

# HF TELSİZ AĞLARDA DSR TABANLI ROTALAMA UYGULAMASI

Makbule Gülçin ÖZSOY Özgür ÖZUĞUR

TÜBİTAK/BİLGEM



#### Gündem

- Kablosuz Tasarsız Ağlarda Rotalama
  - Proaktif Algoritmalar
  - Reaktif Algoritmalar
- HF Ağlarda Rotalama
  - Dynamic Source Routing (DSR) Algoritması
  - Karşılaşılan Temel Sorunlar ve Çözümleri
- Test Sonuçları ve Değerlendirme
- Sonuç



- Haberleşmenin sürekliliğini etkileyen faktörler:
  - Herhangi bir altyapının olmaması
  - Dinamik değişen ağ topolojisi
  - Hareketli düğümler
- Çözüm: Rotalama algoritmaları





- Rotalama Algoritmaları
  - Proaktif Rotalama Algoritmaları
    - Rota bilgisi periyodik rotalama paketleri ile sürekli güncel tutulur.
  - Reaktif Rotalama Algoritmaları
    - Hedeflenen düğümle ilgili rota bilgileri ihtiyaç anında bulunur ve ihtiyaç süresince saklanır.



- Proaktif Rotalama Algoritmaları
  - Rota bilgisi periyodik rotalama paketleri ile sürekli güncel tutulur.
  - Gecikmeler daha azdır.
  - İletim ortamına eklenen ek-yük çok fazladır.
  - Literatürdeki Algoritmalar:
    - Optimized Link State Routing Protocol (OLSR)
    - Destination-Sequenced Distance Vector Routing Protocol (DSDV)



- Reaktif Rotalama Algoritmaları
  - Rota bilgisi ihtiyaç anında bulunur ve ihtiyaç süresince saklanır.
  - İletim ortamına eklenen ek-yük azdır.
  - Gecikmeler daha fazladır.
  - Literatürdeki Algoritmalar:
    - Dynamic Source Routing (DSR)
    - Ad-hoc On Demand Distance Vector Routing (AODV)



|                                                              | OLSR     | DSDV     | DSR     | AODV    |
|--------------------------------------------------------------|----------|----------|---------|---------|
| Rota bulma yöntemi                                           | Proaktif | Proaktif | Reaktif | Reaktif |
| Periyodik yayın                                              | Evet     | Evet     | Hayır   | Evet    |
| Döngü içermeme                                               | Evet     | Evet     | Evet    | Evet    |
| Birden fazla hedefe<br>veri gönderme<br>(multicast) yeteneği | Hayır    | Hayır    | Hayır   | Evet    |
| Servis kalitesi (QoS)<br>desteği                             | Hayır    | Hayır    | Hayır   | Hayır   |
| Güvenlik                                                     | Hayır    | Hayır    | Hayır   | Hayır   |
| Enerji sakınımı                                              | Hayır    | Hayır    | Hayır   | Hayır   |
| Tek yönlü bağlantı<br>desteği                                | Hayır    | Hayır    | Evet    | Hayır   |
| Birden fazla rota<br>bulma/saklama<br>imkanı                 | Hayır    | Hayır    | Evet    | Hayır   |



- High Frequency (HF) Ağlar:
  - Ufuk ötesi haberleşme
  - Genellikle düğümler arası doğrudan haberleşme
- Doğrudan haberleşmeyi etkileyen faktörler:
  - Kötü hava şartları
  - Hareketli düğümler
- Çözüm: Rotalama Algoritmaları



- HF Ağların Özellikleri
  - Düşük bant genişliği
  - Yüksek hata oranları
  - Gecikmeler
  - Tek/Çift yönlü haberleşme
  - Veri gönderme/alma ihtiyacı
    - Tek bir düğüme (unicast)
    - Gruba (multicast)
    - Yayın(broadcast)
  - Servis kalitesi(QoS) ihtiyaçlar

Seçilen Rotalama Algoritması:

Dynamic Source Routing (DSR)



- Uygulamada Karşılaşılabilecek Temel Problemler Ve Çözümleri:
  - Ağ topolojisini etkisi:
    - Ağ topolojisi bilgisi rotalamanın daha verimli gerçeklenmesi için kullanılabilir.
    - HFTRP yaklaşımından elde edilen bilgiler uygulamaya entegre edilebilir.
  - Rotalama fonksiyonlarının yeri:
    - OSI-Layer 2 veya OSI-Layer 3
    - Bu uygulamada OSI-Layer 2 tercih edilmiştir.



