Foundations of Machine Learning Al2000 and Al5000

FoML-23 Neural Networks - UAT

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - a. Linear Regression with basis functions (regularization, model selection)
 - b. Bias-Variance Decomposition (Bayesian Regression)
 - c. Decision Theory three broad classification strategies
 - Probabilistic Generative Models Continuous & discrete data
 - (Linear) Discriminant Functions least squares solution, Perceptron
 - Probabilistic Discriminative Models Logistic Regression

Neural Networks - II

Neural Networks are universal approximators

 Can represent any continuous function (f: R^m → Rⁿ) on a compact area, to any desired approximation (|g(x) - f(x)| < ε) with a linear combination of sigmoid neurons

• In other words, NN with a single hidden layer can be used to approximate any continuous function to a desired precision

Math. Control Signals Systems (1989) 2: 303-314

Mathematics of Control, Signals, and Systems

© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenko†

Neural Networks, Vol. 4, pp. 251–257, 1991 Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer Feedforward Networks

KURT HORNIK

Technische Universität Wien, Vienna, Austria

0893-6080/91 \$3.00 + .00

Copyright @ 1991 Pergamon Press plc

Theorem 0.1 (UAT, [Cyb89, Hor91]). Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a non-constant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon > 0$ and any function $f \in C(I_m)$, there exist an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$ for i = 1, ..., N, such that we may define:

$$F(oldsymbol{x}) = \sum_{i=1}^N v_i \sigma\left(oldsymbol{w}_i^T oldsymbol{x} + b_i
ight) = oldsymbol{v}^\intercal \sigma\left(oldsymbol{W}^\intercal oldsymbol{x} + oldsymbol{b}
ight)$$

as an approximate realization of the function f; that is,

$$|F(\boldsymbol{x}) - f(\boldsymbol{x})| < \varepsilon$$

for all $x \in I_m$.

Visual proof with one i/p & one o/p and Sigmoid activation

With ReLU activation

$$n_1 = ReLU(-5x - 7.7)$$

 $n_2 = ReLU(-1.2x - 1.3)$
 $n_3 = ReLU(1.2x + 1)$
 $n_4 = ReLU(1.2x - 0.2)$
 $n_5 = ReLU(2x - 1.1)$
 $n_6 = ReLU(5x - 5)$

Next Backpropagation

