第三章: 作业调度算法

1、在一个多道批处理系统中,设在一段时间内先后到达 6 个作业,它们的提交时间和运行时间如下表所示。

41 42 1 124/21/41/5				
作业号	提交时间 (时)	运行时间(分钟)		
JOB1	8: 00	60		
JOB2	8: 20	35		
JBO3	8: 25	20		
JOB4	8: 30	25		
JOB5	8: 35	5		
JOB6	8: 40	10		

系统采用短作业优先的调度算法, 作业被调度进入运行后不再退出。

- (1) 按照所选择的调度算法,请分别给出上述6个作业的执行时间顺序。
- (2) 计算在上述调度算法下作业的平均周转时间。

- 2、已知 3 个批处理作业中:第一个作业 10.0 到达,需要执行 2 小时;第二个作业在 10.1 时到达,需要执行 1 小时;第三个作业在 10.5 时到达,需要执行 0.5 小时。如果分别采用先来先服务和响应比高者优先调度算法。
- (1) 分别算出它们执行的顺序。
- (2) 分别算出作业平均周转时间。

第三章:银行家算法

- 1、若系统运行中出现如下表所示的资源分配情况,该系统是否安全?
- (1) 如果进程 P3 此时提出资源申请 (0,2,0), 系统是否将资源分配给它? 为什么?
- (2) 如果进程 P2 此时提出资源申请 (1,0,0), 系统是否将资源分配给它? 为什么?

进程	Al	LOCAT	ION		NEED		AV	AILAB	SLE
近往	Α	В	С	Α	В	С	Α	В	O
P0	0	0	3	0	0	1	1	6	2
P1	1	0	0	1	7	5			
P2	1	3	5	2	3	5			
P3	0	3	3	0	6	5			
P4	0	0	1	0	6	5			

2、设系统中 3 种类型的资源 (A,B,C) 和 5 个进程 (P1, P2, P3, P4, P5),
A 资源的数量为 17, B 资源的数量为 5, C 资源的数量为 20。在 T₀时刻系统状态如下表所示。

To时刻系统状态

进程	最大资源需求量		已分配资源数量		量	
	Α	В	С	Α	В	С
P0	5	5	9	2	1	2
P1	5	3	6	4	0	2
P2	4	0	11	4	0	5
P3	4	2	5	2	0	4
P4	4	2	4	3	1	4
剩余资源数	Α		В		(C
	2		3		3	3

系统采用银行家算法实施死锁避免策略。

- (1) To时刻是否为安全状态? 若是, 请给出安全序列。
- (2) 在 T₀ 时刻若进程 P1 请求资源 (0,3,4), 是否能实施资源分配? 为什么?
- (3) 在 (2) 的基础上, 若进程 P3 请求资源 (2,0,1), 是否能实施资源分配? 为什么?
- (4) 在 (3) 的基础上, 若进程 P0 请求资源 (0,2,0), 是否能实施资源分配? 为什么?

第四章: 存储器管理

- 1. 在一个使用交换技术的系统中,按地址从低到高排列的内存空间长度是: 10KB、4KB、20KB、18KB、7KB、9KB、12KB 和 15KB。对于下列顺序的 段请求:
- (1) 12KB (2) 10KB (3) 15KB (4) 18KB (5) 12KB 分别使用首次适应算法、循环首次适应算法、最佳适应算法和最差适应算法说明空间的取用情况,并说明对暂时不能分配情况的处理方法。

- 2、设有一页式管理系统,向用户提供的逻辑地址空间最大为 16 页,每页 2048 字节,内存总共有 8 个存储块,试问逻辑地址至少应为多少位?内存有多大?
- 3、在一分页存储管理系统中,逻辑地址长度为 16 位,页面大小为 2048 字节,对应的页表如下表所示。现有两逻辑地址为 0A5CH、1A3E 和 2F6AH,经过地址变换后所对应的物理地址各是多少?

