# Iterative label cleaning for transductive and semi-supervised few-shot learning

Michalis Lazarou<sup>1</sup>, Tania Stathaki<sup>1</sup> and Yannis Avrithis<sup>2</sup>

<sup>1</sup>Imperial College London, <sup>2</sup>Inria, Univ Rennes, CNRS, IRISA

**ICCV 2021** 

Virtual, October 2021



## **Motivation**

• What is few-shot learning?









?

## **Contributions**

#### Previous state of the art

- Meta-learning
- Transfer learning
- Domain adaptation
- Synthetic data generation

#### Contributions

- Novel algorithm that consists of three modules:
  - Label propagation
  - Class balancing
  - Label cleaning

### **Contributions**

#### Previous state of the art

- Meta-learning
- Transfer learning
- Domain adaptation
- Synthetic data generation

#### **Contributions**

- Novel algorithm that consists of three modules:
  - Label propagation
  - Class balancing
  - Label cleaning

## **Problem formulation and definitions**

#### **Pre-training**

- We use publicly available pre-trained networks from published works
- Base class dataset:  $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^I$  where  $y_i \in C_{\text{base}}$
- ullet Embedding network  $f_{ heta}: \mathcal{X} 
  ightarrow \mathbb{R}^d$  is trained on  $D_{\mathrm{base}}$

#### Inference stage

- We focus on transductive and semi-supervised few-shot learning
- Novel class dataset  $D_{
  m novel}$  with  $C_{
  m novel}$  disjoint from  $C_{
  m base}$
- Assume access to  $f_{\theta}$ , a support set, S, a query set, Q and in the semi-supervised setting also an unlabelled set, U

## **Problem formulation and definitions**

#### **Pre-training**

- We use publicly available pre-trained networks from published works
- Base class dataset:  $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^I$  where  $y_i \in C_{\text{base}}$
- Embedding network  $f_{\theta}: \mathcal{X} \to \mathbb{R}^d$  is trained on  $D_{\mathrm{base}}$

#### Inference stage

- We focus on transductive and semi-supervised few-shot learning
- Novel class dataset  $D_{
  m novel}$  with  $C_{
  m novel}$  disjoint from  $C_{
  m base}$
- Assume access to  $f_{\theta}$ , a support set, S, a query set, Q and in the semi-supervised setting also an unlabelled set, U

## Iterative label cleaning: Nearest-neighbour graph



## Iterative label cleaning: Label propagation

2. Nearest neighbour graph

3. Label propagation



## Iterative label cleaning: Class balancing



## Iterative label cleaning: Label cleaning

4. Class balancing

5. Label cleaning

6. Augment support set



## Iterative label cleaning: Iterative inference



#### **Label propagation**

| Inference                               | RESNET-12A                                                               |                               | WRN-28-10                        |                                  |  |
|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------------------------|----------------------------------|--|
|                                         | 1-shot                                                                   | 5-shot                        | 1-shot                           | 5-shot                           |  |
| Inductive classifier  Label Propagation | $56.30{\scriptstyle \pm 0.62} \\ \textbf{61.09} {\scriptstyle \pm 0.70}$ | <b>75.59</b> ±0.47 75.32±0.50 | 68.17±0.60<br><b>74.24</b> ±0.68 | <b>84.33</b> ±0.43<br>84.09±0.42 |  |

• Exploit the manifold structure of the data

#### **Class balancing**

| BALANCING | Network   | mini <b>I</b> MAGENET                |                                | tiered[mageNet                 |                                |
|-----------|-----------|--------------------------------------|--------------------------------|--------------------------------|--------------------------------|
|           |           | 1-shot                               | 5-shot                         | 1-shot                         | 5-shot                         |
| None      | WRN-28-10 | $78.06{\scriptstyle\pm0.82}$         | 87.80±0.42                     | 86.04±0.73                     | 90.74±0.46                     |
| True      | WRN-28-10 | $\pmb{82.68} \scriptstyle{\pm 0.82}$ | $89.07 \scriptstyle{\pm 0.41}$ | $89.17 \scriptstyle{\pm 0.70}$ | $92.67 \scriptstyle{\pm 0.44}$ |

