

PHYSICS Chapter 3

VECTORES

¿QUÉ ES UN VECTOR?

Es un elemento matemático que utilizaremos para representar una cantidad física vectorial.

Módulo: (V) o $|\overrightarrow{\mathbf{v}}|$

Es la medida o valor del vector. Es siempre positivo.

Dirección (θ) : Es expresado por la medida del ángulo θ en sentido antihorario a partir de +X.

VECTOR RESULTANTE

Es el vector que representa a un conjunto de vectores que produce el mismo efecto.

MÉTODO DEL PARALELOGRAMO

Consideremos dos vectores:

Para graficar la resultante juntemos a los vectores tal que sus orígenes se intersecten.

El vector resultante

$$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$$

Donde el módulo de la resultante (R).

Ley de cosenos:

$$R = \sqrt{A^2 + B^2 + 2AB.\cos\theta}$$

A: Módulo de \vec{A}

B: Módulo de \vec{B}

Consecuencias del método del paralelogramo

$$R = \sqrt{A^2 + B^2 + 2AB.\cos\theta}$$

$$|A-B| \le R \le |A+B|$$

Si:
$$\theta = 0^{\circ}$$

$$\overrightarrow{\overline{B}}$$

$$R_{m\acute{a}xima} = A + B$$

Si:
$$\theta = 180^{\circ}$$

$$R_{minima} = A - B$$

Si:
$$\theta = 90^{\circ}$$

$$R = \sqrt{A^2 + B^2}$$

Determine el módulo del vector resultante de las dos fuerzas mostradas.

Trazando la resultante

$$R = \sqrt{A^2 + B^2}$$

$$R = \sqrt{9^2 + 12^2} N$$

$$R = \sqrt{81 + 144} N$$

$$R = \sqrt{225} N$$

RTA: R = 15 N

Del gráfico mostrado, determine el módulo de F si la resultante de los vectores F y P es de 30 N.

RESOLUCIÓN

Trazando la resultante

RTA: R = 18 N

3

Del gráfico mostrado, determine el módulo de la resultante de las fuerzas mostradas.

Trazando la resultante

Ley de cosenos:

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

Reemplazando:

$$R = \sqrt{5^2 + 3^2 + 2 \cdot 5 \cdot 3 \cdot \cos 60^{\circ}}$$
 N

$$R = \sqrt{34 + 2 \cdot 15 \cdot \left(\frac{1}{2}\right)} N$$

$$R = \sqrt{49} N$$

RTA: $\mathbf{R} = 7 \, \mathbf{N}$

De las fuerzas mostradas en el gráfico, determine el módulo de la resultante.

Trazando la resultante

Ley de cosenos:

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

Reemplazando:

$$R = \sqrt{5^2 + 5^2 + 2 \cdot 5 \cdot 5 \cdot \cos 60^{\circ}} N$$

$$R = \sqrt{50 + \cancel{2} \cdot 25 \cdot \left(\frac{1}{\cancel{2}}\right)} N$$

$$R = \sqrt{75} N \implies R = \sqrt{3 \cdot 25} N$$

RTA: $R = 5\sqrt{3} N$

Determine el módulo de la fuerza resultante de las dos fuerzas que se muestran.

RESOLUCIÓN

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

Reemplazando:

$$R = 10 \cdot \sqrt{5^2 + 3^2 + 2 \cdot 5 \cdot 3 \cdot \cos 60^{\circ}} \text{ N}$$

$$R = 10 \cdot \sqrt{34 + 2 \cdot 15 \cdot (\frac{1}{2})} \text{ N}$$

$$R = 10\sqrt{49} \text{ N}$$

RTA: R = 70 N

HELICO | PRACTICE

Un remolcador es una embarcación utilizada para ayudar a la maniobra de otras embarcaciones, principalmente tirar o empujar de barcos en puertos, pero también en mar abierto a través de ríos o canales. Si los remolcadores jalan al barco como se muestra en la figura con una fuerza de módulo 8√3 kN cada uno.

¿Cuál debe ser la fuerza resultante que actúa sobre el barco?

RESOLUCIÓN

Trazando la resultante

Ley de cosenos:

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

Reemplazando:

$$R = \sqrt{(8\sqrt{3})^2 + (8\sqrt{3})^2 + 2(8\sqrt{3})(8\sqrt{3})\cos 60^{\circ}} \text{ kN}$$

$$R = \sqrt{192 + 192 + 192} \text{ kN}$$

$$R=\sqrt{576} kN$$

RTA: R = 24 kN

Se muestran como los niños Lucho y Pepe jalan a su burro con fuerza de módulos 60 N y 80N, Respectivamente. Determine la fuerza resultante que transmiten al burro.

RTA: R = 100N

Se agradece su colaboración y participación durante el tiempo de la clase.

