Hoofdstuk 3 – Kinetica van een puntmassa: arbeid en energie

Eric Demeester

Overzicht H1 t.e.m. H8

■ Definitie: elementaire arbeid dU: ↑F

$$dU = F ds \cos \theta$$

• Alternatieve schrijfwijze:

$$dU = \mathbf{F} \cdot d\mathbf{r}$$
 "Scalair" of "inwendig" product; $\mathbf{i} \cdot \mathbf{j} = ?$

Arbeid U t.g.v. een veranderlijke kracht:

$$U_{1-2} = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F} \cdot d\mathbf{r} = \int_{s_1}^{s_2} F \cos \theta \, ds$$

- Scalair of vectorieel?
- Altijd positief?
- Eenheid?

 Speciaal geval 1: arbeid van constante kracht langs rechte lijn

$$U_{1-2} = F_c \cos \theta \int_{s_1}^{s_2} ds$$

$$U_{1-2} = F_c \cos \theta (s_2 - s_1)$$

Speciaal geval 2: arbeid van gewicht

$$U_{1-2} = \int \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_1}^{\mathbf{r}_2} (-W\mathbf{j}) \cdot (dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k})$$
$$= \int_{y_1}^{y_2} -W \, dy = -W(y_2 - y_1)$$

• Onafhankelijk van de gevolgde baan, enkel van Δy

$$U_{1-2} = -W \, \Delta y$$

Levert het gewicht pos./neg. arbeid als we van beneden naar boven bewegen?

Achterliggende veronderstelling?

Speciaal geval 3: kracht van een veer F_v

- Lineaire (ideale) veer: $F_v = k \cdot (l l_0) = k \cdot s$
 - Met l₀ de rustlengte van de veer

Kracht van een veer

- Fig. 3.5
- Arbeid door F_v op puntmassa: $dU = -F_v$. ds
- Grootte van de veerkracht $F_v = k.s$ (met s=0 de rusttoestand van de veer)

$$U_{1-2} = \int_{s_1}^{s_2} F_v \, ds = \int_{s_1}^{s_2} -ks \, ds$$

$$U_{1-2} = -\left(\frac{1}{2}ks_2^2 - \frac{1}{2}ks_1^2\right)$$

Onafhankelijk van de gevolgde baan

KŲ LEŲVEN

dU?	$ds \geq 0$	$ds \leq 0$
$s \ge 0$ Veer is uitgerokken	$-k \cdot s \cdot ds$	$-k \cdot s \cdot ds$
$s \leq 0$ Veer is ingeduwd	$-k \cdot s \cdot ds$	$-k \cdot s \cdot ds$

$$U_{1-2} = \int_{s_1}^{s_2} F_v \, ds = \int_{s_1}^{s_2} -ks \, ds$$

$$U_{1-2} = -\left(\frac{1}{2}ks_2^2 - \frac{1}{2}ks_1^2\right)$$
(3.4)

$$\sum \vec{F} = m\vec{a}$$

Vectorvergelijking

In tangentiële richting: $\sum F_t = ma_t$ en $a_t = v \frac{dv}{ds}$

Algebraïsche vergelijking

$$\sum F_t = mv \; \frac{dv}{ds}$$

$$\sum F_t ds = mv dv$$

$$\sum \int_{S_1}^{S_2} F_t \, ds = \int_{v_1}^{v_2} mv \, dv = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$$

$$\sum U_{1-2} = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$$

$$\frac{mv_1^2}{2} + \sum U_{1-2} = \frac{mv_2^2}{2}$$

$$T_1 + \Sigma U_{1-2} = T_2$$

Algebraïsche vergelijking

Fig. 3.7

Waarom bekijken we enkel de tangentiële richting, en niet de normale of binormale richting?

Kinetische energie $T = \frac{mv^2}{2}$

Voorbeeld 3.2

De wagen van 175 kN (\approx 1750 kg) die in fig. 3.10a wordt afgebeeld, rijdt met een snelheid van 6 m/s over een weg met een helling van 10° naar beneden. De bestuurder trapt hard op de rem en de wielen blokkeren. Bepaal de afstand s waarover de banden over de weg slippen. De kinetische wrijvingscoëfficiënt tussen de wielen en de weg is $\mu_k = 0.5$.

