Elementare Geometrie

Mitschrieb, gehört bei Prof. Leuzinger im WS17/18

Jens Ochsenmeier

Inhaltsverzeichnis

1	Übungen	5
	1.1 2017-10-27	[

Übungen

1.1 2017-10-27

1.1.1 Aufgabe 2.

Gegeben:

• $||x||_1 := \sum_{i=1}^n |x_i|$,

•
$$||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$$
,

• $||x||_{\infty} := \max_{i=1,...,n} |x_i|$.

Wir zeigen, dass alle drei Normen sind. Dafür ist zu zeigen:

1. **Positivität**: $||x|| \ge 0 \forall x, x = 0 \Leftrightarrow ||x|| = 0$.

2. **Sublinearität**: $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$

3. Homogenität: $\forall x \in V \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| \cdot ||x||$.

Positivität ist klar für alle drei. Homogenität ist auch arg simpel. **Sublinearität**:

1.

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i|$$
$$= ||x||_1 + ||y||_1$$

2.

$$\begin{aligned} ||x+y||_{\infty} &= \max_{i=1,\dots,n} |x_i + y_i| \le \max_{i=1,\dots,n} (|x_i| + |y_i|) \\ &\le \max_{i=1,\dots,n} \max_{j=1,\dots,n} (|x_i| + |y_j|) = (\max_i |x_i|) + (\max_j |y_j|) \\ &= ||x||_{\infty} + ||y||_{\infty} \end{aligned}$$

3.

$$||x + y||_{2}^{2} = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle - \langle y, y \rangle$$

$$\stackrel{\text{CSU}}{\leq} ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2}$$

$$\Rightarrow ||x + y||_{2} \leq ||x||_{2} + ||y||_{2}$$

1.1.2 Aufgabe 3.

Sei (X, d) ein metrischer Raum, $r_1, r_2 \in \mathbb{R}_{>0}$.

- 1. Beweise:
 - (a) Falls $d(x,y) \ge r_1 + r_2$, dann sind $B_{r_1}(x)$, $B_{r_2}(y)$ disjunkt. <u>Beweis</u>: Angenommen, $\exists z \in B_{r_1}(x) \cap B_{r_2}(y)$. Dann ist $d(x,y) \le d(x,z) + d(z,y) < r_1 + r_2$ \not
 - (b) Falls $d(x,y) \le r_1 r_2$, so ist $B_{r_2}(y) \subseteq B_{r_1}(x)$. <u>Beweis</u>: Angenommen, $\exists z \in B_{r_2}(y) \setminus B_{r_1}(x)$. Dann ist

$$d(x,z) \ge r_1 = (r_1 - r_2) + r_2$$

> $d(x,y) + d(z,y)$ $\ \ \ \Box$

- 2. Finde je ein Gegenbeispiel für die Rückrichtung:
 - (a) Sei $X = \{0, 1\}$ und d Metrik auf X mit d(0, 1) = 1. **Idee**: Wir nehmen zwei Bälle, die sich in der Theorie überschneiden, weil die Summe der Radien kleiner ist als der Abstand, aber in der Schnittmenge liegen keine Elemente. Wir wählen $r_1 = r_2 = \frac{2}{3}$, x = 0, y = 1. Wir haben $B_{r_1}(0) = \{0\}$, $B_{r_2}(1) = \{1\}$, aber $r_1 + r_2 = \frac{4}{3} > d(0, 1)$.
 - (b) Metrik wie in erstem Gegenbeispiel, $r_1 = r_2 = 100$, x = 0, y = 1. Dann ist $B_{r_1}(0) = \{0, 1\}$, $B_{r_2}(1) = \{0, 1\}$, aber d(0, 1) > 100 100.