Μέρος Ι. Εισαγωγή στις Πιθανότητες

3 βασικές έννοιες

• τυχαία πειράματα (random trials)

• δειγματικός χώρος (sample space)

• ενδεχόμενα (events)

Είδη πειράματος

Αιτιοκρατικό -Ντετερμινιστικό

Οι συνθήκες κάτω από τις οποίες εκτελείται το πείραμα καθορίζουν και το αποτέλεσμα (σύμφωνα με την αρχή της αιτιότητας).

Τυχαίο (random) – Στοχαστικό

Οι συνθήκες ΔΕΝ καθορίζουν (πλήρως) το αποτέλεσμα, καθώς αυτό αποδίδεται στην «τύχη» και στην περιορισμένη γνώση των αιτιών που προκαλούν το αποτέλεσμα. Δηλ. υπάρχει «έλλειμμα» αιτιότητας.

(1)Τυχαίο πείραμα – πείραμα τύχης (Random trial)

Ορισμός: ένα πείραμα που όταν εκτελείται κάτω από τις ίδιες ακριβώς συνθήκες το αποτέλεσμά του μπορεί να διαφέρει.

Ένα τυχαίο πείραμα καθορίζεται από

- την πειραματική διαδικασία, και
- ένα σύνολο από μία ή περισσότερες παρατηρούμενες ποσότητες.

Παραδείγματα τυχαίων πειραμάτων

- Π1: Επιλογή σφαίρας από κουτί που περιέχει 50 αριθμημένες σφαίρες.
 Σημειώνουμε τον αριθμό της σφαίρας.
- Π2: Επιλογή σφαίρας από κουτί που περιλαμβάνει 4 αριθμημένες σφαίρες (1-4), εκ των οποίων οι 1, 2 είναι μαύρες και οι 3, 4 λευκές. Σημειώνουμε τον αριθμό και το χρώμα της σφαίρας που επιλέγεται.
- Π3: Στρίβουμε νόμισμα 3 φορές και παρατηρούμε την ακολουθία Κ, Γ
- Π4: Στρίβουμε νόμισμα 3 φορές και παρατηρούμε τις φορές που έρχεται Κ
- Π5: Ένα πακέτο πληροφορίας μεταδίδεται σε κανάλι με θόρυβο. Μετράμε τον αριθμό προσπαθειών που απαιτείται.
- Π6: Μετράμε τον χρόνο προσπέλασης μεταξύ δύο διαδοχικών σελίδων σε έναν web server
- Π7: Μετράμε τον χρόνο ζωής ενός συστήματος σε ένα υπολογιστικό περιβάλλον
- Π8: Μετράμε την τιμή ενός σήματος σε δύο χρονικές στιγμές t_1 και t_2
- **Π9:** Επιλέγουμε τυχαία έναν αριθμό στο συνεχές διάστημα [0,1]
- Π10: Επιλέγουμε τυχαία έναν αριθμό *x* στο [0, 1] και στην συνέχεια έναν αριθμό y στο [0, x]

Παραδείγματα τυχαίων πειραμάτων

- **Π1**: Επιλογή σφαίρας από κουτί που περιέχει 50 αριθμημένες σφαίρες. Σημειώνουμε τον αριθμό της σφαίρας.
- Π2: Επιλογή σφαίρας από κουτί που περιλαμβάνει 4 αριθμημένες σφαίρες (1-4), εκ των οποίων οι 1, 2 είναι μαύρες και οι 3, 4 λευκές. Σημειώνουμε τον αριθμό και το χρώμα της σφαίρας που επιλέγεται.
- Π3: Στρίβουμε νόμισμα 3 φορές και παρατηρούμε την ακολουθία Κ, Γ
- Π4: Στρίβουμε νόμισμα 3 φορές και παρατηρούμε τις φορές που έρχεται Κ
- **Π5:** Ένα πακέτο πληροφορίας μεταδίδεται σε κανάλι με θόρυβο. Μετράμε τον αριθμό προσπαθειών που απαιτείται.
- Π6: Μετράμε τον χρόνο προσπέλασης μεταξύ δύο διαδοχικών σελίδων σε έναν web server
- Π7: Μετράμε τον χρόνο ζωής ενός συστήματος σε ένα υπολογιστικό περιβάλλον
- Π8: Μετράμε την τιμή ενός σήματος σε δύο χρονικές στιγμές t_1 και t_2
- Π9: Επιλέγουμε τυχαία έναν αριθμό στο [0,1]
- Π10: Επιλέγουμε τυχαία έναν αριθμό *x* στο [0, 1] και στην συνέχεια έναν αριθμό y στο [0, x]

