# Dynamic Programming:

Interval Scheduling and Knapsack

## 6.1 Weighted Interval Scheduling

### Weighted Interval Scheduling

#### Weighted interval scheduling problem.

- Job j starts at  $s_j$ , finishes at  $f_j$ , and has weight or value  $v_j$ .
   Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs. single set of non-overlapping intervals that give the most money!



### Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Keep job if compatible with previously chosen jobs.

Observation. Greedy fails spectacularly with arbitrary weights.



Exercises: by "density" = weight per unit time? Other ideas?

### Weighted Interval Scheduling

job j is the jth job to finish

Notation. Label jobs by finishing time:  $f_1 \le f_2 \le \ldots \le f_n$ . Def. p(j) = largest i < j such that job i is compatible with j. "p" suggesting (last possible) "predecessor"

Ex: 
$$p(8) = 5$$
,  $p(7) = 3$ ,  $p(2) = 0$ .

5 is the latest job before

job 8 that is compatible with job 8



| j | p(j) |
|---|------|
| 0 | 1    |
| _ | 0    |
| 2 | 0    |
| 3 | 0    |
| 4 | -    |
| 5 | 0    |
| 6 | 2    |
| 7 | 3    |
| 8 | 5    |

## Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

key idea:

Either job j is part of the optimal solution or it is not

principle of optimality

- Case I: Optimure selects job j. binary choice
  - can't use incompatible jobs  $\{p(j) + 1, p(j) + 2, ..., j 1\}$  cannot use all the jobs incompatible with job  $j = jobs \ i : p(j) < i < j$
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

Case 2: Optimun does not select job j.

 $\rightarrow$  – must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

### Weighted Interval Scheduling: Brute Force Recursion

#### Brute force recursive algorithm.

not storing any of our results...

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)  
       return 0
   else
      return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

### Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems  $\Rightarrow$  exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.



#### Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
    OPT[0] = 0
    for j = 1 to n
        OPT[j] = max(v_j + OPT[p(j)], OPT[j-1])
}

Output OPT[n]
```

Claim: OPT[j] is value of optimal solution for jobs 1..j Timing: Loop is O(n); sort is  $O(n \log n)$ ; what about p(j)?

calculating OPT

i.e. sorting the jobs by finish time

### Weighted Interval Scheduling

Notation. Label jobs by finishing time:  $f_1 \le f_2 \le ... \le f_n$ . Def. p(j) = largest i < j such that job i is compatible with j.

Ex: 
$$p(8) = 5$$
,  $p(7) = 3$ ,  $p(2) = 0$ .



| _ |    |    |      |
|---|----|----|------|
| j | vj | рj | optj |
| 0 | 1  | 1  | 0    |
| _ |    | 0  |      |
| 2 |    | 0  |      |
| 3 |    | 0  |      |
| 4 |    | I  |      |
| 5 |    | 0  |      |
| 6 |    | 2  |      |
| 7 |    | 3  |      |
| 8 |    | 5  |      |

#### END WED feb 20 START FRI feb 22

### Weighted Interval Scheduling Example

Label jobs by finishing time:  $f_1 \leq f_2 \leq \ldots \leq f_n$ . p(j) = largest i < j s.t. job i is compatible with j.

Exercise: try other concrete examples: If all vj=1: greedy by finish time → 1,4,8 what if v2 > v1?, but < v1+v4? v2>v1+v4, but v2+v6 < v1+v7, say? etc.



| j | pj | vj | $max(v_j+opt[p(j)], opt[j-1]) =$ | opt[j] |
|---|----|----|----------------------------------|--------|
| 0 | -  | -  | -                                | 0      |
| 1 | 0  | 2  | max(2+0, 0) =                    | 2      |
| 2 | 0  | 3  | max(3+0, 2) =                    | 3      |
| 3 | 0  | 1  | max(1+0, 3) =                    | 3      |
| 4 | 1  | 6  | max(6+2, 3) =                    | 8      |
| 5 | 0  | 9  | max(9+0, 8) =                    | 9      |
| 6 | 2  | 7  | max(7+3, 9) =                    | 10     |
| 7 | 3  | 2  | max(2+3, 10) =                   | 10     |
| 8 | 5  | ?  | max(?+9, 10) =                   | ?      |

Exercise: What values of v8 cause it to be we traverse from the top in/ex-cluded from opt? if v8 >= 1

To obtain best solution, down! What was better, choosing 8 or not... if choose it, go to p(8) and ask same question. Else, go to job 7

### Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing "traceback"

once we calculated OPT(N) for all of our N jobs, here we trace back through OPT values to see what choices we made and get our solution.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
                                              the condition
Find-Solution(j) {
   if (j = 0)
                                              determining the
      output nothing
                                              max when
   else if (v_j + OPT[p(j)] > OPT[j-1])
                                              computing OPT[]
      print j
      Find-Solution(p(j))
   else
                                              the relevant
      Find-Solution(j-1) ←
                                              sub-problem
```

■ # of recursive calls  $\leq$  n  $\Rightarrow$  O(n).