- Geg
 - = m = 1750 kg
 - $v_1 = 6m/s$
 - $\mu_k = 0.5$
 - Wielen blokkeren
- Gevr
 - Afstand s tot stilstand

Voorbeeld 3.2

Aanpak via tweede wet van Newton (hoofdstuk 2)

- Onbekenden?
- Bijkomende vergelijkingen nodig?

$$\sum F_y = ma_y \Leftrightarrow +N_A - W_y = 0 \Leftrightarrow N_A = mg \cos 10^\circ = 16907N$$

Dynamische wrijving: $F_A = \mu_k N_A = 0.5$. 16907N = 8453N

Voorbeeld 3.2

 $\sum F_y = ma_y \Leftrightarrow +N_A - W_y = 0 \Leftrightarrow N_A = mg \cos 10^\circ = 16907N$

Dynamische wrijving: $F_A = \mu_k N_A = 0.5$. 16907N = 8453N

Voorbeeld 3.2

Dynamische wrijving: $F_A = \mu_k N_A = 0.5$. 16907N = 8453N

Voorbeeld 3.2

Aanpak via energiemethode (hoofdstuk 3)

$$T_1 + \sum U_{1-2} = T_2$$

$$\frac{mv_1^2}{2} + F_A s \cos 180^\circ + N_A s \cos 90^\circ + W_X s \cos 90^\circ + W_y s \cos 90^\circ = \frac{mv_2^2}{2}$$
 Opgelet! Energievergelijking
$$\frac{mv_1^2}{2} - F_A s + 0 + W_X s + 0 = \frac{mv_2^2}{2}$$
 Tekens volgen uit definitie positieve vs negatieve energie
$$\frac{mv_1^2}{2} - F_A s + 0 + (W \sin 10^\circ) s + 0 = \frac{mv_2^2}{2}$$

 $= \frac{mv_2^2}{2}$ Tekens volgen uit definitie positieve vs negatieve energie

Niet W maar wel Δy ontbinden

$$T_1 + \sum U_{1-2} = T_2$$

$$\frac{mv_1^2}{2} + F_A s \cos 180^\circ + N_A s \cos 90^\circ + \frac{W_x s \cos (-W - \Delta y)}{2} s \cos 90^\circ = \frac{mv_2^2}{2}$$

$$\frac{mv_1^2}{2} + F_A s \cos 180^\circ + N_A s \cos 90^\circ - W(-s_{y'}) = \frac{mv_2^2}{2}$$

$$\frac{mv_1^2}{2} - F_A s + 0 + W(s \sin 10^\circ) = \frac{mv_2^2}{2}$$

Voorbeeld 3.2

$$\frac{mv_1^2}{2} - F_A s + W(s \sin 10^\circ) = \frac{mv_2^2}{2}$$

$$\frac{1750.6^2}{2} - 8453,35 s + 1750.9.81(s \sin 10^\circ) = 0$$
 Uitkomst: s=5.76m
$$31500J - 48658J + 17159J = 0J \text{ (Energiebalans)}$$

Voorbeeld 3.3

De kraan in fig. 3.11a tilt de balk met een gewicht van 2500 kg gedurende korte tijd op met een kracht $F = (28 + 3s^2)$ kN. Bepaal de snelheid van de balk wanneer deze een hoogte van s = 3 m bereikt heeft. Hoe lang duurt het om die hoogte vanuit rust te bereiken?

Waarom hier het principe van arbeid en energie gebruiken?

Wat is de eerste stap bij het oplossen?

Principes van arbeid en energie

$$T_1 + \Sigma U_{1-2} = T_2$$

$$0 + \int_0^s (28 + 3s^2)(10^3) ds - (2,50)(10^3)(9,81)s = \frac{1}{2}(2,50)(10^3)v^2$$

$$28(10^3)s + (10^3)s^3 - 24,525(10^3)s = 1,25(10^3)v^2$$

$$v = (2,78s + 0,8s^3)^{\frac{1}{2}}$$
Voor $s = 3$ m,
$$v = 5,47 \text{ m/s}$$
(1) Antw.

$$\Sigma T_1 + \Sigma U_{1-2} = \Sigma T_2 \tag{3.8}$$

 Definieer correct en consequent het stelsel (=vrijlichaamsschema) van de puntmassa's waarop je de energievergelijking toepast!

Voorbeeld 3.6

Blok A en blok B in fig. 3.14a hebben respectievelijk een massa van 10 kg en 100 kg. Bepaal de afstand die B aflegt wanneer het vanuit rust wordt losgelaten tot het punt dat het een snelheid van 2 m/s bereikt.

Stelsel = puntmassa A en B
Alle krachten op totale stelsel
en totale energie van hele stelsel!

