1. Metric spaces and Banach's FPT (Fixed Point Theorem)

Def 1.1 (Metric and Metric Space)

Let X be a nonempty set, and $d: X^2 \to \mathbb{R}$ be a function satisfying:

- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $\bullet \ \ d(x,y) \leq d(x,z) + d(z,y)$

Then the function d is called the metric, the pair (X,d) is called the metric space, and the number d(x,y) is called the distance between x and y in X.

Examples

- ullet $(\mathbb{R}^n,d),$ with $d(x,y)=\left(\sum_{i=1}^n(x_i-y_i)^2
 ight)^{rac{1}{2}}$
- $ullet (\mathbb{R}^n,d)$, with $d(x,y)=\max_{i\leq n}|x_i-y_i|$
- ullet (C[a,b],d), with $d(f,g)=\left(\int_a^b|f(x)-g(x)|^2dx
 ight)^{rac{1}{2}}$
- ullet (C[a,b],d), with $d(f,g)=\sup_{a\leq x\leq b}|f(x)-g(x)|$
- ullet $(L^p[a,b],d),$ with $d(f,g)=\left(\int_a^b|f(x)-g(x)|^pdx
 ight)^{rac{1}{p}}$

Def 1.2 (Fixed Point)

A fixed point of the mapping T:X o X is the point $x^* \in X$ such that $T(x^*) = x^*$.

Def 1.3 (Contraction)

Let (X,d) be a <u>metric space</u>. A mapping $T: X \to X$ is called a contraction on X of there exists a constant 0 < k < 1 such that

$$d(T(x),T(y)) \leq kd(x,y)$$

for all $x, y \in X$.

Theorem 1.1 (Banach's FPT)

Let (X,d) be a complete <u>metric space</u> and let $T:X\to X$ be a <u>contraction</u> on X. Then T has a unique fixed point $x^*\in X$.

Corollary 1.1 (Banach's FPT)

The iterative sequence $x_{n+1} = T(x_n)$ for n = 1, 2, ... with arbitrary starting point $x_0 \in X$ converges, under assumptions of <u>Banach's FPT</u>, to the unique <u>fixed point</u> of T. Moreover, the following estimates hold:

- $d(x_m,x^*) \leq rac{k^m}{1-k}d(x_1,x_0)$ the prior estimate,
- $d(x_m, x^*) \leq \frac{k}{1-k} d(x_{m-1}, x_m)$ the posterior estimate.

2. Applications of Banach's FPT

2.1 Applications to real-valued functions

Let $g \in C^1[a,b]$, and suppose we want to find the solution to the equation g(x) = 0 on [a,b]. We note that we can always rewrite this equation as x = g(x) + x, and then out problem is equivalent with finding a fixed point of the function f(x) = x + g(x).

Theorem 2.1 (Differentiable Contraction)

Let (\mathbb{R},d) be a metric space of real numbers with the $\underline{\mathsf{metric}}\ d(x,y) = |x-y|$ and let [a,b] be a closed interval in \mathbb{R} . Moreover, let $f:[a,b] \to [a,b]$ be a continuous and differentiable function such that $\sup_{x \in [a,b]} |f'(x)| \le k < 1$. Then there exists a unique $\underline{\mathsf{fixed point}}\ x^* \in [a,b]$ of f.

Example 2.1

We want to find the solution to the equation cos(x)-2x=0 on $[0,\pi]$. Then we can write this equation as $x=\frac{1}{2}cos(x)$, and try to find the fixed point of the function $f(x)=\frac{1}{2}cos(x)$ on $[0,\pi]$. We have to show that f is a <u>contraction</u> on $[0,\pi]$. To do so, we apply the <u>theorem 2.1</u>. We have

$$\sup_{x \in [0,\pi]} |f'(x)| = \sup_{x \in [0,\pi]} \left| -rac{1}{2} sin(x)
ight| = rac{1}{2} < 1.$$

We have shown that f is a <u>contraction</u> and, by the <u>Banach's FPT</u>, it has a <u>fixed point</u> x^* that is the limit of the sequence $\{x_n\}$ generated by the scheme $x_{n+1} = f(x_n)$ with any starting point $x_0 \in [0, \pi]$.