• Incorporate prior information and search for a transport plan

## **Label cleaning**





#### Iterative procedure

| Inference                      | RESNET-12A                                                       |                                                                         | WRN-28-10                                                                 |                                  |  |
|--------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|--|
|                                | 1-shot                                                           | 5-shot                                                                  | 1-shot                                                                    | 5-shot                           |  |
| Non-iterative iterative (iLPC) | $65.04{\scriptstyle \pm 0.75}\atop 69.79{\scriptstyle \pm 0.99}$ | $76.82 \scriptstyle{\pm 0.50} \\ \textbf{79.82} \scriptstyle{\pm 0.55}$ | $79.42{\scriptstyle \pm 0.69}\atop \textbf{83.05}{\scriptstyle \pm 0.79}$ | 85.34±0.43<br><b>88.82</b> ±0.42 |  |

• Iterative selection of the most likely correctly classified queries

# **Experimental results**

#### **Transductive experiments**

| МЕТНОО                                    | Network                             | miniIMA                      | GENET                        | tieredImageNet                                                                                           |            |  |
|-------------------------------------------|-------------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------|------------|--|
|                                           |                                     | 1-shot                       | 5-shot                       | 1-shot                                                                                                   | 5-shot     |  |
| LR+ICI [63] iLPC (ours)                   | ResNet-12A<br>ResNet-12A            |                              |                              |                                                                                                          |            |  |
| PT+MAP [19]<br>LR+ICI [63]<br>iLPC (ours) | WRN-28-10<br>WRN-28-10<br>WRN-28-10 | $80.61{\scriptstyle\pm0.80}$ | $87.93{\scriptstyle\pm0.44}$ | $88.15{\scriptstyle \pm 0.71}\atop 86.79{\scriptstyle \pm 0.76}\atop \pmb{88.50}{\scriptstyle \pm 0.75}$ | 91.73±0.40 |  |

State of the art results

## **Experimental results**

#### Transductive experiments with more unlabeled queries

| Метнор      | Network   | miniIMA                        | AGENET                         | tieredImageNet                 |                              |  |
|-------------|-----------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--|
|             |           | 1-shot                         | 5-shot                         | 1-shot                         | 5-shot                       |  |
| LR+ICI [63] | WRN-28-10 | 82.38±0.86                     | 88.78±0.39                     | 88.59±0.74                     | 92.11±0.39                   |  |
| PT+MAP [19] | WRN-28-10 | $83.79{\scriptstyle\pm0.71}$   | $88.94 \scriptstyle{\pm 0.33}$ | $88.87{\scriptstyle\pm0.64}$   | $92.01{\scriptstyle\pm0.36}$ |  |
| iLPC (ours) | WRN-28-10 | $85.98 \scriptstyle{\pm 0.74}$ | $90.54 \scriptstyle{\pm 0.31}$ | $90.02 \scriptstyle{\pm 0.70}$ | $92.94 \pm 0.37$             |  |

• The performance gap from the other methods increases significantly because our method exploits the manifold structure of the data

# **Experimental results**

#### **Semi-supervised experiments**

| Метнор      | Network    | Split | miniImageNet                            |                                | tiered[mageNet                 |                    |
|-------------|------------|-------|-----------------------------------------|--------------------------------|--------------------------------|--------------------|
|             |            |       | 1-shot                                  | 5-shot                         | 1-shot                         | 5-shot             |
| LR+ICI [63] | ResNet-12A | 30/50 | $67.57{\scriptstyle\pm0.97}$            | $79.07{\scriptstyle\pm0.56}$   | 83.32±0.87                     | 89.06±0.51         |
| iLPC (ours) | ResNet-12A | 30/50 | $\textbf{70.99}{\scriptstyle \pm 0.91}$ | <b>81.06</b> ±0.49             | <b>85.04</b> ±0.79             | 89.63±0.47         |
| LR+ICI [63] | WRN-28-10  | 30/50 | 81.31±0.84                              | 88.53±0.43                     | 88.48±0.67                     | 92.03±0.43         |
| PT+MAP [19] | WRN-28-10  | ,     |                                         | $88.95{\scriptstyle\pm0.38}$   |                                |                    |
| iLPC (ours) | WRN-28-10  | 30/50 | $83.58 \scriptstyle{\pm 0.79}$          | $89.68 \scriptstyle{\pm 0.37}$ | $89.35 \scriptstyle{\pm 0.68}$ | $92.61_{\pm 0.39}$ |

• State of the art results



# Thank you!

https://github.com/MichalisLazarou http://www.commsp.ee.ic.ac.uk/~tania/ https://avrithis.net