(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-138685

(43)公開日 平成11年(1999)5月25日

(51) Int.Cl. ⁶		證別記号	FΙ					
B 3 2 B	9/00		B 3 2 B	9/00		A		
	7/02	104		7/02	104	-		
G 0 6 F	3/033	360	G06F	3/033	360	Н		
// H01B	5/14		H 0 1 B	5/14		A		
	·		審査請求	未讃求	請求項の数3	OL	(全 7	頁)
(21)出願番号		特願平9-313744	(71)出顧人	0002241	.01			
				藤森工刻	業株式会社			
(22)出願日		平成9年(1997)11月14日		東京都中	中央区日本橋馬叻	食町17	「目4番1	16号
			(72)発明者	市川市	林次郎			•
				東京都中	中央区日本橋馬叻	建町17	「目4番1	6号
				藤森□	厂業株式会社内			
			(72)発明者	岸 進				
				東京都中	中央区日本橋馬哨	到1丁	1 目4番1	6号
				藤森コ	工業株式会社内			
			(72)発明者	藤巻 三	洋			
				東京都中央区日本橋馬喰町1丁目4番16号				
				藤森工	二業株式会社内			
•			(74)代理人	弁理十	大石 征郎			

(54) 【発明の名称】 透明導電性シートの製造法

(57)【要約】

【課題】 光等方性基材フィルム/活性エネルギー線硬化型樹脂硬化物層 [/無機質薄層] /透明導電層の層構成を含む透明導電性シートにおいて([]は省略可)、必要な層間密着性を確実に得られるようにすることができる工業的に有利な透明導電性シートの製造法を提供することを目的とする。

【解決手段】 光等方性基材フィルム(1) の少なくとも 片面に活性エネルギー線硬化型樹脂硬化物層(2) 層が設 けられた層構成を有する高分子フィルムの活性エネルギー線硬化型樹脂硬化物層(2) 上に、直接または無機質薄 層(3) を介して透明導電層(4) が設けられた透明導電性 シートを得る。このとき、上記活性エネルギー線硬化型 樹脂硬化物層(2) 形成用の樹脂液として、活性エネルギー線硬化型樹脂(a) に、ラジカル反応性を有する二重結 合と、エポキシ基、水酸基、イソシアネート基およびア ルコキシシラン基よりなる群から選ばれた少なくとも1 種の基とを有するモノマー(b) を配合した組成物を用い る。

透明導電層 無機質薄屬 硬化型樹脂硬化物層 光等方性基材フィルム 硬化型樹脂硬化物層 無機質薄層 1

【特許請求の範囲】

【請求項1】光等方性基材フィルム(1) の少なくとも片面に活性エネルギー線硬化型樹脂硬化物層(2) 層が設けられた層構成を有する高分子フィルムの活性エネルギー線硬化型樹脂硬化物層(2) 上に、直接または無機質薄層(3)を介して透明導電層(4)が設けられた透明導電性シートを得るにあたり、前記活性エネルギー線硬化型樹脂硬化物層(2) 形成用の樹脂液として、活性エネルギー線硬化型樹脂(a) に、ラジカル反応性を有する二重結合と、エポキシ基、水酸基、イソシアネート基およびアルコキシシラン基よりなる群から選ばれた少なくとも1種の基とを有するモノマー(b) を配合した組成物を用いることを特徴とする透明導電性シートの製造法。

【請求項2】光等方性基材フィルム(1) がポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリスルホンまたはアモルファスポリオレフィンのフィルムである請求項1記載の製造法。

【請求項3】活性エネルギー線硬化型樹脂(a) 100重 量部に対するモノマー(b) の配合割合が0.01~15重量 部である請求項1記載の製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インナータッチパネル用、液晶表示素子用(強誘電性高分子液晶表示素子用を含む)などの用途に適した透明導電性シートを製造する方法に関するものである。

[0002]

【従来の技術】透明タッチパネルの用途に用いられる透明導電性シートは、基本的には導電層(殊にITO層) /高分子フィルムの層構成を有し、タッチパネルとして使用するときは、2枚の透明導電性シートの導電層側をスペーサを介して対向配置して用いる。対向配置させる透明導電性シートの一方を、透明導電層付きガラスとすることもできる。

