微分積分続論(ベクトル解析)

鈴木 咲衣

平成27年度前期

演習問題5

- 1. 次のベクトル場 $m{V}$ の単位円周 $C: m{r}(t) = (\cos t, \sin t), \, 0 \leq t \leq 2\pi,$ に沿った渦巻き量と湧き出し量を求めよ.
 - (a) $V = e_r$
 - (b) $V = e_{\theta}$
- 2. 5章 (14)-(16) を示せ.
- 3. 5章(33)-(35)を示せ.
- 4.~[2] 問題 6.16 次の各ベクトル場 V について,回転 $\mathrm{rot}V(x,y)$ と発散 $\mathrm{div}V(x,y)$ を求めよ.
 - (a) V = (1,0)
 - (b) V = (1,1)
 - (c) V = (y, 0)
 - (d) V = (0, x)
 - (e) V = (x, 0)
 - (f) V = (0, -y)
 - (g) V = (x, y)
 - (h) V = (x, -y)
 - (i) V = (-y, x)
 - $(j) \quad \boldsymbol{V} = (y, x)$
- 5.~[2, 問題 6.24] ベクトル場 V が極座標表示で $V(r,\theta)=P(r,\theta)e_r+Q(r,\theta)e_\theta$ と表されているとき ,
 - (a) $\operatorname{rot} \boldsymbol{V}(r,\theta)$ を計算せよ.
 - (b) $\operatorname{div} V(r, \theta)$ を計算せよ.

演習問題 5 解答

- 1. (a) 渦巻き量は0、湧き出し量は 2π
 - (b) 渦巻き量は 2π 、湧き出し量は0
 - (c) $V=e_r$ と同じ。
- 2. (あとで書く。)
- 3. (あとで書く。)
- 4. (a)

$$\operatorname{div} \boldsymbol{V} = 0, \operatorname{rot} \boldsymbol{V} = 0$$

(b)

$$\operatorname{div} \boldsymbol{V} = 0, \operatorname{rot} \boldsymbol{V} = 0$$

(c)

$$\mathrm{div} \boldsymbol{V} = 0, \mathrm{rot} \boldsymbol{V} = -1$$

(d)

$$\operatorname{div} \boldsymbol{V} = 0, \operatorname{rot} \boldsymbol{V} = 1$$

(e)

$$\operatorname{div} \boldsymbol{V} = 1, \operatorname{rot} \boldsymbol{V} = 0$$

(f)

$$\operatorname{div} \boldsymbol{V} = -1, \operatorname{rot} \boldsymbol{V} = 0$$

(g)

$$\operatorname{div} \boldsymbol{V} = 2, \operatorname{rot} \boldsymbol{V} = 0$$

(h)

$$\operatorname{div} \boldsymbol{V} = 0, \operatorname{rot} \boldsymbol{V} = 0$$

(i)

$$\operatorname{div} \boldsymbol{V} = 0, \operatorname{rot} \boldsymbol{V} = 2$$

(j)

$$\operatorname{div} \boldsymbol{V} = 0, \operatorname{rot} \boldsymbol{V} = 0$$

- $5. \quad (a)$
 - (b)

参考文献

[2] 小林亮,高橋大輔「ベクトル解析入門」(東京大学出版会)