(Rel.) c-Medoids (Krishnapuram '01)

prototypes are data points

$$V \subseteq X$$

for example

$$v_i = x_j \quad \Rightarrow \quad d_{ik} = ||v_i - x_k|| = ||x_j - x_k|| = r_{jk}$$

- \bullet can be used to cluster relational data R
- ullet contribution of cluster i with $v_i=x_j$ to the FCM cost function

$$J_i^* = J_{ij} = \sum_{k=1}^n u_{ik}^m r_{jk}^2$$

optimal choice of medoids

$$w_i = arg min\{J_{i1}, \dots, J_{in}\}$$

Relational Fuzzy c-Means (Bezdek '87)

ullet reformulation: insert optimal V into J

$$J_{RFCM}(U;R) = \sum_{i=1}^{c} \frac{\sum_{j=1}^{n} \sum_{k=1}^{n} u_{ij}^{m} u_{ik}^{m} r_{jk}^{2}}{\sum_{j=1}^{n} u_{ij}^{m}}$$

solution

$$u_{ik} = 1 / \sum_{j=1}^{n} \frac{u_{is}^{m} r_{sk}}{\sum_{s=1}^{n} u_{ir}^{m}} - \sum_{s=1}^{n} \sum_{t=1}^{n} \frac{u_{is}^{m} u_{it}^{m} r_{st}}{2(\sum_{r=1}^{n} u_{ir}^{m})^{2}}$$

$$= 1 / \sum_{j=1}^{n} \frac{u_{js}^{m} r_{sk}}{\sum_{s=1}^{n} u_{jr}^{m}} - \sum_{s=1}^{n} \sum_{t=1}^{n} \frac{u_{js}^{m} u_{jt}^{m} r_{st}}{2(\sum_{r=1}^{n} u_{jr}^{m})^{2}}$$

Non-Euclidean Relations

• problem with RFCM:

$$u_{ik} < 0$$
 or $u_{ik} > 1$

if R is not Euclidean (triangle inequality violated)

solution: transformation of the distance matrix

$$D_{\beta} = D + \beta \cdot \left(\begin{array}{ccccc} 0 & 1 & \dots & 1 & 1 \\ 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{array} \right)$$

with successively increasing $\beta > 0$

non-Euclidean relational fuzzy c-means (NERFCM)

Mercer's Theorem (again)

- idea: transform the data $X=\{x_1,\ldots,x_n\}\in \mathbb{R}^p$ to $X'=\{x_1',\ldots,x_n'\}\in \mathbb{R}^q$, $q\gg p$, so that the structure in X' is easier than in X
- ullet support vector machine: non linearly separable data X o linearly separable data X'
- ullet relational clustering: complex cluster shapes in R o hyperspherical clusters in R'
- ullet Mercer's theorem \exists a mapping $\varphi: {\rm IR}^p \to {\rm IR}^q$ so that

$$k(x_j, x_k) = \varphi(x_j) \cdot \varphi(x_k)^T$$

 \bullet kernel trick: scalar product in X' = kernel function in X

Kernelization

relational data

$$r_{jk}^{2} = \|\varphi(x_{j}) - \varphi(x_{k})\|^{2}$$

$$= \left(\varphi(x_{j}) - \varphi(x_{k})\right) \left(\varphi(x_{j}) - \varphi(x_{k})\right)^{T}$$

$$= \varphi(x_{j})\varphi(x_{j})^{T} - 2\varphi(x_{j})\varphi(x_{k})^{T} + \varphi(x_{k})\varphi(x_{k})^{T}$$

$$= k(x_{j}, x_{j}) - 2 \cdot k(x_{j}, x_{k}) + k(x_{k}, x_{k})$$

$$= 2 - 2 \cdot k(x_{j}, x_{k})$$

 \bullet kernelization as preprocessing of R (kNERFCM)

$$r'_{jk} = \sqrt{2 - 2 \cdot e^{-\frac{r_{jk}^2}{\sigma^2}}}$$
 $r'_{jk} = \sqrt{2 \cdot \tanh\left(\frac{r_{jk}^2}{\sigma^2}\right)}$

Effect of Kernelization

Prof. Dr. Thomas A. Runkler

Copyright © 2020. All rights reserved.

