Titanic Survival Analysis

Langtao Chen

Update: Mar 2, 2021

Contents

1.	Dataset	-
2.	Validation Set Approach	4
3.	K-Fold Cross-Validation 3.1. A Simple Implementation Using caret Package	
4.	Repeated K-Fold Cross-Validation 4.1. Directly Implement Repeated K-Fold Cross-Validation	

In this example, we'll predict survival of passengers in Titanic by using validation set, k-fold cross-validation, and repeated k-fold cross-validation.

1. Dataset

We use the Titanic passenger survival data set in the titanic R package..

```
# Clean the environment
rm(list = ls())

titanic <- read.csv('titanic_train.csv')
str(titanic)</pre>
```

```
## 'data.frame':
                    891 obs. of 12 variables:
                       1 2 3 4 5 6 7 8 9 10 ...
   $ PassengerId: int
   $ Survived
                 : int
                        0 1 1 1 0 0 0 0 1 1 ...
##
   $ Pclass
                 : int
                        3 1 3 1 3 3 1 3 3 2 ...
##
   $ Name
                        "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
                 : chr
   $ Sex
                        "male" "female" "female" ...
                        22 38 26 35 35 NA 54 2 27 14 ...
##
   $ Age
                 : num
   $ SibSp
                        1 1 0 1 0 0 0 3 0 1 ...
                 : int
  $ Parch
##
                        0 0 0 0 0 0 0 1 2 0 ...
                 : int
                        "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
  $ Ticket
                 : chr
##
  $ Fare
                 : num
                        7.25 71.28 7.92 53.1 8.05 ...
##
   $ Cabin
                 : chr
                        "" "C85" "" "C123" ...
                        "S" "C" "S" "S" ...
   $ Embarked
                 : chr
```

The dataset includes the following columns:

• PassengerId: Passenger ID

- Survived: Passenger Survival Indicator
- Pclass: Passenger Class
- Name: Name • Sex: Sex • Age: Age
- SibSp: Number of Siblings/Spouses Aboard • Parch: Number of Parents/Children Aboard
- Ticket: Ticket Number • Fare: Passenger Fare
- Cabin: Cabin
- Embarked: Port of Embarkation

head(titanic)

##		PassengerId Sur	rvived Pcl	ass					
##	1	1	0	3					
##	2	2	1	1					
##	3	3	1	3					
##	4	4	1	1					
##	5	5	0	3					
##	6	6	0	3					
##					Name	Sex	Age	${\tt SibSp}$	Parch
##	1			Bra	aund, Mr. Owen Harris	male	22	1	0
##	2	Cumings, Mrs	John Bradl	ey (Flo	orence Briggs Thayer)	${\tt female}$	38	1	0
##	3			He	eikkinen, Miss. Laina	${\tt female}$	26	0	0
##	4	Futrelle	e, Mrs. Ja	cques l	Heath (Lily May Peel)	${\tt female}$	35	1	0
##	5			Alle	en, Mr. William Henry	male	35	0	0
##	6				Moran, Mr. James	male	NA	0	0
##		Ticke	et Fare	Cabin	Embarked				
##	1	A/5 211	71 7.2500		S				
##	2	PC 1759	99 71.2833	C85	C				
##	3	STON/02. 310128	32 7.9250		S				
##	4	11380	03 53.1000	C123	S				
##	5	3734	50 8.0500		S				
##	6	33087	77 8.4583		Q				

summary(titanic)

##	PassengerId	Survived	Pclass	Name
##	Min. : 1.0	Min. :0.0000	Min. :1.000	Length:891
##	1st Qu.:223.5	1st Qu.:0.0000	1st Qu.:2.000	Class :character
##	Median :446.0	Median :0.0000	Median :3.000	Mode :character
##	Mean :446.0	Mean :0.3838	Mean :2.309	
##	3rd Qu.:668.5	3rd Qu.:1.0000	3rd Qu.:3.000	
##	Max. :891.0	Max. :1.0000	Max. :3.000	
##				
##	Sex	Age	SibSp	Parch
##	Length:891	Min. : 0.42	Min. :0.000	Min. :0.0000
##	Class : characte	r 1st Qu.:20.12	1st Qu.:0.000	1st Qu.:0.0000
##	Mode :characte	r Median:28.00	Median:0.000	Median :0.0000
##		Mean :29.70	Mean :0.523	Mean :0.3816
##		3rd Qu.:38.00	3rd Qu.:1.000	3rd Qu.:0.0000
##		Max. :80.00	Max. :8.000	Max. :6.0000
##		NA's :177		
##	Ticket	Fare	Cabin	Embarked

```
## Length:891
                      Min. : 0.00
                                      Length:891
                                                         Length:891
                      1st Qu.: 7.91
## Class :character
                                      Class : character
                                                         Class : character
                                      Mode :character
##
  Mode :character
                      Median : 14.45
                                                         Mode :character
                            : 32.20
##
                      Mean
##
                      3rd Qu.: 31.00
##
                      Max.
                             :512.33
##
```

