Г.С. Мыцык, К.А. Воронцов

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОННЫЕ ЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ»

Оглавление	
Лабораторная работа №1. Исследование характеристик однофазного	
двухканального инвертора с ДШИМ напряжения в каналах (и с ОШИМ	
выходного напряжения) и создание на этой основе информационного базиса для	Į.
его проектирования	3
Общие требования к содержанию отчета	3
Порядок проведения исследования	3
Задание для первой половины группы	7
Задание для второй половины группы	10
Лабораторная работа №2. Регулируемый по напряжению трёхфазный инвертор	
напряжения – ТИН-Р	14
Решаемые в работе задачи	14
Лабораторная работа №3. Трёхфазный инвертор напряжения с ШИМ по	
синусоидальному закону	19
Часть 1	19
Часть 2	20
Лабораторная работа №4. Четырёхквадрантный преобразователь	23
Лабораторная работа №5. Трансформаторно-выпрямительные устройства	27

Лабораторная работа №1.

Исследование характеристик однофазного двухканального инвертора с ДШИМ напряжения в каналах (и с ОШИМ выходного напряжения) и создание на этой основе информационного базиса для его проектирования

Общие требования к содержанию отчета Отчет должен содержать:

- титульный лист;
- два листа с индивидуальным заданием;
- два листа с общими требованиями к содержанию отчета;
- результаты выполненных студентом нижеперечисленных пунктов исследования;
- резюме (аннотация) выполненной работы. Объем не более 0.5 страницы.

Результаты по отдельным пунктам обязательно нумеруются и приводятся в порядке возрастания номеров пунктов. Любой иллюстративный материал (осциллограммы, графики, схемы и т.д.) должны быть подписаны и иметь сквозную нумерацию, например (Рис. 1. Схема модели однофазного двухканального инвертора с ДШИМ напряжения в каналах и с ОШИМ выходного напряжения). На графиках должна быть указана размерность исследуемых величин.

Порядок проведения исследования

- 1. Определить индивидуальные значения сопротивления и индуктивности нагрузки инвертора для $\cos \varphi_{2(1)} = 1 \ u \ 0.8$.
- 2. Определить индивидуальные значения индуктивностей вторичных обмоток трансформаторов НИЯ необходимые для обеспечения требуемого действующего значения первой гармоники напряжения на выходе инвертора.
- 3. Определенные в п.1 и 2 значения ввести в модель, затем вставить в отчет схему модели. Дать текстовое описание схемы модели однофазного инвертора.
- 4. Провести ИКМ при $\cos \varphi_{2(1)} = 1$, $\mu = 1$, $\xi = 20$ и начальных значениях параметров Γ -образного фильтра. Убедиться с помощью осциллограммы напряжения на нагрузке инвертора в правильности (то есть в соответствии

проектному замыслу) определенных в п.2 значений индуктивностей вторичных обмоток трансформатора. В качестве результатов на одном листе привести следующие осциллограммы:

- 1-ая осциллограмма напряжение на вторичной обмотке трансформатора первой нулевой инверторной ячейки НИЯ1 и ток в ней.
- 2-ая осциллограмма напряжение на вторичной обмотке трансформатора второй НИЯ2 и ток в ней.
- 3-я осциллограмма суммарное напряжение на вторичных обмотках трансформаторов НИЯ1, НИЯ2, напряжение на нагрузке инвертора и ток нагрузки.
- 5. Провести серию экспериментов ИКМ при $\cos \varphi_{2(l)} = 1$, $\mu = 0.5$, $\xi = 10$ варьируя значения L и C фильтра, с целью определения минимального значения произведения LC_{min} Γ -образного фильтра, обеспечивающего заданное значение $K_{\Gamma(U2)}$. Записать найденные значения -L' и C'.
- 6. Провести серию экспериментов ИКМ при $\cos \varphi_{2(l)} = 1$, $\mu = 0.5$, $\xi = 10$, изменяя, как указано в первом столбце табл.№1, найденные а п.5 параметры L' и C', и заполнить эту таблицу (**примечание** в таблицу <u>вписываются амплитудное</u> значение первой гармоники выходного напряжения инвертора и действующие значения токов в первичной и вторичной обмотках трансформатора любой НИЯ, произведение L' C' сохраняется неизменным).

Таблица 1

	$K_{\Gamma(U2)}$	$U_{2(1)m}$	$I_{W1\ mpanc\phi. HИЯ}$	$I_{W2\ mpaнc\phi. HИЯ}$
2·L', C'/2				
L', C'				
$L^{\prime}/2, 2 \cdot C^{\prime}$				

На основе полученных экспериментальных данных, изложить в письменной форме свои соображения, по поводу выбора наиболее рационального сочетания значений L' и C'.

- 7. Выполнить п.4, используя наиболее рациональное (выбранные в п.6) соотношение значений L и $\mathrm C$ фильтра.
- 8. Провести серию экспериментов ИКМ при оптимальных (выбранных в п.6) значениях параметров Γ -образного фильтра и $\cos \varphi_{2(l)} = I$, варьируя значения

параметров μ и ξ . Построить в отдельной координатной плоскости, семейство зависимостей $K_{\Gamma(U2)} = f(\xi)$ при $\mu = 1, 2; 1, 0; 0, 75; 0, 5$. Значения параметра $\xi = 10; 20; 30; 40$.

Эксперимент повторить и задокументировать при $\cos \varphi_{2(1)} = 0, 8$.

Сформулировать в письменной форме закономерности изменения исследуемых зависимостей

9. Построить спектрограммы напряжений до фильтра $(u_{ex.\phi})$ и после фильтра - на нагрузке (u_2) (в диапазоне частот (f) от 0 до 60к Γ ц).

