See back cover for an English translation of this cover

SUPERVISOR'S USE ONLY

91390M

Tohua tēnei pouaka mēnā KĀORE koe i tuhituhi i roto i tēnei pukapuka

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Te Mātauranga Matū, Kaupae 3, 2021

91390M Te whakaatu māramatanga ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū

Ngā whiwhinga: Rima

Paetae	Kaiaka	Kairangi
Te whakaatu māramatanga ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū.	Te whakaatu māramatanga hōhonu ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū.	Te whakaatu māramatanga matawhānui ki ngā tikanga matūrewarau me ngā āhuatanga o ngā korakora me ngā matū.

Tirohia mēnā e rite ana te Tau Ākonga ā-Motu (NSN) kei runga i tō puka whakauru ki te tau kei runga i tēnei whārangi.

Me whakamātau koe i ngā tūmahi KATOA kei roto i tēnei pukapuka.

He taka pūmotu me ētahi atu rauemi tautoko kei te Pukapuka Rauemi L3-CHEMMR.

Ki te hiahia koe ki ētahi atu wāhi hei tuhituhi whakautu, whakamahia te wāhi wātea kei muri i te pukapuka nei.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2–17 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

Kaua e tuhi ki roto i tētahi wāhi kauruku whakahāngai (ﷺ). Ka tapahia pea tēnei wāhi ina mākahia te pukapuka.

ME HOATU RAWA KOE I TĒNEI PUKAPUKA KI TE KAIWHAKAHAERE Ā TE MUTUNGA O TE WHAKAMĀTAUTAU.

TŪMAHI TUATAHI

(a) Whakaotihia te tūtohi e whai ake nei.

Tohu	Whakanaha irahiko (whakamahia te tuhinga s, p, d)
Sc	
Ga	
Fe ³⁺	

(b) (i) Whakaotihia te tūtohi e whai ake nei.

	SeF ₄	CIF ₄
Hanganga a Lewis		
Ingoa o te hanga		

He torunga te $\Delta_{\text{vap}} H^{\circ}(\text{SeF}_{4})$ me te $\Delta_{\text{fus}} H^{\circ}(\text{SeF}_{4})$.				
Whakamāramahia mai he aha e tōrunga ake ai te $\Delta_{\text{vap}}H^{\circ}(\text{SeF}_{4})$.				

QUESTION ONE

(a) Complete the following table.

Symbol	Electron configuration (use s, p, d notation)
Sc	
Ga	
Fe ³⁺	

(b) (i) Complete the table below.

	SeF ₄	CIF ₄
Lewis structure		
Name of shape		

(ii)	Both $\Delta_{\text{vap}}H^{\circ}(\text{SeF}_{4})$ and $\Delta_{\text{fus}}H^{\circ}(\text{SeF}_{4})$ are positive.
	Γ 1: 1 Λ $MO(G, \Gamma)$: '4'

(c)

emeha noa i te wai te konurehu pākawa ota, KNO ₃ , e ai ki te whārite i raro: $KNO_3(s) \rightarrow K^+(aq) + NO_3^-(aq)$ $\Delta_r H^\circ = +34.9 \text{ kJ mol}^{-1}$
Parahautia, e ai ki ngā panoni o te pūngao ngoikore (entropy) o te pūnaha me te takiwā, laha i tūpono noa mai ai te tauhohenga.
Ina memeha te KNO ₃ totoka i roto i te wai, ka heke te pāmahana mai i te 21.3 °C ki te
$14.2~^\circ\mathrm{C}.$ Tātaihia te papatipu o te $\mathrm{KNO_3}$ totoka me mātua memeha kia heke pēnā ai te pāmahana.
14.2 °C. Tātaihia te papatipu o te KNO_3 totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.
14.2 °C. Tātaihia te papatipu o te KNO ₃ totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ °Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.
14.2 °C. Tātaihia te papatipu o te KNO ₃ totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ °Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.
14.2 °C. Tātaihia te papatipu o te KNO ₃ totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ °Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.
14.2 °C. Tātaihia te papatipu o te KNO ₃ totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ °Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.
14.2 °C. Tātaihia te papatipu o te KNO ₃ totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ °Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.
14.2 °C. Tātaihia te papatipu o te KNO ₃ totoka me mātua memeha kia heke pēnā ai te pāmahana. Me kī, ko te kītanga pōkākā motuhake o te mehanga konurehu pākawa ota he 4.18 J g ⁻¹ °Me kī, ko te papatipu o te mehanga konurehu pākawa ota he 135 g.