页 号	块号
0	5
1	10
2	4
3	7

- 4、在某个采用页式存储管理的系统中,现有 J1、J2 和 J3 共 3 个作业同驻主存,其中 J2 有 4 个页面,被分别装入到主存的第 3、4、6、8 块中。假定页面和存储块的大小均为 1024 字节,主存容量为 10KB 字节。
 - (1) 写出 J2 的页面映像表;
 - (2) 当 J2 在 CUP 上运行时, 执行到其地址空间第 500 处遇到一条传送指令: MOV 2100,3100

请计算 MOV 指令中两个操作数的物理地址。

5、设一段表为:

段号	基地址	段长
0	300	700
1	1500	140
2	120	160
3	1300	170
4	2952	116

(1) 那么,逻辑地址 (2,88) 对应的物理地址是多少?

- (2) 逻辑地址 (3,150) 对应的物理地址是多少?
- (3) 逻辑地址 (4,120) 对应的物理地址是多少?

第五章: 虚拟存储器

- 1、在请求分页系统中,某用户的编程空间为 16 个页面,每页 1K,分配的内存空间为 8K。假定某时刻该用户的页表如下图所示,试问:
 - (1) 逻辑地址 084B(H)对应的物理地址是多少? (用十六进制表示)
 - (2) 逻辑地址 5000(十进制)对应的物理地址是多少? (用十进制表示)
 - (3) 当该用户进程欲访问 24A0(H)单元时, 会出现什么现象?

页号	块号
0	3
1	7
2	4
3	1
4	12
5	9
6	61
7	20

2、考虑下面的页访问串:

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

假定有 4、5、6 个页块,应用下面的页面替换算法,计算各会出现多少次缺页中断。注意,所给定的页块初始均为空,因此,首次访问一页时就会发生缺页中断。

(1) LRU (2) FIFO

- 1、 在一个使用交换技术的系统中,按地址从低到高排列的内存空间长度是: 10KB、4KB、20KB、18KB、7KB、9KB、12KB 和 15KB。对于下列顺序的 段请求:
- (1) 12KB (2) 10KB (3) 15KB (4) 18KB (5) 12KB 分别使用首次适应算法、循环首次适应算法、最佳适应算法和最差适应算法说明空间的取用情况,并说明对暂时不能分配情况的处理方法。
- 2、设有一页式管理系统,向用户提供的逻辑地址空间最大为 16 页,每页 2048 字节,内存总共有 8 个存储块,试问逻辑地址至少应为多少位?内存有多大?
- 3、在一分页存储管理系统中,逻辑地址长度为 16 位,页面大小为 2048 字节,对应的页表如下表所示。现有两逻辑地址为 0A5CH、1A3E 和 2F6AH,经过地址变换后所对应的物理地址各是多少?

页号	块号
0	5
1	10
2	4
3	7

- 4、在某个采用页式存储管理的系统中,现有 J1、J2 和 J3 共 3 个作业同驻主存,其中 J2 有 4 个页面,被分别装入到主存的第 3、4、6、8 块中。假定页面和存储块的大小均为 1024 字节,主存容量为 10KB 字节。
 - (3) 写出 J2 的页面映像表;
 - (4) 当 J2 在 CUP 上运行时, 执行到其地址空间第 500 处遇到一条传送指令: MOV 2100,3100

请计算 MOV 指令中两个操作数的物理地址。

5、设一段表为:

段号	基地址	段长
0	300	700
1	1500	140
2	120	160
3	1300	170
4	2952	116

- (1) 那么,逻辑地址 (2,88) 对应的物理地址是多少?
- (2) 逻辑地址 (3,150) 对应的物理地址是多少?
- (3) 逻辑地址 (4,120) 对应的物理地址是多少?

