Unit-2

(2)
$$y_{n} = (-1)^n \cdot n! \cdot 2^{n-1} \left[\frac{1}{(2x-1)^{n+1}} + \frac{1}{(2x+3)^{n+1}} \right]$$

- (3.) $y_{n=(-1)^n} n^{\frac{1}{2}} \left(\frac{1}{(1+x)^{n+1}} \frac{2^n}{(2x+1)^{n+1}} \right)$
- (5) yn=(-1) (n-1) o sino sinno, where 0 = lan (x)
 - (T) yn= (n-1)!
 - (12) when n is even, $y_n(0) = (-1)^n \cdot 2 \cdot 2^n \cdot 4^n \cdot 6^n (n-2)^n$ n is odd $y_n(0) = 0$
 - (13) n is even, $y_n(0) = 0$ n is odd, $y_n(0) = 1^2 \cdot 3^2 \cdot 5^2 - - (n-2)^2$
 - (1) $y_n = \frac{1}{4} \left(q^n \sin(4xt) \frac{nn}{2} + 2^n \sin(2xt) \frac{n}{2} \right) 6^n \sin(6xt)$