Παρατηρήσεις

- Πειράματα με την ίδια διαδικασία διαφέρουν στις παρατηρήσεις (Π3, Π4)
- Πειράματα με περισσότερες από 1 παρατηρούμενες ποσότητες (Π2,Π3,Π10)
- Πειράματα με ακολουθία παρατηρήσεων (Π3, Π5, Π10)
- Πειράματα χρονικά εξαρτώμενα (Π10)

(2) Δ ειγματικός χώρος (δ.χ.) Ω (Sample space)

- Ορισμός: το σύνολο των αποτελεσμάτων ενός τυχαίου πειράματος.
- Συμβολίζεται με το σύμβολο Ω κάποιες φορές με το σύμβολο S.

• Κάθε στοιχείο ω του δ.χ. **Ω** ονομάζεται **δειγματικό σημείο.**

(2) Δ ειγματικός χώρος (δ.χ.) Ω (Sample space)

Ορισμός: Το σύνολο των αποτελεσμάτων ενός τυχαίου πειράματος

<u>Παραδείγματα</u>

- **Π1**: Επιλογή σφαίρας από κουτί που περιέχει 50 αριθμημένες σφαίρες. Σημειώνουμε τον αριθμό της σφαίρας.

$$\Omega_1 = \{1, 2, ..., 50\},$$

- **Π2**: Επιλογή σφαίρας από κουτί που περιλαμβάνει 5 αριθμημένες σφαίρες (1-4), εκ των οποίων οι 1, 2 είναι μαύρες και οι 3, 4, 5 λευκές. Σημειώνουμε τον αριθμό και το χρώμα της σφαίρας που επιλέγεται.

$$\Omega_2 = \{ (1,M), (2,M), (3,\Lambda), (4,\Lambda), (5,\Lambda) \},$$

- **Π3:** Στρίβουμε νόμισμα 3 φορές και παρατηρούμε την ακολουθία *Κ, Γ* $\Omega_3 = \{KKK, KK\Gamma, KFK, FKK, KFF, FKF, FFK, FFF\},$
- Π4: Στρίβουμε νόμισμα 3 φορές και παρατηρούμε τις φορές που έρχεται K $\mathbf{\Omega}_{\mathbf{A}} = \{0,1,2,3\},$
- **Π5:** Ένα πακέτο πληροφορίας μεταδίδεται σε κανάλι με θόρυβο. Μετράμε τον αριθμό προσπαθειών που απαιτείται για την μετάδοσή του.

$$\Omega_5 = \{1, 2, ...\}$$

Παραδείγματα (συν.)

- **Π6:** Μετράμε τον χρόνο προσπέλασης μεταξύ δύο διαδοχικών σελίδων σε ένα web server

$$\Omega_6 = \{t : t \ge 0\} = [0, \infty),$$

- **Π7:** Μετράμε χρόνο ζωής ενός *chip* μνήμης σε ένα υπολογιστικό περιβάλλον $Ω_7 = \{t : t \ge 0\} = [0, ∞),$
- Π8: Μετράμε την τιμή ενός σήματος σε δύο χρονικές στιγμές t_1 και t_2 $\Omega_8 = \{ (v_1, v_2): -\infty < v_1 < \infty, -\infty < v_2 < \infty \},$
- **Π9:** Επιλέγουμε τυχαία έναν αριθμό στο συνεχές διάστημα [0,1] $\mathbf{\Omega}_{m{g}} = \{ \ x \colon 0 \le x \le 1 \ \},$
- **Π10:** Επιλέγουμε τυχαία έναν αριθμό *x* στο [0, 1] και στην συνέχεια έναν αριθμό *y* στο [0, *x*]