答案:

- 1、答案略。
- **2**、(**1**) $16*2048=2^{4}*2^{11}=2^{15}$

逻辑地址空间应为 15 位。

(2) 内存: 8*2048=16K

3、

(1) OA5C 转换为二进制: (红色部分为页号, 蓝色部分为页内地址)

0000 1010 0101 1100 (0A5CH)

0101 0010 0101 1100 (525CH)

0A5CH→525CH

(2) 1A3E 转换为二进制: (红色部分为页号, 蓝色部分为页内地址)

0001 1010 0011 1110 (1A3EH)

0011 1010 0011 1110 (3A3EH)

1A3EH→3A3EH

(3) 2F6AH 的页号为 5, 已超过页表长度, 越界。

0010 1111 0110 1010 (2F6AH)

4、(1)

页号	块号
0	3
1	4
2	6
3	8

(2) 2100 转换成二维地址是:

6*1024+52=6196

3100 转换成二维地址是:

8*1024+28=8220

5、

- (1) 逻辑地址 (2, 88), 因为 88<160 没有越界, 所以对应的物理 地址是: 120+88=208
- (2) 逻辑地址 (3, 150), 因为 150<170 没有越界, 所以对应的物理地址是: 1300+150=1450
- (3) 逻辑地址 (4, 120), 因为 120>116 地址越界, 所以做越界中断处理。

- 1、在请求分页系统中,某用户的编程空间为 16 个页面,每页 1K,分配的内存空间为 8K。假定某时刻该用户的页表如下图所示,试问:
 - (1) 逻辑地址 084B(H)对应的物理地址是多少? (用十六进制表示)
 - (2) 逻辑地址 5000(十进制)对应的物理地址是多少? (用十进制表示)
 - (3) 当该用户进程欲访问 24A0(H)单元时, 会出现什么现象?

页号	块号
0	3
1	7
2	4
3	1
4	12
5	9
6	61
7	20

2、考虑下面的页访问串:

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

假定有 4、5、6 个页块,应用下面的页面替换算法,计算各会出现多少次缺页中断。注意,所给定的页块初始均为空,因此,首次访问一页时就会发生缺页中断。

(2) LRU (2) FIFO

参考答案:

1、

(1) 084B 算出页号为 2, 查表在内存第 4 个物理块中。 084B->104B (2) 5000÷1024=4·····904

页号为 4, 查表在内存第 12 个物理块中, 页内地址为 904。

12×1024+904=13129

(3)24A0 算出页号为9, 查表不在页表中, 缺页现象, 请求从外存调页。

2、

- (1) LRU:4 (10 次缺页) 5 (8 次缺页) 6 (7 次缺页)
- (2) FIFO:4 (14 次缺页) 5 (10 次缺页) 6 (10 次缺页)

第三章: 作业调度算法:

1、在一个多道批处理系统中,设在一段时间内先后到达6个作业,它们的提交时间和运行时间如下表所示。

作业号	提交时间 (时)	运行时间(分钟)
JOB1	8: 00	60
JOB2	8: 20	35
JBO3	8: 25	20
JOB4	8: 30	25
JOB5	8: 35	5
JOB6	8: 40	10

系统采用短作业优先的调度算法,作业被调度进入运行后不再退出。

- (3) 按照所选择的调度算法,请分别给出上述6个作业的执行时间顺序。
- (4) 计算在上述调度算法下作业的平均周转时间。

解答: (1) 解答: ①先来先服务: 作业执行顺序 1, 2, 3, 4, 5, 6.

序号	作业号 (执行顺序)	提交时间	运行时间(分钟)	完成时间	周转时间 (分钟)
1	JOB1	8: 00	60	9:00	60
2	JOB2	8: 20	35	9:35	75
3	JBO3	8: 25	20	9:55	90
4	JOB4	8: 30	25	10:20	110
5	JOB5	8: 35	5	10:25	110
6	JOB6	8: 40	10	10:35	115

②短作业优先 作业执行顺序: 1, 5, 6, 3, 4, 2.