【0003】近時、液晶表示素子の偏光板の下に重ね合わせる使い方をするタッチパネル(インナータッチパネル)の開発が進んでいる。「月刊ディスプレイ」の1997年1月号の50~54頁には、液晶表示素子の表面側(偏光板の上側)に設ける従来の一般的なタッチパネルと共に、偏光板の下に重ね合わせるタッチパネル(インナータッチパネル)についての解説的な記事が掲載されている。インナータッチパネルは、光が空気層により散乱、反射されるのを回避することができる上、液晶表示素子から出てくる光を最終的に人の目に入る前に偏光、整列させることができるので、視認性が顕著に向上し、従来のタッチパネルに比し有利である。

【0004】本出願人の出願にかかる特開平8-161 116号公報には、インナータッチパネル用の透明導電 性シートとして、光等方性基材フィルムの少なくとも片 面にノンソルベントタイプの活性エネルギー線硬化型樹 50 脂硬化物層を設けると共に、その活性エネルギー線硬化型樹脂硬化物層上からさらに透明導電層を設けた構成を有し、かつ前記基材フィルムの屈折率と前記活性エネルギー線硬化型樹脂硬化物層の屈折率とが特定の関係を満たすようにした透明タッチパネル用透明導電性シートが示されている。

【0005】同じく本出願人の出願にかかる特開平8-155988号公報には、インナータッチパネル用の透明導電性シートとして、光等方性基材フィルムの両面にノンソルベントタイプの活性エネルギー線硬化型樹脂硬化物層を設けると共に、その一方の活性エネルギー線硬化型樹脂硬化物層の表面は微細で滑らかな半球状の隆起を有する凸状粗面に形成し、他方の活性エネルギー線硬化型樹脂硬化物層上にはさらに透明導電層を設けた透明タッチパネル用透明導電性シートが示されている。

【0006】これら特開平8-161116号公報や特開平8-155988号公報のように、光等方性基材フィルム上に活性エネルギー線硬化型樹脂硬化物層を設けることは、腰(剛性)、硬度、耐熱性、耐溶剤性、耐スクラッチ性、非透湿性、表面状態などの点で好ましい。【0007】

【発明が解決しようとする課題】上に述べた特開平8-161116号公報や特開平8-155988号公報のインナータッチパネル用の透明導電性シートは、光等方性基材フィルムの少なくとも片面(好ましくは両面)に活性エネルギー線硬化型樹脂硬化物層上に透明導電層を設けている。この場合、活性エネルギー線硬化型樹脂硬化物層上に直接透明導電層を設けると、その透明導電層の密着性が不足することがあるので、活性エネルギー線硬化型樹脂硬化物層上に無機質薄層を設け、その上から透明導電層を設けることが好ましい。すなわち、インナータッチパネル用の透明導電性シートの代表的な層構成は、活性エネルギー線硬化型樹脂硬化物層/光等方性基材フィルム/活性エネルギー線硬化型樹脂硬化物層/光等方性基材フィルム/活性エネルギー線硬化型樹脂硬化物層/ 無機質薄層/透明導電層である。

【0008】ところが、このインナータッチパネル用の透明導電性シートにあっては、①光等方性基材フィルムと活性エネルギー線硬化型樹脂硬化物層との間の密着性、②活性エネルギー線硬化型樹脂硬化物層と無機質薄層との間の密着性、のうちのいずれかまたは双方が不足することがある。このような密着性不足を生ずると、打鍵、ペン入力操作を繰り返したときに層間剥離を生じ、タッチパネルの寿命の低下につながる。

【0009】上記①、②のような密着性不足は、同様の 積層構成の透明導電性シートを強誘電性高分子液晶表示 素子用の透明導電性シートとして用いるときにも生じや すい。また通常の液晶表示素子の液晶セルの透明導電性 シートとして用いるときも、密着性が不足しないことが 要求される。

【0010】本発明は、このような背景下において、光 等方性基材フィルム/活性エネルギー線硬化型樹脂硬化 物層 [/無機質薄層] /透明導電層の層構成を含む透明 導電性シートにおいて([]は省略可)、必要な層間密 着性を確実に得られるようにすることができる工業的に 有利な透明導電性シートの製造法を提供することを目的 とするものである。

[0011]

Çi.

