Interpretable Machine Learning

Marginal Effects

Learning goals

- Why parameter-based interpretations are not always possible for parametric models
- How marginal effects can be used in such cases
- Drawbacks of marginal effects
- Model-agnostic applicability

Interpretable Machine Learning

Feature Effects Marginal Effects

Learning goals

- Why parameter-based interpretations are not always possible for parametric models
- How marginal effects can be used in such cases
- Drawbacks of marginal effects
- Model-agnostic applicability

INTERPRETATION OF SIMPLE MODELS

Linear Models:

- Change in x_j by Δx_j results in change in y by $\Delta y = \Delta x_j \cdot \theta_j$
- Model equation:

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_p x_p + \epsilon$$

- Default interpretations correspond to $\Delta x_i = 1$, i.e., $\Delta y = \theta_i$
- Assumes "ceteris paribus" (all other features held constant)

INTERPRETATION OF SIMPLE MODELS

Linear Models:

- Change in x_j by Δx_j results in change in y by $\Delta y = \Delta x_j \cdot \theta_j$
- Model equation:

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_p x_p + \epsilon$$

• Assumes "ceteris paribus" (all other features held constant)

INTERPRETATION OF SIMPLE MODELS

Linear Models:

- Change in x_i by Δx_i results in change in y by $\Delta y = \Delta x_i \cdot \theta_i$
- Model equation:

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_p x_p + \epsilon$$

- Default interpretations correspond to $\Delta x_i = 1$, i.e., $\Delta y = \theta_i$
- Assumes "ceteris paribus" (all other features held constant)

Non-Linear Models with Interactions:

• For models with higher-order or interaction terms, single coefficients are not sufficient:

$$y = \theta_0 + \theta_1 x_1^2 + \theta_2 x_2^2 + \theta_{1,2} x_1 x_2 + \epsilon$$

- Marginal effect of x_1 varies with different values of x_2 (and vice versa)
- Interactions depend on the values of other features

INTERPRETATION OF SIMPLE MODELS

Linear Models:

- Change in x_i by Δx_i results in change in y by $\Delta y = \Delta x_i \cdot \theta_i$
- Model equation:

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_p x_p + \epsilon$$

- Default interpretations correspond to $\Delta x_i = 1$, i.e., $\Delta y = \theta_i$
- Assumes "ceteris paribus" (all other features held constant)

Non-Linear Models with Interactions:

• For models with higher-order or interaction terms, single coefficients are not sufficient:

$$y = \theta_0 + \theta_1 x_1^2 + \theta_2 x_2^2 + \theta_{1,2} x_1 x_2 + \epsilon$$

- Marginal effect of x_1 varies with different values of x_2 (and vice versa)
- Interactions depend on the values of other features

Interpretable Machine Learning - 1/9 © Interpretable Machine Learning - 1/9

MARGINAL EFFECTS (ME) > Bartus, 2005 > Scholbeck, 2024

- MEs measure changes in predictions due to changes in one/several features.
- How to compute it?
 - **Derivative Marginal Effects (dMEs)**: numeric derivative (slope of tangent) → needs differentiability, fails for step-wise models.
 - **2** Forward Marginal Effects (fMEs): forward difference $\hat{f}(x + h) \hat{f}(x)$ → works for *any* model, any feature type.
- Caveat: dMEs can mislead whenever the prediction surface is non-smooth (e.g., decision trees); fMEs remain well-defined (due to finite differences).

MARGINAL EFFECTS (ME) BARTUS_2005 SCHOLBECK_2024

- MEs measures prediction changes due to varying *one/several* features.
- How to compute it?
 - **Derivative MEs (dMEs)**: *numeric deriv.* (slope of tangent) → needs differentiability, fails for step-wise models.
- **2** Forward MEs (fMEs): forward difference $\hat{f}(x + h) \hat{f}(x)$ → works for any model, any feature type.
- Caveat: dMEs can mislead when the prediction surface is non-smooth (e.g., decision trees); fMEs remain well-defined (due to finite differences).

