MATH 3472.

We saw last day that $D_{i,2}f(\bar{c}) = D_{2,i}f(\bar{c})$ for $f:\mathbb{R}^2 \longrightarrow \mathbb{R}$, and in general $D_{r,\kappa}f(\bar{c}) = D_{\kappa,r}f(\bar{c})$

for $f:\mathbb{R}^n \to \mathbb{R}^m$, in both cases assuming suitable restrictions on f.

This means that of $D_{r,r}f(\hat{c})$, $D_{r,n}f(\hat{c})$, $D_{k,r}f(\hat{c})$ and $D_{k,k}f(\hat{c})$, only three are distinct.

In general, for higher-order partials $D_{r_1,...,r_k}$ there are fewer distinct partials than our notation would lead one to believe, as when f is "sufficiently nice" the order of the indices $r_1,...,r_k$ does not matter. Thus if $f:\mathbb{R}^n \longrightarrow \mathbb{R}^m$, and l>0, there are in general n! = C(n,l) partial derivatives (n-k)!l!

of order l.

\$ 12.14

We have been calling $f(\vec{c}_1\vec{v}) = f(\vec{c}) + T_c(\vec{v}) + ||\vec{v}|| E(\vec{v})$

"Taylor's formula". Recall Taylor's formula for hunchons $f: R \to R$ is as follows:

Theorem 5.19 Suppose $f^{(n)}$ is defined on (a,b) and $f^{(n-1)}$ is continuous on [a,b]. Assume $c \in [a,b]$. Then for every $x \in [a,b]$, $x \neq c$, $f \times_1$ between x and c such that $f(x) = f(c) + \sum_{k=1}^{n-1} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n)}(x)}{n!} (x-c)^n.$

So it is reasonable to ask: To what extent can our generalized higher-dimensional Taylor formula be extended to approximate f using higher-order derivatives?

Suppose $f:\mathbb{R}^n \longrightarrow \mathbb{R}$, Defined special symbols f''(x;t), f'''(x;t), ..., $f^{(m)}(x;t)$

to deal with the complicated formulas that arise:

Suppose $\tilde{x} \in \mathbb{R}^n$ is a point where all second-order partial derivatives exist, and $t \in \mathbb{R}^n$ is arbitrary. Define

 $f''(x,t) = \sum_{i=1}^{n} \sum_{j=1}^{n} D_{i,j} f(x) t_{j} t_{i}$ where $t = (t_{1},...,t_{n})$.

Similarly set
$$f'''(\bar{x};\bar{t}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^$$

where 0 < 0 < 1. This comes from X=1 c=0 in the Taylor formula previously given. We can think of of as a composite morder to compute its derivatives in terms of the derivatives of f, namely g(t) = f(p(t)), where $p: \mathbb{R} \longrightarrow \mathbb{R}^n$ is the function $p(t)=\overline{a}+t(\overline{b}-\overline{a})$. Then $p=(p_1,\dots,p_n)$, where Pk(t) = ak + t(bk-ak) and thus pk(t) = bk-ak. Therefore by the chain rule $g'(t) = \sum_{j=1}^{n} D_{j} f(p(t))(b_{j} - a_{j}) = f'(p(t)_{j} b_{j} - \bar{a})$ applying the chain rule again, each term Dif(p(t))(bj-aj) yields $(b_j-a_j) \stackrel{\text{2}}{\underset{\text{in}}{\sum}} D_{i,j} f(p(t)) (b_j-a_i)$ So that overall $g''(t) = \hat{Z}' \hat{Z}' \hat{D}_{i,j} f(p(t)) (b_j - a_j) (b_i - a_i) = f''(p(t)_j b_j - a_j)$ Similarly we find g(m)(t) = f(m)(p(t); t-a) for all m. Substitute these values into the 1-dimensional Taylor formula for g in order to obtain the theorem.

\$13.1:

Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is given by some formula, and f(x;t)=0 is used to define some set in \mathbb{R}^2 .

Q: Does the set $\{(x;t) \in \mathbb{R}^2 \mid f(x;t) = 0\}$ define a function x = g(t)?

Example: (Wikipedia). Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ if $f(x_1y) = x^2 + y^2 - 1$. Then $f(x_1y) = 0 \iff x^2 + y^2 = 1$ So $\{(x_1y) \mid f(x_1y) = 0\}$ is a circle.

This does not define the graph of a function, however for each point (x,y) on the circle, if -1 < x < 1 and (x,y) is on the upper half, then

 $g_1(x) = \sqrt{1-x^2}$

provides a function whose graph locally agrees with $f(x_1y) = 0$. If $(x_1y) = 0$ on the lower half, $g_2(x) = -\sqrt{1-x^2}$ provides a function whose graph locally agrees with $f(x_1y) = 0$.

Thus for all (x_{iy}) in $\{f(x_{iy})=0\}$ $\{(-1,0),(1,0)\}$ there is a fung function g(x) and an open set U with $(x_{iy}) \in U$ such that

(x,y) = (x,g(x)) for all (x,y) in $\{f(x,y)=0\} \cap U$.

The purpose of the implicit function theorem will be to gives us functions like $g_1(x)$, $g_2(x)$ that locally define $f(x_1,...,x_n)=0$ as a graph-even when we cannot compute formulas explicitly as in the previous example.

Example: Consider the system of linear equations $\tilde{\Xi}(a_{ij} x_{j} = t_{i} \quad (i=1,...,n)$

This & system has a unique solution iff det [aij] +0.

