

Facultad de Ingeniería

Tópicos Avanzados

Proyecto 1 - Primer Semestre 2025

Proyecto grupal N°1 Frailejon Detection

Javier Acero Camargo 1^{a,c}, Gerson Gaitan García 2^{a,c}, Juan Sebastian Amaya Velasco 3^{a,c}, Diana Marcela González Figueroa 4^{a,c}

Sergio Morab,c

^a Estudiante de Maestría en Analítica para la Inteligencia de Negocios ^bProfesor, Departamento de Ingeniería Industrial ^cPontificia Universidad Javeriana, Bogotá, Colombia

1. BUSINESS UNDERSTANDING

Los páramos son ecosistemas de alta montaña fundamentales para la regulación hídrica, actuando como esponjas naturales que capturan, almacenan y liberan agua de manera sostenible. En Colombia, estos ecosistemas son de vital importancia para el abastecimiento de agua potable, especialmente en ciudades como Bogotá, que depende en gran parte del agua proveniente del Páramo de Chingaza. (Parque Nacional Chingaza, n.d.)

Sin embargo, la degradación del páramo debido al cambio climático, la actividad humana y la reducción de especies clave, como la Espeletia (frailejón), pone en riesgo su función ecológica. La disminución de la densidad de estas plantas afecta directamente la capacidad del ecosistema para capturar agua y regular la humedad del suelo, lo que podría generar impactos negativos en la biodiversidad y el abastecimiento hídrico.

Aunque se encuentra en la parte alta de las montañas andinas es un ecosistema bastante amenazado y frágil por factores tanto naturales como antrópicos, factores como la extensión de la frontera agrícola y ganadera han llevado a una transformación y reducción del páramo; como consecuencia de esto ha ocurrido una degradación y erosión del suelo, y desecación de áreas de turbera y pantanosas lo que reduce las funciones ecológicas del páramo y provoca la pérdida de hábitat para especies de fauna y flora. Asimismo, existen otras presiones antrópicas sobre este bioma como el crecimiento urbano la explotación minera de materiales para construcción y minerales y el turismo mal manejado, entre otros. Además de lo anterior, está la fragilidad del páramo frente a eventos como el cambio climático, el cual constituye actualmente una gran amenaza para este ecosistema. Esto debido a que la flora y fauna que lo componen muestran adaptaciones muy particulares a las condiciones extremas que presentan en este ecosistema. (Gov.co, n.d.) (Amanda Varela Ramírez, n.d.)

Para abordar esta problemática, este proyecto propone una metodología basada en modelos de redes neuronales para ayudar en la reconstrucción del ecosistema en zonas con baja densidad

de Espeletia. A partir del análisis de imágenes aéreas tomadas en los páramos de Chingaza y Cruz Verde, se busca identificar frailejones para detectar cuales áreas están degradadas y evaluar patrones de distribución de la vegetación, lo que permitirá proponer estrategias de restauración ecológica basadas en datos.

1.1 Objetivo de negocio

Implementar, durante los próximos 3 años, un modelo basado en redes neuronales para identificar áreas degradadas y patrones de distribución de frailejones (Espeletia) en los páramos de Chingaza y Cruz Verde, con el fin de proponer estrategias de restauración ecológica que permitan aumentar en al menos un 20% la densidad de frailejones en las zonas intervenidas.

1.1.1 Criterio de éxito del negocio

$$Aumento\ de\ densidad = \left(\frac{\'areas restauradas}{\'areas degradadas}\right)*Efectividad\ de\ restauraci\'on$$

$$Efectividad\ de\ restauraci\'on = \frac{Frailejones establecidos}{frailejones sembrados}$$

Objetivos de Minería de Datos

Diseñar un modelo usando redes neuronales convolucionales para la identificación de frailejones a partir de imágenes aéreas, se tendrán en cuenta el ajuste de hiperparámetros para seleccionar el que mejor métrica tenga.

1.2.1 Criterio de éxito de los objetivos de minería de datos

Obtener un AUC mayor al 90% y con esto que logre identificar correctamente los frailejones.