1-ый лист:

- 1-ая спектрограмма $u_{ex.d}$ (f) при μ =1; ξ =10.
- 2-ая спектрограмма u_2 (f) при μ =1; ξ =10.
- 3-ья спектрограмма $u_{ex.\phi}$ (f) при μ =1; ξ =20.
- 4-ая спектрограмма u_2 (f) при μ =1; ξ =20.

2-ой лист:

- 1-ая спектрограмма $u_{ex.\phi}$ (f) при μ =0,5; ξ =10.
- 2-ая спектрограмма u_2 (f) при μ =0,5; ξ =10.
- 3-ья спектрограмма $u_{ex.\phi}$ (f) при μ =0,5; ξ =20.
- 4-ая спектрограмма u_2 (f) при μ =0,5; ξ =20.

Сформулировать в письменной форме закономерности изменения исследуемых зависимостей.

Рис. 1. Схема ИК-модели силовой части преобразователя

Рис. 2. Схема ИК-модели системы управления

Рис. 3. Пример осциллограмм выходного напряжения каналов, суммарного выходного напряжения и тока в активно-индуктивной нагрузке

Задание для первой половины группы

(*) Общее направление исследования: на основе ИКМ при заданных значениях параметров μ определить влияние параметра $\xi = f_p/f_3$ на коэффициент гармоник $K_{\Gamma(U2)}$ выходного напряжения инвертора с выходной частотой $f_{2(1)} = 400$ Γ μ , заданным выходным напряжением $U_{2(1)} = 115$ B (действ. знач. Основной гармоники) с заданными значениями мощности RL нагрузки $S_{2(1)}$ (задается индивидуально) при $\cos \varphi_{2(1)} = 1,0$ и $\cos \varphi_{2(1)} = 0,8$. Области изменения параметров: $\mu = 1,2$; 1,0; 0,75; 0,5; $\xi = 10....30$ с шагом 10. Результаты представить в виде графических зависимостей.

(**) Общее задание

На основе серии численных экспериментов при μ =0,5 найти минимальное значение произведения LC Γ образного фильтра, обеспечивающее $K_{\Gamma(U2)} \le 8\%$. B качестве начальных значений взять значения L и C, указанные в индивидуальном задании. Для найденного значения LC_{min} определить рациональное соотношение сомножителей этого произведения $(L/C)^{onm}$. Для оптимизированного $(L/C)^{onm}$ построить зависимость $K_{\Gamma(U2)} = f(\xi)$ для значений μ , указанных θ (*). При значениях μ =1,0; 0,5 для значений параметра ξ = 10; 20 вывести на печать спектрограммы выходного напряжения (в диапазоне частот от 0 до 60к Γ и): а) - до фильтра и б) - после фильтра. Результаты представить в виде графических зависимостей. (На печать выводить по 4 плота на 1-м листе A4. На каждом из 2-х листов для одного μ).

 $(f_p$ — частота развертывающего напряжения треугольной формы (тактовая частота); f_3 — частота задающего напряжения синусоидальной формы, равная частоте выходного напряжения инвертора; $\mu = U_{3m} / U_{pm} = 1 \div 0$ — глубина модуляции, параметр регулирования напряжения). Сформулировать рекомендации по проектированию.

(***) Рекомендации по оформлению

На печать вывести типовые временные диаграммы рабочих процессов (напряжение до фильтра и после фильтра + ток нагрузки (на 1-ом плоте), напряжение на дросселе фильтра, его ток и ток через конденсатор (на 2-ом плоте) – оба плота на 1 общем листе формата A4 с полями: слева и сверху - 2,5 см, справа – 1,5 см, снизу – 6 см (место для подрисуночной подписи), а также зависимости в соответствии с индивидуальным заданием. Результаты представить в виде графических зависимостей. (На печать выводить по 4 плота на 1-м листе A4. На каждом из 2-х листов для одного µ). Число графиков и их вид согласовать с преподавателем.

(****) Дополнительные указания:

- 1) Для обеспечения требуемого уровня выходного напряжения (действующее значение 115В) задать соответствующее значение коэффициента трансформации трансформатора при напряжении питания инвертора E_{π} = 30 В.
- 2) В том случае, если после проведения исследований значение параметра $K_{\Gamma(U2)}$ при значении $\xi \leq 20$ окажется больше 8%, подобрать (увеличить) параметры фильтра, обеспечивающие уменьшение $K_{\Gamma(U2)}$ до этого значения. Если $K_{\Gamma(U2)}$ окажется существенно меньше заданного значения, параметры фильтра необходимо уменьшить. В отчетной записке указать число итераций, которое пришлось сделать до определения приемлемых параметров фильтра. Для снижения числа итераций предварительно ознакомиться с упрощённой методикой определения параметров фильтра в уч. пособии: Мыцык Г.С. и др. «Поисковое проектирование устройств....».
- 3) После выполнения задания группа совместно анализирует и обсуждает полученные результаты исследований. Сверяет качественную непротиворечивость индивидуально полученных результатов и формулирует выявленные закономерности и итоговые выводы, которые представляются в заключительной части записки.
- 4) Материалы работы оформляются в форме научно-исследовательской работы (с титульным листом, аннотацией, комментариями к осциллограммам и графикам и выводами). Обобщающие материалы представляются в виде текста и графиков. Завершающим этапом является защита выполненной работы.
- 5) В задании с целью активизации самостоятельного логического мышления не для всех шагов исследования даны (однако могут быть даны в ходе выполнения работы) исчерпывающие указания. В этих случаях исследователь или же сам определяет путь решения задачи, или же консультируется с преподавателем.
- 6) Перед выполнением работы целесообразно составить детализированную программу Ваших действий. При затруднениях консультироваться с преподавателями. <u>Параметры индивидуального задания (необходимо включить в отчет)</u>

