Multivariate Regression Diamond

Kelompok 6

Anggota Kel 6

Abdul Hakim

G64190078

Farhan Fathurrahman

G64190088

Yosar Awandi Porseda

G64190076

Mahara Ihsan Kahfi

G64190084

01	Multivariate Regression Penjelasan rumus singkat	Table of Contents	
02	Data & Information Melihat data dan variabel	R Program Pengerjaan dengan R	04
03	Microsoft Excel Pengerjaan manual dan Data Analysis	Comparison Membandingkan hasil kedua metode	05
		QnA Tanya aku 💭	06

Multivariate Regression

Rumus yang digunakan

Multivariate Regression Model

Model regresi linier berganda merupakan model regresi dengan peubah penjelas lebih dari satu.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

Dalam bentuk matriks

$$y_{n\times 1} = X_{n\times (k+1)}\beta_{(k+1)\times 1} + \epsilon_{n\times 1}$$

Penduga parameter regresi yang digunakan adalah metode kuadrat terkecil.

$$\hat{\beta} = (X'X)^{-1}X'y$$

02

Data & Information

Lihat data dan variabel

Data

Context

 This classic dataset contains the prices and other attributes of almost 54,000 diamonds. It's a great dataset for beginners learning to work with data analysis and visualization.

Content

- price price in US dollars (\\$326--\\$18,823)
- carat weight of the diamond (0.2--5.01)
- cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)
- color diamond colour, from J (worst) to D (best)
- **clarity** a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))
- **x** length in mm (0--10.74)
- **y** width in mm (0--58.9)
- **z** depth in mm (0--31.8)
- depth total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
 - **table** width of top of diamond relative to widest point (43--95)

Data

	carat	cut	color	clarity	depth	table	price	x	у	Z
1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
2	0.21	Premium	E	SII	59.8	61	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
4	0.29	Premium	I	VS2	62.4	58	334	4.2	4.23	2.63
5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
•••			•••					•••	•••	
53940	0.75	Ideal	D	SI2	62.2	55	2757	5.83	5.87	3.64

Information

Kami ingin menggunakan **price** sebagai variabel respon (y) dan **carat, depth, dan table** sebagai variabel penentu (x)

Maka,

Y = Price

 $X_1 = carat$

 X_2 = depth

 X_3 = table

	Min	Median	Mean	Мах
Price	326	2401	3933	18823
Carat	0.20	0.70	0.7979	5.01
Depth	43	61.80	61.75	79.00
Table	43	57	57.46	95

Plot Price vs Carat

Korelasi

0.9215913

Model Regresi

 $\hat{y} = -2256.35 + 7756.43x$

\mathbb{R}^2

0.8493305

Plot Price vs Depth

Korelasi

-0.0106474

Model Regresi

 $\hat{y} = 5763.67 - 29.65x$

\mathbb{R}^2

0.0001133672

Plot Price vs Table

Korelasi

0.1271339

Model Regresi

 $\hat{y} = -9109.047 + 226.984x$

\mathbb{R}^2

0.01616303

Microsoft Excel

Manual dan Data Analysis

Manual

Penduga parameter regresi yang digunakan adalah metode kuadrat terkecil.

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_k \end{pmatrix}$$

Manual

Untuk mengisi matriks, maka harus dicari nilai tersebut

$$X'X = \begin{pmatrix} sum(nn) & sum(nx_1) & sum(nx_2) & sum(nx_3) \\ sum(x_1n) & sum(x_1x_1) & sum(x_1x_2) & sum(x_1x_3) \\ sum(x_2n) & sum(x_2x_1) & sum(x_2x_2) & sum(x_2x_3) \\ sum(x_3n) & sum(x_3x_1) & sum(x_3x_2) & sum(x_3x_3) \end{pmatrix}$$

$$X'y = \begin{pmatrix} sum(yn) \\ sum(yx_1) \\ sum(yx_2) \\ sum(yx_3) \end{pmatrix}$$

Steps

Var	у	n	хl	x2	х3	xlxl	x1x2	x1x3	x2x2	x2x3	x3x3	ny	xly	x2y	хЗу
#	price		carat	depth	table										
1	326	1	0.23	61.5	55	0.0529	14.145	12.65	3782.2 5	3382.5	3025	326	74.98	20049	17930
2	326	1	0.21	59.8	61	0.0441	12.558	12.81	3576.0 4	3647.8	3721	326	68.46	19494.8	19886
3	327	1	0.23	56.9	65	0.0529	13.087	14.95	3237.61	3698.5	4225	327	75.21	18606.3	21255
•••															
53940	2757	1	0.75	62.2	55	0.5625	46.65	41.25	3868.8 4	3421	3025	2757	2067.7 5	171485. 4	151635
Total						46463. 39	265878 2	248338 3	2.06E+ 08	1.91E+0 8	1.78E+0 8	2.12E+0 8	2.63E+ 08	1.31E+10	1.22E+1 0