Note that to show that f is a contraction we could also directly apply the definition:

$$|f(x)-f(y)| = \left|rac{1}{2}cos(x)-rac{1}{2}sin(x)
ight| = \left|sin\left(rac{x+y}{2}
ight)sin\left(rac{x-y}{2}
ight)
ight| \ \leq \sup_{x,y\in[0,\pi]}\left|sin\left(rac{x+y}{2}
ight)rac{1}{2}|x-y|
ight| = rac{1}{2}|x-y| \leq |x-y|.$$

2.2 Applications to integral equations

We consider integral equations in the following form

$$f(x)=g(x)+\mu\int_a^b k(x,y)f(y)dy,$$

where $f:[a,b]\to\mathbb{R}$ is an unknown function, $g:[a,b]\to\mathbb{R}$, and $k:[a,b]^2\to\mathbb{R}$ are given functions, and μ is a parameter.

The above integral equation can be considered in various function spaces. Here we consider this equation only in (C[a,b],d) with $d(f,g)=\sup_{x\in [a,b]}|f(x)-g(x)|$.

We assume that $g \in C[a,b]$, and that the kernel k is continuous on the square $[a,b]^2$, which implies that k is bounded on $[a,b]^2$, meaning that there exists a constant c, such that $|k(x,y)| \le c$ for all $(x,y) \in [a,b]^2$.

Theorem 2.2

The metric space (C[a,b],d) is complete

Note that our integral equation can be rewritten as T(f) = f, where

$$T(f)(x)=g(x)+\mu\int_a^b k(x,y)f(y)dy.$$

First we have to show that the mapping $T:C[a,b]\to C[a,b]$ is well-defined, but this is obvious, as g and k are both continuous on their domains. Let us now determine for which values of μ the map T is a <u>contraction</u>. We have

$$egin{aligned} d(T(f_1),T(f_2)) &= \sup_{x \in [a,b]} |T(f_1)(x) - T(f_2)(x)| = \sup_{x \in [a,b]} |\mu| \left| \int_a^b k(x,y)(f_1(y) - f_2(y)) dy
ight| \leq \ &\leq |\mu| \sup_{x \in [a,b]} \int_a^b |k(x,y)| |f_1(y) - f_2(y)| dy \leq c |\mu| \sup_{x \in [a,b]} |f_1(x) - f_2(x)| \int_a^b dy = \ &= c |\mu| (b-a) d(f_1,f_2). \end{aligned}$$

It is now required that $c|\mu|(b-a)<1$, or $|\mu|<\frac{1}{c(b-a)}$, for T to be a contraction. Applying the Banach's FPT, we see that the map T has a unique fixed point $f^*\in C[a,b]$.

Theorem 2.3 (Integral equation)

Consider the integral equation

$$f(x)=g(x)+\mu\int_a^b k(x,y)f(y)dy.$$

Suppose that k and g are continuous on $[a,b]^2$ and [a,b] respectively, and assume that the parameter μ satisfies $|\mu|<\frac{1}{c(b-a)}$ with the constant c such that |k(x,y)|< c for all $(x,y)\in [a,b]^2$.

Then the integral equation has a unique solution $f \in C[a, b]$. Moreover, this solution is a limit of the sequence $\{f_n\}$ where f_0 is a continuous function on [a, b], and

$$f_{n+1}=g(x)+\mu\int_a^b k(x,y)f_n(y)dy.$$

2.3 Applications to differential equations

Let's consider the initial value problem

$$x'(t) = f(t,x(t)) \ x(t_0) = x_0$$

where $f:A\subset\mathbb{R}^2 o\mathbb{R}$ is a given function and x(t) is an unknown function that we want to find.

Theorem 2.4 (Picard-Lindelöf)

Let f be continuous on the rectangle

$$R=\{(t,x)\in\mathbb{R}_+ imes\mathbb{R}:|t-t_0|\leq a,|x-x_0|\leq b\}$$

and thus bounded on R, say $|f(t,x)| \le c$ for all $(t,x) \in R$. Suppose that f satisfies the Lipschitz condition on R with respect to the second argument, i.e., there exists a constant k such that

$$|f(t,x)-f(t,y)| \leq k|x-y|$$

 $\text{ for all } (t,x), (t,y) \in R.$

Then the initial value problem has a unique solution, which exists on the interval $[t_0 - \beta, t_0 + \beta]$, where

$$eta = \min \left\{ a, rac{b}{c}, rac{1}{k}
ight\}.$$

Corollary 2.1 (Picard-Lindelöf)

Under the assumptions of Picard-Lindelöf theorem, the sequence given by

$$x_0(t) = x_0 \ x_{n+1}(t) = T(x_n)(t) = x_0 + \int_{t_0}^t f(s,x_n(s)) ds$$

converges uniformly to the unique solution x(t) on $J=[t_0-\beta,t_0+\beta]$.

