Reinforcement Learning Quarto

Norah Jones

Invalid Date

Table of contents

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 + 1

[1] 2

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

2 Activate the Core Packages

```
library(bibtex)
library(tidyverse) ## Brings in a core of useful functions
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr
                                  2.1.5
v forcats 1.0.0 v stringr
v ggplot2 3.5.1 v tibble
                                  1.5.1
                                  3.2.1
v lubridate 1.9.3 v tidyr
                                  1.3.1
v purrr
           1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(gt)
                   ## Tables
## Specific packages
library(milestones)
## Initialize defaults
## Initialize defaults
column <- lolli_styles()</pre>
data <- read_csv(col_names=TRUE, show_col_types=FALSE, file='rl_time_line.csv')</pre>
## Sort the table by date
data <- data |>
 arrange(date)
## Build a table
gt(data) |>
 #cols_hide(columns = event) |>
  tab_style(cell_text(v_align = "top"),
            locations = cells_body(columns = date)) |>
 tab_source_note(source_note = "Source: Sutton and Barto (2018)")
```

date	event	referen
1911	Primer idea del "trial-and-error learning" (TaEL)	NA
1927	Aparece el termino "Reinforcement" en el contexto del aprendizaje animal	NA
1948	Turing describe un diseno para un sistema "pleasure-pain system"	NA
1954	Minsky Farley y Clark publican sus investigaciones sobre TaEL.	NA
1957	Aparece "Dynamic Programming" (DP)	mundo
1957	Introducen los Markov Decision Processes (MDP)	NA
1959	Comienza a utilizarse el "optimal control" (OC)	paso
1959	Se desarrolla extensamente la DP	NA
1960	Aparece el metodo de iteracion de politicas	NA
1960	Se utilizan por primera vez en ingeniería"Reinforcement" y "Reinforcement Learning"	NA
1960	Se originan los "Learning Automata"	NA
1961	Se publica "Steps Toward Artificial Intelligence"	NA
1961	Se describe un sistema "TaEL" para el tic-tac-toe	NA
1963	Se desarrolla STeLLA	NA
1972	Trabajo de Klopf	NA
1973	Widrow, Gupta y Maitra modifican el LMS.	NA
1973	Teoría del aprendizaje de Bush y Mostelle	NA
1977	Werbos conecta el OC y PD	NA
1978	Sutton desarrolla las ideas de Klopf	NA
1986	Introducen los clasificadores	NA
1989	Watkins integra los metodos de aprendizaje (MA)	NA
1996	Aparece el termino "Neurodynamic Programming"	NA
2003	"Reinforcement Learning" en economí	NA
2012	Vision general del Reinforcement Learning y Juegos	NA
NA	NA	NA

Source: Sutton and Barto (2018)

```
## Adjust some defaults
column$color <- "orange"
column$size <- 15
column$source_info <- "Source: Sutton and Barto (2018)"

## Milestones timeline
milestones(datatable = data, styles = column)</pre>
```

Warning: Removed 1 row containing missing values or values outside the scale range $(\text{`geom_text}()\text{`})$.

Warning: Removed 1 row containing missing values or values outside the scale range (`geom_segment()`).

Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

Warning: Removed 25 rows containing missing values or values outside the scale range (`geom_segment()`).

2.1 EJERCICIO 1

En el aprendizaje reforzado un agente aprende a tomar decisiones (acciones) a través de la interacción con su entorno y recibiendo recompensas o castigos en función de las mismas, a diferencia del aprendizaje supervisado, ya que en este tipo de aprendizaje automático, un modelo se entrena utilizando un conjunto de datos que incluye tanto las entradas como las salidas correspondientes (etiquetas). es decir, consiste en aprender a partir

de un conjunto de ejemplos ya etiquetados y proporcionados por un supervisor externo con conocimientos. Por lo que en este tipo de aprendizaje Cada ejemplo describe una situación especifica, y además existe una etiqueta que indica la acción adecuada que el sistema debe tomar en esa situación, El objetivo de este tipo de aprendizaje es que el

sistema generalice sus respuestas para que actúe correctamente en situaciones que no están