MAS439 Lecture 3 Subrings

October 5th

Today we discuss subrings, tomorrow we discuss ideals

Let $\varphi: R \to S$ be a ring homomorphism.

Definition (image)

$$\operatorname{Im}(\varphi) = \{ s \in S | s = \varphi(r) \text{ for some } r \in R \}$$

Definition (kernel)

$$\ker(\varphi) = \{r \in R | \varphi(r) = 0_S\}$$

- $ightharpoonup \operatorname{Im}(\varphi)$ is a *subring* of *S*, which we will discuss today.
- \blacktriangleright ker (φ) is an *ideal* of R, which we will discuss tomorrow.

Definition of a subring

Let R be a ring. A subset $S \subset R$ is a subring of R if

▶ *S* is closed under addition and multiplication:

$$r, s \in S$$
 implies $r + s, r \cdot s \in S$

- ▶ *S* is closed under additive inverses: $r \in S$ implies $-r \in S$.
- ▶ S contains the identity: $1_R \in S$

This is the *minimal* structure needed

But of course subrings are actually rings...

Subrings are rings

Lemma

Let S be a subring of R. Then S is a ring, with addition and multiplication inherited from R. If R is commutative, so is S.

Proof.

- ► Since *S* is closed under addition and multiplication, they're binary operations on *S*.
- Second two properties guarantee additive inverses and identities
- Since R is a ring, +, · satisfy associativity, distributivity, (commutativity)

First examples of subrings

- ▶ $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$ is a chain of subrings.
- ▶ if R any ring, $R \subset R[x] \subset R[x,y] \subset R[x,y,z]$ is a chain of subrings.

Another example

We have the chain of subrings

$$\mathbb{R} \subset \mathbb{R}[x] \subset C^{\infty}(\mathbb{R}, \mathbb{R}) \subset C(\mathbb{R}, \mathbb{R}) \subset \operatorname{Fun}(\mathbb{R}, \mathbb{R})$$

Where, working backwards:

- ightharpoonup Fun(\mathbb{R}, \mathbb{R}) is the space of all functions from \mathbb{R} to \mathbb{R}
- $ightharpoonup C(\mathbb{R},\mathbb{R})$ are the continuous functions
- $ightharpoonup C^\infty(\mathbb{R},\mathbb{R})$ are the *smooth* (infinitely differentiable) functions
- $ightharpoonup \mathbb{R}[x]$ are the polynomial functions
- lacktriangle We view ${\mathbb R}$ as the space of constant functions

Non-examples of subrings

- $ightharpoonup \mathbb{N} \subset \mathbb{Z}$ is not a ring, as it is not closed under additive inverses
- Let $\mathcal K$ be the set of continuous functions from $\mathbb R$ to itself with compact (equivalently, bounded) support. That is,

$$f \in \mathcal{K} \iff \exists M \text{ s.t. } |x| > M \implies f(x) = 0$$

Then ${\mathcal K}$ is not a ring as it doesn't contain the identity.

▶ Let $R = \mathbb{Z} \times \mathbb{Z}$, and let $S = \{(x, 0) \in R | x \in \mathbb{Z}\}$. Then S is a ring, but it is **not** a subring of R, as the identity of S is (1, 0), while the identity of R is (1, 1).

And our original example of a subring is in fact a subring

Lemma

Let $\varphi: R \to S$ be a homomorphism. Then $Im(\varphi) \subset S$ is a subring.

Proof.

We need to check $\text{Im}(\varphi)$ is closed under addition and multiplication and contains 1_S .

▶ Suppose $s_1, s_2 \in \text{Im}(\varphi)$. Then $\exists r_i \text{ with } \varphi(r_i) = s_i$. Then

$$s_1 + s_2 = \varphi(r_1) + \varphi(r_2) = \varphi(r_1 + r_2) \in \text{Im}(\varphi)$$

- Closed under multiplication is exactly the same.
- ▶ $1_S = \varphi(1_R) \in \operatorname{Im}(\varphi)$

- ♣ Let's all go to the lobby ♣
- Let's all go to the lobby →(2 minute intermission)

Motivation for generators from Group theory

When working with groups, we often write things down in terms of generators and relations.

Example

The dihedral group D_8 is the symmetries of the square. It is often written as

$$D_8 = \langle r, f | r^4 = 1, f^2 = 1, rf = fr^{-1} \rangle$$

Meaning that the group D_8 is generated by two elements, r and f, satisfing the relations $r^4 = 1$, $f^2 = 1$ and $rf = fr^{-1}$.

