Repérage dans le plan

Plan du cours

Coordonnées

Lire les coordonnées d'un point Placer un point connaissant ses coordonnées

Milieu d'un segment

Propriété admise

Distance entre deux points

Comment déterminer la distance entre deux points?

Plan du cours

Coordonnées

Lire les coordonnées d'un point Placer un point connaissant ses coordonnées

Milieu d'un segment

Distance entre deux points

,)

 $C(\quad,\quad)$

 $E(\cdot , \cdot)$

 $F(\quad,\quad)$

A(3,1)

 $C(\quad ,\quad)$

E(,

F(,)

A(3,1)B(5,5)

D(,)

 $E(\quad , \quad E(\quad$

 $G(\quad,\quad)$

A(3,1)B(5,5)

C(4,3)

 $E(\quad,\quad)$

G(,)

A(3,1) B(5,5)C(4,3)

D(4,-5) $E(\quad,\quad)$

F(,)

 $G(\quad,\quad)$ $H(\quad,\quad)$

A(3,1) B(5,5)C(4,3)

D(4,-5) E(-7,4)

F(,)

 $G(\quad,\quad)$ $H(\quad,\quad)$

A(3,1) B(5,5) C(4,3)D(4,-5)

 $\begin{bmatrix} x & E(-7, 4) \\ F(-5, 0) \end{bmatrix}$

A(3,1)B(5,5)

C(4,3)D(4,-5)

E(-7, 4)

F(-5, 0) G(0, -3)H(-5, 0)

A(3,1)B(5,5)

C(4,3)D(4,-5)

 $\begin{cases} x & E(-7, 4) \\ F(-5, 0) \end{cases}$

G(0, -3)H(0, 7)

5						
					B	
				C		
1						
			A			
	0	1			5	

A(3,	1)
B(5,	5)

C(4,3)

Remarque

Le point C semble être au milieu du segment [AB].

Peut-on retrouver les coordonnées du point C à partir de celles des points A et B?

$$C(4; 3) =$$

Н						_
5						
				ď	В	
			١.			
				C		
1						
			A			
	0	1			5	

A(3,1) B(5,5)C(4,3)

Remarque

Le point ${\cal C}$ semble être au milieu du segment [AB].

Peut-on retrouver les coordonnées du point C à partir de celles des points A et B ?

$$C(4; 3) = C\left(\frac{3+5}{2}; \frac{1+5}{2}\right) =$$

						Γ
5						
					B	
				C		
1						
			A			
	0	1			5	Г

$$A(3,1)$$

 $B(5,5)$
 $C(4,3)$

Remarque

Le point ${\cal C}$ semble être au milieu du segment [AB].

Peut-on retrouver les coordonnées du point C à partir de celles des points A et B ?

$$C(4; 3) = C\left(\frac{3+5}{2}; \frac{1+5}{2}\right) = C\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$

Placer un point connaissant ses coordonnées

A(5,3) B(-2,3) C(-2,-4)D(6,2)

E(7, -4)F(6, 0)

G(0,3)

H(0,-7)

Placer un point connaissant ses coordonnées

A(5,3)B(-2, 3)C(-2, -4)D(6, 2)E(7, -4)F(6,0)G(0, 3)

Plan du cours

Coordonnées

Milieu d'un segment Propriété admise

Distance entre deux points

Propriété admise

Soit M milieu de $[AB].\ M$ a pour coordonnées :

$$M\left(\frac{x_A+x_B}{2}\;;\;\frac{y_A+y_B}{2}\right)$$

Plan du cours

Coordonnées

Milieu d'un segment

Distance entre deux points

Comment déterminer la distance entre deux points?

II lui reste 120km d'autonomie. Pythagore : VR = 100

Propriété

Soit $A\left(x_{A}\;;\;y_{A}\right)$ et $B\left(x_{B}\;;\;y_{B}\right)$ dans un repère **orthonormé**. La distance AB est égale à :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors :

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

 $AC^2 = (x_B - x_A)^2$. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or
$$AC = x_B - x_A$$
 ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors :

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors :

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On considère le point $C(x_B; y_A)$.

On suppose que $x_B \neq x_A$ ET $y_B \neq y_A$.

Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C.

Par le théorème de Pythagore, $AB^2 = AC^2 + BC^2$.

Or $AC = x_B - x_A$ ou $AC = x_A - x_B$. Dans les deux cas

$$AC^2 = (x_B - x_A)^2$$
. De même, $BC^2 = (y_B - y_A)^2$.

Les unités étant les mêmes sur les deux axes, on a alors :

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$

d'où
$$AB = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2}$$