【課題を解決するための手段】本発明の透明導電性シー トの製造法は、光等方性基材フィルム(1) の少なくとも 10 片面に活性エネルギー線硬化型樹脂硬化物層(2) 層が設 けられた層構成を有する高分子フィルムの活性エネルギ 一線硬化型樹脂硬化物層(2) 上に、直接または無機質薄 層(3)を介して透明導電層(4)が設けられた透明導電性 シートを得るにあたり、前記活性エネルギー線硬化型樹 脂硬化物層(2) 形成用の樹脂液として、活性エネルギー 線硬化型樹脂(a) に、ラジカル反応性を有する二重結合 とエポキシ基、水酸基、イソシアネート基およびアルコ キシシラン基よりなる群から選ばれた少なくとも1種の 基とを有するモノマー(b) を配合した組成物を用いるこ とを特徴とするものである。

[0012]

【発明の実施の形態】以下本発明を詳細に説明する。

【0013】 (光等方性基材フィルム(1)) 光等方性基 材フィルム(1) としては、ポリカーボネート、ポリアリ レート、ポリエーテルスルホン、ポリスルホン、アモル ファスポリオレフィン (ノルボルネン系樹脂) などのフ ィルムが用いられ、特にポリカーボネートフィルムが重 要である。光等方性基材フィルム(1) の厚みに限定はな いが、通常は $20\sim250\mu m$ 、好ましくは $50\sim18$ 30 O μm とすることが多い。

【0014】この光等方性基材フィルム(1) は、押出法 によっても製造可能であるが、光等方性、フィルム物性 などを考慮すると、流延法により得られたフィルムが好 適である。

【0015】光等方性基材フィルム(1)は、レターデー ション値が30nm以下(好ましくは20nm以下、さらに 好ましくは15nm以下)、550nmでの可視光線透過率 が70%以上(好ましくは80%以上)、ガラス転移点 が100℃以上であることが特に望ましい。レターデー 40 ション値が30nmを越えるときには、光等方性が失われ て着色や干渉光を生ずる上、光の反射量が多くなり、像 の視認性が低下する。可視光線透過率が70%未満で は、タッチパネル等に使用したときの明るさが不足す る。ガラス転移点が100℃未満の場合には、印刷工程 における耐熱性が不足するようになる。

【0016】〈活性エネルギー線硬化型樹脂硬化物層 (2)〉光等方性基材フィルム(1)の少なくとも片面、好 ましくは両面には、活性エネルギー線硬化型樹脂硬化物 化物層(2) の厚みに特に制限はないが、各面につき、2 $\sim 100 \mu m$ 、殊に5 $\sim 50 \mu m$ とすることが多い。

【0017】そして本発明においては、活性エネルギー 線硬化型樹脂硬化物層(2) 形成用の樹脂液として、活性 エネルギー線硬化型樹脂(a) に、ラジカル反応性を有す る二重結合とエポキシ基、水酸基、イソシアネート基お よびアルコキシシラン基よりなる群から選ばれた少なく とも1種の基とを有するモノマー(b) を配合した組成物 を用いる。

【0018】まず活性エネルギー線硬化型樹脂(a) とし ては、腰(剛性)、硬度、耐熱性、耐溶剤性、耐スクラ ッチ性、非透湿性などを考慮して、シリコーンアクリレ ート、エポキシアクリレート、アクリルエステルまたは ウレタンアクリレート系の活性エネルギー線硬化型樹脂 (光重合性プレポリマー) が好適に用いられる。

【0019】モノマー(b) としては、ラジカル反応性を 有する二重結合とエポキシ基、水酸基、イソシアネート 基およびアルコキシシラン基よりなる群から選ばれた少 なくとも1種の基とを有するモノマーが用いられる。ア ルコキシシラン基とは、メトキシシラン基やエトキシシ ラン基である。このようなモノマー(b) の例は、次式で 示されるような化合物である。

[0020]

【化1】

[0021]

