VISVESVARAYA TECHNOLOGICAL UNIVERSITY

Belagavi – 590018, Karnataka State, India

PROJECT ENTITLED

"HYBRID SOCIAL NETWORK FEED GENERATION ALGORITHM"

Submitted in partial fulfilment of the requirements for the award of degree of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

For the academic year 2017-2018 Submitted by:

Akhil S (1MV14CS009)
Devipriya Sarkar (1MV14CS033)
Praveen Kumar G (1MV14CS074)
Ravikiran R (1MV14CS085)

Project Carried out at

Sir M. Visvesvaraya Institute of Technology Bengaluru - 562157

Under Guidance of

Mrs. Sushila Shidnal

Assistant Professor

SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
HUNASAMARANAHALLI BENGALURU – 562157

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

Belagavi – 590018, Karnataka State, India

PROJECT ENTITLED

"HYBRID SOCIAL NETWORK FEED GENERATION ALGORITHM"

Submitted in partial fulfilment of the requirements for the award of degree of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

For the academic year 2017-2018 Submitted by:

Akhil S (1MV14CS009)
Devipriya Sarkar (1MV14CS033)
Praveen Kumar G (1MV14CS074)
Ravikiran R (1MV14CS085)

Project Carried out at

Sir M. Visvesvaraya Institute of Technology Bengaluru - 562157

Under Guidance of

Mrs. Sushila Shidnal

Assistant Professor

SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
HUNASAMARANAHALLI BENGALURU – 562157

SIR M. VISVESVARAYA INSTITUTE OF TECHNOLOGY

Krishnadevaraya Nagar, International Airport Road, Hunasmaranahalli, Bengaluru – 562157

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

It is certified that the project work entitled "HYBRID SOCIAL NETWORK FEED GENERATION ALGORITHM" is carried out by Akhil S (1MV14CS009), Devipriya Sarkar (1MV14CS033), Praveen Kumar G (1MV14CS074), Ravikiran R (1MV14CS085) bonafide students of Sir M Visvesvaraya Institute of Technology in partial fulfilment for the award of the Degree of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belagavi during the year 2017-2018. It is certified that all corrections and suggestions indicated for Internal Assessment have been incorporated in the report deposited in the department library. The project report has been approved as it satisfies the academic requirements in respect of project work prescribed for the course of Bachelor of Engineering.

Name & Signature of Guide

Name & Signature of HOD

Name & Signature of Principal

Mrs. Sushila Shidnal

Asst. Prof & Internal Guide Dept. Of CSE, Sir MVIT Bengaluru - 562157 Prof. Dilip K. Sen HOD, Dept. Of CSE, Sir MVIT Bengaluru - 562157 Dr. V.R. Manjunath
Principal,
Sir MVIT
Bengaluru - 562157

External Examination:

Name of Examiners

Signature with Date

1)

2)

DECLARATION

We hereby declare that the entire project work embodied in this dissertation has been carried out by us and no part has been submitted for any degree or diploma of any institution previously. Place: Bengaluru Date: Signature of Students: Devipriya Sarkar Akhil S (1MV14CS009) (1MV14CS033) Praveen Kumar G Ravikiran R

(1MV14CS085)

(1MV14CS074)

ACKNOWLEDGMENT

It gives us immense pleasure to express our sincere gratitude to the management of **Sir M. Visvesvaraya Institute of Technology,** Bengaluru for providing the opportunity and the resources to accomplish our project work in their premises.

On the path of learning, the presence of an experienced guide is indispensable and we would like to thank our guide **Mrs. Sushila Shidnal**, Assistant Professor, Dept. of CSE, for her invaluable help and guidance.

Heartfelt and sincere thanks to **Prof. Dilip K. Sen,** HOD, Dept. of CSE for his suggestions, constant support and encouragement.

We would also like to convey our regards to **Dr. V.R. Manjunath,** Principal, Sir. MVIT for providing us with the infrastructure and facilities needed to develop our project.

