Problem 26

October 9, 2017

Problem

Let $A, B \in M_2(\mathbb{Z})$ with AB = BA such that det(A) = det(B) = 0. Show that $det(A^3 + B^3)$ is the cube of an integer.

Solution

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$. For any real number λ , I will compute the determinant of the matrix $A - \lambda B$. The determinant would be equal to

$$(a - \lambda e)(d - \lambda h) - (b - \lambda f)(c - \lambda g) = (ad - bc) - (ah + de - bg - cf)\lambda + (eh - fg)\lambda^{2}$$

Remember that the the determinants and A and B are precisely ad-bc and eh-fg, respectively. We are given that those values equal 0. As a result, the determinant of $A-\lambda B$ is $-(ah+de-bg-cf)\lambda$ I will let ah+de-bg-cf=z Because the terms of the matrices A and B are integers, we have that z is also an integer. Note that $det(A^3+B^3)=det(A+B)det(A+\omega B)det(A+\omega^2 B)$. Plugging in $\lambda=-1,-\omega,-\omega^2$, the expression equals

$$(-z)(-1)*(-z)(-\omega)*(-z)(-\omega^2) = z^3*w^3 = z^3$$

which is the cube of an integer.