

(IFCT0310) ADMINISTRACIÓN DE BASES DE DATOS

- Sistemas de almacenamiento -

Redes de computadores para BBDD (orígenes y evolución)

El principio de conmutación

Alexander Graham Bell (1878) creó la "máquina eléctrica que habla"

Enlaces: N * (N-1)/2

Conmutación de circuitos

El principio de conmutación

Central A

Central B

La conmutación de circuitos se compone de tres fases:

- Establecimiento de llamada
- Comunicación
- Liberación de recursos

El principio de conmutación

60's: Primeros ordenadores conectados en red

El sistema digital binario, un milagro que sigue dando de qué hablar:

El sistema digital binario, un milagro que sigue dando de qué hablar:

- 28=256 combinaciones

Binario - Decimal

00000000 = 000

00000001 = 001

00000010 = 002

00000011 = 003

00000100 = 004

00000101 = 005

00000110 = 006

00000111 = 007

00001000 = 008

. . .

11111111 = 255

Pasar de decimal a binario

128	64	32	16	8	4	2	1
1	1	0	1	0	0	1	1

$$128 + 64 + 16 + 2 + 1 = 211$$

8 bits = 1 Byte

 2^{10} bytes = 1024 bytes = 1 Kilobyte (Kb)

1024 Kb = 1 Megabyte (Mb)

1024 Mb = 1 Gigabyte (Gb)

1024 Gb = 1 Terabyte (Tb)

1024 Tb = 1 Petabyte (Pb)

1024 Pb = 1 Exabyte (Eb)

1024 Eb = 1 Zettabyte (Zb)

1024 Zb = 1 Yottabyte (Yb)

La digitalización de la red telefónica, el nacimiento de las redes de procesamiento de datos telemáticas:

Reconocimiento de bits:

Nacimiento de las redes de procesamiento de datos

El módem (modulaciones):

Modulación de frecuencia

Modulación de fase

Modulación de amplitud

Ejemplo de envío de secuencias binarias en red (con y sin compresión):

1 bit x unidad de tiempo

3 bits x unidad de tiempo

Velocidad de transmisión

- Baudio: Mide la velocidad de transmisión. Equivale a 1 bit por segundo (bps).

➢ RTB(Red Telefónica Básica)

➢ RDSI(Red Digital de Servicios Integrados)

► ADSL / SDSL(Línea Digital Asimétrica de Abonado)

➢ FDDI(Interfaz de Datos Distribuidos de Fibra)

№ Ethernet

Velocidad de transmisión

Mbps = Mb/s \neq MB/s 1 Mbps = 1024 Kbps = (1024/8) \rightarrow 128 KB/s

✓ SIN PENALIZACIONES

Fibra óptica hasta 1 Gb de bajada y subida

Tarifa plana a fijos y móviles nacionales Cuota de línea fija incluida

Router Smart WiFi gratis Instalación de fibra incluida

Sin permanencia

¿Gbps o GB/s?

Fibra óptica hasta 1 Gb de bajada y subida

Redes de computadores para BBDD

Velocidad de transmisión

Google

Prueba de velocidad de Internet

Comprueba tu velocidad de Internet en menos de 30 segundos. La prueba de velocidad suele transferir menos de **40 MB de datos**, pero es posible que transfiera más en conexiones rápidas.

Para hacer la prueba, se te conectará con Measurement Lab (M-Lab) y se compartirá tu dirección IP con este servicio, que la procesará de acuerdo con su privacy policy. M-Lab lleva a cabo la prueba y publica todos los datos relacionados para fomentar la investigación sobre Internet. Entre la información que publica está la dirección IP y los resultados de la prueba, pero no incluye ningún otro dato personal sobre ti como usuario de Internet.

Información

REALIZAR PRUEBA DE VELOCIDAD

Velocidad de transmisión

¿Cuánto tiempo se tarda en recibir un archivo a través de INTERNET que pesa 350 MB si dispongo de una línea de datos de 1.240.000 baudios?

Traducimos los baudios en mega baudios:

- 1.240.000 *baudios* = 1.240.000 Bps
- 1.240.000 Bps / 1024 (2¹⁰) = 1.210 Kbps
- 1.210 Kbps / 1024 = 1,18 Mbps

Transformamos los mega baudios en megabytes: (Bits → Bytes)

• 1,18 Mbps / 8 = 0,18 MB/s

Una vez tenemos las unidades uniformadas, calculamos el tiempo necesario para la descarga en una red "ideal":

- 350 MB / 0.18 MB/s = 1.944 s
- 1.944 s / 60 = **32,4 minutos**