【化2】

[0022]

【化3】

[0023]

【化4】

【0024】活性エネルギー線硬化型樹脂(a) 100重 量部に対するモノマー(b) の配合割合は、0.01~15重 量部、殊に 0.5~10重量部とすることが好ましい。モ 層(2) 層が設けられる。活性エネルギー線硬化型樹脂硬 50 ノマー(b) の割合が余りに少ないときは密着性向上効果 **~**}

が不足し、モノマー(b) の割合が余りに多いときは、物 性面でバランスを崩したり、形成した層が白化したりす ることがある。

【0025】活性エネルギー線硬化型樹脂硬化物層(2) 形成用の樹脂液には、そのほか、反応性稀釈剤を配合す ることもできる。反応性稀釈剤としては、2-エチルへ キシル (メタ) アクリレート、2ーヒドロキシエチル (メタ) アクリレート、2-ヒドロキシプロピル (メ タ)アクリレート等の単官能モノマー、1,3ーブタン ジオールジ (メタ) アクリレート、1, 4ーブタンジオ 10 ールジ(メタ)アクリレート、1,6-ヘキサジオール ジ(メタ)アクリレート、ジエチレングリオールジ(メ タ) アクリレート、ネオペンチルグリコールジ (メタ) アクリレート、ポリエチレングリコールジ (メタ) アク リレート等の2官能モノマー、トリメチロールプロパン トリ(メタ)アクリレート、ペンタエリスリトールトリ (メタ) アクリレート、ジペンタエリスリトールヘキサ (メタ) アクリレート、トリアリルイソシアヌレート等 の3官能以上のモノマーなどの光重合性モノマーなどが あげられる。活性エネルギー線硬化型樹脂(a) 100重 20 量部に対する反応性稀釈剤の配合割合は、たとえば0~ 60重量部程度である。

【0026】活性エネルギー線硬化型樹脂(a) が紫外線 硬化型樹脂であるときは、樹脂液には光開始剤を配合するのが通常である。光開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインエーテル、ベンジルジメチルケタール、チオキサントン類をはじめ、紫外線硬化型樹脂の光開始剤として知られている任意の光開始剤が用いられる。紫外線硬化型樹脂(a) 100重量部に対する光開始 30剤の配合割合は、たとえば 0.1~8重量部程度である。光開始剤と共に、増感剤を併用することもできる。

【0027】光等方性基材フィルム(1) への活性エネルギー線硬化型樹脂硬化物層(2) の形成は、わずかに間隙をあけて並行に配置した1対のロールに、光等方性基材フィルム(1) と鋳型フィルム(M) とを供給し、ロールの間隙に向けて上記の組成物からなる樹脂液を吐出すると共に、両ロールを互いに喰い込む方向に回転させて、光等方性基材フィルム(1) と鋳型フィルム(M) との間に樹脂液が挟持されるようにし、そのように挟持された状態 40で活性エネルギー線(紫外線や電子線)照射や加熱を行って樹脂液を硬化させる方法を採用することが特に望ましい。活性エネルギー線照射後には、必要に応じてさらに熱処理を行って、硬化の完全化を図ることもできる。

【0028】光等方性基材フィルム(1)の両面に活性エネルギー線硬化型樹脂硬化物層(2)を形成するときは、上記のようにして得た光等方性基材フィルム(1)/活性エネルギー線硬化型樹脂硬化物層(2)の積層フィルムと、鋳型フィルム(M)とを用いて、同様の操作を行えばよい。これにより、活性エネルギー線硬化型樹脂硬化物 50

