4. 设
$$\lim_{x \to a} f(x) = A$$
 , $\lim_{x \to a} g(x)$ 不存在 , $\lim_{x \to a} h(x)$ 不存在 , 则下列四个命题中**正确**的是

A.
$$\lim_{x \to a} [f(x)g(x)]$$
不存在

B.
$$\lim_{x \to a} [g(x) + h(x)]$$
不存在

C.
$$\lim_{x\to a} [g(x)h(x)]$$
不存在

D.
$$\lim_{x \to a} [f(x) + g(x)]$$
不存在

A.
$$\lim_{x\to 0} \frac{\sin x}{x} = 0$$

B.
$$\lim_{x\to\infty}\frac{\sin x}{x}=1$$

C.
$$\lim_{x \to 0} x \sin \frac{1}{x} = 1$$

A.
$$\lim_{x\to 0} \frac{\sin x}{x} = 0$$
 B. $\lim_{x\to \infty} \frac{\sin x}{x} = 1$ C. $\lim_{x\to 0} x \sin \frac{1}{x} = 1$ D. $\lim_{x\to \infty} x \sin \frac{1}{x} = 1$

2. 若
$$\lim_{x \to 0} \left(\frac{1 - \tan x}{1 + \tan x} \right)^{\frac{1}{\sin kx}} = e$$
,则 $k = (A)$

A.
$$k = -2$$
 B. $k = -1$ C. $k = 1$ D. $k = 2$

B.
$$k = -1$$

C.
$$k = 1$$

D.
$$k = 2$$

$$(1)\lim_{x\to 1} \frac{\tan\left(x^2-1\right)}{x-1} = 2; (2)\lim_{x\to 0} x \arctan\frac{1}{x} = 1; (3)\lim_{x\to \infty} x \sin\frac{1}{x} = 1; (4)\lim_{x\to \infty} \left(1-\frac{1}{x}\right)^x = e$$

4. 当
$$x \to 0$$
时,若无穷小量 $ax^2 + bx$ 与 $\sin x$ 等价,则 a,b 的值一定为(\mathbb{C})

A.
$$a = 0, b = 1$$

A.
$$a = 0, b = 1$$
 B. $a = 0, b$ 为任意数 C. $b = 1, a$ 为任意数 D. a, b 为任意数

C.
$$b=1,a$$
 为任意数

5. 当
$$x \rightarrow 0$$
时, $x \sin x \in \ln(1+x)$ 的(A)

B.
$$\lim_{x\to\infty} \frac{\sin x}{e^x}$$

A.
$$\lim_{x \to \infty} \arctan x$$
 B. $\lim_{x \to \infty} \frac{\sin x}{e^x}$ C. $\lim_{x \to \infty} \frac{\sqrt{x^2 + 5}}{x}$ D. $\lim_{x \to \infty} x \sin \frac{1}{x}$

D.
$$\lim_{x\to\infty} x \sin\frac{1}{x}$$

7. 当
$$x \to 0$$
 时, $(1+ax^2)^{\frac{1}{3}}-1$ 与 $\cos x-1$ 是等价无穷小,则 $a=\frac{-3/2}{2}$.

8.
$$\lim_{x \to 0} \left(\frac{\sin 2x}{x} + x \sin \frac{1}{x} \right) = \underline{2}$$

9.
$$\lim_{x \to \infty} \left(\frac{2x^2 + 5}{x - 1} + ax + b \right) = 3, \quad \mathbb{M} \ a = \frac{-2}{2}, \quad b = \frac{1}{2}.$$

A. 连续点

B. 无穷间断点

D. 可去间断点

3. 设
$$f(x) = \frac{x^2 + 2x - 3}{x^2 + 4x + 3}$$
, 则 $f(x)$ 的第一类间断点是 X=-3

7. 下列各题中均假定 $f'(x_0)$ 存在,按照导数定义,求下列极限:

$$(1) \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} = \underline{-f(x0)}$$

(2)
$$\lim_{x\to 0} \frac{f(x)}{x} =$$
 (其中 $f(0) = 0$,且 $f'(0)$ 存在)

(3)
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{h} = \underline{\hspace{1cm}}$$

1. 若曲线 $y = x^2 + ax + b$ 与 $y = x^3 + x$ 在点 (1,2) 处相切,则 a,b 的值为 (B)