$$\Omega_{10} = \{ (x, y): 0 \le y \le x \le 1 \}$$

Παρατηρήσεις

- ✓ Τα αποτελέσματα είναι μοναδικά, δηλ. δεν μπορούν να διασπαστούν (ανάλογα με το τι ακριβώς μετράμε στο πείραμα).
 Τότε λέμε ότι είναι ασυμβίβαστα (ξένα μεταξύ τους), δηλ. το ένα αποκλείει το άλλο.
- ✓ Ένας δ.χ. μπορεί να είναι:
 - διακριτός (αριθμήσιμο πλήθος αποτελεσμάτων) π.χ. $\Omega_1 \Omega_5$, ή
 - συνεχής (άπειρος αριθμός αποτελεσμάτων) , π.χ. Ω_6 Ω_{10}
- Πειράματα με την ίδια διαδικασία μπορεί να έχουν διαφορετικό
 δ.χ. καθώς μετράμε διαφορετικές ποσότητες, π.χ. Ω_3 , Ω_4 .

(3) Ενδεχόμενα (events)

Ορισμός: κάθε υποσύνολο αποτελεσμάτων ενός δ.χ. Ω

Παραδείγματα

- **Α**₁ = "επιλογή σφαίρας με ζυγό αριθμό" = {2, 4, ..., 48, 50},
- **Α**₂ = "επιλογή σφαίρας λευκή με ζυγό αριθμό" = { (4,Λ) },
- <mark>Α₃</mark> = "και οι 3 ρίψεις έχουν το ίδιο αποτέλεσμα" = {ΚΚΚ, ΓΓΓ},
- $\mathbf{A}_{\mathbf{A}}$ = "ο αριθμός των φορών Κ ίσος με τις φορές Γ" = \emptyset
- A₅ = "Απαιτούνται λιγότερες από 10 προσπάθειες" = {1, 2, ..., 9},
- **A**₆ = "Χρόνος προσπέλασης το πολύ μέχρι 5 sec" = {t : 0 ≤ t ≤ 5}=[0, 5],
- <mark>Α₇ = "</mark>χρόνος ζωής chip τουλαχ. 1000 h και λιγότερο από 1500h"=[1000, 1500),
- A_8 = "οι 2 τιμές διαφορετικά πρόσημα"={ (v_1, v_2) : $(v_1<0 \& v_2>0)$ ή $(v_1>0 \& v_2<0)$ },
- **A**_g = "αριθμός μεταξύ 0.3 και 0.5" = { x: 0.3 ≤ x ≤ 0.5 } = [0.3, 0.5],
- A_{10} = "οι 2 τιμές διαφέρουν το πολύ κατά 0.1" ={(x, y): $0 \le y \le x \le 1 \& |x-y| \le 0.1$ }

Τύποι ενδεχομένων

Ενδεχόμενα ειδικού τύπου

- <u>Βέβαιο (certain)</u> ενδεχόμενο : $A = \Omega$ (πάντα συμβαίνει)
- Μηδενικό (*null*) ενδεχόμενο : $A = \emptyset$ (ποτέ δεν συμβαίνει)
- Στοιχειώδες (*elementary*) ενδεχόμενο : ένα αποτέλεσμα του δ.χ.

Σύνθετα ενδεχόμενα

- Ομάδες απλών ενδεχομένων με κάποιο κοινό χαρακτηριστικό
- Εφαρμογή της θεωρίας συνόλων
- Χρήση διαγραμμάτων Venn για οπτικοποίηση των ενδεχομένων και για την καλύτερη αντίληψή τους (διαισθητικά).