№ в списке	Мощность нагрузки	Начальные параметры фильтра			
1-ой половины	$S_{2(I)}$, к BA	$\it L$, м Γ н	C , мк Φ		
1	1	2	2		
2	2	1,8	4		
3	3	1,6	6		
4	4	1,4	8		
5	5	1,2	10		
6	6	1,0	12		
7	7	0,8	14		
8	8	0,6	16		
9	9	0,4	18		
10	10	0,3	19		
11	11	0,2	20		
12	12	1,0	10		
13	13	0,8	12		
14	14	0,7	15		
15	15	0,6	20		

Целью настоящей исследовательской работы является закрепление ранее приобретенных знаний, развитие логического мышления и освоение навыков самостоятельного исследования, - качества которые именно в такой совокупности необходимы при поисковом проектировании новых устройств силовой электроники (на базе использования современных возможностей имитационного компьютерного моделирования).

При несоответствии результатов фильтрации выходного напряжения ИН ожидаемым процессам обращаться к преподавателям.

Указание 1: на титульном листе обязательно указываются:

- Ф.И.О. студента;
- номер подгруппы (1 или 2) и номер варианта;
- значение заданной выходной частоты;
- расчётные значения индуктивностей всех обмоток трансформаторов;
- значения трёх параметров: $S_{2(I)}$, кBA; L, м Γ н; C, мк Φ .

Все данные свести в таблицу.

Указание 2: значения индуктивностей обмоток трансформаторов рассчитываются индивидуально при заданных напряжении питания, выходном напряжении и выходной частоте. Определение индуктивности первичной полуобмотки трансформатора рассчитывается по следующей методике:

- 1. При заданной выходной мощности ИН (по основной гармонике) и заданном КПД η =0,8 определяем входную мощность, потребляемую от источника питания с напряжением $E_{\rm n}$.
- 2. При заданном напряжении питания определяем потребляемый ИН от источника питания ток.
- 3. Первичные полуобмотки трансформаторов работают попеременно (в противофазе, без пауз), т.е. со скважностью s=2. С учётом этого (и п.2) определяем действующее значение тока через полуобмотку $-I_{W1({\rm Hom})}$.
 - 4. Задаёмся током XX ИН, например, $I_{W1(xx)} = 0.05 \cdot I_{W1(HOM)}$.
- 5. Определяем входное сопротивление полуобмотки трансформатора на выходной частоте: $Z_{\text{вx}} = E_{\text{п}} / I_{W1(\text{xx})} \approx X_{L(W1)}$ (в пренебрежении её активным сопротивлением).
 - 6. Используя равенство: $X_{L(W1)} = \omega L_{(W1)}$, находим L_{W1} .
- 7. Значения индуктивностей выходных обмоток двух трансформаторов находят следующим образом:
- 7.1. При μ =1 выходное напряжение ИН имеет форму с ОШИМ. При этом амплитуда 1-й (основной) гармоники напряжения $U_{2(1)m}$ равна максимальному значению этого напряжения. Следовательно, при последовательном соединении вторичных обмоток трансформаторов напряжение на каждой из них должно быть равно:

$$U_{W2}=0,5\ U_{2(1)m}$$
.

- 7.2. При известных значениях напряжений на первичных полуобмотках и на вторичной обмотке определяем коэффициент трансформации K_T .
- 7.3. При известной индуктивности первичной полуобмотки (и с учётом п.7.2) определяем индуктивность вторичной обмотки: $L_{W2} = K^2_{\ \ T} \ L_{W1}$.
 - 8. Ввести полученные значения индуктивностей в ИК-модель ИН и начать ИКМ.

Примечание: Указание 2 должно быть реализовано в цифрах и представлено в начальной части отчёта.

Задание для второй половины группы

- (*) Общее направление исследования: на основе ИКМ при заданных значениях параметров μ определить влияние параметра $\xi = f_p/f_3$ на коэффициент гармоник $K_{\Gamma(U2)}$ выходного напряжения (после фильтра) инвертора с частотой $f_{2(1)} = 50\Gamma$ ц, и напряжением $U_{2(1)} = 220$ В с заданными (индивидуально) значениями мощности RL нагрузки $S_{2(1)}$ при $\cos \varphi_{2(1)} = 1,0$ и $\cos \varphi_{2(1)} = 0,8$. Области изменения параметров: $\mu = 1,2$; 1,0; 0,75; 0,5; $\xi = 10....50$ с шагом 10. Результаты представить в виде графических зависимостей.
- $(f_p$ частота развертывающего напряжения треугольной формы (тактовая частота); f_3 частота задающего напряжения синусоидальной формы, равная частоте выходного

напряжения инвертора; $\mu = U_{3m} / U_{pm} = 1 \div 0$ — глубина модуляции, параметр регулирования напряжения). Сформулировать рекомендации по проектированию.

(**) Общее задание

На основе серии численных экспериментов при $\mu=0,5$ найти минимальное значение произведения LC Γ образного фильтра, обеспечивающее $K_{\Gamma(U2)} \le 5\%$. B качестве начальных значений взять значения L u C, указанные в индивидуальном задании. Для найденного значения LC_{min} определить рациональное соотношение сомножителей этого произведения $(L/C)^{onm}$. Для оптимизированного $(L/C)^{onm}$ построить зависимость $K_{\Gamma(U2)} = f(\xi)$ для значений μ , указанных β (*). При значениях $\mu=1,0$; 0,5 для двух значений параметра $\xi=10$; δ 0 вывести на печать спектрограммы выходного напряжения (в диапазоне частот от 0 до δ 0 δ 0 δ 1 δ 1 δ 2 δ 2 для одного δ 3 δ 4. На каждом из δ 2-х листов для одного δ 4.