層(2) /光等方性基材フィルム(1) /活性エネルギー線 硬化型樹脂硬化物層(2)の層構成の高分子フィルムが得 られる。

【0029】上記における鋳型フィルム(M)は、これを 適当な段階で剥離除去する。ここで鋳型フィルム(M) と しては、二軸延伸ポリエステルフィルムや二軸延伸ポリ プロピレンフィルムなどが好適に用いられる。これらの フィルムを鋳型フィルム(M)として用いると、活性エネ ルギー線硬化型樹脂硬化物層(2) 形成後の適当な段階 で、鋳型フィルム(M)を円滑に剥離することができる。 【0030】活性エネルギー線硬化型樹脂硬化物層(2) の形成は、光等方性基材フィルム(1) 上に上記の樹脂液 をコーティングした後、活性エネルギー線を照射するこ とによっても達成することができる。しかしながら、上 記のように鋳型フィルム(M)を用いて光等方性基材フィ ルム(1) 上に活性エネルギー線硬化型樹脂硬化物層(2) を形成する方法を採用すると、膜厚精度が向上する上、 樹脂液としてシリコーンアクリレートのように空気中の 湿分を吸収して白濁を生じやすいものを用いても、その ようなトラブルを起こさない。従って、コーティング法 により活性エネルギー線硬化型樹脂硬化物層(2) を形成 する場合に比し、工業的に有利となる。

【0031】活性エネルギー線硬化型樹脂硬化物層(2)の表面は、平滑に形成したり、微細な凹凸面に形成したりすることができる。先に述べた鋳型フィルム(M)として表面が平滑なものあるいは微細な凹凸を有するものを用いれば、容易に活性エネルギー線硬化型樹脂硬化物層(2)の表面を平滑にあるいは微細な凹凸面に形成することができる。

【0032】(他の層)上に述べた光等方性基材フィルム(1) および活性エネルギー線硬化型樹脂硬化物層(2)のほかに、もし必要なら、耐透気性樹脂層や熱硬化性樹脂層を付加することも可能である。耐透気性樹脂層の一例は、ビニルアルコール系重合体(共重合体、グラフト共重合体、共存重合体を含み、架橋剤との併用も含む)の層である。熱硬化性樹脂層の一例は、フェノキシエーテル型熱硬化性樹脂の層である。

【0033】(無機質薄層(3)) 光等方性基材フィルム (1) の少なくとも片面に活性エネルギー線硬化型樹脂硬化物層(2) 層が設けられた層構成を有する高分子フィルムの活性エネルギー線硬化型樹脂硬化物層(2) 上には、通常は無機質薄層(3) が設けられる。ただし、この無機質薄層(3) を省略することもある。

【0034】無機質薄層(3) としては、金属酸化物、金属窒化物、金属ホウ化物などがあげられ、2種以上の複合物であってもよい。この無機質薄層(3) は、防湿性、耐熱性、防気性、耐酸・耐アルカリ性、透明導電層(4) 密着性などの点で有利である。無機質薄層(3) は、通常はスパッタリング法により形成される。無機質薄層(3) の厚みは、20~300オングストローム、殊に30~

180オングストロームが適当である。

【0035】(透明導電層(4))無機質薄層(3)の上からは(場合によりこの無機質薄層(3)を省略することもあるが)、透明導電層(4)が設けられる。透明導電層(4)としては、ITO、InOz、SnOz、ZnO、Au、Ag、Pt、Pdなどの層があげられ、特にITOが重要である。透明導電層(4)の形成は、好適にはスパッタリング法によりなされるが、真空蒸着法、イオンプレーティング法、ゾルーゲル法、コーティング法などを採用することも可能である。

【0036】透明導電層(4) の厚みは、ITOを用いた場合を例にとると、たとえば100~2000オングストローム、殊に150~1000オングストロームとすることが多い。

【0037】透明導電層(4) は、全面電極としたり、全面電極形成後にレジスト形成およびエッチングを行ってパターン電極としたりする。

【0038】(透明導電性シート)これにより、(1)/(2)/(3)/(4)、(2)/(1)/(2)/(3)/(4)、(3)/(2)/(1)/(2)/(3)/(4)などの層構成を有する透明導電性シートが得られる。特殊な場合には、(4)を両面に設けた(4)/(3)/(2)/(1)/(2)/(3)/(4)などの層構成とすることもできる。ただし上記の層構成においては、少なくとも1層の(3)を省略した態様もありうる。