MARGINAL EFFECTS (ME) > Bartus, 2005 > Scholbeck, 2024

- MEs measure changes in predictions due to changes in one/several features.
- How to compute it?
 - **Derivative Marginal Effects (dMEs)**: numeric derivative (slope of tangent) → needs differentiability, fails for step-wise models.
 - **2** Forward Marginal Effects (fMEs): forward difference $\hat{f}(x + h) \hat{f}(x)$ → works for *any* model, any feature type.
- Caveat: dMEs can mislead whenever the prediction surface is non-smooth (e.g., decision trees); fMEs remain well-defined (due to finite differences).
- Local instantiations (one number per data point)
 - **ME** (at observed point $\mathbf{x}^{(i)}$): Individual, observation-specific "what-if" effect.
 - **MEM** (at mean \bar{x}): Effect at artificial profile ("average obs.").
 - MER (at representative value x^*): Effect at a user-defined profile.
- Global summary Average Marginal Effect (AME): Expectation of the (d/f)MEs; captures the *global overall* effect.

MARGINAL EFFECTS (ME) P BARTUS_2005 P SCHOLBECK_2024

- MEs measures prediction changes due to varying *one/several* features.
- How to compute it?
 - **Derivative MEs (dMEs)**: *numeric deriv.* (slope of tangent) → needs differentiability, fails for step-wise models.
 - **2** Forward MEs (fMEs): forward difference $\hat{f}(x + h) \hat{f}(x)$ → works for *any* model, any feature type.
- Caveat: dMEs can mislead when the prediction surface is non-smooth (e.g., decision trees); fMEs remain well-defined (due to finite differences).
- Local instantiations (one number per data point)
 - **ME** (at observed point $\mathbf{x}^{(i)}$): Individual, obs.-specific "what-if" effect.
 - **MEM** (at mean \bar{x}): Effect at artificial profile ("average obs.").
 - MER (at representative value x^*): Effect at a user-defined profile.
- Global summary Average Marginal Effect (AME): Expectation of the (d/f)MEs; captures the *global overall* effect.

DERIVATIVE VS. FORWARD DIFFERENCE

- dME (tangent, green)
 - slope of the tangent at x;
 - delivers a *rate* of change $\frac{\partial f}{\partial x}$.
- fME (secant, orange)
 - vertical gap between two model evaluations;
 - always exact change in predicted outcome.
 - Non-linearity measure (pink band, bottom): quantifies deviation of secant and true curve

When the two differ

- Curvature makes the tangent overshoot or undershoot \Rightarrow dME may be badly biased.
- fME is robust to kinks, plateaus, trees, ...

black = non-lin. function

DERIVATIVE VS. FORWARD DIFFERENCE

dME (tangent, green)

- slope of the tangent at x;
- delivers a *rate* of change $\frac{\partial f}{\partial x}$.

fME (secant, orange)

- vertical gap between two model evaluations;
- always *exact* change in predicted outcome.
- Non-linearity measure (pink band, bottom): quantifies deviation of secant and true curve

When the two differ

- Curvature makes the tangent overshoot or undershoot \Rightarrow dME may be badly biased.
- fME is robust to kinks, plateaus, trees, ...