Each equation in the system can be rewritten as

$$f_i(\bar{x}, \bar{t}) = \sum_{j=1}^{n} a_{ij} x_j - t_j = 0$$

where $\vec{x} = (x_1, ..., x_n)$ and $\vec{t} = (t_1, ..., t_n)$.

So the system in its entirety is captured by setting $f = (f_1, ..., f_n)$ and writing the vector equation

 $f(\bar{x},\bar{t}) = \bar{0}$

Since $D_j f_i(\bar{x}, \bar{t}) = a_{jj}$, the Jacobian of $f(\bar{x}, \bar{t})$ is just the coefficient matrix of the corresponding system of equations. If the Jacobian is J_j , and is invertible with inverse J_j^{-1} , then (so det $J \neq 0$)

the solution to the system $\vec{x} = \vec{J} \cdot \vec{t}$

so the solutions to $f(\bar{x},\bar{t})=0$ can be expressed as points $(J'\bar{t},\bar{t})$.

In general, nonzero Jacobian determinant these at a point $\tilde{c} \in \mathbb{R}^n$ turns out to be the essential ingredient in finding a set around \tilde{c} and a function \tilde{g} such that the points hear \tilde{c} satisfying $f(\tilde{x},\tilde{t})=0$ can be expressed as (g(t),t). This example certainly shows that $\det J\neq 0$ is necessary, but it will turn out to be sufficient as well

Notation: If $f = (f_1, ..., f_k)$ and $\tilde{x} = (x_1, ..., x_n)$, then $Df(\tilde{x}) = [D_j f_i(\tilde{x})]$ is a square matrix. Its determinant is called the Tacobian determinant of f at \tilde{x} and is denoted $J_f(\tilde{x})$.

\$13.2: Functions with nonzero Jacobian determinant.

We prepare several lemmas and properties of functions with nonzero Jacobian determinant in order to use them later.

Theorem: Let $B(\bar{a},r) \subset \mathbb{R}^n$ be a ball of radius r>0 centred at $\bar{a} \in \mathbb{R}^n$. Write $\partial B = \{\bar{x} \mid \|\bar{x} - \dot{a}\| = r\}$ for the boundary of $B(\bar{a},r)$, and let $\bar{B} = B \cup \partial B$ (the closure).

Suppose $f = (f_1, ..., f_n)$ is continuous on B, and that $D_j f_i(\bar{x})$ exists $\forall \bar{x} \in B$. Further assume that $f(\bar{x}) \neq f(\bar{a})$ $\forall \bar{x} \in \partial B$ and that $J_f(\bar{x}) \neq 0$ $\forall \bar{x} \in B$.

Then f(a) is in the interior of f(B).

Proof: Define g: BB - R as follows:

 $g(\vec{x}) = \|f(\vec{x}) - f(\vec{a})\|.$ Then $g(\vec{x}) > 0$ for all $\vec{x} \in \partial B$ since f does not map ∂B to the same point as \vec{a} , and g is continuous because f is continuous on ∂B .

Now since of is a continuous function with compact domain, so it attains a minimum m>0 somewhere on DB. Set $T = B(f(\vec{a}); \frac{m}{2})$. We'll see TCf(B), which proves the theorem. So let yET, and define a function h: B -> R by $h(x) = \|f(x) - j\| \quad \forall x \in B.$ Then h is also a function with compact domain and minimum is attained on B (not on 2B). First observe that plugging a into h yields h(a) = ||f(a)-y|| < m/2 since yeT, so whatever the minimum of h is, it must be smaller than 1/2. On the other hand, plugging in an arbitrary point & on dB gives $h(\vec{x}) = ||f(\vec{x}) - \hat{y}||$ $= \|f(\vec{x}) - \hat{y} - f(\hat{a}) + f(\hat{a})\|$ $= \|f(\bar{x}) - f(\bar{a})\| - \|f(\bar{a}) - \bar{y}\| > g(x) - \frac{m}{2} \ge \frac{m}{2},$ so h(x) does not attain its minimum on DB. Let c∈B denote the point where hattains a minimum. We will show that $f(\hat{c}) = \hat{y}$, so that $\hat{y} \in f(B)$.

Since ig was an arbitrary point in T, this shows TCB and completes the proof. To see this, note h(x)2 also has a nunimum at c, $h(\dot{x})^2 = \|f(x) - \dot{y}\|^2 = \sum_{r=1}^{n} (f_r(\dot{x}) - y_r)^2 \text{ where } \\ \dot{y} = (y_1, ..., y_n).$ The partial derivatives $D_k h^2$ must be zero at \bar{c} , since \bar{c} is a minimum, so plugging in \bar{c} above and deriving. $2Z(f_r(\hat{c}) - y_r)D_kf_r(\hat{c}) = \vec{0}$, for k=1,...,n. So we have a system of equations Considering the system of equations

 $O = \sum_{i} b_{ki} D_{k} f_{r}(\tilde{c}), \text{ for } k=1,...,n$

since the coefficient matrix is the Jacobian at c, and we assumed $J_f(\vec{c}) \neq 0$ (as $\vec{c} \in B$), there is a unique solution: b= 0 Yk.

Thus we have $f_r(\tilde{c}) = y_r$ for all r, in other words $f(\tilde{c}) = \tilde{y}$ and $\tilde{y} \in f(B)$ as claimed.

So if the Jacobian is nonzero in the ubhal of a point, the function very roughly "maps open balls to something with nonempty interior". But in fact, we get more if we ask for nonzero Tacobian on a set:

Next, we'll see that $J_{\beta}(x) \neq 0$ actually forces f to be one-to-one and open, but we will save this investigation for after the break.