Example 2.2

Consider the differential equation

$$x'(t)=\sqrt{x(t)}+x^3(t),\quad x(1)=2.$$

We have

$$egin{aligned} x_1(t) &= 2 + \int_1^t \Big(\sqrt{2} + 2^2\Big) ds = 2 + \Big(\sqrt{2} + 8\Big)(t-1) \ x_2(t) &= 2 + \int_1^t \Big(\sqrt{x_1(s)} + x_1(s)^3\Big) ds = * ext{hot mess*} \end{aligned}$$

2.4 Applications to matrix equations

Suppose we want to find a solution of the matrix equation

$$Ax = B$$

where $A \in \mathbb{R}^{n imes m}, b \in \mathbb{R}^n$.

We note that this equation can be rewritten as

$$x = (I - A)x + b$$

where I is the identity matrix.

Let's define the map $T:\mathbb{R}^n o \mathbb{R}^n$ by

$$Tx = (I - A)x + b.$$

Then the problem of solving the matrix equation Ax = b is equivalent with finding a <u>fixed point</u> of T.

Let's define $\alpha_{ij} = \delta_{ij} - a_{ij}$ where a_{ij} are elements of the matrix A, and δ_{ij} is the Kronecker delta. Using this notation we have

$$(Tx)_i = \sum_{j=1}^n lpha_{ij} x_j + b_i$$

We will show that Ax = b has a unique solution if

$$\sum_{j=1}^n |lpha_{ij}| \leq lpha < 1.$$

for all $i=1,2,\ldots,n$. Consider the matrix space (\mathbb{R}^n,d) , with $d(x,y)=\max_{1\leq i\leq n}|x_i-y_i|$ for $x,y\in\mathbb{R}^n$. We have

$$egin{aligned} d(Tx,Ty) &= \max_i |(Tx)_i - (Ty)_i| = \ &= \max_i \left| \sum_{j=1}^n lpha_{ij} (x_j - y_j)
ight| \leq \ &\leq \max_i \sum_{j=1}^n |lpha_{ij}| |x_j - y_j| \leq \ &\leq \max_i \sum_{j=1}^n |lpha_{ij}| \cdot \max_j |x_j - y_j| = \ &= \max_i \sum_{j=1}^n |lpha_{ij}| \cdot d(x,y). \end{aligned}$$

We notice that if $\sum_{j=1}^n |lpha_{ij}| < 1$, for all $i=1,2,\ldots,n$, then $\max_i \sum_{j=1}^n |lpha_{ij}| < 1$. We have

$$\sum_{i=1}^n |lpha_{ij}| = |a_{i1}| + |a_{i2}| + \dots + |1-a_{ii}| + \dots + |a_{in}| < 1,$$

SO

$$\sum_{i=1, i
eq i}^n |a_{ij}| < 1 - |1 - a_{ii}| < |a_{ii}|.$$

We get the condition for the matrix A for which T is a contraction. This condition is given by

$$|a_{ii}|>\sum_{j=1,j
eq i}^n|a_{ij}|,$$

or, in other words, matrix A should be strictly diagonally dominant.

Theorem 2.5 (Matrix equation)

The matrix equation Ax = b with $A \in \mathbb{R}^{n \times n}$ an $b \in \mathbb{R}^n$ has a unique solution $x \in \mathbb{R}^n$ if A is strictly diagonally dominant. The iteration method is as follows

$$x_{n+1}=(I-A)x_n+b,\quad x_0\in\mathbb{R}^n.$$

In general, we can rewrite the equation Ax = b as Qx = (Q - A)x + b, where $Q \in \mathbb{R}^{n \times n}$. We then have the following iterative scheme

$$Qx_{n+1} = (Q-A)x_n + b.$$

Examples:

- Q = I Richardson method,
- Q diagonal, with $q_{ii}=a_{ii}$ Jacobi method,
- Q = D L with D diagonal, and L lower triangular Gauss-Seidel method.

3. Normed spaces

Def 3.1 (Norm and normed space)

A norm on a vector space X is a real-valued function denoted by $||\cdot||$ which satisfies the following conditions:

- $||x|| \ge 0$ for all x. ||x|| = 0 iff x = 0,
- $||\alpha x|| = |\alpha|||x||$ for any α , and $x \in X$,
- $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$.

A normed space is a vector space equipped with a norm, depicted by $(X, ||\cdot||)$, or with a shorthand X.

