap.№	А, Б	Функции
1.	A	$x^2y - 9y^3 - 2x^2 + 18y^2$
	Б	$x^3 - 30x^2 - 3y^2 - 6z^2 + 18xy + 12xz - 6yz + 3x + 6y + 30z + 7$
2.	A	$xy^2 - x^2y - 2y^2 + xy + 2y$
	Б	$y^3 - 15x^2 - 18y^2 - 6z^2 + 18xy - 18xz + 6yz + 30x - 3y + 24z + 5$
3.	A	$y^3 - x^2y - 4y^2 + 4y$
	Б	$z^{3} + 6x^{2} + 15y^{2} + 12z^{2} + 18xy - 6xz - 18yz - 24x - 30y - 15z + 5$
4.	A	$4y^3 - x^2y + 2x^2 - 12y$
	Б	$x^3 - 18x^2 - 15y^2 - 6z^2 + 18xy + 6xz - 18yz + 6x + 30y + 24z + 7$
5.	A	$x^{2}y + xy^{2} + 2x^{2} + 3xy + y^{2} + 2x + 2y$
	Б	$y^3 + 15x^2 + 15y^2 + 6z^2 - 18xy + 18xz - 6yz - 30x - 9y - 24z + 11$
6.	A	$4x^3 - xy^2 + 12x^2 + y^2$
	Б	$z^{3} - 6x^{2} - 15y^{2} - 21z^{2} - 18xy + 6xz + 18yz + 24x + 30y + 15z + 6$
7.	A	$xy^2 + x^2y + y^2 - xy - 2y$
	Б	$x^{3} - 18x^{2} - 15y^{2} - 6z^{2} + 18xy + 6xz - 18yz + 30x + 6y + 12z + 3$
8.	A	$x^{6} + x^{4}y - 2x^{4} - x^{2}y - y^{2} + 2y$
	Б	$y^3 + 15x^2 + 9y^2 + 6z^2 - 18xy + 18xz - 6yz - 6x - 21y - 12z + 2$
9.	A	$xy^2 - x^2y - x^2 - xy - 2x$
	Б	$ \begin{vmatrix} z^3 + 6x^2 + 15y^2 + 9z^2 + 18xy - 6xz - 18yz - 24x - 30y + 3z + 3 \\ 2 + 3 + 4 + 2 + 2 + 2 + 2 \end{vmatrix} $
10.	A	$xy^2 + y^3 + 4y^2 + 3xy - x^2$
	<u>Б</u> А	$x^{3} + 12x^{2} + 15y^{2} + 6z^{2} - 18xy - 6xz + 18yz - 30x - 6y - 12z + 6$
11.		$y^3 - x^2y - 12y^2 + 36y$
	<u>Б</u>	$y^{3} - 15x^{2} - 21y^{2} - 6z^{2} + 18xy - 18xz + 6yz + 6x + 30y + 12z + 11$ $x^{4} - 4x^{3} - 2x^{2} - y^{2} + 12x$
12.	Б	$ z^{3} - 6x^{2} - 3y^{2} - 18z^{2} - 6xy + 6xz + 12yz + 30x + 12y - 6z + 7 $
13.	A	$\begin{vmatrix} z - 6x - 3y - 16z - 6xy + 6xz + 12yz + 36x + 12y - 6z + 7 \\ xy^2 - x^2y - 4y^2 + 5xy - 4y \end{vmatrix}$
	Б	$x^{3} + 15x^{2} + 3y^{2} + 6z^{2} - 12xy - 6xz + 6yz - 18x - 6y - 24z + 5$
14.	A	$\begin{vmatrix} x^{3} + 15x + 5y + 6z - 12xy - 6xz + 6yz - 16x - 6y - 24z + 5 \end{vmatrix}$ $\begin{vmatrix} y^{3} - x^{2}y - 6y^{2} - 2xy + 8y \end{vmatrix}$