【0039】(他の密着性向上処理)本発明においては活性エネルギー線硬化型樹脂硬化物層(2)の組成の点で密着性向上を図っているが、さらに完全を期すため、光等方性基材フィルム(1)の活性エネルギー線硬化型樹脂硬化物層(2)設置側の面に、または/および、活性エネルギー線硬化型樹脂硬化物層(2)の無機質薄層(3)設置 30側の面に、これらの層(2)または層(3)の設置に先立ち、有機薬品処理、コロナ放電処理、オゾン存在下または不存在下の紫外線照射処理、低温プラズマ処理、アンカーコーティング層の形成などの密着性向上処理を施してもよい。

【0040】(透明導電性シートの用途) このようにして得られた透明導電性シートは、液晶表示素子の偏光板の下に重ね合わせる使い方をするインナータッチパネル用として、あるいは強誘電性高分子液晶表示素子用の透明導電性シートとして特に有用である。また通常の液晶 40表示素子の液晶セルの透明導電性シートとして用いることもできる。

【0041】インナータッチパネルを作製するときは、 典型的には、上記の透明導電性シートと、相手方の透明 導電性シート(ガラスを含む)とを、それら2枚のシートの透明導電層(4) 側を対向させると共に、両シート間 にたとえば0.02~1.0mm 程度の厚みのドット・スペーサ を介在させればよい。相手方の透明導電性シートとして は、上記と同じ層構成の透明導電性シートであってもよく、透明 50 電極付きのガラスであってもよい。すなわち本発明においては、対向する2枚の透明導電性シートのうち少なくとも一方の透明導電性シートとして、上記の透明導電性シートを用いる。このようにして得たインナータッチパネルは、液晶表示素子の入射光側の偏光板の下に粘着剤等を用いて貼着される。

【0042】強誘電性高分子液晶表示素子を作製するときは、典型的には、上記の透明導電性シートと、相手方の透明導電性シート(ガラスを含む)とを、それら2枚のシートの透明導電層(4)側を対向させると共に、両シート間に強誘電性高分子液晶層が介在配置されるようにすればよい。

【0043】通常の液晶表示素子を作製するときは、典型的には、上記の透明導電性シートと、相手方の透明導電性シート(ガラスを含む)とを、それら2枚のシートの透明導電層(4)側を対向させると共に、両シート間に液晶を封入して、液晶セルを作製すればよい。

[0044]

【実施例】次に実施例をあげて本発明をさらに説明する。以下「部」とあるのは重量部でる。

【0045】実施例1~4、比較例1

光等方性基材フィルム(1) の一例である厚み 1 O O μm の流延製膜ポリカーボネートフィルムを準備した。

【0046】活性エネルギー線硬化型樹脂硬化物層(2) 形成用の樹脂液として、活性エネルギー線硬化型樹脂(a)の一例としてのウレタンアクリレート系の紫外線硬化型樹脂100部に、先に述べた式(1),(2),(3)または(4)よりなるモノマー(b)5部と、アセトフェノン系光開始剤3部とを配合した4種の組成物を準備した。用いたモノマー(b)は、(1)が日本化薬株式会社製の「KAYARAD R-128H」、(2)がダイセル化学工業株式会社製の「CYCLOMER A-200」、(3)が信越シリコーン株式会社製のシランカップリング剤「KBM-503」、(4)が昭和電工株式会社製の「Karenz MOI」である。比較のため、モノマー(b)を配合しない樹脂液も調製した。

【0047】上記の光等方性基材フィルム(1)上に、上記の組成物からなる樹脂液をコーティングし、紫外線照射(積算光量1000mJ/cm²)により硬化させて、厚み12 μ m の活性エネルギー線(紫外線)硬化型樹脂硬化物層(2)を形成させ、120 Γ 0分間熱処理した。【0048】ついで、得られた積層フィルムの硬化型樹脂硬化物層(2)上に、無機質薄層(3)の一例としての厚み90オングストロームの Γ 10、層を形成させ、さら

脂硬化物層(2) 上に、無機質薄層(3) の一例としての厚み90オングストロームのSiO。層を形成させ、さらにその上からさらにITOをスパッタリングして、厚み500オングストロームの透明導電層(4) を形成させた。

【0049】 I T O 層に接着する熱硬化型シール剤にて I T O 面 同士を貼り合わせ、120℃×60分間の条件 で熱硬化型シール剤を硬化後、JIS K6854 「接着剤はくり強さ試験方法」に準じた方法(90°剥離、巾25.4m