Interpretable Machine Learning - 3/9 Interpretable Machine Learning - 3/9

DERIVATIVE VS. FORWARD DIFFERENCE

- dME (tangent, green)
 - slope of the tangent at x;
 - delivers a *rate* of change $\frac{\partial f}{\partial x}$.
- fME (secant, orange)
 - vertical gap between two model evaluations;
 - always exact change in predicted outcome.
 - Non-linearity measure (pink band, bottom): quantifies deviation of secant and true curve
- When the two differ
 - Curvature makes the tangent overshoot or undershoot \Rightarrow dME may be badly biased.
 - fME is robust to kinks, plateaus, trees, ...
- Use fME for any non-linear or non-smooth model
- Use dME for lin. functions or analytic convenience

DERIVATIVE VS. FORWARD DIFFERENCE

dME (tangent, green)

- slope of the tangent at x;
- delivers a *rate* of change $\frac{\partial f}{\partial x}$.

fME (secant, orange)

- vertical gap between two model evaluations;
- always *exact* change in predicted outcome.
- Non-linearity measure (pink band, bottom): quantifies deviation of secant and true curve

When the two differ

- Curvature makes the tangent overshoot or undershoot \Rightarrow dME may be badly biased.
- fME is robust to kinks, plateaus, trees, ...

Recommendations

- Use fME for any non-linear / non-smooth model
- Use dME for lin. func.-s or analytic convenience

Interpretable Machine Learning - 3/9 Interpretable Machine Learning - 3/9

MARGINAL EFFECTS FOR CONTINUOUS FEATURES

Derivative Marginal Effect (dME):

$$\mathsf{dME}_{j}(\mathbf{x}) = \frac{\partial \hat{f}(\mathbf{x})}{\partial x_{j}} \approx \frac{\hat{f}(x_{1}, \dots, x_{j} + h_{j}, \dots, x_{p}) - \hat{f}(x_{1}, \dots, x_{j} - h_{j}, \dots, x_{p})}{2h_{j}}$$

$$\mathsf{fME}_i(\mathbf{x},h_i) = \hat{f}(x_1,\ldots,x_i+h_i,\ldots,x_p) - \hat{f}(\mathbf{x})$$

- Note: fME is not scale-invariant halving the step size does not halve the effect.
- Additive Recovery: dME and fME isolate terms involving the target feature.
 - Example: For $\hat{f}(\mathbf{x}) = ax_1 + bx_2$: $dME_1(\mathbf{x}) = a$, $fME_1(\mathbf{x}, h_1) = ah_1$
 - Effects from additively linked features (e.g., x_2) are canceled.

 - Enables focus on direct feature-specific influence in \hat{f} .

ME FOR CONTINUOUS FEATURES

Derivative Marginal Effect (dME):

$$\mathsf{dME}_{j}(\mathbf{x}) = \frac{\partial \hat{f}(\mathbf{x})}{\partial x_{i}} \approx \frac{\hat{f}(x_{1}, \dots, x_{j} + h_{j}, \dots, x_{p}) - \hat{f}(x_{1}, \dots, x_{j} - h_{j}, \dots, x_{p})}{2h_{i}}$$

Forward Marginal Effect (fME):

$$\mathsf{fME}_i(\mathbf{x},h_i) = \hat{f}(x_1,\ldots,x_i+h_i,\ldots,x_p) - \hat{f}(\mathbf{x})$$

- Note: fME is not scale-invariant halving the step size does not halve the effect.
- Additive Recovery: dME and fME isolate terms involving the target feat.
 - Example: For $\widehat{f}(\mathbf{x}) = ax_1 + bx_2$: $dME_1(\mathbf{x}) = a$, $fME_1(\mathbf{x}, h_1) = ah_1$
 - Effects from additively linked features (e.g., x_2) are canceled.
 - Enables focus on direct feature-specific influence in \hat{f} .

MARGINAL EFFECTS FOR CATEGORICAL FEATURES

• Traditional Approach:

- Choose a baseline category for the categorical feature x_j
 → Either the observed value x_j or a fixed reference x_j^{ref}
- Replace x_i with an alternative category x_i^{new}
- Compute the change in prediction, keeping all other features \mathbf{x}_{-i} fixed

• fME Definition for Categorical Features:

$$\mathsf{fME}_i(\mathbf{x}; x_i^{\mathsf{new}}) = \widehat{f}(x_i^{\mathsf{new}}, \mathbf{x}_{-i}) - \widehat{f}(x_i, \mathbf{x}_{-i})$$

- x_i : original category of feature j in obs. **x** (or reference category x_i^{ref})
- x_i^{new} : new category to evaluate
- \mathbf{x}_{-i} : all other features held fixed

Advantages:

- Mirrors continuous feature fME: measures discrete change in prediction.
- Any level can act as baseline no fixed reference needed.