Cluster Tendency: Hopkins Index

- $R = \{r_1, \dots, r_m\}$: random points in the convex hull of X
- $S = \{s_1, \ldots, s_m\}$: randomly picked data from X, m << n
- d_{r_1}, \ldots, d_{r_m} : distances of R to the nearest neighbors in X
- d_{s_1}, \ldots, d_{s_m} : distances of S to the nearest neighbors in X
- Hopkins index

$$h = \frac{\sum_{i=1}^{m} d_{r_i}^p}{\sum_{i=1}^{m} d_{r_i}^p + \sum_{i=1}^{m} d_{s_i}^p}$$

 \bullet interpretation: $h pprox 0 \leftrightarrow X$ has regular structure $h pprox 0.5 \leftrightarrow X$ is randomly distributed $h pprox 1 \leftrightarrow X$ contains clusters

Examples Hopkins Index

Prof. Dr. Thomas A. Runkler

Validity Measures

partition coefficient
 (average square membership)

$$PC = \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik}^{2}$$

 classification entropy (average entropy)

$$CE = \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{c} -u_{ik} \cdot \log u_{ik}$$

U	PC(U)	CE(U)	
$ \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right) $	1	0	
$\left(egin{array}{ccc} rac{1}{c} & \cdots & rac{1}{c} \ dots & \ddots & dots \ rac{1}{c} & \cdots & rac{1}{c} \end{array} ight)$	$\frac{1}{c}$	$\log c$	

Self-Organizing Map (Kohonen '81)

ullet q-dimensional array of nodes with reference vectors

$$M = \{m_1, \dots, m_l\} \subset \mathbb{IR}^p$$

and locations

$$R = \{r_1, \dots, r_l\} \subset \mathbb{IR}^q$$

rectangular

r_1	$\stackrel{\mathbf{r}}{\times}^2$	$\overset{\mathbf{r}}{\times}^3$	$\overset{\mathbf{r}}{\times}^4$	$\overset{\mathbf{r}}{\times}_{5}$	$\overset{\mathbf{r}}{\times}^{6}$	$\overset{\mathbf{r}}{\times}^7$	$\overset{\mathbf{r}}{\overset{\times}{8}}$
r_9	$r_{\times 10}$	$r_{\times^{11}}$	$r_{\times^{12}}$	<u>r</u> ₁₃	$r_{\times 14}$	$r_{\times 15}$	$r_{\times 16}$
$r_{\times 17}$	$r_{\times 18}$	$r_{\times 19}$	$r_{\times^{20}}$	$r_{\times^{21}}$	$r_{\times^{22}}$	$r_{\times^{23}}$	$r_{\times^{24}}$
$r_{\times 25}$	$r_{\chi^{26}}$	$r_{\chi^{27}}$	$\overset{\mathbf{r}}{\times}^{28}$	r_{29}	r_{30}	r_{31}	r_{32}

hexagonal

Self-Organizing Map

- in each learning step t consider the neighbors of each node
- ullet neighborhood between nodes with indices c and i

bubble:
$$h_{ci} = \begin{cases} \alpha(t), & \text{if } ||r_c - r_i|| < \rho(t) \\ 0, & \text{otherwise} \end{cases}$$

Gaussian:
$$h_{ci} = \alpha(t) \cdot e^{-\frac{\|r_c - r_i\|^2}{2 \cdot \rho^2(t)}},$$

- ullet observation radius ho(t): monotonically decreasing
- learning rate $\alpha(t)$: monotonically decreasing, e.g.

$$\alpha(t) = \frac{A}{B+t}, \quad A, B > 0$$

Self-Organizing Map

- algorithm
 - 1. input data $X = \{x_1, \dots, x_n\} \subset R^p$, map dimension $q \in \{1, \dots, p-1\}$, node positions $R = \{r_1, \dots, r_l\} \subset R^q$
 - 2. initialize $M = \{m_1, \ldots, m_l\} \subset \mathbb{R}^p$, t = 1
 - 3. for each x_k , $k = 1, \ldots, n$,
 - (a) find winner node m_c with

$$||x_k - m_c|| \le ||x_k - m_i|| \quad \forall i = 1, \dots, l$$

(b) update winner and neighbors

$$m_i = m_i + h_{ci} \cdot (x_k - m_c) \quad \forall i = 1, \dots, l$$

- 4. t = t + 1
- 5. repeat from (3.) until termination criterion holds
- 6. output reference vectors $M = \{m_1, \ldots, m_l\} \subset \mathbb{R}^p$