	Б	$y^{3} - 3x^{2} - 24y^{2} - 6z^{2} + 12xy - 6xz + 6yz + 6x + 30y + 24z + 5$
15.	A	$-xy^{2} + 2y^{2} - 4xy + x^{2} - 4x + 8y$
	Б	$z^{3} + 6x^{2} + 3y^{2} + 18z^{2} + 6xy - 6xz - 12yz - 30x - 12y - 3z + 7$
16.	A	$xy^{2} - 9x^{3} + 18x^{2} - y^{2} - 9x$
	Б	$x^3 - 18x^2 - 3y^2 - 6z^2 + 12xy + 6xz - 6yz - 18x + 6y + 24z + 11$
17.	A	$y^3 - x^2y + 12y^2 + 36y$
	Б	$y^3 - 3x^2 - 18y^2 - 6z^2 + 12xy - 6xz + 6yz + 6x - 12y + 30z + 6$

18.	A	$y^3 + 3y^2 - x^2y + x^2$
	Б	$z^{3} + 6x^{2} + 3y^{2} + 15z^{2} + 6xy - 6xz - 12yz - 30x - 12y - 21z + 3$
19.	Α	$xy^2 - x^2y - 2y^2 - 2x^2 + 5xy + 6x - 6y - 4$
	Б	$x^{3} + 12x^{2} + 3y^{2} + 6z^{2} - 12xy - 6xz + 6yz - 21x - 6y - 30z + 2$
20.	Α	$y^3 - x^2y + 4y^2 + 4y$
	Б	$y^3 + 3x^2 + 15y^2 + 6z^2 - 12xy + 6xz - 6yz - 6x - 15y - 30z + 3$
21.	Α	$y^2 - x^2y + 4x^2 - 4y$
	Б	$z^3 - 6x^2 - 3y^2 - 21z^2 - 6xy + 6xz + 12yz + 30x + 6y + 12z + 6$
22.	Α	$xy^2 - x^2 - 3y^2 + 2x$
	Б	$x^3 - 21x^2 - 3y^2 - 6z^2 + 12xy + 6xz - 6yz + 27x - 12y + 6z + 11$
23.	Α	$4xy^2 - x^3 + 8y^2 + 3x$
25.	Б	$y^{3} + 15x^{2} + 9y^{2} + 6z^{2} - 18xy + 18xz - 6yz - 6x - 30y - 12z + 7$
24.	A	$y^3 - 4x^2y - 2y^2 - 8x^2 - 4y$
	Б	$z^3 - 6x^2 - 3y^2 - 18z^2 - 6xy - 18xz - 12yz + 12x + 18y + 21z + 5$
25.	A	$y^3 - 2x^2y - xy^2 - 6y^2 + 12xy$
25.	Б	$x^{3} + 27x^{2} + 3y^{2} + 6z^{2} + 12xy + 18xz + 6yz + 18x - 12y - 6z + 5$
26.	A	$4y^3 + 2x^2y - x^2y^2 + 12y^2 - x^2$
	Б	$y^3 - 3x^2 - 9y^2 - 6z^2 - 12xy - 6xz - 18yz + 12x + 27y + 6z + 7$
27.	A	$xy^2 - x^3 + 2xy - 6x^2 - 8x$
	Б	$z^3 - 6x^2 - 3y^2 - 9z^2 - 6xy - 18xz - 12yz + 6x + 12y + 18z + 11$
28.	A	$-x^3 + 3xy^2 + 2x^2y + 6x^2 - 6xy - 9x$
	Б	$x^{3} + 21x^{2} + 3y^{2} + 6z^{2} + 12xy + 18xz + 6yz - 30x - 18y - 12z + 6$
29.	Α	$2xy^2 + y^3 - 3x^2y - 12y^2 + 12xy$
	Б	$y^3 + 3x^2 + 9y^2 + 6z^2 + 12xy + 6xz + 18yz - 18x - 30y - 12z + 3$
30.	A	$x^3 + 2x^2y - 3xy^2 + 12x^2 - 12xy$
	Б	$z^{3} + 6x^{2} + 3y^{2} + 27z^{2} + 6xy + 18xz + 12yz - 18x - 12y + 6z + 2$