Séance du 06.02. - Exercices

Applications

Exercice 1

- 1. Etablir la table de vérité de chacune des propositions suivantes : a) $(P \Rightarrow Q) \Rightarrow R$ b) $P \Rightarrow (Q \Rightarrow R)$
- 2. Ces deux propositions sont-elles équivalentes ?

Р		O R F		$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow R$	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$		
	0	0	0	1	0	1	1		
	0	0	1	1	1	1	1		
	0	1	0	1	0	0	1		
	0	1	1	1	1	1	1		
	1	0	0	0	1	1	1		
	1	0	1	0	1	1	1		
	1	1	0	1	0	0	0		
-	1	1	1	1	1	1	1		

1. Ces deux propositions ne sont pas équivalentes : $(P \Rightarrow Q) \Rightarrow R \iff P \Rightarrow (Q \Rightarrow R)$

Exercice 2

- 1. Déterminer une proposition équivalente à P ^ Q qui ne comporte que les connecteurs ¬ et ∨.
- 2. Ecrire une proposition équivalente à $P \Rightarrow Q$ qui ne comporte que les connecteurs \neg et
- 3. En déduire une proposition équivalente à $P \Leftrightarrow Q$ qui ne comporte que les connecteurs \neg et \lor .

l'en demonstration: Table de vente

P	Q	$P \wedge Q$	\bar{P}	\bar{Q}	$\bar{P} \vee \bar{Q}$	$\overline{P} \vee \overline{Q}$
0	0	0	1	1	1	0
0	1	0	1	0	1	0
1	0	0	0	1	1	0
1	1	1	0	0	0	1

A the demandation: $\vec{P} \times \vec{Q} \iff \vec{P} \wedge \vec{Q} \iff \vec{Q} \wedge \vec{Q} \implies \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \implies \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \implies \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \wedge \vec{Q} \implies \vec{Q} \wedge \vec{$

9	P	Q	$P \Rightarrow Q$	$ar{P}$	$\bar{P} \vee Q$
α.	0	0	1	1	1
	0	1	1	1	1
	1	0	0	0	0
	1	1	1	0	1

On a aini démanti que (P=)Q) (=> (P v Q)

3 P) D	-> C	<u> </u>	D		(D) (O) (O) (O)	
) . P		Q P <		$ar{ar{Q}}$		0	$ \begin{array}{c c} \hline (P \lor \overline{Q}) \lor (Q \lor \overline{P}) \\ \hline 0 \end{array} $	$(P \lor Q) \lor (Q \lor P)$
0				1 0		0	1	0
1	()	0	0 1	0	1	1	0
_ 1		1	1	0 0	0	0	0	1
			rí pue		P (=)	Q) (=	=) PVQ V	QVP
<i>y</i> 10	_							
	P	, ā	V Q	JP	(=)	$P\sqrt{Q}$	∧ Q v P	
					(=) (PVQ,	$\wedge (Q \vee \overline{P})$	
						· ·	$\overline{2}$) \wedge $(\overline{a} =) \overline{p}$	
					(=)			
					(=)	r (=)) <u> </u>	
Rem	arpi	nei (P =>	Q)	(=) ((P =)	Q) \((Q = 0)	> P)
			P 1=	o Q) (=)	(p	(=) Q)	
	P	a	P =		p c	4	(=> Q	
	0	0		1	1 1		1	
	O	1	Č	,	1 e	,	0	
	1	0	- 0		0 1		0	
	1	1		1	0 0		1	
Exercice 3								
1. a) Etablir l				position	suivante:			
b) A quelle 2. Mêmes qu	prop	osition pl			position e	st-elle équ	nivalente ?	
z. Monios qu	-541011	(1	- Q) -	(- // Q)				