ME FOR CATEGORICAL FEATURES

Traditional Approach:

- Choose a baseline category for the categorical feature x_j

 ⇒ Either the observed value x_i or a fixed reference x_i^{ref}
- Replace x_i with an alternative category x_i^{new}
- Compute the change in prediction, keeping all other feat. \mathbf{x}_{-i} fixed

• fME Definition for Categorical Features:

$$\mathsf{fME}_i(\mathbf{x}; x_i^{\mathsf{new}}) = \widehat{f}(x_i^{\mathsf{new}}, \mathbf{x}_{-i}) - \widehat{f}(x_i, \mathbf{x}_{-i})$$

- x_i : original category of feature j in obs. **x** (or reference category x_i^{ref})
- x_i^{new} : new category to evaluate
- \mathbf{x}_{-i} : all other features held fixed

Advantages:

- Mirrors continuous feature fME: measures discrete change in pred.
- Any level can act as baseline no fixed reference needed.

AVERAGE MARGINAL EFFECTS

Definition (based on fMEs with step h_S , can also be based on dMEs):

$$\mathsf{AME}_{S} = \frac{1}{n} \sum_{i=1}^{n} \left[\hat{f}(\boldsymbol{x}_{S}^{(i)} + \boldsymbol{h}_{S}, \boldsymbol{x}_{-S}^{(i)}) - \hat{f}(\boldsymbol{x}^{(i)}) \right]$$

Why they work in GLMs:

- Link function is monotonic ⇒ direction of effect stable.
- Averaging gives sensible results (e.g., logit, probit).

Why they fail on non-parametric models:

- AMEs assume a consistent effect across the feature space.
- Non-parametric models can model complex, non-linear relationships.
- Averaging effects can obscure important heterogeneities.

Takeaway: AMEs can be useful summaries for smooth, monotonic models. For black-boxes, use **local fMEs** and support them with a non-linearity measure.

AVERAGE MARGINAL EFFECTS

Definition (based on fMEs with step h_S , can also be based on dMEs):

$$\mathsf{AME}_{S} = \frac{1}{n} \sum_{i=1}^{n} \left[\hat{f}(\mathbf{x}_{S}^{(i)} + \mathbf{h}_{S}, \mathbf{x}_{-S}^{(i)}) - \hat{f}(\mathbf{x}^{(i)}) \right]$$

Why they work in GLMs:

- ◆ Link function is monotonic ⇒ direction of effect stable.
- Averaging gives sensible results (e.g., logit, probit).

Why they fail on non-parametric models:

- AMEs assume a consistent effect across the feature space.
- Non-parametric models can model complex, non-linear relationships.
- Averaging effects can obscure important heterogeneities.

Takeaway: AMEs can be useful summaries for smooth, monotonic models. For black-boxes, use **local fMEs** and support them with non-linearity measure.

WHY MARGINAL EFFECTS STILL MATTER

per observation vs. grid $\times n$ for PD/ICE.

- Single, formal number: One scalar per observation; can be averaged (AME), reported with CIs, audited, stored easily.
- Multivariate changes Simultaneously perturb multiple continuous/categorical features. Still yields a scalar (unlike PD/ICE, which require multivariate plots).
- Model-faithful, assumption-light Measured at the actual data point. Captures interactions, no independence or surrogate-model assumptions (LIME).
- Non-Linearity Measure: Quantifies how well local linear approximation holds (e.g., via a normalized squared deviation from the secant).
 Local reliability measure, something PD/ICE plots cannot quantify.
- Computationally cheap Just two forward passes (or k-1 for a k-level factor)

Conclusion: Plots let you see the landscape: ME give numbers you can use.

