Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0623 Microprocesadores III ciclo 2020

Tarea 4

Luis Guillermo Ramírez - B76222 Roberto Sánchez Cárdenas - B77059

Profesor: Ing. Rafael Esteban Badilla Alvarado Grupo 01

26 de enero del 2021

Índice

Ín	dice de figuras	III
1.	Estructuras de datos	1
2.	Diagramas	2
	2.1. Programa principal	
	2.2. Tarea Teclado	
	2.3. Mux teclado	
	2.4. Formar array	5
	2.5. Interrupciones	6
3.	Memoria de cálculo	6
4.	Pruebas del código	7

Índice de figuras

1.	Diagrama de flujo de programa principal
2.	Diagrama de subrutina flujo de tarea teclado
3.	Diagrama de subrutina para leer teclado
4.	Diagrama de subrutina para formar array
5.	Diagrama de subrutina para interrupciones
	Prueba de llenado
7.	Prueba de borrado
8.	Prueba de enter
9.	Prueba de interrupción Keywakeup
	Pruobe do interrunción Koywelzoun con enter

1. Estructuras de datos

- MAX_TCL: Byte para indicar máxima cantidad de datos
- Tecla: Byte para guardar temporalmente el dato leído
- Tecla_IN: Byte que se usa para mover al array de datos
- Cont_Reb: Se usa para evitar rebotes
- Cont_TCL: byte para llevar tamaño actual del array
- Patron: Byte para guardar un patron que recorre el teclado
- Banderas: Byte para guardar 3 banderas en 3 bits
- Num_Array: Se reservan 6 bytes para guardar datos
- Teclas: Array de valores posibles del teclado

2. Diagramas

2.1. Programa principal

Figura 1: Diagrama de flujo de programa principal

2.2. Tarea Teclado

Figura 2: Diagrama de subrutina flujo de tarea teclado

2.3. Mux teclado

Figura 3: Diagrama de subrutina para leer teclado

2.4. Formar array

Figura 4: Diagrama de subrutina para formar array

2.5. Interrupciones

Figura 5: Diagrama de subrutina para interrupciones

3. Memoria de cálculo

Buscamos lograr un T_{RTI} de 1 ms. Nos basamos en la siguiente ecuación para realizar los cálculos.

$$T_{RTI} = \frac{(N+1)2^{M+9}}{Osc_Clk} \tag{1}$$

Si M=1, entonces obtenemos el valor de N

$$N = \frac{T_{RTI} \cdot Osc_Clk}{2^{10}} \approx 7 \tag{2}$$

Al sustituir estos valores en 1 obtenemos 1024 ms.

4. Pruebas del código

Utilizando un MAX_TCL de 5 se realizaron las siguientes pruebas:

Primero se llena del 1 al 5, utilizando el teclado, donde se obtienen los resultados esperados en la figura 6

>md 1000 1000 05 FF FF 00 - 05 F0 00 01 - 02 03 04 05 - 2F 01 02 03

Figura 6: Prueba de llenado

Realizamos una prueba de borrado simple donde escribimos 1,2,3 y borramos. Seguidamente colocamos 4, 5, 6. El resultado se observa como lo esperado en la figura 7.

```
>md 1000
1000 05 FF FF 00 - 05 DE 00 01 - 02 04 05 06 - 2F 01 02 03
```

Figura 7: Prueba de borrado

Se realiza la prueba para el funcionamiento del enter. Se llena del 1 al 3 y se presiona enter, luego se presionan las teclas 4 y 5. El resultado es el patrón de 1,2,3 debido a que no debe tomar nada después de haber presionado el enter. 8

>md 1000

1000__05 FF FF 00 - 03 DE 00 01 - 02 03 FF FF - 2F 01 02 03

Figura 8: Prueba de enter

Se llena del 7 al 9, y se presiona el PH0. Seguidamente se llena con 4 y 5. Se espera que se borre todo lo anterior y que solo tome en cuenta lo nuevo como se observa en la figura 9.

```
>md 1000
1000 05 FF FF 00 - 02 DE 00 04 - 05 FF FF FF - 2F 01 02 03
```

Esta prueba es lo mismo que la anterior, donde se presionan las teclas 4,5,6 seguido del enter. Y luego se borra con el PH0 y se escribe 9 y 7. Vemos el resultado correcto en 10

Figura 9: Prueba de interrupción Keywakeup

```
>md 1000
1000 05 FF FF 00 - 02 EF 00 09 - 07 FF FF FF - 2F 01 02 03
```

Figura 10: Prueba de interrupción Keywakeup con enter