Steps

Dari hasil perhitungan sebelumnya didapatkan:

$$X'X = \begin{pmatrix} 53940 & 43040.87 & 3330762.9 & 3099240.5 \\ 43040.87 & 46463.3947 & 2658781.93 & 2483383.133 \\ 3330762.9 & 2658781.93 & 205783331.5 & 191325184.9 \\ 3099240.5 & 2483383.133 & 191325184.9 & 178342946 \end{pmatrix}$$

$$X'y = \begin{pmatrix} 212135217 \\ 263274142.6 \\ 13095941018 \\ 12249822220 \end{pmatrix}$$

$$\hat{\beta} = (X'X)^{-1}X'y = \begin{pmatrix} 13003.44052 \\ 7858.77051 \\ -151.2363469 \\ -104.4727802 \end{pmatrix}$$

Parameter	Nilai
$\widehat{oldsymbol{eta}}_{oldsymbol{0}}$	13003.441
$\widehat{oldsymbol{eta}}_2$	7858.771
$\widehat{oldsymbol{eta}}_3$	-151.236
$\widehat{oldsymbol{eta}}_4$	-104.473

Model Formula

$$\hat{Y} = 13003.4 + 7858.8X_1 - 151.2X_2 - 104.5X_3$$

Koefisien X_1 dapat diinterpretasikan rataan Y akan naik sebesar 7858.8 jika X_1 naik satu satuan dan X_2 dan X_3 tetap.

Koefisien X_2 dapat diinterpretasikan rataan Y akan turun sebesar 151.2 jika X_2 naik satu satuan dan X_1 dan X_3 tetap.

Koefisien X_3 dapat diinterpretasikan rataan Y akan turun sebesar 104.5 jika X_3 naik satu satuan dan X_1 dan X_2 tetap.

Manual Matrices

Juga bisa menghitung parameter regresi menggunakan fungsi excel yang mendukung perhitungan matriks.

Perkalian matriks :=MMULT(A, B)

Transpos matriks :=TRANSPOSE(A)

Invers matriks :=MINVERSE(A)

Steps

```
Data Y
       = B3:B53942
Data X = C3:F53942
Mencari X'X (J3:M6)
{=MMULT(TRANSPOSE(C3:F53942),C3:F53942)}
Mencari X'Y (J8:J11)
{=MMULT(TRANSPOSE(C3:F53942),B3:B53942)}
Mencari B penduga
{=MMULT(MINVERSE(J3:M6),J8:J11)}
Metode ini akan menghasilkan hasil yang sama.
```


Data Analysis

Excel menyediakan Adds-on bernama Data Analysis yang mempunyai banyak metode statistika untuk mengolah data secara otomatis.Salah satu dari metode itu adalah Regression yang dapat digunakan untuk menghitung regresi data

Regression	? X
Input	OK
Input Y Range:	Cancel
Input X Range:	Cancel
Labels Constant is Zero	<u>H</u> elp
Confidence Level: 95 %	
Output options	
Output Range:	
New Worksheet Ply:	
○ New <u>W</u> orkbook	
Residuals Residuals Standardized Residuals Line Fit Plots	
Normal Probability Normal Probability Plots	

Steps

1. Membuka Data Analysis dan pilih Regression

2. Isi Y Range dan X Range dengan cell yang terisi dengan data Y dan X

Input <u>Y</u> Range:	\$B\$2:\$B\$53942	Ţ
Input <u>X</u> Range:	\$C\$2:\$E\$53942	Î

3. Pilih Ouput Range untuk melihat data yang diolah

Output Range:	\$G\$3	1	
---------------	--------	----------	--

4. Pilih OK

Result

SUMMARY	OUTPUT							
	6							
Regression	Statistics							
Multiple R	0.923946							
R Square	0.853676							
Adjusted F	0.853668							
Standard I	1526.094							
Observation	53940							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regressior	3	7.33E+11	2.44E+11	104890.5	0			
Residual	53936	1.26E+11	2328964					
Total	53939	8.58E+11						
(oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Ipper 95.0%
Intercept	13003.44	390.9183	33.26383	3.5E-240	12237.24	13769.64	12237.24	13769.64
carat	7858.771	14.15088	555.3558	0	7831.035	7886.506	7831.035	7886.506
depth	-151.236	4.81989	-31.3776	3.5E-214	-160.683	-141.789	-160.683	-141.789
table	-104.473	3.141234	-33.2585	4.2E-240	-110.63	-98.3159	-110.63	-98.315