(***) Рекомендации по оформлению

На печать вывести типовые временные диаграммы рабочих процессов (напряжение до фильтра и после фильтра + ток нагрузки (на 1-ом плоте), напряжение на дросселе фильтра, его ток и ток через конденсатор (на 2-ом плоте) — оба плота на 1 общем листе формата А4 с полями: слева и сверху - 2,5 см, справа — 1,5 см, снизу — 6 см (место для подрисуночной подписи), а также зависимости в соответствии с индивидуальным заданием. Число графиков и их вид согласовать с преподавателем.

(****) Дополнительные указания:

- 1) Для обеспечения требуемого уровня выходного напряжения (действующее значение 220В) задать соответствующее значение коэффициента трансформации трансформатора при напряжении питания инвертора $E_{\it \Pi}$ = 30 В..
- 2) В том случае, если после проведения исследований значение параметра $K_{\Gamma(U2)}$ при значении $\xi \leq 30$ окажется больше 8%, подобрать (увеличить) параметры фильтра, обеспечивающие уменьшение $K_{\Gamma(U2)}$ до этого значения . Если $K_{\Gamma(U2)}$ окажется существенно меньше заданного значения, параметры фильтра необходимо уменьшить. В отчетной записке указать число итераций, которое пришлось сделать до определения приемлемых параметров фильтра. Для снижения числа итераций предварительно ознакомиться с упрощённой методикой определения параметров фильтра в уч. пособии: Мыщык Г.С. и др. «Поисковое проектирование устройств....».
- 3) После выполнения задания группа совместно анализирует и обсуждает полученные результаты исследований. Сверяет качественную непротиворечивость индивидуально полученных результатов и формулирует выявленные закономерности и итоговые выводы, которые представляются в заключительной части записки.
- 4) Материалы работы оформляются в форме научно-исследовательской работы (с титульным листом, аннотацией, комментариями к осциллограммам и графикам и

выводами). Обобщающие материалы представляются в виде текста и графиков. Завершающим этапом является защита выполненной работы.

- 5) В задании с целью активизации самостоятельного логического мышления не для всех шагов исследования даны (однако могут быть даны в ходе выполнения работы) исчерпывающие указания. В этих случаях исследователь или же сам определяет путь решения задачи, или же консультируется с преподавателем.
- 6) Перед выполнением работы целесообразно составить детализированную программу Ваших действий. При затруднениях консультироваться с преподавателями. <u>Параметры индивидуального задания (необходимо включить в отчет)</u>

№ в списке	Мощность нагрузки	Начальные парам	етры фильтра
2-ой половины	$S_{2(I)}$, к BA	L , м Γ н	С, мкФ
1	1	10	10
2	2	10	12
3	3	8	14
4	4	8	16
5	5	6	18
6	6	6	20
7	7	4	22
8	8	4	24
9	9	2	26
10	10	2	28
11	11	3	30
12	12	4	40
13	13	5	50
14	14	4	60
15	15	5	50

Целью настоящей исследовательской работы является закрепление ранее приобретенных знаний, развитие логического мышления и освоение навыков самостоятельного исследования, - качества которые именно в такой совокупности необходимы при поисковом проектировании новых устройств силовой электроники (на базе использования современных возможностей имитационного компьютерного моделирования — ИКМ).

При несоответствии результатов фильтрации выходного напряжения ИН ожидаемым процессам обращаться к преподавателям.

Указание 1: на титульном листе обязательно указываются:

- Ф.И.О. студента;
- номер подгруппы (1 или 2) и номер варианта;
- значение заданной выходной частоты;
- расчётные значения индуктивностей всех обмоток трансформаторов;
- значения трёх параметров: $S_{2(1)}$, кВА; L, м Γ н; C, мк Φ .

Все данные свести в таблицу.

Указание 2: значения индуктивностей обмоток трансформаторов рассчитываются индивидуально при заданных напряжении питания, выходном напряжении и выходной частоте. Определение индуктивности первичной полуобмотки трансформатора рассчитывается по следующей методике:

- 1. При заданной выходной мощности ИН (по основной гармонике) и заданном КПД η =0,8 определяем входную мощность, потребляемую от источника питания с напряжением $E_{\rm n}$.
- 2. При заданном напряжении питания определяем потребляемый ИН от источника питания ток.
- 3. Первичные полуобмотки трансформаторов работают попеременно (в противофазе, без пауз), т.е. со скважностью s=2. С учётом этого (и п.2) определяем действующее значение тока через полуобмотку $-I_{W1({\rm Hom})}$.
 - 4. Задаёмся током XX ИН, например, $I_{W1(xx)}=0.05 \cdot I_{W1(HOM)}$.
- 5. Определяем входное сопротивление полуобмотки трансформатора на выходной частоте: $Z_{\text{вх}} = E_{\Pi} / I_{W1(\text{xx})} \approx X_{L(W1)}$ (в пренебрежении её активным сопротивлением).
 - 6. Используя равенство: $X_{L(W1)} = \omega L_{(W1)}$, находим L_{W1} .
- 7. Значения индуктивностей выходных обмоток двух трансформаторов находят следующим образом:
- 7.1. При μ =1 выходное напряжение ИН имеет форму с ОШИМ. При этом амплитуда 1-й (основной) гармоники напряжения $U_{2(1)m}$ равна максимальному значению этого напряжения. Следовательно, при последовательном соединении вторичных обмоток трансформаторов напряжение на каждой из них должно быть равно:

$$U_{W2}=0,5\ U_{2(1)m}.$$

- 7.2. При известных значениях напряжений на первичных полуобмотках и на вторичной обмотке определяем коэффициент трансформации K_T .
- 7.3. При известной индуктивности первичной полуобмотки (и с учётом п.7.2) определяем индуктивность вторичной обмотки: $L_{W2} = K^2_{\ T} L_{W1}$.
 - 8. Ввести полученные значения индуктивностей в ИК-модель ИН и начать ИКМ.

