

Белорусская республиканская физическая олимпиада Барановичи, 2001 год

11 класс

1. (13 баллов). Небольшие упругие шарики в произвольные моменты времени бросают с высоты h = 1.0 Mна массивную горизонтальную платформу, которая колеблется в вертикальном гармоническому направлении ПО закону амплитудой a = 1,0cm и частотой $v = 50\Gamma u$. Удары платформу абсолютно шариков упругие, сопротивлением воздуха можно пренебречь. Определите, какая доля шариков после удара подпрыгнет выше первоначального уровня. С

какой частотой v_I должна колебаться платформа (при той же амплитуде), чтобы 99% шариков подпрыгнуло выше первоначального уровня?

2. (11 баллов). Изотропный точечный источник света S, полная энергетическая световая мощность которого равна I, расположен в фокусе собирающей линзы радиуса r. Фокусное расстояние линзы равно F.

Пренебрегая поглощением и дисперсией света, найдите величину и направление силы светового давления на линзу.

3. (8 баллов). Для установки обелиска высотой h насыпан холм с углом уклона равным α . Обелиск лежит на склоне холма, опираясь своей нижней

частью на фундамент. К вершине обелиска прикрепляют прочный трос, который натягивают с помощью лебедки, расположенной на расстоянии l=2h от основания обелиска. При каком минимальном коэффициенте трения обелиска о фундамент μ , подъем обелиска мог

быть осуществлен? Обелиск можно считать тонким однородным стержнем.

4. (10 баллов). Два одинаковых сверхпроводящих кольца расположены рядом друг с другом. Индуктивность каждого кольца равна L. По каждому из колец в одном направлении протекает ток силой I_{θ} . Какую минимальную работу необходимо совершить, чтобы разнести кольца на большое расстояние?

5.(12 баллов). Молярная теплоемкость C_V (при изохорном процессе) идеального газа зависит от температуры по закону, представленному на рисунке ($R=8,31\frac{\cancel{\cancel{D}}\cancel{\cancel{W}}}{\cancel{\cancel{K}}\cdot \emph{моль}}$ - универсальная газовая постоянная). При температуре $T_0=800\,\emph{K}$ один моль этого газа занимает объем $V_0=1,0\,\emph{n}$. Постройте примерный график (в координатах P-V) адиабатного процесса для этого газа в заданном диапазоне температур (полагая, что число частиц газа остается неизменным).

Успехов Вам!