Didaptkan nilai parameter penduga seperti berikut

Parameter	Nilai
$\widehat{oldsymbol{eta}}_0$	13003.441
$\widehat{oldsymbol{eta}}_2$	7858.771
$\widehat{oldsymbol{eta}}_3$	-151.236
$\widehat{oldsymbol{eta}}_4$	-104.473

Model Formula

Dari hasil perhitungan parameter, model regresi yang didapatkan adalah

$$\hat{Y} = 13003.4 + 7858.8X_1 - 151.2X_2 - 104.5X_3$$

Koefisien X_1 dapat diinterpretasikan rataan Y akan naik sebesar 7858.8 jika X_1 naik satu satuan dan X_2 dan X_3 tetap.

Koefisien X_2 dapat diinterpretasikan rataan Y akan turun sebesar 151.2 jika X_2 naik satu satuan dan X_1 dan X_2 tetap.

Koefisien X_3 dapat diinterpretasikan rataan Y akan turun sebesar 104.5 jika X_3 naik satu satuan dan X_1 dan X_2 tetap.

Program Otomatis:)

R

R merupakan bahasa dan environment yang digunakan untuk perhitungan dan grafik statistika.

R dapat digunakan untuk mencari nilai penduga regresi serta membuat scatterplot secara relatif cepat untuk data yang sangat besar. Kami akan menggunakan Rstudio untuk mengolah data.

Code

Berikut merupakan code R sederhana untuk mencari model regresi dari data yang disimpan di dalam file diamonds.csv

```
data <-
  read.csv("C:/Users/akimp/Desktop/anreg
prak 5/diamonds.csv")
View(data)

model <-
  lm(price ~ carat + depth + table, data)
summary(model)</pre>
```

Steps

■ ■ ■ Data table dari diamond.csv dibaca terlebih dahulu

```
model <-
lm(price ~ carat + depth + table, data)
summary(model)</pre>
```

Model linear dibuat dengan memasukkan variabel.

Hasil dari model didapatkan dengan summary.

Result

```
lm(formula = price ~ carat + depth + table, data = data)
Residuals:
    Min
             10
                Median 30
                                    Max
-18288.0 -785.9 -33.2 527.2 12486.7
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 13003.441 390.918 33.26 <2e-16 ***
carat
           7858.771 14.151 555.36 <2e-16 ***
          -151.236 4.820 -31.38 <2e-16 ***
depth
table
           -104.473 3.141 -33.26 <2e-16 ***
Signif. codes:
0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 1526 on 53936 degrees of freedom
Multiple R-squared: 0.8537, Adjusted R-squared: 0.8537
F-statistic: 1.049e+05 on 3 and 53936 DF, p-value: < 2.2e-16
```

Parameter	Nilai
$\widehat{oldsymbol{eta}}_{oldsymbol{0}}$	13003.441
$\widehat{oldsymbol{eta}}_2$	7858.771
$\widehat{oldsymbol{eta}}_3$	-151.236
$\widehat{oldsymbol{eta}}_{4}$	-104.473

Model Formula

Dari hasil perhitungan parameter, model regresi yang didapatkan adalah

$$\hat{Y} = 13003.4 + 7858.8X_1 - 151.2X_2 - 104.5X_3$$

Koefisien X_1 dapat diinterpretasikan rataan Y akan naik sebesar 7858.8 jika X_1 naik satu satuan dan X_2 dan X_3 tetap.

Koefisien X_2 dapat diinterpretasikan rataan Y akan turun sebesar 151.2 jika X_2 naik satu satuan dan X_1 dan X_3 tetap.

Koefisien X_3 dapat diinterpretasikan rataan Y akan turun sebesar 104.5 jika X_3 naik satu satuan dan X_1 dan X_2 tetap.

Result Comparison

Banding hasil metode

Comparison

	Penduga		_		
Variabel	Parameter Regresi	Manual	Matriks	Data Analysis	R
Intercept	$\widehat{oldsymbol{eta}}_{oldsymbol{0}}$	13003.441	13003.441	13003.441	13003.441
Carat	$\widehat{oldsymbol{eta}}_2$	7858.771	7858.771	7858.771	7858.771
Depth	$\widehat{oldsymbol{eta}}_3$	-151.236	-151.236	-151.236	-151.236
Table	$\widehat{oldsymbol{eta}}_4$	-104.473	-104.473	-104.473	-104.473

Hasil dari kedua metode, Excel dan R Program, adalah **sama** untuk data diamonds.csv

