# Applied Algebra

Algebra for College Students

## Applied Algebra

Algebra for College Students

compiled by Sean Laverty on behalf of others University of Central Oklahoma

> Katherine Yoshiwara Los Angeles Pierce College

> > August 29, 2021

#### ©2020 Sean Laverty

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the appendix entitled "GNU Free Documentation License."

### **Preface**

**History.** This project is a local adaptation of Modeling, Functions, and Graphs by Katherine Yoshiwara. A bit of text was added to discuss function composition. A few topics were reordered, and a few others were removed, to facilitate use by our instructors and students.

Mathematics, as we all know, is the language of science, and fluency in algebraic skills has always been necessary for anyone aspiring to disciplines based on calculus. But in the information age, increasingly sophisticated mathematical methods are used in all fields of knowledge, from archaeology to zoology. Consequently, there is a new focus on the courses before calculus. The availability of calculators and computers allows students to tackle complex problems involving real data, but requires more attention to analysis and interpretation of results. All students, not just those headed for science and engineering, should develop a mathematical viewpoint, including critical thinking, problem-solving strategies, and estimation, in addition to computational skills. *Modeling, Functions and Graphs* employs a variety of applications to motivate mathematical thinking.

Modeling. The ability to model problems or phenomena by algebraic expressions and equations is the ultimate goal of any algebra course. Through a variety of applications, we motivate students to develop the skills and techniques of algebra. Each chapter includes an interactive Investigation that gives students an opportunity to explore an openended modeling problem. These Investigations can be used in class as guided explorations or as projects for small groups. They are designed to show students how the mathematical techniques they are learning can be applied to study and understand new situations.

Functions. The fundamental concept underlying calculus and related disciplines is the notion of function, and students should acquire a good understanding of functions before they embark on their study of college-level mathematics. While the formal study of functions is usually the content of precalculus, it is not too early to begin building an intuitive understanding of functional relationships in the preceding algebra courses. These ideas are useful not only in calculus but in practically any field students may pursue. We begin working with functions in Chapter 1 and explore the different families of functions in subsequent chapters.

In all our work with functions and modeling we employ the "Rule of Four," that all problems should be considered using algebraic, numerical, graphical, and verbal methods. It is the connections between these approaches that we have endeavored to establish in this course. At this level it is crucial that students learn to write an algebraic expression from a verbal description, recognize trends in a table of data, and extract and interpret information from the graph of a function.

**Graphs.** No tool for conveying information about a system is more powerful than a graph. Yet many students have trouble progressing from a point-wise understanding of graphs to a more global view. By taking advantage of graphing calculators, we examine a large number of examples and study them in more detail than is possible when every graph is plotted by hand. We can consider more realistic models in which calculations by more traditional methods are difficult or impossible.

We would like to thank Roy Simpson and his colleagues at Cosumnes River College, especially Min Zeng and Phuong Le, for their careful reading of the text and superior error-spotting skills. We also thank Tom Judson and the faculty at Stephen F. Austin State University for their help designing WebWork exercises for the text.

Sean Laverty (with others, via Katherine Yoshiwara) Edmond, OK 73034

### Contents

viii CONTENTS