WO 2005/020585 PCT/US2004/025366

-6-

WHAT IS CLAIMED IS:

1	1. A method for reducing artifacts in a video stream, comprising the steps of:			
2	decoding the video stream; and			
3	adding noise to at least one pixel in a picture in the video stream following decoding in			
4	an amount correlated to additive noise of pixels in at least one prior picture.			
1	2. The method according to claim 1 wherein the at least one prior picture			
2	comprises a previously displayed picture.			
1	3. The method according to claim 1 where the at least one prior picture comprises			
2	a previously decoded picture			
1	4. The method according to claim 1 wherein the amount of noise is correlated in			
2	accordance with a correlation factor α having a value such that $0 \le \alpha \le 1$.			
1	5. The method according to claim 1 wherein the amount of noise is correlated			
2	using an instantiation of a Finite Impulse Response (FIR) filter.			
1	6. The method according to claim 1 wherein the amount of noise is correlated			
2	using an approximation of an Infinite Impulse Response (IIR) filter.			
1	7. The method according to claim 1 further comprising the steps of:			
2	extracting bit stream information from the video stream; and			
3				
1	8. The method according to claim 7 wherein the bit stream information comprises			
2	a quantization parameter.			
1	9. The method according to claim 1 wherein the added noise is Gaussian noise.			

The method according to claim 1 wherein the added noise is Laplacian noise.

10.

1

1	. 11.	A method for reducing artifacts in a video stream, comprising the steps of:		
2 .	decoding the video stream; and			
3	adding noise to at least one pixel in a picture in the video stream following decoding in			
4	an amount co	rrelated to additive noise of at least one other pixel in the picture.		
1	12.	A decoder arrangement for decoding a coded video stream to yield reduced		
2	artifacts, comprising:			
3	a vide	o decoder for decoding an incoming coded video stream to yield decoded		
4	pictures;			
5	a reference picture store for storing at least one previously decoded picture for use by			
6	the decoder in decoding future pictures,			
7	a noise generator noise for generating noise for addition to at least one pixel in a			
8	decoded picture in an amount correlated to additive noise of at least one pixel in at least one			
9	prior picture;			
10	a summing block for summing the noise generated by the noise generator with a			
11	decoded picture from the decoder; and			
12	a clip	per for clipping the summed noise and decoded picture.		
1	13.	The decoder arrangement according to claim 12 wherein the noise generator		
2	implements a	an instantiation of a Finite Impulse Response filter.		
1	14.	The decoder arrangement according to claim 12 wherein the noise generator		
2	implements	an approximation of an Infinite Impulse Response filter.		
1	15.	The decoder arrangement according to claim 12 wherein the noise generator		
2	generates noise in accordance with decoded pictures and bit stream information supplied from			
3	the decoder.			
1	16.	The decoder arrangement according to claim 12 wherein the bit stream		
2	information comprises a quantization parameter.			

1 The decoder arrangement according to claim 12 further including a noise 17. picture store for storing the noise information for subsequent use by the noise generator. 2 The decoder arrangement method according to claim 12 wherein the noise 1 18. 2 generator adds Gaussian noise. The decoder arrangement method according to claim 12 wherein the noise 19, 1 2 generator adds Laplacian noise. 20. A decoder arrangement for decoding a coded video stream to yield reduced 1 2 artifacts, comprising: a video decoder for decoding an incoming coded video stream to yield decoded 3 4 pictures; a reference picture store for at least one storing at least one previously decoded picture 5 6 for use by the decoder in decoding future pictures. a noise generator noise for generating noise in accordance with decoded pictures and 7. bit stream information from the decoder for addition to at least one pixel in decoded in an 8 amount correlated to additive noise of at least one pixel in a prior picture; 9 10 a summing block for summing the noise generated by the noise generator with a 11 decoded picture from the decoder; and 12 a clipper for clipping the summed noise and decoded picture. 1 21. The decoder arrangement according to claim 20 wherein the bit stream 2 information comprises a quantization parameter. 1 22. The decoder arrangement according to claim 20 wherein the noise generator implements an instantiation of a Finite Impulse Response filter. 2 23. The decoder arrangement according to claim 20 wherein the noise generator 1 2 implements an approximation of an Infinite Impulse Response filter.

generator adds Gaussian noise.

1	24. The decoder arrangement according to claim 20 further including a noise			
2	picture store for storing the noise information for subsequent use by the noise generator.			
1	25. The decoder arrangement method according to claim 20 wherein the noise			
2	generator adds Gaussian noise.			
1	26. The decoder arrangement method according to claim 20 wherein the noise			
2	generator adds Laplacian noise.			
1	27. A decoder arrangement for decoding a coded video stream to yield reduced			
2	artifacts, comprising:			
3	a video decoder for decoding an incoming coded video stream to yield decoded			
4	pictures;			
5	a reference picture store for at least one storing picture previously decoded by the			
6	decoder for use by the decoder in decoding future pictures,			
7	a noise generator noise for generating noise for addition to at least one pixel in a			
8 .	decoded picture in an amount correlated to additive noise of pixels in a prior picture;			
9	a noise picture store for storing the noise information for subsequent use by the noise			
0	generator;			
1	a summing block for summing the noise generated by the noise generator with a			
2	decoded picture from the decoder;			
3	a clipper for clipping the summed noise and decoded picture.			
4				
1	28. The decoder arrangement according to claim 27 wherein the noise generator			
2.	•			
1	29. The decoder arrangement according to claim 27 wherein the noise generator			
2	implements an approximation of an Infinite Impulse Response filter.			
1	30. The decoder arrangement method according to claim 27 wherein the noise			

1	31. The decoder arrangement method according to claim 27 wherein the noise			
2	generator adds Laplacian noise.			
1	32. A decoder arrangement for decoding a coded video stream to yield reduced			
2	artifacts, comprising:			
3	a video decoder for decoding an incoming coded video stream to yield decoded			
4	pictures;			
5	a reference picture store for storing at least one previously decoded picture for use b			
6	the decoder in decoding future pictures,			
7	a noise generator noise for generating noise for addition to at least one pixel in a			
8	decoded picture in an amount correlated to additive noise of at least one pixel in the picture;			
9	a summing block for summing the noise generated by the noise generator with a			
10	decoded picture from the decoder; and			
11	a clipper for clipping the summed noise and decoded picture.			