Remark 3.1.1

A <u>norm</u> on X defines the <u>metric</u> $d(\cdot, \cdot)$ on $X \times X$, which is defined by d(x, y) = ||x - y||, and is called the metric induced by the norm $||\cdot||$.

Remark 3.1.2

Every $\underline{\text{normed space}}\ X$ is a $\underline{\text{metric space}}$, converse might not be true.

For example, a metric defined by

$$d(x,y) = egin{cases} 1, & x = y, \ 0, & x
eq y, \end{cases}$$

then $||\alpha(x-y)|| = d(\alpha x, \alpha y) \neq |\alpha| d(x,y) = |\alpha| ||x-y||$.

Lemma 3.1 (Norm continuity)

The <u>norm</u> $||\cdot||$ defined on X is a continuous mapping of X into \mathbb{R} .

Examples of normed spaces

- ullet $(\mathbb{R}^n,||\cdot||_2)$, with $||x||_2=\left(\sum_{m=1}^n x_i^2
 ight)^{rac{1}{2}}$,
- ullet $(C[a,b],||\cdot||)$, with $||f||=\displaystyle\max_{x\in[a,b]}|f(x)|$,
- ullet $(L^p(\Omega),||\cdot||_{L^p(\Omega)})$, with $\Omega\subset\mathbb{R},\,p\geq 1$ and

$$||f||_{L^p(\Omega)} = egin{cases} \left(\int_\Omega f(x)^p dx
ight)^{rac{1}{p}}, & 1 \leq p < \infty, \ ess \sup_{x \in \Omega} |f(x)|, & p = \infty. \end{cases}$$

Def 3.2 (Norm equivalence)

Two <u>normed spaces</u> $(X, ||\cdot||_1)$, $(X, ||\cdot||_2)$ are called topologically equivalent, or two <u>norms</u> $||\cdot||_1$, and $||\cdot||_2$ are called equivalent if there exist positive constants C_1 , and C_2 , such that

$$|C_1||x||_2 \le ||x||_1 \le C_2||x||_2$$

for all $x \in X$.

Theorem 3.1 (Equivalence of norms in finite dimensional spaces)

All <u>norms</u> of finite dimensional space X are equivalent.

Def 3.3 (Convergence in normal spaces)

A sequence $\{x_n\}$ in a <u>normed space</u> $(X, ||\cdot||)$ is convergent if there exists $x \in X$ such that $\lim_{n \to \infty} ||x_n - x|| = 0$.

Def 3.4 (Cauchy sequence)

A sequence $\{x_n\}$ in a <u>normed space</u> $(X, ||\cdot||)$ is a Cauchy sequence if

$$\lim_{m,n o\infty}||x_n-x_m||=0.$$

Def 3.5 (Complete space)

We say that a <u>normal space</u> $(X, ||\cdot||)$ is complete if every <u>Cauchy sequence</u> $\{x_n\}$ in X is convergent to some $x \in X$.

Def 3.6 (Banach space)

A complete normed space is called a Banach space.

Theorem 3.2 (Euclidean space is complete)

The space $(\mathbb{R}^N, ||\cdot||_2)$ with the standard Euclidean norm is <u>complete</u>.

Theorem 3.3 ()

Let Ω be a compact subset of \mathbb{R}^n . Then the set $C(\Omega)$ of all continuous functions on Ω equipped with the norm $||f|| = \max_{x \in \Omega} |f(x)|$ is a <u>Banach space</u>.

4. Hilbert spaces

Def 4.1 (Inner product and inner product space)

Let X be a vector space over the field $\mathbb F$ over the real or complex numbers. A mapping $\langle\cdot,\cdot\rangle:X^2\to\mathbb F$ is called an inner product if for all $x,y\in X$ the following conditions are satisfied

- 1. $\langle x,x \rangle \geq 0$, and $\langle x,x \rangle = 0 \iff x = 0$,
- 2. $\langle x,y
 angle = \overline{\langle y,x
 angle}$,
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for $\alpha \in \mathbb{F}$,
- 4. $\langle x+x',y\rangle=\langle x,y\rangle+\langle x',y\rangle$.

The vector space X together with an inner product $\langle \cdot, \cdot \rangle$ is called an inner product space or pre-Hilbert space and is denoted $(X, \langle \cdot, \cdot \rangle)$.