### Sidebar: why does job ordering matter?

Ordering allows us to quickly determine what each job is compatible with.

It's *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it's because it allows us to consider only a small number of subproblems (O(n)), vs the exponential number that seem to be needed if the jobs aren't ordered (seemingly, *any* of the 2<sup>n</sup> possible subsets might be relevant)

Don't believe me? Think about the analogous problem for weighted *rectangles* instead of intervals... (I.e., pick max weight non-overlapping subset of a set of axisparallel rectangles.) Same problem for squares or circles also appears difficult.

## 6.4 Knapsack Problem

subset sum problem

#### **Knapsack Problem**

#### Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs  $w_i > 0$  kilograms and has value  $v_i > 0$ .
- Knapsack has capacity of W kilograms.
- Goal: maximize total value without overfilling knapsack

Ex: { 3, 4 } has value 40.



| ltem | Value | Weight | V/W  |
|------|-------|--------|------|
| 1    | 1     | I      | I    |
| 2    | 6     | 2      | 3    |
| 3    | 18    | 5      | 3.60 |
| 4    | 22    | 6      | 3.66 |
| 5    | 28    | 7      | 4    |

Greedy: repeatedly add item with maximum ratio v<sub>i</sub> / w<sub>i</sub>.

Ex:  $\{5, 2, 1\}$  achieves only value  $=(35) \Rightarrow$  greedy not optimal.

[NB greedy is optimal for "fractional knapsack": take #5 + 4/6 of #4]

Only optimal if we can take a fraction of each object; i.e. half a bag of goldfish

## Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case I: OPT does not select item i. binary choice
  - -OPT selects best of { I, 2, ..., i-I }
- Case 2: OPT selects item i.
  - accepting item i does not immediately imply that we will have to reject other items
  - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

### Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items I, ..., i with weight limit w. Increases complexity; n \* W possible subproblems.

#### binary choice again

- Case I: OPT does not select item i.
  - OPT selects best of { I, 2, ..., i-I } using weight limit w
- Case 2: OPT selects item i.
  - new weight limit =  $w w_i$
  - -OPT selects best of { I, 2, ..., i-I } using new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), \quad v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$
 could not take object i as its weight is more than the remaining capacity

#### Knapsack Problem: Bottom-Up

OPT(i, w) = max profit from subset of items 1, ..., i with weight limit w.

```
Input: n, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
    OPT[0, w] = 0

for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            OPT[i, w] = OPT[i-1, w]
    else
        OPT[i, w] = max {OPT[i-1, w], v<sub>i</sub> + OPT[i-1, w-w<sub>i</sub>]}

return OPT[n, W]
```

(Correctness: prove it by induction on i & w.)

## Knapsack Algorithm



|       |                   | 0 | 1 | 2  | 3 | 4            | 5  | 6  | 7  | 8  | 9              | 10 | Ш  |
|-------|-------------------|---|---|----|---|--------------|----|----|----|----|----------------|----|----|
|       | ф                 | 0 | 0 | 0  | 0 | 0            | 0  | 0  | 0  | 0  | 0              | 0  | 0  |
|       | { }               | 0 | I | -1 | I | I            | I  | I  | ı  | I  | 1              | ı  | ı  |
| n + I | { 1, 2 }          | 0 | I | 6  | 7 | 7            | 7  | 7  | 7  | 7  | 7              | 7  | 7  |
|       | { 1, 2, 3 }       | 0 | + | 6  | 7 | <del>7</del> | 18 | 15 | 24 | 25 | 25             | 25 | 25 |
|       | { 1, 2, 3, 4 }    | 0 | I | 6  | 7 | 7            | 18 | 22 | 24 | 28 | <del>5</del> 9 | 20 | 40 |
|       | { 1, 2, 3, 4, 5 } | 0 | ı | 6  | 7 | 7            | 18 | 22 | 28 | 29 | 34             | 35 | 40 |

| if $(w_i > w)$                                      |
|-----------------------------------------------------|
| OPT[i, w] = OPT[i-1, w]                             |
| else                                                |
| OPT[i, w] = $\max\{OPT[i-1,w],v_i+OPT[i-1,w-w_i]\}$ |

| ltem | Value | Weight |
|------|-------|--------|
| I    | I     | 1      |
| 2    | 6     | 2      |
| 3    | 18    | 5      |
| 4    | 22    | 6      |
| 5    | 28    | 7      |

#### Knapsack Problem: Running Time

#### Running time. $\Theta(n W)$ .

- Not polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution (i.e., satisfies weight-limit constraint) that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]