Σύνθετα ενδεχόμενα (από πράξεις συνόλων)

ένωση 2 ενδεχομένων A ∪ B (OR)

1η Ερμηνεία: Σύνολο αποτελεσμάτων που ανήκουν είτε στο Α, είτε στο Β, είτε και στα 2 μαζί

2^η Ερμηνεία: **ενδεχόμενο** που ισχύει όταν ισχύει **τουλάχιστον ένα** από τα Α, Β.

union

τομή 2 ενδεχομένων A ∩ B (AND)

1^η **Ερμηνεία**: Σύνολο αποτελεσμάτων που ανήκουν και στο Α και στο Β.

2^η **Ερμηνεία**: **ενδεχόμενο** που ισχύει όταν ισχύουν **ταυτόχρονα και** τα 2 ενδεχόμενα Α, Β.

intersection

• Συμπλήρωμα ενδεχομένου Α' (NOT)

1η Ερμηνεία: Σύνολο αποτελεσμάτων που δεν

ανήκουν στο Α

 2^{η} Ερμηνεία: ενδεχόμενο που ισχύει όταν δεν ισχύει το A

complement

Σύνθετα ενδεχόμενα (2)

Αν Α ∩ Β=Ø τότε Α, Β ασυμβίβαστα ενδεχόμενα, δηλ. η εμφάνιση του Α αποκλείει την εμφάνιση του Β

 $ightharpoonup A \subset B$ σημαίνει ότι αν ισχύει το A τότε ισχύει και το B

$$\triangleright$$
 A-B = {x : x ∈ A & x ∉ B} (διαφορά)

$$A-B=A\cap B'$$

Ιδιότητες ενδεχομένων

$$\Omega' = \emptyset$$
, $\emptyset' = \Omega$, $(A')' = A$

$$\Omega \cup A = \Omega$$
, $\emptyset \cup A = A$, $A \cup A = A$, $A \cup A' = \Omega$

$$\Omega \cap A = A$$
, $\varnothing \cap A = \varnothing$, $A \cap A = A$, $A \cap A' = \varnothing$

Ιδιότητες ενδεχομένων (2)

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup (B \cup \Gamma) = (A \cup B) \cup \Gamma$$

$$A \cap (B \cap \Gamma) = (A \cap B) \cap \Gamma$$

$$A \cap (B \cup \Gamma) = (A \cap B) \cup (A \cap \Gamma)$$

$$A \cup (B \cap \Gamma) = (A \cup B) \cap (A \cup \Gamma)$$

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

Παραδείγματα

1. Έστω $A = \{|x| > 10\}$, $B = \{x < -5\}$, $C = \{x > 0\}$ τότε να βρεθούν τα ενδεχόμενα $A \cup B$, $(A \cup B) \cap C$, $A \cap B$, C', $A \cap B \cap C$.

Παραδείγματα

2)

- Ορίζονται τα ενδεχόμενα:
 - $A = \{x: 10 \le x < 12\}.$
 - ightharpoonup B = {x: 11 < x < 15}.
 - $ightharpoonup C = \{x: 13 < x \le 14\}.$

Τότε

- $A \cup B = \{x: 10 \le x < 15\}$
- $A \cap B = \{x: 11 \le x < 12\}$
- $A' = \{x < 10 \text{ } \acute{\eta} \text{ } x \ge 12\}$
- Α και C ξένα (ασυμβίβαστα)