Remark 4.1

- $\overline{\langle x,y\rangle}$ denotes the complex conjugate of $\langle x,y\rangle$,
- The condition 2 implies that $\langle x, x \rangle$ must be a real number,
- If $\mathbb{F}=\mathbb{R}$ then $\langle x,y
 angle = \langle y,x
 angle$,
- Conditions 3 and 4 imply that the function $\langle \cdot, \cdot \rangle$ is linear in the first variable. It is easy to see that $\langle \cdot, \cdot \rangle$ is also linear in the second variable if $\mathbb{F} = \mathbb{R}$,

Examples

- ullet \mathbb{R}^N , with $\langle x,y
 angle = \sum_{i=1}^N x_i y_i$,
- ullet $C(\Omega)$, with $\langle f,g
 angle = \int_{\Omega} f(x) \overline{g(x)} dx$,
- $L_2(\Omega)$, with $\langle f,g \rangle = \int_{\Omega} f(x)g(x)dx$.

Theorem 4.1 (Cauchy-Schwarz-Bunyakowski inequality)

For all $x,y\in (X,\langle\cdot,\cdot\rangle)$ we have

$$|\langle x,y
angle|^2 \leq \langle x,x
angle \langle y,y
angle.$$

Theorem 4.2 (Inner product space is normed)

Every inner product space $(X, \langle \cdot, \cdot \rangle)$ is a normed space with respect to the norm $||x|| = \sqrt{|\langle x, x \rangle|}$

Def 4.2 (Hilbert space)

An <u>inner product space</u> $(X, \langle \cdot, \cdot \rangle)$ is called a Hilbert space if the normed space $(X, || \cdot ||)$ with the <u>norm</u> induced by the inner product is a <u>Banach space</u>.

Theorem 4.2 (Parallelogram law)

Let $(X, \langle \cdot, \cdot \rangle)$ be an <u>inner product space</u>. Then for all $x, y \in X$ we have

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2.$$

Remark 4.2

The parallelogram law is not valid for an arbitrary norm on a vector space.

Theorem 4.4 (Polarisation identity)

For any two elements x, y in an <u>inner product space</u> we have

$$\langle x,y
angle =rac{1}{4}ig(||x+y||^2-||x-y||^2+i||x+iy||^2-i||x-iy||^2ig).$$

Theorem 4.5 (Normed space is inner product space sometimes)

A <u>normed space</u> is an <u>inner product space</u> if and only if the norm of the normed space satisfies the parallelogram law.

5. Linear operators

Def 5.1 (Linear operator)

Let $(X, ||\cdot||_X)$ and $(Y, ||\cdot||_Y)$ be <u>Banach spaces</u>, and let $A: X \to Y$ be a map. We say that A is linear if $A(\alpha x + \beta y) = \alpha Ax + \beta By$ for all $x, y \in X$, and $\alpha, \beta \in \mathbb{R}$.

Def 5.2 (Bounded operator)

A <u>linear operator</u> is bounded if there exists a constant M>0 such that

$$||Ax||_Y \leq M||x||_X$$

for all $x \in X$.

We denote the set of all linear and bounded operators as

$$\mathcal{L}(X,Y) = \{ A: X \to Y: A \text{ is linear and bounded} \}.$$

Def 5.3 (Operator norm)

A set $\mathcal{L}(X,Y)$ can be equipped with the operator norm

$$||A||_{op} = \inf \left\{ M \, | \, ||Ax||_Y \leq M ||x||_X
ight\} = \sup_{x
eq 0} rac{||Ax||_Y}{||x||_X} = \sup_{||x||_X = 1} ||Ax||_Y.$$

Theorem 5.1 (Operator set is a Banach space)

The set $\mathcal{L}(X,Y)$ equipped with $||\cdot||_{op}$ norm is a <u>Banach space</u>.

Theorem 5.2 (Bounded iff continuous)

Let $A: X \to Y$ be a <u>linear operator</u>, then A is <u>bounded</u> if and only if A is continuous.

Example 5.1

Consider a matrix $A \in \mathbb{R}^{m \times n}$. The matrix A is a linear operator from $(\mathbb{R}^n, ||\cdot||_{\alpha})$ to $(\mathbb{R}^m, ||\cdot||_{\beta})$ and the corresponding induced norm (or the operator norm) on the space $\mathbb{R}^{m \times n}$ is defined by

$$||A||_{op} = \sup \{||Ax||_{eta} : ||x||_{lpha} = 1\}.$$

Example 5.2

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded set. We consider the integral operator $K: L^2(\Omega) \to L^2(\Omega)$ defined as follows

$$Ku(x)=\int_{\Omega}k(x,y)u(y)dy, ext{ with } \iint_{\Omega^2}|k(x,y)|^2dxdy=c<\infty.$$

It can be shown that the operator K is bounded.