Примечание: Указание 2 должно быть реализовано в цифрах и представлено в начальной части отчёта.

Лабораторная работа №2.

Регулируемый по напряжению трёхфазный инвертор напряжения – ТИН-Р

ЗАДАНИЕ НА ЛАБ. РАБОТУ №2

№	Мощность	$\cos \varphi_{2(1)}$	f_2	R_2	L_2	E_{Π}
	Нагрузки кВА	12(1)	[Гц]	[Ом]	[мГн]	[B]
1	1	0,85; 0,5; 0,2	50			<u> </u>
2	2	0,80; 0,6; 0,1	400			
3	3	0,90; 0,6; 0,3	50			
4	4	0,85; 0,5; 0,2	400			100
5	5	0,80; 0,6; 0,1	50			
6	6	0,90; 0,6; 0,3	400			
7	7	0,85; 0,5; 0,2	50			
8	8	0,80; 0,6; 0,1	400			
9	9	0,90; 0,6; 0,3	50			
10	10	0,85; 0,5; 0,2	400			
11	11	0,80; 0,6; 0,1	50			
12	12	0,90; 0,6; 0,3	400			
13	13	0,85; 0,5; 0,2	50			
14	14	0,80; 0,6; 0,1	400			
15	15	0,90; 0,6; 0,3	50			200
16	16	0,85; 0,5; 0,2	400			
17	17	0,80; 0,6; 0,1	50			
18	18	0,90; 0,6; 0,3	400			
19	19	0,85; 0,5; 0,2	50			
20	20	0,80; 0,6; 0,1	400			
21	21	0,90; 0,6; 0,3	50			
22	22	0,85; 0,5; 0,2	400			
23	23	0,80; 0,6; 0,1	50			
24	24	0,90; 0,6; 0,3	400			
25	25	0,85; 0,5; 0,2	50			300
26	26	0,80; 0,6; 0,1	400			
27	27	0,85; 0,5; 0,2	50			
28	28	0,80; 0,6; 0,1	400			
29	29	0,90; 0,6; 0,3	50			
30	30	0,85; 0,5; 0,2	400			
31	31	0,80; 0,6; 0,1	50			

Решаемые в работе задачи

1. Закрепление: а) навыков составления компьютерной модели; б) навыков исследования процессов в направлении максимального понимания их физической сущности («что от чего и каким образом зависит»).

- 2. Поставленные задачи решаются по вышеприведённому индивидуальному заданию:
- 2.1. Значения параметров нагрузки R_2 и L_2 определяются при заданных значениях мощности нагрузки, частоты и напряжении питания ТИН-Р для заданных трёх значений $\cos \varphi_{2(1)}$.
- 3. На основе ИКМ получить представление о гармониках нулевой последовательности (ГНП) и показать их влияние на рабочие процессы. Для этого провести:
 - 3.1. Соответствующую коррекцию в модели ТИН-Р;
- 3.2. Соответствующие эксперименты и проиллюстрировать их соответствующими осциллограммами.
 - 4. На основе серии экспериментов определить (построить):
- 4.1. Зависимость постоянной составляющей потребляемого ТИН-Р тока от угла нагрузки $\phi_{2(1)}$ при α =0 и α =30°. Привести осциллограммы соответствующих процессов и зависимость I_{d0} = $f(\phi_{2(1)})$.
- 4.2. Получить зависимость амплитуды основной гармоники выходного напряжения ТИН-Р $U_{2(1)m}$ от угла регулирования α (это регулировочная характеристика). Брать следующие значения угла α =0°; 15°; 30°; 45°; 55°. Привести несколько (от 2-х до 3-х) осциллограмм выходных фазных напряжения и тока (на общем плоте).
 - 5. Дать письменное определение КПД ТИН-Р.
- 5.1. Почему здесь нельзя пользоваться традиционным определением КПД? Ответ дать письменно.
 - 6. Требования к оформлению такие же, как и в лаб. работе №1.

Рис. 1. Силовая часть трехфазного мостового инвертора

Рис. 2. Нагрузка

Рис. 3. Блок формирования π-алгоритма с мёртвым временем

Рис. 4. Блок формирования паузы

Рис. 5. Блок драйверов

```
PARAMETERS:
                                       f1 - Частота на выходе инвертора
DT_value - Величина мертвого времени (от 0 до 1)
Pause_value - Величина паузы управления (от 0 до 1)
f1 = 400
DT_value = 0.01
Pause_value = 0.6
DT_value_minus = {DT_value*(-1)}
                                       DT_value_minus - отрицательное
                                       Т - период на выходе инвертора
T = \{1/f1\}
                                       T_pause - период пилообразного сингнала, для
T_pause = {1/(2*f1)}
                                       TR - Передний фронт пилообразного сигнала для формирования паузы
TR = \{(T_pause/3)-(TF)\}
                                       TF - Задний фронт пилообразного сигнала для формирования пазуы
TF = \{0.001*T\}
                                       TD1 - TD3 - задержки пилообразного сигнала для создания сдвига по фазе
TD1 = {T_pause/3}
TD2 = {(2*T_pause)/3}
TD3 = {T_pause}
```

Рис. 7. Глобальные переменные ИК-модели

Лабораторная работа №3.

Трёхфазный инвертор напряжения с ШИМ по синусоидальному закону

Часть 1

Примечание: Блестяще выполнила работу Авцынова Т. Взять её для описания методички по ЛР. (05.04.19).