Groups from generators and relations

We often write down rings in a similar manner;

Example (Gaussian integers)

The Gaussian integers are written $\mathbb{Z}[i]$; they're generated by an element i satisfying $i^4 = 1$.

Example (Field with 4 element)

The field \mathbb{F}_4 of four elements can be written $\mathbb{F}_2[x]/(x^2+x+1)$ – to get \mathbb{F}_4 , we add an element x that satisfies the relationship $x^2+x+1=0$.

Idea of generating set

We start with an intuitive notion of what "the subring generated by T" should mean.

Attempted definition

Let $T \subset R$ be any subset of a ring. The subring generated by T, denoted $\langle T \rangle$, should be the smallest subring of R containing T.

This is not a good formal definition – what does "smallest" mean? Why is there a smallest subgring containing T?

Intersections of subrings are subrings

Lemma

Let R be a ring and I be any index set. For each $i \in I$, let S_i be a subring of R. Then

$$S = \bigcap_{i \in I} S_i$$

is a subring of R.

Proof.

Suppose $s_1, s_2 \in S$. Then by definition $s_1, s_2 \in S_j$ for all j. Hence $s_1 + s_2 \in S_j$ for all j, since S_j is a subring. So $s_1 + s_2 \in S$, and S is closed under addition.

The exact same argument shows S is closed under multiplication and contains the unit.

The proper definition of $\langle T \rangle$

Definition

Let $T \subset R$ be any subset. The *subring generated by* T, denoted $\langle T \rangle$, is the intersection of all subrings of R that contain T.

This agrees with our intuitive "definition"

 $\langle T \rangle$ is the smallest subring containing T in the following sense: if S is any subring with $T \subset S \subset R$, then by definition $\langle T \rangle \subset S$.

But it's all a bit airy-fairy

The definition may be good for proving things, but it doesn't tell us what, say $\langle \pi, i \rangle \subset \mathbb{C}$ actually looks like...

What *has* to be in $\langle \pi, i \rangle$?

Start with simple bits; use fact $\langle T \rangle$ is closed under operations...

- ▶ 1, π, *i*
- ▶ Sums of those; say, $5 + \pi$, 7*i*
- ▶ Negatives of those, say -7i
- Products of those, say $(5+\pi)^4 i^3$
- Sums of those, say $(5+\pi)^4+i^3$
- . . .

$$\left(\left((5+7i-\pi)^3+3\pi^2\right)\cdot(-2+\pi i)+\pi^3-i\right)^{27}$$

Of course, could expand that out into just sums of terms like $\pm \pi^m i^m \dots$

Definition

Let $T \subset R$ be any subset. Then a monomial in T is a (possibly empty) product $\prod_{i=1}^n t_i$ of elements $t_i \in T$. We use M_T to denote the set of all monomials in T.

The empty product is the identity 1_R , and so $1_R \in M_T$.

Lemma

 $\langle T \rangle = X_T$, where X_T consists of those elements of R that are finite sums of monomials in T or their negatives. That is:

$$X_T = \left\{ \sum_{k=0}^n \pm m_k \middle| m_k \in M_T \right\}$$

Proof.

- ▶ $X_T \subset \langle T \rangle$ since everything in X_T is built up from T by multiplying, adding, and taking negatives, and $\langle T \rangle$ contains T and is a closed under this operations.
- ▶ $\langle T \rangle \subset X_T$ since X_T is a subring containing T. X_T clearly contains T and is closed under addition and negatives, and it's closed under products by the distributive property.

Generating sets for rings

Definition

We say that a ring R is generated by a subset T if $R = \langle T \rangle$. We say that R is *finitely generated* if R is generated by a finite set.

Examples of generating sets

- $ightharpoonup \mathbb{Z} = \langle \emptyset \rangle$
- $ightharpoonup \mathbb{Z}/n\mathbb{Z} = \langle \emptyset \rangle$
- $ightharpoonup \mathbb{Z}[x] = \langle x \rangle$

Some of your best friends are not finitely generated

- ► The rationals Q are not finitely generated: any finite subset of rational numbers has only a finite number of primes appearing in their denominator.
- ► The real and complex numbers are uncountably; a finitely generated ring is countable

A subring of a finitely generated ring need not be finitely generated

We've seen that $\mathbb{Z}[x] = \langle x \rangle$ and so is finitely generated.

$$S = \{a_0 + 2a_1x + \cdots + 2a_nx^n\}$$

that is, S consists of polynomials all of whose coefficients, except possibly the constant term, are even.