2. DATA UNDERSTANDING

El modelo se entrenará a partir de la imagen aérea completa de una sección del páramo y de las imágenes del archivo DataF, el cual contiene imágenes preentrenadas y etiquetadas como las siguientes:

Ca racterí sti ca	Detalle
	https://github.com/sergiomora03/AdvancedTopicsAn
url origen	alytics/blob/main/notebooks/img/IMG_3451.JPG
Dimensiones	4.000 X 3.000
Marca del dispositivo	Canon
Modelo del dispositivo	Canon powershot S100
Espacio de color	RGB
Perfil de color	s RGB EC61966-2.1
Longitud focal	5,2 mm
Canal alfa	No
Ojos rojos	No
Modalidad de medición	Patrón
Número f	f/4
Programa de exposición	Normal
Tiempo de exposición	1/1.000
Latitud	4° 34' 26,79" N
Longitud	74° 1' 22,859" O

Para este caso de negocio, debido a que se está trabajando con un set de datos de imágenes, no considera necesario realizar un análisis exploratorio con análisis univariado o multivariados relevantes.

3. DATA PREPARATION

Durante la fase de preparación de datos, se desarrolló un procedimiento para cargar y transformar las imágenes utilizadas en el entrenamiento del modelo. Este conjunto de datos se encontraba almacenado en un archivo en formato HDF5, que contenía dos categorías de imágenes: aquellas con presencia de frailejones (Espeletia) y aquellas sin ellos.

Una vez descargadas y extraídas las imágenes, se realizó un procesamiento para generar subimágenes a partir de regiones específicas de cada imagen original. Este paso permitió obtener fragmentos representativos que conservan la información clave, al tiempo que se aumentó la cantidad total de datos disponibles. Para ello, se aplicaron recortes de 70x70 píxeles como una forma de data augmentation, lo que mejora la diversidad del conjunto de datos y refuerza la capacidad del modelo para aprender diferentes patrones visuales.

A cada recorte se le asignó una etiqueta correspondiente a su clase (frailejón o no frailejón), y solo se conservaron aquellos recortes que cumplían con el tamaño establecido. Este proceso resultó en una base de imágenes más amplia, balanceada y estructurada, lo que permitió alimentar la red neuronal con datos consistentes y variados desde las primeras etapas de entrenamiento.

4. MODELING & EVALUATION

4.1. Técnica Seleccionada de Modelamiento

Dado que el objetivo del proyecto es identificar la presencia de frailejones en imágenes de ecosistemas de páramo, se optó por utilizar técnicas basadas en redes neuronales profundas, específicamente modelos de clasificación de imágenes. Las redes neuronales convolucionales (CNN) fueron la base de los experimentos realizados, ya que están especialmente diseñadas para procesar datos con estructura espacial, como es el caso de las imágenes.

A lo largo del proceso se probaron diferentes arquitecturas de redes neuronales, incluyendo modelos preentrenados y modelos construidos desde cero. En particular, se exploraron opciones como:

- •Modelos propios construidos desde cero, con distintas configuraciones de capas convolucionales, de activación y de agrupamiento (pooling).
- •Transfer learning con redes preentrenadas (como VGG16 y ResNet), ajustando las capas finales para la tarea de clasificación binaria (frailejón vs. no frailejón).

Durante el modelado se aplicaron estrategias como congelamiento y descongelamiento progresivo de capas, ajuste de funciones de activación, experimentación con funciones de pérdida y optimizadores, así como aumento de datos (data augmentation) para mejorar la capacidad del modelo de aprender de distintas variaciones visuales.

En general, las redes neuronales demostraron ser una técnica adecuada y potente para abordar este problema, cumpliendo con los supuestos básicos del modelado y permitiendo obtener modelos con buen desempeño en la clasificación de imágenes.

5. DEPLOYMENT Red Neuronal Sencilla

La Red Neuronal Sencilla es una arquitectura básica compuesta por tres componentes principales: una capa de entrada, una capa oculta y una capa de salida. Este tipo de red es especialmente adecuada para problemas en los que la complejidad de los datos no justifica el uso de múltiples capas o una gran capacidad de procesamiento.

