

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Review

A review: Knowledge reasoning over knowledge graph

Xiaojun Chen, Shengbin Jia, Yang Xiang*

College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China

Published in 2020

Backgrounds

 KGs (large amount of prior knowledge but can also effectively organize data) -> Question-answering systems, search engines, and recommendation systems

 Knowledge reasoning -> identify errors and infer new conclusions (knowledge graph enrichment)

"In short, reasoning is the process of drawing conclusions from existing facts by the rules."

Leading knowledge graphs

Table 2Examples of world's leading knowledge graphs and their statistics (Paulheim, 2017).

Knowledge graphs	#Entities	#Relations	#Facts
WordNet	0.15M	200,000	4.5M
Freebase	50M	38,000	3B
YAGO	17M	76	150M
DBpedia (En)	4.8M	2800	176M
Wikidata	16M	1673	66M
NELL	2M	425	120M

WordNet:

A lexical database for the English language

Freebase:

Contains data harvested from sources: Wikipedia, NNDB, Fashion Model Directory, MusicBrainz, and data contributed by its users **YAGO**:

Extracted from Wikipedia, WordNet, and GeoNames

Dbpedia:

Consistent ontology, including persons, places, music albums, films, video games, organizations, species, and diseases. Can be integrated into AWS.

Wikidata:

multilingual, open, linked, structured knowledge base

NELL:

Never-Ending Language Learning system
A semantic machine learning system that
runs 24/7, forever, learning to read the web

Definition: knowledge reasoning over KGs

Definition 1Knowledge reasoning over KGs:. Given a knowledge graph $KG = \langle E, R, T \rangle$ and the relation path P, where E, T represent the set of entities, R denotes the set of relations, and the edges in R link two nodes to form a triple $(h, r, t) \in T$, generating a triplet that does not exist in the KG $G' = \{(h, r, t) | h \in E, r \in R, t \in T, (h, r, t) \notin G\}$.

Knowledge reasoning based on distributed representation

- Tensor factorization
- Distance model
- Semantic matching model
- Multi-source information

Based on tensor factorization

RESCAL

A Three-Way Model for Collective Learning on Multi-Relational Data

Maximilian Nickel

NICKEL@CIP.IFI.LMU.DE

Ludwig-Maximilians-Universität, Munich, Germany

Volker Tresp

VOLKER.TRESP@SIEMENS.COM

Siemens AG, Corporate Technology, Munich, Germany

Hans-Peter Kriegel

KRIEGEL@DBS.IFI.LMU.DE

Ludwig-Maximilians-Universität, Munich, Germany

computes a three-way factorization of an adjacency tensor that represents the knowledge graph.

Alternatively, it can be interpreted as a *compositional* model, where pairs of entities are represented via the tensor product of their embeddings.

an entity and an attribute value. In order to model dyadic relational data as a tensor, we employ a three-way tensor \mathcal{X} , where two modes are identically formed by the concatenated entities of the domain and the third mode holds the relations. Figure 1 provides an illustration of this modelling method. A tensor entry $\mathcal{X}_{ijk} = 1$ denotes the fact that there exists a relation (i-th entity, k-th predicate, j-th entity). Otherwise, for non-existing and unknown relations, the entry is set to zero.

Fig. 3. Simple illustration of RESCAL.

RESCAL for multi-relational data

rank-r factorization

$$\mathcal{X}_k \approx AR_kA^T$$
, for $k = 1, \dots, m$

Figure 2: Visualization of a subgraph of the relational graph for the US presidents example. The relation marked red is unknown.

(1)

Similar latent-component representations of Al and Lyndon
Bill and John have similar latent-component representations

$$oldsymbol{a}_{ exttt{Bill}}^T R_{ exttt{party}} oldsymbol{a}_{ exttt{PartyX}} \qquad oldsymbol{a}_{ exttt{John}}^T R_{ exttt{party}} oldsymbol{a}_{ exttt{PartyX}}$$

However, RESCAL can be hard to scale to very large knowledge-graphs because its has a quadratic runtime and memory complexity with regard to the embedding dimension.

Based on tensor factorization

- TRESCAL
 - highly efficient and scalable
- RESCAL-logit
 - improve inference accuracy
- PRESCAL
 - based on paths of tensor factorization is proposed
- Jainet al. (2017) a novel combination of matrix factorization and tensor factorization

Based on distance model

TransE

Translating Embeddings for Modeling Multi-relational Data

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán

Université de Technologie de Compiègne - CNRS Heudiasyc UMR 7253 Compiègne, France {bordesan, nusunier, agarciad}@utc.fr

Jason Weston, Oksana Yakhnenko

Google
111 8th avenue
New York, NY, USA
{jweston, oksana}@google.com

For example if

 $h_1=emb("\ Ottawa"),\ h_2=emb("\ Berlin"), t_1=emb("\ Canada"), t_2=("\ Germany")$, and finally $r="\ CapilatOf$ ", then h_1+r and h_2+r should approximate t_1 and t_2 respectively.

