MATISSE OIFITS Quality Control Report

Filename CALIB_RAW_INT_0001_N.fits

Observing date 2018-03-15T01:33:03.1182

Processing/report date 2018-03-16T15:38:03 2018-07-05T16:51:50

Product category, Chip name CALIB_RAW_INT, AQUARIUS

DIN, PIN, PON, FIN, SFN, BCD1, BCD2 LOW, INTER, OPEN, OPEN, HOLE2, OUT, OUT

2308 x 0.02 s ; 46.16 s ; 2 ; 124

C_PUP [STD]

116.312274 - 37.96856 N = TBD

AT4=C1 AT3=D0 AT2=B2 AT1=A0

0.51 --> 0.49; 3.13; 0.010496 --> 0.009183

expo ==> color

Seeing (arcsec); Wind (m/s); T0 in V (s)

NDIT x DIT; time_tot; nb_expo; nwave

Object name

Object RA, Dec, N

Telescope stations

Exposure number 0

Col 1: Baseline

Col 2 : Average squared visibility per baseline (vis² \pm err) ==> page 3

Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol

Baseline	vis^2	frac_ok	frac_mir	n frac_ma	x frac_err	frac_tol
12	0.344 ± 0.153	0.051	0.000	0.068	0.880	0.000
13	0.321 ± 0.162	0.188	0.000	0.000	0.812	0.000
14	0.097 ± 0.090	0.624	0.000	0.000	0.376	0.000
23	0.471 ± 0.184	0.085	0.000	0.000	0.915	0.000
24	0.077 ± 0.082	0.761	0.000	0.000	0.239	0.000
34	0.209 ± 0.141	0.385	0.000	0.000	0.615	0.000

Col 1: Baseline

Col 2 : Average visibility amplitude per baseline (vis \pm err) ==> page 4

Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol

Baseline	vis	frac_ok	frac_min	frac_max	frac_err	frac_tol
12	0.283 ± 0.000	1.000	0.000	0.000	0.000	0.000
13	0.201 ± 0.000	1.000	0.000	0.000	0.000	0.000
14	0.109 ± 0.000	1.000	0.000	0.000	0.000	0.000
23	0.300 ± 0.000	1.000	0.000	0.000	0.000	0.000
24	0.054 ± 0.000	1.000	0.000	0.000	0.000	0.000
34	0.134 ± 0.000	1.000	0.000	0.000	0.000	0.000

Col 1: Baseline

Col 2: Average differential phase per baseline (visphi ± err), in degrees ==> page 6 Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol

Baseline	e vis_phi	frac_ok	frac_mir	n frac_ma	x frac_err	frac_tol
12	$+0.367 \pm 720.000$	0.991	0.000	0.000	0.009	0.000
13	-0.047 ± 720.000	1.000	0.000	0.000	0.000	0.000
14	-4.111 ± 207.990	1.000	0.000	0.000	0.000	0.000
23	-5.051 ± 53.519	1.000	0.000	0.000	0.000	0.000
24	-4.374 ± 388.111	0.983	0.000	0.000	0.017	0.000
34	-5.160 ± 92.852	1.000	0.000	0.000	0.000	0.000

Average closure phase per triplet (t3phi \pm err), in degrees ==> page 5

Triplet [5 13 10]

[1 5 13]

[1 5 10]

[1 13 10]

Phi(deg)

 -4.903 ± 3.363

 -0.797 ± 5.103

 $+1.385 \pm 2.489$

 -3.023 ± 5.939

Exposure number 1

Col 1: Baseline

Col 2 : Average squared visibility per baseline (vis² \pm err) ==> page 3

Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol

Baseline	vis^2	frac_ok	frac_mir	n frac_ma	x frac_err	frac_tol
12	0.356 ± 0.160	0.051	0.000	0.094	0.855	0.000
13	0.323 ± 0.164	0.188	0.000	0.000	0.812	0.000
14	0.100 ± 0.092	0.624	0.000	0.000	0.376	0.000
23	0.483 ± 0.185	0.085	0.000	0.000	0.915	0.000
24	0.073 ± 0.077	0.726	0.000	0.000	0.274	0.000
34	0.211 ± 0.140	0.376	0.000	0.000	0.624	0.000

Col 1: Baseline

Col 2 : Average visibility amplitude per baseline (vis \pm err) ==> page 4

Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol

Baseline	vis	frac_ok	frac_mir	n frac_ma	x frac_err	frac_tol
12	0.384 ± 0.000	1.000	0.000	0.000	0.000	0.000
13	0.214 ± 0.000	1.000	0.000	0.000	0.000	0.000
14	0.092 ± 0.000	1.000	0.000	0.000	0.000	0.000
23	0.321 ± 0.000	1.000	0.000	0.000	0.000	0.000
24	0.077 ± 0.000	1.000	0.000	0.000	0.000	0.000
34	0.207 ± 0.000	1.000	0.000	0.000	0.000	0.000