A.
$$a = 0, b = -2$$
 B. $a = 2, b = -1$ C. $a = 1, b = -3$ D. $a = -3, b = 1$

A. 函数在某点连续一定在该点可导

B. 函数在某点不可导一定在该点不连续

C. 函数在某点不可导一定在该点连续 D. 函数在某点可导一定在该点连续

3. 设函数
$$y = f(x)$$
 在 $x = x_0$ 点处极限存在,则在 $x = x_0$ 点,函数 $y = f(x)$ (D)

A. 一定连续 B. 一定可导 C. 一定可微分 D. 可能有间断点

4. 设方程组
$$\begin{cases} x = 2t - 1 \\ te^y + y + 1 = 0 \end{cases}$$
 确定了 y 是关于 x 的函数,则 $\frac{dy}{dx}\Big|_{t=0} = \frac{-1}{2}$ (2e)

5. 设参数方程
$$\begin{cases} x = t^2 + 2t \\ y = \ln(1+t) \end{cases}$$
, 则曲线 $y = y(x)$ 在 $x = 3$ 处切线的斜率为 1/8

6. 设
$$f(t) = \lim_{x \to \infty} \left[t \left(1 + \frac{1}{x} \right)^{2tx} \right]$$
, 则 $f'(t) = \underline{\text{e的2t次+2t*e的2t次}}$

8. 己知
$$f'(3) = 2$$
,则 $\lim_{h \to 0} \frac{f(3-h)-f(3)}{2h} = \frac{-1}{2h}$.

1. 已知
$$y = \ln(x + \sqrt{1 + x^2})$$
,则 $y'' = -x^*(1 + x 方)$ 的. -3/2次

2. $f(x) = \ln(2-3x)$ 的 10 阶导数是(C)

A.
$$\frac{-3^{10} \cdot 10!}{\left(2 - 3x\right)^{11}}$$

B.
$$\frac{3^{10} \cdot 10!}{(2-3x)^{11}}$$

c.
$$\frac{-3^{10} \cdot 9!}{(2-3x)^{10}}$$

A.
$$\frac{-3^{10} \cdot 10!}{(2-3x)^{11}}$$
 B. $\frac{3^{10} \cdot 10!}{(2-3x)^{11}}$ C. $\frac{-3^{10} \cdot 9!}{(2-3x)^{10}}$ D. $\frac{3^{10} \cdot 9!}{(2-3x)^{10}}$

1. 若函数 f(x) 在闭区间 [a,b] 上有定义,在开区间 (a,b) 内可导,则(\bigcirc

A.
$$\forall \xi \in (a,b)$$
,有 $\lim_{x \to \xi} [f(x) - f(\xi)] = 0$

B. 当
$$f(a)f(b) < 0$$
时, ∃ $\xi \in (a,b)$,使 $f(\xi) = 0$

C. 当
$$f(a) = f(b)$$
时, ∃ $\xi \in (a,b)$,使 $f'(\xi) = 0$

D.
$$\exists \xi \in (a,b)$$
, 使 $f(b) - f(a) = f'(\xi)(b-a)$

2. 函数 $y = \ln(1+x)$ 在区间[0,1]上满足拉格朗日中值定理的 ξ 为(\mathbb{C})

- A. ln 2
- B. $\frac{1}{\ln 2}$ C. $\frac{1}{\ln 2} 1$ D. $\frac{1}{2}$

3. 使函数 $f(x) = \sqrt{x^2 - x^4}$ 满足罗尔定理条件的区间(A)

- A. [0,1]
- B. [-1,1]
- C. [-2,1] D. [0,2]

函数 $f(x) = \frac{1}{x}$ 按 (x+1) 的幂展开的带有佩亚诺型余项的 n 阶泰勒展开式为

$$a_0 + a_1(x+1) + a_2(x+1)^2 + \dots + a_n(x+1)^n + o[(x+1)^n], \quad \emptyset \quad a_2 \cong \Xi$$

- D. 1

10. 设在[0,1]上f''(x) > 0,则f'(0), f'(1), f(1) - f(0)或f(0) - f(1)几个数的大小顺

序为(B)

A.
$$f'(1) > f'(0) > f(1) - f(0)$$

A.
$$f'(1) > f'(0) > f(1) - f(0)$$
 B. $f'(1) > f(1) - f(0) > f'(0)$

$$f(1) - f(0) > f'(1) > f'(0)$$

C.
$$f(1)-f(0) > f'(1) > f'(0)$$
 D. $f'(1) > f(0)-f(1) > f'(0)$

1. 设 f(x) 在 x = 0 的某邻域内连续,且 f(0) = 0, $\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = -1$,则在点 x = 0 处

