CMPE 212 Principles of Digital Design

Lecture 21

Counters Design

April 11, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

□ Previous Lecture

- → Register and Shift Registers (Design and example applications)
- → Binary counters
 - Synchronous counters
 - Asynchronous counters
 - Down and up/down counters

☐ This Lecture

- → Modulo-N Counters
- → Synchronous and asynchronous BCD counters
- → Ring counters (shift registers as counters)
- → Fractional rate multipliers

Modulo-N Counters

- □ A counter circuit tracks the multiplicity of transitions is a signal up to an upper bound M, i.e., transitions between the states 0, 1, ..., M-1
- ☐ A counter of an upper bound of M is called "Modulo M Counter"
- \Box The number of flip flops, n, used in a counter imply $M = 2^{n}-1$
- ☐ In many applications a counter is needed with an upper bound N that is less than M, e.g., BCD counters
- ☐ Counters can be synchronous, i.e., operation is coordinated by a clock, and asynchronous that operates on the principle of "ready-go".

Synchronous BCD (Decade) Counter

- ➤ <u>Idea</u>: similar to 2ⁿ-1 counters with logic that controls the next state
- Example: The 74LS160 Integrated Circuit

Asynchronous Binary Counter

Asynchronous → state change is not controlled by a synchronizing clock (ready-go operation)

- Delay is not homogenous and one has to determine the worst case delay to avoid reading the wrong output
- Recycling back to zero is not instantaneous, (n-1)t_p

Asynchronous BCD (Decade) Counter

Add combinational logic to detect number 9 (10th state) and
 reset the counter to zero (state 0)

Asynchronous BCD counter

Large circles denote steady states and small circles reflects intermediate states visited in transition

- ➤ Transition between two states may pass multiple intermediate states due to the ripple effect
- ➤ The most unstable output is in transition between 7 and 8.

General Modulo-N Asynchronous Counter

Modulo-6 & Module-12 Counters

Example: digital timer generator

Uses 60-hertz power line → divide by 60 (modulo 60)

Ring Counters

- □ Shift registers can be considered as counters when the serial output is fed back as a serial input → ring
- ☐ A ring counter is a sequential circuits that has 1 flip flop per state
- ☐ If only bit is set to "1", such "1" will circulate around the register (works like sequential decoder)

- ☐ Twist-ring counter (or Johnson Counter): a ring counter with an inverter in the feedback loop is called
- ☐ Number of states = 2N (due to the inverter)

Digital Fractional Rate Multipliers

 Transforms a stream of input clock pulses, e.g. clock, into controlled stream of output pulses

Digital Fractional Rate Multipliers

Conclusion

- **□** Summary
 - → Modulo-N Counters
 - → Synchronous and asynchronous BCD counters
 - → Counter resetting
 - → Ring counters (shift register as a counter)
 - → Fractional rate multipliers
 - □ Next Lecture
 - → Synchronous sequential circuits models
 - → Sequential circuits analysis
 - → Synthesis of synchronous sequential circuits

Reading assignment: Sections 7.3 – 7.6 in the textbook