Def 5.4 (Unbounded linear operator)

An unbounded linear operator $A: X \to Y$ is a pair (A, D(A)), where D(A) is a linear subspace of X and A is not not bounded on D(A).

Example 5.3

Consider $A=-\frac{d^2}{dx^2}$ on $L^2(\Omega)$. Since $C^2(\Omega)\subset L^2(\Omega)$, we define the operator A only on its domain.

$$A:\left\{f\in C^2(\Omega): Af\in L^2(\Omega)
ight\} o Y.$$

Let $f(x)=e^{-kx}$. Then

$$||Af(x)||^2 = \int_0^1 igg(-rac{d^2}{dx^2}e^{-kx}igg) dx = k^4 \int_0^1 e^{-2kx} dx = rac{k^3}{2}(1-e^{-2k}).$$

Def 5.5 (Operator range)

The range of operator $A:D(A)\to Y$ is defined as

$$R(A)=\{g\in Y:g=Af,f\in D(A)\}.$$

The kernel (null space) of the operator $A:D(A)\to Y$ is defined as

$$Ker(A) = N(A) = \{ f \in D(A) : Af = 0 \}.$$

Theorem 5.3 (Invertible operator)

The linear operator $A: D(A) \to Y$ is invertible if an only if $Ker(A) = \{0\}$.

Def 5.6 (Operator bounded from below)

We say that a <u>linear operator</u> $A:X\to Y$ is bounded from below if there exists constant C>0 such that

$$||Ax||_Y \ge C||x||_X.$$

Theorem 5.4 (Bounded operator is invertible)

Let $A: X \to Y$ be a <u>linear operator</u>. Then the following propositions are equivalent

- A is bounded from below,
- $A^{-1}:R(A)\to X$ exists and is bounded.

7. Introduction to inverse problems

Def 7.1 (Inverse problem)

An inverse problem is the task of recovering the parameter $u \in X$ from measured data $f \in Y$, when f = Au + e. Here

- X and Y are vector spaces with appropriate topologies, whose elements represent model parameters and data, respectively,
- $A: X \to Y$ (forward operator) is a known, continuous operator, that maps model parameters to data in absence of noise,
- $e \in Y$ is a sample of random variable modelling the observation noise. Inverse problems are usually ill-posed.

Def 7.2 (Well-posed inverse problem)

The inverse problem is well posed if the following three conditions hold:

- It has a solution (existence),
- The solution is unique (uniqueness),
- The solution depends continuously on the data (stability).
 If at least one of the conditions fails, we say that the inverse problem is ill-posed.

7.1 Variational methods

TODO: last lecture

9. The Sobolev spaces

Def 9.1 (Sobolev space)

Let $\Omega \subset \mathbb{R}^n$ be an open set. The Sobolev space $H^k(\Omega)$ is defined by

$$H^k(\Omega)=ig\{u\in L^1_{loc}(\Omega)\mid D^lpha u\in L^2(\Omega),\; 0\leq |lpha|\leq kig\}.$$

with the norm

$$||u||^2_{H^k(\Omega)}=\sum_{0\leq |lpha|\leq k}||D^lpha u||^2_{L^2(\Omega)}.$$

The Sobolev space $H^k(\Omega)$ is the Hilbert space with the inner product

$$\langle u,v
angle_{H^k(\Omega)} = \sum_{0\leq |lpha|\leq k} \langle D^lpha u, D^lpha v
angle.$$

In the particular case $\Omega \subset \mathbb{R}$ and k = 1, we have

$$egin{align} H^1(\Omega) &= ig\{ u \in L^1_{loc}(\Omega) \mid u \in L^2(\Omega) \;,\; u' \in L^2(\Omega) ig\}, \ & ||u||^2_{H^1(\Omega)} = \int_\Omega ig(u^2 + (u')^2 ig) dx, \ & \langle u,v
angle_{H^1(\Omega)} = \int_\Omega ig(uv + u'v' ig) dx, \ \end{aligned}$$

where u', v' are the weak derivatives of u and v.