 $f(x) \in \mathbb{C}$

- A. 不可导 B. 可导且 $f'(0) \neq 0$ C. 取得极大值 D. 取得极小值

2. 设
$$f(x)$$
的导数在 $x = a$ 处连续,又 $\lim_{x \to a} \frac{f'(x)}{x - a} = -1$,则(B)

A.
$$x = a \not\in f(x)$$
 的极小值点

B.
$$x = a \in f(x)$$
 的极大值点

C.
$$x = a$$
 不是 $f(x)$ 的极值点

D.
$$(a, f(a))$$
 是曲线 $y = f(x)$ 的拐点

3. 设函数
$$f(x)$$
 有二阶连续导数,且 $f'(0) = 0$, $\lim_{x \to 0} \frac{f''(x)}{|x|} = 1$,则(C)

A.
$$f(0)$$
是 $f(x)$ 的极大值

B.
$$(0, f(0))$$
 是曲线 $y = f(x)$ 的拐点

C.
$$f(0)$$
是 $f(x)$ 的极小值

4. 曲线
$$y = \frac{x^2}{3x+1}$$
 的斜渐近线方程为 $Y = (1/3)X - 1/9$ ______.

5. 若曲线
$$y = x^3 + ax^2 + bx + 1$$
 有拐点 $\left(-1,0\right)$,则 $a = \frac{3}{2}$, $b = \frac{3}{2}$

$$\int f'(x)dx = f(x)$$

B.
$$\int df(x) = f(x)$$

$$A. \int df(x) = f(x)$$

$$B. \int f'(x) dx = f(x)$$

3. 在下列等式中,正确的结果是(
$$C$$
)

A. $\int f'(x)dx = f(x)$

B. $\int df(x) = f(x)$

C. $\frac{d}{dx}\int f(x)dx = f(x)$

D. $d\int f(x) = f(x)$

D.
$$d\int f(x) = f(x)$$

$$C. \ d\left[\int f(x)dx\right] = f(x)$$

D.
$$\frac{d}{dx} \Big[\int f(x) dx \Big] = f(x)$$

2. 如果
$$\int df(x) = \int dg(x)$$
,则下列各式中不一定成立的是 (A)

$$A. \quad f(x) = g(x)$$

B.
$$f'(x) = g'(x)$$

$$d \left[f(x) \right] = d \left[g(x) \right]$$

C.
$$d[f(x)] = d[g(x)]$$
 D. $d[f'(x)]dx = d[g'(x)]dx$

3. 若
$$f(x)$$
的导函数为 $\sin x$,则 $f(x)$ 的一个原函数是(B)

$$\lambda. 1 + \sin x$$

B.
$$1-\sin x$$

B.
$$1 - \sin x$$
 C. $1 + \cos x$ D. $1 - \cos x$

D.
$$1-\cos x$$

4. 设积分族
$$y = \int f(x)dx$$
 中有倾斜角为 $\frac{\pi}{4}$ 的直线,则 $y = f(x)$ 的图形是(C)

A. 平行于
$$y$$
 轴的直线 B. 抛物线 C. 平行于 x 轴的直线

5. 若
$$\int f(x)dx = \arccos 2x + C$$
,则 $f(x) = \frac{-2/(根号1-4x方)}{}$

6 设
$$\int f(x)dx = xe^x - e^x + C$$
,则 $\int f'(x)dx = \underline{x^*e的x方+c}$.

7. 设
$$\int f(x)dx = \sin x + C$$
 , 则 $\int \frac{f(\arcsin x)}{\sqrt{1-x^2}} dx = \frac{X+C}{x}$

8. 设
$$e^{x^2}$$
 是函数 $f(x)$ 的一个原函数,则不定积分 $\int f'(x)dx = \frac{2x^*e h(x平方) 次+c}{}$.

I. 若
$$\int \frac{f'(\ln x)}{x} dx = x + C$$
,则 $f(x) = (A)$

Q. 设
$$\int \frac{f'(\sqrt{x})}{\sqrt{x}} dx = e^x + C$$
,则 $f(x) = \underline{\text{(e的 (x方) 次)/2+c}}$.

3. 若
$$\int f(x)dx = x^2 + C$$
,则 $\int x f(1-x^2)dx = \frac{(-1/2) * ((1-x方) 的平方)}{} + c$

② 已知函数
$$f(x)$$
的一个原函数是 $\sin 2x$,则 $\int 2xf(x)dx = \frac{2x\sin x + \cos 2x + c}{2x\sin x + \cos 2x + c}$.