- Uygulamada Karşılaşılabilecek Temel Problemler Ve Çözümleri:
  - Paket tasarımı:
    - NATO Stanag5066'da rotalama ile ilgili çözüm mevcut değildir.
    - Bu uygulamada, rota ve veri paketlerini geliştiriciler tasarlamıştır.
  - DSR algoritmasına özgü olası problemler:
    - Paketlerde tüm rota bilgisi taşınması çok sayıda düğüm içeren ağlarda problemlere neden olabilir.
    - Bu uygulamada, atlama sayısı en çok üç olacak şekilde limitlenmiştir.



- HF + DSR algoritması
- OMNET++ simulasyon ortamı
- Performans metrikleri
  - Paket dağıtım oranı:
    - Alınan/Gönderilen veri paketi oranı
  - Kontrol paketlerinin getirdiği ek yük:
    - Veri içermeyen, rota bulma için kullanılan paket sayısı
  - Tüm paketlerin getirdiği ek yük:
    - Bir veri paketi için oluşturulan toplam veri ve rota bulma paketi sayısı



- Simulasyon ortamı:
  - Haberleşme mesafesi: 280 metre
  - İletim hızı: 2400 bps
  - Düğümler:
    - 6 hareketsiz düğüm
    - 0. düğüm: Kaynak düğüm
    - Hedef düğümler: Rastgele seçilen düğümler





- Test sonuçları
  - Gönderilen veri paketi sayısı: 10 ve 100
  - Sonuçlar: 100 defa tekrar edilen testlerin ortalaması





- Test sonuçları: Paket dağıtım oranı
  - 10 adet veri paketi gönderme
    - Rotası bulunabilen paket sayısı: 6.52
    - Hedefe ulaşan veri paketi sayısı: 5.20

%79.75





- Test sonuçları: Paket dağıtım oranı
  - 100 adet veri paketi gönderme
    - Rotası bulunabilen paket sayısı: 95.50
    - Hedefe ulaşan veri paketi sayısı: 72.90

%76.34





- Test sonuçları: Kontrol paketlerinin getirdiği ek yük
  - 10 adet veri paketi gönderme
    - Kaynak tarafından gönderilen rota bulma paketi sayısı: 6.72
    - Ara düğümlerde çoklanan ve alışverişi yapılan toplam rota bulma paketi sayısı: 40.59





- Test sonuçları: Kontrol paketlerinin getirdiği ek yük
  - 100 adet veri paketi gönderme
    - Kaynak tarafından gönderilen rota bulma paketi sayısı: 9.15
    - Ara düğümlerde çoklanan ve alışverişi yapılan toplam rota bulma paketi sayısı: 55.63





- Test sonuçları: Tüm paketlerin getirdiği yük
  - 10 adet veri paketi gönderme
    - Rotaları bulunarak hedeflere gönderilen veri paketi sayısı: 6.52
    - Toplam üretilen veri ve rota bulma paketi sayısı:
      51.54
    - Herbir veri paketi için ortalama üretilen rota bulma ve veri paketi sayısı: 7.90





- Test sonuçları: Tüm paketlerin getirdiği yük
  - 100 adet veri paketi gönderme
    - Rotaları bulunarak hedeflere gönderilen veri paketi sayısı: 95.50
    - Toplam üretilen veri ve rota bulma paketi sayısı:
      222.28
    - Herbir veri paketi için ortalama üretilen rota bulma ve veri paketi sayısı: 2.33





#### Rotalama kullanıldığında:

- Veri paketlerinin iletilmesi %76-%79 başarıyla sağlanmaktadır.
- Rota paketleri nedeniyle ortama ek-yük eklenmektedir.
- Gönderilecek veri paketi sayısının yüksek olduğu durumlarda, toplam ek-yük miktarı oldukça düşük olmaktadır.

| Gönderilmek istenen veri paketi sayısı               | 10     | 100    |
|------------------------------------------------------|--------|--------|
| Paket dağıtım oranı                                  | %79.75 | %76.34 |
| Kontrol paketlerinin getirdiği ek yük                | 40.59  | 55.63  |
| Tüm paketlerin getirdiği ek yük (1 veri paketi için) | 7.90   | 2.33   |



#### Sonuç

- Bu projede yapılanlar:
  - HF ağlarda DSR tabanlı rotalama uygulaması
  - Bir noktadan başka bir noktaya (unicast) ara düğümler kullanılarak veri aktarımının yapılması
- Bundan sonra yapılacak çalışmalar:
  - Çok yönlü(multicast) ve yayın(broadcast) yaparak rotalama yapılması
  - Rotalama esnasında servis desteği (QoS) ihtiyaçlarının göz önüne alınması



## Teşekkürler