WHY MARGINAL EFFECTS STILL MATTER

- Single, formal number: One scalar per observation; can be averaged (AME), reported with Cls, audited, stored easily.
- **Multivariate changes** Simultaneously perturb multiple *continuous/categ.* feat. Still yields a scalar (unlike PD/ICE, which require multivar. plots).
- Model-faithful, assumption-light Measured at the actual data point.
 Captures interactions, no indep. or surrogate-model assumptions (LIME).
- Computationally cheap Just two forward passes (or k-1 for a k-level factor) per observation vs. grid $\times n$ for PD/ICE.

Conclusion:

Plots let you see the landscape; ME give numbers you can use.

USE-CASE: SCALAR VS. VISUAL ESTIMATION

Setting: A clinical model predicts heart attack risk from patient features, e.g., x_1 : systolic blood pressure (BP), x_2 : LDL cholesterol, x_3 : age, ...

Clinician's questions

- "What if this patient's systolic BP increases by 10 mmHg?"
- "What if BP increases by 10 mmHg & LDL by 15 mg/dL?"

Route A - ICE / PD

- Plot prediction as a function of BP (1-D) or BP+LDL (2-D) on a grid.
- Manual interpretation of change by looking at curve/surface.
- \rightarrow Visual and local; limited to 1–2 features at a time.

Route B – Forward Marginal Effect: $fME = \hat{f}(x + h) - \hat{f}(x)$

- 1-D case: $h = (10, 0, 0, ...) \Rightarrow$ risk increases by +3 percentage points
- 2-D case: $h = (10, 15, 0, ...) \Rightarrow risk increases by +4.1 percentage points$
- One scalar answer per query, extensible to higher dimensions.

USE-CASE: SCALAR VS. VISUAL ESTIMATION

Setting: A clinical model predicts heart attack risk from patient features, e.g., x_1 : systolic blood pressure (BP), x_2 : LDL cholesterol, x_3 : age, ...

Clinician's questions

- "What if this patient's systolic BP increases by 10 mmHg?"
- "What if BP increases by 10 mmHg & LDL by 15 mg/dL?"

Route A – ICE / PD

- Plot prediction as a function of BP (1-D) or BP+LDL (2-D) on a grid.
- Manual interpretation of change by looking at curve/surface.
- → Visual and local: limited to 1–2 features at a time.

Route B – Forward Marginal Effect:
$$fME = \hat{f}(x + h) - \hat{f}(x)$$

- 1-D case: $h = (10, 0, 0, ...) \Rightarrow risk increases by +3 % points$
- 2-D case: $h = (10, 15, 0, ...) \Rightarrow \text{risk increases by +4.1 % points}$
- One scalar answer per query, extensible to higher dimensions.

RELATION TO ICE AND PD

- Individual Conditional Expectation (ICE):
 - Visualizes predictions for an observation across a range of feature values.
 - fME corresponds to vertical differences between points on an ICE curve.
- Partial Dependence (PD):
 - Shows average predictions across a range of feature values.
 - AME is equivalent to vertical differences on PD for linear models.
- Advantages of fMEs:
 - Provide exact change in prediction.
 - Applicable to high-dimensional feature changes.
 - Quantifiable and not limited to visual interpretation.

RELATION TO ICE AND PD

- Individual Conditional Expectation (ICE):
 - Visualizes predictions for an obs. across a range of feature values.
 - fME corresponds to vertical diff. between points on an ICE curve.
 - Partial Dependence (PD):
 - Shows average predictions across a range of feature values.
 - AME is equivalent to vertical differences on PD for linear models.
 - Advantages of fMEs:
 - Provide exact change in prediction.
 - Applicable to high-dimensional feature changes.
 - Quantifiable and not limited to visual interpretation.