已知
$$F(x)$$
 是 $\cos x$ 的一个原函数, $F(0)=0$,则 $\int xF(x)dx = \frac{-\mathsf{XCOSX} + \mathsf{sinX} + \mathsf{C}}{}$.

A.
$$\frac{d}{dx} \int_{a}^{b} f(x) dx = f(x)$$

B.
$$\frac{d}{dx} \int_{a}^{x} f(x) dx = f(x)$$

C.
$$\frac{d}{dx} \int_{x}^{b} f(x) dx = f(x)$$

$$D. \int f'(x)dx = f(x)$$

2. 设
$$f(x)$$
在 $[a,b]$ 上连续是 $f(x)$ 在 $[a,b]$ 上可积的(A)条件

B. 必要非充分 C. 充分必要

D. 既非充分又非必要

3. 函数
$$y = \int_0^{x^2} (t-1)e^t dt$$
 有极大值点(D)

A. x = 1

B. x = -1 C. $x = \pm 1$

D. x = 0

4. 已知
$$\int_{1}^{x} f(t^{2}) dt = x^{3}$$
 , 则 $\lim_{x \to 0} \frac{f(x)}{\sin x} = (C)$

D. 0

5. 当
$$x \to 0$$
 时, $\int_0^x \sin t^2 dt \, dt \, dt \, dt \, dt \, dt$)

A. 高阶无穷小

B. 低阶无穷小 C.等价无穷小 D. 同阶非等价无穷小

7. 已知
$$\int \frac{f(x)}{\sqrt{9-x^2}} dx = x + C$$
,则 $\int_0^3 \frac{dx}{f(x)} = \frac{\text{PI/2}}{}$

1. 设f(x)连续,则在下列变上限积分定义的函数中,必为偶函数的是(B)

A.
$$\int_0^x t \Big[f(t) - f(-t) \Big] dt$$
 B.
$$\int_0^x t \Big[f(t) + f(-t) \Big] dt$$

B.
$$\int_{0}^{x} t \left[f(t) + f(-t) \right] dt$$

C.
$$\int_{0}^{x} f(t^2) dt$$

D.
$$\int_{a}^{x} \left[f(t) \right]^{2} dt$$

D.
$$\int_0^x \left[f(t)\right]^2 dt$$
 2. 对反常积分 $\int_2^{+\infty} \frac{dx}{x^p}$,下列结论正确的是($\frac{\mathbb{C}}{}$)

A.
$$p=1$$
时该反常积分收敛

B.
$$p ≥ 1$$
时该反常积分发散

C.
$$p > 1$$
时该反常积分收敛

D.
$$p < 1$$
时该反常积分收敛

A.
$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$$
 B. $\int_{-1}^{1} \frac{dx}{x^2}$ C. $\int_{e}^{+\infty} \frac{dx}{x \ln^2 x}$ D. $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$

B.
$$\int_{-1}^{1} \frac{dx}{x^2}$$

$$C. \int_{e}^{+\infty} \frac{dx}{x \ln^2 x}$$

$$D. \int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$

1. 曲线 $y = e^{-x} \sin x (0 \le x \le 3\pi)$ 与 x 轴所围成的面积可表示为(D)

A. $-\int_0^{3\pi} e^{-x} \sin x dx$ B. $\int_0^{2\pi} e^{-x} \sin x dx - \int_{2\pi}^{3\pi} e^{-x} \sin x dx$

C. $\int_0^{3\pi} e^{-x} \sin x dx$ D. $\int_0^{\pi} e^{-x} \sin x dx - \int_{\pi}^{2\pi} e^{-x} \sin x dx + \int_{2\pi}^{3\pi} e^{-x} \sin x dx$

2. 设f(x),g(x)在区间[a,b]上连续,且f(x)>g(x)>0,则由y=f(x),y=g(x),

不考x=a,x=b 所围图形绕x轴旋转一周而成的体积可表为定积分<u>(b上-a下)</u>(pi*[f(x)方₋g(x)方])dx

学号: 姓名:

1. 微分方程 $y' = 3y^{\frac{2}{3}}$ 的一个特解是

(D)

A. $y = (x+C)^2$ B. $y = x^3 + 1$ C. $y = C(1+x)^3$ D. $y = (x+2)^3$

2. 微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0) = 0 的解为 (e的-x次) *sinx 。

3. 设函数 f(x) 在定义域 I 上的导数大于零,若对任意的 $x_0 \in I$, 曲线 y = f(x) 在