Linear Representation Hypothesis & Geometry of LLMs

Kiho Park¹, Yo Joong (YJ) Choe², Victor Veitch^{1,2}

¹Department of Statistics, ²Data Science Institute, University of Chicago

What Does "Linear" Even Mean?

There are three natural ways to define the notion of linear representation.

Problem: It is not clear how these ideas relate to each other, nor which is the right notion of linear representation.

Concepts in LLMs

A concept W is defined by counterfactual outputs Y(W=0), Y(W=1). Concepts W and Z are causally separable if Y(w,z) is well-defined.

LLMs generate the next word using the softmax distribution.

Embedding $\lambda(x) \in \mathbb{R}^d$

Softmax $\mathbb{P}(y \mid x) \propto \exp(\lambda(x)^{\mathsf{T}} \gamma(y))$

Unembedding $\gamma(y) \in \mathbb{R}^d$

Formalizing Linear Representation Hypothesis

We first formalize the subspace notions of linear representations, then use softmax structure to connect them to measurement and intervention.

Problems:

How do the unembedding and embedding representations relate? What is the right inner product for the representation space?

Causal Inner Product

Definition: Whenever W and Z are causally separable, $\langle \bar{\gamma}_W, \bar{\gamma}_Z \rangle_C = 0$.

Theorem

This unifies the unembedding and embedding representations via $\langle \bar{\gamma}_W, \cdot \rangle_C = (\bar{\lambda}_W)^{\top}$. (This is the Riesz isomorphism.)

We can estimate the causal inner product as $\langle \bar{\gamma}, \bar{\gamma}' \rangle_C = \bar{\gamma}^T \text{Cov}(\gamma)^{-1} \bar{\gamma}'$.

Experiments with LLaMA-2 Representations

Linear Representations Exist

We estimate the unembedding representations for various concepts by using the counterfactual pairs from a word analogy dataset.

$$\bar{\gamma}_W := \frac{\tilde{\gamma}_W}{\langle \tilde{\gamma}_W, \tilde{\gamma}_W \rangle_{\mathrm{C}}} \text{ where } \tilde{\gamma}_W = \frac{1}{n_W} \sum_{i=1}^{n_W} \gamma(y_i(1)) - \gamma(y_i(0))$$

Differences between counterfactual pairs are more parallel to $\bar{\gamma}_W$ than those between random pairs, supporting the linear representation hypothesis.

Causally Separable Concepts Are Represented Orthogonally Under the Causal Inner Product

Heatmaps of $|\bar{\gamma}_W^\top M \bar{\gamma}_W|$ show that the causal inner product between the unembedding representations of causally separable concepts is close to zero. It improves on the naive Euclidean inner product.

Unembedding Representation Yields Linear Probe

 $\bar{\gamma}_{\text{French} \Rightarrow \text{Spanish}}$ separates the embeddings of French and Spanish contexts, while $\bar{\gamma}_{\text{male} \Rightarrow \text{female}}$ does not.

Embedding Representation Yields Steering Vector

Adding the embedding representation $\bar{\lambda}_W := \mathrm{Cov}^{-1}(\gamma)\bar{\gamma}_W$ to context embeddings changes the target concept, without changing other causally separable concepts.

Find us online! Email: parkkiho@uchicago.edu

Kiho Park

YJ Choe Victor Veitch arXiv:2311.03658