By $H_0^1(\Omega)$ we denote the subspace of $H^1(\Omega)$ given by

$$H_0^1(\Omega) = \{ u \in H^1(\Omega) \mid u = 0 \text{ on } \partial \Omega \}.$$

Theorem 9.1 (The Poincaré inequality)

Let $1 \le k \le \infty$ and $\Omega \subset \mathbb{R}^n$ bounded at least in one direction. Then there exists a constant c > 0 dependent only on k and Ω such that for every function $u \in H_0^k(\Omega)$ we have

$$||u||_{L^k(\Omega)} \leq c ||
abla u||_{L^k(\Omega)}.$$

Theorem 9.2 (The Lax-Milgram theorem)

Let V be a vector space with the inner product $\langle \cdot, \cdot \rangle$, and the associated norm $|| \cdot || = \sqrt{\langle \cdot, \cdot \rangle}$. Let $a: V^2 \to \mathbb{R}$ be a bilinear form which satisfies the following:

- It is continuous, i.e. there exists M>0 such that $|a(u,v)|\leq M||u||||v||$ for all $u,v\in V$,
- It is coercive, i.e. there exists $\beta>0$ such that $|a(v,v)|\geq \beta ||v||^2$ for all $v\in V$. Then for any linear continuous form l on V there exists a unique $u\in V$ such that

$$a(u,v)=l(v), ext{ for all } v\in V.$$

Example 9.1 (Dirichlet problem)

Let $\Omega \subset \mathbb{R}^n$ ad $f: \Omega \to \mathbb{R}$ be a given function. We consider the Dirichlet boundary value problem for the Laplace operator

$$-\Delta u = f$$
, in Ω , $u = 0$, on $\partial \Omega$.

Theorem 9.3 (Weak formulation of Dirichlet problem)

We have:

• For every $f \in L^2(\Omega)$ there exists a unique $u \in H^1_0(\Omega)$ which satisfies:

$$\int
abla u
abla v dx = \int f v dx, \ u \in H^1_0(\Omega),$$

for every $v\in H^1_0(\Omega)$.

• The solution *u* of the Dirichlet problem satisfies:

$$-\Delta u = f$$
, in $\mathcal{D}'(\Omega)$ (equality as distributions), $u = 0$, on $\partial\Omega$.

• For $u \in H^1_0(\Omega)$ the two above problems are equivalent.

Def 9.2 (Properties of bilinear forms)

Let $a:V^2 \to \mathbb{R}$ be a bilinear form. We say that:

- ullet a is symmetric if a(u,v)=a(v,u) for all $u,v\in V$,
- a is positive if $a(v,v) \geq 0$ for all $v \in V$,
- a is positive definite if it is positive and a(v,v)=0 holds only for v=0.

Theorem 9.4 (Solution to Dirichlet problem)

Let V be a vector space, $l:V\to\mathbb{R}$ be a linear form, and $a:V^2\to\mathbb{R}$ be a bilinear, symmetric, positive form. Then the following statements are equivalent

- $u \in V$ is a unique solution to a(u, v) = l(v) for every $v \in V$,
- there exists a $u \in V$ such that $J(u) \leq J(v)$ for all $v \in V$, where $J(v) = \frac{1}{2}a(v,v) l(v)$.

Corollary

The weak solution u of the Dirichlet problem is a solution of the minimisation problem

$$egin{cases} J(u) \leq J(v), & orall v \in H^1_0(\Omega), \ u \in H^1_0(\Omega). \end{cases}$$

Theorem 9.5 (Unique solution to minimisation problem)

Let V be a linear space and $J:V\to\mathbb{R}$ be a strictly convex functional. Then there exists at most one solution u to the minimisation problem.

$$J(u) \leq J(v), \quad \forall v \in V, \quad u \in V.$$

Theorem 9.6 (Convex bilinear form)

Let V be a linear vector space and $a:V^2\to\mathbb{R}$ be a bilinear form which is symmetric, and positive definite. Then the quadratic form $q:V\to\mathbb{R}$, which is defined by q(v)=a(v,v), is strictly convex.

10. Digression

Consider the following problem

$$\left\{ egin{aligned} -\left(a(x)u'(x)=f(x)
ight),\ u'(0)=u'(1)=0, \end{aligned}
ight.$$

where we are given f, and u, and are searching for a. We want to decide if the above problem is well-posed, as in if the solution exists, is unique, and depends continuously on the given conditions. We shall derive the required conditions that u should fulfil to satisfy

$$||a_1-a_2|| \leq C||u_1-u_2||.$$

Let u_j denote the solution for a_j , with j = 1, 2. We have

$$a_1(x) - a_2(x) = -rac{1}{u_1'(x)u_2'(x)} \int_0^x f(y) dy \, ig(u_2'(x) - u_1'(x) ig),$$

squaring both sides, and integrating, we get

$$||a_1-a_2||^2 \leq rac{1}{\gamma^4}igg(\int_0^1 f(x)dxigg)^2\int_0^1ig(u_2'(x)-u_1'(x)ig)^2dx.$$