From the summary statistics, we found that there are missing values. Let's select the key variables in the

```
dataset and remove missing values from the dataset.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
titanic <- titanic %>%
  select(Survived, Pclass, Sex, Age, SibSp, Parch, Fare) %>%
  na.omit
str(titanic)
## 'data.frame':
                   714 obs. of 7 variables:
   $ Survived: int 0 1 1 1 0 0 0 1 1 1 ...
## $ Pclass : int 3 1 3 1 3 1 3 3 2 3 ...
## $ Sex
              : chr "male" "female" "female" "female" ...
## $ Age
              : num 22 38 26 35 35 54 2 27 14 4 ...
## $ SibSp
            : int 1 1 0 1 0 0 3 0 1 1 ...
## $ Parch
              : int 000001201...
              : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Fare
   - attr(*, "na.action")= 'omit' Named int [1:177] 6 18 20 27 29 30 32 33 37 43 ...
    ..- attr(*, "names")= chr [1:177] "6" "18" "20" "27" ...
Draw a scatterplot matrix.
pairs(~Survived + Pclass + Age + SibSp + Parch + Fare,
      data = titanic,
      col=ifelse(titanic$Survived==1, 'blue', 'orange'))
```


2. Validation Set Approach

```
We use a single 80/20\% split.
```

```
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
set.seed(1234)
trainIndex <- createDataPartition(titanic$Survived, p = .8, list = FALSE)</pre>
train_data <- titanic[ trainIndex,]</pre>
test_data <- titanic[-trainIndex,]</pre>
# Fit a logistic regression model on the training dataset
logit_fit <- glm(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare,</pre>
                  family = binomial, data = train data)
summary(logit_fit)
##
## Call:
## glm(formula = Survived \sim Pclass + Sex + Age + SibSp + Parch +
       Fare, family = binomial, data = train_data)
## Deviance Residuals:
```

```
Median
                                   3Q
                                           Max
                1Q
## -2.7975 -0.6247 -0.4026
                              0.6396
                                        2.4422
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.372468
                          0.666469
                                    8.061 7.56e-16 ***
## Pclass
              -1.230464
                          0.180070 -6.833 8.30e-12 ***
## Sexmale
              -2.569496
                          0.241454 -10.642 < 2e-16 ***
## Age
              -0.045838
                          0.009154 -5.007 5.52e-07 ***
                          0.132982 -2.488
## SibSp
              -0.330883
                                              0.0128 *
## Parch
              -0.110692
                          0.136343 -0.812
                                              0.4169
               0.002605
                                    0.916
## Fare
                          0.002844
                                              0.3598
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 770.89 on 571 degrees of freedom
## Residual deviance: 512.14 on 565 degrees of freedom
## AIC: 526.14
##
## Number of Fisher Scoring iterations: 5
# Predict on the test dataset
pred_prob <- predict(object=logit_fit, newdata = test_data, type='response')</pre>
pred_class <- ifelse(pred_prob > 0.5, 1, 0)
confusionMatrix(factor(pred_class),factor(test_data$Survived), positive = "1")
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
            0 69 15
##
##
            1 13 45
##
##
                 Accuracy: 0.8028
                    95% CI : (0.7278, 0.8648)
##
      No Information Rate: 0.5775
##
      P-Value [Acc > NIR] : 1.123e-08
##
##
##
                     Kappa: 0.5941
##
   Mcnemar's Test P-Value: 0.8501
##
##
##
              Sensitivity: 0.7500
##
              Specificity: 0.8415
##
            Pos Pred Value: 0.7759
##
            Neg Pred Value: 0.8214
##
                Prevalence: 0.4225
##
            Detection Rate: 0.3169
##
      Detection Prevalence: 0.4085
##
         Balanced Accuracy: 0.7957
##
##
          'Positive' Class : 1
```

3. K-Fold Cross-Validation

3.1. A Simple Implementation Using caret Package

We can use the train() method in caret package to easily train a regression (prediction) or classification model using k-fold cross-validation. Refer to the following link for all available models supported by the train() method.

http://topepo.github.io/caret/available-models.html

```
## Train a logistic regression model with 10-fold cross-validation
fitControl <- trainControl(method = "cv", number = 10)</pre>
set.seed(123)
logit_fit2 <- train(factor(Survived) ~ Pclass + Sex + Age + SibSp + Parch + Fare,</pre>
                    data = titanic,
                    trControl = fitControl.
                    method="glm", family=binomial(link='logit'))
print(logit_fit2)
## Generalized Linear Model
## 714 samples
     6 predictor
##
     2 classes: '0', '1'
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 642, 642, 643, 643, 643, 643, ...
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7969288 0.574362
confusionMatrix(logit_fit2)
## Cross-Validated (10 fold) Confusion Matrix
##
   (entries are percentual average cell counts across resamples)
##
##
             Reference
##
## Prediction
                 0
            0 50.6 11.5
##
##
            1 8.8 29.1
##
    Accuracy (average): 0.7969
```

As you can see from the above result, the train() method in caret package by default only supports two performance measures (the overall accuracy and kappa coefficient) for cross-validation classification. If we need to check other measures, we can directly implement the k-fold cross-validation.

