For another example of the use of Einstein's notation, if the vectors (v_1, \ldots, v_n) are linear combinations of the vectors (u_1, \ldots, u_n) , with

$$v_i = \sum_{j=1}^n a_{ij} u_j, \quad 1 \le i \le n,$$

then the above equations are written as

$$v_i = a_i^j u_i, \quad 1 \le i \le n.$$

Thus, in Einstein's notation, the $n \times n$ matrix (a_{ij}) is denoted by (a_i^j) , a (1,1)-tensor.

Beware that some authors view a matrix as a mapping between *coordinates*, in which case the matrix (a_{ij}) is denoted by (a_i^i) .

11.2 Pairing and Duality Between E and E^*

Given a linear form $u^* \in E^*$ and a vector $v \in E$, the result $u^*(v)$ of applying u^* to v is also denoted by $\langle u^*, v \rangle$. This defines a binary operation $\langle -, - \rangle \colon E^* \times E \to K$ satisfying the following properties:

$$\langle u_1^* + u_2^*, v \rangle = \langle u_1^*, v \rangle + \langle u_2^*, v \rangle$$
$$\langle u^*, v_1 + v_2 \rangle = \langle u^*, v_1 \rangle + \langle u^*, v_2 \rangle$$
$$\langle \lambda u^*, v \rangle = \lambda \langle u^*, v \rangle$$
$$\langle u^*, \lambda v \rangle = \lambda \langle u^*, v \rangle.$$

The above identities mean that $\langle -, - \rangle$ is a bilinear map, since it is linear in each argument. It is often called the *canonical pairing* between E^* and E. In view of the above identities, given any fixed vector $v \in E$, the map $\operatorname{eval}_v : E^* \to K$ (evaluation at v) defined such that

$$\operatorname{eval}_v(u^*) = \langle u^*, v \rangle = u^*(v)$$
 for every $u^* \in E^*$

is a linear map from E^* to K, that is, eval_v is a linear form in E^{**} . Again, from the above identities, the map $\operatorname{eval}_E : E \to E^{**}$, defined such that

$$\operatorname{eval}_{E}(v) = \operatorname{eval}_{v} \quad \text{for every } v \in E,$$

is a linear map. Observe that

$$\operatorname{eval}_E(v)(u^*) = \operatorname{eval}_v(u^*) = \langle u^*, v \rangle = u^*(v), \text{ for all } v \in E \text{ and all } u^* \in E^*.$$

We shall see that the map $eval_E$ is injective, and that it is an isomorphism when E has finite dimension.