Цель работы:

- 1) приобретение навыков моделирования (ИКМ);
- 2) понимание ШИМ как средства улучшения спектрального состава выходного напряжения и, как следствие, уменьшения массы фильтра;
- 3) понимание физической сути КПД ТИН и отличие его от его классического определения;

4) приобретение представлений о системном проектировании.

Задачи работы:

1) При принятых ранее индивидуальных заданиях выполнить эксперименты по определению параметров LC фильтра для ранее заданных параметров нагрузки при заданных значениях параметров ШИМ — $\xi = f_p/f_3$ (где $f_3 = f_2$), $\mu = U_{3m}/U_{pm}$, где f_p , f_3 — частота развертывающего напряжения треугольной формы и частота сигнала задания, равная частоте выходного напряжения f_2 ; U_{3m} , U_{pm} — максимальные значения сигнала задания синусоидальной формы и развертывающего напряжения.

Значениями параметров нагрузки и частоты руководствоваться индивидуальными заданиями Лаб.раб. №1

2) Уточнение: при f_2 =50 Гц и f_2 =400 Гц взять два значения ξ =30; 50 и для μ =1,0 определить параметры фильтра, обеспечивающие $K_{\Gamma(U2)}\approx$ 5% для f_2 =50 Гц и $K_{\Gamma(U2)}\approx$ 8% для f_2 =400 Гц. Полученные значения $K_{\Gamma(U2)}$ выводить на печать (в области осциллограмм). Дать спектрограммы напряжения до фильтра и после него. На печать вывести те же величины, что и в ЛР№1 (+ потребляемый ТИН ток). Осциллограммы и спектрограммы расположить на одном листе. (Для этого правильно определить целесообразные масштабы информации).

- 3) Повторить задание по п.2) для μ =0,5.
- 4) Проанализировать результаты и (письменно) сделать выводы по выполненным экспериментам.

Часть 2

Работа выполняется на базе модели, созданной в ходе первой части лабораторной работы.

- 1) Определить частоту и ввести в сигнал задания всех фаз ТИН первую гармонику нулевой последовательности с амплитудой $U_{\text{нп}m}=1/6 \cdot U_{Im}$.
- 2) С помощью ИКМ (или аналитически) определить максимальную глубину модуляции по основной гармонике $\mu_{1\text{max}} = U_{1\text{m}}/U_{\text{p}}$, при которой не наступает перемодуляция полного сигнала задания (образец результата представлен на рис. 1).
- 3) Провести эксперименты, описанные в части 1, для сформированного на предыдущем этапе закона модуляции и сравнить показатели качества выходного напряжения с полученными ранее результатами, сделать вывод о преимуществах или недостатках рассмотренного квазитрапецеидального закона модуляции по сравнению с синусоидальным.
- 4) * Дополнительное задание: обосновать соотношение $U_{\rm HII}/U_{Im}=1/6$

Рис. 1. Введение гармоники нулевой последовательности в сигнал задания: а – основная гармоника, результирующий сигнал задания и сигнал развёртки; б – выходные напряжения до и после фильтра, ток в активно-индуктивной нагрузке.

Лабораторная работа №4. Четырёхквадрантный преобразователь с простым алгоритмом управления

Рис.1. Схема ИК модели:

- а силовая часть ЧКП;
- б имитатор сети и фильтр;
- в переменные проекта;
- г исходные сигналы;
- д блок формирования паузы;
- е блок формирования алгоритма управления и блок драйверов силовых ключей.

Рис. 2. Осциллограммы работы ЧКП: а, б – в режиме отдачи энергии в сеть; в, г – в режиме потребления энергии из сети;

Лабораторная работа №4.

Четырёхквадрантный преобразователь

- I. Цель работы: ознакомление с функциональными свойствами 3-х фазной инверторной схемы, работающей в двух режимах:
- I-1. В режиме трёхфазного инвертора напряжения (ТИН), работающего параллельно с промышленной сетью (РПС), когда в сеть отдаётся только активная составляющая тока (с $\cos \phi_{2(1)}=1$) рис.1а.
- I-2. В режиме малоискажающего трёхфазного выпрямителя (МИТВ), когда из сети потребляется только активная его составляющая (с $\cos \varphi_{1(1)}=1$), рис.16.
- II. Базовая информация, которую необходимо знать, чтобы понять отличие двух вышеуказанных режимов от традиционного автономного режима его работы, это векторные диаграммы, характеризующие режимы I-1, I-2, которые представлены на рис.1а, рис.16:

Рис.1. Векторные диаграммы, поясняющие процессы в ЧКП (по основной гармонике) в двух режимах: а) — в режиме параллельной работы с сетью — ТИН при РПС; и б) — в режиме МИТВ: $U_{Cj(1)m}$ — фазное напряжение промышленной сети; $E^{xx}_{2j(1)m}$ — противо-ЭДС ЧКП-2 на холостом ходу; $E^{\theta}_{2j(1)m}$ — противо-ЭДС в режиме отдачи в сеть чисто активного тока — $I_{2j(1)m}$ —отдаваемѕq в сеть ток; $\theta_{2j(1)}$ — угол нагрузки; $U_{L2j(1)m}$ — падение напряжения на дросселе индуктивности L_{2j} .

Учитывая различные функциональные свойства, которые может реализовать схема ТИН, целесообразно обозначать её более обобщенно – как четырёхквадрантный преобразователь (ЧКП), работающий в одном из 4-х режимов. В ЛР№4 исследуются только два режима.

Значения мощности, потребляемой из сети и отдаваемой в сеть, взять из индивидуальных заданий к ЛР №3.

