Desafio Tapps

O objetivo deste teste seletivo é identificar o perfil técnico que o candidato apresenta, mostrando uma prévia dos problemas que resolvemos no nosso dia a dia. O teste oferecido a seguir é um desafio que deve ser codificado em uma linguagem de sua preferência. Os arquivos fonte que compõe a solução devem ser entregues para análise dos técnicos da Tapps.

Os arquivos que compõe a resposta do teste devem ser enviados por e-mail ao contato fornecido pelo departamento de Recursos Humanos. Esses arquivos devem ser entregues na extensão .zip, e um arquivo README dentro do zip deve conter **instruções de compilação e/ou interpretação**, dependendo da tecnologia utilizada na resolução do problema. Em geral, o desafio proposto leva de 2 a 4 horas para ser completado.

Entraremos em contato assim que a resposta tiver sido avaliada pelos nossos entrevistadores técnicos.

Boa sorte!

O Desafio

Considere o seguinte jogo hipotético, que chamaremos de **Bankrupt**, muito semelhante a Banco Imobiliário¹ onde várias de suas mecânicas foram simplificadas. Numa partida desse jogo, os *players* se alteram em rodadas, numa ordem definida aleatoriamente no começo da partida. Os *players* sempre começam uma partida com 300 *coins* cada um.

Nesse jogo, o tabuleiro é composto por 20 propriedades em sequência. Cada casa tem um custo de venda, um valor de aluguel, um dono caso já estejam compradas, e seguem uma determinada ordem no tabuleiro. Em *Bankrupt*, **não é possível** construir hotéis e nenhuma outra melhoria sobre as propriedades do tabuleiro, por simplicidade do problema.

O valor de venda e de aluguel de todas as 20 propriedades são configurados num arquivo de nome gameConfig.txt, que seu programa deve ler e interpretar. Os detalhes sobre a formatação do arquivo se encontram na seção *Entrada*.

No começo da sua vez, o jogador joga um dado equiprovável de 6 faces que determina quantas espaços no tabuleiro o player vai andar.

- Ao cair em uma propriedade sem dono, o jogador pode escolher entre comprar ou não a propriedade. Esse é a única forma pela qual uma propriedade pode ser comprada.
- Ao cair em uma propriedade que tem dono, ele deve pagar ao dono o valor do aluguel da propriedade.
- Ao completar uma volta no tabuleiro, o jogador ganha 100 coins.

Jogadores só podem comprar propriedades caso ela não tenha dono e o jogador tenha o dinheiro da venda. Ao comprar uma propriedade, o jogador perde o dinheiro e ganha a posse da propriedade.

Cada um dos *players* tem uma implementação de comportamento diferente, que dita as ações que eles vão tomar ao longo do jogo. Mais detalhes sobre o comportamento serão explicados mais à frente.

Um jogador que fica com saldo negativo perde o jogo, e não joga mais até o final da partida. Suas propriedades voltam a ficar sem dono e portanto podem ser compradas por qualquer jogador.

Bankrupt termina quando restar somente um *player* com dinheiro, a qualquer momento da partida. Esse *player* é declarado o vencedor.

Desejamos rodar uma simulação sobre Bankrupt para decidir qual a melhor estratégia. Para isso, idealizamos uma partida com 4 diferentes tipos de possíveis jogadores. Os comportamentos definidos são:

- O jogador um é **impulsivo**;
- O jogador dois é **exigente**;
- O jogador três é cauteloso;
- O jogador quatro é aleatório;

O jogador impulsivo compra qualquer propriedade sobre a qual ele parar.

O jogador exigente compra qualquer propriedade, desde que o aluguel dela seja maior do que 50 coins.

O jogador cauteloso compra qualquer propriedade desde que ele tenha uma reserva de 80 *coins* sobrando *depois* de realizada a compra.

O jogador aleatório compra a propriedade que ele parar em cima com probabilidade de 50%.

Caso o jogo demore muito, como é de costume em jogos dessa natureza, o jogo termina na milésima rodada com a vitória do jogador com mais *coins*. O critério de desempate é a ordem de turno dos jogadores nesta partida.

Dados esse padrão de comportamento dos jogadores e das regras de Bankrupt, queremos saber o seguinte:

- Em 300 partidas, qual a distribuição de vitória por comportamento de jogador? Existe algum comportamento que ganha mais que os outros?
- Em média, quantas rodadas o jogo demora para terminar? Quantas partidas de Bankrupt terminam pelo critério de tempo?

Entrada

Nesta seção definiremos qual o padrão esperado para o arquivo de entrada gameConfig.txt, que dita o preço de venda e aluguel das propriedades. Esse arquivo deve se encontrar na mesma pasta que os outros arquivos fonte do desafio, e deve seguir a risca as instruções a seguir. Seu programa deve ler esse arquivo e configurar as propriedades do jogo baseado nas informações encontradas nele.

Cada linha do arquivo gameConfig.txt contém informações a respeito de uma propriedade. A primeira linha diz respeito a primeira das propriedades do tabuleiro, a segunda diz a respeito da segunda propriedade, e assim por diante, descrevendo todas as 20 propriedades do jogo.

Cada linha do tabuleiro contém dois valores inteiros. O primeiro é o valor de venda da propriedade e o segundo é o seu valor de aluguel.

Dentro do conteúdo da pasta do desafio se encontra um exemplo de arquivo de entrada que pode ser usado para rodar seu programa.

Saída

Uma execução do programa proposto deve rodar 300 simulações de Bankrupt, imprimindo no console os dados referentes às execuções. Esperamos encontrar nos dados as seguintes informações:

- Quantas partidas terminam por time out (1000 rodadas);
- Quantos turnos em média demora uma partida;
- Qual a porcentagem de vitórias por comportamento dos jogadores;
- Qual o comportamento que mais vence.

Envio da Resposta

Nós da Tapps gostaríamos de analisar sua solução do nosso desafio! Por isso, pedimos para que você envie um **zip** com os arquivos que compõem sua resposta de volta para o email de contato com o departamento de Recursos Humanos. Por favor, coloque também um arquivo **README** com instruções de execução/compilação, e quaisquer observações que você achar relevante!