3.2. Directly Implement K-Fold Cross-Validation

Let's manually implement k-fold cross-validation.

In this example, let's choose logistic regression as the predictive model, and balanced accuracy as the performance measure.

```
Balanced\ Accuracy = \frac{Sensitivity + Specificity}{2}
\# Implement k-fold cross-validation
k.folds <- function(k) {
    folds <- createFolds(titanic$Survived, k = k, list = TRUE, returnTrain = TRUE)</pre>
    accuracies <- c()
    for (i in 1:k) {
        model <- glm(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare,</pre>
                     data = titanic[folds[[i]],],family=binomial(link='logit'))
        pred_prob_cv <- predict(object = model, newdata = titanic[-folds[[i]],], type = "response")</pre>
        pred_class_cv <- ifelse(pred_prob_cv > 0.5, 1, 0)
        accuracies <- c(accuracies,
                         confusionMatrix(factor(pred_class_cv),
                                         factor(titanic[-folds[[i]], ]$Survived), positive = "1")$byClas
    }
    accuracies
}
\# Execute the k-fold cross-validation
set.seed(123)
accuracies_cv <- k.folds(5)
accuracies_cv
## Balanced Accuracy Balanced Accuracy Balanced Accuracy Balanced Accuracy
           0.7596491
                              0.8343663
                                                0.7404421
                                                                   0.8017136
## Balanced Accuracy
           0.7879455
# Calculate the average balanced accuracy
cat('Balanced Accuracy:\n Mean = ', mean(accuracies_cv),"; ",
    'Standard Deviation = ',sd(accuracies_cv), ";\n",
    '95% Confidence Interval = [',
    mean(accuracies cv) - sd(accuracies cv) * 1.96, ", ",
    mean(accuracies_cv) + sd(accuracies_cv) * 1.96,"]")
## Balanced Accuracy:
## Mean = 0.7848233; Standard Deviation = 0.03658199;
## 95% Confidence Interval = [ 0.7131226 , 0.856524 ]
```

4. Repeated K-Fold Cross-Validation

The mean and standard estimates in k-fold cross-validation is not very robust. We can repeat the k-fold cross-validation mulitple times to get more robust estimates.

Repeated k-fold cross-validation is repeating k-fold cross-validation multiple times, with different folds split in each repetition.

4.1. Directly Implement Repeated K-Fold Cross-Validation

```
# Execute the repeated k-fold cross-validation
set.seed(123)
v <- c()
v <- replicate(200, k.folds(5))</pre>
accuracies_rcv <- c()</pre>
for (i in 1 : 200) {
 accuracies_rcv <- c(accuracies_rcv, v[,i])</pre>
lci <- mean(accuracies_rcv) - sd(accuracies_rcv) * 1.96</pre>
uci <- mean(accuracies_rcv) + sd(accuracies_rcv) * 1.96</pre>
cat('Balanced Accuracy:\n Mean = ', mean(accuracies_rcv),"; ",
    'Standard Deviation = ',sd(accuracies_rcv), ";\n",
    '95% Confidence Interval = [',
    mean(accuracies_rcv) - sd(accuracies_rcv) * 1.96, ", ",
    mean(accuracies_rcv) + sd(accuracies_rcv) * 1.96,"]")
## Balanced Accuracy:
## Mean = 0.7863668; Standard Deviation = 0.03204394;
## 95% Confidence Interval = [ 0.7235607 , 0.8491729 ]
Let's show the distribution of balanced accuracy in all repeated k-fold cross-validations.
hist(accuracies_rcv, prob = TRUE, density = 20,
     main = "Histogram of Balanced Accuracy",
     xlab = "Repeated Cross-Validation Balanced Accuracy")
lines(density(accuracies_rcv), col="red")
```

Histogram of Balanced Accuracy

Repeated Cross-Validation Balanced Accuracy

4.2. Use trainControl() to Configure Repeated CV

As mentioned above, the train() method in caret package by default only supports two performance measures (the overall accuracy and kappa coefficient) for cross-validation classification.

An alternative way is to set the summary function as two Class Summary, which supports sensitivity, specificity, and ROC curve.

Generalized Linear Model
##

```
## 714 samples
##
     6 predictor
##
     2 classes: 'Yes', 'No'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 200 times)
## Summary of sample sizes: 571, 571, 571, 572, 571, 571, ...
## Resampling results:
##
##
     ROC
                Sens
                           Spec
     0.8544638 0.7171552 0.8544238
confusionMatrix(logit_fit_rcv)
## Cross-Validated (5 fold, repeated 200 times) Confusion Matrix
##
  (entries are percentual average cell counts across resamples)
##
##
             Reference
## Prediction Yes
          Yes 29.1 8.6
##
          No 11.5 50.7
##
##
   Accuracy (average): 0.7987
cat('Balanced Accuracy = ',
    sum(logit_fit_rcv$results['Spec'],logit_fit_rcv$results['Sens'])/2)
## Balanced Accuracy = 0.7857895
```

You can find the caret train result is very similar to the result of the direct implementation.