Admission to Candidacy Examination in Real Analysis August 20, 1984

Notation and Terminology: m = Lebesgue measure on \mathbb{R} . The word "measurable" applied to a set or a function means "Lebesgue measurable". All integrals are to be interpreted as Lebesgue integrals. Finally, L^p denotes the usual space of functions defined on [0,1].

If Aug

- Let X be a compact metric space, Y be a metric space, and f: X + Y be a continuous function.
 - (a) Prove that if C is an open cover of X, then there exists a $\delta > 0$ such that for each $x \in X$ there is a U \in C with $B(x,\delta) \subset U$.
 - (b) Prove that f is uniformly continuous.
- 2. Prove that the metric space L is separable.
- 3. Let f be a bounded measurable function defined on a measurable set E. Prove that for each $\varepsilon>0$ there exists a simple function s on E such that

 $|f(x) - s(x)| < \varepsilon$ for each $x \in E$.

- 4. Let E be a measurable set of finite measure, and let (f_n) be a sequence of real-valued measurable functions on E. Suppose $f(x) = \lim_{n \to \infty} f_n(x)$ exists and is finite a.e. on E.
 - (a) Prove that for given $\varepsilon > 0$ and $\delta > 0$, there exists a measurable set $A \subseteq E$ with $m(A) < \delta$ and an integer N such that $\left| f_n(x) f(x) \right| < \varepsilon \text{ when } x \in E A \text{ and } n \ge N.$
 - (b) Prove Egoroff's Theorem: Given $\delta>0$ there exists a measurable set $A\subseteq E$ with $m(A)<\delta$ such that (f_n) converges to f uniformly on E-A.
- 5. Let (f_n) be a sequence of measurable functions on \mathbb{R} , and let f be an integrable function on \mathbb{R} . Suppose that for each n, and that for each finite interval I, $\int_I f_n \to 0$. Prove that $\int_{\mathbb{R}} f_n \to 0$.

6. Let E be a measurable subset of [0,1], and define $F(x) = m(E \cap [0,x])$ for each $x \in [0,1]$. Prove that F is differentiable a.e. and that for a.e. $x \in [0,1]$

$$F'(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

7. Let (f_n) be a sequence of measurable functions on a measurable set E, and let g be an integrable function on E. Suppose that for each n, $f_n \leq g$ a.e. and that $f_n \rightarrow f$ a.e. Prove that

$$\overline{\lim} \int_{E} f_{n} \leq \int_{E} f$$
.

8. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Suppose $g \in L^1$ and there is a constant M such that for each simple function $s = \frac{1}{0} |g| \leq M||s||_p$.

Prove that $g \in L^q$ and $||g||_q \leq M$.

- 9. True or False. Either prove the statement or give a counterexample.
 - (a) If $f: [a,b] \to \mathbb{R}$ is increasing and continuous, $E \subseteq [a,b]$ and m(E) = 0, then m(f(E)) = 0.
 - (b) If (f_n) is a sequence of measurable functions on $\mathbb R$ and $f_n \to f$ a.e. then $f_n \to f$ in measure.
 - (c) Given $\epsilon > 0$ there exists a closed nowhere dense set E with $m(R-E) \leq \epsilon$.