- III. Настроить ИК-модель ЧКП на работу в режиме ТИН при РПС.
- III-1. Задать параметры требуемого режима ЧКП (напряжение и отдаваемый в сеть ток согласно заданию).
- III-2. Описать принцип определения (задания) параметров μ_1 и θ_1 («1» для основной гармоники) и задать эти значения в ИК-модели (выражения в блоках EVALUE на рис. 26). Нетрудно показать, что $\mu_1 = \frac{2 \cdot U_{m \varphi}}{E_{\Pi}}$, причём, как было показано в лабораторной работе №3, допустимо увеличение μ_1 до 1,15 при искусственном введении в сигнал задания гармоник нулевой последовательности.
 - III-3. Определить требуемый уровень напряжения источника питания.
- III-4. Проверить правильность результатов ИКМ с помощью снятия осциллограмм фазного напряжения и тока сети.
- III-5. Снять осциллограмму тока в цепи источника питания. Измерить параметры источника питания его U_{d0} , I_{d0} , P_{d0} , R_d .
- III-6. Проверить полученные результаты на выполнение критерия энергетического баланса: P_{d0} =3 $U_{I(I)}$ · $I_{I(I)}$, где $U_{I(I)}$ и $I_{I(I)}$ действующие значения фазных напряжения и тока.
- IV. Тот же самый объём исследований (из 6 пунктов) провести для работы ЧКП в режиме МИТВ. При этом в качестве нагрузки в звене постоянного тока использовать параллельно включённые конденсатор (500 мкФ) и резистор, рассчитанный таким образом, чтобы при заданной мощности напряжение на нём было на 10% больше максимального значения выпрямленного линейного напряжения сети.
- V. В отчёте по ЛР №4 должна быть представлена принципиальная блоксхема ЧКП силовой части и системы управления (СУ). Указать, датчики каких величин должны быть использованы для построения СУ.
- VI. В конце отчёта сформулировать какие положения (вопросы) в работе наиболее тяжело (трудно) поддаются восприятию.

Примечание: Настоящая ЛР№4 в наибольшей мере ориентирована на самостоятельную работу и требует вдумчивого, глубокого ознакомления с материалом, а также тщательного (и осознанного) оформления результатов исследований. По не ясным вопросам обращаться к преподавателям и ассистентам.

Рис. 2. К формированию ИК-модели ЧКП:

- a) сопряжение ЧКП с сетью (порты A_out, B_out, C_out выход ТИН, V11-V13 модель сети бесконечной мощности);
- б) способ расчёта μ и θ , входные данные для их определения: активное сопротивление (глобальная переменная Rf в блоке PARAMETERS) и индуктивность (Lf) сопрягающего дросселя, фазное напряжение сети (Eg), желаемое значение фазного тока (Ig), напряжение источника постоянного тока (Edc);
- в) формирование сигналов задания для модулятора ширины импульсов с ведением третьей гармоники.

Формулы прямого вычисления параметров задающего сигнала (следуют из векторных диаграмм, приводятся для самопроверки):

$$\mu = \frac{2 \cdot U_{m\phi}}{E_{\Pi}} = \frac{2 \cdot \sqrt{2} \cdot \sqrt{\left(U_{C\phi} - R \cdot I_{\phi}\right)^{2} + \left(2 \cdot \pi \cdot f \cdot L \cdot I_{\phi}\right)^{2}}}{U_{d}}, \qquad (2)$$

$$\mu(t) = \frac{2 \cdot \sqrt{2} \cdot \sqrt{\left(U_{C\phi} - R \cdot I_{\phi}\right)^{2} + \left(2 \cdot \pi \cdot f \cdot L \cdot I_{\phi}\right)^{2}}}{u_{d}(t)}, \tag{3}$$

$$\theta = \operatorname{arctg}\left(\frac{2 \cdot \pi \cdot f \cdot L \cdot I_{\phi}}{U_{C\phi} - R \cdot I_{\phi}}\right),\tag{4}$$

где f — частота напряжения сети, L и R — индуктивность и активное сопротивление согласующего дросселя, $U_{\mathrm{C} \varphi}$ — фазное напряжение сети, I_{φ} — фазный ток ЧКП, U_d — напряжение в звене постоянного тока.

$$I_{2A\Pi} = I_{1A} + I_{2A}$$
 (1)

Рис.3. Принципиальная электрическая схема системы параллельной работы ТИН с сетью бесконечной мощности. Система управления ТИН, включая информационные каналы (в виде датчиков напряжения и тока) не показана.

Лабораторная работа №6. Трансформаторно-выпрямительные устройства

	Сетевое напряжение	Выходное	Выходная мощность,	Снять осциллогораммы:
20		напряжение	Pd0 [кВт]	
No		U _{d0} [B]		
1		10	3	1. Входного напряжения и тока
2		15	6	(на одном плоте с двумя осями ординат) с определением коэффициента гармоник тока, его действующего значения и спектрограммы.
3	220 / 380	20	9	2. Токи на входе двух мостов (на двух плотах)
4	В,	25	12	с определением действующего значения тока и его спектрограммы.
5	50 Гц	30	15	3. Определение U _{d0} и спектрограммы
6		35	18	-выпрямленного напряжения и значения пульсаций в форме коэффициента гармоник напряжения.
7		40	21	4. Осциллограммы токов на выходе каждого из мостов и тока нагрузки (на отдельных
8		45	24	координатных плоскостях)
9		50	27	
10		20	4	
11		30	7	
12		40	10	
13		50	13	
14	115 / 208	60	16	
15	В,	70	19	
16	400 Гц	80	22	
17		90	25	
18		100	28	