Voorbeeld 3.6

Principe van arbeid en energie Ervan uitgaande dat de blokken van uit rust worden losgelaten, volgt:

$$\Sigma T_{1} + \Sigma U_{1-2} = \Sigma T_{2}$$

$$\left\{ \frac{1}{2} m_{A} (v_{A})_{1}^{2} + \frac{1}{2} m_{B} (v_{B})_{1}^{2} \right\} + \left\{ W_{A} \Delta s_{A} + W_{B} \Delta s_{B} \right\} =$$

$$\left\{ \frac{1}{2} m_{A} (v_{A})_{2}^{2} + \frac{1}{2} m_{B} (v_{B})_{2}^{2} \right\}$$

$$\left\{ 0 + 0 \right\} + \left\{ 98,1 \text{ N } (\Delta s_{A}) + 981 \text{ N } (\Delta s_{B}) \right\} =$$

$$\left\{ \frac{1}{2} (10 \text{ kg}) (v_{A})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} (100 \text{ kg}) (2 \text{ m/s})^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} m_{B} (v_{B})_{2}^{2} + \frac{1}{2} m_{B} (v_{B})_{2}^{2} \right\}$$

$$\left\{ 1 + 2 m_{B} (v_{B})_{2}^{2} + \frac{1}{2} m_{B} (v_{B})_{2}^{2} + \frac{1}{2} m_{B} (v_{B})_{2}^{2} + \frac{1}{2} m_{B} (v_{B})_{2}^{2} \right\}$$

Katrolvergelijking

$$\Delta s_A + 4 \, \Delta s_B = 0$$

$$v_A = -4v_B = -4(2 \text{ m/s}) = -8 \text{ m/s}$$

Voorbeeld 3.6

Stelsel = puntmassa A
Alle krachten op totale stelsel!

T=inwendige kracht, wel in dit vrijlichaamsschema!
T verplaatst dus levert arbeid!

Definieer en teken het gebruikte stelsel (vrijlichaamsschema)!

Voorbeeld 3.6

Arbeid door T

- Stelsel A+B
 - Arbeid=- $T.s_A + T.s_A = 0$
 - T = inwendige kracht, levert geen arbeid

- Stelsel A
 - Arbeid= $T.s_A \neq 0$
 - T=uitwendige kracht, levert arbeid!

Is het principe van arbeid en energie geldig wanneer lichamen botsen of exploderen? (dus tijdens de botsing of tijdens de explosie) Waarom wel of waarom niet?

3.4 Vermogen en rendement

$$P = \frac{dU}{dt}$$

$$P = \mathbf{F} \cdot \mathbf{v}$$

$$\varepsilon = \frac{\text{uitgaand vermogen}}{\text{ingaand vermogen}}$$

$$\varepsilon = \frac{\text{uitgaande energie}}{\text{ingaande energie}}$$

(3.12)

3.4 Vermogen en rendement

Voorbeeld 3.3

De kraan in fig. 3.11a tilt de balk met een gewicht van 2500 kg gedurende korte tijd op met een kracht $F = (28 + 3s^2)$ kN. Bepaal de snelheid van de balk wanneer deze een hoogte van s = 3 m bereikt heeft. Hoe lang duurt het om die hoogte vanuit rust te bereiken?

Gevraagd: Welk vermogen levert de motor als de balk een hoogte van S=3m bereikt?

Oplossing:

v=5,47m/s $F=(28+3s^2)=28+3*3^2=55$ kN

$$P = \vec{F} \cdot \vec{v} = F. v. \cos(\theta) = 55000.5,47. \cos(0^{\circ})$$

 $P = 300850W = 301kW$

3.4 Vermogen en rendement

Voorbeeld 3.7

De man in fig. 3.15a drukt met een kracht F = 150 N tegen de kist van 50 kg. Bereken het vermogen dat de man levert op t = 4 s. De kinetische wrijvingscoëfficiënt tussen de kist en het vlak $\mu_k = 0,2$. In eerste instantie is de kist in rust.

OPLOSSING

Redenering:

1/ Gevraagd: P = ?

 $2/P = F \cdot v$ (scalair product)

F is gekend, snelheid v is niet gekend

3/ Snelheid v berekenen uit 2e wet van Newton: daarmee kunnen we de versnelling berekenen,

en daarmee dan de snelheid

- VLS maken
- 2e wet van Newton toepassen:

Hieruit: N en a bepalen; Met a kan je snelheid na 4 s berekenen: v = 0 + a. t met t = 4s. $4/P = F(4/5) \cdot v = ...$

