Linear Algebra Notes of Gilbert Strang Introduction to Linear Algebra book

Diego R.R.

October 26, 2023

Contents

1		etor Spaces and Subspaces	2
	1.1	Spaces of Vectors	2
	1.2	The Nullspace of A: Solving $Ax = 0$ and $Rx = 0$	2
		The Complete Solution to $Ax = b$	
2	Ort	hogonality	3
	2.1	Orthogonality of Vectors and Subspaces	3
	2.2	Projections onto Lines and Subspaces	3
		2.2.1 Exercises	3
	2.3	Least Squares Approximations	4
		2.3.1 Exercises	4
	2.4	Orthogonal Bases and Gram Schmidt	Ę
3	Det	terminants	6

Chapter 1

Vector Spaces and Subspaces

- 1.1 Spaces of Vectors
- 1.2 The Nullspace of A: Solving Ax = 0 and Rx = 0
- 1.3 The Complete Solution to Ax = b

The "easy" solution x_p is when we take the free variables equal to 0, where the x_{pi} component is 0 if it's at free column or equal to the b_i component if it's at a pivot column. x_p accounts for the particular solution to Ax = b and the nullspace x_n accounts for the general solution to Ax = 0. The complete solution is $x = x_p + x_n$.

Chapter 2

Orthogonality

2.1 Orthogonality of Vectors and Subspaces

2.2 Projections onto Lines and Subspaces

We have that for a \vec{b} outside of C(A), its projection onto C(A) is the closest vector to \vec{b} in C(A). The closest vector is denoted as $\vec{p} = A\hat{x}$. Such vector is related to \vec{b} with vectors in the $N(A^T)$ subspace. We have that $\exists e \in N(A^T)$ such $e = \vec{b} - \vec{p}$.

2.2.1 Exercises

Exercise 1. Not completely sure what the extra symmetry condition $P^T = P$ for orthogonal projection means. We have that $P = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

a)
$$P^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} row_1 \cdot col_1 & row_1 \cdot col_2 \\ row_2 \cdot col_1 & row_2 \cdot col_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

 $(I - P)^2 = (\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix})^2 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$

b) A vector $v \in C(P)$ is $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and a $w \in C(I - P)$ is $w = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then, $v \cdot w = 1$ which shows that v and w are not orthogonal \therefore the spaces are not orthogonal.

c)
$$v^T P^T (I - P^T) w = v^T (P^T - P^T P) w = v^T (0) w = 0$$

Exercise 2. We have that $\hat{x} = \frac{a^T b}{a^T a}$. Then, $a^T b = 5$ and $a^T a = 3$. Then, $\hat{x} = \frac{5}{3}$. The projection is then $p = \hat{x}a = \frac{5}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

2.3Least Squares Approximations

When solving the impossible solution $A\vec{x} = \vec{b}$, one possible trick to make the equation is by projecting \vec{b} into the C(A) subspace. This projection matrix $P = A(A^TA)^-A^T$ reduces the $\vec{e} \in N(A^T)$ to zero of $\vec{b} = \vec{p} + \vec{e}$, where $\vec{p} = A\hat{x}$. Now, we are solving $A\hat{x} = \vec{p}$ which is possible. The solution is $\hat{x} = (A^T A)^- A^T \vec{b}.$

The squared error for any $\vec{x} \in \mathbb{R}^n$ is $||\vec{b} - A\vec{x}||^2 = ||\vec{p} - A\vec{x}||^2 + ||\vec{e}||^2$. The minimum of this error is when $\vec{x} = \hat{x} = (A^T A)^- A^T \vec{b}$. The meaning of this equation is that it clearly identifies that the error of $||\vec{b} - A\vec{x}||^2$ is clearly minimized when $\vec{p} = A\vec{x}$ and this is satisfied when $\vec{x} = \hat{x} = (A^T A)^- A^T \vec{b}$. Substituting for p we have that $||\vec{b} - \vec{p}||^2 = ||\vec{e}||^2$.

One consideration is that the error we refer to the vector that separates \vec{b} and \vec{p} so called $\vec{e} = \vec{b} - \vec{p}$, is slightly different that the error E that we refer to the squared error $E = ||\vec{b} - A\vec{x}||^2$. The error E is only equal to $||\vec{e}||^2$ when $\vec{x} = \hat{x}$.

This method is used when we have too many points to fit a line, in which case the model matrix A with m rows and n columns is tall and thin (m > n). Then, for a desired $\vec{b} \in \mathbb{R}^m$ it might be outside of C(A)

2.3.1Exercises

Exercise 3.
$$\hat{x} = (A^T A)^- A^T \vec{b}$$
. We are given that $\vec{t} = (0, 1, 3, 4)$, so $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$,

I will find $A^T A$, then $(A^T A)^-$ and finally $A^T \vec{b}$.

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix}$$
 (2.1)

$$(A^T A)^- = \frac{1}{4 \cdot 26 - 8 \cdot 8} \begin{bmatrix} 26 & -8 \\ -8 & 4 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 13 & -4 \\ -4 & 2 \end{bmatrix}$$
 (2.2)

$$A^{T}\vec{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$$
 (2.3)

Then,
$$\hat{x} = (A^T A)^- A^T \vec{b} = \frac{1}{4} \begin{bmatrix} 13 & -4 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 36 \\ 112 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 13 \cdot 36 - 4 \cdot 112 \\ -4 \cdot 36 + 2 \cdot 112 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
 For

Then,
$$\hat{x} = (A^T A)^- A^T \vec{b} = \frac{1}{4} \begin{bmatrix} 13 & -4 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 36 \\ 112 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 13 \cdot 36 - 4 \cdot 112 \\ -4 \cdot 36 + 2 \cdot 112 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0 \\ 8 \end{bmatrix} = \vec{p} = A\hat{x} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 6 \\ 8 \end{bmatrix} \text{ and } \vec{e} = \vec{b} - \vec{p} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \\ 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 2 \\ 12 \end{bmatrix}.$$

2.4 Orthogonal Bases and Gram Schmidt

Chapter 3

Determinants