Arquitectura	Entrenamiento y Optimización	Métricas
Capa oculta:	Optimizador SGD con Momentum y	AUC: 0.9524
128 Neuronas	Nesterov para mejorar la convergencia.	
Activación: RELU	Early Stopping	
Capa de salida:	Optimización	
Sigmoide	Función de pérdida: nn.BCELoss()	
	lr= 0.01 Tasa de aprendizaje	
	Momentum= 0.9: Para mejorar	
	convergencia.	
	nesterov=True: Para un gradiente más	
	dinámico.	
	Early Stopping: Detiene el entrenamiento	
	si no mejora el AUC en 10 épocas.	
	BatchNorm1d(128): Reduce covariate	
	shift.	
	Dropout(0.3): Evita sobreajuste.	

Red Neuronal Multicapa

La Red Neuronal Multicapa se caracteriza por estar compuesta de múltiples capas ocultas situadas entre la capa de entrada y la capa de salida. Esta estructura permite que la red aprenda representaciones más complejas y capture patrones no lineales en los datos, lo que la hace especialmente poderosa para resolver problemas con alta complejidad.

Arquitectura	Entrenamiento y Optimización	Métricas
Capa oculta 1	Optimizador SGD con momentum=0.9 y	AUC: 0.9770
128 Neuronas	nesterov =True para acelerar la convergencia.	
Activación: RELU	Tasa de aprendizaje (lr=0.01).	
Capa oculta 2	Función de pérdida: Binary Cross Entropy	
128 Neuronas	Se ejecuta por 10 épocas con batch_size =64.	
Activación: RELU	Early stopping si no mejora la métrica AUC	
Capa de salida	en 10 épocas	
Sigmoide	Batch Normalization: Ayuda a estabilizar el	
	aprendizaje y acelerar la convergencia.	
	Dropout: Reduce el sobreajuste al apagar	
	aleatoriamente algunas neuronas en cada	
	iteración.	
	Early Stopping: Detiene el entrenamiento si	
	la métrica no mejora después de 10 épocas	

Red Neuronal Convolucional

La Red Neuronal Convolucional (CNN) está diseñada para procesar datos estructurados en forma de cuadrícula, como imágenes.

Utiliza capas convolucionales para extraer características espaciales y detectar patrones jerárquicos en los datos. Esto permite que la red identifique bordes, texturas y estructuras más complejas a medida que avanza por sus capas.

Arquitectura	Entrenamiento y Optimización	Métricas
Conv1: 64 filtros Kernel 3 padding 1 Activación ReLU Pooling: Kernel 2	Inicializar modelo: CNNModel(64, 128, 256, 512, 0.3)	AUC: 0.9778
Conv2: 128 filtros Kernel 3 padding 1 Activación ReLU Pooling: Kernel 2	Función de pérdida: BCEWithLogitsLoss()	
Conv3: 256 filtros Kernel 3 padding 1 Activación ReLU Pooling: Kernel 2 Conv4: 512 filtros Kernel 3 padding 1 Activación ReLU Pooling: Kernel 2	 Bucle de entrenamiento: Hacer forward() con imágenes Calcular la pérdida con BCEWithLogitsLoss Retropropagar con loss.backward() Optimizar con optimizer.step() 	

Red Neuronal Convolucional + VGG16

La Red Neuronal Convolucional con Transferencia de Aprendizaje basada en VGG16 utiliza los pesos preentrenados de esta arquitectura profunda de 16 capas para aprovechar características previamente extraídas en problemas de clasificación de imágenes. Esto permite acelerar el proceso de entrenamiento y optimizar el desempeño del modelo al adaptarlo a nuevos conjuntos de datos.

Arquitectura	Entrenamiento y Optimización	Métricas
Capas preentrenadas con	Función de pérdida:	AUC: 0.9951
VGG16	BCEWithLogitsLoss()	
Se congelan los	Optimizador: Adam (lr=1e-3), que	
parámetros de la red	ajusta los pesos de la red	
convolucional para	Dropout (0.5)	
preservar el aprendizaje	Fine-tuning parcial: Se	
previo	descongelan las últimas 8 capas	
Todas las capas fully	convolucionales para aprender	
connected se dejan	características nuevas	
entrenables.		

Red Neuronal Convolucional + VGG16 + Optuna

La Red Neuronal Convolucional con Transferencia de Aprendizaje basada en VGG16 utiliza los pesos preentrenados de esta arquitectura profunda de 16 capas para aprovechar características previamente extraídas en problemas de clasificación de imágenes. Además, se emplea Optuna para la optimización de hiperparámetros, lo que permite encontrar configuraciones óptimas de manera eficiente. Esto acelera el proceso de entrenamiento y mejora el desempeño del modelo al adaptarlo a nuevos conjuntos de datos.

