- 1. (25 Points) Consider a random experiment in which a point is selected at random from the unit square (sample space $S = [0,1] \times [0,1]$). Assume that all points in S are equally likely to be selected. Let the random variable $X(\omega)$ be the distance from the outcome ω to the nearest edge of (i.e., the nearest point on one of the four sides) of the unit square.
 - (a) Find the cumulative distribution function (c.d.f.) of X. Draw a graph of the c.d.f.
 - (b) Find the probability density function (p.d.f.) of X. Draw a graph of the p.d.f.
 - (c) What is the probability that X is less than 1/8?
- 2. (25 Points) State and prove the Chebyshev inequality for random variable X with mean μ and variance σ^2 . In constructing your proof, keep in mind that X may be either a discrete or continuous random variable.
- 3. (25 Points) Let X_1, \ldots, X_n, \ldots be a sequence of independent, identically distributed random variables, each uniformly distributed on the interval [0,1], an hence having pdf

$$f_X(x) = 1_{[0,1]}(x) = \begin{cases} 1, & \text{for } 0 \le x \le 1; \\ 0, & \text{elsewhere.} \end{cases}$$

Let Y_n be a new random variable defined by

$$\mathbf{Y}_n = \min{\{\mathbf{X}_1, \dots, \mathbf{X}_n\}}.$$

- (a) Find the pdf of Y_n .
- (b) Does the sequence $\{Y_n\}$ converge in probability? Justify your answer.
- (c) Does the sequence $\{Y_n\}$ converge in distribution? If it does, specify the cumulative distribution function of the random variable it converges to.

Write in Exam Book Unly

_ . . . - _

4. (25 Points) Let X(t) and Y(t) be two independent Gaussian random processes, both having zero-mean and both having the identical autocovariance function $C(t_1, t_2)$. Define the new random process Z(t) as

$$Z(t) = X(t)\cos\omega_o t + Y(t)\sin\omega_o t,$$

where ω_o is a constant radian frequency.

- (a) Find the mean of Z(t).
- (b) Find the autocovariance function of $\mathbf{Z}(t)$.
- (c) Under what, if any, conditions on $C(t_1, t_2)$ is $\mathbb{Z}(t)$ a wide-sense stationary random process?
- (d) Under what, if any, conditions on $C(t_1, t_2)$ is $\mathbf{Z}(t)$ a (strict-sense) stationary random process?
- (e) Write an expression for the joint characteristic function of the random variables $\mathbf{Z}(t_1), \ldots, \mathbf{Z}(t_n)$ obtained by sampling the random process $\mathbf{Z}(t)$ at arbitrary time instants t_1, \ldots, t_n . Express your answer in terms of the common autocovarince function $C(t_j, t_k)$ of $\mathbf{X}(t)$ and $\mathbf{Y}(t)$.

Witte In Likati Book Only