28

Рисунок 1. Схема ИК-модели силовой части ТВУ-1

K Linear COUPLING = 1	K2 K_Linear COUPLING = -0.5	K K3 K Linear COUPLING = -0.5	K K4 K Linear COUPLING = -0.5	K K5 K Linear COUPLING = -0.5	K K16 K Linear COUPLING = 1	K K17 K Linear COUPLING = -0.5	K K18 K_Linear COUPLING = -0.5
L1 = L1	L1 = L1	L1 = L1	L1 = L1	L1 = L1	L1 = L1	L1 = L1	L1 = L1
L2 = L4	L2 = L5	L2 = L6	L2 = L2	L2 = L3	L2 = L7	L2 = L8	L2 = L9
K K6 K_Linear COUPLING = -0.5	K K7 K Linear COUPLING = 1	K K8 K_Linear COUPLING = -0.5	K K9 K_Linear COUPLING = -0.5	K K19 K Linear COUPLING = 1	K_Linear COUPLING = -0.5	K K21 K Linear COUPLING = -0.5	
L1 = L2	L1 = L2	L1 = L2	L1 = L2	L1 = L2	L1 = L2	L1 = L2	
L2 = L4	L2 = L5	L2 = L6	L2 = L3	L2 = L8	L2 = L7	L2 = L9	
K Linear COUPLING = -0.5	K Linear COUPLING = -0.5	K Linear COUPLING = 1	K K22 K Linear COUPLING = 1	K K23 K Linear COUPLING = -0.5	K K24 K Linear COUPLING = -0.5		
L1 = L3	L1 = L3	L1 = L3	L1 = L3	L1 = L3	L1 = L3		
L2 = L4	L2 = L5	L2 = L6	L2 = L9	L2 = L7	L2 = L8		
K Linear COUPLING = -0.5 L1 = L4 L2 = L5	K K14 K Linear COUPLING = -0.5 L1 = L4 L2 = L6	K K29 K Linear COUPLING = 1 L1 = L4 L2 = L7	K K30 K Linear COUPLING = -0.5 L1 = L4 L2 = L8	K K31 K Linear COUPLING = -0.5 L1 = L4 L2 = L9			
	L2 = L0	L2 = L7	L2 = L0	L2 = L8			
K Linear COUPLING = -0.5	K28 K_Linear COUPLING = -0.5	K Linear COUPLING = 1	K K33 K Linear COUPLING = -0.5				
L1 = L5	L1 = L5	L1 = L5	L1 = L5				
L2 = L6	L2 = L7	L2 = L8	L2 = L9				
K K34 K Linear COUPLING = -0.5	K K35 K Linear COUPLING = -0.5	K Linear COUPLING = 1					
L1 = L6	L1 = L6	L1 = L6					
L2 = L7	L2 = L8	L2 = L9					
K K25 K Linear COUPLING = -0.5	K K26 K Linear COUPLING = -0.5						
L1 = L7	L1 = L7						
L2 = L8	L2 = L9						
K27 K_Linear COUPLING = -0.5 L1 = L8							
L2 = L9							

Рисунок 2. Матрица коэффициентов магнитной связи трансформатора ТВУ-1

Рисунок 3. Осциллограммы выходного напряжения и входного тока ТВУ-1

Рисунок 4. Схема ИК-модели силовой части ТВУ-2

K K1 K_Linear COUPLING = {A} L1 = L1 L2 = L4	K K2 K_Linear COUPLING = {B} L1 = L1 L2 = L5	K K3 K_Linear COUPLING = {B} L1 = L1 L2 = L6	K K4 K_Linear COUPLING = {B} L1 = L1 L2 = L2	K K5 K Linear COUPLING = {B L1 = L1 L2 = L3	K K Linear COUPLING = {A} L1 = L7 L2 = L10	K K17 K Linear COUPLING = {B} L1 = L7 L2 = L8	K K18 K Linear COUPLING = {B} L1 = L7 L2 = L11	K K19 K Linear COUPLING = {B} L1 = L7 L2 = L9	K K20 K Linear COUPLING = {B} L1 = L7 L2 = L12
K Linear COUPLING = {B} L1 = L2 L2 = L4	K K7 K Linear COUPLING = {A} L1 = L2 L2 = L5	K Linear COUPLING = {B} L1 = L2 L2 = L6	K K9 K Linear COUPLING = {B} L1 = L2 L2 = L3		K24 K_Linear COUPLING = {B} L1 = L8 L2 = L10	K21 K_Linear COUPLING = {A} L1 = L8 L2 = L11	K22 K_Linear COUPLING = {B} L1 = L8 L2 = L9	K K23 K Linear COUPLING = {E L1 = L8 L2 = L12	3}
K K10 K Linear COUPLING = {B} L1 = L3 L2 = L4	K K11 K Linear COUPLING = {B} L1 = L3 L2 = L5	K 12 K Linear COUPLING = {A} L1 = L3 L2 = L6			K K25 K_Linear COUPLING = {B} L1 = L9 L2 = L10	K Linear COUPLING = {B} L1 = L9 L2 = L11	K27 K_Linear COUPLING = {A} L1 = L9 L2 = L12		
K K13 K Linear COUPLING = {B} L1 = L4 L2 = L5	K14 K_Linear COUPLING = {B} L1 = L4 L2 = L6				K K28 K_Linear COUPLING = {B} L1 = L10 L2 = L11	K Linear COUPLING = {B} L1 = L10 L2 = L12			
K K15 K Linear COUPLING = {B} L1 = L5 L2 = L8					K Linear COUPLING = {B} L1 = L11 L2 = L12				

Рисунок 5. Матрицы коэффициентов магнитной связи трансформаторов ТВУ-2

Рисунок 6. Осциллограммы выходного напряжения и входного тока ТВУ-2