Teste de comparações múltiplas para amostras independentes

Aplicação

Em um estudo sobre variedades de cana-de-açúcar, foram registrados a produção (em toneladas por hectare), de seis canteiros para as cinco variedades da cana. O que podemos concluir sobre as cinco variedades?

Canteiros	Variedade 1	Variedade 2	Variedade 3	Variedade 4	Variedade 5
1	110,6	116,7	128,7	140,3	143,4
2	119,5	128,4	140,2	150,0	153,8
3	120,1	131,5	130,3	150,9	151,5
4	105,3	114,8	138,7	144,7	144,1
5	130,8	146,8	146,0	153,9	154,6
6	138,1	155,5	149,8	156,0	159,3

Lembrando...

Teste de Friedman

- comparar mais de duas amostras pareadas
- detectar possíveis diferenças entre os diferentes tratamentos
- hipóteses:

H₀: a ordenação das v.as. dentro dos blocos é igualmente provável

VS

H₁: a ordenação das v.as. dentro dos blocos não é igualmente provável para, pelo menos, um par de tratamentos.

Amostra

- considere v.as. independentes k-variadas (Xi1, Xi2,...,Xik) (i = 1,..., n) (i representa o elemento amostral e k e o número de tratamentos)
- atribua postos dentro de cada bloco (elemento amostral). Em caso de valores iguais, atribua a média dos postos.

Suposições:

- os dados consistem de blocos (u.a.'s) independentes, para os *k* tratamentos
- as observações são independentes dentro e entre as amostras
- a variável de estudo é contínua
- a escala de medidas é, pelo menos, ordinal, dentro de cada bloco
- não existe interação entre blocos e tratamentos.

Estatística do teste:

$$T = \frac{12}{nk(k+1)} \sum_{i=1}^{k} R_i^2 - 3n(k+1)$$

em que $R_{j} = \sum_{i=1}^{n} R(X_{ij}), j = 1, \dots, k.$

Rejeite H₀, ao nível α de significância, se T exceder o quantil (1- α) da distribuição qui-quadrado com (k-1) g.l.

Se no teste de Friedman, a hipótese nula foi rejeitada (diferenças foram detectadas), quais tratamentos produzem valores diferentes dos demais?

Testes de comparações múltiplas

- Para todos os pares de tratamentos, fazemos comparações
- Hipóteses:

 H_0 : tratamentos i e j não produzem resultados diferentes

VS

H₁:tratamentos *i* e *j* produzem resultados diferentes

• Estatística: $|R_i - R_j| > t_{1-\alpha/2} \left[\frac{2b(A_1 - B_1)}{(b-1)(k-1)} \right]^{1/2}$

em que: $t_{1-\alpha/2}$ da distribuição t-Student com (*b-1*)(*k-1*) g.l. e,

$$A_1 = \sum_{i=1}^b \sum_{j=1}^k (R(X_{ij}))^2$$
 e $B_1 = \frac{1}{b} \sum_{j=1}^k R_j^2$

- Regra de Decisão:
 - rejeite Ho se a desigualdade é satisfeita.

- Observações:
 - em caso de igualdades: A1 é modificada.

- Existem outros testes para mais do que duas amostra pareadas:
 - Teste Q de Cochran
 - extensão do teste de McNemar para mais do que duas amostras relacionadas
 - não são "avaliadas" a extensão da mudança, apenas se houve mudança.

- Várias autores descrevem o procedimento de comparação para o teste de Friedman como sendo uma **análise de variância dois fatores** ("two-way")
- Nos testes de comparações múltiplas, postos são usados para detectar diferenças
- Testes mais usados (Pós Friedman):
 - Testes de Nemeny e de Conover: compara todos os pares de tratamentos usando a soma dos postos, ajustando o p-valor
- Corrija o p-valor (pnovo) e compare-o com nível de significância (α):
 - rejeite a hipótese H₀ se p_{novo} < α (ou seja, os tratamentos produzem resultados, estatisticamente diferentes)
 - a correção do p-valor reduz a chance de falsos positivos => teste mais conservador.

Vamos para o R!