10

m、引張速度 5 mm/min、長さ 1 5 mm) で、硬化型樹脂硬 化物層(2) と無機質薄層(3) との界面における剥離強度 を測定した(n=5)。結果を表1に示す。

[0050] 【表1】

89%であった。

	モノマー(b) の種類	剥離強度 (gf/inch)
比較例1	使用せず	117
実施例1	(1) 二重結合と水酸基含有	312
実施例2	(2) 二重結合とエポキシ基含有	349
実施例3	(3) 二重結合とアルコキシシラン基含有	409
実施例4	(4) 二重結合とイソシアネート基含有	438

【0051】表1から、活性エネルギー線硬化型樹脂硬 化物層(2) 形成用の樹脂液として、活性エネルギー線硬 化型樹脂(a) に特定のモノマー(b) を特定量配合した組 成物を用いることにより、活性エネルギー線硬化型樹脂 硬化物層(2) と無機質薄層(3) との界面における接着強 度(剥離強度)が確実に向上することがわかる。

【0052】なお、ポリカーボネートフィルムに代えて ポリアリレート、ポリエーテルスルホン、ポリスルホ ン、アモルファスポリオレフィンの各フィルムを用いた 20 ときも、同様の接着強度(剥離強度)が有意に向上し、 かつ透明性が変らないことが確認された。

【0053】実施例5、比較例2

図1は本発明の方法により得られる透明導電性シートの 一例を示した模式断面図である。

【0054】光等方性基材フィルム(1)の一例として、 ポリカーボネートを流延製膜して得た厚み100 μm の フィルムを準備した。レターデーション値は4nm、55 Onmでの可視光線透過率は90%、ガラス転移点は13 ·5 ℃であった。

【0055】鋳型フィルム(M) として、厚み100μm のマット化ポリエステルフィルム (表面粗度0.01 μm 以 下) と厚み100μm の平滑な透明ポリエステルフィル ムとの2種を準備した。

【0056】わずかに間隙をあけて並行に配置した1対 のロールに、上記の光等方性基材フィルム(1) と上記の マット化された鋳型フィルム(M)とを供給し、ロールの 間隙に向けて、ノンソルベントタイプのウレタンアクリ レート系の紫外線硬化型樹脂(a) 100部に、先に述べ た式(1), (2), (3) または(4) よりなるモノマー(b) 5 部と、ベンゾフェノン系光開始剤5部とを配合した組成 物からなる樹脂液を吐出すると共に、両ロールを互いに 喰い込む方向に回転させて、光等方性基材フィルム(1) と鋳型フィルム(M) との間に樹脂液が挟持されるように し、そのように挟持された状態で、積算光量100 0mJ /cm² の条件で紫外線照射を行って樹脂液を硬化させるこ とにより、厚み12μm の活性エネルギー線 (紫外線) 硬化型樹脂硬化物層(2) となし、さらに温度120℃で 10分間熱処理を行った。

した1対のロールに、上記で得た(1)/(2)/(M) の層構成 を有する積層フィルムと上記の平滑な鋳型フィルム(M) とを供給し、積層フィルムの光等方性基材フィルム(1) 側とその鋳型フィルム(M) との間に、上記と同じ樹脂液 を吐出すると共に、両ロールを互いに喰い込む方向に回 転させて、積層フィルムと鋳型フィルム(M) との間に樹 脂液が挟持されるようにし、そのように挟持された状態 で、積算光量1000mJ/cm²の条件で紫外線照射を行っ て樹脂液を硬化させることにより、厚み13 μm の活性 エネルギー線(紫外線)硬化型樹脂硬化物層(2) とな し、さらに温度120℃で10分間熱処理を行った。 【0058】これにより、(M)/(2)/(1)/(2)/(M) よりな る層構成の積層フィルムが得られたので、爾後の適当な 段階で鋳型フィルム(M), (M)を剥離除去し、(2)/(1)/ (2) の層構成を有する積層シートとなした。この積層シ ートのレターデーション値は8nm、表面硬度(JIS K540

