# 이미지 분류 AI model 개발 프로젝 트

| 를 기간                                 | 2023.02.20 ~ 2023.04.07                                     |  |  |  |
|--------------------------------------|-------------------------------------------------------------|--|--|--|
| : <u>:</u> 기술스<br>택                  | FastAPI Flutter Jupyter Notebook Python Pytorch             |  |  |  |
| 등 담당역                                | Al model                                                    |  |  |  |
| <ul><li>플 프로젝</li><li>트 개요</li></ul> | Al model을 통해 공룡을 찾고 정보를 알려주며, 그림을 그리면 해당 그림과 유사한 공룡을 추천해줍니다 |  |  |  |







Al model

### 1. model 선정 이유

• ResNet50 모델을 선택한 이유

| Model            | val_Accuracy | Accuracy | Training time(sec) |
|------------------|--------------|----------|--------------------|
| DenseNet201      | 1.0000       | 1.0000   | 49.20              |
| DenseNet121      | 1.0000       | 0.9964   | 1197.90            |
| ResNet152V2      | 0.9919       | 1.0000   | 58.44              |
| ResNet50V2       | 0.9919       | 1.0000   | 21.12              |
| MobileNetV2      | 0.9960       | 0.9964   | 16.69              |
| Inception        | 0.9798       | 0.9964   | 25.27              |
| Xception         | 1.0000       | 0.9964   | 32.77              |
| VGG16            | 0.9677       | 0.9674   | 46.58              |
| MobileNetV3Large | 0.5806       | 0.5326   | 18.55              |

- 。 모델 선정 기준
  - 6주 간 프로젝트 내에 만들 수 있는 제일 완성도 높은 모델
  - 1. 학습시간
  - 2. 정확도
  - 3. 모델의 구조

# 2. 손실 함수(loss function)와 최적화 알고리즘(Optimizer) 선택이유

- 손실함수 : 예측한 값과 실제 값의 차이를 측정하여 모델의 성능을 평가하는 함수
  - 손실함수의 값을 최소화하는 방향으로, 딥러닝의 가중치를 학습시킴
  - 모델의 성능과 학습에 영향을 미치는 요소로 데이터셋과 모델에 따라 적절한 손실 함수 선택 필요
  - 1. 평균 제곱 오차(Mean Squared Error, MSE)
    - 회귀(regression) 문제에서 사용
    - 가장 일반적으로 사용되는 손실 함수
    - 실제 값과 예측 값 간의 제곱 오차를 평균하여 계산
    - 모델이 예측한 값이 정답과 얼마나 멀리 떨어져 있는지를 나타내는 지표로 사용

- 2. 교차 엔트로피 손실(Cross Entropy Loss) << 선택
  - 분류(classification) 문제에서 사용 ⇒ 다중 클래스 분류 문제에 권장
  - 예측값과 실제값이 서로 다른 경우, 손실값이 매우 크게 측정되고, 예측값과 실제값이 같은 경우에는 손실값이 매우 작게 측정
  - 이러한 특징으로 인해 교차 엔트로피 손실은 모델이 정확하게 예측하는 방향으로 학습되도록 도움
- 3. 이진 교차 엔트로피 손실(Binary Cross Entropy Loss)
  - 이진 분류 문제에서 사용
  - 예측값이 1일 때와 0일 때의 손실값을 계산하여 평균을 내는 방식으로 동작합니다.

# 3. 하이퍼 파라미터 선정

•

# 4. 모델의 평가(F1 score)

•

프로젝트에 대한 소개내용을 입력해주세요. 프로젝트에 대한 소개내용을 입력해주세요.

# ✔ 구현 사항

- 프로젝트의 중점적인 기능을 기재해주세요.
- 프로젝트의 핵심 구현사항을 기술해주세요.

# ✔ 담당 역할

- 역할 및 본인 구현사항(기여내용)
- 역할 및 본인 구현사항(기여내용)

#### ✔ 기술 스택

000, 000, 000, 000

#### ✔ 기술 선정 이유

- 해당 기술을 활용/선정한 이유를 기술해주세요.
- 해당 기술을 활용/선정한 이유를 기술해주세요.

#### ✔ 프로젝트 성과

- 대외적인 성과가 있다면 기술해주세요. (정성/정량 무관)
- 프로젝트 내에서 발생했던 문제를 해결/극복해본 내용을 기술해주세요.
- 프로젝트를 진행하며 배운 점 / 학습한 점을 기입해주세요.

#### ✔ 프로젝트 리뷰

- 프로젝트를 수행하면서 아쉬웠던 점, 지금이라면 어떻게 더 보완하고 싶은지를 기술해주세 요.
- 프로젝트를 통해 배우고 느낀 점을 기재해주세요. (※ PJT 자체의 성과 측면이 아니어 도 됩니다. 나의 학습역량과 잠재력을 보여줄 수 있는 내용들을 기술해주세요! EX) FE리드를 맡아, 스크럼 회의 시 전날의 데일리 회고를 지속적으로 수행하며 더 나은 문제인식을 만들어가려 노력했습니다. )