序号	作业号 (执行顺序)	提交时间	运行时间(分钟)	完成时间	周转时间 (分钟)
1	JOB1	8: 00	60	9: 00	60
2	JOB5	8: 35	5	9: 05	30
3	JOB6	8: 40	10	9: 15	35
4	JOB3	8: 25	20	9: 35	70
5	JOB4	8: 30	25	10: 00	90
6	JOB2	8: 20	35	10: 35	135

- (2) 平均周转时间
- ①先来先服务 平均周转时间 T= (60+75+90+110+110+115) /6=93.3 (分钟)
- ②短作业优先 平均周转时间 T= (60+30+35+70+90+135) /6=70 (分钟)
- 2、已知 3 个批处理作业中:第一个作业 10.0 到达,需要执行 2 小时;第二个作业在 10.1 时到达,需要执行 1 小时;第三个作业在 10.5 时到达,需要执行 0.5 小时。如果分别采用先来先服务和响应比高者优先调度算法。
 - (1) 分别算出它们执行的顺序。
 - (2) 分别算出作业平均周转时间。

解答:

- (1) 作业执行顺序:
- ①先来先服务:按照作业到达时间,执行顺序是作业1,作业2,作业3.
- ②响应比高者优先:
- 10.0时, 只有作业1到达, 所以作业1执行。
- 12.0 时作业 1 执行完成, 12.0 时:
- 作业 2 的响应比 T=1+T_w/T_s=1+1.9/1=2.9
- 作业 3 的响应比 T=1+T_w/T_s=1+1.5/0.5=4
- 作业3的响应比高,作业3执行,最后作业2执行。
- 所以, 作业的执行顺序是: 作业 1, 作业 3, 作业 2.

(2) 作业平均周转时间:

①先来先服务:

序号	作业号	提交时间 (时)	运行时间 (小时)	完成时间	周转时间(小时)
1	JOB1	10.0	2	12.0	2.0
2	JOB2	10.1	1	13.0	2.9
3	JOB3	10.5	0.5	13.5	3.0

平均周转时间 T= (2.0+2.9+3.0) /3=2.63 (小时)

②高响应比优先:

序号	作业号	提交时间 (时)	运行时间 (小时)	完成时间	周转时间(小时)
1	JOB1	10.0	2	12.0	2.0
2	JOB3	10.5	0.5	12.5	2.0
3	JOB2	10.1	1	13.5	3.4

平均周转时间 T= (2.0+2.0+3.4) /3=2.47 (小时)

- 2、若系统运行中出现如下表所示的资源分配情况,该系统是否安全?
- (1) 如果进程 P3 此时提出资源申请 (0,2,0), 系统是否将资源分配给它? 为什么?
- (2) 如果进程 P2 此时提出资源申请 (1,0,0), 系统是否将资源分配给它? 为什么?

2批4円	ALLOCATION			NEED			AVAILABLE		
进程	Α	В	С	Α	В	С	Α	В	С
P0	0	0	3	0	0	1	1	6	2
P1	1	0	0	1	7	5			
P2	1	3	5	2	3	5			
P3	0	3	3	0	6	5			
P4	0	0	1	0	6	5			

2、设系统中 3 种类型的资源 (A,B,C) 和 5 个进程 (P1, P2, P3, P4, P5),
A 资源的数量为 17, B 资源的数量为 5, C 资源的数量为 20。在 T₀ 时刻系统状态如下表所示。

To时刻系统状态

进程	卓	是大资源需 求	量	已分配资源数量			
	Α	В	С	Α	В	С	
P0	5	5	9	2	1	2	
P1	5	3	6	4	0	2	
P2	4	0	11	4	0	5	
P3	4	2	5	2	0	4	
P4	4	2	4	3	1	4	
剩余资源数	Α		В		С		
	2		3		3		

系统采用银行家算法实施死锁避免策略。

- (5) T₀时刻是否为安全状态? 若是, 请给出安全序列。
- (6) 在 T₀时刻若进程 P1 请求资源 (0,3,4), 是否能实施资源分配? 为什么?
- (7) 在 (2) 的基础上, 若进程 P3 请求资源 (2,0,1), 是否能实施资源分配? 为什么?

(8) 在 (3) 的基础上, 若进程 P0 请求资源 (0,2,0), 是否能实施资源分配? 为什么?