Col 1: Baseline

Col 2: Average differential phase per baseline (visphi ± err), in degrees ==> page 6 Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol

Baseline	vis_phi	frac_ok	frac_min	frac_max	frac_err	frac_tol
12	$+0.561 \pm 719.184$	0.949	0.000	0.000	0.051	0.000
13	$+0.114 \pm 96.757$	1.000	0.000	0.000	0.000	0.000
14	-5.335 ± 720.000	0.897	0.000	0.000	0.103	0.000
23	-5.141 ± 52.630	1.000	0.000	0.000	0.000	0.000
24	-8.111 ± 669.797	0.179	0.000	0.000	0.821	0.000
34	-5.173 ± 145.491	1.000	0.000	0.000	0.000	0.000

Average closure phase per triplet (t3phi \pm err), in degrees ==> page 5

Triplet [5 13 10]

[1 5 13]

[1 5 10]

[1 13 10]

Phi(deg) -4.497 ± 3.076

 -0.904 ± 4.931

 $+1.140 \pm 2.281$

 -1.216 ± 5.401

Summary of all exposures

Col 1: Baseline Col 2: Average squared visibility per baseline (vis² \pm err) ==> page 3 Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit_err, error(tol)>limit_tol Baseline vis^2 frac ok frac_min frac_max frac_err frac tol 12 0.081 $0.350 \pm 0.006 \pm 0.157$ 0.0510.0000.8680.00013 0.1880.0000.812 0.000 $0.322 \pm 0.001 \pm 0.163$ 0.000 $0.099 \pm 0.001 \pm 0.091$ 0.376 14 0.6240.0000.0000.00023 $0.477 \pm 0.006 \pm 0.185$ 0.0850.0000.0000.915 0.00024 0.744 0.256 $0.075 \pm 0.002 \pm 0.079$ 0.0000.0000.0000.000 34 $0.210 \pm 0.001 \pm 0.140$ 0.3800.0000.6200.000

Col 1: Baseline Col 2: Average visibility amplitude per baseline (vis \pm err) ==> page 4 Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max points with error(err)>limit err, error(tol)>limit tol frac_ok frac_min frac_max frac_err Baseline vis frac tol 12 $0.333 \pm 0.051 \pm 0.000$ 1.000 0.0000.0000.0000.000 0.000 13 $0.207 \pm 0.006 \pm 0.000$ 0.000 0.0001.000 0.000 $0.101 \pm 0.009 \pm 0.000$ 0.0000.0000.00014 1.000 0.00023 $0.311 \pm 0.011 \pm 0.000$ 1.000 0.0000.0000.0000.00024 $0.066 \pm 0.011 \pm 0.000$ 1.000 0.0000.000 0.000 0.000 34 $0.170 \pm 0.036 \pm 0.000$ 1.000 0.0000.0000.0000.000

Col 1: Baseline
Col 2: Average differential phase per baseline (visphi ± err), in degrees ==> page 6
Cols 3 --> 7: Fraction of points Ok, points with valuelimit_min, value>limit_max
points with error(err)>limit_err, error(tol)>limit_tol

Baseline vis phi frac ok frac min frac max frac err fra

Baseline vis_phi frac_ok frac_min frac_max frac_err frac_tol 12 $+0.464 \pm 0.097 \pm 719.592$ 0.9700.0000.0000.000 0.03013 $+0.034 \pm 0.081 \pm 408.379$ 1.000 0.0000.0000.000 0.00014 $-4.723 \pm 0.612 \pm 463.995$ 0.9490.0000.0000.0510.00023 $-5.096 \pm 0.045 \pm 53.075$ 1.000 0.0000.0000.0000.00024 $-6.242 \pm 1.869 \pm 528.954$ 0.5810.0000.000 0.419 0.000 34 $-5.167 \pm 0.006 \pm 119.171$ 1.000 0.0000.0000.0000.000

Average closure phase per triplet (t3phi \pm err), in degrees ==> page 5 Triplet [5 13 10] [1 5 13] [1 5 10] [1 13 10] Phi(deg) $-4.700 \pm 0.203 \pm 3.220 +1.263 \pm 0.122 \pm 2.385 -0.850 \pm 0.053 \pm 5.017 -2.119 \pm 0.904 \pm 5.670$

Average photometric flux (1.0e+04 photo-e-/s/sp.channel \pm std) ==> page 7 Telescope Tel_1 Tel_2 Tel_3 Tel_4 Flux $0.396 \pm 0.034 \ 0.337 \pm 0.033 \ 0.369 \pm 0.034 \ 0.335 \pm 0.034$

CALIB_RAW_INT_0001_N

Page: 6

Average spectrum (in 1.0e+04 photo-e/DIT) vs wavelength (in microns)

