7. Кривые второго порядка

Произвольная линия второго порядка имеет уравнение

$$F(x,y) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{10}x + 2a_{20}y + a_{00} = 0,$$

где a_{ij} — числа, причем не все $a_{ii}\ (i=1,2)$ равны нулю.

Teop 1. Для любой линии второго порядка существует декартова система координат, в которой ее уравнение имеет один из следующих видов:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $(a \geqslant b > 0)$ (эллипс)
2. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$, $(a \geqslant b > 0)$ (мнимый эллипс)
3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$, $(a \geqslant b > 0)$ (пара мнимых пересекающихся прямых)
4. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $(a > 0, b > 0)$ (гипербола)
5. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$, $(a \geqslant b > 0)$ (пара пересекающихся прямых)
6. $y^2 = 2px$, $(p > 0)$ (пара параллельных прямых)
7. $y^2 - a^2 = 0$, $(a > 0)$ (пара мнимых параллельных прямых)
8. $y^2 + a^2 = 0$, $(a > 0)$ (пара мнимых параллельных прямых)

Док-во. Перейдем к новой декартовой системе координат, в которой коэффициент при xy станет равным нулю (если он и так не равен нулю).

(пара совпадающих прямых)

Формулы поворота имеют вид: $\begin{cases} x = \cos \varphi \ x' - \sin \varphi \ y' \\ y = \sin \varphi \ x' + \cos \varphi \ y' \end{cases}.$

После преобразования уравнение примет вид:

9. $y^2 = 0$

 $F(x',y') = a_{11}(\cos\varphi \ x' - \sin\varphi \ y')^2 + 2a_{12}(\cos\varphi \ x' - \sin\varphi \ y')(\sin\varphi \ x' + \cos\varphi \ y') + a_{22}(\sin\varphi \ x' + \cos\varphi \ y')^2 +$

Коэффициент при 2x'y' равен $-a_{11}\cos\varphi\sin\varphi+a_{12}(\cos^2\varphi-\sin^2\varphi)+a_{22}\cos\varphi\sin\varphi=(a_{22}-a_{11})\frac{\sin2\varphi}{2}+a_{12}\cos2\varphi.$

Приравняем его к нулю, получим $\dfrac{\cos 2\varphi}{\sin 2\varphi}=\dfrac{a_{11}-a_{22}}{2a_{12}}.$ Так как предполагалось $a_{12}\neq 0$, то возьмем $\varphi=\dfrac{1}{2} rcctg\left(\dfrac{a_{11}-a_{22}}{2a_{12}}\right).$

Осуществив переход к новой системе координат получим уравнение: $F(x',y')=b_{11}(x')^2+b_{22}(y')^2+2b_{10}x'+2b_{20}y'+b_{00}=0.$

По возможности исключим из уравнения F(x',y')=0 слагаемые с y и/или x выделяя квадраты.

Если
$$b_{11},b_{22}\neq 0$$
, тогда $F(x',y')=b_{11}(x')^2+b_{22}(y')^2+2b_{10}x'+2b_{20}y'+b_{00}=b_{11}\left(x'+\frac{b_{10}}{b_{11}}\right)^2+b_{22}\left(y'+\frac{b_{20}}{b_{22}}\right)^2+\left(b_{00}-\frac{b_{10}^2}{b_{11}}-\frac{b_{20}^2}{b_{22}}\right)=b_{11}(x'')^2+b_{20}(y'')^2+c$, где $x''=x'+\frac{b_{10}}{b_{11}},y''=y'+\frac{b_{20}}{b_{22}}.$

Таким образом, для перехода к $F(x'',y'')=b_{11}(x'')^2+b_{20}(y'')^2+c$ достаточно перейти к новой системе координат по формулам:

$$\begin{cases} x' = x'' - \frac{b_{10}}{b_{11}} \\ y' = y'' - \frac{b_{20}}{b_{22}} \end{cases}$$

Если $b_{11}\stackrel{22}{=}0$, $b_{22}\neq 0$, то получаем уравнение $F(x'',y'')=b_{22}(y'')^2+2b_{10}x''$ когда $b_{10}\neq 0$ и уравнение $F(x'',y'')=b_{22}(y'')^2+c$ когда $b_{10}=0$:

допустим $b_{10}\neq 0$, тогда $F(x',y')=b_{22}(y')^2+2b_{10}x'+2b_{20}y'+b_{00}=b_{22}\left(y'+\frac{b_{20}}{b_{22}}\right)+2b_{10}x'+\left(b_{00}-\frac{b_{20}^2}{b_{22}}\right)=b_{22}(y'')^2+2b_{10}x''$, где $x''=x'+\frac{1}{2b_{10}}\left(b_{00}-\frac{b_{20}^2}{b_{22}}\right)$.

Ёсли $b_{11}\neq 0$, $b_{22}=0$, то перейдем к системе координат, в которой координаты поменяются местами и см. предыдущий случай.

Получается, что от уравнения F(x',y')=0 можно перейти к одному из следующих:

1.
$$F(x'', y'') = b_{11}(x'')^2 + b_{20}(y'')^2 + c$$
,

2.
$$F(x'', y'') = b_{22}(y'')^2 + 2b_{10}x''$$
,

3.
$$F(x'', y'') = b_{22}(y'')^2 + c$$

в некоторой новой декартовой системе координат.

Так как умножение любого уравнения на число отличное от нуля не меняет множества его решений, то при умножении уравнения, задающего линию в некоторой аффинной системе координат, переходим к уравнению, задающему ту же линию.

От получившихся уравнений переходим к одному из нужных видов с помощью умножения (деления) на число или замены системы координат x'' = y''', y'' = x'''.

Уравнение линии второго порядка, которое имеет вид уравнений Теоремы 1, называется канонически уравнением.

Уравнение (5) задает множество точек, которое представляет из себя две пересекающиеся прямые $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\left(\frac{x}{a}-\frac{y}{b}\right)\left(\frac{x}{a}+\frac{y}{b}\right)=0.$ Уравнение (7) задает множество точек, которое представляет из себя две

Уравнение (7) задает множество точек, которое представляет из себя две параллельные прямые $y^2 - a^2 = (y - a)(y + a) = 0$

Уравнение (9) задает множество точек прямой y=0.

Уравнения (2), (8) не имеют точек, удовлетворяющих этим уравнениям (с действительными координатами), а (3) удовлетворяет единственная точка.