(c)

	$KNO_3(s) \to K^+(aq) + NO_3^-(aq)$ $\Delta_r H^\circ = +34.9 \text{ kJ mol}^{-1}$
	Justify, in terms of the entropy changes of the system and the surroundings, why the rea is spontaneous.
)	
)	
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Calculate the mass of solid KNO ₃ that must dissolve to cause this temperature decrease. Assume the specific heat capacity of potassium nitrate solution is $4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1}$. Assume the mass of the potassium nitrate solution is 135g .
)	Assume the mass of the potassium nitrate solution is 135 g.

TŪMAHI TUARUA

(a) Whakamāramatia te rerekētanga i waenga i ngā pūtoro ngota o te konupūmā me te selenium.

	Pūtoro ngota / pm		
Konupūmā, Ca	197		
Selenium, Se	116		
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o so i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o so i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o so i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o co i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o to i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o so i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o co i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o co i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o so i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o to i te Pou 17.	te taka pūmotu, he a	ha te take ko te ha
rahautia, e ai ki ngā āl motu tino tōraro ā-hik	huatanga ka pā ki ngā ia o	te taka pūmotu, he a	ha te take ko te ha

QUESTION TWO

(a) Explain the difference in the atomic radii of calcium and selenium.

	Atomic radius / pm
Calcium, Ca	197
Selenium, Se	116

_	
-	
-	
	Justify, with reference to the factors affecting periodic trends, why fluorine is the most electronegative element in Group 17.
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	

(i)	Kei raro nei ko te whārite mō te tauhohenga o te haukini, NH_3 , me te hāora, O_2 :						
	$4{ m NH_3}(g)+5{ m O_2}(g) \rightarrow 4{ m NO}(g)+6{ m H_2O}(g)$ Tātaihia te huringa hāwera māori, $\Delta_{\rm r}H^{\circ}$, mō tēnei tauhohenga, mā te whakamahi i ngā raraunga e whai ake ana:						
	$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$	$\Delta_{\rm r} H^{\circ} = +92 \text{ kJ mol}^{-1}$					
	$2H_2O(g) \to 2H_2(g) + O_2(g)$						
	$N_2(g) + O_2(g) \rightarrow 2NO(g)$	$\Delta_{\rm r}^{\rm l} H^{\rm o} = +180 \text{ kJ mol}^{-1}$					
(ii)	Whakamāramahia mai he aha te take tātaihia i te wāhanga (i) mēnā i whak	e he tautohe putawera ake te panoni hāwera māori ka kaputaina te wai hei wē.					

c)	(i)	The equation for the reaction of ammonia, NH ₃ , with oxygen, O ₂ , is given below:						
		$4\mathrm{NH_3}(g) + 5\mathrm{O_2}(g) \rightarrow 4\mathrm{NO}(g) + 6\mathrm{H_2O}(g)$ Calculate the standard enthalpy change for this reaction, $\Delta_r H^\circ$, using the following data: $2\mathrm{NH_3}(g) \rightarrow \mathrm{N_2}(g) + 3\mathrm{H_2}(g)$ $\Delta_r H^\circ = +92 \text{ kJ mol}^{-1}$						
		$2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$	1					
		$N_2(g) + O_2(g) \rightarrow 2NO(g)$	$\Delta_{\rm r} H^{\circ} = +180 \text{ kJ mol}^{-1}$					
	(ii)	Explain why the standard enthalpy che the water was produced as a liquid.	ange calculated in part (i) would be more exothermic if					

TŪMAHI TUATORU

(a) (i) Tautohua ngā momo tōpana kume katoa i waenga i ngā korakora o ngā matū e whai ake kei te āhua wē.

Te matū	Δ _{vap} H°/kJ mol ⁻¹	Ngā tōpana kume
Hāparo-tahi pūwaro (ℓ) CH ₃ – CH ₂ – CH ₂ – C	34	
Waikawa pōwaro (ℓ) CH ₃ -CH ₂ -C OH	57	
Waikawa pēwaro (ℓ) $CH_3 - CH_2 - CH_2 - CH_2 - C$ OH	68	

E ai ki te kaha hāngai o ngā tōpana kume katoa i waenga i ngā korakora o ia matū, parah te rerekētanga o te hāwera whakaeto māori, $\Delta_{\text{vap}}H^{\circ}$, mō te hāparo-tahi pūwaro, te waikaw pōwaro me te waikawa pēwaro.