Arquitectura	Entrenamiento y Optimización	Métricas
Capas preentrenadas con	Función de pérdida:	AUC: 1.0000
VGG16	BCEWithLogitsLoss()	
Se congelan los	Optimizador: Optuna	
parámetros de la red	Dropout (0.5)	
convolucional para	Fine-tuning parcial: Se	
preservar el aprendizaje	descongelan las últimas 8 capas	
previo	convolucionales para aprender	
Todas las capas fully	características nuevas	
connected se dejan	lr: 0.00015528501635907985	
entrenables.	batch_size: 16	
	dropout_rate: 0.4209364438238	

Red Neurona ResNet-50

La Red Neuronal Convolucional con Transferencia de Aprendizaje basada en ResNet utiliza los pesos preentrenados de esta arquitectura profunda con redes residuales para reutilizar características previamente extraídas en tareas de clasificación de imágenes. Gracias a sus conexiones de atajo, ResNet mitiga el problema del desvanecimiento del gradiente, permitiendo entrenar modelos más profundos de manera eficiente. Esto acelera el entrenamiento y optimiza el desempeño del modelo al adaptarlo a nuevos conjuntos de datos.

Arquitectura	Entrenamiento y Optimización	Métricas
Capas base congeladas inicialmente. A partir de la época 4, se descongelan todas para	Optimizador : Adam con lr=0.0001, reducido a 0.00001 tras descongelar capas.	AUC: 0.9688
fine-tuning.	Scheduler : StepLR (step_size=5, gamma=0.1).	
Capa de salida		
nn.Dropout(0.3) nn.Linear(2048, 2)	Loss function: CrossEntropyLoss.	

6. EVALUATION AND SELECTION

Modelo	AUC
RN Sencilla	0.9524
RN Multicapa	0.9770
RN Convolucional	0.9778
RN Convolucional + VGG	0.9951
RN Convolucional + VGG + Optuna	1.000
RN Convolucional + Resnet	0.9688

El modelo optimizado con Optuna es el mejor candidato para producción, ya que combina la potencia del aprendizaje por transferencia con VGG16 y la optimización avanzada de hiperparámetros. Esta combinación permite obtener un modelo más preciso, robusto y generalizable, superando el rendimiento de una implementación estándar de VGG16 con hiperparámetros fijos.

Resultados

De acuerdo con los resultados obtenidos, el modelo logró identificar 505 frailejones. La concentración de puntos indica zonas de alta detección por parte de la CNN, evidenciando que los puntos están bien agrupados y coinciden con los objetos reales en la imagen original. Esto sugiere que el modelo, optimizado con Optuna, presenta una buena precisión, detectando correctamente las regiones de interés con pocos errores. Además, los hiperparámetros seleccionados han contribuido a mejorar su rendimiento.

Adicional, esto nos ayuda a la optimización de los esfuerzos de reforestación con la identificación de las áreas con menor presencia de frailejones ayudando a asignar de manera más eficiente los recursos para la siembra de nuevas plantas y la protección de las ya existentes.

7. BIBLIOGRAFIA

- Amanda Varela Ramírez, J. J. (n.d.). *Proyecto diagnostico población frailejones*. https://www.car.gov.co/uploads/files/5b451c59297a1.pdf
- Gov.co. (n.d.). *Larva y hongos afectan frailejones*. https://oab.ambientebogota.gov.co/larva-y-hongos-afectan-los-frailejones-del-paramo-de-chingaza/
- Parque Nacional Chingaza. (n.d.). *Parque Nacional Chingaza*. Gov.Co. https://www.parquesnacionales.gov.co/nuestros-parques/pnn-chingaza/
- IBM. (n.d.). ¿Qué son las redes neuronales convolucionales? Https://Www.Ibm.Com/Es-Es/Think/Topics/Convolutional-Neural-Networks.
- MathWorks. (n.d.). *Redes neuronales convolucionales*. Https://Es.Mathworks.Com/Discovery/Convolutional-Neural-Network.Html.