So here we assumed that

$$u \in C^2([0,1]), \quad 0 < \gamma < u'(x), \quad ||u||_{C^2} \leq M.$$

Integration by parts and the Cauchy-Schwarz inequality yields

$$egin{aligned} \int_0^1 ig(u_2'(x) - u_1'(x)ig)^2 dx &= \int_0^1 ig(u_1(x) - u_2(x)ig) ig(u_2''(x) - u_1''(x)ig) dx \leq \ &\leq ||u_1 - u_2||_{L^2(0,1)} ||u_1'' - u_2''||_{L^2(0,1)} \leq \ &\leq 2M||u_1 - u_2||_{L^2(0,1)}. \end{aligned}$$

So we have

$$||a_1-a_2||_{L^2(0,1)} \leq \sqrt{2M} ||u_1-u_2||_{L^2(0,1)},$$

and the space that u should belong to is

$$C = ig\{ u \in C^2([0,1]): \quad 0 < \gamma < u'(x), \quad ||u||_{C^2} \leq M ig\}.$$

If u is measured in a real world, we would like to regularise it, to fit into the space C.

Regularisation and iterative reconstruction

Consider the following problem

$$\left\{ egin{aligned} -
abla(a
abla u) &= f, \ rac{\partial u}{\partial n} &= 0. \end{aligned}
ight.$$

Assume that measurements u_δ of the exact solution u for $x\in\Omega$ are given. We define the objective functional

$$J(u,a) = \int_\Omega \left(u(x) - u_\delta(x)
ight)^2 \! dx,$$

where u implicitly depends on a, via the differential equation at hand. Also, $J:H^1(\Omega)^2 \to \mathbb{R}$.

We denote by $u_a \in H^1(\Omega)$ the unique weak solution to the PDE. Moreover, we impose on a to be a function in $H^1(\Omega)$.

We introduce the so-called reduced objective functional:

$$J'(a)=J(u_a,a)+rac{lpha}{2}||a||^2_{H^1(\Omega)}.$$

Then we get the constrained optimisation problem

$$\min_{a\in H^1(\Omega)} J'(a) \qquad (*)$$

subject to

$$\left\{ egin{aligned} -
abla(a
abla u) &= f, \ rac{\partial u}{\partial m} &= 0. \end{aligned}
ight.$$

To solve this problem we introduce the Lagrangian

$$\mathcal{L}(u,a,p) = J(u,a) + rac{lpha}{2} ||a||^2_{H^1(\Omega)} + \int_{\Omega} a
abla u
abla p dx - \int_{\Omega} f p dx,$$

where $p \in H^1(\Omega)$ is a Lagrange multiplier or the adjoint variable.

The method of Lagrange multipliers states that te solution to the problem (*) has to be a stationary point of the Lagrangian, that is it has to satisfy the following set of equations:

$$egin{cases} \delta_u \mathcal{L}(u,a,p,h_u) &= 0, & orall h_u \in H^1(\Omega), \ \delta_a \mathcal{L}(u,a,p,h_a) &= 0, & orall h_a \in H^1(\Omega), \ \delta_p \mathcal{L}(u,a,p,h_p) &= 0, & orall h_p \in H^1(\Omega), \end{cases}$$

where for $F:\mathcal{U} \to \mathbb{R}$, $\delta_u F(u,h)$ is defined by

$$\lim_{\epsilon o 0} F(u,h) = \lim_{\epsilon o 0} rac{F(u+\epsilon h) - F(u)}{\epsilon}.$$

Then we get the following:

$$\begin{cases}
-\nabla(a\nabla p) &= -(u - u_{\delta}), & \frac{\partial u}{\partial n} = 0, \\
\alpha a - \alpha \Delta a &= -\nabla u \nabla p & \frac{\partial a}{\partial n} = 0, \\
-\nabla(a\nabla u) &= f, & \frac{\partial p}{\partial n} = 0.
\end{cases} (1)$$

The algorithm (The Landweber iterative method)

Input: u_{δ} , $\tau > 0$, $\alpha > 0$.

Output: u, a.

Set j=0, initialise $a_0(x)\in H^1(\Omega)$

Repeat until satisfied:

- 1. Solve (3) for u_j with a_j ,
- 2. Solve (1) for p_j with a_j and u_j ,
- 3. Solve (2) for a with a_{j-1} , u_j , and p_j ,
- 4. Update $a_{j+1}=a_j- au a$,
- 5. Set j = j + 1.