(i)	Tuhia te whārite mō te tauhohenga he panoni hāwera e ōrite ana ki te hāwera māori o te hanganga, $\Delta_{\rm f} H^{\circ}$, o te kūhuka totoka, ${\rm C_6H_{12}O_6}(s)$.
(ii)	Ka whakaōkaitia te kūhuka i roto i te tukupūngao ā-hāora e ai ki te whārite e whai ake: $C_6H_{12}O_6(s)+6O_2(g)\to 6CO_2(g)+6H_2O(\ell) \qquad \Delta_rH^o=-2803 \text{ kJ mol}^{-1}$ Tātaihia te hāwera māori o te hanganga o te kūhuka, $\Delta_lH^o(C_6H_{12}O_6(s))$, mā te whakamahi i ngā raraunga e whai ake nei: $\Delta_lH^o(CO_2(g))=-394 \text{ kJ mol}^{-1}$ $\Delta_lH^o(H_2O(\ell))=-286 \text{ kJ mol}^{-1}$

Ka haere tonu te Tūmahi Tuatoru i te whārangi 14.

QUESTION THREE

(a) (i) Identify all the types of attractive forces between the particles of the following substances in their liquid state.

Substance	Δ _{vap} H°/kJ mol ⁻¹	Attractive forces
Butanal (ℓ) $CH_3 - CH_2 - CH_2 - C$ H	34	
Propanoic acid (ℓ) CH ₃ -CH ₂ -C OH	57	
Pentanoic acid (ℓ) $CH_3 - CH_2 - CH_2 - CH_2 - C$ OH	68	

(ii)	With reference to the relative strength of all the attractive forces between the particles in each substance, justify the difference in standard enthalpy of vaporisation, $\Delta_{\text{vap}}H^{\circ}$, for butanal, propanoic acid, and pentanoic acid.
	propulses uses, uses procured uses.

(b)	(i)	Write the equation for the reaction that has an enthalpy change equal to the standard enthalpy of formation, $\Delta_{\rm f}H^{\circ}$, of solid glucose, ${\rm C_6H_{12}O_6}(s)$.
	(ii)	Glucose is oxidised during aerobic respiration according to the following equation: $C_6H_{12}O_6(s)+6O_2(g)\rightarrow 6CO_2(g)+6H_2O(\ell) \qquad \Delta_rH^\circ=-2803 \text{ kJ mol}^{-1}$ Calculate the standard enthalpy of formation of glucose, $\Delta_rH^\circ(C_6H_{12}O_6(s)), \text{ using the following data:}$ $\Delta_rH^\circ(CO_2(g))=-394 \text{ kJ mol}^{-1}$ $\Delta_rH^\circ(H_2O(\ell))=-286 \text{ kJ mol}^{-1}$

Question Three continues on page 15.

(c) E whakaaturia ana te hanganga Lewis mō te pēwaro pūkōwhai pungatara pūhaumāota (chloropentafluorosulfane), $SClF_{5}$, i raro:

Γautohua me te whakamārama i te hanga me te tōranga o te SCIF ₅ .							

()	The Lewis		1 1	, (1	1.0	COIL	•	•	1 1
101		ctructure tor	Chloro	nentaffuoro	gultane	N TH	10 0	nwen	pelow.
101	THE LEWIS	structure for	CIIIOIO	Dentanaoro	Sumanc.	0011	10 2	110011	DCIOW.

Identify and explain the shape and polarity of SCIF ₅ .						

He whārangi anō ki te hiahiatia. Tuhia te (ngā) tau tūmahi mēnā e tika ana.

TAU TŪMAHI	rama to (nga) taa tamam mona o tika ana.	

Extra space if required. Write the question number(s) if applicable.

QUESTION NUMBER		write the question number(s) if applicable.	
NUMBER			

English translation of the wording on the front cover

Level 3 Chemistry 2021

91390M Demonstrate understanding of thermochemical principles and the properties of particles and substances

Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of thermochemical principles and the properties of particles and substances.	Demonstrate in-depth understanding of thermochemical principles and the properties of particles and substances.	Demonstrate comprehensive understanding of thermochemical principles and the properties of particles and substances.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table and other reference material are provided in the Resource Booklet L3–CHEMMR.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2–17 in the correct order and that none of these pages is blank.

Do not write in any cross-hatched area (
). This area may be cut off when the booklet is marked.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.