We would also like to thank the staff of Department of Computer Science and Engineering and lab-in-charges for their co-operation and suggestions. Finally, we would like to thank all our friends for their help and suggestions without which completing this project would not have been possible.

Akhil S
 Devipriya Sarkar
 Praveen Kumar G
 Ravikiran R
 1MV14CS009
 1MV14CS074
 1MV14CS074

ABSTRACT

Existing user feed fetching and feed maintenance processes have been utilising Hybrid Push-Pull Data Distribution Models to handle user events. These distribution models have been characterised to have significantly high architectural complexity. And also the overall user specificity, processing efficiency and resource utilisation offered by these models can always be debated upon.

In this project we propose a Hybrid Feed Distribution Schema to handle this problem elegantly. Our model takes into account the frequency of query requests between individual users and classifies them into either a Push-Target user or Pull-Target user. The former is provided with prioritized data pushes and the latter with data pulls on user request basis. Thus enabling a user specific feed fetching model for data distribution.

We implement our model into a social network platform which we would deploy ourselves and demonstrate the proposed enhancement in feed data distribution between its users.

TABLE OF CONTENTS

Chapters	Page No.
1. Introduction	1-3
1.1 Overview	2
1.2 History	2
2. Literature Survey	4-9
2.1 Activity Stream	5
2.2 Models	6
2.3 Message Queue	7
2.4 Facebook	8
2.5 Instagram	8
2.6 Twitter	8
2.7 Yahoo	9
2.8 Pinterest	9
3. Objective & Scope of this Project	10-11
3.1 Objective	11
3.1 Scope	11
4. System Requirements & Specifications	12-16
4.1 Functional Requirements	13
4.2 Non-Functional Requirements	13
4.3 Other Non-Functional Requirements	14
4.4 System Requirements for the Project	15
4.5 Development Requirements	15
5. System Analysis & Design	17-23
5.1 Overview of the Platform	18
5.2 Modules of QuickNotes	19
5.3 Use Case Diagram	21
5.4 Database Schema	22
V	

5.5 Database Table Description	23
6. Implementation & Proposed Model	24-34
6.1 Languages Used	25
6.2 Frameworks Used	27
6.3 Microsoft Visual Studio Code	30
6.4 MySQL	30
6.5 The Proposed Model	31
6.6 The Designed Algorithms	32
7. Source Code	35-58
7.1 Back-End (Django)	36
7.2 Front-End (ReactJS Pages)	51
8. Testing	59-61
8.1 Introduction	60
8.2 Unit Testing	60
8.3 System Testing	60
9. Snapshots	62-65
10. Results	66-68
11. Conclusions & Future Enhancements	69-71
11.1 Conclusion	70
11.2 Future Work	70
11.3 Project Activity	71
References	72-73

LIST OF FIGURES AND TABLES

Fig. No.	Description	Page No.
2.1	An Example of Facebook's Activity Stream	5
2.2	Diagrammatic Representation of Push Model	6
2.3	Diagrammatic Representation of Pull Model	7
2.4	Working of a Message Queue	8
5.1	Overview of QuickNotes	18
5.2	QuickNotes Modules	19
5.3	Use-case Diagram	21
5.4	Database Schema	22
6.1	MVC Architecture	28
6.2	ReactJS Flux Process	29
6.3	Diagrammatic Representation of Hybrid Model	32
9.1	The Landing Page for QuickNotes	63
9.2	Google Authentication Page	63
9.3	Feed Page	64
9.4	Upload Form	64
9.5	Profile Page	65
9.6	Search Result	65
10.1	Response Time for 5 Users	67
10.2	Response Time for 10 Users	68
10.3	Response Time for 25 Users	68
11.1	Gantt Chart	71
Гable No.	Description	Page No.
8.1	Quicknotes Platform Test Cases	61