$$- (A - B)' = A' \cup B$$

$$-A \cup (A \cap B) = A$$

$$-A \cap (A \cup B) = A$$

-
$$(A \cap B \cap \Gamma)' = (A \cap B)' \cup \Gamma'$$

$$-A-(B-\Gamma)=(A-B)\cup(A\cap\Gamma)$$

$$- (A - B)' = A' \cup B$$

$$- (A - B)' = A' \cup B$$

$$-A-(B-\Gamma)=(A-B)\cup(A\cap\Gamma)$$

В-Г

$$-A-(B-\Gamma)=(A-B)\cup(A\cap\Gamma)$$

$$A-(B-\Gamma)$$

$$-A-(B-\Gamma)=(A-B)\cup(A\cap\Gamma)$$

A-B

$$-A-(B-\Gamma)=(A-B)\cup(A\cap\Gamma)$$

 $A \cap \Gamma$

$$-A-(B-\Gamma)=(A-B)\cup(A\cap\Gamma)$$

$$(A-B)\cup (A\cap \Gamma)$$

- 4. Να βρεθούν τα ενδεχόμενα και τα διαγράμματα Venn
- α) Συμβαίνει τουλάχιστον ένα από τα Α, Β, Γ
- β) Συμβαίνουν ταυτόχρονα όλα τα Α, Β, Γ
- γ) Δεν συμβαίνει κανένα από τα Α,Β,Γ

$$(A \cup B \cup \Gamma)' = A' \cap B' \cap \Gamma'$$

- 4. Να βρεθούν τα ενδεχόμενα και τα διαγράμματα Venn (συν.)
- δ) Συμβαίνει ακριβώς ένα από τα Α, Β, Γ
- ε) Συμβαίνει το πολύ ένα από τα Α, Β, Γ
- στ) Συμβαίνουν τουλάχιστον δύο από τα Α, Β, Γ
- ζ) Συμβαίνουν ακριβώς δύο από τα Α, Β, Γ
- η) Συμβαίνουν το πολύ δύο από τα Α, Β, Γ

$$(A \cap B \cap \Gamma)' = A' \cup B' \cup \Gamma'$$

- 4. Να βρεθούν τα ενδεχόμενα και τα διαγράμματα Venn (συν.)
- θ) Συμβαίνει το Α και ένα τουλάχιστον από τα Β, Γ
- ι) Συμβαίνει **ένα τουλάχιστον από τα Α, Β** και **ένα τουλάχιστον από** τα Β, Γ.

$$(A \cup B) \cap (B \cup \Gamma) = B \cup (A \cap \Gamma)$$

5. Έστω δ.χ. Ω το σύνολο των φοιτητών (αγόρια και κορίτσια) του τμήματος Μηχ. Η/Υ & Πληροφορικής, και **E1, E2, E3, E4, E5** τα σύνολα των φοιτητών του πρώτου, δευτέρου, τρίτου, τετάρτου και πέμπτου έτους, αντίστοιχα **Γ** είναι το σύνολο των **φοιτητριών** του τμήματος και **Δ** το σύνολο των φοιτητών που έχουν περάσει το μάθημα της **Άλγεβρας**. Να ορισθούν (**λεκτικά**) τα παρακάτω:

$$A_{1} = (E_{1} \cup E_{2})' \cap \Gamma \cap \Delta$$

$$A_{2} = \Gamma \cap \Delta'$$

$$A_{3} = E_{5} \cap \Gamma' \cap \Delta$$

$$A_{4} = E_{5} \cap \Gamma \cap \Delta'$$

$$A_{5} = (E_{1} \cup E_{2}) \cap \Gamma \cap \Delta$$

5. Έστω δ.χ. Ω το σύνολο των φοιτητών (αγόρια και κορίτσια) του τμήματος Μηχ. Η/Υ & Πληροφορικής, και Ε1, Ε2, Ε3, Ε4, Ε5 τα σύνολα των φοιτητών του πρώτου, δευτέρου, τρίτου, τετάρτου και πέμπτου έτους, αντίστοιχα Γ είναι το σύνολο των φοιτητριών του τμήματος και Δ το σύνολο των φοιτητών που έχουν περάσει το μάθημα της Άλγεβρας. Να ορισθούν (λεκτικά) τα παρακάτω:

$$A_1 = (E_1 \cup E_2)' \cap \Gamma \cap \Delta$$

- Τριτοετείς φοιτήτριες και άνω που έχουν περάσει το μάθημα της Άλγεβρας
- •