【0059】上記の積層フィルムの片方の活性エネルギ 一線硬化型樹脂硬化物層(2) 側の両面に、スパッタリン グ法により、無機質薄層(3) の一例としての厚み90オ ングストロームのSiO₂層を形成させ、さらにその一 方の面にさらにITOをスパッタリングして、厚み45 0オングストロームの透明導電層(4)を形成させた。透 明導電層(4) の密着性は良好であった。

0、100g荷重) は3 H、5 5 0 nmでの可視光線透過率は

【0060】上記においては、活性エネルギー線硬化型 樹脂硬化物層(2) 形成用の樹脂液として活性エネルギー 線硬化型樹脂(a) にモノマー(b) を配合しないときに は、光等方性基材フィルム(1) と活性エネルギー線硬化 型樹脂硬化物層(2) との界面における密着性、活性エネ ルギー線硬化型樹脂硬化物層(2) と無機質薄層(3) との 界面における密着性の点で、品質がばらつく傾向があっ た。

【0061】これに対し、活性エネルギー線硬化型樹脂 硬化物層(2) 形成用の樹脂液として活性エネルギー線硬 化型樹脂(a) にモノマー(b) を配合した組成物を用いた ときは、光等方性基材フィルム(1) と活性エネルギー線 硬化型樹脂硬化物層(2) との界面における密着性、活性 【0057】続いて、わずかに間隙をあけて並行に配置 50 エネルギー線硬化型樹脂硬化物層(2) と無機質薄層(3)

12

との界面における密着性が、いずれも顕著にすぐれてい た。

11

【0062】このようにして得た(3)/(2)/(1)/(2)/(3)/(4) の層構成を有する透明導電性シートを2枚を用い、常法に従って、それら2枚のうち片方のシートの透明導電層(4) 面に予めドット・スペーサを形成してから、2枚のシートの透明導電層(4)側を対向させてインナータッチパネルを作製した。

【0063】このインナータッチパネルにあっては、打鍵、ペン入力操作を繰り返したときに層間剥離を生ずる 10 ことがなく、長寿命で、ユーザーの厳しい基準を充分に満たしていた。

【0064】得られたインナータッチパネルを、上面側偏光板/液晶セル/下面側偏光板の構成を有する液晶表示素子の上面側偏光板の下(または上面側偏光板/位相板/液晶セル/下面側偏光板の構成を有する液晶表示素子の位相板の下)に組み込んで液晶表示素子を作製し、その性能を評価したところ、上面側偏光板の上に透明タッチパネルを置く従来のタッチパネルに比し視認性が30~40%向上し、光透過量も顕著に向上することが判20明した。また硬化型樹脂硬化物層(2),(2)を設けてあるため、腰(剛性)、硬度、耐熱性、耐溶剤性、耐スクラッチ性、非透湿性が良好であった。

【 0 0 6 5 】上記で得た(3)/(2)/(1)/(2)/(3)/(4) の層 構成を有する透明導電性シート2枚の透明導電層(3) 側 を対向させると共に、両シート間に強誘電性高分子液晶 層が介在配置されるようにしてセルを作り、強誘電性高 分子液晶表示素子を作製したときも、寿命は非常に好ま しいものであった。

[0066]

【発明の効果】本発明の方法により得られた光等方性基材フィルム(1) /活性エネルギー線硬化型樹脂硬化物層(2) /無機質薄層(3) /透明導電層(4) の層構成を含む透明導電性シートにあっては(ただし無機質薄層(3) は省略することもある)、光等方性基材フィルム(1) と活性エネルギー線硬化型樹脂硬化物層(2) との界面における密着性、活性エネルギー線硬化型樹脂硬化物層(2) と無機質薄層(3) との界面における密着性がすぐれており、しかも品質のばらつきがない上、特別の工程を要しない。よって本発明は、透明導電性シートの工業的製造法として有用である。

【図面の簡単な説明】

【図1】本発明の方法により得られる透明導電性シートの一例を示した模式断面図である。

【符号の説明】

- (1) …光等方性基材フィルム、
- (2) …硬化型樹脂硬化物層、
- (3) …無機質薄層、
- (4) …透明導電層

【図1】