Figure 3: TransE

Relationships as translations in the embedding space In this paper, we introduce TransE, an energy-based model for learning low-dimensional embeddings of entities. In TransE, relationships are represented as *translations in the embedding space*: if (h, ℓ, t) holds, then the embedding of the tail entity t should be close to the embedding of the head entity t plus some vector that depends on the relationship t. Our approach relies on a reduced set of parameters as it learns only one low-dimensional vector for each entity and each relationship.

Despite its simplicity and efficiency, TransE cannot deal with One-to-N, N-to-One, and N-to-N relations effectively.

e.g., PresidentOf, TransE might learn indistinguishable representations for Trump and Obama

TransH, TransR

- TransH
- Introducing a relation-specific hyperplane

$$f_r(h, r, t) = \|\boldsymbol{h_r} + \boldsymbol{r} - \boldsymbol{t_r}\|_{l_1/l_2}$$

- TransR
- Introduces relation-specific spaces
- Projects entity vectors h and t using the space-specific matrix *Mr*

$$\mathbf{h}_r = \mathbf{h} \mathbf{M}_r, \quad \mathbf{t}_r = \mathbf{t} \mathbf{M}_r.$$

Fig. 5. Simple illustration of TransR (Lin et al., 2015b).

• TransE, TransH, TransR -> each relation has only one semantics

mountain-state relation, but also represents the regionalcountry relation

Fig. 6. Multiple types of entities of relation location (the relation HasPart has at least two latent semantics: composition related as (Table, HasPart, Leg) and location related as (Atlantic, HasPart, NewYorkBay)) (Ji et al., 2015).

TransD

• TransD: based on a dynamic matrix

- Utilizes two vectors to represent an entity or relation
 - First one represents the meaning of entity
 - Second one is used for constructing a mapping matrix

 Compared to TransR, TransD is less complicated and has no matrixvector multiplication operations

And there are more...

- mTransH
- TransM
- cTransR
- PTransE
- TranSparse heterogeneity, imbalance
- TransA
- TransAH
- TransG
- KG2E
- t-TransE
- TAE-TransE
- Know-Evolve
- MLN-based approach
- HyTE

Based on semantic matching model

- DistMult
- ComplEx

Milestones for KG embeddings

DistMult and ComplEx

https://adi-sharma.github.io/files/acl18_kg_geometry_paper.pdf

DistMult (Yang et al., 2014) models entities and relations as vectors in \mathbb{R}^d . It uses an entry-wise product (\odot) to measure compatibility between head and tail entities, while using logistic loss for training the model.

$$\sigma_{DistMult}(h, r, t) = \mathbf{r}^{\top}(\mathbf{h} \odot \mathbf{t})$$
 (3)

Since the entry-wise product in (3) is symmetric, DistMult is not suitable for asymmetric and antisymmetric relations. $\sigma_{ComplEx}(h,r,t) = \mathbf{Re}(\mathbf{r}^{\top}(\mathbf{h} \odot \bar{\mathbf{t}})) \quad (5)$ In contrast to (3), using complex vectors in (5) allows ComplEx to handle symmetric, asymmetric

- Semantic matching energy (SME)
- Latent factor model
- HOLE (holographic embeddings)

ComplEx (Trouillon et al., 2016) represents entities and relations as vectors in \mathbb{C}^d . The compatibility of entity pairs is measured using entry-wise product between head and complex conjugate of tail entity vectors.

In contrast to (3), using complex vectors in (5) allows ComplEx to handle symmetric, asymmetric and anti-symmetric relations using the same score function. Similar to DistMult, logistic loss is used for training the model.

Based on multi-source information

Injecting logic rules into embeddings for inference

KALE, a novel method that learns entity and relation for reasoning by jointly modelling knowledge and logic. KALE consists of three key components: triple modelling module, rule modelling module, and joint learning module.

pLogicNet,

IterE

TEKE – making use of rich context information in a text corpus

TKRL

MKRL

...

OpenBioLink

Fig. 1. An overview of the OpenBioLink benchmark graph.

Baseline results

	Model	MRR	h@1	h@10
Latent	RESCAL	.320	.212	.544
	TransE	.280	.175	.500
	DistMult	.300	.193	.521
	ComplEx	.319	.211	.547
	ConvE	.288	.186	.510
	RotatE	.286	.180	.511
Interpretable	AnyBURL (Maximum)	.277	.192	.457
	AnyBURL (Noisy-OR)	.159	.098	.295
	SAFRAN*	.306	.214	.501

$$\text{MRR} = \frac{1}{Q} \sum_{i=1}^{Q} \frac{1}{\text{rank}_i} \quad \text{ Hits@k} = \frac{|\{t \in \mathcal{K}_{test} \mid rank(t) \leq k\}|}{|\mathcal{K}_{test}|}$$