解答:

1、此刻该系统是安全的,存在安全序列{P0, P3, P4, P1, p2}。(安全序列不唯一)

ed
0 1
7 5
3 5
6 5
6 5

系	统	安	全	悟	祝	分	析
ZJN	2/6	2	I	18	176	15.	121

ペーンし ンへ	I IH U	16 11	124									
PID	Wo	rk		Nee	d		Allo	cat	ion	Wor	k+A	llocation
PO	1	6	2	0	0	1	0	0	3	1	6	5
P 3	1	6	5	0	6	5	0	3	3	1	9	8
P4	1	9	8	0	6	5	0	0	1	1	9	9
P1	1	9	9	1	7	5	1	0	0	2	9	9
P 2	2	9	9	2	3	5	1	3	5	3	12	14

系统安全!

安全序列为:03412

2、如果进程 P3 此时提出资源申请(0,2,0),此刻系统是安全的,存在安全序列{P0, P3, P4, P1, p2}。(安全序列不唯一)

输入要分配给进程P3的资源:020

系统安全情况分析

PID	Wo	rk		Nee	d		Allo	cat	ion	Wo	rk+	Allocation
P O	1	4	2	0	0	1	0	0	3	1	4	5
P 3	1	4	5	0	4	5	0	5	3	1	9	8
P4	1	9	8	0	6	5	0	0	1	1	9	9
P1	1	9	9	1	7	5	1	0	0	2	9	9
P 2	2	9	9	2	3	5	1	3	5	3	12	14

系统安全!

安全序列为:03412分配成功!

当前资源剩余:142

PID	Max	Allocation	Need		
PO	0 0 4	0 0 3	001		
P1	2 7 5	1 0 0	1 7 5		
P2	3 6 10	1 3 5	2 3 5		
P 3	0 9 8	053	0 4 5		
P4	066	0 0 1	065		

3、如果进程 P2 此时提出资源申请 (1,0,0), 请求不能分配, 系统会进入不安全状态。

2、(1) T0 时刻是安全状态,存在安全序列{p3,p4,p0,p1,p2}。(安全序列不唯一)

当前资源剩全:233

PID	Max Max	Allocation	Need		
PO	5 5 9	2 1 2	3 4 7		
P1	5 3 6	4 0 2	1 3 4		
P2	4 0 11	4 0 5	006		
P 3	4 2 5	2 0 4	2 2 1		
P4	4 2 4	3 1 4	1 1 0		

系统安全情况分析

水 が メ	土用几	16 /	1 121									
PID	Work		Need			Allocation			Work+Allocation			
P 3	2	3	3	2	2	1	2	0	4	4	3	7
P4	4	3	7	1	1	0	3	1	4	7	4	11
PO	7	4	11	3	4	7	2	1	2	9	5	13
P1	9	5	13	1	3	4	4	0	2	13	5	15
P 2	13	5	15	0	0	6	4	0	5	17	5	20

系统安全!

安全序列为:34012

- (2) 在 T0 时刻若进程 P1 请求资源 (0,3,4), 不能分配, p2 的请求大于剩余资源。
- (3) 在 (2) 的基础上, 若进程 P3 请求资源 (2,0,1), 可以分配, 存在安全序列 {p3,p4,p0,p1,p2}。(安全序列不唯一)

系统安全情况分析

PID	Work		Need			Allocation			Work+Allocation			
P 3	0	3	2	0	2	0	4	0	5	4	3	7
P4	4	3	7	1	1	0	3	1	4	7	4	11
PO	7	4	11	3	4	7	2	1	2	9	5	13
P1	9	5	13	1	3	4	4	0	2	13	5	15
P 2	13	5	15	0	0	6	4	0	5	17	5	20

系统安全!

安全序列为:3 4 0 1 2 分配成功! 当前资源剩余:0 3 2

PID	Max	Allocation	Need		
PO	5 5 9	2 1 2	3 4 7		
P1	5 3 6	4 0 2	1 3 4		
P 2	4 0 11	4 0 5	006		
P 3	4 2 5	4 0 5	020		
P4	4 2 4	3 1 4	1 1 0		

(4) 在 (3) 的基础上,若进程 P0 请求资源 (0,2,0),不能分配,进入不安全状态。